# SKIN JOB Data Model Dermatology



Name: Gong Qi Chen, Huihuang Liu

Course: DSE 12100

Instructor: Michael Grossberg

#### Introduction

- Project Overview
- Research Purpose
- Why We Cares
- Data introduction
- Exploratory Data Analysis
- Methods
- Evaluation
- Conclusion

### **Project Overview**

In this project, we incorporated a series of machine learning techniques to help us build a model that can distinguish skin cancers from other tumors. A convulsion neural network model was selected and built with the accuracy of matching human benchmark. Alongside, we also identified few key features that affect the model Training.

## Research Purpose

- Objective:
  - Use image data to classify skin lesions
  - Emphasize on recall and precision rate of skin cancers
- Benchmark:
  - Human accuracy: 67-75%
- Our goal
  - Match or better human benchmark
  - Achieve higher F1 score for skin cancers





# Why we care?

Limited screening methods

Once malignancy is confirmed, usually late stage

Accurate skin cancer detection at earlier stage is the key:

- 1. Improved survival
- 2. Improved clinical outcomes
- 3. Improved quality of life



#### Five-Year Survival Rate by Melanoma Stage



#### **Data Introduction**

- Dataset: HAM10000: Human Against Machine with 10000 training images
- What:
  - 10015 dermatoscopic images
  - Types of label: 5 benign + 2 malignant
    - Benign: (AKIEC, BKL, DF, NV, VASC), Malignant: (BCC, MEL)
    - NV most common label
  - Variables:
    - lesion\_id, image\_id, dx, dx\_type, age and localization



#### **Data Introduction**

**ISIC** 2018

- Who:
  - International Skin Imaging Collaboration (ISIC) archive
  - Standard source for dermatoscopic image analysis research
- When: 2018 challenges
- Why: Enhance the diagnostic accuracy for distinguishing melanoma from other tumors

