Executive Summary

Objective:

The objective is to maximize profit for Trojan financial services company by minimizing the amount of loan defaults for its Home Equity line of credit service. The company interests to know customer's likelihood to default by studying the variables that pertain to the individuals. The company hope to find the best model to predict the best loan amount and prevent future default. The objective is to identify the high risk default line of credit.

JMP Model:

- Trojan financial services created the JMP best logistic regression model based on statistical significance of the variables
- Model: Log(BAD)= 4.447-0.8201(Derog)-0.6778351(Delinq)+0.0077(Clage)-0.0813(Debtinc)
- 4 independent variables:
- 1. "Derog": Number of major derogatory reports.
- 2. "Deling": Number of delinquent credit lines.
- 3. "Clage": Age of oldest credit line in months.
- 4. "Debtinc": **Debt-to-income ratio**.
- This model explained 21.78% of variation in the dependent variable.
- 4 independent variables are all significantly significant at alpha level of 0.05.
- The projected revenue calculated using the algorithm generated from JMP is \$24,520,000, which exceeds the company's expected minimum profit of \$20,000,000.

Key Insights: The model was built based on statistical significance of the variable

1	Parameter Estimates					
	Term	Estimate	Std Error	ChiSquare	Prob>ChiSq	
	Intercept	4.44718476	0.682225	42.49	<.0001*	
	DEROG	-0.8201803	0.1613065	25.85	<.0001*	
	DELINQ	-0.6778351	0.1236336	30.06	<.0001*	
	CLAGE	0.00770365	0.0019194	16.11	<.0001*	
	DEBTINC	-0.0813458	0.0162045	25.20	<.0001*	
For log adds of 0/1						

Your Best Model:

- Trojan financial services created the JMP best logistic regression model based on statistical significance of the variables Model:
- "VALUE": Value of current property
- "Derog": Number of major derogatory reports.

- "Deling": Number of delinquent credit lines.
- "Clage": Age of oldest credit line in months.
- "Debtinc": **Debt-to-income ratio**.
- Apart from this we have
- This model explained 30.35% of variation in the dependent variable.
- All the independent variables are all significantly significant at alpha level of 0.05.
- The projected revenue calculated using the algorithm generated from JMP is \$26,560,000, which exceeds the JMP's expected profit of \$24,800,000.

Key Changes Made: We considered new independent variables include the "Value" which indicates the value of current property, "CLNO", which indicates the number of trade lines, and "Loan", which indicates the loan amount.

Key Insights: A more detailed valuation of the credit line seem to offer higher chances to correctly identify and decrease the amount of loan defaults. The JMP only included four impendent variables which is not enough in this case.

Why your model is better?

The new model is better with a higher Rsquare value. The parameters have the least Prob>ChiSq score which makes our model a better fit when compared to the original model. Also the overall model also has a Prob>ChiSq score which is less then 0.01 which confirms that the model we have built is optimal. It also generates more profit than the JMP model.

What is the lift (as a ratio) provided by your model compared to Baseline Model for both training and testing? What is the increase in net dollar amount compared to the Baseline Model for both training and testing?

The lift has been considerably high. With the baseline model having a score of \$24,520,000 and our model has \$26,560,000, we have a lift of 1:1.0832 for the testing and for training we have a lift 1:1.01575. The net dollar amount has increased by \$2,400,000 for testing and \$80,000 in training.

JMP Logistic Model

Build the Logistic Model using JMP (Go option) on the following conditions,

Y = BAD

X = All predictors

Cutoff Probability for mailing = 0.14

i) Statistical KPIs of JMP Model – From JMP Printout

Measure	Training	Validation	Definition
Entropy RSquare	0.3137	0.1889	1-Loglike(model)/Loglike(0)
Generalized	0.3845	0.2379	(1-(L(0)/L(model))^(2/n))/(1-
RSquare			$L(0)^{(2/n)}$
Mean -Log p	0.2185	0.2454	$\sum -\text{Log}(\rho[j])/n$
RMSE	0.2372	0.2538	$\sqrt{\sum(y[j]-\rho[j])^2/n}$
Mean Abs Dev	0.1135	0.1232	$\sum y[j]-\rho[j] /n$
Misclassification	0.0640	0.0740	
Rate			$\sum (\rho[j] \neq \rho Max)/n$
N	1000	1000	n

Statistical KPIs of JMP Model – From Excel Printout

	Training	Validation
Accuracy %	90.80%	90.30%
True Positive Rate	54.64%	44.44%
False Positive Rate	5.32%	5.16%
Sensitivity (True Positive		
Rate)	54.64%	44.44%
Specificity (True Negative		
Rate)	94.96%	94.84%

ii) a) Business KPIs of JMP Model – Training

Predicted number of Good Loans	=	8990
Upper limit for Loans	=	10000
Actual number of approved loans	=	8990

Propensity of Good Loan	=	95.106%
Propensity of Bad Loan	=	4.894%

		\$
Total Profit	=	25,400,000

b) Business KPIs of JMP Model – Testing

Predicted number of Good Loans	=	9130
Upper limit for Loans	=	10000
Actual number of approved loans	=	9130

