

FCC TEST REPORT

Report No: STS1508115F01

Issued for

MivaTek Limited

5/F, SPA Centre 53-55 Lockhart Road Wancha

Product Name:	Fall detection sensor
Brand Name:	MIVATEK
Model No.:	FDS1300
Series Model:	N/A
FCC ID:	2AE59FDS01
Test Standard:	FCC Part 15.231

Any reproduction of this document must be done in full. No single part of this document may permission from STS, All Test Data Presented in this report is only applicable to presented Test

Shenzhen STS Test Services Co., Ltd.
1/F, Building B, Zhuoke Science Park, Chongqing Road, Fuyong, Baoan District, Shenzhen, China
TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

TEST RESULT CERTIFICATION

Applicant's name : MivaTek Limited

Address: 5/F, SPA Centre 53-55 Lockhart Road Wancha

Manufacture's Name : PrimeTechnology(Guangzhou) Inc.

Address: No.19,BaoyingNan Road,GuangzhouFree Trade Zone,Guangzhou,

China

Product description

Product name : Fall detection sensor

Brand name : MIVATEK

Model and/or type reference FDS1300

:

Standards : FCC Part 15,231

Test procedure : ANSI C63.10-2013

This device described above has been tested by STS, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test :

Date of performance of tests 01 Sep. 2015 ~06 Sep. 2015

:

Date of Issue: 07 Sep. 2015

Test Result : Pass

Testing Engineer :

(Tony Liu)

Technical Manager :

(Vita Li

Authorized Signatory:

(Bovey Yang)

Page 3 of 31

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF EUT	8
2.2 DESCRIPTION OF TEST MODES	10
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.4 DESCRIPTION OF SUPPORT UNITS	12
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	13
3. EMC EMISSION TEST	14
3.1 CONDUCTED EMISSION MEASUREMENT	14
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS	14
3.1.2 TEST PROCEDURE	15
3.1.3 TEST SETUP 3.1.4 EUT OPERATING CONDITIONS	15 15
3.1.5 TEST RESULTS	16
3.2 RADIATED EMISSION MEASUREMENT	18
3.2.1 RADIATED EMISSION LIMITS	18
3.2.2 TEST PROCEDURE	19
3.2.3 DEVIATION FROM TEST STANDARD	19
3.2.4 TEST SETUP 3.2.5 EUT OPERATING CONDITIONS	20 20
3.2.6 TEST RESULTS	21
4. BANDWIDTH TEST	24
4.1 APPLIED PROCEDURES / LIMIT	24
4.2 TEST REQUIREMENTS	24
4.3 TEST PROCEDURE	24
4.4 TEST SETUP	24
4.5 EUT OPERATION CONDITIONS	24
4.6 TEST RESULTS	25
5. PERIODIC OPERATION	26
5.1 TEST PROCEDURE	26
5.2 TEST SETUP	26
5.3 EUT OPERATION CONDITIONS	26
5.4 TEST RESULTS	27
6. ANTENNA REQUIREMENT	29

Table of Contents	Page
6.1 STANDARD REQUIREMENT	29
6.2 EUT ANTENNA	29
APPENDIX- PHOTOS OF TEST SETUP	30

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	07 Sep. 2015	STS1508115F01	ALL	Initial Issue

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.231) , Subpart C				
Standard Section	Judgment	Remark		
15.207	Conducted Emission	PASS		
15.205(a)/15.209/ 15.231.(b)	Radiated Spurious Emission	PASS		
15.231(a)(1)/ 15.231(b)(2)	Transmission requirement	PASS		
15.231(C)	(C) 20 dB Bandwidth			
15.203	Antenna Requirement	PASS		

NOTE:

- (1)" N/A" denotes test is not applicable in this Test Report
- (2) All tests are according to ANSI C63.4-2014 and ANSI C63.10-2013

1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd.

