Natural Language Processing

Narayana Santhanam

EE 645 Mar 25, 2023

This module

Latent Semantic Indexing SVD

Language models (Transformers)

Low rank projections

Transfer of information

$$M = U\Sigma V^T$$

```
If M is n \times p,

U is n \times n

\Sigma is n \times p

V is p \times p
```


$$M = U\Sigma V^T$$

If
$$M$$
 is $n \times p$,
 U is $n \times n$
 Σ is $n \times p$
 V is $p \times p$

$$U,\,V$$
 are both orthonormal
$$U^T=\,U^{-1} \text{ and } V^T=\,V^{-1}$$

$$M = U\Sigma V^T$$

If
$$M$$
 is $n \times p$,
 U is $n \times n$
 Σ is $n \times p$
 V is $p \times p$

$$U, V$$
 are both orthonormal
$$U^T = U^{-1} \text{ and } V^T = V^{-1}$$

 Σ is diagonal all diagonal entries ≥ 0 (called singular values)

$$M$$
 is $n \times p$,

$$M = U\Sigma V^T$$

cols of
$$U$$
: basis for cols of M $U = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_n \end{bmatrix}$, each $\mathbf{u}_i \in \mathbb{R}^n$ \mathbf{u}_i all have length 1, mutually perpendicular cols of V : basis for rows of M $V = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_p \end{bmatrix}$, each $\mathbf{v}_i \in \mathbb{R}^n$ \mathbf{v}_i all have length 1, mutually perpendicular

singular values: importance of basis vectors

$$\sigma_1, \ldots, \sigma_{\min(n,p)}$$

M is $n \times p$,

$$M = \begin{bmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_n \end{bmatrix} \operatorname{diag}(\sigma_1, \dots, \sigma_{\min(n,p)}) \begin{bmatrix} \mathbf{v}_1' \\ \vdots \\ \mathbf{v}_p^T \end{bmatrix}$$

Instructive to multiply out:

$$M = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \ldots + \sigma_{\min(n,p)} \mathbf{u}_{\min(n,p)} \mathbf{v}_{\min(n,p)}^T$$

M is $n \times p$,

$$M = \begin{bmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_n \end{bmatrix} \operatorname{diag}(\sigma_1, \dots, \sigma_{\min(n,p)}) \begin{bmatrix} \mathbf{v}_1' \\ \vdots \\ \mathbf{v}_p^T \end{bmatrix}$$

Instructive to multiply out:

$$M = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \ldots + \sigma_{\min(n,p)} \mathbf{u}_{\min(n,p)} \mathbf{v}_{\min(n,p)}^T$$

Each of $\mathbf{u}_i \mathbf{v}_i^T$ is a rank-1 matrix

M is $n \times p$,

$$M = \begin{bmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_n \end{bmatrix} \operatorname{diag}(\sigma_1, \dots, \sigma_{\min(n,p)}) \begin{bmatrix} \mathbf{v}_1' \\ \vdots \\ \mathbf{v}_p^T \end{bmatrix}$$

Instructive to multiply out:

$$M = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \ldots + \sigma_{\min(n,p)} \mathbf{u}_{\min(n,p)} \mathbf{v}_{\min(n,p)}^T$$

Each of $\mathbf{u}_i \mathbf{v}_i^T$ is a rank-1 matrix Number of non-zero singular values = rank of matrix

M is $n \times p$,

$$M = \begin{bmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_n \end{bmatrix} \operatorname{diag}(\sigma_1, \dots, \sigma_{\min(n, p)}) \begin{bmatrix} \mathbf{v}_1^T \\ \vdots \\ \mathbf{v}_p^T \end{bmatrix}$$

Instructive to multiply out:

$$M = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \ldots + \sigma_{\min(n,p)} \mathbf{u}_{\min(n,p)} \mathbf{v}_{\min(n,p)}^T$$

Each of $\mathbf{u}_i \mathbf{v}_i^T$ is a rank-1 matrix Number of non-zero singular values = rank of matrix In fact, general definition of rank:

