Теория вероятностей Полный теоретический курс

Содержание

1	Основные понятия и определения			
	1.1 Случайное событие	3		
	1.2 Пространство элементарных событий	3		
	1.3 Алгебра событий	3		
2	Классическое определение вероятности	3		
	2.1 Определение	3		
	2.2 Свойства классической вероятности	4		
	2.3 Основные формулы комбинаторики	4		
3	Геометрическая вероятность	4		
	3.1 Определение	4		
	3.2 Парадокс Бертрана	4		
4	Алгебра событий	4		
	4.1 Законы алгебры событий	4		
5	Аксиомы теории вероятностей	5		
	5.1 Аксиоматика Колмогорова	5		
	5.2 Следствия из аксиом	5		
6	Условная вероятность	5		
	6.1 Определение	5		
	6.2 Свойства условной вероятности	5		
	6.3 Теорема умножения	6		
7	Независимость событий	6		
	7.1 Независимость двух событий	6		
	7.2 Независимость нескольких событий	6		
	7.3 Попарная независимость	6		
8	Формула полной вероятности и формула Байеса	6		
	8.1 Формула полной вероятности	6		
	8.2 Формула Байеса	6		
9	Повторные независимые испытания	7		
	9.1 Схема Бернулли	7		
	9.2 Наивероятнейшее число успехов	7		
	9.3 Предельные теоремы	7		

10	Слу	учайные величины	7
	10.1	Определение	7
		Типы случайных величин	7
	10.3	События, связанные со случайной величиной	7
11	Фун	нкция распределения	8
	11.1	Определение	8
	11.2	Свойства функции распределения	8
12 ,	Дис	скретные случайные величины	8
	12.1	Закон распределения	8
	12.2	Функция распределения	8
	12.3	Основные дискретные распределения	8
13	Неп	прерывные случайные величины	9
	13.1	Плотность распределения	9
	13.2	Свойства плотности распределения	9
	13.3	Основные непрерывные распределения	9
14	Чис	словые характеристики случайных величин	9
	14.1	Математическое ожидание	9
	14.2	Дисперсия	10
	14.3	Среднее квадратическое отклонение	10
	14.4	Моменты случайной величины	10
	14.5	Коэффициенты асимметрии и эксцесса	10
	14.6	Мода и медиана	10
15	Осн	новные законы распределения	11
	15.1	Нормальное распределение $N(\mu, \sigma^2)$	11
	15.2	Показательное распределение $Exp(\lambda)$	11
	15.3	Равномерное распределение $U(a,b)$	11
			11
16	Мно	огомерные случайные величины	12
		- · · · · ·	12
			12
			12
			12
			12
17]	Пре	едельные теоремы	13
	-	• •	13
			13
			13
18	Цеп	ти Маркова	13
	•	-	13
			13
			13
			14
			14

1 Основные понятия и определения

1.1 Случайное событие

Определение 1.1. Случайное событие — это событие, которое может произойти или не произойти в результате испытания (эксперимента).

Виды событий:

- Достоверное событие (Ω) событие, которое обязательно произойдет
- **Невозможное событие** (\emptyset) событие, которое не может произойти
- Элементарное событие (ω) событие, которое нельзя разложить на более простые
- Составное событие событие, состоящее из нескольких элементарных событий

1.2 Пространство элементарных событий

Определение 1.2. Пространство элементарных событий Ω — множество всех возможных исходов испытания.

