

DCC060 - Banco de Dados

MATERIAL DE APOIO

Normalização de Banco de Dados Relacionais

PROF. TARCÍSIO DE SOUZA LIMA

- Tabelas de BDs relacionais, derivadas dos modelos ER ou UML, às vezes são afetados por anomalias de atualização e integridade e por problemas de desempenho.
- Quando o BD como um todo é definido como uma única tabela, isso pode resultar em uma grande quantidade de dados redundantes e pesquisas demoradas.
- Pode resultar também em atualizações longas e dispendiosas e as exclusões em particular podem provocar a eliminação de dados úteis com um efeito colateral indesejado.
- Exemplo:

BD Vendas (em uma única tabela) – próximo slide -->

Vendas

nome-produto	num-pedido	nome-cliente	end-cliente	crédito	data	nome-vendedor
aspirador de pó	1458	David Barreto	Andrelândia	6	03/01/03	Carlos
computador	2730	Solange Silva	Petrópolis	10	15/04/05	Tássio
geladeira	2460	Michel Souza	Anápolis	8	12/09/04	Daniel
DVD player	519	Pedro Ramalho	Divinópolis	3	05/12/04	Fred
rádio	1986	Carlos Antonelli	Campos	7	10/05/05	Rui
CD player	1817	Carmem Reis	Muriaé	8	03/08/02	Paulo
aspirador de pó	1865	Carlos Antonelli	Campos	7	01/10/04	Carlos
aspirador de pó	1885	Beth Correia	Divinópolis	8	19/04/99	Carlos
geladeira	1943	David Barreto	Andrelândia	6	04/01/04	Daniel
televisão	2315	Sara Pimentel	Parati	6	15/03/04	Fred

- Produtos, vendedores, clientes e pedidos são todos armazenados na tabela Vendas.
- Informações de produto e cliente são armazenados de forma redundante, desperdiçando espaço de armazenamento.
- Consultas como "quais clientes pediram aspirador de pó no mês passado?" exigiria uma pesquisa na tabela inteira.
- A atualização de um endereço, p.ex., o de David Barreto, exigiria a alteração de múltiplas linhas.
- A exclusão de um pedido de um cliente, p. ex., o de Solange Silva (que comprou um computador caro), se esse for o seu único pedido pendente, excluirá a única cópia do seu endereço e da sua avaliação de crédito como um efeito colateral, sendo difícil (ou impossível) recuperar esta informação.

- Objetivo: tornar o BD seria mais eficiente e confiável.
- Solução: desmembrar a tabela em tabela menores para que esses tipos de problemas sejam eliminados.
- Classes de esquemas de BDs relacionais ou definições de tabelas, chamadas de formas normais, normalmente são usadas para realizar esse objetivo.
- A criação de tabelas de BDs em uma dada forma normal é chamada de normalização. A normalização é feita analisando-se as interdependências entre atributos individuais associados a essas tabelas e tomando-se projeções (subconjuntos de colunas) de tabelas maiores para formar tabelas menores.
- Dependendo do nível de refinamento em que uma tabela se encontre, ela estará numa determinada forma normal.
- Existem regras, baseadas nos conceitos de dependência funcional, que determinam as características necessárias a uma tabela para que ela esteja numa determinada forma normal.

- Superchave: é um conjunto de um ou mais atributos que, quando tomados coletivamente, nos permite identificar exclusivamente uma ocorrência de uma entidade ou linha de uma tabela.
- Chave candidata: qualquer subconjunto de atributos de uma superchave que também seja uma superchave e que não possa ser reduzido a outras superchaves.
- Chave primária: é selecionada arbitrariamente, a partir do conjunto de chaves candidatas, para que ela seja usada como índice dessa tabela; quando constituída
- Chave Estrangeira: campos de uma tabela que sejam chave primária numa outra tabela qualquer.

