

Chris Phelps

Problem 2.1

Define $f: \mathbb{R} \mapsto \mathbb{R}$ by (Heaviside function)

Show that for every $x \in \mathbb{R}$, there are smooth coordinate charts (U,ϕ) containing x and (V,ψ) containing f(x) such that $\psi \cdot f \cdot \phi^{-1}$ is smooth as a map from $(\phi(U \cap f^{-1}(V)))$ to $\psi(V)$ but f is not smooth in the sense we have defined in this chapter.

For all $x \neq 0$ this is obvious by selecting and U not containing 0, then f_U is linear thus smooth

For x=0, we have f(x)=1, so we can select the neighborhood $U=(-\delta,\delta)$ and the neighborhood $V=(-\epsilon,\epsilon)$, and let ϕ,ψ be the identity.

Then $f^{-1}(V)=(-\infty,0]$ so that $U\cap f^{-1}(V)=(-\epsilon,0]$ and $(\phi\circ f\circ\phi^{-1})_{U\cap f^{-1}(V)}=0$, so it is smooth. However, it is not $\phi\circ f\circ\phi^{-1}$ is not smooth on the open set U, so is not smooth in the context defined in the chapter.

As an aside, this is consistent with Proposition 2.5 because

- 1. In condition (a), it violates the openness part of the statement.
- 2. In condition (b), it violates the continuous.

Problem 2.2

Prove Proposition 2.12: Suppose $M_1 \times \ldots \times M_k$ and N are smooth manifolds with or without boundary, such that at most one of M_1, \ldots, M_k has nonempty boundary. For each i, let $pi_i: M_1 \times \ldots \times M_k \mapsto M_i$ denote the projection onto the M_i factor. A map $F: N \mapsto M_1 \times \ldots \times M_k$ is smooth if and only if each of the component maps $F_i = \pi_i \circ F: N$ M_i is smooth.

```
Observation: A function f:\mathbb{R}^n\mapsto\mathbb{R}^m is smooth if and only if its coordinate functions are smooth. (p. 11). \Longrightarrow Trivial. \longleftarrow Let p\in N. By Proposition 2.5 (a), there exists smooth chart (U_i,\psi_i), (V_i,\phi_i) such that 1. F_i(p)\in V_i 2. U_i\cap F_i^{-1} is open in N 3. \psi_i\circ F_i\circ\phi_i^{-1} is smooth on from \phi_i(U_i\cap F_i^{-1}) to \psi_i(V_i) Let U=\cap_i U_i and V=\Pi_i V_i. First observe that for each i a. \phi_i|_U=\phi
```

b. $F_i|_U$ is smooth for each i.

Then let ψ_i^j be the j th coordinate map of ψ_i , and note that $\psi|_U = (\psi_1^1, \dots, \psi_k^{n_k})$ is a smooth map with ϕ_i^j the coordinate functions.

We then establish the following properties

1. $F(p) \in V$: clear from definition of V 2. $U \cap F^{-1}(V)$ is open in N: note that $F^{-1}(V) = F^{-1}(\Pi_i V_i) = F^{-1}(\cap_i (V_i \times \Pi_{j \neq i} M_j))$ 3. $\psi \circ F \circ \phi^{-1}$

By a-b above and the definition of ψ

 $\psi \circ F \circ \phi^{-1} = (\psi_1 \circ F_1 \circ \phi_1^{-1}, \dots, \psi_k \circ F_k \circ \phi_k^{-1})$ is a function $mathbb{R}^n : \mapsto \mathbb{R}^m$, and is smooth in each coordinate, therefore it is smooth.

Because 1-3 are satisfied, the statement follows from Proposition 2.5

Problem 2.3

For each of the following maps between spheres, compute sufficiently many coordinate representations to prove that it is smooth.

- 1. $p_n: \mathbb{S}^1 \mapsto \mathbb{S}^1$ is the nth power map $(p_n(z) = z^n)$
- **2.** $\alpha: \mathbb{S}^n \mapsto \mathbb{S}^n$ is the antipodal map $(\alpha(x) = -x)$
- 3. $F: \mathbb{S}^3 \mapsto \mathbb{S}^2$ is given by $F(w,z) = (z\bar{w} + w\bar{z}, iw\bar{z} iz\bar{w}, z\bar{z} w\bar{w})$

Problem 2.4

Show that the inclusion map $\bar{\mathbb{B}}^n\mapsto \mathbb{R}^n$ is smooth when $\bar{\mathbb{B}}^n$ is regarded as a manifold with boundary.

Problem 2.5

Let $\mathbb R$ be the real line with its standard smooth structure, and let $\widetilde{\mathbb R}$ denote the same topological manifold with the smooth structure defined in Example 1.23. Let $f:\mathbb R\mapsto\mathbb R$ be a function that is smooth in the usual sense.

- 1. Show that f is also smooth as a map from $\mathbb R$ to $\tilde{\mathbb R}.$
- 2. Show that f is smooth as a map from $\tilde{\mathbb{R}}$ to \mathbb{R} if and only if $f^(n)(0)=0$ whenever n is not an integral multiple of 3.

Problem 2.6

Let $P: \mathbb{R}^n \setminus \{0\} \mapsto \mathbb{R}^{k+1} \setminus \{0\}$ be a smooth function, and suppose that for some $d \in \mathbb{Z}, P(\gamma x) = \gamma^d P(x)$ for all $\lambda \in \mathbb{R} \setminus \{0\}$ and $x \in \mathbb{R}^n \setminus \{0\}$. Show that the map $\tilde{P}: \mathbb{RP}^n \mapsto \mathbb{RP}^k$ defined by ([x]) = [P(x)] is well-defined and smooth.

Problem 2.7

Let M be a nonempty smooth n-manifold with or without boundary, and suppose $n \geq 1$. Show that the vector space $C^{\infty}(M)$ is infinite-dimensional.

Problem 2.8

Define $F:\mathbb{R}^n\mapsto\mathbb{RP}^n$ by $F(x^1,\ldots,x^n)=[x^1,\ldots,x^n,1]$. Show that F is a diffeomorphism onto a dense open subset of \mathbb{RP}^n Do the same for $G:\mathbb{C}^{!}\to\mathbb{CP}^n$ defined by $G(z^1,\ldots,z^n)=[z^1,\ldots,z^n,1]$.

Problem 2.9

Problem 2.10

For any topological space M, let C(M) denote the algebra of continuous functions $f:M\mapsto \mathbb{R}$. Given a continuous map $F:M\mapsto \mathbb{N}$, define $F^*:C(N)\mapsto C(M)$ by $F^*(f)=f\circ F$.

- 1. Show that F^* is a linear map.
- 2. Suppose that M and N are smooth manifolds. Show that $F:M\mapsto N$ is smooth if and only if $F^*(C^\infty(N))\subseteq C^\infty(M)$.
- 3. Suppose $F: M \mapsto N$ is a homeomorphism between smooth manifolds. Show that it is a diffeomorphism if and only if F^* restricts to an isomorphism from $C^\infty(N)$ to $C^\infty(M)$.

Problem 2.11

Suppose V is a real vector space of dimension $n \geq 1$. Define the projectivization of V, denoted $\mathbb{P}(V)$, to be the set of 1-dimensional linear subspaces of V, with the quotient topology induced by the map $\pi:V\setminus\{0\}\mapsto\mathbb{P}(V)$ that sends x to its span. Show that $\mathbb{P}(V)$ is a topological (n-1)-submanifold, and has a unique smooth structure with the property that for each basis (E_1,\ldots,E_n) for V, the map $E:\mathbb{RP}^{n-1}\mapsto\mathbb{P}(V)$ defined by $E[v^1,\ldots,v^n]=[v^1E_i]$ (where brackes denote equivalence classes) is a diffeomorphism.

Problem 2.12

State and prove an anology of 2-11 in complex vector spaces.

Problem 2.13

Suppose M is a topological space with the property that for every indexed open cover $\mathcal X$ of M, there exists a partition of unity subordinate to $\mathcal X$. Show that M is paracompact.

Problem 2.14

Suppose that A and B are disjoint closed subsets of a smooth manifold M. Show that there exists $f \in C^{\infty}(M)$ such that $0 \le f(x) \le 1$ for all $x \in M, f^{-1}(0) = A$, and $f^{-1}(1) = B$.

