R Companion - Clewer & Scarisbrick (2001)

R Companion material for Clewer, Alan G., and David H. Scarisbrick. Practical statistics and experimental design for plant and crop science. John Wiley & Sons, 2001.

To be used in AGR5266C - Field Plot Techniques class Prof. Dr. Esteban Rios

Rodrigo R Amadeu rramadeu at ufl dot edu

August 21st 2019

Contents

Chapter 3: Basic Data Summary	12
	12
Chapter 4: The Normal Distribution, the t-Distribution and Confidence Intervals	
Chapter 5: Introduction to Hypothesis Testing	24
Chapter 6: Comparison of Two Independent Sample Means	26
Chapter 7: Linear Regression and Correlation	28
Chapter 8: Curve Fitting	35
Chapter 9: The Completely Randomized Design	39
Chapter 10: The Randomized Block Design	57
Chapter 11: The Latin Square Design	67
Chapter 12: Factorial Experiments	79
Chapter 13: Comparison of Treatment Means	89
Chapter 14: Checking the Assumptions and Transformation of Data	97
Chapter 15: Missing Values and Incomplete Blocks	110
Chapter 16: Split Plot Designs	117

R codes to perform most of the statistical analysis of the Clewer & Scarisbrick (2001) from Chapters 1 to 16. For interpretation and theoretical explanation you should go to the book. If you find any issue, comment, or error, please send me an e-mail.

Chapter 2: Basic Statistical Calculations

Data input in R

Data in R are stored in vectors, to build a vector 'x' with the elements from the Example 2.1 in the book (i.e., 14.8, 15.2, 17.4, 11.6, and 12.5), you can use the function c(), where c stands for combine values into a vector or list. An example:

```
x = c(14.8, 15.2, 17.4, 11.6, 12.5)
```

To visualize the built data, in the RStudio you can look at the Environment tab (upper right) which shows you all the loaded data into your R environment. Another option is to explicitly call it or print it:

х

```
## [1] 14.8 15.2 17.4 11.6 12.5
print(x)
```

```
## [1] 14.8 15.2 17.4 11.6 12.5
```

Another way to input the data in R is to import from a file. In the RStudio, you can go to Import Dataset option under the Environment tab and select you data type. Each data type requires a specific command with specific arguments.

Basic Statistical Calculations

Mean

There are several ways to compute the same value in 'R', it follows some of the ways to compute the sample mean:

You can use R as a calculator and explicitly compute the mean, the signals follow the standard of other statistical softwares:

```
(14.8 + 15.2 + 17.4 + 11.6 + 12.5)/5
```

[1] 14.3

Or you can use built-in function on your vector x, as:

```
sum(x)/length(x) #sum all the elements of 'x' and divide such value for its length (n)
```

[1] 14.3

```
mean(x) #compute the mean of x
```

[1] 14.3

Hereafter, we show just compact ways to compute different statistics:

```
median(x) #median of x
```

[1] 14.8

```
var(x) #sample variance of x
```

[1] 5.3

```
var(x)*(length(x)-1) #corrected sum of squares of x
```

[1] 21.2

```
sd(x) #sample standard deviation of x

## [1] 2.302173
sd(x)/mean(x) #coefficient of variation of x

## [1] 0.1609911
```

Weighted mean

```
x = c(3.5, 4.8, 5.2) #sample means

n = c(4, 5, 10) #sample sizes

?weighted.mean

weighted.mean(x,n)
```

[1] 4.736842

Chapter 3: Basic Data Summary

3.2: Frequency distributions (discrete data)

Example 3.1: Data input number of tillers

Basic data summary

```
sum(x)
## [1] 269
length(x)
## [1] 60
mean(x)
## [1] 4.483333
var(x)
## [1] 2.762429
```

Frequency table

```
table(x)
## x
## 1 2 3 4 5 6 7 8
## 3 4 8 16 13 9 5 2
```

Bar plot

```
counts <- table(x)
barplot(counts)</pre>
```



```
# Customizing it a little bit
barplot(counts, xlab = "Number of Fillers (x)", ylab = "Frequency (y)", space = 0.5, ylim=c(0,15))
```


The mode

```
## x
## 8 1 2 7 3 6 5 4
## 2 3 4 5 8 9 13 16

median(x)
## [1] 4
```

3.3 Frequency distributions (continuos data)

Example 3.2: Data input barley yield

```
x = c(95, 70, 68, 88, 79, 92, 64, 83, 67, 63,

56, 70, 53, 78, 71, 62, 42, 80, 50, 68,

78, 104, 62, 66, 90, 86, 66, 82, 83, 56,

82, 90, 71, 77, 93, 68, 91, 98, 79, 75,

92, 93, 73, 79, 95, 78, 77, 108, 86, 87,

68, 68, 49, 75, 82, 61, 68, 65, 56, 96,

52, 61, 87, 79, 64, 64, 84, 63, 64, 44,

87, 63, 65, 64, 81, 72, 62, 58, 84, 67)
```

length(x) #checking dimension

[1] 80

The histogram

hist(x)

Histogram of x

Customizing it a little bit
hist(x, xlab="Yield", main=NULL)

Quartiles and Ranges

```
quantile(x,0.25) #Q1

## 25%
## 64

quantile(x,0.75) #Q3

## 75%
## 84

IQR(x) #IQR (i.e., Q3-Q1)

## [1] 20

max(x)

## [1] 108

min(x)

## [1] 42

range(x)

## [1] 42 108
```

Other graphical methods

boxplot(x) #boxplot

stripchart(x,method = "stack") #dotplot

stem(x) #stem and leaf plot

```
##
     The decimal point is 1 digit(s) to the right of the |
##
##
##
      4 | 249
##
      5 | 0236668
##
      6 | 1122233344444556677888888
      7 | 00112355778889999
##
##
      8 | 012223344667778
      9 | 00122335568
##
##
     10 | 48
```

Descriptive statistics

The R default summary:

```
## R Default:
length(x) #N

## [1] 80

summary(x)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 42.00 64.00 72.50 73.96 84.00 108.00
```

```
sd(x) #standard deviation

## [1] 14.02389

var(x) #variance

## [1] 196.6695

mean(x) #mean

## [1] 73.9625

mean(x, trim=0.05) #trimmed mean by 0.05
```

[1] 73.97222

There are several packages that provide different types of summary statistics, to see some of them click here.

Chapter 4: The Normal Distribution, the t-Distribution and Confidence Intervals

Simulating data in R

To simulate data in R, you need to choose a distribution (probability density function), its parameters, and how many data points (n) to sample from this distribution.

Here you can find several probability density functions that R can handle. The core idea on simulating data from such distributions is to know what each one of the simulation functions does (functions r..., p..., q...,and d...). Knowing this, you can simulate or extract data from different probability density function. Here we present the four functions of the normal (Gaussian) distribution:

##Distribution Family functions

rnorm

randomly generated n numbers based on a Normal Distribution with mean mean and standard deviation sd:

```
rnorm(n = 10, mean = 0, sd = 1) #"r": random, randomly generated numbers f
## [1] 0.6627877 -0.5160435 0.1102047 -0.3770475 -0.0284683 0.1967187
## [7] 0.9252396 1.3751469 -1.2276908 0.1780558
```

pnorm

What is the probability to have values lower than q based on a Normal Distribution with mean mean and standard deviation sd:

```
pnorm(q = 0, mean = 0, sd = 1) #"p": probability, cumulative density function
## [1] 0.5
```

qnorm (inverse of pnorm)

What is the value (q) correspondent to the probability p to have values lower based on a Normal Distribution with mean mean and standard deviation sd:

```
qnorm(p = 0.5, mean = 0, sd = 1) #"q": quantiles, cumulative density function (quantiles) ## [1] 0
```

dnorm

What is the density of correspondent to the point x based on a Normal Distribution with mean mean and standard deviation sd.

```
dnorm(x = 1, mean = 0, sd = 1)
## [1] 0.2419707
```

Visualizing the distribution

An way to visualize a distribution is to randomly sample a large number of data points from it, then, to estimate its density estimates, and to plot it in a density plot.

```
x = rnorm(n = 10000, mean = 0, sd = 1)
dens_x <- density(x)
plot(dens_x)</pre>
```

density.default(x = x)

Example 4.1

```
x <- rnorm(n = 1000000, mean = 80, sd = 5)
hist(x)</pre>
```

Histogram of x

dens_x <- density(x)
plot(dens_x)</pre>

density.default(x = x)

We can estimate some of the properties of the Normal Distribution with simulations:

(2) About 67% of the population is within one standard deviation of the mean:

```
## How many elements are within 1 sd from the mean (i.e., 75 < x < 85) interval <- which(x > 75 \& x < 85) length(interval)/length(x)
```

[1] 0.681841

(3) 90% of the population is within 1.645 standard deviations of the mean

```
interval <- which(x > (80 - 1.645*5) & x < 80 + (1.645*5))
length(interval)/length(x)
```

[1] 0.899562

(4) 95% of the population is within 1.96 standard deviations of the mean, and hence only 2.5% of the population have values which are greater than 1.96 standard deviations above the mean.

```
interval <- which(x > (80 - 1.96*5) & x < 80 + (1.96*5))
length(interval)/length(x)
```

```
## [1] 0.949892
```

```
interval <- which(x > 80 + (1.96*5))
length(interval)/length(x)
```

[1] 0.024942

(5) 99% of the population is within 2.576 standard deviations of the mean

```
interval <- which(x > (80 - 2.576*5) & x < 80 + (2.576*5))
length(interval)/length(x)
```

```
## [1] 0.99017
```

(6) 99.9% of the population is within 3.29 standard deviations of the mean

```
interval <- which(x > (80 - 3.29*5) & x < 80 + (3.29*5))
length(interval)/length(x)
```

```
## [1] 0.998969
```

Example 4.2

To find the $\theta(z)$ in the table of the normal distribuction function in R, you can use:

```
pnorm(q = -1.60, mean = 0, sd = 1) #find the theta(-1.60) value
```

```
## [1] 0.05479929
```

Otherwise, you can just plug the parameters distribution and avoid the use of the table. Find the proportion of plants having heights using pnorm function: (1) less than 72 cm

```
pnorm(q = 72, mean = 80, sd = 5)
```

```
## [1] 0.05479929
```

This value corresponds to the area of the following colored area in probability density plot:

Warning: Removed 341 rows containing missing values (position_stack).

