FACULTE DES SCIENCES D'ALGER DEPARTEMENT DE MATHEMATIQUES

SEMINAIRES 1965 – 1966

Introduction au Langage Fonctoriel

Rédigé d'après un cours de Monsieur A. Grothendieck.

Ce texte a été transcrit et édité par Mateo Carmona. La transcription est aussi fidèle que possible au typescript. Cette édition est provisoire. Les remarques, commentaires et corrections sont bienvenus.

https://agrothendieck.github.io/

TABLE DE MATIÈRES

0. Cadre logique	5
I. Généralités sur les catégories	8
1. Type de diagramme	8
2. Catégorie	9
3. Exemples de catégories	10
4. Exemples de catégories	11
5. Exemples de catégories	11
6. Exemples de catégories	11
7. Catégorie filtrante	12
II. Catégorie abélienne	13
1. Catégorie additive	13
2. Catégorie additive	13
3. Catégorie additive	14
4. Diagrammes dans une catégorie abélienne	14
5. Diagrammes dans une catégorie abélienne	14
III. Foncteurs représentables	15
1. Généralités	15
2. Application	17
3. Structures algébriques dans les catégories	17

Ce fascicule contient une rédaction succincte d'une série d'exposés que Monsieur A. Grothendieck a bien voulu venir faire à Alger au cours du mois de Novembre 1965. Il a pour but de familiariser un débutant avec les éléments du langage fonctoriel, langage qui sera utilisé par la suite dans les divers séminaires : Algèbre Homologique dans las catégories abéliennes, Fondement de la *K*-théorie...

Les propositions non démontrées sont de deux types : des sorites dont la démonstration tiendra lieu d'exercices, des propositions moins évidentes (signalés par une astérisque) dont on trouvera les démonstrations dans les ouvrages de références.

§ 0. — CADRE LOGIQUE

Lorsque l'on définit une catégorie, il y a des inconvénients à supposer que les forment une classe, au sens de la théorie des ensembles de Gödel-Bernays. En effet, si l'on sait définir les applications d'une classe dans une autre, ces applications ne forment cependant pas elles-mêmes une classe. En particulier on ne saurait parler de la catégorie des foncteurs d'une catégorie dans une autre. Aussi se placera-on dans le cadre de la théorie des ensembles de Bourbaki pour définir les *Univers*.

Univers:

On appelle *univers* un ensemble \$\mathbf{U}\$ vérifiant les axiomes suivants :

- U_1 Si Y appartient à X et si X appartient à \mathfrak{U} , alors Y appartient à \mathfrak{U} .
- $U_2\,$ Si X et Y sont des éléments de $\mathfrak U$ alors $\{X,Y\}$ est un élément de $\mathfrak U.$
- U_3 Si X est un ensemble appartenant à \mathfrak{U} , l'ensemble $\mathfrak{P}(X)$ des parties de X est un élément de \mathfrak{U} .
- U_4 Si $(X_i)_{i \in I}$ est une famille d'ensembles appartenant à \mathfrak{U} , et si I est un élément de \mathfrak{U} , alors $\bigcup_{i \in I} X_i$ appartient à \mathfrak{U} .

On déduit de ces axiomes les propositions suivantes :

(1) Si X est un élément de \mathfrak{U} , $\{X\}$ est un élément de \mathfrak{U} .

- (2) X et Y sont des éléments de \mathfrak{U} si et seulement si le couple¹ (X,Y) est un élément de \mathfrak{U} .
- (3) L'ensemble vide est un élément de \mathfrak{V} (puisque c'est un élément de $\mathfrak{V}(X)$ pour tout ensemble X de l'univers \mathfrak{V}).
- (4) Si Y est contenu dans X et si X appartient à $\mathfrak U$ alors Y appartient à $\mathfrak U$.
- (5) Si $(X_i)_{i\in I}$ est une famille d'ensembles de $\mathfrak U$ et si I appartient à $\mathfrak U$, alors $\prod_{i\in I} X_i$ appartient à $\mathfrak U$.
- (6) Si X est un ensemble appartenant à \mathfrak{U} , Card(X) < Card (\mathfrak{U}) .
- (7) L'univers $\mathfrak U$ n'est pas un élément de $\mathfrak U$. En effet si $\mathfrak U$ appartient à $\mathfrak U$, alors $\mathfrak V(\mathfrak U)$ appartient à $\mathfrak U$. Soit E appartenant à $\mathfrak V(\mathfrak U)$ (donc E appartient à $\mathfrak U$) défini ainsi :

$$E = \{ X \in \mathfrak{U} | X \notin X \}$$

On aurait alors : E appartient à E si et seulement si E n'appartient pas à E!

