Практические задания №5. Григорьев И.С. 6304

Задание №1

Дан набор значений 2, 4, 10, 12, 3, 20, 30, 11, 25. Предположим количество кластеров k = 3, и выбраны начальные средние значения $m_1 = 2$, $m_2 = 4$, $m_3 = 6$. Покажите, какие кластеры будут после первой итерации алгоритма k-средних, и рассчитайте новые значения центров кластеров для следующей итерации.

Кластер	Значения	Среднее
C_1	2, 3	2.5
C_2	4	4
C_3	10, 11, 12, 20, 25, 30	18

Задание №2

Дан набор точек х и вероятности из принадлежности к кластерам C_1 и C_2 .

x	$P(C_1 x)$	$P(C_2 x)$
2	0.9	0.1
3	0.8	0.1
7	0.3	0.7
9	0.1	0.9
2	0.9	0.1
1	0.8	0.2

1. Найдите оценку максимального правдоподобия для средних μ 1 и μ 2. μ_i вычисляется как средневзвешенное из всех точек:

$$\mu_i = \frac{\sum_{j=1}^{n} w_{ij} X_j}{\sum_{j=1}^{n} w_{ij}}$$

где $w_{ij} = P(C_i|x_j)$ – вес или вклад точки x_i в кластер C_i .

```
w1 = np.array([0.9, 0.8, 0.3, 0.1, 0.9, 0.8])
w2 = np.array([0.1, 0.1, 0.7, 0.9, 0.1, 0.2])
X = np.array([2, 3, 7, 9, 2, 1])
```

```
m1 = (w1 * X).sum() / w1.sum()
m1
```

2.5789473684210535

```
m2 = (w2 * X).sum() / w2.sum()
m2
```

6.619047619047618

2. Предположим, что $\mu 1 = 2$, $\mu 2 = 7$ и $\sigma 1 = \sigma 2 = 1$. Найдите вероятности принадлежности точки x = 5 к кластерам C_1 и C_2 . Априорные вероятности каждого кластера $P(C_1) = P(C_2) = 0.5$ и P(x = 5) = 0.029.

Апостериорные вероятности кластеров вычисляются с помощью ур-я:

$$P(C_i|\mathbf{x}_j) = \frac{f(\mathbf{x}_j|\mu_i, \sigma_i^2)P(C_i)}{\sum_{a=1}^k f(\mathbf{x}_i|\mu_a, \sigma_a^2)P(C_a)}$$

используем одномерные нормали для каждого кластера:

$$f_i(\mathbf{x}) = f(\mathbf{x}_j | \mu_i, \sigma_i^2) = \frac{1}{\sqrt{2\pi}\sigma_i} exp \left\{ -\frac{\left(\mathbf{x}_j - \boldsymbol{\mu}_i\right)^2}{2\sigma_i^2} \right\}$$

```
def f(x, mean, std):
    return np.exp(-(x - mean)**2 / (2 * std**2)) / (np.sqrt(2 * np.pi) * std)

pc1_x = f(5, 2, 1) * 0.5
pc2_x = f(5, 7, 1) * 0.5
x_in_c1 = pc1_x / (pc1_x + pc2_x)
x_in_c2 = pc2_x / (pc1_x + pc2_x)
print(f'P(C1|5) = {round(x_in_c1, 3)}')
print(f'P(C2|5) = {round(x_in_c2, 3)}')
```

```
P(C1|5) = 0.076
P(C2|5) = 0.924
```

Задание №3Даны категориальные данные размерности 5.

Point	X_1	X_2	X_3	X_4	X_5
\mathbf{x}_1	1	0	1	1	0
\mathbf{x}_2	1	1	0	1	0
X 3	0	0	1	1	0
X 4	0	1	0	1	0
X 5	1	0	1	0	1
x ₆	0	1	1	0	0

Близость двух наблюдений определяется через количество совпадений и несовпадений значений признаков. Допустим, что n_{11} количество признаков одновременной равных 1 для наблюдений x_i и x_j , и n_{10} количество признаков равных 1 для наблюдения x_i и в то же время равных 0 для наблюдения x_j . По аналогии определяются значения n_{01} and n_{00} :

	\mathbf{x}_{j}			
		1	0	
\mathbf{x}_i	1	n_{11}	n_{10}	
	0	n_{01}	n_{00}	

Определим следующие метрики:

• Коэффициент простого совпадения

$$SMC(\mathbf{x}_i, \mathbf{x}_j) = \frac{n_{11} + n_{00}}{n_{11} + n_{10} + n_{01} + n_{00}}$$

• Коэффициент Жаккара

$$JC(\mathbf{x}_i, \mathbf{x}_j) = \frac{n_{11}}{n_{11} + n_{10} + n_{01}}$$

• Коэффициент Рассела и Рао

$$RC(\mathbf{x}_i, \mathbf{x}_j) = \frac{\bar{n}_{11}}{n_{11} + n_{10} + n_{01} + n_{00}}$$

Постройте дендограммы полученные после иерархической кластеризации при следующих параметрах:

• Метод одиночной связи с метрикой RC

	<i>X</i> ₃	$X_2X_4X_5$
<i>X</i> ₁	1/3	1/6
<i>X</i> ₃		1/6

	<i>X</i> ₃	X_4	X_2X_5
X_1	1/3	1/3	1/6
<i>X</i> ₃		1/3	1/6
<i>X</i> ₄			0

	X_2	<i>X</i> ₃	X_4	<i>X</i> ₅
<i>X</i> ₁	1/6	1/3	1/3	1/6
<i>X</i> ₂		1/6	1/3	0
<i>X</i> ₃			1/3	1/6
X_4				0

Метод полной связи с метрикой SMC

	X_2X_3	X_4X_5
X_1	1/2	2/3
X_2X_3		1/3

	X_2X_3	<i>X</i> ₄	<i>X</i> ₅
<i>X</i> ₁	1/2	1/2	2/3
X_2X_3		1/2	1/2
X_4			1/6

	X_2	<i>X</i> ₃	X_4	<i>X</i> ₅
<i>X</i> ₁	1/3	1/2	1/2	2/3
<i>X</i> ₂		1/6	1/2	1/3
<i>X</i> ₃			1/3	1/2
<i>X</i> ₄				1/6

• Невзвешенный центроидный метод с метрикой ЈС

	$X_2X_4X_5$	<i>X</i> ₃
<i>X</i> ₁	59/180	2/5
$X_2X_4X_5$		3/4

	X_2X_5	X_3	X_4
X_1	7/24	2/5	2/5
X_2X_5		5/24	1/5
<i>X</i> ₃			1/3

	X_2	<i>X</i> ₃	X_4	<i>X</i> ₅
X_1	1/4	2/5	2/5	1/3
<i>X</i> ₂		1/6	2/5	0
<i>X</i> ₃			1/3	1/4
X_4				0

