Project - Unsupervised Learning

Name: Panagam Mohitha

Domain: Banking, Finance

Context: This case requires to develop a customer segmentation to define marketing strategy. The sample Dataset summarizes the usage behavior of about 9000 active credit card holders during the last 6 months. The file is at a customer level with 18 behavioral variables.

Attribute Information:

- **CUSTID**: Identification of Credit Card holder (Categorical)
- BALANCE: Balance amount left in their account to make purchases
- BALANCEFREQUENCY: How frequently the Balance is updated, score between 0 and 1 (1 = frequently updated, 0 = not frequently updated)
- PURCHASES: Amount of purchases made from account
- **ONEOFFPURCHASES**: Maximum purchase amount done in one-go
- INSTALLMENTSPURCHASES: Amount of purchase done in installment
- CASHADVANCE: Cash in advance given by the user
- PURCHASESFREQUENCY: How frequently the Purchases are being made, score between 0 and 1 (1 = frequently purchased, 0 = not frequently purchased)
- ONEOFFPURCHASESFREQUENCY: How frequently Purchases are happening in onego (1 = frequently purchased, 0 = not frequently purchased)
- PURCHASESINSTALLMENTSFREQUENCY: How frequently purchases in installments are being done (1 = frequently done, 0 = not frequently done)
- CASHADVANCEFREQUENCY: How frequently the cash in advance being paid
- CASHADVANCETRX: Number of Transactions made with "Cash in Advance"
- **PURCHASESTRX**: Number of purchase transactions made
- CREDITLIMIT: Limit of Credit Card for user
- PAYMENTS: Amount of Payment done by user
- MINIMUM_PAYMENTS: Minimum amount of payments made by user
- PRCFULLPAYMENT: Percent of full payment paid by user
- **TENURE**: Tenure of credit card service for user

1. Preprocessing the data

In [559... # used to supress display of warnings import warnings

```
# We use it for setting working folder
         import os
         # Pandas is used for data manipulation and analysis
         import pandas as pd
         # Numpy is used for large, multi-dimensional arrays and matrices, along with mather
         import numpy as np
         # Matplotlib is a data visualization library for 2D plots of arrays, built on NumPy
         # and designed to work with the broader SciPy stack
         import matplotlib.pyplot as plt
         %matplotlib inline
         # Seaborn is based on matplotlib, which aids in drawing attractive and informative
         import seaborn as sns
         ## Scikit-learn features various classification, regression and clustering algorith
         from sklearn.model_selection import train_test_split
         from sklearn.svm import SVC
         from sklearn import metrics
         from sklearn import preprocessing
         from sklearn.metrics import average_precision_score, confusion_matrix, accuracy_sc
         from scipy.cluster.hierarchy import linkage
         from scipy.cluster.hierarchy import dendrogram
         from scipy.cluster.hierarchy import cut_tree
In [560...
         # suppress display of warnings
         warnings.filterwarnings('ignore')
         # display all dataframe columns
         pd.options.display.max_columns = None
         # to set the limit to 3 decimals
         pd.options.display.float_format = '{:.3f}'.format
         # display all dataframe rows
         pd.options.display.max_rows = None
```

a. Check a few observations and get familiar with the data.

Out[562]:		CUST_ID	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS
	0	C10001	40.901	0.818	95.400	0.000	
	1	C10002	3202.467	0.909	0.000	0.000	
	2	C10003	2495.149	1.000	773.170	773.170	
	3	C10004	1666.671	0.636	1499.000	1499.000	
	4	C10005	817.714	1.000	16.000	16.000	
	5	C10006	1809.829	1.000	1333.280	0.000	
	6	C10007	627.261	1.000	7091.010	6402.630	
	7	C10008	1823.653	1.000	436.200	0.000	
	8	C10009	1014.926	1.000	861.490	661.490	
	9	C10010	152.226	0.545	1281.600	1281.600	
4)

b. Check the size and info of the data set.

```
In [563... # to display the dimension of the dataframe cc_data.shape

Out[563]: (8950, 18)
```

Inference:

