Vérification ponctuelle des algorithmes de RÉGRESSION

+ sélection de modèles

Atelier #11

Qu'est-ce que la vérification ponctuelle ("spot-check")?

Définition de vérification ponctuelle ("spot-check")

C'est une méthode qui <u>compare plusieurs algorithmes entre eux</u> dans le but d'identifier celui ou ceux qui performent le mieux pour la problématique d'apprentissage automatique à solutionner et les données disponibles.

Pourquoi faire une vérification ponctuelle?

- Très difficile de savoir à l'avance quel algorithme est le meilleur pour un problème d'apprentissage automatique.
- Pour se concentrer dès le début sur un ou quelques algorithmes qui sont les plus prometteurs.

Algorithmes de régression

Terminologie		Scikit-learn		
Français	Anglais	Module	Documentation	Algorithme
Régression Linéaire	Linear Regression	linear_model	https://scikit-learn.org/stable/modules/linear _model.html#ordinary-least-squares	LinearRegression
Régression de Crête	Ridge Regression	linear_model	https://scikit-learn.org/stable/modules/linear_model.html#ridge-regression-and-classification	Ridge
Régression Linéaire Lasso	Lasso Linear Regression	linear_model	https://scikit-learn.org/stable/modules/linear _model.html#lasso	Lasso
Régression Elastic Net	Elastic Net Regression	linear_model	https://scikit-learn.org/stable/modules/naive bayes.html#gaussian-naive-bayes	ElasticNet
K plus proches voisins	k-Nearest Neighbors (KNN)	neighbors	https://scikit-learn.org/stable/modules/neigh bors.html#nearest-neighbors-regression	KNeighborsRegressor
Arbres de décision	Decision Trees	tree	https://scikit-learn.org/stable/modules/tree.ht ml#regression	DecisionTreeRegressor
Machines à vecteurs de support (MVS)	Support Vector Machine (SVM)	svm	https://scikit-learn.org/stable/modules/svm.ht ml#regression	SVR

Sélection de modèles

Définition: Comparer plusieurs modèles entres eux en utilisant un métrique commun dans le but de sélectionner le ou les meilleur(s) modèle(s).

Étapes :

- 1. Définir les algorithmes à tester.
- 2. Sélectionner le métrique approprié à la problématique.
- 3. Faire rouler les modèles de base, sans hyperparamétrisation, tous ensemble.
- 4. Classer les modèles du meilleur au pire.
- 5. Sélectionner le modèle le plus performant.
 - Si plusieurs modèles ont une performance équivalente, voir la leçon 13.

Note

Certains algorithmes seront plus approfondis, mais on ne va pas approfondir le fonctionnement de tous les algorithmes qui seront vu dans le cadre théorique de ce cours.