# Pay less attention with lightweight and dynamic convolutions

Radek Bartyzal

Let's talk ML in Prague

11. 4. 2019

### Classic Convolutions



Figure: Each kernel has  $k \times d$  weights. To have output of dim = F we need F filters  $\implies F \times k \times d$  kernel weights.

2 / 16

# Depthwise separable Convolutions



Figure: Use kernels of size  $k \times 1$  and slide it over each channel separately = output has same number of channels as input. If we want different number of output channels (e.g. F) we can use F efficient  $1 \times 1 \times d$  filters. Resulting number of kernel weights is either just  $k \times 1 \times d$  or  $k \times 1 \times d + 1 \times 1 \times d \times F = k \times d + F \times d$ .

## NLP case



Figure: Input sentence as a matrix  $X \in \mathbb{R}^{n \times d}$ .

# Depth-wise separable



- output dim = d = input dim = number of channels
- each channel has different kernel = d kernels
- num kernel weights =  $d \times k \times 1$

# Lightweight convolutions



- output dim = d = input dim = number of channels
- $\frac{d}{H}$  channels share kernel weights = H kernels
- num kernel weights =  $H \times k \times 1$
- each kernel is softmaxed before being applied

# Lightweight and dynamic convolutions

$$O_{i,c} = \text{DepthwiseConv}(X, W_{c,:}, i, c) = \sum_{j=1}^{k} W_{c,j} \cdot X_{(i+j-\lceil \frac{k+1}{2} \rceil), c}$$

 $\mathsf{LightConv}(X, W_{\lceil \frac{cH}{d} \rceil,:}, i, c) = \mathsf{DepthwiseConv}(X, \mathsf{softmax}(W_{\lceil \frac{cH}{d} \rceil,:}), i, c)$ 

$$DynamicConv(X, i, c) = LightConv(X, f(X_i)_{h,:}, i, c)$$

- dynamic = add dense layer based on k elements that generates the kernel = the kernel changes as is slides over the temporal dimension
- dynamic weights are a function of the current time-step only rather than the entire context

# Dynamic convolutions



- kernel at each timestep is generated by a dense layer
- as kernel slides over the temporal dimension it changes

## Comparison to attention



#### Lightweight and dynamic convolutions

- pay "attention" only to k surrounding elements
- ends with output projection to correct dim by linear layer

## **Experiments**

- Transformer network replace self-attention modules with LConv or Dynamic Conv
- LConv, DConv use less params = increase number of encoder blocks to N = 7 to match number of params
- *H* = 16
- encoder/decoder block kernels:  $3, 7, 15, 31 \times 4$
- top 3 layers of decoder have kernel size 31
- We train three random initializations of a each configuration and report test accuracy of the seed which resulted in the highest validation BLEU
- machine translation, lang. modeling, summarization

| Model                 | Param (En-De) | WMT En-De | WMT En-Fr |
|-----------------------|---------------|-----------|-----------|
| Gehring et al. (2017) | 216M          | 25.2      | 40.5      |
| Vaswani et al. (2017) | 213M          | 28.4      | 41.0      |
| Ahmed et al. (2017)   | 213M          | 28.9      | 41.4      |
| Chen et al. (2018)    | 379M          | 28.5      | 41.0      |
| Shaw et al. (2018)    | -             | 29.2      | 41.5      |
| Ott et al. (2018)     | 210M          | 29.3      | 43.2      |
| LightConv             | 202M          | 28.9      | 43.1      |
| DynamicConv           | 213M          | 29.7      | 43.2      |

Figure: Machine translation accuracy in terms of BLEU for WMT En-De and WMT En-Fr on newstest2014.

| Model                   | Param (Zh-En) | IWSLT | WMT Zh-En |
|-------------------------|---------------|-------|-----------|
| Deng et al. (2018)      | -             | 33.1  | -         |
| Hassan et al. (2018)    | -             | -     | 24.2      |
| Self-attention baseline | 292M          | 34.4  | 23.8      |
| LightConv               | 285M          | 34.8  | 24.3      |
| DynamicConv             | 296M          | 35.2  | 24.4      |

