UNIVERSIDADE ESTADUAL DE CAMPINAS

FACULDADE DE TECNOLOGIA

Projeto da disciplina de Sistemas Operacionais TT304A-2020S1

Relatório técnico a fim de criar e utilizar uma instância na AWS

União dos Estudantes Cansados

Junho

Informações Gerais do Projeto¹

- Título do projeto: Relatório técnico a fim de criar e utilizar uma instância na AWS.
- Nome da equipe: União dos Estudantes Cansados.
- Estudantes responsáveis: Enzo Juniti Fujimoto (<u>e233930@dac.unicamp.br</u>) e Guilherme Lopes da Cruz (<u>g235998@dac.unicamp.br</u>).
 - Números de matrícula: 233930 e 235998, respectivamente.
- Instituição sede do projeto: Faculdade de Tecnologia (FT) da Universidade Estadual de Campinas.
 - Período de vigência proposto: 4 de março de 2020 a 18 de junho de 2020.

¹ GRADVOHL, A. L. S; DR. **Modelo de Projeto FAPESP**: This is a LaTeX template for São Paulo Research Foundation (FAPESP) Project. 1. ed. Limeira: [s.n.], 2019. p. 1-7.

Sumário

1.	Informações Gerais do Projeto	2
2.	Introdução	4
3.	Link para o vídeo	13
4.	Descrição da Instância	14
5.	Link para a calculadora	16
6.	Instruções para o acesso remoto	17
7.	Conclusões	19
8.	Referências Bibliográficas	23

Introdução

A proposta do projeto designada pelo o docente-doutor, André Leon Sampaio Gradvohl, na disciplina de Sistemas Operacionais (TT304_A)², ministrada no primeiro semestre de 2020, do curso de Sistemas de Informação, da Faculdade de Tecnologia (FT) - Universidade Estadual de Campinas (Unicamp), prevê que os estudantes vivenciem, de forma prática e consistente, a criação e a utilização dos recursos na nuvem computacional, angariando mais informações acerca dessa nova e crescente tecnologia. Como o docente é associado à Amazon Web Services (AWS), um dos pré-requisitos de todo o processo foi implementar a partir dessa infraestrutura, os aspectos técnicos quanto dos conjunturais. Os estudantes, em duplas, também deveriam, de acordo com a proposta, demonstrar habilidades para resolver problemas, buscando uma solução para a tarefa de forma autônoma, o que implica, em último caso, recorrer ao docente.

Em relação à configuração de uma instância Amazon Elastic Compute Cloud (Amazon EC2 - https://www.awseducate.com³), foi estabelecido a criação de uma máquina virtual, a qual, os estudantes deveriam abordá-la, de acordo com os pressupostos identificados a seguir, sendo critérios mínimos para a realização de tal proposta:

- Arquitetura x86, com 64 bits.
 - o Mínimo de 2 CPUs virtuais.
- Mínimo de 4 Gigabytes de memória principal.
- Armazenamento (memória secundária):
 - o 50 gigabytes de armazenamento Solid-State Drive (SSD).
 - o 500 gigabytes de armazenamento Cold HDD.
- Sistema operacional

o Grupo 1: CentOS versão 6 ou mais recente.

o Grupo 2: OpenSUSE Leap 15 ou mais recente.

² DIRETORIA ACADÊMICA. **Caderno de Horários de 2020**. Disponível em: https://www.dac.unicamp.br/portal/caderno-de-horarios/2020/1/S/G/FT/TT304. Acesso em: 13 mai. 2020.

³AWS EDUCATE. **Sua jornada para a nuvem começa aqui**. Disponível em: https://www.awseducate.com. Acesso em: 24 abr. 2020.

Além da infraestrutura, a instância criada precisava conter o Gnu Compiler Collection (GCC) devidamente instalado, com todas as bibliotecas necessárias, em especial a biblioteca PThreads, para executar um programa na linguagem C utilizando múltiplos threads. Também era necessário ter propriedade de uma conta para todos os membros do grupo, sendo contas individuais, e para o professor também poder acessar a instância, remotamente, via SSH. Todo o processo requerido está futuramente detalhado, ratificado com informações complementares.

