

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (original): A mesogenic, cross-linkable mixture comprising:
 - i) a cross-linkable liquid crystalline host comprising at least one cross-linkable liquid crystalline compound, and
 - ii) at least one chiral or achiral rod shaped additive component, wherein said additive component has a rigid core and comprises at least two fused or linked, optionally substituted, non-aromatic, aromatic, carbocyclic or heterocyclic groups, and also comprises at least one optionally substituted alkyl residue, and at least one polymerizable group and wherein the additive component has a transition temperature to the isotropic state of 40 °C or lower.
2. (original): A mixture according to claim 1, wherein the additive component has a transition temperature to the isotropic state of 20 °C or lower.
3. (original): A mixture according to claim 1, wherein the additive component has a transition temperature to the isotropic state of 0 °C or lower.
4. (previously presented): A mixture according to claim 1 having a clearing temperature of 30 °C or higher.
5. (previously presented): A mixture according to claim 1 having a clearing temperature of 50 °C or higher.
6. (previously presented): A mixture according to any one of claims 1 to 5, wherein the liquid crystalline host has a clearing temperature of 50 °C or higher.

7. (previously presented): A mixture according to claim 1, wherein the additive component is a compound of formula (I):

wherein:

A^1 to A^4 are independently from each other hydrogen, a polar group such as nitro, cyano, a halogen, an optionally substituted methyl group, or an optionally substituted hydrocarbon group of 2 to 40 C-atoms, in which one or more C-atoms may be replaced by a heteroatom, in such a way that oxygen atoms are not linked to one another,

with the proviso that at least one of A^1 to A^4 comprises a polymerizable group,

C^1 to C^4 are independently from each other optionally substituted non-aromatic, aromatic, carbocyclic or heterocyclic groups, preferably connected to each other at the opposite positions via the bridging groups Z^1 to Z^3 ,

Z^1 to Z^3 are independently from each other -CH(OH)-, -CO-, -CH₂(CO)-, -SO-, -CH₂(SO)-, -SO₂-, -CH₂(SO₂)-, -COO-, -OCO-, -COCF₂-, -CF₂CO-, -S-CO-, -CO-S-, -SOO-, -OSO-, -SOS-, -CH₂-CH₂-, -OCH₂-, -CH₂O-, -CH=CH-, -C≡C-, -CH=CH-COO-, -OCO-CH=CH-, -CH=N-, -C(CH₃)=N-, -N=N- or a single covalent bond,

$a1$, $a2$ and $a3$ are independently from each other integers from 0 to 3, such that

$$1 \leq a1 + a2 + a3 \leq 3,$$

with the proviso that the sequence:

describes the long molecular axis of the rod shaped additive components.

8. (original): A mixture according to claim 7, wherein the additive component is a compound of formula (I), wherein at least one of A¹ to A⁴ includes a polymerizable group, selected from a residue of formula (II):

wherein:

P is hydrogen or a polymerizable group selected from groups comprising CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO-, CH₂=C(Ph)-COO-, CH₂=CH-COO-Ph-, CH₂=CW-CO-NH-, CH₂=C(Ph)-CONH-, CH₂=C(COOR')-CH₂-COO-, CH₂=CH-OOC-, (Ph)-CH=CH-, CH₃-CH=N-(CH₂)_{m1}-, HO-, HS-, HO-(CH₂)_{m1}-, HS-(CH₂)_{m1}-, HO(CH₂)_{m1}COO-, HS(CH₂)_{m1}COO-, HWN-, HOC(O)-, CH₂=CH-Ph-(O)_{m2},

wherein:

W is H, F, Cl, Br or I or a C₁₋₆ alkyl group,

m1 is an integer having a value of from 1 to 9,

m2 is an integer having a value of 0 or 1,

R' is a C₁₋₆ alkyl group,

R'' is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I,

Sp is an optionally substituted straight or branched C₁₋₃₀ alkylene group, in which one or more -CH₂- groups may be replaced by a heteroatom and/or by a polar group

and/or it is optionally possible that one or more carbon-carbon single bond(s) is/are replaced by a carbon-carbon double or a triple bond,

k is an integer having a value of from 0 to 4,
X is -O-, -S-, -NH-, -N(CH₃)-, -CH(OH)-, -CO-, -CH₂(CO)-, -SO-, -CH₂(SO)-, -SO₂-, -CH₂(SO₂)-, -COO-, -OCO-, -OCO-O-, -S-CO-, -CO-S-, -SOO-, -OSO-, -SOS-, -CH₂-CH₂-, -OCH₂-, -CH₂O-, -CH=CH-, -C≡C-, or a single bond,
t is an integer having a value of 0 or 1.

