

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA DISCIPLINA: LABORATÓRIO DE ARQUITETURA DE SISTEMAS DIGITAIS

DOCUMENTAÇÃO DAS NOVAS FUNCIONALIDADES

Professor: Rafael Bezerra Correia Lima Discente: Luiz Felipe Barros Alves

> Campina Grande – PB 11 de novembro de 2023

Sumário

1 Novas Instruções			2	
2	Novas funcionalidades			
	2.1	Alterações na Unidade de Controle	3	
	2.2	Função <i>OR</i>	3	
	2.3	Novo <i>Mux_jr</i>	3	
	2.4	Nova entrada no MuxImmSrc	4	
	2.5	Novo MuxResSrc	4	
3	Nov	o datapath	5	

1 Novas Instruções

Novas instruções foram implementadas no processador. A Tabela 1 apresenta a descrição de cada instrução.

Tipo	Instrução	Descrição
	xor	Realiza a operação xor bit a bit entre dois registradores
R	mul	Realiza a multiplicação entre dois registradores
	divisão	Executa a divisão inteira entre dois registradores
	andi	Operação and bit a bit entre um registrador e um imediato
	ori	Operação or bit a bit entre um registrador e um imediato
I	xori	Realiza a xor bit a bit entre um registrador e um imediato
	slti	Verifica se o valor de um registrador é menor que um imediato
	jalr	Realiza um salto para um endereço especificado e armazena o endereço de retorno em um registrador destino
В	bne	Executa um desvio se os registradores forem diferentes
J	jal	Realiza um salto incondicional para um endereço especificado e armazena o endereço de retorno no registrador destino.

Tabela 1: Tabela de novas instruções

2 Novas funcionalidades

Para implementar novas funcionalidades ao processador RISC-V desenvolvido ao longo do semestre no laboratório, necessitou-se de mudanças no *datapath* do processador. As principais modificações são apresentadas e discutidas a seguir.

2.1 Alterações na Unidade de Controle

A Unidade de Controle sofreu mudanças significativas a fim de que o processador suportasse as novas instruções implementadas. A Figura 1 mostra o processador após as alterações.

Figura 1: Unidade de Controle

O barramento de saída ULAControl foi ajustado para 4 bits, pois dado a implementação de novas instruções a ULA deve realizar novas operações lógicas. Portanto, necessita-se de um barramento com mais bits para selecionar todas as novas operações possíveis. Outro barramento modificado foi o ResultSrc pois o MuxResSrc passou a ser 4x1 para comportar as funções jal e jalr.

Para o processador comportar as instruções *jal* e *jalr* foi preciso implementar duas novas saídas de 1 bit na Unidade de Controle, as saídas *Jump* e *Jr*.

2.2 Função OR

Por meio da Figura 1 nota-se que a saída da porta lógica *AND* é conectada a uma porta *OR* para ser possível a instrução *jal*. Assim quando uma instrução *beq* ou *jal* forem passadas para a CPU o *Mux_jal_beq* de seleção terá a segunda entrada selecionada.

2.3 Novo Mux_jr

Quando a instrução jalr é passada para o processador o próximo PC deve ser igual ao resultado de saída da ULA, logo, um $mux\ 2x1$ seleciona se o próximo PC será referente a saída da ULA. O pino de seleção desse mux é conectado a nova saída Jr da Unidade de Controle. A Figura 2 apresenta o novo mux.

Figura 2: Novo mux

2.4 Nova entrada no MuxImmSrc

Para que a instrução *jal* fosse implementada foi necessário acrescentar mais uma nova entrada ao *MuxImmSrc*. Essa modificação ocorre porque o imediato da função *jal* é diferente dos demais imediatos das funções implementadas, seu imediato tem o formato: *w_inst[31]*, *w_inst[19:12]*, *w_inst[20]*, *w_inst[30:21]*, *1'b0*. A Figura 3 apresentada o *mux* modificado.

Figura 3: Novo MuxImmSrc

2.5 Novo MuxResSrc

Como as funções jal e jalr guardam em um registrador de destino o valor do próximo PC o MuxResSrc deve possuir mais uma entrada para selecionar se o resultado a ser gravado em um registrador será ULAResult, RegData da entrada paralela ou PC+4. O pino de seleção é conectado à saída modificada ResultSrc da Unidade de Controle. A Figura 4 mostra o novo mux.

Figura 4: Novo MuxResSrc

3 Novo datapath

