# MaxVol sampling for agricultural survey

Anna Petrovskaja

# Soil sampling

• **Purpose** - obtain data that enable the estimation of some statistical parameter, or spatial predictions of some properties over an area

 Constrains - the financial and available resources

Thus an efficient sampling strategy is sought.



The field



Grid Sampling



Conventional sampling



Sampling by management zone

# Study area

location of study area







location of soil sampling points

photo of study area

#### Data

#### **Features**

- Digital elevation model
- Topographic wetness index
- Elevation difference in 10 m area
- Slope steepness
- Overland flow hydrologic simulation

Derived from digital elevation model

#### **Predicted value**

Soil type in every pixel

## Data



Size of images = 285 x 217 pixels

### Data



#### Soil map

#### 4 soil types:

Chernozems typical calcareous with bioturbations Chernozems typical Chernozems leached Meadow-chernozemics

Predicted by Naïve Bayes classification on 157 soil samples

# Matrix of training data

#### Every image of feature is flattened



Shape of the matrix =  $5 \times 61 \times 845$ 

# Clustering layer

#### Two steps:

1. Dimensionality reductionMethod – t-SNEDistributed Stochastic Neighbor Embedding

2. ClusteringMethod – DBSCANDensity-based spatial clustering with noise

Parameters for this methods were obtained by MCMC

# Matrix of training data with clustering layer



Shape of the matrix =  $6 \times 61 \times 845$ 

## Application of MaxVol algorithm

Maxvol is an algorithm for obtaining submatrices of maximum volume



## General scheme



## Results



Accuracy of prediction

MaxVol with clustering layer = 87%

Conditional Latin Hypercube = 76%

# Thank you for your attention!

