The search for $\tau \rightarrow l \gamma$ at Belle and Belle II

Braden Moore

Under the supervision of Dr. Phillip Urquijo

Introduction: $\tau \rightarrow l \gamma$

- $\tau \rightarrow l \gamma$ is a prohibited decay in the SM for massless neutrinos
- extending the SM to include neutrino masses allows flavour mixing between generations → LFV can occur
- even so, LFV in the SM + massive neutrinos is suppressed and is unobservably small

$$BR(\tau \rightarrow \mu \gamma)_{SM} < 10^{-40}$$

Introduction: $\tau \rightarrow l \gamma$

- unobservably small branching fraction for LFV processes allows New Physics (NP) to be probed without SM contamination
- of the tau processes, $\tau \rightarrow l \gamma$ decays predicted to be dominant
- why taus not muons? muons are easier to produce!
- expected branching fraction $\sim 10^{5\text{--}6}\,$ greater than $\mu \to e \; \gamma$ due to tau mass

Other LFV

LFV Process	Present Bound	Future Sensitivity
$\mu \rightarrow e \gamma$	5.7×10^{-13} [1]	$\approx 6 \times 10^{-14} [2]$
$\mu \rightarrow 3e$	1.0×10^{-12} [3]	$\approx 10^{-16} [4]$
μ^{-} Au $\rightarrow e^{-}$ Au	7.0×10^{-13} [5]	?
μ^{-} Ti $\rightarrow e^{-}$ Ti	4.3×10^{-12} [6]	?
μ^{-} Al $\rightarrow e^{-}$ Al	_	$\approx 10^{-16} [7, 8]$
$ au ightarrow e \gamma$	3.3×10^{-8} [9]	$\sim 10^{-8} - 10^{-9} [10]$
$ au ightarrow \mu \gamma$	4.4×10^{-8} [9]	$\sim 10^{-8} - 10^{-9} [10]$
$\tau \rightarrow 3e$	2.7×10^{-8} [11]	$\sim 10^{-9} - 10^{-10} [10]$
$ au ightarrow 3\mu$	2.1×10^{-8} [11]	$\sim 10^{-9} - 10^{-10} [10]$

Table 1: Present and future experimental sensitivities for LFV processes (Paradisi, 2015)

Motivations for LFV searches

- 1) mechanisms to explain neutrino mixing necessarily introduce LFV (???)
- 2) interesting anomalies, such as h → τ μ excess, can?
- 3) many NP models predict LFV to occur, AND predict the branching fractions – experimentally determining LFV branching fractions can rule out certain models

Okay I need more here

Neutrino mixing

$h \rightarrow \tau \mu \text{ excess}$

- CMS found some excess ???
- ATLAS found (not) an excess (?)
- Aristizal Sierra and Vicente (2014) propose an explanation of observed excess
- Type-III 2HDM (two Higgs doublet model) allows LFV

$h \rightarrow \tau \mu \text{ excess}$

- horizontal lines are 1σ bands on BR(h $\rightarrow \tau \mu$) (at 90% CL)
- vertical lines are (right) current upper limit BR(τ → μ γ) and (left) Belle II expected sensitivity
- under this model we would expect to find a signature in Belle II

Figure: BR(h \rightarrow τ μ) as a function of BR(τ \rightarrow μ γ) (Aristizabal Sierra and Vicente, 2014)

Models predicting $\tau \rightarrow l \gamma$

model	$Br(au o \mu \gamma)$
mSUGRA + seesaw $SUSY + SO(10)$ $SM + seesaw$ $Non-Universal Z'$ $SUSY + Higgs$	10^{-7} 10^{-8} 10^{-9} 10^{-9} 10^{-10}

Table 2: Branching fractions of $\tau \to \mu \gamma$, predicted by models of new physics beyond the SM (various sources)

recall present and future bounds on some LFV processes

LFV Process	Present Bound	Future Sensitivity
$ au o e\gamma$	3.3×10^{-8} [9]	$\sim 10^{-8} - 10^{-9} [10]$
$ au ightarrow \mu \gamma$	4.4×10^{-8} [9]	$\sim 10^{-8} - 10^{-9} [10]$

MSSM

- "The source of LFV in the MSSM is the potential misalignment between lepton and slepton mass matrices." *Brignole, Rossi* (2004).
- Not sure if I need this slide (or others specifically discussing models, since theorists will know these models a lot better than I will, and I don't actually need to know the specifics)

Current searches

$$BR(\tau \rightarrow \mu \gamma) < 4.5 \times 10^{-8}$$

$$BR(\tau \rightarrow e\gamma) < 1.2 \times 10^{-7}$$

Babar (2010), 515.5fb⁻¹:

$$BR(\tau \rightarrow \mu \gamma) < 4.4 \times 10^{-8}$$

$$BR(\tau \rightarrow e\gamma) < 3.3 \times 10^{-8}$$

Figure: M_{inv} - ΔE distribution in the search for $\tau \rightarrow \mu \gamma$ at Belle (*Hayasaka*, 2008)

Figure: M_{bc} - ΔE distribution in the search for $\tau \rightarrow \mu \gamma$ at Babar(*Babar Collaboration*, 2010)

11

Future searches

Figure: Current and future sensitivities on tau LFV branching fractions (*Urquijo*, 2016)

My search

- key backgrounds for τ → μ γ:
 - $\tau \rightarrow \mu \nu \nu$
 - $\tau \rightarrow \pi \nu$ (π misidentified as μ)
 - $e e \rightarrow \mu \mu \gamma$
- approx 1.5 million signal ($\tau \rightarrow \mu \gamma$) MC events produced
- approx 3500 million generic (tau-pair) MC events produced by the Belle II Collaboration
- 24 selection criteria added (based on previous Belle search)
- cuts made to suppress various backgrounds

My search

Figure: M_{inv} - ΔE distribution for signal MC $(\tau \rightarrow \mu \gamma)$ after selection cuts (59,265 events out of 1,632,596)

Efficiency: ~ 3.6%

Figure: M_{inv} - ΔE distribution for background MC after selection cuts (6 events out of 5,938,869)

Efficiency: $\sim 1 \times 10^{-4}\%$

Summary

- LFV is an exciting place to search for new physics
- neutrino masses?
- determining a value of BR($\tau \to l \gamma$) can exclude certain models
- negligible SM background means an observation would be an unambiguous signature of NP
- analysis framework is being set up for Belle II data analyses
- my next steps?