FACULTE DES SCIENCES
BRANCHE 3

الجامعة اللبنانية

Cours: I3307 = Info 306

Session: Sept

Date: 12/09/2018 Durée: 2 heures

Exercice 1 (35 points)

a) Soit l'AFN suivant :

Donner l'AFD correspondant.

b) Soit $l' \epsilon$ -AFN suivant :

Donner l'AFN correspondant en éliminant l'e-transition.

c) Soit l'AFD suivant :

Calculer l'expression régulière correspondante en utilisant la méthode du départ.

- d) Donner l'automate minimal qui correspond à l'expression regulière $(b+baa)^*$ en utilisant la méthode des résiduels.
- e) Soit l'AFD suivant :

Donner l'AFD minimal correspondant.

Exercice 2 (20 points)

a) Donner un AFD pour le langage $L_1 = \{w \in \{a,b\}^* : w \text{ admet bb comme sous } m_0\}$

déduire un AFD pour le complément de L₁.

b) Dire pourquoi $L((a^*b^*)^*) = \{a, b\}^*$.

 c) Décrire le langage engendré par l'expression régulière a*b(a + ba*ba*b)*ba*. d) Donner une expression régulière pour le langage $L_2=\{w\in\{a,b\}: |w|_a>0$ et $|w|_a$ et

Exercice 3 (25 points)

On considère la grammaire suivante :

S - aS aSb SS c

a) Montrer que cette grammaire est ambigüe.

b) Donner l'automate à pile (qui reconnait par pile vide) correspondant à cette gramme

c) Faire fonctionner cet automate sur le mot cabab.

d) Écrire cette grammaire sous la forme normale de Chomsky.

Exercice 4 (20 points)

Soient $L = \{a^{n+m}b^nc^m : n, m > 0\}$

a) Montrer, en utilisant le lemme de pompage, que L n'est pas régulier.

b) Donner un automate à pile reconnaissant L par état final.

c) Donner une grammaire algébrique qui engendre L.

UNIVER

Cours Dure

Part

FACULTE DES SCIENCES BRANCHE 3

الجامعة اللبنانية

Cours : I3307 = Info306

Durée: 2h30

Année : 2017 - 2018 P + F : S2

Partiel

Exercice 1 (30 points)

On considère l'e-AFN suivant :

Déterminez l'AFN correspondant en éliminant les ϵ -transitions, ensuite calculez l'AFD par la méthode des sous-ensembles.

Exercice 2 (30 points)

On considère l'automate déterministe A à 12 états notés 1, 2, 3, ... 12 dont l'état initial est 1, les états finaux sont 1 et 12 et dont la fonction de transition est donnée par le tableau suivant :

	1	2	3	4	5	6	7	8	9	10	11	12
a	7	8	12	8	2	4	6	4	10	12	3	5
Ь	9	1	8	4	8	12	4	8	4	8	8	11

Construisez l'automate minimal qui reconnaît le même langage que A et dessiner le graphe de ces transitions.

Exercice 3 (20 points)

On considère l'AFD suivant :

Déterminez une expression régulière correspondante à l'automate ci-dessus par la méthode de départ.

vercice 4 (20 points)

a) Donnez un AFD reconnaissant $L_1 = \{w \in \{a,b\}^*, \text{ où chaque } b \text{ est suivi par } a_Q\}$. b) Donnez un AFD reconnaissant $L_2 = \{a^nb^m : n+m \text{ est paire}\}.$

Exercice 4 (20 points)

e) Donnez une expression regulière pour $L_3=\{w\in\{a,b\}^*: |w|_a \text{ modulo } 3=1\}$.
d) Donnez une expression régulière pour $L_3=\{w\in\{a,b\}^*: |w|_a \text{ modulo } 3=1\}$.

Exercice 5 (20 points) Soit l'expression régulière $(aa)^*(ab+\epsilon)(bb)^*$. Déterminez l'AFD correspondant par la mét des résiduels.

Exercice 6 (40 points)

On considère la grammaire G:

 $S \rightarrow AA$

 $A \rightarrow AAA$

 $A \rightarrow a$

 $A \rightarrow bA$

 $A \rightarrow Ab$

- a) Quels mots de L(G) peuvent être produits par dérivations de quatre étapes ou moins
- b) Donner, au moins, quatre dérivations différentes pour le mot babbab.
- c) Est-ce que cette grammaire est ambiguë? Pourquoi?
- d) Construisez l'automate à pile reconnaissant L(G) par pile vide à partir de G.
- e) Donnez une grammaire équivalente en forme normale de Chomsky.

Exercice 7 (40 points)

Soient $L_1 = \{a^n b^m c^{n+m} : n, m > 0\}, L_2 = \{a^n b^{n+m} c^m : n, m > 0\}$

- a) Montrez, en utilisant la propriété de fermeture des langages réguliers par homomorphis que L_1 n'est pas régulier. (On admet que $\{a^nb^n: n>0\}$ n'est pas régulier.)
- b) Montrez, en utilisant le lemme de pompage, que L_2 n'est pas régulier.
- c) Donnez un automate à pile reconnaissant L_1 par état final.
- d) Donnez un automate à pile reconnaissant L_2 par état final.
- e) Donnez une grammaire algébrique qui engendre L_1 .
- f) Donnez une grammaire algébrique qui engendre L_2 .

FACULTE DEB BOIENCES BRANCHE 3

الجامعة اللبنانية

Cours: I3307 = Info 306

Session : Finale

Date: 29/07/2019 Durée: 2 heures

Exercice 1 (35 points)

On considère la grammaire G:

 $S \rightarrow AA$

 $A \rightarrow AAA$

 $A \rightarrow a$

 $A \rightarrow bA$

 $A \rightarrow Ab$

- a) Quels mots de L(G) peuvent être produits par dérivations de quatre étapes ou moins?
- b) Donnez, au moins, quatre dérivations différentes pour le mot babbab.
- c) Est-ce que cette grammaire est ambiguë? Pourquoi?
- d) Construisez l'automate à pile reconnaissant L(G) par pile vide à partir de G.
- Faites fonctionner cet automate sur le mot babbab. (Montrez, dans un tableau, le contenu de la pile après chaque transition.)

Exercice 2 (25 points)

Soit le langage algébrique $L = \{w \in \{a, b\}^* : |w| \text{ est impair et } w \text{ contient } a \text{ en son milieu}\}$

- a) Montrer que L n'est pas régulier en utilisant le lemme de Pompage.
- b) Donner une grammaire algébrique qui l'engendre.
- c) Donner un automate à pile qui le reconnait par état final. (Le PDA pourra être non déterministe.)

Exercice 3 (40 points)

Soient les langages $L_1 = \{a^n b^i c^n d^j : n, i, j \ge 0\}$ et $L_2 = \{a^i b^n c^j d^n : n, i, j \ge 0\}$.

- a) Donner un automate à pile qui reconnait L_1 par état final.
- b) Donner un automate à pile qui reconnait L2 par état final.
- c) Donner les grammaires G_1 qui engendre L_1 et G_2 qui engendre L_2 , en déduire la grammaire G_2 tel que $L(G) = L(G_1) \cup L(G_2)$.
- d) Définir un homomorphisme h tel que h(L₁) = {aⁿbⁿ : n ≥ 0}. Étant donné que {aⁿbⁿ : n ≥ 0 n'est pas régulier, que peut-on conclure à propos de L₁?

FACULTE DES SCIENCES BRANCHE &

الفسرج السلالين

Cours: Info 306 Session : Finale

Date: 19/06/2017 Durée : 2 heures

Exercice 1 (20 points)

Soit $L = \{w \in \{a, b, c\}^* : |w|_a = |w|_b + |w|_c\}.$

- a) Montrez, en utilisant le lemme de pompage, que L n'est pas régulier.
- b) Montrez, en utilisant la fermeture des langages réguliers par homomorphisme, que L n'est pas régulier.
- c) Donnez un automate à pile reconnaissant L par état final.

Exercice 2 (35 points)

ersot be some pulx 30

Soit la grammaire G suivante de symbole initial S:

S - aSa T Texteres 3 من آل ع

- a) Donnez une dérivation la plus à gauche du mot aabbbbaa ainsi que l'arbre de dérivation correspondante.
- b) Construisez l'automate à pile reconnaissant L(G) par pile vide à partir de la grammaire G. Faites fonctionner cet automate sur le mot aabbbbaa en montrant le contenu de la pile et la transition utilisée à chaque étape de la lecture.
- c) Donnez la forme normale de Chomsky de G, en déduire la grammaire du langage miroir de L(G).

On considère le langage $L = \{a^ib^jc^k | i = j\ \text{ou}\ i = k\}$.

- a) Donnez une grammaire pour L.
- b) Votre grammaire est-elle ambiguë? Pourquoi?
- c) Donnez un automate à pile reconnaissant L par état final.

exercice 4 (15 points)

On considère $L=\{w\in\{a,b\}^*\mid w \text{ est un palindrome de longueur paire}\}$

onnez une machine de Turing reconnaissant L par arrêt dans un état final.