METODY PROBABILISTYCZNE I STATYSTYKA LISTA 7, ZADANIE 1

Wykresy statystyk dla Bn, Un, Ln, Cn, Dn-Cn wraz ze średnimi wartościami:

n - ilość urn

Dodatkowe wykresy:

$\frac{b(n)}{n}$ i $\frac{b(n)}{\sqrt{n}}$ jako funkcja n:

$\frac{u(n)}{n}$ jako funkcja n

 $\frac{l(n)}{\ln n}, \frac{l(n)}{(\ln n) / \ln \ln n} \ oraz \ \frac{l(n)}{\ln \ln n} \ jako \ funkcja \ n$

$$\frac{c(n)}{n}$$
, $\frac{c(n)}{n \ln n}$ oraz $\frac{c(n)}{n^2}$ jako funkcja n

 $\frac{d(n)}{n}$, $\frac{d(n)}{n \ln n}$ oraz $\frac{d(n)}{n^2}$ jako funkcja n

$$\frac{d(n)-c(n)}{n}, \frac{d(n)-c(n)}{n\ln n} \ oraz \ \frac{d(n)-c(n)}{n\ln \ln n} \ jako \ funckja \ n$$

Na podstawie powyższych wykresów postaw rozsądne hipotezy odnośnie asymptotyki średnich wartości badanych statystyk.

Zabierając się za analizę asymptotyki średnich wartości statystyk potrzebujemy w tym celu pojęć związanych z notacjami, dzięki którym możemy je określić.

Notacja "duże O":

Funkcja f(n) należy do O(g(n)), gdy $\exists k > 0 \ \exists n_0 \ \exists n > n_0$: $|f(n)| \le k \cdot g(n)$, co można zapisać jako granica $\lim_{n\to\infty} \sup \frac{|f(n)|}{g(n)} < \infty$

Notacja " Ω ":

Funkcja f(n) należy do $\Omega(g(n))$, gdy $\exists k > 0 \ \exists n_0 \ \exists n > n_0 \colon |f(n)| \ge k \cdot g(n)$, co można zapisać jako $\operatorname{granica} \lim_{n \to \infty} \inf \frac{|f(n)|}{g(n)} > 0.$

Notacja " θ ":

Funkcja f(n) należy do $\Theta(g(n))$, gdy $\exists k_1 > 0 \exists k_2 > 0 \exists n_0 \forall n > n_0 : k_1 \cdot g(n) \le f(n) \le k_2 \cdot g(n)$, co można zapisać jako granice $\lim_{n \to \infty} \sup \frac{|f(n)|}{g(n)} < \infty$ oraz $\lim_{n \to \infty} \inf \frac{|f(n)|}{g(n)} > 0$. Oznacza to, że jeżeli funkcja f(n) należy do O(g(n)), to należy ona do O(g(n)), oraz O(g(n)).

b(n):

- $\frac{b(n)}{n}$ jest malejąca, więc $\lim_{n \to \infty} \inf \frac{b(n)}{n} = 0$ $\frac{b(n)}{\sqrt{n}}$ osiąga wartości ≈ 1.3
- Zatem możemy stwierdzić, że $b(n) = \Theta(\sqrt{n})$

u(*n*):

- $\frac{u(n)}{n}$ osiąga wartości ≈ 0.37
- Zatem możemy stwierdzić, że $u(n) = \Theta(n)$

l(n):

- $\frac{l(n)}{\ln n}$ jest malejąca, więc $\lim_{n \to \infty} \inf \frac{l(n)}{\ln n} = 0$ $\frac{l(n)}{\ln \ln n}$ jest rosnąca, więc $\lim_{n \to \infty} \sup \frac{l(n)}{\ln \ln n} = \infty$
- $\frac{l(n)}{\frac{\ln n}{\ln \ln n}}$ osiąga wartości ≈ 1.6
- Zatem możemy stwierdzić, że $l(n) = \Theta\left(\frac{\ln n}{\ln \ln n}\right)$

c(n):

• $\frac{c(n)}{n}$ jest rosnąca, więc $\lim_{n\to\infty} \sup \frac{c(n)}{n} = \infty$

- $\frac{c(n)}{n^2}$ jest malejąca, więc $\lim_{n \to \infty} \inf \frac{c(n)}{n^2} = 0$
- $\frac{c(n)}{n \ln}$ osiąga wartości ≈ 1.1
- Zatem można powiedzieć, że $c(n) = \Theta(n \ln n)$

d(n):

- $\frac{d(n)}{n}$ jest rosnąca, więc $\lim_{n\to\infty} \sup \frac{d(n)}{n} = \infty$ $\frac{d(n)}{n^2}$ jest malejąca, więc $\lim_{n\to\infty} \inf \frac{d(n)}{n^2} = 0$ $\frac{d(n)}{n \ln}$ osiąga wartości ≈ 1.3

- Zatem można powiedzieć, że $c(n) = \Theta(n \ln n)$

Trudno jest jednoznacznie określić asymptotykę dla d(n)-c(n), gdyż ciężko wywnioskować z wykresów monotoniczność funkcji. Można by przypuszczać, że $d(n) - c(n) = \Theta(n \ln \ln n)$, gdyż wartości oscylują na niewielkim zakresie wartości, podczas gdy funkcja $\frac{d(n)-c(n)}{n}$ delikatnie rośnie, a wartości dla funkcji $\frac{d(n)-c(n)}{n\ln n}$ trochę zmalały.