

Evaluación de Bachillerato para el Acceso a la Universidad

Castilla y León

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

EXAMEN

Nº páginas: 2 (tabla adicional)

OPTATIVIDAD: CADA ESTUDIANTE DEBERÁ ESCOGER **TRES** PROBLEMAS Y **UNA** CUESTIÓN Y DESARROLLARLOS COMPLETOS.

CRITERIOS GENERALES DE EVALUACIÓN

Cada problema se puntuará sobre un máximo de 3 puntos. Cada cuestión se puntuará sobre un máximo de 1 punto. Salvo que se especifique lo contrario, los apartados que figuran en los distintos problemas son equipuntuables. La calificación final se obtiene sumando las puntuaciones de los tres problemas y la cuestión realizados. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos efectuados.

Problemas (a elegir tres)

P1. (Números y álgebra)

La asociación "Stop Stress" tiene 60 personas asociadas que practican solo una de las siguientes actividades: correr, yoga o natación. Se sabe que hay 18 personas menos en la actividad de correr que la suma de personas que practican yoga y natación. Además, la séptima parte de las personas que corren es igual a la quinta parte de las que practican yoga. Calcular el número de personas que realiza cada una de las actividades.

P2. (Números y álgebra)

Un supermercado tiene almacenados 100 botes de alubias y 150 botes de garbanzos. Para su venta organiza dichos productos en dos lotes, A y B. La venta de un lote A, que contiene 1 bote de alubias y 3 botes de garbanzos, produce un beneficio de $3 \in$. La venta de un lote B, que contiene 2 botes de alubias y uno de garbanzos, produce un beneficio de $2 \in$. Además, desea vender al menos 10 lotes tipo A y al menos 15 lotes del tipo B.

Utilizando técnicas de programación lineal, calcular cuántos lotes ha de vender de cada tipo para maximizar el beneficio. ¿A cuánto asciende ese beneficio máximo?

P3. (Análisis)

Se considera la función
$$f(x) = \begin{cases} -x^2 + 8 & \text{si } -1 < x \le 2 \\ x + m & \text{si } x > 2 \end{cases}$$

- a) Determinar el valor de m para que f(x) sea continua.
- b) Calcular el área delimitada por f(x) y el eje OX en el intervalo [0, 1].

P4. (Análisis)

La cotización en euros de la criptomoneda *Bitcoin* en un determinado día del pasado año siguió la función $f(t) = 20t^2 - 200t + 1000$ donde t es el tiempo medido en horas desde el comienzo del día

- a) Estudiar el crecimiento y decrecimiento de la función f(t).
- b) ¿Cuánto se paga por la compra de 10 Bitcoins en el momento de mínima cotización de ese día?

P5. (Estadística y probabilidad)

Para ir a clase, un estudiante utiliza su coche el 70 % de los días, mientras que va en autobús el resto de los días. Cuando utiliza su coche, llega tarde el 20 % de los días, mientras que si va en autobús llega a tiempo el 10 % de los días. Elegido un día al azar:

- a) Calcular la probabilidad de que el estudiante llegue tarde.
- b) Si ha llegado a tiempo, ¿cuál es la probabilidad de que haya venido en autobús?

P6. (Estadística y probabilidad)

El tiempo que tarda el servidor de una empresa de venta *online* en registrar un pedido sigue una ley de probabilidad normal de media 0.16 minutos y desviación típica 0.37 minutos. Al comienzo de un *viernes negro* la empresa recibe 365 pedidos.

- a) Calcular la probabilidad de que el servidor tarde más de 73 minutos en registrar los 365 pedidos.
- b) Calcular la probabilidad de que el tiempo medio de registro de esos 365 pedidos sea menor o igual que 0.18 minutos.

Cuestiones (a elegir una)

C1. (Números y álgebra)

Dadas las matrices
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ y $C = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, calcular $AB + C$.

C2. (Análisis)

Calcula el valor de a para que la función $f(x) = ax^2 - 5ax + 4$ corte al eje OX en el punto de abscisa x = 4.

C3. (Estadística y probabilidad)

La ficha técnica de un sondeo electoral indica que ha encuestado a 1207 individuos de 18 o más años residentes en España. La muestra se ha tomado de manera estratificada por grupos de edad y sexo, con muestreo aleatorio simple en cada estrato. El error de estimación de la proporción de individuos que acudirá a votar en las próximas elecciones es de ± 2.8 % con un nivel de confianza del 95.5 %.

Para esta ficha técnica, identificar los siguientes elementos: población, diseño muestral, tamaño muestral y parámetro estimado.

Distribución Normal

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt$$

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9014
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9318
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999