We use without proof the fact that topological manifolds are T_4 .

Therefore for A, B disjoint closed sets there exist disjoint neighborhoods $U_A \supseteq A, U_B \supseteq B$. By Proposition 2.2.5 there exist smooth bump fuctinos $\psi_A, \psi_B : M \mapsto \mathbb{R}$ s.t.

1.
$$\phi_A^{-1}(1) = A$$

2.
$$\phi_B^{-1}(1) = B$$

3.
$$\operatorname{supp} \phi_A \subseteq U_A$$

4.
$$\operatorname{supp} \phi_B \subseteq U_B$$

Note that in particular this implies

1.
$$\phi_A(p) = 0$$
 for all $p \in B$

2.
$$\phi_B(p) = 0$$
 for all $p \in A$

Let $f = \frac{1}{2} (1 - \phi_A + \phi_B)$. f is smooth because it is a linear combination of smooth functions, and clearly $0 \le f(x) \le 1$ for all $x \in M$.

Then for all $x \in A$

$$f(x) = \frac{1}{2} (1 - \phi_A(x) + \phi_B(x))$$
$$= \frac{1}{2} (1 - 1 + 0)$$
$$= 0.$$

Similarly, for all $x \in B$

$$f(x) = \frac{1}{2} (1 - \phi_A(x) + \phi_B(x))$$
$$= \frac{1}{2} (1 - 0 + 1)$$
$$= 1.$$

Problem 3.1

Suppose M and N are smooth manifolds with or without boundary, and $F:M\mapsto N$ is a smooth map. Show that $dF_p:T_pM\mapsto T_{F(p)}N$ is the zero map for each $p\in M$ if and only if F is constant on each component of M.

 \Longrightarrow

Assume dF_p is the zero map, let (U, ϕ) be a coordinate chart on M containing p and (V, ψ) be a coordinate chart on N containing F(p).

 $\phi^{-1}\circ F\circ \psi$ is a map from $\phi(U)\mapsto \phi(V)$ and $d(\phi^{-1}\circ F\circ \psi)=0$, so $\phi^{-1}\circ F\circ \psi$ is constant on $\phi^{-1}(U)$. Since ψ is a diffeomorphism this means $\phi^{-1}\circ F$ is and ϕ^{-1} is a diffeomorphism this means F is constant on $U\cap V$. Then we can use the fact that F is constant on every coordinate chart (U,ϕ) to determine that F is constant on M. By the gluing lemma, there is a unique smooth map that agree with this construction on all intersections of smooth charts, therefore it is the constant map.

 \leftarrow

Assume F be constant and let $f \in C^{\infty}(N)$, then $dF_p(v)(f) = v(f \circ F)$. Note that $f \circ F$ is constant. Therefore by Lemma 3.4a, $v(f \circ F) = 0$. Since $dF_p(v)(f) = 0$ for all f, $dF_p(v) = 0$ for all $v \in T_pM$ and dF_p is the zero map.

Problem 3.2

Prove Proposition 3.14: Let M_1,\ldots,M_k be smooth manifolds, and for each j, let $\pi_j:M_1\times\ldots\times M_k\mapsto M_j$ be the projection onto the M_j factor. For any point $p=(p_1,\ldots,p_k)\in M_1\times\ldots\times M_k$, the map

$$\alpha: T_P(M_1 \times \ldots \times M_k) \mapsto T_{P_1}M_1 \oplus \ldots \oplus T_{p_k}M_k$$

defined by

$$\alpha(v) = (d(\pi_1)_n(v), \dots, d(\pi_k)_n(v))$$

is an isomorphism.

Problem 3.3

Prove that if M and N are smooth manifolds, then $T(M \times N)$ is diffeomorphic to $TM \times TN$.

Problem 3.4

Show that TS_1 is diffeomorphic to $S_1 \times \mathbb{R}$.

First, it is clear that $T\mathbb{S}^1=\mathbb{S}^1\times\mathbb{R}$ as a set. Will attempt to brute force this for learning porpoises.

