Digital Twin Office for Workspace Throughput Monitoring

Leveraging intelligent devices to provide smart office solutions

Milton Osiel Candela Leal, Mauricio Adolfo Ramírez Santos, Jorge de Jesús Lozoya Santos

ABSTRACT

Efficient usage of spaces and tools in a workspace is crucial when maximizing throughput in an input-process-output environment.

Current work shows an integrative DT of a shared workspace with an IoT infrastructure via a three-module integrative system's design and real-time implementation.

Modules consist of: Orders reported by employees on Bitrix24, a CRM; machine's state and operations done according to Q-lab, an API; employees' actions captured by CCTV cameras, processed via a CV algorithm with a DL model that follows the architecture of a CNN.

As a result, a real-time dashboard deliver a DSS: Shows the machines in terms of usage, time of operation remaining, conflicts between data sources, and employee actions.

INTRODUCTION

Human Action Recognition (HAR) may be either [1]: Sensor-based (gyroscope, pressure sensors, depth) [2] or vision-based (RBG, RBG-D) [3], vision-based approaches using DL and long CCTV recordings predict abnormalities with high accuracy [4].

METHODOLOGY

Based on CCTV footage, Bitrix24, Q-lab, as well as Intel® Realsense™ LiDAR Camera L515, and Puck Hi-Res Velodyne® LiDAR Sensor, create a DSS to assure machines' maximum throughput through a real-time DT dashboard visualization.

RESULTS

Depth analysis of employees' actions using Intel® Realsense™ LiDAR L515, additionally, 3D DT of the working lab reconstructed by cautiously moving the shelf with Puck Hi-Res Velodyne® LiDAR and recording point clouds via VeloView.

CONCLUSION

Through a well-defined and automatized methodology, model training would require little human intervention to generate a well-structured dataset in order to predict HAR, leveraging video auto-segmentation using CV on CCTV footage.

An integrative DT framework of IoT devices and tools to track actions done in machines inside an input-process-output workspace environment; would act as a DSS to follow resources' state by leveraging intelligent devices interconnection.

ACKNOWLEDGMENTS

Tecnológico de Monterrey, Xperto Integral Systems S.A. de C.V., and the Campus City Initiative.

REFERENCES

- [1] L. Minh Dang, Kyungbok Min, Hanxiang Wang, Md. Jalil Piran, Cheol Hee Lee, & Hyeonjoon Moon (2020). Sensor-based and vision-based human activity recognition: A comprehensive
- survey. Pattern Recognition, 108, 107561.

 2] Cornacchia, M., Ozcan, K., Zheng, Y., & Velipasalar, S. (2017). A Survey on Activity Detection
- and Classification Using Wearable Sensors. IEEE Sensors Journal, 17(2), 386-403.
 [3] Wang Pichao, Li Wanqing, Ogunbona Philip, Wan Jun, & Escalera Sergio (2018).
 RGB-D-based human motion recognition with deep learning: A survey. Computer Vision
- and Image Understanding, 171, 118-139.
 [4] Virender Singh, Swati Singh, & Pooja Gupta (2020). Real-Time Anomaly Recognition Through CCTV Using Neural Networks. Procedia Computer Science, 173, 254-263.

