Ch04 네트워크 통신

[학습목표]

- 네트워크 통신 방식을 이해한다.
- 통신 오류 검출 방법을 학습한다.
- 근거리 통신의 개념과 특징을 알아본다.
- 광역 통신의 개념과 특징을 알아본다.
- 무선통신의 개념과 특징을 알아본다.

1. 통신방식 2. 통신 오류 검출

3. 근거리 통신

4. 광역통신

담당교수 : 육계산

01. 통신방식

❖웹의 기본 목적과 구성

- 웹의 구성
 - 웹 서버와 웹 클라이언트 컴퓨터로 구성
 - 웹 서버
 - 웹 사이트를 탑재하는 컴퓨터, 구글(www.google.com), 네이버(www.naver.com) 등
 - 웹 문서, 이미지, 동영상 등의 데이터 저장 관리
 - 웹 클라이언트의 요청을 받아 웹 문서 전송
 - 웹 서버로 작동하도록 하는 소프트웨어 실행
 - 웹 클라이언트
 - 사용자 인터페이스 담당
 - 웹 서버에 웹 문서를 요청하고 받아 사용자에게 출력

01. 통신방식

(웹 서버와 웹 클라이언트로 이루어진 웹)

01. 통신방식

1. LAN에서 통신하는 방식

- 다른 컴퓨터에 데이터 전송 서비스를 제공하는 컴퓨터를 '서버'라 하고, 서버에서 보내주는 데이터 서비스를 수신하는 컴퓨터를 '클라이언트'라고 한다.
- 서버는 클라이언트(사용자)한테 요청 받아 서비스를 제공하는데, 이렇게 구성된 시스템을 **클라이언트/서버 시스템**이라고 한다.
- LAN에서 통신하는 방식 : 유니케스트, 브로드케스트, 멀티케스트

서버와 클라이언트 간의 데이터 전송 관계

❖ 유니캐스트(Unicast)

- 네트워크에서 가장 많이 사용하는 유니캐스트는 **서버와 클라이언트 간의 일대일(1:1) 통신 방식**을 말한다.
- 데이터를 송신하려는 컴퓨터의 MAC 주소를 90-2B-35-91-E0-3F,
 수신하려는 컴퓨터의 MAC 주소를 90-2B-34-92-C0-5F라고 가정해 보자.
 - 통신하려면 전송되는 프레임 안에 항상 송신지(90-2B-35-91-E0-3F)와 수신지(90-2B-34-92-C0-5F) 주소, 즉 MAC 주소가 있어야 한다.
 - 자신의 MAC 주소와 수신지 MAC 주소가 동일하다면 전송된 데이터를 수신하고, 자신의 LAN 카드 MAC 주소가 수신지 주소가 아니라고 판단되면 해당 프레임은 버린다.

❖ 브로드 캐스트(Broadcast)

- 브로드캐스트는 로컬 LAN(라우터로 구분된 공간)에 있는 모든 네트워크 단말기에 데이터를 보내는 방식으로 , 서버와 클라이언트 간에 **일대모두(1:모두)로 통신**하는 데이터 전송 서비스다.
- 브로드캐스트의 주소는 FF-FF-FF-FF-FF로 미리 정해져 있다.
- 브로드캐스트는 다른 라우터를 찾거나, 라우터끼리 데이터를 교환하거나, 서버가 서비스를 제공하려고 모든 클라이언트에게 알릴 때 등 여러 상황에서 사용할 수 있다.
- 하지만 **불특정 다수에게 전송**되는 서비스라 수신을 원치 않는 클라이언트도 수신하게 되므로 **네트워크 성능** 저하를 가져올 수 있다.
- ARP(Address Resolution protocol)로 동작

❖ 멀티캐스트(Multicast)

- 브로드캐스트는 데이터를 무조건 CPU로 전송하기 때문에 컴퓨터 자체의 성능을 떨어뜨린다.
 이 문제를 가장 쉽게 해결할 수 있는 방법이 바로 멀티캐스트이다.
- 멀티캐스트는 전송하려는 특정 그룹에게만 한 번에 전송할 수 있기 때문에 유니캐스트 처럼 반복해서 보낼 필요가 없고, 브로드캐스트 처럼 전송 받을 필요가 없는 컴퓨터에 보내지 않아도 된다.
- 단, 멀티캐스트는 **스위치나 라우터**가 지원할 때에만 사용할 수 있다.
- 현재 많이 사용하는 애플리케이션에서는 이런 기능이 필요하므로 멀티캐스트가 인기를 끌고 있다.

멀티캐스트 방식

❖ LAN에서 통신하는 방식

- 유니캐스트는 가장 많이 사용하는 통신 방식으로 수신지 주소(MAC 주소)를 적어 특정 컴퓨터에만 전송한다.
- 브로드캐스트는 영역 안에 있는 모든 컴퓨터에 한 번에 다 전송한다.
- **멀티캐스트**는 유니캐스트와 브로드캐스트의 장점을 결합하여 특정 그룹 컴퓨터에만 한 번에 데이터 를 전송하여 그룹 이외의 컴퓨터에는 영향을 주지 않는다.

