FCC SAR Test Report

APPLICANT : Jib Wresh LLC

EQUIPMENT : Tablet PC

MODEL NAME : SG98EG

FCC ID : 2ADU6-8274

STANDARD : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2003

We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Eric Huang / Deputy Manager

Cole huan?

Approved by: Jones Tsai / Manager

lac-MRA

SPORTON INTERNATIONAL INC.

No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Taoyuan City, Taiwan (R.O.C.)

Report Number: FA521024-01 Form version.: 150415

Page 1 of 25

Table of Contents

1. Statement of Compliance	
2. Administration Data	4
3. Guidance Standard	
4. Equipment Under Test (EUT)	5
4.1 General Information	
4.2 Maximum Tune-up Limit	6
5. RF Exposure Limits	
5.1 Uncontrolled Environment	
5.2 Controlled Environment	
6. Specific Absorption Rate (SAR)	8
6.1 Introduction	8
6.2 SAR Definition	
7. System Description and Setup	9
8. Measurement Procedures	
8.1 Spatial Peak SAR Evaluation	
8.2 Power Reference Measurement	11
8.3 Area Scan	11
8.4 Zoom Scan	
8.5 Volume Scan Procedures	
8.6 Power Drift Monitoring	12
9. Test Equipment List	13
10. System Verification	
10.1 Tissue Verification	
10.2 System Performance Check Results	15
11. RF Exposure Positions	
11.1 SAR Testing for Tablet	
12. Conducted RF Output Power (Unit: dBm)	16
13. Exposure Position Conditions	
14. SAR Test Results	20
14.1 Body SAR	
14.2 Repeated SAR Measurement	
15. Uncertainty Assessment	22
16. References	25
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	

Revision History

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA521024-01	Rev. 01	Initial issue of report	May 29, 2015

Report Number: FA521024-01 Form version: : 150415 Page 3 of 25

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for **Jib Wresh LLC**, **Tablet PC**, **SG98EG**, are as follows.

Equipment	Frequency	Highest SAR Summary	
Class	Band	Body 1g SAR (W/kg)	
DTS	WLAN 2.4GHz Band	1.30	
NU	WLAN 5.2GHz Band	1.29	
NII	WLAN 5.8GHz Band	1.25	
DSS Bluetooth		0.51	
Date of	2015/05/13 ~ 2015/05/28		

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003.

2. Administration Data

Testing Laboratory				
Test Site SPORTON INTERNATIONAL INC.				
Test Site Location	No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978			

Applicant				
Company Name Jib Wresh LLC				
Address	Address 1000 Highland Colony Park, Suite 5203			
Ridgeland, Mississippi 39157				

Report Number: FA521024-01 Form version.: 150415 Page 4 of 25

3. Guidance Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2003
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03
- FCC KDB 865664 D02 SAR Reporting v01r01
- FCC KDB 447498 D01 General RF Exposure Guidance v05r02
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02
- FCC KDB 616217 D04 SAR for laptop and tablets v01r01

4. Equipment Under Test (EUT)

4.1 General Information

Product Feature & Specification				
Equipment Name	Tablet PC			
Model Name	SG98EG			
FCC ID	2ADU6-8274			
WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz Wireless Technology and WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.8GHz Band: 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz				
Mode • 802.11a/b/g/n/ac HT20/HT40/VHT20/VHT40/VHT80 • Bluetooth v3.0+EDR , Bluetooth v4.1-LE				
Remark: 1. WLAN 802.11n-HT40 is	not supported in 2.4GHz WLAN.			

Report Number: FA521024-01 Form version: : 150415

Page 5 of 25

4.2 Maximum Tune-up Limit

Mode	Average Power (dBm)
Bluetooth BDR (1Mbps)	13.5
Bluetooth EDR (2Mbps)	13.5
Bluetooth EDR (3Mbps)	13.5
Bluetooth 4.1	5.5

Band / Frequency (MHz)		IEEE 802.11 Average Power (dBm)		
Danu / Frequ	dericy (IVID2)	11b 11g HT20		HT20
	2412	16.0	16.0	16.0
2.4GHz Band	2437	15.0	15.0	15.0
	2462	15.0	15.0	15.0

Band / Frequency (MHz)		IEEE 802.11 Average Power (dBm)					
		11a	HT20	HT40	VHT20	VHT40	VHT80
	5180	16.5	16.5		14		
	5190			16.5		14	
	5200	16.5	16.5		14		
5.2GHz Band	5210						14
	5220	16.5	16.5		14		
	5230			16.5		14	
	5240	16.5	16.5		14		
	5745	17	17		14		
	5755			17		14	
	5765	17	17		14		
5.8GHz Band	5775						14
5.66HZ Ballu	5785	17	17		14		
	5795			17		14	
	5805	17	17		14		
	5825	17	17		14		

Report Number: FA521024-01 Form version: : 150415 Page 6 of 25

5. RF Exposure Limits

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Report Number: FA521024-01 Form version: : 150415 Page 7 of 25

6. Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

Report Number: FA521024-01 Form version: : 150415 Page 8 of 25

7. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing,
 AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps,
- The phantom, the device holder and other accessories according to the targeted measurement.

Report Number: FA521024-01 Form version.: 150415

Page 9 of 25

8. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

- (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

8.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

Report Number: FA521024-01 Form version.: 150415

Page 10 of 25

8.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

8.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$	
Maximum area scan spatial resolution: $\Delta x_{\text{Area}},\Delta y_{\text{Area}}$	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Report Number: FA521024-01 Form version.: 150415

Page 11 of 25

8.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz	
Maximum zoom scan s	Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$	
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	$3 - 4 \text{ GHz}: \le 4 \text{ mm}$ $4 - 5 \text{ GHz}: \le 3 \text{ mm}$ $5 - 6 \text{ GHz}: \le 2 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{\text{Zoom}}(n\text{-}1)$		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

