Logik Serie 3

Nikita Emanuel John Fehér, 3793479 Erik Thun, 3794446

 $13.\ \mathrm{Mai}\ 2025$ Mittwoch 09:15-10:45 Keitsch, Jamie; Gruppe e

H 3-1. Disjunktion und Folgerung

Seien $\varphi, \psi, \xi \in \mathcal{F}$. Beweisen bzw. Widerlegen Sie die nachfolgenden Aussagen.

a)
$$\varphi \lor \psi \models \xi$$
 gdw. $\varphi \models \xi$ oder $\psi \models \xi$

b)
$$\varphi \lor \psi \models \xi \text{ gdw. } \varphi \models \xi \text{ und } \psi \models \xi$$

H 3-2. Folgerung und Unerfüllbarkeit Gegeben eine Menge $T\subseteq \mathcal{F}$ und eine Formel $\varphi\in \mathcal{F}$. Beweisen Sie:

 $T \models \varphi$

gdw.

 $T \cup \{\neg \varphi\}$ ist unerfüllbar

H 3-3. Kompaktheitsatz und Endlichkeitssatz

Kompaktheitssatz. Gegeben eine Formelmenge $T \subseteq \mathcal{F}$. Es gilt:

Terfüllbar
gdw. jede endliche Teilmenge $T'\subseteq T$ ist erfüllbar

 $\mathit{Endlichkeitssatz}.$ Gegeben $T\subseteq\mathcal{F}$ und $\varphi\in\mathcal{F}.$ Es gilt:

 $T \models \varphi$ gdw. es existiert endliche Teilmenge $T' \subseteq T$ mit $T' \models \varphi$

Zeigen Sie, daß aus dem Kompaktheitssatz der Endlichkeitssatz folgt.

H 3-4. Hornformeln und Schnitteigenschaft

- a) Gegeben die beiden nachfolgenden Formel
n φ und ψ . Sind die Formeln Horn? Falls nein, sind sie semantisch äquivalent zu einer Hornformel? Kurze Begründung.
 - $\varphi = (A_1 \vee \neg A_2 \vee A_3) \wedge (\neg A_1 \vee A_2 \vee A_3) \wedge (\neg A_1 \vee \neg A_2 \vee A_3)$ $\psi = (A_1 \wedge \neg A_2 \wedge A_3) \vee (\neg A_1 \wedge A_2 \wedge A_3) \vee (\neg A_1 \wedge \neg A_2 \wedge A_3)$
- b) Beweisen Sie, daß jede Hornformel die Schnitteigenschaft erfüllt.

H 3-5. Implikative Form und Markierungsalgorithmus

a) Überführen Sie die nachfolgende Hornformel in ihre implikative Form.

$$(A_1 \vee \neg A_4) \wedge \neg A_1 \wedge A_4 \wedge (\neg A_3 \vee A_2 \vee \neg A_4) \wedge (\neg A_1 \vee \neg A_2)$$

b) Wenden Sie den Markierungsalgorithmus auf nachfolgende Formel an. Geben Sie im Erfüllbarkeitsfalle ein Modell an.

$$(A_1 \land A_6 \rightarrow A_3) \land (A_4 \rightarrow 0) \land (A_3 \land A_6 \rightarrow A_2) \land (A_6 \rightarrow A_1) \land (A_5 \land A_2 \rightarrow A_4) \land (1 \rightarrow A_6)$$

H 3-6. Resolution

In VL4 haben wir den Begriff der Resolvente kennengelernt. Ein Operator, der zu einer Klauselmenge M alle möglichen (Einschritt)Resolventen aus M hinzufügt wäre:

$$Res(M) = M \cup \{R | R \text{ ist Resolvente zweier Klauseln aus } M\}$$

Dies können wir nun iterieren und erhalten die Resolutionshülle $\operatorname{Res}^*(M)$ wie folgt.

$$\operatorname{Res}^0(M) = M \qquad \qquad \operatorname{Res}^{i+1}(M) = \operatorname{Res}(\operatorname{Res}^i(M)) \qquad \qquad \operatorname{Res}^*(M) = \bigcup_{i \in \mathbb{N}} \operatorname{Res}^i(M)$$

Wir werden in VL5 den berühmten Resolutionssatz zeigen, nämlich:

$$M$$
 unerfüllbar gdw. $\square \in \operatorname{Res}^*(M)$

Das erfolgreiche Ableiten der leeren Klausel wird üblicherweise graphisch veranschaulicht. Beispiel: $M = \{\{A_1\}, \{\neg A_2, A_4\}, \{\neg A_1, A_2, A_4\}, \{A_3, \neg A_4\}, \{\neg A_1, \neg A_3, \neg A_4\}\}$

a) Überprüfen Sie graphisch die Erfüllbarkeit der Menge

$$M = \{\{A_1, A_2, \neg A_3\}, \{\neg A_2\}, \{A_2, A_3, A_1\}, \{A_3\}, \{\neg A_1, \neg A_3, A_2\}\}$$