

Dynamic Analysis of Cyber-Physical Systems

Parasara Sridhar Duggirala, Sayan Mitra, Mahesh Viswanathan

Motivation

- Cyber-Physical Systems: Systems that interact with physical environment and are controlled by a computer
- Distributed, nonlinear behavior

- Involves interaction between physical space and digital space
- Dynamic Analysis

Motivation

- Static analysis techniques: Reachability
 - Curse of Dimensionality
 - Techniques for analyzing networked systems are still preliminary
- Sample executions (test runs) are readily available
- Can we infer properties from sample executions?

Organization

- For continuous systems
 - Annotation assisted dynamic analysis
 - Notion of annotations
 - Dynamic analysis using annotations
- For networked systems
 - Distributed execution trace
 - Timing analysis
 - Inferring global properties

Part 1

Continuous Systems

Dynamic Analysis of Continuous Systems using Annotations

- Annotations in software
- Annotations for continuous variables
- Continuous behavior $\dot{x}=f_i(x,t)$, $x\in\mathbb{R}^n$, $t\in\mathbb{R}^{\geq 0}$, I, $\{f_i\}_{i\in I}$, $\Theta\subseteq\mathbb{R}^n$

Dynamic Analysis of Continuous Systems using Annotations

- Annotations in software
- Annotations for continuous variables
- Continuous behavior $\dot{x}=f_i(x,t)$, $x\in\mathbb{R}^n$, $t\in\mathbb{R}^{\geq 0}$, I, $\{f_i\}_{i\in I}$, $\Theta\subseteq\mathbb{R}^n$
- Solution or trajectory for each mode i
 - ξ_i : $\mathbb{R}^n \times \mathbb{R}^{\geq 0} \to \mathbb{R}^n$

Annotation would involve states and trajectories

- Definition. A smooth function $V : \mathbb{R}^{2n} \to \mathbb{R}^{\geq 0}$ is a *discrepancy function* for $\dot{x} = f(x,t)$ if for any x_1 and $x_2 \in \mathbb{R}^n$
 - 1. (static bound) $\exists \alpha_1, \alpha_2 : \alpha_1(|x_1 x_2|) \le V(x_1, x_2) \le \alpha_2(|x_1 x_2|)$
 - 2. (dynamic bound) $V(\xi(x_1,t),\xi(x_2,t)) \leq \beta(x_1,x_2,t)$ where $\beta: \mathbb{R}^{2n} \times \mathbb{R}^{20} \to \mathbb{R}^{20}$ and $\beta \to 0$ as $x_1 \to x_2$

- Definition. A smooth function $V : \mathbb{R}^{2n} \to \mathbb{R}^{\geq 0}$ is a *discrepancy function* for $\dot{x} = f(x,t)$ if for any x_1 and $x_2 \in \mathbb{R}^n$
 - 1. (static bound) $\exists \alpha_1, \alpha_2 : \alpha_1(|x_1 x_2|) \le V(x_1, x_2) \le \alpha_2(|x_1 x_2|)$
 - 2. (dynamic bound) $V(\xi(x_1,t),\xi(x_2,t)) \leq \beta(x_1,x_2,t)$ where $\beta: \mathbb{R}^{2n} \times \mathbb{R}^{20} \to \mathbb{R}^{20}$ and $\beta \to 0$ as $x_1 \to x_2$

- Definition. A smooth function $V : \mathbb{R}^{2n} \to \mathbb{R}^{\geq 0}$ is a *discrepancy function* for $\dot{x} = f(x,t)$ if for any x_1 and $x_2 \in \mathbb{R}^n$
 - 1. (static bound) $\exists \alpha_1, \alpha_2 : \alpha_1(|x_1 x_2|) \le V(x_1, x_2) \le \alpha_2(|x_1 x_2|)$
 - 2. (dynamic bound) $V(\xi(x_1,t),\xi(x_2,t)) \leq \beta(x_1,x_2,t)$ where $\beta: \mathbb{R}^{2n} \times \mathbb{R}^{20} \to \mathbb{R}^{20}$ and $\beta \to 0$ as $x_1 \to x_2$