(2) between 82 and 87 cm

pnorm(q = 87, mean = 80, sd = 5) - pnorm(q = 82, mean = 80, sd = 5) #attention for the minus signal

[1] 0.2638216

This value corresponds to the area of the following colored area in probability density plot:

Warning: Removed 459 rows containing missing values (position_stack).

(3) between 72 and 82 cm

pnorm(q = 82, mean = 80, sd = 5) - pnorm(q = 72, mean = 80, sd = 5) #attention for the minus signal

[1] 0.6006224

This value corresponds to area of the following colored area in probability density plot:

Warning: Removed 407 rows containing missing values (position_stack).

Example 4.3

(a) Above what height are the top 20% of plants?

```
qnorm(p = 0.8, mean = 80, sd = 5) #80% of the points are below, then, 20% are above.
```

[1] 84.20811

Top 20% of the data is the following colored area in probability density plot:

Warning: Removed 299 rows containing missing values (position_stack).

(b) Below what height are the bottom 4% of plants?

qnorm(p = 0.04, mean = 80, sd = 5) #80% of the points are below, then, 20% are above.

[1] 71.24657

Bottom 4% of the data is the following colored area in probability density plot:

Warning: Removed 349 rows containing missing values (position_stack).

Normal probability plot

```
## Generating some data
x <- rnorm(n = 50, mean = 10, sd = 1)
qqnorm(x)</pre>
```

Normal Q-Q Plot

4.5 Example

```
x = c(72.3, 78.9, 82.6, 71.8, 86.1, 80.5, 72.0, 91.8, 77.3, 88.2)
qt(p = 0.975, df = 9) #take the t-table value
## [1] 2.262157
## To find the interval you can carry out a t-test
t.test(x, conf.level = 0.95) #CI 95%
##
##
   One Sample t-test
##
## data: x
## t = 35.864, df = 9, p-value = 5.042e-11
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
  75.09445 85.20555
## sample estimates:
## mean of x
##
       80.15
t.test(x, conf.level = 0.99) #CI 95%
##
##
   One Sample t-test
```

```
##
## data: x
## t = 35.864, df = 9, p-value = 5.042e-11
## alternative hypothesis: true mean is not equal to 0
## 99 percent confidence interval:
## 72.88714 87.41286
## sample estimates:
## mean of x
## 80.15
```

4.6 Example

```
x = c(171.8, 267.7, 274.7, 203.2, 208.6, 267.2, 184.1, 234.5)
qt(p = 0.975, df = 7) #take the t-table value
## [1] 2.364624
## To find the interval you can carry out a t-test
t.test(x, conf.level = 0.95) #CI 95%
##
## One Sample t-test
##
## data: x
## t = 15.877, df = 7, p-value = 9.536e-07
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 192.7453 260.2047
## sample estimates:
## mean of x
    226.475
##
```

Chapter 5: Introduction to Hypothesis Testing

5.1 Example

5.1 Example

```
x = c(8.1, 8.7, 9.2, 7.8, 8.4, 9.4)
t.test(x, mu = 8, conf.level = 0.95)

##
## One Sample t-test
##
## data: x
## t = 2.3595, df = 5, p-value = 0.0648
## alternative hypothesis: true mean is not equal to 8
## 95 percent confidence interval:
## 7.94631 9.25369
## sample estimates:
## mean of x
## 8.6

## computed p-value = 0.0648 which is higher than 5%, therefore, we don't reject HO at the 5% level.
```

5.2 Example

```
A <- c(17.8, 18.5, 12.2, 19.7, 10.8, 11.9, 15.6, 12.5)

B <- c(14.7, 15.2, 12.9, 18.3, 10.1, 12.2, 13.5, 9.9)

diff <- A-B #compute the difference

t.test(diff)

##

## One Sample t-test

##

## data: diff

## t = 2.8446, df = 7, p-value = 0.02488
```

```
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.2573084 2.7926916
## sample estimates:
## mean of x
## 1.525
## computed p-value = 0.02488 which is lower than 5%, therefore, we reject HO at the 5% level.
```

Chapter 6: Comparison of Two Independent Sample Means

6.1 Example

```
Control = c(2.65, 3.28, 2.62, 2.84, 2.61, 2.80, 2.23, 2.45, 2.95, 3.12)
Growth = c(3.02, 2.21, 2.29, 3.21, 3.30, 3.13, 2.86, 3.35, 2.72, 3.16)
mean(Control)

## [1] 2.755
mean(Growth)

## [1] 2.925
Changin the two values
Control = c(2.65, 3.28, 2.62, 2.84, 2.61, 2.80, 3.23, 2.45, 2.95, 3.12)
Growth = c(3.02, 2.21, 2.29, 3.21, 3.30, 3.13, 2.86, 2.35, 2.72, 3.16)
mean(Control)

## [1] 2.855
mean(Growth)

## [1] 2.825
```

6.2 Example

```
New = c(2.6, 2.1, 2.5, 2.4, 1.9, 2.3)
Standard = c(1.7, 2.1, 2.0, 1.8, 2.3, 1.6, 2.0, 2.1, 2.2, 1.9)
t.test(New, Standard, var.equal = TRUE)
##
   Two Sample t-test
##
##
## data: New and Standard
## t = 2.7056, df = 14, p-value = 0.01707
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.06840468 0.59159532
## sample estimates:
## mean of x mean of y
        2.30
\#\# computed p-value = 0.01707 which is lower than 5%, therefore, we reject HO at the 5% level.
```

6.3 Example

```
##
## F test to compare two variances
##
## data: New and Standard
```

```
## F = 1.3878, num df = 5, denom df = 9, p-value = 0.6296
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.309462 9.271667
## sample estimates:
## ratio of variances
## 1.387755
## computed p-value = 0.6296 which is higer than 5%, therefore, we don't reject HO at the 5% level.
```

Chapter 7: Linear Regression and Correlation

7.1 Example

```
Length = c(22, 23, 25, 27, 30, 30, 35, 38, 45,
          50, 51, 52, 55, 59, 60, 60, 62, 65,
          67, 68, 70, 75, 78, 79, 80, 81,
          82, 84, 87, 88, 89, 92, 105, 107)
Area = c(31, 36, 35, 36, 50, 49, 52, 56, 55,
        68, 80, 76, 80, 78, 96, 100, 86, 106,
        108, 96, 98, 102, 96, 100, 104, 110,
        116, 120, 126, 125, 132, 138, 139, 142)
## The Linear Model (regression)
model = lm(Area ~ Length)
summary(model)
##
## Call:
## lm(formula = Area ~ Length)
##
## Residuals:
                 1Q
                     Median
                                           Max
       Min
                                   3Q
## -13.6951 -4.3027 -0.3905
                               4.0217 14.2925
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.74914
                          3.47886
                                    1.653
                                             0.108
## Length
              1.33264
                          0.05215 25.555
                                            <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.189 on 32 degrees of freedom
## Multiple R-squared: 0.9533, Adjusted R-squared: 0.9518
## F-statistic: 653.1 on 1 and 32 DF, p-value: < 2.2e-16
## Analysis of Variance
anova(model)
## Analysis of Variance Table
## Response: Area
            Df Sum Sq Mean Sq F value
                                         Pr(>F)
            1 33750
                        33750 653.07 < 2.2e-16 ***
## Length
## Residuals 32
                 1654
                           52
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual Diagnostics
plot(model)
```


hist(model\$residuals)

Histogram of model\$residuals

7.2 Example

```
x = c(0, 25, 50, 75, 100, 125)
y = c(3.70, 4.45, 4.75, 5.20, 5.15, 4.95)
model = lm(y \sim x)
summary(model)
##
## Call:
## lm(formula = y \sim x)
##
## Residuals:
                            3
## -0.37143 0.12714 0.17571 0.37429 0.07286 -0.37857
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.071429
                          0.249066
                                  16.347 8.2e-05 ***
## x
              0.010057
                          0.003291
                                     3.056
                                            0.0378 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3441 on 4 degrees of freedom
## Multiple R-squared: 0.7002, Adjusted R-squared: 0.6252
## F-statistic: 9.341 on 1 and 4 DF, p-value: 0.03779
```

7.3 Example

```
anova(model)

## Analysis of Variance Table

## Response: y

## Df Sum Sq Mean Sq F value Pr(>F)

## x 1 1.10629 1.10629 9.3414 0.03779 *

## Residuals 4 0.47371 0.11843

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Graphics

plot(x,y)
abline(model)
```


Chapter 8: Curve Fitting

8.1 Example

```
y = c(3.70, 4.45, 4.75, 5.20, 5.15, 4.95)
x = c(0, 25, 50, 75, 100, 125)
x2 = x^2
model = lm(y \sim x + x2)
summary(model)
##
## Call:
## lm(formula = y \sim x + x2)
## Residuals:
##
                     2
                             3
## -0.0053571 0.0539286 -0.1171429 0.0814286 -0.0003571 -0.0125000
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.705e+00 8.012e-02 46.24 2.23e-05 ***
## x
             3.202e-02 3.015e-03 10.62 0.00178 **
             -1.757e-04 2.315e-05 -7.59 0.00474 **
## x2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.08841 on 3 degrees of freedom
## Multiple R-squared: 0.9852, Adjusted R-squared: 0.9753
## F-statistic: 99.58 on 2 and 3 DF, p-value: 0.001808
anova(model)
## Analysis of Variance Table
## Response: y
          Df Sum Sq Mean Sq F value Pr(>F)
           1 1.10629 1.10629 141.551 0.001277 **
## x2
           1 0.45027 0.45027 57.612 0.004745 **
## Residuals 3 0.02345 0.00782
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
model $fitted. values
## 3.705357 4.396071 4.867143 5.118571 5.150357 4.962500
model$residuals
##
                                       3
## -0.0125000000
plot(x,y)
```


