딥러닝 - Lab2

과제 제출 유의사항

- 이번주 과제는 .ipynb 로 제출 바랍니다.
- 파일에 모든 과제가 다 들어갈 수 있도록 한 개 파일로 작성 (comment 로 구분 필요)
- 과제는 스스로 하기 바랍니다.

Lab2 과제

- lris 데이터를 이용하여 머신러닝 방법으로 예측한 것을 비교하여라
- 단 같은 random seed와 같은 테스트 데이터 셋으로 naïve bayes, decision tree, adaboost을 비교하여라
 - Naïve bayes (from sklearn.naive_bayes import GaussianNB) エ
 - <u>GaussianNB</u> implements the Gaussian Naive Bayes algorithm for classification. The likelihood of the features is assumed to be Gaussian:Decision tree from sklearn.tree import DecisionTreeClas sifier)
 - Decision tree from sklearn.tree import DecisionTreeClassifier)
 - AdaBoost (from sklearn.ensemble import AdaBoostClassifier)
 - n_estimators : 부스팅 종료를 위한 위한 맥시멈 추정값

from sklearn import datasets iris = datasets.load_iris()

Decision Tree

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier

Naïve Bayes

Bayesian classifiers use Bayes theorem, which says

$$p(C_j|d) = \frac{p(d|C_j)p(c_j)}{p(d)}$$

- $p(c_j | d) = probability of instance d being in class <math>c_j$,
- $p(d \mid c_j) = probability of generating instance d given class <math>c_j$
- $p(c_j) = probability of occurrence of class <math>c_j$
- p(d) = probability of instance d occurring

Adaboost (Adaptive Boosting)

algorithm that forms a committee of weak classifiers

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, \dots, N$.
- 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \text{err}_m)/\text{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N$.
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

