

MT2625 Datasheet

Version: 1.5

Release date: 1 June 2018

© 2015 - 2018 MediaTek Inc.

This document contains information that is proprietary to MediaTek Inc. ("MediaTek") and/or its licensor(s). MediaTek cannot grant you permission for any material that is owned by third parties. You may only use or reproduce this document if you have agreed to and been bound by the applicable license agreement with MediaTek ("License Agreement") and been granted explicit permission within the License Agreement ("Permitted User"). If you are not a Permitted User, please cease any access or use of this document immediately. Any unauthorized use, reproduction or disclosure of this document in whole or in part is strictly prohibited. THIS DOCUMENT IS PROVIDED ON AN "AS-IS" BASIS ONLY. MEDIATEK EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES OF ANY KIND AND SHALL IN NO EVENT BE LIABLE FOR ANY CLAIMS RELATING TO OR ARISING OUT OF THIS DOCUMENT OR ANY USE OR INABILITY TO USE THEREOF. Specifications contained herein are subject to change without notice.

Document Revision History

Revision	Date	Description
1.0	18 January 2018	Initial release
1.1	29 January 2018	Update Features, Figure 1.2-1, Figure 5.5-2, Table 6.1-2, Table 6.2-1, Ch 7.2
1.2	31 January 2018	Update Table2.5-2, Table4.3-1
1.3	7 February 2018	Update Table 5.4-2, Ch.6.2.2
1.4	23 March 2018	Update Features (I2S interface), Figure 2.5-1
1.5	1 June 2018	Update Ch.2.3.6

Features

NB-IoT transceiver

- Compliant with 3GPP R13/R14 NB-IoT standard
- Supports DL 200kHz bandwidth/UL single tone and multi-tone
- Supported RF bands:
 B1/B2/B3/B5/B8/B11/B12/B13/B17/B18/B19/B20
 /B21/B25/B26/B28/B31/B66/B70/B71
- Supports PSM and eDRX mode

Microcontroller subsystem

- ARM® Cortex®-M4 with FPU and MPU
- 14 DMA channels
- One RTC timer, one 64-bit and five 32-bit general purpose timers
- Development support: SWD, JTAG
- Crypto engine
 - o AES 128, 192, 256 bits
 - o DES, 3DES
 - o MD5, SHA-1, 224, 256, 384, 512
- True random number generator
- JTAG password protection

Memory

- Up to 32KB SYSRAM, with zero-wait state
- Up to 32KB L1 cache, with high hit rate and zerowait state
- Embedded 32Mbits flash
 - o Sleep current 200nA
- Embedded 32Mbits pseudo SRAM
 - o Sleep current 10μA

Communication interfaces

- Two SDIO 2.0 masters and one SDIO 2.0 slave
- Three I2C (3.4Mbps) interfaces
- Four UART interfaces (3Mbps, UART1/2 with hardware flow control)
- Two SPI masters and one SPI slave
- Two I2S interfaces
 - Both support 16/24-bit, master/slave mode
 - Both support 16, 24, 48, 96, 192kHz and 11.025kHz, 22.05kHz, 44.1kHz, TX/RX, 2 channels
- Four PWM channels
- 37 GPIOs (5V-tolerant)
- Seven IOs for BPI and MIPI interfaces
- Three IOs for SIM
- 5 channel 10-bit AUXADC (PinMux with GPIO), maximum input voltage 1.4V
- Embedded thermal sensor

Power management

- Three integrated high efficiency buck converters with low quiescent current
- Four integrated LDO regulators for RTC, SIM, RF frontend and GPIOs
- Operating temperature from -40°C to 85°C

Clock source

- 26MHz crystal oscillator
- 32kHz crystal oscillator or internal 32kHz oscillator for RTC

Package

• 5.6-mm x 5.6-mm x 1.05-mm TFBGA with 0.5-mm ball pitch

Table of Contents

Docun	nent Re	evision History	. 1
Featur	es		. 1
Table	of Cont	tents	. 1
Lists o	f Table	s and Figures	. 2
1.	Systen	n Overview	. 4
	1.2. 1.3. 1.4. 1.5.	MT2625X product family	5 5 7
		onal Description	
	2.1. 2.2. 2.3. 2.4. 2.5.	Host processor subsystem Platform description Peripheral description Modem system Analog baseband	8 9 11 14
3.		system	
		Radio characteristics	
4.		Management Unit and Low Power Control System	
	4.2. 4.3. 4.4.	Overview	23 24 25
		scription	
	5.1. 5.2. 5.3. 5.4.	MT2625D series ball diagram	30 32 34 34
6.	Electri	cal Characteristics	45
	6.2.	Absolute maximum ratings	46
7.	Packag	ge Information	81
	7.2.	MT2625 mechanical data of the package	83
8.	Orderi	ng Information	84
	8.1.	MT2625 top marking definition	84

Lists of Tables and Figures

Table 1.1-1. Difference between all product series chipsets	4
Table 1.3-1. MT2625 series peripherals	6
Table 2.5-1. Auxiliary ADC input channels	17
Table 2.5-2. Auxiliary ADC Specifications	18
Table 2.5-3. MPLL specifications	20
Table 2.5-4. UPLL specifications	20
Table 2.5-5. XPLL specifications	21
Table 4.3-1. Current consumption in different power modes	24
Table 4.4-1. BUCK / LDO characteristic	26
Table 5.1-1. MT2625D series pin coordinates	30
Table 5.2-1. MT2625A series pin coordinates	
Table 5.4-1. Acronym for pin types and I/O structure	34
Table 5.4-2. MT2625D series pin function description and power domain (group1)	35
Table 5.5-1. Peripheral functions and signals	41
Table 6.1-1. Absolute maximum ratings for power supply	45
Table 6.1-2. Absolute maximum ratings for I/O power supply	45
Table 6.1-3. Absolute maximum ratings for voltage input	45
Table 6.1-4. Absolute maximum ratings for storage temperature	45
Table 6.2-1. MT2625DA/AA general operating conditions	46
Table 6.2-2. MT2625DPA/APA general operating conditions	46
Table 6.2-3. Recommended operating conditions for power supply	46
Table 6.2-4. Recommended operating conditions for voltage input	46
Table 6.2-5. Recommended operating conditions for operating temperature	47
Table 6.2-6. Electrical characteristics	47
Table 6.2-7. DCXO Characteristics (TA = 250C, VDD = 1.8V unless otherwise stated)(1)	63
Table 6.2-8. Functional specifications of XOSC32	63
Table 6.2-9. Recommended parameters for 32kHz crystal	63
Table 6.3-1. SPI master interface characteristics	65
Table 6.3-2. SPI slave interface characteristics	66
Table 6.3-3. I2S master and I2S slave interface characteristics	67
Table 6.3-4. Bus Timing – Parameters Values (Default Speed)	68
Table 6.3-5. Bus Timing – Parameters Values (High Speed)	70
Table 6.3-6. Bus Timing – Parameters Values (Default Speed)	
Table 6.3-7. Bus Timing – Parameters Values (High Speed)	74
Table 6.3-8. USB11 interface characteristics	77
Table 6.3-9. eMMC interface push-pull signal level2.7V $-$ 3.6V V_{CCQ} range (high voltage eMMC)	78
Table 6.3-10. eMMC interface push-pull signal level1.70V – 1.95V V _{CCQ} voltage range	78
Table 6.3-11. eMMC interface characteristics (backward-compatible device)	79
Table 6.3-12. eMMC interface characteristics (high-speed device)	80
Table 7.2-1. MT2625 thermal operating specifications	83
Table 8 1-1 Ordering information	85

Figure 1.2-1. MT2625 chipset architecture	5
Figure 2.2-1. Boot source flow	10
Figure 2.4-1. Block diagram	15
Figure 2.5-1. Block diagram	17
Figure 2.5-2. Block diagram of UPLL and MPLL clock sources	19
Figure 2.5-3. Block diagram of XPLL clock sources	19
Figure 3.1-1. RF block diagram	22
Figure 4.2-1. MT2625 power states	24
Figure 4.4-1. MT2625 PMU power grid	26
Figure 5.1-1. MT2625D series ball diagram and top view	30
Figure 5.2-1. MT2625A series ball diagram and top view	32
Figure 5.5-1. GPIO block diagram	41
Figure 5.5-2. PinMux description	43
Figure 6.3-1. SPI master interface timing diagram (CPHA=0)	64
Figure 6.3-2. SPI master interface timing diagram (CPHA=1)	65
Figure 6.3-3. SPI slave interface timing diagram (CPHA=0)	66
Figure 6.3-4. SPI slave interface timing diagram (CPHA=1)	66
Figure 6.3-5. I2S master and I2S slave interface timing diagram	67
Figure 6.3-6. Card Input Timing (Default Speed Mode)	68
Figure 6.3-7. Card Output Timing (Default Speed Mode)	68
Figure 6.3-8. Card Input Timing (High Speed Mode)	70
Figure 6.3-9. Card Output Timing (High Speed Mode)	70
Figure 6.3-10. Card Input Timing (Default Speed Mode)	72
Figure 6.3-11. Card Output Timing (Default Speed Mode)	72
Figure 6.3-12. Card Input Timing (High Speed Mode)	74
Figure 6.3-13. Card Output Timing (High Speed Mode)	74
Figure 6.3-14. Full-speed Device Connect Detection	76
Figure 6.3-15. Disconnect Detection	76
Figure 6.3-16. Bus State Evaluation after reset	77
Figure 6.3-17. Bus driver characteristics	77
Figure 6.3-18. eMMC interface timing diagram	79
Figure 7.1-1. Outlines and dimensions of MT2625 TFBGA 5.6 mm*5.6 mm, 121-ball, 0.5mm pitch package	83
Figure 8.1-1. Mass production top marking of MT2625DA	
Figure 8.1-2. Mass production top marking of MT2625AA	84
Figure 8.1-3. Mass production top marking of MT2625DPA	85
Figure 8.1-4. Mass production top marking of MT2625APA	85

1. System Overview

MediaTek MT2625 is a highly integrated chipset featuring an application processor, a low power multiband narrowband Internet of Things transceiver and a power management unit (PMU).

MT2625 is based on ARM® Cortex®-M4 with floating point microcontroller unit (MCU) integrated with 4MB PSRAM and 4MB flash memory. MT2625 also supports interfaces including UART, I2C, SPI, I2S, PWM, SDIO, ADC, USB, keypad and USIM.

The NB-IoT transceiver contains the 3GPP R13/R14 radio, baseband and MAC that are designed to meet low power and extended battery life application requirements.

1.1. MT2625X product family

Table 1.1-1. Difference between all product series chipsets

Item	MT2625D series		MT2625A series		
Product Number	MT2625DA	MT2625DPA	MT2625AA MT2625AP		
Package size	5.6-mm x 5.6-mm x 1.05-mm		5.6-mm x 5.6-mm x 1.05-mm		
Package ball, pitch	121-ball, 0.5mm pitch		121-ball, 0.5mm pitch		
SiP flash size	32Mbits		N/A		
SiP PSRAM size	32Mbits		32Mbits		
ARM® Cortex®-M4 operation frequency	78 MHz 156 MHz		78 MHz	156 MHz	
PSRAM operation frequency	39 MHz 78 MHz		39 MHz 78 MHz		
Flash operation frequency	78MHz		78MHz		

1.2. System architecture

Figure 1.2-1. MT2625 chipset architecture

1.3. Platform features overview

1.3.1. Host processor subsystem

- ARM® Cortex®-M4 with FPU application processor
- 32kB L1 cache with high hit rate and zero wait state
- eXecute In Place (XIP) on flash memory

1.3.2. **Memory**

- SiP 32Mb low power flash memory with 0.2μA deep-down current (typical condition)
- SiP 32Mb low power PSRAM with 10μA half-sleep mode current (current condition: PASR 1/8 at 25°C 1x refresh)
- 32kB SYSRAM with zero wait state

1.3.3. Peripheral interfaces

The following interfaces are multiplexed with GPIO.

- Two SPI master interface, 1, 2, 4-bit mode, up to 52MHz
- One SPI slave interface, 1, 2, 4-bit mode, up to 52MHz
- Two SDIO host interface (v2.0)
- One SDIO device interface (v2.0)
- One USB interface (v1.1)
- 3x3 keypad
- Two I2S interface supporting 16 or 24-bit, master or slave mode (supports 16, 24, 48, 96, 192, 11.025, 22.05 and 44.1kHz sample rates, transmit and receive, two channels)
- Up to four UART interfaces, UART1/2 with hardware flow control (~3Mbps)
- Up to three I2C master interfaces (3.4Mbps)
- Up to five channels of 10-bit ADC
- Up to four PWM channels

Table 1.3-1. MT2625 series peripherals

Peripheral	Counts	Description
Keypad	3x3 keypad scanner	with double key detection
PWM	4	-
UART	4	up to 3Mbps, UART1/2 support RTS/CTS
USB	1	v1.1, require external LDO for USB
I2C	3	master mode, 400kbps, Up to 3.4Mbp
125	2 master/slave	-
MSDC	2 master	v2.0, up to 52MHz, 1-bit/4-bit mode
		eMMC4.41 , no booting and not support DDR mode
SDIO	1 slave	v2.0, up to 52MHz, external host booting via SDIO
SPI	2 master	clock up to 52MHz, 1-bit/2-bit/4-bit
SPI	1 slave	clock up to 52MHz, 1-bit/2-bit/4-bit, external host booting
		via SPI
SIM	1	no support 3V SIM if non-chargeable battery
AUXADC	5-channel	10-bit ADC, pin mux by AGPIO
GPIO	37	all pins with interrupt except GPIO0

1.3.4. Security

- Crypto engine that supports AES, DES/3DES, MD5, SHA1/SHA2
- True random number generator

1.3.5. Others

- Up to 37 GPIO interfaces with 5V-tolerant fast IOs, each IO can be configured as an external interrupt source
- 27 DMA channels
- Single RTC timer, one 64-bit and five 32-bit general purpose timers (GPTs)

1.4. Modem features overview

- Compliant to 3GPP 36.101 R13/R14 category NB1/NB2
- Supported bands include EUTRA 1, 2, 3, 5, 8, 12, 13, 17, 18, 19, 20, 25, 26, 28, 66 and 70.
- Optional bands are EUTRA 11, 21, 31, and 71.
- Low power 1.3-V single-ended Saw-Less RX and Polar TX.
- Built-in low dropout linear regulators that are powered by switching regulator

1.5. Power management unit (PMU) features overview

- Wider input voltage range 2.1V to 3.63V
- Four Low Drop-out Regulators (LDOs) and three high efficiency buck converters
- Contains Under-Voltage Lockout (UVLO) circuit and a reference band-gap circuit

1.6. Package

• For MT2625, a TFBGA of 5.6mm*5.6mm, 121-ball, 0.5mm pitch package is offered.

2. Functional Description

2.1. Host processor subsystem

2.1.1. ARM® Cortex®-M4 with FPU

The Cortex-M4 with FPU is a low-power processor with 3-stage pipeline Harvard architecture. It has reduced pin count and low power consumption and delivers very high performance efficiency and low interrupt latency, making it ideal for embedded microcontroller products.

The processor incorporates:

- IEEE754-compliant single-precision floating-point computation unit (FPU).
- A Nested Vectored Interrupt Controller (NVIC) to achieve low latency interrupt processing.
- Enhanced system debugging with extensive breakpoint.
- An optional Memory Protection Unit (MPU) to ensure platform security robustness.

The Cortex-M4 executes the Thumb®-2 instruction set with 32-bit architecture, with the high code density of 8-bit and 16-bit microcontrollers. The instruction set is fully backward compatible with Cortex-M3/M0+.

MT2625 has further enhanced the Cortex-M4 with FPU to reduce the power by another 11% (in Dhrystone) compared to the original Cortex-M4. Low power consumption is a significant feature for IoT and Wearables application development.

2.1.2. Cache controller

A configurable 32kB cache is implemented to improve the code fetch performance when CPU accesses a non-zero wait-state memory such as EMI, external flash or boot ROM through the on-chip bus.

The core cache is a small block of memory containing a copy of a small portion of cacheable data in the external memory. If CPU reads a cacheable datum, the datum will be copied to the core cache. Once CPU requests the same datum again, it can be obtained directly from the core cache (called cache hit) instead of fetching it again from the external memory to achieve zero wait-state latency.

The cache can be disabled and this block of memory can be turned into tightly coupled memory (TCM), a high-speed memory for normal data storage. The sizes of TCM and cache can be set to one of the following four configurations:

- 32kB cache, 64kB TCM
- 16kB cache, 80kB TCM
- 8kB cache, 88kB TCM
- 0kB cache, 96kB TCM

2.1.3. Memory management

Three types of memories are implemented for use:

- On-die memories (SRAMs) with up to 32kB at CPU clock speed with zero wait state.
- Embedded flash of 32Mbits to store programs and data
- Embedded pseudo SRAM (PSRAM) of 32Mbits for application storage

WEDIATEK

MediaTek MT2625 Datasheet

The SRAMs are composed of TCMs and L1 caches. The L1 cache (up to 32kB) is implemented to improve processor access performance of the long latency memories (flash and PSRAM).

TCMs are designed for applications requiring high speed, low latency and low power consumption. Each TCM has its own power state; active, retention or power-down. TCM must be in active state for normal read and write access. Retention state saves the SRAM content and consumes the minimum leakage current with no access. Power-down state loses the content and consumes almost zero power.

The TCMs can also be accessed by other internal AHB masters like DMA or multimedia subsystem for low power applications. These applications can run on TCM without powering on PSRAM or flash to save more power.

Boot ROM is also implemented for processor boot—up and its content is unchangeable.

2.1.4. Memory protection unit (MPU)

The MPU is an optional component to manage the CPU access to memory. The MPU provides full support for:

- Protection regions (up to 8 regions and can be further divided up into 8 sub-regions).
- Overlapping protection regions, with region priority.
- Access permissions.
- Exporting memory attributes to the system.

The MPU is useful for applications where a critical code has to be protected against misbehavior of other tasks. It can be used to define access rules, enforce privilege rules and separate processes.

2.1.5. Nested vectored interrupt controller (NVIC)

The NVIC supports up to 76 maskable interrupts and 16 interrupt lines of Cortex-M4 with 128 priority levels. The NVIC and the processor core interface are closely coupled to enable low latency interrupt processing and efficient processing of late arriving interrupts. The NVIC maintains knowledge of the stacked or nested interrupts to enable tail-chaining of interrupts. The processor supports both level and pulse interrupts with programmable active-high or low control.

2.1.6. External interrupt controller

The external interrupt controller consists of up to 32 edge/level detectors for generating event/interrupt requests. Each input line can be independently configured to select the type (interrupt or event) and the corresponding trigger event (rising edge or falling edge or both or level). Each line can also be masked independently. A pending register maintains the status line of the interrupt requests. Up to 37 GPIOs can be connected to 23 external interrupt lines.