8.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

Report Number: FA521024-01 Form version.: 150415 Page 12 of 25

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9. Test Equipment List

Manufacturer	Name of Equipment	Type/Medal	Serial Number	Calib	ration	
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
SPEAG	2450MHz System Validation Kit	D2450V2	924	Nov. 19, 2014	Nov. 18, 2015	
SPEAG	5GHz System Validation Kit	D5GHzV2	1006	Sep. 25, 2014	Sep. 24, 2015	
SPEAG	Data Acquisition Electronics	DAE3	577	Oct. 06, 2014	Oct. 05, 2015	
SPEAG	Data Acquisition Electronics	DAE4	1399	Nov. 13, 2014	Nov. 12, 2015	
SPEAG	Dosimetric E-Field Probe	EX3DV4	3931	Sep. 25, 2014	Sep. 24, 2015	
SPEAG	Dosimetric E-Field Probe	EX3DV4	3955	Nov. 21, 2014	Nov. 20, 2015	
Wisewind	Thermometer	ETP-101	TM560	Oct. 21, 2014	Oct. 20, 2015	
WonDer	Thermometer	WD-5015	TM685	Oct. 21, 2014	Oct. 20, 2015	
Anritsu	BT Base Station	MT8852B	1350002	Dec. 12, 2014	Dec. 11, 2015	
SPEAG	Device Holder	N/A	N/A	N/A	N/A	
Agilent	Signal Generator	N5181A	MY50145381	Dec. 11, 2014	Dec. 10, 2015	
Agilent	ENA Network Analyzer	E5071C	MY46316648	Feb. 11, 2015	Feb. 10, 2016	
SPEAG	Dielectric Probe Kit	DAK-3.5	1138	Nov. 18, 2014	Nov. 17, 2015	
Anritsu	Power Meter	ML2495A	1349001	Dec. 03, 2014	Dec. 02, 2015	
Anritsu	Power Sensor	MA2411B	1306099	Dec. 03, 2014	Dec. 02, 2015	
R&S	Spectrum Analyzer	FSP 7	101131	Jul. 10, 2014	Jul. 09, 2015	
Agilent	Dual Directional Coupler	778D	50422	No	te 1	
Woken	Attenuator 1	WK0602-XX	N/A	No	Note 1	
PE	Attenuator 2	PE7005-10	N/A	Note 1		
PE	Attenuator 3	PE7005- 3	N/A	Note 1		
AR	Power Amplifier	5S1G4M2	0328767	No	te 1	
Mini-Circuits	Power Amplifier	ZVE-3W	162601250	No	te 1	

General Note:

Prior to system verification and validation, the path loss from the signal generator to the system check source and
the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the
network analyzer. The reading of the power meter was offset by the path loss difference between the path to the
power meter and the path to the system check source to monitor the actual power level fed to the system check
source.

Report Number: FA521024-01 Form version.: 150415 Page 13 of 25

10. System Verification

10.1 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target

tissue parameters required for routine SAR evaluat	tion.
--	-------

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)
				For Head				
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0
2450	55.0	0	0	0	0	45.0	1.80	39.2
2600	54.8	0	0	0.1	0	45.1	1.96	39.0
				For Body				
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0	0	31.4	1.95	52.7
2600	68.1	0	0	0.1	0	31.8	2.16	52.5

Simulating Liquid for 5GHz, Manufactured by SPEAG

Ingredients	(% by weight)		
Water	64~78%		
Mineral oil	11~18%		
Emulsifiers	9~15%		
Additives and Salt	2~3%		

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
2450	MSL	22.3	2.001	53.484	1.95	52.70	2.62	1.49	±5	2015/5/13
2450	MSL	22.2	1.904	51.836	1.95	52.70	-2.36	-1.64	±5	2015/5/15
2450	MSL	22.5	1.930	51.479	1.95	52.70	-1.03	-2.32	±5	2015/5/28
5200	MSL	22.2	5.390	48.260	5.30	49.00	1.70	-1.51	±5	2015/5/14
5800	MSL	22.2	6.185	47.389	6.00	48.20	3.08	-1.68	±5	2015/5/14

Report Number: FA521024-01 Form version.: 150415 Page 14 of 25

10.2 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dinole	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2015/5/13	2450	MSL	250	D2450V2-924	EX3DV4 - SN3955	DAE4 Sn1399	12.00	51.40	48.00	-6.61
2015/5/15	2450	MSL	250	D2450V2-924	EX3DV4 - SN3931	DAE3 Sn577	13.30	51.40	53.20	3.50
2015/5/28	2450	MSL	250	D2450V2-924	EX3DV4 - SN3931	DAE3 Sn577	13.10	51.40	52.40	1.95
2015/5/14	5200	MSL	100	D5GHzV2-1006	EX3DV4 - SN3955	DAE4 Sn1399	7.14	77.50	71.40	-7.87
2015/5/14	5800	MSL	100	D5GHzV2-1006	EX3DV4 - SN3955	DAE4 Sn1399	7.40	78.40	74.00	-5.61

Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

11. RF Exposure Positions

11.1 SAR Testing for Tablet

This device can be used also in full sized tablet exposure conditions, due to its size. Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR exclusion threshold in KDB 447498 D01v05r02 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

Report Number: FA521024-01 Form version.: 150415 Page 15 of 25

12. Conducted RF Output Power (Unit: dBm)

<WLAN Conducted Power>

General Note:

- 1. Per KDB 248227 D01v02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions.
- 2. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s).
- 3. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band.
- 4. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following:
 - a. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band.
 - b. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
 - c. For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

Report Number: FA521024-01 Form version: : 150415

Page 16 of 25

<2.4GHz WLAN>

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		CH 1	2412	1Mbps	15.26	16.00	98.59
	802.11b	CH 6	2437		14.85	15.00	
2.4GHz WLAN		CH 11	2462		14.80	15.00	
2.4GHZ WLAIN		CH 1	2412	6Mbps	14.90	16.00	92.72
	802.11g	CH 6	2437		14.14	15.00	
		CH 11	2462		13.96	15.00	
		CH 1	2412		14.87	16.00	
	802.11n-HT20	CH 6	2437	MCS0	14.00	15.00	92.25
		CH 11	2462		13.76	15.00	

<5GHz WLAN>

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		CH 36	5180		16.44	16.50	
	802.11a	CH 40	5200	014	16.35	16.50	02.72
	602.11a	CH 44	5220	6Mbps	16.15	16.50	92.72
		CH 48	5240		16.24	16.50	
		CH 36	5180	MCS0	16.06	16.50	92.20
	802.11n-HT20	CH 40	5200		16.15	16.50	
5.2GHz WLAN	002.11II - H120	CH 44	5220		16.03	16.50	
5.2GHZ WLAIN		CH 48	5240		16.09	16.50	
	802.11n-HT40	CH 38	5190	14000	16.35	16.50	85.53
	002.11∏ - ∏140	CH 46	5230	MCS0	16.30	16.50	
		CH 36	5180		13.82	14.00	
	802.11ac-VHT20	CH 40	5200	MCS0	13.87	14.00	92.25
	602.11ac-vn120	CH 44	5220	MCSU	13.75	14.00	92.25
		CH 48	5240		13.89	14.00	
	902 11aa V/UT40	CH 38	5190	14000	13.65	14.00	85.53
	802.11ac-VHT40	CH 46	5230	MCS0	13.62	14.00	
	802.11ac-VHT80	CH 42	5210	MCS0	13.46	14.00	76.74

