In [1]: 1 pip install yfinance

Requirement already satisfied: yfinance in c:\users\asus\anaconda3\lib\site-p ackages (0.2.37)Note: you may need to restart the kernel to use updated packages.

Requirement already satisfied: pandas>=1.3.0 in c:\users\asus\anaconda3\lib\s ite-packages (from yfinance) (2.0.3)

Requirement already satisfied: numpy>=1.16.5 in c:\users\asus\anaconda3\lib\s ite-packages (from yfinance) (1.24.3)

Requirement already satisfied: requests>=2.31 in c:\users\asus\anaconda3\lib\site-packages (from yfinance) (2.31.0)

Requirement already satisfied: multitasking>=0.0.7 in c:\users\asus\anaconda3 \lib\site-packages (from yfinance) (0.0.11)

Requirement already satisfied: lxml>=4.9.1 in c:\users\asus\anaconda3\lib\sit e-packages (from yfinance) (4.9.2)

Requirement already satisfied: appdirs>=1.4.4 in c:\users\asus\anaconda3\lib\site-packages (from yfinance) (1.4.4)

Requirement already satisfied: pytz>=2022.5 in c:\users\asus\anaconda3\lib\si te-packages (from yfinance) (2022.7)

Requirement already satisfied: frozendict>=2.3.4 in c:\users\asus\anaconda3\l ib\site-packages (from yfinance) (2.4.0)

Requirement already satisfied: peewee>=3.16.2 in c:\users\asus\anaconda3\lib\site-packages (from yfinance) (3.17.1)

Requirement already satisfied: beautifulsoup4>=4.11.1 in c:\users\asus\anacon da3\lib\site-packages (from yfinance) (4.12.2)

Requirement already satisfied: html5lib>=1.1 in c:\users\asus\anaconda3\lib\s ite-packages (from yfinance) (1.1)

Requirement already satisfied: soupsieve>1.2 in c:\users\asus\anaconda3\lib\s ite-packages (from beautifulsoup4>=4.11.1->yfinance) (2.4)

Requirement already satisfied: six>=1.9 in c:\users\asus\anaconda3\lib\site-p ackages (from html5lib>=1.1->yfinance) (1.16.0)

Requirement already satisfied: webencodings in c:\users\asus\anaconda3\lib\si te-packages (from html5lib>=1.1->yfinance) (0.5.1)

Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\asus\anacon da3\lib\site-packages (from pandas>=1.3.0->yfinance) (2.8.2)

Requirement already satisfied: tzdata>=2022.1 in c:\users\asus\anaconda3\lib \site-packages (from pandas>=1.3.0->yfinance) (2023.3)

Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\asus\anac onda3\lib\site-packages (from requests>=2.31->yfinance) (2.0.4)

Requirement already satisfied: idna<4,>=2.5 in c:\users\asus\anaconda3\lib\si te-packages (from requests>=2.31->yfinance) (3.4)

Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\asus\anaconda3 \lib\site-packages (from requests>=2.31->yfinance) (1.26.16)