2.2. Platform description

2.2.1. Boot mode

Internal or external booting device, flow control

There are three boot source options:

- Serial flash
- SPI slave (to load binary from host)
- o SDIO slave (to load binary from host)

MEDIATEK

MediaTek MT2625 Datasheet

The host may transmit a binary through SPI slave or SDIO slave to internal SRAM. The MCU (Cortex-M4) can execute on internal SRAM after transmission is complete.

The boot source in boot ROM is determined according to the flowchart shown in Figure 2.2-1. HIF_EN and HIF_SEL can be configured at power up using BPI_2 and BPI_3, respectively.

Figure 2.2-1. Boot source flow

2.2.2. Trapping and mode selection

Mode selection	Pin name	Description	Trapping condition
32kHz clock source select	BPI1	GND : 32kHz source is from external (default) DVDD_IO_1 : 32kHz source is from internal (divided from 26MHz clock)	Power-on reset
Boot with host interface (HIF_EN)	BPI2	GND : Boot with host interface disabled (default) DVDD_IO_1 : Boot with host interface enabled	Power-on reset
Host interface select (HIF_SEL) (active if HIF_EN is enabled)	BPI3	GND : Host interface via SPI slave (default, HIF_SEL must keep GND level, if HIF_EN is "GND") DVDD_IO_1 : Host interface via SDIO slave	Power-on reset
System Level Test (SLT) mode	BPI4	GND : Normal mode (default) DVDD_IO_1 : SLT mode	Power-on reset
USB download	GPIO0	GND : Enter USB download mode in Boot ROM DVDD_IO_2 : No USB download in Boot ROM (default)	Power-on reset or system reset

Note 1: Strapping resistors for default option are implemented as internal pull-down or internal pull-up 47kΩ.

Note 2: If non-default option is used, it is recommended to use pull-down or pull-up $10k\Omega$ as external strapping resistors.

Note 3: HIF_SEL must keep GND level, if HIF_EN is "GND".

2.2.3. General purpose timer (GPT)

The GPT includes five 32-bit timers and one 64-bit timer. Each timer has four operation modes; ONE-SHOT, REPEAT, freerun with interrupt (FREERUN_I), and FREERUN, and can operate on one of the two clock sources; RTC clock (32.768kHz) and system clock (13MHz).

2.2.4. Interrupt controller

The NVIC supports up to 76 maskable interrupts and 16 interrupt lines of Cortex-M4 with 128 priority levels. The NVIC and the processor core interface are closely coupled to enable low latency interrupt processing and efficient processing of late arriving interrupts. The NVIC maintains knowledge of the stacked or nested interrupts to enable tail-chaining of interrupts. The processor supports both level and pulse interrupts with programmable active-high or low control.

2.2.5. Real-time clock (RTC)

The RTC module provides time and data information, as well as 32.768kHz clock source. The clock is selected between three clock sources — one from an external (XOSC32) and two from an internal (XO, EOSC32). The RTC block has an independent power supply switch. In addition to providing timing data, an alarm interrupt will be generated and can be used to power up the baseband core. Regulator interrupts corresponding to seconds, minutes, hours and days can be generated whenever the time counter value reaches the maximum value. The year span is supported up until 2,127. The maximum day-of-month values, which depend on the leap year condition, are stored in the RTC block.

2.3. Peripheral description

2.3.1. USB1.1 full-speed device controller

The USB11 device controller supports only full-speed (12Mbps) operation. The USB11 device controller provides six endpoints in the USB device controller besides the mandatory control endpoint, where among them, four endpoints are for IN transactions and two endpoints are for OUT transactions.

Word, half-word and byte access are all allowed for loading and unloading the FIFO. The controller features 4 DMA channels for data transfer.

Feature	Description
Speed	Full speed (12MHz)
Enhanced feature	Generic device
Endpoint	4TX/2RX
DMA channel	4
Embedded RAM	2816

2.3.2. MSDC

The MSDC supports

- SD memory card specification 2.0
- SDIO card specification 2.0
- eMMC4.41, no booting and not support DDR mode

There are two ports MSDC which are MSDC0, MSDC1.

Both of them can be used as the host controller of SD/SDIO/eMMC

The details feature list of MSDCx is as follow:

- 32 bit access for control registers
- Built-in CRC circuit
- Support PIO mode, Basic DMA mode, Descriptor DMA mode
- Interrupt capabilities
- Support SD/SDIO speed mode:
- o Default Speed mode (DS)
- o High Speed mode (HS)
- Support eMMC speed mode:
- o Backwards Compatibility with legacy MMC card (DS)
- High Speed SDR mode (HS)
- Support 1-bit/4-bit SD/SDIO/eMMC bus width. The module is targeted at 52MHz operating clock at 1.1V and 1.3V, and 26MHz at 0.9V. Data rates up to 52Mbps in 1-bit mode, 52 x 4 Mbps in 4-bit mode
- Programmable serial clock rate on SD/SDIO/eMMC bus (256 gears)
- Card detection capabilities (This SOC uses the EINT controller for card detection)
- Do not support SPI mode for SD memory card
- Do not support suspend/resume for SDIO card
- Do not support eMMC boot feature

2.3.3. SDIO2.0 slave

MT2625 HIF module provides one SDIO2.0 card interface connected to the host and can support multiple speed modes, which include default speed, high speed. SDIO provides high-speed data I/O with low power consumption for mobile devices. During normal initialization and interrogation by the SDIO host, the SDIO client identifies itself as an SDIO card. The host software obtains the card information in a tuple (linked list) format and determines if the I/O functions of the card are acceptable to activate.

Main feature list:

- Support SDver2.0 spec. Bus speed support DS or HS mode (all pins are 3.3v)
- SD CLK up to 52MHZ
- Support 1-bit and 4-bits SD modes
- Suppport CMD52 and CMD53
- Support programmable drive strength
- Support one user function
- Support common interrupt (data[1])
- One set DMAC is built in SDOIO Device Controller

2.3.4. Serial peripheral interface (SPI)

MT2625 chipset features two SPI master controller and one SPI slave controller to receive and transmit device data using single, dual and quad SPI protocol. The SPI controllers can communicate at up to 52 Mbps.

The chip select signal and SPI clock of SPI master controllers are configurable. The SPI controllers also support DMA mode for large amount of data transmission.

2.3.5. Universal asynchronous receiver transmitter (UART)

MT2625 chipset houses four UART interfaces that provide full duplex serial communication between the baseband chipset and external devices. UART has both M16C450 and M16550A modes of operation compatible with a range of standard software drivers.

UARTs support baud rates from 110bps up to 3Mbps and baud rate auto-detection function. Both UART1 and UART2 provide hardware and software flow control of the RTS/CTS signals.

UARTs can configure data transfer lengths from 5 to 8 bits, with an optional parity bit and one or two stop bits by software. They can be served by the DMA controller.

2.3.6. Inter-integrated circuit interface (I2C)

MT2625 chipset provides three I2C master controllers. There are three types of speed modes in the I2C controllers: standard mode (100kbit/s), fast mode (400kbit/s) and high-speed mode (3.4Mbit/s), supporting 7-bit/10-bit addressing and can be served by the DMA controller.

The I2C package size supports up to 1,024 bytes per transfer and 1,024 transfers per transaction in DMA mode and 8 bytes per transfer in non-DMA mode. START, STOP, REPEATED START conditions can be increased to support single or multiple transfer. These features can be configured by software based on customer requirements.

2.3.7. Pulse-width modulation (PWM)

There are four PWM controllers to generate pulse signals. The duty cycle, high time and low time of pulse signals can be programmed. The PWM controllers can be configured to use 48MHz, 13MHz or 32kHz clock source to support a wide range of output pulse frequencies.

2.3.8. Keypad scanner

MT2625 platform provides a keypad hardware module. The keypad supports two types of keypads: 3 x 3 single keys and 3 x 3 configurable double keys.

The 3 x 3 keypad supports a matrix with 3*3*2 = 18 keys. The 18 keys are divided into 9 subgroups and each group consists of two keys and a 20Ω resistor. The keypad de-bounce time is software configurable.

2.3.9. DMA

MT2625 chipset features two DMA controllers, containing 27 channels in power down domain. They manage data transfer between peripheral devices and memory.

There are three types of DMA channels in the DMA controller – full-size DMA channel, half-size DMA channel and virtual FIFO DMA for different peripheral devices. DMA controllers support ring-buffer and double-buffer memory data transactions.

To improve the bus efficiency, the DMA controllers provide an unaligned-word access function. When this function is enabled, it can automatically convert the address format from the unaligned type to aligned type, ensuring compliance with the AHB/APB protocol.

МЕДІЛТЕК

MediaTek MT2625 Datasheet

Each peripheral device is connected to a dedicated DMA channel that can configure transfer data sizes, source address and destination address by software. The DMA controllers can be used with the following peripherals:

- Three I2C interfaces
- Two I2S interfaces
- Four UART interfaces
- An USB interface
- An USIM interface

2.3.10. Universal subscriber identity module (USIM)

ISO/IEC 7816 is a series of standards specifying integrated circuit cards and the use of such cards for interchange. These cards are identification cards intended for information exchange negotiated between the outside world and the integrated circuit in the card. Because of an information exchange, the card delivers information (computation result, stored data), and/or modifies its content (data storage, event memorization). The USIM is a device which providing transaction between SIM card and chip.

Feature	Description
Speed	SIMCLK can be configured to 4.33MHz/3.25MHz
	1ETU >= 8 CLKs
Enhanced feature	T=0, T=1; DMA with 16 bytes FIFO; Support CLK stop mode
Voltage	1.8V/3.0V
Support standard/class	Compliance to ISO/IEC 7816-3

2.4. Modem system

2.4.1. Overview

MT2625 baseband supports 3GPP technical specification release 13 features and key features from release 14, as listed below:

- Release 13 features:
 - o PSM
 - o eDRX
 - o Control Plane EPS CloT optimization
 - o Attach without PDN
 - o Multi-tone Uplink
 - NAS Security
 - RoHC (Control Plane)
 - o Idle-mode Mobility
 - User Plane EPS CloT optimization (RRC connection suspension/resumption)

- o RoHC (User Plane)
- AS Security
- o S1-U data transfer
- RRC connection re-establishment
- o RRC connection reconfiguration
- Multi-carrier (non-anchor) operation
- Release 14 features:
 - o OTDOA
 - Two HARQ process in UL/DL
 - Support for maximum UL/DL TBS of 2536 bits (Cat-NB2).
 - o RRC Re-establishment for CP data (Mobility enhancement)

2.4.2. Block diagram

Figure 2.4-1. Block diagram

2.4.3. Functional block description

The dataflow picture contains parts of the design.

- Memory bank: The memory bank is used for data exchange between MCU, DSP, DFE and hardware accelerators.
- Hardware accelerators: Hardware accelerators contain engines for signal processing.
- Digital front–end (DFE): DFE sends and receives data to/from ADC. It covers a filter chain (CICs/FIR), IRR and interpolators for uplink and downlink.

• Digital Signal Processing (DSP): The DSP is responsible for inner algorithms, including channel estimation and synchronization.

2.4.3.1. Downlink reception

DFE samples the data sent from the ADC. DFE receives data with a source synchronous clock. The DFE will also be the only part of the design that is aware of system time (provided from NB-IoT Timer). The system is data driven after passing through DFE. DFE covers a filter chain (CICs/FIR), IRR and interpolators. The interpolators write data into a time domain buffer through a port opened/closed by software, depending on system conditions.

The DSP is responsible for inner algorithms, including channel estimation and synchronization. The output is the demodulated symbol (LLRs) to decoding engine.

2.4.3.2. Uplink reception

MCU sends data to memory bank. The hardware accelerator is executed offline to prepare the transmitted block and handle the symbol rate processing. Then DFE provides data to the ADC.

2.5. Analog baseband

To communicate with analog blocks, a common control interface for all analog blocks is implemented. In addition, there are dedicated interfaces for data transfer. The common control interface translates the APB bus write and read cycle for specific addresses related to analog front-end control. During the writing or reading of any of these control registers, there is a latency associated with the data transfer to or from the analog front-end. Dedicated data interface of each analog block is implemented in the corresponding digital block. An analog block includes the following analog functions for the complete analog baseband signal processing:

- 1) Auxiliary ADC. Provides an ADC for battery and other auxiliary analog function monitoring.
- 2) Clock generation. Includes PLLs to provide clock signals to MCU, I2S and USB.
- 3) XOSC32. A 32kHz crystal oscillator circuit for RTC applications on analog blocks.

2.5.1. Auxiliary ADC

2.5.1.1. Block description

Figure 2.5-1. Block diagram

The auxiliary ADC includes the following functional blocks:

- 1) Analog multiplexer. Selects signal from one of the seven auxiliary input pins. Real-world messages, such as temperature, are monitored and translated to the voltage domain.
- 2) 10-bit A/D converter: Converts the multiplexed input signal to 10-bit digital data.

Table 2.5-1. Auxiliary ADC input channels

Channel	Application	Input range [V]
1~5	GPIO30~34	0V to 1.4V

Channel	Application	Input range [V]
6	Thermal Sensor	-40°C to 125°C
7	VBATSNS	0V to 5.2V

2.5.1.2. Functional specifications

The functional specifications of the auxiliary ADC are listed in Table 2.5-2.

Table 2.5-2. Auxiliary ADC Specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
N	Resolution	-	10	-	Bit
FC	Clock rate	-	3.25	4	MHz
FS	Sampling rate at N-Bit	-	FC/(N+4)	-	MSPS
VIN	Input swing	0	-	1.4	V
CIN	Input capacitance				
	Unselected channel	-	100	-	fF
	Selected channel	-	4.56	-	pF
RIN	Input resistance				
	Unselected channel	33	-	-	МΩ
	Selected channel	-	-	1	МΩ
RS	Source Impedance			7	kΩ
	Clock latency	-	N+4	-	1/FC
DNL	Differential nonlinearity	-	± 1	-	LSB
INL	Integral nonlinearity	-	± 2	-	LSB
OE	Offset error	-	± 10	-	mV
FSE	Full swing error	-	± 10	-	mV
SINAD	Signal to noise and distortion ratio (10-kHz full swing input & 3.25-MHz clock rate)	50	TBD	-	dB
DVDD	Digital power supply	0.81	1.1	1.43	V
AVDD	Analog power supply	1.62	1.8	1.98	V
Temp	Operating temperature	-40	-	85	°C
	Current consumption				
	Power-up	-	500	-	μΑ
	Power-down	-	1	-	μΑ

Absolute Maximum Ratings:

• The input voltage of AGPIO0~4, i.e. GPIO30 ~ GPIO34, must be under **1.4V**, when GPIO pins are configured as analog IO.

2.5.2. Phase locked loop and oscillators

2.5.2.1. Block description

There are three phase-locked loops (PLL) in PLLGP: UPLL, MPLL and XPLL.

Figure 2.5-2. Block diagram of UPLL and MPLL clock sources

Figure 2.5-2 shows the block diagram of the UPLL and MPLL clock sources. The UPLL and MPLL are composed of typical PLL components such as phase-frequency detector, charge pump, low pass filter, voltage-controlled oscillator and frequency dividers.

The UPLL generates 624MHz clock output, and a frequency divider derives the fixed 48MHz clock.

The DDS-based MPLL provides a maximum frequency of 624MHz. With a frequency hopping range from -8% to 0%, it can give a clock output ranging from 574MHz to 624MHz. A divider scales down this frequency to generate a corresponding clock with a maximum frequency of 48MHz.

Figure 2.5-3. Block diagram of XPLL clock sources

A fractional-N XPLL with an 8-bit integer and 24-bit fractional divisor is programmable to generate clocks ranging from 0.5GHz to 1.5GHz.

Figure 2.5-3 shows the block diagram of the XPLL clock source composed of typical PLL components, such as phase-frequency detector, charge pump, low pass filter, voltage-controlled oscillator and frequency dividers. The feedback divider of PLL is implemented by an 8-bit multi-modulus divider (MMD) which can operate at very high

speed with wide divisor range. The divisor of MMD is controlled by the DDS to implement fractional-N frequency multiplication. The period-controlled word (PCW) of the DDS is a 32-bit binary number with an 8-bit integer part and a 24-bit fractional part. The pre-divider and the post-divider are both simple binary dividers added to facilitate the frequency configuration of the PLL.

These three PLLs do not require off-chip components to operate, and can be turned off to save power. Figure 2.5-2 and Figure 2.5-3show the block diagram of clock sources.

After powering up, the PLLs are all off by default control register setting. The source clock signal for the UPLL/MPLL is selected through multiplexers from 26MHz XTAL. The software maintains the PLL lock time while the clock selection is changing.

For power management, the MCU software configuration may stop MCU Clock by setting up the Sleep Control Register. Any interrupt requests to MCU can pause the sleep mode and return the MCU to the running mode.

2.5.2.2. Functional specifications

The functional specifications of PLLs and oscillators are shown in the tables below.

Table 2.5-3. MPLL specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
Fin	Input clock frequency	-	26	-	MHz
Fout	Output clock frequency	-	624	-	MHz
		-	48	-	MHz
	Settling time	-	20	-	us
	Output clock duty cycle	44	50	56	%
	Output clock jitter (RMS period jitter)	-	20	-	ps
	Frequency Hopping	-8	-	0	%
DVDD	Digital power supply	0.99	1.1	1.43	V
AVDD	Analog power supply	1.62	1.8	1.98	V
Т	Operating temperature	-40	-	85	°C
	Current consumption (with DDS)	-	1.1	-	mA
	Power-down current consumption	-	0.1	-	μΑ

Table 2.5-4. UPLL specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
Fin	Input clock frequency	-	26	-	MHz
Fout	Output clock frequency	-	624	-	MHz
		-	48	-	
	Settling time	-	20	-	us
	Output clock duty cycle	44	50	56	%
	Output clock jitter (rms period jitter)	-	20	-	ps
DVDD	Digital power supply	0.99	1.1	1.43	V
AVDD	Analog power supply	1.62	1.8	1.98	V
Т	Operating temperature	-40	-	85	°C
	Current consumption	-	1.5	-	mA

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Power-down current consumption	-	0.1	-	μΑ

Table 2.5-5. XPLL specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
Fin	Input clock frequency	-	26	-	MHz
Fout	Output clock frequency	-	2626 (VCO: 832) 24.576 (VCO: 786.432) 22.5792 (VCO: 722.5344)	-	MHz
	Settling time	-	50	-	μs
	Output clock duty cycle	44	50	56	%
	Output clock jitter (rms period jitter)	-	20	-	ps
	Frequency Tuning	-1	-	0	%
DVDD	Digital power supply	0.99	1.1	1.43	V
AVDD	Analog power supply	1.62	1.8	1.98	V
Т	Operating temperature	-40	-	85	°C
	Current consumption	-	2	-	mA
	Power-down current consumption	-	0.1	-	μΑ

3. RF Subsystem

3.1. Radio characteristics

The RF subsystem (RFSYS) is the built-in NB-IoT transceiver in the chip. It downconverts RF signals from antenna switch to RX DFE, and upconverts baseband signal from TX DFE to Power Amplifier. The digitally controlled crystal oscillator (DCXO) is also integrated in RFSYS to generate 26-MHz system clock. It also provides 32kHz clock in non-RTC mode.

