

Universidade Federal de Campina Grande – UFCG Unidade Acadêmica de Engenharia Elétrica – UAEE Curso de Graduação em Engenharia Elétrica

Laboratório de Princípios de Comunicações

Período 2022.1

Guia de Experimentos 4

Tema(s): Modulação e Desmodulação em Ângulo.

Professor(es): Leocarlos B. S. Lima e Edson P. da Silva

1 Introdução

O presente guia descreve atividades experimentais a serem realizadas na disciplina Laboratório de Princípios de Comunicações do curso de graduação em Engenharia Elétrica da Universidade Federal de Campina Grande – UFCG.

Os experimentos propostos deverão ser realizados no Laboratório de Princípios de Comunicações – LPC, localizado na Central de Laboratórios da Unidade Acadêmica de Engenharia Elétrica da UFCG, empregando:

- Computador com software GNU Radio Companion GRC (http://gnuradio.org/) instalado;
- Módulo USRP (do inglês *Universal Software Radio Peripheral*) para transmissão e recepção de sinais numa abordagem conhecida como Rádio Definido por Software RDS.

Na seção 3 deste guia, propõe-se um conjunto de atividades de preparação a serem desenvolvidas pelo aluno antes da aula em que serão realizadas as práticas experimentais. Sem a realização prévia destas atividades pelo aluno, as práticas experimentais propostas ficarão comprometidas, tanto no tempo necessário para sua realização quanto no aproveitamento pelo aluno. Por essa razão, o aluno só poderá realizar os experimentos em laboratório se apresentar ao professor no início da aula os resultados da preparação proposta.

A aula terá duração de duas horas e o aluno deverá entregar ao seu término, por escrito, respostas às questões referentes aos experimentos realizados propostas na Folha de Respostas (parte final do guia).

2 Objetivos

As práticas experimentais aqui propostas têm por objetivos:

- Simular e analisar a modulação em ângulo;
- Simular e analisar o desmodulador FM;

3 Preparação

3.1 Estudo

Revise e pesquise sobre os conceitos:

- Equivalência entre modulações PM e FM;
- Regra de Carson para os casos faixa larga e faixa estreita;
- Desmodulação FM usando a detecção por inclinação.

3.2 Problemas

Os problemas propostos a seguir devem ser obrigatoriamente resolvidos e apresentados por escrito ao professor antes do início das práticas de laboratório. Os resultados destes problemas serão necessários para a realização dos experimentos propostos.

- 1. Considere uma onda senoidal com amplitude de 1 Vpp e período de 0,1 ms como sinal de entrada para moduladores FM e PM, com constantes $K_f = 10^5 \text{ Hz/V}$ e $K_p = 10 \text{ rad/V}$, respectivamente. Considere uma portadora de 100 MHz com amplitude de 2 Vpp.
 - (a) Calcule o desvio de frequência $\Delta f_{\rm PM}$, a razão de desvio $\beta_{\rm PM}$ (também chamada de índice de modulação) e a largura de faixa estimada $B_{\rm PM}$ para o caso PM.
 - (b) Calcule o desvio de frequência $\Delta f_{\rm FM}$, a razão de desvio $\beta_{\rm FM}$ (também chamada de índice de modulação) e a largura de faixa estimada $B_{\rm FM}$ para o caso FM.

4 Experimentos

A seguir são descritas práticas experimentais a serem realizadas pelo aluno em aula de laboratório.

4.1 Experimento 1 – Modulação PM de Faixa Estreita

O objetivo deste experimento é analisar a modulação PM em faixa estreita.

- 1. Antes de iniciar as atividades com o GRC, crie uma pasta para guardar os arquivos de seus experimentos e copie nela os modelos de diagrama (arquivos .GRC) disponibilizados pelo professor para esta aula. Não deixe de realizar isso, pois o computador deste laboratório não é para seu uso pessoal e os arquivos que você utilizará serão alterados por você durante o experimento;
- 2. Execute o software GRC e abra o arquivo **Labo4-1.grc**. A Figura 1 ilustra o diagrama deste experimento. Ele consiste na simulação da equação

$$\Psi(t) \approx \cos \omega_c t - \Phi(t) \sin \omega_c t, \tag{1}$$

em que o $\Phi(t) = K_p m(t)$

3. Execute o diagrama e responda às questões propostas na Folha de Respostas.

4.2 Experimento 2 – Modulação FM de Faixa Larga

O objetivo deste experimento é analisar o modulador FM de faixa larga.

- 1. Abra o arquivo **Labo4-2.grc** disponibilizado pelo professor. A Figura 2 ilustra o diagrama deste experimento. A modulação FM de faixa larga é obtida através de um VCO (Oscilador Controlado por Tensão, do inglês *Voltage Control Oscilator*).
- 2. Execute o experimento e observe a diferença em relação ao experimento anterior.
- 3. Responda as questões propostas na Folha de Respostas.