• There are 8950 Observations / Rows and 18 Attributes / Columns.

```
In [564... cc_data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 8950 entries, 0 to 8949
         Data columns (total 18 columns):
              Column
                                                Non-Null Count Dtype
                                                _____
              _____
         ---
             CUST ID
          0
                                                8950 non-null
                                                               object
              BALANCE
                                                8950 non-null
                                                               float64
          1
              BALANCE_FREQUENCY
                                                               float64
          2
                                                8950 non-null
          3
              PURCHASES
                                                8950 non-null
                                                               float64
             ONEOFF_PURCHASES
                                                8950 non-null
                                                               float64
          4
                                                               float64
          5
              INSTALLMENTS PURCHASES
                                                8950 non-null
                                                8950 non-null
                                                               float64
              CASH ADVANCE
          7
              PURCHASES_FREQUENCY
                                                8950 non-null
                                                               float64
                                                               float64
          8
              ONEOFF PURCHASES FREQUENCY
                                                8950 non-null
                                                               float64
          9
              PURCHASES_INSTALLMENTS_FREQUENCY 8950 non-null
                                                               float64
          10 CASH_ADVANCE_FREQUENCY
                                                8950 non-null
          11 CASH_ADVANCE_TRX
                                                8950 non-null
                                                               int64
          12 PURCHASES TRX
                                                8950 non-null
                                                               int64
          13 CREDIT LIMIT
                                                8949 non-null
                                                               float64
          14 PAYMENTS
                                                8950 non-null
                                                               float64
          15 MINIMUM PAYMENTS
                                                8637 non-null
                                                               float64
          16 PRC FULL PAYMENT
                                                               float64
                                                8950 non-null
          17 TENURE
                                                8950 non-null
                                                               int64
         dtypes: float64(14), int64(3), object(1)
```

Inference:

memory usage: 1.2+ MB

• All the variables are numerical attributes except CUST_ID is a categorical attribute.

```
In [565... # to display the column names of the dataframe
          cc data.columns
          Index(['CUST_ID', 'BALANCE', 'BALANCE_FREQUENCY', 'PURCHASES',
Out[565]:
                  'ONEOFF_PURCHASES', 'INSTALLMENTS_PURCHASES', 'CASH_ADVANCE',
                  'PURCHASES_FREQUENCY', 'ONEOFF_PURCHASES_FREQUENCY',
                  'PURCHASES_INSTALLMENTS_FREQUENCY', 'CASH_ADVANCE_FREQUENCY',
                  'CASH_ADVANCE_TRX', 'PURCHASES_TRX', 'CREDIT_LIMIT', 'PAYMENTS',
                  'MINIMUM_PAYMENTS', 'PRC_FULL_PAYMENT', 'TENURE'],
                 dtype='object')
          # check the datatypes
 In [566...
          cc_data.dtypes
          CUST_ID
                                                object
Out[566]:
          BALANCE
                                               float64
          BALANCE_FREQUENCY
                                               float64
          PURCHASES
                                               float64
          ONEOFF_PURCHASES
                                               float64
          INSTALLMENTS_PURCHASES
                                               float64
          CASH ADVANCE
                                               float64
          PURCHASES_FREQUENCY
                                               float64
          ONEOFF_PURCHASES_FREQUENCY
                                               float64
          PURCHASES_INSTALLMENTS_FREQUENCY
                                               float64
          CASH_ADVANCE_FREQUENCY
                                               float64
          CASH_ADVANCE_TRX
                                                 int64
          PURCHASES TRX
                                                 int64
          CREDIT LIMIT
                                               float64
          PAYMENTS
                                               float64
          MINIMUM PAYMENTS
                                               float64
          PRC_FULL_PAYMENT
                                               float64
          TENURE
                                                 int64
          dtype: object
```

