第1章 随机事件及其概率

(1)排列 组合公式	$P_m^n = \frac{m!}{(m-n)!}$ 从 m 个人中挑出 n 个人进行排列的可能数。				
	$C_m^n = \frac{m!}{n!(m-n)!}$ 从 m 个人中挑出 n 个人进行组合的可能数。				
	加法原理 (两种方法均能完成此事): m+n				
	 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n				
(2) 加法	种方法来完成,则这件事可由 m+n 种方法来完成。				
和乘法原	乘法原理(两个步骤分别不能完成这件事): m×n				
理	某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n				
	种方法来完成,则这件事可由 m×n 种方法来完成。				
(3) 一些	重复排列和非重复排列(有序) 対立東供(石小方、A)				
常见排列	对立事件(至少有一个)				
	顺序问题				
(4) 随机	如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,				
试验和随	但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试				
机事件	验。				
	试验的可能结果称为随机事件。				
	在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有				
	如下性质:				
	①每进行一次试验,必须发生且只能发生这一组中的一个事件;				
(5) 基本	②任何事件,都是由这一组中的部分事件组成的。				
事件、样本	这样一组事件中的每一个事件称为基本事件,用 @ 来表示。				
空间和事	基本事件的全体,称为试验的样本空间,用Ω表示。				
生 7	一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母				
	A , B , C , …表示事件,它们是 Ω 的子集。				
	Ω 为必然事件, Ø 为不可能事件。				
	不可能事件(0)的概率为零,而概率为零的事件不一定是不可能事件,同理,				
	必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。				
	①关系:				
	如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):				
	$A \subset B$				
	如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B :				
(6)事件 的关系与 运算	$A=B_{\circ}$				
	$A \cup B$ 中至少有一个发生的事件: $A \cup B$, 或者 $A+B$ 。				
	属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A – B ,也可				
291	表示为 A - AB 或者 \overline{AB} ,它表示 A 发生而 B 不发生的事件。				
	A 、 B 同时发生: $A \cap B$,或者 AB 。 $A \cap B=\emptyset$,则表示 $A 与 B$ 不可能同时发生,				
	称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。				

	Ω —A 称为事件 A 的逆事件,或称 A 的对立事件,记为 \overline{A} 。它表示 A 不发生的事件。互斥未必对立。 ②运算: 结合率:A (BC)=(AB) C A U (B U C)=(A U B) U C 分配率:(AB) U C=(A U C) \cap (B U C) (A U B) \cap C=(AC) U (BC) $ \overline{\bigcap_{i=1}^{\infty} A_i} = \overline{\bigcup_{i=1}^{\infty} \overline{A_i}} $
(7)概率 的公理化 定义	设 Ω 为样本空间, A 为事件,对每一个事件 A 都有一个实数 $P(A)$,若满足下列三个条件: $1^{\circ} \ \ 0 \leqslant P(A) \leqslant 1,\\ 2^{\circ} \ \ P(\Omega) = 1$ $3^{\circ} \ \ \ $ 对于两两互不相容的事件 A_1 , A_2 ,…有 $P\bigg(\bigcup_{i=1}^{\infty} A_i\bigg) = \sum_{i=1}^{\infty} P(A_i)$ 常称为可列(完全)可加性。 则称 $P(A)$ 为事件 A 的概率。
(8) 古典概型	$1^{\circ} \Omega = \{\omega_{1}, \omega_{2} \cdots \omega_{n}\},$ $2^{\circ} P(\omega_{1}) = P(\omega_{2}) = \cdots P(\omega_{n}) = \frac{1}{n} \circ$ 设任一事件 A , 它是由 $\omega_{1}, \omega_{2} \cdots \omega_{m}$ 组成的,则有 $P(A) = \{(\omega_{1}) \cup (\omega_{2}) \cup \cdots \cup (\omega_{m})\} = P(\omega_{1}) + P(\omega_{2}) + \cdots + P(\omega_{m})$ $= \frac{m}{n} = \frac{A \text{所包含的基本事件数}}{\text{基本事件总数}}$
(9) 几何概型	若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件 A, $P(A) = \frac{L(A)}{L(\Omega)} \text{ 。其中 L 为几何度量(长度、面积、体积)。}$
(10)加法 公式	P(A+B)=P(A)+P(B)-P(AB) 当P(AB)=0时,P(A+B)=P(A)+P(B)
(11) 减法 公式	P(A-B)=P(A)-P(AB) 当 B \subset A 时, $P(A-B)=P(A)-P(B)$ 当 $A=\Omega$ 时, $P(\overline{B})=1-P(B)$
(12)条件 概率	定义 设 A 、 B 是两个事件,且 $P(A)>0$,则称 $\frac{P(AB)}{P(A)}$ 为事件 A 发生条件下,事件 B 发生的条件概率,记为 $P(B/A)=\frac{P(AB)}{P(A)}$ 。 条件概率是概率的一种,所有概率的性质都适合于条件概率。

	$k_0 + \mu_0 D (O/D) - 1 \rightarrow D(\overline{D}/A) - 1 D(D/A)$
	例如 $P(\Omega/B)=1 \Rightarrow P(\overline{B}/A)=1-P(B/A)$ 乖社公士 $P(AP) = P(A)P(B/A)$
(13) 乘法	乘法公式: $P(AB) = P(A)P(B/A)$ 更一般地,对事件 A_1 , A_2 , ···· A_n , 若 $P(A_1A_2 \cdot \cdot \cdot \cdot A_{n-1}) > 0$, 则有
	$P(A_1A_2A_n) = P(A_1)P(A_2 A_1)P(A_3 A_1A_2)P(A_n A_1A_2$
公式	
	A_{n-1}
	①两个事件的独立性
	设事件 A 、 B 满足 $P(AB) = P(A)P(B)$,则称事件 A 、 B 是相互独立的。
	若事件 A 、 B 相互独立,且 $P(A) > 0$,则有
	$P(A \mid A) = P(AB) = P(A)P(B) = P(B)$
	$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$
	若事件 A 、 B 相互独立,则可得到 \overline{A} 与 \overline{B} 、 \overline{A} 与 \overline{B} 也都相互独
(14) 独立	立。
性	必然事件 Ω 和不可能事件 \emptyset 与任何事件都相互独立。
	0 与任何事件都互斥。
	②多个事件的独立性
	设 ABC 是三个事件,如果满足两两独立的条件,
	P(AB) = P(A) P(B); P(BC) = P(B) P(C); P(CA) = P(C) P(A)
	并且同时满足 P(ABC)=P(A)P(B)P(C)
	那么A、B、C相互独立。
	对于n个事件类似。
	设事件 B_1, B_2, \dots, B_n 满足
	1° B_1, B_2, \cdots, B_n 两页不相容, $P(B_i) > 0 (i = 1, 2, \cdots, n)$,
(15) 全概	$A \subset {\brack i} B_i$
公式	2° $\stackrel{i=1}{\longrightarrow}$,
	则有
	$P(A) = P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + \cdots + P(B_n)P(A \mid B_n)$
	设事件 B_1 , B_2 ,, B_n 及 A 满足
	1° B_1 , B_2 ,, B_n 两两互不相容, $P(Bi)_{>0}$, $i=1, 2,, n$,
	$A = \begin{bmatrix} n \\ p \end{bmatrix}$
	$A \subset \bigcup_{i=1}^{\infty} B_i \qquad P(A) > 0$
	则
(16) 贝叶	$P(B_i A) = P(B_i)P(A/B_i)$
斯公式	$P(B_i/A) = \frac{P(B_i)P(A/B_i)}{\sum_{i=1}^{n} P(B_j)P(A/B_j)}, i=1, 2, \dots, $
	$\sum_{i=1}^{n} P(B_j) P(A/B_j)$
	此公式即为贝叶斯公式。
	$P(B_i)$, $(i=1, 2,, n)$, 通常叫先验概率。 $P(B_i/A)$, $(i=1, 2,, n)$
	n),通常称为后验概率。贝叶斯公式反映了"因果"的概率规律,并作出了
	"由果朔因"的推断。
(17) 片山切	我们作了 n 次试验,且满足
(17) 伯努	◆ 每次试验只有两种可能结果, A 发生或 A 不发生;
利概型	◆ n 次试验是重复进行的,即 A 发生的概率每次均一样;

