The World Wide Web

A Case Study

主讲教师: 王灿

Email: wcan@zju.edu.cn

TA: 李奇平 liqiping1991@gmail.com

Course FTP: ftp://sa:sa@10.214.51.13

What is the World Wide Web?

- A system of interlinked hypertext documents accessed via the Internet
- The largest Internet application
- An application platform for Web applications
- A virtual graphical layer of the Internet

The Original Web

- 1989 Proposal from Tim Berners-Lee "Information management: A Proposal" at European Lab for Particle Physics (CERN)
 - Inspiration: the human "web" formed by the researchers at CERN.
 - Approved Oct., 1990
 - Named as the World Wide Web

Requirements & Solution

Requirements and Qualities

- Business goals: promoting interaction and allowing heterogeneous computing
- Consequent quality goals:
 - Remote access
 - Interoperability
 - Extensibility
 - Scalability
- What are the major design challenges given the existing techs at that time?

The Solution

- Berners-Lee's breakthrough was to marry hypertext to the Internet
 - Origins: 1940's Vannevar Bush "hypertext"
 - HyperText Markup Language (HTML) and Uniform Resource Locators (URLs)
- libWWW the original library that supported Web-based development using C/S architecture and layered design.

The Original Requirements (1)

- Remote access across network
 - Any info shall be accessible from any machine on a CERN network
- Heterogeneity
 - Heterogeneous hardware and software platform
- Non-centralization
 - No constraints on the Web's growth
- Access to existing data
- Ability for users to add data
 - Allow user to publish data
- Private Links

The Original Requirements (2)

- Bells and Whistles 24x80 display (graphics optional)
 - Scholars generally agree, that the turning point for WWW began with the introduction of the Mosaic Web browser in 1993, a graphical browser
- Data analysis
- Live links
- Other requirements explicitly mentioned but not dealt with in original proposal
 - Copyright enforcement
 - Data security (encryption of sensitive data SSL and HTTPS)

Web Growth Statistics

Date	Number of Web Sites	Percentage of .com Sites	Hosts per Web Server
6/93	130	1.5	13,000
12/93	623	4.6	3,475
6/94	2,738	13.5	1,095
12/94	10,022	18.3	451
6/95	23,500	31.3	270
1/96	100,000	50	94
6/96	252,000	68	41
1/97	646,162	62.6	40
1/98	1,834,710		16.2
1/99	4,062,280		10.6
1/00	9,950,491		7.3
1/01	27,585,719	54.68	4

Stay Simple

--- The Key to the Explosive Growth

- Weak notion of central control
 - Unregulated style of interaction
- Features missing for hypertext systems design in the Web proposal
 - Controlling topology
 - Navigational techniques and user interface requirements
 - Having different types of links to express differing relationships among nodes
- Missing features in the original implementation: URL, HTML...

Original Architectural Solution

- Architectural approach first proposed at CERN and later by the World Wide Web Consortium (W3C):
 - The library libWWW hides all hardware, operating system and protocol dependencies
 - Using client-servers architecture
 - Client side "browser" that knows how to display HTML
 - Server that knows how to interpret requests for pages and return the HTML pages
 - HTTP protocol network protocol for transferring data packets (built on top of TCP/IP)

Content Producers $\leftarrow \rightarrow$ Consumers

libWWW is a library of software for creating applications that run on either the client or the server

A Layered View of libWWW

Application Module

Access Modules (protocol-aware modules)

Stream Modules

Core (a standard interface for a Web app.)

Generic Utilities (portability layer)

Generic Utilities Layer

- A portability layer
 - Masks platform difference
 - All higher layer can then be platform independent
- Functionalities provided in this layer
 - Network management
 - String manipulation
 - Data type extension

Core Layer

- Containing the skeletal functionality of a Web application
 - Network access
 - Data management and parsing
 - Logging
- Providing a standard interface for a Web application
 - Actual functionalities provided by plug-in modules and call-out functions

Stream Layer

 The stream layer provides the abstraction of a stream of data used by all data transported between the application and the network.

