Matriisilaskentaa

22.9.2020

Sisältö

Johdanto			1
М	Merkinnät 1. Voktoriloskontos		
1	Vektorilaskentaa		
	1.1	Vektorimerkintä matriisilaskennassa	3
	1.2	Piste- eli skalaaritulo reaalisille vektoreille	3
	1.3	Piste- eli sisätulo kompleksisille vektoreille*	4
2	Matriisilaskentaa		
	2.1	Matriisin käsite ja perusmääritelmiä	6
	2.2	Perusmääritelmiä kompleksisille matriiseille*	7
	2.3	Matriisin ja vektorin tulo, lineaarinen yhtälöryhmä	9
	2.4	Matriisien tulo	12
	2.5	Matriisin determinantti	13
	2.6	Vektorien ristitulo	15
	2.7	Käänteismatriisi	18
	2.8	Lineaarinen yhtälöryhmä	
	2.9	Permutaatiomatriisi	
	2.10		
	2.11	Neliömuoto	22
		Toisen asteen käyrät	
		Bra-ket-merkintätapa*	
		Unitaarinen matriisi*	
Te	htävi	ä	26

Johdanto

Tässä monisteessä käsitellään matriisilaskentaa. Moniste on keskeneräinen ja se päivittyy. Jos havaitset virheen, voit kirjoittaa siitä viestin kurssin Classroom-huoneeseen.

Merkinnät

 A^T

 $A^\dagger = A^\star$

Matriisin transpoosi

 \mathbf{N} Luonnollisten lukujen $\{0, 1, 2, \ldots\}$ joukko \mathbf{P} Alkulukujen $\{2, 3, 5, \ldots\}$ joukko Rationaalilukujen $\{\frac{m}{n}:\,m,n\in{\bf Z}\,n\neq 0\}$ joukko \mathbf{Q} \mathbf{R} Reaalilukujen joukko, $\mathbf{R} =]-\infty,\infty[$ Positiivisten reaalilukujen joukko, $\mathbf{R}_{+}=]0,\infty[$ \mathbf{R}_+ \mathbf{C} Kompleksilukujen $\{z = x + iy : x, y \in \mathbf{R}\}$ joukko Kuuluu joukkoon, $a \in \mathbf{N}$ eli alkio a kuuluu luonnollisten lukujen joukkoon \in |z|Kompleksiluvun moduli eli itseisarvo Kompleksiluvun $\neq 0$ argumentti eli vaihekulma, sopimus $\arg z \in]-\pi,\pi]$ $\arg z$ Vektori, pisteen paikkavektori, sarakevektori \boldsymbol{x} $A = (a_{ij})$ Matriisi, jonka alkiot ovat luvut a_{ij} Skalaari eli luku

Adjungoitu eli hermitoitu matriisi, $A^{\dagger} = (\overline{a_{ji}})$, eli matriisin A konjugaattitranspoosi.

1 Vektorilaskentaa

1.1 Vektorimerkintä matriisilaskennassa

Vektoreille käytetään tässä monisteessa lihavoituja kirjaimia ja skalaareilla, joita ovat mm. reaali- kompleksiluvut, tavallisia kirjaimia. Toisin sanoen, v on vektori mutta a on skalaari.

Samastetaan n-ulotteisen avaruuden piste (x_1, x_2, \ldots, x_n) ja sen paikkavektori $x = x_1 e_1 + x_2 e_2 + \cdots + x_n e_n$, missä n-ulotteisen avaruuden kantavektorit ovat e_1, e_2, \ldots, e_n , missä

$$e_k = (0, 0, \dots, 1, 0, 0, \dots, 0).$$

Kolmiulotteisen reaaliavaruuden kantavektorit i, j, ja k ovat siis pisteiden (1,0,0), (0,1,0), (0,0,1) paikkavektorit eli

$$\bar{i} = (1,0,0), \quad \bar{j} = (0,1,0) \quad \text{ja} \quad \bar{k} = (0,0,1).$$

Vektoreille käytetään monesti myös yläviivamerkintää \bar{i} , erityisesti käsin kirjoittaessa, kun sekaannuksen vaaraa kompleksikonjugaattiin ei ole.

Matriisilaskentaa ajatellen vektori on mielekästä merkitä pystyvektorina

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = (x_1, x_2, \dots, x_n)^T,$$

missä x^T tarkoittaa vektorin tranpoosia (vaakavektorin alkioita ei aina eroteta pilkuilla). Vektoreilla transponointi muuttaa vaakavektorin pystyvektoriksi ja pystyvektektorin vaakavektoriksi.

Esimerkki 1. Esitä avaruuden ${\bf R}^3$ vektori ${m a}=\bar i-\pi\bar j+12\bar k$ pystyvektorina.

Ratkaisu. Vektorin komponenttiesityksestä saadaan suoraan

$$\boldsymbol{a} = \begin{pmatrix} 1 \\ -\pi \\ 12 \end{pmatrix}.$$

1.2 Piste- eli skalaaritulo reaalisille vektoreille

Määritelmä 1. \mathbb{R}^n :n vektorien $\boldsymbol{a}=(a_1,a_2,\ldots,a_n)$ ja $\boldsymbol{b}=(b_1,b_2,\ldots,b_n)$ piste- eli skalaaritulo määritellään

$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n = \sum_{k=1}^n a_k b_k.$$

Skalaaritulon avulla voidaan määritellä vektorin pituus

$$|\boldsymbol{a}| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2} = \sqrt{\boldsymbol{a} \cdot \boldsymbol{a}}$$

ja nollasta poikkeavien vektorien välinen kulma lpha

$$\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}||\boldsymbol{b}|\cos \alpha.$$

Pystyvektorimerkinnän avulla pistetulo on lyhyesti vain

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}^T \boldsymbol{b} = (a_1, a_2, \dots, a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

1.3 Piste- eli sisätulo kompleksisille vektoreille*

Kompleksiluvun $z=x+iy,\ x,y\in\mathbf{R},\ i^2=-1,$ itseisarvo eli pituus on sen etäisyys origosta eli $|z|=\sqrt{x^2+y^2}.$ Pätee

$$|z| = \sqrt{\overline{z}z}$$

missä kompleksiluvun z kompleksikonjugaatti on $\overline{z} = \overline{x + iy} = x - iy = z^{\star}$.

Määritelmä 2. Kompleksialkioisten vektorien $v = (v_1, v_2, \dots, v_n)^T$ ja $u = (u_1, u_2, \dots, u_n)^T$, missä v_k, u_k ovat kompleksilukuja, välinen sisätulo on määritellään

$$\boldsymbol{v}\cdot\boldsymbol{u}=\sum_{k=1}^n\overline{v_k}u_k=\boldsymbol{v}^\dagger\boldsymbol{u},$$

missä $oldsymbol{v}^\dagger = \overline{oldsymbol{v}}^T$ on vektorin kompleksikonjugaatin transpoosi. Siis

$$oldsymbol{v}^\dagger = \overline{oldsymbol{v}}^T = \overline{\left(\begin{matrix} v_1 \\ v_2 \\ \dots \\ v_n \end{matrix}
ight)}^T = \left(\begin{matrix} \overline{v_1} \\ \overline{v_2} \\ \dots \\ \overline{v_n} \end{matrix}
ight)}^T = \left(\overline{v_1}, \overline{v_2}, \dots, \overline{v_n}\right).$$

Lisäksi pätee $oldsymbol{v}^\dagger = \overline{oldsymbol{v}^T}$

Esimerkki 2. Laske kompleksivektorien a = (1 - i, 3) ja b = (-1 - i, 2 + i) sisätulo.

