Isotopes

EES 2110
Introduction to Climate Change
Jonathan Gilligan

Class #18: Monday, February 20 2023

Wrapping Up Carbon Cycle

CO₂ vs. Methane

- CO₂:
 - After 1000 years, around 30% of excess CO₂ remains in atmosphere
 - After 10,000 years, 13% remains
 - After 100,000 years, 6% remains

- Methane (CH_4):
 - 31 times more powerful (moleculefor-molecule) than CO₂
 - Reacts with OH^- (hydoxyl radicals) and oxidizes into H_2O and CO_2 .
 - Atmospheric lifetime: 9.6 years:
 - After 25 years, 7% remains.
 - After 100 years, 0.003% remains.
- When we reduce methane emissions, atmospheric methane drops quickly
- When we reduce CO_2 emissions, CO_2 continues rising, but more slowly
- When we stop CO_2 emissions altogether, CO_2 only drops slowly.

Weathering as Thermostat

Weathering as Thermostat

CO₂ is balance of volcanic outgassing and chemical weathering

• Higher temperatures:

- More rain, faster chemical reactions
- Faster weathering
- Atmospheric CO₂ falls

Lower temperatures

- Less rain, slower chemical reactions
- Slower weathering
- Atmospheric CO₂ rises
- Net effect:
 - Keeps temperature stable near some "set point"
 - Set-point is determined by geology

Temperature of Earth

- Weathering acts as thermostat.
- Earth's temperature has been remarkably stable over time.
 - 4 billion years ago, sun was 30% dimmer...
 - But there has constantly been liquid water.
- Geologic change alters thermostat "setting":
 - Volcanic outgassing
 - Land surface (e.g., mountain ranges)
 - Vascular plants
- In the long run, silicate thermostat will fix global warming...
 - ...but it will take tens to hundreds of thousands of years.

What's Causing CO₂ to Rise?

Carbon Isotopes:

Stable Isotopes: 12C and 13C

- ¹²C: 99% of all carbon on earth
- ¹³C: About 1%. Just like ¹²C, but slightly heavier
 - Greater mass → slower chemical reactions
 - Molecules produced by photosynthesis have slightly less ¹³C, more ¹²C than the atmosphere.
- Notation:

$$\delta^{13}C = \left(\frac{\left(\frac{^{13}C}{^{12}C}\right)_{\text{specimen}} - \left(\frac{^{13}C}{^{12}C}\right)_{\text{reference}}}{\left(\frac{^{13}C}{^{12}C}\right)_{\text{reference}}}\right)$$

Unstable Isotopes: 14C

- ¹⁴C: Radioactive, unstable
 - Produced in the atmosphere by cosmic rays hitting nitrogen atoms
 - Decays from ¹⁴C to ¹⁴N over thousands of years
 - Every 5,500 years, half of the ¹⁴C turns into ¹⁴N
 - Measuring the amount of ¹⁴C relative to ¹²C in animal or plant matter tells you about the age since it died.

Evidence: O₂ and ¹³C

Evidence: ¹³C and ¹⁴C

Fossil Fuels vs. CO₂

Image credit: W. Knorr, Geophys. Res. Lett. **36**, L21710 (2009) doi: 10.1029/2009GL0406

Concentrations match 46% of fossil fuel consumption

Assessing the Evidence

- Decreasing O_2 : CO_2 produced by burning or oxidizing.
 - Not a mineral source (volcanoes).
- Decreasing δ^{13} C: CO₂ must have biological origin.
- Decreasing δ^{14} C: The fuel must be thousands of years old.
- Possible sources:
 - Where are billions of tons per year of very old organic matter being burned or oxidized?
- Rate of rise matches fossil fuel consumption.
- Therefore: Dominant source must be fossil fuels.

Oxygen & Hydrogen Isotopes and Past Climates

Oxygen & Hydrogen Isotopes

$$\delta^{18}O = \left(\frac{\left(\frac{^{18}O}{^{16}O}\right)_{\text{sample}} - \left(\frac{^{18}O}{^{16}O}\right)_{\text{ref}}}{\left(\frac{^{18}O}{^{16}O}\right)_{\text{ref}}}\right) \times 1000\%$$

- $\delta^{18}O$ compares measured concentration of ^{18}O to the concentration in a reference sample.
- Lighter isotopes (¹H and ¹⁶O) evaporate faster
 - Vapor has less of heavier isotopes (smaller δ^{18} O, δ^{2} H = δ D)
 - Ocean is richer in heavier isotopes (greater δ^{18} O, δ D)
 - Warmer \rightarrow greater δ^{18} O, δ D in vapor

Rain, Snow, Ice

Rain, Snow, Ice

- Rain, snow are richer in heavier isotopes
 - More precipitation \rightarrow less deuterium (D, 2H) and ^{18}O left in vapor
 - Farther from source region \rightarrow smaller δD and δ^{18} O.
- Reduction in δD and $\delta^{18} O$ depends on air temperature.
 - Different for H and O.
- Comparing δD and $\delta^{18}O$ can tell us about both sea-surface temperature and air temperature over glaciers.
- Higher air temperature over glacier \to greater δD and δ^{18} O in glacier snow/ice.

Glacial Ice

Ice Cores

Image credits: Pete Bucktrout/British Antarctic Survey

Inside the Ice Core

800,000 years of CO₂ and Temperature

Sediments and History

Bottom \rightarrow top = oldest \rightarrow youngest

Ocean Cores for Past Climates

Deep-Sea Sediments

Past Sea Levels

- Water vapor, rain, snow is always isotopically lighter than sea water
- Snow, ice on land remove light isotopes from ocean
- Bigger glaciers:
 - Lower sea-level
 - Greater (positive) δ^{18} O in ocean sediments
- Smaller glaciers:
 - Higher sea-level
 - Smaller δ^{18} O in ocean sediments

Sediment Climate Record

Summary of Oxygen Isotopes

- Two different uses:
 - δ^{18} O in **glacial ice** tells us about **air temperature**:
 - \circ Greater δ^{18} O means warmer temperature.
 - δ^{18} O in **sea-floor sediments** (skeletons of deep-sea organisms) tells us about **sea level**:
 - \circ Greater δ^{18} O means lower sea-level.
- During ice-age cycles:
 - cold temperatures go with low sea-level
 - \circ δ^{18} **O** is *lower* than usual in glaciers, *greater* in sea-floor sediments.
 - warm temperatures go with high sea-level:
 - \circ δ^{18} O is *greater* than usual in glaciers, *lower* in sea-floor sediments.
 - But sea-level changes more slowly than temperature, so changes in sediments usually lag behind changes in glaciers.

Review

Review

- What do we learn from studying $\delta^{13}\mathbf{C}$ in the atmosphere?
- What do we learn from studying $\delta^{14}\mathbf{C}$ in the atmosphere?
- How do we know that the rise in CO₂ comes from burning fossil fuels?
- What do δ^{18} O and δ D in glacial ice tell us about the past?
- What is different between what we learn from $\delta^{18}O$ in ice and $\delta^{18}O$ in seafloor sediments?
- How does the silicate weathering cycle act as a thermostat to keep earth's temperature stable?
- How do the lifetimes of CO_2 and CH_4 compare? Why is this important?