Report Number: FA521024-01
Form version.: 150415
Page 17 of 25

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		CH 149	5745		16.96	17.00	
		CH 153	5765		16.91	17.00	
	802.11a	CH 157	5785	6Mbps	16.98	17.00	92.72
		CH 161	5805		16.77	17.00	
		CH 165	5825		16.64	17.00	
		CH 149	5745		16.91	17.00	
		CH 153	5765	MCS0	16.93	17.00	92.20
	802.11n-HT20	CH 157	5785		16.86	17.00	
5.8GHz WLAN		CH 161	5805		16.92	17.00	
		CH 165	5825		16.61	17.00	
	802.11n-HT40	CH 151	5755	MCS0	16.63	17.00	85.53
	002.TIII-HT40	CH 159	5795	MCSU	16.72	17.00	
		CH 149	5745		13.93	14.00	
		CH 153	5765		13.97	14.00	
	802.11ac-VHT20	CH 157	5785	MCS0	13.99	14.00	92.25
		CH 161	5805		13.66	14.00	
		CH 165	5825		13.69	14.00	
	802.11ac-VHT40	CH 151	5755	MCS0	13.65	14.00	85.53
	002.11ac-v1140	CH 159	5795	IVICOU	13.69	14.00	00.03
	802.11ac-VHT80	CH 155	5775	MCS0	13.60	14.00	76.74

<2.4GHz Bluetooth>

General Note:

- 1. For 2.4GHz Bluetooth SAR testing was selected 1Mbps, due to its highest average power.
- 2. The duty factor is selected theoretical 83.3% perform Bluetooth SAR testing.

Mode	Channel	Frequency	Average power (dBm)				
Mode	Charlie	(MHz)	1Mbps	2Mbps	3Mbps		
v3.0 with EDR	CH 00	2402	10.89	8.52	8.54		
	CH 39	2441	11.77	9.20	9.22		
	CH 78	2480	12.48	9.81	9.82		

Mode	Channel	Frequency	Average power (dBm)
	Chamilei	(MHz)	GFSK
v4.0 with LE	CH 00	2402	3.23
	CH 19	2440	3.52
	CH 39	2480	3.84

Report Number: FA521024-01 Form version.: 150415 Page 18 of 25

13. Exposure Position Conditions

General Note:

- 1. The detail antenna locations please refer to setup photo.
- 2. The below table, when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW"
- 3. Maximum power is the source-based time-average power and represents the maximum RF output power among production units
- 4. Per KDB 447498 D01v05r02, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 5. Per KDB 447498 D01v05r02, standalone SAR test exclusion threshold is applied; If the test separation distance is < 5mm, 5mm is used to determine SAR exclusion threshold.
- 6. Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- · The result is rounded to one decimal place for comparison
- 7. Per KDB 447498 D01v05r02, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following
 - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)-(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
 - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·10] mW at > 1500 MHz and ≤ 6 GHz

	Wireless Interface	ВТ	802.11b	802.11a	
Exposure Position	Calculated Frequency	2480MHz	2462MHz	5825MHz	
	Maximum power (dBm)	13.5	16.0	17.0	
	Maximum rated power(mW)	22.0	40.0	50.0	
	Separation distance(mm)	5.0	5.0	5.0	
Bottom Face	exclusion threshold	6.9	12.6	24.1	
	Testing required?	Yes	Yes	Yes	
	Separation distance(mm)	7.5	7.5	7.5	
Edge 1	exclusion threshold	4.6	8.4	16.1	
	Testing required?	Yes	Yes	Yes	
	Separation distance(mm)	85.5	85.5	85.5	
Edge 2	exclusion threshold	450.0	451.0	417.0	
	Testing required?	No	No	No	
	Separation distance(mm)	198.0	198.0	198.0	
Edge 3	exclusion threshold	1575.0	1576.0	1542.0	
	Testing required?	No	No	No	
	Separation distance(mm)	8.0	8.0	8.0	
Edge 4	exclusion threshold	4.3	7.9	15.1	
	Testing required?	Yes	Yes	Yes	

Report Number: FA521024-01 Form version: : 150415 Page 19 of 25

14. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v05r02, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
 - c. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
- 2. Per KDB 248227 D01v02, for 802.11b DSSS SAR testing, when any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 3. Per KDB 248227 D01v02, for 802.11g/n SAR testing is required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is > 1.2 W/kg.
- 4. Per KDB 248227 D01v02, for OFDM transmission configurations in the 2.4 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11g/n mode is used for SAR measurement, on the highest measured output power channel for each frequency band.
- When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test
 positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or
 aggregated band.
- 6. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
- For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions /
 configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all
 required channels are tested.
- 8. WLAN and Bluetooth share the same antenna and cannot transmit simultaneously.
- 9. During SAR testing the WLAN transmission was verified using a spectrum analyzer.

14.1 Body SAR

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor		Duty Cycle Scaling Factor	Drift	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0cm	1	2412	15.26	16.00	1.186	98.59	1.014	-0.14	0.768	0.923
	WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0cm	6	2437	14.85	15.00	1.035	98.59	1.014	-0.09	0.687	0.721
01	WLAN2.4GHz	802.11b 1Mbps	Edge 1	0mm	1	2412	15.26	16.00	1.186	98.59	1.014	-0.15	1.080	1.299
	WLAN2.4GHz	802.11b 1Mbps	Edge 1	0mm	6	2437	14.85	15.00	1.035	98.59	1.014	-0.13	1.200	1.260
	WLAN2.4GHz	802.11b 1Mbps	Edge 1	0mm	11	2462	14.80	15.00	1.047	98.59	1.014	-0.18	1.220	1.295
	WLAN2.4GHz	802.11b 1Mbps	Edge 4	0cm	1	2412	15.26	16.00	1.186	98.59	1.014	-0.09	0.081	0.097
	WLAN2.4GHz	802.11g 6Mbps	Bottom Face	0cm	1	2412	14.90	16.00	1.288	92.72	1.079	-0.07	0.730	1.015
	WLAN2.4GHz	802.11g 6Mbps	Bottom Face	0cm	6	2437	14.14	15.00	1.219	92.72	1.079	-0.07	0.581	0.764
	WLAN2.4GHz	802.11g 6Mbps	Edge 1	0cm	1	2412	14.90	16.00	1.288	92.72	1.079	0	0.933	1.297
	WLAN2.4GHz	802.11g 6Mbps	Edge 1	0cm	6	2437	14.14	15.00	1.219	92.72	1.079	-0.04	0.744	0.979
	WLAN2.4GHz	802.11g 6Mbps	Edge 4	0cm	1	2412	14.90	16.00	1.288	92.72	1.079	0.01	0.092	0.128

