Remember from calculus the addition and scalar multiplication of polynomials:

e.g
$$(2t^2+1)+(-t^2+3t+2)=t^2+3t+3$$
.

e.g
$$(-3)(-t^2+3t+2)=3t^2-9t-6$$
.

We want to represent abstract vectors as column vectors so we can do calculations (e.g. row-reduction) to study linear systems (e.g. week 7 p15) and linear transformations (e.g. week 7 p28).

Is this really different from \mathbb{R}^3 ?

$$\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix}.$$

$$(-3)\begin{bmatrix} -1\\3\\2 \end{bmatrix} = \begin{bmatrix} 3\\-9\\-6 \end{bmatrix}.$$

We want to represent abstract vectors as column vectors so we can do calculations (e.g. row-reduction) to study linear systems and linear transformations.

In
$$\mathbb{R}^n$$
, $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n$. $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ must span V

We can copy this idea: in V, pick a special set of vectors $\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}$, write each

 ${f x}$ in V uniquely as $c_1{f b}_1+\cdots+c_n{f b}_n$ and represent ${f x}$ by the column vector $egin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$.

Example: In \mathbb{P}_2 , let $\mathbf{b}_1=1$, $\mathbf{b}_2=t$, $\mathbf{b}_3=t^2$. Then we represent $a_0+a_1t+a_2t^2$ by $\begin{bmatrix} a_0\\a_1\\a_2\end{bmatrix}$ (slightly different from previous page; see p9, p12). HKBU Math 2207 Linear Algebra

$\S 4.3$: Bases

Definition: Let W be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a *basis for* W if

i ${\cal B}$ is a linearly independent set, and

ii Span $\{\mathbf{b}_1,\ldots,\mathbf{b}_p\}=W$.

The order matters: $\{\mathbf{b}_1, \mathbf{b}_2\}$ and $\{\mathbf{b}_2, \mathbf{b}_1\}$ are different bases.

i means: The only solution to $x_1\mathbf{b}_1 + \cdots + x_p\mathbf{b}_p = \mathbf{0}$ is $x_1 = \cdots = x_p = 0$. ii means: W is the set of vectors of the form $c_1\mathbf{b}_1 + \cdots + c_p\mathbf{b}_p$ where c_1, \ldots, c_p can take any value.

Condition ii implies that $\mathbf{b}_1, \dots, \mathbf{b}_p$ must be in W, because Span $\{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ contains each of $\mathbf{b}_1, \dots, \mathbf{b}_p$.

Every vector space V is a subspace of itself, so we can take W=V in the definition and talk about bases for V.

Definition: Let W be a subspace of a vector space V. An indexed set of vectors

$$\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$$
 in V is a *basis for* W if

i \mathcal{B} is a linearly independent set, and

ii Span
$$\{\mathbf{b}_1,\ldots,\mathbf{b}_p\}=W$$
.

Example: The standard basis for \mathbb{R}^3 is $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$, where

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

To check that this is a basis: $\begin{bmatrix} | & | & | \\ \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ | & | & | \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ is in reduced echelon form.}$

The matrix has a pivot in every column, so its columns are linearly independent. The matrix has a pivot in every row, so its columns span \mathbb{R}^3 .

Definition: Let W be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a *basis for* W if

i \mathcal{B} is a linearly independent set, and

ii Span $\{\mathbf{b}_1, \dots, \mathbf{b}_p\} = W$.

A basis for W is not unique: (different bases are useful in different situations, more later).

Let's look for a different basis for \mathbb{R}^3 .

Example: Let
$$\mathbf{v}_1=\begin{bmatrix}1\\2\\0\end{bmatrix}$$
 , $\mathbf{v}_2=\begin{bmatrix}0\\1\\1\end{bmatrix}$. Is $\{\mathbf{v}_1,\mathbf{v}_2\}$ a basis for \mathbb{R}^3 ?

Answer: No, because two vectors cannot span \mathbb{R}^3 : $\begin{vmatrix} \mathbf{v}_1 & \mathbf{v}_2 \\ \mathbf{v}_1 & \mathbf{v}_2 \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{vmatrix}$ cannot

have a pivot in every row.

Definition: Let W be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a *basis for* W if

i \mathcal{B} is a linearly independent set, and

ii Span $\{\mathbf{b}_1, \dots, \mathbf{b}_p\} = W$.

A basis for W is not unique: (different bases are useful in different situations, more later).

Let's look for a different basis for \mathbb{R}^3 .

Example: Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix}$. Is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ a basis for \mathbb{R}^3 ?

