САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ГЕНЕТИКИ И БИОТЕХНОЛОГИИ

Васильев Артем Викторович Выпускная квалификационная работа

"Эволюционные особенности структуры гена Nxf1 (nuclear export factor) у животных"

Научный руководитель: к.б.н., доцент, кафедра генетики и биотехнологии, Голубкова Елена Валерьевна

Рецензент:

заведующая лабораторией, ведущий научный сотрудник, лаборатория эволюционной геномики и палеогеномики, ЗИН, к.б.н., с.н.с., Абрамсон Наталья Иосифовна

Оглавление

1	Материалы и методы	3
2	Результаты и обсуждение	5
3	Таблицы с результатами	6
4	Графики и картинки с результатами	14
5	Список литературы	22

Материалы и методы

В качестве отправной точки был произведен поиск гена Nxf1 внутри веб-сервиса NCBI [1]. Полученные данные были сохранены в текстовом формате и загружены в виде tsv-таблицы с помощью пакета pandas v2.2.3 [2] для языка программирования Python v3.12.6 [3]. Всего был найден 651 организм, содержащий анализируемый ген, большинство из которых относятся к Deuterostomia (Вторичноротые), 436 видов. Таким образом, в качестве материалов выступали нуклеотидные и белковые последовательности гена Nxf1 из открытых баз данных NCBI [1].

Большинство этапов последующего анализа реализовано в виде отдельных скриптов, разработанных в рамках данной работы, если не указано другое. Для логического разделения на блоки был использован Jupyter Notebook v1.1.1 [4].

По данным из полученной таблицы в разведывательных целях было построено филогенетическое дерево по найденным видам для оценки количества видов в таксонах более низкого ранга. Для глубокого анализа было принято решение сфокусироваться на организмах, относящихся к группе Protostomia (Первичноротые), Cnidaria (Стрекающие), а также на всех группах из Deuterostomia за исключением Mammalia (Млекопитающие).

Для найденных организмов с помощью пакета NCBI E-utilities из BioPython v1.85 [5] и NCBI Datasets Command-Line Interface (CLI) v18.0.2 [6] были загружены нуклеотидные последовательности гена, кодирующих участков и мРНК, а также аминокислотные последовательности белка в формате FASTA и аннотации для гена в GenBankформате, необходимые для получения нуклеотидных последовательностей экзонов и поиска "консервативной кассеты". Затем были получены и проанализированы интересующие нас участки экзон-интрон-экзонной структуры и созданы файлы со всеми экзонами и "кассетным" интроном для всех организмов, у которых получилось найти "кассету". Данные файлы будут необходимы для для последующего анализа.

Учитывая очень маленькие выборки во многих анализируемых группах (например, Cnidaria 4 вида, Spiralia 9 видов), было принято решение по увеличению их количества. Для этой цели, учитывая разнообразия полученных генов даже внутри одной таксономической группы, самым эффективным вариантом оказалось использование PSI-BLAST [7]. В качестве запроса (Query), или референса, использовались белковые последовательности тех организмов, у которых была найдена "кассета". Для проведения PSI-BLAST были выбраны настройки по-умолчанию за исключением параметра Organism: поиск проводился внутри таксономической группы, к которой принадлежал референс, также референс был исключен из поиска.

Парсинг результатов BLAST также осуществлялся с помощью пакета BioPython [5] и специально разработанных скриптов. Он включал в себя фильтрацию данных по параметрам процента покрытия (Query Coverage, QC), длине и сходству (Per. Ident) найденных последовательностей (Subject), а также загрузку нуклеотидных и белковых последовательностей, однако реализация отличалась из-за особенностей баз

данных NCBI [1]. Получение "кассеты" было произведено по тому же принципу, но, опять же, с отличиями. Благодаря данному шагу удалось увеличить выборки суммарно на 117 видов. К сожалению, для некоторых таксономических групп увеличение выборки оказалось невозможным в связи с отсутствием у некоторых организмов интересующего нас участка. Множественные выравнивания осуществлялись с помощью алгоритма MAFFT [8], 10 итераций, остальные настройки по-умолчанию, в программе Unipro UGENE v52.0 [9].