Propensity of Good Loan	=	94.524%
Propensity of Bad Loan	=	5.476%
Total Profit	_	\$ 24,520,000

ii) Interpret the Model (decision tree) – From Business Point of view & Statistical Point of view

- "Derog": Number of major derogatory reports. A higher number usually indicates a higher probably of default based on past history;
- "Delinq": Number of delinquent credit lines. A higher number usually indicates a higher probably of default based on past history;
- "Clage": Age of oldest credit line in months. A higher number usually indicates a good credit, which leads to a lower probably of default based on past history
- "Debtinc": Debt-to-income ratio. A higher number usually indicates a higher probably of default based on the individual's ability to repay the debt.

iv) Confusion Matrix for Training

GoodLoan BadLoan

GoodLoan	BadLoan	
855	48	903
44	53	97
899	101	1000

iv) Confusion Matrix for Testing

GoodI oon

GoodLoan BadLoan

DauLoan	
47	910
40	90
87	1000
	47 40 87

RadI oan

v) Lift Table (copy & paste from Excel)

Lift Table in Dollars	Training	Testing
Lift with respect to Baseline - JMP Model	13.84591391	10.18091079
Lift with respect to Baseline - My Best Model	12.01809108	11.519243
Lift with respect to JMP Model - My Contribution	0.867988286	0.831959745
Overall Lift with respect to Baseline -My Best Model	12.01809108	11.519243

Lift Table in Propensity	Training	Testing
Lift with respect to Baseline - JMP Model	5.409819332	4.739898092
Lift with respect to Baseline - My Best Model	2.849298037	2.755945698

vi) Attach JMP Printout

My Best Logistic Model

Build the Logistic Model using JMP (Go option) on the following conditions, V = BAD

 $\mathbf{X} = \text{VALUE}$, REASON[DebtCon], DEROG, DELINQ, CLAGE, CLNO, DEBTINC, Log (Loan), Log (Value), Log (Value) $\mathbf{Cutoff\ Probability\ for\ mailing} = \mathbf{0.14}$

Note: It may not be possible to obtain some values for Validation data in that case ignore it.

iii) Statistical KPIs of Best Logistic Model – From JMP Printout

Measure	Training	Validation	Definition
Entropy RSquare	0.3035	0.2744	1-Loglike(model)/Loglike(0)
Generalized			(1-(L(0)/L(model))^(2/n))/(1-
RSquare	0.3731	0.3369	$L(0)^{(2/n)}$
Mean -Log p	0.2218	0.2195	$\sum -\text{Log}(\rho[j])/n$
RMSE	0.2443	0.2416	$\sqrt{\sum (y[j]-\rho[j])^2/n}$
Mean Abs Dev	0.1203	0.1153	$\sum y[j]-\rho[j] /n$
Misclassification			
Rate	0.0720	0.0690	$\sum (\rho[j] \neq \rho Max)/n$
N	1000	1000	n

Statistical KPIs of the Best Logistic Model – From Excel Printout

	Training	Validation
Accuracy %	87.8%	92.90%
True Positive Rate	65.56%	84.21%
False Positive Rate	10.00%	6.76%
Sensitivity (True Positive		
Rate)	65.56%	84.21%
Specificity (True Negative		
Rate)	90.00%	93.24%

ii) a) Business KPIs of the Best Logistic Model – Training (copy & paste from Excel)

Predicted number of Good Loans	=	8610
Upper limit for Loans	=	10000
Actual number of approved loans	=	8610

Propensity of Good Loan	=	95.819%
-------------------------	---	---------

Propensity of Bad Loan	=	4.181%
	<u> </u>	
Table Day (1)		\$
Total Profit	=	25,800,

b) Business KPIs of the Best Logistic Model – Testing (copy & paste from Excel)

Predicted number of Good Loans	=	8500
Upper limit for Loans	=	10000
Actual number of approved loans	=	8500
Propensity of Good Loan	=	96.353%
Propensity of Bad Loan	=	3.647%
Total Profit	=	\$ 26,560,000

iii) Interpret the Model (decision tree) – From Business Point of view & Statistical Point of view

- Derog": Number of major derogatory reports. A higher number usually indicates a higher probably of default based on past history;
- "Loan": Amount of loan request
- "Value": Value of current property
- "Delinq": Number of delinquent credit lines. A higher number usually indicates a higher probably of default based on past history;
- "Clage": Age of oldest credit line in months. A higher number usually indicates a good credit, which leads to a lower probably of default based on past history
- "Debtinc": Debt-to-income ratio. A higher number usually indicates a higher probably of default based on the individual's ability to repay the debt

iv) Confusion Matrix for Training (copy & paste)

825	89	913
36	50	87
861	139	1000

iv) Confusion Matrix for Testing (copy & paste)

GoodLoan BadLoan

GoodLoan	BadLoan	
819	91	910
31	59	90
850	150	1000

v) Lift Table (copy & paste from Excel)

Lift Table in Dollars	Training	Testing
Lift with respect to Baseline - JMP Model	31.3050571	37.8548124
Lift with respect to Baseline - My Best Model	31.4274062	30.12291441
Lift with respect to JMP Model - My Contribution	1.003908286	0.962237964
Overall Lift with respect to Baseline -My Best Model	31.4274062	30.12291441

Lift Table in Propensity	Training	Testing
Lift with respect to Baseline - JMP Model	4.134623336	4.521072797
Lift with respect to Baseline - My Best Model	3.176803558	3.072721065

vi) Attach JMP Printout (Remove unwanted parts – Copy and Paste then edit it.)