Como nós, do grupo União dos Estudantes Cansados, tivemos a soma do último dígito dos números de matrícula (RA) resultando em número par, foi-nos preterido a utilização do Sistema Operacional 2 - OpenSUSE. Caso o contrário ocorresse, teríamos que realizar o projeto partir do outro Sistema Operacional, do grupo 1. Vejamos:

Figura 1 - Integrantes do grupo União do Estudantes Cansados

$$\frac{0+8}{2} = 4$$

Figura 2 - Somatória dos últimos dígitos dos integrantes

Sob esse aspecto e baseado nas condições estabelecidas, a Computação em Nuvem (Cloud Computing) está sendo pautada como uma evolução da computação, suscitando novos paradigmas e adaptações às tecnologias atuais. Segundo Taurion⁴, o conceito de computação surgiu em uma palestra da Google em 2006, no qual, hodiernamente, o ex-CEO, Eric Schmidt, explicava sobre como a empresa gerenciava seus data centers (locais onde se concentram os computadores e são responsáveis pelo o processamento de dados). Através dessas condições relevantes e históricas, muito corroborou-se para o desenvolvimento e sofreu significativas mudanças.

⁴ TAURION, Cezar. Cloud Computing - Computação em Nuvem - Transformando o mundo da tecnologia. Rio de Janeiro, Brasport, 2009.

De um certo modo, a Computação em Nuvem se apresenta como um precursor central de grandes transformações no mundo contemporâneo (TAURION, 2009). Isso, porque, em meio à nova onda de Big Data, ter componentes de comunicação em relação às infraestruturas são determinantes para um bom serviço, utilizando hardware compartilhado para computação e armazenamento (MACHADO et al, 2009). Basicamente, essa interoperabilidade, efeito da ligação intrínseca de diversos computadores conectados entre si, compartilhando memória e processamento, por exemplo, fez-se, indiscutivelmente, a consolidação dessa nova tecnologia.

Figure 1 - Annual Size of the Global Datasphere

Figura 03 - Quantidade global de dados⁵

Atrelado a esse movimento exponencial de acúmulo de dados, como bem evidenciado na figura supracitada, a tendência da Computação em Nuvem está assumindo gigantescas proporções no mundo atual. A quantidade global de dados suficientemente implicará próximo dos 175 zb, em 2025. Até o fim do ano de 2020, a estimativa de produção de dados é cerca de 50 zb. Em apenas cinco anos, processos de retenção desses dados e, como analisá-los, além de armazená-los, torna-se uma tarefa árdua, a qual o valor mais que se quadruplica. Destarte, Computação em Nuvem é um modelo de computação que provém serviços aos usuários, sendo corporativos ou computadores pessoais, opções de armazenamento persistente dos dados, visto que existe a deterioração constante dos hardwares, havendo desgaste, podendo assim a empresa ou o indivíduo, a incorrer em perdas expressivas. Desse modo, ter esse controle gerencial de todos os dados resguardos a um local que não seja o físico, estabeleceu novos processos aparentes e suas

⁻

⁵A SINGAPORE GOVERNMENT AGENCY WEBSITE. **Cloud Security**. Disponível em: https://www.csa.gov.sg/singcert/publications/cloud-security. Acesso em: 20 mai. 2020.

características inerentes. De acordo com a Amazon Web Services (AWS), a descrição desse paradigma está a seguir:

"A computação em nuvem é a entrega de recursos de TI sob demanda por meio da Internet com definição de preço de pagamento conforme o uso. Em vez de comprar, ter e manter datacenters e servidores físicos, você pode acessar serviços de tecnologia, como capacidade computacional, armazenamento e bancos de dados, conforme a necessidade, usando um provedor de nuvem como a Amazon Web Services (AWS)"

