Transformée de Fourier Discrète

On veillera au cours de ce TP à utiliser les fonctionnalités de calcul vectoriel de Scilab. En d'autres termes, les boucles sont interdites!

- 1. On considère un signal à temps discret $x_n = \cos(2\pi f_0 n) + b_n$ de 64 échantillons. On prendra $f_0 = 1/16$ et on générera b_n de façon aléatoire à l'aide de la commande rand(.,'normal'). Calculer la FFT de ce signal (commande fft(.,-1)). Commenter le résultat obtenu. Visualiser le module et la phase du spectre du signal. Quelles symétries observe-t-on?
- 2. Que valent les énergies du signal et des coefficients de la transformée de Fourier discrète ? Interpréter ce résultat.
- 3. A l'aide de la commande convol, on convolue x_n avec un signal y_n généré de façon aléatoire. Calculer le signal obtenu $z_n = x_n * y_n$.
- 4. Multiplier les FFT de x_n et y_n , puis déterminer le signal z'_n obtenu par FFT inverse. Y a-t-il un lien évident avec z_n ?
- 5. Effectuer la même opération qu'à la question précédente mais en complétant au préalable x_n et y_n par 64 zéros, en fin de signal. Qu'observe-t-on?
- 6. Justifier de façon théorique les résultats obtenus dans les deux dernières questions.