Analog and Digital Electronics

(Second Year BTech Computer) (2019-20)

(Faculty: Mr. Y. K. Sharma)

Courtesy: R. P. Jain (Modern Digital Electronics)

Combinational Logic

(UNIT- 2)

Combinational Logic

```
Design of Combinational Logic:
Code converter - BCD, Excess-3, Gray code, Binary Code.
Half- Adder, Full Adder, Half Subtractor, Full Subtractor,
Binary Adder (IC 7483), BCD adder, Look ahead carry generator,
Multiplexers (MUX): MUX (IC 74153, 74151), MUX tree,
Demultiplexers (DEMUX)- Decoder. (IC 74138, IC 74154).
DMUX Tree, Implementation of SOP and POS using MUX,
DMUX, Comparators, Parity generators and Checker, One bit,
Two bit, 4-bit Magnitude Comparator
```

Two Types of Networks

Comb inational: Output values depend only on present imput values.

Sequential: Output values depends on present and past imput values. i.e. A sequence of I/P values must be specified to define the O/P.

Why Digital ??

Why digital? - gr

greater accuracy & reliability

- more versatile & cheaper

more comprehensive theory and algorithms

- availability of CAD tools

op timized device processes

Digital circuits used in:

Digital Computers Data Processing

Electronic Calculators Instrumentation

Control Devices etc. Telephone Networks, Cell Phones,

Communication Equipment CD Players, Medical Equipment,

Modern TV sets, Modern Radios,

etc.

Analog Systems

Advantages

- most p hysical p henomena of interest are analog
- transducers are simple
- potentially high precision

Disadvantages

- behaviour of analog components is subject to drift distortion, noise, offsets, etc.
- errors in analog signals accumulate during processing, transmission, and storage
- only relatively simple signal processing is practical for most applications

Digital Circuits

Advantages

- the strength of digital signals is easily restored
- signal accuracy degrades very little during processing, transmission and storage
- digital components are cheap, reliable and low-power
- digital signal processing can be highly sophisticated using special-purpose hardware or programmable digital computers

Disadvantages

- signal precision is limited by the number of bits used to encode each sample
- analog-to-digital converters and digital-to-analog converters are required to interface a digital system with real-world analog signals

Combinational Logic

Codes Converter:

- > BCD
- > Excess-3
- **≻** Gray Code
- > Binary Code Conversion

Definations

Natural BCD Code: Decimal digits 0 through 9 are represented by their natural binary equivalents using 4 bits.

Excess 3 code: Another BCD code in 4 bit binary code. The decimal digit is obtained by adding 3 to the natural BCD code.

Gray code: It is a code in which each gray code number differs from the preceding & succeeding number by a single bit.

Construction of Gray Code:

- 1. A 1 bit gray code has two code words 0 and 1 representing decimal numbers 0 & 1 respectively.
- 2. An n-bit (n>=2) gray code will have first 2ⁿ⁻¹ gray codes of (n-1) bits written in order with a leading 0 appended.
- 3. The last 2ⁿ⁻¹ gray codes will be equal to the gray code words of an (n-1) bit gray code written in reverse order with a leading 1 appended.

Continue....

E.g. : 1 bit gray code **Gray Code Decimal number** 2 bit gray code **Decimal number Gray Code** 3 bit Gray Code 3. **Gray Code Decimal number**

Arithmetic Operations

- Binary Addition
- > Subtraction
- > Multiplication
- > Division
- > BCD Addition

- ◆ Half-adder: the circuit accepts two inputs, A and B, and generates two outputs, SUM and CARRY according to the table
- ♦ Half adder truth table

Inputs		Outputs		
A	В	SUM	CARRY	
0	0	0	0	
0	. 1	1.	0	
1	0	1	0	
1	1	0	1	

The Boolean expression for SUM and CARRY:

$$SUM = A'B + AB'$$

$$CARRY = AB$$

◆ Half adder circuit

- ◆ Full adder: adds two binary digits A and B together with a 'carry-in' from a previous addition. A full adder has three inputs, A, B and 'CARRY-IN' (abbreviated here to C_{in}), and two outputs, SUM and 'CARRY OUT' (abbreviated to C_{out})
- Full adder circuit

	Inputs		Outputs		
A	В	$C_{ m in}$	SUM	$C_{ m out}$	
0	0	0	0	0	
0	0	. 1	1	0	
0	1	0	1	. 0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

♦ The Boolean expression for SUM and C_{out} :

$$\begin{split} &\mathrm{SUM} = A'B'C_{\mathrm{in}} + A'BC'_{\mathrm{in}} + AB'C'_{\mathrm{in}} + ABC'_{\mathrm{in}} \\ &C_{\mathrm{out}} = \underline{A'BC_{\mathrm{in}}} + AB'C_{\mathrm{in}} + ABC'_{\mathrm{in}} + \underline{ABC_{\mathrm{in}}} \end{split}$$

Full adder circuit

A full adder can also be formed from two half adders

SUM =
$$\overline{A}\overline{B}C_{in} + \overline{A}B\overline{C}_{in} + A\overline{B}\overline{C}_{in} + ABC_{in}$$

