

# Machine Learning CSL7620

Dr. Harshal D. Akolekar

Dept. Of Mechanical Engineering

School of Artificial Intelligence & Data Science

IIT Jodhpur





#### Selected Journal Publications

- Pacciani, R., Marconcini, M., Bertini, F., Taddei, S.R., Spano, E., Zhao, Y., **Akolekar, H.D.,** Sandberg, R.D., and Arnone, A., 2021, `Assessment of **Machine-learnt Turbulence Models** Trained for Improved Wake-mixing in Low Pressure Turbine Flows', Energies, 14(24), 8327
- Akolekar, H.D., Zhao, Y., Sandberg, R.D., Pacciani, R., "Integration of Machine Learning and Computational Fluid Dynamics to Develop Turbulence Models for Improved Turbine Wake Mixing Prediction", ASME Journal of Turbomachinery).
- Akolekar, H.D., Waschkowski, F., Zhao, Y., Pacciani, R., and Sandberg, R.D., 2021, `Transition Modeling for Low Pressure Turbines Using Computational Fluid Dynamics Driven Machine Learning', Energies (MDPI), 14(15), 4680.
- Zhao, Y., **Akolekar, H. D.**, Weatheritt, J., Michelassi, V., and Sandberg, R. D., 2020. 'RANS Turbulence Model Development using **CFD-Driven Machine Learning**'. Elsevier **Journal of Computational Physics**, 411.
- Akolekar, H. D., Sandberg, R. D., Hutchins, N., Michelassi, V., and Laskowski, G., 2019. 'Machine-Learnt Turbulence Closures for Low Pressure Turbines with Unsteady Inflow Conditions', ASME Journal of Turbomachinery, ISUAAAT15 Special Issue, 141 (10) p. 101009
- Akolekar, H. D., Weatheritt, J., Hutchins, N., Sandberg, R. D., Laskowski, G., and Michelassi, V., 2019. 'Development and Use of Machine-Learnt Algebraic Reynolds Stress Models for Enhanced Prediction of Wake Mixing in Low Pressure Turbines', ASME Journal of Turbomachinery, 141 (4) p. 041010.

#### Selected International Conferences

- Fang Y, Zhao Y, **Akolekar HD**, Ooi, A, Sandberg Richard, Pacciani, R, Marconcini, M; **A Data Driven Approach** for Generalising the Laminar Kinetic Energy Model for Separation and Bypass Transition in Low- and High-Pressure Turbines, 67<sup>th</sup> **ASME Turbo Expo**: Power for Land, Sea and Air, Boston, USA, June 2023 (Best Poster Presentation)
- Akolekar HD, Waschkowski F, Pacciani R, Zhao Y, Sandberg, RD; Multi-Objective Development of Machine Learnt Closures for Fully Integrated Transition and Wake Mixing Predictions in Low Pressure Turbines, 66<sup>th</sup> ASME Turbo Expo: Power for Land, Sea and Air, Rotterdam, Netherlands, July 2022.
- Akolekar, H.D., Zhao, Y., Sandberg, R.D., Pacciani, R., "Integration of Machine Learning and Computational Fluid Dynamics to Develop Turbulence Models for Improved Turbine Wake Mixing Prediction", 65<sup>th</sup> ASME Turbo Expo Turbomach. Tech. Conf. Expo., June, 2020, London, UK (paper no. GT2020-14732) (Virtual Event: Sept. 2020).
- Zhao, Y., **Akolekar, H.D.**, Sandberg, R.D., "CFD-Ready Turbulence Models from Gene Expression Programming: Concepts", In Bulletin, **72nd DFD Meeting of American Physical Society**, November, 2019, **Seattle, USA**.
- Akolekar, H. D., Zhao, Y., Sandberg, R. D., Hutchins, N., and Michelassi, V. 'Turbulence Model Development for Low & High Pressure Turbines Using a Machine-Learning Approach', 24th International Society for Air Breathing Engines (ISABE), September, 2019, Canberra, Australia,
- Akolekar, H. D., Sandberg, R. D., Hutchins, N., Michelassi, V., and Laskowski, G. 'Machine-Learnt Turbulence Closures for LPTs with Unsteady Inflow Conditions'. **15th (ISUAAAT)**, September, 2018, **University of Oxford, UK** (paper no. ISUAAAT-019).
- Akolekar, H.D., 'Machine Learning Based Turbulence Modeling for Low Pressure Turbines', Invited Seminar: Whittle Laboratory, University of Cambridge, UK, September 2018.

