Consider algebraic expressions such as: $2x^2$, 3a + 2b and $x^2 + y^2$. Of these expressions, $2x^2$, 3a, 2b, x^2 and y^2 are examples of terms.

Term

A term is a number or a product of a number with one or more variables which can be raised to a power.

Term	'5y	$-2a^3$	$\frac{1}{2}x^2yz^4$	- X	io 🗫
Coefficients	5	-2	1/2	1	10
Variables	у	а	x, y, z	x	no variable

Polynomial

A polynomial is a term or sum of terms, in which all variables have whole number exponents, and in which variables appear only in the numerator.

Polynomials	Non-Polynomials		
5	$x^{\frac{1}{2}}$		
$\sqrt{2}x$	$2x + \sqrt{y}$		
$3a^2-2a$	$\frac{1}{2x} + 4$		
$\frac{3}{4}y^2 + 3y - 4$	$x^{-3} - 2x$		

Classifying Polynomials

Monomial	A polynomial with one term	$3, 2x^2y, -3a$		
Binomial	A polynomial with two terms	$x+2$, $2x^2y+3$, x^2-y		
Trinomial	A polynomial with three terms	$3x^2 + 2x - 3$, $\sqrt{2}x + y - z$		
Polynomial	General term for expressions with more than three terms (can also be used to describe monomial, binomial, or trinomial)	$x^5 - 2x^4 + 3x^3 - 4x^2$		

Degree of a Polynomial

The degree of a term of a polynomial is the sum of the exponents of the variables in that term. The degree of a polynomial is the term with the highest degree.

For example: In $3x^2 + 2x - 3$, the term of highest degree is $3x^2$, so the degree is 2.

In $4x^2y^3 + z^4$, the term of highest degree is $4x^2y^3$, so the degree is 5. (2 + 3 = 5)

In $-2x^2yz^2 + y^4$, the term of highest degree is $-2x^2yz^2$, so the degree is 5. (2+1+2=5)

Leading Term

The term with the highest degree.

For example, consider the expression $3x^2y^3 - 2xy^2 + 2$:

Terms	$3x^2y^3$, $-2xy^2$, 2
Coefficients	3, -2, 2
Degree of each term	5, 3, 0
Leading term	$3x^2y^3$
Degree of the polynomial	5

Combining Like Terms

Like terms are either constant terms, or terms that contain the same variable(s) to the same power.

For example: $3x^2$, $5x^2$ are like terms because they have the same variable and exponent.

 $2xy^2$, $3x^2y$ are not like terms because they have different exponents for each variable.

To combine like terms, add or subtract the coefficients of the terms.

Example 1

Simplify the expression $4x^2 - 3y - x^2 + 5y$.

Solution: $4x^2$ and $-x^2$ are like terms, so the coefficients can be added.

-3y and 5y are like terms, so the coefficients can be added.

 $4x^2 - 3y - x^2 + 5y = 3x^2 + 2y$

Evaluating Polynomials

When a constant is substituted for a variable in a polynomial, the polynomial is evaluated for that constant.

When $3x^2 - 2$ is evaluated for x = 4, the result is $3(4)^2 - 2 = 48 - 2 = 46$.

Multiplying a Monomial by a Monomial

To multiply two monomials, first multiply the constant factors, and then multiply the variable factors.

Example 2

Multiply.

a)
$$(2x^3)(-3x^4)$$

b)
$$(-3a^2b^3)(-2a^2b^5)$$

a)
$$(2x^3)(-3x^4)$$
 b) $(-3a^2b^3)(-2a^2b^5)$ c) $(-3y^2z^3)(2yz^2)(4y^3z^2)$

► Solution: **a)**
$$(2)(-3)(x^3)(x^4) = -6x^{3+4} = -6x^7$$

b)
$$(-3)(-2)(a^2)(a^2)(b^3)(b^5) = 6a^{2+2}b^{3+5} = 6a^4b^8$$

c)
$$(-3)(2)(4)(y^2)(y)(y^3)(z^3)(z^2)(z^2) = -24y^{2+1+3}z^{3+2+2} = -24y^6z^7$$

Multiplying a Polynomial by a Binomial

To multiply a polynomial by a binomial, use the distributive property to remove the brackets, then simplify.