否是互不影响的。

概率统计期末试卷

这种试验称为伯努利概型,或称为n 重伯努利试验。

用 P 表示每次试验 A 发生的概率,则 \overline{A} 发生的概率为 1-p=q ,用 $P_n(k)$ 表

每次试验是独立的,即每次试验A发生与否与其他次试验A发生与

示 n 重伯努利试验中 A 出现 $k(0 \le k \le n)$ 次的概率,

$$P_n(k) = C_n^k p^k q^{n-k}, \quad k = 0,1,2,\dots,n$$

第二章 随机变量及其分布

(1) 离散 型随机变 量的分布 律 设离散型随机变量 X 的可能取值为 $X_k(k=1,2,\cdots)$ 且取各个值的概率,即事件 $(X=X_k)$ 的概率为

 $P(X=x_k)=p_k, k=1, 2, \dots,$

则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分布列的形式给出:

$$\frac{X}{P(X = x_k)} | \frac{x_1, x_2, \dots, x_k, \dots}{p_1, p_2, \dots, p_k, \dots}$$
显然分布律应满足下列条件:

(1)
$$p_k \ge 0$$
, $k = 1, 2, \cdots$, (2) $\sum_{k=1}^{\infty} p_k = 1$

(2) 连续型随机变量的分布密度

设F(x) 是随机变量X 的分布函数,若存在非负函数f(x) ,对任意实数x ,有 $F(x) = \int_{-\infty}^{x} f(x) dx$

则称 X 为连续型随机变量。 f(x) 称为 X 的概率密度函数或密度函数,简称概率密度。

密度函数具有下面 4 个性质:

$$f(x) \ge 0$$

$$2^{\circ} \int_{-\infty}^{+\infty} f(x) dx = 1$$

(3) 离散 与连续型 随机变量 的关系

 $P(X = x) \approx P(x < X \le x + dx) \approx f(x)dx$

积分元 f(x)dx 在连续型随机变量理论中所起的作用与 $P(X = x_k) = p_k$ 在离散型随机变量理论中所起的作用相类似。

(4)	分有
函数	

设X为随机变量,x是任意实数,则函数

$$F(x) = P(X \le x)$$

称为随机变量 X 的分布函数,本质上是一个累积函数。

 $P(a < X \le b) = F(b) - F(a)$ 可以得到 X 落入区间(a,b]的概率。分布

函数 F(x) 表示随机变量落入区间 (- ∞ , x] 内的概率。

分布函数具有如下性质:

$$1^{\circ}$$
 $0 \le F(x) \le 1$, $-\infty < x < +\infty$;

2° F(x) 是单调不减的函数,即 $x_1 < x_2$ 时,有 $F(x_1) \le F(x_2)$;

3°
$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0$$
, $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$;

4°
$$F(x+0) = F(x)$$
, 即 $F(x)$ 是右连续的;

5°
$$P(X = x) = F(x) - F(x - 0)$$
.

对于离散型随机变量, $F(x) = \sum_{x_k \le x} p_k$;

对于连续型随机变量, $F(x) = \int_{0}^{x} f(x) dx$ 。

分布

(5) 八大 0-1 分布

P(X=1)=p, P(X=0)=q

二项分布

在n 重贝努里试验中,设事件A 发生的概率为p。事件A 发生

的次数是随机变量,设为X,则X可能取值为 $0,1,2,\dots,n$ 。

$$P(X = k) = P_n(k) = C_n^k p^k q^{n-k}$$
, \ddagger

$$q = 1 - p, 0 ,$$

则称随机变量 X 服从参数为n, p 的二项分布。记为

$$X \sim B(n, p)$$
.

当n=1时, $P(X=k)=p^kq^{1-k}$,k=0.1,这就是(0-1)分 布, 所以(0-1)分布是二项分布的特例。

泊松分布	设随机变量 X 的分布律为
	$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}, \lambda > 0, k = 0,1,2\cdots,$
	则称随机变量 X 服从参数为 λ 的泊松分布,记为 $X \sim \pi(\lambda)$ 或
	者 P(λ)。 泊松分布为二项分布的极限分布(np= λ , n→∞)。
超几何分布	$P(X = k) = \frac{C_M^k \bullet C_{N-M}^{n-k}}{C_N^n}, k = 0,1,2 \dots, l$ $l = \min(M, n)$
	随机变量 X 服从参数为 n, N, M 的超几何分布, 记为 H(n, N, M)。
几何分布	$P(X = k) = q^{k-1}p, k = 1,2,3,\dots$,其中 p \geqslant 0,q=1-p。
	随机变量 X 服从参数为 p 的几何分布,记为 G(p)。
均匀分布	设随机变量 X 的值只落在[a, b]内,其密度函数 $f(x)$ 在[a, b]
	上为常数 $\frac{1}{b-a}$,即
	$f(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & 其他, \end{cases}$
	则称随机变量 X 在 $[a, b]$ 上服从均匀分布,记为 $X\sim U(a, b)$ 。 分布函数为
	$ \begin{pmatrix} 0, & x < a, \\ x - a \end{pmatrix} $
72:27	$\frac{1}{b-a}$
	$F(x) = \int_{-\infty}^{x} f(x)dx = \begin{cases} & \text{if } x \leq 0 \\ & \text{if } x > b. \end{cases}$
	当 $a \leq x_1 \leq x_2 \leq b$ 时, X 落在区间(x_1, x_2)内的概率为
	$P(x_1 < X < x_2) = \frac{x_2 - x_1}{b - a} .$

