7 Conclusão

Quanto maior a dependência de nossa sociedade em aplicações distribuídas e abertas, maior será a demanda por aplicações fidedignas que são variações de aplicações existentes [Avizienis et al., 2001; Fredriksson et Gustavsson, 2002; Sommerville, 2006]. Um dos desafios de desenvolvimento de software é produzir aplicativos que são projetados para evoluir reduzindo esforços de manutenção. Diversas técnicas desenvolvidas para a governança de leis de interação em sistemas multiagentes abertos foram desenvolvidas [Castelfranchi et al. 1999; Dignum, 2001; Dignum & Dignum 2001; Esteva 2003; Esteva et al. 2003; Jones & Sergot, 1993; Kollingbaum & Norman, 2003; Martin et al., 1999; Mineau, 2003; Minsky & Ungureanu, 2000; Rodriguez-Aguilar, 2001; Schumacher et Ossowski, 2005; Vazques-Salceda et al. 2005; Paes et al., 2007], mas não existe suporte efetivo a manutenção destas leis, com facilidade de mapeamento para uma estrutura apropriada para garantir a obediência a leis de interação.

O conteúdo deste trabalho reflete o amadurecimento dos conceitos, técnicas e dos processos que começaram a ser elaborados há mais de três anos atrás objetivando apoiar a melhoria da manutenção em mecanismos de governança de sistemas multiagentes abertos regulados por leis. A abordagem apresentada nesta tese teve como etapas a apresentação e a publicação de diversos artigos em congressos e eventos internacionais [Carvalho et al, 2004; Prestes et al., 2004; Carvalho et al, 2005a; Carvalho et al, 2005b; Carvalho et al, 2006a; Carvalho et al, 2006b; Carvalho et al, 2006c; Carvalho et al, 2006c; Carvalho et al, 2006c; Carvalho et al, 2007; Gatti et al., 2007; Paes et al., 2004; Paes et al., 2005; Paes et al., 2007; Carvalho et al, 2007a; Carvalho et al, 2007b]. Estes artigos e apresentações demonstram a evolução e o amadurecimento do trabalho desenvolvido até o presente momento.

A tecnologia de g-frameworks mostra-se promissora para a promoção da flexibilidade e da reutilização de projetos e implementações de leis de interação em sistemas multiagentes abertos. Esta flexibilidade é obtida através da

introdução de incrementos específicos que as instâncias em desenvolvimento requerem, de modo a completar e adaptar as funcionalidades originais do g-framework. A reutilização vem justamente do re-aproveitamento de um mesmo projeto e código de lei de interação em instâncias geradas a partir do g-framework. Os benefícios obtidos por tal abordagem podem impactar positivamente o desenvolvimento de software em termos do custo e tempo total de construção de uma família de mecanismos de governança de sistemas multiagentes.

Com o intuito de auxiliar a sua aplicabilidade, foi desenvolvido um conjunto de técnicas que somadas facilitam o trabalho de entendimento e uso de uma solução flexível e reutilizável quando estes são construídos com tecnologia XMLaw. Estas técnicas foram reunidas em torno de uma abordagem chamada g-frameworks. Abaixo se descreve uma avaliação sucinta da abordagem frente a três características importantes para o desenvolvimento de software: modularidade, reusabilidade e extensibilidade.

G-Frameworks melhoram a **modularidade** de um design através do encapsulamento de detalhes de implementação. Esta modularidade torna possível incrementar a qualidade do mecanismo de governança, uma vez que os impactos causados por alterações de design e implementação são localizados, reduzindo o esforço necessário para o entendimento e manutenção da solução existente. A abordagem de g-frameworks trouxe uma maior preocupação quanto a modularidade e separação de elementos de leis em XMLaw, e de uma forma geral para o desenvolvimento de mecanismos de governança de leis de interação.

G-Frameworks incentivam **reutilização** uma vez que definem leis genéricas que podem ser re-aplicadas para criar novas leis. Esta reutilização carrega o conhecimento de um domínio e o esforço anterior de desenvolvedores experientes, para evitar re-criação e re-validação de soluções comuns. Com g-frameworks é preciso distinguir o que é fixo do que é customizável. Com esta técnica, um maior número de elementos de leis pode caminhar para o núcleo da solução e como conseqüência serão reutilizados.

G-Frameworks aprimoram **extensibilidade** através da definição de pontos de extensão que permitem que uma aplicação estenda suas leis estáveis. Estes pontos de extensão permitem o desacoplamento sistemático da parte fixa do g-framework, presente no domínio da aplicação, da parte variável introduzida pelo

processo de instanciação. Na abordagem de g-frameworks, a identificação clara dos pontos de extensão em leis de interação tornou a abordagem mais própria para a sistematização da reutilização de leis como forma de gerar e customizar uma família de mecanismos de governança.

Contribuímos assim para a engenharia de como é possível se produzir e reutilizar leis de interação. Abaixo descrevemos os resultados alcançados por este trabalho a partir das técnicas desenvolvidas nesta tese.

7.1. Resultados e Contribuições

Técnicas de Governança (Seção 2) foram aprimoradas ao longo deste trabalho para o desenvolvimento de Sistemas MultiAgentes Abertos confiáveis. Vale citar como resultados deste trabalho: (i) os elementos do modelo conceitual de leis de interação; (ii) a linguagem de especificação de leis de interação XMLaw; (iii) o mecanismo de observação e monitoramento de leis de interação aprimorado para incluir o suporte a flexibilidade de leis de interação; e uma técnica de especificação de requisitos de leis para sistemas multiagentes abertos chamada de casos de leis.

Os resultados alcançados com Casos de leis foram: (i) a documentação do *rationale* em termos de requisitos de uma aplicação (Seção 2.4.1); (ii) a utilização da abordagem de casos de leis para documentar os requisitos identificados (Seção 2.4.2); (iii) a análise dos requisitos considerando-se a reutilização como um instrumento viável para aprimorar o desenvolvimento de leis de interação (Seção 4.2); e (iv) um procedimento que utiliza técnicas de linguagem natural (Seção 5.1.1) para apoiar o processo de identificação de requisitos próximos, candidatos a compartilhar parte de uma mesma solução.

Quanto a técnicas de reutilização de leis de interação foram desenvolvidos estudos quanto à variabilidade de elementos de leis de interação (Seção 3.1); que induziram dois itens: (i) a identificação da possibilidade de existência de pontos de extensão em termos de projetos de leis de interação (Seção 3.1.2) e (ii) o aprimoramento da linguagem XMLaw com operadores de refinamento (Seção 3.1.1). Estes operadores têm como responsabilidade a identificação de elementos abstratos, servir como instrumento para completar detalhes de elementos definidos como abstratos; e promover especialização de elementos baseados em herança de

orientação a objeto. A partir destes conceitos e da adaptação da tecnologia de frameworks OO foram propostos g-frameworks (Seção 3.2).

G-Frameworks (Seção 3.2) prevêem a reutilização de design e de código semi-acabados e prontos para usar, referente a leis de interação para a produção de uma família de mecanismos de governança. Isto é feito a partir de técnicas de apoio à reutilização de leis de interação em mecanismos de governança desenvolvidos com g-frameworks. Merece destaque na proposta de g-frameworks o detalhamento (i) das características (Seções 3.2.1 e 3.2.4), do propósito (Seção 3.2.2), da arquitetura de g-frameworks (Seção 3.2.5), e das diferenças (Seção 3.2.3) entre a tecnologia de frameworks OO e de g-frameworks; (ii) a documentação da solução em guias de referência com a representação explícita dos pontos de extensão e detalhes gerais do g-framework (Seção 3.2.6); e (iii) uma metodologia de desenvolvimento de mecanismos de governança (Seção 3.2.7) que foi explicada com um exemplo didático ao longo da Seção 4. É importante destacar que a estrutura de documentação apresentada para g-frameworks visa registrar, em conjunto com a técnica de Casos de Leis, informações para promover o entendimento desta abordagem.

Apesar de baseada na tecnologia de frameworks orientados a objeto, gframeworks trabalham com uma natureza de elementos diferentes de classes e objetos. Cada elemento de lei tem sua particularidade própria que foi descrita na seção de variabilidades de leis de interação. Esta diferença terá impacto sobre o núcleo, pontos de extensão, fluxo de execução, modularização e sobre alternativas de especialização possíveis.

Experimentação com a técnica. Além de pequenos exemplos ao longo do desenvolvimento deste trabalho, dentre eles [Prestes et al., 2004], merecem destaque as duas aplicações que foram desenvolvidas utilizando-se a técnica de gframeworks:

(i) TAC SCM (Seção 4): A aplicação da tecnologia de g-frameworks em SMAs abertos governados por leis foi apresentada em um exemplo didático visando descrever como é possível sistematizar a forma como são desenvolvidas e mantidas leis de interação para uma família de mecanismos de governança de sistemas multiagentes abertos. A partir de um g-framework TAC SCM é possível gerar edições passadas da competição.

(ii) SELIC (Seção 5): O estudo de caso que melhor explorou este trabalho compreendeu a utilização da técnica de g-frameworks no projeto e desenvolvimento de leis de interação extensíveis do SELIC. Estas leis foram facilmente customizadas em diversos cenários de interação descritos ao longo deste documento. Este sistema apresentou maior complexidade e exercitou a aplicação da técnica proposta. De forma geral, com este caso pode-se perceber uma estrutura bem definida no nível de projeto que facilita de fato a manutenção do sistema, tanto em termos de correção e melhoria, quanto de uma eventual alteração ou criação de regra especifica de negociação para uma nova instância.

7.2. Trabalhos Futuros

As seguintes propostas foram identificadas como trabalhos futuros para um maior amadurecimento e evolução da abordagem de g-frameworks,: (i) Criação de ferramentas de apoio ao desenvolvimento de mecanismos de governança baseados em leis; (ii) Esforço em prol do aperfeiçoamento da usabilidade da linguagem XMLaw a partir de uma revisão na sintaxe ou mesmo na proposição de uma notação gráfica para o desenvolvimento de sistemas abertos baseados em leis; (iii) Proposição de uma ferramenta para catalogar artefatos de leis para reutilização, incluindo suporte ao registro de g-frameworks; (iv) Amadurecimento quanto à formalização dos elementos de XMLaw, e de modelos que possam verificar e impor limites à extensão de g-frameworks; e finalmente (v) Propor scripts de instanciação de g-frameworks a partir dos guias de referências gerados. Este último tópico seguiria a linha proposta em [Oliveira et al., 2007] onde uma linguagem de script chamada RDL foi proposta para aprimorar a sistematização do desenvolvimento de frameworks OO. Uma linguagem próxima a RDL poderia ser adaptada e criada para orientar a geração de novos mecanismos de governança a partir de g-frameworks.