GRAFICKÁ REPREZENTÁCIA ATOMICKÝCH D-POSETOV GRAPHICAL REPREZENTATION OF ATOMIC D-POSETS

Ferdinand Chovanec, Eva Drobná

Katedra matematiky, Vojenská akadémia v Liptovskom Mikuláši P. O. BOX 45, 031 01 Liptovský Mikuláš

Abstrakt V článku je ukázaná konštrukcia D-posetov metódou zlepovania MV-algebier a ich grafická reprezentácia pomocou Haaseho a Greechieho diagramov.

Summary In the present paper is shown a construction of D-posets using of the method of the MV-algebra pasting and their graphical representation by Haase and Greechie diagrams.

1. ÚVOD

Greechie [1] ako prvý zaviedol v teórii kvantových logík techniku konštrukcie ortomodulárnych zväzov resp. posetov (OMZ, resp. OMP) metódou *zlepovania* Booleových algebier. Takto vzniknuté štruktúry sa nazývajú *Greechieho logiky*. V Greechieho logike Booleove algebry [2] tvoria *bloky*, t.j. maximálne množiny navzájom kompatibilných prvkov, pričom prienik ľubovoľných dvoch blokov (Booleových algebier) obsahuje najviac jeden spoločný atóm.

Kôpka a Chovanec [3] pri štúdiu nekomutatívnej teórie pravdepodobnosti definovali algebraickú štruktúru nazvanú *D-poset* (z angl. *difference poset*), v ktorej základnou operáciou je čiastočná binárna operácia *rozdielu porovnateľných prvkov*. Súčasne, ale nezávisle od vzniku D-posetov, Foulis a Bennetová [4] navrhli kategoriálne ekvivalentnú algebraickú štruktúru s názvom *efektová algebra*, kde základnou operáciou je čiastočná binárna operácia *súčtu ortogonálnych prvkov*.

D-posety (efektové algebry) sú zovšeobecnením Booleových algebier, kvantových logík (OMZ, OMP) [5], ortoalgebier [6], ako aj MV-algebier [7]. MV-algebry hrajú v mnohohodnotových logikách analogickú úlohu ako Booleove algebry v dvojhodnotových logikách a z hľadiska D-posetov ich môžeme charakterizovať ako D-zväzy (t.j. zväzovo usporiadané D-posety) po dvojiciach kompatibilných prvkov (viď [8]).

Riečanová [9] dokázala, že každý D-zväz je zjednotením blokov, ktorými sú maximálne množiny po dvojiciach kompatibilných prvkov, teda maximálne pod-MV-algebry. Tým vznikol duálny problém konštrukcie D-posetov z daného systému MV-algebier. Vyriešený bol v [10], pričom bola použitá technika zlepovania MV-algebier. Na rozdiel od Greechieho metódy, prienik blokov tu môže obsahovať viac než jeden atóm. V tomto článku predstavíme geometrickú reprezentáciu takýmto spôsobom vzniknutých D-posetov a to prostredníctvom Hasseho a Greechieho diagramov.

2. ZÁKLADNÉ POJMY A TVRDENIA

Nech \mathcal{P} je čiastočne usporiadaná množina (poset) s najmenším prvkom $\mathcal{O}_{\mathcal{P}}$ a najväčším prvkom $\mathcal{I}_{\mathcal{P}}$, nech \spadesuit je čiastočná binárna operácia na \mathcal{P} x \mathcal{P} taká, že prvok

 $b \bullet a$ existuje práve vtedy, keď $a \bullet b$, pričom platia nasledujúce axiomy:

(D1) $a \wedge \theta_{\mathcal{P}} = a$ pre každé $a \in \mathcal{P}$.

(D2) Ak
$$a \cdot b \cdot c$$
, potom $c \cdot b \cdot c \cdot a$ a navyše $(c \cdot a) \cdot (c \cdot b) = b \cdot a$.

Štruktúra $(\mathcal{P}, \bullet, \bullet, \mathcal{O}_{\mathcal{P}}, I_{\mathcal{P}})$ sa nazýva D-poset a kvôli stručnosti ho budeme označovať rovnako ako nosnú množinu \mathcal{P} . Ak D-poset je zväz, nazývame ho D-zväz. Hovoríme, že D-poset je σ -úplný, ak každá spočítateľ ná postupnosť $\{a_1, a_2, ..., a_n, ...\} \subseteq \mathcal{P}$ má v \mathcal{P} suprémum a infímum.

Prvok $I_{\mathcal{P}} \triangleq a$ nazývame *ortosuplement* prvku a a označujeme ho a^{\perp} . Unárna operácia \perp : $a \propto a^{\perp}$ je involúcia $(a^{\perp \perp} = a)$ a antiizotónna $(a \bullet b \Rightarrow b^{\perp} \bullet a^{\perp})$, ale nie je ortokomplementácia, lebo vo všeobecnosti neplatí $a^{\perp} \vee a = I_{\mathcal{P}}$, resp. $a^{\perp} \wedge a = 0_{\mathcal{P}}$.

