Social Statistics

Introducing Regression

November 14, 2023

Merging Datasets

• I usually use left_join(). It keeps all observations in the first variable and keeps those observations in the second variable that have a match based on the by values:

 Now repeat the process using the new gender_datasets dataframe and the human_development_index data set:

Where We've Been

- Descriptive statistics gave us means, standard deviations
 - → "What are the spreads and the shapes of our observed distributions?"
- Probability gave us ways to use our sample statistics to predict ranges of possible population parameters
 - → "What is the likelihood of getting the values we observe?"
- Inference gave us tools to test significance
 - → "What is the likelihood of getting a value more extreme than the values we observe?"
 - → "How confident can we be that our observations differ from values of the null hypotheses?"

Two Things We Still Want

- 1. Better conclusions
- Asssociations peaked with correlation
- If correlation coefficient tells us that X and Y tend to move together, regression tells us how much they tend to move together

Start With Regression Basics

- Basic assumption (for now): The relationship between X and Y is linear
 - → HS Flashback: y = mx + b, where m is the slope and b is the intercept
- Linear relationship is regression equation:
 - → \(\large{\widehat{y_i} = \alpha + \beta X_i + \epsilon_i}\)
 - → Read as: regress y on x

Start With Regression Basics

- \(\large{\widehat{y_i} = \alpha + \beta X_i + \epsilon_i}\)
 - → \(\widehat{y_i}\) = predicted outcome, the best guess
 - → \(\alpha\) = intercept or constant, where the line hits the yaxis when x is 0
 - → \(\beta\) = the slope, the multiplier for every X, known as the coefficient

 - → \(\epsilon_i\) = error (or residual), difference between observed and predicted values

Example from UN Human Development Project

- Before moving forward, we need to standardize the schooling values.
- Use the scale() function for this...

```
1 hdi <- hdi |>
2 mutate(std_schooling_expected = scale(schooling_expected))
```

Mean of standardized variable should be 0. SD should be 1.

```
1 mean(hdi$std_schooling_expected)
[1] 2.089321e-16

1 sd(hdi$std_schooling_expected)
[1] 1
```

Example from UN Human Development Project

Schooling and Life Expectancies (UNHDP, 2021)

Example from UN Human Development Project

Schooling and Life Expectancies (UNHDP, 2021)

Fitting The Regression Line

- Recall that a residual is the difference between the observed value, \(y\), and the predicted value on the line, \(\widehat{y}\)
- We want a line that makes every residual as small as possible
- Every observation has a residual. How do we combine them?
 - → Can't just add them up since negatives could cancel out positives
 - → Absolute values are the usual fix, but they don't help as much this time since they offer little guide for where to start with \(\alpha\) and \(\beta\)

Fitting The Regression Line

- Sum of the squared residuals gets us closest
 - $\rightarrow \(SSE = \sum\{(y \})^2\}\)$
 - → Line with the smallest sum has the least squares: why basic regression is called Ordinary Least Squares
- Squaring gives extra weight to biggest residuals (the observations that a given line does a particularly bad job at including)
- To find beta and alpha, we'll use basics we have seen: how the observed x's differ from the mean of x, how the observed y's differ from the mean of y, and how the distribution of x and y tend to move together

Fitting Beta and Alpha

- Let's try the example of regressing life expectancy in years on the standardized values of expected years of schooling
- Start with basic descriptives
 - → What's the correlation between the two variables?
 - → What are the mean and standard deviation of std_schooling_expected?
 - → What are the mean and standard deviation of life_expectancy?

Finding Beta and Alpha

```
1 # Correlation
2 cor(hdi$std_schooling_expected, hdi$life_expectancy)
```

```
[,1]
[1,] 0.8001698
```

• Interpretation?

Finding Beta and Alpha

[1] 7.733692

```
1 # Mean and Standard Deviation of X
2 mean(hdi$std_schooling_expected)

[1] 2.089321e-16

1 sd(hdi$std_schooling_expected)

[1] 1

1 # Mean and Standard Deviation of Y
2 mean(hdi$life_expectancy)

[1] 71.29941

1 sd(hdi$life_expectancy)
```

Fitting The Regression Line

- We have all we need to find beta:
 - $\rightarrow \(\triangle s_{x}}\)$
- And beta will be the missing piece to help us find alpha:
 - → \(\Large{\alpha = \bar{y} \beta \bar{x}}\)

Finding Beta

\(\large{\beta = cor_{xy} \frac {s_{y}}{s_{x}}}\)

```
beta <- cor(hdi$std_schooling_expected,

hdi$life_expectancy) *

(sd(hdi$life_expectancy) /

sd(hdi$std_schooling_expected))

beta</pre>
```

```
[,1]
[1,] 6.188267
```

Interpreting Beta

- Every one unit increase in the value of X is associated with an increase of beta in the predicted value of Y, on average
 - → In this model, a one standard deviation increase in schooling expectancy is associated with an increase of 6.188267 years in life expectancy, on average
- And since we are working with linear regression, a one unit decrease in the value of X is associated with a decrease of beta in the predicted value of Y, on average
 - → In this model, a one standard deviation decrease in schooling expectancy is associated with a decrease of 6.188267 years in life expectancy, on average

Finding Alpha

\(\large{\alpha = \bar{y} - \beta \bar{x}}\)

```
1 alpha <- mean(hdi$life_expectancy) -
2     beta*(mean(hdi$std_schooling_expected))
3
4 alpha</pre>
```

```
[,1]
[1,] 71.29941
```

- When X is 0, our model predicts that Y should be 71.29941
- In this case (since x is standardized with a mean of 0), a country with a schooling expectancy at the average of the distribution would be predicted to have a life expectancy of 71.29941 years.

