

# **Team Contest Reference Team:** Romath

Roland Haase Thore Tiemann Marcel Wienöbst

# **Contents**

|   | DD    |                                     | •  |
|---|-------|-------------------------------------|----|
| 1 | DP    |                                     | 2  |
|   | 1.1   | LongestIncreasingSubsequence        | 2  |
|   | 1.2   | LongestIncreasingSubsequence        | 3  |
| 2 | Data  | Structures                          | 3  |
| _ | 2.1   | Fenwick-Tree                        | 3  |
|   | 2.2   | Range Maximum Query                 |    |
|   | 2.3   | Union-Find                          | 3  |
|   | 2.3   | Cilion-Filid                        | 3  |
| 3 | Graj  | ph                                  | 4  |
|   | 3.1   | 2SAT                                | 4  |
|   | 3.2   | Breadth First Search                | 4  |
|   | 3.3   | BellmanFord                         | 4  |
|   | 3.4   | Bipartite Graph Check               | 5  |
|   | 3.5   | Maximum Bipartite Matching          | 5  |
|   | 3.6   | Bitonic TSP                         |    |
|   | 3.7   | Single-source shortest paths in dag | 6  |
|   | 3.8   | Dijkstra                            | 6  |
|   | 3.9   | EdmondsKarp                         | 6  |
|   |       | Reference for Edge classes          | 7  |
|   |       | FloydWarshall                       | 7  |
|   |       | Held Karp                           | 7  |
|   |       | Iterative DFS                       |    |
|   |       |                                     | 8  |
|   |       | Johnsons Algorithm                  | 8  |
|   |       | Kruskal                             | 8  |
|   |       | Min Cut                             | 8  |
|   |       | Prim                                | 8  |
|   |       | Recursive Depth First Search        | 9  |
|   |       | Strongly Connected Components       | 9  |
|   |       | Suurballe                           | 9  |
|   |       | Kahns Algorithm for TS              |    |
|   | 3.22  | Topological Sort                    | 10 |
|   | 3.23  | Tuple                               | 11 |
|   | 3.24  | Reference for Vertex classes        | 11 |
|   | 3.5 / |                                     |    |
| 4 | Mat   |                                     | 11 |
|   | 4.1   | Binomial Coefficient                |    |
|   | 4.2   | Binomial Matrix                     |    |
|   | 4.3   | Divisability                        |    |
|   | 4.4   | Graham Scan                         |    |
|   | 4.5   | Iterative EEA                       | 12 |
|   | 4.6   | Polynomial Interpolation            | 13 |
|   | 4.7   | Root of permutation                 | 14 |
|   | 4.8   | Sieve of Eratosthenes               | 14 |
|   | 4.9   | Greatest Common Devisor             | 14 |
|   | 4.10  | Least Common Multiple               | 15 |
|   |       |                                     |    |

| 5 | Misc  | c c                                     | 15 |
|---|-------|-----------------------------------------|----|
|   | 5.1   | Binary Search                           | 15 |
|   | 5.2   | Next number with n bits set             | 15 |
|   | 5.3   | Next Permutation                        | 15 |
| 6 | Strir | ng                                      | 15 |
|   | 6.1   | Knuth-Morris-Pratt                      | 15 |
|   | 6.2   | Levenshtein Distance                    | 16 |
|   | 6.3   | Longest Common Subsequence              | 16 |
|   | 6.4   | Longest common substring                | 16 |
| 7 | Matl  | h Roland                                | 17 |
|   | 7.1   | Divisability Explanation                | 17 |
|   | 7.2   | Combinatorics                           | 17 |
|   | 7.3   | Polynomial Interpolation                | 17 |
|   |       | 7.3.1 Theory                            | 17 |
|   | 7.4   | Fibonacci Sequence                      | 17 |
|   |       | 7.4.1 Binet's formula                   | 17 |
|   |       | 7.4.2 Generalization                    | 17 |
|   |       | 7.4.3 Pisano Period                     | 17 |
|   |       | 7.4.4 Reihen                            | 17 |
|   |       | 7.4.5 Binomialkoeffizienten             | 17 |
|   |       | 7.4.6 Catalanzahlen                     | 17 |
|   |       | 7.4.7 Geometrie                         | 17 |
|   |       | 7.4.8 Zahlentheorie                     | 17 |
|   |       | 7.4.9 Faltung                           | 17 |
| 8 | Java  | a Knowhow                               | 18 |
|   | 8.1   | System.out.printf() und String.format() | 18 |
|   | 8.2   | Modulo: Avoiding negative Integers      | 18 |
|   | 8.3   | Speed up IO                             | 18 |

| $\overline{n}$     | Runtime $100 \cdot 10^6$ in 3s |
|--------------------|--------------------------------|
| [10, 11]           | $\mathcal{O}(n!)$              |
| < 22               | $\mathcal{O}(n2^n)$            |
| $\leq 100$         | $\mathcal{O}(n^4)$             |
| $\leq 400$         | $\mathcal{O}(n^3)$             |
| $\leq 2.000$       | $\mathcal{O}(n^2 \log n)$      |
| $\leq 10.000$      | $\mathcal{O}(n^2)$             |
| $\leq 1.000.000$   | $\mathcal{O}(n \log n)$        |
| $\leq 100.000.000$ | $\mathcal{O}(n)$               |

byte (8 Bit, signed): -128 ...127 short (16 Bit, signed): -32.768 ...23.767 integer (32 Bit, signed): -2.147.483.648 ...2.147.483.647 long (64 Bit, signed):  $-2^{63} \dots 2^{63} - 1$ 

MD5: cat <string>| tr -d [:space:] | md5sum

## 1 DP

# 1.1 LongestIncreasingSubsequence

Computes the length of the longest increasing subsequence and is easy to be adapted.

Input: array arr containing a sequence of length N

 $\it Output:$  length of the longest increasing subsequence in  $\it arr$ 

```
// This has not been tested yet
// (adapted from tested C++ Murcia Code)
public static int LISeasy(int[] arr, int N) {
  int[] m = new int[N];
  for (int i = N - 1; i >= 0; i--) {
    m[i] = 1; //init table
    for (int j = i + 1; j < N; j++) {
      // if arr[i] increases the length
      // of subsequence from array[j]
      if (arr[j] > arr[i])
        if (m[i] < m[j] + 1)</pre>
          // store lenght of new subseq
          m[i] = m[j] + 1;
    }
 }
  // find max in array
  int longest = 0;
  for (int i = 0; i < N; i++) {</pre>
    if (m[i] > longest)
```

```
longest = m[i];

return longest;
}
```

**MD5:** 7561f576d50b1dc6262568c0fc6c42dd  $\mid \mathcal{O}(n^2)$ 

#### 1.2 LongestIncreasingSubsequence

Computes the longest increasing subsequence using binary search. 

\*Input: array arr containing a sequence and empty array p of length arr.length for storing indices of the LIS (might be usefull to have) Output: array p containing the longest increasing subsequence

```
public static int[] LISfast(int[] arr, int[] p) {
    // p[k] stores index of the predecessor of arr[k]
    // in the LIS ending at arr[k]
    // m[j] stores index k of smallest value arr[k]
    // so there is a LIS of length j ending at arr[k]
    int[] m = new int[arr.length+1];
    int l = 0;
    for(int i = 0; i < arr.length; i++) {</pre>
       // bin search for the largest positive j <= l</pre>
       // with arr[m[j]] < arr[i]</pre>
10
      int lo = 1;
11
      int hi = l;
12
       while(lo <= hi) {</pre>
13
         int mid = (int) (((lo + hi) / 2.0) + 0.6);
14
         if(arr[m[mid]] <= arr[i])
15
           lo = mid+1;
         else
17
           hi = mid-1;
       // lo is 1 greater than length of the
       // longest prefix of arr[i]
21
22
      int newL = lo;
       p[i] = m[newL-1];
23
      m[newL] = i;
24
       // if LIS found is longer than the ones
25
       // found before, then update l
26
      if(newL > l)
27
        l = newL;
28
29
    // reconstruct the LIS
30
    int[] s = new int[l];
31
    int k = m[l];
32
                                                              16
    for(int i= l-1; i>= 0; i--) {
33
      s[i] = arr[k];
34
      k = p[k];
35
    }
36
37
    return s;
38 }
```

**MD5:**  $1d75905f78041d832632cb76af985b8e \mid \mathcal{O}(n \log n)$ 

#### 2 DataStructures

#### 2.1 Fenwick-Tree

Can be used for computing prefix sums.

```
//note that 0 can not be used
fint[] fwktree = new int[m + n + 1];
public static int read(int index, int[] fenwickTree) {
int sum = 0;
```

```
while (index > 0) {
    sum += fenwickTree[index];
    index -= (index & -index);
}
return sum;
}
public static int[] update(int index, int addValue,
    int[] fenwickTree) {
    while (index <= fenwickTree.length - 1) {
        fenwickTree[index] += addValue;
        index += (index & -index);
}
return fenwickTree;
}</pre>
```

**MD5:** 410185d657a3a5140bde465090ff6fb5 |  $\mathcal{O}(\log n)$ 

#### 2.2 Range Maximum Query

process processes an array A of length N in  $O(N \log N)$  such that query can compute the maximum value of A in interval [i,j]. Therefore M[a,b] stores the maximum value of interval  $[a,a+2^b-1]$ .

