AMPLIACIÓN DE BASES DE DATOS

TEMA: Diseño Avanzado de BD

Calidad en el Diseño:

Normalización:

Formas Normales

Desnormalización:

Análisis de redundancias

Diseño orientado a prestaciones

y re-Organización Física de Datos

Fases del Diseño de BD relacionales

Requisitos (escritos en lenguaje natural) Diseño conceptual (requisitos de I-S) Esquema conceptual (Modelo entidad-relación) Diseño lógico (Análisis y Diseño de I-S) Diseño de tablas (Modelo Relacional) Diseño físico (uso SQL) (Implementar de I-S) Organización de las tablas en archivos e índices

(Interno al SGBD)

Cómo verificar la calidad: Normalización

- ◆ Falta de calidad de un *Diseño Deficiente* provoca <u>problemas</u>:
 - Redundancias de Datos
 - Anomalías de actualización
 - Filas incorrectas
 - Exceso de espacio ocupado
- ◆ La *Forma Normal (FN)* de un esquema relacional determina
 - ... su grado de calidad respecto a esos problemas
 - Cuanto más alta es la *FN* en la que está: mejor calidad
 - Una FN se define con unas normas que debe cumplir el esquema
 - Basadas en Dependencias Funcionales (DFs) y Multivaloradas (DMs)
- ◆ La Normalización mejora esos problemas:
 - Descomponiendo el esquema relacional en otros que . . .
 - . . . cumplan FN más exigentes (aquellas con numeración más alta)

Problema: Redundancia de datos

$Empleados_Centros$							
Id empleado	NombreE	DirecciónE	Puesto	Salario	Centro	DirecciónC	Teléfono
123A	Ana	c/ Argentales	Profesor	20.000	Informática	Complutense	123
	Almansa						
456B	Bernardo	c/ Barcelona	Administrativo	15.000	Matemáticas	Complutense	456
	Botín					_	
789C	Carlos	c/ Cruz	Catedrático	30.000	CC.	Somosaguas	789
	Crespo				Empresariales		
012D	David Díaz	c/ Daroca	Ayudante	10.000	Informática	Complutense	123

- ◆ Redundancia: DirecciónC y Teléfono repetido en varias filas (a veces necesaria)
 - Se produce una anomalía si
 - se modifica el teléfono o la DirecciónC solo en algunas filas
 - donde está ese teléfono o DirecciónC
- ◆ Dos <u>problemas</u> como consecuencia de la Redundancia de Datos:
 - Si no se modifican todas las filas provoca *inconsistencias* en la BD
 - Además hay un espacio ocupado excesivo con la redundancia.
- ♦ ¿Porqué? DirecciónC y Teléfono no "dependen" sólo de la PK: Id_empleado
- → Veremos que es eso de "dependen" más adelante en Dependencias Funcionales

Ese Problema genera: Anomalías de actualización

1. Anomalías de inserción (dos casos)

- a) Al añadir una fila de un empleado adscrito a Informática y con un teléfono distinto de 123
 - Explicación Técnica: (se ve más adelante)
 - Se inserta una nueva fila sin respetar las DFs
- ы No se puede dar de alta un centro sin empleados destinados en él
 - Porque queda valor nulo en la clave (Id_empleado),
 - lo cual es imposible.
 - Explicación Técnica: (se ve más adelante)
 - No puedes añadir filas con valores del consecuente de la DF
 - sin que exista un antecedente para ella.

Ese Problema genera: Anomalías de actualización

2. Anomalías de modificación

- Se modifica el teléfono de Informática
 - sólo en la primera fila donde aparece (caso de la figura)
- Explicación Técnica: (se ve más adelante)
 - se modifica una columna con dato redundante de sólo
 - un subconjunto de las filas con el mismo dato.

3. Anomalías de eliminación

- Si se elimina la segunda fila porque el empleado se da de baja
 - se pierden también los datos del centro
- Explicación Técnica: (se ve más adelante)
 - se eliminan todas las filas en las que aparecen los datos redundantes por lo que se pierde los datos de la DF

Problema: Obtención de datos incorrectos generado por división inadecuada de una relación

Ejemplo 1

- ◆ Para mejorar el diseño se divide una relación en dos, pero al
- ◆ dividir la tabla Empleados_Centros anterior de la siguiente forma
 - y hacer el join posteriormente, se obtienen datos incorrectos
 - ya que se crean filas falsas que no existían originalmente: F. espurias

$Datos_Empleados$							
Id empleado	DirecciónE	Puesto	Salario	Centro	DirecciónC	Teléfono	
123A	c/ Argentales	Profesor	20.000	Informática	Complutense	123	
456B	c/ Barcelona	Administrativo	15.000	Matemáticas	Complutense	456	
789C	c/ Cruz	Catedrático	30.000	CC. Empresariales	Somosaguas	789	
012D	c/ Daroca	Ayudante	10.000	Informática	Complutense	123	

Ubicaciones_Empleados				
NombreE	DirecciónC			
Ana Almansa	Complutense			
Bernardo Botín	Complutense			
Carlos Crespo	Somosaguas			
David Díaz	Complutense			

