Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики»

Факультет компьютерных наук Основная образовательная программа Прикладная математика и информатика

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Исследовательский проект на тему "Атаки на мультиязычные модели"

Выполнил студент группы 171, 4 курса, Биршерт Алексей Дмитриевич

Руководитель ВКР:

Доцент,

Департамент больших данных и информационного поиска Артемова Екатерина Леонидовна

Содержание

1	Вве	едение		4
2	Обз	вор ли	тературы	5
	2.1	Мульт	гиязычные модели	<u> </u>
	2.2	Класс	сификация интентов и заполнение слотов	6
	2.3	Смеш	ение кодов в адверсариальных атаках на мультиязычные	
		модел	ш	7
	2.4	Маши	инный перевод и выравнивание слов	7
3	Осн	ювная	часть	8
	3.1	Обуче	ение моделей на датасете MultiAtis++	8
		3.1.1	Датасет	8
		3.1.2	Архитектура модели	E
		3.1.3	Обучение	E
	3.2	Адвер	осариальные атаки	10
		3.2.1	Общий вид атаки	11
		3.2.2	Word level атака	11
		3.2.3	Phrase-level атака	12
	3.3	Метод	ц адверсариального предобучения для защиты от адвер-	
		сариа	льных атак	13
		3.3.1	Генерация адверсариальной выборки	13
		3.3.2	Дообучение тела модели	14
		3.3.3	Загрузка дообученного тела модели	15
	3.4	Резул	ьтаты	15
		3.4.1	Решение задачи классификации интентов и заполнения	
			слотов	15
		3.4.2	Качество моделей после адверсариальных атак	16
		3.4.3	Влияние метода адверсариального предобучения	18
4	Зак	лючен	ние	22

Список литературы	23
Приложения	2 5
А. Алгоритм замены слотов в атаке	25

Аннотация

Какие-то слова в абстракте. Какие-то слова в абстракте.

Ключевые слова—Ключевые слова

Some words in abstract. Some words in abstract.

Github project link - https://github.com/birshert/attack-lang-models.

Keywords—Keywords

1 Введение

Последние несколько лет стали прорывными в области мультиязычных моделей и их обобщающей способности для других языков [1, 2, 7, 13]. Огромные мультиязычные модели выучивают универсальные языковые представления, что помогает им демонстрировать удивительные способности к переносу знаний с одного языка на другой. Простое дообучение предобученных моделей для какой-либо задачи на языке с большим количеством данных позволяет достичь хорошего качества на других языках.

Однако простой перенос между языками недостаточен для систем обработки естественного языка для понимания мультиязычных пользователей. Во многих сообществах в мире достаточно часто явление смешения кодов. Смешение кодов — это процесс, когда человек спонтанно смешивает различные языки внутри одного предложения или фразы. Такой феномен может проявляться как в письменной, так и в устной речи. Таким образом, важно сделать языковую модель устойчивой к смешению языков, чтобы модель адекватно работала со входными данными.

Несмотря на то, что реальные данные со смешением кодов очень важны для оценки качества языковых моделей, такие данные очень тяжело собирать и размечать в большом количестве.

В своей работе мы предполагаем, что качество моделей на адверсариальных атаках может служить нижней оценкой на реальное качество модели. Если языковая модель успешно справляется с адверсариальными пертурбациями со смешением кодов, то и в реальной жизни она будет успешно обрабатывать данные от мультиязычных пользователей.

В своей работе мы:

- Решаем задачу одновременного детектирования намерений пользователя и заполнения слотов для диалоговых помощников с помощью мультиязычных языковых моделей.
- ullet Предлагаем две адверсариальные атаки по методу серого ящика во

время атаки мы имеем доступ к ошибке модели на заданных данных. Насколько нам известно, это одни из первых мультиязычных адверсариальных атак для вышеописанной задачи.

• Предлагаем метод адверсариального предобучения.

В результате работы мы ожидаем получить следующие результаты:

- Мультиязычные модели обучены решать задачу заполнения слотов и классификации интентов.
- Проведены две адверсариальные атаки на каждую модель и замерено качество моделей на адверсариальных данных.
- Оценено влияние метода адверсариального предобучения на качество моделей на тестовой выборке и после адверсариальных атак.

