

Modern Digital System Design ECE 2372 / Fall 2018 / Lecture 01

Texas Tech University Dr. Tooraj Nikoubin Introduction,
Number Systems and Conversion

Grading Scheme

Course Requirements and Corresponding Weight							
1	Test # 1	15%					
2	Test # 2	15%					
3	Final exam	30%					
4	Project	20%					
5	Homework and Quiz	20%					

Bonus ?%

Grading and Scheme

Class attending policy

- 1. Efficient study and class attention
- 2. Cellphone & Laptop?
- 3. Class activities (Quiz, Present & absence)
- 4. Polite or shy?
- 5. Challenge or stress?
- 6. Who is Brave?
- 7. Sample of Tests

Main Sources

1-M.M. Mano and C.R. Kime,
 "Logic and Computer Design Fundamentals" 4 th Edition,

• 2-Charles H.Roth, Jr. and Larry L. Kinney,

"Fundamentals of Logic Design"

Pearson -Prentice Hall.

Other References

- 1. Victor P. Nelson, H. Troy Nagle, Bill D. Carroll, David Irwin "Digital Logic Circuit Analysis and Design"
- 2. M. Mano, "*Digital Design*", 3rd Edition, Prentice Hall, Upper-Saddle River, New Jersey, 2002
- 3. Nazeib M. Botros, "HDL programming Fundamentals VHDL and Verilog"
- Stephen Brown and Zvonko Vranesic, "Fundamentals of Digital Logic with Verilog Design", McGraw-Hill, 2003

Main Sources for the test

1-PowerPoint slides

2-Charles H.Roth, Jr. and Larry L. Kinney, "Fundamentals of Logic Design"

3-M.M. Mano and C.R. Kime, "Logic and Computer Design Fundamentals" 4 th Edition, Pearson -Prentice Hall.

4. Homework
5. Quiz

6. Sample of test

ECE 2372 (Modern Digital System Design)

TA: TBA
Tutors: TBA

Email: Office Hours:

	8	9	10	11	12	1	2	3
Monday								
Tuesday			. 6					
Wednesday								
Thursday							-	
Friday								
Saturday								
Sunday							r• 	

Office: ECE Computer Lab

Digital and Analog Signals

Analog signal With Infinite possible values

Digital signal With Finite possible values

Example of Digitization Benefit

- Analog signal (e.g., audio) may lose quality
- Voltage levels not saved/copied/transmitted perfectly

 "Sample" voltage at particular rate, save sample using bit encoding

Let bit encoding be:

1 V: "01"

2 V: "10"

3 V: "11"

Dr. Tooraj Nikoubin / Fall 2018 / Lecture 1 / Introduction

A Sample of Digital Board

A Sample of Digital Board

Digital Design

What is digital?

- Digital camera, Digital TV, Digital Watch, Digital
 Radio, Digital City (e-city), Digital Photo Frame ...etc
- Which gives the things in countable form
- Scene (analog) to Image (digital)

• Why digital?

- Countable form, makes easy to manage
- Easy management makes more useful and versatile

What digit?

- How to count: Decimal digit: 0 to 9

What Digit? => Number System

- Famous Number System: Dec, Rom, Bin
- Decimal System: 0 -9
- May evolves: because human have 10 finger
- Roman System
- May evolves to make easy to look and feel
- Pre/Post Concept: (IV, V & VI) is (5-1, 5 & 5+1)
- Binary System, Others (Oct, Hex)
- One can cut an apple in to two

Design & Logic Design

What is design?

- Given problem spec, solve it with available components
- While meeting quantitative (size, cost, power) and qualitative (beauty, elegance)

What is logic design?

- Choose digital logic components to perform specified control, data manipulation, or communication function and their interconnection
- Which logic components to choose?
- Many implementation technologies (fixed-function components, *programmable devices*, individual transistors on a chip, etc.)
- Design optimized/transformed to meet design constraints

Digital Signals with Only Two Values: Binary

- Binary digital signal -- only two possible values
- Typically represented as 0 and 1
 One Binary digit is BIT value
- We'll only consider binary digital signals
- Binary is popular because

- Transistors, the basic digital electric component, operate at *two* states (switch on and switch off)
- Storing/transmitting one of *two* values is easier than three or more (e.g., loud beep or quiet beep, reflection or no reflection)

Number Systems and Conversion

Decimal	Binary	Octal	Hexadecimal
0	00000	0	0
1	00001	1	1
2	00010	2	2
3	00011	3	3
4	00100	4	4
5	00101	5	5
6	00110	6	6
7	00111	7	7
8	01000	10	8
9	01001	11	9
10	01010	12	A
11	01011	13	В
12	01100	14	С
13	01101	15	D
14	01110	16	E
15	01111	17	F
16	10000	20	10

Dr. Tooraj Nikoubin / Fall 2018 / Lecture 1 / Introduction

Outline

- Number System
 Decimal, Binary, Octal, Hex
- Conversion (one to another)
 Decimal to Binary, Octal, Hex & Vice Versa
 Binary to HEX & vice versa
- Other representation
 Signed, Unsigned, Complement

Significant Digits

Decimal (base 10)

- Uses positional representation
- Each digit corresponds to a power of 10 based on its position in the number
- The powers of 10 increment from 0, 1, 2, etc. as you move right to left

$$1,586 = 1 * 10^3 + 5 * 10^2 + 8 * 10^1 + 6 * 10^0$$

Binary (Base 2)

• Two digits: 0, 1

To make the binary numbers more readable, the digits are

often put in groups of 4

```
1010 = 1 * 2^{3} + 0 * 2^{2} + 1 * 2^{1} + 0 * 2^{0}
= 8 + 2
= 10
1100 \ 1001 = 1 * 2^{7} + 1 * 2^{6} + 1 * 2^{3} + 1 * 2^{0}
= 128 + 64 + 8 + 1
= 201
```


$$1 + 8 + 16 + 64 + 128 = 217$$

Binary to Decimal

Answer: 10100 = 20

Answer: 01011 = 11

Answer: 11011 = 27

How to Encode Numbers: Binary Numbers

Working with binary numbers

In base ten, helps to know powers of 10 one, ten, hundred, thousand, ten thousand, ...

In base two, helps to know powers of 2

one, two, four, eight, sixteen, thirty two, sixty four, one hundred twenty eight - Count up by powers of two

29	2 ⁸	27	2 ⁶	2 ⁵	24	2^3	2^2	21	20	
				—					-	
512	256	128	64	32	16	8	4	2	1	

Octal (base 8)

- Shorter & easier to read than binary
- 8 digits: 0, 1, 2, 3, 4, 5, 6, 7,
- Octal numbers

$$136_8 = 1 * 8^2 + 3 * 8^1 + 6 * 8^0$$

= 1 * 64 + 3 * 8 + 6 * 1
= 94₁₀

Hexadecimal (base 16)

- Shorter & easier to read than binary
- 16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- "0x" often precedes hexadecimal numbers

$$0x123 = 1 * 16^{2} + 2 * 16^{1} + 3 * 16^{0}$$
$$= 1 * 256 + 2 * 16 + 3 * 1$$
$$= 256 + 32 + 3$$
$$= 291$$

Fractional Number

Point: Decimal Point, Binary Point, Hexadecimal point

Decimal

$$247.75 = 2x10^2 + 4x10^1 + 7x10^0 + 7x10^{-1} + 5x10^{-2}$$

Binary

$$10.101 = 1x2^{1} + 0x2^{0} + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$$

Hexadecimal

$$6A.7D=6x16^{1}+10x16^{0}+7x16^{-1}+Dx16^{-2}$$

Converting To and From Decimal

Decimal ↔ Binary

Decimal (Base 10)

Successive Division

Binary (Base 2)

- a) Divide the decimal number by 2; the remainder is the LSB of the binary number.
- b) If the quotation is zero, the conversion is complete. Otherwise repeat step (a) using the quotation as the decimal number. The new remainder is the next most significant bit of the **binary** number.

Binary (Base 2)

Weighted Multiplication

Decimal (Base 10)

- a) Multiply each bit of the **binary** number by its corresponding bit- **Multiplication** weighting factor (i.e., Bit-0 \rightarrow 2⁰=1; Bit-1 \rightarrow 2¹=2; Bit-2 \rightarrow 2²=4; etc).
- b) Sum up all of the products in step (a) to get the decimal number.

Decimal to Binary: Subtraction Method

Goal

- Good for human
- Get the binary weights to add up to the decimal quantity
 - Work from left to right
 - (Right to left may fill in 1s that shouldn't have been there – try it).

Desired decimal number: 12

$$\frac{32}{32} \quad \frac{16}{16} \quad \frac{8}{8} \quad \frac{4}{4} \quad \frac{2}{2} \quad \frac{1}{1}$$
=32
too much
$$\frac{0}{32} \quad \frac{1}{16} \quad \frac{1}{8} \quad \frac{1}{4} \quad \frac{1}{2} \quad \frac{1}{1}$$
=16
too much
$$\frac{0}{32} \quad \frac{0}{16} \quad \frac{1}{8} \quad \frac{1}{4} \quad \frac{1}{2} \quad \frac{1}{1}$$
=8
ok, keep going
$$\frac{0}{32} \quad \frac{0}{16} \quad \frac{1}{8} \quad \frac{1}{4} \quad \frac{1}{2} \quad \frac{1}{1}$$
=8+4=12
DONE
$$\frac{0}{32} \quad \frac{0}{16} \quad \frac{1}{8} \quad \frac{1}{4} \quad \frac{0}{2} \quad \frac{0}{1}$$
answer

Decimal to Binary: Subtraction Method

Examples: 39, 27, 18, 7

Decimal to Binary: Division Method

- Good for computer: Divide decimal number by 2 and insert remainder into new binary number.
- Continue dividing quotient by 2 until the quotient is 0.
- Example: Convert decimal number 12 to binary

```
12 div 2 = ( Quo=6 , Rem=0) LSB
6 div 2 = (Quo=3, Rem=0)
3 div 2 = (Quo=1,Rem=1)
1 div 2 = ( Quo=0, Rem=1) MSB
12<sub>10</sub>= 1100<sub>2</sub>
```


Conversions Process Decimal ↔ Base (n)

Decimal (Base 10)

Successive Division

Any Base (Base n)

- Divide the decimal number by **n**; the remainder is the LSB of the **any base** number.
- b) If the quotation is zero, the conversion is complete. Otherwise repeat step (a) using the quotation as the decimal number. The new remainder is the next most significant bit of the **any base** number.

Any Base (Base n) Weighted Multiplication

Decimal (Base 10)

- a) Multiply each bit of the **any base** number by its corresponding bit- **Multiplication** weighting factor (i.e., Bit- $0 \rightarrow n^0 = 1$; Bit- $1 \rightarrow n^1 = n$; Bit- $2 \rightarrow n^2 = 4$; etc).
- b) Sum up all of the products in step (a) to get the decimal number.

Decimal ↔ Octal Conversion

The Process: Successive Division

- Divide number by 8; R is the LSB of the octal number
- While Q is 0
- Using the Q as the decimal number.
- New remainder is MSB of the octal number.

$$8)94$$
 $r = 6 \leftarrow LSB$
 $8)11$ $r = 3$ $94_{10} = 136_8$
 $8)1$ $r = 1 \leftarrow MSB$

Decimal ↔ Hexadecimal Conversion

The Process: Successive Division

- Divide number by 16; R is the LSB of the hex number
- While Q is 0
- Using the Q as the decimal number.
- New remainder is MSB of the hex number.

16) 94
$$r = E \leftarrow LSB$$

16) 5 $r = 5 \leftarrow MSB$
94₁₀ = 5E₁₆

```
|A2B3C|_{6}
|X|_{6}^{5} = 1048576
|0X|_{6}^{4} = 655360
2X|_{6}^{3} = 8|_{92}
|1X|_{6}^{2} = 28|_{6}
3X|_{6}^{1} = 48
|2X|_{6}^{0} = 12
\rightarrow 1048576 + 655360 + 8|_{92} + 28|_{6} + 48 + 12
```


Example: $Hex \rightarrow Octal$

Example:

Convert the hexadecimal number 5AH into its octal equivalent.

Solution:

First convert the hexadecimal number into its decimal equivalent then convert the decimal number into its octal equivalent.

5 A
16 16 8)90
$$r=2 \leftarrow LSB$$

8)91 $r=3$
8)11 $r=3$
8)1 $r=3$
8)1 $r=1 \leftarrow MSB$
 $\therefore 5A_{H} = 132_{8}$

Example: Octal → **Binary**

Example:

Convert the octal number 132₈ into its binary equivalent.

Solution:

First convert the octal number into its decimal equivalent, then convert the decimal number into its binary equivalent.

1 3 2
$$2 \cdot \frac{45}{90} \cdot r = 0 \leftarrow LSB$$

82 81 80 $2 \cdot \frac{22}{45} \cdot r = 1$

64 8 1 $2 \cdot \frac{5}{2} \cdot \frac{11}{11} \cdot r = 1$

64 + 24 + 2 = $90 \cdot \frac{2}{10} \cdot \frac{2}{10} \cdot r = 0$

2)\frac{1}{5} \tau \text{ } r = 0

2)\frac{5}{5} \tau \text{ } r = 1

2)\frac{5}{5} \tau \text{ } r = 1

2)\frac{1}{5} \tau \text{ } r = 1

Binary ↔ Octal ↔ Hex Shortcut

- Relation
- Binary, octal, and hex number systems
- All powers of two
- Exploit (This Relation)
- Make conversion easier.

Substitution Code

Convert 010101101010111001101010₂ to hex using the 4-bit substitution code:

56AE6A₁₆

Substitution Code

Substitution code can also be used to convert binary to octal by using 3-bit groupings:

25527152₈

Other Representation

Signed & Unsigned Number

Signed number last bit (one MSB) is signed bit

Assume: 8 bit number

Unsigned 12: 0000 1100

Signed +12: **0**000 1100

Signed -12: 1000 1100

Complement number

Unsigned binary 12 = 0000**11**00

1's Complement of 12 = 1111 **00**11

Example # 1: Convert 147.8₈to decimal.

$$147.3_8 = 1 \times 8^2 + 4 \times 8^1 + 7 \times 8^0 + 3 \times 8^{-1} = 64 + 32 + 7 + 103.375_{10}$$

Example # 2:

Convert 53₁₀ to binary.

2
$$\frac{53}{26}$$
 rem. = 1 = a_0
2 $\frac{13}{26}$ rem. = 0 = a_1
2 $\frac{6}{26}$ rem. = 1 = a_2 53₁₀ = 110101₂
2 $\frac{1}{26}$ rem. = 0 = a_3
2 $\frac{1}{26}$ rem. = 1 = a_4
0 rem. = 1 = a_5

Thank You