Exercícios de Geometria Diferencial

Louis Bergamo Radial

15 de abril de 2024

1 Espaços topológicos

Definição 1.1: Topologia

Uma topologia no conjunto M é uma coleção O_M de subconjuntos de M satisfazendo os axiomas

- (a) o conjunto vazio e o conjunto M pertencem a O_M ;
- (b) uma interseção finita de elementos de O_M pertence a O_M ; e
- (c) uma união arbitrária de elementos de O_M pertence a O_M .

O par (M, O_M) é denominado um *espaço topológico* e subconjuntos de M que pertencem à topologia O_M são chamados *conjuntos abertos*. Se um subconjunto U é tal que o seu complemento $M \setminus U$ é aberto, então dizemos que U é um *conjunto fechado*. Adicionalmente, dado um elemento $p \in M$, um conjunto aberto V que contém p é dito uma vizinhança de p.

Exercício 1.1: Topologia usual do \mathbb{R}^n

Definimos a bola aberta $B_r(p) \subset \mathbb{R}^n$ de raio r > 0 centrado no ponto $p = (p^1, \dots, p^n) \in \mathbb{R}^n$ como o conjunto

$$B_r(p) = \{q = (q^1, \dots, q^n) \in \mathbb{R}^n : ||p - q|| < r\},\$$

onde $||p-q|| = \sqrt{\sum_{i=1}^{n} (p^i - q^i)^2}$. Verifique que O_{usual} é uma topologia para \mathbb{R}^n , onde $U \in O_{\text{usual}}$ se para todo ponto $x \in U$ existe r > 0 tal que $B_r(x) \subset U$.

Proposição 1.1: Topologia de subespaço

Dado um espaço topológico (M, O_M) e um subconjunto $S \subset M$, definimos a *topologia de subespaço* $O_M|_S$ como

$$O_M|_S = \{U \cap S : U \in O_M\}.$$

Então $(S, O_M|_S)$ é um espaço topológico.

Demonstração. Devemos mostrar que os axiomas da Definição 1.1 são satisfeitos.

(a) Como $S = M \cap S$ e $\emptyset = \emptyset \cap S$, temos $S \in O_M|_S$ e $\emptyset \in O_M|_S$.

- (b) Seja $U, V \in O_M|_S$. Então, existem $\tilde{U}, \tilde{V} \in O_M$ tais que $U = \tilde{U} \cap S$ e $V = \tilde{V} \cap S$. Assim, $U \cap V = (\tilde{U} \cap S) \cap (\tilde{V} \cap S) = (\tilde{U} \cap \tilde{V}) \cap S$. Como $\tilde{U} \cap \tilde{V} \in O_M$, devemos ter $U \cap V \in O_M|_S$.
- (c) Seja $\{U_{\alpha}\}_{\alpha\in J}$ uma família de conjuntos abertos de $O_M|_S$. Para cada $\alpha\in J$, existe $\tilde{U}_{\alpha}\in O_M$ tal que $U_{\alpha}=\tilde{U}_{\alpha}\cap S$. Então

$$\bigcup_{\alpha \in J} U_{\alpha} = \bigcup_{\alpha \in J} \tilde{U}_{\alpha} \cap S$$

$$= \{ m \in S : \exists \alpha \in J \text{ tal que } m \in \tilde{U}_{\alpha} \}$$

$$= \{ m \in M : \exists \alpha \in J \text{ tal que } m \in \tilde{U}_{\alpha} \} \cap S$$

$$= S \cap \bigcup_{\alpha \in J} \tilde{U}_{\alpha}.$$

Como a união arbitrária de conjuntos abertos é aberta, segue que $\bigcup_{\alpha \in J} U_{\alpha} \in O_M|_S$.

Desse modo, $(S, O_M|_S)$ é um espaço topológico.