Все свои эксперименты мы будем проводить с современными мультиязычными моделями - m-BERT [2] и XLM-RoBERTa [1]. В качестве датасета мы будем использовать корпус MultiAtis++ [14].

Актуальность темы подтверждается повышенным интересом со стороны научного сообщества. После начала работы над исследованием вышло как минимум три статьи на эту тему — две в марте [6, 10] и одна в конце апреля [9] 2021 года.

2 Обзор литературы

2.1 Мультиязычные модели

Языки с небольшим количеством данных часто не могут предоставить достаточного размера датасета для обучения с учителем. Существует подход для борьбы с этим, который заключается в построении кросс-язычных представлений. Эти представления нужно дообучать для специфичной задачи на

языке с большим количеством ресурсов, чтобы показывать хорошее качество на других, менее ресурсоёмких языках [5].

Вслед за успехом модели Трансформер [11], недавние мультиязычные модели такие как m-BERT [2] и XLM-RoBERTa [1] переносят парадигму «предобучение — дообучение под специфическую задачу» в мультиязычную область. Они предобучают энкодеры на основе архитектуры Трансформера на текстовых данных с различными задачами языкового моделирования. Затем эти предобученые энкодеры могут быть дообучены для конкретной задачи на ресурсоёмком языке для которого есть много размеченных данных. Это известно как кросс-язычный перенос знаний.

В одних недавних исследованиях кросс-язычного переноса знаний было показано, что качество модели на ранее не виденных тестовых языках сильно зависит от количества обучающих данных и размера контекста [7]. В [13] было показано, что m-BERT показывает очень сильную способность к кросс-язычному переносу знаний. m-BERT превосходит по качеству мультиязычные эмбеддинги в четырёх из пяти исследуемых задач без какой-либо информации о связи языков.

Более современная и более сложная модель XLM-RoBERTa [1] показывает лучшее, чем m-BERT качество, однако требует массивных объемов обучающих данных для хорошей работы. В своём исследовании авторы XLM-RoBERTa показывают, что их модель является самой сильной мультиязычной моделью на текущий момент.

m-BERT обучается на

2.2 Классификация интентов и заполнение слотов

[12]

2.3 Смешение кодов в адверсариальных атаках на мультиязычные модели

Основная - [10]. Побочная - [6]. Пуперпобочная - [9].

2.4 Машинный перевод и выравнивание слов

Перевод - [4].

Выравнивание - [3].

3 Основная часть

3.1 Обучение моделей на датасете MultiAtis++

В своей работе мы обучаем языковые модели решать задачу задачи одновременного детектирования намерений пользователя и заполнения слотов для диалоговых помощников, направленных на выполнение конкретной задачи. Эта задача заключается в классификации предложений и всех слов в предложении.

3.1.1 Датасет

В качестве датасета в своей работе мы выбрали датасет MultiAtis++ [14]. В этом датасете представлены семь языков из трёх языковых семей — Индо-Европейская (английский, немецкий, французский, испанский, португальский), Японо-рюкюская (японский) и Сино-тибетская (китайский). Датасет является параллельным корпусом для задачи классификации интентов и разметки слотов - в 2020 году он был переведён с английского языка на остальные шесть. В обучающей выборке содержится 4978 предложений для каждого языка, в тестовой 893 предложения для каждого языка.

Intent		atis_flight								
Utterance EN	show	me	flights	from	montreal	to	orlando			
Slot labels EN	О	О	О	О	B-fromloc.city_name	О	B-toloc.city_name			
Utterance DE	Zeige	mir	Flüge	von	Montreal	nach	Orlando			
Slot labels DE	О	О	О	О	B-fromloc.city_name	О	B-toloc.city_name			

Таблица 1: Пример объекта из датасета MultiAtis++. На примере представлен объект на английском и немецком языке.