(8) L'intersection d'une famille quelconque d'univers est un univers. En particulier si *E* est un ensemble et s'il existe un univers contenant *E*, alors il existe un plus petit univers contenant *E* qu'on appelle l'univers engendré par *E*.

Si E_0 est un ensemble quelconque, on se propose de chercher s'il existe un plus petit univers $\mathfrak U$ contenant E_0 . Il apparaît naturel de plonger E_0 dans un ensemble E_1 par le procédé suivant :

Soit
$$G_0$$
 l'ensemble ainsi défini : $X \in G_0 \iff (\exists Y)(Y \in E_0 \text{ et } X \in Y)$ et $F_1 = E_0 \cup G_0$

Soit
$$G_1:X\in G_1\iff (\exists Y)(\exists Z)(Y\in F_1,Z\in F_1\text{ et }X=\{Y,Z\})$$
 et $F_2=F_1\cup G_1$

Soit
$$G_2: X \in G_2 \iff (\exists Y)(Y \in F_2 \text{ et } X = \mathfrak{P}(Y)) \text{ et } F_3 = F_2 \cup G_2$$

¹On rappelle que le couple (X, Y) est l'ensemble $\{X, \{X, Y\}\}$

Soit
$$G_3: X \in G \iff (\exists I)(\exists (X_i)_{i \in I})(I \in F_3, \forall i \in I, X_i \in F_3 \text{ et } X = \bigcup_{i \in I} X_i)$$
 et $F_4 = F_3 \cup G_3$.

On pose alors $E_1 = F_4 \cup \{E_0\}$

En itérant cette opération eçon forme une suite transfinie d'ensembles :

$$E_0 \subset E_1 \subset ... \subset E_{\alpha} \subset E_{\alpha+1} \subset ...$$

Pour qu'il existe un plus petit univers contenant E_0 , il faut et il suffit que cette suite devienne stationnaire 'partir d'un certain rang (c'est-à-dire qu'il existe α tel que $E_{\alpha+1}=E_{\alpha}$) E_{α} sera précisément l'univers $\mathfrak U$ recherché.

En particulier si l'on prend $E_0=\emptyset$, on montre que $\mathfrak{U}=E_\omega=\bigcup_{n\in\mathbb{N}}E_n$. Lorsqu'on part d'un ensemble E_0 infini, on ne peut prouver l'existence d'un univers \mathfrak{U} contenant E_0 . Il convient donc d'ajouter aux axiomes de la théorie des ensembles l'axiome suivant :

(a_1) Axiome des univers :

Pour tout ensemble X, il existe un univers \mathfrak{U} , tel que X soit élément de \mathfrak{U} .

De plus comme on ne souhaite pas sortir d'un univers $\mathfrak U$ par l'usage du symbole τ de Hilbert on introduit l'axiome supplémentaire :

 (a_2) Si R est une relation, x une lettre figurant dans R, et s'il existe un élément X d'un univers $\mathfrak U$ tel que (X|x)R soit vrai alors l'objet $\tau_x(R(x))$ est un élément de $\mathfrak U$.

§ I. – GÉNÉRALITÉS SUR LES CATÉGORIES

1. Type de diagramme

1.1 Définition

Un type de diagramme D est la donnée d'un quadruple $D=(\operatorname{Fl},\operatorname{Ob},s,b)$ où :

Fl et Ob sont des ensembles respectivement appelés ensemble des *flèches* (ou des morphismes...), ensemble des *objets* (ou des sommets)

s et b sont des applications de Fl dans Ob respectivement appelés source, but.

