Matematinės analizės egzaminas

MIF Informatikos I kursas, 2 semestras, 2010-06-11

Vardas ir pavardė:
Kursas: Grupė:
Užduočių sąlygos surašytos ant abiejų lapo pusių. Iš viso yra 10 užduočių. Visų ių, išskyrus 6-osios, vertė yra 1 balas. 6-osios užduoties vertė yra 2 balai. Maksimali galima balų suma yra 10 balų. Tai reiškia, kad vieno uždavinio galite nespręsti. I uždavinyje įrašykite tai, kas praleista. Įrašykite šiame lape (lapą atiduosite kartu su kitais savo sprendimais). Keletas geometrijos formulių: trikampio plotas yra lygus $1/2ah$, kur a yra trikampio pagrindo ilgis, o a - jo aukštinė; sferis tūris yra lygus a /3 a / a / a /, kur a / a / yra sferos spindulys; Skritulio plotas yra lygus a /
Sėkmės!
1. Skaičių vadiname funkcijos $f:[a,b] \to \mathbb{R}$
intervale $[a,b]$, $jei \ \forall \delta > 0 \ \exists \ldots \ldots$, $kad \ S(f,P,\xi)-J < \ldots \ldots$, $kai \ P < \varepsilon$.
$\check{C}ia\ P = \{x_0, x_1, \dots, x_n\},\ kur\ \dots < x_1\ \dots < b,\ yra\ in-$
$tervalo\ [a,b]$, $o\ P =$ $yra\ skaidinio\ di-$
ametras. Skaičių rinkinį $\xi = \{\xi_1, \xi_2, \dots, \xi_n\}$ vadiname tarpiniu skaidiniu, jei
$S(f, P, \xi)$ yra funkcijos f ,

Pažymėjimo nr.:

- 2. Teigiamųjų eilučių konvergavimo palyginimo požymiai (be įrodymo).
- **3.** Įrodykite, kad laipsninė eilutė konverguoja absoliučiai $\forall x: |x-a| < R$ ir diverguoja $\forall x: |x-a| > R$, kur a yra laipsninės eilutės centras, o R jos konvergavimo spindulys. Ką galima pasakyti apie laipsninės eilutės konvergavimą kai x: |x-a| = R?
- 4. Irodykite Niutono-Leibnico formulę.

5. Raskite funkcijos
$$f:\{(x,y)\in\mathbb{R}^2|y>0\}\to\mathbb{R}$$

$$f(x,y) = (1 + \sin^2 x)^{\ln y}$$

pirmosios eilės dalines išvestines.

6. Raskite aibės, kurią apriboja paviršių S_1 , S_2 bei S_3 dalys, tūrį, jei

$$S_1 := \left\{ (x, y, z) \in \mathbb{R}^3 : \frac{x^2}{a^2} + \frac{y^2}{z^2} = 1 \right\},$$

$$S_2 := \{(x, y, z) \in \mathbb{R}^3 : z = 0\},$$

$$S_3 := \{(x, y, z) \in \mathbb{R}^3 : z = a\}, \ a \in \mathbb{R}_+.$$

7. Funkciją

$$xe^{-x^5}$$

užrašykite kaip laipsninės eilutės su centru taške 0 sumą.

8. Naudodami netiesioginio integralo konvergavimo bei jo reikšmės apibrėžimus, įrodykite, kad integralas

$$\int_{6}^{+\infty} \frac{dx}{x^2 - 2x - 15}$$

konverguoja ir raskite jo reikšmę.

9. Pateikite po viena pavyzdi:

1. Funkcijos ir jos pirmykštės funkcijos;

2. Dviejų kintamųjų funkcijos;

3. Analizinės taško 0 aplinkoje funkcijos;

4. Integruojamosios funkcijos;

5. Racionaliosios dvimačio argumento funkcijos R(x, y).

10. Nurodykite ar šie teiginiai yra teisingi (atsakymą pagrįskite):

1. Eilutės $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ narius galima perstatyti taip, kad suma būtų lygi 2010.

2. Kokia tvarka beužrašytum eilutės $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ narius, jos suma nesikeis.

3. Kadangi $\forall a>0 \ |x^2+y^2|< a \ su \ visais \ (x,y): |(x,y)-(0,0)|< \sqrt{a}, \ tai \lim_{(x,y)\to(0,0)}(x^2+y^2)=0$

4.

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{(e^{-2}-1)^n}{n} = -2$$

5. Integralo $\int_{-2}^{2} \sqrt[5]{x^2} dx$ reikšmę galima rasti naudojant kintamojo keitinį $t = x^{\frac{2}{5}}$.

$$\int\limits_{-2}^{2} \sqrt[5]{x^2} dx = \frac{5}{2} \int\limits_{5/4}^{5/4} t t^{\frac{3}{2}} dt = 0$$

Parengė A.Lenkšas