Анализ видов из Deuterostomia изначально шел более благоприятно за счет большого сходства последовательностей, в том числе интронных, и большего количества видов в группах. Для них также были загружены все необходимые файлы и произведен поиск и анализ "консервативной кассеты". Мы решили сосредоточить свое внимание на организмах из Actinopterygii (Лучеперые рыбы), 72 вида, так как данных по ним ранее получено не было. Учитывая большую степень сходства интронных последовательностей, с помощью пакета инструментов МЕМЕ Suite v5.5.8 [10] локально был произведен поиск консервативных мотивов внутри "кассетного" интрона. Найденные мотивы, у которых E-value < 0.05 также локально были проанализированы с помощью Tomtom [11] из того же пакета. Для описанного шага была взята база данных JASPAR2024 CORE (NON-REDUNDANT) DNA.

С помощью инструмента RNAfold v2.7.0 из пакета ViennaRNA [12] были построены вторичные структуры PHK для нуклеотидных последовательностей в двух вариантах (MFE и Centroid), содержащих экзоны и "кассетный" интрон, т.к. мы предполагаем, что избегание интроном сплайсинга может быть опосредовано образованной им специфической вторичной структурой. Учитывая данное предположение, разумным шагом также являлся анализ "силы сайтов сплайсинга", проведенный с помощью MaxEntScan [13]. Также с помощью скриптов цветом были выделены интронные последовательности внутри вторичной структуры и найденный мотив у Actinopterygii, который предположительно является СТЕ (Constitutive Transport Element).

Для Actinopterygii также был проведен филогенетический анализ, включающий построение и визуализацию деревьев. Для данной цели использовались самые популярные и проверенные временем инструменты. Построение деревьев осуществлялось с помощью IQ-TREE v2.4.0 [14], визуализация - с помощью Figtree v1.4.4 [15].

Работа проводилась в виртуальном окружении Mamba v1.5.5 [16], использованные пакеты и примеры анализа в Jupyter Notebooks можно найти в GitHub [17] репозитории автора: https://github.com/ArtemVaska/Diploma.

Для написания ВКР была использована система верстки LaTeX v4.76 [18], таблицы генерировались в веб-сервисе TablesGenerator [19]. Большинство картинок создано с помощью веб-сервиса draw.io [20]. Все шаги анализа проводились на базе операционной системы Linux Ubuntu 22.04 [21].

D		~ £ ~~~~~~
гезультаты	И	обсуждение

Текст...

Таблицы с результатами

Таблица 1: Результат увеличения выборки для таксономических групп Protostomia и Cnidaria с помощью PSI-BLAST.

Филогенетическая группа	Таксон высокого ранга	Видов до PSI-BLAST	Сколько видов добавил PSI-BLAST	Итого видов
Bilateria → Protostomia	Ecdysozoa	56	42	98
Bhatena—1 Totostolina	Spiralia	6	63	69
Cnidaria	Anthozoa	2	12	14

Таблица 2: Сводная таблица с характеристикой кассетного интрона для таксономической группы Actinopterygii. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в кассетной интроне.

Название организма	Кол-во нуклеотидов до стоп-кодона в интроне	Длина 1-го экзона в кассете	Длина кассетного интрона	Длина 2-го экзона в кассете
Chanos chanos	1	110	3568	37
Danio rerio	1	110	3580	37
Denticeps clupeoides	7	110	2629	37
Labrus bergylta	10	110	2684	37
Cottoperca gobio	16	110	2388	37
Xiphophorus couchianus	22	110	2227	37
Larimichthys crocea	22	110	2340	37
Lates calcarifer	22	110	2434	37
Notothenia coriiceps	22	110	2886	37
Betta splendens	22	110	2274	37
Poecilia reticulata	22	110	2262	37
Takifugu rubripes	22	110	2114	37
Salarias fasciatus	22	110	3855	37
Poecilia mexicana	22	110	2247	37
Stegastes partitus	22	110	2900	37
Clupea harengus	22	110	3219	37
Archocentrus centrarchus	22	110	2644	37
Esox lucius	22	110	2848	37
Monopterus albus	22	110	2353	37
Echeneis naucrates	22	110	2314	37
Paralichthys olivaceus	22	110	3148	37
Maylandia zebra	22	110	2565	37
Parambassis ranga	22	110	2484	37
Sander lucioperca	22	110	2494	37
Xiphophorus maculatus	22	110	2231	37
Nothobranchius furzeri	22	110	2290	37
Anabas testudineus	22	110	2352	37
Acanthochromis polyacanthus	22	110	2797	37
Anarrhichthys ocellatus	22	110	2355	37
Boleophthalmus pectinirostris	22	110	1702	37
Sparus aurata	22	110	2361	37
Oryzias melastigma	22	110	2212	37
Seriola dumerili	22	110	2494	37
Poecilia formosa	22	110	2259	37
Oreochromis niloticus	22	110	2580	37
Kryptolebias marmoratus	22	110	2556	37

