import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score

Data Collection and Analysis

loading the diabetes dataset to a pandas DataFrame
diabetes_dataset = pd.read_csv('/diabetes.csv')

pd.read_csv?

printing the frist 5 rows of the dataset
diabetes_dataset.head()

0 6 148 72 35 0 33.6 0.627 50 1 1 1 1 85 66 29 0 26.6 0.351 31 0 2 8 183 64 0 0 23.3 0.672 32 1 3 1 89 66 23 94 28.1 0.167 21 0 4 0 137 40 35 168 43.1 2.388 33 1	_		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome	
2 8 183 64 0 0 23.3 0.672 32 1 3 1 89 66 23 94 28.1 0.167 21 0		0	6	148	72	35	0	33.6	0.627	50	1	ıl.
3 1 89 66 23 94 28.1 0.167 21 0		1	1	85	66	29	0	26.6	0.351	31	0	
		2	8	183	64	0	0	23.3	0.672	32	1	
A 0 137 A0 25 168 A3 1 2 288 33 1		3	1	89	66	23	94	28.1	0.167	21	0	
		A	0	137	40	35	168	AQ 1	2 288	33	1	

New interactive sheet

View recommended plots

number of rows and columns in this dataset
diabetes_dataset.shape

Generate code with diabetes_dataset

→ (768, 9)

Next steps:

 $\label{thm:problem} \mbox{\tt \#getting the statistical measures of the data} \\ \mbox{\tt diabetes_dataset.describe()}$

→		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome	
	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958	
	std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000	
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000	
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000	
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000	
	mav	17 000000	100 000000	122 ᲘᲘᲘᲘᲘᲘ	<u>aa nnnnnn</u>	846 000000	67 100000	2 420000	81 <u>000000</u>	1 000000	•

diabetes_dataset['Outcome'].value_counts()

diabetes_dataset.groupby('Outcome').mean()

```
₹
              Pregnancies
                             Glucose BloodPressure SkinThickness
                                                                     Insulin
                                                                                   BMI DiabetesPedigreeFunction
                                                                                                                             \blacksquare
                                                                                                                       Age
      Outcome
                 3.298000 109.980000
                                                                   68.792000 30.304200
        0
                                          68.184000
                                                        19.664000
                                                                                                        0.429734 31.190000
                  A 965670 1A1 957A69
                                          70 22/627
                                                        22 16/170 100 225921 25 1/2527
                                                                                                        0.550500 27.067164
# separating the data and labels
X = diabetes_dataset.drop(columns = 'Outcome', axis=1)
Y = diabetes_dataset['Outcome']
print(X)
                                                                     BMI \
\overline{2}
          Pregnancies Glucose BloodPressure SkinThickness Insulin
                          148
                                         72
                                                        35
                                                                  0 33.6
     1
                   1
                           85
                                          66
                                                        29
                                                                  0 26.6
     2
                   8
                          183
                                          64
                                                        0
                                                                  0 23.3
     3
                   1
                          89
                                          66
                                                        23
                                                                 94 28.1
                   0
                          137
                                                        35
                                                                168 43.1
     4
                                         40
     763
                  10
                          101
                                         76
                                                        48
                                                                180 32.9
     764
                          122
                                         70
                                                        27
                                                                  0 36.8
     765
                   5
                          121
                                         72
                                                        23
                                                                112 26.2
     766
                   1
                          126
                                          60
                                                         0
                                                                  0 30.1
     767
                   1
                           93
                                          70
                                                        31
                                                                  0
                                                                    30.4
         DiabetesPedigreeFunction Age
    0
                            0.351
     1
     2
                            0.672
                                    32
     3
                            0.167
                                    21
     4
                            2.288
                                   33
     763
                            0.171
                                   63
                            0.340
                            0.245
     765
                                    30
     766
                            0.349
                                    47
     767
                            0.315
                                    23
     [768 rows x 8 columns]
print(Y)
₹
    0
           1
           0
     2
           1
     3
           0
     4
           1
     763
           0
     764
           0
     765
     766
           1
     767
     Name: Outcome, Length: 768, dtype: int64
Data StandardScaler()
scaler = StandardScaler()
scaler.fit(X)
\overline{2}
        StandardScaler 🗓 🕐
     StandardScaler()
standardized_data = scaler.transform(X)
print(standardized_data)
1.4259954 ]
      [-0.84488505 \ -1.12339636 \ -0.16054575 \ \dots \ -0.68442195 \ -0.36506078
       -0.19067191]
```

```
[\ 1.23388019 \ 1.94372388 \ -0.26394125 \ \dots \ -1.10325546 \ 0.60439732
     -0.10558415]
     -0.275759661
     [-0.84488505 0.1597866 -0.47073225 ... -0.24020459 -0.37110101
      1.17073215]
     -0.87137393]]
X = standardized data
Y = diabetes_dataset['Outcome']
print(X)
print(Y)
1.4259954 1
     [-0.84488505 \ -1.12339636 \ -0.16054575 \ \dots \ -0.68442195 \ -0.36506078
      -0.19067191]
     [\ 1.23388019 \ 1.94372388 \ -0.26394125 \ \dots \ -1.10325546 \ 0.60439732
      -0.10558415]
     -0.27575966]
     [-0.84488505 0.1597866 -0.47073225 ... -0.24020459 -0.37110101
      1.17073215]
     -0.87137393]]
    0
         0
    2
         1
    3
         0
    4
         1
    763
         a
    764
         0
    765
         0
    766
         1
    767
    Name: Outcome, Length: 768, dtype: int64
Train Test Split
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size=0.2, stratify=Y, random_state=2)
print(X.shape, X_train.shape, X_test.shape)
→ (768, 8) (614, 8) (154, 8)
Training the Model
classifier = svm.SVC(kernel='linear')
#training the support vector Machine Classifier
classifier.fit(X_train, Y_train)
\overline{2}
                 (i) (?)
          SVC
    SVC(kernel='linear')
Model Evaluation
Accuracy Score
# accuracy score on the training data
X_train_prediction = classifier.predict(X_train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
print('Accuracy score of the training data : ', training_data_accuracy)
```

Accuracy score of the training data : 0.7866449511400652

Making a Predictive System

```
input_data = (5,166,72,19,175,25.8,0.587,51)
# changing the input_data to numpy array
input_data_as_numpy_array = np.asarray(input_data)
# reshape the array as we are predicting for one instance
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
# standardize the input data
std_data = scaler.transform(input_data_reshaped)
print(std_data)
prediction = classifier.predict(std_data)
print(prediction)
if (prediction[0] == 0):
 print('The person is not diabetic')
 print('The person is diabetic')
0.34768723 1.51108316]]
    [1]
    The person is diabetic
    /usr/local/lib/python3.10/dist-packages/sklearn/base.py:493: UserWarning: X does not have valid feature names, but StandardScaler was fi
      warnings.warn(
```

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.