

10/506317

PCT/DE03/00808

# BUNDESREPUBLIK DEUTSCHLAND

10 Rec'd PCT/DE 30 AUG 2004



|       |             |
|-------|-------------|
| REC'D | 07 MAY 2003 |
| WIPO  | PCT         |

**PRIORITY DOCUMENT**  
SUBMITTED OR TRANSMITTED IN  
COMPLIANCE WITH  
RULE 17.1(a) OR (b)

## Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 102 11 196.0 **CERTIFIED COPY OF**  
Anmeldetag: 08. März 2002 **PRIORITY DOCUMENT**

Anmelder/Inhaber: Professor Dr.-Ing. habil. Dr.h.c. Peter Gräbner,  
Radebeul/DE

Bezeichnung: Dualtreibscheibe

IPC: B 66 B, B 66 D

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-sprünglichen Unterlagen dieser Patentanmeldung.

München, den 1. April 2003  
Deutsches Patent- und Markenamt

Der Präsident  
Im Auftrag

Faust

5

## Dualtreibscheibe

Die Erfindung betrifft den neuartigen Aufbau von Treibscheiben für Drahtseiltriebe und dgl., wodurch eine verbesserte Kraftübertragung ermöglicht werden soll.

10

Hauptanwendungsgebiet der Erfindung sind Treibscheiben, insbesondere für

- Aufzüge
- mit Drahtseilen betriebene Hubplattformen (z.B. Fassadenpflegeanlagen, Montagegerüste),
- mit Drahtseil betriebene Befahreinrichtungen für stehende Seilkonstruktionen (Hängebrücken, seilverspannte Hallendächer, Kabelkrane, Seilbahnen),
- ausgewählte Seilbahnantriebe,
- ausgewählte Sesselliftantriebe,
- ausgewählte Schachtförderanlagen
- Durchlaufhubwinden für beliebige Einsatzfälle..

20

Ein weiteres Anwendungsfeld der Prinziplösung sind mechanische Stetigförderer, die nach dem Antriebsprinzip „Kraftschluß“ arbeiten und die Voraussetzungen magnetischer Werkstoffe erfüllen.

25

Der Stand der Technik ist durch Lösungen charakterisiert, die das Coulomb'sche Reibungsgesetz unter Nutzung einer homogen Rille der technischen Auslegung zugrunde legen.

30

Aus DE 33 12 522 A1 ist eine Treibscheibe bekannt, bei der in den Rillen der Scheibenfelge ein frei am Felgenumfang bewegliches Futter in Gestalt eines biegsamen elastischen Ringes mit daran gefestigten Futterelementen eingebracht ist.

5

Auch in DE 36 26 045 A1 wird eine Treibscheibe beschrieben, bei der längs der Kreislinie der Rille des Kranzes ein frei beweglicher Belag angeordnet ist. Dieser Belag besteht aus zwei Schichten, nämlich der oberen Schicht aus einem elastischen Materialstreifen und der unmittelbar auf dem Kranz 10 aufliegenden, in Sektionen unterteilten Schicht, die starr miteinander verbunden sind.

Die genannten Sektionen bestehen hier aus einem (Gleit-)Lagerwerkstoff.

Gegenstand von DE 39 23 192 A1 ist eine Treibscheibe mit einem 15 Treibscheibenkranz, in dessen Rille mit einem Spalt zueinander Belageinlagen frei angeordnet sind. Diese V-förmigen Belageinlagen sind an ihren beiden Schenkelenden mit in Bewegungsrichtung der Treibscheibe durchgehenden Bohrungen versehen, durch welche ein diese Rille umschlingendes Zugmittel hindurchgeleitet ist.

20

Mit den aus dem Stand der Technik bekannten Einlagen in die Rillen des Treibscheibenkranges kann zwar der Verschleiß der Reibpaarung Seil-Kranz verringert werden, Verbesserungen bei der Kraftübertragung sind aber nur im geringen Umfang möglich und erfordern spezielle aufwendigere Rillen- 25 querschnitte.

