Introduction to IOT LAB ACTIVITY – 2

Institute of Engineering and Technology JK Lakshmipat University, Jaipur

SUBMITTED TO

Mr. Divanshu Jain

SUBMITTED BY

Garv Baheti 2020BTechCSE031

August 29, 2022

OBJECTIVE

- 1. To blink LED when the intensity of room changes using LDR
- 2. To turn on a buzzer/LED when an object is detected using IR sensor in analog mode.
- 3. To turn on a buzzer/LED when an object is detected using IR sensor in digital mode.
- 4. Calculate the distance of an object using Ultrasonic Sensor and control a led and show the value on serial monitor.

THEORY

NodeMCU is an open-source Lua based firmware and development board specially targeted for IoT based Applications. It includes firmware that runs on the ESP8266 Wi-Fi SoC from Espressif Systems, and hardware which is based on the ESP-12 module. The **NodeMCU ESP8266 development board** comes

with the ESP-12E module containing the ESP8266 chip having Tensilica Xtensa 32-bit LX106 RISC microprocessor. This microprocessor supports RTOS and operates at 80MHz to 160 MHz adjustable clock frequency. NodeMCU has 128 KB RAM and 4MB of Flash memory to store data and programs. Its high processing power with in-built Wi-Fi / Bluetooth and Deep Sleep Operating features make it ideal for IoT projects. NodeMCU can be powered using a Micro USB jack and VIN pin (External Supply Pin). It supports UART, SPI, and I2C interface.

NodeMCU ESP8266 Specifications & Features

Microcontroller: Tensilica 32-bit RISC CPU Xtensa LX106

• Operating Voltage: 3.3V

• Input Voltage: 7-12V

• Digital I/O Pins (DIO): 16

• Analog Input Pins (ADC): 1

• UARTs: 1

• SPIs: 1

• I2Cs: 1

• Flash Memory: 4 MB

• SRAM: 64 KB

• Clock Speed: 80 MHz

• USB-TTL based on CP2102 is included onboard, Enabling Plug n Play

PCB Antenna

• Small Sized module to fit smartly inside your IoT projects

NodeMCU Development Board Pinout Configuration

Pin Category	Name	Description
Power	Micro-USB, 3.3V, GND, Vin	Micro-USB: NodeMCU can be powered through the USB port 3.3V: Regulated 3.3V can be supplied to this pin to power the board GND: Ground pins Vin: External Power Supply
Control Pins	EN, RST	The pin and the button resets the microcontroller
Analog Pin	A0	Used to measure analog voltage in the range of 0-3.3V
GPIO Pins	GPIO1 to GPIO16	NodeMCU has 16 general purpose input-output pins on its board
SPI Pins	SD1, CMD, SD0, CLK	NodeMCU has four pins available for SPI communication.
UART Pins	TXD0, RXD0, TXD2, RXD2	NodeMCU has two UART interfaces, UART0 (RXD0 & TXD0) and UART1 (RXD1 & TXD1). UART1 is used to upload the firmware/program.
I2C Pins		NodeMCU has I2C functionality support but due to the internal functionality of these pins, you have to find which pin is I2C.

TO BLINK LED WHEN THE INTENSITY OF ROOM CHANGES USING LDR

REQUIREMENTS

- NodeMCU x 1
- Micro USB cable x 1
- PC x 1
- Software Arduino IDE(version 1.6.4+)
- LDR Sensor
- LED
- Resistor

CODE

```
const int ledPin = 5;
const int ldrPin = A0;

void setup() {
    Serial.begin(9600);
    pinMode(ledPin, OUTPUT);
    pinMode(ldrPin, INPUT);
}

void loop() {
    int ldrStatus = analogRead(ldrPin);
    Serial.print(ldrStatus);

    if (ldrStatus <=300) {
        digitalWrite(ledPin, HIGH);
        Serial.println("LDR is DARK, LED is ON");
    }
    else {
        digitalWrite(ledPin, LOW);
        Serial.println("LED is OFF");
    }
}</pre>
```

RESULTWhen No Light is detected

When Light is detected

TO TURN ON A BUZZER/LED WHEN AN OBJECT IS DETECTED USING IR SENSOR IN ANALOG MODE.

REQUIREMENTS

- NodeMCU x 1
- Micro USB cable x 1
- PC x 1
- Software Arduino IDE (version 1.6.4+)
- LED
- IR SENSOR

CIRCUIT

CODE

```
int ledPin = 12; // choose pin for the LED
int inputPin = A0; // choose input pin (for Infrared sensor)
int val = 0; // variable for reading the pin status

void setup()
{
    pinMode(ledPin, OUTPUT); // declare LED as output
    pinMode(inputPin, INPUT); // declare Infrared sensor as input
    Serial.begin(9600);
}

void loop()
{
    val = analogRead(inputPin); // read input value
    if (val >=700)
    { // check if the input is HIGH
        digitalWrite(ledPin, HIGH); // turn LED ON
        Serial.println("OBJECT DETECTED");
        Serial.println(val);
    }
    else
    {
        digitalWrite(ledPin, LOW); // turn LED OFF
        Serial.println("NO OBJECT DETECTED");
        Serial.println(val);
    }
}
```

RESULT

When Object is Detected(<15cm)

When Object is Not Detected(>15cm)

When Object is not close enough

TO TURN ON A BUZZER/LED WHEN AN OBJECT IS DETECTED USING IR SENSOR IN DIGITAL MODE.

REQUIREMENTS

- NodeMCU x 1
- Micro USB cable x 1
- PC x 1
- Software Arduino IDE(version 1.6.4+)
- IR SENSOR
- LED

CODE

RESULT

When No Object is detected

When Object is Not detected

09 59 05 59 07 55 08 57 02 51 01

CALCULATE THE DISTANCE OF AN OBJECT USING ULTRASONIC SENSOR AND CONTROL A LED AND SHOW THE VALUE ON SERIAL MONITOR

REQUIREMENTS

- NodeMCU x 1
- Micro USB cable x 1
- PC x 1
- Software Arduino IDE (version 1.6.4+)
- Ultrasonic Sensor
- LED

CIRCUIT

CODE

```
int trigPin=D2;
int echoPin=D1;
int led = D3;
#define SOUND_VELOCITY 0.034
long duration;
float distanceCm;
void setup() {
   // put your setup code here, to run once:
Serial.begin(9600); // Starts the serial communication
pinMode(trigPin, OUTPUT); // Sets the trigPin as an Output
pinMode(echoPin, INPUT); // Sets the echoPin as an Input
pinMode(led,OUTPUT);
void loop() {
   // put your main code here, to run repeatedly:
digitalWrite(trigPin, LOW);
   deĺay(200);
   // Sets the trigPin on HIGH state for 10 micro seconds
digitalWrite(trigPin, HIGH);
   delay(100);
digitalWrite(trigPin, LOW);
   // Reads the echoPin, returns the sound wave travel time in microseconds duration = pulseIn(echoPin, HIGH);
   // Calculate the distance
distanceCm = duration * SOUND_VELOCITY/2;
   if(distanceCm<=15){</pre>
       digitalWrite(led,HIGH);
       delay(100);
   else{
    digitalWrite(led,LOW);
    delay(100);
   // Prints the distance on the Serial Monitor
Serial.print("Distance (cm): ");
Serial.println(distanceCm);
delay(1000);
```

RESULT

