Inférence de réseaux écologiques à partir d'arbres latents dans un modèle Poisson Log-Normal

Encadré par S. Robin¹ et C. Ambroise¹²

Raphaëlle Momal

¹ UMR AgroParisTech / INRA MIA-Paris ²LaMME, Evry

15 mai 2018

Exemple de réseau écologique

[Jakuschkin et al., 2016]:

- But: à partir de mesures d'abondance, identifier les liens de dépendance entre le champignon E. alphitoïde présent sur les feuilles du chêne, et les autres micro-organismes présents.
- Utile à la compréhension et au contrôle des maladies chez le chêne.

FIGURE – Model of the pathobiome *Erysiphe alphitoides* on oak leaves, source: Jakuschkin *et al.*

Notion de réseau

- Tableau de données observées Y de dimensions *n* × *d*
 - abondances de *d* espèces, expressions RNA-seq de *d* gènes ...
- Réseau : représentation graphique de la structure de dépendance conditionnelle du jeu de données.
- Inférer un réseau : inférer les arêtes du graphe, i.e. la structure de dépendance des variables (espèces, covariables, ...) de Y

Exemple :
$$Y = (Y_1, ..., Y_4)$$
 :

Les variables Y_2 et Y_1 sont indépendantes entre elles conditionnellement à la variable Y_4 .

15 mai 2018

Cadre mathématique : modèles graphiques

- Clique C d'un graphe G : sous-ensemble de noeuds de G qui sont tous liés entre eux.
- \blacksquare Clique maximale C_G : aucune autre clique de G ne la contient strictement.

Propriété de factorisation [Lauritzen, 1996]

Soit $Y = (Y_1, ..., Y_q)$ et p sa densité. p se factorise selon le graphe non orienté G si :

$$p(y) \propto \prod_{C \in C_G} \Phi_C(y^C)$$

Et alors G représente la structure d'indépendance conditionnelle entre les Y_i .

$$p(Y) = \phi_1(Y_2, Y_4) \times \phi_2(Y_1, Y_3, Y_4)$$

4/23

Raphaëlle Momal Inférence de réseaux 15 mai 2018

Gaussian Graphical Models (GGM)

Y une variable gaussienne multivariée de dimension d :

$$Y = (Y_1, ..., Y_d) \sim \mathcal{N}_d(0, \Omega^{-1}),$$

$$\Omega = (\omega_{ij})_{i,j}.$$

L'écriture de la gaussienne permet directement d'obtenir une factorisation :

$$p(y) \propto exp(-y^{T}\Omega y/2)$$

$$\propto \prod_{j,k,\omega_{jk}\neq 0} exp(-y_{j}\omega_{jk}y_{k}/2)$$

Raphaëlle Momal Inférence de réseaux 15 mai 2018

Gaussian Graphical Models (GGM)

Y une variable gaussienne multivariée de dimension d :

$$Y = (Y_1, ..., Y_d) \sim \mathcal{N}_d(0, \Omega^{-1}),$$

$$\Omega = (\omega_{ij})_{i,j}.$$

L'écriture de la gaussienne permet directement d'obtenir une factorisation :

$$p(y) \propto exp(-y^T \Omega y/2)$$

 $\propto \prod_{j,k,\omega_{jk} \neq 0} exp(-y_j \omega_{jk} y_k/2)$

$$\Omega = \left(egin{array}{cccc} * & 0 & * & * \ 0 & * & 0 & * \ * & 0 & * & * \ * & * & * & * \end{array}
ight)$$

5/23

Raphaëlle Momal Inférence de réseaux 15 mai 2018

Inférence de Ω : le graphical Lasso

■ La log-vraisemblance de Y s'écrit :

$$L(Y,\Omega) = \frac{n}{2} \log(det(\Omega)) - \frac{n}{2} Y^T \Omega Y + \textit{cste}$$

Estimation parcimonieuse

Le graphical-Lasso (glasso):

Le graphical-Lasso pénalise la norme l_1 de la matrice de précision :

$$\widehat{\Omega}_{\lambda} = rg\min_{\Omega \in \mathcal{S}_d^+} \left\{ L(Y,\Omega) + \lambda \sum_{i
eq j} |\textit{\textbf{w}}_{ij}|
ight\}$$

Choix du λ...

