

Alapvető algoritmusok

4. előadás

Dr. Pătcas Csaba

Dr. Pătcas Csaba

Több sorozathoz egy

Egy sorozathoz több

módozatok

Tartalom

Programozási tételek

- Sorozathoz érték rendelése
- Sorozathoz sorozat rendelése
- Több sorozathoz egy sorozat rendelése
- Egy sorozathoz több sorozat rendelése
- 2 Algoritmusok és programok fejlesztési módozatai
 - A top-down (fentről lefele) típusú programozás
 - A bottom-up (lentről felfele) típusú programozás

Algoritmika

Dr. Pătcaș Csaba

Programozási tételek

Sorozathoz érték rendelése

Sorozathoz sorozat rendelése

sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

Top-down

4 D > 4 B > 4 E > 4 E > 9 Q Q

Halmaz-e?

Feladat

Döntsük el egy n elemű a sorozatról, hogy az elemei halmazt alkotnak-e!

- Egy halmaz vagy üres, vagy bizonyos számú elemet tartalmaz.
- Ha egy halmazt sorozattal implementálunk, az elemei különbözőek.
- A döntés eredményét az ok kimeneti paraméter tartalmazza.

Megjegyzés

Az itt bemutatott halmazműveletek bármilyen típusú elemeket tartalmazó halmazokra működnek. Az esetek nagy többségében a halmazelemek típusa specifikusabb (pl. egész számok, karakterláncok), ekkor speciális adatszerkezetek felhasználásával (pl. kiegyensúlyozott bináris keresőfák, hasítótáblák) hatékonyabban megvalósíthatóak a bemutatott műveletek.

Algoritmika

Dr. Pătcas

Sorozathoz érték

randalása

Halmaz-e?


```
ALGORITMUS Halmaz-e(n. a. ok)
  i = 1
  ok = IGAZ
  AMÍG (ok ÉS (i < n)) végezd el:
    i = i + 1
    AMÍG ((j \le n) ÉS (a[i] != a[j])) végezd el:
    //a nem egyenlő operátort !=-nek írjuk
      j = j + 1
    VÉGE (Amíg)
    ok = (j > n)
    i = i + 1
  VÉGE (Amíg)
VÉGE (Algoritmus)
```

Algoritmika

Dr. Pătcaș Csaba

tételek Sorozathoz érték

rendelése Sorozathoz soroza

rendelése

Több sorozathoz e

Egy sorozathoz több

Feilesztési

Top-down

Bottom-uj

Másolás

Algoritmika

Dr. Pătcas

Sorozathoz sorozat randalása

Több sorozathoz egy

módozatok

Feladat

Adott egy n elemű a sorozat és az elemeken értelmezett f függvény. Másoljuk át az összes elemet egy b sorozatba, úgy, hogy alkalmazzuk rájuk az f függvényt (amely lehet az identitásfüggvény is)!

Másolás

```
M
```

```
Algoritmika
```

Dr. Pătcaș Csaba

tételek

rendelése

Sorozathoz sorozat rendelése

Több sorozathoz egy sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

```
ALGORITMUS Másolás(n, a, b)
  MINDEN i = 1, n végezd el:
    b[i] = f(a[i])
  VÉGE(Minden)
VÉGE(Algoritmus)
```

Kiválogatás

Feladat

Adott egy n elemű a sorozat és az elemeken értelmezett T tulajdonság. Válogassuk ki ezeket!

Több változat lehetséges a követelmények függvényében:

- Kigyűjtéssel
- Kiírással
- Helvben (2 változat)
- Kihúzással (segédsorozattal vagy speciális értékkel)

A megoldások a Keresés és a Megszámlálás programozási tételekből tartalmaznak maid elemeket.

Algoritmika

Dr. Pătcas

Sorozathoz sorozat randalása

Kiválogatás kigyűjtéssel

Algoritmika

Dr. Pătcas

Sorozathoz sorozat

randalása

módozatok

- A keresett elemeket (vagy azok sorszámait) kigyűjtjük a pozíciók sorozatba.
- A sorozat számosságát a db változóban tartiuk nyilván.
- A db változó értéke legtöbb n-el lesz egyenlő, mivel előfordulhat, hogy a bemeneti sorozat minden eleme adott tulajdonságú.

Kiválogatás kigyűjtéssel


```
ALGORITMUS Kiválogatás1(n, a, db, pozíciók)
  db = 0
  MINDEN i = 1, n végezd el:
    HA (T(a[i]))
      db = db + 1
      pozíciók[db] = i
    VÉGE (Ha)
  VÉGE (Minden)
VÉGE(Algoritmus)
```

Algoritmika

Dr. Pătcaș Csaba

tételek

Sorozathoz érték rendelése

Sorozathoz sorozat rendelése

sorozat rendelése

sorozat rendelése

módozatok Top-down

Kiválogatás kiírással

```
M
```

```
Algoritmika
```

Dr. Pătcaș Csaba

tételek

rendelése

Sorozathoz sorozat rendelése

Több sorozathoz egy sorozat rendelése

Egy sorozathoz töbl sorozat rendelése

Fejlesztési módozatok

Top-down

4日 → 4周 → 4 = → 4 = → 9 9 ○

```
ALGORITMUS Kiválogatás2(n, a)
  MINDEN i = 1, n végezd el:
    HA (T(a[i]))
    KI: a[i]
    VÉGE(Ha)
  VÉGE(Minden)
VÉGE(Algoritmus)
```


Algoritmika

Dr. Pătcaș Csaba

tételek

Sorozathoz érték rendelése

Sorozathoz sorozat rendelése

Több sorozathoz egy sorozat rendelése

Egy sorozathoz több

Fejlesztési módozatok

Top-down

4 ロ ト 4 同 ト 4 草 ト A 草 ト A 草 ・ タ Q へ

• Ha a T tulajdonságú elemeket meg szeretnénk őrizni a sorozatban és a többit ki akarjuk zárni, több lehetőségünk van a feladat specifikációjától függően.

