FOXSI-1 Data and Analysis Update

October 2013

Topics

- Coregistration and alignment
- Flare imaging
- Blanketing absorption characterization
- Quiet Sun work
 - QS photon estimates
 - Spatial analysis
- Active region work
 - Update from Ishikawa
 - FOXSI simulations of low vs high freq heating

Public Service Announcement

- Don't be afraid to work with the data!
- Once the FOXSI directories are installed, looking at a FOXSI image can be as easy as:
- @foxsi-setup-script
- ; choose a target (example: flare)
- get_target_data, 4, d0,d1,d2,d3,d4,d5,d6, /good
- ; make an image for detector 6
- img=foxsi_image_solar(d6, 6, psize=10, thr_n=4., /xycor)
- ; map and plot it.
- plot_map, make_map(img, dx=10, dy=10), cen=flare, fov=2

Coregistration and alignment

- Translational alignment
 - Align flare centroids with RHESSI centroid
 - Done, and implemented as keyword in imaging functions: /xycor
- Rotational alignment methods:
 - Align flare orientation with RHESSI (best so far)
 - Use flare off-pointing tracks (started but not finished)
 - Examine c-stat for deconvolution for various rotation angles of the source about its centroid.
- Overall detector (coarse) geometry has been checked using flight data (flare) and postflight alignment images.

Max_likelihood deconvolution has been fairly successful:

Background: FOXSI D6

White: FOXSI D6

Green: RHESSI (method?)

Background: AIA 131A

Background: AIA 131A with

preflare subtraction

...though D6 results are by far the best!

Det	N photons
0	558
1	198
2	953
3	267
4	1750
5	1841
6	2006

- To do:
 - Try FOXSI CLEAN method (started)
 - Try other PSFs:
 - Estimate off-axis angle (and direction!) for each optic using alignment images.
 - Run the deconvolution with PSF closer to those estimates, if we have them.
 - OR, deconvolve for many simulated PSFs and look for a min C-stat.

Blanketing absorption characterization

- All detectors have some extra blanketing in front of them.
- "Puff test" showed that inflated blankets can essentially fill the tube fairly easily.
- D6 (the best count rate and image) is in the center; it's
 possible there could have been a small blanketing gap in front
 of it.

Blanketing absorption characterization

Most recent results: (From March!)

Blanketing absorption characterization

To do:

Try redoing RHESSI spectra with some variations, like reducing the blanket absorption in the DRM. See if we find a better fit. **Started, but suspended for technical troubles.

Quiet Sun work

2nd target shows greater flux on-disk than off.

Quiet Sun work

- To do:
 - Investigate single-bounce photons
 - probably requires ray tracing
 - Calculate quiet-Sun HXR flux assuming our counts are real.
 - First, very rough, estimate done (see next slide). More refined calculation should be done.
 - Probably should first exclude counts in the vicinity of the AR.
 - Comparison of quiet Sun counts with AIA and XRT.
 - Not started, except for a quick by-eye comparison.

Quiet Sun work

Active region temperatures

- DEMs produced for AR in first target using EIS and XRT data.
- FOXSI sensitivity curves (not shown) will constrain the high-temperature part.
- This analysis is nearing completion.

Simulations of AR heating

- Winebarger and Warren are simulating low- vs highfrequency heating of active regions.
- They produce DEMs for these two cases and simulate observations from MAGIXS to see if it can differentiate between them.
- At their request, FOXSI simulations have also been produced.

Simulations of AR heating -- FOXSI

HIGH FREQ

LOW FREQ