SEQUENCE LISTING

10/573600 <110> The Trustees of the University of Pennsylvania Wilson, James M. Gao, Guangping Alvira, Mauricio R. Vandenberghe, Luk н. Professor Cerro Olyan 2006 <120> Adeno-Associated Virus (AAV) Clades, Sequences, Vectors Containing Same, and Uses Therefor <130> UPN-P3230PCT <150> US 60/508,226 2003-09-30 <150> US 60/566,546 2004-04-29 <151> <160> 236 <170> PatentIn version 3.3 <210> 2211 <211> DNA <213> adeno-associated virus, clone hu.31 <400> atggctgccg atggttatct tccagattgg ctcgaggaca accttagtga aggaattcgc 60 gagtggtggg ctttgaaacc tggagcccct caacccaagg caaatcaaca acatcaagac 120 aacgctcgag gtcttgtgct tccgggttac aaataccttg gacccggcaa cggactcgac 180 aagggggagc cggtcaacgc agcagacgcg gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aggccggaga caacccgtac ctcaagtaca accacgccga cgccgagttc 300 caggagcggc tcaaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaaaaaga ggcttcttga acctcttggt ctggttgagg aagcggctaa gacggctcct 420 ggaaagaaga ggcctgtaga gcagtctcct caggaaccgg actcctccgc gggtattggc 480 aaatcgggtg cacagcccgc taaaaagaga ctcaatttcg gtcagactgg cgacacagag 540 tcagtcccag accctcaacc aatcggagaa cctcccgcag ccccctcagg tgtgggatct 600 cttacaatgg cttcaggtgg tggcgcacca gtggcagaca ataacgaagg tgccgatqqa 660 gtgggtagtt cctcgggaaa ttggcattgc gattcccaat ggctggggga cagagtcatc 720 accaccagca cocgaacotg ggccotgcco acctacaaca atcacctota caagcaaato 780 tccaacagca catctggagg atcttcaaat gacaacgcct acttcggcta cagcacccc 840 tgggggtatt ttgacttcaa cagattccac tgccacttct caccacgtga ctggcagcga 900 ctcatcaaca acaactgggg attccggcct aagcgactca acttcaagct cttcaacatt 960 caggtcaaag aggttacgga caacaatgga gtcaagacca tcgccaataa ccttaccagc 1020 acggtccagg tcttcacgga ctcagactat cagctcccgt acgtgctcgg gtcggctcac 1080 gagggctgcc tcccgccgtt cccagcggac gttttcatga ttcctcagta cgggtatctg 1140 acgettaatg atggaageca ggeegtgggt egttegteet tttactgeet ggaatattte 1200 ccgtcgcaaa tgctaagaac gggtaacaac ttccagttca gctacgagtt tgagaacgta 1260 cctttccata gcagctacgc tcacagccaa agcctggacc gactaatgaa tccactcatc 1320 gaccaatact tgtactatct ctcaaagact attaacggtt ctggacagaa tcaacaaacg 1380 ctaaaattca gtgtggccgg acccagcaac atggctgtcc agggaagaaa ctacatacct 1440 ggacccagct accgacaaca acgtgtctca accactgtga ctcaaaacaa caacagcgaa 1500 tttgcttggc ctggagcttc ttcttgggct ctcaatggac gtaatagctt gatgaatcct 1560 ggacctgcta tggccagcca caaagaagga gaggaccgtt tctttccttt gtctggatct 1620 ttaatttttg gcaaacaagg aactggaaga gacaacgtgg atgcggacaa agtcatgata 1680 accaacgaag aagaaattaa aactactaac ccggtagcaa cggagtccta tggacaagtg 1740 gccacaaacc accagagtgc ccaagcacag gcgcagaccg gctgggttca aaaccaagga 1800

1860

atacttccgg gtatggtttg gcaggacaga gatgtgtacc tgcaaggacc catttgggcc

1920

aaaattcctc acacggacgg caactttcac ccttctccgc tgatgggagg gtttggaatg aagcacccgc ctcctcagat cctcatcaaa aacacacctg tacctgcgga tcctccaacg 1980 gccttcaaca aggacaagct gaactctttc atcacccagt attctactgg ccaagtcagc 2040 gtggagatcg agtgggagct gcagaaggaa aacagcaagc gctggaaccc ggagatccag 2100 tacacttcca actattacaa gtctaataat gttgaatttg ctgttaatac tgaaggtgta 2160 tatagtgaac cccgccccat tggcaccaga tacctgactc gtaatctgta a 2211 <210> 2211 <211> DNA new AAV serotype, clone hu.32 <213> <400> 2 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 Cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccggcaa cggactcgac 180 aagggggagc cggtcaacgc agcagacgcg gcggccctcg agcacgacaa gqcctacqac 240 cagcagetea aggeeggaga caaccegtae etcaagtaca accaegeega egeegagtte 300 caggagcggc tcaaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaaaaaga ggcttcttga acctcttggt ctggttgagg aagcggctaa gacggctcct 420 ggaaagaaga ggcctgtaga gcagtctcct caggaaccgg actcctccgc ggqtattgqc 480 aaatcgggtt cacagcccgc taaaaagaaa ctcaatttcg gtcagactgg cgacacagag 540 tcagtccccg accetcaacc aatcggagaa cetecegeag ecceetcagg tgtgggatet 600 cttacaatgg cttcaggtgg tggcgcacca gtggcagaca ataacgaagg tgccgatgga 660 gtgggtagtt cctcgggaaa ttggcattgc gattcccaat ggctggggga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca atcacctcta caagcaaatc 780 tccaacagca catctggagg atcttcaaat gacaacgcct acttcggcta cagcacccc 840 tgggggtatt ttgacttcaa cagattccac tgccacttct caccacgtga ctggcagcga 900 ctcatcaaca acaactgggg attccggcct aagcgactca acttcaagct cttcaacatt 960 caggtcaaag aggttacgga caacaatgga gtcaagacca tcgccaataa ccttaccagc 1020 acggtccagg tcttcacgga ctcagactat cagctcccgt acgtgctcgg gtcggctcac 1080 gagggctgcc tcccgccgtt cccagcggac gttttcatga ttcctcagta cgggtatctg 1140 acgettaatg atgggageca ggeegtgggt egttegteet tttaetgeet ggaatattte 1200 ccgtcgcaaa tgctaagaac gggtaacaac ttccagttca gctacgagtt tgagaacqta 1260 cctttccata gcagctacgc tcacagccaa agcctggacc gactaatgaa tccactcatc 1320 gaccaatact tgtactatct ctcaaagact attaacggtt ctggacagaa tcaacaaacg 1380 ctaaaattca gcgtggccgg acccagcaac atggctgtcc agggaagaaa ctacatacct 1440 ggacccagct accgacaaca acgtgtctca accactgtga ctcaaaacaa caacagcgaa 1500 tttgcttggc ctggagcttc ttcttgggct ctcaatggac gtaatagctt gatgaatcct 1560 ggacctgcta tggccagcca caaagaagga gaggaccgtt tctttccttt gtctggatct 1620 ttaatttttg gcaaacaagg aactggaaga gacaacgtgg atgcggacaa agtcatgata 1680 accaacgaag aagaaattaa aactactaac ccggtagcaa cqgaqtccta tqqacaaqtq 1740 gccacaaacc accagagtgc ccaagcacag gcgcagaccg gctgggttca aaaccaagga 1800 atacttccgg gtatggtttg gcaggacaga gatgtgtacc tgcaaggacc catttgggcc 1860 aaaattcctc acacggacgg caactttcac ccttctccgc taatgggagg gtttggaatg 1920 aagcacccgc ctcctcagat cctcatcaaa aacacacctg tacctgcgga tcctccaacg 1980 gctttcaata aggacaagct gaactctttc atcacccagt attctactgg ccaagtcagc 2040 gtggagattg agtgggagct gcagaaggaa aacagcaagc gctggaaccc ggagatccag 2100 tacacttcca actattacaa gtctaataat gttgaatttg ctgttaatac tgaaggtgta 2160

gagtggtggg acttgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac

gacggccggg gtctggtgct tcctggctgc aagtacctcg gacccttcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac

120

180

			5 55 5		-	
cagcagctca	aagcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aaggcgctaa	gacggctcct	420
ggaaagaaga	gaccggtaga	gccatcaccc	cagcgttctc	cagactcctc	tacgggcatc	480
ggcaagacag	gccagcagcc	cgcgaaaaag	agactcaact	ttgggcagac	tggcgactca	540
gagtcagtgc	ccgaccctca	accaatcgga	gaaccccccg	caggcccctc	tggtctggga	600
tctggtacaa	tggctgcagg	cggtggcgct-	ccaatggcag	acaataacga	aggcgccgac	660
ggagtgggta	gttcctcagg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggccctc	cccacctaca	acaaccacct	ctacaagcaa	780
atctccaacg	ggacatcggg	aggaagcacc	aacgacaaca	cctacttcgg	ctacagcacc	840
ccctgggggt	attttgactt	taacagattc	cactgccact	tctcaccacg	tgactggcag	900
cgactcatca	acaacaactg	gggattccgg	cccaagagac	tcaacttcaa	gctcttcaac	960
atccaggtca	aggaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taaccttacc	1020
agcacgattc	aggtctttac	ggactcggaa	taccagctcc	cgtacgtcct	cggctctgcg	1080
caccagggct	gcccgcctcc	gttcccggcg	gacgtcttca	tgattcctca	gtacgggtac	1140
ctgactctga	acaacggcag	tcaggccgtg	ggccgttcct	ccttctactg	cctggagtac	1200
tttccttctc	aaatgcggag	aacgggcaac	aactttgagt	tcagctacca	gtttgaggac	1260
gtgccttttc	acagcagcta	cgcgcatagc	caaagcctgg	accggctgat	gaaccccctc	1320
atcgaccagt	acctgtacta	cctgtctcgg	actcagtcca	cgggaggtac	cgcaggaact	1380
cagcagttgc	tattttctca	ggccgggcct	aataacatgt	cggctcaggc	caaaaactgg	1440
ctacccgggc	cctgctaccg	gcagcaacgc	gtctccacga	cactgtcgca	aaataacaac	1500
agcaactttg	cttggaccgg	tgccaccaag	tatcatctga	atggcagaga	ctctctggta	1560
aatcccggtg	tcgctatggc	aacgcacaag	gacgacgaag	agcgatttt	tccatccagc	1620
ggagtcttga	tgtttgggaa	acagggagct	ggaaaagaca	acgtggacta	tagcagcgtt	1680
atgctaacca	gtgaggaaga	aatcaaaacc	accaacccag	tggccacaga	acagtacggc	1740
gtggtggccg	ataacctgca	acagcaaaac	gccgctccta	ttgtaggggc	cgtcaacagt	1800
caaggagcct	tacctggcat	ggtctggcag	aaccgggacg	tgtacctgca	gggtcctatc	1860
tgggccaaga	ttcctcacac	ggacggcaac	tttcatcctt	cgccgctgat	gggaggcttt	1920
ggactgaaac	acccgcctcc	tcagatcctg	attaagaata	cacctgttcc	cgcggatcct	1980
ccaactacct	tcagtcaagc	caagctggcg	tcgttcatca	cgcagtacag	caccggacag	2040
gtcagcgtgg	aaattgaatg	ggagctgcag	aaagagaaca	gcaagcgctg	gaacccagag	2100
attcagtata	cttccaacta	taacaaatct	gttaatgtgg	actttactgt	ggacactaat	2160
ggtgtgtatt	cagagcctcg	ccccattggc	accagatacc	tgactcgtaa	tctgtaa	2217
	, AAV serotyp	oe, clone hu	1.6			
<400> 5 atggctgccg	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
	acttgaaacc	•				120
	gtctggtgct					180
aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
	aagcgggtga					300
	tgcaagaaga				_	360
				Page 4		