Requirement already satisfied: certifi>=2017.4.17 in c:\users\asus\anaconda3 \lib\site-packages (from requests>=2.31->yfinance) (2023.7.22)

```
In [2]:
           import pandas as pd
           import yfinance as yf
         2
          from datetime import datetime
         3
           import plotly.express as px
         5
In [3]:
           start date = datetime.now() - pd.DateOffset(months=60)
         2
           end_date = datetime.now()
         3
         4
           tickers = ['AAPL', 'MSFT']
         5
         6
           df list = []
         7
         8
           for ticker in tickers:
         9
               data = yf.download(ticker, start=start date, end=end date)
        10
               df list.append(data)
        11
           df = pd.concat(df list, keys=tickers, names=['Ticker', 'Date'])
        12
        13
           print(df.head())
       1 of 1 completed
       1 of 1 completed
                                       High
                                                          Close Adj Close \
                             0pen
                                                  Low
       Ticker Date
       AAPL
             2019-02-28 43.580002
                                  43.727501
                                            43.230000 43.287498 41.672829
             2019-03-01 43.570000 43.787498
                                            43.222500 43.742500 42.110859
             2019-03-04 43.922501 44.437500 43.492500 43.962502 42.322659
             2019-03-05 43.985001 44.000000 43.634998 43.882500 42.245636
             2019-03-06 43.667500 43.872501 43.485001 43.630001 42.002560
                           Volume
       Ticker Date
       AAPL
             2019-02-28 112861600
             2019-03-01 103544800
             2019-03-04 109744800
             2019-03-05
                         78949600
             2019-03-06
                         83241600
```

```
Ticker
                                                                   Adj Close
               Date
                          0pen
                                      High
                                                  Low
                                                            Close
0
    AAPL 2019-02-28
                     43.580002
                                                        43.287498
                                                                   41.672829
                                 43.727501
                                            43.230000
1
    AAPL 2019-03-01
                     43.570000
                                 43.787498
                                            43.222500
                                                        43.742500
                                                                   42.110859
2
    AAPL 2019-03-04
                     43.922501
                                 44.437500
                                            43.492500
                                                        43.962502
                                                                   42.322659
3
    AAPL 2019-03-05
                     43.985001
                                 44.000000
                                            43.634998
                                                        43.882500
                                                                   42.245636
4
    AAPL 2019-03-06
                     43.667500
                                 43.872501
                                            43.485001
                                                        43.630001
                                                                   42.002560
```

Volume

- 0 112861600
- 1 103544800
- 2 109744800
- 3 78949600
- 4 83241600

Stock Market Performance for the Last 60 Months

Stock Prices for Apple, Microsoft


```
In [7]:

df['MA10'] = df.groupby('Ticker')['Close'].rolling(window=10).mean().reset
df['MA20'] = df.groupby('Ticker')['Close'].rolling(window=20).mean().reset

for ticker, group in df.groupby('Ticker'):
    print(f'Moving Averages for {ticker}')
    print(group[['MA10', 'MA20']])
```

```
Moving Averages for AAPL
            MA10
                         MA20
0
             NaN
                          NaN
1
             NaN
                          NaN
2
             NaN
                          NaN
3
             NaN
                          NaN
4
             NaN
                          NaN
1253
      185.297000
                  187.395999
      184.792999
                  186.889499
1254
1255
      184.212999
                  186.306999
      183.443999
1256
                  185.743999
1257 182.992000 185.289000
[1258 rows x 2 columns]
Moving Averages for MSFT
```

	0	
	MA10	MA20
1258	NaN	NaN
1259	NaN	NaN
1260	NaN	NaN
1261	NaN	NaN
1262	NaN	NaN
2511	409.536996	407.437996
2512	409.296997	407.892496
2513	408.919998	408.165996
2514	407.619000	408.346497
2515	406.841000	408.234497

[1258 rows x 2 columns]

AAPL Moving Averages

MSFT Moving Averages


```
In [9]:
          1 import pandas as pd
          2 import plotly.express as px
          3 import numpy as np
          4
          5
            # Assuming df is your DataFrame containing stock prices
            # Replace of with your actual DataFrame containing the data
          7
          8 # create a DataFrame with the stock prices of Apple and Microsoft
          9 apple = df.loc[df['Ticker'] == 'AAPL', ['Date', 'Close']].rename(columns=
         10 microsoft = df.loc[df['Ticker'] == 'MSFT', ['Date', 'Close']].rename(colur
         11 | df corr = pd.merge(apple, microsoft, on='Date')
         12
         13 # Calculate moving averages
         14 | window size = 5
         15 | df corr['AAPL MA'] = df corr['AAPL'].rolling(window=window size).mean()
         16 | df_corr['MSFT_MA'] = df_corr['MSFT'].rolling(window=window_size).mean()
         17
         18 # Create a scatter plot to visualize the correlation
         19 | fig = px.scatter(df corr, x='AAPL', y='MSFT',
         20
                              trendline='ols',
         21
                              title='Correlation between Apple and Microsoft')
         22
         23 # Calculate correlation coefficient
         24 | correlation coefficient = np.corrcoef(df corr['AAPL'], df corr['MSFT'])[0]
            correlation text = f'Correlation coefficient: {correlation coefficient:.2
         26
         27
            # Add correlation text as annotation
         28 fig.add_annotation(
         29
                 x=0.5,
         30
                 y=0.9,
         31
                 xanchor='center',
         32
                 yanchor='top',
         33
                 text=correlation text,
         34
                 showarrow=False,
         35
                 font=dict(size=12, color='black'),
         36 )
         37
         38 | # Print the moving averages and correlation coefficient
         39 print("Results for Moving Averages:")
         40 print(f"AAPL Moving Average: {df_corr['AAPL_MA'].iloc[-1]:.2f}")
         41 | print(f"MSFT Moving Average: {df_corr['MSFT_MA'].iloc[-1]:.2f}")
         42 print(correlation text)
         43
         44 | fig.show()
         45
```

