// Херова туча всего из этой лекции из новой темы будет на РК, так что учи сиди (спиши похуй у нас Павловский

Условие выхода при методе Зейделя

$$||X^{k} - X^{*}|| \le \frac{||B_{2}||}{1 - ||B||} ||X^{k} - X^{k-1}||$$

 $||B_1|| + ||B_2|| < 1$

 $X^{k} = B_{1}X_{k} + B_{2}X^{k-1} + C$ $X^{k} - X^{*} = B_{1}X^{k} + B_{2}X^{k-1} - B - X^{*} + B_{2}X^{k} - B_{2}X^{k}$

 $X^{k} - X^{*} = B(X^{k} - X^{*}) + B_{2}(X^{k-1} - X^{k})$

 $||X^k - X^*|| \le ||B|| * ||X^k - X^*|| + ||B_2|| * ||X^{k-1} - X^k||$ $||X^{k} - X^{*}|| \le \frac{||B_{2}||}{1 - ||B||} ||X^{k} - X^{k-1}|| < \epsilon$

Условие Зейдела: $||X^k-X^{k-1}||<\frac{(|1-||B||)\epsilon}{||B_2||}<$ - если вот это, то уёбываем и точность будет удовлетворять заданной

f(x) = 0f(x) - непрерывна

Методы поиска решений линейных уравнений

Опр. x^* - простой корень: $f(x^*) = 0; f'(x^*) \neq 0$ x^* - корень кратности k: $f^{(i)}$ $(i=0...k-1;f^{(k)}$ $(x^*)
eq 0$

Отрезок локализации корня - отрезок [a,b], содержащий только один корень f(x) непрерывна на [a,b]Th. $\begin{cases} f(a) * f(b) \\ f(x) - \text{монотонна} \end{cases}$ → в отрезке есть хотя бы один корень

Итерационные методы поиска корней уравнения f(x) = 0

f(x) - непрерывна $\llbracket a,b brace$ - отрезок локализации

p=1 - линейная скорость

 $f(x) = 0; [a,b]; \epsilon$

f(a) * f(b) < 0

p=2 - квадратическая скорость p=3 - кубическая скорость

всех k справдлива следующая оценка:

 $X^k \to X^* \quad ||X^k - X^*|| < \epsilon$

приближений

, где $C_0 - const, \ 0 < q < 1$ Для одношагового итерационного метода существует такая окрестность \boldsymbol{X}^{*} , такая что если приближенной значение X^k принадлежит окрестности, то следующая оценка справедлива: $||X^{k-1} - X^*|| \le C * ||X^k - X^*||^p$

Итерационный метод **одношаговый,** если для вычисления \boldsymbol{X}^k -го приближения используется только одно предыдущее X^{k-1} приближение, и **n-шаговый**, если для вычисления X^k используется n предыдущих

Говорят, что метод **сходится со скоростью геометрической прогресии, знаменатель которой** q < 1, если для

 $||\boldsymbol{X}^k - \boldsymbol{X}^*|| \le C_0 * q^k$

, где $C-const,\ p$ - порядок скорости итерационного метода

Метод бисекции (метод деления отрезка пополам)

^ условия применимости метода бисекции $x^0 = \frac{a_0 + b_0}{2}$

Пусть шагов k, тогда после k шагов длина отрезка $\frac{b-a}{2^k}$ Априорная оценка погрешности: $\left| X^k - X^* \right| \le \frac{b - a}{2^k} < \epsilon$

 $2^k > \frac{b-a}{\epsilon} \to k > \log_2 \frac{b-a}{\epsilon}$ $\left| X^k - X^* \right| \le b_k - a_k < \epsilon$

 $c = \frac{a+b}{2}$ if f(a) * f(c) < 0

a = a, b = b

else a = c

$f(x) = 0 \to x = \phi(x); X^0$ $X^{1} = \phi\left(X^{0}\right)$ $X^{2} = \phi\left(X^{1}\right)$

Метод простой итерации (метод Якоби)

Метод бисекции всегда сходится (охуеть а я и не думал)

Сходится со скоростью $q=\frac{1}{2}$, линейная скорость

 $X^k = \phi\left(X^{k-1}\right)$ Тh. Достаточное условие сходимости метода, она же априорная оценка: Пусть в некоторой окрестности \boldsymbol{X}^* точного корня функция $\phi\left(\boldsymbol{x}\right)$ дифференцируема и удовлетворяет неравенству:

погрешности:

, тогда независимо от выбора начального приближения X^{0} , принадлежащего этой окрестности, последовательность приближений \overline{X}^k сходится к \overline{X}^* , и справедлива следующая априорная оценка абсолютной

 $\left|\phi'\left(x\right)\right| \leq q < 1$

 $\left|X^{k} - X^{*}\right| \le q^{k} * \left|X^{0} - X^{*}\right|$, то $\boldsymbol{X}^{*} = \phi\left(\boldsymbol{X}^{*}\right)$?

 $X^{k} = \phi\left(X^{k-1}\right) - \phi\left(x^{*}\right) = \phi'\left(\xi^{k-1}\right)\left(X^{k-1} - X^{*}\right)$

 $\left| X^{k} - X^{*} \right| \leq \left| \phi' \left(\xi^{k-1} \right) \right| * \left| X^{k-1} - X^{*} \right| \leq q \left| X^{k-1} - X^{*} \right| \leq q^{2} \left| X^{k-2} - X^{*} \right| \leq q^{k} \left| X^{0} - X^{*} \right|$ $q < 1, k \to \infty, q^k \to 0 = X^k \to X^k$ Чтобы выйти, будем юзать апостериорную оценку, которую будем считать на каждом шаге **Th.** Пусть в некоторой окрестности корня X^* функция f(x) дифференцируема и удовлетворяет неравенсту

 $|\phi'\left(x
ight)| \leq q < 1$, тогда справедлива апосториорная оценка абсолюнтой погрешности $|X^k - X^*| \le \frac{q}{1 - q} |X^k - X^{k-1}|$

Доказательство $\left| X^{k} - X^{*} = \phi \left(X^{k-1} \right) - \phi \left(X^{*} \right) = \phi' \left(\xi^{k-1} \right) \left(X^{k-1} - X^{*} \right) = \phi' \left(\xi^{k-1} \right) \left(X^{k-1} - X^{*} + X^{k} - X^{k} \right) \\ \left| X^{k} - X^{*} \right| \leq \left| \phi' \left(\xi^{k-1} \right) \right| * \left| X^{k-1} - X^{k} \right| + \left| \phi' \left(\xi^{k-1} \right) \right| * \left| X^{k} - X^{*} \right|$

Привидение уравнений к виду, удобному для методя Якоби (простых итераций)

$f(x) = 0 \rightarrow x = \phi(x) \quad max |\phi'(x)| = q < 1$ $x = x - \tau * f(x)$ $\tau \neq 0 = const$

 $\phi'(x) = 1 - \tau^* f'(x)$ $\left|1 - \tau * f'(x)\right| < 1$

 $-1 < 1 - \tau * f'(x) < 1$ $-2 < -\tau * f'(x) < 0$

 $0 < \tau * f'(x) < 2$ M = maxf'(x) $0 < \tau < \frac{2}{M}$

 $au = \frac{1}{M}$

 $\phi(x) = x - \tau * f(x)$ $\tau > 0, f'(x) > 0$

 $\left| X^k - X^* \right| \le \frac{q}{1 - q} \left| X^k - X^{k - 1} \right| < \epsilon$

Условие выхода

 $q = max |\phi'(x)|$

 $\left|X^{k} - X^{k-1}\right| < \frac{\epsilon (1-q)}{q}$