JOINT STUDY: WHO BUYS THE BUD?

Jasmine Le & Ashley Yang

RESEARCH QUESTION

QUESTION
Does median income, racial makeup, type of city, crime rate, and median age play a role in marijuana sales in CA cities?

SIGNIFICANCE AND BACKGROUND

Post War on Drugs: Who is really economically benefiting

from the increase in cannabis sales?

OVERVIEW

Data Collection

Data **Exploration**

Model Fitting

Model Diagnostics

Finding the relevant data and explanatory variables

Creating plots to better understand our data

First order model and interaction models

Checking Model Adequacy

DATA

Cannabis Sales
CA Dept of Tax and Fee
Administration - 2024

Median Income,
Age
Date Commons (Google) - 2023

Total Crime
US FBI- 2019

Population
Data Commons (Google) - 2023

Racial Makeup

US Census Bureau

Type of City
Niche

DATA SUMMARY

	Overall
	(N=53)
other	
Mean (SD)	18.7 (9.36)
Median [Min, Max]	17.2 [6.60, 46.0]
asian	
Mean (SD)	9.53 (8.14)
Median [Min, Max]	6.40 [0.100, 33.5]
black	
Mean (SD)	6.16 (6.21)
Median [Min, Max]	3.20 [0.600, 28.1]
native	
Mean (SD)	1.78 (1.82)
Median [Min, Max]	1.10 [0.400, 11.5]
hispanic	
Mean (SD)	40.1 (21.2)
Median [Min, Max]	37.3 [9.30, 98.1]
White	
Mean (SD)	63.8 (14.0)
Median [Min, Max]	64.8 [36.2, 86.7]

55 (6) 5	
Med.Age	
Mean (SD)	37.0 (5.73)
Median [Min, Max]	36.8 [27.2, 57.8]
Med.Income	
Mean (SD)	40300 (10700)
Median [Min, Max]	37000 [21600, 69300]
sales.per.capita	
Mean (SD)	421 (495)
Median [Min, Max]	292 [92.3, 3480]
crime.per.capita	
Mean (SD)	0.0710 (0.0315)
Median [Min, Max]	0.0666 [0.0282, 0.172]
Urban.rural.class	
Rural	9 (17.0%)
Suburban	25 (47.2%)
Urban	19 (35.8%)

HEATMAP

SIMPLE ADDITIVE MODEL

Hypothesized and Predicted Model

$$\begin{aligned} \text{sales.per.capita}_i &= \beta_0 + \beta_1 \cdot \text{Med.Age}_i + \beta_2 \cdot \text{Med.Income}_i + \beta_3 \cdot \text{Urban.rural.class.Suburban}_i \\ &+ \beta_4 \cdot \text{Urban.rural.class.Urban}_i + \beta_5 \cdot \text{crime.per.capita}_i + \beta_6 \cdot \text{other}_i + \beta_7 \cdot \text{asian}_i \\ &+ \beta_7 \cdot \text{asian}_i + \beta_8 \cdot \text{black}_i + \beta_9 \cdot \text{native}_i + \beta_10 \cdot \text{hispanic}_i + \beta_{11} \cdot \text{White}_i + \epsilon_i \\ &\qquad \qquad \qquad \\ &\quad \text{Where } \epsilon \sim \text{N}(0,\sigma) \\ &\quad \text{*Where $Urban.rural. class. Rural$_i$ is our baseline} \end{aligned}$$

 $ext{Sales.per.capita}_i = .000014 + 6.147 \, ext{Med.Age}_i + .004 ext{Med.Income}_i + 331.9 ext{Urban.rural.classSuburban}_i \\ + 169.7 ext{Urban.rural.classUrban}_i - 562.5 ext{crime.per.capita}_i - 1399 ext{Other}_i - 1419 ext{asian}_i \\ - 1415 ext{black}_i - 1182 ext{native}_i - 3.434 ext{hispanic}_i - 1411 ext{White}_i + \epsilon_i \end{aligned}$

Adj. R Squared: 0.5374

INTERACTION MODEL 1

INTERACTION PLOT

Hypothesized and Predicted Model

```
sales.per.capita_{i} = \beta_{0} + \beta_{1} \cdot Med.Age_{i} + \beta_{2} \cdot Med.Income_{i} + \beta_{3} \cdot Urban.rural.classSuburban_{i} + \\ \beta_{4} \cdot Urban.rural.classUrban_{i} + \beta_{5} \cdot crime.per.capita_{i} + \beta_{6} \cdot other_{i} + \beta_{7} \cdot asian_{i} + \\ \beta_{8} \cdot black_{i} + \beta_{9} \cdot native_{i} + \beta_{10} \cdot hispanic_{i} + \beta_{11} \cdot White_{i} + \beta_{12} \cdot Med.Age*Med.Income_{i} + \epsilon_{i} \\ Where \varepsilon \sim N(0,\sigma)
```

