CHAPTER 4.2 – NUCLEOPHILIC SUBSTITUTION (ALKYL HALIDES)

OBJECTIVES

- Identify and classification of alkyl halides
- Outline the isomerism, physical properties and preparation of alkyl halides.
- Define the term S_N^2 and outline in detail the S_N^2 mechanism.
- Define the term S_N1 and outline in detail the S_N1 mechanism.
- Explain the rearrangement of carbocations in S_N1 reactions.
- Relate the nature of the different leaving groups to the rate of reaction in $S_N 1$ and $S_N 2$ reactions.
- Explain how the nature of substrate affects the S_N1 and S_N2 reactions.
- Describe the effect of the nature of nucleophile on the rate of S_N2 reactions.
- Compare and contrast S_N1 and S_N2 mechanisms in terms of kinetics and mechanisms, stereochemistry and reactivity.

4.2.1 Introduction

- 1. General formula: $C_nH_{2n+1}X$ or R-X (X = F, Cl, Br or l)
- 2. Nomenclature and classification
- Alkyl halides are named as derivatives of corresponding alkane.
- The position of halogens are indicated by the numbering of the carbon atoms in the chain.
- Prefixes fluoro-, chloro-, bromo- and iodo- are used
- Prefixes di-, tri-, tetra- are used to indicate how many of each halogen are present

4.2.1 Introduction

H H H H-C-C-C-I H I H

bromoethane

2-iodopropane

C

1,2-dichloropropane

chlorocyclohexane

• Alkyl halides may be classified as **primary** (1°), **secondary** (2°) or **tertiary** (3°)

At most 1 alkyl (-R) group attached to C atom bonded to X

2 alkyl (-R) groups attached to C atom bonded to X

3 alkyl (-R) groups attached to C atom bonded to X

4.2.3 Physical Properties of Alkyl Halides

- (a) Boiling Point (Recall: Depends on strength of intermolecular forces of attraction)
- Small amount of energy is required to overcome the <u>permanent dipole</u> forces of attraction between the alkyl halide molecules.
- Increased boiling point with increased alkyl chain length and larger halogen size (due to higher molecular weight and stronger London dispersion forces).
- Boiling point: CH₃CI < CH₃CH₂CI < CH₃CH₂CI
- Boiling point: CH₃Cl < CH₃Br < CH₃I

4.2.3 Physical Properties of Alkyl Halides

- (b) Solubility and density (Recall: 'Like dissolves like')
- o Insoluble in water
- Weak London dispersion forces between R-X molecules (fairly non-polar) are incompatible to the strong hydrogen bonding between water molecules (polar).
- o Soluble in organic solvents (e.g. CCl₄ or Benzene)
- Weak London dispersion between R-X molecules (<u>fairly non-polar</u>) are compatible to the weak London dispersion forces between organic solvent molecules (non-polar).

Properties of some organic halogen compounds

Compound	IUPAC name	b.p./°C	Density/g cm ⁻³ at 20°C
CH₃F	Fluoromethane	-78.6	
CH₃CI	Chloromethane	-24.2	
CH ₃ Br	Bromomethane	3.6	
CH ₃ I	lodomethane	42.5	2.279
CH ₂ Cl ₂	Dichloromethane	40.1	1.336
CHCI ₃	Trichloromethane (Chloroform)	61.3	1.498
CCI ₄	Tetrachloromethane (Carbon tetrachloride)	76.8	1.595
CH ₃ CH ₂ Br	Bromoethane	38.40	1.46
CH ₃ CHCICH ₃	2-Chloropropane	35.74	0.86
(CH ₃) ₃ CCI	2-Chloro-2-methylpropane	52	0.84
C ₆ H ₅ CI	Chlorobenzene	132	1.11
CH ₂ =CHF	Fluoroethene	-72.2	
CH ₂ =CHCH ₂ Br	3-bromopropene	70	1.40

4.2.4 Chemical reactivity of Alkyl Halides

 The chemical reactivity of alkyl halides is due to its polar C – X bond.

- Halogens are <u>electronegative</u> and draw the shared pair of electrons away from C towards themselves.
- The <u>electron deficient</u> $C^{\delta+}$ atom is susceptible to attack by nucleophiles.

