EE 2000 Logic Circuit Design Semester B 2022/23

Assignment 1

1. Simplify the following logic expression using Boolean algebra.

(15 marks)

$$F = (D + C(AB)')'((AB)'(C + D)')'$$

$$F = (D + A'C + B'C)'((AB)'C'D')'$$

$$F = D'(A'C)'(B'C)'(AB + C + D)$$

$$F = (A + C')(B + C')(ABD' + CD')$$

$$F = (AB + C')(ABD' + CD')$$

$$F = ABD' + ABC'D' + ABCD' + CC'D'$$

$$F = ABD'$$

2. Use K-map to find all of the minimum SOP expressions and all of the minimum POS expressions of the following function. If there is more than one solution, label the solutions f_1 , f_2 ,...

$$f(w, x, y, z) = \Sigma m(4,6,9,10,11,13) + \Sigma d(2,12,15)$$
(41 marks)

$$f_1(w,x,y,z) = w'xz' + wz + wx'y$$

$$f_2(w, x, y, z) = w'xz' + wz + x'yz'$$

$$f_1(w, x, y, z) = (w + z')(x + y + z)(w' + x' + y')$$

$$f_2(w, x, y, z) = (w + z')(x + y + z)(w' + x' + z)$$

3. Use Quine-McCluskey method to find all of the minimum SOP expressions of the following function. If there is more than one solution, label the solutions f_1 , f_2 ,... 4 solutions

$$f(w, x, y, z) = \Sigma m(5, 7, 9, 11, 13, 14) + \Sigma d(2, 6, 10, 12, 15)$$
(44 marks)

Minterms	wxyz
m_2	0010 🗸
m_5	0101 🗸
m_6	0110 🗸
m_9	1001 🗸
m_{10}	1010 🗸
m_{12}	1100 🗸
m_7	0111 🗸
m_{11}	1011 🗸
<i>m</i> ₁₃	1101 🗸
m_{14}	1110 🗸
<i>m</i> ₁₅	1111 🗸

Minterms	wxyz
m_2, m_6	0-10 🗸
m_2, m_{10}	-010 🗸
m_5, m_7	01-1 🗸
m_5, m_{13}	-101 🗸
m_6, m_7	011- 🗸
m_6, m_{14}	-110 🗸
m_9, m_{11}	10-1 🗸
m_9, m_{13}	1-01 🗸
m_{10}, m_{11}	101- 🗸
m_{10}, m_{14}	1-10 🗸
m_{12}, m_{13}	110- 🗸
m_{12}, m_{14}	11-0 🗸
m_7, m_{15}	-111 🗸
m_{11}, m_{15}	1-11 🗸
m_{13}, m_{15}	11-1 🗸
m_{14}, m_{15}	111- 🗸

Minterms	wzyz
m_2, m_6, m_{10}, m_{14}	10 PI ₁
m_5, m_7, m_{13}, m_{15}	-1-1 Pl ₂
m_6, m_7, m_{14}, m_{15}	-11- Pl ₃
$m_9, m_{11}, m_{13}, m_{15}$	11 Pl ₄
$m_{10}, m_{11}, m_{14}, m_{15}$	1-1- Pl ₅
$m_{12}, m_{13}, m_{14}, m_{15}$	11 Pl ₆

PI	Minterms	wxyz	5	7	9	11	13	14
PI_1	m_2, m_6, m_{10}, m_{14}	10						Х
PI ₂	m_5, m_7, m_{13}, m_{15}	-1-1	Х	Х			х	
PI ₃	m_6, m_7, m_{14}, m_{15}	-11-		Х				Х
PI ₄	$m_9, m_{11}, m_{13}, m_{15}$	11			X	Х	Х	
PI ₅	$m_{10}, m_{11}, m_{14}, m_{15}$	1-1-				х		Х
PI ₆	$m_{12}, m_{13}, m_{14}, m_{15}$	11					х	Х

$$f_1(w, x, y, z) = PI_1 + PI_2 + PI_4 = yz' + xz + wz$$

$$f_2(w, x, y, z) = PI_3 + PI_2 + PI_4 = xy + xz + wz$$

$$f_3(w, x, y, z) = PI_5 + PI_2 + PI_4 = wy + xz + wz$$

$$f_4(w, x, y, z) = PI_6 + PI_2 + PI_4 = wx + xz + wz$$