Министерство науки и высшего образования Российской Федерации Муромский институт (филиал)

Федерального государственного бюджетного образовательного учреждения высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

Факультет	ИТР	
Кафедра	ПИн	

Статья

По	Цифровая обработка информации				
Тема	Лабораторные работы по бинаризации изображений и				
	обработке с использован	нием Ореп	CV		
		Руководит	гель		
		Б	елякова А.С.		
		(фамилия, ин	нициалы)		
		(подпись)		(дата)	
		Студент_	ПИН - 121 (групп	(a)	
			илов М.В.		
		(подпись)		(дата)	

Муром 2024

Лабораторные работы по бинаризации изображений и обработке с использованием OpenCV

Введение

Тема данной серии лабораторных работ — бинаризация изображений и работа с библиотекой OpenCV. Целью является получение навыков обработки изображений, включая бинаризацию, повышение контраста, изменение гистограмм, скелетизацию и сегментацию. В каждой лабораторной работе будут рассмотрены этапы выполнения, результаты и выводы.

Рисунок 1 – Пример изображения из тестового набора

					МИВлГУ 09.03.04 - 0.009			
Изм.	Лист	№ докум.	Подпись	Дата				
Разро	іб.	Ермилов М.В.			Лабораторные работы по	Лит.	Лист	Листов
Пров	ер.	Белякова А.С.			бинаризации изображений и		2	12
Рецен	13.				обработке с использованием			
H. Ko	нтр.				OpenCV	МИ ВлГУ ПИН-121		ІИН-121
Утве	рд.				1			

Лабораторная работа №1: Бинаризация изображений Цели и задачи:

Цель данной лабораторной работы — освоить методы бинаризации изображений с использованием библиотеки OpenCV. Задача состоит в написании программы на Python, которая реализует бинаризацию изображений из тестовых наборов данных.

Ход работы:

Загрузка и отображение изображений: Изображение загружается в градациях серого и отображается.

Бинаризация изображений: Применяется пороговая фильтрация для получения бинарного изображения.

Сохранение и отображение результатов: Бинаризованное изображение сохраняется и отображается.

Результаты

Результаты бинаризации изображений продемонстрированы на рисунках 2-4, где показаны результаты при различных порогах (100, 130, 140).

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 2 – Результат при бинаризации изображения с порогом 100

Рисунок 3 — Результат при бинаризации изображения с порогом 130

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 4 – Результат при бинаризации изображения с порогом 140

В ходе работы были получены навыки обработки изображений с помощью библиотеки OpenCV, а также понимание методов бинаризации.

2. Лабораторная работа №2: Повышение контраста и видоизменение гистограмм

Цели и задачи

Целью данной лабораторной работы является изучение алгоритмов повышения контраста и изменения гистограмм для улучшения визуального восприятия изображений.

Ход работы

Загрузка изображения: Изображение загружается в градациях серого.

Изм.	Лист	№ докум.	Подпись	Дата

Лист

Контрастирование: Применяется алгоритм линейного растяжения контраста.

Изменение гистограммы: Применяется алгоритм равномерного распределения гистограммы.

Отображение результатов: Оригинальное и обработанное изображения отображаются вместе с их гистограммами.

Результаты

Результаты работы программы представлены на рисунке 5, где отображаются оригинальное изображение, контрастированное изображение и их гистограммы.

Рисунок 5 – Результат работы программы

Изм.	Лист	№ докум.	Подпись	Дата

В ходе работы были изучены алгоритмы повышения контраста и изменения гистограмм, что позволило улучшить визуальное восприятие изображений.

3. Лабораторная работа №3: Скелетизация и утоньшение бинарных изображений

Цели и задачи

Целью этой лабораторной работы является изучение алгоритма получения одноточечных линейчатых структур бинарных изображений различной формы.

Ход работы

Загрузка и предварительная обработка изображения: Изображение загружается в градациях серого.

Бинаризация: Применяется пороговая фильтрация для получения бинарного изображения.

Скелетизация: Реализуется алгоритм скелетизации для получения линейчатой структуры.

Утонение: Применяется алгоритм утончения для получения более тонких линий.

Результаты

Результаты работы программы представлены на рисунке 6, где показаны оригинальное, бинарное, скелетизированное и утонченное изображения.

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 6 – Результат работы программы

В ходе работы были изучены и освоены алгоритмы получения одноточечных линейчатых структур бинарных изображений различной формы.

4. Лабораторная работа №4: Сегментация изображения и выделение контуров

Цели и задачи

Целью данной лабораторной работы является изучение операций по сегментации изображений и приобретение практических навыков использования функций для сегментации.

Ход работы

Загрузка изображения: Изображение загружается и преобразуется в градации серого.

Изм.	Лист	№ докум.	Подпись	Дата

Сегментация: Применяются различные методы сегментации, включая пороговую фильтрацию и метод выращивания областей.

Отображение результатов: Все результаты сегментации отображаются на графиках.

Результаты

Результаты работы программы представлены на рисунках, где отображаются оригинальное изображение, результаты сегментации по различным методам.

Рисунок 3 – Результат работы программы

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 3 – Результат работы программы

В ходе работы были изучены операции по сегментации изображений и функции, реализующие эти операции, что позволило приобрести практические навыки работы с OpenCV.

Изм.	Лист	№ докум.	Подпись	Дата

Заключение

В ходе выполнения лабораторных работ по бинаризации изображений и обработке с использованием библиотеки OpenCV были достигнуты значительные результаты, позволяющие глубже понять основные методы обработки изображений. Каждая лабораторная работа была направлена на изучение конкретного аспекта обработки изображений, что способствовало формированию комплексного представления о возможностях OpenCV.

Анализ проделанных работ

Бинаризация изображений: В первой лабораторной работе были освоены методы бинаризации, что позволило научиться выделять объекты на изображениях с помощью пороговой фильтрации. Проведенные эксперименты с различными порогами показали, как изменение порога влияет на качество бинаризации, что является важным для дальнейших шагов обработки изображений.

Повышение контраста и изменение гистограмм: Вторая лабораторная работа сосредоточилась на улучшении визуального восприятия изображений. Изученные методы линейного растяжения контраста и изменения гистограмм продемонстрировали, как можно улучшить качество изображений, что особенно важно в задачах, связанных с анализом изображений и их интерпретацией.

Скелетизация и утончение: Третья лабораторная работа углубила понимание алгоритмов, позволяющих извлекать линейные структуры из бинарных изображений. Освоение алгоритмов скелетизации и утончения открыло новые горизонты для работы с изображениями, позволяя создавать более точные и компактные представления объектов.

Изм.	Лист	№ докум.	Подпись	Дата

Сегментация изображений: В заключительной лабораторной работе были изучены методы сегментации, что является ключевым элементом в компьютерном зрении. Применение различных подходов к сегментации, таких как пороговая фильтрация и метод выращивания областей, показало, как можно эффективно выделять интересующие области на изображениях.

Общие выводы

В результате выполнения лабораторных работ были получены практические навыки, которые являются основой для дальнейшего изучения и применения методов компьютерного зрения. Освоенные алгоритмы и техники обработки изображений могут быть использованы в различных приложениях, таких как медицинская диагностика, автоматизация производственных процессов, распознавание объектов и многие другие области. Знания, полученные в ходе этих лабораторных работ, создают прочный фундамент для будущих исследований и разработок в области обработки изображений и компьютерного зрения.

Изм.	Лист	№ докум.	Подпись	Дата