= $C_{in}(\overline{A}\overline{B} + AB) + \overline{C}_{in}(\overline{A}B + A\overline{B})$
= $C_{in}(\overline{A}B + A\overline{B}) + \overline{C}_{in}(\overline{A}B + A\overline{B})$
= $C_{in}(\overline{A} \oplus B) + \overline{C}_{in}(A \oplus B)$
= $C_{in}(\overline{A} \oplus B)$
= $C_{in}(A \oplus B)$
 $C_{out} = \overline{A}BC_{in} + A\overline{B}C_{in} + AB\overline{C}_{in} + ABC_{in}$
= $C_{in}(\overline{A}B + A\overline{B}) + AB(\overline{C}_{in} + C_{in})$
= $C_{in}(\overline{A}B + A\overline{B}) + AB$
= $C_{in}(\overline{A}B + A\overline{B}) + AB$

Implementation of a full adder

- ➤ Parallel adder: a digital circuit that produces the arithmetic sum of two binary numbers in parallel. It consists of full-adders connected in a chain, with the output carry from each full-adder connected to the input carry of the next fulladder in the chain.
- ➤ The figure shows the interconnection of four full-adder (FA) circuits to provide a 4-bit binary parallel adder

 Carry propagation: The longest propagation delay time in a parallel adder is the time it takes the carry to propagate through the full adders

- ◆ The carry propagation time is a limiting factor on the speed with which two numbers are added in parallel
 - Employ faster gates with reduced delays
 - Increase the equipment complexity to reduce the delay time, for example, *look-ahead* carry
- Consider the circuit of the full-adder:

◆ If we define two new binary variables:

$$P_i = A_i \oplus B_i$$
$$G_i = A_i B_i$$

- G_i is called a *carry generate* and it produces an output carry when both A_i and B_i are one, regardless of the input carry
- P_i is called a *carry propagate* because it is the term associated with the propagation of the carry from C_i to C_{i+1}

The output sum and carry can be expressed as

$$S_i = P_i \oplus C_i$$
$$C_{i+1} = G_i + P_i C_i$$

Carry output of each stage:

$$C_2 = G_1 + P_1 C_1$$

 $C_3 = G_2 + P_2 C_2 = G_2 + P_2 (G_1 + P_1 C_1) = G_2 + P_2 G_1 + P_2 P_1 C_1$
 $C_4 = G_3 + P_3 C_3 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 C_1$

Half Subtractor: A logic circuit for the subtraction of B (Subtrahend) from A (minuend) where A and B are 1-bit numbers is referred to as a half-subtractor. A and B are two inputs and D (difference) and C (borrow) are the two outputs.

Truth Table:

Inputs		Outputs		
Α	В	D	C	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

From the truth table the logical expression for D & C is:

$$D = \overline{A}B + A\overline{B} = A \oplus B \& C = \overline{A}B$$

- Full Subtractor: Like a full-adder we require a full-subtractor circuit for performing multibit subtraction wherein a borrow from the previous bit position may be present as input.
- ➢ It will have three inputs, A (minuend), B (subtrahend), C (borrow from the previous stage) and two outputs, D (difference) and C (borrow).
- > The truth table is:

Inputs			Outpu	Outputs		
\mathbf{A}_{n}	B_n	C _{n-1}	D _n	C_n		
0	0	0	0	0		
0	0	1	1	1		
0	1	0	1	1		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	0	0		
1	1	0	0	0		
1	1	1	1	1		

Adders And Their Use As Subtractors

➤ We can perform both addition & subtraction using only adders because the problem of subtraction becomes that of addition when we use 1's & 2's complement representation of negative numbers.

Simple Example: One Bit Adder

- 1-bit binary adder
 - □ inputs: A, B, Carry-in
 - outputs: Sum, Carry-out

A	В	Cin	5	Cout
0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0	0 1 0 1 0 0 1	0 0 1 0 1 1

Sum-of-Products Canonical Form

$$S = \overline{A} \overline{B} C in + \overline{A} B \overline{C} in + A \overline{B} \overline{C} in + A B C in$$

Cout =
$$\overline{A}$$
 B Cin + \overline{A} B Cin + \overline{A} B \overline{C} in + \overline{A} B Cin

- Product term (or minterm)
 - ANDed product of literals input combination for which output is true
 - Each variable appears exactly once, in true or inverted form (but not both)

Simplify Boolean Expressions

$$S = \overline{A} \overline{B} C \text{in} + \overline{A} \overline{B} \overline{C \text{in}} + A \overline{B} \overline{C \text{in}} + A \overline{B} C \overline{\text{in}}$$

$$= (\overline{A} \overline{B} + A \overline{B}) C \text{in} + (A \overline{B} + \overline{A} \overline{B}) \overline{C \text{in}}$$

$$= (\overline{A} \oplus \overline{B}) C \text{in} + (A \oplus \overline{B}) \overline{C \text{in}}$$

$$= A \oplus B \oplus C \text{in}$$

Sum-of-Products & Product-of-Sum

Product term (or minterm): ANDed product of literals – input combination for which output is true