#### The Team

Instructor: Dr. Harshal Akolekar (www.harshalakolekar.com)

E: harshal.akolekar@iitj.ac.in

#### **Teaching Assistants:**

**Bikash Dutta** 

PhD Student, Dept. of Computer Science and Engineering, IIT-J

E: d22cs051@iitj.ac.in

#### Talib Ansari

PhD Student, Dept. of Mechanical Engineering, IIT-J

E: p23me0011@iitj.ac.in

#### Course Objectives

 To understand various key paradigms for pattern classification and machine learning approaches

• To familiarize with the mathematical and statistical techniques used in pattern recognition and machine learning.

 To understand and differentiate among various pattern recognition and machine learning techniques.

#### Learning Outcomes

The students are expected to have the ability to:

To formulate a machine learning problem

 Select an appropriate pattern analysis tool for analyzing data in a given feature space.

 Apply pattern recognition and machine learning techniques such as classification and feature selection to practical applications and detect patterns in the data.

#### Course Content

- Introduction: Definitions, Datasets for Machine Learning, Different Paradigms of Machine Learning, Data Normalization, Hypothesis Evaluation, VC-Dimensions and Distribution, Bias-Variance Tradeoff, Linear Regression, Classification (5-6 Lectures)
- Bayes Decision Theory: Bayes decision rule, Minimum error rate classification, Normal density and discriminant functions Parameter Estimation: Maximum Likelihood and Bayesian Parameter Estimation (3-4 Lectures)
- Discriminative Methods: SVM, Distance-based methods, Linear Discriminant Functions, Decision Tree,
   Random Decision Forest and Boosting (4 Lectures)
- Dimensionality Reduction: PCA, LDA, ICA, SFFS, SBFS (2-3 Lectures)
- Clustering: k-means clustering, Gaussian Mixture Modeling, EM-algorithm (3 Lectures)
- Kernels and Neural Networks, Kernel Tricks, SVMs (primal and dual forms), K-SVR, K-PCA (2 Lectures)
- Artificial Neural Networks: MLP, Backprop, and RBF-Net (3 Lectures)
- Foundations of Deep Learning: CNN, Autoencoders (2-3 lectures)
- Time series analysis

#### Evaluation

- Continuous Evaluation (50%)
- Assignments 25% (2) in groups
- Quizzes 25 % (3) individual

• End semester - 50%

# Class conduct – and assignment / quiz protocol

Please do not copy work of your peers or off the internet.

• If you use other material, please refer to it via citations.

 Collaboration policy: if you have discussed with anyone, you should acknowledge them.

# Plagiarism Policy

- Cheating in assignments / quizzes/ projects /
- First offence: Zero in the evaluation component
- Second offense: Grade reduction/ F grade

Cheating in exam: F grade

• Misbehavior: Institute guidelines

#### Some points to note ...

Mixture of theory and applied content

 ML does have a lot of theory and math – we will go through that systematically!

Onus is on the students as well to explore the theory and write code

Course is designed based on a median student level

#### What is Machine Learning



- Learning is any process by which a system improves performance from experience – Herbert Simon
- [Machine learning is the] field of study that gives computers the ability to learn without being explicitly programmed—Arthur Samuel, 1959
- A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E. —Tom Mitchell, 1997

## E, T, P examples.

T: Playing checkers P: Percentage of games won against an arbitrary opponent E: Playing practice games against itself

T: Recognizing hand-written words P: Percentage of words correctly classified E: Database of human-labeled images of handwritten words

T: Driving on four-lane highways using vision sensors P: Average distance traveled before a human-judged error E: A sequence of images and steering commands recorded while observing a human driver.

