

CONTROL DATA

CONTROL DATA
CORPORATION

Documentation Department

3145 Porter Drive
Palo Alto, California 94304

60191900A © CONTROL DATA CORPORATION Printed in U.S.A.
APRIL 1968

**INSTANT
6400/6500/6600
COMPASS**

6400/6500/6600 COMPASS

COMPASS is the comprehensive assembly system for the CONTROL DATA® 6400, 6500, and 6600 computers. Running under control of the SCOPE Operating System, COMPASS makes the instruction repertoire of the central and peripheral processors of these machines accessible to programmers who wish to exercise direct control of computer operations. The extensive pseudo instruction repertoire and macro facilities give programmers the advantage of maximum program construction flexibility, including control of the assembly process.

FEATURES

Language Format	Free field
Assembly Mode	Relocatable or absolute; decimal or octal
Conditional Assembly	Character string comparison; expression comparison; symbol attribute tests
Code Duplication	Number of iterations specified by programmer
Data Generation	Data may be declared in subprogram or generated at load time
Macros	System and programmer defined
Micros	Character string definitions
Listing Control	Many output listing options

SOURCE DECK

COMPASS LANGUAGE

Character Set

All characters with display code values from 01-76

Source Statement Fields

LOCATION

The location field must begin in column 1 or 2. An asterisk in column 1 indicates a comment statement; a comma in column 1 indicates a continuation line. Nine continuation cards are permitted.

OPERATION

The operation field begins after the first blank following the location field, not before column 3, and before column 36.

VARIABLE

The variable field begins after the first blank following the operation field and before column 36.

COMMENTS

The comments field begins after the first blank following the variable field, and not before column 36, if the variable field is empty.

Symbols

Up to 8 characters; the first may not be \$ = or numeric and none may be + - * / blank ar comma.

Linkage symbols are restricted to 7 characters and must begin with an alphabetic character. Linkage symbols must be used for:

- Subprogram names
- External symbols
- Entry points
- Common block names

PP subprogram names may begin with an alphanumeric character and must not exceed 3 characters.

Names

A name may be formed from 1-8 characters except , → ; or blank, and may not be used in an address expression. Names are used in the following contexts:

- Block names
- Macro names
- Micra names
- Instruction bracket names

Absolute Data

Absolute data may be used in data items (LIT and DATA subfields, and literals) or in address expressions as constants.

Register Names

Address registers, 18 bits	A0,A1,...,A7 ar A. <i>n</i>
Index registers, 18 bits	B0,B1,...,B7 ar B. <i>n</i>
Arithmetic and operand registers, 60 bits	X0,X1,...,X7 or X. <i>n</i>

n is a symbol ar a single digit between 0 and 7

CHARACTER DATA

- n Character count; if n is preceded by -, character string is complemented; n must not be blank for address constants
- d Delimiter character; if n is 0 string is terminated by + - * /, Δ for address constants, or by blank ar comma for DATA, LIT, ar a literal
- C Left justify character string with zero fill; two terminating zeros guaranteed
- H Left justify character string with trailing blanks
- A Right justify character string with leading blanks
- R Right justify character string with leading zeros
- L Left justify character string with trailing zeros
- str Character string excluding d and ; and →

NUMERIC DATA

$\pm \begin{bmatrix} D \\ O \\ B \end{bmatrix} n.n \begin{bmatrix} E \\ EE \end{bmatrix} \pm n S\pm n P\pm n$

Omitted signs are assumed positive; modifiers following n.n may appear in any order. Only fixed point values are permitted in peripheral assemblies.

$\begin{bmatrix} D \\ O \\ B \end{bmatrix}$ Radix; identification of n.n as a decimal or octal number may appear either at beginning or end; if omitted, the radix is determined according to the BASE pseudo instruction. (Assumed decimal if no BASE.)

n.n Integer and fractional parts; if .n is omitted, the value is integer. The maximum value is 32 significant octal digits or $7.9 \cdot 10^{28}$.

$\begin{bmatrix} E \\ EE \end{bmatrix} \pm n$ Single or double precision decimal scale, maximum value 32767

S $\pm n$ Binary scale, maximum value 32767

P $\pm n$ Binary point position for floating point numbers; the binary point will occur to right of nth bit; the exponent will be adjusted to a value of - (P scale factor).

Default Symbols

=Sname name is written according to the rules for symbols.
name will be defined by COMPASS if not defined by programmer.

=Xname name will be defined as external symbol if not defined by programmer.

CHARACTER DATA

Character data literals use the same basic format as data items:

$\begin{bmatrix} C \\ H \\ A \\ R \\ L \end{bmatrix} =0 <\text{str}> \Delta$ Delimited by subfield end

$\begin{bmatrix} C \\ H \\ A \\ R \\ L \end{bmatrix} =n <n \text{ characters}>$ Delimited by character count

$\begin{bmatrix} C \\ H \\ A \\ R \\ L \end{bmatrix} =d <\text{str}> d$ Delimited by character d

NUMERIC DATA

The numeric value may be integer, fixed point, or floating point data item; if the sign is omitted, the value is assumed positive.

=Bnumeric or =numericB Octal
=Onumeric or =numericO Octal
=Dnumeric or =numericD Decimal

Counters

* or *L Current value of Location counter
*O Origin counter
\$ Position counter

CENTRAL PROCESSOR CODES

Address Expression

Elements are joined by multiplication or division operators to form terms; terms are joined by addition or subtraction operators to form address expressions.

+	Addition
-	Subtraction
*	Multiplication
/	Division

Terms are evaluated from left to right, then expressions are evaluated from left to right. Two or more contiguous operators are assumed to have intervening elements with a value of zero. Literals may be used only as the last term in expressions. Evaluated expressions must result in an absolute value, an external value \pm constant, or \pm relocatable value \pm constant.

ELEMENTS

Symbols

Constants

*, *L, *O, or \$

=Ssymbol or =Xsymbol

TERMS

Within a term the following rules apply:

Remainders of division are dropped

Division by zero produces a zero result, no error

Only one relocatable or external element

Only absolute values as divisors or to the left of a division

Omitted last element is assumed zero

X_i, X_j, X_k	X register symbols
A_i, A_j, A_k	A register symbols
B_i, B_j, B_k	B register symbols

i, j , and k	may have values 0-7
K	Address expression, 18 bits
n	Absolute address, 6 bits

	MNEMONIC	OCTAL	INSTRUCTION	
	PS	0000 000000	30	Program stop
	RJ	K 0100 K	30	Return jump to K
	RE	$B_j + K$ 011j K	30	Read extended core storage
	WE	$B_j + K$ 012j K	30	Write extended core storage
	XJ	B_j, K 0130 000000 46000 46000	60	Exchange jump
	JP	K 0200 K	30	Jump to K
	JP	$B_j + K$ 020j K	30	Jump to $B_j + K$
	ZR	X_j, K 030j K	30	Jump to K if $X_j = 0$
	NZ	X_j, K 031j K	30	Jump to K if $X_j \neq 0$
	PL	X_j, K 032j K	30	Jump to K if $X_j \geq 0$
	NG	X_j, K 033j K	30	Jump to K if $X_j < 0$
	IR	X_j, K 034j K	30	Jump to K if X_j is in range
	OR	X_j, K 035j K	30	Jump to K if X_j is out of range
	DF	X_j, K 036j K	30	Jump to K if X_j is definite
	ID	X_j, K 037j K	30	Jump to K if X_j is indefinite
	ZR	K 0400 K	30	Jump to K
	EQ	K 0400 K	30	Jump to K

EQ	B_i, K	04i0 K	30	Jump to K if $B_i = 0$	$LX_i \begin{bmatrix} B_j, X_k \\ X_k, B_j \end{bmatrix}$	22ijk	15	Shift X_k B_{j0-5} places $\rightarrow X_i$ Left shift if B_j positive
ZR	B_i, K	04i0 K	30	Jump to K if $B_i = 0$	$AX_i \begin{bmatrix} B_j, X_k \\ X_k, B_j \end{bmatrix}$	23ijk	15	Right shift if B_j negative
EQ	B_i, B_j, K	04ij K	30	Jump to K if $B_i = B_j$	$NX_i \begin{bmatrix} X_k \\ B_j, X_k \\ X_k, B_j \end{bmatrix}$	24i0k	15	Shift X_k B_{j0-5} places $\rightarrow X_i$ Right shift if B_j positive
NZ	B_i, K	05i0 K	30	Jump to K if $B_i \neq 0$	$NX_i \begin{bmatrix} B_j, X_k \\ X_k, B_j \end{bmatrix}$	24ijk	15	Right shift if B_j positive Left shift if B_j negative
NE	B_i, K	05i0 K	30	Jump to K if $B_i \neq 0$	$ZXi \begin{bmatrix} X_k \\ B_j, X_k \\ X_k, B_j \end{bmatrix}$	25i0k	15	Normalize $X_k \rightarrow X_i$
PL	B_i, K	06i0 K	30	Jump to K if $B_i \geq 0$	$ZXi \begin{bmatrix} X_k \\ B_j, X_k \\ X_k, B_j \end{bmatrix}$	25ijk	15	Normalize $X_k \rightarrow X_i$
GE	B_i, K	06i0 K	30	Jump to K if $B_i \geq 0$	$UX_i \begin{bmatrix} X_k \\ B_j, X_k \\ X_k, B_j \end{bmatrix}$	26i0k	15	Shift count $\rightarrow B_j$
GE	B_i, B_j, K	06ij K	30	Jump to K if $B_i \geq B_j$	$UX_i \begin{bmatrix} X_k \\ B_j, X_k \\ X_k, B_j \end{bmatrix}$	26ijk	15	Round and normalize X_k in X_i
LE	B_i, K	060j K	30	Jump to K if $B_j \leq 0$	$ZXi \begin{bmatrix} X_k \\ B_j, X_k \\ X_k, B_j \end{bmatrix}$	25ijk	15	Round and normalize $X_k \rightarrow X_i$
LE	B_i, B_j, K	06ij K	30	Jump to K if $B_j \leq B_i$	$PXi \begin{bmatrix} X_k \\ B_j, X_k \\ X_k, B_j \end{bmatrix}$	27ijk	15	Shift count $\rightarrow B_j$
NG	B_i, K	07i0 K	30	Jump to K if $B_i < 0$	$FX_i \begin{bmatrix} X_j + X_k \\ X_j - X_k \end{bmatrix}$	30ijk	15	Unpack X_k to X_i
LT	B_i, K	07i0 K	30	Jump to K if $B_i < 0$	$FX_i \begin{bmatrix} X_j + X_k \\ X_j - X_k \end{bmatrix}$	31ijk	15	Unpack X_k : coefficient $\rightarrow X_i$, Exponent $\rightarrow B_j$
LT	B_i, B_j, K	07ij K	30	Jump to K if $B_i < B_j$	$DX_i \begin{bmatrix} X_j + X_k \\ X_j - X_k \end{bmatrix}$	32ijk	15	Pack coefficient X_k , Exponent $B_j \rightarrow X_i$
GT	B_j, K	070j K	30	Jump to K if $B_j > 0$	$DX_i \begin{bmatrix} X_j + X_k \\ X_j - X_k \end{bmatrix}$	33ijk	15	Floating $X_j + X_k \rightarrow X_i$
GT	B_j, B_i, K	07ij K	30	Jump to K if $B_j > B_i$	$DX_i \begin{bmatrix} X_j + X_k \\ X_j - X_k \end{bmatrix}$	34ijk	15	Floating $X_j - X_k \rightarrow X_i$
BXi	X_j	10ijj	15	$X_j \rightarrow X_i$	$RXi \begin{bmatrix} X_j + X_k \\ X_j - X_k \end{bmatrix}$	35ijk	15	Rounded floating $X_j + X_k \rightarrow X_i$
BXi	$X_j * X_k$	11ijk	15	Log. prod. of X_j and $X_k \rightarrow X_i$	$RXi \begin{bmatrix} X_j + X_k \\ X_j - X_k \end{bmatrix}$	36ijk	15	Rounded floating $X_j - X_k \rightarrow X_i$
BXi	$X_j + X_k$	12ijk	15	Log. sum of X_j and $X_k \rightarrow X_i$				
BXi	$X_j - X_k$	13ijk	15	Log. diff. of X_j and $X_k \rightarrow X_i$				
BXi	$-X_k$	14ikk	15	Comp. of $X_k \rightarrow X_i$				
BXi	$-X_k * X_j$	15ijk	15	Log. prod. of X_j and X_k comp. $\rightarrow X_i$				
BXi	$-X_k + X_j$	16ijk	15	Log. sum of X_k comp. and $X_j \rightarrow X_i$				
BXi	$-X_k - X_j$	17ijk	15	Log. diff. of X_k comp. and $X_j \rightarrow X_i$				
LXi	jk	20ijk	15	Shift X_i left-circular jk places	$IX_i \begin{bmatrix} X_j + X_k \\ X_j - X_k \end{bmatrix}$	36ijk	15	Integer $X_j + X_k \rightarrow X_i$
AXi	jk	21ijk	15	Shift X_i right jk places	$IX_i \begin{bmatrix} X_j + X_k \\ X_j - X_k \end{bmatrix}$	37ijk	15	Integer $X_j - X_k \rightarrow X_i$

F_{Xi}	$X_j \cdot X_k$	40ijk	15	Floating $X_j \cdot X_k \rightarrow X_i$	S_{Bi}	X_j	63ijk0	15	$X_j \rightarrow Bi$
R_{Xi}	$X_j \cdot X_k$	41ijk	15	Rounded floating $X_j \cdot X_k \rightarrow X_i$	S_{Bi}	$\begin{bmatrix} X_j+B_k \\ B_k+X_j \end{bmatrix}$	63ijk	15	$X_j + B_k \rightarrow Bi$
D_{Xi}	$X_j \cdot X_k$	42ijk	15	Floating double precision $X_j \cdot X_k \rightarrow X_i$	S_{Bi}	A_j	64ijk0	15	$A_j \rightarrow Bi$
M_{Xi}	n	43in	15	Form mask of n bits in X_i	S_{Bi}	$\begin{bmatrix} A_j+B_k \\ B_k+A_j \end{bmatrix}$	64ijk	15	$A_j + B_k \rightarrow Bi$
F_{Xi}	X_j/X_k	44ijk	15	Floating $X_j/X_k \rightarrow X_i$	S_{Bi}	$\begin{bmatrix} A_j-B_k \\ -B_k+A_j \end{bmatrix}$	65ijk	15	$A_j - B_k \rightarrow Bi$
R_{Xi}	X_j/X_k	45ijk	15	Rounded floating $X_j/X_k \rightarrow X_i$	S_{Bi}	B_j	66ijk0	15	$B_j \rightarrow Bi$
NO		4600	15	No operation	S_{Bi}	B_j+B_k	66ijk	15	$B_j + B_k \rightarrow Bi$
C_{Xi}	X_k	47ikk	15	Ones in $X_k \rightarrow X_i$	S_{Bi}	$-B_k$	67i0k	15	$-B_k \rightarrow Bi$
S_{Ai}	A_j+K	50ij K	30	$A_j + K \rightarrow A_i$	S_{Bi}	$\begin{bmatrix} B_j-B_k \\ -B_k+B_j \end{bmatrix}$	67ijk	15	$B_j - B_k \rightarrow Bi$
S_{Ai}	K	51i0 K	30	$K \rightarrow A_i$	S_{Xi}	A_j+K	70ijk K	30	$A_j + K \rightarrow Xi$
S_{Ai}	B_j+K	51ij K	30	$B_j + K \rightarrow A_i$	S_{Xi}	K	71i0K	30	$K \rightarrow Xi$
S_{Ai}	X_j+K	52ij K	30	$X_j + K \rightarrow A_i$	S_{Xi}	B_j+K	71ijk K	30	$B_j + K \rightarrow Xi$
S_{Ai}	X_j	53ijk0	30	$X_j \rightarrow A_i$	S_{Xi}	X_j+K	72ijk K	30	$X_j + K \rightarrow Xi$
S_{Ai}	$\begin{bmatrix} X_j+B_k \\ B_k+X_j \end{bmatrix}$	53ijk	15	$X_j + B_k \rightarrow A_i$	S_{Xi}	X_j	73ijk0	15	$X_j \rightarrow Xi$
S_{Ai}	A_j	54ijk0	15	$A_j \rightarrow A_i$	S_{Xi}	$\begin{bmatrix} X_j+B_k \\ B_k+X_j \end{bmatrix}$	73ijk	15	$X_j + B_k \rightarrow Xi$
S_{Ai}	$\begin{bmatrix} A_j+B_k \\ B_k+A_j \end{bmatrix}$	54ijk	15	$A_j + B_k \rightarrow A_i$	S_{Xi}	A_j	74ijk0	15	$A_j \rightarrow Xi$
S_{Ai}	$\begin{bmatrix} A_j-B_k \\ -B_k+A_j \end{bmatrix}$	55ijk	15	$A_j - B_k \rightarrow A_i$	S_{Xi}	$\begin{bmatrix} A_j+B_k \\ B_k+A_j \end{bmatrix}$	74ijk	15	$A_j + B_k \rightarrow Xi$
S_{Ai}	B_j	56ijk0	15	$B_j \rightarrow A_i$	S_{Xi}	$\begin{bmatrix} A_j-B_k \\ -B_k+A_j \end{bmatrix}$	75ijk	15	$A_j - B_k \rightarrow Xi$
S_{Ai}	B_j+B_k	56ijk	15	$B_j + B_k \rightarrow A_i$	S_{Xi}	B_j	76ijk0	15	$B_j \rightarrow Xi$
S_{Ai}	$-B_k$	57i0k	15	$-B_k \rightarrow A_i$	S_{Xi}	B_j+B_k	76ijk	15	$B_j + B_k \rightarrow Xi$
S_{Ai}	$\begin{bmatrix} B_j-B_k \\ -B_k+B_j \end{bmatrix}$	57ijk	15	$B_j - B_k \rightarrow A_i$	S_{Xi}	$-B_k$	76i0k	15	$-B_k \rightarrow Xi$
S_{Bi}	A_j+K	60ijk K	30	$A_j + K \rightarrow Bi$	S_{Xi}	$\begin{bmatrix} B_j-B_k \\ -B_k+B_j \end{bmatrix}$	77ijk	15	$B_j - B_k \rightarrow Xi$
S_{Bi}	K	61i0 K	30	$K \rightarrow Bi$					
S_{Bi}	B_j+K	61ijk K	30	$B_j + K \rightarrow Bi$					
S_{Bi}	X_j+K	62ijk K	30	$X_j + K \rightarrow Bi$					

PERIPHERAL PROCESSOR CODE

The variable field may contain index or address values. Subfields are separated by commas.

- m Address value, 12 bits
- c Address value, 18 bits
- d Index value, 6 bits
- r $-31 \leq r \leq 31$
- M Indexed address (m+d), 18 bits

MNEMONIC	OCTAL	LENGTH	INSTRUCTION
PSN	0000	12	Pass
LJM	m,d 01dd mmmm	24	Long jump to M
RJM	m,d 02dd mmmm	24	Return jump to M
UJN	r 03rr	12	Unconditional jump to locations
ZJN	r 04rr	12	Jump to locations if $(A) = 0$
NJN	r 05rr	12	Jump to locations if $(A) \neq 0$
PJN	r 06rr	12	Jump to locations if $(A) \geq 0$
MJN	r 07rr	12	Jump to locations if $(A) < 0$
SHN	d 10dd	12	Shift (A) d places, d positive: left circular; d negative: right end off, no sign extension
LMN	d 11dd	12	Lag. diff. of d and $(A_{5-0}) \rightarrow (A_{6-11})$ unchanged
LPN	d 12dd	12	Log. prod. of d and $(A_{5-0}) \rightarrow A$ (A_{6-11}) are zero.
SCN	d 13dd	12	Clear bits in A_{0-5} for corresponding ones in d
LDN	d 14dd	12	d $\rightarrow A$
LCN	d 15dd	12	$-d \rightarrow A$

ADN	d	16dd	12	$(A) + d \rightarrow A$
SBN	d	17dd	12	$(A) - d \rightarrow A$
LDC	c	20cc cccc	24	$c \rightarrow A$
ADC	c	21cc cccc	24	$c + (A) \rightarrow A$
LPC	c	22cc cccc	24	Log. prod. of A and C $\rightarrow A$
LMC	c	23cc cccc	24	Lag. diff. of A and C $\rightarrow A$
EXN	d	260d	12	Exchange jump
MXN	d	261d	12	Monitor exchange jump
RPN		2700	12	Central processor address $\rightarrow A$
LDD	d	30dd	12	$(\text{location } d) \rightarrow A$
ADD	d	31dd	12	$(A) + (\text{location } d) \rightarrow A$
SBD	d	32dd	12	$(A) - (\text{location } d) \rightarrow A$
LMD	d	33dd	12	Log. diff. of A and location d $\rightarrow A$
STD	d	34dd	12	$(A_{11-0}) \rightarrow \text{location } d$
RAD	d	35dd	12	$(A) + (\text{location } d) \rightarrow d$ and A
AOD	d	36dd	12	$(\text{location } d) + 1 \rightarrow \text{location } d$ and A
SOD	d	37dd	12	$(\text{location } d) - 1 \rightarrow \text{location } d$ and A
LDI	d	40dd	12	$((\text{location } d)) \rightarrow A$
ADI	d	41dd	12	$(A) + ((\text{location } d)) \rightarrow A$
SBI	d	42dd	12	$(A) - ((\text{location } d)) \rightarrow A$
LMI	d	43dd	12	Lag. diff. of A and $(\text{location } d) \rightarrow A$
STI	d	44dd	12	$(A_{11-0}) \rightarrow ((\text{location } d))$
RAI	d	45dd	12	$(A) + ((\text{location } d)) \rightarrow A$
AOI	d	46dd	12	$((\text{location } d)) + 1 \rightarrow (d)$ and A

SOI	d	47dd	12	$((\text{location } d)) - 1 \rightarrow (\text{d})$ and A	ACN	d	74 dd	12	Activate channel d
LDM	m,d	50 dd mmmm	24	$(M) \rightarrow A_{0-11}; 0 \rightarrow A_{12-17}$	DCN	d	75dd	12	Deactivate channel d
ADM	m,d	51dd mmmm	24	$(A) + (M) \rightarrow A$	FAN	d	76dd	12	External function code $(A_{0-11}) \rightarrow \text{channel } d$
SBM	m,d	52dd mmmm	24	$(A) - (M) \rightarrow A$	FNC	m,d	77d mmmm	24	External function code $(m) \rightarrow \text{channel } d$
LMM	m,d	53dd mmmm	24	Log. diff. of A and $(M) \rightarrow A$					
STM	m,d	54dd mmmm	24	$(A_{0-11}) \rightarrow M$					
RAM	m,d	55dd mmmm	24	$(A) + (M) \rightarrow M \text{ and } A$					
AOM	m,d	56dd mmmm	24	$(M + 1) \rightarrow M \text{ and } A$					
SOM	m,d	57dd mmmm	24	$(M - 1) \rightarrow M \text{ and } A$					
CRD	d	60 dd	12	Read central memory $(A) \rightarrow d, \dots, d + 4$					
CRM	m,d	61dd mmmm	24	Read central memory (d) words, beginning with (A) to $m, m + 1, \dots, m + 5d - 1$					
CWD	d	62dd	12	Write from locations d to d + 4 into central memory address (A)					
CWM	m,d	63 dd mmmm	24	Write d words beginning with m to (A) in central memory					
AJM	m,d	64dd mmmm	24	Jump to m if channel d active					
IJM	m,d	65dd mmmm	24	Jump to m if channel d inactive					
FJM	m,d	66dd mmmm	24	Jump to m if channel d full					
EJM	m,d	67dd mmmm	24	Jump to m if channel d empty					
IAN	d	70dd	12	Input word from channel d to A_{0-11}					
IAM	m,d	71dd mmmm	24	Input A words to m from channel d					
OAN	d	72dd	12	Output from A on channel d					
OAM	m,d	73dd mmmm	24	Output A words from m on channel d					

PSEUDO INSTRUCTIONS

Assembler Control

IDENT name, origin, entry

Beginning of Subprogram

For an absolute routine, origin may be used to specify the origin of the routine. For a central processor relocatable routine, origin is ignored. For a central processor absolute routine, entry specifies the entry point.

END ta

End of Subprogram

A symbol in the location field is assigned the value of last word address +1; ta is an optional transfer address.

ABS

Absolute Assembly

Symbols in the location field or variable field are ignored. Pseudo instructions except ENTRY, EXT, REP and REPI may be used in the subprogram which follows.

PERIPH

PP Assembly

Symbols in the location field or variable field are ignored. Pseudo instructions except ENTRY, EXT, REP and REPI may be used in the subprogram which follows.

BASE

O
D

Numeric Data Mode

O = octal mode; D = decimal mode.
Decimal mode is assumed if this pseudo instruction is omitted.

Counter Control

USE blockname

Block Assignment

Assemble following instructions into blockname.

Blockname	Type
0 or blank	Nominal subprogram
//	Blank common
*	Block prior to preceding USE
/name/	Labeled common
name	Named local

ORG expression

Origin

Reset origin and location counters. Symbols in expression must be defined previously.

LOC expression

Location Counter

Set location counter to value of address expression.

Linkage Control

ENTRY list of names

Entry Points

Declares entry point names; maximum of seven characters.

EXT list of names

External Names

Declares external names; maximum of seven characters.

Storage Allocation

BSS expression

Storage Reservation

Location field symbol is assigned the value of the location counter, and location and origin counters are incremented by the value of the address field expression.

BSSZ expression

Storage Reservation

Location field symbol is assigned the value of the location counter, and the counters are incremented by the value of the address field expression. At load time, the number of words specified by the expression will be set to zero.

DIS wc,characters

Display Code Lines

Symbol in the location field is assigned the value of the location counter. wc is the word count: $wc \cdot 10$ (CP) or $wc \cdot 2$ (PP) characters beyond the comma are extracted. If wc is blank or zero, the first character after the comma is considered a delimiter, and characters are extracted until the delimiter is again encountered.

LIT data items

Literal Values

Symbol in the location field is assigned the value of the location counter. Up to 100 words of data items, separated by commas, may be included in one LIT instruction

VFD subfields

Field Definition

Symbol in the location field assigns the subfields beginning in a new word. A - in the location field positions the counter at the next quarter word boundary in a CP assembly. Subfields appear as n/v ; n is a single element bit count, previously defined and absolute, maximum value of 60; v is an expression. If v is not absolute, the field must be at least 18 bits long, ending at bit number 0, 15, or 30.

REP and REPI subfields

Data Generation

Generate data at load time. Subfields, up to 5, may appear in any order, separated by commas. Subfield format is: specification/non-external address expression

Specifications

- S Source address, mandatory
- D Destination address, S+B if omitted
- C Repetition count, 1 if omitted
- B Code block size, 1 if omitted
- I Increment, B if omitted

Symbol Definition

symbol EQU expression

Symbol Definition

Symbol in the location field is assigned the value of the address field expression.

symbol SET expression

Symbol Redefinition

Symbol in the location field is redefined to the value of the address field expression.

Data Generation

DATA data items

Data Declaration

Symbol in location field is assigned the value of the location counter. Subfields, separated by commas, may be numeric or character data items.

Conditional Operations

IFxx field₁, field₂, count Compare Values

Location field contains instruction bracket name or blank; variable field contains 2 address expressions, separated by commas, for comparison.

Optional count is number of lines to be assembled if comparison is satisfied.

xx	Comparison of Fields
EQ	Equal
NE	Not equal
GT	Greater than
GE	Greater than or equal
LT	Less than
LE	Less than or equal

IFY count

Test Assembly Environment

Location field contains instruction bracket name or blank. Optional count is number of lines to be assembled if condition is true.

yy	Condition
PP	Peripheral assembly in progress
CP	Central assembly in progress

IF attribute, symbol expression' count

Test Symbol or Expression Attribute

Location field contains instruction bracket name or blank. Optional count is number of lines to be assembled if attribute is true. A minus before an attribute tests for the negative condition.

Attribute	Test
SET	Symbol defined by SET
ABS	Absolute expression
REL	Common or program relocatable expression
REG	Register name in the expression
COM	Common relocatable expression
EXT	External symbol in expression
LOC	Program relocatable expression
DEF	All symbols in expression defined

IFC xx,d₁...d_n,c₁...c_m,count

Test Character Strings

Location field contains instruction bracket name or blank. Optional count is number of lines to be assembled if comparison is true.

Delimiter is d; c₁...c_m is a character string; xx is EQ,NE,GT,GE,LT, or LE

ENDIF

Conditional Assembly Terminator

Location field contains instruction bracket name or blank. ENDIF is ignored if it appears within a line count-controlled range.

List options

List Control

Extent of Listing

Options are separated by commas.

Option	Listing	Nominal Condition
L	List control	on
M	Macro expansion control	off
E	DUP control	off
D	VFD, DATA, DIS; RMT; literals, deferred symbols	off
F	Conditional assembly	off
C	Control cards EJECT, SPACE, TITLE	off
R	Reference table	on
X	XTEXT text	off
S	Systems macro expansion	off
G	Code generation	off
A	Actual assembly list	off
N	Programmer nulls	off
T	SST nulls	off

EJECT

Start New Page

SPACE exp

Skip Line

Skip number of lines indicated by value of address field expression.

TITLE string

Titling

First title string in subprogram is listed on every page; subsequent TITLEs are subtitles which cause page ejects before listing. The title string begins immediately after the pseudo operation code and continues for 79 columns or to end-of-statement.

