

AERODYNAMIQUE

Partie IV. VITESSES DE L'AIR, DISPOSITIFS HYPERSUSTENTATEURS ET HYPOSUSTENTATEURS, ET CENTRE AÉRODYNAMIQUE

CONTENT

LES VITESSES

Vitesse équivalente Vitesse conventionnelle

LES VITESSES

Vitesse propre (V_p)

La V_p est la vitesse de l'avion par rapport à la masse d'air, encore appelée vitesse vraie, V_v ou TAS (True air speed) : Elle est utilisée dans les formules aérodynamiques de portance et de trainée.

Equivalent de vitesse ($EV ou V_e$)

Nécessité de définir une vitesse indépendante de l'altitude

$$EV = \sqrt{\sigma}.V_p$$

L'indicateur de vitesse des avions lents (<240Kt) est gradué en équivalent de vitesse

LES VITESSES

Vitesse conventionnelle

La valeur est affecté par la compressibilité à vitesse supérieur à 240Kt

Nécessité de définir une vitesse indépendante de l'altitude

$$CAS = V_c = \frac{1}{f}.EV$$

f coefficient de compressibilité

L'indicateur de vitesse des avions lents (<240Kt) est gradué en équivalent de vitesse

XI. HYPERSUSTENTION – HYPOSUSTENTATION - AEROFREINAGE

- XI.1. Hypersustentation
 - XI.1.1. Dispositifs de bord d'attaque
 - XI.1.2. Dispositifs de bord de fuite
- XI.2. Hyposustentation et aérofreinage
 - XI.2.1. Les aérofreins
 - XI.2.2. Les destructeurs de portance ou spoilers

Objectif

diminuer les **distances nécessaires** à l'avion tant au décollage qu'à l'atterrissage (considération de longueurs de pistes).

La distance nécessaire au décollage ou à l'atterrissage (cinématique) peut être calculée comme suit :

$$L_{DEC/ATT} = \frac{V_{DEC/ATT}^2}{2\Gamma_{DEC/ATT}}$$

Réduire L_{DEC/ATT} revient à réduire la vitesse mini réalisable

La solution serait alors d'augmenter S et/ou C_{zmax} en vol

$$V_{stall} = \sqrt{\frac{2mg}{\rho SC_{Z_{max}}}}, \qquad V_{min} = kV_{Stall}$$

$C_{Z_{max}} \uparrow$:

- V_{att} et m données \Rightarrow surface alaire nécessaire plus faible \Rightarrow puissance nécessaire plus faible
- V_{att} et S données \Rightarrow emport de charge plus conséquente.
- m et S donnée \Rightarrow V_{att} diminue \Rightarrow distance d'arrêt plus courte, freins allégés.

Dispositifs de bord d'attaque

Modifient l'écoulement de l'air en particulier à l'extrados et au bord d'attaque de l'aile et permettent d'augmenter le $C_{Z_{max}}$ par augmentation de l'incidence.

(α faible \Rightarrow C_z et C_x faibles).

Pour augmenter C_z , il faut tirer sur le manche jusqu'à $\alpha_{C_{Z_{max}}}$

Le dispositif du bord d'attaque permet de tirer sur le manche jusqu' à un nouveau $\alpha_{C_{Z_{max}}}$ plus grand

Dispositifs de bord d'attaque

Augmentation d'incidence en configuration lisse

Configuration lisse

Dispositif de BA déployé

Dispositifs de bord d'attaque

Dispositifs de bord d'attaque

Bec à fente ou volet Handley-page

Bord d'attaque basculant : MIII - F1 - M2000

Volet Krüger : B707- B747-A300B4

Bec BETZ

Dispositifs de bord de fuite

Modifient l'écoulement de l'air du fait d'un changement plus ou moins accentué de la courbure du profil de la voilure. La surface de la voilure pourra éventuellement être modifiée selon le type de dispositif.

Augmentation de la cambrure qui maintien la dépression à l'extrados pour **une vitesse plus faible** et une surpression à l'intrados fortement accentuée.

Dispositifs de bord de fuite

Augmentation du coefficient de portance maximum $C_{z_{max}}$ sans changer l'incidence de décrochage $\alpha_{z_{max}}$

Dispositifs de bord de fuite

Dispositifs de bord de fuite

Simple articulation au bord de fuite, il occupe une fraction de la corde de 20 à 30 %

Son efficacité est limitée par le décollement de la couche limite qui se produit pour les braquages dépassant 15°.

Ce procédé n'est plus utilisé.

L'extrados de l'aile est inchangé, le volet déforme seulement l'intrados.

Le braquage du volet retarde le décollement par effet de courbure.

Le sillage de ce type de volet est susceptible d'engendrer des vibrations sur les empennages de l'avion.

Volet d'intrados

Dispositifs de bord de fuite

Volet d'intrados avec léger recule Augmente S en plus de Czmax.

Fente entre le profil et le volet au braquage. La fente a la forme d'un convergent vers l'extrados L'écoulement qui se produit dans cette fente vient souffler la couche limite à l'extrados du volet reculant ainsi son décollement.

Cette solution est adoptée maintenant sur presque tous les avions modernes.

Dispositifs de bord de fuite

Volet Zap + Volet à fente : recule et fente

Dispositifs de bord de fuite

Volet	Forme	Angle de braquage maxi	Augmentation de portance
Simple courbure		45°	51%
Intrados		50°	67%
Zap		50°	85%
A fente		45°	53%
Fawler		40%	88%

XI.2 HYPOSUSTENTION ET AEROFRENAGE

Besoins pour la gestion des vols

Suivre le profil idéal de vol :

- Montée et descente sans palier,
- Croisière à la meilleure altitude,
- Vitesse adaptée

Modifications fréquentes du profil de l'avion à cause des contraintes liées à l'environnement et à la circulation aérienne essentielle.

Exemples

Augmentation de la pente de descente

• Diminution de la vitesse en vol comme au sol après atterrissage.

Solution

Hypo-sustentateurs et aérofreins

XI.2 HYPOSUSTENTION ET AEROFRENAGE

Aérofrein

- diminuer la vitesse en approche à l'atterrissage ou en accélération arrêt,
- augmenter les performances de descente.

Provoquent une forte Augmentation de la traînée sans affecter la portance.

Panneaux situés soit sur la voilure (transporteurs modernes), soit à l'arrière du fuselage (F28, F100), soit sur les flancs (chasseurs).

N'affecte pas le diagramme de pression de la voilure.

XI.1 HYPOSUSTENTION ET AEROFRENAGE

Destructeur de portance ou spoilers

• En utilisation symétrique

- ✓ Diminuer la vitesse en approche à l'atterrissage et en accélération arrêt ;
- ✓ Augmenter les performances de descente ;
- ✓ Augmenter l'efficacité du freinage par destruction de la portance.

• En utilisation dissymétrique

aider au gauchissement (couplage avec les ailerons).

Toujours situés sur l'extrados de façon symétrique par rapport à l'axe longitudinal

Les spoilers ont l'effet «d'aérofrein » mais en plus, ils doivent détruire la portance.

XII. CENTRE DE POUSSEE ET FOYER AERODYNAMIQUE

XII.1. Centre de poussée

XII.1. Moment de Tangage

XII.2. Expérience fondamentale et foyer principal

XII. CENTRE DE POUSSEE ET FOYER AERODYNAMIQUE

Dans ce chapitre, nous allons étudier les conditions de **stabilité de l'aile** seule puis nous allons voir dans quelle mesure appliquer le résultat à la stabilité statique longitudinale de l'avion complet. Ceci nous permettra de traiter en Mécanique du vol la stabilité statique longitudinale de l'avion

XII.1 CENTRE DE POUSSEE

Nous avons vu les équations de sustentation qui permettent des déterminer les composantes verticale (Portance) et horizontale (trainée) des forces aérodynamiques qui s'appliquent à un aéronef.

Un autre élément important à connaître est le point d'application de la résultante aérodynamique :

Le centre de poussée

La position de P est déterminée par rapport au bord d'attaque et exprimée en fraction de la profondeur.

Pour se faire la distribution de pression à l'intrados et extrados est utilisée

Center of Pressure is the average location of the pressure. Pressure varies around the surface of an object. P = P(x)

$$cp = \frac{\int x \ p(x) \ dx}{\int p(x) \ dx}$$

Aerodynamic force acts through the center of pressure.

Center of pressure moves with angle of attack.4

NASA Glenn Research Center

XII.1 CENTRE DE POUSSEE

De façon pratique les pressions sont mesurées suivant une série des points la formule

$$cp = \frac{\sum x_i p_i \Delta x}{\sum p_i \Delta x}$$

Et si les Δx sont uniforme, l'équation 6 simplifie

$$cp = \frac{\sum x_i p_i}{\sum p_i}$$

Exemple : Ce tableau définit les pressions, pour les 32 points du profil ci-contre, à l'incidence de 10° et à 262Kts On notera que $p_i = p_{intrados\ i} - p_{extrados\ i}$ Le calcul donne 38% de la corde

P Intrados P Extrados

11 0.19850 -0.01987 **12** 0.24296 **13** 0.29055 0.34071 0.60914 0.66197

0.39288 -0.01396 **16** 0.44643 -0.01190 **17** 0.50074 -0.00976 0.55519 -0.00760

-0.01891

-0.01754

-0.01586

-0.00549

-0.00349

93075 92987 92898

93770

93615

93481

93363

93259

93164

84452 92808 84999 85538

79359

80075

80763

81430

82078

82706

83312

83893

t I	U	0.00021	0.00103	37340	00010	21	0.71305	-0.0
ts	1	0.00127	-0.00393	96616	68299	22	0.76178	-0.0
	2	0.00418	0.00936	98869	61330	23	0.80752	0.0
	3	0.00806	-0.00839	95942	70726	24	0.84964	0.0
	4	0.01232	0.01770	99571	52197	25	0.88756	0.0
	5	0.02038	-0.01227	95431	72745	26	0.92071	0.0

95026

94689

94405

94161

93951

0.06074 -0.01777

0.08844 -0.01934

0.15765 -0.02032

-0.02017

00370	21	0.71305	-0.00168	92721	85538
68299	22	0.76178	-0.00014	92639	86075
61330	23	0.80752	0.00104	92560	86612
70726	24	0.84964	0.00182	92483	87150
52197	25	0.88756	0.00220	92407	87693
72745	26	0.92071	0.00218	92335	88248
74401	27	0.94859	0.00185	92252	88823
75743	28	0.97077	0.00132	92132	89414
76839	29	0.98690	0.00071	91935	90006
77770	30	0.99671	0.00021	91630 ₂₅	90536
78597	31	1.00000	0.00000	91219	90825

XII.2 MOMENTS AERODYNAMIQUES

- □ P point d'application de la résultante aérodynamique (R)
- ☐ Le centre de gravité (**G**), qui est fonction du chargement de l'avion ne sera pas situé au centre de poussée **P**

Conséquence

Moment longitudinal ou moment de tangage

Moment de la résultante par rapport au centre de gravité

$$\overrightarrow{M}_G = \overrightarrow{GP} \wedge \overrightarrow{R}$$

$$M_G = GH \times \frac{1}{2} \rho SV^2 C$$

On compte ce moment positivement s'il tend à faire cabrer l'avion.

XII. MOMENTS AERODYNAMIQUES

Coefficient de moment C_{mg}

On introduit le coefficient de moment par rapport G pour faire une similarité avec le coefficient aérodynamique

$$C_{mG} = \frac{GH.C}{l}$$

l : Profondeur du profil

GH: bras de levier

$$M_G = \frac{1}{2} \rho SV^2 lC_{mG}$$

$$M_G = GH \times \frac{1}{2} \rho SV^2 C$$

XII. MOMENTS AERODYNAMIQUES Foyer principal

La répartition des charges transportées permet de fixer le centre de gravité en en point A de la corde.

En faisant varier l'incidence, la courbe de $C_{mA} = f(C_z)$ donne une droite

Lorsque nous faisant varier la position du centre de gravité nous avons diverses courbes de $C_{mA} = f(C_z)$

En passant du bord d'attaque au bord de fuite la pente de la courbe est d'abord négative puis **elle s'annule en un point F** de la corde puis elle devient positive

Le point F est appelé foyer aérodynamique

$$C_{mF} = Cst = C_{m0}$$

$$Cm_A = Cm_0 \text{ pour } C_z = 0$$

$$C_{mA} = C_{m0} + \frac{\partial C_{mA}}{\partial C_z} \times C_z$$

XII. MOMENTS AERODYNAMIQUES Foyer principal

Ainsi, lorsque le centre de gravité est placé au foyer la variation de la portance ne fait pas varier le coefficient de moment :

Courbe
$$C_{mA} = f(C_z)$$
 horizontale et $\frac{\partial C_{mA}}{\partial C_z} = 0$

C'est le *point d'application des variations de portance*. Également nommé *centre aérodynamique*

Généralement le foyer est situé à environ

- 25% de la corde pour les avions subsoniques
- **50%** pour les avions supersoniques

XII. MOMENTS AERODYNAMIQUES

Foyer principal

Cas 1 : Centrage arrière : Centre de gravité derrière le foyer

- La mise en cabré crée un moment qui l'accentue;
- La mise en piqué crée un moment qui l'accentue

Cas 2 : Centrage avant : Centre de gravité devant le foyer

- La mise en cabré crée un moment piqueur;
- La mise en piqué crée un moment à cabrer.

Avion instable

Avion stable

BIBLIOGRAPHIE

- 1. O. B. OUATTARA, ND. M. SYLLA, Cours aerodynamique 2018, EAMAC
- 2. GAKOU Abdoul Kader, cours aérodynamique -mécanique du vol IEEAC/EAC, 2021, EAMAC;
- 3. Harry Smith, Flight mechanics, <u>www.aircraftflightmechanics.com</u>, 2022;
- 4. JOHN J. BERTIN, aerodynamics for engineers Fifth Edition;