9. (previously presented): A mixture according to one of claims 7 and 8, wherein at least one of A¹ to A⁴ of formula (I) is a group of formula (II):

wherein:

P is a polymerizable group such as CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO- or

wherein:

W is H, CH₃, F, Cl, Br or I,

R'' is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I.

Sp is a C₁₋₂₂ branched or straight-chain alkylene group, in which one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH(OH)-, -SO₂-, -COO-, -OCO-, -OCO-O-, -CH=CH-, -C≡C-, -(CF₂)_r-, with the proviso that no two oxygen atoms are directly linked to each other, and wherein r is an integer between 1 and 10,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,
t is 1.

10. (previously presented): A mixture according to one of claims 7 and 8, wherein C¹ to C⁴ are preferably selected from:

L is -CH₃, -COCH₃, -NO₂, -CN or halogen,

u1 is 0, 1, 2, 3, or 4,

u2 is 0, 1, 2, or 3,

u3 is 0, 1, or 2.

11. (previously presented): A mixture according to one of claims 7 and 8, wherein:

C¹ to C⁴ are selected from optionally substituted cyclohexyl or cyclohexylene, phenyl or phenylene, naphthyl or naphthylene or phenanthryl or phenanthrylene,

A¹ to A⁴ independently from each other is hydrogen, a polar group such as cyano, nitro, a halogen, or a group of formula (II)

P-(Sp)_k-(X)_t - (II)

in which:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO- or

wherein:

W is H, CH₃, F, Cl Br or I,

R'' is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I,

Sp is a C₁₋₂₂ branched or straight-chain alkylene group, in which one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH(OH)-, -SO₂-, -COO-, -OCO-, -OCO-O-, -CH=CH-, -C≡C-, -(CF₂)_r-,

with the proviso that no two oxygen atoms are directly linked to each other, and wherein r is an integer between 1 and 10,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1,

with the proviso that at least one of A¹ to A⁴ comprises a polymerizable group such as CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO- or

wherein:

W is H, CH₃, F, Cl, Br or I,

R'' is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I.

12. (previously presented): A mixture according to one of claims 7 and 8, wherein:

A¹ comprises a polymerizable group such as CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO-,

wherein:

W is H or CH₃,

A² has the meaning of formula (II),

P-(Sp)_k-(X)_t - (II)

in which:

P is hydrogen or a polymerizable group such as as CH₂=CW-, CH₂=CW-O- or CH₂=CW-COO-,

wherein:

W is H or CH₃,

Sp is a branched C₃-C₁₆ alkylene group, optionally comprising at least one oxocarbonyl or carbonyloxy group, or is a straight C₂-C₁₆ alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more -CH₂- groups present in the

hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH=CH-, -C≡C-, with the proviso that no two oxygen atoms are directly linked to each other,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond,
more preferably -O-, -COO-, -OCO- or a single bond,

t is 1

A⁴ is hydrogen.

13. (previously presented): A mixture according to one of claims 7 and 8, wherein:

A¹ has the meaning of formula (II),

P-(Sp)_k-(X)_t - (II)

wherein:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O- or
CH₂=CW-COO-,

wherein:

W is H or CH₃,

Sp is a branched C₃-C₁₆ alkylene group, optionally comprising at least one oxocarbonyl or group, or is a straight C₂-C₁ alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH=CH-, -C≡C-, with the proviso that no two oxygen atoms are directly linked to each other,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1,

A² comprises a polymerizable group such as CH₂=CW-, CH₂=CW-O-, or CH₂=CW-COO-,

wherein:

W is H or CH₃,

A⁴ is hydrogen.

14. (previously presented): A mixture according to one of claims 7 and 8, wherein:

A¹ has the meaning of formula (II),

P-(Sp)_k-(X)_t - (II)

wherein:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O- or CH₂=CW-COO-,

wherein:

W is H or CH₃,

Sp is a branched C₃-C₁₆ alkylene group, optionally comprising at least one oxocarbonyl or carbonyloxy group, or is a straight C₂-C₁₆ alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH=CH-, -C≡C-, with the proviso that no two oxygen atoms are directly linked to each other,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1,

A³ comprises a polymerizable group such as CH₂=CW-, CH₂=CW-O-, or CH₂=CW-COO-,

wherein:

W is H or CH₃,

A⁴ is hydrogen.

15. (currently amended): A mixture according to one of claims 7 and 8, wherein: A² has the meaning of formula (II),

P-(Sp)_k-(X)_t - (II)

in which:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O- or CH₂=CW-COO-,

wherein:

W is H or CH₃,

Sp is a branched C₃-C₁₆ alkylene group, optionally comprising at least one oxocarbonyl or carbonyloxy group, or is a straight C₂-C₁₆ alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH=CH-, -C≡C-, with the proviso that no two oxygen atoms are directly linked to each other,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond,

more preferably -O-, -COO-, -OCO- or a single bond,

t is 1,

A³ comprises a polymerizable group such as CH₂=CW-, CH₂=CW-O-, or CH₂=CW-COO-,

wherein:

W is H or CH₃,

A⁴ is hydrogen.

16. (previously presented): A mixture according to one of claims 7 and 8, wherein:

A¹ and A² have the meaning of formula (II),

P-(Sp)_k-(X)_t - (II)

wherein:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O- or CH₂=CW-COO-,

wherein:

W is H or CH₃,

Sp is a branched C₃-C₁₆ alkylene group, optionally comprising at least one oxocarbonyl or carbonyloxy group, or is a straight C₂-C₁₆ alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH=CH-, -C≡C-, with the proviso that no two oxygen atoms are directly linked to each other,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1,

A³ comprises a polymerizable group such as CH₂=CW-, CH₂=CW-O-, or CH₂=CW-COO-,

wherein:

W is H or CH₃,

A⁴ is hydrogen.

17. (previously presented): A mixture according to one of claims 7 and 8, wherein at least one of A¹ to A³ has the meaning of formula (II),

P-(Sp)_k-(X)_t - (II)

wherein:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO-,

wherein:

W is H or CH₃,

Sp has the meaning of formula (III)

(III)

wherein:

Y^1 and Y^2 each independently represent -OCO- or -COO-,

B^1 represents C or CH,

R^1 and R^2 each independently represent hydrogen or a C_1 - C_{12} alkyl residue, preferably a C_1 - C_6 alkyl residue, such as a methyl, ethyl, propyl, butyl, pentyl, hexyl or isopropyl residue,

n_1, n_2, n_3 and n_4 are independently integers from 0 to 15, such that $0 \leq n_1 + n_2 + n_3 + n_4 \leq 15$,

m_1, m_2 and m_3 are independently integers from 0 to 3, such that

$1 \leq m_1 + m_2 + m_3 \leq 3$ and wherein:

one or more -CH₂- groups present in the hydrocarbon chain of (III) may be replaced, independently, by one or more groups selected from -O-, -CH=CH- or -C≡C-, with the proviso that the carbon-carbon double bond of P is not directly connected to the carbon atom of Y^1 or Y^2 ,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1.

18. (previously presented): A mixture according to one of claims 7 and 8, wherein at least one of A^1 to A^3 has the meaning of formula (II),

wherein:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO-,

wherein:

W is H or CH₃,

Sp has the meaning of formula (III)

(III)

wherein:

Y¹ and Y² each independently represent -OCO- or -COO-,

B¹ represents C or CH,

R¹ is hydrogen

R² represents a methyl, ethyl, propyl, butyl, pentyl or hexyl group and most preferably a methyl or ethyl group,

n1, n2, n3 and n4 are independently integers from 0 to 15,

such that 0 ≤ n1 + n2 + n3 + n4 ≤ 15,

m1, m2 and m3 are independently integers from 0 to 3,

such that 1 ≤ m1 + m2 + m3 ≤ 3, and wherein:

one or more -CH₂- groups present in the hydrocarbon chain of (III) may be replaced, independently, by one or more groups selected from -O-, -CH=CH- or -C≡C-,

with the proviso that the carbon-carbon double bond of P is not directly connected to the carbon atom of Y¹ or Y²,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1.

19. (previously presented): A mixture according to claim 1 comprising further agents, such as cross-linking agents, stabilizing agents, initiators, dyes, other chiral or achiral additives and plasticizers.

20. (previously presented): A mixture according to claim 1 in form of an elastomer, polymer gel, polymer network or polymer film.

21. (original): A chiral or achiral rod shaped compound, wherein said compound has a rigid core and comprises at least two fused or linked, optionally substituted, non-aromatic, aromatic, carbocyclic or heterocyclic groups, and also comprises at least one optionally substituted alkyl residue, and also comprises at least one polymerizable group and has a transition temperature to the isotropic state of 40 °C or lower.

22. (original): A compound according to claim 21, wherein the compound has a transition temperature to the isotropic state of 20 °C or lower.

23. (previously presented): A compound according to claims 21 and 22, wherein the compound has transition temperature to the isotropic state of 0 °C or lower.

24. (previously presented): A compound according to any one of claims 21 and 22 of formula (I):

wherein:

A^1 to A^4 are independently from each other hydrogen, a polar group such as nitro, cyano, a halogen, an optionally substituted methyl group, or an optionally substituted hydrocarbon group of 2 to 40 C-atoms, in which one or more C-atoms may be replaced by a heteroatom, in such a way that oxygen atoms are not linked to one another,

with the proviso that at least one of A^1 to A^4 comprises a polymerizable group,

C^1 to C^4 are independently from each other optionally substituted non-aromatic, aromatic, carbocyclic or heterocyclic groups, preferably connected to each other at the opposite positions via the bridging groups Z^1 to Z^3 ,

Z^1 to Z^3 are independently from each other -CH(OH)-, -CO-, -CH₂(CO)-, -SO-, -CH₂(SO)-, -SO₂-, -CH₂(SO₂)-, -COO-, -OCO-, -COCF₂-, -CF₂CO-, -S-CO-, -CO-S-, -SOO-, -OSO-, -SOS-, -CH₂-CH₂-, -OCH₂-, -CH₂O-, -CH=CH-, -C≡C-, -CH=CH-COO-, -OCO-CH=CH-, -CH=N-, -C(CH₃)=N-, -N=N- or a single covalent bond,

a_1 , a_2 and a_3 are independently from each other integers from 0 to 3, such that

$$1 \leq a_1 + a_2 + a_3 \leq 3,$$

with the proviso that the sequence:

describes the long molecular axis of the rod shaped additive components.

25. (original): A compound according to claim 24, wherein at least one of A^1 to A^4 includes a polymerizable group, selected from a residue of formula (II):

P-(Sp)_k-(X)_t- (II)

wherein:

P is hydrogen or a polymerizable group selected from groups comprising CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO-, CH₂=C(Ph)-COO-, CH₂=CH-COO-Ph-, CH₂=CW-CO-NH-, CH₂=C(Ph)-CONH-, CH₂=C(COOR')-CH₂-COO-, CH₂=CH-OOC-, (Ph)-CH=CH-, CH₃-CH=N-(CH₂)_{m1}-, HO-, HS-, HO-(CH₂)_{m1}-, HS-(CH₂)_{m1}-, HO(CH₂)_{m1}COO-, HS(CH₂)_{m1}COO-, HWN-, HOC(O)-, CH₂=CH-Ph-(O)_{m2},

wherein:

W is H, F, Cl, Br or I or a C₁₋₆ alkyl group,

m1 is an integer having a value of from 1 to 9,

m2 is an integer having a value of 0 or 1,

R' is a C₁₋₆ alkyl group,

R'' is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I,

Sp is an optionally substituted straight or branched C₁₋₃₀ alkylene group, in

which one or more -CH₂- groups may be replaced by a heteroatom and/or by a polar group and/or it is optionally possible that one or more carbon-carbon single bond(s) is/are replaced by a carbon-carbon double or a triple bond,

k is an integer having a value of from 0 to 4,

X is -O-, -S-, -NH-, -N(CH₃)-, -CH(OH)-, -CO-, -CH₂(CO)-, -SO-, -CH₂(SO)-, -SO₂-, -CH₂(SO₂)-, -COO-, -OCO-, -OCO-O-, -S-CO-, -CO-S-, -SOO-, -OSO-, -SOS-, -CH₂-CH₂-, -OCH₂-, -CH₂O-, -CH=CH-, -C≡C-, or a single bond,

t is an integer having a value of 0 or 1.

26. (previously presented): A compound according to claim 24, wherein at least one of A¹ to A⁴ of formula (I) is a group of formula (II):

wherein:

P is a polymerizable group such as CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO- or

wherein:

W is H, CH₃, F, Cl, Br or I,

R'' is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I.

Sp is a C₁₋₂₂ branched or straight-chain alkylene group, in which one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH(OH)-, -SO₂-, -COO-, -OCO-, -OCO-O-, -CH=CH-, -C≡C-, -(CF₂)_r-,

with the proviso that no two oxygen atoms are directly linked to each other, and wherein r is an integer between 1 and 10,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1.

27. (previously presented): A compound according to claim 24, wherein C¹ to C⁴ are preferably selected from:

wherein:

L being -CH₃, -COCH₃, -NO₂, -CN or halogen,

u1 is 0, 1, 2, 3, or 4,

u2 is 0, 1, 2, or 3,

u3 is 0, 1, or 2.

28. (previously presented): A compound according to claim 24, wherein:

C¹ to C⁴ are selected from optionally substituted cyclohexyl or cyclohexylene, phenyl or phenylene, naphthyl or naphthylene or phenanthryl or phenanthrylene,

A¹ to A⁴ independently from each other is hydrogen, a polar group such as cyano, nitro, a halogen, or a group of formula (II),

in which:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O-,

wherein:

W is H, CH₃, F, Cl Br or I,

R'' is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I,

Sp is a C₁₋₂₂ branched or straight-chain alkylene group, in which one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH(OH)-, -SO₂-, -COO-, -OCO-, -OCO-O-, -CH=CH-, -C≡C-, -(CF₂)_r-,

with the proviso that no two oxygen atoms are directly linked to each other, and wherein r is an integer between 1 and 10,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or single bond,

t is 1,

with the proviso that at least one of A1 to A4 comprises a polymerizable group such as CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO- or

wherein:

W is H, CH₃, F, Cl, Br or I,

R'' is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I.

29. (previously presented): A compound according to claim 24, wherein:

A¹ comprises a polymerizable group such as CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO-,

wherein:

W is H or CH₃,

A² has the meaning of formula (II),

P-(Sp)_k-(X)_t- (II)

in which:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O- or CH₂=CW-COO-,

wherein:

W is H or CH₃,

Sp is a branched C₃-C₁₆ alkylene group, optionally comprising at least one oxocarbonyl or carbonyloxy group, or is a straight C₂-C₁₆ alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH=CH-, -C≡C-, with the proviso that no two oxygen atoms are directly linked to each other,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1

A⁴ is hydrogen.

30. (previously presented): A compound according to claim 24, wherein:

A¹ has the meaning of formula (II),

P-(Sp)_k-(X)_t - (II)

wherein:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=W-O- or CH₂=CW-COO-,

wherein:

W is H or CH₃,

Sp is a branched C₃-C₁₆ alkylene group, optionally comprising at least one oxocarbonyl or carbonyloxy group, or is a straight C₂-C₁₆ alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH=CH-, -C≡C-, with the proviso that no two oxygen atoms are directly linked to each other,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1,

A^2 comprises a polymerizable group such as $\text{CH}_2=\text{CW}-$, $\text{CH}_2=\text{CW-O}-$, or $\text{CH}_2=\text{CW-COO}-$,

wherein:

W is H or CH_3 ,

A^4 is hydrogen.

31. (previously presented): A compound according to claim 24, wherein:

A^1 has the meaning of formula (II),

$P-(\text{Sp})_k-(X)_t-$ (II)

wherein:

P is hydrogen or a polymerizable group such as $\text{CH}_2=\text{CW}-$, $\text{CH}_2=\text{CW-O}-$ or $\text{CH}_2=\text{W-COO}-$,

wherein:

W is H or CH_3 ,

Sp is a branched C_3-C_{16} alkylene group, optionally comprising at least one oxocarbonyl or carbonyloxy group, or is a straight C_2-C_{16} alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more $-\text{CH}_2-$ groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from $-\text{O}-$, $-\text{CH}=\text{CH}-$, $-\text{C}\equiv\text{C}-$, with the proviso that no two oxygen atoms are directly linked to each other,

k is 1,

X is $-\text{O}-$, $-\text{CO}-$, $-\text{COO}-$, $-\text{OCO}-$, $-\text{CH}=\text{CH}-$, $-\text{C}\equiv\text{C}-$, or a single bond, more preferably $-\text{O}-$, $-\text{COO}-$, $-\text{OCO}-$ or a single bond,

t is 1,

A³ comprises a polymerizable group such as CH₂=CW-, CH₂=CW-O-, or CH₂=CW-COO-,

wherein:

W is H or CH₃,

A⁴ is hydrogen.

32. (previously presented): A compound according to claim 24, wherein:

A² has the meaning of formula (II),

P-(Sp)_k-(X)_t - (II)

wherein:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O- or CH₂=CW-COO-,

wherein:

W is H or CH₃,

Sp is a branched C₃-C₁₆ alkylene group, optionally comprising at least one oxocarbonyl or carbonyloxy group, or is a straight C₂-C₁₆ alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH=CH-, -C≡C-, with the proviso that no two oxygen atoms are directly linked to each other,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1,

A^3 comprises a polymerizable group such as $\text{CH}_2=\text{CW}-$, $\text{CH}_2=\text{CW-O-}$, or $\text{CH}_2=\text{CW-COO-}$,

wherein:

W is H or CH_3 ,

A^4 is hydrogen.

33. (previously presented): A compound according to claim 24, wherein:

A^1 and A^2 have the meaning of formula (II),

$P-(\text{Sp})_k-(X)_t-$ (II)

wherein:

P is hydrogen or a polymerizable group such as $\text{CH}_2=\text{CW}-$, $\text{CH}_2=\text{CW-O-}$ or $\text{CH}_2=\text{CW-COO-}$,

wherein:

W is H or CH_3 ,

Sp is a branched C_3-C_{16} alkylene group, optionally comprising at least one oxocarbonyl or carbonyloxy group, or is a straight C_2-C_{16} alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more $-\text{CH}_2-$ groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from $-\text{O}-$, $-\text{CH}=\text{CH}-$, $-\text{C}\equiv\text{C}-$, with the proviso that no two oxygen atoms are directly linked to each other,

k is 1,

X is $-\text{O}-$, $-\text{CO}-$, $-\text{COO}-$, $-\text{OCO}-$, $-\text{CH}=\text{CH}-$, $-\text{C}\equiv\text{C}-$, or a single bond, more preferably $-\text{O}-$, $-\text{COO}-$, $-\text{OCO}-$ or a single bond,

t is 1,

A^3 comprises a polymerizable group such as $\text{CH}_2=\text{CW}-$, $\text{CH}_2=\text{CW-O}-$, or $\text{CH}_2=\text{CW-COO}-$,

wherein:

W is H or CH_3 ,

A^4 is hydrogen.

34. (previously presented): A compound according to claim 24, wherein at least one of A^1 to A^3 has the meaning of formula (II),

$P-(\text{Sp})_k-(X)_t-$ (II)

wherein:

P is hydrogen or a polymerizable group such as $\text{CH}_2=\text{CW}-$, $\text{CH}_2=\text{CW-O}-$, $\text{CH}_2=\text{CW-COO}-$,

wherein:

W is H or CH_3 ,

Sp has the meaning of formula (III)

(III)

wherein:

Y^1 and Y^2 each independently represent $-\text{OCO-}$ or $-\text{COO-}$,

B^1 represents C or CH,

R¹ and R² each independently represent hydrogen or a C₁-C₁₂ alkyl residue, preferably a C₁-C₆ alkyl residue, such as methyl, ethyl, propyl, butyl, pentyl, hexyl or isopropyl residue,

n₁, n₂, n₃ and n₄ are independently integers from 0 to 15, such that 0 ≤ n₁ + n₂ + n₃ + n₄ ≤ 15,

m₁, m₂ and m₃ are independently integers from 0 to 3, such that 1 ≤ m₁ + m₂ + m₃ ≤ 3 and

wherein one or more -CH₂- groups present in the hydrocarbon chain of (III) may be replaced, independently, by one or more groups selected from -O-, -CH=CH- or -C≡C-, with the proviso that the carbon-carbon double bond of P is not directly connected to the carbon atom of Y¹ or Y²,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1.

35. (previously presented): A compound according to claim 24, wherein at least one of A¹ to A³ has the meaning of formula (II),

P-(Sp)_k-(X)_t - (II)

wherein:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO-,

wherein:

W is H or CH₃,

Sp has the meaning of formula (III)

(III)

wherein:

Y¹ and Y² each independently represent -OCO- or -COO-,

B¹ represents C or CH,

R¹ is hydrogen,

R² represents a methyl, ethyl, propyl, butyl, pentyl or hexyl group

and most preferably a methyl or ethyl group,

n1, n2, n3 and n4 are independently integers from 0 to 15, such that $0 \leq \text{n}1 + \text{n}2 + \text{n}3 + \text{n}4 \leq 15$,

m1, m2 and m3 are independently integers from 0 to 3, such that $\leq \text{m}1 + \text{m}2 + \text{m}3 \leq 3$, and

wherein one or more -CH₂- groups present in the hydrocarbon chain of (III) may be replaced, independently, by one or more groups selected from -O-, -CH=CH- or -C≡C-,

with the proviso that the carbon-carbon double bond of P is not directly connected to the carbon atom of Y¹ or Y²,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1.

36. (currently amended): Use A method of using a chiral or achiral rod shaped compound according to claim 21 for the preparation of, comprising preparing mesogenic polymer mixtures according to claim 1 with a chiral or achiral rod shaped compound, wherein said compound has a rigid core and comprises at least two fused or linked, optionally substituted, non-aromatic, aromatic, carbocyclic or heterocyclic groups, and also comprises at least one optionally substituted alkyl residue, and also comprises at least one polymerizable group and has a transition temperature to the isotropic state of 40 °C or lower.

37. (previously presented): Polymer networks prepared from a mixture according to claim 1.

38. (previously presented): Liquid crystalline polymer films prepared from a mixture according to claim 1.

39. (currently amended): Use A method of using a polymer network according to claim 37 or a liquid crystalline polymer film according to claim 38 for the preparation of, comprising preparing unstructured or structured optical and electro-optical components and multilayer systems from (A) a polymer network prepared from a mixture according to claim 1 or (B) a liquid crystalline polymer film prepared from a mixture according to claim 1.

40. (currently amended): Use A method of using a mesogenic, cross-linkable mixture according to claim 1 for the preparation of, comprising preparing an elastomer, polymer gel, polymer network or polymer film from a mesogenic, cross-linkable mixture according to claim 1.

41. (currently amended): ~~Use A method of using a polymer network according to claim 37 for the manufacture of devices such as, comprising manufacturing~~ waveguides, optical gratings, filters, retarders, polarizers, piezoelectric cells or thin film exhibiting non-linear optical properties from a polymer network according to claim 37.

42. (previously presented): Optical or electro-optical components comprising a polymer network according to claim 37.

43. (currently amended): ~~Use A method of using a liquid crystalline polymer film according to claim 38 for the manufacture of devices such as, comprising manufacturing~~ waveguides, optical gratings, filters, retarders, polarizers, piezoelectric cells or thin film exhibiting non-linear optical properties from a liquid crystalline polymer film according to claim 38.

44. (previously presented): Optical or electro-optical components comprising a liquid crystalline polymer film according to claim 38.