Elementary Graph Algorithms Chapter 22

Mei-Chen Yeh

Graph (1)

$$V = \{1, 2, 3, 4, 5, 6\} \rightarrow \text{node}$$

 $E = \{(1,2), (1,3), (2,4)\}$

•
$$G = (V, E)$$

vertex edge

|V|:裡面有幾個元素

- |V|: number of vertices
- |E|: number of edges
- **Sparse** graphs

$$|E| << |V|^2$$

邊的個數vs節點數的平方 來判斷是不是sparse **Dense** graphs

$$|E| \approx |V|^2$$

(2,5)(3,4)(3,6)(4,6)} 每條邊是連接哪兩個節點 E = {(邊1)(邊2)}

Some slides are modified from Prof. Lu's slides.

Graph (2)

Degree:這個節點有幾個連居(有幾個邊碰到它)

- **Degree** of a node
 - # of neighbors
- Degree of the graph

- max (每個節點的degree)
 maximum degree over all of its nodes
- **Directed** or **undirected**?

Directed graph:看有沒有箭號指向某個節點

Representations of graphs (1)

3
 2
 6
 4

Adjacency-list

建立一個一維的array,節點指向下一個要去的節點

Representations of graphs (2)

宣告一個二維的array(6個節點故宣告6x6的大小) **Adjacency-matrix**

	1	2	3	4	5	6
1		1	1			
2	1			1	1	
3	1			1		1
4		1	1			1
5		1				
6			1	1		

如果是比較sparse的情況,就不要用matrix,用 linked list比較合適(才不會浪費空間存一堆null)

Representations of graphs (3)

Representations of graphs (4)

Adjacency-matrix

	1	2	3	4	5	6
1		1	1			
2				1	1	
3				1		1
4						
5						
6				1		

不會是對稱的

Graph traversal

想讓小人有系統性地去拜訪每一個節點

- Breadth-first search (BFS) _{廣度優先}
- Depth-first search (DFS)

深度優先

软华印

A systematic way to visit vertices and to traverse edges of a graph.

Breadth-first search

Breadth-first search

BF tree Breadth-first tree x is y's **parent**. SAY, WBA parent X 把小人游戏 多赞思的 進來的節點的每個鄰居都放進來 Queue S 先進先出 discovery time

講到BFS就先建立queue,因為需要queue來實現BFS

Exercise

What is the discovery order of vertices? Resolve ties by the vertex alphabetical order.

Shortest paths

最短路徑問題

• $\delta(s, v)$: the minimal number of edges in any path from vertex s to vertex v

Queue s w r t x v u y v.d: 0 1 1 2 2 2 3 3

把每個節點的最短路徑蕾加起來

Depth-first search

Depth-first search

深度優先:找一條路,走到底,有多遠走多遠

DF tree

depth-first tree

走到不能再走:現在這個節點的所有鄰居都拜訪過了,表示不能再走了 **finishing** time 有兩個不同的時間, 路徑不完全相反 Stack S 結果可能有好幾種 先進後出 discovery time

Depth-first search + time stamps

Exercise

Find the discovery/finishing time of each node.

Exercise

Properties (1)

Discovery and finishing times have

parenthesis structure.

不會有overlap的情況,要嘛沒交集, 要嘛完全不重疊(大包小)

3/6 2/9 1/10 11/16 V W S t X Z U V 4/5 7/8 12/13 14/15 重疊的情況只有兩種可能性

Entirely disjoint! Entirely within!

Properties (2)

把edge做分類

• Classification of edges: tree (T), back (B), forward (F), and cross (C)

Properties (2) $u \rightarrow v$

- The DFS algorithm classifies some edges as it encounters them.
- How? Look at the state of v:
 - not yet discovered → tree edge
 - − discovered but not yet finished → back edge
 - finished → forward or cross edge

Properties (2)

Example:

使用DFS在走的時候可以順便把節點做分類

- not yet discovered **T**
- discovered but not yet finished B
- finished F or C

Properties (2)

• In a depth-first search of an *undirected* graph, every edge is either a *tree* edge or a <u>back</u> edge.

□ 如果今天edge之間沒有箭頭指向,那節點只會剩下兩個種類 tree 跟 back

Directed acyclic graph (DAG)

• DAG: A directed graph that *does not contain* any directed cycle.

DAG: 在這個graph裡面沒有任何的圓環

Exercise

How to know if a graph G is (or is not) a dag?

 Hint: A directed graph is acyclic if and only if a DFS has no back edges!

Topological sort

只有是DAG的input才能做topological sort

• Given a $\operatorname{dag} G = (V, E)$, find a linear ordering of all its vertices such that if G has an edge (u, v), then u appears $\operatorname{before} v$.

讓排前面的往後指

Example (1)

有個老先生,每天起床都要穿戴下面的物品才願意出門

Example (2)

How to solve the topological sort problem?

Use the finishing time by DFS!

按照finishing time來排序

- 2-step procedure:
 - 1. Run DFS 按照節點出來的時間,從大的排到小的
 - 2. Output the nodes in decreasing order of their finishing time.

Example

Exercise

What's the ordering if we start from vertex 2?

Correctness (1)

• Show that if (u, v) is a directed edge of G, then

hint: > = <

為什麼按照finishing time 從大排到小的順序,就是 topological sort的順序?

if
$$u \longrightarrow v$$
, $u.f > v.f$

Correctness (2)

- Show that if (u, v) is a directed edge of G, then
 u.f > v.f.
- v is not yet discovered, u.f > v.f (why?)
- v is finished, u.f > v.f (why?)
- v is discovered but not yet finished?
 - Impossible! Otherwise this is not a DAG!

Strongly connected components

• Decompose a directed graph into its **strongly** connected components. for every (u, v) in C_i

One more example

Strongly connected components

- Input
 - -G=(V,E)
- Output
 - The strongly connected components of G

How to solve the problem?

A linear $\Theta(V+E)$ -time algorithm

- 1. <u>call DFS(G)</u> to compute finishing time *u.f* for each vertex *u*
- 2. compute G^T (the transpose of G)
- 3. call DFS(G^T) with considering the vertices in the order of decreasing u.f
- 4. output the components found in step 3

Graph transpose

Example

做GT,拷貝一份,所有的邊做反向。 從結束時間最大開始

從結束時間最大的節點開始做DFS,發現跑不出去,找到strongly connected component

Exercise

Apply DFS to find its strongly connected components.

Observation 1

If G contains a path v' o v, then it contains paths u o u' o v' and v' o v o u. Thus u and v' are reachable from each other! That contradicts the assumption that C and C' are distinct strongly connected component.

Example

f(C) = max {u.f} 最後結束的時間

d(*C*) = min {*u.d*} 最早開始的時間

Observation 2

f(C) = max {u.f} 最後結束的時間

d(*C*) = min {*u.d*} 最早開始的時間

Observation 2

$$f(C) > f(C')$$
 (why?)

2 cases:

- if d(C) < d(C')
- if d(C) > d(C')

Observation 3

 f(C) = max {u.f}

 最後結束的時間

 d(C) = min {u.d}

 最早開始的時間

- 1. $\frac{\text{call DFS}(G)}{u.f}$ to compute finishing time u.f for each vertex u
- 2. compute G^T (the transpose of G)
- 3. $\frac{\text{call DFS}(G^T)}{\text{vertices in the order of }}$ with considering the
- 4. output the components found in step 3

C': has the max f(C)

 E^{T} contains **no edges** from C' to any other strongly connected component!

Example

Summary

Check

- Breadth-first search (BFS)
 - shortest path between two vertices
- Depth-first search (DFS)
 - topological sort
 - strongly connected components