Computational Optimization - MSc AIDA UoM

Professor Nikolaos Samaras

Academic Year: 2021-2022

The objectives of scaling techniques are the following:

- 1. To produce compact bounds on decision variables
- 2. To reduce the condition number of matrix A
- 3. To improve the numerical behavior of solution algorithms
- 4. To reduce the number of iterations required to solve a linear problem
- 5. To simplify the initialization/setting of tolerances.

Several techniques have been developed to transform a matrix into a well-scaled matrix.

Tasks:

[A.] Write code in Python that reads a file in matrix storage format according to the following form:

where $\otimes = \{\leq, =, \geq\}, c, x \in \mathbb{R}^n, b \in \mathbb{R}^m \text{ and } A \in \mathbb{R}^{m \times n}.$

- A: Dimensions $m \times n$. Matrix A stores the coefficients of the technological constraints.
- b: Dimensions $m \times 1$. Vector b stores the right-hand sides of the technological constraints.
- c: Dimensions $1 \times n$. Vector c stores the coefficients of the objective function.
- Eqin: Dimensions $m \times 1$. Vector Eqin stores the types of constraints. If Eqin(i) = -1, then the i^{th} constraint is of type \leq . If Eqin(i) = 1, then it is of type \geq . If Eqin(i) = 0, then it is of type =
- MinMax: Dimensions 1×1 . This variable specifies the type of the problem. If MinMax = -1, then the problem is a minimization. If MinMax = 1, then it is a maximization.
- R: Dimensions (number of ranges in the MPS)x4. This matrix stores the ranges of the constraints as follows:
 - 1st column: constraint name
 - 2nd column: The RHS of the constraint
 - 3rd column: RHS+—range— 1, if range \downarrow 0; -1, if range \downarrow 0; 0, if range = 0
- BS: Dimensions (number of bounds in the MPS)x3. This matrix stores the bounds of the constraints as follows:
 - 1st column: variable name

2 nd Column	3 rd Column
Type of Bound	Value of Bound
LO: Lower Bound	Value
UP: Upper Bound	Value
FX: Fixed	Value
FR: Free	None
MI: Minus Infinity	None
PL: Plus Infinity	None

 $[\mathbf{B.}]$ Write Python code that implements the Arithmetic Mean scaling technique, as presented in lecture 4.