The Access Layer

- Providing a set of network-protocol-aware modules
 - HTTP, NNTP, WAIS, TELNET, Gopher, rlogin etc.
 - Protocols are built upon the abstractions of the lower layers

Application Layer

- A set of functionality useful for writing applications
 - caching
 - logging
 - registering proxy servers
 - gateways
 - history maintenance, etc.

Lessons From libWWW (1)

- Allowing the features of Web-based apps to grow has driven many decision in libWWW and led to the following lessons:
 - Formalized application programming interfaces (APIs) are required
 - Supporting application development in a variety of platforms and languages
 - Layered functionality and APIs
 - Providing access to different levels of service abstraction

Lessons From libWWW (2)

- The library must support a dynamic, open-ended set of features
 - Including run-time replacement of features
- Processes built on top of library must be thread safe to allow concurrent functionality
 - E.g. downloading large file over a slow communication link may take a considerable amount of time

How the WWW Achieved Its Initial Quality Goals

Goal	How Achieved	Tactics Used
Remote access	Build Web on top of Internet	Adherence to defined protocols
Interoperability	Use libWWW to mask platform details	Abstract Common Services Hide Information (Encapsulate)
Extensibility of software	Isolate protocol and data type extensions in libWWW; Plug-ins	Abstract Common Services, Hide Information, replace components (Defer binding), config files (Defer binding)
Extensibility of data	Make each data item independent except for references it controls	Restrict Dependencies
Scalability	Use client-server architecture and keep references to other data local to the referring	Introduce concurrency Reduce computational overhead
	data location	

Evolution of Web-Based E-Commerce

- "Web of documents" VS. "Web of data"
- New requirements for e-commerce:
 - High performance
 - High availability
 - Scalability
 - Security
 - Modifiability
- System architecture versus software architecture
 - Frequently use COTS as system components

A Simple E-commerce Reference Architecture

A Typical E-commerce System

Achieving Qualities (1)

- Web browsers for modifiability
 - The browser-based user interface is not hardwired, but specified via HTML
 - User interface is naturally separated from the rest of the application
- HTTPS for security
 - Using port 443 instead of the standard port 80 to request TCP/IP services in an encrypted form
 - Using a 128-bit public/private key pair to encrypt the data
 - Sensitive data such as credit card or ID numbers

Achieving Qualities (2)

- Proxy Servers for Performance
 - Caching frequently accessed Web pages so that users may retrieve them without having to access the Web site
 - Typically located close to the users
- Routers and firewalls for security
 - Routers may perform NAT transformation
 - Packet filters examine the TCP and IP headers to detect bad behavior
 - Application proxy to filter traffic based on known patterns of behavior

Achieving Qualities (3)

- Load balancing for performance, scalability and availability
 - Distributing the "load" among a pool of computers running Web servers
 - Horizontal scaling (adding more instances of a given resource)
 - Active redundancy by monitoring the aliveness of each of its computers
- Web servers for performance
 - Multithread
 - Multithread (Vertical scaling, i.e. adding more powerful instances of a given resource)

Achieving Qualities (4)

- Application servers for modifiability, performance and scalability
 - Separating business logic from "fat client" and DB
 - Load balancing, horizontal scaling
- Databases for performance, scalability and availability
 - Multi-layer architecture
 - Internal replication

How the E-Commerce Architecture achieves its Quality Goals

Goal	How Achieved	Tactics
High Performance	Load balancing, proxy servers	Introduce concurrency, increase resources, multiple copies
High Availability	Redundant processors, networks, databases, load balancing	Active redundancy, transactions, introduce concurrency
Scalability	Allow for horizontal and vertical scaling	Abstract common services, introduce concurrency
Security	Firewalls, public/private key encryption, NAT	Limit access, integrity, limit exposure
Modifiability	Separation of functionality: (browser), DB design, business logic (3 tiers)	Abstract common services, intermediary, interface stability

Reading Assignment

 Read chapter 23: Economic Analysis of Architectures. The next lecture will present CBAM