Input: dynamic table M, array to search A, length N of A, start index i and end index j

 ${\it Output:}\ {\it filled}\ {\it dynamic}\ {\it table}\ M$  or the maximum value of A in interval [i,j]

```
public static void process(int[][] M, int[] A, int N)
    for(int i = 0; i < N; i++)
      M[i][0] = i;
    // filling table M
    // M[i][j] = max(M[i][j-1], M[i+(1<<(j-1))][j-1]),
    // cause interval of length 2<sup>^</sup>j can be partitioned
    // into two intervals of length 2^(j-1)
    for(int j = 1; 1 << j <= N; j++) {
      for(int i = 0; i + (1 << j) - 1 < N; i++) {
        if(A[M[i][j-1]] >= A[M[i+(1 << (j-1))][j-1]])</pre>
          M[i][j] = M[i][j-1];
        else
          M[i][j] = M[i + (1 << (j-1))][j-1];
    }
  public static int query(int[][] M, int[] A, int N,
                                         int i, int j) {
    // k = | log_2(j-i+1) |
    int k = (int) (Math.log(j - i + 1) / Math.log(2));
    if(A[M[i][k]] >= A[M[j-(1 << k) + 1][k]])
      return M[i][k];
    else
25
      return M[j - (1 << k) + 1][k];
26
```

**MD5:** db0999fa40037985ff27dd1a43c53b80  $| \mathcal{O}(N \log N, 1) |$ 

#### 2.3 Union-Find

Union-Find is a data structure that keeps track of a set of elements partitioned into a number of disjoint subsets. UnionFind creates n disjoint sets each containing one element. union joins the sets

x and y are contained in. find returns the representative of the set x is contained in.

*Input*: number of elements n, element x, element y

Output: the representative of element x or a boolean indicating whether sets got merged.

```
1 class UnionFind {
    private int[] p = null;
    private int[] r = null;
    private int count = 0;
    public int count() {
                                                               11
                                                               12
       return count:
    } // number of sets
                                                               13
    public UnionFind(int n) {
10
       count = n; // every node is its own set
11
12
       r = new int[n]; // every node is its own tree with
            height 0
       p = new int[n];
13
       for (int i = 0; i < n; i++)</pre>
14
         p[i] = -1; // no parent = -1
15
16
17
    public int find(int x) {
18
19
       int root = x;
       while (p[root] >= 0) { // find root
20
         root = p[root];
21
22
       while (p[x] \ge 0) \{ // \text{ path compression} \}
23
         int tmp = p[x];
24
         p[x] = root;
25
         x = tmp;
26
27
       return root;
28
    }
29
30
    // return true, if sets merged and false, if already
31
          from same set
    public boolean union(int x, int y) {
32
                                                               11
       int px = find(x);
33
       int py = find(y);
34
       if (px == py)
35
                                                               13
         return false; // same set -> reject edge
36
       if (r[px] < r[py]) { // swap so that always h[px]
37
           ]>=h[pv]
                                                               16
         int tmp = px;
38
                                                               17
         px = py;
39
                                                               18
         py = tmp;
40
41
       p[py] = px; // hang flatter tree as child of
42
                                                               21
           higher tree
                                                               22
       r[px] = Math.max(r[px], r[py] + 1); // update (
43
                                                               23
           worst-case) height
                                                               24
       count--;
44
                                                               25
       return true;
45
                                                               26
    }
46
47 }
```

**MD5:**  $5c507168e1ffd9ead25babf7b3769cfd \mid \mathcal{O}(\alpha(n))$ 

# 3 Graph

## 3.1 2SAT

**MD5:** 6c06a2b59fd3a7df3c31b06c58fdaaf5 | O(V + E)

#### 3.2 Breadth First Search

Iterative BFS. Uses ref Vertex class, no Edge class needed. In this version we look for a shortest path from s to t though we could also find the BFS-tree by leaving out t. *Input:* IDs of start and goal vertex and graph as AdjList *Output:* true if there is a connection between s and g, false otherwise

```
public static boolean BFS(Vertex[] G, int s, int t) {
  //make sure that Vertices vis values are false etc
  Queue<Vertex> q = new LinkedList<Vertex>();
  G[s].vis = true;
  G[s].dist = 0;
 G[s].pre = -1;
  q.add(G[s]);
  //expand frontier between undiscovered and
      discovered vertices
 while(!q.isEmpty()) {
    Vertex u = q.poll();
    //when reaching the goal, return true
    //if we want to construct a BFS-tree delete this
    if(u.id = t) return true;
    //else add adj vertices if not visited
    for(Vertex v : u.adj) {
      if(!v.vis) {
        v.vis = true;
        v.dist = u.dist + 1;
        v.pre = u.id;
        q.add(v);
      }
  //did not find target
  return false;
```

**MD5:** 71f3fa48b4f1b2abdff3557a27a9a136  $|\mathcal{O}(|V| + |E|)$ 

#### 3.3 BellmanFord

Finds shortest pathes from a single source. Negative edge weights are allowed. Can be used for finding negative cycles.

```
public static boolean bellmanFord(Vertex[] G) {
   //source is 0
```

```
G[0].dist = 0;
    //calc distances
    //the path has max length |V|-1
    for(int i = 0; i < G.length-1; i++) {</pre>
       //each iteration relax all edges
       for(int j = 0; j < G.length; j++) {</pre>
         for(Edge e : G[j].adj) {
           if(G[j].dist != Integer.MAX_VALUE
           && e.t.dist > G[j].dist + e.w) {
             e.t.dist = G[j].dist + e.w;
         }
       }
15
    }
    //check for negative-length cycle
17
    for(int i = 0; i < G.length; i++) {</pre>
18
                                                               11
19
       for(Edge e : G[i].adj) {
                                                               12
         if(G[i].dist != Integer.MAX_VALUE
20
                                                               13
             && e.t.dist > G[i].dist + e.w) {
21
           return true;
22
                                                               15
23
                                                               16
24
       }
                                                               17
25
                                                               18
26
    return false;
                                                               19
27 }
                                                               21
```

**MD5:** d101e6b6915f012b3f0c02dc79e1fc6f |  $\mathcal{O}(|V| \cdot |E|)$ 

# 3.4 Bipartite Graph Check

Checks a graph represented as adjList for being bipartite. Needs  $a_{27}$  little adaption, if the graph is not connected.

*Input:* graph as adjList, amount of nodes N as int *Output:* true if graph is bipartite, false otherwise

```
_{1} public static boolean bipartiteGraphCheck(Vertex[] G){_{1}
    // use bfs for coloring each node
    G[0].color = 1;
    Queue<Vertex> q = new LinkedList<Vertex>();
    q.add(G[0]);
    while(!q.isEmpty()) {
      Vertex u = q.poll();
      for(Vertex v : u.adj) {
        // if node i not yet visited,
        // give opposite color of parent node u
10
        if(v.color == -1) {
11
          v.color = 1-u.color;
12
          q.add(v);
13
        // if node i has same color as parent node u
14
        // the graph is not bipartite
15
                                                            47
        } else if(u.color == v.color)
16
                                                            48
           return false;
17
                                                            49
         // if node i has different color
18
         // than parent node u keep going
19
20
21
22
    return true:
23 }
```

**MD5:** e93d242522e5b4085494c86f0d218dd4  $|\mathcal{O}(|V| + |E|)$ 

## 3.5 Maximum Bipartite Matching

Finds the maximum bipartite matching in an unweighted graph using DFS.

*Input:* An unweighted adjacency matrix boolean[M][N] with M nodes being matched to N nodes.