 Ha a törlés után nem kötelező, hogy az elemek az eredeti sorrendjükben maradjanak, akkor minden törléskor rámásoljuk a törlendő elemre a sorozat utolsó elemét és csökkentjük 1-el a sorozat méretét.

Példa: $[1\ 2\ 2\ 3\ 1\ 4],\ T(x) = x\ páratlan$


```
ALGORITMUS Kiválogatás3(n, a)
  i = 1
  AMÍG (i <= n) végezd el:
    HA (NEM T(a[i])) akkor
      a[i] = a[n]
      n = n - 1
    KÜI.ÖNBEN
      i = i + 1
    VÉGE (Ha)
  VÉGE (Amíg)
VÉGE (Algoritmus)
```

Algoritmika

Dr. Pătcaș Csaba

tételek

Sorozathoz érték rendelése

Sorozathoz sorozat rendelése

Több sorozathoz egy sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

- Ha az eredeti sorozatra nincs többé szükség, de szeretnénk megőrizni az elemek eredeti sorrendjét, akkor az eredeti tömb elejére sorakoztatjuk fel a T tulaidonságú elemeket.
- Így a kiválogatott elemekkel felülírjuk az eredeti adatokat.
- Mivel nem használunk másik sorozatot, a kiválogatást helyben végezzük.
- A db az új sorozat számosságát tartja nyilván.

Algoritmika

Dr. Pătcaș Csaba

Programozási tételek

Sorozathoz érték rendelése

Sorozathoz sorozat rendelése

Több sorozathoz egy sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok


```
ALGORITMUS Kiválogatás4(n, a, db)
  db = 0
  MINDEN i = 1, n végezd el:
    HA (T(a[i])) akkor
      db = db + 1
      a[db] = a[i]
    VÉGE(Ha)
  VÉGE (Minden)
VÉGE (Algoritmus)
```

Példa: $[1\ 2\ 2\ 3\ 1\ 4],\ T(x) = x\ páratlan$

Algoritmika

Dr. Pătcaș Csaba

tételek

Sorozathoz érték rendelése

Sorozathoz sorozat rendelése

sorozat rendelése

sorozat rendelése

módozatok Top-down

Kiválogatás segédsorozattal

melyik elemet töröltük (ideiglenesen).

• Ha a törlés ideiglenes, akkor a törölt logikai tömbben tartjuk nyilván, hogy

 A törölt tömb elemei kezdetben mind HAMISak, majd a megfelelő sorszámú elemek értéke IGAZzá változik.

Algoritmika

Dr. Pătcaș Csaba

tételek

rendelése

Sorozathoz sorozat rendelése

Több sorozathoz egy sorozat rendelése

Egy sorozathoz több

Fejlesztési módozatok

Kiválogatás segédsorozattal

ALGORITMUS Kiválogatás5(n, a, törölt)

MINDEN i = 1, n végezd el:

VÉGE(Minden) VÉGE(Algoritmus)

törölt[i] = NEM T(a[i])


```
Algoritmika
```

Dr. Pătcaș Csaba

tételek

sorozatnoz ertek rendelése

Sorozathoz sorozat rendelése

Több sorozathoz egy sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

```
4□ > 4団 > 4 団 > 4 豆 > 豆 め Q ○
```

Kiválogatás speciális értékkel

Algoritmika

Dr. Pătcaș Csaba

tételek

rendelése

Sorozathoz sorozat rendelése

Több sorozathoz egy sorozat rendelése

Egy sorozathoz töbl sorozat rendelése

Fejlesztési módozatok

Top-down

Bottom-up

- Egy másik változat nem hoz létre segédsorozatot, tehát helyben dolgozik.
- Nem mozdítja el a helyükről a T tulajdonságú elemeket.
- A nem T tulajdonságú elemek helyére egy speciális értéket tesz.

Kiválogatás speciális értékkel


```
Algoritmika
```

Dr. Pătcaș Csaba

tételek

rendelése Sorozathoz sorozat

Sorozathoz sorozat rendelése

sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

```
4□ ト 4回 ト 4 重 ト 4 重 ・ 9 9 0 0
```


Halmazzá alakítás

Algoritmika

Dr. Pătcaș Csaba

Programozási tételek

Sorozathoz értél rendelése

Sorozathoz sorozat

rendelése

sorozat rendelése

Egy sorozathoz több

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

Top-down

Bottom-up

Feladat

Adott egy n elemű a sorozat. Alakítsuk halmazzá!

