Un modèle pour les nids d'oiseaux

CARVAILLO, CÔME, PRALON

Soutenance de projet de Master 1

3 juin 2022

Introduction

Introduction

Je bite dans vos culs, je bite dans vos bouches!!!

Définition et hypothèses

Loi de mélange

Si l'on se donne J densités $f_1(x), \dots, f_J(x)$, alors toute variable aléatoire X dont la densité f s'exprime, pour tout $x \in \mathbb{R}$, sous la forme

$$f(x) := \sum_{j=1}^{J} \alpha_j f_j(x)$$

οù

$$\alpha_j \in \mathbb{R}_+^*$$
 et $\sum_{j=1}^J \alpha_j = 1$

suit une loi de mélange continue.

Définition et hypothèses

Une histoire de variables

Nous introduisons les deux variables aléatoires (V.A.) suivantes :

- la V.A. X, modélisant le volume des nids, de densité f
- la V.A. discrète $Z \in [1, J]$, représentant l'espèce d'oiseau

Hypothèse 1

X conditionnellement à (Z=j) suit une loi normale $\mathcal{N}(\mu_j, v_j)$

Définition et hypothèses

Hypothèse 2 (Existence)

Soit

$$\Theta := \{\theta = (\alpha_j, \mu_j, \mathsf{v}_j)_{1 \le j \le J} \mid \alpha_j > 0 \ \forall j \in \llbracket 1, J \rrbracket \ \text{et} \ \sum_{j=1}^J \alpha_j = 1 \}$$

Soit X_1, \dots, X_n un échantillon de même loi que X.

On supposera qu'il existe un $\theta \in \Theta$ tel que les données récoltées soient la réalisation du précédent échantillon.

Une histoire de densités

• Densité de la loi X conditionnellement à (Z = j) :

$$f(x|Z=j)=\gamma_{\mu_i,\nu_i}(x)$$

• Densité de la loi de X :

$$f_{\theta}(x) = \sum_{j=1}^{J} \alpha_j \gamma_{\mu_j, \nu_j}(x)$$

• Probabilité de la loi de Z conditionnellement à (X = x) :

$$\mathbb{P}_{\theta}(Z = j | X = x) = \frac{\gamma_{\mu_j, v_j} \times \alpha_j}{f_{\theta}(x)}$$

Une approche idéaliste

- Nous observons et le volume et l'espèce d'oiseau
- Log-vraisemblance du modèle :

$$\mathcal{L}_{\theta}(X_{1}, \cdots, X_{n}, Z_{1}, \cdots, Z_{n})$$

$$= \ln \left(\prod_{i=1}^{n} h_{\theta}(X_{i}, Z_{i}) \right)$$

$$= \sum_{j=1}^{J} \#A_{j} \ln(\alpha_{j}) + \sum_{j=1}^{J} \sum_{i \in A_{j}} \ln(\gamma_{\mu_{j}, \nu_{j}}(X_{i}))$$

οù

$$A_i := \{i \in \llbracket 1, n \rrbracket \text{ tels que } Z_i = j\}$$

Une approche idéaliste

Estimateurs du maximum de vraisemblance (EMV)

$$\widehat{\alpha_j} = \frac{\#A_j}{n}$$

$$\widehat{\mu_j} = \frac{\sum_{i \in A_j} X_i}{\#A_j}$$

$$\widehat{v_j} = \frac{\sum_{i \in A_j} (X_i - \widehat{\mu_j})^2}{\#A_j}$$

Une approche réaliste

- Nous observons seulement le volume des nids
- Log-vraisemblance du modèle :

$$\mathcal{L}_{obs}(\theta, X_1, \cdots, X_n)$$

$$= \ln \left(\prod_{i=1}^n f_{\theta}(X_i) \right)$$

$$= \sum_{i=1}^n \ln \left(\sum_{j=1}^J \alpha_j \gamma_{\mu_j, \nu_j}(X_i) \right)$$

Log-vraisemblance conditionnelle

- L'existence d'une expression analytique des EMV n'est pas assurée
- Nécessité de construire une méthode permettant d'approcher les valeurs des estimateurs
- Nous définissons ainsi la log-vraisemblance conditionnelle comme :

$$\mathcal{L}_c(\theta, \tilde{\theta}, X_1, \cdots, X_n)$$

$$= \mathbb{E}_{\tilde{\theta}}[\mathcal{L}_{\theta}(X_1, \cdots, X_n, Z_1, \cdots, Z_n) | X_1, \cdots, X_n]$$

Log-vraisemblance conditionnelle

Estimateurs du maximums de vraisemblance

$$\widehat{\alpha_j} = \frac{1}{n} \sum_{i=1}^n \mathbb{P}_{\widetilde{\theta}}(Z = j | X = X_i)$$

$$\widehat{\mu_j} = \frac{\sum_{i=1}^n X_i \times \mathbb{P}_{\widetilde{\theta}}(Z = j | X = X_i)}{\sum_{i=1}^n \mathbb{P}_{\widetilde{\theta}}(Z = j | X = X_i)}$$

$$\widehat{v_j} = \frac{\sum_{i=1}^n (X_i - \widehat{\mu_j})^2 \times \mathbb{P}_{\widetilde{\theta}}(Z = j | X = X_i)}{\sum_{i=1}^n \mathbb{P}_{\widetilde{\theta}}(Z = j | X = X_i)}$$

L'algorithme EM

Pseudo code de l'algorithme EM

Algorithm 1 L'algorithme EM (Dempster et al., 1977).

