Volume by Slicing page 264 1. $A = TR^2 = D = X$ N = X $A = \left[T\left(\frac{X}{2}\right)^2\right]$ $V = \left[A(x) dx\right]$ $V = \frac{\pi}{4} \int_{0}^{x^{2}} dx = \left[\frac{\pi}{12} \times \frac{3}{9} \right]^{h} = \left[\frac{\pi}{12} \cdot \frac{3}{12} \right]^{h}$ Y= VX Base = Xo $A = \frac{bb}{2} = \frac{x_0h}{2}$ Reight = \sqrt{x} $A = \frac{\sqrt{\sqrt{x}}}{2} \qquad V = \frac{1}{2} \left[\frac{x_0 \sqrt{x_0}}{\sqrt{x_0}} dx = \frac{1}{2} \int_{-\infty}^{\infty} dx \right]$ = 12 x5/2 + C = 1 x5/2 + E = Volume Book Guseever - 1 h 5/2 - volume IF base = Xo,

2. A solid of Civillar base or Rudius R has verrical x sect. that are squares

a one square (in contr.) Has demission: 2 127 y 2

B. $A(x) = \left[2\sqrt{x^2 + y^2}\right]^2 = 4(x^2 + y^2)$

Volume By Slicing.

2 Circle =
$$x^2 + y^2 = R^2$$

Suice Square $y = x$

Diametr = $2r = 2(2y^2)^{1/2}$

Area (x) = $\left[2(2y^2)^{1/2}\right]^2$ dy

 $\frac{1}{2}$
 $\frac{1}{2}$

Problem # 7, Page 265.

7. Solid of height be is Contained between two Surfaces

$$X_1 = 2y^2$$
 $X_2 = y^4 + 1$

A. $A = \int f(x) dx$
 $A = \int f($

Method of Cylindrical Shells

1. Find volof Solid generated when the Area bounded by

y=0 is revolved ABout the X-AXP

A. SKetch 1. Parabola / Symmetric about X-Axis.

2. y= o is xaxis

B. Draw Representative Strip; vol is the sum of All such Strips

$$y = 1-x^2$$
 $V = \sum \pi y^2 \Delta x = \sum \pi (1-x^2)^2 \Delta x$

$$= \sum_{T} \left(1 - 2x^2 + x^4 \right) \Delta x$$

Volume By Slicing

Books auswer 16(luz)2-16 luz+6= 2.596 11. Solid h=3 > A= (lux)2 = lu2x y=h=lnx

 $Vol = \int A(x) dx$ 161= [ln2 x dy

 $dv = dy \qquad V = x$ $U = (\ln x)^2 \qquad du = \frac{2 \ln x}{x} dx \qquad \left[du = \frac{2 \ln x}{dy} dx \right]$

 $\times \ln^2 x - \int 2 \ln x \, dx = \times \ln^2 x - 2 \int \ln x \, dy$

d= lux du= dy

 $\times \ln^2 x - 2 \left[\times \ln x - \int \frac{x}{x} dy \right] = \left(\times \ln^2 x - 2 \left[\times \ln x - x \right] \right)$

3 lu 3 - 2 (3 lu 3 - 3) = 3 lu 3 - 6 lu 3 - 3 ENTERVOL must begin at K = 1 Since lu = 0 $\left[\times \ln^2 x - 2 \times \ln x + 2 x \right]^{\frac{1}{2}}$

4 lm24 - 8 lm4+8] - lm21 - 2 lm1+2] = 4 lm24 - 8 lm4+8-2

4 luz 4 - 8 lu 4 + 6 2 2.59689 = 2,60

$$= \left(\begin{array}{c} -\frac{3}{3} \text{ det } z \text{ lem } \left[-\frac{1}{2b^2} - \left(-\frac{1}{2 \cdot l^2} \right) \right] \\ b \to \infty \end{array} \right)$$

$$= \lim_{b \to \infty} \left[\frac{1}{2b^2} + \frac{1}{2} \right] = \frac{1}{2}$$

42 x 2 x 4 (2x+1) Ju de 1 (2×1) (x2+x)2 dy 1 (y de = 2 4/2 = $2. \int \frac{(x^{2}+1)}{(x^{2}+3x^{2})^{2}} dy = (x^{2}+1)(x^{2}+3x^{2})^{2}$ I Find the valuence generaled by resolving about the 4-avis the region bounded by year, year, and x=2.

El Colony of toctoric increases in buch a way that at society in the rate of increase perhour is social to thing the bise of the colony at that increase help in thour? Hole tig will the colony at their ? Hole to the colony to their ? Hole to the colony to the colony of thour?

