日本 国 特 許 庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日 Date of Application:

2000年12月25日

出 願 番 号 Application Number:

特願2000-392592

出 願 人
Applicant(s):

日産化学工業株式会社

2001年11月26日

特許庁長官 Commissioner, Japan Patent Office

特2000-392592

【書類名】 特許願

【整理番号】 4178000

【提出日】 平成12年12月25日

【あて先】 特許庁長官 殿

【国際特許分類】 C01F 17/00

C09K 3/14

【発明者】

【住所又は居所】 千葉県船橋市坪井町722番地1 日産化学工業株式会

社中央研究所内

【氏名】 太田 勇夫

【発明者】

【住所又は居所】 富山県婦負郡婦中町笹倉635 日産化学工業株式会社

富山工場内

【氏名】 谷本 健二

【特許出願人】

【識別番号】 000003986

【氏名又は名称】 日産化学工業株式会社

【代表者】 藤本 修一郎

【電話番号】 047-465-1120

【手数料の表示】

【予納台帳番号】 005212

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 ランタンを含有する酸化セリウムゾルからなる研磨剤 【特許請求の範囲】

【請求項1】 下記第1工程及び第2工程:

第1工程:水性媒体中でセリウム(III)塩とランタン(III)塩をLa/(Ce+La)重量比に換算して $0.001\sim0.5$ の割合で混合した水溶液と、アルカリ性物質を $(OH^-)/(Ce^{3+}+La^{3+})$ のモル比として $3\sim30$ の割合で反応させて水酸化セリウム(III)と水酸化ランタン(III)が均一に混合された懸濁液を生成する工程、及び、

第2工程:得られた懸濁液に $10\sim95$ $\mathbb C$ の温度で酸素又は酸素を含有するガスを吹き込む工程を経由して得られ、 $0.005\sim1$ μ mの粒子径を有し、且つ $\mathbb C$ \mathbb

【請求項2】 酸化セリウムを主成分とする粒子を0.01~50重量%の 範囲で含有する請求項1に記載の研磨剤。

【請求項3】 酸性物質によりpH1~6に調整された請求項1又は請求項2に記載の研磨剤。

【請求項4】 塩基性物質によりpH8~13に調整された請求項1又は請求項2に記載の研磨剤。

【請求項5】 シリカを主成分とする基板の研磨に使用する請求項1乃至請求項4のいずれか1項に記載の研磨剤。

【請求項6】 シリカを50重量%以上含有する基板の研磨に使用する請求項1万至請求項4のいずれか1項に記載の研磨剤。

【請求項7】 水晶、フォトマスク用石英ガラス、半導体デバイスのSiO 2酸化膜、又はガラス製ハードディスクの研磨に用いられる請求項1乃至請求項 4のいずれか1項に記載の研磨剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本願発明は、 $0.005\sim1~\mu$ mの粒子径を有し、La/(Ce+La) 重量比に換算して $0.001\sim0.5$ でランタン化合物を含有した酸化セリウムを主成分とする粒子を水性媒体に分散したゾルからなる、シリカを主成分とする基板を研磨する為の研磨剤及びその製造方法に関するものである。

[0002]

【従来の技術】

・特開昭56-131686号公報には、セリウム塩と塩基性溶液と陰イオンが不溶性希土類酸化物を形成できる塩の溶液を同時に混合し、得られた沈殿物を濾別し、100~600℃で乾燥し、600~1200℃で焼成し、粉砕したランタンを含有する酸化セリウム粉末が開示されている。

[0003]

特開平10-95614号公報には、不活性ガス雰囲気下に水性媒体中にセリウム (III) 塩とアルカリ性物質を $3\sim30$ の (OH $^-$) / (Ce $^{3+}$) のモル比で反応させて水酸化セリウム (III) の懸濁液を生成した後、直ちに該懸濁液を大気圧下、 $10\sim95$ $^{\circ}$ $^{\circ}$ の温度で酸素又は酸素を酸素を含有するガスを吹き込み $^{\circ}$. $005\sim5~\mu$ mの粒子径を有する結晶性酸化セリウム粒子の製造方法が開示されている。