Entrée(s): $\tilde{\theta}_0 \in \Theta$, un jeu de données $X_1 \cdots X_n$, $K \in \mathbb{N}$;

- 1: pour k allant de 1 à K faire
- 2: **ETAPE E** : Calculer la probabilité $\mathbb{P}_{\tilde{\theta}_{k-1}}(Z=j|X=X_i) = \frac{\alpha_j \times \gamma_{\mu_j, j_v}}{\sum\limits_{i=1}^{J} \alpha_k \times \gamma_{\mu_k, v_k}}$, $\forall i \in \llbracket 1, n \rrbracket$
- 3: **ETAPE M**: Calculer $\tilde{\theta}_k = \underset{\theta = (\alpha_j, \mu_j, v_j)_{j \in [1,J]}}{\operatorname{argmax}} \mathbb{P}_{\tilde{\theta}_{k-1}}(Z = j | X = X_i);$
- 4: fin du pour
- 5: **retourner** $\tilde{\theta}_K$;

Les étapes de l'algorithme EM

L'étape E (Expectation)

Consiste à déterminer $\mathbb{P}_{\tilde{\theta}}(Z=j|X=X_i)$ à l'aide de la formule suivante :

$$\mathbb{P}_{\tilde{\theta}}(Z=j|X=X_i) = \frac{\alpha_j \times \gamma_{\mu_j,\nu_j}}{\sum_{k=1}^{J} \alpha_k \times \gamma_{\mu_k,\nu_k}}$$

Les étapes de l'algorithme EM

L'étape M (Maximization)

Consiste à déterminer les EMV $(\widehat{\alpha_j}, \widehat{\mu_j}, \widehat{\sigma_j})$ de la log-vraisemblance conditionnelle via les formules suivantes :

$$\widehat{\alpha_j} = \frac{1}{n} \sum_{i=1}^n \mathbb{P}_{\tilde{\theta}}(Z = j | X = X_i)$$

$$\widehat{\mu_j} = \frac{\sum_{i=1}^n X_i \mathbb{P}_{\tilde{\theta}}(Z = j | X = X_i)}{\sum_{i=1}^n \mathbb{P}_{\tilde{\theta}}(Z = j | X = X_i)}$$

$$\widehat{v_j} = \frac{\sum_{i=1}^n (X_i - \widehat{\mu_j})^2 \mathbb{P}_{\tilde{\theta}}(Z = j | X = X_i)}{\sum_{i=1}^n \mathbb{P}_{\tilde{\theta}}(Z = j | X = X_i)}$$

Un théorème de croissance

Théorème

Soit $(\theta_k)_{k \in [\![1,K]\!]}$ la suite de paramètres construite à l'aide de l'algorithme EM.

La log-vraisemblance \mathcal{L}_{obs} des observations vérifie

$$\mathcal{L}_{obs}(\theta_{k+1}, X_1, \cdots, X_n) \geq \mathcal{L}_{obs}(\theta_k, X_1, \cdots, X_n)$$

• Nous cherchons donc à montrer que

$$\mathcal{L}_{\textit{obs}}(\theta_{k+1}, X_1, \cdots, X_n) - \mathcal{L}_{\textit{obs}}(\theta_k, X_1, \cdots, X_n) \geq 0$$

• Réécriture :

$$\mathcal{L}_c(\theta_{k+1}, \theta_k, X_1, \cdots, X_n) = \mathcal{L}_{obs}(\theta_{k+1}, X_1, \cdots, X_n) + \kappa_{\theta_{k+1}, \theta_k}$$

Avec

$$\kappa_{\theta_{k+1},\theta_k} = \sum_{i=1}^n \sum_{j=1}^J ln(\mathbb{P}_{\theta_{k+1}}(Z=j|X=X_i)) \times \mathbb{P}_{\theta_k}(Z=j|X=X_i)$$

Ainsi,

$$\mathcal{L}_{obs}(\theta_{k+1}, X_1, \cdots, X_n) - \mathcal{L}_{obs}(\theta_k, X_1, \cdots, X_n)$$

$$= \mathcal{L}_c(\theta_{k+1}, \theta_k, X_1, \cdots, X_n) - \kappa_{\theta_{k+1}, \theta_k} - \mathcal{L}_c(\theta_k, \theta_k, X_1, \cdots, X_n) + \kappa_{\theta_k, \theta_k}$$

• A l'étape M de l'algorithme, la quantité

$$\mathcal{L}_c(\theta, \theta_k, X_1, \cdots, X_n)$$

est maximisée en θ , de maximum θ_{k+1}

Donc,

$$\mathcal{L}_c(\theta_{k+1}, \theta_k, X_1, \cdots, X_n) - \mathcal{L}_c(\theta_k, \theta_k, X_1, \cdots, X_n) \geq 0$$

