15.2 Matrix-chain multiplication problem

Let $A = (a_{ij})$ be an $\ell \times m$ matrix and $B = (b_{ij})$ an $m \times n$ matrix.

The product X = AB then is the $\ell \times n$ matrix $X = (x_{ij})$, where

$$x_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}.$$

Thus, multiplying A and B takes ℓmn scalar multiplications.

Now, suppose we have a third matrix C_{ij} which is an $n \times p$ matrix. To compute the product ABC, we can

- \blacktriangleright (1) Find AB then multiply by $C \ell mn + \ell np$ multiplications, or
- \blacktriangleright (2) Find BC then multiply by $A mnp + \ell mp$ multiplications.

Which is best?

More generally, we have a chain $\langle A_1, A_2, \dots, A_n \rangle$ of n matrices, where A_i has dimension $p_{i-1} \times p_i$ for $i = 1, 2, \dots, n$. We want to compute $A_1 A_2 \dots A_n$ using the least total number of scalar multiplications.

Each order of multiplication corresponds to a parenthesisation. For example, we can compute $A_1A_2A_3A_4$ in 5 ways:

- 1. $(A_1A_2)(A_3A_4)$
- **2.** $((A_1A_2)A_3)A_4$
- 3. $(A_1(A_2A_3))A_4$
- **4.** $A_1((A_2A_3)A_4)$
- **5.** $A_1(A_2(A_3A_4))$ (Question: how many ways for n matrices?)

Denote by the number of alternative parenthesizations of a sequence of n matrix multiplication by P(n). Then

$$P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k) \cdot P(n-k) & \text{if } n \ge 2. \end{cases}$$

 $P(n) = \Omega(4^n/n^{3/2})$, which is usually referred to as the Catalan number.

1. Characterize the structure of the optimal solution

Let $A_{i...j}$ denote the product of (j-i+1) matrices $A_iA_{i+1}\cdots A_{j-1}A_j$ with $i \leq j$. The dimensions of A_i is $p_{i-1} \times p_i$.

As a special case where $A_{i..i} = A_i$, we aim to compute $A_{1..n}$.

Consider where the last multiplication is performed in computing $A_{1..n}$. For some k $(1 \le k \le n-1)$, we have computed $A_{1..k}$ and $A_{k+1..n}$, we then multiply them to get $A_{1..n}$, using an extra $p_0p_kp_n$ scalar multiplications.

If this is the best way (least total scalar multiplications), then we must have obtained $A_{1..k}$ and $A_{k+1..n}$ using the least total scalar multiplications. However, we don't know the best k, so we have to consider all the possibilities $1 \le k \le n-1$ and take the best.

2. Formulate the recurrence for the optimal solution

Let m[i, j] be the least number of scalar multiplications needed to compute $A_{i...j}$.

$$m[i,i] = 0, \qquad (1 \le i \le n)$$

$$m[i,j] = \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \}, \qquad (1 \le i < j \le n)$$

Example (p376): $A_1A_2A_3A_4A_5A_6$. Dimensions:

 A_1 : 30 × 35, A_2 : 35 × 15, A_3 : 15 × 5, A_4 : 5 × 10, A_5 : 10 × 20, A_6 : 20 × 25

Example (p376): $A_1A_2A_3A_4A_5A_6$.

$$A_1$$
: $p_0 \times p_1$, A_2 : $p_1 \times p_2$, A_3 : $p_2 \times p_3$, A_4 : $p_3 \times p_4$, A_5 : $p_4 \times p_5$, A_6 : $p_5 \times p_6$ A_1 : 30 × 35, A_2 : 35 × 15, A_3 : 15 × 5, A_4 : 5 × 10, A_5 : 10 × 20, A_6 : 20 × 25

We here calculate $A_3A_4A_5$ as follows,

where
$$i = 3$$
, $j = 5$, $p_{i-1} = p_2 = 15$, $p_i = p_3 = 5$, $p_4 = 10$, and $p_j = p_5 = 20$.

$$m[3,4] = 15 \times 5 \times 10 = 750$$
; $s[3,4] = 3$; $m[4,5] = 5 \times 10 \times 20 = 1,000$; $s[4,5] = 4$;

$$m[3,5] = \min_{i=3 \le k < j=5} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\}$$

$$= \min\{m[3,3] + m[4,5] + p_2 \times p_3 \times p_5, m[3,4] + m[5,5] + p_2 \times p_4 \times p_5\}$$

$$= \min\{m[3,3] + m[4,5] + 15 \times 5 \times 20, m[3,4] + m[5,5] + 15 \times 10 \times 20\}$$

$$= \min\{0 + 1,000 + 1,500,750 + 0 + 3,000\}$$

$$= \min\{2,500,3,750\}$$

$$= 2,500$$
(1)

s[3,5] = 3, as k = 3 the value of m[3,5] is the minimum one.

Example (p376): $A_1A_2A_3A_4A_5A_6$. Dimensions:

$$A_1$$
: 30 × 35, A_2 : 35 × 15, A_3 : 15 × 5, A_4 : 5 × 10, A_5 : 10 × 20, A_6 : 20 × 25 A_1 : $p_0 \times p_1$, A_2 : $p_1 \times p_2$, A_3 : $p_2 \times p_3$, A_4 : $p_3 \times p_4$, A_5 : $p_4 \times p_5$, A_6 : $p_5 \times p_6$

$$m[2,5] = \min_{i=2 \le k < j=5} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\}$$

$$= \min\{m[2,2] + m[3,5] + p_1 \times p_2 \times p_5, m[2,3] + m[4,5] + p_1 \times p_3 \times p_5,$$

$$m[2,4] + m[5,5] + p_1 \times p_4 \times p_5\}$$

$$= \min\{0 + 2500 + 35 \cdot 15 \cdot 20, 2625 + 1000 + 35 \cdot 5 \cdot 20, 4375 + 0 + 35 \cdot 10 \cdot 20\}$$

$$= \min\{13,000,7125,11,375\}$$

$$= 7125$$
(2)

s[2,5] = 3, as k = 3 the value of m[2,5] is the minimum one.

3. Algorithm for the recurrence

```
Matrix_Chain_Order(p[])
```

```
n \leftarrow length[p] - 1;
       for i \leftarrow 1 to n do
3
                          m[i,i] \leftarrow 0
        for l \leftarrow 2 to n do
4
                 for i \leftarrow 1 to n - l + 1 do
5
                          j \leftarrow i + l - 1;
6
                                   m[i,j] \leftarrow \infty;
                                   for k \leftarrow i to j-1 do
8
                                                   q \leftarrow m[i,k] + m[k+1,j] + p_{i-1} * p_k * p_j;
9
                                                   if q < m[i, j] then m[i, j] \leftarrow q; s[i, j] \leftarrow k;
10
11
        return m and s.
```

What is the running time of the proposed algorithm?

4. Construct the optimal solution

Having a matrix s[1..n, 1..n] that stores the indices of the computation of m[i, j]s, we now construct the optimal solution for matrix multiplication.

The following procedure is used to construct an optimal solution to a partial solution of the product of matrices $A_i ... A_j$ with j > i.

```
Matrix\_Chain\_Multiply(A, s, i, j)
```

```
1 if j > i

2 then X \leftarrow \text{Matrix\_Chain\_Multiply}(A, s, i, s[i, j])

3 Y \leftarrow \text{Matrix\_Chain\_Multiply}(A, s, s[i, j] + 1, j)

4 return X \times Y

5 else return A_i
```

Thus, the optimal solution of the problem is obtained by calling $Matrix_Chain_Multiply(A, s, 1, n)$.