Graphs and Applications, Assignment 2 Max-Flow Min-Cut & Potts Model

Part 1: Study of a Network.

Consider the network with edge capacities, source and target as shown in Figure 1 below.

Figure 1: A network and its capacities, the source s and target t.

- 1) List all the cuts of this network and their capacities. Find a min-cut for this network. Are there several different min-cuts?
- 2) Design a max-flow for this network. What is its total flow? Are there several different flows that are max-flows?
- 3) We now consider the same network but with more general capacities a, b, c, d, e as shown in Figure 2 below. We suppose that a + b = c + d. Under which condition on b, c, e can this network transport a total flow a + b?

Figure 2: A network and its capacities a, b, c, d and e.

4) We consider finally the same network with capacities a, b, c, d, e as shown but no longer suppose that a+b=c+d. Using the max-flow-min-cut theorem, find under which conditions on a, b, c, d, e can this network transport a total flow $\min(a+b, c+d)$.

Part 2: Potts Model.

Consider the complete graph $G_2 = K_4$ (Figure 3).

- (0) Compute the partition function $Z_{G_2}^{\text{Potts}}(q; \{y_e\})$ of the Potts model with q-states (or colors) on G_2 , as a function of $\beta = 1/(kT)$ and of the edges activities $y_e = \exp(-\beta J_e) 1$.
- (1) Assume that all J_e are constant and fixed to $J_e = J$ and that q < 4:
 - (1.1) What is the probability that the 4 vertices all have different colors?
 - (1.2) What is the probability that the 4 vertices all have the same color?
- (2) Assume that all J_e are constant and fixed to $J_e = J$ and that $q \ge 4$:
 - (2.1) What is the probability P_{\neq} that the 4 vertices all have different colors?
 - (2.2) Check that if $J_e > 0$, $\forall e$, and $T \to 0$, i.e. $\beta \to \infty$, this probability tends to 1.
 - (2.3) What is the probability $P_{=}$ that the 4 vertices all have the same color?
 - (2.4) Check that if $J_e < 0$, $T \to 0$, i.e. $\beta \to \infty$, this probability tends also to 1.
 - (2.5) Why $P_{=} + P_{\neq} \neq 1$? To which event does the probability $1 P_{=} P_{\neq}$ correspond?
 - Numerical application: Evaluate $Z_{G_2}^{\text{Potts}}(q; \{y_e\})$, $P_=$ and P_{\neq} with two digits precision for the cases: $\{q=3, \ \beta=1, \ J_e=J=1\}$; $\{q=4, \ \beta=1, \ J_e=J=1\}$ and $\{q=4, \ \beta=10, \ J_e=J=1\}$.

Figure 3: The complete graph $G_2 = K_4$