Weill Cornell Medicine

Application of a Bayesian Model Averaging Method to Observational Metabolomics Data Analysis

Supervisor: Xi Kathy Zhou, Ph.D

Taehoon Ha

Motivation

To improve the differentially expressed (DE) metabolites identification in high-dimensional setting.

- To identify DE metabolites, there are multiple methods¹⁾:
 - e.g. t-statistics, F-statistics, non-parametric methods, and etc.
 - Rank the metabolites based on the effect sizes estimated using the same model.
 - A model with the same structure and same set of covariates, for all metabolites.
- However, this approach may not be appropriate in high-dimensional setting.
 - Different metabolites may be involved in different biological processes.
 - The expression of metabolites may be affected by different sets of covariates.
 - The model may be misspecified for some metabolites. 0

Objective

Investigate the association between patient characteristics and metabolites.

Identify metabolites that are differently expressed in association with one or more patient characteristics.

Dataset: Patient Characteristics

Consists of 80 patients X 14 patient characteristics.

Patient characteristics include:

Age Menopause BMI Adipocyte Hypertension Diabetes Dyslipidemia Steroid Total % Fat Total Fat Mass (kg) Total Lean Mass (kg) Fat Lean Ratio Trunk Fat Mass (kg) CLS-B

Continuous variables were dichotomized by median for interpretation.

Dataset: Metabolites Expression

Consists of 130 metabolites X 80 patients.

- Collected from a heterogeneous sample.
 - The effects of correlation in covariates need to be properly handled.

Method: Bayesian Model Averaging

Bayesian Model Averaging (BMA) allows us to coherently synthesize the information gathered from probing with different models.

Based on linear regression models

- Zellner-Siow prior for the model parameters. [Liang et al., JASA 2008, 103 (481):410-423.]
 - Consistent for model selection
 - Bayes factors can be calculated in closed form.

Method: Bayesian Model Averaging

Bayesian Model Averaging (BMA) allows us to coherently synthesize the information gathered from probing with different models.

- An empirical approach to specify prior model probabilities
 - Good calibration of posterior inclusion probabilities
 - More realistic estimation of FDR

- Computationally efficient
 - Does not need Markov chain Monte Carlo (MCMC) simulation.

Application: 2-Stage Process

First, identified important patient characteristics. Second, conducted BMA analysis using these patient characteristics.

Stage 1: Filter out unimportant patient characteristics

- Method: BMA with model space consisting of single variable models.
- Identify DE metabolites associated with each patient characteristics using FDR cut off 0.5.
- Patient characteristics without associated with metabolites are removed from further analysis

Stage 2: Bayesian Model Averaging up to 3 covariates

BMA analysis with filtered patient characteristics identified in the first stage.

Result

After first stage, 6 patient characteristics were identified. Using these characteristics, 42 model spaces were generated.

- There are 7 patient characteristics that have FDR < 0.25.
 - Age, Menopausal, BMI, Diabetes, Total Lean Mass (kg), Trunk Fat Mass (kg), and CLS-B
- However, Diabetes (DM) variable wad dropped due to the small sample size.
 - Only 2 patients with diabetes in the dataset.
- 64 model spaces were introduced.

Null Model (~ 1)	Univariate (~ 1 + Var1)	Two-variable (~1+Var1+Var2)	Three-variable (~1 + Var1 + Var2 + Var3)	Total
6C0 = 1	6C1 = 6	6C2 = 15	6C3 = 20	42

Result: Up-down Barplot

3 up- and 1 down-regulated metabolites are identified to be differentially expressed in association with Age. Only 2 down-regulated with Total Lean Mass.

Result: Up-down Barplot

3 up-regulated and 2 down-regulated metabolites are identified to be differentially expressed in association with Trunk Fat Mass. 4 down-regulated with CLS-B.

Result

Patient Characteristic	Number of DE Metabolites Associated with Patient Characteristic
Trunk Fat Mass (kg)	5
Age	4
CLSB	4
Total Lean Mass (kg)	2
Menopausal Status	0
ВМІ	0

Result: Heatmap - Age

L.Cystine, N6.Acetyl, Threonic are more abundant in older patients, while L.Glyceric is more abundant in younger patients.

Heatmap of DE Genes (Age)

Result: Heatmap - Total Lean Mass

Both metabolites look more abundant in patients with low fat as compared to patients with high fat in Total Lean Mass.

Heatmap of DE Genes (TIm)

Result: Heatmap - Trunk Fat Mass

First 2 metabolites look more abundant in patients with low fat, while last 3 metabolites are more abundant in patients with high fat in Trunk Fat Mass.

Heatmap of DE Genes (Trfm)

Result: Heatmap - CLS-B

All four metabolites are more abundant in patients with CLS-B as compared to the patients without CLS-B.

Heatmap of DE Genes (CLSB)

Result: Heatmap using FDR

Summary

- Single model approaches could result in model misspecification
 - Could lead to increased error due to bias for some metabolites and reduced efficiency.
 - Especially in high-dimensional data
- BMA was used to provide a flexible and coherent framework for identifying DE metabolites associated with a single or multiple patient characteristics.
 - Averaging over model space formed by all relevant covariates.

Discussion

- Not enough sample size for each level in some variables.
 - e.g. There are only two patients that have diabetes (DM).
- Further research needed to consider the interactions.
 - Interested in metabolites associated with interaction of patient characteristics.
- Further research needed to conduct a sub-group analysis.

Weill Cornell Medicine

End of Document