- Definition. A smooth function $V: \mathbb{R}^{2n} \to \mathbb{R}^{\geq 0}$ is a *discrepancy function* for $\dot{x} = f(x,t)$ if for any x_1 and $x_2 \in \mathbb{R}^n$
 - 1. (static bound) $\exists \alpha_1, \alpha_2 : \alpha_1(|x_1 x_2|) \le V(x_1, x_2) \le \alpha_2(|x_1 x_2|)$
 - 2. (dynamic bound) $V(\xi(x_1,t),\xi(x_2,t)) \leq \beta(x_1,x_2,t)$ where $\beta: \mathbb{R}^{2n} \times \mathbb{R}^{20} \to \mathbb{R}^{20}$ and $\beta \to 0$ as $x_1 \to x_2$

• $(\alpha_1, \alpha_2, \beta)$ is a witness for V

- Stability not required
- Multiple annotations for the same system

- Comparing different annotations:
 - ☐ Lipschitz Constant : Exponential divergence
 - ☐ Contraction Metric : Exponential Convergence
 - ☐ Incremental Stability : Convergence
 - Extension of Incremental Stability called Incremental Forward Completeness
- Discrepancy function does not require convergence

How are annotations useful: computing sound over approximations

$$\forall x \in B_{\delta}(x_0), \xi(x,T) \in B_{\varepsilon}^{V}(\xi(x_0,T)) \text{ where } \varepsilon = \sup_{x \in B_{\delta}(x_0), 0 \le t \le T} \{\beta(x,x_0,t)\}$$

How are annotations useful: computing sound over approximations

$$\forall x \in B_{\delta}(x_0), \xi(x,T) \in B_{\varepsilon}^{V}(\xi(x_0,T)) \text{ where } \varepsilon = \sup_{x \in B_{\delta}(x_0), 0 \le t \le T} \{\beta(x,x_0,t)\}$$

How are annotations useful: computing sound over approximations

$$\forall x \in B_{\delta}(x_0), \xi(x,T) \in B_{\varepsilon}^{V}(\xi(x_0,T)) \text{ where } \varepsilon = \sup_{x \in B_{\delta}(x_0), 0 \le t \le T} \{\beta(x,x_0,t)\}$$

Partition, Simulate, Bloat, Check

$$\dot{x} = f_i(x, t)$$

$$\xi_i \colon \mathbb{R}^n \times \mathbb{R}^{\geq 0} \to \mathbb{R}^n$$

Unsafe set

Partition, Simulate, Bloat, Check

$$\dot{x} = f_i(x, t)$$

$$\xi_i \colon \mathbb{R}^n \times \mathbb{R}^{\geq 0} \to \mathbb{R}^n$$

Unsafe set

Partition, Simulate, Bloat, Check, Refine

Unsafe set

Partition, Simulate, Bloat, Check, Refine

If Unsafe set is reachable, then we refine the initial partitioning

Guarantees

- Soundness: If the algorithm infers that the system is safe (unsafe), then the system is indeed safe (unsafe).
- Relative Completeness: If the system is robustly safe (unsafe), then the algorithm terminates and returns that that the system is safe (unsafe).

Experimental Results

Bench	nmark	Varia bles	Time horizon	Refs.	Sims.	C2E2 (sec)	Flow* (sec)	Ariadne (sec)
Moo Jet Er		2	10	12	36	1.56	10.54	56.57
Brusse	ellator	2	10	33	115	5.26	16.77	72.75
VanD	erPol	2	10	5	17	0.75	8.93	98.36
Cou _l VanD	•	4	10	10	62	1.43	90.96	270.61
Sinus Trac		6	10	12	84	3.68	48.63	763.32
Line Adap	ear otive	3	6	8	16	0.47	NA	NA
Nonli Adap	inear otive	2	10	16	32	1.23	NA	NA
Nonli Distur	inear bance	3	10	22	48	1.52	NA	NA

Benchmark	Sims.	Time (sec)
12 fluid tanks (ft)	16	2.74
18 ft	76	15.28
24 ft	100	22.12
30 ft	124	28.82
3 vehicles 12 vars	32	5.68
16 vars	64	12.23
20 vars	128	25.14
24 vars	256	54.23

Switched-Nonlinear models

Part 2

Networked Systems

Challenges and Problem Statement

- Nondeterminism: concurrency, message losses, delays, clock drifts, scheduling, ...
- Each agent generates time-stamped observations: $\rho_i = \langle x_{i1}, clk_{i1} \rangle ... \langle x_{ik}, clk_{ik} \rangle$
- Clocks imperfectly synchronized
- System trace ρ is a collection $\{\rho_i\}$
- Discrete & continuous evolution

Given ρ , a model or annotation A, and a global property U, is every ρ -consistent execution of A safe with respect to U?

