Exercises (recommended)

- 1. (a) Prove that if G is an n-vertex K_r -free graph with at least $t_{r-1}(n) s$ edges, then G can be made (r-1)-partite by deleting at most s edges.
 - (b) Prove that if G is an n-vertex K_r -free graph with at least $t_{r-1}(n) s$ edges, then G can be made complete (r-1)-partite by adding or deleting at most 3s edges.
 - \star (c) Prove that for every $\varepsilon > 0$, there exists $\delta > 0$ such that the following holds for all sufficiently large n. If G is an n-vertex K_r -free graph with at least $t_{r-1}(n) \delta n^2$ edges, then G can be turned into $T_{r-1}(n)$ by adding or deleting at most εn^2 edges.
- 2. On a previous homework, you might have proved the following statement: if an n-vertex directed graph has no copy of a cyclic triangle, then it has at most $\lfloor n^2/2 \rfloor$ edges. The extremal example is the complete bipartite graph $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$, with all edges oriented in both directions.

Prove that this extremal problem does not exhibit stability. Namely, find another directed graph with $\lfloor n^2/2 \rfloor - o(n^2)$ edges and no cyclic triangle, which cannot be turned into the extremal example above by adding/deleting $o(n^2)$ edges.

- 3. In this problem you'll prove lower bounds for the extremal numbers of cycles.
 - (a) Let p be a prime, $2 \leq \ell \leq p$ a positive integer, and let a_1, \ldots, a_ℓ be ℓ distinct elements of \mathbb{F}_p . Prove that the vectors

$$(1, a_1, a_1^2, \dots, a_1^{\ell-1}), \qquad (1, a_2, a_2^2, \dots, a_2^{\ell-1}), \qquad \dots \qquad (1, a_\ell, a_\ell^2, \dots, a_\ell^{\ell-1})$$

are linearly independent in \mathbb{F}_n^{ℓ} .

(b) Let p and ℓ be as above, and consider the following bipartite graph G. Its two parts are X and Y, where $X = \mathbb{F}_p^{\ell}$ and Y consists of all lines in \mathbb{F}_p^{ℓ} of the form

$$\{(b_1,\ldots,b_\ell)+t\cdot(1,a,a^2,\ldots,a^{\ell-1}):t\in\mathbb{F}_p\}.$$

Make $x \in X$ and $y \in Y$ adjacent in G if and only if the point x lies on the line y. Prove that G has $n = 2p^{\ell}$ vertices and $p^{\ell+1} = \Theta(n^{1+1/\ell})$ edges.

- \star (c) Prove that if $\ell \in \{2,3,5\}$, then G is $C_{2\ell}$ -free. Conclude that $\exp(n,C_{2\ell}) = \Theta(n^{1+1/\ell})$.
 - (d) What goes wrong if $\ell \notin \{2, 3, 5\}$?
- ? (e) Modify this construction to work for $\ell = 7$.
- \div 4. Recall that the *distance* between two vertices u, v in a graph G, denoted $d_G(u, v)$, is the number of edges in the shortest path connecting them.

^{*} means that a problem is hard.

[?] means that a problem is open.

- (a) Prove that if H is a spanning subgraph of G (i.e. V(H) = V(G) and $E(H) \subseteq E(G)$), then $d_G(u, v) \leq d_H(u, v)$ for all u, v.
- (b) Given an integer k, a k-spanner of G is a subgraph $H \subseteq G$ for which

$$d_G(u, v) \leq d_H(u, v) \leq k \cdot d_G(u, v)$$

for all u, v. Prove¹ that every n-vertex graph G, regardless of how many edges it has, contains a $(2\ell-1)$ -spanner H with $e(H) \leq O(n^{1+1/\ell})$, for any $\ell \geq 1$.

Remark: Spanners are very important in computer science, as they allow us to approximate distances in G while using much less storage than it would take to store all of G. For example, even if G has $\Theta(n^2)$ edges, the result above shows that we can approximate distances in G up to a factor of 100 by storing only $O(n^{1.02})$ edges.

(c) Prove that this result is tight if $\ell \in \{2,3,5\}$. That is, there exists an *n*-vertex graph G containing no $(2\ell-1)$ -spanner with fewer than $cn^{1+1/\ell}$ edges, for some constant c>0.

Problems (optional)

- 1. In this problem you'll see some variants of the supersaturation theorem for triangles.
 - (a) Prove that if an *n*-vertex graph has $\lfloor n^2/4 \rfloor + 1$ edges, then it contains at least $\lfloor n/2 \rfloor$ triangles.
 - (b) Prove that this bound is tight.
- **(c) Prove that if an *n*-vertex graph has $\lfloor n^2/4 \rfloor + 1$ edges, then it contains at least $\lfloor n/6 \rfloor$ triangles all sharing a single edge.
- \star (d) Prove that this bound is tight.
- *2. Remove the minimum degree assumption from the proof of Proposition 11.3, thus proving that $ex(n, C_5) = \lfloor n^2/4 \rfloor$ for all sufficiently large n.
- **3. Prove the following general stability theorem: for every H and every $\varepsilon > 0$, there exists $\delta > 0$ so that the following holds for all sufficiently large n. If G is an n-vertex K_r -free graph with at least $t_{\chi(H)-1}(n) \delta n^2$ edges, then G can be made $(\chi(H)-1)$ -partite by deleting at most εn^2 edges.
- **4. Prove the following combination of the supersaturation and stability theorems. For every $r \geq 3$ and every $\varepsilon > 0$, there exist $\delta, \gamma > 0$ such that the following holds for all sufficiently large n. If G is an n-vertex graph with at most γn^r copies of K_r and minimum degree at least $(1 \frac{1}{r-1} \delta)n$, then G can be made (r-1)-partite by deleting at most εn^2 edges.

¹Hint: Greedily add edges to H while not creating a short cycle.

5. Let \mathcal{F} be a finite collection of bipartite graphs, none of which is a forest. A famous conjecture of Erdős and Simonovits, called the *compactness conjecture*, asserts that there exists some $H \in \mathcal{F}$ such that

$$ex(n, \mathcal{F}) \leq ex(n, H) \leq C \cdot ex(n, \mathcal{F}),$$

where C > 0 is an absolute constant, depending only on \mathcal{F} .

- (a) Prove that the first inequality above holds for any $H \in \mathcal{F}$.
- \star (b) Prove that the compactness conjecture can be false if we allow $\mathcal F$ to be infinite.
- \star (c) Prove that the compactness conjecture can be false if we allow $\mathcal F$ to contain forests.
- ? (d) Prove or disprove the compactness conjecture.
- $\star\star$ (e) The compactness conjecture is known to be false for hypergraphs! You'll see this in this part and the next.

Consider the following two 3-partite 3-graphs:

Prove that $ex(n, K_{1,1,2}^{(3)}) = \Theta(n^2)$ and $ex(n, T) = \Theta(n^2)$.

***** (f) Prove that $ex(n, \{K_{1,1,2}^{(3)}, T\}) = o(n^2)$, thus disproving the compactness conjecture for hypergraphs.