

Факультет программной инженерии и компьютерной техники

Лабораторная работа по информатике №2 Вариант №69

> Выполнил: Студент группы Р3106 Мельник Фёдор Александрович Проверил: Балакшин П.В., Кандидат технических наук, доцент ФПиКТ

Санкт-Петербург, 2024

Оглавление

Задание	3
Основные этапы вычисления	
Часть №1	
Часть №2	
Часть №3	
Дополнительное задание	
Заключение	
Список использованных источников	

Задание

- 1. Определить свой вариант задания с помощью номера в ISU (он же номер студенческого билета). Вариантом является комбинация 3-й и 5-й цифр. Т.е. если номер в ISU = 123456, то вариант = 35.
- 2. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 3. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- 4. Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 5. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода.
- 6. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- 7. Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 8. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.
- 9. Дополнительное задание №1 (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Основные этапы вычисления

Для решения задач использовались материалы изданий «Помехоустойчивое кодирование» и Помехоустойчивые коды $^{[2]}$

Часть №1

Схема декодирования и выполнения классического кода Хэмминга (7;4) представлена на рисунке N02 соотвественно.

Рисунок 1 - схема декодирования классического кода Хэмминга (7;4)

Рисунок 2 - схема выполнения классического кода Хэмминга (7;4)

Сообщение №1:

r_1	r_2	i_1	r ₃	i_2	i ₃	i_4
1	0	1	0	0	1	1

 $S_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 1 \oplus 1 \oplus 0 \oplus 1 = 1$

 $S_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 1 \oplus 1 = 1$

 $S_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$

	1	2	3	4	5	6	7	
2 ^x	r1	r2	i1	r3	i2	i3	i4	
1	X		X		X		X	S1
2		X	X			X	X	S2
4				X	X	X	X	S3

Синдром $S(S_1, S_2, S_3) = 110 \Rightarrow$ ошибка в i_1

Исправленный вариант: 10<mark>0</mark>0011

Исходное сообщение без ошибки: 0011

Сообщение №2:

r_1	r_2	i_1	r ₃	i_2	i ₃	i_4
0	1	0	0	1	1	0

 $S_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$

 $S_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 1 \bigoplus 0 = 0$

 $S_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 1 \bigoplus 0 = 0$

	1	2	3	4	5	6	7	
2 ^x	r1	r2	i1	r3	i2	i3	i4	
1	X		X		X		X	S1
2		X	X			X	X	S2
4				X	X	X	X	S3

Синдром $S(S_1, S_2, S_3) = 100 \Rightarrow$ ошибка в r_1

Исправленный вариант: 1100110

Исходное сообщение без ошибки: 0110

Сообщение №3:

r_1	r_2	i_1	r ₃	i_2	i ₃	i_4
1	1	0	1	0	0	0

 $S_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 0 \bigoplus 0 = 1$

 $S_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 0 \bigoplus 0 = 1$

 $S_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 0 \bigoplus 0 = 1$

	1	2	3	4	5	6	7	
2 ^x	r1	r2	i1	r3	i2	i3	i4	
1	X		X		X		X	S1
2		X	X			X	X	S2
4				X	X	X	X	S3

Синдром $S(S_1, S_2, S_3) = 111 \Rightarrow$ ошибка в і4

Исправленный вариант: 1101001

Исходное сообщение без ошибки: 0001

Сообщение №4:

r_1	r_2	i_1	r ₃	i_2	i3	i_4
1	0	1	0	0	0	0

 $S_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 1 \bigoplus 1 \bigoplus 0 \bigoplus 0 = 0$

 $S_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 0 \bigoplus 0 = 1$

 $S_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 0 \bigoplus 0 \bigoplus 0 = 0$

	1	2	3	4	5	6	7	
2 ^x	r1	r2	il	r3	i2	i3	i4	
1	X		X		X		X	S1
2		X	X			X	X	S2
4				X	X	X	X	S3

Синдром $S(S_1, S_2, S_3) = 010 \Rightarrow$ ошибка в r_2

Исправленный вариант: 1<mark>1</mark>10000

Исходное сообщение без ошибки: 1000

Часть №2

Схема декодирования и выполнения классического кода Хэмминга (15;11) представлена на рисунке Node 2 и рисунке Node 2 соответственно.

-	-	1	4	2	(3	4	/	2	>	6		7		8		9	10	11	12	13	14	15	
22	1	1	r	2	i	1	r	3	i	12	i	3	1	4	r	,	is	i.	i.	is	i,	ino	in	S
1	>	<)	<			>	(>	(X		X		X		X	S,
2			>	()	(>	(,	X				X	X			X	X	S
4						N	λ	/	>	(>	1)	(X	X	X	X	S
8															>	(X	X	X	X	X	X	X	S
Sı	-	r.	(i,	(1)	į,	(+)	in	(is	(2*	0	i,		in	(4)							
Sz	=	r.	Đ	i,	0	L	1	in	1	is	1	ix	(4)	140	(D)	4								
	=	r3	D	iz	(13	0	14	1	Lg	0	is	1	40	1	14								
Sy	=	ry	(4)	is	1	is	1	i,	Ð	is	D	ig	0	110	0	41								

Рисунок 3 - схема декодирования классического кода Хэмминга (15;11)

Рисунок 4 - Схема выполнения классического кода Хэммингка (15;11)

\mathbf{r}_1	\mathbf{r}_2	iı	r ₃	i ₂	i ₃	i ₄	r ₄	i ₅	i ₆	i ₇	i ₈	i ₉	i ₁₀	i ₁₁₁
0	0	1	1	1	0	0	0	1	0	1	0	1	0	0

 $S_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 \oplus i_5 \oplus i_7 \oplus i_9 \oplus i_{11} = 0 \oplus 1 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 1$

 $S_2 = r_2 \, \oplus \, i_1 \, \oplus \, i_3 \, \oplus \, i_4 \, \oplus \, i_6 \, \oplus \, i_7 \, \oplus \, i_{10} \, \oplus \, i_{11} = 0 \, \oplus \, 1 \, \oplus \, 0 \, \oplus \, 0 \, \oplus \, 0 \, \oplus \, 1 \, \oplus \, 0 \, \oplus \, 0 = 0$

 $S_3 = r_3 \, \oplus \, i_2 \, \oplus \, i_3 \, \oplus \, i_4 \, \oplus \, i_8 \, \oplus \, i_9 \, \oplus \, i_{10} \, \oplus \, i_{11} = 1 \, \oplus \, 1 \, \oplus \, 0 \, \oplus \, 0 \, \oplus \, 0 \, \oplus \, 1 \, \oplus \, 0 \, \oplus \, 0 = 1$

Синдром $S(S_1, S_2, S_3, S_4) = 1011 =>$ ошибка в і

Исправленный вариант: 001110001010<mark>0</mark>00

Исходное сообщение без ошибки: 11001010000

Часть №3

Число информационных разрядов (i) = (51 + 88 + 13 + 10 + 69) * 4 = 924

 $2^{r}>=r+i+1\Rightarrow 1024>=935\Rightarrow$ Минимальное число проверочных разрядов (r) = 10

Коэффициент избыточности = $\frac{r}{i+r} = \frac{10}{924+10} = \frac{5}{467} \approx 0.010707$

Дополнительное задание

Решение задания представлено на языке программирования Python. Исходный код программы можно найти по ссылке:

https://github.com/ldpst/itmo/blob/main/labs/sem1/inf/lab2/main.py

```
from random import randint
   test()
```

Результат выполнения программы на 4 числах из <u>части №1</u> и 6 случайных числах представлен на <u>рисунке №5</u>.

```
1. Исходное сообщение: 1010011
Ошибка в бите i1. Сообщение без ошибок: 0011
2. Исходное сообщение: 0100110
Ошибка в бите r1. Сообщение без ошибок: 0110
3. Исходное сообщение: 1101000
Ошибка в бите і4. Сообщение без ошибок: 0001
4. Исходное сообщение: 1010000
Ошибка в бите r2. Сообщение без ошибок: 1000
5. Исходное сообщение: 1100110
Ошибок нет
6. Исходное сообщение: 1101000
Ошибка в бите і4. Сообщение без ошибок: 0001
7. Исходное сообщение: 0110101
Ошибка в бите i1. Сообщение без ошибок: 0101
8. Исходное сообщение: 0010111
Ошибка в бите і4. Сообщение без ошибок: 1110
9. Исходное сообщение: 1110111
Ошибка в бите r3. Сообщение без ошибок: 1111
10. Исходное сообщение: 0001100
Ошибка в бите r1. Сообщение без ошибок: 0100
```

Рисунок 5 - Результат выполнения программы

Заключение

В процессе выполнения лабораторной работы я познакомился с помехоустойчивым кодированием, узнал, какими преимуществами и недостатками оно обладает, научился строить таблицы декодирования классического хода Хэмминга и написал собственную программу на языке программирования Руthon для проверки сообщения на ошибки и исправления их.

Список использованных источников

- 1. Смирнов, В. А. Помехоустойчивое кодирование / В. А. Смирнов. М.: БИНОМ. Лаборатория знаний, 2014. 280 с.
- 2. Шевченко, А. А. Помехоустойчивые коды / А. А. Шевченко. М.: Горячая линия Телеком, 2018. 350 с.