第 6 章

正則な線形変換と逆行列

線形変換と逆問題

 $m{y} = Am{x}$ という形の式は、 $m{x}$ と $m{y}$ の次元が同じならば、連立一次方程式として捉えることができた。

$$egin{pmatrix} y_1 \ dots \ y_n \end{pmatrix} = egin{pmatrix} a_{11} & \cdots & a_{1n} \ dots & \ddots & dots \ a_{n1} & \cdots & a_{nn} \end{pmatrix} egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix}$$

そして、このような形の連立方程式を解くことは、「 $m{y}$ から $m{x}$ を推定する」という逆問題を解くことに相当する。

一方、y = Ax という式は、線形写像を表す式とみることもできる。

特に、 \mathbb{R}^n からそれ自身への線形写像 f を \mathbb{R}^n の線形変換と呼ぶのだった。

言い換えると、表現行列 A で表される線形写像 y = Ax が線形変換と呼べるのは、x と y の次元が同じ場合である。

このように、線形変換と連立一次方程式を関連づけて考えることができる。

逆行列

「写り先 $m{y}$ から元の点 $m{x}$ を答える」という写像に対応する行列を<mark>逆行列</mark>といい、 $m{A}^{-1}$ と表す。

この行列 A^{-1} は、

- どんな \boldsymbol{x} を持ってきても、 $A\boldsymbol{x} = \boldsymbol{y}$ ならば $A^{-1}\boldsymbol{y} = \boldsymbol{x}$
- どんな \boldsymbol{y} を持ってきても、 $A^{-1}\boldsymbol{y} = \boldsymbol{x}$ ならば $A\boldsymbol{x} = \boldsymbol{y}$

となるような行列である。

$$x \stackrel{A}{\underset{A^{-1}}{\smile}} y$$

別の言い方をすると、

- *A* して *A*⁻¹ したら元に戻る
- *A*⁻¹ して *A* したら元に戻る

となるような行列 A^{-1} を逆行列として定義する。

逆行列 正方行列 A に対して、次式を満たす行列 X を A の<mark>逆行列</mark>といい、 A^{-1} と表す。

$$AX = XE = E$$

正則性と全単射性

Aの逆行列は、いつでも存在するとは限らない。

ご 正則 (行列の言葉で) 正方行列 A の逆行列が存在するとき、A は正則であるという。

A の逆行列が存在するには、A が表す写像が全単射である、つまり A によって「潰れない・はみ出さない」ことが必要である。

- 潰れてしまえば、元の **x** はわからない (単射でない場合)
- はみ出してしまえば、元の **x** は存在しない(全射でない場合)

▶ 正則 (写像の言葉で) 線形変換 f が全単射であるとき、f は正則であるとい

う。正方行列 A が正則な線形変換を与えるとき、A は正則行列であるという。

逆写像と逆行列の対応

一般に、写像 f が全単射であれば、逆写像 f^{-1} が存在する。

予 Theorem - 逆写像の線形性

f を \mathbb{R}^n の正則な線形変換とするとき、逆写像 f^{-1} は線形である

 $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$, $c \in \mathbb{R}$ とし、次の 2 つを示せばよい

i.
$$f^{-1}(\boldsymbol{x} + \boldsymbol{y}) = f^{-1}(\boldsymbol{x}) + f^{-1}(\boldsymbol{y})$$

ii.
$$f^{-1}(c\mathbf{x}) = cf^{-1}(\mathbf{x})$$

(i)

 $f \circ f^{-1}$ は恒等写像であるから、

$$egin{aligned} oldsymbol{x} &= f \circ f^{-1}(oldsymbol{x}) \ oldsymbol{y} &= f \circ f^{-1}(oldsymbol{y}) \ oldsymbol{x} + oldsymbol{y} &= f \circ f^{-1}(oldsymbol{x} + oldsymbol{y}) \end{aligned}$$

また、f は線形写像であるから、

$$f \circ f^{-1}(\boldsymbol{x} + \boldsymbol{y}) = f(f^{-1}(\boldsymbol{x}) + f^{-1}(\boldsymbol{y}))$$

 $f \circ f^{-1}(\boldsymbol{v})$ は、 $f(f^{-1}(\boldsymbol{v}))$ を意味する記号なので、

$$f(f^{-1}(\boldsymbol{x} + \boldsymbol{y})) = f(f^{-1}(\boldsymbol{x}) + f^{-1}(\boldsymbol{y}))$$

両辺を f^{-1} で写すと、

$$f^{-1}(\boldsymbol{x} + \boldsymbol{y}) = f^{-1}(\boldsymbol{x}) + f^{-1}(\boldsymbol{y})$$

となり、(i) が示された

(ii)

 $f \circ f^{-1}$ は恒等写像であるから、

$$\mathbf{x} = f \circ f^{-1}(\mathbf{x}) = f(f^{-1}(\mathbf{x}))$$
$$c\mathbf{x} = f \circ f^{-1}(c\mathbf{x}) = f(f^{-1}(c\mathbf{x}))$$