420

gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct

555555		55 5 - 55		333	
ggaaagaaga gaccggtaga	gccatcaccc	cagcgttctc	cagactcctc	tacgggcatc	480
ggcaagacag gccagcagcc	cgcgaaaaag	agactcaact	ttgggcagac	tggcgactca	540
gagtcagtgc ccgaccctca	accaatcgga	gaaccccccg	caggcccctc	tggtctggga	600
tctggtacaa tggctgcagg	cggtggcgct	ccaatggcag	acaataacga	aggcgccgac	660
ggagtgggta gttcctcagg	aaattggcat	tgcgattccg	catggctggg	cgacagagtc	720
atcaccacca gcacccgacc	ctgggccctc	cccacctaca	acaaccacct	ctacaagcaa	780
atctccaacg ggacatcggg	aggaagcacc	aacgacaaca	cctacttcgg	ctacagcacc	840
ccctgggggt attttgactt	taacagattc	cactgccact	tctcaccacg	tgactggcag	900
cgactcatca acaacaactg	gggattccgg	cccaagagac	tcaacttcaa	gctcttcaac	960
atccaggtca aggaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taaccttacc	1020
agcacgattc aggtctttac	ggactcggaa	taccagctcc	cgtacgtcct	cggctctgcg	1080
caccagggct gcccgcctcc	gttcccggcġ	gacgtcttca	tgattcctca	gtacgggtac	1140
ctgactctga acaacggcag	tcaggccgtg	ggccgttcct	ccttctactg	cctggagtac	1200
tttccttctc aaatgcggag	aacgggcaac	aactttgagt	tcagctacca	gtttgaggac	1260
gtgccttttc acagcagcta	cgcgcatagc	caaagcctgg	accggctgat	gaaccccctc	1320
atcgaccagt acctgtacta	cctgtctcgg	actcagtcca	cgggaggtac	cgcaggaact	1380
cagcagttgc tattttctca	ggccgggcct	aataacatgt	cggctcaggc	caaaaactgg	1440
ctacccgggc cctgctaccg	gcagcaacgc	gtctccacga	cactgtcgca	aaataacaac	1500
agcaactttg cttggaccgg	tgccaccaag	tatcatctga	atggcagaga	ctctctggta	1560
aatcccggtg tcgctatggc	aacgcacaag	gacgacgaag	agcgattttt	tccatccagc	1620
ggagtcttga tgtttgggaa	acagggagct	ggaaaagaca	acgtggacta	tagcagcgtt	1680
atgctaacca gtgaggaaga	aatcaaaacc	accaacccag	tggccacaga	acagtacggc	1740
gtggtggccg ataacctgca	acagcaaaac	gccgctccta	ttgtaggggc	cgtcaacagt	1800
caaggagcct tacctggcat	ggtctggcag	aaccgggacg	tgtacctgca	gggtcctatc	1860
tgggccaaga ttcctcacac	ggacggcaac	tttcatcctt	cgccgctgat	gggaggcttt	1920
ggactgaaac acccgcctcc	tcagatcctg	attaagaata	cacctgttcc	cgcggatcct	1980
ccaactacct tcagtcaagc	caagctggcg	tcgttcatca	cgcagtacag	caccggacag	2040
gtcagcgtgg aaattgaatg	ggagctgcag	aaagagaaca	gcaagcgctg	gaacccagag	2100
attcagtata cttccaacta	ctacaaatct	acaaatgtgg	actttgctgt	caatactgag	2160
ggtacttatt cagagcctcg	ccccattggc	acccgttacc	tcacccgtaa	cctgtaa	2217
<210> 6 <211> 2217 <212> DNA <213> new AAV seroty	pe, clone hu	J.41			
<400> 6 atggctgctg acggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg acctgaaacc	tggagccccc	aagcccaagg	ccaaccagca	gaagcaggac	120
gacggccggg gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctca aagcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
caggagcgtc tacaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc gggttctcga	acctctcggt	ccggttgagg	aagctgctaa	gacggctcct	420
ggaaagaaga gaccggtaga	accgccacct	cagcgttccc	ccgactcctc	cacgggcatc	480
ggcaagaaag gccagcagcc	cgctaaaaag	agactgaact	ttggtcagac	tggcgactca	540
gagtcagtcc ccgaccctca	accaatcgga	gaaccaccag	caggcccctc	tggtctggga	600
tctggtacaa tggctgcagg	cggtggcgct	ccaatggcag	acaataacga Page 5	aggcgccgac	660

720

ggagtgggta gttcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc

						700
	gcacccgaac					780
_	ggacatcggg			-	_	840
	attttgactt					900
_	acaacaactg		_			960
-	aggaggtcac					1020
-	aggtatttac					1080
	gcctgcctcc	-		•	•	1140
	acaatggaag			•		1200
	aaatgctgcg		_	-		1260
	acagcagcta					1320
	acctgtacta					1380
	tattttctca		-			1440
	cttgctaccg					1500
agcaactttg	cttggactgg	tgccaccaaa	tatcacctga	acggaagaga	ctctttggta	1560
aatcccggtg	tcgccatggc	aacccacaag	gacgacgagg	aacgcttctt	cccgtcgagt	1620
ggagtcctga	tgtttggaaa	acagggtgct	ggaagagaca	atgtggacta	cagcagcgtt	1680
atgctaacca	gcgaagaaga	aattaaaacc	actaaccctg	tagccacaga	acaatacggt	1740
	acaacttgca				_	1800
caaggagcct	tacctggcat	ggtctggcag	aaccgagacg	tgtacctgca	gggtcccatc	1860
tgggccaaga	ttcctcacac	ggacggcaac	ttccaccctt	caccgctaat	gggaggattt	1920
ggactgaagc	acccacctcc	tcagatcctg	atcaagaaca	cgccggtacc	tgcggatcct	1980
ccaacaacgt	tcagccaggc	gaaattggct	tccttcatta	cgcagtacag	caccggacag	2040
gtcagcgtgg	aaatcgagtg	ggagctgcag	aaggagaaca	gcaaacgttg	gaacccagag	2100
attcagtaca	cttcaaacta	ctacaaatct	acaaatgtgg	actttgctgt	caatacagag	2160
ggaacttatt	ctgagcctcg	ccccattggt	actcgttacc	tcacccgtaa	tctgtaa	2217
-210- 7						
<210> 7 <211> 2217	7	•				
<212> DNA <213> new	AAV serotyp	oe, clone ri	1.38			
<400> 7	acggttatct	tccaoattoo	ctcoaogaca	acctctctoa	agacattcac	60
	acctgaaacc					120
	gtctggtgct					180
	ccgtcaacgc					240
	aagcgggtga					300
	tacaagaaga					360
	gggttctcga				-	420
	gaccggtaga					480
	gccagcggcc					540
	ccgaccctca					600
	tggctgcagg					660
	gttcctcagg					720
	gcacccgaac					780
	ggacatcggg				_	840
	attttgactt					900
	acaacaactg					960
•				Page 6	2	300

atccaggtca aggaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taaccttac	c 1020
agcacgattc aggtatttac ggactcggaa taccagctgc cgtacgtcct cggctccgc	g 1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcccca gtacggcta	ic 1140
cttacactga acaatggaag tcaagccgta ggccgttcct ccttctactg cctggaata	t 1200
tttccatctc aaatgctgcg aactggaaac aattttgaat tcagctacac cttcgagga	ic 1260
gtgcctttcc acagcagcta cgcacacagc cagagcttgg accgactgat gaatcctct	c 1320
atcgaccagt acctgcacta cttatccaga actcagtcca caggaggaac tcaaggtac	c 1380
cagcaattgt tattttctca agctgggcct gcaaacatgt cggctcaggc taagaactg	g 1440
ctacctggac cttgctaccg gcagcagcga gtctctacga cactgtcgca aaacaacaa	ic 1500
agcaactttg cttggactgg tgccaccaaa tatcacctga acggaagaga ctctttggt	a 1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccgtcgag	t 1620
ggagtcctga tgtttggaaa acagggtgct ggaagagaca atgtggacta cagcagcgt	t 1680
atgctaacca gcgaagaaga aattaaaacc actaaccctg tagccacaga acaatacgg	t 1740
gtggtggctg acaacttgca gcaaaccaat acagggccta ttgtgggaaa tgtcaacag	c 1800
caaggagcct tacctggcat ggtctggcag aaccgagacg tgtacctgca gggtcccat	c 1860
tgggccaaga ttcctcacac ggacggcaac ttccaccctt caccgctaat gggaggatt	t 1920
ggactgaagc acccacctcc tcagatcctg atcaagaaca cgccggtacc tgcggatcc	t 1980
ccaacaacgt tcagccaggc gaaattggct tccttcatta cgcagtacag caccggaca	g 2040
gtcagcgtgg aaatcgagtg ggagctgcag aaggagaaca gcaaacgctg gaacccaga	g 2100
attcagtaca cttcaaacta ctacaaatct acaaatgtgg actttgctgt caatacaga	g 2160
ggaacttatt ctgagcctcg ccccattggt actcgctacc tcacccgtaa tctgtaa	2217
<210> 8 <211> 2217 <212> DNA <213> new AAV serotype, clone hu.42	
<400> 8 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcg	c 60
gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcagga	c 120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcga	c 180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacga	c 240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagtt	t 300
caggagcgtc tgcaagaaga tacgtctttt ggggggcaacc tcgggcgagc agtcttcca	g 360
gccaagaagc gggttctcga acctctcggt ctggttgagg aagcggctaa gacggctcc	t 420
ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcat	c 480
ggcaagaaag gccagcagcc cgctaaaaag agactgaact ttggtcagac tggcgactc	a 540
gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggg	a 600
tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccga	c 660
ggagtgggta gttcctcagg aaattggcat tgcgattcca catggctggg cgacagagt	c 720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagca	a 780
atatccaatg ggacatcggg aggaagcacc aacgacaaca cctacttcgg ctacagcac	c 840
ccctgggggt attttgactt caacagattc cactgccact tctcaccacg tgactggca	g 900
cgactcatca acaacaactg gggattccgg ccaaaaagac tcagcttcaa gctcttcaa	.c 960
atccaggtca aggaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taaccttac	c 1020
-	

1080

1140

1200

1260

agcacgattc aggtatttac ggactcggaa taccagctgc cgtacgtcct cggctccgcg

caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcccca gtacggctac

cttacactga acaatggaag tcaagccgta ggccgttcct ccttctactg cctggaatat

tttccatctc aaatgctgcg aactggaaac aattttgaat tcagctacac cttcgaggac

WO 2005/033321	P
gtgcctttcc acagcagcta cgcacacagc cagagcttgg accgactgat gaatcctctc	1320
atcgaccagt acctgtacta cttatccaga actcagtcca caggaggaac tcaaggtacc	1380
cagcaattgt tattttctca agctgggcct gcaaacatgt cggctcaggc taagaactgg	1440
ctacctggac cttgctaccg gcagcagcga gtctctacga cactgtcgca aagcaacaac	1500
agcaactttg cttggactgg tgccaccaaa tatcacctga acggaagaga ctctttggta	1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccgtcgagt	1620
ggagtcctga tgtttggaaa acagggtgct ggaagagaca atgtggacta cagcagcgtt	1680
atgctaacca gcgaagaaga aattaaaacc actaaccctg tagccacaga acaatacggt	1740
gtggtggctg acaacttgca gcaaaccaat acagggccta ttgtgggaaa tgtcaacagc	1800
caaggageet tacetggeat ggtetggeag aacegagaeg tgtacetgea gggteecate	1860
tgggccaaga ttcctcacac ggacggcaac ttccaccctt caccgctaat gggaggactt	1920
ggactgaagc acccacctcc tcagatcctg atcaagaaca cgccggtacc tgcggatcct	1980
ccaacaacgt tcagccaggc gaaattggct tccttcatta cgcagtacag caccggacag	2040
gtcagcgtgg aaatcgagtg ggagctgcag aaggagaaca gcaaacgctg gaacccagag	2100
attcagtaca cttcaaacta ctacaaatct acaaatgtgg actttgctgt caatacagag	2160
ggaacttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa	2217
<210> 9 <211> 2217 <212> DNA <213> new AAV serotype, clone rh.72 <400> 9	
<400> 9 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac	120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac	240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt	300
caggagcgtc tgcaagaaga tacgtctttt ggggggcaacc tcgggcgagc agtcttccag	360
gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct	420
ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc	480
ggcaagaaag gccagcagcc cgctaaaaag agactgaact ttggtcagac tggcgactca $$	540
gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga	600
tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac	660
ggagtgggta gttcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc	720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa	780
atatccaatg ggacatcggg aggaagcacc aacgacaaca cctacttcgg ctacagcacc	840
ccctgggggt attttgactt caacagattc cactgccact tctcaccacg tgactggcag	900
cgactcatca acaacaactg gggattccgg ccaaaaagac tcagcttcaa gctcttcaac	960
atccaggtca aggaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taaccttacc	1020

agcacgattc aggtatttac ggactcggaa taccagctgc cgtacgtcct cggctccgcg

caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcccca gtacggctac

cttacactga acaatggaag tcaagccgta ggccgttcct ccttctactg cctggaatat

tttccatctc aaatgctgcg aactggaaac aattttgaat tcagctacac cttcgaggac

gtgcctttcc acagcagcta cgcacacagc cagagcttgg accgactgat gaatcctctc

atcgaccagt acctgtacta cttatccaga actcagtcca caggaggaac tcaaggtacc

cagcaattgt tattttctca agctgggcct gcaaacatgt cggctcaggc taagaactgg

ctacctggac cttgctaccg gcagcagcga gtctctacga cactgtcgca aaacaacaac

1080

1140

1200

1260

1320

1380

1440

1500

1620 aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccgtcgagt 1680 ggagtcctga tgtttggaaa acagggtgct ggaagagaca atgtggacta cagcagcgtt 1740 atgctaacca gcgaagaaga aattaaaacc actaaccctg tagccacaga acaatacggt gtggtggctg acaacttgca gcaaaccaat acaggqccta ttgtqqqaaa tgtcaacagc 1800 caaggagcct tacctggcat ggtctggcag aaccgagacg tgtacctgca gggtcccatc 1860 tgggccaaga ttcctcacac ggacggcaac ttccaccctt caccgctaat gggaggattt 1920 ggactgaagc acceaectee teagateetg ateaagaaca egeeggtace tgeggateet 1980 ccaacaacgt tcagccaggc gaaattggct tccttcatta cgcagtacag caccggacag 2040 gtcagcgtgg aaatcgagtg ggagctgcag aaggagaaca gcaaacgctg gaacccagag 2100 attcagtaca cttcaaacta ctacaaatct acaaatgtgg actttgctgt caatacagag 2160 ggaacttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa 2217 <210> 10 2217 DNA new AAV serotype, clone hu.37 <213> atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga qqqcattcqc 60 gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc CCgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagetea aagegggtga caateegtae etgeggtata accaegeega egeegagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420 ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacqqqcatc 480 ggcaagaaag gccagcagcc cgctaaaaag agactgaact ttggtcagac tggcgactca 540 gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga 600 tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac 660 ggagtgggta gttcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa 780 atatccaatg ggacatcggg aggaagcacc aacgacaaca cctacttcgg ctacagcacc 840 ccctgggggt attttgactt caacagattc cactgccact tctcaccacg tgactgqcaq 900 cgactcatca acaacaactg gggattccgg ccaaaaagac tcagcttcaa gctcttcaac 960 atccaggtca aggaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taaccttacc 1020 agcacgattc aggtatttac ggactcggaa taccagctgc cgtacgtcct cggctccgcg 1080 caccaggget geetgeetee gtteeeggeg gaegtettea tgatteeeca gtaeggetae 1140 cttacactga acaatggaag tcaagccgta ggccgttcct ccttctactg cctggaatat 1200 tttccatctc aaatgctgcg aactggaaac aattttgaat tcagctacac cttcgaggac 1260 gtgcctttcc acagcagcta cgcacacagc cagagcttgg accgactgat gaatcctctc 1320 atcgaccagt acctgtacta cttatccaga actcagtcca caggaggaac tcaaggtacc 1380 cagcaattgt tattttctca agctgggcct gcaaacatgt cggctcaggc taagaactgg 1440 ctacctggac cttgctaccg gcagcagcga gtctctacga cactgtcgca aaacaacaac 1500 agcaactttg cttggactgg tgccaccaaa tatcacctga acggaagaga ctctttggta 1560 aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccgtcgagt 1620 ggagtcctga tgttcggaaa acagggtgct ggaagagaca atgtggacta cagcagcgtt 1680 atgctaacca gcgaagaaga aattaaaacc actaaccccg tagccacaga acaatacggt 1740 gtggtggctg acaacttgca gcaaaccaat acagggccta ttgtgggaaa tgtcaacagc 1800 caaggagcct tacctggcat ggtctggcag aaccgagacg tgtacctgca gggtcccatc 1860