3.1.1. Features

- Compliant to 3GPP 36.101 release 13 and 14 category NB1/NB2
- Supported bands include EUTRA 1, 2, 3, 5, 8, 12, 13, 17, 18, 19, 20, 25, 26, 28, 66 and 70
- Optional bands are EUTRA 11, 21, 31, and 71
- Low power 1.3-V single-ended Saw-Less Rx and Polar TX
- Built-in low dropout linear regulators are capable to power on by switching regulator.

3.1.2. Block diagram

Figure 3.1-1. RF block diagram

4. Power Management Unit and Low Power Control System

4.1. Overview

The power management unit (PMU) controls the power supply of the chip, including the baseband, processor, memory, PA, SIM and more. There are two power input source for MT2625:

For RTC timer control and PMU control (AVDD33 LDO, AVDD33 CORE, and AVDD33 VRF):

It's operated by wider input voltage range (2.1V to 3.63V), to support real time clock control and alarm logic, and to provide AP low power system control. The PMU contains Under-Voltage Lockout (UVLO) circuit, several low drop-out regulators (LDOs), efficiency buck converters and a reference band-gap circuit. The circuits are optimized for low quiescent current, low drop-out voltage, efficient line/load regulation, high ripple rejection and low output noise.

For PA and SIM control (AVDD33 VPA, AVDD33 VSIM):

A single regulated 3.3V power supply is required for the MT2625. It could be from external DC-DC converter to convert higher voltage supply to 3.3V or boost from a lower voltage supply to 3.3V. The low drop-out voltage output LDOs support 1.8V and 2.9V two types of SIM applications. The efficiency PA buck converters with efficient line/load regulation, high ripple rejection support wider range (0.5 to 2.8V) of power amplifiers.

Due to ultra-low input voltage and low current consumption, the battery lifetime is enhanced by using portable batteries.

4.2. Low-power operating mode

The MT2625 power state diagram is illustrated in Figure 4.2-1. In **ACTIVE** mode, the frequency of Cortex®-M4 can be configured as 104 MHz or 26 MHz. When the system is in the idle condition, it can enter **IDLE** or **LIGHTSLEEP** mode. In **IDLE** mode, the PMU keeps current voltage and all Cortex®-M4 and peripherals are in the idle state, which can be returned to **ACTIVE** state by any interrupt event. But if the system goes to **LIGHTSLEEP** mode, the PMU can be changed to the low power mode to further lower the current consumption with 32K clock only. The **DEEPSLEEP** mode provides a lower current consumption than **LIGHTSLEEP** mode with the ability for 8K SRAM retention. It is suitable for the applications which could be idle in a long period but also need to keep data in SRAM. It is controlled by SW to enter the **DEEPSLEEP** mode and exited by RTC or PWRKEY event. The **OFF** mode is similar with **DEEPSLEEP** mode but no data keep in SRAM. This mode is used when device is under **Power Save Mode** (**PSM**). In **SHIPPING** mode, there are only some logics to detect the power on condition and lowest power consumption in this mode.

Figure 4.2-1. MT2625 power states

4.3. Power performance summary

Table 4.3-1 list the current consumption of some basic scenarios at battery domain. Note that the current measurement condition is under the typical condition of process, voltage, and temperature.

Unit Test Conditions(1) **Operation Mode** Current Consumptions (2) **Power Mode** Scenario SHIP SHIP < 0.3 uΑ Shipping mode **OFF OFF** 2.6 **RTC Timer** uA XTAL 32kHz

8KB SRAM data retention

Table 4.3-1. Current consumption in different power modes

DEEPSLEEP

DEEPSLEEP

RTC Timer

uA

3.4

⁽¹⁾ No SYSRAM data is retained in these scenarios.

⁽²⁾ Conditions: battery voltage@3.3V, DVDD_IO_0/1/2@3.3V, 25°C, Typical corner IC, XTAL@26Mhz.

Opera	tion Mode	Test Conditions ⁽¹⁾	Current	Unit
Power Mode	Scenario		Consumptions (2)	
		XTAL 32kHz		
LIGHTSLEEP	LIGHTSLEEP	 Cortex®-M4 in sleep state TCM 96KByte SRAM is retained XTAL 32kHz 	50uA ⁽³⁾	uA
ACTIVE ⁽⁴⁾	RX	• RX	15	mA
	тх	MB Band1 TX 23dBm	291	mA
		MB Band1 TX 10dBm	64	mA
		MB Band1 TX 0dBm	31	mA
		LB Band8 TX 23dBm	333	mA
		LB Band8 TX 10dBm	60	mA
		LB Band8 TX OdBm	34	mA

4.4. PMU architecture for low power system

The 3.3V power source is directly supplied to the switching regulator, digital IOs and RF-related circuit. It is converted from 3.3V by the PMU for low voltage circuits. The built-in CORE and RF buck convert to 1.1V and 1.3V for digital core, RF circuits. The four LDOs are VIO18, VSIM, VSRAM_RTC and VFEM. VCORE buck converter and VSRAM stands for digital core 1.3V to 0.7V low power mode control. VRF, VPA buck converter and VFEM stands for RF, PA and front-end module control, and VIO18 stands for IOs, PLL, and internal/external memory LDO.

In **ACTIVE/ IDLE** mode, the buck converter converts 1.1V output in MT2625. It can operate in PFM mode for optimize the power consumption. With an external on-board LC filter (2.2uH inductor and 10uF cap), it outputs a low ripple 1.1V to core system. In **ACTIVE/ IDLE** mode, VIO18 outputs 1.8V for whole chip digital IOs, memory, PLL used.

In **LIGHTSLEEP** mode back to **ACTIVE** mode, VCORE buck output voltage will converts to 1.1V from 0.7V to core system by DVFS (Dynamic Voltage Frequency Scale) control. While MT2625 is in **LIGHTSLEEP** mode, VSRAM will reduce its output level from 1.1V to 0.775V for internal retention SRAM power. VIO18 keeps outputs 1.8V for whole chip digital IOs, memory, PLL used.

In **DEEPSLEEP** mode (Deep Sleep Mode), VCORE, VRF, VPA, VFEM and VIO18 will be shut down. During this mode, only some PMU logics, RTC timer controller and retention LDO VSRAM_RTC are alive 0.775V to keep lower current

⁽³⁾ The current includes SIM card current 25uA.

⁽⁴⁾ The current includes PA SKY68018-11.

consumption. During this mode, only some PMU logics, RTC timer controller and retention SRAM are alive to keep lower current consumption.

In **OFF** mode, it's similar with **DEEPSLEEP** mode but turn off the VSRAM_RTC regulator and SRAM application.

In SHIPPING mode, all regulator and VSRAM_RTC will be shut down to efficiently enhance the battery life.

The MT2625 PMU power grid is illustrated in Figure 4.4-1.

Figure 4.4-1. MT2625 PMU power grid

Table 4.4-1 lists the internal BUCK/LDO output range, default voltage setting and the output current capabilities.

Table 4.4-1. BUCK / LDO characteristic

Regulator Type	Name	Output Voltage Range(V)	Default ON Voltage(V)	IOUT (mA)
BUCK	VCORE	0.7 ~ 1.3	1.2	150
	VRF	1.3	Default off	35
	VPA	0.5 ~ 2.8	Default off	500
LDO	VIO18	1.8	1.8	180
	VFEM	1.8	Default off	35

Regulator Type	Name	Output Voltage Range(V)	Default ON Voltage(V)	IOUT (mA)
	VSRAM_RTC	0.775 / 1.1	Default off	5
	VSIM	1.8 / 2.8 / 2.9	Default off	60 / 100/ 60

4.5. PMU functional description

4.5.1. UVLO

4.5.1.1. Under-voltage lockout (UVLO)

The UVLO state in PMU prevents start-up if the initial voltage of the main battery is below UVLO_VTH. The judgment is done by AVDD33_LDO. It ensures that the device is powered on with the battery in good condition. The UVLO function is performed by a hysteretic comparator that ensures smooth power-on sequence. In addition, when the battery voltage is getting lower, it will enter the UVLO state and PMU will be turned off by itself, except for RTC macro and PMU always on domain, it will draw low quiescent current. In order to optimize the low power performance, there is no UVLO in DEEPSLEEP and LIGHTSLEEP mode.

Parameter	Min.	Typical	Max.	Unit
Under voltage falling threshold	1.80	1.85	1.90	٧
Under voltage rising threshold (UVLO_VTH)	2.05	2.10	2.15	V

4.5.2. PWRKEY

Pulling PWRKEY low is a typical method to turn on the device. The system reset ends when all default-on regulators are sequentially turned on. After that, the SOC will send the power ready signal back to PMU for acknowledgement. To successfully power on the device, PWRKEY should be kept low until PMU receives power ready from the AP.

Parameter	Conditions	Min.	Typical	Max.	Unit
PWRKEY					
High voltage		0.7*AVDD33_LDO			V
Low voltage				0.3* AVDD33_LDO	V
De-bounce time	OFF/DEEPSLEEP to ACTIVE	16	32	48	msec
	SHIPPING to ACTIVE	1	2	3	sec

4.5.3. Long press shutdown

Long press shutdown is default feature to provide a reliable hardware reset to force shutdown PMU without removing the battery, which detects negative pulse width on PWRKEY.

4.5.3.1. Long-press shutdown timer:

When negative pulse width is greater than the timer setting, the PMU will force shutdown to OFF mode.

There are four types of Long-press shutdown key-pressed timing select timer options:

- 5s
- 8s (DEFAULT)
- 11s
- 25s

Note: The timing variation is +/-50% for this feature.

4.5.3.2. Long-press shutdown function type:

For default setting, after long press shutdown, if PWRKEY not released, enters re-power on by sequence and long-press shutdown periodically.

There are three options for PWRKEY Long Press Function for users:

- Disabled. No long press shutdown function.
- Enabled. The power on sequence will start after the PWRKEY is released and then pressed again.
- Enabled. The power on sequence will start after the PWRKEY de-bounce time, if PWRKEY is kept low.
 (DEFAULT)

4.5.4. Thermal shutdown

This is the hardware thermal protection function and PMU will shut down immediately when the function is triggered.

If the chip reaches 150°C (±15°C), the PMU enters OFF mode by immediate power-off sequence. It will auto recover by power-on sequence, if the chip temperature is cooled down below 110 °C. (Register option for 120 °C recovery).

4.5.5. Shipping mode

User can enter SHIPPING mode by setting register, and PMU will power-off. When in SHIPPPING mode, please note that if PWRKEY is pressed over 2 seconds, the PMU will re-power-on to normal mode by normal power-on sequence.

4.5.6. SYSRSTB cold-reset application

SYSRSTB is used to reset the PMU when system hangs. This function is default ON by hardware.

Cold reset function can be triggered by pressing SYSRSTB for over 32ms de-bounce time. When cold reset is triggered, the system is shut down immediately with immediate-off sequence. The shutdown time is 20ms to make sure analog circuits discharge completely. Then the PMU will do the normal power on. Note that the cold reset cannot be triggered in SHIPPING mode.

5. Pin Description

5.1. MT2625D series ball diagram

For MT2625D series, a TFBGA 5.6mm*5.6mm, 121-ball, 0.5mm pitch package is offered. Pin-outs and the top view for this package are shown in Figure 5.1-1.

	1	2	3	4	5	6	7	8	9	10	11	
Α	GPIO12	GPIO10	GPIO9	GPIO6	GPIO7	GPIO0	RESETB_ OUT	TXO_MB1	TXO_LB	LNA_LB	AVSS_R F	Α
В	GPIO14	GND	GPIO11	GND	GPIO2	GPIO1	FSOURC E_P	TXO_MB2	TXO_ULB	LNA_OPI S	LNA_ULB	В
С	DVDD_IO _0	GPIO17	GPIO15	GPIO16	DVDD_IO _2	GPIO4	GPIO3	AVSS_R F	AVSS_R F	LNA_MB2	LNA_MB1	С
D	GPIO23	GPIO22	GPIO19	GPIO18	GPIO13	GPIO5	GPIO8	BPI0	AVSS_R F	EXT_CLK _SEL	AVDD_R F	D
E	VDDK	GND	GPIO25	GPIO20	GND	GND	GND	BPI2	AVDD18_ RF	XTAL2	XTAL1	E
F	DVDD18_ MLDO	GPIO27	GPIO29	GPIO24	GPIO21	GND	GND	BPI1	BPI4	AVSS_D CXO	AVSS_D CXO	F
G	LX_VRF	PMU_TE STMODE	GPIO28	GPIO26	GND	GND	GND	GPIO36	SRCLKE NAI	BPI3	FREF	G
н	AVDD33_ VRF	AVSS33_ VRF	FB_VRF	FB_VPA	AVSS33_ LDO	GPIO32	GPIO34	GPIO33	VDDK	MIPI_SCL K	MIPI_SD ATA	н
J	LX_VPA	AVSS33_ VPA	PMU_SY SRSTB	FB_VCO RE	VSRAM_ RTC	RTC_EIN T	RTC_GPI O0	GND	GPIO31	GPIO35	DVDD_IO _1	J
К	AVDD33_ VPA	AVSS33_ VCORE	AVDD33_ VPA_CTR L	AVDD45_ VBATSN S	PMU_PW RKEY	VFEM	XIN	GPIO30	USB11_D M	SIM0_SIO	SIM0_SR ST	к
L	LX_VCOR E	AVDD33_ VCORE	AVDD33_ LDO	VIO18	GND_VR EF	AVDD33_ VSIM	XOUT	AVDD33_ VUSB	USB11_D P	VSIM	SIM0_SC LK	L
	1	2	3	4	5	6	7	8	9	10	11	

Figure 5.1-1. MT2625D series ball diagram and top view

5.1.1. MT2625D series pin coordination

Table 5.1-1. MT2625D series pin coordinates

Pin#	NETNAME	Pin#	NETNAME	Pin#	NETNAME
A1	GPIO12	H4	FB_VPA	D8	BPI0
B1	GPIO14	J4	FB_VCORE	E8	BPI2
C1	DVDD_IO_0	K4	AVDD45_VBATSNS	F8	BPI1
D1	GPIO23	L4	VIO18	G8	GPIO36
E1	VDDK	A5	GPIO7	Н8	GPIO33

		Pin#	NETNAME	Pin#	NETNAME
F1	DVDD18_MLDO	B5	GPIO2	18	GND
G1	LX_VRF	C5	DVDD_IO_2	К8	GPIO30
H1	AVDD33_VRF	D5	GPIO13	L8	AVDD33_VUSB
J1	LX_VPA	E5	GND	A9	TXO_LB
K1	AVDD33_VPA	F5	GPIO21	В9	TXO_ULB
L1	LX_VCORE	G5	GND	C9	AVSS_RF
A2	GPIO10	H5	AVSS33_LDO	D9	AVSS_RF
B2	GND	J5	VSRAM_RTC	E9	AVDD18_RF
C2	GPIO17	K5	PMU_PWRKEY	F9	BPI4
D2	GPIO22	L5	GND_VREF	G9	SRCLKENAI
E2	GND	A6	GPI00	H9	VDDK
F2	GPIO27	B6	GPIO1	J9	GPIO31
G2	PMU_TESTMODE	C6	GPIO4	К9	USB11_DM
H2	AVSS33_VRF	D6	GPIO5	L9	USB11_DP
J2	AVSS33_VPA	E6	GND	A10	LNA_LB
K2	AVSS33_VCORE	F6	GND	B10	LNA_OPIS
L2	AVDD33_VCORE	G6	GND	C10	LNA_MB2
A3	GPIO9	H6	GPIO32	D10	EXT_CLK_SEL
В3	GPIO11	J6	RTC_EINT	E10	XTAL2
C3	GPIO15	K6	VFEM	F10	AVSS_DCXO
D3	GPIO19	L6	AVDD33_VSIM	G10	BPI3
E3	GPIO25	A7	RESETB_OUT	H10	MIPI_SCLK
F3	GPIO29	В7	FSOURCE_P	J10	GPIO35
G3	GPIO28	C7	GPIO3	K10	SIM0_SIO
Н3	FB_VRF	D7	GPIO8	L10	VSIM
13	PMU_SYSRSTB	E7	GND	A11	AVSS_RF
К3	AVDD33_VPA_CTRL	F7	GND	B11	LNA_ULB
L3	AVDD33_LDO	G7	GND	C11	LNA_MB1
A4	GPIO6	H7	GPIO34	D11	AVDD_RF
B4	GND	J7	RTC_GPIO0	E11	XTAL1
C4	GPIO16	K7	XIN	F11	AVSS_DCXO
D4	GPIO18	L7	XOUT	G11	FREF
E4	GPIO20	A8	TXO_MB1	H11	MIPI_SDATA
F4	GPIO24	B8	TXO_MB2	J11	DVDD_IO_1
G4	GPIO26	C8	AVSS_RF	K11	SIM0_SRST
				L11	SIMO_SCLK

5.2. MT2625A series ball diagram

For MT2625A series, a TFBGA 5.6mm*5.6mm, 121-ball, 0.5mm pitch package is offered. Pin-outs and the top view for this package are shown in Figure 5.1-1.