1208Luoyl 概率统计期末试卷

指数分布		
	$\int \lambda e^{-\lambda x}$,	$x \ge 0$
	$f(x) = \langle$,
	0.	x < 0

其中 $\lambda > 0$,则称随机变量 X 服从参数为 λ 的指数分布。 X的分布函数为

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

$$\int_{0}^{+\infty} x^{n} e^{-x} dx = n!$$

正态分布

设随机变量X的密度函数为

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < +\infty,$$

其中 μ 、 $\sigma > 0$ 为常数,则称随机变量X服从参数为 μ 、 σ

的正态分布或高斯(Gauss)分布,记为 $X \sim N(\mu, \sigma^2)$ 。

f(x) 具有如下性质:

f(x) 的图形是关于 $x = \mu$ 对称的;

$$2^{\circ}$$
 当 $x = \mu$ 时, $f(\mu) = \frac{1}{\sqrt{2\pi\sigma}}$ 为最大值; $X \sim N(\mu, \sigma^2)$, 则 党 的分布函数为 $F(x) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} e^{\frac{2\sigma^2}{2\sigma^2}} dt$

若
$$X \sim N(\mu, \sigma^2)$$
, 與教 的分布函数; $F(x) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} e^{-\frac{2\sigma^2}{2\sigma^2}} dt$

参数 $\mu=0$ 、 $\sigma=1$ 时的正态分布称为标准正态分布,记为

$$X \sim N(0,1)$$
 其密度函数记为
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-2}$$
 , $-\infty < x < +\infty$,

分布函数为

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^2}{2}} dt$$

 $\Phi(x)$ 是不可求积函数,其函数值,已编制成表可供查用。

$$\Phi(-x) = 1 - \Phi(x) \perp \Phi(0) = \frac{1}{2}$$
.

如果 $X^{\sim}N(\mu,\sigma^2)$,则 $\frac{X-\mu}{2}^{\sim}N(0,1)$ 。

$$P(x_1 < X \le x_2) = \Phi\left(\frac{x_2 - \mu}{\sigma}\right) - \Phi\left(\frac{x_1 - \mu}{\sigma}\right).$$

(6)分位 数	下分位表: $P(X \leq \mu_{\alpha}) = \alpha$;		
	上分 U 衣: P	$(X > \mu_{\alpha}) = \alpha$	
(7)函数分布	离散型	已知 X 的分布列为 $ \frac{X}{P(X=x_i)} \begin{vmatrix} x_1, & x_2, & \cdots, & x_n, & \cdots \\ p_1, & p_2, & \cdots, & p_n, & \cdots \end{vmatrix}, $ $Y=g(X)$ 的分布列($y_i=g(x_i)$ 互不相等)如下: $ \frac{Y}{P(Y=y_i)} \begin{vmatrix} g(x_1), & g(x_2), & \cdots, & g(x_n), & \cdots \\ p_1, & p_2, & \cdots, & p_n, & \cdots \\ p_1, & p_2, & \cdots, & p_n, & \cdots \\ \hline $ 若有某些 $g(x_i)$ 相等,则应将对应的 p_i 相加作为 $g(x_i)$ 的概率。	
	连续型	先利用 X 的概率密度 $f_X(x)$ 写出 Y 的分布函数 $F_Y(y) = P(g(X) \le y)$,再利用变上下限积分的求导公式求出 $f_Y(y)$ 。	

第三章 二维随机变量及其分布

		平 一维	随机多	(里)	丹分人	þ		
(1) 联合 分布	离散型	如果二维	達随机向 量	建ξ (Χ,	Y) 的所	有可能取	值为至多	可列
		个有序对(x,	y),则和	$x\xi$ 为离	散型随机	里。		
		设 <i>ち</i> = (X, Y) 的	所有可能	能取值为 ($(x_i, y_j)(i$	$, j = 1, 2, \cdot$	··) ,
		且事件{ξ=(:	(x_i, y_j)	的概率为	<i>p_{i,j}</i> , 称			
		$P\{(X,Y)\}$	$Y(t) = (x_i, t)$	(y_j) $\} = p$	$\rho_{ij}(i,j=1)$,2,)		
		为 <i>ξ</i> = (X, Y)的分布	律或称為	为X和Y	的联合分	布律。联	合分
		布有时也用下	面的概率	区分布表	来表示:			_
		Y	<i>Y</i> 1	y_2	•••	y_j	•••	
		X_I	p_{II}	p_{12}	•••	p_{lj}	•••	
		X_2	p_{21}	p_{22}	•••	p_{2j}	•••	
		÷	÷	:		:	÷	
		X_i	p_{i1}		•••	p_{ij}		
		÷	÷	:		:	÷	
		这里 p _{ij} 具有	下面两个	性质:				
		$(1) p_{ij} \geqslant 0$,···);				
		$(2) \sum_{i} \sum_{j}$	$p_{ij}=1.$					

1208Luoyl 概率统计期末试卷 ^_^

	连续型	对于二维随机向量 $\xi = (X,Y)$, 如果存在非负函数				
		$f(x,y)(-\infty < x < +\infty, -\infty < y < +\infty)$,使对任意一个其邻边				
		分别平行于坐标轴的矩形区域 D, 即 D={(X, Y) a <x<b, c<y<d}<="" td=""></x<b,>				
		有 $P\{(X,Y) \in D\} = \iint_D f(x,y) dx dy,$				
		则称 ξ 为连续型随机向量;并称 $f(x,y)$ 为 $\xi=(X,Y)$ 的分布				
		密度或称为 X 和 Y 的联合分布密度。 分布密度 $f(x,y)$ 具有下面两个性质: (1) $f(x,y) \ge 0$;				
		(2) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1.$				
(2) 二维 随 机 变 量 的本质	$\xi(X=x,Y=$	$(x,y) = \xi(X = x \cap Y = y)$				
(3) 联合	设 (X, Y) 为	二维随机变量,对于任意实数 x, y, 二元函数				
分布函数	$F(x, y) = P\{X \le x, Y \le y\}$					
	称为二维随机向量(X,Y)的分布函数,或称为随机变量 X 和 Y 的联合分布函数。 分 布 函 数 是 一 个 以 全 平 面 为 其 定 义 域 , 以 事 件					
	$\{(\omega_1,\omega_2) -\infty < X(\omega_1) \le x,-\infty < Y(\omega_2) \le y\}$ 的概率为函数值的一个实值函					
	数。分布函数	数。分布函数 F(x, y) 具有以下的基本性质:				
	(1) $0 \le F(x, y) \le 1$;					
	(2) F (x, y)	(2) F(x,y) 分别对 x 和 y 是非减的,即				
	当 $x_2 > x_1$ 时,有 $F(x_2, y) \ge F(x_1, y)$; 当 $y_2 > y_1$ 时,有 $F(x, y_2) \ge F(x, y_1)$; (3) $F(x, y)$ 分别对 x 和 y 是右连续的,即					
	F(x, y) = F(x + 0, y), F(x, y) = F(x, y + 0);					
	(4) $F(-\infty, -\infty) = F(-\infty, y) = F(x, -\infty) = 0, F(+\infty, +\infty) = 1.$					
	(5) 对于 x_1	(5) 对于 $x_1 < x_2$, $y_1 < y_2$,				
	$F(x_2, y_2) -$	$F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \ge 0.$				
(4) 离散 型 与 连 续 型的关系	P(X=x, Y)	$(x = y) \approx P(x < X \le x + dx, y < Y \le y + dy) \approx f(x, y) dxdy$				
	I.					

