```
1. \quad \sigma(r) = 5 \quad . \quad o(s) = 7 \quad .
 16/Cr) = 2 m (1) & C
    n 5 r 5 ' € (r).
  Let 515 = ri
     Br= 52r5" = 5(5-5")5"
         = Sr'S' = (Srs')' = (r')' = r'
   i = 1 nod 5
                    ( o(s/)=(o).
     T=±1 2015
  · ether sr = rs
      or Sr = (-15 =
 Cachy conjugation.
                             124 = p.
            1, p, 1 3
orbit sizes:
  { g f ( | g|cc l(g) = 1) = 2(a) = [g ∈ a) \ | | | | | | |
Nx: p=$12(c)1+p# or site p
    » p/12(6)1.
  7(G) O G.
```

Por Up $0 = \frac{1}{2} \frac{1}{6} \frac{1}{2} \frac{1}{6} = 1 \text{ or } p$.

If $0 = \frac{1}{2} \frac{1}{6} \frac{1}{2} \frac{1}{6} = 1 \text{ or } p$.

If $0 = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{6} = 1 \text{ or } p$.

And $0 = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = 1 \text{ or } p$.

No. $0 = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = 1 \frac{1}{2} \frac{1}{2}$

6. $C_{-}=(3)$. $H=(3^{m})$. $C_{-}/H\stackrel{\sim}{=} C_{m}=(2)$. Let $\Theta: C_{-} \longrightarrow C_{m}$ $3^{i} \longmapsto 2^{i}$. Not: $\Theta \bowtie G = 11$.

9.
$$C \longrightarrow S_{*}^{'} \times S_{*}^{'}$$
 $\chi + i \gamma \longrightarrow (e^{2\pi i \pi}, e^{2\pi i \gamma})$
 $\vdots \qquad \qquad kw \theta = \Gamma$

15. $h : C / \gamma = S' \times S'$

$$(2,7) \longrightarrow (ax+57)$$

$$(3)-(7)$$

$$(3)-(7)$$

$$kv p = \{(x,7) \mid ak+57 = 3\}.$$

14.(a) WLOG:
$$j = (i i)(j + i j + i) - (i - i i)$$

(b) $(i j) = (i i)(i j)(i i)$

that f'(gh)(c)?

With f'(g(s)).

$$f(gh(a)) = f(g(h(a)) = f'(h(a))$$

is let I with f^3 for the action of g^{3-1} , we have $(f^3)^{\frac{1}{3}} = f^{(g^4)}$ is f^3 for the action of g^{3-1} .

 $S_{4} \sim \{1, 2, 3, 4\}.$ Left whin- $\{1, 3, 4, 4\}.$ Left whin- $\{1,$

5 ~ (R") n > {polys}

left action

Queston:

Color the faces seed to R, a e- 3.

How may defent ways are the, up to

younkn of the who?