	1	2	3	4	5	6	7	8	9	10	11	
Α	GPIO12	GPIO10	GPIO9	GPIO6	GPIO7	GPIO0	RESETB_ OUT	TXO_MB1	TXO_LB	LNA_LB	AVSS_R F	A
В	GPIO14	GND	GPIO11	GND	GPIO2	GPIO1	FSOURC E_P	TXO_MB2	TXO_ULB	LNA_OPI S	LNA_ULB	В
С	DVDD_IO _0	GPIO17	GPIO15	GPIO16	DVDD_IO _2	GPIO4	GPIO3	AVSS_R F	AVSS_R F	LNA_MB2	LNA_MB1	С
D	GPIO23	GPIO22	GPIO19	GPIO18	GPIO13	GPIO5	GPIO8	BPI0	AVSS_R F	EXT_CLK _SEL	AVDD_R F	D
E	VDDK	GND	SFSHOL D	GPIO20	GND	GND	GND	BPI2	AVDD18_ RF	XTAL2	XTAL1	E
F	DVDD18_ MLDO	SFSCK	SFSOUT	SFSCS0	GPIO21	GND	GND	BPI1	BPI4	AVSS_D CXO	AVSS_D CXO	F
G	LX_VRF	PMU_TE STMODE	SFSWP	SFSIN	GND	GND	GND	GPIO36	SRCLKE NAI	BPI3	FREF	G
н	AVDD33_ VRF	AVSS33_ VRF	FB_VRF	FB_VPA	AVSS33_ LDO	GPIO32	GPIO34	GPIO33	VDDK	MIPI_SCL K	MIPI_SD ATA	Н
J	LX_VPA	AVSS33_ VPA	PMU_SY SRSTB	FB_VCO RE	VSRAM_ RTC	RTC_EIN T	RTC_GPI O0	GND	GPIO31	GPIO35	DVDD_IO _1	J
К	AVDD33_ VPA	AVSS33_ VCORE	AVDD33_ VPA_CTR L	AVDD45_ VBATSN S	PMU_PW RKEY	VFEM	XIN	GPIO30	USB11_D M	SIM0_SIO	SIM0_SR ST	К
L	LX_VCOR E	AVDD33_ VCORE	AVDD33_ LDO	VIO18	GND_VR EF	AVDD33_ VSIM	XOUT	AVDD33_ VUSB	USB11_D P	VSIM	SIM0_SC LK	L
	1	2	3	4	5	6	7	8	9	10	11	

Figure 5.2-1. MT2625A series ball diagram and top view

5.2.1. MT2625A series pin coordination

Table 5.2-1. MT2625A series pin coordinates

Pin#	NETNAME	Pin#	NETNAME	Pin#	NETNAME
A1	GPIO12	H4	FB_VPA	D8	BPI0
B1	GPIO14	J4	FB_VCORE	E8	BPI2
C1	DVDD_IO_0	K4	AVDD45_VBATSNS	F8	BPI1
D1	GPIO23	L4	VIO18	G8	GPIO36
E1	VDDK	A5	GPIO7	Н8	GPIO33
F1	DVDD18_MLDO	B5	GPIO2	J8	GND

Pin#	NETNAME	Pin#	NETNAME	Pin#	NETNAME	
G1	LX_VRF	C5	DVDD_IO_2	K8	GPIO30	
H1	AVDD33_VRF	D5	GPIO13	L8	AVDD33_VUSB	
J1	LX_VPA	E5	GND	A9	TXO_LB	
K1	AVDD33_VPA	F5	GPIO21	B9	TXO_ULB	
L1	LX_VCORE	G5	GND	C9	AVSS_RF	
A2	GPIO10	H5	AVSS33_LDO	D9	AVSS_RF	
B2	GND	J5	VSRAM_RTC	E9	AVDD18_RF	
C2	GPIO17	K5	PMU_PWRKEY	F9	BPI4	
D2	GPIO22	L5	GND_VREF	G9	SRCLKENAI	
E2	GND	A6	GPIO0	Н9	VDDK	
F2	SFSCK	В6	GPIO1	J9	GPIO31	
G2	PMU_TESTMODE	C6	GPIO4	K9	USB11_DM	
H2	AVSS33_VRF	D6	GPIO5	L9	USB11_DP	
J2	AVSS33_VPA	E6	GND	A10	LNA_LB	
K2	AVSS33_VCORE	F6	GND	B10	LNA_OPIS	
L2	AVDD33_VCORE	G6	GND	C10	LNA_MB2	
A3	GPIO9	H6	GPIO32	D10	EXT_CLK_SEL	
В3	GPIO11	J6	RTC_EINT	E10	XTAL2	
C3	GPIO15	K6	VFEM	F10	AVSS_DCXO	
D3	GPIO19	L6	AVDD33_VSIM	G10	BPI3	
E3	SFSHOLD	A7	RESETB_OUT	H10	MIPI_SCLK	
F3	SFSOUT	B7	FSOURCE_P	J10	GPIO35	
G3	SFSWP	C7	GPIO3	K10	SIM0_SIO	
Н3	FB_VRF	D7	GPIO8	L10	VSIM	
J3	PMU_SYSRSTB	E7	GND	A11	AVSS_RF	
К3	AVDD33_VPA_CTRL	F7	GND	B11	LNA_ULB	
L3	AVDD33_LDO	G7	GND	C11	LNA_MB1	
A4	GPIO6	H7	GPIO34	D11	AVDD_RF	
B4	GND	J7	RTC_GPIO0	E11	XTAL1	
C4	GPIO16	K7	XIN	F11	AVSS_DCXO	
D4	GPIO18	L7	XOUT	G11	FREF	
E4	GPIO20	A8	TXO_MB1	H11	MIPI_SDATA	
F4	SFSCS0	B8	TXO_MB2	J11	DVDD_IO_1	
G4	SFSIN	C8	AVSS_RF	K11	SIM0_SRST	
				L11	SIM0_SCLK	

5.3. Pin differences between MT2625D series and MT2625A series

Pin#	MT2625D series	MT2625A series
F2	GPIO27	SFSCK
E3	GPIO25	SFSHOLD
F3	GPIO29	SFSOUT
G3	GPIO28	SFSWP
F4	GPIO24	SFSCS0
G4	GPIO26	SFSIN

5.4. MT2625 family pin functions

Table 5.4-1. Acronym for pin types and I/O structure

Name	Abbreviation	Description
Pin Type	Al	Analog input
	AO	Analog output
	AIO	Analog bi-direction
	DI	Digital input
	DO	Digital output
	DIO	Digital bi-direction
	Р	Power
	G	Ground
IO Structure	TYPE0	Pull-up/down
		3.63V tolerance
	TYPE1	Pull-up/down
		5V tolerance
	TYPE2	Pull-up/down
		5V tolerance
		SDIO characteristic support
	TYPE3	Pull-up/down
		5V tolerance
		Analog input/output
	TYPE4	Pull-up/down
		5V tolerance
		Keypad 2K
	TYPE5	Pull-up/down
		5V tolerance
		Keypad 200K
	TYPE6	Pull-up/down
		3.63V tolerance
		SIM card input/output

Name	Abbreviation	Description
	TYPE7	Pull-up/down
		1.98V tolerance
		SF controller

Table 5.4-2. MT2625D series pin function description and power domain (group1)

Pin Number	Pin Name	Pin Type	IO Structure	Pin Description	Alternate Pin Functions	Power domain
System						
A7	RESETB_OUT	DO	TYPE1	System reset output	-	DVDD_IO_2
G9	SRCLKENAI	DI	TYPE1	26MHz clock request by external devices	-	DVDD_IO_1
RTC						
L7	XOUT	AIO	-	Input pin for 32k crystal	-	AVDD33_LDO
K7	XIN	AIO	-	Input pin for 32k crystal	-	AVDD33_LDO
J6	RTC_EINT	DIO	Type0	Dedicate EINT input in RTC	-	AVDD33_LDO
J7	RTC_GPIO0	DIO	Type0	PA buck control in RTC	-	AVDD33_LDO
Cellular Radio	Interface					
A10	LNA_LB	Al	-	RF input for LB	-	AVDD_RF
C10	LNA_MB2	Al	-	RF input for MB2	-	AVDD_RF
B11	LNA_ULB	Al	-	RF input for ULB	-	AVDD_RF
C11	LNA_MB1	Al	-	RF input for MB1	-	AVDD_RF
B10	LNA_OPIS	Al	-	External inductor for buck desense	-	AVDD_RF
A9	TXO_LB	AO	-	RF output for LB	-	AVDD_RF
B8	TXO_MB2	AO	-	RF output for MB2	-	AVDD_RF
B9	TXO_ULB	AO	-	RF output for ULB	-	AVDD_RF
A8	TXO_MB1	AO	-	RF output for MB1	-	AVDD_RF
D11	AVDD_RF	Р	-	RF supply 1.2V	-	-
E9	AVDD18_RF	Р	-	RF supply 1.8V	-	-
E11	XTAL1	Al	-	Crystal(external clock input)	-	AVDD18_RF
E10	XTAL2	Al	-	Crystal	-	AVDD18_RF
G11	FREF	AO	-	External clock buffer output	-	AVDD18_RF
D10	EXT_CLK_SEL	AI	-	26MHz clock source selection 0: On-chip DCXO 1: External clock feed in XTAL1	-	AVDD18_RF
F10/F11	AVSS_DCXO	G	-	DCXO GND	-	-
A11/C8/C9/ D9	AVSS_RF	G	-	RF GND	-	-

Pin Number	Pin Name	Pin	IO Structure	Pin Description	Alternate	Power domain
		Туре	Structure		Pin	
ιΩ					Functions	
262						
MT2625						
PMU	_					
H1	AVDD33_VR	Р	-	Input power for BUCK of	-	-
	F			VRF		
H2	AVSS33_VRF	G	-	GND for BUCK of VRF	-	
G1	LX_VRF	AO	-	SW node of BUCK of VRF	-	-
H3	FB_VRF	Al	-	Feedback of BUCK of VRF	-	-
L2	AVDD33_VC	Р	-	Input power for BUCK of	-	-
	ORE	_		VCORE		
K2	AVSS33_VCO RE	G	-	GND for BUCK of VCORE	-	-
L1	LX VCORE	AO	_	SW node of BUCK of VCORE	_	
J4	FB VCORE	AI	_	Feedback of BUCK of VCORE	-	-
K1	AVDD33_VP	P	_	Input power for BUCK of	-	-
-	A			VPA		
J2	AVSS33_VPA	G	-	GND for BUCK of VPA	-	-
J1	LX_VPA	AO	-	SW node of BUCK of VPA	-	-
H4	FB_VPA	Al	-	Feedback of BUCK of VPA	-	-
L3	AVDD33_LD	Р	-	Power for internal	-	-
	0			controller and LDO		
H5	AVSS33_LDO	G	-	GND for internal controller	-	-
				and LDO		
L4	VIO18	Р	-	Output of LDO of VIO18	-	-
J5	VSRAM_RTC	Р	-	Output of LDO of VSRAM	-	-
K6	VFEM	Р	-	Output of LDO of VFEM	-	-
L5	GND_VREF	G	-	GND for reference voltage	-	-
K5	PMU_PWRK EY	Al	-	Power Key	-	AVDD33_LDO
G2	PMU_TESTM	Al	-	Reserved for test mode.	-	AVDD33_LDO
	ODE			Tied to GND in normal		_
				mode		
J3	PMU_SYSRST B	AI	-	System RSTB pin	-	AVDD33_LDO
K4	AVDD45_VB ATSNS	Р	-	Battery sensing input	-	-
K3	AVDD33_VP A_CTRL	Р	-	Power of VPA controller	-	-
L6	AVDD33_VSI M	Р	-	Power of LDO of VSIM	-	-
Digital Power		1				
B7	FSOURCE_P	Р	-	eFuse power source	-	-
C1	DVDD_IO_0	Р	-	Power input of GPIO group	-	-
J11	DVDD_IO_1	Р	-	Power input of GPIO group	-	-
C5	DVDD_IO_2	Р	-	Power input of GPIO group 2	-	-

Pin Number	Pin Name	Pin	10	Pin Description	Alternate	Power domain
Pili Nullibei	- Fill Name	Type	Structure	Pili Description	Pin	Power domain
		Туре	Structure		1	
22					Functions	
MT2625						
Σ						
E1	VDDK	Р	-	Core power	-	-
H9	VDDK	Р	-	Core power	-	-
F1	DVDD18_ML	Р	-	Power input of SF/EMI	-	-
	DO			group		
B2/B4/E2/E5	GND	G	-	Digital ground	-	-
/E6/E7/F6/F						
7/G5/G6/G7						
/J8						
USB 1.1		1				
K9	USB11_DM	AIO	-	USB signal DM	-	AVDD33_VUSB
L8	AVDD33_VU	Р	-	USB supply 3.3V	-	AVDD33_VUSB
	SB	1.0				A) (D D C C : ::: : : : : : : : : : : : : :
L9	USB11_DP	AIO	-	USB signal DP	-	AVDD33_VUSB
SIM						
L10	VSIM	Р	-	SIM card power	-	-
K10	SIM0_SIO	DIO	TYPE 6	SIM card IO	-	VSIM
K11	SIM0_SRST	DIO	TYPE 6	SIM card reset	-	VSIM
L11	SIM0_SCLK	DIO	TYPE 6	SIM card clock	-	VSIM
General Progr	rammable I/O					
A6	GPIO0	DIO	TYPE 5	General purpose	PWM (0)	DVDD_IO_2
				input/output, Pin 0	KP	
					CLKO0	
B6	GPIO1	DIO	TYPE 5	General purpose	UART (1)	DVDD_IO_2
				input/output, Pin 1	I2C (0)	
					I2S (0)	
					KP	
	00100	510	T/D5.4		PWM (0)	21/22 12 2
B5	GPIO2	DIO	TYPE 1	General purpose	UART (0)	DVDD_IO_2
	CDIO3	DIO	TVDE 4	input/output, Pin 2	LIADT (2)	DVDD 10 3
C7	GPIO3	DIO	TYPE 4	General purpose input/output, Pin 3	UART (2) I2C (1)	DVDD_IO_2
				mput/output, Pill 5	125 (1)	
					KP	
					UART (1)	
					CLKO0	
C6	GPIO4	DIO	TYPE 4	General purpose	UART (2)	DVDD_IO_2
				input/output, Pin 4	I2C (1)	
					12S (0)	
					KP	
					UART (1)	
					PWM (0)	
D6	GPIO5	DIO	TYPE 1	General purpose	UART (0)	DVDD_IO_2
		<u> </u>		input/output, Pin 5		
A4	GPIO6	DIO	TYPE 2	General purpose	SDIO Slave	DVDD_IO_2
				input/output, Pin 6	SPI Master (0)	
					12S (0)	

Pin Number	Pin Name	Pin Type	IO Structure	Pin Description	Alternate Pin Functions	Power domain
MT2625					runctions	
A5	GPIO7	DIO	TYPE 2	General purpose input/output, Pin 7	I2C (0) SDIO Slave SPI Master (0) I2S (0) I2C (0) PWM (1)	DVDD_IO_2
D7	GPIO8	DIO	TYPE 2	General purpose input/output, Pin 8	SDIO Slave SPI Master (0) I2S (0) PWM (1)	DVDD_IO_2
A3	GPIO9	DIO	TYPE 2	General purpose input/output, Pin 9	SDIO Slave SPI Master (0) I2S (0)	DVDD_IO_2
A2	GPIO10	DIO	TYPE 2	General purpose input/output, Pin 10	SDIO Slave SPI Master (0) I2C (1) CLKO1	DVDD_IO_2
В3	GPIO11	DIO	TYPE 2	General purpose input/output, Pin 11	SDIO Slave SPI Master (0)	DVDD_IO_2
A1	GPIO12	DIO	TYPE 2	General purpose input/output, Pin 12	SDIO Master (0) SPI Slave (0) UART (1) CLKO1	DVDD_IO_0
D5	GPIO13	DIO	TYPE 2	General purpose input/output, Pin 13	SDIO Master (0) SPI Slave (0) UART (1) PWM (2) PWMSG	DVDD_IO_0
B1	GPIO14	DIO	TYPE 2	General purpose input/output, Pin 14	SDIO Master (0) SPI Slave (0) UART (1) UART (3) CLKO2	DVDD_IO_0
C3	GPIO15	DIO	TYPE 2	General purpose input/output, Pin 15	SDIO Master (0) SPI Slave (0) UART (1) UART (3) PWM (2)	DVDD_IO_0
C4	GPIO16	DIO	TYPE 2	General purpose input/output, Pin 16	SDIO Master (0) SPI Slave (0) I2C (1) UART (1) PWMSG	DVDD_IO_0
C2	GPIO17	DIO	TYPE 2	General purpose input/output, Pin 17	SDIO Master (0) SPI Slave (0) I2C (1) UART (1)	DVDD_IO_0

Pin Number	Pin Name	Pin Type	IO Structure	Pin Description	Alternate Pin Functions	Power domain
D4	GPIO18	DIO	TYPE 2	General purpose input/output, Pin 18	SDIO Master (1) SPI Master (1) UART (1) UART (2)	DVDD_IO_2
D3	GPIO19	DIO	TYPE 2	General purpose input/output, Pin 19	SDIO Master (1) SPI Master (1) MD JTAG CLKO3	DVDD_IO_2
E4	GPIO20	DIO	TYPE 2	General purpose input/output, Pin 20	SDIO Master (1) SPI Master (1) MD JTAG PWM (3)	DVDD_IO_2
F5	GPIO21	DIO	TYPE 2	General purpose input/output, Pin 21	SDIO Master (1) SPI Master (1) PWMSG	DVDD_IO_2
D2	GPIO22	DIO	TYPE 2	General purpose input/output, Pin 22	SDIO Master (1) SPI Master (1) I2C (1) UART (2)	DVDD_IO_2
D1	GPIO23	DIO	TYPE 2	General purpose input/output, Pin 23	SDIO Master (1) SPI Master (1) I2C (1) UART (2) UART (1)	DVDD_IO_2
F4	GPIO24 (MT2625D)	DIO	TYPE 1	General purpose input/output, Pin 24	I2S (0) UART (1) PWMSG CLKO3	DVDD_IO_2
	SFSCS0 (MT2625A)	DIO	TYPE 7	Serial flash CS interface	-	DVDD18_MLDO
E3	GPIO25 (MT2625D)	DIO	TYPE 1	General purpose input/output, Pin 25	I2S (0) UART (1) PWMSG	DVDD_IO_2
	SFSHOLD (MT2625A)	DIO	TYPE 7	Serial flash HOLD interface	-	DVDD18_MLDO
G4	GPIO26 (MT2625D)	DIO	TYPE 1	General purpose input/output, Pin 26	I2S (0) UART (2) UART (3) PWM (3)	DVDD_IO_2
	SFSIN (MT2625A)	DIO	TYPE 7	Serial flash IN interface	-	DVDD18_MLDO
F2	GPIO27 (MT2625D)	DIO	TYPE 1	General purpose input/output, Pin 27	I2S (0) UART (2) UART (3)	DVDD_IO_2
	SFSCK (MT2625A)	DIO	TYPE 7	Serial flash CK interface	-	DVDD18_MLDO

Pin Number	Pin Name	Pin	10	Pin Description	Alternate	Power domain
MT2625		Туре	Structure		Pin Functions	
MT						
G3	GPIO28 (MT2625D)	DIO	TYPE 1	General purpose input/output, Pin 28	12S (0) UART (2) 12C (2)	DVDD_IO_2
	SFSWP (MT2625A)	DIO	TYPE 7	Serial flash WP interface	-	DVDD18_MLDO
F3	GPIO29 (MT2625D)	DIO	TYPE 1	General purpose input/output, Pin 29	UART (2) I2C (2) CLKO4	DVDD_IO_2
	SFSOUT (MT2625A)	DIO	TYPE 7	Serial flash OUT interface	-	DVDD18_MLDO
К8	GPIO30	DIO	TYPE 3	General purpose input/output, Pin 30	I2S (1) AP JTAG CLKO3 MD JTAG AUXADC0	DVDD_IO_1
J9	GPIO31	DIO	TYPE 3	General purpose input/output, Pin 31	I2S (1) AP JTAG UART (2) MD JTAG AUXADC1	DVDD_IO_1
Н6	GPIO32	DIO	TYPE 3	General purpose input/output, Pin 32	I2S (1) AP JTAG UART (2) CLKO4 AUXADC2 PWM (3)	DVDD_IO_1
H8	GPIO33	DIO	TYPE 3	General purpose input/output, Pin 33	I2S (1) AP JTAG UART (3) I2C (2) AUXADC3	DVDD_IO_1
H7	GPIO34	DIO	TYPE 3	General purpose input/output, Pin 34	I2S (1) AP JTAG UART (3) I2C (2) AUXADC4	DVDD_IO_1
J10	GPIO35	DIO	TYPE 5	General purpose input/output, Pin 35	UART (2) 12C (2) KP CLKO0	DVDD_IO_1
G8	GPIO36	DIO	TYPE 4	General purpose input/output, Pin 36	UART (2) I2C (2) KP	DVDD_IO_1
BPI						
D8	BPI0	DIO	TYPE 1	BPI, pin 0	-	DVDD_IO_1
F8	BPI1	DIO	TYPE 1	BPI, pin 1	-	DVDD_IO_1
E8	BPI2	DIO	TYPE 1	BPI, pin 2	-	DVDD_IO_1

Pin Number	Pin Name	Pin Type	IO Structure	Pin Description	Alternate Pin Functions	Power domain
G10	BPI3	DIO	TYPE 1	BPI, pin 3	-	DVDD_IO_1
F9	BPI4	DIO	TYPE 1	BPI, pin 4	-	DVDD_IO_1
MIPI						
H10	MIPI_SCLK	DIO	TYPE 1	MIPI Clock	-	DVDD_IO_1
H11	MIPI_SDATA	DIO	TYPE 1	MIPI Data	-	DVDD_IO_1

5.5. MT2625 family pin multiplexing

MT2625D series platform offers 37 GPIO pins, MT2625A series platform offers 31 GPIO pins. By setting up the control registers, the MCU software can control the direction, the output value and read the input values on the pins. The GPIOs and GPOs are multiplexed with other functions to reduce the pin count. To facilitate application use, the software can configure which clock to send outside the chip. There are five clock-out ports embedded in MT2625D 37 GPIO pins, MT2625A 31 GPIO pins and each clock-out can be programmed to output an appropriate clock source. In addition, when two GPIOs function for the same peripheral IP, the smaller GPIO serial number has higher priority over the bigger one.

