Project Design Phase-II Technology Stack (Architecture & Stack)

Date	1 November 2023
Team ID	592670
Project Name	Machine Learning Approach for Predicting the Rainfall
Maximum Marks	4 Marks

Technical Architecture

Architecture of the proposed model of rainfall prediction.

Features

Rainfall Image Gathering

Images

Distribution

Rainfall Image Processing

Features

Rainfall Data Management

Data

Activity Diagram

• Flow Chart

• Architecture outline of the classification of rain fall prediction

Table-1 : Components & Technologies:

Sr.No.	Component	Description	Technology
1.	User Interface:	 Used to create interactive web-based dashboards for users to access weather forecasts. Utilize technologies to develop native apps with user-friendly interfaces. 	 Web Application: HTML, CSS, JavaScript, and front-end frameworks (e.g., React, Angular, Vue.js) Mobile App Development: Swift (for iOS) or Kotlin (for Android)
2.	Application Logic-1:	 Used to implement the application logic, including data processing, APIs, and business rules. 	Backend Frameworks:Node.js, Django, Ruby on Rails, or Flask
3.	Database:	 Can store structured data, such as historical weather data and user profiles. For unstructured or semi-structured data 	 Relational Databases: Technologies like PostgreSQL, MySQL, or Microsoft SQL Server NoSQL Databases: MongoDB, Cassandra, or Redis.
4.	File Storage/Data:	 Ideal for storing large datasets, model checkpoints, and other files. Handle vast amounts of data. 	 Cloud Storage Services: Technologies like Amazon S3, Google Cloud Storage, or Azure Blob Storage. Distributed File Systems: Hadoop HDFS or distributed file systems like GlusterFS
5.	Framework:	 Used to develop and train machine learning models, including deep learning models. Can help in creating APIs and integrating machine learning models with the application. 	 Machine Learning Frameworks: Tools like TensorFlow, PyTorch, or scikit-learn Web Frameworks: Backend web frameworks such as Express.js, Flask, or Ruby on Rails
6.	Deep Learning Model:	 TensorFlow and Keras: These libraries are often used to build, train, and deploy deep learning models for tasks like image recognition, which can be applied to cloud imagery. PyTorch: PyTorch is another popular deep learning framework known for its flexibility and dynamic computation graph capabilities. 	CNN, Transfer Learning
7.	Infrastructure (Server/Cloud):	 Scalable cloud infrastructure for hosting applications, databases, and machine learning workloads. Used to containerize and manage machine learning models and applications for efficient scaling and deployment. 	 Cloud Computing Platforms: Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure Containerization and Orchestration: Docker and Kubernetes

Table-2: Application Characteristics:

Sr.	Component	Description	Technology
1.	Open-Source Frameworks	 Used for building deep learning models for rainfall prediction. Flexibility and dynamic computation graph capabilities. Library for Python that provides tools for data preprocessing, feature selection, and model evaluation. 	TensorFlow, PyTorch, Scikit-learn
2.	Security Implementations:	 used to secure data transmission between clients and servers, ensuring data privacy and integrity. to control access to your application and data. Use encryption algorithms and libraries to protect sensitive data at rest and in transit. 	 Secure Sockets Layer (SSL) and Transport Layer Security (TLS) OAuth 2.0, JSON Web Tokens (JWT), or API keys Encryption
3.	Scalable Architecture:	 Design your application using a microservices architecture, dividing it into smaller, independent services that can be deployed and scaled separately. Used to create lightweight, portable containers for applications, making it easier to scale and deploy them across various environments. Allows for the automated deployment, scaling, and management of containerized applications. 	 Microservices, Containerization like Docker, Kubernetes
4.	Availability:	 Use load balancers to distribute traffic evenly across multiple server instances, ensuring high availability. Implement redundancy by replicating your application components and use failover mechanisms to ensure continuous service availability in case of server failures. used to cache and deliver content from edge locations, reducing latency and improving availability. 	 AWS Elastic Load Balancing, NGINX, Cloudflare, Akamai
5.	Performance:	 Implement caching mechanisms using technologies to store frequently accessed data, reducing the load on your database and improving response times. Compression techniques to reduce the size of data sent over the network, improving data transfer and application load times. Content delivery technologies can help distribute content closer to end-users, reducing latency and enhancing performance. 	 Redis, Memcached, GZIP, CDNs and edge computing