PARTICLE THEORY AT UNSW

DARK MATTER DEPOPULATION IN THE EARLY UNIVERSE

MICHAEL A. SCHMIDT

NUW ALLIANCE

18 DECEMBER 2019

STANDARD MODEL OF PARTICLE PHYSICS

Masses measured in GeV proton mass $m_p = 1 \text{ GeV}$

- Extremely precise prediction: e^- magnetic moment $\mathcal{O}(10^{-12})$
- CKM unitarity
- S, T, U parameters
- **Excluded 4th gen.** at $> 5\sigma$
-

- Extremely precise prediction: e^- magnetic moment $\mathcal{O}(10^{-12})$
- CKM unitarity
- *S*, *T*, *U* parameters
- **Excluded 4th gen.** at $> 5\sigma$
-

- Extremely precise prediction: e^- magnetic moment $\mathcal{O}(10^{-12})$
- CKM unitarity
- S, T, U parameters
- **Excluded 4th gen. at** $> 5\sigma$
-

- Extremely precise prediction: e^- magnetic moment $\mathcal{O}(10^{-12})$
- CKM unitarity
- S, T, U parameters
- **Excluded 4th gen. at** $> 5\sigma$
-

INCOMPLETE STANDARD MODEL

Theoretical concerns

- Gravity is not incorporated.
- Why 3 generations? Any explanation of fermion masses?
- Why P and CP violation? Strong CP problem? ...

Unexplained observations

- What is dark matter?
- Neutrino masses and oscillations
- Baryon asymmetry of the Universe · · ·

Hints for new physics

- 3.7 σ (2.4 σ) deviation in muon (electron) magnetic moment
- Anomalous measurements in semileptonic B meson decays
- LSND/MiniBooNE: sterile neutrinos? · · · ·

- weak-scale mass $\sim \mathcal{O}(10^2) \text{ GeV}$
- weak-scale interaction strength $\sim \mathcal{O}(10^{-26}) \mathrm{cm}^3/\mathrm{s}$

- DM in thermal equilibrium with SM particles at high T
- lacktriangleright freeze-out when the Universe cools down and $\Gamma \lesssim H$
- relic abundance approx equals to the freeze-out abundance

$$\Omega_{
m DM} \propto \langle \sigma v
angle^{-1}$$

■ Note: If cross section too small, DM overabundant

- weak-scale mass $\sim \mathcal{O}(10^2) \text{ GeV}$
- weak-scale interaction strength $\sim \mathcal{O}(10^{-26}) \mathrm{cm}^3/\mathrm{s}$
- DM in thermal equilibrium with SM particles at high T
- lacktriangleright freeze-out when the Universe cools down and $\Gamma \lesssim H$
- relic abundance approx equals to the freeze-out abundance

$$\Omega_{
m DM} \propto \langle \sigma v
angle^{-1}$$

■ Note: If cross section too small, DM overabundant

- weak-scale mass $\sim \mathcal{O}(10^2) \text{ GeV}$
- weak-scale interaction strength $\sim \mathcal{O}(10^{-26}) \mathrm{cm}^3/\mathrm{s}$
- DM in thermal equilibrium with SM particles at high T
- lacktriangleright freeze-out when the Universe cools down and $\Gamma \lesssim H$
- relic abundance approx equals to the freeze-out abundance

$$\Omega_{
m DM} \propto \langle \sigma {
m extsf{v}}
angle^{-1}$$

■ Note: If cross section too small, DM overabundant

- weak-scale mass $\sim \mathcal{O}(10^2) \text{ GeV}$
- weak-scale interaction strength $\sim \mathcal{O}(10^{-26}) \mathrm{cm}^3/\mathrm{s}$
- DM in thermal equilibrium with SM particles at high T
- freeze-out when the Universe cools down and $\Gamma \lesssim H$
- relic abundance approx equals to the freeze-out abundance

$$\Omega_{\rm DM} \propto \langle \sigma v \rangle^{-1}$$

■ Note: If cross section too small, DM overabundant

- weak-scale mass $\sim \mathcal{O}(10^2)$ GeV
- weak-scale interaction strength $\sim \mathcal{O}(10^{-26}) \mathrm{cm}^3/\mathrm{s}$

- DM in thermal equilibrium with SM particles at high T
- freeze-out when the Universe cools down and $\Gamma \lesssim H$
- relic abundance approx equals to the freeze-out abundance

$$\Omega_{
m DM} \propto \langle \sigma v
angle^{-1}$$

■ Note: If cross section too small, DM overabundant

Dark matter χ and scalar S odd under Z_2 symmetry: $Z_2:(\chi,S)\to(-\chi,-S)$

Chronological order may differ from $T_f > T_a > T_b > T_{f,S} > T_i > T_c$

SIMPLEST SCENARIO [KOBAKHIDZE,MS,TALIA 17/12.05170]

BINO DM DEPOPULATION IN MSSM [KOBAKHIDZE,MS,TALIA 1910.01433]

PHASE TRANSITION

Leading thermal corrections (large T limit): $\delta V(T) = -\mu^2 + c_2 T^2$

THERMAL EVOLUTION

Four phases: $EWc(\langle S \rangle = \langle H \rangle = 0)$, $I_1(\langle S \rangle = 0)$, $I_2(\langle H \rangle = 0)$, $M(\langle S, H \rangle \neq 0)$

$$R = rac{\lambda_3 + \lambda_4 - |\lambda_5|}{\sqrt{\lambda_1 \lambda_2}} \simeq rac{ ext{portal coupling}}{ ext{self coupling}}$$