3) Find the volume of the solid generated when the area bounded by y=x2-12x and y=0 is revolved about that x0-onis.

Of the stone through growity is a=-32 feeling. The stone which was the soling of the soling the deceleration acting the solution which was the balloon when the stone was dropped? It is assumed that the deceleration acting we.

: Burinosta the following:

(P) J 5441 gr

Come Duiz Ty
$$y=x^{2} \quad y=0 \quad x=2$$

$$y=x^{2} \quad x=2 \quad y=2^{2} = 4$$

$$x^{2}=y, \quad x=\sqrt{y}, \quad x=2$$

$$x=\sqrt{y}, \quad x=2$$

$$= 4\pi \int_{0}^{\infty} dy - \pi \int_{0}^{\infty} y dy = \left[4\pi y\right] - \frac{\pi}{2} \left[4\pi y\right]$$

$$= (4.4\pi) - \left[\frac{16\pi}{2}\right] = (16-8)\pi = 8\pi$$

Quiz II Pt) = 2N what is Pt) after 1 hr. P(t)= PNodt = Not 1/0 = No (a) + C Ph)=21/201) + No PE) = No t + No N= 2Ndt = ZNt+C 2Nt+N= Nt) at t=1

2. Pate of increase per with of time = PA = 2No

which
$$y = 0$$
 Rop. Tize = Na

P(t) = $\begin{cases} 2N_0At = N_0^2 + tC \end{cases}$

3. Vol. of $y = 0$ and $y = x^2 - 2x$ about $x = 0$ axis

 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x & y \\ 0 & 0 \end{cases}$
 $\begin{cases} x$

$$Q = -32 ft/sue^2$$
 $a = dv$ $V = -32 \int dt = \sqrt{-32 t} + C$

$$t=0 \quad V=15 \Rightarrow C=15$$

$$V(t) = -32t+15 \quad V(t) = \frac{ds}{dt} \quad S= \int -32t+15 \, dt$$

$$S(t) = -32t^{2} + 15t + C$$
 $t = 0$ $S = 0$ ± 0

$$S(8) = -16t^{2} + 15t = -168)^{2} + 15(8) + 0 = 0$$

 $-1024 + 120 = -904$ feet
The Balloon was 904 feet | high when the Stone was dispped.

$$\int \int \int x e^{3x} dy =$$

$$dx = e^{3x} \qquad V = \frac{1}{3}e^{3x}$$

$$U = x \qquad du = x$$

$$\frac{xe^{3x}-1}{3}e^{3x}dy = \frac{xe^{3x}-e^{3x}}{3}e^{3x}\left[x-\frac{1}{3}\right]$$

b)
$$\int \frac{2x+1}{\sqrt{x^2+x}} dx = \int (2x+1)(x^2+x)^2 dx$$

$$\int u^{-1/2} dx = \left(\frac{1}{2} + x \right) du = \left(\frac{1}{2} + x \right) dx$$

$$\mu = (x + x) \quad d\mu = (2x + 1) dx$$

V= 3x du = 3 dx dy = du 3

$$= 2u^{1/2} - \left[2(x^2+x)^{1/2} + \left(\frac{1}{2}\right)^{1/2}\right]$$

Applications of Integration - Volumes by Slicing

10.

a

$$C = 2\sqrt{2}$$

 $\int_{-\infty}^{\infty} x e^{-x^2} dx$ $e^{\nu}d\nu d\nu = -z\kappa dx$ $\frac{dx}{-z\kappa}$ $\int_{-\infty}^{\infty} \frac{dv}{dx} = -\frac{1}{2} \int_{-\infty}^{\infty} \frac{dv}{dx} = \left[-\frac{1}{2} e^{-x^2} \right]^b$ $=-\frac{1}{2}e^{-b^2}+\frac{1}{2}e^{a^2}$ a. $\lim_{Q \to -\infty} \left(-\frac{1}{2} e^{-b^2} + \frac{1}{2} e^{-a^2} \right) = -\frac{1}{2} e^{-b^2} + \emptyset$ b. lin (-½ e-b?) z Ø

Therefore: \(\int xe^{-x} dx = 0 \)

Example 3: $\int_{-\infty}^{e^{-|x|}} dx = \int_{e^{-x}}^{e^{-x}} dx + \int_{e^{-x}}^{e^{-x}} dx$ $= \lim_{\alpha \to -\infty} \int_{\alpha}^{e^{\times}} dx + \lim_{b \to \infty} \int_{0}^{b^{-\times}} e^{-\times} dx = \lim_{\alpha \to -\infty} \left[e^{\times} \right] + \lim_{\alpha \to -\infty} \left[-e^{-\times} \right]$ = [e°-0]+ [0+e°] = 2

