CENG 201 Veri Yapıları 10: Çizge Algoritmaları(Graph Algorithms)

Öğr.Gör. Şevket Umut ÇAKIR

Pamukkale Üniversitesi

Hafta 10

Anahat

- Minimum Kapsayan Ağaçlar Kruskal'ın MST Algoritması Prim'in MST Algoritması
- En Kısa Yol Dijkstra'nın Algoritması
- 3 Renklendirme

Ağırlıklı Çizgeler/Weighted Graphs

Tanım

Kenarları üzerinde ağırlık değerleri bulunan çizgelere **ağırlıklı** çizge(weighted graphs) adı verilir.

Minimum Kapsayan Ağaçlar/Minimum Spanning Trees

Tanım

Kapsayan ağaçlar bağlı ve yönsüz bir çizgede bütün düğümleri birbirine bağlayan ağaç yapısındaki bir alt çizgedir. **Minimum kapsayan** ağaç(minimum spanning tree, MST) kapsayan ağaçlar içinde toplam ağırlığı en az olan ağaçtır.

Minimum Kapsayan Ağaçlar/Minimum Spanning Trees

Tanım

Kapsayan ağaçlar bağlı ve yönsüz bir çizgede bütün düğümleri birbirine bağlayan ağaç yapısındaki bir alt çizgedir. **Minimum kapsayan** ağaç(minimum spanning tree, MST) kapsayan ağaçlar içinde toplam ağırlığı en az olan ağaçtır.

- Minimum kapsayan ağaçları bulmak için çeşitli yöntemler mevcuttur
- En bilinenleri Prim'in ve Kruskal'ın algoritmalarıdır.
- ullet Minimum kapsayan ağaç V-1 tane kenar içerir

Kruskal'ın MST Algoritması

- 1 Kenarları ağırlıklarına göre artan sırada sırala
- 2 En küçük kenarı ele al. Eğer mevcut seçilen kenarlarla bir döngü/çevrim(cycle) içermiyrsa kenarı seç, aksi takdirde kenarı bırak
- f 8 Kapsayan ağaçta V-1 tane düğüm olana kadar Adım 2'yi tekrarla

Figure: Kruskal'ın MST Algoritması

Ağırlık	Hedef	Kaynak
1	7	6
2	8	2
2	6	5
4	0	1
4	2	5
6	8	6
7	2	3
7	7	8
8	0	7
8	1	2
9	3	4
10	5	4
11	1	7
14	3	5

0000

Kruskal Örnek

(8)

Ağırlık	Hedef	Kaynak
		_
1	7	6
2	8	2
2	6	5
4	0	1
4	2	5
6	8	6
7	2	3
7	7	8
8	0	7
8	1	2
9	3	4
10	5	4
11	1	7
14	3	5

0000

Kruskal Örnek

(8)

Ağırlık	Hedef	Kaynak
1	7	6
2	8	2
	6	5
4	0	1
4	2	5
6	8	6
7	2	3
7	7	8
8	0	7
8	1	2
9	3	4
10	5	4
11	1	7
14	3	5

0000

Kruskal Örnek

7		6
	1	0

(5)

Ağırlık	Hedef	Kaynak
1	7	6
2	8	2
	6	5
4	0	1
4	2	5
6	8	6
7	2	3
7	7	8
8	0	7
8	1	2
9	3	4
10	5	4
11	1	7
14	3	5

(7)		6		E
	1	0	2	<u>)</u>

Ağırlık	Hedef	Kaynak
1	7	6
2	8	2
2	6	5
4	0	1
4	2	5
6	8	6
7	2	3
7	7	8
8	0	7
8	1	2
9	3	4
10	5	4
11	1	7
14	3	5

Ağırlık	Hedef	Kaynak
_	Heuei	
1	7	6
2	8	2
2	6	5
4	0	1
4	2	5
6	8	6
7	2	3
7	7	8
8	0	7
8	1	2
9	3	4
10	5	4
11	1	7
14	3	5

Kruskal'ın MST Algoritması

Ağırlık	Hedef	Kaynak
1	7	6
2	8	2
2	6	5
4	0	1
4	2	5
6	8	6
7	2	3
7	7	8
8	0	7
8	1	2
9	3	4
10	5	4
11	1	7
14	3	5

Ağırlık	Hedef	Kaynak
1	7	6
2	8	2
2	6	5
4	0	1
4	2	5
6	8	6
7	2	3
7	7	8
8	0	7
8	1	2
9	3	4
10	5	4
11	1	7
14	3	5

	Ağırlık	Hedef	Kaynak
	1	7	6
	2	8	2
	2	6	5
	4	0	1
	4	2	5
	6	8	6
)	7	2	3
	7	7	8
	8	0	7
	8	1	2
	9	3	4
	10	5	4
	11	1	7
	14	3	5

Ağırlık	Hedef	Kaynak
1	7	6
2	8	2
	6	5
4	0	1
4	2	5
6	8	6
7	2	3
7	7	8
8	0	7
8	1	2
9	3	4
10	5	4
11	1	7
14	3	5

Kruskal Soru

Aşağıdaki çizgenin Kruskal algoritmasına göre minimum kapsayan ağacını bulunuz.

Kruskal'ın MST Algoritması

Kruskal Soru

Aşağıdaki çizgenin Kruskal algoritmasına göre minimum kapsayan ağacını bulunuz.

Prim'in MST Algoritması

- MST içindeki düğümleri tutacak S kümesini oluştur
- $oldsymbol{2}$ Başlangıç düğümüne 0, diğer düğümlere ∞ anahtar değeri verilir
- 3 Bütün düğümler S kümesinde olmadığı sürece
 - a) S kümesinden minimum anahtar değerine sahip u düğümünü al
 - b) u'yu S kümesine ekle
 - u'nun komşu düğümlerinin anahtar değerini güncelle: u'nun komşusu v için eğer u-v kenarının ağırlığı v'nin anahtar değerinden küçükse u-v kenarının değeri ile güncelle

Prim Soru

Aşağıdaki çizgenin Prim algoritmasına göre minimum kapsayan ağacını bulunuz.

Prim Soru

Aşağıdaki çizgenin Prim algoritmasına göre minimum kapsayan ağacını bulunuz.

- Seçilen bir düğümden diğer bütün düğümlere olan en kısa yolu bulur.
- Prim'in algoritmasına benzer şekilde çalışır.
- Başlangıçta boş bir küme il başlanır ve her seferinde kümeye komşu düğümlerden ağırlığı en küçük olan seçilir ve güncellemeler yapılır.
- Eğer seçilen elemanın komşularında daha kısa bir yol varsa uzunluk ve yol güncellenir.

Dijkstra'nın Algoritması

Dijkstra Örnek

lt

lt	T	U.2	Y.2	U.3	Y.3	U.4	Y.4	U.5	Y.5	U.6	Y.6
1	1	2	1-2	5	1-3	1	1-4	∞	-	∞	-

1 1 2 1-2 5 1-3 1 1-4 ∞ -	lt	T	U.2	Y.2	U.3	Y.3	U.4	Y.4	U.5	Y.5	U.6	Y.6
2 14 2 12 4 142 1 14 2 145	1	1	2	1-2	5	1-3	1	1-4	∞	-	∞	-
2 1,4 2 1-2 4 1-4-3 1 1-4 2 1-4-3	2	1,4	2	1-2	4	1-4-3	1	1-4	2	1-4-5	∞	-

lt	Т	U.2	Y.2	U.3	Y.3	U.4	Y.4	U.5	Y.5	U.6	Y.6
1	1	2	1-2	5	1-3	1	1-4	∞	-	∞	-
2	1,4	2	1-2	4	1-4-3	1	1-4	2	1-4-5	∞	-
3	1,4,2	2	1-2	4	1-4-3	1	1-4	2	1-4-5	∞	-

lt	Т	U.2	Y.2	U.3	Y.3	U.4	Y.4	U.5	Y.5	U.6	Y.6
1	1	2	1-2	5	1-3	1	1-4	∞	-	∞	-
2	1,4	2	1-2	4	1-4-3	1	1-4	2	1-4-5	∞	-
3	1,4,2	2	1-2	4	1-4-3	1	1-4	2	1-4-5	∞	-
4	1,4,2,5	2	1-2	3	1-4-5-3	1	1-4	2	1-4-5	4	1-4-5-6

lt	Т	U.2	Y.2	U.3	Y.3	U.4	Y.4	U.5	Y.5	U.6	Y.6
1	1	2	1-2	5	1-3	1	1-4	∞	-	∞	-
2	1,4	2	1-2	4	1-4-3	1	1-4	2	1-4-5	∞	-
3	1,4,2	2	1-2	4	1-4-3	1	1-4	2	1-4-5	∞	-
4	1,4,2,5	2	1-2	3	1-4-5-3	1	1-4	2	1-4-5	4	1-4-5-6
5	1,4,2,5,3	2	1-2	3	1-4-5-3	1	1-4	2	1-4-5	4	1-4-5-6