Rank of a matrix

M is defined rank-r if it can be written as a sum of r rank-1 matrices and no fewer.

p documents, total of n words in the documents

M is the $n \times p$ term-document matrix

Different ways to come up with M simplest $M_{ij} = 1$ if word $i \in \operatorname{doc} j$

Note: *M* loses information about relative ordering of words bag of words model formally equivalent to unigram language models

Singular value decomposition of M (assume $\sigma_1 \geq \sigma_2 \geq ...$)

$$M = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \ldots + \sigma_{\min(n,p)} \mathbf{u}_{\min(n,p)} \mathbf{v}_{\min(n,p)}^T$$

$$\approx \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \ldots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T \qquad (r \ll \min(n,p)) = U^{(r)} V^{(r)}^T$$

where $U^{(r)}$ ($V^{(r)}$) contains first r cols of U (V)

Singular value decomposition of M (assume $\sigma_1 \geq \sigma_2 \geq ...$)

$$M = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \ldots + \sigma_{\min(n,p)} \mathbf{u}_{\min(n,p)} \mathbf{v}_{\min(n,p)}^T$$

$$\approx \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \ldots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T \qquad (r \ll \min(n,p)) = U^{(r)} V^{(r)}^T$$

where $U^{(r)}(V^{(r)})$ contains first r cols of U(V) Interpret the r vectors $\mathbf{u}_1, \dots, \mathbf{u}_r$ as the r topics

Singular value decomposition of M (assume $\sigma_1 \geq \sigma_2 \geq ...$)

$$M = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \ldots + \sigma_{\min(n,p)} \mathbf{u}_{\min(n,p)} \mathbf{v}_{\min(n,p)}^T$$

$$\approx \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \ldots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T \qquad (r \ll \min(n,p)) = U^{(r)} V^{(r)}^T$$

where $U^{(r)}$ ($V^{(r)}$) contains first r cols of U (V) Interpret the r vectors $\mathbf{u}_1, \ldots, \mathbf{u}_r$ as the r topics Interpret the r vectors $\mathbf{v}_1, \ldots, \mathbf{v}_r$ as choice of topics in each doc

<u>Demo</u>

Pros and cons

Pros Simple and fast Often used to optimize search

Pros and cons

```
Pros
Simple and fast
Often used to optimize search

Cons
Topics orthogonal?
Negative values
signal words absent (ok!)
docs similar using absence of words, (not ok!)
```


Non negative matrix factorization

LSI: $M \approx U^{(r)}V^{(r)}^{I}$ How about find best A, W such that

 $M \approx AW$,

A has r cols, W has r rows, all entries ≥ 0 Lot harder than SVD, optimization NP-hard Approximations exist (EM, algebraic)

Language Models

Statistical models of language

```
Unigram, Bigram, Trigram...

Little bit of information theory (offline) entropy representation in bits cross entropy

Perplexity (power of a language model) GPT-4 2.6
GPT-3.5 4.5
```


Modern Language Models

Tokenizer (OpenAl)

Modern Language Models

Tokenizer (OpenAI)

Brief history:

Recurrent NN

 LSTMs

Transformers

Modern Language Models

```
Tokenizer ( OpenAI )

Brief history:
Recurrent NN
LSTMs
Transformers
only focus on this!
```


Transformers

What is a transformer?

Central to Transformers is the notion of attention

Attention-like approaches in Linear Regression Kernels

Transformer core

Attention

Skip connections

Attention-like approaches

 $n \times p$ design matrix X, target \mathbf{y}

Each row is an example (key)

Each target is a number (value)

Given a test example z (query), output?

Recall

$$\hat{w} = (X^T X)^{-1} X^T \mathbf{y},$$
 Prediction: $\mathbf{z}^T \hat{\mathbf{w}}$

If $\mathbf{x}_1, \dots, \mathbf{x}_n$ are the n examples:

$$\mathbf{z}^T \hat{\mathbf{w}} = \sum_{i=1}^n (\mathbf{z}^T (X^T X)^{-1} \mathbf{x}_i) y_i$$

Attention

The term $\mathbf{z}^T (X^T X)^{-1} \mathbf{x}_i$ is the attention the key \mathbf{x}_i gets from the query \mathbf{z} . The output is a linear combination of values y_i , with \mathbf{y}_i weighted by the attention placed \mathbf{x}_i .