[0004]

特公昭63-27389号公報には、酸化第二セリウム40~99.5重量%とランタニド及びイットリウムから成る群より選ばれる他の希土類元素の無色の酸化物の少なくとも一種0.5~60重量%とを含有する研磨組成物が開示されている。

[0005]

特公昭60-35393号公報には、 $\operatorname{Ln}_{2-X}\operatorname{Ce}_{X}\operatorname{Si}_{2}\operatorname{O}_{7}$ (但しXは0以上2未満の数を示す。)相当するセリウム系研磨組成物が開示されている。

[0006]

【発明が解決しようとする課題】

乾燥と焼成と粉砕を行いランタンを含有する酸化第二セリウム粉末を製造する

方法では、粉砕により微粒子化しているため粒子径が不揃いであり、またサブミ クロンまでしか微粒子化できない。

[0007]

そこで、水溶液中で核生成及び結晶成長を行い、ランタンを成分として含み酸化セリウムを主成分とする粒子の製造を行い、粒子径が均一でしかもサブミクロン以下の微粒子を製造し、それらを研磨剤として用い本発明に至った。

[0008]

【課題を解決するための手段】

本願発明は第1観点として、下記第1工程及び第2工程:

第1工程:水性媒体中でセリウム (III) 塩とランタン (III) 塩をLa/ (Ce+La) 重量比に換算してO. $OO1\simO$. SO の割合で混合した水溶液と、アルカリ性物質を (OH) / ($Ce^{3+}+La^{3+}$) のモル比としてS の の割合で反応させて水酸化セリウム (III) と水酸化ランタン (III) が均一に混合された 懸濁液を生成する工程、及び、

第2観点として、酸化セリウムを主成分とする粒子を0.01~50重量%の 範囲で含有する第1観点に記載の研磨剤、

第3観点として、酸性物質によりpH1~6に調整された第1観点又は第2観点に記載の研磨剤、

第4観点として、塩基性物質によりpH8~13に調整された第1観点又は第 2観点に記載の研磨剤、

第5観点として、シリカを主成分とする基板の研磨に使用する第1観点乃至第 4観点のいずれか一つに記載の研磨剤、

第6観点として、シリカを50重量%以上含有する基板の研磨に使用する第1 観点乃至第4観点のいずれか一つに記載の研磨剤、及び 第7観点として、水晶、フォトマスク用石英ガラス、半導体デバイスのSi〇 2酸化膜、又はガラス製ハードディスクの研磨に用いられる第1観点乃至第4観 点のいずれか一つに記載の研磨剤である。

[0009]

【発明の実施の形態】

本願発明で得られる研磨液は酸化セリウムを主成分とする粒子を媒体に分散したゾルからなる。この酸化セリウムを主成分とする粒子は上記第1工程及び第2工程を経由して得られ、(i) $0.005\sim1~\mu$ mの粒子径を有すること、及び(i i)La/(Ce+La)重量比に換算して $0.001\sim0.5$ 、好ましくは $0.005\sim0.15$ の割合でランタン化合物を成分に含有することを特徴に備えている。

[0010]

本願発明に用いられる酸化セリウムを主成分とする粒子を媒体に分散したゾルは、第1工程及び第2工程を経由して得られる。

[0011]

第1工程は、大気開放下で行われる方法と、不活性ガス雰囲気下で行われる方 法がある。

[0012]

第1工程が大気開放下で行われる方法では、懸濁液中の水酸化セリウム(III)と水酸化ランタン(III)は第1工程中乃至それに続く第2工程で直ちに、酸素含有ガスにより酸化される為に、懸濁液中に多数の核が発生し得られる粒子の粒子径分布が広くなる。第1工程は0~95℃の温度で、10分~3時間で行われる。第2工程は10~95℃の温度で、1~20時間で行われる。また第1工程及び第2工程は共に常圧下で行われる。

[0013]