T: Categorize email messages as spam or legitimate. P: Percentage of email messages correctly classified. E: Database of emails, some with human-given labels

#### Task, T

- Classification
- Regression
- Ranking
- Recommendation
- Clustering
- Density estimation
- ....











#### Traditional vs. ML approach



Traditional Approach

ML approach

# Traditional vs. ML approach





#### Data in the Loop



#### ML can help humans learn

#### ML is great for:

- Solutions which require a lot of fine tuning
- Complex problems for which the traditional approach is not good
- Fluctuating environments (new data being added to the mix)
- Getting insights from large amounts of data



#### When do we use Machine Learning?

#### ML is used when:

- Human expertise does not exist (navigating on Mars)
- Humans can't explain their expertise (speech recognition)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)

Learning isn't always useful









# Classic ML task



22223333

What is 2 ?

Complex problems for which the traditional approach is not good

3 4 4 4 4 4 4 5 5 5 5 5

## Learning Algorithm Tasks

#### Recognizing patterns:

- Facial identities or facial expressions
- Handwritten or spoken words
- Medical images
- Generating patterns:
- Generating images or motion sequences
- Recognizing anomalies:
- Unusual credit card transactions
- Unusual patterns of sensor readings in a nuclear power plant
- Prediction:
- Future stock prices or currency exchange rates

## Sample Applications





- Web search
- Computational biology
- Finance
- E-commerce
- Space exploration
- Robotics
- Information extraction
- Social networks
- Debugging software
- Medical imaging
- [Your favorite area]







#### Autonomous Cars



Nevada made it legal for autonomous cars to drive on roads in June 2011

As of 2013, four US states have legalized cars.







## Autonomous Cars Technology





**Adaptive Vision** 



# Facial Images



# Learning of Object Parts



# Scene Labelling via Deep Learning



#### ML in Automatic Speech Recognition

A Typical Speech Recognition System



ML used to predict of phone states from the sound spectrogram



Deep learning has state-of-the-art results

| # Hidden Layers   | 1    | 2    | 4    | 8    | 10   | 12   |
|-------------------|------|------|------|------|------|------|
| Word Error Rate % | 16.0 | 12.8 | 11.4 | 10.9 | 11.0 | 11.1 |

Baseline GMM performance = 15.4%

[Zeiler et al. "On rectified linear units for speech recognition" ICASSP 2013]

## Impact of Deep Learning in Speech Technology



#### Types of Learning

Label Instance

New instance

Training set

- Supervised (inductive) learning
- Given: training data + desired outputs (labels)
- Unsupervised learning
- Given: training data (without desired outputs)
- Semi-supervised learning
- Given: training data + a few desired outputs
- Reinforcement learning
- Rewards from sequence of actions





## Supervised Learning

- Given  $(x_1, y_1)$ ,  $(x_2, y_2)$ , ...,  $(x_n, y_n)$
- Learn a function f(x) to predict y given x
  - -y is real-valued == regression



#### Supervised Learning: Classification

- Given  $(x_1, y_1)$ ,  $(x_2, y_2)$ , ...,  $(x_n, y_n)$
- Learn a function f(x) to predict y given x
  - -y is categorical == classification



## Supervised Learning

- Given: training data + desired outputs (labels)
- (x1, y1), (x2, y2), ..., (xn, yn)
- Learn a function f(x) to predict y given x

Cats



Dogs

## Supervised Learning

**Example 1:** Predict if a new patient has flu or not, based on existing patient data

What is x and y?



A binary (two-label) classification problem

#### Example 2: Which digit in the image?



A multiclass classification problem



There are other options too

Lesson: Choosing features is non-trivial in real applications

# Supervised Learning

#### Example 3: Spam or not?

#### Email I

From: Canadian Pharmacy Subject: Offer ends now!

#### Email 2

From: Yuncong Chen Subject: TA meeting

|         | Pharmacy | offer | meeting | TA | Spam? |
|---------|----------|-------|---------|----|-------|
| Email I | I        | I     | 0       | 0  | Yes   |
| Email 2 | 0        | 0     | I       | I  | No    |

Label: 0 (not spam), I (spam) Features: Words in the email

#### Classification Algorithm



Training and test data must be separate!

#### Performance Measure:

Accuracy (or fraction of correct answers) on test data

- Given  $x_1, x_2, ..., x_n$  (without labels)
- Output hidden structure behind the x's
  - E.g., clustering





Organize computing clusters



Market segmentation



Social network analysis



Astronomical data analysis

- Given: training data (without desired outputs)
- x1, x2, ..., xn (without labels)
- Output hidden structure behind the x's Group them by similarity





Clustering

#### Clustering

Given a set of input objects, group them to clusters by similarity

Example 1: Cluster videos by people in them



#### Example 2: Cluster documents by topic



Features: Words in the document

# Reinforcement Learning

- Given a sequence of states and actions with (delayed) rewards, output a policy
  - Policy is a mapping from states → actions that tells you what to do in a given state
- Examples:
  - Credit assignment problem
  - Game playing
  - Robot in a maze
  - Balance a pole on your hand





2 Select action using policy



3 Action!

4 Get reward or penalty



5 Update policy (learning step)

6 Iterate until an optimal policy is found

#### Agent – Environment Interface



Agent and environment interact at discrete time steps : t = 0, 1, 2, K

Agent observes state at step t:  $s_t \in S$ 

produces action at step t:  $a_t \in A(s_t)$ 

gets resulting reward:  $r_{t+1} \in \Re$ 

and resulting next state:  $s_{t+1}$ 

$$S_{t} = \underbrace{a_{t}}^{r_{t+1}} \underbrace{s_{t+1}}^{r_{t+2}} \underbrace{s_{t+2}}^{r_{t+2}} \underbrace{a_{t+3}}^{r_{t+3}} \underbrace{s_{t+3}}^{r_{t+3}} \underbrace{a_{t+3}}^{r_{t+3}} \cdots$$

#### ChatGPT & Car Driving

- An example of Reinforcement Learning
- Learns from large human conversation datasets.
- Car driving example:
- https://www.youtube.com/watch?v=G-GpY7bevuw

Any thoughts?



# History of ML

- 1950s
  - Samuel's checker player
  - Selfridge's Pandemonium
- 1960s:
  - Neural networks: Perceptron
  - Pattern recognition
  - Learning in the limit theory
  - Minsky and Papert prove limitations of Perceptron
- 1970s:
  - Symbolic concept induction
  - Winston's arch learner
  - Expert systems and the knowledge acquisition bottleneck
  - Quinlan's ID3
  - Michalski's AQ and soybean diagnosis
  - Scientific discovery with BACON
  - Mathematical discovery with AM

## History of ML

#### 2000s

- Support vector machines & kernel methods
- Graphical models
- Statistical relational learning
- Transfer learning
- Sequence labeling
- Collective classification and structured outputs
- Computer Systems Applications (Compilers, Debugging, Graphics, Security)
- E-mail management
- Personalized assistants that learn
- Learning in robotics and vision

#### 2010s

- Deep learning systems
- Learning for big data
- Bayesian methods
- Multi-task & lifelong learning
- Applications to vision, speech, social networks, learning to read, etc.

#### 2020s

- Deep learning
- **–** ???

#### ML System Classification

Batch vs. Online Learning

#### Batch:

- Incapable of learning incrementally
- Must be trained with all data.
- Trained and then launched into production.
- Aka offline learning.

Online learning exactly the opposite



#### ML System Classification

Instance Based vs.
 Model-Based Learning

# Feature 2 Model New instance Feature 1

Model-based learning

#### Instance-based learning





A simple regression model

## Challenges of Machine Learning

Insufficient
 Quantity of Data.



## Challenges of Machine Learning

- Nonrepresentative Training Data
- Sampling Bias



## Challenges of Machine Learning

- Poor Data Quality
- Irrelevant Features
- Overfitting Training Data
- Underfitting the data
- Testing and Validating



Overfitting training

- Hyperparameter Tuning and Model Selection
- Data Mismatch



# ML Pipeline

