Algebra e matematica discreta, a.a. 2021/2022,

Scuola di Scienze - Corso di laurea:

Informatica

Esercizi per casa 1

1 Per ciascuno dei seguenti numeri complessi

$$z_1 = i$$
, $z_2 = -3i$, $z_3 = 1 - 2i$ e $z_4 = 5 + 3i$

- (a) si calcoli il modulo;
- (b) si calcoli il coniugato;
- (c) si scriva l'inverso in forma algebrica.
- **2** Quali sono i numeri complessi z tali che $z = -\overline{z}$?

3 Si trovino il quoziente q ed il resto r della divisione di a con b nei seguenti casi (N.B.: si richiede $r \geq 0$):

- 1) a = 46 e b = 10,
- 2) a = 49 e b = 52,
- 3) a = -12 e b = 17.
- 4) a = 76 e b = -13,
- 5) a = -21 e b = 12.

 $oxed{4}$ Si calcoli MCD(a,b) con l'algoritmo di Euclide nei seguenti casi:

- 1) a = 126 e b = 56,
- 2) a = 234 e b = 273,
- 3) a = -168 e b = 180,
- 4) a = 231 e b = 165,

- 5) a = -136 e b = 48,
- 6) a = -208 e b = 286,
- 7) a = 132 e b = 180.

5 Si calcolino il quoziente q(x) ed il resto r(x) della divisione di f(x) per g(x) in $\mathbb{R}[x]$ nei seguenti casi:

- 1) $f(x) = 12x^5 + 3x^4 + 7x^3 11x^2 2x 3$ e $g(x) = 3x^3 + x 3$,
- 2) $f(x) = 12x^6 + 20x^4 + x^2 7$ e $g(x) = 2x^4 + x^2 + 3x 1$.

6 In tutti i casi considerati nell'Esercizio 4, indicando con d il massimo comun divisore positivo di a e b, si trovino $m, n \in \mathbb{Z}$ tali che

$$d = m \cdot a + n \cdot b.$$

7 Si dica quali delle seguenti congruenze sono vere e quali false:

- 1) $132 \equiv 8 \mod 9$,
- $2) \quad 132 \equiv 1 \mod 11,$
- 3) $132 \equiv 0 \mod 12$,
- 4) $132 \equiv 4 \mod 13$.

 $\fbox{\bf 8}$ Si calcolino le tavole dell'addizione e della moltiplicazione per \mathbb{Z}_3 e per \mathbb{Z}_6 .

9 Si risolvano le seguenti congruenze (ossia per ciascuna di esse si dica se ha oppure no soluzioni, e, nel caso le abbia, le si trovino tutte:

- 1) $2x \equiv 3 \mod 5$,
- $2) \quad 6x \equiv 9 \mod 15,$
- 3) $7x \equiv 3 \mod 14$,
- 4) $4x \equiv 8 \mod 12$,
- 5) $4x \equiv 2 \mod 12$,
- 6) $4x \equiv 2 \mod 11$.