■ Vantagens da Computação em Nuvem

Reiterando que o surgimento desse paradigma angariou avaliações positivas e negativas quanto à sua utilização, optamos, então, neste tópico e também no próximo, apresentar discussões permanentes e relevantes referentes à Computação em Nuvem (CN). Dessa maneira, ante a esse método de visão, podem ocorrer intersecções entre suas vantagens e desvantagens. Hoje em dia, existem muitos pensamentos abrangentes acerca da Segurança, Privacidade e Interoperabilidade, que se relacionam entre si para determinar em qual aspecto a CN se encontra. Um dos maiores desafios evidentes, principalmente no Brasil, é a falta de infraestrutura consistente, o que prejudica a sua evolução tecnológica⁶, suscitando a defasagem do Brasil na implementação desse recurso poderoso. A América Latina, como afirmou o CETIC, representa um amplo desafio a ser enfrentado daqui para frente, visto que não requer apenas inovações tecnológicas e comerciais, mas novos modelos de colaboração entre os governos e o setor privado. Para se ter um espectro da real importância que a internet ainda não é um acesso atribuído ainda no Brasil, a Pesquisa Nacional por Amostra de Domicílios⁷, feita pelo o Instituto Brasileiro de Geografía e Estatística (IBGE), atualizada no ano de 2020, evidencia a fragilidade do acesso à internet, assim como a

_

⁶ ALMEIDA, A. *et al.* **BANDA LARGA NO BRASIL: um estudo sobre a evolução do acesso e da qualidade das conexões à Internet**: Cadernos NIC.br Estudos Setoriais. 1. ed. São Paulo: Comitê Gestor da Internet no Brasil – CGI.br, 2018. p. 25-35.

⁷INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). **Pesquisa Nacional por Amostra de Domicílios Contínua - PNAD Contínua**. Disponível em: https://www.ibge.gov.br/estatisticas/sociais/trabalho/17270-pnad-continua.html?=&t=microdados. Acesso em: 20 mai. 2020.

sua desigualdade social. Em dados totais, cerca de 46 milhões de brasileiros estão distantes dessa realidade. Quase um em cada quatro brasileiros não têm acesso à internet. Ante aos problemas enfrentados no contexto brasileiro e também acerca da tecnologia de CN, pode-se citar as vantagens desse paradigma que estão se fortalecendo:

- Flexibilidade de uso e agilidade de acesso, pois permite fácil ingresso dos dados pessoais ou organizacionais em qualquer lugar, desde que o usuário tenha condições necessárias, como a internet;
- 2. Infraestrutura física, na qual os usuários não ficam presos a ela;
- 3. **Software como Serviço**, também decorrente à proposição contígua anterior (2), já que se pode alugar uma ferramenta e, a partir dela, determina-se um pagamento;
- 4. **Redução de custo**, também associada às afirmações 2 e 3, visto que, por meio do *Modelo pay-per-use*, referente à utilização baseada em aquilo que se consome, não se finaliza por incorrer a gastos desnecessários com recursos não usados;
- 5. Escalabilidade, o que provoca na minimização dos riscos da infraestrutura. De forma mais objetiva, uma empresa não precisa, necessariamente, despender recursos a fim de obter servidores, para desenvolver uma aplicação que não for bem-sucedida;
- 6. **Tecnologia avançada**, porque a empresa associada ou o usuário que gostariam de auferir por tal serviço, estariam sendo ancorados por tecnologia de empresas com abrangentes idoneidades computacionais, ou seja, tecnologia avançada;
- Recursos de compartilhamento, relativos à confiabilidade do software, pois os serviços utilizados tem capacidade de manter cópias de segurança, criptografía e controle acesso rigoroso;
- 8. **Segurança**, nesse caso em específico, ainda existe muita discordância, porém, com base no provedor AWS⁸, os beneficios são citados a seguir:

a. Escale com segurança e controle superiores

i. "A identidade refinada e os controles de acesso combinados ao monitoramento contínuo de informações de segurança quase em tempo

⁸AWS. **Segurança na Nuvem AWS Infraestrutura e serviços para elevar a sua segurança na nuvem**. Disponível em: https://aws.amazon.com/pt/security/?nc1=f_cc. Acesso em: 21 mai. 2020.

real garantem que os recursos certos tenham o acesso correto o tempo todo, onde quer que suas informações sejam armazenadas".

b. Automatize e reduza riscos com serviços profundamente integrados

i. "A automatização de tarefas de segurança na AWS lhe deixa mais seguro em relação à redução de erros humanos de configuração, o que oferece mais tempo para sua equipe se concentrar em outros trabalhos cruciais para seu negócio".

c. Construa com os mais altos níveis de privacidade e segurança de dados

i. "A AWS é vigilante em relação à sua privacidade. Com a AWS, você pode criar através da infraestrutura global mais segura, sabendo que eles sempre serão proprietários de seus dados, incluindo a capacidade de criptografá-los, movê-los e gerenciar a retenção. Todos os dados que passam pela rede global da AWS que conecta nossos datacenters e regiões é criptografado automaticamente na camada física antes de sair de nossas instalações protegidas. Há também camadas de criptografia adicionais. Por exemplo, todo o tráfego de emparelhamento de VPC entre regiões e conexões TLS de clientes ou entre serviços".

d. O maior ecossistema de parceiros e soluções de segurança

i. "Estenda os benefícios da AWS usando uma tecnologia de segurança e serviços de consultoria de fornecedores de soluções familiares que você já conhece e confia. Selecionamos cuidadosamente fornecedores com profunda experiência e sucesso comprovado, protegendo todos os estágios da adoção da nuvem, desde a migração inicial até o gerenciamento contínuo do dia a dia".

e. Herde os controles de segurança e conformidade mais abrangentes

i. "Para ajudar seus esforços de conformidade, a AWS obtém regularmente a validação de terceiros para milhares de requisitos globais de conformidade que nós monitoramos continuamente para ajudá-lo a atender aos padrões de segurança e conformidade para finanças, varejo, assistência médica, governo e outros".

Existe ainda, na AWS, uma infraestrutura segura, em que especialistas da segurança monitoram diariamente os requisitos para a construção de um sistema, cada vez mais, confiável. Sob esse aspecto, vê-se também que os Parceiros da AWS⁹, ainda auxiliam na implantação da proteção. Para ter uma noção em específico, a AWS, atualmente, provém o serviço da nuvem para a persistência dos dados do governo federal dos EUA¹⁰. A Amazon cumpriu as determinações necessárias acerca do Guia de Requisitos de Segurança do Departamento de Defesa (DOD), tendo como ambiente seguro para armazenamento de dados. Não somente, a AWS também hospeda os dados da Agência Central de Inteligência (CIA).

Ainda que soe que não exista **Segurança** em implementar os dados na Nuvem, muito se percebe que exista essa transfiguração em relação à mudança do ambiente físico para o ambiente geograficamente descentralizado, o que configura uma transformação mundial.

Desvantagens da Computação em Nuvem

Quanto às desvantagens da utilização da Computação em Nuvem, têm-se, sobretudo, desafios que tendem a serem enfrentados ainda, visto da incipiente situação tecnológica, como a Segurança, a Interoperabilidade e a Disponibilidade. Vejamos:

- 1. Segurança, por haver desconhecimento de onde seus dados serão alocados [KAUFMAN, 2009], mesmo que ainda exista certa prevenção quanto à utilização do Cloud Computing, percebe-se que os prestadores de serviços e de infraestrutura estão se preocupando com a proteção e privacidade dos seus usuários, diferentemente do receio existente há uma década (DIAKAIAKOS, 2009). Portanto, essa distância com os dados, localizados fisicamente, causa certa insegurança e receio em hospedá-los. Para Armbrust, em 2009, as empresas provedoras deveriam realizar técnicas de criptografia. A AWS, como bem evidenciado, no texto supracitado, vem se organizando, de maneira eficiente e satisfatória, quanto à segurança do usuário. Normalmente, muito da Segurança, hoje em dia, está relacionada à escolha da senha fraca do usuário, do que no provedor do serviço;
- 2. **Escalabilidade**, visto que essa característica é fundamental na Computação em Nuvem, pois as aplicações para uma nuvem precisam ser escaláveis (ou "elásticas"). Assim, os

⁹AWS. Soluções Disponível para parceiros de segurança. em: https://aws.amazon.com/pt/security/partner-solutions/. Acesso em: 21 mai. 2020. ¹⁰AWS. Segurança de rede infraestrutura. Disponível e em: https://aws.amazon.com/pt/govcloud-us/fags/. Acesso em: 21 mai. 2020.