2. 전송 방향에 따른 통신 방식

- 통신 : 떨어져 있는 두 지점 간에 정보를 전송하는 것
- 두 장치 간에 데이터를 전송할 때는 전송 방향에 따라 단방향 통신과 양방향 통신으로 나눌 수 있음

전송 방향에 따른 통신 방식

❖ 단방향(Simplex) 통신

- 송신 측과 수신 측이 미리 고정되어 있고, 통신 채널을 통해 접속된 단말기 두 대 사이에서 데이터가 한쪽 방향으로만 전송되는 통신 방식
- 단방향 통신에서 전기적으로 신호를 보내려면 송신 측과 수신 측을 연결하는 회로를 구성 해야 하므로, 비록 단방향 전송일지라도 전송로는 두 개가 필요
- 대표적인 단방향 통신 : 무선호출기, 라디오, 아날로그 TV 방송, 모니터, 키보드 등

❖ 양방향(Duplex) 통신

• 통신 채널을 통해 접속된 두 대의 단말기 사이에서 데이터의 송수신이 모두 가능한 방식으로, 데이터의 송수신을 한 번씩 번갈아 가면서 할 수 있는 반이중 통신과 송수신을 동시에 할 수 있는 전이중 통신으로 구분

• 반이중(Half-Duplex) 통신

- 통신 채널에 접속된 두 대의 단말기 중 어느 한쪽이 데이터를 송신하면 상대방은 수신만 할 수 있는 통신 방식
- 송신 측과 수신 측이 정해져 있지 않으며, 양쪽 단말기의 상호 협력에 따라 송수신 방향이 바뀐다.
- 대표적인 예 : 휴대용 무전기와 모뎀을 이용한 데이터 통신

반이중 통신

■ 전이중(Full-Duplex) 통신

- 통신 채널에 접속된 단말기 두 대가 동시에 데이터를 송수신할 수 있는 통신 방식
- 전이중 통신은 통신 채널 두 개를 이용하여 한 번에 데이터를 송수신할 수 있다.
- 전송 효율이 높고, 전송해야 할 데이터 양이 많을 때 유리

01. 통신방식(동기화)

3. 직렬 전송과 병렬 전송

- 장치 사이에 데이터를 전송할 때 고려할 사항
 - 여러 데이터를 한꺼번에 전송할 것인가?
 - 여러 데이터를 한 번에 하나씩만 전송할 것인가?
 - 데이터를 하나씩 전송한다면 어떤 방식을 사용할 것인가?
- 데이터 전송 : 전압이나 전류의 변화로 표현한 신호에 실어 보내는 것
- 데이터 비트를 전송하는 방법에 따라 직렬전송과 병렬전송으로 나눌 수 있음

01. 통신방식(동기화)

❖ 동기화(Synchronization)

- 직렬 전송은 하나의 전송회선을 사용하여 신호를 연속적으로 전송하므로 정확하게 송수신하려면 데이터의 시작과 끝에 관한 정보를 수신측에서 알고 있어야 한다.
- 두 시스템 간에 컴퓨터의 속도 차이(클록 오차)가 있기 때문에 송신 비트 시간 간격(TS)과 수신 비트 시간 간격(TR)이 정확하게 일치하지 않는다.
- 따라서 적절한 방법으로 송신 측에서 전송한 데이터의 각 비트를 수신 측에서 정확하게 수신할 수 있도록 해야 하는데, 이를 '동기화(Synchronization)'라고 한다.
 - 동기식 전송 : 송수신 측이 약속한 패턴을 이용하여 데이터의 송수신 타이밍을 일치 시키는 것
 - 비동기식 전송 : 송수신 간에 동기를 맞추지 않고 문자 단위로 구분하여 전송하는 방식

01. 통신방식(동기화)

❖ 동기식 전송

- 송수신기가 하나의 기준(동일한) 클록(Clock)에 보조를 맞추어 동작(데이터 송수신)
- 미리 정해진 수만큼 문자열을 한 묶음으로 만들어 일시에 전송하는 방법
- 비트와 데이터 간에 간격 없이 차례대로 비트를 전송하기 때문에 데이터는 끊어지지 않는 0과 1의 문자열로 전송됨
- 수신 측은 차례대로 문자열을 수신한 후 문자나 바이트로 분리해서 의미 있는 데이터로 재구성
- 동기식 전송의 대표적인 예 : 일정한 시간 간격으로 정보를 전송하는 파일 업로드와 파일 다운로드 가 있음
- **장점** : 많은 양의 데이터를 한꺼번에 보낼 수 있어 비동기 전송에 비해 속도가 빠름
 → 고속 데이터 전송에 많이 사용
- 단점 : 수신측에서 비트 계산을 해야 하고, 문자를 조립하는 별도의 기억장치가 필요 하므로 가격이 다소 높음
- 동기식 전송에는 비트 단위로 동기화시키는 **비트 지향 동기화 기법**과
 - 문자 단위로 동기화시키는 **문자 지향 동기화 기법**이 있음

■ 비트 지향 동기화 기법

- 비트 지향 동기화 기법은 데이터의 시작과 끝을 알리는 **시작 플래그(Start Flag)**로 시작해서 **종료 플래그(Stop Flag)**로 끝난다.
- 또한 플래그 등의 패턴을 구별하려고 '0' 비트를 삽입한다(Stuffing).
- 플래그 패턴이 '0111110'이라고 가정했을 때
 - 송신 측에서 데이터의 연속된 1 다섯 개 뒤에 0을 삽입하여 전송하면(01111100),
 - 수신 측에서는 수신된 데이터의 연속된 1 다섯 개 뒤에 있는 0을 제거한다(0111110).

비트 지향 동기화 기법

■ 문자 지향 동기화 기법

- 모든 데이터의 단위를 문자 단위로 처리함으로써 동기화에 필요한 데이터까지 문자로 표현한다.
- 문자 지향 동기화 기법에서 사용하는 동기 문자에는 SYN, 문장의 시작을 알리는 STX(Start-of-TeXt), 문장의 끝을 알리는 ETX(End-of-TeXt) 등이 있다.

SYN	SYN	STX	DATA	ETX	BCC
동기 문자		문장 시작	전송 데이터	문장 끝	블록 검사 문자

문자 지향 동기화 기법

❖ 비동기식 전송

- **긴 데이터 비트열을 연속으로 전송**하는 대신 **한 번에 한 문자씩 전송**함으로써 수신기가 새로운 문자의 시작점에서 재동기 하도록 하는 것이다.
- 비동기 전송에서는 문자 단위로 재동기 하려고 맨 앞에는 한 문자의 시작을 알리는 **시작 비트(Start Bit)** 를 두고, 맨 뒤에는 한 문자의 종료를 표시하는 **정지 비트(Stop Bit)**를 둔다.
- 보통 시작 비트는 1비트를 사용하고, 정지 비트는 1~2비트 정도를 사용한다.
- 전송하는 문자는 시작 비트 바로 뒤에 오는데, 문자의 종류에 따라 5~8비트의 길이를 갖는다.
- 문자 비트열 뒤에는 패리티 비트(Parity Bit)가 뒤따르며, 2진수 1의 개수는 패리티 비트를 포함하여 홀수 또는 짝수의 값을 갖는다.

- 비동기식 전송은 하나의 문자를 전송한 후 **휴지 상태(Idle)**에 들어가는데, <u>이 시간이 바로 동기화되는 시간</u>이다.
- 문자를 전송하지 않을 때 송수신 측은 휴지 상태에 있는데, 송신기는 다음 문자를 보낼 준비가 될 때까지 정지 비트를 계속 전송한다(11111111).
- 문자들을 연속적으로 보낸다면 문자 간의 시간 간격은 일정하고, 길이는 정지 비트와 같다.
- 비동기식 전송은 전송하려는 정보가 불규칙하게 발생할 때 주로 사용하며, 사용자가 메신저에 키보드로 입력한 정보를 전송하는 경우를 예로 들 수 있다.
- 시작비트와 정지비트가 사이의 간격이 가변적이므로 불규칙적인 전송에 적합
- 접속장치와 기기들이 간단하므로 동기식 전송보다 비용이 적게드는 반면, 문자당 2~3비트의 **오버헤드**가 발생

동기식 전송과 비동기식 전송 비교

	동기식 전송	비동기식 전송
특징	• 블록 단위 전송 • 정확한 비트 전송 • 고속통신에 사용	문자 단위 전송정확한 비트 전송을 보장하지 않음저속통신에 사용

❖ 직렬 전송

- 하나의 정보를 나타내는 각 데이터 비트를 직렬로 나열한 후 하나의 통신회선을 사용하여 순차적으로 1비트씩 송신하는 방식이다.
- 하나의 통신회선을 사용하기 때문에 송신 측에서는 데이터를 1비트씩 송신하고, 수신 측에서는 수신되는 비트를 일정한 단위로 모아서 사용한다.
- 병렬 전송에 비해 데이터 전송속도가 느린 반면, 원거리 데이터 전송에서는 통신회선이 한 개만 필요하므로 경제적이다.

❖ 병렬 전송

- 부호를 구성하는 비트 수와 같은 양의 통신회선을 사용하여 여러 데이터 비트를 동시에 병렬로 전송하는 방식으로, 비트 n개를 전송하려고 회선 n개를 사용
- 송신 측과 수신 측 단말기 간에 여러 개의 통신회선을 사용하기 때문에 여러 비트의 데이터를 한 번에 송신
- 병렬 전송은 거리에 비례해서 선로비용이 많이 들기 때문에 전송속도가 빨라야 하는 짧은 거리의 데이터 전송
 에 주로 사용
- 컴퓨터에서 사용하는 병렬포트는 8비트의 데이터를 동시에 전송할 수 있어 보통 프린터를 연결할 때나 컴퓨터 간의 파일 전송에 사용

- 직렬 포트는 9핀 커넥터를 사용
 - 한 라인은 데이터를 보내는 데 사용하고, 다른 라인은 데이터를 수신하는 데 사용
 - 그리고 나머지 라인들은 전송 방법을 제어하는 데 사용한다.

- 수신 측으로 전송한 데이터는 송신 측의 데이터와 동일해야 하지만, 다양한 원인 때문에 데이터 오류가 발생할 수 있다.
- 따라서 **신뢰할 수 있는 네트워크 통신**을 하려면 **오류를 검출 · 수정**해야 한다.

- ❖ 단일-비트 오류(Single-bit Error)
 - 데이터 단위 중 하나의 비트만 변경하는 오류를 말한다.

- ❖ 다중-비트 오류(Multiple-bit Error)
 - 데이터 단위 중 두 개 이상의 비연속적인 비트를 변경하는 오류를 말한다

❖ 집단 오류(Burst Error)

• 데이터 단위 중 두 개 또는 그 이상의 연속적인 비트를 변경하는 오류를 말한다.

❖ 오류를 검출하는 방식

• 패리티 비트 검사 방식, 블록 합 검사 방식, 순환 중복 검사 방식 등이 있다.

❖ 패리티 비트 검사

- 패리티 비트 검사(Parity Bit Check)는 전송하는 데이터마다 패리티 비트를 하나씩 추가하여 **홀수 또는 짝수 검사 방법으로 오류를 검출**한다.
- 예를 들어, 7비트 데이터를 전송할때 1비트 검사 비트를 추가로 전송하여 수신 측에서 데이터 전송 중 발생한 오류를 검출할 수 있도록 하는 방식이다.
- 추가로 전송되는 1비트를 '패리티 비트'라고 한다.
- 패리티 비트의 값은 데이터 코드 내에 있는 1의 수를 계산함으로써 결정된다.

❖ 홀수 패리티 방식(Odd Parity)

- 전체 비트에서 1의 개수가 홀수가 되도록 패리티 비트를 정하는 것을 말한다.
- 데이터 비트에서 1의 개수가 짝수면 패리티 비트를 1로 정하여 전송되는 전체 데이터에 있는 1의 개수는 홀수가 된다.

❖ 짝수 패리티 방식(Even Parity)

- 전체 비트에서 1의 개수가 짝수가 되도록 패리티 비트를 정하는 것을 말한다.
- 데이터 비트에서 1의 개수가 홀수면 패리티 비트를 1로 정하여 전송되는 전체 데이터에 있는 1의 개수는 짝수가 된다.

패리티 비트 검사

7비트 데이터	패리티 포함 8비트		
7미르 데이터	짝수 패리티	홀수 패리티	
0100101(3)	10100101	00100101	
0111010(4)	00111010	10111010	
1101011(5)	11101011	01101011	

❖ 인코딩(Encoding)

- 7개의 데이터가 0100111인 경우에서 짝수 패리티 방식을 사용하면 0100111에서 1의 개수가 4개 이므로 짝수다.
- 여기에 패리티 비트 0을 추가해도 전송되는 전체 데이터에 있는 1의 개수는 짝수(00100111)가 된다.

❖ 디코딩(Decoding)

- 00100111에서 패리티 비트는 0이므로 1의 개수가 짝수인지 확인한다.
- 짝수 패리티 방식은 패리티 비트를 포함해서 각각 XOR 연산을 한 후 결과가 0(1의 개수가 짝수)이면 오류가 없는 것이고, 1(1의 개수가 홀수)이면 오류가 검출된 것이다.
- 0 XOR 0 XOR 1 XOR 0 XOR 0 XOR 1 XOR 1 XOR 1 = 0

짝수 패리티 생성기 예

:	3변수 정보	패리티 비트	
x	Y	z	Р
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- XOR 함수는 오류 검출과 수정 코드를 쓰는 시스템에서 많이 사용
- 페리티 비트는 이진 데이터를 전송할 때 오류를 검출하려는 목적으로 사용
- 패리티 생성기 : 전송장치에서 패리티 비트를 생성하는 회로

❖ 블록 합 검사(Block Sum Check)

- 문자를 블록으로 전송하면 오류 확률이 높아지는데, 오류 검출 능력을 향상시키려고 문자 블록에 수평
 패리티와 수직 패리티를 2차원적으로 검사하는 방법이 바로 블록 합 검사이다.
- 행 단위 패리티에 열 단위의 오류 검사를 수행할 수 있는 열 패리티 문자를 추가하여 이중으로 오류 검 출 작업을 수행한다.
- 추가된 열 패리티 문자를 '블록 검사 문자(BCC, Block Check Character)'라고 한다.
- 블록 합 검사를 사용하면 한 데이터에서 짝수 개의 오류가 발생하더라도 오류를 검출할 수 있다.

블록 합 검사

❖ 순환 중복 검사

- 순환 중복 검사(CRC, Cyclic Redundancy Check)는 정확하게 오류를 검출하려고 다항식 코드를 사용하는 방법이다.
- 오류가 없을 때는 계속 발생하지 않다가 오류가 발생하면 그 주위에 집중적으로 오류를 발생시키는 집단 오류를 검출하는 능력이 탁월하고, 구현이 단순하다.
- 다항식(Polynomial)
 - CRC 발생기는 0과 1의 스트링 보다는 대수 다항식으로 표현하며, 하나의 다항식은 하나의 제수 (Divisor)를 표현한다.

- ① 송신 측
 - a. 데이터 전송
 - b. 오류 검출코드 계산
 - c. CRC 추가

- ② 수신 측
 - a. 데이터 수신
 - b. 오류 검출코드 계산
 - c. 수신된 CRC와 계산된 CRC 비교 검사
 - d. 동일하지 않으면 오류 검출 신호 발생

순환 중복 검사 과정

03. 근거리통신

❖ LAN 전송 방식

• 컴퓨터에서 나오는 <u>디지털 신호를 그대로 전송하는 **베이스밴드 방식**과 디지털 신호를 아날로그 신호로</u> 변조해서 보내는 **브로드밴드 방식**이다.

■ 베이스밴드(Baseband) 방식

- 베이스밴드 방식은 데이터를 전송할 때 디지털 데이터 신호를 변조하지 않고 직접 전송하는 방식으로, 이더넷이 대표적이다.
- 이 방식은 **하나의 케이블에 단일 통신 채널**을 형성하여 데이터를 전송한다. 채널 하나에 신호 하나만 전송하기 때문에 **모뎀이 필요 없고, 비용도 경제적**이다.

■ 브로드밴드(Broadband) 방식

- 브로드밴드 방식은 부호화된 데이터를 아날로그로 변조하고 필터 등을 사용하여 제한된 주파수만 동축 케이블 등 전송매체에 전송하는 방식이다.
- **하나의 케이블**에 **다수의 통신 채널**을 형성하여 데이터를 동시에 전송하는 방식으로, 케이블 TV와 유사하다.

03. 근거리통신

베이스밴드와 브로드밴드 방식 비교

특성	베이스밴드 방식	브로드밴드 방식
채널 수	단일 채널/단일 케이블	다수 채널/단일 케이블
채널 신호	양방향 통신(디지털)	단방향 통신(아날로그)
접속 형태	버스형 또는 링형	버스형 또는 트리형
전송매체	동축 케이블, 꼬임선, 광섬유 케이블	동축 케이블
전송 거리	10km 이내	10km 이상(LAN일 때는 이하)
장점	단순한 기술, 저비용, 설치 용이	적은 수의 채널, 원거리 전송 가능
단점	제한된 서비스, 전송 거리 제약	복잡한 기술, 고비용
데이터 종류	데이터	데이터, 음성, 영상
일반적 용도	빌딩	대도시 통신망
응용 분야	소규모 데이터 전송	대규모 멀티미디어 전송

03. 근거리통신

- ❖ 매체 접근 방식(MAC, Media Access Control)
 - 데이터 충돌을 방지하려고 LAN에 연결된 모든 장치는 정의된 규칙에 따라 전송매체에 접근하는데,
 이를 매체 접근 제어라고 한다.

CSMA/CD(Carrier Sense Multiple Access with Collision Detection)

- CSMA/CD(반송파 감지 다중 접근/충돌 검출) 방식은 버스형 통신망으로 알려진 이더넷에 주로 사용한다.
- 동축 케이블에 연결된 컴퓨터의 단말을 서로 접속시키는 방식으로, 모든 컴퓨터는 버스(케이블)
 에 연결되어 있고, 전송매체는 컴퓨터로 공유할 수 있다.
- CSMA/CD 방식은 데이터를 송신하기 전에 반송파 여부를 감지하는데, 반송파가 감지되면 다른 컴퓨터(스테이션)에서 데이터 송신 중임을 판단하여 데이터를 전송하지 않는다.
- 하지만 반송파가 감지되지 않으면 컴퓨터가 전송매체를 사용하지 않는 것으로 판단하여 데이터 를 전송한다.
- 이 방식은 듣고 나서 송신을 시작한다는 뜻에서 'LBT(Listen Before Talk)'라고도 한다.

[그림 3-36] CSMA/CD 방식의 예

이제, CSMA/CD 방식의 동작 원리를 살펴보자.

CSMA/CD 방식의 동작 원리

❖ 토큰 제어 방식

- 접속된 노드 사이를 토큰이라는 패킷이 순차적으로 순환하는 동안 토큰을 얻어 전송하고, 전송이 완료되면 토큰을 반납하는 방식이다.
- CSMA/CD 방식처럼 충돌현상은 발생하지 않지만, 자신에게 토큰이 올 때까지 기다려야 한다는 단점이 있다.
- 구성 방식에 따라 **토큰버스 방식**과 **토큰링 방식**으로 구분된다. 두 가지 방법은 형태만 다를 뿐 절차는 동일하다.

■ 토큰링(Token Ring) 방식

- 링을 따라 순환하는 토큰을 이용하는 것이다.
- 모든 컴퓨터가 휴지 상태에 있을 때의 토큰을 '프리 토큰(Free Token)'이라고 하는데, 데이터를 전송하려는 컴퓨터는 이 프리 토큰이 자신에게 올 때까지 대기해야 한다.
- 토큰링 방식의 장점은 각 컴퓨터(노드)마다 전송 기회가 공평하게 주어진다는 것인데, <u>전송 권</u> 한을 얻는 대기시간이 정해져 있어 과부하가 일어나도 성능 저하는 심하지 않다.
- CSMA/CD 방식보다 실시간 처리가 요구되는 분야에 적합하다.

- 데이터를 전송하려는 컴퓨터들은 토큰이 자신에게 도착할 때까지 기다린 후 토큰이 자신에게 도착하면 데이터 패킷을 실어 전송한다.
- 전송된 패킷은 동축 케이블에 연결된 각 컴퓨터들을 거쳐 패킷을 처음 전송한 컴퓨터에 다시 도착한다.
- 패킷을 처음 전송한 컴퓨터는 자신이 이전에 전송한 패킷을 수신하고, 자신에게 있는 토큰을 다음 컴퓨터로 전송한다.

토큰링 방식의 동작 원리

■ 토큰버스(Token Bus) 방식

- 토큰버스 방식은 **이더넷과 토큰링의 특징을 합친 형태**다.
- 실제로 이 방식은 실시간으로 처리해야 하는 공장자동화에 많이 응용한다.
- 물리적으로는 버스형 접속 형태를 띠고 있지만 버스의 모든 컴퓨터는 논리적으로 링형 접속 형태를 띤다.
- CSMA/CD 방식과는 다르게 채널에서 데이터 충돌이 발생하지 않으므로 한 패킷을 전송하는 데 걸리는 시간이 일정하다.
- 따라서 실시간 처리가 요구되는 시스템에 적합한 방식이다.

토큰버스 방식의 동작 원리

❖ 이더넷

- 1977년 제록스는 동축 케이블을 사용하여 10Mbps 전송속도를 지원할 수 있는 이더넷을 개발하여 1985년 표준화했는데, 빠르게 확산되어 1990년에는 설치가 용이하고 가격이 저렴한 UTP(unshielded twisted pair cable) 기반 이더넷을 표준화함으로써 전 세계 시장을 장악했다.
- 대부분의 연구실이나 사무실은 UTP 기반의 이더넷으로 통신망을 구축하고 있다.

이더넷의 발전 과정

연도	발전 내용
1977년	동축 케이블 기반 이더넷 개발(10Base-5)
1985년	IEEE 802.3 표준화위원회에서 동축 케이블 기반 이더넷 표준화(10Base-5, 10Base-2)
1990년	IEEE 802.3i 표준화위원회에서 UTP 기반 이더넷 표준화(10Base-T)
1995년	IEEE 802.3u 표준화위원회에서 100Mbps 고속 이더넷 표준화(100Base-TX/FX)
1998년	IEEE 802.3z 표준화위원회에서 1Gbps 이더넷 표준화(1000Base-SX/LX/CX)
2002년	IEEE 802.3ae 표준화위원회에서 10Gbps 이더넷 표준화(10GBase-S/L/E)

LAN의 구성 방식

종류	설명
이더넷	 1976년 제록스에서 개발하여 인텔, DEC과 함께 표준화 IEEE 802.3의 표준안으로 채택 10Mbps 속도로 CSMA/CD 알고리즘 사용 10Base-2, 10Base-T
고속 이더넷	• 1990년대 이더넷을 확장하여 개발 • 100Mbps 속도 • 100Base-T(이더넷에서 NIC 등 개선)
기가비트 이더넷	1Gbps 속도 · 고속 이더넷에 비해 2~3배의 비용으로 10배의 속도 · 이더넷 방식을 그대로 사용 가능(호환성이 좋음)
FDDI	미국표준협회(ANSI)와 ITU-T가 표준화 전송매체로 광섬유를 사용하여 고속의 LAN 구현 가능 넓은 대역폭과 빠른 전송이 필요한 백본망에 많이 사용

■ 10Base-5(동축 케이블 기반 이더넷)

- 최초의 IEEE 802.3 표준인 10Base-5는 굵은(직경 10mm 정도) 동축 케이블을 전송매체로 사용한 이더넷 구성 방식이다.
- 10은 전송속도가 10Mbps임을 나타내고, Base는 베이스밴드 전송 방식(디지털 신호 전송)임을 나타내며, 5는 한 세그먼트의 최장 거리가 500m임을 나타낸다.

■ 10Base-2(동축 케이블 기반 이더넷)

- 10Base-2는 베이스밴드 전송 방식을 사용하며, 전송매체로 얇은(직경 4mm 정도) 동축케이블을 사용하는 이더넷 구성 방식이다.
- 이 방식은 10Base-5와 성능이 같고, 한 세그먼트의 최장 거리는 200m이다.

■ 10Base-T(UTP 케이블 기반 이더넷)

- 10Base-T의 10은 전송속도가 10Mbps임을 나타내고, Base는 베이스밴드 전송 방식(디지털 신호 전송)임을 나타내며, T는 전송매체로 카테고리 3이나 카테고리 5에 해당하는 UTP 케이블을 사용함을 나타낸다.
- 10Base-T 방식은 안정성이 뛰어나고 관리가 용이하지만, 초기 설치비용이 많이 든다.

- 10Base-T는 허브와 컴퓨터를 일대일로 직접 접속하기 때문에 케이블에 문제가 발생해도 그 컴퓨터에만 통신 장애가 일어난다.
- 컴퓨터를 추가하거나 제거해도 네트워크에 장애가 발생하지 않는 등 안정성과 운용 관리 면에서 유리한 점이 많다.

10Base-T 성형 구조 이더넷

❖ 고속 이더넷(Fast Ethernet)

- 고속 이더넷은 10Mbps용 이더넷과 호환을 유지하면서 전송매체의 길이를 줄여 약100Mbps 고속 전송이 가능한 방법으로, '100Base-T'라고도 한다.
- 기존의 10Base-T 이더넷과 프레임 포맷이 같고, 매체 접근 방식도 CSMA/CD로 동일하다.
- 고속 이더넷의 케이블 길이는 최대 100m로 제한되며, 짧은 케이블 길이는 전송을 빠르게 한다.
- 또한 고속 이더넷은 FDDI와는 다르게 적은 비용으로 고속의 LAN 환경을 구축할 수 있다.

❖ 기가비트 이더넷(Gigabit Ethernet)

- 기가비트 이더넷은 약 1Gbps 전송속도를 지원하는 이더넷이다.
- 기존 이더넷 뿐만 아니라 고속 이더넷과도 호환이 가능하고, UTP 이더넷 케이블을 교체하거나 프로토콜을 변경하지 않고도 간단하게 고속의 이더넷으로 업그레이드가 가능하다.
- 그래서 이더넷을 사용하는 많은 네트워크가 점차적으로 기가비트 이더넷으로 전환하고 있다.

***** FDDI(Fiber Distributed Data Interface)

- FDDI는 이더넷과 토큰링 방식만큼 많이 사용하지는 않지만, LAN의 고속 컴퓨터 연결이나 백본(기간망)으로 주로 사용한다.
- FDDI는 전송매체로 광섬유를 사용하여 고속의 전송속도(100Mbps)가 장점이다.
- 매체 접근 방식으로 토큰 제어 방식을 사용하고, 통신망은 링형 접속 형태를 띠는 구조다.

FDDI의 구조

❖ 광역 통신망(WAN, Wide Area Network)

- 광역 통신망은 두 개 이상의 근거리 네트워크가 넓은 지역에 걸쳐 연결되어 있는 것
- WAN은 하나의 국가 또는 국가와 국가 간을 연결하는 수백에서 수천 km 이상의 매우 범위가 넓은 네트워크
- 우리가 매일 사용하는 인터넷이 바로 WAN의 가장 대표적인 예

광역 통신망

❖ 회선 교환(Circuit Switching)

- 두 스테이션 간에 전용의 통신 경로가 있음을 의미한다.
- 데이터를 전송하기 전에 물리적인 하나의 경로가 설정되며, 설정된 경로는 통신을 종료할 때까지 독점한다.
- 경로를 설정할 때 지연이 발생하지만, 일단 경로를 설정하면 회선 교환망은 사용자에게 투명 하게 전송할 수 있다.
- 현재 널리 사용하는 전화 시스템이 회선 교환 방식의 대표적인 예다.

A 노드 회선 교환기 회선 교환기 회선 교환기 회선 회선 교환기 교환기 B 노드 회선 회선 교환기 교환기

미리 경로를 정해서 고정 경로를 따라서 전송

회선 교환 방식

■ 장점

- 회선을 전용선처럼 사용할 수 있어 많은 양의 데이터를 전송할 수 있다.
- 경로가 설정되면 사용자에게는 고정적인 전송률로 정보를 전송할 수 있다.
- 경로가 설정되면 교환 노드에서 처리지연이 거의 없다.
- 음성이나 동영상 등 실시간 전송이 요구되는 미디어 전송에 적합하다.

단점

- 오류 없는 데이터 전송이 요구되는 데이터 서비스에는 부적절하다.
- 설정되면 데이터를 그대로 투과시키므로 오류 제어 기능이 없다.
- 데이터를 전송하지 않는 기간에도 회선을 독점하므로 비효율적이다.

❖ 메시지 교환(Message Switching)

- 회선 교환의 비효율적인 회선 이용을 개선시킨 데이터 통신 교환 방식으로, **가변 길이의** 메시지 단위로 저장/전송 방식에 따라 데이터를 교환하는 방식이다.
- 저장/전송 방식이란 도착하는 메시지를 일단 저장한 후 다음 노드로 가는 링크가 비어 있으면 전송하는 방식을 말하며, '축적 전송(Store-and-forward)'이라고도 한다.

메시지 교환

❖ 패킷 교환(Packet Switching)

- 네트워크로 전송되는 모든 데이터는 송수신지 정보를 포함하는 패킷들로 구성되는데, 이 패킷들은 표준과 프로토콜을 사용하여 생성한다.
- 데이터는 네트워크를 사용하여 전송되기 전에 패킷이라는 작은 조각들로 나누는데, 각 패킷들은 고유의 번호가 있어 수신지에 전송되었을 때 원래의 데이터로 재결합하여 구성할 수 있다.

❖ 기본적인 패킷의 구조

- **헤더**: 패킷의 송신지와 수신지, 패킷 번호 등이 있다. 플래그 정보, 패킷 길이 등의 정보도 함께 들어 있다.
- 데이터 : 미리 정의된 최대의 데이터 크기를 가지며, 데이터가 최대 길이보다 크면 작은 조각들로 쪼개져 여러 개의 패킷으로 나뉘어 전송된다.
- 순환 잉여도 검사 : 수신된 정보 내에 오류가 포함되어 있는지 검사하려고 송신 측에서 보내는 원래의 데이터에 별도로 데이터를 추가하여 보내는데, 이를 순환 잉여도 검사라고 한다.

▪ 패킷 교환 방식

- 패킷 교환 방식은 회선 교환 방식과 메시지 교환 방식의 장점을 수용하고, 두 방식의 단점을 최소화시킨 방식이다.
- 저장/전송 방식을 사용한다는 점에서 메시지 교환과 비슷하다.
- 그러나 메시지 교환은 하나의 메시지 단위로 전송하는 반면, 패킷 교환은 적당한 크기로 메시지를 분할하여 전송한다.

- 회선 교환은 많은 양의 데이터를 연속적으로 전송할 때 적합하며,
- 패킷 교환은 네트워크 통신과 같은 간헐적인 정보를 보내는 데 적합하다.

패킷 교환과 메시지 교환

구분	패킷 교환	메시지 교환
데이터 단위	패킷	메시지
데이터 길이	일정(최대 1.024바이트)	일정하지 않음
데이터 저장 시간	일정 시간	장시간 보유
수신 데이터 결합	재결합	없음

❖ ATM 교환(Cell Switching) 방식

- 데이터를 고정 길이의 셀로 나누어 전송하는 방식
- 전송 데이터를 <u>48바이트의 고정 길이로 분할</u>하고, <u>5바이트의 제어 정보를 추가</u>하여 <u>53바이트의 셀</u>을 생성한 후 전송하는 방법을 사용한다.
- 셀의 크기는 패킷에 비해 매우 작은 편이다.
- 셀은 패킷과 비슷하지만 **패킷은 가변 길이**고, **셀은 고정 길이**인 것이 다르다.
- 고정 길이의 셀을 이용하여 저속 전송에서는 빈 셀을 전송하거나 다른 사용자에게 채널을 양보하는 방법을 사용하고, 고속 전송에서는 연속으로 전송한다
- ATM 교환 방식은 <u>회선 교환과 패킷 교환의 장점을 도입한 방식</u>으로, 광케이블을 이용한 전송 기술의 발달로 정보를 고속으로 보낼 수 있고 오류도 거의 없다.
- 따라서 패킷 재전송과 같은 복잡한 제어를 할 필요가 없고, 교환기나 단말기의 소프트웨어적 부담을 줄이는 것도 가능해졌다.

❖ 교환 방식의 비교

- 데이터 통신에서는 전송 링크를 효율적으로 활용할 수 있는 메시지 교환이나 패킷 교환 같은 저장/전송 방식이 적합하다.
- 음성이나 동영상 등 실시간 통신에서는 회선 교환 방식이 가장 적합하다.
- 대화형의 데이터 통신에서는 메시지 교환보다는 응답시간이 빠른 패킷 교환 방식이 적합하다.

교환 방식의 특징 비교

회선 교환 방식	전용 전송로 있음 전체 전송을 위해 전송로 설립 실시간 대화식 사용 가능 메시지 저장 불가능
메시지 교환 방식	 전용 전송로 없음 축적 전송이므로 대화식 불가능 메시지는 파일로 저장 각 메시지마다 경로 설정
데이터그램 패킷 교환 방식	 전용 전송로 없음 대화식 사용 가능(응답시간 빠름) 패킷을 전송할 때까지 저장 가능 각 패킷마다 경로 설정
가상회선 패킷 교환 방식	 전용 전송로 없음 대화식 사용 가능(응답시간 빠름) 패킷을 전송할 때까지 저장 가능 전체 전송을 위해 경로 설정