A	В	С	minterms	_	F in canonical form:
0	0	0	ABC	mО	$F(A, B, C) = \Sigma m(1,3,5,6,7)$
0	0	1	ABC	m 1	= m1 + m3 + m5 + m6 + m7
0	1	0	A B C	m 2	$F = \overline{A} \overline{B} C + \overline{A} B C + A \overline{B} C + A B \overline{C} + ABC$
0	1	1	A B C	m 3	canonical form ≠ minimal form
1	0	0	ABC	m4	$F(A, B, C) = \overline{A} \overline{B} C + \overline{A} B C + A\overline{B} C + ABC + AB\overline{C}$
1	0	1	ABC	m 5	$= (\overline{A} \overline{B} + \overline{A} B + A\overline{B} + AB)C + AB\overline{C}$
1	1	0	A B C	m 6	$= ((\overline{A} + A)(\overline{B} + B))C + AB\overline{C}$
1	1	1	ABC	, m7	$= C + AB\overline{C} = AB\overline{C} + C = AB + C$

short-hand notation form in terms of 3 variables

Sum term (or maxterm) - ORed sum of literals – input combination for which output is false

Α	В	С	maxterms	
0	0	0	A + B + C	MO
0	0	1	$A+B+\overline{C}$	M1
0	1	0	$A + \overline{B} + C$	M2
0	1	1	$A + \overline{B} + \overline{C}$	M3
1	0	0	A + B + C	Μ4
1	0	1	Ā + B+ C	M5
1	1	0	$\overline{A} + \overline{B} + C$	Μ6
1	1	1	$\overline{A} + \overline{B} + \overline{C}$	M7
				*

F in canonical form:

$$F(A, B, C) = \prod M(0,2,4)$$
= $M0 \cdot M2 \cdot M4$
= $(A + B + C) (A + B + C) (\overline{A} + B + C)$
canonical form \neq minimal form
$$F(A, B, C) = (A + B + C) (A + \overline{B} + C) (\overline{A} + B + C)$$
= $(A + B + C) (A + \overline{B} + C)$
 $(A + B + C) (\overline{A} + B + C)$

= (A + C) (B + C)

Mapping Between Forms

Minterm to Maxterm conversion:
 rewrite minterm shorthand using maxterm shorthand
 replace minterm indices with the indices not already used

E.g.,
$$F(A,B,C) = \Sigma m(3,4,5,6,7) = \Pi M(0,1,2)$$

2. Maxterm to Minterm conversion: rewrite maxterm shorthand using minterm shorthand replace maxterm indices with the indices not already used

E.g.,
$$F(A,B,C) = \Pi M(0,1,2) = \Sigma m(3,4,5,6,7)$$

Minterm expansion of F to Minterm expansion of F': in minterm shorthand form, list the indices not already used in F

E.g.,
$$F(A,B,C) = \sum m(3,4,5,6,7)$$
 \longrightarrow $F'(A,B,C) = \sum m(0,1,2)$
= $\prod M(0,1,2)$ \longrightarrow $= \prod M(3,4,5,6,7)$

4. Minterm expansion of F to Maxterm expansion of F': rewrite in Maxterm form, using the same indices as F

E.g.,
$$F(A,B,C) = \sum m(3,4,5,6,7)$$
 \longrightarrow $F'(A,B,C) = \prod M(3,4,5,6,7)$ $= \prod M(0,1,2)$ \longrightarrow $= \sum m(0,1,2)$

BCD Adder:

- → 4-bit binary adder IC(7483) can be used to perform addition of BCD numbers.
- ➤ If 4-bit sum output is not a valid BCD digit, or if a carry C is generated, then decimal 6 (0110) is to be added to the sum to get the correct result.
- ➢ It can be cascaded to add numbers several digits long by connecting the carry-out of a stage to the carry-in of the next stage.

BCD Subtractor:

- > 9's complement of the subtrahend is added to the minuend.
- > 9's complement of a BCD number is given by nine minus that number.
- \triangleright E.g. 9's complement of 7 = 9 7 = 2.
- > i.e. in BCD code 9's complement of 0 1 1 1 is 0 0 1 0.

BCD Addition:

- ➢ In BCD addition we have to deal with 3 different situations. Assume two 4 bit BCD numbers A & B are added. Then the 3 cases to be considered are:
- Case 1: Sum is equal to or less than 9 and carry is 0.
- E.g. Addition of decimal nos. 2 and 6 in BCD gives result as 8.

 Thus we can say sum is in proper BCD form and requires no correction.
- Case 2: Sum is greater than 9 and carry is 0.
- E.g. Addition of decimal nos. 7 & 6 in BCD gives result as 13. Since sum is greater than 9, it is a invalid BCD number, with carry 0. so to correct the sum, add decimal 6 or BCD 0110 to sum to get the correct BCD sum.
- Case 3: Sum is less than or equal to 9 but carry is 1.
- E.g. Addition of decimal nos. 9 & 8 gives result as 17. We get sum as a valid BCD and carry =1, but the result is a incorrect BCD result. So add 6 to the sum obtained to get the correct BCD result.

Note: The addition is to be carried out as normal binary addition.

Summary of BCD Addition:

BCD ADDER

BCD Subtraction:

- The subtraction of 2 BCD numbers A & B can be performed using one of the two methods:
- 1. Nine's Complement Method:
 - 9's complement of a BCD number is obtained by subtracting it from 9. e.g. 9's complement of 1 is 8. It is similar to subtraction using 1's complement.
- Step 1: Obtain 9's complement of number B.
- Step 2: Add A and 9's complement of B.
- Step 3: If a carry is generated in step 2 then add it to the sum to obtain the final result. The carry is called as end around carry.
- Step 4: If carry is not produced then the result is negative hence take the 9's complement of the result.
- e.g. Subtract decimal no. 3 from 7 in BCD. i.e. 9 3 = 6, add 7 & 6 to get 13 add 1 which is end around carry to 3 to get result as 4.

