Formal Languages & Finite Automata

Reference

Collection of interconnected topics.

- IA Discrete Math
 - Regular Languages and finite automata
 - Pumping Lemma for Regular Languages
- IB Compiler Construction
 - o CFG, PDA
- IB Formal Model of Language
 - Pumping Lemma for CFG
 - Chomsky hierarchy
- IB Computation Theory
 - TM
- II Quantum Computing
 - Quantum Automata

Notation

Kleene star ★

- the set of all strings that can be written as the concatenation of zero or more strings from A.
- finite set

Optional bracket

• or write it in case split

Definition

String $\omega \in T^\star$, over alphabet Σ

- ullet of length $n\in\mathbb{N}$
- Empty string ϵ , the unique string of length 0

Language $L = \{\omega | \omega \in T^\star\}$

Grammar $G = \langle N, T, P, S \rangle$

- N is a finite set of Non-terminal/variables. (Q in Automata)
- T is a finite set of terminals/symbols. (Σ in Automata)
- Require that N and T disjoint, i.e. $N\cap T=\emptyset$
- ullet P is Production rule, a relation defined

- $\circ \;\; \mathsf{Regular} \; P \in N imes T[N]$
- \circ CFG $P \in N imes (T \cup N)^\star$
- $\circ \ \operatorname{CSG} P \in (N \cup T)^\star N (N \cup T)^\star imes (N \cup T)^\star (T \cup N)^\star (N \cup T)^\star$
- \circ Recursive enumerable $P \in (N \cup T)^\star imes (N \cup T)^\star$
- ullet $S\in N$ is the Start symbol

Relationship of Grammar and Language

Grammar	Language	
Finite (Kleene star)	∞	
Structured	Flat lists of w	
many grammars	map to the same language	

Finite Automata

$$M_{Automata} = (Q, \Sigma, \delta, s, F)$$

- ullet Q is a finite set of states (N in Grammar)
- ullet Σ is the finite set alphabet (T in Grammar)
 - $\circ \; \; Q$ and Σ disjoints, i.e. $\Sigma \cap Q = \emptyset$
- ullet δ is the transition relation
 - o corresponds to Production rule (Grammar)
- ullet $s\in Q$ is the start state, also known as q_0
- ullet $F\subset Q$ is the set of accepting states
- L(M): the language accepted by the automata

[Non]Deterministic Finite Automata

$$M_{NFA} = (Q, \Sigma, \delta, s, F)$$

 $\begin{array}{c} \bullet \ \, \delta \subset Q \times (\Sigma \cup \{\epsilon\}) \to Q \text{ transition relation} \\ \circ \ \, (q,a,q') \text{ means } q \overset{a}{\longrightarrow} q' \end{array}$

$$M_{DFA} = (Q, \Sigma, \delta, s, F)$$

- $\delta \subset Q imes \Sigma o Q$ transition relation (q,a,q') means $q \stackrel{a}{\longrightarrow} q'$
- $ullet \ L(M) = \{\omega \in \Sigma^* \mid \exists q \in Q, s \stackrel{\omega}{\Longrightarrow} q \}$

PushDown Automata

$$M_{PDA} = (Q, \Sigma, \Gamma, \delta, s, Z, F)$$

- $\bullet \ \, \delta \subset Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to Q \times \Gamma^\star \text{ transition relation} \\ \circ \ \, \delta(q,a,X) = (q',\beta)$
 - $lack q \stackrel{i}{\longrightarrow} q'$ and replace top of stack X with eta

- Γ is a finite set which is called the **stack** alphabet
- ullet $Z\in\Gamma$ is the initial stack symbol
- $\bullet \ \ L(M) = \{\omega \in \Sigma^* \mid \exists q \in Q, ID = \langle s, \omega, Z \rangle \to^+ ID' = \langle q, \epsilon, \epsilon \rangle \}$
 - $\circ~$ The initial content ω is said to be accepted by M if it eventually halts in a state from F
 - with Instantaneous Description (ID) above.