Ratkaisu. Taas tulkitaan vektorit pystyvektoreina. Vektorien sisätulo on

Määritelmä 3. Vektorien $u_i \neq 0$, i = 1, 2, ..., n, sanotaan olevan ortogonaalisia, jos ne ovat kohtisuorassa toisiaan vastaan eli pistetulo häviää

$$\mathbf{u}_i \cdot \mathbf{u}_j = \mathbf{u}_i^{\dagger} \mathbf{u}_j = 0, \quad i \neq j.$$

Jos vektorit u_i ovat ykkösen pituisia,

$$|\boldsymbol{u}_i| = \sqrt{\boldsymbol{u}_i \cdot \boldsymbol{u}_i} = 1,$$

sanotaan niitä normitetuiksi. Jos vektorit u_i ovat sekä ortogonaalisia että normitettuja, niin niiden sanotaan olevan ortonormaaleja. Vektorien ortonormaalisuus voidaan ilmaista lyhyesti

$$m{u}_i^{\dagger}m{u}_j = \delta_{ij} = egin{cases} 0, & i
eq j \ 1, & i = j. \end{cases}$$

Käytännön ongelmissa kannattaa käyttää ortonormaaleja kantavektoreja, jolloin laskut helpottuvat. Ongelmaksi muodostuu ongelman kannalta "mielekkään" ortonormaalin kannan löytäminen.

2 Matriisilaskentaa

2.1 Matriisin käsite ja perusmääritelmiä

 $m \times n$ -matriisi A on lukukaavio, jossa on m riviä ja n saraketta eli pystyriviä. Matriisit kirjoitetaan isolla kirjaimella. Matriisin alkiot ovat useimmiten lukuja, mutta ne voivat olla myös funktioitakin, niitä merkitään pienillä kirjaimilla. Merkitään

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

tai lyhyesti vain $A \in \mathbf{R}^{m \times n}$, $A = (a_{ij})$, jos matriisin alkiot a_{ij} ovat reaalisia, ja $A \in \mathbf{C}^{m \times n}$, $A = (a_{ij})$, jos alkiot ovat kompleksisia. Koska kompleksiluvut sisältävät reaaliluvut, joten matriisien laskusäännöt ovat voimassa niin reaalisille kuin kompleksisille matriiseille.

Pystyvektori

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

on myös matriisi, nimittäin $n \times 1$ -matriisi, mutta usein se jätetään merkitsemättä. Matriisilaskennassa n-ulotteinen vektori \boldsymbol{x} tarkoittaa pystyvektoria.

Määritelmä 4. Jos matriisia $A=(a_{ij})$ kerrotaan luvulla t, niin saadaan uusi matriisi, jonka kaikki alkiot on kerrottu luvulla t eli $tA=(ta_{ij})$.

Kaksi matriisia $A=(a_{ij})$ ja $B=(b_{kn})$ ovat yhtä suuret, jos ne ovat samankokoiset ja niissä samat alkiot samoille paikoille. Toisin sanoen A=B täsmälleen silloin, kun

- 1. A ja B ovat $m \times n$ -matriiseja
- 2. $a_{ij} = b_{ij}$ kaikilla i = 1, 2, ..., m ja j = 1, 2, ..., n.

Samankokoiset matriisit voi laskea yhteen ja vähentää toisistaan. Summamatriisi lasketaan alkioittain, toisin sanoen, jos $A=(a_{ij})$ ja $B=(b_{ij})$ ovat $m\times n$ -matriiseja, niin C=A+B, missä C:n alkio $c_{ij}=a_{ij}+b_{ij}$. Summamatriisin koko on sama kuin yhteenlaskettavien matriisien.

Määritelmä 5 (Transpoosi). Jos $m \times n$ -matriisin A rivit ja sarakkeet vaihdetaan keskenään eli alkiot peilataan diagonaalin (päälävistäjän suhteen), saadaan matriisin transpoosi A^T , joka on kokoa $n \times m$

$$A^{T} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}^{T} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}.$$

Jos $A = (a_{ij})$, niin $A^T = (a_{ji})$.

Määritelmä 6 (Neliömatriisi). Jos matriisissa A on yhtä monta riviä kuin saraketta (m = n), sitä kutsutaan neliömatriisiksi. Neliömatriisia, jonka päälävistaja- eli diagonaalialkiot ovat ykkösiä ja muut alkiot nollia, kutsutaan identiteettimatriisiksi tai yksikkömatriisiksi

$$I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

Määritelmä 7 (Symmetrinen ja antisymmetrinen matriisi). Matriisi A, joka on itsensä transpoosi, on symmetrinen. Siis $A=A^T$, joten A on neliömatriisi, jonka alkiot sijaitsevat symmetrisesti päälävistäjän suhteen, eli

$$a_{ij} = a_{ji}$$
 kaikilla i ja j .

Matriisia A, jolle pätee $A^T = -A$, sanotaan antisymmetriseksi.

Määritelmä 8. Neliömatriisi $D=(d_{ij})$ on diagonaalinen eli diagonaalimatriisi, jos $a_{ij}=0$, kun $i\neq j$. Usein merkitään $D=\mathrm{diag}(d_{11},d_{12},\ldots,d_{nn})$.

Neliömatriisi $L=(l_{ij})$ on alakolmiomatriisi, jos kaikki sen päälävistäjän yläpuoliset alkiot ovat nollia, eli $b_{ij}=0$, kun i< j.

Neliömatriisi $U=(u_{ij})$ on yläkolmiomatriisi, jos kaikki sen päälävistäjän alapuoliset alkiot ovat nollia, eli $c_{ij}=0$, kun i>j.

2.2 Perusmääritelmiä kompleksisille matriiseille*

Adjungointi vastaa reaalisen matriisin transponointia.

Määritelmä 9 (Adjungaatti). Jos $m \times n$ -matriisin A alkiot konjugoidaan ja rivit ja sarakkeet vaihdetaan keskenään eli alkiot peilataan päädiagonaalin eli päälävistäjän, jonka alkiot ovat a_{ii} , suhteen, saadaan matriisin hermitoitu matriisi eli adjungaatti eli hermiittiskonjugaatti $A^{\dagger} = A^{\star}$, joka on kokoa $n \times m$

$$A^{\dagger} = \overline{\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}}^{T} = \begin{pmatrix} \overline{a_{11}} & \overline{a_{21}} & \dots & \overline{a_{m1}} \\ \overline{a_{12}} & \overline{a_{22}} & \dots & \overline{a_{m2}} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{a_{1n}} & \overline{a_{2n}} & \dots & \overline{a_{mn}} \end{pmatrix}.$$

Jos $A = (a_{ij})$, niin $A^{\dagger} = (\overline{a_{ji}})$.

