

Grundbegriffe der Informatik Tutorium 33

Lukas Bach, lukas.bach@student.kit.edu | 10. November 2016

Was ist überhaupt vollständige Induktion?

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Beweisverfahren
- In der Regel zu zeigen: Eine Aussage gilt für alle $n \in \mathbb{N}_+$, manchmal auch für alle $n \in \mathbb{N}_0$
- Man schließt induktiv von einem n auf n+1
- Idee: Wenn die Behauptung für ein beliebiges festes n gilt, dann gilt sie auch für den Nachfolger n+1 (und somit auch für dessen Nachfolger und schließlich für alle n)

Struktur des Beweises

Lukas Bach, lukas.bach@student.kit.edu

Behauptung: (kurz Beh.:)

Beweis: (kurz Bew.:)

Vollständige Induktion

Struktur des Beweises

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Behauptung: (kurz Beh.:)

Beweis: (kurz Bew.:)

- Induktionsanfang: (kurz IA:)
 - lacktriangle Zeigen, dass Behauptung für Anfangswert gilt (oft n=1)
 - Auch mehrere (z.B. zwei) Anfangswerte möglich

Struktur des Beweises

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Behauptung: (kurz Beh.:)

Beweis: (kurz Bew.:)

- Induktionsanfang: (kurz IA:)
 - \blacksquare Zeigen, dass Behauptung für Anfangswert gilt (oft n = 1)
 - Auch mehrere (z.B. zwei) Anfangswerte möglich
- Induktionsvoraussetzung: (kurz IV:)
 - Sei $n \in \mathbb{N}_+$ (bzw. $n \in \mathbb{N}_0$) fest aber beliebig und es gelte [Behauptung einsetzen]

Struktur des Beweises

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Behauptung: (*kurz* **Beh.:**)
Beweis: (*kurz* **Bew.:**)

- Induktionsanfang: (kurz IA:)
 - Zeigen, dass Behauptung für Anfangswert gilt (oft n = 1)
 - Auch mehrere (z.B. zwei) Anfangswerte möglich
- Induktionsvoraussetzung: (kurz IV:)
 - Sei $n \in \mathbb{N}_+$ (bzw. $n \in \mathbb{N}_0$) fest aber beliebig und es gelte [Behauptung einsetzen]
- Induktionsschritt: (kurz IS:)
 - Behauptung für n+1 auf n zurückführen
 - Wenn induktive Definition gegeben: verwenden!
 - Sonst: Versuche Ausdruck, in dem (n+1) vorkommt umzuformen in einen Ausdruck, in dem nur n vorkommt

Lukas Bach, lukas.bach@student.kit.edu

Aufgabe

Vollständige Induktion

$$x_0 := 0$$
 Für alle $n \in \mathbb{N}_0 : x_{n+1} := x_n + 2n + 1$

Zeige mithilfe vollständiger Induktion, dass für alle $n \in \mathbb{N}_0$

$$x_n = n^2$$

gilt.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.
- Was war nochmal eine formale Sprache?

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.
- Was war nochmal eine formale Sprache?

Formale Sprache

Eine Formale Sprache L

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.
- Was war nochmal eine formale Sprache?

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L\subseteq A$.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.
- Was war nochmal eine formale Sprache?

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A$.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.
- Was war nochmal eine formale Sprache?

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L\subseteq A$.

•
$$A := \{b, n, a\}.$$

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.
- Was war nochmal eine formale Sprache?

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L\subseteq A$.

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.
- Was war nochmal eine formale Sprache?

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A$.

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.
- Was war nochmal eine formale Sprache?

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A$.

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$ = $\{w : w = bana(na)^k, k \in \mathbb{N}\}$ auch.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.
- Was war nochmal eine formale Sprache?

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A$.

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$
 - $= \{ w : w = bana(na)^k, k \in \mathbb{N} \}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch.

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.
- Was war nochmal eine formale Sprache?

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A$.

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$ = $\{w : w = bana(na)^k, k \in \mathbb{N}\}$ auch.
 - L₃ := {ban, baan, baaan, ...} auch. Andere Schreibweise?

Formale Sprache

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.
- Was war nochmal eine formale Sprache?

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A$.

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$ = $\{w : w = bana(na)^k, k \in \mathbb{N}\}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise? $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen $\mathcal{L}_1,\mathcal{L}_2$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1 , L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}$.

