- 1. (25 points) Consider a binary classification problem that $\theta \in \{0, 1\}$ denotes the class label, $\boldsymbol{X}|(\theta=0) \sim N_p(\boldsymbol{\mu}_0, \boldsymbol{\Sigma})$ and $\boldsymbol{X}|(\theta=1) \sim N_p(\boldsymbol{\mu}_1, \boldsymbol{\Sigma})$, where N_p denotes the p-dimensional multivariate normal distribution. Suppose 0-1 loss is used, and the prior distribution of θ is $P(\theta=0)=1/2$ and $P(\theta=1)=1/2$.
 - (i) (4 points) Derive the Bayes rule for a classifying a new observation $x \in \mathbb{R}^p$.
 - (ii) (4 points) Derive the misclassification rate R^* of the Bayes rule.
 - (iii) (4 points) Let X_{0i} ($i=1,\ldots,n_0$) be independent and identically distributed (i.i.d) samples from the class of $\theta=0$ and X_{1i} ($i=1,\ldots,n_1$) be i.i.d samples from the class of $\theta=1$, and X_{0i} is independent of X_{1i} . Derive the maximum likelihood estimators $(\widehat{\mu}_0,\widehat{\mu}_1,\widehat{\Sigma})$ of (μ_0,μ_1,Σ) .
 - (iv) (4 points) If we replace (μ_0, μ_1, Σ) in the Bayes rule with $(\widehat{\mu}_0, \widehat{\mu}_1, \widehat{\Sigma})$, prove that the misclassification rate of the resulting rule, i.e., the probability of classifying \boldsymbol{x} to a wrong class given the training data $\{\boldsymbol{X}_{0i}\}_{i=1}^{n_0}$ and $\{\boldsymbol{X}_{1i}\}_{i=1}^{n_1}$, is given by

$$\frac{1}{2}\Phi\left(\frac{\widehat{\boldsymbol{\delta}}^T\widehat{\boldsymbol{\Sigma}}^{-1}(\boldsymbol{\mu}_1-\widehat{\boldsymbol{\mu}})}{\sqrt{\widehat{\boldsymbol{\delta}}^T\widehat{\boldsymbol{\Sigma}}^{-1}\boldsymbol{\Sigma}\widehat{\boldsymbol{\Sigma}}^{-1}\widehat{\boldsymbol{\delta}}}}\right) + \frac{1}{2}\Phi\left(-\frac{\widehat{\boldsymbol{\delta}}^T\widehat{\boldsymbol{\Sigma}}^{-1}(\boldsymbol{\mu}_0-\widehat{\boldsymbol{\mu}})}{\sqrt{\widehat{\boldsymbol{\delta}}^T\widehat{\boldsymbol{\Sigma}}^{-1}\boldsymbol{\Sigma}\widehat{\boldsymbol{\Sigma}}^{-1}\widehat{\boldsymbol{\delta}}}}\right),$$

where $\widehat{\boldsymbol{\delta}} = \widehat{\boldsymbol{\mu}}_0 - \widehat{\boldsymbol{\mu}}_1$ and $\widehat{\boldsymbol{\mu}} = (\widehat{\boldsymbol{\mu}}_0 + \widehat{\boldsymbol{\mu}}_1)/2$.

(v) (5 points) We propose another classification rule that assigns \boldsymbol{x} to the class of $\theta=0$ if and only if $\widehat{\boldsymbol{\beta}}^T(\boldsymbol{x}-\widehat{\boldsymbol{\mu}})\geq 0$, where $\widehat{\boldsymbol{\mu}}=(\widehat{\boldsymbol{\mu}}_0+\widehat{\boldsymbol{\mu}}_1)/2$ and $\widehat{\boldsymbol{\beta}}$ solves the following problem

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta} \in \mathcal{R}^p}{\operatorname{argmin}} \ \frac{1}{2} \boldsymbol{\beta}^T \widehat{\boldsymbol{\Sigma}} \boldsymbol{\beta} - (\widehat{\boldsymbol{\mu}}_0 - \widehat{\boldsymbol{\mu}}_1)^T \boldsymbol{\beta} + \lambda \sum_{j=1}^p |\beta_j|.$$

Derive the Majorization-Minimization algorithm for solving $\widehat{\beta}$. Give an explicit choice of step size and closed-form expressions on how iterations need to be done.