Definição 1.2: Função contínua e homeomorfismos

Sejam (M, O_M) e (N, O_N) espaços topológicos. Uma aplicação $f: M \to N$ é contínua (em relação às topologias O_M e O_N) se para todo aberto $V \in O_N$ a pre-imagem preim $_f(V)$ é um conjunto aberto de O_M . Ainda, se f for um isomorfismo contínuo com inversa contínua, então f é dito um homeomorfismo e os espaços topológicos são ditos homeomorfos.

Observação 1.1. Convença-se que esta definição é equivalente à definição usual de continuidade para funções de variáveis reais a valores reais.

Exercício 1.2: Composição de aplicações contínuas

Sejam (A, O_A) , (B, O_B) e (C, O_C) espaços topológicos e sejam as aplicações contínuas (em relação às topologias apropriadas) $f: A \to B$ e $g: B \to C$. Mostre que a composição $g \circ f: A \to C$ é contínua em relação à O_A e O_C .

Corolário 1.1. A relação

$$(A, O_A) \sim (B, O_B) \iff (A, O_A) \text{ \'e homeomorfo a } (B, O_B)$$

é uma relação de equivalência.

Exercício 1.3: Bola aberta em \mathbb{R}^n é homeomorfa a \mathbb{R}^n

Utilize seus conhecimentos de cálculo elementar para mostrar que uma bola aberta qualquer é homeomorfa a \mathbb{R}^n em relação à topologia de subespaço e à topologia usual. Sugestão: mostre que a função

$$f: B_r(0) \subset \mathbb{R}^n \to \mathbb{R}^n$$

 $x \mapsto \frac{x}{r - ||x||}$

é uma bijeção.

Definição 1.3: Espaço topológico localmente Euclidiano

Um espaço topológico (M, O_M) é localmente Euclidiano de dimensão n se para todo $x \in M$, existe uma vizinhança U de x que é homeomorfa a \mathbb{R}^n em relação à topologia de subespaço e à topologia usual.

Observação 1.2. Pelo Exercício 1.3 e pelo Corolário 1.1 podemos mostrar que as vizinhanças U são homeomorfas à alguma bola aberta de \mathbb{R}^n .

2 Variedades topológicas e diferenciáveis

Definição 2.1: Variedade topológica de dimensão finita

Uma variedade topológica é um espaço topológico (M, O_M) localmente Euclidiano de dimensão n.

Observação 2.1. Por motivos técnicos, é comum requerer que o espaço topológico seja Hausdorff, paracompacto e segundo contável, de modo que alguns casos patológicos sejam removidos da definição.

Definição 2.2: Carta local de coordenadas

Seja (M, O_M) uma variedade topológica de dimensão n. Uma carta local de coordenadas é um par (U, x) onde $U \subset M$ é um aberto e $x : U \to x(U) \subset \mathbb{R}^n$ é um homeomorfismo. As funções componentes de x, as aplicações $x^i : U \to \mathbb{R}$ definidas por $p \mapsto \operatorname{proj}_i(x(p))$, são chamadas de coordenadas do ponto $p \in U$ com respeito à carta (U, x).

Definição 2.3: Atlas de uma variedade

Seja (M, O_M) uma variedade topológica. O *atlas* $\mathscr{A} = \{(U_\alpha, x_\alpha)\}_{\alpha \in J}$ é uma família de cartas locais da variedade tal que $\bigcup_{\alpha \in J} U_\alpha = M$, isto é, as cartas cobrem a variedade.

Observação 2.2. Sempre existe um atlas para uma variedade topológica?

Definição 2.4: Atlas de classe C^k

Duas cartas (U, x) e (V, y) de uma variedade topológica de dimensão n são C^k -compatíveis se

- (a) $U \cap V = \emptyset$; ou
- (b) $U \cap V \neq \emptyset$ e a função de transição $y \circ x^{-1} : x(U \cap V) \subset \mathbb{R}^n \to y(U \cap V) \subset \mathbb{R}^n$ é de classe C^k como uma função de \mathbb{R}^n em \mathbb{R}^n .

Um atlas \mathcal{A} é de classe C^k se suas cartas são par a par C^k -compatíveis.