1920

tgggccaaga ttcctcacac ggacggcaac ttccaccctt caccgctaat gggaggattt

ggactgaagc acccacctcc tcagatcctg atcaagaaca cgccggtacc tgcggatcct 1980 ccaacaacgt tcagccaggc gaaattggct tccttcatta cgcagtacag caccqqacag 2040 gtcagcgtgg aaatcgagtg ggagctgcag aaggagaaca gcaaacgctg gaacccagag 2100 attcagtaca cttcaaacta ctacaaatct acaaatgtgg actttgctgt caatacagag 2160 ggaacttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa 2217 11 2217 DNA new AAV serotype, clone hu.40 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg qacccttcaa cqqactcqac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgqqcqaqc aqtcttccaq 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420 ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc 480 ggcaagaaag gccagcagcc cgctaaaaaag agactgagct ttggtcaqac tqqcqactca 540 gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tqqtctqqqa 600 tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac 660 ggagtgggta gttcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa 780 atatccaatg ggacatcggg aggaagcacc aacgacaaca cctacttcgg ctacagcacc 840 ccctgggggt attttgactt caacagattc cactgccact tctcaccacg tgactggcag 900 cgactcatca acaacaactg gggattccgg ccaaaaagac tcagcttcaa gctcttcaac 960 atccaggtca aggaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taaccttacc 1020 agcacgattc aggtatttac ggactcggaa taccagctgc cgtacgtcct cggctccgcg 1080 caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcccca gtacggctac 1140 cttacactga acaatggaag tcaagccgta ggccgttcct ccttctactq cctqqaatat 1200 tttccatctc aaatgctgcg aactggaaac aattctgaat tcagctacac cttcgaggac 1260 gtgcctttcc acagcagcta cgcacacagc cagagcttgg accgactgat gaatcctctc 1320 atcgaccagt acctgtacta cttatccaga actcagtcca caggaggaac tcaaggtacc 1380 cagcaattgt tattttctca agctgggcct gcaaacatgt cggctcaggc taaqaactqq 1440 ctacctggac cttgctaccg gcagcagcga gtctctacga cactgtcgca aaacaacaac 1500 agcaactttg cttggactgg tgccaccaaa tatcacctga acggaagaga ctctttggta 1560 aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccgtcgagt 1620 ggagtcctga tgtttggaaa acagggtgct ggaagagaca atgtggacta cagcagcqtt 1680 atgctaacca gcgaagaaga aattaaaacc actaaccctg tagccacaga acaatacggt 1740 gtggtggctg acaacttgca gcaaaccaat acagggccta ttgtgggaaa tgtcaacagc 1800 caaggagcct tacctggcat ggtctggcag aaccgagacg tgtacctgca gggtcccatc 1860 tgggccaaga ttcctcacac ggacggcaac ttccaccctt caccgctaat gggaggattt 1920 ggactgaagc acccacctcc tcagatcctg atcaagaaca cgccqqtacc tgcqqatcct 1980 ccaacaacgt tcagccaggc gaaattggct tccttcatta cgcagtacag caccggacag 2040 gtcagcgtgg aaatcgagtg ggagctgcag aaggagaaca gcaaacgctg gaacccagag 2100 attcagtaca cttcaaacta ctacaaatct acaaatgtgg actttgctgt caatacagag 2160 Page 10

ggaacttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa 2217 <210> <211> 12 2217 <212> DNA <213> new AAV serotype, clone hu.38 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagetea aagegggtga caateegtae etgeggtata accaegeega egeegagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420 ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc 480 ggcaagaaag gccagcagcc cgctaaaaag agactgaact ttggtcagac tggcgactca 540 gagtcagtcc ccgaccctca accaatcgga gaaccacctg caggcccctc tggtctggga 600 tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac 660 ggagtgggta gttcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa 780 atatccaatg ggacatcggg agggagcacc aacgacaaca cctacttcgg ctacagcacc 840 ccctgggggt attttgactt caacagattc cactgccact tctcaccacg tgactggcag 900 cgactcatca acaacaactg gggattccgg ccaaaaagac tcagcttcaa gctcttcaac 960 atccaggtca aggaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taaccttacc 1020 agcacgattc aggtatttac ggactcggaa taccagctgc cgtacgtcct cggctccgcg 1080 caccaggget geetgeetee gtteeeggeg gaegtettea tgatteecea gtaeggetae 1140 cttacactga acaatggaag tcaagccgta ggccgttcct ccttctactg cctggaatat 1200 tttccatctc aaatgctgcg aactggaaac aattttgaat tcagctacac cttcgaggac 1260 gtgcctttcc acagcagcta cgcacacagc cagagcttgg accgactgat gaatcctctc 1320 atcgaccagt acctgtacta cttatccaga actcagtcca caggaggaac tcaaggtacc 1380 cagcaattgt tattttctca agctgggcct gcaaacatgt cggctcaggc taagaactgg 1440 ctacctggac cttgctaccg gcagcagcga gtctctacga cactgtcgca aaacaacaac 1500 agcaactttg cttggactgg tgccaccaaa tatcacctga acggaagaga ctctttggta 1560 aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccgtcgagt 1620 ggagtcctga tgtttggaaa acagggtgct ggaagagaca atgtggacta cagcagcgtt 1680 atgctaacca gcgaagaaga aattaaaacc actaaccctg tagccacaga acaatacggt 1740 gtggtggctg acaacttgca gcaaaccaat acagggccta ttgtgggaaa tgtcaacagc 1800 caaggageet tacctggeat ggtetggeag aaccgagaeg tgtacctgea gggteecate 1860 tgggccaaga ttcctcacac ggacggcaac tgccaccctt caccgctaat gggaggattt 1920 ggactgaagc acccacctcc tcagatcctg atcaagaaca cgccggtacc tgcggatcct 1980 ccaacaacgt tcagccaggc gaaattggct tccttcatta cgcagtacag caccggacag 2040 gtcagcgtgg aaatcgagtg ggagctgcag aaggagaaca gcaaacgctg gaacccagag 2100 attcagtaca cttcaaacta ctacaaatct acaaatgtgg actttgctgt caatacagag 2160 ggaacttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa 2217 <210> 2217 <211> <212> DNA <213> new AAV serotype, clone rh.39 <400>

Page 11

60

atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc

994-99	acggetatet	cccagactgg	cccgaggaca	acticacing	gggcaccage	•
gagtggtggg	acctgaaacc	tggagccccc	aagcccaagg	ccaaccagca	gaagcaggac	120
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctca	aagcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
caggagcgtc	tgcaagaaga	tacgtctttţ	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aagctgctaa	gacggctcct	420
ggaaagaaga	gaccggtaga	accgtcacct	cagcgttccc	ccgactcctc	cacgggcatc	480
ggcaagaaag	gccagcagcc	cgctaaaaag	agactgaact	ttggtcagac	tggcgactca	540
gagtcagtcc	ccgaccctca	accaatcgga	gaaccaccag	caggcccctc	tggtctggga	600
tctggtacaa	tggctgcagg	cggtggcgct	ccaatggcag	acaataacga	aggcgccgac	660
ggagtgggta	gttcctcagg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	acaaccacct	ctacaagcaa	780
atatccaatg	ggacatcggg	aggaagcacc	aacgacaaca	cctacttcgg	ctacagcacc	840
ccctgggggt	attttgactt	caacagattc	cactgccact	tctcaccacg	tgactggcag	900
cgactcatca	acaacaactg	gggattccgg	ccaaaaagac	tcagcttcaa	gctcttcaac	960
atccaggtca	aggaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taaccttacc	1020
agcacgattc	aggtatttac	ggactcggaa	taccagctgc	cgtacgtcct	cggctccgcg	1080
caccagggct	gcctgcctcc	gttcccggcg	gacgtcttca	tgattcccca	gtacggctac	1140
cttacactga	acaatggaag	tcaagccgta	ggccgttcct	ccttctactg	cctggaatat	1200
tttccatctc	aaatgctgcg	aactggaaac	aattttgaat	tcagctacac	cttcgaggac	1260
gtgcctttcc	acagcagcta	cgcacacagc	cagagcttgg	accgactgat	gaatcctctc	1320
atcgaccagt	acctgtacta	cttatccaga	actcagtcca	caggaggaac	tcaaggtacc	1380
cagcaattgt	tattttctca	agctgggcct	gcaaacatgt	cggctcaggc	taagaactgg	1440
ctacctggac	cttgctaccg	gcagcagcga	gtctctacga	cactgtcgca	aaacaacaac	1500
agcaactttg	cttggactgg	tgccaccaaa	tatcacctga	acggaagaga	ctctttggta	1560
aatcccggtg	tcgccatggc	aacccacaag	gacgacgagg	aacgcttctt	cccgtcgagt	1620
ggagtcctga	tgtttggaaa	acagggtgct	ggaagagaca	atgtggacta	cagcagcgtt	1680
atgctaacca	gcgaagaaga	aattaaaacc	actaaccctg	tagccacaga	acaatacggt	1740
gtggtggctg	ataacttgca	gcaaaccaat	acggggccta	ttgtgggaaa	tgtcaacagc	1800
caaggagcct	tacctggcat	ggtctggcag	aaccgagacg	tgtacctgca	gggtcccatc	1860
tgggccaaga	ttcctcacac	ggacggcaac	ttccaccctt	caccgctaat	gggaggattt	1920
ggactgaagc	acccacctcc	tcagatcctg	atcaagaaca	cgccggtacc	tgcggatcct	1980
ccaacaacgt	tcagccaggc	gaaattggct	tccttcatta	cgcagtacag	caccggacag	2040
gtcagcgtgg	aaatcgagtg	ggagctgcag	aaggagaaca	gcaaacgctg	gaacccagag	2100
attcagtaca	cttcaaacta	ctacaaatct	acaaatgtgg	actttgctgt	caatacagag	2160
ggaacttatt	ctgagcctcg	ccccattggt	actcgttacc	tcacccgtaa	tctgtaa	2217
<210> 14						
<211> 2217 <212> DNA		oe, clone rh	n.40			
<400> 14 atggctgctg	acggttatct	tccagattqq	ctcgaggaca	acctctctga	ggqcattcac	60
gagtggtggg						120
gacggccggg						180
			gcggccctcg			240
cagcagctca						300
		•	J JJ J -		-33-5	