Whole Model Test				
Model	-LogLikelihood	DF	ChiSquare	Prob>ChiSq
Difference	83.00488	1	166.0098	<.0001*
Full	219.53294			
Reduced	302.53782			
RSquare (U)		0.2744		
AICc		443.078		
BIC		452.881		
Observations (or Sum W	gts)	1000		

Measure Training Definition

Entropy RSquare 0.2744 1-Loglike(model)/Loglike(0)

Generalized RSquare $0.3369 (1-(L(0)/L(model))^{2/n})/(1-L(0)^{2/n})$

N 1000 n

Parameter Estimates

Term	Estimate	Std Error	ChiSquare	Prob>ChiSq
Intercept	3.4393461	0.1813232	359.79	<.0001*
Prob[1] 22	-7.6791467	0.7989179	92.39	<.0001*

For log odds of 0/1

Model	-LogLikelihood			DF	ChiSquare	Prob>ChiSq		
Difference	99.07251		12		198.145	<.0001*		
Full	203.	203.46531						
Reduced	302	.53782						
RSquare (U))		0.3	275				
AICc			43	33.3				
BIC			496.	731				
Observation	ns (or Sum	Wgts)	1	000				
Measure		Train	ing (Defin	ition			
Entropy RSo	quare	0.3	275 1	l-Log	like(model)/	Loglike(0)		
Generalized	RSquare	0.3	960 (1-(L(0)/L(model))	^(2/n))/(1-L(0)^(2/		
Mean -Log	р	0.2	035	-Log	g(ρ[j])/n			
RMSE		0.2	338 י	/ <u>Σ</u> (yl	[j]-ρ[j])²/n			
Mean Abs [)ev	0.1	105	[Jy[j]	-ρ[j] /n			
Misclassific	ation Rate			[(ρ[j]	≠ρMax)/n			
N		1000) r	1				
Lack Of I	Fit							
Source	DF	-LogLil	celih	ood	ChiSquare			
Lack Of Fit	987	2	03.46	531	406.9306			
0 1 1	999		0.00000		Prob>ChiSo	1		
Saturated								

Lack Of F	it									
Source	DF	-LogLikelihood	ChiSo	quare						
Saturated	999	0.00000	Prob>(ChiSq						
Fitted	12	203.46531	1.	0000						
Paramete	r Estin	nates								
Term				Estimate	St	d Error	ChiS	quare	Prob>	ChiSq
Intercept[0]				-36.253816	9.8	892804		13.44	0	.0002*
VALUE				-1.2421e-5	6	.647e-6		3.49	0	.0617
REASON[Del	otCon]			0.23284482	0.1	576488		2.18	0	.1397
JOB{Office&	ProfExe-	Self&Other&Mgr8	देSales}	0.08023248	0.	147395		0.30	0	.5862
DEROG				-0.697103	0.1	915348		13.25	0	.0003*
DELINQ				-0.7719048	0.1	273723		36.73	<	.0001*
CLAGE				0.00923648	0.0	022252		17.23	<	.0001*
NINQ				-0.1797981	0.0	721581		6.21	0	.0127*
CLNO				0.01397287	0.0	151952		0.85	0	.3578
DEBTINC				-0.3380778	0.0	661574		26.11	<	.0001*
Log (Loan)				0.71659771	0.6	138844		1.36	0	.2431
Log (Value)				4.68956713	1.	839139		6.50	0	.0108*
Log(Debt)				16.0256744	4.4	714031		12.85	0	.0003*
Effect Like	elihoo	d Ratio Tests								
							L-R			
Source				Nparm		ChiSqu			•	
VALUE				1	1	2.75152			.0972	
REASON				1	1	2.13157			.1443	
	ProfExe-	Self&Other&Mgr8	XSales}	1	1	0.29917			.5844	
DEROG				1	1	12.8997			.0003*	
DELINQ				1	1	49.4642			.0001*	
CLAGE				1	1	20.344			.0001*	
NINQ				1	1	5.82009			.0158*	
CLNO				1	1	0.86813			.3515	
DEBTINC				1	1	49.3374			.0001*	
Log (Loan)				1	1	1.38257 5.47531			.2397	
Log (Value) Log(Debt)				1	1	21.1312			.0193* .0001*	
I DOLLJEDT)						41.1514	2947	< .	UUU I "	

Key information \rightarrow **Cutoff Probability for mailing** = 0.14