EDA

Halid Kopanski

2022-11-21

Exploratory Data Analysis

Summary

For this study, we are presented with data from an 'Effervescent Experiment'. The data contains the dissolving times of two different brands of cold medicine tablets that were obtained under various conditions. Those conditions include varying water temperatures (6°, 23°, 406°) and the presence of stirring (magnetic stir bar at 350 rpm). This was a complete block design with stirring acting as the blocking effect. In all, the data contains 48 rows and 6 columns. The 6 columns include 3 explanatory variables (Brand, Temp, Stirred categorical factors), a single response variables (Time, a continuous variable), and 1 descriptor (sample order). Prior to starting any analysis, we will explore the data to gain an understanding of what to expect and to check for violations of any assumptions.

From the summary statistics table, we can see that each group has exactly 4 entries, eliminating concerns with respect to design imbalance.

Brand	Temp	Stirred	Min	25%	Mean	Median	75%	Max	Range	Var	n
name	6	yes	75.80973	75.83358	76.20241	75.89223	76.26107	77.21547	1.4057377	0.4593492	4
name	6	no	78.15246	78.79910	78.99061	79.04435	79.23586	79.72130	1.5688327	0.4146440	4
name	23	yes	69.08937	71.82180	72.69145	73.14894	74.01859	75.37855	6.2891789	6.9869087	4
name	23	no	76.06895	76.20492	76.36351	76.27622	76.43481	76.83265	0.7636940	0.1078134	4
name	40	yes	64.45156	64.87321	65.85343	65.43863	66.41886	68.08492	3.6333543	2.5499751	4
name	40	no	69.99943	70.28754	70.55511	70.50947	70.77705	71.20207	1.2026434	0.2544033	4
store	6	yes	76.24402	77.06561	77.33703	77.60659	77.87801	77.89089	1.6468708	0.5964884	4
store	6	no	77.78345	79.01994	79.49240	79.63219	80.10465	80.92176	3.1383169	1.6942517	4
store	23	yes	65.92809	66.08831	66.19126	66.22629	66.32923	66.38436	0.4562787	0.0411024	4
store	23	no	67.08353	67.14393	67.51552	67.52360	67.89520	67.93138	0.8478521	0.2060739	4
store	40	yes	58.24407	58.90895	59.12529	59.21659	59.43293	59.82388	1.5798100	0.4320148	4
store	40	no	58.53920	58.76884	58.96347	58.99050	59.18513	59.33370	0.7945066	0.1202191	4

There are insights to extract from this table. We can see that there does appear to be a disparity between the mean dissolving times of store brand cold medications when compared to name brand. Store brand cold medicines dissolve in a shorter amount of time as a whole over all effects than does the name brand medicine. This disparity becomes even more pronounced as the effect of temperature is introduced and as the temperature increases. When the brand type is store the means between each of the same temperature effects are much closer in similarity than the between temperature of name brand medicines. The differences between means store brand medicines of 6° , 23° and 40° are 2.15, 1.32 and 0.162 respectively. The differences between means name brand medicines of 6° , 23° and 40° are 2.79, 3.67, and 4.70 respectively. This may indicate an interaction effect on dissolving times by brand as the average difference in dissolving times is 1.21 for store brand and 3.72 for name brand.

Next, consider the range in variability at each factor and level. The range in values of the variance is 6.9458; an interesting result considering nine of the twelve observable variances fall within a range of 0.04 and 1.69. The variability between observations of name brand cold medicines are elevated, especially in cases when the observation was stirred at 23° and 40° . Variance of non-stirred observations, particularly within temperature values of 23° and 40° , are noticeably lower than their stirred counterparts within the same brand. The variance seems to jump by a large amount between the groups. Contrast analysis might be a concern due to the small sample size.

Further contextualizing central tendency and spread, we can see this illustrated in a different perspective by grouping effects together. Take note that temperature has the smallest set of ranges, both at each individual level and as a whole when compared to brand type and stirring effect. There is not a lot of varability among temperature compared to the other effects though they are different enought to identify an irregular increases as temperature increases. The range of values provides additional context to the data's story; data points when focused only on temperature groups tends to be within a smaller range of each other indicating less variability; meanwhile brand and stirring effects have a wider distribution and more variability—outliers withstanding.

Interactions

From the boxplots below, we can immediately see that stirring seems to increase the variance of the name-brand medicine—while also decreasing the mean differences of brand within each temperature grouping. An interaction effect between temperature and brand can be deduced if lines are drawn through the centers of the boxes. Earlier, we had introduce an insight from the summary statistics output indicating an inverse relationship between temperature and dissolve time—as temperature increases dissolve time decreases. The boxplot reinforces this idea. In fact, we can also make the claim that temperature has an inverse effect on dissolving times whether stirring is present or not–indications of temperature having a strong effect on dissolving time by itself. Stirring might have an additive effect regardless of temperature.

It is simply conjecture at this point, however we noticed that observations of dissolve time while stirring the water seems to have increased the name brand variability, while not stirring the water seems to have increased the store brand variability. Perhaps worth looking into the blocking effects of stirred on variability at various temperatures.

Outliers are present in our boxplots and we will address these data points when looking at assumptions.

The possible interaction between brand and temperature becomes even more noticeable in the preceding three-factor interaction plots. Specifically, the brand and temperature interaction can be seen when the

temperature increases. The slope for the store brand has a more pronounced negative slope than the slope of the name brand. In addition, there might be a slight three-factor interaction between brand, temperature, and stirring as the name and store brand lines appear to be closer together in the stirred=yes plot than the stirred=no plot.

Mean Time vs. Temp: Stirred = yes

Mean Time vs. Temp: Stirred = no

Assumptions and Violations

Interaction

From the boxplots, we were able to see a small number of outliers. To confirm if there is any concern we plotted the Cook's Distance for each point based on a full linear model. Point 8 has a higher Cook's distance than the rest of the points which may require removal for analysis if it is suspected of causing issues in the analysis. This would have to be weighed against the risks caused by introducing imbalances.

Normal Q-Q Plot

Finally, we check the normality of the data. Here a Q-Q plot is generated for the full model residuals. The data appears to suffer from heavy tails, multimodality and/or gaps in data between the left tail and the center. Since downstream analysis hinges on the assumption that our data is normally distributed, these issues may pose a problem.

Recycling Bin

Normal Q-Q Plot

Normal Q-Q Plot

