CS 131 Problem Set 2

Catherine Angangco, Joshua Frankie Rayo

April 5, 2014

1 Value-at-Risk

1.1 Preliminaries

The value at risk VaR of a continuous loss distribution modeled by a probability distribution function, say p(x) at a given risk level $(1 - \alpha) \in [0, 1]$ is defined as the value at which the cumulative probability of p(x) from $-\infty$ is equal to α . Mathematically speaking, we say:

$$VaR_{\alpha} = z \Leftrightarrow \int_{-\infty}^{z} p(x)dx = \alpha$$

A value z is the value-at-risk at a if and only if the area under the curve of p(x) in the interval $(-\infty, z]$ is equal to α . We first observe the properties of the probability functions

$$p_1(x) = \frac{1}{\sqrt{6\pi}} e^{-\frac{x^2}{6}}$$

and

$$p_2(x) = \frac{1}{\gamma\sqrt{3\pi}} \left(1 + \frac{x^2}{3}\right)^{-2}, \gamma \approx 0.886226925453$$

where $p_1(x)$ is a Gaussian distribution function and $p_2(x)$ is a t distribution function.

• We know that these functions are symmetric to some line $x = \mu$, where μ is the mean of the distribution. When $\mu = 0$, its graph is symmetric to the line x = 0 or y-axis. It has the property

$$\int_{-\infty}^{n} p(x)dx = \int_{-\infty}^{-\infty} p(x)dx$$

for $m \leq n$.

• The functions above are probability distribution functions. It follows that the sum of the probabilities in the sample space is equal to 1. Or equivalently,

$$\sum_{\forall x} p(x) = \int_{-\infty}^{\infty} p(x)dx = 1 \tag{1}$$

• We redefine the limits of integration (i.e.) split equation (2) into two as follows:

$$\int_{-\infty}^{\infty} p(x)dx = \int_{-\infty}^{0} p(x)dx + \int_{0}^{\infty} p(x)dx \quad (2)$$

• Since the graph of the function is symmetric to y-axis, the area under the curve in the interval $[0,\infty)$ is also equal to the area uder the curve in the interval $(-\infty,0)$. Using equation (1) and (2),

$$\int_{-\infty}^{0} p(x)dx = \int_{0}^{\infty} p(x)dx = 0.5$$
 (3)

Now, we verify if $\int_0^\infty p(x)dx = 0.5$ using Gauss-Laguerre quadrature. For $p_1(x)$, the Gauss-Laguerre quadrature form of the integral is

$$I_1 = \int_0^\infty e^{-x} \left(\frac{e^x}{\sqrt{6\pi}} e^{-\frac{x^2}{6}} \right) dx = \int_0^\infty e^{-x} \left(\frac{1}{\sqrt{6\pi}} e^{x - \frac{x^2}{6}} \right) dx$$

where the weighting function $w(x) = e^{-x}$ and $g_1(x) = \frac{1}{\sqrt{6\pi}}e^{x-\frac{x^2}{6}}$. By Gaussian quadratures approximation,

$$I_1 \approx \sum_{i=1}^n A_i g_1(x_i)$$

where i is the number of nodes for approximation. We use n = 6 nodes. The nodal abscissas and corresponding weights for n = 6 is given below.

i	x_i	A_i
1	0.222 847	0.458 964
2	1.188932	$0.417\ 000$
3	2.992736	$0.113\ 373$
4	5.775 144	$0.010\ 399\ 2$
5	$9.837\ 467$	$0.000\ 261\ 017$
6	15.982874	$0.000\ 000\ 898\ 548$

To solve the integral,

$$I_1 = A_1 g_1(x_1) + A_2 g_1(x_2) + A_3 g_1(x_3)$$

$$+ A_4 g_1(x_4) + A_5 g_1(x_5) + A_6 g_1(x_6)$$

$$I_1 = 0.458964 \cdot 0.285454 + 0.417000 \cdot 0.597557$$

$$+ 0.113373 \cdot 1.03226 + 0.0103992 \cdot 0.285985$$

$$+ 0.000261017 \cdot 0.000426427$$

$$+ 8.98548 \times 10^{-7} \cdot 6.50687 \times 10^{-13}$$

$$I_1 = 0.500198 \approx 0.5$$

For $p_2(x)$, the Gauss-Laguerre quadrature form of the integral is

$$I_2 = \int_0^\infty e^{-x} \left(\frac{e^x}{\gamma \sqrt{3\pi}} \left(1 + \frac{x^2}{3} \right)^{-2} \right), \gamma \approx 0.886226925453$$

where the weighting function $w(x) = e^{-x}$ and $g_2(x) = \frac{e^x}{\gamma\sqrt{3\pi}} \left(1 + \frac{x^2}{3}\right)^{-2}$. By Gaussian quadratures approximation,

$$I_2 \approx \sum_{i=1}^n A_i g_2(x_i)$$

We used again n = 6 nodes, and the nodal abscissas and weights above.

To solve the integral,

$$I_2 = A_1 g_2(x_1) + A_2 g_2(x_2) + A_3 g_2(x_3)$$

$$+ A_4 g_2(x_4) + A_5 g_2(x_5) + A_6 g_2(x_6)$$

$$I_2 = 0.458964 \cdot 0.444468 + 0.417000 \cdot 0.55761$$

$$+ 0.113373 \cdot 0.461408 + 0.0103992 \cdot 0.806524$$

$$+ 0.000261017 \cdot 6.22113$$

$$+ 8.98548 \times 10^{-7} \cdot 432.589$$

$$I_2 = 0.499229 \approx 0.5$$

And now we established equation (3).

Going back to our original problem, take note that we are only estimating the value-at-risks for $\alpha \geq 0.5$, so we know that $z \geq 0$. Therefore we should use the relationship that

$$\int_{-\infty}^{z} p(x)dx = \int_{-\infty}^{0} p(x)dx + \int_{0}^{z} p(x)dx$$
$$= 0.5 + \int_{0}^{z} p(x)dx$$
$$= \alpha$$

So it only remains to compute for $\int_0^z p(x)dx$. We use composite Simpson's 1/3 rule with 6 points also..

The general integral $\int_a^b f(x)dx$ can be numerically solved using the composite Simpson's 1/3 rule:

$$\int_{a}^{b} f(x)dx = \frac{h}{3}f(a) + \frac{4h}{3} \sum_{i \text{ even}} f(x_{i}) + \frac{2h}{3} \sum_{i \text{ odd}} f(x_{i}) + \frac{h}{3}f(b)$$

$$h = \frac{b-a}{n}$$
(4)

where n is the number of panels. The next step is to model our integral $\int_0^z p(x)dx$ as a function, say P(z) so that we can use root-finding method for the equation $0.5 + P(z) - \alpha = 0$.

1.2 VaR estimates using Gaussian distribution

We first divide the interval [0,z] into five panels with 6 points with 5 panels: $\{0,z/5,2z/5,3z/5,4z/6,z\}$. Using equation (4), the integral $\int_0^z \frac{1}{\sqrt{1\pi}} e^{-\frac{x^2}{6}} dx =$

 $\int_0^z p_1(x) dx$ is:

$$\int_0^z p_1(x)dx = \frac{h}{3}p_1(0) + \frac{4h}{3}p_1\left(\frac{z}{5}\right) + \frac{2h}{3}p_1\left(\frac{2z}{5}\right)$$

$$= \frac{4h}{3}p_1\left(\frac{3z}{5}\right) + \frac{2h}{3}p_1\left(\frac{4z}{5}\right) + \frac{h}{6}p_1(z)$$

$$= P_1(z)$$

$$h = \frac{z}{5}$$

And now we try to estimate the VaR with $\alpha=0.8$. Then we use Regula-Falsi method for the equation $0.5+P_1(z)-0.8=P_1(z)-0.3=0=Q_1(z)$, with $z\in[0,1]$ and $tol=10^{-9}$. The file PS2_1.sce implements the root-finding method, the root converges to 1.567 692 7.

1.3 VaR estimates using t distribution

The integral
$$\int_0^z \frac{1}{\gamma\sqrt{3\pi}} \left(1 + \frac{x^2}{3}\right)^{-2} = \int_0^z p_2(x) dx$$
 is:

$$\int_{0}^{z} p_{2}(x)dx = \frac{h}{3}p_{2}(0) + \frac{4h}{3}p_{2}\left(\frac{z}{5}\right) + \frac{2h}{3}p_{2}\left(\frac{2z}{5}\right)$$
$$= \frac{4h}{3}p_{2}\left(\frac{3z}{5}\right) + \frac{2h}{3}p_{2}\left(\frac{4z}{5}\right) + \frac{h}{6}p_{2}(z)$$
$$= P_{2}(z)$$
$$h = \frac{z}{5}$$

And now we try to estimate the VaR with $\alpha=0.8$. Then we use Regula-Falsi method for the equation $0.5+P_2(z)-0.8=P_2(z)-0.3=0=Q_2(z)$, with $z\in[0,1]$ and $tol=10^{-9}$. The root converges to 1. 053 385 1. We estimate the VaR with $\alpha\in[0.8,0.99]$ at intervals of 0.1 for the two models. Results are displayed in a tabular and graphical form when the PS2_1.sce is run.

2 Naive Fourier Series Approximation

3 Halley's Comet

4 Yeast Growth Modelling