Big Data & Data Science

Infraestrutura Computacional Parte 1: Linux e Shell

Introdução

Apresentação

Prof. Daniel Weingaertner

- danielw@inf.ufpr.br
- web.inf.ufpr.br/danielw
- Áreas de Pesquisa
 - Computação Científica
 - Processamento de Imagens
 - Humanidades Digitais

Arquitetura de von Neumann

UNIX

No princípio (1970) era o UNIX...

- Sistema Operacional criado no AT&T Bell Labs
- Introduziu e popularizou conceitos poderosos
 - sistema de arquivos, shell, processos, usuários
- Por volta de 1990
 - Patentes e copyright isolaram UNIX em nichos
 - Não era compatível com Pcs (x86)
 - UNIX foi padronizado (POSIX)

GNU

... e o UNIX se fez GNU, e habitou entre nós

- GNU's Not Unix: conjunto de programas FOSS compatíveis com POSIX e funcionalidade similar ao UNIX
 - Shell (interpretador de comandos)
 - Utilidades básicas UNIX: cp, mv, cat, ls, awk, sed, grep, less, man, kill, ps, chmod
 - Editor de textos (Emacs, vi)
 - Interface Gráfica (GNOME)

Linux

Todo SO precisa de um *kernel*, que controle o hardware

- Linux foi criado em 1992 por Linus Torvalds para x86
- Compatível com UNIX: mesma API de chamadas de sistema, design e arquitetura semelhantes
- Programas GNU podiam ser compilados e rodar em x86
- Distribuições = kernel + software
 - ► GNU/Linux
 - Debian, Slackware, SUSE, RedHat, Fedora, Ubuntu, CentOS, Mint

Por que GNU/Linux?

Boa implementação de excelentes ideias UNIX

Grande comunidade de Software Livre

adicionando funcionalidades, suporte a hardware, correção de bugs, testando

Licensa GPL permite uso mas exige distribuição do código fonte

Alta performance, escalabilidade, suporte a grande quantidade de dispositivos

Por que GNU/Linux?

Computadores pessoais (Desktop)

- Escolha uma distribuição e experimente
 - Geração de pendrive para carga do SO
 - Instalação concomitante com outro SO

Smartfones (Android, Tizen)

Dispositivos Embarcados

Roteadores, GPS, Raspberry Pi

Servidores WEB

Por que GNU/Linux

Supercomputadores

TOP 500 (100% desde nov/2017)

Space X Falcon 9

International Space Station

Command Line Heroes

Sistema Operacional GNU/Linux

Características do GNU/Linux

- Portável: diferentes tipos de hardware
- Open Source: www.gnu.org (copyleft)
- Multi usuário: acesso simultâneo
- Multi processos: diversos programas simultaneamente
- Sistema de Arquivos Hierárquico
- Shell: programa interpretador de comandos
- Segurança: autenticação de usuários, criptografia, controle de acesso

Sistema Operacional

O Sistema Operacional é um software que controla o hardware e faz a interface deste com as aplicações

Sistema Operacional GNU/Linux

É um gerenciador de recursos composto pelo Kernel e um conjunto de aplicações básicas

- Serviços e daemon
- Programas utilitários (shell, editor, compilador)
- Biblitoeca C (libc)

Sistema Operacional GNU/Linux

Kernel Linux

O kernel é uma parte do SO:

- Controla a CPU, memória e outros dispositivos
- Acessa dados em dispositivos de armazenamento
- Escalona processos
- Roda aplicações, isolando-as umas das outras
- Disponibiliza uma API (system calls) para atividades restritas

User × Kernel space

O GNU/Linux executa seu kernel (Linux) em uma região de memória restrita e protegida (kernel space)

Programas do SO e dos usuários rodam em outra região de memória (user space)

Spectre & Meltdown

Interface de system call (SCI)

Funções que podem ser invocadas em user space para serem executadas em kernel space

Gerenciamento de Processos (PM)

- Executa processos ou threads, que são a virtualização do processador e memória
- Provê API para criação, destruição e comunicação interprocessos
- Escalona processos compartilhando o mesmo hardware

Gerenciamento de Memória (MM)

- Divide a memória em blocos e gerencia sua alocação
- Permite crescimento e redução dinâmicos da memória ocupada
- Separa memória de cada processo e usuário
- Provê memória adicional através swap

Sistema de Arquivos Virtual (VFS)

- Provê uma interface abstrata comum para sistemas de arquivos (open, close, read, write)
 - O sistema tem um diretório raiz: /
- Gerencia buffer caches para acelerar acesso ao sistema de arquivos
- Interface para acesso ao kernel em /proc

Camada de Rede

- Implementa protocolos de rede (TCP, IP, Infiniband)
- Provê uma interface chamada socket, que é a maneira de comunicação ponto a ponto em Linux

Drivers de dispositivos

Software específico para acesso aos diferentes dispositivos

Código dependente de Arquitetura

Perguntas?

Computação de Alto Desempenho

High Performance Computing

HPC refere-se à prática de agregar poder computacional (diversos processadores) de forma a obter uma performance muito maior do que poderia ser obtida com um computador individual, a fim de resolver problemas de grande escala.