- Gyakorlatilag ki kell zárnunk a sorozatból a másodszor, harmadszor stb. meg jelenő értékeket.
- Használjuk a Kiválogatás3 algoritmusban látott ötletet, ahol a törlendő elemeket a sorozat utolsó elemével írtuk fölül.
- A Halmaz-e algoritmust használjuk az ismétlődő elemek detektálására.

Halmazzá alakítás

i = 1

ALGORITMUS Halmazzá(n, a)

Algoritmika

Dr. Pătcaș Csaba

Programozá tételek

Sorozathoz érték rendelése

Sorozathoz sorozat rendelése

Több sorozathoz egy sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

Halmazzá alakítás


```
AMÍG (i < n) végezd el:
    AMÍG (j \le n) ÉS (a[i] != a[j]) végezd el:
      j = j + 1
    VÉGE (Amíg)
    HA (j <= n) akkor
      a[i] = a[n]
      n = n - 1
    KÜI.ÖNBEN
      i = i + 1
      i = i + 1
    VÉGE(Ha)
  VÉGE (Amíg)
VÉGE (Algoritmus)
Példa: [1 2 1 3 3 2 1]
                                                  ◆□▶ ◆周▶ ◆三▶ ◆三 ◆900
```

Algoritmika

Dr. Pătcas

Sorozathoz sorozat randalása

Keresztmetszet

Algoritmika

Dr. Pătcas

Több sorozathoz egy

sorozat rendelése

módozatok

Feladat

Adott az n elemű a és az m elemű b sorozat, melyek nem rendezettek és halmazokat ábrázolnak. Határozzuk meg a halmazok keresztmetszetét, vagyis azt a db elemű c sorozatot, mely a sorozatok közös elemeit tartalmazza!

Keresztmetszet


```
ALGORITMUS Keresztmetszet(n, a, m, b, db, c)
  db = 0
  MINDEN i = 1, n végezd el:
    i = 1
    AMÍG ((j \le m) ÉS (a[i] != b[j])) végezd el:
      j = j + 1
    VÉGE (Amíg)
    HA (j <= m) akkor
      db = db + 1
      c[db] = a[i]
    VÉGE(Ha)
  VÉGE (Minden)
VÉGE (Algoritmus)
Példa: A = [3 \ 1 \ 2], B = [2 \ 5 \ 1]
                                                  ◆□▶ ◆周▶ ◆三▶ ◆三 ◆900
```

Algoritmika

Dr. Pătcas

Több sorozathoz egy sorozat rendelése

Egvesítés

Feladat

Adott az n elemű a és az m elemű b sorozat, melyek nem rendezettek és halmazokat ábrázolnak. Határozzuk meg a halmazok egyesítését, vagyis azt a db elemű c sorozatot, mely azokat az elemeket tartalmazza, amelyek legalább az egyik sorozatban megtalálhatóak!

- Mivel a sorozatok nem rendezettek, nem alkalmazhatjuk az összefésülést.
- Előbb a c sorozatba másoljuk az a sorozatot.
- Majd kiválogatjuk a b-ből azokat az elemeket, amelyeket nem találtunk meg az a-ban.

Algoritmika

Dr. Pătcas

Több sorozathoz egy sorozat rendelése

Egyesítés


```
ALGORITMUS Egyesítés(n, a, m, b, db, c)
  Másol(n. a. db. c)
  MINDEN j = 1, m végezd el:
    i = 1
    AMÍG ((i <= n) ÉS (a[i] != b[j])) végezd el:
      i = i + 1
    VÉGE (Amíg)
    HA (i > n)
      db = db + 1
      c[db] = b[j]
    VÉGE (Ha)
  VÉGE (Minden)
VÉGE (Algoritmus)
```

Algoritmika

Dr. Pătcaș Csaba

tételek

rendelése Sorozathoz soroza

rendelése Több sorozathoz egy sorozat rendelése

Egy sorozathoz több

Fejlesztési módozatok

Top-down Bottom-up

Összefésülés

Algoritmika

Dr. Pătcas

Több sorozathoz egy sorozat rendelése

Feladat

Adott az n elemű a és az m elemű b sorozat, melyek rendezettek. Határozzuk db elemű c sorozatot, mely a két sorozat elemeit tartalmazza és rendezett!

- Az Egyesítés és Keresztmetszet algoritmusok nem rendezett sorozatokon dolgoztak, bonyolultságuk $O(n^2)$.
- Ha a két sorozat rendezett, ez a két művelet megvalósítható lineáris időben.