Duálnou operáciou k operácii \spadesuit je operácia súčtu ortogonálnych prvkov \oplus definovaná pre $b \bullet a^{\perp}$ predpisom

$$a \oplus b = (a^{\perp} \blacktriangle b)^{\perp}$$
.

Konečná postupnosť $\{a_1, a_2, ..., a_n\} \subset \mathcal{P}$ sa nazýva \oplus -ortogonálna, ak $a_1 \oplus a_2 \oplus ... \oplus a_n$ existuje v \mathcal{P} , pričom

 $a_1 \oplus a_2 \oplus \ldots \oplus a_n = (a_1 \oplus a_2 \oplus \ldots \oplus a_{n-1}) \oplus a_n$, za predpokladu, že $(a_1 \oplus a_2 \oplus \ldots \oplus a_{n-1})$ aj $(a_1 \oplus a_2 \oplus \ldots \oplus a_{n-1}) \oplus a_n$ existujú v \mathcal{P} .

Prvky $a, b \in \mathcal{P}$ sú kompatibilné $(a \leftrightarrow b)$, ak existujú prvky $c, d \in \mathcal{P}$, že $d \bullet a \bullet c, d \bullet b \bullet c$ a

$$c \wedge a = b \wedge d$$
.

Ak \mathcal{P} je D-zväz, potom $a \leftrightarrow b$ práve vtedy keď $(a \lor b) \spadesuit a = b \spadesuit (a \land b)$.

Kôpka [11] študujúc kompatibilné množiny v D-posetoch definoval *booleovský D-poset* ako ohraničený poset \mathcal{P} s najmenším prvkom $\mathcal{O}_{\mathcal{P}}$, najväčším prvkom $\mathcal{I}_{\mathcal{P}}$ a binárnou operáciou "–" spĺňajúcou axiomy:

(BD1) $a - \theta_{\mathcal{P}} = a$ pre všetky $a \in \mathcal{P}$.

(BD2) a - (a - b) = b - (b - a) pre všetky $a, b \in \mathcal{P}$.

(BD3) Ak $a \bullet b$, potom $c - b \bullet c - a$ pre každé $c \in \mathcal{P}$.

(BD4) (a-b)-c=(a-c)-b pre všetky $a,b,c \in \mathcal{P}$.

V [8] bolo dokázané, že booleovský D-poset je D-zväz po dvojiciach kompatibilných prvkov a naopak.

(Pripomeňme, že ortomodulárny zväz po dvojiciach kompatibilných prvkov je Booleova algebra).

Veľmi dôležitým príkladom distributívneho zväzu je MV-algebra.

MV-algebra je štvorica (\mathcal{A} , +, *, $\mathcal{O}_{\mathcal{A}}$, $I_{\mathcal{A}}$), kde \mathcal{A} je neprázdna množina, $\mathcal{O}_{\mathcal{A}}$ a $I_{\mathcal{A}}$ sú špeciálne prvky z \mathcal{A} , + je binárna operácia a * je unárna operácia na \mathcal{A} , pričom platia nasledujúce axiomy:

(MVA1) a + b = b + a.

(MVA2) (a + b) + c = a + (b + c).

(MVA3) $a + \theta_A = a$.

(MVA4) $a + 1_A = 1_A$.

(MVA5) $(a^*)^* = a$.

(MVA6) $\theta_{\mathcal{A}} = 1_{\mathcal{A}}$

(MVA7) $a + a^* = 1_A$

(MVA8) $(a^* + b)^* + b = (a + b^*)^* + a$.

Ak pre a, $b2\mathcal{A}$ definujeme

$$a \lor b = (a^* + b)^* + b,$$

 $a \land b = (a^* \lor b^*)^*,$
 $a \bullet b$, ak $a \lor b = b$,

potom \mathcal{A} je distributívny zväz s najmenším prvkom $0_{\mathcal{A}}$ a najväčším prvkom $1_{\mathcal{A}}$. Ak pre a, b2 \mathcal{A} položíme

$$a - b = (a^* + b)^*$$

potom A je booleovský D-poset.

Naopak, ak $(\mathcal{P}, -, \mathcal{O}_{\mathcal{P}}, \mathcal{I}_{\mathcal{P}})$ je booleovský D-poset, tak položiac

$$a^* = I_{\mathcal{P}} - a \ ,$$

$$a + b = (a^* - b)^* \text{ pre } a, b2\mathcal{P},$$

dostaneme, že $(\mathcal{L}, +, *, \mathcal{O}_{\mathcal{L}}, I_{\mathcal{L}})$ je MV-algebra. Booleovské D-posety a MV-algebry sú kategoriálne ekvivalentné štruktúry. V tomto článku budeme uprednostňovať pojem MV-algebry.

Nenulový prvok a z D-posetu \mathcal{P} sa nazýva atóm, ak z nerovnosti $b \bullet a$ vyplýva buď $b = 0_{\mathcal{P}}$ alebo b = a. D-poset je atomický, ak ku každému nenulovému prvku $b \in \mathcal{P}$ existuje atóm $a \in \mathcal{P}$, že $a \bullet b$.

