Линейная алгебра

Илья Панов

25 июля 2025 г.

Содержание

1	Введение	2
2	Аналитическая геометрия	2
3	Векторные пространства и матрицы	7

1 Введение

Конспект в основном составлялся по лекциям Поступашек для подготовки к поступлению в ШАД и AI Masters. Записи лекций у вас есть (я их пронумеровал, смотрите по порядку), домашки есть в конце каждой секции (курс рекомендует выполнять хотя бы по 10 заданий из дз), учебники и сборники задач - в репозитории.

2 Аналитическая геометрия

Сейчас мы начнём с повторения 10-11 класса школы, повыводим всякое для плоскости, потом заметим, что для пространства у нас особо ничего не меняется.

Теорема _____

Три вектора (а, b, с) на плоскости всегда линейно зависимы

Доказательство:

Можем просто составить систему уравнений, решить её по Гауссу (или как Вам угодно).

$$\begin{cases} x \cdot x_a + y \cdot x_b = x_c \\ x \cdot y_a + y \cdot y_b = y_c \end{cases}$$

Получим, что решения у нас есть, если вектора не коллинеарны (в конце получим $x_a \cdot y_b - x_b \cdot y_a$ в знаменателе, если это выражение равно 0, то это равносильно коллинеарности векторов а и b без ограничения общности). Если какие-то два коллинеарны (а третий не коллинеарен), то колинеарные вектора связаны каким-то коэффициентом k, а третий вектор можем взять с нулевым коэффициентом.

Определение

Метод Гаусса, также известный как метод исключения Гаусса, это алгоритм решения систем линейных алгебраических уравнений (СЛАУ) путем последовательного исключения переменных. В основе метода лежит преобразование системы уравнений к равносильной ступенчатой (треугольной) форме (то есть нолики у нас снизу выстраиваются), из которой затем последовательно находятся значения переменных.

Теорема

Угол между двумя векторами и равносильность определений скалярного произведения

Доказательство:

Если есть равносильность определений, то косинус угла выражается очевидно. Равносильность следует из теоремы косинусов: пусть хотим найти угол между векторами а и b, тогда проведем третий - с такой, что он соединяет концы двух других векторов. Пишем теорему косинусов для c, как раз получаем искомый

угол и связь определений скалярного.

Теорема

Неравенство КБШ: произведение длин векторов не меньше, чем модуль их скалярного произведения: $|a|\cdot|b|\geq |(a,b)|$

Доказательство:

Рассмотрим $t \in \mathbb{R}$, теперь возьмем скалярное произведение (x-ty,x-ty), оно ≥ 0 по свойствам. По линейности раскрываем, получаем квадратный трёхчлен, который ≥ 0 , значит у него $D \geq 0$ - это в точности неравенство КБШ.

Теорема

Пусть даны два вектора а и b, отложенные от одной точки, тогда проекция вектора а на вектор b можно найти по формуле $a^{`}=\frac{(a,b)}{(b,b)}\cdot b$

Доказательство:

Что такое проекция, надеюсь, все представляют (просто уронили перпендикуляр). Длина проекция очевидным образом находится из прямоугольного треугольника $|a'| = |a| \cdot \cos \phi$

Теперь попробуем выразить сам вектор a, он лежит на b, тогда чтобы получить вектор проекции, мы хотим использовать направление вектора b (единичный вектор) и умножить получившийся вектор на длину проекции: a = $\frac{b}{|b|} \cdot |a$. Подставляем |a, |a, |a заменяем на $\frac{(a,b)}{|a|\cdot|b|}$, получили требуемое.

Теорема

Точка (x,y) принадлежит прямой l (прямая задана точкой (x_0,y_0) и направляющим вектором (α,β)) тогда и только тогда, когда $\frac{x-x_0}{\alpha}=\frac{y-y_0}{\beta}$. Это равенство мы будем называть каноническим уравнением прямой. В эту же теорему включим вывод других способов задать прямую

Доказательство:

Очев: если у нас точка (x,y) лежит на прямой, тогда у нас вектора $(x-x_0,y-y_0)$ и (α,β) колинеарны, тогда $\exists \ k \in \mathbb{R} \mid (x-x_0,y-y_0)=k\cdot(\alpha,\beta)$. Рассмотрев это равенство покоординатно, получим требуемое отношение. В обратную сторону аналогично, просто введём k, скажем про коллинеарность, дальше принадлежность точки прямой очевидна.