• Il reste donc à prouver que

$$\kappa_{\theta_k,\theta_k}, -\kappa_{\theta_{k+1},\theta_k} \geq 0$$

• On montre que, après quelques fastidieux calculs,

$$\kappa_{\theta_k,\theta_k}, -\kappa_{\theta_{k+1},\theta_k}$$

$$\geq -n \times \ln \left(\sum_{i=1}^n \sum_{j=1}^J \mathbb{P}_{\theta_{k+1}} (Z = j | X = X_i) \times \frac{1}{n} \right)$$

$$= -n \times \ln(1)$$

$$= 0$$

Cas des variables à "fortes séparations"

(b) Boxplot des erreurs pour μ_1 , μ_2 et μ_3

Cas des variables à "faibles séparations"

(d) Boxplot des erreurs pour μ_1 , μ_2 et μ_3

(c) Boxplot des erreurs

Préambule

	Female	Total mass	Cup diameter	Cup diameter	Nest diameter	Nest diameter	Upper wall	Base	Cup depth	Nest Height	Volume (cm ³)
	Body	of nest (g)	parallel to	perpendicular	parallel to	perpendicular	thickness	Thickness	(mm)	(mm)	
	Mass (g)		long axis	to long axis	long axis	to long axis	(mm)	(mm)			
			(mm)	(mm)	(mm)	(mm)					
Fringillidae											
European Goldfinch (Carduelis Carduelis) [10]	16.4	8.3 ± 2.4	62.8 ± 12.1	54.8 ± 7.4	91.4 ± 9.3	77.8 ± 7.9	12.8 ± 3.3	15.7 ± 4.3	26.0 ± 5.5	41.6 ± 7.4	38.0 ± 9.1
Common Linnet (Linaria cannabina) [11]	18.0	18.9 ± 5.4	74.7 ± 6.3	59.9 ± 8.6	107.9 ± 8.8	95.1 ± 10.2	16.9 ± 4.9	24.5 ± 8.9	30.6 ± 9.8	55.1 ± 9.2	60.9 ± 20.8
Common Chaffinch (Fringilla coelebs) [11]	21.5	14.5 ± 2.9	63.3 ± 8.1	50.8 ± 8.0	98.7 ± 10.9	90.3 ± 9.8	18.5 ± 3.6	23.6 ± 7.6	34.3 ± 7.8	58.0 ± 7.3	58.3 ± 15.0
European Greenfinch (Chloris chloris) [5]	25.9	22.4 ± 6.2	75.6 ± 7.8	53.9 ± 11.8	128.6 ± 13.7	99.7 ± 16.2	24.9 ± 7.9	29.4 ± 6.0	35.4 ± 5.7	64.9 ± 9.4	74.5 ± 12.2
Eurasian Bullfinch (Pyrrhula pyrrhula) [17]	27.3	12.1 ± 4.6	80.8 ± 12.1	66.4 ± 8.1	129.7 ± 23.4	117.5 ± 19.6	24.8 ± 10.9	24.2 ± 10.7	22.6 ± 4.5	46.8 ± 11.3	45.0 ± 3.8
Hawfinch (Coccothraustes coccothraustes) [4]	52.9	27.4 ± 7.3	102.2 ± 17.9	78.8 ± 25.2	153.4 ± 19.1	131.3 ± 27.1	25.4 ± 5.9	23.3 ± 4.9	31.4 ± 10.9	54.7 ± 11.5	71.6 ± 12.9

Figure – Caractéristiques des nids

Hypothèses, outils et démarche

Hypothèses

- la distribution du volume des nids est gaussienne
- le nombre d'espèce J est connu

Outils

- fonction simulation
- fonction algo_EM

Démarche

- Génération de l'échantillon
- Représentation graphique de la densité de l'échantillon
- Détermination des paramètres initiaux
- Execution de l'algorithme EM

Première exploration des données

Figure - Densité du mélange

3 juin 2022

Heuristique graphique

Figure – Détermination des valeurs initiales

Heuristique graphique

Paramètres initiaux

- \bullet $\mu_{1_{init}} = 40$ et $\mu_{2_{init}} = 320$
- \bullet $\sigma_{1_{init}} = 80$ et $\sigma_{2_{init}} = 140$
- $\alpha_{1_{init}} = 0.5 \text{ et } \alpha_{2_{init}} = 0.5$

Résultats

bird_names alpha sigma European Goldfinch 0.2910832 37.76285 9.512478 Ring Ouzel 0.7089168 302.51936 125.951894

Valeurs théoriques

bird_names2 proportion_alpha mean_volume sd_volume 1 European Goldfinch 0.2878713 38.0 9.1 12 Ring Ouzel 0.7121287 298.6 125.1

3 juin 2022

Détermination automatique

Comme dans le rapport ou fonction de Nicolas??

Conclusion

Conclusion

J'encule vos grosses marraines bien profond!!!

