

# CS 4649/7649 Robot Intelligence: Planning

Constraints I: Constraint Programs; Arc Consistency

## Assignments

- Due Today, 1/20
  - Reading: Ch. 10
  - PSet 2 due at 11:59 PM EST
- Due Tuesday, 1/25
  - Read Ch. 11
- Due Thursday, 1/27
  - PSet32 due at 11:59 PM EST

## MCTS - Algorithm Recap

- Applied to solve Multi-Arm Bandit problem in a tree structure
  - UCT = UCB1 applied at each subproblem
- Due to tree structure same move can have different rewards in
  - different subtrees
- Weight to go to a given node:
  - Mean value for paths involving node
  - Visits to node
  - Visits to parent node
  - Constant balancing exploration vs exploitation
- Determines values from Default Policy
- Determines how to choose child from Tree Policy
- Once you have acomplete tree number of ways to pick moves during game - Max, Robust, Max-Robust, etc.



Fig. 2. One iteration of the general MCTS approach.

# MCTS Case Study: AlphaGo

#### Go

- 2 player
- Zero-sum
- 19x19 board
- Very large search tree
  - Breadth  $\approx$  250, depth  $\approx$  150
  - Unlike chess
- No good heuristics
  - Human intuition hard to replicate
- Great candidate for applying MCTS
  - Vanilla MCTS not good enough



## MCTS Case Study: AlphaGo

Idea 1) Use supervised/reinforcement to learn a simulation policy

→ Intelligently play game to completion to get a sense of whether the outcome will be favorable

Idea 2) Use statistical inference (i.e., q-learning) to learn a cost-to-go-function (i.e., a <u>value function</u>) that can augment the <u>simulation policy</u>

→ Estimate the outcome of playing rest of game without actually playing rest of game

Idea 3) Use supervised/reinforcement learning to learn a tree policy

> Try to make the most of each action opportunity

# AlphaGo Architecture



## AlphaGo Architecture



## AlphaGo Architecture



## AlphaGo: Selection/Tree Policy

$$a_t = \operatorname{argmax}_a(Q(s_t, a) + u(s_t, a))$$
$$u(s, a) \propto \frac{P(s, a)}{1 + N(s, a)}$$

- $a_t$  action chosen for time step t given state  $s_t$
- $Q(s_t, a)$  Average reward for playing a in state  $s_t$  (exploitation term)
  - Not the "Q-function" from q-learning, but rather an Alpha-Go specific term
- P(s, a) prior expert probability of playing moving a
  - For AlphaGo, this was done via Supervised Learning ("Mimicry")
- *N(s, a)* number of times we have visited parent node
- $u(s_t, a)$  acts as a bonus value that decays with repeated visits

## AlphaGo: Simulation/Value Policy

$$V(s_L) = (1 - \lambda)v_{\theta}(s_L) + \lambda z(s_L)$$

- The point estimate of the value of a node (representing state s) is given by the convex combination, controlled by  $\lambda$ , of two terms:
  - Cost-to-go-function,  $v_{\theta}(s)$ 
    - Learned via reinforcement learning (technically regression)
  - Win/loss: The result from playing game to completion starting from state s using simulation policy z
    - This simulation policy is learned via supervised learning to "mimic" expert players.
    - The network is "small" to enable it to act quickly

## AlphaGo: Backpropagation

$$Q(s,a) = \frac{\sum_{i=1}^{n} 1_{(s,a,i)} V(s_L^i)}{\sum_{i=1}^{n} 1_{(s,a,i)}}$$

- Extra index i is to denote the i<sup>th</sup> simulation with n total simulations
- Update visit count, mean reward of simulations passing through node

Once MCTS completes, the algorithm chooses the most-taken move from the root position

# AlphaGo: Results



# Takeaway

- A\* search is an optimal, heuristic, search algorithm that works by relying on an admissible heuristic
  - Challenge: Good, admissible heuristics are hard to come by
  - →In a few lectures, we will see how reinforcement learning can help!
- MCTS is key to modern (stochastic-)state-space search
  - Search heuristic provided (UCT: Apply UCB1 at each step)
  - Caveat: Need model of the opponent
- Key difference:
  - We are moving from a deterministic world (BFS, DFS, IDS, A, A\*) vs. nondeterministic and random worlds

