Introduction to dataframes

QB Bootcamp, Day 2 Thursday, 29 August 2019 1:00pm - 1:30pm

Fisher's "Iris" dataset is a famous example dataset in statistics and dataviz

Iris Versicolor

Iris Setosa

Iris Virginica

R. A. Fisher (1936).

"The use of multiple measurements in taxonomic problems".

Annals of Eugenics. **7** (2): 179–188. (data collected by Edgar Anderson)

150 rows (50 per species)

	sepai_leligili	Sepai_widti	petai_leligtii	petai_widtii	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

senal length senal width netal length netal width species

:

Dataframes greatly facilitate data visualization

"aesthetics"

			\mathcal{X}	У	color
	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
5	5.4	3.9	1.7	0.4	setosa
6	4.6	3.4	1.4	0.3	setosa
7	5.0	3.4	1.5	0.2	setosa
8	4.4	2.9	1.4	0.2	setosa
9	4.9	3.1	1.5	0.1	setosa
10	5.4	3.7	1.5	0.2	setosa
11	4.8	3.4	1.6	0.2	setosa
12	4.8	3.0	1.4	0.1	setosa
13	4.3	3.0	1.1	0.1	setosa
14	5.8	4.0	1.2	0.2	setosa

Dataframes facilitate important data-organizational transformations

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

individual = 1 flower

individual = 1 measurement

We will start by working with a dataframe listing transcription factor binding sites in the database RegulonDB

site	tf	
gcgttagattTACATACATTTGTGAATGTATGTAccatagcacg	AcrR	0
cgtgctatggTACATACATTCACAAATGTATGTAaatctaacgc	AcrR	1
catcggtcaaTTCATTCATTtgacttatac	AcrR	2
tcactacacgCACATACAACggaggggggc	AcrR	3
atttattaccGTCATTCATTTCTGAATGTCTGTTtacccctatt	AcrR	4
gctttacctcAAGTTAACTTgaggaattat	AcrR	5
ataattcctcAAGTTAACTTgaggtaaagc	AcrR	6
ttcagacgctGCGCTTTGCTTTCATATTCCGGTTgtcgcgacgg	Ada	7
ggtcaccatcACGCAAAAACCAACAATCTTGCGCtttaattttt	Ada	8
caacaatcttGCGCTTTAATTTTTTCGCTGACAaggaagcttt	Ada	9
cgcattacatTGCTGGATAAGAATGTTTTAGCAAtctctttctg	Ada	10
ttcgtaaaacTTTCGTTTCATTTCGTTTTGcctattaacg	AgaR	11
ttgcctattaACGCCTTTCTATTAAGCAAAtgcaagccca	AgaR	12
tttcagtgacTTTCATTATGTTTCTTTTGTgaatcagatc	AgaR	13
aaccattatcTTTCGTTTTATTTTATCTCaccatgacgc	AgaR	14

- 1. Load TF binding site database a Pandas dataframe
- 2. Filter for TF of choice
- 3. Filter for binding sites of the most common length
- 4. Make a sequence logo

CRP logo (from 358 sites)

We will then parse our computed replication profiles in the form of a data frame

	chromosome	start	stop	reads
0	chrl	1	31	2
1	chrl	32	62	0
2	chrl	63	93	1
3	chrl	94	124	0
4	chrl	125	155	3
5	chrl	156	186	0
6	chrl	187	217	0
7	chrl	218	248	0
8	chrl	249	279	0
9	chrl	280	310	0
10	chrl	311	341	0
11	chrl	342	372	0
12	chrl	373	403	0
13	chrl	404	434	0
14	chrl	435	465	1

- 1. Load a .bed file as a Pandas dataframe
- 2. Filter for the chromosome of choice
- 3. Smooth # reads as a function of position
- 4. Plot replication profile

