The Hang Seng University of Hong Kong Department of Mathematics, Statistics and Insurance AMS1302 Probability and Statistical Theory 2022-2023 Semester 2 Assignment 2

Answers

1	For the exponential distribution we have:
	$\mu = E(X_i) = \frac{1}{5},$
	$\sigma^2 = V(X_i) = \frac{1}{5^2} = \frac{1}{25}.$
	Hence,
	$E(\Sigma X_i) = 2500 \left(\frac{1}{5}\right) = 500,$
	$V(\Sigma X_i) = 2500 \left(\frac{1}{25}\right) = 100.$
	Using the Central Limit Theorem, $\Sigma X_i \sim N(500,100)$. We have
	$P(\Sigma X_i \le 550) = P\left(\frac{\Sigma X_i - 500}{\sqrt{100}} \le \frac{550 - 500}{\sqrt{100}}\right) = P(Z \le 5) = 1$
	(7 marks)
2(a)	$f(x) = cxe^{-0.0016x^2}, x > 0$
	Let $u = 0.0016x^2$. $\frac{du}{dx} = 0.0032x \rightarrow \frac{1}{0.0032}du = xdx$
	Let $u = 0.0016x^2$. $\frac{du}{dx} = 0.0032x \rightarrow \frac{1}{0.0032}du = xdx$ When $x = 0, u = 0$. When $x = \infty, u = \infty$.
	0.0032
	When $x = 0, u = 0$. When $x = \infty, u = \infty$.
	When $x = 0$, $u = 0$. When $x = \infty$, $u = \infty$. The total probability = 1 $\int_0^\infty cx e^{-0.0016x^2} dx = 1$ $c \int_0^\infty e^{-0.0016x^2} (x dx) = 1$
	When $x = 0$, $u = 0$. When $x = \infty$, $u = \infty$. The total probability = 1 $\int_0^\infty cx e^{-0.0016x^2} dx = 1$
	When $x = 0$, $u = 0$. When $x = \infty$, $u = \infty$. The total probability = 1 $\int_0^\infty cx e^{-0.0016x^2} dx = 1$ $c \int_0^\infty e^{-0.0016x^2} (x dx) = 1$
	When $x = 0$, $u = 0$. When $x = \infty$, $u = \infty$. The total probability = 1 $\int_0^\infty cx e^{-0.0016x^2} dx = 1$ $c \int_0^\infty e^{-0.0016x^2} (x dx) = 1$ $\int_0^\infty e^{-u} \frac{1}{0.0032} du = \frac{1}{c} (change of variable)$

$$c = 0.0032$$
 (7 marks)

2(b)

Method 1:

$$f(x) = \begin{cases} 0.0032xe^{-0.0016x^2}, & \text{for } x > 0, \\ 0, & \text{otherwise.} \end{cases}$$

By using change of variables,

let
$$t = 0.0016u^2$$
. $\frac{dt}{du} = 0.0032u \rightarrow \frac{1}{0.0032}dt = udu$

When u = 0, then $t = 0.0016(0^2) = 0$;

When u = x, then $t = 0.0016(x^2) = 0.0016x^2$

$$F(x) = \int_0^x 0.0032ue^{-0.0016u^2} du = \int_0^x 0.0032e^{-\left(\frac{0.0016u^2}{2}\right)} (udu)$$

$$= \int_0^{0.0016x^2} 0.0032e^{-t} \left(\frac{1}{0.0032} dt\right) = \int_0^{0.0016x^2} e^{-t} dt$$

$$= -e^{-t} \Big|_0^{0.0016x^2} = -e^{-0.0016x^2} + 1, \quad \text{if } x > 0$$

$$P(X > 25) = 1 - F(25) = 1 - \left(-e^{-0.0016(25^2)} + 1\right) = e^{-0.0016(25^2)} = e^{-1}$$

$$= 0.3679$$

Method 2:

Let
$$u = 0.0016x^2$$
. $\frac{du}{dx} = 0.0032x \rightarrow \frac{1}{0.0032}du = xdx$

When x = 25, $u = 0.0016(25^2) = 1$. When $x = \infty$, $u = \infty$.

$$P(X > 25) = \int_{25}^{\infty} cx e^{-0.0016x^2} dx = 0.0032 \int_{25}^{\infty} e^{-0.0016x^2} x dx$$
$$= 0.0032 \int_{1}^{\infty} e^{-u} \left(\frac{1}{0.0032}\right) du = \int_{1}^{\infty} e^{-u} du$$
$$= \lim_{u \to \infty} (-e^{-u}) - (-e^{-1}) = 0 + e^{-1} = 0.3679$$

(7 marks)

3(a)

Define $u = -z_{0.32}$.

By symmetric result and the figure above, $P(Z \le z_{0.32}) = P(Z \ge -z_{0.32}) = P(Z \ge u) = 0.32$

$$P(Z \ge u) = 0.32$$
$$1 - P(Z < u) = 0.32$$
$$P(Z < u) = 0.68$$

By the z-table, u = 0.47. Hence, $z_{0.32} = -0.47$

(5 marks)

3(b) Let X be the random variable following normal distribution with mean μ and variance σ^2 . Let $Z = \frac{X - \mu}{\sigma}$ be the standard normal variable.

Since 32^{th} percentile of X equal to 10σ ,

$$x_{0.32} = 10\sigma$$
.

By the transformation rule for the percentile of X and percentile of Z (3.40),

$$x_{0.32} = \mu + z_{0.32}\sigma$$

$$z_{0.32} = -0.47(by(a))$$

$$10\sigma = \mu + (-0.47)\sigma$$

$$\mu = 10.47\sigma$$

(5 marks)

$$M_{X}(t) = e^{\mu t + \frac{\sigma^{2} t^{2}}{2}}$$

$$M'_{X}(t) = \frac{d}{dt} \left(e^{\mu t + \frac{\sigma^{2} t^{2}}{2}} \right) = \frac{d}{dt} \left(\mu t + \frac{\sigma^{2} t^{2}}{2} \right) e^{\mu t + \frac{\sigma^{2} t^{2}}{2}} = (\mu + \sigma^{2} t) e^{\mu t + \frac{\sigma^{2} t^{2}}{2}}$$

$$E(X) = M'_{X}(0) = \mu$$

$$M''_{X}(t) = (\mu + \sigma^{2} t) \frac{d}{dt} e^{\mu t + \frac{\sigma^{2} t^{2}}{2}} + e^{\mu t + \frac{\sigma^{2} t^{2}}{2}} \frac{d}{dt} (\mu + \sigma^{2} t)$$

$$= (\mu + \sigma^{2} t)^{2} e^{\mu t + \frac{\sigma^{2} t^{2}}{2}} + e^{\mu t + \frac{\sigma^{2} t^{2}}{2}} (\sigma^{2})$$

$$= e^{\mu t + \frac{\sigma^{2} t^{2}}{2}} [(\mu + \sigma^{2} t)^{2} + \sigma^{2}]$$

$$E(X^{2}) = M''_{X}(0) = \mu^{2} + \sigma^{2}$$

$$V(X) = E(X^{2}) - E(X)^{2} = \sigma^{2}$$

$$(10 \text{ marks})$$

(b)	e=0.5 f=0.5 (3 marks) P(X < Y) = P(1,3) + P(1,5) + P(4,5) = 0.1 + 0.1 + 0.3 = 0.5
	c=0.2 d=0.4
6(a)	a=0.1 b=0.4
	$= \left[\frac{1.2(1)^2}{2} + \frac{2.5}{3} e^{-3(1)} \right] - \left[\frac{1.2(0)^2}{2} + \frac{2.5}{3} e^{-3(0)} \right]$ $= 0.6 + \frac{5}{6} e^{-3} - \frac{5}{6} = -\frac{7}{30} + \frac{5}{6} e^{-3} = -0.1918$ (4 marks)
5	$\int_0^1 1.2x - 2.5e^{-3x} dx = \left[\frac{1.2x^2}{2} - 2.5 \left(\frac{1}{-3} \right) e^{-3x} \right]_0^1$