Fine-tuning with implicit loss

Lukasz Adamowicz

August 28, 2025

Outline

- Problem Statement
- 2 Jacobian Approach
- 3 Equilibrium Propagation
- 4 Stability Issues and Fixed Point Correction
- Conclusions

General Optimization Problem

- Energy model: $E(\theta, M, p)$.
- Ground state density coefficients p_{θ} are fixed points:

$$p_{\theta,i} = \arg\min_{p:\langle w,p\rangle=N} E(\theta,M,p).$$

- Loss: $L(\theta) = \sum_{i=1}^{n} L_i(p_{\theta,i}) = \sum_{i=1}^{n} \frac{1}{2} ||p_{\theta,i} p_{gs,i}||^2$.
- Bilevel optimization problem across multiple molecules.
- Challenge: compute gradient of $L(\theta)$ with respect to model parameters.

Single Molecule Optimization Problem

- For a single molecule M:
- Fixed point equation: $p_{\theta} = \arg\min_{p:\langle w,p\rangle=N} E(\theta,p)$.
- Loss: $L(\theta) = L(p_{\theta}) = \frac{1}{2} ||p_{\theta} p_{gs}||^2$.
- Goal: Find $\theta^* = \arg \min_{\theta} L(\theta)$.
- Need to compute $\frac{dL}{d\theta}$ without direct differentiation through the fixed point finding process.

Jacobian Approach

- Based on implicit function theorem.
- Gradient formula:

$$\frac{\partial L(p_{\theta})}{\partial \theta} = -(p_{\theta} - p_{gs}) \cdot \left(\frac{\partial}{\partial p} \mathcal{P} \nabla_{p} E(\theta, p)\right)^{-1} \cdot \frac{\partial}{\partial \theta} \left(\mathcal{P} \nabla_{p} E(\theta, p)\right)$$

- \mathcal{P} is the projection operator onto subspace $\langle w, p \rangle = N$.
- we solve for $y = -(p_{\theta} p_{gs}) \cdot \left(\frac{\partial}{\partial p} \mathcal{P} \nabla_p E(\theta, p)\right)^{-1}$
- Memory and stability issues.

Jacobian Results

- Training loss sometimes decreases, but diverges later.
- Conjugate gradient method failed.
- Did not improve density difference.
- Jacobian has big spread of eigenvalues values

Equilibrium Propagation

- Alternative gradient estimation method.
- Define total energy: $T(\theta, p, \beta) = E(\theta, p) + \beta L(p)$.
- Define p_{θ}^{β} as the fixed point:

$$p_{\theta}^{\beta} = \arg\min_{p:\langle w,p\rangle = N} T(\theta,p,\beta) = \arg\min_{p:\langle w,p\rangle = N} [E(\theta,p) + \beta L(p)]$$

• Gradient formula:

$$\frac{d}{d\theta}L(p_{\theta}) = \lim_{\beta \to 0} \frac{1}{\beta} \Big[\partial_{\theta} T(\theta, p_{\theta}^{\beta}, \beta) - \partial_{\theta} T(\theta, p_{\theta}^{0}, 0) \Big].$$

Equilibrium Propagation Results

- Worked for fine-tuning on single molecule.
- Loss decreased consistently.
- Density difference decreased, but energy difference increases

9/22

Stability Issues

- Training stability deteriorates over time (known issue in DEQ models).
- Fixed point search takes longer and longer during training.
- There are techniques for alleviating the issue

Fixed Point Correction (Original Contribution)

- Technique: include intermediate trajectory points in loss.
- Loss function:

$$L_{FPC}(\theta) = \sum_{k} \gamma^{n-k} L(p_{i_k}),$$

where $p_{i_{\nu}}$ are intermediate points.

- Helps stabilize training, but may reduce performance.
- I modified it to be random

Conclusions

- Jacobian approach: not effective for now, would be nice if it works
- Equilibrium propagation: potentially viable
- Training is very unstable and very slow

End

Thanks for coming

References I

- Shaojie Bai, Zhengyang Geng, Yash Savani, and J Zico Kolter. Deep equilibrium optical flow estimation.
 - In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 620–630, 2022.
- Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Stabilizing equilibrium models by jacobian regularization. arXiv preprint arXiv:2106.14342, 2021.
- Andreas Burger, Luca Thiede, Alan Aspuru-Guzik, and Nandita Vijaykumar. DEQuify your force field: More efficient simulations using deep equilibrium models.
 - In AI for Accelerated Materials Design ICLR 2025, 2025.
- Asen L Dontchev and R Tyrrell Rockafellar. *Implicit functions and solution mappings*, volume 543.

 Springer, 2009.

