Exercise 3 - Gauss-Newton

Prof. Dr. Moritz Diehl and Greg Horn

The aim of this exercise is to solve some parameter estimation problems with own solver instead of fmincon. You will warm up by fitting a model which can be solved analytically with least squares. You will then use Gauss-Newton to fit a simple model where derivative information is available. Last, you will solve the airplane parameter estimation problem from exercise 2 using your Gauss-Newton solver.

1 Paper Airplane Modeling

We will use the same data set as in exercise 2, which is available at

https://github.com/ghorn/OCE-2014/blob/master/exercise2/airplane_data.m

As before, this data set contains noisy position measurements $\hat{p}_{x,k}$ and $\hat{p}_{z,k}$ but not velocity.

Tasks

1. Linear least squares

Assuming the solution trajectory has a polynomial form in time t:

$$\bar{p}_{x,k} = \sum_{j=0}^{10} a_j t_k^j \tag{1}$$

$$\bar{p}_{z,k} = \sum_{i=0}^{10} b_j t_k^j \tag{2}$$

The optimization problem is:

$$\min_{a_0,...,a_{10},b_0,...,b_{10}} \ \sum_{k=0}^{N-1} \left(\bar{p}_{x,k}(a,b) \right) - \hat{p}_{x,k} \right)^2 + \left(\bar{p}_{z,k}(a,b) - \hat{p}_{z,k} \right)^2$$

Formulate the problem as a linear least squares problem, that is:

$$\min_{x} \|Ax - b\|_2^2$$

and solve using the well-known formula:

$$x_{LS} = (A^T A)^{-1} A^T b$$

You should expect an imperfect fit, and possibly a badly conditioned matrix inverse. Numerically, it is certainly better to use the MATLAB pinv function to compute the Moore-Penrose pseudoinverse $A^+ = (A^T A)^{-1} A^T$.

Plot p_x vs $-p_z$, $-p_z$ vs time, and p_x vs time.

2. Gauss-Newton on simple model

Assume the solution trajectory has the form:

$$\bar{p}_{x,k}(\theta_x) = \theta_{x,1} + t_k \theta_{x,2} + \theta_{x,3} \sin(\theta_{x,4} + t_k \theta_{x,5}) e^{-\theta_{x,6} t_k}$$
(3)

$$\bar{p}_{z,k}(\theta_z) = \theta_{z,1} + t_k \theta_{z,2} + \theta_{z,3} \sin(\theta_{z,4} + t_k \theta_{z,5}) e^{-\theta_{z,6} t_k}$$
(4)

The optimization problem is:

$$\min_{\theta_x, \theta_z} \sum_{k=0}^{N-1} (\bar{p}_{x,k}(\theta_x, \theta_z)) - \hat{p}_{x,k})^2 + (\bar{p}_{z,k}(\theta_x, \theta_z) - \hat{p}_{z,k})^2$$

Write down the objective function in the form of Gauss-Newton, that is:

$$\min_{\theta} \frac{1}{2} F(\theta)^T F(\theta) \tag{5}$$

Linearize $F(\theta)$ analytically to solve for F_0 , J, where:

$$F(\theta) \approx F_0 + J\Delta\theta$$

Use Newton's method with the Gauss-Newton Hessian approximation to solve (5).

Plot p_x vs $-p_z$, $-p_z$ vs time, and p_x vs time. It will probably be very useful in debugging to plot each iteration of the algorithm.

3. Gauss-Newton on simulation model

For exercise 2, you used a RK4 integrator to minimize measurement errors, estimating α and initial state. Now put that probem in the Gauss-Newton form. Only write a MATLAB function for F, not J. A function for computing J from F is provided at:

https://github.com/ghorn/OCE-2014/blob/master/exercise3/finite_difference_jacob.m You will call this function with a command something like:

Solve this problem using Newton's method with the Gauss-Newton Hessian approximation. For initial guess, use any initial state you want, and use $\alpha=3^{\circ}$.

Plot p_x vs $-p_z$, $-p_z$ vs time, and p_x vs time. It will probably be very useful in debugging to plot each iteration of the algorithm.