Figure 5.5-1. GPIO block diagram

MT2625 series has rich peripheral functions and the peripheral signals are shown in Table 5.5-1. The SDIO, SPI Master and SPI Slave can support signal group allocate on different pins.

Table 5.5-1. Peripheral functions and signals

Alternate Function	Signal List
MSDC (0)	MSDC0_CLK
	MSDC0_CMD
	MSDC0_DAT0
	MSDC0_DAT1
	MSDC0_DAT2
	MSDC0_DAT3
MSDC (1)	MSDC1_CLK

Alternate Function	Signal List
SPI Master (0)	SPI_MSTO_SCK
	SPI_MSTO_CS
	SPI_MST0_MISO
	SPI_MST0_MOSI
	SPI_MST0_SIO2
	SPI_MST0_SIO3
SPI Master (1)	SPI_MST1_SCK

	I
	MSDC1_CMD
	MSDC1_DAT0
	MSDC1_DAT1
	MSDC1_DAT2
	MSDC1_DAT3
SDIO Slave	SDIO_SLVO_CLK
	SDIO_SLVO_CMD
	SDIO_SLV0_DAT0
	SDIO_SLV0_DAT1
	SDIO_SLV0_DAT2
	SDIO_SLVO_DAT3
UART (0)	UARTO_RXD
	UARTO_TXD
UART (1)	UART1_RXD
	UART1_TXD
	UART1_RTS
	UART1_CTS
UART (2)	UART2_RXD
	UART2_TXD
	UART2_RTS
	UART2_CTS
UART (3)	UART3_RXD
	UART3_TXD
I2C (0)	I2C0_SCL
	I2C0_SDA
I2C (1)	I2C1_SCL
	I2C1_SDA
I2C (2)	I2C2_SCL
	I2C2_SDA
I2S Master/Slave (0)	I2SO_RX
	I2SO_TX
	12S0_WS
	12S0_CK
	I2S0_MCLK
I2S Master/Slave (1)	I2S1_RX
	I2S1_TX
	I2S1_WS
	I2S1_CK
	I2S1_MCLK
L	

	SPI_MST1_CS
	SPI_MST1_MISO
	SPI_MST1_MOSI
	SPI_MST1_SIO2
	SPI_MST1_SIO3
SPI Slave (0)	SPI_SLV0_SCK
	SPI_SLV0_CS
	SPI_SLV0_MISO
	SPI_SLV0_MOSI
	SPI_SLV0_SIO2
	SPI_SLV0_SIO3
PWM (0)	PWM0
PWM (1)	PWM1
PWM (2)	PWM2
PWM (3)	PWM3
PWMSG	PWMSG0
	PWMSG1
AUXADC	AUXADCIN_0
	AUXADCIN_1
	AUXADCIN_2
	AUXADCIN_3
	AUXADCIN_4
Cortex®-M4 JTAG	AP_JTDI
	AP_JRSTB
	AP_JTDO
	AP_JTMS
	AP_JTCK
MD JTAG	MD_JTMS
	MD_JTCK
Keypad	KP_COL0
	KP_COL1
	KP_COL2
	KP_ROW0
	KP_ROW1
	KP_ROW2

Figure 5.5-2. PinMux description

Pin	Mode 0	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7
Name								
GPIO_0	GPIO0			PWM0	KP_COL0	CLKO0		
GPIO_1	GPIO1	UART1_RTS	I2C0_SDA	I2SO_RX	KP_COL1	PWM0	GPS_BLANKING	EINT1
GPIO_2	GPIO2	UARTO_RXD						EINT2
GPIO_3	GPIO3	UART2_RXD	I2C1_SCL	I2SO_CK	KP_ROW0	UART1_RXD	CLKO0	EINT3
GPIO_4	GPIO4	UART2_TXD	I2C1_SDA	I2S0_MCLK	KP_ROW1	UART1_TXD	PWM0	EINT4
GPIO_5	GPIO5	UARTO_TXD						EINT5
GPIO_6	GPIO6	SDIO_SLV0_DAT1	SPI_MST0_SIO3	12S0_WS	I2CO_SCL	NBIOT_PRI	GPS_BLANKING	EINT6
GPIO_7	GPIO7	SDIO_SLV0_CMD	SPI_MST0_SIO2	I2SO_TX	I2CO_SDA	PWM1	GPS_FRAME_SYNC	EINT7
GPIO_8	GPIO8	SDIO_SLV0_DAT0	SPI_MSTO_CS	I2SO_CK	PWM1	NBIOT_ACT	PAD_DFUNC_SFCK	EINT8
GPIO_9	GPIO9	SDIO_SLVO_CLK	SPI_MSTO_MISO	I2S0_MCLK	RF_CONFL_DET_IRQ_B	WLAN_ACT	PAD_DFUNC_SFCS0	EINT9
GPIO_10	GPIO10	SDIO_SLV0_DAT3	SPI_MST0_MOSI	I2C1_SCL	GPS_FRAME_SYNC	PMU_RGU_RSTB	CLKO1	EINT10
GPIO_11	GPIO11	SDIO_SLV0_DAT2	SPI_MSTO_SCK		GPS_BLANKING	PMU_GOTO_SLEEP	PWMSG0	EINT11
GPIO_12	GPIO12	MSDC0_DAT1	SPI_SLV0_CS	UART1_RXD	CLKO1	PMU_GOTO_SLEEP	PAD_DFUNC_SWP	EINT12
GPIO_13	GPIO13	MSDC0_CMD	SPI_SLV0_MOSI	UART1_TXD	PWM2	PWMSG0	PAD_DFUNC_SHOLD	EINT13
GPIO_14	GPIO14	MSDC0_DAT0	SPI_SLV0_MISO	UART1_RTS	UART3_RXD	CLKO2	PAD_DFUNC_SIN	EINT14
GPIO_15	GPIO15	MSDC0_CLK	SPI_SLV0_SCK	UART1_CTS	UART3_TXD	PWM2	PAD_DFUNC_SOUT	EINT15
GPIO_16	GPIO16	MSDC0_DAT2	SPI_SLV0_SIO2	I2C1_SCL	UART1_RXD	GPS_FRAME_SYNC	PWMSG0	EINT16
GPIO_17	GPIO17	MSDC0_DAT3	SPI_SLV0_SIO3	I2C1_SDA	UART1_TXD	XO_WAKEUP		EINT17
GPIO_18	GPIO18	MSDC1_DAT2	SPI_MST1_SIO2	UART2_RXD	UART1_CTS	GPS_BLANKING	RF_CONFL_DET_IRQ_B	EINT18
GPIO_19	GPIO19	MSDC1_DAT1	SPI_MST1_CS	MD_JTMS	CLKO3	GSM_TIMING_SYNC		EINT19
GPIO_20	GPIO20	MSDC1_CMD	SPI_MST1_MISO	MD_JTCK	PWM3	GSM_RF_CONFL_DET_EN		EINT20
GPIO_21	GPIO21	MSDC1_DAT0	SPI_MST1_MOSI			PWMSG1		EINT21
GPIO_22	GPIO22	MSDC1_CLK	SPI_MST1_SCK	I2C1_SCL	PMU_GOTO_SLEEP	UART2_TXD		EINT22
GPIO_23	GPIO23	MSDC1_DAT3	SPI_MST1_SIO3	I2C1_SDA	UART2_TXD	UART1_RTS		EINT0

© 2015 - 2018 MediaTek Inc.

Page 43 of 85

Pin	Mode 0	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7
Name								
GPIO_24 (MT2625D only)	GPIO24	12S0_RX	UART1_RXD	PWMSG1	XO_WAKEUP	CLKO3		EINT1
GPIO_25 (MT2625D only)	GPIO25	12S0_TX	UART1_TXD		PMU_RGU_RSTB	PWMSG1	GSM_TIMING_SYNC	EINT2
GPIO_26 (MT2625D only)	GPIO26	12S0_WS	UART2_RTS	UART3_RXD	PMU_GOTO_SLEEP	PWM3	GSM_RF_CONFL_DET_EN	EINT3
GPIO_27 (MT2625D only)	GPIO27	12S0_CK	UART2_CTS	UART3_TXD	NBIOT_PRI	GPS_FRAME_SYNC	RF_CONFL_DET_IRQ_B	EINT4
GPIO_28 (MT2625D only)	GPIO28	I2S0_MCLK	UART2_RXD	I2C2_SCL	NBIOT_ACT	GPS_BLANKING		EINT5
GPIO_29 (MT2625D only)	GPIO29		UART2_TXD	I2C2_SDA	WLAN_ACT	CLKO4		EINT6
GPIO_30	GPIO30	I2S1_RX	AP_JTDI	CLKO3	MD_JTMS	AUXADCIN_0		EINT7
GPIO_31	GPIO31	I2S1_TX	AP_JRSTB	UART2_RXD	MD_JTCK	AUXADCIN_1		EINT8
GPIO_32	GPIO32	12S1_WS	AP_JTDO	UART2_TXD	CLKO4	AUXADCIN_2	PWM3	EINT9
GPIO_33	GPIO33	I2S1_CK	AP_JTMS	UART3_RXD	I2C2_SCL	AUXADCIN_3		EINT10
GPIO_34	GPIO34	I2S1_MCLK	AP_JTCK	UART3_TXD	I2C2_SDA	AUXADCIN_4	WLAN_ACT	EINT11
GPIO_35	GPIO35	UART2_RXD	I2C2_SCL		KP_COL2		CLKO0	EINT12
GPIO_36	GPIO36	UART2_TXD	I2C2_SDA		KP_ROW2	GPS_BLANKING	RF_CONFL_DET_IRQ_B	EINT13

6. Electrical Characteristics

6.1. Absolute maximum ratings

Table 6.1-1. Absolute maximum ratings for power supply

Symbol or pin name	Description	Min.	Max.	Unit
AVDD33_LDO	Power for internal controller and LDO	-0.3	3.63	V
AVDD33_VCORE	Input power for BUCK of VCORE	-0.3	3.63	V
AVDD33_VPA	Input power for BUCK of VPA	-0.3	3.63	V
AVDD33_VPA_CTRL	Power of VPA controller	-0.3	3.63	V
AVDD33_VRF	Input power for BUCK of VRF	-0.3	3.63	V
AVDD33_VSIM	Power of LDO of VSIM	-0.3	3.63	V
AVDD_RF	Input power for RF	1.08	1.32	V
AVDD18_RF	Input power for RF	1.62	1.98	V
AVDD33_VUSB	USB supply voltage	2.97	3.63	V

Table 6.1-2. Absolute maximum ratings for I/O power supply

Symbol or pin name	Description	Min.	Typ.1	Typ.2	Max.	Unit
DVDD_IO_0	Power supply for GPIO group 0	1.62	1.8	3.3	3.63	V
DVDD_IO_1	Power supply for GPIO group 1	1.62	1.8	3.3	3.63	V
DVDD_IO_2	Power supply for GPIO group 1	1.62	1.8	3.3	3.63	V
DVDD18_MLDO	Power supply for SF/EMI IO 1.8V group	1.65	1.8	-	1.95	V

Table 6.1-3. Absolute maximum ratings for voltage input

Symbol or pin name	Description	Min.	Max.	Unit
VIN0	Digital input voltage for IO Type 0	-0.3	3.63	V
VIN1	Digital input voltage for IO Type 1	-0.3	5.5	V
VIN2	Digital input voltage for IO Type 2	-0.3	5.5	V
VIN3	Digital input voltage for IO Type 3	-0.3	5.5	V
VIN4	Digital input voltage for IO Type 4	-0.3	5.5	V
VIN5	Digital input voltage for IO Type 5	-0.3	5.5	V
VIN6	Digital input voltage for IO Type 6	-0.3	3.63	V
VIN7	Digital input voltage for IO Type 7	-0.3	1.98	V

Table 6.1-4. Absolute maximum ratings for storage temperature

Symbol or pin name	Description	Min.	Max.	Unit
Tstg	Storage temperature	-55	125	°C

6.2. Operating conditions

6.2.1. General operating conditions

Table 6.2-1. MT2625DA/AA general operating conditions

Item	Description	Condition	Min.	Тур.	Max.	Unit
FCPU	Internal Cortex-M4 & TCM & Cache clock	VCORE = 1.1V	0	-	78	MHz
F _{EMI}	Internal memory EMI related AHB and APB clock. Synchronous with F _{CPU} .	VCORE = 1.1V	0	-	39	MHz
F _{SFC} (MT2625DA only)	Internal memory SFC related AHB and APB clock. Synchronous with FcPu.	VCORE = 1.1V	0	-	78	MHz

Table 6.2-2. MT2625DPA/APA general operating conditions

Item	Description	Condition	Min.	Тур.	Max.	Unit
F _{CPU}	Internal Cortex-M4 & TCM & Cache clock	VCORE = 1.3V	0	-	156	MHz
F _{EMI}	Internal memory EMI related AHB and APB clock. Synchronous with F _{CPU} .	VCORE = 1.3V	0	-	78	MHz
F _{SFC} (DPA only)	Internal memory SFC related AHB and APB clock. Synchronous with F _{CPU} .	VCORE = 1.3V	0	-	78	MHz

Table 6.2-3. Recommended operating conditions for power supply

Symbol or pin name	Description	Min.	Тур.	Max.	Unit
AVDD33_LDO	Power for internal controller and LDO	2.1	3.3	3.63	V
AVDD33_VCORE	Input power for BUCK of VCORE	2.1	3.3	3.63	V
AVDD33_VPA	Input power for BUCK of VPA	-	3.3	3.63	V
AVDD33_VPA_CTRL	Power of VPA controller	-	3.3	3.63	V
AVDD33_VRF	Input power for BUCK of VRF	2.1	3.3	3.63	V
AVDD33_VSIM	Power of LDO of VSIM	-	3.3	3.63	V

Table 6.2-4. Recommended operating conditions for voltage input

Symbol or pin name	Description	Min.	Тур.	Max.	Unit
VINO	Digital input voltage for IO Type 0	-0.3	-	DVDIO+0.3	V
VIN1	Digital input voltage for IO Type 1	-0.3	-	DVDIO+0.3	V
VIN2	Digital input voltage for IO Type 2	-0.3	-	DVDIO+0.3	V
VIN3	Digital input voltage for IO Type 3	-0.3	-	DVDIO+0.3	V
VIN4	Digital input voltage for IO Type 4	-0.3	-	DVDIO+0.3	V

Symbol or pin name	Description	Min.	Тур.	Max.	Unit
VIN5	Digital input voltage for IO Type 5	-0.3	-	DVDIO+0.3	V
VIN6	Digital input voltage for IO Type 6	-0.3	-	DVDIO+0.3	V
VIN7	Digital input voltage for IO Type 7	-0.3	-	DVDIO+0.3	V

Table 6.2-5. Recommended operating conditions for operating temperature

Symbol or pin name	Description	Min.	Тур.	Max.	Unit
Tc	Operating temperature	-40	-	85	°C

6.2.2. Input or output port characteristics

Table 6.2-6. Electrical characteristics

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
DIIHO Digital high input current for IO Type 0		PU/PD disabled DVDIO = 3.3/2.8/1.8V, DVDIO*0.65 < VINO < DVDIO+0.3V	-5	-	5	μΑ
	PU enabled DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VINO < DVDIO	40	-	5	μΑ	
		PD enabled DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VINO < DVDIO	7	-	80	μΑ
DIILO Digital low input current for IO Type 0		PU/PD disabled DVDIO = 3.3/2.8/1.8V, -0.3V < VINO < DVDIO*0.35	-10	-	5	μΑ
		PU enabled, DVDIO = 3.3/2.8/1.8V 0 < VINO < DVDIO*0.25	-70	-	-6	μΑ
		PD enabled, DVDIO = 3.3/2.8/1.8V 0 < VINO < DVDIO*0.25	-5	-	40	μΑ
DIOH0 Digital high output current for IO Type 0		DVOH = 2.805V DVDIO = 3.3V Max. driving mode	24	-	-	mA
	DVOH = 2.38V DVDIO = 2.8V Max. driving mode	20	-	-	mA	
	DVOH = 1.53V DVDIO = 1.8V	8	-	-	mA	

