ACM 常用算法模板

目录

1	数据	· 结构 · · · · · · · · · · · · · · · · · ·
	1.1	并查集
	1.2	树状数组
		1.2.1 一维
		1.2.2 二维
		1.2.3 三维
	1.3	线段树
	1.4	普通平衡树
		1.4.1 树状数组实现
		1.4.2 线段树实现
		1.4.3 集合平衡树
	1.5	可持久化线段树
	1.6	st 表
2	图论	10
	2.1	最短路
		2.1.1 dijkstra
	2.2	树上问题 1e
		2.2.1 最近公公祖先
		2.2.2 树链剖分
	2.3	强连通分量
	2.4	拓扑排序 1
3	字符	
	3.1	kmp
	3.2	哈希
	3.3	manacher
4	数学	<u>.</u>
-	4.1	
	4.2	线性代数
	7.2	4.2.1 向量公约数
	4.3	筛法
	4.4	^別 位 · · · · · · · · · · · · · · · · · · ·
	4.4	pollard rho
		组合数
	4.6	
	4 7	
	4.7	数论分块 2
	4.8	积性函数
		4.8.1 定义
		4.8.2 例子
	4.9	狄利克雷卷积
		4.9.1 性质
		4.9.2 例子

	4.10	欧拉函数 30)
	4.11	莫比乌斯反演	Э
		4.11.1 莫比乌斯函数性质	Э
		4.11.2 莫比乌斯变换/反演	Э
	4.12	杜教筛	Э
		4.12.1 示例	1
	4.13	多项式	1
	4.14	盒子与球	3
		4.14.1 球同, 盒同, 可空	7
		4.14.2 球不同, 盒同, 可空	7
		4.14.3 球同, 盒不同, 可空	3
		4.14.4 球同, 盒不同, 不可空	3
		4.14.5 球不同, 盒不同, 可空	3
		4.14.6 球不同, 盒不同, 不可空	3
	4.15	线性基	3
		4.15.1 环、奇环、偶环	1
		4.15.2 区间操作 + 线性基	1
		4.15.3 线性基与线性子空间的双射关系	2
		4.15.4 线性基下的最大最小运算 42	2
	4.16	矩阵快速幂	3
5	计算		
		整数	
	5.2	浮点数	
	5.3	扫描线	
	5.4	与原点形成的直线扫描	3
6	杂项	59	9
	6.1	快读	9
	6.2	高精度	9
	6.3	离散化	1
	6.4	模运算	1
	6.5	分数	2
	6.6	表达式求值	2
	6.7	日期	4
	6.8	builtin 函数	4
	6.9	对拍	5
	6.10	编译常用选项	5
		开栈	5
		clang-format	_

4 1 数据结构

1 数据结构

1.1 并查集

```
1
  struct dsu {
2
      int n;
3
      vector<int> fa, sz;
 4
      dsu(int _n) : n(_n), fa(n + 1), sz(n + 1, 1) { iota(fa.begin(), fa.end(), 0); }
5
       int find(int x) { return x == fa[x] ? x : fa[x] = find(fa[x]); }
6
      bool merge(int x, int y) {
7
           int fax = find(x), fay = find(y);
8
           if (fax == fay) return 0;
9
           sz[fay] += sz[fax];
10
           fa[fax] = fay;
11
           return 1;
12
13
      int size(int x) { return sz[find(x)]; }
14 };
```

1.2 树状数组

1.2.1 一维

```
1
  template <class T>
 2
   struct fenwick {
 3
       int n;
 4
       vector<T> t;
 5
       fenwick(int _n) : n(_n), t(n + 1) {}
 6
       T query(int 1, int r) {
 7
           auto query = [&](int pos) {
 8
                T res = 0;
 9
                while (pos) {
10
                    res += t[pos];
                    pos -= lowbit(pos);
11
12
                }
13
                return res;
14
           };
15
           return query(r) - query(l - 1);
16
       }
17
       void add(int pos, T num) {
18
           while (pos <= n) {</pre>
19
                t[pos] += num;
                pos += lowbit(pos);
20
21
           }
22
       }
23 };
```

1.2.2 二维

```
1 template <class T>
```

1.2 树状数组 5

```
struct Fenwick_tree_2 {
3
       Fenwick_tree_2(int n, int m) : n(n), m(m), tree(n + 1, vector<T>(m + 1)) {}
 4
       T query(int 11, int r1, int 12, int r2) {
5
           auto query = [&](int 1, int r) {
6
               T res = 0;
7
               for (int i = 1; i; i -= lowbit(i))
8
                   for (int j = r; j; j -= lowbit(j)) res += tree[i][j];
9
               return res;
10
           return query(12, r2) - query(12, r1 - 1) - query(11 - 1, r2) + query(11 - 1, r1 -
11
                1);
12
13
       void update(int x, int y, T num) {
           for (int i = x; i <= n; i += lowbit(i))</pre>
14
15
               for (int j = y; j <= m; j += lowbit(j)) tree[i][j] += num;</pre>
16
17
  private:
18
       int n, m;
19
       vector<vector<T>> tree;
20|};
```

1.2.3 三维

```
1
  template <class T>
  struct Fenwick_tree_3 {
3
       Fenwick_tree_3(int n, int m, int k)
 4
           : n(n), m(m), k(k), tree(n + 1, vector<vector<T>>(m + 1, vector<T>(k + 1))) {}
5
       T query(int a, int b, int c, int d, int e, int f) {
6
           auto query = [&](int x, int y, int z) {
7
               T res = 0;
8
               for (int i = x; i; i -= lowbit(i))
9
                   for (int j = y; j; j -= lowbit(j))
10
                       for (int p = z; p; p -= lowbit(p)) res += tree[i][j][p];
11
               return res;
12
           };
13
           T res = query(d, e, f);
           res -= query(a - 1, e, f) + query(d, b - 1, f) + query(d, e, c - 1);
14
           res += query(a - 1, b - 1, f) + query(a - 1, e, c - 1) + query(d, b - 1, c - 1);
15
16
           res -= query(a - 1, b - 1, c - 1);
17
           return res;
18
19
       void update(int x, int y, int z, T num) {
20
           for (int i = x; i <= n; i += lowbit(i))</pre>
21
               for (int j = y; j <= m; j += lowbit(j))</pre>
22
                   for (int p = z; p \leftarrow k; p += lowbit(p)) tree[i][j][p] += num;
23
24
  private:
25
       int n, m, k;
26
       vector<vector<T>>> tree;
27
  };
```

6 1 数据结构

1.3 线段树

```
template <class Data, class Num>
 1
 2
   struct Segment_Tree {
3
       inline void update(int 1, int r, Num x) { update(1, 1, r, x); }
       inline Data query(int 1, int r) { return query(1, 1, r); }
 4
5
       Segment_Tree(vector<Data>& a) {
 6
           n = a.size();
7
           tree.assign(n * 4 + 1, {});
8
           build(a, 1, 1, n);
9
       }
   private:
10
11
       int n;
12
       struct Tree {
13
           int 1, r;
14
           Data data;
15
       };
16
       vector<Tree> tree;
       inline void pushup(int pos) { tree[pos].data = tree[pos << 1].data + tree[pos << 1 |</pre>
17
           1].data; }
       inline void pushdown(int pos) {
18
19
           tree[pos << 1].data = tree[pos << 1].data + tree[pos].data.lazytag;</pre>
20
           tree[pos << 1 | 1].data = tree[pos << 1 | 1].data + tree[pos].data.lazytag;</pre>
21
           tree[pos].data.lazytag = Num::zero();
22
       }
       void build(vector<Data>& a, int pos, int 1, int r) {
23
24
           tree[pos].1 = 1;
25
           tree[pos].r = r;
26
           if (1 == r) {
27
               tree[pos].data = a[l - 1];
28
                return;
29
30
           int mid = (tree[pos].l + tree[pos].r) >> 1;
31
           build(a, pos << 1, 1, mid);</pre>
           build(a, pos << 1 | 1, mid + 1, r);
32
33
           pushup(pos);
34
       void update(int pos, int& 1, int& r, Num& x) {
35
           if (1 > tree[pos].r || r < tree[pos].l) return;</pre>
36
37
           if (1 <= tree[pos].1 && tree[pos].r <= r) {</pre>
38
               tree[pos].data = tree[pos].data + x;
39
               return;
40
41
           pushdown(pos);
           update(pos << 1, 1, r, x);
42
43
           update(pos << 1 | 1, 1, r, x);
44
           pushup(pos);
45
       Data query(int pos, int& 1, int& r) {
46
47
           if (1 > tree[pos].r || r < tree[pos].l) return Data::zero();</pre>
48
           if (1 <= tree[pos].1 && tree[pos].r <= r) return tree[pos].data;</pre>
49
           pushdown(pos);
```

1.4 普通平衡树 7

```
50
           return query(pos << 1, 1, r) + query(pos << 1 | 1, 1, r);</pre>
51
       }
52 };
53
  struct Num {
54
       ll add;
55
       inline static Num zero() { return {0}; }
56
       inline Num operator+(Num b) { return {add + b.add}; }
57
  };
  struct Data {
58
59
       11 sum, len;
60
       Num lazytag;
       inline static Data zero() { return {0, 0, Num::zero()}; }
61
62
       inline Data operator+(Num b) { return {sum + len * b.add, len, lazytag + b}; }
       inline Data operator+(Data b) { return {sum + b.sum, len + b.len, Num::zero()}; }
63
64 };
```

1.4 普通平衡树

1.4.1 树状数组实现

需要预先处理出来所有可能的数。

```
int lowbit(int x) { return x & -x; }
2
3
  template <typename T = int>
  class Treap {
4
5
      int n;
6
      vector<int> t;
7
      vector<T> S;
8
      vector<T> t2; // 需要求前k小的数之和再写
9
      int pos(T x) { return lower_bound(S.begin(), S.end(), x) - S.begin() + 1; }
10
      int sum(int pos) {
          int res = 0;
11
12
          while (pos) {
13
              res += t[pos];
14
              pos -= lowbit(pos);
15
16
          return res;
17
      }
18
19
  public:
20
      int size = 0;
21
22
      Treap(const vector<T>& a) : S(a) {
           sort(S.begin(), S.end());
23
          S.erase(unique(S.begin(), S.end()), S.end());
24
25
          n = S.size();
26
          t = vector<int>(n + 1);
          t2 = vector<T>(n + 1); // 需要求前k小的数之和再写
27
28
      }
29
30
      // 插入cnt个x
```

8 1 数据结构

```
31
       void insert(T x, int cnt) {
32
           size += cnt;
33
           int i = pos(x);
           assert(i <= n \&\& S[i - 1] == x);
34
           for (; i <= n; i += lowbit(i)) {</pre>
35
36
               t[i] += cnt;
               t2[i] += cnt * x; // 需要求前k小的数之和再写
37
38
           }
39
       }
40
       // 删除cnt个x
41
42
       void erase(T x, int cnt) {
43
           assert(cnt <= count(x));</pre>
44
           insert(x, -cnt);
45
       }
46
47
       // x的排名
       int rank(T x) {
48
49
           assert(count(x));
           return sum(pos(x) - 1) + 1;
50
51
       }
52
53
       // 统计出现次数
       int count(T x) { return sum(pos(x)) - sum(pos(x) - 1); }
54
55
       // 第k小
56
57
       T kth(int k) {
58
           assert(0 < k && k <= size);</pre>
59
           int cnt = 0, x = 0;
           for (int i = __lg(n); i >= 0; i--) {
60
61
               x += 1 << i;
62
               if (x >= n \mid | cnt + t[x] >= k) x -= 1 << i;
63
               else cnt += t[x];
64
65
           return S[x];
66
       }
67
68
       // 前k小的数之和
69
       T presum(int k) {
70
           assert(0 < k && k <= size);</pre>
71
           int cnt = 0, x = 0;
72
           T res = 0;
73
           for (int i = __lg(n); i >= 0; i--) {
74
75
               if (x >= n \mid | cnt + t[x] >= k) x -= 1 << i;
76
               else {
77
                    cnt += t[x];
78
                    res += t2[x];
79
               }
80
81
           return res + (k - cnt) * S[x];
82
       }
```

1.4 普通平衡树 9

```
83
       // 小于x, 最大的数
84
      optional<T> prev(T x) {
85
           int k = pos(x) - 1;
86
87
           if (k == 0) return nullopt;
88
           return kth(sum(k));
89
      }
90
91
      // 大于x, 最小的数
92
      optional<T> next(T x) {
93
           int k = sum(pos(x)) + 1;
           if (k == size + 1) return nullopt;
94
95
           return kth(sum(k));
96
       }
97 };
```

1.4.2 线段树实现

```
template <typename T = int>
2
  class Treap {
3
  #define ls tr[pos].1
 4
  #define rs tr[pos].r
5
       struct Node {
6
           T 1 = 0, r = 0;
7
           int cnt = 0;
8
       };
9
       vector<Node> tr{Node{}}, Node{}};
10
       void newson(int pos) {
           if (!1s) {
11
12
                ls = tr.size();
13
                tr.push_back({});
14
15
           if (!rs) {
16
                rs = tr.size();
17
                tr.push_back({});
18
           }
19
       }
20
       void insert(int pos, T l, T r, T x, int cnt) {
21
           tr[pos].cnt += cnt;
22
           if (1 == r) return;
23
           newson(pos);
24
           T \text{ mid} = (1 + r) >> 1;
25
           if (x <= mid) insert(ls, l, mid, x, cnt);</pre>
           else insert(rs, mid + 1, r, x, cnt);
26
27
       }
28
       int query(int pos, T 1, T r, T L, T R) {
29
           if (R < 1 \mid | L > r) return 0;
30
           if (L <= 1 && r <= R) return tr[pos].cnt;</pre>
31
           newson(pos);
32
           T \text{ mid} = (1 + r) >> 1;
33
           return query(ls, 1, mid, L, R) + query(rs, mid + 1, r, L, R);
```

10 数据结构

```
34
35
       T kth(int pos, T l, T r, int k) {
           if (1 == r) return 1;
36
           T \text{ mid} = (1 + r) >> 1;
37
           if (k <= tr[ls].cnt) return kth(ls, l, mid, k);</pre>
38
           return kth(rs, mid + 1, r, k - tr[ls].cnt);
39
40
       }
41
42
  public:
43
       int size = 0;
44
       static constexpr T min = numeric_limits<T>::min() / 2;
       static constexpr T max = numeric_limits<T>::max() / 2;
45
46
47
       // 插入cnt个x
       void insert(T x, int cnt) {
48
49
           size += cnt;
50
           insert(1, min, max, x, cnt);
51
       }
52
       // 删除cnt个x
53
54
       void erase(T x, int cnt) {
55
           size -= cnt;
56
           insert(1, min, max, x, -cnt);
57
       }
58
59
       // 统计出现次数
60
       int count(T x) { return query(1, min, max, x, x); }
61
62
       // x 的排名
       int rank(T x) { return query(1, min, max, min, x - 1) + 1; }
63
64
       // 第k小
65
66
       T kth(int k) {
67
           assert(0 < k && k <= size);</pre>
68
           return kth(1, min, max, k);
69
       }
70
71
       // 小于x, 最大的数
72
       optional<T> prev(T x) {
73
           int k = rank(x) - 1;
74
           if (k == 0) return nullopt;
75
           return kth(k);
76
       }
77
78
       // 大于x, 最小的数
79
       optional<T> next(T x) {
80
           int k = rank(x + 1);
           if (k == size + 1) return nullopt;
81
82
           return kth(k);
83
       }
84
85 #undef ls
```

1.4 普通平衡树 11

```
86 #undef rs
87 };
```

可求前 k 小的数之和

```
1 template <typename T = int>
2
  class Treap {
3
  #define ls tr[pos].1
 4
  #define rs tr[pos].r
5
       struct Node {
6
           T 1 = 0, r = 0;
7
           int cnt = 0;
8
           T sum = 0;
9
       };
10
       vector<Node> tr{Node{}}, Node{}};
       void newson(int pos) {
11
12
           if (!ls) {
13
                ls = tr.size();
14
                tr.push_back({});
15
16
           if (!rs) {
17
                rs = tr.size();
18
                tr.push_back({});
19
20
       }
21
       void insert(int pos, T l, T r, T x, int cnt) {
22
           tr[pos].cnt += cnt;
23
           tr[pos].sum += x * cnt;
24
           if (1 == r) return;
25
           newson(pos);
26
           T \text{ mid} = (1 + r) >> 1;
27
           if (x <= mid) insert(ls, l, mid, x, cnt);</pre>
28
           else insert(rs, mid + 1, r, x, cnt);
29
30
       pair<int, T> query(int pos, T 1, T r, T L, T R) {
31
           if (R < 1 || L > r) return {0, 0};
32
           if (L <= 1 && r <= R) return {tr[pos].cnt, tr[pos].sum};</pre>
33
           newson(pos);
           T \text{ mid} = (1 + r) >> 1;
34
35
           auto [cnt1, sum1] = query(ls, l, mid, L, R);
36
           auto [cnt2, sum2] = query(rs, mid + 1, r, L, R);
37
           return {cnt1 + cnt2, sum1 + sum2};
38
       T kth(int pos, T l, T r, int k) {
39
40
           if (1 == r) return 1;
           T \text{ mid} = (1 + r) >> 1;
41
42
           if (k <= tr[ls].cnt) return kth(ls, l, mid, k);</pre>
43
           return kth(rs, mid + 1, r, k - tr[ls].cnt);
44
       }
45
  public:
46
47
       int size = 0;
48
       static constexpr T min = numeric_limits<T>::min() / 2;
```

