# **Employee Attrition Prediction: Project Documentation**

## 1. Dataset Analysis

• <u>Loading Dataset</u>: The dataset "IBM HR Analytics Employee Attrition & Performance" is loaded using pandas' read csv function.

```
[ ] import pandas as pd

df = pd.read_csv("/content/IBM HR Analytics Employee Attrition & Performance.csv")
```

- Exploratory Data Analysis (EDA):
  - o head(): Displays the first few rows of the dataset.

| df. | head( | ()         |                   |           |                           |                  |           |                |               |
|-----|-------|------------|-------------------|-----------|---------------------------|------------------|-----------|----------------|---------------|
|     | Age   | Attrition  | BusinessTravel    | DailyRate | Department                | DistanceFromHome | Education | EducationField | EmployeeCount |
| 0   | 41    | Yes        | Travel_Rarely     | 1102      | Sales                     | 1                | 2         | Life Sciences  | 1             |
| 1   | 49    | No         | Travel_Frequently | 279       | Research &<br>Development | 8                | 1         | Life Sciences  | 1             |
| 2   | 37    | Yes        | Travel_Rarely     | 1373      | Research & Development    | 2                | 2         | Other          | 1             |
| 3   | 33    | No         | Travel_Frequently | 1392      | Research &<br>Development | 3                | 4         | Life Sciences  | 1             |
| 4   | 27    | No         | Travel_Rarely     | 591       | Research & Development    | 2                | 1         | Medical        | 1             |
| rc  | ws x  | 35 columns |                   |           |                           |                  |           |                |               |

o info(): Provides information about the dataset including data types and missing values.

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):
# Column
                           Non-Null Count Dtype
0 Age
                            1470 non-null int64
1 Attrition
                           1470 non-null object
2 BusinessTravel
                          1470 non-null object
3 DailyRate
                           1470 non-null int64
4 Department
                           1470 non-null object
   DistanceFromHome
                           1470 non-null
                                         int64
6 Education
                           1470 non-null int64
7 EducationField
                           1470 non-null object
8 EmployeeCount
                           1470 non-null int64
                           1470 non-null int64
   EmployeeNumber
9
10 EnvironmentSatisfaction 1470 non-null int64
```

o describe(): Generates summary statistics for numerical columns.

### df.describe()

|       | Age         | DailyRate   | DistanceFromHome | Education   | EmployeeCount | EmployeeNumber |
|-------|-------------|-------------|------------------|-------------|---------------|----------------|
| count | 1470.000000 | 1470.000000 | 1470.000000      | 1470.000000 | 1470.0        | 1470.000000    |
| mean  | 36.923810   | 802.485714  | 9.192517         | 2.912925    | 1.0           | 1024.865306    |
| std   | 9.135373    | 403.509100  | 8.106864         | 1.024165    | 0.0           | 602.024335     |
| min   | 18.000000   | 102.000000  | 1.000000         | 1.000000    | 1.0           | 1.000000       |
| 25%   | 30.000000   | 465.000000  | 2.000000         | 2.000000    | 1.0           | 491.250000     |
| 50%   | 36.000000   | 802.000000  | 7.000000         | 3.000000    | 1.0           | 1020.500000    |
| 75%   | 43.000000   | 1157.000000 | 14.000000        | 4.000000    | 1.0           | 1555.750000    |
| max   | 60.000000   | 1499.000000 | 29.000000        | 5.000000    | 1.0           | 2068.000000    |

8 rows × 26 columns

o isnull().sum(): Calculates the number of missing values in each column.

| Age                     | 0 |
|-------------------------|---|
| Attrition               | 0 |
| BusinessTravel          | 0 |
| DailyRate               | 0 |
| Department              | 0 |
| DistanceFromHome        | 0 |
| Education               | 0 |
| EducationField          | 0 |
| EmployeeCount           | 0 |
| EmployeeNumber          | 0 |
| EnvironmentSatisfaction | 0 |
| Gender                  | 0 |
| HourlyRate              | 0 |
| JobInvolvement          | 0 |
| JobLevel                | 0 |
| JobRole                 | 0 |
| JobSatisfaction         | 0 |
| MaritalStatus           | 0 |
| MonthlyIncome           | 0 |
| MonthlyRate             | 0 |
| NumCompaniesWorked      | 0 |
| Over18                  | 0 |
| OverTime                | 0 |

o Number of unique values in each column is printed.

```
print("Number of unique values in each column")
for column in df.columns:
    print(f"{column}: {df[column].nunique()}")
Number of unique values in each column
Age: 43
Attrition: 2
BusinessTravel: 3
DailyRate: 886
Department: 3
DistanceFromHome: 29
Education: 5
EducationField: 6
EmployeeCount: 1
EmployeeNumber: 1470
EnvironmentSatisfaction: 4
Gender: 2
HourlyRate: 71
JobInvolvement: 4
JobLevel: 5
JobRole: 9
JobSatisfaction: 4
MaritalStatus: 3
MonthlyIncome: 1349
MonthlyRate: 1427
NumCompaniesWorked: 10
Over18: 1
OverTime: 2
PercentSalaryHike: 15
PerformanceRating: 2
RelationshipSatisfaction: 4
StandardHours: 1
StockOptionLevel: 4
TotalWorkingYears: 40
TrainingTimesLastYear: 7
WorkLifeBalance: 4
```

#### • <u>Data Preprocessing</u>:

- We notice that 'EmployeeCount', 'Over18', 'StandardHours' have only one unique values and 'EmployeeNumber' has 1470 unique values. This features aren't useful for us, So we are going to drop those columns.
- Non-essential columns ('EmployeeCount', 'EmployeeNumber', 'Over18', 'StandardHours') are dropped.

```
df.drop(['EmployeeCount', 'EmployeeNumber', 'Over18', 'StandardHours'], axis="columns", inplace=True)
```

- One-hot encoding is performed for categorical variables.
- o Label encoding is applied to the 'Attrition' column.
- o Numeric and categorical columns are segregated.

```
# Perform one-hot encoding for categorical variables
df_encoded = pd.get_dummies(df)
object_col = []
for column in df.columns:
    if df[column].dtype == object and len(df[column].unique()) <= 30:</pre>
        object_col.append(column)
        print(f"{column} : {df[column].unique()}")
        print(df[column].value_counts())
        print("===
object_col.remove('Attrition')
Attrition : ['Yes' 'No']
Attrition
       1233
        237
Yes
Name: count, dtype: int64
BusinessTravel : ['Travel_Rarely' 'Travel_Frequently' 'Non-Travel']
BusinessTravel
Travel_Rarely
                      1043
Travel_Frequently
Non-Travel
                       150
Name: count, dtype: int64
Department : ['Sales' 'Research & Development' 'Human Resources']
Research & Development
                           961
Sales
Human Resources
Name: count, dtype: int64
EducationField: ['Life Sciences' 'Other' 'Medical' 'Marketing' 'Technical Degree'
 'Human Resources']
EducationField
         len(object_col)
         7
         from sklearn.preprocessing import LabelEncoder
         label = LabelEncoder()
         df["Attrition"] = label.fit_transform(df.Attrition)
   disc_col = []
   for column in df.columns:
      if df[column].dtypes != object and df[column].nunique() < 30:
    print(f"{column} : {df[column].unique()}")</pre>
          disc_col.append(column)
          print('
   disc_col.remove('Attrition')
   Attrition : [1 0]
   DistanceFromHome : [ 1 8 2 3 24 23 27 16 15 26 19 21 5 11 9 7 6 10 4 25 12 18 29 22
   14 20 28 17 13]
   Education : [2 1 4 3 5]
   EnvironmentSatisfaction : [2 3 4 1]
   JobInvolvement : [3 2 4 1]
   JobLevel : [2 1 3 4 5]
   JobSatisfaction : [4 2 3 1]
   NumCompaniesWorked : [8 1 6 9 0 4 5 2 7 3]
   PercentSalaryHike : [11 23 15 12 13 20 22 21 17 14 16 18 19 24 25]
```

```
cont_col = []
for column in df.columns:
    if df[column].dtypes != object and df[column].nunique() > 30:
        print(f"{column} : Minimum: {df[column].min()}, Maximum: {df[column].max()}")
        cont_col.append(column)
        print("========="")
```

#### Data Visualization:

- O Histogram of 'Age', bar plot of 'BusinessTravel', and box plot of 'MonthlyIncome' across 'JobRole' are plotted.
- Histogram of 'YearsAtCompany' with respect to 'Attrition' is visualized.
- o Correlation heatmap of numerical features is generated.

```
import matplotlib.pyplot as plt
import seaborn as sns

# Histogram of Age
plt.figure(figsize=(10, 6))
sns.histplot(data=df, x='Age', bins=20, kde=True)
plt.title('Distribution of Age')
plt.xlabel('Age')
plt.ylabel('Gount')
plt.show()
```



```
# Bar plot of BusinessTravel
plt.figure(figsize=(10, 6))
sns.countplot(data=df, x='BusinessTravel')
plt.title('Distribution of Business Travel')
plt.xlabel('Business Travel')
plt.ylabel('Count')
plt.show()
```



```
# Box plot of MonthlyIncome across JobRole
plt.figure(figsize=(12, 8))
sns.boxplot(data=df, x='JobRole', y='MonthlyIncome')
plt.xticks(rotation=45)
plt.title('Monthly Income across Job Roles')
plt.xlabel('Job Role')
plt.ylabel('Monthly Income')
plt.show()
```



```
# Histogram of YearsAtCompany with respect to Attrition
plt.figure(figsize=(10, 6))
sns.histplot(data=df, x='YearsAtCompany', hue='Attrition', bins=20, kde=True)
plt.title('Distribution of Years at Company with respect to Attrition')
plt.xlabel('Years at Company')
plt.ylabel('Count')
plt.show()
```



```
# Drop non-numeric columns
df_numeric = df.select_dtypes(include=['number'])
# Create the heatmap
plt.figure(figsize=(14, 10))
sns.heatmap(df_numeric.corr(), annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Heatmap')
plt.show()
```



### 2. Model Development

#### • Feature Selection:

o Features with low correlation to the target variable 'Attrition' are removed.

```
import numpy as np

feature_correlation = data.drop('Attrition', axis=1).corrwith(data.Attrition).sort_values()
model_col = feature_correlation[np.abs(feature_correlation) > 0.02].index
len(model_col)
```

92

#### • <u>Model Training</u>:

- o Data is split into training and testing sets.
- o Standard scaling is applied to the features.
- Logistic Regression and AdaBoost classifiers are trained on the dataset.

```
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
X = data.drop('Attrition', axis=1)
y = data.Attrition
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42,
                                                    stratify=y)
scaler = StandardScaler()
X train std = scaler.fit transform(X train)
X_test_std = scaler.transform(X_test)
X std = scaler.transform(X)
def feature imp(df, model):
    fi = pd.DataFrame()
    fi["feature"] = df.columns
    fi["importance"] = model.feature importances
    return fi.sort values(by="importance", ascending=False)
y_test.value_counts()[0] / y_test.shape[0]
```

0.8390022675736961

```
stay = (y train.value counts()[0] / y train.shape)[0]
leave = (y train.value counts()[1] / y train.shape)[0]
print("=======TRAIN=======")
print(f"Staying Rate: {stay * 100:.2f}%")
print(f"Leaving Rate: {leave * 100 :.2f}%")
stay = (y_test.value_counts()[0] / y_test.shape)[0]
leave = (y_test.value_counts()[1] / y_test.shape)[0]
print("=======TEST=======")
print(f"Staying Rate: {stay * 100:.2f}%")
print(f"Leaving Rate: {leave * 100 :.2f}%")
========TRAIN========
Staying Rate: 83.87%
Leaving Rate: 16.13%
========TEST=========
Staying Rate: 83.90%
Leaving Rate: 16.10%
```

#### 3. Model Evaluation

- Evaluation Metrics:
  - Confusion matrix, accuracy score, precision, recall, and F1-score are computed for both training and testing sets.
- ROC AUC Scores:
  - ROC AUC scores are calculated for Logistic Regression and AdaBoost classifiers.

```
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report, roc_auc_score

def evaluate(model, X_train, X_test, y_train, y_test):
    y_test_pred = model.predict(X_test)
    y_train_pred = model.predict(X_train)

print("TRAINIG RESULTS: \n==============""")
    clf_report = pd.DataFrame(classification_report(y_train, y_train_pred, output_dict=True))
    print(f"CONFUSION MATRIX:\n{confusion_matrix(y_train, y_train_pred)}")
    print(f"ACCURACY SCORE:\n{accuracy_score(y_train, y_train_pred):.4f}")
    print("TESTING RESULTS: \n================""")
    clf_report = pd.DataFrame(classification_report(y_test, y_test_pred, output_dict=True))
    print(f"CONFUSION MATRIX:\n{confusion_matrix(y_test, y_test_pred)}")
    print(f"ACCURACY SCORE:\n{accuracy_score(y_test, y_test_pred):.4f}")
    print(f"CLASSIFICATION REPORT:\n{clf_report}")
```

```
from sklearn.linear_model import LogisticRegression
                 lr clf = LogisticRegression(solver='liblinear', penalty='l1')
                 lr_clf.fit(X_train_std, y_train)
                 evaluate(lr_clf, X_train_std, X_test_std, y_train, y_test)
                 TRAINIG RESULTS:
                 -----
                 CONFUSION MATRIX:
                 [[849 14]
                  [ 59 107]]
                 ACCURACY SCORE:
                 0.9291
                 CLASSIFICATION REPORT:
                                                                 macro avg weighted avg
                                                 1 accuracy
                 precision
                              0.935022
                                         0.884298 0.929057
                                                                 0.909660
                                                                                0.926839
                 recall
                              0.983778
                                         0.644578 0.929057
                                                                  0.814178
                                                                                0.929057
                 f1-score
                              0.958780
                                          0.745645 0.929057
                                                                  0.852212
                                                                                0.924397
                 support
                            863.000000 166.000000 0.929057 1029.000000 1029.000000
                 TESTING RESULTS:
                 CONFUSION MATRIX:
                [[348 22]
[43 28]]
                 ACCURACY SCORE:
                 0.8526
                 CLASSIFICATION REPORT:
                                                1 accuracy
                                                               macro avg weighted avg
                 precision
                              0.890026
                                         0.560000 0.852608
                                                                0.725013
                                                                               0.836892
                                         0.394366 0.852608
                                                                0.667453
                 recall
                              0.940541
                                                                               0.852608
                              0.914586
                                         0.462810 0.852608
                                                                0.688698
                                                                               0.841851
                 f1-score
                            370.000000 71.000000 0.852608 441.000000
                                                                             441.000000
                 support
scores_dict = {
   'Logistic Regression': {
      'Train': roc_auc_score(y_train, lr_clf.predict(X_train)),
      'Test': roc_auc_score(y_test, lr_clf.predict(X_test)),
/usr/local/lib/python3.10/dist-packages/sklearn/base.py:432: UserWarning: X has feature names, but LogisticRegression was fitted without feature names
```

}

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:432: UserWarning: X has feature names, but LogisticRegression was fitted without feature names warnings.warn(

```
from sklearn.ensemble import AdaBoostClassifier
ab clf = AdaBoostClassifier()
ab_clf.fit(X_train, y_train)
evaluate(ab_clf, X_train, X_test, y_train, y_test)
TRAINIG RESULTS:
CONFUSION MATRIX:
[[952 26]
 [101 97]]
ACCURACY SCORE:
0.8920
CLASSIFICATION REPORT:
                              1 accuracy
                                             macro avg weighted avg
            0.904084
                       0.788618 0.892007
                                              0.846351
precision
                                                            0.884643
            0.973415
                        0.489899 0.892007
                                              0.731657
                                                            0.892007
recall
            0.937469
                        0.604361 0.892007
                                              0.770915
                                                            0.881385
f1-score
         978.000000 198.000000 0.892007 1176.000000
                                                        1176.000000
TESTING RESULTS:
_____
CONFUSION MATRIX:
[[233 22]
[ 28 11]]
ACCURACY SCORE:
0.8299
CLASSIFICATION REPORT:
                   0
                             1 accuracy
                                           macro avg weighted avg
precision
            0.892720
                       0.333333
                                0.829932
                                            0.613027
                                                          0.818516
recall
            0.913725
                      0.282051 0.829932
                                            0.597888
                                                          0.829932
f1-score
            0.903101
                      0.305556 0.829932
                                            0.604328
                                                          0.823835
          255.000000 39.000000 0.829932 294.000000
                                                        294.000000
support
```

## 4. Optimization Techniques

- Further Evaluation:
  - Precision-recall curves and ROC curves are plotted to visualize model performance.
- Model Comparison:
  - Performance metrics and ROC AUC scores are compared between the Logistic Regression and AdaBoost models.
- <u>Model Scores Visualization</u>:
  - o Model scores are visualized using a horizontal bar plot.

```
from sklearn.metrics import precision_recall_curve, roc_curve
def plot_precision_recall_vs_threshold(precisions, recalls, thresholds):
    plt.plot(thresholds, precisions[:-1], "b--", label="Precision")
    plt.plot(thresholds, recalls[:-1], "g--", label="Recall")
    plt.xlabel("Threshold")
    plt.legend(loc="upper left")
    plt.title("Precision/Recall Tradeoff")
def plot_roc_curve(fpr, tpr, label=None):
    plt.plot(fpr, tpr, linewidth=2, label=label)
    plt.plot([0, 1], [0, 1], "k--")
    plt.axis([0, 1, 0, 1])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('ROC Curve')
precisions, recalls, thresholds = precision_recall_curve(y_test, lr_clf.predict(X_test_std))
plt.figure(figsize=(14, 25))
plt.subplot(4, 2, 1)
plot_precision_recall_vs_threshold(precisions, recalls, thresholds)
plt.subplot(4, 2, 2)
plt.plot(precisions, recalls)
plt.xlabel("Precision")
plt.ylabel("Recall")
plt.title("PR Curve: precisions/recalls tradeoff");
plt.subplot(4, 2, 3)
fpr, tpr, thresholds = roc_curve(y_test, lr_clf.predict(X_test_std))
plot_roc_curve(fpr, tpr)
```



```
precisions, recalls, thresholds = precision_recall_curve(y_test, ab_clf.predict(X_test))
plt.figure(figsize=(14, 25))
plt.subplot(4, 2, 1)
plot_precision_recall_vs_threshold(precisions, recalls, thresholds)

plt.subplot(4, 2, 2)
plt.plot(precisions, recalls)
plt.xlabel("Precision")
plt.ylabel("Recall")
plt.title("PR Curve: precisions/recalls tradeoff");

plt.subplot(4, 2, 3)
fpr, tpr, thresholds = roc_curve(y_test, ab_clf.predict(X_test))
plot_roc_curve(fpr, tpr)
```



```
ml_models = {
    'Logistic Regression': lr_clf,
    'AdaBoost': ab_clf
}

for model in ml_models:
    print(f"{model.upper():{30}} roc_auc_score: {roc_auc_score(y_test, ml_models[model].predict(X_test)):.3f}")
```

LOGISTIC REGRESSION roc\_auc\_score: 0.557
ADABOOST roc\_auc\_score: 0.598

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:432: UserWarning: X has feature names, but LogisticRegression was fitted without feature names warnings.warn(

```
# Convert scores_dict to a DataFrame
scores_df = pd.DataFrame(scores_dict)

# Create a horizontal bar plot using Matplotlib
plt.figure(figsize=(10, 6))
scores_df.plot(kind='barh', figsize=(15, 8))
plt.xlabel('Score')
plt.ylabel('Model')
plt.title('Model Scores')
plt.show()
```



## 5. Summary

### • Findings:

- The dataset is imbalanced with approximately 84% of employees staying and 16% leaving.
- o Both Logistic Regression and AdaBoost models achieved reasonable accuracy, but their ROC AUC scores suggest room for improvement.

### • Challenges:

o Dealing with imbalanced data and interpreting complex model results were major challenges encountered.

#### • Recommendations:

 Addressing imbalanced data, exploring feature importance, and further evaluation of models are recommended for improving performance and insights.