*Output:* The maximum matching. (For getting the actual matching, little changes have to be made.)

```
// A DFS based recursive function that returns true
// if a matching for vertex u is possible
boolean bpm(boolean bpGraph[][], int u,
            boolean seen[], int matchR[]) {
  // Try every job one by one
  for (int v = 0; v < N; v++) {
    // If applicant u is interested in job v and v
    // is not visited
    if (bpGraph[u][v] && !seen[v]) {
      seen[v] = true; // Mark v as visited
     // If job v is not assigned to an applicant OR
      // previously assigned applicant for job v
     // (which is matchR[v]) has an alternate job
     // available. Since v is marked as visited in
     // the above line, matchR[v] in the following
      // recursive call will not get job v again
      if (matchR[v] < 0 ||
      bpm(bpGraph, matchR[v], seen, matchR)) {
        matchR[v] = u;
        return true;
  return false;
// Returns maximum number of matching from M to N
int maxBPM(boolean bpGraph[][]) {
  // An array to keep track of the applicants assigned
  // to jobs. The value of matchR[i] is the applicant
  // number assigned to job i, the value -1 indicates
  // nobody is assigned.
 int matchR[] = new int[N];
  // Initially all jobs are available
  for(int i = 0; i < N; ++i)</pre>
   matchR[i] = -1;
  // Count of jobs assigned to applicants
  int result = 0;
 for (int u = 0; u < M; u++) {
    // Mark all jobs as not seen for next applicant.
    boolean seen[] = new boolean[N];
    for(int i = 0; i < N; ++i)</pre>
      seen[i] = false;
    // Find if the applicant u can get a job
    if (bpm(bpGraph, u, seen, matchR))
      result++;
 }
 return result;
```

**MD5:** a4cc90bf91c41309ad7aaa0c2514ff06 |  $\mathcal{O}(M \cdot N)$ 

#### 3.6 Bitonic TSP

Input: Distance matrix d with vertices sorted in x-axis direction. Output: Shortest bitonic tour length

```
public static double bitonic(double[][] d) {
  int N = d.length;
  double[][] B = new double[N][N];
  for (int j = 0; j < N; j++) {</pre>
```

```
for (int i = 0; i <= j; i++) {
        if (i < j - 1)
          B[i][j] = B[i][j - 1] + d[j - 1][j];
         else {
           double min = 0;
           for (int k = 0; k < j; k++) {
             double r = B[k][i] + d[k][j];
11
             if (min > r || k == 0)
               min = r;
          }
          B[i][j] = min;
      }
                                                             21
17
    }
                                                             22
18
    return B[N-1][N-1];
                                                             23
19
```

**MD5:** 49fca508fb184da171e4c8e18b6ca4c7  $| \mathcal{O}(?) |$ 

## 3.7 Single-source shortest paths in dag

Not tested but should be working fine Similar approach can be used for longest paths. Simply go through ts and add 1 to the largest longest path value of the incoming neighbors

```
public static void dagSSP(Vertex[] G, int s) {
    //calls topological sort method
    LinkedList<Integer> sorting = TS(G);
    G[s].dist = 0;
    //go through vertices in ts order
    for(int u : sorting) {
      for(Edge e : G[u].adj) {
        Vertex v = e.t;
        if(v.dist > u.dist + e.w) {
          v.dist = u.dist + e.w;
10
11
           v.pre = u.id;
12
13
      }
                                                            15
14
    }
                                                            16
15
                                                            17
```

**MD5:** 552172db2968f746c4ac0bd322c665f9 |  $\mathcal{O}(|V| + |E|)$ 

## 3.8 Dijkstra

Finds the shortest paths from one vertex to every other vertex in<sup>24</sup> the graph (SSSP).

For negative weights, add |min|+1 to each edge, later subtract from<sub>27</sub> result.

To get a different shortest path when edges are ints, add an  $\varepsilon = \frac{1}{k+1}^2$  on each edge of the shortest path of length k, run again.

*Input:* A source vertex s and an adjacency list G.

*Output:* Modified adj. list with distances from s and predcessor<sup>33</sup> vertices set.

**MD5:** e46eb1b919179dab6a42800376f04d7a  $|\mathcal{O}(|E|\log|V|)$ 

#### 3.9 EdmondsKarp

21

22

Finds the greatest flow in a graph. Capacities must be positive.

```
public static boolean BFS(Vertex[] G, int s, int t) {
  int N = G.length;
  for(int i = 0; i < N; i++) {</pre>
    G[i].vis = false;
  Queue<Vertex> q = new LinkedList<Vertex>();
  G[s].vis = true;
  G[s].pre = -1;
  q.add(G[s]);
  while(!q.isEmpty()) {
    Vertex u = q.poll();
    if(u.id == t) return true;
    for(int i : u.adj.keySet()) {
      Edge e = u.adj.get(i);
      Vertex v = e.t;
      if(!v.vis && e.rw > 0) {
        v.vis = true;
        v.pre = u.id;
        q.add(v);
    }
  }
  return (G[t].vis);
//We store the edges in the graph in a hashmap
public static int edKarp(Vertex[] G, int s, int t) {
  int maxflow = 0;
  while(BFS(G, s, t)) {
    int pflow = Integer.MAX_VALUE;
    for(int v = t; v!= s; v = G[v].pre) {
      int u = G[v].pre;
      pflow = Math.min(pflow, G[u].adj.get(v).rw);
    for(int v = t; v != s; v = G[v].pre) {
      int u = G[v].pre;
      G[u].adj.get(v).rw -= pflow;
      G[v].adj.get(u).rw += pflow;
    maxflow += pflow;
  }
  return maxflow;
```

**MD5:** 6067fa877ff237d82294e7511c79d4bc |  $\mathcal{O}(|V|^2 \cdot |E|)$ 

#### 3.10 Reference for Edge classes

Used for example in Dijkstra algorithm, implements edges with weight. Needs testing.

```
//for Kruskal we need to sort edges, use: java.lang.
       Comparable
  class Edge implements Comparable<Edge> {}
                                                              11
  class Edge {
    //for Kruskal it is helpful to store the start as
                                                              12
    //well, moreover we might not need the vertex class 13
    int s;
    int t:
                                                              14
                                                              15
    //for EdKarp we also want to store residual weights
                                                             16
10
                                                              17
    int rw;
11
                                                              18
12
                                                              19
    Vertex t;
13
14
    int w;
                                                              21
15
    public Edge(Vertex t, int w) {
16
      this.t = t;
17
      this.w = w;
18
       this.rw = w;
19
20
                                                              26
21
                                                              27
    public Edge(int s, int t, int w) {...}
22
23
    public int compareTo(Edge other) {
24
       return Integer.compare(this.w, other.w);
25
26
    }
27 }
```

MD5: aae80ac4bfbfcc0b9ac4c65085f6f123 |  $\mathcal{O}(1)$ 

#### 3.11 FloydWarshall

Finds all shortest paths. Paths in array next, distances in ans.

```
public static void floydWarshall(int[][] graph,
                                                                42
                          int[][] next, int[][] ans) {
    for(int i = 0; i < ans.length; i++)</pre>
       for(int j = 0; j < ans.length; j++)</pre>
                                                                45
         ans[i][j] = graph[i][j];
                                                                46
    for (int k = 0; k < ans.length; k++)</pre>
       for (int i = 0; i < ans.length; i++)</pre>
         for (int j = 0; j < ans.length; j++)</pre>
           if (ans[i][k] + ans[k][j] < ans[i][j]</pre>
10
                     && ans[i][k] < Integer.MAX_VALUE
11
                     && ans[k][j] < Integer.MAX_VALUE) {
12
                                                                51
             ans[i][j] = ans[i][k] + ans[k][j];
13
                                                                52
             next[i][j] = next[i][k];
14
                                                                53
           }
15
16
  }
                                                                55
```

**MD5:** a98bbda7e53be8ee0df72dbd8721b306 |  $\mathcal{O}(|V|^3)$ 

56

57

tour[0] = 0;

#### 3.12 Held Karp

Algorithm for TSP

```
public static int[] tsp(int[][] graph) {
  int n = graph.length;
  if(n == 1) return new int[]{0};
  //C stores the shortest distance to node of the
      second dimension, first dimension is the
      bitstring of included nodes on the way
  int[][] C = new int[1<<n][n];</pre>
  int[][] p = new int[1<<n][n];</pre>
  //initialize
  for(int k = 1; k < n; k++) {</pre>
    C[1<< k][k] = graph[0][k];
  for(int s = 2; s < n; s++) {</pre>
    for(int S = 1; S < (1<<n); S++) {</pre>
      if(Integer.bitCount(S)!=s || (S&1) == 1)
           continue;
      for(int k = 1; k < n; k++) {
        if((S & (1 << k)) == 0) continue;
        //Smk is the set of nodes without k
        int Smk = S \wedge (1 << k);
        int min = Integer.MAX_VALUE;
        int minprev = 0;
        for(int m=1; m<n; m++) {</pre>
          if((Smk & (1<<m)) == 0) continue;</pre>
          //distance to m with the nodes in Smk +
               connection from m to k
          int tmp = C[Smk][m] +graph[m][k];
          if(tmp < min) {</pre>
            min = tmp;
            minprev = m;
          }
        C[S][k] = min;
        p[S][k] = minprev;
    }
  }
  //find shortest tour length
  int min = Integer.MAX_VALUE;
  int minprev = -1;
  for(int k = 1; k < n; k++) {</pre>
    //Set of all nodes except for the first + cost
         from 0 to k
    int tmp = C[(1<<n) - 2][k] + graph[0][k];</pre>
    if(tmp < min) {</pre>
      min = tmp;
      minprev = k;
  }
  //Note that the tour has not been tested yet, only
      the correctness of the min-tour-value backtrack
      tour
  int[] tour = new int[n+1];
  tour[n] = 0;
  tour[n-1] = minprev;
  int bits = (1 << n) - 2;
  for(int k = n-2; k>0; k--) {
    tour[k] = p[bits][tour[k+1]];
    bits = bits ^ (1<<tour[k+1]);
  }
```

```
return tour;

return tour;

return tour;
```

