Flight Delay Prediction

Project 2 - Elvin

```
In [2]: import pandas as pd
   import numpy as np
   import seaborn as sns
   from sklearn.model_selection import train_test_split
   from sklearn.naive_bayes import MultinomialNB
   from sklearn.linear_model import LogisticRegression
   import matplotlib.pylab as plt
   from dmba import classificationSummary, gainsChart
   import ppscore as pps
   from sklearn.tree import DecisionTreeClassifier
   from sklearn.metrics import accuracy_score
   from sklearn.preprocessing import LabelEncoder
```

```
In [3]: import warnings
warnings.filterwarnings('ignore')
```

Importing file

```
In [36]: # Read the data file
  delays_df = pd.read_csv('FlightDelays.csv')
  delays_dftemp = delays_df
```

```
In [37]: #Present 5 data records
delays_df.head(5)
```

Out[37]:

	CRS_DEP_TIME	CARRIER	DEP_TIME	DEST	DISTANCE	FL_DATE	FL_NUM	ORIGIN	Weathe
0	1455	ОН	1455	JFK	184	37987	5935	BWI	
1	1640	DH	1640	JFK	213	2004-01- 01	6155	DCA	
2	1245	DH	1245	LGA	229	2004-01- 01	7208	IAD	
3	1715	DH	1709	LGA	229	2004-01- 01	7215	IAD	
4	1039	DH	1035	LGA	229	2004-01- 01	7792	IAD	
4									•

```
In [38]: nameDict={"Flight Status":"Flight_Status"}
delays_df=delays_df.rename(columns=nameDict)
```

In [39]: delays_df.head(5)

Out[39]:

	CRS_DEP_TIME	CARRIER	DEP_TIME	DEST	DISTANCE	FL_DATE	FL_NUM	ORIGIN	Weathe
0	1455	ОН	1455	JFK	184	37987	5935	BWI	
1	1640	DH	1640	JFK	213	2004-01- 01	6155	DCA	
2	1245	DH	1245	LGA	229	2004-01- 01	7208	IAD	
3	1715	DH	1709	LGA	229	2004-01- 01	7215	IAD	
4	1039	DH	1035	LGA	229	2004-01- 01	7792	IAD	
4									•

In [40]: delays_df.shape
 delays_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2201 entries, 0 to 2200
Data columns (total 13 columns):

- 0. 00.	00-0		
#	Column	Non-Null Count	Dtype
0	CRS_DEP_TIME	2201 non-null	int64
1	CARRIER	2201 non-null	object
2	DEP_TIME	2201 non-null	int64
3	DEST	2201 non-null	object
4	DISTANCE	2201 non-null	int64
5	FL_DATE	2201 non-null	object
6	FL_NUM	2201 non-null	int64
7	ORIGIN	2201 non-null	object
8	Weather	2201 non-null	int64
9	DAY_WEEK	2201 non-null	int64
10	DAY_OF_MONTH	2201 non-null	int64
11	TAIL_NUM	2201 non-null	object
12	Flight Status	2201 non-null	obiect

