MTH141 Quiz 3 Solution

TA & Solution Author: Mariam Walaa

October 3, 2023

Question

Let $\mathbf{a}_1 = (1, 2)$, $\mathbf{a}_2 = (2, -1)$, and $\mathbf{b} = (4, 3)$. Show that \mathbf{b} is in the span of \mathbf{a}_1 and \mathbf{a}_2 .

Solution

To show that **b** is in the span of \mathbf{a}_1 and \mathbf{a}_2 , we need to find scalars c_1 and c_2 such that

$$c_1\mathbf{a}_1 + c_2\mathbf{a}_2 = \mathbf{b}.$$

Let's set up a system of equations using the components of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{b} :

$$c_1(1,2) + c_2(2,-1) = (4,3)$$

 $(c_1 + 2c_2, 2c_1 - c_2) = (4,3).$

Now, we can write this system as two equations:

$$c_1 + 2c_2 = 4$$
 (Equation 1)
 $2c_1 - c_2 = 3$ (Equation 2)

We can solve this system of equations using any method of your choice. Here, we will use the method of substitution.

From Equation 2, we can express c_2 in terms of c_1 :

$$c_2 = 2c_1 - 3$$
.

Now, substitute this expression for c_2 into Equation 1:

$$c_1 + 2(2c_1 - 3) = 4$$

$$c_1 + 4c_1 - 6 = 4$$

$$5c_1 = 10$$

$$c_1 = 2.$$

Now that we have found c_1 , we can find c_2 :

$$c_2 = 2c_1 - 3 = 2(2) - 3 = 4 - 3 = 1.$$

So, we have found that $c_1 = 2$ and $c_2 = 1$. Therefore, **b** can be expressed as a linear combination of \mathbf{a}_1 and \mathbf{a}_2 :

$$2\mathbf{a}_1 + \mathbf{a}_2 = 2(1,2) + (2,-1) = (2,4) + (2,-1) = (4,3) = \mathbf{b}.$$

Since we have found values of c_1 and c_2 such that **b** is expressed as a linear combination of \mathbf{a}_1 and \mathbf{a}_2 , we have shown that **b** is in the span of \mathbf{a}_1 and \mathbf{a}_2 .