#### **MNLP**

# **Project Presentation**

## HW\_1A: Dataset Preprocessing

- **≻**Introduction
- ➤ Dataset
- ➤ Methodology
- **≻**Conclusion

#### **Introduction**

- Task: Reframe existing tasks into multi-choice question-answering (QA) format, making them LLM-friendly.
- Focus: Develop prompts that guide the LLM to produce accurate responses and assess its linguistic skills.
- Dataset Transformation: Convert original datasets into JSONL format, generate distractors, and define suitable prompts to evaluate the LLM's capabilities.

## **ABISTA**

#### **Dataset**

- The ABSITA dataset consists of user reviews written in Italian.
- It is designed for aspect-based sentiment analysis, where reviews are manually annotated according to seven predefined aspects.
- 23 categories of user review classes with 7 sentiment aspect.

#### Methodology: Data Preprocessing

- The CSV dataset is converted into dictionaries, where each dictionary entry contains the **sentence**, the **aspects**, and the **sentiment polarity** for each aspect.
- The dictionaries are split into training and test datasets for sentiment analysis. These are saved as separate JSONL files.

## **Prompt for NLI task**

Each JSONL entry is provided with up to five different prompts.

('sentence\_id': '1240342344', 'cleanliness\_presence': '0', 'cleanliness\_positive': '0', 'cleanliness\_negative': '0', 'comfort\_presence': '0', 'comfort\_positive': '0', 'comfort\_negative': '0', 'amenities\_presence': '0', 'amenities\_positive': '0', 'staff\_presence': '0', 'staff\_positive': '0', 'staff\_presence': '0', 'value\_presence': '0', 'value\_positive': '0', 'value\_presence': '0', 'value\_positive': '0', 'valive': '0', 'val

Fig. 1. Source dataset format

Fig. 2. Reformatted dataset format

```
"prompt1": f'Considera la frase: '{sentence}' Considerando la '{aspect}' come un aspetto, questa frase esprime un sentimento positivo o negativo?"

"prompt2": f'Analizza la frase: '{sentence}' Concentrandoti sull'a spetto '{aspect}', questa frase trasmette un senso di fi ducia o di sfiducia?"

"prompt3": f'Esamina attentamente: '{sentence}' Quando consideri '{aspect}' come un fattore, la sensazione trasmessa dalla frase è più positiva o negativa?"

"prompt4": f'Guarda la frase: '{sentence}' Tenendo conto dell' elemento '{aspect}', questa espressione comunica un tono favorevole o sfavorevole?"

"prompt5": f'Valuta questa affermazione: '{sentence}'
Considerando '{aspect}' come un parametro, questa frase indica un sentimento di gioia o di tristezza?"
```

Fig. 3. List of prompts

## ITAmoji

#### **Dataset**

- The ITAmoji dataset consists of 275,000 tweets, each paired with one of the 25 most common emojis used on platforms like Twitter.
- The tweets are mapped to one of the emojis, making it useful for emoji prediction tasks.
- For each tweet, the dataset includes: Tweet sentence and Corresponding emoji label.

#### **Methodology:** Data Preprocessing

- The dataset is divides as train data and test data which contains 250,000 and 25,000 entities respectively.
- The data reformatted dataset each entity contains: the original tweet sentence, the correct emoji label associated with the tweet and the three distractor emojis, which are chosen based on the similarity with the original emoji.

### **Prompt for NLI task**

• Each JSONL entry is accompanied by up to <u>five prompts</u> that guide interaction with the data.

Fig. 1. Train dataset format (source)

```
{'uid': '227841404',
  'text_no_emoji': '<MENTION_1> io desideravo il meglio e ho sposato il peggio',
  'ground_truth_label': 'winking_face',
  'tweet_id': '633787023699148800',
  'created_at': 'Tue Aug 18 23:46:16 +0000 2015',
  'tid': 'ITAMOJI_test_1'
}
```

Fig. 2. Test dataset format (source)



Fig. 3. Reformatted dataset format

```
{
    "prompt1": f"Scegli un emoji appropriato che si adatti meglio
    all'umore del tweet {data[i][text_no_emoji*]}"
    "prompt2": f"Scegli l'emoji perfetta per abbinare
    "prompt3": f"Seleziona l'emoji più adatta che
    cattura l'essenza del tweet {data[i][text_no_emoji*]}"
    "prompt4": f"Scegli un'emoji che sia in sintonia con il
    sentimento del tweet {data[i][text_no_emoji*]}"
    "prompt5": f"Trova l'emoji che meglio rifiette la stato
    d'animo trasmesso nel tweet {data[i][text_no_emoji*]}"
}
```

Fig. 4. List of prompts

## HW\_1A: Data Preprocessing - Conclusion

#### **ABISTA**

- The ABSITA dataset provides a valuable resource for aspect-based sentiment analysis in Italian, offering a range of sentiments across multiple aspects of user reviews.
- The structured JSONL format, combined with the prompts, makes this dataset versatile for various NLP tasks, including sentiment classification and aspect detection.