一方、第1工程が不活性ガス中で行われる方法では、懸濁液中の水酸化セリウム (III) と水酸化ランタン (III) は酸化されずに水酸化物の状態で第2工程が行われるために、得られる粒子の粒子分布は狭い。第1工程は $0\sim95$ Cの温度で、10分~3 時間で行われる。第1工程が終了後、直ちに第2工程が行われる

。第2工程は10~95℃の温度で、1~20時間で行われる。また第1工程及 び第2工程は共に常圧下で行われる。

[0014]

第1工程で使用されるセリウム(III)塩としては、硝酸セリウム(III)、硝酸セリウム(III)アンモニウム、硫酸セリウム(III)、硫酸セリウム(III) アンモニウム、塩化セリウム(III)、炭酸セリウム(III)、酢酸セリウム(II I)、蓚酸セリウム(III)またはこれらの混合物などの水溶性の3価のセリウム塩が挙げられる。

[0015]

またランタン(III)塩としては、硝酸ランタン(III)、塩化ランタン(III)、炭酸ランタン(III)、酢酸ランタン(III)、蓚酸ランタン(III)またはこれらの混合物などの水溶性の3価のランタン塩が挙げられる。

[0016]

不活性ガスとしては、窒素ガス、アルゴンガス等が挙げられるが、特に窒素ガスが好ましい。

[0017]

アルカリ性物質は、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物またはアンモニア、アミン、水酸化四級アンモニウム等の有機塩基が挙げられ、特に、アンモニア、水酸化ナトリウム、水酸化カリウムが好ましく、これらを単独または混合物として使用することができる。

[0018]

第2工程において、酸素を含有する気体は空気、酸素、酸素などの酸化性ガスと窒素などの不活性ガスとの混合ガスなどが挙げられるが、空気が経済性、取扱い面から好ましい。これらガスの吹き込みは、反応容器にガス導入管を取り付け、ガス導入管の先端のノズルを反応液中に浸けてガスが導入される。

[0019]

上記の製造方法によって得られた酸化セリウムを主成分とする粒子は、反応装置よりスラリーとして取り出し、限外濾過法またはフィルタープレス洗浄法などにより水溶性の不純物を除去することができる。

[0020]

本願発明によって得られるランタンを成分として含み酸化セリウムが主成分である粒子は、透過型電子顕微鏡(TEM)観察を行ったところ粒子径が0.005~ 1μ mの範囲にある。またLa/(Ce+La)重量比に換算して、例えば $0.001\sim0.15$ の粒子を110℃で乾燥して、X線回折装置により回折パターンを測定したところ、回折角度 $2\theta=28.6$ °、47.5°及び56.4°に主ピークを有し、ASTMカード34-394に記載の立方晶系の結晶性の高い酸化セリウム粒子であることが分かった。

[0021]

またこのランタンを成分として含み酸化セリウムが主成分である粒子のガス吸着法(BET法)による比表面積値は、2~200m²/gである。

[0022]

本願発明のランタンを含有する酸化セリウムで、ランタンを含有する好ましい量はLa/(Ce+La)重量比で $0.001\sim0.5$ であり、より好ましくは $0.005\sim0.3$ 、最も好ましくは $0.005\sim0.15$ である。

[0023]

この重量比が 0. 0 0 1 より少ない場合は、ランタン化合物含有の効果がなく、また 0. 5 より多くなると酸化セリウム粒子の結晶性が悪くなる。

[0024]

本願発明で得られる粒子中に含まれるその他の希土類元素としては、プラセオジム、ネオジム、サマリウム、ガドリニウム等があげられるが、ランタン化合物含有の効果を阻害するものではない。

[0025]

本願発明で得られる粒子中に含まれる成分のランタンは、酸化ランタンや水酸 化ランタン等の形態で含有され、酸化セリウムと共に粒子を形成するが、一部は 酸素原子を挟んでセリウム原子とランタン原子の化学結合を生じていると考えら れる。

[0026]

本願発明によって得られたランタン化合物を成分として含み酸化セリウムが主

成分である粒子は、水媒体、水溶性有機溶媒または水と水溶性有機溶媒の混合溶 媒に再分散させる事によりゾルとして研磨剤、紫外線吸収材料、触媒用材料及び 燃料電池用材料等にすることができる。

