2019 MATH CAMP LECTURE NOTES

WADE HANN-CARUTHERS

1. Point Set Topology

1.1. **Fixing ideas.** The first definition of continuity most people are introduced to is the pencil one: a function is continuous if you can draw it without lifting your pencil off of the paper. This is capturing the idea that nearby x values should map to nearby y values. For a function $f: \mathbb{R} \to \mathbb{R}$, this is formalized as follows.

Definition 1. f is continuous at x if for every $\epsilon > 0$ there is a $\delta > 0$ such that

$$|x' - x| < \delta \implies |f(x') - f(x)| < \epsilon.$$

What does this definition say? It says that for any choice of which values are close to f(x) (ϵ) we can make a choice of which values are close to x (δ) such that every value which is close to x maps to a value that is close to f(x).

This reading of the definition of continuity gives the jumping off point for topology. The only structure that we needed on \mathbb{R} was a notion of which sets are sets that contain all points "sufficiently close" to a given value.

- 1.2. **Topological spaces.** Let X be a set and $\mathcal{O} \subseteq 2^X$ be a set of subsets of X. Then (X, Ω) is a topological space if
 - $\emptyset, X \in \mathcal{O}$
 - closed under pairwise intersection
 - closed under arbitrary union

We call Ω the open sets.

Exercise 1. Let X be a set and let $\mathcal{O} = 2^X$ (that is, \mathcal{O} is the set of all subsets of X). Show that (X, \mathcal{O}) is a topological space.

Exercise 2. Let X be a set and let $\mathcal{O} = \{\emptyset, X\}$. Show that (X, \mathcal{O}) is a topological space.

Exercise 3. Let \mathcal{O} be the set of subsets U of \mathbb{R} such that for every $x \in \mathbb{R}$, $x \in U$ implies there exists $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subseteq U$. Prove that $(\mathbb{R}, \mathcal{O})$ is a topological space.

This is called the *standard topology* on \mathbb{R} .

- 1.3. Families of open subsets. Given a topological space (X, \mathcal{O}) and a family of open sets $\Lambda \subseteq \mathcal{O}$, we say that Λ is
 - an open cover if $\bigcup_{U \in \Lambda} U = X$
 - a generating set if \mathcal{O} is the smallest subset of 2^X which contains Λ and is closed under union and finite intersection
 - a base if for every $U \in \mathcal{O}$ there is a family $\Gamma \subseteq \Lambda$ such that $\bigcup_{V \in \Gamma} V = U$

Let T be $\mathbb R$ with the standard topology. Let $\Lambda = \{(p-q,p+q): p,q\in \mathbb Q,\, q>0\}.$

Exercise 4. Prove that Λ is an open cover for T.

Exercise 5. Prove that Λ is a generating set for T.

Exercise 6. Prove that Λ is a base for T.

1.4. **Compactness.** Let (X, \mathcal{O}) be a topological space, and let $Y \subseteq X$. We say that a family of open sets $\Lambda \subseteq \mathcal{O}$ is an *open cover* for Y if

$$Y \subseteq \bigcup_{U \in \Lambda} U.$$

If Λ and Λ' are open covers of Y with $\Lambda' \subseteq \Lambda$, we say that Λ' is a subcover of Λ .

Definition 2. Let Y be a subset of X. We say that Y is compact if every open cover of Y has a finite subcover (that is, a subcover containing only finitely many sets).

Exercise 7. Using the least upper bound property of the real numbers¹, show that [0,1] is compact in \mathbb{R} with the standard topology.

¹As a reminder, the least upper bound property says the following: For any $A \subseteq \mathbb{R}$, we say that $u \in \mathbb{R}$ is an *upper bound* for A if $u \geq a$ for all $a \in A$. Let Ω be the set of upper bounds for A. If Ω is nonempty (so A has at least one upper bound), then there is some $\tilde{u} \in \Omega$ such that $\tilde{u} \leq u$ for all $u \in \Omega$.

1.5. Closed sets and limits. Let (X, \mathcal{O}) be a topological space.

Definition 3. We say that $V \subseteq X$ is closed if $X \setminus V \in \mathcal{O}$; that is, if the complement of V is open.

Definition 4. Let $U, U' \in \mathcal{O}$. We say that U' is a closure of U if

- $U \subseteq U'$
- U' is closed
- For any $V \subseteq X$, $U \subseteq V$ and V closed implies $U' \subseteq V$.

Exercise 8. Let $A \subseteq X$. Prove that A has exactly one closure (that is, show that the closure of A exists and is unique).

Given this result, we call the unique closure of A the closure of A and refer to it by \bar{A} .

Exercise 9. Let $A \subseteq X$. Prove that if A is closed, then $\bar{A} = A$. Prove that (even if A is not closed), $\bar{A} = \bar{A}$.

Definition 5. Let $A \subseteq X$, and let $x \in X$. We say that x is a limit point of A if for every $U \in \mathcal{O}$ with $x \in U$, $U \cap A \neq \emptyset$.

Exercise 10. Let $A \subseteq X$, and let B be the set of limit points of A. Prove that $B = \overline{A}$.

1.6. Continuity. Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be topological spaces.

Definition 6. We say that $f: X \to Y$ is continuous if for every $U \in \mathcal{O}_Y$, $f^{-1}(U) \in \mathcal{O}_X$.

The way this is usually put is that f is continuous if the preimage of every open set is open.

Exercise 11. Show that for a function $f : \mathbb{R} \to \mathbb{R}$, definitions 1 and 6 are equivalent (when \mathbb{R} is endowed with the standard topology).

California Institute of Technology