**MD5:** f3e9730287dcbf2695bf7372fc4bafe0 |  $\mathcal{O}(2^n n^2)$ 

#### 3.13 Iterative DFS

Simple iterative DFS, the recursive variant is a bit fancier. Not tested.

```
1 //if we want to start the DFS for different connected
      components, there is such a method in the
      recursive variant of DFS
public static boolean ItDFS(Vertex[] G, int s, int t){
    //take care that all the nodes are not visited at
        the beginning
    Stack<Integer> S = new Stack<Integer>();
    s.push(s):
    while(!S.isEmpty()) {
      int u = S.pop();
      if(u.id == t) return true;
      if(!G[u].vis) {
        G[u].vis = true;
10
        for(Vertex v : G[u].adj) {
11
          if(!v.vis)
12
            S.push(v.id);
13
14
      }
15
    }
16
    return false;
17
18 }
```

**MD5:** 80f28ea9b2a04af19b48277e3c6bce9e |  $\mathcal{O}(|V| + |E|)$ 

#### 3.14 Johnsons Algorithm

```
public static int[][] johnson(Vertex[] G) {
    Vertex[] Gd = new Vertex[G.length+1];
    int s = G.length;
    for(int i = 0; i < G.length; i++)</pre>
      Gd[i] = G[i];
    //init new vertex with zero-weight-edges to each
         vertex
    Vertex S = new Vertex(G.length);
    for(int i = 0; i < G.length; i++)</pre>
      S.adj.add(new Edge(Gd[i], 0));
    Gd[G.length] = S;
10
11
    //bellman-ford to check for neg-weight-cycles and to
12
          adapt edges to enable running dijkstra
    if(bellmanFord(Gd, s)) {
13
      System.out.println("False");
14
       //this should not happen and will cause troubles
15
      return null;
16
17
    //change weights
18
    for(int i = 0; i < G.length; i++)</pre>
19
      for(Edge e : Gd[i].adj)
20
        e.w = e.w + Gd[i].dist - e.t.dist;
21
    //store distances to invert this step later
22
    int[] h = new int[G.length];
23
    for(int i = 0; i < G.length; i++)</pre>
24
      h[i] = G[i].dist;
25
  //create shortest path matrix
```

```
int[][] apsp = new int[G.length][G.length];

//now use original graph G

//start a dijkstra for each vertex

for(int i = 0; i < G.length; i++) {
    //reset weights
    for(int j = 0; j < G.length; j++) {
        G[j].vis = false;
        G[j].dist = Integer.MAX_VALUE;
    }
    dijkstra(G, i);
    for(int j = 0; j < G.length; j++)
        apsp[i][j] = G[j].dist + h[j] - h[i];
}
return apsp;
}</pre>
```

**MD5:** 0a5c741be64b65c5211fe6056ffc1e02 |  $\mathcal{O}(|V|^2 \log V + VE)$ 

#### 3.15 Kruskal

Computes a minimum spanning tree for a weighted undirected graph.

```
public static int kruskal(Edge[] edges, int n) {
   Arrays.sort(edges);
   //n is the number of vertices
   UnionFind uf = new UnionFind(n);
   //we will only compute the sum of the MST, one could
        of course also store the edges
   int sum = 0;
   int cnt = 0;
   iot (int i = 0; i < edges.length; i++) {
        if(cnt == n-1) break;
        if(uf.union(edges[i].s, edges[i].t)) {
            sum += edges[i].w;
            cnt++;
        }
   }
   return sum;
}</pre>
```

**MD5:** 91a1657706750a76d384d3130d98e5fb |  $\mathcal{O}(|E| + \log |V|)$ 

#### **3.16** Min Cut

Calculates the min cut using Edmonds Karp algorithm.

**MD5:** d41d8cd98f00b204e9800998ecf8427e |  $\mathcal{O}(?)$ 

#### 3.17 Prim

```
//s is the startpoint of the algorithm, in general not
    too important; we assume that graph is connected
public static int prim(Vertex[] G, int s) {
    //make sure dists are maxint
    G[s].dist = 0;
    Tuple st = new Tuple(s, 0);

PriorityQueue<Tuple> q = new PriorityQueue<Tuple>();
    q.add(st);
    //we will store the sum and each nodes predecessor
    int sum = 0;
```

```
while(!q.isEmpty()) {
12
      Tuple sm = q.poll();
13
       Vertex u = G[sm.id];
14
       //u has been visited already
15
       if(u.vis) continue;
16
       //this is not the latest version of u
17
       if(sm.dist > u.dist) continue;
       u.vis = true;
       //u is part of the new tree and u.dist the cost of 36
            adding it
       sum += u.dist;
       for(Edge e : u.adj) {
22
        Vertex v = e.t;
23
         if(!v.vis && v.dist > e.w) {
24
           v.pre = u.id;
25
           v.dist = e.w;
           Tuple nt = new Tuple(v.id, e.w);
27
           q.add(nt);
28
29
30
      }
31
32
    return sum;
33
  }
```

**MD5:** c82f0bcc19cb735b4ef35dfc7ccfe197 |  $\mathcal{O}(?)$ 

#### 3.18 Recursive Depth First Search

Recursive DFS with different options (storing times, connect-15 ed/unconnected graph). Needs testing.

*Input:* A source vertex s, a target vertex t, and adjlist G and the time (0 at the start)

Output: Indicates if there is connection between s and t.

```
//if we want to visit the whole graph, even if it is
       not connected we might use this
  public static void DFS(Vertex[] G) {
    //make sure all vertices vis value is false etc
    int time = 0;
                                                            25
    for(int i = 0; i < G.length; i++) {</pre>
      if(!G[i].vis) {
         //note that we leave out t so this does not work _{\scriptscriptstyle 28}
              with the below function
         //adaption will not be too difficult though
         //time should not always start at zero, change
             if needed
         recDFS(i, G, 0);
10
                                                            33
11
                                                            34
    }
12
13 }
14
  //first call with time = 0
public static boolean recDFS(int s, int t, Vertex[] G,
        int time){
    //it might be necessary to store the time of
17
         discovery
    time = time + 1;
18
    G[s].dtime = time;
19
    G[s].vis = true; //new vertex has been discovered
21
    //when reaching the target return true
22
    //not necessary when calculating the DFS-tree
23
    if(s == t) return true;
24
    for(Vertex v : G[s].adj) {
25
   //exploring a new edge
```

```
if(!v.vis) {
    v.pre = u.id;
    if(recDFS(v.id, t, G)) return true;
}
}
//storing finishing time
time = time + 1;
G[s].ftime = time;
return false;
}
```

**MD5:** 3cef44fd916e1aecfb0e3eacc355e2e3  $| \mathcal{O}(|V| + |E|)$ 

#### 3.19 Strongly Connected Components

```
public static void fDFS(Vertex u, LinkedList<Integer>
    sorting) {
  //compare with TS
  u.vis = true;
  for(Vertex v : u.out)
    if(!v.vis)
      fDFS(v, sorting);
  sorting.addFirst(u.id);
  return sorting;
public static void sDFS(Vertex u, int cnt) {
  //basic DFS, all visited vertices get cnt
  u.vis = true:
  u.comp = cnt;
  for(Vertex v : u.in)
    if(!v.vis)
      sDFS(v, cnt);
public static void doubleDFS(Vertex[] G) {
  //first calc a topological sort by first DFS
  LinkedList<Integer> sorting = new LinkedList<Integer</pre>
  for(int i = 0; i < G.length; i++)</pre>
    if(!G[i].vis)
      fDFS(G[i], sorting);
  for(int i = 0; i < G.length; i++)</pre>
    G[i].vis = false;
  //then go through the sort and do another DFS on G^T
  //each tree is a component and gets a unique number
  int cnt = 0;
  for(int i : sorting)
    if(!G[i].vis)
      sDFS(G[i], cnt++);
```

**MD5:**  $1e023258a9249a1bc0d6898b670139ea | <math>\mathcal{O}(|V| + |E|)$ 

### 3.20 Suurballe

Finds the min cost of two edge disjoint paths in a graph. If vertex disjoint needed, split vertices.

