Fall 2016 Topology Qual Solution Sketches

Seth Althauser

May 6, 2020

Note-these solutions were typed very quickly, so please let me know if you spot any egregious mistakes.

Problem 9

This question is really about recognizing the "correct" definition of a universal cover and applying it to the specific case where \mathbb{R} is the universal cover of S^1 .

A universal covering space of a connected space X is a connected covering space $g: \tilde{X} \to X$ such that for any other connected covering space $p: Y \to X$, there is a covering map $q: \tilde{X} \to Y$ such that the following diagram commutes.

$$\begin{array}{c}
Y \\
\downarrow p \\
\tilde{X} \xrightarrow{q} X
\end{array}$$

In particular, a simply connected covering space \tilde{X} of a connected, locally path-connected space X is a universal covering space of X. This is what we will show below.

Suppose that $g:(\tilde{X},\tilde{x_0})\to (X,x_0)$ is a covering map, where \tilde{X} is simply connected and X is connected and locally path-connected. Let $p:(Y,y_0)\to (X,x_0)$ be another covering map, where Y is connected. Then we will show there exists a covering map q such that the diagram below commutes.

$$(Y, y_0) \downarrow^p \\ (\tilde{X}, \tilde{x_0}) \xrightarrow{q} (X, x_0)$$

First note that since X is locally path-connected, so is \tilde{X} . Since \tilde{X} is path-connected and locally path-connected, by the lifting criterion, a lift q of g exists iff $g_*(\pi_1(\tilde{X}, \tilde{x_0})) \subseteq p_*(\pi_1(Y, y_0))$, which certainly holds, since $(\tilde{X}, \tilde{x_0})$ is simply connected. We will now show that this lift q is in fact a covering map.

q is surjective: Let $y_1 \in Y$ and let $f: I \to Y$ be a path in Y from y_0 to y_1 . Because X is locally path-connected, so is Y, and since Y is also connected this implies Y is path-connected, so such a path exists. Then $p \circ f$ is a path in X starting at $p(y_0) = x_0$. Therefore, there exists a lift h of $p \circ f$ to a path in X starting at $\tilde{x_0}$ such that $p \circ f = g \circ h$.

Because $p \circ q = g$, we have that

$$p \circ f = g \circ h = p \circ q \circ h,$$

i.e. the diagram below commutes.

$$I \xrightarrow{p \circ f} (Y, y_0)$$

$$\downarrow^p$$

$$I \xrightarrow{p \circ f} (X, x_0)$$

However, this means that f and $q \circ h$ are both lifts of $p \circ f$, starting at y_0 , so by uniqueness of path-lifting, we have that $f = q \circ h$, so in particular $q(h(1)) = f(1) = y_1$, and so q is surjective.

q covers evenly: Let $y \in Y$. We will show that y has a a neighborhood evenly covered by q. Pushforward y to $p(Y) \in X$. Since p and g are covering maps, there is a neighborhood U_1 of p(y) which is evenly covered by p and a neighborhood U_2 of p(y) evenly covered by g. Then $U := U_1 \cap U_2$ is evenly covered by both g and p, and by shrinking U if necessary, we may assume that U is connected. If $g^{-1}(U) = \coprod_{\alpha \in I} W_{\alpha}$, and $p^{-1}(U) = \coprod_{\beta \in J} V_{\beta}$ then let V_i denote the slice which contains y. Note that q maps each slice W_{α} into $\coprod V_{\beta}$, and since we assumed that U was connected, each slice W_{α} must be mapped into a single slice V_{β} . Hence, $q^{-1}(V_i)$ is a disjoint union of all those slices W_{α} such that q maps W_{α} into V_i .

To see that q maps each such slice W_{α} homeomorphically onto V_i , we note that $p|_{V_i}:V_i\to U$ and $g|_{W_{\alpha}}:W_{\alpha}\to U$ are both homeomorphisms, and that $g|_{W_{\alpha}}=p|_{V_i}\circ q|_{W_{\alpha}}$, so $q|_{W_{\alpha}}$ must also be a homeomorphism.