Nathan Araújo Euzébia Rocha
081220008
Exercício 1:
A)
Para a matriz dada:
α7 α8
0 α9
Substituindo os valores de $\alpha 7 = 0$, $\alpha 8 = 0$ e $\alpha 9 = 8$, temos a matriz:
00
08
Os autovalores são os elementos da diagonal principal: 0 e 8.
Para o autovalor 0, temos o sistema homogêneo:
0x + 0y = 0
0x + 8y = 0
A segunda equação implica que y = 0. Logo, o autovetor associado ao autovalor 0 é (1, 0).
Para o autovalor 8, temos o sistema homogêneo:
-8x + 0y = 0
0x + 0y = 0
A primeira equação implica que x = 0. Logo, o autovetor associado ao autovalor 8 é (0,1).
B)
Para a matriz dada:
α7 0
α8 α9
Substituindo os valores de α 7 = 0, α 8 = 0 e α 9 = 8, temos a matriz:
00
08

Os autovalores são os elementos da diagonal principal: 0 e 8.

Para o autovalor 0, temos o sistema homogêneo:

$$0x + 0y = 0$$

$$0x + 8y = 0$$

A segunda equação implica que y = 0. Logo, o autovetor associado ao autovalor 0 é (1, 0).

Para o autovalor 8, temos o sistema homogêneo:

$$-8x + 0y = 0$$

$$0x + 0y = 0$$

A primeira equação implica que x = 0. Logo, o autovetor associado ao autovalor 8 é (0,1).

C)

Para a matriz dada:

 $0 \alpha 9 + 1$

 $\alpha 9 + 10$

Substituindo o valor de $\alpha 9 = 8$, temos a matriz:

09

90

Para encontrar os autovalores, precisamos resolver a equação característica det(A - λI) = 0:

$$det(A - \lambda I) = det([[-\lambda, 9], [9, -\lambda]]) = \lambda^2 - 81 = 0$$

Resolvendo essa equação quadrática, encontramos os autovalores $\lambda 1 = -9$ e $\lambda 2 = 9$.

Para o autovalor -9, temos o sistema homogêneo:

$$9x + 9y = 0$$

$$9x + 9y = 0$$

A primeira equação implica que x = -y. Logo, um autovetor associado ao autovalor $-9 ext{ \'e} (1,-1)$.

Para o autovalor 9, temos o sistema homogêneo:

$$-9x + 9y = 0$$

$$9x - 9y = 0$$

A primeira equação implica que x = y. Logo, um autovetor associado ao autovalor 9 é (1,1).

D)

Para a matriz dada:

 $0 (\alpha 8 + 1)^2$

 $(\alpha 9 + 1)^2 0$

Substituindo os valores de $\alpha 8 = 0$ e $\alpha 9 = 8$, temos a matriz:

01

810

Para encontrar os autovalores, precisamos resolver a equação característica $det(A - \lambda I) = 0$:

$$det(A - \lambda I) = det([[-\lambda, 1], [81, -\lambda]]) = \lambda^2 - 81 = 0$$

Resolvendo essa equação quadrática, encontramos os autovalores $\lambda 1 = -9$ e $\lambda 2 = 9$.

Para o autovalor -9, temos o sistema homogêneo:

$$9x + y = 0$$

$$81x + 9y = 0$$

A primeira equação implica que x = -y/9. Logo, um autovetor associado ao autovalor $-9 ext{ \'e} (1,-9)$.

Para o autovalor 9, temos o sistema homogêneo:

$$-9x + y = 0$$

$$81x - 9y = 0$$

A primeira equação implica que x = y/9. Logo, um autovetor associado ao autovalor 9 é (1,9).

E)

Para a matriz dada:

 $\alpha 4 \alpha 5 \alpha 6$

 $0 \alpha 7 \alpha 8$

0 0 α9

Substituindo os valores de $\alpha 4 = 2$, $\alpha 5 = 2$, $\alpha 6 = 0$, $\alpha 7 = 0$, $\alpha 8 = 0$ e $\alpha 9 = 8$, temos a matriz:

220

000

008

Os autovalores são os elementos da diagonal principal: 2, 0 e 8.

Para o autovalor 2, temos o sistema homogêneo:

$$0x + 2y + 0z = 0$$

$$0x + 0y + 0z = 0$$

$$0x + 0y + 6z = 0$$

A primeira equação implica que y = 0. A terceira equação implica que z = 0. Logo, o autovetor associado ao autovalor $2 ext{ \'e} (1,0,0)$.

