# CHEST XRAY PNEUMONIA DETECTION

Course Code: CS354N Course Instructor: DR.Aruna Tiwari



TEAM MEMBERS:
PRANAY D KUMAR 210001053
SANSKAR 210001063
VELPURU NAVYA 210001075

Github Link: <a href="https://github.com/Sanskar6877/ChestXRay\_Pneumonia\_Detection">https://github.com/Sanskar6877/ChestXRay\_Pneumonia\_Detection</a>

### **Problem Statement:**

## CNN Models for Pneumonia Detection in Chest Xray Images:

- Objective: Detect pneumonia from pediatric chest Xray images using CNN models.
- Approach: Compare various CNN architectures and configurations, including pretrained models like Inceptionv3, ResNet50, VGG16, and VGG19.
- Goal: Distinguish pneumonia from nonpneumonia cases to contribute to early detection and intervention strategies.
- Impact: Potentially reduce mortality rates among children, especially in regions with high prevalence rates of pneumonia.

## **Data Collection and Preprocessing:**

- Dataset Overview: The dataset, "Chest X-Ray Images (Pneumonia)," sourced from Kaggle, contains 5416 training, 300 validation, and 624 testing images, totalling 2 GB. These grayscale images are 64 \* 64 pixels and categorized into Normal, Bacterial Pneumonia, and Viral Pneumonia. Access the dataset(<a href="https://drive.google.com/drive/folders/1DA2ScHT5ZoxLHLhDrB5EiDY1iB4dJDS-?usp=drive\_link">https://drive.google.com/drive/folders/1DA2ScHT5ZoxLHLhDrB5EiDY1iB4dJDS-?usp=drive\_link</a>).
- Preprocessing: Images are loaded, converted to grayscale, and resized to ensure uniformity. They are then split into training, validation, and testing sets, labeled ('PNEUMONIA' or 'NORMAL') for supervised learning.
- Data Preparation: Pixel values are normalized, and data augmentation techniques like rotation and flipping are applied to enhance model robustness. Consistent augmentation parameters are ensured during training, enhancing generalization capability.

## Flow Chart of the Project:



Fig 1: Stages of the pneumonia Detection Project

### **MODELS:**

#### **Custom CNN Model:**

- 3 convolutional layers: 32, 64, and 128 feature maps.
- Max-pooling: 2x2 after each convolutional layer.
- Dense layers: 256 output perceptrons, 2 output perceptrons.
- Dropout layer included.
- Learning rate: 0.0001.

#### Inception-v3:

- CNN with 42 layers introduces auxiliary classifiers and batch normalization.
- Utilizes factorization to reduce parameters.
- Learning rate: 0.00001.

#### ResNet50:

- Utilizes shortcut connections to address issues.
- Learning rate: 0.00001.

#### **VGG16:**

- 16-layer CNN with 3x3 kernel-sized filters.
- Employs dropout after each dense layer.
- Learning rate: 0.0001.

#### **VGG19:**

- Variant of VGG16 with 19 layers.
- Learning rate: 0.00001.



Fig 2: CNN Architecture (model 1)



Fig 3: Inceptionv3 Architecture (model 2)



Fig 4: ResNet 50 Architecture (model 3)

### **ALGORITHM:**

**Step 1:** Convolve 64x64 images with 32 feature maps using ReLU activation.

Step 2: Pool the previous layer's output with 2x2 max pooling.

**Step 3:** Resize input to 64x64 and convolve with 64 feature maps using ReLU activation.

Step 4: Pool the previous layer's output with 2x2 max pooling.

Step 5:

- **a)** (Model 1): Convolve input with 128 feature maps, ReLU activation, and 2x2 max pooling. Flatten output.
- **b)** (InceptionV3): Utilize pre-trained InceptionV3 with ImageNet weights and global average pooling.
- c) (ResNet50): Utilize pre-trained ResNet50 with ImageNet weights and global average pooling.
- **d)** (VGG16 and VGG19): Utilize pre-trained VGG16 or VGG19 with ImageNet weights and fully connected layers.
- **Step 6:** Pass flattened output (Model 1) or last layer's output through a dense layer with 256 perceptrons and ReLU activation.
- **Step 7:** Compile model using Adam optimizer (learning rate: 0.001), categorical cross-entropy loss, and softmax activation for binary classification.

## **EXPERIMENTATION AND RESULTS:**

# Validation and training loss:



Fig 5: plot of Inceptionv3

Fig 5: plot of VGG16

Fig 5: plot of VGG19

# Validation and training accuracy:



# **Evaluation metrics of Testing data:**

| Model       | Accuracy | Precision | F1 score | Recall   |
|-------------|----------|-----------|----------|----------|
| model 1     | 0.90224  | 0.92869   | 0.92263  | 0.912232 |
| Inceptionv3 | 0.82211  | 0.82869   | 0.832232 | 0.84263  |
| Resnet50    | 0.73237  | 0.73458   | 0.81289  | 0.73659  |
| VGG16       | 0.89423  | 0.91035   | 0.95698  | 0.92365  |
| VGG19       | 0.92307  | 0.93248   | 0.91556  | 0.90644  |

# Testing through User interface:

Below are some user testing interface images (includes input and output):



**User Interface** 



Pneumonic input image

# Results are as below for above input:

Model 1





Inceptionv3

ResNet50





VGG16



## **Conclusion:**

- Developed and evaluated multiple deep-learning models for pneumonia detection using chest X-ray images.
- Experimented with various architectures including CNN, InceptionV3, ResNet50, VGG16, and VGG19.
- Each model was trained, validated, and tested on a dataset of chest X-ray images containing pneumonia and normal cases.
- Precision, recall, and F1-score metrics were calculated to evaluate the models' performance in classifying pneumonia cases.
- Deployed a user-friendly web application using Gradio for pneumonia detection, accessible via (https://github.com/Sanskar6877/ChestXRay\_Pneumonia\_Detection).
- Another multimodel pneumonia detection web application is available (https://huggingface.co/spaces/vnavya2004/PNEUMONIA\_DETECTION\_MULTIMODEL), allowing users to compare and analyze results conveniently.
- Overall, the project demonstrates the potential of deep learning models in aiding pneumonia detection from chest X-ray images, with practical applications through web interfaces.

# **Project related links:**

- Github Link: <a href="https://github.com/Sanskar6877/ChestXRay\_Pneumonia\_Detection">https://github.com/Sanskar6877/ChestXRay\_Pneumonia\_Detection</a>
- Dataset Link: <u>https://drive.google.com/drive/folders/1DA2ScHT5ZoxLHLhDrB5EiDY1iB4d</u> <u>JDS-?usp=drive\_link</u>
- User interface Link: <u>https://huggingface.co/spaces/vnavya2004/PNEUMONIA\_DETECTION\_M</u>
   ULTIMODEL
- Reference Link: <a href="https://www.sciencedirect.com/science/article/pii/S026322412030584">https://www.sciencedirect.com/science/article/pii/S026322412030584</a>

# THANK YOU

#### Team members:

- 210001053
- 210001063
- 210001075