් සියලු ම හිමිකම් ඇවිරිනි /ගුඟුට பதிப்புரிமையுடையது / $All\ Rights\ Reserved$]

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේ**දී වල් කිරීමේ විභාග දෙපාර්තමේන්තුව** විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பழ**ි කළින් නිකෝස්ස්ක්රියේට ප්රියාත්තමේන්තුව** විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලික්කර ලිසුව ලික්කර ලිසුවේන්තුව ලියුවේන්තුව ලියුවේන්ත්තම් ලියුවේන්තුව ලියුවේන්තුව ලියුවේන්තුව ලියුවේන්තුව ලියුවේන්ත්තම් ලියුවේන්

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2022(2023) සல්ඛා්ධ பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2022(2023) General Certificate of Education (Adv. Level) Examination, 2022(2023)

සංයුක්ත ගණිතය II இணைந்த கணிதம் II Combined Mathematics II

10 S II

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය- මිනිත්තු 10 යිமேலதிக வாசிப்பு நேரம்- 10 நிமிடங்கள்Additional Reading Time- 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

	 	r		$\overline{}$
ව්භාග අංකය				
				, ,

උපදෙස්:

🗱 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ **B කොටස** (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩආසිවල ලියන්න.

- st නියමිත කාලය අවසන් වූ පසු f A කොටසෙහි පිළිතුරු පතුය, f B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B **කොටස පමණක්** විභාග ශාලාවෙන් පිටකට ගෙන යාමට ඔබට අවසර ඇත.
- st මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(1	0) සංයුක්ත ගණි	තය II
කොටස	පුශ්න අංකය	ලකුණු
	1	
	2	
	3	
	4	
A	5	
1.	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
. B	14	
	15	
	16	
	17	
	එකතුව	

උගාරාර	•
2.5	
-	ටකතුට

	කොටස
Δ	(6)23) 16 16

1.	එක එකක ස්කන්ධය m වූ A,B හා C අංශු තුනක් සුමට තිරස් මේසයක් මත සරල රේඛාවක A හා B එකිනෙකට a දුරින්, දිග a වූ සැහැල්ලු අවිතනා තන්තුවකින් යා කර රූපයේ පෙන්වා ඇති පරිදි තබා ඇත.
F	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	B අංශුවට \overrightarrow{AB} දිශාවට ආවේගයක් දෙනු ලබන්නේ ආවේගයෙන් මොහොතකට පසුව B හි පුවේගය u වන පරිදි ය. C සමග ගැටුමෙන් මොහොතකට පසු, B හි පුවේගය \overrightarrow{AB} දිශාවට $\frac{1}{2}(1-e)u$ බව පෙන්වන්න; මෙහි e යනු B හා C අතර පුතාාගති සංගුණකය වේ. මෙම ගැටුමෙන් පසුව, A ට B සමග ගැටීම සඳහා ගතවන කාලය ද සොයන්න.
•	
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	······································
2.	A හා B යනු තිරස් ගෙබීමක් මත $AB=a$ වන පරිදි වූ ලක්ෂා දෙකකි. P හා Q අංශු දෙකක් පිළිවෙළින් A හා B ලක්ෂාවලින් එකම මොහොතකදී AB රේඛාව අඩංගු සිරස් තලයෙහි පුක්ෂේප කරනු ලබන්නේ T කාලයකට පසු අවකාශයේ වූ ලක්ෂායකදී ඒවා එකිනෙක ගැටෙන පරිදි ය. P හා Q හි ආරම්භක පුවේග රූපයෙහි දී ඇත. $u=\sqrt{ga}$ බව පෙන්වා, T යන්න a හා g ඇසුරෙන් සොයන්න. a
ver in an annual de la companya de l	
· Principal de la companya del la companya de la companya del la companya de la c	