Dr. Pătcas

Több sorozathoz egy sorozat rendelése

módozatok

- Elindulunk mindkét sorozatban és összehasonlítjuk az aktuális elemeket, ez alapján döntjük el, hogy melyik kerül az építendő sorozatba.
- Addig végezzük ezeket a műveleteket, ameddig valamelyik sorozatnak a végére nem érünk.
- A másik sorozatban megmaradt elemeket átmásoljuk az eredménysorozatba.

```
ALGORITMUS Összefésülés1(n, a, m, b, db, c)
  db = 0
  i = 1
  i = 1
  AMÍG ((i \le n) ÉS (j \le m)) végezd el:
    db = db + 1
    HA (a[i] < b[j]) akkor
      c[db] = a[i]
      i = i + 1
    KÜLÜNBEN
      c[db] = b[i]
      j = j + 1
    VÉGE(Ha)
  VÉGE (Amíg)
```

Dr. Pătcaș Csaba

tételek

rendelése Sorozathoz soroza rendelése

Több sorozathoz egy sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

Bottom-up

```
AMÍG (i <= n) végezd el:
    db = db + 1
    c[db] = a[i]
    i = i + 1
  VÉGE (Amíg)
  AMÍG (j <= m) végezd el:
    db = db + 1
    c[db] = b[i]
    j = j + 1
  VÉGE (Amíg)
VÉGE (Algoritmus)
Példa: A = [1 \ 3 \ 4 \ 7], B = [2 \ 5 \ 8 \ 9 \ 10]
```

Dr. Pătcaș Csaba

tételek

rendelése Sorozathoz soroza rendelése

Több sorozathoz egy sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

Top-down Bottom-up

- Akkor használjuk, ha a két sorozat halmazt reprezentál és az eredmény is az kell legyen.
- Az előző algoritmushoz hozzávesszük azt az esetet, amikor két elem egyenlő, ekkor mindkét sorozatban továbblépünk és az értéket természetesen csak egyszer írjuk be a megoldásba.

Dr. Pătcaș Csaba

Programo tételek

Sorozathoz érték rendelése

Sorozathoz sorozat rendelése

Több sorozathoz egy sorozat rendelése

Egy sorozathoz több

Fejlesztési módozatok

Dr. Pătcaș Csaba

tételek

rendelése
Sorozathoz soroza

Sorozathoz sorozat rendelése Több sorozathoz egy

sorozat rendelése Egy sorozathoz több

Fejlesztési módozatok

Top-down Bottom-up

```
HA (a[i] < b[j]) akkor
    c[db] = a[i]
    i = i + 1
  KÜI.ÖNBEN
    HA (a[i] = b[j])
      c[db] = a[i]
      i = i + 1
      j = j + 1
    KÜLÖNBEN
      c[db] = b[i]
      j = j + 1
    VÉGE(Ha)
  VÉGE(Ha)
VÉGE (Amíg)
```

Dr. Pătcaș Csaba

tételek

rendelése Sorozathoz soroza

Több sorozathoz egy sorozat rendelése

Egy sorozathoz több

Fejlesztési módozatok

Top-down Bottom-up

```
M
```

```
Algoritmika
```

Dr. Pătcaș Csaba

tételek

rendelése Sorozathoz soroz rendelése

Több sorozathoz egy sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

```
4□ > <@ > < 是 > < 是 > 是 9 < @</p>
```


- Ha szerencsések lettünk volna, a[n] = b[m] lett volna, ekkor a két utolsó AMÍG struktúrának egyetlen iterációját sem hajtottuk volna végre.
- Ezt az észrevételt kihasználva, mindkét sorozat végére elhelyezünk egy fiktív elemet, ezt őrszemnek vagy strázsának nevezzük.
- Az őrszemek értéke nagyobb kell legyen mint mindkét sorozat utolsó eleme, ezeket végtelennel jelöljük az algoritmusban.
- Egy másik lehetséges megválasztása a strázsa értékeinek: a[n + 1] = b[m] + 1, b[m + 1] = a[n] + 1
- Az összefésült sorozat nem fogja tartalmazni a végtelen értéket.
- Ha az eredeti sorozatok nem halmazok, vagy elemeik nem diszjunktak, az eredmény sem lesz halmaz.
- Mivel nem kezeljük külön az egyenlőséget, az eredménynek pontosan n+meleme lesz, vagyis használhatunk MINDEN struktúrát. ◆ロト 4周ト 4 至 ト 4 至 ト 9 の 0 ○

Dr. Pătcas

Több sorozathoz egy

sorozat rendelése

```
ALGORITMUS Összefésülés3(n, a, m, b, db, c)
  i = 1
  j = 1
  a[n + 1] = végtelen
  b[m + 1] = végtelen
```

Dr. Pătcas

Több sorozathoz egy

sorozat rendelése Egy sorozathoz több

módozatok

```
MINDEN db = 1, n + m végezd el:
    HA (a[i] < b[j]) akkor
      c[db] = a[i]
      i = i + 1
    KÜLÖNBEN
      c[db] = b[i]
      j = j + 1
    VÉGE (Ha)
  VÉGE (Minden)
VÉGE (Algoritmus)
Példa: A = [1 \ 2 \ 3], B = [2 \ 3 \ 5]
```

Dr. Pătcaș Csaba

tételek

Sorozathoz soroza rendelése

Több sorozathoz egy sorozat rendelése

gy sorozathoz több

Fejlesztési módozatok

Top-down Bottom-up

Összefésülés

Negyedik változat

Algoritmika

Dr. Pătcas

Több sorozathoz egy sorozat rendelése

- Gyakorlatilag a második változat őrszemmel való megvalósítása.
- Szintén akkor használjuk mikor a bemeneti sorozatok halmazokat ábrázolnak és az eredménysorozat is halmaz kell legyen.
- Mivel nem tudjuk előre, hogy hány eleme lesz a megoldásnak, MINDEN struktúra helvett AMÍG-ot használunk.
- Az őrszemek révén az AMÍG struktúrát addig hajtjuk végre, ameddig mindkét sorozat végére nem értünk.

```
ALGORITMUS Összefésülés4(n, a, m, b, db, c)
  db = 0
  i = 1
  i = 1
  a[n + 1] = végtelen
  b[m + 1] = végtelen
  AMÍG ((i \le n) VAGY (j \le m)) //nem ÉS!
    db = db + 1
   HA (a[i] < b[j]) akkor
      c[db] = a[i]
      i = i + 1
```