(5)边缘	离散型	X 的边缘分布为
分布		$P_{i\bullet} = P(X = x_i) = \sum_{i} p_{ij} (i, j = 1, 2, \dots);$
		Y的边缘分布为
		$P_{\bullet j} = P(Y = y_j) = \sum_i p_{ij} (i, j = 1, 2, \dots)$
	连续型	X的边缘分布密度为
		$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy;$
		Y的边缘分布密度为
		$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$
(6)条件	离散型	在已知 X=x _i 的条件下, Y 取值的条件分布为
分布		$P(Y = y_j \mid X = x_i) = \frac{p_{ij}}{p_{i\bullet}};$
		在已知 Y=y;的条件下, X 取值的条件分布为
		$P(X = x_i \mid Y = y_j) = \frac{p_{ij}}{p_{\bullet j}},$
	连续型	在已知 Y=y 的条件下, X 的条件分布密度为
		$f(x \mid y) = \frac{f(x, y)}{f_Y(y)};$
		在已知 X=x 的条件下, Y 的条件分布密度为
		$f(y \mid x) = \frac{f(x, y)}{f_X(x)}$
(7) 独立	一般型	$F(X, Y) = F_X(x) F_Y(y)$
性	离散型	$p_{ij} = p_{i\bullet} p_{\bullet j}$
		有零不独立
	连续型	$f(x, y) = f_X(x) f_Y(y)$
		直接判断,充要条件:
	二维正态分	$-\frac{1}{2}\left[\left(\frac{x-\mu_1}{x}\right)^2-2\rho(x-\mu_1)(y-\mu_2)+\left(\frac{y-\mu_2}{x}\right)^2\right]$
	布	②止機率密度区间为矩形 $f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1} \right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2} \right)^2 \right]},$
		ho $=$ 0
	随机变量的	若 X ₁ , X ₂ , ····X _m , X _{m+1} , ····X _n 相互独立, h, g 为连续函数,则:
	函数	h (X ₁ , X ₂ , ···X _m) 和 g (X _{m+1} , ···X _n) 相互独立。
		特例: 若 X 与 Y 独立,则: h (X) 和 g (Y) 独立。 例如: 若 X 与 Y 独立,则: 3X+1 和 5Y-2 独立。
		N1VH+ J T 1 T 1 T T T 1 V T 1 T 1 T T T T T T T

(8)二维 均匀分布 设随机向量(X,Y)的分布密度函数为

$$f(x,y) = \begin{cases} \frac{1}{S_D} & (x,y) \in D \\ 0, & 其他 \end{cases}$$

其中 S_D 为区域 D 的面积,则称 (X,Y) 服从 D 上的均匀分布,记为 (X,Y) \sim U (D)。

例如图 3.1、图 3.2 和图 3.3。

图 3.1

图 3.2

1208Luoyl 概率统计期末试卷 ^_^

(9)	二维
正态	分布

设随机向量(X, Y)的分布密度函数为

$$f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2} - \frac{2\rho(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}} + \left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right]},$$

其中 $\mu_1, \mu_2, \sigma_1 > 0, \sigma_2 > 0, |\rho| < 1$ 是 5 个参数,则称 (X, Y) 服从二维正态分布,

记为 (X, Y) \sim N ($\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$).

由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,

即 X \sim N (μ_1, σ_1^2), $Y \sim N(\mu_2, \sigma_2^2$).

但是若 $X \sim N$ (μ_1, σ_1^2), $Y \sim N(\mu_2, \sigma_2^2)$, (X, Y)未必是二维正态分布。

(10)函数 分布

Z=X+Y

根据定义计算: $F_Z(z) = P(Z \le z) = P(X + Y \le z)$

对于连续型, $f_z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$

两个独立的正态分布的和仍为正态分布($\mu_1+\mu_2,\sigma_1^2+\sigma_2^2$)。 n 个相互独立的正态分布的线性组合,仍服从正态分布。

$$\mu = \sum_{i} C_i \mu_i$$
, $\sigma^2 = \sum_{i} C_i^2 \sigma_i^2$

$Z=max,min(X_1,X_2,\cdots X_n)$

若 $X_1, X_2 \cdots X_n$ 相 互 独 立 , 其 分 布 函 数 分 别 为

 $F_{x_1}(x)$, $F_{x_2}(x)\cdots F_{x_n}(x)$,则 Z=max,min(X₁,X₂,···X_n)的分布函数为:

$$F_{\text{max}}(x) = F_{x_1}(x) \bullet F_{x_2}(x) \cdots F_{x_n}(x)$$

$$F_{\min}(x) = 1 - [1 - F_{x_1}(x)] \bullet [1 - F_{x_2}(x)] \cdots [1 - F_{x_n}(x)]$$

 χ^2 分布

设 n 个随机变量 X_1, X_2, \dots, X_n 相互独立,且服从标准正态分布,可以证明它们的平方和

$$W = \sum_{i=1}^{n} X_i^2$$

的分布密度为

$$f(u) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} u^{\frac{n}{2} - 1} e^{-\frac{u}{2}} & u \ge 0, \\ 0, & u < 0. \end{cases}$$

我们称随机变量 \mathbb{W} 服从自由度为 \mathbb{N} 的 χ^2 分布, 记为 $\mathbb{W} \sim \chi^2(n)$, 其中

$$\Gamma\left(\frac{n}{2}\right) = \int_0^{+\infty} x^{\frac{n}{2}-1} e^{-x} dx.$$

所谓自由度是指独立正态随机变量的个数,它是随机变量 分布中的一个重要参数。

 χ^2 分布满足可加性: 设

$$Y_i - \chi^2(n_i),$$

则

$$Z = \sum_{i=1}^{k} Y_i \sim \chi^2 (n_1 + n_2 + \dots + n_k).$$

t分布

设X,Y是两个相互独立的随机变量,且

$$X \sim N(0,1), Y \sim \chi^{2}(n),$$

可以证明函数

$$T = \frac{X}{\sqrt{Y/n}}$$

的概率密度为

$$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \qquad (-\infty < t < +\infty).$$

