Causal Inference and Regression

Causal inference can be characterized as a predictive problem, where the question is what would have happened under different circumstances.

Simulate and visualize data with two potential outcomes

Potential Outcomes

Then randomly assign treatments to each unit and visualize differences

```
sample_dat %>% ggplot(aes(y = response, x = `potential outcome`)) +
geom_violin(draw_quantiles = c(.025, .5, .975)) +
geom_jitter(aes(color = id)) + theme_bw() + theme(legend.position = 'none') +
ggtitle('Factual Outcomes')
```

Factual Outcomes

Pre-treatment covariates Consider a setting with:

• pre-treatment covariates for sampling units (either continuous or categorical)

• treatments (control + treatment) applied to the sampling units.

Begin with a randomized block design (paired comparisons, is a special case with blocks of size 2). Analysis can

• use differences between treatment and control

• use differences between treatment and control for each (block)

• Adjusting for pre-treatment variables (categorical/blocks or continuous)

$$y_i = \tau z_i + X_i \beta + \epsilon_i,$$

where z_i is an indicator for treatment and τ is the average treatment in the grade.

Note this assumes the average treatment is the same for each block. How would we allow for varying treatment effects?