caggagcgtc tgcaagaaga tacgtctttt gggggcaa	cc tcgggcgagc agtcttccag	360
gccaagaagc gggttctcga acctctcggt ctggttga	ngg aagctgctaa gacggctcct	420
ggaaagaaga gaccggtaga accgtcacct cagcgtto	cc ccgactcctc cacgggcatc	480
ggcaagaaag gccagcagcc cgctaaaaag agactgaa	act ttggtcagac tggcgactca	540
gagtcagtcc ccgaccctca accaatcgga gaaccacc	ag caggcccctc tggtctggga	600
tctggtacaa tggctgcagg cggtggcgct ccaatggc	ag acaataacga aggcgccgac	660
ggagtgggta gttcctcagg aaattggcat tgcgattc	cca catggctggg cgacagagtc	720
atcaccacca gcacccgaac ctgggccctg cccaccta	ica acaaccacct ctacaagcaa	780
atatccaatg ggacatcggg aggaagcacc aacgacaa	ica cctacttcgg ctacagcacc	840
ccctgggggt attttgactt caacagattc cactgcca	act tctcaccacg tgactggcag	900
cgactcatca acaacaactg gggattccgg ccaaaaag	ac tcagcttcaa gctcttcaac	960
atccaggtca aggaggtcac gcaggatgaa ggcaccaa	iga ccatcgccaa taaccttacc	1020
agcacgattc aggtatttac ggactcggaa taccagct	gc cgtacgtcct cggctccgcg	1080
caccagggct gcctgcctcc gttcccggcg gacgtctt	ca tgattcccca gtacggctac	1140
cttacactga acaatggaag tcaagccgta ggccgttc	cct ccttctactg cctggaatat	1200
tttccatctc aaatgctgcg aactggaaac aattttga	at tcagctacac cttcgaggac	1260
gtgcctttcc acagcagcta cgcacacagc cagagctt	gg accgactgat gaatcctctc	1320
atcgaccagt acctgtacta cttatccaga actcagtc	ca caggaggaac tcaaggtacc	1380
cagcaattgt tattttctca agctgggcct gcaaacat	gt cggctcgggc taagaactgg	1440
ctacctggac cttgctaccg gcagcagcga gtctctac	ga cactgtcgca aaacaacaac	1500
agcaactttg cttggactgg tgccaccaaa tatcacct	ga acggaagaga ctctttggta	1560
aatcccggtg ttgctatggc aacgcataag gacgacga	igg aacgtttctt tccatcgagc	1620
ggagtcctga tgtttggaaa acagggtgct ggaagaga	ica atgtggacta tagcagcgtt	1680
atgctaacca gcgaggaaga aattaaaacc actaaccc	tg tagccacaga acaatacggt	1740
gtggtggctg acaacttgca gcaagccaat acagggcc	ta ttgtgggaaa tgtcaacagc	1800
caaggagcct tacctggcat ggtctggcag aaccgaga	cg tgtacctgca gggtcccatc	1860
tgggccaaaa ttcctcacac ggacggcaat tttcaccc	gt ctcctctgat gggcggcttt	1920
ggactgaagc acccacctcc ccagatcctg atcaagaa	ta cgccggtacc tgcggatcct	1980
ccaacgacgt tcagccaggc aaaattggct tccttcat	ca cgcagtacag caccggccag	2040
gtcagcgtgg agatcgagtg ggagctgcag aaggagaa	ica gcaagcgatg gaacccagaa	2100
attcagtaca cttccaacta ctacaaatct acaaatgt	gg actttgctgt caattctgag	2160
ggtacatatt cagagcctcg ccccattggt actcgtta	itc tgacacgtaa tctgtaa	2217
<210> 15 <211> 2217 <212> DNA <213> new AAV serotype, clone rh.64		
<pre><400> 15 atggctgccg atggttatct tccagattgg ctcgagga</pre>	ca acctctctga gggcattcgc	60
gagtggtggg acctgaaacc tggagccccg aaacccaa	ag ccaaccagca aaagcaggac	120
gacggccggg gtctggtgct tcctggctac aagtacct	cg gacccttcaa cggactcgac	180
aagggggagc ccgtcaacgc ggcggacgca gcggccct	cg agcacgacaa ggcctacgac	240
cagcagetea aagegggtga caateegtae etgeggta	ta atcacgccga cgccgagttt	300
caggagcgtc tgcaagaaga tacgtctttt ggggggcaa	cc tcgggcgagc agtcttccag	360
gccaagaagc gggttctcga acctctcggt ctggttga		420
ggaaagaaga gaccggtaga gccgtcacca cagcgttc	cc ccgactcctc cacgggcatc	480
ggcaagaaag gccagcagcc cgccagaaag agactcaa		540
gagtcagtcc ccgaccctca acctatcggà gaacctcc	ag cagcgccctc tagtgtggga	600

660

tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac

```
720
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                     780
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa
                                                                     840
atttccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc
                                                                     900
ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag
                                                                     960
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc
                                                                    1020
agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc
                                                                    1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac
                                                                    1140
ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac
                                                                    1200
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac
                                                                    1260
gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc
                                                                    1320
atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc
                                                                    1380
cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg
                                                                    1440
ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac
                                                                    1500
agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg
                                                                    1560
aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc
                                                                    1620
ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg
                                                                    1680
atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc
                                                                    1740
gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc
                                                                    1800
cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcctatt
                                                                    1860
tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt
                                                                    1920
ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct
                                                                    1980
ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa
                                                                    2040
gtcagcgtgg agatcgtgtg ggagctgcag aaggagaaca gcaagcgcag gaacccagag
                                                                    2100
attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag
                                                                    2160
ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tctgtaa
                                                                    2217
<210>
      16
       2217
      new AAV serotype, clone rh.68
<400>
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                      60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac
                                                                     120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                     180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                     240
cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccga cgccgagttt
                                                                     300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag
                                                                     360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct
                                                                     420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacqqcatc
                                                                     480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca
                                                                     540
gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga
                                                                     600
tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac
                                                                     660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                     720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa
                                                                     780
```

840

900

atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc

ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag

```
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac
                                                                     960
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc
                                                                    1020
                                                                    1080
agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac
                                                                    1140
ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac
                                                                    1200
                                                                    1260
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac
gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc
                                                                    1320
atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc
                                                                    1380
cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg
                                                                    1440
                                                                    1500
ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac
agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg
                                                                    1560
aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccacccagc
                                                                    1620
ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg
                                                                    1680
atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc
                                                                    1740
gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc
                                                                    1800
cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcctatt
                                                                    1860
tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt
                                                                    1920
ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct
                                                                    1980
ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccqgacaa
                                                                    2040
gtcagcgtgg tgatcgagtg ggagctgcag aaggagaaca gcaagcgctq gaacccaqaq
                                                                    2100
attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag
                                                                    2160
ggtgtttact ctgagcttcg ccccattggc actcgttacc tcacccgtaa tctgtaa
                                                                    2217
<210>
      17
       2217
      DNA
      new AAV serotype, clone rh.53
<213>
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                      60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac
                                                                     120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                     180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                     240
cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccga cgccgagttt
                                                                     300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag
                                                                     360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct
                                                                     420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc
                                                                     480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca
                                                                     540
gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga
                                                                     600
tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac
                                                                     660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                     720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa
                                                                     780
atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc
                                                                     840
ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag
                                                                     900
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac
                                                                     960
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc
                                                                    1020
agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc
                                                                    1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac
                                                                    1140
```

1200

ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac

```
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac
                                                                     1260
gtgcctttcc acagcagcta cgtgcacagc cagagtttgg acaggctgat gaatcctctc
                                                                     1320
                                                                    1380
atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc
cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg
                                                                     1440
ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac
                                                                    1500
                                                                    1560
agCaactttg cctggactgg tgccaccaag tatCatctga acggcagaga ctctctggtg
aattcgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc
                                                                     1620
ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg
                                                                     1680
atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc
                                                                     1740
gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc
                                                                     1800
cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcctatt
                                                                     1860
tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt
                                                                     1920
ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctqttcc tqcqqatcct
                                                                     1980
ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa
                                                                     2040
gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gaacccagag
                                                                     2100
attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag
                                                                     2160
ggtgtttact ctgagcctcg ccccattggc actcgttacc ccacccgtaa tctgtaa
                                                                     2217
<210>
      18
      2217
      DNA
      new AAV serotype, clone rh.52
<400>
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga qqqcattcqc
                                                                       60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac
                                                                      120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                     180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                     240
cagcagetea aagegggtga caateegtae etgeggtata ateaegeega egeegagttt
                                                                     300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag
                                                                     360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct
                                                                     420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc
                                                                     480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tqqcqactca
                                                                     540
gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga
                                                                     600
tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac
                                                                     660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                     720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa
                                                                     780
atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc
                                                                     840
ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag
                                                                     900
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac
                                                                     960
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa tagcctcacc
                                                                     1020
agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc
                                                                     1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac
                                                                     1140
ctgactccca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac
                                                                     1200
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac
                                                                    1260
gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc
                                                                    1320
atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc
                                                                    1380
cagcagttgc tgtcttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg
                                                                    1440
```

1500

ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac

```
agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg
                                                                    1560
aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc
                                                                     1620
ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg
                                                                     1680
atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acaqtatggc
                                                                     1740
gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc
                                                                     1800
cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacttgca gggtcctatt
                                                                     1860
tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt
                                                                     1920
ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct
                                                                     1980
ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa
                                                                     2040
gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gaacccagag
                                                                     2100
attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag
                                                                     2160
ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tctgtaa
                                                                     2217
<210>
       19
       2217
       DNA
      new AAV serotype, clone rh.46
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                      60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac
                                                                      120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                      180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                      240
cagcagetea aagegggtga caateegtae etgeggtata ateaegeega egeegagttt
                                                                      300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag
                                                                      360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct
                                                                      420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc
                                                                      480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca
                                                                      540
gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga
                                                                      600
tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac
                                                                     660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                      720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa
                                                                      780
atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc
                                                                      840
ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag
                                                                      900
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac
                                                                     960
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc
                                                                     1020
agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc
                                                                     1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac
                                                                     1140
ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac
                                                                     1200
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac
                                                                     1260
gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc
                                                                     1320
atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc
                                                                     1380
cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg
                                                                     1440
ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac
                                                                     1500
agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg
                                                                     1560
aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc
                                                                     1620
ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg
                                                                     1680
atgctaacca gcgaggaaga aatcaaggcc accaaccccg tggccacaga acagtatggc
                                                                     1740
gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc
                                                                     1800
```

1860

cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcctatt

tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt 1920 ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct 1980 ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa 2040 gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gaacccagag 2100 attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag 2160 ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tctgtaa 2217 <210> <211> 20 2217 DNA new AAV serotype, clone rh.70 <213> atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagetea aagegggtga caateegtae etgeggtata ateaegeega egeegagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct 420 ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc 480 ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca 540 gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga 600 tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac 660 ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggccctg cccgcctaca acaaccacct ctacaagcaa 780 atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc 840 ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag 900 cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac 960 atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc 1020 agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc 1080 caccagggct gcctgcctcc gttcccggcg gatgtcttca tgattcctca gtacggctac 1140 ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac 1200 ttcccctctc agatgctgag aacgggcaac aacttttcct tcaqctacac tttcqaqqac 1260 gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc 1320 atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc 1380 cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg 1440 ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac 1500 agcaactttg cctggactgg tgccaccaag tatcatctga gcggcagaga ctctctggtg 1560 aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccaqc 1620 ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta taqcaacgtg 1680 atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc 1740 gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc 1800 cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctqca qqqtcctatt 1860 tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcqqcttt 1920 ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct 1980 ccaacagcgt tcaaccaggc caagctgaat tcttccatca cgcagtacag caccggacaa 2040 gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gaacccagag 2100

'attcagrata citccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag 2160 ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tttgtaa 2217 <210> 2217 DNA new AAV serotype, clone rh.61 <213> atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagccccg aaacccaagg ccaaccagca aaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagetea aagegggtga caateegtae etgeggtata ateaegeega egeegagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct 420 ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc 480 ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca 540 gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga 600 tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac 660 ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa 780 atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc 840 ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag 900 cgacccatca acaacaactg gggattccgg cccaagagac tcagcttcaa qctcttcaac 960 atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc 1020 agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc 1080 caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac 1140 ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac 1200 ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctaccc tttcgaggac 1260 gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc 1320 atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc 1380 cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg 1440 ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac 1500 agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg 1560 aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc 1620 ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg 1680 atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc 1740 gtggtggctg ataacctaca gcagcaagac accgctccta ttgtgggggc cgtcaacagc 1800 cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcctatt 1860 tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt 1920 ggacttaaac atccgcctcc tcaggtcctc atcaaaaaca ctcctqttcc tqcqqatcct 1980 ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa 2040 gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gaacccagag 2100 attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag 2160 ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tctgtaa 2217 <210> 22 2217 DNA

<213> new AAV serotype, clone rh.51

See doe not not see							
""<400> "22" atggttgccg	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60	
gagtggtggg	acctgaaacc	tggagccccg	aaacccaaag	ccaaccagca	aaagcagggc	120	
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180	
aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240	
cagcagctta	aagcgggtga	caatccgtac	ctgcggtata	atcacgccga	cgccgagctt	300	
caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360	
gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aaggcgctaa	gacggctcct	420	
ggaaagaaga	gaccggtaga	gccgtcacca	cagcgttccc	ccgactcctc	cacgggcatc	480	
ggcaagaaag	gccagcagcc	cgccagaaag	agactcaatt	tcggtcagac	tggcgactca	540	
gagtcagtcc	ccgaccctca	acctatcgga	gaacctccag	cagcgccctc	tagtgtggga	600	
tctggtacaa	tggctgcagg	cggtggcgcg	ccaatggcag	acaataacga	aggtgccgac	660	
ggagtgggta	gttcctcggg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720	
atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	acaaccacct	ctacaagcaa	780	
atctccaacg	ggacctcggg	aggcagcacc	aacgacaaca	cctactttgg	ctacagcacc	840	
ccctgggggt	attttgactt	taacagattc	cactgccact	tctcaccacg	tgactggcag	900	
cgactcatca	acaacaactg	gggattccgg	cccaagagac	tcagcttcaa	gctcttcaac	960	
atccaggtca	aagaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taacctcacc	1020	
agcaccatcc	aggtgtttac	ggactcggaa	taccagctgc	cgtacgtcct	cggctctgcc	1080	•
caccagggct	gccagcctcc	gttcccggcg	gacgtcttca	tgattcctca	gtacggctac	1140	
ctgactctca	acaacggtag	tcaggccgtġ	ggacgttcct	ccttctactg	cctggagtac	1200	
ttcccctctc	agatgctgag	aacgggcaac	aacttttcct	tcagctacac	tttcgaggac	1260	
gtgcctttcc	acagcagcta	cgcgcacagc	cagagtttgg	acaggctgat	gaatcctctc	1320	
atcgaccagt	acctgtacta	cctgtcaaga	acccagtcta	cgggaggcac	agcgggaacc	1380	
		ggccgggcct				1440	
ctgcctggac	cctgctacag	acagcagcgc	gtctccacga	cactgtcgca	aaacaacaac	1500	
		tgccaccaag	=			1560	
		aaccaacaaġ				1620	
		gcagggagct				1680	
		aatcaagacc				1740	
		gcagcaaaac				1800	
		ggtctggcag				1860	
		agatggcaac				1920	
		tcagatcctc .				1980	
		caagctgaat				2040	
		ggagccgcag				2100	
		ctacaaatct				2160	
ggtgtttact	ctgagcctcg	ccccattggc	actcgttacc	tcacccgtaa	tctgtaa	2217	
		pe, clone rh	n. 50				
<400> 23 atggctgccg	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60	
		tggagccccg		-	-	120	
		tcctggctac			_	180	
		ggcggacgca				240	
		caatccgtac				300	
				Page 20			

