ЭФФЕКТ ХОЛЛА

Цель работы состоит в определении коэффициента Холла и оценке значений наиболее важных характеристик основных носителей заряда полупроводника: концентрации, знака и подвижности.

Общие сведения

Эффекта Холла заключается в появлении электрического поля, перпендикулярного как направлению тока в твёрдом проводнике, так и направлению линий магнитной индукции поля, в которое помещен исследуемый проводник.

Для исследования эффекта Холла прямоугольные пластины из исследуемого вещества (рис.1) длиной a, значительно большей ширины b и толщины d, помещают в поле \vec{B} , направление которого перпендикулярно плоскости пластины. Если вдоль пластины направлен электрический ток I, плотностью \vec{j} , то из-за искривления траектории носителей заряда q од действием силы Лоренца происходит их накопление на верхней или нижней гранях исследуемой пластины, что приводит к появлению "холловского" электрического поля \vec{E}_{x} [4]:

$$\vec{E}_{X} = R_{X} \left[\vec{B}, \vec{j} \right] \tag{1}$$

Здесь $R_{\rm X}$ – коэффициент Холла, который является основной количественной характеристикой эффекта Холла и содержит информацию о концентрации, подвижности и знаке основных носителей заряда в проводнике.

В свою очередь, электрического поля \vec{E}_{x} обуславливает возникновение напряжения U_{x} между верхней и нижней гранями исследуемой пластины, равное:

$$U_{X} = E \cdot b = \frac{R \cdot B \cdot I}{d} . \tag{2}$$

Эффект Холла можно объяснить следующим образом. При отсутствии магнитного поля \vec{B} в проводнике носители заряда направленно движутся со скоростью \vec{V} под действием сил внешнего поля напряжённостью \vec{E} , которое создаётся источником ЭДС \vec{E} . магнитного поля \vec{B} вызывает изменение траектории движения носителей заряда \vec{q} под действием силы Лоренца

$$\vec{F}_{M} = q \left[\vec{v}, \vec{B} \right] \tag{3}$$

и их смещение к верхней или нижней граням пластины.

В результате этого смещения в проводнике происходит пространственное разделение зарядов, которое вызывает появление "холловского" электрического поля \vec{E}_{X} . В свою очередь поле Холла действует на заряд и уравновешивает силу Лоренца. При наступлении равновесия:

$$\vec{F}_{M} = -q\vec{E}_{X}$$

Приравняв правые части записанного выражения к правой части выражения (3) и учтя свойство антикоммутативности для векторного произведения $\left[\vec{v}\vec{B}\right] = -\left[\vec{B}\vec{v}\right]$, получим выражение для напряжённости "холлов-

ского" поля:

$$\vec{E}_{X} = \vec{B}\vec{v}$$
.

Так как скорость направленного движения \vec{V} связана с плотностью тока \vec{j} и концентрацией носителей заряда n выражением

$$\vec{\mathbf{v}} = \vec{\mathbf{j}} \cdot (\mathbf{q} \cdot \mathbf{n})^{-1} \tag{4}$$

то выражение для напряжённости "холловского" поля можно преобразовать к виду:

$$\vec{E}_{X} = \frac{\left[\vec{B}\,\vec{j}\,\right]}{q \cdot n} \tag{5}$$

Сравнение соотношений (1) и (5) позволяет выразить коэффициент Холла через концентрацию и заряд носителей:

$$R_{\mathsf{X}} = (q \cdot n)^{\mathsf{1}} \tag{6}$$

Важнейшей характеристикой любого проводника с током является подвижность носителей заряда μ , которая определяет среднюю скорость направленного движения носителей заряда под действием электрического поля:

$$\vec{\mathbf{v}} = \boldsymbol{\mu} \cdot \vec{\mathbf{E}} \tag{7}$$

Подвижность можно связать с удельной проводимостью проводника $\gamma = \vec{j}/\vec{E}$, приравняв выражения (4) и (7)

$$\gamma = \mathbf{q} \cdot \mathbf{n} \cdot \boldsymbol{\mu}$$

Выразив из последнего соотношения произведение $q \cdot n$ и подставив его в выражение (6), получаем

$$R_{X} = \frac{\mu}{\gamma} . {8}$$

Таким образом, если экспериментальным путём определить постоянную Холла $R_{\rm X}$, то по формулам (6) и (8) можно определить концентрацию n и подвижность μ носителей заряда q в проводнике. Как можно видеть из выражений (6) и (8), значение коэффициента Холла увеличивается с уменьшением концентрации и увеличением подвижности носите-

