

Identification bactérienne sur ordinateur

Mener une démarche complète de façon autonome (la pratique) tout en révisant les concepts (la théorie)

Nanou BLACHIER - Alain GAY

rsaralyon Étude des micro-organismes (2a)

Calendrier

Octobre - Cours (6h) + 2 TP (2 x 2h)

Février - Cours (4h)

Mars - 3 TP (2 x 2h)

Mai - 1 TP (2 x 3h) + **Examen**

5 mois = nécessité de révisions

6 TP micro-organismes

ensemencement lecture				ecture
1 Caract. morphol. et culturaux	2h	2h		
2 Métabolisme énergétique	2h	2h	Ċ).
3 Métabolisme glucidique	2h	2h		
4 Métabolisme protidique	2h	2h		
5 Métabolisme lipidique	2h	2h		
6 Identification de 2 espèces	3h	3h		

TP 6 : démarche d'identification 2ème partie : lecture

- Identification de la <u>famille</u> ou du <u>genre</u>
 - Observations (morphologie, métabolismes)
 - Recherche dichotomique (arbre)
 - confirmation de la galerie
- 2. Identification de l'espèce
 - Lecture de la galerie
 - Interprétation des résultats
 - → taxonomie
- 3. Rédaction d'un compte-rendu

Nouveau scénario TP 6

Avant	Après		
6h de face à face, dont	- 2h face à face en salle		
- 3h ensemencement	info: présentation/G		
- 3h lecture	- 4h travail autonome		
laboratoire microbio.	plateforme eCampus		
cultures +/- hétérogènes	photos standardisées		
révision « papier »	révision / lien hypertexte		
manipulations	pas de manipulations		

ressources sur eCampus: PDF PowerPoint Site Web

Fiche de consignes

Identification d'une bactérie

TP sur machine

Consignes

Généralités

L'identification porte sur 4 familles, nommées de F1 à F4 Pour chaque famille, il y a 2 espèces à identifier

Procédure

- 1. imprimer la fiche d'identification des familles Ident_famille.pdf
- pour remplir cette fiche et identifier la famille, utiliser les présentations FamilleF1.pps, FamilleF2.pps, etc., et suivre les instructions pour l'utilisation du site internet indiqué
- 3. Lancer le test correspondant : TestFamilleF1.htm, TestFamilleF2.htm, etc. pour connaître le mot

ressources sur eCampus: PDF PowerPoint Site Web

Fiche de consignes

Photos « famille » (morpho., métab.)

Rappels théoriques et méthodologiques

Fiche lecture « famille »

Arbre identification

Photos « espèce » (galeries API)

Fiche de lecture « espèce »

ogiciel Taxonomie

si <mark>néc</mark>essaire

1 - coloration de GRAM

Observer la couleur des bactéries pour en déduire le type de Gram

Photo prise au microscope oculaire X10 Objectif x 100 avec huile à immersion

vidéo <u>technique de</u> <u>coloration de gram</u>

4 - culture en aérobiose et aspect des colonies sur gélose TSA

Noter le développement éventuel en aérobiose sur milieu ordinaire et le type de colonies

Rappels des différents types de colonies S,R,M

3 types de colonies

Colonies M

M = Mucous (muqueuse)

- grosses colonies muqueuses, bombées,opaques, coulantes

bactéries ayant une capsule

Exemple: Klebsiella pneumoniae

8 - type métabolique

Gélose HL avant incubation

Après incubation 24h 37°C

Indiquer le type métabolique et la mobilité

Rappel sur la mise en évidence des types métaboliques et de la mobilité

Etude du type métabolique

- Définition :
- comportement des bactéries vis à vis du glucose
- Mise en évidence sur un milieu renfermant :
 - du glucose
 - un indicateur de pH
 - un gradient d'oxygène
 - aucun autre accepteur d'électrons : absence de nitrate, sulfate ou thiosulfate ...

Mise en évidence du type métabolique sur Hugh et Leifson

Milieux semi-solides :

- 2 Milieux de Hugh et Leifson
- semi-solide 2g/l + glucose 1%
- bleu de bromothymol
- Création d'un gradient de rH
 - régénération du milieu
 - refroidissement : gélification
- Ensemencement de 2 milieux
 - par piqûre centrale au fil droit
 - couvrir 1 tube d'huile de paraffine

Exemples de types métaboliques

ressources sur eCampus: PDF PowerPoint Site Web

Fiche de consignes

Photos « famille » (morpho., métab.)

