

<u>Help</u>

sandipan_dey ~

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Calendar</u> <u>Discussion</u> <u>Notes</u>

☆ Course / Unit 1: Functions of two variables / Problem Set 1B

Next >

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

44:25:12

< Previous

□ Bookmark this page

Problem Set B due Aug 4, 2021 20:30 IST Completed

Practice

A second example, level curves

1/1 point (graded)

What are the level curves of the function $\sin{(x+t)}$?

Use the convention that the $m{x}$ axis is the vertical axis, and the $m{t}$ axis is the horizontal axis.

3 2

■ Calculator

Hide Notes

2/6

Solution:

To understand the level curves, it is helpful to look at specific levels and understand what is happening.

First let us consider the level curve $\sin{(x+t)}=0$ Note that this happens when $x+t=\pi k$ where k is any integer. Therefore the level curves for $\sin{(x+t)}=0$ is a collection of lines

$$\{t=\pi k-x|k ext{ an integer}\}$$

Note that these lines are all parallel to each other, with intercepts along the t axis differing by integer values of π .

We see that the level curves are very similar to the level curves for $\sin{(x-t)}$, except that the level curves are now lines parallel to t=-x instead of t=x.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

A second example, time perspective

1/1 point (graded)

What best describes how we observe the function $\sin{(x+t)}$ as a function that changes over time?

- A sine function that appears to travel to the right over time.
- A sine function that appears to travel to the left over time.
- () A sine function whose frequency increases over time.
- A sine function whose frequency decreases over time.

■ Calculator

	Problem Set 1B Unit 1: Functions of two variables Multivariable Calculus 1: Vectors and Derivatives edX
A sine	function whose amplitude increases over time.
A since function whose amplitude decreases over time.	
~	
Solution:	
Γhis is simila	r to the first example, except at every time $oldsymbol{t_0}$, the sine function is shifted to the left by $oldsymbol{t_0}$.
Submit	You have used 1 of 5 attempts
1 Answer	s are displayed within the problem
A third ex 1/1 point (grad What best de	
O A sine	function that appears to travel to the right over time.
A sine	function that appears to travel to the left over time.
O A sine	function whose frequency increases over time.
O A sine	function whose frequency decreases over time.
A sine	function whose amplitude increases over time.
A sine	function whose amplitude decreases over time.

Solution:

Note that at t=0, we get the function $\sin{(x)}$. At a later time t, the function is $e^{-t}\sin{(x)}$. Therefore the amplitude of the sine function is being multiplied by a number $e^{-t}<1$ for all t>0. The larger t is, the smaller e^{-t} becomes. Therefore as t increases, the amplitude of the sine function is decreasing.

Below you see the function $\sin{(x)}$ in blue, and the function $e^{-t}\sin{(x)}$ animated over time in orange.

Submit

You have used 1 of 5 attempts

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>