Aufgabe der Erfindung ist deshalb die wesentliche Erhöhung der Übertragungskräfte vom Treibrad auf das anzutreibende Seil oder Förderband oder Kette bei vereinfachter Ausführung der weiteren Systemkomponenten der 30 zugehörigen Seil- oder Fördertriebe.

Eine erfindungsgemäße Lösung dieser Aufgabe ist im Patentanspruch 1 angegeben. Weiterbildungen der Erfindung sind in den Unteransprüche gekennzeichnet.

35

5 Nach der Konzeption der Erfindung werden entlang der Umfangslinie der in den Treibscheiben-Kranz eingebrachten Rille(n) beabstandet Inlay's als in angepasste Aussparungen der Rillenspur oberflächenconform versenkte Segmente aus gleichen oder unterschiedlichen Materialien und/oder aus Hochleistungs-Permanentmagneten eingebracht.

10 Als Material für die Inlay's können Stahl- und Gusslegierungen, Verbundwerkstoffe, Kunststoffe oder geeignete Keramiken jeweils mit erhöhten Reibwerten eingesetzt werden.

5 Durch diese Vorgehensweise wird einmal die Coulomb'sche Reibkraft durch die spezifischen Eigenschaften verschiedener gleichzeitig wirkender Werkstoffe erhöht, indem in eine Stützkonstruktion in Form von Inlay-Segmenten, die in passfähige Ausnehmungen der Rillenspur des Treibscheiben-Kranzes eingesetzt sind, verschleißfeste Materialien aus

- metallischen Werkstoffen und/oder

20 • Kunststoffen, Keramik

als homogene Körper in regelmäßigen Abständen in die Rillenspur eingebracht werden.

Zum anderen kann alternativ oder in Ergänzung zu den vorgenannten Material-

25 Inlay's die Coulomb'schen Reibung durch die von in regelmäßigen Abständen in die Rillen eingebrachten Magnete ausgeübten magnetischen Haftkräfte gemäß

$$F_{uMgn} = \mu_{Mgn} \cdot F_{Mgn}$$

verstärkt werden.

30 In dieser Gleichung bedeuten

$F_{uMgn}$ : am Umfang der Treibscheibe wirkende tangentiale Widerstands-kraft im Magnetbereich gegen die durch die größere Seilkraft hervorgerufene Seildehnung;

$F_{Mgn}$ : magnetische Haftkraft;

5  $\mu_{Mgn}$ : Reibwert im Magnetbereich.

Zur Anwendung kommen vor allem Permanentmagnete und dabei insbesondere Hochenergie-Magnete aus den Seltene-Erde-Werkstoffen, die bei technisch sinnvollen Abmessungen Energieprodukte von  $380 \text{ kJ/m}^3$  und  
 10 mehr realisieren können. Die einzusetzenden Magnete sind bezogen auf Haftkräfte, Härte, Form und Verschleiß dem Einsatzfall angepasst zu fertigen. Ihre Anordnung in der Rillenspur erfolgt in der Weise, dass die Achse des Magnetfeldes und damit die Magnetkraft radial ausgerichtet ist.

5 Über die  $360^\circ$ -Umfangslinie des Treibscheiben-Kranzes verteilt sind die Inlay-segmente gleichmäßig durch den Umfangswinkel  $\alpha$  beabstandet.

Die Größe des Winkels  $\alpha$  hängt von der gewünschten Treibfähigkeit der Paarung Treibscheibe-Seil bzw. Treibscheibe-Band ab.

20 Dieser technische Ansatz ermöglicht es, Rundrillen mindestens mit Reibwerten auszurüsten, die denen von Keilrillen bei definiertem Keilwinkel und erreichbarem Verschleißzustand entsprechen, aber im Gegensatz zur Keilrille oder der unterschnittenen Rundrille einen stark reduzierten Rillenverschleiß (geringe Pressung) und hohe Seillebensdauer bezogen auf die jeweilige Auslegung gewährleisten.

25 Für die Lösung von extremen Anforderungen - z.B. der Kraftübertragung – sind auch andere Rillenformen mit diesem Ansatz ausrüstbar.

Die Optimierung der Treibscheibenauslegung bezogen auf

30

- Magnethaftkraft, geometrische Form der Hochleistungs-Permanentmagnete, Festlegung weiterer physikalischer Kennwerte, Anordnung der Magnete einerseits und/oder

5        • Anordnung der Kunststoff-(Keramik) bzw. spezial-metallischen Einlagen andererseits erfolgt wahlweise entsprechend der jeweils vorliegenden technischen Zielstellung.

Die Lösung erfordert einend modifizierten Ansatz der Eytelwein'schen  
10 Gleichung

$$F1/F2 * \varphi(p) \leq e^{\mu\beta}$$

mit

$F1, F2$  : Seilkräfte;

$\varphi(p)$  : Verzögerungsfaktor;

5         $e$  : Basis der natürlichen Logarithmen;

$\mu$  : scheinbarer Reibwert;

$\beta$  : geometrischer Umschlingungsbogen.

Die mit dem Patent verbundenen Vorteile sind vielfältig, nämlich u.a.:

20        • Erhöhung der Coulomb'schen Reibkraft durch Erhöhung von  $\mu_{system}$  infolge dualem Materialeinsatz (metallisch, Kunststoff, Keramik).

• Überlagerung der Coulomb'schen Reibkraft mit einer magnetischen Reibkraft – erzeugt insbesondere durch Hochleistungs–Permanentmagnete.

• Wahlweise Auslegung der Treibscheibe für verschleißarme Übertragung großer Umfangskräfte oder Übertragung sehr großer Umfangskräfte für Spezialeinsätze.

Erreicht wurde eine wesentliche Erhöhung der Treibfähigkeit insbesondere von Rundrillen.

30

Die Kraftübertragung wird durch die genannten Maßnahmen wesentlich verbessert, die damit verbundenen Sekundärfolgen sind:

5        • Masseeinsparungen im Seiltrieb durch vergrößertes und technisch  
übertragbares F1/F2-Verhältnis, Ermöglichung des extremen Leichtbaus  
in der Aufzugstechnik;

10      • Mögliche Reduzierung des erforderlichen Treibscheibendurchmesser;  
• Reduzierung der Seildurchmesser infolge verringelter  
Beanspruchungen;

15      • bedingt durch einen kleineren Treibscheibendurchmesser kleinere  
Antriebe durch erhöhte Drehzahl der Treibscheibe;  
• Reduzierung des Energieaufwandes; jeweils verbunden mit den  
zugehörigen wirtschaftlichen Vorteilen.

5           Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus  
der nachfolgenden Beschreibung eines Ausführungsbeispiels unter  
Bezugnahme auf die zugehörige Zeichnung. Es zeigen

Fig. 1 die Ausführung des Treibscheiben-Kranzes mit dualem Materialeinsatz  
20        in den Rillenspuren,

Fig. 2 die Darstellung eines Inlay-Segments, das aus einem von der sonstigen  
Ausführung der Rillenspur abweichenden dualen Werkstoff besteht,

Fig. 3 die Ausführung einer Dualtreibscheibe, bei der in der Rillenspur des  
Treibscheiben-Kranzes als Inlay-Segmente Hochleistungs-Permanent-  
25        magnete eingebracht sind.

Fig. 1 veranschaulicht die Ausführung einer Dualtreibscheibe mit in den  
Rillenspuren 3 des Treibscheiben-Kranzes 2 eingebrachten Inlay-Segmenten  
5, die aus zum Material des Treibscheiben-Kranzes 2 dualen Materialien 6  
30        bestehen.

