

固定5V输出非隔离交直流转换芯片

概述

AP8005集成PFM控制器及500V高雪崩能力智能功率MOSFET,用于外围元器件极精简的小功率非隔离开关电源。 AP8005内置500V高压启动与自供电模块,实现系统快速启动、超低待机、自供电功能。该芯片提供了完整的智能化保护功 能,包括过载保护,欠压保护,过温保护。另外AP8005的降频调制技术有助于改善EMI特性。

产品特征

- 内置500V高雪崩能力智能功率MOSFET
- 内置高压启动和自供电电路
- 适用于Buck、Buck-Boost、Flyback等多种架构
- 输出电压固定为5V
- 半封闭式稳态输出电流200mA @230VAC
- 改善EMI的降频调制技术
- 优异的负载调整率和工作效率
- 全面的保护功能
 - 过载保护 (OLP)
 - 过温保护 (OTP)
 - ◆ 欠压保护(UVLO)

应用领域

- 非隔离辅助电源
- 家电
- 智能家居

封装/订购信息

订购代码	封装
AP8005SSC-R1	SOP-7

典型应用

管脚定义

表 1. 管脚定义

管脚标号	管脚名	管脚功能描述
1	VDD	芯片电源脚
2, 4	NC	空脚
3	FB	输出反馈引脚
5, 6	SW	高压MOSFET漏极脚
7	GND	地

典型功率

表 2. 典型功率

产品型号	输入电压	稳态功率(1)	峰值功率(2)
AP8005	85-265 V _{AC}	1.0W(5V200mA)	1.5W(5V300mA)

备注:

- 1. 稳态功率在半封闭式 75°C 环境下测试(Buck/Buck-boost 应用),持续时间大于 2 小时。
- 2. 峰值功率在半封闭式 75°C 环境下测试(Buck/Buck-boost 应用),持续时间大于 1min。

极限工作范围

VDD 脚耐压	0.3~40V
SW 脚耐压	-0.3~500V
FB 脚耐压	0.3~7V
结工作温度范围	40~150°C
存储温度范围	55~150℃
管脚焊接温度 (10秒)	260℃
封装热阻 Rθ _{JC} (SOP-7)	80°C/W
人体模式 ESD 能力 ⁽¹⁾ (HBM, ESDA/JEDEC JDS-001-2014)	±4kV
空气模式ESD 能力 ⁽²⁾ (静电测试仪对芯片引脚直接放电)	8kV
漏极脉冲电流(T _{pulse} =100us)	2A
カン 1 プロチ4 然一之並りを開せ II / J. P. C. P. J. / P. P. P. C. P. C. P. C. O.	

备注: 1. 产品委托第三方严格按照芯片级ESD标准(ESDA/JEDEC JDS-001-2014)中的测试方式和流程进行测试。

2. 此项测试为企业内部标准,结果仅供参考。

电气特性

表 3. 功率部分 $(T_J = 25$ °C, $V_{DD} = 15$ V; 特殊情况另行说明)

符号	参数	测试条件	最小	典型	最大	单位
BVDSS	功率管耐压	I _{SW} =250uA	500	530		V
I_{OFF}	关态漏电流	$V_{sw} = 500V$			150	uA
R _{DS(on)}	导通电阻	$I_{sw} = 400 \text{mA}, T_{J} = 25^{\circ}\text{C}$		13		Ω
Vsw_start	高压启动电压	V _{DD} =V _{DDon} - 1V		30		V

表 4. 电源部分 $(T_J=25^{\circ}C, V_{DD}=15V;$ 特殊情况另行说明)

符号	参数	测试条件	最小	典型	最大	单位
VDD电压部分						
$V_{ m DDon}$	VDD启动阈值电压		12	13.5	15	V
$V_{ m DDoff}$	VDD欠压保护阈值电压		10	11	12	V
V _{DDhys}	VDD回差			2.5		V
$V_{ m DDclamp}$	VDD钳位保护电压		16	20	23	V
VDD电流部分						
I_{DDch}	启动管充电电流	V _{DD} =6V		-2.5		mA
I_{DD}	工作电流	$V_{DD}=15V$	220	330	450	uA
I_{DDoff}	关态电流	V _{DD} =11V	80	120	220	uA
I_{DDFAULT}	保护状态时芯片电流	$V_{DD}=15V$		150		uA

表 5. 控制部分(T_L=25°C, V_{DD}=15V; 特殊情况另行说明)

