

BODIPY fluorophore, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene

Alexa Fluor ® 488 carboxylic acid, succinimidyl ester dye structure

General structure of an optical labeling molecule comprising a BODIPY dye moiety

A = Ester activator, NHCH2CH2SH, or other linker

R1 to R9 = to be defined

R1, 1 to p, 1 to m and R2, 1 to p, 1 to m = to be defined

The R groups must be combined to have an equal number of non-titratable positive and negative groups to produce zwitterionic pairs

Ar = Aryl

r, n, m, p, q = 0, 1, 2, 3...

For each value of p, there are p values of m. These p values can be equal or different

General structure of an optical labeling molecule comprising a BODIPY dye moiety

A = Ester activator, NHCH2CH2SH, or other linker

CG = Cleavable group

R1 to R9 = to be defined

R1, 1 to p, 1 to m and R2, 1 to p, 1 to m = to be defined

The R groups must be combined to have an equal number of non-titratable positive and negative groups to produce zwitterionic pairs

Ar = Aryl

r, n, m, p, q = 0, 1, 2, 3...

For each value of p, there are p values of m. These p values can be equal or different

General structure of an optical labeling molecule comprising a BODIPY dye moiety with a pnitro anisole group

A = Ester activator, NHCH2CH2SH, or other linker

R1 to R9 = to be defined

R1, 1 to p, 1 to m and R2, 1 to p, 1 to m = to be defined
The R groups must be combined to have an equal number of non-titratable positive and negative groups to produce zwitterionic pairs

Ar = Aryl

r, n, m, p, q = 0, 1, 2, 3...For each value of p, there are p values of m. These p values can be equal or different

$$\Theta_{O_3}$$
S
 OCH_2
 O

General structure of an optical labeling molecule comprising a Cascade Blue dye moiety

n, m = 1, 2, 3...

R1, 1 to n, 1 to m and R2, 1 to n, 1 to m = to be defined

Three non-titratable cationic groups must be included in the R groups

A = nucleophilic attack activator

For each value of n, there are n values of m. These n values can be equal or different

$$\Theta_{O_3S}$$
 OCH₂ C $R^{1, 1 \text{ to n, 1 to m}}$ CG $R^{2, 1 \text{ to n, 1 to m}}$ CG $R^{2, 1 \text{ to n, 1 to m}}$ $R^{2, 1 \text{ to n, 1 to m}}$ $R^{2, 1 \text{ to n, 1 to m}}$ $R^{2, 1 \text{ to n, 1 to m}}$

General structure of an optical labeling molecule comprising a Cascade Blue dye moiety

n, m = 1, 2, 3...

R1, 1 to n, 1 to m and R2, 1 to n, 1 to m = to be defined

Three non-titratable cationic groups must be included in the R groups

CG = cleavable group

A = nucleophilic attack activator

For each value of p, there are p values of m. These p values can be equal or different

A = Ester activator or NHCH2CH2SH R1 to R5 = to be defined Ar = Aryl n, q, r = 0, 1, 2, 3... m, p = 1, 2, 3...

General structure of an optical labeling molecule that can be used to label phosphorylation sites on proteins after beta-elimination of the phosphates from serine or threonine residues.

FIGURE 8A

FIGURE 8B

FIGURE 9A

FIGURE 9B

FIGURE 10B

General structure of an optical labeling molecule wherein ZD is the zwitterionic dye moiety, T is the titratable group moiety, and A is the functional linker.

General structures of an optical labeling molecule wherein ZD is the zwitterionic dye moiety, T is the titratable group moiety, C is the cleavable moiety and A is the functional linker.

General structures of an optical labeling molecule wherein ZD is the zwitterionic dye moiety, T is the titratable group moiety, C is the cleavable moiety, I is the stable isotope moeity and A is the functional linker.

Gel showing the detection sensitivity obtained by prelabeling a set of standard proteins in SDS using a BODIPY dye from Molecular Probes

2D electrophoresis gel of separation of the proteins in the pH range 3-10 from the aqueous soluble protein extract *Sulfolbus solfataricus* P2 strain.