Storage Systems

INF 551 Wensheng Wu

Storage hierarchy

Primary (Cache, Memory)

Secondary (Hard disks, SSD)

Tertiary (Tape, Optical Disk) Cost, Energy Consumption

Access times

LEVEL	ACCESS TIME	TYPICAL SIZE
Registers	"instantaneous"	under 1KB
Level 1 Cache	1-3 ns	64KB per core
Level 2 Cache	3-10 ns	256KB per core
Level 3 Cache	10-20 ns	2-20 MB per chip
Main Memory	30-60 ns	4-32 GB per system
Hard Disk	3,000,000-10,000,000 ns	over 1TB

Ssd: 25,000 ns

Resource: https://arstechnica.com/information-technology/2012/06/inside-the-ssd-revolution-how-solid-state-disks-really-work/

CRUD

Basic functions of a storage device

• CRUD:

- (C)reate/write
- (R)ead
- (U)pdate/overwrite
- (D)elete

Characterizing a storage device

- Capacity (bytes)
 - How much data it can hold
- Cost (\$\$\$)
 - Price per byte of storage
- Bandwidth (bytes/sec)
 - Number of bytes that can be transferred per second
 - Note that read and write bandwidth may be different
- Latency (secs)
 - Time between initiating a request and an action
 - In the case of storage, action is to deliver 1st Byte

Time to complete an operation

- Time to complete an operation depends on both bandwidth and latency
 - CompletionTime = Latency + Size/Bandwidth
- The time of a workload will depend on
 - Technology, e.g., hard drive/ssd
 - Operation type, e.g., read/write
 - Number of operations in the workload
 - Access pattern (random vs. sequential)

Access pattern

- Sequential
 - Data to be accessed are located next to each other or sequentially on the device

- Random
 - Access data located randomly on storage device

Magnetic recording

- Write head
 - Applies electrical current to write head
 - Changes direction of magnetic field under head

Reading

Read head senses direction of magnetic field

Road map

Tapes

Hard disk

Solid state drive

Linear tape

 Data recorded on parallel tracks that span the length of the tape

Tapes

- Current technology is LTO
 - Linear Tape-Open (an open standard)
- Characteristics
 - Capacity up to 6.25 TB per tape (LTO-7)
 - Drive cost ~ \$2500
 - Tape cost ~ \$45 for 2.5TB tape
- Tape access time (~ minute)
 - Time to mount the tape
 - Time to wind the tape to correct position
- Data transmission rates ~ 250MB/sec

\$200 300MB/s LTO-7

Performance characteristics

- High latency/low cost makes tape most appropriate for "archival" storage
 - Low frequency of reads
 - Very large data objects

- Random access will be slow due to latency
 - Sequential reads will be fast

Linear tape file system

- Two partitions on tape
 - First contains metadata and directories. Tape reader can find and load this very quickly
 - Second contains blocks for data

- Directory structure coded in XML
 - Self describing file format...

Tape Cartridge http://www.

Raw Capacity in GB

A tape library

Inside a robotic tape library

https://www.youtube.com/watch?v=nYfTtvpQ
 778

Road map

Tapes

Hard disk

Solid state drive

Hard disk drives

- Perhaps the most pervasive form of storage
- Basic Idea:
 - One or more spinning magnetic platters
 - Typically two surfaces per platter
 - Disk arm positions over the radial position (tracks) where data are stored
 - It swings across tracks (but do not extend/shrink)
 - Data is read/written by a read/write head as platter spins

WESTERN
DIGITAL
WD30EZRS
Caviar Green 3TB
64MB cache SATA
3.0Gb/s 3.5
internal hard
drive (Bare Drive)

About \$120 at Amazon

Internal of hard disk

Disk arm and platter

Disk arm & head close-up

Disk head close-ups

Disk head movement

- Hard disk head movement while copying files between two folders (e.g., partition c to d)
 - https://www.youtube.com/watch?v=BIB49F6ExkQ

2GB Storage in 1980s (\$250,000!)

Physical characteristics

- 3.5" (diameter, common in desktops)
- 2.5" (common in laptops)
- Rotational speed
 - -4,800 RPM
 - 5,400 RPM
 - 7,200 RPM
 - 10,000 RPM
- Between 5-7 platters
- Current capacity up to 10TB (Western Digital)

Disk organization

Each platter consists of a number of tracks

- Each track is divided into N fixed size sectors
 - Typical sector size is 512 bytes (old) or 4KB (new)
 - Sectors can be numbered from 0 to N-1
 - Entire sector is written "atomically"
 - All or nothing

CHS (cylinder-head-sector)

Early way to address a sector

Now LBA (<u>Logical Block Addressing</u>) more

common

https://en.wikipedia.org/wiki/Cylinder-head-sector

Example

• # cylinders: 256

heads: 16 (i.e., 8 platters, 2 heads/platter)

• # sectors/track: 64

Sector size = 4KB

A simple disk drive (one track only)

Rotational latency

- Waiting for the right sector to rotate under the head
 - On average: about ½ of time of a full rotation
 - Worst case?
 - Best case?

Rotation time

Assume 10,000 RPM (rotations per minute)

$$\frac{60000 \, ms}{1000 \, rotations} = \frac{6 \, ms}{rotation}$$

Multiple tracks: add seek times

Average seek time is about 1/3 max seek time (see reading: Chapter 37, page 9 for more details)

Transfer time

Assume that we transfer 512KB

Assume 128 MB/sec transmission bandwidth

• Transfer time:

512KB/128MB * 1000ms = 4ms

Completion time

- $T = T_{seek} + T_{rotation} + T_{transfer}$
 - T_{seek}: Time to get the disk head on right track
 - T_{rotation}: Time to wait for the right sector to rotate under the head
 - T_{transfer}: Time to actually transfer the data

Example

- Capacity 4TB
- # platters: 4
- # heads: 8
- Bytes per sector: 4096
- Transmission bandwidth: 100MB/sec
- Maximum seek time: 12ms
- RPM: 10,000

Time to transfer a file

- The file occupies 100 sectors (sequentially)
- Avg. seek time =?
- Avg. rotational latency =?
- Transfer time = ?

Sector vs. block

Block has 1 or more sectors

Disk typically transfers one block at a time

- We will assume one block = one sector
 - Unless stated otherwise

Sequential operations

- May assume all sectors involved are on same track
 - We may need to seek to the right track
 - And rotate to the first sector

But no rotation/seeking needed afterward

Actual bandwidth

- Consider a workload w
 - E.g., w = sequential access of 100 blocks of data
 - Denote size (# of bytes) of data in w as |w|
 - E.g., w = 400KB (100 blocks, 4KB/block)

Suppose completion time for w = t

Actual bandwidth (with respect to w) = |w|/t

Sequential vs. random

- Consider disk with 7ms avg seek, 10,000 RPM platter speed and 50 MB/sec transfer rate, 4KB/block
- Sequential access of 10 MB
 - Completion time = 7 + 3 + 10/50*1000 = 210ms
 - Actual bandwidth = 10MB/210ms = 47.62 MB/s
- Random access of 10 MB (2,500 blocks)
 - Completion time = 2500 * (7 + 3 + 4/50) = 25.2s
 - Actual bandwidth = 10MB / 25.2s = .397 MB/s

Road map

Tapes

Hard disk

Solid state drive

Solid State Drive

Memory chips

Solid State Drives

- All electronic, made from flash memory
- Lower energy consumption than hard drive
- Significantly more expensive, less capacity
 - About a factor of 5-10 more expensive
- Limited lifetime, can only write a limited number of times.
 - E.g., 100K program/write cycles for SLC (single-level cell) memory

SSD vs. Hard Drive (price)

MLC (multi-level cell)

Samsung 850 EVO 1TB 2.5-Inch SATA III Internal SSD (MZ-75E1T0B/AM)

by Samsung

\$309⁹⁹ *Prime*

Get it by Thursday, Jan 19

More Buying Choices \$309.99 new (80 offers) \$273.37 used (6 offers)

Hard Disk Size: 1 TB

Hardware Interface: sata 3 0 gb

Seagate 1TB Barracuda SATA 6GB/s 128MB Cache 2.5-Inch 7mm Internal Bare/OEM Hard Drive (ST1000LM048)

by Seagate

\$59²² \$59.99 ***Prime** | FREE Same-Day

Get it by TODAY, Jan 17

More Buying Choices \$58.24 new (27 offers)

Product Features

The thinnest and highest-capacity 2.5-Inch Hard Drive available

Electronics: See all 7,236 items

Solid State Drives

- Same form-factor and control interface as magnetic disks
- Significantly better latency
 - No seek or rotational delay
- Consistent bandwidth for sequential & random:
 - Benefits from improved latency
 - However, writes take significantly longer then reads

Writing to SSD is complicated

- Can not overwrite a page
 - Need to erase its block (at a certain point) instead

SSD controllers take care of all these details

SSD

- Contains a number of flash memory chips
 - Chip -> dies -> planes -> blocks -> pages (rows) -> cells
 - Cells are made of floating-gate transistors

- Page is the smallest unit of data transfer between SSD and main memory
 - Much like a block in hard disk

Die Layout

Dies, planes, block, and pages

- Typically, a chip may have 1, 2, or 4 dies
- A die may have 1 or 2 planes
- A plane has a number of blocks
 - Block is the smallest unit that can be erased
- A block has a number of pages
 - Page is the smallest unit that can be read, programmed/written