ΑT	121)22((ንበ	72 1	/10	/C	TT
AI	<i>JI Z</i> I	122	ΔU_{I}	4.J I	/ LU	/ J)	-11

විභාග අංකය

3.	ස්කන්ධ පිළිවෙළින් m හා $3m$ වූ A හා B අංශු දෙකක් සැහැල්ලු අවිතනා තන්තුවක කෙළවරවලට ඇඳා ඇත. A අංශුව තිරස් මේසයක් මත නිශ්චලතාවයේ අල්වා තබා ඇති අතර මේසයේ දාරයට සවි කළ කුඩා සුමට කප්පියක් මතින් තන්තුව දමා
	ඇත. B අංශුව කප්පියට සිරස්ව පහළින් එල්ලෙයි. A අංශුව කප්පියේ සිට a දුරකින්
	ඇතිව පද්ධතිය නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ. පසුව එන චලිතයේදී A
	මත විශාලත්වය $rac{1}{2}mg$ වූ නියත ඝර්ෂණ බලයක් කිුයාකරයි.
	A හි ත්වරණය සොයන්න.
	A කප්පියට ළඟාවන විට A හි වේගය ද සොයන්න.
	* 4 (68)
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියත ජවයකින් කිුිිිියා කරමින් නියත පුතිරෝධයකට එරෙහිව තිරස්
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියත ජවයකින් කිුයා කරමින් නියත පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය,
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියත ජවයකින් කිුිිිියා කරමින් නියත පුතිරෝධයකට එරෙහිව තිරස්
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියත ජවයකින් කිුයා කරමින් නියත පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය,
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියත ජවයකින් කිුයා කරමින් නියත පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය, තිරසට $\sin^{-1}\left(\frac{2}{3}\right)$ ක ආනතියක් සහිත මාර්ගයක් දිගේ ඉහළට $8~{ m m~s^{-1}}$ වේගයකින් එම නියත ජවයෙන්ම
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියන ජවයකින් කිුයා කරමින් නියන පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය, තිරසට $\sin^{-1}\left(\frac{2}{3}\right)$ ක ආනතියක් සහිත මාර්ගයක් දිගේ ඉහළට $8~{ m m~s^{-1}}$ වේගයකින් එම නියත පුතිරෝධයටම එරෙහිව චලනය වන විට එහි ත්වරණය නිර්ණය කිරීමට පුමාණවත්
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියන ජවයකින් කිුයා කරමින් නියන පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය, තිරසට $\sin^{-1}\left(\frac{2}{3}\right)$ ක ආනතියක් සහිත මාර්ගයක් දිගේ ඉහළට $8~{ m m~s^{-1}}$ වේගයකින් එම නියත පුතිරෝධයටම එරෙහිව චලනය වන විට එහි ත්වරණය නිර්ණය කිරීමට පුමාණවත්
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියන ජවයකින් කිුයා කරමින් නියන පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය, තිරසට $\sin^{-1}\left(\frac{2}{3}\right)$ ක ආනතියක් සහිත මාර්ගයක් දිගේ ඉහළට $8~{ m m~s^{-1}}$ වේගයකින් එම නියත පුතිරෝධයටම එරෙහිව චලනය වන විට එහි ත්වරණය නිර්ණය කිරීමට පුමාණවත්
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියන ජවයකින් කිුයා කරමින් නියන පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය, තිරසට $\sin^{-1}\left(\frac{2}{3}\right)$ ක ආනතියක් සහිත මාර්ගයක් දිගේ ඉහළට $8~{ m m~s^{-1}}$ වේගයකින් එම නියත පුතිරෝධයටම එරෙහිව චලනය වන විට එහි ත්වරණය නිර්ණය කිරීමට පුමාණවත්
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියන ජවයකින් කිුයා කරමින් නියන පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය, තිරසට $\sin^{-1}\left(\frac{2}{3}\right)$ ක ආනතියක් සහිත මාර්ගයක් දිගේ ඉහළට $8~{ m m~s^{-1}}$ වේගයකින් එම නියත පුතිරෝධයටම එරෙහිව චලනය වන විට එහි ත්වරණය නිර්ණය කිරීමට පුමාණවත්
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියන ජවයකින් කිුයා කරමින් නියන පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය, තිරසට $\sin^{-1}\left(\frac{2}{3}\right)$ ක ආනතියක් සහිත මාර්ගයක් දිගේ ඉහළට $8~{ m m~s^{-1}}$ වේගයකින් එම නියත පුතිරෝධයටම එරෙහිව චලනය වන විට එහි ත්වරණය නිර්ණය කිරීමට පුමාණවත්
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියන ජවයකින් කිුයා කරමින් නියන පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය, තිරසට $\sin^{-1}\left(\frac{2}{3}\right)$ ක ආනතියක් සහිත මාර්ගයක් දිගේ ඉහළට $8~{ m m~s^{-1}}$ වේගයකින් එම නියත පුතිරෝධයටම එරෙහිව චලනය වන විට එහි ත්වරණය නිර්ණය කිරීමට පුමාණවත්
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියන ජවයකින් කිුයා කරමින් නියන පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය, තිරසට $\sin^{-1}\left(\frac{2}{3}\right)$ ක ආනතියක් සහිත මාර්ගයක් දිගේ ඉහළට $8~{ m m~s^{-1}}$ වේගයකින් එම නියත පුතිරෝධයටම එරෙහිව චලනය වන විට එහි ත්වරණය නිර්ණය කිරීමට පුමාණවත්
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියන ජවයකින් කිුයා කරමින් නියන පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය, තිරසට $\sin^{-1}\left(\frac{2}{3}\right)$ ක ආනතියක් සහිත මාර්ගයක් දිගේ ඉහළට $8~{ m m~s^{-1}}$ වේගයකින් එම නියත පුතිරෝධයටම එරෙහිව චලනය වන විට එහි ත්වරණය නිර්ණය කිරීමට පුමාණවත්
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියන ජවයකින් කිුයා කරමින් නියන පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය, තිරසට $\sin^{-1}\left(\frac{2}{3}\right)$ ක ආනතියක් සහිත මාර්ගයක් දිගේ ඉහළට $8~{ m m~s^{-1}}$ වේගයකින් එම නියත පුතිරෝධයටම එරෙහිව චලනය වන විට එහි ත්වරණය නිර්ණය කිරීමට පුමාණවත්
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියන ජවයකින් කිුයා කරමින් නියන පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය, තිරසට $\sin^{-1}\left(\frac{2}{3}\right)$ ක ආනතියක් සහිත මාර්ගයක් දිගේ ඉහළට $8~{ m m~s^{-1}}$ වේගයකින් එම නියත පුතිරෝධයටම එරෙහිව චලනය වන විට එහි ත්වරණය නිර්ණය කිරීමට පුමාණවත්
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියන ජවයකින් කිුයා කරමින් නියන පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය, තිරසට $\sin^{-1}\left(\frac{2}{3}\right)$ ක ආනතියක් සහිත මාර්ගයක් දිගේ ඉහළට $8~{ m m~s^{-1}}$ වේගයකින් එම නියත පුතිරෝධයටම එරෙහිව චලනය වන විට එහි ත්වරණය නිර්ණය කිරීමට පුමාණවත්
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියන ජවයකින් කිුයා කරමින් නියන පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය, තිරසට $\sin^{-1}\left(\frac{2}{3}\right)$ ක ආනතියක් සහිත මාර්ගයක් දිගේ ඉහළට $8~{ m m~s^{-1}}$ වේගයකින් එම නියත පුතිරෝධයටම එරෙහිව චලනය වන විට එහි ත්වරණය නිර්ණය කිරීමට පුමාණවත්
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියන ජවයකින් කිුයා කරමින් නියන පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය, තිරසට $\sin^{-1}\left(\frac{2}{3}\right)$ ක ආනතියක් සහිත මාර්ගයක් දිගේ ඉහළට $8~{ m m~s^{-1}}$ වේගයකින් එම නියත පුතිරෝධයටම එරෙහිව චලනය වන විට එහි ත්වරණය නිර්ණය කිරීමට පුමාණවත්
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියන ජවයකින් කිුයා කරමින් නියන පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය, තිරසට $\sin^{-1}\left(\frac{2}{3}\right)$ ක ආනතියක් සහිත මාර්ගයක් දිගේ ඉහළට $8~{ m m~s^{-1}}$ වේගයකින් එම නියත පුතිරෝධයටම එරෙහිව චලනය වන විට එහි ත්වරණය නිර්ණය කිරීමට පුමාණවත්
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියන ජවයකින් කිුයා කරමින් නියන පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය, තිරසට $\sin^{-1}\left(\frac{2}{3}\right)$ ක ආනතියක් සහිත මාර්ගයක් දිගේ ඉහළට $8~{ m m~s^{-1}}$ වේගයකින් එම නියත පුතිරෝධයටම එරෙහිව චලනය වන විට එහි ත්වරණය නිර්ණය කිරීමට පුමාණවත්
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියන ජවයකින් කිුයා කරමින් නියන පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය, තිරසට $\sin^{-1}\left(\frac{2}{3}\right)$ ක ආනතියක් සහිත මාර්ගයක් දිගේ ඉහළට $8~{ m m~s^{-1}}$ වේගයකින් එම නියත පුතිරෝධයටම එරෙහිව චලනය වන විට එහි ත්වරණය නිර්ණය කිරීමට පුමාණවත්
4.	ස්කන්ධය $1500~{ m kg}$ වූ කාරයක් $80~{ m kW}$ නියන ජවයකින් කිුයා කරමින් නියන පුතිරෝධයකට එරෙහිව තිරස් මාර්ගයක් මත චලනය වේ. කාරය $20~{ m m~s^{-1}}$ වේගයකින් චලනය වන විට එහි ත්වරණය $2~{ m m~s^{-2}}$ වේ. කාරය, තිරසට $\sin^{-1}\left(\frac{2}{3}\right)$ ක ආනතියක් සහිත මාර්ගයක් දිගේ ඉහළට $8~{ m m~s^{-1}}$ වේගයකින් එම නියත පුතිරෝධයටම එරෙහිව චලනය වන විට එහි ත්වරණය නිර්ණය කිරීමට පුමාණවත්

