Laboratorio di Fisica - A.A. 2020/2021

Docenti: A. Garfagnini - M. Lunardon

Fotodiodo

Cerrone Vanessa 1200361

vanessa.cerrone@studenti.unipd.it

Cigagna Simone 1193992

simone.cigagna@studenti.unipd.it

Lai Nicolò 1193976 nicolo.lai@studenti.unipd.it

1 Introduzione

Si vuole analizzare lo spettro dei fotoni emessi dall'Americio-241 con un rivelatore al Silicio tipo PIN, dotato di preamplificatore di carica. L'hardware, cioè i moduli di elettronica, sono stati pre-impostati in condizioni standard, con shaping time pari a 3μ s, in modo da ottimizzare il rapporto segnale rumore. Preliminarmente, tramite il software di acquisizione, si registra uno spettro per identificare i picchi principali, a 60keV e 14-18keV.

Nella sezione 3 si analizzerà il picco a 59.5keV in presenza di materiali di diverso spessore, al fine di calcolare i relativi coefficienti di assorbimento. Nella sezione 4, si effettueranno misure al variare della distanza della sorgente, per verificare che i dati seguano l'andamento atteso. Un'analisi dettagliata dello spettro verrà presentata nella sezione sottosezione 2.2.

2 Spettro dell'Am-241

Prima di studiare in dettaglio gli effetti di diversi assorbitori posti tra la sorgente ed il detector ed il ruolo che svolge la distanza di quest'ultimo dalla prima, ci si vuole concentrare in un'analisi dello spettro dell'Americio-241. Sperimentalmente, il rivelatore viene posto alla minima distanza dalla sorgente e non viene inserito alcun assorbitore tra i due. Il tempo di acquisizione viene impostato a 600 s, rivelando così approssimativamente $2 \cdot 10^5$ eventi con un rate istantaneo di circa 340 Hz. In questo modo, il picco a 60 keV presenta una precisione $\sqrt{N}/N \approx 1.5\%$.

2.1 Calibrazione e Risoluzione Energetica

Inizialmente, si vuole calibrare l'asse orizzontale riconoscendo nello spettro in Figura 1 il picco a 60 keV. Nel grafico è presentato lo spettro di emissione con l'asse calibrato in energia: per ottenere tale risultato è stato eseguito un fit gaussiano del picco, come mostrato nel riquadro al-

Figura 1. Spettro dell'Americio-241 con fit del picco a 60 keV per la calibrazione dell'asse orizzontale

l'interno del grafico. Ovviamente, la calibrazione ottenuta sfruttando unicamente il picco a 60keV e assumendo l'assenza di un possibile offset è approssimata, tuttavia risulta essere sufficiente per gli scopi dell'esperienza.

Dal fit del picco a 60keV è possibile infine estrapolare una stima approssimata della risoluzione energetica R:

$$R = \frac{\Delta E}{E} \simeq \frac{FWHM}{mean} = 6.75\%$$
 (1)

in assenza di offset

2.2 Fit Multi-Picco

Ag		Cu	
Spessore [µm]	Rate [Hz]	Spessore [µm]	Rate [Hz]
60	5.45 ± 0.11	92	6.97 ± 0.13
120	3.80 ± 0.08	184	6.12 ± 0.12
180	2.42 ± 0.07	276	5.54 ± 0.11
240	1.93 ± 0.06	368	4.71 ± 0.11

Tabella 1. Dati fit esponenziale per il calcolo del coefficiente di assorbimento

3 Coefficiente di assorbimento

Ci si propone di effettuare delle misure in presenza di materiali di diverso spessore, nello specifico rame e argento, con lo scopo di calcolarne il coefficiente di assorbimento μ , che si ricava dalla relazione:

$$I(x) = I_0 e^{-\mu x} \tag{2}$$

dove I è l'intensità della radiazione incidente e x lo spessore attraversato.

Si inseriscono gli assorbitori di spessore variabile e si acquisiscono gli spettri per un intervallo di tempo sufficiente a garantire una precisione migliore del 3% sul picco a 59.5keV. La precisione in percentuale si ottiene ricavando il numero di eventi N, cioè l'area, al di sotto del picco di interesse... Si calcola il rate degli eventi nel picco a 60 keV per tutte le misure effettuate come rapporto tra numero di eventi rilevati e tempo di acquisizione, che come prima è stato adattato in modo da avere precisioni di almeno il 3% Considerando la relazione Equazione 2 si effettua un fit esponenziale del rate in funzione dello spessore del materiale, separatamente per rame e argento. Si sottolinea che il rapporto N/t rappresenta l'intensità della radiazione incidente per unità di superficie: il rivelatore a disposizione ha un'area di 1 cm², dunque ok (???).

- 4 Misure in funzione della distanza
- 5 Stima dell'efficienza relativa