Página Principal / Mis cursos / Carreras de Grado / Ingeniería en Informática / Período Lectivo 2024 / Cálculo Numérico 2024 / EVALUACIONES / FINAL INTEGRADOR

Parcialmente correcta				

Ejercicio 1

Una barra de aluminio homogénea de $2\,\mathrm{cm}$ de largo y $A=0.01\,\mathrm{cm}^2$ de sección transversal se somete a un estudio de difusión-reacción de calor. Se conocen las propiedades de dicho material: calor específico $c=0.217\,\mathrm{cal/(g\,^\circ C)}$, densidad $\rho=2.7\,\mathrm{g/cm^3}$ y conductividad térmica $K_0=0.57\,\mathrm{cal/(s\,^\circ cm\,^\circ C)}$. En la barra actúa una fuente de calor $f=12\,\mathrm{cos}(2x)$, medida en $\mathrm{cal/(s\,^\circ cm^3)}$, y un proceso reactivo cuyo coeficiente en cada punto de la barra se expresa como $c_R(x)=5(x-2)$, con unidades $\mathrm{cal/(s\,^\circ cm^3\,^\circ C)}$. El extremo izquierdo de la barra se somete a una temperatura fija de $6^\circ\mathrm{C}$. Recordemos que el flujo de calor por unidad de área ϕ en un punto de la barra se determina como: $\phi(x)=-K_0u'(x)$.

- (a) Si se conoce el flujo en el extremo derecho $\phi(2) = -40 \, \mathrm{cal/(s \cdot cm^2)}$, el flujo en el extremo izquierdo sería $\phi(0) = 8751.7$ $\mathbf{x} \, \mathrm{cal/(s \cdot cm^2)}$. (Dar el resultado con 4 cifras exactas).
- (b) La energía térmica total de la barra se puede calcular como $E=A\int_0^L c\rho u(x)dx$. Considerando la discretización obtenida en el inciso anterior, la energía térmica total es $E=\begin{bmatrix} -0.076253 \end{bmatrix}$ cal. (Dar el resultado con 5 cifras exactas).
- (c) Suponga ahora que se conoce el flujo en el extremo izquierdo $\phi(0) = -20 \, \mathrm{cal/(s \cdot cm^2)}$, pero no en el extremo derecho. Entonces, la temperatura en el extremo derecho será de $\boxed{13.7041}$ \checkmark °C y el flujo será $\phi(2) = \boxed{-23.5026}$ \checkmark $\mathrm{cal/(s \cdot cm^2)}$. (Dar el resultado con 6 cifras exactas).

Comentario: Aprobado

Pregunta **2**Finalizado

Sin calificar

Aquí debe adjuntar un archivo del script con el cual resolvió el ejercicio. El nombre del archivo debe tener la siguiente forma:

Apellido_CFI.m

Recuerde que el ejercicio no tendrá validez si no sube el script, aún si los resultados reportados son correctos.

Saccani CFI.m

◀	Eval	luación	parcia	12

Ir a...