FILE D'ATTENTE TD 6

CHAPITRE 6: METHODES D'AGREGATION

Exercice 6.1: Réseau symétrique

On va utiliser le théorème BCMP, dont les hypothèses sont :

- réseau formé avec des probabilités de transition constantes entre les files d'attente
- services exponentiels de taux constants
- priorités FCFS

On prend le point *D* comme référence. Par symétrie du problème : $\forall 1 \le i \le M$ $e_i = \frac{1}{M}$

Si on a
$$E[S_i] = \frac{1}{\mu_i}$$
 alors $\forall 1 \le i \le M$ $S_i = \frac{1}{\mu}$
 $\Rightarrow \forall 1 \le i \le M$ $e_i S_i = \frac{1}{M \mu}$

Algorithme de Reiser:

Algorithme de Reis	C1 .			
N	1	2	3	<i>N</i> +1 (récurrence)
e_1S_1	$\frac{1}{M \mu}$	$\frac{1}{M\mu}\bigg(1+\frac{1}{M}\bigg)$	$\frac{1}{M\mu}\bigg(1+\frac{2}{M}\bigg)$	$\frac{1}{M\mu}\bigg(1+\frac{N}{M}\bigg)$
e_2S_2	$\frac{1}{M\mu}$:	i:	:
$e_{\scriptscriptstyle M} S_{\scriptscriptstyle M}$	$\frac{1}{M \mu}$	$\frac{1}{M \mu} \left(1 + \frac{1}{M} \right)$	$\frac{1}{M\mu}\bigg(1+\frac{2}{M}\bigg)$	$\frac{1}{M\mu}\bigg(1+\frac{N}{M}\bigg)$
$\Lambda(N)$	$\frac{N}{\sum_{1}^{M} \frac{1}{M \mu}} = \mu$	$\frac{2 M \mu}{M+1}$	$\frac{3 M \mu}{M+2}$	$\frac{(N+1)M \mu}{M+N}$
L_1	$\frac{1}{M}$	$\frac{2}{M}$	$\frac{3}{M}$	$\frac{N+1}{M}$
L_{M}	$\frac{1}{M}$	$\frac{2}{M}$	$\frac{3}{M}$	$\frac{N+1}{M}$

Pour remplir le tableau, on utilise les formules suivantes :

$$e_{n}S_{n} = e_{1}S_{1}(1 + L_{n-1})$$

$$\Lambda(N) = \frac{N}{\sum_{i=1}^{M} e_{i}S_{i}}$$

$$L_{i} = \Lambda(N) \times e_{N}S_{N}$$

Un moyen de s'assurer que les calculs sont justes est de vérifier que : $\sum_{i=1}^{M} L_i = N$

Ainsi, en généralisant par récurrence, on a obtenu : $\Lambda(N) = \frac{N M \mu}{M + N - 1}$

$$\Lambda(N) = \frac{N M \mu}{M + N - 1}$$

On a donc agrégé le modèle en remplaçant les N serveurs par un seul de débit $\mu(N) = \Lambda(N)$

Exercice 6.2 : Agrégation de chaînes de Markov

1°) On considère une chaîne de Markov à temps discret et on a :

$$\forall j \in [0,2] \sum_{i=0}^{2} p_{j,i} = 1$$

On trouve ainsi :
$$\begin{cases}
p_{0,1} = \frac{1}{4} \\
p_{1,1} = \frac{7}{8} \\
p_{2,2} = \frac{7}{8}
\end{cases}$$

 2°) Pour déterminer les probabilités d'état, on applique la méthode de résolution classique : on

résout le système $\pi P = \pi$ avec $P = \begin{bmatrix} \frac{1}{8} & \frac{1}{4} & \frac{5}{8} \\ \frac{1}{8} & \frac{7}{8} & 0 \\ \frac{1}{8} & 0 & \frac{7}{8} \end{bmatrix}$ matrice de transition, et sachant que, en tant que vecteur d'état : $\sum_{i} \pi(i) = 1$. On peut aussi (c'est équivalent) utiliser le théorème des

coupes.

Via cette dernière méthode, on a :

$$\frac{7}{8}\pi(0) = \frac{\pi(1)}{8} + \frac{\pi(2)}{8}$$

$$\frac{\pi(0)}{4} = \frac{\pi(1)}{8}$$

3°)
$$p_{11} + p_{1A} = 1 \Rightarrow p_{1A} = 1 - p_{11} = \frac{1}{8}$$

Les probabilités de transition sont les mêmes dans l'état 1.

Par le théorème des coupes, on obtient $\pi_1 p_{1A} = \pi_A p_{A1}$

$$p_{\rm Al} = \frac{1}{24}$$

Enfin $p_{AA} = 1 - p_{A1} = \frac{23}{24}$