Raphaëlle Momal Inférence de réseaux

15 mai 2018

Données structurées par arbre

 La structure de dépendance des données s'appuie sur un arbre

La vraisemblance des données se factorise sur les noeuds et les arêtes [Chow and Liu, 1968]:

$$\mathbb{P}(Y|T) = \prod_{j=1}^{d} \mathbb{P}(Y_j) \prod_{k,l \in T} \psi_{kl}(Y) \quad ,$$

Οù

$$\psi_{kl}(Y) = \frac{\mathbb{P}(Y_k, Y_l)}{\mathbb{P}(Y_k) \times \mathbb{P}(Y_l)}.$$

Rmq : dans le cas gaussien, $\hat{\Psi} = [\hat{\psi_{kl}}] = (1 - \hat{\rho}^2)^{-1/2}$

Loi Poisson Log-Normale (PLN)

La loi Poisson log-Normale

$$\left. \begin{array}{ll} Z_i \text{ iid} & \sim \mathcal{N}_d(\mu, \Sigma) \\ & (Y_{ij})_j \perp \!\!\! \perp |Z_i \\ & Y_{ij}|Z_{ij} & \sim \mathcal{P}(e^{Z_{ij}}) \end{array} \right\} Y \sim \mathcal{PLN}(\mu, \Sigma)$$

- Modélise des comptages
- S'étend facilement aux données multi-vairées (contrairement à la Binomiale Négative)
- Autorise les corrélations négatives
- Permet l'ajustement sur des covariables

Raphaëlle Momal Inférence de réseaux 15 mai 2018

Loi Poisson Log-Normale (PLN)

La loi Poisson log-Normale

$$\left. \begin{array}{ll} Z_i \text{ iid} & \sim \mathcal{N}_d(\mu, \Sigma) \\ & (Y_{ij})_j \perp \!\!\! \perp |Z_i \\ & Y_{ij}|Z_{ij} & \sim \mathcal{P}(e^{Z_{ij}}) \end{array} \right\} Y \sim \mathcal{PLN}(\mu, \Sigma)$$

- Modélise des comptages
- S'étend facilement aux données multi-vairées (contrairement à la Binomiale Négative)
- Autorise les corrélations négatives
- Permet l'ajustement sur des covariables

Idée : Inférer le réseau des Z, dans la couche latente gaussienne.

Raphaëlle Momal Inférence de réseaux 15 mai 2018

Modèle hiérarchique à arbre latent

Un arbre couvrant est tiré dans une loi décomposable sur les arêtes :

Loi décomposable pour un arbre T [Meilă and Jaakkola, 2006]

$$\mathbb{P}(T) = \frac{1}{B} \prod_{(k,l) \in T} \beta_{kl} \text{ , avec } B = \sum_{T \in \mathcal{T}} \prod_{(k,l) \in T} \beta_{kl}$$

- Un poids β_{kl} est attribué à chaque arête (k, l)
- La probabilité de l'arbre de dépendance est proportionnelle au produit de ses poids.
- Nous considérons les poids variants

Modèle hiérarchique à arbre latent

Un arbre couvrant est tiré dans une loi décomposable sur les arêtes :

Loi décomposable pour un arbre T [Meilă and Jaakkola, 2006]

$$\mathbb{P}(T) = \frac{1}{B} \prod_{(k,l) \in T} \beta_{kl} \text{ , avec } B = \sum_{T \in \mathcal{T}} \prod_{(k,l) \in T} \beta_{kl}$$

- Un poids β_{kl} est attribué à chaque arête (k, l)
- La probabilité de l'arbre de dépendance est proportionnelle au produit de ses poids.
- Nous considérons les poids variants
- Les données sont ensuite simulées conditionnellement à l'arbre tiré :

$$Z|T \sim \mathcal{N}_d(0,\Sigma_Z)$$

Modèle hiérarchique à arbre latent

Un arbre couvrant est tiré dans une loi décomposable sur les arêtes :

