Ćwiczenia z ANALIZY NUMERYCZNEJ (L)

Lista nr 11

18 grudnia 2019 r.

Zajęcia 14 stycznia 2020 r. Zaliczenie listy **od 4 pkt.**

- L11.1. 1 punkt Uzasadnij proces ortogonalizacji Grama-Schmidta.
- **L11.2.** I punkt Niech P_k ($1 \le k \le N$) będzie k-tym wielomianem ortogonalnym względem iloczynu skalarnego $(\cdot,\cdot)_N$. Pokaż, że dla dowolnego wielomianu $w \in \Pi_{k-1}$ jest $(w,P_k)_N=0$
- **L11.3.** 2 punkty Niech $\{P_k\}$ będzie ciągiem wielomianów ortogonalnych względem iloczynu skalarnego $(f,g)_N := \sum_{k=0}^N f(x_k)g(x_k)$, gdzie x_0,x_1,\ldots,x_N są parami różnymi punktami. Ustalmy $x \in \mathbb{R}$ oraz liczbę naturalną n < N. Ile i jakich operacji arytmetycznych należy wykonać, aby obliczyć wartości $P_0(x), P_1(x), \ldots, P_n(x)$? Uwzględnij wszystkie szczegóły obliczeń.
- **L11.4.** 1 punkt Niech $\{P_k\}$ będzie ciągiem wielomianów określonych w następujący sposób:

$$\begin{cases}
P_0(x) = 1, & P_1(x) = x - c_1, \\
P_k(x) = (x - c_k)P_{k-1}(x) - d_k P_{k-2}(x) & (k = 2, 3, ...),
\end{cases}$$

gdzie c_k , d_k są danymi stałymi. Udowodnij, że następujący algorytm Clenshawa:

$$\begin{split} B_{m+2} &:= B_{m+1} := 0, \\ B_k &:= a_k + (x - c_{k+1}) B_{k+1} - d_{k+2} B_{k+2} \qquad (k = m, m-1, \dots, 0), \\ \text{wynik} &:= B_0, \end{split}$$

oblicza wartość sumy $\sum_{k=0}^m a_k P_k(x)$. Jak wykorzystać powyższy algorytm do obliczenia wartości $P_m(x)$?

- **L11.5.** 1 punkt Dwoma poznanymi na wykładzie sposobami zbuduj wielomiany P_0 , P_1 , P_2 ortogonalne na zbiorze $D_4 = \{x_0, x_1, x_2, x_3, x_4\}$, gdzie $x_j := -8 + 4j$ (j = 0, 1, 2, 3, 4).
- **L11.6.** 1 punkt Funkcja h przyjmuje w punktach $x_j := -8 + 4j \ (j = 0, 1, 2, 3, 4)$ odpowiednio wartości 2, -3, 1, -3, 2. Wykorzystując ortogonalność wielomianów **skonstruowanych** w **poprzednim zadaniu**, wyznacz taki wielomian $w_2^* \in \Pi_2$, aby wyrażenie

$$\sum_{j=0}^{4} [w_2^*(x_j) - h(x_j)]^2$$

przyjmowało najmniejszą możliwą wartość.

L11.7. Włącz komputer! 2 punkty W pliku punkty.csv¹znajduje się zbiór 51 par liczb ze zbioru $\mathcal{X} := \{(t_i, y_i) : 0 \le i \le 50\}$. Wartość te są odczytami z aparatury mierzącej pewną wielkość fizyczną f zachowującą się – jak mówi teoria – zgodnie ze wzorem

$$f(t) = (t + 3.6)(t - 2.1)(t - 3.7).$$

Z tym jednak, że aparatura dokonuje pomiarów z dokładnością ± 0.15 z rozkładu jednostajnego, czyli

$$y_i = f(t_i) + U[-0.15, 0.15]$$
 $(0 \le i \le 50).$

- (a) Narysuj wykres funkcji f i zbiór \mathcal{X} .
- (b) Wyznacz i narysuj wielomian interpolacyjny dla danych z pliku punkty.csv. Co obserwujemy?
- (c) Skonstruuj i narysuj wielomiany optymalne w_n^* w sensie aproksymacji średniokwadratowej dla danych ze zbioru \mathcal{X} o stopniach n=2,3,4,5,6. Skomentuj wyniki.

(-) Paweł Woźny

¹Patrz SKOS lub strona ćwiczeń.