Weekly Report KARIMI-2021-09-17

My work this week has mainly been towards

- 1. Compressed EBM for memory efficiency
- 2. Spars AMS code for Imagenet
- 3. FEDLAMB arxiv paper and Bernoulli journal EM paper formatting and submission

1 Memory Efficient EBM Training

Definition 1 (Top-k). For $x \in \mathbb{R}^d$, denote S as the size-k set of $i \in [d]$ with largest k magnitude $|x_i|$. The **Top-**k compressor is defined as $C(x)_i = x_i$, if $i \in S$; $C(x)_i = 0$ otherwise.

Definition 2 (Block-Sign). For $x \in \mathbb{R}^d$, define M blocks indexed by \mathcal{B}_i , i = 1, ..., M, with $d_i := |\mathcal{B}_i|$. The **Block-Sign** compressor is defined as $\mathcal{C}(x) = [sign(x_{\mathcal{B}_1}) \frac{\|x_{\mathcal{B}_1}\|_1}{d_1}, ..., sign(x_{\mathcal{B}_M}) \frac{\|x_{\mathcal{B}_M}\|_1}{d_M}]$.

Algorithm 1 EFF-EBM

- 1: **Input**: Number of iterations T, MCMC transitions K and of samples M, global learning rate $\{\eta_t\}_{t>0}$, MCMC stepsizes $\gamma_{k\,k>0}$, initial value θ_0 , MCMC initialization $\{z_0^m\}_{m=1}^M$ and observations $\{x_i\}_{i=1}^n$.
- 2: for t = 1 to T do
- 3: Draw M samples $\{z_t^m\}_{m=1}^M$ from the objective potential via Langevin diffusion:
- 4: **for** k = 1 to K **do**
- 5: Use black box compression operators to compress the gradient with respect to z:

$$\tilde{g}_{k-1}^m = \mathcal{C}(\nabla_z f_{\theta_t}(z_{k-1}^m))$$

where C is either Sign, Topk, or maybe a simple count sketch operator (need to see in practice what makes sense).

6: Construct the Markov Chain as follows:

$$z_k^m = z_{k-1}^m + \frac{\gamma_k}{2} \tilde{g}_{k-1}^m + \sqrt{\gamma_k} \mathsf{B}_k , \qquad (1)$$

where B_t denotes the Brownian motion (Gaussian noise).

- 7: end for
- 8: Assign $\{z_t^m\}_{m=1}^M \leftarrow \{z_K^m\}_{m=1}^M$.
- 9: Sample m positive observations $\{x_i\}_{i=1}^m$ from the empirical data distribution.
- 10: Compute the gradient of the empirical log-EBM:

$$\nabla \log p(\theta_t) = \mathbb{E}_{p_{\text{data}}} \left[\nabla_{\theta} f_{\theta_t}(x) \right] - \mathbb{E}_{p_{\theta}} \left[\nabla_{\theta_t} f_{\theta}(z_t) \right] \approx \frac{1}{n} \sum_{i=1}^n \nabla_{\theta} f_{\theta_t} \left(x_i \right) - \frac{1}{m} \sum_{i=1}^m \nabla_{\theta} f_{\theta_t} \left(z_t^m \right) .$$

11: Update the vector of global parameters of the EBM:

$$\theta_{t+1} = \theta_t + \eta_t \nabla \log p(\theta_t) .$$

- 12: end for
- 13: Output: Vector of fitted parameters θ_{T+1} .

2 Spars AMS Imagenet and 1-bit Adam