Exemplos: Suponha as tabelas

Emp = {<u>Cód-Depto, Matrícula-Depto</u>, Nome, Salário, Cargo} Depto = {<u>Cód-Depto, NomeDepto, Ramais</u>}

- na tabela Depto são chaves candidatas os campos:
 Cód-Depto (chave primária escolhida) e NomeDepto;
- na tabela Emp, a composição dos campos Cód-Depto e Matrícula-Depto forma a sua chave primária (chave primária composta);
- o campo Cód-Depto na tabela Emp é um exemplo de chave estrangeira.
- na tabela Depto são superchaves: (Cód-Depto), (Cód-Depto, NomeDepto) e
 (Cód-Depto, NomeDepto, Ramais), que é a superchave trivial (isto é, todos os campos da tabela)

Exemplos: Suponha as tabelas definidas nos exemplos de chaves

- na tabela **Depto** n\u00e3o podem haver registros cujo c\u00f3digo do departamento seja nulo (integridade de entidade);
- na tabela Emp:
 - o campo Matrícula-Depto não pode se nulo (integridade de entidade);
 - o campo Cód-Depto:
 - a) por ser chave estrangeira, poderia assumir o valor nulo ou o de um departamento qualquer, desde que este esteja cadastrado na tabela Depto;
 - b) por ser um componente da chave primária, não pode assumir o valor nulo.

Integridade de Entidade:

- Nenhum campo componente de uma chave primária deve poder assumir um valor nulo;
- Decorre do fato de que todas as entidades que se quer representar devem ser distingüíveis entre si.

Integridade Referencial:

- Um campo que seja chave estrangeira só pode assumir:
 - valor nulo;
 - valor para o qual exista uma tupla na tabela onde ela é chave primária.
- Útil na manutenção da integridade dos dados tanto na sua inclusão como na sua modificação e exclusão.

Observação: Dependendo do SGBD com que se está trabalhando, deve-se verificar que regras de integridade e em que nível elas podem ser por ele implementadas, ficando sob a responsabilidade dos programas a sua implementação complementar.

Dada uma relação R diz-se que o atributo C2 de R é funcionalmente dependente do atributo C1 de R, sse cada valor de C1 em R, tem associado a ele precisamente, e a qualquer instante, um único valor de C2 em R

Esquematicamente:

- Deve ser derivada a partir do conhecimento conceitual que se tem sobre o mundo real que se quer representar.
- O exame dos dados pode sugerir, mas não garantir, dependências funcionais em potencial.

Exemplo: Cód-Depto → NomeDepto

$X \rightarrow Y$

Os valores dos atributos do conjunto X determinam os valores dos atributos do conjunto Y ou, inversamente, os valores dos atributos do conjunto Y dependem funcionalmente dos valores dos atributos do conjunto X.

 $df1: \{CPF, Num-Proj\} \rightarrow \{Horas\}$

 $df2: \{CPF\} \rightarrow \{Nome-Emp\}$

df3: {Num-Proj} → {Nome-Proj, Local-Proj}

DF deve ser explicitamente definida por alguém que conheça a **semântica** dos atributos de uma relação. Não basta deduzir a DF pelas instâncias.

- O conceito de dependência funcional pode ser estendido para o caso em que C1, C2 ou ambos são domínios compostos.
- Sendo C1 uma chave primária composta pelos atributos C11 e C12 diz-se que C2 é completamente funcionalmente dependente de C1 sse, a cada valor de C1 (e não a parte deles!), está associado um único valor de C2.

Esquematicamente:

Exemplo: (Cód-Depto, Matrícula-Depto) → Nome, Salário, Cargo

Dados os atributos C1, C2 e C3 de uma relação, sendo C1 sua chave primária, diz-se que C2 e C3 são mutuamente dependentes sse forem funcionalmente dependentes de C1, além de existir uma dependência funcional entre eles.

Esquematicamente:

Obs.: os atributos são *mutuamente independentes* se nenhum deles for funcionalmente dependente do outro

Exemplo: Supondo uma estrutura de salários padronizados por cargo

{ (Cód-Depto, Matrícula-Depto) → Nome, Salário, Cargo Cargo → Salário

Uma relação (um arquivo) está na **1FN** sse todos os domínios básicos contiverem somente valores <u>atômicos</u> (simples, indivisíveis) e todos os atributos que não pertencem à chave primária são funcionalmente dependentes dela.