c. Check for missing values. Impute the missing values if there is any.

```
In [567...
          #check the missing values.
          cc_data.isnull().any()
          CUST ID
                                                False
Out[567]:
          BALANCE
                                                False
          BALANCE FREQUENCY
                                                False
          PURCHASES
                                                False
          ONEOFF PURCHASES
                                                False
          INSTALLMENTS_PURCHASES
                                                False
          CASH ADVANCE
                                                False
          PURCHASES_FREQUENCY
                                                False
          ONEOFF_PURCHASES_FREQUENCY
                                                False
          PURCHASES_INSTALLMENTS_FREQUENCY
                                                False
          CASH_ADVANCE_FREQUENCY
                                                False
          CASH ADVANCE TRX
                                                False
          PURCHASES TRX
                                                False
          CREDIT_LIMIT
                                                 True
          PAYMENTS
                                                False
          MINIMUM PAYMENTS
                                                 True
          PRC_FULL_PAYMENT
                                                False
          TENURE
                                                False
          dtype: bool
```

```
In [568... # CREDIT_LIMIT and MINIMUM_PAYMENTS has missing values so we need to remove with h
          cc_data['CREDIT_LIMIT'].fillna(cc_data['CREDIT_LIMIT'].median(),inplace=True)
          cc_data['CREDIT_LIMIT'].count()
          cc_data['MINIMUM_PAYMENTS'].median()
          cc_data['MINIMUM_PAYMENTS'].fillna(cc_data['MINIMUM_PAYMENTS'].median(),inplace=Tru
In [569... # Now again check the missing values.
          cc_data.isnull().any()
          CUST ID
                                               False
Out[569]:
          BALANCE
                                               False
          BALANCE_FREQUENCY
                                               False
          PURCHASES
                                               False
          ONEOFF_PURCHASES
                                              False
          INSTALLMENTS_PURCHASES
                                              False
          CASH ADVANCE
                                              False
          PURCHASES_FREQUENCY
                                              False
          ONEOFF_PURCHASES_FREQUENCY
                                               False
          PURCHASES_INSTALLMENTS_FREQUENCY
                                              False
          CASH_ADVANCE_FREQUENCY
                                              False
          CASH_ADVANCE_TRX
                                              False
          PURCHASES TRX
                                               False
          CREDIT_LIMIT
                                               False
          PAYMENTS
                                               False
          MINIMUM_PAYMENTS
                                              False
          PRC_FULL_PAYMENT
                                              False
          TENURE
                                               False
          dtype: bool
```

• Since there are missing values in the data so those attributes are imputing them with median.

d. Drop unnecessary columns.

Inference:

CUST_ID is an unnecessary column for building model so it is dropped.

e. Check correlation among features and comment your findings.

- ONEOFF_PURCHASES and PURCHASES have highest correlation
- PURCHASES_INSTALLMENTS_FREQUENCY and PURCHASES_FREQUENCY have high correlation
- There is positive correlation between attributes of transcation and frequency such as CASH_ADVANCE_FREQUENCY, CASH_ADVANCE_TRX

```
In [503... sns.pairplot(cc_data.iloc[:,:17], diag_kind='kde')
Out[503]: <seaborn.axisgrid.PairGrid at 0x219bae4f160>
```


f. Check distribution of features and comment your findings.

In [504... # describe the numerical data
 cc_data.describe()

Out[504]:		BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURC
	count	8950.000	8950.000	8950.000	8950.000	8
	mean	1564.475	0.877	1003.205	592.437	
	std	2081.532	0.237	2136.635	1659.888	
	min	0.000	0.000	0.000	0.000	
	25%	128.282	0.889	39.635	0.000	
	50%	873.385	1.000	361.280	38.000	
	75%	2054.140	1.000	1110.130	577.405	
	max	19043.139	1.000	49039.570	40761.250	22

•

```
In [505... plt.figure(figsize=(9,6))
  top_cities = cc_data.groupby(['TENURE'])['PURCHASES'].count().sort_values(ascending top_cities.plot(kind = 'bar')
  plt.title('Purchases vs Tenure')
  plt.xlabel('Tenure')
  plt.ylabel('No.of Purchases')
  plt.show()
```



```
In [506...
plt.figure(figsize=(9,6))
top_cities = cc_data.groupby(['TENURE'])['PAYMENTS'].count().sort_values(ascending:
top_cities.plot(kind = 'bar')
plt.title('Payment vs Tenure')
plt.xlabel('Tenure')
plt.ylabel('Payments')
plt.show()
```



```
In [507...
sns.set()
fig, axes = plt.subplots(2, 2, figsize=(15, 15))
sns.distplot(cc_data['BALANCE_FREQUENCY'], ax=axes[0,0])
sns.distplot(cc_data['PURCHASES_FREQUENCY'],ax=axes[0,1])
sns.distplot(cc_data['ONEOFF_PURCHASES_FREQUENCY'], ax=axes[1,0])
sns.distplot(cc_data['PURCHASES_INSTALLMENTS_FREQUENCY'], ax=axes[1,1])
```

Out[507]: <AxesSubplot:xlabel='PURCHASES_INSTALLMENTS_FREQUENCY', ylabel='Density'>

Out[508]: <AxesSubplot:xlabel='CASH_ADVANCE_TRX', ylabel='Density'>

- Most of the payments and purchases done with the tenure of 12.
- Balance_frequency is right skewed and ONEOFF_PURCHASES_FREQUENCY is left skewed. This explains that users update their balance frequently but rarely opt for one go purchases.
- Major share of users fall below 10k in purchases and oneoff_purchases. Very few use cash_advance for more than 10k purchase.