Algoritmika

Dr. Pătcaș Csaba

Programo tételek

rendelése
Sorozathoz soroza

Sorozathoz sorozat rendelése Több sorozathoz egy

sorozat rendelése Egy sorozathoz több

Fejlesztési módozatok


```
Negyedik változat
```

```
KÜI.ÖNBEN
      HA (a[i] = b[j]) akkor
        c[db] = a[i]
        i = i + 1
        j = j + 1
      KÜLÖNBEN
        c[db] = b[j]
        j = j + 1
      VÉGE(Ha)
    VÉGE(Ha)
  VÉGE (Amíg)
VÉGE (Algoritmus)
```

Algoritmika

Dr. Pătcaș Csaba

tételek

rendelése Sorozathoz soroza

rendelése Több sorozathoz egy

sorozat rendelése Egy sorozathoz több

sorozat rendelése

módozatok

Szétválogatás

Algoritmika

Dr. Pătcas

Fey sorozathoz több

corozat rendelése

módozatok

- A Kiválogatás programozási tételben egy sorozatot dolgoztunk fel és abból válogattunk ki bizonyos elemeket.
- A nem kiválogatott elemekkel nem foglalkoztunk, de van amikor azokra is szükségünk van.
- Előfordulhat, hogy két vagy több sorozatba kell szétválogatnunk a bemeneti sorozatot.

Szétválogatás

Flső változat

Feladat

Adott az n elemű a sorozat és az elemein értelmezett T tulajdonság. Válogassuk szét az elemeit úgy, hogy a b sorozat tartalmazza az összes T tulajdonságú elemet és a c sorozat a többi elemet!

- A b elemeinek számát dbb-vel, a c elemeinek számát dbc-vel jelöljük.
- Nem tudhatjuk előre az új sorozatok méretét, legrosszabb esetben az eredetivel azonos méretűek lehetnek, ha valamennyi elem "átvándorol" valamelyik sorozatha és a másik üres marad.

Algoritmika

Dr. Pătcas

Fey sorozathoz több

corozat rendelése

```
Első változat
```

```
ALGORITMUS Szétválogatás1(n, a, dbb, b, dbc, c)
  dbb = 0
  dbc = 0
  MINDEN i = 1, n végezd el:
    HA (T(a[i])) akkor
      dbb = dbb + 1
      b[dbb] = a[i]
    KÜLÜNBEN
      dbc = dbc + 1
      c[dbc] = a[i]
    VÉGE (Ha)
  VÉGE (Minden)
VÉGE (Algoritmus)
```

Algoritmika

Dr. Pătcaș Csaba

rogramoza tételek

Sorozathoz ertek rendelése Sorozathoz soroza

Sorozathoz sorozat rendelése

sorozat rendelése Egy sorozathoz több

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

Szétválogatás

Második változat

Algoritmika

Dr. Pătcaș Csaba

Programoz tételek

rendelése
Sorozathoz sorozat

Sorozathoz soroza rendelése

sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

Top-down

4 D > 4 A > 4 B > 4 B > B = 900

- A feladat megoldható egyetlen új sorozattal.
- A kiválogatott elemeket az új sorozat elejére tesszük (balról jobbra haladva), a megmaradtakat a végére (jobbról balra haladva).
- Nem lesz ütközés, mivel pontosan n elemet kell n helyre elhelyezzünk.
- A megmaradt elemek az eredeti sorozatban elfoglalt relatív pozícióik fordított sorrendjében kerülnek az új sorozatba.
- A b tömbbe válogatjuk szét az elemeket, a dbb változó jelzi a tulajdonsággal rendelkező elemek számát, a dbc a megmaradt elemek számát.


```
ALGORITMUS Szétválogatás2(n, a, dbb, dbc, b)
  dbb = 0
  dbc = 0
  MINDEN i = 1, n végezd el:
    HA (T(a[i])) akkor
      dbb = dbb + 1
      b[dbb] = a[i]
    KÜLÜNBEN
      dbc = dbc + 1
      b[n - dbc + 1] = a[i]
    VÉGE (Ha)
  VÉGE (Minden)
VÉGE (Algoritmus)
```

Algoritmika

Dr. Pătcaș Csaba

tételek

rendelése Sorozathoz soroza

Sorozathoz sorozat rendelése

sorozat rendelése

Egy sorozathoz több

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

Algoritmika

Dr. Pătcas

Fey sorozathoz több corozat rendelése

4□ > 4□ > 4□ > 4□ > 4□ > 900

- Ha az eredeti sorozatra nincs már szükségünk, a szétválogatást elvégezhetjük helyben.
- Egy lehetőség elindulni párhuzamosan előlről és hátulról a tömbben és keresni olyan elemeket, amelyeket fel kell cserélni.
- Ha találtunk két felcserélendő elemet, akkor felcseréljük őket és folvtatjuk a keresést.
- Ha összetalálkoztunk két irányból, befejeztük.