Nech $\mathcal N$ je množina prirodzených čísiel. *Ortogonálny násobok* prvku $a \in \mathcal P$ definujeme rekurentným spôsobom takto:

- (i) $0a = 0_{\mathcal{P}}$.
- (ii) 1a = a.
- (iii) $na=(n-1)a \oplus a$, ak $(n-1)a \bullet a^{\perp}$, $n \in \mathcal{N}$, $n \geq 2$.

Maximálne $n \in \mathcal{N}$ také, že prvok na existuje v \mathcal{P} nazývame izotropický index prvka a a označujeme ho $\tau(a)$. Ak prvok na existuje pre každé $n \in \mathcal{N}$, potom $\tau(a) = \infty$. MV-algebra je Booleovou algebrou práve vtedy, keď izotropický index každého prvka je rovný číslu l.

Nech \mathcal{A} je atomická MV-algebra. Symbolom $\langle \mathcal{A} \rangle$ budeme označovať množinu všetkých atómov MV-algebry \mathcal{A} a symbolom |A| kardinalitu množiny A, $A \subseteq \langle \mathcal{A} \rangle$.

Nech $S = \{A_i: t \in T, T \text{ je indexová množina} \}$ je systém atomických σ-úplných MV-algebier. Nech A a B sú konečné množiny atómov, $A \subseteq \langle A_i \rangle$, $B \subseteq \langle A_s \rangle$ pre $t \neq s$, pričom |A| = |B|. Hovoríme, že množiny A, B sú

ekvivalentné vzhľadom na izotropické indexy, píšeme $A \approx_{\tau} B$, ak platí jedna z nasledujúcich podmienok:

- (E1) $A = \emptyset$ a $B = \emptyset$.
- (E2) Ak $a \in A$, potom existuje $b \in B$, že $\tau(a) = \tau(b)$. Navyše, ak $a_1, a_2 \in A$, $a_1 \neq a_2$, potom existujú atómy $b_1, b_2 \in B$, že $\tau(a_1) = \tau(b_1)$, $\tau(a_2) = \tau(b_2)$ a $b_1 \neq b_2$.

Z každej dvojice MV-algebier \mathcal{A} , $\mathcal{B} \in \mathcal{S}$ vyberieme dvojicu množín A a B tak, že $A \subset \langle \mathcal{A} \rangle$, $B \subset \langle \mathcal{B} \rangle$ a $A \approx_{\tau} B$. Budeme hovoriť, že \mathcal{S} je *prípustný systém* MV-algebier, ak pre ľubovoľné tri MV-algebry \mathcal{A} , \mathcal{B} , $\mathcal{C} \in \mathcal{S}$ platí:

- (PS1) Ak $A \subset \langle \mathcal{A} \rangle$, $B \subset \langle \mathcal{B} \rangle$ a $A \approx_{\tau} B$, potom $\langle \mathcal{A} \rangle A \neq \emptyset$ a $\langle \mathcal{B} \rangle B \neq \emptyset$. Ak $\langle \mathcal{A} \rangle A = \{a\}$, resp. $\langle \mathcal{B} \rangle B = \{b\}$, potom $\tau(a) > I$ aj $\tau(b) > I$.
- (PS2) Ak A_1 , $A_2 \subseteq \langle \mathcal{A} \rangle$, B_1 , $B_2 \subseteq \langle \mathcal{B} \rangle$, C_1 , $C_2 \subseteq \langle \mathcal{C} \rangle$, pričom $A_1 \approx_{\tau} B_1$, $A_2 \approx_{\tau} C_1$, $B_2 \approx_{\tau} C_2$, potom $\langle \mathcal{A} \rangle (A_1 \cup A_2) \neq \emptyset$, $\langle \mathcal{B} \rangle (B_1 \cup B_2) \neq \emptyset$ a $\langle \mathcal{C} \rangle (C_1 \cup C_2) \neq \emptyset$.

Relácia ekvivalencie vzhľadom na izotropické indexy \approx_{τ} indukuje na zjednotení prípustného systému MV-algebier reláciu ekvivalencie \sim , ktorá je definovaná nasledujúcim spôsobom:

- (i) $0_{\mathcal{A}} \sim 0_{\mathcal{B}}$ a $1_{\mathcal{A}} \sim 1_{\mathcal{B}}$, ak $A = \emptyset$ a $B = \emptyset$.
- (ii) Ak $x, y \in \mathcal{A}$, tak $x \sim y$ práve vtedy keď x = y.
- (iii) Ak $x \in \mathcal{A}$, $y \in \mathcal{B}$, $A = \{a_1, a_2, ..., a_n\}$, $B = \{b_1, b_2, ..., b_n\}$, pričom $A \approx_{\tau} B$, tak $x \sim y$, keď

$$x = \bigvee_{i=1}^{n} p_i a_i \text{ a } y = \bigvee_{i=1}^{n} p_i b_i,$$

kde $p_i \in \{0, 1, ..., \tau(a_i)\}, i=1, ..., n$. (iv) Ak $x \sim y$, potom $x^{\perp} \sim y^{\perp}$.