Symmetristä matriisia vastaa kompleksinen hermiittinen matriisi.

Määritelmä 10 (Hermiittinen matriisi). Jos matriisille A pätee $A^{\dagger} = A$, niin matriiisin sanotaan olevan hermiittinen eli itseadjungoitu. Tällöin A on neliömatriisi, jonka alkioille pätee

$$a_{ij} = \overline{a_{ji}}$$
 kaikilla i ja j .

Huomaa, että symmetrinen reaalinen matriisi on hermiittinen, joten reaalisten matriisien tapauksessa ei puhutu hermiittisyydestä.

Monissä kvanttimekaniikan ongelmissa esiintyy hermiittisiä operaattoreita, joita kuvataan hermiittisillä matriiseilla.

2.3 Matriisin ja vektorin tulo, lineaarinen yhtälöryhmä

Tarkastellaan m:n yhtälön ja n:n tuntemattoman lineaarista yhtälöryhmää

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$

Yhtälö kirjoitetaan lyhyesti vain

$$Ax = b$$

missä

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, \quad \boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

Yhtälön ratkaisujen lukumäärä eli erilaisten vektorien x määrä voi olla joko 1, ei yhtään tai äärettömän monta. Jatkossa tutkitaan tapausta, jossa yhtälöitä on yhtä monta kuin tuntemattomia (m=n).

Matriisin ja vektorin tulo Ax on määritelty vain, jos matriisissa A on yhtä monta saraketta kuin vektorissa x on rivejä. Kun A on $m \times n$ -matriisi ja x on n-vektori, on niiden tulo Ax = b m-vektori, jonka i:s alkio b_i saadaan laskemalla matriisin A i:nnen rivivektorin ja x:n reaalinen pistetulo

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = \begin{pmatrix} a_{i1}, & a_{i2}, & \dots, & a_{in} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = b_i.$$

Jos matriisi annetaan sarakevektorien avulla

$$A=(oldsymbol{a}_1,oldsymbol{a}_2,\ldots,oldsymbol{a}_n),\quad oldsymbol{a}_k=egin{pmatrix} a_{1k}\ a_{2k}\ dots\ a_{mk} \end{pmatrix},\quad k=1,2,\ldots,n,$$

niin tulo $Aoldsymbol{x}$ on sarakevektorien lineaarikombinaatio

$$A\boldsymbol{x} = x_1\boldsymbol{a}_1 + x_2\boldsymbol{a}_2 + \dots + x_n\boldsymbol{a}_n.$$

Määritelmä 11 (Lineaarikuvaus matriisin avulla). Kuvaus $A: \mathbf{R}^n \to \mathbf{R}^m$ on lineaarinen eli se on lineaarikuvaus, jos

$$A(\alpha \mathbf{x} + \beta \mathbf{y}) = A(\alpha \mathbf{x}) + A(\beta \mathbf{y}) = \alpha A(\mathbf{x}) + \beta A(\mathbf{y})$$

kaikilla vektoreilla $\boldsymbol{x}, \boldsymbol{y} \in \mathbf{R}^n$ ja kaikilla luvuilla eli skalaareilla $\alpha, \beta \in \mathbf{R}$. Lisäksi matriisilaskennassa $A(\boldsymbol{x}) = A\boldsymbol{x}$, koska lineaarikuvaus $A: \mathbf{R}^n \to \mathbf{R}^m$ ja sitä vastaava $m \times n$ -matriisi A samastetaan. Lineaarikuvauksilla voidaan esittää mm. kiertoja ja peilauksia eri avaruuksien välillä.

Mikä sitten määrää lineaarikuvauksen matriisin? Matriisiesitys riippuu siitä, mitä lähtövektoriavaruuden \mathbf{R}^n kantavektoreita käytetään. Matriisiesitystä varten riittää tietää, mitä lineaarikuvaus "tekee" kantavektoreilla. Esimerkiksi, jos $e_i, i=1,2,\ldots,n$ ovat kantavektorit, niin riittää laskea

$$A\boldsymbol{e}_i$$

kaikilla i = 1, 2, ..., n. Tällöin A:n matriisiesitykseen kootaan sarakevektoreiksi vektorit Ae_i . Esimerkki 3. Lineaarikuvauksesta A tiedetään, että

$$A(1,2,2) = (2,-4,1), \ A(-1,0,4) = (0,-2,3) \text{ ja } A(-1,-2,-6) = (0,1,2).$$

Määritä A:n matriisiesitys.

Ratkaisu. Pitää siis ratkaista Ai, Aj ja Ak, missä $i = e_1 = (1,0,0)^T$ jne. Nyt pystyvektorimerkinnöin saadaan lineaarisuuden perusteella

$$A \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = A \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + A \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} + A \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} = A\mathbf{i} + 2A\mathbf{j} + 2A\mathbf{k} = \begin{pmatrix} 2 \\ -4 \\ 1 \end{pmatrix},$$

$$A \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix} = -A\mathbf{i} + 4A\mathbf{k} = \begin{pmatrix} 0 \\ -2 \\ 3 \end{pmatrix},$$

$$A \begin{pmatrix} -1 \\ -2 \\ -6 \end{pmatrix} = -A\mathbf{i} - 2A\mathbf{j} - 6A\mathbf{k} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}.$$

Kun nämä kolme yhtälöä lasketaan puolittain yhteen, saadaan

$$-A\mathbf{i} = \begin{pmatrix} 2 \\ -4 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ -5 \\ 6 \end{pmatrix} \iff A\mathbf{i} = \begin{pmatrix} -2 \\ 5 \\ -6 \end{pmatrix}$$

Toisesta yhtälöstä saadaan

$$A\mathbf{k} = \frac{1}{4} \begin{pmatrix} 0 \\ -2 \\ 3 \end{pmatrix} + A\mathbf{i} = \frac{1}{4} \begin{pmatrix} 0 \\ -2 \\ 3 \end{pmatrix} + \begin{pmatrix} -2 \\ 5 \\ -6 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ \frac{3}{4} \\ -\frac{3}{4} \end{pmatrix},$$

ja edelleen ensimmäisestä yhtälöstä saadaan

$$A\mathbf{j} = \frac{1}{2} \left(\begin{pmatrix} 2 \\ -4 \\ 1 \end{pmatrix} - A\mathbf{i} - 2A\mathbf{k} \right) = \frac{1}{2} \left(\begin{pmatrix} 2 \\ -4 \\ 1 \end{pmatrix} - \begin{pmatrix} -2 \\ 5 \\ -6 \end{pmatrix} - 2 \begin{pmatrix} -\frac{1}{2} \\ \frac{3}{4} \\ -\frac{3}{4} \end{pmatrix} \right) = \begin{pmatrix} \frac{5}{2} \\ -\frac{21}{4} \\ \frac{17}{4} \end{pmatrix}.$$

Lineaarikuvauksen matriisiesitys on

$$A = (Ai, Aj, Ak) = \begin{pmatrix} -2 & \frac{5}{2} & -\frac{1}{2} \\ 5 & -\frac{21}{4} & \frac{3}{4} \\ -6 & \frac{17}{4} & -\frac{3}{4} \end{pmatrix}.$$

2.4 Matriisien tulo

Yleistetään matriisin ja vektorin tulo kahden matriisin tuloksi.

