Research Summary

Jiawei Sun

Electrical and Computer Engineering University of Michigan

September, 2019

Outline

- 1 Differential Microphones Arrays based on Differential Equation
 - Linear DMA
 - Circular DMA

- Distributed Algorithms of PCA
 - Backgrounding
 - Average Consensus Algorithm
 - Distributed PCA

Outline

- Differential Microphones Arrays based on Differential Equation
 - Linear DMA
 - Circular DMA

- 2 Distributed Algorithms of PCA
 - Backgrounding
 - Average Consensus Algorithm
 - Distributed PCA

Signal Model

 The basic mode of an uniform linear array (ULA) with M omnidirectional microphones is

$$y_m(k) = x_m(k) + v_m(k) = x(k - t - \tau_m) + v_m(k), m = 1, 2, ..., M$$
 (1)

Figure: Uniform Linear Array

Signal Model

- where $x_m(k)$ is the source signal, t is the time which it takes form the signal to the first microphone, τ_m is the delay between the mth and the first microphones. [1]
- In the STFT domain,(1) can be expressed as

$$Y_m(\omega) = X(\omega)e^{-j(m-1)\omega\tau_0\cos\theta} + V_m(\omega)$$
 (2)

Signal Model

In vectors form, we get

$$y(\omega) = [Y_1(\omega), Y_2(\omega), ..., Y_M(\omega)]^T$$
(3)

$$= d(\omega, \cos \theta) X(\omega) + v(\omega)$$
 (4)

where

$$d(\omega,\cos\theta) = \left[1, e^{-j\omega\tau_0\cos\theta}, ..., e^{-j(M-1)\omega\tau_0\cos\theta}\right]^T$$
 (5)

is the phase-delay vector of length M.

• In order to recover the desired signal $X(\omega)$ from $y(\omega)$, a complex weight $H_m^*(\omega)$ is designed and applied to the output of each microphone. Mathematically, the beamformers output is

$$Z(\omega) = \sum_{m=1}^{M} H_m^*(\omega) Y_m(\omega) = h^T(\omega) y(\omega)$$
 (6)

Jiawei Sun (UMICH) Research Summary

6 / 42

Beampatterns

Mathematically, beampattern of a Nth-order DMA is written as

$$B[h(\omega), \theta] = d^{H}(\omega, \cos \theta)h(\omega)$$
(7)

$$=\sum_{m=1}^{M}H_{m}(\omega)e^{j(m-1)\omega\tau_{0}\cos\theta}$$
 (8)

Simplify (8) by McLaughlin expanion, we get

$$B_N(\theta) = \sum_{n=0}^{N} a_{N,n} \cos^n \theta \tag{9}$$

where $a_{N,n}$, n = 0, 1, ..., N are real coefficients.

Beampatterns

• In the direction of the desired signal, i.e., $\theta=0^{\circ}$, the directivity pattern must be equal to 1. Therefore, we should have

$$\sum_{n=0}^{N} a_{N,n} = 1 \tag{10}$$

Linear equations solves beampattern coefficients

• The second-order directivity patterns have the form:

$$B_2(\theta) = (1 - a_{2,1} - a_{2,2}) + a_{2,1}\cos\theta + a_{2,2}\cos^2\theta \tag{11}$$

and they have 2 nulls at the angle θ_1 and θ_2 , so we can write differential equation about $a_{2,1}$ and $a_{2,2}$,

$$\begin{cases} (1 - a_{2,1} - a_{2,2}) + a_{2,1} \cos \theta_1 + a_{2,2} \cos^2 \theta_1 = 0\\ (1 - a_{2,1} - a_{2,2}) + a_{2,1} \cos \theta_2 + a_{2,2} \cos^2 \theta_2 = 0 \end{cases}$$
 (12)

- By solving the equation, the most important shapes of patterns are as follows
 - Dipole: $a_{2,1} = 0$, $a_{2,2} = 1$, nulls at $\cos \theta = 0$.
 - Cardioid: $a_{2,1}=a_{2,2}=\frac{1}{2}$, nulls at $\cos\theta=0$ and $\cos\theta=-1$.

