Visualizing Networks with Overlapping Groups

Adam J. Saffer, Ph.D. asaffer@umn.edu @SafferPHD

Objective 1

Understand conceptually the reasons why it might be help to visualize networks where nodes have multiple connections AND membership in multiple groups (or none).

Objective 2

Apply the R script and resources for visualizing where nodes with multiple connections AND membership in multiple groups (or none).

Basics: Networks + Relational Data

Building Networks

Node	the "things" within a network	Person, organization, or "thing" Attributes like gender, age, group, etc.
Tie	how those "things" are connected	Connected directly or indirectly Attributes like direction, strength, etc.
Dyad	focused on pairwise relations, fundamental unit of network data collection	▶
Network	all of the nodes, their connections, and dyads (or no connections at all)	Network level - cohesiveness Subnetwork level - cliques, groups, etc. Node level - position in network

Nodes

Also referred to as actors or vertices or alters

Nodes may have connections and attributes, and may come in different modes

"the units that are connected by the relations whose patterns we study" (Marin & Wellman, 2014)

Examples include:

- Individuals
- Groups/Teams
- Organizations
- Nations
- Artifacts
- News articles
- Websites
- What else can you think of?

Ties

Also referred to relations, connections, edges or arc

Examples of ties include:

- Interpersonal relations: kinship, co-workers, friendship, social media following
- Interorganizational relationships: organizations/groups, trade partners, coalitions, alliances
- Artifacts connections: websites (via hyperlinks), news articles (via authorship), co-occurrences

Ties can come in the following format:

- Directed v. Undirected
- Binary (1,0) v Valued (continuous)

Apply this to your work:

How are those nodes from the previous slide connected?

Visualizing: Basic Network Graph

Network plot on geo-political map

Why should you care about visualizing relation data?

My argument:

One of the **most useful aspects** of network analysis and relational data is the ability to visualize how "things" are connected. But, focusing on things and their connections is limiting when those things are also connected in other and often hidden ways.

Visualizing: In-group/Out-group Ties

Sociogram of CSOs In/Out-Group Ties

Visualizing: Overlapping Groups

Authors using multiple treatments of "engagement"

Sociogram of CSOs ties and overlap of issues

Sociogram of CSOs ties and overlap of network's prominent issues

Thank you!