Szétválogatás

Szétválogatás helyben

Egy másik ötlet:

- Lementjük a tömb első elemét egy segédváltozóba.
- ② Az utolsó elemtől visszafelé indulva megkeressük az első olyan elemet, amely *T* tulajdonságú és ezt beírjuk a tömb elejére.
- ullet Előlről indulva keresünk egy olyan elemet, amely nem ${\mathcal T}$ tulajdonságú és ezt beírjuk a tömb végére.
- ullet A fenti lépéseket addig végezzük, ameddig össze nem találkozunk, a db változó tárolja az utolsó ${\mathcal T}$ tulajdonságú elem indexét balról nézve.

Algoritmika

Dr. Pătcaș Csaba

Programoz tételek

Sorozathoz érték rendelése

Sorozathoz sorozat

rendelése

sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

Top-down


```
Algoritmika
```

Dr. Pătcaș Csaba

tételek

rendelése Sorozathoz soroz

rendelése

Több sorozathoz egy sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

```
4日 → 4周 → 4 = → 4 = → 9 9 ○
```

```
ALGORITMUS Szétválogatás3(n, a, db)

e = 1

u = n

segéd = a[e]

AMÍG (e < u) végezd el:

AMÍG ((e < u) ÉS NEM T(a[u])) végezd el:

u = u - 1

VÉGE(Amíg)
```

```
HA (e < u)
    a[e] = a[u]
    e = e + 1
    AMÍG ((e < u) ÉS T(a[e])) végezd el:
      e = e + 1
    VÉGE (Amíg)
    HA (e < u)
      a[u] = a[e]
      u = u - 1
    VÉGE(Ha)
  VÉGE(Ha)
VÉGE (Amíg)
```

Algoritmika

Dr. Pătcas

Több sorozathoz egy

Egy sorozathoz több sorozat rendelése

módozatok

Top-down

Példa: $A = [2 \ 4 \ 1 \ 6 \ 5 \ 7 \ 8], T(x) = x páros$

Többszörös szétválogatás

Algoritmika

Dr. Pătcas

Fey sorozathoz több corozat rendelése

módozatok

- Ha egy sorozatot több részsorozatba kell szétválogatni több tulajdonság alapján, akkor több szétválogatást fogunk végezni.
- Előbb szétválogatjuk a bemeneti sorozatból az első tulajdonsággal rendelkező elemeket a többitől.
- A megmaradt elemeket szétválogatjuk a második tulajdonság alapján és így tovább.

Programozási tételek összeépítése

Algoritmika

Dr. Pătcas

Fey sorozathoz több

sorozat rendelése

módozatok

Megszámolással való összeépítés

mint a következő példa esetén.

Van-e egy adott sorozatban legalább k darab T tulajdonságú elem? Ha igen, adjuk meg a sorozat k. elemét, mely rendelkezik a T tulajdonsággal!

Előfordulhat, hogy egyszerű egymás utáni alkalmazás helyett, egyszerűbb, rövidebb, hatékonyabb algoritmust tervezhetünk, ha összeépítünk több programozási tételt,

Tartalom

- Programozási tételek
 - Sorozathoz érték rendelése
 - Sorozathoz sorozat rendelése
 - Több sorozathoz egy sorozat rendelése
 - Egy sorozathoz több sorozat rendelése
- Algoritmusok és programok fejlesztési módozatai
 - A top-down (fentről lefele) típusú programozás
 - A bottom-up (lentről felfele) típusú programozás

Algoritmika

Dr. Pătcaș Csaba

Programoz tételek

Sorozathoz érték rendelése

Sorozathoz soroza rendelése

Több sorozathoz egy sorozat rendelése

Egy sorozathoz több

Fejlesztési módozatok

Algoritmusok és programok fejlesztési módozatai

- A megoldandó feladatot elképzelhetjük egy gyökeres faként, amelynek a gyökere jelképezi a feladatot és alatta helyeszkednek el a részfeladatok.
- Ha ezt a fát fentről lefele építjük fel (járjuk be, implementáljuk), akkor beszélünk top-down típusú programozásról.
- Ha a legegyszerűbb részfeladatok megoldásával kezdjük és ezek összerakásával alakítjuk ki a megoldást, bottom-up típusú programozásról beszélünk.
- A gyakorlatban legtöbbször keverjük a két módszert, de a kezdeti tervezési fázisban általában top-down gondolatmenetet használunk.
- Ezeket a koncepciókat modern software-fejlesztési technológiákban is megtaláljuk (pl. Spring, "inversion of control", "dependency injection" stb.)

Algoritmika

Dr. Pătcaș Csaba

Programo: tételek

Sorozathoz érték rendelése Sorozathoz sorozat

Sorozathoz sorozat rendelése

Több sorozathoz egy sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

Algoritmika

Dr. Pătcas

Top-down

• Az eredeti feladatot fokozatosan felbontjuk egyre egyszerűbb részfeladatokra.

 Felbontáskor feltételezzük, hogy a részfeladatokat már megoldottuk és a felbontás után fejtjük ki az alprogramokat.

