Lectu	ne 4	-In	regrati	ng F	actor	Met	hod a	and	Exact	Equat	ions										
Exis	rence	and	U,	niquer	vess	The	orem	(f	rom	lectu	re 3)										
Consider the differential equation																					
						$y(t_0) =$															
(t_0, y_0) of the) and point	t the function $that the (t_0, y_0)$ $t \in (t_0)$	e partia . Then	l deriva there e	tive $\frac{\partial f}{\partial y}$ exists a	is cont unique	tinuous	in a ne	eighbor	hood											
				,																	
Pica	rd	Itera	tion																		
· Con	struct	seq	venæ	of	func	rions	tha	t ce	nver	e h	act	val	solut	ion							
	dy dt	· = f (3,t)	9	(t ₀) =	y.															
	yolt	:) = y.		nex	it dion:	dy dt	L = f (y., t) ,),(t,)=90	•	-	dy2	- f(y	(ŧ),	t)	42 (t。) =	y.	
		dy:+1																			
,		dt	,	(); ()	, ,	,	ידונ (
ex.	dy	= la	410) = 1				f (4) =	y f	(90):	= f(1)	=									
٠,٠	dť	J	J	- 1	1.6		d	Y' =		h	= A 1	t									
50l by	y = e ution looki	just gat i)		90 -	. (dt	Ē	y,	= 1 +	t), (o) =	∧ =							
ĺ							d.	12 _ \	= 1+	t	4-10) = 1									
dy	3	_ 1	. + .	t2			d.	t J	+ + 1	2 2 + A	J2 ((0)=	A = 1								
		_ =								$+\frac{t^2}{2}$,								
93	= t+	12 +	to	+ A	4,(0)	= A =		JZ	, ,	2											
y3 =	1+t	+ + 2	+ + 3		-		es t	D ac	tual	solut	ion	a s	9-7-	0							
ex.	dy	= y ² +	t																		
	0.0))2 + (5=4-	rt	y,	(0)=	2	5.(t)=	A+ 4t	+ 12	y	(t)=	2 +4	$t + \frac{t}{2}$	2	
۸.																					
dt	2 = (1),(t))2 + t	= (2	+4t	$+\frac{t^2}{2}$	2 + 1		12(0)	= 2		e , .									
First	0 -	der	Equat	ions																	
·firs					dy dt	+ PL	t) y :	= QL	:)												
)y=0											
				dy =																	
						- P(t)	d+														
								t)/t		L 0 ~	C			,		1-	2 1	.1			
				.M	9(t)=	ec-Si	(E)dt	= A	et A=	t)dt	~ ge	neva	solut	hon	nogen	cous	6 roer			

ex.	dy	+ = y	= 0	PL	(+) =	r	J-P	(t)dt	=	rdt =	-rt								
	u :	Ae	rt																
	J																		
ex.	cas t	dy	= 51n	t u															
			- sint																
	005	dt	- tant	9 - 0	_	P/+) = - t	aut.	1-	p/+),	lt =	[tau	(+)d	<u> </u>	lulco	stl			
		df	- tant	9=	ام اده ه	tl	A	, un o	J			J , 500	Cc / 4		,				
			y =	Ae	Ln (cos	-1 =	cost	- Section											