A GRADUATE COURSE IN OPTIMIZATION

A GRADUATE COURSE

IN

OPTIMIZATION

CIE6010 Notebook

Prof. Yin Zhang

The Chinese University of Hongkong, Shenzhen

Contents

Ackno	owledgments	ix
Notati	ions	xi
1	Week1	1
1.1	Monday	1
1.1.1	Introduction to Optimizaiton	1
1.2	Wednesday	2
1.2.1	Reviewing for Linear Algebra	2
1.2.2	Reviewing for Calculus	2
1.2.3	Introduction to Optimization	3
2	Week2	7
2.1	Monday	7
2.1.1	Reviewing and Announments	7
2.1.2	Quadratic Function Case Study	8
2.2	Wednesday	11
2.2.1	Convex Analysis	11
3	Week3	17
3.1	Wednesday	17
3.1.1	Convex Analysis	17
3.1.2	Iterative Method	18
3.2	Thursday	22
3.2.1	Announcement	22
3.2.2	Sparse Large Scale Optimization	22

4	Week4	27
4.1	Wednesday	27
4.1.1	Comments for MATLAB Project	27
4.1.2	Local Convergence Rate	28
4.1.3	Newton's Method	29
4.1.4	Tutorial: Introduction to Convexity	30
5	Week5	33
5.1	Monday	33
5.1.1	Review	33
5.1.2	Existence of solution to Quadratic Programming	36
5.2	Wednesday	39
5.2.1	Comments about Newton's Method	39
5.2.2	Constant Step-Size Analysis	40
6	Week6	45
6.1	Monday	45
6.1.1	Announcement	45
6.1.2	Introduction to Quasi-Newton Method	45
6.1.3	Constrainted Optimization Problem	46
6.1.4	Announcement on Assignment	47
6.1.5	Introduction to Stochastic optimization	49
6.2	Tutorial: Monday	49
6.2.1	LP Problem	49
6.2.2	Gauss-Newton Method	50
6.2.3	Introduction to KKT and CQ	51
6.3	Wednesday	52
6.3.1	Review	52
632	Dual-Primal of LP	53

1	Week7	57
7.1	Monday	57
7.1.1	Announcement	. 57
7.1.2	Recap about linear programming	. 57
7.1.3	Optimization over convex set	. 60

Acknowledgments

This book is from the CIE6010 in fall semester, 2018.

CUHK(SZ)

Notations and Conventions

X

Set

```
\inf X \subseteq \mathbb{R} Infimum over the set X
\mathbb{R}^{m \times n}
                  set of all m \times n real-valued matrices
\mathbb{C}^{m \times n}
                  set of all m \times n complex-valued matrices
                  ith entry of column vector \boldsymbol{x}
x_i
                  (i,j)th entry of matrix \boldsymbol{A}
a_{ij}
                  ith column of matrix A
\boldsymbol{a}_i
\boldsymbol{a}_{i}^{\mathrm{T}}
                  ith row of matrix A
                  set of all n \times n real symmetric matrices, i.e., \mathbf{A} \in \mathbb{R}^{n \times n} and a_{ij} = a_{ji}
\mathbb{S}^n
                  for all i, j
                  set of all n \times n complex Hermitian matrices, i.e., \mathbf{A} \in \mathbb{C}^{n \times n} and
\mathbb{H}^n
                  \bar{a}_{ij} = a_{ji} for all i, j
\boldsymbol{A}^{\mathrm{T}}
                  transpose of \boldsymbol{A}, i.e, \boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}} means b_{ji} = a_{ij} for all i,j
                  Hermitian transpose of \boldsymbol{A}, i.e, \boldsymbol{B} = \boldsymbol{A}^{H} means b_{ji} = \bar{a}_{ij} for all i,j
A^{H}
trace(A)
                  sum of diagonal entries of square matrix A
1
                  A vector with all 1 entries
0
                  either a vector of all zeros, or a matrix of all zeros
                  a unit vector with the nonzero element at the ith entry
e_i
C(A)
                  the column space of \boldsymbol{A}
\mathcal{R}(\boldsymbol{A})
                  the row space of \boldsymbol{A}
\mathcal{N}(\boldsymbol{A})
                  the null space of \boldsymbol{A}
\operatorname{Proj}_{\mathcal{M}}(\mathbf{A}) the projection of \mathbf{A} onto the set \mathcal{M}
```

Chapter 7

Week7

7.1. Monday

7.1.1. Announcement

- The new homework is assigned. You are required to write a code for linear programming. The detail will be announced in tutorial.
- The mid-term will be some written problem and computation porblem. We will cover contents in Chapter 1,2,3,4 in the textbook.

7.1.2. Recap about linear programming

The standard form of linear programming is

min
$$c^{T}x$$
 such that $Ax = b$ $x \ge 0$

Define the Lagrange function

$$L(x,y,z) = c^{T}x - y^{T}(Ax - b) - z^{T}x$$
$$= (c - A^{T}y - z)^{T}x + b^{T}y$$

From this Lagrange function we define a dual function

$$Q(\boldsymbol{y},\boldsymbol{z}) = \inf_{\boldsymbol{x}} L(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}) = \begin{cases} \boldsymbol{b}^{\mathrm{T}}\boldsymbol{y}, & \text{if } \boldsymbol{c} - \boldsymbol{A}^{\mathrm{T}}\boldsymbol{y} - \boldsymbol{z} = 0 \\ -\infty, & \text{otherwise} \end{cases}$$

For any feasible x and $z \ge 0$, we always have

$$Q(\boldsymbol{y}, \boldsymbol{x}) \leq \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} - \boldsymbol{z}^{\mathrm{T}} \boldsymbol{x} \leq \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$$

Moreover,

$$\max_{\boldsymbol{A}^{\mathrm{T}}\boldsymbol{y}+\boldsymbol{z}=\boldsymbol{c},\boldsymbol{z}\geq 0}\boldsymbol{b}^{\mathrm{T}}\boldsymbol{y}=\sup_{\boldsymbol{z}\geq 0}Q(\boldsymbol{y},\boldsymbol{z})\leq \min_{\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b},\boldsymbol{x}\geq 0}\boldsymbol{c}^{\mathrm{T}}\boldsymbol{x}$$

- The weak duality says that the optimal dual objective is always no more than the optimal primal objective.
- The strong duality says that the optimal dual objective is equal to the optimal primal objective.

Theorem 7.1 The LP optimality condition is given by:

1. Primal-Feasibility:

$$\mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} > 0$$

2. Dual-Feasibility:

$$\boldsymbol{A}^{\mathrm{T}}\boldsymbol{y} + \boldsymbol{z} = \boldsymbol{c}, \boldsymbol{z} \ge 0$$

3. Complementarity/Strong-Duality:

$$\boldsymbol{x} \circ \boldsymbol{z} = 0$$

Hence, the LP is essentially solving the linear systems. The Assignment 5 aims to solve the linear programming problem via primal-dual algorithm. Furthermore, it is called the primal-dual interior-point method (pdipm). The

idea of interior-point method is to set the barrier:

$$\boldsymbol{x} \circ \boldsymbol{z} = u * \boldsymbol{1},$$

and with $u \to 0$, $\boldsymbol{x} \circ \boldsymbol{z} = 0$.

Something about A5. During the implementation, you need to solve the system

$$\underbrace{(A(Z^{-1}X)A^{\mathrm{T}})}_{\mathbf{R}}dy = rh_{\mathrm{s}}$$

Given that the A is sparse, we call the command chol to decompose $\mathbf{M} = \mathbf{R}^T \mathbf{R}$ with \mathbf{R} to be upper triangular. Then we obtain the solution

$$dy = R/(R'/rhs)$$

However, it is still time-consuming. We can accelerate it by re-arrange the order of the linear system by the command symamd. The detailed handle discussing the advantage for re-ordering is attached in assignment.

Incremental Problem. When solving the least squares problem

$$\min \frac{1}{2} \sum_{i=1}^{m} (\boldsymbol{a}_{i}^{\mathrm{T}} \boldsymbol{x} - \boldsymbol{b}_{i})^{2} = \frac{1}{2} \|\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}\|_{2}^{2},$$

the optimal analytic solution is given by $\mathbf{x}^* = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$. Let's try the numerical method:

$$\mathbf{x}^{k+1} \leftarrow \mathbf{x}^k - \alpha^k \mathbf{g}^1 - \alpha^k \mathbf{g}^2 - \cdots - \alpha^k \mathbf{g}^m$$
,

where $\alpha^k = \frac{\theta}{k}$. Prof.YZ's α is greater than 10. Although we have the analytic solution, it may not necessarily better than the numerical one since it will perturbed by the noise.

7.1.3. Optimization over convex set

For the optimization problem

with *X* to be convex, the necessary conditon for optimality is

$$\nabla^{\mathrm{T}} f(\mathbf{x}^*)(\mathbf{x} - \mathbf{x}^*) \ge 0, \quad \forall x \in X$$

If *f* is convex, then it is indeed the necessary and sufficient condition.

Example. For $X = \{x \mid x \ge 0\}$, we find

$$(\nabla f(\boldsymbol{x}^*))_i = egin{cases} rac{\partial f(\boldsymbol{x}^*)}{\partial x_i} \geq 0, & x_i^* = 0 \ rac{\partial f(\boldsymbol{x}^*)}{\partial x_i} = 0, & x_i^* > 0 \end{cases}$$

Project. Given $z \in \mathbb{R}^n$, the least square problem

$$\min \quad \|\boldsymbol{x} - \boldsymbol{z}\|_2$$
$$\boldsymbol{x} \in X$$

is essentially the projection problem:

$$[\mathbf{z}]^+ = \mathbf{x}^* = \arg\min_{\mathbf{x} \in X} \|\mathbf{x} - \mathbf{z}\|$$

Proposition 7.1 — Non-expansive.

$$\|[\mathbf{z}_1]^+ - [\mathbf{z}_2]^+\| \le \|\mathbf{z}_1 - \mathbf{z}_2\|$$

with *X* to be a convex set.

Projection-based optimality condition. Applying projection property, we derive alternative optimality condition for (7.1):

Proposition 7.2 x^* is a stationary point iff

$$\mathbf{x}^* = [\mathbf{x}^* - \alpha \nabla f(\mathbf{x}^*)] +,$$

for $\forall \alpha > 0$