5.	දිග a වූ සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් අවල ලක්ෂායකට ද අනෙක් කෙළවර ස්කන්ධය m වූ
	අංශුවකට ද ඇඳා ඇත. අංශුව ω තියත කෝණික වේගයකින් තිරස් වෘත්තයක චලනය වේ. තන්තුව යටි අත්
	සිරස සමග $ heta\Big(0< heta<rac{\pi}{2}\Big)$ කෝණයක් සාදයි. $\omega>\sqrt{rac{g}{a}}$ බව පෙන්වන්න.
6.	සුපුරුදු අංකනයෙන්, O අචල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂාා දෙකක පිහිටුම් දෛශික පිළිවෙළින් $3\mathbf{i}+2\mathbf{j}$ හා $2\mathbf{i}+4\mathbf{j}$ වේ. O , A හා B ඒක රේඛීය නොවන බව පෙන්වන්න.
6.	$3\mathbf{i}+2\mathbf{j}$ හා $2\mathbf{i}+4\mathbf{j}$ වේ. $O,\ A$ හා B ඒක රේඛීය නොවන බව පෙන්වන්න. C යනු $\overrightarrow{BC}=\lambda\overrightarrow{OA}$ වන පරිදි වූ ලක්ෂාය යැයි ගනිමු; මෙහි $\lambda\in\mathbb{R}$ වේ. \mathbf{i},\mathbf{j} හා λ ඇසුරෙන් \overrightarrow{OC} සොයන්න.
6.	$3\mathbf{i}+2\mathbf{j}$ හා $2\mathbf{i}+4\mathbf{j}$ වේ. O,A හා B ඒක රේඛීය නොවන බව පෙන්වන්න.
6.	$3\mathbf{i}+2\mathbf{j}$ හා $2\mathbf{i}+4\mathbf{j}$ වේ. $O,\ A$ හා B ඒක රේඛීය නොවන බව පෙන්වන්න. C යනු $\overrightarrow{BC}=\lambda\overrightarrow{OA}$ වන පරිදි වූ ලක්ෂාය යැයි ගනිමු; මෙහි $\lambda\in\mathbb{R}$ වේ. \mathbf{i},\mathbf{j} හා λ ඇසුරෙන් \overrightarrow{OC} සොයන්න.
6.	$3\mathbf{i}+2\mathbf{j}$ හා $2\mathbf{i}+4\mathbf{j}$ වේ. $O,\ A$ හා B ඒක රේඛීය නොවන බව පෙන්වන්න. C යනු $\overrightarrow{BC}=\lambda\overrightarrow{OA}$ වන පරිදි වූ ලක්ෂාය යැයි ගනිමු; මෙහි $\lambda\in\mathbb{R}$ වේ. \mathbf{i},\mathbf{j} හා λ ඇසුරෙන් \overrightarrow{OC} සොයන්න.
6.	$3\mathbf{i}+2\mathbf{j}$ හා $2\mathbf{i}+4\mathbf{j}$ වේ. $O,\ A$ හා B ඒක රේඛීය නොවන බව පෙන්වන්න. C යනු $\overrightarrow{BC}=\lambda\overrightarrow{OA}$ වන පරිදි වූ ලක්ෂාය යැයි ගනිමු; මෙහි $\lambda\in\mathbb{R}$ වේ. \mathbf{i},\mathbf{j} හා λ ඇසුරෙන් \overrightarrow{OC} සොයන්න.
6.	$3\mathbf{i}+2\mathbf{j}$ හා $2\mathbf{i}+4\mathbf{j}$ වේ. $O,\ A$ හා B ඒක රේඛීය නොවන බව පෙන්වන්න. C යනු $\overrightarrow{BC}=\lambda\overrightarrow{OA}$ වන පරිදි වූ ලක්ෂාය යැයි ගනිමු; මෙහි $\lambda\in\mathbb{R}$ වේ. \mathbf{i},\mathbf{j} හා λ ඇසුරෙන් \overrightarrow{OC} සොයන්න.
6.	$3\mathbf{i}+2\mathbf{j}$ හා $2\mathbf{i}+4\mathbf{j}$ වේ. $O,\ A$ හා B ඒක රේඛීය නොවන බව පෙන්වන්න. C යනු $\overrightarrow{BC}=\lambda\overrightarrow{OA}$ වන පරිදි වූ ලක්ෂාය යැයි ගනිමු; මෙහි $\lambda\in\mathbb{R}$ වේ. \mathbf{i},\mathbf{j} හා λ ඇසුරෙන් \overrightarrow{OC} සොයන්න.
6.	$3\mathbf{i}+2\mathbf{j}$ හා $2\mathbf{i}+4\mathbf{j}$ වේ. $O,\ A$ හා B ඒක රේඛීය නොවන බව පෙන්වන්න. C යනු $\overrightarrow{BC}=\lambda\overrightarrow{OA}$ වන පරිදි වූ ලක්ෂාය යැයි ගනිමු; මෙහි $\lambda\in\mathbb{R}$ වේ. \mathbf{i},\mathbf{j} හා λ ඇසුරෙන් \overrightarrow{OC} සොයන්න.
6.	$3\mathbf{i}+2\mathbf{j}$ හා $2\mathbf{i}+4\mathbf{j}$ වේ. $O,\ A$ හා B ඒක රේඛීය නොවන බව පෙන්වන්න. C යනු $\overrightarrow{BC}=\lambda\overrightarrow{OA}$ වන පරිදි වූ ලක්ෂාය යැයි ගනිමු; මෙහි $\lambda\in\mathbb{R}$ වේ. \mathbf{i},\mathbf{j} හා λ ඇසුරෙන් \overrightarrow{OC} සොයන්න.
6.	$3\mathbf{i}+2\mathbf{j}$ හා $2\mathbf{i}+4\mathbf{j}$ වේ. $O,\ A$ හා B ඒක රේඛීය නොවන බව පෙන්වන්න. C යනු $\overrightarrow{BC}=\lambda\overrightarrow{OA}$ වන පරිදි වූ ලක්ෂාය යැයි ගනිමු; මෙහි $\lambda\in\mathbb{R}$ වේ. \mathbf{i},\mathbf{j} හා λ ඇසුරෙන් \overrightarrow{OC} සොයන්න.
6.	$3\mathbf{i}+2\mathbf{j}$ හා $2\mathbf{i}+4\mathbf{j}$ වේ. $O,\ A$ හා B ඒක රේඛීය නොවන බව පෙන්වන්න. C යනු $\overrightarrow{BC}=\lambda\overrightarrow{OA}$ වන පරිදි වූ ලක්ෂාය යැයි ගනිමු; මෙහි $\lambda\in\mathbb{R}$ වේ. \mathbf{i},\mathbf{j} හා λ ඇසුරෙන් \overrightarrow{OC} සොයන්න.
6.	$3\mathbf{i}+2\mathbf{j}$ හා $2\mathbf{i}+4\mathbf{j}$ වේ. $O,\ A$ හා B ඒක රේඛීය නොවන බව පෙන්වන්න. C යනු $\overrightarrow{BC}=\lambda\overrightarrow{OA}$ වන පරිදි වූ ලක්ෂාය යැයි ගනිමු; මෙහි $\lambda\in\mathbb{R}$ වේ. \mathbf{i},\mathbf{j} හා λ ඇසුරෙන් \overrightarrow{OC} සොයන්න.
6.	$3\mathbf{i}+2\mathbf{j}$ හා $2\mathbf{i}+4\mathbf{j}$ වේ. $O,\ A$ හා B ඒක රේඛීය නොවන බව පෙන්වන්න. C යනු $\overrightarrow{BC}=\lambda\overrightarrow{OA}$ වන පරිදි වූ ලක්ෂාය යැයි ගනිමු; මෙහි $\lambda\in\mathbb{R}$ වේ. \mathbf{i},\mathbf{j} හා λ ඇසුරෙන් \overrightarrow{OC} සොයන්න.
6.	$3\mathbf{i}+2\mathbf{j}$ හා $2\mathbf{i}+4\mathbf{j}$ වේ. $O,\ A$ හා B ඒක රේඛීය නොවන බව පෙන්වන්න. C යනු $\overrightarrow{BC}=\lambda\overrightarrow{OA}$ වන පරිදි වූ ලක්ෂාය යැයි ගනිමු; මෙහි $\lambda\in\mathbb{R}$ වේ. \mathbf{i},\mathbf{j} හා λ ඇසුරෙන් \overrightarrow{OC} සොයන්න.
6.	$3\mathbf{i}+2\mathbf{j}$ හා $2\mathbf{i}+4\mathbf{j}$ වේ. $O,\ A$ හා B ඒක රේඛීය නොවන බව පෙන්වන්න. C යනු $\overrightarrow{BC}=\lambda\overrightarrow{OA}$ වන පරිදි වූ ලක්ෂාය යැයි ගනිමු; මෙහි $\lambda\in\mathbb{R}$ වේ. \mathbf{i},\mathbf{j} හා λ ඇසුරෙන් \overrightarrow{OC} සොයන්න.
6.	$3\mathbf{i}+2\mathbf{j}$ හා $2\mathbf{i}+4\mathbf{j}$ වේ. $O,\ A$ හා B ඒක රේඛීය නොවන බව පෙන්වන්න. C යනු $\overrightarrow{BC}=\lambda\overrightarrow{OA}$ වන පරිදි වූ ලක්ෂාය යැයි ගනිමු; මෙහි $\lambda\in\mathbb{R}$ වේ. \mathbf{i},\mathbf{j} හා λ ඇසුරෙන් \overrightarrow{OC} සොයන්න.
6.	$3\mathbf{i}+2\mathbf{j}$ හා $2\mathbf{i}+4\mathbf{j}$ වේ. $O,\ A$ හා B ඒක රේඛීය නොවන බව පෙන්වන්න. C යනු $\overrightarrow{BC}=\lambda\overrightarrow{OA}$ වන පරිදි වූ ලක්ෂාය යැයි ගනිමු; මෙහි $\lambda\in\mathbb{R}$ වේ. \mathbf{i},\mathbf{j} හා λ ඇසුරෙන් \overrightarrow{OC} සොයන්න.