Other algorithms

Ridge Regression

$$\mathbf{z}^T \hat{\mathbf{w}} = \sum_{i=1}^n (\mathbf{z}^T (X^T X + \lambda I)^{-1} \mathbf{x}_i) y_i$$

Other algorithms

Ridge Regression

$$\mathbf{z}^T \hat{\mathbf{w}} = \sum_{i=1}^n (\mathbf{z}^T (X^T X + \lambda I)^{-1} \mathbf{x}_i) y_i$$

Support vector machines

Representer Theorem $\mathbf{w} = \sum_{i=1}^{n} \beta_i \mathbf{x}_i y_i$ (linear) Soft prediction

$$\mathbf{z}^T \hat{\mathbf{w}} = \sum_{i=1}^n \beta_i (\mathbf{z}^T \mathbf{x}_i) \mathbf{y}_i$$

 β_i is obtained by solving the dual, most are 0

Other algorithms

Ridge Regression

$$\mathbf{z}^T \hat{\mathbf{w}} = \sum_{i=1}^n (\mathbf{z}^T (X^T X + \lambda I)^{-1} \mathbf{x}_i) y_i$$

Support vector machines

Representer Theorem $\mathbf{w} = \sum_{i=1}^{n} \beta_i \mathbf{x}_i y_i$ (linear)

Soft prediction

$$\mathbf{z}^T \hat{\mathbf{w}} = \sum_{i=1}^n \beta_i (\mathbf{z}^T \mathbf{x}_i) \mathbf{y}_i$$

 β_i is obtained by solving the dual, most are 0

Attention

The term $\beta_i \mathbf{z}^T \mathbf{x}_i$ is the attention the key \mathbf{x}_i gets from the query \mathbf{z} . The output is a linear combination of values y_i , with \mathbf{y}_i weighted by the attention placed \mathbf{x}_i .

Attention

We specialize the observation in prior slides

Attention in Deep Learning: probability distribution over keys on any key must be ≥ 0 must sum to 1 over all the keys in that sense, diff from OLS and kernel illustrations

Arbitrary function and pass it through softmax

Skip connections

(Image source: Dive into deep learning)

Skip connections

(Image source: Dive into deep learning)

Putting them together

The final logits are produced by applying the unembedding.

$$T(t) = W_U x_{-1}$$

An MLP layer, m, is run and added to the residual stream.

$$x_{i+2} = x_{i+1} + m(x_{i+1})$$

Each attention head, h, is run and added to the residual stream.

$$x_{i+1} \ = \ x_i \ + \ \sum
olimits_{h \in H_i} h(x_i)$$

Token embedding.

$$x_0 = W_E t$$

(Image source: A mathematical framework for transformer circuits, Anthropic)

One

residual

block

What is a Language Model?

<\$ >	not	all	heroes	wear	Input Sequence
0	1	2	3	4	
capes pants sochs	↓ GPT ↓ 90% 5% 2% :		Output gue:	ss	

(Image source: GPT architecture on a napkin)

What does a Transformer output?

Context has 2048 tokens (though pic shows words)

(Image source: GPT architecture on a napkin)

Representation of tokens

GPT has a vocabulary of 50,257 tokens

For every token in context

Representation of tokens

GPT has a vocabulary of 50,257 tokens

For every token in context

Embeding tokens

Linear map $^{\text{loJ}^{\prime}}$ In actuality, each token $\rightarrow \mathbb{R}^{12288}$

Positional Encoding

Each position (0-2047) $\rightarrow \mathbb{R}^{12288}$ *P*: position matrix (2048× 12288)

$$p_{i,2j} = \sin\left(\frac{i}{M^{2j/d}}\right)$$
$$p_{i,2j+1} = \cos\left(\frac{i}{M^{2j/d}}\right)$$