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		Max. driving mode				
DIOL0	Digital low output current	DVOL = 0.495V	24	-	-	mA
	for IO Type 0	DVDIO = 3.3V				
		Max. driving mode				
		DVOL = 0.442V	20	-	-	mA
		DVDIO = 2.8V				
		Max. driving mode				
		DVOL = 0.27V	8	-	-	mA
		DVDIO = 1.8V				
		Max. driving mode				
DRPU0	Digital I/O pull-up	DVDIO = 3.3V	40	75	190	kΩ
	resistance for IO Type 0	VINO = 0V				
		DVDIO = 2.8V	40	75	190	kΩ
		VIN0 = 0				
		DVDIO = 1.8V	80	160	320	kΩ
		VINO = 0V				
DRPD0	Digital I/O pull-down	DVDIO = 3.3V	40	75	190	kΩ
	resistance for IO Type 0	VIN0 = 3.3V				
		DVDIO = 2.8V	40	75	190	kΩ
		VIN0 = 2.8V				
		DVDIO = 1.8V	80	160	320	kΩ
		VIN0 = 1.8V				
DVOH0	Digital output high voltage	DVDIO = 3.3V	0.85*D	-	-	V
	for IO Type 0		VDIO			
		DVDIO = 2.8V	0.85*D	-	-	V
			VDIO			
		DVDIO = 1.8V	0.85*D	-	-	V
			VDD			
DVOL0	Digital output low voltage	DVDIO = 3.3V	-	-	0.15*D	V
	for IO Type 0				VDIO	
		DVDIO = 2.8V	-	-	0.15*D VDIO	V
		DVDIQ 4 0V				
		DVDIO = 1.8V	-	-	0.15*D VDIO	V
VIH0	Digital input high voltage	DVDIO = 3.3V	0.75*D		DVDIO	
VIIIU	for IO Type 0	DVDIO - 3.3V	VDIO		טוטעט	
ioi io type o	71	DVDIO = 2.8V	0.75*D		DVDIO	
		5 V D 10 - 2.0 V	VDIO		5,010	
		DVDIO = 1.8V	0.75*D		DVDIO	
		2.2.0	VDIO		2.5.0	
VIL0	Digital input low voltage	DVDIO = 3.3V	0		0.25*D	
	for IO Type 0				VDIO	

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		DVDIO = 2.8V	0		0.25*D VDIO	
		DVDIO = 1.8V	0		0.25*D VDIO	
DIIH1	Digital high input current for IO Type 1	PU/PD disabled DVDIO = 3.3/2.8/1.8V, DVDIO*0.65 < VIN1 < DVDIO+0.3V	-5	-	5	μА
		DVDIO = 3.3V 4.5V < VIN1 < 5.5V	-5	-	5	μΑ
		PU enabled DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN1 < DVDIO	-40		5	μΑ
		PD enabled DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN1 < DVDIO	7		80	μΑ
DIIL1	Digital low input current for IO Type 1	PU/PD disabled DVDIO = 3.3/2.8/1.8V, -0.3V < VIN1 < DVDIO*0.35	-10	-	5	μΑ
		PU enabled DVDIO = 3.3/2.8/1.8V 0 < VIN1 < DVDIO*0.25	-70	-	-6	μΑ
		PD enabled DVDIO = 3.3/2.8/1.8V 0 < VIN1 < DVDIO*0.25	-5	-	40	μΑ
DIOH1	Digital high output current for IO Type 1	DVOH = 2.805V DVDIO = 3.3V Max. driving mode	24	-	-	mA
		DVOH = 2.38V DVDIO = 2.8V Max. driving mode	20	-	-	mA
		DVOH = 1.53V DVDIO = 1.8V Max. driving mode	8	-	-	mA
DIOL1	Digital low output current for IO Type 1	DVOL = 0.495V DVDIO = 3.3V Max. driving mode	24	-	-	mA
		DVOL = 0.442V DVDIO = 2.8V Max. driving mode	20	-	-	mA
		DVOL = 0.27V	8	-	-	mA

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		DVDIO = 1.8V				
		Max. driving mode				
DRPU1	Digital I/O pull-up	DVDIO = 3.3V	40	75	190	kΩ
	resistance for IO Type 1	VIN1 = 0V				
		DVDIO = 2.8V	40	75	190	kΩ
		VIN1 = 0V				
		DVDIO = 1.8V	80	160	320	kΩ
		VIN1 = 0V		1		
DRPD1	Digital I/O pull-down resistance for IO Type 1	DVDIO = 3.3V	40	75	190	kΩ
	resistance for 10 Type 1	VIN1 = 3.3V		-		
		DVDIO = 2.8V	40	75	190	kΩ
		VIN1 = 2.8V		1.50	222	1.0
		DVDIO = 1.8V VIN1 = 1.8V	80	160	320	kΩ
DVO111	Disital autout high valtage		0.05*0	+		
DVOH1	Digital output high voltage for IO Type 1	DVDIO = 3.3V	0.85*D VDIO	-	-	V
		DVDIO = 2.8V	0.85*D VDIO	-	-	V
		DVDIO = 1.8V	0.85*D VDD	-	-	V
DVOL1	Digital output low voltage for IO Type 1	DVDIO = 3.3V	-	-	0.15*D VDIO	V
	101 10 Type 1	DVDIO = 2.8V	-	-	0.15*D	V
		DVDIO - 2.6V			VDIO	V
		DVDIO = 1.8V	-	-	0.15*D	V
					VDIO	
VIH1	Digital input high voltage	DVDIO = 3.3V	2.0V		DVDIO	
	for IO Type 1	DVDIO = 2.8V	0.75*D		DVDIO	
			VDIO			
		DVDIO = 1.8V	0.75*D VDIO		DVDIO	
VIL1	Digital input low voltage	DVDIO = 3.3V	0		0.8	
	for IO Type 1	DVDIO = 2.8V	0		0.25*D VDIO	
		DVDIO = 1.8V	0		0.25*D VDIO	
DIIH2	Digital high input current for IO Type 2	PU/PD disabled DVDIO = 3.3/2.8/1.8V, DVDIO*0.65 < VIN2 < DVDIO+0.3V	-5	-	5	μА
		DVDIO = 3.3V 4.5V < VIN2 < 5.5V	-5	-	5	μΑ
		PU enabled, RSEL1	-60	_	5	μΑ
		i o enabled, Nalli	-00	_	3	μΛ

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN2 < DVDIO				
		PU enabled, RSEL2 DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN2 < DVDIO	-120	-	5	μΑ
		PD enabled, RSEL1 DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN2 < DVDIO	10	-	110	μА
		PD enabled, RSEL2 DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN2 < DVDIO	20	-	220	μΑ
DIIL2	Digital low input current for IO Type 2	PU/PD disabled, DVDIO = 3.3/2.8/1.8V, -0.3V < VIN2 < DVDIO*0.35	-10	-	5	μА
		PU enabled, RSEL1 DVDIO = 3.3/2.8/1.8V 0 < VIN2 < DVDIO*0.25	-100	-	-10	μΑ
		PU enabled, RSEL2 DVDIO = 3.3/2.8/1.8V 0 < VIN2 < DVDIO*0.25	-200	-	-20	μА
		PD enabled, RSEL1 DVDIO = 3.3/2.8/1.8V 0 < VIN2 < DVDIO*0.25	-5	-	60	μА
		PD enabled, RSEL2 DVDIO = 3.3/2.8/1.8V 0 < VIN2 < DVDIO*0.25	-5	-	120	μА
DIOH2	Digital high output current for IO Type 2	DVOH = 2.805V DVDIO = 3.3V Max. driving mode	24	-	-	mA
		DVOH = 2.38V DVDIO = 2.8V Max. driving mode	20	-	-	mA
		DVOH = 1.53V DVDIO = 1.8V Max. driving mode	8	-	-	mA
DIOL2	Digital low output current for IO Type 2	DVOL = 0.495V DVDIO = 3.3V Max. driving mode	24	-	-	mA
		DVOL = 0.42V	20	-	-	mA

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		DVDIO = 2.8V				
		Max. driving mode				
		DVOL = 0.27V	8	-	-	mA
		DVDIO = 1.8V				
		Max. driving mode				
DRPU2	Digital I/O pull-up	DVDIO = 3.3V	25	45	100	kΩ
	resistance for IO Type 2	VIN2 = 0V, RSEL1				
	RSEL1 : (GPIO_R1,	DVDIO = 3.3V	10	23	50	kΩ
	GPIO_R0) = (1, 0) or (0,1) RSEL2 : (GPIO_R1,	VIN2 = 0V, RSEL2				
	GPIO_R0) = (1, 1)	DVDIO = 2.8V	25	45	100	kΩ
		VIN2 = 0V, RSEL1				
		DVDIO = 2.8V	10	23	50	kΩ
		VIN2 = 0V, RSEL2				
		DVDIO = 1.8V	50	100	200	kΩ
		VIN2 = 0V, RSEL1				
		DVDIO = 1.8V	25	50	100	kΩ
		VIN2 = 0V, RSEL2				
DRPD2	Digital I/O pull-down	DVDIO = 3.3V	25	45	100	kΩ
• • • • • • • • • • • • • • • • • • • •	resistance for IO Type 2	VIN2 = 3.3V, RSEL1				
	RSEL1 : (GPIO_R1,	DVDIO = 3.3V	10	23	50	kΩ
	GPIO_R0) = (1, 0) or (0,1) RSEL2 : (GPIO_R1,	VIN2 = 3.3V, RSEL2				
	GPIO_R0) = (1, 1)	DVDIO = 2.8V	25	45	100	kΩ
		VIN2 = 2.8V, RSEL1				
		DVDIO = 2.8V	10	23	50	kΩ
		VIN2 = 2.8V, RSEL2				
		DVDIO = 1.8V	50	100	200	kΩ
		VIN2 = 1.8V, RSEL1				
		DVDIO = 1.8V	25	50	100	kΩ
		VIN2 = 1.8V, RSEL2				
DVOH2	Digital output high voltage for IO Type 2	DVDIO = 3.3V	0.85*D VDIO	-	-	V
		DVDIO = 2.8V	0.85*D VDIO	-	-	V
		DVDIO = 1.8V	0.85*D VDD	-	-	V
	Digital output low voltage for IO Type 2	DVDIO = 3.3V	-	-	0.15*D VDIO	V
		DVDIO = 2.8V	-	-	0.15*D VDIO	V
		DVDIO = 1.8V	-	-	0.15*D VDIO	V
VIH2		DVDIO = 3.3V	2.0V	1	DVDIO	

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
	Digital input high voltage for IO Type 2	DVDIO = 2.8V	0.75*D VDIO		DVDIO	
		DVDIO = 1.8V	0.75*D VDIO		DVDIO	
VIL2	Digital input low voltage	DVDIO = 3.3V	0		0.8	
	for IO Type 2	DVDIO = 2.8V	0		0.25*D VDIO	
		DVDIO = 1.8V	0		0.25*D VDIO	
DIIH3 Digital high input current for IO Type 3	PU/PD disabled DVDIO = 3.3/2.8/1.8V, DVDIO*0.65 < VIN3 < DVDIO+0.3V	-5	-	5	μΑ	
	DVDIO = 3.3V 4.5V < VIN3 < 5.5V	-5	-	5	μΑ	
		PU enabled DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN3 < DVDIO	-40		5	μΑ
		PD enabled DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN3 < DVDIO	7		80	μΑ
DIIL3	Digital low input current for IO Type 3	PU/PD disabled DVDIO = 3.3/2.8/1.8V, -0.3V < VIN3 < DVDIO*0.35	-10	-	5	μΑ
		PU enabled DVDIO = 3.3/2.8/1.8V 0 < VIN3 < DVDIO*0.25	-70	-	-6	μΑ
		PD enabled DVDIO = 3.3/2.8/1.8V 0 < VIN3 < DVDIO*0.25	-5	-	40	μΑ
DIOH3	Digital high output current for IO Type 3	DVOH = 2.805V DVDIO = 3.3V Max. driving mode	24	-	-	mA
		DVOH = 2.38V DVDIO = 2.8V Max. driving mode	20	-	-	mA
		DVOH = 1.53V DVDIO = 1.8V Max. driving mode	8	-	-	mA
DIOL3	Digital low output current for IO Type 3	DVOL = 0.495V DVDIO = 3.3V	24	-	-	mA

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		Max. driving mode				
		DVOL = 0.442V	20	-	-	mA
		DVDIO = 2.8V				
		Max. driving mode				
		DVOL = 0.27V	8	-	-	mA
		DVDIO = 1.8V				
		Max. driving mode				
DRPU3	Digital I/O pull-up resistance for IO Type 3	DVDIO = 3.3V	40	75	190	kΩ
		VIN3 = 0V				
		DVDIO = 2.8V	40	75	190	kΩ
		VIN3 = 0V				
		DVDIO = 1.8V	80	160	320	kΩ
		VIN3 = 0V				
DRPD3	Digital I/O pull-down	DVDIO = 3.3V	40	75	190	kΩ
resistance for IO Type 3	VIN3 = 3.3V					
		DVDIO = 2.8V	40	75	190	kΩ
	VIN3 = 2.8V					
		DVDIO = 1.8V	80	160	320	kΩ
	VIN3 = 1.8V					
DVOH3	Digital output high voltage	DVDIO = 3.3V	0.85*D	-	-	V
	for IO Type 3		VDIO			
		DVDIO = 2.8V	0.85*D VDIO	-	-	V
		DVDIO = 1.8V	0.85*D VDD	-	-	V
DVOL3	Digital output low voltage for IO Type 3	DVDIO = 3.3V	-	-	0.15*D VDIO	V
		DVDIO = 2.8V	-	-	0.15*D VDIO	V
		DVDIO = 1.8V	-	-	0.15*D VDIO	V
VIH3	Digital input high voltage	DVDIO = 3.3V	2.0V		DVDIO	
	for IO Type 3	DVDIO = 2.8V	0.75*D VDIO		DVDIO	
		DVDIO = 1.8V	0.75*D VDIO		DVDIO	
VIL3	Digital input low voltage	DVDIO = 3.3V	0		0.8	
	for IO Type 3	DVDIO = 2.8V	0		0.25*D VDIO	
		DVDIO = 1.8V	0		0.25*D VDIO	
DIIH4	Digital high input current for IO Type 4	PU/PD disabled DVDIO = 3.3/2.8/1.8V,	-5	-	5	μΑ

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
	RSEL1 : (GPIO_R1, GPIO_R0) = (0,1)	DVDIO*0.65 < VIN4 < DVDIO+0.3V				
	RSEL2: (GPIO_R1, GPIO_R0) = (1, 0) or (1, 1)	DVDIO = 3.3V 4.5V < VIN4 < 5.5V	-5	-	5	μΑ
		PU enabled, RSEL1 DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN4 < DVDIO	-60	-	5	μА
		PU enabled, RSEL2 DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN4 < DVDIO	-700	-	5	μΑ
		PD enabled, RSEL1 DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN4 < DVDIO	10	-	110	μΑ
		PD enabled, RSEL2 DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN4 < DVDIO	500	-	3000	μΑ
DIIL4	Digital low input current for IO Type 4 RSEL1 : (GPIO_R1, GPIO_R0) = (0,1)	PU/PD disabled, DVDIO = 3.3/2.8/1.8V, -0.3V < VIN4 < DVDIO*0.35	-10	-	5	μА
	RSEL2: (GPIO_R1, GPIO_R0) = (1, 0) or (1, 1)	PU enabled, RSEL1 DVDIO = 3.3/2.8/1.8V 0 < VIN4 < DVDIO*0.25	-100	-	-10	μΑ
		PU enabled, RSEL2 DVDIO = 3.3/2.8/1.8V 0 < VIN4 < DVDIO*0.25	-3000	-	-500	μΑ
		PD enabled, RSEL1 DVDIO = 3.3/2.8/1.8V 0 < VIN4 < DVDIO*0.25	-5	-	60	μΑ
		PD enabled, RSEL2 DVDIO = 3.3/2.8/1.8V 0 < VIN4 < DVDIO*0.25	-5	-	700	μΑ
DIOH4 Digital high output current for IO Type 4		DVOH = 2.805V DVDIO = 3.3V Max. driving mode	24	-	-	mA
		DVOH = 2.38V DVDIO = 2.8V Max. driving mode	20	-	-	mA
		DVOH = 1.53V DVDIO = 1.8V	8	-	-	mA

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		Max. driving mode				
DIOL4	Digital low output current	DVOL = 0.495V	24	-	-	mA
	for IO Type 4	DVDIO = 3.3V				
		Max. driving mode				
	DVOL = 0.42V	20	-	-	mA	
		DVDIO = 2.8V				
		Max. driving mode				
		DVOL = 0.27V	8	-	-	mA
		DVDIO = 1.8V				
	Max. driving mode					
DRPU4	Digital I/O pull-up	DVDIO = 3.3V	25	45	100	kΩ
	resistance for IO Type 4	VIN4 = 0V, RSEL1				
	RSEL1 : (GPIO_R1,	DVDIO = 3.3V			2	kΩ
	GPIO_R0) = (0,1) RSEL2 : (GPIO_R1,	VIN4 = 0V, RSEL2				
	GPIO R0) = $(1, 0)$ or $(1, 1)$	DVDIO = 2.8V	25	45	100	kΩ
		VIN4 = 0V, RSEL1				
		DVDIO = 2.8V			2	kΩ
		VIN4 = 0V, RSEL2				
		DVDIO = 1.8V	50	100	200	kΩ
	VIN4 = 0V, RSEL1					
		DVDIO = 1.8V			2	kΩ
		VIN4 = 0V, RSEL2				
DRPD4	Digital I/O pull-down	DVDIO = 3.3V	25	45	100	kΩ
	resistance for IO Type 4	VIN4 = 3.3V, RSEL1				
	RSEL1: (GPIO_R1,	DVDIO = 3.3V			2	kΩ
	GPIO_R0) = (0,1)	VIN4 = 3.3V, RSEL2				
	RSEL2 : (GPIO_R1, GPIO_R0) = (1, 0) or (1, 1)	DVDIO = 2.8V	25	45	100	kΩ
	(1) 0) (1) 1)	VIN4 = 2.8V, RSEL1				
		DVDIO = 2.8V			2	kΩ
		VIN4 = 2.8V, RSEL2				
		DVDIO = 1.8V	50	100	200	kΩ
		VIN4 = 1.8V, RSEL1				
		DVDIO = 1.8V			2	kΩ
		VIN4 = 1.8V, RSEL2				
DVOH4	Digital output high voltage	DVDIO = 3.3V	0.85*D	-	-	V
	for IO Type 4		VDIO			
		DVDIO = 2.8V	0.85*D	-	-	V
			VDIO			
		DVDIO = 1.8V	0.85*D	-	-	V
			VDD			
DVOL4	Digital output low voltage	DVDIO = 3.3V	-	-	0.15*D	V
	for IO Type 4				VDIO	

