Векторно-конвейерные вычислительные системы

Структура ВКС

Типы конвейерных устройств

Пропускная способность конвейера

$$R \max = \left(\frac{M}{Tc}\right) \min.$$

Факторы, снижающие пропускную способность

1) Скалярная обработка

Коэффициент снижения пропускной способности

$$d = \frac{R \max}{R} = f * r + (1-f),$$

2) Длина вектора

С увеличением длины входных векторов эффективность конвейерной обработки возрастает

Факторы, снижающие пропускную способность

- 3) Стартовое время конвейера $t_{srart} = t_i + t_z = t_i + n \cdot t_c$
- 4) Зависимости по данным и по управлению
- 5) Реализация условных операторов
- 6) Ограничения связанные с памятью
- 7) Ограничения, связанные со специализированными арифметическими устройствами

Суперкомпьютер Cray-1

Первый векторно-конвейерный компьютер CRAY-1: время такта 12.5нс, 12 конвейерных функциональных устройств, пиковая производительность 160 миллионов операций в секунду, оперативная память до 1Мслова (слово - 64 разряда), цикл памяти 50нс. Главным новшеством является введение векторных команд, работающих с целыми массивами независимых данных.

ВЕКТОРНАЯ СУПЕРСИСТЕМА S-810 ФИРМЫ HITACHI

Структурная схема системы S-810 (модель 10)

Векторно-конвейерный компьютер Cray C90

Выполнение векторных операций в компьютере Cray C 90

Высокопроизводительная супер-ЭВМ Cray X1

Состав:

Процессор: Векторный процессор разработки Cray; 16 векторных операций с ПЗ (32 и 64)

Векторная тактовая частота 800 МГц

Пиковая производительность 12,8 ГФлопс на процессор

Пиковая пропускная способность памяти 34,1 Гбайт/с на процессор

Память RDRAM с 4 портами при 1,2 Гбайт/с на канал. Пиковая пропускная способность 204 Гбайт/с на узел

Архитектура Когерентный кэш, конструктивно распределённая, глобально адресуемая

Конфигурация системы Cray X1

Число шкафов	Число узлов	Число процессоров	Память, Гфлоп	Пиковая производитель ность, Тфлоп
1	4	16	64 - 256	0,205
4*	16	64	256 – 1 024	0,819
1**	16	64	256 – 1 024	0,819
4	64	256	1 024 – 4 096	3,27
8	128	512	2 048 – 8192	6,55
16	256	1 024	4 096 – 16 384	13,1
32	512	2 048	8 192 – 32 768	26,2
64	1024	4 096	16 384 – 65 536	52,4

^{*} Максимальная конфигурация для модели с воздушным охлаждением. ** Конфигурация для модели с жидкостным охлаждением.

Суперкомпьютеры Tera/Cray INC.

Корпорация Cray Inc. поставила перед собой цель достигнуть в 2010 году производительности суперкомпьютера в 1 Пфлоп.