#### 1. SIMPLE LINEAR REGRESSION

# 1.1. The regression line. Consider a data set

$$\mathscr{D} = \{(x_i, y_i) : i = 1, \dots, n\}.$$

If the mean-squared error function

$$MSE(a,b) = \frac{1}{n} \sum_{i=1}^{n} (ax_i + b - y_i)^2$$

achieves its absolute minimum value at

$$(a,b) = (\alpha,\beta)$$

then the line  $y = \alpha x + \beta$  is called the regression line or least-squares line for  $\mathcal{D}$ .

The slope,  $\alpha$ , and the intercept,  $\beta$  of the regression line (its coefficients) can be expressed in terms of basic statistics of  $\mathcal{D}$ :

means: 
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$
variances: 
$$s_x^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2, \qquad s_y^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2$$
covariance: 
$$s_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

**Theorem 1** (Gauss/Legendre). The coefficients of the regression line of  $\mathscr{D}$  are:

$$a = \frac{s_{xy}}{s_{\pi}^2}, \qquad b = \overline{y} = a\overline{x}.$$

*Proof.* Notice that

$$\min_{(a,b)} MSE(a,b) = \min_{a} \left( \min_{b} MSE(a,b) \right).$$

For a given a, the quantity MSE(a, b) is a quadratic polynomial in b:

$$MSE(a,b) = b^{2} - 2\left(\frac{1}{n}\sum_{i=1}^{n}(y_{i} - ax_{i})\right)b + \sum_{i=1}^{n}(y_{i} - ax_{i})$$

Since a quadratic polynomial  $t^2 - 2qt + r$  achieves its minimum value at t = q, MSE(a, b) achieves its minimum value when

$$b = \frac{1}{n} \sum_{i=1}^{n} (y_i - ax_i) = \overline{y} - a\overline{x}.$$

It remains to determine

$$\min_{a} MSE(a, \overline{y} - a\overline{x}) = \min_{a} \frac{1}{n} \sum_{i=1}^{n} (ax_i + (\overline{y} - a\overline{x}) - y_i)^2.$$

Expanding and rearranging, we get

$$\frac{1}{n} \sum_{i=1}^{n} (ax_i + (\overline{y} - a\overline{x}) - y_i)^2 = s_x^2 a^2 - 2s_{xy}a + s_y^2.$$

Since a quadratic polynomial  $pt^2 - 2qt + r$  achieves its minimum value at t = q/p, the function  $MSE(a, \overline{y} - a\overline{x})$  achieves its minimum value when  $a = s_{xy}/s_x^2$ .

Thus, MSE(a, b) is minimized when

$$a = \frac{s_{xy}}{s_x^2}, \qquad b = \overline{y} - a\overline{x}.$$

Define  $\mathbf{1}, \, \boldsymbol{x}, \, \boldsymbol{y} \in \mathbb{R}^n$  by

$$\mathbf{1} = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}, \quad \boldsymbol{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad \boldsymbol{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

For  $\alpha, \beta \in \mathbb{R}$ , define the associated residual vector,  $e(\alpha, \beta)$ , by

$$\boldsymbol{e}(\alpha,\beta) = \alpha \boldsymbol{x} + \beta \boldsymbol{1} - \boldsymbol{y}.$$

Then

$$MSE(\alpha, \beta) = \frac{1}{n} || e(\alpha, \beta) ||^2.$$

Let U be the subspace of  $\mathbb{R}^n$  spanned by the vectors  $\boldsymbol{x}$  and 1:

$$U = \{\alpha \boldsymbol{x} + \beta \boldsymbol{1} : \alpha, \beta \in \mathbb{R}^n\}.$$

Let  $d(\boldsymbol{y}, U)$  be the distance from  $\boldsymbol{y}$  to U, i.e., the minimal distance from  $\boldsymbol{y}$  to an element of U:

$$d(\boldsymbol{y}, U) = \inf_{a,b} \|a\boldsymbol{x} + b\mathbf{1} - \boldsymbol{y}\|.$$

The infimum on the right is achieved by orthogonal projection of y onto U, i.e., the unique vector  $\hat{y} \in U$  such that

$$\langle \widehat{\boldsymbol{y}}, \boldsymbol{y} - \widehat{\boldsymbol{y}} \rangle = 0.$$

If  $\{u_1, u_2\}$  is any orthonormal basis of U, then

$$\widehat{\boldsymbol{y}} = \langle \boldsymbol{u}_1, \boldsymbol{y} \rangle \boldsymbol{u}_1 + \langle \boldsymbol{u}_2, \boldsymbol{y} \rangle \boldsymbol{u}_2.$$

We can construct an orthonormal basis of U be applying the *Gram-Schmidt orthonormal-ization procedure* to the spanning set  $\{1, x\}$ . Let

$$egin{aligned} oldsymbol{u}_1 &= rac{1}{\|\mathbf{1}\|} \mathbf{1} = rac{1}{\sqrt{n}} \mathbf{1}, \ oldsymbol{u}_2' &= oldsymbol{x} - \langle oldsymbol{u}_1, oldsymbol{x} 
angle oldsymbol{u}_1 \ &= oldsymbol{x} - rac{1}{\sqrt{n}} \langle \mathbf{1}, oldsymbol{x} 
angle rac{1}{\sqrt{n}} \mathbf{1} \ &= oldsymbol{x} - \overline{x} \mathbf{1}, \end{aligned}$$

Assume that  $\boldsymbol{x}$  and  $\boldsymbol{1}$  are linearly independent. Then  $\boldsymbol{u}_2' \neq 0$  and we may set

$$egin{aligned} oldsymbol{u}_2 &= rac{1}{\|oldsymbol{u}_2'} oldsymbol{u}_2' \ &= rac{1}{\sqrt{n}s_x} (oldsymbol{x} - \overline{x} oldsymbol{1}) \end{aligned}$$

Thus, if  $\boldsymbol{x}$  and  $\boldsymbol{1}$  are linearly independent, then

$$\left\{\frac{1}{\sqrt{n}}\mathbf{1}, \frac{1}{\sqrt{n}s_x}(\boldsymbol{x}-\overline{x}\mathbf{1})\right\}.$$

is an orthonormal basis of U. It follows that

$$\widehat{m{y}} = rac{1}{n} \left\langle m{1}, m{y} 
ight
angle m{1} + rac{1}{n s_x^2} \left\langle m{x} - \overline{x} m{1}, m{y} 
ight
angle \left( m{x} - \overline{x} m{1} 
ight)$$

Since  $x - \overline{x}\mathbf{1}$  is orthogonal to  $\mathbf{1}$ ,

$$\frac{1}{n} \langle \boldsymbol{x} - \overline{x} \boldsymbol{1}, \boldsymbol{y} \rangle = \frac{1}{n} \langle \boldsymbol{x} - \overline{x} \boldsymbol{1}, \boldsymbol{y} - \overline{y} \boldsymbol{1} \rangle = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = s_{xy}.$$

$$\widehat{m{y}} = \overline{y} m{1} + rac{s_{xy}}{s_x^2} (m{x} - \overline{x} m{1}) = rac{s_{xy}}{s_x^2} m{x} + \left( \overline{y} - rac{s_{xy}}{s_x^2} \overline{x} 
ight) m{1}$$

# Theorem 2.

(1) There is a unique vector  $\hat{y} \in U$  such that

$$d(\boldsymbol{y}, U) = \|\boldsymbol{y} - \widehat{\boldsymbol{y}}\|.$$

(2) If the vectors  $\mathbf{1}$  and  $\mathbf{x}$  are linearly independent, then there are unique scalars  $\widehat{a}$  and  $\widehat{b}$  such that

$$\widehat{\boldsymbol{y}} = \widehat{a}\boldsymbol{x} + \widehat{b}\boldsymbol{1}.$$

$$\|\boldsymbol{y} - \overline{y}\boldsymbol{1}\|^2 = \|(\boldsymbol{y} - \widehat{\boldsymbol{y}}) + (\widehat{\boldsymbol{y}} - \overline{y}\boldsymbol{1})\|^2 = \|\boldsymbol{y} - \widehat{\boldsymbol{y}}\|^2 + \|\widehat{\boldsymbol{y}} - \overline{y}\boldsymbol{1}\|^2 = SSE + s_{\widehat{\boldsymbol{y}}}^2$$

1.2. Sums of squares. The regression line gives the estimate

$$\widehat{y}_i = ax_i + b$$

for  $y_i$ . The  $\hat{y}_i$  and the  $y_i$  have the same mean:

$$\overline{\hat{y}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{y}_i = \frac{1}{n} \sum_{i=1}^{n} (ax_i + b) = a\overline{x} + b = \overline{y},$$

the final equality following from Theorem 1.

$$s_y^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2$$

$$= \frac{1}{n} \sum_{i=1}^n (y_i - \widehat{y}_i + \widehat{y}_i - \overline{y})^2$$

$$= \frac{1}{n} \sum_{i=1}^n (y_i - \widehat{y}_i)^2 + 2\frac{1}{n} \sum_{i=1}^n (y_i - \widehat{y}_i)(\widehat{y}_i - \overline{y}) + \frac{1}{n} \sum_{i=1}^n (\widehat{y}_i - \overline{y})^2$$

$$= \text{MSE}(a, b) + 2s_{e\widehat{y}} + s_{\widehat{y}}^2.$$

# 2. The bivariate normal distribution

The bivariate normal density with means  $\mu_1$  and  $\mu_2$ , variances  $\sigma_1$  and  $\sigma_2$ , and correlation  $\rho$  is defined by

$$f(x_1, x_2) = \frac{1}{2\sigma_1 \sigma_2 \sqrt{1 - \rho^2}} e^{-\frac{1}{2}Q(x_1, x_2)},$$

where

$$Q(x_1, x_2) = \frac{1}{\sqrt{1 - \rho^2}} \left[ \left( \frac{x_1 - \mu_1}{\sigma_1} \right)^2 - 2\rho \left( \frac{x_1 - \mu_1}{\sigma_1} \right) \left( \frac{x_2 - \mu_2}{\sigma_2} \right) + \left( \frac{x_2 - \mu_2}{\sigma_2} \right)^2 \right]$$

We write

$$(X_1, X_2) \sim N(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho)$$

if  $(X_1, X_2)$  has density  $f(x_1, x_2)$ .

Suppose  $X \sim N(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho)$ . Prove:

(1) The marginal density of  $X_1$  is the univariate normal density with mean  $\mu_1$  and variance  $\sigma_1^2$ , i.e.,

$$\int_{-\infty}^{\infty} f(x_1, x_2) dx_2 = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{1}{2} \left(\frac{x_1 - \mu_1}{\sigma_1}\right)}.$$

- (2)  $E[X_i] = \mu_i$ ,  $E[(X_i \mu_i)^2] = \sigma_i^2$ , and  $E[(X_1 \mu_1)(X_2 \mu_2)] = \sigma_1 \sigma_2 \rho$ .
- (3) The conditional density of  $X_2$  given  $X_1$  is given by

$$f(x_2|x_1) = \frac{1}{\sqrt{2\pi(1-\rho^2)}\sigma_2} e^{-\frac{1}{2}\left(\frac{x_2 - \left(\rho\frac{\sigma_2}{\sigma_1}(x_1 - \mu_1) + \mu_2\right)}{\sqrt{1-\rho^2}\sigma_2}\right)^2}.$$

(4) The conditional expectation and variance of  $X_2$  given  $X_1$  are given by

$$E[X_2|X_1] = \rho \frac{\sigma_2}{\sigma_1} (X_1 - \mu_1) + \mu_2$$

and

$$E[(X_2 - E[X_2|X_1])^2 | X_1] = \sqrt{1 - \rho^2} \sigma_2,$$

respectively. Note that the latter quantity is independent of  $X_1$ .

# 3. CONDITIONAL EXPECTATION

**Theorem-Definition 3.** Let  $\Omega$  be a set equipped with a probability measure, P. Given random variables X and Y on  $\Omega$ , there is a unique function  $f : \mathbb{R} \to \mathbb{R}$  such that

$$\int_{[X \in G]} Y \, dP = \int_{[X \in G]} f(X) \, dP,$$

for every  $E \subseteq \mathbb{R}$ . The random variable f(X) is called the conditional expectation of Y given X and denoted E[Y|X].

(1) If Y = f(X), then E[Y|X] = Y.

(2) If X = 1, then E[Y|X] = E[Y]:

$$1 \notin G: \qquad \int_{[X \in G]} Y \, dP = \int_{\varnothing} Y \, dP = 0 = \int_{\varnothing} \operatorname{E}[Y] \, dP = \int_{[X \in G]} \operatorname{E}[Y] \, dP$$
$$1 \in G: \qquad \int_{[X \in G]} Y \, dP = \int_{\Omega} Y \, dP = \operatorname{E}[Y] = \int_{\Omega} \operatorname{E}[Y] \, dP = \int_{[X \in G]} \operatorname{E}[Y] \, dP$$

(3) If E[Y|X] = f(X), then

$$E[I_H(X)Y|X] = I_H(X)f(X)$$

for all  $H \subseteq \mathbb{R}$ :

$$\int_{[X \in G]} I_H(X)Y \, dP = \int_{[X \in G \cap H]} Y \, dP = \int_{[X \in G \cap H]} f(X) \, dP = \int_{[X \in G]} I_H(X)f(X) \, dP$$

(4) If  $u: \mathbb{R} \to \mathbb{R}$ , then

$$E[u(X)Y|X] = u(X) E[Y|X].$$

(Proof: Exercise?)

(5) If X = u(Y), then

$$E[E[Z|Y]|X] = E[Z|X].$$

$$\begin{split} \int_{[u(X)\in G]} \mathrm{E}[Y|X]\,dP &= \int_{[X\in u^{-1}(G)]} \mathrm{E}[Y|X]\,dP \\ &= \int_{[X\in u^{-1}(G)]} Y\,dP \\ &= \int_{[u(X)\in G]} Y\,dP \\ &= \int_{[u(X)\in G]} \mathrm{E}[Y|u(X)]\,dP \end{split}$$

Exercise: X has countable range...

**Lemma 4.** Cov(u(X), Y - E[X]) = 0.

Proof.

$$Cov(u(X), Y - E[Y|X]) = E[u(X) E[Y|X]]$$

 $E[(Y - f(X))^{2}] = E[(Y - E[Y|X] + E[Y|X] - f(X))^{2}]$  $= E[(Y - E[Y|X])^{2}] + 2 Cov(Y - E[Y|X], E[Y|X] - f(X)) + E[f(X)^{2}]$ 

**Lemma 5.** The following are equivalent:

- (1) E[Y|X] = Y
- (2) Y = f(X) for some  $f : \mathbb{R} \to \mathbb{R}$ .
- (3) Cov(Y, Z E[Z|X]) = 0 for all random variables Z.

Proof.

- $(1) \Rightarrow (2) \ \mathrm{E}[Y|X]$  is, by definition, a function of X.
- $(2) \Rightarrow (3)$  We have:

$$\begin{aligned} \operatorname{Cov}(f(X), Z - \operatorname{E}[Z|X]) &= \operatorname{E}[f(X)(Z - \operatorname{E}[Z|X])] \\ &= \operatorname{E}[f(X)Z] - \operatorname{E}[f(X)\operatorname{E}[Z|X]] \\ &= \operatorname{E}[f(X)Z] - \operatorname{E}[\operatorname{E}[f(X)Z|X]] \\ &= \operatorname{E}[f(X)Z] - \operatorname{E}[f(X)Z] \\ &= 0. \end{aligned}$$

 $(3) \Rightarrow (1)$ 

$$E[u(X)Y] = E[E[u(X)Y|X]]$$
$$= E[u(X) E[Y|X]]$$

Let f(x,y) be the empirical density associated to the data set  $(x_1,y_1),\ldots,(x_n,y_n)$ :

$$f(x,y) = \frac{1}{n} \sum_{i=1}^{n} \delta(x - x_i) \delta(y - y_i)$$

Suppose that (X,Y) has joint density f(x,y). The marginal densities f(x) and f(y) of Xand Y are

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} \delta(x - x_i)$$
 and  $f(y) = \frac{1}{n} \sum_{i=1}^{n} \delta(y - y_i)$ .

Let's project Y - EY onto the span of the uncorrelated random variables 1 and X - EX. It's easy to show (exercise) that  $EX = \overline{x}$  and  $EY = \overline{y}$ .

$$\overline{x} := \frac{1}{n} \sum_{i=1}^{n} x_i$$
 and  $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ ,

Therefore,

$$E[(X - EX)(Y - EY)] = \iint (y - \overline{y})(x - \overline{x})f(x, y) dx dy$$
$$= \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = cov(x, y).$$

Obviously,

$$E[1(Y - EY)] = 0.$$

Therefore, the projection of Y - EY onto the span of 1 and X - EX is

$$\frac{\mathrm{E}[1(Y - \mathrm{E}\,Y)]}{\mathrm{E}[1^2]} 1 + \frac{\mathrm{E}[(X - \mathrm{E}\,X)(Y - \mathrm{E}\,Y)]}{\mathrm{E}[(X - \mathrm{E}\,X)^2]} (X - \mathrm{E}\,X) = \frac{\mathrm{cov}(x,y)}{\mathrm{var}(x)} (X - \overline{x})$$

It follows that the linear regression of Y on X is

$$\widehat{Y} = \frac{\operatorname{cov}(x,y)}{\operatorname{var}(x)}(X - \overline{x}) + \overline{y}$$

Consider the probability space

$$(\mathbb{R}^2, f(x, y) \, dx \, dy),$$

where f(x,y) is the *empirical density* associated to the data set  $(x_1,y_1),\ldots,(x_n,y_n)$ :

$$f(x,y) = \frac{1}{n} \sum_{i=1}^{n} \delta(x - x_i) \delta(y - y_i).$$

Let

$$V := L^2(\mathbb{R}^2, f(x, y) \, dx \, dy) = \left\{ Z : \mathbb{R}^2 \to \mathbb{R} : \iint |Z(x, y)|^2 f(x, y) \, dx \, dy \right\}$$

- You want to "average away" the noise. Interpolating noisy data gives wiggly graphs.
- large oscillations near left and right endpoints
- Increasing size of training set increases model complexity (degree).

# 4. Bias-variance decomposition

Let  $\widehat{\theta} = \widehat{\theta}(X)$  be an estimator of  $\theta$ . The bias of  $\widehat{\theta}$  is defined by

$$\operatorname{Bias}(\widehat{\theta}, \theta) = \operatorname{E}\widehat{\theta} - \theta.$$

The variance of the random variable  $\widehat{\theta}$  is given, as usual, by

$$\operatorname{Var}\widehat{\theta} = \operatorname{E}\left[(\widehat{\theta} - \operatorname{E}\widehat{\theta})^{2}\right]$$



FIGURE 1. —  $y = x^4$ , •  $y_i = x_i^4 + \text{noise}$ , — polynomial through  $(x_i, y_i)$ 

**Theorem 6** (Bias-Variance decomposition).

$$E\left[(\widehat{\theta} - \theta)^2\right] = Bias(\widehat{\theta}, \theta)^2 + Var \widehat{\theta}$$

Proof.

$$\begin{split} \mathbf{E}\left[(\widehat{\theta}-\theta)^{2}\right] &= \mathbf{E}\left[(\widehat{\theta}-\mathbf{E}\,\widehat{\theta}+\mathbf{E}\,\widehat{\theta}-\theta)^{2}\right] \\ &= \mathbf{E}\left[(\widehat{\theta}-\mathbf{E}\,\widehat{\theta})^{2}\right] + 2\,\mathbf{E}\left[(\widehat{\theta}-\mathbf{E}\,\widehat{\theta})(\mathbf{E}\,\widehat{\theta}-\theta)\right] + \mathbf{E}\left[(\mathbf{E}\,\widehat{\theta}-\theta)^{2}\right] \\ &= \mathbf{Var}\,\widehat{\theta} + \mathbf{Bias}(\widehat{\theta},\theta)^{2}, \end{split}$$

as

$$\mathrm{E}\left[(\widehat{\theta} - \mathrm{E}\,\widehat{\theta})(\mathrm{E}\,\widehat{\theta} - \theta)\right] = (\mathrm{E}\,\widehat{\theta} - \theta)\underbrace{\mathrm{E}[\widehat{\theta} - \mathrm{E}\,\widehat{\theta}]}_{=0} = 0.$$

Let  $f: \mathbb{R} \to \mathbb{R}$  be an unknown function and let  $\widehat{f}: \mathbb{R} \to \mathbb{R}$  be a known approximation to f. Let  $x_0 \in \mathbb{R}$  and suppose that

$$Y = f(x_0) + \varepsilon$$
, where  $E[\varepsilon] = 0$ .

The squared prediction error is

$$(f(x_0) - \widehat{f}(x_0))^2 = \mathbb{E}\left[(\widehat{f}(x_0) - f(x_0))^2\right]$$

$$= \mathbb{E}\left[(\widehat{f}(x_0) - Y - \varepsilon)^2\right]$$

$$= \mathbb{E}\left[(Y - f + f - \widehat{f})^2\right]$$

$$= \mathbb{E}\left[(Y - f)^2\right] + 2\mathbb{E}\left[(Y - f)(f - \widehat{f})\right] + \mathbb{E}\left[(f - \widehat{f})^2\right]$$

$$= \mathbb{E}[\varepsilon^2] + 2\varepsilon \mathbb{E}[f - \widehat{f}] + \text{Bias}(\widehat{f}, f)$$

Let  $\theta \in \mathbb{R}$ , let  $\varepsilon$  be a random variable with  $E[\varepsilon] = 0$ , and let

$$Y = \theta + \varepsilon$$
.

Let  $\widehat{\theta}$  be an estimator of  $\theta$  such that  $\widehat{\theta}$  and  $\varepsilon$  are independent.

$$\begin{split} \mathrm{E}[(\widehat{\theta} - Y)^2] &= \mathrm{E}[(\widehat{\theta} - \theta - \varepsilon)^2] \\ &= \mathrm{E}[(\widehat{\theta} - \mathrm{E}\,\widehat{\theta} + \mathrm{E}\,\widehat{\theta} - \theta - \varepsilon)^2] \\ &= \mathrm{E}[(\widehat{\theta} - \mathrm{E}\,\widehat{\theta})^2] + \mathrm{E}[(\mathrm{E}\,\widehat{\theta} - \theta)^2] + \mathrm{E}[\varepsilon^2] \\ &+ 2\,\mathrm{E}[(\widehat{\theta} - \mathrm{E}\,\widehat{\theta})(\mathrm{E}\,\widehat{\theta} - \theta)] - 2\,\mathrm{E}[(\widehat{\theta} - \mathrm{E}\,\widehat{\theta})\varepsilon] - 2\,\mathrm{E}[(\mathrm{E}\,\widehat{\theta} - \theta)\varepsilon] \\ &= \mathrm{Var}\,\widehat{\theta} + \mathrm{Bias}(\widehat{\theta}, \theta) + \mathrm{Var}\,\varepsilon \end{split}$$

We have:

- $E[(\widehat{\theta} E\widehat{\theta})^2] = Var \widehat{\theta}$
- $E \widehat{\theta} \theta$  is a constant, so

$$E[(E\widehat{\theta} - \theta)^{2}] = (E\widehat{\theta} - \theta)^{2} = Bias(\widehat{\theta}, \theta)^{2},$$

$$E[(\widehat{\theta} - E\widehat{\theta})(E\widehat{\theta} - \theta)] = E[\widehat{\theta} - E\widehat{\theta}](E\widehat{\theta} - \theta) = 0 \qquad (as E[\widehat{\theta} - E\widehat{\theta}] = 0),$$

$$E[(E\widehat{\theta} - \theta)\varepsilon] = (E\widehat{\theta} - \theta)E\varepsilon = 0 \qquad (as E\varepsilon = 0).$$

- $E[\varepsilon^2] = Var \varepsilon$
- $\varepsilon$  is independent of  $\widehat{\theta}$  and, hence, of  $\widehat{\theta} \operatorname{E} \widehat{\theta}$ . Therefore,

$$E[(\widehat{\theta} - E\widehat{\theta})\varepsilon] = \underbrace{E[\widehat{\theta} - E\widehat{\theta}]}_{=0} E\varepsilon = 0.$$

If you can sample from a distribution, and you have an unbiased estimator, you can learn the parameters of the distribution. The amount of data you need depends on the variance of the estimator.

#### 5. Notes

Statistics is the science of the *collection*, analysis, and interpretation of data. [TPE p. 1]

Data analysis: Oraganization and summarization of data. Emphasize main features. Expose underlying structure. Avoid extraneous assumptions.

Statistical inference: We postulate that the data are values realized by random variables obeying a probability distribution belonging to some known class,  $\mathscr{P}$ . Typically,  $\mathscr{P}$  is indexed by some *parameter space*,  $\Theta$ .

$$\mathscr{P} = \{ P_{\theta} : \theta \in \Theta \}$$

We call the family  $\mathscr{P}$  a parametric if  $\Theta \subseteq \mathbb{R}^n$ , for some n, and nonparametric, otherwise. In statistical inference, we use data to infer (point estimation) a plausible value of  $\theta$  or (confidence sets) a subset of  $\Theta$  that plausibly contains  $\theta$ 

The estimation problem: Given  $g: \Theta \to \mathbb{R}$  and an  $\mathscr{X}$ -valued random observable X distributed according to some  $P \in \mathscr{P}$ , determine  $g(\theta(P))$ . An estimator is a function  $\delta: \mathscr{X} \to \mathbb{R}$ . We want to find an estimator  $\delta$  such that  $\delta(X) \approx g(\theta(P))$ .

A parametric family of distributions is one that is naturally indexed by a subset  $\Theta$  of some Euclidean space  $\mathbb{R}^n$ . The set  $\Theta$  is called the parameter space of the family.

Suppose we are given a sample space  $\mathscr{X} \subseteq \mathbb{R}^p$  and a family  $\mathscr{P}$  of distributions on  $\mathscr{X}$ .

Let X be an  $\mathscr{X}$ -valued random vector such that  $X \sim P$  for some unknown  $P \in \mathscr{P}$ .

Using data x realizing X to make draw conclusions about P is called *statistical inference*.

Let g be a functional (real-valued function) on  $\mathscr{P}$ .

Using data x realizing X to estimate g(P) is called point estimation.

Point estimation is a type of statistical inference.

Let  $P_{\mu,\sigma}$  be the distribution with density

$$\prod_{i=1}^{p} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x_i - \mu)^2}.$$

It's the distribution of an i.i.d. sample of size p drawn from  $N(\mu, \sigma)$ .

Using such a sample to estimate  $\mu$  (resp.,  $\sigma$ ) is an example of point estimation with

$$\mathscr{X} = \mathbb{R}, \quad \mathscr{P} = \{P_{\mu,\sigma}\} \quad \text{and} \quad g(P_{\mu,\sigma}) = \mu \text{ (resp., } \sigma)$$

A statistical functional on  $\mathscr{P}$  is a function  $g: \mathscr{P} \to \mathbb{R}$ . Let  $\mathscr{P}$  be the set of all probability distributions on  $\mathbb{R}$ . For  $a \in \mathbb{R}$ , define

$$g_a(P) = \int_{-\infty}^a dP(x)$$

$$\mu(P) = \int_{-\infty}^{\infty} x \, dP(x)$$

$$m_k(P) = \int_{-\infty}^{\infty} (x - \mu(P))^k dP(x)$$

Estimating a functional  $g: \mathscr{P} \to \mathbb{R}$  from data means constructing a function  $\delta: \mathscr{X} \to \mathbb{R}$  such that for all distributions  $P \in \mathscr{P}$  and all  $\mathscr{X}$ -valued random variables  $X \sim P$ , the quantity  $\delta(X)$  is "close to" q(P). We call q and  $\delta$  the estimand and estimator, respectively.

We must make the descriptor "close to" precise if we are to evaluate the quality of an estimator  $\delta$  of a functional g in any meaningful way. The notion of bias is a natural interpretation of closeness. Define

$$\operatorname{Bias}(\delta(X), g(P)) = \operatorname{E} \delta(X) - g(P).$$

If  $\operatorname{Bias}(\delta(X), g(P)) < 0$  (resp.,  $\operatorname{Bias}(\delta(X), g(P)) > 0$ ), then  $\delta(X)$  tends to underestimate (resp., overestimate) g(P). We say that  $\delta(X)$  is an biased (resp., unbiased) estimator of g(P) if  $\operatorname{Bias}(\delta(X), g(P)) \neq 0$  (resp.,  $\operatorname{Bias}(\delta(X), g(P)) = 0$ ).

Let  $X \sim P \in \mathscr{P}$ .

$$\operatorname{Bias}(\delta(X), g(P)) = \operatorname{E}[\delta(X) - g(P)]$$

Note that if  $X \sim P$ , then  $E \delta(X)$  depends only on  $\delta$  and P and not on X:

$$E[\delta(X)] = \int_{\mathscr{X}} \delta(x) \, dP(x)$$

Define the *(mean)* bias functional associated to the estimator  $\delta$  of g,

$$Bias(\delta, g) : \mathscr{P} \longrightarrow \mathbb{R}$$

by

$$P \mapsto \operatorname{Bias}_{P}(\delta, g) := \operatorname{E}[\delta(X)] - g(P),$$

where X is any  $\mathscr{X}$ -valued random variable such that  $X \sim P$ .

 $\delta$  is an unbiased estimator of g if and only if  $\text{Bias}(\delta, g)$  is an unbiased estimator of the zero functional.

Mean bias vs. median bias. Exercise?

#### 6. Logistic regression

Define the sigmoid function, also called the expit function or the logistic function, by

$$\sigma(x) = \frac{1}{1 - e^{-x}}.$$

It maps  $\mathbb{R}$  bijectively onto (0,1). Its inverse is the *logit function*, defined by

$$logit(x) = log\left(\frac{x}{1-x}\right).$$

The logit function maps (0,1) bijectively onto  $\mathbb{R}$ .

$$f(t) = y \log \sigma(t) + (1 - y) \log(1 - \sigma(t))$$

$$f' = y\frac{\sigma'}{\sigma} + (y - 1)\frac{\sigma'}{1 - \sigma}$$

$$= \frac{1}{\sigma(1 - \sigma)} [y\sigma'(1 - \sigma) + (y - 1)\sigma'\sigma]$$

$$= \frac{\sigma'(y - \sigma)}{\sigma(1 - \sigma)}$$

### 7. Newton's method

7.1. One variable. To refine an approximation  $f(a) \approx 0$ , we solve

(first order approximation to f(x) at x = a) = 0.

$$f(a) + f'(a)(x - a) = 0$$

refined approximation =  $x = a - \frac{f(a)}{f'(a)}$ 

Hence, Newton's recursion:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

7.2. Two variables. Suppose we want to solve

$$(f(\mathbf{x}), g(\mathbf{x})) = (0, 0) = \mathbf{0}.$$

To refine an approximate solution  $(f(a,b),g(a,b))\approx (0,0)$ , we solve the system

(first order approximation to 
$$f(x,y)$$
 at  $(x,y) = (a,b) = 0$ 

(first order approximation to g(x,y) at (x,y) = (a,b) = 0.

$$f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) = 0$$
  

$$g(a,b) + g_x(a,b)(x-a) + g_y(a,b)(y-b) = 0$$
  

$$(f(a,b)) + (f_x(a,b) + f_y(a,b)) \cdot (x) + (a,b) \cdot (x) = 0$$

$$\begin{pmatrix} f(a,b) \\ g(a,b) \end{pmatrix} + \begin{pmatrix} f_x(a,b) & f_y(a,b) \\ g_x(a,b) & g_y(a,b) \end{pmatrix} \begin{bmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} a \\ b \end{pmatrix}$$

where

$$J_{f,g}(a,b) = \begin{vmatrix} f_x(a,b) & f_y(a,b) \\ g_x(a,b) & g_y(a,b) \end{vmatrix} = f_x(a,b)g_y(x,y) - f_y(a,b)g_x(a,b).$$

Hence, Newton's recursion:

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} x_n \\ y_n \end{pmatrix} - \frac{1}{|J_{f,g}(x_n, y_n)|} \begin{pmatrix} g_y(x_n, y_n) & -f_y(x_n, y_n) \\ -g_x(x_n, y_n) & f_x(x_n, y_n) \end{pmatrix} \begin{pmatrix} f(x_n, y_n) \\ g(x_n, y_n) \end{pmatrix}$$

# 7.3. Application to simple logistic regression.

$$\ell(a,b) = \text{log-likelihood}$$

To maximize  $\ell(a,b)$ , we solve

$$\nabla \ell(a,b) = \begin{pmatrix} \frac{\partial \ell}{\partial a} \\ \frac{\partial \ell}{\partial b} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

We apply the above with  $f = \frac{\partial \ell}{\partial a}$  and  $g = \frac{\partial \ell}{\partial b}$ . In this case, the intervening matrix is the *Hessian matrix* of  $\ell$ :

$$H_{\ell} = \begin{pmatrix} \frac{\partial^{2} \ell}{\partial a^{2}} & \frac{\partial^{2} \ell}{\partial a \partial b} \\ \frac{\partial^{2} \ell}{\partial b \partial a} & \frac{\partial^{2} \ell}{\partial b^{2}} \end{pmatrix}.$$

Newton's recursion becomes:

$$\begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} a_n \\ b_n \end{pmatrix} - H_{\ell}(a_n, b_n)^{-1} \nabla \ell(a_n, b_n)$$

By equality of mixed partials, the *Hessian (determinant)* of  $\ell$  is given by:

$$J_{\nabla \ell} = \frac{\partial^2 \ell}{\partial a^2} \frac{\partial^2 \ell}{\partial b^2} - \frac{\partial^2 \ell}{\partial a \partial b}$$

# 7.4. *n*-variables.

$$\boldsymbol{x}_{n+1} = \boldsymbol{x}_n - \boldsymbol{f}'(\boldsymbol{x}_n)^{-1} \boldsymbol{f}(\boldsymbol{x}_n), \quad \text{where} \quad \boldsymbol{f}'(\boldsymbol{x}) = \left(\frac{\partial f_i}{\partial x_j}(\boldsymbol{x})\right)_{i,j=1,\dots,n}.$$

### 8. Convexity

(1) 
$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$
$$\ell(\theta) = \sum_{i=1}^{n} \ell_i(\theta),$$

where

$$\ell_{i}(\theta) = y^{(i)} \log \sigma(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}))$$

$$\frac{\partial \ell_{i}}{\partial \theta_{j}} = y^{(i)} \frac{\sigma'(\boldsymbol{\theta}^{T} \boldsymbol{x})}{\sigma(\boldsymbol{\theta}^{T} \boldsymbol{x})} x_{j}^{(i)} - (1 - y^{(i)}) \frac{\sigma'(\boldsymbol{\theta}^{T} \boldsymbol{x})}{1 - \sigma(\boldsymbol{\theta}^{T} \boldsymbol{x})} x_{j}^{(i)}$$

$$= y^{(i)} (1 - \sigma(\boldsymbol{\theta}^{T} \boldsymbol{x})) x_{j}^{(i)} - (1 - y^{(i)}) \sigma(\boldsymbol{\theta}^{T} \boldsymbol{x}) x_{j}^{(i)}$$

$$= (y^{(i)} - \sigma(\boldsymbol{\theta}^{T} \boldsymbol{x})) x_{j}^{(i)}$$

$$\frac{\partial^2 \ell_i}{\partial \theta_i \partial \theta_k} = -\sigma'(\boldsymbol{\theta}^T \boldsymbol{x}^{(i)}) x_j^{(i)} x_k^{(i)}$$

$$\frac{\partial^2 \ell}{\partial \theta_j \partial \theta_k} = -\sum_{i=1}^n \sigma'(\boldsymbol{\theta}^T \boldsymbol{x}^{(i)}) x_j^{(i)} x_k^{(i)}$$

Let

$$X = (x_j^{(i)}) \in \mathbb{R}^{n \times p}, \quad D = \operatorname{diag}(\sigma'(\theta^T \boldsymbol{x}^{(1)}), \dots, \sigma'(\theta^T \boldsymbol{x}^{(n)})).$$

Then

$$H_{\ell}(\theta) = X^T D X.$$

### 9. Gradient descent

$$\boldsymbol{\theta}^{(n+1)} = \boldsymbol{\theta}^{(n)} - \alpha \nabla f(\boldsymbol{\theta}^{(n)})^T$$
$$f(\boldsymbol{x}) \le f(\boldsymbol{a}) + \nabla f(\boldsymbol{a})(\boldsymbol{x} - \boldsymbol{a}) + (\boldsymbol{x} - \boldsymbol{a})^T \nabla^2 f(\boldsymbol{a})(\boldsymbol{x} - \boldsymbol{a})$$

Descent lemma: Let  $g(t) = f(\boldsymbol{x} + t\boldsymbol{y})$ 

$$f(\boldsymbol{x} + \boldsymbol{y}) - f(\boldsymbol{x}) = g(1) - g(0)$$

$$= \int_{0}^{1} g'(t) dt$$

$$= \int_{0}^{1} \nabla f(\boldsymbol{x} + t\boldsymbol{y}) \boldsymbol{y} dt$$

$$= \int_{0}^{1} (f(\boldsymbol{x}) + \nabla f(\boldsymbol{x} + t\boldsymbol{y}) - f(\boldsymbol{x})) \boldsymbol{y} dt$$

$$= \int_{0}^{1} \nabla f(\boldsymbol{x}) \boldsymbol{y} dt + \int_{0}^{1} (\nabla f(\boldsymbol{x} + t\boldsymbol{y}) - \nabla f(\boldsymbol{x})) \boldsymbol{y} dt$$

$$\leq \nabla f(\boldsymbol{x}) \boldsymbol{y} + \int_{0}^{1} \|\nabla f(\boldsymbol{x} + t\boldsymbol{y}) - \nabla f(\boldsymbol{x})\| \|\boldsymbol{y}\| dt$$

$$\leq \nabla f(\boldsymbol{x}) \boldsymbol{y} + \int_{0}^{1} L \|t\boldsymbol{y}\| \|\boldsymbol{y}\| dt$$

$$= \nabla f(\boldsymbol{x}) \boldsymbol{y} + \frac{L}{2} \|\boldsymbol{y}\|^{2}$$

Replace y by y - x:

$$f(\boldsymbol{y}) \leq f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})(\boldsymbol{y} - \boldsymbol{x}) + \frac{L}{2} \|\boldsymbol{y} - \boldsymbol{x}\|^2$$
  $\boldsymbol{x}_{n+1} = \boldsymbol{x}_n - \frac{1}{L} \nabla f(\boldsymbol{x}_n)^T$ 

 $f(x_{n+1}) \leq f(x_n) - \frac{1}{L} \|\nabla f(x_n)\|^2 + \frac{1}{2L} \|\nabla f(x_n)\|^2 = f(x_n) - \frac{1}{2L} \|\nabla f(x_n)\|^2$ Being a decreasing sequence that is bounded below,  $f(x_n)$  converges.

$$f(x_0) - f(x_n) = \sum_{k=0}^{n-1} \left( f(x_k) - f(x_{k+1}) \right) \ge \frac{1}{2L} \sum_{k=0}^{n-1} \|\nabla f(x_k)\|^2$$

$$n \min_{k < n} \|\nabla f(x_k)\|^2 \le \sum_{k=0}^{n-1} \|\nabla f(x_k)\|^2 \le 2L(f(x_0) - f(x_n)) \le 2L(f(x_0) - f(x_\infty))$$

$$\min_{k < n} \|\nabla f(x_k)\|^2 \le \frac{2L(f(x_0) - f(x_\infty))}{n} = O(1/n)$$

$$\lim_{n \to \infty} \inf \|\nabla f(x_k)\|^2 = 0.$$