(*): Assigned to weekly problem set.

Conditional expectation given a RV

- 1. (*) Let X_1, X_2, \ldots be iid random variables with mean 0, and let $S_n = X_1 + X_2 + \ldots + X_n$ for all positive integers n.
 - (a) For integer k such that $1 \le k \le n$, show that $\mathbb{E}[X_k|S_n] = \frac{S_n}{n}$. Hint: consider $\mathbb{E}[S_n|S_n]$ and use linearity and symmetry.
 - (b) Use the preceding result to find $\mathbb{E}[S_k|S_n]$ for integer k such that $1 \leq k \leq n$.
- 2. Let $\mathbf{X} \sim \text{Multinom}_5(n, \mathbf{p})$. Recall this notation means that both \mathbf{X} and \mathbf{p} are vectors of length 5. Find $\mathbb{E}[X_1|X_2]$.
- 3. (*) Show that if $\mathbb{E}[Y|X] = c$ where c is a constant, then X and Y are uncorrelated. Hint: use Adam's law to find $\mathbb{E}[Y]$ and $\mathbb{E}[XY]$.
- 4. Show that for any random variables X and Y,

$$\mathbb{E}[Y|\mathbb{E}[Y|X]] = \mathbb{E}[Y|X]$$

Hint: use Adam's law with extra conditioning.