Code Duplication

DUP exp₁,exp₂

Duplication

Location field may contain instruction bracket name or blank. Replication count is specified by the value of the first address expression. Optional second address specifies number of succeeding lines to be assembled.

ENDD

End Duplication

Terminates range if second address field expression was omitted in preceding DUP. Location field may contain an instruction bracket name or blank.

STOPDUP

Stop Duplication

Stops duplication at end of current iteration.

Start New Page

Micros

name MICRO n₁,n₂,dccc...cc

Micro Definition

The micro string is formed by extracting n₂ characters from ccc...cc, beginning with the character specified by n₁. If n₁ is zero or blank, the character string is empty. If n₂ is zero or blank, the length of the string is delimited by the character d.

#name#

Micro Substitution

Named micro string is substituted by COMPASS wherever #name# appears in the line.

Remote Assembly

RMT

Save Code

Instructions up to the next RMT pseudo instruction are saved for later assembly.

HERE

Assemble RMT Code

Saved remote instructions are assembled at this point.

Loader Directives

LCC string

Loader Directives

Character string is passed to binary output file for subsequent recognition by SCOPE loader.

ERR

Forced Error

A fatal error is produced.

file XTEXT record	External Input	name arguments	Standard Macro call
	Assembles data from named record on named indexed file. If record name is not given, first record of file is used.		Non-blank location field forces upper. Arguments are substituted for formal arguments of definition.
SST	System Symbols	name arguments	Alternate Macro Call
	Defines system symbols from the system file as if they had been defined by the routine.		Macro call location field is substituted for first parameter in definition argument list.
Macros			
name MACRO arguments	Standard Macro Heading	COMPASS (Input/Output option list)	COMPASS Call
	Arguments must begin with a letter; up to 63 may be listed, separated by special characters: ,,+*/)(\$. Subsequent instructions until ENDM are saved as a macro definition.	Calls COMPASS Assembler, Input/Output options separated by commas if non-blank.	
MACRO name, arguments	Alternate Macro Heading		
	The first subfield is the macro name; subsequent subfields are macro arguments. Sub-fields are separated by commas.		
name OPDEF arguments	Special Macro Form Heading		
	Location field entry is abbreviated description of entire instruction to be recognized as an OPDEF call. Address subfields are formal arguments listed as for MACRO. Provides convenient description of macros in CP machine instruction format.		
LOCAL symbols	Local Symbols		
	Symbols local to macro are separated by commas. Total number of LOCAL symbols and macro arguments must be less than 64.		
ENDM	Macro Terminator		
	Location field contains macro name or blank.		

CHARACTER CODES

Character	Display	External BCD	Hollerith Punch	Character	Display	External BCD	Hollerith Punch
A	01	61	12-1	7	42	07	7
B	02	62	12-2	8	43	10	8
C	03	63	12-3	9	44	11	9
D	04	64	12-4	+	45	60	12
E	05	65	12-5	-	46	40	11
F	06	66	12-6	*	47	54	11-8-4
G	07	67	12-7	:	50	21	0-1
H	10	70	12-8	/	51	34	0-8-4
I	11	71	12-9	(52	74	12-8-4
J	12	41	11-1)	53	53	11-8-3
K	13	42	11-2	\$	54	13	8-3
L	14	43	11-3	=	55	20	space
M	15	44	11-4	blank	56	33	0-8-3
N	16	45	11-5	,	57	73	12-8-3
O	17	46	11-6	.	60	36	0-8-6
P	20	47	11-7	≡	61	17	8-7
Q	21	50	11-8	[62	32	0-8-2
R	22	51	11-9]	63	00	8-2
S	23	22	0-2	:	64	14	8-4
T	24	23	0-3	≠	65	35	0-8-5
U	25	24	0-4	→	66	52	11-0
V	26	25	0-5	↔	67	37	0-8-7
W	27	26	0-6	^	70	55	11-8-5
X	30	27	0-7	~	71	56	11-8-6
Y	31	30	0-8	<	72	72	12-0
Z	32	31	0-9	>	73	57	11-8-7
0	33	12	0	≤	74	15	8-5
1	34	01	1	≥	75	75	12-8-5
2	35	02	2	—	76	76	12-8-6
3	36	03	3				
4	37	04	4				
5	40	05	5				
6	41	06	6				