(vi) (4 points) Let R_n denote the misclassification rate of the rule described in (v). Suppose we can show that $\hat{\boldsymbol{\beta}} \xrightarrow{P} \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1)$ as $n \to \infty$. Using this result to prove $R_n \xrightarrow{P} R^*$.

You may use the following facts.

- (a) The density of $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is $\{(2\pi)^p |\boldsymbol{\Sigma}|\}^{-1/2} \exp\{-(\boldsymbol{x} \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} \boldsymbol{\mu})/2\};$
- (b) For symmetric matrices A and M,

$$\begin{split} \frac{\partial \mathrm{tr}(\boldsymbol{A}\boldsymbol{M})}{\partial \boldsymbol{M}} &= \frac{\partial \mathrm{tr}(\boldsymbol{M}\boldsymbol{A})}{\partial \boldsymbol{M}} = \boldsymbol{A}.\\ \frac{\partial \log |\boldsymbol{M}|}{\partial \boldsymbol{M}} &= \boldsymbol{M}^{-1}. \end{split}$$

Solution:

- (i) Under 0-1 loss, the Bayes rule is the posterior mode. Therefore, the Bayes rule assigns \boldsymbol{x} to $\theta = 0$ iff $f(\theta = 0|\boldsymbol{x}) > f(\theta = 1|\boldsymbol{x})$. That is equivalent as $-(1/2)(\boldsymbol{x} \boldsymbol{\mu}_0)^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} \boldsymbol{\mu}_0) > -(1/2)(\boldsymbol{x} \boldsymbol{\mu}_1)^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} \boldsymbol{\mu}_1)$. After some algebra, we find that the Bayes rule assigns \boldsymbol{x} to $\theta = 0$ iff $\boldsymbol{\delta}^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} \boldsymbol{\mu}) > 0$, where $\boldsymbol{\delta} = \boldsymbol{\mu}_0 \boldsymbol{\mu}_1$ and $\boldsymbol{\mu} = (\boldsymbol{\mu}_0 + \boldsymbol{\mu}_1)/2$.
- (ii) The misclassification rate of Bayes rule is given by

$$\begin{split} R^* &= \frac{1}{2} P(\boldsymbol{\delta}^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) > 0 | \boldsymbol{\theta} = 1) + \frac{1}{2} P(\boldsymbol{\delta}^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) \leq 0 | \boldsymbol{\theta} = 0) \\ &= \frac{1}{2} P\left(\frac{\boldsymbol{\delta}^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) - \boldsymbol{\delta}^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu})}{\sqrt{\boldsymbol{\delta}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\delta}}} > - \frac{\boldsymbol{\delta}^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu})}{\sqrt{\boldsymbol{\delta}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\delta}}} \right) \\ &+ \frac{1}{2} P\left(\frac{\boldsymbol{\delta}^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) - \boldsymbol{\delta}^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_0 - \boldsymbol{\mu})}{\sqrt{\boldsymbol{\delta}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\delta}}} \leq - \frac{\boldsymbol{\delta}^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_0 - \boldsymbol{\mu})}{\sqrt{\boldsymbol{\delta}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\delta}}} \right) \\ &= \frac{1}{2} P\left(Z > - \frac{\boldsymbol{\delta}^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu})}{\sqrt{\boldsymbol{\delta}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\delta}}} \right) + \frac{1}{2} P\left(Z \leq - \frac{\boldsymbol{\delta}^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_0 - \boldsymbol{\mu})}{\sqrt{\boldsymbol{\delta}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\delta}}} \right) \\ &= \Phi\left(-\frac{1}{2} \sqrt{\boldsymbol{\delta}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\delta}} \right), \end{split}$$

where $Z \sim N(0,1)$ and $\Phi(\cdot)$ is the c.d.f of N(0,1).

