What happens to gas when temperature changes?

When the system is heated:
 N₂O_{4(g)} + energy → 2 NO_{2(g)}

2) When the system is cooled: $2 \text{ NO}_{2(g)} \rightarrow \text{N}_2\text{O}_{4(g)} + \text{energy}$

- brown gas = NO_2
- colourless gas = N₂O₄

Both reactions are occurring simultaneously in a closed system at all times.

The reaction:

 $N_2O_{4(g)}$ + energy <==> 2 $NO_{2(g)}$ is described as reversible.

Only when both reactions are occurring at the same rate and no changes can be observed, a chemical equilibrium has been reached.

Factors to Reach Equilibrium

- 1. closed system
- 2. simultaneous opposing reactions occurring at the same rate
- 3. equilibrium was reached by starting with reactants or products
- 4. temperature is constant

Describe what is happening when the temperature is changed?

$$2 \text{ NO}_{2(g)} <==> N_2O_{4(g)} + \text{energy}$$

Equilibrium **DOES NOT** mean the same concentrations of products and reactants.

only that the <u>rxn rates</u> are equal

Reaction rates change because of temperature change.

equilibrium rxn rates are different at different temperatures

When chemicals are reacted, there are 3 possible outcomes:

1. reaction goes to completion

2. reaction does not occur at all

3. reaction achieves equilibrium

Factors Determining Rxn Occurrence

- 1. Rxns favour energy release $(-\Delta H)$
- 2. Rxns favour a result of increased entropy $(+\Delta S)$

When both of these statements are true, the reaction tends to completion.

Predicting Reaction Occurrence

Example #1

$$Zn_{(s)} + 2 HCI_{(aq)} \rightarrow ZnCI_{2(aq)} + H_{2(g)} \Delta H = -152 kJ$$

Enthalpy?

Entropy?

Prediction?

Predicting Reaction Occurrence

Example #2

$$3 C_{(s)} + 3 H_{2(g)} \rightarrow C_3 H_{6(g)} \Delta H = +20.4 \text{ kJ}$$

Enthalpy?

Entropy?

Prediction?

Predicting Reaction Occurrence

Example #3

$$2Pb(NO_3)_{2(s)} \rightarrow 2PbO_{(s)} + 4NO_{2(g)} + O_{2(g)} \Delta H = + 597 \text{ kJ}$$

Enthalpy?

Entropy?

Prediction?

Predicting Reaction Occurrence

Example #4

The following reaction achieves equilibrium.

$$3 H_{2(g)} + N_{2(g)} <===> 2 NH_{3(g)} + heat$$

 $\Delta H = positive or negative?$

Predicting Reaction Occurrence

Example #5

heat +
$$PCI_{5(g)}$$
 <===> $PCI_{3(g)}$ + $CI_{2(g)}$
 ΔH = positive or negative?

Predicting Reaction Occurrence

Recall, some reactions require very large E_A values.

Therefore another factor in determining reaction occurrence.

If no information on E_A is given, assume sufficient energy is available.

Types of Equilibrium:

Solubility Equilibrium

Dynamic equilibrium between a solute and a solvent in a saturated solution

Phase Equilibrium

Dynamic equilibrium between different states of a pure substance in a closed system

Chemical Reaction Equilibrium

Dynamic equilibrium between reactants & products of a chemical reaction

Types of Chemical Reaction Equilibrium:

- Two types:
 - Homogeneous equilibrium: reactants & products are all in the same phase $CH_3CO_2H_{(aq)} \longrightarrow CH_3CO_2^{-}_{(aq)} + H^{+}_{(aq)}$
 - Heterogeneous equilibrium: reactants & products are not all in the same phase $CaCO_{3(s)} \longrightarrow CaO_{(s)} + CO_{2(g)}$