Notes on the derived model theorem

Yasuda Yasutomo

August 3, 2020

We shall prove the derived model theorem. This is based on [1].

Contents

1	Homogeneous, weakly homogeneous, universally Baire	1
2	The tree production lemma	6
3	Scales on $\operatorname{Hom}_{<\lambda}$ sets	9
4	Projective absoluteness	11
5	AD^+	12
6	The derived model theorem	14
7	Proof of the reflection theorem	16
A	General theory of sharps	20
В	Strong partition cardinals below Θ	23

1 Homogeneous, weakly homogeneous, universally Baire

In this section, we shall give basic results for tree representations. We shall show the following.

Theorem 1.1. Suppose λ is a limit of Woodin cardinals. Then for any set of reals A, the following are equivalent:

- 1. A is $<\lambda$ -homogeneously Suslin,
- 2. A is weakly $<\lambda$ -homogeneously Suslin,
- 3. A is λ -universally Baire.

Definition 1.2 (homogeneous tree). A tree T on $X \times Y$ is κ -homogeneous if there is a sequence $\bar{\mu} = \langle \mu_s \mid s \in {}^{<\omega}X \rangle$ such that:

- 1. for each $s \in {}^{<\omega}X$, μ_s is a κ -complete ultrafilter over T[s],
- 2. for each $s, t \in {}^{<\omega}X$ such that $s \subseteq t$, μ_t projects to μ_s ,
- 3. for any $x \in p[T]$ and $\langle Z_n \mid n \in \omega \rangle$ such that $Z_n \in \mu_{x \upharpoonright n}$ for all $n \in \omega$, there is a $f \in {}^{\omega}Y$ such that for all $n \in \omega$, $f \upharpoonright n \in Z_n$.

Definition 1.3. Let A be a set of reals.

- A is κ -homogeneously Suslin if there is a κ -homogeneous tree T such that A = p[T].
- A is $<\lambda$ -homogeneously Suslin if A is κ -homogeneously Suslin for all $\kappa < \lambda$.

We give another characterization of homogeneity. ¹

Proposition 1.4. For a set of reals A, the following are equivalent:

- 1. A is κ -homogeneously Suslin,
- 2. there is a function

 $\bar{\mu} \colon {}^{<\omega}\omega \to \mathrm{meas}_\kappa(Y) = \{\mu \mid \mu \text{ is a }\kappa\text{-complete ultrafilter over }{}^{<\omega}Y\}$

such that for any $s, t \in {}^{<\omega}\omega$,

- (a) $\dim(\mu_t) = \dim(t)$,
- (b) if $s \subseteq t$, then μ_t projects to μ_s ,
- (c) If $S_{\bar{\mu}} = \{x \in \mathbb{R} \mid \langle \mu_{x \upharpoonright n} \mid n \in \omega \rangle \text{ is countably complete} \}$, then $S_{\bar{\mu}} = A$.

Proof. The forward direction is clear. Given such $\bar{\mu}$, for each $x \in \mathbb{R} \setminus A$, let $\langle Z_n^x \mid n \in \omega \rangle$ witness that $\langle \mu_{x \upharpoonright n} \mid n \in \omega \rangle$ is not countably complete. We set

$$(s,u) \in T \iff u \in Y^{\mathrm{dom}(s)} \wedge \forall x \supseteq s(x \notin A \implies u \in Z^x_{\mathrm{dom}(s)}).$$

Then this gives a κ -homogeneous tree projecting to A.

 $\operatorname{Hom}_\kappa$ denotes the collection of all $\kappa\text{-homogeneously}$ Suslin set of reals. We set

$$\operatorname{Hom}_{<\kappa} = \bigcap_{\lambda < \kappa} \operatorname{Hom}_{\lambda}.$$

 ${\rm Hom}_\kappa$ is closed under Wadge reducibility and contable intersection. Enough homogeneity gives determinacy.

Theorem 1.5 (Martin). If a set of reals A is \aleph_1 -homogeneously Suslin, then A is determined.

 $^{^1}$ We can define κ -homogeneously without using a tree. However Suslinness is central notion in descriptive set theory. So we use this definition.

Theorem 1.6 (Martin). If κ is a measurable cardinal, then every Π_1^1 set of reals is κ -homogeneously Suslin and determined.

Definition 1.7 (weakly homogeneous tree). A tree T on $X \times Y$ is weakly κ -homogeneous if there is a sequence $\bar{\mu} = \langle \mu_{s,t} \mid (s,t) \in {}^{<\omega}X \oplus {}^{<\omega}\omega \rangle$ such that:

- 1. for each $(s,t) \in {}^{<\omega}X \oplus {}^{<\omega}\omega$, $\mu_{s,t}$ is a κ -complete ultrafilter over T[s],
- 2. for each $(p,r), (q,s) \in {}^{<\omega}X \oplus {}^{<\omega}\omega$ such that $(p,r) \subseteq (q,s), \ \mu_{q,s}$ projects to $\mu_{p,r},$
- 3. for any $x \in p[T]$ and $\langle Z_s \mid s \in {}^{<\omega}\omega \rangle$ such that for all $s \in {}^{<\omega}\omega$, $Z_s \in \mu_{x \upharpoonright lh(s),s}$, there is a $y \in {}^{\omega}X$ and a $f \in {}^{\omega}Y$ such that for all $n \in \omega$, $f \upharpoonright n \in Z_{x \upharpoonright n,y \upharpoonright n}$.

Definition 1.8. Let A be a set of reals.

- A is weakly κ -homogeneously Suslin if there is a weakly κ -homogeneous tree T such that A = p[T].
- A is weakly $<\lambda$ -homogeneously Suslin if A is weakly κ -homogeneously Suslin for all $\kappa < \lambda$.

Proposition 1.9. For a set of reals A, the following are equivalent:

- 1. A is weakly κ -homogeneously Suslin,
- 2. A is a projection of some κ -homogeneously Suslin set of reals.

Cleary, κ -homogeneously Suslin set is weakly κ -homogeneously Suslin.

Definition 1.10. Let T on $X \times Y$ and U on $X \times Y$ be trees. T and U are κ -absolute complements if for any $<\kappa$ -generic G over V^2 ,

$$V[G] \models p[T] = {}^{\omega}X \setminus p[U].$$

We say T is κ -sb solutely complemented if for some U, T and U are κ -absolutely complements.

Definition 1.11. A set of reals A is κ -universally Baire if there are κ -absolute complements T and U such that A = p[T].

Proposition 1.12. Let (T, U) and (R, S) be pairs of κ -absolute complements such that p[T] = p[R]. Then for any $<\kappa$ -generic G over V, p[T] = p[R] in V[G].

Given κ -universally Baire set A, it is well-defined to write $A^{V[G]}$ if G is $<\kappa$ -generic. For any weakly homogeneous tree T, we can construct another tree which projects to the complement of p[T]. This construction is called Martin–Solovay construction. Let $\langle r_i \mid i \in \omega \rangle$ be a standard enumeration of $^{<\omega}\omega$. For weakly κ -homogeneous tree T on $X \times Y$ and a any $(p,r), (q,s) \in {^{<\omega}X} \oplus {^{<\omega}\omega}$ such that $(p,r) \subseteq (q,s)$, let

$$i_{(p,r),(q,s)} \colon \mathrm{Ult}\big(V,\mu_{(p,r)}\big) \to \mathrm{Ult}\big(V,\mu_{(q,s)}\big)$$

be a natural elementary embedding.

²for some poset \mathbb{P} such that $|\mathbb{P}| < \kappa$, G is \mathbb{P} -generic.

Definition 1.13 (Martin–Solovay tree). Let T be a weakly κ -homogeneous tree on $X \times Y$ with κ -homogeneous system $\bar{\mu}$ and α be ordinal. A Martin–Solovay tree $\operatorname{ms}(\bar{\mu}, \alpha)$ is a tree on $X \times \operatorname{Ord}$ consisting of a pair (p, t) such that:

- 1. $p \in {}^{<\omega}X$,
- 2. $t \in {}^{\mathrm{lh}(p)}\mathrm{Ord}$,
- 3. $t(0) < \alpha$,
- 4. for any i, j < lh(p), if $r_i \subseteq r_j$, then

$$t(j) < i_{(p \upharpoonright \operatorname{lh}(r_i), r_i), (p \upharpoonright \operatorname{lh}(r_i), r_i)}(t(i)).$$

A infinite path of $ms(\bar{\mu}, \alpha)$ gives a witness for ill-foundedness of a direct limit model. Then Martin–Solovay tree projects to the complements of p[T].

Lemma 1.14. Let T be a weakly κ -homogeneous tree on $X \times Y$ with κ -homogeneous system $\bar{\mu}$. If $\alpha \geq |Y|^+$, then

$$p[\operatorname{ms}(\bar{\mu}, \alpha)] = \mathbb{R} \setminus p[T].$$

Theorem 1.15. Let T be a weakly κ -homogeneous tree on $X \times Y$ with κ -homogeneous system $\bar{\mu}$. For sufficiently large α , T and $\operatorname{ms}(\bar{\mu}, \alpha)$ are κ -absolute complements.

Proof. Let G be a $<\kappa$ -generic over V. Then $\operatorname{ms}(\bar{\mu}, \theta)^V = \operatorname{ms}(\bar{\mu}^*, \theta)^{V[G]}$. By absoluteness, $p[T] = \mathbb{R} \setminus \operatorname{ms}(\bar{\mu}, \theta)$.

Corollary 1.16. If a set of reals A is weakly κ -homogeneously Suslin, then A is κ -universally Baire.

Up to here we can show without any additional assumptions.

Theorem 1.17 (Martin–Steel). Let δ be a Woodin cardinal and T be a weakly δ^+ -homogeneous tree on $X \times Y$ with weakly δ^+ -homogeneous system $\bar{\mu}$ such that $X \in V_{\delta}$. Then for sufficiently large θ , $\operatorname{ms}(\bar{\mu}, \theta)$ is $<\delta$ -homogeneous.

This proof is very hard, so we omit it.

Corollary 1.18. Let δ be a Woodin cardinal and $A \subseteq \mathbb{R}^2$ be a δ^+ -homogeneously Suslin. Then $\neg \exists A$ is $<\delta$ -homogeneously Suslin.

Corollary 1.19. Let λ be a limit of Woodin cardinals. Then $\operatorname{Hom}_{<\lambda}$ is closed under $\exists^{\mathbb{R}}$, negation and Wadge reducibility.

Corollary 1.20. If there are ω -many Woodin cardinals, then PD holds.

Lemma 1.21. Let λ be a limit of Woodin cardinals. Then there is a ordinal $\gamma_0 < \lambda$ such that $\operatorname{Hom}_{\gamma_0} = \operatorname{Hom}_{<\lambda}$.

Proof. Suppose not. Then for any $\kappa < \lambda$, $\operatorname{Hom}_{\kappa} \supseteq \operatorname{Hom}_{<\lambda}$. This gives an infinite descending $<_w$ -chain. However Martin's proof that $<_w$ is well-founded gives a contradiction.

Proposition 1.22. For a tree T on $\omega \times Y$, the following are equivalent:

- 1. T is weakly κ -homogeneous,
- 2. there is a countable collection Σ of κ -complete ultrafilter over ${}^{<\omega}Y$ such that, $x \in p[T]$ if and only if there is a countably complete tower $\langle \mu_n \mid n \in \omega \rangle \in {}^{\omega}\Sigma$ such that for all $n \in \omega$, $T[x \upharpoonright n] \in \mu_n$.

Proof. The forward direction is clear. We may assume that Σ is closed under projections. Define $\mu_{s,t}$ for each $(s,t) \in {}^{<\omega}\omega \oplus {}^{<\omega}\omega$, by induction on |s|:

$$\{\mu \cap \mathcal{P}(T[s^{\hat{}}\langle i\rangle]) \mid \mu \in \Sigma \wedge T[s^{\hat{}}\langle i\rangle] \wedge \mu_{s,t} \text{ is a projection of } \mu\}$$
$$\subseteq \{\mu_{s^{\hat{}}\langle i\rangle,t^{\hat{}}\langle j\rangle} \mid j \in \omega\}.$$

We allow principal ultrafilters if necessary. Then this gives a weaky homogeneous system for T.

Theorem 1.23. Suppose that δ is a Woodin cardinal and $A \subseteq \mathbb{R}$ is δ^+ -universally Baire. Then A is determined.

Theorem 1.24 (Woodin). Let δ be a Woodin cardinal. If T and U are trees on $\omega \times Z$ and δ^+ -absolute complements, then T is weakly $<\delta$ -homogeneous.

Proof. Let T and U be trees on $\omega \times Z$ and δ^+ -absolute complements. Let η be a sufficiently large regular cardinal such that $T, U \in V_{\eta}$. Then let T' and U' be the subtrees of T and U consisting all nodes definable over V_{η} from T, U, δ . Then $|T'| = |U'| = \delta$. A $\mathbb{Q}_{<\delta}$ -name for a real can be taken as a $\mathbb{Q}_{<\kappa}$ -name for some inaccessible $\kappa < \delta$, then we can find it in V_{δ} . So

$$\mathbb{Q}_{<\delta} \Vdash p[\check{T}'] = \mathbb{R} \setminus p[\check{U}']$$

and p[T] = p[T']. By proposition 1.22, if T' is weakly homogeneous, then so is T. Then we may assume that T and U are trees on $\omega \times \delta$. Fix $\kappa < \delta$. We may assume that κ is $<\delta$ -T-strong. For each $\kappa < \lambda < \delta$, let $j_{\lambda} \colon V \to M_{\lambda}$ be a λ -T-storng embedding with a critical point κ . Put Σ_{λ} for each $(s, u) \in T \cap V_{\lambda}$ and $X \subseteq \kappa^{<\omega}$,

$$X \in \Sigma_{\lambda}(s, u) \iff u \in j_{\lambda(X)}.$$

Claim 1. For each $(s, u), (t, v) \in T \cap V_{\lambda}$,

- 1. $\Sigma_{\lambda}(s, u)$ is κ -complete ultrafilter,
- 2. $T[s] \cap V_{\kappa} \in \Sigma_{\lambda}(s, u)$,
- 3. if $(s, u) \subseteq (t, v)$, then $\Sigma_{\lambda}(t, v)$ projects to $\Sigma_{\lambda}(s, u)$,
- 4. for any $(x, f) \in [T \cap V_{\lambda}]$, $\langle \Sigma_{\lambda}(x \upharpoonright n, f \upharpoonright n) \mid n \in \omega \rangle$ is countably complete.

Proof of claim 1. Easy.

Let G be a $\mathbb{Q}_{<\delta}$ -generic over V and let $i: V \to N \subseteq V[G]$ be a canonical embedding.

Claim 2. i(T) is weakly $i(\kappa)$ -homogeneous in N.

Proof of claim 2. We show that $\sigma=i" \operatorname{meas}_{\kappa}(\kappa)$ witnesses that i(T) is weakly $i(\kappa)$ -homogeneous. By closure of N, $\sigma \in N$. For any $x \in p[i(T)] \cap N$, $x \in p[T]$, since we have that $p[T] \subseteq p[i(T)]$, $p[U] \subseteq p[i(U)]$ and $p[i(T)] \cap p[i(U)] = \emptyset$. Take a sufficiently large $\lambda < \delta = \omega_1^{V[G]}$ so that $x \in p[T \cap V_{\lambda}]$. Let f be such that $(x, f) \in [T \cap V_{\lambda}]$. By elementarity, $\langle i(\Sigma_{\lambda})(x \upharpoonright n, i(f) \upharpoonright n) \mid n \in \omega \rangle$ is countably complete in N. Then i(T) is weakly $i(\kappa)$ -homogeneous in N.

By elementarity, T is weakly κ -homogeneous in V.

We have shown the following.

Theorem 1.25. Suppose λ is a limit of Woodin cardinals. Then for any set of reals A, the following are equivalent:

- 1. A is $<\lambda$ -homogeneously Suslin,
- 2. A is weakly $<\lambda$ -homogeneously Suslin,
- 3. A is λ -universally Baire.

2 The tree production lemma

We shall show the tree production lemma. Roughly speaking, formulas with certain generic absoluteness define universally Baire sets. Let φ be a formula and a be a parameter. Suppose that $X \prec_n V$ is a sufficiently elementary submodel with $\kappa, a \in X$. Let $\pi \colon X \simeq N$ be a collapsing map. X is (φ, a, κ) -generically correct if and only if for any poset $\mathbb{P} \in H^N_{\pi(\kappa)}$, any \mathbb{P} -generic $g \in V$ over N and any $x \in N[q] \cap \mathbb{R}$,

$$N[g] \models \varphi[x, \pi(a)] \iff V \models \varphi[x, a].$$

Lemma 2.1. Let $\varphi(v_0, v_1)$ be a formula, let a be a parameter and let κ be an infinite cardinal. Suppose that M and σ are such that

- M is transitive,
- $H_{\kappa} \cup {\kappa} \subseteq M$,
- $\sigma: M \to V$ is sufficiently elementary so that $a \in \operatorname{ran}(\sigma)$ and $\operatorname{cp}(\sigma) > \kappa$.

Suppose that C is a collection of countable $X \prec M$ such that σ " X is (φ, a, κ) generically correct, and C contains a club of $\mathcal{P}_{\omega_1}(M)$. Then there are trees Tand U such that for any $\mathbb{P} \in H_{\kappa}$ and any \mathbb{P} -generic G over V,

$$V[G] \models p[T] = \{x \in \mathbb{R}^{V[G]} \mid \varphi[x, a]\} \land p[U] = \{x \in \mathbb{R}^{V[G]} \mid \neg \varphi[x, a]\}.$$

Proof. Let $F: M^{<\omega} \to M$ be such that for any $X \in \mathcal{P}_{\omega_1}(M)$, if $F"X^{<\omega} \subseteq X$, then $X \prec M$ and $\sigma"X$ is (φ, a, κ) -generically correct. Put $\sigma(a^*) = a$. Let T be a tree on $\omega \times M \times H_{\kappa}$ such that $(s, t, u) \in T$ if and only if

- 1. if 2m + 2 < lh(s), then $t(2m + 2) = F(t \circ r_m)$,
- 2. if lh(s) > 0, then $t(0) = \mathbb{P} \in H_{\kappa}$ is a poset,
- 3. if lh(s) > 1, then t(1) is a \mathbb{P} -name and $u(0) \Vdash t(1) : \omega \to \omega$,
- 4. if 2m + 3 < lh(s), then t(2m + 3) = u(m),
- 5. $\{u(m) \mid u < \operatorname{lh}(s)\} \subseteq \mathbb{P}$ has a common extension,
- 6. if $2m+2 < \ln(s)$ and t(m) is a \mathbb{P} -dense subset, then $u(2m+2) \in t(m)$,
- 7. if 2m+3 < lh(s), then $u(2m+3) \Vdash t(1)(m) = s(m)$,
- 8. if lh(s) > 1, then $u(1) \Vdash \varphi[t(1), \check{a}^*]$.

We also define a tree U on $\omega \times M \times H_{\kappa}$ replacing $\varphi[t(1), \check{a}^*]$ by $\neg \varphi[t(1), \check{a}^*]$.

Claim 1.

- $p[T] = \{x \in \mathbb{R} \mid \varphi[x, a]\}.$
- $p[U] = \{x \in \mathbb{R} \mid \neg \varphi[x, a]\}.$

Proof of claim 1. Fix $x \in p[T]$. Put $(x, f, g) \in [T]$ and $X = \operatorname{ran}(f)$. By definition of T, $F''X^{<\omega} \subseteq X$. Hence $X \prec M$ and $\sigma''X$ is (φ, a, κ) -generically correct. Let $\mathbb{P} \in X \cap H_{\kappa}$ be a poset, let G be a \mathbb{P} -generic over X and $\tau \in X$ be a \mathbb{P} -name such that

- 1. there is a $p \in G$ such that $p \Vdash \dot{\tau} : \omega \to \omega$,
- 2. for all $n \in \omega$, there is a $p_n \in G$ such that $p_n \Vdash \dot{\tau}(n) = x(n)$,
- 3. there is a $q \in G$ such that $q \Vdash \varphi[\dot{\tau}, \check{a}^*]$.

Since σ is sufficiently elementary, σ " X satisfies the same as X. As σ " X is (φ, a, κ) -generically correct, $V \models \varphi[x, a]$.

Suppose that $\mathbb{P} \in H_{\kappa}$ is a poset and G is \mathbb{P} -generic over V.

Claim 2.

- for all $x \in \mathbb{R}^{V[G]}$, if $V[G] \models \varphi[x, a]$, then $x \in p[T]^{V[G]}$.
- for all $x \in \mathbb{R}^{V[G]}$, if $V[G] \models \neg \varphi[x, a]$, then $x \in p[U]^{V[G]}$.

Proof of claim 2. Let $x \in \mathbb{R}^{V[G]}$ be such that $V[G] \models \varphi[x,a]$ and let τ be such that $\tau_G = x$. Let $X' \prec M[G]$ be such that $X = X' \cap M$ is closed under F and such that $\mathbb{P} \in X$. Let $f \colon \omega \to X$ and $g \colon \omega \to X \cap G$ be surjection such that they obey the definition of T. Hence $x \in p[T]^{V[G]}$.

Theorem 2.2 (Tree production lemma, Woodin). Let $\varphi(v_0, v_1)$ be a formula and let a be a parameter. Let δ be a Woodin cardinal. Suppose that

• (generic absoluteness) if G is $<\delta$ -generic over V and H is $<\delta^+$ -generic over V[G], then for any $x \in \mathbb{R} \cap V[G]$,

$$V[G] \models \varphi[x, a] \iff V[G][H] \models \varphi[x, a],$$

• (stationary tower correctness) if G is $\mathbb{Q}_{<\delta}$ -generic over V and $j \colon V \to M \subseteq V[G]$ is a canonical embedding, then for any $x \in \mathbb{R} \cap V[G]$,

$$V[G] \models \varphi[x, a] \iff M \models \varphi[x, j(a)].$$

Then there are trees T and U such that for any $<\delta$ -generic G over V,

$$V[G] \models p[T] = \{x \in \mathbb{R}^{V[G]} \mid \varphi[x, a]\} \land p[U] = \{x \in \mathbb{R}^{V[G]} \mid \neg \varphi[x, a]\}.$$

Then $\{x \in \mathbb{R} \mid \varphi[x, a]\}$ is δ -universally Baire.

Proof. It is enough to construct T_{κ} and U_{κ} satisfying the claim for each $\kappa < \delta$. Fix $\kappa < \delta$. Let M be transitive, let σ and a^* be such that

- $H_{\kappa^+} \subseteq M$,
- $|M| < \delta$,
- $\sigma: M \to V$ is sufficiently elementary, $a = \sigma(a^*)$ and $\sigma \upharpoonright \kappa^+ = \mathrm{id}$.

Let $D\subseteq \mathcal{P}_{\omega_1}(M)$ be the collection of countbale $X\prec M$ such that $\sigma"X$ is (φ,a,κ) -generically correct. It is enough to show that D contains a club. Otherwise. Suppose that $(\mathcal{P}_{\omega_1}(M)\setminus D)\in\mathbb{Q}_{<\delta}$. Let G be $\mathbb{Q}_{<\delta}$ -generic over V such that $(\mathcal{P}_{\omega_1}(M)\setminus D)\in G$, let $j\colon V\to N\subseteq V[G]$ be a canonical embedding. Simce $j"M\in j(\mathcal{P}_{\omega_1}(M)\setminus D)$ and $j"M\prec j(M),\ j(\sigma)"(j"M)$ is not $(\varphi,j(a),j(\kappa))$ -generically correct in N. Note that the transitive collapse of $j(\sigma)"(j"M)$ is M. Let $g\in N$ be $<\kappa$ -generic over M. Then for any $x\in\mathbb{R}\cap M[g]$,

$$M[g] \models \varphi[x, a^*] \iff V[g] \models \varphi[x, a]$$
$$\iff V[G] \models \varphi[x, a]$$
$$\iff N \models \varphi[x, j(a)]$$

Then $j(\sigma)$ "(j"M) is $(\varphi, j(a), j(\kappa))$ -generically correct in N. This is a contradiction.

3 Scales on $\operatorname{Hom}_{<\lambda}$ sets

We shall show the following.

Theorem 3.1 (Steel). Suppose λ is a limit of Woodin cardinals. Then $\operatorname{Hom}_{<\lambda}$ has the scale property.

Suppose that δ is a Woodin cardinal. Let G be a $(V, \mathbb{Q}_{<\delta})$ -generic and $j \colon V \to M \subseteq V[G]$ be a canonical embedding.

Proposition 3.2. Suppose that δ is a Woodin cardinal. Let G be a $\mathbb{Q}_{<\delta}$ -generic over V and $j: V \to M \subseteq V[G]$ be a canonical embedding. Let μ be a δ^+ -complete ultrafilter over I with $\mu \in V$. Then for any $A \subseteq j(I)$ such that $A \in M$,

$$A \in j(\mu) \iff \exists B \in \mu(j(B) \subseteq A).$$

Proof. For the forward direction, fix $A \in j(\mu)$. Put $A = [f]_G$ where $f \in V$. We may assume that $f: \mathcal{P}_{\omega_1}(Z) \to \mu$ for some $Z \in V_{\delta}$. Put

$$B = \bigcup \{ f(X) \mid X \in \mathcal{P}_{\omega_1}(Z) \} \in \mu.$$

Then we have that $j(B) \subseteq A$. The other direction is clear.

Proposition 3.3. Suppose that δ is a Woodin cardinal. Let G be a $\mathbb{Q}_{<\delta}$ -generic over V and $j \colon V \to M \subseteq V[G]$ be a canonical embedding. Let μ be a δ^+ -complete ultrafilter over I with $\mu \in V$. Then $\mathrm{Ult}(M, j(\mu)) \simeq \mathrm{Ult}^*(M, \mu^*)$ where $\mathrm{Ult}^*(M, \mu^*)$ is a ultrapower of M using functions $f \colon I \to M$ in V[G].

Proof.

Claim 1. Suppose that $f: I \to M$ is in V[G]. Then for some $h \in M$,

$$f(u) = h(j(u))$$
 for μ -a.e. u .

Proof of claim 1. Working in V[G]. Let $\dot{f}_G = f$. For each $u \in I$, let $g \in V$, $Z_u \in V_\delta$ and $a_u \in G$ be such that $\mathrm{dom}(g) = \mathcal{P}_{\omega_1}(Z_u)$ and $a_u \Vdash \dot{f}(\check{u}) = [\check{g}]_{\dot{G}}$. Since μ^* is δ^+ -complete, let a and Z be such that $a_u = a$ and $Z_u = Z$ for μ^* -a.e. u. Say on $B \in \mu^*$. Working in V. For each $u \in B$, take g_u with a domain $\mathcal{P}_{\omega_1}(Z)$ such that $a \Vdash \dot{f}(\check{u}) = [\check{g_u}]_{\dot{G}}$. Define for each $X \in \mathcal{P}_{\omega_1}(Z)$, $h_X(u) = g_u(X)$. Then for all $u \in B$,

$$[\lambda X.h_X]_G(j(u)) = [g_u]_G = f(u).$$

Define $\pi : \mathrm{Ult}^*(M, \mu^*) \to \mathrm{Ult}(M, j(\mu))$ by

$$\pi([f]_{\mu^*}) = [h_f]_{i(\mu)}$$

where $h_f \in M$ is such that $h_f(j(u)) = f(u)$ for μ^* -a.e. u. It is easy to show that π is well-defined and an isomorphism between $\mathrm{Ult}(M,j(\mu))$ and $\mathrm{Ult}^*(M,\mu^*)$. \square

Proposition 3.4. Suppose that δ is a Woodin cardinal. Let G be a $\mathbb{Q}_{<\delta}$ -generic over V and $j \colon V \to M \subseteq V[G]$ be a canonical embedding. Let μ be a δ^+ -complete ultrafilter over I with $\mu \in V$. Let $\nu \leq_{RK} \mu$ via $p \colon I \to J$. Let

$$i: \mathrm{Ult}(V, \nu) \to \mathrm{Ult}(V, \mu)$$

be an induced embedding and

$$i^* : \mathrm{Ult}(V[G], \nu^*) \to \mathrm{Ult}(V[G], \mu^*)$$

be a liftup. Let

$$j(i) : \mathrm{Ult}(M, j(\nu)) \to \mathrm{Ult}(M, j(\mu))$$

be an induced embedding. Then $j(i) = i^* \upharpoonright \text{Ult}(M, j(\nu))$.

Proof. It is enough to show that the following diagram commutes:

$$\begin{array}{ccc} \operatorname{Ult}^*(M,\nu^*) & \stackrel{i^*}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \operatorname{Ult}^*(M,\mu^*) \\ \sigma & & & \uparrow & \\ \sigma & & \downarrow \tau \\ \operatorname{Ult}(M,j(\nu)) & \stackrel{j(i)}{-\!\!\!-\!\!\!-} \operatorname{Ult}(M,j(\mu)) \end{array}$$

where σ and τ are isomorphisms. The rest is easy to show.

Corollary 3.5. Suppose that δ is a Woodin cardinal. Let G be a $\mathbb{Q}_{<\delta}$ -generic over V and $j: V \to M \subseteq V[G]$ be a canonical embedding.

1. Let $\bar{\mu}^* = \langle \mu_s^* \mid s \in {}^{<\omega}\omega \rangle$ is a homogeneity system in V[G], where each μ_s is a δ^+ complete ultrafilter in V. Then for any γ ,

$$\operatorname{ms}(\bar{\mu}^*, \gamma)^{V[G]} = \operatorname{ms}(\langle j(\mu_s) \mid s \in {}^{<\omega}\omega\rangle, \gamma)^M$$

So
$$(S_{\bar{\mu}^*})^{V[G]} = (S_{\langle j(\mu_s)|s \in {}^{<\omega}\omega\rangle})^M$$
.

2. Let $\lambda > \delta$ be a limit of Woodin cardinals. Then $\operatorname{Hom}_{<\lambda}^{V[G]}$ is a Wadge initial segment of $j(\operatorname{Hom}_{<\lambda})$.

Theorem 3.6 (Steel). Suppose λ is a limit of Woodin cardinals. Then $\operatorname{Hom}_{<\lambda}$ has the scale property.

Proof. Let $\kappa_0 < \lambda$ be such that $\operatorname{Hom}_{\kappa_0} = \operatorname{Hom}_{<\lambda}$. Let δ_0 , δ_1 , δ_2 be Woodin cardinals such that $\kappa_0 < \delta_0 < \delta_1 < \delta_2 < \lambda$. Fix $B \in \operatorname{Hom}_{<\lambda}$. It is enough to show that there is a scale $\bar{\varphi} = \{\varphi_n\}_{n \in \omega}$ on B such that

$$A(n, x, y) \iff \varphi_n(x) \le \varphi_n(y)$$

is δ_1^+ -universally Baire. Then A is κ_0 -homogeneous. Let $\bar{\mu}=\langle \mu_s\mid s\in {}^{<\omega}\omega\rangle$ be a δ_2^+ -homogeneity system such that

$$\mathbb{R} \setminus B = S_{\bar{\mu}}.$$

Put $T = \text{ms}(\bar{\mu}, \theta)$ for sufficiently large θ . Let $\bar{\varphi} = \{\varphi_n\}_{n \in \omega}$ be a left-most branch scale of T. Then $\bar{\varphi}$ is a scale on B = p[T]. For definability, we use the tree production lemma. Let $\varphi(v_0, T)$ be the definition of A using a parameter T. For generic absoluteness, let G be $<\delta_2$ -generic over V and let H be δ_2 -generic over V[G]. Then for any $x \in V[G]$,

$$x \in p[T]^{V[G]} \iff x \in p[T]^{V[G[H]}$$

and

$$l_x^{V[G]} = l_x^{V[G][H]}$$

where l_x is the left-most branch of T_x . Then

$$V[G] \models l_x \upharpoonright n \leq_{\text{lex}} l_y \upharpoonright n \iff V[G][H] \models l_x \upharpoonright n \leq_{\text{lex}} l_y \upharpoonright n.$$

For stationary tower corectness. Let G be $\mathbb{Q}_{<\delta_2}$ -generic over V and let $j:V\to M\subseteq V[G]$ be a canonical embedding. Since θ is sufficiently large, $j(\theta)=\theta$. Then

$$j(T) = j(\text{ms}(\langle \mu_s \mid s \in {}^{<\omega}\omega, \theta))$$

$$= \text{ms}(\langle j(\mu_s) \mid s \in {}^{<\omega}\omega\rangle, \theta)$$

$$= \text{ms}(\langle \mu_s^* \mid s \in {}^{<\omega}\omega\rangle, \theta)$$

$$= T.$$

Then

$$V[G] \models \varphi[(n, x, y), T] \iff M \models \varphi[(n, x, y), j(T)].$$

4 Projective absoluteness

Theorem 4.1 (Woodin). Let λ be a limit of Woodin cardinals, let $A \in \operatorname{Hom}_{<\lambda}$ and let G be $<\lambda$ -generic over V. Then

$$(\mathrm{HC}^V,\in,A)\equiv(\mathrm{HC}^{V[G]},\in,A^{V[G]}).$$

Proof. Fix $A \in \text{Hom}_{<\lambda}$. For each formula $\varphi(\vec{v}, A)$ and each $\kappa < \lambda$, we shall construct κ -homogeneous tree $T_{\varphi,\kappa}$ such that for any $<\kappa$ -generic G over V,

$$V[G] \models p[T_{\varphi,\kappa}] = \{ \vec{y} \in \mathbb{R}^{<\omega} \mid \varphi[\vec{y}, A^{V[G]}] \}.$$

By induction on a complexity of φ . If $\varphi \equiv \exists x \psi(x,A)$ where ψ is Σ_0 , then $T_{\varphi,\kappa}$ is a κ -homogeneous tree of A. Suppose that $\varphi \equiv \neg \exists w \psi$. Let δ be a Woodin cardinal such that $\kappa < \delta < \lambda$ and let T_{ψ,δ^+} be a δ^+ -homogeneous tree on $\omega \times \omega \times Z$ which we have defined. Let S be a weakly δ^+ -homogeneous tree on $\omega \times \omega \times Z$ such that $p[S] = \exists^{\mathbb{R}} p[T_{\psi,\delta^+}]$ with a weak homogeneity system $\bar{\mu}$. This equality holds in any generic extension. Put $T_{\varphi,\kappa} = \operatorname{ms}(\bar{\mu},\theta)$ for sufficiently large θ .

Theorem 4.2 $((\Sigma_1^2)^{\mathrm{Hom}_{<\lambda}}$ -absoluteness, Woodin). Let λ be a limit of Woodin cardinals, let $A \in \mathrm{Hom}_{<\lambda}$ and let G be $<\lambda$ -generic over V. Let φ be a formula in $\mathcal{L}_{\in,\dot{A},\dot{B}}$. Then

$$\exists B \in \operatorname{Hom}_{<\lambda}^{V}(\operatorname{HC}^{V}, \in, A, B) \models \varphi \iff \exists B \in \operatorname{Hom}_{<\lambda}^{V[G]}(\operatorname{HC}^{V[G]}, \in, A^{V[G]}, B) \models \varphi.$$

Proof. Forward direction follows from the projective absoluteness. Let $\delta < \lambda$ be a sufficiently large Woodin cardinal and let H be $\mathbb{Q}_{<\delta}$ -generic over V such that $G \in V[H]$. Since

$$\exists B \in \mathrm{Hom}_{<\lambda}^{V[G]}(\mathrm{HC}^{V[G]}, \in, A^{V[G]}, B) \models \varphi,$$

then

$$\exists B \in \operatorname{Hom}_{<\lambda}^{V[H]}(HC^{V[H]}, \in, A^{V[H]}, B) \models \varphi.$$

Let $j \colon V \to M \subseteq V[H]$ be a canonical embedding. Since $\operatorname{Hom}_{<\lambda}^{V[H]}$ is a Wadge initial segment of $j(\operatorname{Hom}_{<\lambda})$ and $j(A) = A^{V[H]}$,

$$M \models \exists B \in j(\operatorname{Hom}_{<\lambda})(HC, \in, j(A), B) \models \varphi.$$

By elementarity of j,

$$\exists B \in \operatorname{Hom}_{<\lambda}^{V}(\operatorname{HC}^{V}, \in, A, B) \models \varphi.$$

$5 \quad AD^+$

 AD^+ is a technical variant of AD and a generalization of $AD^{L(\mathbb{R})}$.

Definition 5.1. Θ is the supremum of λ such that there is a surjection from \mathbb{R} to λ .

Under $AD + DC_{\mathbb{R}}$, Θ is a limit cardinal by Moschovakis' coding lemma.

Definition 5.2 (Woodin). AD⁺ is the conjunction of the following statements.

- 1. $DC_{\mathbb{R}}$,
- 2. Every set of reals is ∞ -Borel,
- 3. $<\Theta$ -ordinal determinacy.

It it a open question whether AD implies AD^+ . For $n \in \omega$,

$$A_n(x) \iff x(n_0) = n_1.$$

Definition 5.3 (∞ -Borel code). Let $\kappa \in \text{Ord}$. $S = \langle T, \varphi \rangle$ is a κ -Borel code if T is a well-founded tree on some $\lambda < \kappa$ and φ is a function from the collection of terminal nodes of T to $\{A_n \mid n \in \omega\}$. BC $_{\kappa}$ denotes the collection of κ -Borel codes. BC $_{\infty} = \bigcup_{\kappa \in \text{Ord}} BC_{\kappa}$.

It is useful to regard an ∞ -Borel code as a tree on for some ordinal κ . Let $\langle T, \varphi \rangle$ be an ∞ -Borel code. φ can be extended to T:

$$\varphi(s) = \mathbb{R} \setminus \bigcup_{t \supseteq s, \text{lh}(t) = \text{lh}(s) + 1} \varphi(t).$$

Put $A_T = \varphi(T) = \varphi(\emptyset)$.

Definition 5.4. A set of reals A is ∞ -Borel if $A = \varphi(T)$ for some $\langle T, \varphi \rangle \in BC_{\infty}$.

Proposition 5.5. For a set of reals A, the following are equivalent:

- 1. A is ∞ -Borel,
- 2. there is a formula φ and $S \subseteq \kappa$ for some $\kappa \in \text{Ord}$, such that

$$A(x) \iff L[S,x] \models \varphi[S,x].$$

Corollary 5.6. Every Suslin set of reals is ∞ -Borel.

Being ∞ -Borel is local property. For a set of reals A, let $\Pi(A)$ be either $\Pi_1^1(A)$ or $\Pi_2^1(A)$ which has the prewellodering property, and let

$$\Delta(A) = \Pi(A) \cap \check{\Pi}(A).$$

Let $\delta(A)$ be a prewellodering of $\Pi(A)$.

Theorem 5.7. For any ∞ -Borel set A, A has an ∞ -Borel code in $\Delta(A)$ with respect to any $\Pi(A)$ -norm on a $\Pi(A)$ -complete set.

Proof. Let T be an ∞ -Borel code for A. For a ∞ -Borel code T, let A_T be an interpretation of T. Let \equiv be an equivalence relation on BC_{∞} :

$$T \equiv T' \iff A_T = A_{T'}.$$

If $\mathrm{BC}_{\delta(A)}^{L[A,\equiv]}=\mathrm{BC}_{\infty}^{L[A,\equiv]}$, then A has an ∞ -Borel code in $\Delta(A)$. Otherwise. Then there is an $\mathrm{BC}_{\delta(A)}$ -antichain $\langle S_{\alpha} \mid \alpha < \delta(A) \rangle$ of length $\delta(A)$. This gives a prewellodering \leq^* of length $\delta(A)$ with a code $S=\bigvee_{\alpha \leq \beta} S_{\alpha} \times S_{\beta}$ in $\mathrm{BC}_{\delta(A)^+}$. Then either $A \leq_w \leq^*$ or $A \leq_w \nleq^*$.

Theorem 5.8 (Solovay's basis theorem). If

$$L(\mathbb{R}) \models \exists A \subseteq \mathbb{R}\varphi[A]$$

where φ is Σ_1^2 , then

$$L(\mathbb{R}) \models \exists A \in \mathbf{\Delta}_1^2 \varphi[A].$$

Theorem 5.9 (Martin–Steel). Assume $AD^{L(\mathbb{R})}$. Then $(\Sigma_1^2)^{L(\mathbb{R})}$ has the scale property.

Corollary 5.10. Assume $AD + V = L(\mathbb{R})$. Then every set of reals is ∞ -Borel.

Theorem 5.11 (Moschovakis–Woodin). Assume $AD + DC_{\mathbb{R}}$. Let $\lambda < \Theta$. If $A \subseteq \lambda^{\omega}$ is Suslin-co-Suslin, then A is determined.

Theorem 5.12 (Kechris). Assume $AD + V = L(\mathbb{R})$. Then $DC_{\mathbb{R}}$ holds.

Corollary 5.13. Assume $V = L(\mathbb{R})$. Then AD implies AD^+ .

For more details, see [3] and [4].

6 The derived model theorem

We will show a part of the old derived model theorem. Let λ be a limit of Woodin cardinals and G be Coll $(\omega, < \lambda)$ -generic over V. Put

$$\mathbb{R}^* = \mathbb{R}_G^* = \bigcup_{\alpha < \lambda} \mathbb{R} \cap V[G \upharpoonright \alpha]$$

and

$$\operatorname{Hom}^* = \operatorname{Hom}^*_G = \{p[T] \cap \mathbb{R}^* \mid \exists \alpha < \lambda (T \in V[G \upharpoonright \alpha] \land V[G \upharpoonright \alpha] \models T \text{ is } \lambda\text{-absolutely complemented})\}.$$

Or equivalently, for any $\alpha<\lambda$ and $A\in \mathrm{Hom}_{<\lambda}^{V[G\restriction\alpha]},$ define

$$A^* = \bigcup_{\alpha < \beta < \lambda} A^{V[G \upharpoonright \beta]}$$

and put

$$\operatorname{Hom}^* = \{ A^* \mid \exists \alpha < \lambda (A \in \operatorname{Hom}_{<\lambda}^{V[G \upharpoonright \alpha]}) \}.$$

Then $L(\mathbb{R}^*, \text{Hom}^*)$ is called a derived model of V at λ . The model depends on G, but by homogeneity, first order theory of $L(\mathbb{R}^*, \text{Hom}^*)$ doesn't depend on G.

Theorem 6.1 (Derived model theorem, Woodin). Let λ be a limit of Woodin cardinals and $L(\mathbb{R}^*, \text{Hom}^*)$ be a derived model at λ . Then

- 1. $\mathbb{R}^* = \mathbb{R}^{V[G]} \cap L(\mathbb{R}^*, \text{Hom}^*),$
- 2. $\operatorname{Hom}^* = \{ A \subseteq \mathbb{R}^* \mid A \text{ is Suslin-co-Suslin in } L(\mathbb{R}^*, \operatorname{Hom}^*) \},$
- 3. $L(\mathbb{R}^*, \text{Hom}^*) \models AD^+$.

we will show the reflection theorem in the next section.

Theorem 6.2. Let λ be a limit of Woodin cardinals, let G be $\operatorname{Coll}(\omega, < \lambda)$ generic over V, and let φ be a formula in $\mathcal{L}_{\in,\dot{A},\dot{B}}$. Suppose that $A \in \operatorname{Hom}_{<\lambda}^{V[G \upharpoonright \alpha]}$ for some $\alpha < \lambda$. If

$$\exists B \subseteq \mathbb{R}_G^* (B \in L(\mathbb{R}_G^*, \operatorname{Hom}_G^*) \land (HC_G^*, \in, A^*, B) \models \varphi),$$

then

$$\exists B(B \in \operatorname{Hom}_{<\lambda}^{V[G \upharpoonright \alpha]} \land (HC^{V[G \upharpoonright \alpha]}, \in, A, B) \models \varphi).$$

Corollary 6.3. Let $L(\mathbb{R}^*, \text{Hom}^*)$ be a derived model. Then for any $A \in \text{Hom}^*$, Every $\Sigma_1^2(A)$ -fact has a Suslin-co-Suslin-witness.

It is worth mentioning that AD⁺ is characterized by Σ_1 -reflection. See [18].

Theorem 6.4 (Woodin). Assume $AD + V = L(\mathcal{P}(\mathbb{R}))$. Then the following are equivalent:

- 1. AD^{+} ,
- 2. Letting $S = \{A \subseteq \mathbb{R} \mid A \text{ is Suslin-co-Suslin}\}, M_{S} \prec_{\Sigma_1} V.$

Proposition 6.5. Let λ be a limit of Woodin cardinals, let G be $\operatorname{Coll}(\omega, < \lambda)$ generic over V. Then for any $\alpha < \lambda$ and $A \in \operatorname{Hom}_{<\lambda}^{V[G \upharpoonright \alpha]}$,

$$(HC^{V[G \upharpoonright \alpha]}, \in, A) \prec (HC^*, \in, A^*).$$

Proof. This follows by the projective absoluteness and Tarski's elementary chain lemma. $\hfill\Box$

Proof of theorem 3.1 modulo theorem 3.2. Fix $x \in \mathbb{R}^{V[G]} \cap L(\mathbb{R}^*, \operatorname{Hom}^*)$. Let $A^* \in \operatorname{Hom}^*$ and $y \in L(\mathbb{R}^*, \operatorname{Hom}^*)$ be such that x is ordinal definable over $L(\mathbb{R}^*, \operatorname{Hom}^*)$ from A^*, y . We may assume that $A, y \in V[G \upharpoonright \alpha]$ for some $\alpha < \lambda$. Since the forcing is sufficiently homogeneous, then $x \in V[G \upharpoonright \alpha]$. To show that Hom^* set is Suslin-co-Suslin in $L(\mathbb{R}^*, \operatorname{Hom}^*)$, it is enough to show that Hom^* set is Suslin in $L(\mathbb{R}^*, \operatorname{Hom}^*)$. This follows by theorem 3.1, since we can express using only real quantifications with a code of a scale. For the converse. Let A be Suslin-co-Suslin in $L(\mathbb{R}^*, \operatorname{Hom}^*)$ witnessed by $T, U \in L(\mathbb{R}^*, \operatorname{Hom}^*)$. By the same argument, $T, U \in V[G \upharpoonright \alpha]$ for some $\alpha < \lambda$. Since $p[T] = \mathbb{R}^* \setminus p[U]$, for all $\alpha < \beta < \lambda$,

$$V[G \upharpoonright \beta] \models p[T] = \mathbb{R} \setminus p[U].$$

This implies p[T] is λ -universally Baire in $V[G \upharpoonright \alpha]$. Then $A \in \text{Hom}^*$. First we shall show that $L(\mathbb{R}^*, \text{Hom}^*) \models \text{AD}$. Suppose not. Then

$$\exists B \subseteq \mathbb{R}^* (B \in L(\mathbb{R}^*, \text{Hom}^*) \land (HC^*, \in, B) \models B \text{ is not determined}).$$

By theorem 6.2, this contradicts theorem 1.5. That $L(\mathbb{R}^*, \operatorname{Hom}^*) \models \operatorname{DC}_{\mathbb{R}}$ is easy to show. The other axioms have the form $\forall A \subseteq \mathbb{R} \exists B \subseteq \operatorname{Ord} \varphi$. By the locality of ∞ -Borel codes and Moschovakis' coding lemma, we can reduce " $\exists B \subseteq \operatorname{Ord}$ " to the real quantifier. Then $L(\mathbb{R}^*, \operatorname{Hom}^*) \models \operatorname{AD}^+$ by theorem 5.11 and corollary 5.6. This completes the proof.

³For any point class Γ , let M_{Γ} be the union of all trasitive structure $(M, \in) \simeq (\mathbb{R}/E, F/E)$ for some $E, F \subseteq \mathbb{R} \times \mathbb{R}$ in Γ .

7 Proof of the reflection theorem

Theorem 7.1. Let λ be a limit of Woodin cardinals, let G be $\operatorname{Coll}(\omega, < \lambda)$ generic over V, and let φ be a formula in $\mathcal{L}_{\in,\dot{A},\dot{B}}$. Suppose that $A \in \operatorname{Hom}_{<\lambda}^{V[G \upharpoonright \alpha]}$ for some $\alpha < \lambda$. If

$$\exists B \subseteq \mathbb{R}_G^* (B \in L(\mathbb{R}_G^*, \operatorname{Hom}_G^*) \land (HC_G^*, \in, A^*, B) \models \varphi),$$

then

$$\exists B(B \in \mathrm{Hom}_{<\lambda}^{V[G \upharpoonright \alpha]} \wedge (HC^{V[G \upharpoonright \alpha]}, \in, A, B) \models \varphi).$$

Lemma 7.2. Let λ be a limit of Woodin cardinals and $b \in \mathbb{Q}_{<\lambda}$. Then there are stationarily many $X \in \mathcal{P}_{\omega_1}(V_{\lambda})$ such that

- $X \cap (\cup b) \in b$,
- for any successor Woodin $\delta \in X$ such that $\cup b \in V_{\delta}$ and any maximal antichain in $\mathbb{Q}_{<\delta} A \in X$, X captures A.

Proof. See
$$[5]$$
.

Lemma 7.3 (Woodin). Let λ be a limit of Woodin cardinals and H be Coll $(\omega, < \lambda)$ generic over V. Let $\lambda < \alpha \in \text{Ord}$. For any $b \in \mathbb{Q}_{\lambda}$, there is $G \subseteq \mathbb{Q}_{\lambda}$ such that

- 1. $b \in G$,
- 2. for any successor Woodin $\delta < \lambda$ such that $\cup b \in V_{\delta}$, $G \cap \mathbb{Q}_{<\delta}$ is $\mathbb{Q}_{<\delta}$ -generic over V,
- 3. $\alpha \in \text{wfp}(\text{Ult}(V, G)),$
- 4. $\mathbb{R} \cap \text{Ult}(V, G) = \mathbb{R}_H^*$
- 5. Hom* is a Wadge initial segment of $i_G(\operatorname{Hom}_{<\lambda})$, where i_G is the canonical embedding $i_G \colon V \to \operatorname{Ult}(V, G)$.

Proof. By the homogeneity of the collpase, it is enough to find some G and H. Fix b, α and λ . Put $\theta = \alpha + \omega$. Let $X \prec V_{\theta}$ be countable and in the stationary set given by lemma 7.2 such that $\alpha, b, \lambda \in X$. Let $\pi \colon N \simeq X$ be the uncollapsing. Put $\pi(\langle \bar{\alpha}, \bar{\lambda} \rangle), \bar{b}) = \langle \alpha, \lambda, b \rangle$. Let G

$$a \in G \iff \pi[\cup a] \in \pi(a).$$

It is clear that $\bar{b} \in G$ and for any successor Woodin $\delta < \bar{\lambda}$ in N such that $\cup \bar{b} \in V_{\delta}^{N}, \ G \cap \mathbb{Q}_{<\delta}^{N}$ is $\mathbb{Q}_{<\delta}^{N}$ -generic over N. To see that $\bar{\alpha} \in \text{wfp}(\text{Ult}(N,G))$, define $\sigma \colon \text{Ult}(N,G) \to V_{\theta}$ by

$$\sigma([f]_G) = \pi(f)(\pi[\cup \text{dom}(f)])$$

where $f \in N$ is such that $\operatorname{dom}(f) = \mathcal{P}_{\omega_1}(V_{\gamma})^N$ for some $\gamma < \bar{\lambda}$. It is easy to show that σ is well-defined and Σ_0 -elementary. Thus $\bar{\alpha} \in \operatorname{wfp}(\operatorname{Ult}(N,G))$. To see that $\mathbb{R}_H^* = \mathbb{R} \cap \operatorname{Ult}(N,G)$ for some $\operatorname{Coll}(\omega, < \bar{\lambda})$ -generic H over N. Put

$$D = \mathbb{R} \cap \text{Ult}(N, G) = \{y_n \mid n \in \omega\}.$$

We will construct Coll $(\omega, < \bar{\lambda})$ -generic H over N and a sequence of ordinals $\{\alpha_n \mid n \in \omega\}$ such that

- $\lim \alpha_n = \bar{\lambda}$,
- $H \upharpoonright \alpha_n$ is coded by a real in Ult(N, G),
- for each $n \in \omega$, $y_n \in N[H \upharpoonright \alpha_{n+1}]$.

This is an easy induction. Let $i_G\colon N\to \mathrm{Ult}(N,G)$ be the canonical embdding. We will see that Hom_H^* is a Wadge initial segment of $i_G(\mathrm{Hom}_{<\bar{\lambda}}^N)$. We will use this argument later. Fix $A\in \mathrm{Hom}^{N[H\restriction \eta]_{<\bar{\lambda}}}$ where $\eta<\bar{\lambda}$. Let γ be a sufficiently large successor Woodin cardinal in N such that $H\restriction \eta\in N[G\cap\mathbb{Q}_{<\gamma}^N]$. We may assume that $A=A^{N[G\cap\mathbb{Q}_{<\gamma}^N]}$. Let $i_\gamma\colon N\to \mathrm{Ult}(N,G\cap\mathbb{Q}_{<\gamma}^N)$ be the canonical embedding. It is enough to show that for any successor Woodin cardinal $\delta>\gamma$ in N,

$$i_{\gamma,\delta}(A) = A^{N[G \cap \mathbb{Q}^N_{<\delta}]}$$

where $i_{\gamma,\delta}$ is the factor embedding. Let $\bar{\mu} = \langle \mu_s^* \mid s \in {}^{<\omega}\omega \rangle$ be a δ^+ -homogeneous system of A in $N[G \cap \mathbb{Q}^N_{\leq \gamma}]$ such that $A = S_{\bar{\mu}}^{N[G \cap \mathbb{Q}^N_{\leq \gamma}]}$ where each $\mu_s \in N$. Then

$$i_{\gamma,\delta}(A) = S_{\langle i_{\delta}(\mu_s) | s \in {}^{<\omega}\omega \rangle}^{\mathrm{Ult}\left(N,G \cap \mathbb{Q}_{<\delta}^N\right)} = S_{\langle \mu_s^{**} | s \in {}^{<\omega}\omega \rangle}^{N[G \cap \mathbb{Q}_{<\delta}^N]} = A^{N[G \cap \mathbb{Q}_{<\delta}^N]}.$$

Proof of theorem 7.1. Let G be Coll $(\omega, < \lambda)$ -generic and $A \in \operatorname{Hom}_{<\lambda}^{V[G \upharpoonright \alpha]}$ where $\alpha < \lambda$. Suppose that

$$\exists B \subseteq \mathbb{R}^* (B \in L(\mathbb{R}^*, \mathrm{Hom}^*) \land (HC^*, \in, A^*, B) \models \varphi).$$

We call such B φ -witness for A^* . It is enough to find a φ -witness for A in $\operatorname{Hom}_{<\lambda}^{V[G\upharpoonright\alpha]}$. By the $(\Sigma_1^2)^{\operatorname{Hom}_{<\lambda}}$ -absoluteness, it is enough to find a φ -witness for $A^{V[G\upharpoonright\beta]}$ in $\operatorname{Hom}_{<\lambda}^{V[G\upharpoonright\beta]}$ for some $\alpha<\beta<\lambda$. First, assume there is $C^*\in\operatorname{Hom}^*$ such that there is a φ -witness for A^* in $L(C^*,\mathbb{R}^*)$. We may assume that

- $\bullet \ A,C \in \mathrm{Hom}_{<\lambda}^V,$
- $A \leq_w C$.

Let γ_0 be the least such that there is a φ -witness for A^* B and $A^*, B \in L_{\gamma_0}(C^*, \mathbb{R}^*)$. Since $B \in L_{\gamma_0}(C^*, \mathbb{R}^*)$, let $x_0 \in \mathbb{R}^*$ be such that B is ordinal

definable over $L_{\gamma_0}(C^*, \mathbb{R}^*)$ from parameters x_0, A^*, C^* . We may assume that $x_0 \in V$. Put

$$y \in B \iff L_{\gamma_0}(C^*, \mathbb{R}^*) \models \psi[\langle x_0, A^*, C^* \rangle, y].$$

We will find an absolute definition of B. Put

$$\bar{\varphi}(v_0, v_1) = v_0$$
 is a φ -witness for v_1

and

$$\theta(v,u) =$$
 " v is $\langle v_0, v_1, v_2 \rangle$ where $L(v_2, \mathbb{R}) \models \exists B \bar{\varphi}[B, v_1]$ and if γ_0 is the least such that $L_{\gamma_0}(v_2, \mathbb{R}) \models \exists B \bar{\varphi}[B, v_1]$, then $L_{\gamma_0}(v_2, \mathbb{R}) \models \psi[v, u]$ ".

Claim 1. For any $g \in HC^*$ and for any $y \in \mathbb{R} \cap V[g]$,

$$V[g] \models \theta[\langle x_0, A^{V[g]}, C^{V[g]} \rangle, y] \iff y \in B.$$

Proof of claim 1. Let H be $\operatorname{Coll}(\omega, <\lambda)$ -generic over V[g] such that V[g][H] = V[G]. Let $K \subseteq \mathbb{Q}^{V[g]}_{<\lambda}$ be such that

- $\gamma_0 \in \text{wfp}(\text{Ult}(V[g], K)),$
- $\mathbb{R} \cap \text{Ult}(V[g], K) = \mathbb{R}_H^*$
- Hom_H^* is a Wadge initial segment of $i_K(\operatorname{Hom}_{<\lambda}^{V[g]})$ where $i_K\colon V[g]\to \operatorname{Ult}(V[g],K)$ is the canonical embedding.

Since for any successor Woodin $\delta < \lambda$ in V[g],

$$i_{\delta}(A^{V[g]}) = A^{V[g][K \cap \mathbb{Q}^{V[g]}]},$$

then

$$i_K(A^{V[g]}) = A_G^* = A_H^*, i_K(C^{V[g]}) = C_G^* = C_H^*.$$

This is the same argument as in lemma 7.3. Then

$$\text{Ult}(V[g], K) \models L_{\gamma_0}(C^*, \mathbb{R}) \models \exists B\bar{\varphi}[B, A^*]$$

and

$$y \in B \iff \text{Ult}(V[g], K) \models \theta[\langle x_0, A^*, C^* \rangle, y].$$

Thus

$$y \in B \iff V[g] \models \theta[\langle x_0, A^{V[g]}, C^{V[g]} \rangle, y].$$

In particular for any $y \in \mathbb{R}^V$,

$$V \models \theta[\langle x_0, A, C \rangle, y] \iff y \in B.$$

In V, $\mathbb{R}^V \cap B$ is a φ -witness for A. It is enough to show that $\mathbb{R}^V \cap B \in \operatorname{Hom}_{<\lambda}$. We use the tree production lemma. Working in V. Let (T,U) and (R,S) be λ -absolute complements such that p[T] = A and p[R] = C. Let τ be such that

$$\tau[\langle x_0, T, R \rangle, y] \iff \theta[\langle x_0, p[T], p[R] \rangle, y].$$

Generic absoluteness follows from claim 1. To see that stationary tower correctness holds, let $\delta < \lambda$ be a Woodin cardinal and L be $\mathbb{Q}_{<\delta}$ -generic over V. Then

$$V[L] \models p[T] = p[i(T)], p[R] = p[i(R)]$$

where $i \colon V \to M \subseteq V[L]$ is the canonical embedding. For any $y \in \mathbb{R} \cap V[L]$,

$$M \models \tau[\langle x_0, i(T), i(R) \rangle y]$$

$$\iff M \models \theta[\langle x_0, p[i(T)], p[i(R)] \rangle, y]$$

$$\iff V[L] \models \theta[\langle x_0, p[T], p[R] \rangle, y]$$

$$\iff V[L] \models \tau[\langle x_0, T, R \rangle, y].$$

Then by the tree production lemma, $\mathbb{R}^V \cap B \in \operatorname{Hom}_{<\lambda}$. This completes the first case. From now on, we may assume that for any $C^* \in \operatorname{Hom}^*$, there is no φ -witness for A^* in $L(C^*, \mathbb{R}^*)$. By the first case,

$$\forall C \in \operatorname{Hom}^* L(C, \mathbb{R}^*) \models \operatorname{AD}^+.$$

Claim 2. For any $C \in \text{Hom}^*$, C^{\sharp} exists and $C^{\sharp} \in \text{Hom}^*$.

Proof of claim 2. Fix $C \in \operatorname{Hom}^*$. Let $D \in \operatorname{Hom}^*$ be such that $D \notin L(C, \mathbb{R}^*)$. Then $C \leq_w D$ by Wadge lemma. Since $L(D, \mathbb{R}^*) \models \operatorname{AD}^+$, C^\sharp exists in $L(D, \mathbb{R}^*)$. So C^\sharp exists. Let B_n be the type of the first n-indiscernibles. Since $C^\sharp = \bigoplus B_n$ and $B_n \leq_w D$ for each $n \in \omega$, $C^\sharp \leq_w D$.

Claim 3. For any $g \in HC^*$, $\operatorname{Hom}_{<\lambda}^{V[g]}$ is closed under sharps.

Proof of claim 3. Easy. Use $(\Sigma_1^2)^{\text{Hom}_{<\lambda}}$ -absoluteness.

Let γ_0 be the least such that $L_{\gamma_0}(\mathbb{R}^*, \text{Hom}^*) \models \bar{\varphi}[B, A^*]$ for some B, and for all $C \in \text{Hom}^*$, $|C|_w < \gamma_0$.

Claim 4. Let $g \in HC^*$ and $H \subseteq \mathbb{Q}_{<\lambda}^{V[g]}$ be as in lemma 7.3. Then

$$i_H(\operatorname{Hom}_{<\lambda}^{V[g]}) = \operatorname{Hom}^*.$$

Proof of claim 4. It is easy to show that Hom^* is a Wadge initial segment of $i_H(\operatorname{Hom}_{<\lambda}^{V[g]})$. Suppose otherwise. Fix $C \in i_H(\operatorname{Hom}_{<\lambda}^{V[g]}) \setminus \operatorname{Hom}^*$ which is Wadge minimal such that

- $Ult(V[g], H) \models Hom^* = \{A \mid A <_w C\},\$
- $L_{\gamma_0}(\mathbb{R}^*, \operatorname{Hom}^*) \subseteq L(C, \mathbb{R})^{\operatorname{Ult}(V[g], H)}$.

By claim 3,

$$\mathrm{Ult}(V[g],H) \models \exists\, B \in i_H(\mathrm{Hom}_{<\lambda}^{V[g]})B \text{ is a } \varphi\text{-witness for } A.$$

Then there is $B^* \in \text{Hom}^*$ such that B^* is a φ -witness for A^* . This contradicts our assumption.

Recall that γ_0 is the least such that $L_{\gamma_0}(\mathbb{R}^*, \text{Hom}^*) \models \bar{\varphi}[B, A^*]$ for some B, and for all $C \in \text{Hom}^*$, $|C|_w < \gamma_0$. Let $x_0 \in \mathbb{R}^*$ and $C^* \in \text{Hom}^*$ be such that such B is ordinal definable over $L_{\gamma_0}(\mathbb{R}^*, \text{Hom}^*)$ from parameters x_0, A^*, C^* . We may assume that $x_0, C \in V$. Put

$$y \in B \iff L_{\gamma_0}(\mathbb{R}^*, \operatorname{Hom}^*) \models \psi[\langle x_0, A^*, C^*, \operatorname{Hom}^* \rangle, y]$$

and

$$\theta(v,u) =$$
 " v is $\langle v_0, v_1, v_2, v_3 \rangle$ where $L(\mathbb{R}, v_3) \models \exists B \bar{\varphi}[B, v_1]$ and if γ_0 is the least such that $L_{\gamma_0}(\mathbb{R}, v_3) \models \exists B \bar{\varphi}[B, v_1]$ $\forall C \in v_3(|C|_w < \gamma_0)$ then $L_{\gamma_0}(\mathbb{R}, v) \models \psi[v, u]$ ".

Claim 5. For any $g \in HC^*$ and any $y \in \mathbb{R} \cap V[g]$,

$$V[g] \models \theta[\langle x_0, A^{V[g], C^{V[g]}, \operatorname{Hom}_{<\lambda}^{V[g]}}, y] \iff y \in B.$$

Proof of claim 5. This is the same as the previous one.

Then we can show than $\mathbb{R}^V \cap B \in \operatorname{Hom}_{<\lambda}$ is a φ -witness for A the same manner as the first case. This completes the proof of theorem 7.1.

A General theory of sharps

In this section, we give a general theory of sharps introduced by Solovay in [7]. Some properties of A^{\sharp} which we shall prove is based on both [16] and [17], and is an easy generalization of that of 0^{\sharp} . Let A be a transitive set. Let $\varphi(x_0,\ldots,x_n)$ be a formula in the language of set theory with constant symbols $\{\dot{a}\mid a\in A\cup\{A\}\}$. A Skolem term for φ is a function $\tau_{\phi}\colon L(A)^n\to L(A)$ such that

$$\tau_{\varphi}(\bar{x}) = \begin{cases} y & \text{if } y \text{ is the unique } y \text{ such that } \varphi(y, \bar{x}) \text{ in } L(A), \\ \emptyset & \text{otherwise.} \end{cases}$$

For $A \subseteq B \subseteq L(A)$, $H^{L(A)}(B)$ denotes a Skolem hull of B. $\mathcal{L}_{\in,A}$ is the language of set theory with constant symbols $\{\dot{a} \mid a \in A \cup \{A\}\} \cup \{c_n \mid n \in \omega\}$ and closed under a combination of Skolem terms. $\{c_n \mid n \in \omega\}$ is to represent for indiscernibles. $\mathcal{L}_{\in,A}^*$ is the language without constant symbols $\{c_n \mid n \in \omega\}$.

Definition A.1. EM blueprint for A is the theory in $\mathcal{L}_{\in,A}$ of some structure $(L_{\kappa}(A), \in, \dot{a}(a \in A \cup \{A\}))$ where $Y \in H_{\kappa}$ or $\kappa = \text{Ord}$ and $\langle c_n \mid n \in \omega \rangle$ is the increasing enumeration of indiscernibles for $(L_{\kappa}(A), \in, \dot{a}(a \in A \cup \{A\}))$.

Definition A.2. Let Σ be a EM blueprint for A and α be a ordinal. $\Gamma(\Sigma, \alpha)$ is if it exists, the unique model M such that:

- 1. $M \models \Sigma \upharpoonright \mathcal{L}_{\in,A}^*$
- 2. there is a $I_{\alpha} \subseteq \operatorname{Ord}^{M}$ such that $(I_{\alpha}, \in^{M}) \simeq (\alpha, \in)$ and I_{α} is a set of indiscernibles for M,
- 3. $H^M(I_\alpha \cup \{\dot{a}^M \mid a \in A \cup \{A\}) = M$.

Definition A.3. A EM blueprint Σ for A is a remarkable character for A if Σ satisfies the following:

- 1. for all $\alpha \in \text{Ord}$, $\Gamma(\Sigma, \alpha)$ is well-founded,
- 2. for any term $t(x_0,\ldots,x_{n-1})$ in $\mathcal{L}_{\in A}^*$,

$$t(c_0, \ldots, c_{n-1}) \in \text{Ord} \implies t(c_0, \ldots, c_{n-1}) < c_n$$

is in Σ ,

3. for any term $t(x_0,\ldots,x_{m+n})$ in $\mathcal{L}_{\in A}^*$,

$$t(c_0, \dots, c_{m+n}) < c_m \implies t(c_0, \dots, c_{m+n}) < t(c_0, \dots, c_{m-1}, c_{m+n-1}, \dots, c_{m+2n-1})$$

is in Σ ,

4. Σ satisfies the witness condition: if $\exists x \varphi(x) \in \Sigma$, then there is a term t all of whose constants for indiscernibles appear on $\varphi(x)$ and $\varphi(t) \in \Sigma$.

Almost the same thing for 0^{\sharp} holds. Let Σ be a remarkable character for A.

Proposition A.4. For a limit ordinal α , let I_{α} be a set of indiscernibles for $\Gamma(\Sigma, \alpha)$. Then I_{α} is unbounded in $\mathrm{Ord}^{\Gamma(\Sigma, \alpha)}$.

Proof. Fix $y \in \operatorname{Ord}^{\Gamma(\Sigma,\alpha)}$. Let τ , $x_1 < \cdots < x_n \in I_\alpha$ and $\bar{a} \in (A \cup \{A\})^{<\omega}$ such that τ is a Skolem term and $y = \tau[x_1, \ldots, x_n, \bar{a}]$. Since Σ is a remarkable character for A, $\tau[x_1, \ldots, x_n, \bar{a}] < x_{n+1}$ for any $x_n < x_{n+1} \in I_\alpha$.

Proposition A.5. Let $\gamma < \alpha$ be limit ordinals. Put $I_{\alpha} = \{i_{\xi} \mid \xi < \alpha\}$. Then for any $x \in \text{Ord}^{\Gamma(\Sigma,\alpha)}$ such that $x < i_{\gamma}$,

$$x \in H^{\Gamma(\Sigma,\alpha)}(\{i_\xi \mid \xi < \gamma\} \cup \{\dot{a}^{\Gamma(\Sigma,\alpha)} \mid a \in A \cup \{A\}\}).$$

Proof. Fix $x \in \operatorname{Ord}^{\Gamma(\Sigma,\alpha)}$ such that $x < i_{\gamma}$. Let τ , $x_1 < \cdots < x_m < y_1 < \cdots < y_n \in I_{\alpha}$ and $\bar{a} \in A \cup \{A\}$ be such that τ is a Skolem term, $y_1 = i_{\gamma}$ and

$$x = \tau[x_1, \dots, x_m, y_1, \dots, y_n, \bar{a}].$$

Let $w_1, \ldots, w_n, z_1, \ldots, z_n \in I_\alpha$ be such that

$$x_1 < \dots < x_m < w_1 < \dots < w_n < y_1 < \dots < y_n < z_1 < \dots < z_n$$
.

Since $x < y_1$ and Σ is a remarkable character for A,

$$\tau[x_1, \dots, x_m, y_1, \dots, y_n, \bar{a}] = \tau[x_1, \dots, x_m, z_1, \dots, z_n, \bar{a}].$$

By indiscernibility,

$$\tau[x_1, \dots, x_m, w_1, \dots, w_n, \bar{a}] < \tau[x_1, \dots, x_m, z_1, \dots, z_n, \bar{a}].$$

Then
$$x = \tau[x_1, \dots, x_m, w_1, \dots, w_n, \bar{a}] \in H^{\Gamma(\Sigma, \alpha)}(\{i_\xi \mid \xi < \gamma\} \cup \{\dot{a}^{\Gamma(\Sigma, \alpha)} \mid a \in A \cup \{A\}\}).$$

Proposition A.6. Let α be a limit ordinal. Then I_{α} is closed in $\mathrm{Ord}^{\Gamma(\Sigma,\alpha)}$.

Proof. Fix a limit ordinal $\gamma < \alpha$ and $x \in \operatorname{Ord}^{\Gamma(\Sigma,\alpha)}$ such that $x < i_{\gamma}$. Then $x \in H^{\Gamma(\Sigma,\alpha)}(\{i_{\xi} \mid \xi < \gamma\} \cup \{\dot{a}^{\Gamma(\Sigma,\alpha)} \mid a \in A \cup \{A\}) = \Gamma(\Sigma,\gamma)$. Then for some $\xi < \gamma, x < i_{\xi}$.

Proposition A.7. For any uncountable cardinal κ such that $A \in H_{\kappa}$,

$$\Gamma(\Sigma, \kappa) \simeq L_{\kappa}(A).$$

Proof. Suppose not. Let $\beta > \kappa$ be such that $\Gamma(\Sigma, \kappa) \simeq L_{\beta}(A)$. Then

$$\kappa \in H^{\Gamma(\Sigma,\kappa)}(\{i_\xi \mid \xi < \gamma\} \cup \{\dot{a}^{\Gamma(\Sigma,\alpha)} \mid a \in A \cup \{A\}\})$$

for some limit ordinal $\gamma < \kappa$. However

$$|H^{\Gamma(\Sigma,\kappa)}(\{i_\xi\mid \xi<\gamma\}\cup\{\dot{a}^{\Gamma(\Sigma,\alpha)}\mid a\in A\cup\{A\}\})|<\kappa.$$

This is a contradiction.

Proposition A.8. Let κ and λ be uncountable cardinals such that $\kappa < \lambda$ and $A \in H_{\kappa}$. Then $I_{\lambda} \cap \kappa = I_{\kappa}$ and

$$H^{L_{\lambda}(A)}(I_{\kappa} \cup \{\dot{a}^{\Gamma(\Sigma,\alpha)} \mid a \in A \cup \{A\}\}) = L_{\kappa}(A) \prec L(A).$$

Proof. Let J be the first κ members of I_{λ} . Put

$$M = H^{L_{\lambda}(A)}(J \cup \{\dot{a}^{\Gamma(\Sigma,\alpha)} \mid a \in A \cup \{A\}\}) \simeq \Gamma(\Sigma,\kappa) \simeq L_{\kappa}(A).$$

Since $\operatorname{Ord}^M = \kappa$ and M is transitive, then $M = L_{\kappa}(A)$ and $J = I_{\kappa}$.

Definition A.9. Let A be a trasitive set. A^{\sharp} exists if there is a remarkable character for A.

Proposition A.10. Let A be a trasitive set. The following are equivalent:

- 1. A^{\sharp} exists,
- 2. there is a club proper class in discernibles I for L(A) such that
 - $H^{L(A)}(I \cup A \cup \{A\}) = L(A),$
 - for any uncountable cardinal κ such that $A \in H_{\kappa}$, $H^{L(A)}((I \cap \kappa)A \cup \{A\}) = L_{\kappa}(A)$.

Proposition A.11. Let A be a trasitive set. If there is a Ramsey cardinal κ such that $A \in H_{\kappa}$, then A^{\sharp} exists.

B Strong partition cardinals below Θ

In this chapter, our base theory is $ZF + AD + DC_{\mathbb{R}}$. We shall show strong partition cardinals are cofinal below Θ .

Definition B.1. κ is a strong partition cardinal if $\kappa \to (\kappa)_{\kappa}^{\kappa}$.

Proposition B.2. If $\kappa \to (\kappa)^{\kappa}_{<\kappa}$, then $\kappa \to (\kappa)^{\mu}_{\mu}$ for all $\mu < \kappa$.

Proof. Easy.
$$\Box$$

Proposition B.3. Let A be a set of reals and $\delta = (\delta_1^2(A))^{L(A,\mathbb{R})}$

- 1. $(\Sigma_1^2(A))^{L(A,\mathbb{R})} = \Sigma_1(L_\delta(A,\mathbb{R})) \cap \mathcal{P}(\mathbb{R}),$
- 2. $(\Delta_1^2(A))^{L(A,\mathbb{R})} = L_\delta(A,\mathbb{R}) \cap \mathcal{P}(\mathbb{R}).$

Theorem B.4 (Solovay's basis theorem). Let A be a set of reals and x, y be reals. For any formula φ in second order arithmetic, if

$$\exists B \in \mathcal{P}(\mathbb{R}) \cap L(A, \mathbb{R})(HC \models \varphi[A, B, x, y]),$$

then

$$\exists B \in (\boldsymbol{\Delta}_1^2(A))^{L(A,\mathbb{R})} (\mathrm{HC} \models \varphi[A,B,x,y]).$$

For $X \in (\mathbf{\Sigma}_1^2(A))^{L(A,\mathbb{R})}$, put

$$x \in X \iff L(A, \mathbb{R}) \models \exists B \subseteq \mathbb{R}\psi[x, y, B]$$

where $y \in \mathbb{R}$. Define a norm on X:

$$\varphi(x)$$
 = the laest ordinal α such that $L_{\alpha}(A, \mathbb{R}) \models \exists B \subseteq \mathbb{R} \psi[x, y, B]$.

It it easy to show that φ is a $\Sigma_1^2(A)^{L(A,\mathbb{R})}$ -norm on X. By Solovay's basis theorem and Σ_0 -collection, $\Sigma_1^2(A)^{L(A,\mathbb{R})}$ is closed under $\forall^{\mathbb{R}}$. Then $(\delta_1^2(A))^{L(A,\mathbb{R})}$ is a strong partition cardinal. ⁴ We have the following. The following theorem appears in [6].

⁴See [6].

Theorem B.5 (AD + DC_{\mathbb{R}}). Strong partition cardinals are cofinal below Θ .

Using strong partition cardinals, we can prove determinacy of ordinal games.

Theorem B.6 (AD + DC_R, Moschovakis–Woodin). Let $\lambda < \Theta$. If $A \subseteq \lambda^{\omega}$ is Suslin-co-Suslin, then A is determined.

References

- [1] John R. Steel, The Derived Model Theorem, 2008.
- [2] W. Hugh Woodin, Supercompact cardinals, sets of reals, and weakly homogeneous trees, Proc. Nat. Acad. Sci. USA 85, 6587-6591.
- [3] Ketchersid Richard, More structural consequences of AD, 2010.
- [4] Andrés Eduardo Caicedo and Richard Ketchersid, A trichotomy theorem in natural models of AD⁺, Set theory and its applications, Contemp. Math., vol. 533, Amer. Math. Soc., Providence, RI, 2011, pp. 227 258.
- [5] P. Larson, The stationary tower, University Lecture Series, American Mathematical Society, 2004.
- [6] Alexander S. Kechris, Eugene M. Kleinberg, Yiannis N. Moschovakis, and W. Hugh Woodin. The axiom of determinacy, strong partition properties and nonsingular measures. in: Kechris A.S., Moschovakis Y.N. (editors) Cabal Seminar 76 - 77. Lecture Notes in Mathematics, vol 689. Springer, Berlin, Heidelberg, 1981.
- [7] Solovay R.M. The independence of DC from AD. in: Kechris A.S., Moschovakis Y.N. (editors) Cabal Seminar 76 - 77. Lecture Notes in Mathematics, vol 689. Springer, Berlin, Heidelberg, 1978.
- [8] van Wesep R, Wadge degrees and descriptive set theory, in: Kechris A.S., Moschovakis Y.N. (editors) Cabal Seminar 76 - 77. Lecture Notes in Mathematics, vol 689. Springer, Berlin, Heidelberg, 1978.
- [9] D.A. Martin and J.R. Steel, The extent of scales in L(R). in: A.S. Kechris et. al. (editors), Cabal Seminar 79-81, Lecture Notes in Mathematics 1019, Springer-Verlag, New York, 1983, 86-96.
- [10] J.R. Steel, Scales in L(R), in: A.S. Kechris et. al. (editors), Cabal Seminar 79-81, Lecture Notes in Mathematics 1019, Springer-Verlag, New York, 1983, 86-96.
- [11] D.A. Martin and J.R. Steel, A Proof of Projective Determinacy, Journal of the American Mathematical Society bf 2, 1989, 71-125.
- [12] Steve Jackson. Structural consequences of AD, in Handbook of set theory. Vols. 1, 2, 3, pages 1753 1876. Springer, Dordrecht, 2010.

- [13] Koellner Peter, W. Hugh Woodin. Large Cardinals from Determinacy, in Handbook of set theory. Vols. 1, 2, 3, pages 1952 2119. Springer, Dordrecht, 2010.
- [14] Alexander S. Kechris, The axiom of determinacy implies dependent choices in L(R), The Journal of Symbolic Logic 49 (1) (1984), 161 173.
- [15] Ralf Schindler, Set theory, Universitext, Springer, Cham, 2014, Exploring independence and truth.
- [16] Jech Thomas, Set theory. Journal of Symbolic Logic, 1981.
- [17] Akihiro Kanamori, The higher infinite, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1994.
- [18] John R. Steel and Nam Trang, AD⁺, Derived models, and Σ_1 -Reflection.