我的数学笔记

邱彼郑楠 2024 年 3 月 31 日 1 同伦方法 2

1 同伦方法

1.1 预备知识

1.1.1 光滑映射

定义 1.1. 如果映射 $f: D \subset \mathbb{R}^m \to \mathbb{R}^n$ 在定义域 D 中每一点都具有 r 阶连续偏导数,则称 f 为 C^r 映射; 如果对任一个正整数 r, 映射 f 是 C^r 映射, 则称 f 是光滑映射.

- 1. 光滑映射在其定义域内每一点处都可微.
- 2. 如果 $f: X \to Y$, $g: Y \to Z$ 都是光滑映射, 则复合映射 $g \circ f: X \to Z$ 也是光滑的.
- 3. 任意集合上的恒同映射和常值映射都是光滑映射.
- $4. \mathbb{R}^m$ 中的任意紧集上的连续映射都可由光滑映射任意逼近.

定理 1.1. 设 $X \subset \mathbb{R}^m$ 是紧集, $f: X \to \mathbb{R}^n$ 是连续映射, 则对任意 $\varepsilon > 0$, 存在光滑映射 $g: X \to \mathbb{R}^n$, 使得对任意 $x \in X$, 成立

$$||f(x) - g(x)|| < \varepsilon.$$

1.1.2 正则值

定义 1.2. 设 $f: D \subset \mathbb{R}^m \to \mathbb{R}^n$ 是光滑映射, 对 D 中的某一点 x_0 , 如果 f 在 x_0 处的 Jacobi 矩阵 $\frac{\partial f}{\partial x}(x_0)$ 行满秩,则称 x_0 是映射 f 的正则点. 若 x_0 不是映射 f 的正则点,即映射 f 在 x_0 点处的 Jacobi 矩阵行降秩,则称 x_0 是映射 f 的临界点.

定义 1.3. 设 $y_0 \in \mathbb{R}^n$, 如果所有 $x_0 \in f^{-1}(y_0)$ 都是映射 f 的正则点, 则称 y_0 为映射的正则值; 如果 y_0 不是映射的正则值, 亦即存在 $x_0 \in f^{-1}(y_0)$ 使得 x_0 是 f 的临界点, 则称 y_0 是映射 f 的临界值. 特别地, 如果 $y_0 \notin f(D) = \{f(x) : x \in D\}$, 即 $y_0 \in \mathbb{R}^n \setminus f(D)$, 则 y_0 是映射 f 的正则值.

临界点的像一定是临界值,但正则点的项不一定是正则值.只要 $f^{-1}(y_0)$ 中有一个临界点, y_0 就是临界值,同时 $f^{-1}(y_0)$ 中可能有多个正则点.

如果 m = n, 使得 Jacobi 行列式 $\frac{\partial f}{\partial x}(x) = 0$ 的点 x 称为 f 的临界点.

1.1.3 微分同胚

定义 1.4. 设 X 和 Y 分别是两个欧式空间中的子集, 如果映射 $f: X \to Y$ 是双射 (即一一对应), 且 f 与 f 的逆映射 f^{-1} 都是光滑映射, 则称 f 是 X 到 Y 的一个微分同胚. 如果这样的同胚存在, 则称 X 与 Y 是微分同胚的.