

Week 1. Differentiation and some linear algebra

Dr. Shuo Wang

Overview

- Univariate differentiation
- Some rules
- Partial differentiation (more than 1 independent variable)

Rate of Change (Gradient) of a Straight Line

- A car travels 40m over 4s. Speed?
 - Gradient (derivative)= speed/slope = rate of distance change, steepness
 - Δx , Δy : change of x and y
 - Gradient of a straight line: y = 10x Constant gradient, same at every point.

Differentiation

The process of finding the rate at which one variable changes with respect to another (i.e. the gradient).

- Gradient = $\frac{\Delta y}{\Delta x}$
- Δx , Δy represent a change in the value of x and y
- What if our function is a curve, instead of a straight line?

Gradient at a Point, Differentiation from first principles

- The gradient at a point is given by the gradient of the tangent at that point.
- As point C moves closer to B, the gradient of the line BC gets closer to the gradient at B.
- Consider the limit as Δx tends to 0.
- This process called differentiation from first principles.
- It gives you the direction of the steepest uphill (aka. largest increase).

Gradient/Derived Function, Derivative

- The gradient of the tangent to a curve (non-linear) function y = f(x) varies with variable x. Therefore, it is also a function of x.
- It is called gradient function or derived function.

Gradient/Derived Function, Derivative

- Both f'(x) and $\frac{dy}{dx}$ mean the gradient function.
- Also known as the derivative of y with respect to x.

$$f'(x) = \frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• Practice: how to obtain the general gradient function of $y = x^2$.

Differentiation of Monomials $y = ax^n$

f(x)	С	x	x^2	x^3	x^4	<i>x</i> ⁵
f'(x)	0	1	2x	$3x^2$	$4x^3$	$5x^4$

- What Pattern do you notice?
- In general:

For
$$f(x) = x^n$$
, $f'(x) = nx^{n-1}$
For $f(x) = ax^n$, $f'(x) = anx^{n-1}$

Differentiation of Multiple Terms - Polynomials

- A polynomial function: $y = x^3 + 6x^2 3x + 1$
- How to differentiate this function with respect to x?
- General rule for sums of functions:

If
$$y = f(x) \pm g(x)$$
, $\frac{dy}{dx} = f'(x) \pm g'(x)$

Other Derivatives

Trigonometric functions: sine and cosine

If
$$f(x) = \sin x$$
, $f'(x) = \cos x$
If $f(x) = \cos x$, $f'(x) = -\sin x$

Other Derivatives

Natural exponential

If
$$f(x) = e^x$$
, $f'(x) = e^x$

Natural logarithm (the inverse of the natural exponential)

If
$$f(x) = \ln x \ (x > 0), f'(x) = \frac{1}{x}$$

The Rules – The Product Rule

If
$$y = f(x)g(x)$$
, $\frac{dy}{dx} = f(x)g'(x) + g(x)f'(x)$

• Example: $y = x^2 \cos x$

The Rules – The Quotient Rule

If
$$y = \frac{f(x)}{g(x)}$$
, $\frac{dy}{dx} = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2}$

• Example: $y = \frac{2x+1}{x^2+2x+1}$

The Rules – The Chain Rule

Allows us to differentiate a composite function, i.e. a function within a function.

Composite function:

How to differentiate it:

If
$$y = f(g(x))$$
, $\frac{dy}{dx} = f'(g(x))g'(x)$

Outer function differentiated × inner function differentiated

• Example: $y = e^{3x}$

Application of Derivatives – Find out Local Max and Min

Stationary point

A stationary point is where the gradient is 0, i.e. $f'(x_0) = 0$

Gradient

just after

Local Maximum

Gradient

at max

Gradient

just before

How to determine type of stationary point?

Look at the gradient just before and after the point

Gradient

just before

Gradient

at min

Gradient

just after

Point of Inflection						
Gradient just before	Gradient p.o.i	Gradient just after				
?	?	?				

Multivariate Function and Partial Differentiation

• When a function has more than one independent variable e.g. $z = x^2/10 + y^2/10$, or $f(x,y) = x^2/10 + y^2/10$ 3 dimensions, x and y are independent variables and z is the dependent variable.

 In 3D, a tangent line becomes a tangent plane.

- Directional derivative
- Partial derivative

Partial Differentiation

Notations: for z = f(x, y), we write:

- $f_x(x,y) = \frac{\partial f}{\partial x} = \frac{\partial z}{\partial x}$, the partial derivative of f with respect to x
- $f_y(x,y) = \frac{\partial f}{\partial y} = \frac{\partial z}{\partial y}$, the partial derivative of f with respect to y

Rule:

The partial derivative with respect to x is the <u>ordinary</u> derivative of the function of x by treating the other variables as <u>constants</u>.

- To find f_x , treat y as a constant and differentiate f(x, y) with respect to x.
- To find f_v , treat x as a constant and differentiate f(x, y) with respect to y.

Try yourself: Tangent plane of $f(x, y) = x^2/10 + y^2/10$ at (4, -2)

Linear functions and the vector notation

Univariate

$$y = w_0 + w_1 x$$

a line

vector
$$\mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} 1 \\ \chi \end{pmatrix}$

$$y = \mathbf{w}^T \mathbf{x}$$

Multivariate

$$y = w_0 + w_1 x_1 + w_2 x_2 ... + w_n x_n$$

a hyperplane

vector
$$\mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ w_n \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ x_n \end{pmatrix}$

$$y = \mathbf{w}^T \mathbf{x}$$

Revise dot product of a row and a column vectors

Polynomial functions and the vector notation

- Contain multiple terms with only variables of varying degrees, coefficients, non-negative integer exponents, and constants.
- Polynomial function with one variable:

$$y = w_0 + w_1 x + w_2 x^2 ... + w_n x^n$$

• vector
$$\mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ w \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^n \end{pmatrix}$ $\mathbf{y} = \mathbf{w}^T \mathbf{x}$

• y is not a linear function of x, but a linear function of w

Polynomial function examples

•
$$y = 3 - 6x + x^2$$

•
$$y = 2 - 3x + 4x^3$$

• $y = -1 - 6\sqrt{x} + 4x^2$ (this is not a polynomial function)

Go visualize these functions https://www.geogebra.org/calculator

Sigmoid (or logistic) function

$$y = \frac{1}{1 + e^{-x}}$$

- Very important function used in machine learning algorithms.
- Homework: explore its properties: e.g. shape, output range, symmetry, differentiability.

Q/A

Teams Channel for Week1
Tutorials and Drop-in Sessions from Week2
See Canvas module homepage

