NOIP2019 模拟

Day2

一. 题目概况

. / - / / // // /			
题目名称	doubt	block	road
可执行文件名	doubt	block	road
输入文件名	doubt.in	block.in	road.in
输出文件名	doubt.out	block.out	road. out
时间限制	1.0s	2.0s	1.0s
空间限制	256MB	128MB	256MB
测试点数量	打包测试	20	20
单个测试点分值	见题面	5	5
题目类型	传统	传统	传统

二. 可执行文件名需加后缀

对于 C++语言	doubt.cpp	block.cpp	road. cpp
对于 C 语言	doubt.c	block.c	road. c

三. 编译选项

对于 C++语言	-1m	-1m	-1m
对于 C 语言	-1m	-1m	-1m

四. 注意事项

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. 除非特殊说明,结果比较方式均为忽略行末空格及文末回车的全文比较。
- 3. C/C++中函数 main()的返回值必须是 int,程序正常结束时返回值必须是 0。
- 4. 测评在当前最新版本的 Ubuntu 16.04 LTS x64 下进行,各语言的编译器版本以其为准。

1 doubt

1.1 题目描述

VKorpela 很喜欢异或,有一天,他看到 Serene 写下了两个长度都为 n 的数组 a 和 b,他想对 a 和 b 分别按照某种方式排序,然后构造一个数组 c,满足 $c_i=a_i\ xor\ b_i$ 。他想请你告诉他字典序最小的 c。

1.2 输入描述

输入文件名为 doubt. in。

第一行一个正整数 n。

第二行 n 个非负整数,表示 a_i 。

第三行 n 个非负整数,表示 b_i 。

1.3 输出描述

输出文件名为 doubt. out。 输出由空格分开的 n 个非负整数 c_i 。

1.4 输入样例 & 输出样例

doubt.in	doubt.out
3	4 4 7
3 2 1	
4 5 6	

1.5 样例说明

重新排序后 a 为{1, 2, 3}, b 为{5, 6, 4}

1.6 数据范围

本题打包测试

测试点编号	a_i , b_i 的范围	n 的范围	所占分值
1	$a_i, b_i \le 2^{30}$	n ≤ 8	10
2	$a_i, b_i \le 2^{30}$	n ≤ 500	20
3	$a_i, b_i < 512$	n ≤ 10 ⁴	20
4	$a_i, b_i \le 2^{30}$	$n \le 2 \times 10^5$	50

对于所有数据, $n \le 2 \times 10^5$, $a_i, b_i \le 2^{30}$

2 block

2.1 题目描述

Mope 喜欢玩积木。

Mope 是纸片人,所以他的积木可以看做二维平面上的格子。积木共有 n 列,左起第 i 列的高度为 hi。现在 Mope 要对这些积木进行染色,染色需满足以下两条规则:

- 积木只能被染成黑色或白色。
- 任意一个 2×2 的子矩形中必须恰好有 2 个黑色、2 个白色的积木,不足 2×2 的部分无限制。

Mope 想知道有多少种合法的染色方案,由于答案很大,你只需要告诉他答案对1,000,000,007 取模后的结果。

2.2 输入描述

输入文件名为 block. in。

第一行为一个正整数 n。

第二行为 n 个正整数 hi。

2.3 输出描述

输出文件名为 block. out。

输出一个整数,代表答案对1,000,000,007取模后的结果。

2.4 输入样例 & 输出样例

example_block1.in	example_block1.out
6	4608
1 1 4 5 1 4	

更多样例请见 statement/block/目录。

2.5 数据范围

对于 $1^{\sim}6$ 号测试点: $1 \leq n \leq 5, 1 \leq h_i \leq 4$

对于 7^8 号测试点: 所有的 hi 相等对于 1^14 号测试点: $1 \le n \le 500$

对于所有测试点: $1 \le n \le 100,000, 1 \le h_i \le 10^9$

3 road

3.1 题目描述

Serene 在玩一个游戏,在这个游戏中,她有一个自己的国家,这个国家有 n 座城市,Serene 可以在一些城市间建双向道路使整个国家联通,每两个城市间最多建一条双向道路,且双向道路所连接的两个城市一定是不相同的城市。现在 Serene 想建恰好 n+1 条双向道路,同时如果删掉任意一条道路都能保证所有城市相互可以到达。 Serene 想知道她又多少建路方式,方案数对 1e9+7 取模。两种方案不同当且仅当存在 $\mathbf{u},\mathbf{v}(\mathbf{u} \neq \mathbf{v})$ 在两个方案中连边情况不同。

3.2 输入描述

输入文件名为 road. in。 一行一个整数 n。

3.3 输出描述

输出文件名为 road. out。 一行一个整数表示答案 $mod 10^9 + 7$ 。

3.4 输入样例 & 输出样例

road1.in	road1.out
4	6

road2.in	road2.out
5	85

3.5 数据范围

测试点编号	n 的范围
1, 2	n ≤ 6
3, 4, 5, 6, 7, 8	n ≤ 1000
9, 10, 11, 12, 13, 14, 15, 16	n ≤ 10 ⁶
17, 18, 19, 20	n ≤ 10 ⁹

对于所有数据, $4 \le n \le 10^9$ 。