Probabilités et Statistiques

Table des matières

1	\mathbf{Intr}	oduction aux probabilités	1
	1.1		1
	1.2	Ensemble fondamental Ω	1
	1.3	Evènement élémentaire ω	1
	1.4	Evenement	1
	1.5	Ensembliste vs Probabiliste	1
	1.6		2
		1.6.1 Probabilité	2
		1.6.2 Espace de probabilité	2
		1.6.3 Probabilité (def 2)	2
		1.6.4 Exemple	2
	1.7	Univers non dénombrable	2
		1.7.1 Fréquence relative	2
			2
	1.8	Espace probabilisé	3
		1.8.1 α -algèbre	3
	1.9	Propriétés des probabilités	3
		1.9.1 Inégalité de Boole	3
		1.9.2 Formule de Poincaré	3
	1.10	Loi uniforme	3
		1.10.1 Définition	3
			3
	1.11		4
			4
		1.11.2 Suite de longueur r	4
			4
	1.12		4
			4
			4
			4
	1.13		4
			4
			4
	1 11		٠ ۲

	1.15	1.14.1 Définition 1.14.2 Théorème 1.14.3 Exemple 1.14.4 Propositions 1.14.5 Théorème (Formule du binôme de Newton) 1.14.6 Théorème (nombre de parties d'un ensemble) Discernables vs Indiscernables 1.15.1 Théorème 1.15.2 Exemple : anagramme 1.15.3 Théorème 1.15.4 Répétions indépendantes	5 5 5 5 5 5 5 5 6 6
2	Pro	babilités conditionnelles	6
	2.1	Probabilité conditionnelle	6
	2.2	évènement indépendant	6
		2.2.1 Proposition	6
		2.2.2 remarque	6
	2.3	Famille d'évènements mutuellement indépendants	7
		2.3.1 Définition	7
		2.3.2 Remarque	7
	2.4	Système complet d'évènement	7
		2.4.1 Définition	7
		2.4.2 Proposition	7
		2.4.3 Théorème des probabilités totales	7
	2.5	Formules de Bayes	7
		2.5.1 Définition	7
		2.5.2 Corollaire	7
3	Pro	babilités conditionnelles	8
4	Var	iables aléatoires discrètes	8
5	Cou	aple de variables aléatoires	8
6	Esti	imation et intervalles de confiance	8
7	Reg	ression linéaire	8

Modalités d'examen

- Première session (Examen terminal: 75% (10 décembre), TP: 25%)
- Deuxième session (Examen terminal : 100%)

1 Introduction aux probabilités

1.1 Expérience aléatoire

Définition : Une expérience aléatoire (ou épreuve) est tout phénomène dont on ne peut pas prédire l'issue avec certitude. Exemples :

- Lancer d'une pièce
- Lancer d'un dé à six faces
- Lancer d'une pièce trois fois de rang

1.2 Ensemble fondamental Ω

L'ensemble fondamental ou Univers est l'ensemble de toutes les issues possible d'une expérience aléatoire.

1.3 Evènement élémentaire ω

Définition : Un événement élémentaire ω est toute issue d'une expérience aléatoire, i.e tout élément ω .

1.4 Evenement

Définition : Un évènement, représenté par une lettre majuscule, est tout sous-ensemble de Ω , i.e toute réunion d'éléments élémentaires.

1.5 Ensembliste vs Probabiliste

- L'ensemble des évènements coïncide avec l'ensemble $p(\Omega)$ des parties de l'ensemble fondamental Ω .
- Un évènement est réalisé si un des évènements élémentaires le constituant est réalisé
- Etant donnés
 - Une expérience aléatoire d'univers Ω
 - Un évènement $A \in \Omega$
- Supposons que
 - L'expérience aléatoire est répétée N fois
 - N(A) correspond au nombre de fois où l'évènement A est réalisé

1.6 Probabilités

1.6.1 Probabilité

On appelle (mesure de) probabilité toute application P sur $P(\Omega)$ telle que :