Als Materialien 6 für die Fertigung der Inlaysgmente 5 können wahlweise  
eingesetzt werden: Stahl- und Gusslegierungen, Verbundwerkstoffe,  
Kunststoffe, Spezialkeramiken, jeweils verschleißarm und mit erhöhten  
Reibwerten.

5

Eine beispielhafte Anordnung dieser Inlay's 5 über die 360°-Umfangslinie des Treibscheiben-Kranzes 2 ist in Fig. 1 dargestellt.

Die Inlay-Segmente 5 sind in jeder Rillenspur 3, s. Schnitt A-A, voneinander beabstandet über den Umfangswinkel  $\alpha$  angeordnet.

10

Natürlich können auch zur Erreichung einer bestimmten Treibfähigkeit der Dualtreibscheibe andere Anordnungen, Konstruktionen und Verteilungsdichten der Inlay-Segmente 5 über den Umfang der Treibscheiben-Kranzes 2 gewählt werden.

5

Die beispielhafte Geometrie eines Inlay-Segments zeigt als Einzelheit B Fig. 2.

Die Form der Rille 3 wird von ihrem Krümmungsradius bestimmt, wobei  $d$  dem Durchmesser des Seiles 4 entspricht. Die Abmessungen für Breite  $b$  und Höhe  $h$  eines Inlay-Segments entsprechen etwa dem doppelten Rillendurchmesser  $d$ ,

20 also  $b = h \sim 2d$ .

Die Länge  $l$  eines Inlay-Segments beträgt etwa das 3-fache des Seildurchmessers  $d$ ,

also  $l \sim 3d$ .

25

Fig. 3 veranschaulicht die Ausführung einer Dualtreibscheibe mit analog zum Aufbau nach Fig. 1 eingebrochenen Hochleistungs-Permanentmagneten 7 als Inlay-Segmenten 5. Die Hochleistungs-Permanentmagneten 7 haben eine zylindrische Form, s. Einzelheit C, mit folgenden Abmessungen für Höhe  $h$  und Durchmesser des Magneten  $d_M$ :  $h \sim 25 - 35$  mm

30

$d_M \sim 20 - 32$  mm.

Derartige Magnete erreichen z.Z. eine Haftkraft von 42 – 180 N

Als Material für den Treibscheiben-Grundkörper 1, 2 wird in beiden Ausführungsfällen beispielsweise ein Grauguß-Werkstoff eingesetzt.

**LISTE DER BEZUGSZEICHEN**

- 1 Treibscheiben-Radkörper
- 2 Treibscheiben-Kranz
- 3 Rillen, Rillenspur
- 4 Drahtseil
- 5 Inlay's, Inlay-Segmente
- 6 Materialien für Inlay's
- 7 Hochleistungs-Permanentmagneten

## 5 PATENTANSPRÜCHE

1. Dualtreibscheibe für Draht-Seilantriebe und dgl., bestehend aus Treibscheiben-Radkörper (1), Treibscheiben-Kranz (2) und auf der Außenseite in den Kranz (2) eingebrachten Rillen (3) zur Seilführung, **dadurch gekennzeichnet**, dass zur verbesserten Kraftübertragung zwischen Treibscheiben-Kranz (2) und Seil (4) entlang der Umfangslinie der in den Treibscheiben-Kranz (2) oder einer entsprechenden Konstruktion (2) eingebrachten Rille(n) (3) beabstandet Inlay's (5) als Segmente der Rillenspur aus gleichen oder unterschiedlichen Materialien (6) und/oder aus Hochleistungs-Permanentmagneten (7) in den Treibscheiben-Kranz (2) eingebracht, sind, wobei als Materialien (6) für die Inlay's (5) Stahl- und Gusslegierungen, Verbundwerkstoffe, Kunststoffe oder geeignete Keramiken jeweils mit erhöhten Reibwerten eingesetzt werden.
2. Dualtreibscheibe nach Anspruch 1, **dadurch gekennzeichnet**, dass die Rillen (3) im Treibscheiben-Kranz (2) als Rundrillen ausgeführt sind.
3. Dualtreibscheibe nach Anspruch 1 oder 2, **dadurch gekennzeichnet**, dass die in die Rillenspur (3) eingesetzten Inlay-Segmente (5) vorzugsweise eine Kubus- oder Zylinderform aufweisen und oberflächenconform mit der Rillenspur (3) in passfähige Ausnehmungen des Treibscheiben-Kranzes (2) eingebracht sind.
4. Dualtreibscheibe nach einem der Ansprüche 1 bis 3, **dadurch gekennzeichnet**, dass die Anordnung der Hochleistungs-Permanentmagneten (7) in der Rillenspur (3) so erfolgt, dass die Achse