Pick two points a,b in \mathbb{S}^1 and two coordinate charts $(U_\alpha,\phi_\alpha),(U_\beta,\phi_\beta)$ where $U_\alpha=\mathbb{S}^1\setminus b,U_\beta=\mathbb{S}^1\setminus a,\phi_\alpha(U_\alpha)=[-\pi,\pi),\phi_\beta(U_\beta)=[0,2\pi).$ It is clear that this is possible by taking the normal identification of \mathbb{S}^1 with the unit circle and letting a=(1,0),b=(-1,0). In addition, note that this choice satisfies the smooth manifold chart lemma.

Now take the standard $(\pi^{-1}(U_{\alpha}), \tilde{\phi_{\alpha}})$ coordinate maps. Then $\tilde{\phi}_{\alpha} \circ \tilde{\phi}_{\beta}^{-1}(x, v) =$

TODO: review and complete

Problem 3.5

Let $\mathbb{S}^1 \subset \mathbb{R}^2$ be the unit circle, and let $K \subset \mathbb{R}^2$ be the boundary of the square of side 2 centered at the origin. Show that there is a homeomorphism $F: \mathbb{R}^2 \mapsto \mathbb{R}^2$ such that $F(\mathbb{S}^1) = K$ but no diffeomorphism with the same property.

Note that
$$K=\{(x,y):\max|x|,|y|=1\}$$
. Let $G:\mathbb{R}^2\setminus 0\mapsto \mathbb{R}^2\setminus 0$ st $G(x,y)=\frac{x^2+y^2}{\max|x|,|y|}$ and let $F(x,y)=\begin{cases} (x\cdot G(x,y),y\cdot G(x,y)) & (x,y)\neq (0,0)\\ 0 & \text{otherwise} \end{cases}$

Then on the unit circle

$$F(x,y) = \begin{cases} \left(\frac{x}{|x|}, \frac{y}{|x|}\right) & |x| >= |y| \\ \left(\frac{x}{|y|}, \frac{y}{|y|}\right) & |x| < |y| \end{cases}$$

So that $F(\mathbb{S}^1)=K$. Proof that this is a homeomorphism is omitted, but basically divide plane on lines y=x and y=-x, it is a homeomorphism on each, and stitch back together. Then observe that $\lim_{x\to 0, y\to 0} F(x,y)=0$.

To show that there is no diffeomorpishm, consider a smooth curve $\gamma: J \mapsto \mathbb{S}^1$. Suppose that such a diffeomorphism F exists, and let $t_0 \in J$ s.t. $F(\gamma(t_0)) = (1,1)$.

we need a way to show that t < t0 is on one leg and t0 > j is on the other

Do the normal thing of identifying $\gamma \circ \iota = \gamma$.

Then $F \circ \gamma$ is a diffeomorphism so that $dF \circ d\gamma : TJ \to \mathbb{R}^2$. Taking a limit from $t < t_0$ and $t > t_0$ shows that this map cannot even be continuous.

TODO: review and complete

Problem 3.6

Consider \mathbb{S}^3 as the unit sphere in \mathbb{C}^2 under the usual identification. For each $z=(z^1,z^2)\in\mathbb{S}^3$, define a curve $\gamma_z:\mathbb{R}\mapsto\mathbb{S}^3$ by $\gamma_z=e^{it}z^1,e^{it}z^2)$. Show that γ_z is a smooth curve whose velocity is never zero.

Problem 3.7

Let M be a smooth manifold with or without boundary and p be a point of M. Let $C_p^\infty(M)$ denote the algebra of germs of smooth real-valued functions at p, and let \mathcal{D}_pM denote the vector space of derivations of $C_p^\infty(M)$. Define a map $\Phi:\mathcal{D}_pM\mapsto T_pM$ by $(\Phi v)f=v([f]_p)$. Show that Φ is an isomorphism.

Problem 3.8

Let M be a smooth manifold with or without boundary and $p \in M$. Let \mathcal{V}_pM denote the set of equivalence classes of smooth curves starting at p under the relation $\gamma_1 = \gamma_2$ if $(f \circ \gamma)'(0) = (f \circ \gamma_2)'(0)$ for every smooth real valued function f defined in a neighborhood of p. Show that the map $\Psi: \mathcal{V}_pM \mapsto T_pM$ defined by $\Psi[\gamma] = \gamma'(0)$ is well-defined and bijective.

