Unit 3: Algorithmic State Machines

by

Prof. Sujata Wakchaure

Introduction

• It is a sequential network which controls a digital system that carries out a step-by-step procedure or algorithm

- Drawbacks of state diagrams for real systems:
 - Many inputs & many outputs -> awkward
 - Not a clear structure for illustrating/designing control flow

Introduction (Contd..)

- Some problems analogous to before
 - -Combinational:
 - Small problems truth tables ok/easy
 - Adders, Mux TT get out of hand
 - -Sequential:
 - Small state diagrams easy
 - Real, Data state diagrams not helpful

Finite State Machine (FSM)

- A generic model for sequential circuits used in sequential circuit design
- It is a mathematical model of computation
- It is an abstract machine that can be in exactly one of a finite number of states at any given time
- FSMs are an incredibly powerful tool when designing digital circuits
- FSM Consist of
 - States
 - State Transitions

FSM (Contd..)

• State:

- It defines behavior & may produce action (Moore M/C)

• State Transition:

 It is movement from one state to another & may produce actions (Mealy M/C)

A FSM Must have:

- An initial state which provides a starting point
- A current state, which remembers the product of the last state transition

Algorithmic State Machine (ASM)

- ASM method is a method for designing FSM
- It is used to represent diagrams of digital integrated ckt
- ASM is nothing but step by step procedure or algorithm
- It is an advanced version of state diagram
- An IMP advantage of ASM is, it an describe both Combinational and Sequential ckt

ASM Chart

- ASM Chart is a high-level flowchart-like notation to specify the hardware algorithms in digital systems.
- It is a method of describing the sequential operations of a digital system
- ASM Chart consist of an interconnections of 4 types of basic element
 - 1. State name
 - 2. State Box
 - 3. Decision Box
 - 4. Conditional Output Box

- ASM charts are like flowcharts, with a few crucial differences. Be careful, especially with timing.
 - State Box
 - Decision Box
 - Combinational Box
- Major differences from flowcharts are:
 - uses 3 types of boxes: state box (similar to operation box), decision box and conditional box
 - contains exact (or precise) timing information; flowcharts impose a relative timing order for the operations

• State Name:

The name of the state is indicated inside the circle
& circle is placed in the top left corner or the
name is placed without the circle

State Box:

- one box per system state
- represents a state equivalent to a node in a state diagram or a row in a state table.
- Moore-type outputs are listed inside of the box.

Decision box:

 Indicates that a given condition is to be tested and the exit path is to be chosen accordingly the condition expression may include one or more inputs to the FSM

- Conditional O/P Box: (Mealy Box)
 - Denotes output signals that are of the Mealy type
 - The condition that determines whether such outputs are generated is specified in the decision box.

Example (Mealy State Machine)

• Consider following state diagram & design

Example (Moore State Machine)

Multiplexer Controller Method

- It is a simpler & straight forward method for realization of combinational ckt for any controller
- In this method, the gates and flip-flops are replaced by mux & registers respectively
- In this method, there are 3 levels components
- The first level consist of mux that determine next state of the register
- The second level contain a register that holds the present binary state
- The third level has the decoder that provides a separate O/P for each control state
- Sometimes combinational ckt is used in place of decoder

Multiplexer Controller Method (Contd..)

• Multiplexer decides the next state of the register as O/P of mux has been connected to FF I/P

Fig. Block schematic for a 3-level scheme for multiplexer design

Example

- Design of 2 bit Up counter using multiplexer controller method
 - 2 bit counter has 4 states i.e. 00,01,10,11.
 - In the state diagram if mode control M =0, counter will be latched in the same state and will start incrementing to the next state if M=1.

• Step 1: State Diagram

• Step 2: ASM Chart

• Step 3: State Transition Table

Mode control i/p	Present	state (Qn)	Next state (Q n+1)			
M	Qb	Qa	Qb+1	Q a+1		
0	0	0	0	0		
0	0	1	0	1		
0	1	0	1	0		
0	1	1	1	1		
1	0	0	0	1		
1	0	1	1	0		
1	1	0	1	1		
1	1	1	0	0		

• Step 4: Excitation Table of D FF

Present State	Next state	Input		
Qn	Qn+1	Dn		
0	0	0		
0	1	1		
1	0	0		
1	1	1		

• Step 5: State Table

Mode control i/p	Present state (Qn)		Next (Qn	state ı+1)	Input		
M	Qb	Qa	Qb+1	Qa+1	Db	Da	
0	0	0	0	0	0	0	
0	0	1	0	1	0	1	
0	1	0	1	0	1	0	
0	1	1	1	1	1	1	
1	0	0	0	1	0	1	
1	0	1	1	0	1	0	
1	1	0	1	1	1	1	
1	1	1	0	0	0	0	

Example

- Design a Sequence Generator Circuit to generate the sequence 1-3-5-7 using MUX Controller based ASM approach
- Considerations
 - If control I/P X=0, the sequence generator ckt in the same state
 - If control I/P X=1, the sequence generator ckt goes into next state

• Step 1: State Diagram

• Step 2: State Table

Present	Next State				
State	X=0	X=1			
q0	001	011			
q1	011	101			
q2	101	111			
q3	111	001			

• Step 3: ASM Chart

Present State			Next State			I/P	MUX Input					
C	В	A	C+	B +	A +	X	MUX 1		MUX 2		MUX 3	
0	0	0	0	0	0	0	D0=0	0	0	0	0	0
0	0	0	0	0	0	1	D0=0	U	0	V	0	V
0	0	1	0	0	1	0	D1=0	0	0	X	1	1
0	0	1	0	1	1	1	D1=0	U	1	Λ	1	1
0	1	0	0	0	0	0	D2=0	0	1	0	0	0
0	1	0	0	0	0	1	D2=0	U	0	0	0	0
0	1	1	0	1	1	0	D3=0	X	1		1	1
0	1	1	1	0	1	1	D3=1	Λ	0	X	1	1
1	0	0	0	0	0	0	D4=1	0	0	0	0	0
1	0	0	0	0	0	1	D4=0	U	0	U	0	U
1	0	1	1	0	1	0	D5=1	1	0	X	1	1
1	0	1	1	1	1	1	D5=1	1	1	Λ	1	1
1	1	0	0	0	0	0	D6=1	0	1	0	0	0
1	1	0	0	0	0	1	D6=0		0	U	0	U
1	1	1	1	1	1	0	D7=1	$\frac{1}{X}$	1	<u></u>	1	1
1	1	1	0	0	1	1	D7=0	Λ	0	X	1	1