4.2.4 Chemical reactivity of Alkyl Halides

Nu: +
$$RCH_2$$
-X \longrightarrow R-Nu + :X⁻

Nucleophile Substrate Product Leaving Group

 Alkyl halides undergo <u>nucleophilic substitution</u> reactions where the halogen is replaced by the <u>nucleophile</u>.

4.2.5 Methods of Preparation

1)From alkanes (R-H \rightarrow R-X): <u>Free radical substitution</u>

R-H +
$$X_2 \xrightarrow{uv}$$
 R-X + HX (X = Cl, Br)
e.g. $CH_3CH_3 + Br_2 \xrightarrow{uv} CH_3CH_2Br + HBr$
ethane bromoethane

2)From alkenes (R-CH=CH-R' → R-X): <u>Electrophilic</u> <u>Addition</u>

(a) Addition of halogen gas

$$CH_2=CH_2 + X_2 \longrightarrow CH_2XCH_2X$$
 (X = CI, Br, I)
e.g. $CH_2=CH_2 + Br_2 \longrightarrow CH_2BrCH_2Br$

2) From alkenes (R-CH=CH-R' → R-X): Electrophilic Addition

(b) Addition of hydrogen halide

CH₂=CH₂ + HX
$$\longrightarrow$$
 CH₃CH₂X (X = CI, Br, I)
e.g. CH₂=CH₂ + HBr \longrightarrow CH₃CH₂Br
CH₂=CH-CH₃ + HI \longrightarrow CH₃CHICH₃
(Recall: Markovnikov's rule)

Reactivity: HI > HBr > HCl since H-I bond is easier to break.

3) From alcohols (R-OH \rightarrow R-X): Nucleophilic Substitution

(a) With HX

R-OH(I) + HX(g)
$$\longrightarrow$$
 R-X(I) + H₂O(I) (X = CI, Br)
e.g. $CH_3CH_2OH(I) + HBr(g) \longrightarrow CH_3CH_2Br(I) + H_2O(I)$
ethanol bromoethane

3) From alcohols (R-OH \rightarrow R-X): Nucleophilic Substitution

(b) With PX_3/PX_5

4.2.6 Reactions of Alkyl Halides

1) Elimination (R-X \rightarrow R-CH=CH-R')

$$\begin{array}{c} H & H & H \\ R-C-C-C-H & + & KOH \\ \hline \\ H & X & H \\ \end{array} \begin{array}{c} H & H & H \\ \hline \\ R-C-C-C-H & + & R-C-C-C-H & + & KX & + & H_2O \\ \hline \\ Major & Minor \\ \end{array}$$

Recall: Zaitsev's Rule - more substituted alkene will be preferred.

E.g

$$\begin{array}{c} \text{H}_{3}\text{C} \quad \text{H} \quad \text{H} \\ \text{H}_{3}\text{C} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{H} \quad \text{H} \quad \text{H}_{3}\text{C} \quad \text{H} \quad \text{H} \quad \text{H}_{2}\text{C} \quad \text{H} \quad \text{H} \quad \text{H}_{3}\text{C} \quad \text{H} \quad \text{H} \quad \text{H}_{2}\text{C} \quad \text{H} \quad \text{H} \quad \text{H}_{2}\text{C} \quad \text{H} \quad \text{H} \quad \text{H}_{3}\text{C} \quad \text{H} \quad \text{H} \quad \text{H}_{2}\text{C} \quad \text{H} \quad \text{H} \quad \text{H}_{3}\text{C} \quad \text{H} \quad \text{H} \quad \text{H}_{3}\text{C} \quad \text{H} \quad \text{H} \quad \text{H}_{3}\text{C} \quad \text{H}_{3}\text{C} \quad \text{H} \quad$$

2) Nucleophilic substitution (R-X \rightarrow R-Nu)

(a) Hydrolysis

R-X + NaOH(aq)
$$\longrightarrow$$
 R-OH + NaX alcohol

e.g. CH_3CH_2-Br + NaOH(aq) \longrightarrow CH_3CH_2OH + NaBr (S_N2) $(CH_3)_3CBr$ + KOH(aq) \longrightarrow $(CH_3)_3COH$ + KBr (S_N1)

2) Nucleophilic substitution (R-X \rightarrow R-Nu)

(b) Other substitution reactions

4.2.7 Nucleophilic Substitution

- There are two possible mechanisms:
- (a) <u>Concerted</u> The carbon-halogen bond breaks at the same time as the new bond between the nucleophile and the carbon forms.

