Topic 5 Combination Circuit

What is Combinational Circuit?

Combinational Circuit

- A digital circuit whose output depends only upon the *present* combination of its inputs
- Output changes only when inputs change
- Output changes once inputs change
- As oppose to Sequential Circuit which is
 - A digital circuit whose output depends not only upon the present input values, but also the history of input and output values
 - Have feedbacks from outputs
 - More complicated and difficult to analyze
- Typical modern digital circuit involves both combination and sequential circuits

How to Design Combinational Circuits?

	Step	Description
Step 1	Capture the function	Create a truth table or equations, whichever is most natural for the given problem, to describe the desired behavior of the combinational logic.
Step 2	Convert to equations	This step is only necessary if you captured the function using a truth table instead of equations. Create an equation for each output by ORing all the minterms for that output. Simplify the equations if desired.
Step 3	Implement as a logic circuit	For each output, create a circuit corresponding to the output's equation. (Sharing gates among multiple outputs is OK optionally.)

Example: Count Number of 1s

- Problem: Output in binary the number of 1s on three inputs
- E.g.: $010 \rightarrow 01 \ 101 \rightarrow 10 \ 000 \rightarrow 00$
 - Step 1: Capture the function
 - Truth table or equation?
 - Truth table is straightforward
 - Step 2: Convert to equation
 - y = a'bc + ab'c + abc' + abc
 - z = a'b'c + a'bc' + ab'c' + abc
 - Step 3: Implement as a gatebased circuit

	Inputs		(# of 1s)	Out	puts
a	b	С		У	Z
0	0	0	(0)	0	0
0	0	1	(1)	0	1
0	1	0	(1)	0	1
0	1	1	(2)	1	0
1	0	0	(1)	0	1
1	0	1	(2)	1	0
1	1	0	(2)	1	0
1	1	1	(3)	1	1

Example: Three 1s Detector

- Problem: Detect three consecutive 1s in 8-bit input: abcdefgh
 - $-00011101 \rightarrow 1 10101011 \rightarrow 0$ 11110000 $\rightarrow 1$
 - Step 1: Capture the function
 - Truth table or equation?
 - Truth table too big: 2^8=256 rows
 - Equation: create terms for each possible case of three consecutive 1s
 - y = abc + bcd + cde + def + efg + fgh
 - Step 2: Convert to equation -already done
 - Step 3: Implement as a gatebased circuit

Combinational Building Blocks

- Special combinational circuits combinational building blocks
 - Implement frequently used fundamental functions
 - To build bigger combinational circuits
- We will learn
 - Multiplexor (MUX)
 - Half adder
 - Full adder
 - Carry-ripple adder
 - Encoder/Decoder
 - Buffer
 - Tri-state buffer

Multiplexor (Mux)

Mux: A popular combinational building block

Like a railyard switch

- Routes one of its N data inputs to its one output, based on binary value of select inputs
 - 2 inputs → needs 1 select bit (2 different combinations) to select which input to connect to the output —i
 - 4 inputs → 2 select bits
 - 8 inputs → 3 select bits
 - N inputs → log₂(N) select bits

2 to 1 or 2 by 1 or 2x1 mux

Mux Internal Design

Connect i0 to d
when s0 is 0,
otherwise
connect i1 to d

Mux Internal Design

4x1 mux

4-bit 2x1 Mux

- Simplifying notation:

 4
 C
 is short for

 c3
 c2
 c1
 c0
- Ex: Two 4-bit inputs, A (a3 a2 a1 a0), and B (b3 b2 b1 b0)
 - 4-bit 2x1 mux (just four 2x1 muxes sharing a select line) can select between A or B
- Width of input channels may be any, 8, 18, 32, 64, ...

N-bit Mux Example

- Four possible display items
 - Temperature (T), Average miles-per-gallon (A), Instantaneous mpg (I), and Miles remaining (M) -- each is 8-bits wide
 - Choose which to display using two inputs x and y
 - Use 8-bit 4x1 mux

Half Adder

 Derive Boolean functions (sum-ofminterms) from the truth table for both outputs

Sum = A'B + AB' = m1 + m2 =
$$\Sigma$$
 (1, 2)
= (A+B)(A'+B') = M0•M3 = Π (0, 3)

- Addition of two single bits A, B
- Based on the operations it performs, a truth table can be built

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Carry = AB = m3
=
$$(A+B)(A+B')(A'+B)$$

= $M0 \cdot M1 \cdot M2$
= $\Pi(0, 1, 2)$

Application of XOR in Half-Adder

Half adder

Sum = A'B + AB' = A
$$\oplus$$
 B
Carry = AB

Full Adder

Derive minterm/Maxterm expressions from the truth table for both outputs

Sum = ?

Rased on the operations it performs

Badda on the ope	rations it ponorins,
a truth table can b	e built

Α	В	С	Sum	Carry
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1	1	1

Logic Circuit?