лей тока. В связи с этим эффект Холла слабо выражается у металлов (10^{-9} м $^3/(A\cdot c)$) и сильно у полупроводников (10^{-1} м $^3/(A\cdot c)$) [4].

В качестве примера в табл.1 приведены значения коэффициентов Холла для наиболее используемых материалов (металлов и полупроводников). В табл.1 указаны также толщины *d*, которые обеспечивает современная промышленная технология при изготовлении пластин и плёнок для различных технических устройств, работающих на основе эффекта Холла [5].

Таблица 1

Материал	R_{χ} ,	d , мм	Материал	R_{χ} ,	d , мм		
	$M^3/(A \cdot c)$			$M^3/(A\cdot c)$			
Крист	аллические	2	Плёночные				
полуг	іроводники		Полупроводники				
Кремний	2,6·10 ⁻²	0,1	Селенид ртути	1,07·10 ⁻⁵	4·10 ⁻³		
Германий	$4,2\cdot 10^{-3}$	0,1	Теллурид ртути	1,3·10 ⁻⁵	1,3.10-3		
Сурьмистый индий	3.10-4	0,1	Сурьмистый индий	4.10-4	2.10-3		
Арсенид индия	1.10-4	0,1	Арсенид индия	1.10-4	2.10-3		
Металлы							
Алюминий	-3,3·10 ⁻¹¹	0,1	Золото	-7,3·10 ⁻¹¹	0,1		
Молибден	18.10-11	0,1	Вольфрам	11.10-11	0,1		

Электрический заряд в полупроводниковой пластине может пере-

носиться как положительно заряженными частицами ("дырками"), движущимися вдоль направления тока, так и отрицательно заряженными частицами (электронами), движущимися навстречу направлению тока. Движение частиц, имеющих разноимённые заряды, происходит в полупроводнике в противоположных направлениях. При внесении исследуемого образца в магнитное поле происходит смещение заряженных частиц под действием силы Лоренца $\vec{F}_{_{\rm M}}$ в одном направлении независимо от знака их заряда (т.е. и электроны и "дырки" отклоняются к одной и той же грани пластины). Следовательно, измерив знак "холловской" разности потенциалов, можно определить тип основных носителей заряда в полупроводнике.

Описание установки

Электрическая схема установки, предназначенная для исследования эффекта Холла в полупроводниках, показана на рис. 2. Исследуемый образец полупроводника A, имеющий форму прямоугольной пластины, закреплён на круглой монтажной плате Б и помещён в однородное магнитное поле. К электродам 1 и 2 исследуемой пластины подведён ток питания I от источника ЭДС E_1 . Для контроля и регулировки тока питания последовательно с источником в це8пь включены переменное сопротивление R_1 и миллиамперметр A_1 . Ключ S_1 предназначен для изменения направления тока I в полупроводнике. Условно полагаем, что положение 1 и 2 ключа S_1 соответствуют прямому и обратному току питания пластины, соответственно. Для измерения "холловского" напряжения U_X вольтметр V подключён к точечным электродам 3 и 4.

Из-за неточности установки "холловских" электродов 3 и 4 на противоположных гранях пластины при протекании тока через полупроводник кроме "холловского" напряжения $U_{\rm x}$ возникнет омическое падение напряжения, равное:

$$U_{\text{\tiny OM}} = \frac{I \cdot \Delta z}{d \cdot b \cdot \gamma}$$

где Δz – смещение "холловских" электродов 3 и 4 в направлении протекания тока I.

