# Capítulo 2

# **Funciones Analíticas**

análisis complejo estudia las funciones complejas que son diferenciables en algún dominio. Por tanto, primero es necesario establecer qué se entiende por función compleja y luego las nociones de límite, continuidad, derivada (estos conceptos son semejantes al que se estudio en cálculo), funciones analíticas y armónicas. El objetivo fundamental en este capítulo es estudiar las funciones analíticas, las cuales juegan un papel central en el análisis complejo.

# 2.1 Regiones en el Plano Complejo

ara el desarrollo de este capítulo es necesario estudiar algunos conceptos topológicos los cuales definiran regiones o conjuntos en el campo de los números complejos.

# **Definición 3** ( $\epsilon$ -Entorno o Vecindad).

Sean  $z_0 \in \mathbb{C}$  y  $\epsilon > 0$ . Un  $\epsilon$ -entorno o vecindad de  $z_0$ , (o una bola de centro  $z_0$  y radio  $\epsilon > 0$ ) es el conjunto de todos los números complejos z cuya distancia a  $z_0$  es menor que  $\epsilon$ , el mismo lo denotaremos por  $\mathcal{B}(z_0, \epsilon)$ ; es decir,

$$\mathcal{B}(z_0, \epsilon) = \left\{ z \in \mathbb{C} : |z - z_0| < \epsilon \right\}$$

En ocasiones, conviene utilizar un entorno sin el centro. Estos entornos se denominan en-

tornos perforados de  $z_0$ , estos lo denotaremos  $\mathcal{B}'(z_0,\epsilon)$ ; esto es

$$\mathcal{B}'(z_0,\epsilon) = \left\{ z \in \mathbb{C} : 0 < |z - z_0| < \epsilon \right\}$$

Se dice que  $z_0$  es un *punto interior* del conjunto S de  $\mathbb{C}$  si existe algún un entorno  $\mathcal{B}(z_0,\epsilon)$  de  $z_0$  que está contenido en S. El conjunto de todos los puntos interiores de S, se denota por intS (ó por  $S^\circ$ ). Diremos que un punto  $z_0$  es un *punto exterior* de S si existe algún entorno de  $z_0$  que no contiene puntos de S.

Si un punto  $z_0$  no es interior ni exterior de S, se dice que es un *punto frontera* de S. Por tanto, todo entorno de un punto frontera contiene puntos que están en S y puntos que no están en S.

El conjunto de todos los puntos frontera de S constituye la *frontera* de S.

Un conjunto es *abierto* si todos sus puntos son puntos interiores. En otras palabras, diremos que un conjunto S en  $\mathbb{C}$  es abierto si y sólo si intS=S. Un conjunto S es *cerrado* si su complemento

$$S^c = \mathbb{C}\backslash S := \{z \in \mathbb{C} \ : \ z \notin S\}$$

es un conjunto abierto, o equivalentemente un conjunto es *cerrado* si contiene todos sus puntos frontera.

De manera natural surgen las siguientes inquietudes:

- ¿Existen conjuntos que no son abiertos ni cerrados a la vez?;
- ¿Existen conjuntos que son abiertos y cerrados a la vez?.

Un conjunto  $S \subset \mathbb{C}$  es *conexo* si todo par de puntos  $z_1, z_2$  de S se pueden unir por una línea poligonal (unión finita de segmentos rectos) contenida en S.

```
???????????????????DIBUJO????????????????????????
```

Denominaremos *dominio* a todo conjunto abierto y conexo. En consecuencia todo entorno es un dominio.

Un conjunto  $S \subset \mathbb{C}$  es *acotado* si está contenido por completo dentro de alguna circunferencia |z| = R. En caso contrario, se dice que S es *no acotado*.

# Ejemplo 4.

El conjunto A formado por todas las  $z \in \mathbb{C}$  tales que  $0 < |z-1| \le 1$ , no es abierto ni cerrado. En efecto, haciendo z = x + iy, obtenemos

$$0 < |z - 1| \le 1 \iff 0 < |(x - 1) + iy| \le 1 \iff 0 < (x - 1)^2 + y^2 \le 1.$$

La circunferencia |z|=1 y el punto 0 son los puntos frontera de A, pero el  $0 \notin A$ , por consiguiente A no es cerrado. Por otro lado, z=1 pertenece a A, pero no es un punto interior de A y así A no es abierto.

A es conexo (¿por que?) y acotado, pues queda totalmente contenido por ejemplo en la circunferencia |z|=5/2.

# Ejemplo 5.

Los conjuntos  $S_{\epsilon}$  y  $R_{\epsilon}$  definidos por  $S_{\epsilon} = \{z \in \mathbb{C} : |Re(z)| + |Im(z)| < \epsilon\}$  y  $R_{\epsilon} = \{z \in \mathbb{C} : \max\{|Re(z)|, |Im(z)|\} < \epsilon\}, \ \epsilon > 0$ , son conjuntos abiertos, conexos y acotados. ¿Por que?

# Ejemplo 6.

El conjunto  $A=\left\{z\in\mathbb{C}:|z+i|<|z-1|\right\}$  no es abierto, ni cerrado, ni acotado pero si es conexo. ¿Por que?

# 2.2 Funciones de Variable Compleja

ea  $\mathcal{D}$  un subconjunto no vacío de  $\mathbb{C}$ . Una función f definida sobre  $\mathcal{D}$  es una regla que asigna a cada  $z \in \mathcal{D}$  uno o más complejos w's. El número w se llama el valor de f en z y se

denota por f(z); esto es

$$f: \mathcal{D} \subseteq \mathbb{C} \longrightarrow \mathbb{C}$$

$$z \leadsto f(z) = w. \tag{2.1}$$

El conjunto  $\mathcal{D}$  se denomina el dominio de definición de f.

Cuando f asigna un sólo valor complejo w a cada  $z \in \mathcal{D}$ , f se llama función univaluada (o univoca), de lo contrario se denomina multivaluada o (multivoca). Cuando se estudian funciones multivaluadas, se suele tomar sólo uno de los valores asignados a cada punto, de modo sistemático, y se construye así una función univaluada a partir de la función multivaluada.

Otra forma de ver estas funciones, es la siguiente, si z=x+iy y w=u+iv, entonces

$$f(z) = u + i v = u(x, y) + i v(x, y)$$
(2.2)

Es decir, la función f puede ser expresada en términos de un par de funciones u y v con valores reales de las variables reales x e y. En otras palabras,

$$f \equiv \operatorname{Re}(f) + i\operatorname{Im}(f) \tag{2.3}$$

de donde Re(f) = u, Im(f) = v.

# Ejemplo 7.

si  $f(z) = z^2$ , entonces

$$f(x+iy) = (x+iy)^2 = x^2 + i2xy + i^2y^2 = x^2 - y^2 + i2xy.$$

Luego,  $u(x,y) = x^2 - y^2$ , y v(x,y) = 2xy.

<sup>&</sup>lt;sup>1</sup>El dominio de definición no tiene que ser un dominio como se definió al final de la sección anterior

# Ejemplo 8.

Sea  $f(z)=z+\frac{1}{z},\ z\neq 0$ . Usando coordenadas polares  $r,\theta$  en vez de x e y, se tiene que  $z=re^{i\,\theta},\ r=|z|$  y  $f(z)=f(re^{i\,\theta})=u(r,\theta)+i\,v(r,\theta)$ . Así

$$f(re^{i\theta}) = re^{i\theta} + \frac{1}{re^{i\theta}} = re^{i\theta} + \frac{e^{-i\theta}}{r} = r\operatorname{cis}(\theta) + \frac{\operatorname{cis}(-\theta)}{r}$$

$$= \left(\frac{r^2+1}{r}\right)\cos(\theta) + i\left(\frac{r^2-1}{r}\right)\mathrm{sen}(\theta).$$

De donde  $u(r,\theta) = \left(\frac{r^2+1}{r}\right)\cos(\theta)$  y  $v(r,\theta) = \left(\frac{r^2-1}{r}\right)\sin(\theta)$ .

Si la función v=0, entonces el número f(z) es siempre real, en otras palabras, f es una función real de una variable compleja. Por ejemplo si  $f(z)=|z|^2$ , entonces  $f(z)=x^2+y^2$ .

# Observación 9.

Las propiedades de una función real de una variable real se suelen reflejar en el gráfico de la función. Pero para w = f(z), donde z y w son complejos, no disponemos de tal gráfica, pues ambos números, z y w están sobre un plano en lugar de sobre una recta; es decir, se requerirían cuatro dimensiones, dos para cada variable. En lugar de esto, la información acerca de la función se expresa dibujando planos complejos separados para las variables z y w, e indicando la correspondencia existente entre puntos, o conjuntos de puntos, en los dos planos. Al pensar en una función f de esta manera nos referimos a ella como una aplicación o transformación<sup>a</sup>.

<sup>a</sup>Ver por ejemplo la sección 12 del Cap. 2 y el Cap. 8 del texto Variable Compleja y Aplicaciones de Churchill/Brown.

# 2.3 Límites

ea f una función definida en alguna vecindad perforada de  $z_0 \in \mathbb{C}$ . La afirmación de que

el *límite* de f(z), cuando z tiende a  $z_0$ , es un número complejo  $w_0$ , en notación

$$\lim_{z \to z_0} f(z) = w_0 \tag{2.4}$$

significa que el punto w=f(z) puede hacerse tán próximo como se quiera a  $w_0$ , si escogemos a z suficientemente cercano a  $z_0$ , pero  $z \neq z_0$ . Formalmente

$$\lim_{z \longrightarrow z_0} f(z) = w_0 \qquad \text{si y s\'olo si para cada } \epsilon > 0, \quad \text{existe un} \quad \delta = \delta_\epsilon > 0 \quad \text{tal que}$$
 
$$\left| f(z) - w_0 \right| < \epsilon \quad \text{siempre que} \quad 0 < |z - z_0| < \delta. \tag{2.5}$$

La idea gráfica es la siguiente



Esta definición de límite dice que, a medida que el entorno perforado de  $z_0$  y radio  $\delta$  se comprime a  $z_0$ , el entorno de  $w_0$  y radio  $\epsilon$  se concentra hacia  $w_0$  y es importante destacar que la tendencia de z hacia  $z_0$  debe producirse en todas las direcciones.

Al igual que los límites estudiados a funciones reales, está definición de límite proporciona un medio para comprobar si un punto dado  $w_0$  es un límite, no pone en nuestras manos un método para determinar ese valor. El siguiente resultado establece una relación entre los límites de funciones de variable compleja y los de funciones reales a dos variables reales.