Xiphophorus hellerii	22	110	2240	37
Poecilia latipinna	$\frac{22}{22}$	110	2261	37
Pundamilia nyererei	22	110	2527	37
Hippocampus comes	22	110	2622	37
Oreochromis aureus	22	110	2579	37
Amphiprion ocellaris	22	110	2752	37
Seriola lalandi dorsalis	22	110	2481	37
Austrofundulus limnaeus	22	110	2541	37
Puntigrus tetrazona	$\frac{22}{25}$	110	2440	37
Fundulus heteroclitus	$\frac{25}{25}$	110	2476	37
Cyprinodon variegatus	28	110	2533	37
Haplochromis burtoni	31	110	2535	37
Astatotilapia calliptera	31	110	2571	37
Gouania willdenowi	37	110	2616	37
Oryzias latipes	40	110	2331	37
Sphaeramia orbicularis	43	110	2376	37
Pygocentrus nattereri	46	110	2649	37
Astyanax mexicanus	46	110	2791	$\frac{37}{37}$
Colossoma macropomum	46	110	2644	37
Ictalurus punctatus	46	110	3166	37
Tachysurus fulvidraco	46	110	3493	$\frac{37}{37}$
Pangasianodon hypophthalmus	46	110	3348	37 37
Erpetoichthys calabaricus	55	110	3662	37 37
Perca flavescens	58	110	$\frac{3002}{2378}$	37 37
Mastacembelus armatus	64	110	2378	37
Salmo salar	67	110	$\frac{2571}{3553}$	37 37
Gadus morhua	67	110	3151	37 37
Etheostoma spectabile	97	110	$\frac{3151}{2457}$	37
Scleropages formosus	112	110	$\frac{2437}{3412}$	37
Myripristis murdjan	112	110	$\frac{3412}{2492}$	37 37
Paramormyrops kingsleyae	121	110	2929	37
0 1 0 0				37
Carassius auratus	148	110	3854	
Sinocyclocheilus grahami	148	110	3330	37
Sinocyclocheilus rhinocerous	154	110	3449	37
Sinocyclocheilus anshuiensis	154	110	4202	37
Electrophorus electricus	283	110	2874	37

Таблица 3: Сводная таблица с характеристикой кассетного интрона для таксономической группы Amphibia. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в кассетной интроне.

Название организма	Кол-во нуклеотидов до стоп-кодона в интроне	Длина 1-го экзона в кассете	Длина кассетного интрона	Длина 2-го экзона в кассете
Ambystoma mexicanum	1	110	10340	37
Pelobates fuscus	1	110	2424	37
Bufo bufo	7	110	3002	37
Bufo gargarizans	7	110	2879	37
Hyperolius riggenbachi	10	110	3902	37
Rana temporaria	10	110	3036	37
Pseudophryne corroboree	19	110	3561	37
Spea bombifrons	25	110	2840	37
Engystomops pustulosus	25	110	2004	37
Nanorana parkeri	25	110	3038	37
Hyla sarda	25	110	3029	37
Pyxicephalus adspersus	25	110	2917	37

Ranitomeya imitator	37	110	2650	37	
Xenopus tropicalis	46	110	2596	37	
Xenopus laevis	52	110	3791	37	
Geotrypetes seraphini	55	110	3065	37	
Rhinatrema bivittatum	103	110	4053	37	
Pleurodeles waltl	151	110	3245	37	
Microcaecilia unicolor	187	110	2784	37	

Таблица 4: Сводная таблица с характеристикой кассетного интрона для таксономической группы Cnidaria. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в кассетной интроне.