*Where $Urban. rural. class. Rural_i$ is our baseline

```
	ext{sales.per.capita}_i = .00001 + 118.9 	ext{Med.Age}_i + .1170 	ext{Med.Income}_i + 217.8 	ext{Urban.rural.classSuburban}_i + \\ .5662 	ext{Urban.rural.classUrban}_i - 474.6 	ext{crime.per.capita}_i - 1391 	ext{other}_i - 1412 	ext{asian}_i \\ - 1408 	ext{black}_i - 1225 	ext{native}_i - 3.790 	ext{hispanic}_i - 1405 	ext{White}_i - .002 	ext{Med.Age*Med.Income}_i \\ \end{aligned}
```

Model Assumptions

Normality

Linearity & Equal Variance

SUMMARY

Variable	Coefficient (p-value)
Med.Age	118.9 (0.006) ***
Med.Income	0.117 (0.006) ***
Med.Age * Med.Income	-0.003 (0.007) ***

Adj. R Squared: 0.6047

3

Interaction Model 2

Hypothesized and Predicted Model

```
sales.per.capita_i = \beta_0 + \beta_1 \cdot Med.Age_i + \beta_2 \cdot Med.Income_i + \beta_3 \cdot Urban.rural.classSuburban_i + \beta_4 \cdot Urban.rural.classUrban_i + \beta_5 \cdot crime.per.capita_i
                                                                +\beta_6 \cdot \text{other}_i + \beta_7 \cdot \text{asian}_i + \beta_8 \cdot \text{black}_i + \beta_9 \cdot \text{native}_i + \beta_{10} \cdot \text{hispanic}_i + \beta_{11} \cdot \text{White}_i + \beta_{12} \cdot \text{Med.Age*Med.Income}_i
                                                                + \beta_{13} \cdot \text{Suburban*Crime}_i + \beta_{14} \cdot \text{Urban*Crime}_i + \epsilon_i
                                                                                                                                                                                                                                                                                                 Where \varepsilon \sim N(0,\sigma)
                                                                                                                                                                                                                                                                                             *Where Urban. rural. class. Rural_i is our baseline
     sales.per.capita_i = 180800 + 117.9 Med. Age_i + .1113 Med. Income_i - .9443 Urban.rural. class Suburban_i - 682.1 Urban.rural. class Urban_i - 682.1 Urban_i - 682.1 Urban.rural. class Urban_i - 682.1 Urb
                                                                   -8938crime.per.capita<sub>i</sub> -1827other<sub>i</sub> -1858asian<sub>i</sub> -1859black<sub>i</sub> -1644native<sub>i</sub> -7.580hispanic<sub>i</sub> -
                                                  1848White<sub>i</sub> -.002(Med.Age<sub>i</sub> \times Med.Income<sub>i</sub>) +.6061(Urban.rural.classSuburban<sub>i</sub> \times crime.per.capita<sub>i</sub>)
                                                                     + 11760(Urban.rural.classUrban<sub>i</sub> × crime.per.capita<sub>i</sub>)
```

INTERACTION PLOT

SUMMARY

Variable	Coefficient (p-value)
Med.Age	1179 (0.005) ***
Med.Income	0.111 (0.007) ***
Med.Age * Med.Income	-0.003 (0.007) ***

Adj. R Squared: 0.627

RESULTS

Model Fit (Adjusted R Squared): 60.47%

Significant Predictors:

- Median Income (Individual) (+)
- Median Age (+)
- Median Income * Median Age (-)

DISCUSSION

Limitations:

- Limited dataset (not enough diverse cities in the dataset) Overfitting
- Outdated Data (2019 Crime)
- Omitted Variable Bias Education, (Local) Business Density
- Equal Variance Assumption (?)

Recommendations & Future Work:

- PCA, LASSO, stepwise regression (reduce model complexity)
- Possible remediation of Equal Variance Assumption (Box-Cox)
- Data from different cities

REFERENCES

- "Open Data Portal." Www.cdtfa.ca.gov,
 www.cdtfa.ca.gov/DataPortal/dataset.htm?url=CannabisSalesByCounty.
- "Download Tool Data Commons." Datacommons.org, 2025,
 datacommons.org/tools/download#pt=City&place=geoId%2Fo6&sv=Median_Age_Person__Median_Income_
 Person&dtType=LATEST&facets=%7B%7D. Accessed 27 Apr. 2025.
- Federal Bureau of Investigation. "California." FBI, 2019,
 ucr.fbi.gov/crime-in-the-u.s/2019/crime-in-the-u.s.-2019/tables/table-8/table-8-state-cuts/california.xls.
- "Niche." Niche, 2025, www.niche.com/places-to-live. Accessed 27 Apr. 2025.
- US Census Bureau. "Census Datasets." *Census.gov*, 3 Jan. 2024, www.census.gov/data/datasets.html.