פתרון ממ"ן 11

שאלה 1

אלגוריתם הבודק אם מחרוזת קלט היא פלינדרום:

בדוק-פלינדרום

- count $\leftarrow 0$ (1)
- : כל עוד לא הגעת לסוף המחרוזת בצע (2)
- x קרא את התו הבא במחרוזת למשתנה (2.1)
 - Push(S, x) (2.2)
 - $count \leftarrow count + 1$ (2.3)
- בצע count/2 עד 1 המקבל את הערכים ו עבור i עבור (3)
 - Push(S1, Pop(S)) (3.1)
 - $x \leftarrow Pop(S)$ אז ,count mod 2 = 1 אם (4)
 - pal \leftarrow True (5)
 - בצע pal = True אינה ריקה S אינה S כל עוד
- $pal \leftarrow False$ אם $Pop(S) \neq Pop(S1)$ אם (6.1)
 - .pal חזר את (7)

שאלה 2

אלגוריתם רקורסיבי המקבל שני עצים בינריים ובודק אם הם איזומורפיים:

ISOMORPHIC (T₁, T₂)

- $T_{1}=N$ ו אם וגם $T_{1}=N$ ו וגם וגם (1)
- ."לאיי. החזר אז $T_2=Nil$ או $T_1=Nil$ אחרת אם (2)
- .ISMORPHIC (left(T_1), left(T_2)) וגם ISMORPHIC (right(T_1), right(T_2)) אחרת החזר (3)

שאלה 4

- א. אלגוריתם לפתרון בעיית תרמיל הגב בשלמים כאשר כל הפריטים הם בעלי אותו משקל: א אלגוריתם לפתרון בעיית תרמיל הגב בשלמים נסמן ב-W את המשקל של כל אחד מהפריטים ונסמן ב-W את המשקל של כל אחד מהפריטים ונסמן ב- $i \leq i \leq n$). להכניס לתרמיל. מחיר הפריט ה-i הוא i
 - , בסדר יורד v_i מיין את הפריטים במיון-מיזוג לפי המחירים (1)

$$k \leftarrow \left| \frac{W}{w} \right|$$
 (2)

- . $\sum_{i=1}^k v_i^{}$ את והחזר הממוינת ברשימה ברשינים הראשונים את בחר (3)
 - ב. אלגוריתם לפתרון הבעיה כאשר כל פריט יכול להיות במשקל a או
 - ; את כל הפריטים לשני מערכים B ו-B לפי משקלי הפריטים (1)
- ; מיין כל אחד מהמערכים במיון-מיזוג לפי מחירי הפריטים בסדר יורד
 - $max_value \leftarrow 0$ (3)

$$=$$
בצע: $\left\lfloor \frac{W}{a} \right\rfloor$ עבור ו את הערכים 1 עד ו בצע (4)

;A את שווי א a_val - הצב ב- את הראשונים את a_val את אווי

$$,B$$
 את שווי את הפריטים הראשונים במערך $\left| \dfrac{(W-k\cdot a)}{b} \right|$ את שווי b_val הצב ב- (4.2)

; $max_value \leftarrow a_val + b_val + b_val + b_val > max_value$ (4.3)

.max_value החזר את (5)