Results and Analysis

Parallelization of a BruteForce Algorithm

Student ID 10027049

University of the West of England

Parallel Computing UFCFFL-15-M

December 2018

1	Contents	
2	Results	2
3	Analysis	4
	3.1 Amdahl's Law & Gustafson's Law	5
	3.2 General analysis	5
	3.2.1 Mean time and Speedup Factor	5
	3.2.2 Efficiency	5
4	Conclusions	6
5	Raw data	7

2 Results

All of the runtime results are displayed in the attached spreadsheet "Results.xlsx" There were a total of 334 program runs in various modes eg OMP 3 threads and mean execution times calculated. The total runtime for all the tests was 23540 s (approx. 6.5 hrs).

As the key was known, it was possible to position the first character of the key at different positions within the search alphabet and note execution times accordingly. This was purely for testing purposes, and if user input is taken for the ciphertext, plaintext and IV values, the program would find the relevant key.

The spreadsheet of raw data displays all of the results of the various positions of the first character. Positions 1,2,3,4,8,16, and 36 (the end of the search alphabet) were tested, as well as an exhaustive search where the search alphabet was adjusted to not include the first character.

Due to time constraints for testing, some of the longer searches were only run 2 or 3 times, rather than the planned 5. All program runs executed on UWE cluster 164.11.39.11 from a Lenovo Laptop (4 cores, i7 processor)

Table 1 shows a summary of the results and the associated speed-up times and efficiencies. The speed up times have been calculated by dividing the benchmarked serial time by the mean execution time of the relevant program, and the efficiency figure is derived by dividing the speedup by the number of threads/processors.

Table 1

		Position of first character of key within							
		search alphabet of length 36							
Version of	f program	8	16	36 E	xhaustive				
Serial	Mean Time	92.31	197.69	461.21	474.45				
OMP 1	Mean Time	104.92	226.22	522.80	542.41				
thread	Speed-up	0.88	0.87	0.88	0.87				
tineda	Efficiency	0.88	0.87	0.88	0.87				
MPI 1	Mean Time	91.65	195.86	468.45	515.89				
proc	Speed-up	1.01	1.01	0.98	0.92				
p.oc	Efficiency	1.01	1.01	0.98	0.92				
OMP 2	Mean Time	68.56	168.34	384.64	411.14				
threads	Speed-up	1.35	1.17	1.20	1.15				
	Efficiency	0.67	0.59	0.60	0.58				
MPI 2	Mean Time	40.56	94.23	228.46	245.01				
procs	Speed-up	2.28	2.10	2.02	1.94				
	Efficiency	1.14	1.05	1.01	0.97				
OMP 3	Mean Time	59.40	146.09	335.75	364.01				
threads	Speed-up	1.55	1.35	1.37	1.30				
	Efficiency	0.52	0.45	0.46	0.43				
MPI 3	Mean Time	27.68	68.21	149.70	162.55				
procs	Speed-up	3.33	2.90	3.08	2.92				
	Efficiency	1.11	0.97	1.03	0.97				
OMP 4	Mean Time	35.81	106.11	283.72	304.87				
threads	Speed-up	2.58	1.86	1.63	1.56				
	Efficiency	0.64	0.47	0.41	0.39				
MPI 4	Mean Time	14.91	42.28	111.13	124.82				
procs	Speed-up	6.19	4.68	4.15	3.80				
	Efficiency	1.55	1.17	1.04	0.95				
MPI 5	Mean Time	17.42	52.50	121.30	134.10				
procs	Speed-up	5.30	3.77	3.80	3.54				
	Efficiency	1.06	0.75	0.76	0.71				
MPI 6	Mean Time	21.08	40.57	100.90	122.35				
procs	Speed-up	4.38	4.87	4.57	3.88				
	Efficiency	0.73	0.81	0.76	0.65				
MPI 7	Mean Time	24.13	49.26	119.65	133.89				
procs	Speed-up	3.83	4.01	3.85	3.54				
	Efficiency	0.55	0.57	0.55	0.51				
MPI 8	Mean Time	0.72	28.49	111.32	124.82				
procs	Speed-up	127.42	6.94	4.14	3.80				
	Efficiency	15.93	0.87	0.52	0.48				

Figure 1 show the results of the various program runs for different positions of the first key character:

Exhaustive Search (character not in the alphabet, so key not found).

End of alphabet (character is at the end of the search alphabet, in this case position 36).

Posn 16 (normal position of the first character of the key within the search alphabet).

Posn 8 (first character positioned towards the beginning of the search alphabet

Figure 1

Figure 2 shows a graph of the efficiencies for when the key was at the end of the search space. i.e. "p" was at position 36 in a search alphabet of length 36.

Figure 2

3.1 Amdahl's Law & Gustafson's Law

It would have been beneficial to analyse the results in terms of Amdahl's law and Gustafson's Law, which both determine the speedup achievable by a parallel program in terms of the proportion of time spent on the serial execution versus the time spent on the execution of the parallel sections of the program. However, in this case, all of the program execution time was within the parallel section, bar that time used for taking user input.

3.2 General analysis

3.2.1 Mean time and Speedup Factor

There is a general reduction in time for all 3 tests as the number of threads/processors increase. However, there are spikes in the OMP 3 thread and OMP 4 thread results, indicating slower times. This is probably due how the search alphabet is distributed among the threads. It is also clear from Figure 1 that there is no significant decrease in time when the number of processors is greater than 4. The exception to this is when the number of processors in the MPI run for the End of Alphabet search was 6. This produced the best overall time for that particular test. MPI parallelization using 8 processes when the first character was positioned at position 8 produced a very quick result (0.72s), which was a speed up of a factor of 127.42 over the serial version. Again, this was because of the way the search alphabet was distributed between the processes. Position 8 would be among the first batch to be processed and hence a very quick result.

3.2.2 Efficiency

The efficiencies were calculated for all of the mean speedup factors, and charted for when the key was at the end of the search space. i.e. when p = 36. The theoretical maximum efficiency is 1 (100%). However, some of the efficiencies exceeded this. This was probably due to how the data was distributed in both the MPI and OMP versions.

For example, in the OMP version executed using 4 threads, then all keys beginning with a, b, c, or d would all be generated at the same time. One thread would use "a" as the key starting character, another would use "b", and so on. Thus, batches of 4 are processed together.

If the search space (size of alphabet) is divisible by the no. of threads or processors then each batch will be the same size. If this is not the case, particularly in the MPI version, this may slow the execution time.

4 Conclusions

Data distribution was a major factor in the performance of the parallel versions of the BruteForce program. The parallel versions produced the expected results. Overheads, in terms of communication time between the processes in the MPI version also effected the results obtained.

Further work is recommended on the MPI version of the program. Although it compiles, runs successfully uses multiple processors, and produces results that are an improvement on the serial version, it is still inefficient, particularly when the maximum number of processors available, 8, did not produce the expected high performance. Running on 8 processors was little better than running on 4.

Lack of experience in using MPI and lack of time to gain that experience was another major factor which effected the results.

5 Raw data

Table 2 and Table 3 display all the obtained timings.

Table 2 (Serial and OMP results)

Program	N. O	D 6										
Version	No of processors or threads	Posn of p	Run1	Run2	Run3	Run4	Run5	Mean Time (s)	Mean Count	Count 1	Count 2	Count3
	or time dus	1	0.6966	0.6948	0.7017	0.6985	0.6973	0.70	3,166,925	3166925	3166925	3166925
		2	13.6198	16.2965	13.4889	13.6164	13.4662	14.10	61,953,485	61953485	61953485	61953485
		3	27.2633	26.5803	26.8435	27.5186		27.05	122,419,661	122419661	122419661	122419661
~		4	39.6554	39.7008	39.7608			39.71	182,885,837	182885837	182885837	182885837
Serial		8	92.2113	92.1902	92.5307			92.31	424,750,540	424750540	424750540	424750540
		16	197.7609	197.7441	197.5756			197.69	908,479,948	908479948	908479948	908479948
		36						461.21	2,117,755,480	2117755480	2117755480	
		exhaustive	474.9618	473.9433				474.45	2,176,782,336	2176782336	2176782336	
		1	0.79522	0.78819	0.79262	0.7902	0.79206	0.79	3,166,925	3,166,925	3,166,925	3,166,925
		2	15.296	15.343	15.324	15.321	15.734	15.40	61,953,485	61,953,485	61,953,485	61,953,485
		3	30.372	30.722	30.224			30.44	122,419,661	122,419,661	122,419,661	122,419,661
	1 thread	4	45.733	46.396	45.144			45.76	182,885,837	182,885,837	182,885,837	182,885,837
	1 tifread	8	105.16	104.82	104.79			104.92	424,750,540	424,750,540	424,750,540	424,750,540
		16		224.32	230.03			226.22	908,479,948	908,479,948	908,479,948	908,479,948
		36		522.82				522.80	2,117,755,480	2,117,755,480	2,117,755,480	
		exhaustive	538.8	546.02				542.41	2,176,782,336	2,176,782,336	2,176,782,336	
		1	1.1859	1.1929	1.1855	1.2123	1.1961	1.19	6,296,407	6,333,103	6,269,916	6,286,202
		2	0.56475	0.55843	0.59266	0.55906	0.5552	0.57	2,969,535	2,968,780	2,980,297	2,959,527
		3	22.676	22.858	22.626	22.676	23.716	22.91	123,515,810	123,809,635	122,918,548	123,819,248
	2 threads	4	23.06	24.635	24.01	26.987	23.304	24.40	124,190,264	123,991,578	123,673,718	124,905,496
		8		68.336	67.265	70.55	68.167	68.56	366,349,425	367,150,731	365,776,491	366,121,053
		16		160.29	172.12			168.34	845,393,634	837,478,190	852,613,188	846,089,525
		36		385.53	382.35			384.64	2,066,682,808	2,067,118,832	2,071,628,102	2,061,301,489
OMP		exhaustive	408.9	418.15	406.38			411.14	2,176,782,336	2,176,782,336	2,176,782,336	2,176,782,336
OMF		1	1.5527	1.514	1.5503	1.4988	1.5377	1.53	8,379,501	8,305,977	8,110,673	8,721,852
		2	0.75070	0.75205	0.71733	0.72767	0.78491	0.75		4,234,331	4,014,126	
		3		0.73994	0.73239	0.7148	0.73638	0.73		4,138,107	4,305,843	3,827,227
	3 threads	4	29.388	30.274	30.391	29.404	29.859	29.86	170,531,796	173,134,164	165,031,163	173,430,060
		8	001-10	58.782	58.471	59.523	59.947	59.40	332,592,350	331,538,072	341,588,782	324,650,197
		16		147.46	146.9	145.57	145.11	146.09	846,357,382	845,633,622	863,397,444	830,041,079
		36	337.23 360.55	330.68 363.54	339.35 367.93			335.75 364.01	1,924,460,726 2,176,782,336	1,921,138,307 2,176,782,336	1,905,044,314 2,176,782,336	1,947,199,556 2,176,782,336
		exhaustive								2,170,782,330	2,170,782,330	2,170,782,330
		1	1.7315	1.7199	1.7302	1.7335	1.7287	1.73	10,791,724	1		
		2	0.81446	0.99138	0.8014	0.80708	0.81322	0.85		1		
		3	0.81854	0.79409	0.82157	0.79433	0.77678	0.80	4,887,542			
	4 threads	4	0.88126	0.80702	0.80699	0.87651	0.87086	0.85		1		
		8		34.205	36.926	37.346	l I	35.81	221,207,260	1		
		16		109.42	106.5	101.57	106.8	106.11	670,777,631			
		36		286.43 301.52	281.06	285.65	281.19	283.72 304.87	1,883,212,272			
		exhaustive	308.84	301.52	304.26			304.87	2,176,782,336			

