Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Операционные системы»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4

«Планировщики ввода-вывода»

Выполнил:

Рядовой Т.С., студент группы N3252

Проверил:

Чебунин Константин Олегович

(отметка о выполнении)

(подпись)

СОДЕРЖАНИЕ

Введение	4
1 Обычный вариант лабораторной	5
1.1 Задание	
1.2 Скрипт в терминале	
1.3 Ход работы	
1.4 Таблица результатов	
2 Усиленный вариант лабораторной	7
2.1 Задание	7
2.2 Ход работы	7
2.3 Код	
2.4 Результат	8
Заключение	9
Список использованных источников	10

ВВЕДЕНИЕ

Цель работы – провести тестирование и найти и лучший планировщик ввода-вывода среди других.

В обычном варианте:

- Протестировать на различных приоритетах вызовах команды;
- Сравнить планировщики.

В усложненном варианте:

- Выбрать один из планировщиков, установив в качестве основного;
- Модифицировать его параметры на уровне ядра.

1 ОБЫЧНЫЙ ВАРИАНТ ЛАБОРАТОРНОЙ

1.1 Задание

Провести тестирование планировщиков ввода-вывода и найти лучший из них.

1.2 Скрипт в терминале

```
DISC="nvme0n1"; \
cat /sys/block/$DISC/queue/scheduler; \
for T in noop deadline kyber bfq; do \
echo $T > /sys/block/$DISC/queue/scheduler; \
cat /sys/block/$DISC/queue/scheduler; \
sync && /sbin/hdparm -tT /dev/$DISC && echo "----"; \
sleep 15; \
done
```

1.3 Ход работы

В системе стоит по умолчанию планировщик none, диск SSD. Сначала протестируем планировщик в обычном режиме, используя скрипт из пункта 1.2. Программа определяется планировщик в системе и «тестирует» его параметры, где t и Т параметры читают кэш и буфер. Теперь просто запускаем скрипт, он будет выводить в консоль сообщение следующего вида:

```
root@fedora:/home/tryadovoi/Desktop/itmo/3cew/onepaционные_системы/lab4# DISC="nvme@n1"; \
cat /sys/block/$DISC/queue/scheduler; \
for T in noop deadline kyber bfq; do \
echo $T > /sys/block/$DISC/queue/scheduler; \
sync && /sbin/hdparm -tT /dev/$DISC && echo "----"; \
sleep 15; \
done
[none] mq-deadline kyber bfq
bash: echo: write error: Invalid argument
[none] mq-deadline kyber bfq
/dev/nvme@n1:
Timing cached reads: 11928 MB in 1.99 seconds = 5979.41 MB/sec
Timing buffered disk reads: 4156 MB in 3.00 seconds = 1385.31 MB/sec
----
none [mq-deadline] kyber bfq
/dev/nvme@n1:
Timing cached reads: 11136 MB in 2.00 seconds = 5581.40 MB/sec
Timing buffered disk reads: 4206 MB in 3.00 seconds = 1401.71 MB/sec
----
none mq-deadline [kyber] bfq
/dev/nvme@n1:
Timing cached reads: 11690 MB in 2.00 seconds = 5859.06 MB/sec
Timing buffered disk reads: 4176 MB in 3.00 seconds = 1391.62 MB/sec
----
none mq-deadline kyber [bfq]
/dev/nvme@n1:
Timing cached reads: 11770 MB in 2.00 seconds = 5899.70 MB/sec
Timing buffered disk reads: 4064 MB in 3.00 seconds = 1354.29 MB/sec
```

Рисунок 1 – Результаты тестирования четырех планировщиков

Все результаты представлены в Таблице 1.

1.4 Таблица результатов

Таблица 1 – Результаты

	none		deadline		ky	ber	bfq	
	cached	buffered	cached	buffered	cached	buffered	cached	buffered
1 тест	8928	1627	7653	1628	8818	1645	8856	1465
2 тест	8744	1667	8754	1651	8720	1648	8909	1448
3 тест	8817	1622	8719	1638	7449	1678	8792	1496
Среднее	8829,667	1638,667	8375,333	1639	8329	1657	8852,333	1469,667

2 УСИЛЕННЫЙ ВАРИАНТ ЛАБОРАТОРНОЙ

2.1 Задание

Выбрать один из планировщиков и модифицировать его параметры.

2.2 Ход работы

Я выбрал планировщик BFQ. В папке по пути «/sys/block/nvme0n1/queue/iosched» было несколько параметров, влияющих на сам планировщик. Первым параметром был «fifo_expire_async». Он используется для установки времени ожидания асинхронных запросов (значение по умолчанию равно 248 мс.). Второй параметр, который я изменил – «fifo expire sync». Он используется для установки времени ожидания синхронных запросов (значение по умолчанию равно 124 мс.). В случае предпочтения синхронных запросов асинхронным это значение следует уменьшить относительно fifo expire async. Третий параметр – «low_latency». Этот параметр используется для включения (1) / отключения (0) режима низкой задержки BFQ. По умолчанию режим низкой задержки включен. Если включено, интерактивное и программное обеспечение приложения реального времени имеют привилегированные возможности и имеют меньшую задержку. Четвертый параметр - «max budget». Значение по умолчанию равно 0, что позволяет выполнять автоматическую настройку: BFQ устанавливает max budget на максимальное количество секторов, которые могут быть обслужены в течение timeout sync, в соответствии с расчетной пиковой скоростью (timeout_sync максимальное время, которое устройство может уделить задаче (очереди)).

2.3 Код

```
x / root@fedora //home/tryadovoi echo 800 > /sys/block/nvme@n1/queue/iosched/fifo_expire_async

// root@fedora //home/tryadovoi echo 800 > /sys/block/nvme@n1/queue/iosched/fifo_expire_sync

// root@fedora //home/tryadovoi echo 0 > /sys/block/nvme@n1/queue/iosched/low_latency

// root@fedora //home/tryadovoi echo 80 > /sys/block/nvme@n1/queue/iosched/max_budget

// root@fedora //home/tryadovoi hdparm -tT //dev/nvme@n1
```

Рисунок 2 – Изменение параметров планировщика

2.4 Результат

```
root@fedora /home/tryadovoi echo 800 > /sys/block/nyme@n1/queue/iosched/fifo_expire_async
  root@fedora //home/tryadovoi echo 800 > /sys/block/nyme@n1/queue/iosched/fifo expire sync
  root@fedora //home/tryadovoi echo 0 > /sys/block/nvme0n1/queue/iosched/low_latency
  root@fedora /home/tryadovoi echo 80 > /sys/block/nvme0n1/queue/iosched/max_budget
  /dev/nvme0n1:
Timing cached reads: 17940 MB in 1.99 seconds = 9037.62 MB/sec
Timing buffered disk reads: 3574 MB in 3.00 seconds = 1191.25 MB/sec
foot@fedora //home/tryadovoi hdparm -tT //dev/nvme0n1
/dev/nvme0n1:
Timing cached reads: 17134 MB in 1.99 seconds = 8627.82 MB/sec
Timing buffered disk reads: 4068 MB in 3.00 seconds = 1355.80 MB/sec
f root@fedora /home/tryadovoi hdparm -tT /dev/nvme0n1
/dev/nvme0n1:
Timing cached reads: 15480 MB in 1.99 seconds = 7791.52 MB/sec
Timing buffered disk reads: 3848 MB in 3.00 seconds = 1282.14 MB/sec
```

Рисунок 3 – Результат после изменения

Таблица 2 – Сравнение

	none		deadline		kyber		bfq		modified bfq	
	cached	buffered	cached	buffered	cached	buffered	cached	buffered	cached	buffered
1 тест	8928	1627	7653	1628	8818	1645	8856	1465	9037	1191
2 тест	8744	1667	8754	1651	8720	1648	8909	1448	8627	1355
3 тест	8817	1622	8719	1638	7449	1678	8792	1496	7791	1282
Среднее	8829,67	1638,67	8375,33	1639	8329	1657	8852,33	1469,67	8485	1276

Как мы видим, по результату проведенной работы, параметры поменялись не слишком сильно.

ЗАКЛЮЧЕНИЕ

В ходе выполнения лабораторной работы мне удалось достигнуть поставленных целей:

Обычного варианта:

- протестировать различные планировщики ввода-вывода;
- сравнить планировщики.

Усложненного варианта:

- выбрать один из планировщиков, установив в качестве основного;
- модифицировать его параметры на уровне ядра.

По итогам анализа планировщиков было выяснено, что в среднем лучше всех показал себя BFQ, хоть и ненамного в сравнении с остальными. Также, модифицируя, параметры планировщика (BFQ), результат остается практически таким же.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. https://habr.com/ru/articles/81504/
- $2. \quad https://www.kernel.org/doc/Documentation/block/bfq-iosched.txt$
- 3. https://xakep.ru/2014/05/11/input-out-linux-planning/