MATH 317 — HOMEWORK 2 — Due date: 17th July - 25 Marks

- Write your name, student number, and signature below.
- Write your answers to each question in the spaces provided. Submit your answers in Canvas on the due date (do not submit any additional pages).

Name: Mercury Mandoe Student#: 85554505

Section: 951 A. 34.

- 1. 5 marks Consider the curve C parametrized by $\mathbf{r}(t) = \langle t, 4sin(2t), 4cos(2t) \rangle$ for $t \in [0, 2\pi]$.
 - (a) Determine the arc length function s(t) associated with $\mathbf{r}(t)$.
 - (b) Find the length of C.

Solution:

(a) S(E) =
$$\int_0^t ||r'(u)|| du = \int_0^t \sqrt{65} du = \sqrt{65} t$$

(b)
$$S(2\pi) = 2\sqrt{65}\pi$$

2. 4 marks Calculate $\int_C (x+y^2) ds$ where C is the curve parameterized as $\mathbf{r}(t) = \langle t, \sin t, \cos t \rangle$ for $t \in [0, \pi]$.

Solution:

$$F(x_{1},y) = x_{1}+y^{2}, F(x_{1},x_{2},y_{1},x_{2}) = t+\sin^{2}t.$$

$$F'(t) = \langle 1, \cos t, -\sin t \rangle, \quad ||r'(t)|| = \sqrt{2}$$

$$\int_{c}^{\pi} (x_{1}+y^{2}) dx = \int_{0}^{\pi} \sqrt{2} \cdot (t+\sin^{2}t) dt$$

$$= \sqrt{2} \cdot \int_{0}^{\pi} (t+\frac{1-\cos 2t}{2}) dt$$

$$= \sqrt{2} \cdot \left[\frac{1}{2}t^{2} + \frac{1}{2}t - \frac{1}{4} \cdot \sin 2t \right]_{0}^{\pi}$$

$$= \frac{\sqrt{2}\pi}{2} (\pi + 1)_{0} \qquad \therefore \frac{\sqrt{2}\pi}{2} (\pi + 1)$$

$$\int_C e^y \, dx + \ln(x) \, dy$$

where C is the line segment from the point (1,1) to (4,2).

Solution:

C:
$$t \cdot (3)11 + (1)17$$
; $t \in [0,1] \longrightarrow (3)t + (1)17$; $t \in$

4. 4 marks .

For $\mathbf{F} = \langle 3xy, x^3 + 4y \rangle$: Determine whether each of the following vectors is conservative. If so find the potential $\phi(x, y)$

(a)
$$\mathbf{F} = \langle 3xy, x^3 + 4y \rangle$$

(b)
$$\mathbf{F} = \langle ye^{xy}, e^{xy} + y^2 \rangle$$

Solution:

... Not conservative.

fly) should not have at 1-term. ... Not conservative.

5. 4 marks Consider the vector field $\mathbf{F}(x,y) = \langle x,y \rangle$. Let C be the curve parametrized by $\mathbf{r}(t) = \langle \cos t, \sin t \rangle$ for t in the interval $[0, 2\pi]$. Calculate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ using only the definition of line integrals, without assuming any facts about conservative vector fields.

Solution:

$$\int_{c}^{c} F \cdot dr = \int_{0}^{2\pi} \left\langle \cos t, \sin t \right\rangle \cdot \left\langle -\sin t, \cos t \right\rangle dt = \int_{0}^{2\pi} 0 dt = 0$$

÷Ο

- 6. 4 marks Given that $\mathbf{F} = \langle x^2y^3, x^3y^2 \rangle$ and $C : \mathbf{r}(t) = \langle t^3 2t, t^3 + 2t \rangle$ for t in the interval [0,1].
 - (a) Find a function f such that $\mathbf{F} = \nabla f$.
 - (b) Hence, evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the curve C

Solution:

(a)
$$f_x = x^2y^3 \longrightarrow f = \frac{1}{3}x^3y^3 + g(y) \longrightarrow f_y = x^3y^2 + g'(y) = x^3y^2$$
. There, $g(y) = c$, $c \in \mathbb{R}$.

$$\therefore f = \frac{1}{3}x^3y^3 + c$$
, $c \in \mathbb{R}$.

. -9

(b)
$$\int_{c} F \cdot dr = \int_{c} \nabla f \cdot dr = f(x(0), y(0)) - f(x(0), y(0))$$

= $f(-1, 3) - f(0, 0) = (\frac{1}{8}(-1)(20) + C) - (0 + C) = -9$