Для исключения омического падения напряжения проводится измерение напряжения на «холловских» контактах при различном направлении магнитного поля. Направление магнитного поля изменяется с помощью ключа S_3 (см.рис.3), перевод которого из состояния 1 в состояние 2 меняет направление тока в катушках электромагнита. При этом, измеряемое напряжение на контактах 3 и 4 будет определено выражениями

$$\begin{split} &U_{\mathrm{1}} = U_{\mathrm{X}} + U_{\mathrm{om}};\\ &U_{\mathrm{2}} = U_{\mathrm{X}} - U_{\mathrm{om}}. \end{split}$$

Исключив в записанных выражениях омического напряжения, значение "холловской" разности потенциала рассчитываем по формуле

$$U_{X} = 0.5 \cdot (U_{1} + U_{2}). \tag{9}$$

Измерение напряжения питания U на электродах 1 и 2 полупровод-

никовой пластины позволяет определить удельную проводимость γ полупроводника

$$\gamma = \frac{I}{U} \cdot \frac{a}{b \cdot d} \tag{10}$$

где *a, b, d* — геометрические размеры исследуемой пластины.

Для подключения вольтметра V к точечным электродам 1 и 2 достаточно переключить ключ S_2 в положение 2.

В качестве источника однородного магнитного поля с индукцией в лабораторной работе использован электромагнит (рис.3), который состоит из обмоток 1 и 3, уложенных на стержневые сердечники 2 и 4, и замыкающего магнитный поток Φ внешнего сердечника 5. Данная конструкция электромагнита позволяет создать однородное магнитное поле с индукцией \vec{B} в зазоре между внутренними сердечниками 2 и 4, где установлена плата 6 с исследуемым образцом полупроводника 7.

Рис. 3

Если пренебречь краевыми эффектами, что приводит к искажению поля в зазоре примерно на 5 %, то значение магнитной индукции \vec{B} можно определить из выражения [1,2,3] :

$$B = \frac{\Phi_1 + \Phi_2}{S} \tag{11}$$

где Φ_1 и Φ_2 – магнитные потоки, создаваемые обмотками 1 и 2 электромагнита, соответственно; \mathbf{S} – площадь зазора: $S = \pi D^2$. Здесь D – диа-

метр внутренних сердечников в области зазора: *D*=20 мм.

В свою очередь потоки Φ_1 и Φ_2 связаны с потокосцеплениями ψ_{12} и ψ_{21} между обмотками электромагнита выражениями:

$$\Phi_{1} = \frac{\Psi_{12}}{W_{2}}; \qquad \Phi_{2} = \frac{\Psi_{21}}{W_{1}}, \qquad (12)$$

где W_1 и W_2 — количество витков в обмотках 1 и 3 электромагнита: $W_1 = 921$ виток, $W_2 = 884$ витка.

Подставив выражения (12) в выражение (11) и учитывая соотношение, связывающее потокосцепление между обмотками со взаимной индукцией M и током $I_{\text{эм}}$ в последовательно соединённых обмотках 1 и 2 электромагнита [1,2,3]:

$$\Psi_{12} = \Psi_{21} = M \cdot I_{3M}$$

получим выражение для расчёта магнитной индукции В в зазоре между сердечниками 2 и 4:

$$B = \frac{I_{\text{3M}} \cdot M}{S} \cdot \frac{W_1 + W_2}{W_1 \cdot W_2}.$$
 (13)

Из последнего выражения следует, что изменение тока I_{3M} в обмотках электромагнита, позволяет получить в зазоре между сердечниками любое значение магнитной индукции от 0 до B_{max} . Ток через последовательно соединённые обмотки электромагнита I_{3M} задаётся по амперметру A_2 путём регулировки сопротивления R_2 , включённых последовательно с источником ЭДС \mathcal{E}_2 .

Порядок выполнения работы

Задание 1

Определить зависимости "холловского" напряжения от магнитной индукции поля.