8.2 Example

```
x = c(2.5, 3, 7.2, 7.8, 8.3, 9.8,
      10.8, 15.5, 24., 31.5, 40.2, 64.4)
y = c(5.5, 7.9, 9.8, 11, 13.6, 10.9,
      12.3, 17.5, 20.5, 25.6, 20.4, 26.8)
lnx = log(x)
lny = log(y)
## Model 1: y = a + bx
model1 = lm(y~x)
summary(model1)
##
## Call:
## lm(formula = y \sim x)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -4.2375 -1.9219 -0.8859 2.3061 6.2033
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
```

```
1.3901 6.406 7.78e-05 ***
## (Intercept)
              8.9048
                       0.0539 6.179 0.000104 ***
## x
              0.3331
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.306 on 10 degrees of freedom
## Multiple R-squared: 0.7925, Adjusted R-squared: 0.7717
## F-statistic: 38.18 on 1 and 10 DF, p-value: 0.0001042
model1\fitted.values
                        3
##
                                          5
## 9.737508 9.904046 11.302967 11.502813 11.669351 12.168966 12.502042
               9 10
                                 11
                                          12
## 14.067502 16.898651 19.396724 22.294489 30.354939
model1$residuals
                   2
                            3
                                      4
## -4.2375081 -2.0040464 -1.5029673 -0.5028132 1.9306486 -1.2689660
         7
                   8
                            9
                                     10
## Model 2: ln(y) = a + ln(x)
model2 = lm(lny~lnx)
```

8.3 Example


```
## Logistic growth curve
model = nls(y~alpha/(1+exp(h+c*x)), start=list(alpha=13.54, h=19.70, c=-0.0864))
```

Chapter 9: The Completely Randomized Design

9.1 Example

From Chapter 9 and beyond we should have our data settled in a data frame (spreadsheet) which is a combination of vectors of same size. You can create it internally in R or in a externally with the aid of a spreadsheet software (MS Excel, LibreOffice Calc etc) and import in R with Import Dataset from RStudio.

Below, we build the data frame of Example 9.1. You can read the data in different ways. Here, we read the data row after row based on Table 9.3.

```
##
      variety yield
## 1
            A 22.2
               23.9
## 2
           D
## 3
           B 24.1
## 4
           D 21.7
              25.9
## 5
            C
## 6
               18.4
              24.8
## 7
           D
## 8
           D
              28.2
            A 17.3
## 9
               26.4
## 10
           D
## 11
            A 21.2
           B 30.3
## 12
           C
              23.2
## 13
## 14
           C 21.9
## 15
           B 27.4
## 16
            A 25.2
## 17
           В
              26.4
## 18
            A 16.1
              22.6
## 19
## 20
              34.8
data$variety
```

```
## [1] A D B D C C D D A D A B C C B A B A C B
## Levels: A B C D
data$yield
```

```
## [1] 22.2 23.9 24.1 21.7 25.9 18.4 24.8 28.2 17.3 26.4 21.2 30.3 23.2 21.9 ## [15] 27.4 25.2 26.4 16.1 22.6 34.8
```

```
## Always check the structure of your data:
str(data)
                    20 obs. of 2 variables:
## 'data.frame':
## $ variety: Factor w/ 4 levels "A", "B", "C", "D": 1 4 2 4 3 3 4 4 1 4 ...
## $ yield : num 22.2 23.9 24.1 21.7 25.9 18.4 24.8 28.2 17.3 26.4 ...
#num = quantitative variable
#factor = qualitative variable
Be carefull, always check your data structure, if the variable types are correct, if the number of factor levels
are correct etc.
tapply(data$yield, data$variety, length) #N
## A B C D
## 5 5 5 5
tapply(data$yield, data$variety, mean) #Mean
     Α
          В
               С
## 20.4 28.6 22.4 25.0
tapply(data$yield, data$variety, sd) #StDev
                            С
##
          Α
                   В
## 3.708773 4.118859 2.700926 2.466779
model = aov(yield ~ variety, data = data)
anova(model)
## Analysis of Variance Table
## Response: yield
           Df Sum Sq Mean Sq F value Pr(>F)
## variety 3 188.2 62.733 5.6901 0.00756 **
## Residuals 16 176.4 11.025
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

boxplot(yield ~ variety, data = data)

plot(model)

Constant Leverage: Residuals vs Factor Levels

Factor Level Combinations

9.2 Example

```
data = data.frame(variety = c("A","A","A",
                               "B", "B", "B", "B",
                               "C", "C", "C", "C",
                               "D", "D", "D", "D", "D"),
                  yield = c(17.3, 21.2, 16.1,
                             24.1, 30.3, 26.4, 34.8,
                             25.9, 18.4, 21.9, 22.6,
                             23.9, 21.7, 24.8, 28.2, 26.4))
tapply(data$yield, data$variety, length) #N
## A B C D
## 3 4 4 5
tapply(data$yield, data$variety, mean) #Mean
##
      Α
           В
                С
## 18.2 28.9 22.2 25.0
tapply(data$yield, data$variety, sd) #StDev
                   В
                            C
## 2.666458 4.692547 3.075711 2.466779
```


plot(model)

agricolae package

There are several R package for Experimental Design Analysis for Agricultural and Plant Breeding experiments (more here). agricolae is by far the most-used package from this task view (status: October 2017).

Here, we show how to do the RCD analysis using agricolae

To install and load agricolae

```
#install.packages("agricolae")
library(agricolae)
```

Sampling the treatments

103 2

104 2

105 3

В

D

3

4

5

```
variety = c("A","B","C","D")
field_design = design.crd(variety, r=5)
field_design$book

## plots r variety
## 1 101 1 B
## 2 102 1 D
```

```
## 6
        106 1
## 7
        107 1
                    C
## 8
        108 3
                    D
## 9
        109 2
                    Α
## 10
        110 3
                    Α
## 11
        111 2
                    С
## 12
        112 3
## 13
        113 4
                    Α
## 14
        114 4
                    В
## 15
        115 4
                    D
## 16
        116 4
                    C
        117 5
                    В
## 17
## 18
        118 5
                    Α
## 19
                    D
        119 5
## 20
        120 5
```

Data analysis

```
data = data.frame(variety = c("A", "D", "B", "D", "C",
                             "C", "D", "D", "A", "D",
                             "A", "B", "C", "C", "B",
                             "A", "B", "A", "C", "B"),
                 yield = c(22.2, 23.9, 24.1, 21.7, 25.9,
                           18.4, 24.8, 28.2, 17.3, 26.4,
                           21.2, 30.3, 23.2, 21.9, 27.4,
                           25.2, 26.4, 16.1, 22.6, 34.8))
model = aov(yield ~ variety, data = data)
anova(model)
## Analysis of Variance Table
##
## Response: yield
           Df Sum Sq Mean Sq F value Pr(>F)
           3 188.2 62.733 5.6901 0.00756 **
## variety
## Residuals 16 176.4 11.025
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Coefficient of Variation
cv.model(model)
## [1] 13.77756
## Least Significant Difference Analysis
LSD = LSD.test(model, "variety", console = TRUE)
##
## Study: model ~ "variety"
## LSD t Test for yield
## Mean Square Error: 11.025
## variety, means and individual ( 95 %) CI
```

```
##
                           LCL
##
     yield
                std r
                                   UCL Min Max
## A 20.4 3.708773 5 17.2521 23.5479 16.1 25.2
## B 28.6 4.118859 5 25.4521 31.7479 24.1 34.8
      22.4 2.700926 5 19.2521 25.5479 18.4 25.9
## D 25.0 2.466779 5 21.8521 28.1479 21.7 28.2
## Alpha: 0.05 ; DF Error: 16
## Critical Value of t: 2.119905
##
## least Significant Difference: 4.451801
##
\ensuremath{\mbox{\#\#}} Treatments with the same letter are not significantly different.
##
##
     yield groups
## B
     28.6
## D
     25.0
               ab
## C 22.4
               bc
## A 20.4
bar.group(LSD$group)
```


bar.err(LSD\$means)

plot(LSD, variation="range",las=1)

Groups and Range

plot(LSD, horiz=TRUE, variation="SD",las=1)

Groups and Standard deviation


```
## Tukey's (HSD) Test
HSD.test(model, "variety", console=TRUE)
## Study: model ~ "variety"
## HSD Test for yield
##
## Mean Square Error: 11.025
## variety, means
##
     yield
                std r Min Max
## A 20.4 3.708773 5 16.1 25.2
## B 28.6 4.118859 5 24.1 34.8
## C 22.4 2.700926 5 18.4 25.9
## D 25.0 2.466779 5 21.7 28.2
## Alpha: 0.05; DF Error: 16
## Critical Value of Studentized Range: 4.046093
## Minimun Significant Difference: 6.008142
\ensuremath{\mbox{\#\#}} Treatments with the same letter are not significantly different.
##
    yield groups
##
```

B 28.6 a ## D 25.0 ab ## C 22.4 b ## A 20.4 b

Chapter 10: The Randomized Block Design

Randomization

4 treatments and 3 blocks (repetitions)

```
library(agricolae)
variety = c("A","B","C","D")

field_design = design.rcbd(variety,r = 3)
field_design$book
```

```
##
      plots block variety
## 1
        101
                 1
                         Α
## 2
        102
                         D
                 1
## 3
        103
                 1
                         В
## 4
        104
                         C
                 1
                 2
## 5
        201
                         D
## 6
        202
                 2
                         В
## 7
        203
                 2
                         Α
## 8
        204
                 2
                         C
## 9
        301
                 3
                         Α
## 10
        302
                 3
                         В
## 11
        303
                 3
                         D
                         С
## 12
        304
                 3
```

10.1 Example

Below, we build the data frame of Example 10.1. Here we are reading the data by columns.

```
##
      variety block yield
## 1
           V1
                  В1
                       7.4
## 2
           V1
                  B2
                       6.5
## 3
           V1
                  ВЗ
                       5.6
           ٧2
## 4
                 B1
                       9.8
## 5
           ٧2
                 B2
                       6.8
## 6
           ٧2
                 ВЗ
                       6.2
## 7
           VЗ
                 B1
                       7.3
## 8
           VЗ
                 B2
                       6.1
```

```
9.5
## 10
          ۷4
                В1
## 11
           ۷4
                B2
                      8.0
## 12
           ٧4
                 ВЗ
                      7.4
Checking the data frame structure, sums, block and variety totals
str(example10.1)
## 'data.frame':
                    12 obs. of 3 variables:
## $ variety: Factor w/ 4 levels "V1", "V2", "V3", ...: 1 1 1 2 2 2 3 3 3 4 ...
## $ block : Factor w/ 3 levels "B1", "B2", "B3": 1 2 3 1 2 3 1 2 3 1 ...
## $ yield : num 7.4 6.5 5.6 9.8 6.8 6.2 7.3 6.1 6.4 9.5 ...
#apply the function sum in yield by block
tapply(example10.1$yield, example10.1$block, sum)
##
    В1
         B2
               ВЗ
## 34.0 27.4 25.6
#apply the function mean in yield by block
tapply(example10.1$yield, example10.1$block, mean)
    В1
         B2
## 8.50 6.85 6.40
#apply the function sum in yield by variety
tapply(example10.1$yield, example10.1$variety, sum)
    V1
         V2
               VЗ
                    V4
##
## 19.5 22.8 19.8 24.9
#apply the function mean in yield by variety
tapply(example10.1$yield, example10.1$variety, mean)
## V1 V2 V3 V4
## 6.5 7.6 6.6 8.3
```

Descriptive plots

9

V3

вз

6.4

```
boxplot( example10.1$yield ~ example10.1$block)
```


boxplot(example10.1\$yield ~ example10.1\$variety)

10.2 Analysis ignoring blocks

```
model10.2 = aov(yield ~ variety, data = example10.1)
anova(model10.2)

## Analysis of Variance Table

## Response: yield

## Df Sum Sq Mean Sq F value Pr(>F)

## variety 3 6.63 2.2100 1.4516 0.2987

## Residuals 8 12.18 1.5225
```

10.3 The analysis including blocks

```
model10.3 = aov(yield ~ block + variety, data = example10.1)
anova(model10.3)
## Analysis of Variance Table
##
## Response: yield
             Df Sum Sq Mean Sq F value
##
              2
                  9.78
                          4.89 12.225 0.007651 **
## block
                  6.63
                          2.21
                                 5.525 0.036730 *
## variety
              3
## Residuals 6
                  2.40
                          0.40
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residuals and Fitted values

```
model10.3$residuals
                3
                      4
                            5
                                 6
                                       7
                                            8
                                                  9
                                                      10
                                                            11
                                                                 12
## -0.35 0.40 -0.05 0.95 -0.40 -0.55 -0.55 -0.10 0.65 -0.05 0.10 -0.05
model10.3$fitted.values
## 1 2 3 4
                       5
                           6 7
## 7.75 6.10 5.65 8.85 7.20 6.75 7.85 6.20 5.75 9.55 7.90 7.45
```

Diagnostics Plots

```
plot(model10.3)
```


hist(model10.3\$residuals,breaks = 10)

Histogram of model10.3\$residuals

10.8 Comparison of treatment means

10.8.1 LSD Analysis and Confidence Intervals

```
With agricolae
```

Alpha: 0.05; DF Error: 6

```
library(agricolae)
LSD.test(model10.3, "variety", console=TRUE)
##
## Study: model10.3 ~ "variety"
##
## LSD t Test for yield
##
## Mean Square Error: 0.4
##
## variety, means and individual ( 95 %) CI
##
##
      yield
                  std r
                             LCL
                                      UCL Min Max
## V1
        6.5 0.9000000 3 5.606514 7.393486 5.6 7.4
        7.6 1.9287302 3 6.706514 8.493486 6.2 9.8
        6.6 0.6244998 3 5.706514 7.493486 6.1 7.3
## V3
        8.3 1.0816654 3 7.406514 9.193486 7.4 9.5
```

```
## Critical Value of t: 2.446912
##
## least Significant Difference: 1.26358
## Treatments with the same letter are not significantly different.
##
##
      yield groups
## V4
       8.3
## V2
       7.6
       6.6
                 b
## V3
## V1
       6.5
                 b
```

Standard Errors and Confidence Intervals (by "hand"")

```
## Extracting RMS
anova(model10.3)
## Analysis of Variance Table
## Response: yield
            Df Sum Sq Mean Sq F value
## block
                  9.78
                         4.89 12.225 0.007651 **
              2
## variety
              3
                  6.63
                          2.21
                                 5.525 0.036730 *
## Residuals 6
                  2.40
                          0.40
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## The RMS is the Residual Mean Square error,
## In our ANOVA table, RMS is located in the 3rd row and 3rd column
RMS = anova(model10.3)[3,3]
print(RMS)
## [1] 0.4
r = 3 #number of reps (blocks)
SEM = sqrt(RMS/r)
print(SEM)
## [1] 0.3651484
lower.t = qt(0.025, 6)
upper.t = qt(0.975, 6)
variety.mean = tapply(example10.1$yield, example10.1$variety, mean)
lower.CI = variety.mean + lower.t*SEM
upper.CI = variety.mean + upper.t*SEM
CI.variety = data.frame(mean = variety.mean,
                        lower = lower.CI,
                        upper = upper.CI)
```

Chapter 11: The Latin Square Design

Randomization

```
variety = c("A", "B", "C", "D")
field_design = design.lsd(variety)
field_design$book
##
     plots row col variety
## 1
       101
             1
                 1
## 2
       102
                 2
                         Α
             1
## 3
       103
             1
                 3
                         С
## 4
       104
                 4
                         D
            1
                         D
## 5
       201
                 1
                         C
## 6
       202
             2
                 2
       203
             2
                 3
## 7
                         Α
## 8
       204
             2
                 4
                         В
## 9
       301
             3
                 1
                         C
## 10
       302
                 2
                         В
             3
## 11
       303
            3
                 3
                         D
## 12
       304
            3
                 4
                         Α
       401
                1
## 13
                         Α
                 2
## 14
       402
                         D
```

11.1 Example

403

404

4 3

B C

15

16

Below, we build the data frame of Example 11.1. Here we are reading the data by columns.

```
example11.1 = data.frame(
  row = c("1","1","1","1",
          "2","2","2","2",
          "3","3","3","3",
          "4","4","4","4"),
  column = c("1","2","3","4",
             "1","2","3","4",
             "1","2","3","4",
             "1","2","3","4"),
  variety = c("C","D","B","A",
               "B", "A", "C", "D",
               "D", "C", "A", "B",
               "A", "B", "D", "C"),
  yield = c(16.6, 13.9, 18.0, 21.9,
            12.6,17.4,17.9,16.5,
            9.3,16.2,18.4,15.5,
            15.7,11.3,10.5,13.1))
## Visualing the data frame
print(example11.1)
```

row column variety yield

```
C 16.6
## 1
       1
              1
## 2
                      D 13.9
       1
              2
## 3
              3
                      B 18.0
## 4
              4
                      A 21.9
       1
## 5
       2
              1
                      B 12.6
## 6
       2
              2
                      A 17.4
## 7
       2
              3
                      C 17.9
                      D 16.5
## 8
       2
              4
## 9
       3
              1
                      D
                         9.3
## 10
       3
              2
                      C 16.2
## 11
       3
              3
                      A 18.4
              4
                      B 15.5
## 12
       3
## 13
       4
              1
                      A 15.7
              2
## 14
       4
                      B 11.3
## 15
       4
              3
                      D 10.5
                      C 13.1
## 16
       4
              4
#apply the function sum in yield by row
tapply(example11.1$yield, example11.1$row, sum)
##
     1
          2
               3
## 70.4 64.4 59.4 50.6
#apply the function sum in yield by col
tapply(example11.1$yield, example11.1$col, sum)
##
     1
          2
               3
## 54.2 58.8 64.8 67.0
#apply the function sum in yield by variety
tapply(example11.1$yield, example11.1$variety, sum)
##
     Α
          В
## 73.4 57.4 63.8 50.2
#apply the function mean in yield by variety
tapply(example11.1$yield, example11.1$variety, mean)
##
      Α
                  C
            В
## 18.35 14.35 15.95 12.55
Model
model11.1 = aov(yield ~ row + column + variety, data = example11.1)
Residual analysis
plot(model11.1)
```


Constant Leverage: Residuals vs Factor Levels

Factor Level Combinations

Analysis of Variance

${\bf Comparision\ between\ the\ treatments}$

```
LSD.test(model11.1, "variety", console=TRUE)

##
## Study: model11.1 ~ "variety"
##
## LSD t Test for yield
##
```

```
## Mean Square Error: 2.363333
##
## variety, means and individual (95 %) CI
##
##
    yield
               std r
                          LCL
                                   UCL Min Max
## A 18.35 2.615977 4 16.46916 20.23084 15.7 21.9
## B 14.35 3.000556 4 12.46916 16.23084 11.3 18.0
## C 15.95 2.033880 4 14.06916 17.83084 13.1 17.9
## D 12.55 3.275668 4 10.66916 14.43084 9.3 16.5
## Alpha: 0.05; DF Error: 6
## Critical Value of t: 2.446912
## least Significant Difference: 2.659903
## Treatments with the same letter are not significantly different.
##
##
   yield groups
## A 18.35
## C 15.95
## B 14.35
              bc
## D 12.55
```

11.1 Exercise

```
exercise11.1 = data.frame(
 row = c("1","1","1","1","1",
          "2","2","2","2","2",
          "3","3","3","3","3",
          "4","4","4","4","4",
          "5","5","5","5","5"),
  column = c("1","2","3","4","5",
             "1","2","3","4","5",
             "1","2","3","4","5",
             "1","2","3","4","5",
             "1","2","3","4","5"),
  variety = c("P2","P3","P5","P1","P4",
              "P4", "P5", "P1", "P2", "P3",
              "P3", "P1", "P2", "P4", "P5",
              "P5", "P2", "P4", "P3", "P1",
              "P1", "P4", "P3", "P5", "P2"),
 yield = c(62.3,61.3,62.5,63.8,75.0,
            64.1,68.4,62.9,66.2,77.4,
            69.2,55.8,67.8,71.3,74.8,
            65.0,68.7,69.8,76.0,70.9,
            63.3,75.0,69.3,78.0,75.4))
```

Model

```
modelexercise11.1 = aov(yield ~ row + column + variety, data = exercise11.1)
```


Factor Level Combinations

Analysis of Variance

```
anova(modelexercise11.1)
## Analysis of Variance Table
```