12 数据结构

```
49
       static constexpr T max = numeric_limits<T>::max() / 2;
50
      // 插入cnt个x
51
      void insert(T x, int cnt) {
52
53
           size += cnt;
54
           insert(1, min, max, x, cnt);
55
      }
56
57
      // 删除cnt个x
      void erase(T x, int cnt) {
58
59
           size -= cnt;
           insert(1, min, max, x, -cnt);
60
61
      }
62
63
      // 统计出现次数
64
       int count(T x) { return query(1, min, max, x, x).first; }
65
      // x 的排名
66
67
       int rank(T x) { return query(1, min, max, min, x - 1).first + 1; }
68
      // 第k小
69
70
      T kth(int k) {
71
           assert(0 < k && k <= size);</pre>
72
           return kth(1, min, max, k);
73
      }
74
75
      // 前k小的数之和
76
      T presum(int k) {
77
           assert(0 < k && k <= size);</pre>
78
           T x = kth(k);
79
           auto [cnt, sum] = query(1, min, max, min, x);
           return sum - (cnt - k) * x;
80
81
      }
82
83
      // 小于x,最大的数
84
      optional<T> prev(T x) {
85
           int k = rank(x) - 1;
           if (k == 0) return nullopt;
86
87
           return kth(k);
88
      }
89
      // 大于x, 最小的数
90
91
      optional<T> next(T x) {
92
           int k = rank(x + 1);
93
           if (k == size + 1) return nullopt;
           return kth(k);
94
95
       }
96
97 #undef ls
98 #undef rs
99 };
```

1.4 普通平衡树 13

1.4.3 集合平衡树

```
1 template <typename T = ull>
   struct treap_set {
3
       static constexpr int w = 64;
       static constexpr T bit(int i) { return (T)1 << i; }</pre>
 4
5
6
       vector<vector<T>> nodes;
7
8
       treap_set(int _n) : n(_n) {
9
           do {
10
                nodes.emplace_back(_n = (_n + w - 1) / w);
11
           } while (_n > 1);
12
13
       treap_set(const string &s) : n(s.size()) {
14
           int _n = n;
15
           do {
16
                nodes.emplace_back(_n = (_n + w - 1) / w);
17
           } while (_n > 1);
18
           for (int i = 0; i < n; i++)</pre>
               if (s[i] == '1') nodes[0][i / w] |= bit(i % w);
19
20
           for (int i = 1; i < nodes.size(); i++) {</pre>
21
               for (int j = 0; j < nodes[i - 1].size(); j++)</pre>
22
                    if (nodes[i - 1][j]) nodes[i][j / w] |= bit(j % w);
23
           }
24
25
       void clear() {
26
           for (auto &i : nodes) fill(i.begin(), i.end(), 0);
27
       void insert(int k) {
28
29
           for (auto &node : nodes) {
30
               node[k / w] = bit(k % w);
               k /= w;
31
32
           }
33
34
       void erase(int k) {
35
           for (auto &node : nodes) {
               node[k / w] \&= \sim bit(k \% w);
36
37
               k /= w;
38
               if (node[k]) break;
39
           }
40
       bool contains(int k) { return nodes[0][k / w] & bit(k % w); }
41
42
       // Find the smallest key greater than k.
43
       optional<int> next(int k) {
44
           for (int i = 0; i < nodes.size(); i++, k /= w) {</pre>
               if (k % w == w - 1) continue;
45
46
               T keys = nodes[i][k / w] & \sim (bit(k % w + 1) - 1);
47
               if (keys == 0) continue;
48
               k = k / w * w + __countr_zero(keys);
               for (int j = i - 1; j \ge 0; j--) k = k * w + \_countr\_zero(nodes[j][k]);
49
50
               return k;
```

14 数据结构

```
51
           }
52
           return nullopt;
53
       // Find the largest key samller than k.
54
55
       optional<int> prev(int k) {
56
           for (int i = 0; i < nodes.size(); i++, k /= w) {</pre>
57
               if (k % w == 0) continue;
               T keys = nodes[i][k / w] & (bit(k % w) - 1);
58
               if (keys == 0) continue;
59
               k = k / w * w + w - 1 - __countl_zero(keys);
60
               for (int j = i - 1; j >= 0; j --) k = k * w + w - 1 - __countl_zero(nodes[j][k])
61
62
               return k;
63
64
           return nullopt;
65
       }
66|};
```

1.5 可持久化线段树

```
1 constexpr int MAXN = 200000;
2
  vector<int> root(MAXN << 5);</pre>
3
  struct Persistent_seg {
 4
       int n;
       struct Data {
5
6
           int ls, rs;
7
           int val;
8
       };
9
       vector<Data> tree;
10
       Persistent_seg(int n, vector<int>& a) : n(n) { root[0] = build(1, n, a); }
11
       int build(int 1, int r, vector<int>& a) {
12
           if (1 == r) {
13
               tree.push_back({0, 0, a[1]});
14
               return tree.size() - 1;
15
           }
16
           int mid = 1 + r \gg 1;
17
           int ls = build(l, mid, a), rs = build(mid + 1, r, a);
           tree.push_back({ls, rs, tree[ls].val + tree[rs].val});
18
19
           return tree.size() - 1;
20
21
       int update(int rt, const int& idx, const int& val, int 1, int r) {
22
           if (1 == r) {
23
               tree.push_back({0, 0, tree[rt].val + val});
24
               return tree.size() - 1;
25
           }
           int mid = 1 + r >> 1, ls = tree[rt].ls, rs = tree[rt].rs;
26
27
           if (idx <= mid) ls = update(ls, idx, val, l, mid);</pre>
           else rs = update(rs, idx, val, mid + 1, r);
28
29
           tree.push_back({ls, rs, tree[ls].val + tree[rs].val});
30
           return tree.size() - 1;
31
       }
```

 $1.6 ext{ st } ag{5}$

```
int query(int rt1, int rt2, int k, int 1, int r) {
    if (1 == r) return 1;
    int mid = 1 + r >> 1;
    int lcnt = tree[tree[rt2].ls].val - tree[tree[rt1].ls].val;
    if (k <= lcnt) return query(tree[rt1].ls, tree[rt2].ls, k, l, mid);
    else return query(tree[rt1].rs, tree[rt2].rs, k - lcnt, mid + 1, r);
}
}
};</pre>
```

1.6 st 表

```
auto lg = []() {
2
       array<int, 10000001> lg;
3
       lg[1] = 0;
4
       for (int i = 2; i \leftarrow 10000000; i++) lg[i] = lg[i >> 1] + 1;
5
       return lg;
6
  }();
  template <typename T>
8
   struct st {
9
       int n;
10
       vector<vector<T>> a;
11
       st(vector<T>& _a) : n(_a.size()) {
12
           a.assign(lg[n] + 1, vector<int>(n));
13
           for (int i = 0; i < n; i++) a[0][i] = _a[i];</pre>
14
           for (int j = 1; j <= lg[n]; j++)</pre>
15
                for (int i = 0; i + (1 << j) - 1 < n; i++)
16
                    a[j][i] = max(a[j - 1][i], a[j - 1][i + (1 << (j - 1))]);
17
       }
18
       T query(int 1, int r) {
19
           int k = lg[r - l + 1];
20
           return max(a[k][1], a[k][r - (1 << k) + 1]);</pre>
21
       }
22|};
```

16 2 图论

2 图论

存图

```
struct Graph {
 1
 2
       int n;
3
       struct Edge {
 4
           int to, w;
5
       };
 6
       vector<vector<Edge>> graph;
7
       Graph(int _n) {
8
           n = _n;
9
           graph.assign(n + 1, vector<Edge>());
10
       };
11
       void add(int u, int v, int w) { graph[u].push_back({v, w}); }
12 };
```

2.1 最短路

2.1.1 dijkstra

```
void dij(Graph& graph, vector<int>& dis, int t) {
2
       vector<int> visit(graph.n + 1, 0);
3
       priority_queue<pair<int, int>> que;
       dis[t] = 0;
4
5
       que.emplace(0, t);
6
       while (!que.empty()) {
7
           int u = que.top().second;
8
           que.pop();
9
           if (visit[u]) continue;
10
           visit[u] = 1;
11
           for (auto& [to, w] : graph.graph[u]) {
12
               if (dis[to] > dis[u] + w) {
13
                   dis[to] = dis[u] + w;
14
                   que.emplace(-dis[to], to);
15
               }
16
           }
17
       }
18
  }
```

2.2 树上问题

2.2.1 最近公公祖先

倍增法

```
vector<int> dep;
vector<array<int, 21>> fa;
dep.assign(n + 1, 0);
fa.assign(n + 1, array<int, 21>{});
void binary_jump(int root) {
  function<void(int)> dfs = [&](int t) {
```

2.2 树上问题 17

```
7
           dep[t] = dep[fa[t][0]] + 1;
8
           for (auto& [to] : graph[t]) {
9
               if (to == fa[t][0]) continue;
10
               fa[to][0] = t;
               dfs(to);
11
12
           }
13
       };
14
       dfs(root);
15
       for (int j = 1; j <= 20; j++)
16
           for (int i = 1; i <= n; i++) fa[i][j] = fa[fa[i][j - 1]][j - 1];</pre>
17
  int lca(int x, int y) {
18
19
       if (dep[x] < dep[y]) swap(x, y);</pre>
       for (int i = 20; i >= 0; i--)
20
21
           if (dep[fa[x][i]] >= dep[y]) x = fa[x][i];
22
       if (x == y) return x;
23
       for (int i = 20; i >= 0; i--) {
           if (fa[x][i] != fa[y][i]) {
24
25
               x = fa[x][i];
26
               y = fa[y][i];
27
           }
28
29
       return fa[x][0];
30 }
```

树剖

```
int lca(int x, int y) {
    while (top[x] != top[y]) {
        if (dep[top[x]] < dep[top[y]]) swap(x, y);
        x = fa[top[x]];
    }
    if (dep[x] < dep[y]) swap(x, y);
    return y;
}</pre>
```

2.2.2 树链剖分

```
1 vector<int> fa, siz, dep, son, dfn, rnk, top;
2 fa.assign(n + 1, 0);
3 | siz.assign(n + 1, 0);
 4 dep.assign(n + 1, 0);
5
  son.assign(n + 1, 0);
6 dfn.assign(n + 1, 0);
7
  rnk.assign(n + 1, 0);
  top.assign(n + 1, 0);
9
  void hld(int root) {
10
      function<void(int)> dfs1 = [&](int t) {
           dep[t] = dep[fa[t]] + 1;
11
12
           siz[t] = 1;
13
           for (auto& [to, w] : graph[t]) {
14
               if (to == fa[t]) continue;
```

18 2 图论

```
15
                fa[to] = t;
16
                dfs1(to);
17
                if (siz[son[t]] < siz[to]) son[t] = to;</pre>
                siz[t] += siz[to];
18
19
           }
20
       };
21
       dfs1(root);
22
       int dfn_tail = 0;
23
       for (int i = 1; i <= n; i++) top[i] = i;</pre>
       function<void(int)> dfs2 = [&](int t) {
24
25
           dfn[t] = ++dfn_tail;
           rnk[dfn_tail] = t;
26
27
           if (!son[t]) return;
28
           top[son[t]] = top[t];
29
           dfs2(son[t]);
           for (auto& [to, w] : graph[t]) {
30
31
                if (to == fa[t] || to == son[t]) continue;
32
33
           }
34
       };
35
       dfs2(root);
36 }
```

2.3 强连通分量

```
void tarjan(Graph& g1, Graph& g2) {
2
       int dfn_tail = 0, cnt = 0;
       vector < int > dfn(g1.n + 1, 0), low(g1.n + 1, 0), exist(g1.n + 1, 0), belong(g1.n + 1, 0)
3
           0);
4
       stack<int> sta;
5
       function<void(int)> dfs = [&](int t) {
6
           dfn[t] = low[t] = ++dfn_tail;
7
           sta.push(t);
8
           exist[t] = 1;
9
           for (auto& [to] : g1.graph[t])
10
               if (!dfn[to]) {
                    dfs(to);
11
12
                    low[t] = min(low[t], low[to]);
13
               } else if (exist[to]) low[t] = min(low[t], dfn[to]);
           if (dfn[t] == low[t]) {
14
15
               cnt++;
16
               while (int temp = sta.top()) {
17
                    belong[temp] = cnt;
18
                    exist[temp] = 0;
19
                    sta.pop();
                    if (temp == t) break;
20
21
               }
           }
22
23
       };
24
       for (int i = 1; i <= g1.n; i++)</pre>
25
           if (!dfn[i]) dfs(i);
```

2.4 拓扑排序 19

2.4 拓扑排序

```
void toposort(Graph& g, vector<int>& dis) {
2
      vector<int> in(g.n + 1, 0);
3
      for (int i = 1; i <= g.n; i++)
4
           for (auto& [to] : g.graph[i]) in[to]++;
5
      queue<int> que;
6
      for (int i = 1; i <= g.n; i++)
7
           if (!in[i]) {
8
               que.push(i);
9
               dis[i] = g.w[i]; // dp
10
11
      while (!que.empty()) {
12
           int u = que.front();
13
           que.pop();
14
           for (auto& [to] : g.graph[u]) {
15
               in[to]--;
16
               dis[to] = max(dis[to], dis[u] + g.w[to]); // dp
17
               if (!in[to]) que.push(to);
18
           }
19
      }
20 }
```

20 3 字符串

3 字符串

3.1 kmp

```
auto kmp(string& s) {
1
2
      vector next(s.size(), -1);
3
       for (int i = 1, j = -1; i < s.size(); i++) {</pre>
4
           while (j \ge 0 \&\& s[i] != s[j + 1]) j = next[j];
5
           if (s[i] == s[j + 1]) j++;
6
           next[i] = j;
7
8
      // next 意为长度
9
      for (auto& i : next) i++;
10
       return next;
11
```

3.2 哈希

```
1 constexpr int N = 1e6;
2 int pow_base[N + 1][2];
  constexpr ll mod[2] = {(int)2e9 + 11, (int)2e9 + 33}, base[2] = {(int)2e5 + 11, (int)2e5}
      + 33};
5
  struct Hash {
6
       int size;
7
       vector<array<int, 2>> a;
8
       Hash() {}
9
       Hash(const string& s) {
10
           size = s.size();
           a.resize(size);
11
12
           a[0][0] = a[0][1] = s[0];
13
           for (int i = 1; i < size; i++) {</pre>
               a[i][0] = (a[i - 1][0] * base[0] + s[i]) % mod[0];
14
15
               a[i][1] = (a[i - 1][1] * base[1] + s[i]) % mod[1];
16
           }
17
       array<int, 2> get(int 1, int r) const {
18
           if (1 == 0) return a[r];
19
20
           auto getone = [&](bool f) {
               int x = (a[r][f] - 111 * a[1 - 1][f] * pow_base[r - 1 + 1][f]) % mod[f];
21
22
               if (x < 0) x += mod[f];
23
               return x;
24
25
           return {getone(0), getone(1)};
26
       }
27
28
  auto _ = []() {
29
30
       pow_base[0][0] = pow_base[0][1] = 1;
       for (int i = 1; i <= N; i++) {
31
           pow_base[i][0] = pow_base[i - 1][0] * base[0] % mod[0];
32
```

3.3 manacher 21

3.3 manacher

```
auto manacher(const string& _s) {
2
       string s(_s.size() * 2 + 1, '$');
3
       for (int i = 0; i < _s.size(); i++) s[2 * i + 1] = _s[i];</pre>
4
       vector r(s.size(), 0);
5
       for (int i = 0, maxr = 0, mid = 0; i < s.size(); i++) {</pre>
6
           if (i < maxr) r[i] = min(r[mid * 2 - i], maxr - i);</pre>
7
           while (i - r[i] - 1 >= 0 \& i + r[i] + 1 < s.size() \& s[i - r[i] - 1] == s[i + r[i] + 1]
               [i] + 1])
8
               ++r[i];
9
           if (i + r[i] > maxr) maxr = i + r[i], mid = i;
10
11
       return r;
12 }
```

4 数学

4.1 扩展欧几里得

```
需保证 a,b>=0 x=x+k*dx, y=y-k*dy 若要求 x\geq p,\ k\geq \left\lceil\frac{p-x}{dx}\right\rceil 若要求 x\leq q,\ k\leq \left\lfloor\frac{q-x}{dx}\right\rfloor 若要求 y\geq p,\ k\leq \left\lfloor\frac{y-p}{dy}\right\rfloor 若要求 y\leq q,\ k\geq \left\lceil\frac{y-q}{dy}\right\rceil
```

```
int __exgcd(int a, int b, int& x, int& y) {
 1
2
       if (!b) {
3
           x = 1;
4
           y = 0;
5
           return a;
6
7
       int g = __exgcd(b, a % b, y, x);
8
       y -= a / b * x;
9
       return g;
10
11
  array<int, 2> exgcd(int a, int b, int c) {
12
13
       int x, y;
14
       int g = \__exgcd(a, b, x, y);
       if (c % g) return {INT_MAX, INT_MAX};
15
      int dx = b / g;
16
17
       int dy = a / g;
18
       x = c / g % dx * x % dx;
19
      if (x < 0) x += dx;
20
      y = (c - a * x) / b;
21
       return {x, y};
22 }
```

4.2 线性代数

4.2.1 向量公约数

```
// 将这两个向量组转化为b.y=0的形式
2
  array<vec, 2> gcd(vec a, vec b) {
3
      while (b.y != 0) {
4
          int t = a.y / b.y;
5
          a = a - b * t;
6
          swap(a, b);
7
8
      return {a, b};
9
10
  array<vec, 2> gcd(array<vec, 2> g, vec a) {
12
      auto [b, c] = gcd(g[0], a);
13
      g[0] = b;
```

4.3 筛法 23

```
g[1] = vec(gcd(g[1].x, c.x), 0);
if (g[1].x != 0) g[0].x %= g[1].x;
return g;
}
```

4.3 筛法

primes

```
1 constexpr int N = 1e7;
2 bitset<N + 1> ispr;
3
  vector<int> primes;
  bool _ = []() {
 4
       ispr.set();
5
6
       ispr[0] = ispr[1] = 0;
7
       for (int i = 2; i <= N; i++) {
8
           if (!ispr[i]) continue;
9
           primes.push_back(i);
10
           for (int j = 2 * i; j \leftarrow N; j += i) ispr[j] = 0;
11
12
       return 1;
13 }();
```

1 constexpr int N = 1e7; array<int, N + 1> phi; 2 auto _ = []() { 3 4 iota(phi.begin() + 1, phi.end(), 1); 5 for (int i = 2; i <= N; i++) { 6 if (phi[i] == i) 7 for (int j = i; $j \le N$; j += i) phi[j] = phi[j] / i * (i - 1); 8 9 return true; 10 }();

1 constexpr int N = 1e7; 2 bitset<N + 1> ispr; 3 array<int, N + 1> mu; auto _ = []() { 4 5 mu.fill(1); ispr.set(); 6 7 mu[0] = ispr[0] = ispr[1] = 0;for (int i = 2; i <= N; i++) { 8 9 if (!ispr[i]) continue; 10 mu[i] = -1;for (int j = 2 * i; j <= N; j += i) { 11 12 ispr[j] = 0;13 if (j / i % i == 0) mu[j] = 0; else mu[j] *= -1; 14 15

prime φ

```
1 constexpr int N = 1e7;
  bitset<N + 1> ispr;
  array<int, N + 1> phi;
  vector<int> primes;
  bool _ = []() {
5
6
       ispr.set();
7
       ispr[0] = ispr[1] = 0;
8
       iota(phi.begin() + 1, phi.end(), 1);
9
       for (int i = 2; i <= N; i++) {
10
           if (!ispr[i]) continue;
11
           phi[i] = i - 1;
12
           primes.push_back(i);
           for (int j = 2 * i; j <= N; j += i) {
13
14
               ispr[j] = 0;
               phi[j] = phi[j] / i * (i - 1);
15
16
           }
17
18
       return 1;
19 }();
```

prime μ

```
1 constexpr int N = 1e7;
2
  bitset<N + 1> ispr;
3 array<int, N + 1> mu;
  vector<int> primes;
5
  bool _ = []() {
6
       mu.fill(1);
7
       ispr.set();
8
       mu[0] = ispr[0] = ispr[1] = 0;
9
       for (int i = 2; i <= N; i++) {</pre>
10
           if (!ispr[i]) continue;
11
           mu[i] = -1;
12
           primes.push_back(i);
           for (int j = 2 * i; j <= N; j += i) {
13
14
               ispr[j] = 0;
15
               if (j / i % i == 0) mu[j] = 0;
               else mu[j] *= -1;
16
17
18
19
       return 1;
20 }();
```

prime $\mu \varphi$

```
constexpr int N = 1e7;
bitset<N + 1> ispr;
array<int, N + 1> mu, phi;
```

4.4 分解质因数 25

```
vector<int> primes;
5
  bool _ = []() {
6
       mu.fill(1);
7
       ispr.set();
8
       mu[0] = ispr[0] = ispr[1] = 0;
9
       iota(phi.begin() + 1, phi.end(), 1);
       for (int i = 2; i <= N; i++) {</pre>
10
           if (!ispr[i]) continue;
11
12
           mu[i] = -1;
13
           phi[i] = i - 1;
           primes.push_back(i);
14
15
           for (int j = 2 * i; j <= N; j += i) {
16
               ispr[j] = 0;
17
               if (j / i % i == 0) mu[j] = 0;
               else mu[j] *= -1;
18
               phi[j] = phi[j] / i * (i - 1);
19
20
           }
21
22
       return 1;
23 }();
```

```
1 constexpr int N = 1e7;
  array<int, N + 1> minpr, mu, phi;
3
  vector<int> primes;
4
  bool _ = []() {
       phi[1] = mu[1] = 1;
5
6
       for (int i = 2; i <= N; i++) {
7
           if (minpr[i] == 0) {
8
               minpr[i] = i;
9
               mu[i] = -1;
10
               phi[i] = i - 1;
11
               primes.push_back(i);
12
13
           for (auto& j : primes) {
               if (i * j > N) break;
14
15
               minpr[i * j] = j;
               if (j < minpr[i]) {</pre>
16
                    phi[i * j] = phi[i] * phi[j];
17
                    mu[i * j] = -mu[i];
18
19
               } else {
20
                    mu[i * j] = 0;
                    phi[i * j] = phi[i] * j;
21
22
                    break;
23
               }
24
           }
25
       }
26
       return 1;
27 }();
```

4.4 分解质因数

```
auto getprimes(int n) {
2
       vector<array<int, 2>> res;
3
       for (auto& i : primes) {
4
           if (i > n / i) break;
5
           if (n % i == 0) {
6
               res.push_back({i, 0});
7
               while (n % i == 0) {
8
                    n /= i;
9
                    res.back()[1]++;
10
               }
11
           }
12
13
       if (n > 1) res.push_back({n, 1});
14
       return res;
15 }
```

4.5 pollard rho

```
1 using LL = __int128_t;
2
3
  random_device rd;
  mt19937 seed(rd());
5
6
  ll power(ll a, ll b, ll mod) {
7
       11 \text{ res} = 1;
8
       while (b) {
9
           if (b & 1) res = (LL)res * a % mod;
10
           a = (LL)a * a % mod;
           b >>= 1;
11
12
13
       return res;
14
15
16
  bool isprime(ll n) {
17
       static array primes{2, 3, 5, 7, 11, 13, 17, 19, 23};
18
       static unordered_map<11, bool> S;
19
       if (n < 2) return 0;</pre>
20
       if (S.count(n)) return S[n];
21
       11 d = n - 1, r = 0;
22
       while (!(d & 1)) {
23
           r++;
24
           d >>= 1;
25
26
       for (auto& a : primes) {
27
           if (a == n) return S[n] = 1;
28
           11 x = power(a, d, n);
29
           if (x == 1 || x == n - 1) continue;
           for (int i = 0; i < r - 1; i++) {
30
31
               x = (LL)x * x % n;
32
               if (x == n - 1) break;
```

4.6 组合数 27

```
33
34
           if (x != n - 1) return S[n] = 0;
35
36
       return S[n] = 1;
37
38
  11 pollard_rho(ll n) {
39
       11 s = 0, t = 0;
40
       11 c = seed() % (n - 1) + 1;
41
42
       ll val = 1;
43
       for (int goal = 1;; goal *= 2, s = t, val = 1) {
           for (int step = 1; step <= goal; step++) {</pre>
44
                t = ((LL)t * t + c) % n;
45
                val = (LL)val * abs(t - s) % n;
46
                if (step % 127 == 0) {
47
48
                    ll g = gcd(val, n);
49
                    if (g > 1) return g;
50
                }
51
52
           11 g = gcd(val, n);
53
           if (g > 1) return g;
       }
54
55
56
   auto getprimes(ll n) {
57
       unordered set<ll> S;
       auto get = [&](auto self, ll n) {
58
59
           if (n < 2) return;</pre>
60
           if (isprime(n)) {
61
                S.insert(n);
62
                return;
63
           }
64
           11 mx = pollard_rho(n);
65
           self(self, n / mx);
           self(self, mx);
66
67
       };
68
       get(get, n);
69
       return S;
70 }
```

4.6 组合数

```
1 constexpr int N = 1e6;

2 array<modint, N + 1> fac, ifac;

3 4 modint C(int n, int m) {

5 if (m < 0 || m > n) return 0;

6 if (n <= mod) return fac[n] * ifac[m] * ifac[n - m];

7 // n >= mod 时需要这个

8 return C(n % mod, m % mod) * C(n / mod, m / mod);

9 }
```

```
11 auto _ = []() {
    fac[0] = 1;
13    for (int i = 1; i <= N; i++) fac[i] = fac[i - 1] * i;
14    ifac[N] = fac[N].inv();
15    for (int i = N - 1; i >= 0; i--) ifac[i] = ifac[i + 1] * (i + 1);
16    return true;
17 }();
```

4.6.1 常用式子

- $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$
- $\binom{n}{k} = \frac{n-k}{k} \binom{n}{k-1}$
- $\sum_{i=0}^{n} (-1)^i \binom{n}{i} = [n=0]$
- $\sum_{i=0}^{m} \binom{n}{i} \binom{m}{i} = \binom{m+n}{m}$
- $\sum_{i=0}^{n} \binom{n}{i}^2 = \binom{2n}{n}$
- $\bullet \quad \sum_{i=0}^{n} i \binom{n}{i} = n2^{n-1}$
- $\sum_{i=0}^{n} i^2 \binom{n}{i} = n(n+1)2^{n-2}$
- $\sum_{l=0}^{n} {l \choose k} = {n+1 \choose k+1}$
- $\binom{n}{r}\binom{r}{k} = \binom{n}{k}\binom{n-k}{r-k}$
- $\sum_{i=0}^{n} {n-i \choose i} = F_{n+1}$, 其中 F 是斐波那契数列。
- $\sum_{i=0}^{k} \binom{n}{i} \binom{m}{k-i} = \binom{n+m}{k}$
- $\sum_{i=1}^{n} \binom{n}{i} \binom{n}{i-1} = \binom{2n}{n+1}$
- $m^n = \sum_{i=0}^m {n \brace i} {m \brack i} i!$

4.7 数论分块

求解形如 $\sum_{i=1}^{n} f(i)g(\lfloor \frac{n}{i} \rfloor)$ 的合式 $s(n) = \sum_{i=1}^{n} f(i)$

```
modint sqrt_decomposition(int n) {
      auto s = [&](int x) { return x; };
3
       auto g = [&](int x) { return x; };
4
      modint res = 0;
      while (1 <= R) {
           int r = n / (n / 1);
7
           res = res + (s(r) - s(l - 1)) * g(n / 1);
8
           1 = r + 1;
9
10
       return res;
11 }
```

4.8 积性函数 29

4.8 积性函数

4.8.1 定义

函数 f(n) 满足 f(1) = 1 且 $\forall x, y \in \mathbf{N}^*$, $\gcd(x, y) = 1$ 都有 f(xy) = f(x)f(y),则 f(n) 为积性函数。 函数 f(n) 满足 f(1) = 1 且 $\forall x, y \in \mathbf{N}^*$ 都有 f(xy) = f(x)f(y),则 f(n) 为完全积性函数。

4.8.2 例子

- 单位函数: $\varepsilon(n) = [n = 1]$ 。(完全积性)
- 恒等函数: $id_k(n) = n^k$ 。(完全积性)
- 常数函数: 1(n) = 1。(完全积性)
- 除数函数: $\sigma_k(n) = \sum_{d|n} d^k$ 。 $\sigma_0(n)$ 通常简记作 d(n) 或 $\tau(n)$, $\sigma_1(n)$ 通常简记作 $\sigma(n)$ 。
- 欧拉函数: $\varphi(n) = \sum_{i=1}^{n} [\gcd(i, n) = 1]$.

4.9 狄利克雷卷积

对于两个数论函数 f(x) 和 g(x),则它们的狄利克雷卷积得到的结果 h(x) 定义为: $h(x) = \sum_{d|x} f(d)g\left(\frac{x}{d}\right) = \sum_{ab=x} f(a)g(b)$ 可以简记为: h = f * g。

4.9.1 性质

交換律: f * g = g * f。

结合律: (f * g) * h = f * (g * h)。

分配律: (f+g)*h = f*h+g*h。

等式的性质: f = g 的充要条件是 f * h = g * h,其中数论函数 h(x) 要满足 $h(1) \neq 0$ 。

4.9.2 例子

- $\varepsilon = \mu * 1 \iff \varepsilon(n) = \sum_{d|n} \mu(d)$
- $id = \varphi * 1 \iff id(n) = \sum_{d|n} \varphi(d)$
- $d = 1 * 1 \iff d(n) = \sum_{d|n} 1$
- $\sigma = id *1 \iff \sigma(n) = \sum_{d|n} d$
- $\varphi = \mu * id \iff \varphi(n) = \sum_{d|n} d \cdot \mu(\frac{n}{d})$

4.10 欧拉函数

```
constexpr int N = 1e6;
array<int, N + 1> phi;
auto _ = []() {
    iota(phi.begin() + 1, phi.end(), 1);
    for (int i = 2; i <= N; i++) {
        if (phi[i] == i)
            for (int j = i; j <= N; j += i) phi[j] = phi[j] / i * (i - 1);
    }
    return true;
}
</pre>
```

4.11 莫比乌斯反演

4.11.1 莫比乌斯函数性质

```
• \sum_{d|n} \mu(d) = \begin{cases} 1 & n=1 \\ 0 & n \neq 1 \end{cases}, \text{ EV } \sum_{d|n} \mu(d) = \varepsilon(n), \ \mu * 1 = \varepsilon
```

•
$$[\gcd(i,j) = 1] = \sum_{d \mid \gcd(i,j)} \mu(d)$$

```
constexpr int N = 1e6;
 2 array<int, N + 1> miu;
  array<bool, N + 1> ispr;
5
  auto _ = []() {
 6
       miu.fill(1);
7
       ispr.fill(1);
8
       for (int i = 2; i <= N; i++) {</pre>
9
           if (!ispr[i]) continue;
10
           miu[i] = -1;
11
           for (int j = 2 * i; j <= N; j += i) {
12
               ispr[j] = 0;
13
               if ((j / i) % i == 0) miu[j] = 0;
               else miu[j] *= -1;
14
15
           }
16
       }
17
       return true;
18 }();
```

4.11.2 莫比乌斯变换/反演

```
f(n) = \sum_{d|n} g(d),那么有 g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d}) = \sum_{n|d} \mu(\frac{d}{n}) f(d)。
用狄利克雷卷积表示则为 f = g * 1,有 g = f * \mu。
f \to g 称为莫比乌斯反演,g \to f 称为莫比乌斯反演。
```

4.12 杜教筛

杜教筛被用于处理一类数论函数的前缀和问题。对于数论函数 f,杜教筛可以在低于线性时间的复杂 度内计算 $S(n) = \sum_{i=1}^{n} f(i)$ 。

4.13 多项式 31

$$S(n) = \frac{\sum_{i=1}^{n} (f * g)(i) - \sum_{i=2}^{n} g(i) S\left(\left\lfloor \frac{n}{i} \right\rfloor\right)}{g(1)}$$

可以构造恰当的数论函数 g 使得:

- 可以快速计算 $\sum_{i=1}^{n} (f * g)(i)$.
- 可以快速计算 g 的单点值,用数论分块求解 $\sum_{i=2}^{n} g(i) S\left(\left|\frac{n}{i}\right|\right)$ 。

4.12.1 示例

```
11 sum phi(ll n) {
       if (n <= N) return sp[n];</pre>
3
       if (sp2.count(n)) return sp2[n];
 4
       11 \text{ res} = 0, 1 = 2;
5
       while (1 <= n) {
6
           ll r = n / (n / 1);
7
           res = res + (r - 1 + 1) * sum_phi(n / 1);
8
           1 = r + 1;
9
10
       return sp2[n] = (l1)n * (n + 1) / 2 - res;
11
12
13
  11 sum_miu(ll n) {
14
       if (n <= N) return sm[n];</pre>
15
       if (sm2.count(n)) return sm2[n];
16
       11 \text{ res} = 0, 1 = 2;
17
       while (1 <= n) {
18
           11 r = n / (n / 1);
           res = res + (r - 1 + 1) * sum_miu(n / 1);
19
20
           1 = r + 1;
21
22
       return sm2[n] = 1 - res;
23 }
```

4.13 多项式

```
1 #define countr_zero(n) __builtin_ctz(n)
  constexpr int N = 1e6;
3
  array<int, N + 1> inv;
5
  int power(int a, int b) {
6
       int res = 1;
7
       while (b) {
8
           if (b & 1) res = 1ll * res * a % mod;
9
           a = 111 * a * a % mod;
10
           b >>= 1;
11
12
       return res;
13 }
14
```

```
15 namespace NFTS {
16 | int g = 3;
  vector<int> rev, roots{0, 1};
   void dft(vector<int> &a) {
18
19
       int n = a.size();
20
       if (rev.size() != n) {
21
           int k = countr_zero(n) - 1;
22
           rev.resize(n);
23
           for (int i = 0; i < n; ++i) rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
24
25
       if (roots.size() < n) {</pre>
26
           int k = countr_zero(roots.size());
27
           roots.resize(n);
28
           while ((1 << k) < n) {
29
               int e = power(g, (mod - 1) >> (k + 1));
               for (int i = 1 \iff (k - 1); i \iff (1 \iff k); ++i) {
30
31
                    roots[2 * i] = roots[i];
                    roots[2 * i + 1] = 1ll * roots[i] * e % mod;
32
33
               }
34
               ++k;
35
           }
36
37
       for (int i = 0; i < n; ++i)
38
           if (rev[i] < i) swap(a[i], a[rev[i]]);</pre>
39
       for (int k = 1; k < n; k *= 2) {
           for (int i = 0; i < n; i += 2 * k) {
40
41
               for (int j = 0; j < k; ++j) {
42
                    int u = a[i + j];
43
                    int v = 111 * a[i + j + k] * roots[k + j] % mod;
44
                    int x = u + v, y = u - v;
45
                    if (x >= mod) x -= mod;
46
                    if (y < 0) y += mod;
47
                    a[i + j] = x;
48
                    a[i + j + k] = y;
49
               }
50
           }
51
       }
52
53
   void idft(vector<int> &a) {
54
       int n = a.size();
55
       reverse(a.begin() + 1, a.end());
56
       dft(a);
57
       int inv_n = power(n, mod - 2);
       for (int i = 0; i < n; ++i) a[i] = 1ll * a[i] * inv_n % mod;</pre>
58
59
60
     // namespace NFTS
61
62
  struct poly {
63
       poly &format() {
64
           while (!a.empty() && a.back() == 0) a.pop_back();
65
           return *this;
66
       }
```

4.13 多项式 33

```
67
        poly &reverse() {
68
             ::reverse(a.begin(), a.end());
69
            return *this;
70
71
        vector<int> a;
72
        poly() {}
73
        poly(int x) {
74
            if (x) a = \{x\};
75
76
        poly(const vector<int> &_a) : a(_a) {}
77
        int size() const { return a.size(); }
        int &operator[](int id) { return a[id]; }
78
79
        int at(int id) const {
            if (id < 0 || id >= (int)a.size()) return 0;
80
81
            return a[id];
82
        }
83
        poly operator-() const {
84
            auto A = *this;
85
            for (auto &x : A.a) x = (x == 0 ? 0 : mod - x);
86
            return A;
87
        }
88
        poly mulXn(int n) const {
89
            auto b = a;
90
            b.insert(b.begin(), n, 0);
91
            return poly(b);
92
        }
93
        poly modXn(int n) const {
94
            if (n > size()) return *this;
95
            return poly({a.begin(), a.begin() + n});
96
        }
97
        poly divXn(int n) const {
98
            if (size() <= n) return poly();</pre>
99
            return poly({a.begin() + n, a.end()});
100
101
        poly &operator+=(const poly &rhs) {
102
            if (size() < rhs.size()) a.resize(rhs.size());</pre>
103
            for (int i = 0; i < rhs.size(); ++i)</pre>
104
                 if ((a[i] += rhs.a[i]) >= mod) a[i] -= mod;
105
            return *this;
106
107
        poly &operator -= (const poly &rhs) {
108
            if (size() < rhs.size()) a.resize(rhs.size());</pre>
109
            for (int i = 0; i < rhs.size(); ++i)</pre>
110
                 if ((a[i] -= rhs.a[i]) < 0) a[i] += mod;</pre>
111
            return *this;
112
113
        poly &operator*=(poly rhs) {
114
            int n = size(), m = rhs.size(), tot = max(1, n + m - 1);
115
            int sz = 1 << __lg(tot * 2 - 1);</pre>
116
            a.resize(sz);
            rhs.a.resize(sz);
117
118
            NFTS::dft(a);
```

```
119
            NFTS::dft(rhs.a);
120
            for (int i = 0; i < sz; ++i) a[i] = 1ll * a[i] * rhs.a[i] % mod;
121
            NFTS::idft(a);
            return *this;
122
123
        }
124
        poly &operator/=(poly rhs) {
125
            int n = size(), m = rhs.size();
            if (n < m) return (*this) = poly();</pre>
126
127
            reverse();
128
            rhs.reverse();
129
            (*this) *= rhs.inv(n - m + 1);
130
            a.resize(n - m + 1);
131
            reverse();
132
            return *this;
133
134
        poly &operator%=(poly rhs) { return (*this) -= (*this) / rhs * rhs; }
135
        poly operator+(const poly &rhs) const { return poly(*this) += rhs; }
136
        poly operator-(const poly &rhs) const { return poly(*this) -= rhs; }
137
        poly operator*(poly rhs) const { return poly(*this) *= rhs; }
138
        poly operator/(poly rhs) const { return poly(*this) /= rhs; }
139
        poly operator%(poly rhs) const { return poly(*this) %= rhs; }
140
        poly powModPoly(int n, poly p) {
141
            poly r(1), x(*this);
142
            while (n) {
143
                if (n & 1) (r *= x) %= p;
144
                (x *= x) %= p;
145
                n >>= 1;
146
147
            return r;
148
149
        int inner(const poly &rhs) {
150
            int r = 0, n = min(size(), rhs.size());
151
            for (int i = 0; i < n; ++i) r = (r + 111 * a[i] * rhs.a[i]) % mod;
152
            return r;
153
154
        poly derivation() const {
155
            if (a.empty()) return poly();
156
            int n = size();
157
            vector<int> r(n - 1);
            for (int i = 1; i < n; ++i) r[i - 1] = 1ll * a[i] * i % mod;
158
159
            return poly(r);
160
161
        poly integral() const {
162
            if (a.empty()) return poly();
            int n = size();
163
164
            vector<int> r(n + 1);
            for (int i = 0; i < n; ++i) r[i + 1] = 1ll * a[i] * ::inv[i + 1] % mod;
165
166
            return poly(r);
167
168
        poly inv(int n) const {
            assert(a[0] != 0);
169
170
            poly x(power(a[0], mod - 2));
```

4.13 多项式 35

```
171
           int k = 1;
172
           while (k < n) {
173
                k *= 2;
                x *= (poly(2) - modXn(k) * x).modXn(k);
174
175
176
           return x.modXn(n);
177
       }
       // 需要保证首项为 1
178
       poly log(int n) const { return (derivation() * inv(n)).integral().modXn(n); }
179
180
       // 需要保证首项为 0
181
       poly exp(int n) const {
182
           poly x(1);
183
           int k = 1;
184
           while (k < n) {
185
                k *= 2;
186
                x = (x * (poly(1) - x.log(k) + modXn(k))).modXn(k);
187
188
           return x.modXn(n);
189
       }
       // 需要保证首项为 1, 开任意次方可以先 1n 再 exp 实现。
190
191
       poly sqrt(int n) const {
192
           poly x(1);
193
           int k = 1;
194
           while (k < n) {
195
                k *= 2;
196
                x += modXn(k) * x.inv(k);
197
                x = x.modXn(k) * inv2;
198
199
           return x.modXn(n);
200
       }
201
       // 减法卷积, 也称转置卷积 {\rm MULT}(F(x),G(x))=\sum_{i\ge0}(\sum_{j\ge
202
       // 0}f {i+j}g j)x^i
203
       poly mulT(poly rhs) const {
204
           if (rhs.size() == 0) return poly();
205
           int n = rhs.size();
206
            ::reverse(rhs.a.begin(), rhs.a.end());
207
           return ((*this) * rhs).divXn(n - 1);
208
       }
209
       int eval(int x) {
210
            int r = 0, t = 1;
211
            for (int i = 0, n = size(); i < n; ++i) {</pre>
212
                r = (r + 111 * a[i] * t) % mod;
                t = 111 * t * x % mod;
213
214
215
           return r;
216
       }
217
       // 多点求值新科技: https://jkloverdcoi.github.io/2020/08/04/转置原理及其应用/
218
       // 模板例题: https://www.luogu.com.cn/problem/P5050
219
       auto evals(vector<int> &x) const {
220
           if (size() == 0) return vector(x.size(), 0);
221
           int n = x.size();
222
           vector ans(n, 0);
```

36 4 数学

```
223
            vector<poly> g(4 * n);
            auto build = [&](auto self, int 1, int r, int p) -> void {
224
                if (r - l == 1) {
225
                    g[p] = poly({1, x[1] ? mod - x[1] : 0});
226
                } else {
227
228
                    int m = (1 + r) / 2;
229
                    self(self, 1, m, 2 * p);
                    self(self, m, r, 2 * p + 1);
230
231
                    g[p] = g[2 * p] * g[2 * p + 1];
                }
232
233
            };
            build(build, 0, n, 1);
234
            auto solve = [&](auto self, int l, int r, int p, poly f) -> void {
235
                if (r - l == 1) {
236
237
                    ans[1] = f[0];
                } else {
238
239
                    int m = (1 + r) / 2;
                    self(self, 1, m, 2 * p, f.mulT(g[2 * p + 1]).modXn(m - 1));
240
                    self(self, m, r, 2 * p + 1, f.mulT(g[2 * p]).modXn(r - m));
241
242
243
            };
            solve(solve, 0, n, 1, mulT(g[1].inv(size())).modXn(n));
244
245
            return ans;
246
247
       // 全家桶测试: https://www.luogu.com.cn/training/3015#information
248
249
   auto _ = []() {
250
        inv[0] = inv[1] = 1;
        for (int i = 2; i < inv.size(); i++) inv[i] = 111 * (mod - mod / i) * inv[mod % i] %</pre>
251
           mod;
252
        return true;
253 }();
```

4.14 盒子与球

4.14 盒子与球 37

球同	盒同	可空	公式
√	√	√	$f_{n,m}=f_{n,m-1}+f_{n-m,m}$ 或 $[x^n]e^{\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{\infty}rac{x^{ij}}{j}}$
√	√	×	$f_{n-m,m}$
×	√	√	$f_{n-m,m}$ $\sum_{i=1}^m g_{n,i}$ 或 $\sum_{i=1}^m \sum_{j=0}^i rac{j^n}{j!} rac{(-1)^{i-j}}{(i-j)!}$
		×	$g_{n,m} = g_{n-1,m-1} + m * g_{n-1,m}$ 或 $rac{1}{m!} \sum_{i=0}^m (-1)^i inom{m}{i} (m-i)^n$
√	×	✓	C_{n+m-1}^{m-1}
√	×		C_{n-1}^{m-1}
	×	√	m^n
×	×	×	$m!*g_{n,m}$ 或 $\sum\limits_{i=0}^{m}(-1)^iinom{m}{i}(m-i)^n$

4.14.1 球同, 盒同, 可空

```
int solve(int n, int m) {
    vector a(n + 1, 0);
    for (int i = 1; i <= m; i++)
        for (int j = i, k = 1; j <= n; j += i, k++) a[j] = (a[j] + inv[k]) % mod;
    auto p = poly(a).exp(n + 1);
    return (p.a[n] + mod) % mod;
}</pre>
```

若要求不超过 k 个,答案为 $[x^ny^m]\prod\limits_{i=0}^k \left(\sum\limits_{j=0}^m x^{ij}y^j\right)$ 。

4.14.2 球不同, 盒同, 可空

```
int solve(int n, int m) {
2
      vector a(n + 1, 0);
3
      vector b(n + 1, 0);
 4
      for (int i = 0; i <= n; i++) {
5
           a[i] = ifac[i];
6
           if (i & 1) a[i] = -a[i];
7
           b[i] = 111 * power(i, n) * ifac[i] % mod;
8
9
      auto p = poly(a) * poly(b);
10
       int ans = 0;
      for (int i = 1; i \le min(n, m); i++) ans = (ans + p.a[i]) % mod;
11
12
       return (ans + mod) % mod;
```

4 数学

13 }

若要求不超过 k 个,答案为 $m! \cdot [x^n y^m] \prod_{i=0}^k \left(\sum_{j=0}^n \frac{1}{i!^j} x^{ij} y^j \right)$ 。

4.14.3 球同, 盒不同, 可空

若要求不超过 k 个,答案为 $\left[x^n\right] \left(\sum\limits_{i=0}^k x^i\right)^m = \left[x^n\right] \frac{(x^{k+1}-1)^m}{(x-1)^m}$ 。 也可以考虑容斥,令 f(i) 表示至少有 i 个盒子装了 > k 个球方案数, $f(i) = {m \choose i} {n-(k+1)i+m-1 \choose m-1}$ 。 总方案数则为 $\sum\limits_{i=0}^m (-1)^i f(i)$ 。

4.14.4 球同,盒不同,不可空

若要求不超过 k 个,答案为 $\left[x^n\right] \left(\sum_{i=1}^k x^i\right)^m = \left[x^n\right] \frac{(x^k-1)^m x^m}{(x-1)^m}$ 。 也可以考虑容斥,令 f(i) 表示至少有 i 个盒子装了 > k 个球方案数, $f(i) = {m \choose i} {n-ki-1 \choose m-1}$ 。 总方案数则为 $\sum_{i=0}^m (-1)^i f(i)$ 。

4.14.5 球不同,盒不同,可空

若要求不超过 k 个,答案为 $m! \cdot [x^n] \left(\sum_{i=0}^k \frac{1}{i!} x^i\right)^m$ 。

4.14.6 球不同, 盒不同, 不可空

若要求不超过 k 个,答案为 $m! \cdot [x^n] \left(\sum_{i=1}^k \frac{1}{i!} x^i\right)^m$ 。

4.15 线性基

```
// 线性基
  struct basis {
      int rnk = 0;
      array<ull, 64> p{};
5
      // 将x插入此线性基中
7
      void insert(ull x) {
          for (int i = 63; i >= 0; i--) {
9
              if (!(x >> i & 1)) continue;
10
              if (p[i]) x ^= p[i];
11
              else {
12
                  p[i] = x;
13
                  rnk++;
14
                  break;
15
              }
16
          }
17
18
19
      // 将另一个线性基插入此线性基中
20
      void insert(basis other) {
21
          for (int i = 0; i <= 63; i++) {
22
              if (!other.p[i]) continue;
```

4.15 线性基 39

```
23
               insert(other.p[i]);
24
          }
25
       }
26
27
       // 最大异或值
28
       ull max_basis() {
29
           ull res = 0;
           for (int i = 63; i >= 0; i--)
30
31
               if ((res ^ p[i]) > res) res ^= p[i];
32
           return res;
33
       }
34|};
```

问题 1: 给定一组数 $A = \{a_1, a_2, \dots, a_n\}$,判断通过异或操作可以得到多少不同的数。

用这组数构建线性基,记r 为线性基的大小,每个数都可以表示为线性基中若干个数的异或和,因此结果为 2^r 。

问题 2: 给定一组数 $A = \{a_1, a_2, ..., a_n\}$,判断其中有多少个子集,其异或和为 0。

用这组数构建线性基,记 r 为线性基的大小。所有线性基的非空子集的异或和都必定非 0,因此所有异或和为 0 的子集必定包含不属于线性基中的向量。事实上,我们考虑任意非线性基中向量的子集 S,记其异或和为 S,我们必定能找到线性基的某个子集 S 使得其异或和为 S,这样我们就能确定一个异或和为 S0 的子集 S0 S0 的子集 S1 因此所有子集中异或和为 S2 的子集共有 S3 的子集共有 S4 。

问题 3: 给定一组数 $A = \{a_1, a_2, \dots, a_n\}$,判断其中有多少个子集,其异或和为 x。

假设有两个子集 A 和 B 的亦或和均为 x, 那么 $X \oplus Y = 0$, 这意味着 B 可以通过向集合 X 中加入 $X \oplus Y$ 即可得到 Y, 这边集合的亦或操作是指删除已有的,加入未有的元素。

因此我们需要做的就是建立一个线性基,之后尝试找到线性基的一个子集,令其亦或和为 x。如果不存在这样的子集,那么就无解。否则设该子集为 X,设 r 为线性基的大小,我们知道 A 中共有 2^{n-r} 个子集的亦或和为 0,我们用这些子集和 X 做亦或操作可以得到所有亦或和为 x 的所有子集,因此可以直接确定亦或和为 x 的子集数目为 2^{n-r} 。

问题 4:给定一组数 $A = \{a_1, a_2, \dots, a_n\}$,问可以切分为最多多少个连续的子序列,要要求任意多个(至少一个)子序列的亦或和都不为 $\mathbf{0}$ 。

首先所有数亦或和一定不能为 0, 否则无解。

首先计算所有亦或前缀和,得到新的序列 $B=b_1,b_2,\ldots,b_n$,其中 $b_i=a_1\oplus a_2\oplus\ldots\oplus a_i$ 。那么 A 序列中任意子序列的亦或和都可以表示为 B 序列中两个数的亦或和。考虑一个子序列划分,子序列的亦或和线性无关,假设子序列的结尾下标分别为 i_1,i_2,\ldots,i_k 。那么如果我们建立线性基,将 $b_{i_1},b_{i_1}\oplus b_{i_2},\ldots,b_{i_{k-1}}\oplus b_{i_k}$ 放入其中,由线性基的性质知道,我们可以等价将 $b_{i_1},b_{i_2},\ldots,b_{i_k}$ 放入而不会影响结果。

因此问题变成,从 B 序列中选择一个子集(b_n 必须选择),使得它们线性无关。我们可以先将 b_n 加入线性基,之后随便按什么顺序加入其它元素,最后线性基的大小就是所要的结果。

问题 5:给定一颗有 n 个顶点的树,每个顶点上都写了一个数字。对于每个顶点,回答在以该顶点为根的子树中,任意选取顶点上的数字,有多少种不同的亦或和.

这个问题实际上问的是线性基合并,某个集合上的线性基,可以通过亦或得到这个集合上的所有数值。 而两个集合的线性基合并后,可以通过亦或得到这两个集合上所有的数值。

问题 6:给定一组数 $A = \{a_1, a_2, \ldots, a_n\}$,之后 \mathbf{q} 次修改操作,每次操作给定两个下标 i, j,要求交换 a_i 和 a_j 。每次操作后问可以切分为最多多少个连续的子序列,要求任意多个(至少一个)子序列的亦或和都不为 $\mathbf{0}$ 。

这个问题是问题 4 的强化版本, 我们接下来证明交换操作不会影响最终结果。

问题 4 中将问题转换为从 B 序列得到线性基。现在考虑交换带来的影响,我们只需要证明在交换 i

和 j = i + 1 时不会影响结果即可,因为任意交互都可以通过若干次相邻交换得到。

考虑交换带来的影响,只有 1 个数发生了变化 $b'_i = a_{i+1} \oplus b_{i-1}$ 。而其它数都没有变化。而 b'_i 和 b_{i+1} 构成的线性基与 b_i 和 b_{i+1} 构成的线性基相同,因此结果不变。

问题 7: 给定一个 $A=\{a_1,a_2,\ldots,a_n\}$,提供 q 个请求,请求分两类,查询请求和修改请求。修改请求修改某个 a_i 的值。查询请求由三个数确定 l,r,x,从 a_l,a_{l+1},\ldots,a_r 中选取任意个数,将这些数的亦或和再亦或上 x 后得到结果,问最大的结果是多少。其中 $n,q \leq 10000$, $a_i \leq 2^{20}$

这个问题是询问区间元素上的线性基。由于线性基支持 $O((log_2MAX)^2)$ 的时间复杂度的合并操作,因此我们可以把区间上的线性基放到线段树上维护,这样总的时间复杂度为 $O((n+q)(log_2MAX)^3)$ 。

问题 8: 给定一个 $A = \{a_1, a_2, \ldots, a_n\}$,提供 q 个请求,请求由三个数确定 l, r, x,从 $a_l, a_{l+1}, \ldots, a_r$ 中选取任意个数,将这些数的亦或和再亦或上 x 后得到结果,问最大的结果是多少。其中 $n, q \leq 500000$, $a_i \leq 2^{20}$

类似问题 7, 但是不支持修改, n 和 q 大了很多。

我们需要注意到线性基具有一个性质。考虑后缀 $a_{i+1}, a_{i+2}, \ldots, a_n$,如果我们贪心构建线性基,且被加入的数为 $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ 。那么在考虑后缀 $a_i, a_{i+1}, a_{i+2}, \ldots, a_n$,贪心构建线性基,会被加入的数仅可能为 $a_i, a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ 的子集。因此我们可以在处理完以下标 i+1 开始的后缀后,记录下加入到线性基中的数的下标。之后在处理以 a_i 开始的后缀时,就可以复用这部分信息,在 $O((\log_2 MAX)^2)$ 的时间复杂度内完成构建。

于是我们可以在 $O(n(\log_2 MAX)^2)$ 的时间复杂度内得到所有连续子序列的线性基,在计算线性基的同时离线处理一下请求即可。总的时间复杂度为 $O(n(\log_2 MAX)^2 + q\log_2 MAX)$ 。

问题 9: 给定 n 个数 a_1, a_2, \ldots, a_n ,考虑所有 n^2 个二元组 (a_i, a_j) ,其亦或和为 $a_i \oplus a_j$,我们将这些二元组的异或和按照从小到大排序后,问第 k 大的值为?其中 $n \leq 10^6$

我们可以将 a_i 放到前缀树上进行维护。同时维护多个指针,表示可能的两个元素对应的区间。这样我们就可以通过二分询问有多少个数对的亦或和大于等于 x 来得出第 k 大的值,考虑到在前缀树上的遍历实际上已经帮我们完成了二分的过程,因此只需要遍历前缀树即可。这里有一个特殊的点就是前缀树可能会占用过大的空间,我们可以用排序后的数组来代替前缀树。(数组的区间对应某个前缀树顶点,区间中第 i 位为 1 的处于右孩子中,为 0 的处于左孩子中)

问题 10: 给定一颗拥有 n 个顶点的树,树上每条边都有自己的权重,对于树上所有 n^2 顶点对 (u,v),我们记 f(u,v) 为从 u 到 v 的唯一路径上的所有边的权重的亦或和,将这些路径异或和从小到大排序后,问第 k 大的亦或和是多少,其中 $n \leq 10^6, 1 \leq k \leq n^2$

首先我们需要将路径的异或和转换为路径两个端点的权重的异或和。方法记录每个顶点的权重为从该 顶点到根的路径上所有边的权重的异或和。

现在问题变成了问题 9。

问题 11: 给定 N 个数 A_1, \ldots, A_N 和 B_1, \ldots, B_N 以及 M, 要求选择一个下标集合 I, 满足 $\bigoplus_{i \in I} A_i \le M$ 的前提下,计算最大的 $\bigoplus_{i \in I} B_i$ 。其中 $0 \le A_i, B_i, K \le 10^{18}, \ 1 \le N \le 10^6$ 。

 $i \exists H = \lceil \log \max_{i,j} A_i, B_j \rceil$

首先对于任意 $i \neq j$,我们可以将 A_i 和 B_i 分别替换为 $A_i \oplus A_j$ 和 $B_i \oplus B_j$,这不会影响我们问题的答案。

因此我们可以找到一组 A 上的最大线性无关基底,下标集合记作 L_A 。将 N-I 下标的值,我们可以利用 L_A 中的元素将他们的 A 属性消除为 0,而这时候它们的成本为 0,因此它们的 B 值可以被任意选择,我们将它们的 B 属性建立一个线性基 X。

通过类似的方式可以保证 L_A 中所有下标的 A 属性最高位都互不相同,我们可以从按最高位的大小从大到小暴力枚举 L_A 中的所有元素是否出现在结果中,利用剪枝和预处理我们可以保证最多只会有 2H 种可能的情况需要考虑。

因此总的时间复杂度为 $O(NH + H^2)$ 。这里默认使用了位运算来避免操作单个位。

4.15 线性基 41

4.15.1 环、奇环、偶环

考虑 \mathbb{Z}_2^m 的向量 a_1, a_2, \ldots, a_n ,如果有 $a_1 + a_2 + \ldots + a_n = x$,那么我们称这些元素形成了一个 x 环。如果环的大小为奇数,则称为奇 x 环,否则称为偶 x 环。

对于向量组,是否有x环,等价于向量组张开的子空间中是否包含x。

可以发现如果向量 a_1, a_2, \ldots, a_n 有奇 x 环, 当且仅当向量都加上 v 后, 新的向量组有奇 x + v 环。

一种简单的判断奇 x 环的方式是,取由向量组张成的子空间外的任意一个向量 v,之后将所有向量都加上 v+x。原向量组中有奇 x 环当且仅当新的向量组包含 v 环。实际上,要得到 v 环,至少需要使用奇数个向量(偶数个向量的和,加上 v+x 是不发挥作用的),而如果奇数个新向量的和为 v,则意味着原来的这奇数个向量的和为 x。

之后考虑如何判断偶 x 环的存在。取由向量组张成的子空间外的任意一个向量 v,之后将所有向量都加上 v+x。如果存在偶 x 环,那么新的向量组中一定依旧包含 x 环。并且如果新向量组存在 x 环,可以保证这一定是偶环,因为如果是奇环的话,会推出原向量组中存在 v 环,这是不可能的。

可以发现奇环的特点是在所有向量都加上 v 后会偏移 v, 而偶环的特点是不动。记所有向量加上向量 v 之前的线性基为 A, 加入后位 B, 那么所有偶环都落在 A 和 B 的交上,而所有奇环都落在 B 对 A 的 差上(最后还得减去 v)。

4.15.2 区间操作 + 线性基

线性基与区间操作的结合比较容易。

如果有单点修改操作,需要将线性基丢到线段树上维护,这样每次操作上推的时间复杂度为 $O(m^3/64)$,一次线段树操作涉及 $\log_2 n$ 次上推,因此每次操作时间复杂度高达 $O((m^3/64)\log_2 n)$,很慢。

如果有区间修改操作。我们可以计算差量数组后转成单点问题。对于给定向量 a_1,\ldots,a_n ,得到的差分量 $b_i=a_i-a_{i-1}$,其中认为 $a_0=0$ 。此时可以证明 a_l,b_{l+1},\ldots,b_r 张成的线性子空间与 a_l,a_{l+1},\ldots,a_r 张成的线性子空间相同。对于不同的区间操作可以采用不同的策略:

- 区间赋值操作, 实际上等价于 b_l, b_{r+1} 修改, b_{l+1}, \ldots, b_r 全部清 0。
- 区间加法操作,等价于 b_l , b_{r+1} 修改,其余元素不变。
- 区间查询操作,查出 b_{l+1},\ldots,b_r 组成的线性子空间后把 a_l 插入即可。

题目 1: 给定 n 个元素 a_1, \ldots, a_n , 以及 m 个查询,第 i 个查询要求判断是否存在一个 a_{l_i}, \ldots, a_{r_i} 的子集,其异或和正好等于 x_i 。其中 $1 \le n, m \le 10^6$,且 $0 \le a_i < 2^{60}$ 。

我们可以在基础的线性基上加上一个过期时间的概念。假设当前的基为 B,当插入一个新元素 e 时,如果这个元素不存在之前,那么新的基为 B+e。否则必定存在 B 的某个子集 b,使得子集中所有元素的 异或和等于 e。这时候类似于我们用 LCT 维护动态最小生成树的方式,我们选择一个在 e 之前过期的 b 中元素 t 进行替代(如果有多个,则选择最早过期的)。这时候最新的基为 B-t+e。接下来我们考虑如何处理询问某个元素是否在基中。

接下来在时间点 y 的时候判断 x 是否处于 B 张开的空间中。我们只需要找出异或和为 x 的子集 b 中最早过期的元素,判断它是否在 y 或之前过期。

回到问题,当我们有这样一个数据结构的时候,我们只需要维护一个带过期时间的线性基。之后我们离线请求。之后我们将前面提到的将 a_i 的过期时间设置为 i+1。我们按照 i 的顺序插入 a_i 。当插入 a_i 后我们回答所有右边界为 i 的请求,即判断线性基在时间 l 的时候是包含元素 x。

时间复杂度为 $O((n+m)\log_2 M)$ 。

4.15.3 线性基与线性子空间的双射关系

42

给定线性基B,可以唯一的确定其展开的子空间S。但是一般给定子空间,是不能唯一确定线性基的。因为同一个子空间中可能有多个线性基。

考虑给定子空间,确定其中的一组线性基。我们可以先找到其中一组最大线性无关组,之后进行高斯消元,将矩阵化成上三角形,且满足每个向量的最高位的 1 是唯一的,换言之如果向量 x 的最高位为第 k 位,则其余向量的第 k 位全为 0。这是很容易做到的。

之后考虑这种形式的线性基的特点,我们将线性基中所有向量按照最高位出现的位置进行排序,分别记作 $x^{(1)}, x^{(2)}, \ldots, x^{(t)}$ 。这时候可以发现张开的子空间(我们把 0 视作第 0 小的)中第 1 小的元素为 $x^{(1)}$,第二小的为 $x^{(2)}$,之后是 $x^{(1)}+x^{(2)}$ 。可以发现这很类似于二进制进位的规则。因此第 k 小的向量为 $\sum_{i=1}^t [k_i=1] x^{(i)}$,其中 k_i 表示 k 的二进制第 i 位。如果两个线性基张开的子空间相同,则基中最小的向量一定相同,第 2^i 小的向量也一定相同,因此所有向量都一一匹配。这时候可以发现线性基和子空间存在一个双射关系,其中线性基中第 i 小的元素为线性子空间中第 2^i 小的向量。

题目 1: 给定所有小于等于 k 的数,它们组成的线性空间中存在多少个不同的线性子空间。其中 $1 \le k < 2^{60}$,结果对素数 p 取模。

我们可以通过上面提到的高斯消元法,利用线性基和线性子空间的——对应关系,枚举线性基来枚举 线性子空间。

做法类似于数位 dp, 记 dp(i, j, ceil) 表示前 i 个二进制,前 j 个线性基,ceil = 1 表示最大值正好等于 k。这样时间复杂度和空间复杂度都是 $O(2 \times 60^2)$ 。

题目 2: 给定 n 个数 a_1, \ldots, a_n , 要求计算它们所有非空子集异或和中第 k 大的元素。

上面的高斯消元法得到的线性基 x_1, \ldots, x_t , 答案为 $\sum_{i=1}^t [k_i = 1] x^{(i)}$.

4.15.4 线性基下的最大最小运算

给定一个线性基 L,把它消成上三角矩阵后,记 L_i 表示最高二进制为第 i 位的向量,它可能不存在。 L 张开的线性子空间为 V。

接下来记:

- $M(x) = \max\{y \oplus x || y \in V\}$
- $m(x) = \min \{ y \oplus x || y \in V \}$

下面我们证明它们满足如下运算规则:

1. $M(x) \oplus M(y) = m(x \oplus y)$ 2. $m(x) \oplus m(y) = m(x \oplus y)$ 3. $M(x) \oplus m(y) = M(x \oplus y)$ 先证明第一条:

考虑 $M(x) = x \oplus X$, $M(y) = y \oplus Y$, $m(x \oplus y) = x \oplus X \oplus y \oplus Y'$ 。其中 $X, Y, Y' \in V$ 。

通过反证法,假设二者不同,记 k 是 $M(x) \oplus M(y)$ 与 $m(x \oplus y)$ 不同的位中最高的一位,此时一定有前者为 1,后者为 0 (根据 m 运算的定义),且 Y 与 Y' 第 k 位不同。那么 Y 和 Y' 除了后 k 位可能不同以外,其它位应该完全相同。由于 Y 和 Y' 的第 k 位不同,因此可以断定 $x \oplus X$ 的第 k 位一定为 1(否则这时候 L_k 不存在,那么 Y 和 Y' 的第 k 位由更高位所决定,而它们更高位完全一致,因此它们的第 k 位应该也完全相同)。这时候 $Y \oplus y$ 的第 k 位是 0,而 $Y \oplus y'$ 的第 k 位为 1,这时候有 $M(Y) = Y \oplus y < Y \oplus y'$,这与 M 的定义相悖。因此假设不成立。

之后考虑第二条(证明类似):

考虑 $m(x) = x \oplus X$, $m(y) = y \oplus Y$, $m(x \oplus y) = x \oplus X \oplus y \oplus Y'$ 。其中 $X, Y, Y' \in V$ 。

通过反证法,假设二者不同,记 $k \in m(x) \oplus m(y)$ 与 $m(x \oplus y)$ 不同的位中最高的一位,此时一定有前者为 1,后者为 0(根据 m 运算的定义),且 Y 与 Y' 第 k 位不同。那么 Y 和 Y' 除了后 k 位可能不同以外,其它位应该完全相同。由于 Y 和 Y' 的第 k 位不同,因此可以断定 $x \oplus X$ 的第 k 位一定为 0(否则这

4.16 矩阵快速幂 43

时候 L_k 不存在,那么 Y 和 Y' 的第 k 位由更高位所决定,而它们更高位完全一致,因此它们的第 k 位应该也完全相同)。这时候 $Y \oplus y$ 的第 k 位是 1,而 $Y \oplus y'$ 的第 k 位为 0,这时候有 $m(Y) = Y \oplus y > Y \oplus y'$,这与 m 的定义相悖。因此假设不成立。

之后考虑证明第三条(证明类似):

考虑 $M(x)=x\oplus X\,,\ m(y)=y\oplus Y\,,\ M(x\oplus y)=x\oplus X\oplus y\oplus Y'\,.$ 其中 $X,Y,Y'\in V\,.$

通过反证法,假设二者不同,记 k 是 $M(x) \oplus m(y)$ 与 $M(x \oplus y)$ 不同的位中最高的一位,此时一定有前者为 0,后者为 1 (根据 M 运算的定义),且 Y 与 Y' 第 k 位不同。那么 Y 和 Y' 除了后 k 位可能不同以外,其它位应该完全相同。由于 Y 和 Y' 的第 k 位不同,因此可以断定 $x \oplus X$ 的第 k 位一定为 1 (否则这时候 L_k 不存在,那么 Y 和 Y' 的第 k 位由更高位所决定,而它们更高位完全一致,因此它们的第 k 位应该也完全相同)。这时候 $Y \oplus y$ 的第 k 位是 1,而 $Y \oplus y'$ 的第 k 位为 0,这时候有 $m(Y) = Y \oplus y > Y \oplus y'$,这与 m 的定义相悖。因此假设不成立。

4.16 矩阵快速幂

```
constexpr 11 \mod = 2147493647;
2
  struct Mat {
3
       int n, m;
4
       vector<vector<ll>> mat;
5
       Mat(int n, int m) : n(n), m(n), mat(n, vector<ll>(m, 0)) {}
6
       Mat(vector<vector<1l>> mat) : n(mat.size()), m(mat[0].size()), mat(mat) {}
7
       Mat operator*(const Mat& other) {
8
           assert(m == other.n);
9
           Mat res(n, other.m);
10
           for (int i = 0; i < res.n; i++)</pre>
               for (int j = 0; j < res.m; j++)
11
12
                    for (int k = 0; k < m; k++)
13
                        res.mat[i][j] = (res.mat[i][j] + mat[i][k] * other.mat[k][j] % mod) %
                             mod;
14
           return res;
15
       }
16 };
17 Mat ksm(Mat a, 11 b) {
18
       assert(a.n == a.m);
19
       Mat res(a.n, a.m);
20
       for (int i = 0; i < res.n; i++) res.mat[i][i] = 1;</pre>
21
       while (b) {
22
           if (b & 1) res = res * a;
23
           b >>= 1;
24
           a = a * a;
25
26
       return res;
27
```

5 计算几何

5.1 整数

```
1 constexpr double inf = 1e100;
2
3
  // 向量
  struct vec {
4
5
      static bool cmp(const vec &a, const vec &b) { return tie(a.x, a.y) < tie(b.x, b.y); }</pre>
6
7
      11 x, y;
8
      vec() : x(0), y(0) {}
9
      vec(11 _x, 11 _y) : x(_x), y(_y) {}
10
      vec rotleft() const { return {-y, x}; }
11
12
      vec rotright() const { return {y, -x}; }
13
      // 模
14
      11 len2() const { return x * x + y * y; }
15
16
      double len() const { return sqrt(x * x + y * y); }
17
18
      // 是否在上半轴
19
      bool up() const { return y > 0 \mid | y == 0 && x >= 0; }
20
21
      bool operator==(const vec &b) const { return tie(x, y) == tie(b.x, b.y); }
22
      // 极角排序
23
      bool operator<(const vec &b) const {</pre>
24
          if (up() != b.up()) return up() > b.up();
25
          11 tmp = (*this) ^ b;
26
          return tmp ? tmp > 0 : cmp(*this, b);
27
28
29
      vec operator+(const vec &b) const { return {x + b.x, y + b.y}; }
30
      vec operator-() const { return {-x, -y}; }
31
      vec operator-(const vec &b) const { return -b + (*this); }
32
      vec operator*(11 b) const { return {x * b, y * b}; }
      11 operator*(const vec &b) const { return x * b.x + y * b.y; }
33
34
35
      // 叉积 结果大于0, a到b为逆时针, 小于0, a到b顺时针,
36
      // 等于0共线,可能同向或反向,结果绝对值表示 a b 形成的平行四边行的面积
37
      11 operator^(const vec &b) const { return x * b.y - y * b.x; }
38
39
      friend istream &operator>>(istream &in, vec &data) {
40
          in >> data.x >> data.y;
          return in;
41
42
43
      friend ostream &operator<<(ostream &out, const vec &data) {</pre>
44
          out << fixed << setprecision(6);</pre>
          out << data.x << " " << data.y;
45
46
          return out;
47
      }
48 };
```

5.1 整数 45

```
49
50 11 cross(const vec &a, const vec &b, const vec &c) { return (a - c) ^ (b - c); }
51
   // 多边形的面积a
52
53
   double polygon_area(vector<vec> &p) {
54
       11 \text{ area} = 0;
55
       for (int i = 1; i < p.size(); i++) area += p[i - 1] ^ p[i];</pre>
56
       area += p.back() ^ p[0];
57
       return abs(area / 2.0);
58
59
   // 多边形的周长
60
61
   double polygon_len(vector<vec> &p) {
62
       double len = 0;
       for (int i = 1; i < p.size(); i++) len += (p[i - 1] - p[i]).len();</pre>
63
64
       len += (p.back() - p[0]).len();
65
       return len;
66
67
   // 以整点为顶点的线段上的整点个数
68
69 11 count(const vec &a, const vec &b) {
70
       vec c = a - b;
71
       return gcd(abs(c.x), abs(c.y)) + 1;
72 }
73
74
   // 以整点为顶点的多边形边上整点个数
75 | 11 count(vector<vec> &p) {
76
       11 \text{ cnt} = 0;
77
       for (int i = 1; i < p.size(); i++) cnt += count(p[i - 1], p[i]);</pre>
78
       cnt += count(p.back(), p[0]);
79
       return cnt - p.size();
80
81
82
   // 判断点是否在凸包内, 凸包必须为逆时针顺序
   bool in_polygon(const vec &a, vector<vec> &p) {
84
       int n = p.size();
85
       if (n == 0) return 0;
86
       if (n == 1) return a == p[0];
87
       if (n == 2) return cross(a, p[1], p[0]) == 0 && <math>(p[0] - a) * (p[1] - a) <= 0;
88
       if (cross(a, p[1], p[0]) > 0 || cross(p.back(), a, p[0]) > 0) return 0;
89
       auto cmp = [\&](\text{vec }\&x, \text{const vec }\&y) \{ \text{return } ((x - p[0]) ^ y) >= 0; \};
90
       int i = lower_bound(p.begin() + 2, p.end() - 1, a - p[0], cmp) - p.begin() - 1;
       return cross(p[(i + 1) % n], a, p[i]) >= 0;
91
92
93
   // 凸包直径的两个端点
   auto polygon dia(vector<vec> &p) {
95
96
       int n = p.size();
97
       array<vec, 2> res{};
98
       if (n == 1) return res;
99
       if (n == 2) return res = {p[0], p[1]};
100
       11 mx = 0;
```

```
101
        for (int i = 0, j = 2; i < n; i++) {
102
            while (abs(cross(p[i], p[(i + 1) % n], p[j])) <=</pre>
                   abs(cross(p[i], p[(i + 1) % n], p[(j + 1) % n])))
103
104
                j = (j + 1) \% n;
105
            ll tmp = (p[i] - p[j]).len2();
106
            if (tmp > mx) {
107
                mx = tmp;
108
                res = \{p[i], p[j]\};
109
            tmp = (p[(i + 1) % n] - p[j]).len2();
110
111
            if (tmp > mx) {
112
                mx = tmp;
113
                res = \{p[(i + 1) \% n], p[j]\};
114
            }
115
        }
116
        return res;
117 }
118
119
   // 凸包
120
   auto convex_hull(vector<vec> &p) {
121
        sort(p.begin(), p.end(), vec::cmp);
122
        int n = p.size();
123
        vector sta(n + 1, 0);
124
        vector v(n, false);
125
        int tp = -1;
126
        sta[++tp] = 0;
127
        auto update = [&](int lim, int i) {
            while (tp > lim && cross(p[i], p[sta[tp]], p[sta[tp - 1]]) >= 0) v[sta[tp--]] =
128
                0;
129
            sta[++tp] = i;
130
            v[i] = 1;
131
        };
132
        for (int i = 1; i < n; i++) update(0, i);</pre>
133
        int cnt = tp;
134
        for (int i = n - 1; i >= 0; i--) {
135
            if (v[i]) continue;
136
            update(cnt, i);
137
        }
138
        vector<vec> res(tp);
139
        for (int i = 0; i < tp; i++) res[i] = p[sta[i]];</pre>
140
        return res;
141
142
   // 闵可夫斯基和,两个点集的和构成一个凸包
143
144
   auto minkowski(vector<vec> &a, vector<vec> &b) {
145
        rotate(a.begin(), min_element(a.begin(), a.end(), vec::cmp), a.end());
146
        rotate(b.begin(), min_element(b.begin(), b.end(), vec::cmp), b.end());
147
        int n = a.size(), m = b.size();
148
        vector<vec> c{a[0] + b[0]};
149
        c.reserve(n + m);
150
        int i = 0, j = 0;
151
        while (i < n && j < m) {
```

5.1 整数 47

```
152
           vec x = a[(i + 1) \% n] - a[i];
153
           vec y = b[(j + 1) \% m] - b[j];
154
           c.push_back(c.back() + ((x ^ y) >= 0 ? (i++, x) : (j++, y)));
155
156
       while (i + 1 < n) {
157
           c.push_back(c.back() + a[(i + 1) % n] - a[i]);
158
159
       }
160
       while (j + 1 < m) {
161
           c.push_back(c.back() + b[(j + 1) \% m] - b[j]);
162
           j++;
163
164
       return c;
165
166
167
   // 过凸多边形外一点求凸多边形的切线,返回切点下标
168
   auto tangent(const vec &a, vector<vec> &p) {
169
       int n = p.size();
170
       int l = -1, r = -1;
       for (int i = 0; i < n; i++) {
171
172
           ll tmp1 = cross(p[i], p[(i - 1 + n) % n], a);
173
           11 \text{ tmp2} = cross(p[i], p[(i + 1) % n], a);
174
           if (1 == -1 \&\& tmp1 <= 0 \&\& tmp2 <= 0) 1 = i;
175
           else if (r == -1 \&\& tmp1 >= 0 \&\& tmp2 >= 0) r = i;
176
177
       return array{1, r};
178
179
180 // 直线
181
   struct line {
182
       vec p, d;
183
       line() {}
184
       line(const vec &a, const vec &b) : p(a), d(b - a) {}
185
   };
186
187
   // 点到直线距离
188
   double dis(const vec &a, const line &b) { return abs((b.p - a) ^ (b.p + b.d - a)) / b.d.
       len(); }
189
   // 点在直线哪边,大于0在左边,等于0在线上,小于0在右边
190
191 ll side_line(const vec &a, const line &b) { return b.d ^ (a - b.p); }
192
193 // 两直线是否垂直
194
   bool perpen(const line &a, const line &b) { return a.d * b.d == 0; }
195
196
   // 两直线是否平行
197
   bool parallel(const line &a, const line &b) { return (a.d ^ b.d) == 0; }
198
199 // 点的垂线是否与线段有交点
200
   bool perpen(const vec &a, const line &b) {
201
       vec p(-b.d.y, b.d.x);
202
       bool cross1 = (p \land (b.p - a)) > 0;
```

```
203
       bool cross2 = (p ^ (b.p + b.d - a)) > 0;
       return cross1 != cross2;
204
205
206
207
   // 点到线段距离
208
   double dis_seg(const vec &a, const line &b) {
209
       if (perpen(a, b)) return dis(a, b);
       return min((b.p - a).len(), (b.p + b.d - a).len());
210
211
212
213
   // 点到凸包距离
   double dis(const vec &a, vector<vec> &p) {
214
215
       double res = inf;
       for (int i = 1; i < p.size(); i++) res = min(dis_seg(a, line(p[i - 1], p[i])), res);</pre>
216
217
       res = min(dis_seg(a, line(p.back(), p[0] - p.back())), res);
218
       return res;
219
220
221
   // 两直线交点
   vec intersection(ll A, ll B, ll C, ll D, ll E, ll F) {
222
223
       return {(B * F - C * E) / (A * E - B * D), (C * D - A * F) / (A * E - B * D)};
224
225
226
   // 两直线交点
227
   vec intersection(const line &a, const line &b) {
228
       return intersection(a.d.y, -a.d.x, a.d.x * a.p.y - a.d.y * a.p.x, b.d.y, -b.d.x,
229
                            b.d.x * b.p.y - b.d.y * b.p.x);
230
```

5.2 浮点数

```
1
  using lf = double;
2
3
  constexpr lf eps = 1e-8;
 4
  constexpr lf inf = 1e100;
  const lf PI = acos(-1);
5
6
 7
  int sgn(lf a, lf b) {
8
       lf c = a - b;
9
       return c < -eps ? -1 : c > eps ? 1 : 0;
10
11
12
  // 向量
13
  struct vec {
14
       static bool cmp(const vec &a, const vec &b) {
           return sgn(a.x, b.x)? a.x < b.x: sgn(a.y, b.y) < 0;
15
16
       }
17
18
       If x, y;
19
       vec() : x(0), y(0) \{ \}
20
       vec(lf _x, lf _y) : x(_x), y(_y) {
```