Turing Machine

$$M_{TM} = (Q, \Sigma, \delta, s, F)$$

- $\Sigma = \{\sqcup, \triangleright\} \cup \Sigma'$ is the finite set of **tape** alphabet symbols
 - □ the blank symbol
 - the only symbol allowed to occur on the tape infinitely often at any step during the computation
 - ▷ left endmarker
 - the left end marker ▷ is never overwritten and M always move Right.
 - \circ Σ' the finite set of input symbols, to be checked
 - allow to appear in the initial tape contents.
- ullet $\delta\subset Q imes \Sigma o Q imes \Sigma imes \{L,R,S\}$ transition relation ullet $\delta(q,a)=(q',b,u)$
 - $q \xrightarrow{a} q'$ and overwrite the current symbol from a to b, update the next head movement.
 - \circ $\delta(q, \triangleright) = (q', \triangleright, R)$
 - the left endmarker > is never overwritten and header always moves Right.
- $\bullet \ \ L(M) = \{\omega \in \Sigma' \mid \exists q \in \{acc, rej\}, c_0 = \langle s, \triangleright, u \rangle \to^+ c' = \langle q, \omega, u' \rangle \}$
 - $\circ~$ The initial content ω is said to be accepted by M if it eventually halts in a state from F
 - with configuration above.

Pumping Lemma

Proof For Regular Language L,

 $\exists k \in \mathbb{Z}^+$, $orall \omega \in L$ with $|\omega| \geq k$ (the number of states), can be written as a concatenation of three strings $\omega = u_1 \mathbf{v} u_2$, satisfying

- $|\mathbf{v}| \geq 1 \ (v \neq \epsilon)$
- $|u_1\mathbf{v}| \leq k$

 $\forall n \in \mathbb{N}$, $u_1 \mathbf{v^n} u_2 \in L \square$.

Disproof L is not regular, (negation of the above)

 $orall k \geq 1$, $\exists \omega \in L$ with $|\omega| \geq k$, such that no matter how ω is split into three strings $\omega = u_1 \mathbf{v} u_2$, satisfying

- $|\mathbf{v}| \geq 1 \ (v \neq \epsilon)$
- $|u_1\mathbf{v}| \leq k$

 $\exists n \in \mathbb{N}, u_1\mathbf{v}^\mathbf{n}u_2 \notin L\square.$

[Need different cases on valid string split positions]

Proof For Language L of CFG,

 $\exists k \in \mathbb{Z}^+$, $\forall \omega \in L$ with $|\omega| \geq k$ (the number of states), can be written as a concatenation of three strings $\omega = u_1 \mathbf{v_1} u_2 \mathbf{v_2} u_3$, satisfying

- $\mid \mathbf{v_1}\mathbf{v_2} \mid \geq 1$ ($v_1 \neq \epsilon$ and $v_2 \neq \epsilon$)
- $|\mathbf{v_1}u_2\mathbf{v_2}| \leq k$
- $\forall n \in \mathbb{N}$, $u_1\mathbf{v_1^n}u_2\mathbf{v_2^n}u_3 \in L$.

Disproof L is not CFG, (negation of the above)

 $\forall k \in \mathbb{Z}^+$, $\exists \omega \in L$ with $|\omega| \geq k$, such that no matter how ω is split into strings $\omega = u_1 \mathbf{v_1} u_2 \mathbf{v_2} u_3$, satisfying

- $\mid \mathbf{v_1}\mathbf{v_2} \mid \geq 1$ ($v_1 \neq \epsilon$ and $v_2 \neq \epsilon$)
- $|\mathbf{v_1}u_2\mathbf{v_2}| \leq k$
- $\exists n \in \mathbb{N}$, $u_1\mathbf{v_1^n}u_2\mathbf{v_2^n}u_3 \notin L\square$.

[Need different cases on valid string split positions]

Chomsky hierarchy

	Gramma $\langle N, T, P, S angle$	Automata (Q,Σ,δ,s,F)	Production rules ${\cal P}$	Language e.g.	Usage
T-3	Regular	DFA	$egin{aligned} A ightarrow a \ A ightarrow a B \end{aligned}$ (right)	$L=\{a^n\mid n>0\}$	Lexer
T-2	Context-free	∞ -stack PDA (Γ,Z)	A o lpha	$L=\{a^nb^n\mid n>0\}$	General Parser
T-1	Context-sensitive	Linear-bounded Turing Machine	$lpha Aeta ightarrow lpha \gamma eta$	$L=\{a^nb^nc^n\mid n>0\}$	Specific Parser
T-0	Recursively enumerable	Turning Machine	$\gamma ightarrow lpha$	$L=\{\omega\}$ TM recognizable	semi- decidable

The lower Automata/Grammar is strictly stronger than all the upper.

Notation:

- ullet $A\in N$, denotes single Non-terminal
- ullet $a\in T$, denotes single terminal
- $lpha,eta,\gamma\in(N\cup T)^{\star}$, denotes string of finite terminals and/or Non-terminals

(Adapted from wiki)