(iii) The log-likelihood

$$\ell(\boldsymbol{\mu}_{0}, \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}) = -\frac{1}{2} \sum_{i=1}^{n_{0}} (\boldsymbol{X}_{0i} - \boldsymbol{\mu}_{0})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X}_{0i} - \boldsymbol{\mu}_{0}) - (n_{0}p/2) \log(2\pi) - \frac{n_{0}}{2} \log |\boldsymbol{\Sigma}|$$
$$-\frac{1}{2} \sum_{i=1}^{n_{1}} (\boldsymbol{X}_{1i} - \boldsymbol{\mu}_{1})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X}_{1i} - \boldsymbol{\mu}_{1}) - (n_{1}p/2) \log(2\pi) - \frac{n_{1}}{2} \log |\boldsymbol{\Sigma}|$$

We set

$$rac{\partial \ell(m{\mu}_0, m{\mu}_1, m{\Sigma})}{m{\mu}_0} = \sum_{i=0}^{n_0} m{\Sigma}^{-1}(m{X}_{0i} - m{\mu}_0) = m{0}.$$

Then, $\hat{\boldsymbol{\mu}}_0 = \bar{\boldsymbol{X}}_0 = (1/n_0) \sum_{i=1}^{n_0} \boldsymbol{X}_{0i}$. Similarly, $\hat{\boldsymbol{\mu}}_1 = \bar{\boldsymbol{X}}_1 = (1/n_1) \sum_{i=1}^{n_1} \boldsymbol{X}_{1i}$. Note that

$$\sum_{i=1}^{n_0} (\boldsymbol{X}_{0i} - \boldsymbol{\mu}_0)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{X}_{0i} - \boldsymbol{\mu}_0) = \sum_{i=1}^{n_0} (\boldsymbol{X}_{0i} - \bar{\boldsymbol{X}}_0)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{X}_{0i} - \bar{\boldsymbol{X}}_0) + n_0 (\bar{\boldsymbol{X}}_0 - \boldsymbol{\mu}_0)^T \boldsymbol{\Sigma}^{-1} (\bar{\boldsymbol{X}}_0 - \boldsymbol{\mu}_0) \\
= n_0 \operatorname{tr} \{ \boldsymbol{\Sigma}^{-1} (\boldsymbol{S}_0 + \boldsymbol{d}_0 \boldsymbol{d}_0^T) \},$$

where
$$S_0 = (1/n_0) \sum_{i=1}^{n_0} (\boldsymbol{X}_{0i} - \bar{\boldsymbol{X}}_0) (\boldsymbol{X}_{0i} - \bar{\boldsymbol{X}}_0)^T$$
 and $\boldsymbol{d}_0 = \bar{\boldsymbol{X}}_0 - \boldsymbol{\mu}_0$. Let $\boldsymbol{\Omega} = \boldsymbol{\Sigma}^{-1}$, set $\frac{\partial \ell(\boldsymbol{\mu}_0, \boldsymbol{\mu}_1, \boldsymbol{\Omega})}{\partial \boldsymbol{\Omega}} = -\frac{1}{2} n_0 (\boldsymbol{S}_0 + \boldsymbol{d}_0 \boldsymbol{d}_0^T) + \frac{1}{2} n_0 \boldsymbol{\Sigma} - \frac{1}{2} n_1 (\boldsymbol{S}_1 + \boldsymbol{d}_1 \boldsymbol{d}_1^T) + \frac{1}{2} n_1 \boldsymbol{\Sigma} = \boldsymbol{0}$.