Määritelmä 12. Olkoot A $m \times n$ -matriisi ja B $k \times l$ matriisi. Tulo AB on määritelty, jos ja vain jos k = n, toisin sanoen A:n sarakkeiden lukumäärä on sama kuin B:n rivien. Tällöin tulomatriisi C = AB on $m \times l$ -matriisi, jonka alkio c_{ij} saadaan laskettua A:n i:nnen rivivektorin ja B j:nnen sarakevektorin (reaalisesta) pistetulosta. Siis

$$AB = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1j} & \dots & b_{1l} \\ b_{21} & b_{22} & \dots & b_{2j} & \dots & b_{2l} \\ \vdots & \vdots & \ddots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & b_{nj} & \dots & a_{nl} \end{pmatrix}$$

$$= \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1j} & \dots & c_{1l} \\ c_{21} & c_{22} & \dots & c_{2j} & \dots & c_{2l} \\ \vdots & \vdots & \ddots & \vdots & \dots & \vdots \\ c_{i1} & c_{i2} & \dots & c_{ij} & \dots & c_{il} \\ \vdots & \vdots & \ddots & \vdots & \dots & \vdots \\ c_{m1} & c_{m2} & \dots & c_{mj} & \dots & c_{ml} \end{pmatrix} = C,$$

missä

$$c_{ij} = \begin{pmatrix} a_{i1}, & a_{i2}, & \dots, & a_{in} \end{pmatrix} \begin{pmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{pmatrix}$$
$$= a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}.$$

Huomautus. Matriisien tulo AB ei ole vaihdannainen, eli ei päde, että AB = BA, vaikka matriisit A ja B olisivat samankokoisia neliömatriiseja.

Myöskään tulon nollasääntö ei päde matriiseille. Ehdosta AB=0, jossa 0 on nollamatriisi, $\underline{\underline{e}}$ seuraa, että A tai B olisi nollamatriisi.

2.5 Matriisin determinantti

Ainoastaan neliömatriisille A voidaan laskea determinantti, $\det A$, joka on luku. Jos A on 2×2 -matriisi

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix},$$

niin sen determinantti on

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Neliömatriisien laskenta palautuu 2×2 -matriisin determinanttien laskentaan purkusäännöllä.

Määritelmä 13 (Determinantin kehityskaava). Neliömatriisin $A = a_{ij}$, i, j = 1, 2, ..., n, alkiota a_{ij} vastaava alimatriisi A_{ij} on $(n-1) \times (n-1)$ -matriisi, joka on saatu matriisista A poistamalla siitä i:s rivi ja j:s sarake. Matriisin determinantti voidaan laskea joko kehittämällä se sarakkeen suhteen tai rivin suhteen

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij} = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij}.$$

Kehittämistä jatketaan siihen saakka, kunnes alimatriisit ovat 2×2 -matriiseja.

Lause 1. Olkoot A ja B $n \times n$ -matriiseja ja α luku. Tällöin pätee

$$det(AB) = det A det B$$
 ja $det(\alpha A) = \alpha^n det A$.

Lisäksi purkusäännöistä seuraa suoraan, että

$$\det A^T = \det A$$
.

Jos matriisi A diagonaalinen, yläkolmio- tai alakolmiomatriisi, niin sen determinantti on diagonaalialkioiden tulo

$$\det A = a_{11} a_{22} \dots a_{nn}.$$

Esimerkki 4. Millä parametrin t arvolla $\det A = 0$, kun

$$A = \begin{pmatrix} t - 1 & -1 + i \\ -1 - i & t + 1 \end{pmatrix}.$$

Ratkaisu. Lasketaan determinantti

$$\det A = \begin{vmatrix} t - 1 & -1 + i \\ -1 - i & t + 1 \end{vmatrix} = (t - 1)(t + 1) - (-1 + i)(-1 - i) = t^2 - 1 - |-1 + i|^2 = t^2 - 1 - (1^2 + 1^2) = t^2 - 3.$$

Siis $\det A=0$ täsmälleen silloin, kun $t^2=3$ eli $t=\pm\sqrt{3}$.

Determinantin purkusäännöistä voidaan johtaa säännöt, joiden avulla determinanttien laskeminen helpottuu.

- **Lause 2** (Determinantin ominaisuuksia). a) Jos B on saatu matriisista A vaihtamalla sen kaksi riviä keskenään, niin $\det B = -\det A$.
- b) Jos B on saatu matriisista A siten, että johonkin A:n riviin on lisätty toinen rivi vakiolla kerrottuna, niin $\det B = \det A$.
- c) Jos matriisissä B on kaksi samaa riviä, niin $\det B = 0$.

2.6 Vektorien ristitulo

Kahden vektorin välinen ristitulo on vektori, joka on kohtisuorassa molempia vektoreita vastaan. Näin ollen sitä ei voida määritellä tason vektoreille, ellei tason \mathbf{R}^2 vektoreita ajatella osana avaruuden \mathbf{R}^3 vektoreita. Lisäksi ristitulovektorin suunta saadaan oikean käden säännöllä.

Määritelmä 14 (Ristitulon geometrinen tulkinta). Olkoot a ja b kolmiulotteisen avaruuden \mathbf{R}^3 vektoreita. Tällöin vektorien ristitulo on

$$\boldsymbol{a} \times \boldsymbol{b} = |\boldsymbol{a}||\boldsymbol{b}|\sin \alpha \boldsymbol{e},$$

missä $\alpha = \angle(a, b)$ on vektorien välinen kulma ja e on yksikkövektori, |e| = 1, jonka suunta on sellainen, että vektorit a, b, e muodostavat oikeakätisen kolmikon (peukalo, etusormi, keskisormi).

Seuraus. Olkoot $a, b \neq 0$ avaruuden vektoreita.

- i) Tällöin $a \times b = 0$ jos ja vain jos $a \parallel b$ eli a = tb jollakin $t \neq 0$.
- $oxed{ii}$) Lisäksi ristitulovektori $oldsymbol{a} imesoldsymbol{b}$ on kohtisuorassa molempia vektoreita $oldsymbol{a}$ ja $oldsymbol{b}$ vastaan eli

$$(\boldsymbol{a} \times \boldsymbol{b}) \bullet \boldsymbol{a} = 0$$
 ja $(\boldsymbol{a} \times \boldsymbol{b}) \bullet \boldsymbol{b} = 0$,

tässä $v \bullet u$ tarkoittaa vektorien välistä pistetuloa.

iii) $|a \times b|$ on vektorien a ja b virittämän suunnikkaan pinta-ala. Erityisesti, jos kolmion kaksi sivuvektoria ovat a ja b, niin kolmion pinta-ala on $\frac{1}{2}|a \times b|$.

Lause 3 (Ristitulon komponenttiesitys). Olkoot

$$a = a_1 i + a_2 j + a_3 k$$
 ja $b = b_1 i + b_2 j + b_3 k$.

Tällöin

$$\mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2)\mathbf{i} + (a_3b_1 - a_1b_3)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$

Laskinohjelmistoissa ristitulon voi myös kätevästi laskea suoraan.

Todistus. Harjoitustehtävänä.

Määritelmä 15 (Laskukaava 2×2 -determinantille). 2×2 -matriisi A on lukukaavio, jossa on 2 riviä ja 2 saraketta,

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

A:n determinantti on luku

$$\det A = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

Lause 4 (Ristitulo determinanttina). Vektorien

$$a = a_1 i + a_2 j + a_3 k$$
 ja $b = b_1 i + b_2 j + b_3 k$.

ristitulo voidaan laskea 3×3 -determinanttina seuraavan purkusäännön avulla

$$egin{aligned} oldsymbol{a} imes oldsymbol{b} = egin{aligned} oldsymbol{i} & oldsymbol{j} & oldsymbol{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ \end{pmatrix} oldsymbol{i} = egin{aligned} a_2 & a_3 \ b_2 & b_3 \ \end{pmatrix} oldsymbol{i} - egin{aligned} a_1 & a_3 \ b_1 & b_3 \ \end{pmatrix} oldsymbol{j} + egin{aligned} a_1 & a_2 \ b_1 & b_2 \ \end{pmatrix} oldsymbol{k}. \end{aligned}$$

Huomaa, että vektoria $\overline{i},\overline{j}$ tai \overline{k} vastaava 2×2 -determinantti saadaan näkyviin poistamalla se rivi ja sarake, jossa vektori on. Huomaa myös kiertovaihtelu +,-,+

Lause 5 (Ristitulon ominaisuuksia). Olkoot a, b ja c mielivaltaisia avaruuden vektoreita ja t on reaaliluku. Tällöin on voimassa

- a) $a \times a = 0$
- **b)** $a \times b = -b \times a$ (ristitulo on antikommutatiivinen)
- c) $(a + b) \times c = a \times c + b \times c$ (osittelulaki)
- d) $a \times (b + c) = a \times b + a \times c$ (osittelulaki)
- e) $(ta) \times b = a \times (tb) = t(a \times b)$
- f) $\mathbf{a} \bullet (\mathbf{a} \times \mathbf{b}) = 0 = \mathbf{b} \bullet (\mathbf{a} \times \mathbf{b})$
- g) $i \times i = j \times j = k \times k = 0$
- h) $i \times j = k$, $j \times k = i$ ja $k \times i = j$.

Todistus. Suoraviivainen lasku.

Taso T kulkee pisteen A kautta ja tason suuntavektorit ovat u ja v, joille $u \not\parallel v$. Taso muodostuu pisteistä P, joille

$$\overline{OP} = \overline{OA} + s\boldsymbol{u} + t\boldsymbol{v}, \quad s, t \in \mathbf{R}.$$

Tätä esitystä kutsutaan tason vektoriesitykseksi. Vektorit \boldsymbol{u} ja \boldsymbol{v} virittävät tason. Miten tästä esityksestä päästään tason yhtälöön eli tason normaalimuotoon ax+by+cz+d=0? Ristitulo antaa tähän suoran vastauksen.

Lause 6. Jos taso kulkee pisteen $A=(x_0,y_0,z_0)$ kautta ja sen virittävät vektorit \overline{u} ja \overline{v} , niin tason normaaliksi sopii vektori

$$n = u \times v$$

tai mikä hyvänsä tämän kanssa yhdensuuntainen vektori. Tason yhtälö on tällöin

$$\boldsymbol{n} \bullet (\boldsymbol{r} - \boldsymbol{r}_0) = 0,$$

missä

$$r = OP = xi + yj + zk$$
 ja $r_0 = \overline{OA} = x_0i + y_0j + z_0k$.

2.7 Käänteismatriisi

Määritelmä 16. Neliömatriisilla A on käänteismatriisi B, jos

$$AB = BA = I$$
,

jolloin merkitään $B = A^{-1}$.

Itse asiassa ehdosta AB=I, seuraa, että $B=A^{-1}$, vaikkei matriisien tulo olekaan vaihdannainen, toisin sanoen $AB \neq BA$. Koska tulon determinantti on determinanttien tulo, niin

$$\det A \det(A^{-1}) = \det(AA^{-1}) = \det I = 1.$$

Siispä $\det(A^{-1}) = \frac{1}{\det A}$. Pätee: Matriisilla A on käänteismatriisi täsmälleen silloin, kun $\det A \neq 0$.

Lause 7. Erikoisesti, jos

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

on säännöllinen, niin

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}.$$

Tarkastellaan nyt yhtälöryhmää, jossa on yhtä monta tuntematonta kuin yhtälöäkin

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n. \end{cases}$$

eli lyhyesti vain Ax = b.

Yhtälöllä on A x = b on yksikäsitteinen ratkaisu täsmälleen silloin, kun A^{-1} on olemassa eli $\det A \neq 0$. Tällöin ratkaisu on

$$\mathbf{x} = A^{-1}\mathbf{b}$$
.

Käytännössä – ilman tietokonetta – käänteismatriisia ei lasketa, vaan yhtälö $A\boldsymbol{x}=\boldsymbol{b}$ ratkaistaan Gaussin eliminointimenetelmällä myös niissä tapauksissa, joissa A ei ole neliömatriisi. Gaussin eliminointimenetelmä on algoritmi, joka paljastaa samalla ratkaisujen lukumäärän.

Lause 8. Olkoot A ja B säännöllisiä samankokoisia neliömatriiseja. Tällöin pätee

$$(AB)^{-1} = B^{-1}A^{-1}.$$

2.8 Lineaarinen yhtälöryhmä

Lineaarinen yhtälöryhmä on muotoa

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$

Matriisilaskennassa lineaarinen yhtälöryhmä kirjoitetaan muodossa Ax = b. Lineaarisella yhtälöryhmällä ratkaisujen lukumäärä, eli erilaisten vektorien x määrä, ei voi olla mitä vain.

Lause 9. Lineaarisella yhtälöryhmällä Ax = b on joko

- i) täsmälleen yksi ratkaisu $oldsymbol{x}$
- ii) ei yhtään ratkaisua
- iii) äärettömän monta ratkaisua.

Jos A on neliömatriisi, niin yhtälöllä Ax = b on yksikäsitteinen ratkaisu täsmälleen silloin, kun A on säännöllinen eli matriisilla A on käänteismatriisi. Tällöin ratkaisu on

$$\boldsymbol{x} = A^{-1}\boldsymbol{b}.$$

Käytännössä käänteismatriisi ei kuitenkaan määritetä, vaan käytetään Gaussin algoritmia. Algoritmi nimittäin paljastaa, onko yhtälöllä yksikäsitteistä ratkaisua.

2.9 Permutaatiomatriisi

Tarkastellaan tässä neliömatriisia A. Eräs rivioperaatio on rivien vaihtaminen keskenään. Miten tämä saadaan aikaiseksi matriisikertolaskulla?

Määritelmä 17. Matriiisi P on permutaatiomatriisi, jos se on saatu identiteettimatriisista I vaihtamalla siinä rivien paikkoja.

Esimerkki 5. Tarkastellaan matriisin rivien vaihtoa

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \longleftrightarrow \sim \begin{pmatrix} 1 & 2 & 3 \\ 7 & 8 & 9 \\ 4 & 5 & 6 \end{pmatrix} = \tilde{A}.$$

Pitäisi siis löytää rivienvaihtomatriisi P niin, että $PA = \tilde{A}$.

Vaihdetaan identiteettimatriisista I toisen ja kolmannen rivin paikkoja keskenään, jolloin saadaan matriisi

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Kun matriisilla P kerrotaan vasemmalta matriisia A, saadaan matriisi, jonka ylin rivi on sama kuin matriisissa A, mutta kaksi muuta riviä vaihtaa paikkaansa

$$PA = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 7 & 8 & 9 \\ 4 & 5 & 6 \end{pmatrix} = \tilde{A}.$$

2.10 Ominaisarvo ja ominaisvektori

n-ulotteista vektoria $\mathbf{v} \neq 0$ sanotaan lineaarikuvauksen $A: \mathbf{C}^n \to \mathbf{C}^n$ (eli $n \times n$ -matriisin) ominaisvektoriksi, jos

$$A\mathbf{v} = \lambda \mathbf{v}$$

jollakin luvulla λ . Lukua λ sanotaan matriisin ominaisarvoksi, ja se voi reaalisenkin matriisin tapauksessa olla kompleksiluku. Ominaisarvo voi myös olla 0, jolloin matriisi on epäsäännöllinen.

Ominaisvektori \boldsymbol{v} ei ole yksikäsitteinen, ainoastaan sen suunta on, sillä $A(t\boldsymbol{v})=tA\boldsymbol{v}=t\lambda\boldsymbol{v}=\lambda t\boldsymbol{v}.$

Miten määrätään neliömatriisin ominaisarvot ja vektorit? Edeltä muistetaan, että matriisi on säännöllinen – eli sillä on käänteismatriisi – täsmälleen silloin, kun $\det A \neq 0$.

Palataan ominaisvektoriyhtälöön $Av = \lambda v$. Tästä saadaan yhtäpitävästi

$$A\mathbf{x} - \lambda \mathbf{v} = 0$$
$$(A - \lambda I) \mathbf{v} = 0.$$

Ominaisvektori ei voi olla nollavektori, joten neliömatriisin A ominaisarvot saadaan yhtälöstä

$$\det\left(A - \lambda I\right) = 0,$$

sillä yhtälön $(A - \lambda I) \mathbf{v} = 0$ kerroinmatriisin pitää olla epäsäännöllinen.

Lauseke $\det{(A-\lambda I)}$ on λ :n suhteen polynomi astetta n, jonka juuret ovat ominaisarvot. Lauseketta

$$p_A(\lambda) = \det(A - \lambda I)$$

kutsutaankin matriisin A karakteristiseksi polynomiksi. Huomaa, että reaalisen matriisin ominaisarvot voivat olla kompleksilukuja.

Ominaisarvoa ja sitä vastaavaa ominaisvektoria kutsutaan ominaispariksi. Ominaisarvot ja -vektorit lasketaan seuraavasti.

- 1. Ominaisarvot saadaan yhtälöstä $p_A(\lambda) = \det(A \lambda I) = 0$.
- 2. Ominaisarvoa λ_i vastaava ominaisvektori v_i ratkaistaan yhtälöstä

$$(A - \lambda_i I) \mathbf{v}_i = 0$$

esimerkiksi ratkaisemalla yhtälöryhmä komponenttiesityksestä tai Gaussin eliminointimenetelmällä.

Käytännössä ominaisarvot ja -vektorit ratkaistaan hienostuneilla algoritmeilla tietokoneella.

Ominaisarvojen joukkoa kutsutaan A:n spektriksi ja vastaavia ominaisvektoreita usein A:n ominaistiloiksi.

Määritelmä 18 (Ominaisarvon algebrallinen kertaluku). Jos matriisin A karakteristisen polynomin p_A juuren λ_i asteluku on n, eli karakteristisen polynomi on muotoa

$$p_A(\lambda) = (\lambda - \lambda_i)^n \tilde{p}(\lambda),$$

niin sanotaan, että ominaisarvon λ_i algebrallinen kertaluku on n. Tätä merkitään

$$m_a(\lambda_i) = n.$$

Eri ominaisarvoihin liittyvät ominaisvektorit ovat lineaarisesti riippumattomia. Symmetriset matriisit ovat monessa yhteydessä tärkeitä.

Lause 10. Symmetrisen matriisin $A = A^T$ ominaisarvot ovat reaalisia ja ominaisvektorit ovat ortogonaalisia. Ominaisvektorit u_i ovat näin ollen toisiaan vastaan kohtisuorassa

$$\mathbf{u}_i \cdot \mathbf{u}_j = \mathbf{u}_i^T \mathbf{u}_j = 0, \text{ kun } i \neq j.$$

2.11 Neliömuoto

Olkoon $A n \times n$ -matriisi. Tällöin sitä vastaava neliömuoto on

$$q(\boldsymbol{x}) = \boldsymbol{x}^T A \boldsymbol{x} = \sum_{i=1}^n \sum_{j=1}^n a_i j x_i x_j.$$

Koska $x_i x_j = x_j x_i$, niin neliömuotoa vastaavaksi matriisiksi valitaan symmetrinen matriisi.

Symmetrinen matriisi A on ortogonaalisesti diagonalisoituva, niin muuttujan vaihdolla neliömuoto voidaan esittää ilman ristitermejä $x_i x_j$, $i \neq j$.

2.12 Toisen asteen käyrät

Toisen asteen käyrä on muotoa

$$f(\mathbf{x}) = a_{11}x^2 + a_{22}y^2 + 2a_{12}xy + b_1x + b_2y + c = 0,$$

lyhyesti vain

$$f(\boldsymbol{x}) = \boldsymbol{x}^T A \boldsymbol{x} + B \boldsymbol{x} + c = 0,$$

missä

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, a_{21} = a_{12}, \quad B = [b_1, b_2], \quad c \in \mathbf{R}.$$

2.13 Bra-ket-merkintätapa*

Bra-ket-merkintätapa eli Diracin merkintätapa on yleisessä käytössä kvanttimekaniikassa. Englanniksi merkintätavan nimi on *bracket* (sulku). Bra-vektoria merkitään symbolilla $\langle \psi |$, kun taas ket-vektoria merkitään $|\psi \rangle$. Ket-vektorilla tarkoitetaan kvanttimekaanista tilaa. Bra-ket-merkintä

$$\langle \psi | \phi \rangle$$

tarkoittaa tilojen $|\psi\rangle$ ja $|\phi\rangle$ välistä sisätuloa.

