Grupe

October 25, 2021

Grupoid G = (G, *) je **grupa** akko

- 1. je operacija * asocijativna, tj. ako je ${\cal G}$ polugrupa (asocijativni grupoid),
- 2. postoji levi neutralni element, tj.

$$\exists e \in G, \forall x \in G, e * x = x,$$

3. za svaki element $x \in G$ postoji njemu levi inverzni element $x' \in G$, tj.

$$\forall x \in G, \exists x' \in G, x' * x = e.$$

Grupa u kojoj važi komutativni zakon zove se komutativna ili Abelova grupa.

U grupi uvek važi:

- levi neutralni element je istovremeno i desni neutralni element, pa je to onda neutralni element i on je jedinstven,
- levi inverzni elementi su istovremeno i desni inverzni elementi, pa su to inverzni elementi i oni su jedinstveni,
- zakon kancelacije, jer je svaka grupa asocijativna, ima neutralni i inverzne elemente.

Primer: Da li su sledeći uređeni parovi grupe?

$$(\mathbb{N},+)$$
 NE ger we postor neutralm element $(0 \not\in \mathbb{N})$

$$(\mathbb{Z},+)$$
 DA $_{+}$ b Kbelova

$$(\mathbb{Q},+)$$
 DA , to Moelova

$$(\mathbb{R},+)$$
 DA I to Abelova

$$(\mathbb{N},+)$$
 NE ger ne postogi inverzu za broz, postogi somo ze $1,1\cdot1=1$

$$(\mathbb{C},+)$$
 DA atmsel, $(-a-bi)+a+bi=0$ to Abelora?

$$(\mathbb{Z},\cdot)$$
 NE for newsper some elements inversing $2\cdot \square = 1$

$$(\{-1,0,1\},+)$$
 NE $(+1,0,1)$

$$(\mathbb{I}\setminus\{0\},\cdot)$$
. NE $\mathbb{I}_2\cdot\mathbb{I}_2=2\notin\mathbb{I}\setminus\{0\}$

Grupa (A, \cdot) se naziva multiplikativna grupa i u njoj se neutralni elemenat označava sa 1 i čita "jedinica grupe", a inverzni elemenat od x se označava sa x^{-1} .

Grupa (A, +) se naziva aditivna grupa i u njoj se neutralni elemenat označava sa 0 i čita "nula grupe", a inverzni od x se označava sa -x.

Neka su $\mathcal{H}=(H,*)$ i $\mathcal{G}=(G,*)$ grupe. Tada je \mathcal{H} **podgrupa** grupe \mathcal{G} akko je $H\subseteq G$ i operacija * iz \mathcal{H} je restrikcija operacije * iz \mathcal{G} .

Neutralni elemenat grupe je takođe neutralni elemenat i svake njene podgrupe.

Svaka grupa ima bar dve podgrupe, takozvane trivijalne podgrupe:

- ▶ podgrupu koja se sastoji samo od neutralnog elementa i
- celu grupu koja je uvek sama sebi podgrupa.

(G, *)

CEG Neutralm u G

XCG, I'Ch yppor

6 the G

1 cell

We war

XEHAXEH

(4x)

Da bi $\mathcal{H}=(H,*)$ bila podgrupa grupe $\mathcal{G}=(G,*)$, gde je $\emptyset \neq H \subseteq G$, dovoljno je da operacija * bude zatvorena u H, da neutralni element grupe \mathcal{G} pripada skupu H i da za svako $x \in H$ njegov inverzni elemenat u \mathcal{G} pripada skupu H.

Lagranžova teorema: Ako je \mathcal{G} konačna grupa i \mathcal{H} podgrupa grupe \mathcal{G} , tada je broj svih elemenata grupe \mathcal{G} deljiv brojem svih elemenata podgrupe \mathcal{H} .

podgrupe
$$H$$
. Cord $(G) = 9$

(D) (B) (B) (B)

Primer: Primeri podgrupa:

- $ightharpoonup (\mathbb{R},+)$ je podgrupa grupe $(\mathbb{C},+)$,
- $ightharpoonup (\mathbb{Q},+)$ je podgrupa grupa $(\mathbb{R},+)$ i $(\mathbb{C},+)$,
- $ightharpoonup (\mathbb{Z},+)$ je podgrupa grupa ($\mathbb{Q},+$), ($\mathbb{R},+$) i ($\mathbb{C},+$),
- $(\mathbb{R} \setminus \{0\}, \cdot)$ je podgrupa grupe $(\mathbb{C} \setminus \{0\}, \cdot)$,
- $\blacktriangleright \ (\mathbb{Q}\setminus\{0\}\,,\cdot) \text{ je podgrupa grupa } (\mathbb{R}\setminus\{0\}\,,\cdot) \text{ i } (\mathbb{C}\setminus\{0\}\,,\cdot).$

Primer: Grupoid (G,\circ) kod kog je $G=\{e,a,b,c\}$, a operacija \circ zadata tablicom

je Abelova grupa i naziva se Klajnova grupa. Klajnovu grupu karakteriše to da je svaki elemenat sam sebi inverzan.

Primer: Naći sve podgrupe Klajnove grupe.

- trivijalne: $(\{e\}, \circ)$, (G, \circ)
- netrivijalne: Kako na osnovu Lagranžove teoreme broj elemenata podgrupe mora da deli broj elemenata grupe, to Klajnova grupa može da ima samo podgrupe sa 1, 2 ili 4 elementa. Sa 1 i 4 elementa su trivijalne podgrupe, a sa 2 moraju sadržati neutralni elemenat pa su kandidati za netrivijalne podgrupe

$$(\{e,a\},\circ) \qquad (\{e,b\},\circ) \qquad (\{e,c\},\circ)$$

$$\begin{array}{c|ccccc} \circ & e & a & & \circ & e & b \\ \hline e & e & a & & e & e & b \\ \hline a & a & e & b & b & e & c & c \\ \end{array}.$$

Direktnom proverom iz tablica vidi se da ovo jesu grupe, pa Klajnova grupa osim trivijalnih ima i tri netrivijalne podgrupe.

Napomena: Kako izomorfizam prenosi osobine sa jednog na drugi grupoid to znači da ako su dva grupoida izomorfna i ako je jedan od njih grupa biće i drugi.

$$(G, \star) - qm pool, (H, D) - qm pool$$

$$h: G \rightarrow H \quad 120 mor hzen$$

$$(G, \star) - asocrotran \rightarrow (H, O) - asocrotran$$

$$egg \quad n.e \quad u \quad (G, \star) \rightarrow h(e) \quad n.e \quad u \quad (H, O)$$

$$kginner zu \quad el. \quad xeG \quad u \quad (G, \star) \rightarrow h(x') \quad in erzu \quad el. \quad ze \quad h(x)$$

$$u \quad (H, O)$$

=> (2'4) dube => (H'0) dube