Assim sendo:

- · existe uma chave primária
- não existem itens de grupo
- não existem atributos (campos) multivalorados
- relação (arquivo) tem representação bidimensional

Para solucionar o problema da multivaloração devem ser geradas múltiplas tuplas (registros) nas quais:

- cada tupla (registro) contém um único valor do atributo (campo) multivalorado;
- todos os outros campos devem ser copiados da tupla (registro) original

Relação Empregado (não normalizada)

Matrícula	Salário	Data Admissão	Cargo	Telefones
1807	13.017,00	12/10/93	Eng2	264-1092, 257-3196
2264	5.912,50	01/03/96	Prg1	291-1267
2462	5.912,50	20/07/92	Prg1	551-6322, 245-6734

Relação Empregado (em 1FN)

Matrícula	Salário	Data Admissão	Cargo	Telefone
1807	13.017,00	12/10/93	Eng2	264-1092
1807	13.017,00	12/10/93	Eng2	257-3196
2264	5.912,50	01/03/96	Prg1	291-1267
2462	5.912,50	20/07/92	Prg1	551-6322
2462	5.912,50	20/07/92	Prg1	245-6734

Esquema da Relação **Empregado** (em **1FN**):

Porém:

- Existe dependência funcional não completa e
- Existe dependência funcional mútua

que precisam ser resolvidas (seguindo o processo da normalização)

Relação Fornecedor (não normalizada)

Código	Nome	Escritórios	Telefone	Bancos
1632	Cia ABC Ltda.	Rio de Janeiro São Paulo	265-2133 597-1642	BCMT, BNAA
1512	XYZ Ind e Com	Belém Belo Horizonte	227-6331 395-1672 222-1227	BRR
2364	FFF S/A	Recife Curitiba	262-1227 262-1394	BMTG, BNAA

- Passar para a 1FN significaria "aplainar" a relação (arquivo) acima
- Isto só é possível fazendo-se, para cada tupla (registro) da relação (arquivo) não normalizada, todas as combinações entre escritórios/telefones e bancos

Relação Fornecedor (em 1FN)

Código	Nome	Escritório	Telefone	Banco
1632	Cia ABC Ltda.	Rio de Janeiro	265-2133	BCMT
1632	Cia ABC Ltda.	São Paulo	597-1642	BCMT
1632	Cia ABC Ltda.	Belém	227-6331	BCMT
1632	Cia ABC Ltda.	Rio de Janeiro	265-2133	BNAA
1632	Cia ABC Ltda.	São Paulo	597-1642	BNAA
1632	Cia ABC Ltda.	Belém	227-6331	BNAA
1512	XYZ Ind e Com	Belo Horizonte	395-1672	BRR
1512	XYZ Ind e Com	Recife	222-1227	BRR
2364	FFF S/A	Curitiba	262-1394	BMTG
2364	FFF S/A	Curitiba	262-1394	BNAA

Relação Fornecedor

- O resultado em 1FN é uma relação (arquivo) onde cada tupla (registro) representa cada Banco, para cada Escritório, e Telefone do fornecedor.
- Considerando-se que cada fornecedor tem apenas um escritório com um telefone por cidade, a chave primária da relação (arquivo) normalizada fica sendo: Código, Escritório, Banco
- Existem uma série de anomalias na atualização de uma relação (arquivo) como a proposta
- Estas anomalias decorrem do fato de se ter combinado os múltiplos valores de Banco com os múltiplos valores de Escritório (com seu Telefone)
- A observação de que Bancos e Escritórios são independentes uns dos outros sugere que a relação (arquivo) seja desmembrada em duas outras, também em 1FN.

