Introdução à Teoria dos Grafos

Prof. Alexandre Noma

$$S = U, V$$

$$S = u, v, y$$

$$S = W$$

Expressão com parênteses:

• Expressão com parênteses:

 O que acontece se começarmos por outro vértice?

 O que acontece se começarmos por outro vértice?

Hoje

• Cálculo dos componentes fortemente conexos.

• Exemplos?

Componentes Fortemente Conexos

Exemplos: redes sociais, pesquisa, WEB (links)

Hoje

Algoritmo para calcular componentes "fortes".

- Pré-requisitos:
 - DFS, parênteses
 - Grafo transposto

Grafo transposto

• **Exemplo**: Calcule a matriz transposta e desenhe o grafo resultante da transposta.

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	1 0 0 1 0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Exercício Programa

06-grafoTransposto.py

- 1. executar DFS(G)
 para calcular instantes v.f
- 2. executar **DFS**(**G**^T), em ordem decrescente de v.**f** do passo 1

1. executar DFS(G) para calcular instantes v.f

- 1. executar DFS(G)
 para calcular instantes v.f
- 2. executar DFS(GT); em ordem
 decrescente de v.f do passo 1

• G

• G^T : grafo transposto

- 1. executar DFS(G)
 para calcular instantes v.f
- 2. executar DFS(G^T), em ordem decrescente de v.f do passo 1

- 1. executar DFS(G)
 para calcular instantes v.f
- 2. executar DFS(GT), em ordem
 decrescente de v.f do passo 1

- 1. executar DFS(G)
 para calcular instantes v.f
- 2. executar DFS(GT), em ordem
 decrescente de v.f do passo 1

- 1. executar DFS(G)
 para calcular instantes v.f
- 2. executar DFS(GT), em ordem
 decrescente de v.f do passo 1

- 1. executar DFS(G)
 para calcular instantes v.f
- 2. executar DFS(G^T), em ordem decrescente de v.f do passo 1

- 1. executar DFS(G)
 para calcular instantes v.f
- 2. executar **DFS**(**G**^T), em ordem decrescente de v.**f** do passo 1

- 1. executar DFS(G)
 para calcular instantes v.f
- 2. executar **DFS**(**G**^T), em ordem decrescente de v.**f** do passo 1

- 1. executar DFS(G)
 para calcular instantes v.f
- 2. executar DFS(GT), em ordem
 decrescente de v.f do passo 1

- 1. executar DFS(G)
 para calcular instantes v.f
- 2. executar DFS(GT), em ordem
 decrescente de v.f do passo 1

- 1. executar DFS(G)
 para calcular instantes v.f
- 2. executar **DFS**(**G**^T), em ordem decrescente de v.**f** do passo 1

- 1. executar DFS(G)
 para calcular instantes v.f
- 2. executar DFS(G^T), em ordem decrescente de v.f do passo 1

- 1. executar DFS(G)
 para calcular instantes v.f
- 2. executar DFS(G^T), em ordem decrescente de v.f do passo 1

Mas e agora? Como obter os componentes fortes?

Expressão de parênteses?

Expressão de parênteses

• Calcule os componentes "fortes":

• Calcule os componentes "fortes":

• Calcule os componentes "fortes":

Consumo de tempo?

Consumo de tempo:

333

333

Strongly-Connected-Components (G)

- 1. executar DFS(G)
 para calcular instantes v.f
- 2. executar **DFS**(**G**^T), em ordem decrescente de v.**f** do passo 1

Total: T(n,m) = ???

Consumo de tempo?

Consumo de tempo:

Strongly-Connected-Components (G)

- 1. executar DFS(G)
 para calcular instantes v.f
- 2. executar **DFS**(**G**^T), em ordem decrescente de v.**f** do passo 1

O(n+m)

O(n+m)

Total:

T(n,m) = O(n+m)

Exercício Programa

07-dfs-compsFortes.py

```
AlgoritmoOriginal(G)

1 executar DFS(G) para calcular instantes v.f

2 executar DFS(G<sup>T</sup>), considerando ordem

decrescente de v.f do passo 1
```

Será que o algoritmo do prof. Bacon está correto? Sim ou não? Justifique.

```
algoritmoBacon(G)
  1 executar DFS(G) para calcular instantes v.f
  2 executar DFS(G), considerando ordem crescente
  de v.f do passo 1
```