Practice Sheet 1

ECE 55G - Modeling and Analysis of Random 5G Networks

January 11, 2019

- 1. Void Probabilities: Assume a PPP Φ with intensity λ in \mathbb{R}^2 .
 - (a) What is the probability that there are no points lying in the annular region $\{x : a \le ||x|| \le b\}$?
 - (b) Based on the derived formula in (a), what is the probability that there are no points in a ball of radius r centered around the origin?
 - (c) Derive the cumulative density function (cdf) and the probability density function (pdf) of the nearest point of Φ from the origin.
 - (d) Now let us shift our point of observation to a point of Φ itself. Given that we are now observing Φ from the perspective of a point of Φ , what is the probability that the nearest neighbor of this point is at least at a distance of r?
- 2. **Superposition:** Consider two homogeneous PPPs Φ_1 and Φ_2 , with intensities λ_1 and λ_2 respectively, in \mathbb{R}^2 . These points may represent two different tiers of BSs, where Φ_1 represents a macro tier, and Φ_2 represents a small cell tier.
 - (a) Let us define a new PPP Φ as $\Phi_1 \cup \Phi_2$. What is the intensity of Φ ?
 - (b) Now assume that you are located at the origin and observing the points of Φ . What is the probability that the nearest BS from you belongs to the macro tier, i.e., Φ_1 ?
 - (c) Can we generalize it to n tiers?
- 3. **Thinning:** Consider a PPP Φ with intensity λ in \mathbb{R}^2 . To each of the points of Φ , we randomly assign a binary mark $m \in \{0, 1\}$, with $\mathbb{P}(m_i = 0) = p_0$ for an arbitrary point \mathbf{x}_i .
 - (a) What are the intensities of the processes consisting of only the points with mark 0?
 - (b) What is the probability that there lies a point with mark 0 within a circle of radius r centered around origin?
 - (c) From the perspective of a point of mark 0, what is the probability that there lies a point of mark 1 within a range r from it?
- 4. Transformation of a PP: Let us assume a homogeneous PPP in \mathbb{R}^2 with intensity λ . These points may represent the locations of BSs of tier. We are interested in characterizing the distances of these BSs from the perspective of a typical user. Without loss of generality, let the typical user be located at the origin.
 - (a) The distance of a point \mathbf{x}_i from the origin is given by $||\mathbf{x}_i||$. What is the average number of BSs that have a distance less than R from the origin?
 - (b) Let the distances of each point of the PPP be plotted in the number line $\mathbb{R}^+ := (0, \infty)$. This constructs a new, one-dimensional point process Ξ with its domain as \mathbb{R}^+ rather than \mathbb{R}^2 . Is Ξ a PPP?
 - (c) What is the intensity measure of Ξ for an arbitrary convex set $A \subset \mathbb{R}^+$? What is the intensity?
 - (d) What is the pdf of the nearest point of Ξ from the origin?
 - (e) Comment on the homogeneity of Ξ .