MIE334 - Numerical Methods I

Lecture 29: Gauss Quadrature in Higher

Dimensions (C&C: N/A)

Gauss Quadrature: Review of 1D

I) Transform coordinates from $x \rightarrow r$:

$$x = c_0 + c_1 r = \left(\frac{b+a}{2}\right) + \left(\frac{b-a}{2}\right) r = \left(\frac{1-r}{2}\right) a + \left(\frac{1+r}{2}\right) b$$

II) Use this to transform integral from $x \rightarrow r$:

$$I = \int_{a}^{b} f(x)dx = \left(\frac{b-a}{2}\right) \int_{-1}^{1} f(x(r))dr = \left(\frac{b-a}{2}\right) \int_{-1}^{1} f(r)dr$$

III) Approximate transformed integral using *n* Gauss points:

$$\int_{-1}^{1} f(r)dr \cong \sum_{i=1}^{n} w_i f(r_i)$$

• n determined by polynomial order of f(r)

n	r_i	w_i
1	0	2
2	$\pm 1/\sqrt{3}$	1
3	$0\\ \pm \sqrt{3/5}$	8/9 5/9
:	:	:

Gauss Quadrature: 2D and higher

For 2D (and 3D), simply extend points in all directions for unit square (cube):

$$\int_{-1-1}^{1} \int_{-1-1}^{1} f(r,s) \, ds \, dr \cong \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j f(r_i, s_j)$$

$$\cong \sum_{k=1}^{n^2} w_k f(r_k, s_k)$$

But what if domain is not a unit square or cube?

2D Integral Transformation: The Jacobian

For 1D, we transformed the integral simply via:

$$dx = \left(\frac{dx}{dr}\right)dr$$

For 2D and higher, we need to use the chain rule, because x and y are both functions of r and s:

$$dx = \left(\frac{\partial x}{\partial r}\right)dr + \left(\frac{\partial x}{\partial s}\right)ds$$
$$dy = \left(\frac{\partial y}{\partial r}\right)dr + \left(\frac{\partial y}{\partial s}\right)ds$$

This can be expressed in matrix form as:

• [/] is called the **Jacobian** of the transformation

2D Integral Transformation

To transform a multiple integral:

$$\iint f(x,y)dydx = \int_{-1}^{1} \int_{-1}^{1} f(x(r,s), y(r,s)) |J| ds dr$$

- > | | is the **determinant** of the Jacobian matrix.
- Compare this to 1D:

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} f(x(r)) \left(\frac{b-a}{2}\right) dr$$

- Because the 1D "Jacobian" $\left(\frac{b-a}{2}\right)$ was a **constant**, we could move it outside of the integral:
 - Generally, however, |J| may be a function of r, s
 - Can serve to increase the polynomial order of the integrand!

Quadrilateral Element: Transformation

$$x = c_1 + c_2 r + c_3 s + c_4 r s$$

$$x_{1} = c_{1} + c_{2} + c_{3} + c_{4}$$

$$x_{2} = c_{1} - c_{2} + c_{3} - c_{4}$$

$$x_{3} = c_{1} - c_{2} - c_{3} + c_{4}$$

$$x_{4} = c_{1} + c_{2} - c_{3} - c_{4}$$

$$c_{1} = (x_{1} + x_{2} + x_{3} + x_{4})/4$$

$$c_{2} = (x_{1} - x_{2} - x_{3} + x_{4})/4$$

$$c_{3} = (x_{1} + x_{2} - x_{3} - x_{4})/4$$

$$c_{4} = (x_{1} - x_{2} + x_{3} - x_{4})/4$$

Quadrilateral Element: Shape Functions

$$x = \underbrace{\frac{1}{4}(1+r)(1+s)}_{\phi_{1}(r,s)} x_{1} + \underbrace{\frac{1}{4}(1-r)(1+s)}_{\phi_{2}(r,s)} x_{2} + \underbrace{\frac{1}{4}(1-r)(1-s)}_{\phi_{3}(r,s)} x_{3} + \underbrace{\frac{1}{4}(1+r)(1-s)}_{\phi_{4}(r,s)} x_{4}$$

Like Lagrange polynomials, but in 2D

$$x = \sum_{i=1}^{4} \phi_i(r,s) x_i \qquad y = \sum_{i=1}^{4} \phi_i(r,s) y_i$$

 ϕ_i are called shape functions

Compute average pressure given nodal pressures solved by FEM:

$$\overline{P} = \frac{\iint P(x,y)dydx}{\iint dydx}$$

I) Transform coordinates:

$$x = c_1 + c_2 r + c_3 s + c_4 r s$$

where:

$$c_1 = (x_1 + x_2 + x_3 + x_4)/4 = 1.85$$

 $c_2 = (x_1 - x_2 - x_3 + x_4)/4 = 0.70$
 $c_3 = (x_1 + x_2 - x_3 - x_4)/4 = 0.55$
 $c_4 = (x_1 - x_2 + x_3 - x_4)/4 = -0.10$

i	$x_i[m]$	$y_i[m]$	$P_i[kPa]$
1	3.0	1.6	10
2	1.8	2.3	20
3	0.5	1.4	70
4	2.1	0.5	900

So x-transformation is:

$$x = 1.85 + 0.7r + 0.55s - 0.1rs$$

Repeat for y:

$$y = d_1 + d_2r + d_3s + d_4rs$$

where:

$$d_1 = (y_1 + y_2 + y_3 + y_4)/4 = 1.45$$

$$d_2 = (y_1 - y_2 - y_3 + y_4)/4 = -0.40$$

$$d_3 = (y_1 + y_2 - y_3 - y_4)/4 = 0.50$$

$$d_4 = (y_1 - y_2 + y_3 - y_4)/4 = 0.05$$

So y-transformation is:

$$y = 1.45 - 0.4r + 0.5s + 0.05rs$$

i	$x_i[m]$	$y_i[m]$	$P_i[kPa]$
1	3.0	1.6	10
2	1.8	2.3	20
3	0.5	1.4	70
4	2.1	0.5	900

II) Transform Integral:

$$\int_{-1}^{1} \int_{-1}^{1} P(x(r,s), y(r,s)) |J| ds dr$$

with:

$$x = 1.85 + 0.7r + 0.55s - 0.1rs$$

 $y = 1.45 - 0.4r + 0.5s + 0.05rs$

Construct Jacobian:

$$[J] = \begin{bmatrix} \partial x/\partial r & \partial x/\partial s \\ \partial y/\partial r & \partial y/\partial s \end{bmatrix}$$
$$= \begin{bmatrix} 0.7 - 0.1s & 0.55 - 0.1r \\ -0.4 + 0.05s & 0.5 + 0.05r \end{bmatrix}$$

i	$x_i[m]$	$y_i[m]$	$P_i[kPa]$
1	3.0	1.6	10
2	1.8	2.3	20
3	0.5	1.4	70
4	2.1	0.5	900

• What about P(x, y)?

$$\int_{-1}^{1} \int_{-1}^{1} P(x(r,s), y(r,s)) |J| ds dr$$

 Nodal pressures were actually solved by FEM using an isoparametric element:

$$x = \underbrace{\frac{1}{4}(1+r)(1+s)}_{\phi_{1}(r,s)} x_{1} + \underbrace{\frac{1}{4}(1-r)(1+s)}_{\phi_{2}(r,s)} x_{2} + \underbrace{\frac{1}{4}(1-r)(1-s)}_{\phi_{3}(r,s)} x_{3} + \underbrace{\frac{1}{4}(1+r)(1-s)}_{\phi_{4}(r,s)} x_{4}$$

$$x = \sum_{i=1}^{4} \phi_{i}(r,s)x_{i} \qquad y = \sum_{i=1}^{4} \phi_{i}(r,s)y_{i} \qquad P = \sum_{i=1}^{4} \phi_{i}(r,s)P_{i}$$

■ So just like x and y, can transform $P(x,y) \rightarrow P(r,s)$ via:

$$P = e_1 + e_2 r + e_3 s + e_4 r s$$

Repeat for P:

$$P = e_1 + e_2 r + e_3 s + e_4 r s$$

where:

$$e_1 = (P_1 + P_2 + P_3 + P_4)/4 = 250$$

 $e_2 = (P_1 - P_2 - P_3 + P_4)/4 = 205$
 $e_3 = (P_1 + P_2 - P_3 - P_4)/4 = -235$
 $e_4 = (P_1 - P_2 + P_3 - P_4)/4 = -210$

i	$x_i[m]$	$y_i[m]$	$P_i[kPa]$
1	3.0	1.6	10
2	1.8	2.3	20
3	0.5	1.4	70
4	2.1	0.5	900

Remember our goal:

$$\overline{P} = \frac{\iint P(x,y)dydx}{\iint dydx} = \frac{\int_{-1}^{1} \int_{-1}^{1} P(r,s)|J(r,s)|dsdr}{\int_{-1}^{1} \int_{-1}^{1} |J(r,s)|dsdr}$$

Now we have:

$$P(r,s) = 250 + 205r - 235s - 210rs$$
$$|J(r,s)| = \begin{bmatrix} 0.7 - 0.1s & 0.55 - 0.1r \\ -0.4 + 0.05s & 0.5 + 0.05r \end{bmatrix}$$

- \triangleright Both are linear polynomials in r and s
- Perform Gauss quadrature:

$$\overline{P} \cong \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} P(r_{i}, s_{j}) |J(r_{i}, s_{j})|}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} |J(r_{i}, s_{j})|}$$

What to choose for n?

i	$x_i[m]$	$y_i[m]$	$P_i[kPa]$
1	3.0	1.6	10
2	1.8	2.3	20
3	0.5	1.4	70
4	2.1	0.5	900

$$\overline{P} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j P(r_i, s_j) |J(r_i, s_j)|}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j |J(r_i, s_j)|}$$

Gauss pts.	Numerator w x P x J	Denominator w x J	\overline{P}
1 x 1	570.000000000000	2.280000000000	250.000000000000
2 x 2	592.91666666667	2.28000000000	260.051169590643
3 x 3	592.916666634620	2.28000000001	260.051169576435
	diff, in 11 th sig. digit	diff. in 13 th sig. digit	diff, in 11 th sig, digit

MIE334_Lecture_29_ExQuad.xlsx

2D Quadrature: Quadratic Quadrilateral Element

$$x = c_1 + c_2 r + c_3 s + c_4 r s + c_5 r^2 + c_6 s^2 + c_7 r^2 s + c_8 s^2 r$$

$$\phi_1 = \frac{rs}{4} (r-1)(s-1) \qquad \phi_2 = \frac{s}{2} (s-1)(1-r^2)$$

$$\phi_3 = \frac{rs}{4} (r+1)(s-1) \qquad \phi_4 = \frac{r}{2} (r+1)(1-s^2)$$

$$\phi_5 = \frac{rs}{4} (r+1)(s+1) \qquad \phi_6 = \frac{s}{2} (s+1)(1-r^2)$$

$$\phi_7 = \frac{rs}{4} (r-1)(s+1) \qquad \phi_8 = \frac{r}{2} (r-1)(1-s^2)$$

2D Quadrature: Triangular Element

Triangular Element: Transformation

$$x = x_1 + (x_2 - x_1)r + (x_3 - x_1)s = (1 - r - s)x_1 + (r)x_2 + (s)x_3$$

$$y = y_1 + (y_2 - y_1)r + (y_3 - y_1)s = \underbrace{(1 - r - s)y_1 + (r)y_2 + (s)y_3}_{\phi_1(r,s)} y_3$$

Transform arbitrary triangle to reference coordinates

Triangular Element: Jacobian and Area

$$J = \begin{bmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{bmatrix} \Rightarrow |J| = (x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1)$$

$$|J| \text{ is independent of r,s!}$$

$$A = \iint dy \, dx = |J| \int_{0}^{1} \int_{0}^{1-r} ds \, dr = \frac{1}{2} |J|$$

Triangular Element: Gauss Points

# points, n	Poly. order	Points, x _i	Weights, w _i	
1	Bi-Linear	(1/3,1/3)	1	
3	Bi-Quadratic	(0,1/2) (1/2, 0) (1/2, 1/2)	1/3 1/3 1/3	
3	Bi-Quadratic	(1/6,1/6) (2/3, 1/6) (1/6, 2/3)	1/3 1/3 1/3	
4	Bi-Cubic	(1/3, 1/3) (1/5, 3/5) (1/5, 1/5) (3/5, 1/5)	-27/48 25/48 25/48 25/48	

$$\iint_{\Omega} f(x,y) \, dy \, dx = |J| \sum_{i=1}^{n} w_i f(r_i, s_i)$$

Finite Element Libraries...

