# A comparison of 32bx32b Dadda multiplier and "pre-sum before Dadda tree" multiplier.

Hiro Mori Oct. 28,2022 gmail:bqe10133@gmail.com twitter:ubukuproject

#### SUMMARY

"pre-sum before Dadda tree" multiplier is 20% smaller than Dadda multiplier. The delays are the same.

|        | gate count                   |                 |
|--------|------------------------------|-----------------|
| Dadda  | pre-sum before<br>Dadda tree | percentage<br>% |
| 11,098 | 8,929                        | 80.5%           |

|       | gate delay                   |                 |
|-------|------------------------------|-----------------|
| Dadda | pre-sum before<br>Dadda tree | percentage<br>% |
| 58    | 58                           | 100.0%          |



## 1. Dadda multiplier

## 1.1 multiplier diagram









## 1.2 gate count

[1] partial product AND gate(= 1 gate count) x 32 x 32 = 1,024

[2] Dadda tree full adder(= 10 gate count) x 899 = 8,990 half adder(= 4 gate count) x 31 = 124

[3] final sum
4bCLA adder(= 60 gate count) x 16 = 960

[4] total gate sount
1,024 + 8,990 + 124 + 960 = 11,098

## 1.3 gate delay

The worst delay is 58(s62,s61).



## 2 "pre-sum before Dadda tree" multiplier

## 2.1 multiplier diagram



#### 2.2 pre-sum

example of "(a31,a30,....a1,a0) x (b1,b0)"





```
[1] (a31,a30,...a1,a0) x 3
```

a31 a30 a29 a28 a27 a26 a25 a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

+ a31 a30 a29 a28 a27 a26 a25 a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

c31 c30 c29 c28 c27 c26 c25 c24 c23 c22 c21 c20 c19 c18 c17 c16 c15 c14 c13 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0

a31 a30 a29 a28 a27 a26 a25 a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

a31 a30 a29 a28 a27 a26 a25 a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

a31 a30 a29 a28 a27 a26 a25 a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

с6

The adder is cut every 8bit to reduce the carry delay. c6,c14 and c22 are added to Dadda tree.

```
gate delay
                  c0=(a0&a1);
      2
                  c1=(a0&a1)
                                                           l(a1&a2);
      3
                  c2=(a0&a1&a3)
                                                           I(a1&a2)
                                                                                       I(a2&a3):
                  c3=(a0&a1&a3)
                                                           I(a1&a2&a4)
                                                                                      I(a2&a3)
                                                                                                                   I(a3&a4);
      4
                                                                                       l(a2&a3&a5)
                  c4=(a0&a1&a3&a5)
                                                           I(a1&a2&a4)
                                                                                                                   I(a3&a4)
                                                                                                                                         I(a4&a5);
      4
                  c5=(a0&a1&a3&a5)
                                                           l(a1&a2&a4&a6)l(a2&a3&a5)
                                                                                                                   l(a3&a4&a6)l(a4&a5)
                                                                                                                                                               I(a5&a6):
       5
       5
                  c6=(a0&a1&a3&a5&a7)|(a1&a2&a4&a6)|(a2&a3&a5&a7)|(a3&a4&a6)|(a4&a5&a7)|(a5&a6)|(a6&a7);
                  (gate count) c0-c6 = 40
                  c7 = (a7&a8):
      2
                  c8 =(a7&a8)
                                                                  I(a8&a9);
       3
                  c9 =(a7&a8&a10)
                                                                  I(a8&a9)
                                                                                                            I(a9&a10);
                                                                                                                                               I(a10&a11):
       4
                  c10=(a7&a8&a10)
                                                                  I(a8&a9&a11)
                                                                                                            I(a9&a10)
                  c11=(a7&a8&a10&a12)
                                                                  I(a8&a9&a11)
                                                                                                            I(a9&a10&a12)
                                                                                                                                               l(a10&a11)
                                                                                                                                                                                    l(a11&a12);
      5
                  c12=(a7&a8&a10&a12)
                                                                  I(a8&a9&a11&a13)
                                                                                                            I(a9&a10&a12)
                                                                                                                                               I(a10&a11&a13)
                                                                                                                                                                                    I(a11&a12)
                                                                                                                                                                                                               I(a12&a13);
                  c13=(a7&a8&a10&a12&a14)|(a8&a9&a11&a13)
                                                                                                            l(a9&a10&a12&a14)l(a10&a11&a13)
                                                                                                                                                                                   l(a11&a12&a14)l(a12&a13)
                                                                                                                                                                                                                                           I(a13&a14):
                  c14=(a7&a8&a10&a12&a14)|(a8&a9&a11&a13&a15)|(a9&a10&a12&a14)|(a10&a11&a13&a15)|(a11&a12&a14)|(a12&a14)|(a12&a13)|(a13&a15)|(a13&a14)|(a14&a15);
      6
                  (gate count) c7-c14 = 52
                  c15=(a15&a16);
                  c16=(a15&a16)
                                                                       I(a16&a17);
      2
      3
                  c17=(a15&a16&a18)
                                                                       I(a16&a17)
                                                                                                                       I(a17&a18):
       4
                  c18=(a15&a16&a18)
                                                                       l(a16&a17&a19)
                                                                                                                      I(a17&a18)
                                                                                                                                                           I(a18&a19):
                  c19=(a15&a16&a18&a20)
                                                                       I(a16&a17&a19)
                                                                                                                       I(a17&a18&a20)
                                                                                                                                                           I(a18&a19)
                                                                                                                                                                                                I(a19&a20);
                  c20=(a15&a16&a18&a20)
                                                                       l(a16&a17&a19&a21)
                                                                                                                       l(a17&a18&a20)
                                                                                                                                                           I(a18&a19&a21)
                                                                                                                                                                                                l(a19&a20)
                                                                                                                                                                                                                           I(a20&a21);
      5
                  c21=(a15&a16&a18&a20&a22)I(a16&a17&a19&a21)
                                                                                                                      l(a17&a18&a20&a22)l(a18&a19&a21)
                                                                                                                                                                                               l(a19&a20&a22)l(a20&a21)
                                                                                                                                                                                                                                                       I(a21&a22):
                  c22=(a15&a16&a18&a20&a22))(a16&a17&a19&a21&a23))(a17&a18&a20&a22))(a18&a19&a21&a23))(a19&a20&a22))(a20&a21&a23))(a22&a23);
       6
                  (gate count) c15-c22 = 52
                  c23=(a23&a24);
                  c24=(a23&a24)
                                                                       I(a24&a25);
      2
                  c25=(a23&a24&a26)
                                                                       I(a24&a25)
                                                                                                                     I(a25&a26);
                  c26=(a23&a24&a26)
                                                                       I(a24&a25&a27)
                                                                                                                      I(a25&a26)
                                                                                                                                                           I(a26&a27):
      4
                  c27=(a23&a24&a26&a28)
                                                                       I(a24&a25&a27)
                                                                                                                      I(a25&a26&a28)
                                                                                                                                                            I(a26&a27)
                                                                                                                                                                                                I(a27&a28):
                   c28=(a23&a24&a26&a28)
                                                                       l(a24&a25&a27&a29)
                                                                                                                      l(a25&a26&a28)
                                                                                                                                                            I(a26&a27&a29)
                                                                                                                                                                                                l(a27&a28)
                                                                                                                                                                                                                           I(a28&a29);
      5
                  c29 = (a23\&a24\&a26\&a28\&a30) \\ I(a24\&a25\&a27\&a29)
                                                                                                                      I(a25&a26&a28&a30)I(a26&a27&a29)
                                                                                                                                                                                               l(a27&a28&a30)l(a28&a29)
                                                                                                                                                                                                                                                       I(a29&a30):
                  c30 = (a23 \& a24 \& a26 \& a28 \& a30) | (a24 \& a25 \& a27 \& a29 \& a31) | (a25 \& a26 \& a28 \& a30) | (a26 \& a27 \& a28 \& a30) | (a27 \& a28 \& a30) | (a28 \& a29 \& a31) | (a29 \& a30) | (a29 \&
      6
                                                                         (a24&a25&a27&a29&a31)
                                                                                                                                                           (a26&a27&a29&a31)
                                                                                                                                                                                                                            (a28&a29&a31)
                                                                                                                                                                                                                                                                           I(a30&a31):
                  (gate count) c23-c31 = 55
```

(total gate count ) 40 + 52 + 52 + 55 = 199

```
gate delay
                                                                                            gate count
s1 = (a0^a1);
s2 = c0^(a1^a2);
                                              6
                                                                                         8
s3 = c1^{(a2^a3)};
                                              6
                                                                                        8
s4 =c2^(a3^a4);
s5 =c3^(a4^a5);
s6 =c4^(a5^a6);
                                                                                        8
                                                                                        8
s7 = c5^{(a6^{a7})};
                                              8
                                               3
                                                                                         4
s8 =
                 (a7^a8);
s8 = (a/ao);

s9 = c7^{(a8^a9)};

s10 = c8^{(a9^a10)};

s11 = c9^{(a10^a11)};
                                                                                        8
                                                                                        8
s11= C9 (a10 a11);
s12=c10^(a11^a12);
s13=c11^(a12^a13);
                                                                                         8
s13=c11 (a12 a13);
s14=c12^(a13^a14);
s15=c13^(a14^a15);
                                                                                         8
```

```
    $16= (a15^a16);
    3
    4

    $17=c15^(a16^a17);
    6
    8

    $18=c16^(a17^a18);
    6
    8

    $20=c18^(a19^a20);
    7
    8

    $21=c19^(a20^a21);
    7
    8

    $22=c20^(a21^a22);
    8
    8

    $23=c21^(a22^a23);
    8
    8

    $24= (a23^a24);
    3
    4

    $25=c23^(a24^a25);
    6
    8

    $25=c24^(a25^a26);
    6
    8

    $27=c25^(a26^a27);
    6
    8

    $28=c26^(a27^a28);
    7
    8

    $29=c27^(a28^a29);
    8
    8

    $31=c29^(a30^a31);
    8
    8

    $32=c30^a31;
    9
    4

    $33=c31;
    0
    (total gate count) 236
```

