Fonction exponentielle

I. Fonction exponentielle

Propriété. Résultat préliminaire.

Si, pour tout réel x, f'(x) = f(x) et f(0) = 1, alors f ne s'annule pas sur \mathbb{R} .

Démonstration.

Soit g la fonction définie sur \mathbb{R} par $g(x) = f(x) \times f(-x)$. La fonction g est dérivable sur \mathbb{R} et :

 $\forall x \in \mathbb{R}$:

$$g'(x) = f'(x) \times f(-x) + f(x) \times (-f'(-x))$$
$$= f'(x) \times f(-x) - f(x) \times f'(-x)$$
$$=$$

La fonction g est _____ sur \mathbb{R} , or $g(0) = f(0) \times f(0) = 1$, donc pour tout réel x, g(x) = g(0) = 1. On en déduit que pour tout réel x, $f(x) \times f(-x) = 1$.

Supposons qu'il existe un réel c tel que f(c) = 0 on aurait alors $f(c) \times f(-c) = 0$ ce qui est contradiction avec le fait que $f(x) \times f(-x) = 1$. Ainsi, pour tout réel x, $f(x) \neq 0$ ce qui prouve donc que f ne s'annule pas sur \mathbb{R} .

Remarque. Pour tout réel x, $f(x) \times f(-x) = 1$ et f ne s'annule pas sur \mathbb{R} , on en déduit donc que pour tout réel x, $f(-x) = \frac{1}{f(x)}$.

Théorème.

Il existe une *unique* fonction f, dérivable sur \mathbb{R} , telle que f' = f et f(0) = 1. Cette fonction est appelée *fonction exponentielle* et est notée **exp**.

Démonstration.

- 1. L'existence de la fonction exponentielle est admise.
- 2. Démontrons son unicité.

Supposons l'existence d'une autre fonction g dérivable sur \mathbb{R} telle que g'=g et g(0)=1. La fonction $h=\frac{g}{f}$ est définie (car f ne s'annule pas sur \mathbb{R} d'après la propriété 1) et est dérivable sur \mathbb{R} .

On a
$$h' = \frac{g'f - gf'}{f^2}$$
 or $f' = f$ et $g' = g$, d'où $h' = 0$ et donc h est constante.

Pour tout réel
$$x$$
, $h(x) = h(0)$, or $h(0) = \frac{g(0)}{f(0)} = 1$ (vu que $f(0) = g(0) = 1$).

On a donc pour tout réel x, h(x) = 1 soit $\frac{g(x)}{f(x)} = 1$ ou encore que g(x) = f(x) et par suite f = g donc f est *unique*.

2

II. Relation fonctionnelle

Propriété — Relation fonctionnelle.—

Pour tous réels x et y,

$$\exp(x+y) = \exp(x) \times \exp(y)$$

De cette propriété, on en déduit les propriétés corollaires suivantes :

Propriétés.

1. Pour tout réel x, on a :

$$\exp(-x) = \frac{1}{\exp(x)}$$

2. Pour tous réels x et y on a :

$$\exp(x - y) = \frac{\exp(x)}{\exp(y)}$$

III. Lien avec les suites géométriques

Propriété.

Soit a un réel et (u_n) la suite de terme général $u_n = \exp(na)$ où n est un entier naturel.

- La suite (u_n) est la *suite géométrique* de premier terme $u_0 = 1$ et de raison $\exp(a)$.
- Pour tout entier naturel n et tout réel a,

$$\exp(na) = (\exp(a))^n$$

IV. Une nouvelle notation : e^x

Définition.

On note e l'image de 1 par la fonction exponentielle. Ainsi $\exp(1) = e$.

À la calculatrice, on trouve $e \simeq 2,72$.

Par la propriété précédente, pour tout entier relatif p, $\exp(p) = \exp(p \times 1)$ donc $\exp(p) = (\exp(1))^p$ soit donc $\exp(p) = e^p$. On décide de prolonger cette notation d'écriture à tout réel x:

$$\exp(x) = e^x$$

Avec cette nouvelle notation, on peut écrire les nouvelles égalités suivantes :

Propriétés. Pour tous réels x, y et tout entier naturel n:

1.
$$e^{-x} = \frac{1}{e^x}$$

3.
$$e^{x-y} = \frac{e^x}{e^y}$$

$$2. e^{x+y} = e^x \times e^y$$

4.
$$(e^x)^n = e^{nx}$$

Exercice 1.10. Simplifier les écritures suivantes :

1.
$$e^{2x+5} \times e$$

2.
$$\frac{e^{-4x+5}}{(e^{-4})^3}$$

V. Étude de la fonction exponentielle

1. Sens de variation de la fonction exponentielle

Propriété. La fonction exponentielle exp est :

- 1. $d\acute{e}rivable$ sur \mathbb{R} .
- **2.** est *strictement positive* sur \mathbb{R} ,
- 3. est strictement croissante sur \mathbb{R} .

2. Équations et inéquations avec exponentielle

Propriété. Pour tous réels x et y,

1.
$$e^x < e^y \iff x < y$$
.

2.
$$e^x = e^y \iff x = y$$
.

Démonstration.

Découle du fait que la fonction exponentielle est strictement croissante sur \mathbb{R} .

Exercice 2.10. Résoudre les équations et inéquations suivantes :

1.
$$e^{3x+4}=1$$

2.
$$e^{2x-1} = e^{x+2}$$

3.
$$e^{2x+1} \ge 0$$

4.
$$e^{-x} \ge e^{2x}$$

3. Synthèse et courbe représentative

A. Tableau de variations

x	$-\infty$	0	$+\infty$
signe de $(\exp)'(x)$		+	
Variations de exp		1	

B. Courbe représentative

VI. Deux cas particuliers

De façon générale, les fonctions définies sur \mathbb{R} par $f(t) = e^{kt}$ ou $g(t) = e^{-kt}$, où k est un réel strictement positif, sont appelées fonctions exponentielles.

Propriété — admise. —

Soient k un réel, et f et g deux fonctions définie sur \mathbb{R} par $f(t) = e^{kt}$ et $g(t) = e^{-kt}$. Les fonctions f et g sont dérivables sur \mathbb{R} et :

$$f'(t) = k \times f(t) = ke^{kt}$$
 et $g'(t) = -k \times g(t) = -ke^{-kt}$

Propriété.

Soit k un réel strictement positif. La fonction f définie sur \mathbb{R} par $f(t) = e^{kt}$ est **strictement croissante** sur \mathbb{R} . Soit k un réel strictement positif. La fonction g définie sur \mathbb{R} par $g(t) = e^{-kt}$ est **strictement décroissante** sur \mathbb{R} .