Название организма	Кол-во нуклеотидов до стоп-кодона в интроне	Длина 1-го экзона в кассете	Длина кассетного интрона	Длина 2-го экзона в кассете
$Actinia\ tenebrosa$	10	116	173	37
Dendronephthya gigantea	10	116	328	37
Nematostella vectensis	25	116	991	37
$Montipora\ foliosa$	31	116	907	37
Pocillopora verrucosa	34	116	390	37
Acropora digitifera	40	116	670	37
$Acropora\ millepora$	40	116	682	37
$Acropora\ muricata$	40	116	679	37
Pocillopora damicornis	46	116	392	37
Pocillopora meandrina	46	116	392	37
Porites lutea	61	116	711	37
Porites evermanni	61	116	711	37
Exaiptasia diaphana	76	86	227	37
Xenia sp. Carnegie-2017	103	116	116	37

Таблица 5: Сводная таблица с характеристикой кассетного интрона для таксономической группы Ecdysozoa. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в кассетной интроне.

Название организма	Кол-во нуклеотидов до стоп-кодона в интроне	Длина 1-го экзона в кассете	Длина кассетного интрона	Длина 2-го экзона в кассете
Trichinella spiralis	1	83	417	37
Priapulus caudatus	1	110	2114	37
Galendromus occidentalis	1	110	1491	37
Ixodes scapularis	1	110	3567	37
Limulus polyphemus	1	110	915	37
Parasteatoda tepidariorum	1	110	1725	37
Cryptotermes secundus	1	110	4335	37
Maniola hyperantus	1	110	920	37
Cimex lectularius	1	110	4437	37
Vespa mandarinia	1	113	379	37
Zerene cesonia	1	110	1162	37
Pararge aegeria	1	110	2657	37
Myzus persicae	1	107	772	37
Halyomorpha halys	1	110	7270	37
Diuraphis noxia	1	107	742	37
Sipha flava	1	107	58	37

	i	i		ı
$Manduca\ sexta$	1	110	1796	37
Apis laboriosa	1	113	1254	37
Orussus abietinus	1	113	74	37
Danaus plexippus	1	110	1009	37
$Colletes\ gigas$	1	113	379	37
$Ostrinia\ furnacalis$	1	110	1946	37
$Vespa\ crabro$	1	113	381	37
$Venturia\ can escens$	1	113	621	37
$Papilio\ polytes$	1	110	1674	37
$Vespa\ velutina$	1	113	377	37
$Cephus\ cinctus$	1	113	75	37
$Bombus\ pyrosoma$	1	113	244	37
$Papilio\ xuthus$	1	110	999	37
$Vanessa\ tameamea$	1	110	2352	37
$Megalopta\ genalis$	1	113	373	37
$Vespula\ pensylvanica$	1	113	363	37
$Leptopilina\ heterotoma$	1	113	921	37
Acromyrmex echinatior	1	113	438	37
$Aphidius\ gifuens is$	1	113	240	37
Polistes fuscatus	1	113	400	37
Dirofilaria immitis	7	98	248	37
Odontomachus brunneus	10	113	498	37
Diploscapter pachys	10	110	662	37
Bactrocera dorsalis	13	110	1808	37
$Drosophila\ melanogaster$	13	110	1602	37
Ceratitis capitata	19	110	2023	37
Pediculus humanus corporis	19	110	631	37
$Aphelenchoides\ avenae$	19	110	441	37
Litomosoides sigmodontis	19	110	242	37
$A can tho cheilone ma\ vite a e$	19	110	225	37
$Aethina\ tumida$	19	110	1729	37
$Lepeophtheirus\ salmonis$	22	110	1555	37
$An oplophora\ glab ripennis$	22	110	3664	37
$Varroa\ jacobsoni$	22	110	3077	37
Varroa destructor	22	110	3077	37
$The lazia\ callipaeda$	25	110	209	37
Bursaphelenchus xylophilus	25	110	638	37
Acyrthosiphon pisum	28	107	68	37
Anisakis simplex	30	219	665	37
Tetranychus urticae	31	122	648	37
Homarus americanus	31	110	9821	37
Bursaphelenchus okinawaensis	37	110	593	37
$Globodera\ pallida$	43	113	47	37
Amphibalanus amphitrite	73	110	369	37
Cotesia glomerata	73	116	236	37
Caenorhabditis angaria	79	110	230 96	37
Onchocerca ochengi	88	110	$\frac{30}{243}$	37
Brugia pahangi	91	110	$\begin{array}{c} 243 \\ 232 \end{array}$	37
Dragia panangi Ditylenchus destructor	97	307	$\frac{232}{1167}$	37
Mesorhabditis belari	97	110	147	37
Melanaphis sacchari	97	107	71	37
Enterobius vermicularis	100	110	71 195	37
Pristionchus mayeri	100	110	195 131	37
	103	110		37
Cercopithifilaria johnstoni			$\frac{238}{131}$	37
$Steinernema\ carpocapsae$	106	110 125	$131 \\ 242$	37
Wash mania han and the			/4/	
Wuchereria bancrofti Paralanh ostron gulus, tanuis	106			
Wuchereria bancrofti Parelaphostrongylus tenuis Toxocara canis	112 115	110 110	228 1062	37 37