Каждый объект в датасете состоит из предложения, меток слов в ВІО формате и интента (Таблица (1)). Перед началом работы с датасетом мы произвели предварительную очистку — убрали из обучающей и тестовой выборок объекты, для которых на любом из семи языков количество слов и

количество слотов не совпадали. Таким образом, в обучающей выборке осталось 4884 объекта для каждого языка, в тестовой выборке 755 объектов для каждого языка. Для составления списка используемых слотов и интентов использовалась обучающая выборка на английском языке. Мы использовали 121 различную метку слотов и 23 различных метки интентов. Список іd используемых объектов, а также списки используемых слотов и интентов можно найти в приложении.

3.1.2 Архитектура модели

В своей работе мы решаем задачу одновременной классификации интентов и разметки слотов в предложении с помощью одной модели. Модель имеет два выхода, первый предсказывает интенты, второй предсказывает метки слов. В качестве рассматриваемых архитектур были выбраны модели тентов. В качестве рассматриваемых архитектур были выбраны тентов. В качестве рассматриваемых архитектур были выбраны тентов. В качестве рассматриваемых архитектур были выбраны тентов. В качестве рассматриваемых архитектур выпуска тентов. В качестве

Обозначим количество блоков Трансформера за L, размер скрытых представлений за H и количество голов с внутренним вниманием за A. Тогда в используемой нами модели m-BERT L = 12, H = 768, A = 12, а суммарное количество параметров 110 миллионов. В используемой нами модели XLM-RoBERTa L = 12, H = 768, A = 12, а суммарное количество параметров 270 миллионов.

3.1.3 Обучение

В своей работе мы будем сравнивать модели, обученные на всей обучающей выборки и только на части обучающей выборки на английском языке. Таким образом мы сможем проверить насколько устойчивы к нашим атакам модели с разными вариантами обучения.

Каждая из моделей обучалась с одинаковыми гиперпараметрами - 10 эпох на обучающей выборке с длиной шага обучения 10^{-5} и размером батча в 64

объекта. В качестве функции ошибки использовалась кросс-энтропия:

$$L = -\frac{1}{n} \sum_{i=1}^{n} \left[y \log \left(\hat{y} \right) \right] \tag{1}$$

В своей работе мы будем использовать следующие метрики качества:

• Доля предложений, в которых правильно классифицирован интент:

Intent accuracy =
$$\#$$
sentences $[(I_{pred} = I_{true})]$ (2)

• F1 мера для меток слотов (используется микро-усреднение по всем классам):

Slots F1 score =
$$2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$
 (3)

• Доля предложений, в которых правильно классифицирован интент и верно классифицированы все слоты:

Semantic accuracy = #sentences
$$[(I_{pred} = I_{true}) \land (S_{pred} = S_{true})]$$
 (4)

3.2 Адверсариальные атаки

В своей работе мы предлагаем два варианта gray-box адверсариальных атак — во время выполнения атаки мы имеем доступ к ошибке модели. Мы стремимся создать атаку такого рода, чтобы результирующая адверсариальная пертурбация предложения была как можно ближе к реалистичным предложениям со смешением кодов. Для этого мы заменяем часть токенов в предложении на их эквиваленты из других языков. Оценка качества на таких адверсариальных атаках может выступать в роли оценки снизу на качество соответствующих моделей в аналогичных задачах при наличии реального смешения кодов во входных данных.

Так как большинство людей, которые могут использовать смешение кодов в своей речи, билингвы, то в основном смешение кодов происходит между па-

рой языков [8]. Таким образом, в своей работе мы предлагаем анализировать атаки состоящие во встраивании одного языка в другой.

3.2.1 Общий вид атаки

Общий принцип атаки одинаковый для обоих предлагаемых вариантов. Разница между методами заключается в способе генерации кандидатов на замену токену на i—ой позиции. В своей работе мы предлагаем следующий вид атаки — пусть мы имеем целевую модель, пару пример-метка и встраиваемый язык (Алгоритм (1)). Тогда мы перебираем токены в предложении в случайном порядке и стремимся заменить токен на его эквивалент из встраиваемого языка. Если это приведёт к увеличению ошибки модели, то мы заменяем токен на предложенного кандидата.