Problem 4.1

Use the inclusion map $\mathbb{H}^n \hookrightarrow \mathbb{R}^n$ to show that Theorem 4.5 does not extend to the case in which M is a manifold with boundary.

Let $p \in \partial \mathbb{H}^n$ and note that:

- 1. The inclusion $\mathbb{H}^n \hookrightarrow \mathbb{R}^n$ is smooth.
- 2. $d\iota_p$ is invertible. [NOTE: why? look up definition]

However, there are no neighborhoods $U\ni p, V\ni F(P)$, s.t. $\iota|_U:U\mapsto V$ is a diffeomorphism. To see this, note that every U is open in \mathbb{H}^N but each $V\ni F(p)$ is not open in \mathbb{R}^n .

Problem 4.2

Suppose M is a smooth manifold (without boundary), N is a smooth manifold with boundary, and $F:M\mapsto N$ is smooth. Show that if $p\in M$ is a point such that dF_p is nonsingular, then $F(p)\in \mathbf{Int}N$.

Problem 4.3

Formulate and prove a version of the rank theorem for a map of constant rank whose domain is a smooth manifold with boundary.

Problem 4.4

Let $\gamma:\mathbb{R}\mapsto \mathbb{T}^2$ be the curve of Example 4.20. Show that the image set $\gamma(R)$ is dense in \mathbb{T}^2 .

Let $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1 \subseteq \mathbb{C}^2$ denote the torus and let α be any irrational number and consider the map $\gamma : \mathbb{R} \mapsto \mathbb{T}^2$ given by

$$\gamma(t) = \left(e^{2\pi it}, e^{2\pi i\alpha t}\right)$$

Let $(a,b)\in\mathbb{T}^2$. To show that the $\gamma(\mathbb{R})$ is dense in \mathbb{T}^2 , we demonstrate a sequence in $\gamma(\mathbb{R})$ that converges to (a,b). L

Let $\beta \in \mathbb{R}$ s.t. $a = e^{2\pi i \beta}$. Consider the set

$$\begin{split} \left\{ \gamma(k+\beta) \right\}_{k \in \mathbb{Z}} &= \left\{ \left(e^{2\pi i (k+\beta)}, e^{2\pi i \alpha (k+\beta)} \right) \right\}_{k \in \mathbb{Z}} \\ &= \left\{ \left(a, e^{2\pi i \alpha \beta} e^{2\pi i \alpha k} \right) \right\}_{k \in \mathbb{Z}} \end{split}$$

 $\alpha k \mod 1$ is dense in [0,1] because it is an irrational rotation rotation of the circle, therefore $e^{2\pi i\alpha k}$ is dense in $\mathbb C$, therefore there is a subsequence $e^{2\pi i\alpha k_j}\to be^{-2\pi i\alpha\beta}$, therefore

$$\{\gamma(k+\beta)\}_{k\in\mathbb{Z}} = \left\{\left(a, e^{2\pi i \alpha \beta} e^{2\pi i \alpha k}\right)\right\}_{k\in\mathbb{Z}} \to (a, b)$$

Problem 4.5

Let \mathbb{CP}^n denote the n- dimensional complex projective space, as defined in Problem 1-9.

- a) Show that the quotient map $\pi:\mathbb{C}^{n+1}\setminus\{0\}\mapsto\mathbb{CP}^n$ is a surjective smooth submersion.
- b) Show that \mathbb{CP}^1 is diffeomorphic to \mathbb{S}^2 .

Problem 4.6

Let M be a nonempty smooth compact manifold. Show that there is no smooth submersion $F:M\mapsto \mathbb{R}^k$ for any k>0.

Let M be compact and $F: M \mapsto \mathbb{R}^k$ be smooth. Note that

- 1. F(M) is compact because M is compact and F is continuous.
- 2. F(M) is open because F is a smooth submersion.

Because all non-empty compact sets in \mathbb{R}^k are closed, this is a contradiction and such a map cannot exist.