Un type de diagrammes sera souvent noté : []

Exemples : On peut représenter certains types de diagramme :

• 1 seul objet; ••• (pas des flèches)

1.2 Morphisme d'un type de diagrammes dans une autre :

Si $D = (\operatorname{Fl}_D, \operatorname{Ob}_D, s_D, b_D)$ et $D' = (\operatorname{Fl}_{D'}, \operatorname{Ob}_{D'}, s_{D'}, b_{D'})$ sont deux types de diagramme, un *morphisme F de D dans D'* est un couple d'applications $F = (F_0, F_1)$: $F_0 : \operatorname{Ob}_D \longrightarrow \operatorname{Ob}_{D'}, F_1 : \operatorname{Fl}_D \longrightarrow \operatorname{Fl}_D$, tel que les diagrammes suivants commutent

:

$$\begin{array}{cccc} \operatorname{Fl}_D & \xrightarrow{F_1} & \operatorname{Fl}_{D'} & & \operatorname{Fl}_D & \xrightarrow{F_1} & \operatorname{Fl}_{D'} \\ s_D \downarrow & & \downarrow s_{D'} & & b_D \downarrow & & \downarrow b_{D'} \\ \operatorname{Ob}_D & \xrightarrow{F_0} & \operatorname{Ob}_{D'} & & \operatorname{Ob}_D & \xrightarrow{F_0} & \operatorname{Ob}_{D'} \end{array}$$

si D'' est un troisième type de diagrammes et $F'=(F_0',F_1')$ un morphisme de D' dans D'', on définit le composé des morphismes F et F', c'est le morphisme $F''=(F_0'',F_1'')$ de D dans D'' ou $F_0''=F_0'F_0$, $F_1''=F_1'F_1$. Le morphisme noté $1_D=(1_{\mathrm{Fl}_D},1_{\mathrm{Ob}_D})$ de D sur D est le morphisme identique de D.

1.3 Sous-type de diagramme d'un type de diagrammes

Soit $D = (\mathrm{Ob}_D, \mathrm{Fl}_D, s_D, b_D)$ un type de diagrammes. On dit que $D' = (\mathrm{Ob}_{D'}, \mathrm{Fl}_{D'}, s_{D'}, b_{D'})$ est un sous-type de diagrammes de D si $\mathrm{Ob}_{D'}$ est inclus dans Ob_D , $\mathrm{Fl}_{D'}$ est inclus dans Fl_D et si $s_{D'}$ (respectivement $b_{D'}$) est la restriction à $\mathrm{Fl}_{D'}$ de s_D (respectivement b_D).

1.4 Si $D = (\mathrm{Ob}_D, \mathrm{Fl}_D, s_D, b_D)$ est un type de diagrammes le type de diagramme noté $D^\circ = (\mathrm{Ob}_D, \mathrm{Fl}_D, b_D, s_D)$ est appelé type de diagrammes opposé de D.

Un morphisme contravariant de types de diagrammes de D dans D' est un morphisme de type de diagramme de D° dans D'

2. Catégorie

Définition (2.1). — Une catégorie C est la donnée :

- (i) d'un type de diagramme (Fl,Ob,s,b) appelé type de diagramme sous-jacent à C, noté (Fl $_C$,Ob $_C$, s_C , b_C)
- (ii) d'une application du produit fibré $(Fl_C, b_C) \times_{Ob_C} (Fl_C, s_C)$ dans Fl_C , appelé loi de composition des flèches, notée $\mu_C : (f, g) \longrightarrow g \circ f = gf$ et vérifiant les propriétés :
 - (a) (gf)h = g(fh) pour tous les éléments f, g, h de Fl_C tels que cette écriture ait un sens.

(aa) pour tout objet X il existe une flèche 1_X telle que $s_C(1_X) = b_C(1_X) = X$, appelée flèche identique de X vérifiant $1_X f = f$, $f 1_X = f$ pour toute flèche f telle que cette écriture ait un sens.

On remarque que pour tout objet X, la flèche 1_X est unique.

Notations. Chaque fois que l'on écrit gf, il est entendu que la composition a un sens, c'est-à-dire que b(f) = s(g).

Si X et Y sont deux objets d'un type de diagramme D (resp. d'une catégorie C), l'ensemble des flèches de source X, de but Y est noté $\operatorname{Hom}_D(X,Y)$ ou $\operatorname{Fl}_D(X,Y)$ (resp. $\operatorname{Hom}_C(X,Y)...$)

Une flèche de source X et de but Y est aussi notée $f: X \longrightarrow Y$.