	D
7.	සුමට නාදැත්තක් මත රඳවා සමතුලිතතාවයේ තබා ඇත්තේ එහි පහළ
	කෙළවර B ට, සිරස සමග eta කෝණයක් සාදන, P බලයක් යෙදීමෙනි.
	දණ්ඩ තිරස සමග $\frac{\pi}{6}$ කෝණයක් සාදයි. $ aneta=\frac{\sqrt{3}}{5}$ බව පෙන්වන්න.
	$B^{\overline{6}}$
8.	රූපයේ පෙන්වා ඇති පරිදි, බර W හා දිග $2a$ වූ ඒකාකාර ඉණිමගක් රළු සිරස් බිත්තියකට එරෙහිව එහි පහළ කෙළවර සුමට තිරස් ගෙබිමක් මත ඇතිව සමතුලිතතාවයේ තබා ඇත්තේ ඉණිමගේ මධා ලක්ෂායේදී යෙදූ විශාලත්වය P වූ තිරස් බලයක් මගිනි. ඉණිමග ගෙබිම සමග $\frac{\pi}{4}$ ක
8.	රළු සිරස් බිත්තියකට එරෙහිව එහි පහළ කෙළවර සුමට තිරස් ගෙබිමක් මත ඇතිව සමතුලිතතාවයේ තබා ඇත්තේ ඉණිමගේ මධා ලක්ෂායේදී $\stackrel{\longleftarrow}{R}$
8.	රඑ සිරස් බිත්තියකට එරෙහිව එහි පහළ කෙළවර සුමට තිරස් ගෙබිමක් මත ඇතිව සමතුලිතතාවයේ තබා ඇත්තේ ඉණිමගේ මධා ලක්ෂායේදී යෙදූ විශාලත්වය P වූ තිරස් බලයක් මගිනි. ඉණිමග ගෙබිම සමග $\frac{\pi}{4}$ ක කෝණයක් සාදයි. ඉණිමග හා බිත්තිය අතර සර්ෂණ සංගුණකය $\frac{1}{6}$ වේ.
8.	රඑ සිරස් බිත්තියකට එරෙහිව එහි පහළ කෙළවර සුමට තිරස් ගෙබිමක් මත ඇතිව සමතුලිතතාවයේ තබා ඇත්තේ ඉණිමගේ මධා ලක්ෂායේදී යෙදූ විශාලත්වය P වූ තිරස් බලයක් මගිනි. ඉණිමග ගෙබිම සමග $\frac{\pi}{4}$ ක කෝණයක් සාදයි. ඉණිමග හා බිත්තිය අතර සර්ෂණ සංගුණකය $\frac{1}{6}$ වේ.
8.	රඑ සිරස් බිත්තියකට එරෙහිව එහි පහළ කෙළවර සුමට තිරස් ගෙබිමක් මත ඇතිව සමතුලිතතාවයේ තබා ඇත්තේ ඉණිමගේ මධා ලක්ෂායේදී යෙදූ විශාලත්වය P වූ තිරස් බලයක් මගිනි. ඉණිමග ගෙබිම සමග $\frac{\pi}{4}$ ක කෝණයක් සාදයි. ඉණිමග හා බිත්තිය අතර සර්ෂණ සංගුණකය $\frac{1}{6}$ වේ.
8.	රඑ සිරස් බිත්තියකට එරෙහිව එහි පහළ කෙළවර සුමට තිරස් ගෙබිමක් මත ඇතිව සමතුලිතතාවයේ තබා ඇත්තේ ඉණිමගේ මධා ලක්ෂායේදී යෙදූ විශාලත්වය P වූ තිරස් බලයක් මගිනි. ඉණිමග ගෙබිම සමග $\frac{\pi}{4}$ ක කෝණයක් සාදයි. ඉණිමග හා බිත්තිය අතර සර්ෂණ සංගුණකය $\frac{1}{6}$ වේ.
8.	රඑ සිරස් බිත්තියකට එරෙහිව එහි පහළ කෙළවර සුමට තිරස් ගෙබිමක් මත ඇතිව සමතුලිතතාවයේ තබා ඇත්තේ ඉණිමගේ මධා ලක්ෂායේදී යෙදූ විශාලත්වය P වූ තිරස් බලයක් මගිනි. ඉණිමග ගෙබිම සමග $\frac{\pi}{4}$ ක කෝණයක් සාදයි. ඉණිමග හා බිත්තිය අතර සර්ෂණ සංගුණකය $\frac{1}{6}$ වේ.
8.	රඑ සිරස් බිත්තියකට එරෙහිව එහි පහළ කෙළවර සුමට තිරස් ගෙබිමක් මත ඇතිව සමතුලිතතාවයේ තබා ඇත්තේ ඉණිමගේ මධා ලක්ෂායේදී යෙදූ විශාලත්වය P වූ තිරස් බලයක් මගිනි. ඉණිමග ගෙබිම සමග $\frac{\pi}{4}$ ක කෝණයක් සාදයි. ඉණිමග හා බිත්තිය අතර සර්ෂණ සංගුණකය $\frac{1}{6}$ වේ.
8.	රඑ සිරස් බිත්තියකට එරෙහිව එහි පහළ කෙළවර සුමට තිරස් ගෙබිමක් මත ඇතිව සමතුලිතතාවයේ තබා ඇත්තේ ඉණිමගේ මධා ලක්ෂායේදී යෙදූ විශාලත්වය P වූ තිරස් බලයක් මගිනි. ඉණිමග ගෙබිම සමග $\frac{\pi}{4}$ ක කෝණයක් සාදයි. ඉණිමග හා බිත්තිය අතර සර්ෂණ සංගුණකය $\frac{1}{6}$ වේ.
8.	රඑ සිරස් බිත්තියකට එරෙහිව එහි පහළ කෙළවර සුමට තිරස් ගෙබිමක් මත ඇතිව සමතුලිතතාවයේ තබා ඇත්තේ ඉණිමගේ මධා ලක්ෂායේදී යෙදූ විශාලත්වය P වූ තිරස් බලයක් මගිනි. ඉණිමග ගෙබිම සමග $\frac{\pi}{4}$ ක කෝණයක් සාදයි. ඉණිමග හා බිත්තිය අතර සර්ෂණ සංගුණකය $\frac{1}{6}$ වේ.
8.	රඑ සිරස් බිත්තියකට එරෙහිව එහි පහළ කෙළවර සුමට තිරස් ගෙබිමක් මත ඇතිව සමතුලිතතාවයේ තබා ඇත්තේ ඉණිමගේ මධා ලක්ෂායේදී යෙදූ විශාලත්වය P වූ තිරස් බලයක් මගිනි. ඉණිමග ගෙබිම සමග $\frac{\pi}{4}$ ක කෝණයක් සාදයි. ඉණිමග හා බිත්තිය අතර සර්ෂණ සංගුණකය $\frac{1}{6}$ වේ.
8.	රඑ සිරස් බිත්තියකට එරෙහිව එහි පහළ කෙළවර සුමට තිරස් ගෙබිමක් මත ඇතිව සමතුලිතතාවයේ තබා ඇත්තේ ඉණිමගේ මධා ලක්ෂායේදී යෙදූ විශාලත්වය P වූ තිරස් බලයක් මගිනි. ඉණිමග ගෙබිම සමග $\frac{\pi}{4}$ ක කෝණයක් සාදයි. ඉණිමග හා බිත්තිය අතර ඝර්ෂණ සංගුණකය $\frac{1}{6}$ වේ. $\frac{3W}{4} \leq P \leq \frac{3W}{2}$ බව පෙන්වත්න.
8.	රඑ සිරස් බිත්තියකට එරෙහිව එහි පහළ කෙළවර සුමට තිරස් ගෙබිමක් මත ඇතිව සමතුලිතතාවයේ තබා ඇත්තේ ඉණිමගේ මධා ලක්ෂායේදී යෙදූ විශාලත්වය P වූ තිරස් බලයක් මගිනි. ඉණිමග ගෙබිම සමග $\frac{\pi}{4}$ ක කෝණයක් සාදයි. ඉණිමග හා බිත්තිය අතර ඝර්ෂණ සංගුණකය $\frac{1}{6}$ වේ. $\frac{3W}{4} \leq P \leq \frac{3W}{2}$ බව පෙන්වත්න.
8.	රඑ සිරස් බිත්තියකට එරෙහිව එහි පහළ කෙළවර සුමට තිරස් ගෙබිමක් මත ඇතිව සමතුලිතතාවයේ තබා ඇත්තේ ඉණිමගේ මධා ලක්ෂායේදී යෙදූ විශාලත්වය P වූ තිරස් බලයක් මගිනි. ඉණිමග ගෙබිම සමග $\frac{\pi}{4}$ ක කෝණයක් සාදයි. ඉණිමග හා බිත්තිය අතර ඝර්ෂණ සංගුණකය $\frac{1}{6}$ වේ. $\frac{3W}{4} \leq P \leq \frac{3W}{2}$ බව පෙන්වත්න.