Add.: 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road,

Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

CNAS Registration No.: L7649;

FCC Registration No.: 842334; IC Registration No.: 12108A-1

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty
1	Conducted Emission (9KHz-150KHz)	±2.88Db
2	Conducted Emission (150KHz-30MHz)	±2.67Db
3	RF power,conducted	±0.70Db
4	Spurious emissions,conducted	±1.19Db
5	All emissions,radiated(<1G) 30MHz-200MHz	±2.83Db
6	All emissions,radiated(<1G) 200MHz-1000MHz	±2.94Db
7	All emissions,radiated(>1G)	±3.03Db
8	Temperature	±0.5°C
9	Humidity	±2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Fall detection sensor
Trade Name	MIVATEK
Model Name	FDS1300
Serial Model	N/A
Model Difference	N/A
Channel List	Please refer to the Note 2.
Frequency band	433.92MHz
Power Rating	Rated Voltage: 3.7V Charge Limit: 4.2V Capacity :70mAh
Hardware version number	
Software versioning number	
Connecting I/O Port(s)	Please refer to the User's Manual

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2

Channel List					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	433.92				

3. Table for Filed Antenna

Ant	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	MIVATEK	FDS1300	ceramic	NA	-1	Antenna

The EUT antenna is ceramic Antenna. No antenna other than that furnished by the responsible party shall be used with the device.

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX Mode

For Radiated Emission			
Final Test Mode Description			
Mode 1	TX Mode		

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Radiated Spurious Emission Test

Conducted Emission Test

2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Fall detection sensor	MIVATEK	FDS1300	N/A	EUT
E-2	PC	HP	500-320cx	N/A	N/A

Item	Shielded Type	Ferrite Core	Length	Note
C-1	unshielded	NO	98cm	N/A

Note:

(1) FCC DOC approved.

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Radiation rest equipment					
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Spectrum Analyzer	Agilent	E4407B	MY50140340	2014.10.25	2015.10.24
Test Receiver	R&S	ESCI	101427	2014.10.25	2015.10.24
Bilog Antenna	TESEQ	CBL6111D	34678	2014.11.25	2015.11.24
Horn Antenna	Schwarzbeck	BBHA 9120D(1201)	9120D-1343	2015.03.06	2016.03.05
50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2015.06.06	2016.06.05
PreAmplifier	Agilent	8449B	60538	2014.10.25	2015.10.24
Loop Antenna	ARA	PLA-1030/B	1029	2015.06.08	2016.06.07
USB RF power sensor	DARE	RPR3006W	15I00041SNO03	2014.10.25	2015.10.24

Conduction Test equipment

					,
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESPI	102086	2014.11.20	2015.11.19
LISN	R&S	ENV216	101242	2014.10.25	2015.10.24
LISN	EMCO	3810/2NM	000-23625	2014.10.25	2015.10.24

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

Operating frequency band. In case the emission fall within the restricted band specified on Part 15.231.207(a) limit in the table below has to be followed.

	Class B	Ctandard	
FREQUENCY (MHz)	Quasi-peak	Average	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	56.00	46.00	CISPR
5.0 -30.0	60.00	50.00	CISPR

0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting	
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 kHz	

3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.1.3 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.5 TEST RESULTS

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase:	L
Test Voltage:	DC 3.7V	Test Mode:	Mode 1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV/m)	Margin (dB)	Detector
1	0.1620	47.87	10.00	57.87	65.36	-7.49	QP
2	0.1620	25.72	10.00	35.72	55.36	-19.64	AVG
3	0.2860	33.68	9.91	43.59	60.64	-17.05	QP
4	0.2860	17.93	9.91	27.84	50.64	-22.80	AVG
5	1.2100	26.41	9.92	36.33	56.00	-19.67	QP
6	1.2100	13.84	9.92	23.76	46.00	-22.24	AVG
7	3.8340	29.27	10.20	39.47	56.00	-16.53	QP
8	3.8340	14.13	10.20	24.33	46.00	-21.67	AVG
9	11.0700	26.66	10.38	37.04	60.00	-22.96	QP
10	11.0700	12.80	10.38	23.18	50.00	-26.82	AVG
11	20.3180	28.62	10.78	39.40	60.00	-20.60	QP
12	20.3180	18.72	10.78	29.50	50.00	-20.50	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.
- 3. N/A means All Data have pass Limit