我们称随机变量 T 服从自由度为 n 的 t 分布,记为 $T\sim t(n)$ 。

$$t_{1-\alpha}(n) = -t_{\alpha}(n)$$

F	子分布	设 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$, 且 X 与 Y 独立,可以证明
		$F = \frac{X/n_1}{Y/n_2}$ 的概率密度函数为
		$f(y) = \begin{cases} \frac{\Gamma\left(\frac{n_1 + n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} \left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} y^{\frac{n_1}{2} - 1} \left(1 + \frac{n_1}{n_2} y\right)^{-\frac{n_1 + n_2}{2}}, y \ge 0\\ 0, y < 0 \end{cases}$
		我们称随机变量 F 服从第一个自由度为 n_1 ,第二个自由度为 n_2 的 F 分布,记为 $F \sim f(n_1, n_2)$.
		$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$

第四章 随机变量的数字特征

(1)		离散型	连续型
一维	期望	设 X 是离散型随机变量,其分布	设 X 是连续型随机变量, 其概率密
随机	期望就是平均值	律为 $P(X=x_k)=p_k$,	度为 f(x),
变 量		$(\mathbf{A} - \mathbf{A}_k) = \mathbf{p}_k,$	+∞
的 数		k=1, 2, ···, n,	$E(X) = \int x f(x) dx$
字 特		n	-∞
征		$E(X) = \sum_{k=1}^{n} x_k p_k$	(要求绝对收敛)
	7, 7/	k=1	
	THAT	(要求绝对收敛)	
	函数的期望	Y=g(X)	Y=g(X)
-		<u>_n</u>	+∞
-		$E(Y) = \sum_{k=0}^{n} g(x_k) p_k$	$E(Y) = \int_{-\infty}^{+\infty} g(x)f(x)dx$
		k=1	_∞ ∞
	方差		+∞
	$D(X) = E[X - E(X)]^{2},$	$D(X) = \sum_{k} [x_k - E(X)]^2 p_k$	$D(X) = \int_{0}^{+\infty} [x - E(X)]^{2} f(x) dx$
	标准差	k - 1	$-\infty$
	$\sigma(X) = \sqrt{D(X)} ,$		
	$O(\Lambda) = \gamma D(\Lambda)$		

	矩	①对于正整数 k, 称随机变量 X 的 k 次幂的数学期望为 X 的 k	①对于正整数 k, 称随机变量 X 的 k 次幂的数学期望为 X 的 k 阶原点
		阶原点矩,记为 v _k ,即	矩,记为 v _k , 即
		$v_k = E(X^k) = \sum_i x_i^k p_i,$	$v_k = E(X^k) = \int_{-\infty}^{+\infty} x^k f(x) dx,$
		k=1, 2,	k=1, 2, ···. ②对于正整数 k, 称随机变量 X 与
		与 E (X) 差的 k 次幂的数学期	E(X) 差的 k 次幂的数学期望为 X
		望为 X 的 k 阶中心矩,记为 μ_k ,	的 k 阶中心矩,记为 μ_k ,即
		即	$\mu_k = E(X - E(X))^k$
		$\mu_k = E(X - E(X))^k$	394
		$= \sum_{i} (x_i - E(X))^k p_i ,$	$=\int_{-\infty}^{+\infty}(x-E(X))^k f(x)dx,$
		$= \sum_{i} (x_i - E(X)) p_i ,$	k=1, 2, ···.
		k=1, 2, ···.	
	切比雪夫不等式	设随机变量 X 具有数学期望 E (任意正数 ϵ ,有下列切比雪夫不	X) = μ , 方差 D (X) = σ ² , 则对于 等式
		σ^2	
		$ P(X-\mu \geq\varepsilon)\leq\frac{\sigma^2}{\varepsilon^2}$	
		切比雪夫不等式给出了在未知X	的分布的情况下,对概率
		P(X	$-\mu \geq \varepsilon)$
	757	的一种估计,它在理论上有重要	意义。
(2) 期望	$\begin{array}{ccc} (1) & E(C) = C \\ (2) & E(CX) = CE(X) \end{array}$		
的 性			
质	(3) $E(X+Y)=E(X)+E(Y)$	$E(\sum_{i=1}^{n} C_{i} X_{i}) = \sum_{i=1}^{n} C_{i} E(X_{i})$	
	(4) E(XY) = E(X) E(Y),	充分条件: X 和 Y 独立;	
	(I) E(XI) E(X) E(I),	充要条件: X和Y不相关。	
(3)	(1) $D(C)=0$; $E(C)=C$		
方差	(2) $D(aX) = a^2D(X)$;		
的性		E(aX+b)=aE(X)+b	
质	(4) $D(X) = E(X^2) - E^2(X)$		
	(5) $D(X \pm Y) = D(X) + D(Y)$	Y), 充分条件: X 和 Y 独立; 充要条件: X 和 Y 不相关。	
	D(X+X) = D(X) + D	(Y) $\pm 2E[(X-E(X))(Y-E(Y))]$,无	· - 条件成立。
		·E(Y),无条件成立。	14/11/4/0
(4)	III D (M · I / D (M) ·	期望	方差
常见	0.17.4.04	//*	
分 布	0-1 分布 B(1, p)	p	p(1-p)

44 HH			
的期望和	二项分布 $B(n,p)$	np	np(1-p)
方差	泊松分布 P (λ)	λ	λ
	几何分布 $G(p)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
	超几何分布 $H(n,M,N)$	$\frac{nM}{N}$	$\frac{nM}{N} \left(1 - \frac{M}{N} \right) \left(\frac{N - n}{N - 1} \right)$
	均匀分布 $U(a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
	指数分布 e(λ)	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
	正态分布 $N(\mu, \sigma^2)$	μ	σ^2
	χ ² 分布	n	2n
	t 分布	0	$\frac{n}{n-2} \text{ (n>2)}$
(5) 二维 随机	期望	$E(X) = \sum_{i=1}^{n} x_i p_{i\bullet}$ $E(Y) = \sum_{j=1}^{n} y_j p_{\bullet j}$	$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$
变量的货		$E(Y) = \sum_{j=1}^{n} y_{j} p_{\bullet j}$	$E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy$
征	函数的期望	E[G(X,Y)] =	E[G(X,Y)] =
•		$\sum_{i}\sum_{j}G(x_{i},y_{j})p_{ij}$	$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} G(x, y) f(x, y) dx dy$
	方差	$D(X) = \sum_{i} [x_i - E(X)]^2 p_{i\bullet}$	$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f_X(x) dx$
		$D(Y) = \sum_{j} [x_{j} - E(Y)]^{2} p_{\bullet j}$	$D(Y) = \int_{-\infty}^{+\infty} [y - E(Y)]^2 f_Y(y) dy$

