Problemi sul Primo Principio della Termodinamica (1)

- 1. Un sistema termodinamico è costituito da una miscela di gas combustibile e da ossigeno in equilibrio alla temperatura T_0 . Il sistema è contenuto in un recipiente rigido a pareti adiabatiche. Tramite opportuno innesco, nel sistema si verifica la combustione e all'equilibrio si trova che la temperatura finale del sistema è pari a $T_1 > T_0$. Determinare quanto valgono il calore scambiato dal sistema, il lavoro fatto dal sistema e la sua variazione di energia interna.
- 2. Un gas rarefatto si espande contro una pressione costante $p=2\cdot 10^5$ Pa fino a raddoppiare il suo volume iniziale V_0 . Nella trasformazione, il gas assorbe un calore $Q_{ASS}=20930$ J e l'energia interna aumenta di $\Delta U=4186$ J. Determinare il volume iniziale V_0 del gas.
- 3. All'interno di un cilindro chiuso da un pistone mobile a tenuta, privo di attrito e di massa

trascurabile, si trova dell'acqua in ebollizione alla temperatura $T_{eb}=373.15~{\rm K}$ e alla pressione ambiente (costante) $p_{atm}=1.013\cdot 10^5~{\rm Pa}$. Sapendo che il volume occupato da una massa $m=10^{-3}~{\rm kg}$ di vapor acqueo alla temperatura T_{eb} e alla pressione p_{atm} è pari a $V_{vap}=1.67\cdot 10^{-3}~{\rm m}^3$, determinare la variazione di energia interna del sistema nell'evaporazione della massa $m=10^{-3}~{\rm kg}$ di vapor acqueo.