- serviços utilizados devem ser alterados conforme a demanda do usuário. Portanto, oferecer flexibilidade e agilidade podem ainda atrapalhar o uso;
- 3. Interoperabilidade, pois como o ambiente em Nuvem vem se tornando uma grande afluente no meio tecnológico, ainda existem diversas restrições quanto à utilização de apenas uma única plataforma, sem que o usuário possa executar seus programas em diversas nuvens. Já existem, hoje, boa parte da Interoperabilidade, porém é necessário que se criem padrões, como Leis de Internet Globais;
- 4. Internet, relaciona-se à persistência dos dados, pela não perda dos seus dados ao tentar salvar. Como a internet é ainda muito falha, toda a conexão precisa estar bem sustentada para que se tenha uma qualidade da utilização de tal serviço. De forma mais objetiva, caso o usuário não tenha condições de se obter uma internet, ele não conseguirá realizar upload de arquivos, ou downloads, por exemplo.

Tipos de Computação em Nuvem

Apenas para finalizar, os três principais tipos de Computação em Nuvem, baseados no controle e flexibilidade, serão descritas a seguir, como bem indicadas:

- Infraestrutura como serviço (IaaS), contém os componentes básicos na nuvem.
 Normalmente, oferece ingresso aos recursos da rede, computadores e a espaços de
 armazenamento de dados. Ou seja, existe que o usuário, ou a empresa, utilize de maneira
 mais flexível e gerenciável, à maneira que atenda suas condições específicas (hardware e
 sistemas operacionais);
- 2. Plataforma como serviço (PaaS), verifica-se como manter o foco na implantação e no gerenciamento de aplicativos. Isto é, não é necessária a preocupação com a aquisição de recursos, o planejamento de capacidade, manutenção no sistema, ou na infraestrutura. Normalmente, é usado quando uma empresa ou um usuário gostaria de hospedar alguma aplicações de caráter Mobile ou Web;
- 3. Software como serviço (SaaS), é oferecido um produto, todo utilizável ao usuário, visto que é executado e gerenciado pelo o provedor de serviços. Geralmente, o SasS são aplicativos de usuários finais (como e-mail baseado na web). O usuário não precisa pensar em nada em relação à manutenção e o gerenciamento, apenas utilizar o software específico. Como exemplo, temos o Google Drive, em que nós, os participantes desse trabalho, utilizamos para guardar os arquivos e compartilhá-los.

Link para o vídeo

O link para o vídeo está contido a seguir:

• https://youtu.be/rFOA9ahOyHI

Descrição da Instância

A instância Amazon Elastic Compute Cloud (Amazon EC2) criada junto à Amazon Web Services tem como suas descrições principais:

- Arquitetura x86, com 64 bits.
 - o Mínimo de 2 CPUs virtuais.
- Mínimo de 4 Gigabytes de memória principal.
- Armazenamento (memória secundária):
 - o 50 gigabytes de armazenamento Solid-State Drive (SSD).
 - 500 gigabytes de armazenamento Cold HDD.
- Sistema operacional
 - o Grupo 1: CentOS versão 6 ou mais recente.
 - o Grupo 2: OpenSUSE Leap 15 ou mais recente.

Como introduzido no início do projeto, o nosso grupo esteve com o Sistema Operacional - OpenSUSE.

☐ Custos mensais

Os custos mensais dessa instância criada através da AWS estão a seguir relatadas:

Figura 04 - Custos mensais da Instância

Figura 05 - Custos da Amazon EC2

Figura 06 - Planilha dos custos

Link para a calculadora

O link para o vídeo está contido a seguir:

• https://calculator.s3.amazonaws.com/index.html?lng=#r=IAD&s=EC2&key=files/calc-ee 3013c4584ad6b431db2ba107e119c0a49b5fab&v=ver20200513uN

Instruções para o acesso remoto

Para o acesso à instância, é preciso que o professor tenha disponível alguma ferramenta de conexão SSH. Neste tutorial utilizamos o PuTTY, uma ferramenta disponível no Windows, que possibilita a conexão.

- 1. Tenha o PuTTY baixado e instalado na sua máquina. Ele é disponibilizado neste link¹¹.
- 2. Então, abrindo o PuTTY, clique na opção *Session* e então insira o nome de usuário criado para acessar a instância, que no nosso caso é enzo. Seguido do caracter @ e do **DNS Público** da instância, que será disponibilizado logo abaixo. Defina *Connection Type* como **SSH**. Portanto, insira nomedousuário@DNSPUBLICO.