Report Number: FA521024-01
Form version.: 150415

Page 20 of 25

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)		Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cycle		Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN5GHz	802.11a 6Mbps	Bottom Face	0mm	36	5180	16.44	16.50	1.014	92.72	1.079	-0.12	0.746	0.816
	WLAN5GHz	802.11a 6Mbps	Bottom Face	0mm	40	5200	16.35	16.50	1.035	92.72	1.079	-0.16	0.857	0.957
02	WLAN5GHz	802.11a 6Mbps	Edge 1	0mm	36	5180	16.44	16.50	1.014	92.72	1.079	-0.12	1.180	1.291
	WLAN5GHz	802.11a 6Mbps	Edge 1	0mm	40	5200	16.35	16.50	1.035	92.72	1.079	-0.15	1.130	1.262
	WLAN5GHz	802.11a 6Mbps	Edge 1	0mm	48	5240	16.24	16.50	1.062	92.72	1.079	-0.18	1.120	1.283
	WLAN5GHz	802.11a 6Mbps	Edge 1	0mm	44	5220	16.15	16.50	1.084	92.72	1.079	-0.16	1.100	1.287
	WLAN5GHz	802.11n-HT40 MCS0	Edge 1	0mm	38	5190	16.35	16.50	1.035	85.53	1.169	-0.18	1.010	1.222
	WLAN5GHz	802.11n-HT40 MCS0	Edge 1	0mm	46	5230	16.30	16.50	1.047	85.53	1.169	-0.12	0.997	1.220
	WLAN5GHz	802.11ac-VHT80 MCS0	Edge 1	0mm	42	5210	13.46	14.00	1.132	76.74	1.303	-0.12	0.454	0.670
	WLAN5GHz	802.11a 6Mbps	Edge 4	0mm	36	5180	16.44	16.50	1.014	92.72	1.079	-0.18	0.504	0.551
	WLAN5GHz	802.11a 6Mbps	Bottom Face	0mm	157	5785	16.98	17.00	1.005	92.72	1.079	0.16	0.726	0.787
03	WLAN5GHz	802.11a 6Mbps	Edge 1	0mm	157	5785	16.98	17.00	1.005	92.72	1.079	-0.15	1.150	1.247
	WLAN5GHz	802.11a 6Mbps	Edge 1	0mm	149	5745	16.96	17.00	1.009	92.72	1.079	-0.1	1.050	1.143
	WLAN5GHz	802.11a 6Mbps	Edge 4	0mm	157	5785	16.98	17.00	1.005	92.72	1.079	-0.11	0.467	0.506

<Bluetooth SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	Bluetooth	1Mbps	Bottom Face	0cm	78	2480	12.48	13.50	1.265	-0.14	0.258	0.326
04	Bluetooth	1Mbps	Edge 1	0mm	78	2480	12.48	13.50	1.265	-0.17	0.401	0.507
	Bluetooth	1Mbps	Edge 4	0cm	78	2480	12.48	13.50	1.265	0.11	0.028	0.035

14.2 Repeated SAR Measurement

No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Ratio	Reported 1g SAR (W/kg)
1st	WLAN2.4GHz	802.11b 1Mbps	Edge 1	0mm	11	2462	14.80	15.00	1.047	98.59	1.014	-0.18	1.220	-	1.295
2nd	WLAN2.4GHz	802.11b 1Mbps	Edge 1	0mm	11	2462	14.80	15.00	1.047	98.59	1.014	-0.14	1.180	1.03	1.253
1st	WLAN5GHz	802.11a 6Mbps	Edge 1	0mm	36	5180	16.44	16.50	1.014	92.72	1.079	-0.12	1.180	-	1.291
2nd	WLAN5GHz	802.11a 6Mbps	Edge 1	0mm	36	5180	16.44	16.50	1.014	92.72	1.079	-0.16	1.140	1.04	1.247
1st	WLAN5GHz	802.11a 6Mbps	Edge 1	0mm	157	5785	16.98	17.00	1.005	92.72	1.079	-0.15	1.150	-	1.247
2nd	WLAN5GHz	802.11a 6Mbps	Edge 1	0mm	157	5785	16.98	17.00	1.005	92.72	1.079	0.14	1.090	1.06	1.182

General Note:

- 1. Per KDB 865664 D01v01r03, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 2. Per KDB 865664 D01v01r03, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated measured SAR.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

Test Engineer: Tommy Chen and Galen Chang

Report Number: FA521024-01 Form version.: 150415 Page 21 of 25

15. <u>Uncertainty Assessment</u>

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 15.1. Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

Report Number: FA521024-01 Form version: : 150415

Page 22 of 25

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci (1g)	Ci (10g)	Standard Uncertainty (1g)	Standard Uncertainty (10g)
Measurement System							
Probe Calibration	6.0	Normal	1	1	1	± 6.0 %	± 6.0 %
Axial Isotropy	4.7	Rectangular	√3	0.7	0.7	± 1.9 %	± 1.9 %
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	0.7	± 3.9 %	± 3.9 %
Boundary Effects	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %
Linearity	4.7	Rectangular	√3	1	1	± 2.7 %	± 2.7 %
System Detection Limits	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %
Readout Electronics	0.3	Normal	1	1	1	± 0.3 %	± 0.3 %
Response Time	0.8	Rectangular	√3	1	1	± 0.5 %	± 0.5 %
Integration Time	2.6	Rectangular	√3	1	1	± 1.5 %	± 1.5 %
RF Ambient Noise	3.0	Rectangular	√3	1	1	± 1.7 %	± 1.7 %
RF Ambient Reflections	3.0	Rectangular	√3	1	1	± 1.7 %	± 1.7 %
Probe Positioner	0.4	Rectangular	√3	1	1	± 0.2 %	± 0.2 %
Probe Positioning	2.9	Rectangular	√3	1	1	± 1.7 %	± 1.7 %
Max. SAR Eval.	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %
Test Sample Related							
Device Positioning	2.9	Normal	1	1	1	± 2.9 %	± 2.9 %
Device Holder	3.6	Normal	1	1	1	± 3.6 %	± 3.6 %
Power Drift	5.0	Rectangular	√3	1	1	± 2.9 %	± 2.9 %
Phantom and Setup							
Phantom Uncertainty	4.0	Rectangular	√3	1	1	± 2.3 %	± 2.3 %
Liquid Conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	± 1.8 %	± 1.2 %
Liquid Conductivity (Meas.)	2.5	Normal	1	0.64	0.43	± 1.6 %	± 1.1 %
Liquid Permittivity (Target)	5.0	Rectangular	√3	0.6	0.49	± 1.7 %	± 1.4 %
Liquid Permittivity (Meas.)	2.5	Normal	1	0.6	0.49	± 1.5 %	± 1.2 %
Combined Standard Uncertainty	<i>'</i>					± 11.0 %	± 10.8 %
Coverage Factor for 95 %	K=2						
Expanded Uncertainty						± 22.0 %	± 21.5 %