Problema: Obtención de datos incorrectos

Id empleado	Nombre E	DirecciónE	Puesto	Salario	Centro	DirecciónC	Teléfono
123A	Ana	c/ Argentales	Profesor	20.000	Informática	Complutense	123
	Almansa						
456B	Bernardo	c/ Barcelona	Administrativo	15.000	Matemáticas	Complutense	456
	Botín						
012D	David	c/ Daroca	Ayudante	10.000	Informática	Complutense	123
	Díaz						
789C	Carlos	c/ Cruz	Catedrático	30.000	CC.	Somosaguas	789
	Crespo				Empresariales		
123A	Bernardo	c/ Argentales	Profesor	20.000	Informática	Complutense	123
	Botín						
123A	David	c/ Argentales	Profesor	20.000	Informática	Complutense	123
	Díaz						
456B	Ana	c/ Barcelona	Administrativo	15.000	Matemáticas	Complutense	456
	Almansa						
456B	David	c/ Barcelona	Administrativo	15.000	Matemáticas	Complutense	456
	Díaz						
012D	Ana	c/ Daroca	Ayudante	10.000	Informática	Complutense	123
	Almansa						
012D	Bernardo	c/ Daroca	Ayudante	10.000	Informática	Complutense	123
	Botín						

Explicación de la Obtención de datos incorrectos

- ◆ El atributo que relaciona las tablas originales es DirecciónC
 - que no es clave de ninguna de las relaciones.
- ◆ Conclusión
 - se deben dividir las tablas de forma que
 - queden relacionadas por atributos clave
- ◆ Es una conclusión informal que se formaliza al estudiar
 - la propiedad de *reunión no aditiva* (no añadir filas falsas)
 - que asegura recuperar exactamente la información original
 - al realizar consultas uniendo las tablas divididas

Descomposición Correcta del Ejemplo 1

Empleados						
Id empleado	NombreE	DirecciónE	Puesto	Salario	Centro	
123A	Ana Almansa	c/ Argentales	Profesor	20.000	Informática	
456B	Bernardo Botín	c/ Barcelona	Administrativo	15.000	Matemáticas	
789C	Carlos Crespo	c/ Cruz	Catedrático	30.000	CC. Empresariales	
012D	David Díaz	c/ Daroca	Ayudante	10.000	Informática	

Centros				
NombreC	DirecciónC	Teléfono		
Informática	Complutense	123		
Matemáticas	Complutense	456		
CC. Empresariales	Somosaguas	789		

- ◆ cada atributo depende sólo de la clave primaria, y
- ◆ no hay redundancias (cada atributo se encuentra en un único lugar)
- ◆ Se dice que este diseño está en 3ª forma normal (ya veremos porqué)

Propiedades Deseables de descomposiciones Correctas

- ◆ La propiedad de *conservación de dependencias*,
 - que asegura que las DFs originales se mantienen en
 - algún esquema de relación después de la descomposición
- ◆ La propiedad de <u>reunión (join) no aditiva (o sin pérdida)</u>
 - que evita el problema de la generación de tuplas incorrectas

- ♦ ¿Cómo se consiguen? Aplicando los conceptos de
 - Dependencias Funcionales (DFs) y Multivaloradas (DMs)
 - Formas Normales y
 - Normalización
- ◆ ¿Porqué Descomponer? : para arreglar Anomalías (Normalizar)

Definición de Dependencias Funcionales (DFs)

- ◆ Las DFs son restricciones al diseño:
 - normas a cumplir por los datos de la BD
- ◆ Las DF's definen qué tuplas (filas) son <u>legales</u> respecto a una rel. R.
 - y, por lo tanto, dice las tuplas o filas que están prohibidas
- ◆ Siendo tanto J como M: uno o más atributos, tenemos la . . .
- \bullet Definición Informal de DF: M depende funcionalmente de J, J \rightarrow M
 - Si para todas las filas que J tiene un valor concreto, todas esas filas, debe tener en M un único valor.
 - También M depende funcionalmente de J cuando: (J será PK)
 - Solo puede haber una fila con cada valor distinto en J
- ◆ Aunque J igual tiene un valor único de M en varias filas,
 en otras filas diferentes, mismo M puede tener varios valores de J
- → "debe tener" se determina por el **significado** de esos atributos en la BD

12

→ Es decir, la relación semántica de los conceptos del dominio de la BD

Diseño Avanzado BD: Normalización / Desnormalización

Ejemplo de Dependencias Funcionales (DFs)

- **◆ EJ**: Esquema **R** (**A**, **B**, **C**,**D**)
- ◆ Tenemos las siguientes filas válidas:
 - 1.(a2,b1,c2,d1)
 - 2. (a2,b2,c2,d2)
 - 3. (a3,b3,c2,d3)
 - C depende funcionalmente de A, A→ C:
 Se cumple porque todas las filas con valor a2 tienen mismo valor c2
 Aunque en 3. tengamos un valor nuevo a3, solo hay una fila, así que vale c2
 - pero NO se cumple C → A por la 3:
 no todas las filas con valor c2 tienen el mismo valor a2 (la 3. tiene a3)
 - Si añado 4. (a3, b3, c3, d4) dejaría de cumplirse A→ C, (4. está prohibida) porque hay dos filas con valor a3 que tienen distinto valor C : c2 y c3
 - Por otra parte D tiene valores diferentes en cada fila, luego: D→ A,B,C

Concepto Necesarios Basados en DFs

- ◆ Un cjto de atributos es Clave Candidata(CC) si el resto de atrib de la tabla
 - "dependen funcionalmente" de ellos:
 - Es decir que existe una DF así: CC → Resto Atrib
 - y, si se quita un atributo de la CC, deja de cumplir la condición
- ◆ La Clave Primaria (CP o PK) es cualquiera de las CC
- ◆ Una superclave (SC) es una CC con atributos añadidos
 - La CC es una SC que tiene el mínimo num. de atrib para ser CC
- ◆ El diseñador decide las DF semánticamente obvias pero
 - hay otras que se cumplen también:
 - las DFs inferidas a partir de las otras
- ◆ EJ: ¿Que DF's hay?
 - COCHES(matricula, Nbastidor, DNIComprador, Color)

