MI-FME Cvičení 3

Tomáš Chvosta

Únor 2020

Cvičení 3a

Zadání:

Dokažte následující formuli:

$$\lceil \neg \lceil \lceil r \lor s \rceil \Rightarrow q \rceil \land \lceil \lceil r \lor s \rceil \Rightarrow q \rceil \rceil \Rightarrow \lceil \lceil p \Rightarrow q \rceil \land \neg \lceil p \Rightarrow q \rceil \rceil$$

Důkaz:

Jelikož se jedná o implikaci, předpokládáme, že platí levá strana pravidla tedy konjunkce $\neg[[r \lor s] \Rightarrow q]$ a $[[r \lor s] \Rightarrow q]]$. Tyto dva předpoklady představují \bot a jelikož z \bot plyne cokoliv, nezáleží na tom, co máme na pravé straně implikace a formule vždy platí.

Table 1: Důkazová tabulkaKrokPředpokládámeDokazujeme1. $\neg[[r \lor s] \Rightarrow q]$ $[p \Rightarrow q]$ $[[r \lor s] \Rightarrow q]] \dots \bot$ $\neg[p \Rightarrow q]$

Cvičení 3b

Zadání:

Dokažte následující formuli:

$$[\neg p \Rightarrow p] \Rightarrow p$$

Důkaz:

Jelikož se jedná o implikaci, je předpoklad $[\neg p \Rightarrow p]$ a pokusíme se dokázat p. Použijeme Ratschanovo důkazní pravidlo, které říká, že když chceme dokázat p, pak můžeme nahradit p za $\neg \neg p$ a následně použít pravidlo pro dokazování negací. Do seznamu předpokladů tedy přidáme $\neg p$ a pokusíme se najít spor.

Předpoklad $[\neg p \Rightarrow p]$ říká, že musí platit p jelikož máme v předpokladech $\neg p$, což je spor. Spor podle Ratschana dokončí úspěšně jakýkoliv důkaz.

Table 2: Důkazová tabulka

Krok	Předpokládáme	Dokazujeme
1.	$[\neg p \Rightarrow p]$	p
2.	$\neg p$	$\neg \neg p \text{ tedy } p$
3.	$p \dots \perp$	

Cvičení 3c

Zadání:

Dokažte následující formuli:

$$\neg[p \Rightarrow q] \Rightarrow [q \Rightarrow p]$$

Důkaz:

Jelikož se jedná o implikaci, je $\neg[p\Rightarrow q]$ předpoklad. Pokusíme se tedy dokázat $[q\Rightarrow p]$. Použijeme stejný postup a předpokládáme, že platí q. Nyní by se mohlo hodit dokázat, že platí $[p\Rightarrow q]$. Jako lemma tedy zvolíme $[p\Rightarrow q]$ a díky předpokladu q je jasné, že toto lemma platí. Můžeme tedy přidat předpoklad $[p\Rightarrow q]$, což společně s předpokladem $\neg[p\Rightarrow q]$ vytvoří \bot , ze které plyne cokoliv.

Table 3: Důkazová tabulka

Krok	Předpokládáme	Dokazujeme
1.	$\neg[p \Rightarrow q]$	$[q \Rightarrow p]$
2.	q	p
3.		lemma $[p \Rightarrow q]$
4.	$[p \Rightarrow q] \dots \perp$	

Cvičení 3d

Zadání:

Dokažte následující formuli:

Dokažte následující formuli:
Důkaz:
Cvičení 3g
Zadání:
Dokažte následující formuli:
Důkaz:
Cvičení 3h
Zadání:
Dokažte následující formuli:
Důkaz:
Cvičení 3i
Zadání:
Dokažte následující formuli:
Důkaz:
3

Důkaz:

Zadání:

Důkaz:

Zadání:

Cvičení 3f

Cvičení 3e

Dokažte následující formuli: