

Winning Space Race with Data Science

Ryan Smith June 2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Overview of the analysis on SpaceX launch data.
- Identification of key factors influencing the successful retrieval of the first stage.
 - Variables considered (e.g., launch site, weather conditions, rocket type).
 - Data sources and analysis techniques used.
 - Summary of findings.
- Implications for SpaceY's strategy to compete with SpaceX.
- Recommendations for future launches.
- Conclusion and next steps.

Introduction

- Reusable rocket technology.
- SpaceX's achievements in first stage retrieval.
- Objectives of the analysis.
 - Location of launch.
 - Optimal payload weight.
- Importance for SpaceY.
 - Competitive landscape.
 - Strategic goals.

Methodology

Executive Summary

- Data collection methodology:
 - Webscraping
 - API
- Perform data wrangling
 - Cleaned data for Falcon 9
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Determining best ML model

Data Collection

- SpaceX API
 - Compile list of necessary items
 - Filtering on booster version
 - Handling missing values
- Webscraping SpaceX wiki for tables

Data Collection – SpaceX API

- Collect data through SpaceX data API
 - Rockets
 - LaunchPads
 - Payloads
 - Cores
- Convert .json to pandas dataframe to work with the data
- Extract necessary information in lists to create a new dataframe of the desired data
- A minimal amount of data is missing

 The missing data, because it is reasonably small, is replaced with a mean of existing data
- https://github.com/Hamstercrumbs/DataScienceCapst one/blob/main/jupyter-labs-spacex-data-collection-api.i pynb

Data Collection - Scraping

- Wikipedia charts contain useful information to use in our project
- Webscraping the information using get requests and beautiful soup

 https://github.com/Hamsterc rumbs/DataScienceCapston e/blob/main/jupyter-labs-we bscraping-bak-2024-06-26-0 3-19-23Z.ipynb

Data Wrangling

- Data is first analyzed
 - calculating number of launches on each site
 - calculating number and occurrences of each orbit
 - calculating the number and occurrence of mission outcome of the orbits
- Adding column for the landing outcome success or failure
- Populating the new column with 0 and 1 for failure and success respectively
- https://github.com/Hamstercrumbs/DataScienceCapstone/blob/main/labs-jupyter-spacex-Data%20wrangling.ipynb

EDA with Data Visualization

- EDA visualization lab
 - scatter plot payload mass flight number
 - scatterplot flight number launch site
 - scatter plot payload mass launch site
 - barchart orbit success rate
 - scatter plot orbit flight number
 - scatter plot payload mass orbit
 - line chart year success rate
 - change categorical data to numerical
 - cast dataframe to float64 to export to csv
- https://github.com/Hamstercrumbs/DataScienceCapstone/blob/main/edadataviz.ipynb

EDA with SQL

- Gather launch site locations
- Display total payload mass carried by boosters launched by NASA
- Display average payload mass carried by booster version F9
- Discover first date of successful landing
- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- List the total number of successful and failure mission outcomes
- List the names of the booster_versions which have carried the maximum payload mass
- Rank the count of landing outcomes between the date 2010-06-04 and 2017-03-20
- https://github.com/Hamstercrumbs/DataScienceCapstone/blob/main/jupyter
 -labs-eda-sql-coursera sqllite.ipynb

Build an Interactive Map with Folium

- Created Folium map of Launch Site Locations
 - Clickable locations and Launch data
 - Distances to major infrastructure and ocean
 - Launch hazard potential
- https://github.com/Hamstercrumbs/DataScienceCapstone/blob/main/lab_jupyter_I aunch site location.ipynb

Build a Dashboard with Plotly Dash

- Interactive dash application
 - Successful launches by Launch Site
 - Launch outcome by Payload weight
- https://github.com/Hamstercrumbs/DataScienceCapstone/blob/main/dasha pp.PNG

Predictive Analysis (Classification)

- Predictive Analysis of the data with Classification Machine Learning
- Tested between multiple classification algorithms
 - Logistic regression, Support Vector Machine, Decision Tree Classifier, K Nearest Neighbors
 - Scored each of them respectively after testing the data
 - Decision Tree Classifier offered the best accuracy among the different algorithms
- https://github.com/Hamstercrumbs/DataScienceCapstone/blob/main/Space X_Machine%20Learning%20Prediction_Part_5.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

- FLight number vs Launch site
 - Class color for success and failure

Payload vs. Launch Site

- Scatter plot of Payload vs. Launch Site
 - Class color for success and failure

Success Rate vs. Orbit Type

 Bar chart of the success rate of each orbit type

Flight Number vs. Orbit Type

- Scatter plot of Flight number vs. Orbit type
 - Class color for success and failure

Payload vs. Orbit Type

- Scatter point of payload vs. orbit type
 - Class color for success and failure

Launch Success Yearly Trend

 Line chart of yearly average success rate

All Launch Site Names

- CCAFS LC-40
- VAFB SLC-4E
- KSC LC-39A
- CCAFS SLC-40

Launch Site Names Begin with 'CCA'

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG	G _	Orbit	Customer	Mission_Outcome	Landing_Outcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit		0	LEO	SpaceX	Success	Failure (parachute)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese		0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	52	25	LEO (ISS)	NASA (COTS)	Success	No attempt
2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	50	00	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	67	77	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

- Calculate the total payload carried by boosters from NASA
- Total Payload Mass 48,213 kg

Average Payload Mass by F9 v1.1

- Calculate the average payload mass carried by booster version F9 v1.1
- Average Payload Mass 2,928.4 kg

First Successful Ground Landing Date

- Find the dates of the first successful landing outcome on ground pad
- December 22, 2015

Successful Drone Ship Landing with Payload between 4000 and 6000

 List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

Booster_Version

- F9 FT B1022
- F9 FT B1026
- F9 FT B1021.2
- F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

Calculate the total number of successful and failure mission outcomes

Mission_Outcome	Count	
Failure (in flight)	1	
Success	98	
Success	1	
Success (payload status unclear)	1	

Boosters Carried Maximum Payload

- · List the names of the booster which have carried the maximum payload mass
 - F9 B5 B1048.4
 - F9 B5 B1049.4
- F9 B5 B1051.3
- F9 B5 B1056.4
- F9 B5 B1048.5
- F9 B5 B1051.4
- F9 B5 B1049.5
- F9 B5 B1060.2
- F9 B5 B1058.3
- F9 B5 B1051.6
- F9 B5 B1060.3
- F9 B5 B1049.7

2015 Launch Records

• List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

Month	Landing_Outcome	Booster_Version	Launch_Site
01	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
04	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

Landing_Outcome	Outcome_Count
No attempt	10
Success (drone ship)	5
Failure (drone ship)	5
Success (ground pad)	3
Controlled (ocean)	3
Uncontrolled (ocean)	2
Failure (parachute)	2
Precluded (drone ship)	1

Plotly Dash interactive dashboard

Piechart of all sites displayed

Plotly Dash interactive dashboard

Most successful launch location

Plotly Dash interactive dashboard

All payload ranges of all launch locations

Decision tree Classifier

 With a test accuracy of 0.83 and an accuracy score of 0.875 the decision tree classifier is the most robust model

Conclusions

- Through the work of SpaceX we can use their collected data to make better future decisions for a more profitable company to compete in the market of space travel
- With the data collected and processed we can make appropriate decisions for the best possibility of successful retrievals
- With a higher success in retrieving rockets for reuse we can save significant amounts of money

Appendix

- For additional information please view the github link below:
 - https://github.com/Hamstercrumbs/Data ScienceCapstone

