Suppose $T \in \mathcal{L}(\mathcal{P}(\mathbf{F}))$ is injective and $\deg Tp \leq \deg p$ for every $p \in \mathcal{P}(\mathbf{R})$. Then T must be an isomorphism.

Suppose $T \in \mathcal{L}(\mathcal{P}(\mathbf{F}))$ is injective and $\deg Tp \leq \deg p$ for every $p \in \mathcal{P}(\mathbf{R})$. Then T must be an isomorphism.

What if the word "injective" is replaced with the word "surjective" in the above statement?

- 2. Regard C as a real vector space and R as a subspace of C. Which of the following is a basis for the quotient C/R?
- (A) 1, i
- (B) $1 + \mathbf{R}, i + \mathbf{R}$
- (C) $573.1224 + \mathbf{R}$
- (D) None of the above.

Suppose $T \in \mathcal{L}(\mathbf{C}^3)$ is surjective. Then $\mathbf{C}^3/\mathrm{null}\,T = \{0\}$.

- 4. Suppose V is an n-dimensional vector space and $\phi \in \mathcal{L}(V, \mathbf{F})$ is nonzero. Then $\dim(V/(\operatorname{null} \phi))$ is...
- (A) 1
- (B) n-1
- (C) n
- (D) None of the above.

Suppose V is a vector space and U is a subspace such that v_1+U,v_2+U is a basis for V/U. Then

$$V = U \oplus \operatorname{span}(v_1, v_2).$$

Suppose
$$U=\{(x,x,y): x,y\in {\bf C}\}\subseteq {\bf C}^3$$
. Then

$$(i, 1+i, 1) + U = (1, 2, 17) + U.$$

If V and W are finite dimensional, then $\mathcal{L}(V,W)$ is isomorphic to $\mathcal{L}(W',V')$.

Suppose ${\cal U}$ and ${\cal W}$ are subspaces of a vector space ${\cal V}.$ Then

$$(U+W)^0 = U^0 \cap W^0.$$

9. Suppose V is a vector space, $T \in \mathcal{L}(V)$ and v_1, v_2, v_3 is a basis of V such that

$$M(T) = \begin{pmatrix} 0 & 2 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Let $U=\mathrm{span}(v_1)$ and observe that v_2+U,v_3+U is a basis for U. Let $\pi:V\to V/U$ be the quotient map given by $\pi(v)=v+U.$ What is $M(\phi\circ T)$ with respect to the basis v_1,v_2,v_3 for V and v_2+U,v_3+U for V/U?