caggagcgtc tgcaagaaga tacgtctttt ggggggcaacc tcgggcgagc agtcttc	
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggct	cct 420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacggg	atc 480
ggcaagaaag gccagcagcc cgccggaaag agactcaatt tcggtcagac tggcgac	tca 540
gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtg	igga 600
tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgc	gac 660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacaga	igtc 720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaag	caa 780
atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagc	acc 840
ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactgg	cag 900
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttc	aac 960
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctc	acc 1020
agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctct	gcc 1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggc	tac 1140
ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggag	tac 1200
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgag	gac 1260
gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcct	ctc 1320
gtcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcggga	
cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaac	
ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaac	
agcaactttg Cctggactgg tgccaccaag tatcatctga acggcagaga ctctctg	
aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatcc	- •
ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaac	
atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtat	
gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaac	
cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcct	
tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggc	
ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggat	
ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccgga	
gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gagccca	
attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatact	
ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tctgtaa	. 2217
<210> 24 <211> 2217	
<212> DNA	
<213> new AAV serotype, clone hu.39	
<400> 24 atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcatt	cgc 60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcag	gac 120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactc	gac 180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctac	
Cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccga cgccgag	
CaggagCgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttc	
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggct	
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggc	
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcggac tggcgac	

tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac	660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtt	720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa	780
atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc	840
ccctgggggt atcttgactt taacagattc cactgccact tctcaccacg tgactggcag	900
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac	960
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcgcc	1020
agcaccatcc aggtgtttac ggactcggaa taccagccgc cgtacgtcct cggctctgcc	1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac	1140
ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac	1200
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac	1260
gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc	1320
atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc	1380
cagcagttgc tgttttctcg ggccgggcct agcaacatgt cggctcaggc cagaaactgg	1440
ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac	1500
agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg	1560
aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc	1620
ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg	1680
atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc	1740
gtggtggctg ataacctaca gcagcaaaac accgctccta ctgtgggggc cgtcaacagc	1800
cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcctatt	1860
tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt	1920
ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct	1980
ccaacagcgt tcaaccaggc caagctgaat tctttcatcg cgcagtacag caccggacaa	2040
gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gaacccagag	2100
attcagtata cttccaacta ctacaaatct acaaatgcgg actttgctgt taatactgag	2160
ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tctgtaa	2217
<210> 25	
<211> 2217	
<212> DNA <213> new AAV serotype, clone rh.49	
<400> 25	
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac	120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac	240
cagcagetta aagegggtga caateegeac etgeggtata ateaegeega egeegagttt	300
caggagegte tgeaagaaga tacgtetttt gggggeaace tegggegage agtetteeag	360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct	420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc	480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca	540
gagtcagtcc ccgaccctca acttatcgga gaacctccag cagcgccctc tagtgtggga	600
tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac	660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc	720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa	780
atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc	840
ccctgggggt attitgactt taacagattc cactgccact tctcaccacg tgactggcag	900

cgactcatca acaacaac	tg gggattccgg	cccaagagac	tcagcttcaa	gctcttcaac	960	
atccaggtca aagaggtc	ac gcagaatgaa	ggcaccaaga	ccatcgccaa	taacctcacc	1020	
agcaccatcc aggtgttt	ac ggactcggag	taccagctgc	cgtacgtcct	cggctctgcc	1080	
caccagggct gcctgcct	c gttcccggcg	gacgtcttca	tgattcctca	gtacggcaac	1140	
ctgactctca acaacggt	ag tcaggccgtg	ggacgttcct	ccttctactg	cctggagtac	1200	
ttccctctc agatgctg	ag aacgggcaac	aacttttcct	tcagctacac	tttcgaggac	1260	
gtgcctttcc acagcagc	ta cgcgcacagc	cagagtttgg	acaggctgat	gaatcctctc	1320	
atcgaccagt acctgtac	ta cctgtcaaga	acccagtcta	cgggaggcac	agcgggaacc	1380	
cagcagttgc tgttttct	a ggccgggcct	agcaacatgt	cggctcaggc	cagaaactgg	1440	
ctgcctggac cctgctac	ag acagcagcgc	gtctccacga	cactgtcgca	aaacaacaac	1500	
agcaactttg cctggact	g tgccaccaag	tatcatctga	acggcagaga	ctctctggtg	1560	
aatccgggcg tcgccatg	gc aaccaacaag	gacgacgagg	accgcttctt	cccatccagc	1620	
ggcatcctca tgtttggc	aa gcagggagct	ggaaaagaca	acatgggcta	tagcaacgtg	1680	
atgctaacca gcgaggaa	ga aatcaagacc	accaaccccg	tggccacaga	acagtatggc	1740	
gtggtggctg ataaccta	a gcagcaaaac	accgctccta	ttgtgggggc	cgtcaacagc	1800	
cagggagcct tacctggc	at ggtctggcag	aaccgggacg	tgtacctgca	gggtcctatt	1860	
tgggccaaga ttcctcac	ac agatggcaac	tttcacccgt	ctcctttaat	gggcggcttt	1920	
ggacttaaac atccgcct	c tcagatcctc	atcaaaaaca	ctcctgttcc	tgcggatcct	1980	
ccaacagcgt tcaaccag	gc caagctgaat	tctttcatca	cgcagtacgg	caccggacaa	2040	
gtcagcgtgg agatcgag	g ggagctgcag	aaggagaaca	gcaagcgctg	gaacccagag	2100	
attcagtata cttccaac	a ctacaaatct	acaaatgtgg	actttgctgt	taatactgag	2160	
ggtgtttact ctgagcct	g ccccattggc	actcgttacc	tcacccgtaa	tctgtaa	2217	
<210> 26 <211> 2217 <212> DNA <213> new AAV sero	ype, clone r	h.57				
<400> 26 atggctgccg atggttate	t tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60	
gagtggtggg cgctgaaa					120	
gacggccggg gtctggtg	t tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180	
aagggggagc ccgtcaac	oc ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240	
cagcagctgc aggcgggt	ja caatccgtac	ctgcggtata	atcacgccga	cgccgagttt	300	
caggagcgtc tgcaagaa	a tacgtcttt	gggggcaacc	tcgggcgagc	agtcttccag	360	
gccaagaagc gggttctc	a acctctcggt	ctggttgagg	aaggcgctaa	gacggctcct	420	
ggaaagaaga gaccggta	a gccgtcacca	cagcgttccc	ccgactcctc	cacgggcatc	480	
ggcaagaaag gccagcag	c cgccagaaag	agactcaatt	tcggtcagac	tggcgactca	540	
gagtcagtcc ccgaccct	a acctatcgga	gaacctccag	cagcgccctc	tagtgtggga	600	
tctggtacaa tggctgcag	g cggtggcgcg	ccaatggcag	acaataacga	aggtgccgac	660	
ggagtgggta gttcctcg	g aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720	
atcaccacca gcacccga	c ctgggccctg	cccacctaca	acaaccacct	ctacaagcaa	780	
acctccaacg ggacctcgg	g aggcagcacc	aacgacaaca	cctactttgg	ctacagcacc	840	
ccctgggggt attttgact	t taacagattc	cactgccact	tctcaccacg	tgactggcag	900	
cgactcatca acaacaact		cccaananac	tcaocttcaa	actetteaac	960	
	g gggattccgg	cccaagagac		geeeneeuc		
atccaggtca aagaggtca	c gcagaatgaa	ggcaccaaga	ccatcgccaa	taacctcacc	1020	
agcaccatcc aggtgttta	c gcagaatgaa c ggactcggaa	ggcaccaaga taccagctgc	ccatcgccaa cgtacgtcct	taacctcacc cggctctgcc	1020 1080	
	c gcagaatgaa c ggactcggaa	ggcaccaaga taccagctgc	ccatcgccaa cgtacgtcct	taacctcacc cggctctgcc		

ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac 1200

1260 ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac 1320 gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc 1380 cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg 1440 ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac 1500 agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg 1560 aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc 1620 ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg 1680 atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc 1740 gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc 1800 cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcctatt 1860 tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt 1920 ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct 1980 ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa 2040 gtcagcgcgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gaacccagag 2100 attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag 2160 ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tctgtaa 2217 <210>

<210> 27 <211> 2217 <212> DNA

<213> new AAV serotype, clone rh.58

<400> atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccga cgccgagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420 ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc 480 ggcaagaaag gccagcagcc cgctagaaag agactgaact ttgggcagac tqgcqactca 540 gagtcagtcc ccgaccctca accaatcgga gaacctccag cagcgccctc tagtgtggga 600 tctggtacaa tggccgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac 660 ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa 780 atttccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc 840 ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactqgcaq 900 cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac 960 atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc 1020 agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc 1080 caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac 1140 ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac 1200 ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac 1260 gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc 1320 atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc 1380 cagcagctgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg 1440 ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac 1500

agcaactttg cctggactgg	tgccaccaag	tatcatctga	acggcagaga	ctctctggtg	1560
aatccgggcg tcgccatggc	aaccaacaag	gacgacgagg	accgcttctt	cccatccagc	1620
ggcatcctca tgtttggcaa	gcagggagct	ggaaaagaca	acgtggacta	tagcaacgtg	1680
atgctaacca gcgaggaaga	aatcaagacc	accaaccccg	tggccacaga	acagtatggc	1740
gtggtggctg ataacctaca	gcagcaaaac	accgctccta	ttgtgggggc	cgtcaacagc	1800
cagggagcct tacctggcat	ggtctggcag	aaccgggacg	tgtacctgca	gggtcctatt	1860
tgggccaaga ttcctcacac	agatggcaac	tttcacccgt	ctcctttaat	gggcggcttt	1920
ggacttaaac atccgcctcc	tcagatcctc	atcaaaagca	ctcctgttcc	tgcggatcct	1980
ccaacagcgt tcaaccaggc	caagctgaat	tctttcatca	cgcagtacag	caccggacaa	2040
gtcagcgtgg agatcgagtg	ggagctgcag	aaggagaaca	gcaagtgctg	gaacccagag	2100
attcagtata cttccaacta	ctacaaatct	acaaatgtgg	actttgctgt	taatactgag	2160
ggtgtttact ctgagcctcg	ccccattggc	actcgttacc	tcacccgtaa	tctgtaa	2217
-210- 20					
<210> 28 <211> 2196 <212> DNA <213> new AAV seroty	pe, clone p	i.1			
<400> 28					
atggctgctg acggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg cgctgaaacc			=		120
gacggccggg gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc ccgtcaacga	ggcggacgcc	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctca aagcgggtga	caatccgtac	ctgcggtata	atcacgccga	cgccgagttt	300
caagagcgtc tgcaagaaga	tacgtccttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaaaaaga gggtactcga	gcctctgggt	ctggttgagg	aaggcgctaa	gacggctcct	420
ggaaagaagc ggccagtaga	accggactcc	agctcgggca	tcggcaagtc	aggccagcag	480
cccgcgaaaa agagactgaa	ttttgggcag	actggcgact	cagagtcagt	gcctgacccc	540
caacctctct cagaaccacc	cgcaggtccc	tctggtctgg	gatctggtac	aatggctgct	600
ggcggtggcg ctccaatggc	agacaataac	gaaggcgccg	acggagtggg	taatgtctca	660
ggaaattggc attgcgattc	cacatggctg	ggcgaccgag	tcatcaccac	cagcactcgg	720
acctgggccc tccccaccta	caacaaccac	ctctacaagc	aaatctccaa	cgggacctcg	780
ggaggcagca gcaacgacaa	cacctacttt	ggctacagca	cccctgggg	gtattttgac	840
tttaacagat tccactgcca	cttttcacca	cgtgactggc	agcgactcat	caacaacaac	900
tgggggttcc ggcccaagaa	gctcaacttc	aagctcttca	acatccaggt	caaggaggtc	960
acccagaatg aaggcaccaa	gaccatcgcc	aataacctca	ccagcacggt	gcaggtcttt	1020
acggactcgg agtaccagct	cccgtacgtg	ctcggctctg	cccaccaggg	ctgcctgcct	1080
ccgttcccgg cggacgtgtt	catgattccg	cagtacgggt	acctgacgct	gaacaacggg	1140
agccaggccg tggggcgatc	ctccttctac	tgcctggagt	actttccctc	gcagatgctg	1200
agaacgggca acaactttac	cttcagctac	accttcgagg	acgtgccctt	ccacagcagc	1260
tacgcgcaca gccagagcct	ggaccggctg	atgaacccgc	tgattgacca	gtacctgtac	1320
tacctgtctc ggactcagac	caacgggacc	aatgccacgc	agactctgtt	gtttgctcag	1380
gccgggcctc agaacatgtc	ggctcaggcc	aagaactggc	tgcctggtcc	ttgctatcgg	1440
cagcagcgcg tctctacgac	agtgtcgcaa	aacaacaaca	gcaactttac	ctggaccggg	1500
gcgaccaagt accacctgaa	cggccgagaç	tccctggtga	gccccggtgt	cgccatggca	1560
acgcacaagg acgacgagga	gcgcttcttc	ccgagcagcg	gggtcctgat	gtttggcaag	1620
cagggcgctg gaaaggacaa	tgtcgagtac	accaacgtga	tgctcaccag	cgaggaggag	1680
atcaagacca ccaaccctgt	ggccacggag	cagtacggcg	tggtggctga	caatctgcag	1740
cagaccaact cagctcccat					1800
			Page 25		