## Outline



- Constraint Satisfaction Problems
- Solving CSPs
- Case Study: Scheduling

## Constraint Satisfaction Problems (CSP)

Input: A CSP is a 3-tuple (i.e., triple)  $\langle V, D, C \rangle$  where:

- V is a set of variables  $V_i$
- *D* is a set of variable domains,
  - The domain of variable  $V_i$  is denoted  $D_i$
- C is the set of constraints on assignments to V
  - Each constraint  $C_j = \langle S_j, R_j \rangle$  specifies allowed variable assignments
  - $S_i$ , the constraint's scope, is a subset of variables V
  - $R_j$ , the constraint's relation, is a set of assignments to  $S_j$

Output: A full assignment to V from elements of D such that all constraints C are satisfied.

## Constraint Satisfaction Problems (CSP)

Example: "Provide one A and two B's."

•  $V = \{A, B\}$ , each with domains  $D_i = \{1, 2\}$ 

• 
$$C = \begin{cases} \langle \{A, B\}, \{\langle 1, 2 \rangle, \langle 1, 1 \rangle \} \rangle, \\ \langle \{A, B\}, \{\langle 1, 2 \rangle, \langle 2, 2 \rangle \} \rangle \end{cases}$$
 "one A" "two B's"

• Output (1,2)

## Conventions

- List scope in subscript
- Specify one constraint per scope

Example: "Provide one A and two B's."

• 
$$C = \{C_{AB}\}$$
  
 $C_{AB} = \{\langle 1,2 \rangle\}$ 

• 
$$C = \{C_A, C_B\}$$
  
 $C_A = \{\langle 1 \rangle\}$   
 $C_B = \{\langle 1 \rangle\}$ 

#### 4 Queens Problem:

 Place 4 queens on a 4x4 chessboard so that no other queen can attack another

How big is the encoding?

Variables Chessboard positions

**Domains** Queen 1-4 or blank

**Constraints** Two positions on a line (vertical, horizontal, diagonal)

cannot both be queens.



What is a better encoding?

- Assume one queen per column
- Determine what row each queen should be in



**Domains:** 
$$\{1,2,3,4\}$$

Constraints:  $Q_i \neq Q_i$ 

$$|Q_i - Q_j| \neq |i - j|$$
 "Stay off diagonals"

"On different rows

**Example:** 
$$C_{1,2} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$



What is a better encoding?

- Assume one queen per column
- Determine what row each queen should be in



**Domains:** 
$$\{1,2,3,4\}$$

Constraints: 
$$Q_i \neq Q_j$$

$$\left|Q_i - Q_j\right| \neq |i - j|$$

**Example:** 
$$C_{1,3} = ?$$



"On different rows

"Stay off diagonals"

What is a better encoding?

- Assume one queen per column
- Determine what row each queen should be in



**Domains:** 
$$\{1,2,3,4\}$$

Constraints:  $Q_i \neq Q_i$ 

$$|Q_i - Q_j| \neq |i - j|$$
 "Stay off diagonals"

"On different rows

**Example:** 
$$C_{1,3} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$



## General class of CSPs

## Finite Domain, Binary CSPs

- Each constraint relates at most two variables
- Each variable domain is finite

Binary

constraint arc

<u>Property:</u> all n-ary CSPs are reducible to binary CSPs

Unary constraint arc (prune domains)

## Depict as a Constraint Graph

- Nodes (vertices) are variables
- Arcs (edges) are binary constraints.



# Example: Graph Coloring

Pick colors for map regions without coloring adjacent regions with the same color

**Variables** regions

**Domains** allowed colors

Constraints adjacent regions must have different colors



Credit: Berniece Houston

## Outline

Constraint Satisfaction Problems



- Solving CSPs
  - Arc-consistency and propagation
  - Analysis of constraint propagation (next lecture)
  - Search student (next lecture)
- Case Study: Scheduling

## Good News / Bad News

#### Good news:

- Very general & interesting family of problems
- Problem formulation used extensively in autonomy and decisionmaking applications.