Real-time bounds from messages

- ρ is σ -synchronized if for every $\langle x_i, clk_i \rangle$ consistent execution ξ , there exists $\mathbf{t_i} \in [clk_i \sigma, clk_i + \sigma]$ when $\xi(x_0, t_i) = x_i$
- $L(x_i)$: Greatest lower bound on real-time for occurrence of x_i on all consistent executions
- $L(x_i) = max \left(clk_i \sigma, \max_{y_j \leftarrow x_i} U(y_j) \right)$
- $y_j \leftarrow x_i$ in ρ if and only if
 - 1) j = i and x_i is recorded after y_j or
 - 2) $y_j = send(m)$ and $x_i = receive(m)$
 - 3) $y_i \leftarrow w$ and $w \leftarrow x_i$
- $U(x_i)$: Least upper bound = $min\left(clk_i + \sigma, \max_{x_i \leftarrow y_j} L(y_j)\right)$
- For observation $\langle x_i, clk_i \rangle$ we have (tight) observation intervals $[L(x_i), U(x_i)]$

Symbolic Over-approximation

- A: hybrid model
- $Post(\mathbf{A}, x_i, t)$: Reach from x_i in t time
- $Pre(\mathbf{A}, x_i, t)$: Reach to x_i in t time
- $Reach(A, \{x_1, ..., x_m\}, t)$: Reachable through $\rho = x_1, ..., x_m$ at t
- $Reach(A, \{x_1, ..., x_m\}, t) = \exists t_1 < \cdots < t_m$:
- Check $\forall t \ Reach(\rho, t) \Rightarrow \neg U$

Soundness

• Theorem. For any trace ρ ,

If for all t $Reach(\rho, t) \Rightarrow \neg U$

then all executions consistent with ρ are safe with respect to U.

Relative Completeness

• A trace ρ is tightly σ -synchronized with respect to model A if in addition to being σ -synchronized for every $t \in [clk_i - \sigma, clk_i + \sigma]$ there is a consistent execution ξ with $\xi(x_0, t) = x_i$.

• Theorem. If Post() & Pre() are exact and ρ is tightly σ -synchronized, then every state in $Reach(\beta,t)$ is visited by some ρ -consistent execution at time t.

Experiments: Debugging robot apps!

- Applications & properties
 - Waypoint following with obstacle avoidance
 - GeoCast: For geocast(m,R) at time t
 - Every robot within R during [t+a,t+b] receives m
 - No robot outside R during [t+a',t+b'] receives m
 - Light painting: Create pictures on the floor without collisions and deadlocks

Experiments: Scaling and Precision

Ν	x = 75	150	250	500
	ms	ms	ms	ms
4	42	24	10	5
8	92	48	22	10
12	246	114	34	16
16	10 m	4 m	49	24
20	20 m	8 m	67	34

Always separation (d = 10 cm) for 5 mins @ x ms

		VB =	VB =		
	$VB = \pm 0$	<u>±</u> 20	± 20		
	cm/s	cm/s	cm/s		
	Separation (d=10 cm)				
$OI = \pm 5ms$	yes	yes	no		
$OI = \pm 10ms$	yes	no	no		
$OI = \pm 20ms$	no	no	no		
	Georeceive				
delay = 0ms	yes	yes	yes		
delay = 20ms	yes	yes	no		
delay = 50ms	no	no	no		

System model precision

VB: velocity bounds, OI: observation intervals

Lower precision model ($\pm 20ms$) produces **more conservative** than the higher precision models ($\pm 5ms$)

Conclusions

- Dynamic analysis for hybrid systems using annotations
- Symbolic overapproximation for distributed cyber-physical systems
- Infer global predicates with soundness and completeness guarantees

References

- Parasara Sridhar Duggirala, Sayan Mitra, Mahesh Viswanathan,
 "Verification of Annotated Models from Executions",
 International Conference on Embedded Software (EMSOFT) 2013
- Parasara Sridhar Duggirala, Taylor Johnson, Adam Zimmerman, Sayan Mitra,
 "Static and Dynamic Analysis of Timed Distributed Traces",
 IEEE Real-Time Systems Symposium (RTSS) 2012