 Amikor olyan részfeladathoz érünk, amelynek megoldása már eléggé egyszerű, alprogramot írunk e rész megoldására.

 Egy-egy alprogram további alprogramokat tartalmazhat, ezek tulajdonképpen a leszármazottai a fában.

Példa: Többségi elem (elnökválasztás)

Feladat

Adott egy n elemű tömb, mely természetes számokat tartalmaz az [1,n] intervallumból. Határozzuk meg, hogy van-e olyan elem, amely több mint n/2 példányban fordul elő a tömbben.

- Ha egy tömbben vagy más adatszerkezetben számoljuk az előfordulásokat, $\Theta(n)$ idő- és memóriabonyolultságú algoritmusunk van.
- A szemináriumon vett jelöltes megoldás ("Boyer–Moore majority vote algorithm") $\Theta(n)$ időbonyolultsággal és $\Theta(1)$ memóriabonyolultsággal rendelkezik, ezt tárgyaljuk a továbbiakban.
- Megjegyezzük, hogy létezik hatékonyabb (probabilisztikus) algoritmus is.

Algoritmika

Dr. Pătcaș Csaba

Programo tételek

> Sorozathoz érték rendelése

Sorozathoz sorozat rendelése

Több sorozathoz egy sorozat rendelése

> gy sorozathoz több orozat rendelése

Fejlesztési módozatok

többségiJelölt = EllenőrizJelölt(n, a, jelölt)

Vázlatszerűen felírjuk a "nagy" feladat megoldásának lépéseit (a fa gyökere).

Példa: Többségi elem (elnökválasztás)

ALGORITMUS Elnökválasztás()

ielölt = KeresJelölt(n, a)

Kiir(többségiJelölt, jelölt)

```
Ö
```

```
Algoritmika
```

Dr. Pătcaș Csaba

tételek

Sorozathoz érték rendelése

Sorozathoz sorozat rendelése

sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

Top-down

Bottom-up

```
VÉGE(Algoritmus)
```

Beolvas(n. a)

Ezután sorban kifejtjük mindegyik alprogramot (a leszármazottakat).

Példa: Többségi elem (elnökválasztás)

ALGORITMUS Beolvas(n. a)

MINDEN i = 1, n végezd el:


```
Algoritmika
```

Dr. Pătcaș Csaba

Programozá tételek

Sorozathoz érték rendelése

Sorozathoz sorozat rendelése

sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

Top-down

Bottom-up

VÉGE(Algoritmus)

BE: a[i] VÉGE(Minden)

BE: n

Példa: Többségi elem (elnökválasztás)

ALGORITMUS KeresJelölt(n, a)

 $jel\"{o}lt = a[1]$

hány = 1

```
Ü
```

Algoritmika

Dr. Pătcaș Csaba

Programozá

Sorozathoz érték rendelése

Sorozathoz sorozat rendelése

rendelése
Több sorozathoz egy

sorozat rendelése

Egy sorozathoz töbl sorozat rendelése

Fejlesztési módozatok

Példa: Többségi elem (elnökválasztás)

```
Algoritmika
```

Top-down

Dr. Pătcas

◆□▶ ◆周▶ ◆三▶ ◆三 ◆900

```
HA (a[i] = jelölt) akkor
      hány = hány + 1
    KÜLÜNBEN
      HA (hány = 0) akkor
        jelölt = a[i]
        hány = 1
      KÜLÜNBEN
        hánv = hánv - 1
      VÉGE (Ha)
    VÉGE(Ha)
  VÉGE (Minden)
  VISSZATÉRÍT: jelölt
VÉGE (Algoritmus)
```

MINDEN i = 2, n végezd el:

Példa: Többségi elem (elnökválasztás)

```
Ö
```

```
Algoritmika
```

Dr. Pătcaș Csaba

tételek

rendelése
Sorozathoz soroza

Sorozathoz sorozat rendelése

sorozat rendelése Egy sorozathoz töbl

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

Top-down

Bottom-up

VEGE (AIgor I chius)

```
ALGORITMUS EllenőrizJelölt(n, a, jelölt)
  hány = 0
  MINDEN i = 1, n végezd el:
    HA (a[i] = jelölt) akkor
       hány = hány + 1
    VÉGE(Ha)
  VÉGE(Minden)
  VISSZATÉRÍT: (hány > n / 2)
VÉGE(Algoritmus)
```

Példa: Többségi elem (elnökválasztás)

```
Ö
```

```
Algoritmika
```

Dr. Pătcaș Csaba

tételek

rendelése
Sorozathoz soroz

Sorozathoz sorozat rendelése

sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

```
ALGORITMUS Kiír(többségiJelölt, jelölt)
HA (többségiJelölt)
KI: jelölt
KÜLÖNBEN
KI: 'Nem nyert senki'
VÉGE(Ha)
VÉGE(Algoritmus)
```

A top-down stílus ellentétje.

alprogram megírása.

miután készen vannak, összefűzzük őket.