	协方差 	对于随机变量 X 与 Y ,称它们的二阶混合中心矩 μ_{11} 为 X 与 Y 的协方
		差或相关矩,记为 $\sigma_{\scriptscriptstyle XY}$ 或 $\operatorname{cov}(X,Y)$,即
		$\sigma_{XY} = \mu_{11} = E[(X - E(X))(Y - E(Y))].$
		与记号 σ_{xy} 相对应, X 与 Y 的方差 $D(X)$ 与 $D(Y)$ 也可分别记为 σ_{xx}
		与 $\sigma_{\scriptscriptstyle YY}$ 。
	相关系数	对于随机变量 X 与 Y, 如果 D (X) >0, D(Y)>0, 则称
		$\frac{\sigma_{_{XY}}}{\sqrt{D(X)}\sqrt{D(Y)}}$
		为 X 与 Y 的相关系数,记作 $ ho_{xy}$ (有时可简记为 $ ho$)。
		$ \rho \leq 1$,当 $ \rho = 1$ 时,称 X 与 Y 完全相关: $P(X = aY + b) = 1$
		Ξ 定相关,当 $ ho=1$ 时 $(a>0)$, 是全相关 Ξ 负相关,当 $\Pi=-1$ 时 $\Xi=-1$ 0,
		而当 $\rho = 0$ 时,称 X 与 Y 不相关。
		以下五个命题是等价的:
	780	$ \bigcirc \rho_{XY} = 0; $
	Ma	2cov(X, Y) = 0;
	76 7/	(3) E(XY) = E(X) E(Y);
	BAIL .	1 1 1 1 1 1 2 1 2 1 2 2 2 2 3 2 3 2 3 4 2 2 3 2 3 3 4 4 4 5 6
-	协方差矩阵	
<		$egin{bmatrix} \sigma_{_{XX}} & \sigma_{_{XY}} \ \sigma_{_{YX}} & \sigma_{_{YY}} \end{pmatrix}$
	混合矩	
	175 H / 'L	对于随机变量 X 与 Y ,如果有 $E(X^kY^l)$ 存在,则称之为 X 与 Y 的
		$k+1$ 阶混合原点矩,记为 v_{kl} ; $k+1$ 阶混合中心矩记为:
		$u_{kl} = E[(X - E(X))^{k} (Y - E(Y))^{l}].$
(6)	(i) cov (X, Y)=cov (Y,	
协方	(iii) $cov(aX, bY) = ab cov$	
差 的性质	(iii) $cov(X_1+X_2, Y)=cov(X_1+X_2, Y)=cov(X_$	
14/2		-, - \ -, -

(7) 独立	(i)	若随机变量 X 与 Y 相互独立,则 $\rho_{XY}=0$; 反之不真。
和不相关	(ii)	若 (X, Y) \sim N ($\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, ho$),
,,,,,		则 X 与 Y 相互独立的充要条件是 X 和 Y 不相关。

第五章 大数定律和中心极限定理

	•	
(1) 大数定律	切比雪	设随机变量 X ₁ , X ₂ , …相互独立,均具有有限方差,且被同一
$\overline{X} \to \mu$	夫大数	常数 C 所界: $D(X_i) < C(i=1,2,\cdots)$,则对于任意的正数 ϵ ,有
$A \rightarrow \mu$	定律	$\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n E(X_i)\right < \varepsilon\right) = 1.$
		特殊情形: 若 X_1 , X_2 , …具有相同的数学期望 $E\left(X_I\right)=\mu$,则上式成为
		$\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \mu\right < \varepsilon\right) = 1.$
	伯努利	设μ是 n 次独立试验中事件 A 发生的次数, p 是事件 A 在
	大数定	每次试验中发生的概率,则对于任意的正数 ε,有
	律	$\lim_{n\to\infty} P\left(\left \frac{\mu}{n}-p\right <\varepsilon\right)=1.$
		伯努利大数定律说明,当试验次数 n 很大时,事件 A 发生的频率与概率有较大判别的可能性很小,即
	75	$\lim_{n\to\infty} P\left(\left \frac{\mu}{n}-p\right \geq\varepsilon\right)=0.$
		这就以严格的数学形式描述了频率的稳定性。
70	辛钦大	设 X_1 , X_2 , …, X_n , …是相互独立同分布的随机变量序列,且 E
	数定律)(X _n)=μ,则对于任意的正数ε有
		$\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \mu\right < \varepsilon\right) = 1.$

1208Luoyl 概率统计期末试卷 ^_^

(2) 中心极限定	列维一	设随机变量 X1, X2, …相互独立, 服从同一分布, 且具有
理	林德伯	相 同 的 数 学 期 望 和 方 差 :
		
$\overline{X} \to N(\mu, \frac{\sigma^2}{n})$	111/0-1	$E(X_k) = \mu, D(X_k) = \sigma^2 \neq 0 (k = 1, 2, \dots)$,则随机变量
		$\sum_{i=1}^{n} V_{i}$
		$Y_n = \frac{\sum_{k=1}^{n} X_k - n\mu}{\sqrt{n\sigma}}$
		$I_n = \frac{1}{\sqrt{n\sigma}}$
		的分布函数 $F_n(x)$ 对任意的实数 x ,有
		$\lim_{n\to\infty} F_n(x) = \lim_{n\to\infty} P\left\{\frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n\sigma}} \le x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$
		此定理也称为 独立同分布 的中心极限定理。
	棣莫弗 一拉普	设随机变量 X_n 为具有参数 n, p(0 \langle p \langle 1)的二项分布,则对于
	拉斯定	任意实数 x, 有
	理	$= \lim_{n \to \infty} P \left\{ \frac{X_n - np}{\sqrt{np(1-p)}} \le x \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$
(3)二项定理	若当	$\exists N \to \infty$ 时, $\frac{M}{N} \to p(n, k$ 不变),则
		N
		$\frac{C_M^k C_{N-M}^{n-k}}{C_N^n} \to C_n^k p^k (1-p)^{n-k} \qquad (N \to \infty).$
	超几何名) 布的极限分布为二项分布。
(4) 泊松定理		
76	若当 $n \to \infty$ 时, $np \to \lambda > 0$,则	
	$C_n^k p^k (1-p)^{n-k} \to \frac{\lambda^k}{k!} e^{-\lambda}$ $(n \to \infty).$	
3/0	其中 k=(), 1, 2,, n,
	二项分布	F的极限分布为泊松分布。

第六章 样本及抽样分布

(1) 数理	总体	在数理统计中,常把被考察对象的某一个(或多个)指标的全	
统计的基		体称为总体(或母体)。我们总是把总体看成一个具有分布的随	
本概念		机变量(或随机向量)。	
	个体	总体中的每一个单元称为样品(或个体)。	