## Teorema 10.

- (A) Si el límite de una función existe es único.
- (B) Supongamos que  $f(z)=u(x,y)+i\,v(x,y); z_0=x_0+i\,y_0$  y  $w_0=u_0+i\,v_0$ . Entonces

$$\lim_{z \to z_0} f(z) = w_0 \iff \lim_{(x,y) \to (x_0,y_0)} \left( u(x,y), v(x,y) \right) = (u_0, v_0)$$

$$\iff \begin{cases} \lim_{(x,y) \to (x_0,y_0)} u(x,y) &= u_0 \\ \lim_{(x,y) \to (x_0,y_0)} v(x,y) &= v_0. \end{cases}$$

- (C) Supóngase que  $\lim_{z \to z_0} f(z) = w_0$  y  $\lim_{z \to z_0} g(z) = W_0$ . Entonces
  - (a)  $\lim_{z \to z_0} \left[ f(z) + g(z) \right] = w_0 + W_0.$
  - (b)  $\lim_{z \to z_0} \left[ f(z)g(z) \right] = w_0 W_0.$
  - (c)  $\lim_{z \to z_0} \left[ \frac{f(z)}{g(z)} \right] = \frac{w_0}{W_0}, \ g(z) \neq 0, \ W_0 \neq 0.$
  - (d)  $\lim_{z \to z_0} \alpha = \alpha, \ \alpha \in \mathbb{C}.$
- (D) Otra propiedad útil de los límites es

si 
$$\lim_{z \longrightarrow z_0} f(z) = w_0$$
 entonces  $\lim_{z \longrightarrow z_0} |f(z)| = |w_0|$ .

# 2.4 Límites y el Punto del Infinito

Cs conveniente incluir con el plano complejo el *punto del infinito*, denotado por  $\infty$ , y usar límites relacionados con él. El plano complejo junto con ese punto se llama *plano complejo ampliado* (ó extendido).

La afirmación

$$\lim_{z \to z_0} f(z) = \infty$$
, (2.6)

significa que: para cada  $\epsilon>0$  existe un  $\delta=\delta_{\epsilon}>0$  tal que

$$|f(z)| > 1/\epsilon$$
 siempre que  $0 < |z - z_0| < \delta$ . (2.7)

Es decir, el punto w=f(z) está en el  $\epsilon$ -entorno  $|z|>1/\epsilon$  de  $\infty$  siempre que z esté en el entorno  $0<|z-z_0|<\delta$  de  $z_0$ .

Como la ecuación (2.7) se puede escribir de la forma

$$\left| \frac{1}{f(z)} - 0 \right| < \epsilon \quad \text{si} \quad 0 < |z - z_0| < \delta,$$

se observa que

$$\lim_{z \to z_0} f(z) = \infty \iff \lim_{z \to z_0} \frac{1}{f(z)} = 0$$
(2.8)

Si  $\lim_{z\longrightarrow\infty}f(z)=w_0$ , entonces, para cada  $\epsilon>0$  existe un  $\delta=\delta_\epsilon>0$  tal que

$$|f(z) - w_0| < \epsilon$$
 siempre que  $|z| > \frac{1}{\delta}$ . (2.9)

De donde se sigue que

$$\lim_{z \to \infty} f(z) = w_0 \iff \lim_{z \to 0} f(1/z) = w_0$$
(2.10)

De manera similar se tiene que

$$\lim_{z \to \infty} f(z) = \infty \iff \lim_{z \to 0} \frac{1}{f(1/z)} = 0$$
(2.11)

# 2.5 Continuidad

na función f es continua en  $z_0 \in \mathbb{C}$  si y sólo si se satisfacen las tres condiciones siguientes:

- (a)  $f(z_0)$  existe,
- (b)  $\lim_{z \to z_0} f(z)$  existe,
- (c)  $f(z_0) = \lim_{z \to z_0} f(z)$ .

Una función de una variable compleja es continua en una región  $\mathcal{D}$  de  $\mathbb{C}$  si lo es en todos sus puntos.

### Observación 11.

Observemos lo siguiente:

- (1) Si falla alguna de las tres condiciones anteriores, se dice que f es discontinua.
- (2) Si falla (b) se dice que f tiene una discontinuidad no evitable o esencial en  $z_0$ .
- (3) Si (a) y (b) se cumplen pero falla (c), se dice que f posee una discontinuidad *evitable*, ya que redefiniendo el valor de f en  $z_0$  igual al valor del límite, la función se hace continua.

## **Propiedades**

- (i) Supongamos que f y g son funciones continuas. Entonces, f+g,fg,  $f/g(g\neq 0)$  también son continuas.
  - (ii) La composición de funciones continuas tambien es continua.
  - (iii) f(z) = u(x, y) + i v(x, y) es continua si y sólo si u y v lo son.

# 2.6 Problemas Resueltos

- (1) **Funciones Complejas Elementales.** Consideraremos varias funciones elementales estudiadas en el cálculo y definiremos funciones correspondientes de una variable compleja.
  - (a) Función Exponencial

Para todo complejo  $z=x+i\,y$ , se define la función exponencial del análisis complejo, como

$$f: \mathbb{C} \longrightarrow \mathbb{C}$$

$$z \leadsto f(z) = e^z = e^x \operatorname{cis}(y) \tag{2.12}$$

Está función exponencial, conserva las propiedades conocidas del caso real. Esto es, si  $z_1, z_2 \in \mathbb{C}$ , entonces

(i) 
$$e^{z_1}e^{z_2} = e^{z_1+z_2}$$
; (ii)  $\frac{e^{z_1}}{e^{z_2}} = e^{z_1-z_2}$ ;

(iii) 
$$(e^z)^n = e^{nz}, \forall n = 0, \pm 1, \pm 2, \dots, \forall z \in \mathbb{C}.$$

(iv) Ya que

$$e^{z+2\pi i} = e^z e^{2\pi i} = e^z \operatorname{cis}(2\pi) = e^z$$

Se tiene que la función exponencial es *periódica* con *período imaginario puro*  $2\pi i$ .

(v) Si z = x + iy, resulta que  $e^z = e^x e^{iy}$ . De donde se sigue que

$$|e^z| = |e^x e^{iy}| = |e^x| |\operatorname{cis}(y)| = |e^x| = e^x, \text{ pues } e^x > 0 \ \forall \ x \in \mathbb{R}.$$

Un argumento de  $e^z$  es

$$arg(e^z) = \theta + 2n\pi$$
, donde  $\theta = y$ ,  $n = 0, \pm 1, \pm 2 \cdots$ 

Por lo que  $e^z \neq 0 \quad \forall z \in \mathbb{C}$ .

## (b) Función Logaritmo

El logaritmo de un número complejo z se define de manera similar al caso real. Por lo tanto

$$z = \lg(w)$$
 significa que  $w = e^z$ 

Ahora para cualquier número no nulo dado  $w=\rho e^{i\varphi}, -\pi \leq \varphi \leq \pi$ , la ecuación  $w=e^z$  tiene raíces de la forma

$$z = \ln e^z = \ln \left( \rho e^{i\varphi} \right) = \ln \rho + \ln e^{i\varphi} = \ln \rho + i(\varphi + 2n\pi),$$

para  $n=0,\pm 1,\pm 2,\cdots$ . Luego

$$\lg(w) = \ln e^{i\varphi} = \ln \rho + i(\varphi + 2n\pi), n = 0, \pm 1, \pm 2, \cdots,$$

de donde se sigue que

$$e^{\lg(w)} = e^{\ln e^{i\varphi}} = e^{\ln \rho + i(\varphi + 2n\pi)} = e^z = w.$$

Todo esto, motiva la siguiente definición de la función logaritmo (multivaluada) de una variable compleja. Para todo complejo no nulo  $z=|z|e^{i\theta}, \ -\pi \leq \theta \leq \pi$ , se tiene que

$$\lg(z) = \ln|z| + i(\theta + 2n\pi), \quad n = 0, \pm 1, \pm 2, \cdots$$
(2.13)

El  $valor \ principal \ de \ \lg(z)$  es el valor obtenido cuando n=0 y se denota por Lg(z). Así

$$Lg(z) = \ln|z| + i\theta \tag{2.14}$$

ó sea

$$Lg(z) = \ln|z| + iArg(z)$$
(2.15)

De esa forma

$$\lg(z) = Lg(z) + 2n\pi i, \quad n = 0, \pm 1, \pm 2, \cdots$$
(2.16)

El logaritmo complejo tiene las propiedades usuales de un logaritmo.

## Definición 12.

(Rama de una Función Multivaluada) Una rama de una función multivaluada f es una función univaluada F analítica en cierto dominio y tal que, en cada punto z de ese dominio, el valor F(z) es uno de los valores de f(z).

Es de observar que al exigir que F sea analítica (en la definición anterior), **no** se puede asignar a F valores de f elegidos al azar. Así por ejemplo si  $re^{i\theta}$  es un número complejo no nulo, el argumento  $\theta$  tiene uno de los valores  $\theta = \Theta + 2n\pi$   $(n = 0, \pm 1, \pm 2, \ldots)$ , donde  $\Theta = Arg(z)$ . Por tanto, la definición de la función logarítmo multivada, se puede escribir  $\lg(z) = \ln(r) + i\,\theta$ . Para  $\alpha \in \mathbb{R}$  y  $\alpha < \theta < \alpha + 2\pi$ , la función

$$\lg(z) = \ln(r) + i\,\theta, \qquad r > 0$$

es una rama de la función logarítmo multivaluada. Mientras que la función

$$Lg(z) = \ln(r) + i\Theta, \qquad r > 0, \quad -\pi < \Theta < \pi$$

es la rama principal.

Se llama corte a un trozo de recta o de curva elegida con el fin de definir una rama F de una función multivaluada f. Los puntos del corte para F son puntos singulares de F y cualquier punto que es común a todos los cortes de f se denomina punto de ramificación.

El origen y el rayo  $\theta = \alpha$  forman el corte para la rama  $\lg(z) = \ln(r) + i\,\theta$ , (r>0). El corte para la rama principal del logarítmo lo constituyen el origen y el rayo  $\Theta = \pi$ . Y claramente el origen es un punto de ramificación para las ramas de la función logarítmo multivaluada.

## (c) Funciones Trigonométricas

Como 
$$e^z = e^{x+iy} = e^x \Big[\cos(y) + i\sin(y)\Big].$$

Si hacemos x=0, resulta que  $e^{iy}=\cos(y)+i\sin(y)$  y haciendo y=-y, se tiene que  $e^{-iy}=\cos(y)-i\sin(y)$ , al sumar estas expresiones obtenemos

$$\cos(y) = \frac{e^{iy} + e^{-iy}}{2};$$
  $\sin(y) = \frac{e^{iy} - e^{-iy}}{2i}$ 

Gracias a estas ecuaciones, es natural, definir las funciones trigonométricas, de la siguiente manera: para todo  $z \in \mathbb{C}$ ,

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$

$$\sec(z) = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\cot(z) = \frac{\sin(z)}{\cos(z)}$$

$$\cot(z) = \frac{\cos(z)}{\sin(z)}, \quad z \neq 0$$

$$\sec(z) = \frac{1}{\cos(z)}$$

$$\csc(z) = \frac{1}{\sin(z)}, \quad z \neq 0$$

Todas las identidades conocidas para funciones trigonométricas reales, también son válidas para el caso complejo.

