EE25BTECH11012-BEERAM MADHURI

Question:

Three distinct points A, B and C are given in the 2-dimensional coordinate plane such that the ratio of the distance of any one of them from the point (1,0) to the distance from the point (-1,0) is equal to $\frac{1}{3}$. Then the circumcentre of the triangle ABC is at the point:

1)
$$\left(\frac{5}{4}, 0\right)$$
 2) $\left(\frac{5}{2}, 0\right)$ 3) $\left(\frac{5}{3}, 0\right)$ 4) $(0, 0)$

Solution: let F_1 , F_2 be the vectors such that:

Point	Vector
F ₁	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
F ₂	$\begin{pmatrix} -1 \\ 0 \end{pmatrix}$

TABLE 4: Variables used

Let **P** be any vector in the plane of **A**,**B**,**C**. given,

$$\frac{\|\mathbf{PF_1}\|}{\|\mathbf{PF_2}\|} = \frac{1}{3} \tag{4.1}$$

1

$$\frac{\|\mathbf{PF_1}\|}{\|\mathbf{PF_2}\|} = \frac{1}{3}$$

$$\frac{\sqrt{(\mathbf{P} - \mathbf{F_1})^{\top} (\mathbf{P} - \mathbf{F_1})}}{\sqrt{(\mathbf{P} - \mathbf{F_2})^{\top} (\mathbf{P} - \mathbf{F_2})}} = \frac{1}{3}$$
(4.1)

Squaring on both sides

$$9(\mathbf{P} - \mathbf{F}_1)^{\mathsf{T}}(\mathbf{P} - \mathbf{F}_1) = (\mathbf{P} - \mathbf{F}_2)^{\mathsf{T}}(\mathbf{P} - \mathbf{F}_2) \tag{4.3}$$

$$9(\mathbf{P}^{\top}\mathbf{P} - \mathbf{P}^{\top}\mathbf{F}_{1} - \mathbf{F}_{1}^{\top}\mathbf{P} + \mathbf{F}_{1}^{\top}\mathbf{F}_{1}) = \mathbf{P}^{\top}\mathbf{P} - \mathbf{P}^{\top}\mathbf{F}_{2} - \mathbf{F}_{2}^{\top}\mathbf{P} + \mathbf{F}_{2}^{\top}\mathbf{F}_{2}$$
(4.4)

as
$$\mathbf{P}^{\mathsf{T}}\mathbf{F}_{1} = \mathbf{F}_{1}^{\mathsf{T}}\mathbf{P}$$
 (4.5)

and
$$\mathbf{P}^{\mathsf{T}}\mathbf{F_2} = \mathbf{F_2}^{\mathsf{T}}\mathbf{P}$$
 (4.6)

$$9(\mathbf{P}^{\mathsf{T}}\mathbf{P} - 2\mathbf{P}^{\mathsf{T}}\mathbf{F}_1 + \mathbf{F}_1^{\mathsf{T}}\mathbf{F}_1) = \mathbf{P}^{\mathsf{T}}\mathbf{P} - 2\mathbf{P}^{\mathsf{T}}\mathbf{F}_2 + \mathbf{F}_2^{\mathsf{T}}\mathbf{F}_2$$
(4.7)

$$8\mathbf{P}^{\mathsf{T}}\mathbf{P} - 2\mathbf{P}^{\mathsf{T}}(9\mathbf{F}_{1} - \mathbf{F}_{2}) + 9\mathbf{F}_{1}^{\mathsf{T}}\mathbf{F}_{1} - \mathbf{F}_{2}^{\mathsf{T}}\mathbf{F}_{2} = 0$$
(4.8)

$$\mathbf{P}^{\mathsf{T}}\mathbf{P} - \frac{1}{4}\mathbf{P}^{\mathsf{T}}(9\mathbf{F}_{1} - \mathbf{F}_{2}) + \frac{9}{8}\mathbf{F}_{1}^{\mathsf{T}}\mathbf{F}_{1} - \frac{1}{8}\mathbf{F}_{2}^{\mathsf{T}}\mathbf{F}_{2} = 0$$
 (4.9)

This can be compared with general equation of circle:

$$\|\mathbf{P} - \mathbf{C}\| = r \tag{4.10}$$

(4.11)

where , P =any point on the circle

C = Center of circle

r = radius of circle

$$(\mathbf{P} - \mathbf{C})^{\mathsf{T}} (\mathbf{P} - \mathbf{C}) = r^2 \tag{4.12}$$

$$\mathbf{P}^{\mathsf{T}}\mathbf{P} - 2\mathbf{P}^{\mathsf{T}}\mathbf{C} + \mathbf{C}^{\mathsf{T}}\mathbf{C} = r^{2} \tag{4.13}$$

Substituting **P**, $\mathbf{F_1}$ and $\mathbf{F_2}$ Center of circle = $\left(\frac{5}{4}, 0\right)$

Hence, the circumcenter of the triangle is $\left(\frac{5}{4},0\right)$

Fig. 4.1: 4.13.17