计算机网络 Computer Network

远距离数字连接

理论课程

知识框架

五层协议模型 P物理层 D数据链路层 T传输层 A应用层 N网络层 P1 传输介质 D1 差错控制 T1 可靠传输 A1 支撑协议 N1 网际协议 A2 C/S 模式 N2 支撑协议 P2 局域通信 D2 局域编址 N3 路由协议 A3 路由协议 P3 远程通信 D3 局域机制 D4 局域设备 A4 域名系统 A5 邮件系统 D5 远程技术 D6广域路由 A6 文件传输 A7 网页浏览

主要内容

- 远程数字连接的技术
 - 通过DSU/CSU连接到数字电路
 - 上行和下行,非对称模式
 - 窄带和宽带
 - ISDN、ADSL、CATV、光纤到户、SONET的原理和速率
 - 高容量电路标准(E、T、C等)的速率等级

主要内容

- 网络技术的过去与未来
 - -广域网结构:虚电路、数据报
 - APARNET、PSTN、X.25、帧中继、SMDS的基本原理
- 网络所有权、服务模式和性能
 - -VPN
 - 网络性能度量:延迟、吞吐率、抖动、服务质量(QoS)

对应课本章节

- PART III Packet Switching And Network Technologies
 - Chapter 19 Networking Technologies Past And Present
 - Chapter 30 Network Security
 - 30.17 Virtual Private Networks (VPNs)
 - 30.18 The Use of VPN Technology For Telecommuting
- PART V Other Networking Concepts & Technologies
 - Chapter 28 Network Performance (QoS and DiffServ)

内容纲要

远程数字连接的技术
 网络技术过去与现在
 网络所有权、服务模式和性能

数字化

- 将模拟信号转换成数字形式的过程称为数字化。
 - 时间上的采样,数量上的编号
- ·脉冲编码调制 (Pulse Code Modulation, PCM)
 - -PCM采样信号间隔125μs,并将每个样本分为0~255的整数

(0,0), (0.2,0.6), (0.4,1), (0.6,1), (0,0), (0.8,0.6), (1,0), (1.2, -0.6), (1.4, -1), (1.6, -1), (1.8, -0.6), (2, 0)

int A = [0, 3, 5, 5, 3, 0, -3, -5, -5, -3, 0];

Nyquist 采样定理

- · Nyquist采样定理
 - 用大于两倍最高有效频率采样的连续信号,可从样本重建。
- •恢复一个正(余)弦信号的曲线,只需两个特殊点
 - -相邻两个零点位置(红)或者相邻波峰和波谷的位置(绿)
 - 只要按照正(余)弦信号的规则,就能够根据这些特殊点

还原出正(余)弦信号

不管信号多复杂,总可以分解为若干个正(余)弦信号的和,对应信号的频率分量。

同步通信(Synchronous Communication)

- 在数字化语音系统中传输数据
- 语音系统采用同步或时钟技术
- 数据网络采用异步技术
 - 伴随语音传输,以精确速率移动数据
 - 接收设备使用附加信息来同步时钟,确保数据以相同的速率离开网络。

DSU/CSU#PNIU

- 数字电路租用公用载波
 - -数据服务单元(DSU)
 - 把局域网通信系统的数据帧转化成适合广域网的数据帧或反向转化。
 - -信道服务单元(CSU)
 - 对电信线路进行保护与故障诊断。
 - 网络接口单元(NIU)
 - 控制计算机与通信网络进行交互的一种接口设备。

互联网接入技术:上行和下行

- · 互联网接入技术是指连接到ISP的数据通信系统
- 多数互联网用户遵循非对称模式:接收数据比发送多
 - 下行(downstream)是指从互联网ISP传取数据到用户
 - 上行(upstream)是指从用户传输数据到ISP

Figure 12.1 Definition of upstream and downstream directions as used in access technologies.

