Hijerarhija konsenzusa Deo 1

Konsenzus u deljenoj memoriji

Razmotrimo n procesora sa deljenom mem:

$$p_0,...,p_{n-1}$$

koji pokušavaju da reše problem konsenzusa

Svaki proces počinje sa početnom vrednošću smeštenoj u lokalnoj memoriji (0 ili 1)

komunikacija kroz deljenu memoriju

Na kraju izvršenja, svi procesi su se odlučili za istu vrednost (0 ili 1)

Uslov validnosti:

Ako svaki proces počne sa istom vrednošću, onda svi procesi treba da se odluče za tu vred

Dodatni uslov:

Odlučena vrednost je jedna od početnih vred

Oslobođen-čekanja (Wait-freedom, WF) u asinhronim sistemima:

Proces bi trebao da može da završi izvršenje algoritma čak i ako svi drugi procesi otkažu

Pojam oslobođen-čekanja obuhvata:

- · Asinhrona izvršenja
- ·Otkaze tipa ispada

Tipovi objekata

Read/Write

FIFO

Test&Set

Upis u n-registara (n-register assignment)

Compare&Swap

Broj konsenzusa (Consensus Number)

Broj konsenzusa (CN) za dati tip objekta:

Je maksimalan broj procesa od kojih objekt može biti korišćen da se reši problem konsenzusa oslobođen-čekanja (zajedno sa read/write objektima)

Tip objekta Broj konsenzusa Read/Write FIFO, Test&Set 2n-2 upis u n-registara Compare&Swap (beskonačan)

Međusobno isključivanje

```
(Shared ) boolean lock = false;

function Critical_Section() {
   while TestAndSet(lock)
        skip //spin until lock is acquired

//Critical-section code - only one process can be in this section at a time begin {
        ...
   }
   //end-of critical section - release lock
   lock = false //release lock when finished with the critical section
}
```

Simulacija:

Objekt tipa B

Objekt tipa A

Objekt tipa A

Read/Write objekt

Objekt tipa A simulira objekt tipa B (koristeći pomoćne read/write objekte)

Teorema: Objekti tipa A sa brojem konsenzusa n ne mogu da na WF način simuliraju drugi objekt tipa B sa brojem konsenzusa m > n

Dokaz: Jer bi inače, objekt tipa A imao broj konsenzusa *m*

Univerzalan objekt:

može da simulira bilo koji drugi objekt na način oslobođen-čekanja

Primer: Compare&Swap

∞ (beskonačan br. konsenzusa)

Možemo da pokažemo da:

Objekti sa brojem konsenzusa *n* mogu simulirati, na WF način, bilo koji drugi objekt za do *n* procesora

Read/Write

Predpost. da se deljenoj mem može pristupati samo kroz Read ili Write operacije

Deljena memorija

Teorema: Broj konsenzusa za Read/Write objekt je 1

Dokaz teoreme:

Trivijalno, bilo koji algoritam konsenzusa sa jednim procesom koji koristi read/write promenljive je oslobođen-čekanja

Ostaje da se pokaže:

Konsenzus oslobođen-čekanja ne može biti rešen korišćenjem samo read/write objekata za $n \ge 2$ procesora

Pristup:

Pokazaćemo da bilo koji algoritam koji rešava konsenzus oslobođen-čekanja za $n \ge 2$ ima izvršenje koje se nikada ne završava

Konfiguracija sistema: C

je skup svih promenljivih u sistemu, uključujući lokalne i deljene

Izvršenje distribuiranog sistema se uvek može posmatrati kao:

sekvenca konfiguracija

Akcija procesora: Read ili Write

Valenca konfiguracije sistema

Vred konsenzusa na mogućim putanjama izvr. 21

Izvršenje koje se završava:

Da bi dokazali teoremu, pokazaćemo da uvek postoji izvršenje u kom je svaka konfiguracija bivalentna

Izvršenje bez završetka

Slične konfiguracije za procesor p_0

Iste deljene promenljive Lokalne prom od drugih se mogu razlikovati Lema: Ako postoje univalentne konfiguracije C_1 i C_2 takve da $C_1 \stackrel{p_i}{\approx} C_2$ onda ako je C_1 ν -valentna onda je i C_2 ν -valentna

(v = 0 ili 1)

Dokaz leme:

Sva moguća izvršenja iz C_1

konačna odluka za svako moguće izvršenje

Univalentna

Univalentna

izvodi akcije

Univalentna

Kraj dokaza leme

Lema: Postoji bivalentna početna konfiguracija

Dokaz leme:

Deljena memorija

Prazna

Početna konfiguracija I_0 I_{01} I_1

Deljena memorija

Prazna

Deljena memorija

Prazna

O-valentna 1-valentna? 1-valentna

Ne, pošto je
$$I_0 \stackrel{p_0}{\approx} I_{01}$$

Deljena memorija

Prazna

O-valentna O-valentna? 1-valentna

Ne, pošto je
$$I_{01} \stackrel{\rho_1}{\approx} I_1$$

Deljena memorija

Prazna

Početna konfiguracija I_0 I_{01} I_1

 p_{n-1} 0

(1)

(1)

O-valentna bivalentna 1-valentna

Kritičan procesor za datu konfiguraciju:

ta konfiguracija je bivalentna, i nakon što procesor izvede korak, konfiguracija postaje univalentna

Lema:

Ako je C bivalentna konfiguracija, onda postoji bar jedan procesor koji nije kritičan

Dokaz leme:

Predpost. radi kontradikcije da su svi procesori kritični

Ne može biti da svi imaju istu valencu

(v = 0 ili 1)

Ne može biti da svi imaju istu valencu

(v = 0 ili 1)

Moraju postojati dva procesora sa različitim valencama

Sluč. 1: predpost. da oni pristupaju različitim deljenim promenljivama

dva moguća izvršenja

isti rezultat važi za bilo koju vrstu operacija (Read ili Write) koje procesori primenjuju na x i y

Sluč. 2: predost. da oni pristupaju istoj deljenoj promenljivoj

podslučaj: read/read

bivalentna P_i C C_i C_j C_j 1-valent

dva moguća izvršenja

podslučaj: read/write

dva moguća izvršenja

podslučaj: write/write

U svim slučajima smo dobili kontradikciju Zbog toga, postoji neki procesor koji nije kritičan

Prema tome, možemo konstruisati neko izvršenje

Početna konfiguracija

Konsenzus se nikada ne može postići