Improper Integrals with unbounded Zutegrands

Exercise 8.5 page 270

1.
$$\int_{-\infty}^{\infty} \frac{1}{2} dx = \lim_{b \to 0} \left[\int_{-\infty}^{\infty} x^{3} dx \right] = \lim_{b \to 0} \left[\frac{1}{2x^{2}} \right]$$

=
$$\lim_{b \to 0} \left[\frac{1}{2z^{2}} - \frac{1}{2} \right] = -\frac{1}{2} - \frac{1}{2} = -\frac{1}{2} =$$

$$\lim_{b \to \infty} \left(\left[-\ln \left(e^{-b} + 1 \right) \right] + \ln \left(e^{o} + 1 \right) \right) = \left[-\ln 1 \right] + \ln \left(1 + 1 \right)$$

Converges
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

Page 274 Text

$$1 \int_{-1}^{1} x^{-1/3} dy = e > 0 \int_{-1}^{1} x^{-1/3} dy = \left[\frac{3 \times \sqrt{3}}{2}\right]_{e}^{2}$$

$$= \left[\frac{3}{2} - \frac{e^{-3/2}}{2}\right] \ge \frac{3}{2}$$

$$\lim_{\epsilon \to 0+} \left[\ln(x^{2} - 1) \ge x\right]_{e}^{2} = \left[2(1)\ln(0) - \left[\ln(-1) \cdot (0)\right]$$

$$\lim_{\epsilon \to 0+} \left[\ln(x^{2} - 1) \ge x\right]_{e}^{2} = \left[2(1)\ln(0) - \left[\ln(-1) \cdot (0)\right]$$

$$\lim_{\epsilon \to 0+} \left[\ln(x^{2} - 1) \ge x\right]_{e}^{2} = \left[2(1)\ln(0) - \left[\ln(-1) \cdot (0)\right]$$

$$\lim_{\epsilon \to 0+} \left[-\ln(x^{2} - 1) + \ln(x^{2} - 1) + \ln(x^{$$

PARTIAL FACTION 5

3.
$$\int_{0}^{1} \frac{1}{X^{2}-1} dX = \int_{0}^{1} \frac{1}{X^{2}-1} \frac{1}{X^{2$$

 $\int_{\mathbb{R}^{2}-1}^{1} dx = \int_{\mathbb{R}^{2}-1}^{1} \left[-\frac{1}{2}, \frac{1}{x+1} + \frac{1}{2} \left[\frac{1}{x-1}\right] dx$ $= -\frac{1}{2} \frac{dx}{x+1} + \frac{1}{2} \frac{dy}{x-1}$ -1/2 ln (x+1)] + 1/2 line | dx E>0 | x-1 -1/2 [lu(x+1)] + 1/2 lin [lu(x-1)] - E - /2 [lin 2 - ln] + 1 [lino - ln(-1)] -= 12 lu 2

Exercise 8.6 Improper integrals

$$P.274$$
 Unbounded integrals

 $P.274$ Unb

Approximation with Rectangles $2. \int (3x+1) dx = \lim_{n \to \infty} \frac{2}{(3x+1)} \Delta x$ Z DX (Eyk) 0x= b-a = 1-0 = ,25 2,25 (& yx) =0.25(Eyk) = 4+7+10+13 Method II TRAPEZOIDAL RULE AREA of traperoid = (base)(ave height) = base (y, + yz) = (x) 4,+ yz areaz Ax yo + y, + y + y + y + y - 1 + ym 4. $\int_{1}^{1} (ax+b) dx$ N=4 $0x=\frac{1-0}{4} = 0.25$ AREaz Ox ((a+b-1)+ 24+6 + 3a+6+4a+6) $= \propto (\frac{9}{2} + \frac{9}{2} - \frac{1}{2} + \frac{5}{4} + \frac{2}{6} + \frac{2}{4} + \frac{1}{6} + \frac{1}{2})$ $= \propto (\frac{7\alpha + \alpha}{2} + \frac{36}{2}) = \propto (\frac{15\alpha}{2} + \frac{36}{2})$ Ya+ b

1/4 2/4 3/4 4/4 P= yo_ A = 14 (2+ 16 16) 16/17=9+ 16/50=4g 16/25 1/2

method II Trapezoid :
$$\times (y_1 + y_1)$$
 $\int \omega dx_2 (y_2 + y_1 + y_2 + y_3 + y_{n_1} + y_{n_2}) dx$

