Model Description (1 of 2)

- At any time t, Susceptible [S(t)] are the people who can get the infection. The infection spreads by contact. β is the rate of contact with an infected person including probability of transmission.
- If the infected person is Asymptomatic $[I_A(t)]$ or Quarantined [Q(t)], they may either have reduced infectivity (δ_1) or a lower probability of coming in contact (δ_2) .
- After transmission, an individual moves from S(t) to Exposed [E(t)], or the incubation period of the disease. The probability of showing symptoms is P_S . The latency rate is defined as the rate of moving from E(t) to Infected [I(t)], $\kappa = (T_{incubation})^{-1}$. For e.g. if the average incubation period is 5 days, $\kappa = 0.2$
- Following incubation, an individual may be infected with symptoms [I_s(t)] or infected without symptoms [I_A(t)]
- An individual in $I_s(t)$ may either be tested and quarantined [Q(t)], recover [R(t)], hospitalized [H(t)], or die from infection [D(t)]. The rate of testing θ , is inverse of the average time to testing after showing symptoms. $\theta = \left(T_{infect\ to\ test}\right)^{-1}$. For e.g. if it takes average 3 days to test and isolate a person after showing symptoms, $\theta = 0.33$
- The probability of high risk or severe cases requiring Hospitalization is assumed to be P_H , and the rate of hospitalization individual ϕ , is inverse of the average time to hospitalization after testing. $\phi = \left(T_{test\ to\ hosp}\right)^{-1}$. For e.g. if it takes average 4 days to disease to turn serious, $\phi = 0.25$
- The rate of recovery, γ_1 , is inverse of the avg time to recover after showing symptoms. $\gamma_1 = \left(T_{infect\ to\ recover}\right)^{-1}$ For e.g. if it takes average 20 days to recover after showing symptoms, $\theta = 0.05$
- The mortality rate, μ_1 , is the fraction of infected who die per day, $\mu_1 = probability$ of $death * \left(T_{infect to death}\right)^{-1}$ For e.g. if on average 12.5% of infected die and it takes 25 days to die after showing symptoms, $\mu_1 = \frac{0.125}{25} = 0.005$

Model Description (2 of 2)

- The respective recovery rates (γ_i) and mortality rates (μ_i) from each compartment are similarly defined, and depend on the time to recovery or death from the stage of the disease.
- Assumed that an individual without symptoms in $I_A(t)$ may only recover [R(t)], i.e. will not be detected without indiscriminate or random testing nor die without first exhibiting symptoms. It is also possible that I_A may have higher rate of recovery, $\gamma_2 \ge \gamma_1$
- Individuals who are quarantined [Q(t)], may either recover [R(t)] on their own, need hospitalization [H(t)], or die from infection [D(t)]. The rate of recovery and mortality are assumed same as I_s , γ_1 and μ_1
- Hospital beds may be limited (H_{max}). If beds are available at time t, then individual will be hospitalized. The rate of recovery and mortality are assumed, γ_3 and μ_2 . For simplicity, they may also be assumed the same as I_s and Q.
- If beds are NOT available at time t, the individual will be Not Hospitalized [NH(t)]. The rate of recovery and mortality are assumed, γ_4 and μ_3 . It is likely that the recovery rate will be lower $(\gamma_4 \le \gamma_3)$ and mortality rate higher $(\mu_3 \ge \mu_2)$ for this compartment than others.
- All recovered individuals from I_S, I_A, Q, H, NH go to R(t) compartment.
- All dead individuals from I_S, I_A, Q, H, NH go to D(t) compartment.

SEIAQHRD Model Dead μ_3NH At time t, the total population is sum of each compartment Not $N = S + E + I_S + I_A + Q + H + NH + R + D$ Hospitalized $\mathbf{6} \quad \mu_1 I_S$ $\gamma_4 NH$ $\mu_1 Q$ 13 θI_S $P_H \phi Q$ rate 1 $\mu_2 H$ is $H < H_{max}$ $P_S \kappa E_{\mathcal{L}}$ 12 Infected Quarantined **Symptomatic** $\gamma_3 H$ $P_H \phi I_S$ 8 Hospitalized $\gamma_1 Q$ 9 $\gamma_1 I_S$ 5 Susceptible **Exposed** $(1-P_s)\kappa E$ Recovered VA $\gamma_2 I_A$ Infected Asymptomatic

 $\beta = contact \ rate$

 δ_i = reduced infectivity

 $P_{S} = probablity of symptoms$

 $\kappa = latency \ rate = (T_{incubation})^{-1}$

 $\mu_i = mortality \ rate$

 $\gamma_i = recovery rate$

 $heta = testing \ rate = \left(T_{infect \ to \ test}\right)^{-1}$ $P_H = probability \ of \ hospitalization$

 $\phi = hospitalization \ rate = (T_{test \ to \ hosp})^{-1}$

System of Equations

1.
$$\frac{dS}{dt} = -S\frac{\beta}{N}(I_S + \delta_1 I_A + \delta_2 Q)$$

2.
$$\frac{dE}{dt} = S\frac{\beta}{N}(I_S + \delta_1 I_A + \delta_2 Q) - \kappa E$$

3.
$$\frac{dI_S}{dt} = P_S \kappa E - \theta I_S - P_H \phi I_S - \gamma_1 I_S - \mu_1 I_S$$

4.
$$\frac{dI_A}{dt} = (1 - P_S)\kappa E - \gamma_2 I_A$$

5.
$$\frac{dQ}{dt} = \theta I_S - P_H \phi Q - \gamma_1 Q - \mu_1 Q$$

6. if
$$H \le H_{max}$$
: $\frac{dH}{dt} = P_H \phi I_S + P_H \phi Q - \gamma_3 H - \mu_2 H$

7. if
$$H > H_{max}$$
: $\frac{dNH}{dt} = P_H \phi I_S + P_H \phi Q - \gamma_4 NH - \mu_3 NH$

8.
$$\frac{dR}{dt} = \gamma_1 I_S + \gamma_2 I_A + \gamma_1 Q + \gamma_3 H + \gamma_4 N H$$

9.
$$\frac{dD}{dt} = \mu_1 I_S + \mu_1 Q + \mu_2 H + \mu_3 N H$$