506 Problem Set 3

Xiaohan Liu

Table of contents

Problem 1	. 2
(a)	. 2
(b)	. 2
(c)	
(d)	
Problem 2	. 9
(a)	. 11
(b)	. 12
(c)	. 13
Problem 3	. 13
(a)	
(b)	. 14
(c)	
(d)	. 15
(e)	. 16
(f)	. 18

GitHub repository: https://github.com/EmiiilyLiu/STATS_506

setwd("F:/Desktop/STATS 506/STATS_506")

Problem 1

(a)

```
. do "K:\PS3 Q1.do"
. * (a) Import and merge data
. * Refer to:
. * chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.stata.com/ma
> nuals13/dimportsasxport.pdf
. * chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.stata.com/ma
> nuals/dmerge.pdf
. import sasxport5 "K:\VIX_D.XPT"
. save "K:\temp_VIX_D.dta", replace
file K:\temp_VIX_D.dta saved
. import sasxport5 "K:\DEMO_D.xpt"
. merge 1:1 seqn using "K:\temp_VIX_D.dta", keep(match) nogenerate
    Result
                                Number of obs
    Not matched
    Matched
                                        6,980
. count
  6,980
```

(b)

```
. * (b)
. * Refer to:
. * chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.stata.com/manuals/rtab
. * view the merged data
. * describe
. * age group variable
. gen age_group = "0-9" if ridageyr < 10
(6,980 missing values generated)</pre>
```

```
. replace age_group = "10-19" if ridageyr >= 10 & ridageyr < 20</pre>
variable age_group was str1 now str5
(2,207 real changes made)
. replace age_group = "20-29" if ridageyr >= 20 & ridageyr < 30</pre>
(1,021 real changes made)
. replace age_group = "30-39" if ridageyr >= 30 & ridageyr < 40</pre>
(818 real changes made)
. replace age_group = "40-49" if ridageyr >= 40 & ridageyr < 50
(815 real changes made)
. replace age_group = "50-59" if ridageyr >= 50 & ridageyr < 60
(631 real changes made)
. replace age_group = "60-69" if ridageyr >= 60 & ridageyr < 70</pre>
(661 real changes made)
. replace age_group = "70-79" if ridageyr >= 70 & ridageyr < 80</pre>
(469 real changes made)
. replace age_group = "80-89" if ridageyr >= 80 & ridageyr < 90</pre>
(358 real changes made)
. replace age_group = "90-99" if ridageyr >= 90
(0 real changes made)
. gen wear = .
(6,980 missing values generated)
. replace wear = 1 if viq220 == 1
(2,765 real changes made)
. replace wear = 0 if inlist(viq220, 2, 9)
(3,782 real changes made)
. * Use mean of viq220==1 within each age group representing proportion
. table age_group, nototals statistic(mean wear)
```

3

```
| Mean
------
age_group |
10-19 | .3208812
20-29 | .3258786
30-39 | .3586667
40-49 | .3699871
50-59 | .5500821
60-69 | .6222222
70-79 | .6689038
80-89 | .6688103
```

(c)

```
. * (c)
. * Refer to *chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.st
> ata.com/manuals/rlogistic.pdf
. * https://www.stata.com/support/faqs/statistics/outcome-does-not-vary/
. * chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.stata.com/ma
> nuals13/restatic.pdf
. * http://repec.org/bocode/e/estout/esttab.html
. * http://repec.org/bocode/e/estout/estout.html
. replace viq220 = 0 if viq220 == 2
(3,780 real changes made)
. replace viq220 = . if viq220 == 9
(2 real changes made, 2 to missing)
. logistic viq220 ridageyr
Logistic regression
                                                        Number of obs = 6,545
                                                        LR chi2(1) = 443.37
                                                       Prob > chi2 = 0.0000
Log likelihood = -4235.9433
                                                       Pseudo R2 = 0.0497
```

-	Odds ratio			[95% conf.	_
	1.02498	20.47	0.000	1.022561 .2551952	

Note: _cons estimates baseline odds.

- . eststo model1
- . estat ic

Akaike's information criterion and Bayesian information criterion

Model	N					BIC
	6,545					8489.46
Note: BIC use:	s N = number	of observat	ions. See [[R] IC no	te.	

. logistic viq220 ridageyr i.riagendr i.ridreth1

0 1 00

Logistic regression	Number of obs	=	6,545
	LR chi2(6)	=	641.49
	Prob > chi2	=	0.0000
Log likelihood = -4136.8805	Pseudo R2	=	0.0720

viq220	Odds ratio	Std. err.	Z	P> z	[95% conf.	interval]
ridageyr	1.022831	.0012912	17.88	0.000	1.020303	1.025365
2.riagendr	1.65217	.0875831	9.47	0.000	1.489127	1.833064
I						
ridreth1						
2	1.169203	.192081	0.95	0.341	.8473273	1.613349
3	1.952149	.1366952	9.55	0.000	1.701803	2.239322
4	1.29936	.0995052	3.42	0.001	1.118264	1.509783
5 I	1.917442	.2596352	4.81	0.000	1.470495	2.500236
I						
_cons	.1593479	.0124169	-23.57	0.000	.1367784	.1856414

Note: _cons estimates baseline odds.

. eststo model2

. estat ic

Akaike's information criterion and Bayesian information criterion

Model			11(model)		AIC	BIC
model2	6,545	-4457.627	-4136.88	7	8287.761 	8335.266

Note: BIC uses N = number of observations. See [R] IC note.

. logistic viq220 ridageyr i.riagendr i.ridreth1 indfmpir

Logistic regression Number of obs = 6,247LR chi2(7) = 625.30Prob > chi2 = 0.0000

Log likelihood = -3946.9041 Pseudo R2 = 0.0734

viq220	Odds ratio	Std. err.	z	P> z	[95% conf.	interval]
ridageyr	1.022436	.001324	17.14	0.000	1.019845	1.025035
2.riagendr	1.675767	.0910025	9.51	0.000	1.50657	1.863967
Ī						
ridreth1						
2	1.123021	.1889653	0.69	0.490	.8075333	1.561764
3	1.651244	.1240886	6.67	0.000	1.425098	1.913277
4	1.230456	.0974736	2.62	0.009	1.053503	1.43713
5 I	1.703572	.2387583	3.80	0.000	1.294384	2.242114
I						
indfmpir	1.120301	.0198376	6.42	0.000	1.082087	1.159865
_cons	.1331659	.0116903	-22.97	0.000	.1121161	.1581678

Note: _cons estimates baseline odds.

. eststo model3

. esttab model1 model2 model3, eform cells(b(star fmt(3)) se(par fmt(3))) stats(
> N r2_p aic, labels("Sample Size" "Pseudo R^2" "AIC")) mtitle("Model 1" "Model
> 2" "Model 3") label

	(1)	(2)	(3)
	Model 1	Model 2	Model 3
	b/se	b/se	b/se
Glasses/contact le~			
Age at Screening A~R	1.025***	1.023***	1.022***
	(0.001)	(0.001)	(0.001)
Gender=1		1.000	1.000
		(.)	(.)
Gender=2		1.652***	1.676***
		(0.088)	(0.091)
Race/Ethnicity - R~1		1.000	1.000
		(.)	(.)
Race/Ethnicity - R~2		1.169	1.123
		(0.192)	(0.189)
Race/Ethnicity - R~3		1.952***	1.651***
		(0.137)	(0.124)
Race/Ethnicity - R~4		1.299***	1.230**
•		(0.100)	(0.097)
Race/Ethnicity - R~5		1.917***	1.704***
•		(0.260)	(0.239)
Family PIR			1.120***
•			(0.020)
 Sample Size	6545.000	6545.000	6247.000
Pseudo R^2	0.050	0.072	0.073
AIC		8287.761	7909.808

Exponentiated coefficients

(d)

$$\frac{odds(female)}{odds(male)} = \frac{\frac{Pr(viq220=1|female)}{1-Pr(viq220=1|female)}}{\frac{Pr(viq220=1|male)}{1-Pr(viq220=1|male)}} = 1.676$$

The odds ratio is 1.676, with p-value << 0.05, meaning it is statistically significant. We can conclude that the odds of men and women being wears of glasses/contact lenses for distance vision differs. The odd of women being wears of glasses/contact lenses for distance vision is larger than that of men.

```
*(d)
. * Refer to:
. * https://stats.oarc.ucla.edu/stata/webbooks/logistic/chapter1/logistic-regression-with-
> apter-1-introduction-to-logistic-regression-with-stata/#:~:text=Stata%20has%20two%20comm
> for,command%20with%20the%20or%20option.
. logit viq220 ridageyr i.riagendr i.ridreth1 indfmpir
Iteration 0: Log likelihood = -4259.5533
Iteration 1: Log likelihood = -3948.3256
Iteration 2: Log likelihood = -3946.9043
Iteration 3: Log likelihood = -3946.9041
Logistic regression
                                                   Number of obs = 6,247
                                                   LR chi2(7) = 625.30
                                                   Prob > chi2 = 0.0000
                                                   Pseudo R2 = 0.0734
Log likelihood = -3946.9041
______
                                                     [95% conf. interval]
     viq220 | Coefficient Std. err. z P>|z|
               .0221883 .0012949 17.14 0.000 .0196504
   ridageyr |
                                                                .0247263
                         .054305 9.51 0.000
 2.riagendr |
               .5162712
                                                     .4098355
                                                                 .622707
   ridreth1 |
         2 | .1160225 .1682651 0.69
                                            0.490
                                                     -.213771 .4458161
                                                    .3542404
         3 | .5015289 .0751486
                                     6.67
                                            0.000
                                                                .6488174

    4
    |
    .2073846
    .0792175
    2.62

    5
    |
    .5327271
    .1401516
    3.80

                                            0.009
                                                     .0521211
                                                                .362648
                                            0.000
                                                    .2580349
                                                                .8074192
   indfmpir | .1135978 .0177073 6.42
                                            0.000
                                                     .078892
                                                                .1483035
               -2.01616 .0877879 -22.97
                                            0.000
      cons
                                                    -2.188221
                                                               -1.844099
```

.

.

•

```
.
end of do-file
```

Since $p-value \ll 0.05$, meaning the coefficient is statistically significant at 0.05 level, that is the proportion of wearers of glasses/contact lenses for distance vision differs between men and women.

Problem 2

```
library(DBI)
  ## Import the SQLite database of "sakila" data
  sakila <- dbConnect(RSQLite::SQLite(), "sakila_master.db")</pre>
  #' Oparam x a string as input SQL query
  gg <- function(x){</pre>
    dbGetQuery(sakila, x)
  ## Get the list of tables in "sakila" database
  dbListTables(sakila)
 [1] "actor"
                               "address"
                                                         "category"
 [4] "city"
                               "country"
                                                         "customer"
 [7] "customer_list"
                               "film"
                                                         "film_actor"
                                                          "film_text"
[10] "film_category"
                               "film_list"
[13] "inventory"
                               "language"
                                                          "payment"
[16] "rental"
                               "sales_by_film_category" "sales_by_store"
[19] "staff"
                               "staff_list"
                                                          "store"
  ## Get lists of columns of the tables
  for (i in dbListTables(sakila)){
    cat("Table:", i, "\n")
    print(dbListFields(sakila, i))
    cat("\n")
  }
```

Table: actor

[1] "actor_id" "first_name" "last_name" "last_update" Table: address [1] "address_id" "address" "address2" "district" "city_id" [6] "postal_code" "phone" "last_update" Table: category [1] "category_id" "name" "last_update" Table: city [1] "city_id" "country_id" "last_update" "city" Table: country

[1] "country_id" "country" "last_update"

Table: customer

[1] "customer_id" "store_id" "first_name" "last_name" "email"

[6] "address_id" "active" "create_date" "last_update"

Table: customer_list

[1] "ID" "name" "address" "zip_code" "phone" "city" "country"

[8] "notes" "SID"

Table: film

[1] "film_id" "title" "description"

[4] "release_year" "language_id" "original_language_id"

[7] "rental_duration" "rental_rate" "length"

[10] "replacement_cost" "rating" "special_features"

[13] "last_update"

Table: film_actor

[1] "actor_id" "film_id" "last_update"

Table: film_category

[1] "film_id" "category_id" "last_update"

Table: film_list

[1] "FID" "title" "description" "category" "price"

[6] "length" "rating" "actors"

Table: film_text

[1] "film_id" "title" "description"

```
Table: inventory
[1] "inventory_id" "film_id" "store_id" "last_update"
Table: language
[1] "language_id" "name"
                                "last update"
Table: payment
[1] "payment_id"
                   "customer_id" "staff_id" "rental_id" "amount"
[6] "payment_date" "last_update"
Table: rental
[1] "rental_id"
                   "rental_date" "inventory_id" "customer_id" "return_date"
[6] "staff_id"
                   "last_update"
Table: sales_by_film_category
[1] "category" "total_sales"
Table: sales_by_store
[1] "store_id" "store"
                                "manager" "total_sales"
Table: staff
 [1] "staff_id" "first_name" "last_name" "address_id" "picture" [6] "email" "store_id" "active" "username" "password"
[11] "last_update"
Table: staff_list
[1] "ID" "name"
                          "address" "zip_code" "phone" "city"
                                                                      "country"
[8] "SID"
Table: store
[1] "store_id"
                     "manager_staff_id" "address_id"
                                                           "last_update"
(a)
  gg("SELECT l.name as language, COUNT(f.film_id) AS frenquncy
     FROM language 1
     LEFT JOIN film f
     ON f.language_id = l.language_id
     GROUP BY 1.language_id
     ORDER BY COUNT(f.film_id) DESC")
```

```
language frenquncy
1 English 1000
2 Italian 0
3 Japanese 0
4 Mandarin 0
5 French 0
6 German 0
```

All the films for which we have relevant language information are in English in this database. Therefore, we cannot determine which language, aside from English, is most common for films.

(b)

[1] "Sports"

```
## SQL answer
gg("SELECT c.name AS genre, COUNT(fc.film_id) AS frequency
FROM film_category fc
LEFT JOIN category c ON fc.category_id = c.category_id
GROUP BY c.name
ORDER BY frequency DESC
LIMIT 1")
```

```
genre frequency
1 Sports 74
```

Both two methods generate the same result: Sports is the most common movie genre.

(c)

```
## R
## Get the appropriate table
customer <- gg("SELECT * FROM customer_list")

country_count <- table(customer$country)

## Countries have exact 9 customers
country_with9customers <- names(country_count[country_count == 9])

country_with9customers</pre>
```

[1] "United Kingdom"

```
## SQL answer
gg("SELECT country, COUNT(country) AS frequency
FROM customer_list
  GROUP BY country
  HAVING frequency=9")
```

```
country frequency
1 United Kingdom 9
```

Both two methods generate the same result: *United Kingdom* is the country with exact 9 customers.

Problem 3

```
data <- read.csv("us-500.csv")
```

(a)

```
## This data set has NO missing value
## so I use the number of the row as the total number of email
sum(is.na(data))

[1] 0

## proportion of email ending with ".net"
sum(grepl("\\.net$", data$email))/nrow(data)
[1] 0.14
```

(b)

```
## Since an email address must have a "@" and a ".",
## so I delete a "@" and "." firstly
#' @param x a string
#' @return string deleted an "at" and a "dot"
delete_at_dot <- function(x){
   delete_at <- sub("@", "", x, fixed = TRUE)
   modified_x <- sub(".", "", delete_at, fixed = TRUE)

return(modified_x)
}

modified_emails <- sapply(data$email, delete_at_dot)

## proportion of email with non alphanumeric character
## except for an "@" and a ".'
sum(grepl("[^a-zA-ZO-9]", modified_emails))/nrow(data)</pre>
```

[1] 0.506

(c)

```
## Get area code
AreaCode_phone1 <- substr(data$phone1,1,3)
AreaCode_phone2 <- substr(data$phone2,1,3)
AreaCode_all <- c(AreaCode_phone1, AreaCode_phone2)

## Count the occurrence of each area code
AreaCode_count <- table(AreaCode_all)

## Get the area code with the highest frequency
names(AreaCode_count[which.max(AreaCode_count)])</pre>
[1] "973"
```

(d)

Histogram of Log of Apartment Numbers

Log of Apartment Numbers

(e)

Digit Observed Benford

```
1
      1 0.12711864
                      0.301
2
      2 0.11016949
                      0.176
3
      3 0.10169492
                      0.125
4
      4 0.10169492
                      0.097
5
      5 0.12711864
                      0.079
6
      6 0.09322034
                      0.067
7
      7 0.10169492
                      0.058
8
      8 0.09322034
                      0.051
      9 0.14406780
                      0.046
```

```
## visualize the comparison
barplot(rbind(comparison$Observed, comparison$Benford),
    beside = TRUE, col = c("blue", "red"), names.arg = 1:9,
    legend.text = c("Observed", "Benford's Law"),
    ylab = "Proportion",
    main = "Obeserved Leading Digit VS Benford's Law")
```

Obeserved Leading Digit VS Benford's Law

The distribution of observed apartment numbers shows significant difference from that of Benford's Law. We can conclude that the apartment numbers do **not** appear to follow Benford's law and they would **not** pass as real data.

(f)

```
## get the street number of each address
  all <- str_extract_all(data$address, "\\d+")</pre>
  street_num <- sapply(all, function(x) x[1])</pre>
  ## last digit of each street number
  last_digit <- str_sub(street_num, start= -1)</pre>
  ## distribution of the last digit
  dist_last_digit <- table(last_digit)/sum(!is.na(last_digit))</pre>
  ## assume they are uniform
  expected_dist \leftarrow rep(1/10, 10)
  comparison_last_digit <- data.frame(</pre>
    Digit = 0:9,
    Observed = as.numeric(dist_last_digit),
    Expected = expected_dist
  comparison_last_digit
  Digit Observed Expected
            0.078
       0
                       0.1
1
                       0.1
2
            0.082
       1
                       0.1
3
       2 0.108
                       0.1
4
       3 0.102
5
       4 0.106
                       0.1
6
       5 0.104
                       0.1
7
       6 0.086
                       0.1
8
       7 0.112
                       0.1
         0.090
9
                       0.1
       8
10
       9
            0.132
                       0.1
  ## visualize the comparison
  barplot(rbind(comparison_last_digit$Observed,
                comparison_last_digit$Expected),
          beside = TRUE, col = c("blue", "red"), names.arg = 0:9,
          ylab = "Proportion",
          main = "Observed Last Digit VS Expected",
```

```
legend.text = c("Observed", "Expected"))
```

Observed Last Digit VS Expected

We assume the distribution of last digit is uniform, and conclude that 9 occurs the most often, while 1 and 2 the least, and the rest are basically uniform.