The total gate count of  $(a31, a30, .... a1, a0) \times 3'' = 199 + 236 = 435$ 

## [2] $(a31,a30,...a1,a0) \times (b1,b0)$

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gate delay                                                                                                                                                                                                                                       | gate count                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| h0_11 = b1&b0<br>h0_10 = b1&~b0;<br>h0_01 = ~b1&b0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>2<br>2                                                                                                                                                                                                                                      | 1<br>2<br>2                             |
| NO_01 = ~D1&D0   SO_N0 = (NO_11&S0)   (NO_01&A0);   S1_N0 = (NO_11&S2)   (NO_01&A0);   S2_N0 = (NO_11&S2)   (NO_01&A2)   (NO_10&A2);   S3_N0 = (NO_11&S2)   (NO_01&A3)   (NO_10&A3);   S4_N0 = (NO_11&S3)   (NO_01&A3)   (NO_10&A3);   S5_N0 = (NO_11&S5)   (NO_01&A6)   (NO_10&A4);   S6_N0 = (NO_11&S6)   (NO_01&A6)   (NO_10&A6);   S7_N0 = (NO_11&S8)   (NO_01&A6)   (NO_10&A6);   S8_N0 = (NO_11&S8)   (NO_01&A6)   (NO_10&A6);   S9_N0 = (NO_11&S8)   (NO_01&A6)   (NO_10&A6);   S1_N0 = (NO_11&S1)   (NO_01&A1)   (NO_10&A1);   S1_N0 = (NO_11&S1)   (NO_01&A1)   (NO_10&A1);   S1_N0 = (NO_11&S13)   (NO_01&A1)   (NO_10&A11);   S1_N0 = (NO_11&S13)   (NO_01&A13)   (NO_10&A12);   S1_N0 = (NO_11&S13)   (NO_01&A14)   (NO_10&A13);   S1_N0 = (NO_11&S15)   (NO_01&A14)   (NO_10&A13);   S1_N0 = (NO_11&S15)   (NO_01&A16)   (NO_10&A13);   S1_N0 = (NO_11&S15)   (NO_01&A16)   (NO_10&A14);   S1_N0 = (NO_11&S16)   (NO_01&A16)   (NO_10&A14);   S1_N0 = (NO_11&S18)   (NO_01&A16)   (NO_10&A16);   S1_N0 = (NO_11&S18)   (NO_01&A16)   (NO_10&A16);   S1_N0 = (NO_11&S19)   (NO_01&A19)   (NO_10&A17);   S1_N0 = (NO_11&S19)   (NO_01&A18)   (NO_10&A17);   S1_N0 = (NO_11&S19)   (NO_01&A18)   (NO_10&A17);   S1_N0 = (NO_11&S19)   (NO_01&A18)   (NO_10&A17);   S1_N0 = (NO_11&S21)   (NO_01&A20)   (NO_10&A21);   S2_N0 = (NO_11&S22)   (NO_01&A22)   (NO_10&A21);   S2_N0 = (NO_11&S22)   (NO_01&A22)   (NO_10&A22);   S2_N0 = (NO_11&S23)   (NO_01&A22)   (NO_10&A22);   S2_N0 = (NO_11&S32)   (NO_01&A22)   (NO_10&A22);   S2_N0 = (NO_11&S32)   (NO_01&A22)   (NO_10&A22);   S2_N0 = (NO_11&S33)   (NO_01&A23)   (NO_10&A22);   S3_N0 = | 4<br>5<br>8<br>8<br>8<br>9<br>9<br>10<br>10<br>5<br>8<br>8<br>8<br>9<br>9<br>10<br>10<br>5<br>8<br>8<br>8<br>9<br>9<br>10<br>10<br>5<br>8<br>8<br>8<br>8<br>9<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                  | (total gate count) 170                  |

The total gate count of  $(a31,a30,...a1,a0) \times (b1,b0)$ " = 170

## 2.3 gate count

[1] pre-sum
(a31,a30,..a1,a0) x 3 = 236 + 199 = 435
pre-sum per 2b x 16 = 170 x 16 = 2,720

[2] Dadda tree
full adder(= 10 gate count) x 467 = 4,670
half adder(= 4 gate count) x 36 = 144

[3] final sum
4bCLA adder(= 60 gate count) x 16 = 960

[4] total gate count
435 + 2,720 + 4,670 + 144 + 960 = 8,929

## 2.4 gate delay

The worst delay is 58(s63,s62,s61).





#### 3 Dadda tree calculation

```
[1] Dadda tree reduction program
[example]
9 input
          3 full adder
input.txt
15 11 12 15 13 12 12 13 12 Z
%./daddatree input.txt 3
bufinlen:9
15 11 12 15 13 12 12 13 12
bufinlen:9
15 15 13 13 12 12 12 12 11
bufinlen:9
15000 15000 13000 13000 12000 12000 12000 12000 11000
first_val:15 second_val:13,third_val:13
carry:17 sum:19
first_val:15 second_val:12,third_val:12
carry:17 sum:18
first_val:12 second_val:12,third_val:11
carry:15 sum:18
```

```
#include <iostream>
#include <fstream>
#include <cstdlib>
#include <string>
#include <math.h>
using namespace std;
void daddasort(int bufinlen,int *bufin);
void daddafa(int first_val,int second_val,int third_val);
void daddatreecalc(int *mainbuf,int fanum);
int main(int argc, char * const argv[]) {
   int mainbuf[1024];//equation main
              char c0;
int d0;
              int
              int fanum;
              ifstream fv0(argv[1]);//equation
              for(i=0;i<1024;i++){
    mainbuf[i]=0;</pre>
              for(i=0;i<1024;i++){
                            fv0.get(c0);
d0=(int)c0;
                            mainbuf[i]=d0;
if(d0==90){break;}
              fanum = atoi(argv[2]);
daddatreecalc(mainbuf,fanum);
              fv0.close();
              return 0;
}
///function : daddatreecalculation
// 3bit x n -> 2bit x n
//-----
void daddasort(int bufinlen,int *bufin){
              int i,j,k;
              int min,tmp;
int bufintmp[128];
              for(i=0;i<bufinlen-1;i++){</pre>
                            min=bufin[i];
k=i;
                            for(j=i+1;j<bufinlen;j++){
    if(bufin[j]<min){</pre>
                                                        min=bufin[i];
                                                        k=j;
                            tmp=bufin[i];
bufin[i]=bufin[k];
```

```
bufin[k]=tmp;
          //sort reverse
for(i=0;i<bufinlen;i++){
    bufintmp[bufinlen-1-i]=bufin[i];</pre>
           for(i=0;i<bufinlen;i++){
    bufin[i]=bufintmp[i];</pre>
void daddafa(int first_val,int second_val,int third_val){
          int first_carry,first_sum;
int second_carry,second_sum;
           first_carry=first_val+2;
          first_sum=first_val+3;
second_carry=second_val+3;
           second_sum=second_val+6;
          if(first_carry>=second_carry){
    printf("carry:%d ",first_carry);
           else{
                     printf("carry:%d ",second_carry);
           }
           if(first_sum>=second_sum) {
    printf("sum:%d\n",first_sum);
           élse{
                     printf("sum:%d\n",second_sum);
           }
void daddatreecalc(int *mainbuf,int fanum){
           int i,j,m;
int bufin[128];
           int bufinlen;
int flag;
           int first_val, second_val, third_val;
           int daddavalue;
           // store the value in bufin[].
          m=0;
          else if(mainbuf[i]==32){    // char " " = 32
    bufin[m]=daddavalue;
                                 daddavalue=0;
                      else{
                                 daddavalue=daddavalue*10;
                                 daddavalue=daddavalue+(mainbuf[i]-48);//char "0" = 48
                      }
          bufinlen=m;
           // calculation
           printf("bufinlen:%d\n",bufinlen);
           for(i=0; i<bufinlen; i++) {
         printf("%d ",bufin[i]);</pre>
          printf("\n");
          daddasort(bufinlen, bufin);
           printf("bufinlen:%d\n",bufinlen);
for(i=0; i<bufinlen; i++) {
    printf("%d ",bufin[i]);
}</pre>
           printf("\n");
           for(i=0;i<bufinlen;i++){
    if(i>=(bufinlen-fanum*3)){
        bufin[i]=bufin[i]*1000;
}
                      else{
                               bufin[i]=bufin[i];
                      }
           }
           printf("bufinlen:%d\n",bufinlen);
           for(i=0; i<bufinlen; i++) {</pre>
```

