General Notation

 \neg \rightarrow Not

∃ → There exists

: → Such that

 \forall \rightarrow For all

 \equiv/\Leftrightarrow \rightarrow Equivalent

 \implies \rightarrow Implies

€ → Is in/Belongs to

 $\Lambda \rightarrow And$

 $V \rightarrow Or$

 \nearrow Strictly increasing

→ Strictly decreasing

 \nearrow \rightarrow Eventually increasing

\(\rightarrow \) Eventually decreasing

Sets of Numbers

 $\mathbb{Z} \to \mathsf{Integers}$

Programs

BS Computer Science

 $\mathbb{R} \to \text{Real numbers}$

N → Natural numbers

 $\mathbb{P} \to \mathsf{Prime} \; \mathsf{numbers}$

 $U \rightarrow Universal set (everything)$

 \emptyset , $\{\}$ \rightarrow Empty set (nothing)

COS 485

Department of Computer Sciences

Common Operations

Floor $|n| \rightarrow \text{Truncate } n$

Ceiling $[n] \rightarrow \text{Round up } n$

Factorial $n! \rightarrow 1 \times 2 \times 3 \times 4 \times \cdots \times n$

Summation $\sum_{k=1}^{n} f(k) \rightarrow \sum_{k=1}^{5} 2k = 2 + 4 + 6 + 8 + 10$

Binomial $\binom{n}{k} \to \frac{n!}{k!(n-k)!}$

Divides $n \mid k \rightarrow \text{iff } \exists c \in \mathbb{Z} : k = nc$

Rules of Logarithms

 $\log_b x = y \iff b^y = x$

 $\mathsf{h}^{\log_b x} \Longleftrightarrow x$

 $\log_b(b^x) \iff x$

 $\log_b(xy) \Longleftrightarrow \log_b x + \log_b y$

 $\log_b(x/y) \iff \log_b x - \log_b y$

 $x^{\log_b n} = n^{\log_b x}$

 $\log_b(x^y) \iff y \times \log_b x$

 $x^{\log_b n} = n^{\log_b x}$

Big-O, o, Ω and Θ ($\forall n > n_0$)

 $f(n) \in O(g(n)) \to \exists C : 0 \le f(n) \le Cg(n)$

 $f(n) \in o(g(n)) \rightarrow \forall C > 0 : 0 \le f(n) < Cg(n)$

 $f(n) \in \Omega(g(n)) \to \exists C : 0 \le Cg(n) \le f(n)$

 $f(n) \in \Theta(g(n)) \to \exists A, B : Ag(n) \le f(n) \le Bg(n)$

Design/Analysis of Comp Algorithms

Department of Computer Sciences

Common Time-Complexities

Constant $\rightarrow O(1)$

Logarithmic $\rightarrow O(\log n)$

Linear $\rightarrow O(n)$

Quasi-Linear $\rightarrow O(n \log n)$

Quadratic $\rightarrow O(n^2)$

Cubic $\rightarrow O(n^3)$

Exponential $\rightarrow O(2^n)$

Factorial $\rightarrow O(n!)$

Proof Types (For $P \Longrightarrow Q$)

Direct \rightarrow Assume P, then use rules of logic to prove Q

Cases/Exhaustion $\rightarrow P_1 \lor P_2 \lor \cdots \lor P_n \implies Q$

Contradiction \rightarrow Assume P and derive $P \implies Q$

Inductive $\rightarrow P(1) \land P(k+1) \implies P(k)$

Common Series

Contact

 $\sum_{k=1}^{n} k \to 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ $\sum_{k=1}^{n} k^2 \to 1 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ $\sum_{k=1}^{n} k^3 \to 1 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$

 $\sum_{k=1}^{n} ar^{k-1} \to ar^0 + ar^1 + ar^2 + \dots + ar^{n-1} = a\left(\frac{1-r^n}{1-r}\right)$

 $\sum_{k=0}^{n} \binom{n}{k} \to \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^{n}$

1

Cheat Sheet

Published ???, 2024.

Solving Recurrence Relations

The general steps for solving a recurrence relation are

- Find an explicit solution using the Characteristic Equation
- Verify solution using an inductive proof

First use Algebra to take a simple Recurrence Relation and turn it into a LHRRCC

$$T_n = T_{n-1} + T_{n-2}$$

LHRRCC is a Linear Homogeneous Recurrence Relation with Constant Coefficients.

$$T_n - T_{n-1} - T_{n-2} = 0$$

Use the Characteristic Equation, where C is the coefficient from the LHRRCC:

$$C_0 X^k + C_1 X^{k-1} + C_2 X^{k-2} + \dots + C_k = 0$$

For this example it would be

$$x^2 - x - 1 = 0 \implies x = \frac{1 \pm \sqrt{5}}{2}$$

Then solve for x and substitute into the General Solution $f_n = Ax_1^n + Bx_1^n$

Next, use the initial conditions to solve for the explicit solution

$$f_n = A\left(\frac{1+\sqrt{5}}{2}\right)^n + B\left(\frac{1-\sqrt{5}}{2}\right)^n$$

Finally, veryify the explicit solution that was found using an inductive proof.

Programs

BS Computer Science

COS 485

Department of Computer Sciences

Divide and Conquer

If f(n) is the number of operations required to solve an intial problem, then a Divide and Conquer Recurrence Relation will look like

$$f(n) = \underbrace{a}_{\text{subproblems}} f\left(\frac{n}{b}\right) + \underbrace{g(n)}_{\text{work per level}} + \underbrace{g(n)}_{\text{work per level}}$$
where $n = b^k$, $k \ge 1$

Theorem: Suppose $f \nearrow (is strictly increasing), b \mid n, a \ge 1, b \ge 1, c \in f(n) = af(\frac{n}{b}) + O(1), then$

$$f(n) \in O(n^{\log_b a}) \quad \text{if } a > 1$$
 $O(\log_b n) \quad \text{if } a = 1$

Master Theorem

Suppose a complexity function T(n) is eventually non-decreasing and satisfies

$$T(n) = aT\left(\frac{n}{b}\right) + O(n^d)$$
 for $n > 1$, n a power of b
 $T(1) = c$

Where $b \ge 2$ and $d \ge 0$ are constant *integers*, and a and c are constant such that a > 0 and c > 0.

$$\Theta(n^d) \quad \text{if } a < b^d$$

$$T(n) \in \Theta(n^d \lg n) \quad \text{if } a = b^d$$

$$\Theta(n^{\log_b a}) \quad \text{if } a > b^d$$

2

Cheat Sheet

Published ???, 2024.

Design/Analysis of Comp Algorithms

Department of Computer Sciences

Greedy Algorithms

Greedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. The idea is to select the best local choice at each step, leading to a solution that may or may not be the most optimal but is often good enough. Problems that are solved using Greedy Algorithms include

- Knapsack Problem
- Shortest Path (Graph)
- Minimal Spanning Tree

Dynamic Programming (DP)

DP solves problems by breaking them down into simpler **subproblems**. By solving each subproblem only once and storing the results, it avoids repeating computations and is more efficient. Dynamic Programming algorithms can use either a 'Top-Down' approach or a 'Bottom-Up' approach which use **memoization** or **tabulation** to store subproblems, respectively. Some examples of problems that use Dynamic Programming are:

- Fibonacci Seguence
- Shortest Path (Graph)
- Chain Matrix Multiplication

Contact

Dr. James Quinlan

Chair Dont of Computer Science