Mikäli tila-avaruus n-ulotteinen kompleksiavaruus, niin ket-vektorit $|a\rangle$ ja $|b\rangle$ esittävät pisteiden paikkavektoreita n-ulotteisessa kompleksiavaruudessa

$$|m{a}
angle = egin{pmatrix} a_1 \ a_2 \ dots \ a_n \end{pmatrix}, \quad |m{b}
angle = egin{pmatrix} b_1 \ b_2 \ dots \ b_n \end{pmatrix}.$$

Ket-vektoria $|a\rangle$ vastaava bra-vektori on ket-vektorin adjungaatti eli

$$\langle \boldsymbol{a}| = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}^{\dagger} = (\overline{a_1}, \overline{a_2}, \dots, \overline{a_n})$$

Täten vektorien eli tilojen $|a\rangle$ ja $|b\rangle$ välinen sisätulo

$$\langle a|b\rangle = \left(\overline{a_1}, \overline{a_2}, \dots, \overline{a_n}\right) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \sum_{j=1}^n \overline{a_j} b_j.$$

Tilaa $|\psi\rangle$ sanotaan normitetuksi, jos

$$||\psi|| = \sqrt{\langle \psi | \psi \rangle} = 1.$$

Huomaa, että bra-ket-merkintätapa on lineaarinen ket-vektorin suhteen ja konjugaattilineaarinen bra-vektorin suhteen. Olkoon $\alpha, \beta \in \mathbb{C}$, ja olkoon $\langle f|, \langle g|, \langle h|$ vektoreita, tällöin

a)
$$\langle f | \alpha g + \beta h \rangle = \langle f | \alpha g \rangle + \langle f | \beta h \rangle = \alpha \langle f | g \rangle + \beta \langle f | h \rangle$$

b)
$$\langle \alpha \mathbf{f} + \beta \mathbf{g} | \mathbf{h} \rangle = \langle \alpha \mathbf{f} | \mathbf{h} \rangle + \langle \beta \mathbf{g} | \mathbf{h} \rangle = \overline{\alpha} \langle \mathbf{f} | \mathbf{h} \rangle + \overline{\beta} \langle \mathbf{g} | \mathbf{h} \rangle.$$

Kun operaattori A (eli matriisi) operoi ket-vektoriin $|\phi\rangle$, saadaan ket-vektori

$$A |\phi\rangle = |A\phi\rangle$$
.

Vastaavalla tavalla saadaan bra-vektori, kun operaattori A operoi bra-vektoriin $\langle \psi |$ oikealta

$$\langle \psi | A = \langle \psi A |$$
.

Hermiittisen operaattorin A odotusarvo normitetussa tilassa ψ , $||\psi||=1$, voidaan laskea lausekkeesta

$$\langle A \rangle = \langle \psi | A | \psi \rangle$$
.

Kvanttimekaniikassa mitattavia fysikaalisia suureita vastaavat hermiittiset operaattorit, joita kuvataan matriiseilla. Systeemin ollessa normitetussa tilassa $\langle \psi |$, on mitatun suureen keskiarvo sama kuin suuretta vastaavan operaattorin A odotusarvo.

Esimerkki 6. Laske Paulin spinmatriisin

$$\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

odotusarvo tilassa $|\psi\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}$.

Ratkaisu. Tila on normitettu, sillä

$$||\psi||^2 = \langle \psi | \psi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{2} (1^2 + (-1)^2) = 1.$$

Näin ollen Paulin spinmatriisin odotusarvo on

$$\langle \sigma_y \rangle = \langle \psi | \sigma_y | \psi \rangle = \langle \psi | \sigma_y \psi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \cdot 1 - i \cdot (-1) \\ i \cdot 1 + 0 \cdot (-1) \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} i \\ i \end{pmatrix} = \frac{1}{2} (i - i) = 0.$$

2.14 Unitaarinen matriisi*

Määritelmä 19. Neliömatriisi U on unitaarinen, jos

$$U^{\dagger}U = UU^{\dagger} = I.$$

Toisin sanoen matriisin U käänteismatriisi on sen adjungaatti, $U^{-1}=U^{\dagger}$.

Suora seuraus unitaarisuuden määritelmästä on, että matriisin U sarakevektorit ovat ortonormaaleja.

Lause 11. Olkoon U unitaarinen $n \times n$ -matriisi ja vektorit $u_i, i = 1, 2, \dots, n$, sen sarakkeet, eli

$$U = \begin{pmatrix} u_1, & u_2, & \dots, & u_n \end{pmatrix}$$

Tällöin vektorit u_i ortonormaalit

$$\left\langle oldsymbol{u_i} \middle| \, oldsymbol{u_j}
ight
angle = oldsymbol{u_i^\dagger} oldsymbol{u_j} = \delta_{ij} = egin{cases} 1, & \text{kun } i = j \\ 0, & \text{muuten.} \end{cases}$$

Vektorien u_i , i = 1, 2, ..., n, ortonormaalisuus tarkoittaa, että vektorit ovat pareittain kohtisuorassa (ortogonaalisia) ja ykkösen pituiset.

Vektorin kuvaaminen unitaarisella matriisilla säilyttää sisätulon eli vektorien väliset kulmat säilyvät unitaarisissa kuvauksissa.

Lause 12. Olkoot U unitaarinen $n \times n$ -matriisi ja $x, y \in \mathbb{C}^n$. Tällöin

$$\langle U\boldsymbol{x}|U\boldsymbol{y}\rangle = \langle \boldsymbol{x}|\boldsymbol{y}\rangle.$$

Todistus. Suoralla laskulla saadaan

$$\langle U\boldsymbol{x}|\ U\boldsymbol{y}\rangle = (U\boldsymbol{x})^{\dagger}\ U\boldsymbol{y} = \boldsymbol{x}^{\dagger}U^{\dagger}U\boldsymbol{y}$$

= $\boldsymbol{x}^{\dagger}I\boldsymbol{y} = \boldsymbol{x}^{\dagger}\boldsymbol{y} = \langle \boldsymbol{x}|\ \boldsymbol{y}\rangle$.

Kvanttimekaniikassa operaattoria vastaa hermiittinen matriisi. Hermiittiselle matriisille $A=A^\dagger$ pätee:

- kaikki ominaisarvot λ_i ovat reaalisia
- eri ominaisarvoja vastaavat ominaisvektorit v_i ovat ortogonaaliset eli $v_i \cdot v_j = 0, i \neq j$.

Tehtäviä

Tehtävä 1. Olkoon $\overline{u}=(7,2,5)^T,\ \boldsymbol{v}=(3,1,3)^T$ ja $\overline{w}=(6,1,0)^T.$ Näytä, että $3\overline{u}-5\overline{v}=\overline{w}.$ Määritä yhtälön

$$\begin{pmatrix} 7 & 3 \\ 2 & 1 \\ 5 & 3 \end{pmatrix} \boldsymbol{x} = \begin{pmatrix} 6 \\ 1 \\ 0 \end{pmatrix}$$

ratkaisu.

Tehtävä 2. Määritä tason lineaarikuvaus eli matriisi, joka peilaa pisteen $m{x} \in \mathbf{R}^2$

- a) x_1 -akselin suhteen
- **b)** x_2 -akselin suhteen
- c) suoran $x_1 + x_2 = 0$ suhteen
- d) origon suhteen?

Tehtävä 3. Määritä edellisen tehtävän perusteella matriisi, joka ensin peilaa pisteen $x \in \mathbb{R}^2$ suoran $x_1 + x_2 = 0$ suhteen ja sitten peilaa pisteen origon suhteen? Onko matriisi sama, jos peilausjärjestystä vaihdetaan?

Tehtävä 4. Olkoon $A=\begin{pmatrix}1&2\\1&3\\1&5\end{pmatrix}$. Määrää 2×3 -matriisi B, jonka alkioina ovat 1, -1 ja 0,

niin, että $AB=I_2$. Onko mahdollista, että $CA=I_4$ jollakin 4×2 -matriisilla C? Tässä I_n on $n\times n$ -yksikkömatriisi.

Tehtävä 5. Neliömatriisi N on nilpotentti, jos $N^k = \overbrace{N \cdot N \cdot \cdots N}^{k \text{ kpl}} = 0$. Anna esimerkki sellaisesta matriisista N, jonka kaikki alkiot poikkeavat nollasta, mutta jolle pätee $N^2 = 0$.

Tehtävä 6. Olkoon $A m \times n$ -matriisi ja $B n \times k$ -matriisi. Osoita, että $(AB)^T = B^T A^T$.

Tehtävä 7. Taso kulkee pisteiden $A=(1,2,1),\ B=(-1,0,2)$ ja C=(-3,1,3) kautta. Määrää tason normaalimuotoinen yhtälö käyttäen ristituloa.

Tehtävä 8. Määrää ristitulon avulla yksikkövektori, joka on kohtisuorassa vektoreita $\overline{i}+\overline{j}$ ja $\overline{j}+3\overline{k}$ vastaan.

Tehtävä 9. Määrää kolmion ABC pinta-ala ristituloa käyttäen, kun A=(1,2,0), B=(1,0,2) ja C=(0,3,1).

Tehtävä 10. Jos avaruuden kolme vektoria u, v ja w on annettu. Millä ehdolla vektorit ovat samassa tasossa?

Tehtävä 11. Avaruuden \mathbb{R}^3 vektorien a, b ja c skalaarikolmitulo on

$$a \bullet b \times c = a \bullet (b \times c).$$

Osoita, että

$$\boldsymbol{a} \bullet \boldsymbol{b} \times \boldsymbol{c} = \det(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$$

Tehtävä 12. Osoita, että lineaarisella yhtälöryhmällä Ax = b ei voi olla täsmälleen kahta ratkaisua. Vinkki: Tarkastele eri ratkaisujen välisen suoran pisteitä.

Tehtävä 13. Fotosynteesissä kasvi muodostaa auringonvalosta saamallaan energialla hiilidioksista ja vedestä happea ja glukoosia. Etsi reaktion

$$x_1CO_2 + x_2H_2O \rightarrow x_3O_2 + x_4C_6H_12O_6$$

kertoimet $x_i, i = 1, 2, 3, 4.$

Tehtävä 14. Määrää homogeenisen yhtälöryhmän

$$\begin{cases}
-x + y - z - 3w = 0 \\
3x + y - z - w = 0 \\
2x - y - 2z - w = 0
\end{cases}$$

ratkaisut.

Tehtävä 15. Olkoon $L: \mathbf{R}^3 \to \mathbf{R}^3$ lineaarikuvaus $L(\boldsymbol{x}) = \boldsymbol{x} \times \boldsymbol{a}$, jossa $\boldsymbol{a} = (1, 2, -4)$. Määritä lineaarikuvauksen matriisi.

22.9.2020

Tehtävä 16. $m \times n$ -matriisin A nolla-avaruus eli ydin on

$$\operatorname{null} A = \{ \boldsymbol{x} \in \mathbf{R}^n : A\boldsymbol{x} = 0 \}.$$

Määritä matriisin

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

nolla-avaruus. Mikä on sen dimensio?

Tehtävä 17. Olkoon

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Laske A^k , kun $k=1,2,3,\ldots,1992.$

Tehtävä 18. Jos A on neliömatriisi, niin yhtälöryhmä Ax = b on yksinkertaista ratkaista, jos A = LU, missä L on alakolmio- ja U yläkolmiomatriisi. Ratkaise yhtälö

$$A\boldsymbol{x} = \boldsymbol{b},$$

jossa

$$A = \begin{pmatrix} 3 & -7 & -2 \\ -3 & 5 & 1 \\ 6 & -4 & 0 \end{pmatrix}$$

ja $\boldsymbol{b} = (-7, 5, 2)^T$, käyttäen LU-hajotelmaa.

Tehtävä 19. Muodosta permutaatiomatriisi, joka siirtää $n \times n$ -matriisissa kaikkia rivejä yhden

ylöspäin, paitsi ylin rivi siirtyy alimmaiseksi. Tarkista saamasi matriisi tapauksessa, jossa

$$A = \begin{pmatrix} 2 & -1 & 0 & 12 \\ 1 & -1 & 0 & 1 \\ 0 & -11 & 1 & -2 \\ 0 & 1 & 1 & 1 \end{pmatrix}.$$

Tehtävä 20. Tarkestellaan tasossa \mathbb{R}^2 peilausta origon suhteen. Muodosta peilausmatriisi Q ja laske sen ominaisarvot ja -vektorit.

Tehtävä 21. Etsi matriisin

$$A = \begin{pmatrix} -3 & -2 & 4 \\ -2 & 0 & 2 \\ 4 & 2 & -3 \end{pmatrix}$$

ortogonaalinen diagonalisointi.

Tehtävä 22. Olkoon A symmetrinen. Etsi muunnos, jonka avulla meliömuoto $q(\boldsymbol{x}) = \boldsymbol{x}^T A x$ saadaan pääakseliesitysmuotoon

$$q(\boldsymbol{x}) = \sum_{i=1}^{n} \lambda_i y_i^2.$$

Tehtävä 23. Määrää neliömuodon $q(x) = -3x_1^2 - 3x_3^2 - 4x_1x_2 + 8x_1x_3 + 4x_2x_3$ pääakseliesitys.

Tehtävä 24. Luokittele toisen asteen käyrä

$$5x^2 + 5y^2 - 8xy - 18x + 18y + 8 = 0$$

ja etsi sen pääakseliesitys.

Tehtävä 25. Määritä sen paraabelin yhtälö, joka parhaiten sopii (pienimmän neliösumman mielessä) pisteisiin (-1, 1/2), (1, -1), (2, -1/2) ja (3, 2).

Tehtävä 26. Määritä säämallin siirtymäkaavion siirtymämatriisi.

Määritä siirtymämatriisin tasapainojakauma.