g. Standardize the data using appropriate methods.

```
In [572... # To put data on the same scale
    from sklearn.preprocessing import StandardScaler
    features = cc_data.columns
    sc = StandardScaler()
    cc_data_scaled = sc.fit_transform(cc_data)
    data = pd.DataFrame(cc_data_scaled, columns=cc_data.columns)
    data.head()
```

Out[572]:		BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURCHAS
	0	-0.732	-0.249	-0.425	-0.357	-0.3
	1	0.787	0.134	-0.470	-0.357	-0.4
	2	0.447	0.518	-0.108	0.109	-0.4
	3	0.049	-1.017	0.232	0.546	-0.4
	4	-0.359	0.518	-0.462	-0.347	-0.4
4						>

3. Apply PCA to the dataset and perform all steps from Q2 on the new features generated using PCA.

```
In [573... # With the help of principal component analysis we will reduce features
           from sklearn.decomposition import PCA
 In [574... cc_data.shape
           (8950, 17)
Out[574]:
           #We have 17 features so our n_component will be 17.
 In [575...
           pc=PCA(n components=17)
           cc_data_pca=pc.fit(cc_data_scaled)
 In [576... sum(cc_data_pca.explained_variance_ratio_)
           1.00000000000000000
Out[576]:
 In [577...
           var_ratio={}
           for n in range(2,18):
               pc=PCA(n_components=n)
               cc_data_pca=pc.fit(cc_data_scaled)
               var_ratio[n]=sum(cc_data_pca.explained_variance_ratio_)
 In [578... var_ratio
Out[578]: {2: 0.4761145096038464,
            3: 0.5642463262126608,
            4: 0.6390415683340281,
            5: 0.7012888630326691,
            6: 0.7586894275299021,
            7: 0.8075236830564568,
            8: 0.850515715540971,
            9: 0.8884983024975869,
            10: 0.9192983251775998,
            11: 0.9430208355910034,
            12: 0.960754531954597,
            13: 0.9750331004392295,
            14: 0.9872022960817174,
            15: 0.9973289663784978,
            16: 0.9999993147732045,
            17: 1.0000000000000000000002}
 In [579...
           #Since 10 components are explaining about 90% variance so we select 9 components
           pc=PCA(n_components=10)
```

```
In [580... p=pc.fit(cc_data_scaled)
 In [581...
           cc_data_scaled.shape
           (8950, 17)
Out[581]:
In [582...
           p.explained_variance_
           array([4.64112269, 3.45372843, 1.49840831, 1.27166123, 1.05832222,
Out[582]:
                  0.97591864, 0.83027511, 0.73094622, 0.64577613, 0.52365889])
           np.sum(p.explained_variance_)
In [583...
           15.629817876385282
Out[583]:
In [584...
           var_ratio
           {2: 0.4761145096038464,
Out[584]:
            3: 0.5642463262126608,
            4: 0.6390415683340281,
            5: 0.7012888630326691,
            6: 0.7586894275299021,
            7: 0.8075236830564568,
            8: 0.850515715540971,
            9: 0.8884983024975869,
            10: 0.9192983251775998,
            11: 0.9430208355910034,
            12: 0.960754531954597,
            13: 0.9750331004392295,
            14: 0.9872022960817174,
            15: 0.9973289663784978,
            16: 0.9999993147732045,
            17: 1.00000000000000002}
           pd.Series(var_ratio).plot()
In [585...
           <AxesSubplot:>
Out[585]:
           1.0
           0.9
           0.8
           0.7
           0.6
           0.5
                 2
                       4
                             6
                                   8
                                               12
                                                           16
                                        10
                                                    14
           #Since 9 components are explaining about 88% variance so we select 9 components
 In [586...
           cc_data_scaled.shape
           (8950, 17)
Out[586]:
           pc_final=PCA(n_components=10).fit(cc_data_scaled)
In [587...
           reduced_cc_data=pc_final.fit_transform(cc_data_scaled)
```

```
In [588...
           dd=pd.DataFrame(reduced cc data)
In [589...
           dd.head()
                        1
                               2
                                     3
                                            4
                                                   5
                                                          6
                                                                 7
                                                                        8
                                                                               9
Out[589]:
                  0
           0 -1.684 -1.072 0.476
                                  0.680
                                         0.043
                                                0.068
                                                       0.822 -0.019
                                                                    0.118 -0.078
                     2.509 0.602
                                         0.663 -1.102 -0.384
           1 -1.134
                                 -0.110
                                                             0.176
                                                                    0.674
                                                                          -0.778
           2 0.969
                    -0.384 0.091
                                  1.238 -2.167 -0.320 -1.542 -0.229
                                                                    -0.868
                                                                          -0.002
           3 -0.888
                     0.005 1.500
                                  1.075
                                         0.226 -0.172 -0.237 -0.690
                                                                    -0.064
                                                                           0.394
           4 -1.600 -0.684 0.348
                                  1.014 -0.454
                                                0.077
                                                       0.698
                                                             0.245
                                                                    0.578 -0.122
           # initially we had 17 variables now its 9 so our variable go reduced
 In [590...
           dd.shape
           (8950, 10)
Out[590]:
           col_list=cc_data.columns
In [591...
           col_list
In [592...
           Index(['BALANCE', 'BALANCE_FREQUENCY', 'PURCHASES', 'ONEOFF_PURCHASES',
Out[592]:
                   'INSTALLMENTS_PURCHASES', 'CASH_ADVANCE', 'PURCHASES_FREQUENCY',
                  'ONEOFF_PURCHASES_FREQUENCY', 'PURCHASES_INSTALLMENTS_FREQUENCY',
                   'CASH_ADVANCE_FREQUENCY', 'CASH_ADVANCE_TRX', 'PURCHASES_TRX',
                  'CREDIT_LIMIT', 'PAYMENTS', 'MINIMUM_PAYMENTS', 'PRC_FULL_PAYMENT',
                  'TENURE'],
                 dtype='object')
           pd.DataFrame(pc_final.components_.T, columns=['PC_' +str(i) for i in range(10)],inc
```

Out[593]:	PC_0	PC_1	PC_2	PC_3	PC_4	PC_5	P

	PC_0	PC_1	PC_2	PC_3	PC_4	PC_5	PC_6	PC
BALANCE	0.102	0.404	-0.162	0.279	0.051	0.043	-0.254	-0.1
BALANCE_FREQUENCY	0.120	0.131	-0.423	0.156	-0.477	0.022	0.101	0.2
PURCHASES	0.412	0.040	0.257	0.042	0.028	0.180	0.200	0.0
ONEOFF_PURCHASES	0.346	0.062	0.391	0.085	-0.161	0.180	0.121	0.1
INSTALLMENTS_PURCHASES	0.337	-0.019	-0.109	-0.058	0.361	0.096	0.252	-0.1
CASH_ADVANCE	-0.023	0.439	-0.023	-0.257	0.098	-0.145	-0.049	-0.0
PURCHASES_FREQUENCY	0.321	-0.191	-0.371	-0.195	-0.100	-0.047	-0.151	-0.0
ONEOFF_PURCHASES_FREQUENCY	0.294	-0.019	0.116	0.034	-0.540	-0.004	-0.281	0.0
PURCHASES_INSTALLMENTS_FREQUENCY	0.274	-0.179	-0.470	-0.225	0.177	-0.048	0.038	-0.1
CASH_ADVANCE_FREQUENCY	-0.089	0.434	-0.105	-0.265	-0.145	0.058	0.144	0.0
CASH_ADVANCE_TRX	-0.048	0.420	-0.110	-0.328	-0.084	-0.065	0.199	0.1
PURCHASES_TRX	0.391	-0.020	-0.076	-0.021	-0.036	0.101	0.109	-0.1
CREDIT_LIMIT	0.212	0.238	0.101	0.132	0.086	-0.320	-0.557	-0.3
PAYMENTS	0.266	0.257	0.277	-0.112	0.201	-0.116	0.157	0.0
MINIMUM_PAYMENTS	0.063	0.169	-0.235	0.393	0.415	0.290	-0.200	0.5
PRC_FULL_PAYMENT	0.132	-0.190	0.126	-0.420	0.143	-0.353	-0.300	0.5
TENURE	0.081	-0.004	-0.068	0.438	-0.002	-0.745	0.404	0.0

• So above data gave us eigen vector for each component we had all eigen vector value very small we can remove those variable but in this case its not.

```
In [594... # Factor Analysis : variance explained by each component-
          pd.Series(pc_final.explained_variance_ratio_,index=['PC_'+ str(i) for i in range(10)
         PC_0 0.273
Out[594]:
         PC 1 0.203
          PC_2 0.088
          PC_3 0.075
          PC 4 0.062
          PC_5 0.057
          PC 6 0.049
          PC 7 0.043
          PC 8 0.038
          PC 9 0.031
          dtype: float64
```

