<**A**,*>

群,环,域 格与布尔代数

§ 5.2 群的概念及其性质

5. 2. 1 群的基本概念

定义:

设 <G,*> 是一代数系统,如果满足以下几点:

- (1) 运算是可结合的;
- (2) 存在单位元 e;
- (3) 对任意元素 a 都存在逆元 a⁻¹;

则称 <G,*> 是一个群。|G|表示群的阶,可以是有限也可以是无限

例: <R,+>, <R-{0}, ×>,构成群

- (1)运算是封闭的
- (2) 运算是可结合的;
- (3) 存在单位元 e;
- (4) 对任意元素 a 都存在逆元 a⁻¹;

例:下列系统能否构成群?

举例: $< M_n(R), + >$,n是大于等于1的正整数。 $\sqrt{2}$ 是

举例: $\langle M_n(R), \bullet \rangle$,**n**是大于等于**1**的正整数。 × 否

举例: <P(S),⊕>, S非空集合, ⊕是集合的对称差。 √是

举例: <P(S),∩>, <P(S),∪> × 否

例:假设R={0,60,120,180,240,300}表示平面几何上图形绕形心顺时针旋转的角度集合。

*是定义在R上的运算。定义如下:对任意的a, b∈R, a*b表示图形顺时针旋转a角度,再顺时针旋转b角度得到的总旋转度数。并规定旋转360度等于原来的状态,即该运算是模360的。

整个运算可以用运算表表示。

*	0	60	120	180	240	300
0	0	60	120	180	240	300
60	60	120	180	240	300	0
120	120	180	240	300	0	60
180	180	240	300	0	60	120
240	240	300	0	60	120	180
300	300	0	60	120	180	240

设 <R,*> 是一代数系统,满足以下几点:

- (1)运算*"顺时针旋转的角度"是封闭的
- (2) 运算*"顺时针旋转的角度"是可结合的
- (3) 存在单位元 e=0;
- (4) 对任意元素 a 都存在逆元 a⁻¹;

0*0=0; 60*300=0;

120*240=0; 180*180=0

 $0^{-1}=0$; $60^{-1}=300$; $120^{-1}=240$; $180^{-1}=180$

<G,*> 是一个群。|G|=6, 六阶群

	*	0	60	120	180	240	300
	0	0	60	120	180	240	300
	60	60	120	180	240	300	0
	120	120	180	240	300	0	60
L	180	180	240	300	0	60	120
く、	240	240	300	0	60	120	180
	300	300	0	60	120	180	240

例: A是非空集合, $F = \{f | f : A \rightarrow A\}$, 双射集

运算"。"是函数的复合运算,

则<F,。>是群

例1: A={1,2,3}

解:双射的个数 3! , $F=\{f_1,f_2,f_3,f_4,f_5,f_6\}$,

$$f_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, f_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},$$

$$f_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, f_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix},$$

$$f_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, f_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

0	\mathbf{f}_1	f_2	f_3	f_4	f_5	f_6
$\overline{\mathbf{f}_1}$	\mathbf{f}_1	f_2	f_3	f_4	f_5	f_6
f_2	f_2	f ₁ f ₅	f_6	f_5	f_4	f_3
f_3	f_3	f_5	\mathbf{f}_1	f_6	f_2	f_4
	f_4	f_6	f_5	\mathbf{f}_1	f_3	f_2
f_5	f_5	f_3	f_4	f_2	f_6	\mathbf{f}_1
f_6	f_6	f_4	f_2	f_3	\mathbf{f}_1	f_5

$$f_{2} \circ f_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = f_{6}$$

$$f_{3} \circ f_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = f_{5}$$

$$f_{4} \circ f_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = f_{1}$$

- (1) 运算是可结合的;
- (2) 存在单位元 e; **f1=I_A**
- (3) 对任意元素 a 都存在逆元 a⁻¹;

 f_3 f_1 f_6 f_2 \mathbf{f}_1 f_5 f_1 f_4 f_2 f_3 f_6 f_6

f1,f2,f3,f4自身为逆元,f5,f6互为逆元

一个群如果运算满足交换律,则称该群 为交换群,或Abel群(阿贝尔)。

∀a,b ∈G 有 **a*b=b*a**

尼尔斯·亨利克·阿贝尔(N.H.Abel)1802年8月5日出生在挪威一个名叫芬德的小村庄。有七个兄弟姐妹,阿贝尔在家里排行第二。他父亲是村子里的穷牧师,母亲安妮是一个非常美丽的女人,她遗传给阿贝尔惊人的漂亮容貌。

勒让德、拉普拉斯、傅立叶、泊松、柯西。

例 $\langle Z_5, +_5 \rangle$ 是可交换群。 $\langle Z_m, +_m \rangle$ 也是可交换群

(1)
$$\forall$$
[i],[j],[k] \in **Z**₅
([i]+₅[j])+₅[k]=
[i]+₅([j]+₅[k])=
[(i+j+k)mod 5]

$$(2) e=[0]$$

(3)
$$\forall$$
[i] $\in \mathbf{Z}_5$ [i]⁻¹=[-i]=[5-i]

(4)
$$\forall$$
[i],[j] \in **Z**₅
[i]+₅[j]= [j]+₅[i]= [(i+j)mod 5]

+ ₅	[0] [1] [2] [3] [4]
[0]	[0] [1] [2] [3] [4]
[1]	[1] [2] [3] [4] [0]
[2]	[2] [3] [4] [0] [1]
[3]	[3] [4] [0] [1] [2]
[4]	[4] [0] [1] [2] [3]

群小结(1)

- 1、〈G,*〉是一代数系统,如果满足以下几点:
 - (1) 运算是可结合的;
 - (2) 存在单位元 e;
 - (3) 对任意元素 a 都存在逆元 a-1;

则称〈G,*〉是一个群。 | G | 表示群的阶,可以是有限 也可以是无限

2、交换群,或Abel群(阿贝尔)一类特殊的群