 $\mathbf{x} = f(f^{-1}(\mathbf{x}))$ の両辺に c をかけた、次も成り立つ

$$c\boldsymbol{x} = cf(f^{-1}(\boldsymbol{x}))$$

さらに、 f は線形写像であるから、

$$cf(f^{-1}(\boldsymbol{x})) = f(cf^{-1}(\boldsymbol{x}))$$

ここまでの cx の複数の表現により、次式が成り立つ

$$f(f^{-1}(c\boldsymbol{x})) = f(cf^{-1}(\boldsymbol{x}))$$

両辺を f^{-1} で写すと、

$$f^{-1}(c\boldsymbol{x}) = cf^{-1}(\boldsymbol{x})$$

となり、(ii) が示された

n 次正則行列 A は、正則な線形変換 $f: \mathbb{R}^n \to \mathbb{R}^n$ と対応している。

逆写像 f^{-1} が存在し、線形であるから、ある n 次正方行列 B が対応するはずである。

 $f \circ f^{-1} = f^{-1} \circ f = \mathrm{id}_{\mathbb{R}^n}$ であり、線形写像の合成は行列の積に対応するから、

$$AB = BA = E$$

が成り立つ。

このように、逆写像の性質から、逆行列の定義式を導くこともできる。

逆行列の一意性

逆行列は、存在するとしてもただ 1 つしか存在しない。

♪ Theorem - 逆行列の一意性

正方行列 A に対して、A の逆行列が存在するならば、それは一意的である。

証明

A の逆行列が B_1 と B_2 の 2 つあるとする。

$$AB_1 = B_1A = E$$
 かつ $AB_2 = B_2A = E$

 $AB_2 = E$ の両辺に B_1 をかけると、

$$B_1 = B_1 A B_2 = (B_1 A) B_2 = E B_2 = B_2$$

よって、 $B_1 = B_2$ となり、逆行列は一意的である。

逆行列による連立一次方程式の解

正則行列 A に対して、方程式 Ax = b のただ 1 つの解は次で与えられる。

$$x = A^{-1}b$$

これが「ただ 1 つ」の解といえるのは、係数行列 A が与えられれば、その逆行列 A^{-1} は一意的に定まるからである。

つまり、A が正則行列であり、その逆行列 A^{-1} が求まれば、行列のかけ算によって連立一次方程式の解が求められる。

逆行列の逆行列

「A の取り消し」を取り消すには、A すればよい。

% Theorem 6.1 - 逆行列に対する逆行列

正則行列 A の逆行列 A^{-1} は正則であり、その逆行列は A である。

$$(A^{-1})^{-1} = A$$

証明

A の逆行列が A^{-1} であることから、

$$AA^{-1} = A^{-1}A = E$$

この式は、 A^{-1} が正則であり、その逆行列が A であることを示す式でもある。

行列の積の逆行列

「B して A したもの」を元に戻すには、まず A を取り消してから B を取り消す必要がある。

♣ Theorem 6.2 - 正則行列の積に対する逆行列

正則行列 A, B の積 AB は正則であり、その逆行列は次のようになる。

$$(AB)^{-1} = B^{-1}A^{-1}$$

証明

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1}$$

= AEA^{-1}
= E

であり、同様に

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B$$

= $B^{-1}EB$
= E

であるので、

$$(AB)^{-1} = B^{-1}A^{-1}$$

が成り立つ。 ■

転置行列の正則性

♪ Theorem 6.3 - 正則行列の転置の正則性

正則行列 A に対して、その転置行列 tA も正則である。

証明

A が正則であることから、その逆行列 A^{-1} が存在し、

$$A^{-1}A = E$$

両辺の転置をとると、右辺の単位行列は転置しても単位行列であり、左辺には Theorem 6.2「正則行列の積に対する逆行列」を用いて、

$${}^{t}(A^{-1}A) = {}^{t}A^{t}(A^{-1}) = E$$

この等式より、 tA の逆行列は ${}^t(A^{-1})$ であることがわかる。

三角行列の正則性

♪ Theorem - 上三角行列の正則性

対角成分がすべて 0 でない上三角行列は正則である。

「Todo 1: book: 行列と行列式の基礎 p74 命題 2.4.9]

♣ Theorem 6.4 - 正則な上三角行列の逆行列

正則な上三角行列は、その逆行列も上三角行列である。

[Todo 2:]

正則な上三角行列と関連して、次の事実が成り立つ。

予 Theorem - 行基本変形と対角行列

正則行列 A に対して、行のスカラー倍以外の行基本変形を繰り返し行って対角行列にできる。

「Todo 3: book: 行列と行列式の基礎 p75 命題 2.4.12]

正則行列と対角行列

「Todo 4: book: プログラミングのための線形代数 p46~47]

% Theorem 6.5 - ブロック対角行列の正則性

次のようなブロック対角行列 M において、対角ブロック A, B が正則であれば、M も正則である。

$$M = \begin{pmatrix} & & & & & & & \\ & A & & & O & \\ & & & & & & \\ & & O & & B & \end{pmatrix} \downarrow^{l} n-l$$

証明

A と B が正則であるから、逆行列 A^{-1} と B^{-1} が存在する。

それらを用いて、次のような積を考える。

$$\begin{pmatrix} A & O \\ O & B \end{pmatrix} \begin{pmatrix} A^{-1} & O \\ O & B^{-1} \end{pmatrix} = \begin{pmatrix} AA^{-1} & O \\ O & BB^{-1} \end{pmatrix}$$
$$= \begin{pmatrix} E_{l} & O \\ O & E_{n-l} \end{pmatrix}$$
$$= E_{n}$$

この等式は、*M* の逆行列の存在を示している。

$$M\begin{pmatrix} A^{-1} & O \\ O & B^{-1} \end{pmatrix} = E_n$$

つまり、対角ブロックがそれぞれ正則であれば、それらの逆行列を並べることで全体 の逆行列が構成できる。

このようにして、*M* が正則であることがわかる。

Zebra Notes

Туре	Number
todo	4