Comment construire et utiliser un test bilatéral pour une moyenne ou une proportion ?

On suit le plan donné dans la fiche l'Essentiel p. 251, le plus souvent ce plan est détaillé dans l'énoncé.

Exemple. Une usine fabrique des engrenages dont le diamètre annoncé est égal à : 23,65 mm. Un client commande un lot d'engrenages, il veut vérifier cette affirmation et mesure les diamètres de 100 engrenages. Il obtient pour cet échantillon une moyenne $\overline{x}_e = 23,644$ mm et pour écart type $\sigma_e = 0,018$. Le client considère que l'écart type de l'échantillon est une bonne appréciation de l'écart type du lot qu'il a reçu. Peut-il admettre au risque de 5 % l'affirmation de son fournisseur ?

- On construit un test bilatéral.
- On choisit pour hypothèse nulle H_0 : m=23,65 et pour hypothèse alternative H_1 : $m\neq 23,65$. Sous l'hypothèse H_0 , la variable aléatoire \overline{X} qui, à chaque échantillon de taille
- 100, associe sa moyenne, suit approximativement la loi normale $\mathcal{N}\left(m \; ; \; \frac{\sigma^2}{100}\right)$ avec m=23,65 et $\sigma=0,018$.
- Pour déterminer la région critique au seuil de 5 %, on calcule l'intervalle de fluctuation de la moyenne au seuil de 95 % dans un échantillon de taille 100.

Cas général :
$$I = \left[m - u_{\alpha} \frac{\sigma}{\sqrt{n}} ; m + u_{\alpha} \frac{\sigma}{\sqrt{n}} \right].$$

Ici α = 0,05 , donc u_{α} = 1,96. On obtient I = [23,646 ; 23,654]. La région critique est extérieure à I.

Règle de décision :

On prélève un échantillon, on calcule sa moyenne \overline{x}_e . si $\overline{x}_e \in I$ on accepte H_o , sinon on rejette H_o .

Application du test :

On a obtenu $\overline{X}_e = 23,644$ et I = [23,646; 23,654].

 $\overline{x_e} \notin I$ donc on rejette l'hypothèse H_0 .

Au seuil de 5 % le client ne peut pas admettre l'affirmation de son fournisseur.