Algoritmika

Dr. Pătcaș Csaba

tételek

Sorozathoz érték rendelése

Sorozathoz sorozat rendelése

rendelése

sorozat rendelése

Egy sorozathoz töb sorozat rendelése

Fejlesztési módozatok

Top-down

Bottom-up

Megvalósítjuk az alprogramokat, melyek egy-egy részfeladatot oldanak meg és

• Tehát az alprogram megírása után következik az őt hívó program vagy

4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト 夏 り 9 0 0 0

Példa: Törzstényezőkre bontás

Algoritmika

Dr. Pătcas

Több sorozathoz egy

Feladat

Bontsunk törzstényezőkre k darab természetes számot!

Példa: $12 = 2^2 \cdot 3$

Biztosan szükségünk lesz beolvasásra, úgyhogy azt meg is írhatjuk.

Példa: Törzstényezőkre bontás


```
Algoritmika
```

Dr. Pătcaș Csaba

Programozás

Sorozathoz érték rendelése

Sorozathoz sorozat rendelése

Több sorozathoz egy sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

Top-dowr

Bottom-up

4D > 4A > 4E > 4E > 900

```
ALGORITMUS Beolvas(k, számok)
BE: k
MINDEN i = 1, k végezd el:
BE: számok[i]
VÉGE(Minden)
VÉGE(Algoritmus)
```

Példa: Törzstényezőkre bontás

Úgy döntünk, hogy egy adott számra a megoldást egy struktúra-tömbben tároljuk, megírjuk ennek a kiíratását.

```
ALGORITMUS KiírTörzstényezők(m, felbontás)

KI: felbontás[1].tényező + '^' + felbontás[1].kitevő

MINDEN i = 2, m végezd el

KI: '*' + felbontás[i].tényező + '^' + felbontás[i].kitevő

VÉGE(Minden)

VÉGE(Algoritmus)
```

Algoritmika

Dr. Pătcaș Csaba

tételek

Sorozathoz érték rendelése

Sorozathoz sorozat rendelése

Több sorozathoz egy sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

Top-dow

Példa: Törzstényezőkre bontás

Algoritmika

Dr. Pătcaș Csaba

Programozás tételek

Sorozathoz érték rendelése

Sorozathoz sorozat rendelése

Több sorozathoz egy sorozat rendelése

Egy sorozathoz több

Fejlesztési módozatok

Гор-down

Bottom-up

Szükségünk lesz egy egyszerűbb kiíratásra, ha a számnak nincsenek törzstényezői.

ALGORITMUS KiírEgyszerű(n)

KI: n

VÉGE(Algoritmus)

Az előbbi két kiíratást összekombináljuk egy nagyobba:

Példa: Törzstényezőkre bontás

```
Algoritmika
```

Dr. Pătcas

Bottom-un

```
4D > 4A > 4E > 4E > 900
```

```
HA (n > 1)
```

ALGORITMUS Kiír(n. m. felbontás)

KiírTörzstényezők(m, felbontás)

KÜLÜNBEN

KiirEgyszerű(n)

VÉGE (Ha)

VÉGE(Algoritmus)

Példa: Törzstényezőkre bontás

```
Ö
```

```
Ezután megírjuk magát a felbontást.
```

```
ALGORITMUS Felbont(n, m, felbontás)
m = 0
osztó = 2
AMÍG (n != 1) végezd el:
  hatvány = 0
AMÍG (n % osztó = 0) végezd el: //% = maradék operátor (mod)
  hatvány = hatvány + 1
  n = n / osztó
VÉGE(Amíg)
```

Algoritmika

Dr. Pătcaș Csaba

Programoz tételek

Sorozathoz érték rendelése

Sorozathoz sorozat rendelése

sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

Top-down

Példa: Törzstényezőkre bontás

```
Ö
```

```
Algoritmika
```

Dr. Pătcaș Csaba

tételek

rendelése Sorozathoz soroz

rendelése

sorozat rendelése Egy sorozathoz több

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

Top-down

```
HA (hatvány != 0)
    m = m + 1
    felbontás[m].tényező = osztó
    felbontás[m].kitevő = hatvány
    VÉGE(Ha)
    osztó = osztó + 1
    VÉGE(Amíg)
VÉGE(Algoritmus)
```

A felbontást és a kiíratást meg kell hívnunk mind a k darab beolvasott számra.

Példa: Törzstényezőkre bontás


```
Algoritmika
```

Dr. Pătcaș Csaba

tételek

Sorozathoz érték rendelése

Sorozathoz sorozat rendelése

sorozat rendelése

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

Top-down

Bottom-up

```
MINDEN i = 1, k végezd el:
   Felbont(számok[i], m, felbontás)
   Kiír(számok[i], m, felbontás)
   VÉGE(Minden)
VÉGE(Algoritmus)
```

ALGORITMUS Megold(k, számok)

Példa: Törzstényezőkre bontás


```
Algoritmika
```

Dr. Pătcaș Csaba

Drogramazá

Sorozathoz érték rendelése

Sorozathoz sorozat rendelése

rendelése Több sorozathoz eg

sorozat rendelése Egy sorozathoz több

Egy sorozathoz több sorozat rendelése

Fejlesztési módozatok

Top-down

Bottom-up

Végül meghívjuk a megírt alprogramokat.

```
ALGORITMUS Törzstényezők()
Beolvas(k, számok)
Megold(k, számok)
VÉGE(Algoritmus)
```

Látjuk, hogy lentről felfele építettük a megoldást.