KÓŁKO_DS

2023-10-19

Poniżej przedstawiam najbardziej interesujące statystyki, które udało mi się znaleźć w zbiorze danych "space-ship_titanic" oraz moją analizę.

TRASY

Na samym początku zobaczmy, że nasi pasażerowie podróżowali z trzech różncyh planet (Ziemia, Europa, Mars) na trzy możliwe (TRAPPIST-1e, PSO J318.5-22, 55 Cancri e)

Na wykresie najczęściej uczęszczaną trasą była trasa z Ziemii na planetę Trappist 1e, na drugim miejscu najpopularniejsza była trasa z marsa też na planetę Trappist 1e. Zobaczmy teraz czy któraś z tych tras wyrózniała się na tle bezpiecznego przelotu

```
## 2 Europa-55 Cancri e
                                              0.690
## 3 Europa-TRAPPIST-1e
                                              0.635
## 4 Mars-55 Cancri e
                                              0.611
                                              0.512
## 5 Mars-TRAPPIST-1e
## 6 Earth-55 Cancri e
                                              0.504
## 7 Earth-PSO J318.5-22
                                              0.499
## 8 Mars-PSO J318.5-22
                                              0.449
## 9 Earth-TRAPPIST-1e
                                              0.389
```

Jak widać w tabeli do największej liczby przetransportowań do innego wymiaru dochodziło na trasach z europy, najniebezpieczniejszą z nich była trasa Europa-PSO J318.5-22. Przeanalizujmy teraz jak planeta z której pasażerowie odlatywali miała wpływ na inne statystyki, zacznijmy od tego żeby zobaczyć ile pasażerów wyleciało z której planety i ilu z nich zostało przetransportowanych do innego wymiaru, widać to na wykresie.

Licznosc pasazerów z poszczególnych planet

Najwięcej ludzi wylatywało z Ziemi, ale największy procent (około 66%) przetransportowanych do innego wymiaru był z Europy. Teraz możemy zauważyć inną ciekawą zależność mędzy planetami wylotu a tym czy pasażerowie zdecydowali się kupić usługę VIP.

Jak widać w tabeli żaden mieszkaniec Ziemi nie zdecydował się na zakup usługi VIP, a z Europy poleciało

prawie dwa razy więcej vipów niż z Marsa. Teraz spójrzmy na co wydawali pieniądze pasażerowie z różnych planet.

Wydatki wszystkich

Widać że przez kilka osób które wydało znacznie więcej od innych wykres jest mało czytelny ale widzimy że to mieszkańcy Europy zdecydowanie wydali najwięcej pieniędzy.

Wydatki mniejwydajacych

Po usunięciu najbogatszych (176 Europejczyków co stanowi około 10 procent wszystkich Europejczyków i jednego Marsjanina) to wciąż Europejczycy tryumfują jeśli chodzi o wydawanie pieniędzy i mają znacznie wyższą średnią, stąd można wysnuć wniosek że w Europie się całkiem powodzi. Zobaczmy jeszcze w jakim stopniu ci najbogatsi pasażerowie byli transportowani do innego wymiaru.

mean(df_f_bogaci\$Wypadek)

[1] 0.3107345

mean(df\$Wypadek)

[1] 0.5036236

Jak widać tylko 30% pasażerów wydających > 10000 uległo przetransportowaniu do innego wymiaru, teraz spójrzmy jak w poszczególnych kategoriach wydatków różniły się planety pochodzenia płacących.

Wydatki na room service

Wydatki na Jedzenie w food courcie

Wydatki na Zakupy

Wydatki na SPA 1000 750 250 Earth Europa HomePlanet Mars


```
## # A tibble: 3 x 2
## The HomePlanet na_VR
## The Cohe Cohe Cohe
## 1 Earth 135.
## 2 Europa 864.
## 3 Mars 47.3
```

Jak widać Europa przoduje (i to znacznie) w wydatkach na Jedzenie, SPA i VRDeck, zaś Mars przoduje w pozostałych, Ziemianie wydają znacząco mniej od mieszkańców pozostałych planet.

POKŁADY

Możemy zauważyć że mieliśmy na naszym titanicu do wyboru 8 pokładów (A-G i pokład T), sprawdźmy więc jak to na jakim pokładzie znajdował się pasażer wpływało na to, czy zostanie przetransportowany czy nie.