Figure: Machine translation accuracy in terms of BLEU on IWSLT and WMT Zh-En.

| Model                                             | Param | BLEU           | Sent/sec       |
|---------------------------------------------------|-------|----------------|----------------|
| Vaswani et al. (2017)                             | 213M  | 26.4           | -              |
| Self-attention baseline (k=inf, H=16)             | 210M  | $26.9 \pm 0.1$ | $52.1 \pm 0.1$ |
| Self-attention baseline (k=3,7,15,31x3, H=16)     | 210M  | $26.9 \pm 0.3$ | $54.9 \pm 0.2$ |
| CNN (k=3)                                         | 208M  | $25.9 \pm 0.2$ | $68.1 \pm 0.3$ |
| CNN Depthwise (k=3, H=1024)                       | 195M  | $26.1 \pm 0.2$ | $67.1 \pm 1.0$ |
| + Increasing kernel (k=3,7,15,31x4, H=1024)       | 195M  | $26.4 \pm 0.2$ | $63.3 \pm 0.1$ |
| + DropConnect (H=1024)                            | 195M  | $26.5 \pm 0.2$ | $63.3 \pm 0.1$ |
| + Weight sharing (H=16)                           | 195M  | $26.5 \pm 0.1$ | $63.7 \pm 0.4$ |
| + Softmax-normalized weights [LightConv] (H=16)   | 195M  | $26.6 \pm 0.2$ | $63.6 \pm 0.1$ |
| + Dynamic weights [DynamicConv] (H=16)            | 200M  | $26.9 \pm 0.2$ | $62.6 \pm 0.4$ |
| Note: DynamicConv(H=16) w/o softmax-normalization | 200M  | diverges       |                |
| AAN decoder + self-attn encoder                   | 260M  | $26.8 \pm 0.1$ | $59.5 \pm 0.1$ |
| AAN decoder + AAN encoder                         | 310M  | $22.5\pm0.1$   | $59.2 \pm 2.1$ |

Figure: Ablation on WMT English-German newstest2013. (+) indicates that a result includes all preceding features. Speed results based on beam size 4, batch size 256 on an NVIDIA P100 GPU.

| Model                                            | Param              | Valid | Test  |
|--------------------------------------------------|--------------------|-------|-------|
| 2-layer LSTM-8192-1024 (Józefowicz et al., 2016) | -                  | -     | 30.6  |
| Gated Convolutional Model (Dauphin et al., 2017) | 428M               | _     | 31.9  |
| Mixture of Experts (Shazeer et al., 2017)        | 4371M <sup>†</sup> |       | 28.0  |
| Self-attention baseline                          | 331M               | 26.67 | 26.73 |
| DynamicConv                                      | 339M               | 26.60 | 26.67 |

Figure: Language modeling results on the Google Billion Word test set. + does not include embedding and softmax layers

| Model                         | Param | Rouge-1      | Rouge-2      | Rouge-l      |
|-------------------------------|-------|--------------|--------------|--------------|
| LSTM (Paulus et al., 2017)    | -     | 38.30        | 14.81        | 35.49        |
| CNN (Fan et al., 2017)        |       | 39.06        | 15.38        | 35.77        |
| Self-attention baseline       | 90M   | 39.26        | 15.98        | 36.35        |
| LightConv                     | 86M   | 39.52        | 15.97        | 36.51        |
| DynamicConv                   | 87M   | <b>39.84</b> | <b>16.25</b> | <b>36.73</b> |
| RL (Celikyilmaz et al., 2018) | -     | 41.69        | 19.47        | 37.92        |

Figure: Results on CNN-DailyMail summarization. We compare to likelihood trained approaches except for Celikyilmaz et al. (2018).

#### Sources

1. Wu, Felix, et al. "Pay Less Attention with Lightweight and Dynamic Convolutions." arXiv preprint arXiv:1901.10430 (2019).

https://arxiv.org/abs/1901.10430

2. Medium blogpost on depthwise convolutions.

https://towardsdatascience.com/

 $\verb|a-basic-introduction-to-separable-convolutions-b99ec3102728|$