Escalas de grandeza

Prefix	Symbol	1000 ^m	10 ⁿ	Decimal	Short scale	Long scale	Since ^[n 1]
yotta	Υ	10008	10 ²⁴	1 000 000 000 000 000 000 000 000	Septillion	Quadrillion	1991
zetta	Z	1000 ⁷	10 ²¹	1 000 000 000 000 000 000 000	Sextillion	Trilliard	1991
еха	E	1000 ⁶	10 ¹⁸	1 000 000 000 000 000 000	Quintillion	Trillion	1975
peta	Р	1000 ⁵	10 ¹⁵	1 000 000 000 000 000	Quadrillion	Billiard	1975
tera	Т	1000 ⁴	10 ¹²	1 000 000 000 000	Trillion	Billion	1960
giga	G	1000 ³	10 ⁹	1 000 000 000	Billion	Milliard	1960
mega	M	1000 ²	10 ⁶	1 000 000	Million		1960
kilo	k	1000 ¹	10 ³	1 000	Thousand		1795
hecto	h	1000 ^{2/3}	10 ²	100	Hundred		1795
deca	da	1000 ^{1/3}	10 ¹	10	Ten		1795
		1000 ⁰	10 ⁰	1	One		_
deci	d	1000-1/3	10 ⁻¹	0.1	Tenth		1795
centi	С	1000-2/3	10 ⁻²	0.01	Hundredth		1795
milli	m	1000 ⁻¹	10 ⁻³	0.001	Thousandth		1795
micro	μ	1000-2	10 ⁻⁶	0.000 001	Millionth		1960

Unidades de Medida

Byte (armazenamento de dados)

- ▶ 1 Byte = 8 bits (dígitos 0 ou 1)
- Imagem tons de cinza: 1 Byte por ponto (pixel)
- Caracteres de texto: 1 a 2 Bytes por caractere (depende da codificação)
- Números: inteiro (int: 4 Bytes, long: 8 Bytes), real (float: 4 Bytes, double: 8 Bytes)
- Disco rígido (HD) de 8TB, Memória RAM de 16 GB

bps (bits por segundo)

Velocidade de transmissão de dados (rede de 1 Mbps)

FLOP/s (Float Operations por segundo)

Velocidade de operações aritméticas

Lei de Moore

1965, G. Moore: número de transistores por chip duplica a cada 12-14 meses

Lei de Moore

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten Dotted line extrapolations by C. Moore

O problema do calor

Core

- Cada núcleo de uma pastilha. É a unidade básica de computação.
- Podem efetuar algumas operações aritméticas em paralelo

Nodo

- Possui diversas pastilhas (CPU) combinadas em uma placa mãe
- Compartilham memória entre cores e entre pastilhas
- Pastilhas tem de 8 a 64 cores
- Aceleradores
- Troca de dados entre cores de uma mesma pastilha é rápida

Data Science & Big Data

Cluster

- Milhares de nodos conectados por uma rede de alta velocidade
- Comunicação entre nodos implica no envio de mensagens
- Alta latência, banda estreita

Sistema Operacional para HPC

GNU/Linux

SO para HPC

Nodo de acesso e nodos de processamento Sistema de gerenciamento de trabalhos (*jobs*)

- Alocação de programas e usuários nos diversos nodos
- Controla tempo de execução e recursos/usuários
- Ex: slurm, pbs

Sistemas de arquivo paralelo

- Acesso simultâneo e paralelo
- Escalabilidade e redundância a falhas

Perguntas?

Acesso local ao Laboratório

Login no sistema do DInf

Interface GNOME

Login local nos terminais

Troca de senha

- O que é uma boa senha?
- Abrir um Terminal de Comando
 - passwd

Acesso Remoto através de um terminal

ssh ssh@inf.ufpr.br

Acesso ao Material do Curso

Sistema Moodle

- moodle.c3sl.ufpr.br
- Curso: Infraestrutura Computacional Parte 1
 - senha: dsdb18

Comandos Básicos

Bash

Bash é um interpretador de comandos. É um programa usado para iniciar e controlar a execução de outros programas.

- Possui uma sintaxe própria para programação
- Define alguns comandos internos (cd, exit, logout, pwd)
- Define algumas variáveis de ambiente (HOME, PATH, PS1)

Obtendo ajuda

GNU/Linux tem a filosofia de tornar seu usuário mais independente.

- Diversos fóruns ajudam com perguntas
- Em geral, assume-se que o usuário leu o manual antes
 - Comandos: man, info, whatis, apropos
 - Teclas de navegação: /string (busca), q (para encerrar)
 - Opção --help
 - RTFM! é uma resposta comum a perguntas cuja resposta está no manual

Comandos iniciais

Comando	Significado
ls	mostra a lista de arquivos de um diretório
cd <diret></diret>	muda de diretório corrente
less <arq></arq>	mostra o conteúdo de um arquivo
cat <arqtxt></arqtxt>	mostra o conteúdo do arquivo <arqtxt></arqtxt>
pwd	mostra o diretório corrente
exit ou logout	sai da seção atual
man <i>comando</i>	ler páginas de manual sobre comando
apropos <i>string</i>	procura pela string na base do <i>whatis</i>

Combinações de tecla em Bash

Tecla(s)	Função	
Ctrl+c	encerra a execução de um programa	
Ctrl+d	encerra a seção atual do shell	
Ctrl+l	limpa a tela	
Ctrl+r	procura no histórico de comandos	
Ctrl+z	suspende um programa	
SetaCima/Baixo	navega no histórico de comandos	
Shift+PageUp/ Shift+PageDown	navega no <i>buffer</i> do terminal (para ver texto que passou)	
Tab	completa comando ou nome de arquivo	
Tab Tab	mostra opções de comandos ou arquivos	

Exercícios

Digite os comandos a seguir e tente interpretar o que acontece. Pergunte!

echo hello world	who am i	echo \$SHELL
date	who	echo {con,pre}{sent,fer}{s,ed}
hostname	id	man ls (q)
arch	last	cal 2018
uname -a	finger	echo 3*5 bc -1
dmesg less	W	yes please (Ctrl+c)
uptime	file .	time sleep 5
echo \$HOME	top (q)	history

Referências

- Anatomy of the Linux kernel
- Linux OS Tutorial
- Introduction to UNIX
- Introduction to Linux