[0027]

本願発明によって得られたランタン化合物を成分として含み酸化セリウムが主成分である粒子を媒体に分散したゾルは、長時間放置すると粒子の一部が沈降するが、撹拌により容易に再分散することができ元の状態に戻るため、常温で保存して1年以上安定である。

[0028]

上記のランタン化合物を成分として含み酸化セリウムが主成分である粒子は、0.01~50重量%、好ましくは0.1~30重量%の範囲で研磨液に含有することが出来る。上記の粒子は、水媒体、水溶性有機溶媒または水と水溶性有機溶媒の混合溶媒に再分散させる事により研磨剤、紫外線吸収材料、触媒用材料及び燃料電池用材料等にすることができる。

[0029]

得られた研磨液は酸性物質の添加により $pH1\sim6$ に調整する事が出来る。これらの酸性物質としては、硝酸、塩酸、酢酸等が挙げられる。

[0030]

また、研磨液は塩基性物質の添加により p H 8 ~ 1 3 に調整する事が出来る。 これら塩基性物質としては、水酸化ナトリウム、水酸化カリウム、水酸化テトラ メチルアンモニウム等が挙げられる。

[0031]

本願発明で得られた研磨液は、シリカを主成分とする基板の研磨に適する。シリカを主成分とする基板とは、シリカを50重量%以上含有する基板のことであり、例えば、水晶、フォトマスク用石英ガラス、半導体デバイスのSiO2 酸化膜、及びガラス製ハードディスクの研磨剤に適する。ガラス製ハードディスクは、例えば結晶化ガラス製ハードディスク、アルミノ珪酸塩ガラス又はソーダライムガラス製ハードディスクが挙げられる。

[0032]

また、本発明の研磨剤は半導体デバイスの有機膜、ニオブ酸リチウム等の光学 結晶材料、窒化アルミニウム、アルミナ、フェライト、ジルコニア等のセラミッ クス材料、アルミニウム、銅、タングステンなどの金属の研磨にも適応できる。

[0033]

【実施例】

実施例1

2 Lのガラス製反応槽にNH₃ / (Ce³⁺+La³⁺) = 8 (モル比)に相当する25%のアンモニア水溶液253gを仕込み、液温を30℃に保ちながらのガラス製のノズルより0.5 L/分の窒素ガスの吹き込みを開始した。1 Lのガラス製容器にCeO₂に換算した濃度が11.5 重量%で純度が99.9%の硝酸セリウム (III) 水溶液693gと、La₂O₃に換算した濃度が14.0重量%の純度が99.99%以上の硝酸ランタン (III) 水溶液28.5gを混合した。この混合水溶液は、ランタンをLa/(Ce+La)に換算した重量比で0.05の割合に含有していた。この混合水溶液を攪拌しながら30分かけて徐々に、2 Lのガラス製反応槽に添加して水酸化物の懸濁液を得た。続いてこの懸濁液を80℃まで昇温させた後、ガラス製のノズルからの吹き込みを窒素ガスから0.5 L/分の空気に切り替えセリウム (III) がセリウム (IV) にする酸化反応を開始した。7時間で酸化反応が終了した。反応が終了した液を室温に戻し、白色の微粒子を有するpH7.9、電気伝導度148mS/cmの反応液が得られた。

[0034]

反応液をヌッチェで洗浄を行い、固形分24.5重量%、pH5.2、電気伝導度43 μ S/cmの白色スラリー310gが得られた。洗浄したスラリーを透過型電子顕微鏡(TEM)で観察したところ50~100nmの粒子であった。この粒子の収率は、ほぼ100%であった。また、微粒子を乾燥して粉末X線回折を測定したところ、回折角度2 θ =28.6°、47.5°及び56.4°に主ピークを有し、ASTMカード34-394に記載の立方晶系の結晶性酸化セリウムの特性ピークと一致した。この粒子は、ランタンをLa/(Ce+La)に換算した重量比で0.05の割合で含有していた。また窒素吸着法による比表

面積は、23.3 m²/gであった。

[0035]