M is a large number (not important)

Positional Encoding

Each position (0-2047) $\rightarrow \mathbb{R}^{12288}$ *P*: position matrix (2048× 12288)

$$p_{i,2j} = \sin\left(\frac{i}{M^{2j/d}}\right)$$
 $p_{i,2j+1} = \cos\left(\frac{i}{M^{2j/d}}\right)$

M is a large number (not important)

Idea: mimic binary representation of numbers relative location is a linear transform

Positional encoding matrix P

n cat

(Image source: Dive into Deep Learning)

Embedding all 2048 tokens

Transformer core: attention

In GPT-3: query, key, values are 128-long vectors

Transformer core: attention

Compute softmax($(QK^T)V$) For query \mathbf{q}_i from token i, compute

$$\sum_{j=1}^n \alpha(\mathbf{q}_i, \mathbf{k_j}) \mathbf{v_j}$$

for every key \mathbf{k}_j and value \mathbf{v}_j from token j,

Transformer core: attention

Compute softmax($(QK^T)V$) For query \mathbf{q}_i from token i, compute

$$\sum_{j=1}^n \alpha(\mathbf{q}_i, \mathbf{k_j}) \mathbf{v_j}$$

for every key \mathbf{k}_j and value \mathbf{v}_j from token j,

$$\alpha(\mathbf{q}_i, \mathbf{k}_j) = \operatorname{softmax}_j(\mathbf{x}_i^T W_q W_k \mathbf{x}_j / \sqrt{128})$$

and x_i and x_j are the embeddings of tokens i and j from prior layer

Multiheaded attention

96 parallel attention heads Think of each computing a different representation Followed by a Feedforward (1 hidden layer)

GPT-3 has 96 layers as above layers also have dropouts

Parameters (estimate) Embedding: 50527× 12288

GPT-3 has 96 layers as above layers also have dropouts

Parameters (estimate)

Embedding: 50527×12288

Attention

96 parallel heads

Not counting dropouts, biases, layer norm scalings

Each attention head: $12288 \times 128 \times 3$

Layer pooling 128×96×12288=12288×12288

GPT-3 has 96 layers as above layers also have dropouts

Parameters (estimate)

Embedding: 50527× 12288

Attention

96 parallel heads

Not counting dropouts, biases, layer norm scalings

Each attention head: $12288 \times 128 \times 3$

Layer pooling $128 \times 96 \times 12288 = 12288 \times 12288$

MLP: $12288 \times (4 \times 12288) \times 2$

GPT-3 has 96 layers as above layers also have dropouts

Parameters (estimate)

Embedding: 50527× 12288

Attention

96 parallel heads

Not counting dropouts, biases, layer norm scalings

Each attention head: $12288 \times 128 \times 3$

Layer pooling $128 \times 96 \times 12288 = 12288 \times 12288$

MLP: $12288 \times (4 \times 12288) \times 2$

 $96 \times (Attention + MLP)$

 $=96 \times (12288 \times 128 \times 3 \times 96 + 12288 \times 12288 \times 9)$

Total: 174.6 billion parameters, (reported 175 billion)

What happens at each layer

Think of each layer as a representation of token First layer: direct embedding Subsequent layers: contextualized embeddings Richer representation that includes context

What can we do with these rich representations?

Downstream tasks

We have been talking about: Contextual representation \rightarrow Language model

But in fact, lot lot more

Translation

Summarization

General Knowledge Q&A

Chatbots

Programming... and the list goes on

LLMs are few-shot learners

Two general ways to build

LLMs are few-shot learners

Two general ways to build

Fine tuning:

Uses 1000s/100,000 more examples Gradient updates are performed on model Original LLMs or subset or (likely) add-on

LLMs are few-shot learners

Two general ways to build

Fine tuning:

Uses 1000s/100,000 more examples Gradient updates are performed on model Original LLMs or subset or (likely) add-on

Few shot learning: no parameter updates
Few examples, 10s
(whatever fits into 2048 tokens)
No gradient updates
Use off the shelf predictions