5
5
 $\int e^x dx = \Delta x (y_2 + y_1 + y_2 + y_{n_1} + y_{n_2})$
 $= \Delta x (e^1 + e^1 + e^2 + e^2 + e^2)$
 $= \Delta x (e^1 + e^1 + e^2 + e^2 + e^2)$
 $= \Delta x (157.64) = 39.41$

7. $\int \frac{1}{1+x^2} dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \frac{1}{2} \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \frac{1}{2} \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \frac{1}{2} \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \frac{1}{2} \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to \infty} \int f(x_1) dx$
 $= \int f(x_1) dx = \lim_{x \to$

Method III.	Simpson's Rule - numerical intégral Page 282	uon .
	42 05 yo + 21 y, + y2 + 35 [y2 + 24 y3 + y,] ~	= <u>6-az4</u> =1 n 4
	$11. \int_{0}^{4} \sqrt{1+u^{2}} dx =$	
	$\frac{x}{0}$ $\frac{y}{\sqrt{2}}$ $\frac{y}{\sqrt{3}}$ $\frac{y}{\sqrt{3}}$ $\frac{y}{\sqrt{3}}$ $\frac{y}{\sqrt{3}}$ $\frac{y}{\sqrt{4}}$ $\frac{y}{\sqrt$	
	A2 = 1 [1 + 4(12) + V5 + 4/10 + V/17] = NOTIONS	9.3004
	Book answer = 9. 3004	

5.
$$y = \frac{1}{\cos x}$$
 $\frac{1}{\cos x} = -(-\frac{\sin x}{\cos x})$

= $\frac{\sin x}{\cos^2 x}$

(6. $y = \frac{\sin x}{\cos^2 x}$

(6. $y = \frac{\sin x}{\cos^2 x}$

(6. $y = \frac{\sin x}{\cos^2 x}$

(7. $y = \frac{\sin x}{\cos x}$

(8) $\frac{1}{\cos^2 x}$

(9) $\frac{1}{\cos^2 x}$

(1) $\frac{1}{\cos^2 x}$

(2) $\frac{1}{\cos^2 x}$

(3) $\frac{1}{\cos^2 x}$

(4) $\frac{1}{\cos^2 x}$

(5) $\frac{1}{\cos^2 x}$

(6) $\frac{1}{\cos^2 x}$

(7) $\frac{1}{\cos^2 x}$

(8) $\frac{1}{\cos^2 x}$

(8) $\frac{1}{\cos^2 x}$

(9) $\frac{1}{\cos^2 x}$

(10) $\frac{1}{\cos^2 x}$

(11) $\frac{1}{\cos^2 x}$

(12) $\frac{1}{\cos^2 x}$

(13) $\frac{1}{\cos^2 x}$

(14) $\frac{1}{\cos^2 x}$

(15) $\frac{1}{\cos^2 x}$

(15) $\frac{1}{\cos^2 x}$

(16) $\frac{1}{\cos^2 x}$

(17) $\frac{1}{\cos^2 x}$

(18) $\frac{1}{\cos^2 x}$

(18) $\frac{1}{\cos^2 x}$

(18) $\frac{1}{\cos^2 x}$

(19) $\frac{1}{\cos^2 x}$

9. y= sin x dy z cos x 4 . 4x3 10. y = Cor 5x y = -5 din 5x 13. y = x sin f y = x d sin 1 + sin f dx × Cos & dy x + sin & x' $\times \cos \frac{1}{x} \left(-\frac{1}{x^2}\right) + \sin \frac{1}{x} = -\frac{x}{x^2} \cos \frac{1}{x} + \sin \frac{1}{x}$ = - 1/2 Cos 1/2 + sun 1/2 13. y= (Dinx) y & u) = Vu du + u - 1 dv dx luu dx X sinx Cosx + (Sinx)
ln(sinx) x sin x + (Qui x) cosx en(sin x)

Ŷ

b. d Deex = seex tan & . y= see <= 1 y'= = 1 @ oos+

cosx y = -1 @ oos+ = + sinx = + tanx - = Secx tanx Co2x Cox c. d Csex = y = csex = 1 ay Sinx y'=-1 d sinx = - Cosx = - Cotx -- Cocx Cotx

Sin2x du Sinx = Sin2x 9. y= lu (tan x) y'= 1 d tanx = cotx sec2x 10 y= cos x tanx y'= cos x d tanx + tanx d Cosx y= cosx sinx - sinx y'= cosx

	P. 306	
	1. Show that taux is periodic with period II	
	There fore tan (TT+x) = tanx	
	then Sin (TT +x) = Sin x Cos (TT +x) Cos x	
	Sin TT COS X + Sin X COS TT = tem X COS TT COS X = Sin TT COS TT = tem X	
	0 + Ain x (1) tan x Ain x = tank = Ani Cosx = (0) Cosx Cosx	<u> </u>
	(o) x-(o) (osx (o	
	2. Frind the Derwiteie of trux	
y=	tanx = sinx y' = cosx d sinx - sinx U c cosx dy dy cosx ²	>> ×
	Co ₅ K ²	
	$= \frac{(\cos x)(\cos x) - (\sin x)(-\sin x)}{(\cos^2 x)} = \frac{(\cos^2 x + \sin^2 x)}{(\cos^2 x)} = \frac{(\cos^2 x + \sin^2 x)}{(\cos^2 x)}$	Cos3x
	= See ² ×	
	Therefore d tank = Sec2x	
	du	

2. Find d (cotx) y = Cotx = Cozx y'= sinx d Cosx - loox d sinx
sinx de Sin'x = Sin x (- Sinx) = Cos x cosx z - Sin² X - Cos² X Sin² X $= -1 - Csc^2 \times Sin^2 \times$ d Cotx = - Csc2x B. $\frac{d}{dy}$ (Deex) $y = \frac{1}{Cv = x}$ $\frac{1}{Cv = x}$ $y' = \frac{-1}{\cos^2 x} \cdot \frac{d \cos x}{dy} = \frac{-1}{\cos^2 x} - \sin x = \frac{\sin x}{\cos^2 x}$ = Ainx = tanx = tanx Secx
Cosx Cosx d seex = taux Secx 4. d crex y= crex = 1

ay sinx y'= -1 d sinx = -1 cosx = - cosx sinx dy sinx = Cotx = Cotx Cse x d cae x = cot x csex

$$\frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} dx^{2} dx = -\cos^{2}(x^{2} - 1)^{1/2} dx = -\cos$$

P. 306

P.306

Is:
$$x = \text{Cot}(x+y)$$
 $|x-y| = -\text{Coe}^2(x+y) \cdot d(x+y)|^2 = -\text{Coe}^2(x+y)(1+dy)$
 $|x-y| = -\text{Coe}^2(x+y) + dy(-\text{Coe}^2(x+y))$
 $|x-y| = -\text{Coe}^2(x+y) = -\text{Coe}^2(x+y)$
 $|x-y| = -\text{Coe}^2(x+y) = -\text{Coe}^2(x+y) + 1$
 $|x-y| = -\text{Coe}^$

Example 3! Find de if y + cot xy = 1 dy + (- ssc2xy) d(xy) = 0 dy = Csc2xy (dy + y) = dy Crc2xy +y Cse2xy = 2 Cse xy (- csc xy) (dy + y) = 2y Chexy (- cscxy) + a 2 chexy (- csexy) | -2y Csc2xy + dy (-2 csc2xy) = -2ycsc2xy + [-4cscxy, d cscxy] = -2ycsczy - 4csczy(-cotxy csczy) dy

TRigoro nebrie defferentiation P. 306 1/7, tan x + tan y = 1 $sec^2 x + sec_3 dy = 0$ dy = - sec2 x 6. y = seey dy = Secy tany dy

37, Find y8 when y = Coax y'=(-sin x) 13 = (Sinox) 14 = (Coxx 15= (-sin x) 38 y? when y= sin z x 4 =2 Co= 2x y"= 2/- Sin 2x/2 y"= 4[-cos2x]2 y= 8[sin 2x]2 y= 16[cos2x]2 (6)= 32[-sin2x]2 = -64 sin2x 39. y + y when y = Sin x y'= Cos x y2 - Dinx y 2 + y = - sin x + Sin x = 6 40. y + y when y = x Dinx y' X ddinx + Din x dx) = & Cos x + Sin x y = - x Dinx + Cesx + Cosx = Z Cosx - x Diny y +y = 2 cos x - x fin x + x fin x = 2 cos x

$$\frac{3}{\sqrt{1 + 2}} \frac{dx}{dx} = \frac{3}{\sqrt{1 + 2}} \frac{(x-2)^{3/2}}{dx}$$

$$\frac{2}{\sqrt{1 + 2}} \frac{dx}{\sqrt{1 + 2}} = \frac{3}{2 + 6} \frac{(x-2)^{3/2}}{2 + 6} = \frac{3}$$