Примечание. "Холловские" напряжения U_1 и U_2 отличаются направлением потока вектора магнитной индукции в зазоре электромагнита, где расположен кристалл. Для изменение направления потока используется ключ S_3 , с положением 1 и 2 которого связаны два различных направ-

- ления тока в обмотках электромагнита.
- 1. Для подключения вольтметра V к "холловским" контактам исследуемой пластины установить ключ S_2 в положение 1. (Предел измерения вольтметра V равен 100 мВ.)
- 2. Перевести ключ S_3 в положение 1 и с помощью переменного сопротивления R_2 установить минимальное значение тока $I_{9\pi \ min}$ в обмотках электромагнита.
- 3. Установить максимальное значение тока I в исследуемой пластине с помощью амперметра A_1 и регулятора **грубой** и **точной** настройки R_1 . Результат занести в maбл.2.
- 4. Определить значение напряжения U_1 при минимальном значении тока $I_{9\pi}=0$. Значение занести в $maб\pi.2$, "Увеличение тока $I_{9\pi}$ ".
- 5. Изменяя ток $I_{9\pi}$ от $I_{9\pi}$ міл до 600 мА с интервалом $\Delta I_{9\pi}$ =100 мА с помощью регулятора R_2 и амперметра A_2 , измерить значение напряжения U_1 на "холовских" контактах исследуемого образца. Результаты занести в $maб\pi.2$, "Увеличение тока $I_{9\pi}$ ".
- 6. Изменяя ток $I_{9\pi}$ от 600 *мА* до $I_{9\pi \ min}$ с интервалом $\Delta I_{9\pi}$ =100 *мА*, измерить значение напряжения U_1 . Результаты занести в $maб\pi$.2, "Уменьшение тока $I_{9\pi}$ ".
- 7. Изменить направление тока I_{3n} в обмотках электромагнита на противоположное. Для этого перевести ключ S_3 в положение 2.
- 8. Определить значение напряжения U_2 при минимальном значении тока I_{3n} =0. Значение занести в maбn.2, "Увеличение тока I_{3n} ".
- 9. Изменяя ток $I_{3л}$ от $I_{3n \ min}$ до 600 MA с интервалом ΔI_{3n} =100 MA с помощью регулятора R_2 и амперметра A_2 , измерить значение напряжения U_2 . Результаты занести в maбn.2, "Увеличение тока I_{3n} ".
- 10. Изменяя ток I_{3n} от 600 MA до $I_{3n min}$ с интервалом ΔI_{3n} =100 MA, измерить значение напряжения U_2 . Результаты занести в maбn.2, "Уменьшение тока I_{3n} ".
- 11. Вычислить значения "холовской" составляющей напряжения по форму-

- ле (9) при увеличении и уменьшении тока электромагнита. Результаты занести в табл.2.
- 12. Воспользовавшись выражением (13), рассчитать значения магнитной индукции в зазоре электромагнита, соответствующие различным значениям тока в его обмотках. Результаты занести в табл.2.
- 13. Построить графики зависимостей $U_{X1} = f_1(B)$ и $U_{X2} = f_2(B)$ при увеличении тока в электромагните и его уменьшении, соответственно.
- 14. Для характерных линейных участков полученных зависимостей определить коэффициенты пропорциональности K_l :

$$K_{I} = \frac{U_{x}(B_{\text{max}})}{B_{\text{max}}}.$$

Здесь $U_x(B_{\text{max}})$ – значение "холловского" напряжения, определённое с помощью линеризующей результаты прямой при максимальном значении магнитной индукции B_{max} .

15. Определить значения коэффициента Холла R_X , подставив коэффициенты пропорциональностей K_I в выражение:

$$R_{\rm X} = \frac{K_{\rm I} \cdot d}{I}$$
.

Результаты занести в графу №1 и №2 табл.5.

Задание 2

Определение зависимости "холловского" напряжения от тока в исследуемой пластине.

- 1. Для подключения вольтметра V к "холловским" контактам исследуемой пластины установить ключ S_2 в положение 1. (Предел измерения вольтметра V равен 100 мВ.)
- 2. Перевести ключ S_3 в положение 1 и с помощью переменного сопротивления R_2 установить значение тока $I_{3\pi \ max}$ в обмотках электромагнита, указанное преподавателем. Результат занести в maбn.3.
- 3. Изменяя с помощью регулятора грубой и точной настройки R_1 и ам-

перметра A_1 значения тока I, протекающего через пластину исследуемого полупроводника, от 0 до 6 MA с интервалом 1 MA, измерить напряжение U_1 на "холловских" контактах пластины **при увеличении тока I**. Результаты занести в maбn. 3.

- 4. Изменяя значения тока I от 6 до 0 MA с интервалом 1 MA, измерить напряжение U_1 при уменьшении тока I. Результаты занести в maбn. 3.
- 5. Изменить направление тока $I_{9\pi}$ в обмотках электромагнита, для чего ключ S_3 перевести в положение 2.
- 7. Вычислить значения "холовских" составляющих напряжений при увеличении и уменьшении тока, протекающего в полупроводнике, по формуле (9). Результаты занести в табл.3.
- 8. Воспользовавшись выражением (13), рассчитать значение магнитной индукции в зазоре электромагнита для заданного значения тока в его обмотках. Результаты занести в табл.2.
- 9. Построить графики зависимостей $U_{X3} = f_3(I)$ и $U_{X4} = f_4(I)$ при увеличении и уменьшении тока, протекающего через пластину полупроводника, соответственно.
- 10. Для характерных линейных участков полученных зависимостей определить коэффициенты пропорциональности K_B :

$$K_{B} = \frac{U_{x}(I_{\text{max}})}{I_{\text{max}}},$$

где $U_x(I_{\max})$ — значение "холловского" напряжения, определённое с помощью линеризующей результаты измерения прямой для максимального значения тока питания I_{\max} .

11. Используя полученные коэффициенты пропорциональности K_B , Вы-

числить коэффициенты Холла R_X , с помощью выражения вида:

$$R_{x} = \frac{K_{B} \cdot d}{B_{\text{max}}}.$$

Результаты расчёта занести в графы №3 и №4 табл.5.

Задание 3

Определение удельной проводимости

исследуемого полупроводника.

- 1. Установить минимальное значение магнитного поля электромагнита, для чего повернуть регулятор R_2 по часовой стрелке.
- 2. Подключить вольтметр V к токовым контактам исследуемой пластины, для чего ключ S_2 установить в положение 1. При таком подключении предел измерения вольтметра V равен 20 B.
- 3. Изменяя значения тока I в пластине полупроводника от 1 до 6 MA, измерить пять значения падения напряжения U на токовых контактах пластины. Результаты занести в maбn.4.

Обработка результатов измерения

- 1. Вычислить среднее значение коэффициента Холла R_X . Используя полученное значение R_X , по maбn.1 определить тип полупроводника из которого изготовлен исследуемый образец.
- 2. Случайную погрешность ΔR_X рассчитать по результатам вычисления R_{Xi} по выражению

$$\Delta R_x = t_{pN} \cdot \sqrt{\frac{1}{N(N-1)} \cdot \sum_{i=1}^{N} (R_{xi} - \overline{R}_x)^2}$$

где N — количество полученных значений коэффициента Холла (см. maбn.5); t_{pN} — коэффициент Стьюдента: при p=0,95 и N=4 значение коэффициента принять равным t_{pN} =3,18.

3. Систематическую погрешность ΔR_{xC} определения коэффициента Холла вычислить, используя выражение

$$\frac{\Delta R_{xC}}{\overline{R}_{x}} = \sqrt{\left(\frac{\Delta U_{C}}{\overline{U}}\right)^{2} + \left(\frac{\Delta I_{C}}{\overline{I}}\right)^{2} + \left(\frac{\Delta I_{3MC}}{\overline{I}_{3M}}\right)^{2} + \left(\frac{\Delta d}{d}\right)^{2}}$$

где ΔU_C , ΔI_C , $\Delta I_{\rm 3MC}$ — абсолютные значения погрешностей, найденные исходя из класса точности соответствующих измерительных приборов; \overline{U} , \overline{I} , $\overline{I}_{\rm 3M}$ — средние значения, измеряемые с помощью приборов в процессе эксперимента; Δd — технологическая погрешность, обусловленная неточностью изготовления полупроводника: $\Delta d = 0.02$ мм при d=0.2 мм.

