International Macroeconomics Lecture 4: Limited Commitment

Zachary R. Stangebye

University of Notre Dame

Fall 2018

- Thus far, we've assumed all agents can commit to actions they will take in the future e.g.
 - Central bank commits to a monetary trajectory
 - Governments/households commit to repaying foreign debt

- Thus far, we've assumed all agents can commit to actions they will take in the future e.g.
 - Central bank commits to a monetary trajectory
 - Governments/households commit to repaying foreign debt
- A useful assumption, but realistic?

- Thus far, we've assumed all agents can commit to actions they will take in the future e.g.
 - Central bank commits to a monetary trajectory
 - Governments/households commit to repaying foreign debt
- A useful assumption, but realistic?
- Sometimes the plan is hard to stick to...
 - Still optimal to pay back the debts optimally incurred today when tomorrow actually rolls around?
 - Still optimal to adhere to a hard monetary peg when a crisis actually rolls around?

- Thus far, we've assumed all agents can commit to actions they will take in the future e.g.
 - Central bank commits to a monetary trajectory
 - Governments/households commit to repaying foreign debt
- A useful assumption, but realistic?
- Sometimes the plan is hard to stick to...
 - Still optimal to pay back the debts optimally incurred today when tomorrow actually rolls around?
 - Still optimal to adhere to a hard monetary peg when a crisis actually rolls around?
- Countless real-world examples of these and many others
 - 1. Mexican devaluation of 1994
 - 2. Argentine default (and devaluation) of 2001
 - 3. Greek default of 2012
 - 4. ...

- In reality, governments and central banks (as well as many other actors) lack credibility
- How is this dealt with in equilibrium i.e. how can we model/think about this?

- In reality, governments and central banks (as well as many other actors) lack credibility
- How is this dealt with in equilibrium i.e. how can we model/think about this?
 - 1. Treat 'yourself' tomorrow as an entirely different person

- In reality, governments and central banks (as well as many other actors) lack credibility
- How is this dealt with in equilibrium i.e. how can we model/think about this?
 - 1. Treat 'yourself' tomorrow as an entirely different person
 - 2. You do not get to choose future actions, only current ones

- In reality, governments and central banks (as well as many other actors) lack credibility
- How is this dealt with in equilibrium i.e. how can we model/think about this?
 - 1. Treat 'yourself' tomorrow as an entirely different person
 - 2. You do not get to choose future actions, only current ones
 - But you can take into account how your future self will (optimally) react to your current actions

- In reality, governments and central banks (as well as many other actors) lack credibility
- How is this dealt with in equilibrium i.e. how can we model/think about this?
 - 1. Treat 'yourself' tomorrow as an entirely different person
 - 2. You do not get to choose future actions, only current ones
 - 3. But you can take into account how your future self will (optimally) react to your current actions
 - 4. Other actors (e.g. investors) realize your lack of credibility and value debt/money accordingly

- In reality, governments and central banks (as well as many other actors) lack credibility
- How is this dealt with in equilibrium i.e. how can we model/think about this?
 - 1. Treat 'yourself' tomorrow as an entirely different person
 - 2. You do not get to choose future actions, only current ones
 - 3. But you can take into account how your future self will (optimally) react to your current actions
 - 4. Other actors (e.g. investors) realize your lack of credibility and value debt/money accordingly
- Necessarily, these models will need to be solved using backward induction
 - Only when optimal behavior tomorrow is known can we solve today's problem

Starting Point

- Limited commitment models often very hard to deal with
- Start with an easier benchmark: *Temporary Limited Commitment*

Starting Point

- Limited commitment models often very hard to deal with
- Start with an easier benchmark: *Temporary Limited Commitment*
 - One-time commitment problem between t and t+1 i.e. may renege on promises/commitments made in time t
 - After t + 1, the central bank/government can fully commit into infinite-horizon

Starting Point

- Limited commitment models often very hard to deal with
- Start with an easier benchmark: Temporary Limited Commitment
 - One-time commitment problem between t and t+1 i.e. may renege on promises/commitments made in time t
 - After t+1, the central bank/government can fully commit into infinite-horizon
- This set-up is much more tractable
- Basic lessons here hold up in the world where there is never commitment

Example 1: Sovereign Debt

- Sovereign debt: Debt issued by a government that has ultimate authority over its repayment
 - Contrast: Corporate debt, which is subject to bankruptcy procedures in event of default

Example 1: Sovereign Debt

- Sovereign debt: Debt issued by a government that has ultimate authority over its repayment
 - Contrast: Corporate debt, which is subject to bankruptcy procedures in event of default
- Historically came in two forms: Bank debt and bonds
- Examples
 - US Treasury bonds
 - Argentine government bonds
 - Bank loans to Mexican sub-national governments
- Contracts vary widely and significantly across countries/time

Sovereign Debt

- Two key frictions in sovereign debt markets
 - 1. Inability of creditors to seize assets in default event
 - 2. Limited commitment of borrower to repay

Sovereign Debt

- Two key frictions in sovereign debt markets
 - 1. Inability of creditors to seize assets in default event
 - 2. Limited commitment of borrower to repay
- Motivations for trade
 - 1. Consumption smoothing: Sovereign may want to use foreign borrowing to smooth out domestic shocks
 - Consumption front-loading: Sovereign may be more impatient than lenders

 Suppose government makes all decisions for household in endowment economy

- Suppose government makes all decisions for household in endowment economy
- Recall case with commitment

$$\max_{\{c_s\}_{s=t}^{\infty}} \sum_{s=t}^{\infty} \beta^{s-t} u(c_s)$$

s.t.
$$-b_t = \sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} [y_s - c_s]$$

- Suppose government makes all decisions for household in endowment economy
- Recall case with commitment

$$\max_{\{c_s\}_{s=t}^{\infty}} \sum_{s=t}^{\infty} \beta^{s-t} u(c_s)$$

s.t.
$$-b_t = \sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} [y_s - c_s]$$

- Trade balance $tb_s = y_s c_s$
- Implement consumption choices through borrowing

$$c_s + \frac{1}{1+r}b_{s+1} = y_s + b_s$$

- Solution: Combine Euler equation and lifetime BC
- Suppose we have a solution $\{c_s^\star(b_t)\}_{s=t}^\infty$
- Define new object: A Value Function is the lifetime utility attained by implementing the optimal solution i.e.

$$V_t(b_t) = \sum_{s=t}^{\infty} \beta^{s-t} u(c_s^{\star}(b_t))$$

- Solution: Combine Euler equation and lifetime BC
- Suppose we have a solution $\{c_s^\star(b_t)\}_{s=t}^\infty$
- Define new object: A Value Function is the lifetime utility attained by implementing the optimal solution i.e.

$$V_t(b_t) = \sum_{s=t}^{\infty} \beta^{s-t} u(c_s^{\star}(b_t))$$

- Notice: $V_t(b_t)$ is an increasing function
 - More debt sovereign has (lower b_t)...
 - · Less income he can devote to income
 - More income must be devoted to debt repayment over lifetime

- ullet Consider a one-time commitment problem between t and t+1
- In period t, can issue debt, $-b_{t+1}$
 - ullet Cannot promise to repay in period t+1

- ullet Consider a one-time commitment problem between t and t+1
- In period t, can issue debt, $-b_{t+1}$
 - ullet Cannot promise to repay in period t+1
- In period t+1, sovereign gets a choice
 - 1. Repay $-b_{t+1}$ and commit to servicing it forever i.e. $V_{t+1}(b_{t+1})$
 - 2. Default on $-b_{t+1}$: Creditors never lend again

- ullet Consider a one-time commitment problem between t and t+1
- In period t, can issue debt, $-b_{t+1}$
 - Cannot promise to repay in period t+1
- In period t+1, sovereign gets a choice
 - 1. Repay $-b_{t+1}$ and commit to servicing it forever i.e. $V_{t+1}(b_{t+1})$
 - 2. Default on $-b_{t+1}$: Creditors never lend again
- In default, value is autarky i.e.

$$V_{A,t+1} = \sum_{s=t+1}^{\infty} \beta^{s-(t+1)} u(y_s)$$

- ullet Consider a one-time commitment problem between t and t+1
- In period t, can issue debt, $-b_{t+1}$
 - ullet Cannot promise to repay in period t+1
- In period t+1, sovereign gets a choice
 - 1. Repay $-b_{t+1}$ and commit to servicing it forever i.e. $V_{t+1}(b_{t+1})$
 - 2. Default on $-b_{t+1}$: Creditors never lend again
- In default, value is autarky i.e.

$$V_{A,t+1} = \sum_{s=t+1}^{\infty} \beta^{s-(t+1)} u(y_s)$$

• Sovereign defaults in t+1 if

$$V_{A,t+1} > V_{t+1}(b_{t+1})$$

Characterizing Default

- 1. Value of autarky independent of debt stock, $-b_{t+1}$
 - Size of debt does not matter if it will never be serviced again

Characterizing Default

- 1. Value of autarky independent of debt stock, $-b_{t+1}$
 - Size of debt does not matter if it will never be serviced again
- 2. Temptation to default increasing in debt $(-b_{t+1})$
 - $V_{t+1}(b_{t+1})$ increasing in b_{t+1}
 - $V_{A,t+1}$ independent of b_{t+1}

Characterizing Default

- 1. Value of autarky independent of debt stock, $-b_{t+1}$
 - Size of debt does not matter if it will never be serviced again
- 2. Temptation to default increasing in debt $(-b_{t+1})$
 - $V_{t+1}(b_{t+1})$ increasing in b_{t+1}
 - $V_{A,t+1}$ independent of b_{t+1}
- 3. It must be the case that

$$V_{A,t+1} \leq V_{t+1}(0)$$

- Same financial position: Autarky and zero debt
- Better to have zero debt and access to financial markets
- Autarky allocation feasible but likely not optimal with credit market access

Lenders

- Foreign lenders are
 - 1. Deep-pocketed no budget constraint
 - 2. Have access to a risk-free asset with return r
 - 3. Risk-neutral i.e. average return is all that matters

Lenders

- Foreign lenders are
 - 1. Deep-pocketed no budget constraint
 - 2. Have access to a risk-free asset with return r
 - 3. Risk-neutral i.e. average return is all that matters
- Competitive market eliminates arbitrage opportunities
 - Risk-free return = Expected return on defaultable bond

Lenders

- Foreign lenders are
 - 1. Deep-pocketed no budget constraint
 - 2. Have access to a risk-free asset with return r
 - 3. Risk-neutral i.e. average return is all that matters
- Competitive market eliminates arbitrage opportunities
 - Risk-free return = Expected return on defaultable bond
- If interest rate on defaultable bond is \hat{r}_{t+1}

$$1 + r = (1 + \hat{r}_{t+1}) \times Pr(Repayment_{t+1}) + 0 \times Pr(Default_{t+1})$$

$$\implies \underbrace{q_t}_{\substack{\text{Bond price}}} = \frac{1}{1 + \hat{r}_{t+1}} = \frac{Pr(Repayment_{t+1})}{1 + r}$$

Lenders

- Things to note...
 - 1. If no default risk i.e. $Pr(Repayment_{t+1}) = 1$, then

$$r_{t+1} = \hat{r}_{t+1}$$

2. If this is not the case, then

$$s_{t+1} = \hat{r}_{t+1} - r_{t+1} > 0$$

where s_{t+1} is the spread on the bond

Issuance Decision

- ullet No uncertainty between t and t+1
 - Probability of default either zero or one

Issuance Decision

- ullet No uncertainty between t and t+1
 - Probability of default either zero or one
- · Lenders will not lend if default is certain

Issuance Decision

- ullet No uncertainty between t and t+1
 - Probability of default either zero or one
- Lenders will not lend if default is certain
- Temptation to default increases with debt: Define threshold, $ar{b}_{t+1} \leq 0$ by

$$V_{t+1}(\bar{b}_{t+1}) = V_{A,t+1}$$

- If $b_{t+1} < \bar{b}_{t+1} \implies \mathsf{Default}$
- ullet If $b_{t+1} \geq ar{b}_{t+1} \implies \mathsf{Repay}$

Issuance Decision

- ullet No uncertainty between t and t+1
 - Probability of default either zero or one
- Lenders will not lend if default is certain
- Temptation to default increases with debt: Define threshold, $\bar{b}_{t+1} \leq 0$ by

$$V_{t+1}(\bar{b}_{t+1}) = V_{A,t+1}$$

- If $b_{t+1} < \bar{b}_{t+1} \implies \mathsf{Default}$
- If $b_{t+1} \geq \bar{b}_{t+1} \implies \mathsf{Repay}$
- \bar{b}_{t+1} is the **debt limit**
 - Issue below: Get risk-free rate
 - Cannot issue above (infinite interest rate)

Price Schedule

Sovereign chooses debt issuance by solving

$$\max_{b_{t+1}} \ u(y_t + b_t - q_t(b_{t+1})b_{t+1}) + \beta \times \max\{V_{t+1}(b_{t+1}), V_{A,t+1}\}$$

- Features
 - Sovereign chooses debt issuance taking lender demand as given i.e. monopolist
 - 2. Sovereign cannot *control* default decision tomorrow, but he *knows whether it will happen and accounts for it*

Simplifying

- Sovereign would never borrow past limit (no benefit)
- Problem same as adding a new constraint to the commitment model

$$\hat{V}_{t}(b_{t}) = \max_{b_{t+1}} u\left(y_{t} + b_{t} - \frac{1}{1+r}b_{t+1}\right) + \beta V_{t+1}(b_{t+1})$$
s.t. $b_{t+1} \geq \bar{b}_{t+1}$

Simplifying

- Sovereign would never borrow past limit (no benefit)
- Problem same as adding a new constraint to the commitment model

$$\hat{V}_{t}(b_{t}) = \max_{b_{t+1}} u\left(y_{t} + b_{t} - \frac{1}{1+r}b_{t+1}\right) + \beta V_{t+1}(b_{t+1})$$
s.t. $b_{t+1} > \bar{b}_{t+1}$

- Notice this is the same as the commitment model $(V_t(b_t))$ with a borrowing constraint
- It immediately follows that

$$\hat{V}_t(b_t) \leq V_t(b_t)$$

i.e. lack of commitment can only hurt the sovereign

- This equivalence also implies solution technique
 - Solve commitment model (i.e. Euler equation and resource constraint)
 - 2. Check if optimal $b_{t+1}^{\star} \geq \bar{b}_{t+1}$
 - If so, we're done (constraint does not bind)
 - ullet If not, optimal $b_{t+1}^\star = ar{b}_{t+1}$ i.e. borrow to constraint

isic Idea Deterministic Economies Uncertainty Beliefs

- This equivalence also implies solution technique
 - Solve commitment model (i.e. Euler equation and resource constraint)
 - 2. Check if optimal $b_{t+1}^{\star} \geq \bar{b}_{t+1}$
 - If so, we're done (constraint does not bind)
 - ullet If not, optimal $b_{t+1}^\star = ar{b}_{t+1}$ i.e. borrow to constraint
- When does constraint bind?

isic Idea Deterministic Economies Uncertainty Beliefs

- This equivalence also implies solution technique
 - Solve commitment model (i.e. Euler equation and resource constraint)
 - 2. Check if optimal $b_{t+1}^{\star} \geq \bar{b}_{t+1}$
 - If so, we're done (constraint does not bind)
 - If not, optimal $b_{t+1}^\star = ar{b}_{t+1}$ i.e. borrow to constraint
- When does constraint bind? When sovereign wants to borrow
 - Low β (relative impatience/consumption front-loading)
 - Low y_t /high negative b_t (recession/debt crisis)

sic Idea Deterministic Economies Uncertainty Beliefs

- This equivalence also implies solution technique
 - Solve commitment model (i.e. Euler equation and resource constraint)
 - 2. Check if optimal $b_{t+1}^{\star} \geq \bar{b}_{t+1}$
 - If so, we're done (constraint does not bind)
 - If not, optimal $b_{t+1}^\star = ar{b}_{t+1}$ i.e. borrow to constraint
- When does constraint bind? When sovereign wants to borrow
 - Low β (relative impatience/consumption front-loading)
 - Low y_t /high negative b_t (recession/debt crisis)
- Asymmetrically restricts consumption smoothing
 - · Can save as much as he likes in booms
 - Cannot borrow through recessions

asic Idea Deterministic Economies Uncertainty Beliefs

Other lessons

- 1. Debt limit set by willingness to pay, not ability
- 2. Autarky alone generally gives \bar{b}_{t+1} close to zero
 - Typically need other costs to see large amounts of debt

asic Idea Deterministic Economies Uncertainty Beliefs

Other lessons

- 1. Debt limit set by willingness to pay, not ability
- 2. Autarky alone generally gives \bar{b}_{t+1} close to zero
 - Typically need other costs to see large amounts of debt
 - Limitations
 - No default in equilibrium
 - No positive spreads in equilibrium
 - Implied debt levels nowhere near data

Example 2: Maintaining a Peg

sd

Back to Sovereign Debt

- Allow for uncertainty between debt issuance and repayment decision
- Assume that the value of default is

$$V_{D,t+1} = V_{A,t+1} + m_{t+1}$$

where m_{t+1} is a $\emph{random variable}$, whose value is not known in period t

Back to Sovereign Debt

- Allow for uncertainty between debt issuance and repayment decision
- Assume that the value of default is

$$V_{D,t+1} = V_{A,t+1} + m_{t+1}$$

where m_{t+1} is a $random\ variable$, whose value is not known in period t

- Interpretations
 - 1. Political uncertainty e.g. strength of populism
 - 2. Default causes recession: Severity unknown
 - 3. Default causes foreign sanctions: Severity unknown

Back to Sovereign Debt

- Allow for uncertainty between debt issuance and repayment decision
- Assume that the value of default is

$$V_{D,t+1} = V_{A,t+1} + m_{t+1}$$

where m_{t+1} is a random variable, whose value is not known in period t

- Interpretations
 - 1. Political uncertainty e.g. strength of populism
 - 2. Default causes recession: Severity unknown
 - 3. Default causes foreign sanctions: Severity unknown
- High realization of m_{t+1} may imply default where a low realization would imply repayment

Digression: Random Variables

- Substantial theory behind random variables
- All we'll need is the Cumulative Distribution Function (CDF) of the shock m_{t+1}

$$F(m) = Pr(m_{t+1} \leq m)$$

Digression: Random Variables

- Substantial theory behind random variables
- All we'll need is the Cumulative Distribution Function (CDF) of the shock m_{t+1}

$$F(m) = Pr(m_{t+1} \leq m)$$

- CDF completely and fully characterizes randomness associated with shock
- $F(\cdot)$ increasing function bounded in [0,1]
- Assume $m_{t+1} \in [\underline{m}, \bar{m}]$ i.e. bounded

$$\implies F(\underline{\mathbf{m}}) = 0, \quad F(\bar{\mathbf{m}}) = 1$$

Sample CDF

- Assume also that
 - 1. CDF is given and everybody knows it
 - 2. CDF is continuous and differentiable
 - 3. $E_t[m_{t+1}] = 0$ i.e autarky is average punishment

Implications

- Assume also that
 - 1. CDF is given and everybody knows it
 - 2. CDF is continuous and differentiable
 - 3. $E_t[m_{t+1}] = 0$ i.e autarky is average punishment
- Sovereign repays whenever

$$V_{t+1}(b_{t+1}) \geq V_{D,t+1} = V_{A,t+1} + m_{t+1}$$

Implies

$$Pr(Repayment_{t+1}) = Pr(V_{A,t+1} + m_{t+1} \le V_{t+1}(b_{t+1}))$$

$$= Pr(m_{t+1} \le V_{t+1}(b_{t+1}) - V_{A,t+1})$$
 $\implies Pr(Repayment_{t+1}) = F(V_{t+1}(b_{t+1}) - V_{A,t+1})$

$$q_t(b_{t+1}) = \frac{1}{1+r} F(V_{t+1}(b_{t+1}) - V_{A,t+1})$$

Properties

$$q_t(b_{t+1}) = \frac{1}{1+r} F(V_{t+1}(b_{t+1}) - V_{A,t+1})$$

- Properties
 - 1. Increasing in b_{t+1} i.e. worse prices for higher debt

$$q_t(b_{t+1}) = \frac{1}{1+r} F(V_{t+1}(b_{t+1}) - V_{A,t+1})$$

- Properties
 - 1. Increasing in b_{t+1} i.e. worse prices for higher debt
 - 2. Two thresholds:

$$\bar{b}_{t+1}: V_{t+1}(\bar{b}_{t+1}) = V_{A,t+1} + \underline{\mathbf{m}}_{t+1}$$
 $\underline{\mathbf{b}}_{t+1}: V_{t+1}(\underline{\mathbf{b}}_{t+1}) = V_{A,t+1} + \bar{m}_{t+1}$

$$q_t(b_{t+1}) = \frac{1}{1+r} F(V_{t+1}(b_{t+1}) - V_{A,t+1})$$

- Properties
 - 1. Increasing in b_{t+1} i.e. worse prices for higher debt
 - 2. Two thresholds:

$$ar{b}_{t+1}: \quad V_{t+1}(ar{b}_{t+1}) = V_{A,t+1} + \underline{m}_{t+1}$$

$$\underline{b}_{t+1}: \quad V_{t+1}(\underline{b}_{t+1}) = V_{A,t+1} + \bar{m}_{t+1}$$

3. No longer a 'cliff'; rounded out in $[\bar{b}_{t+1}, \underline{b}_{t+1}]$

Very similar

$$\max_{b_{t+1}} u(y_t + b_t - q_t(b_{t+1})b_{t+1}) + \beta E_t \left[\max\{V_{t+1}(b_{t+1}), V_{A,t+1} + \tilde{m}_{t+1}\} \right]$$

Very similar

$$\max_{b_{t+1}} u(y_t + b_t - q_t(b_{t+1})b_{t+1}) + \beta E_t \left[\max\{V_{t+1}(b_{t+1}), V_{A,t+1} + \tilde{m}_{t+1}\} \right]$$

• Solution generally interior when $\beta < \frac{1}{1+r}$

- Solution generally interior when $\beta < \frac{1}{1+r}$
- FOC (relevant parts)

$$0 = -u'(y_t + b_t - q_t(b_{t+1})b_{t+1}) \times [q_t(b_{t+1}) + q_t'(b_{t+1})b_{t+1}] + \dots$$

- Solution generally interior when $\beta < \frac{1}{1+r}$
- FOC (relevant parts)

$$0 = -u'(y_t + b_t - q_t(b_{t+1})b_{t+1}) \times \left[q_t(b_{t+1}) + q_t'(b_{t+1})b_{t+1}\right] + \dots$$

- Two important terms: Quantity effect and price effect
 - 1. $q_t(b_{t+1})$: 1 more unit of debt $\implies q_t$ more consumption
 - 2. $q_t'(b_{t+1})b_{t+1}$: 1 more unit of debt \implies Depress price for whole stock of debt by $q_t'(b_{t+1})$

- Solution generally interior when $eta < rac{1}{1+r}$
- FOC (relevant parts)

$$0 = -u'(y_t + b_t - q_t(b_{t+1})b_{t+1}) \times [q_t(b_{t+1}) + q_t'(b_{t+1})b_{t+1}] + \dots$$

- Two important terms: Quantity effect and price effect
 - 1. $q_t(b_{t+1})$: 1 more unit of debt $\implies q_t$ more consumption
 - 2. $q_t'(b_{t+1})b_{t+1}$: 1 more unit of debt \implies Depress price for whole stock of debt by $q_t'(b_{t+1})$
- Latter term is monopoly factor (internalize price changes)
 - Monopoly force: Very important
 - Determines how far 'over the cliff' he chooses to issue

asic Idea Deterministic Economies Uncertainty Beliefs

- Two relatively orthogonal choices affect borrowing decision
 - 1. Standard, consumption-smoothing channel (quantity effect)
 - 2. Price effect: Better prices allow more borrowing

asic Idea Deterministic Economies Uncertainty Beliefs

- Two relatively orthogonal choices affect borrowing decision
 - 1. Standard, consumption-smoothing channel (quantity effect)
 - 2. Price effect: Better prices allow more borrowing
- Often at odds e.g. during a boom
 - $\bullet \ \ {\sf Consumption\text{-}smoothing} \ \Longrightarrow \ {\sf want \ to \ save}$
 - Default risk-lower \Longrightarrow lower interest rates \Longrightarrow want to borrow

sic Idea Deterministic Economies Uncertainty Beliefs

- Two relatively orthogonal choices affect borrowing decision
 - 1. Standard, consumption-smoothing channel (quantity effect)
 - 2. Price effect: Better prices allow more borrowing
- Often at odds e.g. during a boom
 - ullet Consumption-smoothing \Longrightarrow want to save
 - ullet Default risk-lower \Longrightarrow lower interest rates \Longrightarrow want to borrow
- Latter tends to dominate, especially when impatient
 - Borrowing in good times; saving in bad very volatile consumption process, countercyclical NX, etc.
 - All features of emerging market economies

asic Idea Deterministic Economies Uncertainty Beliefs

Default Costs

- Couple of issues with current model
 - 1. Very little sustainable debt e.g. 1% debt-to-GDP
 - Autarky not that bad in many models
 - 2. Trivial that default risk greater in bad times?

asic Idea Deterministic Economies Uncertainty Beliefs

Default Costs

- Couple of issues with current model
 - 1. Very little sustainable debt e.g. 1% debt-to-GDP
 - Autarky not that bad in many models
 - 2. Trivial that default risk greater in bad times? Not really

asic Idea Deterministic Economies Uncertainty Beliefs

Default Costs

- Couple of issues with current model
 - 1. Very little sustainable debt e.g. 1% debt-to-GDP
 - Autarky not that bad in many models
 - 2. Trivial that default risk greater in bad times? Not really
- Kill two birds with one stone: Default costs
 - Countries tend to face worse consequences than autarky in default
 - Export/commodity sanctions, banking crises, severance of private credit lines, etc.

asic Idea Deterministic Economies Uncertainty Beliefs

Default Costs

- Couple of issues with current model
 - 1. Very little sustainable debt e.g. 1% debt-to-GDP
 - Autarky not that bad in many models
 - 2. Trivial that default risk greater in bad times? Not really
- Kill two birds with one stone: Default costs
 - Countries tend to face worse consequences than autarky in default
 - Export/commodity sanctions, banking crises, severance of private credit lines, etc.
 - Assume default costs proportional i.e. post-default, for all

• Assume default costs proportional i.e. post-default, for all $s \geq t+1$, endowment

$$\hat{y}_s = (1 - \phi)y_s$$

i.e. default implies a recession

• Assume default costs proportional i.e. post-default, for all $s \geq t+1$, endowment

$$\hat{y}_s = (1 - \phi)y_s$$

- i.e. default implies a recession
- 1. Temptation to default greater in recession: Costs lower i.e.

$$y_L < y_H \implies \phi y_L < \phi y_H$$

Implies interest rates lower in good times

• Assume default costs proportional i.e. post-default, for all $s \geq t+1$, endowment

$$\hat{y}_s = (1 - \phi)y_s$$

- i.e. default implies a recession
- 1. Temptation to default greater in recession: Costs lower i.e.

$$y_L < y_H \implies \phi y_L < \phi y_H$$

Implies interest rates lower in good times

Tricky empirically: Recession cause/consequence of default?

• Assume default costs proportional i.e. post-default, for all $s \geq t+1$, endowment

$$\hat{y}_s = (1 - \phi)y_s$$

- i.e. default implies a recession
- 1. Temptation to default greater in recession: Costs lower i.e.

$$y_L < y_H \implies \phi y_L < \phi y_H$$

Implies interest rates lower in good times

- Tricky empirically: Recession cause/consequence of default?
- 2. More debt sustained: Greater $\phi \implies$ lower $V_{d,t+1}$
 - Makes both \bar{b}_{t+1} and \underline{b}_{t+1} more negative

sic Idea Deterministic Economies Uncertainty Beliefs

- Common notion: Defaults sometimes caused by 'panics'
 - Fundamentals (i.e. technology, preferences) not responsible for default
 - Instead, lender fears become self-fulfilling
 - Beliefs alone cause default

isic Idea Deterministic Economies Uncertainty Beliefs

- Common notion: Defaults sometimes caused by 'panics'
 - Fundamentals (i.e. technology, preferences) not responsible for default
 - Instead, lender fears become self-fulfilling
 - Beliefs alone cause default
- Matters a lot for policy:
 - Fundamental defaults likely require institutional reform/fiscal austerity
 - Belief-driven defaults may require monetary/fiscal accommodation

sic Idea Deterministic Economies Uncertainty Beliefs

- Common notion: Defaults sometimes caused by 'panics'
 - Fundamentals (i.e. technology, preferences) not responsible for default
 - Instead, lender fears become self-fulfilling
 - Beliefs alone cause default
- Matters a lot for policy:
 - Fundamental defaults likely require institutional reform/fiscal austerity
 - Belief-driven defaults may require monetary/fiscal accommodation
- Can we get beliefs to matter in this class of models?

sic Idea Deterministic Economies Uncertainty Beliefs

- Common notion: Defaults sometimes caused by 'panics'
 - Fundamentals (i.e. technology, preferences) not responsible for default
 - Instead, lender fears become self-fulfilling
 - Beliefs alone cause default
- Matters a lot for policy:
 - Fundamental defaults likely require institutional reform/fiscal austerity
 - Belief-driven defaults may require monetary/fiscal accommodation
- Can we get beliefs to matter in this class of models? Yes!
- Explore a couple of different ways
 - 'Laffer'-curve multiplicity
 - Liquidity crises

Laffer-Curve Multiplicity: Motivation

Typically high spreads induce deleveraging via price effect

Laffer-Curve Multiplicity: Motivation

- Typically high spreads induce deleveraging via price effect
- Not always e.g. Eurozone crisis 2009-2013
 - High spreads and increased borrowing
 - Beliefs seemed to play a role e.g. third-party intervention successful

Laffer-Curve Multiplicity: Motivation

- Typically high spreads induce deleveraging via price effect
- Not always e.g. Eurozone crisis 2009-2013
 - High spreads and increased borrowing
 - Beliefs seemed to play a role e.g. third-party intervention successful
- High borrowing can be cause and consequence of beliefs and spreads

• Consider revenue from auctioning off b_{t+1}

$$Rev_t(b_{t+1}) = -q_t(b_{t+1})b_{t+1}$$

- Notice
 - 1. $Rev_t(0) = 0$
 - 2. $Rev_t(b_{t+1}) = -\frac{1}{1+r}b_{t+1}$ when $b_{t+1\geq 0}$
 - 3. $Rev_t(b_{t+1}) = 0$ when $b_{t+1} \leq \bar{b}_{\underline{t}+1}$
 - 4. $Rev_t(b_{t+1}) > 0$ when $b_{t+1} \in (b_{t+1}, 0)$

• Consider revenue from auctioning off b_{t+1}

$$Rev_t(b_{t+1}) = -q_t(b_{t+1})b_{t+1}$$

- Notice
 - 1. $Rev_t(0) = 0$
 - 2. $Rev_t(b_{t+1}) = -\frac{1}{1+r}b_{t+1}$ when $b_{t+1\geq 0}$
 - 3. $Rev_t(b_{t+1}) = 0$ when $b_{t+1} \leq \bar{b}_{t+1}$
 - 4. $Rev_t(b_{t+1}) > 0$ when $b_{t+1} \in (\bar{b}_{t+1}, 0)$
- In words, auction revenue is 'hump-shaped'
 - Much like tax-revenue as a function of tax rate (original Laffer curve)

• Consider revenue from auctioning off b_{t+1}

$$Rev_t(b_{t+1}) = -q_t(b_{t+1})b_{t+1}$$

- Notice
 - 1. $Rev_t(0) = 0$
 - 2. $Rev_t(b_{t+1}) = -\frac{1}{1+r}b_{t+1}$ when $b_{t+1\geq 0}$
 - 3. $Rev_t(b_{t+1}) = 0$ when $b_{t+1} \leq \bar{b}_{t+1}$
 - 4. $Rev_t(b_{t+1}) > 0$ when $b_{t+1} \in (\bar{b}_{t+1}, 0)$
- In words, auction revenue is 'hump-shaped'
 - Much like tax-revenue as a function of tax rate (original Laffer curve)
- Intuition: Initially debt raises revenue, but

 - Too much debt sends price all the way to zero

Timing

- Given a fixed level of revenue needs, Rev, there are almost always two ways to raise it
 - 1. Low debt, high price i.e. $b_L q(b_L) = Rev$
 - 2. High debt, low price i.e. $b_H q(b_H) = Rev$ where $b_H < b_L$

Timing

- Given a fixed level of revenue needs, Rev, there are almost always two ways to raise it
 - 1. Low debt, high price i.e. $b_L q(b_L) = Rev$
 - 2. High debt, low price i.e. $b_H q(b_H) = \bar{Rev}$ where $b_H < b_L$
- Suppose that the government cannot choose debt issuance directly
 - Instead, legislative body first chooses primary deficit (here, consumption)
 - After consumption chosen, treasury issues debt until deficit is filled

Timing

- Given a fixed level of revenue needs, Rev, there are almost always two ways to raise it
 - 1. Low debt, high price i.e. $b_L q(b_L) = Rev$
 - 2. High debt, low price i.e. $b_H q(b_H) = Rev$ where $b_H < b_L$
- Suppose that the government cannot choose debt issuance directly
 - Instead, legislative body first chooses primary deficit (here, consumption)
 - After consumption chosen, treasury issues debt until deficit is filled
- This model same as previous model if treasury always on 'good' side of Laffer curve i.e. b_L
- Sudden shift in expectations after consumption chosen could force b_H

sic Idea Deterministic Economies Uncertainty Beliefs

Liquidity Crises

- Laffer curve not only way to generate belief-driven crises
- (Arguably) more common: Liquidity crises
- Akin to a bank run on the country
 - Lenders freeze up; refuse to invest
 - Sovereign suddenly and unexpectedly finds it impossible to raise funds
 - Both feed off each other's behavior

sic Idea Deterministic Economies Uncertainty Beliefs

Liquidity Crises

- Laffer curve not only way to generate belief-driven crises
- (Arguably) more common: Liquidity crises
- Akin to a bank run on the country
 - Lenders freeze up; refuse to invest
 - Sovereign suddenly and unexpectedly finds it impossible to raise funds
 - · Both feed off each other's behavior
- Change a couple of things to get these
 - Get rid of uncertainty (no m_{t+1})
 - Change timing
 - 1. Default decision takes place after debt auction
 - Limited commitment in period t instead of t + 1; can't commit to immediately run away with auction revenue

- ullet Sovereign has initial debt b_t
- Suppose that lenders expect new issuance b_{t+1} to be repaid
- In this case, $q_t = \frac{1}{1+r}$

- Sovereign has initial debt b_t
- Suppose that lenders expect new issuance b_{t+1} to be repaid
- In this case, $q_t = \frac{1}{1+r}$
- Sovereign's problem

$$V_t(b_t) = \max_{b_{t+1}} u\left(y_t + b_t - \frac{1}{1+r}b_{t+1}\right) + \beta V_{t+1}(b_{t+1})$$

- Sovereign has initial debt b_t
- Suppose that lenders expect new issuance b_{t+1} to be repaid
- In this case, $q_t = \frac{1}{1+r}$
- Sovereign's problem

$$V_t(b_t) = \max_{b_{t+1}} u\left(y_t + b_t - \frac{1}{1+r}b_{t+1}\right) + \beta V_{t+1}(b_{t+1})$$

When are lender beliefs justified?

- Sovereign has initial debt b_t
- Suppose that lenders expect new issuance b_{t+1} to be repaid
- In this case, $q_t = \frac{1}{1+r}$
- Sovereign's problem

$$V_t(b_t) = \max_{b_{t+1}} u\left(y_t + b_t - \frac{1}{1+r}b_{t+1}\right) + \beta V_{t+1}(b_{t+1})$$

When are lender beliefs justified? When

$$V_t(b_t) \geq V_{A,t}$$

- Suppose that lenders expect new issuance b_{t+1} to be defaulted on
- In this case, $q_t = 0$

- Suppose that lenders *expect* new issuance b_{t+1} to be defaulted on
- In this case, $q_t = 0$
- Should sovereign choose to repay existing debt, gets

$$\hat{V}_t(b_t) = u(y_t + b_t) + \beta V_{t+1}(0)$$

- Suppose that lenders *expect* new issuance b_{t+1} to be defaulted on
- In this case, $q_t = 0$
- Should sovereign choose to repay existing debt, gets

$$\hat{V}_t(b_t) = u(y_t + b_t) + \beta V_{t+1}(0)$$

When are lender beliefs justified?

- Suppose that lenders *expect* new issuance b_{t+1} to be defaulted on
- In this case, $q_t = 0$
- Should sovereign choose to repay existing debt, gets

$$\hat{V}_t(b_t) = u(y_t + b_t) + \beta V_{t+1}(0)$$

When are lender beliefs justified? When

$$\hat{V}_t(b_t) < V_{A,t}$$

sic Idea Deterministic Economies Uncertainty Beliefs

Characterizing Equilibria I

- Notice
 - $\hat{V}_t(b_t)$ is equivalent to having lenders offer $\frac{1}{1+r}$ but setting $b_{t+1}=0$
 - This is certainly feasible, but it's likely not optimal
 - Thus $\hat{V}_t(b_t) \leq V_t(b_t)$ for any b_t

Characterizing Equilibria I

- Notice
 - $\hat{V}_t(b_t)$ is equivalent to having lenders offer $\frac{1}{1+r}$ but setting $b_{t+1}=0$

Beliefs

- This is certainly feasible, but it's likely not optimal
- Thus $\hat{V}_t(b_t) \leq V_t(b_t)$ for any b_t
- Debt thresholds
 - $V_t(\bar{b}_t) = V_{A,t}$
 - $\hat{V}_t(\underline{b}_t) = V_{A,t}$
- Since $\hat{V}_t(b_t) \leq V_t(b_t)$, it follows that

$$\bar{b}_t \leq \underline{\mathsf{b}}_t$$

Characterizing Equilibria II

Three cases

- 1. $b_t < \bar{b}_t$
 - $\implies \hat{V}_t(b_t) \leq V_t(b_t) < V_{A,t}$
 - Default regardless of lender beliefs (too much debt)
 - Unique equilibrium: Default

Characterizing Equilibria II

Three cases

- 1. $b_t < \bar{b}_t$
 - $\bullet \implies \hat{V}_t(b_t) \leq V_t(b_t) < V_{A,t}$
 - Default regardless of lender beliefs (too much debt)
 - Unique equilibrium: Default
- 2. $b_t \geq \underline{b}_t$
 - $\Longrightarrow V_{A,t} \leq \hat{V}_t(b_t) \leq V_t(b_t)$
 - Repay regardless of lender beliefs (very little debt)
 - Unique equilibrium: Repay

Characterizing Equilibria II

Three cases

- 1. $b_t < \bar{b}_t$
 - $\implies \hat{V}_t(b_t) < V_t(b_t) < V_{A,t}$
 - Default regardless of lender beliefs (too much debt)
 - Unique equilibrium: Default
- 2. $b_t > b_t$
 - $\Longrightarrow V_{A,t} < \hat{V}_t(b_t) < V_t(b_t)$
 - Repay regardless of lender beliefs (very little debt)
 - Unique equilibrium: Repay
- 3. $b_t \in [\bar{b}_t, b_t)$
 - $\implies \hat{V}_t(b_t) < V_{A,t} < V_t(b_t)$
 - Repayment depends on lender beliefs
 - Two equilibria
 - 3.1 Default if lenders expect default
 - 3.2 Repay if lenders expect repayment
 - This region often called 'crisis zone'; always exists