TU-München, 21.08.2009

Übungsblatt

Experimentalphysik II - Ferienkurs Rolf Ripszam - Andreas Schindewolf

1 Filter

Vergleiche die beiden in Abbildung 1 dargestellten Wechselstromkreise auf Transfer und Phasenunterschied zwischen Ein- und Ausgangsspannung. Wozu lassen sich die beiden Schaltungen verwenden?

Abbildung 1: Zwei Schaltpläne von Wechselstromkreisen.

2 Allpass

In der Abbildung 2 ist ein sogenannter Allpass-Filter dargestellt. Ein Allpass kann die Phase eines sinusförmigen Signals verschieben ohne dabei die Amplitude abzuschwächen. Berechnen Sie die Übertragungsfunktion $\frac{U_{out}}{U_{in}}$ und die Phasenverschiebung als Funktionen von ω .

Abbildung 2: Schaltplan eines Allpass-Filter.

3 Angeregter Schwingkreis

- (a) Stellen Sie die Differentialgleichung auf, die einen elektrischen Schwingkreis (RLC-Kreis) beschreibt, der mit der Wechselspannung $U(t) = U_0 \cos \omega t$ angeregt wird.
- (b) Lösen Sie die Differentialgleichung mit dem Ansatz für den eingeschwungenen, stationären Zustand: $Q(t) = A\cos\omega t + B\sin\omega t$, wobei A und B zu bestimmende Konstanten sind.

4 Sonnenbestrahlung

Die Sonne strahlt eine Gesamtleistung von $P \approx 4 \cdot 10^{26} \mathrm{W}$ ab. Der Abstand der Sonne zur Erde beträgt etwa $a \approx 150 \cdot 10^6 \mathrm{km}$, der Durchmesser der Erde sei $D \approx 12500 \mathrm{km}$.

- a) Wie groß ist die mittlere Bestrahlungsstärke auf der Erde unter Vernachlässigung der Atmosphäre?
- b) Wie groß ist der Strahlungsdruck auf die Erde, wenn Sie annehmen, dass die Strahlung vollständig absorbiert wird?
- c) Welche Kraft wirkt dadurch auf die Erde?

5 Dipolstrahlung

In Kugelkoordinaten stellt die sphärische Welle

$$\vec{E}(t,\vec{r}) = \frac{\alpha}{r} \sin \vartheta \cos(\omega t - kr) \hat{e_{\vartheta}} \quad , \quad \vec{B}(t,\vec{r}) = \frac{\beta}{r} \sin \vartheta \cos(\omega t - kr) \hat{e_{\varphi}}$$

mit $\alpha = \beta c$ das Fernfeld eines Hertzschen Dipols dar. Wie groß ist die mittlere Leistung, die von diesem Dipol durch die Halbsphäre $0 \le \vartheta \le \pi/2$, r = 1 km gestrahlt wird, wenn α den Wert 100V hat?