Inbyggd elektronik 2018-04-24 #10 V_{TH} V_{C} V_{C} V

Solution: $V_c(t) = V_c(\infty) + [V_c(t=t_0) - V_c(\infty)]e^{-\frac{(t-t_0)}{2}}$ where $C = R_{TH} \cdot C$

For teto Ve(teto)=0 since capacitor is not charged (Q=CV)

At
$$t=\infty$$
 C is fully charged and $V_c(\infty)=V_{TH}$

Vc(t>to) = V++ (0-V++) e Rr+·C

$$R_{TH} = 1k\Omega$$
 $\gamma = 1ms$

Time delay in digital circuits

Vin Vout P-channel if $V_{IN} = V_{DD}$ n-channel is ON and low R to GND \Rightarrow $V_{OUT} = OV$ Vin $V_{IN} = V_{OUT} = OV$ P-channel is OFF and high P to V_{DD} Till $V_{IN} = O$ n-channel is OFF, high R to GND

Complementary p-channel is OH, high R to GNU metal-oxide semiconductor

(CMOS)

MOSFET is basically a capacitor when looking into the G terminal.

- DASSUME VIN = VDD => Vour = OV => CL is discharged
- ② V_{IN} + GND \Rightarrow V_{OUT} † V_{DD} \Rightarrow p-channel on and Vort goes to V_{DD} with time constant $\Upsilon = R_{CH}^{\text{MET}} \cdot C_L$

This decides max frequency

 $P = \frac{1}{2}C_L V_{DD}^2 \cdot f \Rightarrow \text{Fast circuit} \Rightarrow \text{high power}$