

(11)Publication number:

10-246230

(43) Date of publication of application: 14.09.1998

- (51)Int.CI.

F16C 33/10 F16C 33/12

(21)Application number: 09-062490

(71)Applicant: HITACHI POWDERED METALS CO LTD

(22)Date of filing:

28.02.1997

(72)Inventor: YANASE TAKESHI

MIYASAKA MOTOHIRO

(54) SLIDING BEARING AND ITS USING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a sliding bearing which can reduce consumption caused by the outflow of a lubricant, and can lengthen its life even though it is used for such a use that it is swung at high bearing pressure.

SOLUTION: A lubricating composition which is half-solid or solid at room temperature and has a dropping point of 60° C or more, is filled into the pores of a iron base sintered alloy in which martensite is contained in an iron carbon alloy base and also at least either one of copper particles or copper alloy particles are dispersed, and this lubricating composition contains an oil content and wax which contains at least either one of an extreme-pressure additive or solid lubricant particles. Hereby, an sintered alloy being the main body of a bearing has both strength which can resist high bearing pressure and conformability with a countermember, and also shows a favorable lubricating action even at high bearing pressure.

LEGAL STATUS

[Date of request for examination]

08.03.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-246230

(43)公開日 平成10年(1998) 9月14日

(51) Int.Cl. 6

F16C 33/10

識別記号

FΙ

F16C 33/10

A

33/12

33/12

Α

審査請求 未請求 請求項の数14 FD (全 9 頁)

(21)出顧番号

(22)出顧日

特願平9-62490

平成9年(1997)2月28日

(71)出願人 000233572

日立粉末冶金株式会社

千葉県松戸市稔台520番地

(72) 発明者 柳瀬 剛

千葉県松戸市稔台1018-2

(72)発明者 宮坂 元博

千葉県流山市加867-1-106

(74)代理人 弁理士 末成 幹生

(54) 【発明の名称】 滑り軸受およびその使用方法

(57)【要約】

【課題】 潤滑剤の流出による消費を低減することがで き、高い面圧で揺動するような用途に用いても寿命を長 くすることができる滑り軸受を提供する。

【解決手段】 鉄炭素合金基地中にマルテンサイトを含 むとともに、銅粒子および銅合金粒子の少なくともいず れか一方が分散している鉄基焼結合金の気孔内に、常温 で半固態状または固態状で滴点60℃以上の潤滑組成物 を充填し、この潤滑組成物は、極圧添加剤および固体潤 滑剤粒子の少なくともいずれか一方を含む油分およびワ ックスを含有している。これにより、軸受の本体である 焼結合金が高い面圧に耐える強度と相手部材との馴染み 性とを兼ね備えるとともに、高い面圧でも良好な潤滑作 用を示す。

【特許請求の範囲】

【請求項1】 鉄炭素合金基地中にマルテンサイトを含むとともに、飼粒子および飼合金粒子の少なくともいずれか一方が分散している鉄基焼結合金の気孔内に、常温で半固態状または固態状で滴点60℃以上の潤滑組成物を充填し、この潤滑組成物は、極圧添加剤および固体潤滑剤粒子の少なくともいずれか一方を含む油分およびワックスを主体としていることを特徴とする滑り軸受。

【請求項2】 鉄炭素合金基地中にマルテンサイトを含むとともに、銅粒子および銅合金粒子の少なくともいずれか一方と、上記鉄炭素合金基地より硬質な鉄基合金粒子およびコバルト基合金粒子の少なくともいずれか一方とが分散している鉄基焼結合金の気孔内に、常温で半固態状または固態状で滴点60℃以上の潤滑組成物を充填し、この潤滑組成物は、極圧添加剤および固体潤滑剤粒子の少なくともいずれか一方を含む油分およびワックスを含有していることを特徴とする滑り軸受。

【請求項3】 前記鉄炭素合金基地より硬質な鉄基合金 粒子またはコバルト基合金粒子の含有量が5~30重量 %であることを特徴とする請求項2に記載の滑り軸受。

【請求項4】 Cuの含有量が7~30重量%であることを特徴とする請求項1~3のいずれかに記載の滑り軸受。

【請求項5】 前記鉄炭素合金基地中に黒鉛、二硫化モリブデン、二硫化タングステン、窒化硼素、窒化けい素、弗化黒鉛、エンスタタイトの1種または2種以上の粒子を3重量%以下含有していることを特徴とする請求項1~4のいずれかに記載の滑り軸受。

【請求項6】 前記ワックスは、パラフィンワックス、マイクロクリスタリンワックス、カルナバワックス、ライスワックス、キャンデリラワックス、みつろう、モンタンワックス、ポリエチレンワックスのいずれかであることを特徴とする請求項1~5のいずれかに記載の滑り軸受。

【請求項7】 前記ワックスは、パラフィンワックス、マイクロクリスタリンワックスの少なくともいずれか一方であり、前記油分は極圧添加剤を含む工業用潤滑油であることを特徴とする請求項1~5のいずれかに記載の滑り軸受。