Algorithm 1 Общая схема адверсариальной атаки

```
Require: Пара пример-метка x, y; целевая модель \mathcal{M}; встраиваемый язык \mathbb{L} Ensure: Адверсариальный пример x'

\mathcal{L}_x = \operatorname{GetLoss}(\mathcal{M}, \mathbf{x}, \mathbf{y})
for i in permutation(len(x)) do

Candidates = GetCandidates(\mathcal{M}, x, y, token_id = i)

Losses = GetLoss(\mathcal{M}, Candidates)

if Candidates and max(Losses) > \mathcal{L}_x then

\mathcal{L}_x = \max(\operatorname{Losses})

x, y = Candidates[argmax(Losses)]

end if
end for
return x
```

3.2.2 Word level атака

Первый предлагаемый нами вариант атаки заключается в генерации эквивалентов из других языков с помощью перевода токенов на соответствующие языки (Алгоритм (2)). Атакуя таким образом, мы строим грубую оценку снизу, так как при атаке мы не учитываем контекста предложений и не учитываем многозначность слов. Этот вариант схож с атакой PolyGloss [10].

Для перевода слов на другие языки мы используем модель машинного перевода M2M 100 от компании Facebook [4]. Она содержит 418 миллионов параметров.

Псевдокод функции ExtendSlotLabels можно найти в приложении (Алгоритм (5)).

Algorithm 2 Word-level атака

```
Require: Словарь переводов с исходного на встраиваемый язык Т function GetCandidates(M, x, y, token_id)

if x[token_id] in T[L] then

tokens = T[L][x[token_id]]

x[token_id] = tokens

y[token_id] = ExtendSlotLabels(y[token_id], len(tokens))

end if

return x, y

end function
```

3.2.3 Phrase-level атака

Второй предлагаемый нами вариант атаки заключается в генерации эквивалентов из других языков с помощью построения выравниваний между предложениями на разных языках. Одно предложение является переводом другого, для перевода можно использовать ту же модель машинного перевода [4], однако мы пользуемся тем, что у нас уже параллельный корпус. Кандидаты для каждого токена определяются как токены из предложения на встраиваемом языке, в которые был выровнен токен. Этот вариант атаки схож с атакой Bumblebee [10].

Для построения выравниваний мы используем модель awesome-align на основе m-BERT [3].

Algorithm 3 Phrase-level атака

```
Require: Выравнивание предложения на исходном языке к предложению на целевом языке A function GetCandidates(M, x, y, token_id)

if x[token_id] in A[L] then

tokens = A[L][x[token_id]]

x[token_id] = tokens

y[token_id] = ExtendSlotLabels(y[token_id], len(tokens))

end if

return x, y

end function
```

3.3 Метод адверсариального предобучения для защиты от адверсариальных атак

В своей работе мы предлагаем метод защиты от предложенных выше адверсариальных атак. Гипотеза заключается в том, что данный метод позволит увеличить качество не только на адверсариальных пертурбациях, но и на реальных данных со смешением кодов.

Предлагаемый нами метод адверсариального предобучения состоит из нескольких шагов:

- 1 Генерация выборки для задачи маскированного моделирования языка.
- 2 Дообучение тела мультиязычной модели на сгенерированной выборке в режиме предсказания маскированных токенов.
- Загрузка дообученного тела модели перед началом обучения для задачи одновременного заполнения слотов и классификации интентов.

3.3.1 Генерация адверсариальной выборки

Для генерации выборки используется адаптация алгоритма phrase-level адверсариальной атаки (Алгоритм (4)). Разница заключается в том, что токены заменяются на их эквиваленты с некоторой вероятностью. Таким образом, для генерации выборки не требуется обученная модель.

Algorithm 4 Генерация адверсариальной выборки

```
Require: Обучающая выборка датасета X, набор встраиваемых языков
  \mathbb{L}_1, \dots \mathbb{L}_n
Ensure: Адверсариальная выборка X'
  X' = | |
  for \mathbb{L} in \mathbb{L}_1, \dots \mathbb{L}_n do
      for x in X do
          for i in permutation (len(x)) do
             Candidates = GetCandidates(\mathcal{M}, x, y, token id = i)
             if Candidates and \mathcal{U}(0, 1) > 0.5 then
                 x, = random.choice(Candidates)
             end if
          end for
          X'.append(x)
      end for
  end for
  return X'
```

Выборка является конкатенацией сгенерированных выборок для всех шести языков кроме английского представленных в датасете. Каждая из подвыборок генерируется встраиванием целевого языка в обучающую выборку датасета MultiAtis++ на английском языке. Псевдокод функции GetCandidates представлен в секции про атаки (Алгоритм (3)).