Dependencias Multivaloradas (DMs) en Normalización

- ◆ Una DM <u>obliga</u> a que haya unas filas en la tabla que repiten información:
 - La DF *prohibe* unas filas en la tabla (excluye filas ilegales)
- ◆ Definición Informal de DM:
 - Dado esquema R(X Y Resto), donde X, Y y Resto son uno o más atributos
 - Existe la DM, $X \longrightarrow Y$ si para un valor fijo de X,
 - el conjunto de valores que corresponden a Y
 - son independientes de los valores que corresponden para *Resto*.
 - <u>Deben</u> existir los atributos *Resto*
- ◆ EJ: Esquema Biblioteca R (Tit, Aut, NumEd)
 - Qué pasa a lo largo del tiempo?

Dependencias Multivaloradas (DMs) para Normalización

- ◆ EJ: Esquema Biblioteca R (Tit, Aut, NumEd)
- ◆ Un libro tiene título, varios autores y, con el tiempo, va teniendo más ediciones
- ◆ Qué pasa si se necesita hacer a lo largo del tiempo lo siguiente:
 - a Libro 'Titx' es escrito por Aut1, Aut2, Aut3, es la 1ª edición : se crean filas

```
Titx, Aut1, 1
Titx, Aut2, 1
Titx, Aut3, 1
```

- b - Se publica el mismo libro en la 2ª edición, NumEd = 2 : se crean las filas problema: obliga a añadir tres filas (y repetir valores)

```
Titx, Aut1, 2
Titx, Aut2, 2
Titx, Aut3, 2
```

- c y Si necesitamos poner un nuevo Autor4 ?
- → Para crear unas tuplas nos obliga a crear otras

Dependencias Multivaloradas (DMs) para Normalización

(CONT.) EJ: Esquema Biblioteca R (Tit, Aut, NumEd)

- ◆ COMO ENCONTRAR LAS DM?
 - 1) Encuentra que atributos son multivalorados? Aut y NumEd
 - 2) Determina si esos atributos son independientes entre sí?
 - SI, Aut y NumEd no dependen entre ellos ... entonces si hay DM.

- ◆ <u>Cual es la DM</u>? Tit→→Aut donde: X es Tit, Y es Aut, Resto es NumEd
 - por los corolarios también se cumple Tit→→ NumEd

Cierres de DFs y de Atributos

- ◆ DEF <u>Cierre de un cnjto de dfs S</u>: es el cnjto de las dfs y todas las posibles DFs que se puedan inferir de ellas, denominado S+.
 - Se hace con el cierre de atributos, así:
- ◆ DEF <u>Cierre de cnjtos de atributos</u>. Dado un cnjto de atrib. X, y un cnjto de dfs S en R, el cierre de X en S, es X+:
 - X+ es el cnjto de atrib. que son Dependientes. Func. de X.

¿Para qué vale?:

- descubrir claves primarias y candidatas
 - → Aplicado a cada lado izq de las DFs nos da todas las DFs posibles
- Comprobar Propiedades de Descomposición de Tablas
- Descubrir en qué Forma Normal está una BD.

Primer paso: Algoritmo para obtener el cierre X+

- **♦** Algoritmo: Cierre de un cnjto X de atributos
 - → para cada df: se añade el lado dcho al resultado, solo

si el izq ya estaba en el resultado

 \bullet **EJ**: Dada la rel R= (A,B,C,G,H,I,J)

```
y las dfs : F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, AI \rightarrow J, B \rightarrow HG\}
```

Se pide encontrar una CC:

- → busco un atributo (o más, juntos) del que dependan el <u>resto</u> de atrib.:
 - → haciendo cierre del lado izq de las DFs
- para A, tiene los atrib, (A)+ = A B C G H I J Diseño Avanzado BD: Normalización / Desnormalización

Pasos para Mejorar el Diseño de la BD

- 1) <u>Diagnosticar</u> lo que va bien y mal:
 - I. Descubrir *todas* las DFs y DMs
 - II. Descubrir qué DFs y DMs pueden causar problemas
 - III. Qué nivel de calidad tiene la BD: en qué Forma Normal está
 - Los diseños prácticos exigen al menos 3FN
- 2) Reparar lo que no va bien
 - Eliminar las DFs problemáticas con Normalización
 - Dividiendo las tablas con DFs o DMs problemáticas
- 3) Refinar para mejorar Rendimiento con Desnormalización
 - Unir ciertas tablas y controlar por programa las DFs problemáticas
 - . . . para agilizar ciertas consultas frecuentes

Calidad basada en Formas normales, Normalización

- ◆ La forma normal de una TABLA se refiere a
 - La forma normal más exigente que satisface dicha tabla
 - Representa el grado o nivel hasta donde se ha normalizado
- ◆ La forma normal de una BD se refiere a
 - La forma normal más exigente que satisfacen
 - todas sus tablas
- ◆ Las formas normales más habituales, por orden ascendente de exigencia de las propiedades deseadas, son:
 - Primera (1FN)
 - Segunda (2FN)
 - Tercera (3FN)
 - Boyce/Codd (FNBC)
 - Cuarta (4FN)
- ◆ En general, los diseños prácticos exigen al menos 3FN

