Useful syntax and examples

Andy Mitchell

April 8, 2021

\sim			
\mathbf{Co}	nt	On	+0
T /U	, , , ,	\leftarrow 11	16.5

1	Individual symbols	2
2	Playing only	3

Individual symbols 1

$$=\frac{12}{51}\times\frac{11}{50}\times\frac{1}{4}\div\frac{1}{17}=\frac{12\times17\times11}{4\times51\times50}=\frac{11}{50}$$

$$= \frac{12}{51} \times \frac{11}{50} \times \frac{1}{4} \div \frac{1}{17} = \frac{12 \times 17 \times 11}{4 \times 51 \times 50} = \frac{11}{50}$$

 ${\rm fse}$

2 Playing only

Firstly, here is a paragraph.

Begin equation : CANNOT use line breaks \\ in this, so get an error :

Overfull \hbox (87.92923pt too wide) detected at line 9 .

$$\therefore \mathbf{P}(\text{no one is waiting at } 9:00) = \mathbf{P}(B_{8:55})e^{-1} + \mathbf{P}(B_{8:50})\mathbf{P}(B_{9:05})e^{-2} + \mathbf{P}(B_{8:40})\mathbf{P}(B_{9:05})e^{-4} = \frac{1}{4}(2e^{-1} + e^{-2} + e^{-2})e^{-1} + \frac{1}{4}(2e^{-1} + e^{-2})e^{$$

Begin multline (can use line breaks!)

 \therefore **P**(no one is waiting at 9:00)

$$= \mathbf{P}(B_{8:55})e^{-1} + \mathbf{P}(B_{8:50})\mathbf{P}(B_{9:05})e^{-2} + \mathbf{P}(B_{8:40})\mathbf{P}(B_{9:05})e^{-4}$$
$$= \frac{1}{4}(2e^{-1} + e^{-2} + e^{-4})$$

Separate equations :

 \therefore **P**(no one is waiting at 9:00)

$$= \mathbf{P}(B_{8:55})e^{-1} + \mathbf{P}(B_{8:50})\mathbf{P}(B_{9:05})e^{-2} + \mathbf{P}(B_{8:40})\mathbf{P}(B_{9:05})e^{-4}$$
$$= \frac{1}{4}(2e^{-1} + e^{-2} + e^{-4})$$

IEEE rCl:

$$\therefore$$
 P(no one is waiting at 9:00)

$$= \mathbf{P}(B_{8:55})e^{-1} + \mathbf{P}(B_{8:50})\mathbf{P}(B_{9:05})e^{-2} + \mathbf{P}(B_{8:40})\mathbf{P}(B_{9:05})e^{-4}$$
$$= \frac{1}{4}(2e^{-1} + e^{-2} + e^{-4})$$

IEEE lr:

∴ **P**(no one is waiting at 9:00)
= **P**(
$$B_{8:55}$$
) e^{-1} + **P**($B_{8:50}$)**P**($B_{9:05}$) e^{-2} + **P**($B_{8:40}$)**P**($B_{9:05}$) e^{-4}
= $\frac{1}{4}$ ($2e^{-1} + e^{-2} + e^{-4}$)

IEEE l with a couple of quads:

$$\therefore$$
 P(no one is waiting at 9:00)

=
$$\mathbf{P}(B_{8:55})e^{-1} + \mathbf{P}(B_{8:50})\mathbf{P}(B_{9:05})e^{-2} + \mathbf{P}(B_{8:40})\mathbf{P}(B_{9:05})e^{-4}$$

= $\frac{1}{4}(2e^{-1} + e^{-2} + e^{-4})$