# UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA



# VICERRECTORADO ACADÉMICO

FACULTAD DE INGENIERIA DE PRODUCCION Y SERVICIOS
DEPARTAMENTO ACADÉMICO DE INGENIERIA DE SISTEMAS E INFORMATICA

# SÍLABO 2024 - A ASIGNATURA: FUNDAMENTOS DE COMPUTACIÓN

# 1. INFORMACION ACADÉMICA

| Periodo Académico:       | 2024-A                     |        |  |
|--------------------------|----------------------------|--------|--|
| Escuela Profesional:     | Ciencia de la Computación  |        |  |
| Código de la Asignatura: | CS1701106                  |        |  |
| Nombre de la Asignatura: | Fundamentos de Computación |        |  |
| Duración:                | 1 Semestre                 |        |  |
| Condición:               | Obligatorio Semes          | stre I |  |
| Número de Créditos:      | 4                          |        |  |
| Número de Horas:         | Teóricas:                  | 2      |  |
|                          | Prácticas.                 | 0      |  |
|                          | Seminarios:                | 0      |  |
|                          | Laboratorio:               | 4      |  |
|                          | Teórico – Práctico:        | 0      |  |
| Prerrequisito:           | Ninguno                    |        |  |

### 2. INFORMACION ADMINISTRATIVA

| Docente                                 | Grado                                                                                                                | Dpto.                                       | Total de | Horario/Actividad                                                                             |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------|-----------------------------------------------------------------------------------------------|
|                                         | Académico                                                                                                            | Académico                                   | Horas    |                                                                                               |
| Eliana<br>María<br>Adriazola<br>Herrera | Bachiller en<br>Ingeniería de<br>Sistemas,<br>Estudios de<br>Maestría en<br>Ingeniería de<br>Software<br>culminados. | Ingeniería de<br>Sistemas e<br>Informática. | 16 horas | Teoría: a. Grupo A: Martes de 10:40 a 12:20 horas. b. Grupo B: Martes de 12:20 a 14:00 horas. |

|  |  | Laboratorio:                                                                      |
|--|--|-----------------------------------------------------------------------------------|
|  |  | a. Grupo B: Lunes de 12:20<br>a 14:00 horas, Miércoles<br>de 12:20 a 14:00 horas. |
|  |  | b. Grupo C: Lunes de 14:00<br>a 15:40 horas, Miércoles<br>de 14:00 a 15:40 horas. |
|  |  | c. Grupo D: Lunes de 15:50<br>a 17:30 horas, Martes de<br>14:00 a 15:40 horas.    |

#### 3. FUNDAMENTACIÓN

Este es el primer curso en la secuencia de los cursos introductorios a la Ciencia de La Computación. En este curso se pretende cubrir los conceptos señalados por la Computing Currícula IEEE-CS/ACM 2020. La programación es uno de los pilares de la Ciencia de La Computación; cualquier profesional del Área necesitará programar para concretizar sus modelos y propuestas. Este curso introduce a los participantes en los conceptos fundamentales de este arte. Los tópicos incluyen: Tipos de datos, estructuras de control, funciones, listas, recursividad y la mecánica de la ejecución, prueba y depuración.

#### 4. SUMILLA

- 4.1.Paradigmas de Programación
- 4.2. Evolución de Lenguajes de Programación
- 4.3. Estructuras de Control Condicionales
- 4.4.Estructuras de Control Iterativas
- 4.5. Funciones y Recursividad
- 4.6. Archivos
- 4.7. Clases y Objetos

#### 5. COMPETENCIAS DE LA ASIGNATURA

- a. Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina.
- b. Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución.
- c. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática.
- d. Capacidad para tener una perspectiva crítica y creativa para identificar y resolver problemas utilizando el pensamiento computacional.

