

1



# **Agenda**

- Basic Concepts
- Frequent Pattern Mining
- Pattern Evaluation Methods



3



#### What is Set Data?

- Set Data: A collection of distinct objects, often represented in mathematical contexts. For instance, {apple, banana, cherry} is a set of fruits, and {1, 2, 3} is a set of numbers.
- Sets are useful because they allow us to group items and analyze their properties, like intersections and unions.
- Examples of Set Data:
  - {apple, banana, cherry}
  - $-\{1, 2, 3\}$

isnw sienw sienw



#### **Set Data Datasets**

- A data point corresponds to a set of items.
- Each data point is also called a transaction.

#### Transaction Dataset

| Tid | Items bought                     |  |
|-----|----------------------------------|--|
| 10  | Beer, Nuts, Diaper               |  |
| 20  | Beer, Coffee, Diaper             |  |
| 30  | Beer, Diaper, Eggs               |  |
| 40  | Nuts, Eggs, Milk                 |  |
| 50  | Nuts, Coffee, Diaper, Eggs, Milk |  |

jsuk sjsny sjeny sjeny

5



## **What Is Frequent Pattern Mining?**

- Frequent Pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set.
  - First proposed by Agrawal, Imielinski, and Swami in1993
  - In the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
  - What products were often purchased together? → Beer and diapers?!
  - What are the subsequent purchases after buying a PC?
  - What kinds of DNA are sensitive to this new drug?
  - What's the next movie you will watch after watching a particular movie on Netflix?



## **Importance of Pattern Mining**

- · Finding inherent regularities in a data set
- Foundation for many essential data mining tasks:
  - Association, correlation, and causality analysis
  - Mining sequential, structural (e.g., sub-graph) patterns
  - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
  - Classification: Discriminative pattern-based analysis
  - Cluster analysis: Pattern-based subspace clustering
- Broad applications

7



# **Basic Concepts: Frequent Patterns**

- Itemset: A set of one or more items  $I = \{I_1, ..., I_N\}$
- k-itemset: X = {x<sub>1</sub>, ..., x<sub>k</sub>}
   e.g. {Beer, Nuts, Diaper} is a 3-itemset
- (absolute) Support of X, sup(X): frequency or # of occurrences of an itemset X sup{Beer} = 3
   sup{Diagrap} = 4

sup{Beer} = 3
sup{Diaper} = 4
sup{Beer, Diaper} = 3
sup{Beer, Eggs} = 1

(relative) Support of X, s(X): fraction of transactions that contains X (i.e. the probability that a transaction contains X: P(X))

s{Beer} = 3/5 = 60% s{Diaper} = 4/5 = 80% s{Beer, Eggs} = 1/5 = 20%







## **Basic Concepts: Frequent Itemsets (Patterns)**

- An itemset/pattern X is frequent if  $\sup(X) \ge \sigma$  (minsup threshold)
- For the given 5-transaction dataset, take  $\sigma$  = 50%:
  - All the frequent 1-itemsets:

sup(Beer): 3/5 (60%); sup(Nuts): 3/5 (60%); sup(Diaper): 4/5 (80%); sup(Eggs): 3/5 (60%)

All the frequent 2-itemsets: sup({Beer, Diaper}): 3/5 (60%)

- All the frequent 3-itemsets: None

- Tid Items bought

  10 Beer, Nuts, Diaper

  20 Beer, Coffee, Diaper

  30 Beer, Diaper, Eggs

  40 Nuts, Eggs, Milk

  50 Nuts, Coffee, Diaper, Eggs, Milk
- Why do these itemsets form the complete set of frequent k-itemsets (patterns) for any k?
- What's the implication for a large dataset?

<u>ຣບລິຊີງຣບລິຊີງຣບລິຊີງຣບລິຊີງຣບລິຊີງຣບລິຊີງຣບລິຊີງຣບລິຊີງຣບລິຊີງຣບລິຊີງຣບລິຊີງຣບລິຊີງຣບລິຊີງຣບລິຊີງຣບລິຊີງຣບ</u>ລິຊີງຣບ

9



# **Basic Concepts: Association Rules**

- An Association Rule is a rule of the form  $X \to Y$  where:
  - X and Y are itemsets,
  - and  $X \cap Y = \emptyset$
- Example:
  - {Diaper, Beer}  $\rightarrow$  {Nuts}
  - {Diaper, Coffee} → {Nuts}
  - {Diaper}  $\rightarrow$  {Beer}

| Tid | Items bought                     |  |  |
|-----|----------------------------------|--|--|
| 10  | Beer, Nuts, Diaper               |  |  |
| 20  | Beer, Coffee, Diaper             |  |  |
| 30  | Beer, Diaper, Eggs               |  |  |
| 40  | Nuts, Eggs, Milk                 |  |  |
| 50  | Nuts, Coffee, Diaper, Eggs, Milk |  |  |

- How strong is this rule? → Need to quantify them using support and confidence
  - Measuring association rule between 2 itemsets: (Notation:  $X \rightarrow Y$  [s, c])

 $X \rightarrow Y$  [support = 20%, confidence = 60%]



## **Support of an Association Rule**

• Support of a rule  $X \to Y$ :

$$\sup(X \to Y) = \sup(X \cup Y) / D = P(X \cup Y)$$

# of transactions

- The probability that a transaction contains  $X \cup Y$
- Example:

```
sup(\{Diaper\} \rightarrow \{Beer\}) = sup(\{Diaper, Beer\})/D = 3/5 (60\%)
sup(\{Diaper, Coffee\} \rightarrow \{Nuts\}) = sup(\{Diaper, Beer, Nuts\})/D
= 2/5 (40\%)
sup(\{Diaper, Nuts\} \rightarrow \{Milk\}) = sup(\{Diaper, Nuts, Milk\})/D
= 1/5 (20\%)
```

| Tid | Items bought                     |  |  |
|-----|----------------------------------|--|--|
| 10  | Beer, Nuts, Diaper               |  |  |
| 20  | Beer, Coffee, Diaper             |  |  |
| 30  | Beer, Diaper, Eggs               |  |  |
| 40  | Nuts, Eggs, Milk                 |  |  |
| 50  | Nuts, Coffee, Diaper, Eggs, Milk |  |  |



 $\{Beer\} \cup \{Diaper\} = \{Beer, Diaper\}$ 

11



#### **Confidence of an Association Rule**

• Confidence of a rule  $X \rightarrow Y$ :

$$conf(X \rightarrow Y) = sup(X \cup Y) / sup(X) = P(Y | X)$$

| Tid | Items bought                     |  |
|-----|----------------------------------|--|
| 10  | Beer, Nuts, Diaper               |  |
| 20  | Beer, Coffee, Diaper             |  |
| 30  | Beer, Diaper, Eggs               |  |
| 40  | Nuts, Eggs, Milk                 |  |
| 50  | Nuts, Coffee, Diaper, Eggs, Milk |  |

- The conditional probability that a transaction containing X also contains Y
- Example:

```
conf(\{Diaper\} \rightarrow \{Beer\}) = sup(\{Diaper, Beer\} / sup(\{Diaper\}) = 3/4 (75\%) conf(\{Beer\} \rightarrow \{Diaper\}) = sup(\{Diaper, Beer\} / sup(\{Beer\}) = 3/3 (100\%) conf(\{Beer, Diaper\} \rightarrow \{Coffee\}) = sup(\{Beer, Diaper, Coffee\} / sup(\{Beer, Diaper\}) = 1/3 (33.3\%)
```



### **Association Rule Mining**

• Given two thresholds:  $minsup \in [0,1]$ ,  $minconf \in [0,1]$  find all rules  $X \to Y$  [sup, conf] such that,  $\sup \ge minsup$  and  $\operatorname{conf} \ge minconf$ 

• Example: Let minsup = 50%, minconf = 50%

1-itemsets: {Beer}: 3, {Nuts}: 3, {Diaper}: 4, {Eggs}: 3

2-itemsets: {Beer, Diaper}: 3

Beer → Diaper (60%, 100%)

Diaper → Beer (60%, 75%)

Are these all rules?

| Tid | Items bought                     |  |  |
|-----|----------------------------------|--|--|
| 10  | Beer, Nuts, Diaper               |  |  |
| 20  | Beer, Coffee, Diaper             |  |  |
| 30  | Beer, Diaper, Eggs               |  |  |
| 40  | Nuts, Eggs, Milk                 |  |  |
| 50  | Nuts, Coffee, Diaper, Eggs, Milk |  |  |