${\bf Comparision\ between\ the\ treatments}$

```
LSD.test(modelexercise11.1, "variety", console=TRUE)
```

```
##
## Study: modelexercise11.1 ~ "variety"
##
## LSD t Test for yield
##
```

```
## Mean Square Error: 10.37793
##
## variety, means and individual ( 95 %) CI
##
##
     yield
                std r
                           LCL
                                    UCL Min Max
## P1 63.34 5.348177 5 60.20101 66.47899 55.8 70.9
## P2 68.08 4.769382 5 64.94101 71.21899 62.3 75.4
## P3 70.64 6.432962 5 67.50101 73.77899 61.3 77.4
## P4 71.04 4.503665 5 67.90101 74.17899 64.1 75.0
## P5 69.74 6.529012 5 66.60101 72.87899 62.5 78.0
## Alpha: 0.05; DF Error: 12
## Critical Value of t: 2.178813
##
## least Significant Difference: 4.439207
## Treatments with the same letter are not significantly different.
##
##
     yield groups
## P4 71.04
## P3 70.64
## P5 69.74
## P2 68.08
                a
## P1 63.34
```

Chapter 12: Factorial Experiments

Randomization

Let's assume that we would like to use the following factors: Factor 1 with 2 levels Factor 2 with 3 levels

We can use the same previous functions with the 6 possible treatments as follows

```
factor1 = c("A1","B1")
factor2 = c("A2","B2","C2")
treatments = paste(rep(factor1,each=3),rep(factor2,2),sep="_")

## Randomization in CRD with 3 reps
field_design = design.crd(treatments,r = 3)

## Randomization in RCBD with 3 blocks
field_design = design.rcbd(treatments,r = 3)

## Randomization in Latin Square 6x6
field_design = design.lsd(treatments)
```

Example 12.3

Hereafter, we will use the function rep to build the data frames

```
block P N yield
## 1
        B1 P1 N1
                    0.9
## 2
        B1 P1 N2
                    1.2
## 3
        B1 P1 N3
                    1.3
## 4
        B1 P1 N4
                    1.8
## 5
        B1 P1 N5
                    1.1
## 6
        B1 P2 N1
                    0.9
## 7
        B1 P2 N2
                   1.1
## 8
        B1 P2 N3
                    1.3
## 9
        B1 P2 N4
                    1.6
        B1 P2 N5
## 10
                    1.9
## 11
        B1 P3 N1
                    0.9
## 12
        B1 P3 N2
                    1.4
## 13
        B1 P3 N3
                   1.3
        B1 P3 N4
## 14
                   1.4
## 15
        B1 P3 N5
                    1.2
## 16
        B2 P1 N1
                    0.9
```

```
## 17
         B2 P1 N2
                    1.3
         B2 P1 N3
## 18
                    1.5
         B2 P1 N4
## 19
                    1.9
## 20
         B2 P1 N5
                    1.4
## 21
         B2 P2 N1
                    0.8
## 22
         B2 P2 N2
                    0.9
## 23
         B2 P2 N3
                    1.5
## 24
         B2 P2 N4
                    1.3
## 25
         B2 P2 N5
                    1.6
## 26
         B2 P3 N1
                    1.0
## 27
         B2 P3 N2
                    1.2
         B2 P3 N3
## 28
                    1.4
## 29
         B2 P3 N4
                    1.5
## 30
         B2 P3 N5
                    1.1
## 31
         B3 P1 N1
                    1.0
## 32
         B3 P1 N2
                    1.2
## 33
         B3 P1 N3
                    1.4
         B3 P1 N4
## 34
                    2.1
## 35
         B3 P1 N5
                    1.2
         B3 P2 N1
## 36
                    0.8
## 37
         B3 P2 N2
                    0.9
## 38
         B3 P2 N3
         B3 P2 N4
## 39
                    1.1
## 40
         B3 P2 N5
                    1.5
         B3 P3 N1
## 41
                    0.7
## 42
         B3 P3 N2
                    1.0
## 43
         B3 P3 N3
                    1.4
## 44
         B3 P3 N4
                    1.4
## 45
         B3 P3 N5
                    1.3
#apply the function sum in yield by block
tapply(example12.3$yield, example12.3$block, sum)
          B2
               ВЗ
     В1
## 19.3 19.3 18.1
#apply the function sum in yield by P
tapply(example12.3$yield, example12.3$P, sum)
          P2
               РЗ
     P1
## 20.2 18.3 18.2
\#apply the function sum in yield by N
tapply(example12.3$yield, example12.3$N, sum)
##
          N2
               NЗ
                    N4
##
   7.9 10.2 12.2 14.1 12.3
Model
model12.3 <- aov(yield ~ block + P + N + P*N, data=example12.3)</pre>
```


Factor Level Combinations

Analysis of Variance

```
anova(model12.3)
## Analysis of Variance Table
##
## Response: yield
             Df Sum Sq Mean Sq F value
##
                                           Pr(>F)
## block
              2 0.06400 0.03200 1.6311
                                          0.21377
## P
              2 0.16933 0.08467 4.3155
                                          0.02324 *
              4 2.49022 0.62256 31.7322 4.946e-10 ***
              8 1.01511 0.12689
                                 6.4676 8.979e-05 ***
## P:N
## Residuals 28 0.54933 0.01962
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

Comparision between the treatments

With factorial experiment we need to define for which factor we want to do the comparision

For P

```
LSD.test(model12.3, trt = "P", console=TRUE)
```

##

```
## Study: model12.3 ~ "P"
##
## LSD t Test for yield
##
## Mean Square Error: 0.01961905
##
## P, means and individual (95 %) CI
##
##
                     std r
                                 LCL
                                          UCL Min Max
         yield
## P1 1.346667 0.3542934 15 1.272585 1.420748 0.9 2.1
## P2 1.220000 0.3405877 15 1.145919 1.294081 0.8 1.9
## P3 1.213333 0.2294922 15 1.139252 1.287415 0.7 1.5
## Alpha: 0.05; DF Error: 28
## Critical Value of t: 2.048407
## least Significant Difference: 0.104767
## Treatments with the same letter are not significantly different.
##
##
         yield groups
## P1 1.346667
## P2 1.220000
## P3 1.213333
For N
LSD.test(model12.3, trt = "N", console=TRUE)
## Study: model12.3 ~ "N"
## LSD t Test for yield
##
## Mean Square Error: 0.01961905
##
## N, means and individual ( 95 \%) CI
##
          yield
                       std r
                                LCL
                                            UCL Min Max
##
## N1 0.8777778 0.09718253 9 0.782139 0.9734165 0.7 1.0
## N2 1.1333333 0.17320508 9 1.037695 1.2289721 0.9 1.4
## N3 1.3555556 0.12360331 9 1.259917 1.4511943 1.1 1.5
## N4 1.5666667 0.31622777 9 1.471028 1.6623054 1.1 2.1
## N5 1.3666667 0.26457513 9 1.271028 1.4623054 1.1 1.9
## Alpha: 0.05; DF Error: 28
## Critical Value of t: 2.048407
## least Significant Difference: 0.1352536
## Treatments with the same letter are not significantly different.
##
##
         yield groups
## N4 1.5666667
## N5 1.3666667
                     b
```

```
## N2 1.1333333
## N1 0.8777778
For P*N interaction, the agricolae syntax is c("P", "N")
LSD.test(model12.3, trt = c("P","N"), console=TRUE)
##
## Study: model12.3 ~ c("P", "N")
##
## LSD t Test for yield
##
## Mean Square Error: 0.01961905
## P:N, means and individual (95 %) CI
##
                                      LCL
             vield
                          std r
## P1:N1 0.9333333 0.05773503 3 0.7676821 1.0989845 0.9 1.0
## P1:N2 1.2333333 0.05773503 3 1.0676821 1.3989845 1.2 1.3
## P1:N3 1.4000000 0.10000000 3 1.2343488 1.5656512 1.3 1.5
## P1:N4 1.9333333 0.15275252 3 1.7676821 2.0989845 1.8 2.1
## P1:N5 1.2333333 0.15275252 3 1.0676821 1.3989845 1.1 1.4
## P2:N1 0.8333333 0.05773503 3 0.6676821 0.9989845 0.8 0.9
## P2:N2 0.9666667 0.11547005 3 0.8010155 1.1323179 0.9 1.1
## P2:N3 1.3000000 0.20000000 3 1.1343488 1.4656512 1.1 1.5
## P2:N4 1.3333333 0.25166115 3 1.1676821 1.4989845 1.1 1.6
## P2:N5 1.6666667 0.20816660 3 1.5010155 1.8323179 1.5 1.9
## P3:N1 0.8666667 0.15275252 3 0.7010155 1.0323179 0.7 1.0
## P3:N2 1.2000000 0.20000000 3 1.0343488 1.3656512 1.0 1.4
## P3:N3 1.3666667 0.05773503 3 1.2010155 1.5323179 1.3 1.4
## P3:N4 1.4333333 0.05773503 3 1.2676821 1.5989845 1.4 1.5
## P3:N5 1.2000000 0.10000000 3 1.0343488 1.3656512 1.1 1.3
## Alpha: 0.05; DF Error: 28
## Critical Value of t: 2.048407
## least Significant Difference: 0.2342662
## Treatments with the same letter are not significantly different.
##
             yield groups
## P1:N4 1.9333333
                        а
## P2:N5 1.666667
                        b
## P3:N4 1.4333333
                       bc.
## P1:N3 1.4000000
## P3:N3 1.3666667
                        С
## P2:N4 1.3333333
## P2:N3 1.3000000
                        С
## P1:N2 1.2333333
                        С
## P1:N5 1.2333333
                        С
## P3:N2 1.2000000
                       cd
## P3:N5 1.2000000
                       cd
## P2:N2 0.9666667
                       de
## P1:N1 0.9333333
                        e
```

N3 1.355556

```
## P3:N1 0.8666667 e ## P2:N1 0.8333333 e
```

Interaction Plots

Chapter 13: Comparison of Treatment Means

Since the book does not provide the Example 13.1 original data, here we show how to perfom the comparison of treatment means using the example 9.1

```
example9.1 = data.frame(variety = c("A", "D", "B", "D", "C",
                                    "C", "D", "D", "A", "D",
                                    "A", "B", "C", "C", "B",
                                   "A", "B", "A", "C", "B"),
                       yield = c(22.2, 23.9, 24.1, 21.7, 25.9,
                                 18.4, 24.8, 28.2, 17.3, 26.4,
                                 21.2, 30.3, 23.2, 21.9, 27.4,
                                 25.2, 26.4, 16.1, 22.6, 34.8))
model9.1 = aov(yield~variety,data=example9.1)
anova(model9.1)
## Analysis of Variance Table
##
## Response: yield
            Df Sum Sq Mean Sq F value Pr(>F)
##
## variety
             3 188.2 62.733 5.6901 0.00756 **
## Residuals 16 176.4 11.025
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

13.2.1 Least Significant Difference

```
library(agricolae)
LSD.test(model9.1, "variety", console=TRUE)
##
## Study: model9.1 ~ "variety"
## LSD t Test for yield
##
## Mean Square Error: 11.025
##
## variety, means and individual (95 %) CI
##
##
                          LCL
                                  UCL Min Max
    yield
                std r
## A 20.4 3.708773 5 17.2521 23.5479 16.1 25.2
## B 28.6 4.118859 5 25.4521 31.7479 24.1 34.8
## C 22.4 2.700926 5 19.2521 25.5479 18.4 25.9
## D 25.0 2.466779 5 21.8521 28.1479 21.7 28.2
## Alpha: 0.05 ; DF Error: 16
## Critical Value of t: 2.119905
## least Significant Difference: 4.451801
##
## Treatments with the same letter are not significantly different.
##
##
    yield groups
```

```
## B 28.6 a
## D 25.0 ab
## C 22.4 bc
## A 20.4 c
```

13.2.2 Tukey's Honestly Significant Difference Test (HSD) a.k.a. Tukey's Studentised Range Test

```
library(agricolae)
HSD.test(model9.1, "variety", console=TRUE)
## Study: model9.1 ~ "variety"
##
## HSD Test for yield
## Mean Square Error: 11.025
##
## variety, means
##
##
    yield
                std r Min Max
## A 20.4 3.708773 5 16.1 25.2
## B 28.6 4.118859 5 24.1 34.8
## C 22.4 2.700926 5 18.4 25.9
## D 25.0 2.466779 5 21.7 28.2
##
## Alpha: 0.05; DF Error: 16
## Critical Value of Studentized Range: 4.046093
##
## Minimun Significant Difference: 6.008142
## Treatments with the same letter are not significantly different.
##
##
    yield groups
## B 28.6
## D 25.0
## C 22.4
                b
## A 20.4
                b
```

13.2.3 Student-Newman-Keuls Test (SNK)

```
library(agricolae)
SNK.test(model9.1, "variety", console=TRUE)

##
## Study: model9.1 ~ "variety"
##
## Student Newman Keuls Test
## for yield
##
## Mean Square Error: 11.025
##
```

```
## variety, means
##
##
    yield
               std r Min Max
## A 20.4 3.708773 5 16.1 25.2
## B 28.6 4.118859 5 24.1 34.8
## C 22.4 2.700926 5 18.4 25.9
## D 25.0 2.466779 5 21.7 28.2
## Alpha: 0.05; DF Error: 16
##
## Critical Range
                  3
## 4.451801 5.418695 6.008142
## Means with the same letter are not significantly different.
##
##
    yield groups
## B 28.6
## D 25.0
              ab
## C 22.4
## A 20.4
```

13.2.4 Duncan's Multiple Range Test (DMRT)

```
library(agricolae)
duncan.test(model9.1, "variety", console=TRUE)
## Study: model9.1 ~ "variety"
##
## Duncan's new multiple range test
## for yield
## Mean Square Error: 11.025
## variety, means
##
##
    yield
               std r Min Max
## A 20.4 3.708773 5 16.1 25.2
## B 28.6 4.118859 5 24.1 34.8
## C 22.4 2.700926 5 18.4 25.9
## D 25.0 2.466779 5 21.7 28.2
##
## Alpha: 0.05; DF Error: 16
##
## Critical Range
                  3
         2
## 4.451801 4.668308 4.803648
## Means with the same letter are not significantly different.
##
   yield groups
## B 28.6
```

```
## D 25.0 ab
## C 22.4 b
## A 20.4 b
```

13.2.5 Waller-Duncan's Bayes MSD test

```
library(agricolae)
waller.test(model9.1, "variety", console=TRUE)
## Study: model9.1 ~ "variety"
## Waller-Duncan K-ratio t Test for yield
## This test minimizes the Bayes risk under additive loss and certain other assumptions
##
## K ratio
                            100.000000
## Error Degrees of Freedom 16.000000
## Error Mean Square
                             11.025000
## F value
                              5.690098
## Critical Value of Waller
                              2.153000
##
## variety, means
##
##
    yield
               std r Min Max
## A 20.4 3.708773 5 16.1 25.2
## B 28.6 4.118859 5 24.1 34.8
## C 22.4 2.700926 5 18.4 25.9
## D 25.0 2.466779 5 21.7 28.2
## Minimum Significant Difference 4.5213
## Treatments with the same letter are not significantly different.
##
    yield groups
## B 28.6
## D 25.0
               ab
## C 22.4
## A 20.4
```

13.4.1 Testing for a Linear Trend in Treatment Means

Example 13.3

Analysis of Variance with N as factor (qualitative)

```
example13.3$N = as.factor(example13.3$N)
model13.3 = aov(yield~block+N,data=example13.3)
anova(model13.3)
## Analysis of Variance Table
##
## Response: yield
##
            Df Sum Sq Mean Sq F value
                                         Pr(>F)
## block
                 2.19
                        0.730
                                9.359 0.000988 ***
## N
             5
                 6.32
                        1.264 16.205 1.397e-05 ***
## Residuals 15
                  1.17
                        0.078
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Analysis of Variance with N as numeric for testing a linear trend. It is necessary to include the treatment at factor (factor(N)) to count for the treatment deviations in the ANOVA table after N in the formula, i.e., N + factor(N). Attention! The opposite factor(N) + N does not result in the same result, here the order of the summation matters.

```
example13.3 = data.frame(block=rep(c("A","B","C","D"),each=6),
                         N=rep(c(0,25,50,75,100,125),4),
                         yield=c(3.6,4.8,4.4,5.3,4.8,5.0,
                                 4.1,5.1,5.2,5.9,5.5,5.4,
                                 3.2,4.0,4.6,4.6,5.2,4.8,
                                 3.9, 3.9, 4.8, 5.0, 5.1, 4.6)
model13.3linear = aov(yield~block+N+factor(N),data=example13.3)
anova(model13.3linear)
## Analysis of Variance Table
##
## Response: yield
##
             Df Sum Sq Mean Sq F value
              3 2.1900 0.7300 9.3590 0.000988 ***
## block
## N
              1 4.4251 4.4251 56.7326 1.794e-06 ***
## factor(N) 4 1.8949 0.4737 6.0733 0.004115 **
## Residuals 15 1.1700 0.0780
## ---
```

13.4.2 Testing for a Quadratic Trend in Treatment Means

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Analysis of Variance with N as numeric for testing a linear and quadratic trends. Note that here we need to use the I() function to avoid the direct sum of the terms before going into the function. It is necessary to include the treatment at factor (factor(N)) to count for the treatment deviations in the ANOVA table.

```
## Analysis of Variance Table
##
## Response: yield
            Df Sum Sq Mean Sq F value
## block
             3 2.1900 0.7300 9.3590 0.0009880 ***
             1 4.4251 4.4251 56.7326 1.794e-06 ***
## I(N)
             1 1.8011 1.8011 23.0907 0.0002315 ***
## I(N^2)
## factor(N) 3 0.0938 0.0313 0.4008 0.7544699
## Residuals 15 1.1700 0.0780
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(model13.3quadratic)
##
              Df Sum Sq Mean Sq F value
                                         Pr(>F)
## block
                          0.730
               3 2.190
                                 9.359 0.000988 ***
## I(N)
               1 4.425
                          4.425 56.733 1.79e-06 ***
## I(N^2)
               1 1.801
                          1.801 23.091 0.000231 ***
               3 0.094
                          0.031
                                 0.401 0.754470
## factor(N)
## Residuals
              15 1.170
                          0.078
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

13.4.4 Regression in a Two-Factor Experiment

##

Now we need to have the factors as numeric. The following example test linear trends for each factor and also for the interaction.

Pr(>F)

```
## block
                 2 0.0640 0.0320
                                    1.688
                                           0.2026
## P
                 1 0.1333 0.1333
                                   7.032
                                           0.0128 *
## factor(P)
                 1 0.0360 0.0360
                                   1.899
                                           0.1788
## N
                                  94.512 1.25e-10 ***
                 1 1.7921 1.7921
## factor(N)
                 3 0.6981 0.2327
                                  12.272 2.33e-05 ***
                                   7.644 3.08e-05 ***
## factor(P * N) 7 1.0146 0.1449
## Residuals
                29 0.5499 0.0190
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Df Sum Sq Mean Sq F value

13.5 Treatment with Structure (Contrasts)

Example 13.5