Problem 4.7

TODO

Problem 4.8

This problem shows that the converse of Theorem 4.29 is false. Let $\pi:\mathbb{R}^2:\mapsto\mathbb{R}$ be defined by $\pi(x,y) = xy$. Show that π is surjective and smooth, and for each smooth manifold P, a map $F: \mathbb{R} \mapsto P$ is smooth if and only if $F \circ \pi$ is smooth; but π is not a smooth submersion.

Problem 4.9

Let M be a connected smooth manifold, and let $\pi: E \mapsto M$ be a topological covering map. Complete the proof of Proposition 4.40 by showing that there is only one smooth structure on E such that pi is a smooth covering map. [Hint: use the existence of smooth local sections]

Problem 4.10

Show that the map $q: \mathbb{S}^n \mapsto \mathbb{RP}^n$ defined in Example 2.13(f) is a smooth covering map.

Define $q: \mathbb{S}^n \to \mathbb{RP}^n$ as the restriction of $\pi: \mathbb{R}^n \setminus \{0\} \to \mathbb{RP}^n$ to $\mathbb{S}^n \subseteq \mathbb{R}^n \setminus \{0\}$. TODO: Complete.

Problem 4.11

Show that a topological covering map is proper iff its fibers are finite, and therefore the converse of Proposition 4.46 is fale.

Suppose $\pi: E \mapsto X$ is a topological covering map.

Suppose π is proper.

Let $p \in X$.

Suppose $\pi^{-1}(p)$ is infinite, then it admits an infinite cover (the open ball around each point in the fiber) with no finite subcover, and therefore is not compact. Since $\{p\}$ is compact, this is a contradiction.

 \leftarrow

Suppose π has finite fibers.

Let $K \subseteq X$ be compact, let $L = \pi^{-1}(K)$, $D \subseteq L \subset E$ be an infinite set, and $Y = \pi(D)$. Because $D = \bigcup_{y \in Y} \pi^{-1}(y)$ is infinite and $\pi^{-1}(y)$ is finite, Y must be infinite. Because $K \supseteq Y$ is compact, Y must contain a limit point \bar{y} . We show that $\pi^{-1}(\bar{y})$ is a limit point of D.

Let U be an evenly covered neighborhood of y_i and $U\supseteq\{y_i\}\to \bar{y}$. Because the fiber $\pi_{-1}(\bar{y})$ is finite, π^U contains components V_j mapped homeomorphically onto U by π and therefore, for each i,j there exist $e_{i,j}\in V_j$ s.t. $\pi(e_{i,j})=y_i$. Because $\{y_i\}\subseteq \pi(D)$, for each i, there is at least one j s.t. $e_{i,j}\in D$. Because there are finitely many j and infinitely many j, there must be a \hat{j} s.t. $e_{i,\hat{j}}\in D$ for infinitely many j. Because $e_{i,\hat{j}}$ converges, $\lim_{i \to j} e_{i,\hat{j}}$ is a limit point of D.

Therefore π is proper.

Problem 4.12

Using the covering map $\epsilon^2:\mathbb{R}^2\mapsto\mathbb{T}^2$ (see Example 4.35), show that the immersion $X:\mathbb{R}^2\mapsto\mathbb{R}^3$ defined in example 4.2(d) descends to a smooth embedding of \mathbb{T}^2 into \mathbb{R}^3 . Specifically, show that X passes to the quotient to define a smooth map $\tilde{X}:\mathbb{T}^2\mapsto\mathbb{R}^3$, and then show that \tilde{X} is a smooth embedding whose image is the given surface of revolution.

Let
$$\epsilon^2:\mathbb{R}^2\mapsto\mathbb{T}^2$$
, $X:\mathbb{R}^2\mapsto\mathbb{R}^3$ be given by
$$\epsilon^2\left(x^1,x^2\right)=\left(e^{2\pi ix^1},e^{2\pi ix^2}\right)$$

$$X(u,v)=\left((2+\cos2\pi u)\cos2\pi v,(2+\cos2\pi u)\sin2\pi v,\sin2\pi u\right)$$

Problem 4.13

Define a map $F:\mathbb{S}^2\mapsto\mathbb{R}^4$ by $F(x,y,z)=(x^2-y^2,xy,xz,yz)$. Using the smooth covering map of Example 2.13(f) and Problem 4-10, show that F descends to a smooth embedding of \mathbb{RP}^2 into \mathbb{R}^4 .

Problem 5.1

Consider the map $\Phi: \mathbb{R}^4 \mapsto \mathbb{R}^2$ defined by

$$\Phi(x, y, s, t) = (x^2 + y, x^2 + y^2 + s^2 + t^2 + y)$$

Show that (0,1) is a regular value of Φ , and that the level set $\Phi^{-1}(0,1)$ is diffeomorphic to \mathbb{S}^2 .

First note that

$$d\Phi|_{p} = \begin{pmatrix} 2x_{p} & 1 & 0 & 0\\ 2x_{p} & 2y_{p} + 1 & 2s_{p} & 2t_{p} \end{pmatrix}$$

Note that if $d\Phi|_p$ has rank ≤ 2 , then $x_p = s_p = t_p = 0$.

However, at the value $\Phi(p^*)=(0,1)$, $x_p=s_p=t_p=0$ implies that $y^2+y=1$ therefore $y=\frac{1+\pm\sqrt{6}}{2}$, therefore $2y+1\neq 0$. Thus $d\Phi$ has rank 2 for all points on the level curve $\Phi^{-1}(0,1)$, and thus (0,1) is a regular value.

Now, the manifold given by $\Phi^{-1}(0,1)$ must satisfy the system of equations

$$x^{2} + y = 0$$

$$x^{2} + y + y^{2} + s^{2} + t^{2} = 1$$

$$\iff$$

$$y^{2} + s^{2} + t^{2} = 1$$

TODO: but why diffeomorphic?

Problem 5.2

Prove Theorem 5.11: If M is a smooth n-manifold with boundary, then with the subspace topology, ∂M is a topological (n-1)-dimensional manifold (without boundary), and has a smooth structure such that it is a properly embedded submanifold of M.

Problem 5.3

Prove Proposition 5.21: Suppose M is a smooth manifold with or without boundary, and $S\subseteq M$ is an immersed submanifold. If any of the following holds, the S is embedded.

- a) S has codimension 0 in M.
- b) The inclusion map $S \subseteq M$ is proper.
- c) S is compact.

Show that the image of a curve $(-\pi,\pi)\mapsto\mathbb{R}^2$ of Example 4.19 is not an embedded submanifold of \mathbb{R}^2 . [Be careful: this is not the same as showing that β is not an embedding.

Problem 5.5

Let $\gamma: \mathbb{R} \mapsto \mathbb{T}^2$ be the curve of Example 4.20. Show that $\gamma(\mathbb{R})$ is not an embedded submanifold of the torus. [Remark: the warning in Problem 5-4 applies in this case as well.]

Problem 5.6

Suppose $M\subseteq\mathbb{R}^n$ is an embedded m-dimensional submanifold, and let $UM\subseteq T\mathbb{R}^n$ be the set of all unit tangent vectors to M:

$$UM = \{(x, v) \in T\mathbb{R}^n : x \in M, v \in T_xM, |v| = 1\}.$$

It is called the unit tanget bundle of M. Prove that UM is an embedded (2m-1)-dimensional submanifold of $T\mathbb{R}^n \approx \mathbb{R} \times bbR$.

Problem 5.7

Let $F: \mathbb{R}^2 \to \mathbb{R}$ be defined by $F(x,y) = x^3 + xy + y^3$. Which level sets of F are embedded submanifolds of \mathbb{R}^2 ? For each level set, prove either that it is or that it is not an embedded submanifold.

Suppose M is a smooth n-dimensional manifold and $B\subseteq M$ is a regular coordinate ball. Show that $M\setminus B$ is a smooth manifold with boundary, whose boundary is diffeomorphic to \mathbb{S}^{n-1} .

Problem 5.9

Let $S \subseteq \mathbb{R}^2$ be the boundary of the square of side 2 centered at the origin (see Problem 3-5). Show that S does not have a topology and smooth structure in which it is an immeresed submanifold of \mathbb{R}^2 .

Problem 5.10

For each $a \in \mathbb{R}$, let M_a be the subset of \mathbb{R}^2 defined by

$$M_a = \{(x, y) : y^2 = x(x - 1)(x - a)\}.$$

For which values of a is M_a an embedded submanifold of \mathbb{R}^2 ? For which values can M_a be given a topology and smooth structure making it into an immersed submanifold?

Problem 5.11

Let $\Phi: \mathbb{R}^2 \mapsto \mathbb{R}$ be defined by $\Phi(x,y) = x^2 - y^2$.

- a) Show that $\phi^{-1}(0)$ is not an embedded submanifold of \mathbb{R}^2 .
- b) Can $\phi^{-1}(0)$ be given a topology and smooth structure making it into an immersed submanifold of \mathbb{R}^2 ?
- c) Answer the same two questions for $\Psi:\mathbb{R}^2\mapsto\mathbb{R}$ defined by $\Psi(x,y)=x^2-y^3$.

Problem 5.12

Suppose E and M are smooth manifolds with boundary, and $\pi:E\mapsto M$ is a smooth covering map. Show that the restriction of π to each connected component of ∂E is a smooth covering map onto a component of ∂M .

Prove that the image of the dense curve on the torus described in Example 4.20 is a weakly embedded submanifold of \mathbb{T}^2 .

Problem 5.14

Prove Theorem 5.32 (uniqueness of the smooth structure on an immersed submanifold once the topology is given).

Problem 5.15

Show by example that an immersed submanifold $S\subseteq M$ might have more than one topology and smooth structure with respect to which it is an immersed submanifold.

Problem 5.16

Prove Theorem 5.33: If M is a smooth manifold and $S\subseteq M$ is a weakly embedded submanifold, the S has only one topology and smooth structure with respect to which it is an immersed submanifold.

Problem 5.17

Prove Lemma 5.34: Suppose M is a smooth manifold, $S\subseteq M$ is a smooth submanifold, and $f\in C^\infty(S)$.

- a) If S is embedded, then there exist a neighborhood U of S in M and a smooth function $\tilde{f} \in C^{\infty}(U)$ such that $\tilde{f}|_S = f$.
- b) If S is properly embedded, then the neighborhood U in part (a) can be taken to be all of M.

Problem 5.18

Suppose M is a smooth manifold and $S \subseteq M$ is a smooth submanifold.

- a) Show that S is embedded if and only if every $f \in C^{\infty}(S)$ has a smooth extension to a neighborhood of S in M. [Hint: if S is not embedded, let $p \in S$ be a point that is not in the domain of any slice chart. Let U be a neighborhood of p in S that is embedded, and consider a function $f \in C^{\infty}(S)$ that is supported in U and equal to 1 at p.]
- b) Show that S is properly embedded if and only if every $f \in C^{\infty}(S)$ has a smooth extension to all of M.

Suppose $S\subset M$ is an embedded submanifold and $\gamma:J\mapsto M$ is a smooth curve whose image happens to lie in S. Show that $\gamma'(t)$ is in the subspace $T_{\gamma(t)}S$ of $T_{\gamma(t)}M$ for all $t\in J$. Give a counterexample if S is not embedded.

Problem 5.20

Show by giving a counterexample that the conclusion of Proposition 5.37 may be false if S is merely immersed.

Problem 5.21

Prove Proposition 5.47: Suppose M is a smooth manifold and $f \in C^{\infty}(M)$.

- a) For each regular value b of f, the sublevel set $f^{-1}((-\infty,b])$ is a regular domain in M.
- b) If a and b are two regular values of f with a < b, then $f^{-1}([a,b])$ is a regular domain in M.

Problem 5.22

Prove Theorem 5.48: If M is a smooth manifold and $D \subseteq M$ is a regular domain, then there exists a defining function for D. If D is compact, then f can be taken to be a smooth exhaustion function for M.

Suppose M is a smooth manifold with boundary, N is a smooth manifold, and $F:M\mapsto N$ is a smooth map. Let $S=F^{-1}(c)$, where $c\in N$ is a regular value for both F and $F|_{\partial M}$. Prove that S is a smooth submanifold with boundary in M, with $\partial S=S\cap \partial M$.