Relação Escritório (em 1FN)

Código	Nome	Escritório	Telefone
1632	Cia ABC Ltda.	Rio de Janeiro	265-2133
1632	Cia ABC Ltda.	São Paulo	597-1642
1632	Cia ABC Ltda.	Belém	227-6331
1512	XYZ Ind e Com	Belo Horizonte	395-1672
1512	XYZ Ind e Com	Recife	222-1227
2364	FFF S/A	Curitiba	262-1394

Relação Banco

Código	Banco
1632	BCMT
1632	BNAA
1512	BRR
2364	BMTG
2364	BNAA

Código Banco

Uma relação (um arquivo) está na **2FN** sse, além de estar na **1FN**, todo atributo <u>não-primo</u>, isto é, não seja membro da chave, for completamente funcionalmente dependente dela, isto é, for totalmente dependente da chave primária.

Assim sendo:

 atributos (campos) que n\u00e3o sejam dependentes exatamente da mesma chave devem ser separados em diferentes rela\u00f3\u00f3es (arquivos)

Relação Fornecedor

Código	Nome
1632	Cia ABC Ltda.
1512	XYZ Ind e Com
2364	FFFS/A

Relação Escritório (em 2FN)

Escritório	Telefone
Rio de Janeiro	265-2133
São Paulo	597-1642
Belém	227-6331
Belo Horizonte	395-1672
Recife	222-1227
Curitiba	262-1394
	Rio de Janeiro São Paulo Belém Belo Horizonte Recife

Exemplo

Passagem para a 2FN

Fundamentos da normalização

Relação Empregado (em 2FN)

Matrícula	Salário	Data Admissão	Cargo
1807	13.017,00	12/10/93	Eng2
2264	5.912,50	01/03/96	Prg1
2462	5.912,50	20/07/92	Prg1

Relação Telefone

Matrícula	Telefone
1807	264-1092
1807	257-3196
2264	291-1267
2462	551-6322
2462	245-6734

Obs.: Dependência mútua ainda precisa ser eliminada

Outro exemplo: relação em 1FN que não está em 2FN

Uma relação (um arquivo) está na **3FN** sse, além de estar na **2FN**, nenhum atributo não-primo for transitivamente dependente da chave primária, isto é, forem mutuamente independentes.

Em outras palavras, para toda DF $X \rightarrow A$, uma das duas condições seguintes devem valer:

- X é uma superchave ou
- A é membro de uma chave candidata

Assim sendo:

 atributos (campos) que estejam envolvidos numa dependência funcional mútua devem ser transferidos para uma outra relação (arquivo)

Exemplo

Relação Empregado (em 3FN)

Matrícula	Matrícula Data Admissão	
1807	12/10/93	Eng2
2264	01/03/96	Prg1
2462	20/07/92	Prg1

Relação Cargo Cargo Salár

Salário
13.017,00 5.912,50

Outro exemplo: relação em 2FN que não está em 3FN

EMP-DEPT CPF Nome-Emp Data-Nasc Endereço Num-Dept Nome-Dept Ger-Dept df1 EMPREGADO Relações em 3FN df1 Data-Nasc Endereço Num-Dept Data-Nasc Endereço Num-Dept df1

- Otimiza desempenho da atualização
- Ajuda a diminuir dúvidas de projeto pois, por vezes, com o objetivo de melhorar o desempenho das funções de acesso, o projetista toma decisões que comprometem as funções de atualização. Seguindo estritamente o processo de normalização, isso nunca aconteceria.
- Grupa dados de tal forma que em uma relação cada dado é um dado dependente da chave, de toda a chave e nada mais que a chave principal da relação.
- É um meio formal de se estruturar a informação de tal forma que fique claro exatamente que tipos de dados existem e que dependências funcionais eles satisfazem.

Observação:

O processo de normalização segue com outras formas (FNBC – Forma Normal Boyce-Codd, além da 4FN e da 5FN). Entretanto, a normalização até 3FN atende a maioria das situações práticas.

Uma tabela \mathbf{R} está na Forma Normal de Boyce-Codd (FNBC) se, para cada DF não trivial $X \to A$, X for uma superchave de \mathbf{R} .