Results for Moving Averages: AAPL Moving Average: 182.60 MSFT Moving Average: 407.84 Correlation coefficient: 0.96

Correlation between Apple and Microsoft

In the context of a research paper, the provided results for the moving averages and correlation coefficient between Apple (AAPL) and Microsoft (MSFT) stock prices can be interpreted as follows:

2

7

3 1. **Moving Averages**:

- The moving averages represent smoothed trends in the stock prices over a specific period, helping to identify the underlying direction of the price movements.
- For Apple (AAPL), the 5-day moving average is \$182.60, indicating the average closing price of AAPL over the last five trading days.
 - Similarly, for Microsoft (MSFT), the 5-day moving average is \$407.84, representing the average closing price of MSFT over the same period.
 - Moving averages are commonly used by investors and traders to assess the short-term trend direction and potential price reversals.

9 2. **Correlation Coefficient**:

- The correlation coefficient quantifies the strength and direction of the linear relationship between the stock prices of Apple and Microsoft.
- In this case, the correlation coefficient of 0.96 suggests a very high positive correlation between AAPL and MSFT stock prices.

- This indicates that the prices of Apple and Microsoft stocks tend to move closely together, with changes in one stock price being strongly associated with changes in the other.
- A correlation coefficient of 0.96 implies that approximately 96% of the variability in the stock prices of Apple and Microsoft can be explained by their linear relationship.

14 15

- 3. **Interpretation**:
- The high correlation coefficient suggests that Apple and Microsoft stocks exhibit synchronized price movements over the analyzed period.
- Investors and traders may consider this strong positive correlation when making investment decisions or constructing portfolios.
- Additionally, the moving averages provide insights into the short-term trends in stock prices, complementing the analysis of the correlation coefficient.

19 20

- 4. **Implications for Research and Investment**:
- These results contribute to understanding the relationship between Apple and Microsoft stocks, which can inform investment strategies and portfolio management decisions.
- Researchers may further investigate the factors driving the high correlation between these stocks, such as industry trends, market dynamics, or common macroeconomic factors.
- Understanding the correlation between assets is essential for risk management, portfolio diversification, and the development of trading strategies.

24

In summary, the provided results highlight a strong positive correlation between Apple and Microsoft stock prices, along with short-term trend information captured by moving averages. These findings contribute to the body of knowledge in finance and provide valuable insights for investors, researchers, and market participants.

```
In [10]:
           1 import pandas as pd
           2 import plotly.express as px
           3 import numpy as np
           4
             # create a DataFrame with the stock prices of Apple and Microsoft
           5
             apple = df.loc[df['Ticker'] == 'AAPL', ['Date', 'Close']].rename(columns=
           7 microsoft = df.loc[df['Ticker'] == 'MSFT', ['Date', 'Close']].rename(colur
             df_corr = pd.merge(apple, microsoft, on='Date')
           8
           9
          10 # create a scatter plot to visualize the correlation
          11
             fig = px.scatter(df corr, x='AAPL', y='MSFT',
                               trendline='ols',
          12
          13
                               title='Correlation between Apple and Microsoft')
          14
          15 # Calculate correlation coefficient
          16 | correlation_coefficient = np.corrcoef(df_corr['AAPL'], df_corr['MSFT'])[0]
          17
             correlation text = f'Correlation coefficient: {correlation coefficient:.2
          18
          19 # Add correlation text as annotation
          20 fig.add annotation(
          21
                  x=0.5,
          22
                  y=0.9,
          23
                  xanchor='center',
          24
                  yanchor='top',
          25
                  text=correlation text,
          26
                  showarrow=False,
          27
                  font=dict(size=12, color='black'),
          28
             )
          29
             fig.show()
          30
          31
```

