Линейна зависимост и независимост. Основна лема на линейната алгебра.

Определение 1. Крайна система вектори a_1, \ldots, a_n е линейно независима, ако единствената линейна комбинация $\lambda_1 a_1 + \ldots + \lambda_n a_n = \overrightarrow{\mathcal{O}}$ на a_1, \ldots, a_n , представяща нулевия вектор $\overrightarrow{\mathcal{O}} \in V$ е тази с нулеви коефициенти $\lambda_1 = \ldots = \lambda_n = 0 \in F$.

Безкрайна система вектори е линейно независима, ако всяка нейна крайна подсистема е линейно независима.

Оттук следва, че крайна система вектори $b_1, \ldots, b_m \in V$ е линейно зависима, ако съществуват $\mu_1, \ldots, \mu_m \in F$ с поне едно $\mu_i \neq 0$, така че $\mu_1 b_1 + \ldots + \mu_i b_i + \ldots + \mu_m b_m = \overrightarrow{\mathcal{O}}$.

Безкрайна система вектори е линейно зависима, ако съдържа крайна линейно зависима подсистема.

Твърдение 2. Линейната зависимост и независимост на вектори от линейно пространство V има следните свойства:

- (i) един вектор $u\in V$ е линейно зависим точно когато е нулевият $u=\overrightarrow{\mathcal{O}}$;
- (ii) векторите $b_1, \dots, b_k \in V, \ k \geq 2$ са линейно зависими тогава и само тогава, когато някой от тях

$$b_i = \mu_1 b_1 + \ldots + \mu_{i-1} b_{i-1} + \mu_{i+1} b_{i+1} + \ldots + \mu_k b_k$$

може да се представи като линейна комбинация на останалите;

- (iii) ако $b_1, \ldots b_m$ са линейно зависими, то $b_1, \ldots, b_m, b_{m+1}, \ldots, b_n$ са линейно зависими за произволни b_{m+1}, \ldots, b_n ;
- (iv) ако a_1,\ldots,a_n са линейно независими вектори, то за всяко $1\leq k\leq n-1$ векторите a_1,\ldots,a_k са линейно независими.

Доказателство. (i) От $\lambda u = \overrightarrow{\mathcal{O}}$ с $\lambda \in F \setminus \{0\}$ следва $u = \overrightarrow{\mathcal{O}}$.

(ii) Ако b_1,\ldots,b_k са линейно зависими и $\lambda_1b_1+\ldots+\lambda_ib_i+\ldots+\lambda_kb_k=\overrightarrow{\mathcal{O}}$ за $\lambda_1,\ldots,\lambda_k\in F$ с поне едно $\lambda_i\neq 0$, то $\lambda_ib_i=-\lambda_1b_1-\ldots-\lambda_{i-1}b_{i-1}-\lambda_{i+1}b_{i+1}-\ldots-\lambda_kb_k$, откъдето

$$b_i = -\frac{\lambda_1}{\lambda_i}b_1 - \ldots - \frac{\lambda_{i-1}}{\lambda_i}b_{i-1} - \frac{\lambda_{i+1}}{\lambda_i}b_{i+1} - \ldots - \frac{\lambda_k}{\lambda_i}b_k$$

и b_i е линейна комбинация на $b_1, \dots, b_{i-1}, b_{i+1}, \dots, b_k$.

Обратно, ако $b_i = \mu_1 b_1 + \ldots + \mu_{i-1} b_{i-1} + \mu_{i+1} b_{i+1} + \ldots + \mu_k b_k$ за някакви $\mu_i \in F$, то

$$\mu_1 b_1 + \ldots + \mu_{i-1} b_{i-1} + (-1)b_i + \mu_{i+1} b_{i+1} + \ldots + \mu_k b_k = \overrightarrow{\mathcal{O}}$$

с $-1 \neq 0$, така че b_1, \ldots, b_k са линейно зависими.

