# Detecção de Malwares Android: datasets e reprodutibilidade

Taina Soares, Guilherme Siqueira, Lucas Barcellos, Renato Sayyed Luciano Vargas, Gustavo Rodrigues<sup>1</sup>, Joner Assolin<sup>1</sup>, Jonas Pontes<sup>2</sup>, Diego Kreutz<sup>1</sup>

Universidade Federal do Pampa (Unipampa)
Universidade Federal do Amazonas (UFAM)

{NomeSobrenome}.aluno@unipampa.edu.br pontes@icomp.ufam.edu.br, kreutz@unipampa.edu.br

Resumo. O número de aplicativos maliciosos vem crescendo rapidamente na plataforma Android. Atualmente, uma grande quantidade de pesquisas utilizam modelos preditivos de aprendizado de máquina para detecção de malwares Android. Porém, a confiabilidade e validade desses estudos é muitas vezes comprometida pela ausência de informações sobre os dados (e.g., detalhes e disponibilidade dos datasets) e os experimentos (e.g., hiper-parâmetros e bibliotecas utilizadas na implementação dos algoritmos), afetando diretamente a reprodutibilidade do trabalho. Neste trabalho, nós avaliamos uma amostra inicial de 35 trabalhos de pesquisa que utilizam aprendizado de máquina para detecção de malwares Android. Analisamos, em particular, o detalhamento e a disponibilidade dos datasets, que são cruciais para a validação e a reprodutibilidade do trabalho. Nossos resultados sugerem que aproximadamente 95% das pesquisas não são reprodutíveis por falta de informação e/ou acesso aos dados originais da pesquisa.

## 1. Introdução

O sistema Android ocupa hoje a maior fatia de mercado de dispositivos móveis como *smartphones* e *tablets*. Essa popularidade o torna alvo de aplicações maliciosas, que vêm crescendo ao passar do tempo em número e sofisticação [SophosLabs, 2021]

Acompanhando esse crescimento, podemos encontrar na literatura um número crescente de trabalhos de pesquisa voltados para a detecção de *malwares* em aplicativos Android (APKs) [Yan and Yan, 2018, Wang et al., 2019], entre os quais grande parcela propõe modelos de aprendizado de máquina para classificar os APKs Android entre malignos e benignos [Arslan et al., 2019, Ming et al., 2020].

Um dos recursos mais importantes para o desenvolvimento de um trabalho de aprendizado de máquina é o *dataset*, *i.e.*, conjunto estruturado de dados, que é utilizado para treinamento de um modelo preditivo. A apresentação detalhada e a disponibilidade do *dataset* é imprescindível para a validação da pesquisa e a reprodução dos resultados para fins de comparação (*e.g.*, proposição de novos métodos) [Kouliaridis et al., 2020].

O objetivo deste trabalho é realizar um levantamento sobre o nível de detalhamento e disponibilidade dos *datasets* utilizados em estudos que propõem métodos de aprendizado de máquina para de detecção de *malwares* Android. Para alcançá-lo, coletamos inicialmente 35 trabalhos existentes na literatura, conforme detalhado na Seção 2.

As contribuições deste trabalho podem ser resumidas em: realização de um levantamento inicial sobre o detalhamento dos *datasets* em trabalhos de detecção de *malwares* Android; mapeamento detalhado da disponibilidade dos *datasets*; identificação de incompletude e inconsistências nos trabalhos; recomendações de boas práticas para trabalhos de pesquisa que utilizem métodos de aprendizado de máquina.

O restante do trabalho está organizado da seguinte forma. Na Seção 2 apresentamos o levantamento de dados dos 35 trabalhos analisados. Finalmente, na Seção 3 apresentamos recomendações e as considerações finais.

# 2. Reprodutibilidade das Pesquisas

Existem algumas informações mínimas que são necessárias para a reprodutibilidade de um trabalho de pesquisa, como a descrição detalhada e a referência para a origem das amostras utilizadas, bem como a disponibilidade dos *datasets* [Pendlebury et al., 2019]. Neste trabalho, foram selecionados e analisados 35 estudos que propõe modelos de aprendizado de máquina para detecção de *malwares* Android.

Para um estudo inicial, foram criados quatros grupos de *papers*, como detalhado a seguir. *Grupo 1 (G1)*: citados por algum *survey* ou revisão sistemática de literatura específica do tema; *Grupo 2 (G2)*: trabalhos com 40 (ou mais) citações segundo o Google Scholar<sup>1</sup>; *Grupo 3 (G3)*: publicados nos principais *journals* ou conferências da área de segurança, segundo o Guide2Research.com; e *Grupo 4: (G4)*: publicados em conferências específicas da área de inteligência artificial. Com este grupo, o objetivo é verificar se existe alguma diferença qualitativa significativa em termos de descrição e disponibilidade das fontes dos *datasets* quando o trabalho é publicado nessa área específica da computação, que engloba o aprendizado de máquina.

### 2.1. Detalhamento dos datasets

A Tabela 1 resume as informações de origem e disponibilidade dos dados dos *datasets* dos trabalhos analisados. Entre as principais deficiências encontradas na descrição dos *datasets* utilizados podemos destacar a ausência de informações como: (a) referência à origem das amostras utilizadas, sejam elas oriundas de um *dataset* existente ou extraídas de APKs disponíveis em um repositório; (b) detalhamento da quantidade de amostras utilizadas em cada experimento realizado; e (c) descrição da maneira pela qual um conjunto de dados próprio do trabalho foi criado (*e.g.*, combinação de *subsets* de outros *datasets*), aplicável quando um estudo utiliza particionamentos não detalhados de outros conjuntos de dados.

Podemos observar que aproximadamente 95% dos estudos não detalham suficientemente o conjunto de dados utilizado e, consequentemente, impossibilita a reprodução ou validação da pesquisa. Do total de trabalhos analisados, apenas dois (apontados nas duas primeiras linhas da tabela) fornecem todas as informações essenciais sobre os *datasets*, necessárias para a reprodução. É importante destacar que o processo de revisão dos artigos ocorreu em duas etapas. Na primeira, cada publicação foi analisada por dois ou três co-autores (revisores). Publicações que resultaram em análises divergentes na primeira etapa foram novamente verificadas, desta vez por um, dois ou três revisores diferentes.

https://scholar.google.com

Tabela 1. Detalhamento da origem e disponibilidade dos datasets

| Papers                                                          | Grupo | Informação da origem | Dados disponíveis |
|-----------------------------------------------------------------|-------|----------------------|-------------------|
| [Alazab et al., 2020]                                           | G2    | Sim                  | Sim               |
| [Pendlebury et al., 2019]                                       | G3    |                      |                   |
| [Vinod et al., 2019]                                            | G1    | - Sim                | Parcialmente      |
| [Yuan et al., 2016], [Mahindru and Singh, 2017],                | G2    |                      |                   |
| [Amos et al., 2013], [Yuan et al., 2014]                        |       |                      |                   |
| [Demontis et al., 2019], [Cen et al., 2015],                    | G3    |                      |                   |
| [Gates et al., 2014], [Ferrante et al., 2018]                   |       |                      |                   |
| [Jung et al., 2018]                                             | G4    |                      |                   |
| [Patel and Buddadev, 2015]                                      | G1    | Parcial              | Parcialmente      |
| [Arora et al., 2018]                                            | G1    | Sim                  | Não               |
| [Ma et al., 2019], [Yerima et al., 2014], [Li et al., 2018],    | G2    |                      |                   |
| [Mas'ud et al., 2014], [Narudin et al., 2016]                   |       |                      |                   |
| [Chawla et al., 2021], [Fan et al., 2017], [Chen et al., 2020], | G3    |                      |                   |
| [Jordaney et al., 2017], [Li et al., 2021], [Xu et al., 2016]   |       |                      |                   |
| [Arslan et al., 2019], [Peiravian and Zhu, 2013]                | G4    |                      |                   |
| [Chen et al., 2018], [Mahindru and Sangal, 2021]                | 04    |                      |                   |
| [Wang et al., 2019]                                             | G1    | Parcial              | Não               |
| [Wu and Hung, 2014],                                            | G2    |                      |                   |
| [Burguera et al., 2011]                                         | G3    |                      |                   |
| [Shabtai et al., 2012]                                          | G4    |                      |                   |
| [Sahs and Khan, 2012], [Zarni Aung, 2013]                       | G2    | Não                  | Não               |

Em 12 trabalhos (aproximadamente 35%), a informação faltante é referente à quantidade de aplicativos utilizados pelo experimento, que são oriundos de fontes de APKs (e.g., Google Play Store, AppChina, Mumayi, Amazon Appstore) ou datasets (e.g., The Drebin Dataset, DroidKin, ContagioDump). Por exemplo, há trabalhos, como [Alazab et al., 2020], que informam a origem dos dados mas não identificam a quantidade e nem o nome (ou resumo criptográfico) dos aplicativos retirados de cada fonte de dados. Por outro lado, trabalhos como [Sahs and Khan, 2012, Zarni Aung, 2013] informam o número de amostras e a distribuição do total delas em cada classe (i.e., maligno ou benigno), porém, sem especificar a origem dos dados.

É interessante destacar que alguns trabalhos, como [Shabtai et al., 2012], relatam que as amostras utilizadas no experimento foram desenvolvidas internamente, porém sem fornecer detalhes ou acesso à tais amostras. Consequentemente, torna-se inviável reproduzir o trabalho sem os conjuntos de dados originais.

#### 2.2. Disponibilidade da fonte dos dados

Dos trabalhos analisados e que mencionam pelo menos alguma origem de dados, apenas dois ([Pendlebury et al., 2019] e [Alazab et al., 2020]) possuem todas as origens disponíveis. As fontes de dados citadas por eles são AndroZoo<sup>2</sup>, ContagioDump<sup>3</sup>, MalShare<sup>4</sup> e VirusShare<sup>5</sup>.

<sup>2</sup>https://androzoo.uni.lu/

<sup>3</sup>http://contagiominidump.blogspot.com/

<sup>4</sup>https://malshare.com/

<sup>5</sup>https://virusshare.com/

Podemos destacar que há trabalhos (*e.g.*, [Zarni Aung, 2013, Demontis et al., 2017]) que fornecem a quantidade de aplicativos benignos utilizados, mas não citam suas origens e, consequentemente, inviabilizam a reprodutibilidade do *dataset*. Há também trabalhos (*e.g.*, [Patel and Buddadev, 2015]) que apenas fornecem os dados dos aplicativos malignos e não citam nenhuma informação sobre os aplicativos benignos. Mais uma vez, esta falta de informação inviabiliza a reprodutibilidade fidedigna dos trabalhos.

Em 60% dos trabalhos, a origem dos aplicativos benignos são lojas online de aplicativos (*e.g.*, Google Play Store<sup>6</sup>, Chinese Market<sup>7</sup>, Amazon Appstore App For Android<sup>8</sup>, APKPure App<sup>9</sup>). Entretanto, para a reconstrução do *dataset*, seriam necessárias informações como o nome e a versão dos aplicativos retirados dessas lojas. Infelizmente, nenhum dos trabalhos fornece esses detalhes.

Em alguns repositórios de APKs voltados para o desenvolvimento de métodos de detecção de *malwares*, como o AndroZoo<sup>10</sup>, os autores disponibilizam os nomes dos aplicativos e as resumos criptográficos, o que permite identificar todos os APKs com precisão. Outro cenário recorrente é a utilização de *datasets* oriundos de múltiplas fontes, como é o caso dos trabalhos [Vinod et al., 2019, Yuan et al., 2016]. O principal problema é que os trabalhos não detalham como o *dataset*, composto por dados de diferentes fontes, foi construído, inviabilizando a reconstrução do mesmo.

Aproximadamente 34% dos trabalhos não identificam todas as fontes de APKs. Além disso, em 46% dos trabalhos as fontes referenciadas são inacessíveis, como é o caso de trabalhos como [Jordaney et al., 2017] e [Chawla et al., 2021]. Em ambos os casos, temos problemas que afetam a reprodutibilidade dos trabalhos, como é evidente.

#### 2.3. Discussão

Ferramentas externas. Ferramentas de análise de APKs (e.g. Virus Total<sup>11</sup>) podem ser utilizadas na construção de *datasets*. Porém, nesses casos, o estudo deve explicitar quais APKs serviram como insumo para a construção dos *datasets*, e não apenas a identificação da ferramenta utilizada; caso contrário, a reprodutibilidade é comprometida, como no caso de [Amos et al., 2013].

Diferenças entre os grupos G1, G2, G3, e G4 de papers. Apesar de utilizarmos uma amostra inicial pequena, nossa expectativa era encontrar diferenças no detalhamento dos datasets entre os grupos, em especial com relação ao grupo G4, constituído por trabalhos publicados em conferências de inteligência artificial, isto é, especializadas em temas como aprendizado de máquina; porém, tais diferenças não foram encontradas. Na prática, nenhum dos trabalhos do grupo G4 detalha (suficientemente) e utiliza datasets acessíveis (ver Tabela 1).

No grupo G4, aproximadamente 85% dos trabalhos utilizam lojas de aplicativos, como a Google Play Store, como fonte dos aplicativos benignos. Entretanto, nenhum

<sup>6</sup>https://play.google.com/store

<sup>7</sup>https://shouji.baidu.com/

<sup>8</sup>https://www.amazon.com/gp/mas/get/amazonapp

<sup>9</sup>https://m.apkpure.com

<sup>10</sup>https://androzoo.uni.lu

<sup>11</sup>https://www.virustotal.com

deles apresenta as informações necessárias para reprodutibilidade, como nome dos APKs e versão de cada um.

Intervalo de tempo para identificar APKs. Alguns estudos (e.g., [Gates et al., 2014, Chen et al., 2018]) utilizam repositórios públicos, como o Google Play Store, e definem um intervalo de tempo do download dos APKs (e.g., download realizado entre janeiro e abril de 2020). Esta informação, considerando o aspecto da reprodutibilidade, é pouco útil, pois tais repositórios não fornecem mecanismos de filtro por período de tempo. Além disso, seriam necessários também os nomes dos APKs utilizados nos experimentos.

*Múltiplas fontes para construção dos datasets*. Vários trabalhos, como [Cen et al., 2014, Vinod et al., 2019], combinam *subsets* baseados em múltiplos *datasets*, porém, sem detalhar o processo de construção de tais *subsets*; essa característica impossibilita a reprodução e validação do experimento.

Preparação dos dados. Limpeza e preparação dos dados são etapas fundamentais para o desenvolvimento de modelos de aprendizado de máquina. Entretanto, a descrição adequada destes processos é frequentemente negligenciada nos trabalhos. Dessa forma, além da referência do dataset utilizado como base, é necessário também dispor o subconjunto próprio do experimento ou o processo efetuado para obtê-lo; caso contrário, os resultados do trabalho não podem ser replicados.

## 3. Considerações Finais

Realizamos uma análise minuciosa de 35 trabalhos para identificar o detalhamento e a disponibilidade dos *datasets*, que são fundamentais para a validação e reprodutibilidade de pesquisas que propõem métodos de aprendizado de máquina. Nosso estudo, apesar de inicial, indica que aproximadamente 95% das pesquisas em detecção de *malwares* Android não são reprodutíveis pelo fato de faltarem informações sobre o *dataset* ou o mesmo não estar disponível / acessível. Isso demonstra que, mesmo com o grande número de trabalhos sendo publicados, na maioria deles seus resultados não podem ser verificados ou reproduzidos. Esse cenário traz impactos negativos, por exemplo, na construção de novos modelos de aprendizado de máquina, uma vez que a comparação entre as novas abordagens é comprometida pela incapacidade de reprodução dos experimentos existentes na literatura. Por fim, propomos algumas recomendações e trabalhos futuros.

## Recomendações

O detalhamento dos *datasets* deve incluir as fontes utilizadas, sejam elas repositórios de APKs ou *datasets* de terceiros. Além disso, é importante informar o *subset* utilizado no treinamento e validação dos modelos de aprendizado de máquina.

Idealmente, recomendamos que sejam utilizadas fontes públicas para extrair as amostras, facilitando e acelerando a reprodução dos *datasets*. Complementarmente, a disponibilidade do conjunto exato de dados, utilizado no trabalho, viabilizaria uma reprodução fidedigna da pesquisa.

É importante ressaltar também que devemos evitar fontes de dados antigas (e.g., datasets de 2012 – a API do Android sofreu modificações significativas em 2015, por exemplo), pois não há garantias que os padrões encontrados pelos modelos preditivos, em amostras antigas, são aplicáveis em malwares atuais.

**Trabalhos Futuros**. (a) Analisar aspectos de reprodutibilidade dos modelos de aprendizado de máquina (*e.g.*, bibliotecas e hiper-parâmetros utilizados); (b) Aumentar a quantidade de artigos de cada um dos grupos (G1, G2, G3, G4); (c) Análise tecnicamente todos os *datasets* disponíveis e utilizados nos trabalhos; e (d) Catalogar os *datasets* agrupando-os por ano, tamanho, fontes e versões das APIs Android.

#### Referências

- Alazab, M., Alazab, M., Shalaginov, A., Mesleh, A., and Awajan, A. (2020). Intelligent mobile malware detection using permission requests and api calls. *Future Generation Computer Systems*, 107:509–521.
- Amos, B., Turner, H., and White, J. (2013). Applying machine learning classifiers to dynamic android malware detection at scale. In 9th International Wireless Communications and Mobile Computing Conference (IWCMC), pages 1666–1671.
- Arora, A., Peddoju, S. K., Chouhan, V., and Chaudhary, A. (2018). Hybrid android malware detection by combining supervised and unsupervised learning. In *Proceedings of the 24th Annual International Conference on Mobile Computing and Networking*, page 798–800. ACM.
- Arslan, R. S., Doğru, İ. A., and Barişçi, N. (2019). Permission-based malware detection system for android using machine learning techniques. *International journal of software engineering and knowledge engineering.*, 29(01):43–61.
- Burguera, I., Zurutuza, U., and Nadjm-Tehrani, S. (2011). Crowdroid: Behavior-based malware detection system for android. In *Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices*, page 15–26. ACM.
- Cen, L., Gates, C. S., Si, L., and Li, N. (2014). A probabilistic discriminative model for android malware detection with decompiled source code. *IEEE Transactions on Dependable and Secure Computing*, 12(4):400–412.
- Cen, L., Gates, C. S., Si, L., and Li, N. (2015). A probabilistic discriminative model for android malware detection with decompiled source code. *IEEE Transactions on Dependable and Secure Computing*, 12(4):400–412.
- Chawla, N., Kumar, H., and Mukhopadhyay, S. (2021). Machine learning in wavelet domain for electromagnetic emission based malware analysis. *IEEE Transactions on Information Forensics and Security*, 16:3426–3441.
- Chen, X., Li, C., Wang, D., Wen, S., Zhang, J., Nepal, S., Xiang, Y., and Ren, K. (2020). Android hiv: A study of repackaging malware for evading machine-learning detection. *IEEE Transactions on Information Forensics and Security*, 15:987–1001.
- Chen, Z., Yan, Q., Han, H., Wang, S., Peng, L., Wang, L., and Yang, B. (2018). Machine learning based mobile malware detection using highly imbalanced network traffic. *Information Sciences*, 433-434:346–364.
- Demontis, A., Melis, M., Biggio, B., Maiorca, D., Arp, D., Rieck, K., Corona, I., Giacinto, G., and Roli, F. (2017). Yes, machine learning can be more secure! a case study on android malware detection. *IEEE Transactions on Dependable and Secure Computing*, 16(4):711–724.
- Demontis, A., Melis, M., Biggio, B., Maiorca, D., Arp, D., Rieck, K., Corona, I., Giacinto, G., and Roli, F. (2019). Yes, machine learning can be more secure! a case

- study on android malware detection. *IEEE Transactions on Dependable and Secure Computing*, 16(4):711–724.
- Fan, M., Liu, J., Wang, W., Li, H., Tian, Z., and Liu, T. (2017). Dapasa: Detecting android piggybacked apps through sensitive subgraph analysis. *IEEE Transactions on Information Forensics and Security*, 12(8):1772–1785.
- Ferrante, A., Malek, M., Martinelli, F., Mercaldo, F., and Milosevic, J. (2018). Extinguishing ransomware a hybrid approach to android ransomware detection. In Imine, A., Fernandez, J. M., Marion, J.-Y., Logrippo, L., and Garcia-Alfaro, J., editors, *Foundations and Practice of Security*, pages 242–258, Cham. Springer International Publishing.
- Gates, C. S., Li, N., Peng, H., Sarma, B., Qi, Y., Potharaju, R., Nita-Rotaru, C., and Molloy, I. (2014). Generating summary risk scores for mobile applications. *IEEE Transactions on Dependable and Secure Computing*, 11(3):238–251.
- Jordaney, R., Sharad, K., Dash, S. K., Wang, Z., Papini, D., Nouretdinov, I., and Cavallaro, L. (2017). Transcend: Detecting concept drift in malware classification models. In *26th USENIX Security Symposium*, pages 625–642. USENIX Association.
- Jung, J., Kim, H., Shin, D., Lee, M., Lee, H., Cho, S.-j., and Suh, K. (2018). Android malware detection based on useful api calls and machine learning. In *IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)*, pages 175–178.
- Kouliaridis, V., Kambourakis, G., and Peng, T. (2020). Feature importance in android malware detection. In *IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)*, pages 1449–1454.
- Li, C., Chen, X., Wang, D., Wen, S., Ahmed, M. E., Camtepe, S., and Xiang, Y. (2021). Backdoor attack on machine learning based android malware detectors. *IEEE Transactions on Dependable and Secure Computing*, pages 1–1.
- Li, J., Sun, L., Yan, Q., Li, Z., Srisa-an, W., and Ye, H. (2018). Significant permission identification for machine-learning-based android malware detection. *IEEE Transactions on Industrial Informatics*, 14(7):3216–3225.
- Ma, Z., Ge, H., Liu, Y., Zhao, M., and Ma, J. (2019). A combination method for android malware detection based on control flow graphs and machine learning algorithms. *IEEE Access*, 7:21235–21245.
- Mahindru, A. and Sangal, A. L. (2021). MLDroid—framework for Android malware detection using machine learning techniques. *Neural Computing and Applications*, 33(10):5183–5240.
- Mahindru, A. and Singh, P. (2017). Dynamic permissions based android malware detection using machine learning techniques. In *Proceedings of the 10th Innovations in Software Engineering Conference*, page 202–210. ACM.
- Mas'ud, M. Z., Sahib, S., Abdollah, M. F., Selamat, S. R., and Yusof, R. (2014). Analysis of features selection and machine learning classifier in android malware detection. In *International Conference on Information Science Applications*, pages 1–5.
- Ming, F., Ting, L., Jun, L., Xiapu, L., Le, Y., and Xiaohong, G. (2020). Android malware detection: A survey. *Scientia Sinica Informationis*, 50(8):1148–1177.

- Narudin, F. A., Feizollah, A., Anuar, N. B., and Gani, A. (2016). Evaluation of machine learning classifiers for mobile malware detection. *Soft Computing*, 20(1):343–357.
- Patel, K. and Buddadev, B. (2015). Detection and mitigation of android malware through hybrid approach. In Abawajy, J. H., Mukherjea, S., Thampi, S. M., and Ruiz-Martínez, A., editors, *Security in Computing and Communications*, pages 455–463, Cham. Springer International Publishing.
- Peiravian, N. and Zhu, X. (2013). Machine learning for android malware detection using permission and api calls. In *IEEE 25th International Conference on Tools with Artificial Intelligence*, pages 300–305.
- Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J., and Cavallaro, L. (2019). {TESSERACT}: Eliminating experimental bias in malware classification across space and time. In 28th {USENIX} Security Symposium, pages 729–746.
- Sahs, J. and Khan, L. (2012). A machine learning approach to android malware detection. In *European Intelligence and Security Informatics Conference*, pages 141–147.
- Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., and Weiss, Y. (2012). "Andromaly": a behavioral malware detection framework for android devices. *Journal of Intelligent Information Systems*, 38(1):161–190.
- SophosLabs (2021). Sophos 2021 threat report. https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophos-2021-threat-report.pdf.
- Vinod, P., Zemmari, A., and Conti, M. (2019). A machine learning based approach to detect malicious android apps using discriminant system calls. *Future Generation Computer Systems.*, 94:333–350.
- Wang, S., Chen, Z., Yan, Q., Yang, B., Peng, L., and Jia, Z. (2019). A mobile malware detection method using behavior features in network traffic. *Journal of Network and Computer Applications*, 133:15–25.
- Wu, W.-C. and Hung, S.-H. (2014). Droiddolphin: A dynamic android malware detection framework using big data and machine learning. In *Proceedings of the 2014 Conference on Research in Adaptive and Convergent Systems*, page 247–252. ACM.
- Xu, K., Li, Y., and Deng, R. H. (2016). Iccdetector: Icc-based malware detection on android. *IEEE Transactions on Information Forensics and Security*, 11(6):1252–1264.
- Yan, P. and Yan, Z. (2018). A survey on dynamic mobile malware detection. *Software Quality Journal*, 26(3):891–919.
- Yerima, S. Y., Sezer, S., and Muttik, I. (2014). Android malware detection using parallel machine learning classifiers. In *Eighth International Conference on Next Generation Mobile Apps, Services and Technologies*, pages 37–42.
- Yuan, Z., Lu, Y., Wang, Z., and Xue, Y. (2014). Droid-sec: Deep learning in android malware detection. *SIGCOMM Comput. Commun. Rev.*, 44(4):371–372.
- Yuan, Z., Lu, Y., and Xue, Y. (2016). Droiddetector: android malware characterization and detection using deep learning. *Tsinghua Science and Technology*, 21(1):114–123.
- Zarni Aung, W. Z. (2013). Permission-based android malware detection. *International Journal of Scientific & Technology Research*, 2(3):228–234.