Political Data Science

Lektion 12: Usuperviseret læring

Undervist af Jesper Svejgaard, foråret 2018 Institut for Statskundskab, Københavns Universitet github.com/jespersvejgaard/PDS

I dag

- 1. Overblik og opsamling fra sidst
- 2. Dagens pensum
 - Reduktion af dimensionalitet med PCA
 - · Clustering med K-means
 - · Clustering med hierchical clustering
- 3. Workshop
- 4. Afrunding og næste gang (og sidste gang)

Overblik

- 1. Intro til kurset og R
- 2. R Workshop I: Explore
- 3. R Workshop II: Import, tidy, transform
- 4. R Workshop III: Programmering & Git
- 5. Web scraping & API
- 6. Tekst som data
- 7. Visualisering
- 8. GIS & spatiale data
- 9. Estimation & prædiktion
- 10. Superviseret læring I
- 11. Superviseret læring II
- 12. Usuperviseret læring
- 13. Refleksioner om data science
- 14. Opsamling og eksamen

Øvelser

Opgave-script indeholder "løsning" på challengen.

Træ-modeller

Hvad er logikken i regressions- og klassifikationstræer?

Hvad er de centrale forskelle på singulære træer og de to ensemble-metoder Random Forest og Gradient Boosted trees?

Snak med dem omkring dig.

Træ-modeller

Hvad viser figuren her? Snak dine sidemakkere.

Introduktion

Hvad er usuperviseret læring?

• Et sæt af statistiske redskaber når vi ikke har et outcome Y, men kun uafhængige varible $X_1, X_2, ... X_p$ målt på n observationer

Formålet med usuperviseret læring

- Eksplorativ analyse of $X_1, X_2, ... X_p$
- · Redskab til at finde og visualisere mønstre i data
- Redskab til at idenficicere sub-grupper i data

Eksempler

- · Sub-grupper i gen-data, fx hos kræftpatienter
- · Sub-grupper blandt vælgere, fx pba. valgundersøgelsen
- · Gruppering af besøgende på borger.dk baseret på browser-historik
- Detektion af anomaliteter, fx hos NETS eller SKAT
- Topic models til at gruppere tekster efter emner
- Alliancemønstre i FT-afstemninger (supplerende pensum)
- Konstruktion af sub-grupper baseret på personlighedstræk og Facebook-data om 50 millioner brugere...

Udfordringer

- Subjektiv analyse fordi der ikke er et prædefineret mål, men ofte er en del af eksplorativ analyse
- · Svært at bedømme resultater pga. fravær af universel tilgang til validering
- · I sagens natur intet "korrekt" resultat vi kan måle op imod

Introduktion

Hvad er det?

• En usuperviseret tilgang til at finde et fåtal af dimensioner i et datasæt, der indeholder det meste af datasættets information

Formål:

 Når vi har mange korrelerede variable kan et fåtal af principal components opsummere det meste af variationen i det oprindelige datasæt

Principal components-analyse:

- Er usuperviseret fordi vi kun har X_1, \ldots, X_p og ingen Y på forhånd
- · Refererer til processen 1) at finde PCs, 2) bruge PCs til at forstå data

Brug af PCA

Hvad bruger vi PCA til?

- · Redskab til at forstå og visualisere mønstre i data
- Led i præprocessering af data forud for superviseret læring

Hvornår bruger vi PCA?

- Antag vi har et datasæt med 10 variable, fx om politiske holdninger, som i forskellig grad korrelerer med hinanden. Antag vi bliver bedt om at finde frem til og kommunikere de mest interessante mønstre i datasættet. Hvordan griber vi opgaven an?
- Vi kan visualisere korrelationerne med p * (p 1) / 2 scatterplots. Når p = 10 som ovenfor giver det 45 scatterplots. Er p = 20 er der 190 scatterplots.
- Det er uoverskueligt og de fleste plots vil være uinformative.

Koncept

- · Idé: Hver observation n lever i et p-dimensionalt rum.
- · Med PCA søger vi et lille antal dimensioner, der er så interessante som muligt.
- "Interessant" = variation.

Algoritmen I

Hver PC er en lineær kombination af *p* variable:

$$Z_1 = \phi_{11}X_1 + \phi_{21}X_2 + \cdots + \phi_{p1}X_p$$

Den første PC er den normaliserede, lineære kombination af variable med størst varians.

Elementerne $\phi_{11}, \ldots, \phi_{p1}$ kaldes for PC'ens *loadings*.

Udtrykket er normaliseret så $\sum_{j=1}^{p} \phi_{j1}^2 = 1$, fordi en arbitrært stor loading ville give arbitrær stor varians.

Algoritmen II

Vi finder frem til den første PCA ved at kvadrere udtrykket $\phi_j * x_{ij}$ og dele med n for på tværs af observationerne n og variablene p, og maksimere udtrykket på tværs af værdier for loadings ϕ .

Det minder om at maksimere TSS frem for RSS i OLS.

Senere PCs er ortogonale på tidligere PCs.

Eksempel: PCs og loadings

Normalisering

Variablenes gennemsnit og enhed har betydning for deres varians. Det er fx ikke ligegyldigt, om vi måler tyverier pr. 1000 eller 100.000 indbyggere.

Vi vil derfor gerne normalisere data:

- centrering: variablene skal centreres til gns. = 0
- skalering: ofte skal variablene skaleres til sd = 1

Evaluering af PCs: Proportion of variance explained

Hvor meget forklaringskraft har vores principal components?

Det kan vi udrykke ved PVE: proportion of variance explained

Det kan vi beregne for hver PC ved at kvadrere standardafvigelsen, og dele den med summen af den kvadrerede standardafvigelse.

R kan også spytte VE, PVE og kumulativ PVE for hver PC ud for os.

Hvor mange PCs har vi brug for?

Svaret findes ikke a priori. Mål: maksimere informaiton og minimere antal PCs.

Vi kan informere beslutningen ved at kigge efter en *elbow* i et *scree plot*:

Clustering

Clustering

Introduktion

Hvad er det?

- Et bredt sæt af teknikker til at finde subgrupper i data.
- · Hver gruppe er så internt ens og eksternt forskellig som muligt.
- · Grupperne er udtømmende og ikke-overlappende.

Formål

· Simplificere data ved færre, sigende informationer i form af subgrupper.

Metoder vi vil fokusere på:

- K-Means clustering
- Hierarchical clustering

Karakteristika

- · Ved K-means clustering skal vi specificere antal clusters på forhånd.
- Ide: en god cluster har så lille within-cluster variation som muligt.
- · Algoritme: minimere variationen within-clusters på tværs af clusters.
- · Definition af variation: Den mest udbredte er *Euklidisk afstand*.
- · Euklidisk afstand: måler afstand mellem to punkter i et p-dimensionalt rum.
- · K-Means: Minimerer parvis Euklidisk afstand ml. alle punkter i hvert cluster.
- · Optimering: Enormt komplekst optimeringsproblem!

Algoritmen

Vi løser i stedet optimeringsproblemet med tilnærmning.

- 1. Tilskriv hver observation et tal fra 1, ..., K som første cluster
- 2. Fortsæt indtil cluster-fordelingen ikke ændrer sig med at:
 - · Beregn hver clusters *centroid* (en vektor med varibel-gns.)
 - · Tilskriv hver observation til den nu nærmeste centroid.

Illustration

Udfordringer

Især to udfordringer står tilbage:

- 1. Algoritmen K-Means er kun garanteret at finde et lokalt optimum.
- 2. Hvordan præspecificerer vi antallet af clusters?

