

Exercise 6 - DFT vs (Post) HF Methods

Exercise 6 - DFT vs (Post) HF Methods: Theory

- (Post) HF methods are wavefunction-based (we need to find the wavefunction)
- DFT shifts the focus: we need to find the ground-state charge density
- Why? For N electrons, wavefunction is a complex function of 3N variables, but the ground-state charge density is a function of 3 variables
- The universal functional not known, but proven to exist
- Everything that is unknown is contained in E_{XC}

$$E(\rho) = T_0(\rho) + J(\rho) + \int v_{\text{ext}} \rho + E_{XC}$$

Each functional will treat the XC part differently

Exercise 6 - DFT (continued)

DFT is the workhorse of electronic structure methods:

 In the top 100 most cited papers (ever!!) in the scientific community, 12 are on DFT

Comments on DFT

- Kohn-Sham formulation: ficticious molecular orbitals (non-interacting)
- If the exact XC functional is known ground state energies, charge densities and HOMO (Koopman's theorem) are known
- Usually fast and widely available
- What can DFT do?
 - Atomic and cell geometries (fixed V,P)
 - Formation energy
 - Properties related to ground state

Comments on DFT - downsides

- DFT also has some downsides we will see this in practice
 - Difficulties with capturing systems dispersion
 - Band gap problem LUMO cannot be associated with KS orbitals (derivative discontinuity, deviation from piecewise linearity)
 - No magic solutions :(we must make approximations and test our decisions

Comments on orbitals

- Orbitals are spatial wave functions, essentially probability amplitudes
- In practice, our calculated orbitals are mathematical formulations which approximate our true system
- Different calculations of orbitals (KS orbitals, canoncial HF orbitals, Dyson orbitals) can disagree qualitatively
- Be careful with overinterpreting orbitals

Exercise 6.1 - Methylcyclohexane A-value

- You will perform calculations with HF and MP2 and different DFT functionals, add results to collaborative spreadsheet (linked also on Moodle)
- Points of comparison:
 - ψ or ρ based?
 - how accurate (w.r.t. experimental reference)?
 - computational time
- DFT is a world on its own depending on the functional chosen you can go from cheap, very off calculations to expensive and more reliable ones

Exercise 6.2 - Geometric properties: NO₃ radical

- Calculate N-O bond lengths and O-N-O bond angles
 - Experiments: D_3^h , N-O 1.24 Å and O-N-O 120°
- Compare results (HF, MP2 vs DFT)
- You will visualize the KS orbitals what can they tell us?
 - Changes in the electronic structure between different species
 - General size, shape of expected one-electron orbitals (hopefully)

Exercise 6 - Tips

- Calculations for Exercise 6.1 will be done in a collaborative way to speed up the exercise, add your results to collaborative spreadsheet (linked also on Moodle)
- You can monitor your calculations by opening a terminal window in noto and typing "tail -f name_output_log"
- DFT will be further explored during lectures and the next exercises
- Here we used as reference papers that can be useful for further understanding DFT1, DFT2, orbitals