После генерации у нас получается 6 подвыборок по 4884 предложения в каждой. Итоговая выборка состоит из 29304 предложений, мы делим эту выборку в отношении 9 к 1 на обучающую и тестовую.

3.3.2 Дообучение тела модели

После генерации адверсариальной выборки мы дообучаем предобученную мультиязычную модель на этой выборке. Модель обучается в режиме задачи маскированного моделирования языка.

Для обучения модели для такой задачи мы отбираем 15% токенов и предсказываем их с помощью модели. 80% отобранных токенов заменяются на токен маски, 10% заменяются на случайные слова из словаря, остальные 10% остаются неизменными. Мы дообучаем обе мультиязычные модели m-BERT

и XLM-RoBERTa с одинаковыми гиперпараметрами - 10 эпох с размером батча 64 и длиной шага 10^{-5} . После дообучения мы сохраняем тело модели для дальнейшего использования.

3.3.3 Загрузка дообученного тела модели

Перед обучением мультиязычной модели для задачи одновременного заполнения слотов и классификации интентов мы загружаем дообученное тело модели.

3.4 Результаты

3.4.1 Решение задачи классификации интентов и заполнения слотов

	en	de	es	fr	ja	pt	zh	avg
xlm-r	0.980	0.976	0.967	0.971	0.970	0.967	0.964	0.971
m-bert	0.979	0.976	0.958	0.968	0.955	0.968	0.956	0.966
xlm-r en	0.902	0.875	0.878	0.879	0.785	0.775	0.848	0.849
m-bert en	0.952	0.820	0.870	0.875	0.747	0.838	0.816	0.846

Таблица 2: Сравнение моделей между собой на тестовой выборке датасета MultiAtis++ по метрике **Intent accuracy**. По колонкам языки тестовых подвыборок, по рядам тестируемые модели.

	en	de	es	fr	ja	pt	zh	avg
xlm-r	0.944	0.939	0.908	0.924	0.929	0.924	0.942	0.930
m-bert	0.947	0.945	0.885	0.926	0.935	0.924	0.945	0.930
xlm-r en	0.870	0.669	0.751	0.612	0.573	0.673	0.738	0.698
m-bert en	0.899	0.558	0.783	0.534	0.622	0.518	0.680	0.656

Таблица 3: Сравнение моделей между собой на тестовой выборке датасета MultiAtis++ по метрике **Slots F1 score**. По колонкам языки тестовых подвыборок, по рядам тестируемые модели.

	en	de	es	fr	ja	pt	zh	avg
xlm-r	0.826	0.826	0.697	0.807	0.739	0.800	0.779	0.782
m-bert	0.854	0.854	0.653	0.804	0.740	0.808	0.796	0.787
xlm-r en	0.559	0.250	0.347	0.151	0.000	0.204	0.132	0.235
m-bert en	0.672	0.188	0.401	0.195	0.052	0.177	0.213	0.271

Таблица 4: Сравнение моделей между собой на тестовой выборке датасета MultiAtis++ по метрике **Semantic accuracy**. По колонкам языки тестовых подвыборок, по рядам тестируемые модели.