Figura 1: Diagrama de blocos para análise da modulação PM de faixa estreita.

Figura 2: Diagrama de blocos de um modulador FM de faixa larga usando um VCO.

4.3 Experimento 3 – Desmodulação com Detecção por Inclinação

O objetivo deste experimento é mostrar o conceito de um receptor FM usando deteção por inclinação.

- 1. Abra o arquivo **Labo4-4.grc** disponibilizado pelo professor. A Figura 3 ilustra o diagrama deste experimento. Ele consiste de um sistema de transmissão FM e recepção empregando detecção por inclinação na desmodulação. Esse desmodulador consiste de um filtro passa-altas simulando a derivada do sinal modulado FM seguido por um detetor de envoltória.
- 2. É mostrado o efeito do detector por inclinação para um sinal modulante dente de serra;
- 3. Execute o experimento e responda as questões propostas na Folha de Respostas.

4.4 Experimento 4 – Receptor de sinal FM comercial

O objetivo deste experimento é ilustrar a recepção de sinal FM comercial empregando rádio por software (GNU Radio) e o módulo USRP.

Figura 3: Diagrama de blocos de sistema de comunicação FM usando detecção por inclinação na recepção.

1. Abra o arquivo **Labo4-5.grc** disponibilizado pelo professor. A Figura 4 ilustra o diagrama deste experimento. Ele consiste de um sistema de recepção de sinal FM comercial empregando um módulo USRP.

Figura 4: Diagrama de blocos de receptor de sinal FM comercial empregando módulo USRP.

- 2. Na Figura 4, o bloco **UHD: USRP Source** converte o sinal de frequência central e largura de faixa especificados nos parâmetros do bloco para seu equivalente passa-baixas. Observe que segue um filtro passa-baixas com frequência de corte igual à metade da largura de faixa do sinal FM sintonizado no bloco **UHD: USRP Source**;
- 3. O bloco **WBFM Receive** implementa a desmodulação do sinal FM a partir do equivalente passa-baixas do sinal modulado FM;
- 4. Execute o experimento e responda as questões propostas na Folha de Respostas.

Universidade Federal de Campina Grande – UFCG Unidade Acadêmica de Engenharia Elétrica – UAEE Curso de Graduação em Engenharia Elétrica

Laboratório de Princípios de Comunicações

Período 2022.1

Guia de Experimentos 4 – Folha de Respostas

Tema(s): Modulação e Desmodulação em Ângulo.

xa Estreita tude e, portanto, não pode ser
ulador PM, K_p , de modo que o eita. Qual é esse valor? Quais ura de faixa $B_{\rm PM}$ (não esqueça
n seguida, para 1 kHz. Observe s de faixa para cada frequência xplique porque a amplitude da
quência da portadora. Observe é deslocado para frequência da 1?
1 é

Experimento 2 – Modulação FM de Faixa Larga

1.	Faça uma estimativa do desvio de frequência observando o gráfico no tempo (maior e menor período).
2.	Qual a constante do modulador FM K_f e o índice de modulação β ? Compare K_f com o parâmetro $Sensitivity$ do VCO.
3.	Qual a largura de faixa do modulador FM calculada pela regra de Carson e a largura de faixa observada no espectro em frequência (considere as componentes de frequência até redução de aproximadamente 10 dB sobre as de maior potência)?
4.	Alterar a frequência da portadora altera a largura de faixa do modulador FM? E quanto à frequência do sinal modulante?
5.	Altere a amplitude do sinal modulante para 0,8. Qual a nova largura de faixa do sinal modulado pela regra de Carson e observando-se o espectro de frequência, considerando $K_f=10^4~{\rm Hz/V?}$
6.	Coloque uma onda quadrada como sinal de entrada e execute o experimento. Observe que há apenas duas frequências no sinal modulado (no tempo). Qual seria, então, o desvio de frequência nesse caso, observando o gráfico no tempo? E utilizando a teoria?
Ez çã	kperimento 3 – Desmodulação com Detecção por Inclina- o
1.	Observe que o sinal na saída do derivador (bloco <i>High Pass Filter</i>) está modulado em amplitude e também em frequência. Qual o índice de modulação do sinal AM? Mude a amplitude do sinal modulante para cima e para baixo, para se obter um índice de modulação 0,5 e 1,0. Quais são esses valores de amplitude? O que ocorre com a largura de faixa do sinal FM, para os dois casos em relação à amplitude de 0,2?

2. Seria possível utilizar um desmodulador síncrono em vez de um detector de envoltória, para

	esse esquema de desmodulação? Justifique.
\mathbf{E}	xperimento 4 – Receptor de sinal FM comercial
1.	Altere a largura de faixa de recepção alterando o valor na parte inferior da janela do gráfico da FFT. Experimente aumentá-la até incluir estações FM vizinhas, ou diminuí-la
	significativamente. Explique o efeito observado.

Guia de Experimentos $4\,$

Página 3

Lab. Princ. Comunicações