La seguente matrice è una matrice delle distanze di un'istanza del problema del Commesso Viaggiatore.

|   | 1  | 2  | 3  | 4  | 5  |
|---|----|----|----|----|----|
| 1 | -  | 30 | 26 | 50 | 40 |
| 2 | 30 | -  | 24 | 40 | 50 |
| 3 | 26 | 24 | -  | 24 | 26 |
| 4 | 50 | 40 | 24 | -  | 30 |
| 5 | 40 | 50 | 26 | 30 | -  |

Calcolare un lower bound per il valore del ciclo hamiltoniano ottimo utilizzando l'algoritmo di Held e Karp.

Calcoliamo subito un upper bound per il valore del ciclo hamiltoniano ottimo considerando una soluzione ammissibile.



$$z_{_{
m UB}} = 148$$

Calcoliamo l'1-albero di peso minimo (lower bound) rispetto ai costi originari.

$$Z_{LB} = 130 = Z^*_{LB}$$

Consideriamo il numero di archi dell'1-albero incidenti su ciascun nodo.

$$d_{\tau}(2) = 2 \longrightarrow 2 - d_{\tau}(2) = 0$$

$$d_{\tau}(3) = 4 \longrightarrow 2 - d_{\tau}(3) = -2$$

$$d_{\tau}(4) = 1$$
  $\longrightarrow$   $2 - d_{\tau}(4) = 1$ 

$$d_{\tau}(5) = 1 \implies 2 - d_{\tau}(5) = 1$$

$$t^{(1)}$$
=  $(148 - 130)/6 = 3$ 

$$\sum_{v \in V} (2 - d_{\tau}(v))^2 = 6$$

### Aggiorniamo i valori associati ai nodi

$$y_2 = 0$$

$$y_3 = -6$$

$$y_4 = 3$$

$$y_5 = 3$$

|   | 1  | 2  | 3  | 4  | 5  |
|---|----|----|----|----|----|
| 1 | -  | 30 | 32 | 47 | 37 |
| 2 | 30 | -  | 30 | 37 | 47 |
| 3 | 32 | 30 | -  | 27 | 29 |
| 4 | 47 | 37 | 27 | -  | 24 |
| 5 | 37 | 47 | 29 | 24 | -  |

Calcoliamo il nuovo 1-albero di peso minimo



Consideriamo il numero di archi dell'1-albero incidenti su ciascun nodo.

$$d_{\tau}(2) = 2 \longrightarrow 2 - d_{\tau}(2) = 0$$

$$d_{\tau}(3) = 3 \longrightarrow 2 - d_{\tau}(3) = -1$$

$$d_T(4) = 2$$
  $\longrightarrow$   $2 - d_T(4) = 0$ 

$$d_{\tau}(5) = 1$$
  $\longrightarrow$   $2 - d_{\tau}(5) = 1$ 

$$t^{(2)}$$
=  $(148 - 143)/2 = 5/2$ 

 $\sum_{v \in V} (2 - d_{\tau}(v))^2 = 2$ 

#### Aggiorniamo i valori associati ai nodi

$$y_2 = 0$$

$$y_3 = -8.5$$
  
 $y_4 = 3$ 



$$y_{\Lambda} = 3$$

$$y_5 = 5.5$$

|   | 1    | 2    | 3    | 4    | 5    |
|---|------|------|------|------|------|
| 1 | -    | 30   | 34,5 | 47   | 34,5 |
| 2 | 30   | -    | 32,5 | 37   | 44,5 |
| 3 | 34,5 | 32,5 | -    | 29,5 | 29   |
| 4 | 47   | 37   | 29,5 | -    | 21,5 |
| 5 | 34,5 | 44,5 | 29   | 21,5 | -    |

Calcoliamo il nuovo 1-albero di peso minimo



Ricordiamo che il valore dell'upper bound è  $z_{\text{LIB}} = 148$ .

Poiché tutti i dati del problema sono interi e poiché il lower bound corrente è pari a  $z^*_{LB}$  = 147.5 possiamo arrestare la procedura di Held & Karp e concludere che il valore della soluzione ottima del TSP originario è pari a  $z^*$  = 148.