- 1.2 Morphisme
- 1.2 Morphisme
- 1.2 Morphisme
- 1.2 Morphisme
- 2.6 Sous catégorie d'une catégorie
- 3. Exemples de catégories
- 1.2 Morphisme
 - 3.2
 - 1.2 Morphisme
 - 1.2 Morphisme
 - 1.2 Morphisme

1.2 Morphisme

- 4. Exemples de catégories
- 1.2 Morphisme
 - 1.2 Morphisme
 - 1.2 Morphisme
- 5. Exemples de catégories
- 1.2 Morphisme
 - 1.2 Morphisme
 - 1.2 Morphisme
- 6. Exemples de catégories
- **6.1**

Soit I un type de diagramme, C une catégorie

- 1.2 Morphisme

1.2 Morphisme

7. Catégorie filtrante

7.1 Définitions:

7.2 Exemples

- **7.2.1**. Si dans une catégorie *C*, pour tout couple d'objets le produit (resp. la somme) existe, et si pour tout couple de morphismes le noyau (resp. le conoyau) existe, alors *C* est filtrante à gauche (resp. filtrante à droite).
- **7.2.2**. La catégorie associée à un ensemble préordonné I est filtrante si et seulement si I est filtrante.
- **7.2.3**. Dans la catégorie des ensembles, des groupoïdes, des modules sur un anneau..., *les limites inductives filtrantes*, c'est-à-dire les limites inductives de foncteurs d'une catégorie filtrante dans la catégorie en question, sont des foncteurs exacts à gauche, donc *exacts*, puisqu'on sait qu'ils sont exacts à droite.

§ II. — CATÉGORIE ABÉLIENNE

1. Catégorie additive

On peut donner deux versions de la définition d'une catégorie additive, l'une consiste à se donner sur les ensembles $\operatorname{Hom}(X,Y)$ une structure de groupe abélien, cette structure supplémentaire étant soumise à certaines conditions ; l'autre consiste à construire canoniquement une loi de groupe sur tout $\operatorname{Hom}(X,Y)$ en termes d'axiomes convenables sur la catégorie C.

1.1 Version 1

Une catégorie additive est une catégorie

- 1.1 Version 1
- 1.1 Version 1
- 1.1 Version 1
- 1.1 Version 1

2. Catégorie additive

1.1 Version 1

- 1.1 Version 1
- 3. Catégorie additive
- 1.1 Version 1
 - 1.1 Version 1
 - 1.1 Version 1
- 4. Diagrammes dans une catégorie abélienne
- 1.1 Version 1
 - 1.1 Version 1
- 5. Diagrammes dans une catégorie abélienne
- 1.1 Version 1
 - 1.1 Version 1
 - 1.1 Version 1

§ III. — FONCTEURS REPRÉSENTABLES

1. Généralités

1.1 Définition

Soit $\mathfrak U$ un univers, C une catégorie telle que pour tout couple (X,Y) d'objets de C, $\mathscr{H}om(X,Y)$ appartient à $\mathfrak U$. On rappelle que $\mathscr{H}om(.,.)$ est un bifoncteur de $C\times C$ dans $\mathrm{Ens}_{\mathfrak U}$ contravariant par rapport à la première variable, covariant par rapport àa la seconde.

1.1.1. On appelle catégorie des préfaisceaux sur C, la catégorie $\text{Hom}(C^o, \text{Ens}_{\mathfrak{U}})$, que l'on note \widehat{C} .

On définit un foncteur ε de C dans \widehat{C} . A tout objet Y de C, ε fait correspondre le foncteur contravariant de C dans $\operatorname{Ens}_{\mathfrak{U}}: \mathscr{Hom}(.,Y)$, que l'on note h_Y .

Tout morphisme $f: Y \longrightarrow Y'$, ε associe le morphisme fonctoriel naturel de $\mathscr{H}om(.,Y)$ dans $\mathscr{H}om(.,Y')$.

1.1.2. On dit que le foncteur h_Y est le foncteur représenté par Y.

On dit qu'un préfaisceau F est représentable, s'il existe un objet Y de C et un isomorphisme φ de h_Y sur F. On dit alors que F est représenté par le couple (Y, φ) ou encore que le couple (Y, φ) est une donnée de représentation de F.

1.2 Propriétés

Théorème 1.2.1. — Si F est un préfaisceau sur C, Y un objet de C, il existe une bijection de $\mathcal{H}om(h_Y, F)$ sur F(Y), fonctorielle en Y, F.

a. []

b.