Para o autovalor 0, temos o sistema homogêneo:

$$2x + 2y + 0z = 0$$

$$0x + 0y + 0z = 0$$

$$0x + 0y + 8z = 0$$

A primeira equação implica que x = -y. A terceira equação implica que z = 0. Logo, um autovetor associado ao autovalor $0 \in (1,-1,0)$.

Para o autovalor 8, temos o sistema homogêneo:

$$-6x + y + z = z$$

$$x - y - z = -z$$

$$x - y - z = -z$$

A primeira equação implica que x = (y+z)/6. A segunda e terceira equações são equivalentes e implicam que x=y+z. Logo, um autovetor associado ao autovalor 8 é (1,-1/5,-1/5).

F)

Para a matriz dada:

223

 $0 \alpha 9 2$

0 2 α9

Substituindo o valor de $\alpha 9 = 8$, temos a matriz:

223

082

028

Para encontrar os autovalores, precisamos resolver a equação característica det(A - λI) = 0:

$$det(A - \lambda I) = det([[2-\lambda, 2, 3], [0, 8-\lambda, 2], [0, 2, 8-\lambda]]) = (\lambda-12)(\lambda-6)(\lambda+2) = 0$$

Resolvendo essa equação cúbica, encontramos os autovalores $\lambda 1 = -2$, $\lambda 2 = 6$ e $\lambda 3 = 12$.

Para o autovalor -2, temos o sistema homogêneo:

$$4x + y + z = z$$

$$x + y + z = z$$

$$x + y + z = z$$

A primeira equação implica que x = (y+z)/4. A segunda e terceira equações são equivalentes e implicam que x=y+z. Logo, um autovetor associado ao autovalor -2 é (1,-1/3,-1/3).

Para o autovalor 6, temos o sistema homogêneo:

$$-4x + y + z = z$$

 $x - y - z = -z$
 $x - y - z = -z$

A primeira equação implica que x = (y+z)/4. A segunda e terceira equações são equivalentes e implicam que x=y+z. Logo, um autovetor associado ao autovalor 6 é (1,-1/5,-1/5).

Para o autovalor 12, temos o sistema homogêneo:

$$-10x + y + z = z$$

 $x - y - z = -z$
 $x - y - z = -z$

A primeira equação implica que x = (y+z)/10. A segunda e terceira equações são equivalentes e implicam que x=y+z. Logo, um autovetor associado ao autovalor 12 é (1,-1/11,-1/11).

G)

Para a matriz dada:

 $0 \alpha 6 0$

 $0 \alpha 7 0$

 $0 \alpha 8 \alpha 9 + 1$

Substituindo os valores de $\alpha 6 = 0$, $\alpha 7 = 0$, $\alpha 8 = 0$ e $\alpha 9 = 8$, temos a matriz:

000

000

009

Os autovalores são os elementos da diagonal principal: 0, 0 e 9.

Para o autovalor 0, temos o sistema homogêneo:

$$0x + 0y + 0z = 0$$

$$0x + 0y + 0z = 0$$

$$0x + 0y - 9z = 0$$

A terceira equação implica que z = 0. Logo, um autovetor associado ao autovalor 0 é (1,1,0).

Para o autovalor 9, temos o sistema homogêneo:

$$-9x + y + z = z$$

$$x - y - z = -z$$

$$x - y - z = -z$$

A primeira equação implica que x = (y+z)/9. A segunda e terceira equações são equivalentes e implicam que x=y+z. Logo, um autovetor associado ao autovalor $9 ext{ é} (1,-1/10,-1/10)$.

Exercício 2:

A degradação mais perceptível na qualidade da imagem ocorrerá se reduzirmos o percentual de valores singulares mantidos de 100% para 80%, pois, neste caso, estaremos retirando uma quantidade significativa de informações relevantes para a formação da imagem. Isso ocorre porque a matriz S, que contém os valores singulares, está ordenada do maior para o menor, o que significa que os primeiros valores contêm as informações mais relevantes para a formação da imagem.

Exercício 3:

A relação observada entre a proporção de valores singulares mantidos e o tamanho do arquivo resultante é que quanto menor a porcentagem de valores singulares mantidos, menor o tamanho do arquivo comprimido. Isso acontece porque menos informações são mantidas na imagem comprimida, resultando em um arquivo menor.

Exercício 4:

Ao reduzirmos a proporção de valores singulares mantidos durante o processo de compressão, a qualidade da imagem é progressivamente degradada, com perda de detalhes e definição. As áreas da imagem com maior variação de intensidade de cor e textura são as mais afetadas, enquanto as áreas com menor variação e mais homogêneas mantêm sua aparência original com maior fidelidade.