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

Sprache L₁ ⊆ A, die zuerst drei a's enthält und dann beliebig viele b's? L₁ = {aaa} · {b}*.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

- Sprache L₁ ⊆ A, die zuerst drei a's enthält und dann beliebig viele b's? L₁ = {aaa} · {b}*.
- Sprache $L_2 \subseteq A$, die das Teilwort *ab* nicht enthält?

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

- Sprache L₁ ⊆ A, die zuerst drei a's enthält und dann beliebig viele b's? L₁ = {aaa} · {b}*.
- Sprache $L_2 \subseteq A$, die das Teilwort ab nicht enthält? $L_2 = \{b\}^*\{a\}^*$.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

- Sprache $L_1 \subseteq A$, die zuerst drei *a*'s enthält und dann beliebig viele b's? $L_1 = \{aaa\} \cdot \{b\}^*$.
- Sprache $L_2 \subseteq A$, die das Teilwort ab nicht enthält? $L_2 = \{b\}^* \{a\}^*$.
- Sprache $L_3 \subseteq A$, die alle Wörter über A enthält außer ε ?

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

- Sprache L₁ ⊆ A, die zuerst drei a's enthält und dann beliebig viele b's? L₁ = {aaa} · {b}*.
- Sprache $L_2 \subseteq A$, die das Teilwort ab nicht enthält? $L_2 = \{b\}^* \{a\}^*$.
- Sprache $L_3 \subseteq A$, die alle Wörter über A enthält außer ε ? $L_3 = A \cdot A^*$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

- Sprache $L_1 \subseteq A$, die zuerst drei *a*'s enthält und dann beliebig viele b's? $L_1 = \{aaa\} \cdot \{b\}^*$.
- Sprache $L_2 \subseteq A$, die das Teilwort ab nicht enthält? $L_2 = \{b\}^* \{a\}^*$.
- Sprache $L_3 \subseteq A$, die alle Wörter über A enthält außer ε ? $L_3 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

- Sprache L₁ ⊆ A, die zuerst drei a's enthält und dann beliebig viele b's? L₁ = {aaa} · {b}*.
- Sprache $L_2 \subseteq A$, die das Teilwort ab nicht enthält? $L_2 = \{b\}^* \{a\}^*$.
- Sprache $L_3 \subseteq A$, die alle Wörter über A enthält außer ε ? $L_3 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$
- Sprache *L*₄, die alle erlaubten Java Variablennamen enthält.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

- Sprache L₁ ⊆ A, die zuerst drei a's enthält und dann beliebig viele b's? L₁ = {aaa} · {b}*.
- Sprache $L_2 \subseteq A$, die das Teilwort ab nicht enthält? $L_2 = \{b\}^* \{a\}^*$.
- Sprache $L_3 \subseteq A$, die alle Wörter über A enthält außer ε ? $L_3 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$
- Sprache L₄, die alle erlaubten Java Variablennamen enthält.
 - $B := \{a, b, ..., z, A, B, ..., Z\}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

- Sprache L₁ ⊆ A, die zuerst drei a's enthält und dann beliebig viele b's? L₁ = {aaa} · {b}*.
- Sprache $L_2 \subseteq A$, die das Teilwort ab nicht enthält? $L_2 = \{b\}^* \{a\}^*$.
- Sprache $L_3 \subseteq A$, die alle Wörter über A enthält außer ε ? $L_3 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$
- Sprache L₄, die alle erlaubten Java Variablennamen enthält.
 - $B := \{a, b, ..., z, A, B, ..., Z\}$
 - $C := B \cup \mathbb{Z}_9$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

- Sprache $L_1 \subseteq A$, die zuerst drei *a*'s enthält und dann beliebig viele *b*'s? $L_1 = \{aaa\} \cdot \{b\}^*$.
- Sprache $L_2 \subseteq A$, die das Teilwort ab nicht enthält? $L_2 = \{b\}^* \{a\}^*$.
- Sprache $L_3 \subseteq A$, die alle Wörter über A enthält außer ε ? $L_3 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$
- Sprache *L*₄, die alle erlaubten Java Variablennamen enthält.
 - $B := \{a, b, ..., z, A, B, ..., Z\}$
 - $C := B \cup \mathbb{Z}_9$
 - $L_4 \subseteq C$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von formalen Sprachen

