

Universidad Tecnológica Nacional Facultad Regional Tucumán Ingeniería en Sistemas de Información ARQUITECTURA DE COMPUTADORES

TRABAJO PRÀCTICO Nº 2

SISTEMAS DE NUMERACIÓN POSICIONAL.
SUMAS.

RESTAS USANDO COMPLEMENTO A
LA BASE Y A LA BASE MENOS UNO.
MULTIPLICACIONES.
OTROS CÓDIGOS.

SISTEMAS DE NUMERACIÓN POSICIONAL

Características de los SNP

- Usan símbolos distintos.
- Tienen el valor nulo o cero.
- La base indica la cantidad de símbolos distintos que poseen.
- El primer número que se escriba con dos dígitos es la base.
- La posición de cada dígito en el número es importante.

¿Cuál es el sistema de numeración posicional que usan habitualmente?

Base 10 o Decimal

Sistema Binario o Base 2

Un bit es la unidad mínima de información, un 0 o un 1.

Los datos viajan en las computadoras por cables, a través de impulsos eléctricos, que son representados por dos estados:

- Prendido, Abierto, 1.
- Apagado, Cerrado, 0.

Las computadoras utilizan el sistema binario, 0 y 1, para representar toda la información.

Sistema Binario o Base 2

Sistema Binario o Base 2

BASE 2	\top
.0	\Box
1	
10	Т
11	
100	\top
101	\top
110	
111	\top
1000	\top
1001	\top
1010	\Box
1011	
1100	
1101	
1110	
1111	

•••

•••

Sistemas que se relacionan con el Binario o Base 2

BASE $16 \rightarrow 2^4 = 16$

BASE $8 \rightarrow 2^3 = 8$

Sistema Hexadecimal o Base 16

Sistema Octal o Base 8

BASE 8 → 2 ³ = 8					
0					
1					
2					
3					
4					
5					
6					
7					
10					
11					
12					
13					
14					
15					
16					
17					

Equivalencia entre los sistemas

BASE 2	$BASE 8 \rightarrow 2^3 = 8$	BASE 10	BASE $16 \rightarrow 2^4 = 16$
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5 5		5
0110	6	6	6
0111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	10	Α
1011	13	11	В
1100	14	12	С
1101	15	13	D
1110	16	14	E
1111	17	15	F

Poner como subíndices la base a la que pertenece el número

$$10_{(10)} \neq 10_{(2)} \neq 10_{(8)} \neq 10_{(16)}$$

EJEMPLO: Sistema de Base 4

Símbolos del Sistema de Base 4: + - / *

BASE 4
+
_
/
*
-+
-/
_*
/+
/-
//
/*

CAMBIOS DE BASE ENTRE SISTEMAS

Posición = X	7	6	5	4	3	2	1	0	-1	-2	-3	-4
Valor = 2 ^X	128	64	32	16	8	4	2	1	0,5	0,25	0,125	0,0625

ESTOS VALORES LOS DEBEN RECORDAR!

Ejercicio:

Dado el número binario, pasarlo a base 10:

$$0101111_{(2)}$$

Sumamos los valores donde están los 1

Ejercicio:

Dado el número decimal, pasarlo a base 2:

El número binario debe comenzar con un cero "0" ya que indica que es un número positivo (bit de signo).

El Sistema Binario se relaciona con el Sistema Hexadecimal (base 16).

¿Porqué grupos de 4 dígitos?

Ejercicio:

Dado el número binario $01101111_{(2)}$, pasarlo a base 16:

Separar el número binario en grupos de 4 dígitos, de derecha a izquierda. En cada grupo colocar el valor de las posiciones.

En cada grupo sumanos los valores

donde están los 1.

El resultado es:

Ejercicio:

Dado el número hexadecimal pasarlo a base 2:

A cada dígito hexadecimal escribirlo con 4 dígitos binarios.

El resultado es:

01001011(2)

El Sistema Decimal <u>NO</u> se relaciona con el Sistema Hexadecimal, sí con el Binario.

Ejercicio:

Dado el número hexadecimal **4B**₍₁₆₎, pasarlo a **base 10**:

Sumamos los valores donde están los 1

$$64 + 8 + 2 + 1 = 75$$
 (10)

Ejercicio:

Dado el número decimal pasarlo a base 16:

Primero se pasa a binario.

$$35_{(10)} = 00100011_{(2)}$$

8 4 2 1 8 4 2 1 Separar el número binario en grupos de 4 dígitos, de derecha a izquierda.

En cada grupo colocar el valor de las posiciones.

2 2+ 1 En cada grupo sumanos los valores donde están los 1.

De CUALQUIER SNP a DECIMAL:

••••

= RESULTADO EN BASE 10

Ejercicio:

Dado el número hexadecimal pasarlo a base 10:

Posiciones, comienzan en 0. Van de derecha a izquierda.

