MDP: Markov Decision Processes

- Distribution model
- Decisions and return
- Value functions
- 4 Bellman equations

Basic block: state, action, model, reward

Basic block: state, action, model, reward

Markov Decision Process: MDP

Markov decision process data

- A set of **states** S, a set of **actions** A and a set of **rewards** R
- For each state $s \in S$ and action $a \in A$, a probability distribution $p(\cdot, \cdot | s, a)$ over $S \times R$
- A discount factor $\gamma \in [0, 1]$

Distribution model

The probability distribution p is called **distribution model**, or simply model, of the MDP

Focus on finite MDP

From now on, assume that S, A and R are finite

MDP: meaning of the model

Markov decision process data

- A set of states S, a set of actions A and a set of rewards R
- For each state $s \in S$ and action $a \in A$, a probability distribution $p(\cdot, \cdot | s, a)$ over $S \times R$
- A discount factor $\gamma \in [0, 1]$

From distribution model to random variables S_t and R_t

The probability distribution *p* of the MDP gives the **next** state and reward:

$$Pr(S_t = s', R_t = r | S_{t-1} = s, A_{t-1} = a) := p(s', r | s, a)$$

MDP: meaning of the model

Exercises

- Explain what S_t , A_t and R_t are
- Given p, give a formula for $Pr(S_t = s' | S_{t-1} = s, A_{t-1} = a)$
- Given p, give a formula for $\mathbb{E}[R_t | S_{t-1} = s, A_{t-1} = a]$
- Given p, give a formula for $\mathbb{E}[R_t | S_{t-1} = s, A_{t-1} = a, S_t = s']$

The M in MDP: Markov property

Tabular representation: transitions

An action $a \in A$ gives a **transition probability** from a state s to a state s':

$$P_{ss'}^a := p(s'|s, a =) = Pr(S_t = s'|S_{t-1} = s, A_{t-1} = a)$$

Thus, we have a **transition matrix** P^a for each action a, and a corresponding underlying **Markov** stochastic process.

Tabular representation: rewards

An action $a \in A$ gives an **average reward** for any state s:

$$R_s^a = \mathbb{E}[R_t | S_{t-1} = s, A_{t-1} = a]$$

Thus, we have an average reward vector R^a for any action a.

Example

Example

Episodic MDP

- If there is a special terminal state reachable from every state, the MDP is episodic
- Otherwise, the MDP is continuing
- **Episode**: any sample S_0 , A_0 , R_1 , S_1 , ... terminating in the final state

Exercise

• Write an episode, and compute its probability of happening. Hint: tricky question.

Distribution model Decisions and return Value functions **Bellman equations**

The D in MDP: decisions

Where are the decisions?

- In any state *s*, **the agent must choose** between available actions *a*
- When choosing a from s, the environment answers s' with probability $P_{ss'}^a$. Environment decision.
- The agent behaviour is given by probabilities $\Pi(a|s)$: "how likely I'm going to choose a from s?". Agent decision.

Definition

A **policy** Π is a probability distribution over actions given states:

$$\Pi(a|s) := \Pr(A_t = a|S_t = s)$$

Example: uniform stochastic policy

What can we do?

At every step, we choose the action according to the probability.

Example: deterministic policy

What can we do?

At every step, we choose the given action.

Tabular representation

S and A are finite

A policy can be represented by a table: every line in the table corresponds to a state.

Stochastic policy

A [0.5,0.5]
B [0.5,0.5]

Deterministic policy

A 2 B 1

The **return**: towards the goal

Definition

- **Total return** of an episode ending at time T: the value of the random variable $G_t := R_{t+1} + R_{t+2} + \cdots + R_T$ for the episode
- If the MDP is continuing, we need a discount factor:

$$G_t \coloneqq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{+\infty} \gamma^k R_{t+k+1}$$

Why?

• Transforming the *terminal* state in *absorbing* with reward 0, we can use a **unified notation** for episodic and continuing MDP:

$$G_t := R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{+\infty} \gamma^k R_{t+k+1}$$

• In episodic tasks we can use $\gamma = 1$, in continuing tasks we must use $\gamma < 1$

The **return**: towards the goal

Why the discount

- The discount factor measures how much do we care about rewards far in the future
- A reward r after k+1 time-steps is worth "only" $\gamma^k r$: we say myopic evaluation if $\gamma \sim 0$, far-sighted evaluation if $\gamma \sim 1$
- Convenience: avoids infinite returns in cyclic MDP
- We shouldn't trust our model too much: uncertainty about the future may not be fully represented
- If the reward is financial, immediate rewards may earn more interest than delayed rewards
- Animal and human behaviour shows preference for immediate reward

Distribution model Decisions and return Value functions **Bellman equations**

How much are states and actions worth?

Remark

The total return G_t at time t is a random variable:

$$G_t := R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots = \sum_{k=0}^{+\infty} \gamma^k R_{t+k+1}$$

Thus, it makes sense to compute its expected value.

Definition: state-value function

The **state-value function** $v_{\pi}(s)$ for a MDP is the return we can expect to accumulate starting from state s, **following the policy** Π :

$$v_{\pi}(s) := \mathbb{E}_{\pi}[G_t | S_t = s]$$

Exercise

Is the above definition/notation correct?

How much are states and actions worth?

Total return

$$G_t := R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots = \sum_{k=0}^{100} \gamma^k R_{t+k+1}$$

State-value function

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s]$$

Definition: action-value function

The **action-value function** $q_{\pi}(s,a)$ for a MDP is the return we can expect to accumulate starting from a state s, choosing action a, and then **following the policy** Π :

$$q_{\pi}(s,a) := \mathsf{E}_{\pi}[G_t | S_t = s, A_t = a]$$

Example

Exercise

Compute $q_{\pi}(A, 1)$, $q_{\pi}(A, 2)$, $q_{\pi}(B, 1)$ and $q_{\pi}(B, 2)$ for the uniform policy Π .