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

- Sprache L₁ ⊆ A, die zuerst drei a's enthält und dann beliebig viele b's? L₁ = {aaa} · {b}*.
- Sprache $L_2 \subseteq A$, die das Teilwort ab nicht enthält? $L_2 = \{b\}^* \{a\}^*$.
- Sprache $L_3 \subseteq A$, die alle Wörter über A enthält außer ε ? $L_3 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$
- Sprache L₄, die alle erlaubten Java Variablennamen enthält.
 - $B := \{a, b, ..., z, A, B, ..., Z\}$
 - $C := B \cup \mathbb{Z}_9$
 - $L_4 \subseteq C = (B \cdot C^*) \setminus \{if, class, while, ...\}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion (Exkurs zur Linearen Algebra)

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion (Exkurs zur Linearen Algebra)

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache "uber } A\}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion (Exkurs zur Linearen Algebra)

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache "uber } A\} = 2^A$.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion (Exkurs zur Linearen Algebra)

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache über } A\} = 2^A$. Produkt von Sprachen lässt sich auch als Abbildung bzw. Verknüpfung $\cdot : M \times M \to M$ darstellen.

Zeige:

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion (Exkurs zur Linearen Algebra)

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache über } A\} = 2^A$. Produkt von Sprachen lässt sich auch als Abbildung bzw. Verknüpfung $\cdot : M \times M \to M$ darstellen.

Zeige:

Die Verknüpfung · ist assoziativ.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion (Exkurs zur Linearen Algebra)

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache über } A\} = 2^A$. Produkt von Sprachen lässt sich auch als Abbildung bzw. Verknüpfung $\cdot : M \times M \to M$ darstellen.

Zeige:

- Die Verknüpfung · ist assoziativ.
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt:

$$x \cdot e = e \cdot x = x$$
.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion (Exkurs zur Linearen Algebra)

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache über } A\} = 2^A$. Produkt von Sprachen lässt sich auch als Abbildung bzw. Verknüpfung $\cdot : M \times M \to M$ darstellen.

Zeige:

- Die Verknüpfung · ist assoziativ.
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$.
- Für jedes $x \in M$ gibt es (mindestens) ein Element $y \in M$, sodass gilt: $x \cdot v = v \cdot x = \hat{e} \in M$.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Vollständige Induktion ■ Die Verknüpfung · ist assoziativ:

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Die Verknüpfung · ist assoziativ:
 - $\bullet \ (L_1 \cdot L_2) \cdot L_3$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Die Verknüpfung · ist assoziativ:
 - $\bullet (L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\})$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$.
 - $e := \{ \varepsilon \}.$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$.
 - $e := \{\varepsilon\}.$
 - $L_1 \cdot \{\varepsilon\}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$.
 - $e := \{ \varepsilon \}.$
 - $L_1 \cdot \{\varepsilon\} = L_1$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Die Verknüpfung · ist assoziativ:
 - $\begin{array}{l} \bullet \quad (L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3). \end{array}$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$.
 - \bullet $e := {<math>\varepsilon$ }.
 - $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Die Verknüpfung · ist assoziativ:
 - $\begin{array}{l} \bullet \ (L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in \\ L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3). \end{array}$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$.
 - $\mathbf{e} := \{ \varepsilon \}.$
 - $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$
- Für jedes $x \in M$ gibt es (mindestens) ein Element $y \in M$, sodass gilt: $x \cdot y = y \cdot x = \hat{e} \in M$.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$.
 - $e := \{ \varepsilon \}.$
 - $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$
- Für jedes $x \in M$ gibt es (mindestens) ein Element $y \in M$, sodass gilt: $x \cdot y = y \cdot x = \hat{e} \in M$.
 - $y := \emptyset$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

- Die Verknüpfung · ist assoziativ:
 - $\begin{array}{l} \bullet \ (L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in \\ L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3). \end{array}$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$.
 - $\mathbf{e} := \{ \varepsilon \}.$
 - $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$
- Für jedes $x \in M$ gibt es (mindestens) ein Element $y \in M$, sodass gilt: $x \cdot y = y \cdot x = \hat{e} \in M$.
 - y := ∅ =: ê

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Seien $L_1, L_2, L_3 \in M$.

- Die Verknüpfung · ist assoziativ:
 - $\begin{array}{l} \bullet \ (L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in \\ L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3). \end{array}$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$
 - $e := \{ \varepsilon \}.$
 - $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$
- Für jedes $x \in M$ gibt es (mindestens) ein Element $y \in M$, sodass gilt: $x \cdot y = y \cdot x = \hat{e} \in M$.
 - y := ∅ =: ê

Ist damit (M, \cdot) eine Gruppe?

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Seien $L_1, L_2, L_3 \in M$.