9.	A හා B යනු Ω නියැදි අවකාශයක සිද්ධි දෙකක් යැයි ගනිමු. $P(A)=rac{2}{7},P(A\cup B)=rac{11}{14}$ හා $P(A'\cup B')=rac{4}{5}$ බව දී ඇත. $P(B)$ සොයා A හා B ස්වායන්ත සිද්ධි බව පෙන්වන්න.
10	සිසුන් 100 දෙනෙකු පරීක්ෂණයකදී ලබාගත් ලකුණුවල මධානනාය හා සම්මත අපගමනය, පිළිවෙළින් 60 හා
10.	20 වේ. මෙම පරීක්ෂණය සඳහා ලකුණු 56 ක් ලබාගත් සිසුවෙකුගේ z-ලකුණ සොයන්න.
10.	20 වේ. මෙම පරීක්ෂණය සඳහා ලකුණු 56 ක් ලබාගත් සිසුවෙකුගේ z-ලකුණ සොයන්න. මෙම 56 ලකුණ වැරදි ලෙස ඇතුළත් කර ඇති බවත් එය, ඒ වෙනුවට 65 ක් විය යුතු බවත් පසුව සොයා
10.	20 වේ. මෙම පරීක්ෂණය සඳහා ලකුණු 56 ක් ලබාගත් සිසුවෙකුගේ z-ලකුණ සොයන්න. මෙම 56 ලකුණ වැරදි ලෙස ඇතුළත් කර ඇති බවත් එය, ඒ වෙනුවට 65 ක් විය යුතු බවත් පසුව සොයා ගන්නා ලදී. මෙම පරීක්ෂණය සඳහා ලබාගත් ලකුණුවල මධානයයේ නිවැරදි අගය සොයන්න.
10.	20 වේ. මෙම පරීක්ෂණය සඳහා ලකුණු 56 ක් ලබාගත් සිසුවෙකුගේ z-ලකුණ සොයන්න. මෙම 56 ලකුණ වැරදි ලෙස ඇතුළත් කර ඇති බවත් එය, ඒ වෙනුවට 65 ක් විය යුතු බවත් පසුව සොයා
10.	20 වේ. මෙම පරීක්ෂණය සඳහා ලකුණු 56 ක් ලබාගත් සිසුවෙකුගේ z-ලකුණ සොයන්න. මෙම 56 ලකුණ වැරදි ලෙස ඇතුළත් කර ඇති බවත් එය, ඒ වෙනුවට 65 ක් විය යුතු බවත් පසුව සොයා
10.	20 වේ. මෙම පරීක්ෂණය සඳහා ලකුණු 56 ක් ලබාගත් සිසුවෙකුගේ z-ලකුණ සොයන්න. මෙම 56 ලකුණ වැරදි ලෙස ඇතුළත් කර ඇති බවත් එය, ඒ වෙනුවට 65 ක් විය යුතු බවත් පසුව සොයා
IV.	20 වේ. මෙම පරීක්ෂණය සඳහා ලකුණු 56 ක් ලබාගත් සිසුවෙකුගේ z-ලකුණ සොයන්න. මෙම 56 ලකුණ වැරදි ලෙස ඇතුළත් කර ඇති බවත් එය, ඒ වෙනුවට 65 ක් විය යුතු බවත් පසුව සොයා
10.	20 වේ. මෙම පරීක්ෂණය සඳහා ලකුණු 56 ක් ලබාගත් සිසුවෙකුගේ z-ලකුණ සොයන්න. මෙම 56 ලකුණ වැරදි ලෙස ඇතුළත් කර ඇති බවත් එය, ඒ වෙනුවට 65 ක් විය යුතු බවත් පසුව සොයා
	20 වේ. මෙම පරීක්ෂණය සඳහා ලකුණු 56 ක් ලබාගත් සිසුවෙකුගේ z-ලකුණ සොයන්න. මෙම 56 ලකුණ වැරදි ලෙස ඇතුළත් කර ඇති බවත් එය, ඒ වෙනුවට 65 ක් විය යුතු බවත් පසුව සොයා
,	20 වේ. මෙම පරීක්ෂණය සඳහා ලකුණු 56 ක් ලබාගත් සිසුවෙකුගේ z-ලකුණ සොයන්න. මෙම 56 ලකුණ වැරදි ලෙස ඇතුළත් කර ඇති බවත් එය, ඒ වෙනුවට 65 ක් විය යුතු බවත් පසුව සොයා
	20 වේ. මෙම පරීක්ෂණය සඳහා ලකුණු 56 ක් ලබාගත් සිසුවෙකුගේ z-ලකුණ සොයන්න. මෙම 56 ලකුණ වැරදි ලෙස ඇතුළත් කර ඇති බවත් එය, ඒ වෙනුවට 65 ක් විය යුතු බවත් පසුව සොයා
	20 වේ. මෙම පරීක්ෂණය සඳහා ලකුණු 56 ක් ලබාගත් සිසුවෙකුගේ z-ලකුණ සොයන්න. මෙම 56 ලකුණ වැරදි ලෙස ඇතුළත් කර ඇති බවත් එය, ඒ වෙනුවට 65 ක් විය යුතු බවත් පසුව සොයා
	20 වේ. මෙම පරීක්ෂණය සඳහා ලකුණු 56 ක් ලබාගත් සිසුවෙකුගේ z-ලකුණ සොයන්න. මෙම 56 ලකුණ වැරදි ලෙස ඇතුළත් කර ඇති බවත් එය, ඒ වෙනුවට 65 ක් විය යුතු බවත් පසුව සොයා
10.	20 වේ. මෙම පරීක්ෂණය සඳහා ලකුණු 56 ක් ලබාගත් සිසුවෙකුගේ z-ලකුණ සොයන්න. මෙම 56 ලකුණ වැරදි ලෙස ඇතුළත් කර ඇති බවත් එය, ඒ වෙනුවට 65 ක් විය යුතු බවත් පසුව සොයා
10.	20 වේ. මෙම පරීක්ෂණය සඳහා ලකුණු 56 ක් ලබාගත් සිසුවෙකුගේ z-ලකුණ සොයන්න. මෙම 56 ලකුණ වැරදි ලෙස ඇතුළත් කර ඇති බවත් එය, ඒ වෙනුවට 65 ක් විය යුතු බවත් පසුව සොයා
	20 වේ. මෙම පරීක්ෂණය සඳහා ලකුණු 56 ක් ලබාගත් සිසුවෙකුගේ z-ලකුණ සොයන්න. මෙම 56 ලකුණ වැරදි ලෙස ඇතුළත් කර ඇති බවත් එය, ඒ වෙනුවට 65 ක් විය යුතු බවත් පසුව සොයා
10.	20 වේ. මෙම පරීක්ෂණය සඳහා ලකුණු 56 ක් ලබාගත් සිසුවෙකුගේ z-ලකුණ සොයන්න. මෙම 56 ලකුණ වැරදි ලෙස ඇතුළත් කර ඇති බවත් එය, ඒ වෙනුවට 65 ක් විය යුතු බවත් පසුව සොයා
10.	20 වේ. මෙම පරීක්ෂණය සඳහා ලකුණු 56 ක් ලබාගත් සිසුවෙකුගේ z-ලකුණ සොයන්න. මෙම 56 ලකුණ වැරදි ලෙස ඇතුළත් කර ඇති බවත් එය, ඒ වෙනුවට 65 ක් විය යුතු බවත් පසුව සොයා
10.	20 වේ. මෙම පරීක්ෂණය සඳහා ලකුණු 56 ක් ලබාගත් සිසුවෙකුගේ z-ලකුණ සොයන්න. මෙම 56 ලකුණ වැරදි ලෙස ඇතුළත් කර ඇති බවත් එය, ඒ වෙනුවට 65 ක් විය යුතු බවත් පසුව සොයා

