Week-2 Assignment: Markov Chains - Solutions

Ikrima Badr Shamim Ahmed (Questions 1, 2, 3) Aayushman Kumar (Questions 4, 5(a), 5(b)) Satyansh Sharma (Questions 5(c), 6)

 $10^{\rm th}$ June 2025

1 Problem 1: Two-State Loop (10 Marks)

(a) Transition Matrix Q

From the diagram, the transition matrix Q for the Markov chain with state space $\{1, 2, 3, 4\}$ is:

$$Q = \begin{pmatrix} 0 & 0.5 & 0.5 & 0 \\ 0.25 & 0 & 0 & 0.75 \\ 0 & 0 & 0.25 & 0.75 \\ 0 & 0.75 & 0.25 & 0 \end{pmatrix}$$

(b) Recurrent and Transient States

All states $\{1, 2, 3, 4\}$ are **recurrent**. The chain is irreducible: from any state, there is a positive probability of returning to that state in the future.

(c) Two Different Stationary Distributions

The chain is reducible, so there exist stationary distributions supported on the two communicating classes:

(i) Supported on $\{1, 2\}$:

$$\pi_1 + \pi_2 = 1, \quad \pi_3 = \pi_4 = 0$$

From the equations:

$$\pi_1 = 0.25\pi_2, \qquad \pi_2 = 0.5\pi_1$$

Substitute $\pi_2 = 0.5\pi_1$ into $\pi_1 + \pi_2 = 1$:

$$\pi_1 + 0.5\pi_1 = 1 \implies \pi_1 = \frac{2}{3}, \quad \pi_2 = \frac{1}{3}$$

So, one stationary distribution is:

$$\pi^{(1)} = \left(\frac{2}{3}, \frac{1}{3}, 0, 0\right)$$

(ii) Supported on $\{3,4\}$:

$$\pi_1 = \pi_2 = 0, \quad \pi_3 + \pi_4 = 1$$

From the equations:

$$\pi_3 = 0.25\pi_3 + 0.25\pi_4, \qquad \pi_4 = 0.75\pi_3 + 0.75\pi_4$$

The first gives $0.75\pi_3 = 0.25\pi_4 \implies \pi_3 = \frac{1}{3}\pi_4$. With $\pi_3 + \pi_4 = 1$:

$$\frac{1}{3}\pi_4 + \pi_4 = 1 \implies \frac{4}{3}\pi_4 = 1 \implies \pi_4 = \frac{3}{4}, \ \pi_3 = \frac{1}{4}$$

So, another stationary distribution is:

$$\pi^{(2)} = \left(0, \ 0, \ \frac{1}{4}, \ \frac{3}{4}\right)$$

2 Problem 2: Winning Streak (10 Marks)

Let W = win, L = lose. The Markov chain is:

$$P(\text{win next} \mid \text{win}) = 0.8, \quad P(\text{win next} \mid \text{lose}) = 0.3$$

(a) Long-run proportion of wins:

Let π_W and π_L be the stationary probabilities of win and loss.

$$\pi_W = 0.8\pi_W + 0.3\pi_L \qquad \pi_W + \pi_L = 1$$

Substitute $\pi_L = 1 - \pi_W$:

$$\pi_W = 0.8\pi_W + 0.3(1 - \pi_W) \implies \pi_W = 0.8\pi_W + 0.3 - 0.3\pi_W$$

$$\pi_W - 0.8\pi_W + 0.3\pi_W = 0.3 \implies 0.5\pi_W = 0.3 \implies \pi_W = 0.6$$

Answer: 0.6

(b) Long-run proportion of games with dinner:

$$P(\text{dinner}) = 0.7 \times 0.6 + 0.2 \times 0.4 = 0.42 + 0.08 = \boxed{0.5}$$

(c) Expected number of games for a dinner:

This is a geometric random variable with p = 0.5, so expected value is 1/0.5 = 2 games.

