Séance 2 : Logique, Ensembles et Fonctions

Hervé Talé Kalachi

1 Introduction à la Logique Mathématique

La logique est le langage de la rigueur en mathématiques. Elle permet de structurer les raisonnements et de garantir la validité des démonstrations.

1.1 Propositions et Connecteurs Logiques

- **Proposition**: Une phrase qui est soit vraie, soit fausse.
- Connecteurs logiques :
 - Conjonction (\land) : "et"
 - Disjonction (∨) : "ou"
 - Négation (\neg) : "non"
 - Implication (\rightarrow) : "implique"
 - Équivalence (\leftrightarrow) : "si et seulement si"

Exemple : L'énoncé « S'il pleut, alors la rue est mouillée » se traduit par $P \to Q$, où P représente « il pleut » et Q « la rue est mouillée ».

1.2 Quantificateurs

Les quantificateurs permettent d'exprimer des propriétés sur des ensembles.

- Quantificateur universel (∀) : « pour tout »
- Quantificateur existentiel (∃) : « il existe »

Exemple: L'énoncé « Pour tout $x \in \mathbb{R}$, $x^2 \ge 0$ » s'écrit:

$$\forall x \in \mathbb{R}, \quad x^2 > 0.$$

2 Notions sur les Ensembles

2.1 Définitions et Notations

Un ensemble est une collection d'éléments distincts. On peut le définir de deux manières :

- Par extension : $A = \{1, 2, 3\}$.
- Par compréhension : $B = \{x \in \mathbb{R} \mid x > 0\}.$

2.2 Opérations sur les Ensembles

Soient A et B deux ensembles :

— Union : $A \cup B$ contient tous les éléments appartenant à A ou à B.

- Intersection : $A \cap B$ contient les éléments communs à A et B.
- **Différence** : $A \setminus B$ contient les éléments de A qui ne sont pas dans B.
- Complémentaire : Si U est l'univers, alors $A^c = U \setminus A$.

Exemple : Soient $A = \{1, 2, 3, 4\}$ et $B = \{3, 4, 5, 6\}$. Alors :

- $A \cup B = \{1, 2, 3, 4, 5, 6\}$
- $-A \cap B = \{3, 4\}$
- $-A \setminus B = \{1, 2\} \text{ et } B \setminus A = \{5, 6\}$

3 Introduction aux Fonctions

Une fonction associe à chaque élément d'un ensemble de départ un unique élément d'un ensemble d'arrivée.

3.1 Définitions et Terminologie

Soit $f: A \to B$ une fonction.

- f est **injective** si $f(x_1) = f(x_2)$ implique $x_1 = x_2$.
- f est surjective si pour tout $y \in B$, il existe $x \in A$ tel que f(x) = y.
- f est bijective si elle est à la fois injective et surjective.

Exemple: La fonction f(x) = 2x + 1 définie sur \mathbb{R} est bijective.

3.2 Exemples et Propriétés

- **Exemple 1**: La fonction $f(x) = x^2$ définie sur \mathbb{R} n'est pas injective (car f(2) = f(-2)) et n'est pas surjective (les valeurs négatives ne sont pas atteintes).
- **Exemple 2**: La fonction $g(x) = x^3$ définie sur \mathbb{R} est bijective.

4 Exercices d'Application

Exercice 1: Logique

Écrivez les expressions logiques pour les énoncés suivants :

- 1. « Il existe un nombre réel x tel que $x^2 = 4$ ».
- 2. « Pour tout $x \in \mathbb{R}$, $x^2 \ge 0$ ».

Exercice 2: Ensembles

Soit $A = \{1, 2, 3, 4, 5\}$ et $B = \{4, 5, 6, 7\}$. Déterminez :

- 1. $A \cup B$
- $2. A \cap B$
- 3. $A \setminus B$ et $B \setminus A$

Exercice 3: Fonctions

Considérez la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par f(x) = 3x - 2.

- 1. Montrez que f est bijective.
- 2. Trouvez l'inverse de f.

Solution pour l'exercice 3 :

Pour f(x) = 3x - 2, nous avons :

$$y = 3x - 2$$
 \Rightarrow $3x = y + 2$ \Rightarrow $x = \frac{y+2}{3}$.

Ainsi, l'inverse est $f^{-1}(y) = \frac{y+2}{3}$.

Références

- [1] Rosen, Kenneth H. Discrete Mathematics and Its Applications. McGraw-Hill, 7^{ème} édition, 2011.
- [2] Enderton, Herbert B. A Mathematical Introduction to Logic. $2^{\text{ème}}$ édition, Academic Press, 2001.
- [3] Velleman, Daniel J. How to Prove It: A Structured Approach. Cambridge University Press, 2006.