É uma forma mais restritiva de 3FN, isto é toda relação em FNBC está também em 3FN; entretanto, uma relação em 3FN não está necessariamente em FNBC.

Exemplo: Relação em 3FN que não está em FNBC

df2 : {Professor} \rightarrow {Disciplina} {Professor} não é uma superchave.

AULA

<u>Aluno</u>	<u>Disciplina</u>	Professor
Carlos	Química	Ana
Carlos	Física	Antonio
Marta	Química	Ana
Marta	Português	Maria
João	Português	Manoel

Anomalia de exclusão: Se Carlos sair da aula de Física, não teremos nenhum registro de que Antonio leciona Física.

Relações em FNBC

R1

<u>Aluno</u>	<u>Professor</u>
Carlos	Ana
Carlos	Antonio
Marta	Ana
Marta	Maria
João	Manoel

R2

112		
Professor	Disciplina	
Ana Antonio Maria Manoel	Química Física Português Português	

Note, entretanto, que a dependência funcional

df1 : {Aluno, Disciplina} → {Professor}

foi perdida na decomposição.

Considere, por exemplo, a inserção de (Marta, Manoel) em R1.

Decomposição/Junção sem perda

- Conclusão: alguns esquemas não podem ser normalizados em FNBC e ao mesmo tempo preservar todas as dfs.
- Solução: redundância parcial.

AULA

7.OLX		
Aluno	<u>Disciplina</u>	Professor
Carlos	Química	Ana
Carlos	Física	Antonio
Marta	Química	Ana
Marta	Português	Maria
João	Português	Manoel

R2

1\2	
<u>Professor</u>	Disciplina
Ana Antonio Maria Manoel	Química Física Português Português

Relações em **FNBC**, com redundância parcial e todas as dependências funcionais preservadas

Baseada em dependências multivaloradas (DMVs)

Uma relação **R** está em **4FN** se e somente se estiver em **FNBC** e, caso exista alguma **DMV**

a **DMV** é <u>trivial</u> (i.e., $Y \subset X$ ou $X \cup Y = R$)

ou

X é uma superchave de R.

Quarta Forma Normal

Fundamentos da normalização

EMPREGADO

Nome-	<u>Emp</u>	Nome-Proj	Nome-Depend
Prace Prace Prace Prace Bort Bort Bort Bort Bort Bort Bort Bort	do do do do do do do do do do do do do d	X X X X Y X Y Z W X Y Z W X Y Z	João Ana Ana João José José José José Joana Joana Joana Beto Beto Beto Beto

Relação EMPREGADO não está em **4FN**. 2 DMVs não triviais:

Nome-Emp --->> Nome-Proj Nome-Emp --->> Nome-Depend

EMP-PROJ

Nome-Emp	Nome-Proj
Prado	X
Prado	Y
Borba	W
Borba	X
Borba	Y
Borba	Z

FMP-DFP

Nome-Emp	Nome-Depend
Prado Prado Borba Borba Borba	João Ana José Joana Beto

As relações EMP-PROJ e EMP-DEP estão em **4FN**.

- Tipos adicionais de dependências:
 - dependências de junção e de inclusão, que levam a formas normais mais restritas (Quinta Forma Normal, Forma Normal de Domínio-Chave).
- A utilidade prática destas formas normais é limitada, porque num banco de dados real com muitos atributos, é muito difícil (e praticamente irrelevante) descobrir tais dependências e restrições.

Normalização como Ferramenta para Validação da Qualidade de um Esquema

- As formas normais até FNBC são baseadas em dependências funcionais, exceto a 1FN, que faz parte da definição do modelo relacional.
- O design conceitual baseado nos modelos ER ou OO tende naturalmente a produzir esquemas normalizados, a menos da 1FN.
- A separação de conceitos é o resultado natural do design conceitual bem feito.
- Na prática, esquemas que violam a normalização são exemplos de esquemas mal projetados.