Necator americanus	136	110	243	37
Brugia malayi	139	110	243	37
$Cae nor hab ditis\ auriculariae$	145	110	156	37
Auanema sp. JU1783	145	110	80	37
Pristionchus entomophagus	151	110	154	37
$Steinernema\ hermaphroditum$	157	110	131	37
$Cae nor hab ditis\ brenneri$	175	110	130	37
$Angiostrongylus\ cantonensis$	181	110	213	37
Dictyocaulus viviparus	190	110	832	37
$Caenorhabditis\ elegans$	193	110	106	37
Cooperia oncophora	205	110	215	37
Caenorhabditis sp. 36 PRJEB53466	205	110	133	37
$Caenorhabditis\ nigoni$	214	110	142	37
Pristionchus pacificus	214	110	251	37
$Trichostrongylus\ colubriformis$	214	110	224	37
$Cae nor hab ditis\ briggs ae$	217	110	145	37
$Cylicocyclus\ nassatus$	229	110	239	37
$Haemonchus\ contortus$	304	110	220	37
$Cae nor hab ditis\ bovis$	316	110	235	37
Nippostrongylus brasiliensis	316	110	235	37
Dracunculus medinensis	334	110	122	37
$Mesorhabditis\ spiculigera$	376	110	173	37
Pollicipes pollicipes	436	110	367	37
Rhopalosiphum maidis	1345	107	69	37

Таблица 6: Сводная таблица с характеристикой кассетного интрона для таксономической группы Lepidosauria. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в кассетной интроне.

Название организма	Кол-во нуклеотидов до стоп-кодона в интроне	Длина 1-го экзона в кассете	Длина кассетного интрона	Длина 2-го экзона в кассете
Python bivittatus	1	110	2374	37
Notechis scutatus	1	110	2507	37
Pseudonaja textilis	1	110	2519	37
Anolis sagrei	1	110	4667	37
Pituophis catenifer annectens	1	110	2420	37
Lacerta agilis	1	110	2499	37
Candoia aspera	1	110	2293	37
$Sphae rodactylus\ town sendi$	1	110	2825	37
Thamnophis elegans	1	110	2426	37
Ahaetulla prasina	1	110	2432	37
Gekko japonicus	1	110	2924	37
Crotalus tigris	1	110	3091	37
Pogona vitticeps	1	110	2746	37
$Podarcis\ raffonei$	1	110	2495	37
Protobothrops mucrosquamatus	1	110	3264	37
$Varanus\ komodoensis$	1	110	2658	37
Pantherophis guttatus	1	110	2411	37
Elgaria multicarinata webbii	1	110	2800	37
$Rhineura\ floridana$	1	110	2581	37
Podarcis muralis	1	110	2506	37
$Heteronotia\ binoei$	1	110	3002	37
Anolis carolinensis	1	110	4026	37
$Erythrolamprus\ reginae$	1	110	2638	37
Sceloporus undulatus	1	110	2380	37

Eublepharis macularius	1	110	2577	37
$Euleptes\ europaea$	1	110	2901	37
$Hemicordylus\ capensis$	1	110	2830	37
$Zootoca\ vivipara$	1	110	2516	37

 Таблица 7: Сводная таблица с характеристикой кассетного интрона для

 таксономической группы Sauropsida. Сортировка по возрастанию количества

 нуклеотидов до стоп-кодона в кассетной интроне.