Figura 7 - Tela inicial do PuTTY

¹¹ Link para instalação do Putty: https://www.putty.org

DNS Público: ec2-3-235-140-99.compute-1.amazonaws.com

3. Feito o passo anterior, teremos o endereço para acessar a instância da máquina virtual criada. Agora, clicando em **Connection** no menu lateral, expanda o **SSH** e em seguida entre em **Auth**. Nessa aba será possível inserir a chave privada que possibilitará a conexão com a máquina, clicando em **Browse**. O download da chave estará disponível ao final da página.

Figura 8 - Aba Auth do PuTTY

4. Agora que a chave¹² está inserida, clique em **Open**. Um console será aberto validando as credenciais. É possível que apareça uma mensagem dizendo que esse é o primeiro acesso e se você confia nessa conexão, se isso ocorrer clique em **Sim.** A partir desse momento, o uso da instância é liberado.

https://drive.google.com/drive/folders/1jVr5k8XPpDha93xey8uw3uXvcD9-cy-D?usp=sharing

¹² Acesso à chave:

Conclusões

Antes de iniciar efetivamente as conclusões acerca do trabalho, desejamos analisar também os desafios encontrados, sejam científicos, técnicos e experimentais, cujos essa prática nos acometeu do começo ao fim. Assim, descrevemos alguns meios, a fim de superá-los.

☐ Desafios científicos, técnicos e experimentais enfrentados e meios de superá-los

Para finalização do presente projeto, gostaríamos de discutir alguns atributos relacionados aos desafios científicos e técnicos que surgiram conforme à aplicação das atividades necessárias para a realização do trabalho. Vejamos:

- Sentimento de dúvida, o que implicou na dificuldade de realizar determinadas ações, já
 que ainda não se tinha conhecimento prévio para balizar a produção do projeto, receando
 os estudantes a declararem, efetivamente, suas tentativas no site da AWS;
- Desafio científico, de não encontrar as referências necessárias, em que responderiam parcial ou completamente nossas dúvidas, e também o acesso impossibilitado na biblioteca da Faculdade de Tecnologia;
- Desafios técnicos, estão relacionados, em muitos os casos, à resolução dos problemas, como por exemplo, declarar a instância via SSH para que pudesse ser acessada pelo o docente da disciplina;
- 4. **Desafios técnicos**, como a execução dos comandos devidos para conseguir criar a instância;
- Dificuldade de produção do vídeo, em que surgiram dúvidas casuais, como qual seria a música para inserir;
- 6. **Procrastinação**, já que não ter os amigos para ajudar de forma presencial, além de datas mais fixas e coordenadas através de um cronograma, dificultaram alguns quesitos do projeto.

Para resolver os problemas supracitados, mesmo que ainda existissem muitas dúvidas, a prática da tentativa e erro, foi o que guiou o projeto. De fato, em relação à dificuldade científica de não termos a biblioteca da Faculdade de Tecnologia, da Unicamp, disponível para eventuais

consultas bibliográficas, além de livros que serviriam de apoio para a realização, indicou que deveríamos justificar o acesso de todas as nossas dúvidas, através da internet. Atrelado à internet e também aos amigos, de forma autônoma, angariamos tal objetivo, primeiramente proposto pelo o docente. Além disso, os desafios técnicos enfrentados, estavam associados aos comandos para a criação da instância e o acesso remoto, via SSH, pelo o professor. Resolvemos esse impasse, por meio da documentação da Amazon Web Services, o que balizou boa parte das nossas outras dúvidas.

Já, por último, a dificuldade enfrentada na criação do vídeo, surgiram questões relacionadas à retroalimentação de um conteúdo mais produzido, como músicas e animações, que pudessem valorizar o resultado efetivo.

☐ Conclusões individuais

Enzo

O projeto definido pelo o Leon foi uma experiência importantíssima, visto a necessidade, hoje em dia, da Computação em Nuvem. Para relatar a experiência, vou necessitar rememorar algumas memórias, além das minhas imposições sentimentais. Na primeiro encontro com ele, em que relatou a nós, os estudantes, que deveríamos realizar a virtualização na AWS, senti-me perdido e com muitas dúvidas. Isso ocorre frequentemente nas disciplinas, já que não estava habituado, com a Computação no Ensino Médio, e também por não ser a minha área com maior facilidade. É certo que entregar um trabalho, definido logo no início, já evidencia a surpresa de ter de realizá-lo. Por isso, em meio a expansão do Coronavírus, tivemos um semestre prejudicado em quesitos presenciais pela a readaptação de uma nova proposta emergencial, o que causou, em muitos os casos, no impasse da procrastinação. Essa incerteza e dificuldade, geraram em mim, uma certa resiliência, pois a desmotivação nesse semestre foi determinante para algumas atividades realizadas.

Porém, em relação às atividades propostas, o exercício de aplicação de uma instância em Nuvem foi essencialmente desafiadora, ainda que fossem experiências nubladas e desconcertantes, e implicaram na produção da melhor apresentação possível do projeto, empenhando-se ao máximo.

De um certo modo, aprendi: como acessar e como criar a Instância, sua utilização, conceitos relacionados à Computação em Nuvem (Infraestrutura, Plataforma e Software), instalações do Putty e FileZilla e formas de conhecê-lo. Claro que o Guilherme me ajudou muito nesse desenvolvimento e sempre compartilhamos resultados, ele mais do que eu, a fim de ajudar um ao outro. Então, fica o meu agradecimento ao meu companheiro de trabalho, que foi prudente e incisivo em muitas ações do conteúdo.

Conhecer, então, esses atributos da CN, e ver como surgiram, e como são aplicados, além de suas estruturas, foram sensações boas. Gostaria de agradecer pela a oportunidade e por permitir essa autonomia no estudante, pois ou a liberdade incita desafios na tentativa de superá-los ou revela um trabalho apaziguado, apenas como forma de cumprir as atividades propostas.

• Guilherme

Com a realização deste trabalho foi possível causar uma aproximação à área da Computação em Nuvem. De início, houve insegurança quanto aos requisitos e às possíveis dificuldades a serem enfrentadas, dado que nenhum dos integrantes teve contato com tecnologias assim. Porém, ao utilizar as documentações informadas pelo professor e com mais algumas pesquisas externas, foi possível realizar tudo o que foi pedido sem problemas, na medida do possível. Acredito que tenha sido uma experiência que serviu como forma de introduzir as familiaridades das máquinas virtuais, permitindo que os alunos a manipulem da forma como bem entenderem sobre apoio de uma plataforma que contém as informações necessárias em um nível acessível. Salvo em determinadas ocasiões, os documentos trouxeram com precisão e objetividade o que precisávamos. De certa forma, foi prazeroso ter a oportunidade de construir a instância e fazer as conexões funcionarem. Ter a experiência com algo palpável, assim por dizer, causou uma aproximação ao conteúdo e foi muito significativo. Além disso, o pedido de gravação do vídeo foi outro item interessante e que agregou muito. Pois, ter que explicar de forma didática e acessível um determinado conteúdo é essencial, tanto para a vida do ambiente universitário da graduação quanto do ambiente profissional e acadêmico. Foi um trabalho interessante do começo ao fim.

☐ Conclusão geral

Em relação à intersecção dos comentários individuais, nós concluímos que a experiência do trabalho foi realmente agregadora a ambos integrantes. Assim, em meio às dificuldades relacionadas a esse projeto, pudemos adentrar a área da Computação em Nuvem, aprendendo a manipular uma máquina virtual e, na tentativa de tornar o conhecimento mais acessível às pessoas, valorizar a didática.

Por fim, agradecemos a oportunidade do projeto proposto e reiteramos o reconhecimento dessas atividades que agreguem experiência aos estudantes.

Referências Bibliográficas

A SINGAPORE GOVERNMENT AGENCY WEBSITE. **Cloud Security**. Disponível em: https://www.csa.gov.sg/singcert/publications/cloud-security. Acesso em: 20 mai. 2020.

ALMEIDA, A. *et al.* **BANDA LARGA NO BRASIL: um estudo sobre a evolução do acesso e da qualidade das conexões à Internet**: Cadernos NIC.br Estudos Setoriais. 1. ed. São Paulo: Comitê Gestor da Internet no Brasil – CGI.br, 2018. p. 25-35.

AMAZON. Overview of Amazon Web Services, January/2020. Disponível em: https://dl.awsstatic.com/whitepapers/aws-overview.pdf. Acesso em 14/05/2020.

AMAZON ELASTIC COMPUTE CLOUD. **User Guide for Windows Instances**. Disponível em: https://docs.aws.amazon.com/pt_br/AWSEC2/latest/WindowsGuide/ec2-wg.pdf. Acesso em: 24 abr. 2020.

ARMBRUST, M.; FOX, A.; GRIFFITH, R.; JOSEPH, A. D.; KATZ, R.; KONWINSKI, A.; LEE, G.; PATTERSON, D.; RABKIN, A.; STOICA, I.; ZAHARIA, M. Above the Clouds: A Berkeley View of Cloud Computing. EECS Department, University of California, Berkeley, fevereiro 2009.

AWS. Web Overview of Services. Disponível Amazon em: https://d1.awsstatic.com/whitepapers/aws-overview.pdf. Acesso em: 24 abr. 2020. AWS. Segurança de rede infraestrutura. Disponível e em: https://aws.amazon.com/pt/govcloud-us/faqs/. Acesso em: 21 mai. 2020.

AWS. Segurança na Nuvem AWS Infraestrutura e serviços para elevar a sua segurança na nuvem. Disponível em: https://aws.amazon.com/pt/security/?nc1=f_cc. Acesso em: 21 mai. 2020.

AWS. **SIMPLE MONTHLY CALCULATOR**. Disponível em: https://calculator.s3.amazonaws.com/index.html?lng=#r=IAD&s=EC2&key=files/calc-ee3013c4
584ad6b431db2ba107e119c0a49b5fab&v=ver20200513uN. Acesso em: 22 mai. 2020.

AWS. **Soluções para parceiros de segurança**. Disponível em: https://aws.amazon.com/pt/security/partner-solutions/. Acesso em: 21 mai. 2020.

AWS. **SIMPLE MONTHLY CALCULATOR**. Disponível em: https://calculator.s3.amazonaws.com/index.html?lng=#r=IAD&s=EC2&key=files/calc-ee3013c4 584ad6b431db2ba107e119c0a49b5fab&v=ver20200513uN. Acesso em: 22 mai. 2020.

CHIRIGATI, Fernando Seabra. Computação em Nuvem. Rio de Janeiro, RJ. 2009. Acessado em: 10 mai. 2020.

DIKAIAKOS, M. D.; PALLIS, G.; KATSAROS, D.; MEHRA, P.; VAKALI, A. CLOUD COMPUTING – DISTRIBUTED INTERNET COMPUTING FOR IT AND SCIENTIFIC RESEARCH. IEEE Internet Computing, 13(5): 10-13, setembro/outubro 2009. Acesso em: 22 mai. 2020.

DIRETORIA ACADÊMICA. **Caderno de Horários de 2020**. Disponível em: https://www.dac.unicamp.br/portal/caderno-de-horarios/2020/1/S/G/FT/TT304. Acesso em: 13 mai. 2020.

GRADVOHL, A. L. S; DR. **Modelo de Projeto FAPESP**: This is a LaTeX template for São Paulo Research Foundation (FAPESP) Project. 1. ed. Limeira: [s.n.], 2019. p. 1-7.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). **Pesquisa Nacional por Amostra de Domicílios Contínua - PNAD Contínua**. Disponível em: https://www.ibge.gov.br/estatisticas/sociais/trabalho/17270-pnad-continua.html?=&t=microdados Acesso em: 20 mai. 2020.

MACHADO, Javam. C.; MOREIRA, Leonardo. O.; SOUSA, Flávio. R. C. Computação em nuvem: Conceitos, Tecnologias, Aplicações e Desafios. Quixadá, CE. 2009.

TAURION, Cezar. Cloud Computing - Computação em Nuvem - Transformando o mundo da tecnologia. Rio de Janeiro, Brasport, 2009.