

Ionic Product of water

$$2H_{2}O \rightleftharpoons H_{3}O^{+} + OH^{-}$$

$$K_{W} = [H_{3}O^{+}][OH^{-}] = 1 \times 10^{-14} M^{2}$$

$$\therefore [OH^{-}] = [H^{+}] = 10^{-7} M@298 K$$

$$pK_{W} = pK_{a} + pK_{b} = 7 + 7 = 14$$

OStwald'S Dilution Law

Applicable for weak electrities

$$\therefore K_{c} = C\alpha^{2} \text{ or } \alpha = \sqrt{\frac{K_{c}}{C}}$$

So,
$$\alpha = \frac{1}{\sqrt{v}}$$
 or ∞

where V is the volume of Solution at infinite dilution

Solubility Product (Ksp)

$$Ksp = [C]^{O}[D]^{d}$$

Hydrolysis of Salts

Salts of Strong base and Strong acid does not undergo hydrolysis. eg. naCl, KCl

· Salt of weak base and Strong Acid

$$K_{h} = \frac{K_{w}}{K_{b}}; P^{H} = \frac{1}{2} [pK_{2_{a}} - pK_{b} - logc]$$

· Salt of weak Acid and weak base

$$K_{h} = \frac{K_{w}}{K_{a} \times K_{b}}; p^{H} = \frac{1}{2} [pK_{w} - pK_{a} - pK_{b}]$$

Acids and Base

- Acids: Liberates H₂ on reacting with metals Turns blue litumus into red
- Base: Taste bitter and feel soapy Turns red litmus into blue

Acidic $\Rightarrow [H_3O^+] > [OH^-]$

Basic $\Rightarrow [H_3O^+] < [OH^-]$

Neutral $\Rightarrow [H_3O^+] = [OH^-]$

factor's of reaction

Le Chatlier's Principle

- Effect of concentration change concentration ->. equilibrium Shift forward.
- · Effect of pressure change equilibrium will Shift in the direction having Smaller number of moles.
- · Effect of temperature change

for exothermic → low temperature favors formation of reactants.

for Endothermic \rightarrow High temperature favors formation of products.

- ullet Effect of inert gas o No change
- ullet Effect of catalySt o No change

 $aA + bB \rightleftharpoons cC + dD$

Law of chemical Equilibrium

Equilibrium Law

$$K_{c} = \frac{[C]^{C} [D]^{d}}{[A]^{a} [B]^{6}}$$

Here K, is equilibrium constant

Gibb's energy

∆G = RT In K

 $\triangle G$ = -ve. Spontaneous reaction Reaction proceeds forward. $\Delta G = +ve$, Non Spontaneous reation

Reaction proceeds backward △G = zero, equilibrium achieved Relation between equilibrium constant k_{D} and k_{C}

$$K_p = K_c(RT)^{\Delta ng}$$

PH Concept

$$P^{H} = -\log[H^{+}]$$

 $P^{H} = -\log[H_{3}O^{+}]$

for weak acid \rightarrow P^H = $\frac{1}{2}$ (C_pK_a - logC)

Definition

Chemical reaction reach a State of dynamic equilibrium in which the rate of forward reaction and backward reation are same and there is no net change in composition

Homogeneous

Reactant and Product are in same phase

Physical Equilibrium

Equilibrium Set up in a Physical process like evaporation of water

Hetrogeneous

Direction of

reaction

 $Q_c > K_c$

Reaction goes

from left to right

Reaction goes from

 $Q_c < K_c$

right to left

occurs

 $Q_c = K_c$

No net reaction

Reactant and product are in different phase

Chemical Equilibrium

Equilibrium attained in a chemical reaction

$$3H_2 + N_2 \rightleftharpoons 2NH_3$$

- Possible only in a closed system.
- Both reaction occur at Same rate
- All measurable property remains constant

