Project concept

Energy prediction model using ML with specification: 4 methods

- 1) Direct: $E E_0 = \Delta_{ML}$
- 2) Harmonic: $E E_0 = E_{har} + \Delta_{ML}$
- 3) Normal: $E E_0 = \sum_i E_i^{nor}(\chi_i) + \Delta_{ML}$ $\Delta_{ML} = Training energy data$
- 4) Internal: $E E_0 = \sum_i E_i^{int}(\chi_i) + \Delta_{ML}$

 $E - E_0$ = Molecular internal energy (from first – principle calculation, CCSD(T))

```
attice="15 0 0 0 0 0 0 15 0 0 0 0 0 0 15 0" Properties=species:S:1:pos:R:3:forces:R:3 energy=0.0122504762 pbc="T T T"
                                                           -0.26348127
                                                                                              0.00000000
         0.00000000
                          0.00000000
                                           0.00000000
                                                                            -0.21701854
         0.95454173
                          0.00000000
                                           0.00000000
                                                            0.32589082
                                                                                              0.00000000
        -0.19271003
                          0.95610648
                                           0.00000000
                                                           -0.06240955
                                                                            -0.76531081
                                                                                              0.00000000
                                              15.0" Properties=species:S:1:pos:R:3 energy=-0.0008384372 pbc="T T
Lattice="15.0 0.0 0.0 0.0
         0.00000000
                            0.00000000
                                               0.00000000
                                              0.00000000
         0.95454173
                            0.00000000
         -0.19271003
                            0.95610648
                                              0.00000000
```

Method 1: Direct

$$E - E_0 = \Delta_{ML}$$

 Δ_{ML} is just CCSD(T) data. Using GAP without specification. Since we take energy data as it is, ML result form this method becomes the **reference**.

(Benchmark)Direct: $E - E_0 = \Delta_{ML}$

Method 2: Harmonic

$$\widehat{H}_{el}\psi_{el} = U * \psi_{el} ; U(\{\mathbf{r}_{\alpha}\})$$

Taylor series expansion

$$\emptyset(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

0

$$u = u(d_0) + \frac{\partial u(d_0)}{d}(d - d_0) + \frac{1}{2!} \frac{\partial^2 u}{\partial d^2}(d - d_0)^2 + \cdots$$

$$u = u(\mathbf{d}_0) + \frac{1}{2!} \frac{\partial^2 u}{\partial d^2} (d - \mathbf{d}_0)^2 + \Delta^{ML}$$

Hessian Matrix = force constant

Hessian: an n x n square matrix composed of the secondorder partial derivatives of a function of n variables

Method 2: Harmonic

$$E - E_0 = E_{har} + \Delta_{ML}$$

 Δ_{ML} is the difference between CCSD(T) data and Harmonic Energy.

 Δ_{ML} = Single-mode anharmonicity + Anharmonic coupling

Harmonic: $E - E_0 = E_{har} + \Delta_{ML}$

(Benchmark)Direct: $E - E_0 = \Delta_{ML}$

Method 3: Normal

$$\langle Qi|Qj \rangle = \delta_{ij}$$

Displacement vectors are orthonormalized

$$E - E_0 = \sum_{i} E_i^{nor}(\chi_i) + \Delta_{ML}$$

 Δ_{ML} is the difference between CCSD(T) data and sum of Interpolated Energy from each **normal** mode . Δ_{ML} = Anharmonic coupling

For water, $E-E_0=E_1^{nor}+E_2^{nor}+E_3^{nor}+\Delta_{ML}$

3 Vibrational modes Normal modes

symmetric stretching

~3650 cm⁻¹

asymmetric stretching

~3750 cm⁻¹

bending

~1600 cm⁻¹

e.g.,
$$\langle R - R_0 | Q_1 \rangle$$

$$= \langle c_1 Q_1 + c_2 Q_2 + c_3 Q_3 | Q_1 \rangle$$

$$= c_1 \langle Q_1 | Q_1 \rangle$$

$$+ c_2 \langle Q_2 | Q_1 \rangle$$

$$+ c_3 \langle Q_3 | Q_1 \rangle$$

$$= c_1 * 1 + c_2 * 0 + c_3 * 0$$

$$= c_1$$

$$\langle R - R_0 | Q_1 \rangle = c_1$$

$$\langle R - R_0 | Q_2 \rangle = c_2$$

$$\langle R - R_0 | Q_3 \rangle = c_3$$

10

Method 3: Normal

$$E - E_0 = \sum_{i} E_i^{nor}(\chi_i) + \Delta_{ML}$$

 Δ_{ML} is the difference between CCSD(T) data and sum of Interpolated Energy from each **normal** mode . Δ_{ML} = Anharmonic coupling

For H
$$_2$$
O, $E-E_0=E_1^{bend.}+E_2^{sym.stretch.}+E_3^{asym.stretch.}+arDelta_{ML}$

Energy from

single-mode distorted coordinates (e. g. , $R = R_0 + c_1Q_1$) for interpolation $c: -0.5 \ to \ 0.8 (increment: 0.1)$

CubicSpline interpolation

Step

- 1. Getting CCSD(T) energy for interpolation
- 2. Interpolation for each-normal mode
- 3. Getting $E_1^{nor}+E_2^{nor}+E_3^{nor}$ using c_1 , c_2 , c_3
- 4. Calculate Δ_{ML}

11

Normal: $E - E_0 = \sum_i E_i^{nor}(\chi_i) + \Delta_{ML}$ Harmonic: $E - E_0 = E_{har} + \Delta_{ML}$

(Benchmark)Direct: $E - E_0 = \Delta_{ML}$

Method 4: Internal

$$E - E_0 = \sum_{i} E_i^{int}(\chi_i) + \Delta_{ML}$$

 Δ_{ML} is the difference between CCSD(T) data and sum of Interpolated Energy from each **internal** mode . Δ_{ML} = Harmonic coupling + Anharmonic coupling

For H
$$_2$$
O, $E-E_0=E_1^{dis_1}+E_2^{dis_2}+E_3^{ang}+\emph{\Delta}_{ML}$

Energy from

single-internal mode distorted coordinates (distance, angle) for interpolation

CubicSpline interpolation

Step

- 1. Getting CCSD(T) energy for interpolation
- 2. Interpolation for each-internal mode
- 3. Getting $E_1^{dis_1} + E_2^{dis_2} + E_3^{ang}$ using d_1 , d_2 , θ
- 4. Calculate Δ_{ML}

13

ML result(original data)

Original data sets: Train(4170 structures) / Valid(521 structures) / Test(521 structures) Hyperparameter Bayesian optimization was proceeded for each method to be fair