1208Luoyl		概率统计期末试卷
		
	样本	我们把从总体中抽取的部分样品 x_1, x_2, \dots, x_n 称为样本。样本
		 中所含的样品数称为样本容量,一般用 n 表示。 在一般情况下,
		总是把样本看成是n个相互独立的且与总体有相同分布的随机
		变量,这样的样本称为简单随机样本。在泛指任一次抽取的结
		果时, x_1, x_2, \cdots, x_n 表示 n 个随机变量 (样本);在具体的一次
		抽取之后, x_1, x_2, \dots, x_n 表示 n 个具体的数值 (样本值)。我们
		称之为样本的两重性。
	样本函数和 统计量	设 x_1, x_2, \cdots, x_n 为总体的一个样本,称
		$\varphi = \varphi \qquad (x_1, x_2, \dots, x_n)$
		为样本函数,其中 φ 为一个连续函数。如果 φ 中不包含任何未
		知参数,则称 φ (x_1, x_2, \dots, x_n) 为一个统计量。
	常见统计量 及其性质	样本均值
		n = 1
		样本方差
		$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}.$
		1=1
		样本标准差 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$.
		样本 k 阶原点矩
	BU	$M_k = \frac{1}{n} \sum_{i=1}^n x_i^k, k = 1, 2, \cdots$
		样本 k 阶中心矩
		$M'_{k} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - x)^{k}, k = 2,3,\dots$
		$E(\overline{X}) = \mu, D(\overline{X}) = \frac{\sigma^2}{n},$
		$E(S^2) = \sigma^2, E(S^{*2}) = \frac{n-1}{n}\sigma^2,$
		其中 $S^{*2} = \frac{1}{2} \sum_{i=1}^{n} (X_i - \overline{X})^2$,为二阶中心矩。

	_	
(2) 正态 总体下的	正态分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
四大分布		本函数
		$u \stackrel{\text{def}}{=} \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \sim N(0,1).$
	t 分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
		本函数
		$t^{\frac{def}{2}} \frac{x^{-}\mu}{s/\sqrt{n}} \sim t(n-1),$
		其中 t (n-1)表示自由度为 n-1 的 t 分布。
	χ ² 分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
		本函数
		$w^{\frac{def}{2}} \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$
		其中 $\chi^2(n-1)$ 表示自由度为 $n-1$ 的 χ^2 分布。
	F分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma_1^2)$ 的一个样本,而
		y_1,y_2,\cdots,y_n 为来自正态总体 $N(\mu,\sigma_2^2)$ 的一个样本,则样本
		函数
	37	$F = \frac{\frac{def}{2} \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1),$
	1221	其中
		$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \bar{x})^2, \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \bar{y})^2;$
		$F(n_1-1,n_2-1)$ 表示第一自由度为 n_1-1 ,第二自由度为
		n_2-1 的 F 分布。
(3) 正态 总体下分 布的性质	\overline{X} 与 S^2 独立	0
	1	

第七章 参数估计

(1)点	矩估计
估计	

设总体 X 的分布中包含有未知数 $\theta_1,\theta_2,\cdots,\theta_m$,则其分布函数可以表成 $F(x;\theta_1,\theta_2,\cdots,\theta_m)$. 它的 k 阶原点矩 $v_k=E(X^k)(k=1,2,\cdots,m)$ 中也包含了未知参数 $\theta_1,\theta_2,\cdots,\theta_m$,即 $v_k=v_k(\theta_1,\theta_2,\cdots,\theta_m)$ 。又设 x_1,x_2,\cdots,x_n 为总体 X 的 n 个样本值,其样本的 k 阶原点矩为

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}^{k} \quad (k=1,2,\cdots,m).$$

这样,我们按照"当参数等于其估计量时,总体矩等于相应的样本矩"的原则建立方程,即有

$$\begin{cases} v_1(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i, \\ v_2(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i^2, \\ \dots \\ v_m(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i^m. \end{cases}$$

由上面的 m 个方程中,解出的 m 个未知参数 $(\hat{\theta_1},\hat{\theta_2},\cdots,\hat{\theta_m})$ 即为参数 $(\theta_1,\theta_2,\cdots,\theta_m)$ 的矩估计量。

 $\mathring{A} \stackrel{\hat{}}{\theta}$ 为 θ 的矩估计,g(x) 为连续函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的矩估计。

	极大似	当 总 体 X 为 连 续 型 随 机 变 量 时 , 设 其 分 布 密 度 为
	然估计	$f(x; \theta_1, \theta_2, \cdots, \theta_m)$, 其中 $\theta_1, \theta_2, \cdots, \theta_m$ 为未知参数。又设
		x_1, x_2, \dots, x_n 为总体的一个样本,称
		$L(\theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2, \dots, \theta_m)$
		为样本的似然函数,简记为 L_n . 当 总 体 X 为 离 型 随 机 变 量 时 , 设 其 分 布 律 为
		$P\{X=x\}=p(x;\theta_1,\theta_2,\cdots,\theta_m), $
		$L(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n p(x_i; \theta_1, \theta_2, \dots, \theta_m)$
		为样本的似然函数。
		若似然函数 $L(x_1,x_2,\cdots,x_n; heta_1, heta_2,\cdots, heta_m)$ 在 $\hat{ heta}_1,\hat{ heta}_2,\cdots,\hat{ heta}_m$ 处取
		到最大值,则称 $\hat{\theta}_1,\hat{\theta}_2,\dots,\hat{\theta}_m$ 分别为 $\theta_1,\theta_2,\dots,\theta_m$ 的最大似然估计值,
		相应的统计量称为最大似然估计量。
		$\left. \frac{\partial \ln L_n}{\partial \theta_i} \right _{\theta_i = \hat{\theta}_i} = 0, i = 1, 2, \cdots, m$
		$\dot{\hat{H}}$ 为 θ 的极大似然估计, $g(x)$ 为单调函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的极大
		似然估计。
(2)估 计量的	无偏性	设 $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ 为未知参数 θ 的估计量。若 E $(\hat{\theta}) = \theta$,则称
评选标 准		$\hat{m{ heta}}$ 为 $m{ heta}$ 的无偏估计量。
		$E(\overline{X}) = E(X), E(S^2) = D(X)$
	有效性	设 $\hat{\theta}_1 = \hat{\theta}_1(x_1, x_2, \dots, x_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(x_1, x_2, \dots, x_n)$ 是未知参数 θ
		的两个无偏估计量。若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。