gtctggcaga accgggacgt gtacctgcag ggtcccatct gggccaagat cccgcatacg	1860
gacggcaact ttcacccgtc tcctctcatg ggcggctttg gactgaaaca cccgcctccc	1920
cagatectga teaaaaacae geeggtaeet geggateeee eggtgaaett taeggaeget	1980
aagctggcga gtttcatcac gcagtacagc accgggcagg tcagcgtgga gattgagtgg	2040
gagctgcaga aggagaacag caagcgctgg aatcccgaga ttcagtacac ttccaattat	2100
tataaatcag ctaatgtgga ctttgccgtc aatgcagatg gtgtatatag tgaaccccgc	2160
cccattggca ctcgttacct cacccgtaat ctgtaa	2196
<210> 29 <211> 2196 <212> ONA <213> new AAV serotype, clone pi.3	
<400> 29 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg cgctgaaacc tggagccccg caacccaaag ccaaccagca aaagcaggac	120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	180
aagggggagc ccgtcaacga ggcggacgcc gcggccctcg agcacgacaa ggcctacgac	240
cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccga cgccgagttt	300
caagagcgtc tgcaagaaga tacgtccttt ggggggcaacc tcgggcgagc agtcttccag	360
gccaaaaaga gggtactcga gcctctgggt ctggttgagg aaggcgctaa gacggctcct	420
ggaaagaagc ggccagtaga accggactcc agctcgggca tcggcaagtc aggccagcag	480
cccgcgaaaa agagactgaa ttttgggccg actggcgact cagagtcagt gcctgacccc	540
caacctctct cagaaccacc tgcaggtccc tctggtctgg	600
ggcggtggcg ctccaatggc agacaataac gaaggcgccg acggagtggg taatgtctca	660
ggaaattggc attgcgattc cacatggctg ggcgaccgag tcatcaccac cagcactcgg	720
acctgggccc tccccaccta caacaaccac ctctacaagc aaatctccaa cgggacctcg	780
ggaggcagca gcaacgacaa cacctacttt ggctacagca ccccctgggg gtattttgac	840
tttaacagat tccactgcca cttttcacca cgcgactggc agcgactcat caacaacaac	900
tggggattcc ggcccaagaa gctcaacttc aagctcttca acatccaggt caaggaggtc	960
acccagaatg aaggcaccaa gaccaccgcc aataacctca ccagcacggt gcaggtcttt	1020
acggactcgg agtaccagct cccgtacgtg ctcggctctg cccaccaggg ctgcctgcct	1080
ccgttcccgg cggacgtgtt catgattccg cagtacgggt acctgacgct gaacaacggg	1140
agccaggccg tggggcgatc ctccttctac tgcctggagt actttccctc gcagatgctg	1200
agaacgggca acaactttac cttcagctat accttcgagg acgtgccctt ccacagcagc	1260
tacgcgcaca gccagagcct ggaccggctg atgaacccgc tgattgacca gtacctgtac	1320
tacctgtctc ggactcagac caacgggacc aatgccacgc agactctgtt gtttgctcag	1380
gccgggcctc agaacatgtc ggctcaggcc aagaactggc tgcctggtcc ttgctatcgg	1440
cagcagcgcg tctctacggc agtgtcgcaa aacaacaaca gcaactttac ctggaccggg	1500
gcgaccaagt accacctgaa cggccgagac tccctggtga accccggtgt cgccatggca	1560
acgcacaagg acgacgagga gcgcttcttc ccgagcagcg gggtcctgat gtttggcaag	1620
cagggcgctg gaaaggacaa tgtcgagtac accaacgtga tgctcaccag cgaggaggag	1680
atcaagacca ccaaccctgt ggccacggag cagtacggtg tggtggctga caatctgcag	1740
cagaccaact cggctcccat tgtgggggca gtcaacagcc aggggggcctt acccggtatg	1800
gtctggcaga accgggacgt gtacctgcag ggtcccatct gggccaagat cccgcatacg	1860
gacggcaact ttcacccgtc tcctctcatg ggcggctttg gactgaaaca cccgcctccc	1920
cagatectga teaaaaacae geeggtaeet geggateeee eggtgaaett taeggaeget	1980
aagctggcga gtttcatcac gcagtacagc accgggcagg tcagcgtgga gattgagtgg	2040
gagctgcaga aggagaacag caagcgctgg aatcccgaga ttcagtacac ttccaattat	2100
Page 26	

tataaatcag ctaatgtgga ctttgccgtc aatgcagatg gtgtatatag cgaaccccgc	2160
cccattggca ctcgttacct cacccgtaat ctgtaa	2196
<210> 30	
<211> 2196	
<212> DNA <213> new AAV serotype, clone pi.2	
<400> 30	
atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg cgctgaaacc tggagccccg caacccaaag ccaaccagca aaagcaggac	120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	180
aagggggagc ccgtcaacga ggcggacgcc gcggccctcg agcacgacaa ggcctacgac	240
cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccga cgccgagttt	300
caagagcgtc tgcaagaaga tacgtccttt ggggggcaacc tcgggcgagc agtcttccag	360
gccaaaaaga gggtactcga gcctctgggt ctggttgagg aaggcgctaa gacggctcct	420
ggaaagaagc ggccagtaga accggactcc agctcgggca tcggcaagtc aggccggcag	480
cccgcgaaaa agagactgaa ttttgggcag actggcgact cagagtcagt gcctgacccc	540
caacctctct cagaaccacc cgcaggtccc tctggtctgg	600
ggcggtggcg ctccaatggc agacaataac gaaggcgccg acggagtggg taatgcctca	660
ggaaattggc attgcgattc cacatggctg ggcgaccgag tcatcaccac cagcactcgg	720
acctgggccc tccccaccta caacaaccac ctctacaagc aaatctccaa cgggacctcg	780
ggaggcagca gcaacgacaa cacctacttt ggctacagca ccccctgggg gtatttgac	840
tttaacagat tccactgcca cttttcacca cgtgactggc agcgactcat caacaacaac	900
tggggattcc ggcccaagag gctcaacttc aagctcttca acatccaggt caaggaggtc	960
acccagaatg aaggcaccaa gaccatcgcc aataacctca ccagcacggt gcaggtcttt	1020
acggactcga agtaccagct cccgtacgtg ctcggctctg cccaccaggg ctgcctgcct	1080
ccgttcccgg cggacgtgtt catgattccg cagtacgggt acctgacgct gaacaacggg	1140
agccaggccg tggggcgatc ctccttctac tgcctggagt actttccctc gcagatgctg	1200
agaacgggca acaactttac cttcagctac accttcgagg acgtgccctt ccacagcagc	1260
	1320
tacgcgcaca gccagagcct ggaccggctg atgaacccgc tgattgacca gtacctgtac	
tacctgtctc ggactcagac caacgggacc aatgccacgc agactctgtt gtttgctcag	1380
gccgggcctc agaacatgtc ggctcaggcc aagaactggc tgcctggtcc ttgctatcgg	1440
cagcagcgcg tctctacgac agtgtcgcaa aacaacaaca gcaactttac ctggaccggg	1500
gcgaccaagt accacctgaa cggccgagac tccctggtga accccggtgt cgccatggca	1560
acgcacaagg acgacgagga gcgcttcttc ccgagcagcg gggtcctgat gtttggcaag	1620
cagggcgctg gaaaggacaa tgtcgagtac accaacgtga tgctcaccag cgaggaggag	1680
atcaagacca ccaaccctgt ggccacggag cagtacggtg tggtggctga caatctgcag	1740
cagaccaact cggctcccat tgtgggggca gtcaacagcc aggggggcctt acccggtatg	1800
gtctggcaga accgggacgt gtacctgcag ggtcccatct gggccaagat cccgcatacg	1860
gacggcaact ttcacccgtc tcctctcatg ggcggctttg gactgaaaca cccgcctccc	1920
cagatcctga tcaaaaacac gccggtacct gcggatcccc cggtgaactt tacggacgct	1980
aagctggcga gtttcatcac gcagtacagc accgggcagg tcagcgtgga gattgagtgg	2040
gagctgcaga aggagaacag caagcgctgg aatcccgaga ttcagtacac ttccaattat	2100
tataaatcag ctaatgtgga ctttgccgtc aatgcagatg gtgtatatag tgaaccccgc	2160
cccattggca ctcgttacct cacccgtaat ctgtaa	2196
<210> 31	

<210> 31 <211> 2208 <212> DNA <213> new AAV serotype, clone rh.60

<400> 31		********	ctcarearca	200+0+0+02	aggesttese	60
	atggttatct					120
	acccgaaacc					180
	gtctggtgct					
	ccgtcaacgc					240
	aagcgggtga					300
	tgcaagaaga					360
	gggttctcga					420
	gaccggtaga					480
ggcaagaaag	gccagcagcc	cgccagaaag	agactcaatt	tcggtcagac	tggcgactca	540
gagtcagtcc	ccgaccctca	acctatcgga	gaacctccag	cagcgccctc	tagtgtggga	600
tctggtacaa	tggctgcagg	cggtggcgca	ccaatggcag	acaataacga	aggtgccgac	660
ggagtgggta	gttcctcggg	aaattggcaț	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggccctg	cccacccaca	acaaccacct	ctacaagcaa	780
atctccaacg	ggacctcggg	aggcagcacc	aacgacaacg	tctacttcgg	ctacagcacc	840
ccctgggggt	attttgactt	caacagattc	cactgtcact	tctcaccacg	tgaccggcag	900
cgactcatca	acaacaactg	gggattccgg	cccaagagac	tcagcttcaa	gctcttcaac	960
atccaggtca	aagaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taacctcacc	1020
agcaccatcc	aggtgtttac	ggactcggaa	taccagctgc	cgtacgtcct	cggctctgcc	1080
caccagggct	gcctgcctcc	gttcccggcg	gacgtcttca	tgattcctca	gtacggctac	1140
ctgactctca	acaacggtag	tcaggccgtg	ggacgttcct	ccttctactg	cctggagtac	1200
ttcccctctc	agatgctgag	aacgggcaac	aacttttcct	tcagctacac	tttcgaggac	1260
gtgcctttcc	acagcagcta	cgcgcacagc	cagagtttgg	acaggctgat	gaatcctctc	1320
atcgaccagt	acctgtacta	cctgtcaaga	acccagtcta	cggaaggcac	agcgggaacc	1380
cagcagttgc	tgttttctca	ggccgggcct	agcaacatgt	cggctcaggc	cagaaactgg	1440
ctgcctggac	cctgctacag	acagcagcgc	gtctccacga	cactgtcgca	aaacaacaac	1500
agcaactttg	cctggactgg	tgccaccaag	tatcatctga	acggcagaga	ctctctggtg	1560
aatccgggcg	tcgccatggc	aacccacaag	gacgacgagg	aacgcttctt	cccttcgagc	1620
	tttttggaaa					1680
	aagaggaaat					1740
	acctgcaggc	_				1800
•			_		tcccatctgg	1860
_					cggctttgga	1920
_	ctcagatcct					1980
	ccaagtttgc					2040
					gattcagtat	2100
					gggtgtttat	2160
	gccccattgg				999-9	2208
cccgagect	. geaceatty	tuccege				
<210> 32 <211> 221 <212> DNA						
<213> nev	AAV seroty	pe, clone r	h.48			
<400> 32 atggctgctg	acggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
		_			gaagcaggac	120
• • • • • • • • • • • • • • • • • • • •	_				cggactcgac	180
						240

aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240

" bagtagetela						300
caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aagctgctaa	gacggctcct	420
ggaaagaaga	gaccggtaga	accgtcacct	cagcgttccc	ccgactcctc	cacgggcatc	480
ggcaagaaag	gccagcagcc	cgctagaaag	agactgaact	ttgggcagac	tggcgactca	540
gagtcagtcc	ccgaccctca	accaatcgga	gaaccaccag	caggcccctc	tggtctggga	600
tctggtacaa	tggctgcagg	cggtggcgca	ccaatggctg	acaataacaa	gggcgccgac	660
ggagtgggta	atgcctcagg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggctttg	cccacctaca	acaaccacct	ctacaagcaa	780
atctccagtc	agtcagcagg	tagcaccaac	gacaacgtct	acttcggcta	cagcaccccc	840
tgggggtatt	ttgacttcaa	cagattccac	tgtcacttct	caccacgtga	ctggcagcgg	900
ctcatcaaca	gcaactgggg	attccggccc	aagaagctca	acttcaagct	gttcaacatc	960
caggtcaagg	aggtcacaac	gaatgacggc	gtcacgacca	tcgccaataa	ccttaccagc	1020
acggttcagg	tcttttcgga	ctcggaatac	cagctgccct	acgtcctcgg	ctccgcacac	1080
cagggctgcc	tgcctccgtt	cccggcggac	gtcttcatga	ttccccagta	cggctacctg	1140
actctgaaca	atggcagcca	atcggtgggt	cgttcctctt	tctactgcct	ggaatatttc	1200
ccttctcaaa	tgctgagaac	gggcaacaac	ttcaccttca	gctacacctt	cgaggacgtt	1260
cccttccaca	gcagctacgc	acacagccag	agcctggacc	ggctgatgaa	tcctcttatc	1320
gaccagtacc	tgtattacct	ggccagaaca	cagagcaacg	caggaggcac	agctggcaat	1380
cgggaactgc	agttttatca	gggcgggcct	accaccatgg	ccgaacaagc	caaaaactgg	1440
ctgcctggac	cttgcttccg	gcaacaaaga	gtctccaaga	cgctggatca	aaacaacaac	1500
agcaactttg	cttggactgg	tgccaccaaa	taccatctaa	atggaagaaa	ttcattggtt	1560
aatcccggtg	tcgccatggc	aacccacaag	gacgacgagg	aacgcttctt	cccttcgagc	1620
ggagtcctga	tttttggaaa	aactggagca	gctaataaga	ctacactgga	aaatgtgtta	1680
atgacaaatg	aagaggaaat	tcgtcctacc	aacccggtag	ccaccgagga	atacgggact	1740
gttagcagca	acctgcaggc	ggctaacact	gcagcccaga	cacaagttgt	caacaaccag	1800
ggagccttac	ctggtatggt	ctggcagaac	cgggacgtgt	acctgcaggg	tcccatctgg	1860
gccaagattc	ctcacacgga	cggcaacttt	cacccgtctc	cgctgatggg	cggctttgga	1920
ctgaagcatc	cgcctcctca	gatcctgatc	aaaaacactc	ctgttcctgc	taatcccccg	1980
gaggtgttta	cgcctgccaa	gtttgcttct	ttcatcacac	agtacagcac	cggccaggtc	2040
agcgtggaga	tcgagtggga	gctgcagaaą	gagaacagca	agcgctggaa	cccagagatt	2100
cagtatacct	ccaattttga	caaacagact	ggtgtggact	ttgccgttga	cagccagggt	2160
gtttattctg	agcctcgccc	cattggtact	cgttacctca	cccgtaatct	gtaa	2214
<210> 33 <211> 2214	,					
	AAV seroty	oe, clone r	1.62			
<400> 33 atggctgctg	acggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg	acctgaaacc	tggagccccc	aagcccaagg	ccaaccagca	gaagcaggac	120
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctca	aagcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttc	300
caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc	gggttctcga	acctctcggt	ctggctgagg	aagctgctaa	gacggctcct	420
ggaaagaaga	gaccggtaga	accgtcacct	cagcgttccc	ccgactcctc	cacgggcatc	480
ggcaagaaag	gccagcagcc	cgctagaaag	agactgaact	ttgggcagac	tggcgactca	540

