

Congratulations! You passed!

Grade received 100% To pass 80% or higher

5. Which ones of the following statements on Residual Networks are true? (Check all that apply.)

 $\hfill \square$ A ResNet with L lavers would have on the order of L^2 skin connections in total

Go to next item

1/1 point

Deep Convolutional Models

Latest Submission Grade 100%

1.	Which of the following do you typically see in a ConvNet? (Check all that apply.)	1/1 point
	FC layers in the first few layers	
	Multiple CONV layers followed by a POOL layer	
	Correct True, as seen in the case studies.	
	Multiple POOL layers followed by a CONV layer	
	FC layers in the last few layers	
	Correct True, fully-connected layers are often used after flattening a volume to output a set of classes in classification.	
2.	In order to be able to build very deep networks, we usually only use pooling layers to downsize the height/width of the activation volumes while convolutions are used with "valid" padding. Otherwise, we would downsize the input of the model too quickly.	1/1 point
	○ True	
	False	
	✓ Correct Correct!	
3.	Training a deeper network (for example, adding additional layers to the network) allows the network to fit more complex functions and thus almost always results in lower training error. For this question, assume we're referring to "plain" networks.	1/1 point
	○ True	
	False	
	Correct Correct, Resnets are here to help us train very deep neural networks.	
4.	The following equation captures the computation in a ResNet block. What goes into the two blanks above?	1/1 point
	$a^{[l+2]} = g(W^{[l+2]}g(W^{[l+1]}a^{[l]} + b^{[l+1]}) + b^{l+2} + \underline{\hspace{1cm}}) + \underline{\hspace{1cm}}$	
	\bigcirc 0 and $a^{[l]}$, respectively	
	$igcup z^{[l]}$ and $a^{[l]}$, respectively	
	\bigcirc 0 and $z^{[l+1]}$, respectively	
	$lacklacklack a^{[l]}$ and 0, respectively	

	The skip-connections compute a complex non-linear function of the input to pass to a deeper layer in the network.	
	The skip-connection makes it easy for the network to learn an identity mapping between the input and the output within the ResNet block.	
	○ Correct This is true.	
	✓ Using a skip-connection helps the gradient to backpropagate and thus helps you to train deeper networks	
	○ Correct This is true.	
š.	5. Suppose you have an input volume of dimension $n_H imes n_W imes n_C$. Which of the following statements you agree with? (Assume that "1x1 convolution"	nal layer" 1/1 point
	below always uses a stride of 1 and no padding.)	1/1100000
	You can use a 2D pooling layer to reduce n_H, n_W , but not n_C .	
	✓ CorrectThis is correct.	
	$igwedge$ You can use a 1x1 convolutional layer to reduce n_C but not $n_H, n_W.$	
	$igodots$ Correct Yes, a 1x1 convolutional layer with a small number of filters is going to reduce n_C but will keep the dimensions n_H and n_W	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
7.	7. Which ones of the following statements on Inception Networks are true? (Check all that apply.)	1/1 point
	A single inception block allows the network to use a combination of 1x1, 3x3, 5x5 convolutions and pooling.	
	Inception networks incorporate a variety of network architectures (similar to dropout, which randomly chooses a network architecture on each thus has a similar regularizing effect as dropout.	n step) and
	Inception blocks usually use 1x1 convolutions to reduce the input data volume's size before applying 3x3 and 5x5 convolutions.	
	⊘ Correct	
	Making an inception network deeper (by stacking more inception blocks together) <i>might</i> not hurt training set performance.	
3.	3. Which of the following are common reasons for using open-source implementations of ConvNets (both the model and/or weights)? Check all that a	apply. 1/1 point
	✓ Parameters trained for one computer vision task are often useful as pretraining for other computer vision tasks.	
	A model trained for one computer vision task can usually be used to perform data augmentation even for a different computer vision task.	
	It is a convenient way to get working with an implementation of a complex ConvNet architecture.	
	○ Correct True	
	The same techniques for winning computer vision competitions, such as using multiple crops at test time, are widely used in practical deployments production system deployments) of ConvNets.	nents (or
Э.	3. In Depthwise Separable Convolution you:	1 / 1 point
	Perform one step of convolution.	
	\square The final output is of the dimension $n_{out} \times n_{out} \times n_c$ (where n_c is the number of color channels of the input image).	

\square You convolve the input image with a filter of $n_f \times n_f \times n_c$ where n_c acts as the depth of the filter (n_c is the number of color channels of the input image).
The final output is of the dimension $n_{out} \times n_{out} \times n_c^{'}$ (where $n_c^{'}$ is the number of filters used in the previous convolution step).
Perform two steps of convolution.
For the "Depthwise" computations each filter convolves with all of the color channels of the input image.
For the "Depthwise" computations each filter convolves with only one corresponding color channel of the input image.
\checkmark You convolve the input image with n_c number of $n_f \times n_f$ filters (n_c is the number of color channels of the input image).

10. Fill in the missing dimensions shown in the image below (marked W, Y, Z).

1/1 point

MobileNet v2 Bottleneck


```
● W = 5, Y = 30, Z = 20
```

W = 30, Y = 20, Z = 20

W = 5, Y = 20, Z = 5

W = 30, Y = 30, Z = 5

⊘ Correct