

Оглавление

1. Описание верхнего уровня	. 1
2. Программная модель	2
2.1. Служебный регистр	2
2.2. Регистр полученных данных	3
3. Работа с программной моделью	3
3.1. Запись и чтение регистров	3
3.2. Смена конфигурации	4
3.3. Прием сообщений	4
3.4. Работа с прерываниями	5
4. Алгоритмы работы	. 6

Данный проект подразумевает реализацию RTL-описания на языке Verilog одноканального приемника SL-канала. Приемник принимает SL-сообщения. Сообщения могут содержать информацию четной разрядности от 8 до 32 бит. Бит четности проверется автоматически. Приемник способен принимать сообщения с частотой импульсов от 500кГц до 2МГц (при частоте тактового сигнала = 16МГц).

1. Описание верхнего уровня

Таблица 1. Порты цифрового модуля SlReciever

Название	Тип	Разрядност ь	Значение после сброса	Описание
rst_n	In	1	-	Асинхронный общий сигнал сброса
clk	In	1	-	Сигнал тактовой частоты
addr	In	1	-	Сигнал выбора регистра
wr_en	In	1	-	Сигнал разрешения записи
SL0	In	1	b1	Сигнал нулей SL канала
D_in	In	32	-	Данные для записи в регистры
SL1	in	1	b1	Сигнал единиц SL канала
irq	Out	1	b0	Сигнал запроса на прерывание
D_out	Out	32	h0000_0000	Данные для чтения регистров

2. Программная модель

Пользователю для работы доступно два регистра:

- Служебный (config_status_r)
- Данных к отправке (buffered_data_r)

2.1. Служебный регистр

Служебный регистр состоит из двух частей - конфигурации и состояния. Части отвечающей за конфигурацию соответствуют младшие 16 разрядов, части состояния старшие.

Таблица 2. Назначение разрядов конфигурационной части служебного регистра (**config_status_r** [15:0])

Bit	15-14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-	IRQM[5:0]									BC[5:0]			SR
Mode	R	R/W						R/W			R/	W			R/W
Initial	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0

Описание разрядов регистра конфигурационной части служебного регистра (config_status_r [15:0])

- 1. **SR** (soft reset) включает (**SR** = 0) и выключает (**SR** = 1) приемник
- 2. **BC** (bit count) количество разрядов данных в отправляемом сообщении
- 3. **IRQM** (interrupt request mask) маска разрядов причин прерываний. Задает, какие именно разряды причин прерываний вызывают запрос на прерывание. Описание разрядов причин прерываний можно посмотреть в таблице назначения разрядов части состояния служебного регистра. Соответствие разрядов поля IRQM и разрядов причин прерываний можно посмотреть в соответствующей таблице
- 4. PCE (parity check enable) включение (PCE = 1) или выключение(PCE = 0) контроля четности

Таблица 3. Назначение разрядов части состояния служебного регистра (config_status_r [31:16])

Bit	31-30	29	28	27	26	25	24	23-18	17	16
Name	-	IRQICC	IRQWCC	IRQLE	IRQWLC	IRQPEM	IRQRM	1	PEF	WRP
Mode	R	R/W0	R/W0	R/W0	R/W0	R/W0	R/W0	R	R	R
Initial	0	0	0	0	0	0	0	0	0	0

Описание разрядов части состояния служебного регистра (config_status_r [31:16])

- 1. WRP (word receiving process) разряд идущего процесса приема слова по SL-каналу.
- 2. **PEF** (parity error flag) разряд наличия ошибки четности в хранящемся в буфере сообщении.
- 3. **IRQRM** (interrupt request of recieved message) разряд запроса на прерывание успешно принятого сообщения.
- 4. **IRQPEM** (interrupt request of parity error message) разряд запроса на прерывание принятия слова не прошедшего проверку четности.

- 5. **IRQWLC** (interrupt request of word length check) разряд запроса на прерывание принятия слова неверной длинны.
- 6. **IRQLE** (interrupt request of level error on line) разряд запроса на прерывание ошибки уровня напряжения на линии SL-канала.
- 7. **IRQWCC** (interrupt request of wrong configuration change) разряд запроса на прерывание попытки сменить конфигурацию во время приема сообщения.
- 8. **IRQICC** (interrupt request of incorrect configuration change) разряд запроса на прерывание попытки установить некорректную конфигурацию.

Разряды **IRQRM**, **IRQPEM**, **IRQWL**, **IRQLE**, **IRQWCC** и **IRQICC** отражают зарегистрированные приемником события. Более подробно события описаны разделе Работа с программной моделью → Работа с прерываниями.

Таблица 4. Соответствие разрядов IROM [5:0] и маскирования разрядов причин прерываний

Разряд поля IRQM	Маскируемый разряд
IRQM0	IRQRM
IRQM1	IRQPEM
IRQM2	IRQWLC
IRQM3	IRQLE
IRQM4	IRQWCC
IRQM5	IRQICC

2.2. Регистр полученных данных

Таблица 5. Назначение разрядов регистра полученных данных (buffered_data_r)

Bit	31 - 0
Name	DATA
Mode	R
Initial	0

Описание разрядов регистра полученых данных (buffered_data_r)

DATA - полученные данные

3. Работа с программной моделью

3.1. Запись и чтение регистров

Управление модулем осуществляется путем записи или чтения регистров.

Для считывания текущего значения одного из регистров блока необходимо подать на порт addr адрес регистра, указанный в таблице, длительностью не меньше такта опорной тактовой частоты clk. Значение регистра будет сформировано на шине D_out через такт опорной частоты после

фронта сигнала на шине addr.

Для записи значения в служебный регистр блока необходимо сформировать:

- на порт *addr* адрес выбранного регистра,
- на шине *D_in* записываемую информацию,
- на порт *wr_en* значение 1.

Запись в регистр полученных (buffered_data_r) данных игнорируется.

Также на на шине d_out через такт опорной частоты *clk* после фронта сигнала на шине *addr* будет сформировано значение записанного регистра. Значение шины d_out будет соответствовать значению последнего опрошенного или записанного регистра до формирования следующего запроса.

[image SlReciever_read_write_waveform] | image_SlReciever_read_write_waveform.png

Рисунок 1. Временная диаграмма чтения и записи регистров модуля SlReciever

Таблица 6. Адреса регистров

Значение сигнала <i>addr</i>	Выбранный регистр
b0	регистр данных (buffered_data_r)
b1	служебный регистр (config_status_r)

3.2. Смена конфигурации

Для изменения конфигурации передатчика необходимо:

- 1. Считав служебный регистр убедится, что в данный момент не идет прием сообщения (**WRP** = 0). Если изменить поля **BC** и **FQM** во время приема сообщения, прием сообщения будет прерван.
- 2. Записать новые параметры в служебный регистр.

В конфигурационной части служебного регистра может быть установлена необходимая частота, длина слова, маскировка причин запроса прерывания или осуществлен сброс модуля к исходным настройкам.

Некорректной считается конфигурация с нечетными длинами слова или длиной слова лежащей вне промежутка от 8 до 32 разрядов. При попытке записать подобную конфигурацию будет выставлен разряд **IRQICC** = 1, а поля **BC** и **PCE** останутся неизменными.

3.3. Прием сообщений

Для приема сообщений необходимо:

- 1. Записать в регистр **config_r** необходимые настройки частоты и длины слова (см. раздел "Смена конфигурации")
- 2. Записать в регистр данных сообщение на отправку

- 3. Дождавшись запроса на прерывания вызванного приемом сообщения, или, работая по таймеру и периодически опрашивая регистр состояния, убедится, что сообщение было принято (**IRQRM** == 1 или, если контроль четности отключен и принято сообщение неверной четности **IRQPEM** == 1).
- 4. Считать принятое сообщение из регистра полученных данных (buffered_data_r).
- 5. Сбросить поле причины прерывания **IRQRM** (или, если или, если контроль четности отключен и принято сообщение неверной четности **IRQPEM**). Возможна работа без сбрасывания полей **IRQRM** и **IRQPEM**, но тогда вы не сможете отличить заново принятое сообщение от принятого в прошлый раз.
- 6. Ожидать следующее сообщение.

В случае когда поле ВС служебного регистра не равно 32, принятым сообщением являются младшие разряды регистра данных (**buffered_data_r [BC-1:0]**).

3.4. Работа с прерываниями

Запрос прерывания происходит, когда произошло одно из событий и разряд причины прерываний соответствующий этому событию не замаскирован. Узнать какое именно событие вызвало запрос на прерывание можно в полях причин прерываний служебного регистра.

События соответствующие разрядам причин прерываний

- **IRQRM** Сообщение было успешно принято.
- IRQPEM Принято сообщение с ошибкой четности.
- IRQWLC Принято сообщение неверной длинны.
- IRQLE Произошла ошибка уровня на линии
- IRQWCC Прием сообщения прекращен из-за попытки изменения полей ВС и FQM в процессе отправки.
- IRQICC Была предпринята попытка записать некорректную конфигурацию в конфигурационный регистр

Причину возникновения можно посмотреть в соответствующих полях регистра состояния. Для сбрасывания прерываний, вам необходимо считать регистр конфигурации и состояния и записать считанное снова, занулив биты прерываний. Более подробно работа прерываний рассмотрена в разделе Алгоритм работы.

Выключение модуля

Чтобы выключить модуль необходимо выставить поле регистра конфигурации SR = "1". Если сделать это во время отправки сообщения, прием сообщения прекращается. Регистры конфигурации и состояния возвращаются в начальное состояние. Когда приемник выключен, он не реагирует на сигналы на входах SL0 и SL1.

4. Алгоритмы работы

Рисунок 2. Алгоритм работы регистра состояния модуля SlReciever

Модуль может находиться в двух режимах: режим приема и режим ожидания. После включения модуля, все биты регистра состояния устанавливаются в 0, модуль находится в режиме ожидания.

Смена конфигурации и сброс прерываний в режиме ожидания

Чтобы сменить конфигурацию, необходимо записать новую конфигурацию в регистр конфигурации и состояния. При записи регистра конфигурации и состояния в режиме ожидания происходит проверка битов причин прерываний: если значения соответствующих записываемых битов прерываний равны 0, то они сбрасываются.

Если конфигурация некорректна, выставляется IRQICC = 1, конфигурация не изменяется. Если бит IRQICC не замаскирован формируется запрос на прерывание.

Если конфигурация корректна она записывается в регистр. Модуль остается в режиме ожидания.

Прием сообщения

Если на одной из линий возникает импульс. модуль переходит в режим приема, устанавливается поле регистра состояний WRP = 1. Если импульс слишком короткий или слишком длинный, возникает ошибка уровня, выставляется бит IRQLE = 1. Бит выставляется каждый такт, пока уровень на линии не будет восстановлен. После этого модуль возвращается в режим отправки сообщения, выставляется бит WRP = 0.

Если импульс является синхроимпульсом модуль выставляет соответствующие принятому сообщению биты статусного регистра и, если сообщение принято успешно, запоминает сообщение в регистр данных, выставляется бит WRP = 0.

Анализ принятого сообщения

При приеме синхроимпульса (условие END_OF_MSG на рис. 1) сначала проверяется длинна принятого сообщения, если длинна не совпадает с конфигурацией (значение поля BC + 1 за счет бита четности) выставляется IRQWLC = 1. Если бит IRQWLC не замаскирован, формируется запрос на прерывание.

Если длинна совпадает с выставленной в конфигурации, проверяется четность полученного сообщения. Если четность верна, сообщение считается успешно принятым, выставляется IRQRM = 1, содержимое сдвигового регистра с удаленным битом четности записывается в регистр данных. Если бит IRQRM не замаскирован, формируется запрос на прерывание.

Если четность неверна, выставляется бит IRQPEM = 1. Однако, если контроль четности отключен, сообщение все равно считается успешно принятым, данные сдвигового регистра с удаленным битом четности переписываются в регистр данных. Выставляется бит PEF = 1. Если бит IRQPEM не замаскирован, формируется запрос на прерывание.

Дублирование битов проверки честности

Бит причины прерывания IRQPEM и бит четности PEF дублируют функции друг друга. Тем не менее эта система необходима для разрешения следующего конфликта: Допустим с приемником с отключенным контролем четности, и за время, прошедшее с последнего опроса пришло 2 сообщения, одно с верной четностью, а другое с ошибкой. Тогда флаг PEF - единственный способ определить, верна ли честность сообщения, лежащего в регистре данных.

Изменение конфигурации и сброс прерываний во время приема сообщения

Когда модуль находится в режиме приема сообщения, то без отмены приема возможно только изменение полей маскирования прерываний, и сброс битов причин прерываний. Если изменить длину сообщения в середине приема сообщения, прием сообщения будет отменен, а остаток сообщения будет воспринят как новое сообщение неправильной длинны.

Если в режиме отправки происходит запись регистра конфигурации и состояния, сначала проверяются биты прерываний: если значения соответствующих записываемых битов прерываний равны 0, то они сбрасываются. После этого, проверяется изменяются ли биты конфигурации (поля РСЕ, ВС). Если они не изменяются, модуль остается в режиме приема сообщения. Если они изменяются то прием завершается, выставляются биты WRP = 0 и IRQWCC = 1. Если бит IRQDWCC не замаскирован формируется запрос на прерывание. Если конфигурация корректна, она записывается в регистр, если же нет, выставляется бит IRQICC = 1. Модуль переходит в режим ожидания сообщения.

Формирование запроса на прерывание

Запрос на прерывание формируется на выходе irq, через один такт после возникновения причины прерывания, если причина этого прерывания не замаскирована в поле IRQM.

Рисунок 3. Алгоритм работы приема сообщения модуля SlReciever

После включения приемника сдвиговый регистр приема сообщения shift_r заполняется нулями,

Сдвиговых регистры sl_0 -tmp и sl_1 -tmp - единицами, счетчик количества бит bit_i устанавливается в 0, счетчик циклов cycle_i устанавливается в 0, регистры контроля четности par_0 и par_1 устанавливаются в 0 и 1 соотвественно.

