Teoria Grafów

Wojciech Typer

Wprowadzenie do grafów prostych

Literatura:

- R.J. Wilson, Wprowadzenie do teorii grafów
- D.B. West, Introduction to Graph Theory

Definicja:

Grafem prostym G nazywamy parę zbiorów rozłącznych (V, E) takich, że $E \subseteq V^{(2)}$, gdzie $V^{(2)}$ to zbiór wszystkich 2-elementowych podzbiorów zbioru V. Elementy zbioru V nazywamy **wierzchołkami**, a elementy zbioru E – **krawędziami** grafu G. Zbiór V nazywamy zbiorem wierzchołków grafu G, a zbiór E – zbiorem krawędzi grafu G.

Oznaczenia:

- V zbiór wierzchołków
- E zbiór krawędzi

Jeżeli dwie krawędzie mają punkt wspólny, to mówimy, że są to krawędzie incydentne.

Przykład grafu prostego:

Załóżmy, że $V=\{a,b,c,d,e\}$, a $E=\{\{a,b\},\{a,c\},\{b,c\},\{c,d\},\{d,e\}\}$. Poniżej znajduje się wizualizacja tego grafu:

Powyższy graf jest multigrafem, zawierający multi krawędź między wierzchołkami b i c i pętlę przy wierzchołku a.

Definicja:

Grafem ogólnym G nazywamy trójkę uporządkowaną (V, E, ϕ) , gdzie V i E są zbiorami rozłącznymi, a ϕ jest funkcją przyporządkowującą każdej krawędzi z E jeden lub dwa (niekoniecznie różne) wierzchołki z V. Funkcję ϕ nazywamy funkcją incydencji.

Przykład $G = (V, E, \phi)$

V = 1, 2, 3

E = a, b, c, d

 $\phi(a) = \{1, 2\}$

 $\phi(b) = \{1, 2\}$

 $\phi(c) = \{2, 3\}$

 $\phi(d) = \{3\}$

Definicja:

Niech G = (V, E, j) będzie grafem ogólnym, $v \in V$.

Stopniem wierzchołka v nazywamy liczbę:

$$\deg(v) = 2 |\{e \in E_1 : v \in j(e)\}| + |\{e \in E_2 : v \in j(e)\}|$$

gdzie:

- E_1 zbiór pętli,
- E_2 zbiór krawędzi niebędących pętlami.

Lemat Eulera o uściskach dłoni

Niech G = (V, E, j) będzie grafem ogólnym.

Wówczas zachodzi:

$$\sum_{v \in V} \deg(v) = \sum_{v \in V} \left(2 \cdot \sum_{e \in E_1} [v \in j(e)] + \sum_{e \in E_2} [v \in j(e)] \right)$$

gdzie:

- E_1 zbiór pętli,
- E_2 zbiór krawędzi nie będących pętlami,

Ponieważ każda pętla jest incydentna tylko z jednym wierzchołkiem, lecz do stopnia liczymy ją podwójnie, oraz każda krawędź nie będąca pętlą jest incydentna z dwoma (różnymi) wierzchołkami, mamy:

$$\sum_{v \in V} \deg(v) = 2|E_1| + 2|E_2| = 2(|E_1| + |E_2|) = 2|E|$$

Zatem suma stopni wszystkich wierzchołków w grafie ogólnym równa się dwukrotności liczby krawędzi:

$$\sum_{v \in V} \deg(v) = 2|E|$$

Definicja:

Grafy $G_1 = (V_1, E_1)$ oraz $G_2 = (V_2, E_2)$ są **izomorficzne**, jeśli istnieje bijekcja

$$\varphi: V_1 \to V_2$$

taka, że dla każdych $v, w \in V_1$ zachodzi:

$$\{v, w\} \in E_1 \iff \{\varphi(v), \varphi(w)\} \in E_2.$$

Definicja:

Graf G = (V, E) nazywamy **dwudzielnym**, jeżeli istnieją rozłączne, niepuste zbiory $A, B \subseteq V$ takie, że:

- $A \cap B = \emptyset$, $A \neq \emptyset$, $B \neq \emptyset$,
- $A \cup B = V$.
- każda krawędź $e = \{v, w\} \in E$ spełnia: $v \in A$ oraz $w \in B$ (lub odwrotnie).

