Enrichment stage 1:

1. (a) How many month will it take \$1000 to amount to \$1239, if it is invested at 0.5% per year compound monthly? (Give your answer to the nearest month)

JE MATHS

JE MATHS

2. Using a graphical sketch, show that $\frac{3}{7}(x-1) < \log_2 x$ for 1 < 8.

Competition stage 1:

1. (a) Given that $4^x = (2^x)^2$, rewrite 25^x into a square number.

JE MATHS

JE MATHS

JE MATHS

(b) Given that $6^x = 2^x 3^x$, rewrite 10^x into the product of two index numbers.

...

JE MATHS

JE MATHS

(c) Solve $4^x - 25^x = 10^x$ by using substitution and involving logarithm.

97-97-1

JE MATHS

- (79) - 100

IR was

JE MATHS

JE MATHS

JE MATHS

JE MATHS

(d) Hence show that the solution of $a^{2x} - b^{2x} = (ab)^x$ is $\frac{\log \varphi}{\log(\frac{a}{b})}$ where φ is golden ratio.

(F) whitehole

JE MATHS

JE MATHS

___ JE MATHS

JE MATHS

JE MATHS

JE MATHS

Enrichment stage 1:

Enrichment stage 1:

1. (a)

1239 =
$$1000(1 + 0.005/12)^n$$
 $(2401/2400)^n = 1.239$
 log_{10} ($2401/2400)^n = log_{10}1.239$
 $n = log_{10}1,239/log_{10}2401/2400$
= 514.438...

= 515 months (rounded up to nearest month)

(b)

(i)

 $A = B(1 + 0.005/12)^n$
 $(1+C/12)^n = A/B$
 log_{10} ($1+C/12)^n = log_{10}(A/B)$
 $n = log_{10}(A/B)/log_{10}(1+C/12)$
 $n = log_{10}(A/B)/log_{10}(1+C/12)$
 $n = log_{1+C/12}(A/B)$

(ii)

 $(1+C/12)^n = A/B$
 $1+C/12=(A/B)^{1/n}$
 $1+C/12=($

Therefore, for 1 < x < 8, the curve $y = \log_2 x$ is above the line y = 3(x - 1)/7.

JE MATHS

Competition stage 1:

- 1. (a) $(5^x)^2$
 - (b) $2^{x}5^{x}$

(c) (c) $(2^x)^{2B} - (5^x)^2 = 2^x 5^x$ $\div (5^{x})^{2}$ on both side:

 $(2^x/5^x)^2 - 1 = 2^x/5^x$

let $t = (2^x/5^x) = (2/5)^x$

t 21=t

t 2t-1=0

 $t = (1+\sqrt{5})/2$ (since t>0, omit -)

 $(1+\sqrt{5})/2 = (2/5)^x$

 $\log(1+\sqrt{5})/2 = \log(2/5)^x$

 $\log(1+\sqrt{5})/2 = x\log(2/5)$

 $x = \log(1+\sqrt{5})/2 / \log(2/5)$ JE MATHS

(d)

 $(a^{x})^{2} - (b^{x})^{2} = a^{x}b^{x}$

 $\div(b^x)^2$ on both side:

 $(a^{x}/b^{x})^{2} - 1 = a^{x}/b^{x}$

let $t = (a^x/b^x) = (a/b)^x$

 $t^{2}1=t$ $t^{2}t-1=0$ $t^{2}t-1=0$

 $t = (1+\sqrt{5})/2$ (since t>0, omit -)

 $(1+\sqrt{5})/2 = (a/b)^x$

 $\log(1+\sqrt{5})/2 = \log(a/b)^x$

 $\log(1+\sqrt{5})/2 = \operatorname{xlog}(a/b)$

 $x = \log(1 + \sqrt{5})/2 / \log(a/b)$

= $\log \varphi / \log(a/b)$, $\varphi = (1+\sqrt{5})/2 = \text{golden ratio}$

JE MATHS

JE MATHS