### **Exploratory Data Analysis**

- Missing Data in Age
  - Replaced with average mean

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10015 entries, 0 to 10014
Data columns (total 7 columns):
    Column
                 Non-Null Count Dtype
   lesion id 10015 non-null object
    image id
                 10015 non-null object
    dx
               10015 non-null object
    dx_type 10015 non-null object
              9958 non-null float64
    age
             10015 non-null object
    sex
    localization 10015 non-null object
dtypes: float64(1), object(6)
memory usage: 547.8+ KB
```

#### EDA - Imbalance Data

#### **Skin Conditions**





# EDA - Bivariate Analysis



# EDA - Bivariate Analysis



#### **Feature Selection**

- Image Data90x90
- Age
- Localization

#### Model Improvement with Age and Localization:

| Models              | Val accuracy | Mel F1 Score | Bcc F1 Score |
|---------------------|--------------|--------------|--------------|
| Ridge Classifier    | 9.30%        | 0.11         | 0.1          |
| Logistic Classifier | 11.81%       | 0.16         | 0.04         |
| svc                 | 9.02%        | 0.05         | 0.12         |
| Random Forest       | 7.51%        | 0.04         | 0.05         |
| DNN                 | 3.65%        | 0.15         | 0.03         |

# Pipeline Flow Chart



## Undersample



#### **Model Selection**

- Sklearn Models
  - Ridge Classifier
  - Logistic Classifier
  - o SVC
  - Random Forest
- Keras Models
  - DNN (Dense Neural Network)
  - CNN (Convolutional Neural Network)
  - CNN with EfficientNetB1

## **Model Selection**

| Models                | Val accuracy | Mel F1 Score | Bcc F1 Score | Train - Val |
|-----------------------|--------------|--------------|--------------|-------------|
| Ridge Classifier      | 62.06%       | 0.45         | 0.33         | 8.14%       |
| Logistic Classifier   | 67.57%       | 0.50         | 0.43         | 11.36%      |
| svc                   | 72.72%       | 0.49         | 0.55         | 16.88%      |
| Random Forest         | 68.93%       | 0.48         | 0.35         | 11.57%      |
| DNN                   | 71.65%       | 0.42         | 0.34         | 2.39%       |
| CNN                   | 75.23%       | 0.45         | 0.48         | 7.59%       |
| CNN (EfficientNet B1) | 81.53%       | 0.55         | 0.62         | 15.42%      |

# Learning Curve - Accuracy



## Learning Curve - Loss



#### **Confusion Matrix**



Mel: 97 out of 153

• Bcc: 57 out of 79

# Classification Report

#### Classification Report:

|              |           | ======= |          |         |
|--------------|-----------|---------|----------|---------|
|              | precision | recall  | f1-score | support |
| akiec        | 0.54      | 0.65    | 0.59     | 51      |
| bcc          | 0.68      | 0.72    | 0.70     | 79      |
| bkl          | 0.69      | 0.68    | 0.68     | 177     |
| df           | 0.82      | 0.56    | 0.67     | 16      |
| mel          | 0.67      | 0.63    | 0.65     | 153     |
| nv           | 0.79      | 0.79    | 0.79     | 223     |
| vasc         | 0.90      | 0.83    | 0.86     | 23      |
| accuracy     |           |         | 0.71     | 722     |
| macro avg    | 0.73      | 0.69    | 0.71     | 722     |
| weighted avg | 0.71      | 0.71    | 0.71     | 722     |

#### One vs Rest - Mel



#### Classification Report:

|              |           |        | ======== |         |
|--------------|-----------|--------|----------|---------|
|              | precision | recall | f1-score | support |
| other        | 0.91      | 0.89   | 0.90     | 569     |
| mel          | 0.62      | 0.66   | 0.64     | 153     |
| accuracy     |           |        | 0.84     | 722     |
| macro avg    | 0.77      | 0.78   | 0.77     | 722     |
| weighted avg | 0.85      | 0.84   | 0.85     | 722     |

#### One vs Rest - Bcc



#### Classification Report:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| other        | 0.97      | 0.97   | 0.97     | 643     |
| bcc          | 0.76      | 0.75   | 0.75     | 79      |
| accuracy     |           |        | 0.95     | 722     |
| macro avg    | 0.86      | 0.86   | 0.86     | 722     |
| weighted avg | 0.95      | 0.95   | 0.95     | 722     |







Mel: 122 out of 153

Bcc: 62 out of 79

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| akiec        | 0.67      | 0.78   | 0.72     | 51      |
| bcc          | 0.75      | 0.78   | 0.77     | 79      |
| bkl          | 0.81      | 0.76   | 0.78     | 177     |
| df           | 0.63      | 0.75   | 0.69     | 16      |
| mel          | 0.73      | 0.73   | 0.73     | 153     |
| nv           | 0.85      | 0.84   | 0.85     | 223     |
| vasc         | 0.90      | 0.83   | 0.86     | 23      |
| accuracy     |           |        | 0.79     | 722     |
| macro avg    | 0.76      | 0.78   | 0.77     | 722     |
| weighted avg | 0.79      | 0.79   | 0.79     | 722     |
|              |           |        |          |         |

#### Conclusion

- Model:
  - Data preprocessing technique is effective
  - Our model is matching with human benchmark
- Findings:
  - Age and localization are very effective in model training
  - One vs Rest is effective for Bcc, but not Mel
- Limitations:
  - Dataset suffer from biases: light skins
  - More risk factor features will improve model accuracy: family history, pre-existing condition

#### **Attribute**

April 17, 2022 – May 17, 2022

Period: 1 month ▼



Excluding merges, **3 authors** have pushed **68 commits** to main and **68 commits** to all branches. On main, **0 files** have changed and there have been **0 additions** and **0 deletions**.



## Notebook List

| ď | albert6051 Add files via upload                                          |                                     |
|---|--------------------------------------------------------------------------|-------------------------------------|
|   |                                                                          |                                     |
|   | 1.0-gqc-initial-EDA.ipynb                                                | Move Notebook to Individual folders |
|   | 2.0-gqc-Linear_and_Logistic_Model_test.ipynb                             | Move Notebook to Individual folders |
|   | 2.1-gqc-Linear_and_Logistic_Model_Sklearn.ipynb                          | Update to Sklearn Model             |
