16. Ejercicios resueltos sobre cálculo de residuos.

En esta sección se dan ejemplos de cálculo de integrales de funciones reales, propias e impropias, usando la Teoría de los Residuos. Complementa los ejemplos dados en la sección 9 y los dados en la subsección 15.4.

16.1. Integrales de funciones racionales en la circunferencia.

Ejercicio 16.1.1. Sea R(x, y) una función racional de dos variables tal que no se anula el denominador en la circunferencia unitaria $\partial D: z = e^{it} \ 0 \le t \le 2\pi$.

a) Probar que

$$\int_0^{2\pi} R(\cos t, \sin t) dt = -i \int_{\partial D} R\left(\frac{1}{2}\left(z + \frac{1}{z}\right), \frac{1}{2i}\left(z - \frac{1}{z}\right)\right) \frac{dz}{z}$$

b) Calcular

$$\int_0^{\pi} \frac{\cos 2t}{5 - 3\cos t} \, dt$$

Parte a) Aplicando la definición de integral de una función continua a lo largo de la circunferencia $\partial D: z(t) = e^{it} \ t \in [0, 2\pi]$ resulta:

$$\begin{split} I &= -i \int_{\partial D} R\left(\frac{1}{2}\left(z + \frac{1}{z}\right), \frac{1}{2i}\left(z - \frac{1}{z}\right)\right) \, \frac{dz}{z} = \\ I &= -i \int_{0}^{2\pi} R\left(\frac{1}{2}\left(e^{it} + e^{-it}\right), \frac{1}{2i}\left(e^{it} - e^{-it}\right)\right) i e^{it} \, \frac{dt}{e^{it}} \\ I &= \int_{0}^{2\pi} R(\cos t, \sin t) \, dt \quad \Box \end{split}$$

Parte b) Primero veamos que la integral que se pide calcular es la mitad de la integral de la misma función en el intervalo $[-\pi,\pi]$. En efecto, la función en el integrando es $\cos 2t / (5-3\cos t)$; es una función par. Por lo tanto su integral en el intervalo $[-\pi,0]$ es igual a su integral en el intervalo $[0,\pi]$. Luego, su integral en el intervalo $[-\pi,\pi]$, que es la suma de ambas, es el doble de cada una de ellas.

$$I = \int_0^{\pi} \frac{\cos 2t}{5 - 3\cos t} dt = \frac{1}{2} \int_{-\pi}^{\pi} \frac{\cos 2t}{5 - 3\cos t} dt$$

Con la misma demostración de la parte a), pero parametrizando la circunferencia ∂D con $z = e^{it}$, $-\pi \le t \le \pi$; usando que $e^{2it} = z^2$ para $z = e^{it}$, y que cos $2t = (1/2)(e^{2it} + e^{-2it})$, se obtiene:

$$I = \frac{-i}{2} \int_{\partial D} \frac{\frac{1}{2} \left(z^2 + \frac{1}{z^2}\right)}{5 - \frac{3}{2} \left(z + \frac{1}{z}\right)} \frac{dz}{z} = \frac{i}{2} \int_{\partial D} \frac{z^4 + 1}{z^2 (3z^2 - 10z + 3)} dz = \frac{i}{2} \int_{\partial D} \frac{z^4 + 1}{z^2 (z - 3)(3z - 1)} dz$$

Los polos de la función $f=(z^4+1)/(z^2(z-3)(3z-1))$ en el integrando son las raíces del denominador. De las raíces del denominador solo z=0 doble y z=1/3 están en el disco D encerrado por la circunferencia ∂D . El índice de ∂D en ellas es 1, y en la otra raíz z=3 del denominador el índice es 0. Luego, aplicando el teorema del índice:

$$I = \frac{i}{2} 2\pi i \left(Res_f(0) + Res_f(1/3) \right)$$
 (1)