Optima

Introduktion

Sammenlignet med K-Means gør især to ting hierarkiske clustering attraktiv:

- 1. Med HC behøver vi ikke specificere antal clusters på forhånd.
- 2. Med HC producerer vi et træ-lignende dendrogram, der visualiserer clusters for k = 1, ... n samtidig.

Algoritme I

Konceptet hierarkisk clustering består i at bygge et træ, oftest bottom up.

Algoritme:

- 1. Start med at lade hver observation n være sin egen cluster.
- 2. Beregn de parvise forskelle mellem alle clusters (fx Euklidisk afstand)
- 3. Så længe antal clusters > 1:
 - · Slå de to clusters sammen, der er mindst forskellige.
 - · Beregn de nye parvise forskelle.

Algoritme II

Algoritme III

Linkage

Hvordan måler vi forskellighed, når clusters indeholder mere end 1 observation?

Det gør vi med linkage:

- · Complete: Maksimal parvis afstand ml. observationerne i cluster A og B
- Single: Minimal parvis afstand ml. observationerne i cluster A og B
- · Average: Gns. parvis afstand ml. observationerne i cluster A og B
- · Centroid: Afstanden ml. centroids i cluster A og B

Typisk foretrækker vi *complete* og *average*, fordi de oftest giver de mest balancerede clusters.

Dendrogram

Fortolkning af dendrogrammer I

Højden i dendrogrammer:

- · Højden på en fusion ml. clusters indikerer deres forskellighed (vertikal akse)
- · Bredden fortolker vi ikke på (horisontal akse)

Fortolkning af dendrogrammer II

Hvad kan vi fortolke om observationernes forskellighed her?

Fortolkning af dendrogrammer III

Antal clusters

Vi sætter antal clusters ved at lave et cut i dendrogrammet, typisk baseret på højden af fusionerne og eventuelle ønsker til antal clusters.

Ulemper

Hierarkisk clustering bygger på en antagelse om en nested struktur i clusters:

 Antag vi har et datasæt om respondenter fra Danmark, Tyskland og Frankrig, og lige mange fra hvert land er hhv. mænd og kvinder. Her kan det bedste split i to grupper være i køn, mens det bedste split i tre grupper kan være i nationaliteter. Her er grupperingerne ikke nestede - den bedste opdeling i tre grupper fås ikke ved at opdele den én af to grupper i to.

I en situation som den vil K-Means typisk gruppere data mere præcist end HC.

Clustering i praksis

Processen

- 1. Præprocessering:
 - Hvis variablene er forskellige enheder er det som regel en god idé at normalisere data så gns. = 0 og SD = 1. Normalisering skader sjældent.
- 2. Fastsættelse og afprøvelse af parametre:
 - · K-Means: Antal clusters
 - · Hierarkisk clustering: Type forskellighed + linkage + cutoff
- 3. "Validering":
 - · Hvor robuste er de fundne clusters mod ændringer i parametre?
 - Hvor robuste er de fundne clusters mod ændringer i data, fx subsetting?
 - Forekommer de fundne clusters meningsfulde og informative?

Husk på: Der findes hverken en naturgiven tilgang eller absolut sande clusters - vi leder blot efter subgrupper, som kan gøre os klogere!

Workshop

Workshop

Find opgaverne på Github under PDS/opgaver/:

· 12_opgaver.R

Afrunding

Sidste lektion

Inputs

Lektion 1:

- · Optegning af overordnede linjer i kurset
- Further reading
- Boblejagt
- Evaluering

Lektion 2:

- · Mini-oplæg og opponering på 1-pagers om seminaropgaver i klynger
- · Kort feedback på 1-pagers

Næste gang

- · Indhold:
 - Refleksioner om data science
- · Pensum:
 - Anderson (2008),
 - Lazer et al (2014),
 - Samii (2016),
 - Athey (2017),
 - Mittelstadt et al (2016),
 - Hofman et al. (2017)
- · DataCamp:
 - [Valgfrit kursus]

Tak for i dag!