3 Problem 3: Cat and Mouse Game (10 Marks)

(a) Stationary distributions:

Cat: Moves to the other room with probability 0.8. Let $\pi_1 = \text{cat}$ in room 1, $\pi_2 = \text{cat}$ in room 2.

$$\pi_1 = 0.2\pi_1 + 0.8\pi_2, \qquad \pi_1 + \pi_2 = 1$$

$$\pi_1 - 0.2\pi_1 = 0.8\pi_2 \implies 0.8\pi_1 = 0.8\pi_2 \implies \pi_1 = \pi_2 = 0.5$$

Mouse: $1\rightarrow 2$ with 0.3, $2\rightarrow 1$ with 0.6. Let $\mu_1 =$ mouse in room 1, $\mu_2 =$ mouse in room 2.

$$\mu_1 = 0.7\mu_1 + 0.6\mu_2, \qquad \mu_1 + \mu_2 = 1$$
 $0.3\mu_1 = 0.6\mu_2 \implies \mu_1 = 2\mu_2$
 $2\mu_2 + \mu_2 = 1 \implies \mu_2 = \frac{1}{3}, \ \mu_1 = \frac{2}{3}$

(b) Is Z_n a Markov chain?

Yes, the process Z_n (the pair of positions) is a Markov chain, because the next state depends only on the current state, not on the past.

4 Problem 4: The Wandering King (20 Marks)

The stationary distribution is proportional to the number of legal moves from each square type:

- Corner squares (4): 3 possible moves each
- Edge (non-corner) squares (24): 5 possible moves each
- Interior squares (36): 8 possible moves each

Total degree: $4 \times 3 + 24 \times 5 + 36 \times 8 = 12 + 120 + 288 = 420$

Corner square:
$$\frac{3}{420} = \boxed{\frac{1}{140}}$$
Edge square: $\frac{5}{420} = \boxed{\frac{1}{84}}$
Interior square: $\frac{8}{420} = \boxed{\frac{2}{105}}$

3

5 Problem 5: Stock Price Model (25 Marks)

(a) Is the stock price recurrent?

No, the stock price is not recurrent. The process has positive drift:

$$E[\Delta] = 0.1 \times 0.01 - 0.05 \times 0.01 = 0.0005 > 0$$

and no reflecting boundaries, so it can drift to infinity.

(b) Does stationary distribution exist?

No, since the chain is not recurrent, no stationary distribution exists.

(c) Probability of earning Rs. 5 before 1:00 pm

You need the stock to reach Rs. 130 (from Rs. 120) before 1:00 pm (3 hours = 2160 five-second intervals). This requires the stock to increase by 1000 ticks in at most 2160 steps.

With $p_{\rm up} = 0.1$, $p_{\rm stay} = 0.85$, $p_{\rm down} = 0.05$, this is a biased random walk. Expected drift per step = 0.1 - 0.05 = 0.05 ticks upward.

Simulation is recommended for an exact probability, but given the positive drift and sufficient time, the probability is positive but less than 1.

6 Problem 6: Substitution Shuffle (25 Marks) (BONUS)

(a) Transition probabilities and stationary distribution

Transition probability from permutation q to h in one step:

$$P(g \to h) = \begin{cases} \frac{1}{\binom{26}{2}} = \frac{1}{325} & \text{if } h \text{ differs from } g \text{ by exactly one transposition} \\ 0 & \text{otherwise} \end{cases}$$

The stationary distribution is **uniform** over all 26! permutations.

(b) Reversibility proof

For the Metropolis-Hastings chain with scores s(g):

For $g \neq h$ where h is reachable from g by one transposition:

$$q(g,h) = \frac{1}{325} \cdot \min\left(1, \frac{s(h)}{s(g)}\right)$$

$$s(g)q(g,h) = s(g) \cdot \frac{1}{325} \cdot \min\left(1, \frac{s(h)}{s(g)}\right) = \frac{1}{325} \min(s(g), s(h))$$

$$s(h)q(h,g) = s(h) \cdot \frac{1}{325} \cdot \min\left(1, \frac{s(g)}{s(h)}\right) = \frac{1}{325} \min(s(h), s(g))$$

Therefore, s(g)q(g,h) = s(h)q(h,g), proving the chain is reversible with stationary distribution proportional to s(g).