【請求項8】 前記ワックスの含有量が20~40重量%であり、このワックスは、0.5~1.5重量%の極圧添加剤および1.5~2.5重量%の固体潤滑剤粒子の少なくともいずれか一方を含有することを特徴とする請求項7に記載の滑り軸受。

【請求項9】 軸との摺動面に複数の溝を備えており、その溝に、油に固体潤滑剤粒子を分散させたペーストまたは前記潤滑組成物を充填したことを特徴とする請求項1~8のいずれかに記載の滑り軸受。

【請求項10】 前記鉄炭素合金の摺動面以外の外面の 気孔を目潰ししたことを特徴とする請求項1~9のいず れかに記載の滑り軸受。

【請求項11】 支持する軸が揺動するか滑り軸受が回転する状態で使用することを特徴とする請求項 $1\sim10$ のいずれかに記載の滑り軸受の使用方法。

【請求項12】 請求項1~10のいずれかに記載の滑り軸受の使用方法であって、軸との摺動面に作用する面圧が30MPa以上の条件で使用することを特徴とする滑り軸受の使用方法。

【請求項13】 請求項1~10のいずれかに記載の滑り軸受の使用方法であって、温度60℃未満の常温で使用することを特徴とする滑り軸受の使用方法。

【請求項14】 請求項1~10のいずれかに記載の滑り軸受の使用方法であって、支持する軸が揺動するか滑り軸受が回転する条件と、使用する軸との摺動面に作用する面圧が30MPa以上の条件と、温度60℃未満の常温で使用する条件のうちの2つまたは3つの条件で使用することを特徴とする滑り軸受の使用方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、焼結合金の気孔内に 半固態状または固態状潤滑組成物を含有した滑り軸受に 係り、特に、軸受摺動面に高い面圧が作用するような用 途に用いて好適な滑り軸受に関する。

[0002]

【従来の技術】従来、滑り軸受としては多孔質焼結合金製のものが提供されている。このような軸受の多くは、多孔質焼結合金の気孔内に、軸受摺動面に作用する面圧と滑り速度に応じて最適な粘度を有する潤滑油を含浸したものである。また、多孔質焼結合金としては、銅合金あるいは鉄合金のものが多用されており、青銅合金のように軟質なものから焼入れされた合金鉄まで様々なものが提供されている。また、これらの合金中に黒鉛や二硫化モリブデンのような固体潤滑剤を分散した合金もある。

【0003】ここで、潤滑油は、スピンドル油のような低粘度のものから、2700cSt(センチストーク)程度の高粘度のものまで実用に共されている(日刊工業新聞社昭和39年7月25日発行、粉末冶金応用製品ー構成部品-36項、表1.6)。また、常温で半固態状や固態状を呈する潤滑剤としては、金属石鹸を増稠材として含有するグリース、グリースと油の混合物、固体潤滑剤粒子を含む金属石鹸、石油系ワックスや合成ワックス、PTFE等の樹脂、金属鉛、黒鉛や二硫化モリブデンのような固体潤滑剤などがある。

【0004】グリースは、多孔質焼結合金の気孔内に含 浸して使用されることもあるが、含浸させるのにかなり の手間を要するため、通常は、ポンプなどの適当な手段 によって摺動面に供給される。固体潤滑剤を除くその他 の潤滑剤を気孔内に含浸させる場合には、潤滑剤を加熱 溶融して流動性を高めることが行われる。また、固体潤 滑剤を用いる場合には、黒鉛や二硫化モリブデンなどの 粉末を油に分散させてペースト状にし、適当な方法によって摺動面に供給するのが一般的である。 固体潤滑剤を 用いたもので摺動面に高い面圧が作用するような滑り軸 受としては、青銅合金製の軸受本体の内周面に黒鉛片を ほぼ等間隔に埋め込んだものがある。

【0005】このように、滑り軸受は、素材である軸受合金はもちろんのこと潤滑形態にも様々な種類があり、摺動形態、面圧、滑り速度、運転される環境などの種々の使用条件に対応して、軸との馴染み性と摩擦係数および耐久性を考慮し、軸受合金と潤滑剤の種類が選定される。とりわけ、極めて低い荷重や高速回転で使用する場合や、逆に、大きな荷重が作用する場合や、軸受自身が回転したり揺動や往復動するような用途の軸受では、軸受合金の構成と潤滑剤の種類および潤滑形態の組合わせの微妙な違いが軸受特性に大きく影響を及ぼすことが多いので、用途に応じて厳密に選定する必要がある。

[0006]

【発明が解決しようとする課題】たとえば、30MPa以上の高い面圧で揺動しながら摺動するような軸受としては、比較的硬い合金で構成するとともに、グリースやそれに近い高粘度の油を潤滑剤として使用すれば相応の効果を得ることができる。しかしながら、この場合には、軸受から潤滑剤が流出消費されて軸受の周辺を汚染するとともに、軸受の耐久性が低下するという問題がある。一方、耐久性については、前記した軸受の摺動面に黒鉛のような固体潤滑剤片を斑点状に埋め込んだドライ軸受が好適であるが、製造コストが他の軸受に比して2~3倍になるという欠点がある。よって、この発明は、潤滑剤の流出による消費を低減することができ、高い面圧で揺動するような用途に用いても寿命を長くすることができる滑り軸受を提供することを目的としている。【0007】

