Fraud Detection

Problem Framing:

	Qualitative	Quantitative	Question
Current State	Increase in fraudulent transaction => bad customer experience => less customers => less revenue => loss to the bank	10% fraudulent transactions => 5% less customers => 5% less revenue	What is the average number of fraudulent transactions at present and what can be done about it in order to decrease them?
Objectives	 Build a model that can detect fraudulent transactions Less fraud => better customer experience => increase revenue 	Find and decrease the fraudulent transactions.	How do we detect fraudulent transactions?
Benefit/Cost Tradeoff and Prioritization	Errors - TP - Fraud identified => customers protected => better user experience => more revenue to bank FP - Valid transaction marked fraud => bad user experience => less revenue FN - Fraud marked valid => Risk to customers' assets => bad user experience => Less revenue TN - Valid transaction marked valid => no significant impact on revenue	cost-benefit matrix c(TP) c(FP) c(FN) c(TN) Improve the predictive model with one that yields a lower number of false positives AND a lower number of false negatives. In other words, improve the precision AND the recall.	What are the costs of errors/benefits of correct predictions and why?
Constraints	Can only afford very little FN rate and less FP rate	At most 5% FN and 10% FP=> Customer risk and better user experience	What are the acceptable risks/budgets and why?

Benefit: significantly lesser fraudulent transactions => significantly better user experience => significantly more customers => significantly better revenue Cost: very few false negatives => limited risk of bad user experience => limited risk of losing customers => limited risk to revenue	decrease in fraudulent transactions (from 20% to	What is the desired outcome benefits/costs) that we want to see and why?
--	--	--

Why ML

	qualitative	quantitative	question
best non-ML alternative hypothesis	classify based on amount or location of transaction => too many FP and FN => more fraud and bad user experience => lesser customers => loss of revenue	50% FP 70% FN => not cleaning enough fraudulent transactions and causing more complaints for misclassifying genuine transactions as fraudulent => 5% revenue loss risk	What are the non-ML alternatives and why are they problematic? (pains/missed gains)?
ML value proposition hypothesis	much fewer FP and FN => better user experience => more revenue	10% FP 50% FN => 50% less fraud in expense of 1% bad engagements => 5% increase in revenue at the expense of 0.1% risk	What are the advantages (pain relievers/gain creators) of ML solutions and why?
ML feasibility hypothesis	 data: labeled dataset of each person's bank history model: state of the art review suggests 	 data: around five thousand samples model: state of the art claim solutions with 10% FP 20% 	What data and models are good candidates and why?

candidates are available		promising candidates are available	FN	
-----------------------------	--	--	----	--

ML Solution Design

	choices	metrics	experiment
data	(labeled) transaction data	● label imbalance	 randomized 70/15/15 train/validation /test split
model	pr(fraud)	AUCPR (Precision recall curve)	 rule based heuristic tf-idf + logistic regression tf-idf + random forest BERT + logistic regression train these benchmark models using train data. validate and tune using validation data. select the model with best AUCPR on test data
action	if Pr(fraud) > threshold: auto take down	 precision recall confusion matrix 	choose a threshold to maximize the recall (estimated reward) subject to precision > 90%
reward	 decrease in fraud cost of misclassificati on 	 % Decrease in fraud % Increase in daily active users 	A/B test