Insert $\widehat{\boldsymbol{\mu}}_0$ and $\widehat{\boldsymbol{\mu}}_1$ into the above equation, we have $\widehat{\boldsymbol{\Sigma}} = (1/n)(n_0 \boldsymbol{S}_0 + n_1 \boldsymbol{S}_1)$, where $n = n_0 + n_1$, $\boldsymbol{S}_1 = (1/n_1) \sum_{i=1}^{n_1} (\boldsymbol{X}_{1i} - \bar{\boldsymbol{X}}_1) (\boldsymbol{X}_{1i} - \bar{\boldsymbol{X}}_1)^T$.

(iv) Use similar argument as in (ii), the misclassification rate is given by

$$\frac{1}{2}\Phi\left(\frac{\widehat{\boldsymbol{\delta}}^T\widehat{\boldsymbol{\Sigma}}^{-1}(\boldsymbol{\mu}_1-\widehat{\boldsymbol{\mu}})}{\sqrt{\widehat{\boldsymbol{\delta}}^T\widehat{\boldsymbol{\Sigma}}^{-1}\boldsymbol{\Sigma}\widehat{\boldsymbol{\Sigma}}^{-1}\widehat{\boldsymbol{\delta}}}}\right) + \frac{1}{2}\Phi\left(-\frac{\widehat{\boldsymbol{\delta}}^T\widehat{\boldsymbol{\Sigma}}^{-1}(\boldsymbol{\mu}_0-\widehat{\boldsymbol{\mu}})}{\sqrt{\widehat{\boldsymbol{\delta}}^T\widehat{\boldsymbol{\Sigma}}^{-1}\boldsymbol{\Sigma}\widehat{\boldsymbol{\Sigma}}^{-1}\widehat{\boldsymbol{\delta}}}}\right),$$

where $\hat{\delta} = \hat{\mu}_0 - \hat{\mu}_1$ and $\hat{\mu} = (\hat{\mu}_0 + \hat{\mu}_1)/2$.

(v) Suppose $\widetilde{\boldsymbol{\beta}}$ is the solution of $\boldsymbol{\beta}$ at the current iteration. Let $L(\boldsymbol{\beta}) = (1/2)\boldsymbol{\beta}^T \widehat{\boldsymbol{\Sigma}} \boldsymbol{\beta} - \widehat{\boldsymbol{\delta}}^T \boldsymbol{\beta}$, we have

$$L(\boldsymbol{\beta}) = L(\widetilde{\boldsymbol{\beta}}) + \{\nabla L(\widetilde{\boldsymbol{\beta}})\}^{T} (\boldsymbol{\beta} - \widetilde{\boldsymbol{\beta}}) + \frac{1}{2} (\boldsymbol{\beta} - \widetilde{\boldsymbol{\beta}})^{T} \nabla^{2} L(\overline{\boldsymbol{\beta}}) (\boldsymbol{\beta} - \widetilde{\boldsymbol{\beta}})$$

$$= L(\widetilde{\boldsymbol{\beta}}) + (\widehat{\boldsymbol{\Sigma}} \widetilde{\boldsymbol{\beta}} - \widehat{\boldsymbol{\delta}})^{T} (\boldsymbol{\beta} - \widetilde{\boldsymbol{\beta}}) + \frac{1}{2} (\boldsymbol{\beta} - \widetilde{\boldsymbol{\beta}})^{T} \widehat{\boldsymbol{\Sigma}} (\boldsymbol{\beta} - \widetilde{\boldsymbol{\beta}})$$

$$\leq L(\widetilde{\boldsymbol{\beta}}) + (\widehat{\boldsymbol{\Sigma}} \widetilde{\boldsymbol{\beta}} - \widehat{\boldsymbol{\delta}})^{T} (\boldsymbol{\beta} - \widetilde{\boldsymbol{\beta}}) + \frac{c}{2} \|\boldsymbol{\beta} - \widetilde{\boldsymbol{\beta}}\|_{2}^{2},$$