Из получившегося уравнения очевным образом получаем параметрическое уравнение прямой:

$$\begin{cases} x = x_0 + t \cdot \alpha \\ y = y_0 + t \cdot \beta \end{cases}$$

По сути заменили k на t. Далее получим общее уравнение прямой Ax+By+C=0. Просто возьмём каноническое и крест-накрест перемножим. Получим $\beta x-\alpha y-x_o\beta+y_0\alpha=0$. Дальше мы просто занимаемся переобозначением.

Замечание

Также заметим, что вектор с координатами (A, B) (читать как $(\beta, -\alpha)$) - это нормаль-вектор нашей прямой. Проверяется через скалярное произведение (помним, что (α, β) - это направляющий вектор нашей прямой).

Теорема

Прямая l:Ax+By+C=0 разбивает плоскость на 2 полуплоскости. Если мы возьмём какие-то 2 точки I_1,I_2 из разных полуплоскостей, тогда $l(I_1)\cdot l(I_2)<0$

Доказательство:

Зафиксируем точку $(x_0, y_0) \in l$. Теперь рассмотрим скалярное произведение нормаль-вектора и $(x_1 - x_0, y_1 - y_0)$ (если считать, что у точки I_1 координаты (x_1, y_1)). Аналогично для второй точки I_2 . Тогда одно скалярное произведение будет > 0, а другое < 0 в силу свойства скалярного (если точнее, то просто пользуемся, что косинус тупого угла отрицательный).

Например, подробнее для точки I_1 из верхней полуплоскости (БОО): $A(x_1-x_0)+B(y_1-y_0)>0$, раскроем скобки, обозначим $C=-Ax_0-By_0$. Потом мы всё это перемножим с выражением для второй точки: $Ax_2+Bx_2+C<0$. Получим то, что и хотели: $l(I_1)\cdot l(I_2)<0$.

Теорема

Формула расстояния от точки (x_0,y_0) до прямой l:Ax+By+C=0 - это $d(x_0,y_0)=\frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}}$

Доказательство:

Рассмотрим точку $(x,y) \in l$. Теперь построим вектор (x_0-x,y_0-y) , спроецируем его на нормаль вектор (точнее мы хотим посмотреть на длину проекции): $|(A,B)| \cdot |\frac{A(x_0-x)+B(y_0-y)}{A^2+B^2}|$. |(A,B)| - это внезапно $\sqrt{A^2+B^2}$. Сокращаем, вводим обозначение С, получаем требуемое.

Замечание

Обсудим взаимное расположение прямых: совпадают, параллельны или пересекаются. В терминах коэффициентов это соответственно $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}, \frac{A_1}{A_2} = \frac{B_1}{B_2}$ или никакое из предыдущих равенств не выполняется.

В терминах матриц совпадение это:

$$rk \begin{pmatrix} A_1 & B_1 \\ A_2 & B_2 \end{pmatrix} = 1$$

$$rk \begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix} = 1$$

Аналогично для параллельности у нас ранг большой матрицы будет 2, а в случае пересечения у нас ранг и маленькой, и большой матрицы будет 2.

Определение

Ранг матрицы (rk) - это максимальный порядок минора матрицы, отличный отнуля. Иными-словами, это число, равное максимальному количеству линейно независимых строк (или столбцов) в матрице. Ранг матрицы показывает размерность подпространства, натянутого на строки (или столбцы) матрицы.

Теорема

Площадь параллелограмма, построенного на векторах (a,c) и (b,d) - это определитель:

 $\begin{vmatrix} a & c \\ b & d \end{vmatrix}$

Доказательство:

 $S=|a|\cdot|b|\cdot\sin\phi$. Меняем синус на косинус по ОТТ, заносим всё под корень, раскрываем скобки, там у нас получается полный квадрат: $\sqrt{(ad-bc)^2}$, а это в точности определитель.

Замечание

Из такого геометрического смысла определителя становятся очевидны всякие свойства про линейность по строке, иммутабельность при транспонировании.

Такую же формулу, кстати, можно вывести для \mathbb{R}^3 , но это будет просто более глиномесно:

$$V = \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Вот теперь мы плавно перешли к пространствам. Будем волшебным образом перетаскивать формулы из плоскости, натягивать их на пространство, также будем что-то новое вводить.