Table 15.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz

Report Number: FA521024-01 Form version.: 150415 Page 23 of 25

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci (1g)	Ci (10g)	Standard Uncertainty (1g)	Standard Uncertainty (10g)		
Measurement System	•				•	•			
Probe Calibration	6.55	Normal	1	1	1	± 6.55 %	± 6.55 %		
Axial Isotropy	4.7	Rectangular	√3	0.7	0.7	± 1.9 %	± 1.9 %		
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	0.7	± 3.9 %	± 3.9 %		
Boundary Effects	2.0	Rectangular	√3	1	1	± 1.2 %	± 1.2 %		
Linearity	4.7	Rectangular	√3	1	1	± 2.7 %	± 2.7 %		
System Detection Limits	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %		
Readout Electronics	0.3	Normal	1	1	1	± 0.3 %	± 0.3 %		
Response Time	0.8	Rectangular	√3	1	1	± 0.5 %	± 0.5 %		
Integration Time	2.6	Rectangular	√3	1	1	± 1.5 %	± 1.5 %		
RF Ambient Noise	3.0	Rectangular	√3	1	1	± 1.7 %	± 1.7 %		
RF Ambient Reflections	3.0	Rectangular	√3	1	1	± 1.7 %	± 1.7 %		
Probe Positioner	0.8	Rectangular	√3	1	1	± 0.5 %	± 0.5 %		
Probe Positioning	9.9	Rectangular	√3	1	1	± 5.7 %	± 5.7 %		
Max. SAR Eval.	4.0	Rectangular	√3	1	1	± 2.3 %	± 2.3 %		
Test Sample Related									
Device Positioning	2.9	Normal	1	1	1	± 2.9 %	± 2.9 %		
Device Holder	3.6	Normal	1	1	1	± 3.6 %	± 3.6 %		
Power Drift	5.0	Rectangular	√3	1	1	± 2.9 %	± 2.9 %		
Phantom and Setup									
Phantom Uncertainty	4.0	Rectangular	√3	1	1	± 2.3 %	± 2.3 %		
Liquid Conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	± 1.8 %	± 1.2 %		
Liquid Conductivity (Meas.)	2.5	Normal	1	0.64	0.43	± 1.6 %	± 1.1 %		
Liquid Permittivity (Target)	5.0	Rectangular	√3	0.6	0.49	± 1.7 %	± 1.4 %		
Liquid Permittivity (Meas.)	2.5	Normal	1	0.6	0.49	± 1.5 %	± 1.2 %		
Combined Standard Uncertainty	y					± 12.8 %	± 12.6 %		
Coverage Factor for 95 %							K=2		
Expanded Uncertainty						± 25.6 %	± 25.2 %		

Table 15.3. Uncertainty Budget for frequency range 3 GHz to 6 GHz

Report Number: FA521024-01 Form version.: 150415 Page 24 of 25

16. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 248227 D01 v02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Mar 2015.
- [6] FCC KDB 447498 D01 v05r02, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Feb 2014
- [7] FCC KDB 616217 D04 v01r01, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", May 2013
- [8] FCC KDB 865664 D01 v01r03, "SAR Measurement Requirements for 100 MHz to 6 GHz", Feb 2014.
- [9] FCC KDB 865664 D02 v01r01, "RF Exposure Compliance Reporting and Documentation Considerations" May 2013.

Report Number: FA521024-01 Form version.: 150415 Page 25 of 25

Appendix A. Plots of System Performance Check

The plots are shown as follows.

FCC ID : 2ADU6-8274 Page A1 of A1 Form version. : 150415

System Check_Body_2450MHz_150513

DUT: D2450V2-924

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL 2450 150513 Medium parameters used: f = 2450 MHz; $\sigma = 2.001$ mho/m; $\varepsilon_r =$

Date: 2015/5/13

53.484; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3955; ConvF(7.32, 7.32, 7.32); Calibrated: 2014/11/21;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1399; Calibrated: 2014/11/13
- Phantom: ELI 4.0_Front; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6477)

Configuration/Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=12mm,

dy=12mm

Maximum value of SAR (interpolated) = 20.0 mW/g

Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 104.3 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 24.541 mW/g

SAR(1 g) = 12 mW/g; SAR(10 g) = 5.57 mW/g

Maximum value of SAR (measured) = 20.0 mW/g

0 dB = 20.0 mW/g = 26.02 dB mW/g

System Check Body 2450MHz 150515

DUT: D2450V2-924

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL_2450_150515 Medium parameters used: f = 2450 MHz; σ = 1.904 S/m; ϵ_r = 51.836; ρ

Date: 2015/5/15

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.2 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3931; ConvF(7.36, 7.36, 7.36); Calibrated: 2014/9/25;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2014/10/6
- Phantom: ELI 4.0 Front; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Pin=250mW/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 20.1 mW/g

Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 110.7 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 29.1 mW/g

SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.04 mW/g

Maximum value of SAR (measured) = 23.0 mW/g

0 dB = 23.0 mW/g = 13.62 dB mW/g

System Check_Body_2450MHz_150528

DUT: D2450V2-924

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL_2450_150528 Medium parameters used: f = 2450 MHz; $\sigma = 1.93$ S/m; $\epsilon_r = 51.479$; $\rho = 1.93$ S/m; $\epsilon_r = 51.479$; $\epsilon_r = 51.479$

Date: 2015/5/28

 1000 kg/m^3

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C

DASY5 Configuration

- Probe: EX3DV4 SN3931; ConvF(7.36, 7.36, 7.36); Calibrated: 2014/9/25;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2014/10/6
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1173
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/Pin=250mW/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 19.9 W/kg

Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 98.767 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 5.95 W/kg

Maximum value of SAR (measured) = 20.2 W/kg

0 dB = 20.2 W/kg = 13.05 dBW/kg

System Check_Body_5200MHz_150514

DUT: D5GHzV2-1006

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium: MSL_5G_150514 Medium parameters used: f = 5200 MHz; $\sigma = 5.39$ mho/m; $\varepsilon_r = 48.26$; ρ

Date: 2015/5/14

 $= 1000 \text{ kg/m}^3$

Ambient Temperature : 23.2 °C; Liquid Temperature : 22.2 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3955; ConvF(4.61, 4.61, 4.61); Calibrated: 2014/11/21;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1399; Calibrated: 2014/11/13
- Phantom: ELI 4.0_Front; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6477)

Configuration/Pin=100mW/Area Scan (71x71x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (interpolated) = 16.8 mW/g

Configuration/Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=1.4mm

Reference Value = 65.146 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 29.476 mW/g

SAR(1 g) = 7.14 mW/g; SAR(10 g) = 1.96 mW/g

Maximum value of SAR (measured) = 17.6 mW/g

0 dB = 17.6 mW/g = 24.91 dB mW/g

System Check_Body_5800MHz_150514

DUT: D5GHzV2-1006

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium: MSL 5G 150514 Medium parameters used: f = 5800 MHz; $\sigma = 6.185$ mho/m; $\varepsilon_r =$

Date: 2015/5/14

47.389; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.2 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3955; ConvF(4.26, 4.26, 4.26); Calibrated: 2014/11/21;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1399; Calibrated: 2014/11/13
- Phantom: ELI 4.0_Front; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6477)

Configuration/Pin=100mW/Area Scan (71x71x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (interpolated) = 17.7 mW/g

Configuration/Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=1.4mm

Reference Value = 62.340 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 36.497 mW/g

SAR(1 g) = 7.4 mW/g; SAR(10 g) = 1.99 mW/g

Maximum value of SAR (measured) = 19.7 mW/g

0 dB = 19.7 mW/g = 25.89 dB mW/g

Appendix B. Plots of SAR Measurement

The plots are shown as follows.