### <u>ITAmoji</u>

- The ITAmoji dataset provides a structured and comprehensive resource for studying the use of emojis in Italian tweets.
- By mapping tweets to commonly used emojis, the dataset enables emoji prediction tasks that can be applied to various NLP problems.

## HW\_1B: LSTM Classification

- **≻**Introduction
- ➤ Dataset
- > Baseline model
- ➤ Model architecture & Design choices
- ➤ Performance Analysis
- **≻**Result
- **≻**Conclusion

#### Introduction

- Detection of hate speech within textual data.
- Focus on text classification using the HaSpeeDe dataset.
- Aim is to build an LSTM based model to distinguish between hateful and neutral content.

"text": <sentence>,

"labels": 0 or 1

"choices": ["neutrale", "odio"],

### **Dataset**

- Dataset Source: HaSpeeDe dataset with Italian text, focuses on detecting hate speech in Italian social media.
- Train Dataset: train-taskA.jsonl
- Test Dataset: test-news-taskA.jsonl: News dataset for model evaluation.

test-tweets-taskA.jsonl: Tweets dataset for model evaluation.

- Structure: Each data structure contains a text, choices and label fields. The texts in Italian labeled either as "neutral" (0) or "odio" (1).
- Preprocessing: Tokenization, padding, and use of embeddings for input text.

```
{"text": "\u00c8 terrorismo anche questo, per mettere in uno stato di soggezione le persone e renderle innocue, mentre qualcuno... URL ", "choices": ["neutrale", "odio"], "label": 0}
{"text": "@user @user infatti finch\u00e9 ci hanno guadagnato con i campi #rom tutto era ok con #Alemanno #Ipocriti ", "choices": ["neutrale", "odio"], "label": 0}
{"text": "Corriere: Tangenti, Mafia Capitale dimenticataMazzette su buche e campi rom URL #roma ", "choices": ["neutrale", "odio"], "label": 0}
{"text": "@user ad uno ad uno, perch\u00e9 quando i migranti israeliti arrivarono in terra di Canaan fecero fuori tutti i Canaaniti. ", "choices": ["neutrale", "odio"], "label": 0}
{"text": "Il divertimento del giorno? Trovare i patrioti italiani che inneggiano contro i rom facendo la spesa alla #Lidl (multinazionale tedesca). ", "choices": ["neutrale", "odio"], "label": 0}
```

### **Baseline model**

- **Embedding Layer:** Simple trainable embedding layer to capture semantic meaning of the text. Converts tokenized words into dense vector representations (embeddings).
- **Dense Layer:** Captures key features from the input text, uses ReLU activation function to introduce nonlinearity and dropout layers are incorporated to avoid overfitting.
- Classification Layer: Fully connected layer, predicts whether text is neutral or hate.



• Why Baseline model: Act as a starting point to compare other models.

## **Model Architecture & Design Choice**

- **Embedding Layer:** Pretrained Word2Vec embeddings to capture semantic context in Italian text.
- **LSTM Layer:** Captures sequential dependencies in text, important for long-range dependencies in hate speech detection.
- Dropout Layer: Regularization to reduce overfitting, especially with small datasets.
- Fully Connected Layer: Final layer for classification (neutral vs. hate speech).
- Output: Logits for binary classification (hate or neutral).



#### Why LSTM with Word2Vec?

- LSTM is better at handling long-term dependencies compared to RNN and it is simple and sufficient for small datasets.
- Pretrained Word2Vec embeddings improve the semantic understanding of words.

## **Performance Analysis**

|   | Method              | Accuracy | Precision (neutrale) | Recall<br>(neutrale) | F1-Score (neutrale) | Precision<br>(odio) | Recall<br>(odio) | F1-Score<br>(odio) |
|---|---------------------|----------|----------------------|----------------------|---------------------|---------------------|------------------|--------------------|
| 0 | LSTM_Model_W2V      | 0.660000 | 0.733542             | 0.733542             | 0.733542            | 0.530387            | 0.530387         | 0.530387           |
| 1 | BiLSTM_Model_W2V    | 0.586000 | 0.705882             | 0.601881             | 0.649746            | 0.442982            | 0.558011         | 0.493888           |
| 2 | W2V_DENSE_Model_W2V | 0.660000 | 0.707521             | 0.796238             | 0.749263            | 0.539007            | 0.419890         | 0.472050           |
| 3 | Baseline_           | 0.544000 | 0.719807             | 0.467085             | 0.566540            | 0.419795            | 0.679558         | 0.518987           |