Название организма	Кол-во нуклеотидов до стоп-кодона в интроне	Длина 1-го экзона в кассете	Длина кассетного интрона	Длина 2-го экзона в кассете
Molothrus aeneus	1	110	745	37
Taeniopygia guttata	1	110	443	37
Lonchura striata	1	110	629	37
Gallus gallus	7	110	1616	37
Cygnus atratus	25	110	1257	37
Haliaeetus leucocephalus	25	110	1375	37
Phalacrocorax carbo	25	110	1345	37
Grus americana	25	110	1659	37
Haliaeetus albicilla	25	110	1378	37
Oxyura jamaicensis	25	110	1246	37
Anser cygnoides	25	110	1279	37
Ciconia boyciana	25	107	1459	37
$Anas\ acuta$	25	110	1346	37
Astur gentilis	25	110	1393	37
Aquila chrysaetos chrysaetos	25	110	1375	37
Aythya fuligula	25	110	1227	37
Struthio camelus	64	110	1405	37
Chelonia mydas	79	110	1674	37
Dermochelys coriacea	79	110	1661	37
Caretta caretta	79	110	1656	37
Ammospiza caudacuta	82	110	3942	37
Aphelocoma coerulescens	85	110	3626	37
Gopherus flavomarginatus	142	110	1655	37
Chelonoidis abingdonii	142	110	1645	37
Malaclemys terrapin pileata	142	110	1652	37
Mauremys mutica	142	110	1662	37
Mauremys reevesii	142	110	1661	37
Trachemys scripta elegans	142	110	1661	37
Chrysemys picta bellii	142	110	1662	37
Emys orbicularis	142	110	1650	37
$Alligator\ sinensis$	148	110	1497	37
$Alligator\ mississippiens is$	148	110	1618	37
Caloenas nicobarica	184	110	1245	37
Rissa tridactyla	205	110	1388	37
Terrapene triunguis	211	110	1662	37
Emydura macquarii macquarii	223	110	1647	37
Catharus ustulatus	241	110	3252	37
$Gopherus\ evgoodei$	301	110	1639	37
Strigops habroptila	457	110	1317	37
Neopsephotus bourkii	502	110	1245	37
Melopsittacus undulatus	517	110	1257	37
Apteryx rowi	541	110	1359	37
$Apteryx\ mantelli$	541	110	1359	37
Dromaius novaehollandiae	553	110	1365	37

Chroicocephalus ridibundus	562	110	1373	37
Pezoporus wallicus	568	110	1328	37
Pezoporus flaviventris	568	110	1328	37
Rhea pennata	568	110	1348	37
Pezoporus occidentalis	568	110	1319	37
Pelodiscus sinensis	640	110	1643	37
Phaenicophaeus curvirostris	892	110	2155	37
Camarhynchus parvulus	1360	110	2456	37
Vidua chalybeata	1519	110	678	37

Таблица 8: Сводная таблица с характеристикой кассетного интрона для таксономической группы Spiralia. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в кассетной интроне.

Название организма	Кол-во нуклеотидов до стоп-кодона в интроне	Длина 1-го экзона в кассете	Длина кассетного интрона	Длина 2-го экзона в кассете
Schistosoma haematobium	1	239	652	37
Magallana gigas	1	110	1537	37
Mya arenaria	1	110	1727	37
Crassostrea virginica	1	110	1613	37
Aplysia californica	1	221	4146	37
Gigantopelta aegis	1	110	1869	37
Mercenaria mercenaria	1	110	1690	37
Dreissena polymorpha	1	110	2207	37
Ruditapes philippinarum	1	110	1646	37
$Mactra\ antiquata$	1	110	2319	37
Mytilus coruscus	1	110	1234	37
Potamilus streckersoni	1	110	4567	37
Saccostrea echinata	1	110	1556	37
Mytilus edulis	1	110	1360	37
Mytilus trossulus	1	110	1357	37
Pecten maximus	1	110	5000	37
Ostrea edulis	1	110	1643	37
Mizuhopecten yessoensis	1	110	4836	37
Saccostrea cuccullata	1	110	1706	37
Ylistrum balloti	1	110	4649	37
Argopecten irradians	1	110	5057	37
Magallana angulata	1	110	1534	37
Mytilus californianus	1	110	1248	37
Pinctada imbricata	1	110	4144	37
Haliotis asinina	1	110	2375	37
Sinanodonta woodiana	1	110	4580	37
Haliotis cracherodii	1	110	2506	37
Haliotis rufescens	1	110	2505	37
Patella caerulea	1	110	1362	37
Patella vulgata	1	110	1384	37
Lymnaea stagnalis	1	221	2705	37
Batillaria attramentaria	1	110	8614	37
Schistosoma turkestanicum	1	239	905	37
Paragonimus westermani	1	239	13971	37
Pomacea canaliculata	1	56	255	37
Bradybaena similaris	1	221	3811	37
Elysia crispata	1	221	8063	37
Elysia chlorotica	1	221	7182	37
Bulinus truncatus	1	221	1873	37