5.2 浮点数 49

```
21
          if (sgn(y, 0) == 0) y = 0;
22
      }
23
      // 模
24
25
      1f len2() const { return x * x + y * y; }
26
      lf len() const { return sqrt(x * x + y * y); }
27
      // 与×轴正方向的夹角
28
29
      lf angle() const {
30
          lf angle = atan2(y, x);
          if (angle < 0) angle += 2 * PI;</pre>
31
32
          return angle;
33
      }
34
      // 逆时针旋转
35
36
      vec rotate(const 1f &theta) const {
37
          lf sint = sin(theta);
38
          lf cost = cos(theta);
39
          return {x * cost - y * sint, x * sint + y * cost};
40
      }
41
      vec rotleft() const { return {-y, x}; }
42
43
44
      vec rotright() const { return {y, -x}; }
45
46
      vec e() const {
47
          lf tmp = len();
48
          return {x / tmp, y / tmp};
49
      }
50
51
      // 是否在上半轴
52
      bool up() const { return sgn(y, 0) > 0 | | sgn(y, 0) == 0 && sgn(x, 0) >= 0; }
53
      bool operator == (const vec &other) const { return sgn(x, other.x) == 0 && sgn(y, other
54
          .y) == 0; }
55
      // 极角排序
56
57
      bool operator<(const vec &b) const {</pre>
58
          if (up() != b.up()) return up() > b.up();
59
          lf tmp = (*this) ^ b;
60
          return sgn(tmp, 0) ? tmp > 0 : cmp(*this, b);
61
      }
62
63
      vec operator+(const vec &b) const { return {x + b.x, y + b.y}; }
64
      vec operator-() const { return {-x, -y}; }
65
      vec operator-(const vec &b) const { return -b + (*this); }
66
      vec operator*(lf b) const { return {x * b, y * b}; }
67
      vec operator/(lf b) const { return {x / b, y / b}; }
68
      lf operator*(const vec &b) const { return x * b.x + y * b.y; }
69
70
      // 叉积 结果大于0, a到b为逆时针, 小于0, a到b顺时针,
71
      // 等于0共线,可能同向或反向,结果绝对值表示 a b 形成的平行四边行的面积
```

```
72
        lf operator^(const vec &b) const { return x * b.y - y * b.x; }
73
74
        friend istream &operator>>(istream &in, vec &data) {
75
            in >> data.x >> data.y;
76
            return in;
77
78
       friend ostream &operator<<(ostream &out, const vec &data) {</pre>
79
            out << fixed << setprecision(6);</pre>
80
            out << data.x << " " << data.y;
81
            return out;
82
        }
83
   };
84
85
   lf cross(const vec &a, const vec &b, const vec &c) { return (a - c) ^ (b - c); }
86
87
   lf angle(const vec &a, const vec &b) { return atan2(abs(a ^ b), a * b); }
88
89
   // 多边形的面积
90 | 1f polygon_area(vector<vec> &p) {
91
       If area = 0;
92
        for (int i = 1; i < p.size(); i++) area += p[i - 1] ^ p[i];</pre>
93
        area += p.back() ^ p[0];
94
        return abs(area / 2.0);
95
96
   // 多边形的周长
97
98 | 1f polygon_len(vector<vec> &p) {
99
        If len = 0;
100
        for (int i = 1; i < p.size(); i++) len += (p[i - 1] - p[i]).len();
101
        len += (p.back() - p[0]).len();
102
        return len;
103
104
   // 判断点是否在凸包内, 凸包必须为逆时针顺序
105
106
   bool in_polygon(const vec &a, vector<vec> &p) {
107
        int n = p.size();
108
        if (n == 0) return 0;
109
        if (n == 1) return a == p[0];
110
        if (n == 2) return sgn(cross(a, p[1], p[0]), 0) == 0 && <math>sgn((p[0] - a) * (p[1] - a),
           0) <= 0;
        if (sgn(cross(a, p[1], p[0]), 0) > 0 \mid | sgn(cross(p.back(), a, p[0]), 0) > 0) return
111
112
        auto cmp = [\&](\text{vec }\&x, \text{ const vec }\&y) \{ \text{ return } \text{sgn}((x - p[0]) ^ y, 0) >= 0; \};
113
        int i = lower_bound(p.begin() + 2, p.end() - 1, a - p[0], cmp) - p.begin() - 1;
114
        return sgn(cross(p[(i + 1) % n], a, p[i]), 0) >= 0;
115
   }
116
117
   // 凸包直径的两个端点
118
   auto polygon_dia(vector<vec> &p) {
119
        int n = p.size();
120
        array<vec, 2> res{};
121
        if (n == 1) return res;
```

5.2 浮点数 51

```
122
        if (n == 2) return res = {p[0], p[1]};
123
        1f mx = 0;
124
        for (int i = 0, j = 2; i < n; i++) {
125
            while (sgn(abs(cross(p[i], p[(i + 1) % n], p[j])),
126
                        abs(cross(p[i], p[(i + 1) % n], p[(j + 1) % n])) <= 0)
127
                j = (j + 1) \% n;
128
            lf tmp = (p[i] - p[j]).len();
129
            if (tmp > mx) {
130
                mx = tmp;
131
                res = {p[i], p[j]};
132
            tmp = (p[(i + 1) % n] - p[j]).len();
133
134
            if (tmp > mx) {
135
                mx = tmp;
136
                res = \{p[(i + 1) \% n], p[j]\};
137
            }
138
139
       return res;
140 }
141
142
   // 凸包
143
   auto convex_hull(vector<vec> &p) {
144
        sort(p.begin(), p.end(), vec::cmp);
145
        int n = p.size();
146
       vector sta(n + 1, 0);
147
        vector v(n, false);
148
        int tp = -1;
149
        sta[++tp] = 0;
150
        auto update = [&](int lim, int i) {
            while (tp > lim && sgn(cross(p[i], p[sta[tp]], p[sta[tp - 1]]), 0) >= 0) v[sta[tp]]
151
                --]] = 0;
152
            sta[++tp] = i;
153
            v[i] = 1;
154
        };
155
        for (int i = 1; i < n; i++) update(0, i);</pre>
156
        int cnt = tp;
157
        for (int i = n - 1; i >= 0; i --) {
            if (v[i]) continue;
158
159
            update(cnt, i);
160
161
        vector<vec> res(tp);
162
        for (int i = 0; i < tp; i++) res[i] = p[sta[i]];</pre>
163
        return res;
164
165
   // 闵可夫斯基和,两个点集的和构成一个凸包
166
   auto minkowski(vector<vec> &a, vector<vec> &b) {
167
168
        rotate(a.begin(), min_element(a.begin(), a.end(), vec::cmp), a.end());
169
        rotate(b.begin(), min_element(b.begin(), b.end(), vec::cmp), b.end());
170
        int n = a.size(), m = b.size();
171
        vector<vec> c{a[0] + b[0]};
172
       c.reserve(n + m);
```

```
173
       int i = 0, j = 0;
174
       while (i < n && j < m) {
175
           vec x = a[(i + 1) \% n] - a[i];
           vec y = b[(j + 1) \% m] - b[j];
176
177
           c.push_back(c.back() + (sgn(x ^ y, 0) >= 0 ? (i++, x) : (j++, y)));
178
       while (i + 1 < n) {
179
           c.push_back(c.back() + a[(i + 1) % n] - a[i]);
180
181
           i++;
182
       }
       while (j + 1 < m) {
183
184
           c.push_back(c.back() + b[(j + 1) % m] - b[j]);
185
186
187
       return c;
188
189
190
   // 过凸多边形外一点求凸多边形的切线,返回切点下标
191
   auto tangent(const vec &a, vector<vec> &p) {
       int n = p.size();
192
193
       int l = -1, r = -1;
       for (int i = 0; i < n; i++) {
194
195
           lf tmp1 = cross(p[i], p[(i - 1 + n) % n], a);
196
           lf tmp2 = cross(p[i], p[(i + 1) % n], a);
197
           if (1 == -1 \&\& sgn(tmp1, 0) <= 0 \&\& sgn(tmp2, 0) <= 0) 1 = i;
           else if (r == -1 \&\& sgn(tmp1, 0) >= 0 \&\& sgn(tmp2, 0) >= 0) r = i;
198
199
       }
200
       return array{1, r};
201 }
202
203 // 直线
204
   struct line {
205
       vec p, d;
206
       line() {}
207
       line(const vec &a, const vec &b) : p(a), d(b - a) {}
208
   };
209
210 // 点到直线距离
211 If dis(const vec &a, const line &b) { return abs((b.p - a) ^ (b.p + b.d - a)) / b.d.len()
       ; }
212
213 // 点在直线哪边,大于0在左边,等于0在线上,小于0在右边
214 int side line(const vec &a, const line &b) { return sgn(b.d ^ (a - b.p), 0); }
215
216 // 两直线是否垂直
217 bool perpen(const line &a, const line &b) { return sgn(a.d * b.d, 0) == 0; }
218
   // 两直线是否平行
219
220 bool parallel(const line &a, const line &b) { return sgn(a.d ^ b.d, 0) == 0; }
221
222 // 点的垂线是否与线段有交点
223 bool perpen(const vec &a, const line &b) {
```

5.2 浮点数 53

```
224
       vec p(-b.d.y, b.d.x);
225
       bool cross1 = sgn(p \land (b.p - a), 0) > 0;
226
       bool cross2 = sgn(p \land (b.p + b.d - a), 0) > 0;
       return cross1 != cross2;
227
228
229
230
   // 点到线段距离
   lf dis_seg(const vec &a, const line &b) {
231
232
       if (perpen(a, b)) return dis(a, b);
233
       return min((b.p - a).len(), (b.p + b.d - a).len());
234
235
236
   // 点到凸包距离
   lf dis(const vec &a, vector<vec> &p) {
237
238
       lf res = inf;
239
       for (int i = 1; i < p.size(); i++) res = min(dis_seg(a, line(p[i - 1], p[i] - p[i] -
240
       res = min(dis seg(a, line(p.back(), p[0] - p.back())), res);
241
       return res;
242
243
244
   // 两直线交点
245
   vec intersection(lf A, lf B, lf C, lf D, lf E, lf F) {
246
       return {(B * F - C * E) / (A * E - B * D), (C * D - A * F) / (A * E - B * D)};
247
248
249 // 两直线交点
250
   vec intersection(const line &a, const line &b) {
251
       return intersection(a.d.y, -a.d.x, a.d.x * a.p.y - a.d.y * a.p.x, b.d.y, -b.d.x,
252
                            b.d.x * b.p.y - b.d.y * b.p.x);
253
254
255
   struct circle {
256
       vec o;
257
       lf r;
258
       circle(const vec &_o, lf _r) : o(_o), r(_r){};
259
       circle(const vec &a, const vec &b, const vec &c) {
260
            line u((a + b) / 2, (a + b) / 2 + (b - a).rotleft());
261
            line v((b + c) / 2, (b + c) / 2 + (c - b).rotleft());
            o = intersection(u, v);
262
263
            r = (o - a).len();
264
       }
265
       // 内切圆
266
       circle(const vec &a, const vec &b, const vec &c, bool t) {
267
            line u, v;
268
            double m = atan2(b.y - a.y, b.x - a.x), n = atan2(c.y - a.y, c.x - a.x);
269
            u.p = a;
270
            u.d = vec(cos((n + m) / 2), sin((n + m) / 2));
271
            v.p = b;
272
            m = atan2(a.y - b.y, a.x - b.x), n = atan2(c.y - b.y, c.x - b.x);
273
            v.d = vec(cos((n + m) / 2), sin((n + m) / 2));
274
            o = intersection(u, v);
```

```
275
           r = dis_seg(o, line(a, b));
276
       }
277
       // 点与圆的关系 -1在圆内, 0在圆上, 1在圆外
278
279
       int relation(const vec &a) const { return sgn((a - o).len(), r); }
280
281
       // 圆与圆的关系 -3包含, -2内切, -1相交, 0外切, 1相离
       int relation(const circle &a) const {
282
           lf 1 = (a.o - o).len();
283
           if (sgn(1, abs(r - a.r)) < 0) return -3;
284
           if (sgn(1, abs(r - a.r)) == 0) return -2;
285
           if (sgn(1, abs(r + a.r)) < 0) return -1;
286
287
           if (sgn(1, abs(r + a.r)) == 0) return 0;
288
           return 1;
289
       }
290
291
       lf area() { return PI * r * r; }
292
   };
293
294
   // 圆与圆交点
295
   auto intersection(const circle &a, const circle &b) {
296
       int rel = a.relation(b);
297
       vector<vec> res;
298
       if (rel == -3 || rel == 1) return res;
299
       vec o = b.o - a.o;
       lf l = (o.len2() + a.r * a.r - b.r * b.r) / (2 * o.len());
300
301
       lf h = sqrt(a.r * a.r - 1 * 1);
302
       o = o.e();
303
       vec tmp = a.o + o * 1;
       if (rel == -2 || rel == 0) res.push_back(tmp);
304
305
306
           res.push back(tmp + o.rotleft() * h);
307
           res.push_back(tmp + o.rotright() * h);
308
309
       return res;
310
311
312
   // 圆与直线交点
313
   auto intersection(const circle &c, const line &l) {
314
       lf d = dis(c.o, 1);
315
       vector<vec> res;
316
       vec mid = 1.p + 1.d.e() * ((c.o - 1.p) * 1.d / 1.d.len());
317
       if (sgn(d, c.r) == 0) res.push back(mid);
318
       else if (sgn(d, c.r) < 0) {
319
           d = sqrt(c.r * c.r - d * d);
           res.push back(mid + 1.d.e() * d);
320
321
           res.push back(mid - l.d.e() * d);
322
323
       return res;
324
   }
325
326 // oab 三角形与圆相交的面积
```

5.2 浮点数 55

```
327
   lf area(const circle &c, const vec &a, const vec &b) {
328
        if (sgn(cross(a, b, c.o), 0) == 0) return 0;
329
       vector<vec> p;
        p.push_back(a);
330
331
        line l(a, b);
332
        auto tmp = intersection(c, 1);
333
        if (tmp.size() == 2) {
334
            for (auto &i : tmp)
                if (sgn((a - i) * (b - i), 0) < 0) p.push_back(i);
335
336
337
        p.push_back(b);
       if (p.size() == 4 \& sgn((p[0] - p[1]) * (p[2] - p[1]), 0) > 0) swap(p[1], p[2]);
338
339
       If res = 0;
        for (int i = 1; i < p.size(); i++)</pre>
340
341
            if (c.relation(p[i - 1]) == 1 || c.relation(p[i]) == 1) {
342
                lf ang = angle(p[i - 1] - c.o, p[i] - c.o);
343
                res += c.r * c.r * ang / 2;
            } else res += abs(cross(p[i - 1], p[i], c.o)) / 2.0;
344
345
        return res;
346
347
   // 多边形与圆相交的面积
348
349 If area(vector<vec> &p, circle c) {
350
       If res = 0;
351
       for (int i = 0; i < p.size(); i++) {</pre>
352
            int j = i + 1 == p.size() ? 0 : i + 1;
353
            if (sgn(cross(p[i], p[j], c.o), 0) <= 0) res += area(c, p[i], p[j]);</pre>
354
            else res -= area(c, p[i], p[j]);
355
        }
356
       return abs(res);
357 }
```

三维

```
constexpr lf eps = 1e-8;
2
3
  int sgn(lf a, lf b) {
4
      If c = a - b;
5
      return c < -eps ? -1 : c < eps ? 0 : 1;
6
  }
7
8
  // 向量
9
  struct vec3 {
10
      If x, y, z;
11
      vec3() : x(0), y(0), z(0) {}
12
      vec3(lf _x, lf _y, lf _z) : x(_x), y(_y), z(_z) {}
13
       // 模
14
15
      1f len2() const { return x * x + y * y + z * z; }
16
      lf len() const { return hypot(x, y, z); }
17
       bool operator==(const vec3 &b) const {
18
19
           return sgn(x, b.x) == 0 && sgn(y, b.y) == 0 && sgn(z, b.z) == 0;
```

```
20
21
      bool operator!=(const vec3 &b) const { return !(*this == b); }
22
23
      vec3 operator+(const vec3 &b) const { return \{x + b.x, y + b.y, z + b.z\}; }
24
      vec3 operator-() const { return {-x, -y, -z}; }
25
      vec3 operator-(const vec3 &b) const { return -b + (*this); }
26
      vec3 operator*(lf b) const { return {b * x, b * y, b * z}; }
      lf operator*(const vec3 &b) const { return x * b.x + y * b.y + z * b.z; }
27
28
29
      // 叉积 结果大于0, a到b为逆时针, 小于0, a到b顺时针,
      // 等于0共线, 可能同向或反向, 结果绝对值表示 a b 形成的平行四边行的面积
30
31
      vec3 operator^(const vec3 &b) const {
          return {y * b.z - z * b.y, z * b.x - x * b.z, x * b.y - y * b.x};
32
33
      }
34
35
      friend istream &operator>>(istream &in, vec3 &a) {
36
          in >> a.x >> a.y >> a.z;
37
          return in;
38
39
      friend ostream &operator<<(ostream &out, const vec3 &a) {</pre>
40
          out << fixed << setprecision(6);
          out << a.x << " " << a.y << " " << a.z;
41
42
          return out;
43
44 };
45
46 struct line3 {
47
      vec3 p, d;
48
      line3() {}
49
      line3(const vec3 &a, const vec3 &b) : p(a), d(b - a) {}
50 };
51
52
  struct plane {
53
      vec3 p, d;
      plane() {}
54
      plane(const vec3 &a, const vec3 &b, const vec3 &c) : p(a) {
55
56
          d = (b - a) ^ (c - a);
57
          assert(d != vec3());
58
      }
59 };
60
  // 线面是否垂直
61
62 bool perpen(const line3 &a, const plane &b) { return (a.d ^ b.d) == vec3(); }
63
64 // 线面是否平行
65 bool parallel(const line3 &a, const plane &b) { return sgn(a.d * b.d, 0) == 0; }
66
67 // 线面交点
  vec3 intersection(const line3 &a, const plane &b) {
69
      assert(!parallel(a, b));
70
      double t = (b.p - a.p) * b.d / (a.d * b.d);
71
      return a.p + a.d * t;
```