Table 3 (MPI Results)

Program Version	No of processors or threads	Posn of	Run1	Run2	Run3	Run4	Run5	Mean Time (s)	Mean Count	Count 1	Count 2	Count3
	1 proc	1 2 3 4 8 16 36 exhaustive	196.2155 460.4248	0.689645 14.17904 26.38305 39.40234 91.98718 195.6466 476.4738	0.68732 13.36216 26.40797 39.56521 91.47026 195.7246			0.72 13.63 26.38 39.44 91.65 195.86 468.45 515.89	3,166,925 61,953,485 122,419,661 182,885,837 424,750,540 908,479,948 2,117,755,480 2,176,782,336			
	2 procs	1 2 3 4 8 16 36 exhaustive	0.332666 13.75085 13.74297 40.59607 94.21589 228.638	0.746487 0.333461 14.80422 13.91009 40.57155 94.44507 228.2808	0.704952 0.333499 13.74726 13.75808 40.51024 94.02402			0.72 0.33 14.10 13.80 40.56 94.23 228.46 245.01	3,166,925 1,487,309 61,953,485 61,953,485 182,885,836 424,750,540 1,029,364,312			
	3 procs	1 2 3 4 8 16 36 exhaustive	13.94175 27.51158 68.31525 149.8516	0.711189 0.333145 0.334199 13.87485 28.06831 68.16699 149.5476	0.714607 0.33418 0.334147 13.90437 27.4609 68.15397			0.71 0.33 0.33 13.91 27.68 68.21 149.70 162.55	3,166,925 1,487,309 1,487,309 61,953,485 122,419,660 303,818,188 666,567,256 725,594,112			
NW.	4 procs	1 2 3 4 8 16 36 exhaustive	0.337645 0.338109 14.08414 41.5167 112.1576	0.750773 0.34439 0.337991 0.35383 14.57588 42.69525 110.1056	0.738594 0.340914 0.340757 0.340749 16.07193 42.63943			0.74 0.34 0.34 0.34 14.91 42.28 111.13 124.82	3,166,925 1,487,309 1,487,309 1,487,309 61,953,484 182,885,836 485,168,728 544,195,584			
MPI	5 procs	1 2 3 4 8 16 36 exhaustive	0.425101 16.15433 5 56.79571 120.3621	0.962179 0.541452 0.517274 0.33711 17.75586 51.22479 122.2373				1.20 0.43 0.44 0.47 17.42 52.50 121.30 134.10	3,166,925 1,487,309 1,487,309 1,487,309 61,953,484 182,885,836 424,702,552 483,729,408			
	6 procs	1 2 3 4 8 16 36 exhaustive	0.402147 0.415148 21.58406 40.55182 100.9222	0.995297 0.61605 0.668302 0.66035 20.86207 40.45869 100.8817	1.105558 0.66695 0.423609 0.4909 20.79847 40.71363			1.09 0.57 0.50 0.52 21.08 40.57 100.90 122.35	3,166,925 1,487,309 1,487,309 1,487,309 61,953,484 122,419,660 303,770,200 362,797,056			
	7 procs	1 2 3 4 8 16 36 exhaustive	0.68131 0.71069 0.384869 23.50498 50.01321 119.1086	0.987399 0.697367 0.689936 0.696285 24.24896 49.61092 120.187	0.68555 0.444216 0.692383			1.18 0.69 0.61 0.59 24.13 49.26 119.65 133.89	3,166,925 1,487,309 1,487,309 1,487,309 61,953,484 122,419,660 303,770,200 362,797,056			
	8 procs	1 2 3 4 8 16 36 exhaustive	0.700729 0.601441 0.697114 28.22435 111.3138	1.52364 0.701961 0.688372 0.713404 0.696355 28.54018 111.3317	0.77999			1.49 0.71 0.72 0.67 0.72 28.49 111.32 124.82	3,166,925 1,487,309 1,487,309 1,487,309 1,487,308 61,953,484 243,304,024 302,330,880			