References II

- Zhengyang Geng and J Zico Kolter. Torchdeq: A library for deep equilibrium models. arXiv preprint arXiv:2310.18605, 2023.
- Roman Remme, Tobias Kaczun, Tim Ebert, Christof A Gehrig, Dominik Geng, Gerrit Gerhartz, Marc K Ickler, Manuel V Klockow, Peter Lippmann, Johannes S Schmidt, et al. Stable and accurate orbital-free dft powered by machine learning.

 arXiv preprint arXiv:2503.00443, 2025.
- Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-based models and backpropagation. Frontiers in computational neuroscience, 11:24, 2017.
- Feitong Song and Ji Feng. Neuralscf: Neural network self-consistent fields for density functional theory. arXiv preprint arXiv:2406.15873, 2024.

References III

He Zhang, Siyuan Liu, Jiacheng You, Chang Liu, Shuxin Zheng, Ziheng Lu, Tong Wang, Nanning Zheng, and Bin Shao. Overcoming the barrier of orbital-free density functional theory for molecular systems using deep learning.

Nature Computational Science, 4(3):210-223, 2024.

Nicolas Zucchet and Joao Sacramento. Beyond backpropagation: bilevel optimization through implicit differentiation and equilibrium propagation.

Neural Computation, 34(12):2309-2346, 2022.

Jacobian Gradient Derivation - Part 1

- Starting from loss function: $L(\theta) = \frac{1}{2} ||p_{\theta} p_{gs}||^2$.
- Using chain rule: $\frac{\partial L}{\partial \theta} = \frac{\partial L}{\partial p_{\theta}} \cdot \frac{\partial p_{\theta}}{\partial \theta}$.
- First term is straightforward: $\frac{\partial L}{\partial p_{\theta}} = (p_{\theta} p_{gs})$.
- For second term, we need the implicit function theorem.

Jacobian Gradient Derivation - Part 2

- At fixed point, we have: $\mathcal{P}\nabla_{p}E(\theta,p_{\theta})=0$.
- Differentiating this constraint with respect to θ :

$$\frac{\partial}{\partial \theta} \left[\mathcal{P}_{\langle w, p \rangle = N} \nabla_{p} E(\theta, p_{\theta}) \right] = 0 \quad (1)$$

$$\frac{\partial}{\partial p} \mathcal{P}_{\langle w, p \rangle = N} \nabla_{p} E(\theta, p_{\theta}) \cdot \frac{\partial p_{\theta}}{\partial \theta} + \frac{\partial}{\partial \theta} \mathcal{P}_{\langle w, p \rangle = N} \nabla_{p} E(\theta, p_{\theta}) = 0 \quad (2)$$

• Solving for $\frac{\partial p_{\theta}}{\partial \theta}$:

$$\frac{\partial p_{\theta}}{\partial \theta} = -\left(\frac{\partial}{\partial p} \mathcal{P}_{\langle w, p \rangle = N} \nabla_{p} E(\theta, p_{\theta})\right)^{-1} \cdot \frac{\partial}{\partial \theta} \mathcal{P}_{\langle w, p \rangle = N} \nabla_{p} E(\theta, p_{\theta}) \tag{3}$$

Jacobian Gradient Derivation - Part 3

• Substituting back into our chain rule formula:

$$\frac{\partial L}{\partial \theta} = (p_{\theta} - p_{gs})^{T} \cdot \frac{\partial p_{\theta}}{\partial \theta}$$

$$= -(p_{\theta} - p_{gs}) \cdot \left(\frac{\partial}{\partial p} \mathcal{P}_{\langle w, p \rangle = N} \nabla_{p} E(\theta, p_{\theta})\right)^{-1} \cdot \frac{\partial}{\partial \theta} \mathcal{P}_{\langle w, p \rangle = N} \nabla_{p} E(\theta, p_{\theta})$$
(5)

• The term $\frac{\partial}{\partial p} \mathcal{P}_{\langle w,p\rangle=N} \nabla_p E(\theta,p_\theta)$ is the projected Hessian matrix of the energy function.

Equilibrium Propagation Derivation - Part 1

- Define perturbed energy function: $T(\theta, p, \beta) = E(\theta, p) + \beta L(p)$.
- Define p_{θ}^{β} as the fixed point of this perturbed energy:

$$p_{ heta}^{eta} = rg \min_{oldsymbol{p}: \langle w, p
angle = N} \mathcal{T}(heta, oldsymbol{p}, eta)$$

- Note that $p_{\theta}^0 = p_{\theta}$ (the original fixed point).
- Our goal: compute $\frac{d}{d\theta}L(p_{\theta})$.

Equilibrium Propagation Derivation - Part 2

- Define function $G(\theta, \beta) = L(p_{\theta}^{\beta})$.
- There's symmetry of second derivatives $\frac{d}{d\beta}\frac{d}{d\theta}$ at $\beta=0, \theta=\theta$

Equilibrium Propagation Derivation - Part 3

- $\frac{dG}{d\beta} = \frac{\partial T}{\partial \beta} + \frac{\partial T}{\partial p} \frac{dp_{\theta}^{\beta}}{d\beta}$, but the second term vanishes at $p = p_{\theta}^{\beta}$.
- $\bullet \ \frac{\partial T}{\partial \beta}\big|_{\beta=0} = L(p_{\theta})$