Documentation

Le package Preambule.sty¹ ou HTMLPreambule.sty² doit être chargé pour pouvoir utiliser les autres qui sont donnés ci-dessous.

Les fichiers .sty doivent être placés dans le même répertoire que le fichier .tex qui est utilisé.

Pour charger un package (par exemple NomDuPackage.sty), il faut utiliser la commande \usepackage{nomdupackage} avant \begin{document}.

En utilisant Preambule.sty ou HTMLPreambule.sty, les packages suivant seront chargés :

- → \usepackage[utf8]{inputenc}
- → \usepackage[french]{babel}
- $\rightarrow \text{\ } \text{$
- → \usepackage{amsmath}
- → \usepackage{amsfonts, amssymb} (sans l'option nofont)
- → \usepackage{stmaryrd} (sans l'option nofont)
- → \usepackage{adjustbox} (pour HTMLPreambule.sty)
- → \usepackage{xcolor} (pour Preambule.sty)

Il est nécessaire que cm-super soit installé (disponible sur CTAN) pour pouvoir utiliser Preambule.sty. Pour ne pas avoir à installer cm-super, il est possible d'utiliser \usepackage[nocmssp]{premabule}.

Lors de l'utilisation de BEAMER (avec une police sans-sérif), il est possible d'utiliser les commandes avec les polices sans-serif, sauf pour les lettres grecques $(\Omega, \phi, \varphi, \ldots)$, la redéfinition du ℓ en mathématiques, les alphabets \mathcal et \mathbb ainsi que les symboles.

Il est possibles de changer les polices de caractères/symboles en important des packages avant \usepackage{preambule} (ou htmlpreambule et les options décrites après sont disponibles avec les deux sauf indication du contraire). Il peut être nécessaire de placer l'importation avant d'imorter les autres modules décrit ci-dessous.

Il n'est pas possible d'utiliser en simultané le package Dsfont.sty disponible sur CTAN et Dsft.sty décrit ci-dessous. De plus, la commande \1 ne sera pas modifiée si un package définissant \mathbb{1} est importé. Il est alors possible de redéfinir la commande en utilisant \newcommand\1[1]{\mathbb{1}_{#1}} (si Dsft.sty n'est pas importé) ou \renewcommand\1[1]{\mathbb{1}_{#1}}.

Il est possible de redéfinir le ℓ en l avec \usepackage [noell] {premabule}.

^{1.} Pour utiliser avec BEAMER

^{2.} Pour les documents autres que BEAMER

Pour utiliser des commandes avec des parenthèses automatiques (comme pour sup), il est possible de faire³:

\let\oldsup\sup

\l et \r sont définis dans Preambule.sty et HTMLPreambule.sty.

La commande $\sum_{x^2<2\right}\$ donne : $\sup(\{x\in\mathbb{Q}\mid x^2<2\}).$

L'ensembles des titres des sections (et sous-sections si le fichier n'est pas déjà dans une section) de ce document sont des liens qui pointent vers les fichiers en ligne pour un téléchargement direct.

Il est possible de télécharger tous les packages automatiquement en exécutant le script <code>DownloadPackages.py</code> depuis la racine du dossier.

Il est aussi possible de télécharger la version la plus récente de ce fichier en cliquant sur le titre en page 1.

 $[\]it 3$. Cette commande est déjà définie dans Usuelles.sty

Table des matières

0	Documentation	1
1	Flashcards.py et Htmlcards.py	3
2	Preambule.sty et HTMLPreambule.sty	6
3	AL.sty	8
4	Analyse.sty	10
5	Arithmetique.sty	13
6	BigOperators.sty	14
7	Complexes.sty	16
8	Dsft.sty	17
9	Equivalents.sty	18
10	Footnotes.sty	19
11	Matrices.sty	20
12	Polynomes.sty	24
13	Probas.sty	25
14	Sffont.sty	26
15	Structures.sty	27
16	Tables.sty	28
17	Tools.sty	29
18	Topologie.sty	30
19	Trigo.sty	31
20	Usuelles.sty	32

1 Flashcards.py et Htmlcards.py

Les fichiers Flashcards.py et Htmlcards.py permettent d'exporter facilement des flashcards en .pdf et .svg (pour affichage dans le navigateur).

Pour pouvoir créer des fiches de révision, il faut mettre un fichier .txt (décrit plus bas) dans un dossier input et mettre les fichiers .sty nécessaires dans un dossier output.

1.1 Flashcards.py

Pour exporter la fiche fiche.txt, il faut soit lancer le fichier python et entrer le nom du fichier (fiche), soit utiliser la commande python Flashcards.py --file=fiche (ou python3), à laquelleil est possible de rajouter les paramètres optionnels --n=nombre (avec le nombre d'exemplaires), --dest=dossier (avec le dossier où il faut mettre le .pdf produit) et --open=True/False (pour ouvrir le dossier où le .pdf est produit). Il est nécessaire d'avoir LATEX d'installé pour pouvoir lancer le script.

1.2 Htmlcards.py

Pour exporter la fiche fiche.txt, il faut soit lancer le fichier python et entrer le nom du fichier (fiche), soit utiliser la commande python Flashcards.py --file=fiche (ou python3), à laquelle il est possible de rajouter les paramètres optionnels --dest=dossier (avec le dossier où il faut mettre le .pdf produit) et --open=True/False (pour ouvrir le dossier où le .pdf est produit).

Modifier la valeur de --dest peut rendre inutilisable certaines fonctions liées au site pour visualiser les fiches.

Il est nécessaire d'avoir LATEX et dvisvgm d'installés pour pouvoir lancer le script.

1.3 Compilation en ligne

Il est possible de compiler les fiches de révisions avec Flashcards.py ou Htmlcards.py avec le site https://rfoxinter.github.io/revisions/flashcards/compilateur/.

Le site est actuellement en développement et il peut être nécessaire de rafraîchir la page si la compilation ne se lance pas.

Cependant, sur ce site, le package Dsft.sty ne marche pas. Pour compiler des fiches avec Flashcards.py, il est nécessaire de générer le fichier LATEX avec le site puis le charger dans un compilateur LATEX en ligne (comme overleaf) avec les packages nécessaires. La compilation avec Htmlcards.py étant plus complexe, il n'est actuellement pas possible de télécharger les fichiers LATEX générés par ce dernier.

1.4 Les options spéciales

Il est possible de compiler l'ensemble des fichiers .txt du dossier input en mettant __compile_all__ comme nom de fichier.

Il est également possible de recompiler les Flashcards en utilisant __recompile__ comme nom de fichier.

1.5 Les fiches .txt

Pour faire des fiches, il faut créer un fichier .txt de la forme

TITRE

Shuffle questions : True/False

Q/R & R/Q : True/False

PACKAGES & COMMANDES SUPPLÉMENTAIRES

QUESTION; ; RÉPONSE

. . .

QUESTION; ; RÉPONSE

Le titre doit être de la forme Thème -- Chapitre ou Chapitre. On peut aussi spécifier un titre racourci pour le nom du fichier avec Titre_raccourci!!ttleTitre classique où le titre raccourci ne peut pas contenir d'espaces ou de caractères spéciaux, et le titre classique étant de la forme des deux premiers.

La ligne 2 indique si le programme peut ou non mettre un ordre aléatoire pour les questions.

La ligne 3 indique si le programme peut échanger l'ordre des questions et des réponses pour les fiches. Avec cette option à True, il est possible de forcer une question à être avant la réponse en mettant !!fst devant la/les ligne(s) concernée(s).

Les packages et commandes supplémentaires (voir overleaf) doivent être placées sur une seule ligne ou dans un fichier .sty.

S'il y a une erreur lors de la compilation LATEX, le programme python affichera le message d'erreur affiché par LATEX.

Exemple de fiches: https://github.com/rfoxinter/revisions/tree/main/L3/input.

1.6 Visionner les flashcards en svg (Htmlcards)

Pour pouvoir visionner les flashcards exportées en svg, il faut disposer d'un serveur web (comme github avec github pages) sur lequel le programme va mettre le dossier généré par Htmlcards.py (on suppose que l'url est https://example.fr/dossier).

Il faut alors convertir l'url du dossier en base64 (cette conversion peut se faire sur le site https://www.base64encode.org/, avec la fonction btoa de JavaScript ou avec la fonction Python base64.b64encode) en enlevant les « = » à la fin. Dans l'exemple, en exécutant le code Python suivant

```
from base64 import b64encode # encoder en base64
from re import sub # remplacer tous les '=' finaux
url = "https://example.fr/dossier"
base64url = sub("=", "", b64encode(url.encode()).decode())
print(base64url)
on obtient aHROcHM6Ly9leGFtcGxlLmZyL2Rvc3NpZXI.
```

Il faut alors aller sur le site https://rfoxinter.github.io/revisions/flashcards/en rajoutant à la fin de l'url ?file=nom_du_dossier où le nom du dossier correspond à celui en base64.

Dans l'exemple, on obtient l'url suivante :

https://rfoxinter.github.io/revisions/flashcards/

?file=aHROcHM6Ly9leGFtcGx1LmZyL2Rvc3NpZXI

Il est sinon possible de mettre un lien vers un fichier téléchargé et hébergé sur un serveur (encodé en base64, et sans les « = » finaux) en ajoutant ?card=nom_du_fichier à la fin de l'url.

1.7 Télécharger des Htmlcards depuis le site

Il est possible de faire en sorte que les cartes téléchargées puissent être mises à jour en ajoutant un fichier cards.txt à la racine du dossier des Htmlcards.

Ce fichier doit contenir en première ligne la racine à partir de laquelle sont données les url des Htmlcards (si l'url n'est pas absolue), puis plusieurs lignes (2 pour chacune des Htmlcards) contenant en premier le chemin vers la Htmlcard (relatif ou absolu, sachant que la racine est https://rfoxinter.github.io/revisions/flashcards/), suivi de la date de dernière mise à jour du dossier de la Htmlcard concernée (au format %YYYY%MM%dd%hh%mm%ss (année, mois, jour, heure, minutes, secondes)).

Exemple: https://rfoxinter.github.io/revisions/L3/flashcards/cards.txt. Un exemple de fichier python générant un tel fichier est disponible à l'adresse suivante: https://rfoxinter.github.io/revisions/CardsList.py.

2 Preambule.sty et HTMLPreambule.sty

2.1 Commandes communes

Commande	Résultat
\14	(
\r5)
\11b ⁶	
\rrb ⁷	
\oderse	$\frac{a}{b}$
\frac{a}{b} ⁹	$\frac{a}{b}$
110	ℓ
$\operatorname{loldvec}\{x\}^{11}$	\vec{x}
\vec{x}	\overrightarrow{x}
\overrightarrow{AB} ¹²	\overrightarrow{AB}
\fakebold ¹³	Permet de produire des caractères mathématiques en gras

2.2 L'option nofont

Si nofont est utilisé et que la police utilisée n'a pas de commande \llbracket et \rrbracket, il faut mettre les commandes \newcommand{\llbracket}{\commandellb} et \newcommande\rrbracket}{\commanderrb} avant \usepackage{preambule}. Dans ces commandes, \commandellb correspond à la commande pour obtenir [et \commanderrb correspond à la commande pour obtenir]]. Ces deux commandes doivent être remplacées par « . » si la police utilisée n'a pas ce caractère : \newcommand{\llbracket}{.} (idem pour \llbracket).

- 4. Correspond à la commande usuelle \left(
- 5. Correspond à la commande usuelle \right)
- 6. Correspond à la commande usuelle \left\llbracket

Ce caractère n'est pas modifié avec l'option nofont

7. Correspond à la commande usuelle \right\rrbracket

Ce caractère n'est pas modifié avec l'option nofont

- 8. Correspond à la commande usuelle \frac
- g. Correspond à la commande usuelle \dfrac

Il est possible de changer le type de fraction par défaut (entre \frac et \dfrac) avec la commande \toggledfrac)

- 10. Correspond à la commande usuelle \ell
- Le ℓ peut être redéfini en l avec \usepackage[noell]{premabule}
- 11. Correspond à la commande usuelle \vec
- 12. Le résultat est le même qu'avec \vec
- 13. Il est par exemple possible de produire $\mathbb R$ avec $\frac{n}{\mathbb R}$

Il est recommandé de n'utiliser cette commande que lorsque les caractères en gras ne sont pas disponibles avec \boldmath

Exemple de comparaison \boldmath - \fakebold avec le caractère normal : \mathcal{MMM}

2.3 ${\bf Commandes\ de\ Preambule.sty}$

Commande	Résultat
\slideq{Q1}{1} ¹⁴	Question 1
\slider{R1}{1} ¹⁵	Réponse 1

^{14.} Cette commande doit être utilisée entre \begin{document} et \end{document} 15. Cette commande doit être utilisée entre \begin{document} et \end{document}

3 AL.sty

Commande	Résultat
\oldvect	Vect
\vect{E}	Vect(E)
\al{E}{}	$\mathcal{L}(E)$
\al[c]{E}{F}	$\mathcal{L}_c(E,F)$
\oplus ¹⁶	\oplus
\otimes ¹⁷	⊗
\oldgl	GL
\gl{E}	$\mathrm{GL}(E)$
\olddim ¹⁸	dim
\dim{E}	$\dim(E)$
\oldrg	rg
\rg{u}	$\operatorname{rg}(u)$
\oldtr	${ m tr}$
\tr{u}	$\operatorname{tr}(u)$
\oldmat	Mat
$\lambda_{u}_{mathcal\{B\}}_{ig}$	$\mathrm{Mat}_{\mathcal{B}}(u)$
$\all u \in \mathbb{B} \$	$\mathrm{Mat}_{\mathcal{B},\mathcal{C}}(u)$
\lc ²⁰	[
\rc ²¹]
\oldsl	SL
\s1{E}	$\mathrm{SL}(E)$
\sl[n]{\mathbb{K}}	$\mathrm{SL}_n(\mathbb{K})$
\oldorth	O
\orth{n}	$\mathrm{O}(n)$
\orth[n]{\mathbb{R}}	$\mathrm{O}_n(\mathbb{R})$
\oldso	SO
\so{n}	$\mathrm{SO}(n)$
\so[n]{\mathbb{R}}	$\mathrm{SO}_n(\mathbb{R})$
\alsym{E}	S(E)
\alsym[+]{E}	$S^+(E)$

^{16.} Le \oplus utilisé est celui de stmaryrd

Pour récupérer celui de LATEX, il est possible d'utiliser la commande $\label{letoplus}$ après $\label{letoplus}$ après $\label{letoplus}$

Comparaison \LaTeX - stmaryrd avec le plus normal $\oplus \oplus +$

Ce caractère n'est pas modifié avec l'option nofont

17. Le \otimes utilisé est celui de stmaryrd

Pour récupérer celui de LATEX, il est possible d'utiliser la commande \let\otimes\oldotimes après \usepackage{al}

Comparaison \LaTeX - stmaryrd avec le fois normal $\otimes \otimes \times$

Ce caractère n'est pas modifié avec l'option nofont

- 18. Correspond à la commande usuelle \dim
- $\it ig.$ Ne pas confondre cette commande avec \mat de Matrices.sty
- 20. Correspond à la commande usuelle \left[
- 21. Correspond à la commande usuelle \right]

\alant{E}	A(E)
\oldsp	sp
\sp{u}	$\operatorname{sp}(u)$
\sp[\mathbb{C}]{u}	$\operatorname{sp}_{\mathbb{C}}(u)$
\id	id
\transp{u}	tu
\discr[\mathcal{B}]{q}	$\operatorname{discr}_{\mathcal{B}}(q)$
\appl{\id}{E}{E}{x}{x}	$id: E \longrightarrow E$ $x \longmapsto x$
\nappl{E}{\mathbb{R}}{x}{1(x)}	$E \longrightarrow \mathbb{R}$ $x \longmapsto \ell(x)$

4 Analyse.sty

Le package BigOperators.sty sera importé automatiquement avec Analyse.sty.

Commande	Résultat
\dd ²²	d
\intd ²³	d
{f(x)}	$\frac{\frac{\mathrm{d}}{\mathrm{d}x}(f(x))}{\frac{\mathrm{d}^n}{(f(x))}}$
\der[n]{}{f(x)}	$\frac{\mathrm{d}^n}{\mathrm{d}x^n}(f(x))$
\der[][t]{f(t)}{}	$\mathrm{d}f(t)$
\der[n][t]{f}{t} ²⁴	$\frac{\frac{\mathrm{d}f(t)}{\mathrm{d}t}}{\frac{\mathrm{d}^n f}{\mathrm{d}t^n}(t)}$
\slantpartial ²⁵	∂
{f(x,y)}26	$\frac{\partial}{\partial x}(f(x,y))$
\mpder[x,y,z]{}{f(x,y,z)} 27	$\frac{\frac{\partial}{\partial x}(f(x,y))}{\frac{\partial^3}{\partial x \partial y \partial z}(f(x,y,z))}$
\mpder[x_1,x_2,x_3,x_3]{f(X)}{} ²⁸	$\frac{\partial^4 f(X)}{\partial x_1 \partial x_2 \partial x_3^2}$
\oldint ²⁹	\int
\int{f}	$\int (f)$
\int[x]{f(x)}	$\int (f(x)) \mathrm{d}x$
\int[t][{[a,b]}]{f(t)}30	$\int_{[a,b]} (f(t)) \mathrm{d}t$
\int[t][a][b]{f(t)}	$\int_{a}^{b} (f(t)) \mathrm{d}t$

^{22.} d pour les différentielles

Il est possible de rétablir le symbole italique ∂ pour les commandes avec le symbole ∂ en utilisant \resetpartial après l'import de ce package

Cette option ne marche qu'avec PDFLATEX

- $\it 26.$ On peut appliquer les mêmes arguments optionnels que pour \der et les arguments obligatoires sont les mêmes que pour \der
- 27. Sans argument optionnel, \mpder agit comme \pder et les arguments obligatoires sont les mêmes que pour \der
- 28. \mpder peut ne pas marcher avec des variables de plusieurs lettres

Si la commande n'affiche pas le résultat attendu avec des variables de plusieurs lettres, il faut utiliser \usepackage[dvar]{analyse}

Cette option importe automatiquement pgffor (qui est utilisé par TikZ et PGF)

- zg. Correspond à la commande usuelle $\setminus \mathtt{int}$
- 30. L'argument [a,b] doit être mis entre accolades pour être traîté correctement par IATEX

^{23.} d pour les différentielles, avec l'espacement d'un opérateur à gauche pour les intégrales

²⁴. Le parenthésage de l'expression dans le second argument se fait automatiquement si ce dernier est non vide

^{25.} Correspond à la commande usuelle \partial

\int[][a][b]{f'}	$\int_a^b (f')$
\int[x][][\mu]{f(x)}	$\int (f(x))\mu(\mathrm{d}x)$
\altint{\iint}[x,y]{f(x,y)}	$\iint (f(x,y)) \mathrm{d}x \mathrm{d}y$
$\label{lint} $$ \left[x,y\right][][] $$ [\mu\cot mes\nu]{f(x,y)}^{31}$$	$\iint (f(x,y)) \mu \otimes \nu(\mathrm{d}x\mathrm{d}y)$
\otimes ³²	⊗
\eval[{[a,b]}]{f(t)}	$[f(t)]_{[a,b]}$
\eval[a][b]{f(t)}	$[f(t)]_a^b$
\serie{a_n}33	$\sum a_n$
\oldesc	Esc
\esc{\left[a,b\right]}	$\operatorname{Esc}([a,b])$
\esc[+]{f}	$\operatorname{Esc}_+(f)$
\oldfnint	Int
\fnint{[a,b]}	$\operatorname{Int}([a,b])$
\anrm{f}	$\ f\ _{\infty}$
\anrm[1]{g}	$\ g\ _1$
\oldva	VA
\va{u}	VA(u)
\oldepi	Epi
\epi{f}	$\mathrm{Epi}(f)$
\id	id
\appl{\id}{I}{I}{x}{x}	$id: I \longrightarrow I$
**	$x \longmapsto x$
\nappl{I}{I}{x}{f(x)}	$I \longrightarrow I$
(mappe (1) (1) (1) (1 (m))	$x \longmapsto f(x)$

4.1 L'option nopar

Si nopar est utilisé, les commandes comme \der, \pder, \mpder, et \int n'ont plus de parenthèses automatiques. Avec cette option, \der{}{f(x)} produit « $\frac{\mathrm{d}}{\mathrm{d}x}f(x)$ »; \int[x]{f(x)} produit « $\int f(x) \, \mathrm{d}x$ ».

Cette option importe automatiquement pgffor (qui est utilisé par TikZ et PGF)

Pour récupérer celui de LATEX, il est possible d'utiliser la commande \let\otimes\oldotimes après \usepackage{al}

Comparaison LATeX - stmaryrd avec le fois normal $\otimes \otimes \times$

Ce caractère n'est pas modifié avec l'option nofont

^{31. \}altint peut ne pas marcher avec des variables de plusieurs lettres

Si la commande n'affiche pas le résultat attendu avec des variables de plusieurs lettres, il faut utiliser \usepackage[dvar]{analyse}

^{32.} Le \otimes utilisé est celui de stmaryrd

^{33.} Comme BigOperators.sty est chargé, la commande \sum est remplacée et il est nécessaire de taper \oldsum pour obtenir \sum

Il est possible de changer cette option au cours du document en utilisant la commande \toggleanalysepar.

4.2 L'option nodisplay

Si nodisplay est utilisé, les commandes ne sont plus affichées en style \displaystyle mais avec le style par défaut. Avec cette option, $\def{f(x)}$ produit $\def{f(x)}$ produit $\def{f(x)}$ produit $\def{f(x)}$ produit $\def{f(x)}$ produit $\def{f(x)}$ of $\def{f(x)}$ produit \d

Il est possible de changer cette option au cours du document en utilisant la commande \toggleanalysedisplay.

4.3 L'option limits

Si limits est utilisé, les indices des commandes se placent comme avec \limits. Avec cette option, $\inf[x][X]\{f(x)\}$ produit « $\int_{X} (f(x)) dx$ ».

Il est possible de changer cette option au cours du document en utilisant la commande \toggleanalyselimits.

4.4 La commande \autoanalyselimits

Il est possible de remettre le comportement automatiques de LATEX pour l'affichage des indices avec \autoanalyselimits. La commande \toggleanalyselimits remettra alors le comportement par défaut du package (donc avec \limits).

5 Arithmetique.sty

Commande	Résultat
\olddiv ³⁴	÷
\div^{35}	
\cgr{a}{b}{n}	$a \equiv b \ [n]$
\oldphi^{36}	ϕ
\phi ³⁷	φ

^{34.} Correspond à la commande usuelle \setminus div

^{35.} Correspond à la commande usuelle \mid

 $^{{\}it 36}.$ Correspond à la commande usuelle \phi

^{37.} Correspond à la commande usuelle \varphi

6 BigOperators.sty

Commande	Résultat
\oldsym^{38}	\sum
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\sum_{n=0}^{+\infty} (u_n)$
$ackslash$ oldprod 39	Π
$\prod{n=0}{+}\nfty}{u_n}$	$\prod_{n=0}^{+\infty}(u_n)$
\oldcap ⁴⁰	Λ
\bigcap{n=0}{+\infty}{A_n}	$\bigcap_{n=0}^{+\infty} (A_n)$
\oldcup ⁴¹	U
$\bigcup{n=0}{+}\infty}{A_n}$	$\bigcup_{n=0}^{+\infty} (A_n)$
\oldbigsqcup ⁴²	
$\label{limit} $$ \Big\{ n=0 + \inf \{A_n \} \Big\} $$$	$\bigsqcup_{n=0}^{+\infty} (A_n)$
\olduplus ⁴³	+
$\label{lem:n=0} $$ \left(n=0 \right) {+ \inf y} {A_n} $$$	$\biguplus_{n=0}^{+\infty} (A_n)$
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\bigoplus_{n=0}^{+\infty} (E_n)$

6.1 Grands opérateurs avec des symboles quelconques

Il est aussi possible de faire des grands opérateurs avec des symboles quelconques en important le package BigOperators.sty avec l'option bigopsymb.

Cette option importe automatiquement le package graphics (disponible sur CTAN).

Commande	Résultat
	Produit un opérateur avec le symbole symb
\makebigop[p]{symb}	et ajuste sa taille pour qu'elle soit de p fois
	celle du caractère « \sum »
\fracKsymb	\mathcal{K}

^{38.} Correspond à la commande usuelle \sum

^{39.} Correspond à la commande usuelle \prod

^{40.} Correspond à la commande usuelle \bigcap

^{41.} Correspond à la commande usuelle \bigcup

^{42.} Correspond à la commande usuelle \bigsqcup

^{43.} Correspond à la commande usuelle \biguplus

b_0+\fracK{n>0}{}\frac{a_n}{b_n}}	$b_0 + \mathcal{K}_{n>0} \left(\frac{a_n}{b_n} \right)$
\makebigopcommand[p]{symb}{name}	Produit un opérateur et une commande avec le symbole symb et ajuste sa taille pour qu'elle soit de p fois celle du caractère « \sum > > Pour obtenir le symbole crée, il faut utiliser \namesymb La commande associée est \name; elle a pour arguments les mêmes que les opérateurs définis plus haut

6.2 L'option nopar

Si nopar est utilisé, les commandes n'ont plus de parenthèses automatiques. Avec cette option, $\sum_{n=0}^{+\infty} u_n \gg 1$.

Il est possible de changer cette option au cours du document en utilisant la commande \togglebigoppar.

6.3 L'option nodisplay

Si nodisplay est utilisé, les commandes ne sont plus affichées en style \displaystyle mais avec le style par défaut. Avec cette option, \sum{n=0}{+\infty}{u_n} produit $(\sum_{n=0}^{+\infty} (u_n))$.

Il est possible de changer cette option au cours du document en utilisant la commande \togglebigopdisplay.

6.4 L'option nolimits

Si nolimits est utilisé, les indices des commandes se placent comme avec \nolimits. Avec cette option, \sum{n=0}{+\infty}{u_n} produit « $\sum_{n=0}^{+\infty} (u_n)$ ».

Il est possible de changer cette option au cours du document en utilisant la commande \togglebigoplimits .

6.5 La commande \autobigoplimits

Il est possible de remettre le comportement automatiques de LATEX pour l'affichage des indices avec \autobigoplimits. La commande \togglebigoplimits remettra alors le comportement par défaut du package (donc avec \limits).

7 Complexes.sty

Commande	Résultat
\oldbar{z}44	$ar{z}$
\oldbar{z} ⁴⁴ \bar{z} ⁴⁵	\overline{z}
\e ⁴⁶	e
\j47	i
\iii ⁴⁸	1
\ j 49	j
\jjj ⁵⁰	J
\olimits_1	3
\Im	Im
\pIm{x}	$\operatorname{Im}(x)$
\oldRe ⁵²	\Re
\Re	Re
\pRe{x}	$\operatorname{Re}(x)$

7.1 Dessiner des arcs

Il est aussi possible de faire des arcs en important le package Complexes.sty avec l'option arc, en utilisant \usepackage[arc]{complexes} au lieu de \usepackage{complexes}. Cette option importe automatiquement le package graphics (disponible sur CTAN).

Commande	Résultat
\arc{AB}	\widehat{AB}
\arc{ABCDEFFGH}	$\widehat{ABCDEFFGH}$

L'ancienne commande \i s'obtient avec \ii

Cette commande ne fonctionne qu'avec la police de l' $\mathcal{A}_{\mathcal{MS}}$

L'ancienne commande \j s'obtient avec \j

Cette commande ne fonctionne qu'avec la police de l' $\mathcal{A}_{\mathcal{M}}\mathcal{S}$

^{44.} Correspond à la commande usuelle \bar

^{45.} Se comporte comme \overline

⁴⁶. e de la fonction exponentielle

⁴⁷. i complexe

^{48.} Utile pour obtenir $\bar{i} = -i = e^{\frac{-i\pi}{2}}$

^{49.} $j = e^{\frac{2i\pi}{3}}$

^{50.} Utile pour obtenir $\bar{j} = j^2 = e^{\frac{-2i\pi}{3}}$

^{51.} Correspond à la commande usuelle \Im

^{52.} Correspond à la commande usuelle \Re

8 Dsft.sty

Ce package remplace le $\mathbbm{1}$ du package $\mathtt{Dsfonts.sty}$ disponible sur CTAN et introduit quelques symboles.

Commande	Résultat
\mathds{1}	1
\1{E}(x)	$\mathbb{1}_E(x)$
\square	
\star	☆
\triangle	Δ

8.1 dsrom12.pfb et dsrom12.tfm

Pour utiliser ce package, il suffit de copier les fichiers dsrom12.pfb et dsrom12.tfm dans le dossier output. Si cela ne marche pas, il faut les copier dans les dossiers où ils sont actuellement avec dsfonts (et éventuellement créer une copie des anciens fichiers).

9 Equivalents.sty

Commande	Résultat
\o{x}	o(x)
\o[x\to0]{x}	$\underset{x\to 0}{\mathrm{o}}(x)$
\0{x}	O(x)
\0[x\to0]{x}	$\underset{x \to 0}{\mathrm{O}}(x)$
\Th{x}	$\Theta(x)$
\Th[x\to0]{x}	$\Theta_{x \to 0}(x)$
\0m{x}	$\Omega(x)$
\Om[x\toO]{x}	$\Omega_{x \to 0}(x)$
$\eq\{u_n\}\{v_n\}$	$u_n \sim v_n$
$\eq[n\to+\inf y]\{u_n\}\{v_n\}$	$u_n \underset{n \to +\infty}{\sim} v_n$
$\ensuremath{\mbox{\rm leg}\{u_n\}\{v_n+\ensuremath{\mbox{\rm leg}\{v_n\}}\}}$	$u_n = v_n + o(v_n)$
$\label{eq:conditional} $$ \left(\sum_{n \in \mathbb{N}} \{u_n\} \{v_n + o\{v_n\} \} \right) $$$	$u_n = v_n + o(v_n)$

10 Footnotes.sty

Ce package redéfinit les notes de bas de pages. Les numéros des notes sont mis automatiquement et prennent la première valeur non utilisée dans la diapositive.

Commande	Résultat
\footnote{Note de bas de page} Compilé avec Flashcards.py	Question 1/1 Texte ¹
\footnote{Note de bas de page} Compilé avec Htmlcards.py	Texte ¹ 1. Note de bas de page

11 Matrices.sty

Le package Tools.sty sera importé automatiquement avec Matrices.sty.

Commande	Résultat	
$\mbox{mat}{n}{p}{\mathbb{K}}$	$\mathcal{M}_{n,p}(\mathbb{K})$	
$\mbox{mat{n}{}}{\mathbb{K}}$	$\mathcal{M}_n(\mathbb{K})$	
$\sym{n}{\mathbb{K}}$	$\mathcal{S}_n(\mathbb{K})$	
\ant{n}{\mathbb{K}}	$\mathcal{A}_n(\mathbb{K})$	
$\displaystyle \frac{n}{mathbb{K}}$	$\mathcal{D}_n(\mathbb{K})$	
$\ts{n}{\mathbb{K}}$	$\mathcal{T}_n^+(\mathbb{K})$	
$\ti{n}{\mathbb{K}}$	$\mathcal{T}_n^-(\mathbb{K})$	
\olddet ⁵³	det	
\det{M}	$\det(M)$	
\det[\mathcal{B}]{\mathcal{B}'}	$\det_{\mathcal{B}}(\mathcal{B}')$	
\oldgl	GL	
\matgl{n}{\mathbb{K}}	$\mathrm{GL}_n(\mathbb{K})$	
\oldcom	Com	
\com{M}	$\operatorname{Com}(M)$	
\transp{M}	tM	
\mdots		
\ddots	·.	
\idots	···	
\vdots	<u>:</u>	
\xdots	::	
\plusdots	÷	
\tmatrix({1\&0\\0\&1\\}) ⁵⁴	$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$	

11.1 Ne pas importer les commandes avec ·

Il est possible de ne pas modifier les commandes usuelles en utilisant l'option nodots de ce package. Il faut alors importer le package avec $\scalebox{\sc harmonic} \scalebox{\sc harmonic} \sc harmonic} \scalebox{\sc harmonic} \scalebox{\sc harmonic} \sc harmonic} \sc harmonic \sc$

11.2 Modifier les séparations entre les ·

Les commandes avec des points tel que ∴ ont des définitions qui dépendent de la taille de la police. Par défaut, celle pour LATEX est adaptée pour 12pt, et celle de BEAMER pour

^{53.} Correspond à la commande usuelle \det

^{54.} Les caractères $\$ sont utilisés au lieu du & utilisé habituellement avec $\mathrm{Ti}k\mathrm{Z}$ pour des raisons de compatibilité avec BEAMER

Il n'est pas nécessaire de mettre la \tmatrix dans une équation et les cellules sont par défaut des équations

17pt. Pour avoir des points alignés correctement, il est possible de modifier la valeur de \dotsep en utilisant \setlength{\dotsep}{Xpt}.

Par exemple, avec 2pt, on obtient : « :: ».

Il est également possible de faire de même avec la hauteur des … en modifiant la longueur \dotlift. De même avec \matmin pour minimum width et minimum height, ou encore \matsep pour row sep et column sep.

11.3 La commande \tmatrix

 $\mbox{\sc tmatrix}$ est composé de deux arguments optionnels (les éléments à ajouter à la matrice $\mbox{Ti}k\mbox{Z}$ et les options de mise en page de la matrice) ainsi que de trois arguments (le délimiteur d'ouverture, le contenu de la matrice et le délimiteur de fermeture).

Commande	Résultat
\mtxvline{params}{n}	Crée une ligne verticale après la colonne n
	(ou left/right pour les extrémités) avec
	les paramètres $TikZ$ params
	Crée une ligne horizontale après la ligne n
\mtxhline{params}{n}	(ou top/bottom pour les extrémités) avec
	les paramètres $TikZ$ params
	Crée une ligne verticale après la colonne
	n (ou left/right pour les extrémités), la
\mtxvpartial{params}{n}{a}{b}	ligne ayant pour extrémités la fin de la
	ligne a et b (ou top/bottom) avec les pa-
	ramètres $TikZ$ params
	Crée une ligne horizontale après la ligne
	n (ou top/bottom pour les extrémités), la
\mtxhpartial{params}{n}{a}{b}	ligne ayant pour extrémités la fin de la
	ligne a et b (ou left/right) avec les pa-
	ramètres TikZ params
\mtxbox{params}{x}{y}	Crée une boîte autour de la case de coor-
	données x et y (l'indexation commence à
	1) avec les paramètres TikZ params

11.4 La commande \tcase

\tase est composé de deux arguments optionnels (les éléments à ajouter à la matrice TikZ et les options de mise en page de la matrice comme pour \tauxiix) ainsi que d'un argument (le contenu de la matrice).

11.5 Exemples avec \tmatrix

$$\det(M) = \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| \text{ est produit par } \det\{M\} = \operatorname{tmatrix}|\{a \land b \land c \land d \land b\}| .$$

```
I_{n,p,r} = \begin{pmatrix} I_r & 0_{r,p-r} \\ \hline 0_{n-r,r} & 0_{n-r,p-r} \end{pmatrix} \text{ est produit par}
I_{n,p,r}=\operatorname{tmatrix}
     [\mtxvline{line width = 0.05em}{1}\mtxhline{line width = 0.05em}{1}]
     [minimum height = 5ex, row sep = 1ex, minimum width = 5ex,
         column sep = 1ex,]
     ({I_r\\\&0_{r,p-r}\\\0_{n-r,r}\\\&0_{n-r,p-r}\\\)}
$
   \tmatrix
     \mtxbox{red, dashed}{1}{1}
         \mtxbox{teal, dotted, ultra thick}{2}{2}
         \text{mtxbox}\{\}\{4\}\{4\}
     ]
     Γ
         minimum height = 5ex,
         minimum width = 5ex,
         row sep = 10pt,
         inner sep = 5pt,
         column sep = 10pt,
     {{[]}} % Le crochet est entouré de deux paires d'accolades
     {
         A_1\&0\&0\
         0\&A_2\&\ddots\&0\\
         0\ \ddots\&\ddots\&0\\
         0\\&0\\&0\A_n\
     }
     {\}}
```

12 Polynomes.sty

Commande	Résultat
\pol{K}{X}	$\mathbb{K}[X]$
\fr{K}{X}	$\mathbb{K}(X)$
$ackslash$ olddeg 55	deg
\deg{P}	$\deg(P)$
\oldval	val
\val{P}	$\operatorname{val}(P)$
\oldcar	car
\car{\mathbb{K}}	$\operatorname{car}(\mathbb{K})$
\oldrac	rac
\rac{P}	rac(P)
\rac[\mathbb{Q}]{X^2-2}	$\operatorname{rac}_{\mathbb{Q}}(X^2-2)$

^{55.} Correspond à la commande usuelle \deg

13 Probas.sty

Commande	Résultat		
\p{A}	$\mathbb{P}(A)$		
\p[B]{A}	$\mathbb{P}_B(A)$		
\oldOmega 56	Ω		
\Omega ⁵⁷	Ω		
$\sq 58$			
\bor ⁵⁹	\mathcal{B}		
\esp{X}	$\mathbb{E}(X)$		
\var{X}	$\mathbb{V}(X)$		
\ect{X}	$\sigma(X)$		
\oldcov	cov		
\cov{X}{Y}	cov(X,Y)		
\indep 6o	Ш		
\unif{n}	$\mathcal{U}(n)$		
\bin{p}	$\mathcal{B}(p)$		
\bin[n]{p}	$\mathcal{B}(n,p)$		
\geom{p}	$\mathcal{G}(p)$		
\pasc{r}{p}	$\mathcal{P}(r,p)$		
\nbin{r}{p}	$\mathcal{J}(r,p)$		
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\mathcal{H}(N,n,q)$		
\poiss{\lambda}	$\mathcal{P}(\lambda)$		
\expon{\theta}	$\mathcal{E}(heta)$		
\normal{m}{\sigma}	$\mathcal{N}(m,\sigma)$		

58. Correspond à la commande usuelle \middle|
Doit être utilisé entre \left et \right, ou dans la commande \p : $\mathbb{P}\left(A \mid \bigcap_{k=1}^{n} (B_i)\right)$

^{56.} Correspond à la commande usuelle $\verb|\Omega|$

 $^{5\}gamma$. Correspond à la commande usuelle \var0mega

^{58.} Correspond à la commande usuelle \middle|

⁵g. Correspond à la commande usuelle \mathcal{B}

⁶o. Ce symbole est obtenu avec la commande \perp\!\!\perp

14 Sffont.sty

Ce package définit une nouvelle police cmssp qui correspond à cmss en 10pt. Pour l'utiliser, il faut utiliser $fontfamily{cmssp}\fontsize{Xpt}{\baselineskip}\selectfont.$

Comparaison entre cmssp et cmss:

cmssp	cmss
Exemple avec une police de taille 21pt en gras.	Exemple avec une police de taille 21pt en gras.
Exemple avec une police de taille 17pt en italique.	Exemple avec une police de taille 17pt en italique.
Exemple avec une police de taille 12pt en gras italique.	Exemple avec une police de taille 12pt en gras italique.

15 Structures.sty

Commande	Résultat	
\oldhom	Hom	
\oldhom	Hom	
\hom[G]{V,W}	$\operatorname{Hom}_G(V,W)$	
\oldaut	Aut	
\aut{E}	$\operatorname{Aut}(E)$	
\aut[\mathbb{Q}] {\mathbb{R}}	$\operatorname{Aut}_{\mathbb{Q}}(\mathbb{R})$	
\oldker ⁶¹	ker	
\ker{f}	$\ker(f)$	
\oldim	im	
\im{f}	$\operatorname{im}(f)$	
$ackslash 1a^{6z}$	<	
\ra ⁶ 3	>	
\oldord	ord	
\ord{x}	$\operatorname{ord}(x)$	
\ord[G]{x}	$\operatorname{ord}_G(x)$	
\car{\Bbbk}	$\operatorname{car}(\Bbbk)$	

⁶¹. Correspond à la commande usuelle \ker

^{62.} Correspond à la commande usuelle \left\langle

^{63.} Correspond à la commande usuelle \right\rangle

16 Tables.sty

Ce package sert à mettre en forme des tables en latex grâce à TikZ.

Pour insérer une table, il faut appeler $\setrowcol[width][height]{ncols}{nrows}$ avec le nombre de colonnes et de lignes de la table, puis rentrer la table TikZ, les arguments optionnels étant la largeur de la table et sa hauteur.

Une table a une largeur par défaut de 10cm et une hauteur de 6,5cm (et est réinitialisée à chaque appel de \setrowcol).

Il est possible d'utiliser [ampersand replacement=\&] puis \& pour la matrice lorsque & est déjà défini par l'environnement (comme BEAMER).

Il est possible de récupérer la valeur de la largeur et de la hauteur avec \tblw et \tblh.

Par exemple, la table

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	_
cot	_	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

```
est produite avec le code suivant
\LARGE
\setcolrow[15cm][7.5cm]{6}{5}
\begin{tikzpicture}
                 \matrix[table]{
                                 \&$0$\&\$ \circ \{\pi_{i}_{6}$\&\$ \circ \{\pi_{i}_{4}\}\&\$ \circ \{\pi_{i}_{3}\}\& 
                                                \alpha(\pi){2}
                                \oldsin$&$0$&$\oldfrac{1}{2}$&$\oldfrac{\sqrt{2}}{2}$&
                                                $\oldfrac{\sqrt{3}}{2}$&$1$\\
                                \c \sqrt{3}}{2} $\oldcos$&$1$&$\oldfrac{\sqrt{2}}{2}$&$\oldfrac{\sqrt{2}}{2}$&$
                                                $\oldfrac{1}{2}$&$0$\\
                                \ $\oldtan$&$0$&$\oldfrac{1}{\sqrt{3}}$&$1$&$\sqrt{3}$&--\
                                \coldcot & -\& \sqrt{3} & \sqrt{3} & \coldfrac{1}{\sqrt{3}} & \coldfra
                };
                 \det [\lim \text{width=0.5mm}] (-\frac{3}{-\frac{1}{2}} -- (-\frac{3}{-\frac{1}{2}});
                \frac{\text{draw [line width=0.5mm] } (-\frac{1}{2},3*\frac{1}{10}) --}{}
                                 (\tblw/2,3*\tblh/10);
                 \draw [line width=0.5mm] (-\tblw/2,-\tblh/2) rectangle
                                 (\tblw/2, \tblh/2);
\end{tikzpicture}
```

17 Tools.sty

Ce fichier fournit des commandes LATEX utiles pour créer des macros.

Commande	Résultat
\comparestring{a}{b}{if}{else}	Compare les chaînes de caractères a et b;
	puis exécute le if si a est égal à b et le
	else sinon
\compareint{a}{b}{if}{else}	Compare les entiers a et b; puis exécute le
	if si a est égal à b et le else sinon
$\verb \ifinlist{a}{lst}{if}{else} ^{64}$	Recherche a dans la liste 1st; puis exécute
	le if si a est dans 1st et le else sinon

^{64. \}footnotemark nécessite d'importer pgffor (qui est utilisé par TikZ et PGF)
Pour ne pas importer pgffor, il est possible d'utiliser \usepackage [nopgffor] {tools}

18 Topologie.sty

Commande	Résultat
\arrm{f}^{65}	$\ f\ _{\infty}$
\vala{x}	x
\nrm{X}	$\ X\ $
\nrm[E]{X}	$\ X\ _E$
\nnrm{M}	$\ M\ $
\nnrm[E^*]{M}	$\left\ M ight\ _{E^*}$
\oldfrt	fr
\frt{A}	$\operatorname{fr}(A)$
\psc{x}{y}	$\langle x,y angle$

 $⁶_5$. La commande est la même que celle définie dans <code>Analyse.sty</code>

19 Trigo.sty

Commande	Résultat
$ackslash$ oldcos 66	cos
$\cos\{x\}$	$\cos(x)$
\cos[^n]{x}	$\cos^n(x)$
$ackslash$ oldsin $^{6\gamma}$	sin
\sin{x}	$\sin(x)$
\sin[^n]{x}	$\sin^n(x)$
\oldtan ⁶⁸	tan
\tan{x}	$\tan(x)$
\tan[']{x}	$\tan'(x)$
$\setminus ext{oldcot}^{6g}$	cot
\cot{x}	$\cot(x)$
\cot[^n]{x}	$\cot^n(x)$
\acos{x}	$\arccos(x)$
\acos[^n]{x}	$\arccos^n(x)$
\asin{x}	$\arcsin(x)$
$\arrangle asin[^n]{x}$	$\arcsin^n(x)$
\atan{x}	$\arctan(x)$
\atan[']{x}	$\arctan'(x)$
\oldch	ch
\ch{x}	$\operatorname{ch}(x)$
\ch[^n]{x}	$\operatorname{ch}^n(x)$
\oldsh	sh
\sh{x}	$\operatorname{sh}(x)$
\sh[^n]{x}	$\operatorname{sh}^n(x)$
\oldth	th
\th{x}	th(x)
\th[']{x}	$\operatorname{th}'(x)$
\oldach	argch
\ach{x}	$\operatorname{argch}(x)$
\ach[^n]{x}	$\operatorname{argch}^n(x)$
\oldash	argsh
\ash{x}	$\operatorname{argsh}(x)$
$\arrange {\arrange} \arrange {\arrange} \arr$	$\operatorname{argsh}^n(x)$
\oldath	argth
\ath{x}	$\operatorname{argth}(x)$
\ath[']{x}	$\operatorname{argth}'(x)$

^{66.} Correspond à la commande usuelle \cos

 $^{6\}gamma.$ Correspond à la commande usuelle \sin

^{68.} Correspond à la commande usuelle \tan

⁶g. Correspond à la commande usuelle **\cot**

20 Usuelles.sty

Commande	Résultat
\oldmin ⁷⁰	min
$\min{\{\lb0,n\}}$	$\min(\llbracket 0,n rbracket)$
$\mbox{$\min[\mathbb{N}^*]_{100,n\rrb}$}$	$\min_{\mathbb{N}^*}(\llbracket 0,n rbracket)$
$\backslash \text{oldmax}^{\gamma_1}$	max
$\max{\{\lb0,n\}}$	$\max(\llbracket 0, n rbracket)$
$\mbox{$\max[\mathbb{Z}]_{\n\rrb}$}$	$\max_{\mathbb{Z}_{-}}(\llbracket 0,n rbracket)$
\oldlim ⁷²	lim
$\lim\{u_n\}$	$\lim(u_n)$
<pre>\lim[x\to+\infty]{f(x)}</pre>	$\lim_{x \to +\infty} (f(x))$
\limi{u_n}	$\liminf(u_n)$
\limi[x\to+\infty]{f(x)}	$ \liminf_{x \to +\infty} (f(x)) $
\lims{u_n}	$\limsup(u_n)$
\lims[x\to+\infty]{f(x)}	$ \limsup_{x \to +\infty} (f(x)) $
\oldexp ⁷³	exp
\exp{x}	$\exp(x)$
\exp[^n]{x}	$\exp^n(x)$
\oldln ⁷⁴	ln
$\ln\{x\}$	$\ln(x)$
\ln[^n]{x}	$\ln^n(x)$
\oldinf ⁷⁵	inf
\inf{\varnothing}	$\inf(\varnothing)$
$local_loc$	$\inf_{\overline{\mathbb{R}}}(\{u_n\})$
\oldsup ⁷⁶	sup
\sup{\varnothing}	$\sup(\varnothing)$
$\square \norm{\mathbb{R}} \] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\sup_{\overline{\mathbb{R}}}(\{u_n\})$

 $[\]gamma o.$ Correspond à la commande usuelle \min

 $[\]gamma \imath.$ Correspond à la commande usuelle \max

^{72.} Correspond à la commande usuelle \lim

 $[\]gamma \jmath 3.$ Correspond à la commande usuelle \exp

 $[\]gamma 4.$ Correspond à la commande usuelle \ln

⁷⁵. Correspond à la commande usuelle \inf

 $[\]gamma 6$. Correspond à la commande usuelle \sup