Označme $[x] = \{y \in \mathbf{Y} \ \mathcal{A}_t: y \sim x\}$ a položme

$$\mathcal{P} = \{ [x] : x \in \underset{t \in T}{\mathbf{Y}} \mathcal{A}_t \}.$$

Ak d'alej označíme $[A_t] = \{[x]: x \in A_t\}$, potom

$$\mathcal{P} = \mathbf{Y}_{t \in T} [\mathcal{A}_t].$$

Systém P nazývame zlepenie MV-algebier.

Na P definujeme reláciu • a operáciu ♠ takto:

- (i) $[x] \bullet [y]$, ak existuje MV-algebra $\mathcal{A} \in \mathcal{S}$ a prvky $u, v \in \mathcal{A}$, že $u \in [x]$, $v \in [y]$ a $u \bullet_{\mathcal{A}} v$.
- (ii) Ak $[x] \bullet [y]$, potom $[y] \spadesuit [x] = [v \spadesuit_{\mathcal{A}} u]$. Potom $(\mathcal{P}, \bullet, \spadesuit, \mathcal{O}_{\mathcal{P}}, \mathcal{I}_{\mathcal{P}})$, kde $\mathcal{O}_{\mathcal{P}} = [\mathcal{O}_{\mathcal{A}}], \mathcal{I}_{\mathcal{P}} = [\mathcal{I}_{\mathcal{A}}]$, je D-poset.

V [10] bolo dokázané, že zlepenie prípustného systému dvoch MV-algebier je vždy D-zväz a navyše, ak $\mathcal{P} = \mathbf{Y} [\mathcal{A}_t]$ je D-zväz, potom $[\mathcal{A}_t]$ sú bloky v \mathcal{P} .

Inými slovami povedané, prípustný systém je taký systém MV-algebier, ktoré sú schopné zlepenia.

Ľubovoľný systém atomických σ-úplných MV-algebier je prípustný, ak všetky vybrané ekvivalentné množiny atómov sú prázdne množiny. V tomto prípade sú ekvivalentnými prvkami jedine najmenšie, respektívne najväčšie prvky MV-algebier a vtedy hovoríme o tzv. *0 -1-zlepení*.

3. HAASEHO DIAGRAMY

Haaseho diagram je orientovaný graf, ktorého vrcholy tvoria prvky čiastočne usporiadanej množiny (posetu) a hrany sú úsečky spájajúce vrcholy, pričom platia nasledujúce princípy:

- (i) Ak x, y sú porovnateľné prvky, napr. x < y, potom vrchol odpovedajúci prvku x leží v grafe nižšie než vrchol odpovedajúci prvku y.
- (ii) Ak hrana spája vrcholy odpovedajúce prvkom x a y, pričom x < y, potom neexistuje žiadny prvok z z daného posetu, aby x < z a z < y.

Na obr. 1 je Haaseho diagram čiastočne usporiadanej množiny obsahujúcej osem prvkov. Z diagramu vidieť, že $a_0 < a_2$ a na základe tranzitívnosti tiež $a_0 < a_4$, $a_0 < a_7$. Prvky a_1 a a_3 sú neporovnateľné, podobne a_4 a a_6 , a_2 a a_5 . Najväčším prvkom je a_7 a najmenším a_0 .

Príklad 1. Nech $\mathcal{A}=\{a_0, a_1, \ldots, a_7\}, a_0=(0, 0, 0, 0, 0, 0), a_1=(0, 0, 1, 0, 0), a_2=(1, 1, 0, 0, 0), a_3=(0, 0, 0, 1, 1), a_4=(1, 1, 1, 0, 0), a_5=(0, 0, 1, 1, 1), a_6=(1, 1, 0, 1, 1), a_7=(1, 1, 1, 1, 1). Na <math>\mathcal{A}$ definujeme (koordinátové) čiastočné usporiadanie:

$$(a_{i1}, a_{12}, a_{i3}, a_{i4}, a_{i5}) \bullet (a_{j1}, a_{j2}, a_{j3}, a_{j4}, a_{j5}),$$
 ak $a_{ik} \bullet a_{jk}$ pre $i, j \in \{0, 1, ..., 7\}, k = 1, 2, ..., 5.$

Potom (\mathcal{A}, \bullet) je poset, ktorého Haaseho diagram je na obr. 1. Na posete \mathcal{A} definujeme binárnu operáciu "—" a unárnu operáciu \bot takto:

$$(a_{i1}, a_{12}, a_{i3}, a_{i4}, a_{i5}) - (a_{j1}, a_{j2}, a_{j3}, a_{j4}, a_{j5}) =$$

 $(a_{i1} - min\{ a_{i1}, a_{j1} \}, ..., a_{i5} - min\{ a_{i5}, a_{j5} \}),$
 $a_i^{\perp} = a_7 - a_i, i = 1, 2, ..., 7.$

Štruktúra (\mathcal{A} , •, a_0 , a_7 , -, \perp) je distributívny ortomodulárny zväz, teda Booleova algebra.

Príklad 2. Nech $\mathcal{B} = \{b_0, b_1, \dots, b_7\}$, $b_0 = (0, 0, 0, 0, 0, 0)$, $b_1 = (0, 0, 1, 0, 0)$, $b_2 = (0, 1, 0, 1, 0)$, $b_3 = (1, 0, 0, 0, 1)$, $b_4 = (0, 1, 1, 1, 0)$, $b_5 = (1, 0, 1, 0, 1)$, $b_6 = (1, 1, 0, 1, 1)$, $b_7 = (1, 1, 1, 1)$. Na \mathcal{B} definujeme reláciu • a operácie –, \bot ako v Príklade 1. Štruktúra (\mathcal{B} , •, b_0 , b_7 , -, \bot) je Booleova algebra a jej Haaseho diagram je rovnaký ako Booleovej algebry \mathcal{A} z Príkladu 1. Booleove algebry \mathcal{A} a \mathcal{B} sú totiž izomorfné.

Položme $\mathcal{P} = \mathcal{A} \cup \mathcal{B}$ a označme $x_0 = a_0 = b_0$, $x_1 = b_2$, $x_2 = a_2$, $x_3 = a_1 = b_1$, $x_4 = a_3$, $x_5 = b_3$, $x_6 = b_4$, $x_7 = a_4$, $x_8 = a_6 = b_6$, $x_9 = a_5$, $x_{10} = b_5$, $x_{11} = a_7 = b_7$. Na \mathcal{P} definujeme reláciu • a operácie –, \bot ako vo vyššie uvedených príkladoch. Štruktúra \mathcal{P} nie je Booleova algebra, lebo nie je distributívny zväz. Totiž,

$$(x_1 \lor x_9) \land x_5 = x_{11} \land x_5 = x_5,$$

ale

$$(x_1 \wedge x_5) \vee (x_9 \wedge x_5) = x_0 \vee x_0 = x_0.$$

 \mathcal{P} je ortomodulárny zväz (D-zväz) a hovoríme, že vznikol *zlepením* Booleových algebier \mathcal{A} a \mathcal{B} . Jeho Haaseho diagram je na obr. 2.

Príklad 3. Uvažujme poset \mathcal{P} , ktorého Haaseho diagram je na obr. 1. Na \mathcal{P} definujeme čiastočnú binárnu operáciu \spadesuit takto:

(i) $x \triangleq a_0 = x$ pre každé $x \in \{a_0, a_1, \dots, a_7\}$.

(ii)
$$a_4 \triangleq a_1 = a_2$$
, $a_4 \triangleq a_2 = a_1$, $a_6 \triangleq a_2 = a_2$,

$$a_7 \triangleq a_1 = a_6, \ a_7 \triangleq a_6 = a_1, a_7 \triangleq a_2 = a_4,$$

$$a_7 \blacktriangle a_4 = a_2, \ a_5 \blacktriangle a_1 = a_3, a_5 \blacktriangle a_3 = a_1,$$

$$a_6 \triangleq a_3 = a_3$$
, $a_7 \triangleq a_3 = a_5$, $a_7 \triangleq a_5 = a_3$,

 $a_7 \wedge a_7 = a_0$.

Štruktúra (\mathcal{P} , \spadesuit , a_0 , a_7) je D-poset, dokonca distributívny D-zväz, ale nie je MV-algebra, lebo prvky a_2 a a_3 nie sú kompatibilné. Totiž,

$$(a_2 \lor a_3) \land a_2 = a_6 \land a_2 = a_2,$$

 $a_3 \land (a_2 \land a_3) = a_3 \land a_0 = a_3.$

D-zväz \mathcal{P} vznikol zlepením MV-algebier

 $A_1 = \{a_0, a_1, a_3, a_5, a_6, a_7\}$ a $A_2 = \{a_0, a_1, a_2, a_4, a_6, a_7\}$.

Príklad 4. Nech $\mathcal{A} = \{a_0, a_1, \dots, a_{17}\}$ a nech $\mathcal{B} = \{b_0, b_1, \dots, b_{17}\}$, pričom $a_0 = (0, 0, 0, 0)$, $a_1 = (1, 0, 0, 0)$, $a_2 = (0, 1, 0, 0)$, $a_3 = (0, 0, 0, 1)$, $a_4 = (1, 1, 0, 0)$, $a_5 = (1, 2, 2, 0)$, $a_6 = (0, 2, 2, 0)$,