dtypes: int64(7), object(6)
memory usage: 223.7+ KB

Refrence matrix of the non numeric values which will be converter to numberic values

```
In [42]: tp=delays df.CARRIER.unique()
         fp = list(range(1, len(tp)+1))
         print("Reference for CARRIER")
         np.column stack((tp, fp))
         Reference for CARRIER
Out[42]: array([['OH', 1],
                 ['DH', 2],
                ['DL', 3],
                 ['MQ', 4],
                ['UA', 5],
                 ['US', 6],
                 ['RU', 7],
                 ['CO', 8]], dtype=object)
In [43]: |tp=delays_df.DEST.unique()
         fp = list(range(1, len(tp)+1))
         print("Reference for CARRIER")
         np.column_stack((tp, fp))
         Reference for CARRIER
Out[43]: array([['JFK', 1],
                 ['LGA', 2],
                 ['EWR', 3]], dtype=object)
In [44]: tp=delays df.ORIGIN.unique()
         fp = list(range(1, len(tp)+1))
         print("Reference for CARRIER")
         np.column stack((tp, fp))
         Reference for CARRIER
Out[44]: array([['BWI', 1],
                 ['DCA', 2],
                 ['IAD', 3]], dtype=object)
```

```
In [45]: tp=delays df.TAIL NUM.unique()
         fp = list(range(1, len(tp)+1))
         print("Reference for CARRIER")
         np.column stack((tp, fp))
         Reference for CARRIER
Out[45]: array([['N940CA', 1],
                 ['N405FJ', 2],
                 ['N695BR', 3],
                ['N934DL', 547],
                 ['N592UA', 548],
                 ['N15932', 549]], dtype=object)
In [46]: tp=delays_df.Flight_Status.unique()
         fp = list(range(1, len(tp)+1))
         print("Reference for CARRIER")
         np.column_stack((tp, fp))
         Reference for CARRIER
Out[46]: array([['ontime', 1],
                 ['delayed', 2]], dtype=object)
```

```
In [47]: tp=delays df.FL DATE.unique()
         fp = list(range(1, len(tp)+1))
         print("Reference for CARRIER")
         np.column stack((tp, fp))
         Reference for CARRIER
Out[47]: array([['37987', 1],
                 ['2004-01-01', 2],
                 ['2004-01-02', 3],
                 ['2004-01-03', 4],
                 ['2004-01-04', 5],
                 ['2004-01-05', 6],
                 ['2004-01-06', 7],
                 ['2004-01-07', 8],
                 ['2004-01-08', 9],
                 ['2004-01-09', 10],
                 ['2004-01-10', 11],
                 ['2004-01-11', 12],
                 ['2004-01-12', 13],
                 ['2004-01-13', 14],
                 ['2004-01-14', 15],
                 ['2004-01-15', 16],
                 ['2004-01-16', 17],
                 ['2004-01-17', 18],
                 ['2004-01-18', 19],
                 ['2004-01-19', 20],
                 ['2004-01-20', 21],
                 ['2004-01-21', 22],
                 ['2004-01-22', 23],
                 ['2004-01-23', 24],
                 ['2004-01-24', 25],
                 ['2004-01-25', 26],
                 ['2004-01-26', 27],
                 ['2004-01-27', 28],
                 ['2004-01-28', 29],
                 ['2004-01-29', 30],
                 ['2004-01-30', 31],
                 ['2004-01-31', 32]], dtype=object)
```

Out[50]

converting non numeric values into numeric values

```
In [49]: # Datapreprocessing
l1=LabelEncoder()
#perform LabeL encoding on 'team' column
delays_df['CARRIER'] = l1.fit_transform(delays_df['CARRIER'])
delays_df['DEST'] = l1.fit_transform(delays_df['DEST'])
delays_df['ORIGIN'] = l1.fit_transform(delays_df['ORIGIN'])
delays_df['TAIL_NUM'] = l1.fit_transform(delays_df['TAIL_NUM'])
delays_df['Flight_Status'] = l1.fit_transform(delays_df['Flight_Status'])
delays_df['FL_DATE'] = l1.fit_transform(delays_df['FL_DATE'])
In [50]: delays_df
```

_										
]:		CRS_DEP_TIME	CARRIER	DEP_TIME	DEST	DISTANCE	FL_DATE	FL_NUM	ORIGIN	We
	0	1455	4	1455	1	184	31	5935	0	
	1	1640	1	1640	1	213	0	6155	1	
	2	1245	1	1245	2	229	0	7208	2	
	3	1715	1	1709	2	229	0	7215	2	
	4	1039	1	1035	2	229	0	7792	2	
	2196	645	5	644	0	199	30	2761	1	
	2197	1700	5	1653	0	213	30	2497	2	
	2198	1600	5	1558	0	199	30	2361	1	
	2199	1359	5	1403	0	199	30	2216	1	
	2200	1730	5	1736	0	199	30	2097	1	

2201 rows × 13 columns

Data Exploration

```
In [51]: sns.countplot(data=delays_dftemp, x="ORIGIN", hue="Flight Status")
```

Out[51]: <AxesSubplot:xlabel='ORIGIN', ylabel='count'>

In [56]: delayedflights = delays_dftemp.loc[delays_dftemp['Flight Status'] == "delayed"
histplt = sns.histplot(data=delayedflights, x="DAY_WEEK", kde=True)
plt.show()


```
In [105]: sns.countplot(data=delays_dftemp, x="DEST", hue="Flight Status")
```

Out[105]: <AxesSubplot:xlabel='DEST', ylabel='count'>

In [106]: sns.countplot(data=delays_dftemp, x="DAY_OF_MONTH", hue="Flight Status")

Out[106]: <AxesSubplot:xlabel='DAY_OF_MONTH', ylabel='count'>


```
In [104]: sns.countplot(data=delays_dftemp, x="DISTANCE", hue="Flight Status")
```

Out[104]: <AxesSubplot:xlabel='DISTANCE', ylabel='count'>

In [57]: delayedflights = delays_dftemp.loc[delays_dftemp['Flight Status'] == "ontime"]
 histplt = sns.histplot(data=delayedflights, x="DAY_WEEK", kde=True)
 plt.show()


```
In [58]: sns.countplot(data=delays_df, x="CARRIER", hue="Flight_Status")
```

Out[58]: <AxesSubplot:xlabel='CARRIER', ylabel='count'>


```
In [59]: sns.countplot(data=delays_dftemp, x="Weather", hue="Flight Status")
```

Out[59]: <AxesSubplot:xlabel='Weather', ylabel='count'>

In [61]: Corr_Matrix

Out[61]:

	CRS_DEP_TIME	CARRIER	DEP_TIME	DEST	DISTANCE	FL_DATE	FL_Nl
CRS_DEP_TIME	1.000000	-0.082148	0.983523	-0.024689	0.062368	0.002635	0.0869
CARRIER	-0.082148	1.000000	-0.111835	0.149277	-0.284135	0.001608	-0.5223
DEP_TIME	0.983523	-0.111835	1.000000	-0.041426	0.057680	0.000446	0.1056
DEST	-0.024689	0.149277	-0.041426	1.000000	0.508091	0.018609	-0.1004
DISTANCE	0.062368	-0.284135	0.057680	0.508091	1.000000	0.006722	0.4219
FL_DATE	0.002635	0.001608	0.000446	0.018609	0.006722	1.000000	-0.0078
FL_NUM	0.086920	-0.522343	0.105660	-0.100415	0.421937	-0.007839	1.0000
ORIGIN	0.063465	-0.403164	0.070853	-0.103680	0.763863	-0.005592	0.5904
Weather	-0.008266	-0.043690	0.019001	0.004087	0.033104	0.143824	0.0420
DAY_WEEK	0.051766	-0.006251	0.051868	-0.045040	-0.020926	0.015994	0.0186
DAY_OF_MONTH	0.002324	0.001152	0.000132	0.019016	0.010121	0.997101	-0.0092
TAIL_NUM	0.013854	0.215656	0.000616	0.553189	0.393788	0.009735	0.2249
Flight_Status	-0.112474	0.102295	-0.170116	0.094228	0.018794	-0.065795	-0.1003
4							

In [62]: sns.heatmap(delays_df.corr())

Out[62]: <AxesSubplot:>


```
### separting correlation data for flight status
In [63]:
         corrdata = Corr Matrix.Flight Status
         corrdata
Out[63]: CRS_DEP_TIME
                          -0.112474
         CARRIER
                           0.102295
         DEP TIME
                          -0.170116
         DEST
                           0.094228
         DISTANCE
                           0.018794
         FL DATE
                          -0.065795
         FL_NUM
                          -0.100394
         ORIGIN
                          -0.056666
         Weather
                          -0.247217
         DAY WEEK
                           0.040756
         DAY OF MONTH
                          -0.066598
         TAIL NUM
                          -0.002720
         Flight Status
                           1.000000
         Name: Flight_Status, dtype: float64
```

using above table we can understand that: CARRIER, DEST, DAY_OF_MONTH are useful

using Predictive Power Score to dertermine best corelation with Flight Status

```
In [66]: ppscoredf = pps.matrix(delays df)
In [67]: ppscoredf = ppscoredf.where(ppscoredf.x == 'Flight Status', 'NA')
          ppscoredf = ppscoredf[ppscoredf.x != 'NA']
          ppscoredf = ppscoredf[ppscoredf.ppscore > 0]
In [68]:
          ppscoredf
Out[68]:
                                                           case is_valid_score
                                                                                 metric baseline_score
                          X
                                         У
                                            ppscore
                                                                                  mean
           156 Flight_Status CRS_DEP_TIME 0.000516
                                                       regression
                                                                          True absolute
                                                                                            361.144025
                                                                                   error
                                                                                  mean
               Flight Status
                                 DEP TIME 0.010425
                                                       regression
                                                                                            370.476602
                                                                          True absolute
                                                                                   error
               Flight_Status
                                Flight_Status
                                                     predict_itself
                                                                          True
                                                                                  None
                                                                                                   0.0
           168
                                                 1.0
```

above table states that CRS_DEP_TIME and DEP_TIME are correlated to Flight_Status

Now we create a new Dataframe after dropping unnecessary columns

	<pre>maindf = delays_df[['CARRIER','DEST' ,'Weather', 'CRS_DEP_TIME', 'DEP_TIM maindf.head()</pre>							
71]:		CARRIER	DEST	Weather	CRS_DEP_TIME	DEP_TIME	DAY_OF_MONTH	Flight_Status
	0	4	1	0	1455	1455	1	1
	1	1	1	0	1640	1640	1	1
	2	1	2	0	1245	1245	1	1
	3	1	2	0	1715	1709	1	1
	4	1	2	0	1039	1035	1	1

Saving the reduced data into CSV

```
In [107]: maindf.to_csv('FlightDelaysTrainingData.csv')
```

Plotting heatmap to show correlation among selected variables with flight status

Convert the DAY_WEEK column from numerical data into categorical data.

```
In [73]:
#This column will have 31 categories
delays_df.DAY_OF_MONTH = delays_df.DAY_OF_MONTH.astype('category')

In [75]:
#Create hourly bins departure time (original data has 100's of categories) so delays_df.CRS_DEP_TIME = [round(t / 100) for t in delays_df.CRS_DEP_TIME]
delays_df.CRS_DEP_TIME = delays_df.CRS_DEP_TIME.astype('category')
```

Naive Biase

Traing dataset with random shuffle 100 times and taking average of the accuracy for testing data

```
In [76]: # list of all Naive Bayes accuracy outputs
naivAcc = []
```

```
In [77]: for x in range(100):
             maindf = maindf.sample(frac = 1) #shuffling the dataframe
             #Split the data into training (80%) and testing (20%)
             predictors = ['CARRIER', 'DEST' , 'Weather', 'CRS_DEP_TIME', 'DEP_TIME', 'DA'
             outcome = 'Flight_Status'
             X = pd.get dummies(maindf[predictors])
             y = maindf['Flight Status']
             classes = ['ontime', 'delayed']
             # split into training and validation
             X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.20
             # Run Naïve Bayes
             delays nb = MultinomialNB(alpha=0.01)
             #Fit the model
             delays_nb.fit(X_train, y_train)
             #Predictions and accuracy
             y train pred = delays nb.predict(X train) # store the prediction data
             Temp = accuracy_score(y_train,y_train_pred) # calculate the accuracy
             #Appending the data to list
             naivAcc.append(Temp)
```

```
In [78]: ### average of 100 iterations of Naive Bays
np.average(naivAcc)
```

Out[78]: 0.8874659090909092

use model to make predictions on valid data

Model Diagnostics

```
In [80]: # predict class membership (shows the class instead of probability by selecting
y_valid_pred = delays_nb.predict(X_valid)
y_train_pred = delays_nb.predict(X_train)
```

confusion matrix below

Logistic Regression Model

```
In [82]: # list of all Naive Bayes accuracy outputs
LogAcc = []
```

Traing dataset with random shuffle 100 times and taking average of the accuracy for testing data

```
In [83]: | for x in range(100):
             maindf = maindf.sample(frac = 1) #shuffling the dataframe
             #Split the data into training (80%) and testing (20%)
             predictors = ['CARRIER','DEST','Weather', 'CRS DEP TIME', 'DEP TIME', 'DA'
             outcome = 'Flight Status'
             X = pd.get dummies(maindf[predictors])
             y = maindf['Flight Status']
             classes = ['ontime', 'delayed']
             # split into training and validation
             X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.20
             # Run Logistic Regression
             log regression = LogisticRegression()
             #Fit the model
             log_regression.fit(X_train,y_train)
             #Predictions and accuracy
             y valid pred = log regression.predict(X valid)
             Temp = metrics.accuracy_score(y_valid,y_valid_pred)
             #Appending the data to list
             LogAcc.append(Temp)
```

```
In [84]: ### average of 100 iterations of Regression
np.average(LogAcc)
Out[84]: 0.8946258503401361
```

Model Diagnostics

```
In [85]: #use model to make predictions on valid data
y_valid_pred = log_regression.predict(X_valid)
```

Confusion Matrix

CART algorithm

```
In [87]: ### Cart algorithm
    cartAcc = []
    cartdf = maindf
```

Traing dataset with random shuffle 100 times and taking average of the accuracy for testing data

```
In [88]: for x in range(100):
             cartdf = cartdf.sample(frac = 1) #shuffling the dataframe
             #Split the data into training (80%) and testing (20%)
             #Independent variable set
             X=cartdf.iloc[:,0:6]
             #label set
             y=cartdf.iloc[:,6]
             # split into training and validation
             X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.20
             # Run Logistic Regression
             model=DecisionTreeClassifier(criterion='gini')
             #Fit the model
             model.fit(X_train,y_train)
             #Predictions and accuracy
             y valid pred = model.predict(X valid)
             metrics.accuracy_score(y_valid,y_valid_pred)
             #Appending the data to list
             cartAcc.append(Temp)
```

```
In [89]: ### average of 100 iterations of CART
np.average(cartAcc)
```

Out[89]: 0.9092970521541952

Model Diagnostics

```
In [90]: #use model to make predictions on valid data
y_valid_pred = model.predict(X_valid)
```

Confusion matrix

Generating five new rows to predict flight status using CART algorithm

```
In [92]: # Read the data file
          test df = pd.read csv('FlightDelaysTestingData.csv')
In [93]: # Datapreprocessing
          11=LabelEncoder()
          #perform label encoding on 'team' column
          test_df['CARRIER'] = 11.fit_transform(test_df['CARRIER'])
          test df['DEST'] = l1.fit transform(test df['DEST'])
          test_df['ORIGIN'] = 11.fit_transform(test_df['ORIGIN'])
          test df['TAIL NUM'] = 11.fit transform(test df['TAIL NUM'])
          test df['FL DATE'] = l1.fit transform(test df['FL DATE'])
          test_df['Flight Status'] = 11.fit_transform(test_df['Flight Status'])
In [94]: |test_df.head()
Out[94]:
             CRS_DEP_TIME CARRIER DEP_TIME DEST DISTANCE FL_DATE FL_NUM ORIGIN Weathe
          0
                       700
                                  0
                                          800
                                                  0
                                                          199
                                                                     2
                                                                           806
                                                                                    0
                      1300
                                  0
                                         1255
                                                          199
                                                                     3
                                                                           808
                                                                                    0
          2
                      1200
                                  0
                                         1255
                                                          199
                                                                           808
                                                                                    0
                      1700
                                  0
                                         1833
                                                  0
                                                          199
                                                                     0
                                                                           810
                                                                                    0
                      1300
                                         1350
                                                          199
                                                                           808
In [95]: X_valid= test_df[['CARRIER','DEST' ,'Weather', 'CRS_DEP_TIME', 'DEP_TIME', 'DA'
         X valid
Out[95]:
             CARRIER DEST Weather CRS_DEP_TIME DEP_TIME DAY_OF_MONTH
          0
                                              700
                                                        800
                    0
                         0
                                             1300
                                                       1255
                                  0
                                                                         5
                                             1200
                                                       1255
          3
                    0
                         0
                                             1700
                                                       1833
                                                                         2
                    0
                                             1300
                                                       1350
In [96]: y valid pred = model.predict(X valid)
```

Prediction for the new generated values

```
In [97]: y_valid_pred
Out[97]: array([1, 1, 1, 0, 0])
```

Our Predictions for flight status are matching with the generated row data

In []: