Package 'macrosyntR'

November 14, 2023

```
Type Package
Title Draw Ordered Oxford Grids and Chord Diagrams
Version 0.3.3
Maintainer Sami El Hilali <elhilali.sami@gmail.com>
Depends R (>= 4.1.0)
Imports stats, utils, ggplot2, igraph, tidyr, reshape2, dplyr,
      stringr, rlang
Description Use standard genomics file format (BED) and a table of orthologs to
      illustrate synteny conservation at the genome-wide scale.
      Significantly conserved linkage groups are identified as de-
      scribed in Simakov et al. (2020) <doi:10.1038/s41559-020-1156-z>
      and displayed on an Oxford Grid (Edwards (1991) <doi:10.1111/j.1469-
      1809.1991.tb00394.x>) or a chord dia-
      gram as in Simakov et al. (2022) <doi:10.1126/sciadv.abi5884>.
      The package provides a function that uses a network-based greedy algorithm to find communi-
      ties (Clauset et al. (2004) <doi:10.1103/PhysRevE.70.066111>)
      and so automatically order the chromosomes on the plot to improve interpretability.
Encoding UTF-8
License GPL-3
URL https://github.com/SamiLhll/macrosyntR
BugReports https://github.com/SamiLhll/macrosyntR/issues
RoxygenNote 7.2.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Sami El Hilali [aut, cre] (<a href="https://orcid.org/0000-0003-4417-8399">https://orcid.org/0000-0003-4417-8399</a>),
      Richard Copley [aut] (<a href="https://orcid.org/0000-0001-7846-4954">https://orcid.org/0000-0001-7846-4954</a>)
Repository CRAN
Date/Publication 2023-11-14 16:40:02 UTC
```

14

R topics documented:

c	compute_linkage_groups	2
c	compute_macrosynteny	3
g	get_syntenic_genes	3
10	oad_orthologs	4
p	olot_chord_diagram	5
p	olot_macrosynteny	7
p	olot_oxford_grid	8
re	eorder_macrosynteny	9
re	eorder_multiple_macrosyntenies	11
re	everse_species_order	12
S	ubset_linkage_orthologs	12

compute_linkage_groups

Compute Linkage groups

Description

Index

This is a function to compute the conserved linkage groups shared between two or more species. It computes the significant associations between chromosomes of all species versus all (pairwise) using the fischer test implemented in compute_macrosynteny(). It outputs a dataframe shaped as following: sp1.Chr,sp2.Chr,..., spN.chr,n,LGs where n is the number of shared orthologs in the group and LGs are the IDs for the linkage groups

Usage

```
compute_linkage_groups(orthologs_df)
```

Arguments

orthologs_df dataframe. orthologs with genomic coordinates loaded with load_orthologs()

Value

A dataframe object

```
# basic usage of compute_linkage_groups:
orthologs_table <- system.file("extdata","my_orthologs.tab",package="macrosyntR")
my_orthologs <- read.table(orthologs_table,header=TRUE)
my_macrosynteny <- compute_linkage_groups(my_orthologs)</pre>
```

compute_macrosynteny 3

compute_macrosynteny Compute significant macrosynteny blocks

Description

This is a function to generate the contingency table of an orthologs dataframe and apply fischer test to calculate the significant associations. It outputs a dataframe shaped as following: sp1.Chr,sp2.Chr,a,pval,significant,pval_a

Usage

```
compute_macrosynteny(orthologs_df, pvalue_threshold = 0.001)
```

Arguments

```
orthologs_df dataframe. orthologs with genomic coordinates loaded with load_orthologs() pvalue_threshold numeric. threshold for significancy. (default equals 0.001)
```

Value

A dataframe object

Examples

```
# basic usage of compute_macrosynteny :
orthologs_table <- system.file("extdata","my_orthologs.tab",package="macrosyntR")
my_orthologs <- read.table(orthologs_table,header=TRUE)
my_macrosynteny <- compute_macrosynteny(my_orthologs)</pre>
```

get_syntenic_genes

get the syntenic genes as a table

Description

This is a function to extract all the syntenic genes from an orthologs_df. It requires as input an orthologs_df loaded by load_orthologs().

Usage

```
get_syntenic_genes(orthologs_df)
```

4 load_orthologs

Arguments

```
orthologs_df dataframe. orthologs with genomic coordinates loaded by load_orthologs()
```

Value

dataframe composed of details for each detected syntenic block of genes. It contains the following columns: sp1.Chr, sp1.Start, sp1.End, sp2.Chr, sp2.Start, sp2.End, size, sp1.IDs, sp2.IDs

See Also

```
load_orthologs()
```

Examples

```
# basic usage of get_syntenic_genes :
orthologs_table <- system.file("extdata","my_orthologs.tab",package="macrosyntR")
my_orthologs <- read.table(orthologs_table,header=TRUE)
my_syntenic_block_of_genes <- get_syntenic_genes(my_orthologs)</pre>
```

load_orthologs

load orthologs with their genomic coordinates.

Description

Puts together the table of orthologous genes with their genomic coordinates in the two or more species. It outputs a data.frame shaped as following: sp1.ID,sp1.Chr,sp1.Start,sp1.End,sp1.Index,sp2.ID,sp2.Chr,sp2.Start,sp

Usage

```
load_orthologs(
  orthologs_table,
  sp1_bed = NULL,
  sp2_bed = NULL,
  bedfiles = NULL
)
```

Arguments

plot_chord_diagram 5

sp2_bed	(deprecated) character. Full path to the genomic coordinates of the genes on $\ensuremath{species2}$
bedfiles	array. List of full paths to the genomic coordinates ordered as in the appearing order of the orthologs_table (BED format)

Value

dataframe composed of genomic coordinates and relative index of orthologs on both species

Examples

plot_chord_diagram

plot the Macro-synteny as a chord diagram

Description

This is a function to plot the chord diagrams to compare the macro synteny of two or more species. It requires as input an orthologs_df loaded by load_orthologs()

Usage

```
plot_chord_diagram(
  orthologs_df,
  species_labels = NULL,
  species_labels_size = 5,
  color_by = "sp1.Chr",
  custom_color_palette = NULL,
  reorder_chromosomes = TRUE,
  remove_non_linkage_orthologs = TRUE,
  species_labels_hpos = -400,
```

6 plot_chord_diagram

```
label_size = 2,
      ideogram_fill = "white",
      ideogram_color = "black",
      ideogram_height = 4,
      ribbons_curvature = 0.1,
      ribbons_alpha = 0.5
    )
Arguments
    orthologs_df
                      dataframe. orthologs with genomic coordinates loaded by the load orthologs()
    species_labels list of characters. names of the species to display on the plot
    species_labels_size
                      integer. size of the labels (default = 2)
                      string. name of the column in the orthologs_df to color the links by (default =
    color_by
                      "sp1.Chr")
    custom_color_palette
                      list of characters. palette to use for the coloring of the links following the argu-
                      ment color_by
    reorder_chromosomes
                      logical. (default = TRUE) tells whether to reorder the chromosomes in clusters
                      as implemented in reorder_macrosynteny()
    remove_non_linkage_orthologs
                      logical. (default = TRUE) tells wether to remove the orthologs that are not
                      within significant linkage groups as calculated by comput_linkage_groups().
    species_labels_hpos
                      (default = -400)
    label_size
                      integer. size of the labels to display on the ideograms (default = 2)
                      character. name of the colors to fill the ideograms with (default = "white")
    ideogram_fill
    ideogram_color character. name of the colors to draw the borders of the ideograms with (default
                      = "black")
    ideogram_height
                      integer. height of the ideograms (default = 4)
    ribbons_curvature
                      float. curvature of the ribbons (default = 0.1)
                      float. alpha of the ribbons (default = 0.5)
    ribbons_alpha
Value
    A ggplot2 object
See Also
    load_orthologs()
    reorder_macrosynteny()
    compute_linkage_groups()
```

plot_macrosynteny 7

Examples

```
# basic usage of plot_oxford_grid :
orthologs_table <- system.file("extdata","my_orthologs.tab",package="macrosyntR")
my_orthologs <- read.table(orthologs_table,header=TRUE)
plot_chord_diagram(my_orthologs,species_labels = c("B. flo","P. ech"))</pre>
```

plot_macrosynteny

Plot Macro-synteny

Description

This is a function to generate the contingency table of an MBH dataframe and apply fischer test to calculate the significant associations.

Usage

```
plot_macrosynteny(macrosynt_df, sp1_label = "", sp2_label = "")
```

Arguments

macrosynt_df dataframe of contingency table with p-values calculated by the compute_macrosynteny()
function

sp1_label character. The name of the species1 to display on the plot

sp2_label character. The name of the species2 to put on the plot

Value

ggplot2 object

See Also

```
compute_macrosynteny()
```

```
# basic usage of plot_macrosynteny :
orthologs_table <- system.file("extdata","my_orthologs.tab",package="macrosyntR")
my_orthologs <- read.table(orthologs_table,header=TRUE)
my_macrosynteny <- compute_macrosynteny(my_orthologs)
plot_macrosynteny(my_macrosynteny,</pre>
```

8 plot_oxford_grid

```
sp1_label = "B. floridae",
sp2_label = "P. yessoensis")
```

plot_oxford_grid

plot the Macro-synteny as an oxford grid.

Description

This is a function to plot the oxford grided plot to compare the macro synteny of two species. It requires as input an orthologs_df loaded by load_orthologs()

Usage

```
plot_oxford_grid(
  orthologs_df,
  sp1_label = "",
  sp2_label = "",
  dot_size = 0.5,
  dot_alpha = 0.4,
  reorder = FALSE,
  keep_only_significant = FALSE,
  color_by = NULL,
  pvalue_threshold = 0.001,
  color_palette = NULL,
  shade_non_significant = TRUE,
  reverse_species = FALSE,
  keep_sp1_raw_order = FALSE
)
```

Arguments

```
orthologs_df
                  dataframe. orthologs with genomic coordinates loaded by the load_orthologs()
sp1_label
                  character. name of 1st species to display on the plot
sp2_label
                  character. name of 2nd species to display on the plot
                  numeric. (default = 0.5)
dot_size
dot_alpha
                  numeric. (default = 0.4)
reorder
                  logical. (default = FALSE) tells whether to reorder the chromosomes in clusters
                  as implemented in reorder_macrosynteny()
keep_only_significant
                  logical. (default = FALSE)
color_by
                  string/variable name. (default = NULL) column of the orthologs_df to use to
                  color the dots.
pvalue_threshold
                  numeric. (default = 0.001)
```

reorder_macrosynteny 9

logical. (default = TRUE) When TRUE the orthologs located on non-significant linkage groups are displayed in "grey"

reverse_species

logical. (default = FALSE) When TRUE the x and y axis of the plot are reversed. sp1 is displayed on the y axis and sp2 is displayed on the x axis.

keep_sp1_raw_order

logical.(default equals FALSE) tells if the reordering should be constrained on the species 1 and change just the order of the species 2

Value

A ggplot2 object

See Also

```
load_orthologs()
reorder_macrosynteny()
```

Examples

 ${\it reorder_macrosynteny} \quad \textit{Reorder the mbh_df before plotting}$

Description

This is a function to reorder an orthologs_df, that was generated with load_orthologs(). It retrieves communities using igraph::cluster_fast_greedy.