3.4.2 Качество моделей после адверсариальных атак

	de	es	fr	ja	pt	zh	avg
xlm-r	0.931	0.877	0.849	0.825	0.901	0.872	0.876
m-bert	0.893	0.891	0.872	0.820	0.853	0.852	0.863
xlm-r en	0.809	0.783	0.774	0.677	0.554	0.728	0.721
m-bert en	0.811	0.760	0.793	0.723	0.760	0.777	0.771

Таблица 5: Сравнение моделей между собой после word-level атаки на тестовую выборку датасета MultiAtis++ по метрике **Intent accuracy**. По колонкам встраиваемые языки, по рядам тестируемые модели.

	de	es	fr	ja	pt	zh	avg
xlm-r	0.767	0.589	0.603	0.552	0.598	0.747	0.642
m-bert	0.685	0.517	0.510	0.428	0.494	0.684	0.553
xlm-r en	0.642	0.467	0.499	0.508	0.543	0.641	0.550
m-bert en	0.539	0.385	0.419	0.362	0.391	0.585	0.447

Таблица 6: Сравнение моделей между собой после word-level атаки на тестовую выборку датасета MultiAtis++ по метрике **Slots F1 score**. По колонкам встраиваемые языки, по рядам тестируемые модели.

	de	es	fr	ja	pt	zh	avg
xlm-r	0.343	0.109	0.086	0.170	0.077	0.278	0.177
m-bert	0.228	0.083	0.058	0.081	0.038	0.213	0.117
xlm-r en	0.201	0.057	0.056	0.013	0.023	0.042	0.065
m-bert en	0.136	0.029	0.032	0.005	0.011	0.115	0.055

Таблица 7: Сравнение моделей между собой после word-level атаки на тестовую выборку датасета MultiAtis++ по метрике **Semantic accuracy**. По колонкам встраиваемые языки, по рядам тестируемые модели.

	de	es	fr	ja	pt	zh	avg
xlm-r	0.954	0.946	0.928	0.952	0.964	0.950	0.949
m-bert	0.948	0.935	0.939	0.951	0.940	0.934	0.941
xlm-r en	0.808	0.836	0.740	0.750	0.442	0.784	0.727
m-bert en	0.809	0.833	0.834	0.805	0.861	0.829	0.829

Таблица 8: Сравнение моделей между собой после phrase-level атаки на тестовую выборку датасета MultiAtis++ по метрике **Intent accuracy**. По колонкам встраиваемые языки, по рядам тестируемые модели.

	de	es	fr	ja	pt	zh	avg
xlm-r	0.802	0.829	0.751	0.444	0.813	0.609	0.708
m-bert	0.784	0.804	0.758	0.450	0.783	0.619	0.700
xlm-r en	0.627	0.704	0.569	0.365	0.680	0.561	0.584
m-bert en	0.539	0.699	0.531	0.366	0.530	0.563	0.538

Таблица 9: Сравнение моделей между собой после phrase-level атаки на тестовую выборку датасета MultiAtis++ по метрике **Slots F1 score**. По колонкам встраиваемые языки, по рядам тестируемые модели.

	de	es	fr	ja	pt	zh	avg
xlm-r	0.511	0.511	0.336	0.115	0.522	0.209	0.368
m-bert	0.487	0.438	0.344	0.114	0.433	0.256	0.345
xlm-r en	0.163	0.229	0.099	0.013	0.070	0.064	0.106
m-bert en	0.122	0.219	0.085	0.041	0.087	0.106	0.110

Таблица 10: Сравнение моделей между собой после phrase-level атаки на тестовую выборку датасета MultiAtis++ по метрике **Semantic accuracy**. По колонкам встраиваемые языки, по рядам тестируемые модели.

3.4.3 Влияние метода адверсариального предобучения

	en	de	es	fr	ja	pt	zh	avg
xlm-r adv	0.981	0.974	0.964	0.976	0.972	0.967	0.967	0.972
m-bert adv	0.975	0.976	0.964	0.972	0.960	0.970	0.962	0.968
xlm-r en + adv	0.928	0.890	0.913	0.872	0.789	0.881	0.816	0.870
m-bert en $+$ adv	0.959	0.848	0.901	0.893	0.719	0.901	0.759	0.854

Таблица 11: Сравнение моделей с защитой между собой на тестовой выборке датасета MultiAtis++ по метрике **Intent accuracy**. По колонкам языки тестовых подвыборок, по рядам тестируемые модели.