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase:	Ν
Test Voltage:	DC 3.7V	Test Mode:	Mode 1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV/m)	Margin (dB)	Detector
1	0.1700	45.54	10.00	55.54	64.96	-9.42	QP
2	0.1700	30.28	10.00	40.28	54.96	-14.68	AVG
3	0.3620	34.88	9.96	44.84	58.68	-13.84	QP
4	0.3620	20.70	9.96	30.66	48.68	-18.02	AVG
5	1.7060	23.48	10.00	33.48	56.00	-22.52	QP
6	1.7060	10.22	10.00	20.22	46.00	-25.78	AVG
7	4.2700	25.33	10.19	35.52	56.00	-20.48	QP
8	4.2700	14.19	10.19	24.38	46.00	-21.62	AVG
9	10.8900	23.89	10.29	34.18	60.00	-25.82	QP
10	10.8900	12.39	10.29	22.68	50.00	-27.32	AVG
11	19.3700	26.70	10.56	37.26	60.00	-22.74	QP
12	19.3700	15.50	10.56	26.06	50.00	-23.94	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.
- 3. N/A means All Data have pass Limit 100.0 dBuV

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on Part 15.205(a), then the Part 15.209(a) and Part 15.231(b) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

TOOM 12					
Frequencies	Field Strength	Measurement Distance			
(MHz)	(micorvolts/meter)	(meters)			
0.009~0.490	2400/F(KHz)	300			
0.490~1.705	24000/F(KHz)	30			
1.705~30.0	30	30			
30~40.66	100	3			
40.70~70	100	3			

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Class B (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted	4 MUz / 2 MUz
band)	1 MHz / 3 MHz

Receiver Parameter	Setting	
Attenuation	Auto	
	9kHz~150kHz / RB 200Hz for QP	
Start Stan Fraguency	150kHz~30MHz / RB 9kHz for QP	
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for PK	
	Above 1GHz / RB 1MHz VB 1M for PK	

3.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit,
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.2.3 DEVIATION FROM TEST STANDARD No deviation

3.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.6 TEST RESULTS

INTRODUCTION TO PDCF

reference: (§15.35 Measurement detector functions and bandwidths.)

a. Part 15 of the FCC Rules provides for the operation of low power communication devices without an individual license (e.g., intrusion detectors, pulsed water tank level gauges, etc.), subject to certain requirements. Some of these devices use extremely narrow pulses to generate wideband emissions, which are measured to determine compliance with the rules. These measurements are typically performed with a receiver or spectrum analyzer. Depending on a number of factors (e.g., resolution bandwidth, pulsewidth, etc.), the spectrum analyzer may not always display the true peak value of the measured emission. This effect, called "pulse desensitization," relates to the capabilities of the measuring instrument. For the measurement and reporting of the true peak of pulsed emissions, it may be necessary to apply a "pulse desensitization correction factor" (PDCF) to the measured value, pursuant to 47 CFR 15.35(a).

If using spectrum analyzer to measure pulse signal, it have to make sure the RBW use is at least 2/PW.

•When RBW is less than 2/PW , you are able to measure the true peak level of the pulse signal. If this is the case , PDCF is required to compensate to determine true peak value. Pulse desensitization:

PW =1458usec,Period=2726usec, Level=A RBW>2/PW=1.37K, PRF=1/T=0.5K,

Not: 2 / PW < RBW, first don't need

b. For the actual test, please refer to the ANSI C63.10, Annex C refer to section 5 for more detail

Below 30 MHz

Temperature :	23 ℃	Relative Humidity:	50%
Pressure:	1010 hPa	Polarization:	
Test Voltage:	DC 3.7V		
Test Mode :	TX Mode		

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Between 30MHz - 5000 MHz

Temperature :	23 ℃	Relative Humidity:	50%
Pressure :	1010 hPa	Polarization:	Horizontal/vertical
Test Voltage:	DC 3.7V		
Test Mode:	TX Mode		

Frequency	Meter	Detector table		Corrected	ed Corrected	FCC 15.231/15			
	Reading		Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV/m)	(PK/QP/Av)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
433.92	67.31	PK	116	2.0	Н	18.79	86.10	100.8	-14.70
433.92	63.28	PK	175	1.8	V	18.79	82.07	100.8	-18.73
867.84	25.25	PK	335	1.5	Н	36.32	61.57	80.8	-19.23
867.84	25.11	PK	352	2.2	V	36.32	61.43	80.8	-19.37
1301.76	64.22	PK	292	2.1	I	-17.9	46.32	74	-27.68
1301.76	64.16	PK /	312	2.0	V	-17.9	46.26	74	-27.74
1735.68	62.83	PK	122	2.3	Н	-14.2	48.63	74	-25.37
1735.68	62.74	PK	268	2.3	٧	-14.2	48.54	74	-25.46
2169.60	60.26	PK	215	2.2	Н	-12.3	47.96	74	-26.04
2169.60	60.12	PK	226	1.6	V	-12.3	47.82	74	-26.18

NOTE:

Above 1.5GHz The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

AV = Peak +20Log10(duty cycle) =PK+(-5.43) [refer to section 5 for more detail]

Frequency	PK	Turn table	RX Antenna		Duty cycle	AVG		C Part 5.209/205
	Reading	Angle	Height	Polar	Factor		Limit	Margin
(MHz)	(dBµV/m)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
433.92	86.10	116	2.0	Н	-5.43	80.67	80.8	-0.13
433.92	82.07	175	1.8	V	-5.43	76.64	80.8	-4.16
867.84	61.57	335	1.5	Н	-5.43	56.14	60.8	-4.66
867.84	61.43	352	2.2	V	-5.43	56.00	60.8	-4.80
1301.76	46.32	292	2.1	Н	-5.43	40.89	54	-13.11
1301.76	46.26	312	2.0	٧	-5.43	40.83	54	-13.17
1735.68	48.63	122	2.3	Н	-5.43	43.20	54	-10.80
1735.68	48.54	268	2.3	V	-5.43	43.11	54	-10.89
2169.60	47.96	215	2.2	Н	-5.43	42.53	54	-11.47
2169.60	47.82	226	1.6	V	-5.43	42.39	54	-11.61

4. BANDWIDTH TEST

4.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.231), Subpart C

Section	Test Item	Limit	Frequency Range (MHz)	Result
		The 20dB		
	20 Bandwidth	bandwidth of the		DAGG
45 224(C)		emissions shall not	400.00	
15.231(C)		exceed 0.25% of	433.92	PASS
		the center		
		frequency		

Spectrum Parameter	Setting			
Attenuation	Auto			
Span Frequency	> Measurement Bandwidth			
RB	10 kHz (20dB Bandwidth)			
VB	30 kHz (20dB Bandwidth)			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			

4.2 TEST REQUIREMENTS

1. The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

4.3 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 10KHz, VBW=30KHz, Sweep time = Auto.

4.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

4.5 EUT OPERATION CONDITIONS

TX mode.

4.6 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Pressure:	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX Mode		

Frequency 20dB Bandwidth(kHz)		Limit(kHz)	Result
433.92 MHz	58.804	1084.8	PASS

5. PERIODIC OPERATION

5.1 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,

The Duty Cycle Was Determined By The Following Equation: To Calculate The Actual Field Intensity, The Duty Cycle Correction Factor In Decibel Is Needed For Later Use And Can Be Obtained From Following Conversion

Duty Cycle(%)=Total On Interval In A Complete Pulse Train/ Length Of A Complete Pulse Train * % Duty Cycle Correction Factor(Db)=20 * Log10(Duty Cycle(%)

5.2 TEST SETUP

EUT SPECTRUM ANALYZER

5.3 EUT OPERATION CONDITIONS TX mode.

5.4 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX Mode		

FCC Part15 (15.231(a)				
Total On interval in a complete pulse train(ms)	1.062+0.396=1.458			
Length of a complete pulse train(ms)	2.726			
Duty Cycle(%)	53.49%			
Duty Cycle Correction Factor(dB)	-5.43			

Refer to the duty cycle plot (as below), This device meets the FCC requirement. Length of a complete pulse train

Remark:FCC part15.35(c) required that a complete pulse train is more than 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

Note:

(1)Refer to the plot (As Below),We find a manually operated transmitter shall employ a switch that will automatically deactivate the transmitteri immediately, within not more than 5 seconds of being released.

(2) The EUT is comply with FCC PART 15 clause 15.231(a)(1) and 15.231(a)(2).manually working mode and automatically working mode are pre-tested and only the worst result is reported.

6. ANTENNA REQUIREMENT

6.1 STANDARD REQUIREMENT

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna to the intentional radiator shall be considered sufficient to comply with the provisions of this section. This product use a permanent ceramic printed antenna, fulfill the requirement of this section

6.2 EUT ANTENNA

The EUT antenna is ceramic Antenna. It conforms to the standard requirements.

APPENDIX- PHOTOS OF TEST SETUP

Radiated Measurement Photos

Conduction Measurement Photos

* * * * * END OF THE REPORT * * * *