- BCD Subtraction using 9's complement to represent negative numbers.
- > E.g. Subtract 5 from 9

9 = 1001
-5 =
$$(+)0100$$
 (9's complement of 5 i.e. 9-5=4)
1101 (invalid)
Add 0110
10011
Add End Around Carry (EAC)
 0100 = +4

E.g. Subtract 1 from 8

E.g. Subtract 8 from 4

Ans. = +7

Ans. = -4

- 2. Ten's Complement Method:
- > It is obtained by adding 1 to the 9's complement.
- 10's complement can be used to perform the BCD subtraction as:
- Step 1: Obtain the 10's complement of subtrahend (number to be subtracted).
- Step 2: Add the minuend to the 10's complement of subtrahend.
- Step 3: Discard carry. If carry is 1 then the answer is positive and is in its true form.
- Step 4: If carry is not produced then the answer is negative. So take 10's complement to get the answer.
- E.g. Perform the subtraction of decimal nos. 9 4 in BCD using 10's complement.

 Ans. 5

BCD ARITHMETIC

Signed Magnitude BCD Numbers:

- ➤ The representation of signed decimal numbers in BCD is similar to the representation of signed numbers in binary.
- ➤ The sign of a decimal number is generally represented with four bits. The plus sign is denoted by four zeros and minus with the BCD equivalent of 9 i.e. 1001.
- ➤ E.g. Represent the numbers +52 and -52 in the signed magnitude form.

> + 5 2 - 5 2 > 0000 0101 0010 1001 0101 0010

BCD ARITHMETIC

Signed- Complement BCD Numbers:

- > The signed magnitude system is generally not used in computers. The signed-complement system is generally preferred.
- > The signed-complement system can be either the 9's complement or the 10's complement, but the 10's complement is the most preferred one.
- The procedure developed for the signed 2's complement system is also applicable to the signed 10's complement system for decimal numbers.
- > E.g. Represent +240 and -240 in the signed complement form.

> + > 0000	2 0010	4 0100	0 0000					
> -	2	4	0					
Step 1:	Repres	ent -240 in	signed ma	gnitude fo	orm:			
1001	0010	0100	0000		= 9	2	4	0
Step 2:	Take 9's	s Complem	ent:					
•		•	9	9	9			
			9	2	4	0 sig	ned 9's con	npl.
		_	9	7	5	9		•
Step 3:	Obtain '	10's compl	ement:					
•	9	7	5	9				
+				1				
_	9	7	6	0	signed	10's com	plement fo	-240

Note: Addition is to be done by adding all digits, including the sign digits and discarding the end carry.

Combinational Logic

- > It involves simplification and realization using gates.
- ➤ It consists of an array of devices such as multiplexers, demultiplexers, adders, parity generators/checkers, priority encoders, decoders, comparators etc.
- Combinational logic is the general term for blocks of digital logic which contain no kind of memory
- The output of a block of combinational logic is determined solely by its inputs
- The relationship between the inputs and outputs is specified by the truth table
- \triangleright For a logic block with *n* inputs, there are 2^n entries in the truth table
- Simple adders are an example of combinational logic
- > So is the ALU, but this is much more complex.
- Registers are not combinational logic, since they contain memory.

Combinational logic example

- Consider a block of combinational logic with two inputs and four outputs
- Each of the four possible input combinations uniquely selects only one of the four outputs

Ϊl	Ц2	ಯ	<u>Q</u> 2	മ	Q 4
0	0	1	0	0	0
0	1	0	1	0	0
ı	0	0	0	1	0
ı	1	0	0	0	1

- This is known as a <u>decoder</u>
- Used commonly in memories to select a unique memory.
 location based on an address
- No storage capability: when the input changes, the output changes after a short propagation delay

Multiplexer

- Passes one of several data inputs to output.
- ➤ Generally 2ⁿ data inputs and always a single data output.
- n control lines determine which input is "steered" to the output.
- > Allows logical (not "tri-state" or electrical) implementation of buses.
- ➤ Buses and register transfer operations fundamental to digital system design.
- ➤ Also possible to implement arbitrary combinational logic with multiplexers.
- Universal, combinational logic element.
- Also known as "Data Selector" and "Mux".
- In sequential operation, provides parallel to serial Conversion.

Multiplexer Advantages

- Simplification of logic expression is not required.
- Minimizes the IC package count.
- Logic design is simplified.
- It can be used as a logic element in the design of combinational circuits.
- The standard ICs available are 2:1, 4:1, 8:1 and 16:1.

Design Procedure:

- 1. Identify the decimal number corresponding to each minterm in the expression, & connect the input lines corresponding to these numbers to logic 1 level.
- 2. Connect all other input lines to logic 0 level.
- 3. Apply inputs to select inputs.

Multiplexer Tree:

 To achieve larger input needs there is a provision for expansion, which is designed with the help of enable/strobe inputs and multiplexers stacks or trees.