Linear equations solves beampattern coefficients

• As for Nth-order directivity patterns, they have N nulls at θ_1 , θ_2 ,..., θ_N and the directivity pattern is equal to 1 in the direction of the desired signal. Based on the known conditions, we get

$$\begin{cases} \sum_{n=0}^{N} a_{N,n} = 1\\ \sum_{n=0}^{N} a_{N,n} \cos^{n} \theta_{1} = 0\\ \sum_{n=0}^{N} a_{N,n} \cos^{n} \theta_{2} = 0\\ \vdots\\ \sum_{n=0}^{N} a_{N,n} \cos^{n} \theta_{N} = 0 \end{cases}$$

$$(13)$$

Solve the simultaneous linear equations and get $a_{N,0}$, $a_{N,2}$,..., $a_{N,N}$.

Jiawei Sun (UMICH) Research Summary September, 2019 10 / 42

Differential equations solves beampattern coefficients

• By (9) and the multiple-angle formula

$$\cos^n \theta = \frac{1}{2^n} \sum_{k=0}^n C_n^k \cos(2k - n)\theta \tag{14}$$

we get,

$$B_N(\theta) = \sum_{n=0}^{N} b_{N,n} \cos n\theta \tag{15}$$

Differential equations solves beampattern coefficients

• Take the first-order equations as example, it is written as

$$B_1(\theta) = b_{1,0} + b_{1,1} \cos \theta \tag{16}$$

As for a second-order constant coefficient differential equation, its corresponding characteristic equation is

$$y^{(2)} + n^2 y = 0 (17)$$

$$r^2 + n^2 = 0 (18)$$

so $r = \pm ni$, and its general solution is

$$y = C_1 \cos(n\theta) + C_2 \sin(n\theta) \tag{19}$$

◆□▶◆률▶◆불▶◆불▶ 월월 90

Jiawei Sun (UMICH)

Differential equations solves beampattern coefficients

 Characteristic equation of a Nth-order constant coefficient differential equation corresponding to Nth-order DMA is

$$r(r^2+1^2)(r^2+2^2)\dots(r^2+N^2)=0$$
 (20)

To solve (2N + 1)th-order differential equation needs 2N+1 initial conditions.

Differential equations solves beampattern coefficients

• The directivity pattern must be equal to 1.

$$B_N(0^\circ) = 1 \tag{21}$$

Nth-order directivity patterns have N nulls at θ_1 , θ_2 ,..., θ_N ,

$$B_N(\theta_1) = 0, B_N(\theta_2) = 0, \dots, B_N(\theta_N) = 0$$
 (22)

Its first derivative only exists $sin(n\theta)$ and so on we can get the rest N initial condition,

$$B_N^{(1)}(0) = 0, B_N^{(1)}(\pi) = 0, B_N^{(2)}(\frac{\pi}{2}) = 0, B_N^{(2)}(\frac{3\pi}{2}) = 0...$$
 (23)

Jiawei Sun (UMICH)

Outline

- Differential Microphones Arrays based on Differential Equation
 - Linear DMA
 - Circular DMA

- 2 Distributed Algorithms of PCA
 - Backgrounding
 - Average Consensus Algorithm
 - Distributed PCA

Circular DMA

Beampattern

The beampattern of CDMA is defined as

$$B_N(\theta) = \sum_{n=0}^{N} a_{N,n} \cos^n(\theta - \theta_s)$$
 (24)

where $a_{N,n}$, n=0,1,...,N are real coefficients. In the direction of the desired signal, i.e., $\theta=\theta_s$, the directivity pattern must be equal to 1 [2].

Figure: Circular DMA

Differential Equations Solve Circular DMA

• By (24) and the multiple-angle formula

$$B_N(\theta - \theta_s) = \sum_{n=0}^{N} b_{N,n} \cos n(\theta - \theta_s)$$
 (25)

$$= \sum_{n=0}^{N} b_{N,n} \cos n\theta_s \cos n\theta + b_{N,n} \sin n\theta_s \sin n\theta \qquad (26)$$

Take the first-order equations as example, it is writtens as

$$B_1(\theta - \theta_s) = b_{1,0} + b_{1,1}\cos\theta_s\cos\theta + b_{1,1}\sin\theta_s\sin\theta \qquad (27)$$

When $b_{1,0} = C$, $C_1 = b_{1,1} \cos \theta_s$, $C_2 = b_{1,1} \sin \theta_s$, the solution of this differential equation is equal to (27).

Jiawei Sun (UMICH) Research Summary September, 2019 17 / 42

Differential Equations Solve Circular DMA

• To solve (2N + 1)th-order differential equation needs 2N+1 initial conditions.

$$B_N(\theta_s) = 1 \tag{28}$$

Nth-order directivity patterns have N nulls at $\theta_1 - \theta_s$, $\theta_2 - \theta_s$,..., $\theta_N - \theta_s$,

$$B_N(\theta_1 - \theta_s) = 0, B_N(\theta_2 - \theta_s) = 0, \dots, B_N(\theta_N - \theta_s) = 0$$
 (29)

Besides, we can get the rest N initial conditions,

$$B_N^{(1)}(\theta_s) = 0, B_N^{(1)}(\theta_s + \pi) = 0,$$

$$B_N^{(2)}(\theta_s + \frac{\pi}{2}) = 0, B_N^{(2)}(\theta_s + \frac{3\pi}{2}) = 0...$$
(30)

Outline

- Differential Microphones Arrays based on Differential Equation
 - Linear DMA
 - Circular DMA

- Distributed Algorithms of PCA
 - Backgrounding
 - Average Consensus Algorithm
 - Distributed PCA

Backgrounding

Overview

- Why we need Distributed Algorithms of PCA (D-PCA)?
 - data are collected/stored in a distributed network
 - 2 memory limitation
 - privacy issue
 - parallel clusters
- How D-PCA work for parallel processors?
 - 1 each node calculates its local value of PCA
 - 2 communicate with its neighbor nodes
 - update with a weighted average of its neighbors values
- Application
 - classify word documents
 - array processing

Backgrounding

Two Types of Data Model

- The designs of D-PCA algorithms differ in how data are divided in the network:
 - 1 Distributed columns observations (DCO)
 - ② Distributed rows observations (DRO)

Distributed Row Observations (DRO)

Distributed Column Observations (DCO)

Figure: Data Model

Two Types of Data Model

• The DCO setting assumes that each agent observes a subset of columns of $X \in C^{N*T}$:

$$X = (X_1^c, X_2^c, ..., X_S^c)$$

where $X_i^c \in C^{N*Ti}$ is the column-partitioned sub-matrix and $\sum_{i=1}^{S} T_i = T.$

 DCO applies when high-dimension data are stored in different sites in a network.

Two Types of Data Model

• The DRO setting assumes that each agent observes only a subset of rows of $X \in C^{N*T}$:

$$X = ((X_1^r)^T, (X_2^r)^T, ..., (X_S^r)^T)^T$$

where $X_i^r \in C^{Ni*T}$ is the column-partitioned sub-matrix and $\sum_{i=1}^{S} N_i = N$.

 DRO applies when data have a multidimensional time series and each sample is distributed across the nodes.

Backgrounding

Two Types of Communication Model

- The designs of D-PCA algorithms also differ in the types of communication among each node:
 - master-slave type
 - @ mesh type

Figure: Communication Model

Backgrounding

Two Types of Communication Model

- How master-slave model work?
 - 1 in local stage, each slave node solves a local PCA
 - 2 send local PCA results to the master node
 - in global stage, the master node computes the global PCA from the aggragated data
- How mesh model work?
 - all nodes and links perform the same function
 - 2 all nodes exchange partial computations
 - transmitting information from one node to another may require multihop communications

Outline

- Differential Microphones Arrays based on Differential Equation
 - Linear DMA
 - Circular DMA

- Distributed Algorithms of PCA
 - Backgrounding
 - Average Consensus Algorithm
 - Distributed PCA

Average Consensus Algorithm

- Why need Average Consensus(AC) Algorithm?
 In D-PCA algorithm, the key is to aggregate and share information across nodes.
 - For master-slave model, we can centralize information in master node.
 - For mesh model, this has to be done with a sequence of computation steps adaptable to the network structure.

We cannot centralize information directly in mesh model, so we take the iterative method to aggregate data

Average Consensus Algorithm

- Assume that the system of N sensor nodes is connected through a communication network. It is modeled by a graph whose topology is represented by the corresponding Laplacian matrix L.[4]
- The elements of matrix L [5]

$$l_{ij} = egin{cases} d_j, & i = j \ -1, & i ext{ communicates with j} \ 0, & ext{else} \end{cases}$$

where d_i is the number of its neighbor.

• Let $W = I - \varepsilon L$. The following linear iterative algorithm :

$$x_j(t+1) = W_{jj}x_j(t) + \sum_{k \in N} W_{jk}x_k(t)$$

$$x(t+1) = Wx(t)$$

Average Consensus Algorithm

- W1=1, so the eigenvector is 1 and eigenvalue is 1. The second largest eigenvalue of W, $\lambda_2 < 1$.
- No matter what the initial node values are, we must have

$$\lim_{t\to\infty} x(t) = \lim_{t\to\infty} W^t x(0) = \frac{1}{n} 11^T x(0)$$

- All elements in x(t) are the same, and are the average of x(0) elements.
- Therefore, by AC algorithm, each node only need to communicates with its neighbor nodes. After iterationwe can compute the average of all nodes.

Outline

- Differential Microphones Arrays based on Differential Equation
 - Linear DMA
 - Circular DMA

- Distributed Algorithms of PCA
 - Backgrounding
 - Average Consensus Algorithm
 - Distributed PCA

 A distributed PCA method can be obtained by simply approximating the global correlation matrix via the AC subroutine,

$$\hat{R}_{u,i} = N \cdot AC(\{u_i u_i^T\}_{i=1}^N; L) \approx R_u$$
(31)

• In other words, each agent obtains an approximate of the global correlation matrix and the desired PCA can be then computed from $\hat{R}_{u,i}$.

• Eigenvalue decomposition of R_x and reduce its dimension to p-dim.

$$R_{u} = \sum_{i=1}^{N} \lambda_{i} u_{i} u_{i}^{T} \xrightarrow{\text{reduce dim}} R_{u} \approx \sum_{i=1}^{P} \lambda_{i} u_{i} u_{i}^{T}$$
(32)

 Supposed that we have N distributed nodes, so the optimization problem is

$$\min \sum_{i \in V} -x_i^T R_u x_i$$

$$s.t. \ x_i^T x_i = 1, \ i \in V$$

$$x_i = x_i, \ \forall (i, j) \in E$$
(33)

• The PDMM [7] solves problem in this form:

$$\min \sum_{i \in V} f_i(x)$$

$$s.t. \ A_{ii}x_i + A_{ii}x_i = c_{ii}, \ \forall (i,j) \in E$$

$$(34)$$

where

$$f_i(x) = -u_i^T R_x u_i (35)$$

$$\begin{cases}
A_{ij} = I, & i < j \\
A_{ji} = -I, & \text{others}
\end{cases}$$
(36)

$$c_{ij}=0 (37)$$

Distributed PCA

PDMM for DCO

ullet We denote δ as the Lagrangian multiplier, and the Lagrangian of this primal problem can be constructed as

$$L_{p}(x,\delta) = \sum_{(i,j)\in E} \delta_{ij}^{T}(c_{ij} - A_{ij}x_{i} - A_{ji}x_{j}) + \sum_{i\in V} \left[f_{i}(x_{i}) + \theta_{i}^{T}(1 - x_{i}^{T}x_{i})\right]$$
(38)

The Augmented Primal-Dual Lagrangian function is

$$L_{P} = \sum_{i \in V} \left[f_{i}(x_{i}) - \sum_{j \in N(i)} \lambda_{j|i}^{T} (A_{ij}x_{i} - c_{ij}) - f_{i}^{*} (A_{i}^{T}\lambda_{i}) \right] + h(x_{i}, \lambda_{i})$$
(39)

where

$$h(x_i, \lambda_i) = \sum_{(i, i) \in F} \left(\frac{1}{2} \|A_{ij} x_i + A_{ji} x_j + c_{ij}\|^2 - \frac{1}{2} \|\lambda_{i|j} - \lambda_{j|i}\|^2 \right)$$
(40)

Jiawei Sun (UMICH) Research Summary September, 2019 34 / 42

• At iteration k, the update scheme of PDMM is

$$x_{i}^{k+1} = x_{i}^{k} - \alpha \nabla_{x_{i}} L_{P}$$

$$\theta_{i}^{k+1} = \theta_{i}^{k} + \alpha \nabla_{\theta_{i}} L_{P}$$

$$\lambda_{i|j}^{k+1} = \lambda_{i|j}^{k} + (c_{ij} - A_{ji} x_{j}^{k} - A_{ij} x_{i}^{k}), \ \forall i \in V, \ j \in N(i)$$

$$(41)$$

where

$$\nabla_{x_i} L_P = -2R_{u_i} x_i - \sum_{j \in N(i)} \lambda_{j|i}^T A_{ij} - 2\theta_i x_i + \sum_{(i,j) \in E} A_{ij} (A_{ij} x_i + A_{ji} x_j)$$
 (42)

$$\nabla_{\theta_i}(L_P) = 1 - 2x_i^T x_i \tag{43}$$

Algorithm 1 PDMM

- 1: Initialize as x_i^0 , $\lambda_{i|i}^0$, θ_i^0 for all nodes
- 2: **for** k = 1 to K **do**
- 3: **for** i = 1 to N **do** $x_i^{k+1} = x_i^k \alpha \nabla_{x_i} L_P$
- 4: $\theta_i^{k+1} = \theta_i^k + \alpha \nabla_{\theta_i} L_P$ $\lambda^{k+1} = \lambda^k + (c A)$
 - $\lambda_{i|j}^{k+1} = \lambda_{i|j}^k + (c_{ij} A_{ji}x_j^k A_{ij}x_i^k), \ \forall i \in V, \ j \in N(i)$
- 5: end for
- 6: end for

PDMM for DCO (Rayleigh Quotient)

• We introduce Rayleigh quotient to replace the constrain $x_i^T x_i = 1$, and the optimization problem is

$$\min \sum_{i \in V} \frac{-x_i^T R_u x_i}{x_i^T x_i}$$

$$s.t. \ x_i = x_j, \ \forall (i,j) \in E$$

$$(44)$$

Algorithm 2 PDMM (Rayleigh Quotient)

- 1: Initialize as x_i^0 , $\lambda_{i|i}^0$ for all nodes
- 2: **for** k = 1 to K **do**
- 3: **for** i = 1 to N **do** $x_i^{k+1} = x_i^k \alpha \nabla_{x_i} L_P$
- 4: $\lambda_{i|j}^{k+1} = \lambda_{i|j}^{k} + (c_{ij} A_{ji}x_{j}^{k} A_{ij}x_{i}^{k}), \ \forall i \in V, \ j \in N(i)$
- 5: end for
- 6: end for

0

PDMM for DCO (Time-varing constrains)

$$\min \sum_{i \in V} -x_i^T R_{u_i} x_i$$

$$s.t. \ A_{ii} x_i + A_{ii} x_i = c_{ii}, \ \forall (i, j) \in E$$

$$(45)$$

where at iteration k

$$\begin{cases}
A_{ij} = I, & i < j \\
A_{ij} = -I, & i > j \\
A_{ij} = (x_1^{k-1} \cdots x_N^{k-1}), & i = j
\end{cases}$$
(46)

Distributed PCA

PDMM for DCO (Time-varing constrains)

Algorithm 3 PDMM (Time-varing constrains)

- 1: Initialize as x_i^0 , $\lambda_{i|i}^0$, A_{ii} for all nodes
- 2: **for** k = 1 to K **do**
- 3: **for** i = 1 to *N* **do**

4:

$$\begin{aligned} x_i^{k+1} &= x_i^k - \alpha \nabla_{x_i} L_P \\ \lambda_{i|j}^{k+1} &= \lambda_{i|j}^k + (c_{ij} - A_{ji} x_j^k - A_{ij} x_i^k), \ \forall i \in V, \ j \in N(i) \end{aligned}$$

5: end for

$$A_{ii} = (x_1^{k-1} \cdots x_N^{k-1})$$

6: end for

For Further Reading I

- Benesty, Jacob, and Chen Jingdong. Study and design of differential microphone arrays. Vol. 6. Springer Science Business Media, 2012.
- Benesty, Jacob, Jingdong Chen, and Israel Cohen. Design of Circular Differential Microphone Arrays. Vol. 12. Switzerland: Springer, 2015.
- Chatelin, Franoise, ed. Eigenvalues of Matrices: Revised Edition. Society for Industrial and Applied Mathematics, 2012.
- Wu, Sissi Xiaoxiao, et al. "A Review of Distributed Algorithms for Principal Component Analysis." Proceedings of the IEEE 106.8 (2018): 1321-1340.
- Scaglione, Anna, Roberto Pagliari, and Hamid Krim. "The decentralized estimation of the sample covariance." 2008 42nd Asilomar Conference on Signals, Systems and Computers. IEEE, 2008.

For Further Reading II

Zhang, Guoqiang, and Richard Heusdens. "Bi-alternating direction method of multipliers over graphs." 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015.