Pf:
$$\psi$$
 is nonvidal \Leftrightarrow (1) $\psi_1 = (7^{**})$, and

(2) $\psi_1 = (7^{**})$, $\psi_2 = (7^{**})$, $\psi_3 = (7^{**})$, $\psi_4 = (7^$

E protal category.

For $X \in oble$), $g \in \{t, -\}$, $def(X^{g}) = \{x \in \{t, -\}, def(X^{g}) \in$

 F_{or} $S = \{ (X_1, \Sigma_1), \cdots, (X_N, \Sigma_N) \}$, $X_1 \in \mathcal{F}_1, -1$

 $def \quad X_S = X_1^{\mathcal{E}_1} \otimes -- \otimes X_n^{\mathcal{E}_n} \in obl \mathcal{C})$

 $\nabla S = 0$, set $X_{0} = 1$

bef $S^* = ((X_1, -2_1), -\cdots, (X_n, -\xi_n))$, $\psi^* = \psi$.

Set

(peu s = x, xm, xm

 $1 \rightarrow X_s \otimes X_{s*}$

Here the arc labeled with X; is oriented toward.

right endpoint if zi=t and toward the left endpoint if zi=

 $eV_{(X,+)} = \bigvee_{X} = eV_{X}$

(0eV (x,+) = (vev x .

 $eV_{(X,-)}=xV=\widetilde{eV}_{x}$

(0eV(x,-) = (0eVx.

els is non-degenerate with inverse loeus

$$\times_{S} \longrightarrow (\times_{S^*})^*$$

Set
$$\overline{\Psi}_{\phi} = loev_1 = \widetilde{loev_1} = 1 \rightarrow 1^*$$

$$\overline{H}_{S}: X_{S} \rightarrow (X_{S})^{*}$$
 as composition of two map

$$1, \chi_{s} = \chi_{s}^{\varsigma_{l}} \otimes - - \otimes \chi_{h}^{\varsigma_{n}} \longrightarrow (\underline{\chi_{l}^{-\varsigma_{l}}})^{*} \otimes - - \otimes (\underline{\chi_{h}^{-\varsigma_{n}}})^{*}$$

$$V=1$$
, $\xi_1=+$ X , \longrightarrow X_1^{**}

Then

$$x_{m} = x_{s} = x_{s}$$

Prop.
$$\forall P = X \rightarrow Y$$
, $q: Y \rightarrow X$, then

$$\forall r_{1}(Pq) = \forall r_{2}(qP), \quad \forall r_{3}(Pq) = \forall r_{4}(qP)$$

Pt:

$$\forall r_{1}(Pq) = Y \rightarrow X$$

$$\forall r_{3}(Pq) = Y \rightarrow X$$

$$\forall r_{4}(Pq) = Y \rightarrow X$$

$$\forall r_{5}(Pq) = Y \rightarrow X$$

$$\forall r_{6}(Pq) = Y \rightarrow X$$

$$\forall r_{6}(Pq) = Y \rightarrow X$$

$$\forall r_{6}(Pq) = Y \rightarrow X$$

 $\forall x \in \text{End}_{e}(1)$, $f \in \text{End}_{e}(X)$, $g \in \text{End}_{e}(Y)$, Then $t_{r_{i}}(x) = t_{r_{i}}(x) = \lambda$, $t_{r_{i}}(f \cdot x) = \lambda t_{r_{i}}(f)$, $t_{r_{i}}(x, f) = \lambda t_{r_{i}}(f)$. $t_{r_{i}}(f \otimes g) = t_{r_{i}}(t_{r_{i}}(f) \cdot g)$, $t_{r_{i}}(f) = t_{r_{i}}(f^{*})$. $t_{r_{i}}(f \otimes g) = t_{r_{i}}(f \cdot t_{r_{i}}(g))$, $t_{r_{i}}(f) = t_{r_{i}}(f^{*})$.

$$P: tr(\omega) = 1$$

$$|\nabla v_1| = 1$$

$$|\nabla v_2| = 1$$

$$|\nabla v_3| = 1$$

$$|\nabla v_4| = 1$$

$$t(f \cdot d) = (f \cdot d) = t(f) \cdot d = t(f)$$

$$tr(tf\otimes g) = x\otimes y$$

$$= tr(tr(t) \cdot g)$$

$$\pm v_{L}(f) = \chi \int_{-\infty}^{\infty} dv^{A} dv^{A} = \chi \chi^{X}$$

$$+\gamma_{c}(f) = +\gamma_{c}(f^{**})$$
, $+\gamma_{r}(f) = +\gamma_{r}(f^{**})$

$$\forall r_{i}(f) = \chi$$
 $\forall r_{i}(f) = I$
 $\forall x$

Det left dimension
$$dim_{\ell}(X) = tV_{\ell}(id_{X})$$
 $X \in Oh(\mathcal{E})$

A	pivoto	al car	te gory	\5	spheric	ial,	f.	1 472(†)	=tV ₍ (f)	, bf	(-End(X)
	Det	And	07 T.	. +0	(7) 1—	ζ·((- ·	('γ ()'),			