2. Build a k-means algorithm for clustering credit card data. Kindly follow the below steps and answer the following.

```
In [596...
           km_4=KMeans(n_clusters=4,random_state=123)
           km_4.fit(data)
In [597...
           KMeans(n_clusters=4, random_state=123)
Out[597]:
In [598...
           km_4.labels_
           array([2, 1, 3, ..., 3, 2, 2])
Out[598]:
In [599...
           pd.Series(km_4.labels_).value_counts()
                3977
           2
Out[599]:
                3367
                1197
                409
           dtype: int64
```

a. Build k means model on various k values and plot the inertia against various k values.

```
In [600... cluster_range = range( 1, 21 )
    cluster_errors = []

for num_clusters in cluster_range:
        clusters = KMeans( num_clusters )
        clusters.fit( data )
        cluster_errors.append( clusters.inertia_ )

In [601... clusters_df = pd.DataFrame( { "num_clusters":cluster_range, "cluster_errors": clusters_df[0:21]
```

Out[601]:		num_clusters	cluster_errors
	0	1	152150.000
	1	2	127784.573
	2	3	111973.990
	3	4	99061.940
	4	5	91491.608
	5	6	84826.621
	6	7	79506.847
	7	8	74465.983
	8	9	69840.515
	9	10	66459.760
	10	11	63618.827
	11	12	61357.139
	12	13	59133.096
	13	14	57481.073
	14	15	55815.648
	15	16	54426.358
	16	17	53002.692
	17	18	51906.246
	18	19	50348.935
	19	20	49972.905

b. Evaluate the model using Silhouette coefficient

```
In [603... from sklearn import metrics
 In [604...
           #using silhouette score: Higher the value, better the cluster.
           from sklearn.metrics import silhouette_score
           # create a list for different values of K
           n_{clusters} = [2, 3, 4, 5, 6, 7, 8, 9]
           for K in n_clusters:
               cluster = KMeans (n_clusters= K, random_state= 10)
               predict = cluster.fit_predict(data)
               score = silhouette_score(data, predict, random_state= 10)
               print ("For n_clusters = {}, silhouette score is {})".format(K, score))
           For n_clusters = 2, silhouette score is 0.20951117145873602)
           For n_clusters = 3, silhouette score is 0.2506116638886035)
           For n_clusters = 4, silhouette score is 0.1976791965228765)
           For n_clusters = 5, silhouette score is 0.19325195080511473)
           For n clusters = 6, silhouette score is 0.20286011584987834)
           For n_clusters = 7, silhouette score is 0.21456513775079983)
           For n_clusters = 8, silhouette score is 0.22193282658122515)
          For n_clusters = 9, silhouette score is 0.21569986719782255)
          # calculate SC for K=3 through K=21
           k_range = range(2, 21)
           scores = []
           for k in k range:
               km = KMeans(n_clusters=k, random_state=1)
               km.fit(data)
               scores.append(metrics.silhouette_score(data, km.labels_))
          scores
 In [606...
Out[606]: [0.20949692655850133,
           0.25094878327513914,
            0.1976911456779212,
           0.19325195080511473,
            0.20282934577578765,
            0.21474509359961605,
            0.22204404116809873,
            0.21549380253155773,
           0.22020848165025195,
           0.21924048257110365,
            0.2193433960056921,
            0.21891552422536958,
            0.2201449360668657,
            0.20286428711384824,
            0.20297722558281397,
           0.22016598510750354,
            0.16991219754345324,
            0.20478753738317101,
           0.20769150746882784]
 In [607... # plot the results
           plt.plot(k_range, scores)
           plt.xlabel('Number of clusters')
           plt.ylabel('Silhouette Coefficient')
           plt.grid(True)
```


- using silhouette score: Higher the value, better the cluster.
- silhouette score is high at 3 and 8

c. Plot a elbow plot to find the optimal value of k

```
from scipy.stats import zscore
In [608...
         cc_attributes=cc_data.iloc[:,1:]
         cc_datascaled=cc_attributes.apply(zscore)
         #Finding optimal no. of clusters
In [609...
         from scipy.spatial.distance import cdist
         clusters=range(1,10)
         meanDistortions=[]
         for k in clusters:
              model=KMeans(n clusters=k)
              model.fit(cc_datascaled)
              prediction=model.predict(cc_datascaled)
              meanDistortions.append(sum(np.min(cdist(cc_datascaled, model.cluster_centers_,
         plt.plot(clusters, meanDistortions, 'bx-')
         plt.xlabel('k')
         plt.ylabel('Average distortion')
         plt.title('Selecting k with the Elbow Method')
```

Out[609]: Text(0.5, 1.0, 'Selecting k with the Elbow Method')