	一致性	设 $\overset{\wedge}{ heta}_n$ 是 $ heta$ 的一串估计量,如果对于任意的正数 $ heta$,都有		
		$\lim_{n\to\infty}P(\stackrel{\wedge}{\theta}_n-\theta >\varepsilon)=0,$		
		则称 $\overset{\wedge}{ heta}_n$ 为 $ heta$ 的一致估计量(或相合估计量)。		
		\dot{B} 为 θ 的无偏估计,且 $D(\hat{\theta}) \rightarrow 0$ ($n \rightarrow \infty$),则 $\hat{\theta}$ 为 θ 的一致估计。只要总体的 $E(X)$ 和 $D(X)$ 存在,一切样本矩和样本矩的连续函数都是相应总体的一致估计量。		
(3)区 间估计	置信区间和置	设总体 X 含有一个待估的未知参数 θ 。如果我们从样本 $x_1, x_{,2}, \cdots, x_n$ 出		
	信度	发 , 找 出 两 个 统 计 量 $\theta_1 = \theta_1(x_1, x, 2, \dots, x_n)$ 与		
		$\theta_2 = \theta_2(x_1, x_2, \dots, x_n) (\theta_1 < \theta_2) , 使 得 区 间 [\theta_1, \theta_2] 以$		
		$1-\alpha(0<\alpha<1)$ 的概率包含这个待估参数 $ heta$,即		
		$P\{\theta_1 \le \theta \le \theta_2\} = 1 - \alpha,$		
		那么称区间 $[heta_1, heta_2]$ 为 $ heta$ 的置信区间, $1-lpha$ 为该区间的置信度(或置		
		信水平)。		
	单正态总体的	设 $x_1, x, 2, \dots, x_n$ 为总体 $X \sim N(\mu, \sigma^2)$ 的一个样本,在置信度为 $1-\alpha$		
	期望和方差的	下,我们来确定 μ 和 σ^2 的置信区间 $[heta_1, heta_2]$ 。具体步骤如下:		
	区间估计	(i)选择样本函数; (ii)由置信度1-α,查表找分位数;		
7		(iii)导出置信区间 $[heta_1, heta_2]$ 。		
		已知方差,估计均值 (i)选择样本函数		
	5	$u = \frac{\overline{x} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0,1).$		
		(ii) 查表找分位数		
		$P\left(-\lambda \leq \frac{\bar{x} - \mu}{\sigma_0 / \sqrt{n}} \leq \lambda\right) = 1 - \alpha.$		
		(iii)导出置信区间		
		$\left[\bar{x} - \lambda \frac{\sigma_0}{\sqrt{n}}, \bar{x} + \lambda \frac{\sigma_0}{\sqrt{n}} \right]$		

I	T
未知方差,估计均值	(i)选择样本函数
	$t = \frac{\overline{x} - \mu}{S / \sqrt{n}} \sim t(n-1).$
	S / V / · ·
	(ii)查表找分位数
	$P\left(-\lambda \le \frac{\bar{x} - \mu}{S / \sqrt{n}} \le \lambda\right) = 1 - \alpha.$
	(iii)导出置信区间
	$\left[\bar{x} - \lambda \frac{S}{\sqrt{n}}, \bar{x} + \lambda \frac{S}{\sqrt{n}}\right]$
方差的区间估计	(i)选择样本函数
	$w = \frac{(n-1)S^2}{\sigma^2} \sim \kappa^2 (n-1).$
	(ii) 查表找分位数
	$P\left(\lambda_1 \leq \frac{(n-1)S^2}{\sigma^2} \leq \lambda_2\right) = 1 - \alpha.$
17.5	(iii)导出σ的置信区间
3K	$\left[\sqrt{\frac{n-1}{\lambda_2}}S, \sqrt{\frac{n-1}{\lambda_1}}S\right]$
	未知方差,估计均值 方差的区间估计

第八章 假设检验

基本思想 假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是 不会发生的,即小概率原理。 为了检验一个假设 14是否成立。我们先假定 14是成立的。如果根据这个假 定导致了一个不合理的事件发生,那就表明原来的假定 16是不正确的,我们拒 绝接受 品;如果由此没有导出不合理的现象,则不能拒绝接受 品,我们称 品是 相容的。与从相对的假设称为备择假设,用从表示。 这里所说的小概率事件就是事件 $\{K \in R_{\alpha}\}$,其概率就是检验水平 α ,通 常我们取 α =0.05, 有时也取 0.01 或 0.10。 假设检验的基本步骤如下: 基本步骤 (i) 提出零假设 抵; (ii) 选择统计量 *K*; (iii) 对于检验水平α查表找分位数λ; 由样本值 x_1, x_2, \dots, x_n 计算统计量之值K; (iv) 将 \hat{K} 与 λ 进行比较,作出判断: 当 \hat{K} > λ (或 \hat{K} > λ) 时否定 H, 否则认为 H相容。

两类错误	第一类错误	当 H 为真时,而样本值却落入了否定域,按照我们规定的检验法则,应当否定 H。这时,我们把客观上 H 成立判为 H 为不成立(即否定了真实的假设),称这种错误为"以真当假"的错误或第一类错误,记α为犯此类错误的概率,即 P {否定 H H 为真} = α; 此处的α恰好为检验水平。
	第二类错误	当 H 为真时,而样本值却落入了相容域,按照我们规定的 检验法则,应当接受 H。这时,我们把客观上 H。不成立判 为 H 成立(即接受了不真实的假设),称这种错误为"以假
		当真"的错误或第二类错误,记 $oldsymbol{eta}$ 为犯此类错误的概率,
		即
		$P{接受 H H 为真} = \beta$ 。
	两类错误的关系	人们当然希望犯两类错误的概率同时都很小。但是,当
		容量 n 一定时, α 变小,则 β 变大;相反地, β 变小,则 α
		变大。取定 α 要想使 $oldsymbol{eta}$ 变小,则必须增加样本容量。
		在实际使用时,通常人们只能控制犯第一类错误的概
		率,即给定显著性水平 a。 a 大小的选取应根据实际情况而定。当我们宁可"以假为真"、而不愿"以真当假"时,则
		应把α取得很小,如 0.01,甚至 0.001。反之,则应把α取得大些。
		应把α取得很小,如0.01,甚至0.001。反之,则应把α取

单正态总体均值和方差的假设检验

条件	零假设	统计量	对应样本 函数分布	否定域
已知 σ^2	$H_0: \mu = \mu_0$	$U = \frac{\bar{x} - \mu_0}{\sigma_0 / \sqrt{n}}$	N(0, 1)	$ u >u_{1-\frac{\alpha}{2}}$
	$H_0: \mu \leq \mu_0$			$u > u_{1-\alpha}$
	$H_0: \mu \geq \mu_0$			$u < -u_{1-\alpha}$
	$H_0: \mu = \mu_0$	$T = \frac{\bar{x} - \mu_0}{S / \sqrt{n}}$	t(n-1)	$ t > t_{1-\frac{\alpha}{2}}(n-1)$
未知 σ^2	$H_0: \mu \leq \mu_0$			$t > t_{1-\alpha}(n-1)$
	$H_0: \mu \geq \mu_0$			$t < -t_{1-\alpha}(n-1)$
+ km _2	$H_0: \sigma^2 = \sigma^2$	$w = \frac{(n-1)S^2}{\sigma_0^2}$	$\kappa^2(n-1)$	$w < \kappa_{\frac{\alpha}{2}}^2 (n-1)$ 或
未知 σ^2				$w > \kappa^2_{1-\frac{\alpha}{2}}(n-1)$

$H_0: \sigma^2 \le \sigma_0^2$		$w > \kappa_{1-\alpha}^2 (n-1)$
$H_0: \sigma^2 \ge \sigma_0^2$		$w < \kappa_{\alpha}^{2}(n-1)$