Definicja:

Niech G=(V,E) będzie grafem prostym. **Trójkątem** nazywamy trójkę parami różnych wierzchołków $v,w,z\in V$, takich że:

$$\{v,w\}\in E,\quad \{w,z\}\in E,\quad \{v,z\}\in E$$

Przykład:

Poniżej znajduje się graf będący trójkątem:

Przykłady grafów:

• Graf pełny

• Graf liniowy

• Cykl

• Graf pełny dwudzielny

• Gwiazda

Graf koło:

Definicja (dopełnienie grafu):

Dopełnieniem grafu G=(V,E) nazywamy graf $\overline{G}=(V,\overline{E})$, gdzie \overline{E} jest zbiorem wszystkich krawędzi, które nie należą do E, tzn.

$$\overline{E} = \{\{v, w\} : v, w \in V, v \neq w, \{v, w\} \notin E\}$$

Definicja (suma dwóch grafów):

Sumą grafów $G_1 = (V_1, E_1)$ oraz $G_2 = (V_2, E_2)$ (dla $V_1 \cap V_2 = \emptyset$) nazywamy graf $G = (V_1 \cup V_2, E_1 \cup E_2)$. Lemat 1

Niech G = (V, E) będzie grafem prostym bez trójkątów. Wtedy dla każdej krawędzi $\{v, w\} \in E$ zachodzi:

$$\deg(v) + \deg(w) \le n = |V|$$

Lemat 2

Niech G = (V, E). Wówczas:

$$\sum_{\{v,w\} \in E} (\deg(v) + \deg(w)) = \sum_{v \in V} (\deg(v))^2$$

Twierdzenie (Mantela):

Niech G=(V,E) będzie grafem prostym o $n\geq 3$ wierzchołkach, w którym nie ma trójkąta (czyli graf nie zawiera cyklu długości 3). Wówczas:

$$|E| \le \left| \frac{n^2}{4} \right|.$$

Osiągnięcie tej liczby krawędzi jest możliwe tylko wtedy, gdy G jest grafem pełnym dwudzielnym z częściami o rozmiarach $\left\lfloor \frac{n}{2} \right\rfloor$ i $\left\lceil \frac{n}{2} \right\rceil$.

Dowód:

Załóżmy, że G=(V,E) jest grafem prostym bez trójkąta, |V|=n. Niech A i B będą dwoma rozłącznymi podzbiorami V takimi, że $A\cup B=V$ i $|A|=\left\lfloor \frac{n}{2}\right\rfloor,\,|B|=\left\lceil \frac{n}{2}\right\rceil.$

Każda krawędź w grafie dwudzielnym $K_{|A|,|B|}$ łączy wierzchołek z A z wierzchołkiem z B, więc liczba krawędzi wynosi $|A| \cdot |B| = \left\lfloor \frac{n}{2} \right\rfloor \cdot \left\lceil \frac{n}{2} \right\rceil = \left\lfloor \frac{n^2}{4} \right\rfloor$.

Pokażemy, że żaden graf prosty bez trójkąta nie może mieć więcej krawędzi. Bez straty ogólności, dla dowolnej krawędzi $\{v,w\}$ wszystkie sąsiady v i w są różne, bo inaczej powstałby trójkąt. Zatem suma stopni wszystkich wierzchołków jest ograniczona, a dokładniej liczba krawędzi jest maksymalna wtedy, gdy G jest kompletnym grafem dwudzielnym, czyli $|E| \leq \left| \frac{n^2}{4} \right|$.

Dowód Niech v będzie wierzchołkiem o największym stopniu d. Jego sąsiedzi nie mogą być ze sobą połączeni, więc mogą mieć krawędzie tylko do pozostałych n-d-1 wierzchołków. Zliczając krawędzie i maksymalizując wyrażenie, otrzymujemy ograniczenie $|E| \leq \frac{n^2}{4}$.

Wniosek: Najwięcej krawędzi w grafie prostym bez trójkąta ma graf pełny dwudzielny z częściami możliwie równymi.

Graf Eulerowski:

Niech $G = (V, E, \gamma)$ będzie grafem ogólnym.

- Trasa to ciąg $v_0e_1v_1e_2v_2\dots$ taki, że $v_0,v_1,\dots\in V$ i $e_1,e_2,\dots\in E$
- Ścieżka to trasa, która nie powtarza krawędzi
- Ścieżka zamknięta to ścieżka, w której $v_0 = v_k$ (zaczyna się i kończy w tym samym wierzchołku)
- Droga to ścieżka, która nie powtarza wierzchołków.
- Cykl to ścieżka, w której wierzchołki się nie powtarzają, poza $v_0 = v_k$

Definicja: Niech $G=(V,E,\gamma),v,w\in V.$ Odległością v od w nazywamy d(v,w) - długość najkrótszej drogi z v do w. Jeżeli taka droga nie istnieje, to $d(v,w)=\infty$.

Definicja Niech $G = (V, E, \gamma)$ G jest spójny, jeżeli: $\forall v, w \in Vd(v, w) < \infty$

Fakt: Na zbiorze V można wprowadzić relację równoważności:

$$\forall v, w \in Vv \ w \equiv d(v, w) < \infty$$

Klasy abstrakcji relacji definiujemy tzw. spójne składowe (komponenty) grafu G

Definicja: Niech $G = (V, E, \gamma)$. G nazywamy eulerowskim, jeżeli w G istnieje ścieżka zamknięta, zawierająca każdą krawędź z E.

Definicja: Niech $G=(V,E,\gamma)$. G nazywamy pół eulerowskim, jeśli G nie jest eulerowski oraz w G istnieje ścieżka zawierająca każda krawędź z E

Lemat: Niech $G=(V,E,\gamma)$. Jeżeli $\forall v\in V,\deg(v)\geq 2$, to w G występuje cykl. **Tw. Eulera, 1736** Niech $G=(V,E,\gamma)$ G jest eulerowski \equiv G jest spójny i $\forall v\in V$ 2 | deg(v) **Definicja:** Niech $G=(V,E,\gamma), c(G)$ oznacza liczbe komponent grafu G. Krawędź $e\in E$ nazywamy mostem, jeżeli $c(G \mid e)$ (graf G po usunięciu krawędzi e)>c(G)

Grafy Hamiltonowskie

Graf G = (V, E) nazywamy hamiltonowskim, jeśli w G istnieje cykl, który zawiera każdy wierzchołek z V (dokładnie jeden raz).

Definicja: Graf G=(V,E) nazywamy *półhamiltonowskim*, jeżeli G nie jest hamiltonowski i w G istnieje droga zawierająca każdy wierzchołek z V (dokładnie jeden raz). Ta droga nazywana jest drogą lub ścieżką Hamiltona.

Uwaga: Pętle i multikrawędzie nie mają wpływu na rozważania nad hamiltonowskością grafu, zatem ograniczamy się do grafów prostych.

Tabela 1: Porównanie cyklu Eulera i cyklu Hamiltona

labela 1: Porownanie cyklu Eulera i cyklu Hamiltona	
Cykl Eulera	Cykl Hamiltona
Warunkiem koniecznym i wystarczającym istnie-	Odwiedza każdy wierzchołek grafu dokładnie je-
nia w grafie spójnym jest to, aby każdy wierzcho-	den raz.
łek miał stopień parzysty.	
Każda krawędź musi być użyta dokładnie jeden	Może pomijać niektóre krawędzie, aby uniknąć
raz.	ponownego odwiedzania wierzchołków.
Istnieją algorytmy o złożoności wielomiano-	Problem decyzyjny jest NP-zupełny. Nie jest
wej znajdujące cykl (np. algorytm Hierholzera	znany algorytm o złożoności wielomianowej,
O(E).	który by orzekał, czy dany graf jest hamiltonow-
	ski.

Twierdzenie Diraca (1952): Niech G=(V,E) będzie grafem prostym o $|V|\geq 3$ oraz $\forall v\in V$: $\deg(v)\geq \frac{|V|}{2}$. Wówczas G jest hamiltonowski.

Twierdzenie Orego (1960): Niech G=(V,E) będzie grafem prostym o $|V|\geq 3$ oraz dla każdej pary niepołączonych krawędzią wierzchołków $\{v,w\}$ zachodzi $\deg(v)+\deg(w)\geq |V|$. Wówczas G jest hamiltonowski.

Ćwiczenia - Lista 1

Zadanie 1/1

Wiemy, że ilość wszystkich par wierzchołków w grafie prostym G = (V, E) o n wierzchołkach wynosi $\binom{n}{2}$. Każdą parę możemy połączyć krawędzią lub nie. Zatem ilość wszystkich grafów prostych na n wierzchołkach wynosi:

 $2^{\binom{n}{2}}$

Pytanie: Ile z nich ma dokładnie m krawędzi?

Jest to równoważne z wyborem mkrawędzi spośród wszystkich $\binom{n}{2}$ możliwych, zatem:

 $\binom{\binom{n}{2}}{m}$

zadanie 1/2

Pytanie: Czy istnieje graf prosty o co najmniej dwóch wierzchołkach, w którym wszystkie wierzchołki mają różne stopnie?

Taki graf n-wierzchołkowy musiałby mieć wierzchołki o stopniach: $0,1,2,\ldots,n-1$. Wierzchołek o stopniu n-1 jest połączony z wszystkimi innymi wierzchołkami, co oznacza, że nie może istnieć wierzchołek o stopniu 0 (izolowany). Zatem nie istnieje graf prosty o co najmniej dwóch wierzchołkach, w którym wszystkie wierzchołki mają różne stopnie.

zadanie 1/3

Pytanie: Czy suma stopni wszystkich wierzchołków w grafie prostym może być nieparzysta?

Nie, ponieważ zgodnie z lematem o uściskach dłoni (handshaking lemma), suma stopni wszystkich wierzchołków w grafie jest równa podwojonej liczbie krawędzi ($\sum_{v \in V} \deg(v) = 2|E|$), a więc jest zawsze liczbą parzystą.