Full Adder

<u>A</u>	В	С	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Sum = A'B'C + A'BC' + AB'C' + ABC
=
$$\Sigma$$
 m(1, 2, 4, 7)
Carry = A'BC + AB'C + ABC' + ABC
= Σ m(3, 5, 6, 7)

Notice the circuit draw convention

Application of XOR in Full Adder

Full adder

Sum = A'B'C + A'BC' + AB'C' + ABC
= A'(B'C + BC') + A(B'C' + BC)
= A'(B
$$\oplus$$
 C) + A(B \oplus C)' (let B \oplus C = D)
= A'D + AD'
= A \oplus D
= A \oplus B \oplus C
Carry = A'BC + AB'C + ABC' + ABC
= (A'B+AB') C + AB (C'+C)
= (A \oplus B)C + AB

Application of XOR in Full Adder

Multi-bit Number Addition

Carry:
$$0 \ 1 \ 0 \ 0$$
A: $0 \ 1 \ 0 \ 0 = 4$
+ B: $0 \ 1 \ 0 \ 1 = 5$

Sum: $1 \ 0 \ 0 \ 1 = 9$

Carry:
$$0\ 0\ 0\ 0$$

 $0\ 1\ 1\ 0 = +6$
 $+$
Sum: $0\ 1\ 1\ 1 = +7$

A carry bit is the carry output (C_out) from previous stage, it's also the carry input (C_in) to the present stage

Carry: $1 \ 1 \ 0 \ 0 \ 0$ A: $1 \ 1 \ 0 \ 0 = 12$ + B: $1 \ 1 \ 0 \ 1 = 13$ Sum: $1 \ 1 \ 0 \ 0 \ 1 = 25$

Without previous stage, carry should be always 0

Need one more bit to hold a number bigger than $2^{n}-1 = 15$

Operation may be performed by a full adder

Carry-Ripple Adder

carry-ripple adder

- 4-bit adder: Adds two 4-bit numbers, generates 5-bit output
 - 5-bit output can be considered 4-bit "sum" plus 1-bit "carry out"
- Can easily build any size adder

Two's Complement Subtractor

- Using two's complement representation
 - A B = A + (-B)
 - = A + (two's complement of B)
 - $= A + invert_bits(B) + 1$
- So build subtractor using adder by inverting B's bits, and setting carry in to 1

4-Bit 2's Complement Adder

4-Bit 2's Complement Subtractor

Arithmetic-Logic Unit: ALU

- ALU: Component that can perform any of various arithmetic (add, subtract, increment, etc.) and logic (AND, OR, etc.) operations, based on control inputs
- Key component in computer

TABLE 4.2 Desired calculator operations

Inputs				Sample output if		
Х	У	Z	Operation	A=00001111, B=00000101		
0	0	0	S = A + B	S=00010100		
0	0	1	S = A - B	S=00001010		
0	1	0	S = A + 1	S=00010000		
0	1	1	S = A	S=00001111		
1	0	0	S = A AND B (bitwise AND)	S=00000101		
1	0	1	S = A OR B (bitwise OR)	S=00001111		
1	1	0	S = A XOR B (bitwise XOR)	S=00001010		
1	1	1	S = NOT A (bitwise complement)	S=11110000		

Encoder

Each input is given a binary code

	Inputs								utpu	ts
D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7	Х	У	Z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Decoder

- Decoder: Popular combinational logic building block, in addition to logic gates
 - Converts input binary number to one high output
- 2-input decoder: four possible input binary numbers
 - So has four outputs, one for each possible input binary number
- Internal design
 - AND gate for each output to detect input combination
- Decoder with enable e
 - Outputs all 0 if e=0
 - Regular behavior if e=1
- n-input decoder: 2ⁿ outputs

Decoder

For any input combination, only one of the outputs is turned on

	Inputs	6				Out	puts			
X	У	Z	D_0	D_1	D_2	D_3	D_4	D_5	D_6	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Gate-Level Implementation of 3×8 Decoder

Minterm Generator

Implementation of Any Circuit with a Decoder

- P (A, B, C) = Σ m(1, 2, 3, 5) and Q (A, B, C) = Σ m(0, 4, 5, 6)
- Since there are three inputs and total of 8 minterms, we can implement the circuits with a 3-to-8-line decoder

Decoder Example

- New Year's Eve Countdown Display
 - Microprocessor counts from 59 down to 0 in binary on 6-bit output
 - Want illuminate one of 60 lights for each binary number
 - Use 6x64 decoder
 - 4 outputs unused

Buffer and Three State (Tri-state) Buffer

- A buffer is a one directional transmission logic device
 - somewhat like a NOT gate without complementing the binary value
 - amplify the driving capability of a signal
 - insert delay
 - Protect input from output

- A three state (Tri-state) buffer can have three different output values, controlled by an enable bit
 - 0 (off) when B = 1, A = 0;
 - 1 (on) when B = 1, A = 1;
 - Z (high impedence, no voltage) when B = 0, A = x;

Tri-state Buffers

Different types of tri-state buffers

В	Α	C
0	Ó	Z Z
0	1	Ζ
1	Ō	0
1	Ĭ	l 1
-	- '	

В	Α	C
0	0	0
0	1	1
1	0	Ζ
1	1	Z

Tri-state Buffer Application – Bidirectional I/O Port

Applications of Decoders and Tri-state Buffers

Based on the control signals, only one path will be connected
 Datapath

Alternative Implementation of Datapath Control

Based on the control signals, only one path will be connected
 Datapath

