Auto-Encoding Variational Bayes

Jeremy Irvin

November 28, 2016

1 Method

Suppose $\{x^{(1)},...,x^{(m)}\}$ are IID samples from some discrete or continuous distribution, and each $x^{(i)}$ is generated as follows: $z^{(i)}$ is generated from some prior $p_{\theta^*}(z)$ and then $x^{(i)}$ is generated from some conditional $p_{\theta^*}(x|z)$. Both $p_{\theta^*}(z)$ and $p_{\theta^*}(x|z)$ come from a parametric family of distributions $p_{\theta}(z)$ and $p_{\theta}(x|z)$ respectively with PDFs differentiable w.r.t. θ and z. We assume the marginal $p_{\theta}(x)$, the true posterior $p_{\theta}(z|x)$, and any integrals required for any mean-field VB algorithm are all intractable. Moreover we assume large dataset so that sampling based solutions are intractable.

We hope to produce an approximation to the true posterior $p_{\theta}(z|x)$ called the recognition model, denoted $q_{\phi}(z|x)$. This approximation will be referred to as the encoder, and $p_{\theta}(x|z)$ the decoder. This method will jointly learn the recognition model parameters ϕ with the generative model parameters θ .

Since we can express the log marginal likelihood as a sum of marginal likelihoods over individual data points, we can focus on $\log p_{\theta}(x^{(i)})$ which can be rewritten as

$$\log p_{\theta}(x^{(i)}) = D_{KL}(q_{\phi}(z|x^{(i)}) || p_{\theta}(z|x^{(i)})) + \mathcal{L}(\theta, \phi; x^{(i)}).$$

The first term (the KL divergence) is nonnegative and hence $\mathcal{L}(\theta, \phi; x^{(i)})$ provides a lower bound of $\log p_{\theta}(x^{(i)})$. This term can be rewritten as

$$\mathcal{L}(\theta, \phi; x^{(i)}) = -D_{KL}(q_{\phi}(z|x^{(i)}) || p_{\theta}(z)) + \mathbb{E}_{q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}|z) \right]$$
(1)

We reparametrize the random variable $\tilde{z} \sim q_{\phi}(z|x)$ by using a differentiable function $g_{\phi}(\epsilon, x)$ of a noise variable $\epsilon \sim p(\epsilon)$, so that $\tilde{z} = g_{\phi}(\epsilon, x)$. Then we form Monte Carlo estimates of the expectation of an arbitrary function f(z) over $q_{\phi}(z|x)$:

$$\mathbb{E}_{q_{\phi}(z|x^{(i)})}[f(z)] = \mathbb{E}_{p(\epsilon)}\left[f(g_{\phi}(\epsilon, x^{(i)}))\right] \approx \frac{1}{L} \sum_{l=1}^{L} f(g_{\phi}(\epsilon^{(l)}, x^{(i)})), \quad \epsilon^{(l)} \sim p(\epsilon).$$

Using $f(z) = \log p_{\theta}(x^{(i)}|z)$ in (1), we get

$$\tilde{L}^{B}(\theta, \phi; x^{(i)}) = -D_{KL}(q_{\phi}(z|x^{(i)})||p_{\theta}(z)) + \frac{1}{L} \sum_{l=1}^{L} \log p^{\theta}(x^{(i)}|z^{(i,l)})$$
(2)

with $z^{(i,l)} = g_{\phi}(\epsilon^{(i,l)}, x^{(i)})$ and $\epsilon^{(l)} \sim p(\epsilon)$ for some appropriate choice of $p(\epsilon)$. Note that $D_{KL}(q_{\phi}(z|x^{(i)})||p_{\theta}(z))$ can be integrated analytically, so only the reconstruction error $\mathbb{E}_{q_{\phi}(z|x^{(i)})}\left[\log p_{\theta}(x^{(i)}|z)\right]$ needs to be estimated using a Monte Carlo sampling technique.

2 Variational Auto-Encoder

Let the latent prior be standard multivariate Gaussian, ie, $p_{\theta}(z) = \mathcal{N}(z; 0, I)$, and $p_{\theta}(x|z)$ be multivariate Gaussian whose parameters μ and σ are computed from z using a MLP. Assume the true, intractable posterior is approximately Gaussian with diagonal covariance. Then our variational posterior approximator $q_{\phi}(z|x^{(i)})$ can be restricted to a family of this type, ie,

$$\log q_{\phi}(z|x^{(i)}) = \log \mathcal{N}(z; \mu^{(i)}, \sigma^{(i)^2}I)$$

where $\mu^{(i)}$ and $\sigma^{(i)}$ are outputs of the encoder. We use L=1 and sample from the posterior $z^{(i)} \sim q_{\phi}(z|x^{(i)})$ using $z^{(i)} = g_{\phi}(x^{(i)}, \epsilon) = \mu^{(i)} + \sigma^{(i)} \odot \epsilon$ and $\epsilon \sim \mathcal{N}(0, I)$. Since $p_{\theta}(z)$ and $q_{\phi}(z|x)$ are Gaussian, the KL divergence in (2) can be exactly computed without estimation, yielding the final llower bound estimator

$$\mathcal{L}(\theta, \phi; x^{(i)}) \approx \frac{1}{2} \sum_{j=1}^{J} \left(1 + \log(\sigma_j^{(i)^2}) - \mu_j^{(i)^2} - \sigma_j^{(i)^2} \right) + \log p_{\theta}(x^{(i)}|z^{(i)})$$

with $z^{(i)} = g_{\phi}(x^{(i)}, \epsilon) = \mu^{(i)} + \sigma^{(i)} \odot \epsilon$ and $\epsilon \sim \mathcal{N}(0, I)$. More explicitly,

$$h^{(i)} = \tanh(Wx^{(i)} + b)$$

 $\mu^{(i)} = W_{\mu}h^{(i)} + b_{\mu}$
 $\log \sigma^{(i)^2} = W_{\sigma}h^{(i)} + b_{\sigma}$

for learned parameters $W, W_{\mu}, W_{\sigma}, b, b_{\mu}, b_{\sigma}$.

3 Results