76.)

i_n					
j_n		X	X	X	
k_n	X				
l_n		X			X

96.) Let $S \subseteq \mathbb{N}$, and consider the cases of S:

Case $S = \mathbb{N}$: Let $x_n = 1$. Since $1 \ge 1$, the friends of x_n are \mathbb{N} , and thus S.

Case $S \subset \mathbb{N}$: Let the sequence x_n be defined as follows:

$$x_n = \begin{cases} 1 & n \in S \\ -\frac{1}{n} & n \notin S \end{cases}$$

Since $1 > -\frac{1}{n}$ for all $n \in \mathbb{N}$, all n for which $x_n = 1$ are friends of x_n . In addition, for all $m, n \in \mathbb{N}$:

$$m > n \implies \frac{1}{n} > \frac{1}{m} \implies -\frac{1}{n} < -\frac{1}{m}$$

Thus all n for which $x_n = -\frac{1}{n}$ cannot be friends of x_n , thus $x_n = 1$ for all friends n of x_n , thusly all $n \in S$ are friends, thus S is the set of all friends of x_n , thus for all $S \subseteq \mathbb{N}$, there exists a sequence such that S is the set of friends of that sequence. Q.E.D.

- 97.) Let $x_n \to L$, then by theorem 19, $y_k \to L$ for all subsequences y_k of x_n . Similarly, since
- 99.) Let $x_n = n (-1)^n n$. x_n is unbounded, but $y_k = x_{2k} = 2k (-1)^{2k} 2k = 2k 2k = 0$, thus $y_k \leq x_n$ and $y_k \to 0$.
- 100.) Every cauchy sequence is convergent according to theorem 23, and no convergent sequence can be unbounded.
- 103.) Let $x_n = \frac{1}{n^2}$. Since $x_n \to 0$, x_n is convergent and thus cauchy. Q.E.D.
- 105.) Since x_n and y_n are cauchy, there exist $A, B \in \mathbb{R}$ where $x_n \to A$ and $y_n \to B$. Since $y_n \neq 0$ for all $n \in \mathbb{N}$, $B \neq 0$. Let $z_n = x_n / y_n$. According to theorem 14, $z_n = x_n / y_n \implies z_n \to A / B$, thus z_n is convergent and thus cauchy. Q.E.D.

127.) For $\lim_{x\to 5} x^2 = 25$, then given $\varepsilon > 0$, there must exist $\delta > 0$ where

$$|x-5| < \delta \implies |x^2 - 25| < \varepsilon$$

Suppose |x - 5| < 1, then |x + 5| < 11, thus

$$\left|x^{2} - 25\right| = \left|x - 5\right| \left|x + 5\right| < 11 \left|x - 5\right| < 11\delta$$

$$11\delta = \varepsilon \implies \delta = \frac{\varepsilon}{11}$$

Let $\delta < \min\left(1, \frac{\varepsilon}{11}\right)$:

$$|x-5| < \delta \implies |x-5| < \frac{\varepsilon}{11} \implies 11 |x-5| < \varepsilon \implies |x-5| |x+5| < 11 |x-5| < \varepsilon$$
$$\implies |x-5| |x+5| = |x^2 - 25| < \varepsilon$$

Thus $\lim_{x \to 5} x^2 = 25$. Q.E.D.

128.) For $\lim_{x\to\frac{1}{2}}\frac{1}{x}=2$, then given $\varepsilon>0$, there must exist $\delta>0$ where

$$\left| x - \frac{1}{2} \right| < \delta \implies \left| \frac{1}{x} - 2 \right| < \varepsilon$$

Suppose
$$\left| x - \frac{1}{2} \right| < \frac{1}{4}$$
:

$$\left| x - \frac{1}{2} \right| < \frac{1}{4} \implies -\frac{1}{4} < x - \frac{1}{2} < \frac{1}{4} \implies \frac{1}{4} < x < \frac{3}{4} \implies \frac{4}{3} < \frac{1}{|x|} < 4$$

$$\implies \frac{\left| x - \frac{1}{2} \right|}{|x|} < 4 \left| x - \frac{1}{2} \right| < 4\delta$$

$$4\delta = \varepsilon \implies \delta = \frac{\varepsilon}{4}$$

Let $\delta < \min\left(\frac{1}{4}, \frac{\varepsilon}{4}\right)$:

$$\left| x - \frac{1}{2} \right| < \delta \implies \left| x - \frac{1}{2} \right| < \frac{\varepsilon}{4} \implies 4 \left| x - \frac{1}{2} \right| < \varepsilon \implies \frac{\left| x - \frac{1}{2} \right|}{\left| x \right|} < 4 \left| x - \frac{1}{2} \right| < \varepsilon$$

$$\frac{\left| x - \frac{1}{2} \right|}{\left| x \right|} = \left| \frac{x - \frac{1}{2}}{x} \right| = 1 -$$