Замечание

Каноническое уравнение прямой в \mathbb{R}^3 - это $\frac{x-x_0}{\alpha} = \frac{y-y_0}{\beta} = \frac{z-z_0}{\gamma}$.

Уравнение плоскости можно построить по трём точкам, зафиксируем первую точку, от неё проведём 2 вектора к двум оставшимся, теперь возьмём какую-то точку (x,y,z), вектор от первой точки к новой должен быть ЛНЗ. Получили 3 вектора, которые образовали плоскость. Объём, натянутый на эти 3 вектора, ра-

вен 0, тогда мы просто пишем объём через определитель, раскрываем, получаем: Ax + By + Cz + D = 0.

Давайте до кучи напишем параметрическое уравнение плоскости:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \lambda \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} + \mu \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

где и и v - базисные векторы плоскости, а (x_0, y_0, z_0) - какая-то начальная точка.

Теорема

Формула перехода к новому базису.

Доказательство:

Рассмотрим вектор (x,y) в базисе $\{e_1,e_2\}$. Тогда наш вектор $a=xe_1+ye_2$, а в другом базисе наш вектор - это $a=x^{'}e_1^{'}+y^{'}e_2^{'}$. Хотим узнать $(x_1^{'},y_2^{'})$. $e_1^{'}=a_{11}e_1+a_{21}e_2$ и $e_2^{'}=a_{12}e_1+a_{22}e_2$. Подставим и преобразуем, потом воспользуемся единственностью представления вектора в данном базисе, тогда $x=x^{'}a_{11}+y^{'}a_{12}$, аналогично для у.

Замечание

Вопрос исследования взаимного расположения прямой и плоскости, плоскости и плоскости довольно тривиальный, просто пользуемся параметрическим уравнением плоскости и прямой, а дальше очев: сводим задачу к исследованию расположения направляющего вектора прямой и нормаль-вектора плоскости и тд и тп, просто системы уравнений.

Определение

Угол между прямой и плоскостью - это угол между прямой и проекцией прямой на данную плоскость.

Теорема

Формула расстояния от точки (x_0,y_0,z_0) до плоскости $\alpha:Ax+By+Cz+D=0$ - это $d(x_0,y_0,z_0)=\frac{|Ax_0+By_0+Cz_0+D)|}{\sqrt{A^2+B^2+C^2}}$

Доказательство:

Выводится также, как и для двумерного случая.

Замечание

Расстояние между плоскостями или прямыми, или прямыми и плоскостями - это длина общего перпендикуляра. Задача сводится к расстоянию от точки до плоскости/прямой.

Домашнее задание

Из Смирнова решайте все задачи из 3.1-3.4, 4.1-4.4 и 474-482. Не обяз решать всё, решайте пока не почувствуете, что прониклись. Задачи халява, все идеи есть в лекциях.

3 Векторные пространства и матрицы

Определение

Пусть у нас есть векторное пространство размерности n, тогда набор векторов $\{e_1,\ldots,e_n\}$ будет называться **базисом** этого пространства, если они все линейно независимы: $\sum \lambda_i \cdot e_i = 0 \Rightarrow \lambda_i = 0$.

Теорема

У любого конечномерного векторного пространства сущестувет базис.

Доказательство:

Просто предъявляем алгоритм. Возьмём $e_1=v_1\neq 0$, потом возьмём $e_2=v_2\in V$ такой, что $\lambda_1\cdot e_1+\lambda_2\cdot e_2=0\Rightarrow \lambda_1=0, \lambda_2=0.$ Если такой не нашёлся, тогда у нас базис из 1 вектора, имеем просто одномернопространство. Потом возьмём $e_3=v_3\in V$... и тд.

Замечание

Система векторов обладает единственным базисом только в случае 0-мерного пространства.

Определение

Векторное пространство W представимо в виде **прямой суммы** пространств U и V, если $\forall w \in W \ \exists u \in U \ \& \ \exists v \in V \mid w = u + v$. Очень важно, что U и V пересекаются только по нулевому вектору.

Теорема

- а) Размерность подпространства не превосходит размерности пространства.
- б) W векторное пространство, U его подпространство, тогда $\exists V$ такое, что W = U + V.

