[CSE3081(2반)] 알고리즘 설계와 분석

2020학년도 2학기

강의자료

(2020.12.03 목요일)

서강대학교 공과대학 컴퓨터공학과 임 인 성 교수

본 강의에서 제작하여 제공하는 PDF 파일, 동영상, 그리고 예제 코드 등의 강의 자료의 저작권은 특별히 명기되어 있지 않은 한 서강대학교에 있습니다.

본인의 학습 목적 외에 공개된 장소에 올리거나 타인에게 배포하는 등의 행위를 금합니다. 협조 부탁합니다.

[주제 6] Graph Algorithms

Prim's Minimum Spanning Tree Algorithm

Idea

 In each step, find and add an edge of the least possible weight that connects the (current) tree to a non-tree vertex.

Algorithm

```
Given G = (V, E),

Begin with a tree T^0 = (V^0, E^0) where V^0 = \{v_1\} and E_0 = \{\}.

repeat \{ // T^i = (V^i, E^i) \rightarrow T^{i+1} = (V^{i+1}, E^{i+1})

Select a vertex v in V - V^i that is nearest to V^i.

// Let v is from the edge (u, v), where u in V^i.

Update T in such a way that

V^{i+1} = V^i + \{v\}, and E^{i+1} = E^i + \{(u, v)\}.

until (an MST is found)
```

A key issue in implementation

- Tree vertices와 non-tree vertices들을 어떻게 관리할 것인가?
- Tree vertices와 non-tree vertices들 간의 최소 비용 edge를 어떻게 (효율적으로) 찾을 것인가?

From Prof. Kenji Ikeda's Home Page

Prim's Minimum Spanning Tree Algorithm

Idea

 In each step, find and add an edge of the least possible weight that connects the (current) tree to a non-tree vertex.

Algorithm

```
Given G = (V, E),

Begin with a tree T^0 = (V^0, E^0) where V^0 = \{v_1\} and E_0 = \{\}.

repeat \{ // T^i = (V^i, E^i) \rightarrow T^{i+1} = (V^{i+1}, E^{i+1})

Select a vertex v in V - V^i that is nearest to V^i.

// Let v is from the edge (u, v), where u in V^i.

Update T in such a way that

V^{i+1} = V^i + \{v\}, and E^{i+1} = E^i + \{(u, v)\}.

until (an MST is found)
```

A key issue in implementation

- Tree vertices와 non-tree vertices들을 어떻게 관리할 것인가?
- Tree vertices와 non-tree vertices들 간의 최소 비용 edge를 어떻게 (효율적으로) 찾을 것인가?

Inductive Description of the Prim's Algorithm

An O(n2) Implementation: Adjacency Matrix 사용

- st[i]: T로 선택된 vertex i의 parent vertex 번호 저장
- fr[i]: NT에 있는 vertex i에서 T에 있는 vertex 중 가장 가까운 vertex의 번호
- wt[i]: NT에 있는 vertex i에 대해 그 vertex 에서 fr[i]까지의 거리

n = |V|

a =	Ο,	b =	1,	c =	2,	d =	3,	e =	4,
f =	5,	g =	6,	h =	7,	i =	8,	j =	9

v	st[v]	fr[v]	wt[v]
0 (a)	0	0	maxWT
1(b)	3	3	13
2(c)	0	0	10
3 (d)	2	2	23
4 (e)	6	6	17
5(f)	-1	2	24
6 (g)	3	3	20
7(h)	-1	4	35
8(i)	-1	6	45
9(j)	-1	6	42
10			maxWT

dummy vertex

dummy weight

st[i]: T로 선택된 vertex i의
parent vertex 번호 저장
fr[i]: NT에 있는 vertex i에서 T에
있는 vertex 중 가장 가까운
vertex의 번호
wt[i]: NT에 있는 vertex i에 대해
그 vertex에서 fr[i]까지의 거리

- Check to see whether adding the new edge brought any nontree vertex closer to the tree.
- Find the next edge to add to the tree.
 - * 모든 계산이 끝난 후 wt[i]는 어떤 정보를 가지고 있을까?

다음으로 선택된 vertex 번호


```
static int fr[maxV];
#define P G->adj[v][x
void GRAPHmstV(Graph G, int st[], double wt[]) {
  int v, w, min, n = G \rightarrow V
  for (v = 0, v < n; v + 1)
     st[v] = -1; fr[v] = v; wt[v] = maxWT;
                                      * 언제 끝날까?
  wt[n] = maxWT;
  for (min = 0; min != n; )
     v = \min; st[min] = fr[min];
     for (w = 0, min = n; w < n; w++)
        if (st[w] == -1) {
                                        아직 선택되지 않은
                                        모든 vertex w에 대해.
            if (P < wt[w]) {
                                        v = min이 선택된 것에
               wt[w] = P; fr[w] = v;
                                        대한 update 수행
            if (wt[w] < wt[min]) min = w;
                                 wt[w]를 update하면서,
                                 동시에 가장 작은 wt 값을 가지는
                                 vertex 번호 min을 계산
```

An O(e log n) Implementation: Adjacency List 사용

Observations

n = | V |, e = | E |

– The inner for-loop in the $O(n^2)$ implementation visits all the vertices to update wt[] array and to find the minimum.

 $0 \leq \ell \leq \frac{n(n-r)}{2}$

- An $O(e \log n)$ time implementation is possible.
 - If the graph is dense, ... n^2/g n
 - If the graph is sparse, ... n = n

 $O(n) \leqslant \mathbb{C} \leqslant O(n^2)$ ≤ 1 ≤ 1 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 3 ≤ 4 ≤ 3 ≤ 4 ≤ 3 ≤ 4 ≤ 4

- We need to employ the **priority queue** that allows
 - to insert a new item (PQinsert(w)),
 - to delete the minimum item (w = **PQdelmin()**), and
 - to change the priority of an arbitrary specified item (**PQdec(w)**).

typedef struct node *link;
struct node { int v; double wt, link next; };
struct graph { int V; int E; link *adj; };
typedef struct graph *Graph;

st[i]: T로 선택된 vertex i의
parent vertex 번호 저장
fr[i]: NT에 있는 vertex i에서 T에
있는 vertex 중 가장 가까운
vertex의 번호
wt[i]: NT에 있는 vertex i에 대해
그 vertex에서 fr[i]까지의 거리

- **2** (fr[w] != -1 && st[w] == -1)
- **3** (fr[w] != -1 && st[w] != -1)


```
#define GRAPHpfs GRAPHmst
static int fr[maxV];
static double *priority;
// Put the priority queue codes here.
#define P t->wt
void GRAPHpfs(Graph G, int st[], double wt[]) {
   link t; int v, w;
                             N=]V|_{,e}=|_{E_{I}}
   POinit();
   priority = wt;
   for (v = 0; v < G->V; v++) {
      st[v] = -1; fr[v] = -1;
   fr[0] = 0; PQinsert(0);
while (|POempty())
   while (!PQempty()) {
      v = PQdelmin(); st[v] = fr[v];
      for (t = G \rightarrow adj[v]; t != NULL; t = t \rightarrow next)
         if (fr[w = t->v] == -1) {
           wt[w] = P; PQinsert(w); fr[w] = v;
         else if ((st[w] == -1) && (P < wt[w])) {
 (\varrho) \partial (v) \otimes (v) = P; PQde\varrho(w); fr[w] = v;
                              Ollogn) each
```

link