Calculemos ambos residuos, usando la proposición 15.1.4:

$$Res_f(0) = [z^2 f(z)]'|_{z=0} = \left(\frac{z^4 + 1}{(z-3)(3z-1)}\right)'|_{z=0} = \frac{10}{9}$$

$$Res_f(1/3) = [(z-1/3)f(z)]'|_{z=1/3} = \left(\frac{z^4+1}{3z^2(z-3)}\right)'|_{z=1/3} = \frac{-41}{36}$$

Sustituyendo en (1) resulta:

$$I = \frac{i}{2} 2\pi i \left(\frac{10}{9} - \frac{41}{36}\right) = \frac{\pi}{36}. \quad \Box$$

16.2. Integrales impropias mediante el cálculo de residuo en alguna raíz n-ésima.

Ejercicio 16.2.1. -

Calcular para $n \ge 2$ natural fijo la siguiente integral impropia:

$$\int_0^{+\infty} \frac{dx}{1+x^n}$$

(Sugerencia: integrar en el ángulo comprendido entre las semirrectas arg(z)=0 y $arg(z)=2\pi/n$.)

Consideremos la función

$$f(z) = \frac{1}{1+z^n}$$

Tiene polos en las n raíces n—ésimas de -1, es decir en los puntos z_k tales que $z_k^n = -1$. Escribiendo $-1 = e^{i\pi + 2k\pi}$ $k = 0, 1, 2 \dots, n-1$, se obtiene $z_k = e^{i\pi/n}e^{i2k\pi/n}$.

Consideremos para R>1 el arco S_R de circunferencia de centro en el origen y radio R siguiente: $S_R: z=Re^{it},\ 0\leq t\leq 2\pi/n$; (hacer dibujo) y la curva cerrada:

$$\gamma_R = [0, R] + S_R + [Re^{2i\pi/k}, 0]$$

La curva γ_R da un vuelta sola en sentido antihorario alrededor del polo $z_0 = e^{\pi i/n}$ de la función f, y no da ninguna vuelta alrededor de los demás polos de f. Por lo tanto, aplicando el teorema de los residuos, se tiene:

$$\int_{\gamma_R} f(z) dz = 2\pi i Res_f(e^{\pi i/n}) \quad (1)$$

Por otro lado:

$$\int_{\gamma_R} f(z) \, dz = \int_{[0,R] + S_R - [0,Re^{2i\pi/k}]} f(z) \, dz$$

de donde, usando (1) se obtiene:

$$\int_{-[0,Re^{2i\pi/k}]+[0,R]} f(z) dz = 2\pi i Res_f(e^{\pi i/n}) - \int_{S_R} f(z) dz \qquad (2)$$

Parametrizando el segmento [0,R] con $z=x,\ 0\leq x\leq R$ y el segmento $[0,Re^{2i\pi/k}]$ con $z=x\,e^{2\pi i/n}\ 0\leq x\leq R$, se obtiene:

$$\int_{-[0,Re^{2i\pi/k}]+[0,R]} f(z) \, dz = e^{2\pi i/n} \int_{R}^{0} \frac{1}{1+x^{n}} \, dx + \int_{0}^{R} \frac{1}{1+x^{n}} \, dx = (1-e^{2\pi i/n}) \int_{0}^{R} \frac{1}{1+x^{n}} \, dx$$

Sustituyendo en (2) resulta:

$$(1 - e^{2\pi i/n}) \int_0^R \frac{1}{1 + x^n} dx = 2\pi i Res_f(e^{\pi i/n}) - \int_{S_R} f(z) dz \quad (3)$$

Ahora tomaremos el límite cuando $R \to +\infty$, aplicando el lema de deformación de curvas (lema 11.5.1) a la integral de f a lo largo del arco de circunferencia S_R .

En efecto

$$\lim_{z \to \infty} z f(z) = \lim_{z \to \infty} \frac{z}{1 + z^n} = 0$$

Luego, por el lema de deformación de curvas (lema 11.5.1), se deduce que

$$\lim_{R \to +\infty} \int_{S_R} f(z) \, dz = 0$$

Sustituyendo en (3) cuando $R \to +\infty$ resulta:

$$(1 - e^{2\pi i/n}) \int_0^{+\infty} \frac{1}{1 + x^n} dx = 2\pi i Res_f(e^{\pi i/n})$$
 (4)

Ahora solo resta calcular el residuo de f en el polo $e^{\pi i/n}$ que es un polo simple. Aplicando la última afirmación de la proposición 15.1.4, se obtiene:

$$Res_f(e^{\pi i/n}) = \frac{1}{A}$$
 donde $A = (1 + z^n)'|_{z = e^{\pi i/n}}$

$$Res_f(e^{\pi i/n}) = \frac{1}{nz^{n-1}|_{z=e^{\pi i/n}}} = \frac{z}{nz^n}|_{z=e^{\pi i/n}} = \frac{1}{-n} \cdot e^{\pi i/n}$$

Sustituyendo en (4) se obtiene:

$$(1 - e^{2\pi i/n}) \int_0^{+\infty} \frac{1}{1 + x^n} dx = \frac{-2\pi i}{n} \cdot e^{\pi i/n}$$

$$\int_0^{+\infty} \frac{1}{1+x^n} \, dx = \frac{-2\pi i}{n} \cdot \frac{e^{\pi i/n}}{1-e^{2\pi i/n}} = \frac{\pi}{n} \cdot \frac{2i}{e^{\pi i/n} - e^{-\pi i/n}} = \frac{\pi}{n} \cdot \frac{1}{\sin(\pi/n)} \quad \Box$$

Ejercicio 16.2.2. Calcular

$$I = \int_0^{+\infty} \frac{\sqrt{x}}{1 + x^2} \, dx$$

Primero hacemos el cambio de variable $x = u^2$. La integral impropia dada queda

$$I = \int_0^{+\infty} \frac{2u^2}{1 + u^4} \, du$$

Procedemos de igual forma que para la integral del ejemplo anterior, integrando en el ángulo formado por las semirrectas arg(z) = 0 y $arg(z) = \pi/2$.

Sea

$$f(z) = \frac{2z^2}{1+z^4}$$

Tiene polos en las raíces cuartas de -1, es decir en los puntos $z_k = e^{i\pi/4} e^{ik\pi/2}$ con k = 0, 1, 2, 3. Consideremos para R > 1 el arco S_R de circunferencia de centro en el origen y radio R siguiente: $S_R : z = Re^{it}$, $0 \le t \le \pi/2$; (hacer dibujo) y la curva cerrada:

$$\gamma_R = [0, R] + S_R + [Ri, 0]$$

La curva γ_R da un vuelta sola en sentido antihorario alrededor del polo $z_0 = e^{\pi i/4}$ de la función f, y no da ninguna vuelta alrededor de los demás polos de f. Por lo tanto, aplicando el teorema de los residuos (teorema 15.1.5), se tiene:

$$\int_{\gamma_R} f(z) dz = 2\pi i Res_f(e^{\pi i/4}) \quad (1)$$

Por otro lado:

$$\int_{\gamma_R} f(z) \, dz = \int_{[0,R] + S_R - [0,Ri]} f(z) \, dz$$

de donde, usando (1) se obtiene:

$$\int_{-[0,Ri]+[0,R]} f(z) dz = 2\pi i Res_f(e^{\pi i/4}) - \int_{S_R} f(z) dz \qquad (2)$$

Parametrizando el segmento [0,R] con $z=x,\ 0\leq x\leq R$ y el segmento [0,Ri] con $z=x\,i,\ 0\leq x\leq R$, se obtiene:

$$\int_{-[0,Ri]+[0,R]} f(z) \, dz = -(i)^3 \int_0^R \frac{2x^2}{1+x^4} \, dx + \int_0^R \frac{2x^2}{1+x^4} \, dx = (1+i) \int_0^R \frac{2x^2}{1+x^4} \, dx$$

Sustituyendo en (2) resulta:

$$(1+i) \int_0^R \frac{2x^2}{1+x^4} dx = 2\pi i Res_f(e^{\pi i/4}) - \int_{S_R} f(z) dz$$
 (3)

Ahora tomaremos el límite cuando $R \to +\infty$, aplicando el lema de deformación de curvas (lema 11.5.1) a la integral de f a lo largo del arco de circunferencia S_R .

En efecto

$$\lim_{z \to \infty} z f(z) = \lim_{z \to \infty} \frac{2z^3}{1 + z^4} = 0$$

Luego, por el lema de deformación de curvas (lema 11.5.1), se deduce que

$$\lim_{R \to +\infty} \int_{S_R} f(z) \, dz = 0$$

Sustituyendo en (3) cuando $R \to +\infty$ resulta:

$$(1+i) \int_0^{+\infty} \frac{2x^2}{1+x^4} dx = 2\pi i Res_f(e^{\pi i/4}) \quad (4)$$

Ahora solo resta calcular el residuo de f en el polo $e^{\pi i/4}$ que es un polo simple. Aplicando la última afirmación de la proposición 15.1.4, se obtiene:

$$Res_{f}(e^{\pi i/4}) = \frac{1}{A} \quad \text{donde} \quad A = \left(\frac{1+z^{4}}{2z^{2}}\right)' \Big|_{z=e^{\pi i/4}}$$

$$\left(\frac{1+z^{4}}{2z^{2}}\right)' = \frac{8z^{5} - 4z - 4z^{5}}{4z^{4}} = \frac{z(z^{4} - 1)}{z^{4}}$$

$$A = \frac{z(z^{4} - 1)}{z^{4}} \Big|_{z=e^{\pi i/4}} = 2e^{\pi i/4}$$
(5)

Sustituyendo en (5) se obtiene:

$$Res_f(e^{\pi i/4}) = \frac{e^{-\pi i/4}}{2} = \frac{\sqrt{2}}{4} (1-i)$$

Sustituyendo en (4) resulta:

$$(1+i) \int_0^{+\infty} \frac{2x^2}{1+x^4} dx = 2\pi i \frac{\sqrt{2}}{4} (1-i) = \frac{\sqrt{2}\pi i}{2} (1-i) = \frac{\sqrt{2}\pi}{2} (1+i)$$
$$\int_0^{+\infty} \frac{2x^2}{1+x^4} dx = \frac{\sqrt{2}\pi}{2}$$

Luego, como demostramos al principio, la integral dada I es igual a la integral que calculamos. Se concluye:

$$I = \frac{\sqrt{2}\pi}{2} \quad \Box$$

16.3. Integrales impropias de potencias reales de z.

Ejercicio 16.3.1. Sea p un número real fijo tal que 0 . Calcular

$$I = \int_0^{+\infty} \frac{x^{-p}}{1+x} \, dx$$

Hacemos el cambio de variable $x^p=u$, o lo que es lo mismo $x=u^q$, donde q=1/p>1. Usando que $dx=qu^{q-1}du$, $x^{-p}=u^{-1}$ la integral I se transforma en

$$I = \int_0^{+\infty} \frac{qu^{q-2}}{1+u^q} du \quad \text{donde } q = \frac{1}{p}$$

Consideremos la función

$$f(z) = \frac{qz^{q-2}}{1+z^q}$$
 (1)

Aquí la potencia q-ésima, con q real , debe definirse, para z complejo como

$$z^q = e^{q \operatorname{Log}(z)}$$
 donde $\operatorname{Log}(z) = \operatorname{Log}_{(-\pi,\pi]}(z)$ $\forall z \in \Omega = \mathbb{C} \setminus \{z = x \in \mathbb{R} : x \leq 0\}$ (2)

Esta función z^q en el abierto Ω extiende la función x^q definida para x real positivo.

Usando la derivada de función compuesta en la primera igualdad de (2) se deduce que z^q es analítica en Ω y que su derivada para todo $z \in \Omega$ es $(z^q)' = qz^{q-1}$. Además, tomando el argumento de la primera igualdad en (2) se deduce que el argumento de z^q es $qArg_{(-\pi,\pi]}z$. Además, tomando módulo, se deduce que $|z^q| = e^{qL|z|} = |z|^q$

Luego, la igualdad $z^q = -1$ (que anula el denominador de la función f(z) en la igualdad (1)) se verifica para todo z tal que |z| = 1 y $qArg_{(-\pi,\pi]}(z) = -\pi + 2k\pi$ con k entero. Es decir las raíces del denominador son los complejos z con módulo 1 y tales que $Arg_{(-\pi,\pi]}(z) = (\pi/q) + 2k\pi/q$ con k entero. (Obsérvese que esa igualdad solo la tiene que verificar el argumento de z comprendido en $(-\pi,\pi]$). Hay una cantidad finita de tales complejos. Son entonces polos simples de la función f dada en la igualdad (1). Entre estos polos $z_0 = e^{i\pi/q}$ es el único comprendido en el ángulo formado por las semirrectas arg(z) = 0 y $arg(z) = 2\pi/q$.

Entonces podemos proceder en forma similar a lo realizado en los dos ejercicios anteriores.

Consideremos para r < 1 y para R > 1 los arcos S_r y S_R de circunferencias de centro en el origen y radios r y R respectivamente, como sigue: $S_R : z = re^{it}$, $S_R : z = Re^{it}$, $0 \le t \le 2\pi/q$; (hacer dibujo) y la curva cerrada:

$$\gamma_{r,R} = [r, R] + S_R + [Re^{2i\pi/q}, re^{2i\pi/q}] - S_r$$

La curva γ_R está contenida en el abierto Ω donde f es meromorfa; da un vuelta sola en sentido antihorario alrededor del polo $z_0 = e^{\pi i/q}$ de la función f; y no da ninguna vuelta alrededor de los demás polos de f. Por lo tanto, aplicando el teorema de los residuos (ver teorema 15.1.5), se tiene:

$$\int_{\gamma_{r,R}} f(z) dz = 2\pi i Res_f(e^{\pi i/q}) \quad (3)$$

Por otro lado:

$$\int_{\gamma_{r,R}} f(z) \, dz = \int_{[r,R] + S_R - [re^{2i\pi/q}, Re^{2i\pi/q}] - S_r} f(z) \, dz$$

de donde, usando (3) se obtiene:

$$\int_{[r,R]} f(z) \, dz - \int_{[re^{2i\pi/q}, Re^{2i\pi/q}]} f(z) \, dz = 2\pi i Res_f(e^{\pi i/n}) - \int_{S_R} f(z) \, dz + \int_{S_r} f(z) \, dz$$
 (4)

Parametrizando el segmento [r,R] con $z=x,\ r\leq x\leq R$ y el segmento $[re^{2i\pi/q},Re^{2i\pi/q}]$ con $z=x\,e^{2\pi i/q},\ r\leq x\leq R$, se obtiene:

$$\int_{[r,R]} f(z) \, dz = \int_r^R \frac{q x^{q-2}}{1 + x^q} \, dx$$

$$\int_{[re^{2i\pi/q}, Re^{2i\pi/q}]} f(z) dz = e^{-2\pi i/q} \int_r^R \frac{qx^{q-2}}{1+x^q} dx$$

(Hemos usado que $z^q = x^q e^{(2\pi i/q)q} = x^q$, $dz = e^{2\pi i/q} dx$, $z^{q-2} = x^{q-2} e^{-4\pi i/q}$.) Luego, sustituyendo en (4) resulta:

$$(1 - e^{-2\pi i/n}) \int_{r}^{R} \frac{qx^{q-2}}{1 + x^{q}} dx = 2\pi i Res_{f}(e^{\pi i/q}) - \int_{S_{R}} f(z) dz + \int_{S_{r}} f(z) dz$$
 (5)

Ahora tomaremos el límite cuando $R \to +\infty$, aplicando el lema de deformación de curvas (lema 11.5.1) a la integral de f a lo largo del arco de circunferencia S_R .

En efecto

$$\lim_{z \to \infty} z f(z) = \lim_{z \to \infty} \frac{q z^{q-1}}{1 + z^q} = 0$$

Luego, por el lema de deformación de curvas (lema 11.5.1), se deduce que

$$\lim_{R\to +\infty} \int_{S_R} f(z) \, dz = 0$$

Ahora tomaremos el límite cuando $r \to 0^+$, aplicando el lema de deformación de curvas (lema 11.5.2) a la integral de f a lo largo del arco de circunferencia S_r .

En efecto

$$\lim_{z \to 0} z f(z) = \lim_{z \to 0} \frac{q z^{q-1}}{1 + z^q} = 0$$

(Hemos usado que $|z^{q-1}|=|z|^{q-1}$ y que q>1). Luego, por el lema de deformación de curvas (lema 11.5.2), se deduce que

$$\lim_{r \to 0^+} \int_{S_r} f(z) \, dz = 0$$

Sustituyendo en (5) cuando $R \to +\infty$ y $r \to 0^+$ resulta:

$$(1 - e^{2\pi i/q}) \int_0^{+\infty} \frac{qx^{q-2}}{1 + x^q} dx = 2\pi i Res_f(e^{\pi i/q}) \quad (6)$$

Ahora solo resta calcular el residuo de f en el polo $z_0 = e^{\pi i/q}$, que es un polo simple de f.

Primero veamos que z_0 es un polo simple de f. Para eso basta probar que $z_0 = e^{\pi i/q}$ es un cero simple de $1+z^q$. Existe un desarrollo en serie de potencias centrado en z_0 de $g(z)=1+z^q$ porque esta función es analítica en Ω . Llamemos $a_n, n \geq 0$ a los coeficientes de ese desarrollo. El orden del cero z_0 es el primer $k \geq 1$ tal que $a_k \neq 0$. Para probar que el orden de z_0 es 1, basta ver que $a_1 \neq 0$. Pero $a_1 = g'(z_0) = qz_0^{q-1}$. Como $|z_0| = 1$ se tiene $|a_1| = q|z_0|^{q-1} = q > 1 > 0$. Hemos terminado de probar que el polo $z_0 = e^{\pi i/q}$ de f es simple.

Aplicando la última afirmación de la proposición 15.1.4, se obtiene:

$$Res_f(e^{\pi i/q}) = \frac{1}{A} \text{ donde } A = \left(\frac{1+z^q}{qz^{q-2}}\right)'\Big|_{z=e^{\pi i/q}}$$

$$A = \frac{1}{q} \left(z^{2-q} + z^2\right)'\Big|_{z=e^{\pi i/q}} = (1/q)(2z + (2-q)z^{1-q})\Big|_{z=e^{\pi i/q}} = e^{\pi i/q}$$

$$Res_f(e^{\pi i/q}) = e^{-\pi i/q}$$

Sustituyendo en (6) se obtiene:

$$(1 - e^{-2\pi i/q}) \int_0^{+\infty} \frac{qx^{q-2}}{1 + x^q} dx = 2\pi i \cdot e^{-\pi i/q}$$

$$\int_0^{+\infty} \frac{qx^{q-2}}{1 + x^q} dx = \frac{2\pi i}{1 - e^{-2\pi i/q}} = \pi \cdot \frac{2i}{e^{\pi i/q} - e^{-\pi i/q}} = \frac{\pi}{\operatorname{sen}(\pi/q)} \quad \Box$$

Finalmente recordando que q = 1/p se concluye:

$$I = \frac{\pi}{\operatorname{sen}(p\pi)} \quad \Box$$

16.4. Otros ejemplos.

Ejercicio 16.4.1. a) Calcular

$$\int_{\gamma_R} \frac{e^{iz^2}}{1+z^4} \, dz$$

siendo $\gamma_R = [0, R] + S_R - [0, Ri]$, donde $S_R : z = Re^{it}$, $t \in [0, \pi/2]$, con R > 1.

- b) Probar que $|e^{iz^2}| \le 1$ para todo z en el primer cuadrante.
- c) Deducir que

$$\lim_{R \to +\infty} \int_{S_R} \frac{e^{iz^2}}{1+z^4} \, dz = 0$$

d) Calcular

$$\int_0^{+\infty} \frac{\cos x^2 - \sin x^2}{1 + x^4} \, dx$$

Parte a) La función

$$f(z) = \frac{e^{iz^2}}{1+z^4}$$

es meromorfa en el plano complejo con polos simples que son las raíces cuartas de -1, es decir los cuatro puntos $z_k=e^{\pi i/4}e^{k\pi i/2}, \ k=0,1,2,3.$

En la región encerrada por la curva γ_R (hacer dibujo) hay uno solo de estos polos, que es $z_0 = e^{\pi i/4}$. La curva γ_R da una vuelta sola en sentido antihorario alrededor de este polo.

Por lo tanto aplicando el teorema de los residuos (ver teorema 15.1.5), se obtiene:

$$I = \int_{\gamma_R} f(z) dz = 2\pi i \operatorname{Res}_f(e^{i\pi/4}) \quad (1)$$

Para calcular este residuo aplicamos la última parte de la proposición 15.1.4, observando que el polo es simple:

$$Res_{f}(e^{\pi i/4}) = \frac{1}{A} \quad \text{donde} \quad A = \left(\frac{1+z^{4}}{e^{iz^{2}}}\right)' \Big|_{z=e^{\pi i/4}}$$

$$\left(\frac{1+z^{4}}{e^{iz^{2}}}\right)' = \frac{e^{iz^{2}}(4z^{3}-2iz(1+z^{4}))}{e^{2iz^{2}}}$$

$$A = \frac{4z^{3}-2iz(1+z^{4})}{e^{iz^{2}}}\Big|_{z=e^{\pi i/4}} = -4e \cdot e^{-i\pi/4}$$

(Hemos usado que $(e^{i\pi/4})^2 = i$, $(e^{i\pi/4})^3 = (e^{i\pi/4})^4 e^{-i\pi/4} = -e^{-i\pi/4}$.) Sustituyendo en (2) se obtiene:

$$Res_f(e^{\pi i/4}) = \frac{-e^{-1}}{4}e^{i\pi/4} = \frac{-\sqrt{2}e^{-1}}{8}(1+i)$$

(Hemos usado que $e^{i\pi/4} = (\sqrt{2}/2)(1+i)$.) Sustituyendo en (1) resulta:

$$I = \int_{\gamma_R} f(z) dz = 2\pi i \cdot \frac{-\sqrt{2}e^{-1}}{8} (1+i) = \frac{\sqrt{2}e^{-1}\pi}{4} (1-i).$$

Parte b) Tomando z = x + iy con $x \in y$ reales:

$$|e^{iz^2}| = |e^{i(x^2 - y^2 + 2ixy)}| = |e^{-2xy}e^{i(x^2 - y^2)}| = e^{-2xy} \le e^0 = 1$$

porque $xy \ge 0$ al estar z en el primer cuadrante.

Parte c) Hay que probar que

$$\lim_{R \to +\infty} \int_{S_R} \frac{e^{iz^2}}{1+z^4} \, dz = 0$$

No podemos aplicar el lema de deformación de curvas, con el enunciado tal como lo hemos dado en el lema 11.5.1), a la función

$$f(z) = \frac{e^{iz^2}}{1 + z^4}$$

porque cuando $z \to \infty$ no existe el límite de zf(z). (Ya que no existe el límite de e^{iz^2} .) Pero tomando z solamente en el primer cuadrante Q, obtenemos:

$$\lim_{z \to \infty, z \in Q} zf(z) = \lim_{z \to \infty} \frac{ze^{iz^2}}{1 + z^4} = 0 \quad (3)$$

porque por un lado e^{iz^2} está acotada en módulo, ya que $|e^{iz^2}| \le 1$ para todo $z \in Q$ (por lo probado en la parte b)); y por otro lado

$$\lim_{z \to \infty} \frac{z}{1 + z^4} = 0$$

Como el arco de circunferencia S_R está comprendido en el primer cuadrante Q y se cumple (3), se deduce que para todo $\epsilon>0$ existe $R_0>0$ tal que

$$R > R_0 \ z \in S_R \ \Rightarrow \ |z| > R_0 \ z \in Q \ \Rightarrow \ |zf(z)| < \epsilon$$

Luego, integrando sobre S_R se obtiene:

$$R > R_0 \implies \left| \int_{S_r} f(z) \, dz \right| \le \int_{S_R} |f(z)| \, |dz| =$$

$$= \int_{S_r} \frac{|zf(z)|}{|z|} \, |dz| = \int_{S_r} \frac{|zf(z)|}{R} \, |dz| < \epsilon \frac{\pi R}{R} = \epsilon \cdot \pi = \epsilon^* \quad (4)$$

donde, dado $\epsilon^* > 0$ se eligió $\epsilon = \epsilon^*/\pi$. Luego, (4) muestra que dado $\epsilon^* > 0$ existe $R_0 > 0$ tal que

$$R > R_0 \Rightarrow |\int_{S_R} f(z) dz| < \epsilon^*$$

Esto, por definición de límite, significa:

$$\lim_{R \to +\infty} \int_{S_R} f(z) \, dz = 0 \quad \Box$$

Parte d)

Consideremos la curva $\gamma_R = [0, R] + S_R + [Ri, 0]$ dada en la parte a). Sea

$$f(z) = \frac{e^{iz^2}}{1+z^4}$$

Por el resultado obtenido en la parte a) tenemos:

$$\int_{2R} f(z) dz = \frac{\sqrt{2}e^{-1}\pi}{4} (1 - i) \quad (5)$$

Además, por construcción de la curva γ_R se cumple:

$$\int_{\gamma_R} f(z) \, dz = \int_{[Ri,0]+[0,R]+S_R} f(z) \, dz$$

Luego, usando (5) se deduce que:

$$\int_{-[0,Ri]+[0,R]} f(z) dz = \frac{\sqrt{2}e^{-1}\pi}{4} (1-i) - \int_{S_R} f(z) dz \quad (6)$$

Parametrizando el intervalo [0,R] con $z=x,\ 0\leq x\leq R$ y el intervalo [0,Ri] con $z=ix,\ 0\leq x\leq R$ se obtiene:

$$\int_{-[0,Ri]+[0,R]} f(z) dz = -i \int_0^R \frac{e^{-ix^2}}{1+x^4} dx + \int_0^R \frac{e^{ix^2}}{1+x^4} dx$$
 (7)

Sustituyendo $e^{-ix^2} = \cos(x^2) - i \sin(x^2)$, $e^{ix^2} = \cos(x^2) + i \sin(x^2)$, y tomando parte real en (7), resulta:

$$Re\left(\int_{-[0,Ri]+[0,R]} f(z) dz\right) = \int_0^R \frac{\cos(x^2) - \sin(x^2)}{1 + x^4} dx \quad (8)$$

Reuniendo (6) con (8) resulta:

$$\int_0^R \frac{\cos(x^2) - \sin(x^2)}{1 + x^4} dx = \frac{\sqrt{2}e^{-1}\pi}{4} - Re\left(\int_{S_R} f(z) dz\right)$$
(9)

Usando la parte c)

$$\lim_{R \to +\infty} \int_{S_R} f(z) \, dz = 0$$

Entonces, tomando límite en (9) cuando $R \to +\infty$ resulta:

$$\int_0^{+\infty} \frac{\cos(x^2) - \sin(x^2)}{1 + x^4} \, dx = \frac{\sqrt{2}e^{-1}\pi}{4} \quad \Box$$