though the strength of the str	600
"ğağtcagtcc" ccgaccctca accaatcgga gagccaccag caggcccctc tggtctggga	600
tctggtacaa tggctgcagg cggtggcgca ccaatggctg acaataacaa gggcgccgac	660
ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc	720
attactacta gracecgaac etgggetttg eccaectaca acaaccacet etacaagcaa	780
atctccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcacccc	840
tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcgg	900
ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct gttcaacatc	960
caggicaagg aggicacaac gggigacggc gicacgacca icgccaataa ccitaccagc	1020
acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacac	1080
cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttccccagta cggctacctg	1140
actctgaaca atgacagcca atcggtgggt cgttcctctt tctactgcct ggaatatttc	1200
ccttctcaaa tgctgagaac gggcaacaac ttcaccttca gctacacctt cgaggacgtt	1260
cccttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcctcttatc	1320
gaccagtacc tgtattacct ggccagaaca cagagcaacg caggaggcac agctggcaat	1380
cgggaactgc agttttatca gggcgggcct accaccatgg ccgaacaagc caaaaactgg	1440
ctgcctggac cttgcttccg gcaacaaaga gtctccaaga cgctggatca aaacaacaac	1500
agcaactttg cttggactgg tgccaccaaa taccatctaa atggaagaaa ttcattggtt	1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccttcgagc	1620
ggagtcctga tttttggaaa aactggagca gctaataaga ctacactgga aaatgtgtta	1680
atgacaaatg aagaggaaat tcgtcctacc aacccggtag ccaccgagga atacgggact	1740
gttagcagca acctgcaggc ggctaacact gcagcccaga cacaagttgt caacaaccag	1800
ggagccttac ctggtatggt ctggcagaac cgggacgtgt acctgcaggg tcccatctgg	1860
gccaagattc ctcacacgga cggcaacttt cacccgtctc cgctgatggg cggctttgga	1920
ctgaagcatc cgcctcctca gatcctgatc aaaaacactc ctgttcctgc taatcccccg	1980
gaggtgttta cgcctgccaa gtttgcttct ttcatcacac agtacagcac cggccaggtc	2040
agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt	2100
cagtatacct ccaattttga caaacagact ggtgtggact ttgccgttga cagccagggt	2160
gtttattctg agcctcgccc cattggtact cgttacctca cccgtaatct gtaa	2214
,	
<210> 34 <211> 2214 <212> DNA <213> new AAV serotype, clone rh.44	
<400> 34	
atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac	120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	180
aagggggagc ccgtcagcgc ggcggacgca gcggccctcg agcacgacaa ggcctgcgac	240
cagcggctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt	300
caggagcgtc tgcaagaaga tacgtctttt ggggggcaacc tcgggcgagc agtcttccag	360
gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct	420
ggaaagaagg gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc	480
ggcaagaaag gccagcagcc cgctagaaag agactgaact ttgggcagac tggcgactca	540
gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga	600
tctggtacaa tggctgcagg cggtggcgca ccaatggctg acaataacga gggcgccgac	660

ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc

atcaccacca gcacccgaac ctgggctttg cccacctaca acaatcacct ctacaagcaa

atctccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcaccccc

720

780

```
tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcgg
                                                                      960
ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct gttcaacatc
                                                                     1020
caggtcaagg aggtcacaac gaatgacggc gtcacgacca tcgccaataa ccttaccagc
acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacac
                                                                     1080
cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttccccagta cggctacctg
                                                                     1140
actctgaaca atggcagcca atcggtgggt cgttcctctt tctactgcct ggaatatttc
                                                                     1200
                                                                     1260
ccttctcaaa tgctgagaac gggcaacaac ttcaccttca gctacacctt cgaggacgtt
cccttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcctcttatc
                                                                     1320
gaccagtacc tgtattacct ggccagaaca cagagcaacg caggaggcac agctggcaat
                                                                     1380
cgggaactgc agttttatca gggcgggcct accaccatgg ccgaacaagc caaaaactgg
                                                                     1440
ctgcctggac cttgcttccg gcaacaaaga gtctccaaga cgctggatca aaacaacaac
                                                                     1500
agcaactttg cttggactgg tgccaccaaa taccatctaa atggaagaaa ttcattggtt
                                                                     1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccttcgagc
                                                                     1620
ggagtcctga tttttggaaa aactggagca gctaataaga ctacactgga aaatgtgtta
                                                                     1680
atgacaaatg aagaggaaat tcgtcctacc aacccggtag ccaccgagga atacgggact
                                                                     1740
gttagcagca acctgcaggc ggctaacact gcagcccaga cacaagttgt caacaaccag
                                                                     1800
ggagccttac ctggtatggt ctggcagaac cgggacgtgt acctqcaqqq tcccatctqq
                                                                     1860
gccaagattc ctcacacgga cggcaacttt cacccgtctc cgctgatggg cggctttgga
                                                                     1920
ctgaagcatc cgcctcctca gatcctgatc aaaaacactc ctgttcctgc taatcccccg
                                                                     1980
gaggtgttta cgcctgccaa gtttgcttct ttcatcacac agtacaqcac cqqccaqqtc
                                                                     2040
agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt
                                                                     2100
cagtatacct ccaattttga cgaacagact ggtgtggact ttgccgttga cagccagggt
                                                                     2160
gtttattctg agcctcgccc cattggtact cgttacctca cccgtaatct gtaa
                                                                     2214
       35
2214
       DNA
       new AAV serotype, clone rh.65
<213>
<400>
atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                       60
gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaqgac
                                                                      120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                      180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                      240
cagcagetea aagegggtga caateegtae etgeggtata accaegeega egeegagttt
                                                                      300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag
                                                                      360
gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct
                                                                      420
ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc
                                                                      480
ggcaagaaag gccagcagcc cgctagaaag agactgaact ttgggcagac tggcgactca
                                                                      540
gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga
                                                                      600
tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac
                                                                      660
ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                      720
atcaccacca gcacccgaac ctgggctttg cccacctaca acaaccacct ctacaagcaa
                                                                      780
atctccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcacccc
                                                                      840
tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacqtga ctggcagcgg
                                                                      900
ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct gttcaacatc
                                                                      960
caggtcaagg aggtcacaac gaatgacggc gtcacgacca tcgccaataa ccttaccagc
                                                                     1020
acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacac
                                                                     1080
cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttccccagta cggctacctg
                                                                     1140
```

```
" actctgaaca atggcagcca atcggtgggt cgttcctctt tctactgcct ggaatatttc
                                                                     1200
 ccttctcaaa tgctgagaac gggcaacaac ttcaccttca gctacacctt cgaggacgtt
                                                                     1260
 CCCttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcctcttatc
                                                                     1320
 gaccagtacc tgtattacct ggccagaaca cagagcaacg caggaggcac agctggcaat
                                                                     1380
 cgggaactgc agttttatca gggcgggcct accaccatgg ccgaacaagc caaaaactgg
                                                                     1440
 ctgcctagac cttgcttccg gcaacaaaga gtctccaaga cgctggatca aaacaacaac
                                                                     1500
 agcaactttg cttggactgg tgccaccaaa taccatctaa atggaagaaa ttcattggtt
                                                                     1560
 aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccttcgagc
                                                                     1620
 ggagtcctga tttttggaaa aactggagca gctaataaga ctacactgga aaatgtgtta
                                                                     1680
 atgacaaatg aagaggaaat tcgtcctacc aacccggtag ccaccgagga atacgggact
                                                                     1740
 gttagcagca acctgcaggc ggctaacact gcagcccaga cacaagttgt caacaaccag
                                                                     1800
 ggagccttac ctggtatggt ctggcagaac cgggacgtgt acctgcaggg tcccatctgg
                                                                     1860
 gccaagattc ctcacacgga cggcaacttt cacccgtctc cgctgatggg cggctttgga
                                                                     1920
 ctgaagcatc cgcctcctca gatcctgatc aaaaacactc ctgttcctgc taatccccg
                                                                     1980
 gaggtgttta cgcctgccaa gtttgcttct ttcatcacac agtacagcac cggccaggtc
                                                                     2040
 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt
                                                                     2100
 cagtatacct ccaattttga caaacagact ggtgtggact ttgccgttga cagccagggt
                                                                     2160
 gtttattctg agcctcgccc cattggtact cgttacctca cccgtaatct gtaa
                                                                     2214
 <210>
        36
2214
        DNA
        new AAV serotype, clone rh.67
 <213>
 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                       60
 gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac
                                                                      120
 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                      180
 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                      240
 cagcagctca aagcgggtga caatccgtac ctgcggtata accatgccga cgccgagttt
                                                                      300
 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcctccag
                                                                      360
 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct
                                                                      420
 ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc
                                                                      480
 ggCaagaaag gCCagCagcc CgCtagaaag agactgaact ttgggcagac tggcgactca
                                                                      540
 gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga
                                                                      600
 tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac
                                                                      660
 ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                      720
 atcaccacca gcacccgaac ctgggctttg cccacctaca acaaccacct ctacaagcaa
                                                                      780
 atctccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcaccccc
                                                                      840
 tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcgg
                                                                      900
 ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct gttcaacatc
                                                                      960
 caggtcaagg aggtcacaac gaatgacggc gtcacgacca tcgccaataa ccttaccaqc
                                                                     1020
 acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacac
                                                                     1080
 cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttccccagta cggctacctg
                                                                     1140
 actictgaaca atggcagcca atcggtgggt cgttcctctt tctactqcct ggaatatttc
                                                                     1200
 ccttctcaaa tgctgagaac gggcaacaac ttcaccttca gctacacctt cgaggacgtt
                                                                     1260
 CCCttcCaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcctcttatc
                                                                     1320
 gaccagtacc tgtattacct ggccagaaca cagagcaacg caggaggcac agctggcaat
                                                                     1380
 cgggaactgc agttttatca gggcgggcct accaccatgg ccgaacaagc caaaaactgg
                                                                     1440
```

```
ctgcctggac cttgcttccg gcaacaacaac gtctccaaga cgctggatca aaacaacaac
                                                                    1500
agcaactttg cttggactgg tgccaccaaa taccatctaa atggaagaaa ttcattggtt
                                                                    1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccttcgagc
                                                                    1620
ggagtcctga tttttggaaa aactggagca gctaataaga ctacactgga aaatgtgtta
                                                                    1680
                                                                    1740
atgacaaatg aagaggaaat tcgtcctacc aacccggtag ccaccgagga atacgggact
gttagcagca acctgcaggc ggctaacact gcagcccaga cacaagttgt caacaaccag
                                                                    1800
ggagccttac ctggtatggt ctggcagaac cgggacgtgt acctgcaggg tcccatctgg
                                                                    1860
gccaagattc ctcacacgga cggcaacttt cacccgtctc cgctgatggg cggctttgga
                                                                    1920
ctgaagcatc cgcctcctca gatcctgatc aaaaacactc ctgttcctgc taatcccccg
                                                                    1980
gaggtgttta cgcctgccaa gtttgcttct ttcatcacac agtacagcac cggccaggtc
                                                                    2040
agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt
                                                                    2100
cagtatacct ccaattttga caaacagact ggtgtggact ttgccgttga cagccagggt
                                                                    2160
gtttattctg agcctcgccc cattggtact cgttacctca cccgtaatct qtaa
                                                                    2214
<210>
<211>
      37
2214
       DNA
      new AAV serotype, clone rh.55
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                      60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac
                                                                     120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                     180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                     240
cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccqa cgccqaqttt
                                                                     300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag
                                                                     360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct
                                                                     420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc
                                                                     480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca
                                                                     540
gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga
                                                                     600
tctggtaCaa tggCtgCagg cggtggCgCa cCaatggCag acaataacga aggtgcCgac
                                                                     660
ggagtgggta gttcctcggg aaattggcat tgcgattcca cacggctggg cgacagagtc
                                                                     720
atcaccacca gcacccggac ctgggctttg cccacctaca acaaccacct ctacaagcaa
                                                                     780
atttccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcaccccc
                                                                     840
tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcgg
                                                                     900
ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct gttcaacatc
                                                                     960
caggtcaagg aggtcacaac gaatgacggc gtcacgacca tcgccaataa ccttaccagc
                                                                    1020
acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacac
                                                                    1080
cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttccccagta cggctacctg
                                                                    1140
actctgaaca atggcagcca atcggtgggt cgttcctctt tctactgcct ggaatatttc
                                                                    1200
ccttctcaaa tgctgagaac gggcaacaac ttcaccttca gctacacctt cgaggacgtt
                                                                    1260
cccttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcctcttatc
                                                                    1320
gaccagtacc tgtattacct ggccagaaca cagagcaacg caggaggcac agctggcaat
                                                                    1380
cgggaactgc agttttatca gggcgggcct accaccatgg ccgaacaagc caaaaactgg
                                                                    1440
ctgcctggac cttgcttccg gcaacgaaga gtctccaaga cgctggatca aaacaacaac
                                                                    1500
agcaactttg cttggactgg tgccaccaaa taccatctaa atggaagaaa ttcattggtt
                                                                    1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccttcgagc
                                                                    1620
ggagtcctga tttttggaaa aactggagca gctaataaga ctacactgga aaatgtgtta
                                                                    1680
atgacaaatg aagaggaaat tcgtcctacc aacccggtag ccaccgagga atacgggact
```