#### 6. CONTENIDOS DE LA ASIGNATURA

#### PRIMERA UNIDAD: HISTORIA Y FUNDAMENTOS DE PROGRAMACIÓN

#### CAPÍTULO I: INTRODUCCIÓN A LA PROGRAMACIÓN

- 1. Clase Inaugural: Lineamientos del Curso.
- 2. Tema 1: Paradigmas de Programación
- 3. Tema 2: Evolución de los Lenguajes de Programación
- 4. Tema 3: Operaciones Básicas del Computador.
- 5. Tema 4: Sistemas de Tipos Básicos.
- 6. Tema 5: Análisis de Resolución de Problemas
- 7. Tema 6: Algoritmos

#### CAPÍTULO II: FUNDAMENTOS DE PROGRAMACIÓN

- 1. Tema 7: Sintaxis y Semántica de un Lenguaje de Alto Nivel.
- 2. Tema 8: Estructuras de Control Condicionales.
- 3. Tema 9: Estructuras de Control Iterativas.

#### SEGUNDA UNIDAD: DESCOMPOSICIÓN FUNCIONAL Y ESTRUCTURAS DE DATOS

#### CAPÍTULO III: FUNCIONES Y PROCEDIMIENTOS

- 1. Tema 10: Definición de Funciones.
- 2. Tema 11: Definición de Procedimientos.
- 3. Tema 12: Paso de parámetros a Funciones.
- 4. Tema 13: Técnica de Recursividad.

#### CAPÍTULO IV: ESTRUCTURAS DE DATOS

- 1. Tema 14: Listas, Pilas y Colas.
- 2. Tema 15: Búsqueda Secuencial y Binaria.
- 3. Tema 16: Métodos de Ordenación y Búsqueda.
- 4. Tema 17: Análisis del tiempo de los Algoritmos de Ordenamiento.
- 5. Tema 18: Comparación de la eficiencia de los Algoritmos.

# TERCERA UNIDAD: INTRODUCCIÓN A LA PROGRAMACIÓN ORIENTADA A OBJETOS

#### CAPÍTULO V: PROCESAMIENTO DE CADENAS Y ARCHIVOS

- 1. Tema 19: Funciones para el procesamiento de Strings.
- 2. Tema 20: Métodos de Lectura de Archivos.
- 3. Tema 21: Métodos de Escritura de Archivos.

#### CAPÍTULO VI: INTRODUCCIÓN A LA PROGRAMACIÓN ORIENTADA A OBJETOS

- 1. Tema 22: Principios de la POO.
- 2. Tema 23: Clases y Objetos.
- 3. Tema 24: Tipos de Datos Abstractos.
- 4. Tema 25: Revisión de Librerías gráficas, de audio, sonido e imágenes.

#### 7. ESTRATEGIAS DE ENSEÑANZA

#### 7.1. Métodos:

Método expositivo en clases teóricas.

Método de elaboración individual en la resolución de problemas.

Método de elaboración conjunta en la resolución de problemas y elaboración del proyecto de investigación.

#### **7.2. Medios:**

Pizarra acrílica, plumones, cañón multimedia, material de laboratorio, guías prácticas. Plataforma de enseñanza virtual: Moodle, Google Classroom. Sesiones síncronas: Google Meet.

#### 7.3. Forma de Organización:

- Clases teóricas: Desarrollo de conceptos teóricos, ejemplos de resolución de problemas.
- Laboratorio: Aplicación de los conceptos vistos en clases teóricas, resolución de problemas y programación.

# 7.4. Programación de actividades que integren investigación formativa y responsabilidad social:

- Investigación Formativa: Implementación del Proyecto Final del Curso.
- Responsabilidad Social: "Difusión del Pensamiento Computacional en la Región Arequipa". Desarrollo de documentos que sirvan como guía en el proceso de programar que tengan libre disponibilidad de consulta en la web.

## 8. CRONOGRAMA ACADÉMICO

| SEMANA | TEMA / EVALUACIÓN               | % AVANCE | % ACUMULADO |
|--------|---------------------------------|----------|-------------|
| 1      | - Clase Inaugural               | 7 %      | 7 %         |
|        | - Tema 1                        |          |             |
|        | - Tema 2                        |          |             |
|        | - Tema 3 / Práctica Calificada  |          |             |
|        | - Tema 4 / Práctica Calificada  |          |             |
| 2      | - Tema 5 / Práctica Calificada  | 8 %      | 15 %        |
|        | - Tema 6 / Práctica Calificada  |          |             |
|        | - Tema 7 / Práctica Calificada  |          |             |
| 3      | - Tema 8 / Práctica Calificada  | 5 %      | 20 %        |
|        | - Tema 9 / Práctica Calificada  |          |             |
| 4      | - Tema 9 / Práctica Calificada  | 5 %      | 25 %        |
| 5      | - Tema 10 / Práctica Calificada | 5 %      | 30 %        |
| 6      | - Tema 10 / Práctica Calificada | 5 %      | 35 %        |
| 7      | PRIMER EXAMEN                   |          |             |
| 8      | - Tema 11 / Práctica Calificada | 8 %      | 43 %        |

