Allgemeines

1.1 Potenzgesetze

$$a^{m} \cdot a^{n} = a^{m+n}$$

$$a^{n} \cdot b^{n} = (ab)^{n}$$

$$\frac{a^{n}}{a^{m}} = a^{n-m}$$

$$a^{-n} = \frac{1}{a^{n}}$$

$$\log_{b}(1) = 0$$

1.2 Logarithmus-Gesetze

$$x = log_a(y) \Leftrightarrow y = a^x$$

$$log(x) + log(y) = log(xy)$$

$$log(x) - log(y) = log(\frac{x}{y})$$

$$log_a(x) = \frac{log_b(x)}{log_b(a)}$$

$$log(u^r) = r \cdot ln(u)$$

$$\begin{array}{l} ln(1) = 0 & ln(e^x) = x \\ ln(e) = 1 & e^{ln(x)} = x \end{array}$$

1.3 Komplexe Zahlen

$$(a+bi) \pm (c+di) = (a \pm c) + (c \pm d)i$$

$$(a+bi) \cdot (c+di) = (ac-bd) + (ad+bc)i$$

$$\frac{a+bi}{c+di} = \frac{ac+bd}{c^2+d^2} + \frac{cb-ad}{c^2+d^2}i$$

Integral rechnung

 e^{Foo} u.ä. muss vorher substituiert werden!

$$\begin{array}{lll} \text{Funktion} & \text{Aufleitung} \\ c & c \cdot x \\ x^a, a \neq -1 & \frac{x^{a+1}}{a+1} \\ x^{-1}, x \neq 0 & ln(|x|) \\ e^x & e^x \\ a^x & \frac{a^x}{ln(a)} \\ sin(x) & -cos(x) \\ cos(x) & sin(x) \end{array}$$

2.1 Partielle Integration

Wenn u und v zwei differenzierbare Funktionen sind, dann gilt:

$$\int u' * v = (u * v) - \int u * v'$$

Substitutionsregel $\int f(g(x)) * g'(x) dx = \int f(y) dy$

$$\int \frac{1}{5x - 7} dx = ? \tag{1}$$

$$z = 5x - 7 \tag{2}$$

$$\frac{dz}{dx} = 5 \tag{3}$$

$$\frac{dz}{5} = dx \tag{4}$$

$$\int \frac{1*dz}{z*5} = \frac{1}{5} \int \frac{1}{z} dz \tag{5}$$

$$=\frac{1}{5}ln(z)\tag{6}$$

$$=\frac{1}{5}ln(5x-7)\tag{9}$$

Numerik

3.1 Lagrange'sches Interpolationspolynom

n = Anzahl der Stützstellen

$$p(x) = \sum_{i=0}^{n} y_i \cdot L_i(x)$$

$$L_i(x) = \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$

Newton'sches Interpolationspolynom

$$n =$$
 Anzahl der Stützstellen
 $p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_0)$

Auflösen nach a für die einzelnen Faktoren

$$y_0 = a_0$$

 $y_1 = a_0 + a_1(x_1 - x_0)$
 $y_2 = a_2 + a_2(x_1 - x_2) + a_3(x_1 - x_2)$

Eine symmetrische Matrix ist die Voraus-

3.3 QR-Zerlegung

Seien $A \in \mathbb{R}^{m \times n}$ mit m > n und rq(A) = n. Es seien $a_1, a_2, ..., a_n \in \mathbb{R}^m$ die Spaltenvektoren von A.

Die Vektoren $u_1, u_2, ..., u_n \in \mathbb{R}^m$ sind die Gram-Schmidt orthogonalisierten Vektoren.

$$u_{1} = \frac{1}{|a_{1}|} a_{1}$$

$$u'_{i} = a_{i} - \sum_{j=1}^{i-1} \langle u_{j}, a_{i} \rangle \cdot u_{j}$$

$$u_{i} = \frac{u'_{i}}{|u'_{i}|}$$

$$Q = (u_1, u_2, ..., u_n)$$
$$Q^{-1} \cdot A = R$$

3.4 LU-Zerlegung

Sei $A \in \mathbb{R}^{mxn}$. Wir initialisieren drei Matrizen: $P = L = I_m$ und A = U.

Zeilenvertauschungen werden über die P-Matrix realisiert.

Jede Operation, welche im Gauß gemacht wird, wird auf der L-Matrix mit gedrehtem Vorzeichen gemacht.

Am Ende gilt, dass PLU = A.

3.4.1 Lösung von PLUx = b

Wir berechnen zunächst ein y, welches ein Zwischenergebnis ist. Die Schritte sind sehr einfach, da L und U Dreiecksmatrizen sind.

$$Ly = P^T b \text{ mit } P^T = P^{-1}$$

$$p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_n(x - x_0)x + x_0 - x_1 - x_0$$

3.5 Cholesky-Zerlegung

 $y_2 = a_0 + a_1(x_1 - x_0) + a_2(x_2 - x_0)(x_1 - x_0)$ etzung für eine Cholesky-Zerlegung. Wir

wollen eine Matrix L finden, für die gilt, dass $A = L \cdot L^T$. L sollte dabei eine Dreiecksmatrix sein, damit gilt, dass $L^T = L^{-1}$

TODO: Beispiel einfügen

Differentialgleichungen

4.1 DGL 1. Ordnung

4.1.1 Variation der Konstanten

- Alle Ableitungen y' umformen: $y' = \frac{dy}{dx}$
- Umstellen durch Integration und $e^{\ln(x)}$ -Trick nach y

4.2 Anfangswertproblem

Wir haben unsere aufgelöste DGL: $y = C_1 \cdot ...$ Beim AWP haben wir eine Zusatzbedingung, die ähnlich zu y(0) = 2 ist. AWP löst sich, indem wir einsetzen und zur Konstante umformen.

4.3 DGL 2. Ordnung

Eine DGL kann eine Störfunktion enthalten. Störfunktionen sind für den inhomogenen Teil der Lösung verantwortlich. Jeder Teil, welcher nicht abhängig von $y^{(n)}$ ist, ist eine Störfunktion. $y(t) = y_h(t) + y_n(t)$

4.3.1 Charakteristisches Polynom

Umformen der Ableitungen: $y^{(n)} = \lambda^n$ Anschließend werden die Lösungen für λ bestimmt.

Einfache Nullstelle:

k-fache Nullstelle:

 $r^{k-1}e^{\lambda x}$

Komplexe Nullstelle:

 $(a \pm bi) \rightarrow e^{ax} \cdot sin(b), e^{ax} \cdot cos(b)$

Bsp.: $y_h(t) = C_1 \cdot e^{2x} + C_2 \cdot e^{4x}$ gefunden werden, der zur Lösung führt, sprüngliche DGL einsetzt. Bei inhomogenen DGL muss ein Ansatz wenn man ihn samt Ableitungen in die ur-

TODO: Beispiel