Calculator-free Solutions

1. (a) (i)
$${}^{8}P_{5}$$
 or ${}^{8}C_{5} \times 5!$

(ii)
$${}^{4}C_{3} \times {}^{4}C_{2} \times 5!$$

(b) (i)
$$6^4 \times 5^2 \times 6!$$

(ii) '9' from first set only:
$${}^5C_3 \times {}^4C_2 \times 6!$$

'9' from second set only:
$${}^5C_4 \times {}^4C_1 \times 6!$$

no '9' chosen:
$${}^5C_4 \times {}^4C_2 \times 6!$$

total
$$\dot{c}(^{5}C_{3} \times {}^{4}C_{2} + {}^{5}C_{4} \times {}^{4}C_{1} + {}^{5}C_{4} \times {}^{4}C_{2}) \times 6!$$

2. (a) (i)
$$i^{n+2} = i^n \times i^2 = -i \times -1 = i$$

(ii)
$$i^{2n+1} = (i^n)^2 \times i = (-i)^2 \times i = -i$$

(b)
$$\frac{1-i}{i+\frac{2}{i}} \times \frac{i}{i} = \frac{i-i^2}{i^2+2} = \frac{1+i}{-1+2} = 1+i$$

3. (a)
$$5^3 = 5 + 1 \times 10 \times 6 + 1 \times 4 \times 15 = 5 + 60 + 60 = 125$$

(b)
$${}^{5}C_{2}, {}^{4}C_{1}$$

(c)
$$n^3 = n + {n-1 \choose 0} \times {n+1 \choose 1} \times {n \choose 2} + {n \choose 0} \times {n-1 \choose 1} \times {n+1 \choose 2}$$
 [5]

4. (a) (i)
$$\begin{bmatrix} 0 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 0 \\ -1 & -1 & 1 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

A and B are inverses of each other. ✓

(ii)
$$\begin{bmatrix} 0 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -6 \\ 8 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 0 \end{bmatrix}^{-1} \times \begin{bmatrix} -6 \\ 8 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & -1 & 1 \\ 0 & -1 & 1 \end{bmatrix} \times \begin{bmatrix} -6 \\ 8 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ -5 \end{bmatrix}$$

$$\therefore x = 2, y = 1, z = -5$$

4. (b) (i) T_1 performs a rotation of 180°

:.
$$y = -(x-1)^2$$

√√

(ii) Reflection of the line y=x

$$\mathsf{T}_2\dot{\boldsymbol{\iota}}\begin{bmatrix}0&1\\1&0\end{bmatrix}$$

✓

(iii) New Area $\frac{1}{6} |T_3| \times 10 \frac{2}{3} = 6 \times \frac{32}{3} = 64 \text{ unit } s^2$

//

[12]

5. (a) (i) $y = -3\cos\left[4\left(x - \frac{\pi}{12}\right)\right] = -3\cos\left[4x - \frac{\pi}{3}\right]$

$$\therefore A = -3\omega = 4\theta = \frac{-\pi}{3}$$

///

(ii) $y = -3\sin\left(4x + \frac{\pi}{6}\right)$

√ √

(b)

✓ Scale factor $(y=2 \text{ at } x=\frac{5\pi}{24})$

 \rightarrow x \checkmark Period of $\frac{\pi}{2}$

✓ Vertical Asymptote

[8]

- 6. (a) (i) $\sqrt{2} \times \sqrt{8} = \sqrt{16} = 4$
 - (ii) "If ab is irrational, then both a and b must be irrational"
 - (b) $A \Rightarrow B$: If the triangle has two equal sides, then it is isosceles, and therefore it has two congruent sides.
 - \therefore A \Rightarrow B is valid and True.
 - $B\Rightarrow A$: If the triangle has two congruent sides, then it is isosceles, and therefore it has two equal sides.
 - \therefore B \Rightarrow A is valid and True.
 - ∴ A ⇔ B
 - (c) $\forall x \in P, \exists y \in P: xy \in Q$ (6)
- 7. Assume *n* is even and that n^3 is odd.
 - Let $m \in N$: n=2m is even.
 - $n^3 = (2m)^3 = 8m^3 = 2(4m^3)$
 - Since n^3 cannot be both even and odd simultaneously, then this is a contradiction. And therefore n must be odd.