

Deep Learning Lab

Introduction to the Lab activities

Master Big Data 2021

Andrea Cossu

- → andrea.cossu@sns.it
- → https://andreacossu.github.io/

Ph.D. student in Data Science

- @ Scuola Normale Superiore
- @ University of Pisa working on Continual Learning

Member of PAI lab and CIML group ContinualAI Team Lead

Calendar

- Monday, April 19th, 14-18
- Monday, April 26th, 14-18
- Tuesday, May 4th, 14-18
- Monday, May 10th, 14-18
- Monday, May 17th, 14-18
- Microsoft Teams, DL channel (+ separate rooms when needed)

DL Lab tools

- Keras
 - + Tensorflow
- Colab
- Matplotlib, numpy, scikit-learn...

DL Lab outline

- Practical Deep Learning with Keras (and Tensorflow)
- Deep Learning areas
 - Tabular data
 - Computer Vision
 - Sequential data processing (audio, natural language...)
 - Generative models
 - Graph structured data
- You will see more stuff than you actually need for the project!

DL Lab objectives

- Understand the main principles behind a Deep Learning library
 - learn one, master all
- Autonomously navigate a deep learning library
 - first google it, then ask it
- Use a deep learning library to solve a specific problem/application
 - aka, fun (and/or \$\$\$)
- We will go slowly!
 Most of the things you need are already implemented :)

Final Project

- Verify that you acquired the objectives (theory + lab)
- Address a new problem from a known area your own way
 - you can use whatever code you like
 - you have to understand it, first
 - so that you can justify your design choice (why this? Have you tried that?)

Practical DL (before digging deeper into the code)

Tensors (the computer science way)

- Multi-dimensional array filled with homogenous values
- They have (at least)
 - A shape/size of n dimensions (D1 x D2 x ... x Dn)
 - A (data)type: float32, int32, bool...
- Manipulate tensors with common math operators

Computational Graph

Tensorflow

- Low level API to build DL models, ML pipelines...
- Deal directly with tensors, build models by nesting / composing different modules (e.g. layers)
- Manipulate gradients, control single variables
- Powerful, but more complex

Keras

- High-level API to build DL models, ML pipelines...
- Deal directly with entire modules (e.g. layers)
- Fast prototyping of common paradigms (training loops, dataset manipulation...)
- Powerful and easier...
 - Unless you have to build specific DL models (e.g. change training loop requires mixing Keras + Tensorflow)
- Sometimes, high-level means harder to debug. Each function performs lots of computation, which is hidden to the user.

PyTorch

- Tensorflow equivalent
 - better organized documentation
 - Less oriented to production but it is changing fast
- High level API are available (e.g. FastAI, Lightning...)
- You don't want to mix the two in the beginning

Monitoring tools

- You should always have a look at how your training is progressing
- Needed to understand which DL tricks to apply to improve performances
- Tensorboard (shipped with Keras), Weights and Biases (free for open-source projects), many others.

Let's code, shall we?