Каждый такт значение с асинхронных входов serial_line_zeroes_a и serial_line_ones_a помещаются в нулевые разряды сдвиговых регистров sl_0_tmp и sl_1_tmp. Остальные разряды при этом сдвигаются. Условия bit_started, и bit_ended получаются при сравнении содержимого sl_0_tmp и sl_1_tmp с масками.

Таблица 7. Условия переходов

Обозначение	Выражение
bit_started	(sl0_tmp_r == 12'hF??0) (sl1_tmp_r == 12'hF??0)
bit_ended	(sl0_tmp_r = =12'h0??F) (sl1_tmp_r == 12'h0??F)

Таблица 8. Значения костант счетчика cycle_i

Обозначение	Значение
const_1	3
const_2	32

Состояние BIT_WAIT_FLUSH

В начале приема машина состояний находится в состоянии BIT_WAIT_FLUSH. В этом состоянии счетчик циклов приравнивается к константе const1. Если выполняется условие bit_started, происходит переход в состояние BIT_DETECTED.

Состояние BIT DETECTED

В состоянии BIT_DETECTED работает счетчик циклов cycle_i. Как только этот счетчик становится равным до 0, производится анализ, какой именно бит принят, и в зависимости от значения первых разрядов сдвиговых регистров sl_0_tmp и sl_1_tmp определяется, на какую из линий поступил импульс и происходит переход в состояние обработки бита BIT_PROCESSING. При этом, если импульс отсутствует, происходит переход в состояние LEV_ERR.

Cостояние BIT_PROCESSING

В состоянии BIT_PROCESSING проверяется, на какую из линий пришел импульс.

Если импульс на линии нулей или на линии единиц соответствующее значение 0 или 1 загружаются в бит с номером ВС сдвигового регистра shift_r. Сам сдвиговый регистр при этом сдвигается вправо. В состоянии если импульс на линии единиц инвертируется значение бита четности единиц par_1, а если на линии нулей - значение par_0. В регистр cycle_i помещается значение const2. Счетчик принятых bit_i инкрементируется.

Если же импульсы на обоих линиях, то модуль считает, что это синхроимпульс. Сравнивается количество принятых бит с установленным в конфигурации, Проверяется четность. Если количество бит и четность верны, или, если верно количество бит, контроль честности отключен и не верна четность, значение из сдвигового регистра shift_r переписывается в регистр данных с

обнулением бита четности shift_r[BC].

В случае синхро импульса для приема следующего сообщения регистры shift_r и bit_i устанавливаются в нулевые значения. В регистры подсчета четности загружаются значения par_0 = 1. par_1 = 0. В регистр cycle_i помещается значение const_2.

Особенности контроля честности

Считая бит честности, количество импульсов на линии единиц с учетом разряда четности должно быть нечетным, а на линии нулей - четным.

Для проверки этого, до приема сообщения в регистры подсчета четности загружаются значения par_0 = 0. par_1 = 1. При принятии единицы меняет значение на противоположное регистр par_1, а при принятии нуля — par_0.

Таким образом, после принятия всех бит корректного сообщения (считая бит четности), регистр par_0 должен поменять свое значение четное количество раз, т.е. сохранить значение par_0 = 0, а регистр par_1 свое значение нечетное количество раз, т.е. приобрести значение par_1 = 0.

При обработке стоп бита считается, что четность нарушена, если хотя бы один из регистров par_0 и par_1 не равен нулю.

Cостояние WAIT_BIT_END

После обработки импульса в состояниях ONE_BIT, ZERO_BIT или STOP_BIT, схема переходит в состояние WAIT_BIT_END. Модуль находится в этом состоянии, пока счетчик cycle_i не достиг нулевого значения, или не выполниться условие bit_ended.

Если выполнилось условие bit_ended, модуль возвращается в состояние BIT_WAIT_FLUSH. Если же счетчик досчитал до нулевого значения, это значит, что импульс не закончился вовремя, и произошла ошибка уровня на линии - модуль переходит в состояние LEV_ERR.

Состояние LEV_ERR

Модуль оказывается в состоянии LEV_ERR в случаях, когда длинна имульса оказалось слишком большой или слишком маленькой, т.е. произошла ошибка уровня на линии. Когда уровень на обоих линиях восстановлен, модуль переходит в состояние BIT_WAIT_FLUSH. Для приема следующего сообщения регистры shift_r и bit_i устанавливаются в нулевые значения. В регистры подсчета четности загружаются значения par_0 = 0 и par_1 = 1.