怎样在微分中值定理中构造辅助函数成了解这类题的主要关键,下面介绍怎样构造的方法,还有附带几个经典例题,希望对广大高数考生有所帮助。

先看这一题,已知 f(x)连续,且 f(a)=f(b)=0,求证在(a, b)中存在 ϵ 使 $f'(\epsilon)=f(\epsilon)$

证明过程: $f'(\epsilon)=f(\epsilon)$, 所以 f'(x)=f(x), 让 f(x)=y,

所以 $\frac{dy}{dx} = y$,即 $\frac{1}{y}dy = dx$,所以对两边简单积分,即 $\int \frac{1}{y}dy = \int 1dx$,所以解出来(真的是不定积分的话后面还要加个常数 C,但这只是我的经验方法,所以不加)就是 $\ln y = x$,也就是 $y = e^x$,这里就到了最关键的一步,要使等式一边为 1!,所以把 e^x 除下来,就是 $\frac{y}{e^x} = 1$,所以左边就是构造函数,也就是 $y \cdot e^{-x}$,而 y 就是 f(x),所以构造函数就是 $f(x)e^{-x}$,你用罗尔定理带进去看是不是。再给大家举几个例子。

二、已知 f(x)连续,且 f(a)=f(b)=0,求证:

在 (a, b) 中存在 ε 使 f'(ε)+2 ε f(ε)=0

证:一样的, $\frac{dy}{dx}$ =-2xy,把 x,y 移到两边,就是 $\frac{1}{y}dy$ =-2xdx,所以积分出来就是 $\ln y$ =- x^2 ,注意 y一定要单独出来,不能带 \ln ,所以就是y= e^{-x^2} ,移出 1 就是 ye^{x^2} =1,所以构造函数就是 $f(x)e^{x^2}$,再用罗尔定理就出来了。

三、已知 f(x)连续,且 f(a)=f(-a),求证在(-a, a)中存在 ϵ 使 $f'(\epsilon)$ ϵ +2 $f(\epsilon)=0$.

证: $\frac{dy}{dx}x+2y=0$,移项就是 $\frac{1}{y}dy=-2\frac{1}{x}dx$,所以 $\ln y=-2\ln x$,所以就是 $y=\frac{1}{x^2}$,移项就是 $y\cdot x^2=1$,所以构造的函数就是 $f(x)\cdot x^2$,再用罗尔定理就可以了。

注:这种方法不是万能的,

下面介绍一些常见表达式中的原函数:

(1) 要证 $f'(\zeta)g(\zeta) + f(\zeta)g'(\zeta) = 0$ 即证 $[f(x)g(x)]'_{x=\zeta} = 0; 所以可令 F(x) = f(x)g(x).$

(2) 要证 $f'(\zeta)g(\zeta) - f(\zeta)g'(\zeta) = 0, (g(x) \neq 0)$,即证 $\frac{f'(\zeta)g(\zeta) - f(\zeta)g'(\zeta)}{g^2(\zeta)} = 0, 即证[\frac{f(x)}{g(x)}]'_{x=\zeta} = 0, 所以可令 F(x) = \frac{f(x)}{g(x)}$

(3) 要证
$$f'(\zeta) + f(\zeta)g'(\zeta) = 0$$
, 即证 $e^{g(\zeta)}[f'(\zeta) + f(\zeta)g'(\zeta)] = 0$, 即证[$e^{g(x)}f(x)$] $_{x=\zeta}' = 0$ 。所以可令 $F(x) = e^{g(x)}f(x)$ 。

结合下面例题尝试做下。

微分中值定理的证明题

1. 若 f(x) 在 [a,b] 上连续,在 (a,b) 上可导, f(a) = f(b) = 0,证明: $\forall \lambda \in R$, $\exists \xi \in (a,b)$ 使得: $f'(\xi) + \lambda f(\xi) = 0$ 。

证:构造函数 $F(x) = f(x)e^{\lambda x}$,则 F(x)在 [a,b]上连续,在 (a,b)内可导,且 F(a) = F(b) = 0,由罗尔中值定理知: $\exists \xi \in (a,b)$,使 $F(\xi) = 0$ 即: $[f'(\xi) + \lambda f(\xi)]e^{\lambda \xi} = 0$,而 $e^{\lambda \xi} \neq 0$,故 $f'(\xi) + \lambda f(\xi) = 0$ 。

经典题型二:

思路分析:

例 3 设 $x_1x_2 > 0$, 证明: $x_1e^{x_2} - x_2e^{x_1} = (1-\zeta)e^{\zeta}(x_1-x_2)$ 式中, ζ 在 x_1 , x_2 之间。

分析: 要证的等式是固定点 x_1, x_2 以及中间值 ζ 的表达式, 作变形, 使 x_1, x_2 与 ζ 分离。再生成改变量的商, 选用中值定理证明, 具体步骤为:

(1)
$$\zeta$$
 与 x_1, x_2 分离 $\frac{x_1 e^{x_2} - x_2 e^{x_1}}{x_1 - x_2} = (1 - \zeta) e^{\zeta}$

(2) 产生改变量的商
$$\frac{\frac{e^{x_2}}{x_2} - \frac{e^{x_1}}{x_1}}{\frac{1}{x_2} - \frac{1}{x_1}} = (1 - \zeta) e^{\zeta}$$

只需在 $[x_1, x_2]$ 上用柯西定理即可。

实战分析:

设a,b>0,证明: $\exists \xi \in (a,b)$,使得 $ae^b-be^a=(1-\xi)e^\xi(a-b)$ 。

证:将上等式变形得:
$$\frac{1}{b}e^{\frac{1}{b}} - \frac{1}{a}e^{\frac{1}{a}} = (1-\xi)e^{\frac{1}{\xi}}(\frac{1}{b} - \frac{1}{a})$$

作辅助函数 $f(x) = xe^{\frac{1}{x}}$,则 f(x) 在 $\left[\frac{1}{b}, \frac{1}{a}\right]$ 上连续,在 $\left(\frac{1}{b}, \frac{1}{a}\right)$ 内可导,由拉格朗日定理得:

$$\frac{f(\frac{1}{b}) - f(\frac{1}{a})}{\frac{1}{b} - \frac{1}{a}} = f'(\frac{1}{\xi}) \quad \frac{1}{\xi} \in (\frac{1}{b}, \frac{1}{a}) ,$$

$$\frac{f(\frac{1}{b}) - f(\frac{1}{a})}{\frac{1}{b} - \frac{1}{a}} = f'(\frac{1}{\xi}) \qquad \frac{1}{\xi} \in (\frac{1}{b}, \frac{1}{a}) ,$$

$$\mathbb{I} \frac{\frac{1}{b}e^{b} - \frac{1}{a}e^{a}}{\frac{1}{b} - \frac{1}{a}} = (1 - \frac{1}{\xi})e^{\frac{1}{\xi}} \qquad \qquad \frac{1}{\xi} \in (\frac{1}{b}, \frac{1}{a}) ,$$

$$\mathbb{P}: \ \ \operatorname{ae}^{b} - be^{e} = (1 - \xi)e^{\xi}(a, b) \qquad \quad \xi \in (a, b) \ .$$

经典题型三

设 f(x) 在 (0,1) 内有二阶导数,且 f(1)=0,有 $F(x)=x^2 f(x)$ 证明:在 (0,1) 内 至少存在一点 ξ , 使得: $F''(\xi) = 0$ 。

证: 显然 F(x) 在[0,1] 上连续,在(0,1) 内可导,又 F(0) = F(1) = 0,故由罗尔 定理知: $\exists x_0 \in (0,1)$, 使得 $F'(x_0) = 0$

又 $F(x) = 2xf(x) + x^2f'(x)$,故 F(0) = 0, 于是 F(x) 在 $[0, x_0]$ 上满足罗尔 定理条件,故存在 $\xi \in (0,x_0)$, 使得: $F''(\xi) = 0$,而 $\xi \in (0,x_0) \subset (0,1)$,即证