Exercício 2.1: Atlas C^0 -compatível

Mostre que todo atlas é de classe C^0 . A partir disso, pense em como utilizar cartas locais para decidir se uma curva $\gamma:I\subset\mathbb{R}\to M$ e se uma aplicação $f:M\to N$ são contínuas, onde I é um intervalo na reta real, (M,O_M) e (N,O_N) são variedades

topológicas.

Observação 2.3. Este resultado mostra que podemos estudar a continuidade de funções entre variedades por coordenadas locais ou pela definição topológica.

Definição 2.5: Atlas maximal

Um atlas \mathscr{A} de classe C^k é maximal se para toda carta local $(U, x) \in \mathscr{A}$ valer

$$(U, x)$$
 e (V, y) são C^k -compatíveis $\implies (V, y) \in \mathcal{A}$,

isto é, se toda carta compatível com uma de suas cartas já estiver contida no atlas.

Definição 2.6: Variedade diferenciável

Uma variedade diferenciável de classe C^k é uma tripla (M, O_M, \mathcal{A}_M) , onde (M, O_M) é uma variedade topológica e \mathcal{A}_M é um atlas de classe C^k maximal.

Observação 2.4. A partir de agora, nos limitaremos ao caso de variedades diferenciáveis de classe C^{∞} , que chamaremos apenas de variedades diferenciáveis.

Exercício 2.2: Atlas incompatíveis

Mostre que uma mesma variedade topológica pode ter atlas diferenciáveis que não são compatíveis. Para isso, considere a variedade topológica como a reta real e sua topologia usual e os atlas maximais definidos pelo completamento das cartas $(\mathbb{R}, id_{\mathbb{R}}) \in \mathcal{A}_1$ e $(\mathbb{R}, x) \in \mathcal{A}_2$ aos atlas suaves maximais \mathcal{A}_1 e \mathcal{A}_2 , onde $x : \mathbb{R} \to \mathbb{R}$ é a aplicação $p \mapsto p^{\frac{1}{3}}$.

Definição 2.7: Aplicação diferenciável

Seja $\phi: M \to N$ uma aplicação, onde $(M, \mathcal{O}_M, \mathcal{A}_M)$, $(N, \mathcal{O}_N, \mathcal{A}_N)$ variedades diferenciáveis de dimensões m e n, respectivamente.

$$U \subset M \xrightarrow{\phi} V \subset N$$

$$\downarrow x \qquad \qquad \downarrow y$$

$$x(U) \subset \mathbb{R}^m \xrightarrow{y \circ \phi \circ x^{-1}} y(V) \subset \mathbb{R}^n$$

A aplicação ϕ é diferenciável em $p \in M$ se existem cartas $(U, x) \in \mathcal{A}_M$ e $(V, y) \in \mathcal{A}_N$, onde U e V são vizinhanças de p e $\phi(p)$, tais que a *expressão de* ϕ *em relação a essas cartas*, isto é, a aplicação $y \circ \phi \circ x^{-1} : x(U) \to y(V)$, é uma função suave de \mathbb{R}^m em \mathbb{R}^n .

Exercício 2.3: Diferenciabilidade de uma aplicação é bem definida

Mostre que a diferenciabilidade de uma aplicação entre variedades diferenciáveis M e N é bem definida. Isto é, mostre que a diferenciabilidade é independente pela escolha de cartas locais.

Definição 2.8: Difeomorfismo e variedades difeomorfas

Sejam (M, O_M, \mathcal{A}_M) e (N, O_N, \mathcal{A}_N) duas variedades diferenciáveis. Uma bijeção $\phi: M \to N$ é um difeomorfismo se tanto ϕ quanto ϕ^{-1} são diferenciáveis. Se existir um difeomorfismo $\phi: M \to N$, dizemos que M e N são difeomorfas.

Exercício 2.4: Composição de aplicações diferenciáveis

Sejam (A, O_A, \mathcal{A}_A) , (B, O_B, \mathcal{A}_B) e (C, O_C, \mathcal{A}_C) variedades diferenciáveis e sejam as aplicações diferenciáveis $f: A \to B$ e $g: B \to C$. Mostre que a composição $g \circ f: A \to C$ é diferenciável.

