CHAPTER 14

Respiration in Plants

14.2 Glycolysis

- Conversion of glucose to glucose-6-phosphate, the first irreversible reaction of glycolysis, is catalysed by
 - (a) phosphofructokinase
 - (b) aldolase
 - (c) hexokinase
 - (d) enolase.

(NEET 2019)

- 2. What is the role of NAD⁺ in cellular respiration?
 - (a) It functions as an enzyme.
 - (b) It functions as an electron carrier.
 - (c) It is a nucleotide source for ATP synthesis.
 - (d) It is the final electron acceptor for anaerobic respiration. (NEET 2018)
- In glycolysis, during oxidation electrons are removed by
 - (a) ATP
 - (b) glyceraldehyde-3-phosphate
 - (c) NAD+
 - (d) molecular oxygen.

(2004)

- **4.** At the end of glycolysis, six carbon compound ultimately changes into
 - (a) ethyl alcohol
- (b) acetyl Co-A
- (c) pyruvic acid
- (d) ATP.

(1996)

- The first phase in the breakdown of glucose, in animal cell, is
 - (a) fermentation
- (b) Krebs' cycle
- (c) glycolysis
- (d) ETS.

(1994)

- **6.** End product of glycolysis is
 - (a) acetyl CoA
 - (b) pyruvic acid
 - (c) glucose 1-phosphate
 - (d) fructose 1-phosphate. (1990)

14.3 Fermentation

- 7. In which one of the following processes CO₂ is not released?
 - (a) Aerobic respiration in plants

- (b) Aerobic respiration in animals
- (c) Alcoholic fermentation

(d) Lactate fermentation (2014)

- **8.** The energy-releasing metabolic process in which substrate is oxidised without an external electron acceptor is called
 - (a) glycolysis
 - (b) fermentation
 - (c) aerobic respiration
 - (d) photorespiration. (2010, 2008)
- 9. In alcohol fermentation
 - (a) triose phosphate is the electron donor while acetaldehyde is the electron acceptor
 - (b) triose phosphate is the electron donor while pyruvic acid is the electron acceptor
 - (c) there is no electron donor
 - (d) oxygen is the electron acceptor. (2003)
- 10. The end product of fermentation are
 - (a) O₂ and C₂H₅OH
 - (b) CO₂ and acetaldehyde
 - (c) CO_2 and O_2
 - (d) CO_2 and C_2H_5OH .

(1997)

- **11.** Which of the following products are obtained by anaerobic respiration from yeast?
 - (a) Beer and wine
- (b) Alcohols
- (c) CO₂
- (d) All of these (1996)
- **12.** When yeast ferments glucose, the products obtained are
 - (a) ethanol and CO₂
 - (b) methanol and CO₂
 - (c) ethanol and water
 - (d) water and CO₂.

(1994)

14.4 Aerobic Respiration

- **13.** The number of substrate level phosphorylations in one turn of citric acid cycle is
 - (a) zero
- b) one
- (c) two
- (d) three. (NEET 2020)

- 14. Where is respiratory electron transport system (ETS) located in plants?

 (a) Mitochondrial matrix
 (b) Outer mitochondrial membrane
 (c) Inner mitochondrial membrane
 (d) Intermembrane space (Odisha NEET 2019)
- **15.** Which of these statements is incorrect?
 - (a) Enzymes of TCA cycle are present in mitochondrial matrix.
 - (b) Glycolysis occurs in cytosol.
 - (c) Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.
 - (d) Oxidative phosphorylation takes place in outer mitochondrial membrane. (NEET 2018)
- **16.** Which statement is wrong for Krebs' cycle?
 - (a) There is one point in the cycle where FAD⁺ is reduced to FADH₂.
 - (b) During conversion of succinyl CoA to succinic acid, a molecule of GTP is synthesised.
 - (c) The cycle starts with condensation of acetyl group (acetyl CoA) with pyruvic acid to yield citric acid.
 - (d) There are three points in the cycle where NAD $^+$ is reduced to NADH + H $^+$. (NEET 2017)
- 17. Oxidative phosphorylation is
 - (a) formation of ATP by transfer of phosphate group from a substrate to ADP
 - (b) oxidation of phosphate group in ATP
 - (c) addition of phosphate group to ATP
 - (d) formation of ATP by energy released from electrons removed during substrate oxidation.

