question (4)

Корни n-ой степени из комплексного числа. Корни из единицы. Группа корней n-ой степени из 1. Первообразные корни n-ой степени из 1.

Корни n-ой степени из комплексного числа

Корни n-ой степени из числа $z=r(\cos{(\varphi)}+i\sin{(\varphi)})$ это решение уравнения $w^n=z$. Каждое такое решение w_k записывается в виде:

$$w_k = \sqrt[n]{r} \cdot \left(\cos\left(rac{arphi + 2\pi k}{n}
ight) + i\sin\left(rac{arphi + 2\pi k}{n}
ight)
ight), \;\;\;\; k = 0, \; 1, \; 2, \; \ldots, \; n-1$$

Корни из единицы

$$w^n=1 \ 1=\cos\left(0
ight)+i\sin\left(0
ight) \ w_k=\cos\left(rac{2\pi k}{n}
ight)+i\sin\left(rac{2\pi k}{n}
ight), \quad k=0,\ 1,\ 2\ldots,\ n-1$$

Группа корней n-ой степени из 1

$$W = \{w_0, w_1, w_2, \dots, w_{n-1}\},\$$

где $w_k = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right)$ образует группу относительно умножения.

Свойства: замкнутость, ассоциативность, существует нейтральный элемент, обратимость (для w_k это w_{n-k}).

Первообразные корни n-ой степени из 1

Первообразный корень n-ой степени из 1 - это такой корень $\zeta = w_k$, для которого его степени $\zeta^1, \ \zeta^2, \ \ldots, \ \zeta^n$ дают все n различных корней n-ой степени из 1.

Этот корень является первообразным тогда и только тогда, когда наибольший общий делитель k и n равен 1.

Формально: $\zeta^k
eq 1$ для $1 \leq k < n$, но $\zeta^n = 1$.