	en	de	es	fr	ja	pt	zh	avg
xlm-r adv	0.947	0.940	0.906	0.929	0.928	0.929	0.946	0.932
m-bert adv	0.950	0.942	0.900	0.928	0.935	0.920	0.946	0.932
xlm-r en + adv	0.888	0.729	0.788	0.623	0.447	0.743	0.718	0.705
m-bert en $+$ adv	0.900	0.566	0.759	0.557	0.416	0.554	0.604	0.622

Таблица 12: Сравнение моделей с защитой между собой на тестовой выборке датасета MultiAtis++ по метрике **Slots F1 score**. По колонкам языки тестовых подвыборок, по рядам тестируемые модели.

	en	de	es	fr	ja	pt	zh	avg
xlm-r adv	0.833	0.832	0.693	0.813	0.746	0.809	0.792	0.788
m-bert adv	0.861	0.854	0.682	0.805	0.738	0.799	0.797	0.791
xlm-r en + adv	0.613	0.397	0.404	0.109	0.005	0.419	0.136	0.298
m-bert en $+$ adv	0.674	0.266	0.366	0.265	0.004	0.278	0.136	0.284

Таблица 13: Сравнение моделей с защитой между собой на тестовой выборке датасета MultiAtis++ по метрике **Semantic accuracy**. По колонкам языки тестовых подвыборок, по рядам тестируемые модели.

	de	es	fr	ja	pt	zh	avg
xlm-r adv	0.935	0.885	0.895	0.838	0.918	0.857	0.888
m-bert adv	0.923	0.894	0.890	0.866	0.899	0.885	0.893
xlm-r en + adv	0.842	0.817	0.812	0.613	0.811	0.721	0.769
m-bert en $+$ adv	0.865	0.828	0.854	0.760	0.856	0.750	0.819

Таблица 14: Сравнение моделей с защитой между собой после word-level атаки на тестовую выборку датасета MultiAtis++ по метрике **Intent accuracy**. По колонкам встраиваемые языки, по рядам тестируемые модели.

	de	es	fr	ja	pt	zh	avg
xlm-r adv	0.768	0.609	0.591	0.519	0.608	0.744	0.640
m-bert adv	0.704	0.532	0.535	0.470	0.563	0.685	0.581
xlm-r en + adv	0.648	0.509	0.508	0.455	0.542	0.663	0.554
m-bert en $+$ adv	0.531	0.405	0.371	0.441	0.417	0.563	0.455

Таблица 15: Сравнение моделей с защитой между собой после word-level атаки на тестовую выборку датасета MultiAtis++ по метрике **Slots F1 score**. По колонкам встраиваемые языки, по рядам тестируемые модели.

	de	es	fr	ja	pt	zh	avg
xlm-r adv	0.347	0.134	0.093	0.099	0.089	0.283	0.174
m-bert adv	0.302	0.114	0.087	0.121	0.070	0.237	0.155
xlm-r en + adv	0.236	0.094	0.065	0.012	0.073	0.128	0.101
m-bert en $+$ adv	0.187	0.073	0.036	0.044	0.038	0.110	0.081

Таблица 16: Сравнение моделей с защитой между собой после word-level атаки на тестовую выборку датасета MultiAtis++ по метрике **Semantic accuracy**. По колонкам встраиваемые языки, по рядам тестируемые модели.

	de	es	fr	ja	pt	zh	avg
xlm-r adv	0.959	0.958	0.930	0.960	0.958	0.947	0.952
m-bert adv	0.956	0.950	0.944	0.958	0.955	0.946	0.951
xlm-r en + adv	0.870	0.857	0.811	0.795	0.853	0.776	0.827
m-bert en $+$ adv	0.846	0.890	0.893	0.766	0.901	0.784	0.847

Таблица 17: Сравнение моделей с защитой между собой после phrase-level атаки на тестовую выборку датасета MultiAtis++ по метрике **Intent accuracy**. По колонкам встраиваемые языки, по рядам тестируемые модели.

	de	es	fr	ja	pt	zh	avg
xlm-r adv	0.809	0.847	0.771	0.432	0.820	0.617	0.716
m-bert adv	0.807	0.848	0.790	0.446	0.822	0.635	0.725
xlm-r en + adv	0.683	0.776	0.648	0.326	0.721	0.570	0.621
m-bert en $+$ adv	0.613	0.754	0.621	0.324	0.631	0.523	0.578