- Die Verknüpfung · ist assoziativ:
 - $\begin{array}{l} \bullet \ (L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in \\ L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3). \end{array}$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$
 - $\mathbf{e} := \{ \varepsilon \}.$
 - $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$
- Für jedes $x \in M$ gibt es (mindestens) ein Element $y \in M$, sodass gilt: $x \cdot y = y \cdot x = \hat{e} \in M$.
 - y := ∅ =: ê
 - $L_1 \cdot \emptyset = \emptyset = \hat{e} = \emptyset = \emptyset \cdot L_1$

Ist damit (M, \cdot) eine Gruppe? Leider nicht.

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Seien $L_1, L_2, L_3 \in M$.

- Die Verknüpfung · ist assoziativ:
 - $\begin{array}{l} \bullet \ (L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in \\ L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3). \end{array}$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$.
 - $\mathbf{e} := \{\varepsilon\}.$
 - $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$
- Für jedes $x \in M$ gibt es (mindestens) ein Element $y \in M$, sodass gilt: $x \cdot y = y \cdot x = \hat{e} \in M$.
 - y := ∅ =: ê

Ist damit (M,\cdot) eine Gruppe? Leider nicht. Mussten bei der letzten Aufgabe etwas tricksen, (M,\cdot) wäre eine Gruppe wenn $e=\hat{e}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion Seien $L_1, L_2, L_3 \in M$.

- Die Verknüpfung · ist assoziativ:
 - $\begin{array}{l} \bullet \ (L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in \\ L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3). \end{array}$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$.
 - $\mathbf{e} := \{\varepsilon\}.$
 - $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$
- Für jedes $x \in M$ gibt es (mindestens) ein Element $y \in M$, sodass gilt: $x \cdot y = y \cdot x = \hat{e} \in M$.
 - y := ∅ =: ê

Ist damit (M, \cdot) eine Gruppe? Leider nicht. Mussten bei der letzten Aufgabe etwas tricksen, (M, \cdot) wäre eine Gruppe wenn $e = \hat{e}$, aber $e = \{\varepsilon\} \neq \hat{e} = \emptyset$.

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Potenz von Sprachen

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Potenz von Sprachen

$$^{\bullet} L^{0} := \{ \varepsilon \}$$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige

Induktion

Potenz von Sprachen

- $L^0 := \{ \varepsilon \}$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L_1 := \{a\}.$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L_1 := \{a\}.$
 - $L_1^0 = \{\varepsilon\}.$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L_1 := \{a\}.$
 - $L_1^0 = \{ \varepsilon \}. L_1^1$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L_1 := \{a\}.$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L_1 := \{a\}.$
 - $L_1^0 = \{\varepsilon\}$. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L^{i+1} := L^i \cdot L \text{ für } i \in \mathbb{N}_+.$
- $L_1 := \{a\}.$
 - $L_1^0 = \{\varepsilon\}$. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.
 - $L_1^{2} = (\{\varepsilon\} \cdot L_1) \cdot L_1$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L_1 := \{a\}.$
 - $L_1^0 = \{\varepsilon\}$. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.
 - $L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L_1 := \{a\}.$
 - $L_1^0 = \{\varepsilon\}$. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.
 - $L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$
- $L_2 := \{ab\}^3 \{c\}^4$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L_1 := \{a\}.$
 - $L_1^0 = \{\varepsilon\}$. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.
 - $L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$
- $L_2 := \{ab\}^3 \{c\}^4$
 - $L_2^0 = \{ \varepsilon \}, L_1^1 = \dots$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L^{i+1} := L^i \cdot L \text{ für } i \in \mathbb{N}_{\perp}.$
- $L_1 := \{a\}.$
 - $L_1^0 = \{\varepsilon\}$. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.
 - $L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$
- $L_2 := \{ab\}^3 \{c\}^4$
 - $L_2^0 = \{\varepsilon\}, L_1^1 = \dots$ L_2^2