Fig: Test result in News Dataset

|   | Method              | Accuracy | Precision (neutrale) | Recall<br>(neutrale) | F1-Score<br>(neutrale) | Precision<br>(odio) | Recall<br>(odio) | F1-Score<br>(odio) |
|---|---------------------|----------|----------------------|----------------------|------------------------|---------------------|------------------|--------------------|
| 0 | LSTM_Model_W2V      | 0.519398 | 0.793103             | 0.071763             | 0.131617               | 0.506224            | 0.980707         | 0.667761           |
| 1 | BiLSTM_Model_W2V    | 0.528108 | 0.671756             | 0.137285             | 0.227979               | 0.511484            | 0.930868         | 0.660205           |
| 2 | W2V_DENSE_Model_W2V | 0.604909 | 0.684896             | 0.410296             | 0.513171               | 0.569966            | 0.805466         | 0.667555           |
| 3 | Baseline_           | 0.619952 | 0.784452             | 0.346334             | 0.480519               | 0.572449            | 0.901929         | 0.700375           |

Fig: Test result in Tweet Dataset

## Result

- **LSTM with Word2Vec:** Performs best on the news dataset and shows good potential for hate speech detection.
- BiLSTM: Better suited for informal text like tweets.
- **Baseline and Dense Models:** While useful for comparison, they perform worse than LSTM-based models.

## **Conclusion:**

- LSTM with Word2Vec is a good choice for hate speech detection, especially in formal text.
- Bidirectional context (BiLSTM) can improve results in informal datasets.
- Embedding choice plays a significant role in model performance.

## HW\_2: Adversarial NLI

- **≻**Introduction
- ➤ Dataset
- ➤ Data Preprocessing
- ➤ Model Architecture
- ➤ Model Training & Validation
- ➤ Model Testing & Evaluation
- ➤ Adversarial Data Augmentation
- ➤ Result & Conclusion

#### **Introduction**

- The project analyzes the robustness and performance of a NLI model under two datasets: an original dataset and an adversarial dataset.
- The objective is to study how well the model handles adversarial examples compared to the original dataset.

#### **Dataset**

#### Original Dataset (FEVER):

- Dataset contains human-generated claims paired with evidence from Wikipedia articles.
- The model's task is to determine whether the claim is supported or refuted based on the evidence.
- Size of the dataset: 55,661

#### Adversarial Dataset:

- A human generated dataset which introduces perturbations to test the model's robustness.
- These perturbations make it harder for the model to make accurate inferences.
- Size of the dataset: 337

```
DatasetDict({
    train: Dataset({
        features: ['id', 'premises', 'hypothesis', 'label', 'wsd', 'srl']
        num_rows: 51086
    })
    validation: Dataset({
        features: ['id', 'premises', 'hypothesis', 'label', 'wsd', 'srl']
        num_rows: 2288
    })
    test: Dataset({
        features: ['id', 'premises', 'hypothesis', 'label', 'wsd', 'srl']
        num_rows: 2287
    })
}
```

Fig: FEVER dataset

```
DatasetDict({
    test: Dataset({
        features: ['part', 'cid', 'premises', 'hypothesis', 'label']
        num_rows: 337
    })
})
```

Fig: Adversarial dataset

### **Data Preprocessing**

- **Tokenization:** The text in both datasets is tokenized into sub-words using DeBERTa's tokenizer, which helps prepare the data for model consumption.
- Padding and Lowercasing: Input sentences are padded to a fixed length, and all text is converted to lowercase to maintain uniformity during training.
- Label Encoding: The target labels are encoded for use in the model training process.

**Entailment: 0** 

Neutral: 1

Contradiction: 2

```
DatasetDict({
    train: Dataset({
        features: ['label', 'wsd', 'srl', 'input_ids', 'token_type_ids', 'attention_mask']
        num_rows: 51086
    })
    validation: Dataset({
        features: ['label', 'wsd', 'srl', 'input_ids', 'token_type_ids', 'attention_mask']
        num_rows: 2288
    })
    test: Dataset({
        features: ['label', 'wsd', 'srl', 'input_ids', 'token_type_ids', 'attention_mask']
        num_rows: 2287
    })
}
```

Fig: FEVER preprocessed dataset

```
DatasetDict({
    test: Dataset({
        features: ['label', 'input_ids', 'token_type_ids', 'attention_mask']
        num_rows: 337
    })
})
```

Fig: Adversarial preprocessed dataset

#### **Model Architecture**

- **Basic architecture**: DeBERTa-v3-base
- Model uses pretrained weights of DeBERTa-v3 for faster convergence of learning.
- Adversarial Noise layer: introduced to add noise during training, simulating adversarial conditions.
- The noise layer adds Gaussian noise to the hidden states produced by DeBERTa.
- Sequence classification layer is a linear classifier which generates final logits for the classification task.
- Loss function: Cross Entropy
- Optimizer: AdamW
- Learning rate scheduler: Linear learning rate scheduler with warm-up steps

### **Training & Validation**

- The model is trained on the original dataset: FEVER, is trained over multiple epochs.
- Validation is performed after each epoch.
- A linear learning rate scheduler is introduced with warm-up steps to help with convergence, making the training process more stable.