*Input:* Graph G, Source s, Target t

Output: Min cost as int

```
public static int suurballe(Vertex[] G, int s, int t){
   //this uses the usual dijkstra implementation with
       stored predecessors
   dijkstra(G, s);
```

```
//Modifying weights
     for(int i = 0; i < G.length; i++)</pre>
       for(Edge e : G[i].adj)
         e.dist = e.dist - e.t.dist + G[i].dist;
     //reversing path and storing used edges
     int old = t;
     int pre = G[t].pre;
10
     HashMap<Integer, Integer> hm = new HashMap<Integer,</pre>
         Integer>();
     while(pre != -1) {
12
       for(int i = 0; i < G[pre].adj.size(); i++) {</pre>
13
         if(G[pre].adj.get(i).t.id == old) {
           hm.put(pre * G.length + old, G[pre].adj.get(i)
15
                .tdist);
           G[pre].adj.remove(i);
           break;
17
18
         }
19
       boolean found = false;
20
       for(int i = 0; i < G[old].adj.size(); i++) {</pre>
                                                               12
21
         if(G[old].adj.get(i).t.id == pre) {
                                                               13
22
           G[old].adj.get(i).dist = 0;
23
24
           found = true;
                                                               15
           break;
25
                                                               16
26
         }
                                                               17
27
       }
                                                               18
       if(!found)
28
                                                               19
         G[old].adj.add(new Edge(G[pre], 0));
29
                                                               20
       old = pre;
30
                                                               21
       pre = G[pre].pre;
31
                                                               22
32
                                                               23
     //reset graph
33
                                                               24
     for(int i = 0; i < G.length; i++) {</pre>
34
                                                               25
       G[i].pre = -1;
35
       G[i].dist = Integer.MAX_VALUE;
36
       G[i].vis = false;
37
38
39
     dijkstra(G, s);
40
     //store edges of second path
41
     old = t;
42
     pre = G[t].pre;
43
     while(pre != -1) {
44
       //store edges and remove if reverse
45
       for(int i = 0; i < G[pre].adj.size(); i++) {</pre>
46
         if(G[pre].adj.get(i).t.id == old) {
47
           if(!hm.containsKey(pre + old * G.length))
48
              hm.put(pre * G.length + old, G[pre].adj.get(
                  i).tdist):
50
              hm.remove(pre + old * G.length);
51
52
           break:
53
54
       old = pre;
55
56
       pre = G[pre].pre;
                                                               12
57
                                                               13
     //sum up weights
                                                               14
     int sum = 0;
                                                               15
     for(int i : hm.keySet())
       sum += hm.get(i);
                                                               16
     return sum;
62
                                                               18
```

#### MD5: 222dac2a859273efbbdd0ec0d6285dd7 $\mid \mathcal{O}(VloqV + E) \mid$

## 3.21 Kahns Algorithm for TS

Gives the specific TS where Vertices first in G are first in the sort-

```
public static LinkedList<Integer> TS(Vertex[] G) {
  LinkedList<Integer> sorting = new LinkedList<Integer</pre>
  PriorityQueue<Vertex> p = new PriorityQueue<Vertex
      >();
  //inc counts the number of incoming edges, if they
      are zero put the vertex in the queue
  for(int i = 0; i < G.length; i++) {</pre>
   if(G[i].inc == 0) {
      p.add(G[i]);
      G[i].vis = true;
 }
 while(!p.isEmpty()) {
   Vertex u = p.poll();
   sorting.add(u.id);
   //update inc
   for(Vertex v : u.out) {
     if(v.vis) continue;
     v.inc--;
      if(v.inc == 0) {
        p.add(v);
        v.vis = true;
      }
   }
 }
 return sorting;
```

**MD5:** e53d13c7467873d1c5d210681f4450d8 |  $\mathcal{O}(V+E)$ 

#### 3.22 **Topological Sort**

19

20

21

```
public static LinkedList<Integer> TS(Vertex[] G) {
    LinkedList<Integer> sorting = new LinkedList<Integer</pre>
        >();
    for(int i = 0; i < G.length; i++)</pre>
      if(!G[i].vis)
        recTS(G[i], sorting);
      //check sorting for a -1 if the graph is not
          necessarily dag
      //maybe checking if there are too many values in
          sorting is easier?!
      return sorting;
  }
  public static LinkedList<Integer> recTS(Vertex u,
      LinkedList<Integer> sorting) {
    u.vis = true;
    for(Vertex v : u.adj)
      if(v.vis)
        //the -1 indicates that it will not be possible
             to find an TS
        //there might be a much faster and elegant way (
             flag?!)
        sorting.addFirst(-1);
      else
        recTS(v, sorting);
    sorting.addFirst(u.id);
    return sorting;
22 }
```

**MD5:** f6459575bf0d53344ddd9e5daf1dfbb8 |  $\mathcal{O}(|V| + |E|)$ 

## **3.23** Tuple

Simple tuple class used for priority queue in Dijkstra and Prim

```
class Tuple implements Comparable<Tuple> {
  int id;
  int dist;

public Tuple(int id, int dist) {
  this.id = id;
  this.dist = dist;
}

public int compareTo(Tuple other) {
  return Integer.compare(this.dist, other.dist);
}
```

**MD5:** fb1aa32dc32b9a2bac6f44a84e7f82c7 |  $\mathcal{O}(1)$ 

#### 3.24 Reference for Vertex classes

Used in many graph algorithms, implements a vertex with its edges. Needs testing.

```
class Vertex {
    int id;
    boolean vis = false;
    int pre = -1;
    //for dijkstra and prim
    int dist = Integer.MAX_VALUE;
                                                            11
    //for SCC store number indicating the dedicated
         component
    int comp = -1;
11
12
    //for DFS we could store the start and finishing
13
        times
    int dtime = -1:
14
    int ftime = -1;
15
16
    //use an ArrayList of Edges if those information are
17
         needed
    ArrayList<Edge> adj = new ArrayList<Edge>();
    //use an ArrayList of Vertices else
    ArrayList<Vertex> adj = new ArrayList<Vertex>();
    //use two ArrayLists for SCC
    ArrayList<Vertex> in = new ArrayList<Vertex>();
22
    ArrayList<Vertex> out = new ArrayList<Vertex>();
23
24
    //for EdmondsKarp we need a HashMap to store Edges,
25
        Integer is target
    HashMap<Integer, Edge> adj = new HashMap<Integer,</pre>
26
         Edge>();
27
                                                            11
    //for bipartite graph check
28
                                                            12
    int color = -1;
29
                                                            13
   //we store as key the target
```

```
public Vertex(int id) {
   this.id = id;
}
```

**MD5:** 90e8120ce9f665b07d4388e30395dd36 |  $\mathcal{O}(1)$ 

#### 4 Math

#### 4.1 Binomial Coefficient

Gives binomial coefficient (n choose k)

```
public static long bin(int n, int k) {
  if (k == 0)
    return 1;
  else if (k > n/2)
    return bin(n, n-k);
  else
    return n*bin(n-1, k-1)/k;
}
```

**MD5:** 32414ba5a444038b9184103d28fa1756 |  $\mathcal{O}(k)$ 

#### 4.2 Binomial Matrix

Gives binomial coefficients for all  $K \le N$ .

```
public static long[][] binomial_matrix(int N, int K) {
   long[][] B = new long[N+1][K+1];
   for (int k = 1; k <= K; k++)
      B[0][k] = 0;
   for (int m = 0; m <= N; m++)
      B[m][0] = 1;
   for (int m = 1; m <= N; m++)
      for (int k = 1; k <= K; k++)
      B[m][k] = B[m-1][k-1] + B[m-1][k];
   return B;
}</pre>
```

**MD5:** e6f103bd9852173c02a1ec64264f4448 |  $\mathcal{O}(N \cdot K)$ 

#### 4.3 Divisability

Calculates (alternating) k-digitSum for integer number given by M.

```
public static long digit_sum(String M, int k, boolean
      alt) {
    long dig_sum = 0;
    int vz = 1;
    while (M.length() > k) {
      if (alt) vz *= −1;
      dig_sum += vz*Integer.parseInt(M.substring(M.
          length()-k));
      M = M.substring(0, M.length()-k);
    }
    if (alt)
      vz ∗= -1;
    dig_sum += vz*Integer.parseInt(M);
    return dig_sum;
  }
15 // example: divisibility of M by 13
```

```
public static boolean divisible13(String M) {
   return digit_sum(M, 3, true)%13 == 0;
   }
}
```

