Matrizes

Introdução

Uma variável comum é escalar

Vetores são variáveis unidimensionais

Matrizes são variáveis bidimensionais (mas podem ter mais dimensões)

Aplicações

Matrizes não são uma estrutura de dados muito comuns em programas comerciais

Mas possuem várias aplicações (normalmente associadas à matemática):

- Resolução de sistemas lineares
- Grafos
- Computação gráfica
- Pesquisa operacional
- Jogos
- Meteorologia
- Mapas
- Etc...

Declaração de matrizes

float Media[5] [2];

```
int matriz[2][2]={1,2,3,4};
int matriz[2][2]={{1,2},{3,4}};
int matriz[2][2]={{1,2},
{3,4}};
```

Inserindo e acessando elementos em matrizes

```
Mat[1][1]=4
```

Mat[1][2]=-3

Mat[2][1]=6

Mat[2][2]=-1

```
for ( i=0; i<3; i++ )
  for ( j=0; j<3; j++ )
  {
    scanf ("%d", &matriz[ i ][ j ]);
}</pre>
```

```
for ( i=0; i<3; i++ )
  for ( j=0; j<3; j++ )
  {
    printf ("%d", matriz[ i ][ j ]);
}</pre>
```

Exemplo

Comparação PA e PG em uma matriz (ambos com al=5 e razão=2)

```
pa: 5 7 9 11 13 15 17 19 21 23
pg: 5 10 20 40 80 160 320 640 1280 2560
```

```
#include <stdio.h>
void main(int argc, char **argv)
    int linhas=2,colunas=10;
    //a primeira linha será uma PA e a segunda uma PG
    char tipoProgressao[2][2]={'p', 'a',
                   'p', 'q'};
    int progressao[linhas][colunas];
    int al=5, razao=2;
    //o primeiro termo é idêntico para ambas
    progressao[0][0]=a1;
    progressao[1][0]=a1;
    for(int i=1;i<colunas;i++)</pre>
        progressao[0][i]=progressao[0][i-1]+razao;
        progressao[1][i]=progressao[1][i-1]*razao;
    for(int i=0;i<linhas;i++)</pre>
        printf("%c%c: ",tipoProgressao[i][0],tipoProgressao[i][1]);
        for(int j=0;j<colunas;j++)</pre>
            printf("%d ",progressao[i][j]);
        printf("\n");
```

Exemplo

A matriz identidade é bastante útil para resolução de problemas lineares

```
for (int i=0;i<3;i++)
{
    for(int j=0;j<3;j++)
    {
        if(i==j)
            matrizI[i][j]=1;
        else
            matrizI[i][j]=0;
    }
}</pre>
```

1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1_

Exemplo

Matrizes podem ser usadas para representar grafos (matriz de adjacência)

		Α	В	С	D	E
	A	0	0	1	0	0
(A) (D)	В	0	0	1	0	0
(C)	С	1	1	0	1	1
BE	D	0	0	1	0	1
	E	0	0	1	1	0

A matriz simétrica é bastante útil para representar grafos não orientados com ligações simples

$$A = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 6 & 6 \\ 4 & 6 & 9 \end{bmatrix}$$

Exercícios

- 1 Faça uma matriz que mostre a quantidade vendida de cinco produtos (linhas) ao longo de 3 meses (colunas).
- 2 Faça uma matriz que armazene, para três alunos, duas notas e suas médias
- 3 Assim como foi feita uma matriz para comparar PA e PG, faça uma matriz para comparar juros simples e compostos (dados: montante=1000, taxa de juros=0,1 ao mês e período de 5 meses)

Exercícios

4 - Faça uma matriz de adjacência que represente a ligação dos estados da região norte

