Санкт-Петербургский Политехнический университет Петра Великого

Институт Прикладной Математики и Механики Кафедра «Прикладная Математика и Информатика»

Отчет

По лабораторной работе № 3 По Дисциплине «Математическая статистика»

Выполнил:

Студент Селянкин Федор

Группа 3630102/70301

Проверил:

 κ .ф. – м.н., доцент

Баженов Александр Николаевич

Содержание

Постановка задачи	. 3
Теория	. 3
Распределения	. 3
Боксплот Тьюки	. 3
Определение	. 3
Описание	. 3
Построение	. 4
Теоретическая вероятность выбросов	. 4
Реализация	. 4
Результаты	. 5
Боксплот Тьюки	. 5
Доля Выбросов	. 7
Теоретическая вероятность выбросов	. 7
Литература	. 7
Обсуждения	. 8
Список иллюстраций:	
1Равномерное распределение	. 5 . 6 . 6
Список таблиц:	
1Доля Выбросов	
2Теоретическая вероятность выбросов	. 7

Постановка задачи

Для 5 распределений:

- Нормальное распределение N(x, 0, 1)
- Распределение Коши C(x, 0, 1)
- Распределение Лапласа $L(x, 0, \frac{1}{\sqrt{2}})$
- Распределение Пуассона P(k, 10)
- Равномерное распределение $U(x, -\sqrt{3}, \sqrt{3})$

Сгенерировать выборки размером 20, 100 элементов.

Построить для них боксплот Тьюки.

Для каждого распределения определить долю выбросов экспериментально (сгенерировав выборку, соответствующую распределению 1000 раз, и вычислил среднюю долю выбросов) и сравнить с результатами, полученными теоретически.

Теория

Распределения

Нормальное распределение

 $N(x, 0, 1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{-x^2}{2}}$ (1)

Распределение Коши

 $C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1}$ (2)

Распределение Лапласа

 $L(x, 0, \frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|}$ (3)

Распределение Пуассона

 $P(k,10) = \frac{10^k}{k!}e^{-10}$ (4)

Равномерное распределение

 $\mathbf{U}(\mathbf{x}, -\sqrt{3}, \sqrt{3}) \ = \begin{cases} rac{1}{2\sqrt{3}} \ \mathrm{при} \ |x| \ \leq \sqrt{3} \\ \mathbf{0} \ \mathrm{при} \ |x| \ > \sqrt{3} \end{cases}$ (5)

Боксплот Тьюки

Определение

Боксплот (англ. box plot) – график, использующийся в описательной статистике, компактно изображающий одномерное распределение вероятностей.

Описание

Такой вид диаграммы в удобной форме показывает медиану, нижний и верхний квартили и выбросы. Несколько таких ящиков можно нарисовать бок о бок, чтобы визуально сравнивать одно распределение с другим; их можно располагать как горизонтально, так и вертикально. Расстояния

между различными частями ящика позволяют определить степень разброса (дисперсии) и асимметрии данный и выявить выбросы.

Построение

Границами ящика служат первый и третий квартили, линия в середине ящика – медиана. Концы усов – крася статистически значимой выборки (без выбросов). Длину «усов» определяют разность первого квартиля и полутора межквартильных расстояний и сумма третьего и полутора межквартильных расстояний. Формула имеет вид

6

$$X_1 = Q_1 - \frac{3}{2}(Q_3 - Q_1), X_2 = Q_3 + \frac{3}{2}(Q_3 - Q_1),$$
 (6)

 Γ де X_1 — нижняя граница уса, X_2 — верхняя граница уса, Q_1 — первый квартиль, Q_3 — третий квартиль.

Данные, выходящие за границы усов (выбросы), отображаются на графике в виде маленьких кружков.

Теоретическая вероятность выбросов

Зная, первый и третий квартили по формуле (6) можно вычислить теоретически нижнюю и верхнюю границы уса (X_1^T и X_2^T соответственно). Выбросами считаются такие величины х, что

 $\begin{bmatrix}
x < X_1^T \\
x > X_2^T
\end{bmatrix}$ (7)

Теоретическая вероятность выбросов для непрерывных распределений

8

$$P_{\rm B}^T = P(x < X_1^T) + P(x > X_2^T) = F(X_1^T) + (1 - F(X_2^T)), \tag{8}$$

где $F(X) = P(x \le X)$ – функция распределения

Теоретическая вероятность выбросов для дискретных распределений

9

$$P_{\rm B}^T = P(x < X_1^T) + P(x > X_2^T) = (F(X_1^T) - P(x = X_1^T) + (1 - F(X_2^T)), \tag{9}$$

где $F(X) = P(x \le X)$ – функция распределения

Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python в среде разработки PyCharm, с использованием дополнительных библиотек для отображения и расчетов. Исходный код лабораторной выложен на веб-сервисе GitHub [2].

Результаты

Боксплот Тьюки

1Равномерное распределение

2Распределение Пуассона

3Распределение Лапласа

4Нормальное распределение

5Распределение Коши

Доля Выбросов

Выборка	Доля выбросов
Нормальное распределение n = 20	0.02
Нормальное распределение n = 100	0.01
Распределение Коши n = 20	0.15
Распределение Коши n = 100	0.15
Распределение Лапласа n = 20	0.08
Распределение Лапласа n = 100	0.07
Распределение Пуассона n = 20	0.02
Распределение Пуассона n = 100	0.01
Равномерное распределение n = 20	0.00
Равномерное распределение n = 100	0.00

1Доля Выбросов

Теоретическая вероятность выбросов

1 1					
Распределение	Q_1^T	Q_3^T	X_1^T	x_2^T	$P_{\scriptscriptstyle m B}^T$
Нормальное распределение	-0.674	0.674	-2.698	2.698	0.007
Распределение Коши	-1	1	-4	4	0.156
Распределение Лапласа	-0.490	0.490	1.961	1.961	0.063
Распределение Пуассона	8	12	2	18	0.008
Равномерное распределение	-0.866	0.866	3.464	3.464	0

2Теоретическая вероятность выбросов

Литература

- 1. Боксплот https://en.wikipedia.org/wiki/Box plo
- https://en.wikipedia.org/wiki/Box_plot
 Ссылка на репозиторий GitHub https://github.com/SelyankinFyodor/math-statistics/tree/master/Lab3

Обсуждения

В распределении Коши доля выбросов меньше, чем в распределении Лапласа или нормальном распределении, но из боксплота видно, что разброс значений намного больше.