|   | 3.0-gqc-DNN_and_CNN_Model_test.ipynb                                     | Move Notebook to Individual folders |
|   | 3.1-gqc-CNN_with_regularization.ipynb                                    | Add files via upload                |
|   | 3.2-gqc-DNN.ipynb                                                        | Add files via upload                |
|   | $4.0\hbox{-} gqc\hbox{-}balanced\_image\_numpy\_convertor.ipynb$         | Move Notebook to Individual folders |
|   | 4.0-gqc-image_numpy_convertor.ipynb                                      | Move Notebook to Individual folders |
|   | 5.0-gqc-pretrained_models_MobileNetV2.ipynb                              | Move Notebook to Individual folders |
|   | 5.1-gqc-pretrained_models_EfficientNetB1.ipynb                           | Add files via upload                |
|   | $5.2\text{-}gqc\text{-}pretrained\_models\_EfficientNetB1\_Data\_Augme}$ | Move Notebook to Individual folders |
|   | 7.0-gpc-Resample_for_Balancing_Data.ipynb                                | Move Notebook to Individual folders |
|   | 8.0-gqc-preprocessing_pipeline.ipynb                                     | Add files via upload                |
|   | 9.0-gqc-Sklearn_Models.ipynb                                             | Sklearn Models test                 |
| P | 9.1-gqc-Sklearn_Models_pca.ipynb                                         | PCA model test                      |

| HuiHuang Liu and HuiHuang Liu sklearn model update with bagging classifier |                                                      |  |
|----------------------------------------------------------------------------|------------------------------------------------------|--|
|                                                                            |                                                      |  |
| ☐ 6.0 SVM.ipynb                                                            | Move Notebook to Individual folders                  |  |
| ☐ Initial_EDA+Descriptions.ipynb                                           | EDA with description                                 |  |
| Linear+Logistic_model_with_keras.ipynb                                     | update on the previous version                       |  |
| SVM_tf_ Update.ipynb                                                       | updatesvm model with multicategorical classification |  |
| keras_initial.ipynb                                                        | keras models update                                  |  |
| keras_models.ipynb                                                         | keras models update                                  |  |
| sklearn_models.ipynb                                                       | sklearn models update                                |  |
| sklearn_update_with_BaggingClassifier.ipynb                                | sklearn model update with baggingclassifier          |  |

# Reports

| HuiHuang Liu and HuiHuang Liu update the version |                                                                                                     |  |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|
|                                                  |                                                                                                     |  |
| Reports before merging                           | merging everything to final_report and created new folder                                           |  |
| figures                                          | Setup Cookie Cutter                                                                                 |  |
| .gitkeep                                         | Setup Cookie Cutter                                                                                 |  |
| Final_Report.ipynb                               | update the version                                                                                  |  |
| Report_status.ipynb                              | updated data section with description of each categories of tumor                                   |  |
| Status Report#1.pptx                             | Status Report 5/3                                                                                   |  |
| research interest.docx                           | Setup Cookie Cutter                                                                                 |  |
|                                                  | Reports before merging figures .gitkeep Final_Report.ipynb Report_status.ipynb Status Report#1.pptx |  |

#### Reference

- 1. Rosendahl, C., Tschandl, P., Cameron, A. & Kittler, H. Diagnostic accuracy of dermatoscopy for melanocytic and nonmelanocytic pigmented lesions. J Am Acad Dermatol 64, 1068–1073 (2011).
- 2. Bechelli S, Delhommelle J. Machine Learning and Deep Learning Algorithms for Skin Cancer Classification from Dermoscopic Images. Bioengineering (Basel). 2022;9(3):97. Published 2022 Feb 27.
- 3. Binder, M. et al. Application of an artificial neural network in epiluminescence microscopy pattern analysis of pigmented skin lesions: a pilot study. Br J Dermatol 130, 460–465 (1994).
- 4. Codella, N. C. F. et al. Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC). Preprint at https://arxiv.org/abs/1710.05006 (2017).
- 5. Deng, J. et al. ImageNet: A large-scale hierarchical image database, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, 2009, pp. 248–255 (2009).
- 6. Tschandl, P., Rosendahl, C. & Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data 5, 180161 (2018).
- 7. Dreiseitl, S., Binder, M., Hable, K. & Kittler, H. Computer versus human diagnosis of melanoma: evaluation of the feasibility of an automated diagnostic system in a prospective clinical trial. Melanoma Res 19, 180–184 (2009).
- 8. Kharazmi, P., Kalia, S., Lui, H., Wang, Z. J. & Lee, T. K. A feature fusion system for basal cell carcinoma detection through data-driven feature learning and patient profile. Skin Res Technol 24, 256–264 (2017).
- 9. Sinz, C. et al. Accuracy of dermatoscopy for the diagnosis of nonpigmented cancers of the skin. J Am Acad Dermatol 77, 1100–1109 (2017).
- 10. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).
- 11. Han, S. S. et al. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J Invest Dermatol, Preprint at https://doi.org/10.1016/j.jid.2018.01.028 (2018).