Таблица 18: Сравнение моделей с защитой между собой после phrase-level атаки на тестовую выборку датасета MultiAtis++ по метрике **Slots F1 score**. По колонкам встраиваемые языки, по рядам тестируемые модели.

	de	es	fr	ja	pt	zh	avg
xlm-r adv	0.538	0.536	0.347	0.140	0.536	0.256	0.392
m-bert adv	0.544	0.551	0.466	0.136	0.559	0.286	0.424
xlm-r en + adv	0.303	0.375	0.196	0.008	0.322	0.079	0.214
m-bert en $+$ adv	0.254	0.358	0.241	0.019	0.306	0.109	0.214

Таблица 19: Сравнение моделей с защитой между собой после phrase-level атаки на тестовую выборку датасета MultiAtis++ по метрике **Semantic accuracy**. По колонкам встраиваемые языки, по рядам тестируемые модели.

4 Заключение

Список литературы

- [1] Alexis Conneau и др. «Unsupervised Cross-lingual Representation Learning at Scale». В: ACL. 2020.
- [2] Jacob Devlin и др. «BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding». B: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). 2019, с. 4171—4186.
- [3] Zi-Yi Dou и Graham Neubig. «Word Alignment by Fine-tuning Embeddings on Parallel Corpora». В: *EACL*. 2021.
- [4] Angela Fan и др. «Beyond English-Centric Multilingual Machine Translation». B: ArXiv abs/2010.11125 (2020).
- [5] Alexandre Klementiev, Ivan Titov и Binod Bhattarai. «Inducing Crosslingual Distributed Representations of Words». B: *Proceedings of COLING 2012*. Mumbai, India: The COLING 2012 Organizing Committee, дек. 2012, с. 1459—1474. URL: https://www.aclweb.org/anthology/C12-1089.
- [6] Jitin Krishnan и др. «Multilingual Code-Switching for Zero-Shot Cross-Lingual Intent Prediction and Slot Filling». B: ArXiv abs/2103.07792 (2021).
- [7] Chi-Liang Liu и др. «What makes multilingual BERT multilingual?» В: ArXiv abs/2010.10938 (2020).
- [8] Shana Poplack, DAVID SANKOFF и CHRISTOPHER MILLER. «The social correlates and linguistic processes of lexical borrowing and assimilation». B: Linguistics 26 (1988), c. 47—104.
- [9] Sebastin Santy, Anirudh Srinivasan и Monojit Choudhury. «BERTologiCoMix: How does Code-Mixing interact with Multilingual BERT?» В: Proceedings of the Second Workshop on Domain Adaptation for NLP. Kyiv, Ukraine: Association for Computational Linguistics, апр. 2021, с. 111—121. URL: https://www.aclweb.org/anthology/2021.adaptnlp-1.12.

- [10] Samson Tan и Shafiq Joty. «Code-Mixing on Sesame Street: Dawn of the Adversarial Polyglots». B: ArXiv abs/2103.09593 (2021).
- [11] Ashish Vaswani и др. «Attention is All you Need». В: ArXiv abs/1706.03762 (2017).
- [12] H. Weld и др. «A survey of joint intent detection and slot-filling models in natural language understanding». B: ArXiv abs/2101.08091 (2021).
- [13] Shijie Wu и Mark Dredze. «Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT». В: *EMNLP/IJCNLP*. 2019.
- [14] Weijia Xu, Batool Haider и Saab Mansour. «End-to-End Slot Alignment and Recognition for Cross-Lingual NLU». В: *ArXiv* abs/2004.14353 (2020).

Приложения

Приложение А. Алгоритм замены слотов в атаке

Algorithm 5 Алгоритм замены слотов в атаке

```
function EXTENDSLOTLABELS(slot_label, num_tokens)
    slot_labels = [slot_label]
    if num_tokens > 1 then
        if slot_label.startswith('B') then
            slot_labels += ['I' + slot_label[1:]] · (num_tokens - 1)
        else
            slot_labels ·= num_tokens
        end if
    end if
    return slot_labels
end function
```