Training example

Language modelling

Batch-ification

abcdefghijklmnopqrstuvwxyz

Check word_language_model @ github.com/pytorch/examples/

Get batch (I)

Get batch (II) bhnt c i o u djpv a g n t h[2]RNN RNN RNN e k q W bhnt ciou a g m s batch size

 $\boldsymbol{x}[2]$

 $\boldsymbol{x}[T]$

x|1|

Vanishing & exploding gradients

Limitations of temporally deep nets

Graves (2012) Supervised sequence labelling

Graves (2012) Supervised sequence labelling

Long Short-Term Memory

Gated RNN

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Controlling the output - OFF

Saturated sigmoid
$$= 1$$
 = 0

$$i[t] = \sigma(W_i \begin{bmatrix} x[t] \\ h[t-1] \end{bmatrix} + b_i)$$
 $f[t] = \sigma(W_f \begin{bmatrix} x[t] \\ h[t-1] \end{bmatrix} + b_f)$
 $o[t] = \sigma(W_o \begin{bmatrix} x[t] \\ h[t-1] \end{bmatrix} + b_o)$
 $\tilde{c}[t] = \tanh(W_c \begin{bmatrix} x[t] \\ h[t-1] \end{bmatrix} + b_c)$
 $c[t] = f[t] \odot c[t-1] + i[t] \odot \tilde{c}[t]$
 $h[t] = o[t] \odot \tanh(c[t])$
 $x[t]$
 $c[t-1]$
 $c[t-1]$

Controlling the output - ON

Saturated sigmoid
$$= 1$$
$$= 0$$

$$i[t] = \sigma(W_i \begin{bmatrix} x[t] \\ h[t-1] \end{bmatrix} + b_i)$$
 $f[t] = \sigma(W_f \begin{bmatrix} x[t] \\ h[t-1] \end{bmatrix} + b_f)$
 $o[t] = \sigma(W_o \begin{bmatrix} x[t] \\ h[t-1] \end{bmatrix} + b_o)$
 $\tilde{c}[t] = \tanh(W_c \begin{bmatrix} x[t] \\ h[t-1] \end{bmatrix} + b_c)$
 $c[t] = f[t] \odot c[t-1] + i[t] \odot \tilde{c}[t]$
 $h[t] = o[t] \odot \tanh(c[t])$
 $c[t-1]$

Controlling the memory - reset

Saturated sigmoid = 1= 0

Controlling the memory - keep

Saturated sigmoid
$$= 1$$
$$= 0$$

$$\begin{aligned} i[t] &= \sigma \big(W_i \begin{bmatrix} \boldsymbol{x}[t] \\ \boldsymbol{h}[t-1] \end{bmatrix} + \boldsymbol{b}_i \big) \\ f[t] &= \sigma \big(W_f \begin{bmatrix} \boldsymbol{x}[t] \\ \boldsymbol{h}[t-1] \end{bmatrix} + \boldsymbol{b}_f \big) \\ o[t] &= \sigma \big(W_o \begin{bmatrix} \boldsymbol{x}[t] \\ \boldsymbol{h}[t-1] \end{bmatrix} + \boldsymbol{b}_o \big) \\ \tilde{c}[t] &= \tanh \big(W_c \begin{bmatrix} \boldsymbol{x}[t] \\ \boldsymbol{h}[t-1] \end{bmatrix} + \boldsymbol{b}_c \big) \\ c[t] &= f[t] \odot c[t-1] + i[t] \odot \tilde{c}[t] \\ h[t] &= o[t] \odot \tanh(c[t]) \end{aligned}$$

Controlling the memory - write

Saturated sigmoid = 1= 0

