- 1. (a) Prove that the order of a permutation of a finite set written in disjoint cycle form is the least common multiple of the lengths of the cycles. (7.5)
 - (b) (i) Let S_n denote the symmetric group of degree n. In S_3 , find elements α and β such that $|\alpha| = 2$, $|\beta| = 2$ and $|\alpha\beta| = 3$.
 - (ii) Let $\beta \in S_7$ and $\beta^4 = (2\ 1\ 4\ 3\ 5\ 6\ 7)$. Then find β .
 - (c) (i) Give two reasons to show that the set of odd permutations in S_n is not a subgroup of S_n.
 - (ii) Define even and odd permutations and show that the set of even permutations in S_n is a subgroup of S_n. (3, 4.5)

2. ' (a) (i) Let a be an element in a group G such that

$$|a| = 15$$
. Find all left cosets of $\langle a^5 \rangle$ in $\langle a \rangle$.

(ii) State and prove Lagrange's theorem.

(3,4.5)

(b) Suppose that G is a group with more than one element and G has no proper, non-trivial subgroups.
Prove that |G| is prime. (7.5)

(c) Let C* be the group of non-zero complex numbers under multiplication and let H = {a + bi ∈ C* | a² + b² = 1}. Give a geometrical description of the coset (3 + 4i)H. Give a geometrical description of the coset (c + di)H. (7.5)

- 3. (a) (i) Let G be a group and H be its subgroup.

 Prove that if H has index 2 in G, then H is normal in G.
 - (ii) If a group G has a unique subgroup H of some finite order, then show that H is normal in G. (3,4.5)
 - (b) (i) Prove that a factor group of a cyclic group is cyclic. Is converse true? Justify your answer.
 - (ii) Let G be a group and let Z(G) be the centerof G. If G/Z(G) is cyclic, then show that Gis Abelian. (3,4.5)
 - (c) (i) Let φ be a group homomorphism from group
 G₁ to group G₂ and H be a subgroup of
 G₁. Show that if H is cyclic, then φ(H) is cyclic.

- (ii) How many homomorphisms are there from \mathbb{Z}_{20} to \mathbb{Z}_8 ? How many are there onto \mathbb{Z}_8 ? (3,4.5)
- 4. (a) (i) Suppose that φ is a homomorphism from U(30) to U(30) and Ker φ = {1,11}. If φ(7) = 7, find all the elements of U(30) that map to 7.
 - (ii) Let ϕ be a homomorphism from a group G_1 to group G_2 . Show that $\phi(a) = \phi(b)$ iff aKer $\phi = bKer \phi$. (3,4.5)
 - (b) (i) Is U(8) isomorphic to U(10)? Justify your answer.
 - (ii) Show that any infinite cyclic group is isomorphic to the group of integers under addition. (3,4.5)

- (c) If φ is an onto homomorphism from group G₁ to group G₂, then prove that G₁/Ker φ is isomorphic to G₂. Hence show that if G₁ is finite, then order of G₂ divides the order of G₁.
- (a) Let G be a group and let a ∈ G. Define the inner automorphism of G induced by a. Show that the set of all inner automorphisms of a group G, denoted by Inn(G), forms a subgroup of Aut(G), the group of all automorphisms of G. Find Inn(D₄).
 (7.5)
 - (b) Prove that the order of an element in a direct product of a finite number of finite groups is the 1cm of the orders of the components of the element, i.e., |(g₁, g₂, ..., g_n)| = 1cm(|g₁|, |g₂|, ..., |g_n|). Also, find the number of elements of order 7 in Z₄₉ ⊕ Z₇. (7.5)

- (c) Without doing any calculations in $\operatorname{Aut}(\mathbb{Z}_{105})$, determine how many elements of $\operatorname{Aut}(\mathbb{Z}_{105})$ have order 6. (7.5)
- 6. (a) For any group G, prove that $G/Z(G) \cong Inn(G)$.

(7.5)

(b) Define the internal direct product of a collection of subgroups of a group G. Let R* denote the group of all nonzero real numbers under multiplication. Let R⁺ denote the group of all positive real numbers under multiplication. Prove that R* is the internal direct product of R⁺ and the subgroup {1, -1}. (7.5) (c) The set $G = \{1,4,11,14,16,19,26,29,31,34,41,44\}$

G as an external and an internal direct product of cyclic groups of prime-power order.

(7.5)