```
example13.5 = data.frame(
  block = rep(c("B1", "B2", "B3", "B4"), each=5),
  herbicide = rep(c("A", "B", "C", "D", "E"), 4),
  yield = c(64,68,71,75,69,
            66,64,69,74,71,
            68,60,75,78,65,
            59,61,68,72,60)
  )
model13.5 = aov(yield~block+herbicide,data=example13.5)
anova(model13.5)
## Analysis of Variance Table
## Response: yield
             Df Sum Sq Mean Sq F value
              3 99.75
                         33.25 3.9118 0.0368135 *
## block
## herbicide 4 370.80
                         92.70 10.9059 0.0005752 ***
## Residuals 12 102.00
                          8.50
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Building the contrasts table (as table 13.14)
c1 \leftarrow c(4,-1,-1,-1,-1)
c2 \leftarrow c(0,3,-1,-1,-1)
c3 \leftarrow c(0,0,2,-1,-1)
c4 \leftarrow c(0,0,0,1,-1)
## Combine in a matrix
contrasts <- cbind(c1,c2,c3,c4)</pre>
## Define contrasts in the object herbicides
contrasts(example13.5$herbicide) <- contrasts</pre>
## ANOVA w/ contrasts
model13.5 = aov(yield~block+herbicide,data=example13.5)
summary.aov(model13.5,split =list(herbicide=list(1,2,3,4)))
                   Df Sum Sq Mean Sq F value
                                                Pr(>F)
## block
                        99.8
                               33.25
                                        3.912 0.036814 *
                    4 370.8
                                92.70 10.906 0.000575 ***
## herbicide
    herbicide: C1 1
                        64.8
                               64.80
##
                                       7.624 0.017245 *
##
    herbicide: C2 1 161.3 161.33 18.980 0.000934 ***
                                 0.17 0.020 0.890961
##
    herbicide: C3 1
                         0.2
    herbicide: C4 1 144.5 144.50 17.000 0.001413 **
## Residuals
                   12 102.0
                                 8.50
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
## If you want to put the contrast names:
summary.aov(model13.5,split =list(herbicide=list("A vs B,C,D,E"=1, "B vs C,D,E" = 2, "C vs D,E"=3, "D v
##
                       Df Sum Sq Mean Sq F value Pr(>F)
## block
                          99.8
                                33.25 3.912 0.036814 *
## herbicide
                                92.70 10.906 0.000575 ***
                        4 370.8
   herbicide: A vs B,C,D,E 1
                          64.8 64.80
                                       7.624 0.017245 *
##
   ## herbicide: C vs D,E
                       1 0.2
                                0.17 0.020 0.890961
  herbicide: D vs E
                       1 144.5 144.50 17.000 0.001413 **
##
## Residuals
                       12 102.0
                                  8.50
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Including orthogonal contrasts

Chapter 14: Checking the Assumptions and Transformation of Data

Example 14.1

```
example14.1 = data.frame(
 herbicide = rep(c("A", "B", "C", "D"),6),
 yield = c(4,8,25,33,
           5,11,28,21,
           2,9,20,48,
           5,12,15,18,
           4,7,14,53,
           1,7,30,31)
)
model14.1 = aov(yield~herbicide,data=example14.1)
anova(model14.1)
## Analysis of Variance Table
##
## Response: yield
            Df Sum Sq Mean Sq F value
## herbicide 3 3361.1 1120.38 17.876 7.022e-06 ***
## Residuals 20 1253.5 62.67
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
plot(model14.1)
```


Factor Level Combinations

${\bf Log\ transformation}$

Factor Level Combinations

${\bf Square\text{-}Root\ transformation}$

Chapter 15: Missing Values and Incomplete Blocks

Example 15.1

Missing values in R are storage as NA

```
example15.1 = data.frame(
  treatment = rep(c("1","2","3","4"), each=3),
 Y1 = c(6.4, NA, 5.6,
         9.8,8.7,7.2
         ,7.3,6.1,6.4,
        NA, 8.0, 9.4),
 Y2 = c(12.2, 13.4, NA,
         15.5, 16.3, 17.8,
         10.4,NA,10.6,
         NA, 16.8, 17.8)
  )
model15.1 = aov(Y1~treatment,data=example15.1)
anova(model15.1)
## Analysis of Variance Table
##
## Response: Y1
            Df Sum Sq Mean Sq F value Pr(>F)
## treatment 3 13.2223 4.4074 4.8198 0.0487 *
## Residuals 6 5.4867 0.9144
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Example 15.2

The R default is to use the Adjusted SS when missing values are present.

```
example15.2 = data.frame(variety = c("V1", "V1", "V1", "V2", "V2", "V2", "V3", "V3", "V4", "V4", "V4"),

block = c("B1", "B2", "B3", "B1", "B2", "B3", "B1", "B2", "B3", "B1", "B2", "B3"),

yield = c(NA, 6.5, 5.6, 9.8, 6.8, 6.2, 7.3, 6.1, NA, 9.5, 8.0, 7.4))

model15.2 = aov(yield-block+variety,data=example15.2)
anova(model15.2)
```

```
## Analysis of Variance Table
##
## Response: yield
## Df Sum Sq Mean Sq F value Pr(>F)
```

```
2 10.5993 5.2997 18.8792 0.009176 **
## variety
             3 6.2938 2.0979 7.4736 0.040742 *
## Residuals 4 1.1229 0.2807
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Pairwise comparison
library(agricolae)
LSD.test(model15.2, "variety", console=TRUE)
##
## Study: model15.2 ~ "variety"
## LSD t Test for yield
## Mean Square Error: 0.2807143
## variety, means and individual (95 %) CI
##
##
     yield
                 std r
                            LCL
                                      UCL Min Max
## V1 6.05 0.6363961 2 5.009825 7.090175 5.6 6.5
## V2 7.60 1.9287302 3 6.750701 8.449299 6.2 9.8
## V3 6.70 0.8485281 2 5.659825 7.740175 6.1 7.3
## V4 8.30 1.0816654 3 7.450701 9.149299 7.4 9.5
##
## Alpha: 0.05 ; DF Error: 4
## Critical Value of t: 2.776445
## Groups according to probability of means differences and alpha level( 0.05 )
## Treatments with the same letter are not significantly different.
##
##
     yield groups
## V4 8.30
                 a
## V2 7.60
                ab
## V3 6.70
                bc
## V1 6.05
HSD.test(model15.2, "variety", console=TRUE)
##
## Study: model15.2 ~ "variety"
## HSD Test for yield
## Mean Square Error: 0.2807143
##
## variety, means
##
##
      yield
                 std r Min Max
## V1 6.05 0.6363961 2 5.6 6.5
## V2 7.60 1.9287302 3 6.2 9.8
## V3 6.70 0.8485281 2 6.1 7.3
## V4 8.30 1.0816654 3 7.4 9.5
##
```

```
## Alpha: 0.05 ; DF Error: 4
## Critical Value of Studentized Range: 5.757058
##
## Groups according to probability of means differences and alpha level( 0.05 )
##
## Treatments with the same letter are not significantly different.
##
## yield groups
## V4 8.30 a
## V2 7.60 ab
## V3 6.70 ab
## V1 6.05 b
```

15.5 Incomplete Block Designs

15.5.1 Balanced Incomplete Blocks

Randomization

```
library(agricolae)
treatments = c(1:9)
field.design = design.bib(t=treatments,k=3,r=12)
##
## Parameters BIB
## =======
## Lambda
## treatmeans : 9
## Block size : 3
## Blocks
          : 36
## Replication: 12
## Efficiency factor 0.75
## <<< Book >>>
field.design
## $parameters
## $parameters$design
## [1] "bib"
##
## $parameters$trt
## [1] 1 2 3 4 5 6 7 8 9
##
## $parameters$k
## [1] 3
## $parameters$serie
## [1] 2
##
## $parameters$seed
## [1] 841440457
## $parameters$kinds
```

```
## [1] "Super-Duper"
##
##
## $statistics
   lambda treatmeans blockSize blocks r Efficiency
## values 3 9 3 36 12 0.75
## $sketch
##
        [,1] [,2] [,3]
   [1,] "1"
##
              "9"
                   "4"
                   "5"
              "2"
   [2,] "6"
##
  [3,] "2"
              "4"
                   "3"
##
  [4,] "5"
              "9"
                   "1"
## [5,] "5"
              "3"
                   "7"
## [6,] "6"
              "2"
## [7,] "7"
              "4"
                   "8"
## [8,] "9"
              "7"
                   "5"
              "7"
                   "2"
## [9,] "1"
## [10,] "5"
              "1"
              "9"
## [11,] "7"
                   "4"
              "7"
                   "1"
## [12,] "2"
## [13,] "3"
              "8"
                   "6"
## [14,] "2"
              "9"
                   "8"
## [15,] "9"
                   "2"
              "3"
## [16,] "7"
              "1"
                   "3"
                   "7"
## [17,] "6"
              "8"
## [18,] "9"
                   "7"
              "6"
## [19,] "6"
              "5"
                   "4"
## [20,] "8"
              "3"
                   "5"
## [21,] "2"
              "1"
## [22,] "3"
              "5"
                   "7"
## [23,] "1"
              "6"
## [24,] "8"
              "1"
                   "3"
## [25,] "9"
              "3"
## [26,] "2"
              "3"
                   "4"
## [27,] "4"
              "2"
                   "5"
              "7"
                   "8"
## [28,] "4"
## [29,] "8"
              "5"
                   "2"
## [30,] "5"
              "8"
                   "9"
                   "6"
## [31,] "2"
              "7"
## [32,] "1"
              "6"
## [33,] "9"
              "4"
                   "8"
## [34,] "6"
              "9"
                   "3"
## [35,] "6"
              "1"
                   "5"
              "3"
## [36,] "6"
##
## $book
       plots block treatments
## 1
        101
                1
## 2
         102
                            9
                 1
## 3
         103
                1
                            4
## 4
         201
                 2
## 5
         202
                 2
                            2
## 6
         203
                 2
```

##	7	301	3	2
##	8	302	3	4
##	9	303	3	3
##	10	401	4	5
##	11	402	4	9
##	12	403	4	1
##	13	501	5	5
##	14	502	5	3
##	15	503	5	7
##	16	601	6	6
##	17	602	6	2
##	18	603	6	9
##	19	701	7	7
##	20	702	7	4
##	21	703	7	8
##	22	801	8	9
##	23	802	8	7
##	24 25	803 901	8 9	5 1
##	26	901	9	7
##	27	902	9	2
##	28	1001	10	5
##	29	1001	10	1
##	30	1002	10	4
##	31	1101	11	7
##	32	1101	11	9
##	33	1102	11	4
##	34	1201	12	2
##	35	1201	12	7
##	36	1203	12	1
##	37	1301	13	3
##	38	1302	13	8
##	39	1303	13	6
##	40	1401	14	2
##	41	1402	14	9
##	42	1403	14	8
##	43	1501	15	9
##	44	1502	15	3
##	45	1503	15	2
##	46	1601	16	7
##	47	1602	16	1
##	48	1603	16	3
##	49	1701	17	6
##	50	1702	17	8
##	51	1703	17	7
##	52	1801	18	9
##	53	1802	18	6
##	54	1803	18	7
##	55	1901	19	6
##	56	1902	19	5
##	57	1903	19	4
##	58	2001	20	8
##	59	2002	20	3
##	60	2003	20	5

##	61	2101	21	2
##	62	2102	21	1
##	63	2103	21	8
##	64	2201	22	3
##	65	2202	22	5
##	66	2203	22	7
##	67	2301	23	1
##	68	2302	23	6
##	69	2303	23	8
##	70	2401	24	8
##	71	2402	24	1
##	72	2403	24	3
##	73	2501	25	9
##	74	2502	25	3
##	75	2503	25	1
##	76	2601	26	2
##	77	2602	26	3
##	78	2603	26	4
##	79	2701	27	4
##	80	2702	27	2
##	81	2703	27	5
##	82	2801	28	4
##	83	2802	28	7
##	84	2803	28	8
##	85	2901	29	8
##	86	2902	29	5
##	87	2903	29	2
##	88	3001	30	5
##	89	3002	30	8
##	90	3003	30	9
##	91	3101	31	2
##	92	3102	31	7
##	93	3103	31	6
##	94	3201	32	1
##	95	3202	32	6
##	96	3203	32	4
##	97	3301	33	9
##	98	3302	33	4
##	99	3303	33	8
##	100	3401	34	6
##	101	3402	34	9
##	102	3403	34	3
##	103	3501	35	6
##	104	3502	35	1
##	105	3503	35	5
##	106	3601	36	6
##	107	3602	36	3
##	108	3603	36	4

Example 15.3

