Time Complexity

Neo Wang

Westlake High School

September 1, 2021

Time Complexity

Time complexity describes the amount of time it takes for a computer to run an algorithm.

Time Complexity - Examples

Notice how the number of operations of the algorithm grows as the input size grows.

Common Time Complexities

- \triangleright $\mathcal{O}(1)$ Constant Time. Example: swap two numbers in an array, arithmetic.
- $\mathcal{O}(N)$ Linear Time. Example: looping through numbers $[0,\ldots,n]$
- $\mathcal{O}(N^2)$ Quadratic Time. Example: looping through an $N \times N$ matrix.
- \triangleright $\mathcal{O}(\log N)$ Logarithmic Time. Example: binary search.
- $ightharpoonup \mathcal{O}(N \log N)$ Logarithmic Time. Example: merge sort.
- ▶ Bonus: $\mathcal{O}(\alpha(N))$

Notes on Time Complexity

- ► Time complexity ignores lower forms of computation, because we are only trying to describe how the computation scales with input size.
- ▶ Example: $\mathcal{O}(2N)$ is the same as $\mathcal{O}(N)$, because we ignore the constant factor of 2.
- Example 2

$$\mathcal{O}(N^2 \log N + N \log N) = \mathcal{O}(N^2 \log N)$$

Code Example

```
for(int i = 0; i < 1 << n; i++) {
  int b = i - 5;
for(int i = 0; i < m * m; i++) {
  int c = i + m;
 int b = m;
  swap(c, b);
```

Assume *n* and *m* are already defined.

Code Example

```
for(int i = 0; i < 1 << n; i++) {
  int b = i - 5;
for(int i = 0; i < m * m; i++) {
  int c = i + m;
 int b = m;
  swap(c, b);
```

- Assume n and m are already defined.
- Solution:

Code Example

```
for(int i = 0; i < 1 << n; i++) {
  int b = i - 5;
for(int i = 0; i < m * m; i++) {
 int b = m;
 swap(c, b);
```

- Assume n and m are already defined.
- ► Solution:
- ▶ Solution: $\mathcal{O}(2^n + m^2)$

Problem: Given an array of (x,y) points, find the closest pair of points. There are N points. For reference, looping through each combination of points would take $O(N^2)$ time. In around 2 seconds, the computer can process in the order of around $5 \cdot 10^8$ operations.

Find out if the time complexity of $\mathcal{O}(N^2)$ would pass for the following:

Problem 1: $N \le 3000$ Problem 2: $N \le 10^5$

Problem 1: $N \leq 3000$

Solution:

Problem 1: $N \le 3000$ Solution:

Solution: Yes, because the time complexity is $O(N^2)$. We can estimate our calls by plugging the upper bound of N(N=3000) into the equation. $N^2=3000^2=9\cdot 10^6$ which fits in the bounds of $\approx 5\cdot 10^8$ operations.

```
int closestDistance(vpi points) {
  int n = points.size();
  int result = INT_MAX;
  for(int i = 0; i < n; i++) {
    for(int j = i + 1; j < n; j++) {
      result = min(result, distance(points[i], points[j]));
    }
  }
  return result;
}</pre>
```

Problem 1: $N \le 10^5$ Solution:

Problem 1: $N \le 10^5$ Solution:

Solution: No, because the time complexity is $O(N^2)$. We can estimate our calls by plugging the upper bound of $N(N=10^5)$ into the equation. $N^2=(10^5)^2=10^10$ which does not fit in the bound of $\approx 5 \cdot 10^8$ operations.

Workaround

So what if we want to solve problem 2, since it times out?

- ▶ Devise a better algorithm, that passes under $\mathcal{O}(N^2)$ time complexity.
- Costs: Takes a bit of time to implement.
- Benefits: Runs faster.

Workaround

```
#include "../Primitives/Point.h"
    pair<ld,pair<P,P>>> bes; bes.f = INF;
    set<P> S; int ind = 0;
        if (i && v[i] == v[i-1]) return \{v[i], v[i]\};
        for (; v[i].f-v[ind].f >= bes.f; ++ind)
            S.erase({v[ind].s,v[ind].f});
        for (auto it = S.ub({v[i].s-bes.f,INF});
            it != end(S) && it->f < v[i].s+bes.f; ++it) {
            ckmin(bes,{abs(t-v[i]),{t,v[i]}});
```

Advanced Resources

- ► Stanford CS106B Lecture 11 Good Introduction
- $ightharpoonup \mathcal{O}(lpha(\textit{N}))$ proof for Disjoint Set Union w/ Path Compression and Rank
- ▶ O(log(N)) proof for Disjoint Set Union w/ Path Compression or Rank