## [2] Dadda multiplier

| 1                                       | 1                        | 1                                     |
|-----------------------------------------|--------------------------|---------------------------------------|
| 11                                      | 11                       | 1 1                                   |
| 111                                     | 111                      | 1 1 1                                 |
| 1111                                    | 1111                     | 1 1 1 1                               |
| 11111                                   | 11111                    | 1 1 1 1                               |
| 111111                                  | 111111                   | 1 1 1 1 1                             |
| 1111111                                 |                          | 1 1 1 1 1 1 1                         |
| 1111111                                 | 1111111                  | 1 1 1 1 1 1 1                         |
| 111111111                               | 11111111                 | 1 1 1 1 1 1 1 1 1                     |
| 1111111111                              | 111111111                |                                       |
| 1111111111                              | 1111111111               | 1 1 1 1 1 1 1 1 1 1                   |
| 111111111111                            | 11111111111              | 1 1 1 1 1 1 1 1 1 1 1                 |
| 111111111111                            | 111111111111             | 1 1 1 1 1 1 1 1 1 1 1 1               |
| 1111111111111                           | 1111111111111            | 1 1 1 1 1 1 1 1 1 1 1 1 1             |
| 11111111111111                          | 11111111111111           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1           |
| 111111111111111                         | 111111111111111          |                                       |
| 1111111111111111                        | 1111111111111111         | 4 1 1 1 1 1 1 1 1 1 1 1 1 1           |
| 1111111111111111                        | 1111111111111111         | 2 4 7 1 1 1 1 1 1 1 1 1 1 1           |
| 11111111111111111                       | 11111111111111111        | 4 2 4 7 7 1 1 1 1 1 1 1 1 1           |
| 111111111111111111                      | 111111111111111111       | 2 4 7 4 4 7 7 1 1 1 1 1 1 1           |
| 11111111111111111111                    | 111111111111111111       | 4 2 4 7 7 4 4 7 7 1 1 1 1 1 1         |
| 111111111111111111111                   | 11111111111111111111-    | 2 4 7 4 4 7 7 4 4 7 7 1 1 1 1         |
| 1111111111111111111111                  | 111111111111111111111111 | 4 2 4 7 7 4 4 7 7 4 4 7 7 1 1         |
| 11111111111111111111111                 | 41111111111111111111111  | 2 7 7 4 4 7 7 4 4 7 7 4 4 7 4         |
| 111111111111111111111111                | 2471111111111111111111   | 7 4 4 7 7 4 4 7 7 4 4 7 7 4 7         |
| 1111111111111111111111111               | 4247711111111111111111   | 6 10 7 4 4 7 7 4 4 7 7 4 4 7 7        |
| 11111111111111111111111111              | 2474477111111111111111   | 10 9 4 10 7 4 4 7 7 4 4 7 7 4 7       |
| 11111111111111111111111111              | 4247744771111111111111   | 9 10 10 9 4 10 7 4 4 7 7 4 4 7 7      |
| 111111111111111111111111111             | 2474477447711111111111   | 10 9 9 10 10 9 4 10 7 4 4 7 7 4 7     |
| 1111111111111111111111111111            | 4247744774477111111111   | 9 10 10 9 9 10 10 9 4 10 7 4 4 7 7    |
| 111111111111111111111111111             | 2474477447744771111111   | 10 9 9 10 10 9 9 10 10 9 4 10 7 4 7   |
| 11111111111111111111111111111111111     | 4247744774477447711111   | 9 10 10 9 9 10 10 9 9 10 10 9 4 10 7  |
| 111111111111111111111111111111111111    | 247447744774477111       | 13 9 9 10 10 9 9 10 10 9 9 10 7 9 7   |
| -11111111111111111111111111111111111111 | 4247744774477447744711   | 10 13 10 9 9 10 10 9 9 10 10 9 4 7 7  |
| 11111111111111111111111111111111111     | 2774477447744774471411   | 13 10 9 10 10 9 9 10 10 9 9 10 7 4 7  |
| 111111111111111111111111111111111111    | 7447744774477447141111   | 10 10 10 9 9 10 10 9 9 10 10 9 4 10 7 |
| 11111111111111111111111111111111111     | 4774477447744714111111   | 10 9 9 10 10 9 9 10 10 9 9 10 7 9 7   |
| 11111111111111111111111111111111111     | 744774477447141111111    | 9 10 10 9 9 10 10 9 9 10 7 9 4 7 7    |
| 111111111111111111111111111111          | 477447744714111111111    | 10 9 9 10 10 9 9 10 7 9 4 7 7 4 7     |
| 11111111111111111111111111111           | 744774471411111111111    | 9 10 10 9 9 10 7 9 4 7 7 4 4 7 7      |
| 111111111111111111111111111             | 477447141111111111111    | 10 9 9 10 7 9 4 7 7 4 4 7 7 4 7       |
| 1111111111111111111111111               | 744714111111111111111    | 9 10 7 9 4 7 7 4 4 7 7 4 4 7 7        |
| 111111111111111111111111                | 471411111111111111111    | 7 9 6 7 7 4 4 7 7 4 4 7 7 4 7         |
| 11111111111111111111111                 | 1411111111111111111111   | 6 7 7 6 4 7 7 4 4 7 7 4 4 7 4         |
| 1111111111111111111111                  | 1111111111111111111      | 7 4 4 7 7 4 4 7 7 4 4 7 1 4 1         |
| 111111111111111111111                   | 111111111111111111       | 4 7 7 4 4 7 7 4 4 7 1 4 1 1 1         |
| 11111111111111111111                    | 111111111111111111       | 7 4 4 7 7 4 4 7 1 4 1 1 1 1 1         |
| 111111111111111111                      | 11111111111111111        | 4 7 7 4 4 7 1 4 1 1 1 1 1 1           |
| 1111111111111111                        | 1111111111111111         | 7 4 4 7 1 4 1 1 1 1 1 1 1 1           |
| 1111111111111111                        | 111111111111111          | 4 7 1 4 1 1 1 1 1 1 1 1 1 1           |
| 111111111111111                         | 11111111111111           | 1 4 1 1 1 1 1 1 1 1 1 1 1 1           |
| 1111111111111                           | 1111111111111            | 1 1 1 1 1 1 1 1 1 1 1 1 1             |
| 111111111111                            | 111111111111             | 1 1 1 1 1 1 1 1 1 1 1 1               |
| 11111111111                             | 11111111111              | 1 1 1 1 1 1 1 1 1 1 1                 |
| 1111111111                              | 1111111111               | 1 1 1 1 1 1 1 1 1 1                   |
| 111111111                               | 111111111                | 1 1 1 1 1 1 1 1 1                     |
| 11111111                                | 11111111                 | 1 1 1 1 1 1 1 1                       |
| 1111111                                 | 1111111                  | 1 1 1 1 1 1 1                         |
| 111111                                  | 111111                   | 1 1 1 1 1                             |
| 11111                                   | 11111                    | 1 1 1 1 1                             |
| 1111                                    | 1111                     | 1 1 1 1                               |
| 111                                     | 111                      | 1 1 1                                 |
| 11                                      | 11                       | 1 1                                   |
| 1                                       | 1                        | 1                                     |
|                                         |                          | 1                                     |
|                                         | •                        |                                       |

| 13 10 10 13 10 9 9 10 10 7    |                           | 21 18 17 16 23 20 18 21   | 22 26 23 29 27 38     |
|-------------------------------|---------------------------|---------------------------|-----------------------|
| 12 13 13 10 9 12 10 9 8 10    |                           | 18 15 19 16 20 22 19 21   | 26 23 22 28 29 40     |
| 13 12 12 13 13 11 9 12 12 9   |                           | 21 20 16 18 24 20 20 21   | 23 26 24 30 28 40     |
| 12 15 13 12 12 13 13 11 11 12 |                           | 20 17 21 18 21 24 21 21   | 27 23 24 28 30 40     |
| 15 12 12 15 13 12 12 13 13 11 |                           | 21 21 19 19 25 22 21 21   | 24 27 25   31 29   40 |
| 12 16 15 12 12 15 13 12 12 12 |                           | 20 20 21 18 22 26 21 23   | 28 24 26   29 32   42 |
| 16 13 12 15 15 12 12 15 13 11 |                           | 23 22 20 19 26 23 22 23   | 25 29 26   32 30   42 |
| 13 16 15 12 12 15 15 12 12 13 |                           | 20 20 23 19 23 26 23 23   | 29 26 26   31 32   42 |
| 16 15 12 15 15 12 12 15 13 11 |                           | 23 23 20 21 26 23 23 23   | 26 29 26   32 31   42 |
| 15 16 15 12 12 15 15 12 12 13 |                           | 20 20 22 21 23 26 22 24   | 29 26 26   31 32   44 |
| 16 15 12 16 15 12 12 15 13 12 |                           | 24 22 19 21 27 23 22 24   | 26 29 27   33 31   44 |
| 13 16 15 13 12 15 15 12 11 13 |                           | 21 19 22 19 24 25 22 24   | 30 26 25   31 33   44 |
| 15 13 12 15 15 12 12 13 13 11 |                           | 23 23 19 19 25 23 23 23   | 27 29 25   33 32   44 |
| 12 15 15 12 12 13 13 12 12 12 |                           | 20 20 21 18 23 26 21 23   | 29 26 26   31 32   46 |
| 15 12 12 13 13 12 12 13 12 11 |                           | 23 21 20 18 26 23 21 23   | 26 29 26   32 31   46 |
| 12 13 13 12 12 13 12 11 11 12 | 18 15 15 18 17 15 13 21   | 20 20 21 18   23 26 21 21 | 27 26 26   31 32   46 |
| 13 12 12 13 13 11 11 10 10 11 |                           | 21 20 19 18   25 23 20 21 | 25 27 25   31 29   46 |
| 12 13 13 11 11 12 10 9 7 10   | 17 15 15 16 15 13 13 21   | 19 18 19 17 22 24 19 21   | 27 25 24   29 31   48 |
| 13 11 10 12 10 9 9 10 10 9    |                           | 21 20 17 16 23 21 20 21   | 24 27 23   30 29   48 |
| 10 13 10 9 9 10 10 9 9 7      | 16 14 13 15 15 12 13   20 | 18 17 19 16 20 23 19 20   | 26 24 23   29 30   48 |
| 10 10 9 10 10 9 9 10 10 6     |                           | 19 18 17 16 23 20 18 19   | 23 25 23   29 28   48 |
| 9 10 10 9 9 10 10 9 9 7       | 15 13 12 15 15 12 10   19 | 17 17 18 15   20 23 18 19 | 25 22 23   27 29   50 |
| 10 9 9 10 10 9 9 7 7 4        |                           | 18 18 17 15 23 20 18 18   | 22 24 23   29 27   50 |
| 9 10 10 9 9 7 7 4 4 7         |                           | 17 15 16 15   20 21 17 18 | 24 22 21   26 28   50 |
| 10 9 9 7 7 4 4 7 7 4          | 12 13 13 11 9 10 10 15    | 17 16 13 13 19 18 16 17   | 22 23 19 28 26 50     |
| 9 7 7 4 4 7 7 4 4 7           | 13 11 11 10 10 7 9 16     | 15 14 15 13 17 20 15 16   | 22 20 20   25 26   52 |
| 7 6 4 7 7 4 4 7 1 4           | 10 12 10 9 9 10 7 13      | 16 15 13 12   19 17 15 16 | 19 22 19   25 24   52 |
| 4 7 7 4 4 7 1 4 1 1           | 10 9 9 10 7 9 7 15        | 13 12 13 10 16 18 13 15   | 21 19 18   24 25   52 |
| 7 4 4 7 1 4 1 1 1 1           | 9 10 7 9 4 7 7 12         | 13 13 11 10 17 15 13 13   | 18 19 17   24 23   52 |
| 471411111                     | 7 9 6 7 7 4 7 13          | 11 11 12 9 14 17 12 13    | 19 17 17   21 23   54 |
| 1 4 1 1 1 1 1 1 1 1           | 6 7 7 6 4 7 4 10          | 12 10 9 7 15 14 10 12     | 16 18 15   22 21   54 |
| 1 1 1 1 1 1 1 1               | 7 4 4 7 1 4 1 10          | 9 9 7 7 12 13 9 10        | 16 16 13 20 22 54     |
| 1 1 1 1 1 1 1                 | 4 7 1 4 1 1 1 9           | 7 7 6 7   13 11 7 9       | 14 15 13   20 19   54 |
| 1 1 1 1 1 1                   | 1 4 1 1 1 1 1 7           | 6 6 7 4 10 12 7 7         | 13 13 12 17 19 56     |
| 1 1 1 1 1                     | 1 1 1 1 1 4               | 7 1 4 1 7 9 4 7           | 12 13 9 18 16 56      |
| 1 1 1 1                       | 1 1 1 1 1                 | 4 1 1 1 6 7 1 4           | 10 10 7   15 16   56  |
| 1 1 1                         | 1 1 1 1                   | 1 1 1 4 1 1               | 8 7 4 13 13 56        |
| 1 1                           | 1 1 1                     | 1 1 1                     | 1 4 1 10 7 58         |
| 1                             | 1 1                       | 1                         | 1 1 6 58              |
|                               |                           |                           | 55                    |
|                               |                           |                           |                       |

