Chương 5 Tầng liên kết và mạng LAN

Computer Networking: A Top Down Approach

7th edition Jim Kurose, Keith Ross Addison-Wesley March 2017

Người dịch: Nguyễn Thanh Thủy

Tài liệu được dịch cho mục đích giảng dạy (được sự đồng ý của tác giả).

© All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

Tầng liên kết 5-1

Chương 5: Tầng liên kết và mạng LAN

Muc tiêu:

- Hiểu được các nguyên lý của các dịch vụ tầng liên kết
 - Phát hiện và sửa lỗi
 - Chia sẻ kênh truyền chung (broadcast channel): đa truy nhập
 - Định địa chỉ tầng liên kết
 - Các mạng cục bộ: Ethernet, VLANs
- Cài đặt và hiện thực các công nghệ tầng mạng khác nhau

Tầng liên kết và mạng LAN: Nội dung

- 5.1 Giới thiệu, các dịch vụ
- 5.2 Phát hiện và sửa lỗi
- 5.3 Các giao thức đa truy nhập
- 5.4 Các mạng LAN
 - Định địa chỉ, ARP
 - Ethernet
 - Các switch
 - Các VLAN

- 5.5 Chuyển mạch nhãn đa giao thức (MPLS)
- 5.6 Mạng trung tâm dữ liệu
- 5.7 Vòng đời của một yêu cầu web

Tầng liên kết 5-3

Tầng liên kết: giới thiệu

Thuật ngữ:

- Các host và các router: các nút mạng (node)
- Các kênh truyền thông kết nối giữa các nút lân cận theo đường truyền thông: gọi là các liên kết (hay các kết nối, link)
 - · Các liên kết có dây
 - Các liên kết không dây
 - Các LAN
- Gói tin tầng 2: khung (frame), đóng gói datagram

Tầng liên kết dữ liệu có trách nhiệm truyền datagram từ một nút đến nút vật lý lân cận qua một liên kết

Tầng liên kết: ngữ cảnh

- Datagram được truyền bởi các giao thức liên kết khác nhau qua các liên kết khác nhau:
 - Ví dụ: Ethernet trên liên kết thứ nhất, frame relay trên các liên kết trung gian, 802.11 trên liên kết cuối cùng.
- Mỗi giao thức liên kết cung cấp các dịch vụ khác nhau.
 - Ví dụ: có thể hoặc không cung cấp truyền tin cậy (rdt) qua liên kết

Tương tự giao thông:

- Chuyến đi từ Princeton tới Lausanne
 - Ô tô: Princeton tới JFK
 - Máy bay: JFK tới Geneva
 - Tàu điện: Geneva tới Lausanne
- Khách du lịch = datagram
- Đoạn đường đi = liên kết truyền thông
- Kiểu vận chuyển = Giao thức tàng giao vận
- Đại lý du lịch = Giải thuật định tuyến

Tầng liên kết 5-5

Các dịch vụ tầng liên kết

- Tạo khung dữ liệu, truy nhập liên kết
 - Đóng gói datagram vào trong frame, thêm phần tiêu đề (header), phần đuôi (trailer)
 - Truy nhập kênh truyền nếu được chia sẻ
 - Các địa chỉ "MAC" được sử dụng trong các tiêu đề của khung để xác định địa chỉ nguồn, đích
 - · Khác với địa chỉ IP!
- Truyền tin cậy giữa các nút lân cận
 - Đã được học (trong chương 3)!
 - Ít khi được dùng trên liên kết có tỷ lệ lỗi thấp (cáp quang, một số loại cáp xoắn)
 - Các liên kết không dây: tỷ lệ lỗi cao
 - Hỏi: Tại sao cần truyền tin cậy trên cả mức liên kết và mức đầu cuối-đến-đầu cuối?

Các dịch vụ tầng liên kết (tiếp)

- Điều khiển luồng
 - Điều khiển tốc độ giữa các nút gửi và nhận kề nhau
- Phát hiên lỗi
 - Lỗi là do suy giảm tín hiệu, nhiễu
 - Bên nhận phát hiện ra sự xuất hiện của các lỗi:
 - Thông báo cho bên gửi truyền lại hoặc loại bỏ frame đó
- Sửa lỗi
 - Bên nhận xác định và sửa các lỗi bit mà không cần phải yêu cầu truyền lại
- Bán song công (half-duplex) và song công (full-duplex)
 - Với bán song công, cả hai đầu cuối của liên kết đều có thể truyền, nhưng không được truyền tại cùng một thời điểm.

