1 Discrete Markov process

2 Continuous Markov process

What	$ P(X_{k+1} = x_{k+1} X_0 = x_0, \dots, X_k = x_k) = P(X_{k+1} = x_{k+1} X_k = x_k) $	What	
Transition probability	$P_{ij}(k) = Pr(X_{k+1} = j X_k = i)$	Infinitesimal generator	$Q := \lim_{h \to 0} \frac{P(h) - \mathbb{I}}{h} = P'(0)$
Stationarity	$P_{ij}(k) = P_{ij}$	Stationarity	
State vector	$s[k] = \begin{bmatrix} s_1[k] & s_2[k] & \dots & s_N[k] \end{bmatrix}$	State vector	$s(t) = \begin{bmatrix} s_1(t) & s_2(t) & \dots & s_N(t) \end{bmatrix}$
	$s_i[k] = \Pr\left[X_k = i\right]$		$s_i(t) = Pr\left[X(t) = i\right]$
	$s[k+n] = s[k] P^n$		$s(t+\tau) = s(\tau) P(t)$
Reachability	Irreducible vs reducible	Chapman-Kolmogorov	P(t+u) = P(t) P(u) = P(u) P(t)
Periodicity	$d_i = 1 \text{ vs } d_i > 1$	Memoryless property and transition times	$\tau_{ij} \sim \operatorname{Exp}(\tau; q_{ij}) = q_{ij} e^{-q_{ij}\tau}$
Hitting time	$T_j = \min_{k \ge 0} \left\{ X_k = j \right\}$	a :	-a:T
Reaching and returning	$r_{ij} = Pr(T_j < \infty X_0 = i)$	Sojourn time	$\tau_j \sim \operatorname{Exp}(\tau; q_j) = q_j e^{-q_j \tau}$
Transience and Recurrence	$r_{jj} < 1 \text{ vs } r_{jj} = 1$	P vs Q	P'(t) = P(t) Q = Q P(t)
			$P(t) = e^{Q t}$
Expected number of visits	$\mathbb{E}\left[N_i(j)\right] = \frac{r_{ij}}{1 - r_{jj}} = \sum_{n=1}^{\infty} (P^n)_{ij}$	s vs Q	s'(t) = s(t) Q
Steady state	$\pi = \pi P$		(1) (2) Qt
	Fundamental Theorem of Markov Chains		$s(t) = s(0) e^{Q t}$
		Steady state	$\pi Q = 0$
		Embedded Markov chain	$V_{ij} = rac{q_{ij}}{q_i}$
			$\Delta t \le \frac{1}{\max_j q_j}$

3 Poisson process

What	Counting process		
	Independent increments		
	$Pr[X(t+s) - X(s) = k] = \frac{e^{-\lambda t} (\lambda t)^k}{k!}$ $P(\tau_n = t_n - t_{n-1}; \lambda) = \text{Exp}(\tau; \lambda)$		
When	$P(\tau_n = t_n - t_{n-1}; \lambda) = \operatorname{Exp}(\tau; \lambda)$		
Equivalence what and when	$\{\tau_n > s\} \equiv \{X(t_{n-1} + s) - X(t_{n-1}) = 0\}$		
Memoryless property	$Pr \left[\tau_n > s + t \tau_n > s\right] = Pr \left[\tau_n > t\right]$		
Arrival time n -th event	$\Pr\left[\sum_{k=1}^{n} \tau_k = t\right] = \operatorname{Erlang}(t; n, \lambda)$		
One event per small interval	$Pr[X(t) = 1] = \lambda h + o(h)$		
	$Pr\left[X(h) > 1\right] = o(h)$		
Uniform time 1 event	$Pr\left[\tau_1 < s X(t) = 1\right] = \frac{s}{t}$		
Non-homogenous	$Pr[X(t) - X(s) = k] = Poisson(k; \Lambda(t) - \Lambda(s))$		
	$\Lambda(t) = \int_0^t \lambda(u) du$		

4 Queuing theory

$\pi_i = (1 - \rho) \rho^i$
$ ho = rac{\lambda}{\mu}$
$\mathbb{E}\left[N_S(t)\right] = \mathbb{E}\left[\mathrm{geom}(\rho)\right] = \frac{\rho}{1-\rho}$
$\mathbb{E}\left[N_S\right] = \lambda \mathbb{E}\left[T\right]$
$q_{i,i-1} = i$
P IE

5 Epidemics

$\frac{dS(t)}{dt} = -\beta I(t) S(t) + \delta I$		
$\frac{dI(t)}{dt} = \beta I(t) S(t) - \delta I(t)$		
$r_1 \left(\delta - \beta \pi_0 \right) = 0$ $r_0 + \pi_1 = 1$		
$\pi_0 + \pi_1 = 1$		
$\frac{d\mathbb{E}[X_i(t)]}{\beta \sum_{k=0}^{dt} a_{ik} \mathbb{E}[X_i(t) X_k(t)]} = \epsilon - (\delta + \epsilon) \mathbb{E}[X_i(t)] + \beta \sum_{k=0}^{dt} a_{ik} \mathbb{E}[X_k(t)] - \beta \sum_{k=0}^{dt} a_{ik} \mathbb{E}[X_k(t) X_k(t)]$		
$\frac{\beta_c}{\delta_c} = au_c \ge au_c^{(1)} = rac{1}{\lambda_1}$		
$\frac{dv_i(t)}{dt} = -\delta v_i(t) + (1 - v_i(t)) \left[\beta \sum_k a_{ik} v_k(t) + \epsilon\right]$		
$v_{i\infty} = 1 - \frac{1}{1 + \tau \sum_{k} a_{ik} v_{k\infty}}$		
$rac{d\mathbb{E}[X_i(t)]}{dt} \leq rac{dv_i(t)}{dt}$		
1 3 35 1		