Corolário 2.1. A relação

$$(A, O_A, \mathcal{A}_A) \sim (B, O_B, \mathcal{A}_B) \iff (A, O_A, \mathcal{A}_A) \text{ \'e difeomorfa a } (B, O_B, \mathcal{A}_B)$$

é uma relação de equivalência.

3 Espaço tangente

Consideremos uma variedade diferenciável (M, O_M, \mathcal{A}_M) de dimensão d.

Definição 3.1: Álgebra

Uma *álgebra* \mathcal{A} é um espaço vetorial $(\mathcal{A}, \oplus, \odot)$ sobre o corpo \mathbb{K} munido de uma aplicação bilinear $\bullet : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ chamada de produto.

Observação 3.1. *O produto de uma álgebra é usualmente denotada apenas por justaposição.*

Exercício 3.1: Álgebra das funções em uma variedade diferenciável

Seja M uma variedade diferenciável. Convença-se que o conjunto $C^{\infty}(M)$ de funções suaves $f: M \to \mathbb{R}$ é uma álgebra sobre \mathbb{R} com as operações definidas por

$$(f \oplus g)(x) = f(x) + g(x) \qquad (\lambda \odot f)(x) = \lambda \cdot f(x) \qquad (f \bullet g)(x) = f(x) \cdot g(x),$$

para todo $\lambda \in \mathbb{R}$ e $x \in M$.

Definição 3.2: Derivação em uma álgebra

Uma derivação em uma álgebra $\mathcal A$ é uma aplicação linear $D:\mathcal A\to\mathcal A$ que satisfaz a regra de Leibniz, isto é

$$D(f \bullet g) = (Df) \bullet g + f \bullet (Dg),$$

para todo f, $g \in \mathcal{A}$.

Observação 3.2. *Para o caso de álgebra de funções a valores reais, definimos* derivações em um ponto. *A aplicação linear* $X: C^{\infty}(M) \to \mathbb{R}$ *é uma derivação no ponto* $p \in M$ *se*

$$X(fg) = g(p)Xf + f(p)Xg$$

para todo f, $g \in C^{\infty}(M)$.

Definição 3.3: Vetor tangente a uma curva em um ponto

Seja $I=(-\varepsilon,\varepsilon)\subset\mathbb{R}$ um intervalo aberto para algum $\varepsilon>0$ e seja $\gamma:I\to M$ uma curva suave que passa pelo ponto $p=\gamma(0)\in M$. O operador de derivada direcional no ponto p ao longo da curva γ é a aplicação linear

$$[\gamma]_p: C^{\infty}(M) \to \mathbb{R}$$

 $f \mapsto (f \circ \gamma)'(0).$

Em geometria diferencial, o operador $[\gamma]_p$ é chamado de *vetor tangente à curva* γ *no ponto* p.

Observação 3.3. Note que duas curvas distintas podem ter o mesmo vetor tangente. Por este motivo, denotamos o operador associado à curva com a notação comumente utilizada para classes de equivalência: a relação

 $\gamma \sim \eta \iff$ o vetor tangente em p ao longo de γ é igual ao vetor tangente em p ao longo de η é uma relação de equivalência.

Observação 3.4. É fácil verificar que um operador de derivada direcional é uma derivação em um ponto da álgebra $C^{\infty}(M)$ de funções suaves na variedade.

Observação 3.5. Intuitivamente, $[\gamma]_p$ é a velocidade de uma curva em um ponto. Dada uma curva $\gamma: (-\varepsilon, \varepsilon) \to M$, considere uma curva $\eta: (-\frac{1}{2}\varepsilon, \frac{1}{2}\varepsilon) \to M$ dada por $\eta(\lambda) = \gamma(2\lambda)$, para $|\lambda| < \frac{1}{2}\varepsilon$, e obtemos $[\eta]_p f = 2[\gamma]_p f$, para toda função $f \in C^\infty(M)$.

