Electronic circuits and systems ELEC271

Part 14 Feedback theory applied to generic amplifier types

Look at feedback applied to the 4 amplifier types

- Voltage
- Current
- Transresistance
- transconductance

Application of feedback theory to amplifiers

Summary so far:

- Negative feedback converts a high gain but poorly stabilised amp. Into one which is nearly ideal
 - having practically constant gain independent of source and load impedances
- An ideal amplifier has R_{in}, R_{out} values which are either
 - ∞ (open circuit)
 0 (short circuit)

 THE FEEDBACK TOPOLOGY DETERMINES WHICH!

If the loop gain, A_{ol} β is sufficiently large, then the closed loop gain, A_f is equal to $1/\beta$: TO A GOOD APPROXIMATION

 We will now apply these ideas to some real amplifier circuits and establish a simple method for finding the gain.

1st Circuit type

Output sampling? Input summing?

So amplifier type is?

1st Circuit type

Voltage sensing at output Voltage summing at input

So voltage amplifier

Want to find

$$\beta_{v} = \frac{v_{f}}{v_{o}}$$

$$\beta_{v} = \frac{v_{f}}{v_{o}} = \frac{100}{100 + 2k} = \frac{1}{21}$$

Agrees very well with previous result using SPICE (see part 10)

2nd Circuit type

Output sampling? Input summing?

So amplifier type is?

2nd Circuit type

Current sampling at o/p
Current summing at I/p
Current amplifier

Need to find $\beta_i = \frac{i_f}{i_o}$ since $i_c \sim i_o$ we can draw feedback circuit as

$$i_f = i_o \frac{R_{C3}}{R_{C3} + R_f}$$
 Current division

$$\beta_i = \frac{i_f}{i_o} = \frac{R_{C3}}{R_{C3} + R_f} = \frac{3.48k}{3.48k + 26.1k} = \frac{1}{8.5}$$

$$A_{fi} = \frac{i_o}{i_g} = \frac{1}{\beta_i} = 8.5$$

Agrees very well with previous result using SPICE (see part 11)

3rd Circuit type

sensing at output? summing at i/p?

amplifier type is?

3rd Circuit type

Sampling voltage at o/p Input current summing

Transresistance amplifier

We need to find

$$\beta_r = \frac{i_f}{v_o}$$

 $R_{in} \sim 0$

 $4.7k\Omega$

So
$$i_f = \frac{v_o}{R_f}$$

$$\beta_r = \frac{i_f}{v_o} = \frac{1}{R_f} = \frac{1}{100k\Omega}$$
 $A_{fr} \sim \frac{1}{\beta_r} = \frac{v_o}{i_g} = 100k\Omega$

 Q_1

10kΩ

5.1kΩ

Note that do bias Rs are omitted

1kΩ

4.7kΩ

trans-R gain

 $12k\Omega$

 Q_2

What if we want to find the voltage gain of the trans-resistance amplifier?

- Replace amplifier schematic with ideal equivalent circuit of trans-R amplifier system
- Ideal current amp has zero input resistance and zero output/resistance as shown

PSPICE gives a voltage gain of 18.6... Agreement not as good as before.. Why?

Possible reasons

- 1. Forward path is EF, CE, EF; so A_{ol} may not be very big So A_{ol} β_r may not be big enough for good approx.
- 2. Negative feedback is trying to force $R_{in} \rightarrow 0....$

... but input stage is EF which has a very high input resistance without feedback!

bad! If we had started with a design having an input stage with a low input resistance then effect of NF would have been better...

Q: which A_{ol} should be considered??

CHECK: A_{ol} of trans-R amp??

So A_{ol} (Trans-R) likely to be quite big Look at 2nd reason

Possible reasons

- 1. Forward path is ZF, CE, EF; so A_{ol} may not be very big So A_{ol} β_r may not be big enough for good approx.
- 2. Negative feedback is trying to force $R_{in} \rightarrow 0....$

... but input stage is EF which has a very high input resistance without feedback!

bad! If we had started with a design having an input stage with a low input resistance then effect of NF would have been better...

NB PSPICE gives R_{in} ~ 500R

add to equivalent circuit

Check

$$v_o = 100k \times i_{in}$$

$$i_{in} = \frac{v_g}{4.7k + 500}$$

$$A_V = \frac{v_o}{v_g} = \frac{100k}{5.2k} = 19.2$$

Message: Start with a design having a low input resistance if you want to make a good trans-R!! amp!

4th Circuit type

Output sampling? Input summing?

So amplifier type is?

4th Circuit type

Output sampling is **current sensing**Input summing is **voltage summing**Amplifier type is **transconductance**

Compare with

Need to find
$$\beta_g = \frac{v_f}{i_o}$$

$$i_a = \frac{15k}{15k + 2.2k + 220}i_o = 0.861i_o$$

$$v_f = 220 \ \Omega \times 0.861 \times i_o$$
$$\beta_g = \frac{v_f}{i_o} = 189.4\Omega$$

$$A_{fg} = \frac{1}{\beta_g} = \frac{1}{189.4\Omega} = 5.28 mA/V$$

What if we want to find the voltage gain of the transconductance amplifier?

 Ideal trans-G amp has infinite input resistance and infinite output resistance as shown

$$v_o = 1.2k \times 5.28.10^{-3} v_{in}$$
 $v_{in} = v_g$

$$A_V = \frac{v_o}{v_g} = 6.34$$

PSPICE gives a voltage gain of 2.15 – factor of 3 out!

Possible reasons -1

R_{in} is actually at base of Q₁
 where voltage summing occurs –
 so v_g is attenuated by base biasing
 resistors which are 'outside the
 feedback loop.'

• : improved equivalent circuit is:

So that

$$v_{in} = \frac{11k//9.1k}{11k//9.1k + 600} v_g = 0.89 v_g$$
 And

$$\frac{v_o}{v_g} = 0.89 \times 6.34 = 5.64$$

-still too big!

Possible reasons -2

$$T = \beta_g A_{olg}$$

- LOOP GAIN is too small. I calculated loop gain to be only 0.634 certainly small!! should be much bigger than 1 for approximate formula to be accurate. $A_f \sim \frac{1}{R}$
- Bad design!!
- But can we use this value of loop gain (0.634) to get a better estimate of gain?

$$A_f = A_{\infty} \frac{T}{1+T}$$

T = loop gain $(A_{ol}\beta)$ and A_{∞} is the gain assuming T is large (ie infinite)

$$A_{fg} = 5.28 \times 10^{-3} \times \frac{0.634}{1 + 0.634}$$
 = 2.05 mA/V (cf 1.9mA/V from SPICE)

$$\frac{v_o}{v_g} = 0.89 \times 1.2k \times 2.05.10^{-3} = 2.19$$
 Compared with A_V = 2.15 from PSPICE

- NB PSPICE has to invert a 6x6 matrix with complex coefficients to solve this problem.
- Our 'back of the envelope' method is much simpler!

Conclusions of part 14

To calculate the approximate gain of an amplifier with feedback:

- Determine the topology of the feedback network
- Identify WHICH **ideal** amplifier is approximated: what are the ideal values for $R_{\rm in}$, $R_{\rm out}$
- What form does $\beta = \frac{x_f}{x_o}$ take?
- Calculate β (use R_{in} and R_{out} ideal values to help!)
- Calculate A_f from $A_f \sim \frac{1}{\beta}$
- Calculate the gain you require if it is not the gain stabilised by feedback by using the Ideal model (this assumes LOOP GAIN, T >> 1)

$$T = \beta A_{ol}$$

Worked Example ('Problems II')

Calculate the voltage gain, v_o/v_g assuming that the loop gain is infinite. Obtain a better estimate of the gain given that the loop gain is 15.

$$R_g = 1k$$
, $R_f = 10k$, $R_L = 500R$

- 1. Feedback topology at output? Feedback topology at input?
- 2. 'Ideal' (stabilised) amplifier? $R_{in} = , R_{o} =$

- 4. Calculate β
- 5. $A_f =$
- 6. V_o/V_g

Calculate the voltage gain, v_o/v_g assuming that the loop gain is infinite. Obtain a better estimate of the gain given that the loop gain is 15.

$$R_g = 1k, R_f = 10k, R_L = 500R$$

- output: Voltage sampling
 Input: Current summing
- 2. 'Ideal' (stabilised) amplifier? $R_{in} = R_{o} =$

- 4. Calculate β
- 5. $A_f =$
- 6. V_o/V_g

Calculate the voltage gain, v_o/v_g assuming that the loop gain is infinite. Obtain a better estimate of the gain given that the loop gain is 15.

$$R_g = 1k, R_f = 10k, R_L = 500R$$

output: Voltage sampling
 Input: Current summing

- Transresistance amplifier
 R_{in} ~ 0, R_o ~ 0
- 3. What form does β take?
- 4. Calculate β
- 5. $A_f =$
- 6. V_o/V_g

Calculate the voltage gain, v_o/v_g assuming that the loop gain is infinite.

Obtain a better estimate of the gain given that the loop gain is 15.

$$R_g = 1k, R_f = 10k, R_L = 500R$$

- output: Voltage sampling
 Input: Current summing
- 2. Transresistance amplifier $R_{in} \sim 0$, $R_o \sim 0$

3.
$$\beta = x_f / x_o$$

4.
$$I_f = v_o/R_f$$
 so $\beta_r = \frac{i_f}{v_o} = \frac{1}{R_f} = \frac{1}{10k\Omega}$

- 5. $A_f =$
- 6. V_o/V_g

Calculate the voltage gain, v_o/v_g assuming that the loop gain is infinite.

Obtain a better estimate of the gain given that the loop gain is 15.

$$R_g = 1k$$
, $R_f = 10k$, $R_L = 500R$

- output: Voltage sampling
 Input: Current summing
- Transresistance amplifier
 R_{in} ~ 0, R_o ~ 0

3.
$$\beta = x_f / x_o$$

4.
$$I_f = v_o/R_f$$
 so $\beta_r = \frac{i_f}{v_o} = \frac{1}{R_f} = \frac{1}{10k\Omega}$

5.
$$A_f = 1/\beta_r = 10k\Omega$$

$$6. V_o / V_g$$
?

Work out v_o / v_g

$$v_o = 10k \times i_{in}$$

$$i_{in} = \frac{v_g}{1k}$$

$$A_V = \frac{v_o}{v_g} = \frac{10k}{1k} = 10$$

Obtain a better estimate of the gain given that the loop gain is 15.

New trans-resistance gain

$$A_{fr} = A_{\infty} \frac{T}{1+T}$$

$$=10k\frac{15}{1+15}=9.375k\Omega$$

So better estimate of voltage gain

$$A_{v} = \frac{v_{o}}{v_{g}} = \frac{9.375k}{1k}$$

= 9.375

Problem Sheet 2 (VITAL)

(Bias resistors and coupling capacitors omitted for simplicity!)

Solutions also! - but try the problems yourself first!!

You try this one..

dc bias components are omitted for clarity. Identify the feedback topology and hence the amplifier type.

output voltage sampling, input current summing; Trans-resistance amplification is therefore stabilised.

Assuming that the amplifier has high loop gain, estimate a value for the gain that is stabilised by the feedback.

Need to find β_r from equivalent circuit

$$v_o = i_f \times 20k$$

$$\beta = \frac{i_f}{v_o} = \frac{1}{20k}$$

$$A_r \sim \frac{1}{\beta_r} = 20k$$

You try this one (2)...

A signal source, v_s with internal resistance, R_S =1k Ω is connected to the amplifier.

Estimate the voltage gain of the amplifier

Need to draw ANOTHER equivalent circuit: for ideal Trans-R amp Connect source and load

$$v_o = A_r i_{in} = A_r \frac{v_s}{1k}$$

$$\frac{v_o}{v_o} = \frac{10k}{10}$$

And voltage gain is 10

Exercises

These two familiar circuits have feedback!

See VITAL for: 'Problems Sheet 2'

Solutions also! - but try the problems yourself first!!

Apply the method to CE-ED

R_F - samples the output current!

Input voltage summing

So the amplifier is a stabilised transconductance amplifier!

Exercise: show that the voltage gain can be estimated as $-R_C/R_F$

Estimate the voltage gain of CE-ED

$$v_o = -A_g v_i R_C$$

$$v_o = -\frac{1}{R_E} v_i R_C$$

$$\frac{v_o}{v_i} \approx -\frac{R_C}{R_E}$$

Apply the method to CC

R_F - samples the output voltage!

Input voltage summing

So the amplifier is a stabilised voltage amplifier!

$$R_{in} = \infty$$
 $v_f \uparrow \qquad R_E \qquad \uparrow v_o$

$$\beta_{v} = \frac{v_{f}}{v_{o}} = 1$$

Next we will look at operational amplifiers