- $P(A) \in [0,1]$ pour tout évènement $A \in p(\Omega)$
- $P(\Omega)=1$ (i.e propriété de normalisation)
- $P(A \cup B)=P(A)+P(B)$ pour toute paire d'évènements incompatibles A et B (propriété d'additivité)

1.6.2 Espace de probabilité

Le couple (Ω, P) s'appelle espace de probabilité

1.6.3 Probabilité (def 2)

Une (loi de) probabilité sur l'ensemble $\Omega=w_1,...,w_n$ est la donnée de $(p_1,...,p_n)$ $\in [0,1]^n$ tel que $\sum_{i=1}^n p_i=1$

1.6.4 Exemple

Un entraineur de football pense qu'il y a 3 chances contre 2 que son équipe remporte le prochain match, tandis que les cotes contre une défaite ou un nul de son équipe sont de 4 contre 1 et de 9 contre 1, respectivement.

- Décrire l'ensemble des évènements élémentaires. Ω =victoire,nul,défaite
- Quelles sont leurs proba? P(Victoire)=3/5, P(nul)=1/5, P(défaite)=1/10
- Définissent-elles une loi de probabilité ? P(victoire)+p(nul)+p(défaite)>1 donc non

1.7 Univers non dénombrable

- Expérience aléatoire avec un nombre infini d'issues (e.g, lancer un dé jusqu'à obtenir un pile)
- Propriété d'additivé

1.7.1 Fréquence relative

la fréquence relative de A est égale au ratio N(A)/N

1.7.2 Probabilités de A

La fréquence relative semble se stabiliser près d'une valeur réelle P(a) lorsque N devient très grand (loi empyrique) : le nombre A...

Propriété d'additivité : $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

1.8 Espace probabilisé

1.8.1 α -algèbre

Une collection A de sous ensembles de Ω est un α -algèbre (ou tribu) si :

- $-\Omega \in A$
- $-A \in A$ implique $A^c \in A$
- Ab = A
- si Ai est une séquence finie ou infinie de Ab alors UiAi(?) ∈ Ab

Un espace probabiliste est un triplet (R, Ab, P) ou ab est α -algébre non vide de sous ensembles de Ω et P est une application de Ab dans |R telle que :

- $P(\Omega) = 1$
- $-0 \le P(A) \le 1$

1.9 Propriétés des probabilités

 $A_1,...,A_n \in A$, implique $\bigcup_{i=1}^n A_i \in A_i$, et $\bigcap_{i=1}^n A_i \in A$

$$P(\emptyset)=0$$

$$P(A^C)=1-P(a)$$

 $P(A) \le P(B)$ pour $A,B \in A$, A c B

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

1.9.1 Inégalité de Boole

Si A_i est une séquence d'événements, alors $P(\cup A_i) \leq \sum P(A_i)$

1.9.2 Formule de Poincaré

$$P(\bigcup_{r=1}^{n} A_i) = \sum_{i=1}^{n} (-1) \dots$$

Exemples

- Considerons n lancer d'une pièce et soit A l'évènement "Face à été obtenu au moins une fois". Quelle est la valeur de P(A)? $P(A)=1-P(A^c)=1-\frac{1}{2^n}$
- Une carte est sélectionnée aléatoirement d'un jeu de 52 cartes. Qeulle est la probabilité que la carte sélectionnée soit un roi un pique? A=roi, B=pique $P(A \cup B)=P(A)+P(B)-P(A \cap B)=\frac{4}{52}+\frac{13}{52}-\frac{1}{52}=\frac{4}{13}$

1.10 Loi uniforme

1.10.1 Définition

Soit Ω un ensemble fini. Une loi est dite uniforme (ou quiprobable) si les probabilités de tous les éènements élémentaires sont les mêmes, i.e, valent $\frac{1}{|\Omega|}$