с.

Corollaire 1.2.2. — Si F est un préfaisceau représentable, représenté par (X, φ) Y un objet de C, il existe une bijection de \mathcal{H} om(Y,X) sur \mathcal{H} om (h_Y,h_X) .

C'est dire que le foncteur canonique ε est pleinement fidèle, ce qui permet de "plonge" canoniquement toute catégorie C dans la catégorie \widehat{C} des préfaisceaux sur C.

Aussi nous arrivera-t-il d'identifier un objet Y de C à h_Y , un morphisme fonctoriel de h_Y dans F à l'élément de f(Y) correspondant. Une donnée de représentation de F est définie à un isomorphisme unique près : en effet, si (X, φ) , (X', φ') sont deux données de représentation de F, h_X et h_X' sont isomorphes, comme ε est pleinement fidèle X et X' sont isomorphes ainsi que φ et φ' .

Proposition 1.2.3. — Soit F un préfaisceau sur C.

Le couple (X, α) , où X est un objet de C, α un élément de F(X) définit une donnée de représentation de F si et seulement si pour tout couple (Y, β) où Y est un objet de C, β un élément de F(Y), il existe un unique morphisme $v: Y \longrightarrow X$ tel que $\beta = F(v)\alpha$.

Si (X,α) définit une donnée de représentation de F, α s'identifie à un isomorphisme de h_X sur F, β s'identifie à un morphisme de h_Y dans F, et un morphisme v s'identifie à un morphisme de h_Y dans h_X . Pour tout objet Y, et tout morphisme $\beta:h_Y\longrightarrow F$, il existe bien un unique morphisme $h_Y\longrightarrow h_Y$ tel que $\beta=\alpha u$, à savoir $u=\alpha^{-1}\beta$ [] Réciproquement si (X,α) jouit d'une telle propriété universelle, pour tout Y il existe une bijection de \mathcal{H} om $(Y,X)=h_X(Y)$ sur \mathcal{H} om $(h_Y,F)\simeq F(Y)$, donc α est un isomorphisme fonctoriel, et (X,α) définit une donnée de représentation de F.

2. Application

De nombreuses notions peuvent s'interpréter avantageusement en langage de foncteurs représentables.

2.1. Soit C une catégorie, D un type de diagramme et $\varphi: D \longrightarrow C$. Pour tout objet Y de C, on définit le diagramme constant C_Y : pour tout objet i de D $C_Y(i) = Y$, pour toute flèche f de D $C_Y(f) = 1_Y$. Pour tout objet Y de C, l'ensemble des systèmes admissibles $(Y, u_i)_{i \in ObD}$ de φ est l'ensemble $\mathscr{H}om(C_Y, \varphi)$.

Soit F le préfaisceau sur C défini par $F(Y) = \mathcal{H}om(C_Y, \varphi)$. En appliquant **1.2.3** on obtient la

Proposition 2.1.1. — La limite projective de φ existe si et seulement si le foncteur F est représentable.

Si φ ne possède pas de limite projective dans C, on utilise souvent le procédé suivant on plonge C dans \widehat{C} au moyen du foncteur ε et on appelle limite projective de φ la limite projective de $\varepsilon \varphi$, qui existe toujours puisque $\widehat{C} = \operatorname{Hom}(C^o, \operatorname{Ens}_{\mathfrak{U}})$.

- **2.2.** On considère la catégorie des modules sur un anneau commutatif A, Mod_A . Soient M et N deux modules, le foncteur de Mod_A dans Ens qui à tout module P fait correspondre l'ensemble $\operatorname{Bil}_A(M\times N,P)$ des applications bilinéaires de $M\times N$ dans P est représentable, et le module qui le représente est le produit tensoriel $M\otimes_A N$.
- **2.3**. On peut définir dualement un foncteur $\varepsilon': C^o \longrightarrow \operatorname{Hom}(C, \operatorname{\mathcal{E}ns})$. On définira alors un foncteur représentable et l'on vérifiera que cette notion recouvre celle de limite inductive.

3. Structures algébriques dans les catégories

On se propose de *définir* une structure algébrique par exemple une structure de groupe sur un objet X d'une catégorie C. On peut procéder de deux façons.

3.1. La plus naturelle consiste à généraliser dans la catégorie C, la notion habituelle de structure algébrique sur un ensemble.