Loi décomposable pour un arbre T [Meilă and Jaakkola, 2006]

$$\mathbb{P}(T) = \frac{1}{B} \prod_{(k,l) \in T} \beta_{kl} \text{ , avec } B = \sum_{T \in \mathcal{T}} \prod_{(k,l) \in T} \beta_{kl}$$

- Un poids β_{kl} est attribué à chaque arête (k, l)
- La probabilité de l'arbre de dépendance est proportionnelle au produit de ses poids.
- Nous considérons les poids variants
- Les données sont ensuite simulées conditionnellement à l'arbre tiré :

$$Z|\mathit{T} \sim \mathcal{N}_d(0,\Sigma_Z)$$

L'arbre qui structure les données est traité comme une variable latente.

$$\mathbb{P}(Z) = \sum_{T \in \mathcal{T}} \mathbb{P}(T) \mathbb{P}(Z|T) : \text{m\'elange d'arbres}$$

Raphaëlle Momal Inférence de réseaux 15 mai 2018

Étape E

Vraisemblance complète :

$$\mathbb{P}(Y, Z, T) = \mathbb{P}(T) \times \mathbb{P}(Z|T) \times \mathbb{P}(Y|Z)$$

$$\begin{split} \log(\mathbb{P}(Y,Z,T)) &= \sum_{k,l} \mathbb{1}_{\{(k,l) \in T\}} (\log(\beta_{kl}) + \log(\psi_{kl}(Z))) - \log(B) \\ &+ \sum_{k} (\log(\mathbb{P}(Z_k)) + \log(\mathbb{P}(Y_k|Z_k))) \end{split}$$

Raphaëlle Momal Inférence de réseaux 15 mai 2018

Étape E

Vraisemblance complète :

$$\mathbb{P}(Y, Z, T) = \mathbb{P}(T) \times \mathbb{P}(Z|T) \times \mathbb{P}(Y|Z)$$

$$\begin{split} \log(\mathbb{P}(Y,Z,T)) &= \sum_{k,l} \mathbb{1}_{\{(k,l) \in T\}} (\log(\beta_{kl}) + \log(\psi_{kl}(Z))) - \log(B) \\ &+ \sum_{k} (\log(\mathbb{P}(Z_k)) + \log(\mathbb{P}(Y_k|Z_k))) \end{split}$$

Espérance conditionnelle :

$$\mathbb{E}_{\theta}[\log(\mathbb{P}(Y,Z,T))|Y] = \sum_{k,l \in V} \mathbb{P}((k,l) \in T|Y) \log(\beta_{kl}) + \mathbb{E}[\mathbb{1}_{\{(k,l) \in T\}} \log(\psi_{kl}(Z)|Y))]$$
$$+ \sum_{k} \mathbb{E}[\log(\mathbb{P}(Z_k))|Y] + \mathbb{E}[\log(\mathbb{P}(Y_k|Z_k))|Y] - \log(B)$$

Raphaëlle Momal Inférence de réseaux 15 mai 2018

Solution en deux étapes

Le package PLNmodels approche les paramètres de la loi. En utilisant PLNmodels :

- **I** Estimer $\hat{\Sigma}_Z$
- 2 Appliquer EM par mélange d'arbre à $Z \sim \mathcal{N}(0, \hat{\Sigma}_Z)$

Écriture simplifiée de l'espérance conditionnelle :

$$\mathbb{E}_{\theta}[\log(\mathbb{P}(Z,T))|Z] = \sum_{k,l} \mathbb{P}((k,l) \in T|Z) \left(\log(\beta_{kl}) + \log(\psi_{kl})\right) - \log(B) + \sum_{k} \log(\mathbb{P}(Z_k))$$

Raphaēlle Momal Inférence de réseaux 15 mai 2018

Calcul de la probabilité conditionnelle

Théorème de Kirchhoff (matrix tree, [Chaiken and Kleitman, 1978])