The Distributive Property

$$a(b+c) = a \times b + a \times c$$

Example 3

Multiply.

a)
$$2(3+4)$$

a)
$$2(3+4)$$
 b) $2x^2(3x^2-4y)$ c) $-3y(x^4+2y^3)$

e)
$$-3y(x^4 + 2y^3)$$

Solution: a)
$$2 \times 3 + 2 \times 4 = 6 + 8 = 14$$

b)
$$2x^2 \times 3x^2 - 2x^2 \times 4y = 6x^4 - 8x^2y$$

c)
$$-3y \times x^4 - 3y \times 2y^3 = -3x^4y - 6y^4$$

3.1 Exercise Set

- 1. Fill in the blank with the correct response.
 - a) The expression $3x^2$ is called a _____.
 - b) In the term $-4x^3$, the coefficient is _____ and the exponent is _____
 - c) The number of terms in the expression $3x^3 x^2 + 2$ is ______.
 - d) The degree of the polynomial $3x^6$ is ______.
 - e) When $3x^2 2x + 1$ is evaluated for x = -3, the result is _____.
 - f) $3x^6 + 2x^2 5$ is a ______ of degree 6.
 - g) _____ is a example of a monomial with coefficient 4 and variables of degree 7.
- 2. For each polynomial, find the number of terms, and name the coefficient of each term.
 - a) $3x^5$

b) $-2y^4$

c) $4x^3 - 2x^2$

d) $-3a^3 + 3a - 4^0$

e) $\sqrt{2}y^3 - \frac{2}{3}y - 7$

 $f) \quad \sqrt[3]{5}b^2 - \frac{b}{3} + 1$

g) $2x^3y^2 - 3x^2$

h) $2^3b^3 - 3^2$

i) $-x^3y^2z + \sqrt{2}xyz + 4z^3$

j) $\sqrt[3]{2}x^4y^3z^2p + p$

k) x3

1) $\frac{x}{2} - 2^{-2}$

•	n					
3.	Determine	whether	the	expression	is a	polynomial.

b)
$$x^{-2}$$

c)
$$\frac{1}{3x} + 2$$

d)
$$\sqrt{2} x^3$$

e)
$$\frac{\sqrt{2}}{x^3}$$

f)
$$\frac{xy}{z}$$

g)
$$\frac{xy}{\sqrt{2}}$$

h)
$$\frac{1}{x^2 + 2x + 3}$$

i)
$$\frac{x}{3} + 2^{-3}$$

j)
$$\sqrt[3]{8}x^2 + \sqrt{9}$$

4. Classify each polynomial as a monomial, binomial or trinomial; if none of these, classify as polynomial.

a)
$$2x - 5$$

b)
$$-2x + 2$$

c)
$$a^2 - 2a + 3$$

.

f)
$$2x^3 - 3x^2 + x - 4$$

g)
$$3x^3y^4z^5$$

h)
$$2x^4 - 2^{-5}$$

i)
$$\frac{2}{3}x^2 - \frac{1}{4}y^2$$

j)
$$3x^5 - x^3 + 2x - 7$$

Find the value of the polynomial when x = -2.

a)
$$-3x^2 + 2x - 1$$

6.

