MF 790 RECOMMENDED HW 7, PART 2

This assignment is recommended to help you study for the final exam.

1. Drift-less geometric Brownian might not increase by any fixed amount? Let W be a Brownian motion, and consider the process $M \sim \operatorname{GBM}(0, \sigma^2), \sigma > 0$ which has dynamics

$$\frac{dM_t}{M_t} = \sigma dW_t; \qquad M_0 = 1.$$

Using the optional sampling theorem, show for any $\varepsilon > 0$ that if we set τ_{ε} as the hitting time to $1 + \varepsilon$

$$\tau_{\varepsilon}(\omega) := \inf \{ t \geq 0 \mid M_t(\omega) = 1 + \varepsilon \},$$

then $\mathbb{P}\left[\tau_{\varepsilon}=\infty\right]>0$. This result seems remarkable, given how much a Brownian motion varies, but it is true. There is non-zero likelihood a drift-less geometric Brownian motion reaches any fixed level above it's starting point.

Warning: we only proved optional sampling for bounded stopping times.

Hint: you may use without proof that $\mathbb{P}\left[\tau_{\varepsilon} < \infty\right] = \lim_{n} \mathbb{P}\left[\tau_{\varepsilon} \leq n\right]$.

2. Non negative martingales get stuck at 0. Let M be a non-negative martingale with continuous paths starting at 1, and let τ be the hitting time to 0 of M. Now, it is certainly possible that $\tau = \infty$ with probability one (for example, this is the case for M from problem 1). However, in this exercise we will show that if $\mathbb{P}\left[\tau < \infty\right] > 0$ then M gets stuck at 0 once it hits zero.

This exercise has important implications for the stock price process S in an arbitrage free model. Indeed, as S is a non-negative $\mathbb Q$ martingale, the result implies that if S hits 0, it must stay there. Try to think from an arbitrage perspective why it is "obvious" that we need S, if it can hit zero, to stay there.

Show the result in the following steps

- (a) Fix a t > 0 and define the bounded stopping times $\tau_n = \tau \wedge n$ and $\sigma_n = (\tau + t) \wedge n$. Show that $\{\tau \leq n\} \in \mathcal{F}_{\tau_n}$.
- (b) Assume the following result (you do not have to prove this)

$$\mathbb{E}\left[M_{\tau+t}1_{\tau<\infty}\right] = \lim_{n} \mathbb{E}\left[M_{\sigma_{n}}1_{\tau\leq n}\right].$$

1

Using part (a) and optional sampling, show that $\mathbb{E}[M_{\tau+t}1_{\tau<\infty}]=0$.

(c) Argue why part (b) gives the result.