§1. Уравнения и графики гармонических колебаний

Ожидаемый результат

Прочитав параграф, вы сможете: исследовать гармонические колебания: x(t), v(t), a(t)

экспериментально, аналитически и графически.

I. Условия возникновения свободных гармонических колебаний

Тело совершает свободные гармонические колебания в том случае, когда при его смещении от положения равновесия возникает равнодействующая сила, пропорциональная смещению и направленная к положению равновесия.

Положением равновесия называют положение тела, в котором векторная сумма сил, действующих на тело равна нулю.

На тело пружинного маятника, выведенного из состояния равновесия, действует сила упругости, которая удовлетворяет условиям возникновения гармонических колебаний *(рис. 1)*:

$$F_{x} = -kx. (1)$$

Задание 1

- 1. Приведите примеры тел, совершающих колебательное движение.
- 2. Из приведенных ниже примеров выберите тела, совершающие свободные колебания: поршень в цилиндре ДВС, маятник механических часов, ветка дерева под порывистым ветром, детские качели, руки человека при ходьбе.

Задание 2

Колебания математического маятника происходят под действием равнодействующей сил, которая пропорциональна смещению и направлена к положению равновесия (puc. 2): $F_{_{\!R}}$ = -kx. Используя рисунок 2, докажите, что коэффициент пропорциональности равнодействующей силы, действующей на математический маятник, и смещением равен: $k = \frac{mg}{l}$. (2)

Рис. 1. Сила, вызывающая колебания пружинного маятник

Рис. 2. Силы, вызывающие колебания математического маятника