#01_WLAN2.4GHz_802.11b 1Mbps_Edge 1_0mm_Ch1

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1.014

Medium: MSL_2450_150513 Medium parameters used: f = 2412 MHz; $\sigma = 1.948$ mho/m; $\varepsilon_r =$

Date: 2015/5/13

53.65; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3955; ConvF(7.32, 7.32, 7.32); Calibrated: 2014/11/21;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1399; Calibrated: 2014/11/13
- Phantom: ELI 4.0 Front; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6477)

Configuration/Ch1/Area Scan (41x71x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 2.05 mW/g

Configuration/Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 32.065 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 2.405 mW/g

SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.421 mW/g

Maximum value of SAR (measured) = 1.91 mW/g

0 dB = 1.91 mW/g = 5.62 dB mW/g

#02_WLAN5GHz_802.11a 6Mbps_Edge 1_0mm_Ch36

Communication System: 802.11a; Frequency: 5180 MHz; Duty Cycle: 1:1.079

Medium: MSL_5G_150514 Medium parameters used: f = 5180 MHz; $\sigma = 5.362$ mho/m; $\varepsilon_r =$

Date: 2015/5/14

48.269; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.2 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3955; ConvF(4.61, 4.61, 4.61); Calibrated: 2014/11/21;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1399; Calibrated: 2014/11/13
- Phantom: ELI 4.0_Front; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6477)

Configuration/Ch36/Area Scan (41x71x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 3.04 mW/g

Configuration/Ch36/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 24.786 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 4.941 mW/g

SAR(1 g) = 1.18 mW/g; SAR(10 g) = 0.333 mW/g

Maximum value of SAR (measured) = 2.90 mW/g

0 dB = 2.90 mW/g = 9.25 dB mW/g

#03_WLAN5GHz_802.11a 6Mbps_Edge 1_0mm_Ch157

Communication System: 802.11a; Frequency: 5785 MHz; Duty Cycle: 1:1.079

Medium: MSL 5G 150514 Medium parameters used: f = 5785 MHz; $\sigma = 6.171$ mho/m; $\varepsilon_r =$

Date: 2015/5/14

47.406; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.2 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3955; ConvF(4.26, 4.26, 4.26); Calibrated: 2014/11/21;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1399; Calibrated: 2014/11/13
- Phantom: ELI 4.0 Front; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6477)

Configuration/Ch157/Area Scan (41x71x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 3.00 mW/g

Configuration/Ch157/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 24.408 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 5.728 mW/g

SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.347 mW/g

Maximum value of SAR (measured) = 2.93 mW/g

0 dB = 2.93 mW/g = 9.34 dB mW/g

#04_Bluetooth_1Mbps_Edge 1_0mm_Ch78

Communication System: Bluetooth; Frequency: 2480 MHz; Duty Cycle: 1:1.2

Medium: MSL_2450_150515 Medium parameters used: f = 2480 MHz; $\sigma = 1.946$ mho/m; $\varepsilon_r =$

Date: 2015/5/15

51.718; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.2 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3931; ConvF(7.36, 7.36, 7.36); Calibrated: 2014/9/25;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2014/10/6
- Phantom: ELI 4.0_Front; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Ch78/Area Scan (41x71x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.747 mW/g

Configuration/Ch78/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.519 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.902 mW/g

SAR(1 g) = 0.401 mW/g; SAR(10 g) = 0.154 mW/g

Maximum value of SAR (measured) = 0.708 mW/g

0 dB = 0.708 mW/g = -3.00 dB mW/g

Appendix C. DASY Calibration Certificate

The DASY calibration certificates are shown as follows.

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton-TW (Auden)

Certificate No: D2450V2-924_Nov14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 924

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

November 19, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	M. Weber
Approved by:	Katja Pokovic	Technical Manager	BULL

Issued: November 20, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52. 7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.9 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.8 Ω + 3.2 jΩ
Return Loss	- 25.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.3 Ω + 4.6 jΩ
Return Loss	- 26.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 26, 2013

DASY5 Validation Report for Head TSL

Date: 18.11.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 924

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.6 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.14 W/kg

Maximum value of SAR (measured) = 17.4 W/kg

0 dB = 17.4 W/kg = 12.41 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 19.11.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 924

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 50.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.44 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.05 W/kg

Maximum value of SAR (measured) = 17.4 W/kg

0 dB = 17.4 W/kg = 12.41 dBW/kg

Impedance Measurement Plot for Body TSL

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton-TW (Auden)

Certificate No: D5GHzV2-1006_Sep14

CALIBRATION CERTIFICATE

Object D5GHzV2 - SN:1006

Calibration procedure(s) QA CAL-22,v2

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date: September 25, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

	1		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe EX3DV4	SN: 3503	30-Dec-13 (No. EX3-3503_Dec13)	Dec-14
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
			$\triangle I$
	Name	Function	Signature

Calibrated by:

Claudio Leubler

Function

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: September 25, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1006_Sep14

Page 1 of 15

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.54 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	4.64 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		- 4 4 4

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.72 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	86.6 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.49 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	4.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		to F Air Air Air

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.65 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.46 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.1 ± 6 %	5.14 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	~~=	

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.40 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.81 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	5.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.93 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	85.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.38 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.1 ± 6 %	6.21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.90 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	49.5 Ω - 9.1 jΩ
Return Loss	- 20.8 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	52.1 Ω - 2.3 jΩ
Return Loss	- 30.3 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	53.9 Ω - 3.5 jΩ
Return Loss	- 26.0 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	55.3 Ω + 1.1 jΩ
Return Loss	- 25.7 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	51.9 Ω - 9.4 jΩ
Return Loss	- 20.5 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	55.5 Ω + 0.7 jΩ
Return Loss	- 25.6 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	57.1 Ω - 4.5 jΩ
Return Loss	- 22.1 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	57.1 Ω + 7.0 jΩ
Return Loss	- 20.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.200 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 28, 2003

DASY5 Validation Report for Head TSL

Date: 25.09.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1006

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600

MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.54 \text{ S/m}$; $\varepsilon_r = 34.9$; $\rho = 1000 \text{ kg/m}^3$

Medium parameters used: f = 5300 MHz; $\sigma = 4.64 \text{ S/m}$; $\varepsilon_r = 34.8$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5600 MHz; $\sigma = 4.93 \text{ S/m}$; $\varepsilon_r = 34.4$; $\rho = 1000 \text{ kg/m}^3$