- ◆ Un Tabla está en 1ª FN si cumple estos requisitos:
 - Los dominios de sus atributos sólo pueden ser atómicos
 - Así se evitan atributos multivalorados y compuestos
- ◆ Actualmente se considera como
 - parte de la definición formal del Modelo Relacional y de SQL
 - Así que los ejemplos son en el paso de D. E/R al M. Relacional

Ejemplo 2: No está en 1ª FN

- ◆ Si se asume que en la entidad Centros,
 - un centro puede tener más de un teléfono,
 - podríamos tener una representación de la figura
 - esto supondría el uso del atributo multivalorado Teléfonos

Centros					
NombreC	DirecciónC	Teléfonos			
Informática	Complutense	{123, 321, 213}			
Matemáticas	Complutense	{456}			
CC. Empresariales	Somosaguas	{789, 987}			

- ◆ Hay tres posibilidades de representar la entidad para
 - satisfacer la primera forma normal: ¿Cuál es la mejor?
- ◆ Solución 1: Eliminar el atributo Teléfonos y
 - crear una nueva relación que asocie en cada fila un centro con un teléfono
- ◆ Consecuencias:
 - La clave de la 1ª relación debe formar parte de clave de la 2ª relación
 - Inconveniente: añadir una nueva relación a la BD y redundancia
 - Suceden anomalías cuando
 - se borra un centro y olvidamos borrar los teléfonos asociados
 - La integridad referencial (FK) asegura evitar estas anomalías
 - El NombreC de Teléfonos se hace FK con apunte a NombreC de Centros

Solución 1. Diseño en primera forma normal

Centros				
NombreC DirecciónC				
Informática	Complutense			
Matemáticas	Complutense			
CC. Empresariales	Somosaguas			

Teléfonos				
NombreC	<u>Teléfono</u>			
Informática	123			
Informática	321			
Informática	213			
Matemáticas	456			
CC. Empresariales	789			
CC. Empresariales	987			

Solución 2: Ampliar la clave de la relación de manera que incluya al atributo multivalorado.

- ◆ Consecuencias:
 - Inconveniente: añade redundancia que provoca anomalías

Centros					
NombreC	DirecciónC	<u>Teléfono</u>			
Informática	Complutense	123			
Informática	Complutense	321			
Informática	Complutense	213			
Matemáticas	Complutense	456			
CC. Empresariales	Somosaguas	789			
CC. Empresariales	Somosaguas	987			

Solución 3:

- ◆ Si se conoce la cardinalidad máxima del atributo multivalorado
 - se pueden crear tantas columnas como la cardinalidad máxima
- ◆ Consecuencias:
 - Inconveniente : uso de valores Null

NombreC	DirecciónC	Teléfono1	Teléfono2	Teléfono3
Informática	Complutense	123	321	213
Matemáticas	Complutense	456	Null	Null
CC. Empresariales	Somosaguas	789	987	Null

• ¿Qué solución es la mejor?: La 1ª, porque controla las redundancias

- ◆ Si el atributo multivalorado es compuesto,
 - representar varias direcciones para un empleado:
 - Empleados(Id_empleado, NombreP, {Direcciones(Calle, Ciudad, CódigoPostal)})
- ◆ Esta relación se puede descomponer en dos:
 - Empleados(Id empleado, NombreP)
 - DireccionesP(<u>Id_empleado</u>, <u>Calle</u>, Ciudad, <u>CódigoPostal</u>)

- ◆ Este procedimiento de desanidamiento se puede aplicar
 - recursivamente a cualquier relación con atributos multivalorados
- ◆ teniendo en cuenta que es necesario propagar
 - la clave de la relación original a la clave de la nueva relación
 - que contiene además la clave
 - que identifica unívocamente al atributo multivalorado.

Ejemplo 3 Personal_Proyectos NO está en 2ª FN pero sí en 1ªFN

- ◆ **Problema**: <u>Todos</u> los atributos no dependen de la PK completa
 - alguno solo de parte de ella (de algún atributo, no de todos)
- ◆ Existen anomalías de actualización causadas por DF2 y DF3
 - Porque sus antecedentes no son clave completa de la tabla

Personal_Proyectos					
Id empleado	<u>NúmeroP</u>	Horas	NombreE	NombreP	
123A	P-1	16	Ana Almansa	Proyecto 1	
012D	P-1	8	David Díaz	Proyecto 1	
012D	P-2	4	David Díaz	Proyecto 2	
DF1			↑	<u> </u>	
DF2					
	DF3				

- ◆ La 2ª FN evita este tipo de anomalías
- ◆ La 2ª FN se basa en el concepto de "DF completa"

Definición: Dependencia funcional completa

- lacktriangle La DF tipo X \rightarrow Y es una DF completa si
 - no se cumple $X \{A_i\} \rightarrow Y, A_i \in X$
 - Es decir, si quito algún atributo del antecedente
 - Deja de ser DF
- ♦ Si se cumple X- $\{A_i\} \rightarrow Y, A_i \in X$
 - se trata de una *DF parcial*

Definición: Segunda forma normal

- ◆ Una relación/tabla está en 2ª FN
 - si cada atributo que no forme parte de ninguna clave candidata (CC)
 - depende funcional y completamente de cada clave candidata
- ◆ Una relación/tabla que NO está en 2ª FN
 - Puede transformarse en varias tablas que sí lo estén
- ◆ Solución El procedimiento es dividir la tabla en
 - tantas nuevas tablas como DFs que *no* sean completas

Ejemplo 3, solución

◆ Así, el ejemplo anterior se traduce en:

	PP2					
	Id empleado			NombreE		
•	DF2					

	PP3					
Núm	<u>eroP</u>	NombreP				
DF3						

- este procedimiento asegura que el resultado está
 - <u>al menos</u>, en segunda forma normal
- ◆ En este caso concreto, por casualidad,
 - el resultado conseguido en este ejemplo se encuentra en 4FN
 (como se podrá comprobar más adelante)

Tercera forma normal

Ejemplo 4 existen anomalías de actualización causadas por la DF2 que queremos eliminar

- ◆ Sin embargo, este esquema está en 2ª FN porque
 - los dos últimos atributos, que son los que causan las anomalías,
 - dependen completa (y transitivamente)
 - del único atributo que forma la PK

Empleados_Departamentos									
Id empleado	NombreE	DirecciónE	CódigoD	NombreD	DirectorD				
123A	Ana	c/ Argentales	DS	Sistemas	999Z				
	Almansa								
012D	David	c/ Daroca	DS	Sistemas	999Z				
	Díaz								
DF1									
Diseño Avanzado BD: Normalización / Desnormalización									

Tercera forma normal

◆ La 3ª FN se basa en el concepto de "DF transitiva"

Definición de Dependencia funcional transitiva

- lacktriangle Una DF del tipo de X \rightarrow Y es una DF transitiva si
 - existe un conjunto de atributos Z que cumplen las tres:
 - juntos NO forman CC
 - no son subconjunto de ninguna clave (CC, PK)
 - y además se cumple $X \rightarrow Z$ y $Z \rightarrow Y$

- ◆ En el ejemplo anterior, se cumple DF3
 - que es *transitiva* por DF1 y DF2

Definición: Tercera forma normal (3ª FN)

- ◆ Una tabla está en tercera forma normal si
 - satisface la segunda forma normal y
 - todos los atributos que **no** forman parte de una CC
 - NO dependen transitivamente de ninguna CC

- ◆ Para facilitar la comprobación reformulamos la **definición**:
- ◆ <u>Un esquema está en 3^a FN</u>
 - con respecto a un conjunto de dependencias funcionales S
 - si para toda dependencia funcional no trivial $X \rightarrow Y$ de S^+
 - se cumple que
 - o bien X es superclave
 - o bien Y forma parte de una clave candidata (atributo primo)
- ◆ Así hay un test de 3ª FN más simple basado en el concepto
 - El cierre S⁺ de un conjunto de dependencias funcionales S

Para **normalizar** esta tabla:

- ◆ descomponerla en otra tabla con los atributos
- ◆ definidos por la DF responsable de la transitividad
- ◆ Dejando en la tabla original el antecedente de esa DF

Ejemplo 4, solución:

ED1				
Id empleado NombreE DirecciónE CódigoD				
DF1				

	ED2				
<u>Cód</u>	igoD	NombreD	DirectorD		
DF2					

Forma normal de Boyce-Codd (FNBC)

- ◆ La FNBC es más estricta que la reformulación de la 3FN
 - La FNBC evita otras redundancias que la 3FN no puede
 - Pero la FNBC no siempre es posible conseguirla

Definición: Forma normal de Boyce-Codd (FNBC)

- ◆ Un tabla está en la FNBC respecto a un conjunto S de DFs
 - si para toda DF no trivial $X \rightarrow Y$ de S^+
 - se cumple que X es superclave (quita la 2^a condición permitida en 3^aFN: prohíbe esas DFs)
- ◆ En particular, un esquema con dos atributos está en FNBC

Ejemplo 5 Esta tabla está en 3FN, pero no en FNBC

- ◆ Contiene los investigadores participantes en proyectos,
 - que pueden ser codirigidos, (DF1)
 - pero los investigadores principales no dirigen más de un proy. (DF2)
- ◆ *Anomalia*: (que se debería poder evitar)
 - si no se vigila DF2 se podría añadir una fila de manera que
 - una persona fuese investigadora principal de dos proyectos
 - La vigilancia solo puede ser programando a mano

Proyectos				
Investigador	Proyecto	IPrincipal		
111A	Proyecto 1	123A		
222B	Proyecto 1	012D		
333C	Proyecto 1	123A		
444D	Proyecto 2	789C		
444D	Proyecto 1	123A		
DF1		<u> </u>		
	DF2 🕈			

Ejemplo 5 La descomposición no es inmediata, hay tres opciones

- 1.- Problemas: Pierde DF1 y DF2; y Unión con pérdida (filas falsas)
- 2.- Problemas: Pierde DF1; y Unión con pérdida (filas falsas)
- 3.- Problemas: Pierde DF1
 - P1a P1h Investigador **IPrincipal Investigador Proyecto** P2aP2b**Proyecto IPrincipal Proyecto** Investigador **P3a** P3b**IPrincipal Proyecto Investigador IPrincipal**
- → Una DF es dentro de una sola tabla (contexto local)

P1a				
Investigador	<u>IPrincipal</u>			
111A	123A			
222B	012D			
333C	123A			
444D	123A			
444D	789C			

P1b				
Investigador	Proyecto			
111A	Proyecto 1			
222B	Proyecto 1			
333C	Proyecto 1			
444D	Proyecto 1			
444D	Proyecto 2			

	$P1a \longrightarrow P1b$		
	Investigador	Proyecto	IPrincipal
	111A	Proyecto 1	123A
	222B	Proyecto 1	012D
	333C	Proyecto 1	123A
falsa →	444D	Proyecto 2	123A
	444D	Proyecto 2	789C
	444D	Proyecto 1	123A
falsa →	444D	Proyecto 1	789C

◆ Por ejemplo, en la primera descomposición se pierde la información de los investigadores principales de cada proyecto Diseño Avanzado BD: Normalización / Desnormalización

- ◆ Por tanto, ninguna de estas descomposiciones es aceptable.
- ◆ Pero hay situaciones donde la descomposición es correcta:
 - como la del ejemplo 3 de la 2ª FN
 - que queda en FNBC, y no pierde ninguna DF

- ◆ En la práctica, la mayoría de los esquemas
 - que están en 3NF lo están también en FNBC.

