

Slot: C2+TC2+TCC2+V5

School of Advanced Sciences

Continuous Assessment Test-I, Winter Semester-January 2020

Course Code & Name: MAT 3003-Complex Variables and Partial Differential Equations Date & Time: 21.01.2020 & 90 Minutes

Max.	Marks: 50 Answer ALL the Questions	Marks
	Questions	
S.No.	(i) Prove that an analytic function with its derivative zero is constant.	(5M+5N
	(ii) Find the analytic function $f(z) = u + iv$ given $v = \left(r - \frac{1}{r}\right) \sin \theta, r \neq 0.$	(10M)
2.	Determine the function $u = 2xy + 3xy^2 - 2y^3$ is harmonic. Find the conjugate harmonic function v and express $u + iv$ an analytic function $f(z)$	
3.	$\alpha = \tau^2$ to find the image of	(10M)
4.	Find the bilinear transform which maps the points $z = 2$, i , -2 into the points $\omega = 1$, i , -1 and also find the invariant points of this transform.	(10M)
1	Determine the Laurent series expression $f(z) = \frac{1}{(z+2)(1+z^2)}$ valid for	(10M)
	the regions (i) $ z < 1$, (ii) $1 < z < 2$, (iii) $ z > 2$	

Join VIT Question Papers on Telegram