4. Рассчитать абсолютную погрешность измерения коэффициента $R_{\rm X}$ с помощью выражения

$$\Delta R_x = \sqrt{\Delta R_x^2 + \Delta R_{x\,C}^2} \; .$$

Заполнить табл.5.

- 5. Используя формулу (6), оценить концентрацию n основных носителей заряда в полупроводнике. В качестве заряда носителя принять заряд электрона $e=1.6 \cdot 10^{-19} \ Kn$.
- 6. Рассчитать ошибку, допущенную при оценке концентрации носителей основного заряда в исследуемом полупроводнике, используя соотношение

$$\frac{\Delta n}{\overline{n}} = \frac{\Delta R_{x}}{\overline{R}_{x}}.$$

7. Записать полученные результаты в виде

$$n = (\overline{n} \pm \Delta n);$$

$$R_{x} = (\overline{R}_{x} \pm \Delta R_{x}).$$

- 8. Пользуясь выражениями (8) и (10), определить удельную проводимость γ и подвижность μ основных носителей заряда в полупроводнике. Результаты записать в табл.4.
- Рассчитать средние значения удельной проводимости γ и подвижности μ основных носителей заряда. Результаты записать в табл.4.

Контрольные вопросы

- 1. На какие группы делятся все вещества по их электрическим свойствам?
- 2. Как объяснить эффект Холла с помощью законов классической электродинамики?
- 3. В чём состоит особенность явления Холла в полупроводниках и в металлах? Какой знак у основных носителей заряда для следующих металлов: алюминий, золото и вольфрам.
- 4. Каким образом можно определить знак основных носителей заряда в полупроводнике, используя эффект Холла.
- 5. Как зависит "холловское" напряжение от тока, магнитной индукции и размеров образца полупроводника?
- 6. Какие измерения позволяют определить коэффициент Холла?
- 7. Для определения каких физических параметров полупроводников можно использовать эффект Холла? Какие измерения необходимо для этого произвести?

Литература

- 1. Савельев И.В. Курс общей физики. Т.2.— М.: Наука, 1988. 496 с.
- 2. Детлаф А.А. Яворский Б.М. Курс общей физики. М.: Высш. шк., 1989. 608 с.
- 3.Трофимова Т.И. Курс физики. М.: Высш. шк., 1990.— 478 с.
- 4. Бонч-Бруевич В.Л., Калашников С.Г. Физика полупроводников. М.: 1977.
- 5. Кобус А., Тушинский Я. Датчики Холла и магниторезисторы. Пер. с польского под ред. Хомерики О.К., М.: Энергия, 1971. 352 с.

Таблица 2

	max , MA		Увелі	ичение т	тока Ізм	Умень	шение т	ока І эм
№	I _{эм} , мА	В, мТл	U ₁ , мВ	U ₂ , мВ	U _х , мВ	U ₁ , мВ	U ₂ , мВ	$\mathbf{U}_{\mathbf{x}},$ мВ
1								
•••								
10								

Таблица 3

I _{эм} ,		Увеличение тока ${f I}$		Уменьшение тока I			
мА; В,							
мТл							
№	I, мА	U ₁ , мВ	\mathbf{U}_{2} , м \mathbf{B}	$\mathbf{U}_{\mathbf{x}}$, мВ	U ₁ , мВ	\mathbf{U}_{2} , м \mathbf{B}	$\mathbf{U}_{\mathbf{x}}$, мВ
1							
10							

Таблица 4

No	I, MA	U, мВ	γ, См/м	μ, м ² B ⁻¹ c ⁻¹
1				
2				
3				
4				
5				
	Σ			

Таблица 5.

No	R _X , м/(A⋅c)	$\bar{R}_{\rm X}$, m/(A·c)	ΔR_{X} , M/(A·c)	γ _R , %
1				
2				
3				
4				
Σ				