C3 linearization properties

Miguel Cid Flor

April 16, 2025

Notation Convention

We adopt the following convention throughout the article:

- \bullet Variables with a tilde (e.g., $\tilde{C})$ represent sequences (finite ordered lists of elements).
- Variables with a double tilde (e.g., $\tilde{\tilde{C}}$) represent sequence of sequences.

Ingredients

 \mathcal{C} of classes $C_0, C_1, C_2, \dots, C_n$. Set \mathcal{D} of pairs (class, set of classes) $\mathcal{C} \times \tilde{\mathcal{D}}$. $MRO_D : \mathcal{C} \Rightarrow \tilde{\mathcal{C}}$.

Remove

$$remove : \tilde{\tilde{\mathcal{C}}} \times C \Rightarrow \tilde{\tilde{\mathcal{C}}}$$

Let $\tilde{\tilde{L}} = [\tilde{L}_1; \dots; \tilde{L}_n], \ \tilde{\tilde{L}} \in \tilde{\tilde{\mathcal{C}}}$
Let $C \in \mathcal{C}$

$$\frac{C \quad \tilde{\tilde{L}} = [\tilde{L}_1 \setminus \{C\}, \dots, \tilde{L}_n \setminus \{C\}]}{\text{remove}(\tilde{\tilde{L}}, C) = \tilde{\tilde{L}}}$$

Merge

$$merge: \tilde{\tilde{\mathcal{C}}} \Rightarrow \tilde{\mathcal{C}}$$
 Let $\tilde{\tilde{L}} = [\tilde{L}_1; \dots; \tilde{L}_n], \tilde{\tilde{L}} \in \tilde{\tilde{\mathcal{C}}}$

$$merge(\tilde{\tilde{L}}) = \begin{cases} [C] \cdot merge(remove(\tilde{\tilde{L}}, C)), & \text{if } (\exists k \in \{1, \dots, n\}, \tilde{L}_k \neq \emptyset \land C = head(\tilde{L}_k)) \land \\ & (\forall j < k, C \neq head(\tilde{L}_j)) \land \\ & (\forall i \in \{1, \dots, n\}, C \notin tail(\tilde{L}_i)) \end{cases}$$

$$fail \qquad otherwise$$

Extract Classes

classes:
$$\tilde{\mathcal{D}} \Rightarrow \tilde{\mathcal{C}}$$

Let $\tilde{D} = [(C_1, \tilde{P}_1), \dots, (C_n, \tilde{P}_n)] \in \tilde{\mathcal{D}}$

$$classes(\tilde{D}) = [C_1, \dots, C_n]$$

C3 Linearization

$$c3linearization: \mathcal{D} \Rightarrow \tilde{\mathcal{C}}$$
 Let $D = (C, \tilde{P})$ where $D \in \mathcal{D}$

$$c3linearization(D) = \begin{cases} [C] & \text{if } \tilde{P} = \emptyset \\ [C] \cdot merge([c3linearization(P_1), \dots, \\ c3linearization(P_n), & \text{otherwise} \\ classes(\tilde{P})]) \end{cases}$$