この洗浄した粒子に硝酸を $HNO_3/CeO_2=0$. 12重量%添加し、更に純水で固形分<math>10重量%に調整し、pH4. $6、電気伝導度<math>145\mu S/cm$ 、粘度1. $3mPa\cdot Sのゾルが得られ研磨液とした。$

[0036]

実施例2

2 Lのガラス製反応槽にN H $_3$ / (C e $^{3+}$ + L a $^{3+}$) = 8 (モル比)に相当する 2 5 %のアンモニア水溶液 2 5 3 g を仕込み、液温を 3 0 ℃に保ちながらのガラス製のノズルより 0.5 L /分の窒素ガスの吹き込みを開始した。 1 Lのガラス製容器にC e O $_2$ に換算した濃度が 1 1.5 重量%で純度が 9 9.9 %の硝酸セリウム (III) 水溶液 6 9 3 g と、L a $_2$ O $_3$ に換算した濃度が 1 4.0 重量%の純度が 9 9.9 %以上の硝酸ランタン (III) 水溶液 2 8.5 g を混合した。この混合水溶液は、ランタンを L a / (C e + L a) に換算した重量比で 0.0 5 の割合に含有していた。この混合水溶液を攪拌しながら 3 0 分かけて徐々に、2 Lのガラス製反応槽に添加して水酸化物の懸濁液を得た。続いてこの懸濁液を 8 0 ℃まで昇温させた後、ガラス製のノズルからの吹き込みを窒素ガスから 0.5 L /分の空気に切り替えセリウム (III) がセリウム (IV) にする酸化反応を開始した。7 時間で酸化反応が終了した。反応が終了した液を室温に戻し、白色の微粒子を有する p H 7.9、電気伝導度 1 4 8 m S / c m の反応液が得られた。

[0037]

反応液をヌッチェで洗浄を行い、固形分 24.5 重量%、pH5.2、電気伝導度 43μ S/c mの白色スラリー 310g が得られた。洗浄したスラリーを透過型電子顕微鏡(TEM)で観察したところ $50\sim100$ n mの粒子であった。この粒子の収率は、ほぼ 100% であった。また、微粒子を乾燥して粉末 X線回折を測定したところ、回折角度 $2\theta=28.6^\circ$ 、 47.5° 及び 56.4° に主ピークを有し、ASTMカード 34-394 に記載の立方晶系の結晶性酸化セリウムの特性ピークと一致した。この粒子は、ランタンを La/ (Ce+La)

に換算した重量比で 0.05の割合に含有していた。また窒素吸着法による比表面積は、23.3 $\,\mathrm{m}^2/\,\mathrm{g}$ であった。

[0038]

2 Lのガラス製反応槽に洗浄したスラリー310g、純水134g、重炭安33g及び25%アンモニア水29gを仕込み、90℃まで昇温させた後、6時間保持した。反応液を室温に戻し、白色の微粒子を有するpH10.0、電気伝導度7.4mS/cmの反応液が得られた。反応液をヌッチェで洗浄を行い、固形分24.1重量%、pH5.3、電気伝導度15μS/cmの白色スラリー285gが得られた。このスラリーを透過型電子顕微鏡(TEM)で観察したところ粒子径に変化はなかった。また、微粒子を乾燥して粉末X線回折を測定したところ、ASTMカード34-394に記載の立方晶系の結晶性酸化セリウムの特性ピークと一致した。またこの粒子は、ランタンをLa/(Ce+La)に換算して0.05の割合に含有していた。

[0039]

この洗浄した粒子に硝酸を $\mathrm{HNO_3/CeO_2} = 0$. 12重量%添加し、更に純水で固形分<math>10重量%に調整し、 $\mathrm{pH4}$. $5、電気伝導度<math>139\mu\mathrm{S/cm}$ 、粘度 $1.3\mathrm{mPa}$ ・ S のゾルが得られ研磨液とした。

[0040]

