Bayes Theorem

Problem Motivation

- How to relate conditional probabilities between two events?
 - \circ What's the relationship between P(A | B) and P(B | A)?
- How to incorporate prior knowledge and belief into interpretation of data?
- → Use Bayes Theorem

Conditional Probability Review

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Bayes Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Relating Two Events

A = it's raining

B = Bob is playing tennis

P(A) = .25

P(B) = .5

P(B | A) = .05

Relating Prior Knowledge/Belief to Data

You have a drawer of 100 coins, 10 of which are biased.

P(heads | fair coin) = .5

 $P(heads \mid biased coin) = .25$

You randomly choose a coin and flip it once. It comes up heads.

- 1. What is P(fair coin | heads)?
- 2. What if you flip it a second time and it comes up heads again?

Relating Prior Knowledge/Belief to Data

After first coin flip, data = [H]

Drior

5.3%

Hynothosis

Biased Coin

Trypottiesis	FIIOI	hyp)	(hyp)	hyp)
Fair Coin	90%	50%	45%	~94.7%

D/data | hyp*D

2.8%

Postorior D/H I

~2.7%

Likelihood D/H L

Biased Coin	10%	25%	2.5%	~5.3%			
After second coin flip, data = [H, H]							
Hypothesis	Prior	Likelihood P(H hyp)	P(data hyp)*P (hyp)	Posterior			
Fair Coin	94.7%	50%	47.4%	~97.3%			

25%

Base Rate Fallacy

A patient tests positive for a disease. What's the probability that the patient has the disease?

 $P(has\ disease) = .01\ (1\%\ of\ population\ has\ disease)$

P(tests positive | has disease) = .99

P(tests negative | no disease) = .99

P(has disease | tests positive) = ?