Biomphalaria pfeifferi	1	221	1885	37
Biomphalaria glabrata	1	221	1889	37
Schistosoma guineensis	1	239	652	37
Schistosoma curassoni	1	239	652	37
Schistosoma bovis	1	239	652	37
Schistosoma margrebowiei	1	239	650	37
Schistosoma intercalatum	1	239	652	37
$Schistosoma\ rodhaini$	1	239	671	37
Schistosoma japonicum	1	239	847	37
Clonorchis sinensis	1	242	6006	37
Hydatigera taeniaeformis	1	242	375	37
Taenia crassiceps	1	242	278	37
Taenia asiatica	1	242	480	37
Heterobilharzia americana	1	239	2163	37
Trichobilharzia szidati	1	239	1336	37
Trichobilharzia regenti	1	239	996	37
Opisthorchis felineus	1	242	14603	37
Rodentolepis nana	1	242	222	37
Calicophoron daubneyi	1	239	4214	37
Taenia solium	1	242	480	37
Echinococcus granulosus	1	242	521	37
Fasciola hepatica	1	239	2631	37
Fasciola gigantica	1	239	2581	37
$Schistosoma\ mattheei$	1	239	649	37
Fasciolopsis buskii	1	239	1303	37
Dicrocoelium dendriticum	1	239	2612	37
Paragonimus heterotremus	1	239	18219	37
Hymenolepis diminuta	1	242	224	37
Solemya velum	4	110	2071	37
Littorina saxatilis	19	218	6746	37

Графики и картинки с результатами

Рис. 1: Количество видов, взятых в анализ для Protostomia+Cnidaria и Deuterostomia.

Рис. 2: Количество видов, взятых в анализ для Protostomia+Cnidaria и Deuterostomia.

Рис. 3: Распределение длин части кассетного интрона до стоп-кодона у таксономической группы Actinopterygii

Рис. 4: Распределение длин кассетного интрона у таксономической группы Actinopterygii

Рис. 5: Филогенетическое дерево для таксономической группы Actinopterygii

Logo 🔞	E-value ?	Sites ?	Width ?
1 AGGCGAGTATGGAACCCTCGATAGCC.ATGACCGGTAAGATCCCACCTG_AAAACCGGGG	2.1e-827	67	60
2. AACCTAACGCACCCACTCACGATTACTC_GCCTG	6.5e-448	68	36
3 ☐ #GTGCTTGTGTTGCT±C±CCATGTCAGATCTGTGTATATCACCATATTGGGGGAGAGGGGTG	2.8e-508	44	60
$ \stackrel{\scriptscriptstyle 4}{=} \stackrel{\scriptstyle 1}{:}]_{\text{CA}_{\mathbb{C}}, \text{CA}_{\mathbb{C}}, \text{T}_{\text{T}}, \text{TCCCCTCCCCT}_{\text{A}}, \text{TAGCA}_{\text{C}}, \text{C}_{\text{C}}, \text{TGCCCA}_{\text{C}}, $	3.5e-340	46	50
5. DE PROPERTIE DE LA COMPANION DE LA COMPANIO	2.7e-258	46	36

Рис. 6: Результат поиска мотивов внутри кассетного интрона с помощью meme для таксономической группы Actinopterygii.

Черным прямоугольником выделен участок, похожий на консенсусную последовательность СТЕ из статьи 2001 года.

TBE TACC-TA-GAGCTGTG
CTE { AACCTAA-GA-CAG-G consensus AG CC-AATGA-C-GGG

Рис. 7: Консенсусный СТЕ из статьи 2001 года

Рис. 8: Результаты проведения MaxEntScan для 72 видов из Actinopterygii.

Рис. 9: Результаты множественного выравнивания для 72 видов из Actinopterygii.