Dos propiedades a mantener en la descomposición

(como vimos) una descomposición debe asegurar dos propiedades:

- ◆ Que no se pierden la DFs
 - o bien, asegurar que se cumplen programando las validaciones
- ◆ Re-uniones no aditivas o sin pérdida (debe cumplirse sin escusa)
 - Sin pérdida de información de integridad (mantenida por las claves)
 - No aditividad: no producir más tuplas (falsas) de las que estaban
 - en la relación antes de la descomposición
 - → Vemos a continuación la definición que caracteriza esta propiedad

Definición: Propiedad de reunión no aditiva

Dada una relación (o tabla) R, que tiene S (el cjto. de DFs):

- ♦ Una descomposición D de R , formada por las relaciones R_i (representada por D={ $R_1,...,R_m$ })
- ◆ presenta <u>reunión no aditiva</u> respecto a S sobre R, si cumple que:
 - La reunión de todas las R_i obtiene las filas que había antes de hacer D $(\pi_{R1}(r),...,\pi_{Rm}(r)) = r$
 - Se debe cumplir
 - para todo estado r de la relación R que satisfaga S,
 - Donde "todo estado r de la relación" es conjunto de filas
- → Para comprobar esto en la práctica necesitamos el concepto de CIERRE

Comprobar reuniones no aditivas o sin pérdida

◆ RECORDAMOS

- DEF <u>Cierre de un cnjto de dfs S</u>: es el cnjto de las DFs y todas las posibles DFs que se puedan inferir, denominado S+. El S+ se hace con el cierre de cnjtos de atributos, así:
- DEF <u>Cierre de cnjtos de atributos</u>. Dado un cnjto de atrib X, y un cnjto de dfs **S** en R, el cierre de X en **S**, es

X+ es el cnjto de atrib. que son Dependientes. Func. de X.

Comprobar si se cumple la reunión no aditiva (que no añade filas erróneas)

- \bullet una descomposición sencilla D={R₁, R₂} del esquema R, la cumple:
- ◆ . . . si y sólo si se cumple *alguna* de las dos condiciones siguientes:

$$((R_1 \cap R_2) \rightarrow (R_1 - R_2)) \in S^+$$
, o bien

$$((R_1 \cap R_2) \rightarrow (R_2 - R_1)) \in S^+$$

- \rightarrow luego una de esas dos DFs se puedan deducir (pertenezcan al cierre S⁺)
- → es decir: que los atributos comunes son PK en una de las relaciones

Conservación en la descomposición de: DFs y reuniones no aditivas

- ◆ En 3°FN siempre se pueden conservar estas dos propiedades,
- ◆ En las FNBC y superiores, no se puede asegurar la conservación

Ejemplo 5: consigo la FNBC pero ¿conserva propiedades?

- ◆ El esquema Proyectos se encuentra en 3FN.
- ◆ Admite tres descomposiciones y ninguna de ellas conserva la DF1
- ◆ Sólo la última descomposición conserva reuniones no aditivas.
- ◆ Para comprobarlo verificamos que sí cumple la condición: $((R_1 \cap R_2) \rightarrow (R_1 R_2)) = (\{IPrincipal\} \rightarrow \{Proyecto\}) \in S^+$
- ◆ que de hecho se trata de la dependencia funcional DF2.

Otras formas normales

- ◆ La cuarta forma normal es una generalización de la forma normal de Boyce/Codd que se aplica a esquemas con DMs.
- ♦ Hay otras formas normales más exigentes que la 4FN.
- ◆ Las DMs representan restricciones que no se pueden con DFs
- ◆ Otros tipos de restricciones son las dependencias de reunión DRs
 - que generalizan las DMs y
 - que producen otra FN denominada forma normal proyecciónreunión,
 - o también denominada quinta forma normal.

Normalización: Resumen

- ◆ Las formas normales buscan que las claves sean las protagonistas en el mantenimiento de la integridad, con el objetivo de que el diseño esté protegido por las claves.
- ◆ La idea es detectar las posibles fuentes de redundancias y anomalías y descomponer la relación.
- ♦ Hay dos propiedades que son deseables mantener en el proceso de normalización:
 - Preservar las dependencias funcionales.
 - Preservar las reuniones no aditivas.
- ◆ La segunda es de importancia fundamental, la primera no siempre se puede asegurar.
- ◆ El mejor diseño que <u>siempre</u> se puede alcanzar conservando ambas propiedades es la 3FN.
- ◆ En otros casos sólo a veces será posible alcanzar formas normales superiores conservando estas propiedades.

Cómo refinar el diseño orientándolo a las Prestaciones: Desnormalización

Una vez se tiene un modelo relacional de calidad en 3ªFN o mejor:

- ◆ Mejorar el rendimiento o prestaciones de Consultas importantes
 - asumiendo una perdida de calidad de Diseño
- ◆ Técnicas de Desnormalización (también: *Denormalizar*)
 - Datos redundantes: atributos duplicados y derivados de otros
 - Crear otras relaciones que provocan ciclos
 - Fusión de tablas para evitar uniones
 - Partición de una tabla en varias:
 - horizontalmente o
 - verticalmente
 - Vectores de datos
 - Claves subrogadas

Cómo refinar el diseño orientándolo a las Prestaciones: Desnormalización

- ◆ Desnormalizar implica
 - Dependencias entre las Consultas (procesos) y el diseño de los datos:
 - Si se cambia la consulta hay que cambiar el diseño
 - Por eso necesita un estudio previo serio.
 - Mayor espacio ocupado por los datos redundantes
 - Debe mantenerse la consistencia de los datos
 - por programa (aplicaciones, triggers, etc)
 - Puede empeorar las actualizaciones
- ◆ Por eso debe justificarse el coste de dicho mantenimiento mediante una
 - técnica de estimación del coste: <u>Análisis de Redundancias</u>
 - Sobre el Diagrama E/R por ser más gráfico

Técnicas de Desnormalización: Atributos Derivados

Atributos cuyos valores pueden ser derivados de

- otros de la misma entidad.
 - Ejemplo: Entidad Facturas con atributos Íntegro, Neto, IVA.
- ◆ Atributos que se pueden <u>derivar</u> de
 - otras entidades o relaciones
 - generalmente con funciones de agregación.
- ♦ ¿Debo crear Atributos Derivados?
 - Si son objetivo de alguna consulta frecuente
 - Y la obtención de su valor es costosa porque
 - Se accede a muchas filas o tablas
- ◆ Desventaja: Hay que mantenerlo por programa, ej. un trigger

Técnicas de Desnormalización: atributo derivado

◆ El atributo Total se puede derivar del Precio de otra entidad

Técnicas de Desnormalización: Relaciones Derivadas

Relaciones derivadas de otras relaciones

- Si hay ciclos
- ◆ <u>Ejemplo</u>: ProfesorDe se puede derivar del resto
 - Solo si la cardinalidad lo permite
- ♦ ¿Debo crear Relaciones Derivadas?
 - Si agilizan alguna consulta frecuente porque sean un "atajo" en el E/R
 - Y la obtención camino original es costosa porque
 - Se accede a muchas tablas
- ◆ **Desventaja:** Hay que mantenerlo por programa: actualizaciones de tablas

Técnicas de Desnormalización: Claves Subrogadas evitan las claves ineficientes

Claves subrogadas:

- Son claves inventadas introducidas en el diseño, para sustituir la clave original en el caso de que ésta sea grande o ineficiente.
- ◆ Ejemplo: Inventamos una clave subrogada para sustituir
 - la clave de la tabla ELEMENTO muy larga, que viene dada por
 - la herencia de todas las claves de la jerarquía
- ◆ Se crean Si agilizan alguna consulta frecuente por esa clave
- ◆ **Desventaja:** se debe usar en las FKs que apunten a esa tabla

Técnicas de Desnormalización: Vector de datos sustituye atributo multivalorado

Vector de datos:

- Es un solo atributo o conjunto de atributos
- ... que se añaden a una tabla y
- que implementan un atributo multivalorado

Ejemplo:

- ◆ Dadas dos tablas:
 - socios y
 - Pagos: cantidades pagadas mensualmente a lo largo de un año por los socios

Se crean si hay Consulta para optimizar:

- obtener la información de cada socio
- con las cantidades correspondientes a cada mes

Técnicas de Desnormalización: Particionamiento Vertical

Particionamiento vertical de una Relación

- ◆ Se crean por eficiencia de consulta frecuente sobre *ciertos atributos*
- ◆ Reduce el número de <u>atributos</u> de la relación mediante
 - La división en dos relaciones: una con atributos que usa esa consulta
 - más la PK de la relación original

◆ El objetivo es delimitar conjuntos disjuntos de atributos incluidos en cada

tipo de consulta

Ejemplo

- Mejorar dos consultas:
 - De A1 hasta Af
 - De Ag hasta Am

<u>A1</u>	A2	A3	••••	Am
v11	v12	v13		v1m
v21	v22	v23		v2m
vnl	vn2	vn3		vnm

<u>A1</u>	A2	A3	 Af
v11	v12	v13	 vlf
v21	v22	v23	 v2f
vn1	vn2	vn3	 vnf

<u>A1</u>	Ag	Ah	 Am
v11	vlg	v1h	 vlm
v21	v2g	v2h	 v2m
vn1	vng	vnh	 vnm

→ ORGANIZACIÓN FÍSICA de DATOS

Técnicas de Desnormalización: Particionamiento Horizontal

Particionamiento horizontal de una relación

- ◆ Se crean por mejorar eficiencia de consulta frecuente sobre *ciertas filas*
- ◆ Divide en dos relaciones: una con las filas que usa esa consulta
- ◆ Se usan técnicas de PLSQL dinámico para la división y la consulta

◆ El objetivo es delimitar conjuntos disjuntos de tuplas afectados por cada

tipo de consulta.

Ejemplo

- ◆ Mejorar dos consultas:
 - Filas de V1 hasta Vj
 - Filas de Vk hasta VN

→ ORGANIZACIÓN FÍSICA de DATOS

Reestructuración de esquemas lógicos (E/R): Análisis de redundancias: ¿Porqué?

- ♦ *Ventajas* de la redundancia:
 - Reducción del número de accesos para completar las operaciones.
- ◆ *Inconvenientes*: Se necesitan
 - Mayor capacidad de almacenamiento y
 - operaciones adicionales para mantener la información extra actualizada.
- ◆ <u>Decisión</u>: **Qué Diseño conviene conservar?**
- ◆ Comparar el coste de las operaciones frecuentes en los diseños:
 - a) CASO 1 (sin redundancias)
 - Operación 1
 - Operación 2
 - b) CASO 2 (con redundancias)
 - Operación 1
 - Operación 2
 Diseño Avanzado BD: Normalización / Desnormalización

Análisis de redundancias: Datos y Pasos

- ◆ Dando <u>datos de Entrada específicos</u> sobre los <u>criterios</u>:
 - 1.- Qué operaciones son problemáticas, y voy a estudiarlas.
 - 2.- Qué casos de diseño voy a estudiar
 - 3.- Estadísticas necesarias de cada operación
 - Tabla de Volumen de datos de cada relación/entidad que participa
 - Tabla de Frecuencia al día de cada operación
- ◆ Y <u>otros datos a considerar</u>, cómo que se decide que ...
 - Número de Escrituras de la operación (en qué tablas) coste Escritura = 2 x coste Lectura
 - Número de Lecturas de la operación (en qué tablas)
- ◆ . . . Podemos hacer el cálculo del Análisis para cada Caso de Diseño
- ◆ Vamos a aplicarlo a un ejemplo:

Ejemplo: dos posiblidades, dos Casos de Diseño de la Redundancia

- Redundancia a decidir: ¿Conservamos el atributo *Habitantes* o **no**?
- ¿Qué operación mejora? (operación problemática)
 - → Consulta sobre el total de población por ciudad (Op2:imprimir)
- ¿Qué operación empeora? (operación problemática)
 - → Actualizaciones de Personas (Op1: Crear una persona nueva)

63

◆ OBJETIVO: Determinar

¿Cuánto mejora la lectura frente a cuanto empeora la actualización?

1.- Con las operaciones problemáticas:

- ◆ Operación 1: Crear una nueva persona con su ciudad de residencia.
- ◆ Operación 2: Imprimir los datos de una ciudad.

2.- Qué casos de diseño voy a estudiar

(los vemos después)

3.- Estadísticas necesarias de cada operación

◆ Tabla de volúmenes (filas) de datos

Concepto	Tipo	Volumen
Ciudades	E	200
Personas	E	1000000
Reside	R	1000000

3.- Estadísticas necesarias de cada operación

◆ Tabla de Frecuencias al día de las operaciones

Operación	Tipo	Frecuencia
Operación 1	I	500
	т	2
Operación 2	1	2

◆ Leyenda: I=Interactivo, L=Procesamiento por lotes

A) Primer Caso de Diseño a Estudiar(2.-): con redundancia.

- ◆ (A) Determinar la Tabla de accesos para los cálculos
 - Siguiendo los accesos necesarios según la operación

Operación 1 crear persona	(ent/rela	1)	(lect/escr)		
Concepto	Tipo	Accesos	Tipo		
Personas	Е	1	Е		
Reside	R	1	E		
Ciudades	Е	1	L		
Ciudades	Е	1	Е		
Operación 2 imprimir datos					
Ciudades	Е	1	L		

◆ (A) Operación 1:

- Acceso de escritura a Personas,
- acceso de escritura a Reside,
- acceso de lectura a Ciudades y
- acceso en escritura a Ciudades (para actualizar el atributo).
- Total accesos por una operación: 3 de escritura + 1 lectura
- Frecuencia: 500 veces al día. Suma 1500 escrituras y 500 lecturas.

◆ (A) Operación 2:

- Frecuencia: 1 veces/día
- El coste de esta operación es despreciable (200 lecturas = accesos).
- ◆ (A) Ambas operaciones: Si el coste de escritura es el doble que el de lectura
 - ◆ 1500x2+500=3500 accesos.

B) Segundo Caso de Diseño a Estudiar (2.-): sin redundancia.

◆ (B) Determina la Tabla de accesos según operaciones

Operación 1	(enti/rela)		(Lectu/Escri)
Concepto	Tipo	Accesos	Tipo
Personas	Е	1	Е
Reside	R	1	Е
Operación 2			
Ciudades	Е	1	L
Reside	R	5000	L

◆ Leyenda: E=Entidad, R=Relación, L=Lectura, E=Escritura

- ◆ (B) Operación 1:
 - Acceso de escritura a Personas,
 - Acceso de escritura a Reside
 - Total accesos : 2 escrituras
 - Frecuencia: 500 veces al día
 - Total access 1000 escrituras => 2.000 access
- ♦ (B) Operación 2:
 - Acceso en lectura a Ciudades (despreciable)
 - accesos de lectura a Reside
 - 5000 (aprox: número de personas/número de ciudades),
 - 2 veces al dia=10.000 lecturas.
- ◆ (B) Ambas operaciones: Si el coste de escritura es el doble que el de lectura
 - 1000x2+10.000=12000 accesos.
 - → (CASO A : 3.500, mejor con redundancia)

- ◆ Se puede decidir mantener la redundancia (denormalización),
- pese a sus problemas:
 - posibles inconsistencias (si no se mantiene)
 - mayor coste de las modificaciones
 - mayor dificultad de modificación del diseño en el futuro