### **Testing & Evaluation**

- The trained model is tested on both the original and adversarial datasets.
- The adversarial dataset contains perturbed samples designed to test the model's ability to generalize and withstand adversarial attacks.

| FEVER dataset |        |  |  |  |
|---------------|--------|--|--|--|
| Metric        | Score  |  |  |  |
| Accuracy      | 0.7686 |  |  |  |
| Precision     | 0.7643 |  |  |  |
| Recall        | 0.7686 |  |  |  |
| F1            | 0.7642 |  |  |  |

| Adv dataset |        |  |  |  |
|-------------|--------|--|--|--|
| Metric      | Score  |  |  |  |
| Accuracy    | 0.5845 |  |  |  |
| Precision   | 0.5932 |  |  |  |
| Recall      | 0.5845 |  |  |  |
| F1          | 0.5858 |  |  |  |

## **Adversarial Data Augmentation**

- The goal of adversarial data augmentation is to generate a more challenging dataset by modifying the hypotheses in the original training set.
- This is achieved by introducing two types of augmentations: Synonym replacement and Negation handling.
- These augmentations create variations in the dataset that the model must learn to handle, improving its ability to generalize to adversarial examples.

## A) Synonym Replacement

- Identifies the **Subject** in the hypothesis of each datapoint using **SpaCy's POS tagging** and replaces it with a synonym found using **WordNet**.
- This forces the model to focus on the semantic meaning of the sentences rather than memorizing specific words.

## B) Negation Handling

- Identifies the **Verb** in the hypothesis of each datapoint using **SpaCy's POS tagging** and is negated, altering the sentence context.
- The label for the data point is also modified to reflect the change in meaning.
- Negation helps the model learn to handle changes in the sentence structure that can significantly alter its meaning.
- It helps to prevents the model from overfitting to the original sentence structure.

### <u>Pipeline Flow</u>

- First, the subject is identified, and synonym replacement is attempted.
- If a synonym replacement is not possible, negation is applied to the verb, and the label is updated accordingly.
- Both the original and augmented examples are retained in the final dataset.

#### **Augmented dataset**

- Dataset used: Train data of the FEVER dataset.
- Each original datapoint is augmented and added alongside its original training set
- Augmented dataset contains almost double the number of train data when compared with the base dataset.

#### **Benefits of Data Augmentation**

- Increased Dataset Size: Provide the model with more varied examples to train on.
- Improved Robustness: The model becomes more robust to adversarial attacks that attempt to confuse it with such variations.
- Generalization: The augmented dataset helps the model generalize better to unseen data by exposing it to a broader range of inputs during training.

### Model Train, Test, Evaluation

- Model used: Custom DeBERTa-v3-base model.
- The model id trained using the augmented train dataset.
- The trained model is tested using the both FEVER and the Adversarial dataset.
- The pretrained model performance is evaluated using the accuracy, precision, recall and f1 matrices

| FEVER dataset |        |  |  |  |
|---------------|--------|--|--|--|
| Metric        | Score  |  |  |  |
| Accuracy      | 0.7531 |  |  |  |
| Precision     | 0.7517 |  |  |  |
| Recall        | 0.7532 |  |  |  |
| F1            | 0.7504 |  |  |  |

| Adv dataset |        |  |  |  |
|-------------|--------|--|--|--|
| Metric      | Score  |  |  |  |
| Accuracy    | 0.5697 |  |  |  |
| Precision   | 0.5876 |  |  |  |
| Recall      | 0.5697 |  |  |  |
| F1          | 0.5713 |  |  |  |

#### **Results**

- **Model on Original Dataset**: High performance in accuracy and F1-score, showcasing its efficiency in standard NLI tasks.
- **Model on Adversarial Dataset**: Performance drops, highlighting the challenges in handling adversarial data.
- Augmentation Impact: The augmented dataset improves the model's handling of adversarial data, but challenges remain.

#### **Conclusion**

- The model performs well on the original dataset but struggles with adversarial data.
- The augmentation pipeline introduces new training data, helping improve performance, but there is still room for improvement.

# **Thank You!**