2006 G2

Ezra Guerrero Alvarez

October 15, 2021

2006 G2

2006 G2

Let ABCD be a trapezoid with parallel sides AB > CD. Points K and L lie on the line segments AB and CD, respectively, so that AK/KB = DL/LC. Suppose that there are points P and Q on the line segment KL satisfying

$$\angle APB = \angle BCD$$
 and $\angle CQD = \angle ABC$.

Prove that the points P, Q, B and C are concyclic.

We use directed angles mod 180° . Let $T = \overline{\text{AD}} \cap \overline{\text{BC}}$. By homothety, T - L - K. Now, from $\angle APB = \angle DCB = \angle ABC$ we see that $\overline{\text{CB}}$ is tangent to (APB). Analogously, $\overline{\text{CB}}$ is tangent to (CDQ). Then, if P' is the second intersection of (CDQ) with $\overline{\text{TP}}$, by tangency and homothety we have

$$\angle CBP = \angle BAP = \angle CDP' = \angle CQP' = \angle CQP,$$

implying the cyclic quad. \blacksquare