Ćwiczenia - Lista 2

zadanie 2/1

Wiemy, że grafG=(V,E) jest grafem prostym bez trójkątów - nie pojawiają się w nim podgrafy o trzech wierzchołkach, gdzie każdy wierzchołek jest połączony z pozostałymi dwoma.

Oznaczmy: N(x) - zbiór sąsiadów wierzchołka x w grafie G. Z własności grafu bez trójkątów wynika, że $N(v) \cap N(w) = \emptyset$ dla każdej krawędzi $\{v, w\} \in E$.

Ponieważ zbiory N(v) i N(w) są rozłączne, suma mocy ich zbiorów jest równa mocy ich unii: $|N(v)| + |N(w)| = |N(v) \cup N(w)|$. Zbiór $N(v) \cup N(w)$ jest podzbiorem V, więc $|N(v) \cup N(w)| \le |V|$. Zatem $\deg(v) + \deg(w) \le |V|$.

Dowód własności z trójkątem: Niech $v,w\in E$. Załóżmy, że $N(v)\cap N(w)\neq\emptyset$. Wowczas wynika z tego: $\exists u\in V:u\in N(v)\wedge u\in N(w)$

Zatem $\{u,v\} \in E \land \{u,w\} \in E$, co oznacza, że wierzchołki u,v,w tworzą trójkąt, co jest sprzeczne z założeniem.

zadanie 2/2

Niech G=(V,E) będzie grafem prostym. Musimy uzasadnić poniższe równanie: $\sum_{\{v,w\}\in E}(\deg(v)+\deg(w))=\sum_{v\in V}(\deg(v))^2$.

Po lewej stronie sumujemy dla każdej krawędzi $\{v,w\}$ sumę stopni jej końców. Oznacza to, że każdy wierzchołek v jest liczony dokładnie $\deg(v)$ razy (raz dla każdej krawędzi incydentnej z v). Zatem lewa strona równania to:

$$\sum_{v \in V} \deg(v) \cdot \deg(v) = \sum_{v \in V} (\deg(v))^2$$

co jest dokładnie prawą stroną równania.

zadanie 2/3

Rysunek 1: Hiperkostka w kolejnych wymiarach.

$W Q_k$

• ilość wierzchołków: 2^k

• stopnie wierzchołków: k

• ilość krawędzi: Z lematu o uściskach dłoni: $|E|=\frac{2^k \cdot k}{2}=k \cdot 2^{k-1}$, dla $k \geq 1$

Średnica hiperkostki:

Średnica hiperkostki Q_k wynosi k. Wynika to z faktu, że hiperkostka formalnie definiowana jest jako graf, w którym wierzchołkami są wszystykie ciągi binarne dlugości k. Średnica to maksymalna odległość między dwoma wierzchołkami, a odległość między dwoma wierzchołkami w hiperkostce to liczba pozycji, na których ich reprezentacje binarne różnią się (odległość Hamminga). Największa możliwa odległość występuje między wierzchołkami reprezentowanymi przez ciągi 000...0 i 111...1, które różnią się na wszystkich k pozycjach. Zatem średnica hiperkostki Q_k wynosi k.

Q_k jako graf dwudzielny:

W hiperkostka Q_k każdy wierzchołek można zdefiniować jako ciąg binarny długości k. Każdy wierzchołek łączy się z innymi, wtedy, gdy ich reprezentacje różnią się dokładnie na jednej pozycji. Możemy podzielić wierzchołki na dwa zbiory:

- A wierzchołki z parzystą liczbą jedynek w reprezentacji binarnej,
- B wierzchołki z nieparzystą liczbą jedynek w reprezentacji binarnej.

W ten sposób widać, że graf Q_k jest dwudzielny.

zadanie 2/4

 $K_{2,2}$ to graf dwudzielny, w którym wierzchołki są podzielone na dwa zbiory, oba zawierające po 2 wierzchołki.

zadanie 2/5

Niech G=(V,E) będzie grafem dwudzielnym z trójkątem. Oznacza to, że: $\exists (A,B\subseteq V)(A\cap B=\emptyset \land A\cup B=V \land \forall w,v\in E(w\in A\land v\in B))$

Weźmy jeden z takich trójkątów i pokolorujmy jego wierzchołki na dwa kolory, tak aby żadne dwa sąsiednie wierzchołki nie miały tego samego koloru. Ponieważ trójkąt ma trzy wierzchołki, a my mamy tylko dwa kolory, to zgodnie z zasadą szufladkową, co najmniej dwa wierzchołki muszą być tego samego koloru. Jednak te dwa wierzchołki są połączone krawędzią (bo są częścią trójkąta), co jest sprzeczne z założeniem, że żadne dwa sąsiednie wierzchołki nie mogą mieć tego samego koloru.