

Learning to Rewind via Iterative Prediction of Past Weights for Unlearning

Jinhyeok Jang^{1,2}, Jaehong Kim¹, Chan–Hyun Youn²

Introduction

- There have been issues of Privacy/Copyright Infringement
- Machine Unlearning can be a post-solution of theses issues
- However, there are several limitations in prior works
 - Requiring the full training dataset (i.e., Fisher, SCRUB)
 - Resulting in Confusion (i.e., Random Label, Boundary Unlearning)
 - Inaccurate Rewinding (i.e., Gradient Ascent, Task Vector)

Related Works: Weight Prediction

- There have been some studies about weight-space learning, and there exist some DNN-based weight prediction works for acceleration of training process
 - Introspection, WNN, NiNo

Proposed Strategy

- We repurpose weight prediction—from training acceleration to machine unlearning.
- We introduce a novel concept of past weight prediction using a pretrained DNN sub-module.
- Our method predicts past weights by leveraging the forward training trajectory on forget data. Forward Training

Method: InvWNN

- We adopted the same architecture as the prior work (WNN), modifying only the layer widths.
- InvWNN was trained to predict weight from three epochs earlier using a forward trajectories.
- InvWNN performs predictions in a coordinate-wise (i.e., element-wise) manner.

Experiments: Standard Setting

- Setting
 - Pretrained Model: ResNet18 trained on Full CIFAR10
 - Removing the knowledge of randomly selected 50% training data
- Metrics
 - Remaining Accuracy (RA), Unlearning Accuracy (UA), Test Accuracy (TA), and **Membership Inference Attack (MIA)**

Table 1: Results of five trials for unlearning randomly selected 50% of CIFAR10. Note that better performance corresponds to a smaller gap with the retrained model.

	Method	Termination Condition: UA $> 8.11\%$			
		RA (%)	UA (%)	TA (%)	MIA (%)
	Pretrained	99.96 ± 0.02	0.02 ± 0.01	94.38 ± 0.10	9.75 ± 1.61
	Retrain	99.92 ± 0.02	8.11 ± 0.19	91.45 ± 0.32	29.07 ± 0.42
	Random Label	91.03 ± 0.55	8.99 ± 0.53	83.63 ± 0.44	33.19 ± 2.46
	Boundary	91.24 ± 0.21	8.42 ± 0.16	83.72 ± 0.10	28.51 ± 3.97
	SalUn	91.33 ± 0.45	8.58 ± 0.39	84.45 ± 0.35	32.62 ± 3.17
	NegGrad	91.26 ± 0.31	8.59 ± 0.11	85.01 ± 0.95	$28.56 {\pm} 9.60$
	Task Vector	92.03 ± 0.72	8.54 ± 0.54	83.29 ± 0.82	30.86 ± 6.65
	Proposed	92.24 ± 0.71	8.31 ± 0.24	85.04±1.10	31.94 ± 4.56

Experiments: Side Effect Removal

- For some scenarios, pretrained models implicitly learn some side effects such as:
 - Confusion caused by Label Noise
 - Intended misfunction due to Backdoor Attacks
 - Worse performance because of Overfitting
- Using ResNet18 and CIFAR10, we intentionally added and tried to remove these side effects via unlearning

Experiments: Generalization

- We applied the label noise scenario to
 - Additional architectures: PVTv2 and ConvNext
 - Additional datasets: CIFAR100 and TinyImageNets
- Last, we applied our work to generative AI with diffusion models
 - Removing the knowledge about "4" from a diffusion model pretrained on MNIST

Visualization

- Class Activation Maps for backdoor attack scenario
 - Extracted for both clean images and backdoor images

- Generated images after unlearning
 - Red: "4"-like images
 - Yellow: Unnatural images

- Landscape visualization of Unlearning Trajectory
 - For the scenario of label noise, we extracted the unlearning trajectories and their backgrounds using exhaustive search and PCA

Conclusion

- We addressed key unlearning limitations:
 - Reliance on remaining data,
 - Risk of introducing incorrect knowledge,
 - Limited applicability, and
 - Inefficacy in complex search spaces.
- Our InvWNN predicts past weight using only forget data to mitigate these issues.
- Our implementation is available at https://github.com/jjh6297/InvWNN

