

Packet Trace - Проверка адресации IPv4 и IPv6

Таблица адресации

Устройство	Интерфейс	IP адрес/префикс		Шлюз по умолчанию
R1	G0/0	10.10.1.97	255.255.255.224	_
		2001:db8:1:1::1/64		
	S0/0/1	10.10.1.6	255.255.255.252	_
		2001:db8:1:2::2/64		
		fe80::1		
R2	S0/0/0	10.10.1.5	255.255.255.252	_
		2001:db8:1:2::1/64		
	S0/0/1	10.10.1.9	255.255.255.252	_
		2001:db8:1:3::1/64		
		fe80::2		
R3	G0/0	10.10.1.17	255.255.255.240	_
		2001:db8:1:4::1/64		
	S0/0/1	10.10.1.10	255.255.255.252	_
		2001:db8:1:3::2/64		
		fe80::3		
PC1	NIC	10.10.1.100	255.255.255.224	10.10.1.97
		2001:db8:1:1::a/64		fe80::1
PC2	NIC	10.10.1.20	255.255.255.240	10.10.1.17
		2001:db8:1:4::a/64		fe80::3

Задачи

- Часть 1. Заполнение таблицы адресации
- Часть 2. Проверка подключения с помощью команды ping
- Часть 3. Определение пути с помощью трассировки маршрута

Общие сведения

Двойной стек позволяет сосуществовать адресам IPv4 и IPv6 в одной и той же сети. В этом упражнении вы изучите внедрение двойного стека, включая документирование конфигурации IPv4 и

IPv6 для оконечных устройств, проверку связи по IPv4- и IPv6-протоколам с помощью команды **ping** и трассировку пути по IPv4 и IPv6.

Часть 1. Заполнение таблицы адресации

Шаг 1. Проверьте IPv4-адресацию с помощью команды ipconfig.

- а. Щелкните PC1 и откройте Command Prompt (Командная строка).
- b. Введите команду **ipconfig /all** для сбора данных об IPv4-адресе. Заполните **таблицу адресации**, указав IPv4-адрес, маску подсети и шлюз по умолчанию.
- с. Щелкните PC2 и откройте Command Prompt (Командная строка).
- d. Введите команду **ipconfig /all** для сбора данных об IPv4-адресе. Заполните **таблицу адресации**, указав IPv4-адрес, маску подсети и шлюз по умолчанию.

Шаг 2. Проверьте IPv6-адресацию с помощью команды ipv6config.

- а. На **PC1** введите команду **ipv6config /all** для сбора данных об IPv6-адресе. Заполните **таблицу адресации**, указав IPv6-адрес, префикс подсети и шлюз по умолчанию.
- b. На **PC2** введите команду **ipv6config /all** для сбора данных об IPv6-адресе. Заполните **таблицу адресации**, указав IPv6-адрес, префикс подсети и шлюз по умолчанию.

Часть 2. Проверка подключения с помощью команды ping

Шаг 1. Проверьте IPv4-соединение с помощью команды ping.

a.	С PC1 отправьте эхо-запрос на IPv4-адрес PC2
	Получилось?
	Да

b. С PC2 отправьте эхо-запрос на IPv4-адрес PC1.

Получилось?

Да

Шаг 2. Проверьте IPv6-соединение с помощью команды ping.

а. С PC1 отправьте эхо-запрос на IPv6-адрес PC2.

Получилось?

b. С **PC2** отправьте эхо-запрос на IPv6-адрес **PC1**.

Получилось?

Да

Часть 3. Определение пути путем отслеживания маршрута

Шаг 1. Используйте команду tracert для определения IPv4-пути.

а. На РС1 выполните трассировку маршрута до РС2.

```
PC> tracert 10.10.1.20
Какие адреса встретились на пути?
10.10.1.97, 10.10.1.5, 10.10.1.10, 10.10.1.20
```

С какими интерфейсами связаны эти четыре адреса? G0/0 на R1, S0/0/0 на R2, S0/0/01 на R3, NIC на PC2

b. На **PC2** выполните трассировку маршрута до **PC1**.

```
Какие адреса встретились на пути?
10.10.1.17, 10.10.1.9, 10.10.1.6, 10.10.1.100
С какими интерфейсами связаны эти четыре адреса?
G0/0 на R3, S0/0/1 на R2, S0/0/1 на R1, NIC на PC1
```

Шаг 2. Используйте команду tracert для определения IPv6-пути.

а. На **PC1** выполните трассировку маршрута до IPv6-адреса **PC2**.

```
PC> tracert 2001:db8:1:4::a

Какие адреса встретились на пути?

2001:db8:1:1::1, 2001:db8:1:2::1, 2001:db8:1:3::2, 2001:db8:1:4::a

С какими интерфейсами связаны эти четыре адреса?

G0/0 на R1, S0/0/0 на r2, S0/0/1 на R3, NIC на PC2
```

b. На **PC2** выполните трассировку маршрута до Pv6-адреса **PC1**.

Какие адреса встретились на пути?

```
2001:db8:1:4::1, 2001:db8:1:3::1, 2001:db8:1:2::2, 2001:db8:1:1::а 
С какими интерфейсами связаны эти четыре адреса? 
G0/0 на R3, S0/0/1 на R2, S0/0/1 на R1, NIC на PC1
```