5 des Magnetfeldes und damit die Magnetkraft radial gerichtet sind.

10 5 20 25

5. Daultreibscheibe nach einem der Ansprüche 1 bis 4,  
**dadurch gekennzeichnet**, dass die Inlay-Segmente (5) entlang der  
360° umfassenden Rillenspur (3) um den Umfangswinkel  $\alpha$  versetzt  
angeordnet sind.
6. Daultreibscheibe nach einem der Ansprüche 1 bis 5,  
**dadurch gekennzeichnet**, dass der Grundkörper der Treibscheibe (1)  
aus geeigneten Verbundwerkstoffen oder Kunststoff gefertigt ist, und auf  
dem Treibscheiben-Kranz (2) ein Ring – entsprechender Stärke aus  
geeignetem Grauguss oder legiertem Grauguss oder Stahlguss oder  
legiertem Stahlguss oder einer Spezialkeramik – jeweils versehen mit  
voneinander beabstandeten Aussparungen zur Aufnahme der Hoch-  
leistungs-Permanentmagnete (7) und/oder anderer duality Materialien  
verdrehungssicher aufgebracht ist.
7. Daultreibscheibe nach einem der Ansprüche 1 bis 6,  
**dadurch gekennzeichnet**, dass Antriebstrommeln für mechanische  
Stetigförderer, die für das physikalische Prinzip geeignet sind,  
sinngemäß wie die Daultreibscheibe gestaltet sind.

## 5 ZUSAMMENFASSUNG

### Dualtreibscheibe

Die Erfindung betrifft den neuartigen Aufbau von Treibscheiben für Draht-Seilantriebe und dgl., bestehend aus Treibscheiben-Radkörper (1), Treibscheiben-Kranz (2) und auf der Außenseite in den Kranz (2) eingebrachten Rillen (3) zur Seilführung. Durch die neue Treibscheibe soll eine verbesserte Kraftübertragung ermöglicht werden.

5 Die Erfindung zeichnet sich dadurch aus, dass zur verbesserten Kraftübertragung zwischen Treibscheiben-Kranz (2) und Seil (4) entlang der Umfangslinie der in den Treibscheiben-Kranz (2) oder einer entsprechenden Konstruktion (2) eingebrachten Rille(n) (3) beabstandet Inlay's (5) als Segmente der Rillenspur aus gleichen oder unterschiedlichen Materialien (6) und/oder aus Hochleistungs-Permanentmagneten (7) in den Treibscheiben-Kranz (2) eingebracht, sind, wobei als Materialien (6) für die Inlay's (5) Stahl- und Gusslegierungen, Verbundwerkstoffe, Kunststoffe oder geeignete Keramiken jeweils mit erhöhten Reibwerten eingesetzt werden.

20

Fig. 1

Fig. 1

Fig. 1.1



Fig. 1.2

Einzelheit B



Schnitt A-A

Fig. 2



Einheit B





**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record.**

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** \_\_\_\_\_

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.**