Created: 19/02/05 20:19 **Updated:** 19/02/06 08:33

Optimization

mini-batch gradient descent

- why
- suppose data set has 10 billion examples,
- it's really slow to compute gradient for each iteration
- don't have enough memory to contain whole data set
- how
 - split the data set into smaller size. #notation: t: X{t}, Y{t}

- pseudo code
 - for t = 1:No_of_batches # this is called an epoch
 - AL, caches = forward_prop(X{t}, Y{t})
 - cost = compute_cost(AL, Y{t})
 - grads = backward_prop(AL, caches)
 - update_parameters(grads)
- how to choose mini-batch size
 - the size should be power of 2, such as 64/128/512/1024

Exponentially weighted average (come from moving average)

- basic concept
 - analyze data points by creating a series of averages of different subsets of the full data set, which applies weighting factors which decrease exponentially.
 - reduce noise and smooth data
 - general equation:
 - V(t) = beta * v(t-1) + (1-beta) * theta(t)

Implementing exponentially weighted averages

$$\begin{split} v_0 &= 0 \\ v_1 &= \beta v_0 + (1 - \beta) \, \theta_1 \\ v_2 &= \beta v_1 + (1 - \beta) \, \theta_2 \\ v_3 &= \beta v_2 + (1 - \beta) \, \theta_3 \\ &\cdots \end{split}$$

example here (often used in stock)

- bias correction
 - at the beginning the average is shifted as v(0) = 0
 - to correct this we can amend the equation

people often not border because after few iterations the bias would decrease

gradient descent with momentum

- to calculate the exponentially weighted averages for your gradients and then update your weights with the new values.
- analogy
 - smooth the vertical noise and keep the horizontal gradient descent

- pseudo code
 - \blacksquare vdW = 0, vdb = 0
 - on iteration t:

- # can be mini-batch or batch gradient descent
- compute dw, db on current mini-batch
- vdW = beta * vdW + (1 beta) * dW
- vdb = beta * vdb + (1 beta) * db
- W = W learning rate * vdW
- b = b learning_rate * vdb
- RMS (Root mean square) prop

Pseudo code:

```
sdW = 0, sdb = 0
on iteration t:
# can be mini-batch or batch gradient descent
compute dw, db on current mini-batch
sdW = (beta * sdW) + (1 - beta) * dW^2 # squaring is element-wise
sdb = (beta * sdb) + (1 - beta) * db^2 # squaring is element-wise
W = W - learning_rate * dW / sqrt(sdW)
b = B - learning_rate * db / sqrt(sdb)
```

- tips: ensure that sdw is not zero by adding a small value epsilon (e.g. epsilon = 10^-8) to it
- Adam optimization algorithm
 - stand for adaptive moment estimation
 - combine momentum and RMS prop together

$$\begin{cases} v_{W^{[l]}} = \beta_1 v_{W^{[l]}} + (1 - \beta_1) \frac{\partial J}{\partial W^{[l]}} \\ v_{W^{[l]}}^{corrected} = \frac{v_{W^{[l]}}}{1 - (\beta_1)^t} \\ s_{W^{[l]}} = \beta_2 s_{W^{[l]}} + (1 - \beta_2) (\frac{\partial J}{\partial W^{[l]}})^2 \\ s_{W^{[l]}}^{corrected} = \frac{s_{W^{[l]}}}{1 - (\beta_2)^t} \\ W^{[l]} = W^{[l]} - \alpha \frac{v_{W^{[l]}}^{corrected}}{\sqrt{s_{W^{[l]}}^{corrected}} + \varepsilon} \end{cases}$$

pseudo code:

• hyper parameters:

Hyperparameters choice:

$$\rightarrow$$
 d: needs to be tune
 \rightarrow β_1 : 0.9 (du)
 \rightarrow β_2 : 0.999 (dw²)
 \rightarrow Σ : 10⁻⁸

- usually just tune alpha
- learning rate decay
 - in previous course we set fixed alpha. But if alpha is too small, it take much time to train while if alpha is too large, we may miss the global optimum
 - so we want alpha flexible
 - methods

Other learning rate decay methods

former
$$d = 6.95$$
 epodenium $do = exponentially decay

 $d = \frac{k}{fepodenium} \cdot do = \frac{k}{fe} \cdot do$
 $d = \frac{k}{fepodenium} \cdot do = \frac{k}{fe} \cdot do$
 $d = \frac{k}{fepodenium} \cdot do = \frac{k}{fe} \cdot do$$

- even manual tune the alpha when the model is training
- intuition about local optimum
 - #so cute

Local optima in neural networks

Problem of plateaus

- · Unlikely to get stuck in a bad local optima
- Plateaus can make learning slow