```
example15.3 = data.frame(block = rep(c("1","2","3","4"),each=3),
                         treatment = c("T1", "T3", "T2",
                                       "T4", "T2", "T1",
                                       "T2", "T3", "T4",
                                       "T3", "T1", "T4"),
                         height = c(14,12,13,
                                    7.3,12.5,15.5,
                                    12.8, 15.5, 11,
                                    12.5,18.3,9.3))
model15.3 = aov(height ~ block+treatment,data=example15.3)
anova(model15.3)
## Analysis of Variance Table
##
## Response: height
             Df Sum Sq Mean Sq F value Pr(>F)
              3 4.556 1.5186
## block
                                0.710 0.586366
## treatment 3 77.619 25.8731 12.097 0.009934 **
## Residuals 5 10.694 2.1388
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
HSD.test(model15.3, "treatment", console=TRUE)
##
## Study: model15.3 ~ "treatment"
## HSD Test for height
##
## Mean Square Error: 2.138833
##
## treatment, means
##
##
       height
                     std r Min Max
## T1 15.93333 2.1825062 3 14.0 18.3
## T2 12.76667 0.2516611 3 12.5 13.0
## T3 13.33333 1.8929694 3 12.0 15.5
## T4 9.20000 1.8520259 3 7.3 11.0
##
## Alpha: 0.05; DF Error: 5
## Critical Value of Studentized Range: 5.218325
## Minimun Significant Difference: 4.406147
## Treatments with the same letter are not significantly different.
##
       height groups
## T1 15.93333
## T3 13.33333
                   ab
## T2 12.76667
                   ab
## T4 9.20000
                  b
```

Chapter 16: Split Plot Designs

Randomization

```
treatment1 = c("A", "B", "C", "D")
treatment2 = c("I","II","III")
field_design = design.split(trt1 = treatment1, trt2 = treatment2,r = 3)
field_design$book
      plots splots block treatment1 treatment2
##
## 1
         101
                                                III
                   1
                         1
## 2
         101
                  2
                                                 II
                         1
                                      Α
                  3
## 3
         101
                         1
                                      Α
                                                  Ι
## 4
         102
                  1
                         1
                                     D
                                                III
## 5
                  2
         102
                         1
                                     D
                                                  Ι
## 6
         102
                  3
                         1
                                     D
                                                 II
## 7
                  1
                                     В
                                                 II
         103
                         1
## 8
         103
                  2
                         1
                                     В
                                                  Ι
## 9
         103
                  3
                         1
                                     В
                                                III
         104
                                     С
## 10
                  1
                                                  Ι
                         1
## 11
         104
                  2
                         1
                                     C
                                                III
                                     С
## 12
         104
                  3
                         1
                                                 ΙI
## 13
         105
                  1
                         2
                                     В
                                                  Ι
                  2
                         2
                                                III
## 14
         105
                                     В
## 15
         105
                  3
                         2
                                     В
                                                 ΙI
                         2
                                     D
                  1
                                                 ΙI
## 16
         106
         106
                  2
                         2
                                     D
                                                  Ι
## 17
                         2
## 18
         106
                  3
                                     D
                                                III
                         2
                                     С
## 19
         107
                  1
                                                  Ι
## 20
                  2
                         2
                                     С
                                                 ΙI
         107
                         2
                                     С
## 21
         107
                  3
                                                III
## 22
                         2
         108
                  1
                                      Α
                                                  Ι
                  2
                         2
                                                 ΙI
## 23
         108
                                     Α
                         2
## 24
         108
                  3
                                     Α
                                                III
## 25
         109
                  1
                         3
                                     В
                                                  Ι
                  2
                         3
                                                 ΙI
## 26
         109
                                     В
## 27
                  3
                         3
                                     В
                                                III
         109
## 28
         110
                  1
                         3
                                     D
                                                III
                  2
## 29
         110
                         3
                                     D
                                                  Ι
## 30
         110
                  3
                         3
                                     D
                                                 ΙI
## 31
                  1
                         3
                                      Α
                                                 II
         111
## 32
         111
                  2
                         3
                                      Α
                                                  Ι
                  3
                         3
                                                III
## 33
         111
                                      Α
   34
                  1
                         3
                                     С
                                                III
##
         112
## 35
         112
                  2
                         3
                                     C
                                                 ΙI
## 36
         112
                  3
                                                  Ι
```

Example 16.2

```
"A1", "A1", "A2", "A2", "A2", "A2",

"A2", "A2", "A2", "A1", "A1", "A1"),

factorB = c("B2", "B1", "B3", "B3", "B2", "B1",

"B1", "B2", "B3", "B1", "B3", "B2",

"B3", "B2", "B1", "B2", "B3", "B1",

"B3", "B2", "B1", "B2", "B3", "B1"),

yield = c(25.5,24.9,25.8,26.1,18.0,21.7,

21.1,17.9,28.9,27.6,29.4,29.3,

28.6,19.5,23.2,29.7,30.3,29.5,

29.3,29.2,29.8,21.3,31.0,25.8))
```

In order to correctly split the stratums, we create the plotA variable which represents the plot units for factor A.

```
factor A.
example16.2$plotA = rep(c("1","2","3","4","5","6","7","8"),each=3)
model16.2 = aov(yield~block+factorA*factorB+Error(plotA),data=example16.2) #or exp
summary(model16.2)
##
## Error: plotA
##
            Df Sum Sq Mean Sq F value Pr(>F)
## block
             3 55.06
                        18.35
                                5.158 0.10550
             1 136.33
                       136.33 38.318 0.00849 **
## factorA
## Residuals 3 10.67
                         3.56
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Error: Within
##
                  Df Sum Sq Mean Sq F value
                                              Pr(>F)
## factorB
                   2 98.37
                              49.18 102.23 2.90e-08 ***
## factorA:factorB 2 84.80
                              42.40
                                      88.13 6.71e-08 ***
## Residuals
                  12
                       5.77
                               0.48
```

The pairwise test should be by stratum as follows and setting the MSerror and its degrees of freedom in the function.

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

```
##
## Study: example16.2$yield ~ example16.2$factorA
##
## HSD Test for example16.2$yield
##
## Mean Square Error: 3.56
##
## example16.2$factorA, means
##
##
      example16.2.yield
                             std r Min Max
## A1
              23.59167 4.420090 12 17.9 31.0
## A2
              28.35833 1.901415 12 24.9 30.3
##
## Alpha: 0.05; DF Error: 3
```

```
## Critical Value of Studentized Range: 4.500659
##
## Minimun Significant Difference: 2.451379
## Treatments with the same letter are not significantly different.
##
      example16.2$yield groups
## A2
               28.35833
## A1
               23.59167
HSD.test(example16.2$yield,example16.2$factorB,
         MSerror=5.77, DFerror=12, console=TRUE)
##
## Study: example16.2$yield ~ example16.2$factorB
## HSD Test for example16.2$yield
## Mean Square Error: 5.77
##
## example16.2$factorB, means
##
##
      example16.2.yield
                             std r Min Max
## B1
                 25.450 3.347067 8 21.1 29.8
## B2
                 23.800 5.213992 8 17.9 29.7
## B3
                 28.675 1.848358 8 25.8 31.0
## Alpha: 0.05; DF Error: 12
## Critical Value of Studentized Range: 3.772929
## Minimun Significant Difference: 3.204214
##
## Treatments with the same letter are not significantly different.
##
##
      example16.2$yield groups
## B3
                 28.675
## B1
                 25.450
                             b
## B2
                 23.800
                             b
HSD.test(example16.2$yield,paste0(example16.2$factorB,example16.2$factorA),
   MSerror=5.77, DFerror=12, console=TRUE)
##
## Study: example16.2$yield ~ paste0(example16.2$factorB, example16.2$factorA)
## HSD Test for example16.2$yield
## Mean Square Error: 5.77
## paste0(example16.2$factorB, example16.2$factorA), means
##
                               std r Min Max
##
        example16.2.yield
                   22.950 2.095233 4 21.1 25.8
## B1A1
## B1A2
                  27.950 2.254625 4 24.9 29.8
## B2A1
                  19.175 1.594522 4 17.9 21.3
```

```
28.425 1.961929 4 25.5 29.7
28.650 2.007486 4 26.1 31.0
## B2A2
## B2A2
## B3A1
                  28.700 1.984943 4 25.8 30.3
## B3A2
##
## Alpha: 0.05 ; DF Error: 12
## Critical Value of Studentized Range: 4.750231
## Minimun Significant Difference: 5.705224
\ensuremath{\mbox{\#\#}} Treatments with the same letter are not significantly different.
##
        example16.2$yield groups
## B3A2
                    28.700
## B3A1
                    28.650
## B2A2
                   28.425
                                ab
                   27.950
## B1A2
                                ab
## B1A1
                   22.950
                                bc
## B2A1
                   19.175
                               С
```