TESTE DE HIPÓTESES

Sttatistical Hypothesis Testing

O SALTO DA DESCRIÇÃO PARA A INFERÊNCIA

Estatística Descritiva

Organiza e resume dados coletados.

Estatística Inferencial

Permite fazer afirmações sobre populações com base em amostras.

Raramente temos acesso à população inteira. Precisamos de métodos para generalizar descobertas da amostra. Modelos probabilísticos representam fenômenos aleatórios e ajudam a avaliar a variabilidade.

FUNDAMENTOS DO TESTE DE HIPÓTESES

Hipótese Estatística

Afirmação sobre um parâmetro ou característica de uma população.

Hipótese Nula (H₀)

Afirmação padrão:
"nenhum efeito",
"nenhuma diferença" ou
"nenhuma associação".

Hipótese Alternativa (H₁)

Contrasta com H_0 , representando o efeito que estamos investigando.

ELEMENTOS DO TESTE DE HIPÓTESES

ERROS NO TESTE DE HIPÓTESES

Erro Tipo I (α)

Rejeitar H₀ quando H₀ é verdadeira (falso positivo).

A probabilidade máxima deste erro é α .

Erro Tipo II (β)

Não rejeitar H_0 quando H_1 é verdadeira (falso negativo).

A potência do teste $(1-\beta)$ é a probabilidade de detectar um efeito real.

T-TEST (TESTE T DE STUDENT)

PRESSUPOSTOS DO TESTE T

Normalidade

Dados normais em cada grupo ou amostras suficientemente grandes.

Independência

Observações independentes dentro de cada grupo.

Homoscedasticidad e

Igualdade de variâncias entre os grupos.

ANÁLISE DE VARIÂNCIA (ANOVA) ova F-distribution"

Propósito

Comparar médias de três ou mais grupos. Extensão do teste t para múltiplos grupos.

Funcionamento

Decompõe a variação total em variação entre grupos e dentro dos grupos.

Estatística F

Razão entre variação entre grupos e variação dentro dos grupos.

Anova Tablo I Sources of variation Freation 2.441m 00-80-Degrees of freedom Sum of squares F-Statisc 00-00-2-Statstoc Sum of Squares 00-F-Statistic F-statistic 00-

TABELA ANOVA E HIPÓTESES

Fonte de Variação	GL	SQ	QM	F	Valor- p
Entre Grupos	k-1	SQE	QME	QME/ QMR	р
Dentro dos Grupos	n-k	SQR	QMR		
Total	n-1	SQT			

 H_0 : $\mu_1 = \mu_2 = ... = \mu_k$ (Todas as médias são iguais)

H₁: Pelo menos uma média é diferente das outras

TESTE DE QUI-QUADRADO (X²)

Aderência

Verifica se a distribuição se ajusta a um padrão esperado.

Independência

Verifica associação entre duas variáveis categóricas.

Homogeneidade

Compara distribuições entre diferentes populações.

INTERPRETAÇÃO E TOMADA DE DECISÕES

Além do Valor-p

Diferenciar significância estatística de significância prática. Um resultado estatisticamente significativo pode ter efeito pequeno na prática.

Correlação vs. Causalidade

Associação não implica causa e efeito. A inferência causal requer experimentos bem planejados.

Tomada de Decisão

Usar resultados estatísticos para suportar recomendações, reconhecendo limitações dos dados.

