Physics Formula Sheet

Your Name

 $2023/\ 2024$

Constants

Constant	Symbol	Value
Speed of light	c	$3.00 \times 10^{8} \text{ m/s}$
Gravitational constant	G	$6.674 \times 10^{-11} \text{ N(m/kg)}^2$
Planck's constant	h	$6.626 \times 10^{-34} \text{ J.s}$
Mass of the electron	m_e	$9.10939 \times 10^{-31} \text{ kg}$
Mass of the proton	m_p	$1.67262 \times 10^{-27} \text{ kg}$
Charge of the electron	-e	$-1.60218 \times 10^{-19} \text{ C}$
Permittivity of free space	ϵ_0	$8.85419 \times 10^{-12} \text{ C}^2/\text{J m}$
Boltzmann constant	k_B	$1.38066 \times 10^{-23} \text{ J/K}$
Avogadro's constant	N_A	$6.022 \times 10^{23} \text{ 1/mol}$

Classical Physics

Title	Equation
Bragg's Reflection	$n\lambda = 2d \sin(\theta)$
Diffraction (Single Slit)	$\lambda = d \sin(\theta)$
Young's Double Slit	$\frac{\Delta x}{L} = \frac{\lambda}{d} \approx \sin \theta$
Heat Transfer (Fourier's Law)	$Q = mC_v\Delta T$
Continuity Equation	$\nabla \cdot J = -\frac{d\rho}{dt}$
Force of Gravity	$F = G \frac{m_1 m_2}{r^2}$
Coulomb Force	$F = \frac{q_1 q_2'}{4\pi \epsilon_0 r^2}$
Special Relativity (Time Dilation)	$E^2 = (pc)^2 + (m_0c^2)^2$

Nuclear and magnetic physics

Magnetic Field $: E_B = -\mu B,$

 $\begin{array}{ll} \text{Magnetic Field} & \quad L_B = -\mu D, \\ & \quad \mu = \frac{\pi}{2m} \frac{L}{M} \\ & \quad F_z = -\frac{\sigma L}{m^2} = \frac{\rho B}{\theta z} \\ \text{Rigid rotator} & \quad : E_{rot} = \frac{1}{2^2} \\ & \quad I = \frac{m_1 m_2}{m_1 + m_2} R^2 \\ \text{Radioactive decay} & \quad N(t) = N(0) \exp^{-\lambda t} = N(0) (\frac{1}{2})^{t/\tau_{1/2}} \\ & \quad \tau_{1/2} = \ln(2)/\lambda \end{array}$

Thermodynamics

Black body:

$$D(k)dk = \frac{\partial N(k)}{\partial k} \frac{dk}{V} = \frac{k^2}{\pi^2} dk$$
$$D(\omega)d\omega = \frac{\omega^2}{\pi^2 c^3} d\omega$$

Mathematical equations

Trigonometric functions:

$$\int \sin^{n} ax dx = -\frac{1}{a} \cos ax \, _{2}F_{1} \left[\frac{1}{2}, \frac{1-n}{2}, \frac{3}{2}, \cos^{2} ax \right]$$

$$\int \sin^{2} ax dx = \frac{x}{2} - \frac{1}{4a} \sin 2ax + C$$
(1

$$\int x \sin^2 ax dx = \frac{x^2}{4} - \frac{x}{4a} \sin 2ax - \frac{1}{8a^2} \cos 2ax + C \tag{2}$$

$$\int x^2 \sin^2 x a x dx = \frac{x^3}{6} - (\frac{x^2}{4a} - \frac{1}{8a^3}) \sin 2ax - \frac{x}{4a^2} \cos 2ax + C \tag{3}$$

$$\int \tan ax dx = -\frac{1}{a} \ln|\cos ax| + C = \frac{1}{a} \ln|\sec ax| + C \tag{4}$$

$$\int \frac{\cos ax}{x} dx = \ln|ax| + \sum_{1}^{\infty} (-)^k \frac{(ax)^{2k}}{2k(2k)!} + C$$
(5)

$$\int \cos^2 ax dx = \frac{x}{2} + \frac{1}{4a} \sin 2ax + C \tag{6}$$

$$\int \sin^3 ax dx = \frac{\cos 3ax}{12a} - \frac{3\cos ax}{4a} + C \tag{7}$$

$$\int \tan^2 x dx = \tan x - x + C \tag{8}$$

$$\int \sin ax \cos ax dx = -\frac{\cos^2 ax}{2a} + C$$

$$\int x \cos ax dx = \frac{\cos ax}{a^2} + \frac{x \sin ax}{a} + C$$
(9)
$$(10)$$

$$\int \cos ax dx = \frac{1}{a} \sin ax + C \tag{13}$$

$$\int x \sin ax dx = \frac{\sin ax}{a^2} - \frac{x \cos ax}{a} + C \tag{12}$$

$$\int \frac{a}{x} \sin ax dx = \frac{\sin ax}{a^2} - \frac{x \cos ax}{a} + C$$

$$\int (\sin ax)(\cos^n ax) dx = -\frac{1}{a(n+1)} \cos^{n+1} ax + C$$
(13)

Exponential functions:

$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \frac{\sqrt{\pi}}{\sqrt{a}} (a > 0)$$
(14)

$$\int_{-\infty}^{\infty} xe^{-ax^2+bx} dx = \frac{\sqrt{a}}{2a^{3/2}} e^{\frac{b^2}{4a}} (\Re(a) > 0)$$
(15)

$$\int_{-\infty}^{\infty} x^n e^{-nx} dx = \begin{cases} \frac{\Gamma(n+1)}{a^{n+1}} (n > -1, a > 0) \\ \frac{n!}{a^{n+1}} (n = 0, 1, 2, ..., a > 0) \end{cases}$$
(16)

$$\int_{-\infty}^{\infty} x^2 e^{-ax^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{a^3}} (a > 0)$$
 (17)

$$\int xe^{cx}dx = \left(\frac{x}{c} - \frac{1}{c^2}\right)e^{cx}$$
(18)

$$\int x^2 e^{cx} dx = \left(\frac{x^2}{c} - \frac{2x}{c^2} + \frac{2}{c^3}\right) e^{cx}$$
(19)

$$\int x^4 e^{-ax^2} dx = \sqrt{\frac{\pi}{a}} \frac{3}{4a^2}$$
 (20)

$u(\omega)d\omega = \frac{\hbar\omega^3}{\pi^2c^3} \frac{1}{\exp(\frac{\hbar\omega}{k_BT}) - 1} d\omega$ $I(\omega) = cu(\omega)d\omega$

Quantum Mechanics

$$\label{eq:Time-dependent Schrodinger's Equation} \begin{split} \text{Time-dependent Schrodinger's Equation} : i\hbar \frac{\partial}{\partial t} \Psi(\vec{x},t) &= [-\frac{\hbar^2}{2m} (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}) + V(x)] \\ \text{Energy of a photon} : E &= hf \end{split}$$

Time-independent Schrodinger's Equation :
$$E\phi=\hat{H}\phi=\Big(-\frac{\hbar^2}{2m}\nabla^2+V(x)\Big)\cdot\phi$$

Energy of a photon : $E=hf$

Infinite potential well :
$$E_n = \frac{\hbar^2}{2m}k_n^2 = \frac{\hbar^2\pi^2n^2}{2mL^2} = n^2E_0$$
, $\psi_n(x) = \sqrt{\frac{2}{L}}\sin(\frac{n\pi x}{L})$, $E_0 = \frac{\hbar^2\pi^2}{2mL^2}$

Transmission through a barrier :
$$T=\frac{4E(V_0-E)}{4E(V_0-E)+V_0^2\sinh^2[\sqrt{2m(V_0-E)}\frac{1}{h}]}$$

$$T \approx \frac{16 E(V_0 - E)}{V_0^2} e^{-2\rho_2 l}$$
, with $\rho_2 = \sqrt{\frac{2 m(V_0 - E)}{\hbar^2}}$, $\rho_2 \cdot l >> 1$

De Broglie wavelength :
$$\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mE}}$$

Photoelectric effect :
$$h\nu - \phi_0 = \frac{1}{2} m v^2 = eV$$

Bohr-Sommerfeldt condition :
$$\oint_C \mathbf{p} \cdot d\mathbf{s} = nh$$
, $2\pi r = nh$ (circular orbit)

$$\text{Probability current}: j = \frac{\hbar}{2mi} (\psi^* \frac{\partial \Psi}{\partial x} - \Psi \frac{\partial \Psi^*}{\partial x})$$

Compton scattering :
$$\lambda_2 - \lambda_1 = \frac{h}{m_{ec}}(1 - \cos \theta)$$

$$\mathbf{p}_{h\nu 1} = \mathbf{p}_{h\nu 2} + \mathbf{p}_e$$

$$hv_1 + m_0c^2 = h\nu_2 + \sqrt{m_0^2c^4 + p_e^2c^2}$$

2

Spherical coordinates

 $x = r \sin \theta \cos \phi$ $y = r \sin \theta \sin \phi$ $z = r \cos \phi$

Volume fraction:

 $dV = r^2 \sin \theta dr d\theta d\phi$

Solid angle

 $d\Omega = \frac{dS_r}{d\Omega} = \sin \theta d\theta d\phi$

Surface element: $dS_r = r^2 \sin \theta d\theta d\phi$

$$\nabla f = \frac{\partial f}{\partial r}\vec{r} + \frac{1}{r}\frac{1}{r\sin\theta}\frac{\partial f}{\partial \phi}\vec{\phi}$$
(21)

$$\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 F_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta F_{\theta}) + \frac{1}{r \sin \theta} \frac{\partial F_{\varphi}}{\partial \varphi}. \tag{22}$$

$$\nabla \times \mathbf{F} = \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} (A_{\phi} \sin \theta) - \frac{\partial A_{\theta}}{\partial \phi} \right) \vec{r}$$

$$+ \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial A_{r}}{\partial \phi} - \frac{\partial}{\partial r} (r A_{\phi}) \vec{\theta} \right)$$

$$+ \frac{1}{r} \left(\frac{\partial}{\partial r} (r A_{\phi}) - \frac{\partial A_{r}}{\partial \phi} \vec{\phi} \right) \vec{\phi}$$
(23)

$$+ \frac{1}{r} \left(\frac{\partial}{\partial r} (rA_{\phi}) - \frac{\partial A_r}{\partial \phi} \right) \vec{\phi}$$

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2} =$$

$$(\frac{\partial^2}{\partial r^2} + \frac{\partial}{r} \frac{\partial}{\partial r}) f + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial}{\partial \theta}) f + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} f$$

$$(24)$$

Harmonic oscillator:

First four harmonic oscillator wavefunction Hermite polynomials $\psi_0(\xi) = (\frac{m\omega}{\pi\hbar})^{\frac{1}{4}} e^{-\frac{1}{2}\xi^2}$ $\frac{1}{2}\hbar\omega$

 $\psi_1(\xi) = (\frac{m\omega}{\pi\hbar})^{\frac{1}{4}} \sqrt{2} \xi e^{-\frac{1}{2}\xi^2}$ $\frac{3}{2}\hbar\omega$

 $\psi_2(\xi) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2}} (2\xi^2 - 1) e^{-\frac{1}{2}\xi^2}$ $4y^{2}-2$ $\frac{5}{2}\hbar\omega$

 $\psi_3(\xi) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{3}} (2\xi^3 - 3\xi) e^{-\frac{1}{2}\xi^2}$ $8y^3 - 12y$ $\frac{7}{6}\hbar\omega$

Harmonic oscillator $\psi_n(x) = \frac{1}{\sqrt{2^n n!}} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} (a^{\dagger})^n e^{-\frac{1}{2}\frac{m\omega}{\hbar}x^2} \psi_0(x)$

 $[a,a^\dagger]=aa^\dagger-a^\dagger a=1$

 $a^{\dagger} = \frac{1}{\sqrt{2\hbar m\omega}} (m\omega x - ip)$ Raising operator

 $a = \frac{1}{\sqrt{2\hbar m\omega}}(m\omega x + ip)$ Lowering operator

 $a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$ $a|n\rangle = \sqrt{n}|n-1\rangle$

 $\hat{N} = a^{\dagger}a\hat{N}|n\rangle = n|n\rangle$ Number operator

Hamiltonian $\hat{H} = \hbar\omega \left(\hat{N} + \frac{1}{2}\right)$

Commutation relation

Inner product and expectation

Expectation value (discrete)

$$\langle f_i \rangle = \sum_i P_i f_i$$

Expectation value (continuous)

$$\langle f(x) \rangle = \int_{-\infty}^{\infty} f(x)P(x) dx$$

$$\langle \hat{O} \rangle = \int \psi^*(\mathbf{r}) \hat{O} \psi(\mathbf{r}) \, d^3r$$

Inner product

 $\langle \psi | \phi \rangle = \int \psi^*(x) \phi(x) dx$

Variance

$$\sigma_f^2 = \langle f^2 \rangle - \langle f \rangle^2$$

Commutation relations

$$\begin{aligned} [A,B] &= AB - BA \\ [AB,C] &= A[B,C] - [A,C]B \\ [x,p_x] &= ih \\ [y,p_y] &= ih \\ [x,y] &= [x,p_y] = [y,p_x] = 0 \end{aligned}$$

Hydrogen atom

Fine structure constant:

$$\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c} \approx \frac{1}{137}$$

