Soluzioni della Parte I – Linguaggi Regolari

- 1. Considerare il linguaggio $L = \{w \mid w \in \{a, b\}^* \text{ con un numero dispari di } a \text{ e che terminano con } b\}$
 - (a) Dare un automa a stati finiti deterministico che accetti il linguaggio L.

(b) Dare un'espressione regolare che rappresenti il linguaggio L.

$$b^*a\left(b^*ab^*a\right)^*b^*b$$

2. Dato il seguente NFA

costruire un DFA equivalente. Dare solo la parte del DFA che è raggiungibile dallo stato iniziale.

3. Minimizzare il DFA che avete ottenuto come soluzione dell'esercizio 2 usando l'algoritmo riempitabella.

Rinominiamo gli stati del DFA soluzione dell'esercizio 2 come segue:

$$\begin{array}{lll} A = \{q_0\} & B = \{q_1\} & C = \{q_3\} & D = \{q_0, q_2, q_4\} \\ E = \{q_0, q_4\} & F = \{q_0, q_1, q_4\} & G = \{q_1, q_3\} & H = \emptyset \\ \end{array}$$

L'esecuzione dell'algoritmo riempi-tabella porta alla seguente tabella finale:

Fondendo le due coppie di stati equivalenti $A \equiv E$ e $B \equiv G$ otteniamo il DFA minimo:

4. Sia $\Sigma = \{a, b, =\}$ e considerate il linguaggio

$$EQ = \{ w = w \mid w \in \{ a, b \}^* \}$$

Per esempio, la stringa abab=abab appartiene ad EQ perché la stringa a destra dell'uguale è identica alla stringa a sinistra dell'uguale. Viceversa, la stringa aaaa=abb non appartiene ad EQ perché la stringa a destra dell'uguale è diversa dalla stringa a sinistra dell'uguale.

(a) Completate il seguente schema di partita per il Gioco del Pumping Lemma in modo da far vincere il Giocatore 2:

Giocatore 1: sceglie il valore di h = 4

Giocatore 2: sceglie la parola $w \in EQ$ di lunghezza maggiore di h

 $w=\mathtt{aaaa=aaaa}$

Giocatore 1: suddivide w in

- \bullet x = a
- \bullet $y=\mathtt{aa}$
- z = a=aaaa

rispettando le condizioni che $|xy| \le h$ e $y \ne \varepsilon$

Giocatore 2: sceglie una potenza k = 2

La parola $xy^kz = aaaaaa=aaaa \notin EQ$: vince il Giocatore 2

(b) Dimostrate che EQ non è un linguaggio regolare usando il Pumping Lemma.

Supponiamo per assurdo che EQ sia regolare:

- \bullet sia h la lunghezza data dal Pumping Lemma;
- consideriamo la parola $w = \mathbf{a}^h = \mathbf{a}^h$, che appartiene ad EQ ed è di lunghezza maggiore di h;
- sia w = xyz una suddivisione di w tale che $y \neq \varepsilon$ e $|xy| \leq h$;
- poiché $|xy| \le h$, allora xy è completamente contenuta nel prefisso \mathtt{a}^h di w posto prima dell'ugale, e quindi sia x che y sono composte solo da \mathtt{a} . Inoltre, siccome $y \ne \varepsilon$, possiamo dire che $y = \mathtt{a}^p$ per qualche valore p > 0. Allora la parola xy^2z è nella forma $\mathtt{a}^{h+p} = \mathtt{a}^h$, e non appartiene al linguaggio perché la stringa a destra dell'uguale è diversa dalla stringa a sinistra dell'uguale.

Abbiamo trovato un assurdo quindi EQ non può essere regolare.