- from the above graph, it bends at 2, 6
- Though the bend is not coming out clearly as there are many bends, let us look at 2 clusters and 6 clusters

d. Which k value gives the best result?

```
In [610... # Let us first start with K = 2 from elbow point
    final_model=KMeans(2)
    final_model.fit(cc_datascaled)
    prediction=final_model.predict(cc_datascaled)

#Append the prediction
    cc_data["GROUP"] = prediction
    cc_datascaled["GROUP"] = prediction
    print("Groups Assigned : \n")
    cc_data.head()
```

Groups Assigned :

cc_cluster.mean()

Out[610]:		BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURCHAS
	0	40.901	0.818	95.400	0.000	95.4
	1	3202.467	0.909	0.000	0.000	0.0
	2	2495.149	1.000	773.170	773.170	0.0
	3	1666.671	0.636	1499.000	1499.000	0.0
	4	817.714	1.000	16.000	16.000	0.0
4						•
In [611	cc_	_cluster =	cc_data.groupby(['	GROUP'])		

Out[611]: BALANCE BALANCE_FREQUENCY PURCHASES ONEOFF_PURCHASES INSTALLMENTS_PUI

GROUP

0 1671.096	0.828	277.894	201.238
1 1411.645	0.948	2042.857	1153.177

←

In [612... cc_cluster.boxplot(by='GROUP', layout = (3,3),figsize=(15,15))

Boxplot grouped by GROUP


```
In [613... # Let us first start with K = 3 from silhouette score
    final_model=KMeans(3)
    final_model.fit(cc_datascaled)
    prediction=final_model.predict(cc_datascaled)

#Append the prediction
    cc_data["GROUP"] = prediction
    cc_datascaled["GROUP"] = prediction
    print("Groups Assigned : \n")
    cc_data.head()
```

Groups Assigned :

Out[613]:		BALANCE	BALAN	ICE_FREQUENCY	PURC	HASES	ONEOFF_PURCHAS	SES INST	TALLMENTS_PURCHAS
	0	40.901		0.818		95.400	0.0	000	95.4
	1	3202.467		0.909		0.000	0.0	000	0.0
	2	2495.149		1.000	7	73.170	773.	170	0.0
	3	1666.671		0.636	14	99.000	1499.0	000	0.0
	4	817.714		1.000		16.000	16.0	000	0.0
4									>
In [614		_cluster _cluster.	_	ata.groupby([ˈ	' GROUP '])			
Out[614]:		BAL	ANCE	BALANCE_FREQU	IENCY	PURCH	ASES ONEOFF_PU	RCHASES	INSTALLMENTS_PUI
	GF	ROUP							
		0 173	3.813		0.830	260	6.530	202.868	
		1 109	7.017		0.931	1264	4.568	619.864	
		2 354	7.524		0.985	758	7.562	5025.297	
4									•
In [615	СС	_cluster.	boxplot	t(by='GROUP',	layout	:= (3,	3),figsize=(15,	15))	
Out[615]:	0								


```
In [616... # Let us first start with K = 6 from elbow point
    final_model=KMeans(6)
    final_model.fit(cc_datascaled)
    prediction=final_model.predict(cc_datascaled)

#Append the prediction
    cc_data["GROUP"] = prediction
    cc_datascaled["GROUP"] = prediction
    print("Groups Assigned : \n")
    cc_data.head()
```

Groups Assigned:

Out[616]:		BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURCHAS
	0	40.901	0.818	95.400	0.000	95.4
	1	3202.467	0.909	0.000	0.000	0.0
	2	2495.149	1.000	773.170	773.170	0.0
	3	1666.671	0.636	1499.000	1499.000	0.0
	4	817.714	1.000	16.000	16.000	0.0

```
In [617...
           cc_cluster = cc_data.groupby(['GROUP'])
           cc_cluster.mean()
Out[617]:
                   BALANCE BALANCE_FREQUENCY PURCHASES ONEOFF_PURCHASES INSTALLMENTS_PUI
           GROUP
                     117.037
                                            0.362
                                                      323.580
                                                                          208.114
                0
                                            0.965
                    1657.223
                                                      260.371
                                                                         211.757
                     852.401
                                            0.946
                                                      880.077
                                                                          198.654
                2
                3
                    4301.415
                                            0.956
                                                      499.996
                                                                          317.838
                    4456.574
                                            0.976
                                                    16039.635
                                                                        10886.014
                4
                                            0.978
                                                     2988.792
                                                                         2062.421
                5
                    1848.679
           cc_cluster.boxplot(by='GROUP', layout = (3,3),figsize=(15,15))
 In [620...
                [[AxesSubplot(0.1,0.77069;0.173913x0.12931), A...
Out[620]:
                [[AxesSubplot(0.1,0.77069;0.173913x0.12931), A...
                [[AxesSubplot(0.1,0.77069;0.173913x0.12931), A...
           2
                [[AxesSubplot(0.1,0.77069;0.173913x0.12931), A...
                [[AxesSubplot(0.1,0.77069;0.173913x0.12931), A...
                [[AxesSubplot(0.1,0.77069;0.173913x0.12931), A...
```