Bohr radius:

$$a_0 = \frac{\hbar}{m_e c \alpha} \approx 0.529 \times 10^{-10} \text{m}$$

Bohr energy:

$$E_n = -\frac{2\pi^2 k^2 e^4 m_e}{h^2 n^2}$$

Ground state energy:

$$E_1 = -13.6 \text{eV}$$

Wave function:

$$\psi_{n\ell m}(r, \theta, \phi) = R_{n\ell}(r)Y_{\ell m}(\theta, \phi)$$

Rydberg formula:

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

Rydberg constant:

 $R_H \approx 1.097 \times 10^7 \text{m}^{-1}$

Radial wavefunctions:

Figure 1: Clebsch-Gordan coefficients. A square root is understood on each coefficient, that is, -1/3 means $-\sqrt{1/3}$.

$$R_{n\ell}(r) = N_{n\ell}r^{\ell}e^{-\rho/2}L_{n-\ell-1}^{2\ell+1}(\rho)$$

Legendre polynomials

Angular momentum

$$\begin{split} L_{+} &= L_{x} + iL_{y} \\ L_{-} &= L_{x} - iL_{y} \\ L^{2} &= L_{z}^{2} + \frac{1}{2}(L_{+}L_{-} + L_{-}L_{+}) \\ &= [L_{x}, L_{y}] = i\hbar L_{z} \\ &= [L^{2}, L_{\parallel}] = 0 \quad \text{where } i = x, y, \text{ or } z \\ L_{x} &= -i\hbar \left(\sin\phi\frac{\partial}{\partial\theta} + \cot\theta\cos\phi\frac{\partial}{\partial\phi}\right), \ L_{y} = i\hbar \left(\cos\phi\frac{\partial}{\partial\theta} - \cot\theta\sin\phi\frac{\partial}{\partial\phi}\right), \ L_{z} = -i\hbar\frac{\partial}{\partial\phi} \\ L_{+} &= \hbar e^{i\phi} \left(\frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right), \ L_{-} = \hbar e^{-i\phi} \left(-\frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right) \\ L^{2} &= -\hbar^{2} \left(\frac{1}{\sin\theta}\frac{\partial}{\partial\theta} \left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{\sin^{2}\theta}\frac{\partial^{2}}{\partial\phi^{2}}\right) \end{split}$$

Hund's rule

- 1: All other thing being equal, the state with the highest total spin (S), will have the lowest
- 2. For a given spin, the state the highest total orbital angular momentum (L), consistent with overall antisymmetrization, will have the lowest energy. 3: If a subshell (n,l) is no more than half filled, then the lowest energy level has J=|L-S|: if it is more than half filled, then J=L+S has the lowest energy.

Spin

Two particle spin states

Two particle spin states
$$|0,0\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \text{ s} = 0 \text{ singlet} \quad \begin{vmatrix} 1,1\rangle = |\uparrow\uparrow\rangle \\ |1,0\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle), \text{ s} = 1 \text{ triplet} \\ |1,-1\rangle = |\downarrow\downarrow\rangle \\ S_z = \frac{h}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad S_x = \frac{h}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad S_y = \frac{h}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad S^2 = \frac{3}{4}h^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad S_+ = h \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad S_- = h \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
 Two particle Hamiltonian:

$$\hat{H} = -\frac{\hbar^2}{2m_1}\nabla_1^2 - \frac{\hbar^2}{2m_2}\nabla_2^2 + V(\mathbf{r}_1, \mathbf{r}_2)$$

Hamiltonian with an atom with atomic number Z:

$$\hat{H} = -\frac{\hbar^2}{2m_e} \nabla^2 - \frac{Ze^2}{4\pi\varepsilon_0 r}$$

Clebsch-Gordan coefficients

Condensed Matter

Free electron gas:

$$\psi_{n_x,n_y,n_z}(\mathbf{r}) = \sqrt{\frac{8}{V}} \sin\left(\frac{n_x \pi x}{L_x}\right) \sin\left(\frac{n_y \pi y}{L_y}\right) \sin\left(\frac{n_z \pi z}{L_z}\right), \quad E(\mathbf{k}) = \frac{\hbar^2 k^2}{2m}$$

Fermi energy of a metal:

$$E_F=\frac{\hbar^2k_F^2}{2m}, \rho\equiv\frac{N_q}{V}, N_q=$$
 number of electrons in volume V, $n_c=n_i\exp(\frac{E_F-E_i}{k_BT})$

Density of states:

3D:
$$g(E)=\frac{Vm}{2\pi^2\hbar^3}\sqrt{2mE},$$
 2D: $g(E)=\frac{m}{\pi\hbar^2}$

$$\begin{array}{ll} \text{Distribution functions:} \\ \text{Maxwell-Boltzmann} \\ f(E) = e^{-\frac{E-\mu}{k_BT}} \\ \end{array} \quad \begin{array}{ll} \text{Fermi-Dirac} \\ f(E) = \frac{1}{e^{\frac{E-\mu}{k_BT}}}, \\ \end{array} \quad \begin{array}{ll} \text{Bose-Einstein} \\ f(E) = \frac{1}{e^{\frac{E-\mu}{k_BT}}-1}. \end{array}$$

First order perturbation theory:

$$\Delta E_{n}^{(1)} = \langle \psi_{n}^{0} | \hat{H}' | \psi_{n}^{0} \rangle, \; \psi_{n}^{(1)} = \sum_{m \neq n} \frac{\langle \psi_{m}^{0} | \hat{H}' | \psi_{n}^{0} \rangle}{E^{(0)} - E^{(0)}} \psi_{m}^{(0)}$$

1 2	1 IA 1 10079 H Hydrogen 2 6561 Li Lithian	2 IIA 4 9.6122 Be Emplion	Periodic Table of Elements 13 IIIA 14 IVA 15 VA 16 VIA 17 VIIA													18 VIIIA 2 4 0005 He Hefure 30 20180 Ne Nem		
3	Na Sodom	Mg	3 IIIA	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	Al Al	51 28.006 Si Silicon	P Phophous	5 12.665 S Sulphur	CI Chlorine	Ar
4	19 20.000 K Fotacium	20 et 078 Ca Calcium	Sc Scandian	22 47.607 Ti Titanium	23 50.942 V Vanadism	Cr Chonium	25 51.600 Mn Marganese	26 55.045 Fe	27 50.933 Co Cobalt	28 50.693 Ni Nidel	29 61546 Cu Capper	30 65.30 Zn Znc	31 69723 Ga Gallism	Ge Germanium	23 74 922 As Associa	Se Selectors	25 79.904 Br Stranine	Kr Kr Knysten
5	Rb Rb	Sr Sr Strontum	29 88.906 Y Vitrium	40 91.236 Zr Zinosnium	41 92.606 Nb Mishion	Mo Mo Molybdroum	TC Tchestion	Ru Ruthenium	45 102.60 Rh Rhodum	Pd Patasism	47 107.87 Ag Silver	Cd Catnian	49 114.82 In Indian	50 118.71 Sn Tin	Sb Antimony	Te Te	\$3 126.9 	\$4 131.20 Xe Xman
6	CS 132.91	86 137.33 Ba Rariam	La-Lu	22 178.49 Hf Halnium	73 180.96 Ta Tantalum	74 18334 W Tangsten	75 186.21 Re Florium	Os Osnian	77 190.22 ir bidium	Pt Ptsinon	70 166.97 Au Gald	Hg Mercury	EI 204.38 TI Tradium	Pb Lead	Bi Bi Stanuth	Po Po	At Attaine	Rn Rn Ratio
7	Fr Francium	Ra 236 Ra Radium	Ac-Lr	Rf Rf Robelinium	Db Dubnism	Sg Staborgion	Bh Bh	HS Hasium	Mt Mt Melterium	DS Dannstaltion	Rg Resignism	Uub Uub	Uut Uut	Uuq Uuq	Uup Uup	Uuh Uuh	Utas Utas	UIIO 2H
	Alkali Metal Alkaline Earth Metal Metalloid Nico-metal Halogon Nickle Gas Lanthanide/A			S7 136.96 La Lardanan	58 163.17 Ce Cevium	Pr Pr	60 566.26 Nd Neadywians	61 165 Pm Promethism	62 150.36 Sm Samarium	63 25196 Eu Europian	64 157:25 Gd Gadolinion	65 156:93 Tb Techium	Dy Dysprotion	GP 264.932 Ho Halmium	60 16736 Er Etian	69 258.93 Tm Thufum	70 173.64 Yb Ytonbian	71 17097 Lu Lutetien
	Z mans Symbol Name	Mark natural gray man-made	/	AC Actinium	Th Thorism	Pa Pa Protectinium	92 238.03 U Uranism	Np Notation	PU Plateries	Am Americian	Cm Curion	Bk Retefore	Cf Californium	Es Es Enterioles	Fm Femium	Medician	No No Nobelian	Lr Lr Laurencium