

Functions

LECTURE |x| +2 **Modulus Function - 1**

#JEELiveDaily

Sameer Chincholikar B.Tech, M.Tech - IIT-Roorkee

- ✓ 10+ years Teaching experience
- Taught 1 Million+ Students
- 100+ Aspiring Teachers Mentored

tinyurl.com/jeemobile

Unacademy Subscription

Functions

LECTURE |x| +2 **Modulus Function - 1**

Modulus Function: Definition

The modulus/absolute value of a number may be thought of as its distance from zero.

distance from zero.

Definition

Modulus Function: (Domain, Range and Graph)

$$\left|-\pi\right|=\pi$$
 $\left|\Theta\right|=\Theta$

$$|x| = egin{cases} \widehat{x}, & ext{if } \widehat{x} \geq 0 \ \widehat{-x}, & ext{if } \widehat{x} < 0 \end{cases}$$

Domain: R

input value.

Range: $[0, \infty)$

> output values

Modulus Function: (Domain, Range and Graph)

Opening Modulus Function

$$\begin{array}{ccc} & & & & & & & \\ & & & & \\ & & & \\$$

$$\frac{n^{dol}}{x^{dol}} = \begin{cases} (n-1) ; (n-1) > 0 \Rightarrow (n-1) \end{cases}$$

$$\frac{1}{n^{dol}} = \begin{cases} (n-1) ; (n-1) > 0 \Rightarrow (n-1) \end{cases}$$

$$\frac{1}{n^{dol}} = \begin{cases} (n-1) ; (n-1) > 0 \Rightarrow (n-1) \end{cases}$$

Example Define f(x) free of modulus and draw the graph: $(i) f(x) \neq |2x - 3|$; (2n-3)7,0

Define f(x) free of modulus and draw the graph:

Opening Modulus Function

On the right of critical point modulus opens with a plus sign and on the left it opens with a minus sign.

Example Define
$$f(x)$$
 free of modulus and draw the graph:

(iii) $f(x) \in [x-1] + [x+2]$

(iii) $f(x) \in [x-1] + [x+2]$

(iii) $f(x) \in [x-1] + [x+2]$

[(iii) $f(x) \in [x-1] + [x+2]$

[(iii

Define f(x) free of modulus and draw the graph:

MON-WED

THURS - SAT

tinyurl.com/jeemobile

tinyurl.com/unacademychat

Unacademy Subscription

- **LIVE** Classes
- Interact with Educator
- Live polls & Leaderboard
- Test Series & Analysis
- **LIVE Doubt Clearing Sessions**

India's **BEST** Educators

Unacademy Subscription

HINDI PHYSICS

Course on Units & Dimensions and Basic Mathematics

Starts on Apr 1, 3:00 PM • 10 lessons

BATCH HINDI

EMERGE for Class 11: JEE Main & Advanced 2022

Starts on Apr 1, 3:00 PM

BATCH HINDI

EVOLVE for Class 12: JEE Main & Advanced 2021

Starts on Apr 1, 11:30 AM Anupam Gupta and 3 more

BATCH HINDI

EMERGE for Class 11: JEE Main & Advanced 2022

Starts on Apr 20, 4:00 PM Brijesh Jindal and 3 more

IDI PHYSICS

Complete Course on Physics for Class 11

Starts on Apr 2, 2020 • 11 lessons

D C Pandey

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

SUBSCRIBE

#JEELiveDaily

Let's Crack it!

School at **Unacademy**

9th | 10th

Use Referral Code

SAMEERLIVE

GET 10% OFF!

on your next Unacademy Subscription

