A **ULA** é o componente da CPU responsável por executar as instruções. As instruções são executadas por meio de operações lógicas e aritméticas. A ULA é composta por circuitos lógicos simples que realizam as operações.

A ULA se caracteriza por:

- Cumprimento em bits dos operandos;
- Número e tipos de operações;
- Códigos de condição gerados (Overflow, Sinal, Carry).

Diferentes abordagens

Lógica: Representação de dados, Operações lógicas e aritméticas.

Fisica: Construção de circuitos lógicos, organização de circuitos lógicos

ULA estrutura e interconexão

MBR : Conjunto de registradores que armazenam os dados.

Circuitos lógicos e aritméticos: Circuitos para realização de operações lógicas e aritméticas.

Acumulador (AC) e quociente multiplicador (MQ): registradores para armazenamento de dados e operações.

ULA Função

A Unidade Lógica e Aritmética é responsável por realizar as microoperações da CPU.

Operações lógicas: E, OU, XOR

Operações aritméticas: Adição, Multiplicação, Divisão

Representação de valores

Representação de sinal de magnitude

Para representar valores binários em sinal magnitude, definimos o bit mais significativo (bit mais a esquerda) com o bit de sinal. Por padrão, usa-se 0 para + e 1 para -.

Representação de ponto flutuante

O sistema pode representar um valor em ponto flutuante com 32 bits. Destes, 8 bits para o expoente e 23 para significante/Mantissa. Dos 8 bits para o expoente 1 é para o sinal e 7 para o valor do expoente. Com 7 bits podemos ir de -128 a +128.

Overflow positivo ocorre quando se extrapola o limite máximo positivo de um valor.

Overflow negativo ocorre quando se extrapola o limite máximo negativo de um valor.

Underflow positivo ocorre quando se extrapola o limite mínino positivo de um valor.

Underflow negativo ocorre quando se extrapola o limite mínimo negativo de um valor

Etapas de construção e execução de um programa

Edição: O programador cria o programa no editor e armazena em disco.

Pré-processamento:

Compilação: O compilador traduz o programa fonte para programa objeto e armazena em disco.

Linking: O Linker (Ligador) vincula o código objeto as suas bibliotecas, cria o arquivo executável e armazena em disco.

Loading: O Loader (Carregador) coloca o programa na memória

Execução: A CPU busca e executa as instruções carregadas na memória, armazenando os valores `a medida que executa o programa.

INTRUÇÃO DE MAQUINA

Os comandos dos programas podem ser traduzidos em código de montagem (assembly), uma linguagem de baixo nível muito próxima a linguagem de máquina.

A linguagem de montagem é composta por instruções simples, que, por meio de símbolos e expressões, representam as instruções da máquina.

Instrução é um comando armazenado na memória que informa a CPU qual operação dever ser realizada, com quais dados e onde o resultado deve ser armazenado.

Principais elementos:

OPCODE:

Referência ao(s) operando(s) de origem

Referência ao(s) operando(s) de destino

Referência a próxima instrução

OPCODE: Código de operação que indica qual operação deve ser realizada. As **operações** podem ser: Operações lógicas; Operações aritméticas; Operações de movimentação de dados: Entre dois registradores; Entre um registrador e um campo na

memória;Entre dois locais na memória;

EX opcode: ADD - Adição

SUB - Subtração

MULT – Multiplicação

Referência ao(s) operandos de origem

Os operandos de origem são os dados utilizados na operação.

Uma instrução pode fazer referência a um ou mais operandos de origem.

Referência ao(s) operandos de destino

Os operandos de destino são os dados resultantes da operação.

Os operandos ORIGEM E DESTINO podem estar em uma das áreas:

Imediato

Registrador do processador

Memória principal ou virtual

Dispositivo de E/S

ENDEREÇAMENTO

Imediato – O valor do operando está contido na instrução;

Exemplo: Operação com uma constante.

A = B + 4

Registrador – A instrução faz referencia a um dos registradores do processador.

1 = 2 + 3

Memória principal ou virtual – A instrução faz referencia a um endereço na memoria principal.

Dispositivo de E/S - A instrução faz referência ao módulo de E/S e ao dispositivo de E/S no qual está o dado com o qual se deseja realizar a operação.

FORMATO DA INSTRUÇÃO

Uma instrução é formada por uma sequência de bits.

Uma instrução pode ser dividida em um conjunto de campos.

Cada elemento ocupa um campo específico, com um tamanho específico, dentro da instrução.

Exercícios

Em quais locais é possível buscar um operando?

Descreva um formato de instrução que some uma constante a um endereço da memória virtual.

Opcode, operando imediato, referência ao operando

Tipos de instrução

Processamento de dados: Instruções aritméticas realizam cálculos apenas sobre dados numéricos. Instruções lógicas operam sobre um conjunto de bits como uma palavra.

Armazenamento de dados: Realizam carregamento de dados e instruções entre memória e registradores.

Movimentação de dados: Realizam transferências de dados e programas de dispositivos de E/S para a memória e os resultados de volta ao usuário.

Controle: Instruções de teste e controle;

Instruções de teste verificam o status de um cálculo ou testam o valor de um operando.

As instruções de controle alteram o fluxo de execução de um programa, desviando de um conjunto de instruções e realizando "saltos" na memória.

O que é uma instrução de máquina? Quais seus elementos?

Instrução de maquina é um comando que informa a CPU qual operação dever ser realizada, com quais dados e onde o resultado deve ser armazenado. Seus elementos são opcode, referencia a operando fonte, referencia a operando destino, referencia a próxima instrução.

Liste e descrevas os tipos de operações e operandos de uma instrução de máquina