Пример 1.1. Примеры пространств элементарных событий:

- Бросание монеты: $\Omega = \{$ герб, решка $\}$
- Бросание кубика: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Измерение температуры: $\Omega = (-\infty, +\infty)$

1.3 Алгебра событий

События можно рассматривать как подмножества пространства элементарных событий Ω . Операции над событиями:

- Сумма событий $A \cup B$ происходит хотя бы одно из событий A или B
- Произведение событий $A \cap B$ происходят оба события A и B одновременно
- **Разность событий** $A \setminus B$ происходит A, но не происходит B
- Дополнение события \overline{A} не происходит событие A

2 Классическое определение вероятности

2.1 Определение

Определение 2.1. Если пространство элементарных событий конечно и все элементарные события равновозможны, то вероятность события A равна:

$$P(A) = \frac{m}{n}$$

где:

- m число элементарных событий, благоприятствующих A
- n общее число элементарных событий

2.2 Свойства классической вероятности

Свойство 2.1. 1. $0 \le P(A) \le 1$

2.
$$P(\Omega) = 1$$

$$3. P(\emptyset) = 0$$

4. Если события A и B несовместны, то $P(A \cup B) = P(A) + P(B)$

2.3 Основные формулы комбинаторики

• Размещения без повторений: $A_n^k = \frac{n!}{(n-k)!}$

 \bullet Размещения с повторениями: $\overline{A}_n^k=n^k$

• Перестановки: $P_n = n!$

ullet Сочетания без повторений: $C_n^k = \frac{n!}{k!(n-k)!}$

• Сочетания с повторениями: $\overline{C}_n^k = C_{n+k-1}^k$

3 Геометрическая вероятность

3.1 Определение

Определение 3.1. Если множество элементарных событий представляет собой некоторую геометрическую фигуру, а событие A соответствует части этой фигуры, то:

$$P(A) = \frac{S(A)}{S(\Omega)}$$

где S(A) и $S(\Omega)$ — площади (объемы, длины) соответствующих областей.

3.2 Парадокс Бертрана

Пример 3.1. Классический пример неоднозначности в определении геометрической вероятности при неточной постановке задачи.

4 Алгебра событий

4.1 Законы алгебры событий

• Коммутативность:

$$-A \cup B = B \cup A$$

$$- A \cap B = B \cap A$$

• Ассоциативность:

$$-\ (A\cup B)\cup C=A\cup (B\cup C)$$

$$-(A \cap B) \cap C = A \cap (B \cap C)$$

• Дистрибутивность:

$$-A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$-A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

• Законы де Моргана:

$$- \overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$- \ \overline{A \cap B} = \overline{A} \cup \overline{B}$$

5 Аксиомы теории вероятностей

5.1 Аксиоматика Колмогорова

Определение 5.1. Пусть (Ω, \mathcal{F}, P) — вероятностное пространство, где:

- ullet Ω пространство элементарных событий
- ullet $\mathcal{F}-\sigma$ -алгебра событий
- P вероятностная мера

Аксиомы:

- 1. **Неотрицательность:** $P(A) \ge 0$ для любого $A \in \mathcal{F}$
- 2. **Нормированность:** $P(\Omega) = 1$
- 3. Счетная аддитивность: Для попарно несовместных событий A_1, A_2, \dots

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

5.2 Следствия из аксиом

Свойство 5.1. 1. $P(\emptyset) = 0$

$$2. P(\overline{A}) = 1 - P(A)$$

3.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

4. Если
$$A \subseteq B$$
, то $P(A) \le P(B)$

6 Условная вероятность

6.1 Определение

Определение 6.1. Условная вероятность события A при условии, что произошло событие B (P(B)>0):

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

6.2 Свойства условной вероятности

Свойство 6.1. При фиксированном B условная вероятность $P(\cdot|B)$ удовлетворяет всем аксиомам вероятности:

1.
$$P(A|B) \ge 0$$

$$2. \ P(\Omega|B) = 1$$

3. Для несовместных событий:
$$P(A_1 \cup A_2|B) = P(A_1|B) + P(A_2|B)$$

6.3 Теорема умножения

$$P(A \cap B) = P(A|B) \cdot P(B) = P(B|A) \cdot P(A)$$

Для нескольких событий:

$$P\left(\bigcap_{i=1}^{n} A_i\right) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_1 \cap A_2) \cdots P\left(A_n \left|\bigcap_{i=1}^{n-1} A_i\right.\right)$$

7 Независимость событий

7.1 Независимость двух событий

Определение 7.1. События А и В независимы, если:

$$P(A \cap B) = P(A) \cdot P(B)$$

Эквивалентные условия (при P(B) > 0):

- $\bullet \ P(A|B) = P(A)$
- $\bullet \ P(B|A) = P(B)$

7.2 Независимость нескольких событий

Определение 7.2. События A_1, A_2, \ldots, A_n независимы в совокупности, если для любого подмножества индексов $\{i_1, i_2, \ldots, i_k\}$:

$$P\left(\bigcap_{j=1}^{k} A_{i_j}\right) = \prod_{j=1}^{k} P(A_{i_j})$$

7.3 Попарная независимость

Определение 7.3. События **попарно независимы**, если любые два из них независимы. Попарная независимость не влечет независимость в совокупности.

8 Формула полной вероятности и формула Байеса

8.1 Формула полной вероятности

Теорема 8.1. Пусть события H_1, H_2, \dots, H_n образуют **полную группу** (попарно несовместны и их объединение равно Ω), и $P(H_i) > 0$. Тогда для любого события A:

$$P(A) = \sum_{i=1}^{n} P(A|H_i) \cdot P(H_i)$$

События H_1, H_2, \dots, H_n называются **гипотезами**.

8.2 Формула Байеса

Теорема 8.2. При тех же условиях, если P(A) > 0, то:

$$P(H_i|A) = \frac{P(A|H_i) \cdot P(H_i)}{\sum_{i=1}^{n} P(A|H_i) \cdot P(H_i)}$$

Вероятности $P(H_i)$ называются **априорными**, а $P(H_i|A)$ — **апостериорными**.

9 Повторные независимые испытания

9.1 Схема Бернулли

Определение 9.1. Проводится n независимых испытаний, в каждом из которых событие A происходит с вероятностью p (и не происходит с вероятностью q = 1 - p).

Биномиальное распределение: Вероятность того, что событие A произойдет ровно k раз:

$$P(\xi = k) = C_n^k \cdot p^k \cdot q^{n-k}$$

9.2 Наивероятнейшее число успехов

Определение 9.2. k_0 — наивероятнейшее число успехов, если $P(\xi = k_0) \ge P(\xi = k)$ для всех k. Находится из неравенства:

$$np - q \le k_0 \le np + p$$

9.3 Предельные теоремы

Теорема 9.1 (Пуассона). При $n \to \infty$, $p \to 0$, $np \to \lambda$:

$$P(\xi = k) \to \frac{\lambda^k}{k!} e^{-\lambda}$$

Теорема 9.2 (Локальная теорема Лапласа). При больших n и не слишком малых p и q:

$$P(\xi = k) \approx \frac{1}{\sqrt{2\pi npq}} e^{-\frac{(k-np)^2}{2npq}}$$

Теорема 9.3 (Интегральная теорема Лапласа).

$$P(k_1 \le \xi \le k_2) \approx \Phi\left(\frac{k_2 - np}{\sqrt{npq}}\right) - \Phi\left(\frac{k_1 - np}{\sqrt{npq}}\right)$$

где $\Phi(x)$ — функция Лапласа.

10 Случайные величины

10.1 Определение

Определение 10.1. Случайная величина ξ — это функция, определенная на пространстве элементарных событий Ω и принимающая действительные значения.

Формально: $\xi:\Omega\to\mathbb{R}$

10.2 Типы случайных величин

- Дискретная принимает конечное или счетное множество значений
- Непрерывная принимает значения из некоторого интервала
- Смешанная комбинация дискретной и непрерывной

10.3 События, связанные со случайной величиной

- $\{\xi=x\}$ событие, состоящее в том, что ξ принимает значение x
- $\{\xi < x\}$ событие, состоящее в том, что ξ принимает значение меньше x
- $\{a < \xi \le b\}$ событие, состоящее в том, что ξ принимает значение из интервала (a,b]

11 Функция распределения

11.1 Определение

Определение 11.1. Функция распределения случайной величины ξ :

$$F(x) = P(\xi < x)$$

11.2 Свойства функции распределения

Свойство 11.1. 1. Неубывание: $x_1 < x_2 \implies F(x_1) \le F(x_2)$

- 2. **Ограниченность:** $0 \le F(x) \le 1$
- 3. Предельные значения:
 - $\lim_{x\to-\infty} F(x) = 0$
 - $\lim_{x\to+\infty} F(x) = 1$
- 4. Непрерывность слева: F(x 0) = F(x)
- 5. $P(a \le \xi < b) = F(b) F(a)$
- 6. $P(\xi = a) = F(a) F(a 0)$

12 Дискретные случайные величины

12.1 Закон распределения

Определение 12.1. Дискретная случайная величина полностью характеризуется **рядом распределения**:

где
$$p_i = P(\xi = x_i), p_i \ge 0, \sum p_i = 1$$

12.2 Функция распределения

$$F(x) = \sum_{x_i < x} p_i$$

Функция распределения дискретной случайной величины является ступенчатой функцией.

12.3 Основные дискретные распределения

• Биномиальное распределение B(n, p):

$$P(\xi = k) = C_n^k \cdot p^k \cdot (1 - p)^{n - k}, \quad k = 0, 1, \dots, n$$

• Распределение Пуассона (λ) :

$$P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \dots$$

• Геометрическое распределение Geom(p):

$$P(\xi = k) = (1 - p)^{k-1} \cdot p, \quad k = 1, 2, 3, \dots$$

• Гипергеометрическое распределение:

$$P(\xi = k) = \frac{C_m^k C_{n-m}^{n-k}}{C_n^n}$$

13 Непрерывные случайные величины

13.1 Плотность распределения

Определение 13.1. Непрерывная случайная величина характеризуется плотностью распределения f(x) такой, что:

 $F(x) = \int_{-\infty}^{x} f(t)dt$

13.2 Свойства плотности распределения

Свойство 13.1. 1. $f(x) \ge 0$ для всех x

- 2. $\int_{-\infty}^{+\infty} f(x)dx = 1$ (условие нормировки)
- 3. $P(a < \xi \le b) = \int_a^b f(x) dx$
- 4. f(x) = F'(x) в точках непрерывности
- 5. $P(\xi = a) = 0$ для любого a

13.3 Основные непрерывные распределения

• Равномерное распределение U(a, b):

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{если } a \le x \le b \\ 0, & \text{иначе} \end{cases}$$

• Нормальное распределение $N(\mu, \sigma^2)$:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• Показательное распределение $Exp(\lambda)$:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{если } x \ge 0\\ 0, & \text{если } x < 0 \end{cases}$$

• Гамма-распределение $\Gamma(\alpha,\beta)$:

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \quad x > 0$$

14 Числовые характеристики случайных величин

14.1 Математическое ожидание

Определение 14.1. Для дискретной случайной величины:

$$E[\xi] = \sum_{i} x_i \cdot p_i$$

Для непрерывной случайной величины:

$$E[\xi] = \int_{-\infty}^{+\infty} x \cdot f(x) dx$$

Свойство 14.1. Свойства математического ожидания:

- 1. E[c] = c (константа)
- 2. $E[c\xi] = c \cdot E[\xi]$
- 3. $E[\xi + \eta] = E[\xi] + E[\eta]$
- 4. Если ξ и η независимы, то $E[\xi\eta] = E[\xi] \cdot E[\eta]$

14.2 Дисперсия

Определение 14.2.

$$D[\xi] = E[(\xi - E[\xi])^2] = E[\xi^2] - (E[\xi])^2$$

Свойство 14.2. Свойства дисперсии:

- 1. D[c] = 0
- 2. $D[c\xi] = c^2 \cdot D[\xi]$
- 3. $D[\xi + c] = D[\xi]$
- 4. Если ξ и η независимы, то $D[\xi + \eta] = D[\xi] + D[\eta]$

14.3 Среднее квадратическое отклонение

Определение 14.3.

$$\sigma[\xi] = \sqrt{D[\xi]}$$

14.4 Моменты случайной величины

Определение 14.4. Начальный момент k-го порядка:

$$\mu_k = E[\xi^k]$$

Центральный момент *k*-го порядка:

$$\mu_k = E[(\xi - E[\xi])^k]$$

Связь:
$$\mu_1 = E[\xi], \ \mu_2 = D[\xi]$$

14.5 Коэффициенты асимметрии и эксцесса

Определение 14.5. Коэффициент асимметрии:

$$Skew[\xi] = \frac{\mu_3}{\sigma^3}$$

Коэффициент эксцесса:

$$Kurt[\xi] = \frac{\mu_4}{\sigma^4} - 3$$

14.6 Мода и медиана

Определение 14.6. Мода — значение случайной величины, имеющее наибольшую вероятность (для дискретных) или наибольшую плотность (для непрерывных).

Медиана Me — такое число, что $P(\xi < Me) = P(\xi > Me) = \frac{1}{2}$.

15 Основные законы распределения

15.1 Нормальное распределение $N(\mu, \sigma^2)$

Определение 15.1. Плотность:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Характеристики:

- $E[\xi] = \mu$
- $\bullet \ D[\xi] = \sigma^2$
- ullet Симметрично относительно μ

Определение 15.2. Стандартное нормальное распределение N(0,1):

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Теорема 15.1 (Правило трех сигм).

$$P(|\xi - \mu| < 3\sigma) \approx 0.9973$$

15.2 Показательное распределение $Exp(\lambda)$

Определение 15.3. Плотность:

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0$$

Характеристики:

- $E[\xi] = \frac{1}{\lambda}$
- $D[\xi] = \frac{1}{\lambda^2}$
- Обладает свойством "отсутствия памяти"

15.3 Равномерное распределение U(a,b)

Определение 15.4. Плотность:

$$f(x) = \frac{1}{b-a}, \quad a \le x \le b$$

Характеристики:

- $E[\xi] = \frac{a+b}{2}$
- $D[\xi] = \frac{(b-a)^2}{12}$

15.4 Распределение Пуассона (λ)

Определение 15.5. Вероятности:

$$P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

Характеристики:

- $E[\xi] = \lambda$
- $D[\xi] = \lambda$

16 Многомерные случайные величины

16.1 Двумерные случайные величины

Определение 16.1. Совместная функция распределения:

$$F(x, y) = P(\xi < x, \eta < y)$$

Для дискретных величин — совместный ряд распределения:

$$P(\xi = x_i, \eta = y_j) = p_{ij}$$

Для непрерывных величин — совместная плотность:

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

16.2 Маргинальные распределения

Определение 16.2. Функции распределения:

- $F_{\xi}(x) = F(x, +\infty)$
- $F_{\eta}(y) = F(+\infty, y)$

Плотности:

- $f_{\xi}(x) = \int_{-\infty}^{+\infty} f(x, y) dy$
- $f_{\eta}(y) = \int_{-\infty}^{+\infty} f(x, y) dx$

16.3 Независимость случайных величин

Определение 16.3. Случайные величины ξ и η **независимы**, если:

$$F(x,y) = F_{\xi}(x) \cdot F_{\eta}(y)$$

Эквивалентно:

$$f(x,y) = f_{\xi}(x) \cdot f_{\eta}(y)$$

16.4 Условные распределения

Определение 16.4. Условная плотность:

$$f_{\xi|\eta}(x|y) = rac{f(x,y)}{f_{\eta}(y)}, \quad ext{ecли } f_{\eta}(y) > 0$$

16.5 Ковариация и корреляция

Определение 16.5. Ковариация:

$$Cov(\xi, \eta) = E[(\xi - E[\xi])(\eta - E[\eta])] = E[\xi \eta] - E[\xi]E[\eta]$$

Коэффициент корреляции:

$$\rho(\xi, \eta) = \frac{\operatorname{Cov}(\xi, \eta)}{\sigma_{\xi} \cdot \sigma_{\eta}}$$

Свойство 16.1. Свойства:

- $-1 \le \rho(\xi, \eta) \le 1$
- Если ξ и η независимы, то $\rho(\xi,\eta)=0$
- $|
 ho(\xi,\eta)|=1\iff$ существует линейная зависимость

17 Предельные теоремы

17.1 Неравенства

Теорема 17.1 (Неравенство Маркова). Если $\xi \geq 0$, то

$$P(\xi \ge t) \le \frac{E[\xi]}{t}$$

Теорема 17.2 (Неравенство Чебышева).

$$P(|\xi - E[\xi]| \ge t) \le \frac{D[\xi]}{t^2}$$

17.2 Закон больших чисел

Теорема 17.3 (Слабый закон больших чисел (теорема Чебышева)). Если $\xi_1, \xi_2, \dots, \xi_n$ — независимые случайные величины с конечными математическими ожиданиями и дисперсиями, ограниченными одной константой, то:

$$\frac{\xi_1 + \xi_2 + \dots + \xi_n}{n} \xrightarrow{P} \frac{E[\xi_1] + E[\xi_2] + \dots + E[\xi_n]}{n}$$

Теорема 17.4 (Усиленный закон больших чисел (теорема Колмогорова)). При более сильных условиях сходимость происходит почти наверное.

17.3 Центральная предельная теорема

Теорема 17.5 (Теорема Ляпунова). Если $\xi_1, \xi_2, \dots, \xi_n$ — независимые случайные величины с конечными математическими ожиданиями a_i и дисперсиями σ_i^2 , и выполняется условие Ляпунова, то:

$$\frac{\sum \xi_i - \sum E_i}{\sqrt{\sum \sigma_i^2}} \xrightarrow{d} N(0, 1)$$

Теорема 17.6 (Теорема Муавра-Лапласа). Частный случай ЦПТ для схемы Бернулли.

18 Цепи Маркова

18.1 Определение

Определение 18.1. Цепь Маркова — последовательность случайных величин X_0, X_1, X_2, \ldots , такая что:

$$P(X_{n+1} = j | X_0 = i_0, X_1 = i_1, \dots, X_n = i) = P(X_{n+1} = j | X_n = i)$$

18.2 Переходные вероятности

Определение 18.2. $p_{ij}(n)$ — вероятность перехода из состояния i в состояние j за n шагов. Матрица переходных вероятностей:

$$P = (p_{ij}),$$
 где $\sum_{i} p_{ij} = 1$

18.3 Уравнение Чепмена-Колмогорова

Теорема 18.1.

$$p_{ij}(m+n) = \sum_{k} p_{ik}(m) \cdot p_{kj}(n)$$

18.4 Классификация состояний

- Достижимое состояние: j достижимо из i, если $p_{ij}(n) > 0$ для некоторого n
- Сообщающиеся состояния: i и j сообщаются, если каждое достижимо из другого
- Неприводимая цепь: все состояния сообщаются
- Возвратное состояние: вероятность возвращения равна 1
- Периодическое состояние: $HOД\{n: p_{ii}(n) > 0\} > 1$

18.5 Стационарное распределение

Определение 18.3. Распределение $\pi = (\pi_1, \pi_2, \dots)$ называется **стационарным**, если:

$$\pi_j = \sum_i \pi_i p_{ij}$$
 для всех j

и
$$\sum_j \pi_j = 1$$
.