Usage

```
reorder_macrosynteny(
  orthologs_df,
  pvalue_threshold = 0.001,
  keep_only_significant = FALSE,
  keep_sp1_raw_order = FALSE
)
```

Arguments

```
orthologs_df dataframe. mutual best hits with genomic coordinates loaded with load_orthologs()

pvalue_threshold

numeric. threshold for significancy. (default equals 0.001)

keep_only_significant

logical. (default equals FALSE) tells if the non significant linkage groups should

he removed. It describelly provide up the computation when wine one highly
```

logical. (default equals FALSE) tells if the non significant linkage groups should be removed. It drastically speeds up the computation when using one highly fragmented genome.

keep_sp1_raw_order

logical. (default equals FALSE) tells if the reordering should be constrained on the species1 and change just the order of the species2

Value

A dataframe object

See Also

```
load_orthologs()
compute_macrosynteny()
```

```
# basic usage of reorder_macrosynteny :
orthologs_table <- system.file("extdata","my_orthologs.tab",package="macrosyntR")
my_orthologs <- read.table(orthologs_table,header=TRUE)
my_orthologs_reordered <- reorder_macrosynteny(my_orthologs)</pre>
```

```
reorder_multiple_macrosyntenies
```

Reorder the chromosomes of two or more species before plotting

Description

This is a function to reorder an orthologs_df, same as reorder_macrosynteny, but it handles tables with more than 2 species.

Usage

```
reorder_multiple_macrosyntenies(orthologs_df)
```

Arguments

orthologs_df dataframe. orthologs with genomic coordinates loaded with load_orthologs()

Value

A dataframe object

See Also

```
load_orthologs()
compute_macrosynteny()
reorder_macrosynteny()
```

```
# basic usage of reorder_macrosynteny :
orthologs_table <- system.file("extdata","my_orthologs.tab",package="macrosyntR")
my_orthologs <- read.table(orthologs_table,header=TRUE)
my_orthologs_reordered <- reorder_multiple_macrosyntenies(my_orthologs)</pre>
```

reverse_species_order Reverse order of the species in an orthologs_df.

Description

Returns an orthologs_df (data.frame) with reversed species order compared to the inputted orthologs_df. sp1 becomes sp2 and the otherway around. It intends at facilitating the integration of more than just two datasets. It outputs a data.frame shaped as following: sp1.ID,sp1.Chr,sp1.Start,sp1.End,sp1.Index,sp2.ID,

Usage

```
reverse_species_order(orthologs_df)
```

Arguments

```
orthologs_df orthologs_df dataframe. mutual best hits with genomic coordinates loaded with load_orthologs()
```

Value

dataframe composed of genomic coordinates and relative index of orthologs on both species

See Also

```
load_orthologs()
```

Examples

```
# basic usage of reverse_species_order :
orthologs_table <- system.file("extdata","my_orthologs.tab",package="macrosyntR")
my_orthologs <- read.table(orthologs_table,header=TRUE)
my_orthologs_reversed <- reverse_species_order(my_orthologs)</pre>
```

```
subset_linkage_orthologs
```

Subset Orthologs contained in conserved linkage groups

Description

This is a function to subset an orthologs_df and keep only the orthologs that are within significant linkage groups computed by the function compute_linkage_groups().

Usage

```
subset_linkage_orthologs(orthologs_df, linkages = NULL)
```

Arguments

orthologs_df dataframe. orthologs with genomic coordinates loaded with load_orthologs()

linkages dataframe. table listing the linkage groups as returned by the function compute_linkage_groups()

Value

A dataframe object

See Also

```
load_orthologs()
compute_linkage_groups()
```

```
# basic usage of compute_linkage_groups:
orthologs_table <- system.file("extdata","my_orthologs.tab",package="macrosyntR")
my_orthologs <- read.table(orthologs_table,header=TRUE)
my_macrosynteny <- compute_linkage_groups(my_orthologs)</pre>
```

Index

```
compute_linkage_groups, 2
compute_linkage_groups(), 6, 13
compute_macrosynteny, 3
compute_macrosynteny(), 7, 10, 11

get_syntenic_genes, 3

load_orthologs, 4
load_orthologs(), 4, 6, 9–13

plot_chord_diagram, 5
plot_macrosynteny, 7
plot_oxford_grid, 8

reorder_macrosynteny, 9
reorder_macrosynteny(), 6, 9, 11
reorder_multiple_macrosyntenies, 11
reverse_species_order, 12

subset_linkage_orthologs, 12
```