QuizI 6. $y = \sin(x^2 - 2x)$, $y' = \cos(x^2 - 2x) \frac{d}{dx} (x^2 - 2x) = \cos(x^2 - 2x) (2x - x)$ $7, y = \cos x^3$ $y' = -\sin x^3 \cdot 3x^2$ 8. y = tan 6x 6 sec 6x 9. y = 2ee8x $y' = 8 see 8x \cdot tan 8x$ 10. $y = see^2x$ $y' = 2 seex \cdot seex tan x = 2 sec^2 tan x$ 11. y = ln seex y' = 1, seex tan x = 2 tan x- Cosx Decx toux

12, y = lu seix y'= 1 cosx

> 13, lin 1-Co2x = sin2x x=0 x

$$\frac{\sin^{2} \times 2}{x} = \frac{\sin^{3} x}{x} = \frac{\sin^{3} x}{x} = \frac{1}{x} = \frac{2 \sin x \cos x}{\sin x} = \lim_{x \to 0} \frac{2 \cos x}{x}$$

$$\frac{14 \text{ lim } \sin 2x}{x \to 0} = \lim_{x \to \infty} \frac{2 \cos x}{\sin x} = \lim_{x \to 0} \frac{2 \cos x}{x}$$

$$\frac{15. \text{ That Pezoidal Rule } \exp\left(\frac{1}{2} + \frac{1}{2} + \frac{1$$

QuizTV Alla of 34uau = 25 $6 = 2y = 2\sqrt{3} \times 2$ 14) = Area = 4 /3x Vol= Jandy) = 134 / 1x dx = 2/3 / x/ax $2\sqrt{3}\left[\frac{2\times^{3/2}}{3}\right]^{6} = 4\sqrt{3}\left(6\sqrt{6}\right)$ $= 8\sqrt{3}\sqrt{6} = 8.3\sqrt{2} = 24\sqrt{2}$

Integrate Jain 2 de use trig tedentilies Coo 2A = Cos 2A - Din 2A 41-20m2A Co2A=1-20in 2A

Supplemental Problem #10, page 266.

Due 4-20-76

10

$$C = a^2 + a^2 = 2a^2$$

$$a = a \sqrt{2}$$

$$a =$$

Thurses functions. - Changing to be product to Department in Department variables.

Exercise 9.4, people 307

Find the explicit formulaes for the inverse function is

1. To Determine if inverse function
$$(f^{-1}(y))$$
 of $f(x)$

Exists

1. If $\frac{dy}{dy}$ of $f(x)$ is always increasing on Decreasing

2. $f^{-1}(y)$ of $f(x) = \times$

$$y = (1 - y) = 2 - x + 1$$

$$y = (x + 1) = x - 1 - x = y(x + 1) + 1 = yx + y + 1$$

$$y + 1 = x - yx = x(1 - y) \implies x = \frac{1 + y}{1 - y}$$

Therefore $f(y) = \frac{1 + y}{1 - y}$

$$x = y^2 \times y^2 + 1 - x - y^2 = y^2 + 1 - x(1 - y^2) = y^2 + 1$$

$$x = f^{-1}(y) = y^2 + 1$$

5.
$$x = \sqrt{y} + 1$$
 $(y > 1)$ $x(\sqrt{y} - 1) = \sqrt{y} + 1$
 $x/y - x = \sqrt{y} + 1$ $\sqrt{y} = x/y - x - 1$
 $\sqrt{y} - x/y = -x - 1$ $\sqrt{y} (1 - x)^2 - x - 1$ $\sqrt{y} = -x - 1$
 $\sqrt{y} - x/y = -x - 1$ $\sqrt{y} (1 - x)^2 - x - 1$ $\sqrt{y} = -x - 1$
 $\sqrt{y} - x/y = -x - 1$ $\sqrt{y} (1 - x)^2 - x - 1$ $\sqrt{y} = -x - 1$
 $\sqrt{y} - x/y = -x - 1$ $\sqrt{y} (1 - x)^2 - x - 1$ $\sqrt{y} = -x - 1$
 $\sqrt{y} - x/y = -x - 1$ $\sqrt{y} = -$

Memorize 1/6 11/4 11/6 13/2 吉 1/2 45 星 60 1/2

Class notes

4 X= Tan & D= tan X

theta is an argle whose fungent is X

say Samething I -00 < x < 00 -1/2 < tan x < 1/2 Evaluate _____ 0=45 tan - (-1/3) = tani! (7.7)

th.