Доказательство:

- а) очевидно, пытливый читатеть может самостоятельно привести доказательство этого пункта.
- б) Выбираем базис в U, потом дополняем его до всего базиса W, тогда $\forall w \in W \ w = \sum_{i=1}^k w_i \cdot e_i + \sum_{i=k+1}^n w_i \cdot e_i$, где k = dim U, n = dim V. Тогда первая сумма у нас лежит в U, а вот то, что осталось мы определим как V, тогда базис нового пространства это просто те, вектора, которыми мы дополнили базис U до базиса W.

Замечание

Если V - в.п. (dimV=n) над полем из q элементов, тогда всего векторов у нас q^n (потому что $v=\sum q_i\cdot v_i$), а способов выбрать базис - $(q^n-1)(q^n-q)\dots(q^n-q^{n-1})$ (первым берём любой **ненулевой** вектор, потом берем вектор, который ЛНЗ с первым, то есть $e_2\neq \lambda_1\cdot e_1$, на место лямбды q вариантов и тд).

Теорема

Ранг матрицы A|B (это приписывание матрицы B справа от матрицы A) не превосходит-суммы рангов матриц A и B.

Доказательство:

$$A|B=A|0+0|B$$
, тогда $rk(A|B)=rk((A|0)+(0|B))\leq rk(A|0)+rk(0|B)=rk(A)+rk(B)$.

Теорема

Всякую матрицу ранга г можно представить в виде суммы г матриц ранга 1, но нельзя представить в виде суммы меньшего числа таких матриц.

Доказательство:

 $rkA = r, A = \sum A_i$. Без ограничения общности будем считать, что у нас ЛНЗ первые г строчек матрицы:

$$\begin{pmatrix} A_1 \\ A_2 \\ \dots \\ A_r \\ A_{r+1} \\ \dots \\ A_n \end{pmatrix} = \begin{pmatrix} A_1 \\ 0 \\ \dots \\ 0 \\ \lambda_1^{r+1} A_1 \\ \lambda_1^{r+2} A_1 \\ \dots \end{pmatrix} + \begin{pmatrix} 0 \\ A_2 \\ \dots \\ 0 \\ \lambda_2^{r+1} A_2 \\ \lambda_2^{r+2} A_2 \\ \dots \end{pmatrix} + \dots$$

 $rkA = rk(\sum A_k) \le \sum rk(A_k) = k$, если k < r, тогда rkA < r - противоречие.

Теорема

$$A^T A = A A^T \Rightarrow (A^{-1})^T = A^{-1}.$$

Доказательство:

$$A^{-1}A=E$$
, транспонируем $(A^{-1}A)^T=E^T\Leftrightarrow A^T(A^{-1})^T=E^T$, домножим слева на A^{-1} , получим $(A^{-1})^T=A^{-1}$

Далее в лекции разобраны несколько опорных задач, связанных с коммутативностью и обратимостью матрицы. Доказательства как правило проводились через **след матрицы**, потому что работать с числами куда приятнее и понятнее, чем с матрицами. Не считаю нужным конспетировать эти задачи. Может быть кто-то захочет продолжить моё дело и откроет пул реквест.

Определение

Следом квадратной матрицы A $(\dim A = n)$ мы будем называть $tr(A) = \sum_{i=1}^n a_{ii}$.

След становится удобным инструментом в доказательстве теорем про матрицы благодаря ряду свойств:

- 1. $tr(\alpha A + \beta B) = \alpha \cdot tr(A) + \beta \cdot tr(B)$
- 2. $tr(C^{-1}AC) = tr(A)$, в частности tr(AB) = tr(BA)
- 3. $tr(A) = tr(A^T)$
- 4. След матрицы равен сумме её собственных значений.

Замечание

Строковый и столбцовый ранг совпадают.

Определение

Симметрические матрицы: $A = A^T$, кососимметрические матрицы: $A^T = -A$. Также заметим, что в последнем случае у нас обязательно на диагонали должны быть нули, т.к. $a_{ii} = -a_{ii} \Leftrightarrow a_{ii} = 0$, а остальные элементы $a_{ij} = -a_{ji}$.