Correlation between Apple and Microsoft

- In the provided code snippet, the correlation coefficient between the stock prices of Apple (AAPL) and Microsoft (MSFT) is calculated and displayed on a scatter plot using Plotly Express. Here's how to interpret the result in the context of a research paper:
- 3 1. **Correlation Coefficient Calculation**:
- The correlation coefficient measures the strength and direction of the linear relationship between two variables.
- In this case, the correlation coefficient is calculated using the NumPy library's `corrcoef` function, which computes the Pearson correlation coefficient between the 'AAPL' and 'MSFT' columns in the DataFrame `df corr`.
- The resulting correlation coefficient of 0.96 indicates a strong positive linear relationship between the stock prices of Apple and Microsoft.
- 8 2. **Interpretation of Correlation Coefficient**:
 - A correlation coefficient of 0.96 suggests a very high degree of positive correlation between the stock prices of Apple and Microsoft.
- This means that as the price of Apple stock increases, the price of Microsoft stock tends to increase as well, and vice versa.

2

7

- The strength of this relationship is considered very high, indicating that the movements of these two stocks are closely aligned over the period analyzed in the research paper.

12

- 13 3. **Implications and Analysis**:
- The high correlation coefficient suggests that investors and traders may observe similar patterns and trends in both Apple and Microsoft stock prices.
- From a portfolio management perspective, this high correlation implies that investing in both Apple and Microsoft stocks may not provide significant diversification benefits since they tend to move in tandem.
- Researchers might further investigate the factors driving this strong correlation, such as industry trends, market sentiment, or specific events affecting both companies.
- The findings could contribute to understanding market dynamics and inform investment strategies, risk management, and asset allocation decisions.

18

In summary, the correlation coefficient of 0.96 indicates a very strong positive correlation between the stock prices of Apple and Microsoft, suggesting a close relationship in their price movements over the analyzed period.

```
In [11]:
           1 import pandas as pd
           2 import numpy as np
           3 from scipy.stats import pearsonr
           4
           5
             # Assuming df is your DataFrame containing stock prices
             # Replace df with your actual DataFrame containing the data
           7
             # create a DataFrame with the stock prices of Apple and Microsoft
           8
           9
             apple = df.loc[df['Ticker'] == 'AAPL', ['Date', 'Close']].rename(columns=
             microsoft = df.loc[df['Ticker'] == 'MSFT', ['Date', 'Close']].rename(colur
          10
          11
             df corr = pd.merge(apple, microsoft, on='Date')
          12
          13 # Calculate correlation coefficient and p-value
          14
             correlation coefficient, p value = pearsonr(df corr['AAPL'], df corr['MSF'
          15
          16 # Set significance level (alpha)
          17
             alpha = 0.05
          18
          19 # Print correlation coefficient and p-value
          20 print(f"Correlation coefficient: {correlation coefficient:.2f}")
          21 print(f"P-value: {p value:.2f}")
          22
          23 # Check for significance
          24 | if p_value < alpha:
          25
                 print("Null hypothesis rejected: There is a significant correlation b€
          26 else:
          27
                 print("Null hypothesis cannot be rejected: There is no significant cor
          28
```

Correlation coefficient: 0.96

P-value: 0.00

Null hypothesis rejected: There is a significant correlation between AAPL and MSFT stock prices.

```
In [ ]: 1
```