

Relatório do 1º Trabalho de Laboratório Simulação de Algorítimos de Calendarização

Alunos:

Carla Sofia Paiva Duarte Nº 51671 Tiago Teresa Teodósio Nº 52150

Lisboa, 3 de Novembro 2006

Introdução

Neste trabalho implementou-se um simulador de eventos discretos, que permitiu comparar o desempenho das quatro disciplinas de serviço: FIFO, WRR, DRR e WFQ, com recurso a recolha de estatísticas das simulações, e geração de gráficos que ilustram o comportamento das disciplinas de acordo com os dados de entrada de cada experiência. Foram efectuadas a Experiência 1 e a Experiência 2, em que a diferença reside na dimensão dos pacotes e no tráfego gerado por cada sessão.

Resultados esperados

Para a disciplina WFQ os valores teóricos para o atraso máximo dos pacotes (através do teorema de Parekh-Gallager)

Temos: $g(i, k) = \Phi(i, k) * r(r) / \sum \Phi(j, k)$

 $\Phi(i, k)$ peso da sessão i no router k.

r(k) capacidade de cada router

Sessão	Router 1	Router 2	Router 3	g(i)
i = (1,2,3)	g (i, 1)	g (i, 2)	g(i, 3)	
1	1 Mbits/s	250 Kbits/s	1 Mbits/s	250 Kbits/s
2	0.667 Mbits/s	166.667 Kbits/s	0.667 Mbits/s	166.667 Kbits/s
3	0.333 Mbits/s	83.333 Kbits/s	0.333 Mbits/s	83.333 Kbits/s

$$atraso \le \sigma / g(i) + \sum_{k=1}^{K-1} P \max(i) / g(i,k) + \sum_{k=1}^{K} P \max / r(k)$$

Experiência 1

Sessão i =(1,2,3)	σ(i)	Pmax (i)	atraso(i)	Pmax
1	40 Kbits	8000	0.2	
2	32 Kbits	6400	0.235	8000
3	24 Kbits	4800	0.34	

Experiência 2

Sessão i =(1,2,3)	σ(i)	Pmax (i)	atraso(i)	Pmax
1	4 Kbits	800	0.02	
2	3.2 Kbits	640	0.0235	800
3	2.4 Kbits	480	0.034	

Opções tomadas na implementação

A fila de eventos tem como suporte uma fila prioritária implementada em acervo.

As filas de espera *fifo* utilizadas em cada *router*, correspondentes a cada sessão, estão implementadas como *buffers* de dimensão fixa, e de preenchimento circular. Estes *buffers* foram dimensionados de forma a evitar o descarte de pacotes por parte dos *routers*.

Os ficheiros de resultados são escritos em formato de texto pelo Simulador.

Os gráficos foram gerados através de *shell script* com a ferramenta *gnuplot*.

No WRR, dado que os pacotes das diferentes sessões têm tamanhos diferentes, na implementação foi necessário dividir o peso de cada sessão pelo tamanho do respectivo pacote, para obter um conjunto de pesos normalizados, para determinar o números de pacotes servidos de cada sessão por ronda. Os cálculos efectuados foram:

Exp1:

Sessão	Peso	Tamanho	Peso	Pacotes	Bytes servidos
		pacote	normalizado	servidos	
1	3	8000	0.003	18	18 Kbytes
2	2	6400	0.0025	15	12 Kbytes
3	1	4800	0.001667	10	6 Kbytes

Analogamente foram efectuados os cálculos para a experiência 2.

No caso do WFQ a actualização do *Round Number* é realizada segundo a entrada ou saída de pacotes nas filas de espera de cada *router* que se verificam na simulação e não de acordo com o escalonamento GPS. Esta aproximação simplificou bastante a implementação.

Comentários aos resultados obtidos

A ocupação das filas de espera no *router* 1 é muito baixa e reflecte apenas a chegada de rajadas de pacotes. No *router* 3 as filas de espera encontram-se sempre vazias pois o tráfego chega a uma taxa de 500 kbit/s no máximo e a capacidade deste *router* é 2 Mbit/s. É no *router* 2 que se verificam evoluções interessantes das filas de espera.

Para a disciplina FIFO as filas de espera para as três sessões aumentam de forma proporcional ao débito requerido. A fila da sessão 3 aumenta a um rítmo superior, pois essa sessão gera mais tráfego.

Por outro lado, para as outras três disciplinas apenas a fila de espera da sessão 3 cresce indefinidamente, como se pode observar nos gráficos.

Quanto ao atraso dos pacotes, verifica-se uma grande diferença entre a calendarização FIFO e as restantes. No caso da FIFO, o atraso máximo e médio dos pacotes das três sessões é idêntico, reflectindo não haver qualquer diferenciamento do tráfego. Por outro lado, para escalonamento WRR, DRR e WFQ verifica-se que os atrasos dos pacotes das sessões 1 e 2 são muito menores que os da sessão 3.

Os valores de atraso máximo obtidos para o escalonamento WFQ são ligeiramente superiores aos valores calculados teoricamente, tal pode dever-se à aproximação no cálculo do *round number*.

O round number no router 2 cresce sem parar de forma linear no tempo, indicando que este router está congestionado e que nenhuma sessão fica inactiva por longos períodos de tempo. Tal não acontece nos routers 1 e 3.

A utilização média de cada comutador (percentagem do tempo que cada comutador está ocupado a servir pacotes) é idêntica em todas as experiências. Verifica-se nos resultados apresentados, que o router 2 se encontra activo em média aproximadamente 100% do tempo total de simulação, enquanto que o router 1 e 3 encontram-se activos em média aproximadamente 25 % do tempo total de simulação, para qualquer disciplina, o que era já de se esperar pois o router 2 é o mais restritivo, com capacidade 500 Kbits/s que é quatro vezes menor que a capacidade do router 1 e 3.

Obtivemos tempos de atraso máximo superiores aos esperados, e tal pode dever-se à aproximação considerada no cálculo do round number e ou a algum caso particular em que o simulador não se comporta da forma esperada.

Disciplina FIFO

O escalonador selecciona os pacotes pela ordem de chegada. A desvantagem do FIFO, é que o escalonador não diferencia as sessões, o que provoca injustiças. Observa-se nos gráficos, que a sessão 3 (mal comportada) recebe um débito superior às restantes sessões.

Experiência 1

Sessão	Atraso	Atraso	Débito médio	Ocupação média da fila de espera		
	médio [s]	máximo [s]	[bit/s]	Router 1	Router 2	Router3
1	3.334281	6.719440	185658.933982	0.121872	74.340939	0.000000
2	3.308027	6.711840	130902.588048	0.062700	46.713454	0.000000
3	3.306099	6.714048	179871.839452	0.083761	154.653999	0.000000

Router: 1 activo: 24.982584 % do tempo (20.024800 s). Router: 2 activo: 99.930335 % do tempo (80.099200 s). Router: 3 activo: 24.982584 % do tempo (20.024800 s).

Experiência 2

Router: 1 activo: 24.924500 % do tempo(2.104880 s). Router: 2 activo: 99.698000 % do tempo(8.419520 s). Router: 3 activo: 24.924500 % do tempo(2.104880 s).

Sessão	Atraso	Atraso	Débito médio	Ocupação média da fila de espera		
	médio [s]	máximo [s]	[bit/s]	Router 1	Router 2	Router3
1	0.379110	0.800544	186310.913623	0.117169	80.728474	0.000000
2	0.374804	0.800480	110264.243322	0.063176	49.745715	0.000000
3	0.370494	0.801616	156893.400946	0.081865	164.875976	0.000000

Disciplina WRR

Experiência 1

Observa-se que em períodos curtos de tempo esta disciplina é injusta, algumas sessões obtêm mais serviço do que o merecido, isto denota-se pelos picos apresentados pelos gráficos dos débitos.

Router: 1 activo: 24.982833 % do tempo(20.024800 s). Router: 2 activo: 99.931332 % do tempo(80.099200 s). Router: 3 activo: 24.982833 % do tempo(20.024800 s).

Sessão	Atraso	Atraso	Débito médio	Ocupação média da fila de espera		
	médio [s]	máximo [s]	[bit/s]	Router 1	Router 2	Router3
1	0.146310	0.498240	249755.100662	0.124837	2.190581	0.000000
2	0.163774	0.457760	177400.510265	0.065395	1.717253	0.000000
3	7.116943	13.416768	69297.074322	0.075229	334.902934	0.000000

Router: 1 activo: 24.924736 % do tempo(2.104880 s). Router: 2 activo: 99.698944 % do tempo(8.419520 s). Router: 3 activo: 24.924736 % do tempo(2.104880 s).

