Exercice 1.

Résoudre dans \mathbb{R} les équations suivantes : $e^{3x+1} = 5$

$$ln(2x+3)=2.$$

Exercice 2.

Étudier les variations de la fonction f définie, pour tout $x\in]0\ ;\ +\infty[$, par $f(x)=x\ln(x)$.

· Exercice 3.

Résoudre dans $\mathbb R$ puis dans $\mathbb N$ l'inéquation $2^n > 70$ d'inconnue n.

Exercice 4.

Étudier les variations de la fonction f définie sur l'intervalle $I=]0;+\infty[$ par $f(x)=\ln{({\rm e}^{-x}+2)}.$

Exercice 5.

Déterminer l'ensemble de définition des fonctions définies par les expressions suivantes

$$1.f(x) = \ln(3x - 5)$$

2.
$$g(x) = \ln(-x^2 - 5x + 6)$$
.

Exercice 6.

Résoudre dans \mathbb{R} les équations suivantes :

1.
$$e^x = 4$$

$$2.e^{2x+7}=2$$

$$3. \ln(x) = -5$$

$$4. \ln(-3x + 5) = -1.$$

Exercice 7.

- 1. Démonter que ln(8) ln(2) + ln(4) ln(16) est un nombre entier.
- 2. Démontrer que ln(48) 3ln(2) = ln(6).
- 3. Démontrer que $\ln (\sqrt{5} 1) + \ln (\sqrt{5} + 1) = 2 \ln 2$.
- 4. Calculer $\ln(e^2\sqrt{e})$, puis $\ln(\sqrt{e}) 2\ln(\frac{1}{e})$.
- 5. Soit f la fonction définie sur \mathbb{R}^{+*} par $f(x) = x \ln x$. Calculer en fonction de e les réels $f(\frac{1}{a})$, $f(\sqrt{e})$ et $f(e\sqrt{e})$.

Exercice 8.

Étudier les variations de la fonction f définie sur $]0; +\infty[$ par $f(x) = \frac{\ln(x)}{x}$.

Exercice 9.

Soient g et h les fonctions définies sur]0; $+\infty$ [par $g(x) = \frac{\ln x}{x+1}$ et $h(x) = \frac{1}{x} + \ln(x)$.

1. Étudier la limite de g(x) en $+\infty$.

2. Étudier la limite de h(x) en 0.

Exercice 10.

Déterminer les limites en -1 et en $+\infty$ de la fonction f définie sur]-1; $+\infty$ [par $f(x) = \ln\left(\frac{1}{x+1}\right)$.