Name :sandip gadadare. Roll no: CO3AO9.

Div:A BATCH:B1

.

Assignment No: 02

Create an "Academic performance" dataset of students and perform the following operations using Python.

- 1. Scan all variables for missing values and inconsistencies. If there are missing values and/or inconsistencies, use any of the suitable techniques to deal with them.
- 2. Scan all numeric variables for outliers. If there are outliers, use any of the suitable techniques to deal with them.
- 3. Apply data transformations on at least one of the variables. The purpose of this transformation should be one of the following reasons: to change the scale for better understanding of the variable, to convert a non-linear relation into a linear one, or to decrease the skewness and convert the distribution into a normal distribution.

Code:

```
In [1]:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import zscore
from scipy.stats import boxcox
In [2]:
data={
  'stud_id':range(1,10),
  'CNS-marks':[90,56,78,89,np.nan,77,84,67,np.nan],
  'DSBDA-marks':[97,91,90,56,78,89,np.nan,77,84],
  'Attendance':[90,56,78,89,65,77,84,77,67]
}
In [3]:
data
Out[3]:
{'stud_id': range(1, 10),
'CNS-marks': [90, 56, 78, 89, nan, 77, 84, 67, nan],
'DSBDA-marks': [97, 91, 90, 56, 78, 89, nan, 77, 84],
'Attendance': [90, 56, 78, 89, 65, 77, 84, 77, 67]}
In [4]:
df=pd.DataFrame(data)
```

In [5]: df

Out[5]:

	stud_id	CNS-marks	DSBDA-marks	Attendance
0	1	90.0	97.0	90
1	2	56.0	91.0	56
	3	78.0	90.0	78
	4	89.0	56.0	89
4	5	NaN	78.0	65
5	6	77.0	89.0	77
6	7	84.0	NaN	84
7	8	67.0	77.0	77
8	9	NaN	84.0	67

In [6]:

df.isnull().sum()

Out[6]:

stud_id

CNS-marks 2

DSBDA-marks 1

Attendance 0

dtype: int64

In [7]:

df['CNS-marks'].fillna(df['CNS-marks'].mean(),inplace=True)

In [8]:

df['DSBDA-marks'].fillna(df['DSBDA-marks'].mean(),inplace=True)

In [9]:

df

Out[9]:

(-)				
	stud_id	CNS-marks	DSBDA-marks	Attendance
0	1	90.000000	97.00	90
1	2	56.000000	91.00	56
2	3	78.000000	90.00	78
3	4	89.000000	56.00	89
	5	77.285714	78.00	65
5	6	77.000000	89.00	77
6	7	84.000000	82.75	84

	stud_id	CNS-marks	DSBDA-marks	Attendance
7	8	67.000000	77.00	77
8	9	77.285714	84.00	67

In [10]: column=['CNS-marks','DSBDA-marks','Attendance']

```
In [11]:
for col in column:
sns.boxplot(df[col])
plt.title("Boxplot for{col}")
plt.show()
```

Boxplot for{col}

In [12]: z_scores = np.abs(zscore(df[column]))

In [13]: outlier_threshold=3

```
outliers=(z_scores>outlier_threshold).any(axis=1)

In [15]:
print(f"\nRows with outliers:\n{df[outliers]}")

Rows with outliers:
Empty DataFrame
Columns: [stud_id, CNS-marks, DSBDA-marks, Attendance]
Index: []
```

In [14]:

In [22]:
df['CNS-marks_BoxCox'],lambda_val=boxcox(df['CNS-marks'])
print(f"\nBox-cox transformation applied to 'Study_Hours' with lambda = {lambda_val:.4f}")
Box-cox transformation applied to 'Study_Hours' with lambda = 3.3290

In [24]:
sns.histplot(df['CNS-marks_BoxCox'], kde=True, color='blue',label='Original',
stat="density")
Out[24]:
<AxesSubplot:xlabel='CNS-marks_BoxCox', ylabel='Density'>


```
In [25]:
sns.histplot(df['CNS-marks_BoxCox'], kde=True, color='blue',label='Original',
stat="density")
plt.legend()
plt.title("Effect of Box-cox Transformation on CNS-marks_BoxCox")
plt.show()
print("\nFinal Dataset after Data Wrangling:")
print(df)
```


Final Dataset after Data Wrangling:

stud_id CNS-marks DSBDA-marks Attendance CNS-marks_BoxCox

0	1 90.000000	97.00	90	962411.544161
1	2 56.000000	91.00	56	198337.468953
2	3 78.000000	90.00	78	597682.184000
3	4 89.000000	56.00	89	927271.331681
4	5 77.285714	78.00	65	579655.136186
5	6 77.000000	89.00	77	572552.068616
6	7 84.000000	82.75	84	764915.029804
7	8 67.000000	77.00	77	360321.519483
8	9 77.285714	84.00	67	579655.136186

