CPU Y RAM

1. BLOQUE CENTRAL: PRINCIPIOS Y ARQUITECTURA (La Base Teórica)

Concepto Clave	Explicación Detallada	Relevancia Práctica para DAM
Ciclo F-D-E	Proceso rítmico esencial: Fetch (Captura): Carga la instrucción de la RAM a la CPU (PC -> IR). Decode (Decodificación): La Unidad de Control interpreta la instrucción y prepara los operandos. Execute (Ejecución): La ALU realiza la operación o la CU gestiona la E/S.	El rendimiento se mide en Instrucciones por Ciclo (IPC). Un buen código debe ser predecible para que la CPU lo "capture" y "decodifique" eficientemente (Ej. Evitar saltos innecesarios o branch mispredictions).
Cuello de Botella de Von Neumann	Surge porque la CPU usa un único bus de datos y direcciones compartido entre la Memoria y la CPU. Solo se puede transferir una cosa a la vez (instrucción o dato).	La CPU es mucho más rápida que la RAM. El cuello de botella es la causa de la latencia (tiempo de espera) y es la razón directa por la que existen las Memorias Caché (L1, L2, L3) y las arquitecturas Harvard (que tienen buses separados).ntiende. Microarquitectura (Zen 5, Raptor Lake): El diseño interno y la implementación física del ISA.

2. ARQUITECTURA MODERNA Y CONTEXTO DE MERCADO

Métrica / Arquitectura	Definición	Relevancia en DAM/Software
Núcleos (Cores) & Heterogeneidad	Unidades de procesamiento físicas independientes. Intel usa P-Cores (Rendimiento) y E-Cores (Eficiencia).	Permiten el paralelismo real. Fundamental para la multitarea, la compilación de proyectos grandes y la virtualización (ej. ejecutar Android Studio).
AMD (Ryzen) vs. Intel (Core)	AMD (Chiplets): Suele ofrecer un mejor rendimiento Multi-Core (más núcleos) por el mismo precio y excelente IPC. Intel (Monolítico): Suele tener una ventaja en la Frecuencia (GHz) y en la integración de E-Cores para eficiencia.	Elija AMD para tareas de cómputo intensivo (máquinas virtuales, docker, backend pesado). Elija Intel si la carga de trabajo es principalmente de un solo hilo o sensible a la frecuencia.
Hilos (Threads) / SMT	Hilos lógicos gestionados por un núcleo físico (ej. Hyper-Threading).	Mejora la eficiencia (15-30%) al mantener los recursos internos del núcleo ocupados, no duplica el rendimiento.
Cachés (L1, L2, L3)	Memorias SRAM ultra-rápidas, pequeñas y costosas, integradas en la CPU. L1 (más rápida/pequeña) -> L3 (más lenta/grande).	El factor más crítico para reducir la latencia del acceso a memoria. Almacenan los datos e instrucciones que se usarán inmediatamente.
Frecuencia (GHz)	Velocidad de reloj (ciclos por segundo).	El factor principal en el rendimiento de tareas de un solo hilo (rendimiento single-core).

3. BLOQUE DE MEMORIA: LA RAM (La Pizarra de Trabajo)

Aspecto de la RAM	DDR4 vs DDR5 (Tendencia)	Implicación de Rendimiento
Función	Memoria volátil principal que almacena el SO, aplicaciones en ejecución y sus datos.	Su capacidad (GB) limita cuántas aplicaciones puedes tener abiertas. Su velocidad (MT/s) define qué tan rápido la CPU recibe los datos.
Evolución	DDR4: 1.2V, 1 canal de 64 bits. DDR5: 1.1V, 2 subcanales de 32 bits, mayor velocidad base (4800+ MT/s).	DDR5 es más eficiente energéticamente y permite un mayor ancho de banda para la CPU.
Dual Channel	Instalación de dos módulos idénticos en ranuras correctas de la placa base (ej. A2 y B2).	Duplica el ancho de banda efectivo de la memoria. Esto es CRUCIAL para el rendimiento de las GPUs integradas (iGPU).

4. EL FUTURO Y APPLE SILICON (ARM): La Integración es la Clave

Innovación	Definición	El Factor "Apple Silicon (M1/M2/M3)"
Diseño por Chiplets	Construcción de la CPU a partir de pequeños bloques (chiplets) especializados interconectados, en lugar de un único chip monolítico.	Este diseño es la base de AMD Ryzen, permitiendo a AMD competir mejor en alto número de núcleos.
NPUs (Unidades de Procesamiento Neuronal)	Hardware especializado e integrado en el chip para acelerar tareas de	Apple Silicon integra una NPU muy potente (Neural Engine) que permite a las

	Inteligencia Artificial (Inferencia).	aplicaciones del sistema operativo realizar tareas de IA con un consumo de batería extremadamente bajo.
Apple Silicon (ARM)	Es un System on a Chip (SoC): CPU, GPU, RAM, I/O y NPU están todos en el mismo paquete. Usa la arquitectura ARM (RISC), que es más eficiente en consumo que el x86 (CISC) de Intel/AMD.	Ventaja Principal: Memoria Unificada. La CPU y la GPU acceden a la misma piscina de memoria física. Esto elimina la necesidad de copiar datos entre la RAM del sistema y la VRAM de la gráfica, reduciendo drásticamente la latencia.
¿Son mejores los Apple Silicon?	Depende del objetivo: Son líderes en Eficiencia Energética, Rendimiento Sostenido y Flujo de Desarrollo (compilación rápida).	Para DAM Móvil (iOS/iPadOS) son esenciales. Para Virtualización pesada (ej. Windows) o Gaming de PC, los chips x86 de alta gama (Intel/AMD) suelen tener más potencial de rendimiento máximo.