|     |     |    |     |    |    |    |    |   |   |   |   |   | _  |     |    |     |     |    |   |    |    |    |     |    |    |     |    | _   |     |      |     |   |  | $\overline{}$ |
|-----|-----|----|-----|----|----|----|----|---|---|---|---|---|----|-----|----|-----|-----|----|---|----|----|----|-----|----|----|-----|----|-----|-----|------|-----|---|--|---------------|
| 4   | _   | -  | _   | -  | -  | -  | -  | - | - | - | _ | - | 4  | -   | -  | -   | _   | -  | _ | _  | -  | 4  | -   | -  | -  | _   | -  | 4   | -   | -    |     | _ |  |               |
| 5   | _   | _  | _   | _  | _  | _  | -  | _ | - | _ | _ | - | 5  | _   | _  | _   | _   | _  | _ | -  | -  | 5  | _   | _  | _  | _   | -  | 5   | _   | -    |     | _ |  |               |
| 8   | 4   | _  | _   | _  | _  | _  | _  | _ | _ | _ | _ | _ | 8  | 4   | _  | _   | _   | _  | _ | _  | _  | 8  | 4   | _  | _  | _   | _  | 8   | 4   | -    |     | _ |  |               |
| 8   | 5   | _  | _   | _  | _  | _  | _  | _ | _ | _ | _ | _ | 8  | 5   | _  | _   | _   | _  | _ | _  | _  | 8  | 5   | _  | _  | _   | _  | 8   | 5   |      |     | _ |  |               |
| 8   | 8   | 4  | _   | _  | _  | _  | _  | _ | _ | _ | _ | _ | 8  | 8   | 4  | _   | _   | _  | _ | _  | _  | 8  | 8   | 4  | _  | _   | _  | 8   | 8   | 4    |     | _ |  |               |
| 9   | 8   | 5  | _   | _  | _  | _  | _  | _ | _ | _ | _ | _ | 9  | 8   | 5  | _   | _   | _  | _ | _  | _  | 9  | 8   | 5  | _  | _   | _  | 9   | 8   | 5    |     | _ |  |               |
| 9   | 8   | 8  | 4   | _  | _  | _  | _  | _ | _ | _ | _ | _ | 9  | 8   | 8  | 4   | _   | _  | _ | _  | _  | 9  | 8   | 8  | 4  | _   | _  | 9   | 8   | 8    |     | 4 |  |               |
| 10  | 9   | 8  | 5   | _  | _  | _  | _  | _ | _ | _ | _ | _ | 10 | 9   | 8  | 5   | _   | _  | _ | _  | _  | 10 | 9   | 8  | 5  | _   | _  | 10  | ç   | 8    |     | 5 |  |               |
| 5   | 9   | 8  | 8   | 4  | 6  | _  | _  | _ | _ | _ | _ | _ | 5  | 9   | 8  | 8   | 4   | 6  | _ | _  | _  | 5  | 9   | 8  | 8  | 4   | 6  | 11  | 8   | 8    |     | 9 |  |               |
| 8   | 10  | 9  | 8   | 5  | _  | _  | _  | _ | _ | _ | _ | _ | 8  | 10  | 9  | 8   | 5   | _  | _ | _  | _  | 8  | 10  | 9  | 8  | 5   | _  | 8   | 14  |      | 1   | 0 |  |               |
| 8   | - 5 | 9  | 8   | 8  | 4  | 6  | _  | _ | _ | _ | _ | _ | 8  | - 5 | 9  | 8   | 8   | 4  | 6 | _  | _  | 8  | - 6 | 8  | 8  | 8   | 9  | 111 | 11  | 14   | , – | 9 |  |               |
| 8   | 8   | 10 | 9   | 8  | 5  | _  | _  | _ | _ | _ | _ | _ | 8  | 8   | 10 | 9   | 8   | 5  | _ | _  | _  | 6  | 11  | 8  |    |     |    | 9   | 1.5 | 11   | 1   | 4 |  |               |
| 9   | 8   | 5  | 9   | 8  | 8  | 4  | 6  | _ | _ | _ | _ | _ | 9  | 8   | 5  | 9   | 8   | 8  | 4 | 6  | _  | 11 | 9   | 11 | 8  | 9   | 9  | 15  | 1.3 | 15   | 1   | 2 |  |               |
| 9   | 8   | 8  | 10  | 9  | 8  | 5  | _  | _ | _ | _ | _ | _ | 9  | 8   | 8  | 10  | 9   | 8  | 5 | _  | _  | 9  | 12  |    | 14 | . 9 | 10 | 13  |     | 13   |     |   |  |               |
| 10  | 9   | 8  | - 5 | 9  | 8  | 8  | 4  | 6 | _ | _ | _ | _ | 10 | 9   | 8  | - 5 | 9   | 8  | 8 | 4  | 6  | 12 | 10  |    | 11 | 11  |    | 17  |     | 16   |     |   |  |               |
| 10  | 9   | 8  | 8   | 10 | 9  | 8  | 5  | _ | _ | _ | _ | _ | 10 | 9   | 8  | 8   | 10  | 9  | 8 | 5  | _  | 10 | 13  |    | 14 | - 8 |    | 16  | 19  |      | 1   |   |  |               |
| 1 . | 10  | 9  | 8   | -5 | 9  | 8  | 8  | 4 | 7 | 6 | _ | _ | 11 | 6   | 7  | 8   | - 8 | 8  | 9 | 9  | 10 | 15 | 11  | 14 | 11 | 1.3 |    | 19  |     | 17   |     |   |  |               |
| 8   | 10  | 9  | 8   | 8  | 10 | 9  | 8  | 5 | _ | _ | _ | _ |    | 11  | 8  | 8   | 8   | 9  | 9 | 10 | 10 | 13 |     |    | 14 |     | 14 | 17  |     | 16   |     |   |  |               |
| 8   | 5   | 10 | 9   | 8  | -5 | 9  | 8  | 8 | 4 | 7 | 6 | _ | 12 | 9   | 11 | 8   | 8   | 8  | 9 | 9  | 10 | 15 |     |    | 12 |     |    | 20  |     | 18   |     |   |  |               |
| 8   | 8   | 10 | 9   | 8  | 8  | 10 | 9  | 8 | 5 | _ | _ | _ | 10 | 11  | 9  | 14  | 8   | 9  | 9 | 10 |    |    |     |    |    |     | 15 | 1 . |     | . 17 |     |   |  |               |
| 9   | 8   | 5  | 10  | 9  | 8  | 5  | 9  | 8 | 8 | 4 | 7 | 6 | 14 | 9   | 12 | 11  | 11  | 9  | 9 |    | 10 | 17 |     |    |    | 15  |    | 19  |     | 19   |     |   |  |               |
| و ا | 8   | 8  | 10  | 9  | 8  | 8  | 10 | 9 | 8 | 5 | _ | _ | 11 | 12  |    | 14  |     | 14 |   | 10 |    |    |     |    |    |     | 15 |     |     | 18   |     |   |  |               |
|     |     |    |     |    |    |    |    |   |   |   |   |   | 1  |     |    |     |     |    |   |    |    | 1  |     |    |    |     |    |     |     |      |     |   |  |               |

| 8 5 6 7 8 8 8 8 9 9 9 10 10            | 12 10 14 11 14 11 12 10 10 18 | 16 17 16 16 14 22 19 22 19   |
|----------------------------------------|-------------------------------|------------------------------|
|                                        |                               |                              |
| 6 10 9 8 8 10 9 8 8 10 9 8 5           |                               | 18 16 17 13 17 20 23 19 22   |
| 9 11 7 7 8 8 8 8 9 9 9 10 10           | 15 12 14 12 14 11 13 10 11 19 | 17 18 16 17 16 23 20 22 19   |
| 7 8 14 8 8 8 8 9 9 9 10 10 10          | 12 15 12 14 11 14 11 14 14 17 | 20 16 18 16 17 21 23 20 22   |
| 11 11 11 11 8 8 8 8 9 9 9 10 10        | 16 12 15 12 14 12 14 11 11 20 | 17 18 16 17 16 23 22 22 20   |
| 9 9 14 8 14 8 8 9 9 9 10 10 10         |                               | 20 17 19 14 19   22 25 20 23 |
|                                        |                               |                              |
|                                        |                               |                              |
| 9 10 14 10 14 8 14 9 9 9 10 10 10      |                               | 21 18 20 18 19 23 25 21 24   |
| 12 14 11 13 11 11 11 19 9 10 10 10     |                               | 19 21 19 19 16   25 23 25 22 |
| 10 11 14 10 14 10 14 8 14 10 10 10 10  | 15 17 14 17 13 17 12 16 14 19 | 22 19 20 18 20   24 26 23 25 |
| 14 14 11 13 11 12 11 11 11 10 10 10 11 | 17 16 17 16 17 16 16 13 14 22 | 19 22 19 20 19   26 24 25 22 |
| 11 11 14 11 14 11 14 10 14 10 10 10 10 |                               | 22 19 21 19 20 24 26 24 25   |
| 12 14 11 13 11 12 11 11 11 10 10 10 11 |                               | 19 22 19 20 19 26 24 25 23   |
|                                        |                               |                              |
| 10 11 12 11 14 10 14 10 14 10 10 10 10 |                               | 22 19 20 19 20 24 26 24 25   |
| 14 13 10 12 11 11 11 9 11 10 10 10 10  |                               | 19 22 19 20 17 26 24 25 22   |
| 11 11 12 11 14 10 14 9 9 10 10 10 10   |                               | 21 19 20 17 19 24 25 24 25   |
| 13 12 10 11 11 9 11 9 9 10 10 10 11    | 17 16 16 14 16 13 15 12 13 22 | 19 20 18 19 18 25 23 24 22   |
| 10 10 11 10 14 8 8 9 9 9 10 10 10      |                               | 20 18 20 17 19 24 25 22 24   |
| 11 11 9 8 11 8 9 9 9 10 10 10 11       | 16 13 15 13 15 12 14 11 11 20 | 18 19 18 18 17 24 22 24 22   |
| 9 9 11 8 8 8 8 9 9 9 10 10 10          |                               | 20 17 19 17 18 22 24 21 23   |
| 8 7 9 7 8 8 9 9 9 10 10 10 11          |                               | 17 18 17 17 15 22 24 21 23   |
|                                        |                               |                              |
| 6 6 10 9 8 8 10 9 8 8 10 9             |                               | 18 17 18 16 16 21 23 20 22   |
| 11 10 9 8 5 10 9 8 5 10 7 7            |                               | 16 17 16 17 15 23 20 22 20   |
| 6 10 9 8 8 10 9 8 8 10                 |                               | 18 15 17 15 16 20 22 19 21   |
| 11 10 9 8 5 10 9 8 5 7 7               | 12 11 13 11 11 10 10 11   17  | 16 17 16 16 15 22 20 22 19   |
| 6 10 9 8 8 10 9 8 8                    | 10 11 10 14 10 9 9 10 10 15   | 17 14 16 13 15   19 21 19 20 |
| 11 10 9 8 5 10 9 8 7                   |                               | 16 15 13 15 12 21 19 19 18   |
| 6 10 9 8 8 10 9 8                      |                               | 15 13 14 13 14               |
| 11 10 9 8 5 10 9 7                     |                               | 12 15 12 13 12   19 17 18 17 |
|                                        |                               |                              |
| 6 10 9 8 8 10 9                        |                               | 15 12 14 10 10   17 18 16 17 |
| 11 10 9 8 5 10 7                       |                               | 12 13 11 10 11   18 17 17 16 |
| 6 10 9 8 8 10                          |                               | 14 10 9 10 10   15 17 15 16  |
| 11 10 9 8 5 7                          | 11 10 9 8 5 7 10              | 11 8 9 10 11   16 16 15 13   |
| 6 10 9 8 8                             | 6 10 9 8 8 8                  | 6 10 9 8 8   13 14 13 14     |
| 11 10 9 8                              | 11 10 9 8 11                  | 10 9 8   15 12 11 11         |
| 6 10 9 8                               | 6 10 9 8 6                    |                              |
| 11 10 9                                | 11 10 9 11                    |                              |
| 111 10 3                               | 6 10 9 6                      |                              |
|                                        | 1 0 10 7                      |                              |
| 11 10                                  |                               | 10   11 10                   |
| 6 10                                   | 1                             | 10 6 10                      |
| 11                                     | 11   11                       | 11                           |
| 6                                      | 6 6                           | 6                            |
|                                        |                               |                              |

```
        4
        -
        4
        -
        5
        -
        5
        -
        5
        -
        5
        -
        5
        -
        5
        -
        5
        -
        5
        -
        5
        -
        5
        -
        5
        -
        5
        -
        6
        8
        5
        -
        8
        4
        11
        8
        11
        8
        11
        8
        11
        8
        11
        12
        12
        9
        14
        11
        13
        17
        6
        25
        11
        13
        17
        6
        25
        11
        13
        17
        6
        25
        11
        11
        11
        14
        17
        15
        19
        21
        29
        19
        16
        15
        21
        19
        21
        29
        19
        16
        15
        22
        19
        29
        21
        19
        12
        23
        31
        19
        22
        17
        17
        21
        23
        31
        19
        22
        17
        17
        21
        24
        23
        32</t
```

| 23 21 19 | 27 26 | 52 |
|----------|-------|----|
| 20 23 18 | 25 26 | 52 |
| 23 20 18 | 26 25 | 52 |
|          |       |    |
| 20 21 17 | 25 26 | 54 |
| 21 18 16 | 24 23 | 54 |
| 18 19 14 | 23 24 | 54 |
| 17 16 15 | 22 21 | 54 |
|          |       | 56 |
| 14 16 12 | 19 20 |    |
| 15 13 11 | 19 18 | 56 |
| 12 12 10 | 17 18 | 56 |
| 11 10 10 | 16 15 | 56 |
| 6 10     | 13 13 | 58 |
|          |       |    |
| 11       | 11 11 | 58 |
| 6        | 6     | 58 |
| 1 ~      | "     |    |

## REFERENCES

- 1. L.Dadda, "Some schemes for parallel multipliers", Alta Frequenza, Volume 34, pp. 346-356.
- 2. Whitney J.Townsend, Earl E. Swartzlander Jr., and Jacob A. Abraham, "A comparison of Dadda and Wallace multiplier delays", Advanced Signal Processing Algorithms, Architectures, and Implementations, Volume 5205, pp. 552-560, Austin, 2003.