கிகஓ ම හිමිකම් ඇවිරිනි /முழுப் பதிப்புநிமையுடையது $|All\ Rights\ Reserved]$

> අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2022(2023) සබාබ්ධ பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2022(2023) General Certificate of Education (Adv. Level) Examination, 2022(2023)

සංයුක්ත ගණිතය II இணைந்த கணிதம் **II**

Combined Mathematics II

B කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

(මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.)

11. (a) සෘජු තිරස් මාර්ගයක වූ O ලක්ෂායක සිට නිශ්චලතාවයෙන් ගමන ආරම්භ කරන P කාරය $2f \ m \ s^{-2}$ ක නියත ත්වරණයකින් එම මාර්ගයේ වූ A ලක්ෂාය දක්වා ගමන් කරයි; මෙහි $OA = a \ m$ වේ. එය A හිදී ලබාගත් පුවේගය, ගමනේ ඉතිරි කොටස පුරාවටම පවත්වා ගනී. P කාරය A ලක්ෂායට ළඟා වන මොහොතේ, තවත් Q කාරයක් එම මාර්ගයේම එම දිශාවටම O ලක්ෂායේ සිට නිශ්චලතාවයෙන් ගමන ආරම්භ කර, $f \ m \ s^{-2}$ ක නියත ත්වරණයකින් චලනය වේ. එකම රූපයක, P හා Q හි චලිතය සඳහා පුවේග-කාල පුස්තාරවල දළ සටහන් අඳින්න.

ඒ නයින්, P හා Q හි පුවේග සමාන වන මොහොත දක්වා Q ගන්නා ලද කාලය $2\sqrt{\frac{a}{f}}$ s බව පෙන්වන්න. දැන්, a=50 ද f=2 ද හා Q කාරය P කාරය පසු කරන මාර්ගයේ ලක්ෂාය B යැයි ද ගනිමු. $AB=50\left(5+2\sqrt{6}\right)$ m බව පෙන්වන්න.

(b) P නැවක් පොළොවට සාපේක්ෂව $60~{
m m~s^{-1}}$ ක ඒකාකාර වේගයකින් දකුණු දෙසට යාතුා කරන අතර, Q නැවක් පොළොවට සාපේක්ෂව $30\sqrt{3}~{
m m~s^{-1}}$ ක ඒකාකාර වේගයකින් නැගෙනහිර දෙසට යාතුා කරයි. තෙවන R නැවක්, එය P හි සිට නිරීක්ෂණය කරනු ලැබූ විට, නැගෙනහිරින් 30° ක් උතුරට වූ දිශාවට චලනය වන ලෙස පෙනෙන අතර, R නැව එය Q හි සිට නිරීක්ෂණය කරනු ලැබූ විට දකුණු දෙසට චලනය වන ලෙස පෙනෙයි. R නැව, පොළොවට සාපේක්ෂව, $60~{
m m~s^{-1}}$ ක වේගයකින් නැගෙනහිරින් 30° ක් දකුණට වූ දිශාවට චලනය වන බව පෙන්වන්න.