Medium parameters used: f = 5800 MHz; $\sigma = 5.14 \text{ S/m}$; $\varepsilon_r = 34.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.52, 5.52, 5.52); Calibrated: 30.12.2013, ConvF(5.2, 5.2, 5.2);
 Calibrated: 30.12.2013, ConvF(4.86, 4.86, 4.86); Calibrated: 30.12.2013, ConvF(4.91, 4.91, 4.91);
 Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.07 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 30.0 W/kg

SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.32 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.19 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 33.0 W/kg

SAR(1 g) = 8.72 W/kg; SAR(10 g) = 2.49 W/kg

Maximum value of SAR (measured) = 19.9 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.89 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 34.6 W/kg

SAR(1 g) = 8.65 W/kg; SAR(10 g) = 2.46 W/kg

Maximum value of SAR (measured) = 20.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 62.52 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 34.8 W/kg

SAR(1 g) = 8.36 W/kg; SAR(10 g) = 2.37 W/kg

Maximum value of SAR (measured) = 20.1 W/kg

0 dB = 20.1 W/kg = 13.03 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 24.09.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1006

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600

MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.4$ S/m; $\varepsilon_r = 47.1$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5300 MHz; $\sigma = 5.53$ S/m; $\varepsilon_r = 46.9$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 5.93$ S/m; $\varepsilon_r = 46.4$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 6.21$ S/m; $\varepsilon_r = 46.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013, ConvF(4.3, 4.3, 4.3); Calibrated: 30.12.2013, ConvF(4.47, 4.47, 4.47); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.30 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 30.7 W/kg

SAR(1 g) = 7.81 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.98 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.25 W/kg

Maximum value of SAR (measured) = 19.2 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.91 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 37.8 W/kg

SAR(1 g) = 8.59 W/kg; SAR(10 g) = 2.38 W/kg

Maximum value of SAR (measured) = 21.0 W/kg

Certificate No: D5GHzV2-1006_Sep14

Page 13 of 15

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 57.36 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 36.5 W/kg

SAR(1 g) = 7.9 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (measured) = 19.6 W/kg

0 dB = 19.6 W/kg = 12.92 dBW/kg

Impedance Measurement Plot for Body TSL

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton-TW (Auden)

Accreditation No.: SCS 108

Certificate No: DAE3-577_Oct14

CALIBRATION CERTIFICATE

Object

DAE3 - SD 000 D03 AA - SN: 577

Calibration procedure(s)

QA CAL-06.v28

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

October 06, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	03-Oct-14 (No:15573)	Oct-15
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Secondary Standards Auto DAE Calibration Unit		Check Date (in house) 07-Jan-14 (in house check)	Scheduled Check In house check: Jan-15

Calibrated by:

Name

Function

Signature

Dominique Steffen

Technician

Approved by:

Fin Bomholt

Deputy Technical Manager

Issued: October 6, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE3-577_Oct14

Page 1 of 5

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577_Oct14 Page 2 of 5

DC Voltage Measurement A/D - Converter Resolution nominal

Low Range:

High Range:

1LSB = 1LSB = 6.1μV , 61nV, full range = -100...+300 mV

full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Υ	Z
High Range	403.482 ± 0.02% (k=2)	403.471 ± 0.02% (k=2)	403.779 ± 0.02% (k=2)
Low Range	3.91221 ± 1.50% (k=2)	3.94944 ± 1.50% (k=2)	3.96413 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	190.0 ° ± 1 °

Appendix (Additional assessments outside the scope of SCS108)

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	200032.88	-1.99	-0.00
Channel X	+ Input	20008.32	4.67	0.02
Channel X	- Input	-20001.95	3.91	-0.02
Channel Y	+ Input	200034.36	-0.48	-0.00
Channel Y	+ Input	20004.96	1.49	0.01
Channel Y	- Input	-20005.18	0.80	-0.00
Channel Z	+ Input	200033.48	-1.14	-0.00
Channel Z	+ Input	20005.14	1.72	0.01
Channel Z	- Input	-20006.62	-0.60	0.00

Low Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	2000.31	0.11	0.01
Channel X	+ Input	200.48	0.24	0.12
Channel X	- Input	-199.49	0.14	-0.07
Channel Y	+ Input	1999.98	-0.10	-0.01
Channel Y	+ input	199.48	-0.67	-0.34
Channel Y	- Input	-200.14	-0.32	0.16
Channel Z	+ Input	1999.95	-0.08	-0.00
Channel Z	+ Input	199.09	-0.96	-0.48
Channel Z	- Input	-201.17	-1.27	0.64

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-1.95	-3.98
_	- 200	5.57	3.77
Channel Y	200	-13.96	-14.08
_	- 200	13.30	13.19
Channel Z	200	2.29	2.64
	- 200	-5.81	-5.27

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200		0.37	-3.20
Channel Y	200	9.80	-	0.72
Channel Z	200	6.30	6.84	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16130	15294
Channel Y	16097	15352
Channel Z	16126	12399

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.41	-0.20	1.04	0.30
Channel Y	-0.55	-1.63	1.48	0.44
Channel Z	-0.30	-1.93	0.42	0.40

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)		
Supply (+ Vcc)	+7.9		
Supply (- Vcc)	-7.6		

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Sporton-TW (Auden) Client

Certificate No: DAE4-1399 Nov14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

DAE4 - SD 000 D04 BM - SN: 1399 Object

QA CAL-06.v28 Calibration procedure(s)

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: November 13, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	03-Oct-14 (No:15573)	Oct-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-14 (in house check)	In house check: Jan-15
Calibrator Box V2.1	SE UMS 006 AA 1002	07-Jan-14 (in house check)	In house check: Jan-15

Calibrated by:

Name

Function

Dominique Steffen

Technician

Signature

Approved by:

Fin Bomhoft

Deputy Technical Manager

Issued: November 13, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1399_Nov14

Page 1 of 5

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1 \mu V$, full range = $-100...+300 \ mV$ Low Range: $1LSB = 61 \ nV$, full range = $-1......+3 \ mV$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	z
High Range	403.595 ± 0.02% (k=2)	403.856 ± 0.02% (k=2)	403.711 ± 0.02% (k=2)
Low Range	3.99125 ± 1.50% (k=2)	3.98907 ± 1.50% (k=2)	3.95088 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	303.0 ° ± 1 °
Connector Angle to be used in BACT System	000.0 ± 1

Appendix (Additional assessments outside the scope of SCS108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	199994.98	-1.69	-0.00
Channel X + Input	20001.44	0.30	0.00
Channel X - Input	-19999.26	1.43	-0.01
Channel Y + Input	199999.25	1.98	0.00
Channel Y + Input	19999.03	-2.18	-0.01
Channel Y - Input	-20001.89	-1.19	0.01
Channel Z + Input	199997.44	0.45	0.00
Channel Z + Input	19998.57	-2.49	-0.01
Channel Z - Input	-20002.47	-1.62	0.01