符号	参数	测试条件	最小	典型	最大	单位
内部电流检测						
I_{limit}	尖峰电流限流值		320	400	480	mA
T_{LEB}	过流检测前沿消隐时间			300		ns
反馈输入						
T_{offmin}	最小关断时间		15	18	21	us
T_{onmax}	最大开启时间			13		us
$V_{ m REF}$	MOS开通反馈基准电压		5.1	5.3	5.5	V
V_{REF_OLP}	OLP触发反馈基准电压			3.6		V
T_{OLP}	OLP触发延迟时间			150		ms
过温保护						
T_{SD}	过温保护温度		135	150		°C
T _{HYST}	过温保护回差			30		°C

<u>芯片框图</u>

典型应用电路

功能描述

AP8005集成PFM控制器及500V高雪崩能力智能功率MOSFET,用于外围元器件极精简的小功率非隔离开 关电源,输出电压为5V。AP8005内置高压启动与自供电模块,实现系统快速启动、超低待机、自供电功能。 该芯片提供了完整的智能化保护功能,包括过载保护,欠压保护,过温保护。另外AP8005的降频调制技术有 助于改善EMI特性。

1. 高压启动与自供电

在启动阶段,内部高压启动管提供2.5mA电流对外部VDD电容进行充电; 当VDD电压达到VDDon, 芯片开 始工作,高压启动管停止对VDD电容充电; 当VDD电压降低到VDD_{OFF},芯片继续工作,但内部高压启动管再次 提供2.5mA电流对外部VDD电容进行充电;从而实现芯片自供电,无需辅助绕组或其他外围元件对芯片供电。

2. 恒压工作模式

芯片通过FB管脚对输出进行电压采样,当FB电压低于内部基准电压,芯片开启集成的高压功率管,对储能 电感充电,当电感电流达到内部基准电流I_{PEAK},芯片关闭集成的高压功率管,由系统二极管对储能电感续流。 图2-1和图2-2分别给出连续模式(CCM)和非连续模式(DCM)下系统关键节点工作波形。同时芯片集成负载 补偿功能,可以提高恒压精度,实现较好的负载调整率。

3. PFM 调制

芯片工作在PFM模式,同时内部设置IPEAK随芯片工作频率Fsw降低而降低,芯片开关周期每增大1us, Ipeak 降低约1.3mA。由于芯片内置采样,最大Ipeak固定,当输出电压和输出电流固定时,电感感量是唯一调制工作 频率的参数。

4. 软启动

为了避免非隔离系统启动阶段因进入深度CCM模式,带来较大电流尖峰。AP8005设置软启动功能,在启动 前10ms,最高开关频率降低为25%,在启动10ms到15ms,最高开关频率降低为50%。同时芯片设计较 小的LEB时间(300ns),以降低LEB时间内能量大小,以避免系统启动时的高电流尖峰。

5. 智能保护功能

AP8005集成全面的保护功能,包括:过载保护、过温保护、FB异常保护、VDD欠压保护功能,并且这些保 护具有自恢复模式。

过载保护-----当FB检测到电压低于3.6V,且持续150ms触发过载保护,芯片重启。

过温保护-----当芯片结温超过150℃,芯片进入过温保护状态,输出关闭,当芯片结温低于120度,芯片重 新启动。

FB异常保护-----芯片软启动结束后,如果FB电位仍低于150mV,则判定为FB异常短路,芯片重启;同时在 芯片启动阶段会检测FB是否与VDD短路,如发生短路则芯片无法启动。

VDD欠压保护------当芯片VDD电压低于8V,芯片重新启动。另外芯片异常自恢复的时间可通过VDD电容 调整, VDD电容越大, 自恢复时间越长。

封装尺寸

表 6. SOP-7 封装尺寸

Symbol Dimensions In Millimete		Dimensions In Millimeters Dim		ensions In Inches	
Symbol	Min.	Max.	Min.	Max.	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
c	0.170	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.201	
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
e	1.270	(BSC)	0.050(BSC)	
L	0.400	0.800	0.016	0.031	
θ	0°	8°	0°	8°	

图 2. 外形示意图

表层丝印	封装
AP8005	SOP-7
YWWXXXXX	SOF-/

备注: Y: 年份代码; WW: 周代码; XXXXX: 内部代码

重要声明

无锡芯朋微电子股份有限公司保留更改规格的权利, 恕不另行通知。无锡芯朋微电子股份有限公司对任何 将其产品用于特殊目的的行为不承担任何责任, 无锡芯朋微电子股份有限公司没有为用于特定目的产品提供使用和应用支持的义务。无锡芯朋微电子股份有限公司不会转让其专利许可以及任何其他的相关许可权利。