#### (d) Funciones Hiperbólicas

El seno y el coseno hiperbólico de una variable compleja se definen como en una variable real; esto es,

$$\operatorname{senh}(z) = \frac{e^z - e^{-z}}{2} \qquad \operatorname{cosh}(z) = \frac{e^z + e^{-z}}{2} \qquad \operatorname{tgh}(z) = \frac{\operatorname{senh}(z)}{\operatorname{cosh}(z)}$$

#### (e) Exponentes Complejos

Cuando  $z \neq 0$  y el exponente  $\alpha$  es cualquier número complejo, la función  $z^{\alpha}$  se define mediante

$$z^{\alpha} = e^{\alpha \lg(z)}$$

donde lg(z) denota la función logaritmo multivaluada de z.

(2) Hallar todos los valores de  $z \in \mathbb{C}$  tales que: (a)  $e^z = -1$ ; (b)  $e^{4z} = i$ .

(a) Como 
$$-1 = |-1|e^{i\pi} = e^{i\pi}$$
, se tiene que

$$e^{z} = -1 \iff e^{x}e^{iy} = e^{i\pi} \iff \begin{cases} e^{x} = 1 \\ e^{iy} = e^{i\pi} \end{cases} \iff \begin{cases} x = 0 \\ \operatorname{cis}(y) = \operatorname{cis}(\pi) \end{cases}$$

$$\iff \begin{cases} x = 0 \\ \cos(y) + i \operatorname{sen}(y) = \cos(\pi) + i \operatorname{sen}(\pi) \end{cases}$$

$$\iff \begin{cases} x = 0 \\ y = \pi \end{cases} \iff \begin{cases} x = 0 \\ y = \pi + 2n\pi, \ n = 0, \pm 1, \pm 2, \cdots \end{cases}$$

Es decir;

$$e^z = -1 \iff z = (1+2n)\pi i, \ n = 0, \pm 1, \pm 2, \cdots$$

(b) Como  $i = |i|e^{i\pi/2} = e^{i\pi/2}$ , se tiene que

$$e^{4z} = i \iff e^{4x}e^{i4y} = e^{i\pi/2} \iff x = 0 \text{ y } 4y = \frac{\pi}{2} = \frac{\pi}{2} + 2n\pi$$
  
 $\iff x = 0 \text{ y } y = (1 + 4n)\frac{\pi}{8}, \ n = 0, \pm 1, \pm 2, \cdots$ 

Por lo que

$$e^{4z} = i \iff z = (1+4n)\frac{\pi}{8}i, \quad n = 0, \pm 1, \pm 2, \cdots.$$

(3) Hallar: (a)  $e^{\frac{2+\pi i}{4}}$ ; (b)  $e^{(2\pm 3\pi i)}$ .

## Solución

$$(a) e^{\frac{2+\pi i}{4}} = e^{1/2}e^{i\pi/4} = e^{1/2}\operatorname{cis}(\pi/4)$$

$$= e^{1/2}\left[\cos(\pi/4) + i\operatorname{sen}(\pi/4)\right]$$

$$= e^{1/2}\left[\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right] = \sqrt{\frac{e}{2}}(1+i).$$

(b) 
$$e^{2\pm 3\pi i} = e^2 e^{\pm e\pi i} = e^2 \operatorname{cis}(\pm 3\pi) = e^2 \left[ \cos(\pm 3\pi) + i \operatorname{sen}(\pm 3\pi) \right]$$
  
=  $-e^2$ .

(4) Hallar los valores y el valor principal de:

(a) 
$$\ln(1)$$
; (b)  $\ln(-e i)$ ; (c)  $\ln(-1 + \sqrt{3}i)$ .

Recuerde que  $\ln(z)=\ln|z|+i(\theta+2n\pi),\;n=0,\pm1,\pm2,\cdots,\;\;$  donde  $\;z=|z|e^{i\,\theta}.$ 

(a)  $1 = |1|e^{i0} = e^{i0}$ , luego  $\ln(1) = \ln|1| + i(0 + 2n\pi) = 2n\pi i$ ,  $n = 0, \pm 1, \pm 2, \cdots$  y el valor principal es  $Ln(1) = 2(0)\pi i = 0$ .

(b) 
$$-ei = |-ei|e^{-i\pi/2} = ee^{-i\pi/2}$$
, luego

$$\ln(-e \, i) = \ln \, e + i(-\frac{\pi}{2} + 2n\pi) = 1 + i\left(-\frac{\pi}{2} + 2n\pi\right),$$

 $n=0,\pm 1,\pm 2,\cdots$ , y el valor principal es  $Ln(-e\,i)=1-i\,\pi/2.$ 

(c) 
$$-1 + \sqrt{3}i = |-1 + \sqrt{3}i|e^{i2\pi/3} = 2e^{i2\pi/3}$$
, luego

$$\ln(-1 + \sqrt{3}i) = \ln 2 + i\left(\frac{2\pi}{3} + 2n\pi\right) = \ln 2 + i\left(\frac{2\pi}{3} + 2n\pi\right),$$

 $n=0,\pm 1,\pm 2,\cdots$ , y el valor principal es

$$Ln(-1 + \sqrt{3}i) = \ln 2 + i 2\pi/3.$$

(5) Pruebe que:

(a) 
$$2\operatorname{sen}(z_1)\cos(z_2) = \operatorname{sen}(z_1 + z_2) + \operatorname{sen}(z_1 - z_2);$$
  
(b)  $\operatorname{sen}(z + \pi/2) = \cos(z).$ 

#### Prueba.

(a) Usando las respectivas definiciones, se tiene que

$$2\operatorname{sen}(z_1)\cos(z_2) = 2\left(\frac{e^{iz_1} - e^{-iz_1}}{2i}\right)\left(\frac{e^{iz_2} - e^{-iz_2}}{2i}\right)$$

$$= \frac{e^{i(z_1+z_2)} - e^{-i(z_1+z_2)}}{2i} + \frac{e^{i(z_1-z_2)} + e^{-i(z_1-z_2)}}{2i}$$

$$= \operatorname{sen}(z_1 + z_2) + \operatorname{sen}(z_1 - z_2).$$

$$\begin{array}{rcl} (b) \ \, \mathrm{sen}(z+\pi/2) & = & \left(\frac{e^{i\,(z+\pi/2)}-e^{-i\,(z+\pi/2)}}{2i}\right) \\ \\ & = & \frac{e^{i\,z}\,\mathrm{cis}(\pi/2)-e^{-i\,z}\,\mathrm{cis}(-\pi/2)}{2i} \\ \\ & = & \frac{i\,e^{i\,z}+i\,e^{-i\,z}}{2i} = \mathrm{cos}(z). \end{array}$$

(6) Si  $\cos(z) = 2$ . Encuentre: (a)  $\cos(2z)$ ; (b)  $\cos(3z)$ .

#### **Solución**

(a) 
$$\cos(2z) = \cos^2(z) - \sin^2(z) = 2\cos^2(z) - 1$$
. De donde 
$$\cos(2z) = 2 \cdot 4 - 1 = 7.$$

(b) 
$$\cos(3z) = \cos(z + 2z) = \cos(z)\cos(2z) - \sin(z)\sin(2z)$$
  

$$= 14 - \frac{\sin^2(2z)}{2\cos(z)} = 14 - \frac{1 - \cos^2(z)}{2\cos(z)}$$

$$= 14 + 12 = 26.$$

(7) Pruebe que  $\overline{\operatorname{sen}(z)} = \operatorname{sen}(\overline{z})$ .

#### Prueba.

Como 
$$\overline{e^{iz}} = e^{-i\overline{z}}$$
 y  $\overline{e^{-iz}} = e^{i\overline{z}}$  y  $\operatorname{sen}(z) = \frac{e^{iz} - e^{-iz}}{2i}$ . Se sigue que 
$$\overline{\operatorname{sen}(z)} = \overline{\left(\frac{e^{iz} - e^{-iz}}{2i}\right)} = \overline{\left(\frac{e^{iz} - e^{-iz}}{\overline{2}i}\right)} = \overline{\frac{e^{i\overline{z}} - e^{-i\overline{z}}}{\overline{2}i}} = \overline{\frac{e^{i\overline{z}} - e^{-i\overline{z}}}{-2i}} = \frac{e^{i\overline{z}} - e^{-i\overline{z}}}{2i} = \operatorname{sen}(\overline{z}).$$

(8) Encuentre los valores de (a)  $4 \operatorname{senh}(i \pi/3);$  (b)  $1^{\sqrt{2}};$  (c)  $Re\{(1-i)^{1+i}\};$   $Im\{(1-i)^{1+i}\}.$ 

(a) Como 
$$\operatorname{senh}(z) = \frac{e^z - e^{-z}}{2}$$
. Entonces 
$$4 \operatorname{senh}(i \pi/3) = 2 \left( e^{i \pi/3} - e^{-i \pi/3} \right) = 2 \operatorname{cis}(\pi/3) - 2 \operatorname{cis}(-\pi/3)$$
$$= 2 \operatorname{cos}(\pi/3) + i 2 \operatorname{sen}(\pi/3) - 2 \operatorname{cos}(\pi/3) - i 2 \operatorname{sen}(-\pi/3)$$
$$= 4 \operatorname{sen}(\pi/3) i = 2 \sqrt{3} i.$$

(b) Por definición  $z^{\alpha} = e^{\alpha \lg(z)}$ . Por lo que

$$1^{\sqrt{2}} = e^{\sqrt{2} \lg(1)} = e^{\sqrt{2} 2n\pi i} = e^{2\sqrt{2} n\pi i}, \quad n = 0, \pm 1, \pm 2, \cdots$$

$$= \operatorname{cis}(2\sqrt{2} n\pi), \quad n = 0, \pm 1, \pm 2, \cdots$$

$$= \operatorname{cos}(2\sqrt{2} n\pi) + i \operatorname{sen}(2\sqrt{2} n\pi), \quad n = 0, \pm 1, \pm 2, \cdots$$

(c) Primeros hallemos  $(1-i)^{1+i}$ 

$$\lg(1-i) = \ln|1-i| + \left(\frac{7\pi}{4} + 2n\pi\right)i = \ln\sqrt{2} + \left(\frac{7\pi}{4} + 2n\pi\right)i, \quad n = 0, \pm 1, \pm 2, \cdots.$$

De donde se sigue que

$$(1-i)^{1+i} = e^{(1+i)\lg(1-i)} = e^{(1+i)\left[\ln\sqrt{2} + \left(\frac{7\pi}{4} + 2n\pi\right)i\right]}, \quad n = 0, \pm 1, \pm 2, \cdots$$

$$= e^{\left(\ln\sqrt{2} - \frac{7\pi}{4} - 2n\pi\right) + i\left(\ln\sqrt{2} + \frac{7\pi}{4} + 2n\pi\right)}, \quad n = 0, \pm 1, \pm 2, \cdots$$

$$= e^{\left(\ln\sqrt{2} - \frac{7\pi}{4} - 2n\pi\right)} \cos\left(\ln\sqrt{2} + \frac{7\pi}{4} + 2n\pi\right)$$

$$+ i e^{\left(\ln\sqrt{2} - \frac{7\pi}{4} - 2n\pi\right)} \sin\left(\ln\sqrt{2} + \frac{7\pi}{4} + 2n\pi\right), \quad n = 0, \pm 1, \pm 2, \cdots$$

Por lo tanto

$$Re\left\{ (1-i)^{1+i} \right\} = e^{(\ln\sqrt{2} - \frac{7\pi}{4} - 2n\pi)} \cos\left(\ln\sqrt{2} + \frac{7\pi}{4} + 2n\pi\right)$$
$$Im\left\{ (1-i)^{1+i} \right\} = e^{(\ln\sqrt{2} - \frac{7\pi}{4} - 2n\pi)} \operatorname{sen}\left(\ln\sqrt{2} + \frac{7\pi}{4} + 2n\pi\right)$$

para  $n = 0, \pm 1, \pm 2, \cdots$ .

(9) Sea 
$$f(z) = \frac{z+1}{1-z}$$
. Halle: (a)  $f(i)$ ; (b)  $f(1-i)$ .

(a) 
$$f(i) = \frac{i+1}{1-i} = \frac{(1+i)(1+i)}{(1-i)(1+i)} = \frac{2i}{2} = i.$$

(b) 
$$f(1-i) = \frac{(1-i)+1}{1-(1-i)} = \frac{2-i}{i} = \frac{(2-i)(-i)}{-i^2} = -1-2i.$$

(10) Evalúe los siguientes límites:

(a) 
$$\lim_{z \to 2i} \left( i z^4 + 3z^2 - 10 i \right);$$
 (b)  $\lim_{z \to 1+i} \left( \frac{z - 1 - i}{z^2 - 2z + 2} \right)^2$   
(c)  $\lim_{z \to e^{i\pi/4}} \frac{z^2}{z^4 + z + 1};$  (d)  $\lim_{z \to -2i} \frac{(2z + 3)(z - 1)}{z^2 - 2z + 4}$   
(e)  $\lim_{z \to i\pi/2} z^2 \cosh(4z/3);$  (f)  $\lim_{z \to -1} \frac{iz + 3}{z + 1};$  (g)  $\lim_{z \to \infty} \frac{2z + i}{z + 1}$ 

(a) 
$$\lim_{z \to 2i} (iz^4 + 3z^2 - 10i) = i(2i)^4 + 3(2i)^2 - 10i = 16i^5 + 12i^2 - 10i$$
  
=  $-12 + 6i$ .

(b) 
$$\lim_{z \to 1+i} \left( \frac{z-1-i}{z^2 - 2z + 2} \right)^2 = \lim_{z \to 1+i} \left[ \frac{z - (1+i)}{(z + (i+1))(z - (1-i))} \right]^2$$
  

$$= \lim_{z \to 1+i} \left[ \frac{1}{(z + (1-i))} \right]^2$$

$$= \left[ \frac{1}{(1+i) + (1-i)} \right]^2 = \frac{1}{4}.$$

$$(c) \lim_{z \to e^{i\pi/4}} \frac{z^2}{z^4 + z + 1} = \frac{e^{i\pi/2}}{e^{i\pi} + e^{i\pi/4} + 1} = \frac{\operatorname{cis}(\pi/2)}{\operatorname{cis}(\pi) + \operatorname{cis}(\pi/4) + 1}$$
$$= \frac{i}{-1 + \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} + 1} = \frac{\sqrt{2}}{1 + i}i$$
$$= \frac{\sqrt{2}}{2}(1 + i).$$

$$(d) \lim_{z \to -2i} \frac{(2z+3)(z-1)}{z^2 - 2z + 4} = \frac{(-4i+3)(-2i-1)}{(-2i)^2 + 4i + 4} = \frac{-11-2i}{4i} = -\frac{1}{2} + \frac{11}{4}i.$$

$$\begin{array}{rcl} (e) & \lim_{z \longrightarrow i\pi/2} z^2 \cosh(4z/3) & = & \left(\frac{i\pi}{2}\right)^2 \cosh\left(\frac{i2\pi}{3}\right) = -\frac{\pi^2}{4} \frac{\left(e^{i2\pi/3} + e^{-i2\pi/3}\right)}{2} \\ \\ & = & -\frac{\pi^2}{8} \left(\operatorname{cis}(2\pi/3) + \operatorname{cis}(-2\pi/3)\right) = \frac{\pi^2}{8}. \end{array}$$

(f) Recordemos que 
$$\lim_{z \to z_o} f(z) = \infty \iff \lim_{z \to z_o} \frac{1}{f(z)} = 0.$$

$$\text{Como} \quad \lim_{z \longrightarrow -1} \frac{z+1}{3+iz} = 0, \ \text{ resulta que } \quad \lim_{z \longrightarrow -1} \frac{iz+3}{z+1} = \infty.$$

(g) Recordemos que 
$$\lim_{z \to \infty} f(z) = w_o \iff \lim_{z \to 0} f(1/z) = w_o$$
.

$$\text{Ya que} \quad \lim_{z \longrightarrow 0} \frac{\frac{2}{z} + i}{\frac{1}{z} + 1} = \lim_{z \longrightarrow 0} \frac{2 + iz}{z + 1} = 2, \quad \text{se tiene que} \quad \lim_{z \longrightarrow \infty} \frac{2z + i}{z + 1} = 2.$$

(11) Pruebe que  $\lim_{z \longrightarrow 3} \frac{z-1}{z-2} = 2$ . Solución

$$\lim_{z \to 3} \frac{z-1}{z-2} = 2 \iff \text{ para cada } \epsilon > 0, \text{ existe un } \delta = \delta_{\epsilon} > 0 \text{ tal que}$$

$$\left| \frac{z-1}{z-2} - 2 \right| < \epsilon$$
 siempre que  $0 < |z-3| < \delta$ 

$$\iff \text{ para cada } \epsilon > 0, \text{ existe un } \delta = \delta_{\epsilon} > 0 \text{ tal que } \left| \frac{3-z}{z-2} \right| < \epsilon$$

siempre que  $0 < |z - 3| < \delta$ .

Como 
$$|z-3| < \delta$$
 resulta que  $\left| \frac{3-z}{z-2} \right| = \frac{|3-z|}{z-2} < \frac{\delta}{|z-2|}$ .

Si  $\delta < 1/2$ , entonces

$$|z-2| = |1-(3-z)| \ge 1-|3-z| > 1-\frac{1}{2} = \frac{1}{2}.$$

Por lo que 
$$\left|\frac{1}{|z-2|} < 2\right|$$
. Y en consecuencia  $\left|\frac{3-z}{z-2}\right| < 2\delta$ .

Por tanto dado cualquier  $\epsilon > 0$ , y eligiendo  $\delta \leq \min\left\{\frac{1}{2}, \frac{\epsilon}{2}\right\}$ , se tiene que

$$\left| \frac{z-1}{z-2} - 2 \right| < \epsilon.$$

(12) Estudiar la continuidad de las siguientes funciones

(a) 
$$f(z) = \frac{z^2 + 1}{z - 1}$$
, en  $z_o = i$ ; (b)  $f(z) = \begin{cases} z^2 + 2z & \text{si } z \neq 1 + i \\ 3 + 2i & \text{si } z = 1 + i. \end{cases}$ 

$$(c) f(z) = \begin{cases} \frac{z}{z^2 + 1} & \text{si } z \neq \pm i \\ i & \text{si } z = i \\ -i & \text{si } z = -i. \end{cases}$$

#### Solución

(a) 
$$f(i) = \frac{i^2 + 1}{i - 1} = \frac{0}{i - 1} = 0;$$
  $\lim_{z \to i} \frac{z^2 + 1}{z - 1} = \frac{i^2 + 1}{i - 1} = 0$   
 $y \ f(i) = \lim_{z \to i} \frac{z^2 + 1}{z - 1}.$ 

Esto nos dice que la función es continua en  $z_o = i$ .

(b) 
$$f(1+i) = 3+2i$$
;  $\lim_{z \to 1+i} (z^2+2z) = (1+i)^2 + 2(1+i) = 2+4i$  y  $f(1+i) \neq \lim_{z \to 1+i} (z^2+2z)$ .

Esto nos dice que la función es discontinua en  $z_o=1+i$ . Más aún f(z) tiene una discontinuidad evitable (removible) en dicho punto; es decir, podemos (y así lo haremos) redefinir la función para hacerla continua en  $z_o=1+i$ . Sea

$$g(z) = \begin{cases} z^2 + 2z & \text{si } z \neq 1 + i \\ 2 + 4i & \text{si } z = 1 + i. \end{cases}$$

Claramente g(z) es continua en ese punto. Además g(z) también es continua en  $z_o \neq 1+i$ .

(c) Si  $z_o \neq \pm i$ , se tiene

$$f(z_o) = \frac{z_o}{z_o^2 + 1} = \lim_{z \to z_o} \frac{z}{z^2 + 1} = \lim_{z \to z_o} f(z)$$

y así f(z) es continua en  $z_o \neq \pm i$ .

Si  $z_o = \pm i$ , resulta

$$f(\pm i) = \pm i;$$
 
$$\lim_{z \to \pm i} \frac{z}{z^2 + 1} = \pm \infty$$

Ya que el límite en cada caso no existe, concluimos que dicha función es discontinua en  $z_o=\pm i$ . Es más podemos afirmar que f(z) presenta una discontinuidad esencial (no evitable) en esos puntos.

(13) Verificar si la función  $f(z) = \frac{z-i}{z^2-1}$  es continua en la región  $\mathcal{A}$  la cual es generada por todos aquellos  $z \in \mathbb{C}$  tales que |z+i| < 2.

Observemos que en este caso se va a estudiar la continuidad en una región, y que una función es continua en una región si ella es continua en todo punto de dicha región.

Determinenos primero que nada quien es  $\mathcal{A}$ ; para ello pongamos z = x + i y, luego

$$|z+i| < 2 \iff |x+i(y+1)| < 2 \iff x^2 + (y+1)^2 < 4$$

Es decir,  $\mathcal{A}$  es la parte interna (sin el borde) de la circunferencia centrada en (0,-1) y radio 2.



Ahora

$$f(z) = \frac{z-i}{z^2-1}$$
 no existe  $\iff z^2-1=0 \iff z=\pm 1$ 

Pero es claro que  $z_o = -1 \in A$ , por consiguiente la función dada no es continua en A.

# 2.7 Problemas Propuestos

(1) (a) Si 
$$f(z) = \frac{2z+1}{2z-1}$$
, encuentre:  $f(0), f(i)$  y  $f(1+i)$ .

- (b) Halle todos los valores de  $z \in \mathbb{C}$  tales que: f(z) = i; f(z) = 2 3i.
- (2) Hallar la parte real y la imaginaria de las siguientes funciones

(a) 
$$f(z) = 2z^2 - 3zi$$
; (b)  $f(z) = z + \frac{1}{z}$ ; (c)  $f(z) = \sqrt{z}$ ; (d)  $f(z) = z^z$ .

- (3) Encuentre los valores de:  $(a) \ 1^i;$   $(b) \ (1+i)^i;$   $(c) \ i^{-i};$   $(d) \ \lg(e^i);$   $(e) \ ctgh(i \ 3\pi/4); (f) \ |(-i)^{-i}|;$   $(g) \ \operatorname{senh}(z + i \ \pi);$   $(h) \ \cosh(z + i \ \pi);$   $(i) \ \lg(i);$   $(j) \ e^{1+i};$   $(k) \ \operatorname{sen}(2i).$
- (4) Pruebe que: (a)  $\overline{\cos(z)} = \cos(\overline{z})$ ; (b)  $\overline{tg(z)} = tg(\overline{z})$ .
- (5) Evalúe los siguientes límites:

(a) 
$$\lim_{z \to i} \frac{z^2 + 1}{z^6 + 1}$$
; (b)  $\lim_{z \to e^{i\pi/3}} (z - e^{i\pi/3}) \left(\frac{z}{z^3 + 1}\right)$ ; (c)  $\lim_{z \to 0} \frac{\overline{z}^2}{z}$ ;

(d) 
$$\lim_{z \to i} \frac{i z^3 - 1}{z + i}$$
; (e)  $\lim_{z \to 2i} \frac{z^2 + 4}{2z^2 + (3 - 4i)z - 6i}$ ;  
(f)  $\lim_{z \to i} \frac{z^2 - 2z i - 1}{z^4 + 2z^2 + 1}$ ; (g)  $\lim_{z \to 0} \frac{z - sen(z)}{z^3}$ ; (h)  $\lim_{z \to 0} \left(\frac{\operatorname{sen}(z)}{z}\right)^{1/z^2}$ 

(6) Use la definición de límite para verificar los siguientes planteamientos:

(a) 
$$\lim_{z \to 1} 2z = 2;$$
 (b)  $\lim_{z \to i} iz = -1;$  (c)  $\lim_{z \to -i} \left(z + i\right) = 0;$   
(d)  $\lim_{z \to i} \left(z^2 + 1\right) = 0;$  (e)  $\lim_{z \to 1+i} \left(2z - 3\right) = -1 + 2i;$   
(f)  $\lim_{z \to 1+i} z^2 = 2i;$  (g)  $\lim_{z \to 2} \frac{z^2 - 4}{z - 2} = 4$ 

(7) Encuentre todos los puntos de discontinuidad para las siguientes funciones

(a) 
$$f(z) = \frac{2z - 3}{z^2 + 2z + 2}$$
; (b)  $f(z) = \frac{3z^2 + 4}{z^4 - 16}$   
(c)  $f(z) = \frac{1}{z} - \sec(z)$ ; (d)  $f(z) = \frac{tgh(z)}{z^2 + 1}$ .

(8) Determinar si la función f(z) es continua en  $z_0$ , cuando

(a) 
$$f(z) = \begin{cases} 0 & \text{si } z = 0 \\ \frac{Re(z)}{z} & \text{si } z \neq 0; \end{cases}$$
;  $z_0 = 0$ .

(b) 
$$f(z) = \begin{cases} 0 & \text{si } z = 0\\ \frac{Im(z)}{1+|z|} & \text{si } z \neq 0; \end{cases}$$
;  $z_0 = 0$ .

(9) Pruebe que las funciones dadas son continuas en la región indicada

(a) 
$$f(z) = \frac{z^2 + 1}{z^3 + 9};$$
  $\mathcal{A} = \left\{ z \in \mathbb{C} : |z| \le 2 \right\}.$   
(b)  $f(z) = \frac{z^2 + 1}{z^2 - 3z + 2};$   $\mathcal{B} = \left\{ z \in \mathbb{C} : |z| = 2 \right\}.$   
(c)  $f(z) = \frac{z}{z^4 + 1};$   $\mathcal{C} = \left\{ z \in \mathbb{C} : |z| = 1 \right\}.$ 

(10) Pruebe que las funciones dadas, son continuas en todo  $\mathbb{C}$ .

(a) 
$$f(z) = Re(z)$$
; (b)  $f(z) = Im(z)$ ; (d)  $f(z) = \overline{z}$ ; (d)  $f(z) = |z|$ .

(11) Suponga que la función f(z) es continua en alguna región de  $\mathbb{C}$ . Pruebe que las funciones dadas son continuas en la misma región.

(a) 
$$g(z) = Re(f(z));$$
 (b)  $g(z) = Im(f(z));$  (c)  $g(z) = |f(z)|;$  (d)  $g(z) = f(\overline{z}).$ 

(12) Demuestre que las funciones dadas son continuas para  $z \neq 0$ . ¿Puede definirse dicha función como para hacerla continua en z = 0?

$$(a) f(z) = \frac{zRe(z)}{|z|^2}; \qquad (b) f(z) = \frac{|z|^2}{z};$$
$$(c) f(z) = \frac{Re(z)Im(z)}{|z|^2}; \qquad (d) f(z) = \frac{Re^2(z) - Im^2(z)}{|z|^2}.$$

(13) Usar la definición, para hallar f'(z) en el punto indicado.

(a) 
$$f(z) = 3z^2 + 4z i - 5 + i$$
,  $z_0 = 2$ ; (b)  $f(z) = \frac{2z - i}{z + 2i}$ ,  $z_0 = -i$   
(c)  $f(z) = 3z^{-2}$ ,  $z_0 = 1 + i$ ; (d)  $f(z) = z + \frac{1}{z}$ ,  $z_0 = e^{i\pi/4}$ .

# 2.8 Derivadas

ea f una función de una variable compleja definida en alguna región de  $\mathbb{C}$  que contiene un entorno de  $z_0$ . La derivada de f en  $z_0$ , escrita  $f'(z_0)$ , se define por

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0},$$
(2.17)

siempre que dicho límite existe. Cuando existe la derivada de f en  $z_0$  se dice que f es derivable en  $z_0$ .

La función f se dice que es diferenciable en  $z_0$  cuando su derivada existe en  $z_0$ . Si hacemos el cambio  $\Delta z = z - z_0$ , la expresión anterior se puede reescribir en la forma

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$
(2.18)

En general, si ponemos  $\Delta w = f(z+\Delta z) - f(z)$  y hacemos  $\frac{dw}{dz} = f'(z)$ , resulta que

$$\frac{dw}{dz} = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} \tag{2.19}$$

La interpretación geométrica de la derivada en variable compleja no es tan directa como en variable real. La dejamos pendiente para el Capítulo 3.

# 2.8.1 Fórmulas de Derivación

a definición de la derivada de una función compleja, es idéntica en su forma a la de la derivada de una función real de una variable real y por lo mismo también las propiedades y las fórmulas de derivación; es decir,

- (1) Si  $f(z) = \alpha$ , entonces f'(z) = 0.
- (2) Si  $f(z) = z^n$ , entonces  $f'(z) = nz^{n-1}$ .
- (3)  $[\alpha f(z)]' = \alpha f'(z).$
- (4) [f(z) + g(z)]' = f'(z) + g'(z).
- (5) [f(z)g(z)]' = f'(z)g(z) + f(z)g'(z).
- (6)  $\left[\frac{f(z)}{g(z)}\right]' = \frac{f'(z)g(z) f(z)g'(z)}{g^2(z)}, \ g(z) \neq 0.$
- (7) La Regla de la Cadena. Si  $f'(z_0)$  y  $g'(f(z_0))$  existen, entonces la función compuesta  $g \circ f$  tiene derivada en  $z_0$ , y es

$$(g \circ f)'(z_0) = g'(f(z_0))f'(z_0)$$
(2.20)

Si hacemos w = f(z), W = g(w) de modo que W = g(f(z)), la regla de la cadena se convierte en

$$\frac{dW}{dz} = \frac{dW}{dw} \frac{dw}{dz} \tag{2.21}$$

# 2.9 Ecuaciones de Cauchy-Riemann

On la presente sección, estudiaremos dos ecuaciones que deben satisfacer las derivadas parciales de las funciones componentes u y v de la función

$$f(z) = u(x, y) + i v(x, y)$$

en un punto  $z_0 = x_0 + i y_0 = (x_0, y_0)$  para que la derivada de f en  $z_0$  exista. Además obtendremos una ecuación para expresar  $f'(z_0)$  en términos de dichas derivadas parciales.

Para tal fin, comencemos haciendo:  $z_0 = x_0 + i y_0$ ,  $\Delta z = \Delta x + i \Delta y$  y

$$\Delta w = f(z_0 + \Delta z) - f(z_0)$$

$$= \left[ u(x_0 + \Delta x, y_0 + \Delta y) + i v(x_0 + \Delta x, y_0 + \Delta y) \right] - \left[ u(x_0, y_0) + i v(x_0, y_0) \right]$$

$$= \left[ u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0) \right] + i \left[ v(x_0 + \Delta x, y_0 + \Delta y) - v(x_0, y_0) \right].$$

Asumiendo que existe la derivada  $f'(z_0)$ , obtenemos

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} = \lim_{\Delta z \to 0} \left[ Re\left(\frac{\Delta w}{\Delta z}\right) + i \operatorname{Im}\left(\frac{\Delta w}{\Delta z}\right) \right]$$
$$= \lim_{(\Delta x, \Delta y) \to (0,0)} Re\left(\frac{\Delta w}{\Delta z}\right) + i \lim_{(\Delta x, \Delta y) \to (0,0)} \operatorname{Im}\left(\frac{\Delta w}{\Delta z}\right). \tag{2.22}$$

Teniendo en cuenta que (2.22) es válida cuando ( $\Delta x, \Delta y$ ) tiende a (0,0) de cualquier manera. En particular si hacemos  $\Delta y \equiv 0$ , se tiene

$$f'(z_0) = \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x} + i \lim_{\Delta x \to 0} \frac{v(x_0 + \Delta x, y_0) - v(x_0, y_0)}{\Delta x}$$
$$= \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0) = u_x(x_0, y_0) + i v_x(x_0, y_0). \tag{2.23}$$

Ahora por el camino  $\Delta x \equiv 0$ , resulta

$$f'(z_{0}) = \lim_{\Delta y \to 0} \frac{u(x_{0}, y_{0} + \Delta y) - u(x_{0}, y_{0})}{i\Delta y} + i \lim_{\Delta y \to 0} \frac{v(x_{0}, y_{0} + \Delta y) - v(x_{0}, y_{0})}{i\Delta y}$$

$$= \frac{\partial v}{\partial y}(x_{0}, y_{0}) - i \frac{\partial u}{\partial y}(x_{0}, y_{0}) = v_{y}(x_{0}, y_{0}) - i u_{y}(x_{0}, y_{0})$$

$$= -i \left[ u_{y}(x_{0}, y_{0}) + i v_{y}(x_{0}, y_{0}) \right]. \tag{2.24}$$

Las ecuaciones (2.23) y (2.24) **no** sólo dan la derivada  $f'(z_0)$  en términos de las parciales de u y v, sino que proporcionan condiciones necesarias para la existencia de dicha derivada. Es decir

$$u_x(x_0, y_0) + i v_x(x_0, y_0) = f'(z_0) = v_y(x_0, y_0) - i u_y(x_0, y_0)$$

si y sólo si

$$u_x(x_0, y_0) = v_y(x_0, y_0)$$
 y 
$$u_y(x_0, y_0) = -v_x(x_0, y_0)$$
 (2.25)

Estas ecuaciones se denominan *ecuaciones de Cauchy-Riemann*<sup>2</sup>. En el siguiente resultado, se resume lo anterior.

# Teorema 13.

Sean f(z) = u(x,y) + i v(x,y) una función y  $z_0 = x_0 + i y_0$ . Si  $f'(z_0)$  existe, entonces las derivadas parciales de u y v existen en  $z_0$  y satisfacen en  $z_0$  las ecuaciones de Cauchy-Riemann. Además  $f'(z_0)$  viene dada por

$$f'(z_0) = u_x(z_0) + i v_x(z_0) = v_y(z_0) - i u_y(z_0)$$
(2.26)

## Observación 14.

Del Teorema anterior, se deduce que si las funciones componentes u y v no satisfacen las ecuaciones de Cauchy-Riemann entonces f'(z) no existe.

# Ejemplo 15.

Si z=x+iy, se tiene que  $f(z)=z^2=x^2-y^2+i\,2xy$ . Luego  $u(x,y)=x^2-y^2$  y v(x,y)=2xy. Por consiguiente  $u_x=2x=v_y$  y  $u_y=-2y=-v_x$ . Es decir, las componentes u y v satisfacen las ecuaciones de Cauchy-Riemann. Por lo tanto

$$f'(z) = u_x(z) + i v_x(z) = 2x + i 2y = 2z.$$

<sup>&</sup>lt;sup>2</sup>Llamadas así en su honor al matemático francés A. L. Cauchy (1789-1857) quien las descubrió y utilizo, y del matemático aleman G.F.B. Riemann (1826-1866) quien hizo de ellas un instrumento esencial de la teoría de funciones de una variable compleja.

# Ejemplo 16.

Para  $f(z)=|z|^2=x^2+y^2,\ u(x,y)=x^2+y^2,\ v(x,y)=0,\ u_x=2x\neq v_y=0$  y  $u_y=2y\neq -v_x$  para todo  $(x,y)\neq (0,0).$  Así, f'(z) no existe en ningún punto distinto del origen.

# Ejemplo 17.

Si 
$$f(z) = \begin{cases} \frac{\overline{z}^2}{z}, & \text{si } z \neq 0; \\ 0, & \text{si } z = 0, \end{cases}$$

resulta que

$$u(x,y) = \begin{cases} \frac{x^3 - 3xy^2}{x^2 + y^2}, & \text{si } (x,y) \neq (0,0); \\ 0, & \text{si } (x,y) = (0,0); \end{cases}$$

y

$$v(x,y) = \begin{cases} \frac{y^3 - 3x^2y}{x^2 + y^2}, & \text{si } (x,y) \neq (0,0); \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

Luego

$$u_x(0,0) = v_y(0,0)$$
 y  $u_y(0,0) = -v_x(0,0)$ .

Es decir, las funciones componentes u y v satisfacen las ecuaciones de Cauchy-Riemann en  $z_0 = 0 + i0$ . Ahora, determinemos f'(0).

$$f'(0) = \lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} = \lim_{z \to 0} \frac{\overline{z}^2}{z^2} = \left(\lim_{z \to 0} \frac{\overline{z}}{z}\right)^2$$
$$= \begin{cases} 1, & \text{por el camino} \ y \equiv 0; \\ -1, & \text{por el camino} \ y \equiv x. \end{cases}$$

Luego por la unicidad del límite concluimos que el límite  $\left(\lim_{z\to 0}\frac{\overline{z}}{z}\right)^2$  no existe, por consiguiente f'(0) no existe. En otras palabras, f no es derivable en z=0.

## Observación 18.

Como las ecuaciones de Cauchy-Riemann son condición necesaria para la existencia de la derivada de una función en un punto  $z_0 \in \mathbb{C}$ , se utilizan a menudo para detectar los puntos en los que f **no** tiene derivada.

Como vimos en el ejemplo 17, saber que una función f(z) satisface las ecuaciones de Cauchy-Riemann en un punto  $z_0 = x_0 + i y_0$  no es suficiente para asegurar que existe la derivada de f(z) en él. Sin embargo, bajo ciertas condiciones de continuidad adicionales, se establece el siguiente resultado, de gran utilidad.

# Teorema 19.

Sea  $f(z)=u(x,y)+i\,v(x,y)$  una función definida en algún entorno de  $z_0$ . Si las derivadas parciales de primer orden de u y v respecto de x e y existen en dicho entorno, son continuas en  $z_0$  y satisfacen las ecuaciones de Cauchy-Riemann en  $z_0$ , entonces  $f'(z_0)$  existe.

# Ejemplo 20.

Dada la función  $f(z) = ze^{2z}$ , resulta que

$$\begin{split} f(z) &= f(x+i\,y) = (x+i\,y)e^{2x+2y\,i} \\ &= e^{2x}(x+i\,y) \Big[\cos(2y) + i \sin(2y)\Big] \\ &= e^{2x} \Big[x\,\cos(2y) - y \sin(2y)\Big] + i\,e^{2x} \Big[x \sin(2y) + y\,\cos(2y)\Big]. \end{split}$$

De donde se sigue que

$$Re(z) = u(x,y) = x e^{2x} \cos(2y) - y e^{2x} \sin(2y)$$
  
 $Im(z) = v(x,y) = x e^{2x} \sin(2y) + y e^{2x} \cos(2y).$ 

Ahora

$$\begin{array}{rcl} u_x & = & e^{2x} \cos(2y) + 2x \, e^{2x} \cos(2y) - 2y \, e^{2x} \, \mathrm{sen}(2y) \\ u_y & = & -2x \, e^{2x} \, \mathrm{sen}(2y) - e^{2x} \mathrm{sen}(2y) - 2y \, e^{2x} \, \cos(2y) \\ v_x & = & e^{2x} \mathrm{sen}(2y) + 2x \, e^{2x} \mathrm{sen}(2y) + 2y \, e^{2x} \cos(2y) \\ v_y & = & 2x \, e^{2x} \cos(2y) + e^{2x} \cos(2y) - 2y \, e^{2x} \, \mathrm{sen}(2y) \end{array}$$

ya que  $u_x = v_y$  y  $u_y = -v_x$  y estas derivadas parciales son continuas en todas partes, las condiciones del teorema anterior se satisfacen en todo  $\mathbb{C}$ . Por tanto f'(z) existe en todo  $\mathbb{C}$  y viene dada por

$$f'(z) = u_x + i v_x$$
  
=  $e^{2x} \Big[ (1 + 2x) \cos(2y) - 2y \sin(2y) + i ((1 + 2x) \sin(2y) + 2y \cos(2y)) \Big].$ 

# 2.10 Funciones Analíticas

e trata de funciones que son diferenciables en algún dominio, de modo que es posible hacer "cálculo en los complejos". Constituyen el tema fundamental del análisis complejo, y su introducción es el objetivo principal de esta sección.

## Definición 21.

Una función f de una variable compleja es analítica<sup>a</sup> en un conjunto abierto si es derivable en todos los puntos de dicho conjunto.

<sup>a</sup>Los adjetivos regular y holomorfa son sinónimos de analítica.

Se dice que una función es analítica en un conjunto no abierto A si f es analítica en algún conjunto abierto que contiene a A. En particular, f es analítica en un punto  $z_0 \in \mathbb{C}$  si es analítica en algún conjunto abierto que contiene a  $z_0$ .

Ya que las derivadas de la suma, del producto y del cociente de dos funciones existen siempre que ambas funciones tengan derivadas, resulta que si f y g son analíticas, entonces, f+g,fg,f/g ( $g\neq 0$ ) y  $g\circ f$  son también analíticas.

El siguiente teorema establece un criterio fundamental para determinar si una función es analítica.

#### Teorema 22.

Sea  $f: \mathcal{D} \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ . Una condición necesaria y suficiente para que f(z) sea analítica en un dominio  $\mathcal{D}$  es que las derivadas parciales  $u_x, u_y, v_x$  y  $v_y$  existan, sean continuas y satisfagan las ecuaciones de Cauchy-Riemann en  $\mathcal{D}$ .

#### Definición 23.

Una función f es entera si ella es analítica en todo el plano complejo.

El ejemplo típico de función entera son los polinomios, pues ellos son derivables en todo  $\mathbb{C}$ . Mientras que la función f(z) = 1/z, no es entera pues f no es analítica en z = 0.

#### Definición 24.

Se dice que un punto  $z_0 \in \mathbb{C}$  es un punto singular o una singularidad de una función f si f no es analítica en  $z_0$  pero si es analítica en algún punto de cualquier entorno de  $z_0$ .

El punto z = 0 es una singularidad de la función f(z) = 1/z.

# 2.11 Funciones Armónicas

na de las razones principales de la gran importancia práctica del análisis complejo en las matemáticas aplicadas a la ingeniería resulta del hecho de que tanto la parte real como la parte imaginaria de una función analítica satisfacen la ecuación diferencial más importante en física, la *ecuación de Laplace*, que aparece en la teoría de la gravitación, electrostática, dinámica de fluidos, conducción del calor, etc.

# Definición 25.

Una función real F de dos variables reales x e y se dice que es armónica en un dominio del plano xy si en todos los puntos de ese dominio tiene derivadas parciales de primer y segundo orden continuas y satisface además la ecuación de Laplace

$$F_{xx} + F_{yy} = 0$$

El siguiente resultado, proporciona una fuente de funciones armónicas.

# Teorema 26.

Si f(z) = u(x,y) + i v(x,y) es una función analítica en un dominio  $\mathcal{D}$ , entonces las funciones componentes u y v son armónicas en  $\mathcal{D}$ .

#### Demostracion.

Ya que f es analítica en  $\mathcal{D}$ , las componentes u y v de f satisfacen las ecuaciones de Cauchy-Riemann (Teorema 22) en todo punto de  $\mathcal{D}$ ; es decir,

$$u_x = v_y$$
  $y$   $u_y = -v_x$ .

Derivando estas ecuaciones respecto de x, se tiene

$$u_{xx} = v_{yx} \qquad \qquad y \qquad \qquad u_{yx} = -v_{xx}. \tag{2.27}$$

Asimismo, derivando esas ecuaciones respecto de y, obtenemos

$$u_{xy} = v_{yy} \qquad \qquad y \qquad \qquad u_{yy} = -v_{xy}. \tag{2.28}$$

La continuidad de las primeras parciales de u y v (Teorema 22) implica que las derivadas parciales mixtas son iguales; esto es

$$u_{yx} = u_{xy} y v_{yx} = v_{xy}.$$

Por consiguiente, de (2.27) y (2.28), se deduce que

$$u_{xx} + u_{yy} = 0$$
 y  $v_{xx} + v_{yy} = 0.$ 

Por tanto, las partes real e imaginaria de una función analítica son funciones armónicas en  $\mathcal{D}$ .

La parte real e imaginaria  $u=\frac{2xy}{(x^2+y^2)^2}$  y  $v=\frac{x^2-y^2}{(x^2+y^2)^2}$  de la función  $f(z)=i/z^2$  son armónicas.

Si dos funciones dadas u y v son armónicas en un dominio  $\mathcal{D} \subseteq \mathbb{C}$  y sus derivadas parciales de primer orden satisfacen las ecuaciones de Cauchy-Riemann en  $\mathcal{D}$ , se dice que v es armónica conjugada  $^3$  de u.

Claramente si  $f(z) = u(x,y) + i \, v(x,y)$  es analítica en  $\mathcal{D} \subseteq \mathbb{C}$ , entonces v es una armónica conjugada de u. Recíprocamente, si v es una armónica conjugada de u en  $\mathcal{D}$ , entonces la función  $f(z) = u(x,y) + i \, v(x,y)$  es analítica en  $\mathcal{D}$ . Este hecho se resume en el siguiente

# Teorema 27.

Una función  $f(z)=u(x,y)+i\,v(x,y)$  es analítica en  $\mathcal D$  si y sólo si v es armónica conjugada de u.

<sup>&</sup>lt;sup>3</sup>Por supuesto, este uso de la palabra "conjugada" es diferente del empleado para definir el "conjugado"  $\overline{z}$ .

## Observación 28.

Del Teorema 27, surge de manera natural la siguiente inquietud: ¿Si v es armónica conjugada de u, entonces u es conjugada armónica de v?.

Consideremos la función  $f(z)=z^2$ . La parte real e imaginaria son las funciones  $u(x,y)=x^2-y^2$  y v(x,y)=2xy. Como f(z) es una función entera, ella es analítica en todo  $\mathbb C$  y luego por el Teorema 27, v es armónica conjugada de u.

Ahora si consideramos la función  $f(z)=2xy+i\,(x^2-y^2)$ , resulta que u(x,y)=2xy y  $v(x,y)=x^2-y^2$ . De donde se obtiene que

$$u_x(x,y) = 2y$$
,  $u_y(x,y) = 2x$ ,  $v_x(x,y) = 2x$  y  $v_y(x,y) = -2y$ .

Es decir las funciones u y v no satisfacen las ecuaciones de Cauchy-Riemann en  $\mathbb{C}$  salvo en el (0,0) y por lo tanto f no es analítica en  $\mathbb{C}\setminus\{(0,0)\}$  (Teorema 22) y por el Teorema 27 v no es armónica conjugada de u.

# Ejemplo 29.

Usando la definición, encuentre la derivada de las siguientes funciones en los puntos indicados

(a) 
$$f(z) = \frac{2z - i}{z + 2i}$$
,  $z_o = -i$ ; (b)  $f(z) = z^3$ ,  $z_o = 1 + i$ .

#### Solución

Recuerde que

$$f'(z_o) = \begin{cases} \lim_{z \to z_o} \frac{f(z) - f(z_o)}{z - z_o} \\ \delta \\ \lim_{\Delta z \to 0} \frac{f(z_o + \Delta z) - f(z_o)}{\Delta z}. \end{cases}$$

(a) 
$$f'(-i) = \lim_{z \to -i} \frac{\frac{2z-i}{z+2i} - \frac{2(-i)-i}{-i+2i}}{z - (-i)} = \lim_{z \to -i} \frac{\frac{2z-i}{z+2i} + 3}{z+i} = 5 \lim_{z \to -i} \frac{1}{z+2i} = -5i.$$

(b) 
$$f'(1+i) = \lim_{z \to 1+i} \frac{z^3 - (1+i)^3}{z - (1+i)} = \lim_{z \to 1+i} \frac{z^3 + 2 - 2i}{z - (1+i)}$$
  

$$= \lim_{z \to 1+i} \frac{(z - (1+i))(z^2 + (1+i)z + 2i)}{z - (1+i)}$$

$$= \lim_{z \to 1+i} (z^2 + (1+i)z + 2i) = (1+i)^2 + (1+i)(1+i) + 2i$$

$$= 6i.$$

# Ejemplo 30.

Por medio de las reglas y las fórmulas de derivación, encuentre f'(z).

(a) 
$$f(z) = (1 - 4z^2)^3$$
; (b)  $f(z) = \frac{z - 1}{2z + 1}$ ,  $z \neq -1/2$ .

(a) 
$$f'(z) = 3(1-4z^2)^2(1-4z^2)' = -24z(1-4z^2)^2$$

(b) 
$$f'(z) = \frac{2z+1-2z+2}{(2z+1)^2} = \frac{3}{(2z+1)^2}, \ z \neq -1/2.$$

# Ejemplo 31.

Pruebe que f'(z) no existe en ningún punto  $z \in \mathbb{C}$  si

(a) 
$$f(z) = \overline{z}$$
; (b)  $f(z) = Im(z)$ 

#### Prueba.

En este tipo de problemas se debe usar la definición de la derivada y determinar que dicho límite no existe.

$$(a) f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\overline{(z + \Delta z)} - \overline{z}}{\Delta z}$$
$$= \lim_{\Delta z \to 0} \frac{\overline{z} + \overline{\Delta z} - \overline{z}}{\Delta z} = \lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z}$$

Ya que z = x + iy, entonces  $\Delta z = \Delta x + i \Delta y$  y  $\overline{\Delta z} = \Delta x - i \Delta y$ . Como  $\Delta z \longrightarrow 0 \Longrightarrow \Delta x + i \Delta y \longrightarrow 0$ . De donde se sigue que  $(\Delta x, \Delta y) \longrightarrow (0, 0)$ . Por lo que

$$f'(z) = \lim_{(\Delta x, \Delta y) \to 0} \frac{\Delta x - i\Delta y}{\Delta x + i\Delta y}$$

Si 
$$\Delta y \equiv 0$$
 entonces  $f'(z) = \lim_{\Delta x \longrightarrow 0} \frac{\Delta x}{\Delta x} = 1$ .

Si 
$$\Delta x \equiv 0$$
 entonces  $f'(z) = \lim_{\Delta y \longrightarrow 0} \frac{\overline{-i\Delta y}}{i\Delta y} = -1$ .

Estos dos últimos límites nos dice que

$$f'(z) = \lim_{(\Delta x, \Delta y) \to 0} \frac{\Delta x - i\Delta y}{\Delta x + i\Delta y}$$
 no existe.

Por tanto la función  $f(z) = \overline{z}$  no es derivable en ningún punto de  $\mathbb{C}$ .

$$(b) f'(z) = \lim_{\Delta z \to 0} \frac{Im(z + \Delta z) - Im(z)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{\frac{(z + \Delta z) - \overline{z} + \overline{\Delta z}}{2i} - \frac{z - \overline{z}}{2i}}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{\frac{\Delta z}{i} - \frac{z - \overline{z}}{2i}}{\Delta z} = \frac{1}{i} - \left(\frac{z - \overline{z}}{2i}\right) \lim_{\Delta z \to 0} \frac{1}{\Delta z}$$

Pero este último límite **no** existe, por consiguiente la función f(z) = Im(z) no es derivable en  $\mathbb{C}$ .

# Ejemplo 32.

Determinar donde la función  $f(z) = \frac{z+1}{1-z}$  es analítica y donde no.

## **Solución**

f es analítica si es derivable. Así  $f'(z) = \frac{2}{(1-z)^2}$  no existe si z=1. Por lo tanto, f(z) es analítica en todo  $\mathbb{C} - \{1\}$ .

Los puntos en donde una función no es analítica se denominan puntos singulares de la función, por lo que z=1 es un punto singular de  $f(z)=\frac{z+1}{1-z}$ .

# Ejemplo 33.

Verificar si la función  $f(z) = \frac{z^2}{z^2 + 1}$  es analítica en la región

$$\mathcal{A} = \left\{ z \in \mathbb{C} : |z + 1 - i| \le 3 \right\}$$

## Solución

Una función es analítica en una región si lo es en todos sus puntos. Ahora  $f'(z)=rac{2z(z^2+1)-2z^3}{(z^2+1)^2}=rac{2z}{(z^2+1)^2}$  no existe si y sólo si  $z=\pm i$ ; es decir f(z) no es analítica en dichos puntos.

Por otro lado, A representa el borde y la parte interna de la circunferencia centrada en (-1,1) y radio 3. Es obvio que  $z=\pm i\in\mathcal{A}$ , por lo que concluimos que  $f(z) = \frac{z^2}{z^2 + 1}$  no es analítica en  $\mathcal{A}$ .

Re(f)



Dada  $f(z) = ze^{2z}$ . Verificar si Re(f) y Im(f) satisfacen las ecuaciones de Cauchy-Riemann y luego deducir si f es analítica.

Sea z = x + i y. Luego

$$\begin{split} f(z) &= f(x+iy) = (x+iy)e^{2x+2yi} \\ &= e^{2x}(x+iy)\Big[\cos(2y) + i\sin(2y)\Big] \\ &= e^{2x}\Big[x\cos(2y) - y\sin(2y)\Big] + ie^{2x}\Big[x\sin(2y) + y\cos(2y)\Big] \end{split}$$

De donde se sigue que

$$Re(z) = u(x,y) = x e^{2x} \cos(2y) - y e^{2x} \sin(2y)$$
  
 $Im(z) = v(x,y) = x e^{2x} \sin(2y) + y e^{2x} \cos(2y)$ 

Ahora

$$\begin{array}{lcl} \frac{\partial u}{\partial x} & = & u_x = e^{2x} \, \cos(2y) + 2x \, e^{2x} \cos(2y) - 2y \, e^{2x} \, \mathrm{sen}(2y) \\ \frac{\partial u}{\partial y} & = & u_y = -2x \, e^{2x} \, \mathrm{sen}(2y) - e^{2x} \mathrm{sen}(2y) - 2y \, e^{2x} \, \cos(2y) \\ \frac{\partial v}{\partial x} & = & v_x = e^{2x} \mathrm{sen}(2y) + 2x \, e^{2x} \mathrm{sen}(2y) + 2y \, e^{2x} \cos(2y) \\ \frac{\partial v}{\partial y} & = & v_y = 2x \, e^{2x} \cos(2y) + e^{2x} \cos(2y) - 2y \, e^{2x} \, \mathrm{sen}(2y) \end{array}$$

Por lo que

$$u_x = v_y$$
 y  $u_y = -v_x$ 

Esto nos dice que las funciones u(x,y) y v(x,y) satisfacen las ecuaciones de Cauchy-Riemann, más aún como  $u_x, u_y, v_x$  y  $v_y$  son continuas en todo  $\mathbb C$ , concluimos que  $f(z) = u(x,y) + i \, v(x,y)$  es analítica en todo  $\mathbb C$ .

# Ejemplo 35.

Pruebe que la función u(x,y)=2x(1-y) es armónica, luego deduzca que  $f(z)=u(x,y)+i\,v(x,y)$  es analítica.

#### Solución

La función u es armónica si  $u_{xx} + u_{yy} = 0$ . Ahora

Por lo que se concluye que la función u(x,y) es armónica. Por otro lado f(z) = u(x,y) + i v(x,y) es analítica si y sólo si v(x,y) es una armónica conjugada de u(x,y). En otras palabras debemos hallar una armónica conjugada v de u. Aca aunque no esta dicho explicitamente, hay que tener presente que u y v deben satisfacer las ecuaciones de cauchy-Riemann.

A tal efecto, sea v una conjugada armónica de u tal que

$$u_x = v_y$$
 y  $u_y = -v_x$ 

Como  $u_x = 2 - 2y$ , resulta que

$$v_y = 2 - 2y$$
 y luego  $v(x, y) = \int (2 - 2y) dy = 2y - y^2 + h(x)$ 

Derivando respecto de x se tiene que  $v_x=h'(x)$  y ya que  $u_y=-v_x$ , entonces h'(x)=2x, por lo que  $h(x)=x^2+\alpha$ .

Por lo tanto, la función  $v(x,y)=x^2+2y-y^2+\alpha$  es una armónica conjugada de u(x,y). La función analítica correspondiente es

$$f(z) = u(x,y) + i v(x,y) = (2x - 2xy) + i (x^2 + 2y - y^2 + \alpha).$$

Esta función se puede reescribir en términos de la variable z, para ello hay que agrupar los términos. En efecto

$$f(z) = f(x+iy) = 2x - 2xy + ix^{2} + i2y - iy^{2} + i\alpha$$

$$= 2(x+iy) + ix^{2} + i^{2}2xy + i^{3}y^{2} + i\alpha$$

$$= 2(x+iy) + i(x+iy)^{2} + i\alpha$$

$$= 2z + i(z^{2} + \alpha).$$

#### Observación 36.

Un método mucho más práctico para obtener la función f en términos de la variable z, es el siguiente:

- (a) Sea f(z) = u(x, y) + i v(x, y);
- (b) Haga y = 0, para obtener f(x) = u(x, 0) + i v(x, 0);
- (c) Finalmente haga x=z, para lograr que la función quede expresada en términos de la variable z.

Volviendo al ejemplo anterior, tenemos que

$$f(x+iy) = (2x - 2xy) + i(x^2 + 2y - y^2 + \alpha),$$

luego, haciendo y = 0, resulta que

$$f(x) = 2x + i(x^2 + \alpha),$$

por último tomando x=z, se obtiene que  $f(z)=2z+i(z^2+\alpha)$ .

# Ejemplo 37.

Pruebe que la función  $u(x,y)=xe^{-x}\mathrm{sen}(y)-ye^{-x}\cos(y)$  es armónica, luego deduzca que  $f(z)=u(x,y)+i\,v(x,y)$  es analítica.

#### Solución

$$u_x = e^{-x} \operatorname{sen}(y) - xe^{-x} \operatorname{sen}(y) + ye^{-x} \cos(y)$$

$$u_{xx} = -2e^{-x} \operatorname{sen}(y) + xe^{-x} \operatorname{sen}(y) - ye^{-x} \cos(y)$$

$$u_y = x e^{-x} \cos(y) - e^{-x} \cos(y) + ye^{-x} \operatorname{sen}(y)$$

$$u_{yy} = 2e^{-x} \operatorname{sen}(y) - x e^{-x} \operatorname{sen}(y) + ye^{-x} \cos(y)$$

De donde  $u_{xx} + u_{yy} = 0$  y así la función u es armónica.

Sea v una armónica conjugada de u tal que  $u_x = v_y \, \, {\bf y} \, \, \, u_y = -v_x.$ 

Ya que

$$u_x = e^{-x}\operatorname{sen}(y) - xe^{-x}\operatorname{sen}(y) + ye^{-x}\cos(y)$$

se sigue que

$$v_y = e^{-x}\operatorname{sen}(y) - xe^{-x}\operatorname{sen}(y) + ye^{-x}\cos(y)$$

de donde

$$v(x,y) = ye^{-x}\operatorname{sen}(y) + xe^{-x}\cos(y) + h(x)$$

luego

$$v_x = -ye^{-x}\operatorname{sen}(y) + e^{-x}\cos(y) - xe^{-x}\cos(y) + h'(x)$$
 y  $v_x = -u_y$ 

Por lo que

$$ye^{-x}\operatorname{sen}(y) + e^{-x}\cos(y) - xe^{-x}\cos(y) + h'(x) = -xe^{-x}\cos(y)$$
  
 $+e^{-x}\cos(y) - ye^{-x}\operatorname{sen}(y)$ 

y así h'(x) = 0, es decir  $h(x) = \alpha$ .

Por consiguiente, la función

$$v(x,y) = ye^{-x}\operatorname{sen}(y) + xe^{-x}\cos(y) + \alpha$$

es una armónica conjugada de u(x,y). La función analítica correspondiente es

$$\begin{split} f(z) &= u(x,y) + i \, v(x,y) = \left( x e^{-x} \mathrm{sen}(y) - y e^{-x} \cos(y) \right) \\ &+ i \left( y e^{-x} \mathrm{sen}(y) + x e^{-x} \cos(y) + \alpha \right) = i \left( z e^{-z} + \alpha \right). \end{split}$$

# 2.12 Problemas Propuestos

(13) Usar la definición, para hallar f'(z) en el punto indicado.

(a) 
$$f(z) = 3z^2 + 4z i - 5 + i$$
,  $z_0 = 2$ ; (b)  $f(z) = \frac{2z - i}{z + 2i}$ ,  $z_0 = -i$   
(c)  $f(z) = 3z^{-2}$ ,  $z_0 = 1 + i$ ; (d)  $f(z) = z + \frac{1}{z}$ ,  $z_0 = e^{i\pi/4}$ .

(14) Pruebe que f'(z) no existe en ningún punto si

(a) 
$$f(z) = |z|^2$$
; (b)  $f(z) = Re(z)$ ; (c)  $f(z) = ze^{\overline{z}}$ ; (d)  $f(z) = z|z|$ ;  
(e)  $f(z) = z^2 \overline{z}$ .

(15) Demuestre que f'(z) y su derivada f''(z) existen en todas partes y calcule f''(z), para

(a) 
$$f(z) = iz + 2$$
; (b)  $f(z) = e^{-z}$ ;  
(c)  $f(z) = \cos(x)\cosh(y) - i \operatorname{sen}(x)\operatorname{senh}(y)$ .

(16) Verifique que la parte real y la imaginaria de las siguientes funciones satisfacen las ecuaciones de Cauchy-Riemann y deduzca que cada una de ellas es analítica

(a) 
$$f(z) = z^2 + 5zi + 3 - i$$
; (b)  $f(z) = ze^{-z}$ ; (c)  $f(z) = \text{sen}(2z)$   
(d)  $f(z) = e^{z^2}$ ; (e)  $f(z) = \text{senh}(4z)$ .

(17) Verificar si las siguientes funciones son analíticas o no.

(a) 
$$f(z) = xy + iy;$$
 (b)  $g(z) = e^{y+ix}.$ 

(18) Determinar las singularidades de la función y explique por qué la función es analítica en todos los demás puntos del plano.

(a) 
$$f(z) = \frac{2z+1}{z(z^2+1)}$$
; (b)  $g(z) = \frac{z^3+i}{z^2-3z+2}$ ; (c)  $h(z) = \frac{z^2+1}{(z+2)(z^2+2z+2)}$ 

(19) Determine cual de las siguientes funciones son armónicas. Para cada función armónica encuentre una conjugada armónica y finalmente exprese la función  $f=u+i\,v$  en términos de z

$$(a) \ u(x,y) = 3x^2y + 2x^2 - y^3 - 2y^2; \quad (b) \ u(x,y) = 2xy + 3xy^2 - 2y^3;$$
 
$$(c) \ u(x,y) = \frac{y}{x^2 + y^2}; \quad (d) \ u(x,y) = xe^x \cos(y) - ye^x \text{sen}(y);$$
 
$$(e) \ u(x,y) = e^{-2xy} \text{sen}(x^2 - y^2); \quad (f) \ u(x,y) = \text{senh}(x) \text{sen}(y).$$

(20) Determine las ecuaciones de Cauchy-Riemann en forma polar si  $z=re^{i\theta}$  y  $f(z)=u(r,\theta)+i\,v(r,\theta).$