Замечание

Рассмотрми пространства симметрических матриц (U) и кососимметрических матриц (V). Размерность первого пространства - это $\frac{n^2+n}{2}$ (потому что такая матрицы задаётся с помощью п чисел на диагонали + количество чисел над диагональю, для этого нужно из всех чисел матрицы вычесть диагональ и поделить пополам - $\frac{n^2-n}{2}$. Размерность второго пространства тогда - это $\frac{n^2-n}{2}$ (раз на диагонали только нули).

Теперь сложим эти размерности $\frac{n^2+n}{2}+\frac{n^2-n}{2}=\frac{2n^2}{2}=n^2$. Получили размерность всего пространства квадратных матриц $M_n(\mathbb{R})$. Также заметим, что пространства симметрических и кососимметрических матриц пересекаются только по нулевой матрице (то есть A=-A). Тогда $A\in M_n(\mathbb{R}) \Rightarrow \exists U,V\ A=U\oplus V$ причём U - симметрическая матрица, а V - кососимметрическая матрица.

Теорема

$$rk(A+B) \le rk(A) + rk(B)$$

Доказательство:

Идейно:
$$rk(A+B) = rk(A) + rk(B) - rk(A\cap B) \le rk(A) + rk(B)$$

Замечание

$$tr(AB) = tr(BA)$$
, но $rk(AB) \neq rk(BA)$

Определение

 $\mathbb{R}_n[x]$ - пространство многочленов, базисом которого может быть, например, $\{1, x, x^2, \dots, x^n\}$.

Скалярное произведение двух функций f и g - это $(f,g) = \int_a^b f(x)g(x)dx$.

Замечание

А скалярное произведение матриц - это tr их произведения. Можете прогнать по свойствам скалярного произведения и убедиться в этом.

Теорема

Рассмотрим набор векторов $\{e_1, e_2, \dots, e_n\}$ со следующим свойством:

$$\begin{cases} (e_i, e_i) = 1\\ (e_i, e_j) = 0 \end{cases}$$

Докажем, что этот набор векторов является базисом.

Доказательство:

Проверим ЛНЗ. Хотим $\sum \lambda_i e_i = 0 \Rightarrow \forall i \ \lambda_i = 0$. Рассмотрим скалярное произведение $\forall i \ (e_i, \sum \lambda_i e_i) = 0$, раскроем по свойству линейности, получим что-то такое: $\sum \lambda_j (e_i, e_j) = \lambda_i (e_i, e_i) = 0 \Rightarrow \lambda_i = 0$.

Определение

Набор векторов из теоремы выше называется ортонормированным базисом.

Определение

$$W^\perp := \{ w^\perp \in W^\perp \mid \forall w \in W \ (w^\perp, w) = 0 \}$$

Замечание

 $V=W\oplus W^{\perp}$. Очевидно, что W и W^{\perp} пересекаются только по нулю, если бы мы нашли какой-то $x\in W,W^{\perp}$, то получили бы что-то в духе (x,x)=0, а отсюда по свойству скалярного произведения получаем, что x=0.

Теорема

Метод Грама–Шмидта: Любой базис $\{e_1, ..., e_n\}$ евклидова пространства можно преобразовать в ортонормированный базис $\{f_1, ..., f_n\}$ следующим образом:

10

$$u_{1} = e_{1},$$

$$u_{2} = e_{2} - \frac{(e_{2}, u_{1})}{(u_{1}, u_{1})} u_{1},$$

$$u_{3} = e_{3} - \frac{(e_{3}, u_{1})}{(u_{1}, u_{1})} u_{1} - \frac{(e_{3}, u_{2})}{(u_{2}, u_{2})} u_{2},$$

$$\vdots$$

$$f_{i} = \frac{u_{i}}{\|u_{i}\|}.$$

Теорема

Пусть A - матрица размера $n \times n$. Если для любой матрицы X размера $n \times n$ справедливо равенство tr(AX) = 0, то A = 0.

Доказательство:

Попробуем $X = A^T$. $tr(AA^T) = \sum a_{ij}^2 = 0 \Rightarrow \forall i, j \ a_{ij} = 0$. Либо можно сказать, что у нас tr(AX) - это скалярное произведение на пространстве матриц, причём у нас $\forall X \ tr(AX) = 0$, то есть A перпендикулярно любому вектору, а это возможно в том случае, если A - это нулевой вектор.

Домашнее задание

Домашка есть в Векторные пространства 102.pdf