Set 9: Polynomial Interpolation – Part 5

Kyle A. Gallivan Department of Mathematics

Florida State University

Foundations of Computational Math 1
Fall 2017

- convergence of polynomials
- interpolation strategies
- convergence of interpolation strategies

Convergence on Interval

Approximation by polynomials is motivated by the following theorem:

Theorem 9.1. (Weierstrass Approximation Theorem) If $f(x) \in C^{(0)}[a, b]$ then $\forall \epsilon > 0 \ \exists n \in \mathbb{Z}$ and polynomial $p_n(x)$ with degree at most n such that

$$||f(x) - p_n(x)||_{\infty} < \epsilon.$$

This is uniform convergence, i.e., pointwise error at all points in interval is bounded and the bound is going to 0.

Convergence on Interval

- Theorem 9.1 gives no insight into how to choose $p_n(x)$ and does not relate necessarily to an interpolation strategy.
- The result can be derived as a corollary to a constructive theorem due to Bernstein.
- A sequence of polynomials is defined and shown to converge uniformly.

Bernstein Polynomials

Definition 9.1. Let f(x) be a real function defined on [0, 1]. The n-th Bernstein polynomial for f is

$$B_n(x) = B_n(x; f) = \sum_{k=0}^n f(\frac{k}{n}) \binom{n}{k} x^k (1 - x)^{n-k}$$

$$= \sum_{k=0}^n f(\frac{k}{n}) \phi_{n,k}(x)$$

$$= \sum_{k=0}^n f(x_k) \phi_{n,k}(x)$$

$$x_k = k/n$$

Bernstein Polynomials

- Sum of f(x) at uniformly-spaced points.
- The weight $\phi_{n,k}(x)$ is non-negative on [0,1] and $\sum_{k=0}^{n} \phi_k(x) = 1$.
- The weight $\phi_{n,k}(x)$ can be very small for k where x is far from k/n.
- The weight $\phi_{n,k}(x)$ achieves its maximum on [0,1] at x=k/n.
- The construction is not interpolatory, i.e., $B_n(x_k)$ is not necessarily equal to $f(x_k)$.
- $B_n(x)$ usually interpolates f(x) but where and how often it does is not controlled.

Bernstein Approximation

Theorem 9.2. If $f(x) \in C^{(0)}[0,1]$ then $B_n(x)$ converges uniformly to f(x) on [0,1], i.e.,

$$\lim_{n \to \infty} ||f(x) - B_n(x)||_{\infty} = 0$$

Proof. See Bartle, Elements of Real Analysis (1976)

Corollary 9.3. If, in addition, on [0,1], f(x) satisfies the Lipschitz condition $|f(x) - f(\hat{x})| < \lambda |x - \hat{x}|$ then

$$||f(x) - B_n(x)||_{\infty} < \frac{9}{4}\lambda n^{-1/2}$$

Proof. See Isaacson and Keller (1966)

Bernstein Approximation

- Easily updated to apply to [a, b].
- Convergence is much slower than other approximation methods.
- Even if $f(x) \in \mathcal{C}^{(p)}[0,1]$ with $p \geq 2$ convergence remains relatively slow.
- Useful theoretical result but Bernstein polynomials are not used in practice for this type of approximation.
- Bernstein polynomials are used when "shape" is important.
- This shows that polynomials can converge uniformly to a continuous f.

Bernstein Convergence

$$f(x) = 1/(1+10x^2) - 1 \le x \le 1$$
 shifted to $[0,1]$ – black, $B_3(x)$ – red, $B_6(x)$ – blue, $B_{15}(x)$ – green

Definition 9.2. An interpolating strategy is defined by a sequence, X, of sets of nodes $X_n = \{x_0^{(n)}, \dots, x_n^{(n)}\}.$

- The sets X_n are chosen independently of any particular f(x).
- Each X_n defines an interpolatory polynomial, $p_n(x)$, of degree n such that given an f(x), $p_n(x_i^{(n)}) = f(x_i^{(n)})$ for $0 \le i \le n$.

Uniform interpolation:

$$X_n = \{x_i^{(n)} = x_0 + ih, \quad h = (b-a)/n\}$$

Chebyshev interpolation:

$$X_n = \{x_j^{(n)} = \cos(\frac{2j+1}{n+1}\frac{\pi}{2})\}$$

The convergence of

$$||f(x) - p_n(x)||_{\infty}$$

on a closed interval [a, b] for $f(x) \in \mathcal{C}^{(0)}[a, b]$ is complicated.

The result depends on

- the choice of X,
- the class of functions f(x) that may be more constrained than $\mathcal{C}^{(0)}[a,b]$

Runge's Phenomenon

Let I = [-5, 5] and define $x_j^{(n)} = -5 + jh_n$ with $h_n = 10/n$ and $0 \le j \le n$. The sets $X_n = \{x_0^{(n)}, \dots, x_n^{(n)}\}$ define a sequence, X, of sets of nodes each of which define an interpolatory polynomial, $p_n(x)$, of degree n. It can be shown that

$$\lim_{n\to\infty} ||f(x) - p_n(x)||_{\infty}$$

does not converge on I for $f(x) = 1/(1+x^2)$.

Proof. See Isaacson and Keller (1966)

Runge's Phenomenon

$$f(x) = 1/(1+x^2)$$
 – black, $p_5(x)$ – blue, $p_{10}(x)$ – red

Runge's Phenomenon

- The divergence occurs near the endpoints of the interval.
- This is typical behavior so keep order low to be effective with uniformly spaced points.
- Non-uniform points more dense near endpoints are needed for better interpolation strategies, e.g., Chebyshev.

For each degree n we can define the "best" polynomial approximation:

Definition 9.3. Let $p_n^*(x) \in \mathbb{P}_n$ be such that

$$E_n^* = \|f(x) - p_n^*(x)\|_{\infty} \le \|f(x) - q_n(x)\|_{\infty} \ \forall q_n(x) \in \mathbb{P}_n.$$

This approximation will be discussed in much more detail later.

Lemma. Let the sequence X define an interpolating strategy, and let the Lebesgue constant be

$$\Lambda_n(X) = \|\sum_{j=0}^n |\ell_j^{(n)}(x)|\|_{\infty}$$

for the set of nodes $X_n = \{x_0^{(n)}, \dots, x_n^{(n)}\}$ where $\ell_j^{(n)}(x)$ are the Lagrange characteristic functions associated with X_n .

If
$$f(x) \in \mathcal{C}^{(0)}[a,b]$$
 then

$$E_n^* \le ||f(x) - p_n(x)||_{\infty} \le (1 + \Lambda_n(X))E_n^*$$

for
$$n=0,1,\ldots$$

- A small Lebesgue constant $\Lambda_n(X)$ guarantees good ∞ norm approximation of f(x) for the associated $p_n(x)$.
- Bounding the Lebesgue constant $\Lambda_n(X)$ is a key task when analyzing an interpolating strategy.
- Erdos (1961) showed $\forall X \ \exists C > 0$ such that

$$\Lambda_n(X) > \frac{2}{\pi} \log(n+1) - C \ n = 0, 1, \dots$$

so
$$\Lambda_n(X) \to \infty$$
.

• Natonson (1965) showed for equally spaced nodes

$$\Lambda_n(X) \approx \frac{2^{n+1}}{en \log n}$$

- The error bound predicted by the Lebesgue constant is not achieved for all $f(x) \in \mathcal{C}^{(0)}[a,b]$.
- ullet A particular strategy may work well with a particular f or some particular class of f
- Unfortunately, no interpolating strategy, X, converges for all $f(x) \in \mathcal{C}^{(0)}[a,b]$.

Theorem 9.4. (Faber 1914) Given an interpolating strategy defined by any sequence of node sets X on [a,b], $\exists f(x) \in C^{(0)}[a,b]$ such that $||f(x) - p_n(x)||_{\infty}$ does not converge.

Summary

- (Bernstein) $B_n(x)$ converge uniformly for all $f(x) \in \mathcal{C}^{(0)}[a, b]$ but not an interpolating strategy since the number and position of points where they agree with f(x) depend on f(x).
- (Faber) No $p_n(x)$ defined by an X converges for all $f(x) \in \mathcal{C}^{(0)}[a,b]$.
- (Bernstein) and (Brutman, Passow) interpolant for |x| on [-1, 1] diverges almost everywhere for a variety of well-known node sets.
- For an interpolating strategy to converge uniformly:
 - the class of f(x) is more restrictive than $\mathcal{C}^{(0)}[a,b]$,
 - the nodes in $X_n = \{x_0^{(n)}, \dots, x_n^{(n)}\}$ are chosen carefully

Theorem 9.5. Let I = [-1, 1] and let the interpolating strategy be defined by the sets $X_n = \{x_0^{(n)}, \dots, x_n^{(n)}\}$ given by the Chebyshev zeros

$$x_j^{(n)} = \cos(\frac{2j+1}{n+1}\frac{\pi}{2}) \ \ 0 \le j \le n.$$

- If $f(x) \in C^{(2)}[I]$ then $||f(x) p_n(x)||_{\infty}$ converges uniformly on I.
- If $f(x) \in \mathcal{C}^{(0)}[I]$ satisfies the Lipschitz condition $|f(x) f(\hat{x})| < \lambda |x \hat{x}|$ then $||f(x) p_n(x)||_{\infty}$ converges uniformly on I.

Proof. See Isaacson and Keller (1966), Ueberhuber (1995)

We will discuss this interpolation strategy in more detail later.