

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN IIC2223 - Teoría de Autómatas y Lenguajes Formales Segundo semestre de 2024

Profesor: Cristian Riveros AYUDANTE: AMARANTA SALAS

Ayudantía 1 Autómatas Finitos Deterministas

Problema 1

Considere $\Sigma = \{0, 1\}$ y construya un DFA para cada uno de los siguientes lenguajes:

•
$$L = \{ w = a_1 a_2 \dots a_{n-1} a_n \mid a_1 a_2 a_3 = 011 \lor a_1 a_2 a_3 = 001 \}$$

•
$$L = \{ w = a_1 a_2 \dots a_{n-1} a_n \mid a_1 a_2 = 01 \lor a_{n-1} a_n = 01 \}$$

•
$$L = \{w = a_1 a_2 \dots a_{n-1} a_n \mid a_{n-1} = a_n \}$$

Problema 2

Considere el conjunto $\{0,1\}^3$ de vectores columna de dimensión 3. Considere también la suma en $\{0,1\}$ dado por la siguiente tabla:

		+
0	0	0
0	1	1
1	0	1
1	1	0

Para dos vectores \vec{v}_1 y \vec{v}_2 en $\{0,1\}^3$ se define $\vec{v}_1 + \vec{v}_2 \in \{0,1\}^3$ como la suma punto a punto de los vectores \vec{v}_1 y \vec{v}_2 .

Por ejemplo, si $\vec{v}_1 = [0\ 0\ 1]^t$ y $\vec{v}_2 = [1\ 0\ 1]^t$ entonces:

$$\vec{v}_1 + \vec{v}_2 = [1 \ 0 \ 0]^t$$

Demuestre que el siguiente lenguaje es regular sobre el alfabeto $\{0,1\}^3$. Muestre un autómata finito determinista y demuestre su correctitud.

$$L = \{ \vec{v}_1 \vec{v}_2 \dots \vec{v}_n \in (\{0, 1\}^3)^* \mid n \ge 1 \land \sum_{i=1}^n \vec{v}_i = [0 \ 0 \ 0]^t \}$$

Problema 3

Sea $\Sigma = \{0, 1, 2\}$. Construya un autómata finito determinista A con alfabeto Σ que acepte todas las palabras que son representaciones ternarias (en base 3) de números que NO son múltiplos de cuatro. Dibuje el autómata y explique cuál es su funcionamiento.

Página 1 de 2 IIC2223 - Ayudantía 1

Problema 4 (propuesto)

Demuestre que los siguientes lenguajes son regulares:

- $\bullet \ L = \{w \in \{0,1\}^* \ | \ |w| \ \bmod 2 \equiv 0 \ \}$
- $\bullet \ L = \{w \in \{0,1\}^* \ | \ |w| \ \text{mod} \ 3 \equiv 0 \ \}$
- $\bullet \ L=\{w\in\{0,1\}^*\ |\ |w|\ \operatorname{mod}\ 6\equiv 0\ \}$

IIC2223 – Ayudantía 1 Página 2 de 2