Definição 3.4: Espaço tangente em um ponto

O espaço tangente em um ponto $p \in M$ é o conjunto T_pM de todos os operadores de derivada direcional no ponto p ao longo de curvas suaves, munido das operações de adição

$$+: T_pM \times T_pM \to T_pM$$

 $(X,Y) \mapsto X + Y$

e multiplicação por escalar

$$\cdot: \mathbb{R} \times T_p M \to T_p M$$
$$(\lambda, X) \mapsto \lambda X$$

definidas ponto a ponto, isto é,

$$(X + Y)f = Xf + Yf$$
 e $(\lambda X)f = \lambda \cdot (Xf)$

para todo $f \in C^{\infty}(M)$.

Exercício 3.2: As operações com vetores tangentes são fechadas no espaço tangente.

A definição anterior afirma que as operações definidas produzem elementos do espaço tangente. Entretanto, isso não é claro de imediato, portanto precisamos verificar que as operações são de fato fechadas no espaço tangente. Seja $I=(-\varepsilon,\varepsilon)\subset\mathbb{R}$ um intervalo

aberto e sejam $\gamma, \eta: I \to M$ curvas suaves passando por $p = \gamma(0) = \eta(0)$. Sejam $X, Y \in T_pM$ os operadores de derivada direcional em p ao longo das curvas γ e η respectivamente. Mostre que existem curvas suaves $\phi: I_\phi \to M$ e $\psi: I_\psi \to M$, onde I_ϕ e I_ψ são intervalos abertos da reta real, com $\phi(0) = \psi(0) = p$, tal que X + Y e λX são os vetores tangentes em p ao longo de ϕ e ψ , respectivamente. Isto é, $X + Y \in T_pM$ e $\lambda X \in T_pM$.

Observação 3.6. Convença-se que T_pM é um espaço vetorial sobre \mathbb{R} .

Exercício 3.3: Funções componentes são suaves

Seja (M, O_M, \mathcal{A}_M) uma variedade diferenciável de dimensão d e seja $(U, x) \in \mathcal{A}_M$ uma carta local. Pelas definições de cartas locais e de atlas, é exigido que a aplicação $x:U \to x(U)$ seja um homeomorfismo e que as aplicações $y \circ x^{-1}: x(U) \to y(U)$ e $x \circ y^{-1}: y(U) \to x(U)$ sejam suaves, onde $(U, y) \in \mathcal{A}_M$ é uma outra carta local. Note que nada é dito sobre a classe de diferenciabilidade da aplicação x ou suas funções componentes x^i . Mostre que as funções componentes $x^i:U \to \mathbb{R}$ são suaves.

Observação 3.7. Este resultado justifica uma importante construção do espaço tangente, que será utilizada na demonstração do Teorema 3.1 para definir uma base para o espaço tangente T_pM .

Teorema 3.1: Dimensão do espaço tangente

Seja M uma variedade diferenciável de dimensão d. Então dim $T_pM=d$ para todo ponto $p\in M$.

Demonstração. Seja $(U,x) \in \mathcal{A}_M$ carta em que $p \in U$. Consideremos a família de *curvas* coordenadas $\{\gamma_{(i)}: I \to U\}_{i=1}^d$, onde $I \subset \mathbb{R}$ é um intervalo aberto, com expressões locais que satisfazem

$$(x^j \circ \gamma_{(i)})(\lambda) = x(p) + \delta_i^j \lambda$$
 e $\gamma_{(i)}(0) = p$

para todo $\lambda \in I$ e $i, j \in \{1, ..., d\}$. Intuitivamente, cada curva é a imagem de uma reta em $x(U) \subset \mathbb{R}^d$ sob a aplicação x^{-1} , onde estas retas são paralelas a um dos eixos de \mathbb{R}^d .

Seja $e_i \in T_p M$ o vetor tangente em p ao longo de $\gamma_{(i)}$, isto é, $e_i = [\gamma_{(i)}]_p$.