実施例3

2 Lのガラス製反応槽にNH $_3$ / (Ce $^{3+}$ +La $^{3+}$) = 8 (モル比) に相当する25%のアンモニア水溶液253gを仕込み、液温を30℃に保ちながらのガラス製のノズルより0.5 L/分の窒素ガスの吹き込みを開始した。1 Lのガラス製容器にCeO $_2$ に換算した濃度が11.5 重量%で純度が99.9%の硝酸セリウム (III) 水溶液693gと、La $_2$ O $_3$ に換算した濃度が14.0重量%の純度が99.99%以上の硝酸ランタン (III) 水溶液56.8gを混合した。この混合水溶液は、ランタンをLa/(Ce+La) に換算して0.10の割合で含有していた。この混合水溶液を攪拌しながら30分かけて徐々に、2 Lのガラス製反応槽に添加して水酸化物の懸濁液を得た。続いてこの懸濁液を80℃まで昇温させた後、ガラス製のノズルからの吹き込みを窒素ガスから0.5 L/

分の空気に切り替えセリウム (III) がセリウム (IV) にする酸化反応を開始した。7時間で酸化反応が終了した。反応が終了した液を室温に戻し、白色の微粒子を有するpH8.4、電気伝導度150mS/cmの反応液が得られた。

[0041]

反応液をヌッチェで洗浄を行い、固形分26.0重量%、pH6.4、電気伝導度122 μ S/c mの白色スラリー290gが得られた。洗浄したスラリーを透過型電子顕微鏡(TEM)で観察したところ50~150nmの粒子であった。また、微粒子を乾燥して粉末 X線回折を測定したところ、ASTMカード34-394に記載の立方晶系の結晶性酸化セリウムの特性ピークと一致した。この粒子は、ランタンを La / (Ce+La) に換算して 0.10の割合に含有していた。また窒素吸着法による比表面積は、24.1 m^2 / g であった。

[0042]

2 Lのガラス製反応槽に洗浄したスラリー290g、純水148g、重炭安33g及び25%アンモニア水29gを仕込み、90℃まで昇温させた後、6時間保持した。反応液を室温に戻し、白色の微粒子を有するpH10.0、電気伝導度7.4mS/cmの反応液が得られた。反応液をヌッチェで洗浄を行い、固形分24.1重量%、pH5.3、電気伝導度15μS/cmの白色スラリー285gが得られた。このスラリーを透過型電子顕微鏡(TEM)で観察したところ粒子径に変化はなかった。また、微粒子を乾燥して粉末X線回折を測定したところ、ASTMカード34-394に記載の立方晶系の結晶性酸化第二セリウムの特性ピークと一致した。またこの粒子は、ランタンをLa/(Ce+La)に換算して0.10の割合に含有していた。

[0043]

この洗浄した粒子に硝酸を $HNO_3/CeO_2=0$. 12重量%添加し、更に純水で固形分10重量%に調整し、pH5. 2、電気伝導度192 μ S/cm、粘度1. $5mPa\cdot S$ のゾルが得られ研磨液とした。

[0044]

比較例1

500Lのグラスライニング製反応槽に純水44.3kgと $\mathrm{NH_3}$ / Ce^{3+} =

6(モル比)に相当する25%のアンモニア水溶液94.8 kgを仕込み、液温を30℃に保ちながらのガラス製のノズルより3Nm³/時間の窒素ガスを吹き込み、CeO2に換算した濃度が7.84重量%の純度が99.9%の硝酸セリウム (III) 508.0 kgを攪拌しながら30分かけて徐々に添加して水酸化物の懸濁液を得た。続いてこの懸濁液を75℃まで昇温させた後、樹脂製のノズルからの吹き込みを窒素ガスから4Nm³/時間の空気に切り替えセリウム (III) がセリウム (IV) にする酸化反応を開始した。5時間で酸化反応が終了した。反応が終了した液を室温に戻し、白色の微粒子を有するpH9.4、電気伝導度119mS/cmの反応液が得られた。

[0045]