(NEET-II 2016)

- **18.** Cytochromes are found in
 - (a) cristae of mitochondria
 - (b) lysosomes
 - (c) matrix of mitochondria
 - (d) outer wall of mitochondria. (2015 Cancelled)
- 19. In mitochondria, protons accumulate in the
 - (a) outer membrane
 - (b) inner membrane
 - (c) intermembrane space
 - (d) matrix. (Mains 2011)
- **20.** All enzymes of TCA cycle are located in the mitochondrial matrix except one which is located in inner mitochondrial membranes in eukaryotes and in cytosol in prokaryotes. This enzyme is
 - (a) isocitrate dehydrogenase
 - (b) malate dehydrogenase
 - (c) succinate dehydrogenase
 - (d) lactate dehydrogenase. (2007)

- **21.** In which one of the following do the two names refer to one and the same thing?
 - (a) Krebs' cycle and Calvin cycle
 - (b) Tricarboxylic acid cycle and citric acid cycle
 - (c) Citric acid cycle and Calvin cycle
 - (d) Tricarboxylic acid cycle and urea cycle (2003)
- **22.** Cytochrome is
 - (a) metallo flavo protein
 - (b) Fe containing porphyrin pigment
 - (c) glycoprotein
 - (d) lipid. (2001)
- 23. Which one of the following statements about cytochrome P_{450} is wrong?
 - (a) It is a coloured cell.
 - (b) It is an enzyme involved in oxidation reactions.
 - (c) It has an important role in metabolism.
 - (d) It contains iron. (1998)
- **24.** Which of the following is the key intermediate compound linking glycolysis to the Krebs' cycle?
 - (a) Malic acid
- (b) Acetyl CoA
- (c) NADH
- (d) ATP (1997)
- **25.** In Krebs' cycle, the FAD precipitates as electron acceptor during the conversion of
 - (a) fumaric acid to malic acid
 - (b) succinic acid to fumaric acid
 - (c) succinyl CoA to succinic acid
 - (d) α-ketoglutarate to succinyl CoA. (1997)
- **26.** The correct sequence of electron acceptor in ATP synthesis is
 - (a) Cyt. *b*, *c*, a_3 , *a*
- (b) Cyt. c, b, a, a_3
- (c) Cyt. a, a, b, c
- (d) Cyt. b, c, a, a₃. (1997)
- **27.** The 1992 Nobel Prize for medicine was awarded to Edmond H. Fischer and Edwin J. Krebs for their work concerning
 - (a) reversible protein phosphorylation as a biological regulation mechanism
 - (b) isolation of the gene for a human disease
 - (c) human genome project
 - (d) drug designing involving inhibition of DNA synthesis of the pathogen. (1994)
- 28. End product of citric acid cycle/Krebs' cycle is
 - (a) citric acid
- (b) lactic acid
- (c) pyruvic acid
- (1) 60 . 11 0
- (d) $CO_2 + H_2O$. (1993)
- **29.** Oxidative phosphorylation is production of
 - (a) ATP in photosynthesis
 - (b) NADPH in photosynthesis
 - (c) ATP in respiration
 - (d) NADH in respiration. (1992)

47.			pirato	ry pat	•		•	•	rmed	1	14.7 Respiratory Quotient									
	(a) pa	nabol	ic		(b) amphibolic (d) catabolic. (2009)						(a)	Respiratory Quotient (RQ) value of tripalmitin is (a) 0.09 (b) 0.9								
48.			not a					tty ac	ids to		(c)	0.7			(d	0.07	7. ((NEE	Т 2019)	
	sugars by a series of reactions called (a) photosynthesis (b) Kreb's cycle (c) glycolysis (d) glyoxylate cycle. (1994)									52.	is									
40				1	olysis, Krebs' cycle and						and the second s							(1992)		
49.	β-oxion metals (a) oxion (c) ci	dation polism xaload itric ad	n of fa n is cetic ac cid	tty a	(b) (d)	succinacety.	ohydr nic aci	ate ar		53. R.Q. is ratio of (a) CO ₂ produced to substrate consumed (b) CO ₂ produced to O ₂ consumed (c) oxygen consumed to water produced (d) oxygen consumed to CO ₂ produced. (1990)										
50.	NAD	P ⁺ is	reduce	d to 1	NADF	H in				54	R.Q	. is								
	(a) H	IMP		(b) Calvin Cycle						(a) C/N (b)						N/C				
	(c) glycolysis				(d) EMP. (1988)						(c)	(c) CO_2/O_2			(d) O_2/CO_2 .				(1988)	
								—(ANSV	VER KI	EY)-									
1.	(c)	2.	(b,c)	3.	(c)	4.	(c)	5.	(c)	6.	(b)	7.	(d)	8.	(b)	9.	(a)	10.	(d)	
11.	(d)	12.	(a)	13.	(b)	14.	(c)	15.	(d)	16.	(c)	17.	(d)	18.	(a)	19.	(c)	20.	(c)	
21.	(b)	22.	(b)	23.	(a)	24.	(b)	25.	(b)	26.	(d)	27.	(a)	28.	(d)	29.	(c)	30.	(c)	
31.	(d)	32.	(d)	33.	(d)	34.	(d)	35.	(d)	36.	(d)	37.	(c)	38.	(c)	39.	(c)	40.	(c)	
41.	(a)	42.	(b)	43.	(b)	44.	(b)	45.	(d)	46.	(b)	47.	(b)	48.	(d)	49.	(d)	50.	(a)	
51.	(c)	52.	(c)	53.	(b)	54.	(c)													