MD5: 33b3094ebf431e1e71cd8e8db3c9cdd6 |  $\mathcal{O}(|M|)$ 

#### 4.4 Graham Scan

Multiple unresolved issues: multiple points as well as collinearity. N denotes the number of points

```
public static Point[] grahamScan(Point[] points) {
    //find leftmost point with lowest y-coordinate
    int xmin = Integer.MAX_VALUE;
    int ymin = Integer.MAX_VALUE;
    int index = -1;
    for(int i = 0; i < points.length; i++) {</pre>
       if(points[i].y < ymin || (points[i].y == ymin &&</pre>
           points[i].x < xmin)) {</pre>
                                                             63
         xmin = points[i].x;
                                                             64
         ymin = points[i].y;
                                                             65
         index = i;
10
                                                             66
      }
11
                                                             67
12
13
    //get that point to the start of the array
    Point tmp = new Point(points[index].x, points[index
14
         ].y);
    points[index] = points[0];
15
    points[0] = tmp;
16
17
    for(int i = 1; i < points.length; i++)</pre>
                                                             73
      points[i].src = points[0];
18
                                                             74
    Arrays.sort(points, 1, points.length);
19
    //for collinear points eliminate all but the
20
         farthest
21
    boolean[] isElem = new boolean[points.length];
    for(int i = 1; i < points.length-1; i++) {</pre>
       Point a = new Point(points[i].x - points[i].src.x,
            points[i].y - points[i].src.y);
       Point b = new Point(points[i+1].x - points[i+1].
                                                             80
           src.x, points[i+1].y - points[i+1].src.y);
                                                             81
       if(Calc.crossProd(a, b) == 0)
                                                             82
        isElem[i] = true;
                                                             83
27
    //works only if there are more than three non-
                                                             84
28
                                                             85
         collinear points
                                                             86
    Stack<Point> s = new Stack<Point>();
29
                                                             87
    int i = 0;
                                                             88
    for(; i < 3; i++) {</pre>
31
      while(isElem[i++]);
32
      s.push(points[i]);
33
                                                             91
34
    for(; i < points.length; i++) {</pre>
35
       if(isElem[i]) continue;
36
                                                             94
      while(true) {
37
         Point first = s.pop();
38
         Point second = s.pop();
39
         s.push(second);
40
         Point a = new Point(first.x - second.x, first.y
41
             - second.y);
         Point b = new Point(points[i].x - second.x,
42
             points[i].y - second.y);
         //use >= if straight angles are needed
43
         if(Calc.crossProd(a, b) > 0) {
           s.push(first);
45
           s.push(points[i]);
46
           break;
47
48
```

```
}
  Point[] convexHull = new Point[s.size()];
  for(int j = s.size()-1; j >= 0; j--)
    convexHull[j] = s.pop();
  return convexHull;
  /*Sometimes it might be necessary to also add points
       to the convex hull that form a straight angle.
      The following lines of code achieve this. Only
      at the first and last diagonal we have to add
      those. Of course the previous return-statement
      has to be deleted as well as allowing straight
      angles in the above implementation. */
}
class Point implements Comparable<Point> {
  Point src; //set seperately in GrahamScan method
  int x;
  int y;
  public Point(int x, int y) {
    this.x = x;
    this.y = y;
  //might crash if one point equals src
  //major issues with multiple points on same location
  public int compareTo(Point cmp) {
  Point a = new Point(this.x - src.x, this.y - src.y);
  Point b = new Point(cmp.x - src.x, cmp.y - src.y);
  //checks if points are identical
  if(a.x == b.x && a.y == b.y) return 0;
  //if same angle, sort by dist
  if(Calc.crossProd(a, b) == 0 && Calc.dotProd(a, b) >
       0)
    return Integer.compare(Calc.dotProd(a, a), Calc.
        dotProd(b, b));
  //angle of a is 0, thus b>a
  if(a.y == 0 \&\& a.x > 0) return -1;
  //angle of b is 0, thus a>b
  if(b.y == 0 \&\& b.x > 0) return 1;
  //a ist between 0 and 180, b between 180 and 360
  if(a.y > 0 && b.y < 0) return -1;
  if(a.y < 0 && b.y > 0) return 1;
  //return negative value if cp larger than zero
  return Integer.compare(0, Calc.crossProd(a, b));
  }
class Calc {
  public static int crossProd(Point p1, Point p2) {
    return p1.x * p2.y - p2.x * p1.y;
  public static int dotProd(Point p1, Point p2) {
    return p1.x * p2.x + p1.y * p2.y;
```

**MD5:** 2555d858fadcfe8cb404a9c52420545d  $\mid \mathcal{O}(N \log N)$ 

#### 4.5 Iterative EEA

Berechnet den ggT zweier Zahlen a und b und deren modulare Inverse  $x=a^{-1} \mod b$  und  $y=b^{-1} \mod a$ .

```
// Extended Euclidean Algorithm - iterativ
public static long[] eea(long a, long b) {
```

```
if (b > a) {
      long tmp = a;
      a = b;
      b = tmp;
    long x = 0, y = 1, u = 1, v = 0;
    while (a != 0) {
      long q = b / a, r = b % a;
      long m = x - u * q, n = y - v * q;
      b = a; a = r; x = u; y = v; u = m; v = n;
12
    long gcd = b;
    // x = a^{-1} \% b, y = b^{-1} \% a
                                                            55
15
    // ax + by = gcd
    long[] erg = { gcd, x, y };
                                                            57
17
    return erg;
18
19 }
```

**MD5:** 81fe8cd4adab21329dcbe1ce0499ee75 |  $\mathcal{O}(\log a + \log b)$ 

63

65

# 4.6 Polynomial Interpolation

```
66
  public class interpol {
                                                                67
     // divided differences for points given by vectors x^{68}
          and y
     public static rat[] divDiff(rat[] x, rat[] y) {
                                                               71
       rat[] temp = y.clone();
                                                               72
       int n = x.length;
                                                               73
       rat[] res = new rat[n];
                                                               74
       res[0] = temp[0];
                                                               75
       for (int i=1; i < n; i++) {</pre>
         for (int j = 0; j < n-i; j++) {</pre>
10
11
           temp[j] = (temp[j+1].sub(temp[j])).div(x[j+i].
                sub(x[j]));
                                                               79
                                                               80
13
         res[i] = temp[0];
                                                               81
14
                                                               82
15
       return res;
                                                               83
16
                                                               84
17
                                                               85
     // evaluates interpolating polynomial p at t for
                                                               86
                                                                87
     // x-coordinates and divided differences
19
                                                               88
     public static rat p(rat t, rat[] x, rat[] dD) {
20
                                                                89
       int n = x.length;
21
       rat p = new rat(0);
22
                                                                91
       for (int i = n-1; i > 0; i--) {
23
                                                               92
         p = (p.add(dD[i])).mult(t.sub(x[i-1]));
24
                                                                93
25
                                                               94
       p = p.add(dD[0]);
26
                                                                95
27
       return p;
28
29 }
30
31 // implementation of rational numbers
32 class rat {
                                                               100
33
     public long c;
34
                                                               102
     public long d;
35
                                                               103
36
                                                               104
     public rat (long c, long d) {
37
                                                               105
       this.c = c;
38
       this.d = d;
39
       this.shorten();
40
    }
41
42
```

```
public rat (long c) {
    this.c = c;
    this.d = 1;
 public static long ggT(long a, long b) {
    while (b != 0) {
     long h = a%b;
      a = b;
      b = h;
   }
    return a;
 }
 public static long kgV(long a, long b) {
    return a*b/ggT(a,b);
 public static rat[] commonDenominator(rat[] c) {
    long kgV = 1;
    for (int i = 0; i < c.length; i++) {</pre>
      kgV = kgV(kgV, c[i].d);
    for (int i = 0; i < c.length; i++) {</pre>
      c[i].c *= kgV/c[i].d;
      c[i].d *= kgV/c[i].d;
    return c;
 }
 public void shorten() {
    long ggT = ggT(this.c, this.d);
    this.c = this.c / ggT;
    this.d = this.d / ggT;
    if (d < 0) {
      this.d *= -1;
      this.c *= -1;
 }
 public String toString() {
    if (this.d == 1) return ""+c;
    return ""+c+"/"+d;
 public rat mult(rat b) {
    return new rat(this.c*b.c, this.d*b.d);
 public rat div(rat b) {
    return new rat(this.c*b.d, this.d*b.c);
 public rat add(rat b) {
    long new_d = kgV(this.d, b.d);
    long new_c = this.c*(new_d/this.d) + b.c*(new_d/b.
    return new rat(new_c, new_d);
 public rat sub(rat b) {
    return this.add(new rat(-b.c, b.d));
}
```

#### 4.7 **Root of permutation**

Calculates the K'th root of permutation of size N. Number at place i indicates where this dancer ended. needs commenting

```
public static int[] rop(int[] perm, int N, int K) {
     boolean[] incyc = new boolean[N];
     int[] cntcyc = new int[N+1];
     int[] g = new int[N+1];
     int[] needed = new int[N+1];
     for(int i = 1; i < N+1; i++) {</pre>
       int j = i;
       int k = K;
       int div;
       while(k > 1 && (div = gcd(k, i)) > 1) {
10
         k /= div;
11
         j *= div;
12
13
       needed[i] = j;
14
       g[i] = gcd(K, j);
15
16
17
     HashMap<Integer, ArrayList<Integer>> hm = new
18
         HashMap<Integer, ArrayList<Integer>>();
     for(int i = 0; i < N; i++) {</pre>
19
20
       if(incyc[i]) continue;
21
       ArrayList<Integer> cyc = new ArrayList<Integer>();
22
       cyc.add(i);
       incyc[i] = true;
23
24
       int newelem = perm[i];
25
       while(newelem != i) {
26
         cyc.add(newelem);
         incyc[newelem] = true;
27
28
         newelem = perm[newelem];
       int len = cyc.size();
31
       cntcyc[len]++;
32
       if(hm.containsKey(len)) {
33
         hm.get(len).addAll(cyc);
34
       } else {
35
         hm.put(len, cyc);
36
37
     boolean end = false;
38
     for(int i = 1; i < N+1; i++) {</pre>
39
       if(cntcyc[i] % g[i] != 0) end = true;
40
41
42
     if(end) {
43
       //not possible
       return null;
44
     } else {
45
       int[] out = new int[N];
46
       for(int length = 0; length < N; length++) {</pre>
47
         if(!hm.containsKey(length)) continue;
48
         ArrayList<Integer> p = hm.get(length);
49
         int totalsize = p.size();
50
         int diffcyc = totalsize / needed[length];
51
         for(int i = 0; i < diffcyc; i++) {</pre>
52
           int[] c = new int[needed[length]];
53
           for(int it = 0; it < needed[length]; it++) {</pre>
54
             c[it] = p.get(it + i * needed[length]);
55
           }
56
           int move = K / (needed[length]/length);
57
           int[] rewind = new int[needed[length]];
58
           for(int set = 0; set < needed[length]/length;</pre>
59
                                                              12
                set++) {
             int pos = set * length;
             for(int it = 0; it < length; it++) {</pre>
61
```

```
rewind[pos] = c[it + set * length];
          pos = ((pos - set * length + move) %
               length)+ set * length;
        }
      int[] merge = new int[needed[length]];
      for(int it = 0; it < needed[length]/length; it</pre>
           ++) {
        for(int set = 0; set < length; set++) {</pre>
          merge[set * needed[length] / length + it]
               = rewind[it * length + set];
        }
      }
      for(int it = 0; it < needed[length]; it++) {</pre>
         out[merge[it]] = merge[(it+1) % needed[
             length]];
    }
  }
  return out;
}
```

**MD5:** b446a7c21eddf7d14dbdc71174e8d498 |  $\mathcal{O}(?)$ 

#### 4.8 **Sieve of Eratosthenes**

Calculates Sieve of Eratosthenes.

