Hubs and Authorities

Introduction to Network Science Carlos Castillo Topic 14

Sources

- Networks, Crowds, and Markets Ch 14
- Fei Li's lecture on PageRank
- Evimaria Terzi's lecture on link analysis.
- C. Castillo: Link-based ranking slides 2016

Ranking on the web is hard

- Demand
 - Information needs are unclear and evolving
- Supply
 - From scarcity to abundance: "filter failure"

Purpose of Link-Based Ranking

- Static (query-independent) ranking
- Dynamic (query-dependent) ranking
- Applications:
 - Search in social networks
 - Search on the web

Given a set of connected objects

Assign some weights

Pages for the query "newspapers"

How would you rank these pages?

SJ Merc new score: 19 News Re-weighting votes by list Wall St. new score: 19 Journal values New York new score: 31 Times **USA Today** new score: 24 Facebook new score: 5 Yahoo! new score: 15 Amazon new score: 12

The idea behind Hubs and Authorities [Kleinberg 1999]

- Highly-recommended items appear in high-value lists
- High-value lists contain highly-recommended items
- Repeated improvement
 - Re-calculate scores several times

This algorithm is called "HITS"

- Jon M. Kleinberg. 1999. Authoritative sources in a hyperlinked environment. J. ACM 46, 5 (September 1999), 604-632. [DOI]
- Query-dependent algorithm
 - Get pages matching the query
 - Expand to 1-hop neighborhood
 - Find pages with good out-links ("hubs")
 - Find pages with good in-links ("authorities")

Root set = matches the query

Base set S = root set plus 1-hop neighbors

Base graph S of n nodes

Bipartite graph of 2n nodes

Bipartite graph of 2n nodes

0) Initialization:

$$\mathbf{h}_i = \hat{h}_i = 1$$

1) Iteration:

$$a_i = \sum_{j \to i} \hat{h}_j$$

$$h_i = \sum_{i \to j} \hat{a}_j$$

2) Normalization:

$$\hat{a}_i = \frac{a_i}{\sum_j a_j}$$

$$\hat{h}_i = \frac{h_i}{\sum_j h_j}$$

Complete the table. Which one is the biggest hub? Which the biggest authority? Does it differ from ranking by degree?

Answer in Google Spreadsheets

What are we computing?

```
a^{t} = A^{T}h^{t-1}
h^{t} = Aa^{t}
\text{replacing: } a^{t} = A^{T}Aa^{t-1}
\text{after convergence: } a = A^{T}Aa
```

- Vector a is an eigenvector of A^TA
- Conversely, vector h is an eigenvector of AA^T

Dealing with weighted graphs

(this is an option that does not normalize weights, one can alternatively normalize them)

$$\mathbf{h}_i = \hat{h}_i = 1$$

1) Iteration:

$$a_i = \sum_{j \to i} \left(w_{ji} \cdot \hat{h}_j \right) \qquad \hat{a}_i = \frac{a_i}{\sum_j a_j}$$

$$h_i = \sum_{i \to j} \left(w_{ij} \cdot \hat{a}_j \right)$$

2) Normalization:

$$\hat{a}_i = \frac{a_i}{\sum_j a_j}$$

$$\hat{h}_i = \frac{h_i}{\sum_j h_j}$$

• Example: a graph made of a (3,3)-clique and a (2,3)-clique

• Example: a graph made of a (3,3)-clique and a (2,3)-clique

• Example: a graph made of a (3,3)-clique and a (2,3)-clique

• Example: a graph made of a (3,3)-clique and a (2,3)-clique

What happens after n iterations?

Which community
"wins" (i.e., has the largest sum of scores)?

Hubs and authorities: not just for the web

- Citations in US
 Supreme Court Cases
- Different cases acquired authority at different speeds

(Roe v Wade legalized abortion, Brown v Board of Education declared race-segregated schools unconstitutional)

Summary

Things to remember

- What is the hubs and authority algorithm
- How to execute it step by step
- Practice with graphs on your own

Practice on your own

- Consider a directed bi-partite graph $G = (V_L \cup V_R, E)$ in which $V_L = \{a, b, c, d\}$ and $V_R = \{1, 2, ..., 120\}$, and in which all edges go from a node in V_L to a node in V_R :
 - Node a is connected to nodes 1, 2, ... 120.
 - Node b is connected to nodes 1, 2, ... 60.
 - Node c is connected to nodes 1, 2, ... 30.
 - Node d is connected to nodes 1, 2, ... 15.
- Starting with $\hat{h}(1)$ (i) = 1 for $i \in \{a, b, c, d, 1, 2, ..., 120\}$.
 - 1. Compute a(1)(i) for $i \in \{1, 2, ..., 120\}$
 - 2. Compute $\hat{a}(1)(i)$ for $i \in \{1, 2, ..., 120\}$
 - 3. Compute h(2) (i) for $i \in \{a, b, c, d\}$