

planetmath.org

Math for the people, by the people.

spectral invariance theorem (for C^* -algebras)

Canonical name SpectralInvarianceTheoremforCalgebras

Date of creation 2013-03-22 17:29:53 Last modified on 2013-03-22 17:29:53 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 7

Author asteroid (17536)

Entry type Theorem Classification msc 46H10 Classification msc 46L05

Synonym spectral invariance theorem

Synonym invariance of the spectrum of C^* -subalgebras

Defines invertibility in C^* -subalgebras

The spectral permanence theorem (entry) relates the spectrums $\sigma_{\mathcal{B}}(x)$ and $\sigma_{\mathcal{A}}(x)$ of an element $x \in \mathcal{B} \subseteq \mathcal{A}$ relatively to the Banach algebras \mathcal{B} and \mathcal{A} .

For ${\tt http://planetmath.org/CAlgebra} C^*{\tt -algebra} s the situation is quite$

Spectral invariance theorem - Suppose \mathcal{A} is a unital C^* -algebra and $\mathcal{B} \subseteq \mathcal{A}$ a C^* -subalgebra that contains the identity of \mathcal{A} . Then for every $x \in \mathcal{B}$ one has

$$\sigma_{\mathcal{B}}(x) = \sigma_{\mathcal{A}}(x).$$

The spectral invariance theorem is a straightforward corollary of the next more general theorem about invertible elements in C^* -subalgebras.

Theorem - Let $x \in \mathcal{B} \subset \mathcal{A}$ be as above. Then x is invertible in \mathcal{B} if and only if x invertible in \mathcal{A} .

Proof:

 $\bullet \ (\Longrightarrow)$

If x is invertible in \mathcal{B} then it is clearly invertible in \mathcal{A} .

(⇐=)

If x is invertible in \mathcal{A} , then so is $y = x^*x$. Thus, $0 \notin \sigma_{\mathcal{A}}(y)$.

Since y is http://planetmath.org/InvolutaryRingself-adjoint, $\sigma_{\mathcal{A}}(y) \subseteq \mathbb{R}$ (see this http://planetmath.org/SpecialElementsInACAlgebraAndTheirSpectralPropand so $\mathbb{C} - \sigma_{\mathcal{A}}(y)$ has no http://planetmath.org/Boundedbounded connected components.

By the http://planetmath.org/SpectralPermanenceTheoremspectral permanence theorem we must have $\sigma_{\mathcal{B}}(y) = \sigma_{\mathcal{A}}(y)$. Hence, $0 \notin \sigma_{\mathcal{B}}(y)$, i.e. y is invertible in \mathcal{B} .

It follows that $x^{-1} = (x^*x)^{-1}x^* = y^{-1}x^* \in \mathcal{B}$, i.e. x is invertible in \mathcal{B} . \square