Objectives

- Optimizers
- Gradient Descent

Optimizers

Goal: Find "test" = \max , or \min

Loss function: minimize Two methods

- exact take derivative = 0
- Gradient based method

initial value = seed the generator $\,$

1 vanilla gradient descent

update function: $w_{t+1} = w_t - \gamma \nabla L(W)$

L(W) is the loss function

 γ is the learning rate, a hyperparameter tunable via cross validation

frequent issues:

- gets stuck at local minimum
- vanishing gradient
- if learning rate is increased can get unstuck but risk jumping over desired points if increased to much

2 momentum

<u>intuitive</u>: $w_{t+1} = w_t - \gamma \nabla L w_t + \text{(past gradients)}$

Actual: $v_0 = 0$

$$v_{t_1} = \xi v_t + \nabla L(w_t)$$

$$w_{t_2} = w_t - \gamma v_{t+1}$$

issue: can move past desired point because of momentum of past gradients evaluating performance: Count number of iterations

Gradient-based Nesterov 3

$$v_0 = 0$$

$$v_{t+1} = \xi v_t \nabla L(w_t)$$

$$\overline{w_{t+1} = w_t - \gamma(\delta v_{t+1} + \nabla L(w_t))}$$
 look ahead : δv_{t+1}