Task 1: Linear Regression Model Report

1. Task Description

This task involved building a linear regression model to predict a continuous variable. The objective was to load and preprocess a dataset, train a linear regression model using scikit-learn, interpret the model coefficients, and evaluate the model using R-squared and Mean Squared Error (MSE).

2. Dataset Used

The dataset used for this task was Stock Prices Data Set.csv. It contains historical stock price data with columns such as symbol, date, open, high, low, close, and volume.

3. Model Implemented

A Linear Regression model from scikit-learn was implemented.

4. Features and Target

- Target Variable (y): close (the closing price of the stock)
- Features (X): open, high, low (the opening, highest, and lowest prices of the stock for the same day)

5. Preprocessing Steps

- 1. Loading Data: The dataset was loaded using pandas <code>read_csv</code> .
- 2. Handling Missing Values: Rows with any missing values were dropped using dropna().

6. Model Training and Evaluation

Training Data Size:

Testing Data Size:

99493 samples

Model Coefficients:

open: -0.5381high: 0.7872low: 0.7510

• Intercept: -0.0084

Evaluation Metrics:

• Mean Squared Error (MSE): 0.5160

• R-squared (R2): 1.0000

Interpretation of Results:

The Mean Squared Error (MSE) of 0.5160 indicates that, on average, the squared difference between the predicted and actual closing prices is very small. The R-squared value of 1.0000 suggests a perfect fit, meaning the model explains 100% of the variance in the 'close' price. This exceptionally high R-squared is expected when predicting the 'close' price using 'open', 'high', and 'low' prices from the same day, as these values are inherently highly correlated. This model effectively demonstrates the relationship between these intra-day price movements.

7. Script Execution and Output

Below is the console output from the execution of linear_regression_model.py after the modifications to correctly identify the target variable as 'close'. This output demonstrates the data loading, preprocessing, model training, and evaluation steps.

Dataset loaded successfully. First 5 rows:

volume	close	low	high	open	date	symbol	
8998943	25.3600	25.0600	25.8200	25.0700	2014-01-02	AAL	0
58791957	79.0185	78.8601	79.5756	79.3828	2014-01-02	AAPL	1
542711	109.7400	109.2900	111.8800	110.3600	2014-01-02	AAP	2
4569061	51.9800	51.5200	52.3300	52.1200	2014-01-02	ABBV	3
1148391	69.8900	69.4800	70.2300	70.1100	2014-01-02	ABC	4

Dataset Info:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 497472 entries, 0 to 497471

Data columns (total 7 columns):

Column Non-Null Count Dtype

_ _ _

- 0 symbol 497472 non-null object
- 1 date 497472 non-null object
- 2 open 497461 non-null float64
- 3 high 497464 non-null float64
- 4 low 497464 non-null float64
- 5 close 497472 non-null float64
- 6 volume 497472 non-null int64

dtypes: float64(4), int64(1), object(2)

memory usage: 26.6+ MB

Missing values before preprocessing:

symbol 0
date 0
open 11
high 8
low 8
close 0
volume 0
dtype: int64

Missing values after preprocessing:

symbol 0
date 0
open 0
high 0
low 0
close 0
volume 0

dtype: int64

Features (X) shape: (497461, 3)

Target (y) shape: (497461,)

Target variable identified as: 'close'

Training data size: 397968 Testing data size: 99493

Model training complete.

Model Coefficients:

open: -0.5381 high: 0.7872 low: 0.7510

Intercept: -0.0084

Mean Squared Error (MSE): 0.5160

R-squared (R2): 1.0000