- Mining association rules and mining frequent patterns are very close problems.
- Scalable methods are needed for mining large datasets

<u>່ເຣນະລິຣັງຣນະລິຣັງຣນະລິຣັງຣນະລິຣັງຣນະລິຣັງຣນະລິຣັງຣນະລິຣັງຣນະລິຣັງຣນະລິຣັງຣນະລິຣັງຣນະລິຣັງຣນະລິຣັງຣນະລິຣັງຣນະ</u>ລິ

13



# **Support and Confidence of Association Rules**

#### Support:

- measure how frequently an itemset {X ∪ Y} appears in the dataset.
- find patterns that are less likely to be random.
- reduce the number of patterns.
- make the algorithms more efficient.

#### Confidence:

- measure the strength of associations.
- obtain an estimation of the conditional probability P(Y|X).

Warning: A strong association does not mean that there is causality!



## **Computational Complexity of Frequent Pattern Mining**

- A long pattern contains a combinatorial number of sub-patterns
- How many frequent itemsets does the following dataset contain?
  - T1: {a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>50</sub>} T2: {a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>100</sub>}
  - Assuming (absolute) minsup = 1:

```
1-itemsets: {a<sub>1</sub>}: 2, {a<sub>2</sub>}: 2, ..., {a<sub>50</sub>}: 2, {a<sub>51</sub>}: 1, ..., {a<sub>100</sub>}: 1,
2-itemsets: {a<sub>1</sub>, a<sub>2</sub>}: 2, ..., {a<sub>1</sub>, a<sub>50</sub>}: 2, {a<sub>1</sub>, a<sub>51</sub>}: 1 ..., ..., {a<sub>99</sub>, a<sub>100</sub>}: 1,
..., ..., ...
99-itemsets: {a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>99</sub>}: 1, ..., {a<sub>2</sub>, a<sub>3</sub>, ..., a<sub>100</sub>}: 1
100-itemset: {a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>100</sub>}: 1
```

• The total number of frequent itemsets:  $\binom{100}{1} + \binom{100}{2} + \binom{100}{3} + \dots + \binom{100}{100} = 2^{100} - 1$ 

15



## **Computational Complexity of Frequent Pattern Mining**

- How many itemsets are potentially generated in the worst case?
- The number of frequent itemsets generated is sensitive to the minsupthreshold
- When minsup is low, there exists potentially an exponential number of frequent itemsets!
- The worst case scenario:





## **Example: Frequent Pattern Mining**

• Given the following transaction dataset, find frequent itemsets with min threshold = 0.2

| Transaction | Red | White | Blue | Orange | Green | Yellow |
|-------------|-----|-------|------|--------|-------|--------|
| 1           | 1   | 1     | 0    | 0      | 1     | 0      |
| 2           | 0   | 1     | 0    | 1      | 0     | 0      |
| 3           | 0   | 1     | 1    | 0      | 0     | 0      |
| 4           | 1   | 1     | 0    | 1      | 0     | 0      |
| 5           | 1   | 0     | 1    | 0      | 0     | 0      |
| 6           | 0   | 1     | 1    | 0      | 0     | 0      |
| 7           | 1   | 0     | 1    | 0      | 0     | 0      |
| 8           | 1   | 1     | 1    | 0      | 1     | 0      |
| 9           | 1   | 1     | 1    | 0      | 0     | 0      |
| 10          | 0   | 0     | 0    | 0      | 0     | 1      |



| Item set          | Support   |
|-------------------|-----------|
| Red               | 0.6       |
| White             | 0.7       |
| Blue              | 0.6       |
| Orange            | 0.2       |
| Green             | 0.2       |
| Red, White        | 0.4       |
| Red, Blue         | 0.4       |
| Red, Green        | 0.2       |
| White, Blue       | 0.4       |
| White, Orange     | 0.2       |
| White, Green      | 0.2       |
| Red, White, Blue  | 0.2       |
| Red, White, Green | 0.2       |
| unnele unnele un  | nele onne |

17



# **Example: Frequent Pattern Mining**

• Find rules associated with minconf = 70%.

| Item set          | Support |
|-------------------|---------|
| Red               | 0.6     |
| White             | 0.7     |
| Blue              | 0.6     |
| Orange            | 0.2     |
| Green             | 0.2     |
| Red, White        | 0.4     |
| Red, Blue         | 0.4     |
| Red, Green        | 0.2     |
| White, Blue       | 0.4     |
| White, Orange     | 0.2     |
| White, Green      | 0.2     |
| Red, White, Blue  | 0.2     |
| Red, White, Green | 0.2     |



| Item set          | Rule               | Support (A and B) | Support (A) | Confidence |
|-------------------|--------------------|-------------------|-------------|------------|
| Red, Green        | Green → Red        | 0.2               | 0.2         | 1.000      |
| White, Orange     | Orange → White     | 0.2               | 0.2         | 1.000      |
| White, Green      | Green → White      | 0.2               | 0.2         | 1.000      |
| Red, White, Green | Red, Green → White | 0.2               | 0.2         | 1.000      |
| Red, White, Green | White, Green → Red | 0.2               | 0.2         | 1.000      |
| Red, White, Green | Green → Red, White | 0.2               | 0.2         | 1.000      |



19



# **Various Scalable Frequent Itemset Mining Methods**

- Apriori: A Candidate Generation-and-Test Approach
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format



### **The Apriori Algorithm**

Apriori is one of the most classic and influential algorithms in frequent pattern mining.

- Developed by R. Agrawal and R. Srikant in 1994.
- Revolutionized how frequent pattern mining for large datasets was approached.
- Employs a bottom-up search method, where frequent subsets are extended one item at a time (candidate generation), and groups of candidates are tested against the data.
  - First find the complete set of frequent k-itemsets
  - Then derive frequent (k+1)-itemset candidates
  - Scan dataset again to find true frequent (k+1)-itemsets

SOLUTION DE LA CONTRACTOR DEL CONTRACTOR DE LA CONTRACTOR DEL CONTRACTOR DE LA CONTRACTOR D

21



# **Apriori Properties**

• Property 1: Given two itemsets X and Y. If  $X \subset Y$ , then  $\sup(Y) \le \sup(X)$ 

#### Example:

- The support of {Diaper} = 4
- The support of {Diaper, Eggs} = 2
- The support of {Diaper, Eggs, Milk} = 1

| Tid | Items bought                     |  |  |
|-----|----------------------------------|--|--|
| 10  | Beer, Nuts, Diaper               |  |  |
| 20  | Beer, Coffee, Diaper             |  |  |
| 30  | Beer, Diaper, Eggs               |  |  |
| 40  | Nuts, Eggs, Milk, Cream          |  |  |
| 50  | Nuts, Coffee, Diaper, Eggs, Milk |  |  |

• Property 2 (Pruning): If an itemset X is infrequent, then its superset Y ( $X \subset Y$ ) is also infrequent and shouldn't be generated or tested.

#### Example:

- · Consider {Cream, Milk}
- Since {Cream} is infrequent → {Cream, Milk} is also infrequent



## **The Apriori Algorithm**

- Step 1: Candidate Generation:
  - Start with identifying all individual items in the dataset that meet the min support threshold.
  - Combine these items to form item sets of increasing size.
- Step 2: Pruning:
  - After creating larger item sets, those that don't meet the min support threshold are pruned out.
  - This pruning step is based on the Apriori property #2 (all non-empty subsets of a frequent item set must also be frequent).
- Step 3: Frequent Item Set Generation:
  - Repeat steps 1 & 2 until no more candidate item sets can be generated.





### **Performance of Apriori Algorithm**

Performance of the Apriori algorithms depend on several factors:

- *Minsup*: The lower it is, the larger the search space and the # of itemsets will be.
- # of items
- # of transactions (records) or size of dataset
- Average transaction/record length

25



# **Strengths and Weaknesses of Apriori**

### Strengths

- Simplicity: The algorithm is easy to understand and implement.
- Efficiency: Effective for datasets with a relatively small number of transactions and items.

#### Weaknesses

- Scalability: Can be slow and inefficient for very large datasets due to the need to generate and count candidate itemsets as well as repeated scan of whole dataset.
- Memory Usage: Requires substantial memory to store numerous candidate itemsets, especially in later iterations when item sets become larger.

SISNA SI



### Improvements of the Apriori Method

- Major computational challenges
  - Multiple scans of the entire datasets
  - Huge # of candidates
  - Tedious workload of support counting for candidates
- Improving Apriori: General Ideas
  - Reduce # of scans of dataset → Using partition approach (only need to scan twice)
  - Reduce # of candidates → Hash-based techniques
  - Facilitate support counting of candidates
- FP-Growth can effectively address the multiple scans and candidate generation issues.

ISUN SISUN S

27





### **Misleading Strong Association Rules**

Not all strong association rules are interesting:

|            | Basketball | Not basketball | Sum (row) |
|------------|------------|----------------|-----------|
| Cereal     | 2000       | 1750           | 3750      |
| Not cereal | 1000       | 250            | 1250      |
| Sum(col.)  | 3000       | 2000           | 5000      |

• Should we target people who plays basketball for cereal?

play basketball  $\Rightarrow$  eat cereal [40%, 66.7%] play basketball  $\Rightarrow$  don't eat cereal [20%, 33.33%]

• Confidence measure of a rule could be misleading (66.7%) but the overall probability of people eating cereal is 75% (> 66.7%)!!

29



#### **Other Pattern Evaluation Measures**

From Association to Correlation:

- Lift (next)
- \chi^2
- All\_confidence:  $all\_conf(A, B) = min\{P(A|B), P(B|A)\}$
- $Max\_confidence: max\_conf(A, B) = max\{P(A|B), P(B|A)\}$
- Kulczynski: Kulc(A, B) = (P(A|B) + P(B|A)) / 2
- Cosine:  $cosine(A, B) = \sqrt{P(A \mid B) \times P(B \mid A)}$

\_ ສັງຣບເລີ ສີງຣບເລີ ສ 30



#### Lift of an Association Rule

• Lift of a rule  $X \rightarrow Y$ :

$$lift(X \to Y) = \frac{conf(X \to Y)}{sup(Y)} = \frac{P(Y|X)}{P(Y)} = \frac{P(X \cup Y)}{P(X)P(Y)}$$

- It's the ratio of  $conf(X \to Y)$  to P(Y)
- Measures the performance of the association rule against the baseline P(Y)

Lift > 1: Positively correlated between A and B.

Lift = 1: A and B are independent.

Lift < 1: Negatively correlated between A and B.

31



# **Example: Correlation Using Lift**

• Using lift to evaluate the correlation between playing basketball and eating cereal etc:

$$lift(B \to C) = \frac{P(C|B)}{P(C)} = \frac{P(B \cup C)}{P(B)P(C)}$$

$$lift(B \to C) = \frac{P(B \cup C)}{P(B)P(C)} = \frac{\left(\frac{2000}{5000}\right)}{\left(\frac{3000}{5000}\right)\left(\frac{3750}{5000}\right)} = 0.89$$
 sum(col.) 3000 2000 negatively correlated!!

Basketball

2000

1000

Cereal Not cereal Not basketball

1750

250

Sum (row)

3750

1250 5000

$$lift(B \to \bar{C}) = \frac{P(B \cup \bar{C})}{P(B)P(\bar{C})} = \frac{\left(\frac{1000}{5000}\right)}{\left(\frac{3000}{5000}\right)\left(\frac{1250}{5000}\right)} = 1.33$$
 positively correlated!!



## **Example Revisit**

• Use lift to evaluate the rules:

| Item set          | Support |
|-------------------|---------|
| Red               | 0.6     |
| White             | 0.7     |
| Blue              | 0.6     |
| Orange            | 0.2     |
| Green             | 0.2     |
| Red, White        | 0.4     |
| Red, Blue         | 0.4     |
| Red, Green        | 0.2     |
| White, Blue       | 0.4     |
| White, Orange     | 0.2     |
| White, Green      | 0.2     |
| Red, White, Blue  | 0.2     |
| Red, White, Green | 0.2     |
| IS.WINGIS.WINGIS  | whele w |



33



# **Summary**

- Basic concepts:
  - frequent pattern, support, confidence and association rules
- Scalable frequent pattern mining methods
  - Apriori
- Which patterns are interesting?
  - Pattern evaluation methods such as lift etc