【課題を解決するための手段】本発明の第1の滑り軸受は、鉄炭素合金基地中にマルテンサイトを含むとともに、銅粒子および銅合金粒子の少なくともいずれか一方が分散している鉄基焼結合金の気孔内に、常温で半固態状または固態状で滴点60℃以上の潤滑組成物を充填し、潤滑組成物は、極圧添加剤および固体潤滑剤粒子の少なくともいずれか一方を含む油分およびワックスを主体としていることを特徴としている。

【0008】上記構成の滑り軸受にあっては、鉄炭素合金基地中に硬いマルテンサイトを含む一方で、軟質な銅粒子および/または銅合金粒子(以下、これらを銅粒子等と総称する)が点在したものであるから、高面圧下でも摩耗や変形が抑制されるとともに、銅粒子等が適度に変形して相手部品である軸と馴染み易くなる。特に、滑り軸受が軸に対して往復移動するような使用条件では、軸受の性能と寿命を伸ばす上で軸との馴染み性は極めて重要である。さらに、軸受が揺動するような使用条件で

は、摺動面に局所的に高い面圧が作用するから、滑り軸 受の寿命を伸ばすためにはマルテンサイトの存在も極め て重要である。よって、本発明の滑り軸受は、滑り軸受 が往復移動しつつ揺動するような使用条件でとりわけ性 能が発揮されると言える。

【0009】また、ワックスと油の混合物に極圧添加剤および固体潤滑剤粒子の少なくともいずれか一方が分散した潤滑組成物は、常温で固態状又は半固態状であるから、高い面圧が作用しても摺動面の油膜が破れることが少なく、しかも、高い粘性故に滑り軸受からの流出漏洩も少ない。さらに、潤滑組成物に含有されたワックスは、液状の油や金属石鹸を含むグリースに比べて熱膨張係数が格段に大きいので、運転による温度上昇で気孔から固態状又は半固態状の潤滑組成物が速やかに浸出し、軸との金属接触摩擦が少ない油膜による潤滑形態をもたらすことができる。なお、潤滑組成物を常温で固態状よらすことができる。なお、潤滑組成物を常温で固態状に維持するためには、滴点(滴点法で測定した融点)は60℃以上である必要がある。また、鉄炭素合金基地中に固体潤滑剤を含有させることもでき、その場合には、自己潤滑性が一層向上する。

【 0 0 1 0 】次に、本発明の第 2 の滑り軸受は、鉄炭素合金基地中にマルテンサイトを含むとともに、銅粒子および銅合金粒子の少なくともいずれか一方と、鉄炭素合金基地より硬質な鉄基合金粒子およびコバルト基合金粒子の少なくともいずれか一方とが分散している鉄基焼結合金の気孔内に、常温で半固態状または固態状で滴点60℃以上の潤滑組成物を充填し、潤滑組成物は、極圧添加剤および固体潤滑剤粒子の少なくともいずれか一方を含む油分およびワックスを主体とすることを特徴としている。

【0011】上記構成の滑り軸受は、第1の滑り軸受の 鉄炭素合金基地中に、鉄炭素合金基地より硬質な鉄基合 金粒子やコバルト基合金粒子を分散させたもので、この ような硬質粒子の存在により、耐摩耗性がより一層向上 されたものとなる。鉄基合金粒子としては、粉末ハイス の原料となる合金粉が好適である。また、コバルト基合 金粒子としては、肉盛り溶射用に市販されている耐熱耐 摩耗性合金粉(たとえば、キャボット社製、商品名:コ バメット)が好適である。

【0012】上記第1、第2の滑り軸受では、軸との摺動面に複数の溝を備え、その溝に、油に固体潤滑剤粒子を分散させたペーストまたは上記した潤滑組成物を充填することができる。このように構成することにより、ペーストや潤滑組成物が熱膨張して摺動面に容易に浸出するため、摺動面の潤滑が円滑に行われる。なお、溝は、摺動方向と交差あるいは平行に設けることができる。また、鉄炭素合金の摺動面以外の外面の気孔を目潰しすることにより、熱膨張した固態状又は半固態状潤滑組成物が摺動面に向かって積極的に押し出されるので、潤滑がさらに良好になる。

【0013】前述のように、本発明の滑り軸受は、支持 する軸が揺動する状態で使用する場合や、滑り軸受自体 が回転する状態で使用する場合にとりわけ性能が発揮さ れる。よって、本発明は、そのような使用態様によって 上述した滑り軸受あるいは以下に述べる滑り軸受を使用 することを特徴とする使用方法でもある。また、この明 細書に記載した滑り軸受は、軸との摺動面に作用する面 圧が30MPa以上の条件で使用した場合にも抜きん出 た性能が発揮されるので、このような使用方法も本発明 の一つである。さらに、この明細書に記載した滑り軸受 は、温度60℃未満の常温で使用することで上記した作 用、効果を確実に奏するものであるから、このような使 用方法も本発明の一つである。加えて、これら3種類の 使用方法のうち2つまたは3つを組み合わせた使用方法 も本発明の一つである。以下、本発明の好適な実施の形 態についてさらに詳細に説明する。

[0014]

【発明の実施の形態】まず、滑り軸受(以下、単に軸受と称する)の本体である焼結合金は、以下に示す5種類の形態が好適である。

(1)焼結合金1

焼結合金1は、鉄粉、銅粉、黒鉛粉を以下の成分組成となるように混合し、混合粉を成形して焼結したものである。すなわち、焼結合金1は、組成が重量比でC:0.3~1.5%、Cu:7~30%、残部が実質的にFeからなる成分組成を有し、基地がマルテンサイトを主体とする組織の鉄炭素系合金であり、基地中に銅および/または鉄を含む銅合金の形で粒子状に分散したものである。この焼結合金1に不可避的に含有される不純物としては、鉄粉中に通常含まれるMn及びSiが挙げられる。

【0015】基地の組織は全てマルテンサイトであって も良く、一部にトルースタイトやベイナイトが含まれて いても同等の性質を示す。さらに、一部にソルバイトが 含まれていても良い。基地の硬さはマイクロビッカーカ ス硬さ450~750程度が良い。また、Cは黒鉛の形 で混合粉に添加し、焼結によってCをFeの基地中に拡 散させる。また、焼結は、銅粉の形で添加されたCuが Feと完全に合金化しない温度と時間で行い、焼結後に 焼入れ焼戻しする。なお、焼入れは、焼結の冷却過程で 行うこともできる。ここで、Cの含有量がO.3重量% を下回ると材料強度が不充分で摩耗し易くなり、1.5 重量%を超えて含有すると硬くなり過ぎて相手部材であ る軸の摩耗を促進する。よって、焼結合金1中のCの含 有量は、0.3~1.5重量%とした。なお、黒鉛粉が 混合粉末中で偏在している部分では、焼結体の基地に遊 離黒鉛の形で残存する場合があり、遊離黒鉛は固体潤滑 作用を奏する。

【0016】Cuは、焼結中に一部がFeの基地中に拡散し、一部はFeを溶かし混んで銅合金を形成する。よ

って、焼結合金を冷却すると、鉄炭素系合金の基地に銅または銅合金相の形態で分散した組織状態になる。銅または銅合金は比較的軟質であるから、相手部材である軸への攻撃性を抑える作用をするとともに、適度に変形して軸との馴染み性を向上させる。しかしながら、Cuの含有量が7重量%を下回るとその効果が不充分であり、30重量%を超えて含有すると、材料強度が低くなるので面圧が高い場合は摩耗し易くなる。よって、Cuの含有量は、7~30重量%とした。なお、Cuの含有量は15重量%前後が最適である。

【0017】焼結合金の気孔には、後述する潤滑組成物が充填されるが、有効気孔率は通常の焼結含油軸受と同様に15~20%程度が好ましい。面圧が特に高い場合で軸受材料の強度および耐摩耗性が一層求められる場合には、気孔率を15%より低くして密度を高めることもできるが、有効気孔率が10%未満では充填される潤滑組成物の量が少なすぎて潤滑剤の油膜切れが生じることがある。逆に、潤滑を優先する場合には、気孔率を20%よりも大きくすることもできるが、有効気孔率が25%(密度:約5.8g/cm³)を上回ると、材料強度が低くて耐摩耗性が低下することがあるので注意が必要である。

【0018】(2)焼結合金2

焼結合金2は、前記焼結合金1の基地中に、C:0.6~1.7%、Cr:3~5%、W:1~20%、V:0.5~6%を含有する比較的硬質なFe基合金粒子を、焼結合金2の全体の重量に対して5~30重量%分散させた合金である。このFe基合金粒子は、高速度工具鋼(ハイス鋼)の一種に相当する組成を有し、粉末ハイスの原料である合金粉の形で混合粉に添加する。この焼結合金2は、マルテンサイトを含む鉄炭素系基地にさらに硬い合金粒子が分散しているため、軸との摺動時に基地の変形を効果的に低減し、基地への負担を低減する。よって、より高い面圧(例えば、面圧80MPa以上)での使用に適する軸受になる。

【0019】ここで、Fe基合金粒子の焼結合金2の全体の重量に対する含有量が5重量%未満であると、上記した効果が不充分となり、含有量が30重量%を上回ると相手部材の摩耗が促進し、結局は軸受としての性能が劣化する。よって、Fe基合金粒子の含有量は5~30重量%とした。言い換えると、添加するFe基合金粉末の重量は、混合粉末全体の重量に対して5~30%である。

【〇〇20】Fe基合金粒子は、マルテンサイトを含む 鉄炭素系基地よりも硬質であれば成分組成は任意である が、成分に含まれる炭素等の元素が焼結中に基地へ拡散 して硬さが均一化してしまうようなものは、製造コスト の割りに効果が不充分となる。また、そのような硬質相 粒子としてNi基硬質合金を用いることも考えられる が、その場合には、Ni基硬質合金のNiが周辺の基地 中へ一方的に拡散して硬質合金の硬さが低下し、しかも、硬質合金と基地との固着性が悪く不適当である。よって、硬質相粒子を構成するFe基合金粒子としては、 上記のような不都合が生じないものを選定する必要があり、たとえば以下に示す合金が好適である。

【0021】(3)焼結合金3

焼結合金3は、前記焼結合金1の基地中に、C:0.6~1.7%、Cr:3~5%、W:1~20%、V:0.5~6%、MoまたはCoの少なくとも1種:20%以下を含有する比較的硬質なFe基合金粒子を、焼結合金3の全体の重量に対して5~30重量%分散させた合金である。このFe基合金粒子は、高速度工具鋼の一種に相当する組成を有し、粉末ハイスの原料である合金粉の形で混合粉に添加される。この焼結合金3の作用、効果は前述と同様である。

【0022】(4) 焼結合金4

焼結合金4は、前記焼結合金1の基地中に、Mo:55、~70%を含有する比較的硬質なMo-Fe合金粒子を、焼結合金4の全体の重量に対して5~30重量%分散させた合金である。このMo-Fe合金粒子は、JIS規格に規定された炭素含有量が少ないフェロモリブデン合金粉の形で混合粉に添加される。この焼結合金4の作用、効果は前述と同様である。

【0023】(5)焼結合金5

焼結合金5は、焼結合金1の基地中に、Cr:5~15%、Mo:20~40%、Si:1~5%を含有するCo合金粒子を、焼結合金5の全体の重量に対して5~30重量%分散させた合金である。この合金粒子は、肉盛り溶射用に市販されている耐熱耐摩耗性合金粉(たとえば、キャボット社製、商品名:コバメット)である。この焼結合金5の作用、効果は前述と同様である。なお、前記(2)~(5)の焼結合金は、特開平8-109450号公報で本出願人が既に提案した合金である。

【0024】(6)焼結合金6

焼結合金6は、焼結合金1~5の基地中に、黒鉛、二硫化モリブデン、二硫化タングステン、窒化硼素、窒化けい素、弗化黒鉛、エンスタタイトの少なくとも1種の粒子を3重量%以下分散させた合金である。固体潤滑作用のあるこれら粒子は、摺動中の金属接触を少なくし、耐摩耗性を向上させる。これらの成分は、含有量が多いほど効果があるが、3%を超えて含有すると基地の強度を低下させて摩耗を促進することがある。

【0025】次に、これらの焼結合金1~6の気孔には、以下のような潤滑組成物を充填する。この潤滑組成物は、満点が60℃以上であり、常温で半固態状または固態状をしていて、油分とワックスの混合物中に極圧添加剤および固体潤滑剤粒子の一方または両方を含むものである。ワックスは、石油系のパラフィンワックス、マイクロクリスタリンワックス、植物系のカルナバワックス、ライスワックス、キャンデリラワックス、動物系の

みつろう、鉱物系のモンタンワックス、合成のポリエチ レンワックスのいずれかである。

【0026】中でも石油系のパラフィンワックス、マイクロクリスタリンワックスは、添加する油分としてギヤ油、作動油、タービン油のような市販の工業用潤滑油となじみ性が良いという特長と、熱膨張係数が格段に大きいため、摺動による昇温で早期に摺動面へ浸出し易いという特長がある。例えば、常温から60℃までの体積膨張は、市販のグリースが約0.5%であるのに対し、例えばマイクロクリスタリンワックスにギヤ油を70%添加混合した潤滑組成物では約3%である。

【〇〇27】ワックスはそれ自身で潤滑効果があるが、 油分を含むと、面圧と滑り速度に適合する潤滑組成物と しての適当な硬さと油分自身の潤滑効果が得られるよう になる。高い面圧では、固体潤滑と流体潤滑の中間的な 潤滑が望ましく、摺動部は液状となっているとしても、 潤滑組成物全体としては運転摺動中に半固態状または固 態状態であれば良い。潤滑組成物が固態のペースト状と いうことができる状態であるときの混和稠度は、40℃ で400である。40℃の混和稠度が400を超える と、潤滑組成物が柔らかすぎて流動性を示すようにな り、高い面圧が作用する使用条件には不適となる。ま た、潤滑組成物がワックスだけのような硬さを有する と、硬過ぎて剪断抵抗が高いため潤滑効果が低くなる。 前記したワックスでは、油分は潤滑組成物のうちの30 ~80%程度の範囲にすると好適である。また、油分と しては石油系潤滑油や合成潤滑油が用いられ、粘度が高 いものを用いると多くの油分を含有させることができ好 適である。軸受の一般的な使用温度は常温から50℃程 度であるから、使用温度で固態状または半固態状を示す ために潤滑組成物の滴点は60℃以上とする。

【0028】ワックスと油分の混合物だけでも潤滑性は良好であるが、高い面圧が作用しても油膜が破れないようにするために、極圧添加剤および固体潤滑剤粒子の少なくともいずれか一方を添加する。これらを添加することによって、軸受と軸との金属接触が抑制され、軸受性能が長期にわたって維持される。極圧添加剤の添加に際しては、ギヤ油や各種作動油等の工業用潤滑油には極圧添加剤が含まれているので、ギヤ油等を用いれば良い。また、ギヤ等には、酸化防止剤や錆止め剤、さらには増稠剤等が含まれているので好適である。

【0029】極圧添加剤としては、例えば硫黄系ではオレフィンポリサルファイド、硫化油脂、ジアルキルサルファイド、塩素系では塩素化パラフィン、りん系ではアリル燐酸エステル、複合型ではクロロナフサザンデート、有機金属塩ではナフテン酸鉛、チオ燐酸亜鉛、その他としてMoコンプレックス、ほう酸塩等が知られている。極圧添加剤は、適当な油に混合した状態で、または単体で前述のワックスおよび油分に添加することができる。潤滑組成物中の極圧添加剤の含有量は1.5重量%

を超えてもそれ以上の効果が望めないので、1.5重量 %以下、好ましくは0.5~1重量%が良い。

【0030】また、極圧添加剤に替えて黒鉛、二硫化モリブデン、二硫化タングステンPTFE、弗化黒鉛、弗化カルシウム等の固体潤滑剤粒子を添加しても効果が得られる。これら固体潤滑剤粒子は、予め油分に混合分散させておいてからワックスと混合すると製造が容易である。潤滑組成物中の固体潤滑剤の含有量は1.5~2.5重量%であることが望ましい。固体潤滑剤の含有量が1.5重量%未満であると高面圧に対する効果が不充分となり、2.5重量%を上回ると潤滑組成物の見掛でさが高くなって潤滑が不安定になる虞があるからである。固体潤滑剤粒子は、焼結合金の気孔への含浸性を良くするために粒径が50μm以下のものを用いると良い。軸受の耐久性をさらに良好にするためには、極圧添加剤と固体潤滑剤粒子の両方を含有させることが望ましい。

【0031】潤滑組成物の製造方法は使用時の面圧によ って適宜選定するが、たとえば粘度150~2500c St程度の極圧添加剤入り潤滑油をヒーター付きの減圧 容器に充填し、ワックスの融点より約10~50℃程度 高い温度に加熱して液状にしておく。この潤滑油に、ワ ックスおよび固体潤滑剤を添加して混合する。この液状 にされた潤滑組成物の中に前述の焼結合金軸受を浸漬 し、油の含浸と同様に減圧容器を密封、減圧して気孔内 に潤滑組成物を含浸させる。この潤滑組成物は、グリー スに比べて加熱中の粘度が低いため含浸し易く、冷却し たときに油分が分離し難いので高面圧下での性能が優れ ている。減圧容器から取り出した軸受の表面には、液状 の潤滑組成物が水たまりのように付着することがあるの で、液状のうちに熱風を当てるか遠心力を与えるかして 除去するか、軸受の孔にマンドレルを通して拭き取って おくことが望ましい。また、油脂類は結晶が小さいと摩 擦特性が良好になるので、含浸処理した軸受を急冷して 油脂類の結晶を小さくすると良い。

【0032】上記のような軸受は、マルテンサイトを含む硬い鉄炭素系合金基地に軟質な銅や銅合金相が分散しているので、軸受の本体である焼結合金が高い面圧に耐える強度と相手部材との馴染み性とを兼ね備えている。また、焼結合金の気孔に、油分およびワックスに極圧添加物や固体潤滑剤を含む潤滑組成物が充填されているので、相手部材と摺動すると、温度上昇に伴って気孔内の潤滑組成物が膨張し、これが摺動面に浸出して圧力を発生するから、摺動面が金属接触せずに潤滑され、高い面圧でも良好な潤滑作用を示す。また、潤滑組成物が常温で固態状または半固態状であるから、軸受の外に流れ出

るようなことがない。よって、軸受の周囲を汚染しない ことは言うまでもなく、潤滑効果を長時間持続すること ができ、軸受の性能を長期にわたって維持することがで まる

【0033】なお、軸受の摺動面に摺動方向と交差する方向あるいは平行な方向に複数の溝を設け、その溝にも前述した潤滑組成物、または油に固体潤滑剤粒子を分散させてペースト状にしたものを充填しておくと、潤滑がさらに円滑に行われるようになる。特に、このように構成すると、最初から軸に潤滑剤が接触しているので、運転初期の潤滑が円滑に行われる。また、軸受の摺動面以外の外面を封孔または小さな気孔に目潰しすれば、潤滑組成物が熱膨張したときに摺動面へ積極的に浸出するので、潤滑組成物の圧力が高くなって摩耗が効果的に防止される。

【0034】この軸受は、低面圧では摩擦係数が高いので最適とはいえないが、面圧が30MPa以上で使用される用途に好適である。このような用途としては、例えば、貨物昇降機のエキスパンダー用軸受、ブルトーザーやパワーショベルのような建設機械の関節用軸受、プレス機械用軸受、車輌等制動装置リンク用軸受、ヒンジ用軸受、物品移動ロボットの関節軸受、キャスター用軸受などが挙げられる。

[0035]

【実施例】以下、本発明を実施例によりさらに詳細に説明する。軸受の焼結合金を製作するために下記の原料粉末を用意した。

①アトマイズ鉄粉: 粒度100メッシュ以下

②電解銅粉:粒度100メッシュ以下

③黒鉛粉: 粒度200メッシュ以下

②鉄合金粉A:高速度工具鋼SKH2相当の組成で、Fe-0.8%C-4%Cr-18%W-1%V、粒度200メッシュ以下

⑤鉄合金粉B:高速度工具鋼SKH51相当の組成で、 Fe-0.8%C-5%Cr-6%W-5%Mo-1% V、粒度200メッシュ以下

⑥鉄合金粉C:Fe-65%Mo、粒度200メッシュ 以下

②C o 合金粉: C o − 8.5% C r − 28% M o − 2. 5% S i 、粒度200メッシュ以下 (キャポット社製、 品名: コバメット)

8エンスタタイト粉:日本タルク製

⑨ステアリン酸亜鉛粉

[0036]

【表1】

【0037】これらの粉末を表1に示す割合で混合し た。なお、ステアリン酸亜鉛は、成型時の潤滑のために 添加するものであり、これを除く混合粉末を100%と したときに、全ての混合粉末に0.75%添加した。各 混合粉末について密度6.2g/cm3の軸受円筒形状 に圧粉成形し、成形体を還元雰囲気中、最高温度110 0℃で焼結した。次に、焼結体を温度850℃の浸炭雰 囲気中で保持したのち焼入れを行い、180℃で40分 間焼戻しを行った。そして、切削加工により、内径10 mm、外径16mm、高さ10mmの軸受形状にした 後、脱脂剤中で超音波を与えて試料表面および気孔内の 焼戻し油を除去し試験用試料とした。試料1の断面の顕 微鏡組織は、基地がマルテンサイトとトルースタイト で、赤みのある銅が分散していた。また、鉄基硬質合金 を含む試料2~4および6は、組織中に、分散している 粒状炭化物に加えて硬質粒子がさらに点在した顕微鏡組 織であった。

【0038】次に、比較のための試料として、組成がCu-10%Sn-0.5%Ni-0.5%黒鉛であり、銅錫合金基地中にニッケルと黒鉛粒子が分散した有効気孔率が20%の焼結合金製軸受(試料番号7)を作成した。

【0039】次に、気孔に含浸する潤滑組成物として下 記のものを準備した。

(a) 温度40℃における粘度220cStの市販の極圧添加剤入り工業用ギヤ油60重量%と、滴点70℃のパラフィンワックス40重量%とを90℃に加熱、混合した後、この混合物99重量%に対し、粒子径50μm以下の鱗片状黒鉛粉1重量%を混合した潤滑組成物潤滑組成物:滴点65℃、25℃における混和稠度150

(下線部数値につきご確認下さい)

(b) 温度40℃における粘度460cStの市販の極圧添加剤入り工業用ギヤ油70重量%と、滴点80℃のマイクロクリスタリンワックス30重量%を100℃に加熱、混合した潤滑組成物:滴点75℃、25℃における混和稠度180

【0040】(c)前記(b)の潤滑組成物98重量%に、粒子径2μm以下の二硫化モリブデン粉2重量%を混合(工業用ギヤ油に予備混合した状態で添加)した潤滑組成物:滴点75℃、25℃における混和稠度180(d)滴点が95℃の市販のカルシウムグリース

(e)温度40℃における粘度320cStの市販の極 圧添加剤入り工業用ギヤ油

【0041】これらの潤滑組成物を上記した各軸受試料に含浸した。含浸は加熱ヒーター付きの減圧含浸器を用い、含浸温度は潤滑組成物(a)は90℃、(b)および(c)は100℃、(d)は150℃、(e)は50℃で行った。次に、これらの軸受試料について軸受耐久試験を行った。軸受耐久試験は、軸受試料を試験機のハウジングに固定し、軸受試料の孔に焼入れされた構造用炭素鋼の軸を装着して軸心と直角方向に均等に荷重を加え、面圧60MPaの状態で繰り返し半回転させて行った。軸受試料の周辺の気温は40℃とし、最大摺動速度は1m/分とした。この試験条件は、高面圧下で低速摺動であり、摺動面の潤滑が困難な状態と言うことができる。表2に、軸受試料の温度が安定している状態から温度上昇傾向が認められたときまでの摺動距離(単位:

m)を示す。 【0042】

【表2】

試料番号		1	2	3	4	5	6	7
潤滑剤	a	1290	1540	1550	1600	1540	1820	640
	b	1090	1420	1430	1460	1420	1680	520
	c	1340	1600	1600	1630	1590	1870	665
	d	730	950	960	975	950	1120	360
	e	620	810	815	830	810	955	310

【0043】表2に示すように、比較的軟質な青銅合金で構成された試料7と比較すると、本発明の鉄合金製軸受(試料1~6)は耐久性が格段に優れていることが判る。また、鉄炭素系焼入れ組織の基地に銅と鉄銅合金が分散した合金からなる試料1は、硬質粒子が分散されている合金(試料2~6)と比較すると耐久性はやや劣っているが、面圧がやや低い用途であれば特性は充分である。また、硬質粒子が分散されている合金(試料2~5)の耐久性は総じて高く大差がないが、これらと比較すると、基地に固体潤滑剤を含有する試料6は、さらに良好な耐久性を示すことが判った。

【0044】次に、軸受の気孔に含浸された潤滑剤の種類による耐久性を比較すると、高粘度ギヤ油(e)やグリス(d)を含浸させた試料に比べて、ワックスとギヤ油の混合潤滑組成物(b)およびそれに固体潤滑剤を含むもの(aおよびc)を含浸させた試料は、耐久性が格段に優れていることが判る。グリース(d)は、その粘性の大きさからある程度の耐久性を有するものと思われたが、ギヤ油と比較してもそれ程良好とは言えない結果となった。その原因は、グリースを加熱して液状とした後に冷却すると、グリースから油分が分離する現象が生じ、試料の気孔に含浸させる際にも同様の現象が生じて潤滑能力が変化したためと考えられる。

【0045】なお、グリースを含浸した試料では試料からのグリースの流出はやや少なかったが、高粘度ギヤ油(e)を含浸させた試料では、試験中に油が軸受端面に伝って流出しており、潤滑油のロスになって耐久性に影響しているとともに、軸受の周辺を汚染することが予想される。また、ワックスとギヤ油の混合潤滑組成物

(b)およびそれに固体潤滑剤を含むもの(aおよび

c)を含浸させた試料では、軸受内周の面取部と軸との間に浸出が認められたが、流出はしていなかった。

【0046】次に、試料2(高速度工具鋼SKH2相当組成の硬質相分散合金)の焼結体端面と外周面を塑性流動させて目漬しした後、熱処理を施し、軸受所定寸法に切削加工するとともに内周面に摺動方向に沿う5本の溝を形成した。この焼結軸受に潤滑組成物c(ワックス+ギヤ油+二硫化モリブデン)を前記と同様にして含浸した。この試料を試験機のハウジングに圧入し、前記と同様に耐久試験を行ったところ、摺動距離は1900mであった。このように耐久性が格段に優れているのは、潤滑組成物が内周の溝に充填されている分だけ多いことと、溝から潤滑組成物が摺動面に供給され易いこと、端面と外周面が液密に閉鎖されているので、潤滑組成物が熱膨張により摺動面に供給され易いことによるものと考えられる。

[0047]

【発明の効果】以上説明したようにこの発明の軸受においては、マルテンサイトを含む硬い鉄炭素系合金基地に軟質な銅や銅合金相が分散しているので、軸受の本体である焼結合金が高い面圧に耐える強度と相手部材との馴染み性とを兼ね備えている。また、焼結合金の気孔に、油分およびワックスに極圧添加物や固体潤滑剤を含む潤滑組成物が充填されているので、摺動面が金属接触せずに潤滑され、高い面圧でも良好な潤滑作用を示す。また、潤滑組成物が常温で固態状または半固態状であるから、軸受の外に流れ出るようなことがなく、軸受の周囲を汚染しないことは言うまでもなく、潤滑効果を長時間持続することができ、軸受の性能を長期にわたって維持することができる。

【手続補正書】

【提出日】平成9年3月7日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0039

【補正方法】変更

【補正内容】

【 0 0 3 9 】次に、気孔に含浸する潤滑組成物として下 記のものを準備した。 (a) 温度40℃における粘度220cSもの市販の極圧添加剤入り工業用ギヤ油60重量%と、滴点70℃のパラフィンワックス40重量%とを90℃に加熱、混合した後、この混合物99重量%に対し、粒子径50μm以下の鱗片状黒鉛粉1重量%を混合した潤滑組成物潤滑組成物:滴点65℃、25℃における混和稠度150

(b)温度40℃における粘度460cStの市販の極 圧添加剤入り工業用ギヤ油70重量%と、滴点80℃の

マイクロクリスタリンワックス30重量%を100℃に加熱、混合した潤滑組成物:滴点75℃、25℃におけ

る混和稠度180

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

De	efects in the images include but are not limited to the items checked:
	□ BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	☐ FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
	☐ LÎNES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	•

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.