b)
$$-3x^2 - 2x + 1$$

c)
$$2x^2 - 3x + 4$$

d)
$$-2x^2-3x-4$$

e)
$$-x^4 + 2x^2 - 3$$

f)
$$x^4 - 2x^2 + 3$$

g)
$$-x^5 - 3x^3$$

$$-x^4-3x^2$$

i)
$$0.8x^3 - \frac{x^2}{4}$$

j)
$$-0.8x^3 + \frac{x^2}{4}$$

7. Find each product.

a)
$$3x^3(2x^4)$$

b)
$$-2a^2b^4(4ab^2)$$

c)
$$(3xy)(-4x^2y^3)$$

d)
$$(2ab)(-2ab)(2ab)$$

e)
$$(5x^3)(-2y^3)$$

f)
$$(-4a^4b^3)(2a^3b^2)(3ab)$$

g)
$$(a^2b^4)(a^3b)(-3b^2)$$

h)
$$(-r^4s^2t)(r^3st^2)(-rst)$$

i)
$$(-3ab^2)(2a^3b)(-a^2b^2)(-2a^3b^2)$$

j)
$$(-5a^3b^3c^2d^3)(-2ab^2cd^2)(-4a^2bc^3d)$$

8. Find each product. Leave answer in descending order of power.

a)
$$3x(x-4)$$

b)
$$-2x^2(x+3)$$

c)
$$4y(-2y^2+3y)$$

d)
$$-5y(2y+3y^2-y^4)$$

e)
$$(3a^2)(2a)(-4+2a^2-a^4)$$

f)
$$-2mn^4(-2mn+3m^2n^2-4)$$

g)
$$a^2bc(ab^2c^2-a^2bc^3-2a^3b^3c)$$

h)
$$-abc^2(-a^2bc^3+ab^2c-a^3c^2)$$

i)
$$(-x^2y)(xy^3)(xy-xy^2+x^2y^2)$$

j)
$$(-a^3b^2)(-a^2b)(-a^2b-a^2b^3+a^3b)$$

9. Find the area of each figure.

10. Determine the area of the shaded region in terms of x, y and π .

Polynomials - Solutions

3.1 Classifying Polynomials, page 118

- 1. a) term b) -4, 3 c) 3 d) 6 e) 34 f) trinomial g) (answers will vary) $4x^7, 4x^3y^4$
- 2. **a)** 1; 3 **b)** 1; -2 **c)** 2; 4, -2 **d)** 3; -3, 3, -1 **e)** 3; $\sqrt{2}$, $-\frac{2}{3}$, -7 **f)** 3; $\sqrt[3]{5}$, $-\frac{1}{3}$, 1 **g)** 2; 2, -3 **h)** 2; 8, 9 **i)** 3; -1, $\sqrt{2}$, 4 **j)** 2; $\sqrt[3]{2}$, 1 **k)** 1; 1 **l)** 2; $\frac{1}{2}$, $-\frac{1}{4}$
- 3. a) y b) n c) n d) y e) n f) n g) y h) n i) y j) y
- 4. a) binomial b) binomial c) trinomial d) monomial e) monomial f) polynomial
 g) monomial h) binomial i) binomial j) polynomial
- 5. **a)** $2x^2 + 3x$ **b)** $2x^4$ **c)** $-1.8x^2 + 3x + 3$ **d)** $2y^4 2y^2 2y$ **e)** $-4x^3$ **f)** $x^3 + x^2 x$ **g)** $-\frac{1}{12}x^3 + 3\sqrt{2}x^2$ **h)** $-\frac{5}{6}y^5 + 3\sqrt[3]{2}y^3$ **i)** $\frac{4}{3}x^2 + \frac{1}{2\sqrt{2}}x$ **j)** $-y^3 \frac{1}{4}y^2 \frac{4\sqrt{6}}{3}y$
- **6.** a) -17 b) -7 c) 18 d) -6 e) -11 f) 11 g) 56 h) -28 i) -7.4 j) 7.4
- 7. **a)** $6x^7$ **b)** $-8a^3b^6$ **c)** $-12x^3y^4$ **d)** $-8a^3b^3$ **e)** $-10x^3y^3$ **f)** $-24a^8b^6$ **g)** $-3a^5b^7$ **h)** $r^8s^4t^4$ **i)** $-12a^9b^7$ **j)** $-40a^6b^6c^6d^6$
- 8. a) $3x^2 12x$ b) $-2x^3 6x^2$ c) $-8y^3 + 12y^2$ d) $5y^5 15y^3 10y^2$ e) $-6a^7 + 12a^5 24a^3$ f) $-6m^3n^6 + 4m^2n^5 + 8mn^4$ g) $-2a^5b^4c^2 - a^4b^2c^4 + a^3b^3c^3$ h) $a^3b^2c^5 + a^4bc^4 - a^2b^3c^3$
 - i) $-x^5y^6 + x^4y^6 x^4y^5$ j) $-a^7b^6 + a^8b^4 a^7b^4$
- **9.** a) $8x^3 12x^2$ b) $6x^2 \frac{15}{2}x$ c) $6x^3 + 8x^2$ d) $12x^2 3x$
- **10.** a) $\frac{\pi}{4}x^2 + \frac{\pi}{4}y^2 \frac{1}{2}xy$ b) $\frac{25}{4}\pi x^2 12x^2$ c) $\frac{\pi}{4}x^2 + \frac{\pi}{4}y^2 xy$ d) $\frac{\pi}{8}x^2 + \frac{\pi}{2}y^2 xy$