窄带和宽带接入技术

• 网络带宽指的是数据速率

0 窄带 128 kbps 模糊地带 1 Mbps 宽带

窄带	宽带
拨号电话连接	DSL技术
使用调制解调器的租用电路	电缆调制解调器技术
部分T1数据电路	无线接入技术
ISDN和其他电信公司的数据服务	在T1速度或更高的数据传输电路

本地环路和 ISDN

- · 本地环路 (Local loop)
 - 电话公司中心局和用户之间的物理连接

综合业务数字网(ISDN)

- ·综合业务数字网(Integrated Services Digital Network, ISDN)
 - -B信道:64 kbps,实现数字化的语音、数据和视频压缩
 - -D通道:16 Kbps,信令,分组数据,其它,作为控制信道

名称	捆绑通道	速率	图示	
基本速率接 口 (BRI)	2B+D	64kbps	B通道 64kbps B通道 64kbps D通道 16kbps 系统开销 48bit	
初等速率接	23B+D	北美DS-1 1.544Mbps	B通道 64kbps B通道 64kbps	
(PRI)	30B+2D	欧洲E-1 2.048Mbps	设备 B通道 64kbps D通道 16kbps	

数字用户线路技术

- · 非对称数字用户线路(ADSL)
 - 离散多音调 (DMT) 调制技术: 频分多路复用
 - 相当于在一对用户线上使用许多小的调制解调器并行地传送数据。
- 采用自适应调制技术使用户线适用尽可能高的数据率。
 - 最高数据传输速率与实际用户线上的信噪比密切相关。

ADSL 的组成

- · 数字用户线接入 (DSL Access Multiplexer)
- ·接入端接单元 ATU (Access Termination Unit)
 - C 代表端局 Central Office, R 代表远端 Remote
- 电话分离器 PS (POTS Splitter)

社区天线电视(CATV)

- 采用频分复用在同轴电缆传输电视信号
 - 同轴电缆比双绞线高带宽,不易受到电磁干扰
 - 支持理论52 Mbps下行和512 kbps上行,实际少很多
- · 光纤同轴混合网 (Hybrid Fiber Coax)
 - 可传送 CATV,还提供电话、数据和其他宽带交互型业务。

采用光纤的接入技术

- · FTTx 是一种实现宽带居民接入网的方案。
 - -FTTH:光纤一直铺到家庭可能是居民接入网最终解决方法
 - -FTTB:光纤进入大楼后就转换为电信号,然后用电缆或双 绞线分配到各用户。
 - FTTC:从路边到用户可用星形结构双绞线作为传输媒体。

名称	全称	说明
FTTC	Fiber To The Curb	到小区边界外
FTTB	Fiber To The Building	允许高上行
FTTH	Fiber To The Home	光纤到户,更高上行,视频信道
FTTP	Fiber To The Premises	FTTB和FTTH的通称

在互联网核心的大容量连接

- 接入技术处理最后一英里问题
 - 最后一英里被定义为到一个典型住宅用户或小企业的连接
- 核心是指互联网骨干的连接,核心技术是指高速技术

Figure 12.10 Aggregate traffic from the Internet to a provider assuming the provider has 5,000 customers each downloading 2 Mbps.

数据线路的电话标准

- ·由于历史原因,PCM有两个互不兼容的国际标准
 - 北美的 24 路 PCM (简称为 T1) , 1.544 Mb/s
 - 欧洲的 30 路 PCM (简称为 E1) , 2.048 Mb/s
 - 我国采用的是欧洲的 E1 标准。
- · DS-n表示一个标准,而 T-n表示符合标准的电路
- 当需要有更高的数据率时 ,可采用复用的方法。

名称	比特率	语音线路	地区
基本速率	0.064 Mbps	1	
T1	1.544 Mbps	24	北美
T2	6.312 Mbps	96	北美
T3	44.736 Mbps	672	北美
E 1	2.048 Mbps	30	欧洲
E2	8.448 Mbps	120	欧洲
E3	34.368 Mbps	480	欧洲

高容量电路(STS标准)

- 电话公司使用干线(trunk)来表示高容量电路,并 为数字中继电路创造了一系列标准
 - 同步传输信号(Synchronous Transport Signal, STS)标准指定高速连接的电气信号
 - OC (Optical Carrier)标准指光信号在光纤中传播
 - C后缀表示级联(concatenated)

铜线名	光纤名	比特率	语音电路
STS-1	OC-1	51.840 Mbps	810
STS-3	OC-3	155.520 Mbps	2430
STS-12	OC-12	622.080 Mbps	9720
STS-24	OC-24	1,244.160 Mbps	19440
STS-48	OC-48	2,488.320 Mbps	38880
STS-192	OC-192	9,953.280 Mbps	155520

同步光纤网 SONET

· 同步光纤网 SONET (Synchronous Optical Network) 的各级时钟都来自一个非常精确的主时钟。

Figure 12.13 Illustration of a SONET frame when used over an STS-1 circuit.

内容纲要

1 远程数字连接的技术2 网络技术过去与现在3 网络所有权、服务模式和性能

广域网结构

- 虚电路:面向连接,类似电话系统
 - 原理:建立虚电路(填表)、数据转发(查表)、释放虚电路(删表)
- 数据报: 无连接,类似电报系统
 - 原理:路由器为每个入站的报文单独选择一条输出线路
- 从广域网内部来看
 - 交换机的内存空间与线路带宽的权衡
 - 虚电路建立时间和路由选择时间的比较

两者比较

项目	数据报	虚电路	
电路建立	不需要	需要	
地址	每个报文都必须有完整的	源和目的地址 每个报文只需	要一个虚电路号
状态信息	子网不存储状态信息	每条虚电路都	占用子网的表空间
路由选择	每个报文单独进行	在建立虚电路	时进行路由选择
路由器失效 的影响	除在崩溃时丢失路由器中 它的报文没有影响	的报文,对其 所有经过失效 要被中止	路由器的虚电路都
拥塞控制	难	容易	
用户服务	"端到端" (end-to-end) 拉	空制 "跳到跳"(hop-	-by-hop) 控制

广域网技术实例

网络简称	网络全称	起止年份	特色	速率
ARPANET	美国高级研究计划 署网络	1969— 1990	第一个分组交换广域 网	56Kbps
PSTN	公共交换电话网	1876—至	世界最大的网络	
CCITT X.25		1976—至	第一个面向连接的网络	
SMDS	交换式多兆位数据 服务	1990— 1992		45Mbps
FR	帧中继	1992—至		1.5Mbps

服务范例比较

• 各种技术的连接类型和使用场景

技术	面向连接	无连接	用于LAN	用于WAN
以太网		*	*	-SC
令牌环		*	*	
FDDI		*	*	
LocalTalk		*	*	
ATM	*		*	
帧中继	*			*
SMDS		*		*

内容纲要

远程数字连接的技术
 网络技术过去与现在
 网络所有权、服务模式和性能

网络所有权

- 私有网络
 - 网络的使用仅限于公司或个人拥有者
 - 对技术决策和策略有完全的控制权,保证网络与组织外的 计算机隔离,安装和维护昂贵
- 公有网络
 - 由服务提供商拥有和运营,任何用户可以使用
 - 灵活性和能够使用先进的网络,而不需维护技术专长。
- 大多数公共网络提供私人通信。

虚拟专用网(VPN)

- · 虚拟专用网 (Virtual Private Networks)
 - 在公用网络上建立专用网络,进行加密通讯。
 - 有的公司没有分布各地的部门,但有很多流动员工在外地工作。他们提供远程接入 VPN 和公司保持联系
 - 在外地工作的员工拨号接入因特网,而员工计算机中的 VPN 软件可在和公司的主机之间建立 VPN 隧道,通信的 内容是保密的,像是使用公司内部的本地网络。
 - VPN系统使用加密保证绝对隐私,即使局外人确实设法获得一个包的副本,外人将无法解释的内容。

性能度量

• 关键量度

- -延迟(时延):传播时延、接入时延、交换时延、队列时延、服务器时延
- 吞吐率(容量):网络可以支持的最大传输速率
 - 单位: bps, kbps, Mbps, Gbps; 注意: bit per second
 - 传输延迟是信号在信道的持续时间,吞吐率是信号输入信道的速率
- 抖动(变化量):评估时延的变化量
 - 处理方法:设计无抖动的等时网络;采用补偿抖动的协议(RTP)

服务质量(QoS)

- 网络服务的等级
- 服务提供商与用户的契约
 - 层级服务:按服务等级计算金额
 - 例如:电信宽带分4Mbps,6Mbps等
 - -服务保证
 - 证券交易: 时延不超过10ms
 - 公司需要备份数据中心:吞吐率不少于1Gbps
- •测量服务质量的工具
 - 简单工具: Ping,原理: Echo协议

计算机网络 Computer Network

谢谢观看

理论课程