where $c \geq \lambda_{\max}(\widehat{\Sigma})$ and $\bar{\beta}$ is a vector on the line segment connecting β and $\tilde{\beta}$. Therefore, we solve

$$\widetilde{\boldsymbol{\beta}}^{(\text{new})} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \ \frac{c}{2} \|\boldsymbol{\beta} - \widetilde{\boldsymbol{\beta}}\|_{2}^{2} + (\widehat{\boldsymbol{\Sigma}}\widetilde{\boldsymbol{\beta}} - \widehat{\boldsymbol{\delta}})^{T} (\boldsymbol{\beta} - \widetilde{\boldsymbol{\beta}}) + \lambda \sum_{i=1}^{p} |\beta_{i}|.$$

The KKT condition is given by

$$c(\boldsymbol{\beta} - \widetilde{\boldsymbol{\beta}})_j + (\widehat{\boldsymbol{\Sigma}}\widetilde{\boldsymbol{\beta}} - \widehat{\boldsymbol{\delta}})_j + \operatorname{sign}(\beta_j) = 0, \text{ for } \beta_j \neq 0;$$
$$|c(\boldsymbol{\beta} - \widetilde{\boldsymbol{\beta}})_j + (\widehat{\boldsymbol{\Sigma}}\widetilde{\boldsymbol{\beta}} - \widehat{\boldsymbol{\delta}})_j| < \lambda, \text{ for } \beta_j = 0.$$

Hence, the solution is given by $\widetilde{\beta}_j^{(\text{new})} = s(\widetilde{\beta}_j - (1/c)(\widehat{\Sigma}\widetilde{\beta} - \widehat{\delta})_j, \lambda/c)$, where $s(x,\lambda) = \text{sign}(x)(|x| - \lambda)_+$ is the soft-thresholding function. With stepsize being 1/c for any $c \geq \lambda_{\max}(\widehat{\Sigma})$, the algorithm is summarized as follows.

Step 1: Initialize $\boldsymbol{\beta}$ at $\boldsymbol{\beta}^{(0)}$.

Step 2: At the kth iteration, let

$$\boldsymbol{\beta}^{(k)} = s \left(\boldsymbol{\beta}^{(k-1)} - \frac{1}{c} (\widehat{\boldsymbol{\Sigma}} \boldsymbol{\beta}^{(k-1)} - \widehat{\boldsymbol{\delta}}), \frac{\lambda}{c} \right)$$

where s is the soft-thresholding function defined above.

Update the gradient vector $\widehat{\Sigma} \beta^{(k-1)} - \widehat{\delta}$ with $\widehat{\Sigma} \beta^{(k)} - \widehat{\delta}$.

Step 3: Iterate until convergence.

(vi) Similar as in (iv), the misclassification rate

$$R_n = \frac{1}{2} \Phi \left(\frac{\widehat{\boldsymbol{\beta}}^T (\boldsymbol{\mu}_1 - \widehat{\boldsymbol{\mu}})}{\sqrt{\widehat{\boldsymbol{\beta}}^T \boldsymbol{\Sigma} \widehat{\boldsymbol{\beta}}}} \right) + \frac{1}{2} \Phi \left(-\frac{\widehat{\boldsymbol{\beta}}^T (\boldsymbol{\mu}_0 - \widehat{\boldsymbol{\mu}})}{\sqrt{\widehat{\boldsymbol{\beta}}^T \boldsymbol{\Sigma} \widehat{\boldsymbol{\beta}}}} \right).$$

By Law of Large Numbers, $\widehat{\boldsymbol{\mu}} \xrightarrow{P} \boldsymbol{\mu}$. This together with $\widehat{\boldsymbol{\beta}} \xrightarrow{P} \boldsymbol{\beta}$ imply $R_n \xrightarrow{P} R^*$.