EECS205003 Linear Algebra, Fall 2020 Quiz # 2, Solutions

<u>Prob. 1:</u>

$$\operatorname{Col}(A) = \left\{ \alpha_1 \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix} + \alpha_3 \begin{bmatrix} -1 \\ 0 \\ -2 \end{bmatrix} + \alpha_4 \begin{bmatrix} 8 \\ 1 \\ -3 \end{bmatrix} \middle| \alpha_1, \alpha_2, \alpha_3 \text{ and } \alpha_4 \in \mathbb{R} \right\}.$$

<u>Prob. 2:</u> By elementary row operations, we have

$$\begin{bmatrix} 0 & 1 & 3 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 & -3 \\ 0 & 0 & 0 & 0 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 3 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

We can rewrite the linear system as

$$\begin{bmatrix} 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}.$$

We choose x_1, x_3 as free variables. Then x_2, x_4, x_5 are dependent variables and become

$$\begin{cases} x_2 = -3x_3 + 1, \\ x_4 = 3, \\ x_5 = 1. \end{cases}$$

The general solution of the linear system is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 3 \\ 1 \end{bmatrix}.$$

Prob. 3:

Note that

$$\left[\begin{array}{ccc|c} -1 & 0 & 3 & -9 & a \\ 2 & -3 & -3 & -3 & b \\ 0 & 1 & -1 & 7 & c \\ -1 & 2 & 1 & 5 & d \end{array} \right] \rightarrow \left[\begin{array}{ccc|c} -1 & 0 & 3 & -9 & a \\ 0 & -3 & 3 & -21 & b+2a \\ 0 & 1 & -1 & 7 & c \\ 0 & 2 & -2 & 14 & d-a \end{array} \right] \rightarrow \left[\begin{array}{ccc|c} -1 & 0 & 3 & -9 & a \\ 0 & 0 & 0 & 0 & b+2a+3c \\ 0 & 1 & -1 & 7 & c \\ 0 & 0 & 0 & 0 & d-a-2c \end{array} \right].$$

If b + 2a + 3c = 0 and d - a - 2c = 0, then this linear system is consistent.

Prob. 4:

Since **A** and **B** are row equivalent, then there exists a sequence $\mathbf{F}_1, \mathbf{F}_2, ..., \mathbf{F}_s$ of elementary $(\mathbf{E}_{ij}(\alpha), \alpha \in \mathbb{R})$ or scaling $(\mathbf{S}_i(\alpha), \alpha \in \mathbb{R} \setminus \{0\})$ or permutation (\mathbf{P}_{ij}) $m \times m$ matrices such that

$$\mathbf{B} = \mathbf{F}_s ... \mathbf{F}_2 \mathbf{F}_1 \mathbf{A}$$

where for each column of \mathbf{B} , $\mathbf{b}_i = \mathbf{F}_s...\mathbf{F}_2\mathbf{F}_1\mathbf{a}_i$, i = 1, 2, ..., n. So $\mathbf{B}_k = \mathbf{F}_s...\mathbf{F}_2\mathbf{F}_1\mathbf{A}_k$, \mathbf{A}_k and \mathbf{B}_k are row equivalent.

Prob. 5:

Look at the following truth table. It is clear that the implication is not true when P is T, Q is F, and R is F.

P	Q	R	(P or Q)	(P or R)	[(P or Q) and (P or R)]	(Q or R)
F	F	F	F	F	F	F
F	F	T	F	T	F	T
F	T	F	T	F	F	T
F	$\mid T \mid$	\mathbf{T}	T	Т	T	T
T	F	F	T	Т	T	F
Γ	\mathbf{F}	T	T	T	T	T
T	T	F	T	T	T	T
T	T	T	T	T	T	Т

Prob. 6:

No.

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$(P \Rightarrow Q) \Rightarrow (Q \Rightarrow P)$
F	F	T	T	T
F	T	T	F	F
T	F	F	T	T
T	T	T	T	T

<u>Prob. 7:</u>

 $\forall \epsilon > 0, \exists \text{ a positive integer } m \text{ s.t. } \forall \text{ integer } n \geq m, \, |P(n) - P(m)| \geq \epsilon$

Prob. 8:

Yes.

P	Q	$P \Rightarrow Q$	$\neg Q \Rightarrow \neg P$	$(P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P)$	$(\neg Q \Rightarrow \neg P) \Rightarrow (P \Rightarrow Q)$
F	F	T	${ m T}$	T	T
F	Т	T	T	T	Т
T	F	F	F	T	T
T	Т	T	${ m T}$	T	T