Statistical Methods in AI (CSE/ECE 471) Spring-2020

Assignment-3

Submitted By: Jyoti Gambhir (2019201032)

1. PCA

Original Images

MSE vs N Plot

MSE is less than 20% beyond N=300

Images After PCA (N = 400)

Scatterplots of Images

Scatterplots of Images in 1D space

Scatterplots of Images in 2D space

Scatterplots of Images in 3D space

2. Logistic Regression

Accuracy Score

Accuracy Score

```
In [15]: 1 print(accuracy_score(validation_labels, predicted_labels))
     0.6538461538461539
```

Confusion Matrix

Confusion Matrix

```
In [17]: 1 print(confusion_matrix(validation_labels, predicted_labels))

[[5 1 1 1 0 1 0 0]
        [1 2 1 0 1 0 1 0]
        [1 0 1 0 0 0 0 0]
        [1 0 0 4 0 0 0 0]
        [0 0 2 0 2 0 0 0]
        [0 0 1 0 1 7 1 0]
        [0 0 0 0 0 5 0]
        [1 0 0 1 1 0 0 8]]
```

Classification Report

Classification Report

[18]: 1 print(cla	ssification_	report(va	lidation_la	<pre>bels, predicted_labels))</pre>	
	precision	recall	f1-score	support	
000	0.56	0.56	0.56	9	
001	0.67	0.33	0.44	6	
002	0.17	0.50	0.25	2	
003	0.67	0.80	0.73	5	
004	0.40	0.50	0.44	4	
005	0.88	0.70	0.78	10	
006	0.71	1.00	0.83	5	
007	1.00	0.73	0.84	11	
accuracy			0.65	52	
macro avg	0.63	0.64	0.61	52	
weighted avg	0.72	0.65	0.67	52	

3. MNIST Classification

Observations By CNN

Number of Layers vs Accuracy Score

Activation Functions vs Accuracy Score

Accuracy Score

Accuracy Score(CNN)

```
In [90]: 1 print(accuracy_score(test_labels_cnn, predicted_labels_cnn))
     0.9736
```

Confusion Matrix

Confusion Matrix(CNN)

```
In [92]:
           1 print(confusion matrix(test labels cnn, predicted labels cnn))
          [[ 961
                                 0
                                                 10
                                            1
                                                                   1]
                2 1123
                           0
                                                                   0]
                                 1
                                       1
                                            1
                                                  3
                                                        1
                                                             3
                                       2
                7
                      2 1000
                                 5
                                                             7
                                            0
                                                  4
                                                        4
                                                                   1]
                5
                      0
                           3
                               977
                                       0
                                           17
                                                  0
                                                        4
                                                             3
                                                                   11
                5
                     1
                           2
                                    959
                                                  4
                                                                   91
                                 0
                                            0
                                                        1
                                                             1
                6
                      1
                           1
                                 4
                                       1
                                          873
                                                  2
                                                        1
                                                             3
                                                                   0]
                2
                     2
                           2
                                 0
                                       2
                                            5
                                                943
                                                        2
                                                             0
                                                                   01
                      3
                                       2
                                                             3
                6
                          13
                                 2
                                            0
                                                  0
                                                     995
                                                                   4]
                     1
                                            2
                                                                   6]
               10
                           2
                                 1
                                      3
                                                  4
                                                        2
                                                           943
                                      12
                                                  0
                                                        8
               10
                                                                 962]]
```

Classification Report

Classification Report(CNN)

```
In [93]: 1 print(classification_report(test_labels_cnn, predicted_labels_cnn))
                        precision
                                     recall f1-score
                                                         support
                     0
                                       0.98
                                                  0.96
                                                             980
                             0.95
                                       0.99
                                                  0.99
                                                            1135
                     1
                             0.99
                     2
                             0.97
                                       0.97
                                                  0.97
                                                            1032
                     3
                             0.98
                                       0.97
                                                  0.98
                                                            1010
                             0.98
                                       0.98
                                                  0.98
                                                             982
                     5
                                       0.98
                             0.96
                                                  0.97
                                                             892
                     6
                             0.97
                                       0.98
                                                  0.98
                                                             958
                     7
                             0.98
                                       0.97
                                                  0.97
                                                            1028
                     8
                                       0.97
                                                  0.97
                                                             974
                             0.98
                             0.98
                                       0.95
                                                  0.97
                                                            1009
                                                  0.97
                                                           10000
             accuracy
                             0.97
                                       0.97
            macro avg
                                                  0.97
                                                           10000
         weighted avg
                             0.97
                                       0.97
                                                  0.97
                                                           10000
```

Observations By Multi Layer Perceptron

Number of Layers vs Accuracy Score

Activation Functions vs Accuracy Score

Accuracy Score

Accuracy Score(MLP)

Confusion Matrix

Confusion Matrix(MLP)

In [97]:	1	pr	int(c	onfusi	on_ma	trix(test_	label	s_mlp	, pre	edicted_	labels_mlp))
]]	967	0	1	1	1	2	5	2	1	0]	
]	5	1115	2	2	0	3	3	0	4	1]	
]	3	1	1007	4	1	1	5	5	4	1]	
]	3	1	7	976	0	9	0	7	5	2]	
]	3	2	2	0	951	2	7	3	1	11]	
	[4	0	1	2	0	873	3	1	5	3]	
	[4	2	0	0	2	7	938	0	5	0]	
	[2	3	10	5	1	0	0	999	1	7]	
]	6	0	4	6	3	8	4	3	937	3]	
]	2	2	1	6	6	8	1	5	5	973]]	

Classification Report

Classification Report(MLP)

	precision	recall	f1-score	support
0	0.97	0.99	0.98	980
1	0.99	0.98	0.99	1135
2	0.97	0.98	0.97	1032
3	0.97	0.97	0.97	1010
4	0.99	0.97	0.98	982
4 5	0.96	0.98	0.97	892
6	0.97	0.98	0.98	958
7	0.97	0.97	0.97	1028
8	0.97	0.96	0.96	974
9	0.97	0.96	0.97	1009
accuracy			0.97	10000
macro avg	0.97	0.97	0.97	10000
weighted avg	0.97	0.97	0.97	10000

Observations By SVM

Kernels vs Accuracy Score

Best accuracy score is given by rbf model.

Observations rbf model for SVM:

Accuracy Score

Accuracy Score(SVM)

```
In [16]: 1 print(accuracy_score(test_labels_svm, predicted_values_svm))
     0.9859
```

Confusion Matrix

Confusion Matrix(SVM)

1 [17]:	1	pr:	int(c	onfusi	on_ma	trix(test_	labe	ls_svm	, pre	edicted_v	alues_svm))
]]	974	0	1	0	0	2	0	1	2	0]	
]	0	1129	2	1	0	1	0	1	1	0]	
]	5	1	1014	0	1	0	1	6	4	0]	
]	0	0	3	997	1	2	0	2	3	2]	
]	0	0	2	0	968	0	3	0	0	9]	
]	2	0	0	8	1	874	3	0	2	2]	
]	3	2	0	0	2	2	948	0	1	0]	
]	0	2	8	2	0	0	0	1011	0	5]	
]	3	0	2	2	2	1	1	2	958	3]	
	[1	3	0	7	5	2	1	4	0	986]]	

Classification Report

Classification Report(SVM)

in [18]:	1	print(cla	ssification_	report(te	st_labels_	svm, predicted_val	ues_svm))
			precision	recall	f1-score	support	
		0	0.99	0.99	0.99	980	
		1	0.99	0.99	0.99	1135	
		2	0.98	0.98	0.98	1032	
		3	0.98	0.99	0.98	1010	
		4	0.99	0.99	0.99	982	
		4 5	0.99	0.98	0.98	892	
		6	0.99	0.99	0.99	958	
		7	0.98	0.98	0.98	1028	
		8	0.99	0.98	0.99	974	
		9	0.98	0.98	0.98	1009	
		accuracy			0.99	10000	
	i	macro avg	0.99	0.99	0.99	10000	
	wei	ghted avg	0.99	0.99	0.99	10000	

4. Regression

Observations By Multi Layer Perceptron

Mean Squared Error

Mean Squared Error

```
In [19]: 1 print("Mean Squared Error: ", mean_squared_error(valid_labels, predicted_values_valid))
Mean Squared Error: 0.052180899649543186
```

Root Mean Squared Error

Root Mean Squared Error

```
In [10]: 1 print("Root Mean Squared Error: ", sqrt(mean_squared_error(valid_labels, predicted_values_valid)))

Root Mean Squared Error: 0.22843138937007582
```

R2 Score

R2 Score

Mean Absolute Percentage Error

Mean Absolute Percentage Error

```
In [1]: 1 print("Mean Absolute Percentage Error: ",check_mape(valid_labels, predicted_values_valid))
10.45
```

Number of Layers vs R2 Score

Activation Functions vs R2 Score

Window Size vs R2 Score

Observations By Linear Regression

Mean Squared Error

Mean Squared Error

```
In [9]: 1 print("Mean Squared Error: ", mean_squared_error(valid_labels, predicted_values))
Mean Squared Error: 0.05393395719918852
```

Root Mean Squared Error

Root Mean Squared Error

```
In [10]: 1 print("Root Mean Squared Error: ", sqrt(mean_squared_error(valid_labels, predicted_values)))

Root Mean Squared Error: 0.2322368558157566
```

R2 Score

R2 Score

```
In [11]: 1 print("R2_Score :",r2_score(valid_labels, predicted_values))
R2_Score : 0.9426824501670469
```

Mean Absolute Percentage Error

Mean Absolute Percentage Error

```
In [2]: 1 print("Mean Absolute Percentage Error: ",check_mape(valid_labels, predicted_values_valid))
10.54
```