Список литературы

- 1. Database resources of the National Center for Biotechnology Information / E. W. Sayers, E. E. Bolton, J. R. Brister, [et al.] // Nucleic Acids Research. 2022. Vol. 50, no. D1. P. D20–D26. DOI: 10.1093/nar/gkab1112. URL: https://doi.org/10.1093/nar/gkab1112.
- 2. McKinney W. Data Structures for Statistical Computing in Python. 2010.
- 3. Python Software Foundation. Python, Version 3.12. 2023. https://www.python.org/downloads/release/python-3120/.
- 4. Jupyter Notebooks a publishing format for reproducible computational workflows / T. Kluyver [et al.]. 2016. DOI: 10.3233/978-1-61499-649-1-87. URL: https://doi.org/10.3233/978-1-61499-649-1-87.
- 5. Biopython: Freely available Python tools for computational molecular biology and bioinformatics / P. J. A. Cock [et al.] // Bioinformatics. 2009. Vol. 25, no. 11. P. 1422–1423. DOI: 10.1093/bioinformatics/btp163. URL: https://doi.org/10.1093/bioinformatics/btp163.
- 6. Exploring and retrieving sequence and metadata for species across the tree of life with NCBI Datasets / N. A. O'Leary [et al.] // Scientific Data. 2024. Vol. 11, no. 1. P. 732. DOI: 10.1038/s41597-024-03571-y. URL: https://doi.org/10.1038/s41597-024-03571-y.
- 7. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs / S. F. Altschul [et al.] // Nucleic Acids Research. 1997. Vol. 25, no. 17. P. 3389–3402. DOI: 10.1093/nar/25.17.3389. URL: https://doi.org/10.1093/nar/25.17.3389.
- 8. Katoh K., Standley D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability // Molecular Biology and Evolution. 2013. Vol. 30, no. 4. P. 772–780. DOI: 10.1093/molbev/mst010. URL: https://doi.org/10.1093/molbev/mst010.
- 9. Unipro UGENE: a unified bioinformatics toolkit / K. Okonechnikov [et al.] // Bioinformatics. 2012. Vol. 28, no. 8. P. 1166–1167. DOI: 10.1093/bioinformatics/bts091. URL: https://doi.org/10.1093/bioinformatics/bts091.
- 10. The MEME Suite / T. L. Bailey [et al.] // Nucleic Acids Research. 2015. Vol. 43, W1. W39-W49. DOI: 10.1093/nar/gkv416. URL: https://doi.org/10.1093/nar/gkv416.
- 11. Quantifying similarity between motifs / S. Gupta [et al.] // Genome Biology. 2007. Vol. 8, no. 2. R24. DOI: 10.1186/gb-2007-8-2-r24. URL: https://doi.org/10.1186/gb-2007-8-2-r24.

- 12. ViennaRNA Package 2.0 / R. Lorenz [et al.] // Algorithms for Molecular Biology. 2011. Vol. 6, no. 1. P. 26. DOI: 10.1186/1748-7188-6-26. URL: https://doi.org/10.1186/1748-7188-6-26.
- 13. Yeo G., Burge C. B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals // Bioinformatics. 2004. Vol. 20, no. 3. P. 327–335. DOI: 10.1093/bioinformatics/btg005. URL: https://doi.org/10.1093/bioinformatics/btg005.
- 14. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era / B. Q. Minh [et al.] // Molecular Biology and Evolution. 2020. Vol. 37, no. 5. P. 1530–1534. DOI: 10.1093/molbev/msaa015. URL: https://doi.org/10.1093/molbev/msaa015.
- 15. Rambaut A. FigTree v1.4.4. 2018. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/.
- 16. QuantStack, contributors mamba. Mamba: The Fast Cross-Platform Package Manager. 2024. https://github.com/mamba-org/mamba.
- 17. GitHub, Inc. GitHub. 2008. URL: https://github.com.
- 18. Lamport L. LaTeX: A Document Preparation System. 2nd ed. Reading, Massachusetts: Addison-Wesley, 1994.
- 19. Tables Generator.com. Tables Generator LaTeX Tables Editor. 2025. URL: https://www.tablesgenerator.com.
- 20. diagrams.net. draw.io Online Diagram Software. 2025. URL: https://www.diagrams.net/.
- 21. Canonical Ltd. Ubuntu 22.04 LTS (Jammy Jellyfish). 2022. https://releases.ubuntu.com/22.04/.