Low Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	2001.40	0.25	0.01
Channel X	+ Input	202.15	0.53	0.26
Channel X	- Input	-197.74	0.52	-0.26
Channel Y	+ Input	2001.28	0.25	0.01
Channel Y	+ Input	200.41	-1.14	-0.57
Channel Y	- Input	-199.61	-1.35	0.68
Channel Z	+ Input	2000.99	0.04	0.00
Channel Z	+ Input	200.81	-0.68	-0.34
Channel Z	- Input	-199.21	-0.81	0.41

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μ ν)
Channel X	200	-5.17	-6.60
	- 200	8.22	6.53
Channel Y	200	-6.32	-6.77
	- 200	4.36	4.06
Channel Z	200	-7.31	-7.07
	- 200	5.86	5.56

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	4.40	-1.63
Channel Y	200	9.43	-	6.68
Channel Z	200	8.64	6.47	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15820	17016
Channel Y	16103	16959
Channel Z	15890	15243

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.27	-0.44	1.00	0.35
Channel Y	-1.31	-2.29	-0.54	0.36
Channel Z	-1.04	-2.25	1.02	0.47

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	~7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton-TW (Auden)

Certificate No: EX3-3931_Sep14

S

S

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3931

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

September 25, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: \$5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	1D	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by:

Jeton Kastrati

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: September 25, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ σ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3931_Sep14 Page 2 of 11

September 25, 2014 EX3DV4 - SN:3931

Probe EX3DV4

SN:3931

Manufactured: July 24, 2013

Calibrated:

September 25, 2014

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

September 25, 2014 EX3DV4-SN:3931

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3931

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.42	0.58	0.49	± 10.1 %
DCP (mV) ⁸	99.9	96.9	99.9	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc
			dB	dB√μV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	149.1	±3.8 %
		Y	0.0	0.0	1.0		132.9	
		Z	0.0	0.0	1.0		145.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

September 25, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3931

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.75	10.75	10.75	0.41	0.79	± 12.0 %
835	41.5	0.90	10.32	10.32	10.32	0.20	1.13	± 12.0 %
900	41.5	0.97	10.07	10.07	10.07	0.52	0.72	± 12.0 %
1450	40.5	1.20	8.74	8.74	8.74	0.20	1.48	± 12.0 %
1750	40.1	1.37	8.48	8.48	8.48	0.57	0.69	± 12.0 %
1900	40.0	1.40	8.17	8.17	8.17	0.31	0.96	± 12.0 %
2000	40.0	1.40	8.10	8.10	8.10	0.43	0.77	± 12.0 %
2450	39.2	1.80	7.29	7.29	7.29	0.33	0.88	± 12.0 %
2600	39.0	1.96	7.09	7.09	7.09	0.37	0.86	± 12.0 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4- SN:3931 September 25, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3931

Calibration Parameter Determined in Body Tissue Simulating Media

			•		•			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.10	10.10	10.10	0.27	1.14	± 12.0 %
835	55.2	_0.97	10.13	10.13	10.13	0.40	0.93	± 12.0 %
1450	54.0	1.30	8.72	8.72	8.72	0.24	1.22	± 12.0 %
1750	53.4	1.49	8.26	8.26	8.26	0.48	0.80	± 12.0 %
1900	53 <u>.3</u>	1.52	7.80	7.80	7.80	0.38	0.89	± 12.0 %
2450	52.7	1.95	7.36	7.36	7.36	0.80	0.56	± 12.0 %
2600	52.5	2.16	7.20	7.20	7.20	0.76	0.58	± 12.0 %

 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

September 25, 2014 EX3DV4-SN:3931

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

September 25, 2014

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

September 25, 2014

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error $(\phi, 9)$, f = 900 MHz

EX3DV4- SN:3931 September 25, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3931

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-11.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton-TW (Auden)

Accreditation No.: SCS 108

Certificate No: EX3-3955_Nov14

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3955

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

November 21, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B GB41293874		03-Apr-14 (No. 217-01911)	Арг-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C		4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E US37390585		18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Deton Kastrati

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: November 24, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx, v, z DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A. B. C. D modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9

i.e., 9 = 0 is normal to probe axis

information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
- proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside wavequide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3955_Nov14 Page 2 of 11

Probe EX3DV4

SN:3955

Manufactured: August 6, 2013

Calibrated: November 21, 2014

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3955

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.35	0.42	0.31	± 10.1 %
DCP (mV) ⁸	98.0	100.8	98.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^t (k≃2)
0	CW	X	0.0	0.0	1.0	0.00	135.4	±3.0 %
		Y	0.0	0.0	1.0		146.0	
		Z	0.0	0.0	1.0		136.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

Certificate No: EX3-3955_Nov14 Page 4 of 11

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3955

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.61	10.61	10.61	0.66	0.64	± 12.0 %
835	41.5	0.90	10.04	10.04	10.04	0.18	1.25	± 12.0 %
900	41.5	0.97	9.79	9.79	9.79	0.25	0.94	± 12.0 %
1750	40.1	1.37	8.90	8.90	8.90	0.46	0.75	± 12.0 %
1900	40.0	1.40	8.50	8.50	8.50	0.44	0.79	± 12.0 %
2000	40.0	1.40	8.34	8.34	8.34	0.51	0.70	± 12.0 %
2450	39.2	1.80	7.46	7.46	7.46	0.29	1.01	± 12.0 %
2600	39.0	1.96	7.21	7.21	7.21	0.39	0.88	± 12.0 %
5200	36.0	4.66	5.13	5.13	5.13	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.92	4.92	4.92	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.74	4.74	4.74	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.56	4.56	4.56	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.63	4.63	4.63	0.40	1.80	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

validity can be extended to \pm 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3955

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.16	10.16	10.16	0.28	1.11	± 12.0 %
835	55.2	0.97	10.03	10.03	10.03	0.38	0.88	± 12.0 %
1750	53.4	1.49	8.34	8.34	8.34	0.35	0.99	± 12.0 %
1900	53.3	1.52	7.89	7.89	7.89	0.42	0.90	± 12.0 %
2450	52.7	1.95	7.32	7.32	7.32	0.76	0.62	± 12.0 %
2600	52.5	2.16	7.09	7.09	7.09	0.63	0.69	± 12.0 %
5200	49.0	5.30	4.61	4.61	4.61	0.45	1.90	± 13.1 %
5300	48.9	5.42	4.44	4.44	4.44	0.45	1.90	± 13.1 %
5500	48.6	5.65	4.13	4.13	4.13	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.11	4.11	4.11	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.26	4.26	4.26	0.50	1.90	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

f=600 MHz,TEM

f=1800 MHz,R22

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

November 21, 2014

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3955

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-51
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm