

Representação e Análise de Imagem

V Vasconcelos

Processamento de Imagem Médica

Extracção de Características e Representação

Após a segmentação da imagem, características específicas e propriedades representativas da região segmentada podem ser extraídas para compreender os objectos e os classificar.

Características usadas na representação de regiões:

- •Estatísticas (Statistical Pixel-Level)
- •Forma
- Textura

Estatísticas de 1ª ordem

Fornecem informação quantitativa acerca dos píxeis da região segmentada. Podem incluir:

Histograma Normalizado

$$h(k) = \frac{n_k}{MxN}$$

Onde h(k) e n_k são, respectivamente, a probabilidade e o n^o de ocorrências do nível de cinzento k, na região e M e N a dimensão da região.

Média dos píxeis da imagem é dada por

$$\mu = \sum_{k=0}^{L-1} kh(k)$$

onde *L* é o número total de níveis de cinzento da imagem.

Estatísticas de 1ª ordem

Momentos Centrais de Ordem n

$$\mu_n = \sum_{k=0}^{L-1} (k - \mu)^n h(k)$$

Sendo para

 $n=2 \rightarrow \mu_2$ é a variância

n=3 → simetria (skewness) medida de não centralidade

$$SKE = \frac{1}{\sigma^3} \sum_{i=0}^{L-1} h(i) (i - \mu)^3$$

Estatísticas de 1ª ordem

simetria (skewness) medida de não centralidade

$$SKE = \frac{1}{\sigma^3} \sum_{i=0}^{L-1} h(i) (i - \mu)^3$$

Estatísticas de 1ª ordem

Momentos Centrais de Ordem n

n=4 → curtose (*kurtosis*) - medida de achatamento do histograma relativamente à distribuição normal

$$CUR = \frac{1}{\sigma^4} \sum_{i=0}^{L-1} h(i) (i - \mu)^4 - 3$$

Curva a verde -> curtose > 0; leptocúrtica Curva a azul-> curtose = 0; mesocúrtica Curva a verde -> curtose <0; platicúrtica

Estatísticas de 1ª ordem

Energia ou uniformidade

Medida de não uniformidade

$$Energia = \sum_{k=0}^{L-1} h(k)^{2}$$

$$A = \begin{array}{c|cccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}$$

$$B = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 4 & 5 & 6 & 7 \\ 8 & 9 & 10 & 11 \end{bmatrix}$$

$$Energia = 1$$

$$Energia = 0.069$$

Entropia

Estatísticas de 1ª ordem

$$Entropia = -\sum_{k=0}^{L-1} h(k) \log_2 (h(k))$$

Mede a desordem ou aleatoriedade de um sistema.

Medida de informação representada pela distribuição dos valores do nível de cinzento na região.

No caso da imagem:

- * Se o histograma da imagem se encontrar uniformemente distribuído ao longo dos níveis de cinzento, a **entropia é máxima**.
- * Uma imagem a preto e branco (apenas dois estados estão ocupados) a **entropia é baixa**.
- * Todos os píxeis tiverem o mesmo valor entropia=log2(1)=0.

Forma

São várias as características que podem ser usadas para representar a forma de uma região segmentada, que é basicamente a distribuição espacial dos píxeis da fronteira.

Área (A) – nº de píxeis do objecto

Perímetro (P) - nº de píxeis na fronteira do objecto

Circularidade (C) –
$$C = \frac{4\pi A}{P^2}$$

Compacidade (Cp) –
$$C_p = \frac{p^2}{A}$$

Maior Eixo - GE

Menor Eixo - HF

Codificação de Contornos: Chain Code

Através de um conjunto de primitivas são codificadas as diferentes direcções.

Se considerarmos a vizinhança-8 as orientações são representadas de 0-7.

Codificação de Contornos: Chain Code

Para que um contorno possa ser codificado através dos **códigos de orientação** o contorno tem de ser aproximado por uma lista de segmentos.

Para obter o conjunto de segmentos que caracterizem o contorno, este tem de ser **discreto**.

Por exemplo, no método "divide-and-conquer", os pontos com uma variação grande na direcção do gradiente são escolhidos para potenciais vértices. Se o segmento de recta que une dois vértices não respeita um critério de "máximodesvio", o segmento é sub-dividido.

O critério de "máximo-desvio" é baseado na distância na perpendicular entre dois vértices do contorno original, **B-F**

Características de Textura

A textura é uma propriedade espacial muito importante que pode ser utilizada na segmentação de regiões, assim como na sua descrição. Existem três aproximações principais na descrição da textura:

- •Estatística baseiam-se na distribuição dos valores de nível de cinzento da imagem.
- •Estrutural baseiam-se no arranjo de primitivas préestabelecidas.
- •Espectral baseiam-se em métodos de análise espectral, tais como, transformada de Fourier e wavelet.

Aproximação Estatística Matriz de co-ocorrência Exemplo

Descritores obtidos a partir da matriz de co-ocorrência, correspondente a cada uma das imagens anteriores.

Normalized Co-occurrence Matrix	Descriptor						
	Max Probability	Correlation	Contrast	Uniformity	Homogeneity	Entropy	
G_1/n_1	0.00006	-0.0005	10838	0.00002	0.0366	15.75	
G_2/n_2	0.01500	0.9650	570	0.01230	0.0824	6.43	
G_3/n_3	0.06860	0.8798	1356	0.00480	0.2048	13.58	

Aproximação Estatística Matriz de Primitivas de Comprimento

Baseia-se no cálculo de primitivas de comprimento (*run-length primitives*), que são conjuntos de píxeis consecutivos com o mesmo nível de cinzento, numa dada direcção.

Image 1

1	1	2	2	2
		2	2	2
1	3	3	3	3
3	3	4	4	4
3	3	4	4	4

 $\begin{array}{c} {\rm Matriz} \\ M(a,r|\theta); \; \theta = \theta^o \end{array}$

Aproximação Estatística Matriz de Primitivas de Comprimento

A partir da matriz de primitivas de comprimento podem ser calculados descritores de textura.

Feature	Formula		
1. Short Run Emphasis	$SRE = \frac{1}{n_r} \sum_{a=1}^{L} \sum_{r=1}^{Nr} \frac{M(a,r)}{r^2}$		
	n_r is total number of primitives		
2. Long Run Emphasis	$LRE = \frac{1}{n_r} \sum_{a=1}^{L} \sum_{r=1}^{M} M(a,r)r^2$		
3. Gray Level Non- Uniformity	$GLNU = \frac{1}{n_r} \sum_{\alpha=1}^{L} \left(\sum_{r=1}^{N_r} M(\alpha, r) \right)^2$		
4. Run Length Non- Uniformity	$RLNU = \frac{1}{n_r} \sum_{r=1}^{N_r} \left(\sum_{\alpha=1}^{L} M(\alpha, r) \right)^2$		
5. Run Percentage	$RPC = \frac{n_r}{n_p}$		
	n_p is total number of pixels		

Diagnóstico Assistido por Computador (Computer-Aided Diagnosis)

Motivação:

- •Elevado volume de imagens gerados pelos actuais meios imagiológicos de auxílio ao diagnóstico
- •Formato digital das imagens médicas
- •Uniformização do armazenamento das imagens

Sistemas de Diagnóstico Assistido por Computador

Segunda Opinião que auxilia o médico na elaboração do diagnóstico

Avaliação dos Resultados

Accuracy:

$$Accuray = \frac{VP + VN}{VP + VN + FP + FN}$$

Sensibilidade:

$$Sensibilidade = \frac{VP}{VP + FN}$$

Especificidade:

$$Especificidade = \frac{VN}{VN + FP}$$

86

Referências Bibliográficas

- 1. A. P. Dhawan, Medical Image Analysis, Wiley-IEEE Press, 2003.
- 2. R. C. Gonzalez, R. E. Woods, Digital image processing, Pearson/Prentice Hall, Third Edition, 2008.
- 3. G. Dougherty, Digital Image Processing for Medical Applications, Cambridge University Press, 2009.
- 4. L. G. Shapiro, G. C. Stockman, Computer Vision, Prentice Hall, 2001.
- 5. K. Najarian, R. Splinter, Biomedical Signal and Image Processing, CRC Press, 2005.

Nota: As imagens que constam dos diapositivos são retiradas das referências bibliográficas.

37

Processamento de Imagem Médica