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Potenz von Sprachen

- $L^0 := \{ \varepsilon \}$
- $L_1 := \{a\}.$
 - $L_1^0 = \{\varepsilon\}$. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.
 - $L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$
- $L_2 := \{ab\}^3 \{c\}^4$
 - $L_2^0 = \{ \varepsilon \}, L_1^1 = \dots$
 - $L_2^2 = (\{ab\}^3 \{c\}^4)^2$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L_1 := \{a\}.$
 - $L_1^0 = \{\varepsilon\}$. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.
 - $L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$
- $L_2 := \{ab\}^3 \{c\}^4$
 - $L_2^0 = \{\varepsilon\}, L_1^1 = ...$
 - $L_2^{\frac{5}{2}} = (\{ab\}^{\frac{3}{3}}\{c\}^4)^2 = (\{ab\}^3\{cccc\})^2$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L_1 := \{a\}.$
 - $L_1^0 = \{\varepsilon\}$. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.
 - $L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$
- $L_2 := \{ab\}^3 \{c\}^4$
 - $L_2^0 = \{\varepsilon\}, L_1^1 = ...$
 - $L_2^{\frac{5}{2}} = (\{ab\}^3 \{c\}^4)^2 = (\{ab\}^3 \{cccc\})^2 = \{abababcccc\}^2$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L_1 := \{a\}.$
 - $L_1^0 = \{\varepsilon\}$. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.
 - $L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$
- $L_2 := \{ab\}^3 \{c\}^4$
 - $L_2^0 = \{ \varepsilon \}, L_1^1 = \dots$
 - $L_2^{\frac{5}{2}} = (\{ab\}^{\frac{1}{3}}\{c\}^4)^2 = (\{ab\}^3\{cccc\})^2 = \{abababccccabababcccc\}.$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L_1 := \{a\}.$
 - $L_1^0 = \{\varepsilon\}. L_1^1 = \{\varepsilon\} \cdot L_1 = L_1.$
 - $L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$
- $L_2 := \{ab\}^3 \{c\}^4$
 - $L_2^0 = \{ \varepsilon \}, L_1^1 = \dots$
 - $L_2^{\frac{5}{2}} = (\{ab\}^{\frac{1}{3}}\{c\}^4)^2 = (\{ab\}^3\{cccc\})^2 = \{abababccccabababcccc\}.$
- $L_3 := (\{a\} \cup \{b\})^2$

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Potenz von Sprachen

- $L^0 := \{\varepsilon\}$
- $L_1 := \{a\}.$
 - $L_1^0 = \{\varepsilon\}$. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.
 - $L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$
- $L_2 := \{ab\}^3 \{c\}^4$
 - $L_2^0 = \{\varepsilon\}, L_1^1 = \dots$
 - $L_2^2 = (\{ab\}^3\{c\}^4)^2 = (\{ab\}^3\{cccc\})^2 = \{abababccccabababcccc\}$.
- $L_3 := (\{a\} \cup \{b\})^2 = \{aa, ab, ba, bb\}$

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Konkatenationsabschluss

Zu einer formalen Sprache L

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Konkatenationsabschluss

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Konkatenationsabschluss

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Konkatenationsabschluss

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

ε -freie Konkatenationsabschluss

Zu einer formalen Sprache L

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Konkatenationsabschluss

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

ε -freie Konkatenationsabschluss

Zu einer formalen Sprache L ist der ε -freie Konkatenationsabschluss L^+ definiert

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Konkatenationsabschluss

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

ε -freie Konkatenationsabschluss

Zu einer formalen Sprache L ist der ε -freie Konkatenationsabschluss L^+ definiert als $L^+:=\bigcup_{i\in\mathbb{N}}L^i$.

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Konkatenationsabschluss

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

ε -freie Konkatenationsabschluss

Zu einer formalen Sprache L ist der ε -freie Konkatenationsabschluss L^+ definiert als $L^+:=\bigcup_{i\in\mathbb{N}_+}L^i$.

• Warum gilt $\varepsilon \notin L^+$ von beliebiger formeller Sprache L?

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Konkatenationsabschluss

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

ε -freie Konkatenationsabschluss

Zu einer formalen Sprache L ist der ε -freie Konkatenationsabschluss L^+ definiert als $L^+:=\bigcup_{i\in\mathbb{N}_+}L^i$.

- Warum gilt $\varepsilon \notin L^+$ von beliebiger formeller Sprache L?
- $L := \{a, b, c\}.L^*$

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

Konkatenationsabschluss

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

ε -freie Konkatenationsabschluss

Zu einer formalen Sprache L ist der ε -freie Konkatenationsabschluss L^+ definiert als $L^+:=\bigcup_{i\in\mathbb{N}_+}L^i$.

- Warum gilt $\varepsilon \notin L^+$ von beliebiger formeller Sprache L?
- $L := \{a, b, c\}.L^* = \{\varepsilon, a, aa, ab, ac, aaa, aab, \dots, b, ba, bb, \dots\}$

Lukas Bach, lukas.bach@student.kit.edu

Vollständige Induktion