 $\begin{array}{l} a_7 = (0,\ 1,\ 0,\ 1),\ a_8 = (0,\ 2,\ 2,\ 1),\ a_9 = (1,\ 0,\ 0,\ 1),\\ a_{10} = (1,\ 1,\ 0,\ 1),\ a_{11} = (1,\ 2,\ 2,\ 1),\ a_{12} = (2,\ 0,\ 0,\ 0),\\ a_{13} = (2,\ 1,\ 0,\ 0),\ a_{14} = (2\ 2,\ 2,\ 0,\ a_{15} = (2\ 0,\ 0,1),\\ a_{16} = (2,\ 1,\ 0,\ 1),\ a_{17} = (2,\ 2,\ 2,\ 1),\ b_0 = (0,\ 0,\ 0,\ 0),\\ b_1 = (1,\ 0,\ 0,\ 0),\ b_2 = (0,\ 0,\ 1,\ 0),\ b_3 = (0,\ 0,\ 0,1),\\ b_4 = (1,\ 0,\ 1,\ 0),\ b_5 = (1,\ 2,\ 2,\ 0),\ b_6 = (0,\ 2,\ 2,\ 0),\\ b_7 = (0,\ 0,\ 1,\ 1),\ b_8 = (0,\ 2,\ 2,\ 1),\ b_9 = (1,\ 0,\ 0,\ 1),\\ b_{10} = (1,\ 0,\ 1,\ 1),\ b_{11} = (1,\ 2,\ 2,\ 1),\ b_{12} = (2,\ 0,\ 0,\ 0),\\ b_{13} = (2,\ 0,\ 1,\ 0),\ b_{14} = (2,\ 2,\ 2,\ 0),\ b_{15} = (2,\ 0,\ 0,1),\\ b_{16} = (2,\ 0,\ 1,\ 1),\ b_{17} = (2,\ 2,\ 2,\ 1). \end{array}$

Na \mathcal{A} a \mathcal{B} definujeme čiastočné usporiadanie a operáciu rozdielu ako v Príklade 1. Potom \mathcal{A} a \mathcal{B} sú MV-algebry. Na obr. 3 je Haaseho diagram MV-algebry \mathcal{A} , resp. \mathcal{B} , pretože \mathcal{A} a \mathcal{B} sú izomorfné. Prvky v diagrame sú kvôli prehľadnosti označené len číslami ich indexov.

Položme $\mathcal{P} = \mathcal{A} \cup \mathcal{B}$ a označme $x_0 = a_0 = b_0$, $x_1 = a_1 = b_1$, $x_2 = a_2$, $x_3 = b_2$, $x_4 = a_3 = b_3$, $x_5 = a_6 = b_6$, $x_6 = a_7$, $x_7 = b_7$, $x_8 = a_8 = b_8$, $x_9 = a_4$, $x_{10} = b_4$, $x_{11} = a_5 = b_5$, $x_{12} = a_9 = b_9$, $x_{13} = a_{10}$, $x_{14} = b_{10}$, $x_{15} = a_{11} = b_{11}$, $x_{16} = a_{12} = b_{12}$, $x_{17} = a_{13}$, $x_{18} = b_{13}$, $x_{19} = a_{14} = b_{14}$, $x_{20} = a_{15} = b_{15}$, $x_{21} = a_{16}$, $x_{22} = b_{16}$, $x_{23} = a_{17} = b_{17}$.

MV-algebry \mathcal{A} a \mathcal{B} tvoria prípustný systém a ich zlepenie \mathcal{P} je distributívny D-zväz. Jeho Haaseho diagram je na obr. 4.

Príklad 5. Nech $\mathcal{A}=\{a_0, a_1, \ldots, a_{11}\}$ a nech $\mathcal{B}=\{b_0, b_1, \ldots, b_{11}\}$, pričom $a_0=(0, 0, 0)$, $a_1=(1, 0, 0), a_2=(0, 1, 0), a_3=(0, 0, 1), a_4=(2, 0, 0),$ $a_5=(1, 1, 0), a_6=(2, 1, 0), a_7=(0, 1, 1), a_8=(1, 0, 1),$ $a_9=(1, 1, 1), a_{10}=(2, 0, 1), a_{11}=(2, 1, 1), b_0=(0, 0),$ $b_1=(1, 0), b_2=(0, 1), b_3=(2, 0), b_4=(0, 2),$ $b_5=(0, 3), b_6=(1, 1), b_7=(1, 2), b_8=(1, 3),$ $b_9=(2, 1), b_{10}=(2, 2), b_{11}=(2, 3).$

Ak na \mathcal{A} a \mathcal{B} definujeme čiastočné usporiadanie a operáciu rozdielu ako v Príklade 1, potom \mathcal{A} a \mathcal{B} sú MV-algebry a ich Haaseho diagramy sú na obr. 5 a obr. 6.

Pre množiny ich atómov $\langle \mathcal{A} \rangle = \{a_1, a_2, a_3\},\$ $\langle \mathcal{B} \rangle = \{b_1, b_2\}$ platí: $\tau(a_1) = 2$, $\tau(a_2) = 1$, $\tau(a_3) = 1$, $\tau(b_1) = 2$, $\tau(b_2) = 3$. Položme $A = \{a_1\}$, $B = \{b_1\}$. Potom $A \approx_{\tau} B$, $a_0 \sim b_0$, $a_1 \sim b_1$, $a_4 = 2a_1 \sim 2b_1 = b_3$, $a_9 = a_1^{\perp} \sim b_1^{\perp} = b_8$, $a_7 = a_4^{\perp} \sim b_3^{\perp} = b_5$, $a_{11} \sim b_{11}$.

