STAT 135 Lecture 7

Henry Liev

8 July 2025

Remark 0.1

Objectives: Sufficiency, Rao-Blackwell Theorem

Estimation:

• Construction: MOM, MLE

• Evaluation: Consistency, Unbiased

• Optimality

Example 0.2

Coin Flipping

Let $X_1, X_2, \dots, X_n \stackrel{iid}{\sim} Bernoulli(p)$

Estimate p

Intuitively, number of heads is all you need to estimate p

Intuite vely, $\sum X_i$ contains all the information in the data about p

Conceptually, a sufficient statistic for θ is one which contains all the information

Remark 0.3

A Sufficient Statistic for θ is one which contains all the information

- It is more efficient for storage
- For privacy reasons, aggregates could be better
- Guidance for forming estimators

Definition 0.4 (Sufficiency)

Data $X_1, \ldots, X_n \sim f(x|\theta)$

A statistic T is **sufficient** for θ if the conditional distribution of X_1, \ldots, X_n given T = t does not depend on θ for any t

Remark 0.5

Why does this make sense?

- After conditioning on T conditional distributions of X's does not depend on θ .
- No further analysis after conditioning on T can tell you about θ .

Example 0.6

 $X_1, X_2, \dots, X_n \stackrel{iid}{\sim} Bernoulli(p)$

Solution. $\sum_{i=1}^{n} X_i$ is a sufficient statistic for p.

Need to show: $P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n | T = t) = P(X_1 = x_1, X_2 = x_2, ..., X_n = t)$ $x_n | \sum_{i=1}^n X_i = t$) doesn't depend on p

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n | \sum_{i=1}^n X_i = t) = \frac{P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n \cap \sum_{i=1}^n x_i = t)}{P(\sum_{i=1}^n x_i = t)}$$

$$= \frac{p^t (1-p)^{n-t}}{\binom{n}{t} p^t (1-p)^{n-t}} = \frac{1}{\binom{n}{t}}$$

Theorem 0.7 (Factorization Criterion)

Easy way to check/identify sufficient statistics

 $X_1, \dots, X_n \sim f(x|\theta)$ A statistic $T(X_1, \dots, X_n)$ is sufficient for $\theta \Leftrightarrow$

$$f(x_1,\ldots,x_n) = g(T(x_1,\ldots,x_n),\theta) \cdot h(x_1,\ldots,x_n)$$

Method 0.8 (Playbook for factorization criterion)

- 1. Write down joint density
- 2. Check if it factors this way

Example 0.9

$$X_1, \ldots, X_n \stackrel{iid}{\sim} Poisson(\lambda)$$

 $X_1, \dots, X_n \stackrel{iid}{\sim} Poisson(\lambda)$ Show $T = \sum_{i=1}^n X_i$ is sufficient for λ

Solution.

$$f(x_1, x_2, \dots, x_n) = \prod_{i=1}^n \frac{1}{x_i!} \lambda^{x_i} e^{-\lambda} = \lambda^{\sum_{i=1}^n x_i} e^{-n\lambda} \prod_{i=1}^n \frac{1}{x_i!}$$

$$g(T,\lambda)\lambda^T e^{-n\lambda}$$

$$h(x_1,\ldots,x_n) = \prod_{i=1}^n \frac{1}{x_i!}$$

Remark 0.10

More reasons to care about sufficcient statistics

1. $\hat{\theta}_{MLE}$ is always a function of a sufficient statistics Suppose we have data $X_1,\ldots,X_n\sim f(X_1,\ldots,X_n|\theta)$ and T is sufficient for θ then by the factorization criterion $f(x_1,\ldots,x_n|\theta)=g(T,\theta)\cdot h(x_1,\ldots,x_n)$

$$\hat{\theta}_{MLE} = \underset{\theta}{\arg\max} f(x_1, \dots, x_n | \theta) = \underset{\theta}{\arg\max} g(T, \theta)$$

Theorem 0.11 (Rao-Blackwell Theorem)

 $x_1, \ldots x_n \sim f(x_1, \ldots, x_n | \theta)$

Have an estimator $\hat{\theta}$ of θ (Need to assume $E(\hat{\theta}^2) < \infty$, finite second moment)

Assume we have a sufficient statistic T for θ

Create $\tilde{\theta} = E |\hat{\theta}|T|$ (Random Variable)

 $MSE(\tilde{\theta}) \leq MSE(\hat{\theta})$

Proof. $\hat{\theta}$ original

 $\tilde{\theta} = E\left[\hat{\theta}|T\right]$ new and improved

$$E\left[E(\hat{\theta}|T)\right] = E(\hat{\theta})$$

 $E(\tilde{\theta}) = E(\hat{\theta})$ Have the same bias

Focus on variance $Var(\hat{\theta}) = Var\left[E(\hat{\theta}|T)\right] + E\left[Var(\hat{\theta}|T)\right] = Var(\tilde{\theta}) + E\left[Var(\hat{\theta}|T)\right]$

$$E\left[Var(\hat{\theta}|T)\right]\geq 0$$