|    | <del>-</del>                    |      |       |
|----|---------------------------------|------|-------|
|    | - Tema 12 / Práctica Calificada |      |       |
| 9  | - Tema 13 / Práctica Calificada | 8 %  | 51 %  |
|    | - Tema 14 / Práctica Calificada |      |       |
|    | - Tema 15 / Práctica Calificada |      |       |
| 10 | - Tema 16 / Práctica Calificada | 9 %  | 60 %  |
|    | - Tema 17 / Práctica Calificada |      |       |
| 11 | SEGUNDO EXAMEN                  |      |       |
| 12 | - Tema 18 / Práctica Calificada | 10 % | 70 %  |
|    | - Tema 19 / Práctica Calificada |      |       |
| 13 | - Tema 20 / Práctica Calificada | 10 % | 80 %  |
|    | - Tema 21 / Práctica Calificada |      |       |
| 14 | - Tema 22 / Práctica Calificada | 10 % | 90 %  |
|    | - Tema 23 / Práctica Calificada |      |       |
| 15 | - Tema 24 / Práctica Calificada | 10 % | 100 % |
|    | - Tema 25 / Práctica Calificada |      |       |
| 16 | EXAMEN SUSTITUTORIO             |      |       |
| 17 | TERCER EXAMEN                   |      |       |

# 9. ESTRATEGIAS DE EVALUACIÓN

### Evaluación del Aprendizaje

**9.1. Evaluación Continua:** Trabajos para la casa, prácticas individuales en clase, prácticas grupales en clase, desarrollo de prácticas en laboratorio, proyecto final, considerado en las tres evaluaciones continuas (EC1, EC2 y EC3).

#### 9.2. Evaluación Periódica:

Primer Examen (EX1) Segundo Examen (EX2) Tercer Examen (EX3)

**9.3. Examen Subsanación o Recuperación (Sustitutorio):** Reemplaza la menor nota obtenida en los dos primeros exámenes.

## Cronograma de Evaluación:

| Evaluación                    | Fecha de   | Examen de | Evaluación | Total (%) |
|-------------------------------|------------|-----------|------------|-----------|
|                               | Evaluación | Teoría    | Continua   |           |
| Primera Evaluación<br>Parcial | 07-05-2024 | 15%       | 15%        | 30%       |
| Segunda Evaluación<br>Parcial | 18/06/2024 | 15%       | 15%        | 30%       |
| Tercera Evaluación<br>Parcial | 23/07/2024 | 20%       | 20%        | 40%       |
|                               |            |           | TOTAL      | 100%      |

# 10. REQUISITOS DE APROBACIÓN DE LA ASIGNATURA

Para aprobar el curso, el alumno debe obtener una nota superior o igual a 10.5 en el promedio final. A continuación, se muestra la fórmula de Promedio Final (PF):

PF = EC1\*0.15 + EX1\*0.15 + EC2\*0.15 + EX2\*0.15 + EC3\*0.20 + EX3\*0.20

#### 11. BIBLIOGRAFÍA

#### 11.1. Bibliografía básica obligatoria:

- [1] Learning Python, Mark Lutz, O'Reilly Media Inc., 2013.
- [2] Computer Science: An Overview, Brooksher, J. G., Addison-Wesley, 2019.

#### 11.2. Bibliografía de consulta:

- [3] Introduction to Computation and Programming using Python, *Guttag, J. V.*, MIT Press, 2013.
- [4] Python Programming: An Introduction to Computer Science, *John Zelle, Franklin, Beedle & Associates*, 2013.
- [5] Introducción a la Computación y Programación con Python, *Mark J. Guzdial, Editorial Pearson*, 2015.

| FIRMA DEL DOCENTE |                             |
|-------------------|-----------------------------|
|                   | ELIANA M. ADRIAZOLA HERRERA |

FECHA: AREQUIPA, 08 DE ABRIL DEL 2024.