අාරම්භයේදී R නැව, P ගෙන් $24~{\rm km}$ ක් ඈතින්, බටහිරින් $60^{\rm o}$ ක් දකුණට වූ දිශාවෙන් තිබෙන අතර Q ගෙන් $6~{\rm km}$ ක් ඈතින් බටහිර දිශාවෙන් තිබේ යැයි සිතමු. P හා R, ඒවා අතර කෙටීම දුරින් පිහිටන විට Q හා R අතර දුර $12~{\rm km}$ ක් බව පෙන්වන්න.

12.(a) ස්කන්ධය 4m වූ සුමට ඒකාකාර කුට්ටියක ගුරුත්ව කේන්දුය හරහා වූ ABCDE සිරස් හරස්කඩ රූපයෙන් පෙන්වා ඇත. AB අඩංගු මුහුණත සුමට තිරස් ගෙබිමක් මත තබා ඇත. AE හා ED ඒවා අඩංගු මුහුණත්වල උපරිම බෑවුම් රේඛා වේ. තවද, AE = 2a, ED = a, DC = a හා $E\hat{A}B = A\hat{E}D = \frac{\pi}{3}$ වේ. ස්කන්ධ පිළිවෙළින් 3m, 2m හා m වන P, Q හා R අංශු තුනක් AE, ED හා DC හි මධා ලක්ෂායන්හි තබා ඇත. P හා Q අංශු, E හිදී කුට්ටියට සවිකර ඇති සුමට සැහැල්ලු කුඩා කප්පියක් මතින්

යන සැහැල්ලු අවිතනා තන්තුවක දෙකෙළවරට ඇදා ඇති අතර, Q හා R අංශු, D හිදී කුට්ටියට සවිකර ඇති සුමට සැහැල්ලු කුඩා මුදුවක් තුළින් යන තවත් සැහැල්ලු අවිතනා තන්තුවක දෙකෙළවරට ඇදා ඇත. රූපයේ පෙන්වා ඇති පිහිටුමේදී තන්තුව තදව තිබෙන අතර මෙම පිහිටුමේ සිට පද්ධතිය නිශ්චලතාවයෙන් මුදා හරිනු ලැබේ. Q අංශුව E වෙත ළඟා වීමට ගන්නා කාලය නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලබාගන්න.

(b) අරය a වූ සිලින්ඩරයක් එහි අක්ෂය තිරස්ව සවි කර ඇති අතර එහි අක්ෂයට ලම්බක සිරස් හරස්කඩක් යාබද රූපයෙන් දැක්වේ. සැහැල්ලු අවිතනා තන්තුවකින් යා කළ ස්කන්ධ පිළිවෙළින් m හා 2m වූ P හා Q අංශු දෙකක් තන්තුව තදව ද OP තිරස්ව ද ඇතිව රූපයේ පෙන්වා ඇති පිහිටුමෙහි අල්වා තබා නිශ්චලතාවයෙන් මුදා හරිනු ලැබේ. Q අංශුව සිරස්ව පහළට චලනය වන්නේ යැයි උපකල්පනය කරමින්, \overrightarrow{OP} යන්න θ $(0 \le \theta \le \frac{\pi}{6})$ කෝණයකින් හැරුණු විට P හි වේගය v යන්න $v^2 = \frac{2ga}{3}(2\theta - \sin\theta)$ මගින් දෙනු ලබන බව පෙන්වන්න.

 $heta=rac{\pi}{6}$ විට තන්තුව කපා දමන අතර, P අංශුව සිලින්ඩරය මත චලනය වෙමින් සිලින්ඩරයේ ඉහළම ලක්ෂායට ළඟා වීමට පෙර ක්ෂණික නිශ්චලතාවයට පත් වන බව දී ඇත. පසුව එන චලිතයේදී, P එහි ආරම්භක පිහිටුමේ සිට a දුරක් සිරස්ව පහළින් වන විට, P හි වේගය සොයන්න.

13. ස්වභාවික දිග 2a හා පුතසාස්ථතා මාපාංකය 2mg වන සැහැල්ලු පුතසාස්ථ තන්තුවක එක් කෙළවරක්, සුමට ති්රස් ගෙබිමකට 4a දුරක් ඉහළින් වූ O අචල ලක්ෂායකට ද, අනෙක් කෙළවර ස්කන්ධය m වූ P අංශුවකට ද ඇඳා ඇත. P අංශුව B හි සමතුලිතතාවයේ එල්ලෙයි. තන්තුවේ විතතිය a බව පෙන්වන්න. දැන්, P හට mv ආවේගයක් සිරස්ව පහළට දෙනු ලැබේ. P හි චලිත සමීකරණය $\ddot{x}+\omega^2x=0$ බව පෙන්වන්න; මෙහි $\omega=\sqrt{\frac{g}{a}}$ හා BP=x වේ. c විස්තාරය වන, $\dot{x}^2=\omega^2(c^2-x^2)$ සූතුය භාවිතයෙන් $v>\sqrt{ag}$ නම්, P ගෙබිමේ වදින බව පෙන්වන්න;

දැන්, $v = 3\sqrt{ag}$ යැයි සිතමු.

P ගෙබිමේ වදින පුවේගය සොයන්න.

P සහ ගෙබීම අතර පුතාහාගති සංගුණකය e වේ. $e<\frac{1}{\sqrt{2}}$ නම්, P අංශුව O ට ළඟා නොවන බව පෙන්වන්න. $e=\frac{1}{2}$ බව දී ඇති විට, තන්තුව පළමුවරට බුරුල් වන විට P හි පුවේගය සොයන්න.

B හිදී P ට ආචේගය දුන් මෙහොතේ සිට, එය පළමුවරට ක්ෂණික නිශ්චලතාවයට පැමිණීමට ගතවන මුළු කාලය සොයන්න.

14.(a) A,B,C හා D ලක්ෂා හතරක පිහිටුම් දෙශික, O අචල මූලයකට අනුබද්ධයෙන් පිළිවෙළින් ${\bf a},{\bf b},3{\bf a}$ හා ${\bf 4b}$ වේ; මෙහි ${\bf a}$ හා ${\bf b}$ යනු ශූනා නොවන හා සමාන්තර නොවන දෛශික වේ. E යනු AD හා BC හි ඡේදන ලක්ෂාය වේ. OAE තිකෝණය සඳහා තිකෝණ ආකලන නියමය භාවිතයෙන්,

 $\lambda \in \mathbb{R}$ සඳහා $\overrightarrow{OE} = \mathbf{a} + \lambda(4\mathbf{b} - \mathbf{a})$ බව පෙන්වන්න.

එලෙසම, $\mu \in \mathbb{R}$ සඳහා $\overrightarrow{OE} = \mathbf{b} + \mu(3\mathbf{a} - \mathbf{b})$ බව ද පෙන්වන්න.

ඒ නයින්, $\overrightarrow{OE} = \frac{1}{11}(9\mathbf{a} + 8\mathbf{b})$ බව පෙන්වන්න.

(b) $\alpha {f i} + 2{f j}$, $-3{f i} + \beta {f j}$ හා ${f i} + 5{f j}$ යන බල තුන, පිහිටුම් දෛශික පිළිවෙළින් ${f i} + {f j}$, $3{f i} + {f j}$ හා $2{f i} + 2{f j}$ වූ ලක්ෂා හරහා කියාකරයි; මෙහි α , β \in \mathbb{R} වේ. මෙම බල පද්ධතිය යුග්මයකට තුලා වන බව දී ඇත. α හා β හි අගයන් ද මෙම යුග්මයෙහි සූර්ණය ද සොයන්න.

දැන්, O මූලය හරහා කියාකරන $3\gamma \mathbf{i} + 4\gamma \mathbf{j}$ අලුත් බලයක් ඉහත බල පද්ධතියට එකතු කරනු ලැබේ; මෙහි $\gamma > 0$ වේ. මෙම බල 4 කින් සමන්විත නව බල පද්ධතිය සම්පුයුක්ත බලයකට තුලා වන බව පෙන්වා එහි විශාලත්වය, දිශාව හා කිුයා රේඛාවේ සමීකරණය සොයන්න.

ඊළඟට, පිහිටුම් දෛශිකය $2\mathbf{i}+3\mathbf{j}$ වූ ලක්ෂාය හරහා කියාකරන $p\mathbf{i}+q\mathbf{j}$ බලයක් එකතු කළ විට, බල 5 කින් සමන්විත මෙම පද්ධතිය සමතුලිතතාවේ ඇති බව දී ඇත. γ , p හා q හි අගයන් සොයන්න.

15.(a) එක එකක දිග 2a හා බර W වූ AB, BC, CD හා DA ඒකාකාර දඬු හතරක් ඒවායේ A, B, C හා D අන්තවලදී සුමට ලෙස සන්ධි කර ඇත. AB හා BC හි මධාලක්ෂා දිග a වූ සැහැල්ලු අවිතනා තන්තුවක් මගින් යා කර ඇත. එලෙසම, AD හා DC හි මධාලක්ෂා ද දිග a වූ සැහැල්ලු අවිතනා තන්තුවක් මගින් යා කර ඇත. පද්ධතිය A ලක්ෂායෙන් සිරස් තලයක එල්ලා ඇති අතර රූපයේ පෙන්වා ඇති පරිදි සමතුලිතතාවේ පවතී. තන්තුවල ආතති ද BC මගින් AB මත B සන්ධියෙහිදී යොදන පුතිකියාවද සොයන්න.

(b) රූපයේ දැක්වෙන, AB, BC, CD, DA හා DB සැහැල්ලු දඬු පහකින් සමන්විත රාමු සැකිල්ල, ඒවායේ අන්තවලදී සුමටව සන්ධි කර ඇත. AD = a, $AB = \sqrt{3} a$, $B\hat{A}D = 90^\circ$, $C\hat{B}D = 90^\circ$ හා $B\hat{D}C = 60^\circ$ බව දී ඇත. B හා C සන්ධි එක එකක W භාරය බැගින් එල්ලා රාමු සැකිල්ල A හිදී අවල ලක්ෂායකට සුමටව සන්ධි කර AB තිරස්ව ඇතිව සිරස් තලයක සමතුලිතතාවයේ තබා ඇත්තේ, D සන්ධියෙහිදී යෙදු තිරස් P බලයක් මගිනි.

(i) P හි අගය සොයන්න.

(ii) බෝ අංකනය භාවිතයෙන්, C,B හා D සන්ධි සඳහා, පුතාහබල සටහනක් අඳින්න. ඒ නයින්, දඬුවල පුතාහබල, ඒවා ආතති ද තෙරපුම් ද යන්න පුකාශ කරමින් සොයන්න.

16. අරය r හා කේන්දුය O වන ඒකාකාර අර්ධවෘත්තාකාර ආස්තරයක ස්කන්ධ කේන්දුය, O සිට $\frac{4r}{3\pi}$ දුරකින් පිහිටන බව පෙන්වන්න.

යාබද රූපයේ පෙන්වා ඇති පරිදි, QRST සෘජුකෝණාසුයෙන් අරය a වූ අර්ධ වෘත්තයක් ඉවත් කර, සමාන පැතිවල දිග $\sqrt{2}a$ වූ PQW සමද්විපාද තිකෝණයක් එක් කර පෘෂ්ඨික ඝනත්වය σ වූ ඒකාකාර තුනී ලෝහ තහඩුවකින් තල ආස්තරයක් සාදා ඇත. QR=2a, RS=6a හා QW=2a වේ. මෙම ආස්තරයේ ස්කන්ධ කේන්දය QR සිට \overline{x} දුරකින්ද RS සිට \overline{y} දුරකින්ද පිහිටයි. $\overline{x}=\frac{(74-3\pi)}{(26-\pi)}a$ හා $\overline{y}=\frac{2(15-\pi)}{(26-\pi)}a$ බව පෙන්වන්න.

රූපයේ පෙන්වා ඇති පරිදි, S හිදී ස්කන්ධය m වූ අංශුවක් සවි කළ ඉහත ආස්තරය, කුඩා සුමට අවල C නාදැත්තක් මතින් යන, U හා W ට කෙළවරවල් අෑඳා ඇති දිග 4a වූ සැහැල්ලු අවිතනා තන්තුවකින් RS පැත්ත තිරස්ව ඇතිව සමතුලිතතාවේ එල්ලෙයි. a හා σ ඇසුරෙන් m හි අගය හා තන්තුවේ ආතතිය සොයන්න.

- 17.(a) B_1, B_2, B_3 හා B_4 සර්වසම පෙට්ටි හතරක, පාටින් හැර අන් සෑම අයුරකින්ම සර්වසම පෑන් 4 බැගින් අඩංගු වේ. k=1,2,3,4 සඳහා, එක් එක් B_k පෙට්ටියක රතු පෑන් k හා කළු පෑන් 4-k බැගින් අඩංගු වේ. පෙට්ටි හතරෙන් එක් පෙට්ටියක් සසම්භාවී ලෙස තෝරාගෙන, එම පෙට්ටියෙන් පෑන් 2 ක් ඉවතට ගනු ලැබේ.
 - (i) ඉවතට ගත් පෑන් දෙක රතු පෑන් වීමේ,
 - (ii) ඉවතට ගත් පෑන් දෙක රතු පෑන් බව දී ඇති වීට, එම පෑන් දෙක B_4 පෙට්ටියෙන් ඉවතට ගෙන තිබීමේ,

සම්භාවිතාව සොයන්න.

 $\{x_1,x_2,...,x_n\}$ හා $\{y_1,y_2,...,y_m\}$ දත්ත කුලකයන්ට එකම මධානාය ඇති අතර ඒවායේ සම්මත අපගමන, පිළිවෙළින්, σ_x හා σ_y වේ. $\{x_1,...,x_n,y_1,...,y_m\}$ සංයුක්ත දත්ත කුලකයේ විචලතාව $\dfrac{n\sigma_x^2+m\sigma_y^2}{n+m}$ බව පෙන්වන්න.

කම්හලක නිෂ්පාදිත පොට ඇණවල විෂ්කම්භ පහත වගුවේ සාරාංශගත කර ඇත.

විෂ්කම්භය (mm)	පොට ඇණ සංබනාව (දහසේ ඒවායින්)
2-6	2
6 – 10	5
10 – 14	8
14 – 18	4
18 – 22	1

ඉහත දී ඇති වාාාප්තියේ මධානයාය, මධාස්ථය හා විචලතාව නිමානය කරන්න.

අසල ඇති කම්හලක නිෂ්පාදිත වෙනත් පොට ඇණ 40~000 ක විෂ්කම්භවලට එම මධානයායම ඇති අතර විචලතාව $22.53~\mathrm{mm}^2$ වේ. කම්හල් දෙකෙහිම නිෂ්පාදිත පොට ඇණවල විෂ්කම්භයන්හි සංයුක්ත විචලතාව නිමානය කරන්න.