Dynamic System and Deep Learning¹

Shihua Zhang

December 12, 2024

Outline

- Introduction
- Optimal control and deep learning
- Control inspired learning algorithms
- Control inspired architectures

Machine learning and deep learning

Task: explore the information in data

Machine learning and deep learning

- Task: explore the information in data
- A general scheme of machine learning: extract features from data and solve problem with features

Machine learning and deep learning

- Task: explore the information in data
- A general scheme of machine learning: extract features from data and solve problem with features

Deep learning also follow the scheme, however in a deep way

Is deep learning explainable?

- Traditional machine learning models are explainable
 - meaningful features
 - less parameters
 - designable architecture

Is deep learning explainable?

- Traditional machine learning models are explainable
 - meaningful features
 - less parameters
 - designable architecture
- Deep learning is hard to explain
 - meaningless features
 - huge number of parameters
 - architecture hard to design

Is deep learning explainable?

- Traditional machine learning models are explainable
 - meaningful features
 - less parameters
 - designable architecture
- Deep learning is hard to explain
 - meaningless features
 - huge number of parameters
 - architecture hard to design

We need an explainable model to model deep learning models!

ResNet is a typical deep learning model

ResNet² is a milestone in deep learing

A simple change on each block (layer) of DNN

$$x_{k+1} = v(x_k, \theta_k) \rightarrow x_{k+1} = x_k + v(x_k, \theta_k)$$

 ResNet can be really deep (more than 1000 layers) and is widely used in practice as a base model

The intuition to use dynamic system

The "model" we use is dynamic system

Consider an ODE

$$\frac{dx}{dt} = F(x, t) \tag{1}$$

Forward Euler method:

$$x_{t+h} = x_t + hF(x_t, t) \tag{2}$$

The intuition to use dynamic system

The "model" we use is dynamic system

Consider an ODE

$$\frac{dx}{dt} = F(x, t) \tag{1}$$

Forward Euler method:

$$x_{t+h} = x_t + hF(x_t, t) \tag{2}$$

Analogous to ResNet block

$$x_{k+1} = x_k + v(x_k, \theta_k) \tag{3}$$

 ResNet can be regarded as a numerical solution of an ODE by disretizing time³

Connection to dynamic system

What can the connection of ResNet and dynamic system help?

• Formulize deep learning to optimal control problem

Inspire new learning algorithms

Inspire new architectures

Outline

- Introduction
- Optimal control and deep learning
- Control inspired learning algorithms
- Control inspired architectures

The optimal control

Definition

Optimal control theory is a branch of mathematical optimization that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized

The dynamics

$$\dot{x}(t) = f(x(t), \theta(t)), \quad t \in [t_0, t_1], \quad x(t_0) = x_0$$

The optimal control

Definition

Optimal control theory is a branch of mathematical optimization that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized

The dynamics

$$\dot{x}(t) = f(x(t), \theta(t)), \quad t \in [t_0, t_1], \quad x(t_0) = x_0$$

The cost function

$$J[\theta] = \int_{t_0}^{t_1} L(t, x(t), \theta(t)) dt + \Phi(t_1, x(t_1))$$

L is called running cost and Φ is called terminal cost

Optimal control formulation

The formulation of the optimal control problem is

$$\inf_{\theta} J[\theta] = \int_{t_0}^{t_1} L(t, x(t), \theta(t)) dt + \Phi(t_1, x(t_1))$$
subject to
$$\dot{x}(t) = f(t, x(t), \theta(t)), \quad t \in [t_0, t_1], \quad x(t_0) = x_0$$
(4)

 Based on the connection between dynamic system and deep learning, we can study the optimization of deep learning from the optimal control view

A mean-field optimal control formulation of deep learning

- Consider supervised learning with ResNet with K blocks (layers)
 - (x, y) is sampled from distribution μ
 - Let $\Phi(x_K, y)$ denote the loss function on data x and its label y
 - Let $L(x_k, \theta_k)$ denotes the regularizer of the k-th block (e.g., L_2 regularizer)

A mean-field optimal control formulation of deep learning

- Consider supervised learning with ResNet with *K* blocks (layers)
 - (x, y) is sampled from distribution μ
 - Let $\Phi(x_K, y)$ denote the loss function on data x and its label y
 - Let $L(x_k, \theta_k)$ denotes the regularizer of the k-th block (e.g., L_2 regularizer)
- The supervised learning problem can be formulated as

$$\inf_{(\theta(0),\cdots,\theta(K-1))\in\Theta^K} \mathbb{E}_{(x,y)\sim\mu}\left[\Phi(x(K),y) + \sum_{k=0}^{K-1} L(x(k),\theta(k))\right]$$

subject to

$$x(k+1) = x(k) + f(x(k), \theta(k)), \quad k = 0, \dots, K-1, \quad x(0) = x$$

A mean-field optimal control formulation of deep learning

The continuous-time version of the supervised learning problem is

$$\inf_{\substack{\theta \in L^{\infty}([0,T],\Theta)}} \mathbb{E}_{(x,y)\sim\mu} \left[\Phi(x(T),y) + \int_{0}^{T} L(x(t),\theta(t)) dt \right]$$
subject to
$$\dot{x}(t) = f(x(t),\theta(t)), \quad t \in [0,T], \quad x(0) = x$$
(5)

- Mean-field: emphasize the fact that we seek an optimal control that is shared with all input-label pairs (x, y).
- They are jointly distributed according to μ

Optimality conditions

 Pontryagin's maximum principle (PMP) gives necessary condition for optimality for our problem⁴

Optimality conditions

- Pontryagin's maximum principle (PMP) gives necessary condition for optimality for our problem⁴
- We first define the Hamiltonian

$$H: \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^d \times \Theta \to \mathbb{R}$$

$$H(t, x, p, \theta) = p^{\top} f(t, x, \theta) - L(t, x, \theta)$$
(6)

Optimality conditions

- Pontryagin's maximum principle (PMP) gives necessary condition for optimality for our problem⁴
- We first define the Hamiltonian

$$H: \mathbb{R} \times \mathbb{R}^{d} \times \mathbb{R}^{d} \times \Theta \to \mathbb{R}$$

$$H(t, x, p, \theta) = p^{\top} f(t, x, \theta) - L(t, x, \theta)$$
(6)

Pontryagin's maximum principle

If θ^* is optimal and x^* is the corresponding state trajectory, then there exists an absolutely continuous process p

$$\dot{x}^{*}(t) = \nabla_{p} H(t, x^{*}(t), \rho^{*}(t), \theta^{*}(t)), \quad x^{*}(t_{0}) = x_{0}
\dot{p}^{*}(t) = -\nabla_{x} H(t, x^{*}(t), \rho^{*}(t), \theta^{*}(t)), \quad p^{*}(t_{1}) = -\nabla_{x} \Phi(x^{*}(t_{1}), y)
H(t, x^{*}(t), \rho^{*}(t), \theta^{*}(t)) \geqslant H(t, x^{*}(t), \rho^{*}(t), \theta)
\forall \theta \in \Theta \text{ and a.e. } t \in [t_{0}, t_{1}]$$
(7)

Understanding PMP from nonlinear program

- We can view the optimal control problem as a nonlinear program where the constraint is the ODE
- Co-state process p* plays the role of a continuous-time analogue of Lagrange multipliers.
- The key difference between the PMP and KKT conditions is the Hamiltonian maximization condition, which is stronger than a typical first-order condition that assumes smoothness with respect to θ
- In particular, the PMP says that H is not only stationary, but globally maximized at an optimal control

Outline

- Introduction
- Optimal control and deep learning
- Control inspired learning algorithms
- 4 Control inspired architectures

Control inspired learning algorithm

Method of successive approximations (MSA)

start with an initial guess θ^0 , at the n^{th} iteration we solve

$$\dot{x}^{n}(t) = f(x^{n}(t), \theta^{n}(t)) & x^{n}(0) = x \\
\dot{p}^{n}(t) = -\nabla_{x}H(x^{n}(t), p^{n}(t), \theta^{n}(t)) & p^{n}(T) = -\nabla_{x}\Phi(x^{n}(T), y) \\
\theta^{n+1}(t) = \underset{\theta \in \Theta}{\arg \max} H(x^{n}(t), p^{n}(t), \theta).$$
(8)

• if (x^n, p^n, θ^n) converges, then the limit must be a solution of the PMP

Connection between BP and MSA

Recall

$$H(t, x, \rho, \theta) = \rho^{\top} f(t, x, \theta) - L(t, \theta)$$
(9)

Since

$$\dot{p}^{n}(t) = -\nabla_{x} H(x^{n}(t), p^{n}(t), \theta^{n}(t)), \quad p^{n}(T) = -\nabla_{x} \Phi(x^{n}(T), y)$$
(10)

It is easy to see

$$p^{n}(t) = -\nabla_{x^{n}(t)}\Phi\left(x^{n}(T), y\right) \tag{11}$$

Connection between BP and MSA

Recall

$$H(t, x, p, \theta) = p^{\top} f(t, x, \theta) - L(t, \theta)$$
(9)

Since

$$\dot{p}^{n}(t) = -\nabla_{x}H(x^{n}(t), p^{n}(t), \theta^{n}(t)), \quad p^{n}(T) = -\nabla_{x}\Phi(x^{n}(T), y)$$
(10)

It is easy to see

$$p^{n}(t) = -\nabla_{x^{n}(t)}\Phi\left(x^{n}(T), y\right) \tag{11}$$

Then we have

$$\nabla_{\theta(t)}J(\theta) = \nabla_{x(t)}\Phi(x(T), y) \nabla_{\theta(t)}x(t) + \nabla_{\theta(t)}L(t, \theta)$$

$$= -p(t)\nabla_{\theta(t)}f(x(t), \theta(t)) + \nabla_{\theta(t)}L(t, \theta)$$

$$= \nabla_{\theta(t)}H$$
(12)

Connection between BP and MSA

For BP

$$\theta^{n+1}(t) = \theta^{n}(t) + \eta \nabla_{\theta} H(x^{n}(t), \rho^{n}(t), \theta)$$
(13)

For MSA

$$\theta^{n+1}(t) = \underset{\theta \in \Theta}{\arg\max} H(x^n(t), p^n(t), \theta)$$
 (14)

MSA is a generalization of the back-propagation algorithm

Experiments of MSA

The target function is $F(x) = \sin(x)$

Line 1: good initialization; line 2: bad initialization

Layer parallel training algorithm⁵

 Note that the equation for x has a initial condition, the equation for p has a terminal condition

$$x(0) = x$$
, $p(T) = -\nabla_x \Phi(x(T), y)$

We can break it down to two sub-problems

Layer parallel training algorithm⁵

 Note that the equation for x has a initial condition, the equation for p has a terminal condition

$$x(0) = x$$
, $p(T) = -\nabla_x \Phi(x(T), y)$

We can break it down to two sub-problems

- Let S = T/2,
 - P1: $(t \in [0, S])$

$$\dot{p}^{n}(t) = -\nabla_{x} H\left(x^{n-1}(t), p^{n}(t), \theta^{n}(t)\right) \quad p^{n}(S) = p^{n-1}(S)$$

$$\dot{x}^{n}(t) = f\left(x^{n}(t), \theta^{n}(t)\right) \quad x^{n}(0) = x$$
(15)

• P2: (*t* ∈ [*S*, *T*])

$$\dot{x}^{n}(t) = f(x^{n}(t), \theta^{n}(t)) \quad x^{n}(S) = x^{n-1}(S)
\dot{p}^{n}(t) = -\nabla_{x}H(x^{n}(t), p^{n}(t), \theta^{n}(t)) \quad p^{n}(T) = -\nabla_{x}\Phi(x^{n}(T), y)$$
(16)

⁵parpas2019predict. 4 □ ▶ 4 ② ▶ 4 ③ ▶ 4 ⑤ ▶ 3 ⑤ ◆ ○ ○

Layer parallel training algorithm⁵

 Note that the equation for x has a initial condition, the equation for p has a terminal condition

$$x(0) = x$$
, $p(T) = -\nabla_x \Phi(x(T), y)$

We can break it down to two sub-problems

- Let S = T/2,
 - P1: $(t \in [0, S])$

$$\dot{p}^{n}(t) = -\nabla_{x} H\left(x^{n-1}(t), p^{n}(t), \theta^{n}(t)\right) \quad p^{n}(S) = p^{n-1}(S)$$

$$\dot{x}^{n}(t) = f\left(x^{n}(t), \theta^{n}(t)\right) \quad x^{n}(0) = x$$
(15)

P2: (t ∈ [S, T])

$$\dot{x}^{n}(t) = f(x^{n}(t), \theta^{n}(t)) \quad x^{n}(S) = x^{n-1}(S)
\dot{p}^{n}(t) = -\nabla_{x}H(x^{n}(t), p^{n}(t), \theta^{n}(t)) \quad p^{n}(T) = -\nabla_{x}\Phi(x^{n}(T), y)$$
(16)

P1 and P2 can be run in parallel

Layer-parallel vs data-parallel

Layer-parallel implementation has more merit when network is deep

Outline

- Introduction
- Optimal control and deep learning
- Control inspired learning algorithms
- Control inspired architectures

Control inspired architecture

Stability of linear system

A simple linear ODE $\dot{x}(t) = Ax(t)$, $\dot{x}(0) = x_0 \Rightarrow \dot{x}(t) = e^{tA}x_0$ $\lambda_1, \dots, \lambda_d \in \mathbb{C}$ are the eigenvalues of A. x_{ϵ} is a small perturbation of x. Then 1) if $\Re(\lambda_i) \leq 0 \Rightarrow ||x(t) - x_{\epsilon}(t)||$ is bounded; 2) if $\Re(\lambda_i) > 0$ for some $i \Rightarrow \|x(t) - x_{\epsilon}(t)\| \to \infty \text{ as } t \to \infty$

Control inspired architecture

Stability of linear system

A simple linear ODE $\dot{x}(t) = Ax(t)$, $x(0) = x_0 \Rightarrow x(t) = e^{tA}x_0$ $\lambda_1, \cdots, \lambda_d \in \mathbb{C}$ are the eigenvalues of A. x_{ϵ} is a small perturbation of x. Then 1) if $\Re(\lambda_i) \leq 0 \Rightarrow ||x(t) - x_{\epsilon}(t)||$ is bounded; 2) if $\Re(\lambda_i) > 0$ for some $i \Rightarrow \|x(t) - x_{\epsilon}(t)\| \to \infty \text{ as } t \to \infty$

- If A is anti symmetric, i.e., $A^T = -A$ then $\Re(\lambda_i) = 0$
- Anti symmetric can be constructed by $A = B B^T$
- One can reparameterize the neural network in a similar way⁶

$$\dot{x}(t) = \sigma(W(t)x(t) + b(t)) \rightarrow \dot{x}(t) = \sigma\left(\left[V(t) - V(t)^{\top}\right]x(t) + b(t)\right)$$
(17)

6haber2017stable.

Experiments

Comparison of training error (TE) and validation error (VE)

layers	ResNet		anti symmetric ResNet		Hamiltonian Verlet	
	TE	VE	TE	VE	TE	VE
4	0.96%	1.71%	1.13%	1.70%	1.49%	2.29%
8	0.80%	1.59%	0.92%	1.46%	0.82%	1.60%
16	0.73%	1.53%	0.91%	1.38%	0.35%	1.58%

The antisymmetric ResNet giving slightly lower validation errors at each level

Backward Euler discretization⁷

ResNet corresponds to the forward Euler discretization

Backward Euler discretization⁷

- ResNet corresponds to the forward Euler discretization
- The backward Euler is

$$\widehat{x}(k+1) = \widehat{x}(k) + \Delta t f((k+1)\Delta t, \widehat{x}(k+1))$$

$$\downarrow \qquad \qquad (18)$$

$$\widehat{x}(k+1) = (I - \Delta t f((k+1)\Delta t, \cdot))^{-1}(\widehat{x}(k))$$

• For linear f one can expand as

$$\widehat{x}(k+1) \approx \widehat{x}(k) + \Delta t f((k+1)\Delta t, \widehat{x}(k)) + \Delta t^2 [f((k+1) \Delta t, \cdot)^2] (\widehat{x}(k))$$
(19)

Backward Euler discretization⁷

- ResNet corresponds to the forward Euler discretization
- The backward Euler is

$$\widehat{x}(k+1) = \widehat{x}(k) + \Delta t f((k+1)\Delta t, \widehat{x}(k+1))$$

$$\downarrow \qquad \qquad (18)$$

$$\widehat{x}(k+1) = (I - \Delta t f((k+1)\Delta t, \cdot))^{-1}(\widehat{x}(k))$$

For linear f one can expand as

$$\widehat{x}(k+1) \approx \widehat{x}(k) + \Delta t f((k+1)\Delta t, \widehat{x}(k)) + \Delta t^2 [f((k+1) \Delta t, \cdot)^2] (\widehat{x}(k))$$
(19)

• In numerical analysis, backward Euler enjoy better stability

Linear multi-step discretization

Another family of networks based on linear multi-step discretization

$$\widehat{x}(k+1) = (1 - \alpha_k)\widehat{x}(k) + \alpha_k\widehat{x}(k-1) + \Delta t f(k\Delta t, \widehat{x}(k))$$
 (20)

• The weight α_k as a trainable parameter

 DenseNet⁸ can be thought of as an extreme case of such a multi-step method

Architecture from PDE Theory

 Derive new models with better robustness or other good properties from PDE Theory

Connection to transport equation (TE)⁹

For an ODE,

$$\frac{dx}{dt} = F(A(t), x), \ x(0) = x_0$$

let u(x, t) be a function that is constant along the trajectory defined by the ODE

Then

$$\frac{du(x(t),t)}{dt} = \frac{\partial u(x,t)}{\partial t} + F(A(t),x)\frac{\partial u}{\partial x} = 0$$

- Enforce u(x(1), 1) = f(x(0)) and u(x(0), 0) = y
- Then training ResNet is to find u and u(x(0), 0) is the classifier

TE view of ResNet

The formulization is

$$\begin{cases}
\frac{\partial u(x,t)}{\partial t} + F(A(t),x)\frac{\partial u}{\partial x} = 0 \\
u(x(1),1) = f(x(0)) \\
u(x(0),0) = y
\end{cases} (21)$$

- When F is complex, u(x, 0) may be highly irregular
- TE more regular → ResNet more robust
- Solve the convection diffusion equation

$$\frac{\partial u(x,t)}{\partial t} + F(A(t),x)\frac{\partial u}{\partial x} + \frac{1}{2}\sigma^2 \Delta u(x,t) = 0$$
 (22)

instead

Regularity of convection diffusion equation

Terminal condition of convection diffusion equation with different $\boldsymbol{\sigma}$

ResNets Ensemble via the Feynman-Kac Formula

 The convection-diffusion equation can be solved using the Feynman-Kac formula in high dimensional space

$$dx(t) = F(A(t), x)dt + \sigma dB_t$$
 (23)

- The term σdB_t in the Itô process that can be approximated by adding a specially designed Gaussian noise, $\sigma N(0, I)$
- Idea: approximate the Feynman-Kac formula by an ensemble of modified ResNets

Results of experiment

Model	dataset	$\mathcal{A}_{\mathrm{nat}}$	$\mathcal{A}_{\mathrm{rob}}$ (FGSM)	$A_{\rm rob}~({\rm IFGSM^{20}})$	$\mathcal{A}_{\rm rob}$ (C&W)
ResNet20	CIFAR10	75.11	50.89	46.03	58.73
En ₁ ResNet20	CIFAR10	77.21	55.35	49.06	65.69
En ₂ ResNet20	CIFAR10	80.34	57.23	50.06	66.47
En ₅ ResNet20	CIFAR10	82.52	58.92	51.48	67.73
ResNet44	CIFAR10	78.89	54.54	48.85	61.33
En ₁ ResNet44	CIFAR10	82.03	57.80	51.83	66.00
En ₂ ResNet44	CIFAR10	82.91	58.29	51.86	66.89
ResNet110	CIFAR10	82.19	57.61	52.02	62.92
En ₂ ResNet110	CIFAR10	82.43	59.24	53.03	68.67
En ₁ WideResNet34-10	CIFAR10	86.19	61.82	56.60	69.32

Ensemble of ResNets is more robust to different attacks (FGSM, IFGSM and C&W)