(iii) Ако $\lambda b_1 + \ldots + \lambda_i b_i + \ldots + \lambda_m b_m = \overrightarrow{\mathcal{O}}$ с поне едно $\lambda_i \neq 0$, то

$$\lambda_1 b_1 + \ldots + \lambda_i b_i + \ldots + \lambda_m b_m + 0.b_{m+1} + \ldots + 0.b_n = \overrightarrow{\mathcal{O}} \quad c \quad \lambda_i \neq 0$$

доказва линейната зависимост на $b_1, \ldots, b_m, b_{m+1}, \ldots, b_n$.

(iv) Ако допуснем, че a_1, \ldots, a_k са линейно зависими, то $a_1, \ldots, a_k, a_{k+1}, \ldots, a_n$ са линейно зависими, съгласно (iii). Противоречието доказва линейната независимост на a_1, \ldots, a_k .

Лема 3. (Основна лема на линейната алгебра или Лема за линейна зависимост:) $A \kappa o$ $a_1, \ldots, a_n, b_1, \ldots, b_m$ са вектори от линейно пространство $V, b_1, \ldots, b_m \in l(a_1, \ldots, a_n)$ u m > n, то b_1, \ldots, b_m са линейно зависими.

Доказателство. Ако съществува нулев вектор $b_i = \overrightarrow{\mathcal{O}}$, то b_i е линейно зависим, откъдето и системата $b_1, \ldots, b_{i-1}, b_i = \overrightarrow{\mathcal{O}}, b_{i+1}, \ldots, b_m$ е линейно зависима.

Отсега нататък предполагаме, че векторите $b_1,\ldots,b_m\in V\setminus\{\overrightarrow{\mathcal{O}}\}$ са ненулеви и доказваме лемата с индукция по n. За n=1 и m>1 от $b_1,b_2\in l(a_1)$ следва съществуването на $\lambda_1,\lambda_2\in F$ с $b_1=\lambda_1a_1,\,b_2=\lambda_2a_1$. Предположението $b_1\neq\overrightarrow{\mathcal{O}}$ изисква $\lambda_1\neq 0$ и предоставя представяне

$$b_2 = \lambda_2 \left(\frac{1}{\lambda_1} b_1 \right) = \frac{\lambda_2}{\lambda_1} b_1 \in l(b_1).$$

Следователно b_1, b_2 са линейно зависими, откъдето b_1, b_2, \ldots, b_m са линейно зависими. В общия случай са дадени ненулевите вектори

$$b_{1} = x_{1,1}a_{1} + \dots + x_{1,n-1}a_{n-1} + x_{1,n}a_{n} = \sum_{j=1}^{n} x_{1,j}a_{j},$$

$$\vdots$$

$$b_{i} = x_{i,1}a_{1} + \dots + x_{i,n-1}a_{n-1} + x_{i,n}a_{n} = \sum_{j=1}^{n} x_{i,j}a_{j}$$

$$\vdots$$

$$b_{m-1} = x_{m-1,1}a_{1} + \dots + x_{m-1,n-1}a_{n-1} + x_{m-1,n}a_{n} = \sum_{j=1}^{n} x_{m-1,j}a_{j}$$

$$b_{m} = x_{m,1}a_{1} + \dots + x_{m,n-1}a_{n-1} + x_{m,n}a_{n} = \sum_{j=1}^{n} x_{m,j}a_{j}$$

за някои $x_{i,j} \in F$. От $b_m \neq \overrightarrow{\mathcal{O}}$ следва съществуването на $1 \leq j \leq n$ с $x_{m,j} \neq 0$. След преномериране на a_1, \ldots, a_n можем да считаме, че $x_{m,n} \neq 0$. Прибавяйки подходящи кратни на b_m към b_1, \ldots, b_{m-1} , елиминираме a_n от представянията на b_1, \ldots, b_{m-1} . Поточно, заменяме b_i с

$$b'_{i} := b_{i} - \frac{x_{i,n}}{x_{m,n}} b_{m} = \left(\sum_{j=1}^{n} x_{i,j} a_{j}\right) - \frac{x_{i,n}}{x_{m,n}} \left(\sum_{j=1}^{n} x_{m,j} a_{j}\right) =$$

$$= \sum_{j=1}^{n} \left(x_{i,j} - \frac{x_{i,n}}{x_{m,n}} x_{m,j}\right) a_{j} = \sum_{j=1}^{n-1} \left(x_{i,j} - \frac{x_{i,n}}{x_{m,n}} x_{m,j}\right) a_{j} \in l(a_{1}, \dots, a_{n-1})$$

за $1 \le i \le m-1$, вземайки предвид

$$\left(x_{i,j} - \frac{x_{i,n}}{x_{m,n}} x_{m,j}\right)\Big|_{j=n} = 0.$$

Геометрично, $b'_1,\ldots,b'_{m-1}\in l(a_1,\ldots,a_{n-1})$ са проекциите на векторите b_1,\ldots,b_{m-1} върху $l(a_1,\ldots,a_{n-1})$, успоредно на b_m . По индукционно предположение, векторите $b'_1,\ldots,b'_{m-1}\in l(a_1,\ldots,a_{n-1})$ с m-1>n-1 са линейно зависими и съществуват $\mu_1,\ldots,\mu_{m-1}\in F$ с поне едно $\mu_i\neq 0$, така че

$$\mu_1 b_1' + \ldots + \mu_i b_i' + \ldots + \mu_{m-1} b_{m-1}' = \overrightarrow{\mathcal{O}}.$$

Заместваме с $b_k' = b_k - \frac{x_{k,n}}{x_{m,n}} b_m$ за $1 \leq k \leq m-1$ в горното равенство и получаваме

$$\overrightarrow{\mathcal{O}} = \sum_{k=1}^{m-1} \mu_k \left(b_k - \frac{x_{k,n}}{x_{m,n}} b_m \right) = \sum_{k=1}^{m-1} \mu_k b_k - \left(\sum_{k=1}^{m-1} \frac{\mu_k x_{k,n}}{x_{m,n}} \right) b_m$$

с $\mu_i \neq 0$. Това доказва линейната зависимост на b_1, \dots, b_m .

Лема 4. (Лема за линейна независимост): Ако a_1, \ldots, a_n са линейно независими вектори от линейно пространство V и $a_{n+1} \in V \setminus l(a_1, \ldots, a_n)$ е вектор извън тяхната линейна обвивка, то $a_1, \ldots, a_n, a_{n+1}$ са линейно независими.

Доказателство. Допускаме противното и разглеждаме представяне

$$\lambda_1 a_1 + \ldots + \lambda_n a_n + \lambda_{n+1} a_{n+1} = \overrightarrow{\mathcal{O}}$$

на $\overrightarrow{\mathcal{O}}$ с $\lambda_1,\ldots,\lambda_n,\lambda_{n+1}\in F$ и поне едно ненулево $\lambda_i\neq 0$ за някое $1\leq i\leq n+1$. Ако $\lambda_{n+1}\neq 0$, то

$$a_{n+1} = -\frac{\lambda_1}{\lambda_{n+1}} a_1 - \dots - \frac{\lambda_n}{\lambda_{n+1}} a_n \in l(a_1, \dots, a_n)$$

противоречи на предположението $a_{n+1} \not\in l(a_1, \ldots, a_n)$.

Следователно $\lambda_{n+1}=0$ и $\lambda_1a_1+\ldots+\lambda_na_n=\overrightarrow{\mathcal{O}}$ с поне едно $\lambda_i\neq 0$ за някое $1\leq i\leq n$. В резултат, a_1,\ldots,a_n са линейно зависими. Противоречието доказва Лемата за линейна независимост,