Fitting The Regression Line

- Now we have our line: y = 71.29941 + 6.188267 (X)
- Let's add it to our plot using geom_abline():

```
schooling_life_plot1 <- ggplot(hdi, aes(
    x = std_schooling_expected, y = life_expectancy))

schooling_life_plot1 + geom_point(color = "Dark Gray") +
    labs(x = "Standardized Schooling Expectancy",
    y = "Life Expectancy",
    title = "Schooling and Life Expectancies",
    subtitle = "(UNHDP, 2021)") +
    geom_abline(intercept = 71.29941, slope = 6.188267)</pre>
```

Fitting The Regression Line

Schooling and Life Expectancies (UNHDP, 2021)

 If the line is correct, there should be a point on the line where X=0 and Y=71.29941

```
schooling_life_plot1 + geom_point(color = "Dark Gray") +
labs(x = "Standardized Schooling Expectancy",

y = "Life Expectancy",

title = "Schooling and Life Expectancies",

subtitle = "(UNHDP, 2021)") +

geom_abline(intercept = 71.29941, slope = 6.188267) +

geom_point(x = 0, y = 71.29941, color = "Red", size = 3)
```

Schooling and Life Expectancies (UNHDP, 2021)

- Digging Deeper: when \(\large{x}\) increases by 1, \(\large{\widehat{y}}\) is expected to increase by 6.188267
- So if \(\large{x}\) is 1 standard deviation above the mean, what is \(\large{\widehat{y}}\)? And if \(\large{x}\) is 1 standard deviation below the mean, what is \(\large{\widehat{y}}\)?
- Prediction always has to start with value of \(\large{\alpha}\)!

```
1 predicted_y_plus1sd <- alpha + beta*1
2 predicted_y_plus1sd

[,1]
[1,] 77.48768

1 predicted_y_minus1sd <- alpha + beta*-1
2 predicted_y_minus1sd

[,1]
[1,] 65.11114</pre>
```

Put these points on our plot...

```
schooling_life_plot1 + geom_point(color = "Dark Gray") +
labs(x = "Standardized Schooling Expectancy",
y = "Life Expectancy",
title = "Schooling and Life Expectancies",
subtitle = "(UNHDP, 2021)") +
geom_abline(intercept = 71.29941, slope = 6.188267) +
geom_point(x = 0, y = 71.29941, color = "Red", size = 3) +
geom_point(x = 1, y = 77.48768, color = "Blue", size = 3) +
geom_point(x = -1, y = 65.11114, color = "Forest Green",
size = 3)
```

Schooling and Life Expectancies (UNHDP, 2021)

Regression in R

As always, R makes this easier. Meet the lm() command.

```
1 # Start by saving the model as an object:
2
3 schooling_life_model1 <-
4    lm(life_expectancy ~ std_schooling_expected,
5    data = hdi)</pre>
```

```
1 # Then look at the summary of the saved model:
2
3 summary(schooling_life_model1)
```

Regression in R

Regression in R

- \(\Large{se = \frac{s} {\sqrt{\sum{(x \bar{x})^2}}}\)
- \(\Large{s = \sqrt {\frac {\sum{(y \widehat{y})^2}}{n-2}}}\)
- The standard error formula uses the predicted values of y to calculate the residuals
- R makes it easy to save all the predicted values from a model:

```
1 hdi$predicted_life_expectancy <-
2 schooling_life_model1$fitted.values</pre>
```

 Now you can plug in the predicted values to the rest of the standard error equation:

```
1 se_numerator <- sqrt(sum((hdi$life_expectancy -
2 hdi$predicted_life_expectancy)^2) /
3    (length(hdi$life_expectancy) - 2))
4
5 se_denominator <- sqrt(sum((hdi$std_schooling_expected -
6 mean(hdi$std_schooling_expected))^2))
7
8 se <- se_numerator / se_denominator
9
10 se</pre>
```

[1] 0.3578653

```
Call:
lm(formula = life_expectancy ~ std_schooling_expected, data = hdi)
Residuals:
    Min
                  Median
                               3Q
              1Q
                                      Max
-14.7062 -3.1567 0.3007 2.7595 10.8199
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
                      71.2994
                                  0.3568 199.82 <2e-16 ***
std_schooling_expected
                       6.1883
                                  0.3579 17.29 <2e-16 ***
Signif. codes:
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.652 on 168 degrees of freedom
Multiple R-squared: 0.6403, Adjusted R-squared: 0.6381
F-statistic: 299 on 1 and 168 DF, p-value: < 2.2e-16
```

R's Regression Output - T Value

R's Regression Output - T Value

t = coefficient estimate / standard error

```
1 6.1883 / .3579
```

[1] 17.29058

R's Regression Output - T Value

```
Call:
lm(formula = life_expectancy ~ std_schooling_expected, data = hdi)
Residuals:
    Min
                  Median
                              3Q
             1Q
                                      Max
-14.7062 -3.1567 0.3007 2.7595 10.8199
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   71.2994
                                 0.3568 199.82 <2e-16 ***
std_schooling_expected 6.1883
                                 0.3579 17.29 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 4.652 on 168 degrees of freedom
Multiple R-squared: 0.6403, Adjusted R-squared: 0.6381
F-statistic: 299 on 1 and 168 DF, p-value: < 2.2e-16
```

R's Regression Output - P Value

R's Regression Output - P Value

```
1  # Area in right tail:
2  pr_tail <- 1 - pt(17.29, df = 168)
3
4  # Area in both tails (what output gives):
5  2 * pr_tail</pre>
[1] 0
```

- Can we reject the null hypothesis that the coefficient for std_schooling_expected is different from 0?
 - \rightarrow Yes, because Pr(>|t|) is less than .05
- Note the stars!

R's Regression Output - P Value

```
Call:
lm(formula = life_expectancy ~ std_schooling_expected, data = hdi)
Residuals:
    Min
                  Median
                              3Q
             1Q
                                     Max
-14.7062 -3.1567 0.3007 2.7595 10.8199
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   71.2994
                                 0.3568 199.82
                                                <2e-16 ***
std_schooling_expected
                                 0.3579 17.29
                                                 <2e-16 ***
                      6.1883
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 4.652 on 168 degrees of freedom
Multiple R-squared: 0.6403, Adjusted R-squared: 0.6381
F-statistic: 299 on 1 and 168 DF, p-value: < 2.2e-16
```

Plotting Regressions

More common to use geom_smooth(method = lm) than geom_abline():

```
schooling_life_plot1 + geom_point(color = "Dark Gray") +
labs(x = "Standardized Schooling Expectancy",

y = "Life Expectancy",

title = "Schooling and Life Expectancies",

subtitle = "(UNHDP, 2021)") +
geom_smooth(method = lm)
```

Plotting Regressions

Schooling and Life Expectancies (UNHDP, 2021)

Regress the gender inequality index
 (gender_inequality_index) on the average years of schooling completed by female residents
 (schooling_mean_female).

```
female_inequality_schooling_model <-
lim(gender_inequality_index ~ schooling_mean_female,

data = hdi)</pre>
```

```
1 summary(female_inequality_schooling_model)
```

```
Call:
lm(formula = gender inequality index ~ schooling mean female,
   data = hdi)
Residuals:
   Min
            10 Median
                           30
                                 Max
-23.709 -8.009 -0.590 7.384 41.657
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
                             2.2197 34.11 <2e-16 ***
                     75.7103
(Intercept)
schooling mean female -4.7189 0.2356 -20.03 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 10.75 on 167 degrees of freedom
```

- An increase of one year in the average years of schooling completed by female residents is associated with a decrease in the gender inequality index of 4.72, on average.
- In the US, the average years of schooling for females residents is 13.7. What is the US' predicted value on the gender inequality index?

```
1 75.7103 + (-4.7189*13.7)
```

[1] 11.06137

 How does the predicted value of the gender inequality index compared to the observed value?

 What would you expect about the relationship between gni_per_capita and life_expectancy?

 Try the regression model using life_expectancy and log(gni_per_capita)...

```
income_life_expectancy_model <-
lim(life_expectancy ~ log(gni_per_capita),

data = hdi)</pre>
```

```
1 summary(income life expectancy model)
Call:
lm(formula = life expectancy ~ log(gni per capita), data = hdi)
Residuals:
    Min
             10 Median
                              3Q
                                     Max
-13.7283 -2.3303 0.2772 3.0502 6.8427
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
                              2.4978 7.388 6.65e-12 ***
(Intercept) 18.4541
log(gni per capita) 5.6612 0.2655 21.321 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.029 on 168 degrees of freedom
Multiple R-squared: 0.7301, Adjusted R-squared: 0.7285
```

- An increase in one unit of log gross national income is associated with an increase of 5.6612 years in life expectancy, on average. This increase is significant.
- A ten percent increase in gross national income is associated with a significant increase of 5.6612 years in life expectancy, on average.
- What is the predicted life expectancy for the United States?

```
1 log(hdi$gni_per_capita[hdi$country=="United States"])
[1] 11.07852
```

To "exponentiate" logs...

```
1 exp(11.07852)
```

```
1 18.4541 + (5.6612*11.07852)
```

[1] 81.17182