反応液をロータリーフィルタープレス(コトブキ技研製)で洗浄を行い、固形分19.3 kg、pH9.1、電気伝導度81 μ S/cmの白色スラリー173 kgが得られた。洗浄したスラリーを透過型電子顕微鏡(TEM)で観察したところ40~100nmの粒子であった。この粒子の収率は、ほぼ100%であった。また、微粒子を乾燥して粉末X線回折を測定したところ、ASTMカード34-394に記載の立方晶系の結晶性酸化セリウムの特性ピークと一致した。また窒素吸着法による比表面積は、18.0 m^2 /gであった。

[0046]

この洗浄した粒子に硝酸を $\mathrm{HNO_3/CeO_2} = 0$. 12重量%添加し、更に純水で固形分<math>10重量%に調整し、 $\mathrm{pH4}$. 1、電気伝導度 $125\mu\mathrm{S/cm}$ 、粘度1. $4\mathrm{mPa}$ ·Sのゾルが得られ研磨液とした。

[0047]

比較例2

500Lのグラスライニング製反応槽に純水44. 3kgとNH $_3$ /Ce $^{3+}$ =6(モル比)に相当する25%のアンモニア水溶液94. 8kgを仕込み、液温を30℃に保ちながらのガラス製のノズルより3Nm 3 /時間の窒素ガスを吹き込み、Ce O_2 に換算した濃度が7. 84重量%の純度が99. 9%の硝酸セリウム (III) 508. 0kgを攪拌しながら30分かけて徐々に添加して水酸化物の懸濁液を得た。続いてこの懸濁液を75℃まで昇温させた後、樹脂製のノズ

ルからの吹き込みを窒素ガスから4Nm³ /時間の空気に切り替えセリウム(III)がセリウム(IV)にする酸化反応を開始した。5時間で酸化反応が終了した。反応が終了した液を室温に戻し、白色の微粒子を有するpH9.4、電気伝導度119mS/cmの反応液が得られた。

[0048]

反応液をロータリーフィルタープレス(コトブキ技研製)で洗浄を行い、固形分19.3 kg、pH9.1、電気伝導度81 μ S/cmの白色スラリー173 kgが得られた。洗浄したスラリーを透過型電子顕微鏡(TEM)で観察したところ40~100nmの粒子であった。この粒子の収率は、ほぼ100%であった。また、微粒子を乾燥して粉末X線回折を測定したところ、ASTMカード34-394に記載の立方晶系の結晶性酸化セリウムの特性ピークと一致した。

[0049]

この洗浄スラリー173kgを再び500Lのグラスライニング製反応槽に仕込み、更に純水47.2kg、重炭安16.5kg及び25%アンモニア水14.2kgを仕込み、90℃まで昇温させた後、6時間保持した。反応液を室温に戻し、白色の微粒子を有するpH10.5、電気伝導度16.1mS/cmの反応液が得られた。反応液をロータリーフィルタープレスで洗浄を行い、固形分23.2重量%、pH5.5、電気伝導度26 μ S/cmの白色スラリー150kgが得られた。このスラリーを透過型電子顕微鏡(TEM)で観察したところ粒子径に変化はなかった。また、微粒子を乾燥して粉末 X線回折を測定したところ、ASTMカード34-394に記載の立方晶系の結晶性酸化セリウムの特性ピークと一致した。窒素吸着法による比表面積は、18.4 m^2/g であった。

[0050]

この洗浄した粒子に硝酸を $HNO_3/CeO_2=0$. 12重量%添加し、更に純水で固形分<math>10重量%に調整し、pH3. $9、電気伝導度<math>113\mu S/cm$ 、粘度 $1.4mPa\cdot Soy$ ルが得られ研磨液とした。

[0051]

実施例1~3及び比較例1~2で得られた研磨液による研磨試験を行った。

[0052]

研磨機(商品名:ラップマスター18、ラップマスター社製)、

研磨布:ポリウレタン含浸の不織布ポリテックスDG(ロデール・ニッタ社製)、

被研磨物:石英ガラス(φ95.5mm)、

回転数:40rpm、

研磨圧力: 80g/cm²、

研磨時間:10分間で行った。

[0053]

実施例1で得られたゾルを用いた研磨試験では研磨速度が 2.0μ m/時間であり、研磨面は良好であった。

[0054]

実施例2で得られたゾルを用いた研磨試験では研磨速度が $4.1 \mu m$ /時間であり、研磨面は良好であった。

[0055]

実施例3で得られたゾルを用いた研磨試験では研磨速度が3. 7 μ m/時間であり、研磨面は良好であった。

[0056]

比較例1で得られたゾルを用いた研磨試験では研磨速度が0.8μm/時間であり、研磨面は実施例1~実施例3で使用したゾルの方が良好であった。

[0057]

比較例2で得られたゾルを用いた研磨試験では研磨速度が1.6μm/時間であり、研磨面は実施例1~実施例3で使用したゾルの方が良好であった。

[0058]

実施例1と比較例1を比較すると、実施例1は、比較例1に比べ研磨速度が速 く、しかも研磨面は良好であることがわかる。

[0059]

アンモニウム塩(炭酸アンモニウム)で表面改質した実施例2と比較例2の場合も、実施例2の方が比較例2より研磨速度が速く、しかも研磨面は良好であることがわかる。

[0060]

実施例3では、実施例2よりも研磨速度が遅くなるが、比較例2より研磨速度 が速く、しかも研磨面は良好であることがわかる。

[0061]

【発明の効果】

本願発明は水性媒体中にセリウム(III)塩とランタン(III)塩をLa/(Ce+La)重量比に換算して $0.001\sim0.5$ の割合で混合した水溶液と、アルカリ性物質を (OH^-) / $(Ce^{3+}+La^{3+})$ のモル比として $3\sim30$ の割合で反応させて水酸化セリウム(III)と水酸化ランタン(III)が均一に混合された懸濁液を生成した後、直ちに該懸濁液を大気圧下、 $10\sim95$ Cの温度で酸素又は酸素を含有するガスを吹き込むことを特徴とするものである。

[0062]

セリウム (III) 塩とランタン (III) 塩を混合しアルカリを添加して得られる 懸濁液が生じる第1工程を、大気開放化で行うか、不活性ガス雰囲気下で行うか によって、最終的に得られる酸化セリウムを主成分とする粒子の粒子径分布が異 なる。大気開放化で行われる方法では粒子径分布が広くなり、不活性ガス雰囲気 下で行われる方法では粒子径分布が狭くなる。

[0063]

本願発明により得られたランタン化合物を成分として含み酸化セリウムが主成分である粒子は、シリカを主成分とする基板の研磨剤に適する。

[0064]

シリカを主成分とする基板の研磨剤として高速研磨が可能であり、しかも高品 質面が得られる。

[0065]

本願発明の研磨剤は、半導体デバイスの有機膜、ニオブ酸リチウム等の光学結晶材料、窒化アルミニウム、アルミナ、フェライト、ジルコニア等のセラミックス材料、アルミニウム、銅、タングステンなどの金属の研磨に適応できる。

[0066]

本願発明により得られるゾルは、研磨剤以外のも、紫外線吸収材料、触媒用材

特2000-392592

料及び燃料電池用材料等に利用することができる。

【書類名】 要約書

【要約】

【課題】 シリカを主成分とする基板の研磨、例えば水晶、フォトマスク用石英ガラス、半導体デバイスのSi〇2酸化膜、又はガラス製ハードディスクの研磨に用いられる研磨剤を提供する。

【解決手段】 セリウム(III)塩とランタン(III)塩を混合した水溶液と、アルカリ性物質を反応させて水酸化セリウム(III)と水酸化ランタン(III)が均一に混合された懸濁液を生成する工程、及び得られた懸濁液に酸素又は酸素を含有するガスを吹き込む工程を経由して得られ、 $0.005\sim1~\mu$ mの粒子径を有し、且つLa/(Ce+La) 重量比に換算して $0.001\sim0.5$ の割合でランタン化合物を成分に含有した酸化セリウムを主成分とする粒子を媒体に分散したゾルを含有する研磨剤である。

【選択図】 なし

出願人履歷情報

識別番号

[000003986]

1. 変更年月日

1990年 8月29日

[変更理由]

新規登録

住 所

東京都千代田区神田錦町3丁目7番地1

氏 名

日産化学工業株式会社