5.3 扫描线 57

72 }

5.3 扫描线

```
1 #define ls (pos << 1)
2
  #define rs (ls | 1)
3 #define mid ((tree[pos].l + tree[pos].r) >> 1)
  struct Rectangle {
5
       ll x_l, y_l, x_r, y_r;
6
  };
7
  11 area(vector<Rectangle>& rec) {
8
       struct Line {
9
           11 x, y_up, y_down;
           int pd;
10
11
       };
12
       vector<Line> line(rec.size() * 2);
13
       vector<ll> y_set(rec.size() * 2);
       for (int i = 0; i < rec.size(); i++) {</pre>
14
15
           y_set[i * 2] = rec[i].y_l;
           y_set[i * 2 + 1] = rec[i].y_r;
16
17
           line[i * 2] = {rec[i].x_l, rec[i].y_r, rec[i].y_l, 1};
           line[i * 2 + 1] = {rec[i].x_r, rec[i].y_r, rec[i].y_l, -1};
18
19
       }
20
       sort(y_set.begin(), y_set.end());
21
       y_set.erase(unique(y_set.begin(), y_set.end()), y_set.end());
22
       sort(line.begin(), line.end(), [](Line a, Line b) { return a.x < b.x; });</pre>
23
       struct Data {
24
           int 1, r;
25
           11 len, cnt, raw_len;
26
27
       vector<Data> tree(4 * y_set.size());
       function<void(int, int, int)> build = [&](int pos, int 1, int r) {
28
29
           tree[pos].l = 1;
30
           tree[pos].r = r;
31
           if (1 == r) {
32
               tree[pos].raw_len = y_set[r + 1] - y_set[l];
               tree[pos].cnt = tree[pos].len = 0;
33
34
               return;
35
           }
           build(ls, 1, mid);
36
37
           build(rs, mid + 1, r);
38
           tree[pos].raw_len = tree[ls].raw_len + tree[rs].raw_len;
39
       };
       function<void(int, int, int, int)> update = [&](int pos, int l, int r, int num) {
40
41
           if (1 <= tree[pos].1 && tree[pos].r <= r) {</pre>
42
               tree[pos].cnt += num;
43
               tree[pos].len = tree[pos].cnt
                                                               ? tree[pos].raw_len
                                : tree[pos].1 == tree[pos].r ? 0
44
45
                                                               : tree[ls].len + tree[rs].len;
46
               return;
47
           }
```

```
48
           if (1 <= mid) update(ls, 1, r, num);</pre>
49
           if (r > mid) update(rs, l, r, num);
           tree[pos].len = tree[pos].cnt ? tree[pos].raw_len : tree[ls].len + tree[rs].len;
50
51
       };
52
       build(1, 0, y_set.size() - 2);
53
       auto find_pos = [&](11 num) {
           return lower_bound(y_set.begin(), y_set.end(), num) - y_set.begin();
54
55
       };
56
       11 \text{ res} = 0;
       for (int i = 0; i < line.size() - 1; i++) {</pre>
57
           update(1, find_pos(line[i].y_down), find_pos(line[i].y_up) - 1, line[i].pd);
58
           res += (line[i + 1].x - line[i].x) * tree[1].len;
59
60
61
       return res;
62 }
```

5.4 与原点形成的直线扫描

```
void solve() {
 1
2
      int n;
3
       cin >> n;
4
      vector<vec> p(n);
5
       for (auto &i : p) cin >> i;
6
7
       auto f = [](vector<vec> p) {
8
           int n = p.size();
9
           sort(p.begin(), p.end());
10
           p.insert(p.end(), p.begin(), p.begin() + n);
11
           for (int i = 0, j = 0, new i = 0; i < n; i = new) {
12
13
               while (newi < n && (p[newi] ^p[i]) == 0 && p[newi] * p[i] > 0) newi++;
14
               j = max(i, j);
15
               while (j + 1 < i + n && (p[i] ^ p[j + 1]) >= 0) j++;
16
               for (int k = i; k < newi; k++)</pre>
17
                   cout << "第" << i + 1 << "个点与原点形成的直线左边有" << j - i + 1 << "个
                       点 \n";
18
           }
19
       };
20
21
      f(p);
22 }
```

6 杂项

6.1 快读

```
1 namespace IO {
2
  constexpr int N = (1 \leftrightarrow 20) + 1;
3
  char Buffer[N];
4
  int p = N;
5
6
   char& get() {
7
       if (p == N) {
8
           fread(Buffer, 1, N, stdin);
9
           p = 0;
10
       }
11
       return Buffer[p++];
12
13
  template <typename T = int>
14
15
  T read() {
16
       T x = 0;
17
       bool f = 1;
18
       char c = get();
19
       while (!isdigit(c)) {
           f = c != '-';
20
21
           c = get();
22
       }
23
       while (isdigit(c)) {
24
           x = x * 10 + c - '0';
25
           c = get();
26
       }
       return f ? x : -x;
27
28 }
29 }
     // namespace IO
30 using IO::read;
```

6.2 高精度

```
struct bignum {
 1
2
       string num;
3
 4
       bignum() : num("0") {}
5
      bignum(const string& num) : num(num) { reverse(this->num.begin(), this->num.end()); }
 6
       bignum(ll num) : num(to_string(num)) { reverse(this->num.begin(), this->num.end()); }
7
8
       bignum operator+(const bignum& other) {
9
           bignum res;
10
           res.num.pop_back();
           res.num.reserve(max(num.size(), other.num.size()) + 1);
11
12
           for (int i = 0, j = 0, x; i < num.size() || i < other.num.size() || j; i++) {
13
               x = j;
14
               j = 0;
```

```
15
                if (i < num.size()) x += num[i] - '0';</pre>
16
                if (i < other.num.size()) x += other.num[i] - '0';</pre>
17
                if (x >= 10) j = 1, x -= 10;
                res.num.push_back(x + '0');
18
19
20
            res.num.capacity();
21
            return res;
22
       }
23
24
       bignum operator*(const bignum& other) {
25
           vector<int> res(num.size() + other.num.size() - 1, 0);
            for (int i = 0; i < num.size(); i++)</pre>
26
27
                for (int j = 0; j < other.num.size(); j++)</pre>
                    res[i + j] += (num[i] - '0') * (other.num[j] - '0');
28
29
            int g = 0;
30
            for (int i = 0; i < res.size(); i++) {</pre>
31
                res[i] += g;
32
                g = res[i] / 10;
33
                res[i] %= 10;
34
35
           while (g) {
                res.push_back(g % 10);
36
37
                g /= 10;
38
39
            int lim = res.size();
           while (lim > 1 && res[lim - 1] == 0) lim--;
40
41
           bignum res2;
42
            res2.num.resize(lim);
43
           for (int i = 0; i < lim; i++) res2.num[i] = res[i] + '0';</pre>
44
            return res2;
45
       }
46
47
       bool operator<(const bignum& other) {</pre>
48
            if (num.size() == other.num.size())
49
                for (int i = num.size() - 1; i >= 0; i--)
50
                    if (num[i] == other.num[i]) continue;
51
                    else return num[i] < other.num[i];</pre>
52
            return num.size() < other.num.size();</pre>
53
       }
54
55
       friend istream& operator>>(istream& in, bignum& a) {
56
            in >> a.num;
57
            reverse(a.num.begin(), a.num.end());
58
            return in;
59
       }
60
       friend ostream& operator<<(ostream& out, bignum a) {</pre>
61
            reverse(a.num.begin(), a.num.end());
62
            return out << a.num;</pre>
63
       }
64 };
```

6.3 离散化 61

6.3 离散化

```
1
  template <typename T>
2
  struct Hash {
3
       vector<int> S;
 4
       vector<T> a;
5
       Hash(const vector<int>& b) : S(b) {
6
           sort(S.begin(), S.end());
7
           S.erase(unique(S.begin(), S.end()), S.end());
8
           a = vector<T>(S.size());
9
       }
10
       T& operator[](int i) const {
11
           auto pos = lower_bound(S.begin(), S.end(), i) - S.begin();
12
           assert(pos != S.size() && S[pos] == i);
13
           return a[pos];
14
       }
15|};
```

6.4 模运算

```
constexpr int mod = 998244353;
2
3
  template <typename T>
 4
  T power(T a, int b) {
      T res = 1;
5
6
       while (b) {
7
           if (b & 1) res = res * a;
8
           a = a * a;
9
           b >>= 1;
10
11
       return res;
12
13
  struct modint {
14
15
       int x;
       modint(int _x = 0) : x(_x) {
16
17
           if (x < 0) x += mod;
           else if (x >= mod) x -= mod;
18
19
       }
20
       modint inv() const { return power(*this, mod - 2); }
21
       modint operator+(const modint& b) { return x + b.x; }
22
       modint operator-() const { return -x; }
23
       modint operator-(const modint& b) { return -b + *this; }
       modint operator*(const modint& b) { return (ll)x * b.x % mod; }
24
       modint operator/(const modint& b) { return *this * b.inv(); }
25
       friend istream& operator>>(istream& is, modint& other) {
26
27
           11 _x;
28
           is \rightarrow _x;
29
           other = modint(_x);
30
           return is;
31
       }
```

62 6 杂项

```
friend ostream& operator<<(ostream& os, modint other) { return os << other.x; }
};
```

6.5 分数

```
struct frac {
 1
2
      11 a, b;
3
      frac() : a(0), b(1) {}
4
       frac(ll _a, ll _b) : a(_a), b(_b) {
5
           assert(b);
6
           if (a) {
7
               int tmp = gcd(a, b);
8
               a /= tmp;
9
               b /= tmp;
10
           } else *this = frac();
11
12
      frac operator+(const frac& other) { return frac(a * other.b + other.a * b, b * other.
          b); }
13
      frac operator-() const {
14
           frac res = *this;
15
           res.a = -res.a;
16
           return res;
17
       }
18
      frac operator-(const frac& other) const { return -other + *this; }
19
      frac operator*(const frac& other) const { return frac(a * other.a, b * other.b); }
20
      frac operator/(const frac& other) const {
21
           assert(other.a);
22
           return *this * frac(other.b, other.a);
23
       }
24
      bool operator<(const frac& other) const { return (*this - other).a < 0; }</pre>
25
      bool operator<=(const frac& other) const { return (*this - other).a <= 0; }</pre>
26
      bool operator>=(const frac& other) const { return (*this - other).a >= 0; }
27
       bool operator>(const frac& other) const { return (*this - other).a > 0; }
28
       bool operator==(const frac& other) const { return a == other.a && b == other.b; }
29
      bool operator!=(const frac& other) const { return !(*this == other); }
30|};
```

6.6 表达式求值

```
// 格式化表达式
 1
  string format(const string& s1) {
3
      stringstream ss(s1);
4
      string s2;
5
      char ch;
6
      while ((ch = ss.get()) != EOF) {
7
          if (ch == ' ') continue;
          if (isdigit(ch)) s2 += ch;
8
9
          else {
10
               if (s2.back() != ' ') s2 += ' ';
11
               s2 += ch;
```

6.6 表达式求值 63

```
s2 += ' ';
12
13
           }
14
15
       return s2;
16 }
17
  // 中缀表达式转后缀表达式
18
19
  string convert(const string& s1) {
20
       unordered_map<char, int> rank{{'+', 2}, {'-', 2}, {'*', 1}, {'/', 1}, {'^', 0}};
21
       stringstream ss(s1);
22
       string s2, temp;
23
       stack<char> op;
24
       while (ss >> temp) {
           if (isdigit(temp[0])) s2 += temp + ' ';
25
           else if (temp[0] == '(') op.push('(');
26
           else if (temp[0] == ')') {
27
28
               while (op.top() != '(') {
29
                    s2 += op.top();
                    s2 += ' ';
30
31
                    op.pop();
32
               }
33
               op.pop();
34
           } else {
35
               while (!op.empty() && op.top() != '(' &&
36
                       (temp[0] != '^' && rank[op.top()] <= rank[temp[0]] ||</pre>
                        rank[op.top()] < rank[temp[0]])) {</pre>
37
38
                    s2 += op.top();
                    s2 += ' ';
39
40
                    op.pop();
41
42
               op.push(temp[0]);
43
           }
44
45
       while (!op.empty()) {
46
           s2 += op.top();
           s2 += ' ';
47
48
           op.pop();
49
50
       return s2;
51
52
53
  // 计算后缀表达式
54
  int calc(const string& s) {
55
       stack<int> num;
56
       stringstream ss(s);
57
       string temp;
58
       while (ss >> temp) {
59
           if (isdigit(temp[0])) num.push(stoi(temp));
60
           else {
61
               int b = num.top();
62
               num.pop();
63
               int a = num.top();
```

```
64
               num.pop();
               if (temp[0] == '+') a += b;
65
66
               else if (temp[0] == '-') a -= b;
               else if (temp[0] == '*') a *= b;
67
68
               else if (temp[0] == '/') a /= b;
               else if (temp[0] == '^') a = ksm(a, b);
69
70
               num.push(a);
71
           }
72
73
       return num.top();
74 }
```

6.7 日期

```
1 int month[] = {0, 31, 28, 31, 30, 31, 30, 31, 30, 31, 30, 31};
  int pre[13];
3
  vector<int> leap;
4
  struct Date {
5
      int y, m, d;
6
      bool operator<(const Date& other) const {</pre>
7
          return array<int, 3>{y, m, d} < array<int, 3>{other.y, other.m, other.d};
8
9
      Date(const string& s) {
10
          stringstream ss(s);
11
          char ch;
12
          ss >> y >> ch >> m >> ch >> d;
13
      }
14
      int dis() const {
          int yd = (y - 1) * 365 + (upper bound(leap.begin(), leap.end(), y - 1) - leap.
15
          16
17
          return yd + md + d;
18
19
      int dis(const Date& other) const { return other.dis() - dis(); }
20 };
  for (int i = 1; i <= 12; i++) pre[i] = pre[i - 1] + month[2];</pre>
  for (int i = 1; i <= 1000000; i++)
23
      if (i % 4 == 0 && i % 100 || i % 400 == 0) leap.push_back(i);
```

6.8 builtin 函数

如果是 long long 型,记得函数后多加个 ll。

- ctz, 从最低位连续的 0 的个数, 如果传入 0 则行为未定义。
- clz, 从最高位连续的 0 的个数, 如果传入 0 则行为未定义。
- popcount, 二进制 1 的个数。
- parity, 二进制 1 的个数奇偶性。

6.9 对拍 65

6.9 对拍

linux/Mac

```
#!/bin/bash
2
3
  g++ $1 -o a -02
4 g++ $2 -o b -02
5
  g++ random.cpp -o random -02
6
7
  cnt=0
8
  while true; do
9
      let cnt++
10
       echo TEST:$cnt
       ./random > in
11
12
       ./a < in > out.a
13
       ./b < in > out.b
      if ! diff out.a out.b; then break; fi
14
15 done
```

windows

```
@echo off
2
3
  g++ %1 -o a -02
  g++ %2 -o b -02
  g++ random.cpp -o random -02
7
  set cnt=0
8
9
  :again
10
       set /a cnt=cnt+1
       echo TEST:%cnt%
11
12
       .\random > in
13
       .\a < in > out.a
14
       .\b < in > out.b
15
      fc out.a out.b > nul
16 if not errorlevel 1 goto again
```

6.10 编译常用选项

```
1 -fsanitize=address,undefined -Woverflow -Wshadow -Wall -Wextra -Wpedantic -Wfloat-equal
```

6.11 开栈

不同的系统/编译器可能命令不一样

```
1 ulimit -s
2 -Wl,--stack=0x10000000
3 -Wl,-stack_size -Wl,0x10000000
4 -Wl,-z,stack-size=0x10000000
```

6.12 clang-format

转储配置

```
1 clang-format -style=Google -dump-config > ./.clang-format
```

 $. {\it clang-format}$

1 BasedOnStyle: Google

2 IndentWidth: 4

3 AllowShortIfStatementsOnASingleLine: AllIfsAndElse

4 ColumnLimit: 100