Multiplexers

Multiplexors are clearly something that we need to know how

to Dulla	Il	I 2	$\mathcal S$	Q
	0	0	0	0
T1 —	0	0	1	0
## 1 -Q	0	1	0	0
I2-	0	1	1	1
<u> </u>	1	0	0	1
S	1	0	1	0
	1	1	0	1
	1	1	1	1

 It is possible to write a logic equation for Q in terms of I1, I2, and S:

$$Q = (I1 \cdot \overline{S}) + (I2 \cdot S)$$

The logic circuit follows trivially:

Multiplexers from logic

- Note the shorthand for NOT, this is very commonly used.
- Obviously this is only a single-bit multiplexer, it should be obvious that to multiplex two 32-bit numbers, you need 32 of these controlled by the same "select" signal
- You should verify that this does what is intended.

Two-to-One Multiplexer

F = Select' · x0 + Select · x1 x1 = w0 X2 = w1

$s x_1 x_2$	$f(s,x_1,x_2)$
0 0 0	0
0 0 1	0
0 1 0	1
0 1 1	1
1 0 0	0
1 0 1	1
1 1 0	0
1 1 1	1

	-	<i>s</i> 0 1	$\begin{vmatrix} f \\ w_0 \\ w_1 \end{vmatrix}$	
	(b)	Tru	th table	
s	$f(s,x_1,x_2)$)		w_1
0	x_1			
1	x_2			(c) Sum-of-products circuit

(a) Truth table (d) More compact truth-table representation

Four to One Multiplexer

- ith data input ANDed with minterm mi
- Embedded circuit generating minterms
- will become known as a decoder

s_1	s_0	f
0	0	w_0
0	1	w_1
1	0	w_2
1	1	w_3

(a) Graphical symbol

(b) Truth table

(c) Circuit

Figure 6.2 A 4-to-1 multiplexer.

Building Larger Multiplexers

- 4-to-1 (4:1) Mux using 2-to-1 (2:1) Muxes
- Simple and modular
- Adds 2 levels of gate (propagation) delay

Building Larger Multiplexers

- > 16:1 Mux constructed from 4:1 Muxes.
- > Expandable to 32:1 and 64:1 with additional 2:1 and/or 4:1 Muxes.
- ➤ With additional levels of propagation delay.

Multiplexer Application

- Crossbar Switch
- > In general, n-inputs by n outputs
- Connectivity is any input to any output
- Important component of networking hardware
- > The bigger, the faster, the better...

(a) A 2x2 crossbar switch

(b) Implementation using multiplexers

- ➤ Input variables applied to Mux select lines "Steer" (constant) value of function to output
- ➤ Allows implementation of n-variable function with 2ⁿ-to-1 multiplexer
- ➤ "Steer" derived function (a variable, its complement, the constant 1 or the constant 0) to the output
- ➤ Allows implementation of n-variable function with 2ⁿ⁻¹-to-1 multiplexer

- Example 1: XOR Function
- Using a 4:1 Mux
- > The modified Truth Table
 - Possibilities are x, x', 0, 1
- > The 2-input XOR using a 2:1 Mux

(b) Modified truth table

(c) Circuit

- Example 2 : Three input majority function
- ➤ Three input function with (2ⁿ⁻¹-to-1)
- 4:1 Mux

(a) Modified truth table

- Example 3 : Three input majority function with 2:1 Mux
 - Algebraic expansion

$$f(w_1, w_2, w_3) = (w_1w_2 + w_1w_3 + w_2w_3)$$

$$f(w_1, w_2, w_3) = (w_1w_2 + w_1w_3 + w_2w_3)(w_1' + w_1)$$

$$f = w_1'(w_1w_2 + w_1w_3 + w_2w_3) + w_1(w_1w_2 + w_1w_3 + w_2w_3)$$

$$\dots and from Shannon$$

$$f = w_1'(0w_2 + 0w_3 + w_2w_3) + w_1(1w_2 + 1w_3 + w_2w_3)$$

$$f = w_1'(w_2w_3) + w_1(w_2 + w_3)$$

- Example 3: Three input majority function with 2:1
 Mux
 - Truth Table and circuit implementation

Multiplexers and Buses

- Bus allows data transfers between multiple sources and single or multiple destinations over a shared path (wires).
- Bus includes multiple bits.
- > Parallel data bus.
- Only one source on the bus at any time.
- Bus contention.

Multiplexers and Buses

- Example below illustrates two, four-bit words (X and Y) multiplexed onto the Z bus.
- > Register transfer operations.

 $A': Z \leftarrow X, A: Z \leftarrow Y$

Demultiplexer

- Performs the reverse of a multiplexer.
- Accepts a single input and distributes it over several outputs.
- Select input code determines to which output the data input will be transmitted.
- ➤ It can be used as binary to decimal decoder with binary inputs applied at the select input lines and the output will be obtained on the corresponding line.
- ➤ It is useful in the design of multiple-output combinational circuit, because it needs minimum package count.
- It is available as 2-line-to-4-line, 3-line-to-8-line, and 4-line-to-16-line decoders.
- > The output of most of these devices are active low, and it consists of a active-low enable/data input terminal.
- Decoder requires some gates in order to realize a boolean expression in the standard SOP form.