Class notes

 $\frac{d\theta}{dx} = \frac{1}{1+x^{2}} \frac{du}{dx} \frac{(1+x^{2})^{2}}{(1+x^{2})^{2}} \frac{du}{(1+x^{2})^{2}} \frac{1}{(1+x^{2})^{2}}$ $= \frac{1}{(1+x^{2})^{2}-1^{2}} \frac{-2x}{(1+x^{2})^{2}}$ $= \frac{1}{(1+x^{2})^{2}} \frac{-2x}{(1+x^{2})^{2}}$

$$d\Theta = Coz(coz'x) d Coz'x$$

$$\int \cot x \, dx = \int \frac{\cos x \, dx}{\sin x} = \int \frac{\sin x}{\cos x} + C$$

X3 - 2" 12 [sin3x - Cos3x)dx Join 3xd Con 3x di <u>Sin</u> Cos 4 = 12.) [(sin x - coz 3x) dx $x^{3}-y^{3}=(x-y)(x^{2}+xy+y^{3})$ = J (Dinx-Coxx) (Dinx + Dinx Cox + Coox + Coox) dx Janx-Coxx) (1+ Quix Coxx) dx J (sin x + sin² x Cos x - Cos x - sin x Cos² x)dx Jan x dx + Jan x coxxdx - J Coxdx - J Bo3x Sinx dx -Co>x + 1 Sinx - Dmx + 1 Co>3x + C

- ln | co2x | + C

10. Étan et de

tan

	Page 316.
:	Page 3/6.
The state of the s	
\	1, EVALUATE
(1)	$Sim = 1 \qquad Div T/4 = \sqrt{2} \qquad Div T/4 = \sqrt{2}$
49	1. Evaluare $Sin'' \frac{1}{\sqrt{2}} = Ain' \frac{\sqrt{2}}{2}$ $Sin'' \frac{1}{\sqrt{2}} = Ain' \frac{\sqrt{2}}{2}$
	O= 45° = 1/4
	B.) Cos' 1 = 45°
	γ2
	C) Sur (1) - Sur (-1)
	7/2-7/2
	d) tou - (tan 1/4) = 1/4
	0=tail x
- manager and the second secon	X z tan 0
	tan'(x) = 0
	$\frac{1}{2}$
	2. tan-1(2) + tan-1(-2)
	answer D
	· · · · · · · · · · · · · · · · · · ·
	tan 450 = 6an T/4 = 1

Page 316	
 2. Evaluate (con't)	
b) sen- (sen 7/6) = 1/6	
 C) Sin' [Sin (217+ 17/6)] - 217+ 17/6	
	;
	1

Diverse Trigonometric functions.

$$\frac{d}{dx}(ain^{-1}u) = \frac{du}{\sqrt{1-u^{2}}} \frac{du}{dy} \qquad \frac{d(cos^{-1}u)}{\sqrt{1-u^{2}}} \frac{du}{dx} \qquad \frac{d(tai^{-1}u)}{\sqrt{1-u^{2}}} \frac{du}{dx}$$

$$\frac{d}{dx}(ain^{-1}u) = \frac{du}{\sqrt{1-u^{2}}} \frac{du}{dx} \qquad \frac{d}{dx} \frac{du}{dx} \frac{du}{$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt$$

 $\frac{d\theta}{dy} = \frac{1}{\left(1 - \left(\frac{x}{z}\right)^2\right)^{1/2}} \cdot \frac{d(x)}{dy^2} + \frac{-1}{\sqrt{1 - \frac{x^2}{4}}} \cdot \frac{dx}{dy^2}$

 $=\frac{1}{2\left(1-\frac{x^{2}}{4}\right)^{1/2}}$ $=\frac{1}{2\left(1-\frac{x^{2}}{4}\right)^{1/2}}$

$$\frac{1}{1-\frac{1}{1+2x^2+x^4}} - \frac{2x}{1+x^2} = \frac{-2x}{1-\frac{1}{1+x^2}} = \frac{-2x}{1+x^2}$$

$$= \frac{(1+x^2)^2 - 1}{(1+x^2)^2} + \frac{-2x}{(1+x^2)^2} + \frac{-2x(1+x^2)^2 + 2x}{(1+x^2)^4}$$

$$= \frac{-2x(1+2x^2+4x^4-1)}{(1+x^2)^4} = \frac{-2x(2x^2+4x^4)}{(1+x^2)^4} = \frac{-4x^3(1+2x^2)}{(1+x^2)^4}$$