Sessão	Atraso	Atraso	Débito médio	Ocupação média da fila de espera		
	médio [s]	máximo [s]	[bit/s]	Router 1	Router 2	Router3
1	0.032887	0.060184	216031.449022	0.121537	2.255311	0.000000
2	0.034446	0.065760	175275.542387	0.064957	1.703125	0.000000
3	0.782769	1.560323	63088.223394	0.072213	359.724831	0.000000

Disciplina DRR

Foram efectuados experiências com quantum de 100, 1000, 10000, 100000 e 50000 bits. Observa-se que para quantum mais pequenos (apesar de podermos ter processamentos desnecessários) a disciplina é mais justa que para quantums maiores, pois com quantums muito elevados, há muita injustiça em curto espaço de tempo, pois servem-se grandes rajadas de pacotes de uma só sessão.

De seguida apresentam-se os gráficos obtidos para um quantum de 10000 bits, e os restantes resultados encontram-se no Anexo I.

Experiência 1

Router: 1 activo: 24.982833 % do tempo(20.024800 s). Router: 2 activo: 99.931332 % do tempo(80.099200 s). Router: 3 activo: 24.982833 % do tempo(20.024800 s).

Sessão	Atraso	Atraso	Débito médio	Ocupação média da fila de espera		
	médio [s]	máximo [s]	[bit/s]	Router 1	Router 2	Router3
1	0.107589	0.385010	245880.425539	0.123390	1.315995	0.000000
2	0.097363	0.336798	165061.160257	0.063259	0.769221	0.000000
3	7.174585	13.503534	85466.391664	0.080489	337.624618	0.000000

Router: 1 activo: 24.924736 % do tempo(2.104880 s). Router: 2 activo: 99.698944 % do tempo(8.419520 s). Router: 3 activo: 24.924736 % do tempo(2.104880 s).

Sessão	Atraso	Atraso	Débito médio	Ocupação média da fila de espera		
	médio [s]	máximo [s]	[bit/s]	Router 1	Router 2	Router3
1	0.040735	0.073143	209048.314150	0.113656	4.042094	0.000000
2	0.043557	0.091806	142195.369599	0.060628	2.993564	0.000000
3	0.772866	1.546842	87089.177947	0.091121	355.026276	0.000000

Disciplina WFQ

Weighted Fair Queuing – na implementação do algorítmo actualizamos o Round number router de acordo com a chegada e a partida real do pacote (k) da sessão (i). Esse valor evolui com derivada inversamente proporcional ao número de sessões activas.

O round number é actualizado segundo a fórmula : $R(t) = C/\sum \Phi(i) * (t-t0) + R(t0)$. As filas de espera para as três sessões estão ordenadas por finish number, que é actualizado ao longo da simulação segundo a fórmula:

 $F(i, k, t) = \max \{ F(i, k-1, t), R(t) \} + P(i, k, t) / \Phi(i).$

Router: 1 activo: 24.982833 % do tempo(20.024800 s). Router: 2 activo: 99.931332 % do tempo(80.099200 s). Router: 3 activo: 24.982833 % do tempo(20.024800 s).

Sessão	Atraso	Atraso	Débito médio	Ocupação média da fila de espera		
	médio [s]	máximo [s]	[bit/s]	Router 1	Router 2	Router3
1	0.116272	0.394640	246041.870335	0.123301	1.512308	0.000000
2	0.105873	0.288800	164882.329097	0.052301	0.901785	0.000000
3	7.164257	13.474752	85540.904647	0.095250	337.120678	0.000000

12

Router: 1 activo: 24.924736 % do tempo(2.104880 s). Router: 2 activo: 99.698944 % do tempo(8.419520 s). Router: 3 activo: 24.924736 % do tempo(2.104880 s).

Sessão	Atraso	Atraso	Débito médio	Ocupação média da fila de espera		
	médio [s]	máximo [s]	[bit/s]	Router 1	Router 2	Router3
1	0.030782	0.059584	209642.192220	0.117975	1.781769	0.000000
2	0.029388	0.053600	142853.387613	0.052245	1.001829	0.000000
3	0.786466	1.554621	86334.684622	0.095100	361.449129	0.000000

Conclusões

Com a disciplina de serviço FIFO tem-se a vantagem da facilidade na implementação, mas desvantagens na justiça na gestão de recursos.

A disciplina de serviço WRR consegue uma aproximação do funcionamento do GPS, usando o mecanismo de round robin, desde que seja conhecido o tamanho médio dos pacotes de cada sessão.

Ao contrário do WRR, o DRR não necessita de saber à partida o tamanho médio dos pacotes.

O WFQ aproxima o GPS para tamanhos arbitrários de pacotes. Gere de forma mais eficiente pacotes com diferentes dimensões e por conseguinte adequa-se melhor a todas as experiências realizadas.

Anexo I

Gráficos dos débitos obtidos com o calendarizador DRR com quantum de 100, 10000, 50000, 100000 apenas para a Experiência 1.

