Assignment #4

Name:Cao Mingming ID:2018311770 cmm18@mails.tsinghua.edu.cn

Tsinghua University — October 21, 2018

1 Problem 1

Draw the curves similar to Fig. 2.4 for the range of 0 < d < 2R with the parameters that you are interested in e.g. R = 15cm, $\lambda = 0.37\mu m$ or R = 20cm, $\lambda = 0.78\mu m$ or R = 10cm, $\lambda = 0.532\mu m$.

Solution

According to eqaution 2.21 and 2.22 in textbook we know that,

$$\omega^{2} = \left(\frac{\lambda R}{n\pi}\right) \sqrt{\frac{d}{2R - d}}$$

$$\omega_{0}^{2} = \left(\frac{\lambda}{n\pi}\right) \sqrt{\frac{dR}{2} - \frac{d^{2}}{4}}$$
(1)

Choose the parameters as $R=20cm, \lambda=0.78\mu$, we can get the following figure.

Figure 1: Figure of ω

2 Problem 2

(a) Find the stability condition in terms of d_3 , d_1+2d_2 , and R. (b) Find the small waist within d_3 range and the large waist within d_1 in terms of g_1 (= $1-(d_1+2d_2)/R$), g_2 (= $1-d_3/R$) and R.

Figure 2: Optical cavity

Solution

According to figure 2 we could get the ABCD matrix as,

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{2}{R} & 1 \end{pmatrix} \begin{pmatrix} 1 & d_1 + 2d_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{2}{R} & 1 \end{pmatrix} \begin{pmatrix} 1 & d_3 \\ 0 & 1 \end{pmatrix}
= \begin{pmatrix} 2g_1 - 1 & R(g_1 + g_2 - 2g_1g_2) \\ -\frac{4g_1}{R} & 4g_1g_2 - 2g_1 - 1 \end{pmatrix}$$
(2)

where

$$g_1 = 1 - \frac{d_1 + 2d_2}{R}$$

$$g_2 = 1 - \frac{d_3}{R}$$
(3)

It is the same as what have sloved in two mirror situation which means we could get the stablity condition as,

$$|A+D| \le 2 \Rightarrow |4g_1g_2 - 2| \le 2 \Rightarrow |0 \le g_1g_2 \le 1$$
 (4)