Listing of Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (previously presented) An arithmetic performance attribution method for determining portfolio performance, relative to a benchmark, over multiple time periods *t*, where *t* varies from 1 to *T*, comprising the steps of:

(a) determining coefficients
$$c_1 = A$$
, and $c_2 = \left[\frac{R - \overline{R} - A \sum_{ji} a_{ji}}{\sum_{ji} a_{ji}^2}\right]$,

where A has any predetermined value, a_{jt} is a component of active return, the summation over index j is a summation over all components a_{jt} for period t,

 $R = \left[\prod_{t=1}^{T} (1 + R_t)\right] - 1, \quad \overline{R} = \left[\prod_{t=1}^{T} (1 + \overline{R}_t)\right] - 1, \quad R_t \text{ is a portfolio return for period } t, \quad \overline{R}_t \text{ is a}$

benchmark return for period t, and the components a_{jt} for each period t satisfy $\sum_{i} a_{jt} = R_t - \overline{R}_t$; and

- (b) determining the portfolio performance as $R \overline{R} = \sum_{ii} \left[c_1 a_{ii} + c_2 a_{ii}^2 \right]$, where the summation over index i is a summation over all the terms $(c_1 a_{it} + c_2 a_{it}^2)$ for period t.
 - 2. (previously presented) The method of claim 1, wherein A is

$$A = \frac{1}{T} \left[\frac{(R - \overline{R})}{(1 + R)^{\sqrt{T}} - (1 + \overline{R})^{\sqrt{T}}} \right], \text{ where } R \neq \overline{R},$$

or for the special case $R = \overline{R}$:

$$A = (1+R)^{(T-1)/T}.$$

3. (previously presented) The method of claim 1, wherein A = 1.

- 4. (previously presented) An arithmetic performance attribution method for determining portfolio performance, relative to a benchmark, over multiple time periods t, where t varies from 1 to T, comprising the steps of:
- (a) determining a set of coefficients c_k , including a coefficient c_k for each positive integer k; and
- (b) determining the portfolio performance as $R \overline{R} = \sum_{it} \sum_{k=1}^{\infty} c_k a_{it}^k$, where a_{it} is a component of active return for period t, the summation over index i is a summation over all components a_{it} for period t, $R = [\prod_{t=1}^{T} (1+R_t)]-1$, $\overline{R} = [\prod_{t=1}^{T} (1+\overline{R}_t)]-1$, R_t is a portfolio return for period t, \overline{R}_t is a benchmark return for period t, and the components a_{it} for each period t satisfy $\sum_i a_{it} = R_t \overline{R}_t$, where the summation over index i is a summation over all components a_{it} for said each period t.
 - 5. (previously presented) The method of claim 4, wherein A is

$$A = \frac{1}{T} \left[\frac{(R - \overline{R})}{(1 + R)^{1/T} - (1 + \overline{R})^{1/T}} \right], \text{ where } R \neq \overline{R},$$

or for the special case $R = \overline{R}$:

$$A = (1+R)^{(T-1)/T}.$$

6. (previously presented) The method of claim 4, wherein $c_k = 0$ for each integer k greater than two, $c_1 = A$, $c_2 = \left[\frac{R - \overline{R} - A \sum_{ji} a_{ji}}{\sum_{ji} a_{ji}^2}\right]$, A has any predetermined value, the summation over index j is a summation over all components a_{ji} for period t, $R = [\prod_{i=1}^T (1+R_i)]-1$, $\overline{R} = [\prod_{i=1}^T (1+\overline{R}_i)]-1$, R_i is a portfolio return for period t, \overline{R}_i is a benchmark return for period t, and the components a_{ji} for each period t satisfy $\sum_{i} a_{ji} = R_i - \overline{R}_i$.

7-14. (canceled)