77

*Input:* A integer N indicating the size of the sieve.

Output: A boolean array, which is true at an index i iff i is prime.

```
public static boolean[] sieveOfEratosthenes(int N) {
  boolean[] isPrime = new boolean[N+1];
  for (int i=2; i<=N; i++) isPrime[i] = true;</pre>
  for (int i = 2; i*i <= N; i++)
    if (isPrime[i])
      for (int j = i*i; j <= N; j+=i)</pre>
        isPrime[j] = false;
  return isPrime;
```

**MD5:** 95704ae7c1fe03e91adeb8d695b2f5bb | O(n)

#### **Greatest Common Devisor**

Calculates the gcd of two numbers a and b or of an array of numbers input.

*Input:* Numbers a and b or array of numbers input

Output: Greatest common devisor of the input

```
private static long gcd(long a, long b) {
      while (b > 0) {
           long temp = b;
           b = a \% b; // % is remainder
           a = temp;
      }
      return a;
  }
  private static long gcd(long[] input) {
      long result = input[0];
      for(int i = 1; i < input.length; i++)</pre>
      result = gcd(result, input[i]);
13
      return result;
15 }
```

**MD5:** 48058e358a971c3ed33621e3118818c2  $\mid \mathcal{O}(\log a + \log b)$ 

## 4.10 Least Common Multiple

Calculates the lcm of two numbers a and b or of an array of numbers input.

 ${\it Input:}\ {\it Numbers}\ a\ {\it and}\ b\ {\it or}\ {\it array}\ {\it of}\ {\it numbers}\ input$ 

Output: Least common multiple of the input

```
private static long lcm(long a, long b) {
    return a * (b / gcd(a, b));
}

private static long lcm(long[] input) {
    long result = input[0];
    for(int i = 1; i < input.length; i++)
        result = lcm(result, input[i]);
    return result;
}</pre>
```

**MD5:** 3cfaab4559ea05c8434d6cf364a $24546 | <math>\mathcal{O}(\log a + \log b)$ 

#### 5 Misc

## 5.1 Binary Search

Binary searchs for an element in a sorted array.

Input: sorted array to search in, amount N of elements in array, element to search for a

Output: returns the index of a in array or -1 if array does  $not_{10}$  contain a

```
public static int BinarySearch(int[] array,
                                        int N, int a) {
    int lo = 0;
    int hi = N-1;
    // a might be in interval [lo,hi] while lo <= hi
    while(lo <= hi) {</pre>
       int mid = (lo + hi) / 2;
       // if a > elem in mid of interval,
       // search the right subinterval
       if(array[mid] < a)</pre>
10
        lo = mid+1;
11
       // else if a < elem in mid of interval,
12
       // search the left subinterval
13
       else if(array[mid] > a)
14
        hi = mid-1;
15
       // else a is found
      else
17
         return mid;
19
    // array does not contain a
    return -1;
21
22 }
```

**MD5:** 203da61f7a381564ce3515f674fa82a4  $\mid \mathcal{O}(\log n)$ 

#### 5.2 Next number with n bits set

From x the smallest number greater than x with the same amount  $_{5}$  of bits set is computed. Little changes have to be made, if the cal- $_{6}$ 

culated number has to have length less than 32 bits.

*Input*: number x with n bits set (x = (1 << n) - 1)

Output: the smallest number greater than x with n bits set

```
public static int nextNumber(int x) {
   //break when larger than limit here
   if(x == 0) return 0;
   int smallest = x & -x;
   int ripple = x + smallest;
   int new_smallest = ripple & -ripple;
   int ones = ((new_smallest/smallest) >> 1) - 1;
   return ripple | ones;
}
```

**MD5:** 2d8a79cb551648e67fc3f2f611a4f63c  $\mid \mathcal{O}(1)$ 

#### **5.3** Next Permutation

Returns true if there is another permutation. Can also be used to compute the nextPermutation of an array.

*Input:* String a as char array

*Output:* true, if there is a next permutation of a, false otherwise

```
public static boolean nextPermutation(char[] a) {
  int i = a.length - 1;
  while(i > 0 && a[i-1] >= a[i])
    i--;
  if(i <= 0)
    return false;
  int j = a.length - 1;
 while (a[j] <= a[i-1])
    j--;
  char tmp = a[i - 1];
 a[i - 1] = a[j];
 a[j] = tmp;
 j = a.length - 1;
  while(i < j) {
    tmp = a[i];
    a[i] = a[j];
    a[j] = tmp;
    i++;
    j--;
 }
 return true;
```

**MD5:** 7d1fe65d3e77616dd2986ce6f2af089b |  $\mathcal{O}(n)$ 

# 6 String

# 6.1 Knuth-Morris-Pratt

*Input:* String s to be searched, String w to search for. *Output:* Array with all starting positions of matches

```
public static ArrayList<Integer> kmp(String s, String
    w) {
    ArrayList<Integer> ret = new ArrayList<>();
    //Build prefix table
    int[] N = new int[w.length()+1];
    int i=0; int j =-1; N[0]=-1;
    while (i<w.length()) {</pre>
```

```
while (j>=0 && w.charAt(j) != w.charAt(i))
        j = N[j];
       i++; j++; N[i]=j;
10
    //Search string
11
    i=0; j=0;
12
    while (i<s.length()) {</pre>
13
      while (j>=0 && s.charAt(i) != w.charAt(j))
         j = N[j];
15
         i++; j++;
         if (j==w.length()) { //match found
17
         ret.add(i-w.length()); //add its start index
         j = N[j];
19
                                                               15
      }
20
    }
                                                               17
21
    return ret;
22
                                                               18
```

**MD5:**  $3cb03964744db3b14b9bff265751c84b \mid \mathcal{O}(n+m)$ 

#### **6.2** Levenshtein Distance

Calculates the Levenshtein distance for two strings (minimum<sup>25</sup> number of insertions, deletions, or substitutions).

*Input:* A string a and a string b.

Output: An integer holding the distance.

```
public static int levenshteinDistance(String a, String 31
        b) {
    a = a.toLowerCase();
                                                              33
    b = b.toLowerCase();
    int[] costs = new int[b.length() + 1];
    for (int j = 0; j < costs.length; j++)</pre>
      costs[j] = j;
    for (int i = 1; i <= a.length(); i++) {</pre>
       costs[0] = i;
10
       int nw = i - 1;
11
       for (int j = 1; j <= b.length(); j++) {</pre>
12
         int cj = Math.min(1 + Math.min(costs[j], costs[j
13
           a.charAt(i - 1) == b.charAt(j - 1) ? nw : nw +
                1);
         nw = costs[i];
15
         costs[j] = cj;
16
17
    }
18
    return costs[b.length()];
19
  }
20
```

**MD5:** 79186003b792bc7fd5c1ffbbcfc2b1c6 |  $\mathcal{O}(|a| \cdot |b|)$ 

## **6.3** Longest Common Subsequence

Finds the longest common subsequence of two strings.

*Input:* Two strings string1 and string2.

