Package 'tensorMam'

March 15, 2019

Type Package	
Title tensorMam	
Version 1.0	
Date 2018-10-25	
Author Xu Liu [aut,cre], Jian Huang [aut], Heng Lian [aut], Xiangyong Tan [ctb]	
Maintainer Xu Liu <liu.xu@sufe.edu.cn></liu.xu@sufe.edu.cn>	
Description A tensor Estimation approach to multivariate additive models. The B-splines are used to approximate unknown function. The number of predictors can be diverged as sample size increases, in which the penalty LASSO, MCP or SCAD can be used.	
License GPL (>= 2)	
Imports Rcpp (>= 0.11.15), RcppEigen (>= 0.3.2.3.0)	
LinkingTo Rcpp, RcppEigen	
NeedsCompilation yes	
Repository github	
<pre>URL https://github.com/xliusufe/tensorMam</pre>	
Encoding UTF-8	
R topics documented:	
tensorMam-package generateData mam mam_dr mam_sparse mam_sparse_dr plotfuns TransferModalUnfoldings	1
Index	1

2 generateData

tensorMam-package	A tensor estimation approach to multivariate additive models

Description

For a high-dimensional multivariate additive model (MAM) using B-splines, with or without aparsity assumptions, treating the coefficients as a third-order tensor and borrowing Tucker decomposition to reduce the number of parameters. The multivariate sparse group lasso (mcp or scad) and the coordinate descent algorithm are used to estimate functions for sparsity situation.

Details

This section should provide a more detailed overview of how to use the package, including the most important functions.

Author(s)

Xu Liu

Maintainer: Xu Liu < liu.xu@sufe.edu.cn>

References

A tensor estimation approach to multivariate additive models.

generateData	Generate data from MAM model.	

Description

Generate data for a high-dimensional multivariate additive model, with or without aparsity assumptions.

Usage

```
generateData(n, q, p, s, D2, sigma2=NULL)
```

Arguments

n	Sample size.
q	The number of responses.
р	The number of covariates.
S	The true covariates associating to response.
D2	The mode of unfolding $D_{(2)}$.
sigma2	err variance. Default is 0.1.

Details

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1 , r_2 and r_3 by BIC or CV.

mam 3

Value

Υ	Response, a $n \times q$ -matrix.
Χ	Design matrix, a $n \times p$ -matrix.
f0	True functions.

References

A tensor estimation approach to multivariate additive models.

See Also

mam_sparse

Examples

```
# Example 1
D2 <- matrix(runif(30, 0.7, 1), 2, 15)
mydata <- generateData(200, 3, 5, 5, D2)</pre>
Y <- mydata$Y
X \leftarrow mydata$X
# Example 2
n <- 500
p <- 10
q <- 10
s <- 10
K <- 6
s0 <- s
r10=r20=r30=2
S3 \leftarrow matrix(runif(r10*r20*r30,3,7),nrow = r30)
T1 <- matrix(rnorm(s0*r10), nrow = s0)
U1 <- qr.Q(qr(T1))
T1 <- matrix(rnorm(K*r20),nrow = K)
U2 \leftarrow qr.Q(qr(T1))
T1 <- matrix(rnorm(q*r30), nrow = q)
U3 \leftarrow qr.Q(qr(T1))
D3 <- U3%*%S3%*%t(kronecker(U2,U1))
D2 <- TransferModalUnfoldings(D3,3,2,s0,K,q)
mydata <- generateData(n,q,p,s0,D2)</pre>
```

mam

Fit MAM without sparsity assumption and with fixed ranks.

Description

Fit a low-dimensional multivariate additive model using B-splines, without aparsity assumptions, and given ranks given ranks r_1, r_2, r_3 .

Usage

```
mam(y, x, K = 7, r1 = NULL, r2 = NULL, r3 = NULL, SABC = NULL, degr = 3, eps = 1e-4, max_step = 20)
```

4 mam

Arguments

У	A $n \times q$ numeric matrix of responses.
x	A $n \times p$ numeric design matrix for the model.
K	The number of B-spline base function, that is the plus of both degrees of base function and the number of knots. Default is 6.
degr	the number of knots of B-spline base function. Default is 3.
r1	The first dimension of single value matrix of the tensor. Default is 2.
r2	The second dimension of single value matrix of the tensor. Default is 2.
r3	The third dimension of single value matrix of the tensor. Default is 2.
SABC	A user-specified list of initial coefficient matrix of $S,A,B,C.$ By default, initial matrices are provided by random.
eps	Convergence threshhold. The algorithm iterates until the relative change in any coefficient is less than eps. Default is 1e-4.
max_step	Maximum number of iterations. Default is 20.

Details

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1 , r_2 and r_3 by BIC or CV.

Value

Dnew	Estimator of $D_{(3)}$.
rss	Residual sum of squares (RSS).
Υ	Response Y .
X	Design matrix X .
Z	Design matrix of Bspline approximation.

References

A tensor estimation approach to multivariate additive models.

See Also

mam_sparse

Examples

```
D2 <- matrix(runif(50, 0.7, 1), 2, 25)
mydata <- generateData(200, 5, 5, 5, D2)
fit <- mam(mydata$Y, mydata$X)
Coeff <- fit$Dnew
```

mam_dr

mam_dr	Fit MAM without sparsity assumption, and with ranks selected by BIC or CV.

Description

Fit a low-dimensional multivariate additive model using B-splines, without aparsity assumptions, and with ranks r_1, r_2, r_3 selected by BIC or CV.

Usage

```
mam_dr(y, x, method = "BIC", ncv = 10, K_index = NULL, r1_index = NULL,
       r2_index = NULL, r3_index = NULL, SABC = NULL, degr = 3, eps = 1e-4,
       max_step = 20)
```

Arguments

A $n \times q$ numeric matrix of responses. У

Х A $n \times p$ numeric design matrix for the model.

The method to be applied to select parameters. Either "BIC" (the default), or method

"CV".

The number of cross-validation folds. Default is 10. If method is "BIC", ncv is ncv

useless.

A user-specified sequence of K values, where K is he number of B-spline base K_index

function. Default is k_index=6.

r1_index A user-specified sequence of r_1 values, where r_1 is the first dimension of single

value matrix of the tensor. Default is r1_index= $1, \dots, \min(\log(n)], p$).

r2 index A user-specified sequence of r_2 values, where r_2 is the second dimension of

single value matrix of the tensor. Default is $r2_index = 1, \dots, max\{K_index\}$.

 $\frac{1}{2}$ \integration 1 index A user-specified sequence of r_3 values, where r_3 is the third dimension of single value matrix of the tensor. Default is $r3_index = 1, \dots, \min(\log(n)], q)$.

\itemSABCA user-specified list of initial coefficient matrix of S, A, B, C, which

is a list with values S, A, B, C. By default, initial matrices are provided by random.

\itemdegr the number of knots of B-spline base function. Default is 3.

\itempsConvergence threshhold. The algorithm iterates until the relative change in any coefficient is less than eps. Default is 1e-4.

\itemmax_stepMaximum number of iterations. Default is 20.

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1 , r_2 and r_3 by BIC or CV.

"A tensor estimation approach to multivariate additive models".

High-dimensional; Sparse models; Tensor estimation; Tucker decomposition. mam and mam_sparse_dr

D2 <- matrix(runif(50, 0.7, 1), 2, 25) mydata <- generateData(200, 5, 5, 5, D2)

fit <- mam_dr(mydata\$Y, mydata\$X) opt <- fit\$rk_opt

6 mam_sparse

mam_sparse

Fit MAM with sparsity assumption and fixed ranks.

Description

Fit a high-dimensional multivariate additive model using B-splines, with or without aparsity assumptions, and given ranks given ranks r_1, r_2, r_3 . The multivariate sparse group lasso (mcp or scad) and the coordinate descent algorithm are used to estimate functions for sparsity situation.

Usage

Arguments

rguments	
у	A $n \times q$ numeric matrix of responses.
x	A $n \times q$ numeric design matrix for the model.
K	The number of B-spline base function, that is the plus of both degrees of base function and the number of knots. Default is 7.
degr	The number of knots of B-spline base function. Default is 3.
r1	The first dimension of single value matrix of the tensor. Default is 2.
r2	The second dimension of single value matrix of the tensor. Default is 2.
r3	The third dimension of single value matrix of the tensor. Default is 2.
penalty	The penalty to be applied to the model. Either "LASSO" (the default), "SCAD", or "MCP".
lambda	A user-specified sequence of lambda values. By default, a sequence of values of length nlam is computed, equally spaced on the log scale.
SABC	A user-specified list of initial coefficient matrix of S, A, B, C . By default, initial matrices are provided by random.
nlam	The number of lambda values. Default is 20.
lam_min	The smallest value for lambda, as a fraction of lambda.max. Default is 1e-3.
eps1	Convergence threshold. The algorithm iterates until the relative change in any coefficient is less than eps1. Default is 1e-4.
maxstep1	Maximum number of iterations. Default is 20.
eps2	Convergence threshhold. The Coordinate descent method algorithm iterates until the relative change in any coefficient is less than eps2. Default is 1e-4.
maxstep2	The maximum iterates number of coordinate descent method. Default is 20.
gamma	The tuning parameter of the MCP/SCAD penalty (see details).
dfmax	Upper bound for the number of nonzero coefficients. Default is no upper bound. However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients.
alpha	Tuning parameter for the Mnet estimator which controls the relative contributions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0 would

may be arbitrarily small, but not exactly 0.

be equivalent to ridge regression. However, alpha=0 is not supported; alpha

mam_sparse_dr 7

Details

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1 , r_2 and r_3 by BIC or CV.

Value

rss Residual sum of squares (RSS).

df Degrees of freedom.

lambda The sequence of regularization parameter values in the path.

lambda_opt The value of lambda with the minimum BIC value.
selectedID The index of lambda corresponding to lambda_opt.

activeA The active set.
Dnew Estimator of $D_{(3)}$.
Y Response Y.

X Design matrix X.

Z Design matrix of Bspline approximation λ .

References

A tensor estimation approach to multivariate additive models.

See Also

```
mam, mam_sparse_dr
```

Examples

```
D2 <- matrix(runif(50, 0.7, 1), 2, 25)
mydata <- generateData(200, 5, 10, 5, D2)
fit <- mam_sparse(mydata$Y, mydata$X)
Coeff <- fit$Dnew</pre>
```

mam_sparse_dr

Fit MAM with sparsity assumption and ranks selected by BIC or CV.

Description

Fit a high-dimensional multivariate additive model using B-splines, with or with aparsity assumptions and ranks selected by BIC or CV. The multivariate sparse group lasso (mcp or scad) and the coordinate descent algorithm are used to estimate functions for sparsity situation. The tuning parameter is selected by BIC or CV, which matchs the method of rank selection.

8 mam_sparse_dr

Usage

Arguments

y A $n \times q$ numeric matrix of responses.

x A $n \times q$ numeric design matrix for the model.

method The method to be applied to select parameters. Either "BIC" (the default), or

"CV".

ncv The number of cross-validation folds. Default is 10. If method is "BIC", ncv is

useless.

penalty The penalty to be applied to the model. Either "LASSO" (the default), "SCAD",

or "MCP".

K_index A user-specified sequence of K values, where K is he number of B-spline base

function. Default is k_index=6.

r1_index A user-specified sequence of r_1 values, where r_1 is the first dimension of single

value matrix of the tensor. Default is r1_index= $1, \dots, \min(\lceil \log(n) \rceil, p)$.

r2_index A user-specified sequence of r_2 values, where r_2 is the second dimension of

mension of single value matrix of the tensor. Default is r3_index= $1, \dots, \min(\lceil \log(n) \rceil, q)$.

\itemlambdaA user-specified sequence of lambda values. By default, a sequence of values of length nlam is computed, equally spaced on the log scale.

\itemSABCA user-specified list of initial coefficient matrix of S, A, B, C. By default, initial matrices are provided by random.

\itemnlamThe number of lambda values. Default is 50.

\itemdegrThe number of knots of B-spline base function. Default is degr = 3.

\itemlam_minThe smallest value for lambda, as a fraction of lambda.max. Default is 1e-2.

\itemps1Convergence threshold. The algorithm iterates until the relative change in any coefficient is less than eps1. Default is 1e-4.

\itemmaxstep1Maximum number of iterations. Default is 20.

\itemps2Convergence threshhold. The Coordinate descent method algorithm iterates until the relative change in any coefficient is less than eps2. Default is 1e-4.

\itemmaxstep2The maximum iterates number of coordinate descent method. Default is 20.

\itemgammaThe tuning parameter of the MCP/SCAD penalty (see details).

\itemdfmaxUpper bound for the number of nonzero coefficients. Default is no upper bound. However, for large data sets, computational burden may be heavy for models with a large number of nonzero coefficients.

\itemalphaTuning parameter for the Mnet estimator which controls the relative contributions from the LASSO, MCP/SCAD penalty and the ridge, or L2 penalty. alpha=1 is equivalent to LASSO, MCP/SCAD penalty, while alpha=0

plotfuns 9

would be equivalent to ridge regression. However, alpha=0 is not supported; alpha may be arbitrarily small, but not exactly 0.

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1 , r_2 and r_3 by BIC or CV.

A tensor estimation approach to multivariate additive models.

High-dimensional; Sparse models; Tensor estimation; Tucker decomposition. mam_dr, mam_sparse

D2 <- matrix(runif(50, 0.7, 1), 2, 25) mydata <- generateData(200, 5, 10, 5, D2) fit <- mam_sparse_dr(mydata\$Y, mydata\$X) opt <- fit\$rk_opt

plotfuns

Plot the estimated curves from \codestensorMam.

Description

Plot the curves fit by mam, mam_dr, mam_sparse, and mam_sparse_dr

Usage

```
plotfuns(fit,funTrueID)
```

Arguments

fit mam or mam_sparse object.
funTrueID Which function be plotted.

Details

This function gives pq functional coefficients' estimators of MAM. The singular value matrix of tensor is a $r_1 \times r_2 \times r_3$ -tensor. We choose r_1 , r_2 and r_3 by BIC or CV.

References

A tensor estimation approach to multivariate additive models.

See Also

mam

Examples

```
n <- 200
p <- 10
q <- 10
s <- 10
K <- 6
s0 <- s
r10=r20=r30=2
S3 <- matrix(runif(r10*r20*r30,3,7),nrow = r30)
T1 <- matrix(rnorm(s0*r10),nrow = s0)
U1 <- qr.Q(qr(T1))</pre>
```

```
T1 <- matrix(rnorm(K*r20),nrow = K)
U2 <- qr.Q(qr(T1))
T1 <- matrix(rnorm(q*r30),nrow = q)
U3 <- qr.Q(qr(T1))
D3 <- U3%*%S3%*%t(kronecker(U2,U1))
D2 <- TransferModalUnfoldings(D3,3,2,s0,K,q)
mydata <- generateData(n, q, p, K, D2)
fit <- mam(mydata$Y, mydata$X)
fit$D2 <- D2
fit$s0 <- s0
fit$X0 <- matrix(runif(100*p),100,p)
plotfuns(fit, c(1,1))</pre>
```

TransferModalUnfoldings

Transfer a tensor's modal unfoldings to another.

Description

Transfer a tensor's modal unfoldings to another.

Usage

```
tensorTransModeUnfold(T, d1, d2 , r1, r2, r3)
```

Arguments

T	A mode-d1-unfolding of a tensor with size $r_1 \times r_2 \times r_3$, input unfolding
d1	An integer, the mode of unfolding $T_{(d_1)}$
d2	An integer, the mode of output unfolding $T_{(d_2)}$
r1	The fist dimension of tensor
r2	The second dimension of tensor
r3	The third dimension of tensor

Details

This function transfers an input mode-d1-unfolding $T_{(d_1)}$ to mode-d2-unfolding $T_{(d_2)}$

Value

```
D the output mode-d2-unfolding, T_{(d_2)}
```

References

A tensor estimation approach to multivariate additive models.

Examples

```
T <- matrix(1:24,nrow = 4)
TransferModalUnfoldings(T,1,2,4,3,2)</pre>
```

Index

```
*Topic High-dimensional, Sparse
        models; Tensor estimation;
        Tucker decomposition.
    tensorMam-package, 2
    TransferModalUnfoldings, 10
*Topic High-dimensional; Sparse
        models; Tensor estimation;
        Tucker decomposition.
    generateData, 2
    mam, 3
    mam_sparse, 6
    plotfuns, 9
generateData, 2
mam, 3
mam-function (mam), 3
mam_dr, 5
mam_dr-function (mam_dr), 5
mam_sparse, 6
mam_sparse-function (mam_sparse), 6
mam_sparse_dr, 7
mam_sparse_dr-function(mam_sparse_dr),
plotfuns, 9
tensorMam (tensorMam-package), 2
tensor \textit{Mam-package}, 2
Transfer Modal Unfoldings, 10
TransferModalUnfoldings-function
        (TransferModalUnfoldings), 10
```