2D (16) =
$$M$$

2 * (16)^1 + D * (16)^0 = M

2 * (16)^1 + 13 * (16)^0 = M

32 + 13 = M

MAL SI PONEN 213 (10)

SUMAS

Recordemos el proceso de sumar en decimal:

$$7 + 6 = 13$$

$$13 - 10 = 3$$

El resultado "13" es mayor que la base, entonces se debe restar la base.

Ahora "3" es menor que la base. Pongo "3" y me "llevo" las veces que se resto la base.

Suma en binario:

+	0	1
0	0	1
1	1	10

Podemos usar esta tabla o relacionar como se suma en decimal.

Se pone un "0" como bit de signo para indicar que es un número binario positivo.

Tanto para la suma como para la resta de números binarios, estos deben tener la misma cantidad de dígitos.

Si no tienen, se completan con ceros a la izquierda hasta llegar a la misma cantidad de dígitos.

Suma en hexadecimal:

Sumamos relacionando como se suma en decimal.

RESTAS

Recordemos el proceso de restar en decimal:

El que "PRESTA" LA BASE queda con uno menos.

Resta en hexadecimal:

Restamos relacionando como se resta en decimal.

16
E +
E B
B - F = 11 - 15
$$\rightarrow$$
 NO se puede restar

- A 3 F
11 + 16 \rightarrow PIDO LA BASE
11 + 16 = 27 \rightarrow ahora sí se puede restar
27 - F = 27 - 15 = 12 = C
El que "PRESTA" LA BASE queda con uno

menos.

$$E - 3 = 14 - 3 = 11 = B$$

 $F - A = 14 - 10 = 4$

Resta en Binario:

En binario ambos números deben tener igual cantidad de dígitos.

 $0 - 1 \rightarrow NO$ se puede restar

PIDO LA BASE

SI EL DÍGITO DE AL LADO NO PUEDE PRESTAR PEDIMOS AL SIGUIENTE QUE PUEDA PRESTAR.

El que "PRESTA" LA BASE queda con uno menos.

AHORA SÍ PUEDO RESTAR

$$0 + 2 = 2$$

$$2 - 1 = 1$$

$$1 - 0 = 1$$

$$0 - 0 = 0$$

La Unidad Aritmético Lógica (ALU) **NO RESTA**.

Para poder restar complementa al número negativo y suma, pero internamente esta restando.

RESTAS USANDO COMPLEMENTO

Siempre hay que partir de un número binario positivo bien escrito, con bit de signo 0.

Complemento a la base menos 1 C1

Consiste en cambiar 0 por 1 y 1 por 0.

8 4 2 1

$$+6_{(10)} = 0110 -6_{(10)} = 1001$$

Complemento a la base o C2

Copiar los dígitos binarios de derecha a izquierda hasta que encuentre el primer 1 inclusive, luego cambiar 0 por 1 y 1 por 0.

EJEMPLO:

Realizar las operaciones

$$A + B$$
 $A + (-B)$
 $(-A) + B$
 $(-A) + (-B)$

En ambos complementos

$$A = 70$$

 $B = 80$

Se debe comenzar pasando de decimal a binario, con <u>bit de signo 0</u>, indicando que parten de un número decimal positivo.

Para sumar, ambos números deben tener <u>igual cantidad</u> <u>de dígitos</u>, si no tienen se completa con 0 a la izquierda.

	128	64	32	16	8	4	2	1	
+ 70	0	1	0	0	0	1	1	0	
+ 80	0	1	0	1	0	0	0	0	

Luego pasamos a binarios negativos, mediante complementos.

	128	64	32	16	8	4	2	1		En C1	En C2
+ 70	0	1	0	0	0	1	1	0	- 70	10111001	10111010
+ 80	0	1	0	1	0	0	0	0	- 80	10101111	10110000

	128	64	32	16	8	4	2	1		En C1	En C2
+ 70	0	1	0	0	0	1	1	0	- 70	10111001	10111010
+ 80	0	1	0	1	0	0	0	0	- 80	10101111	10110000

$$A + B = 70 + 80 = 150$$

Trabajamos con los dos números positivos.

70 + 80 = 150
0 1000110
+ <u>0</u> 1010000
1 0010110

En rojo se resalta el **OVERFLOW** (positivo + positivo da negativo)

SE RESUELVE AGREGANDO NUEVO BIT DE SIGNO, O.

Corrección, con nuevo
bit de signo
001000110
+ 001010000
010010110 = + 150

RESULTADO CORRECTO →

Trabajamos con los números corregidos.

	²⁵⁶ 128	64	32	16	8	4	2	1		En C1		En C2
+ 70	0 0	1	0	0	0	1	1	0	- 70	110111001	1	10111010
+ 80	0 0	1	0	1	0	0	0	0	- 80	1 10101111	_ 1	10110000

$$(-A) + (-B) = (-70) + (-80) = -150$$

C1:

Último acarreo en C1 se lo vuelve a sumar.

El resultado esta expresado en complemento a 1, para saber que valor es lo

"descomplementamos", sacamos el binario positivo, lo pasamos a decimal y sabremos el resultado, recordando que es un número negativo.

101101001 a C1: 010010110 en decimal es 150

RECORDEMOS QUE VIENE DE UN NEGATIVO, ENTONCES EL RESULTADO ES - 150

Trabajamos con los números corregidos.

	²⁵⁶ 128	64	32	16	8	4	2	1		En C1		En C2
+ 70	0 0	1	0	0	0	1	1	0	- 70	1 1 0 1 1 1 0 0 1	1	10111010
+ 80	0 0	1	0	1	0	0	0	0	- 80	1 1 0 1 0 1 1 1 1	_ 1	10110000

$$(-A) + (-B) = (-70) + (-80) = -150$$

C2:

En C2

el último acarreo se descarta.

El resultado esta expresado en complemento a 2, para saber que valor es lo

"descomplementamos", sacamos el binario positivo, lo pasamos a decimal y sabremos el resultado, recordando que es un número negativo.

101101010

a C2:

010010110 es en decimal 150.

RECORDEMOS QUE VIENE DE UN NEGATIVO, ENTONCES EL RESULTADO ES - 150

	²⁵⁶ 128	64	32	16	8	4	2	1		En C1	En C2
+ 70	0 0	1	0	0	0	1	1	0	- 70	110111001	1 10111010
+ 80	0 0	1	0	1	0	0	0	0	- 80	110101111	1 1 0 1 1 0 0 0 0

$$A + (-B) = 70 + (-80) = -10$$

C1:

C2:

001000110

<u>+ 110101111</u>

1111110101

001000110

+ <u>1</u>10110000

111110110

En ambos casos se "descomplementa el número negativo para saber cual es el positivo original. Luego se pasa a decimal.

000001010 = 10 en decimal

EL RESULTADO EN DECIMAL SERÁ -10

	²⁵⁶ 128	64	32	16	8	4	2	1		En C1	En C2
+ 70	0 0	1	0	0	0	1	1	0	- 70	110111001	1 10111010
+ 80	0 0	1	0	1	0	0	0	0	- 80	1 10101111	1 10110000

$$(-A) + B = (-70) + 80 = 10$$

Último acarreo en C1 se lo vuelve a sumar.

C2:

110111001

+ 001010000

000001001

+ 1

110111010

+ **0**01010000

4 000001010

1

En C2 el último acarreo se descarta.

EL RESULTADO EN DECIMAL SERÁ 10

MULTIPLICACIONES

Multiplicación en binario

La tabla de multiplicar para números binarios es la siguiente:

x	0	1
0	0	0
1	0	1

OTRAS FORMAS DE CODIFICACIÓN

CÒDIGO DE TÈTRADAS BCD

• Representa <u>solo</u> <u>dígitos</u> decimales (0 al 9).

 Las tétradas no usadas se llaman pseudotetradas.

TÈTRADAS	BCD (8421)
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Pseudotétradas
1011	Pseudotétradas
1100	Pseudotétradas
1101	Pseudotétradas
1110	Pseudotétradas
1111	Pseudotétradas

EJEMPLO: pase el número decimal 130 a BCD.

$$130_{(10)} = 000100110000_{(BCD)}$$

BINARIO

$$130_{(10)} =$$

```
1 3 0
8 4 2 1 8 4 2 1 8 4 2 1
0 0 0 1 0 0 1 1 0 0 0 0 (BCD)
```

```
256 128 64 32 16 8 4 2 1
0 1 0 0 0 0 1 0 (2)
```

CÒDIGO ASCII

Representa caracteres
 alfanuméricos, imprimibles y no imprimibles.

 Usa 7 bits para representar un carácter:

B₆ B₅ B₄ B₃ B₂ B₁ B₀

				ightharpoonupB ₆	B ₅ B	4		
000	001	010	011	100	101	110	111	$B_3B_2B_1B_0$
NUL	DLE	SP	0	@	Р	,	р	0000
SOH	DC1	ļ	1	Α	Q	а	q	0001
STX	DC2	64	2	В	R	b	r	0010
ETX	DC3	#	3	С	S	С	S	0011
EOT	DC4	\$	4	D	Т	d	t	0100
ENQ	NAK	%	5	Е	U	е	u	0101
ACK	SYN	&	6	F	V	f	٧	0110
BEL	ETB	å	7	G	W	g	W	0111
BS	CAN	(8	Н	Χ	h	Х	1000
HT	EM)	9	ı	Υ	i	у	1001
LF	SUB	*	:	J	Ζ	j	Z	1010
VT	ESC	+		K]	k	{	1011
FF	FS	•	<	L	\	I	-	1100
CR	GS	-	=	М]	m	}	1101
SO	RS		>	N	٨	n	~	1110
ST	US	/	?	0		0	DEL	1111

EJEMPLO: pase el número decimal 130 a ASCII.

$$130_{(10)} = 0.01100110000$$

EJEMPLO: pase Ana a código ASCII.