Tầng liên kết 5-7

Tầng liên kết được cài đặt ở đâu?

- Tai tất cả các host
- Tầng liên kết được cài đặt tại "adaptor" (còn được gọi là thẻ giao diện mạng (network interface card - NIC) hoặc trên chip
 - Ethernet card, 802.11 card;
 Ethernet chipset
 - Cài đặt tầng liên kết và tầng vật lý
- Gắn vào bên trong các bus hệ thống của host
- Kết hợp phần cứng, phần mềm, phần sụn (firmware)

Các adaptor truyền thông

- Phía gửi:
 - Đóng gói datagram trong frame
 - Bổ sung kiểm tra lỗi bit, rdt, điều khiển luồng,...
- Phía nhận:
 - Kiểm tra lỗi, rdt, điều khiển luồng,...
 - Trích xuất datagram, chuyển lên tầng cao hơn tại phía nhân

Tầng liên kết 5-9

Tầng liên kết và các mạng LAN: Nội dung

- 5.1 Giới thiệu, các dịch vụ
- 5.2 Phát hiện và sửa lỗi
- 5.3 Các giao thức đa truy nhập
- 5.4 Các mạng LAN
 - Định địa chỉ, ARP
 - Ethernet
 - Các switch
 - Các VLAN

- 5.5 Chuyển mạch nhãn đa giao thức (MPLS)
- 5.6 Mạng trung tâm dữ liệu
- 5.7 Vòng đời của một yêu cầu web

Phát hiện lỗi

EDC= Các bit dùng để phát hiện và sửa lỗi (Error Detection and Correction bits) (dư thừa)

D = Dữ liệu được bảo vệ bằng cách kiểm tra lỗi, có thể bao gồm cả các trường trong phần tiêu đề.

Phát hiện lỗi không thể đảm bảo tin cậy 100%!

- Giao thức có thể bỏ lỡ một vài lỗi, nhưng rất hiếm khi
- Trường EDC càng lớn thì càng tốt hơn cho việc phát hiện và sửa lỗi.

Tầng liên kết 5-11

Kiểm tra Parity

Bit parity don:

 Phát hiện các lỗi bit đơn

Bit parity hai chiều:

Phát hiện và sửa các lỗi bit đơn

Internet checksum (xem lại)

Mục tiêu: phát hiện "các lỗi" (ví dụ: các bit bị đảo ngược) trong gói tin được truyền (chú ý: chỉ được dùng tại tầng giao vận).

Bên gửi:

- Xử lý các nội dung segment như là chuỗi các số nguyên 16-bit
- checksum: bổ sung (tổng bù 1) vào nội dung của segment
- Bên gửi đặt giá trị checksum vào trong trường UDP checksum

Bên nhân:

- Tính toán checksum của segment nhận được
- Kiểm tra xem checksum đã được tính có bằng giá trị của trường checksum hay không:
 - KHÔNG có phát hiện lỗi
 - Có không phát hiện ra lỗi.
 Nhưng có thể có những lỗi khác?

Tầng liên kết 5-13

Kiểm tra dư thừa theo chu kỳ

(Cyclic redundancy check - CRC)

- Có nhiều tiềm năng phát hiện lỗi hơn
- Coi các bit dữ liệu D như là số nhị phân
- Chon mẫu G có r+1 bit
- Muc tiêu: chọn r bit CRC, R, như sau:
 - <D,R> chia hết cho G (theo mô đun 2)
 - Bên nhận biết G, chia <D,R> cho G. Nếu số dữ khác 0: phát hiện lỗi!
 - Có thể phát hiện tất cả các lỗi nhỏ hơn r+1 bit
- Được sử dụng phổ biến trong thực tế (Ethernet, 802.11 WiFi, ATM)

Ví dụ CRC

Muốn:

 $D \cdot 2^r XOR R = nG$

Tương đương:

 $D \cdot 2^r = nG XOR R$

Tương đương:

Nếu lấy G chia cho D·2^r, muốn phần còn lại R thỏa mãn:

$$R = phần dư của \left[\frac{D \cdot 2^r}{G}\right]$$