Ďalej položme $\mathcal{P} = \mathcal{A} \cup \mathcal{B}/\sim = \{x_0, x_1, \dots, x_{17}\}$, kde $x_0 = \{a_0, b_0\}, x_1 = \{a_1, b_1\}, x_2 = \{a_2\}, x_3 = \{b_2\}, x_4 = \{a_3\}, x_5 = \{b_4\}, x_6 = \{a_7, b_5\}, x_7 = \{a_5\}, x_8 = \{b_6\}, x_9 = \{a_8\}, x_{10} = \{b_7\}, x_{11} = \{a_9, b_8\}, x_{12} = \{a_4, b_3\}, x_{13} = \{a_6\}, x_{14} = \{b_9\}, x_{15} = \{a_{10}\}, x_{16} = \{b_{10}\}, x_{17} = \{a_{11}, b_{11}\}$. Zlepenie MV-algebier \mathcal{P} je nedistributívny D-zväz a jeho Haaseho diagram je na obr. 7.

4. GREECHIEHO DIAGRAMY

Greechieho diagramy navrhol Greechie na grafické znázorňovanie OMZ, resp. OMP (kvantových logík), ktoré vzniknú zlepením atomických Booleových algebier.

Greechieho diagram tvoria body a čiary. Body reprezentujú atómy danej logiky a čiary spájajú atómy ležiace v jednom bloku (Booleovej podlogike), pričom dve čiary majú spoločný najviac jeden bod.

Greechieho diagram D-posetu, ktorý vznikne zlepením prípustného systému MV-algebier, tiež tvoria body a čiary. Body znázorňujú prvky $\tau(x)x$, kde x je atóm a $\tau(x)$ je jeho izotropický index. (Sú to idempotentné, alebo tzv. ostré prvky, pre ktoré platí $\tau(x)x \vee (\tau(x)x)^{\perp} = I_{\mathcal{P}}$). Čiary spájajú ostré prvky atómov patriacich do jedneho bloku (pod-MV-algebry). Ak D-poset $\mathcal{P} = \mathbf{Y} \left[\mathcal{A}_t \right]$ je zlepením prípustného systému

MV-algebier, potom jeho Greechieho diagram má nasledujúce vlastnosti:

(G1) Pre body reprezentujúce prvky $\tau(x_i)x_i$, i = 1, ..., n, $n \ge 2$, spojené jednou čiarou platí:

$$\tau(x_1) + \dots + \tau(x_n) \geq 3.$$

(G2) Ak jedna čiara obsahuje n bodov, $n \ge 2$, a s druhou čiarou má spoločných n-l bodov, potom izotropický index atómu odpovedajúcemu bodu neležiacemu súčasne na druhej čiare je väčší ako l.

(G3) Ak jedna čiara má spoločné body s dvomi inými čiarami, tak potom musí obsahovať bod, ktorý neleží na žiadnej z ostatných dvoch čiar.

Na obr. 8 je Greechieho diagram Booleovej algebry \mathcal{A} z Príkladu 1, na obr. 9 je Greechieho diagram D-zväzu (OMZ) \mathcal{P} z Príkladu 2, na obr. 10 je Greechieho diagram zlepenia MV-algebier \mathcal{A}_I a \mathcal{A}_2 z Príkladu 3, na obr. 11 je Greechieho diagram zlepenia MV-algebier \mathcal{A} a \mathcal{B} z Príkladu 4 a na obr. 12 je Greechieho diagram zlepenia MV-algebier z Príkladu 5.

Nech \mathcal{A} je MV-algebra a $\langle \mathcal{A} \rangle = \{a_1, a_2, \ldots, a_n\}$ je množina všetkých jej atómov. MV-algebra \mathcal{A} je n-ticou $(\tau(a_1), \tau(a_2), \ldots, \tau(a_n))$ určená jednoznačne (až na izomorfizmus). Takže až na izomorfizmus, každá

Obr. 12

konečná MV-algebra je svojím Greechieho diagramom určená jednoznačne. Počet všetkých prvkov tejto MV-algebry (počet vrcholov odpovedajúceho Haaseho diagramu) je určený vzťahom

$$V = (\tau(a_1) + 1)(\tau(a_2) + 1)... (\tau(a_n) + 1).$$

V Príklade 1 je Booleova algebra \mathcal{A} typu (I, I, I) a počet jej prvkov je V = 2.2.2 = 8. Je izomorfná s algebrou všetkých podmnožín trojprvkovej množiny.

V Príklade 5 je MV-algebra \mathcal{A} typu (2, 1, 1) a počet jej prvkov je V = 3.2.2 = 12. MV-algebra \mathcal{B} je typu (2, 3) a počet jej prvkov je V = 3.4 = 12.