Pour toute matrice symétrique $W = (a_{kl})_{k,l}$, son Laplacien Q(W) se définit par :

$$Q_{uv}(W) = \begin{cases} -a_{uv} & 1 \le u < v \le n \\ \sum_{w=1}^{n} a_{wv} & 1 \le u = v \le n. \end{cases}$$

Alors pour tout u et v:

$$|Q_{uv}^*(W)| = \sum_{T \in \mathcal{T}} \prod_{\{k,l\} \in E_T} a_{kl}$$

$$\mathbb{P}((k,l) \in T|Z) = \sum_{T \in \mathcal{T}:(k,l) \in T} \mathbb{P}(T|Z) = \frac{\sum_{(k,l) \in T} \mathbb{P}(T) \mathbb{P}(Z|T)}{\sum_{T} \mathbb{P}(T) \mathbb{P}(Z|T)}$$
$$= 1 - \frac{|Q_{UV}^*(B\Psi^{-kl})|}{|Q_{UV}^*(B\Psi)|}$$
$$= \tau_{kl}$$

Raphaēlle Momal Inférence de réseaux 15 mai 2018

Algorithme EM: étape M

But : optimiser les poids β_{kl} .

$$\operatorname*{arg\,max}_{\beta_{kl}} \left\{ \sum_{k,l \in V} \tau_{kl} (\log(\beta_{kl}) + \log(\psi_{kl})) - \log(B) + \sum_{k} \log(\mathbb{P}(Z_k)) \right\}$$

Rappel :
$$B = \sum_{T \in \mathcal{T}} \prod_{k,l \in T} \beta_{k,l}$$
, complexité combinatoire élevée :

Comment calculer $\frac{\partial \mathbf{B}}{\partial \beta_{\mathbf{k}\mathbf{l}}}$?

Raphaëlle Momal Inférence de réseaux 15 mai 2018

Mise à jour des β_{kl}

Résultat de Meila [Meila and Jordan, 2000]

En inversant un mineur du Laplacien Q, on définit la matrice symétrique M :

$$\begin{cases} M_{uv} = [\mathcal{Q}^{*-1}]_{uu} + [\mathcal{Q}^{*-1}]_{vv} - 2[\mathcal{Q}^{*-1}]_{uv} & u, v < n \\ M_{nv} = M_{vn} = [\mathcal{Q}^{*-1}]_{vv} & v < n \\ M_{vv} = 0. \end{cases}$$

On peut montrer que :

$$\frac{\partial |Q_{uv}^*(W)|}{\partial \beta_{kl}} = M_{kl} \times |Q_{uv}^*(W)|$$

$$\frac{\partial \mathbb{E}_{\theta}[\log(\mathbb{P}(Z,T))|Z]}{\partial \beta_{kl}} = \frac{1}{\beta_{kl}} \tau_{kl} - \frac{1}{B} \frac{\partial B}{\partial \beta_{kl}}$$

Formule de mise à jour à l'itération h + 1

$$\hat{\beta}_{kl}^{h+1} = \frac{\tau_{kl}^h}{M_{kl}^h}$$

Raphaëlle Momal Inférence de réseaux 15 mai 2018

Plan de simulation

- Tirer un graphe G
- ${f 2}$ À partir de la matrice d'adjacence, construire Ω qui soit défini positive $\Rightarrow \Sigma_Z$
- $\begin{array}{l} \hbox{ \begin{tabular}{l} \blacksquare Par le package $\tt PLNmodels: ajuster le modèle de régression PLN à partir de Σ_Z,} \\ \Rightarrow \hat{\Sigma}_Z \\ \end{array}$
- 4 Appliquer le glasso et notre EM à $\hat{\Sigma}_Z$
- 5 Comparer les graphes obtenus et G

Comparaison des graphes inférés avec G

Les méthodes renvoient des matrices de scores pour chaque arête :

- Glasso : pénalités λ nécessaires pour annuler chacune des arêtes
- EM : poids β_{kl}

16 / 23

Raphaëlle Momal Inférence de réseaux 15 mai 2018

Comparaison des réseaux

Pour un seuil fixé: arêtes identifiées (vrais positifs), manquées (faux négatifs), ajoutés (faux positif), ou absence d'arête retrouvée (vrai négatif): construction courbe ROC