Poklady a przetransportowanie pasazera

Na pokładach B i C był znacznie większy odsetek przetransportowanych osób, a na pokładach F i G było najwięcej pasażerów. Przyjrzyjmy się więc pokładom B i C.

```
df4_C <- df4[df4$Deck=="C" & df4$HomePlanet!="",]
df4_B <- df4[df4$Deck=="B" & df4$HomePlanet!="",]
distinct(df4_B, HomePlanet)

## HomePlanet
## 1 Europa

distinct(df4_C, HomePlanet)</pre>
```

HomePlanet
1 Europa

Czyli widzimy, że na pokładach B i C byli tylko pasażerowie podróżujący z Europy, którzy częściej byli transportowani do innych wymiarów. Tłumaczy to też czemu pasażerowie z pokładów B i C wydawali najwięcej pieniędzy. Zobaczmy na pokłady na których najmniej pasażerów zostało przetransportowanych (nie licząc pokładu T, który miał tylko 5 pasażerów i tylko jeden z nich został przetransportowany).

poklady D, E i F a planety z których lecieli ich pasazerowie

Na tych pokładach nie było aż tak dużo Europejczyków, tłumaczy to trochę czemu odsetek transportowanych jest tu niski jak i zarówno to czemu na pokładzie F gdzie europejczyków nie ma wogóle pasażerowie wydawali tam mniej pieniędzy. Teraz sprawdźmy jeszcze czy pokłady były symetryczne, czy niektóre miały więcej pokoi po danej stronie.

Po której stronie znajduje sie wiecej podruzujacyh z danego poklad

Okazuje się, że każdy pokład miał mniej więcej tyle samo pokoi po prawej stronie więc nasz statek był symetryczny.

CRYOSLEEP

Pierwsza rzecz jaka rzuca się w oczy to to, że pasażerowie którzy zdecydowali się na wprowadzenie w stan hibernacji o wiele częściej byli transportowani do innego wymiaru.

Hibernacja a przetransportowanie do innego wymiaru

Zobaczmy, jak pasażerowie z różnych planet decydowali się na hibernację:

Planeta pochodzenia a poddanie hibernacji

Znowu widzimy że Europa ma większy odsetek, ale nie aż tak znacząco. Spróbujmy zobaczyć jak w pokładach ludzie ulegali hibernacji.

Poklad a poddanie hibernacji

Pamiętając że to D, E i F były jednymi z najbezpieczniejszych pokładów widzimy tego ewntualną przyczynę, mają one wszystkie mały odsetek ludzi poddanych hibernacji. A pokłady B i C mają całkiem spory, może to tłumaczyć nasze wyniki z poprzedniej części analizy.

GRUPY

Teraz skupmy się na tym jak zachowywali się ludzie, którzy udali się w podróż w grupie.

Licznosc grupy a procent przetransportowanych

Z danych liczbowych wynika, że najmniej przetransportowanych pasażerów podróżowało w grupie 8 osobowej(jednak jest to mała grupa pasażeró bo zaledwie 8), potem samemu, a najwięcej w grupach 6- i 4-osobowych. Popatrzmy teraz na pary, czy ludzie podróżujący w parach częściej byli transportowani razem, czy może jednak osobno:

transportowanie par do innych wymiarów

ile osób w parze zostalo przetransportowanych

Przypomina to mniej więcej rozkład normalny, jaki wynikałby gdyby prawdopodobieństwo przetransportowania nie zależałoby od tego czy druga osoba w parze została przetransportowana, dla porównania pokaże histogram 841*2 rzutów monetą

```
rzuty <- data.frame(rzut1=round(runif(841,0,1),0),rzut2=round(runif(841,0,1),0))
rzuty<- rzuty %>%
  mutate(wynik=rzut1+rzut2)
hist(rzuty$wynik,main='suma dwóch rzutów monetą',xlab = 'suma rzutów monetą')
```

suma dwóch rzutów moneta

Widzimy że te dwa wykresy są całkiem do siebie podobne więc to że passażerowie podróżowali w parach nie wpływało na ich szansę na przetransportowanie, jednakże popatrzmy na pasażeró podróżujących w większych grupach

transportowanie trójek do innych wymiarów

Znowu dla porównania możemy zobaczyć jak ta cecha ułożyłaby się losowo

Suma trzech rzutów moneta

Widzimy, już że tu wykresy trochę bardziej się różnią, co może sugerować że w trójkach, była większa szansa na całę grupowe przetransportowywanie i nie jest to losowa cecha. Sprawdźmy jeszcze jak to wygląda w czwórkach

transportowanie czwórek do innych wymiarów

Pokażmy jeszcze wykres losowego ułożenia tej cechy

suma czterech rzutów moneta

Zobaczmy, że tu różnica między wykresami jest największa i najczęściej 3 na 4 ludzi w grupie 4 osobowej było transportowanych do innego wymiaru, więc tutaj można stwierdzić że bycie w 4 osobowej grupie zwiększało szansę na przetransportowanie do innego wymiaru.

Histogram of wydatki_wykres\$wydatki

## # A tibble: 2 x 7								
##		czy_vip	<pre>średnie_wydatki</pre>	na_pokoje	na_jedzenie	na_zakupy	${\tt na_SPA}$	na_VR
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	0	1371.	214.	418.	168.	294.	277.
##	2	1	4425.	464.	1757.	242.	753.	1210.