(b) <u>Stepwise</u> – The carbon-halogen bond breaks first, followed by nucleophilic attack.

$4.2.8 S_N 2$ reaction

a) Chemical kinetics

- Bimolecular: 2 molecules are involved in the rate-determining step (rds)
- Rate = k [Substrate][Nu]

Consider the reaction between methyl chloride with hydroxide ion in aqueous solution:

$$CH_3-CI + OH^- -----> CH_3-OH + CI^-$$

• The following kinetic results (at 60°C) were obtained:

Expt. No.	Initial [CH ₃ CI]/M	Initial [OH ⁻]/M	Initial Rate/Ms ⁻¹
1	0.0010	1.0	4.9 x 10 ⁻⁷
2	0.0020	1.0	9.8 x 10 ⁻⁷
3	0.0010	2.0	9.8 x 10 ⁻⁷
4	0.0020	2.0	19.6 x 10 ⁻⁷

- Above results shows that Rate ∞ [CH₃CI] [OH⁻]
- ie. Rate = $k [CH_3CI] [OH^-]$
- 1st order wrt CH₃Cl and 1st order wrt OH⁻
- This reaction is therefore <u>second order overall</u>.

(b) Energy Diagram

(c) Mechanism

Nu:
$$R_2$$
 R_1 S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_7 S_8 S_8

- The nucleophile approaches the α-carbon from the <u>backside</u> (the side directly opposite the leaving group) and 'kicks' out the leaving group <u>simultaneously</u> (concerted).
- The transition state (TS) is a fleeting arrangement of the atoms in which the nucleophile and the leaving group are both <u>partially bonded</u> (indicated with dotted lines) to the carbon atom undergoing attack.
- The carbon atom in the TS is <u>highly crowded</u> as it is bonded to five atoms.

(d) Stereochemistry

- The nucleophile attacks from the backside which causes a <u>change</u> <u>in the configuration</u> of the α -carbon atom (the configuration of an atom is the particular arrangement of groups around that atom in space). As the displacement occurs, the configuration of the α -carbon atom <u>inverts</u> it is turned inside out.
- \Rightarrow Inversion of configuration is a key characteristic of S_N^2 reactions.

Test Yourself

Test yourself

Name the following alkyl halide and draw the mechanism for the following reaction:

(e) Substrate

- With 2° alkyl halide in S_N2 reactions, the TS is highly crowded, and with 3° alkyl halides, crowding is so severe that the TS cannot be formed.
- Crowding in TS accounts for the reactivity order of alkyl halides as $1^{\circ} > 2^{\circ}$.

ethyl bromide (1°) attack is easy

isopropyl bromide (2°) attack is possible

t-butyl bromide (3°) attack is impossible

(f) Leaving Group

- As the leaving group is normally expelled with a negative charge in most S_N^2 reactions, we expect the best leaving groups to be those that best stabilize the negative charge.
- The stability of an anion is inversely related to its basicity, hence, the best leaving groups should be the weakest base.
- Relative stabilities of leaving groups:

OH-
$$\sim$$
 NH₂- \sim OR- $<$ F- $<$ CI- $<$ Br- $<$ I- $<$ TsO-Rate: $<<1$ 1 200 10,000 30,000 60,000

- Poor leaving groups (strong bases) like <u>OH</u>, <u>NH</u>, <u>OR</u> and <u>F</u> do not undergo S_N2 unless they are converted into a <u>weaker</u> <u>base</u>.
- This can be done via <u>protonation</u>.

(g) Nucleophile

- Any species, either neutral or negatively charged, can act as nucleophiles as long as it has an unshared pair or electrons for donation (i.e. a Lewis base).
- A Lewis base is an <u>electron pair donor</u>. (c.f. Bronsted-Lowry base)
 - E.g. $:OH^{-}, C_2H_5O^{-}, H_2O^{-}, :NH_3, R_3N^{-}$
- A Lewis acid is an <u>electron pair acceptor</u>. (c.f. Bronsted-Lowry acid)
 - E.g. AICl₃, FeCl₃, BF₃
- Relative strength of nucleophiles:

 $H_2O < CH_3CO_2^- < NH_3 < Cl^- < OH^- < CH_3O^- < l^- < CN^- ~ HS^-$

Rate: 1 500 700 1000 16,000 25,000 100,000 125,000

- Generally,
- 1) Nucleophilicity roughly parallels basicity when comparing nucleophiles having the same nucleophilic atom.
 - E.g. H₂**O** vs **O**H⁻
- *Nucleophilicity*: the affinity of a Lewis base for the α -carbon of the substrate.
- Basicity: measures the affinity of a base for a proton.
- 2) Nucleophilicity usually increases down the group in the periodic table.
- Increasing size will cause the electron density to be bound less tightly by the nucleus, hence, increasing ease of donation. (c.f. solvent effect; this trend could be reversed depending on the solvent used)

- 3) Negatively charged nucleophiles are usually more reactive then neutral ones.
- Negatively charges nucleophiles are 'richer' in electron density and hence, <u>S_N2 reactions are often carried out under</u> basic conditions.

higher E_a

conjugate acid

(weaker nucleophile)

(h) Solvent effect

- Solvent plays an important role in affecting the rate of reaction as it can either stabilise or destabilise the intermediates/TS.
- There are generally two sub-categories of solvent:
- Protic solvents
- Aprotic solvents

1) Protic solvent

Solvents which contain hydrogen bonds (N-H, O-H or F-H) and are capable of forming strong dipole-dipole attractions (hydrogen-bonding) with dissolved ions (both cations and anions).

E.g. H_2O , R-OH

Effect of Protic Solvents on S_N2 reaction

 Protic solvents slow down S_N2 reactions by solvating the nucleophile and form a "cage" around it, thereby, lowering its energy and reactivity.

 Smaller nucleophiles with higher charge density, such as F⁻ ion, are more strongly <u>solvated</u> than a larger one.

Nucleophilicity of Halides in Protic Solvents

 The relative nucleophilicities of some common nucleophiles in protic solvents are as follows:

$$SH^{-} > CN^{-} > I^{-} > OH^{-} > N_{3}^{-} > Br^{-} > CH_{3}CO_{2}^{-} > CI^{-} > F^{-} > H_{2}O$$

Effect of Aprotic Solvents on S_N2 reaction

Solvents which <u>do not contain hydrogen bonds</u> (no N-H, O-H or F-H) and are generally non-polar.

Non-polar Aprotic Solvents

E.g. Hexane, CCl₄, benzene

- Ionic salt cannot dissolve well
- Nucleophile (anion) will be attracted more tightly to its countercation, M⁺.
 - ⇒ Substitution reactions will not be favourable.

Effect of Aprotic Solvents on S_N2 reaction

 In recent years, a number of <u>polar aprotic solvents</u> have been utilised and they can dissolve most ionic salts.

Polar Aprotic Solvents

Polar aprotic solvents solvate <u>cations</u> by orientating their negative ends around them and donating unshared electron pairs their vacant orbitals.

Solvation by Aprotic Solvents

- Polar aprotic solvents solvate cations by orientating their negative ends around them and donating unshared electron pairs their vacant orbitals.
- o In these solvents, *anions are unencumbered* by a layer of solvent molecules and they are poorly stabilised by solvation. These <u>"naked" ions</u> are highly reactive both *as bases and nucleophiles*.

Nucleophilicity of Halides in Aprotic Solvents

the strength of the nucleophiles depends on its stability and basicity.
 The stronger the base (smaller the size), the more reactive it is as a nucleophile.

$$F^- > Cl^- > Br^- > l^-$$

 The rates of S_N2 reactions are vastly increased when they are carried out in polar aprotic solvents. The increase in rate can be as large as a millionfold.

Test Yourself

Test yourself

Label each of the solvents as polar/non-polar protic/aprotic solvent:

a) CH_2CI_2

c) CH₃CH₂OCH₂CH₃

e) CH₃COOH

b) NH_3 (aq)

d) CH₃CN

f) CCI_4

Re-cap: Characteristics of S_N2 mechanism

- Chemical Kinetics: Rate = k [Substrate][Nu]
- Bimolecular, 1st order wrt substrate, 1st order wrt Nu, 2nd order overall.
- Energy diagram: One peak, one TS.
- Mechanism: concerted, crowded 5-membered TS, one product.
- Stereochemistry: Complete inversion of configuration
- Substrate: $1^{\circ} > 2^{\circ} > 3^{\circ}$ due to crowding in TS.
- Leaving Group: Best LG is the weakest base.
- Nucleophile: Best Nu are the stongest base, larger size, -ve.
- Solvent effect:
- Aprotic solvents favour S_N2 by leaving Nu 'naked'

4.2.9 S_N1 reaction

a) Chemical kinetics

- Unimolecular: 1 molecule is involved in the rds
- Rate = k [Substrate] ⇒ Rate depends on [substrate] only

(b) Energy Diagram

- $S_N 1$ reaction \Rightarrow stepwise \Rightarrow each of these steps will go through a TS (1 and 2) with an E_a .
- In the slow rds, the dissociation of the C-X bond will give a carbocation, R+, as the first intermediate. *Intermediates* are generally more stable than transition states and therefore, it appears as a 'valley' in between two 'humps' (TS).

(c) Mechanism

Step 1: Formation of the carbocation intermediate (rate-limiting)

Step 2: Nucleophilic attack

Retention product

(c) Mechanism

 In the 2nd step of the S_N1 mechanism, If the nucleophile is a neutral molecule (e.g. H₂O, R-OH, R-NH₂), <u>deprotonation</u> will have to occur in order to obtain a neutral product.

Step 1: Formation of carbocation (rate limiting)

$$(CH_3)_3C$$
 $\stackrel{...}{\longrightarrow}$ $(CH_3)_3C^+ + : \overset{...}{Br}:^ (slow)$

Step 2: Nucleophilic attack on the carbocation

$$(CH_3)_3C^+$$
 $\stackrel{\ddot{\circ}}{\longleftrightarrow}$
 CH_3
 C

Final Step: Loss of proton to solvent

$$(CH_3)_3C$$
 $\stackrel{\circ}{-}$ $\stackrel{\circ}{C}H_3$ $+$ CH_3 $\stackrel{\circ}{-}$ $\stackrel{\circ}{O}H$ \iff $(CH_3)_3C$ $\stackrel{\circ}{-}$ $\stackrel{\circ}{C}H_3$ $+$ CH_3 $\stackrel{\circ}{-}$ $\stackrel{\circ}{C}H$ $\stackrel{\circ}{H}$ $(fast)$

Test Yourself

Test yourself

Draw the energy level diagram for S_N1 reaction between $C(CH_3)_3Br$ and H_2O , showing all the intermediates and transition states.

(d) Stereochemistry

As the carbocation intermediate formed has a <u>trigonal planar</u> <u>structure</u> (flat), the nucleophile (H₂O) can attack from either face, giving either enantiomer of the product.

(d) Stereochemistry

- o If the nucleophile attacks on the same side of the leaving group, there will be *retention* of configuration, but if the nucleophile attacks on the opposite side of the leaving group the configuration will be *inverted*.
- However, experimental results showed that the inversion product predominates as the top face is shielded by the leaving group (formation of an intimate ion pair).

 Racemization (with majority inversion) is a key characteristic of S_N1 reactions.

Test Yourself

Test yourself

Draw the mechanism for the following reaction:

(e) Substrate / carbocation intermediate

- Since the rds in an S_N1 reaction is the spontaneous, unimolecular dissociation of the substrate to yield a <u>carbocation</u>, the reaction to be favoured whenever a stabilized carbocation is formed.
- \Rightarrow The substrate that gives the most stable carbocation will give a faster S_N 1 reaction.

But... what kind of carbocations are stable?

Carbocations are classified as primary, secondary or tertiary:

At most 1 alkyl (-R) group attached to C atom bonded to X

attached to C atombonded to X

3 alkyl (-R) groups attached to C atom bonded to X

(e) Substrate / carbocation intermediate

A charged species is <u>destabilized</u> when the charge is <u>intensified</u>
 <u>or concentrated</u>.

E.g. Carbocations attached to EWGs (-X, -CN, -NO₂, -CHO, -COR)

 A charged species is <u>stabilized</u> when the charge is <u>dispersed or</u> <u>delocalised</u>.

E.g. Carbocations attached to EDGs (-R, -OH, -NH)

50

(e) Substrate / carbocation intermediate

• The relative stability of carbocations is as follows:

 This is exactly the same order of S_N1 reactivities for the corresponding substrates.

Test Yourself

Test yourself

Which carbocation in each of the following pair is more stable?

a)

or

b)

or

(e) Carbocations – Rearrangement

• In nucleophilic substitution, it is sometimes observed that the entering group, *Nu:-, becomes attached to a different carbon atom* than the one that originally held the leaving group, X.

o E.g.
$${}^{3}_{\text{CH}_{3}\text{CH}_{2}\text{CH}_{2}} \xrightarrow{\text{Nu:}^{-}} {}^{3}_{\text{CH}_{3}\text{CHCH}_{3}} \xrightarrow{\text{Nu}}$$

53

(e) Carbocations - Rearrangement

 Only reactions proceedings by S_N1 are accompanied by these characteristic <u>rearrangements</u>. Rearrangements is generally taken as evidence for S_N1 reactions.

⇒ Why?

- \Rightarrow S_N1 involves a carbocation intermediate, S_N2 doesn't.
- ⇒ Less stable carbocation is converted into a more stable one
- Two types of rearrangements:

54

(e) Carbocations - Rearrangement

Examples

$$\begin{array}{c} \begin{array}{c} 3 \\ \text{CH}_{3}\text{CH}_{2}\text{CH}_{2} \\ \text{X} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{H} \\ \oplus \\ \text{CH}_{3}\text{-C-CH}_{2} \\ \text{Shifft} \end{array} \begin{array}{c} \text{1,2-hydride} \\ \text{Shifft} \end{array} \begin{array}{c} \text{H} \\ \oplus \\ \text{Shifft} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{CH}_{3}\text{-CH-CH}_{3} \\ \oplus \\ \text{Nu} \end{array} \begin{array}{c} \text{CH}_{3}\text{-CH-CH}_{3} \\ \oplus \\ \text{Nu} \end{array} \begin{array}{c} \text{CH}_{3}\text{-CH-CH}_{3} \\ \oplus \\ \text{Nu} \end{array} \begin{array}{c} \text{CH}_{3} \\ \oplus \\ \text{CH}_{3}\text{-C-C-CH}_{2}\text{-CH}_{3} \end{array} \begin{array}{c} \text{CH}_{3} \\ \oplus \\ \text{CH}_{3} \end{array} \begin{array}{c} \text{CH}_{3} \\ \oplus \\ \end{array} \begin{array}{c} \text{CH}_$$

(f) Leaving Group

- S_N1 reactions have the same reactivity order for leaving groups as S_N2 reactions because the leaving groups are directly involved in the rate-determining step.
- The best leaving groups should be the weakest base (bcos it can stabilise the negative charge better)
- Relative stabilities of leaving groups:

OH-
$$\sim$$
 NH₂- \sim OR- $<$ F- $<$ CI- $<$ Br- $<$ I- $<$ TsO-Rate: $<<1$ 1 200 10,000 30,000 60,000

(g) Nucleophiles

- o Recall: Rate = k [Substrate]
- Nucleophiles are not involved in the rds of S_N1.
- ⇒Therefore, presence of <u>weak</u> nucleophiles often suggests S_N1 mechanism and the strength/concentration of the nucleophiles do not affect the reaction rates.

(h) Solvent effect

- S_N1 reactions goes much more readily in polar solvents which stabilize ions.
- The rate-determining step in an S_N1 reaction forms an intimate ion pair, carbocation and leaving group.
- Polar protic solvents (like alcohol and water) stabilise these ions by separating the ion pair and then solvating both the cations and anions via ion-dipole interactions. i.e. <u>both cations and</u> <u>anions are solvated</u>.

$$R - \ddot{\ddot{x}} : \iff R^+ : \ddot{\ddot{x}} :^-$$
 ionization

solvated ions

4.2.10 Comparison between S_N2 and S_N1 reactions

Summary of characteristics

	S _N 2	S _N 1
Kinetics		
Mechanism		
TS of slow step		
Intermediates		
Configuration		•
Rearrangement		

4.2.10 Comparison between S_N2 and S_N1 reactions

Summary of factors affecting S_N1 and S_N2

Factor	S _N 2	S _N 1
Substrate		
Determining factor		
Nature of Leaving Group		
Nucleophile		
Solvent		