Demultiplexers

- Serial to parallel conversion
 - Send a single data bit to a specific address
- A 1-to-2ⁿ demultiplexer is implemented using an n-to-2ⁿ decoder
 - The (value of) the data is applied via the enable input
- Valuable circuit in sequential circuits
 - Not so much in combinational circuits.
- Also referred to as Dmux's

Demultiplexer Tree

- Largest available decoders are 4-line-to-16-line decoders
- > So to design a circuit for larger inputs, we make use of enable input terminals.
- ➤ E.g. 5-line-to-32-line decoder using two 4-line-to-16-line decoders

Decoder

- ➤ It has a set of inputs representing a binary number and gives only one output corresponding to the input number.
- ➤ It activates one output at a time depending upon the input binary number, all other outputs will be inactive.
- Figure shows the functional block diagram of a decoder having N inputs and K outputs. The possible combinations of N inputs will be $2^N = K$, so there will be K outputs.

Decoders

- 2-to-4 Decoder shown
 - 2-to-2ⁿ in general
 - Enable input allows construction of decoder tree and demultiplexer
 - Generates all minterms when enabled
 - Multiple output circuits
 - One hot decoding

En	w_1	w_0	<i>y</i> ₀	<i>y</i> ₁	y ₂	у ₃
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1
0	x	X	0	0	0 0 1 0	0

(a) Truth table

(b) Graphical symbol

(c) Logic circuit

3 to 8 line decoder

- It will have three input lines and $A^2 = 8$ output lines.
- When 3 bit binary number is fed to the input of the decoder, one output line corresponding to input binary is activated & all other output lines will be inactive.
- ➤ It is also called binary to octal decoder or converter.

Decoder Tree

One-bit expansion (3-to-8) by adding external decoding circuitry

Decoder Tree

 Two-bit expansion (4-to-16) by adding another 2-to-4 decoder

Decoder Applications

Multiplexer from decoder

Recall "embedded decoder"

| Decoder Applications

Multiple Output Circuits

Full Adderusing 3 X 8 Decoder

| Decoder Applications

Decoder Bus Control/Multiplexer

Combinational Logic Design

Decoder:

- ➤ It converts n-bit binary information at its input into a maximum of 2ⁿ output lines.
- > A decoder with enable input can function as a demux.

Inp	uts		Outp	uts	
Α	В	D0	D1	D2	D3
0	0	1			
0	1		1		
1	0			1	
1	1				1

Encoder:

- > It is just reverse of decoders.
- ➤ It has 2ⁿ input lines and n output lines. The output lines generate the binary code corresponding to the input value.
- ➤ E.g. Decimal to BCD Encoder. IC available is (74147) decimal to BCD Priority Encoder.

Encoders

Binary Encoders

- "One hot" input, binary (or other code)
 representation output
 - Reverse of decoder

w_3	w_2	w_1	w_0	y_1	у ₀
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1
				ı	

(a) Truth table

Encoders

- It is a combinational circuit which performs the reverse operation of decoder.
- ➤ It has a number of input lines, only one of which is activated at a time. It provides the N bit code at the output corresponding to activated input line.
- Figure shows the functional block diagram of an encoder having K inputs and N outputs.
- In the K input lines only one line will be high at a time.

Encoders

Priority Encoders

Used in prioritizing interrupts (or other events)

Priority Encoder

- In logic circuit for encoders, only one of the inputs is kept high at a time and output is obtained corresponding to the high input.
- > But if two or more inputs are inadvertently activated at a time then undesirable results will be obtained.
- Priority encoder performs the same logic function as that of encoder with the additional facility of priority function.
- When two or more input lines are activated simultaneously. The priority function means that the encoder will provide the output corresponding to the highest order activated input line.

Magnitude Comparator

- It is also called as the magnitude digital (or binary) comparator.
- ➤ It compares and indicates if the binary number P is equal to or greater than or less than the other binary number Q.
- ➤ Let P0 and Q0 are the two bits to be compared. The result for the equality of these two bits may be given by XNOR gate.
- The XNOR gate gives an output as logic 1 if two bits are equal otherwise logic 0.
- The logic diagram for one bit comparator is shown in figure :

- ➤ It is used to compare two single bits and hence called a single bit comparator.
- ➤ It consists of two inputs each for two single bit numbers and three outputs to generate less than, equal to and greater than between two binary numbers.
- ➤ The truth table for a 1-bit comparator is given below:

Α	В	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

- From the above truth table logical expressions for each output can be expressed as follows:
- > A>B: AB'
- > A<B: A'B
- > A=B: A'B' + AB

From the above expressions we can derive the following formula:

```
( A<B)+(A>B) = A'B+AB'

Taking complement both sides

( (A<B) + (A>B) )' = ( A'B + AB')'

( (A<B) + (A>B) )' = (A'B)' ( AB')'

( (A<B) + (A>B) )' = ( A + B') (A' +B )

( (A<B) + (A>B) )' = ( AA' + AB + A'B' +BB')

" " = ( AB + A'B' )

Thus,

( (A<B) + (A > B) )' = (A = B)
```

By using these Boolean expressions, we can implement a logic circuit for this comparator as given below:

- ➤ It is used to compare two binary numbers each of two bits and hence called a 2-bit Magnitude comparator.
- ➤ It consists of four inputs and three outputs to generate less than, equal to and greater than between two binary numbers.
- > The truth table for a 2-bit comparator is given below:

	INPUT		OU			
A1	A0	B1	во	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

From the above truth table K-map for each output can be drawn as follows:

B1E	30 00	A::	=B 11	10
A1A0 00	1	0	0	0
01	0	1	0	0
11	0	0	1	0
00	0.	Ó	0	1

- From the above K-maps logical expressions for each output can be expressed as follows:
- > A>B : A1B1' + A0B1'B0' + A1A0B0'
- > A=B : A1'A0'B1'B0' + A1'A0B1'B0 + A1A0B1B0 + A1A0'B1B0'
 - : A1'B1' (A0'B0' + A0B0) + A1B1 (A0B0 + A0'B0')
 - : (A0B0 + A0'B0') (A1B1 + A1'B1')
 - : (A0 Ex-Nor B0) (A1 Ex-Nor B1)
- A<B : A1'B1 + A0'B1B0 + A1'A0'B0</p>
- By using these Boolean expressions, we can implement a logic circuit for this comparator as given below:

- It is used to compare two binary numbers each of four bits & hence called a 4-bit magnitude comparator.
- It consists of eight inputs each for two four bit numbers and three outputs to generate less than, equal to and greater than between two binary numbers.

In a 4-bit comparator the condition of A>B can be possible in the following four cases:

- \rightarrow If A3 = 1 and B3 = 0
- \rightarrow If A3 = B3 and A2 = 1 and B2 = 0
- If A3 = B3, A2 = B2 and A1 = 1 and B1 = 0
- \rightarrow If A3 = B3, A2 = B2, A1 = B1 and A0 = 1 and B0 = 0

Similarly the condition for A<B can be possible in the following four cases:

- \rightarrow If A3 = 0 and B3 = 1
- \rightarrow If A3 = B3 and A2 = 0 and B2 = 1
- \rightarrow If A3 = B3, A2 = B2 and A1 = 0 and B1 = 1
- ightharpoonup If A3 = B3, A2 = B2, A1 = B1 and A0 = 0 and B0 = 1

The condition of A=B is possible only when all the individual bits of one number exactly coincide with corresponding bits of another number.

> Truth table of 4-Bit Comparator:

	COMPARIN	NG INPUTS	OUTPUT					
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A < B	A = B		
A3 > B3	X	X	X	Н	L	L		
A3 < B3	X	X	X	L	Н	L		
A3 = B3	A2 >B2	X	X	Н	L	L		
A3 = B3	A2 < B2	X	X	L	Н	L		
A3 = B3	A2 = B2	A1 > B1	X	Н	L	L		
A3 = B3	A2 = B2	A1 < B1	X	L	Н	L		
A3 = B3	A2 = B2	A1 = B1	A0 > B0	Н	L	L		
A3 = B3	A2 = B2	A1 = B1	A0 < B0	L	Н	L		
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	L	L		
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	Н	L		
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	Н		
H = High V	H = High Voltage Level, L = Low Voltage, Level, X = Don't Care							

A=B: (A3 Ex-Nor B3) (A2 Ex-Nor 82) (AI Ex-Nor BI) (AO Ex-Nor BO)

By using these Boolean expressions, we can implement a logic circuit for this comparator as given below:

4-Bit Comparator(IC-7485)

Figure shows a 4-bit comparator.

Cascading Comparator

- ➤ A comparator performing the comparison operation to more than four bits by cascading two or more 4-bit comparators is called cascading comparator.
- ➤ When two comparators are to be cascaded, the outputs of the lower-order comparator are connected to corresponding inputs of the higher-order comparator.

Applications of Comparators

- Comparators are used in central processing units (CPUs) and microcontrollers (MCUs).
- These are used in control applications in which the binary numbers representing physical variables such as temperature, position, etc. are compared with a reference value.
- Comparators are also used as process controllers and for Servo motor control.
- Used in password verification and biometric applications.

Parity Generator/Checker

- ➤ In the transmission of data in digital systems, error may occur due to change of data bit (0 by 1 or vice versa).
- This change may be due to component malfunctions or the electrical noise.
- This problem is removed by adding one additional bit in the data to be transmitted. This extra bit is known as parity bit.
- The parity bit detects the single error in the transmission.
- Parity is the number of 1's in the given data or word. If the number of 1's in the given data is even then parity is called as even parity; if on the other hand the number of 1's is odd then the parity is called as odd parity.
- > The parity bit of the data or the word is generated by the parity generator.
- ➤ This parity generator gives output P (parity bit) as logic 1 if the number of 1's in the four bit input data is even; and P is logic 0 if the number of 1's in the four bit input data is odd.
- ➤ That is for even parity of the input data, output is 1 and for odd parity of the input data, output is 0.

Parity Generator/Checker

> The logic diagram of the parity bit generator of four bit is shown in figure.

Parity Generator/Checker

- > The parity bit P generated by the parity generator is sent along with the data and at the receiver end data as well as the parity bit is checked by the parity checker.
- > The logic circuit for the parity checker is the same as that of the parity generator with the only difference that in the parity checker the terminal P' in not grounded, but the parity bit received at the receiver end is connected to the point P'.
- So at the receiver the received data and the parity bit form the five bit data which is always having the odd parity.

It is clear from the fact that if the data A, B, C and D is odd (even) then parity bit is 0 (1), and therefore the received data and the parity bit is

always is odd.

Parity Generator/Checker(IC-74180)

- Parity generator/checker is available in the form of IC.
- Figure shows the block diagram of 8 bit parity generator/checker IC 74180 and its truth table.
- ➤ It can be used to check for even or odd parity on a 9 bit code (8 bit data and one parity bit).
- It can also be used to generate a 9 bit even or odd parity code.

Parity of	Ir	nputs	Output	S
8 bit data	Even	Odd	\sum even	\sum Odd
Even	1	0	1	0
Odd	1	0	0	1
Even	0	1	0	1
Odd	0	1	1	0
ø	1	1	0	0
ø	0	0	1	1

Review of Unit-1 & 2

Representation of Logical Functions

Simplification of Logical Functions using K-map:

Prime Implicant:

It is a group of minterms that cannot be combined with any other minterm or groups.

Essential Prime Implicant:

➤ It is a prime – implicant in which one or more minterms are unique i.e. it contains at least one minterm which is not contained in any other prime- implicant.

Standard Representation for Logical Functions: The logic functions can be expressed in the following forms:

- 1. Sum of Product (SOP): For minterm $1 \rightarrow$ normal variale (A) & 0 is complement var. (\overline{A})
- 2. Product of Sum (POS): For maxterm $1 \rightarrow$ complement Var. (\overline{A}) & 0 is normal var. (A)

Standard or Canonical Form:

➢ If each term in SOP and POS forms contains all the literals then these are known as Standard (or Canonical) SOP and POS respectively. Each term in standard SOP is minterm & in Standard POS is maxterm.

Minimization of Logical Functions:

- 1. Minimization of SOP Form: If the expression is simplified to a stage beyond which it cannot be further simplified, it will require minimum number of gates with minimum no. of inputs to the gates. Such an expression is referred to as the minimized expression.
- 2. Minimization of POS Form:

Representation of Logical Functions

Don't Care Conditions:

In some cases certain combinations of input variables do not occur. Also, for some functions the outputs corresponding to certain combinations of input variables do not matter. These conditions are called as don't care condition.

Combinational Logic Design Using MSI Circuits:

➤ The circuits which we have studied involves simplification & realization using gates. Thus using these methods, complex functions have been integrated and available in IC form.

Multiplexer:

- It is a special combinational circuit that is one of the most widely used.
- Multiplexer or data selector is a logic circuit that gates one out of several inputs to a single output.
- The selected input is controlled by a set of select inputs.
- > Depending on select inputs, one out of n data sources is selected and transmitted to a single output channel.
- A Strobe or enable input (G) is incorporated which helps in cascading and it is generally active low.

Advantages of using Mux:

- 1. Simplification of logic expression is not required.
- 2. It minimizes the IC package count.
- 3. Logic design is simplified.

Design Procedure:

- Identify the decimal number corresponding to each minterm in the expression. The input lines corresponding to these numbers are connected to logic 1 level.
- 2. All the other inputs are connected to 0.
- 3. The inputs are to be applied to select inputs.

E.g. 1. Implement the expression using a mux,

F(A,B,C,D)= ∈m(0,2,3,6,8,9,12,14)
 Ans. Since 4 var. hence mux with 4 select inputs required.

E.g. 2. Realize the logic function of the truth table using 8:1 mutiplexer using LSB method.

В	С	D	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1
	0 0 0 1 1 1 1 0 0 0 0	0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1

Cascading of Multiplexer (Multiplexer Tree):

- Multiplexers with more number of inputs can be obtained by cascading two or more multiplexers with less number of inputs. This is called as multiplexer tree.
- ➤ E.g. The cascading of two 4:1 multiplexer results in 8:1 multiplexer.
- The select lines s1 & s0 of both 4:1 multiplexers are connected in parallel whereas a third select input s2 is used for enabling one multiplexer at a time.

Demultiplexer:

- \triangleright The number of output lines n and select lines m where n=2^m.
- It can be used as binary-to-decimal decoder.
- ➤ Binary input is given at select input lines & the ouput is obtained on corresponding line. The data input line is to be connected to logic 1.
- ➤ The device is also called as 2-line-to-4-line, 3-line-to-8-line & 4-line-to-16-line decoder.
- ➤ It requires some gates to realize boolean expressions in the standard SOP form.

E.g. Implement the following multi-ouput combinational logic circuit using a 4-to-16-line decoder.

```
f1 = \in m(1,2,4,7,8,11,12,13)
f2 = \in m(2,3,9,11)
f3 = \in m(10,12,13,14)
f4 = \in m(2,4,8)
```

Decoder:

- ➤ It converts n-bit binary information at its input into a maximum of 2ⁿ output lines.
- A decoder with enable input can function as a demux.

Inputs			Outp	Outputs			
Α	В	D0	D1	D2	D3		
0	0	1					
0	1		1				
1	0			1			
1	1				1		

Encoder:

- > It is just reverse of decoders.
- ➤ It has 2ⁿ input lines and n output lines. The output lines generate the binary code corresponding to the input value
- ➤ E.g. Decimal to BCD Encoder. IC available is (74147) decimal to BCD Priority Encoder.

| Code Converters

BCD to 7-Segment Display Code Converter

w_3	w_2	w_1	w_0	a	b	c	d	e	f	8
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

(a) Code converter

(b) 7-segment display

(c) Truth table

End
of
Unit-2