Lab Nr. 4, Probability and Statistics

Random number generators; RND; Computer simulations of discrete random variables Numerical characteristics of random variables

- 1. Function rnd in Statistics Toolbox; special functions rand and randn.
- **2.** Using a $\mathcal{U}(0,1)$ (standard Uniform) random number generator, generate the common discrete probability distributions:
- a. Bernoulli Distribution Bern(p), with parameter $p \in (0,1)$: $X \begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}$;
- **b. Binomial Distribution** Bino(p), with parameters $n \in \mathbb{N}, p \in (0,1)$: $X \begin{pmatrix} k \\ C_n^k p^k q^{n-k} \end{pmatrix}_{k=\overline{0,n}}$; **Hint:** A Binomial Bino(n,p) variable is the sum of n independent Bern(p) variables;
- c. Geometric Distribution Geo(p), with parameter $p \in (0,1)$: $X \binom{k}{pq^k}_{k \in \mathbb{N}}$; Hint: A Geometric Geo(p) variable represents the number of failures (i.e. the number of Bernoulli trials that ended up being failures) needed to get the first success;
- **d. Pascal Distribution** NB(n,p) with parameters $n \in \mathbb{N}, p \in (0,1)$: $X \begin{pmatrix} k \\ C_{n+k-1}^k p^n q^k \end{pmatrix}_{k \in \mathbb{N}}$; **Hint:** A Pascal NB(n,p) variable is the sum of n independent Geo(p) variables;
- 3. Numerical characteristics of random Variables: in *Statistics Toolbox* stat

 The means and variances of the following distributions (fill in the table):

Distribution	Notation	
Discrete Uniform	U(m)	[M,V] = unidstat(N)
Binomial	B(n,p)	[M,V] = binostat(N,P)
Hypergeometric	$H(N, n_1, n)$	[MN,V] = hygestat(M,K,N)
Poisson	$P(\lambda)$	M = poisstat(lambda) [M,V] = poisstat(lambda)
Pascal	NB(n,p)	[M,V] = nbinstat(R,P)
(Neg. Bin.)		
Geometric	G(p)	[M, V] = geostat(P)
Uniform	U(a,b)	[M,V] = unifstat(A,B)
Normal	$N(\mu, \sigma)$	[M,V] = normstat(mu,sigma)
Gamma	Ga(a,b)	[M,V] = gamstat(A,B)
Exponential	$Exp(\lambda)$	[M,V] = expstat(mu)
Beta	eta(a,b)	[M,V] = betastat(A,B)
Student	T(n)	[M,V] = tstat(nu)
Chi squared	$\chi^2(n)$	[M,V] = chi2stat(NU)
Fisher	F(m,n)	[M,V] = fstat(V1,V2)