

University College London

Computational Modelling in Biomedical Imaging - Coursework 2

Author:
RĂZVAN VALENTIN MARINESCU
razvan.marinescu.14@ucl.ac.uk

EPSRC CENTRE FOR DOCTORAL TRAINING IN MEDICAL IMAGING UNIVERSITY COLLEGE LONDON

 $\mathbf{Q}\mathbf{1}$

(a)

Sample	True mean	Sample mean	True standard deviation	Sample standard deviation
sample 1	1	0.9848	0.25	0.2842
sample 2	1.5	1.4944	0.25	0.2281

The new values are as expected, lying within a 0.04 tolerance level.

(b)

The t-test results in a t-statistic of -6.99, rejecting the null hypothesis with a p-value of 7.55e-09 which is very low. We are very confident the two samples were generated from distributions with different means, which is indeed the case (means of 1 and 1.5).

(c)

i. dim(X) = 2 because X is made of two column vectors that are linearly independent.

ii.
$$Y = X\beta \to X^TY = X^TX\beta \to (X^TX)^{-1}X^TY = \beta \to X(X^TX)^{-1}X^TY = X\beta$$
. Since $MY = X\beta$, we deduce $M = X(X^TX)^{-1}X^T$

iii