• Основные распределения в теории вероятностей

• Введение в статистику

Сегодня

- сопоставление теории вероятностей и статистики
- основные распределения
- предмет изучения
- области применения

Сопоставление ТВ и статистики

- Генеральная совокупность(ГС) все объекты, которые имеют качества, свойства, интересующие исследователя
- Выборка часть генеральной совокупности элементов, которая охватывается экспериментом

Это два ключевых определения, так как теория вероятностей описывает первое, а статистика занимается вторым!

Получить в распоряжение все данные о ГС маловероятно, на практике есть лишь выборки. С помощью выдвигаемых нами гипотез (об этом завтра) мы будем пытаться оценить всю нашу ГС!

Но чтобы правильно оценить, нам нужно знать терминологию описания ГС, поэтому речь сегодня пойдет о распределениях и их характеристиках.

Сопоставление ТВ и статистики

Генеральная совокупность включает

Распределение данных

- Распределением случайной величины или Распределением данных в статистике называют сопоставление значений исследуемых данных с частотой возникновения этих значений, либо с вероятностью возникновения этих значений
- В Питоне гистограмма(histplot), или барплот(barplot) позволяет взглянуть на распределение данных. Либо в частотном, либо в вероятностном виде.

Распределение данных

- дискретные
- непрерывные

Типы данных

- дискретные: отдельные значения, которые можно подсчитать
 - о тип автомобиля: легковой, грузовой и пр.
 - о словесное обозначение цвета: желтый, красный и пр.
 - количество людей в очереди на кассе супермаркета
- непрерывные: принимают любые значения в каком-либо интервале
 - o poct
 - расстояние
 - возраст
 - ∘ пр.

Функция вероятности (pmf)

Функция, возвращающая вероятность того, что дискретная случайная величина X примет определённое значение k. Является инструментом анализа **дискретных** величин. Обозначение: $P_X(k) = P(X=k) = PMF_X(k)$, где k-дискретно.

$$X \sim Be(p) \ X \sim egin{pmatrix} oldsymbol{tails(0)} & oldsymbol{heads(1)} \ 1-p & p \end{pmatrix}$$

В нашем случае p=0.6

scipy.stats.bernoulli(p=0.6).pmf() (probability mass function)

Функция плотности вероятности (pdf)

Функция, характеризующая сравнительную вероятность реализации тех или иных значений случайной переменной (переменных). Является инструментом анализа **непрерывных** величин. Обозначение: $f_{\xi}(x) = P(\xi = x)$, х - непрерывен.

scipy.stats.norm(loc=2, scale=0.5).pdf() (probability density function)

Функция распределения (cdf)

Функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее либо равное x, где x — произвольное действительное число. Обозначение: $F_{\xi}(x) = P(\xi \leq x)$. Общий для **дискретных** и **нерперывных**.

Функция распределения (cdf)

• Графическая связь с **cdf** и **pdf**

Квантиль распределения(ppf)

- значение, которое заданная случайная величина не превышает с фиксированной вероятностью. Если вероятность задана в процентах, то квантиль называется процентилем или перцентилем
- Квантиль уровня γ :

Если
$$F(x_\gamma)=\gamma$$
, то значение $x_\gamma=F^{-1}(\gamma)$ - является кватилем уровня γ

• Квантиль является обратной функцией, к функции распределения

scipy.stats.norm(loc=0, scale=1).ppf(0.84) (percent point function)

Основные характеристики распределений *Для ГС*:

Математическое ожидание(среднее): $\mathbb{E}[X], \mathbb{M}[X]$

- Сколько в среднем принимает случайная величина
- ullet Для дискретной случайной величины $\mathbb{E}[X] = \sum_i^n x_i p_i$
- ullet Для непрерывной случайной величины $\mathbb{E}[X] = \int_{-\infty}^{+\infty} x_i f(x_i)$

Для выборки:

Выборочное среднее является наилучшей оценкой мат.ожидания ГС, иначе говоря лучше всего приближает это значение (**np.mean()**)

Выборочное среднее:
$$ar{X} = rac{1}{n} \sum_{i=1}^n x_i$$

Основные характеристики распределений

Для ГС:

Дисперсия:
$$\mathbb{D}[X]=\mathbb{E}[(X-\mathbb{E}[X])^2]=\mathbb{E}[X^2]-(\mathbb{E}[X])^2$$

- Мера разброса случайной величины
- ullet Часто обозначается как $\mathbb{D}[X]$, Var[X] (variance)

Для выборки:

Выборочная дисперсия является наилучшей дисперсии ГС, иначе говоря лучше всего приближает это значение (**np.var()**)

Выборочная дисперсия:
$$s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{X})^2$$

№ np.var(ddof=1) (при ddof=1 в знаменателе формулы n-1)

Основные характеристики распределений

Стандартное отклонение: $\sigma_x = \sqrt{\mathbb{D}[X]}$

- тоже мера разброса, но измеряется в тех же величинах, что и исходная случайная величина
- вычисляетя просто как корень из дисперсии

Для выборки:

• аналогично извлечеть корень из выборочной дисперсии

ф пр.std(ddof=1) (при ddof=1 в знаменателе формулы n-1)

Центральная предельная теорема (!!!)