dtype: object

- Comparing the box plots of attributes, k=3 is the optimal no.of clusters
- 4. Create a new column as a cluster label in the original data frame and perform cluster analysis. Check the correlation of cluster labels with various features and mention your inferences

Out[621]:		BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURCHAS
	0	40.901	0.818	95.400	0.000	95.4
	1	3202.467	0.909	0.000	0.000	0.0
	2	2495.149	1.000	773.170	773.170	0.0
	3	1666.671	0.636	1499.000	1499.000	0.0
	4	817.714	1.000	16.000	16.000	0.0
						>
In [622	CC	data['cl	uster'].value_counts	;()		
-	0	2214	date:].value_counts	,()		
ut[622]:	1	1486				
	11 7	1069 727				
	4	715				
	6 9	650 576				
	3	466				
	10 2	455 357				
	8	104				
	5 13	75 36				
	12	20				
	Nam	e: cluste	er, dtype: int64			
In [623			ry for observations data.cluster==0].des		ter	
ut[623]:		BALAI	NCE BALANCE_FREQUE	NCY PURCHA	SES ONEOFF_PURCH#	ASES INSTALLMENTS_PURC
	cou	ı nt 2214.	000 2214	.000 2214	.000 2214	.000 2
	me	an 1378.	859 0	.970 205	.247 162	.625
	S	s td 1066.	178 0	.077 373	.041 343	.637
	m	nin 0.	488 0	.545 0	.000	.000
	25	5% 598.	425 1	.000 0	.000	.000
	50)% 1156.	641 1	.000 37	.770	.000
	75	5% 1845.	187 1	.000 246	.415 160	.360
	m	ax 5934.	611 1	.000 3183	.000 3183	.000 3
						•
In [624	sns	.boxplot	(cc_data['cluster'],	cc data['PU	RCHASES'])	
L · · · ·				_	-/	
Out[624]:	<ax< th=""><td>esSubplo</td><td>t:xlabel='cluster',</td><td>ylabel='PUR</td><td>CHASES'></td><td></td></ax<>	esSubplo	t:xlabel='cluster',	ylabel='PUR	CHASES'>	

In [625... sns.boxplot(cc_data['cluster'],cc_data['CREDIT_LIMIT'])

Out[625]: <AxesSubplot:xlabel='cluster', ylabel='CREDIT_LIMIT'>

In [626... df_pair_plot=pd.DataFrame(reduced_cc_data,columns=['PC_' +str(i) for i in range(10)
In [627... df_pair_plot['Cluster']=km_4.labels_ #Add cluster column in the data frame

In [628... df_pair_plot.head()

Out[628]:		PC_0	PC_1	PC_2	PC_3	PC_4	PC_5	PC_6	PC_7	PC_8	PC_9	Cluster
	0	-1.684	-1.072	0.476	0.680	0.043	0.068	0.822	-0.019	0.118	-0.078	2
	1	-1.134	2.509	0.602	-0.110	0.663	-1.102	-0.384	0.176	0.674	-0.778	1
	2	0.969	-0.384	0.091	1.238	-2.167	-0.320	-1.542	-0.229	-0.868	-0.002	3
	3	-0.888	0.005	1.500	1.075	0.226	-0.172	-0.237	-0.690	-0.064	0.394	2
	4	-1.600	-0.684	0.348	1.014	-0.454	0.077	0.698	0.245	0.578	-0.122	2

In [629... sns.pairplot(df_pair_plot,hue='Cluster', palette= 'Dark2', diag_kind='kde',size=1.

Out[629]: <seaborn.axisgrid.PairGrid at 0x219e49c68e0>

5. Comment your findings and inferences and compare the performance. Does applying PCA give a better result in comparison to earlier?

- From K-means algorithm, the optimal no.of clusters from siloutte score can be 3
- from elbow method it is 2 or 6 clusters
- But from PCA there are 9 components to be formed.