Symbol	Description	Condition	Min.	Тур.	Max.	Unit	
		DVDIO = 2.8V	-	-	0.15*D VDIO	V	
		DVDIO = 1.8V	-	-	0.15*D VDIO	V	
VIH4	Digital input high voltage	DVDIO = 3.3V	2.0V		DVDIO		
	for IO Type 4	DVDIO = 2.8V	0.75*D VDIO		DVDIO		
		DVDIO = 1.8V	0.75*D VDIO		DVDIO		
VIL4	Digital input low voltage	DVDIO = 3.3V	0		0.8		
	for IO Type 4	DVDIO = 2.8V	0		0.25*D VDIO		
		DVDIO = 1.8V	0		0.25*D VDIO		
DIIH5	Digital high input current for IO Type 5 RSEL1 : (GPIO_R1, GPIO_R0) = (0, 1) or (1, 1)	PU/PD disabled DVDIO = 3.3/2.8/1.8V, DVDIO*0.65 < VIN5 < DVDIO+0.3V	-5	-	5	μΑ	
	RSEL2 : (GPIO_R1, GPIO_R0) = (1, 0)	DVDIO = 3.3V 4.5V < VIN5 < 5.5V	-5	-	5	μΑ	
		PU enabled, RSEL1 DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN5 < DVDIO	-60	-	5	μА	
		PU enabled, RSEL2 DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN5 < DVDIO	-10	-	5	μΑ	
		PD enabled, RSEL1 DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN5 < DVDIO	10	-	110	μΑ	
		PD enabled, RSEL2 DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN5 < DVDIO	1	-	15	μΑ	
DIIL5	Digital low input current for IO Type 5 RSEL1 : (GPIO_R1, GPIO_R0) = (0, 1) or (1, 1)	PU/PD disabled, DVDIO = 3.3/2.8/1.8V, -0.3V < VIN5 < DVDIO*0.35	-10	-	5	μΑ	
	RSEL2: (GPIO_R1, GPIO_R0) = (1, 0)	PU enabled, RSEL1 DVDIO = 3.3/2.8/1.8V 0 < VIN5 < DVDIO*0.25	-100	-	-10	μΑ	
		PU enabled, RSEL2	-15	-	-1	μΑ	

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		DVDIO = 3.3/2.8/1.8V 0 < VIN5 < DVDIO*0.25				
		PD enabled, RSEL1 DVDIO = 3.3/2.8/1.8V 0 < VIN5 < DVDIO*0.25	-5	-	60	μА
		PD enabled, RSEL2 DVDIO = 3.3/2.8/1.8V 0 < VIN5 < DVDIO*0.25	-5	-	10	μΑ
DIOH5	Digital high output current for IO Type 5	DVOH = 2.805V DVDIO = 3.3V Max. driving mode	24	-	-	mA
		DVOH = 2.38V DVDIO = 2.8V Max. driving mode	20	-	-	mA
		DVOH = 1.53V DVDIO = 1.8V Max. driving mode	8	-	-	mA
DIOL5	Digital low output current for IO Type 5	DVOL = 0.495V DVDIO = 3.3V Max. driving mode	24	-	-	mA
		DVOL = 0.42V DVDIO = 2.8V Max. driving mode	20	-	-	mA
		DVOL = 0.27V DVDIO = 1.8V Max. driving mode	8	-	-	mA
DRPU5	Digital I/O pull-up resistance for IO Type 5	DVDIO = 3.3V VIN5 = 0V, RSEL1	25	45	100	kΩ
	RSEL1: (GPIO_R1, GPIO_R0) = (0, 1) or (1, 1)	DVDIO = 3.3V VIN5 = 0V, RSEL2	200			kΩ
	RSEL2 : (GPIO_R1, GPIO_R0) = (1, 0)	DVDIO = 2.8V VIN5 = 0V, RSEL1	25	45	100	kΩ
		DVDIO = 2.8V VIN5 = 0V, RSEL2	200			kΩ
		DVDIO = 1.8V VIN5 = 0V, RSEL1	50	100	200	kΩ
		DVDIO = 1.8V VIN5 = 0V, RSEL2	200			kΩ
DRPD5	Digital I/O pull-down resistance for IO Type 5	DVDIO = 3.3V VIN5 = 3.3V, RSEL1	25	45	100	kΩ
	RSEL1: (GPIO_R1, GPIO_R0) = (0, 1) or (1, 1)	DVDIO = 3.3V VIN5 = 3.3V, RSEL2	200			kΩ

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
	RSEL2 : (GPIO_R1, GPIO_R0) = (1, 0)	DVDIO = 2.8V VIN5 = 2.8V, RSEL1	25	45	100	kΩ
		DVDIO = 2.8V VIN5 = 2.8V, RSEL2	200			kΩ
		DVDIO = 1.8V VIN5 = 1.8V, RSEL1	50	100	200	kΩ
		DVDIO = 1.8V VIN5 = 1.8V, RSEL2	200			kΩ
DVOH5	Digital output high voltage for IO Type 5	DVDIO = 3.3V	0.85*D VDIO	-	-	V
		DVDIO = 2.8V	0.85*D VDIO	-	-	V
		DVDIO = 1.8V	0.85*D VDD	-	-	V
DVOL5	Digital output low voltage for IO Type 5	DVDIO = 3.3V	-	-	0.15*D VDIO	V
		DVDIO = 2.8V	-	-	0.15*D VDIO	V
		DVDIO = 1.8V	-	-	0.15*D VDIO	V
VIH5	Digital input high voltage	DVDIO = 3.3V	2.0V		DVDIO	
	for IO Type 5	DVDIO = 2.8V	0.75*D VDIO		DVDIO	V
		DVDIO = 1.8V	0.75*D VDIO		DVDIO	
VIL5	Digital input low voltage	DVDIO = 3.3V	0		0.8	
	for IO Type 5	DVDIO = 2.8V	0		0.25*D VDIO	
		DVDIO = 1.8V	0		0.25*D VDIO	
DIIH6	Digital high input current for IO Type 6 RSEL1 : (GPIO_R1, GPIO_R0) = (0, 1)	PU/PD disabled DVDIO = 3.3/2.8/1.8V, DVDIO*0.65 < VIN6 < DVDIO+0.3V	-5	-	5	μА
	RSEL2 : (GPIO_R1, GPIO_R0) = (1, 0)	PU enabled, RSEL1 DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN6 < DVDIO	-60	-	5	μА
		PU enabled, RSEL2 DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN6 < DVDIO	-200	-	5	μА
		PD enabled, RSEL1 DVDIO = 3.3/2.8/1.8V	10	-	80	μΑ

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		DVDIO*0.75 < VIN6 < DVDIO				
		PD enabled, RSEL2 DVDIO = 3.3/2.8/1.8V DVDIO*0.75 < VIN6 < DVDIO	20	-	160	μА
DIIL6	Digital low input current for IO Type 6 RSEL1 : (GPIO_R1, GPIO_R0) = (0, 1)	PU/PD disabled, DVDIO = 3.3/2.8/1.8V, -0.3V < VIN6 < DVDIO*0.35	-5	-	5	μА
	RSEL2 : (GPIO_R1, GPIO_R0) = (1, 0)	PU enabled, RSEL1 DVDIO = 3.3/2.8/1.8V 0 < VIN6 < DVDIO*0.25	-200	-	-40	μА
		PU enabled, RSEL2 DVDIO = 3.3/2.8/1.8V 0 < VIN6 < DVDIO*0.25	-900	-	-200	μА
	PD enabled, RSEL1 DVDIO = 3.3/2.8/1.8V 0 < VIN6 < DVDIO*0.25	-5	-	40	μА	
		PD enabled, RSEL2 DVDIO = 3.3/2.8/1.8V 0 < VIN6 < DVDIO*0.25	-5	-	80	μΑ
DIOH6	Digital high output current for IO Type 6	DVOH = 2.805V DVDIO = 3.3V Max. driving mode	12	-	-	mA
		DVOH = 2.38V DVDIO = 2.8V Max. driving mode	10	-	-	mA
		DVOH = 1.53V DVDIO = 1.8V Max. driving mode	4	-	-	mA
DIOL6	Digital low output current for IO Type 6	DVOL = 0.495V DVDIO = 3.3V Max. driving mode	12	-	-	mA
		DVOL = 0.42V DVDIO = 2.8V Max. driving mode	10	-	-	mA
		DVOL = 0.27V DVDIO = 1.8V Max. driving mode	4	-	-	mA
DRPU6	Digital I/O pull-up resistance for IO Type 6	DVDIO = 3.3V VIN6 = 0V, RSEL1	10	20	40	kΩ
		DVDIO = 3.3V	4	5	6	kΩ

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
	RSEL1 : (GPIO_R1,	VIN6 = 0V, RSEL2				
	GPIO_R0) = (0, 1)	DVDIO = 2.8V	10	20	40	kΩ
	RSEL2 : (GPIO_R1,	VIN6 = 0V, RSEL1				
	GPIO_R0) = (1, 0)	DVDIO = 2.8V	4	5	6	kΩ
		VIN6 = 0V, RSEL2				
		DVDIO = 1.8V	10	20	40	kΩ
		VIN6 = 0V, RSEL1				
		DVDIO = 1.8V	4	5	6	kΩ
		VIN6 = 0V, RSEL2				
DRPD6	Digital I/O pull-down	DVDIO = 3.3V	40	75	190	kΩ
	resistance for IO Type6	VIN6 = 3.3V, RSEL1				
	RSEL1: (GPIO_R1,	DVDIO = 3.3V	20	40	100	kΩ
	GPIO_R0) = (0, 1)	VIN6 = 3.3V, RSEL2				
	RSEL2 : (GPIO_R1, GPIO_R0) = (1, 0)	DVDIO = 2.8V	40	75	190	kΩ
	G110_NO) (1, 0)	VIN6 = 2.8V, RSEL1				
		DVDIO = 2.8V	20	40	100	kΩ
		VIN6 = 2.8V, RSEL2				
		DVDIO = 1.8V	80	150	380	kΩ
		VIN6 = 1.8V, RSEL1				
		DVDIO = 1.8V	40	75	190	kΩ
		VIN6 = 1.8V, RSEL2				
DVOH6	Digital output high voltage for IO Type 6	DVDIO = 3.3V	0.85*D VDIO	-	-	V
		DVDIO = 2.8V	0.85*D VDIO	-	-	V
		DVDIO = 1.8V	0.85*D VDD	-	-	V
DVOL6	Digital output low voltage for IO Type 6	DVDIO = 3.3V	-	-	0.15*D VDIO	٧
		DVDIO = 2.8V	-	-	0.15*D VDIO	V
		DVDIO = 1.8V	-	-	0.15*D VDIO	V
VIH6	Digital input high voltage	DVDIO = 3.3V	2.0V		DVDIO	
	for IO Type 6	DVDIO = 2.8V	0.75*D VDIO		DVDIO	
		DVDIO = 1.8V	0.75*D VDIO		DVDIO	
VIL6	Digital input low voltage	DVDIO = 3.3V	0		0.8	
	for IO Type 6	DVDIO = 2.8V	0		0.25*D VDIO	
		DVDIO = 1.8V	0		0.25*D VDIO	

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
DIIH7	Digital high input current for IO Type 7	PU/PD disabled DVDIO = 1.8V, DVDIO*0.65 < VIN7 < DVDIO+0.3V	-5	-	5	μΑ
		PU enabled DVDIO = 1.8V DVDIO*0.8 < VIN7 < DVDIO	-20	-	5	μΑ
		PD enabled DVDIO = 1.8V DVDIO*0.8 < VIN7 < DVDIO	5	-	30	μΑ
DIIL7	Digital low input current for IO Type 7	PU/PD disabled DVDIO = 1.8V, -0.3V < VIN7 < DVDIO*0.35	-5	-	5	μΑ
		PU enabled, DVDIO = 1.8V 0 < VIN7 < DVDIO*0.2	-30	-	-5	μΑ
		PD enabled, DVDIO = 1.8V 0 < VIN7 < DVDIO*0.2	-5	-	20	μΑ
DIOH7	Digital high output current for IO Type 7	DVOH = 1.62V DVDIO = 1.8V Max. driving mode	5	-	-	mA
DIOL7	Digital low output current for IO Type 7	DVOL = 0.18V DVDIO = 1.8V Max. driving mode	5	-	-	mA
DRPU7	Digital I/O pull-up resistance for IO Type 7	DVDIO = 1.8V VIN = 0V	70	160	320	kΩ
DRPD7	Digital I/O pull-down resistance for IO Type 7	DVDIO = 1.8V VIN = 3.3V	70	160	320	kΩ
DVOH7	Digital output high voltage for IO Type 7	DVDIO = 1.8V	0.9*DV DIO	-	-	V
DVOL7	Digital output low voltage for IO Type 7	DVDIO = 1.8V	-	-	0.1*DV DIO	V
VIH7	Digital input high voltage for IO Type 7	DVDIO = 1.8V	0.8*DV DIO		DVDIO	
VIL7	Digital input low voltage for IO Type 7	DVDIO = 1.8V	0		0.2*DV DIO	

6.2.3. Digitally controlled crystal oscillator (DCXO)

The Digitally Controlled Crystal Oscillator (DCXO) uses a two-pin 26MHz crystal resonator. Both crystals with 1612, 2016 and 3225 footprint are supported. See Table 6.2-7 for the crystal resonator capacitance load and tuning sensitivity range supported. On-chip programmable capacitor array is used for frequency-tuning, whereby the tuning range is ±50ppm. This DCXO supports 32kHz crystal-less operation.

Table 6.2-7. DCXO Characteristics (TA = 250C, VDD = 1.8V unless otherwise stated)(1)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Operating frequency	Fref			26		MHz
Crystal C load	CL		7	7.5		pF
Crystal tuning sensitivity	TS		10	33		ppm/pF
Static range	SR	CDAC from 0 to 511	± 40	± 50		ppm
Start-up time	TDCXO	Frequency error < 10ppm Amplitude > 90 %		0.6	2.5	ms
Pushing figure				0.2		ppm/V
Fref buffer output level	VFref	Max. loading = 10pF		1.1		V _{p-p}
Fref buffer output phase noise		10kHz offset Jitter noise		-135		dBc/Hz

6.2.4. 32kHz crystal oscillator (XOSC32)

The low-power 32kHz crystal oscillator XOSC32 is designed to work with an external piezoelectric 32.768kHz crystal and a load composed of two functional capacitors. It is designed to be a clock source of RTC for lower power platform. See Table 6.2-8 for the key performance.

The crystal parameters determine the oscillation allowance. Table 6.2-9 lists recommendations for the crystal parameters to be used well with XOSC32.

Table 6.2-8. Functional specifications of XOSC32

Symbol	Parameter	Min.	Typical	Max.	Unit
VRTC	RTC module power		3.3		٧
Tosc	Start-up time			1	sec
Dcyc	Duty cycle	35	50		%
	Current consumption		1.8		μΑ
T	Operating temperature	-40		85	°C

Table 6.2-9. Recommended parameters for 32kHz crystal

Symbol	Parameter	Min.	Typical	Max.	Unit
F	Frequency range		32768		Hz
GL	Drive level			0.5	μW
Δf/f	Frequency tolerance		+/- 20		ppm
ESR	Series resistance		50	90	kΩ

Symbol	Parameter	Min.	Typical	Max.	Unit
C0	Static capacitance		1.3		pF
CL1	Load capacitance			12.5	pF

Under such CL range and crystal, the –R is more than 3 times bigger. If larger CL is selected, the frequency accuracy will be decreased, and the –R will degrade, too.

6.3. Peripheral interfaces

6.3.1. SPI master interface characteristics

The operating characteristics of the SPI master controller at typical temperature (25°C) are shown in Figure 6.3-1, Figure 6.3-2, and Table 6.3-1. CPOL defines the clock polarity in the transmission. CPHA defines the legal timing to sample data.

Figure 6.3-1. SPI master interface timing diagram (CPHA=0)

Figure 6.3-2. SPI master interface timing diagram (CPHA=1)

Table 6.3-1. SPI master interface characteristics

Signal	Symbol	Parameter	Min.	Max.	Unit	Description
CS	T_{cs_setup}	Chip select setup time	9.615	ı	ns	
	T _{cs_hold}	Chip select hold time	9.615	-	ns	
SCK	T _{sck_period}	Serial clock period	19.23	-	ns	
MOSI	T _{mo_ds}	SPI master data output delay skew	-	2	ns	
	T _{mo_es}	SPI master data output early skew	-	2	ns	
MISO	T _{mi_d}	SPI master data input dalay	-	30	ns	received

6.3.2. SPI slave interface characteristics

The operating characteristics of the SPI slave controller at typical temperature (25°C) are shown in Figure 6.3-3 and Table 6.3-2. CPOL defines the clock polarity in the transmission. CPHA defines the legal timing to sample data.

Figure 6.3-3. SPI slave interface timing diagram (CPHA=0)

Figure 6.3-4. SPI slave interface timing diagram (CPHA=1)

Table 6.3-2. SPI slave interface characteristics

Signal	Symbol	Parameter	Minimum	Maximum	Unit	Description
CS	T _{cs_setup}	Chip select setup time	9.615	ı	ns	received
	T _{cs_hold}	Chip select hold time	9.615	-	ns	received
SCK	T_{sck_period}	Serial clock period	19.23	_	ns	received
MOSI	T _{si_setup}	SPI slave data input valid time	4.8	_	ns	received
	T _{si_hold}	SPI slave data input hold time	4.8	_	ns	received

Signal	Symbol	Parameter	Minimum	Maximum	Unit	Description
MISO	T_{so_d}	SPI slave data output delay	1	30	ns	

6.3.3. I2S master and I2S slave interface characteristics

The operating characteristics of the I2S master and I2S slave controller at typical temperature (25°C) are shown in Figure 6.3-5 and Table 6.3-3.