Raphaëlle Momal Inférence de réseaux 15 mai 2018 17 / 23

Comparaison des réseaux

Pour un seuil fixé: arêtes identifiées (vrais positifs), manquées (faux négatifs), ajoutés (faux positif), ou absence d'arête retrouvée (vrai négatif): construction courbe ROC

Comparer pour tous les seuils : AUC

FIGURE - Vrai réseau

17 / 23

Raphaëlle Momal Inférence de réseaux 15 mai 2018

Les graphes G

Paramètres : nombre de noeuds, densité d'arêtes...

Raphaëlle Momal Intérence de réseaux 15 mai 2018

Résultats

Le modèle A2

- Modèle A1 : Inférence du réseau latent en deux étapes ($\hat{\Sigma}_Z$ par PLNmodels puis inférence du réseau à partir de $\hat{\Sigma}_Z$)
 - Résultats corrects : meilleur ou équivalent au glasso sur un panel de graphes de type et densité différents
 - facile
 - Mais l'estimation avec PLNmodels ajoute de la variabilité

Modèle A2 : réécrire le Variational EM utilisé dans PLNmodels, en y incluant la structure de dépendance par arbre de la couche latente.

15 mai 2018

20 / 23

Permettrait de ré-estimer $\hat{\Sigma}_Z$ à chaque itération

Retour sur la loi PLN

La loi Poisson log-Normale

$$\left. \begin{array}{ll} Z_i \text{ iid} & \sim \mathcal{N}_{d}(\mu, \Sigma) \\ & (Y_{ij})_j \perp \!\!\! \perp |Z_i \\ & Y_{ij}|Z_{ij} & \sim \mathcal{P}(e^{Z_{ij}}) \end{array} \right\} Y \sim \mathcal{PLN}(\mu, \Sigma)$$

- Le package poilog de R calcule les densités uni et bi-variées
 - $\psi_{kl}(Y) = \frac{\mathbb{P}(Y_k, Y_l)}{\mathbb{P}(Y_k) \times \mathbb{P}(Y_l)}$ sont directement accessibles
 - ⇒ Inférence directe du réseau des espèces dans l'espace de Y?

Modèle B:

$$\mathbb{P}(Y|T) = \prod_k \mathbb{P}(Y_k) \prod_{kl \in T} \mathbb{P}(Y_k, Y_l)$$

Raphaëlle Momal Inférence de réseaux 15 mai 2018

Perspective

- Choix du seuil des matrices de scores
- Mise en oeuvre du modèle A2
- Confrontation des modèles A et B : Modèles différents avec des marginales identiques ?
- Prise en compte d'un acteur manquant

Perspective

- Choix du seuil des matrices de scores
- Mise en oeuvre du modèle A2
- Confrontation des modèles A et B : Modèles différents avec des marginales identiques ?
- Prise en compte d'un acteur manquant

marginalisation

Graphe complet \mathcal{G}

Merci pour votre attention!

Raphaëlle Momal Inférence de réseaux 15 mai 2018

Chaiken, S. and Kleitman, D. J. (1978).

Matrix tree theorems.

Journal of combinatorial theory, Series A, 24(3):377–381.

Chow, C. and Liu, C. (1968).

Approximating discrete probability distributions with dependence trees.

IEEE Transactions on Information Theory, 14(3):462–467.

Jakuschkin, B., Fievet, V., Schwaller, L., Fort, T., Robin, C., and Vacher, C. (2016). Deciphering the pathobiome: Intra- and interkingdom interactions involving the pathogen erysiphe alphitoides.

Microb Ecol, 72(4) :870–880. doi:10.1007/s00248-016-0777-x.

Lauritzen, S. L. (1996). *Graphical Models*.

Meilă, M. and Jaakkola, T. (2006).

Tractable bayesian learning of tree belief networks.

Statistics and Computing, 16(1):77-92.

Meila, M. and Jordan, M. I. (2000).

Learning with mixtures of trees.

Journal of Machine Learning Research, 1:1-48.