Fiche lecture « famille »

Arbre identification

Photos « espèce » (galeries API)

Fiche de lecture « espèce »

ogiciel Taxonomie

Famille F____

ETAPE	CRITERE	CHOIX	LECTURE
1	GRAM	+/-	
2	Forme et arrangement	bacilles ou colibacilles / coques	
3	Culture sur milieu ordinaire	si développement : - type de trouble - voile ou dépôt	
4	Culture en aérobiose	si développement : type colonie S/R/M	
5	Oxydase	oui / non	
б	Catalase (oui / non)	oui / non	
7	Type respiratoire	AS / AAF / ANS / micro	
8	Type métabolique	SO/SF/OF/I	

Identification

Famille	
Genre	

ressources sur eCampus: PDF PowerPoint Site Web

Fiche de consignes

Photos « famille » (morpho., métab.)

Fiche lecture « famille »

Arbre identification

Photos « espèce » (galeries API)

Fiche de lecture « espèce »

ogiciel Taxonomie

ressources sur eCampus: PDF PowerPoint Site Web

Fiche de consignes

Photos « famille » (morpho., métab.)

Fiche lecture « famille »

Arbre identification

Photos « espèce » (galeries API)

Fiche de lecture « espèce »

Logiciel Taxonomie

si nécessaire

<u>Aide à</u> <u>l'interprétation</u>

Résultats de la galerie miniaturisée Famille 1 - Espèce 1

OX NO2 +
N2 MOB +
McC +
OF/O +
OF/F +
Aide en cas de
doute :
ex de résultats
possibles

- ·Imprimez la fiche de lecture API 20 E
- ·traduisez les résultats de chaque caractère par + ou -
- remplissez le bulletin correspondant
- ·utilisez le logiciel taxonomie pour identifier l'espèce et imprimez le résultat donné par le logiciel

API 20 E

GLU → ARA

+

+/-

_

Confirmation sur galerie classique

Kligler

Simmons

Lysine fer

Lire: glucose , gaz lactose

H2S

citrate

LDC, LDA

Caractères complémentaires

gélose lactosée au désoxycholate et bromocrésol pourpre

Bouillon lactosé bilié au vert brillant avec cloche à 44°C

Gélose au BCIG 44°C

Lire: lactose , gaz résistance au désoxycholate, à la bile et au vert brillant production de béta-glucuronidase

ressources sur eCampus: PDF PowerPoint Site Web

Fiche de consignes

Photos « famille » (morpho., métab.)

Fiche lecture « famille »

Arbre identification

Photos « espèce » (galeries API)

Fiche de lecture « espèce »

ogiciel Taxonomie

Galerie API 20 E

TEST SUBSTRAT		REACTION	REST	LECTURE	
IESI SUE	SUBSTRAI	ENZIME	NEGATIF	POSITIF	LECTURE
ONPG	ortho-nitro-phenyl- galactoside	beta-galactosidase	incolore	jaune (1)	
<u>ADH</u>	arginine	arginine dihydrolase	jaune	rouge/ orangé (2)	
<u>LDC</u>	lysine	lysine décarboxylase	jaune	orangé	
<u>odc</u>	omiyhine	ornithine décarboxilase	jaune	rouge/ orangé (2)	
CIT	citrate de sodium	utilisation du citrate	vert pâle/ jaune	bleu vert/ vert (3)	
<u>H2S</u>	thiosulfate de sodium	production d'H ₂ S	incolore/grisâtre	dépôt noir/ fin liseré	
<u>URE</u>	urée	uréase	jaune	rouge/orangé	
TDA	terretoeloes	terretorioses degeninoses	TDA / immédiat		
IDA	TDA tryptophane	tryptophane desaminase	jaune	marron foncé	
			JAMES / immédiat ou IND / 2 mn		
			JAMES	JAMES	
IND	tryptophane	production d'indole	incolore	rose	
IND approp	production a made	Production a maste	vert pale-jaune		
	<u> </u>	1	IND	IND	

Identification

Famille	
Genre	
Espèce	

ressources sur eCampus: PDF PowerPoint Site Web

Fiche de consignes

Photos « famille » (morpho., métab.)

Fiche lecture « famille »

Arbre identification

Photos « espèce » (galeries API)

Fiche de lecture « espèce »

Logiciel Taxonomie

Bénéfices escomptés

- meilleure <u>articulation</u> entre <u>pratique</u> (démarche d'identification) et <u>théorie</u> (révision des concepts et de la méthodologie)
- tout le monde travaille sur des situations « typiques » conformes (mêmes supports visuels)
- réduction du face a face (66%) et augmentation de l'<u>autonomie</u> et de la <u>responsabilisation</u> des étudiants

Autres conclusions

Limites:

- Moindre maîtrise des techniques de manipulation (ensemencements, tests)
- Dépendance vis à vis du dispositif informatique (salle informatique, imprimante, plateforme, accès web)

Perspectives d'évolution :

- Constitution d'une base de données sur notre collection de souches
- Tests d'auto-évaluation complémentaires