2.2. Características en el tiempo del sistema lineal

		SLC
	Supresto: El sistema va a operar para ángulos pequeños $(2in(9(t)) \approx \Theta(t))$	-
-	Valores iniciales: escalón Tu = {0, t < 0 = 0,01·u	(t)
	(0,01 Nm, t 20	
	Bus car: a) S: factor de amortiguación	(6
	b) Wn Prewencia natural	
	6) to tiempo de subida	
	d) Mp: Porcentaje de sobre-oscilación	
	e) to tiempo de establecimiento	
	P) Ge: valor en régimen permanente	_
	Asymiendo oscilaciones regienas: sino = 0 el modelo diferencial	
	greda del signiente modo:	
	I. Ö(t) + 6. Ö(t) + mgl O(t) = 7(t)	
	a) Definición de sismed oscilador amorfiguado simple.	
	$(3) \dot{9} + 2 \cdot 3 \cdot \omega_{n} \dot{9} + \omega_{n}^{2} \cdot 9 = A \cdot \omega_{n}^{2} \cdot \omega(t)$	
	$\Rightarrow I \cdot \dot{\Theta}(t) + o \cdot \dot{\Theta}(t) + mg \ell \cdot \Theta(t) = \gamma(t) / I$ $\dot{\Theta}(t) + \frac{1}{I} \cdot \dot{\Theta}(t) + \frac{mg\ell}{I} \cdot \Theta(t) = \gamma(t) / I$	
	9(t) + I 9(t) + I (0(t) = 1)/I	
	$ \omega_0 ^2 = \frac{mgl}{T} \rightarrow \omega_0 = \sqrt{\frac{91 \text{kg} \cdot 9.81 \text{m/s}^2}{10^2 \text{kg} \text{m}^2}} = \frac{19.90454}{19.90454} = \omega_0$	
	5 10-5 Nm()	
	$2 \cdot \zeta \cdot \omega_n = \frac{b}{T} \rightarrow \overline{\zeta} = \frac{1}{2\omega_n} = \frac{1}{2} \frac{1}{9,9045} = \frac{1}{5} \frac{10^3 \omega_{3,m^2}}{10^3 \omega_{3,m^2}} = \frac{1}{5} \frac{0}{100964} = \frac{1}{5}$	
	$A \cdot \omega_0^2 \cdot u(t) = \frac{\gamma(t)}{T} = \frac{Q_0 I Nm}{I D^{-3} k_0 H^2} \cdot u(t)$ $M \cdot u(t) = escalish$	
>		
	$A \cdot U_0^2 = 10$	
	$A = \frac{10}{\omega_0^2}$	
	$A = 10/9,90454^2 = 0,101937$	
	$\Rightarrow EDD : \dot{\mathcal{G}}(t) + 2 \cdot \dot{\mathcal{G}}(t) + 98, 1 \cdot \mathcal{G}(t) = 10 \cdot u(t)$	Maria
	$\Rightarrow EDO: \hat{O}(t) + 2 \cdot \hat{O}(t) + 98, 1 \cdot \hat{O}(t) = 10 \cdot u(t)$	DARTE

- T				SLC
(ے)	tiempo	de subida:		
			$= 0,109 \text{ s} = t_{\text{f}}$	
d) i		e de solore		
	Mp =	evi-52) =	e -0,3188 = 0,727 = 72	7-% J=Mp
e) .	Tiempo	de estable	imiento:	
	t _s =	4,6 = [Wn 3	1,6 A	
f) \	Valor en	régimen p	ermanente:	
	Op =	$\Theta(t\rightarrow\infty)$	$\Rightarrow \dot{\mathcal{G}}(t \rightarrow \infty) = \dot{\mathcal{G}}(t \rightarrow \infty) = 0$	
	edo:		t) + 98.1.9(t) = 10 u(t) / 98.1.9e = 10	Lim
			Θ _β = 10 98,1	
			$\Theta_{\mathcal{P}} = [0, 101937] = \Theta_{\mathcal{P}}$	[Rad]
				FRDA