EXAMENUL DE BACALAUREAT - 2009 Proba scrisă la Fizică

Proba E: Specializarea: matematică-informatică, ştiințe ale naturii Proba F: Filiera tehnologică - toate profilele, filiera vocațională - toate profilele și specializările, mai puțin specializarea matematică-informatică

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu.

• Timpul efectiv de lucru este de 3 ore. **B. ELEMENTE DE TERMODINAMICA**

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \, \frac{\text{J}}{\text{mol} \cdot \text{K}}$. Între parametri

de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$. Exponentul adiabatic este definit prin relația: $\gamma = \frac{C_P}{C_{VV}}$.

SUBIECTUL I -

Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect. 1. Considerând că notațiile sunt cele utilizate în manualele de fizică, expresia energiei interne a gazului ideal monoatomic ($C_V = \frac{3}{2}R$) este:

a.
$$U = \frac{vRT}{2}$$

b.
$$U = vRT$$

c.
$$U = \frac{5}{2} vRT$$

d.
$$U = \frac{3}{2} v RT$$
 (2p)

2. Știind că simbolurile unităților de măsură sunt cele utilizate în manualele de fizică, unitatea de măsură, în S.I., pentru căldura specifică este:

a.
$$\frac{J}{K}$$

b.
$$\frac{J}{kg \cdot K}$$

c.
$$\frac{J}{N \cdot K}$$

d.
$$\frac{J}{\text{mol} \cdot K}$$
 (5p)

3. Lucrul mecanic schimbat cu exteriorul de un mol de gaz ideal monoatomic ($C_V = \frac{3}{2}R$) într-un proces adiabatic, de la o stare inițială cu temperatura $t_1 = 27^{\circ}$ C la o stare finală în care temperatura absolută se dublează, are valoarea:

4. Un vas cilindric orizontal închis la capete este împărțit în două compartimente (1 și 2) cu ajutorul unui piston care se poate mișca fără frecare, astfel încât $V_2 = 4V_1$, ca în figura alăturată. Ştiind că în compartimentul 1 se află oxigen ($\mu_{o_2} = 32 \, \text{g/mol}$), iar al doilea conține hidrogen ($\mu_{H_2} = 2 \, \text{g/mol}$), cele două gaze fiind în echilibru termic, raportul maselor m_1/m_2 este:

a. 1/4

5. O cantitate constantă de gaz ideal descrie o transformare reprezentată în coordonate p-T în figura alăturată. Căldura primită de gaz pentru ca temperatura să-i crească cu

b.
$$Q = \nu C_V \Delta T$$

c.
$$Q = \nu C_p \Delta T$$

d.
$$Q = p\Delta V$$
.

(3p)

(3p)

(2p)