

[DAM 小组文档]

数据分析与数据挖掘

1552729 李依璇 1552761 韩乐桐 1652677 吴桐欣

目录

— ,	5 种模型的误差对比	2
(1)	CNN 回归模型	2
(2)	CNN 多分类模型	3
(3)	LSTM 回归模型	3
(4)	LSTM 多分类模型	4
(5)	CNN/LSTM 混合模型	5
(6)	Autoencoder/LSTM 混合模型	6
<u> </u>	数据处理方式	7
三、7	模型构建	8
(1)	批标准化 Batch Normalization	8
(2)	初始化器 Initializer	8
(3)	优化器 Optimizer	8
(4)	调参经验	8
四、l	_S 第 6 题:TM 自编码	9
(1)	LSTM 自编码模型	9
(2)	LSTM 编码模型	9
(3)	LSTM 译码模型	10
(4) LS	TM 模型	11
(5)	编码的结果可视化	18

一、5种模型的误差对比

● 组内各模型最优误差列表如下:

编号	模型	中位误差	90%误差	平均误差
1	CNN 回归	297	681	340.57
2	CNN 多分类	13	57	31.08
3	LSTM 回归	424	1587	822.51
4	LSTM 多分类	23	254	91.27
5	CNN/LSTM 混合模型	11.25	30	18.44
6	Autoencoder/LSTM 混合模型	126	866.5	302.5

(1) CNN 回归模型

模型	中位误差	90%误差	平均误差
CNN 回归	297	681	340.57

(2) CNN 多分类模型

模型	中位误差	90%误差	平均误差
CNN 多分类	13	57	31.08

(3) LSTM 回归模型

模型	中位误差	90%误差	平均误差
LSTM 回归	424	1587	822.51

(4) LSTM 多分类模型

模型	中位误差	90%误差	平均误差
LSTM 多分类	23	254	91.27

(5) CNN/LSTM 混合模型

模型	中位误差	90%误差	平均误差
CNN/LSTM 混合模型	11.25	30	18.44

(6) AUTOENCODER/LSTM 混合模型

模型	中位误差	90%误差	平均误差
Autoencoder/LSTM 混合模型	126	866.5	302.5

二、数据处理方式

通过横向对比组内所有成员的数据处理方式,我们发现不同特征、标签向量格式 会在一定程度上影响模型的预测结果。

在 CNN 多分类模型中,若将基站经纬度映射到地图上并使用栅格进行划分,并通过 MR 数据对应的基站进行预测,则 90%误差只有 57m,中位误差能够达到 13m。

在 LSTM 模型中,我们组内分为两种数据处理方法:按照轨迹(traj_id)划分以及按照手机(IMSI)划分,其中共有 70 条有效轨迹,每条轨迹百余条 MR 数据;而共有 4 部手机,每部手机千余条 MR 数据。

定义栅格标签的方式也有两种。一种是直接对栅格排序,例如在给定区域内划分5000个格子,则有5000个标签,对应的多分类模型有5000个分类;另一种是用(x,y)来定义定义一个栅格,x标签约130个,y标签约160个,对应的多分类模型有两个输出层,一个输出x标签的概率向量,一个输出y标签的概率向量。

由于经纬度数据之间差距特别小,直接使用经纬度数据进行训练会带来很大误差。 一个方法是把经纬度转换成 utm 坐标,还有一个方法是只取经纬度的小数部分(因为 整数部分都是一样的),并将小数部分放大。

三、模型构建

(1) 批标准化 BATCH NORMALIZATION

使用 Batch Normalization 的层通过规范化与线性变换使得每一层网络的输入数据的均值与方差都在一定范围内,使得后一层网络不必不断去适应底层网络中输入的变化,从而实现了网络中层与层之间的解耦,允许每一层进行独立学习,有利于提高整个神经网络的学习速度。

(2) 初始化器 INITIALIZER

normal: 正态分布的初始化器

uniform: 均匀分布的初始化器

truncated normal: 截尾的正态分布的初始化器

● 初始化对网络训练有巨大的影响。(避免在某一层的 forward/backward 中进入饱和 区域,拖慢网络训练进程)

(3) 优化器 OPTIMIZER

经过实践,在不同的模型中使用以下几种优化器,可以有比较好的学习效果,收敛更快: Adadelta, Adam, SGD, RMSprop。

(4) 调参经验

- 神经元多并不是很好,会极大降低模型构建速度,并且若向量维度较大,则不会 带来相应程度的准确率提高,若向量维度较小反而会使准确率降低;
- batch size 也要适中,太小会导致模型学习速度慢,并且可能有偏重;太大会导致模型泛化

四、LS第6题: TM 自编码

(1) LSTM 自编码模型

Layer (type)	Output Shape	Param #			
==========	==========	:=======	==		
input_1 (InputLayer)	(None, 10, 32)	0			
		····			
model_1 (Model)	(None, 10, 2)	4932			
model_2 (Model)	(None, 10, 32)	10444			
=========	=========	:=======	=		
Total params: 15,376					
Trainable params: 15,328					
Non-trainable params	s: 48				

(2) LSTM 编码模型

Layer (type)	Output Shape	Param #
==========	==========	========
input_1 (InputLayer)	(None, 10, 32)	0

dense_1 (Dense)	(None, 10, 28)	924			
lstm_1 (LSTM)	(None, 10, 16)	2880			
batch_normalization_1 (Batch (None, 10, 16) 64					
lstm_2 (LSTM)	(None, 10, 8)	800			
lstm_3 (LSTM)	(None, 10, 4)	208			
lstm_4 (LSTM) (None, 10, 2) 56					
Total params: 4,932					
10tai params. 1 ,302					
Trainable params: 4,900					
Non-trainable params: 32					

(3) LSTM 译码模型

Layer (type)	Output Shape	Param #
=========		=========
input_2 (InputLayer)	(None, 10, 2)	0

lstm_5 (LSTM)	(None, 10, 4)	112
lstm_6 (LSTM)	(None, 10, 8)	416
batch_normalization_2	(Batch (None, 10, 8)	32
lstm_7 (LSTM)	(None, 10, 16)	1600
dense_2 (Dense)	(None, 10, 28)	476
lstm_8 (LSTM)	(None, 10, 32)	7808
==========	========	========

Total params: 10,444

Trainable params: 10,428

Non-trainable params: 16

(4) LSTM 模型

● 手机一

Layer (type)	Output Shape	Param #	Connected to
=========	========	:=====:	=========
input_1 (InputLayer)	(None, 10, 2)	0	

dense_1 (Dense)	(None, 10	, 10) 30	inpu	t_1[0][0]
batch_normalizatio	on_1 (BatchNor (N	lone, 10, 10)	40	dense_1[0][0]
dense_2 (Dense)	(None, 10, 100)	1100	batch_nor	malization_1[0][0]
batch_normalization	on_2 (BatchNor (N dense_2[0][0]	None, 10,		
dense_3 (Dense)	(None, 10, 256)	25856	batch_nc	ormalization_2[0][0]
batch_normalizatio	pn_3 (BatchNor (Nc	ne, 10, 256)	1024	dense_3[0][0]
lstm_1 (LSTM)	(None, 500)	1514000	batch_n	ormalization_3[0][0]
batch_normalizatio	on_4 (BatchNor (Nc	ne, 500)	2000	lstm_1[0][0]
dense_4 (Dense)	(None, 100)	50100	batch_no	ormalization_4[0][0]
batch_normalization	on_5 (BatchNor (Nc	ne, 100)	400	dense_4[0][0]
dense_5 (Dense)	(None, 256)	25856	batch_no	ormalization_5[0][0]
batch_normalization	on_6 (BatchNor (Nc	ne, 256)	1024	dense_5[0][0]
dense_6 (Dense)	(None, 512)	131584	batch_nor	malization_6[0][0]

row (Dense)	(None, 131)	67203	dense_6[0][0]
col (Dense)	(None, 166)	85158	dense_6[0][0]
==========	==========		==========

Total params: 1,905,775

Trainable params: 1,903,331

Non-trainable params: 2,444

● 手机二

Layer (type)	Output Shape	Param	# Cor	nnected to
input_1 (InputLayer)	(None, 10, 2)	0	=====	======
dense_1 (Dense)	(None, 10, 10)	30	input	:_1[0][0]
batch_normalization_	1 (BatchNor (None, 10), 10)	40	dense_1[0][0]
dense_2 (Dense) (None, 10, 100) 110	0 ba	atch_nor	malization_1[0][0]
batch_normalization_	_2 (BatchNor (None, 10), 100)	400	dense_2[0][0]
dense_3 (Dense)	(None, 10, 256) 25	356 k	oatch_no	rmalization_2[0][0]
batch_normalization_	_3 (BatchNor (None, 10), 256)	1024	dense_3[0][0]

lstm_1 (LSTM)	(None, 200)	365600	batch_no	rmalization_(3[0][0]	
batch_normalizatio	n_4 (BatchNor (Noi	ne, 200)	800	lstm_1[0][()]	
dense_4 (Dense)	(None, 30)	6030	batch_norr	malization_4	 [0][0]	
batch_normalizatio	n_5 (BatchNor (Noi	ne, 30)	120	dense_4[0]	[0]	
dense_5 (Dense)	(None, 256)	7936	batch_nor	malization_5	[0][0]	
batch_normalizatio	n_6 (BatchNor (Noi	ne, 256)	1024	dense_5[()][0]	
dense_6 (Dense)	(None, 512)	131584	batch_nc	ormalization_	 _6[0][0]	
row (Dense)	(None, 131)	672	03 dens	se_6[0][0]	 col	
(Dense)	(None, 166)	85158	dense_6[0][0]	001	
=======================================						
Total params: 693,905						
Trainable params: 6	692,201					
Non-trainable para	ams: 1,704					

● 手机三

14

Layer (type) Output Shape Param # Connected to

=========	:=======	=====	====	======	=======
input_1 (InputLayer)	(None, 1	0, 2)	0		
dense_1 (Dense)	(None, 1	0, 10)	30	inpu	t_1[0][0]
batch_normalization	n_1 (BatchNor (N	one, 10,	10)	40	dense_1[0][0]
dense_2 (Dense)	(None, 10, 100) 110	00	batch_nc	ormalization_1[0][0
batch_normalization	n_2 (BatchNor (N	one, 10,	100)	400	dense_2[0][0]
dense_3 (Dense)	(None, 10, 256)	258	56	batch_nc	ormalization_2[0][(
batch_normalization	n_3 (BatchNor (N	one, 10,	256)	1024	 dense_3[0][0]
lstm_1 (LSTM) (None, 500)	151400)O k	patch_norr	malization_3[0][0]
batch_normalization	n_4 (BatchNor (N	one, 50())	2000	lstm_1[0][0]
dense_4 (Dense)	(None, 100)	50100	b	atch_norn	 nalization_4[0][0]
batch_normalization	n_5 (BatchNor (N	one, 10(0)	400	dense_4[0][0]
dense_5 (Dense)	(None, 256)	25856	6 k	patch_nori	 malization_5[0][0]
batch_normalization	n_6 (BatchNor (N	one, 256	5)	1024	dense_5[0][0]

dense_6 (Dense) (None, 512) 131584 batch_normalization_6[0][0]

row (Dense) (None, 131) 67203 dense_6[0][0]

col (Dense) (None, 166) 85158 dense_6[0][0]

Total params: 1,905,775

Trainable params: 1,903,331

Non-trainable params: 2,444

● 手机四

Layer (type)	Output Shape	Param a	# Connected to
input_1 (InputLayer)	(None, 10, 2)	0	=======================================
dense_1 (Dense)	(None, 10, 10)	30	input_1[0][0]
batch_normalization_1	(BatchNor (None, 10), 10)	40 dense_1[0][0]
dense_2 (Dense)	(None, 10, 100) 1	100	batch_normalization_1[0][0]
batch_normalization_2	(BatchNor (None, 10	, 100)	400 dense_2[0][0]

dense_3 (Dense)	(None, 10, 250)	25250	batch_no	rmalization_2[i	0][0]
batch_normalizatio	n_3 (BatchNor (Non	e, 10, 250)	1000	dense_3[0]	[0]
lstm_1 (LSTM) (None, 10, 100) 1	40400	batch_norn	nalization_3[0]	[0]
batch_normalizatio	n_4 (BatchNor (Non	e, 10, 100)	400	lstm_1[0][0]	
reshape_1 (Reshap	e) (None, 1000)	0	batch_nc	rmalization_4[0][0]
batch_normalizatio	n_5 (BatchNor (Non	e, 1000)	4000	reshape_1[0)][0]
dense_4 (Dense)	(None, 200)	200200	batch_n	ormalization_5	5[0][0]
batch_normalizatio	n_6 (BatchNor (Non	e, 200)	800	dense_4[0][0]
dense_5 (Dense)	(None, 256)	51456	batch_noi	rmalization_6[()][0]
batch_normalizatio	n_7 (BatchNor (Non	e, 256)	1024	dense_5[0][0)]
dense_6 (Dense)	(None, 512)	131584	batch_norr	nalization_7[0]	[0]
row (Dense)	(None, 131)	6720	3 dense	e_6[0][0]	
col (Dense)	(None, 166)	85158	dense_	_6[0][0]	=

Total params: 710,045

Trainable params: 706,213

Non-trainable params: 3,832

(5) 编码的结果可视化

原始的 mr 特征有 32 个维度, 经训练后的编码器, 降至 2 维进行可视化, 结果如下。

● 手机一

● 手机二

● 手机三

● 手机四