1.10.2 Propriété

Pour tout évènement A, $P(A) = \frac{|A|}{|\Omega|}$

1.11 Cardinaux et suites

1.11.1 Proposition

$$- | A \times B | = | A | . | B |$$

 $- | A \cup B | = | A | + | B | - | A \cap B |$

1.11.2 Suite de longueur r

Soit A un ensemble fini. Une suite ordonnée de longueur r avec remise constituée d'éléments de A est un r-uplet, r-liste, $(a_1,...,a_r)$ avec $a_i \in A$ pour tout i appartenant à 1,...,n. L'ensemble A est appelé population.

1.11.3 Théorème

Le nombre de suites de longueurs r avec remise d'une population de cardinalité n est n^{r}

1.12 Permutations

1.12.1 Principe de dénombrement

Considérons deux expériences aléatoires produisant n et m issues différentes, respectivement. Au total, pout les deux expéreinces aléatoires prises ensembles, il existe nm issues possibles.

1.12.2 Permutation

Soit A un ensemble fini. Une permutatuin de A est une manière d'ordonner les éléments de A.

1.12.3 Théorème

Le nombre de permutations d'une population de cardinalité n est n!

1.13 Arrangement

1.13.1 Définition

Soit A un ensemble fini. Un arrangement de r éléments pris parmi A est une suite ordonnée de longueur r constituée d'élements de A sans remise, i.e, un r-uplet ou r-liste, $(a_1,...,a_r)$ avec $A\setminus\{a_1,...,a_{i-1}\}$ pour tout $i\in\{1,...,r\}$.

1.13.2 Théorème

Le nombre d'arrangements de r éléments pris parmis n est $(n)_r=A_n^r=\frac{n!}{(n-r)!}$

1.14 Combinaisons

1.14.1 Définition

Soit A un ensemble fini. Une combinaison de r éléments pris parmi A est un sous-ensemble de cardinalité r constitué d'éléments de A sans remise, i.e, $(a_1, ..., a_r)$ avec $A \setminus a_1, ..., a_{i-1}$ pour tout $i \in 1, ..., r$

1.14.2 Théorème

Le nombre de commbinaison de r éléments pris parmi n est $\binom{n}{r} = C_n^r =$ n!/((n-r)!r!

1.14.3 Exemple

Une main au poker est constituée de 5 cartes distribuées d'un jeu de 52 cartes. Combien y a t-il de mains possibles? *ordre pas d'importances *n = 52 / r = ?

1.14.4 Propositions

Pour tout entier n positif et pour tout $r \le n$:

1.14.5 Théorème (Formule du binôme de Newton)

Soient a et b deux réels et n un entier strictement positif $(x+y)^n = \sum_{k=0}^n {n \choose k} a^k b^{n-k}$

1.14.6Théorème (nombre de parties d'un ensemble)

Soit Ω le nombre de parties de Ω , i.e, la cardinalité de $P(\Omega)$, vaut 2^n .

Discernables vs Indiscernables 1.15

1.15.1 Théorème

Considérons n objets parmis lesquels n_1 sont indiscernables, n_2 sont indiscernables, ..., n_p sont indiscernables. Le nombre de permutations différentes de ces éléments est $\frac{n!}{(n_1!n_2!...n_p!)}$

Exemple: anagramme 1.15.2

nombre d'anagramme de PROBA? 5!/(1!1!1!1!1!) = 120nombre d'anagramme de STAT ? 4!/(1!2!1!) = 12

1.15.3 Théorème

Le nombre de possibilités de distribuer r boules indiscernables dans n boites vaut $\binom{n+r-1}{r}$.

1.15.4 Répétions indépendantes

Supposons qu'une expérience aléatoire, modélisée par un univers Ω et une probabilité P, est répétée N fois. Le nouvel univers est $\Omega^N = \Omega \times ...\Omega$ et la probabilité associée est $P^N((\omega_1,...,\omega_N)) = P(\omega_1)...P(\omega_N)$

2 Probabilités conditionnelles

2.1 Probabilité conditionnelle

Etant données deux évènements A et B avec P(B) > 0, la probabilité conditionelle de A sacahnt que B est réalisé est $P(A \mid B) = P_B(A) = \frac{P(A \cap B)}{P(B)}$

- . La probabilité conditionnelle sachant $B,\,P(.\mid B)$ est une nouvelle probabilité
- . Si P(B) = 0, alors on a usuellement $P(A \mid B) = 0$
- . $P(A \cap B) = P(A \cap B)P(B) = P(B \cap A)P(A)$ [Erreur sur le slide du prof]

2.2 évènement indépendant

Deux évênements A et B, où $P(A) \neq 0$ et $P(B) \neq 0$, sont indépendants si l'une des conditions suivantes est satisfaite

- $P(A \cap B) = P(A)P(B)$
- $P(A \cap B) = P(A)$
- $. P(B \mid A) = P(B)$

2.2.1 Proposition

Il est équivalent de dire

- . A et B sont indépendants
- . A^C et B sont indépendants
- . A et B^C sont indépendants
- . A^C et B^C sont indépendants

2.2.2 remarque

Deux évênements incompatibles A et B, où $P(A) \neq 0$ et $P(B) \neq 0$, ne sont jamais indépendants. $P(A \mid B) = \frac{P(A \cap B)}{P(B)} = 0$ car incompatibilité implique $P(A \cap B) = 0$

2.3 Famille d'évènements mutuellement indépendants

2.3.1 Définition

Soient A_i , $i \in I$ où I est un ensemble d'indices possiblement infini, une famille d'évênments. Les évènements A_i sont mutuellement indépendants si et seulement si pour chaque ensemble fini d'indices distincts $i_1,...,i_k \in I$, nous avons $P(A_{i1} \cap A_{i2} \cap ... \cap A_{ik}) = P(A_{i1})P(A_{i2})...P(A_{ik})$

2.3.2Remarque

La condition $P(A_{i1} \cap A_{i2} \cap ... \cap A_{ik}) = P(A_{i1})P(A_{i2})...P(A_{ik})$ n'applique pas de condition analogue pour toute sous-famille d'evènements.

Système complet d'évènement

2.4.1Définition

Tout famille $A_i, i \in I$, finie ou pas, d'évènements vérifiant les conditions

- . $A_i \cap A_j = \emptyset$ pour tout $i \neq j$
- . $\bigcup_{i \in I} A_i = \Omega$ est appelé système complet d'évènements

2.4.2 Proposition

Soit $A_i, i \in I$, un système complet d'évènements. Alors $P(A) = \sum_{i \in I} P(A \cap A)$ A_i

P(A) est calculée par un système complet d'évènemments dans lequel A se réalise.

2.4.3Théorème des probabilités totales

Soit $A_i, i \in I$ un système complet d'évènements. Alors pour tout évènement A, nous avons $P(A) = \sum_{i \in I} P(A_i) P(A \mid A_i)$

2.5 Formules de Bayes

2.5.1Définition

Soit A_i , $i \in I$, un système complet d'vènements. Alors pour tout évènement A, nous avons $P(A_k \mid A) = \frac{P(A \mid A_k)P(A_k)}{\sum_{i \in I} P(A \mid A_i)P(A_i)}$

2.5.2Corollaire

- . $P(A \cap B \cap B \cap C) = P(A)P(B \mid A)(P(C \mid A \cap B)$. $P(A \mid B) = \frac{P(A)P(B \mid A)}{P(B)} = \frac{P(A)P(B \mid A)}{P(A)P(B \mid A) + P(A^C)P(B \mid A^C)}$

- 3 Probabilités conditionnelles
- 4 Variables aléatoires discrètes
- 5 Couple de variables aléatoires
- 6 Estimation et intervalles de confiance
- 7 Regression linéaire