TP Mixins - Sin City

Vamos a trabajar sobre el dominio de un "simulador de ciudades", como en aquella vieja y querida saga de "SimCity"

Sin embargo no nos vamos a ocupar de la parte gráfica que desviaría la atención del TP. Simplemente vamos a modelar (parte) de la lógica el dominio.

Nota de forma:

El TP debe cumplir con la reglas generales de todo TP: ser legible, no tener código

comentado, mínimamente formateado, e importante estar testeado !! Cada punto del TP tiene que testear ese comportamiento. No hace falta testear getters y setters o cosas triviales, sino los comportamientos "principales" que se piden.

Introducción

Nuestro dominio consiste en una **Ciudad** que tiene **Parcelas**. Una parcela es básicamente una pieza del terreno. La ciudad dispone de las parcelas en forma de cuadrícula o tablero. El tamaño se establece al momento de construir la ciudad.

Ej Ciudad de 4 x 5. Como si fuera un juego de tablero

Además cada Parcela tiene una altura o nivel sobre el mar. Digamos entre 0 y 5000 m

En una parcela dada se puede realizar una **Construcción**. Ya vamos a ver que tenemos distintos tipos de construcciones.

Pero por ahora digamos que una Construcción conoce a la parcela sobre la que está y tiene una antigüedad (nr de años).

Lógica de Juego

La lógica del TP se va a basar en un modelo de ejecución simple para realizar simulaciones. La idea es poder

- construir una ciudad con su terreno
- realizar construcciones sobre las parcelas.
- luego poder "simular" un día bajo ciertas Condiciones.
- poder chequear resultados de la simulación

En un principio vamos a modelar la producción y el consumo de energía.

Pero antes: las **Condiciones** de la simulación establecen datos climáticos/ambientales/económicos/etc del contexto. Eventualmente iremos agregando elementos a medida que hagamos más complejo el ejercicio.

Pero por ahora podemos decir que conoce:

Climáticas

- Nubosidad: un porcentaje/ratio (de 0 a 1) que indica cuán nublado estará el día. 1 = completamente nublado, 0 = sin nubes. Ya vamos a ver que esto afecta a la producción de energía
- Viento: velocidad en km/h. Para referencia viento "bajo" < 15km/h, luego moderados <= 35 km y fuertes > 35
- o Temperatura: en grados centígrados
- o Estación: Verano, Invierno, Primavera, Otoño

Parte 1: Power to the people

Lo primero que vamos a necesitar es el **consumo y la producción** de **energía** en la ciudad.

Existen construcciones dedicadas a la producción de energía: las "Plantas energéticas" Estas plantas en cada simulación de un día producen energía en forma de kilowatts.

Luego de la simulación en la ciudad deberíamos poder acceder a información energética como:

- kw producidos
- kw consumidos
- balance (diff entre ambos)

Las plantas tiene un número de empleados que trabajan en ellas.

Luego existen los siguientes tipos de plantas dependiendo de **cómo generan la energía**

- Solares
- Eólicas
- Comunes

Solares

Generan energía dependiendo de: nubosidad, horas de sol según temporada (Verano 13hs, Invierno 10hs, Otoño y Primavera, 11hs) y altura de la parcela. De la siguiente forma

Energia (kw) = nubosidad * kwPorHora * horasDeSol * factorAltura

Donde:

- factorAltura = alturaParcela * 3/5000
- kwPorHoraldeal (kw) = es un número particular de cada planta. Como su "capacidad de producción"
- nubosidad: condición de simulación.
- horasDeSol: idem (según estación)

Eólicas

Generan de la siguiente forma:

Donde:

- factorViento = maximaDifferenciaDeAlturaConParcelasVecinas / 1000
- viento: condición de simulación

Normales

Generan en base a

Donde:

- **kwPorHora**: nrEmpleados * kwsHoraPorEmpleado
- kwsHoraPorEmpleado: es un dato específico de cada planta común

Públicas / Privadas

Nos faltó considerar un pequeño detalle. Cualquier de las plantas pueden ser **Pública** o **Privada** esto afecta a su funcionamiento de la siguiente forma.

• **Públicas**: los días feriados "no laborales" la capacidad de la planta disminuye. En esos casos la energía que producen es el 50% de la normal.

 Privadas: puede resultar no "conveniente" producir energía en un día dependiendo de las "Condiciones de mercado internacionales" (parte de las condiciones de simulación). Sólo conviene producir si el precio del KW/h mundial supera los 10 \$/kw. En otro caso no produce nada.

Parte 2: Hogares y Granjas

Ya tenemos energía en la ciudad, con lo que podemos empezar a tener ciudadanos!

Residencias

Y para vivir necesitan Residencias. Una residencia tiene un número de miembros de la familia. Es decir cuántas personas viven en ella.

En primera instancia sabemos que las residencias **consumen energía.** Por defecto se sabe que consumen

- 2kw por día por persona en invierno y verano (estufas eléctricas y AACC :P)
- 1kw por día por persona en otoño e invierno.

Sin embargo el consumo real podría verse afectado por el perfil del hogar:

- **Derrochadores:** no prestan atención al consumo, consumen "X" veces más que el "consumo base". Donde X es un número configurable.
- Conscientes: tienen una cota de consumo. Por ejemplo una familia de 4 en invierno consumiría 8 kw/día (2 kw/dia persona * 4 persona). Pero su cota es 6kw/día, con lo cual su consumo real es 6. Si la cota era 10, entonces el consumo hubiera sido 8.

Granjas

Existe otro tipo de construcción, las granjas. Cuyo característica principal es que generan alimentos, en forma de "producto bruto", para simplificar vamos a usar una unidad numérica.

Existen los siguientes tipos de granjas en cuanto a su producción

- Holdings: son grandes plantaciones de megacorporaciones. Generan especulando con el mercado internacional. De la siguiente forma: PB = 6 * precioCommodities / 100 * gradoAutomatización. Donde precioCommodities es una "condición" de simulación, y "gradoAutomatización" es un dato de cada granja.
- Granja Familiar: pequeñas granjas que generan una cantidad fija de PB según la temporada y una "producción base": Ej
 - Verano = 5 * produccionBase,
 - Invierno = 2 produccionBase

- Otoño y Primavera = 4 * producciónBase (producción base es un número propio de las granjas familiar)
- **EcoGranja**: produce "x" pero sólo los días de sol (nubosidad < 30%) y siempre que no sea invierno.

Bien, resulta que las granjas además consumen energía, al igual que las Residencias. De la siguiente forma

- Holdings: consumen una cantidad fija de N kwPorDía.
- Granja Familiar: Consumen en base a su producciónBase (dato que ya vimos se usa para producir). De la siguiente forma:

1 - log(1/produccionBase)

Pero no todas las granjas consumen energía. La **EcoGranja** no consume energía.

Y un estudio descubrió que, el consumo energético se ve reducido según el grado de automatización. Entonces algunas granjas pueden estar automatizadas y en tal caso su consumo se ve modificado de la sigunte manera.

Adicionalmente, el consumo depende del **perfil** de las granjas. Queremos reutilizar lo ya definido, ya que existen "Granjas Derrochadoras" y "Granjas Conscientes". Tenemos que poder combinarlas en todas las formas. Ej: "Granja Holding Derrochadora/Consciente", "Granja Familiar Derrochadora/Consciente" (obviamente no vale repetir código!)

Y por último, algunas granjas también **producen energía**! Ya que pueden tener paneles solares o molinos de viento. Es decir que queremos poder reutilizar de las plantas eléctricas su comportamiento: Solar y Eólicas.

Entonces en el caso más complejo podríamos tener:

- Granja Familiar Consciente Automatizada(30%) Solar (con kwPorHora = 3
- Granja Familiar Consciente
- Granja Holding Eólica
- EcoGranja

Realizar tests de todas las diversas combinaciones de Granjas checkeando por:

- energía generada
- energiá consumida
- PBI (producción)

Parte 3: contaminación y trabajo

// TODO: ESTO ESTA POR DEFINIRSE TODAVIA!!!

- Granjas y Plantas generan trabajo. Casas ofrecen mano de obra.
- Una vez agregado el concepto de contaminación y trabajo... agregar nuevos comportamiento de familia:
 - **ConscienteContextual**: que reducen el consumo un 10% si el nivelDeContaminación (definir) de la ciudad es bajo (definir)
 - **TrabajoDependiente**: si la ciudad tiene un porcentajeDeEmpleo (definir) < 0.3 entonces reducen su consumo en 0.5% por persona en la familia.