- 1. Prove that a weakly dominant strategy $s_i' \in S_i$ is a strictly dominant strategy iff $argmax_{s_i}u_i(s_i, s_{-i})$ is a singleton for all $s_{-i} \in S_{-i}$.
- Pf: (= Suppose argnors, Wi (Si, Si) is a singleton for & Sie Si
 - Given Si'e Si is a meathy dominant strategy, i.e., Wi (Si', Si) = Wi (Si, Si) for \(\forall Si \), \(\forall Si \) \(\forall Si \)
 - ⇒ Si'∈ argmanz, hilsi, Si)
 - and for +Si + Si', Si & argmoxs; Ui(Si, Si)
- $\Rightarrow u(S_i', S_i) = \max_i \{u(S_i, S_i)\} > u(S_i', S_i') \text{ for } \forall S_i \neq S_i'$ $\forall S_i \in S_i'$
 - By def, Si' is a strictly dominant strategy.
 - = Suppose not, i.e.,
 - I Si sit. argmax_{si} Wi(si, si) is not a singleton
 - ⇒ Griven Si'∈ argranx Milsi, Si),
 - ∃ Si + Si' siti si ∈ argmax [hilsi, Si)
 - $\Rightarrow u(G',S_i) = u(\widehat{S_i},S_i)$
 - > Pry det, Si' is not a strictly dominant strategy.

2. Consider the following modification of a two-bidder second-price sealed-bid auction. Bidder 2 receives an advantage as follows: If bidder 2's bid is at least 80% of bidder 1's bid, then bidder 2 wins and pays 80% of bidder 1's bid. If bidder 2's bid is less than 80% of bidder 1's bid, then bidder 1 wins and pays 1.25 times bidder 2's bid. Suppose bidder i values the object being sold at vi, i = 1, 2. Prove that it is a weakly dominant strategy for each bidder to bid his or her valuation.

$$\begin{array}{c} \text{Pf:} \ b_{2} = 0.8b_{1} \\ \text{(1.15b2} = b_{1}) \end{array}$$

$$\begin{array}{c} u_{1} = 0 \\ u_{2} = V_{2} - 0.8b_{1} \\ b_{2} < 0.8b_{1} \\ \text{(1.15b2} < b_{1}) \end{array}$$

$$\begin{array}{c} u_{1} = V_{1} - 1.76b_{2} \\ u_{2} = 0 \end{array}$$

For bidder 2:

1)
$$b_2 = V_2$$
 is always weakly better

if $0.9b_1 > V_2$
 $V_2 \circ 8b_1$
 $0.8b_1 < V_2$
 $0.8b_1 > 0.8b_1$
 $0.8b_1 < V_2$
 $0.8b_1 < V_2$
 $0.8b_1 < V_2$
 $0.8b_1 < V_2$
 $0.8b_1 > 0.8b_1$
 $0.8b_1 < V_2$
 $0.8b_1 < V_2$
 $0.8b_1 > 0.8b_1$
 $0.8b_1 < V_2$
 $0.8b_1 < V_2$
 $0.8b_1 > 0.8b_1$
 $0.8b_1 < V_2$
 $0.8b_1 < V_2$
 $0.8b_1 > 0.8b_1$
 $0.8b_1 < V_2$
 $0.8b_1 < V_2$
 $0.8b_1 > 0.8b_1$
 $0.8b_1 < V_2$

2)
$$b_2 = V_2$$
 is sometimes strictly better

if $b_2 < V_2 = 3$ $\exists b_1 \text{ S.t. } b_2 < 0.8b_1 < V_2$, $U_2 = 0$

while $b_2 = V_2$ yields $U_2 > 0$

If $b_2 > V_2 = 3$ $\exists b_1 \text{ S.t. } V_2 < 0.8b_1 < V_2$, $U_2 = V_2 - 0.8b_1 < 0$

while $b_2 = V_2$ yields $U_2 = 0$

While $b_2 = V_2$ yields $U_2 = 0$

For bidder 1. the argument is similar.

Loompane 1.25b2 with Vi in step 1 and

Compane bi with Vi in Aup 2) Therefore, bi = Vi, i=1,2 is the WDS.

- Tut 6:
- 2. In a two-consumer (Ms. A and Mr. B), two-commodity, x_1 and x_2 , pure exchange economy, A's preference is represented by the utility function: $U^A(x_1^A, x_2^A) = 2x_1^A + x_2^A$. Consumer B's preference is represented by the following utility function: $U^B(x_1^B, x_2^B) = \alpha x_1^B + x_2^B$ where x_j^i denotes the quantity of commodity $j \in \{1, 2\}$ consumed by consumer $i \in \{A, B\}$. Assume the total quantities available in the economy of commodity x_1 , denoted by $\overline{x_1}$, and of commodity x_2 , denoted by $\overline{x_2}$, are identical. Further, assume that the endowment allocation is such that A owns half of the entire quantity available of commodity 1, $\overline{x_1}/2$, and half of the quantity available of commodity 2, $\overline{x_2}/2$. Find the set of Walrasian equilirbium prices and allocations in this economy when $\alpha = 1/2$, $\alpha = 4$, respectively.

An alternative method for Tut 6 QZ by drawing OC: $Q \ll = \frac{1}{2}$ B $\chi^{A}=(\overline{\chi_{I}},\circ)$ $X^B = (0, \overline{X_2})$ WE A OCB $X^A = (\frac{1}{4}\overline{x_1}, \frac{1}{x_2})$ \bigcirc \angle = 4 > WE B XB=(3x1,0) 004 A OLD