Supposons que dans C le produit $X \prod X$ existe, une loi de composition interne sur X est la donnée d'un morphisme $m_X : X \prod X \longrightarrow X$.

Les axiomes définissant sur X une structure de C-groupe vont s'exprimer en terme de commutativité de diagrammes. Supposons que $X \prod X \prod X$ existe, on a les isomorphismes canoniques : $(X \prod X) \prod X \simeq X \prod X \prod X \simeq X \prod (X \prod X)$.

3.1.1. La loi est associative si le diagramme suivant est commutatif :

[]

Supposons de plus qu'il existe dans C un objet final E, il existe alors un unique morphisme $e: X \longrightarrow E$.

3.1.2. Il existe un morphisme $w: E \longrightarrow X$ tel que les diagrammes suivants soient commutatifs

 $\lceil \rceil$

On montre que w est alors déterminé de façon unique.

3.1.3. Il existe un *morphisme* $s: X \longrightarrow X$ tel que le diagramme suivant soit commutatif

 $\lceil \rceil$

ainsi que celui obtenu en permettant s et 1_X . On montre que le morphisme s est déterminé de façon unique.

On pourrait de façon duale définir une structure de C-cogroupe.

3.2. Sans faire d'hypothèses sur la catégorie C, on peut définir une structure sur X en se ramenant au cas ensembliste. Les limites projectives existent dans \widehat{C} , ainsi pour deux éléments F, F' de \widehat{C} , pour tout objet X de C, $F \prod F'(X) = F(X) \prod F'(X)$.

Une loi de composition interne sur X est la donnée d'un morphisme M_X : $h_X \prod h_X \longrightarrow h_X$. Cela revient à se donner pour tout objet Y de C, une loi de composition interne sur l'ensemble $h_X(Y)$ qui soit fonctorielle, c'est-à-dire telle que pour tout $u: Y \longrightarrow Y'$, $h_X(u): h_X(Y') \longrightarrow h_X(Y)$ soit un morphisme au sens de la structure considérée.

3.3. Dans le cas particulier où le produit $X \prod X$ existe dans C, $h_X \prod h_X$ est canoniquement isomorphe à $h_{X \prod X}$, une loi de composition interne sur X peut

donc être considérée comme un morphisme $M_X: h_{X\prod X} \longrightarrow h_X$ il lui est donc canoniquement associé (III, 1.2.2) un morphisme $m_X: X\prod X \longrightarrow X$ tel que $\varepsilon(m_X) = h_{m_X} = M_X$.

3.3.1. Si l'on suppose que $X\prod X\prod X$ existe, $X\prod X\prod X$ étant canoniquement identifié à $(X\prod X)\prod X$ l'application $M_X(Y)\prod 1_{h_X(Y)}$ s'identifie pour tout objet Y de C à $h_{m_X\prod 1_X}(Y)$. Il est donc équivalent de dire que la loi M_X est associative, c'est-à-dire que pour tout Y le diagramme suivant est commutatif :

[]

ou que le diagramme 3.1.1 est commutatif.

3.3.2. S'il existe dans *C* un objet final...

E, h_E est objet final de C, le morphisme $\Omega: h_E \longrightarrow h_X$ induit un morphisme $w: E \longrightarrow X$ qui vérifie la propriété 3.1.2.

- **3.3.3.** Pour tout Y de C il existe un morphisme $S(Y):h_X(Y)\longrightarrow h_X(Y)$ fonctoriel par rapport à Y, soit $S:h_X\longrightarrow h_X$ est un morphisme auquel est canoniquement associé un morphisme $s:X\longrightarrow X$ tel que $\varepsilon(s)=h_s=S$, et tel que le diagramme **3.1.3** correspondant soit commutatif.
- **3.4.** Il faut remarquer qu'il y a des structures que l'on ne peut définir de cette façon, par exemple si leur définition fait intervenir des limites inductives, car ε : $C \longrightarrow \widehat{C}$ ne commute pas aux limites inductives.

QUELQUES OUVRAGES DE RÉFÉRENCES

[1] ECKMANN - HILTON — Group-like structure in general categories. I. Math. Ann. 145 (1962) 227-255; II. Math. Ann. 151 (1963), 150-186; III. Math. Ann. 150 (1963) 165-187.