Exercício 3.4: Derivada direcional ao longo de uma curva coordenada

Para uma função suave $f \in C^{\infty}(M)$, utilize a regra da cadeia para mostrar que

$$e_i f = \partial_i (f \circ x^{-1})(x(p)),$$

onde ∂_i denota a derivada parcial em relação à i-ésima variável de uma função. Dica: considere as aplicações $f \circ x^{-1} : x(U) \subset \mathbb{R}^d \to \mathbb{R}$ e $x \circ \gamma_{(i)} : \mathbb{R} \to x(U) \subset \mathbb{R}^d$.

Escrevemos

$$e_i f = \left. \frac{\partial}{\partial x^i} f \right|_p$$

para denotar o resultado obtido no Exercício 3.4, de forma que $e_i = \frac{\partial}{\partial x^i}\Big|_p$. Assim, tornemos nossa atenção ao conjunto

$$\mathcal{B} = \left\{ \frac{\partial}{\partial x^1} \bigg|_p, \dots, \frac{\partial}{\partial x^d} \bigg|_p \right\}$$

dos operadores de derivada direcional em p ao longo das curvas $\gamma_{(i)}$ induzidas pela carta.

Exercício 3.5: Os vetores tangentes induzidos pela carta geram o espaço tangente

Considere uma curva $\eta: I \to M$ por $\eta(0) = p$ com vetor tangente $X \in T_pM$ em p e calcule Xf para uma função suave $f \in C^{\infty}(M)$. Com isso, obtenha as componentes X^i tais que $X = X^i \frac{\partial}{\partial x^i} \Big|_{p}$.

Exercício 3.6: Os vetores tangentes induzidos pela carta são linearmente independentes

Prove que \mathcal{B} é linearmente independente. Dica: use o Exercício 3.3.

Pelos Exercícios 3.5 e 3.6, segue que \mathcal{B} é uma base de T_pM com d elementos, isto é, dim $T_pM=d$.

Exercício 3.7: Jacobiano e mudança de bases

Sejam $(U, x), (V, \tilde{x}) \in \mathcal{A}_M$ cartas locais de coordenadas em M, onde U e V são vizinhanças de p. Pela construção feita no Teorema 3.1, sejam

$$\mathcal{B}_{x} = \left\{ \frac{\partial}{\partial x^{1}} \bigg|_{p}, \dots, \frac{\partial}{\partial x^{d}} \bigg|_{p} \right\} \quad \text{e} \quad \mathcal{B}_{\tilde{x}} = \left\{ \frac{\partial}{\partial \tilde{x}^{1}} \bigg|_{p}, \dots, \frac{\partial}{\partial \tilde{x}^{d}} \bigg|_{p} \right\}$$

as bases de T_pM induzidas pelas coordenadas x e \tilde{x} , respectivamente. Mostre que

$$\left. \frac{\partial}{\partial x^i} \right|_p = \left. \frac{\partial \tilde{x}^j}{\partial x^i} \right|_p \left. \frac{\partial}{\partial \tilde{x}^j} \right|_p,$$

onde as componentes do isomorfismo linear de mudança de bases, chamado de *jacobiano no ponto p*, são dadas por $\frac{\partial \tilde{x}^j}{\partial x^i}\Big|_p = \frac{\partial}{\partial x^i} \tilde{x}^j\Big|_p$.

Exercício 3.8: Transformação das componentes de um vetor tangente

Sob as mesmas hipóteses do exercício anterior, considere uma curva suave $\eta: I \to M$ com $\eta(0) = p$ cujo vetor tangente em $p \in X \in T_pM$. Com os resultados dos Exercícios 3.5 e 3.7, mostre que

$$X^i = \frac{\partial x^i}{\partial \tilde{x}^j} \tilde{X}^j,$$

onde X^a e \tilde{X}^a são as componentes de X nas bases induzidas pelas cartas x e \tilde{x} , respectivamente. Reflita sobre a diferença para as regras de transformação das componentes de um vetor e dos vetores da base.

4 Espaço cotangente

5 Fibrado tangente