



Wiederholung: Arithmetisches Mittel & Varianz Grundlagen der Ökonometrie

herbert.stocker@uibk.ac.at www.hsto.info/econometrics

# Gästebefragung Österreich

Tägliche Urlaubsausgaben (expenditure): Wie vergleichen?



# Beispiel: Gästebefragung Österreich

| age | gender | income | expenditure | country |
|-----|--------|--------|-------------|---------|
| 57  | female | 35200  | 434         | Germany |
| 29  | male   | 40000  | 1025        | Austria |
| 35  | female | 49280  | 202         | Germany |
| 30  | female | 38205  | 603         | other   |
| 48  | female | 39050  | 596         | Italy   |
| 70  | male   | 30000  | 1489        | Austria |
| :   | :      | :      | :           | :       |



## Mittelwerte: Arithmetisches Mittel

- Mittelwert: Überbegriff für verschiedene Lagemaße.
- Arithmetisches Mittel: am häufigsten verwendet

## **Definition Arithmetisches Mittel**

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i$$

- nur für metrisch skalierte Variablen sinnvoll!
- empfindlich gegenüber Extremwerten.

## **Arithmetisches Mittel**

**Arithmetisches Mittel:** besitzen einige der n Beobachtungen den gleichen numerischen Wert können diese zusammengefasst werden

$$\bar{x} = \frac{1}{n} \left( \underbrace{x_1 + \dots + x_1}_{n_1 \text{-mal}} + \underbrace{x_2 + \dots + x_2}_{n_2 \text{-mal}} + \dots + \underbrace{x_k + \dots + x_k}_{n_k \text{-mal}} \right)$$

mit Häufigkeiten  $n_1, n_2, \dots, n_k$ 

$$\bar{x} = \frac{1}{n} (x_1 n_1 + \dots + x_k n_k) = \frac{1}{n} \sum_{j=1}^k x_j n_j = \sum_{j=1}^k x_j \frac{n_j}{n}$$

 $mit \quad \sum_{j=1}^k n_j = n$ 

## **Arithmetisches Mittel**

## **Arithmetisches Mittel: 4 Eigenschaften**

1. Schwerpunkteigenschaft Die Summe der Abweichungen der Einzelwerte vom arithm. Mittel  $\bar{x}$  sind Null:

$$\sum_{i=1}^{n} (x_i - \bar{x}) = \sum_{i} x_i - \sum_{i} \bar{x} = n\bar{x} - n\bar{x} = 0$$

weil aus  $\bar{x}=\frac{1}{n}\sum_i x_i$  folgt  $\sum_i x_i=n\bar{x}$ , und  $\sum_i \bar{x}=n\bar{x}$ 

→ Schwerpunkt einer Verteilung.

#### **Arithmetisches Mittel**

#### **Arithmetisches Mittel:**

$$\bar{x} = \frac{1}{n} \sum_{j=1}^{k} x_j n_j = \sum_{j=1}^{k} x_j \frac{n_j}{n} = \text{mit } j = 1, \dots, k$$

bzw. mit  $f_j := \frac{n_j}{n}$  (relative Häufigkeiten)

$$\bar{x} = \sum_{j=1}^{k} x_j f_j$$

⇒ gewogenes arithmetisches Mittel

#### **Arithmetisches Mittel**

#### Arithmetisches Mittel: 4 Eigenschaften

2. Die Summe der quadrierten Abweichungen von  $\bar{x}$  ist kleiner als von jedem beliebigen anderen Wert z

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 < \sum_{i=1}^{n} (x_i - z)^2 \quad \text{für } \bar{x} \neq z$$

• Warum?

$$\sum_{i} (x_{i} - z)^{2} = \sum_{i} (x_{i} - \bar{x} + \bar{x} - z)^{2} = \sum_{i} [(x_{i} - \bar{x}) + (\bar{x} - z)]^{2}$$

$$= \sum_{i} (x_{i} - \bar{x})^{2} + 2(\bar{x} - z) \underbrace{\sum_{i} (x_{i} - \bar{x})}_{=0} + \sum_{i} (\bar{x} - z)^{2}$$

$$= \sum_{i} (x_{i} - \bar{x})^{2} + \sum_{i} (\bar{x} - z)^{2} \quad \text{mit } \sum_{i} (\bar{x} - z)^{2} > 0$$

•  $\Rightarrow$  arithm. Mittel  $\bar{x}$  erzeugt kleinstmögliche Streuung (Varianz)!

## **Arithmetisches Mittel**

## Arithmetisches Mittel: 4 Eigenschaften

**3. Translationsäquivariant:** werden die Einzelwerte linear transformiert  $x_i^* = b_1 + b_2 x_i$ , dann gilt

$$\bar{x}^* = b_1 + b_2 \bar{x}$$

• Warum?

$$\bar{x}^* = \frac{1}{n} \sum_{i} (b_1 + b_2 x_i)$$

$$= \frac{1}{n} \left( nb_1 + b_2 \sum_{i} x_i \right)$$

$$= b_1 + b_2 \frac{1}{n} \sum_{i} x_i = b_1 + b_2 \bar{x}$$

## Varianz

## **Definition Varianz**

**Varianz**  $s^2$ : mittlere quadratische Abweichung vom arithmetischen Mittel  $\bar{x}$ .

$$var(x) := s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$
$$= \frac{1}{n} \left( \sum_{i=1}^{n} x_{i}^{2} \right) - \bar{x}^{2} := \overline{x^{2}} - \bar{x}^{2}$$

nur für metrisch skalierte Variablen.

#### **Arithmetisches Mittel**

## **Arithmetisches Mittel: 4 Eigenschaften**

**4. gewichtetes arithm. Mittel:** Zwei (oder mehrere) Teilgesamtheiten, deren Umfang und arithm. Mittel bekannt sind  $(n_1, \bar{x}_1, n_2, \bar{x}_2 \text{ mit } n_1 + n_2 = n)$ 

$$\bar{x} = \frac{1}{n} \left( \frac{x_1}{x_1} \sum_{i=1}^{n_1} x_{1i} + \frac{n_2}{n_2} \sum_{i=1}^{n_2} x_{2i} \right)$$

$$= \frac{n_1}{n} \left( \frac{1}{n_1} \sum_{i=1}^{n_1} x_{1i} \right) + \frac{n_2}{n} \left( \frac{1}{n_2} \sum_{i=1}^{n_2} x_{2i} \right) = \frac{n_1}{n} \, \bar{x}_1 + \frac{n_2}{n} \, \bar{x}_2$$

Warum?
 Aus der Definition des arithm. Mittels

$$\sum_{i=1}^{n_1} x_{1i} = n_1 \bar{x}_1 \text{ und } \sum_{i=1}^{n_2} x_{2i} = n_2 \bar{x}_2$$

## Varianz

Warum?

$$var(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$= \frac{1}{n} \left( \sum_{i} x_i^2 - 2\bar{x} \sum_{i} x_i + \sum_{i} \bar{x}^2 \right)$$

$$= \frac{1}{n} \left( \sum_{i} x_i^2 - 2\bar{x}n\bar{x} + n\bar{x}^2 \right)$$

$$= \frac{1}{n} \left( \sum_{i=1}^{n} x_i^2 \right) - \bar{x}^2 := \bar{x}^2 - \bar{x}^2$$

weil 
$$\sum_i x_i = n\bar{x}$$
 und  $\sum_i \bar{x}^2 = n\bar{x}^2$ 

## Varianz

#### **Linear Transformierte Daten:**

Sei  $x_i^* = b_1 + b_2 x_i$  für i = 1, ..., n

$$var(x^*) = \frac{1}{n} \sum_{i=1}^{n} (x_i^* - \bar{x}^*)^2$$

Wir haben bereits früher gezeigt, dass  $\bar{x}^* = b_1 + b_2 \bar{x}$ .

$$\operatorname{var}(x^*) = \frac{1}{n} \sum_{i} (b_1 + b_2 x_i - b_1 - b_2 \bar{x})^2$$
$$= \frac{1}{n} \sum_{i} (b_2 [x_i - \bar{x}])^2$$
$$= b_2^2 \frac{1}{n} \sum_{i} (x_i - \bar{x})^2 = b_2^2 \operatorname{var}(x_i)$$

⇒ Addition oder Subtraktion einer Konstante. hat keinen Einfluss auf die Varianz!

# Standardabweichung

- Die Varianz ist manchmal schwierig zu interpretieren, wenn z.B. x in Euro gemessen wird, hat die Varianz die Dimension Euro<sup>2</sup>.
- Die *Standardabweichung* hat gegenüber der Varianz den Vorteil, dass sie in der gleichen Einheit wie die Beobachtungswerte gemessen wird.

#### **Definition Standardabweichung**

$$s = \sqrt{\text{var}(x)} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

#### Varianz

#### Zwei Arten der Varianz

$$s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 \quad \text{versus} \quad s_s^2 = \frac{1}{(n-1)} \sum_{i=1}^n (x_i - \bar{x})^2$$

- $\bullet$  die meisten Programme berechnen die Varianz nach der 2. Formel, d.h. sie verwenden den Vorfaktor 1/(n-1)
- die Anwendung des Vorfaktor 1/(n-1) statt 1/n ist angebracht, wenn die Varianz aus einer Stichprobe berechnet wird und als  $Sch\"{a}tzung$  für die Varianz der Grundgesamtheit dient.
- der Grund dafür liegt im Konzept der später diskutierten Erwartungstreue.

# Metrisch skalierte Merkmale: Zusammenhangsmaß

Das wichtigste Zusammenhangsmaß für **metrisch skalierte Merkmale** ist die **empirische Kovarianz**.

#### **Definition Kovarianz**

Die Kovarianz ist eine (nicht standardisierte) Maßzahl für den Zusammenhang zwischen zwei metrisch skalierten statistischen Merkmalen x und y.

$$cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

mit 
$$\bar{x} := \frac{1}{n} \sum_i x_i$$
 und  $\bar{y} := \frac{1}{n} \sum_i y_i$ 

# Kovarianz

# Beispiel:

|   | x  | y  | $x - \bar{x}$ | $y - \bar{y}$ | $(x - \bar{x})(y - \bar{y})$ |
|---|----|----|---------------|---------------|------------------------------|
|   | 2  | 1  | -3            | -2            | 6                            |
|   | 3  | 4  | -2            | 1             | -2                           |
|   | 4  | 1  | -1            | -2            | 2                            |
|   | 6  | 4  | 1             | 1             | 1                            |
|   | 7  | 2  | 2             | -1            | -2                           |
|   | 8  | 6  | 3             | 3             | 9                            |
| Σ | 30 | 18 | 0             | 0             | 14                           |
|   |    |    |               |               |                              |

$$cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \frac{14}{6} = 2.33$$

## Kovarianz: Mittelwerttransformation



## Kovarianz: Mittelwerttransformation



17

# Vorzeichen der Kovarianz



18

## Kovarianz

#### **Kovarianz:**

- Die Kovarianz ist positiv, wenn x und y tendenziell einen gleichgerichteten linearen Zusammenhang aufweisen, d.h. hohe Werte von x gehen mit hohen Werten von y einher und niedrige mit niedrigen.
- ullet Die Kovarianz ist negativ, wenn x und y einen gegengerichteten linearen Zusammenhang aufweisen.
- Ist die Kovarianz Null, so besteht kein *linearer Zusammenhang* (es kann aber trotzdem oder ein nicht-linearer Zusammenhang bestehen, z.B. U-förmig).

#### 20

# Rechenregeln für empirische Kovarianzen

# 2) Konstante Faktoren können ausgeklammert werden: für $x,y\in\mathbb{R}^n$ und Zahlen $a,b\in\mathbb{R}$

$$\cot(ax, by) = ab\cot(x, y)$$

Warum?

$$cov(ax, by) = \frac{1}{n} \sum_{i=1}^{n} (ax_i - a\bar{x})(by_i - b\bar{y})$$

$$= \frac{1}{n} \sum_{i=1}^{n} a(x_i - \bar{x})b(y_i - \bar{y})$$

$$= ab \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$= ab cov(x, y)$$

# Rechenregeln für empirische Kovarianzen

#### 1) Symmetrie:

$$cov(x, y) = cov(y, x)$$

Warum?

$$cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$
$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x}) = cov(y,x)$$

#### 21

# Rechenregeln für empirische Kovarianzen

#### 3) Additivität: für $x, y, z \in \mathbb{R}^n$

$$cov[x, (y+z)] = cov(x, y) + cov(x, z)$$

#### Warum?

$$cov[x, (y+z)] = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})[(y_i + z_i) - (\bar{y} + \bar{z})] 
= \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})[(y_i + z_i) - (\bar{y} + \bar{z})] 
= \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})[(y_i - \bar{y}) + (z_i - \bar{z})] 
= \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) + \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(z_i - \bar{z}) 
= cov(x, y) + cov(x, z)$$

# Rechenregeln für empirische Kovarianzen

#### 4) Zusammenhang mit empirischer Varianz: für $x \in \mathbb{R}^n$

$$cov(x, x) = var(x)$$

Warum?

$$cov(x,x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})$$
$$= \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
$$= var(x)$$

## Kovarianz

#### Zwei Arten der Kovarianz

$$cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

versus

$$cov_s(x,y) = \frac{1}{(n-1)} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

- die meisten Programme berechnen die Kovarianz nach der 2. Formel, d.h. sie verwenden den Vorfaktor 1/(n-1)
- die Anwendung des Vorfaktor 1/(n-1) statt 1/n ist angebracht, wenn die Kovarianz aus einer Stichprobe berechnet wird und als  $Sch\"{a}tzung$  für die Kovarianz der Grundgesamtheit dient.

# Rechenregeln für empirische Kovarianzen

5) Empirische Varianz einer Summe: für  $x,y\in\mathbb{R}^n$ 

$$var(x+y) = var(x) + var(y) + 2 cov(x,y)$$

Warum?

$$\operatorname{var}(x+y) = \frac{1}{n} \sum_{i=1}^{n} [(x_i + y_i) - (\bar{x} + \bar{y})]^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} [(x_i - \bar{x}) + (y_i - \bar{y})]^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 + \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2 + \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$= \operatorname{var}(x) + \operatorname{var}(y) + 2\operatorname{cov}(x, y)$$

## Korrelation

#### Korrelationen:

- Kovarianzen h\u00e4ngen von Ma\u00edeinheiten ab! Um einen Zusammenhang vergleichbar zu machen, muss die Kovarianz normiert werden ⇒ Korrelationskoeffizienten
- Korrelationen sind eine Gruppe von statistischen Kennwerten, die den "Zusammenhang" zwischen zwei Variablen messen sollen.
- Bewegen sich die Variablen in die selbe Richtung? Wie stark h\u00e4ngen sie zusammen?

## Korrelationskoeffizient nach Bravais-Pearson

#### Definition Korrelationskoeffizient nach Bravais-Pearson

Der Korrelationskoeffizient r ist ein dimensionsloses Maß für den Grad des linearen Zusammenhangs zwischen zwei mindestens intervallskalierten Merkmalen.

$$corr(x, y) := r_{xy} = \frac{cov(x, y)}{\sqrt{var(x)}\sqrt{var(y)}}$$

• erfordert mindestens *metrisches* Skalenniveau!

# Korrelationskoeffizient nach Bravais-Pearson

**Beispiel:** mit  $\ddot{x}:=x-\bar{x}$ ,  $\ddot{y}:=y-\bar{y}$ 

|   | x  | y  | $\ddot{x}$ | $\ddot{x}^2$ | $\ddot{y}$ | $\ddot{y}^2$ | $\ddot{x}\ddot{y}$ |
|---|----|----|------------|--------------|------------|--------------|--------------------|
|   | 2  | 1  | -3         | 9            | -2         | 4            | 6                  |
|   | 3  | 4  | -2         | 4            | 1          | 1            | -2                 |
|   | 4  | 1  | -1         | 1            | -2         | 4            | 2                  |
|   | 6  | 4  | 1          | 1            | 1          | 1            | 1                  |
|   | 7  | 2  | 2          | 4            | -1         | 1            | -2                 |
|   | 8  | 6  | 3          | 9            | 3          | 9            | 9                  |
| Σ | 30 | 18 | 0          | 28           | 0          | 20           | 14                 |

$$r_{xy} = \frac{\text{cov}(x,y)}{\sqrt{\text{var}(x)}\sqrt{\text{var}(y)}} = \frac{14}{\sqrt{28 \cdot 20}} = 0.591608$$

## Korrelationskoeffizient nach Bravais-Pearson

Eigenschaften des Korrelationskoeffizient nach Bravais-Pearson: für Datenvektoren  $x,y\in\mathbb{R}^n$  und Zahlen  $a,b,c,d\in\mathbb{R}$  gilt

 $oldsymbol{1}$   $r_{x,y}$  kann nur Werte zwischen -1 und +1 annehmen

$$-1 \le \operatorname{corr}(x, y) \le +1$$

$$corr(ax + b, cy + d) = corr(x, y)$$

§ Wenn  $\operatorname{der}\operatorname{corr}(x,y)=0$  sind die beiden Merkmale linear unabhängig (sie können aber trotzdem nicht-linear abhängig sein); wenn  $|\operatorname{corr}(x,y)|=1$  sind die Merkmale exakt linear abhängig

• 
$$\operatorname{corr}(x, y) = +1 \text{ wenn } y = a + bx$$

• 
$$\operatorname{corr}(x, y) = -1 \text{ wenn } y = a - bx$$

# Korrelationskoeffizient nach Bravais-Pearson

Übung: Zeigen Sie, dass der Korrelationskoeffizient

$$r = \frac{\operatorname{cov}(x, y)}{\sqrt{\operatorname{var}(x)\operatorname{var}(y)}}$$
$$= \frac{\sum_{i}(x_{i} - \bar{x})(y_{i} - \bar{y}))}{\sqrt{\sum_{i}(x_{i} - \bar{x})^{2}\sum_{i}(y_{i} - \bar{y})^{2}}}$$

alternativ berechnet werden kann als

$$r = \frac{\sum_{i} x_{i} y_{i} - n\bar{x}\bar{y}}{\sqrt{(\sum_{i} x_{i}^{2} - n\bar{x})(\sum_{i} y_{i}^{2} - n\bar{y}^{2})}}$$