Typical page and block sizes

Common page sizes: 2K, 4K, 8K, and 16K

A block typically has 128 to 256 pages

=> Block size: 256KB to 4MB

Normal transistor (MOSFET)

- When voltage applied to gate terminal
 - semi-conducting region (purple) becomes conductive

Floating gate transistor

- Contain an additional gate: floating gate
 - Floating, since isolated by oxide layer
 - (thus not connected to other components)

Floating gate transistor

 By applying high positive/negative voltage to control gate, electrons can be attracted to or repelled from floating gate

Floating gate transistor

• State = 1, if no electrons in the floating gate

- State = 0, if there are electrons (negative charges)
 - Electrons stuck there even when power is off
 - So state is retained

Read operations

 Electrons on the floating gate affect the threshold voltage for the floating gate transistor to conduct

 Higher voltage needed when gate has electrons

Read operations

Read operations

Apply V_{int} (intermediate voltage)

If the current is detected, gate has no electrons

$$=>$$
 bit $=$ 1

If no current, gate must have electrons

$$=>$$
 bit $=$ 0

NAND flash layout

- Transistors are strung together in a series
 - Similar to the transistors in an NAND gate

Output F = 0 only when both a & b = 1I.e., F will be grounded only when both a and b conduct

NAND reading

NOR flash layout

- Each transistor is directly connected to bit line (also ground)
 - Similar to transistors in a NOR gate (to output F)

F will be grounded as long as one of a & b conducts

NOR reading

Apply V_{OFF} to all others so that they do NOT conduct, charged or not.

NAND vs NOR

- NOR has individual bit lines and ground connections
 - circuit more complex

- NAND does not have individual bit lines, nor separate ground connections
 - → save space, larger capacity

Write and erase source

- Write: 1 => 0
 - Apply high POSITVE voltage (>> voltage for read)
 to the control gate
 - Attract electrons from channel to floating gate (through quantum tunneling)
- Erase: 0 => 1
 - Need to apply much higher NEGATIVE voltage
 - Get rid of electrons from floating gate
 - May stress surrounding cells
 - So dangerous to do on individual pages

Read/write units

- Page is the smallest unit for read and write (write is also called program, 1->0)
- Block is the smallest unit for erase (0->1)
 - i.e., make cells "empty" (i.e., no electrons)

Operation	Area
Read	Page
Program (Write)	Page
Erase	Block

Example

Latencies: read, write, and erase

	SLC	MLC	TLC	HDD	RAM	
P/E cycles	100k	10k	5k	*	*	
Bits per cell	1	2	3	*	*	
Seek latency (µs)	*	*	*	9000	*	
Read latency (µs)	25	50	100	2000-7000	0.04-0.1	
Write latency (µs)	250	900	1500	2000-7000	0.04-0.1	
Erase latency (μs)	1500	3000	5000	*	*	
Notes	* metric is not applicable for that type of memory					
Sources	Sources P/E cycles [20] SLC/MLC latencies [1] TLC latencies [23] Hard disk drive latencies [18, 19, 25] RAM latencies [30, 52] L1 and L2 cache latencies [52]					

P/E cycle

- P: program/write; E: erase
- Every write & erase damages oxide layer surrounding the floating-gate to some extent

- P/E cycle:
 - Data are written to cells (P): cell value from 1 -> 0
 - Then erased (E): 0 -> 1

Multi-level cell (MLC)

http://www.cactus-tech.com/resources/blog/details/solidstate-drive-primer-2-slc-mlc-and-tlc-nand-flash

MLC reading

• 2 bits, 3 intermediate voltages

SLC compared with MLC

• SLC:

- Less complex
- Faster
- More reliable
- Less storage
- More costly

Read more

Solid-state revolution: in-depth on how SSDs really work

- How do SSDs work?
 - http://www.extremetech.com/extreme/210492extremetech-explains-how-do-ssds-work

- How Flash Memory Works
 - https://www.youtube.com/watch?v=msi5GDz9JIw
- Floating Gate Basics
 - http://www.cse.scu.edu/~tschwarz/coen180/LN/fl ash.html
- Friend of Flash
 - http://www.nnc3.com/mags/LM10/Magazine/Arc hive/2008/86/040-041 logfs/article.html

- Understanding Flash: Floating Gates and Wear
 - https://flashdba.com/2015/01/09/understandingflash-floating-gates-and-wear/

- From Transistors to Functions
 - http://www.cs.bu.edu/~best/courses/modules/Tr ansistors2Gates/

- Solid State Drive Primer
 - https://www.cactustech.com/resources/blog/details/solid-state-driveprimer-1-the-basic-nand-flash-cell

- How Does a Transistor Work?
 - https://www.youtube.com/watch?v=IcrBqCFLHIY&feature=youtu.be

- How Flash Memory Works
 - https://www.youtube.com/watch?v=s7JLXs5es7I