Figure 6.3-5. I2S master and I2S slave interface timing diagram

Table 6.3-3. I2S master and I2S slave interface characteristics

Parameter	Symbol	MIN	MAX	Units
BCLK pulse cycle time	t(CK)	1/(64fS)		us
BCLK high pulse width	tw(CKH)	0.35		% t(CK)
BCLK low pulse width	tw(CKL)	0.35		% t(CK)
Data input setup time to BCLK	t(SU)	15		ns
Data input hold time from BCLK	t(HD)	0		ns
Data output delay from BCLK	t(CKTX)	0	15	ns
Data output delay from FS	t(FSTX)	0	15	ns

6.3.4. SDIO2.0 Master interface characteristics

6.3.4.1. DS mode

Figure 6.3-6. Card Input Timing (Default Speed Mode)

Figure 6.3-7. Card Output Timing (Default Speed Mode)

Table 6.3-4. Bus Timing – Parameters Values (Default Speed)

Parameter	Symbol	Min.	Max.	Unit	Remark
Supply voltage	VDO	2.7	3.6	V	

Parameter	Symbol	Min.	Max.	Unit	Remark
Output high voltage	VOH	0.75*VDO		V	IOH = -2mA VDO_min
Output low voltage	VOL		0.125*VDO	V	IOL = 2mA VDO_min
Input high voltage	VIH	0.625*VDO	VDO+0.3	V	
Input low voltage	VIL	VSS-0.3	0.25*VDO	V	
Power up time			250	ms	From 0V to VDO_min
Clock CLK(All	values are ref	erred to min(V	'IH) and max(\	/IL))	
Clock frequency Data Transfer Mode	fPP	0	25	MHz	CCARD ≤ 10 pF (1 card)
Clock frequency Identification Mode	fOD	0 ⁽¹⁾ /100	400	kHz	CCARD ≤ 10 pF (1 card)
Clock low time	tWL	10		ns	CCARD ≤ 10 pF (1 card)
Clock high time	tWH	10		ns	CCARD ≤ 10 pF (1 card)
Clock rise time	tTLH		10	ns	CCARD ≤ 10 pF (1 card)
Clock fall time	tTHL		10	ns	CCARD ≤ 10 pF (1 card)
Ir	nput CMD,DAT	(referenced to	CLK)		
Input setup time	tISU	5		ns	CCARD ≤ 10 pF (1 card)
Input hold time	tIH	5		ns	CCARD ≤ 10 pF (1 card)
Ou	utput CMD,DA	T (referenced	to CLK)		
Output Delay time during Data Transfer Mode	tODLY	0	14	ns	CL ≤ 40 pF (1 card)
Output Delay time during Identification Mode	tODLY	0	50	ns	CL ≤ 40 pF (1 card)
Total system capacitance for each line	C _L		40	pF	1 card

^{(1) 0} Hz means to stop the clock. The given minimum frequency range is for cases were continues clock is required.

6.3.4.2. HS mode

Figure 6.3-8. Card Input Timing (High Speed Mode)

Figure 6.3-9. Card Output Timing (High Speed Mode)

Table 6.3-5. Bus Timing – Parameters Values (High Speed)

Parameter	Symbol	Min.	Max.	Unit	Remark
Supply voltage	VDO	2.7	3.6	V	

Parameter	Symbol	Min.	Max.	Unit	Remark			
Output high voltage	VOH	0.75*VDO		V	IOH = -2mA VDO_min			
Output low voltage	VOL		0.125*VDO	V	IOL = 2mA VDO_min			
Input high voltage	VIH	0.625*VDO	VDO+0.3	V				
Input low voltage	VIL	VSS-0.3	0.25*VDO	V				
Power up time			250	ms	From 0V to VDO_min			
Clock CLK(All	values are ref	erred to min(\	/IH) and max(\	/IL))				
Clock frequency Data Transfer Mode	fPP	0	50	MHz	CCARD ≤ 10 pF (1 card)			
Clock low time	tWL	7		ns	CCARD ≤ 10 pF (1 card)			
Clock high time	tWH	7		ns	CCARD ≤ 10 pF (1 card)			
Clock rise time	tTLH		3	ns	CCARD ≤ 10 pF (1 card)			
Clock fall time	tTHL		3	ns	CCARD ≤ 10 pF (1 card)			
Ir	put CMD,DAT	(referenced t	o CLK)					
Input setup time	tISU	6		ns	CCARD ≤ 10 pF (1 card)			
Input hold time	tIH	2		ns	CCARD ≤ 10 pF (1 card)			
Ou	Output CMD,DAT (referenced to CLK)							
Output Delay time during Data Transfer Mode	tODLY		14	ns	CL ≤ 40 pF (1 card)			
Output Hold time	tOH	2.5		ns	CL ≥ 15 pF (1 card)			
Total system capacitance for each line	CL		40	pF	1 card			

^{(1) 0} Hz means to stop the clock. The given minimum frequency range is for cases were continues clock is required.

6.3.5. SDIO2.0 Slave interface characteristics

6.3.5.1. DS mode

Figure 6.3-10. Card Input Timing (Default Speed Mode)

Figure 6.3-11. Card Output Timing (Default Speed Mode)

Table 6.3-6. Bus Timing – Parameters Values (Default Speed)

Parameter	Symbol	Min.	Max.	Unit	Remark
Supply voltage	VDO	2.7	3.6	٧	

Parameter	Symbol	Min.	Max.	Unit	Remark
Output high voltage	VOH	0.75*VDO		V	IOH = -2mA VDO_min
Output low voltage	VOL		0.125*VDO	V	IOL = 2mA VDO_min
Input high voltage	VIH	0.625*VDO	VDO+0.3	V	
Input low voltage	VIL	VSS-0.3	0.25*VDO	V	
Power up time			250	ms	From 0V to VDO_min
Clock CLK(All	values are refo	erred to min(V	/IH) and max(\	/IL))	
Clock frequency Data Transfer Mode	fPP	0	25/20 ⁽²⁾	MHz	CCARD ≤ 10 pF (1 card)
Clock frequency Identification Mode	fOD	0 ⁽¹⁾ /100	400	kHz	CCARD ≤ 10 pF (1 card)
Clock low time	tWL	10		ns	CCARD ≤ 10 pF (1 card)
Clock high time	tWH	10		ns	CCARD ≤ 10 pF (1 card)
Clock rise time	tTLH		10	ns	CCARD ≤ 10 pF (1 card)
Clock fall time	tTHL		10	ns	CCARD ≤ 10 pF (1 card)
Ir	nput CMD,DAT	(referenced to	CLK)		
Input setup time	tISU	5		ns	CCARD ≤ 10 pF (1 card)
Input hold time	tIH	5		ns	CCARD ≤ 10 pF (1 card)
Ou	utput CMD,DA	T (referenced	to CLK)		
Output Delay time during Data Transfer Mode	tODLY	0	14/19 ⁽²⁾	ns	CL ≤ 40 pF (1 card)
Output Delay time during Identification Mode	tODLY	0	50	ns	CL ≤ 40 pF (1 card)
Total system capacitance for each line	CL		40	pF	1 card

^{(1) 0} Hz means to stop the clock. The given minimum frequency range is for cases were continues clock is required.

⁽²⁾ In the case of 0.9v, the timing can't fully meet the SDIO2.0 SPEC.

6.3.5.2. HS mode

Figure 6.3-12. Card Input Timing (High Speed Mode)

Figure 6.3-13. Card Output Timing (High Speed Mode)

Table 6.3-7. Bus Timing – Parameters Values (High Speed)

Parameter	Symbol	Min.	Max.	Unit	Remark
Supply voltage	VDO	2.7	3.6	V	

Parameter	Symbol	Min.	Max.	Unit	Remark		
Output high voltage	VOH	0.75*VDO		V	IOH = -2mA VDO_min		
Output low voltage	VOL		0.125*VDO	V	IOL = 2mA VDO_min		
Input high voltage	VIH	0.625*VDO	VDO+0.3	V			
Input low voltage	VIL	VSS-0.3	0.25*VDO	V			
Power up time			250	ms	From 0V to VDO_min		
Clock CLK(All	values are ref	erred to min(\	/IH) and max(\	/IL))			
Clock frequency Data Transfer Mode	fPP	0	50/40 ⁽²⁾	MHz	CCARD ≤ 10 pF (1 card)		
Clock low time	tWL	7		ns	CCARD ≤ 10 pF (1 card)		
Clock high time	tWH	7		ns	CCARD ≤ 10 pF (1 card)		
Clock rise time	tTLH		3	ns	CCARD ≤ 10 pF (1 card)		
Clock fall time	tTHL		3	ns	CCARD ≤ 10 pF (1 card)		
Ir	put CMD,DAT	(referenced to	CLK)				
Input setup time	tISU	6		ns	CCARD ≤ 10 pF (1 card)		
Input hold time	tIH	2		ns	CCARD ≤ 10 pF (1 card)		
Output CMD,DAT (referenced to CLK)							
Output Delay time during Data Transfer Mode	tODLY		14/19 ⁽²⁾	ns	CL ≤ 40 pF (1 card)		
Output Hold time	tOH	2.5		ns	CL ≥ 15 pF (1 card)		
Total system capacitance for each line	CL		40	pF	1 card		

^{(1) 0} Hz means to stop the clock. The given minimum frequency range is for cases were continues clock is required.

6.3.6. USB11 interface characteristics

The USB uses a differential output driver to drive the USB data signal on the USB cable. The static output swing of the driver in its low state must be below VOL (max) of 0.3V with a $1.5k\Omega$ load to 3.6V and in its high state must be above the VOH (min) of 2.8V with a $15k\Omega$ load to ground.

⁽²⁾ In the case of 0.9v, the timing can't fully meet the SDIO2.0 SPEC.

Figure 6.3-14. Full-speed Device Connect Detection

Figure 6.3-15. Disconnect Detection

Figure 6.3-16. Bus State Evaluation after reset

Figure 6.3-17. Bus driver characteristics

Table 6.3-8. USB11 interface characteristics

Parameter	Symbol	Min.	Max.	Units				
Input levels for Full-Speed								
Differential Input Sensitivity	VDI	0.2	-	V				
Differential Common Mode Range	VCM	0.8	2.5	V				
Output levels for Full-Speed								
Low	VOL	0.0	0.3	V				
High	VOH	2.8	3.6	V				
Full-Speed Driver Characteristics	<u> </u>							

Rise Time	TFR	4	20	ns					
Fall Time	TFF	4	20	ns					
Output Signal Crossover Voltage	VCRS	1.3	2.0	V					
Terminations									
Terminations									
Terminations Pull-up Resistor	Rpu	0.9	1.575	k					

6.3.7. eMMC interface characteristics

The I/O operating voltage characteristics of the eMMC controller at typical temperature (25°C) is shown in Table 6.3-9 and Table 6.3-10.

Table 6.3-9. eMMC interface push-pull signal level----2.7V – 3.6V V_{CCQ} range (high voltage eMMC)

Parameter	Symbol	Minimum	Maximum	Unit	Description
Output High Voltage	Vон	0.75*Vccq		V	Іон= -100µA at V _{CCQ} min
Output Low Voltage	Vol		0.125*Vccq	V	I _{OL} = 100μA at V _{CCQ} min
Input High Voltage	ViH	0.625*Vccq	Vccq+0.3	V	
Input Low Voltage	VIL	Vss-0.3	0.25*V _{CCQ}	V	

Table 6.3-10. eMMC interface push-pull signal level----1.70V – 1.95V Vccq voltage range

Parameter	Symbol	Minimum	Maximum	Unit	Description
Output High Voltage	Vон	Vccq -0.45V	_	V	I _{OH} = -2mA
Output Low Voltage	Vol	_	0.45V	V	I _{OL} = 2mA
Input High Voltage	V _{IH}	0.65*V _{CCQ} (1)	Vccq+0.3	V	
Input Low Voltage	VIL	V _{SS} -0.3	0.35*Vccq ⁽²⁾	V	

 $^{^{(1)}}$ 0.7* V_{DD} for MMC4.3 and older revisions

The eMMC bus timing is shown in Figure 6.3-18, Table 6.3-11 and Table 6.3-12.

 $^{^{(2)}0.3*}V_{DD}$ for MMC4.3 and older revisions

Figure 6.3-18. eMMC interface timing diagram

Table 6.3-11. eMMC interface characteristics (backward-compatible device)

Parameter	Symbol	Minimum	Maximum	Unit	Description (1)			
Clock CLK ⁽²⁾								
Clock frequency data transfer Mode (PP) ⁽³⁾	f _{pp}	0	26	MHz	CL≦30pF			
Clock frequency Identification Mode (OD)	fod	0	400	kHz				
Clock low time	twL	10	_	ns	CL≦30pF			
Clock high time	twн	10	-	ns	CL≦30pF			
Clock rise time ⁽⁴⁾	t _{TLH}	_	10	ns	CL≦30pF			
Clock fall time	tтнL	_	10	ns	CL≦30pF			
Inputs CMD, DAT (referenced to CLK)							
Input set-up time	t _{ISU}	3	_	ns	CL≦30pF			
Input hold time	tıн	3	_	ns	CL≦30pF			
Outputs CMD, DAT (referenced to CLK)								
Output set-up time ⁽⁵⁾	t _{osu}	11.7	_	ns	CL≦30pF			
Output hold time ⁽⁵⁾	tон	8.3	_	ns	CL≦30pF			

⁽¹⁾The device must always start with the backward-compatible interface timing. The timing mode can be switched to high-speed interface timing by the host sending the SWITCH command (CMD6) with the argument for high-speed interface select.

 $^{^{(2)}\}text{CLK}$ timing is measured at 50% of V_{CCQ}

⁽³⁾For compatibility with devices that support the v4.2 standard or earlier, host should not use frequency greater than 26MHz before switching to high-speed interface timing.

 $^{^{(4)}}$ CLK rise and fall times are measured by min(V_{IH}) and max(V_{IL})

(5) tosu and toh are defined as values from clock rising edge. However, there may be devices which utilize clock falling edge to output data in backward compatibility mode. Therefore, it is recommended for hosts either to set twl values as long as possible within the range which will not go over tck-toh(min) in the system or to use slow clock frequency, so that host could have data set up margin for those devices. In this case, each device which utilizes clock falling edge might show the correlation either between twl and tosu or between tck and tosu for the device in its own datasheet as a note or an application notes.

Table 6.3-12. eMMC interface characteristics (high-speed device)

Parameter	Symbol	Min.	Max.	Unit	Description			
Clock CLK ⁽¹⁾								
Clock frequency Data Transfer	f_{pp}	0	52 ⁽³⁾	MHz	C _L ≦30pF			
Mode (PP) ⁽²⁾		U	32.	IVIIIZ	Tolerance:+100kHz			
Clock frequency Identification Mode (OD)	fod	0	400	kHz	Tolerance:+20kHz			
Clock low time	twL	6.5	_	ns	C _L ≦30pF			
Clock high time	twn	6.5	_	ns	C _L ≦30pF			
Clock rise time ⁽⁴⁾	t _{TLH}	_	3	ns	C _L ≦30pF			
Clock fall time	t _{THL}	_	3	ns	C _L ≦30pF			
Inputs CMD, DAT (referenced to CLK)							
Input set-up time	t _{ISU}	3	_	ns	C _L ≦30pF			
Input hold time	t _{ін}	3	_	ns	C _L ≦30pF			
Outputs CMD, DAT (referenced to Cl	.K)							
Output delay time during data transfer	t _{ODLY}	-	13.7	ns	C _L ≦30pF			
Output hold time	tон	2.5	_	ns	C _L ≦30pF			
Signal rise time ⁽⁵⁾	T _{RISE}	_	3	ns	C _L ≦30pF			
Signal fall time	T _{FALL}	_	3	ns	C _L ≦30pF			

 $[\]ensuremath{^{(1)}}\text{CLK}$ timing is measured at 50% of V_{CCQ}

⁽²⁾An eMMC shall support the full frequency range from 0MHz – 26MHz, or 0MHz – 52MHz

⁽³⁾ Devices can operate as high-speed device interface timing at 26MHz clock frequency.

⁽⁴⁾CLK rise and fall times are measured by min(V_{IH}) and max(V_{IL}).

⁽⁵⁾Inputs CMD, DAT rise and fall times are measured by min(V_{IH}) and max(V_{IL}), and outputs CMD, DAT rise and fall times are measured by min(V_{OH}) and max(V_{OL}).

7. Package Information

7.1. MT2625 mechanical data of the package

BOTTOM VIEW

Item		Symbol	Common Dimensions		
		Symbol	MIN.	NOM.	MAX.
Package Type			TFBGA		
Body Size	X	D	5.50	5.60	5.70
	Y	E	5.50	5.60	5.70
Ball Pitch	X Y	eD eE	0.50 0.50		
Mold Thickness		A3	0.70 Ref.		
Substrate Thickness		A2	0.13 Ref.		
Substrate+Mold Thickness	A4	0.78	0.83	0.88	
Total Thickness	А	_	-	1.05	
Ball Diameter			0.25		
Ball Stand Off	A1	0.11	0.15	0.19	
Ball Width	Ь	0.22	0.27	0.32	
Package Edge Tolerance		aaa	0.05		
Mold Flatness		ccc	0.10		
Coplanarity		ddd	0.08		
Ball Offset (Package)		eee	0.15		
Ball Offset (Ball)		fff	0.05		
Ball Count		n	121		
Edge Ball Center to Center	X	D1	5.00		
	Y X	E1	5.00		
Edge Ball Center to Package Edge	X Y	gD aF	0.30		
to its to its assign Lago	Y	gE	0.30		

Figure 7.1-1. Outlines and dimensions of MT2625 TFBGA 5.6 mm*5.6 mm, 121-ball, 0.5mm pitch package

7.2. MT2625 thermal operating specifications

Table 7.2-1. MT2625 thermal operating specifications

Description		Unit
Thermal resistance from device junction to package case (Theta-Jc)	25.23	C/W
Thermal resistance from junction to ambient (Theta-Ja)	96.16	C/W
Maximum package temperature		°C
Maximum power dissipation		W

7.3. MT2625 lead-free packaging

The MT2625 platform is provided in a lead-free package and meets RoHS requirements.

8. Ordering Information

8.1. MT2625 top marking definition

Line 1: MEDIATEK LOGO

Line 2: ARM LOGO

Line 3: Part Number

Line 4 : Date Code

Line 5: Die 1 Lot no.

Line 6: Die 2 Lot no.

Line 7: Die 3 Lot no.

Figure 8.1-1. Mass production top marking of MT2625DA

Line 1: MEDIATEK LOGO

Line 2: ARM LOGO

Line 3 : Part Number

Line 4 : Date Code

Line 5 : Die 1 Lot no.

Line 6 : Die 2 Lot no.

Figure 8.1-2. Mass production top marking of MT2625AA

Line 1: MEDIATEK LOGO

Line 2: ARM LOGO

Line 3: Part Number

Line 4 : Date Code

Line 5: Die 1 Lot no.

Line 6: Die 2 Lot no.

Figure 8.1-3. Mass production top marking of MT2625DPA

Line 1: MEDIATEK LOGO

Line 2: ARM LOGO

Line 3: Part Number

Line 4: Date Code

Line 5 : Die 1 Lot no.

Line 6: Die 2 Lot no.

Figure 8.1-4. Mass production top marking of MT2625APA

Table 8.1-1. Ordering information

Product number	Package	Description
MT2625DA	TFBGA	5.6mm*5.6mm, 121-ball, 0.5mm pitch Package
MT2625AA	TFBGA	5.6mm*5.6mm, 121-ball, 0.5mm pitch Package
MT2625DPA	TFBGA	5.6mm*5.6mm, 121-ball, 0.5mm pitch Package
MT2625APA	TFBGA	5.6mm*5.6mm, 121-ball, 0.5mm pitch Package