DPDA

Deterministic PDA

Deterministic PDA's

- A PDA M = (Q, Σ, Γ, δ, q_0 , z_0 , F) is said to be deterministic if
 - $\delta(p, a, \beta) = (q, \gamma)$
 - ie. To be deterministic, there must be at most one choice of move for any state p, input symbol a, and stack symbol β.
 - δ (p, ε, β) is not empty then δ (p, a, β) must be empty for every a∈ Σ, p ∈Q, β ∈ Γ.
 - ie. there must not be a choice between using input ϵ or real input.
 - Formally, $\delta(p, \epsilon, \beta)$ and $\delta(p, a, \beta)$ cannot both be nonempty.

Deterministic PDA: DPDA

Allowed transitions:

$$\underbrace{q_1} \xrightarrow{a,b \to w} \underbrace{q_2}$$

$$\underbrace{q_1}^{\lambda, b \to w} q_2$$

(deterministic choices)

Allowed transitions:

(deterministic choices)

Not allowed:

(non deterministic choices)

DPDA example

$$L(M) = \{a^n b^n : n \ge 0\}$$

Definition:

A language $\,L\,$ is deterministic context-free if there exists some DPDA that accepts it

Example:

The language $L(M) = \{a^n b^n : n \ge 0\}$

is deterministic context-free

Example of Non-DPDA (PDA)

$$L(M) = \{vv^R : v \in \{a,b\}^*\}$$

Not allowed in DPDAs