#### Bad new:

Includes NP-Hard problems

## Algorithmic Design Paradigm

### Solving CSPs involves a combination of:



#### Inference:

- Solve partially by eliminating values that cannot be part of any solution (constraint propagation)
- Make implicit constraints explicit





## Directed Arc Consistency

Idea: Eliminate values of variable domain that can <u>never satisfy</u> a specified constraint (an arc)



Definition: arc  $\langle x_i, x_j \rangle$  is arc consistent if  $\langle x_i, x_j \rangle$  and  $\langle x_j, x_i \rangle$  are directed arc consistent, i.e.  $\forall a_i \in D_i, \exists a_j \in D_j | \langle a_i, a_j \rangle \in C_{ij}$ .



## Arc Consistency

"Assignments to X and Y are valid if the value for X is less than the value for y"



## Revise: A directed arc consistency procedure

**Definition:**  $\langle x_i, x_j \rangle$  is arc consistent if  $\forall a_i \in D_i, \exists a_j \in D_j | \langle a_i, a_j \rangle \in C_{ij}$ 

Revise( $x_i, x_j$ )

**Input:** Variables  $x_i$  and  $x_j$  with domains  $D_i$  and  $D_j$  and constraint relation  $R_{ij}$ 

**Output:** Pruned  $D_i$  such that  $x_i$  is directed arc-consistent relative to  $x_j$ 

- 1. FOR each  $a_i \in D_i$
- 2. IF there is no  $a_j \in D_j$  such that  $\langle a_i, a_j \rangle \in R_{ij}$  THEN
- 3. Delete  $a_i$  from  $D_i$
- 4. ENDIF
- 5. ENDFOR

# Full Arc Consistency over all Constraints via Constraint Propagation

**Definition:**  $\langle x_i, x_j \rangle$  is arc consistent if  $\forall a_i \in D_i, \exists a_j \in D_j | \langle a_i, a_j \rangle \in C_{ij}$ 

### **Constraint Propagation:**

To achieve (directed) arc consistency over CSP:

- 1. For every arc  $C_{ij}$  in CSP, with tail domain  $D_i$ , call Revise $(x_i, x_j)$
- 2. Repeat until quiescence:
  - If an element was deleted from  $D_i$ , then repeat Step 1 //(AC-1)

# Full Arc-Consistency via AC-1

```
AC-1 (CSP)
Input: CSP = \langle X, D, C \rangle
Output: CSP', the largest arc-consistent subset of CSP

1. WHILE (domains are being changed)
2. FOR every C_{ij} \in C
3. Revise(x_i, x_j)
4. Revise(x_j, x_i)
```

**ENDFOR** 

6. ENDWHILE

# Full Arc Consistency over all Constraints via Constraint Propagation

**Definition:**  $\langle x_i, x_j \rangle$  is arc consistent if  $\forall a_i \in D_i, \exists a_j \in D_j | \langle a_i, a_j \rangle \in C_{ij}$ 

### **Constraint Propagation:**

To achieve (directed) arc consistency over CSP:

- 1. For every arc  $C_{ij}$  in CSP, with tail domain  $D_i$ , call Revise $(x_i, x_j)$
- 2. Repeat until quiescence:
  - If an element was deleted from  $D_i$ , then repeat Step 1 //(AC-1)

## Mid-lecture Break



# Full Arc Consistency over all Constraints via Constraint Propagation

**Definition:**  $\langle x_i, x_j \rangle$  is arc consistent if  $\forall a_i \in D_i, \exists a_j \in D_j | \langle a_i, a_j \rangle \in C_{ij}$ 

### **Constraint Propagation:**

To achieve (directed) arc consistency over CSP:

- 1. For every arc  $C_{ij}$  in CSP, with tail domain  $D_i$ , call Revise $(x_i, x_j)$
- 2. Repeat until quiescence:
  - If an element was deleted from  $D_i$ , then repeat Step 1 //(AC-1)
  - OR call Revise on each arc with head  $D_i$  //(AC-3) (use FIFO Q, remove duplicates)

# Full Arc-Consistency via AC-3 (Waltz CP)

## AC-3 (CSP)

```
Input: CSP = \langle X, D, C \rangle
```

Output: CSP', the largest arc-consistent subset of CSP

- 1. FOR every  $C_{ij} \in C$
- 2.  $Q \leftarrow Q \cup \{\langle x_i, x_j \rangle, \langle x_j, x_i \rangle\}$
- 3. ENDFOR
- 4. While  $Q \neq \emptyset$
- 5. Select and delete arc  $\langle x_i, x_i \rangle$  from Q
- 6. Revise( $x_i, x_j$ )
- 7. IF Revise( $x_i, x_j$ ) caused a change to  $D_i$
- 8.  $Q \leftarrow Q \cup \{\langle x_k, x_i \rangle | k \neq i, k \neq j\}$
- 9. ENDIF
- 10. ENDWHILE

## Constraint Propagation Example AC-3

## **Graph Coloring**

(initial domains)



Each undirected arc denotes two directed arcs

**Graph Coloring** 

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
|              |               |
|              |               |
|              |               |
|              |               |
|              |               |
|              |               |



#### Arcs to examine

$$a_{1-2}$$
,  $a_{1-3}$ ,  $a_{2-3}$ 

- Introduce queue of arcs to be examined
- Start by adding all arcs to the queue

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{1	o 2}$  |               |
|              |               |
|              |               |
|              |               |
|              |               |
|              |               |



#### Arcs to examine

$$a_{2 o 1}$$
 ,  $a_{1-3}$  ,  $a_{2-3}$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{1 	o 2}$ | none          |
|              |               |
|              |               |
|              |               |
|              |               |
|              |               |



#### Arcs to examine

$$a_{2\to 1}$$
,  $a_{1-3}$ ,  $a_{2-3}$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{1	o2}$   | none          |
| $a_{2 	o 1}$ |               |
|              |               |
|              |               |
|              |               |
|              |               |



#### Arcs to examine

$$a_{1-3}$$
 ,  $a_{2-3}$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{1	o 2}$  | none          |
| $a_{2 	o 1}$ | none          |
|              |               |
|              |               |
|              |               |
|              |               |



#### Arcs to examine

$$a_{1-3}$$
 ,  $a_{2-3}$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{1-2}$    | none          |
|              |               |
|              |               |
|              |               |
|              |               |



#### Arcs to examine

$$a_{1-3}$$
,  $a_{2-3}$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{1-2}$    | none          |
| $a_{1	o 3}$  |               |
|              |               |
|              |               |
|              |               |



#### Arcs to examine

$$a_{3
ightarrow1}$$
 ,  $a_{2-3}$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{2-1}$    | none          |
| $a_{1	o 3}$  | $V_1(G)$      |
|              |               |
|              |               |
|              |               |



#### Arcs to examine

$$a_{3\rightarrow1}$$
 ,  $a_{2-3}$  ,  $a_{2\rightarrow1}$  ,  $a_{3\rightarrow1}$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{2-1}$    | none          |
| $a_{1	o 3}$  | $V_1(G)$      |
|              |               |
|              |               |
|              |               |



#### Arcs to examine

 $(a_{3\to 1})a_{2-3}, a_{2\to 1}(a_{3\to 1})$ 

### **Graph Coloring**

(initial domains)



| Arc examined        | Value Deleted | $V_1$                                                                          |
|---------------------|---------------|--------------------------------------------------------------------------------|
| $a_{2-1}$           | none          | $V_2$                                                                          |
| $a_{1\rightarrow3}$ | $V_1(G)$      | R,G                                                                            |
|                     |               |                                                                                |
|                     |               | Arcs to examine                                                                |
|                     |               | $a_{3\rightarrow 1}$ , $a_{2-3}$ , $a_{2\rightarrow 1}$ , $a_{3\rightarrow 1}$ |

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{2-1}$    | none          |
| $a_{1	o 3}$  | $V_1(G)$      |
| $a_{3	o 1}$  |               |
|              |               |
|              |               |



#### Arcs to examine

 $a_{2-3}$  ,  $a_{2 o 1}$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{2-1}$    | none          |
| $a_{1	o 3}$  | $V_1(G)$      |
| $a_{3	o 1}$  | none          |
|              |               |
|              |               |



#### Arcs to examine

 $a_{2-3}$  ,  $a_{2 o 1}$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{2-1}$    | none          |
| $a_{1-3}$    | $V_1(G)$      |
|              |               |
|              |               |
|              |               |



#### Arcs to examine

 $a_{2-3}$  ,  $a_{2 o 1}$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{2-1}$    | none          |
| $a_{1-3}$    | $V_1(G)$      |
| $a_{2	o 3}$  |               |
|              |               |
|              |               |



#### Arcs to examine

 $a_{\mathbf{3} o \mathbf{2}}$  ,  $a_{\mathbf{2} o \mathbf{1}}$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{2-1}$    | none          |
| $a_{1-3}$    | $V_1(G)$      |
| $a_{2	o 3}$  |               |
|              |               |
|              |               |



Arcs to examine

 $a_{3
ightarrow2}$  ,  $a_{2
ightarrow1}$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{2-1}$    | none          |
| $a_{1-3}$    | $V_1(G)$      |
| $a_{2	o 3}$  | $V_2(G)$      |
|              |               |
|              |               |



#### Arcs to examine

 $oldsymbol{a_{3 
ightarrow 2}}$  ,  $oldsymbol{a_{2 
ightarrow 1}}$  ,  $oldsymbol{a_{1 
ightarrow 2}}$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{2-1}$    | none          |
| $a_{1-3}$    | $V_1(G)$      |
| $a_{2	o 3}$  | $V_2(G)$      |
| $a_{3	o2}$   |               |
|              |               |



#### Arcs to examine

 $a_{2
ightarrow1}$  ,  $a_{1
ightarrow2}$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{2-1}$    | none          |
| $a_{1-3}$    | $V_1(G)$      |
| $a_{2	o 3}$  | $V_2(G)$      |
| $a_{3	o2}$   | none          |
|              |               |



#### Arcs to examine

 $a_{2
ightarrow1}$  ,  $a_{1
ightarrow2}$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{2-1}$    | none          |
| $a_{1-3}$    | $V_1(G)$      |
| $a_{2-3}$    | $V_2(G)$      |
|              |               |
|              |               |



#### Arcs to examine

 $a_{2
ightarrow1}$  ,  $a_{1
ightarrow2}$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{2-1}$    | none          |
| $a_{1-3}$    | $V_1(G)$      |
| $a_{2-3}$    | $V_2(G)$      |
| $a_{2 	o 1}$ |               |
|              |               |



Arcs to examine

 $a_{1\rightarrow 2}$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{2-1}$    | none          |
| $a_{1-3}$    | $V_1(G)$      |
| $a_{2-3}$    | $V_2(G)$      |
| $a_{2 	o 1}$ | none          |
|              |               |



Arcs to examine

 $a_{1 o 2}$ 

**Graph Coloring** 

(initial domains)



| Arc examined | Value Deleted | $V_1$ $R,B$     |
|--------------|---------------|-----------------|
| $a_{2-1}$    | none          |                 |
| $a_{1-3}$    | $V_1(G)$      | $V_2$ G $V_3$   |
| $a_{2-3}$    | $V_2(G)$      |                 |
| $a_{2	o 1}$  | none          | Arcs to examine |
| $a_{1	o 2}$  |               |                 |

### **Graph Coloring**

(initial domains)



| Arc examined         | Value Deleted |
|----------------------|---------------|
| $a_{2-1}$            | none          |
| $a_{1-3}$            | $V_1(G)$      |
| $a_{2-3}$            | $V_2(G)$      |
| $a_{2 	o 1}$         | none          |
| $a_{1\rightarrow 2}$ | $V_1(R)$      |



Arcs to examine

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{2-1}$    | none          |
| $a_{1-3}$    | $V_1(G)$      |
| $a_{2-3}$    | $V_2(G)$      |
| $a_{2 	o 1}$ | none          |
| $a_{1	o2}$   | $V_1(R)$      |



#### Arcs to examine

 $a_{2
ightarrow1}$  ,  $a_{3
ightarrow1}$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{2-1}$    | none          |
| $a_{1-3}$    | $V_1(G)$      |
| $a_{2-3}$    | $V_2(G)$      |
| $a_{2-1}$    | $V_1(R)$      |
| $a_{2 	o 1}$ |               |



Arcs to examine

 $a_{3 o 1}$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted | $V_1$             |
|--------------|---------------|-------------------|
| $a_{2-1}$    | none          | $V_2$             |
| $a_{1-3}$    | $V_1(G)$      | $R \rightarrow G$ |
| $a_{2-3}$    | $V_2(G)$      |                   |
| $a_{2-1}$    | $V_1(R)$      | Arcs to examine   |
| $a_{2	o 1}$  | none          |                   |
| $a_{3	o 1}$  |               |                   |

IF An element of a variable's domain is removed THEN Add all arcs to that variable to the examination queue

 $V_3$ 

### **Graph Coloring**

(initial domains)



| Arc examined | Value Deleted |
|--------------|---------------|
| $a_{2-1}$    | none          |
| $a_{1-3}$    | $V_1(G)$      |
| $a_{2-3}$    | $V_2(G)$      |
| $a_{2-1}$    | $V_1(R)$      |
| $a_{2	o 1}$  | none          |
| $a_{3	o 1}$  | none          |



Arcs to examine

IF examination of queue is empty THEN arc (pairwise) consistent

# To solve CSPs, we combine arc consistency and search



- 1. Arc consistency (constraint propagation),
  - Eliminates values that are shown locally to not be a part of any solution

#### 2. Search

- Explores consequences of committing to particular assignments
- Methods incorporating search:
  - Standard Search
  - Backtrack Search (BT)
  - BT with Forward Checking (FC)
  - Dynamic Variable Ordering (DVO)
  - Iterative Repair
  - Back jumping (BJ)



### Outline

- Constraint Satisfaction Problems
- Solving CSPs
  - Arc-consistency and propagation
  - Analysis of constraint propagation (next lecture)
  - Search student (next lecture)



Case Study: Scheduling

## Real World Example: Scheduling as a CSP

#### Choose time of activities:

- Shifts of nurses in the Labor & Delivery Ward
- Classes taken for a degree
- Tennis matches for Wimbledon

**Variables** activities

**Domains** possible start times (or "chunks" of time)

Constraints 1) Activities that use the same resource cannot overlap in time

2) Prerequisites are satisfied (round of 128 before 64)

## Case Study: Course Scheduling

#### Given:

- 32 required courses
- 8 terms (Fall 2018, Spring 2019, ....)

Find: a feasible schedule

#### **Constraints:**

- Pre-requisites are satisfied
- Courses offered only during certain times
- Limited number of courses can be taken per term (e.g., 4) and
- Avoid time conflicts between courses

Note: traditional CSPs are not for expressing (soft) <u>preferences</u> e.g., minimize difficulty, balance subject areas, etc.

But see recent research on valued CSPs!

## Alternate formulations for variables, domains

#### **Variables**

#### A. 1 variable per Term

(Fall '18), (Spring '19), ...

#### A. 1 variable per Term-Slot

Subdivide each term into 4 course slots (Fall '18, 1), (Fall '18, 2), (Fall '18, 4)

#### A. 1 variable per Course

#### **Domains**

All legal combinations of 4 courses, all offered during that term

All courses offered during that term.

#### Terms or term-slots

Term-slots make it easier to express the constraint limiting the number of courses per term

## **Encoding Constraints**

Variables = Courses, Domains = term-slots **Assume:** 

**Constraints:** 

Pre-requisite →



For pairs of courses that must be ordered

Courses offered only during certain terms  $\rightarrow$ 

Filter domain

Limit # courses →



Use term-slots once

Avoid time conflicts  $\rightarrow$ 



For course pairs offered at same time or overlapping times

### What you should be able to do...

Provide the definition of a CSP as a 3-tuple

 Manually follow (i.e., by hand) and implement (i.e., write a computer program to perform) AC-1 and AC-3

Model real-world problems as a CSP