Nech $\mathcal{P} = [\mathcal{A}] \cup [\mathcal{B}]$ je zlepenie prípustného systému MV-algebier \mathcal{A} a \mathcal{B} s konečným počtom prvkov. Počet prvkov D-zväzu \mathcal{P} je určený vzťahom

$$V_{\mathcal{P}} = V_{\mathcal{A}} + V_{\mathcal{B}} - S,$$

kde $V_{\mathcal{A}}$, resp. $V_{\mathcal{B}}$ je počet prvkov MV-algebry \mathcal{A} , resp. \mathcal{B} , a S je počet prvkov MV-algebry $[\mathcal{A}] \cap [\mathcal{B}]$. Nech $\langle [\mathcal{A}] \rangle \cap \langle [\mathcal{B}] \rangle = \{x_1, x_2, ..., x_k\}$ je množina spoločných atómov blokov $[\mathcal{A}]$ a $[\mathcal{B}]$.

Označme

$$x = (\tau(x_1)x_1)^{\perp} \wedge (\tau(x_2)x_2)^{\perp} \wedge \dots (\tau(x_k)x_k)^{\perp}.$$
Prvok x je atóm MV-algebry $[\mathcal{A}] \cap [\mathcal{B}]$, pričom $\tau(x) = I$. Potom $\langle [\mathcal{A}] \cap [\mathcal{B}] \rangle = \{x_1, x_2, \dots, x_k, x\}$, takže $S = (\tau(x_1) + 1)(\tau(x_2) + 1)\dots (\tau(x_k) + 1)(\tau(x) + 1).$

V Príklade 4 je $\langle [\mathcal{A}] \rangle = \{a_1, a_2, a_3\}, \tau(a_1) = 2, \tau(a_2) = 2, \tau(a_3) = 1, V_{\mathcal{A}} = 3.3.2 = 18 \text{ a podobne } \langle [\mathcal{B}] \rangle = \{b_1, b_2, b_3\}, \tau(b_1) = 2, \tau(b_2) = 2, \tau(b_3) = 1, V_{\mathcal{B}} = 18. Ďalej \langle [\mathcal{A}] \rangle \cap \langle [\mathcal{B}] \rangle = \{x_1, x_4\}, \langle [\mathcal{A}] \cap [\mathcal{B}] \rangle = \{x_1, x_4, x_5\}, \text{ kde } x_5 = (2x_1)^{\perp} \wedge (x_2)^{\perp}, \text{ takže } S = 3.2.2 = 12. \text{ Potom } V_{\mathcal{P}} = V_{\mathcal{A}} + V_{\mathcal{B}} - S = 18 + 18 - 12 = 24.$

V Príklade 5 je $\langle [\mathcal{A}] \rangle = \{a_1, a_2, a_3\}, \tau(a_1) = 2, \tau(a_2) = 1, \tau(a_3) = 1, V_{\mathcal{A}} = 12, \langle [\mathcal{B}] \rangle = \{b_1, b_2\}, \tau(b_1) = 2, \tau(b_2) = 3, V_{\mathcal{B}} = 12, \langle [\mathcal{A}] \rangle \cap \langle [\mathcal{B}] \rangle = \{x_1\}, \langle [\mathcal{A}] \cap [\mathcal{B}] \rangle = \{x_1, x_6\}, x_6 = (2x_1)^{\perp}, S = 3.2 = 6, V_{\mathcal{P}} = 12 + 12 - 6 = 18.$

Otvoreným problémom zostáva určenie nutných a postačujúcich podmienok, aby zlepenie prípustného systému MV-algebier bolo D-zväzom a ich grafická reprezentácia pomocou Greechieho diagramov.

LITERATÚRA

- [1] GREECHIE, R. J.: *Orthomodular lattices admitting no states.* J. Combinat. Theory, Ser. A 10(1971), 119-132.
- [2] SIKORSKI, R.: *Boolean algebras*. Springer-Verlag, Berlin, Heidelberg, New York, 1964.
- [3] KÔPKA, F. CHOVANEC, F.: *D-posets*. Mathematica Slovaca **44**(1994), 21-34.
- [4] FOULIS, D. J. BENNETT, M. K. *Effect algebras and unsharp quantum logics*. Found. Phys. **24**(1994), 1331-1352.
- [5] PTÁK, P. PULMANNOVÁ, S.: *Orthomodular structures as quantum logics*. VEDA and Kluwer Acad. Publ., Bratislava and Dordrecht, 1991.

- [6] FOULIS, D. J. GREECHIE, R. J. RÜTTIMANN, G. T.: *Filters and supports in orthoalgebras*. Inter. Jour. Theor. Phys. **31**(1992), 789-807.
- [7] CHANG, C. C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88(1957), 467-490.
- [8] CHOVANEC, F. KÔPKA, F.: *Boolean D-posets*. Tatra Mountains Math. Publ. **10**(1997), 183-197.
- [9] RIEČANOVÁ, Z.: Genaralization of blocks for D-lattices and lattice ordered effect algebras. Jour. Theor. Phys. **39**(2000), 231-237.
- [10] CHOVANEC, F. JUREČKOVÁ, M.: *MV-algebra pasting*. Inter. Jour. Theor. Phys. **42**(2003), 1913-1926.
- [11] KÔPKA, F.: *Compatibility in D-posets*. Inter. Jour. Theor. Phys. **34**(1995), 1525-1531.

-

1

¹ Táto práca vznikla v rámci projektu VEGA 2/3163/23.