AMENDMENTS TO THE CLAIMS

Docket No.: 13156-00177

- 1. (Previously presented) A method of increasing the cutting hardness of a shaped body comprising a crystalline aluminosilicate having an SiO₂/Al₂O₃ molar ratio of 10:1 to 1200:1, wherein the shaped body comprises a binder selected from among oxides of silicon and/or zirconium and is treated with a gas consisting of water vapor at from 100 to 600°C and an absolute pressure of from 0.1 to 10 bar for a period of at least 20 hours and the shaped body has been calcined at from 100 to 600°C before the treatment with water vapor.
- 2. (Previously presented) The method according to claim 1, wherein the shaped body is treated for a period of at least 50 hours.
- 3. (Previously presented) The method according to claim 1, wherein the shaped body is treated continuously at a WHSV (weight hourly space velocity) of from 0.05 to 5 g of water vapor per gram of shaped body and per hour (g_{water vapor}/(g_{shaped body} h)).
- 4. (Previously presented) The method according to claim 1, wherein the shaped body is treated continuously at a WHSV (weight hourly space velocity) of from 0.1 to 1 g of water vapor per gram of shaped body and per hour (gwater vapor/(gshaped body h)).
- 5. (Previously presented) The method according to claim 1, wherein the shaped body is treated at from 200 to 450°C and an absolute pressure of from 0.1 to 2 bar.
- 6. (Previously presented) The method according to claim 1, wherein the shaped body is fixed in position (fixed bed) during the treatment with water vapor.
- 7. (Cancelled)
- 8. (Previously presented) The method according to claim 1, wherein the crystalline aluminosilicate in the shaped body has an SiO₂/Al₂O₃ molar ratio of greater than 50:1.
- 9. (Previously presented) The method according to claim 1, wherein the crystalline aluminosilicate in the shaped body is at least partly in the H⁺ and/or NH₄⁺ form.

677646 2

10. (Previously presented) The method according to claim 1, wherein the crystalline aluminosilicate in the shaped body is of the pentasil type.

Docket No.: 13156-00177

- 11. (Previously presented) A process for preparing triethylenediamine (TEDA) by reaction of ethylenediamine (EDA) and/or piperazine (PIP) in the presence of a crystalline aluminosilicate catalyst, wherein a shaped body whose cutting hardness has been increased beforehand using a method according to claim 1 is used as catalyst.
- 12. (Previously presented) The process according to claim 11, wherein the reaction is carried out continuously and in the gas phase.
- 13. (Previously presented) The process according to claim 11, wherein EDA and one or more amine compounds selected from the group consisting of monoethanolamine, diethanolamine, triethanolamine, PIP, diethylenetriamine, triethylenetetramine, tri(2-aminoethyl)amine, morpholine, N-(2-aminoethyl)ethanolamine, N-(2-hydroxyethyl)piperazine, N-(2-aminoethyl)piperazine, N,N'-bis(2-hydroxyethyl)piperazine and N-(2-aminoethyl)-N'-(2-hydroxyethyl)piperazine are reacted.
- 14. (Previously presented) The process according to claim 11, wherein EDA and from 7 to 250% by weight of piperazine (PIP), based on EDA, are reacted.
- 15. (Previously presented) The process according to claim 11, wherein EDA, from 8 to 250% by weight of PIP and from 23 to 300% by weight of water, in each case based on EDA, are reacted.
- 16. (Previously presented) The process according to claim 11, wherein the reaction temperature for the reaction to form TEDA is from 310 to 390°C.
- 17. (Previously presented) The process according to claim 11, wherein the absolute pressure in the reaction to form TEDA is from 0.1 to 10 bar.
- 18. (Cancelled)

677646 3

After Final Office Action of January 15, 2009

(Previously presented) A process for chemical synthesis carried out in the presence of a 19. crystalline aluminosilicate catalyst, wherein a shaped body whose cutting hardness has been increased beforehand using a method according to claim 1 is used as catalyst.

Docket No.: 13156-00177

(Previously presented) The process according to claim 19, wherein the synthesis is an 20. alkylation, disproportionation, acylation, isomerization, oligomerization, amination, alkoxylation, epoxidation, cyclization, hydroxylation, condensation, hydration or dehydration.

21. (Cancelled)

22. (Previously presented) A shaped body prepared by the method as claimed in claim 1.

4 677646