Chapter 6 Code

This repository contains an implementation of the backward Euler method as well as the trapezoidal method for solving ODEs and systems of ODEs, respectively.

Important Notes

The backward Euler method expects two functions, $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $f_y: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, the partial derivative of f with respect to g. Both of these functions has the signature double (double t, double y).

These functions can be defined the usual way:

```
double f(double t, double y) {
    return ...;
}

double fy(double t, double y) {
    return ...;
}
```

Or, they can be defined via lambda functions:

```
auto f = [](double t, double y) { return ...; };
auto fy = [](double t, double y) { return ...; };
```

Which has the possible advantage of being easier to read if declaring a vector of such functions.

The trapezoidal method, on the other hand, expects a vector of n functions (where n is the number of systems) $f_i: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$. These functions have the signature double(double t, const std::vector<double> &y) where y.size() is n.

These functions may be defined in the usual way and then put into a vector:

```
double f1(double t, const std::vector<double> &y) {
    return ...;
}

double fn(double t, const std::vector<double> &y) {
    return ...;
}

// `funcn` is an alias for `std::function<double(double t, const std::vector<c std::vector<funcn> f({f1, ..., fn});
```

Or, they can be defined in-line via lambda functions:

```
std::vector<funcn> f({
    [](double t, const std::vector<double> &y) { return ...; }, // f1
    ...
    [](double t, const std::vector<double> &y) { return ...; } // fn
});
```