MATHEMATICAL REASONING Chapter 6

2nd SECONDARY

RAZONAMIENTO INDUCTIVO II

MOTIVATING

Método Inductivo

- Proceso en el que se razona partiendo de lo particular para llegar a lo general.
- La base de la inducción es la suposición de que si algo es cierto en algunas ocasiones, también lo será en situaciones similares aunque no se hayan observado.

RAZONAMIENTO INDUCTIVO

El razonamiento inductivo es la acción del pensamiento humano adoptada para alcanzar conclusiones, partiendo de casos particulares y buscando una generalidad.

EiSabias que?

Existe una corriente de opinión actual, que considera las matemáticas como la ciencia de los patrones.

EJEMPLO

Halle el número de triángulos simples de la figura 30.

RESOLUCIÓN DE LA PRÁCTICA

Calcule la suma de cifras del resultado de operar

$$A = \underbrace{666 ... 666}_{20} \times \underbrace{666 ... 661}_{20 \text{ cifras}}$$

$$6 \times 1 = 6 \qquad \Rightarrow 6 = 1 \times 6$$
1) cifra

$$66 \times 61 = 4026 \rightarrow 12 = 2 \times 6$$
(2) cifras

$$666 \times 661 = 440 226 \implies 18 = 3 \times 6$$
(3) cifras

¿Cuántos triángulos hay en F₁₅?

Sabiendo que

Resolución

$$F(1) = 3 \times 1 + 1$$

 $F(2) = 6 \times 4 + 8$

$$F(3) = 9 \times 9 + 27$$

$$F(4) = 12 \times 16 + 64$$

Determine F(10)

$$F(1) = (1 \times 3) \times 1^2 + 1^3$$

$$F(2) = (2 \times 3) \times 2^2 + 2^3$$

$$F(3) = (3 \times 3) \times 3^{2} + 3^{3}$$

$$F(10) = (10 \times 3) \times 10^{2} + 10^{3}$$

¿Cuántas esferas hay en F₂₀?

$$1 = (1)^2$$

$$4 = (2)^2$$

$$9 = (3)^2$$

¿Cuántas esferas hay en F₂₀?

Total, de esferas:

$$(20)^2 = 400$$

RPTA.

400 esferas

5

¿Cuántos palitos hay en total?

Total de palitos

40 X 41

El misterio de las esferas de Costa Rica.

Todo empezó 300 años antes de Cristo, cuando unos indígenas ticos comenzaron a tallar cientos y cientos de esferas de piedra. Hay toda clase de suposiciones sobre el objetivo de estas tallas. Si los ordenamos como muestra la figura. ¿Cuántas esferas habrá en total?

¿Cuántas esferas hay en la figura?

7

Al término de una batalla, que significó el fin de una guerra antigua, los sobrevivientes, uno a uno, fueron dejando sus dagas sobre el campo de batalla, en una configuración especial (ver figura). Si cada soldado colocó una daga, ¿cuántos soldados sobrevivieron en dicho ejército?

Resolución

Total de dagas

$$1 = 1^2$$

$$4 = 2^{2}$$

$$9 = 3^{2}$$

25²

Rpta.

625