INTEGRATION Of TRIGONO METRIC functions

P. 330

L. Jain Tx dx = -7 Cos TX + C.

U= TX

$$du = 7dx$$
 $dx = du = 7dx$
 $dx = du = 7dx$
 $dx = x^3 dx = dx = 3x^2 dx$
 $du = x^3 dx = x^3 dx = x^3 dx = x^3 dx$
 $du = x^3 dx = x^3 dx = x^3 dx = x^3 dx$
 $du = x^3 dx = x^3 dx = x^3 dx$
 $du = x^3 dx = x^3 dx = x^3 dx$
 $du = x^3 dx = x^3 dx = x^3 dx$
 $du = x^3 dx = x^3 dx = x^3 dx$
 $du = x^3 dx = x^3 dx = x^3 dx$
 $du = x^3 dx = x^3 dx = x^3 dx$
 $du = x^3 dx = x^3 dx = x^3 dx$
 $du = x^3 dx = x^3 dx = x^3 dx$
 $du = x^3 dx = x^3 dx = x^3 dx$
 $du = x^3 dx = x^3 dx = x^3 dx$
 $du = x^3 dx = x^3 dx = x^3 dx$
 $du = x^3 dx = x^3 dx = x^3 dx$
 $du = x^3 dx$

5.
$$\int (\sin x + \cos x)^2 dx$$

- $\cos \int (\sin^2 x + \cos^2 x) dx$

- $\cos 2A = \cos^2 \theta - \sin^2 \theta$

- $\cos 2A = \cos^2 \theta - \sin^2 \theta$

- $\cos 2A = \cos^2 \theta - \sin^2 \theta$

- $\cos 2A = \cos^2 \theta - \sin^2 \theta$

- $\cos 2A = \cos^2 \theta - \cos^2 \theta$

- $\cos^2 \theta - \cos^2 \theta - \cos^2 \theta$

- $\cos^2 \theta - (\cos^2 \theta - \cos^2 \theta)$

- $\cos^2 \theta - (\cos^2 \theta)$

P.330 Integ of Trug Funct.

5.
$$\int (2\pi X + 2\pi X)^2 dx$$

$$\int (2\pi X + 2\pi X + 2\pi X)^2 dx$$

$$\int (2\pi X + 2\pi X + 1) dx$$

$$\int (2\pi X + 1) dx = \int (2\pi X + 1) dx$$

$$= -\frac{1}{2} \cos 2x + x = -\frac{1}{2} \cos 2x + C$$
6. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

7. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

7. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

10. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

11. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

12. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

13. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

14. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

15. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

16. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

17. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

18. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

19. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

19. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

19. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

10. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

10. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

10. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

10. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

10. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

10. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

10. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

11. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

12. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

13. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

14. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

15. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

16. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

17. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

18. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

19. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

19. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

19. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

19. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

19. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

19. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

19. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

19. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

19. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

19. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

19. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

19. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

19. $\int (2\pi X + 1) dx = -\frac{1}{2} \cos 2x + C$

19. $\int (2\pi$

P.330 Integ.

Jeotx =
$$\ln \left| A \sin x \right| + C$$

9. $\int cor \sqrt{x+1} dx$
 $u = (x+1)^{N} du = lx (x+1)^{N} dx$

10. $\int e^{x} ton e^{x} dx = -\ln \left| cos e^{x} \right| + C$
 $u = e^{x} du = e^{x} dx$
 $dx = du$
 e^{x}

11. $\int A \sin^{4} x - cos^{4} x dx = -los^{2}$
 $\int 1 - 2cos^{2} + cos^{4} - cos^{4} dx$
 $\int 1 - 2cos^{2} + cos^{4} - cos^{4} dx$
 $\int 1 - 2cos^{2} + cos^{4} - cos^{4} dx$
 $\int 1 - 2cos^{2} + cos^{4} - cos^{4} dx$
 $\int 1 - 2cos^{2} + cos^{4} - cos^{4} dx$
 $\int 1 - 2cos^{2} + cos^{4} - cos^{4} dx$
 $\int (-los)^{2} = -los^{2} + cos^{4} - cos^{4} dx$
 $\int (-los)^{2} + cos^{4} - cos^{4} + cos^{4} - cos^{4}$

4 Jan x Cosxdx

2 4 Sin 3x + C

13. = ((co3x - 3pm² (vox)) dx

[Cos Cosx-B pin 2 x Cosx)

[1-sin2x) Cosx-3sin2xCox)

= (cos x - sin 2 cos x

/2, $\int (\sin^3 x - \cos^3 x) dx$ $\int \sin^3 x - \int \cos^3 x \, dx$ Din = 1- Cos? Cos3 = Cos (1-2in2) Dinx - Din Cos2 x - Cosx - sin2 Cosx Din-Cox - Sun Cox + Din 2 Cox x sin-cos + sin cos (sin-cos) Z Sin Cos - Din ZX Din Cos - Din ZX Sin - Cos (1+ sin Cos) (Sin-cos) (1- sin 2x) sinx- Cosx sinzx _ Gosxt sinx sin zx Din X - Coo X - coo x Din 2X + Din X Din 2X

P. 330 Integ.