Output: The LCS as a string.

```
public static String longestCommonSubsequence(String 22
    string1, String string2) {
    char[] s1 = string1.toCharArray();
    char[] s2 = string2.toCharArray();
    int[][] num = new int[s1.length + 1][s2.length + 1]; 26
    // Actual algorithm
22
```

```
for (int i = 1; i <= s1.length; i++)</pre>
    for (int j = 1; j <= s2.length; j++)</pre>
      if (s1[i - 1] == s2[j - 1])
        num[i][j] = 1 + num[i - 1][j - 1];
        num[i][j] = Math.max(num[i - 1][j], num[i][j - 1][j]
  // System.out.println("length of LCS = " + num[s1.
      length][s2.length]);
  int s1position = s1.length, s2position = s2.length;
  List<Character> result = new LinkedList<Character>()
  while (s1position != 0 && s2position != 0) {
    if (s1[s1position - 1] == s2[s2position - 1]) {
      result.add(s1[s1position - 1]);
      s1position--;
      s2position--;
    } else if (num[s1position][s2position - 1] >= num[
        s1position][s2position])
      s2position--;
    else
      s1position--;
  Collections.reverse(result);
  char[] resultString = new char[result.size()];
  int i = 0;
  for (Character c : result) {
    resultString[i] = c;
  return new String(resultString);
}
```

**MD5:** 4dc4ee3af14306bea5724ba8a859d5d4  $\mid \mathcal{O}(n \cdot m)$ 

# 6.4 Longest common substring

22

23

gets two String and finds all LCSs and returns them in a set

```
public static TreeSet<String> LCS(String a, String b)
  int[][] t = new int[a.length()+1][b.length()+1];
  for(int i = 0; i <= b.length(); i++)</pre>
    t[0][i] = 0;
  for(int i = 0; i <= a.length(); i++)</pre>
    t[i][0] = 0;
  for(int i = 1; i <= a.length(); i++)</pre>
    for(int j = 1; j <= b.length(); j++)</pre>
      if(a.charAt(i-1) == b.charAt(j-1))
        t[i][j] = t[i-1][j-1] + 1;
      else
        t[i][j] = 0;
  int max = -1:
  for(int i = 0; i <= a.length(); i++)</pre>
    for(int j = 0; j <= b.length(); j++)</pre>
      if(max < t[i][j])
        max = t[i][j];
  if(max == 0 || max == -1)
    return new TreeSet<String>();
  TreeSet<String> res = new TreeSet<String>();
  for(int i = 0; i <= a.length(); i++)</pre>
    for(int j = 0; j <= b.length(); j++)</pre>
      if(max == t[i][j])
        res.add(a.substring(i-max, i));
  return res:
```

**MD5:** 9de393461e1faebe99af3ff8db380bde |  $\mathcal{O}(|a| * |b|)$ 

#### 7 **Math Roland**

# **Divisability Explanation**

 $D \mid M \Leftrightarrow D \mid \mathsf{digit\_sum}(\mathsf{M}, \mathsf{k}, \mathsf{alt})$ , refer to table for values of D, k, alt.

#### 7.2 **Combinatorics**

- Variations (ordered): k out of n objects (permutations for k = n)
  - without repetition:

$$M = \{(x_1, \dots, x_k) : 1 \le x_i \le n, \ x_i \ne x_j \text{ if } i \ne j\},\ |M| = \frac{n!}{(n-k)!}$$

- with repetition:

$$M = \{(x_1, \dots, x_k) : 1 \le x_i \le n\}, |M| = n^k$$

- Combinations (unordered): k out of n objects
  - without repetition:  $M = \{(x_1, \ldots, x_n) : x_i \in$  $\{0,1\}, x_1 + \ldots + x_n = k\}, |M| = \binom{n}{k}$
  - with repetition:  $M = \{(x_1, \ldots, x_n) : x_i \in$  $\{0,1,\ldots,k\}, x_1+\ldots+x_n=k\}, |M|=\binom{n+k-1}{k}$
- Ordered partition of numbers:  $x_1 + \ldots + x_k = n$  (i.e. 1+3 = 3+1 = 4 are counted as 2 solutions)
  - #Solutions for  $x_i \in \mathbb{N}_0$ :  $\binom{n+k-1}{k-1}$
  - #Solutions for  $x_i \in \mathbb{N}$ :  $\binom{n-1}{k-1}$
- Unordered partition of numbers:  $x_1 + \ldots + x_k = n$  (i.e. 1+3 = 3+1 = 4 are counted as 1 solution)
  - #Solutions for  $x_i \in \mathbb{N}$ :  $P_{n,k} = P_{n-k,k} + P_{n-1,k-1}$ where  $P_{n,1} = P_{n,n} = 1$
- Derangements (permutations without fixed points):  $n! \sum_{k=0}^{n} \frac{(-1)^k}{k!} = \lfloor \frac{n!}{e} + \frac{1}{2} \rfloor$

#### 7.3 **Polynomial Interpolation**

#### **7.3.1** Theory

Problem: for  $\{(x_0, y_0), \dots, (x_n, y_n)\}\$  find  $p \in \Pi_n$  with  $p(x_i) =$  $y_i$  for all  $i = 0, \ldots, n$ .

Solution:  $p(x) = \sum_{i=0}^{n} \gamma_{0,i} \prod_{j=0}^{i-1} (x - x_i)$  where  $\gamma_{j,k} = y_j$  for k = 0

and  $\gamma_{j,k} = \frac{\gamma_{j+1,k-1} - \gamma_{j,k-1}}{x_{j+k} - x_j}$  otherwise. Efficient evaluation of p(x):  $b_n = \gamma_{0,n}$ ,  $b_i = b_{i+1}(x - x_i) + \gamma_{0,i}$ for i = n - 1, ..., 0 with  $b_0 = p(x)$ .

## Fibonacci Sequence

#### 7.4.1 Binet's formula

$$\begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Rightarrow f_n = \frac{1}{\sqrt{5}} (\phi^n - \tilde{\phi}^n) \text{ where }$$

$$\phi = \frac{1+\sqrt{5}}{2} \text{ and } \tilde{\phi} = \frac{1-\sqrt{5}}{2}.$$

#### 7.4.2 Generalization

$$g_n = \frac{1}{\sqrt{5}} (g_0(\phi^{n-1} - \tilde{\phi}^{n-1}) + g_1(\phi^n - \tilde{\phi}^n)) = g_0 f_{n-1} + g_1 f_n$$
 for all  $g_0, g_1 \in \mathbb{N}_0$ 

#### 7.4.3 Pisano Period

Both  $(f_n \mod k)_{n \in \mathbb{N}_0}$  and  $(g_n \mod k)_{n \in \mathbb{N}_0}$  are periodic.

#### 7.5 Reihen

$$\begin{split} \sum_{i=1}^{n} i &= \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4} \\ \sum_{i=0}^{n} c^i &= \frac{c^{n+1}-1}{c-1}, c \neq 1, \sum_{i=0}^{\infty} c^i = \frac{1}{1-c}, \sum_{i=1}^{n} c^i = \frac{c}{1-c}, |c| < 1 \\ \sum_{i=0}^{n} ic^i &= \frac{nc^{n+2}-(n+1)c^{n+1}+c}{(c-1)^2}, c \neq 1, \sum_{i=0}^{\infty} ic^i = \frac{c}{(1-c)^2}, |c| < 1 \end{split}$$

#### 7.6 Binomialkoeffizienten

#### Catalanzahlen

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, C_{n+1} = \frac{4n+2}{n+2} C_n$$

#### 7.8 Geometrie

**Polygonfläche:**  $A = \frac{1}{2}(x_1y_2 - x_2y_1 + x_2y_3 - x_3y_2 + \cdots +$  $(x_{n-1}y_n - x_ny_{n-1} + x_ny_1 - x_1y_n)$ 

#### 7.9 Zahlentheorie

**Chinese Remainder Theorem:** Es existiert eine Zahl C, sodass:  $C \equiv a_1 \mod n_1, \cdots, C \equiv a_k \mod n_k, \operatorname{ggt}(n_i, n_j) = 1, i \neq j$ Fall k = 2:  $m_1 n_1 + m_2 n_2 = 1$  mit EEA finden.

Lösung ist  $x = a_1 m_2 n_2 + a_2 m_1 n_1$ .

Allgemeiner Fall: iterative Anwendung von k=2

**Eulersche**  $\varphi$ -Funktion:  $\varphi(n) = n \prod_{p|n} (1 - \frac{1}{n}), p$  prim  $\varphi(p) = p - 1, \varphi(pq) = \varphi(p)\varphi(q), p, q \text{ prim}$  $\varphi(p^k) = p^k - p^{k-1}, p, q \text{ prim}, k \ge 1$ 

**Eulers Theorem:**  $a^{\varphi(n)} \equiv 1 \mod n$ 

**Fermats Theorem:**  $a^p \equiv a \mod p, p \text{ prim}$ 

# 7.10 Faltung

$$(f * g)(n) = \sum_{m = -\infty}^{\infty} f(m)g(n - m) = \sum_{m = -\infty}^{\infty} f(n - m)g(m)$$

# 8 Java Knowhow

# 8.1 System.out.printf() und String.format()

Syntax: %[flags][width][.precision][conv]
flags:

left-justify (default: right)always output number sign

0 zero-pad numbers

(space) space instead of minus for pos. numbers

, group triplets of digits with,

width specifies output width

**precision** is for floating point precision **conv**:

d byte, short, int, long

f float, double

c char (use C for uppercase)

s String (use S for all uppercase)

# 8.2 Modulo: Avoiding negative Integers

```
int mod = (((nums[j] % D) + D) % D);
```

# 8.3 Speed up IO

Use

BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));

Use

Double.parseDouble(Scanner.next());