Для данной генеральной совокупности, описанной любым распределением вероятностей, имеющим среднее μ и конечную дисперсию σ^2 , распределение выборочного среднего \bar{X} , вычисленное по выборке размера n из этой совокупности будет приблизительно нормальным со средним μ (среднее значение совокупности) и дисперсией $\frac{\sigma^2}{n}$ (дисперсия совокупности деленная на n), при большом размере выборки n.

Центральная предельная теорема (!!!)

Visualizing the Central Limit Theorem:

Sampling Distributions of the Sample Mean

Author: Cameron Riddell: Twitter @RiddleMeCam

• Лежтит в основе статистической проверки гипотез, об этом завтра

Закон больших чисел

Идея простая: при увеличении числа испытаний выборочное среднее случайной величины стремится к истинному математическому ожиданию распределения.

Примеры распределений

• Ниже приведены основные типы распределений

Нормальное распределение

Если величина является суммой многих случайных слабо взаимозависимых величин, каждая из которых вносит малый вклад относительно общей суммы, то центрированное и нормированное распределение такой величины при достаточно большом числе слагаемых стремится к нормальному распределению.

$$x \sim \mathbb{N}(\mu, \sigma)$$
 $\mathbb{E}_x = \mu$

$$\mathbb{E}_x = \mu$$

$$\sigma_x = \sigma$$

Правило трех сигм

• данное правило сформулировано именно для нормального распределения. Однако эти процентили можно узнать и для любого другого распределения

Распределение Бернулли

Дискретное распределение вероятностей, моделирующее случайный эксперимент произвольной природы, при заранее известной вероятности успеха (p) или неудачи (q=1-p). (Приведите пример из жизни такого распределения)

x - Что выпало на монете $x \sim Be(p)$

$$\mathbb{E}_x=p$$

$$\sigma_x = \sqrt{p\left(1-p
ight)}$$

$$PMF_x(x=k) = p^k \cdot (1-p)^{1-k}$$

Биномиальное распределение

Распределение количества "успехов" в последовательности из n независимых случайных экспериментов, таких, что вероятность "успеха" в каждом из них постоянна и равна p. (Приведите пример из жизни такого распределения)

$$x_i \sim Be(p)$$
 $y=x_1+x_2+...+x_n$ $y \sim Bi(n,p)$ $\binom{n}{k}=rac{n!}{(n-k)!k!}$ - биномиальный коэффициент $pmf_y(k)=\mathbb{P}(y=k)=\binom{n}{k}p^k(1-p)^{n-k}$ $\mathbb{E}_x=n*p$ $\sigma_x=\sqrt{n*p*(1-p)}$

Распределение Пуассона

Дискретное распределение случайной величины, представляющей собой **число событий, произошедших за фиксированное время**, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга. Является приближением биномиального распределения, в случае, когда n - очень большое, а p - очень маленькое. $n \cdot p = \lambda$.

Распределение Пуассона

$$y \sim Pois(\lambda)$$

$$pmf_y(k) = \mathbb{P}(y=k) = rac{\lambda^k}{k!}e^{-\lambda}$$

$$\mathbb{E}_x = \lambda \ \sigma_x = \sqrt{\lambda}$$

- Количество опоздавших автобусов за день
- Число посетителей на веб-сайте за сутки
- scipy.stats.poisson(lambda)

Экспоненциальное распределение

$$egin{aligned} y \sim exp(\lambda) \ pdf_y(k) &= \mathbb{P}(y=k) = \lambda \cdot e^{-\lambda x} \ \mathbb{E}_x &= rac{1}{\lambda} \ \sigma_x &= rac{1}{\lambda} \end{aligned}$$

- Время между отказами оборудования
- Время потраченное на звонок с клиентом
- scipy.stats.expon(lambda)

Итоги

- Случайные величины появляются повсеместно: свойства объектов, измерения и пр
- Часто они бывают близки к каким-то распределениям
- Распределение математическая модель
- У распределений есть характеристики об этом надо помнить
- Всех распределений не выучить: Univariate Distribution Relationships

Справка по функциям

scipy func	Название	Вопрос	Пример
pmf	Функция вероятности	Какова вероятность, что X примет значение x ?	Какова вероятность выпадения числа 3 при броске кубика?
pdf	Функция плотности вероятности	Какова плотность вероятности случайной величины X в точке x ?	Какова плотность нормального распределения в точке $x=1$?
cdf	Функция распределения	Какова вероятность, что $X \leq x$?	Какова вероятность того, что время до отказа устройства составит не больше 2 лет?
sf*	Функция выживания	Какова вероятность, что $X>x$?	Какова вероятность того, что время до отказа устройства будет больше 2 лет?
ppf	Обратная функция распределения	Какое значение X соответствует вероятности p ?	Какое значение распределения соответствует 95%-му процентилю?