 $\det A = 1 \neq 0$, the matrix A is invertible, so (by Invertible Matrix Theorem) its columns are linearly independent and its columns span \mathbb{R}^3 .

Definition: Let W be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a *basis for* W if

i \mathcal{B} is a linearly independent set, and

ii Span $\{\mathbf{b}_1,\ldots,\mathbf{b}_p\}=W$.

A basis for W is not unique: (different bases are useful in different situations, more later).

Let's look for a different basis for \mathbb{R}^3 .

Example: Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{v}_4 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ a

basis for \mathbb{R}^3 ?

Answer: No, because four vectors in \mathbb{R}^3 must be linearly dependent:

$$\begin{bmatrix} | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 2 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \text{ cannot have a pivot in every column.}$$

By the same logic as in the above examples:

Fact: $\{\mathbf{v}_1, \dots \mathbf{v}_p\}$ is a basis for \mathbb{R}^n if and only if:

- p = n (i.e. the set has exactly n vectors), and
- $\bullet \det \begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \dots & \mathbf{v}_n \end{bmatrix} \neq 0.$

Fewer than n vectors: not enough vectors, can't span \mathbb{R}^n . More than n vectors: too many vectors, linearly dependent.

Example: The standard basis for \mathbb{P}_n is $\mathcal{B} = \{1, t, t^2, \dots, t^n\}$.

To check that this is a basis:

- ii By definition of \mathbb{P}_n , every element of \mathbb{P}_n has the form $a_0 + a_1t + a_2t^2 + \cdots + a_nt^n$, so \mathcal{B} spans \mathbb{P}_n .
- i To see that \mathcal{B} is linearly independent, we show that $c_0=c_1=\cdots=c_n=0$ is the only solution to

$$c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n = 0$$
. (the zero function)

Substitute t=0: we find $c_0=0$.

Differentiate, then substitute t=0: we find $c_1=0$.

Differentiate again, then substitute t=0: we find $c_2=0$.

Repeating many times, we find $c_0 = c_1 = \cdots = c_n = 0$.

Once we have the standard basis of \mathbb{P}_n , it will be easier to check if other sets are bases of \mathbb{P}_n , using coordinates (later, p14).

Advanced exercise: what do you think is the standard basis for $M_{m\times n}$?

One way to make a basis for V is to start with a set that spans V.

Theorem 5: Spanning Set Theorem: If $V = \text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$, then some subset of $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a basis for V.

Proof: (essentially the casting-out algorithm - see week 3)

- If $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly independent, it is a basis for V.
- If $\{v_1, \ldots, v_p\}$ is linearly dependent, then one of the v_i s is a linear combination of the others. Removing this v_i from the set still gives a set that spans V. Continue removing vectors in this way until the remaining vectors are linearly independent.

Example:
$$\mathbb{R}^2 = \operatorname{Span}\left\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}1\\2\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix}\right\}$$
, but this set is not linearly independent

because
$$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
 is a linear combination of the others: $\begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. So remove $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$

to get the basis
$$\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$$
.

PP 234, 238-240 (§4.4), 307-308 (§5.4): Coordinates

Recall (p2) that our motivation for finding a basis is because we want to write each vector \mathbf{x} as $c_1\mathbf{b}_1 + \cdots + c_p\mathbf{b}_p$ in a unique way. Let's show that this is indeed possible

Theorem 7: Unique Representation Theorem: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_1, \dots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n.$$

Proof:

Since \mathcal{B} spans V, there exists scalars c_1, \ldots, c_n such that the above equation holds. Suppose \mathbf{x} has another representation

$$\mathbf{x} = d_1 \mathbf{b}_1 + \dots + d_n \mathbf{b}_n.$$

for some scalars d_1, \ldots, d_n . Then

$$\mathbf{0} = \mathbf{x} - \mathbf{x} = (c_1 - d_1)\mathbf{b}_1 + \dots + (c_n - d_n)\mathbf{b}_n.$$

Because \mathcal{B} is linearly independent, all the weights in this equation must be zero, i.e.

$$(c_1-d_1)=\cdots=(c_n-d_n)=0$$
. So $c_1=d_1,\ldots,c_n=d_n$.

Because of the Unique Representation Theorem, we can make the following definition:

Definition: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for V. Then, for any \mathbf{x} in V, the coordinates of x relative to \mathcal{B} , or the \mathcal{B} -coordinates of x, are the unique weights c_1, \ldots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n.$$

The vector in \mathbb{R}^n

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

is the coordinate vector of x relative to \mathcal{B} , or the \mathcal{B} -coordinate vector of x.

Example: Let $\mathcal{B} = \{1, t, t^2, t^3\}$ be the standard basis for \mathbb{P}_3 . Then the coordinate

vector of an arbitrary polynomial is $[a_0+a_1t+a_2t^2+a_3t^3]_{\mathcal{B}}=\begin{bmatrix}a_0\\a_1\\a_2\\a_3\end{bmatrix}$. Semester 1 21 $\begin{bmatrix}a_0\\a_1\\a_2\\a_3\end{bmatrix}$.

Why are coordinate vectors useful?

Because of the Unique Representation Theorem, the function V to \mathbb{R}^n given by

$$\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$$
 (e.g. $a_0 + a_1t + a_2t^2 + a_3t^3 \mapsto \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$) is linear, one-to-one and onto.

Definition: A linear transformation $T:V\to W$ that is both one-to-one and onto is called an *isomorphism*. We say V and W are isomorphic.

This means that, although the notation and terminology for V and W are different, the two spaces behave the same as vector spaces. Every vector space calculation in V is accurately reproduced in W, and vice versa.

Important consequence: if V has a basis of n vectors, then V and \mathbb{R}^n are isomorphic, so we can solve problems about V (e.g. span, linear independence) by working in \mathbb{R}^n .

If V has a basis of n vectors, then V and \mathbb{R}^n are isomorphic, so we can solve problems about V (e.g. span, linear independence) by working in \mathbb{R}^n .

Example: Is the set of polynomials $\{1, 2-t, (2-t)^2, (2-t)^3\}$ linearly independent?

Answer: The coordinates of these polynomials relative to the standard basis of \mathbb{P}_3 are

$$[1]_{\mathcal{B}} = \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \qquad [(2-t)^2]_{\mathcal{B}} = [4-4t+t^2]_{\mathcal{B}} = \begin{bmatrix} 4\\-4\\1\\0\\8\\-12\\6\\-1 \end{bmatrix},$$

$$[2-t]_{\mathcal{B}} = \begin{bmatrix} 2\\-1\\0\\0 \end{bmatrix}, \quad [(2-t)^3]_{\mathcal{B}} = [(8-12t+6t^2-t^3]_{\mathcal{B}} = \begin{bmatrix} 4\\-4\\1\\0\\-12 \end{bmatrix}$$

The set of polynomials is linearly independent if and only if their coordinate vectors are linearly independent (continued on next page).

Example: Is the set of polynomials $\{1, 2-t, (2-t)^2, (2-t)^3\}$ linearly independent? **Answer**: (continued). The matrix

$$\begin{bmatrix} 1 & 2 & 4 & 8 \\ 0 & -1 & -4 & -12 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

has determinant 1 (it is diagonal so its determinant is the product of the diagonal entries), so it is invertible, and by the Invertible Matrix Theorem, its columns are linearly independent in \mathbb{R}^4 . So the polynomials are linearly independent. (In fact they form a basis, because IMT says they also span \mathbb{R}^4 .)

(Because we have a set of four vectors in \mathbb{R}^4 , we can use the det+IMT. If we had fewer than four vectors, we would have to row reduce: free variable \implies dependent; no free variables / pivot in each column \implies independent.)

Advanced exericse: if \mathbf{p}_i has degree exactly i, then $\{\mathbf{p}_0, \mathbf{p}_1, \dots \mathbf{p}_n\}$ is a basis for \mathbb{P}_n . (This idea is how I usually prove that a set is a basis in my research work.)

If V has a basis of n vectors, then V and \mathbb{R}^n are isomorphic, so we can solve problems about V (e.g. span, linear independence) by working in \mathbb{R}^n .

What about problems concerning linear transformations $T: V \to W$?

Remember from week 4: Every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation $T(\mathbf{x}) = A\mathbf{x}$, where

$$A = \begin{bmatrix} | & | & | \\ T(\mathbf{e}_1) & \dots & T(\mathbf{e}_n) \\ | & | & | \end{bmatrix}$$

apply T to ith basis vector, put the $A = \begin{bmatrix} | & | & | & | \\ T(\mathbf{e}_1) & \dots & T(\mathbf{e}_n) \end{bmatrix}$ (standard matrix of T).

The standard matrix is useful because we can solve $T(\mathbf{x}) = \mathbf{y}$ by row-reducing $[A|\mathbf{y}]$.

Definition: If V is a vector space with basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $T: V \to V$ is a linear transformation, then the matrix for T relative to \mathcal{B} is

$$[T]_{\mathcal{B}} = \begin{bmatrix} | & | & | & | \\ [T(\mathbf{b}_1)]_{\mathcal{B}} & \dots & [T(\mathbf{b}_n)]_{\mathcal{B}} \end{bmatrix}$$
 (so the standard matrix of T is the matrix for T relative to the standard basis of \mathbb{R}^n .)

Semester 1 2016, Week 8, Page 16 of 20

HKBU Math 2207 Linear Algebra

DEFINITION:If V is a vector space with basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $T: V \to V$ is a linear transformation, then the matrix for T relative to \mathcal{B} is

$$[T]_{\mathcal{B}} = \begin{bmatrix} | & | & | \\ [T(\mathbf{b}_1)]_{\mathcal{B}} & \dots & [T(\mathbf{b}_n)]_{\mathcal{B}} \\ | & | & | \end{bmatrix}.$$

EXAMPLE:(p308 of textbook) Let $T:\mathbb{P}_2\to\mathbb{P}_2$ be the differentiation function

$$T(a_0 + a_1t + a_2t^2) = \frac{d}{dt}(a_0 + a_1t + a_2t^2) = a_1 + 2a_2t.$$

Work in the standard basis of \mathbb{P}_2 : $\mathbf{b}_1 = 1, \mathbf{b}_2 = t, \mathbf{b}_3 = t^2$.

$$T(\mathbf{b_1}) = T(\mathbf{b_2}) = T(\mathbf{b_3}) =$$

$$[T(\mathbf{b_1})]_{\mathcal{B}} = \begin{bmatrix} \\ \end{bmatrix}$$
 $[T(\mathbf{b_2})]_{\mathcal{B}} = \begin{bmatrix} \\ \end{bmatrix}$ $[T(\mathbf{b_3})]_{\mathcal{B}} = \begin{bmatrix} \\ \end{bmatrix}$

So

$$[T]_{\mathcal{B}} =$$

The matrix $[T]_{\mathcal{B}}$ is useful because

$$[T(\mathbf{x})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}, \qquad (*$$

so we can solve $T(\mathbf{x}) = \mathbf{y}$ by row-reducing $|[T]_{\mathcal{B}}|[\mathbf{x}]_{\mathcal{B}}|$.

Example: Let $T: \mathbb{P}_2 \to \mathbb{P}_2$ be the differentiation function $T(\mathbf{p}) = \frac{d}{dt}\mathbf{p}$ as on the previous page. Here is an example of equation (*) for $\mathbf{x} = 2 + 3t - t^2$.

$$T(2+3t-t^2) = \frac{d}{dt}(2+3t-t^2) = 3-2t$$

$$[T]_{\mathcal{B}} \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 0 \end{bmatrix}.$$

Some other things about T that we can learn from the matrix $[T]_{\mathcal{B}}$:

- We can solve the differential equation $\frac{d}{dt}\mathbf{p} = 1 3t$ by row-reducing $\begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.
- $[T]_{\mathcal{B}}$ is in reduced echelon form, and it does not have a pivot in every row, so T is not onto.

Basis and coordinates for subspaces:

Example: Let W be the set of vectors of the form $\begin{bmatrix} a \\ 0 \\ b \end{bmatrix}$, where a,b can take any value.

We showed (week 7 p13) that W is a subspace of \mathbb{R}^3 because $W=\operatorname{Span}\left\{ \left| egin{matrix} 1 \\ 0 \\ 1 \end{array} \right|, \left| egin{matrix} 0 \\ 1 \\ 1 \end{array} \right| \right\}$

(because
$$\begin{bmatrix} a \\ 0 \\ b \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
.) Since $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ is furthermore linearly

independent (the vectors are not multiples of each other), it is a basis for W.

Because
$$\begin{bmatrix} a \\ 0 \\ b \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
, the coordinate vector of $\begin{bmatrix} a \\ 0 \\ b \end{bmatrix}$, relative to the basis

$$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}, \text{ is } \begin{bmatrix} a \\ b \end{bmatrix}. \text{ So } \begin{bmatrix} a \\ 0 \\ b \end{bmatrix} \mapsto \begin{bmatrix} a \\ b \end{bmatrix} \text{ is an ismorphism from } W \text{ to } \mathbb{R}^2.$$

Semester 1 2016, Week 8, Page 19 of 20

Coordinates for subspaces (e.g. planes in \mathbb{R}^3) are useful as they allow us to represent points in the subspace with fewer numbers (e.g. with 2 numbers instead of 3 numbers).

In this picture (p239 of textbook, example 7 in §4.4), $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis for a plane. The basis allows us to draw a coordinate grid on the plane.

The \mathcal{B} -coordinate vector of \mathbf{x} is

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
. This coordinate

vector describes the location of x relative to this coordinate grid.