1800

"gttagcagca" acctgcaggc "ggctaacact gcagcccaga cacaagttgt caacaaccag

ggagccttac ctggtatggt ctggcaqaac cgggacgtgt acctgcaggg tcccatctgg 1860 gccaagattc ctcacacgga cggcaacttt cacccgtctc cgctgatggg cggctttgga 1920 ctgaagcatc cgcctcctca gatcctgatc aaaaacactc ctgttcctgc taatcccccg 1980 gaggtgttta cgcctgccaa gtttgcttct ttcatcacac agtacagcac cggccaggtc 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt 2100 cagtatacct ccaattttga caaacagact ggtgtggact ttgccgttga cagccagggt 2160 2214 gtttattctg agcctcgccc cattggtact cgttacctca cccgtaatct gtaa 38 2217 <210> <211> DNA new AAV serotype, clone rh.47 <400× atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagcacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgctga cgccgagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct 420 ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacqqqcatc 480 ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca 540 gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga 600 tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac 660 ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaaqcaa 780 atttccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc 840 ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag 900 cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac 960 atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taaccttacc 1020 agcacggttc aggtcttttc ggactcggaa taccagctgc cctacgtcct cggctccgca 1080 caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcccca gtacqqctac 1140 ctgactctga acaatggcag ccaatcggtg ggtcgttcct ctttctactg cctggaatat 1200 ttcccttctc aaatgctgag aacgggcaac aacttcacct tcagctacac cttcgaggac 1260 gttcccttcc acagcagcta cgcacacagc cagagcctgg accggctgat gaatcctctt 1320 atcgaccagt acctgtatta cctggccaga acacagagca acgcaggagg cacagctggc 1380 aatcgggaac tgcagtttta tcagggcggg cctaccacca tggccgaaca agccaaaaac 1440 tggctgcctg gaccttgctt ccggcaacaa agagtctcca agacgctgga tcaaaacaac 1500 aacagcaact ttgcttggac tggtgccacc aaataccatc taaatggaag aaattcattg 1560 gttaatcccg gtgtcgccat ggcaacccac aaggacqacg aggaacgctt cttcccttcg 1620 agcggagtcc tgatttttgg aaaaactgga gcagctaata agactacact ggaaaatgtg 1680 ttaatgacaa atgaagagga aattcgtcct accaacccgg tagccaccga ggaatacggg 1740 actgttagca gcaacctgca ggcggctaac actgcagccc agacacaagt tgtcaacaac 1800 cagggagcct tacctggtat ggtctggcag aaccgggacg tgtacctgca gggtcccatc 1860 tgggccaaga ttcctcacac ggacggcaac tttcacccgt ctccgctgat gggcggcttt 1920 ggactgaagc atccgcctcc tcagatcctg atcaaaaaca ctcctgttcc tgctaatccc 1980 ccggaggtgt ttacgcctgc caagtttgct tctttcatca cacagtacag caccggccag 2040

gtdagcdtgg datcgagtg gaacccagag 2100 attcagtata cctccaattt tgacaaacag actggtgtgg actttqccqt tqacaqccaq 2160 ggtgtttatt Ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctqtaa 2217 <210> 39 2214 DNA new AAV serotype, clone rh.69 <213> atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420 ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc 480 ggcaagaaag gccagcagcc cgctagaaag agactgaact ttgggcagac tggcgactca 540 gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga 600 tctggtacaa tggctgcagg cggtggcgcc ccaatggcag acaataacga aggcgccgac 660 ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggctttg cccacctaca acaaccacct ctacaagcaa 780 atctccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcaccccc 840 tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcgg 900 ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct gttcaacatc 960 caggtcaagg aggtcacaac gaatgacggc gtcacgacca tcgccaataa ccttaccagc 1020 acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacac 1080 cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttccccagta cggctacctg 1140 actctgaaca atggcagcca atcggtgggt cgttcctctt tctactgcct ggaatatttc 1200 ccttctcaaa tgctgagaac gggcaacaac ttcaccatca gctacacctt cgaggacgtt 1260 cccttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcctcttatc 1320 gaccagtacc tgtattacct ggccagaaca cagagcaacg caggaggcac agctggcaat 1380 caggaactgc agttttatca gggcgggcct accaccatgg ccgaacaagc caaaaactgg 1440 ctgcctggac cttgcttccg gcaacaaaga gtctccaaga cgctggatca aaacaacaac 1500 agcaactttg Cttggactgg tgccaccaaa taccatctaa atggaagaaa ttcattggtt 1560 aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccttcgagc 1620 ggagtcctga tttttggaaa aactggagca gctaataaga ctacactgga aaatgtgtta 1680

atgacaaatg aagaggaaat tcgtcctacc aacccggtag ccaccgagga atacggqact

gttagcagca acctgcaggc ggctaacact gcagcccaga cacaagttgt caacaaccag

ggagccttac ctggtatggt ctggcagaac cgggacgtgt acctgcaggg tcccatctgg

gccaagattc ctcacacaga tggcaacttt cacccgtctc ctttaatggg cggctttgga

cttaaacatc cgcctcctca gatcctcatc aaaaacactc ctgttcctgc ggatcctcca

acagcottca accagoccaa octoaattct ttcatcacoc agtacagcac cogacaagtc

agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt

cagtatactt ccaactacta caaatctaca aatgtggact ttgctgttaa tactgagggt

gtttactctg agcctcgccc cattggcact cgttacctca cccgtaatct gtaa

<210> 40 <211> 2214 <212> DNA 1740

1800

1860

1920

1980

2040

2100

2160

∠2134 rnew AAV serotype, "tione" rh.54

TELES TICK	ANY SCIOLY	pe, crone i				
<400> 40 atggctgctg	acggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg	acctgaaacc	tggagcccċg	aaacccaaag	ccaaccagca	gaagcaggac	120
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctca	aagcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aagctgctaa	gacggctcct	420
ggaaagaaga	gaccggtaga	accgtcacct	cagcgttccc	ccgactcctc	cacgggcatc	480
ggcaagaaag	gccagcagcc	cgctagaaag	agactgaact	ttgggcagac	tggcgactca	540
gagtcagtcc	ccgaccctca	acctctcgga	gaaccaccag	caggcccctc	tggtctggga	600
tctggtacaa	tggctgcagg	cggtggcgct	ccaatggcag	acaataacga	aggcgccgac	660
ggagtgggta	atgcctcagg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggctttg	cccacctaca	acaaccacct	ctacaagcaa	780
atctccagtc	agtcagcagg	tagcaccaac	gacaacgtct	acttcggcta	cagcaccccc	840
tgggggtatt	ttgacttcaa	cagattccac	tgtcacttct	caccacgtga	ctggcagcga	900
ctcatcaaca	acaactgggg	attccggccc	aagaagctca	acttcaagct	cttcaacatc	960
caagtcaagg	aggtcacgac	gaatgacggc	gtcacgacca	tcgctaataa	ccttaccagc	1020
acggttcagg	tcttttcgga	ctcggagtac	cagctgccgt	acgtcctcgg	ctctgcccac	1080
cagggctgcc	tgcctccgtt	cccggcggac	gtcttcatga	ttcctcagta	cggctacctg	1140
actctgaaca	atggcagcca	atcggtggga	cgttcatcct	tctactgcct	ggaatacttc	1200
ccttctcagg	tgctgagaac	gggtaacaac	ttcaccttca	gttacacctt	cgaggacgtg	1260
cctttccaca	gcagctacgc	gcacagccag	agcctagacc	ggctgatgaa	tccctcatc	1320
gaccagtacc	tgtattacct	ggctagaaca	cagagtaacc	caggaggcac	atctggcaat	1380
cgggaactgc	agttttacca	gggcgggcct	tccaccatgg	ccgaacaagc	caagaactgg	1440
ttacctggac	cttgcttccg	gcaacaaaga	gtttccaaaa	cactggatca	aaacaacaac	1500
agcaactttg	cttggactgg	tgccaccaaa	tatcacctga	acggcagaaa	ctcattggtg	1560
aatcctggtg	tcgccatggc	aactcacaag	gacgacgagg	accgcttttt	cccatccagc	1620
ggagtcctga	tttttggaaa	aactggagca	accaacaaga	ctacattgga	aaacgtgtta	1680
atgacaaatg	aagaagaaat	tcgtcctact	aatcctgtgg	ccacagaaga	atacgggata	1740
gtcagcagca	atttacaagc	ggccaatact	gcagcccaga	cacaagttgt	caacaaccag	1800
ggagccttac	ctggcatggt	ctggcagaac	cgggacgtgt	acctgcaggg	tcccatctgg	1860
gccaaaattc	ctcacacaga	cggcaacttt	cacccgtctc	cgctgatggg	cggctttgga	1920
ctgaagcatc	cgcctcctca	gatcctgatc	aaaaacactc	ctgttcctgc	taatcccccg	1980
gaggtgttta	cgcctgccaa	gtttgcttct	ttcatcacac	agtacagcac	cggccaggtc	2040
agcgtggaga	tcgagtggga	gctgcagaag	gagaacagca	agcgctggaa	cccagagatt	2100
cagtatacct	ccaattttga	caaacagact	ggtgtggact	ttgccgttga	cagccagggt	2160
gtttattctg	agcctcgccc	cattggtact	cgttacctca	cccgtaatct	gtaa	2214
<210> 41 <211> 221 <212> DNA <213> new	4 AAV serotyp	oe, clone rh	1.45			
<400> 41 atggctgccg	atggttatct	tccanattoo	Ctcaaaaaa	acctctctct	anacattone	60
	acctgaaacc			_		120
		J			J J J	

gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 Page 36

caggagcytc tycaagaaga tacytettet gygggcaacc tyggggaaga agtetteca 420 gycaagaag gygttetega acctetegg ctygttyagg agactyctaa gyaggcate 420 gyaaagaaga gyccygtaga acctetect caggttytee ctyggtagaa tygggaat 480 gyaaagaag gyccagcacc cyctagaaga gyaaccaccad agggccetet tyggtage 600 tettggtacaa tygctgctec caataggag agaccaccad caaccacct ctygettegg 660 gyagtgygta atyccecaga ctyggtyttg ccactecaca caacaccacc ctygacagg 660 gyagtgygta atyccecagag agacaccaca acaaccaccac ctygacagag 660 gyagtgytacaac gyacgacaac ctygagacacac ctygacacac ctygagacacac 720 ctatcacaca gaccagaga atycaccacac caccacacac caccacacac caccacacac caccacacac caccacacac caccacacac caccacacac caccacacac 1020 ccactacaca cygctacacac gygcacacac<	cagcağctca	 aagcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactccc cagcgaagaag cgcaagaaag ggcaagaaag ggcaagaaag cggcaagaaag cggcaagaaag cggcaagaaag cggcaagaaag cggcaagaaag cggcaagaaag cggaagaaag cggaagaaag cggaagaaag cggaagaagaac cfgaagaag cfgaagaagaag cfgaagaagaag cfgaagaagaagaagaaagaaagaagaagaaagaagaagaa							360
ggcaagaaag gccagcagcc cgctagaaag agactgaact ttgggcagac tggcgactca 540 gagtcagtcc ccgacccca accaatcgga gaaccaccag caggccctc tggtctggga 600 tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac 660 ggagtgggta atgcctcagg aaattggcat tgcgattca catggctgg gcgacagagtc 720 atcaccacca gcacccgaac ctgggcttg ccacctaca acaaccacct ctacaagcaa 780 atctccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcacccc 840 tgggggtatt ttgacttcaa cagattcaa tgtcaacttc acttggctag ctggcagcgg 900 ctcatcaaca acaactgggg attccggcc aagaagctca acttcaggta ctggcagcgg 900 ctcatcaaca acaactgggg attccggcc aagaagctca acttcaagct gttcaacat 960 caggtcaagg aggtcacaac gaatgacggc gtcacgacca tcgccaataa ccttaccagc 1020 acggttcagg tcttttcgga ctcgggaatac cagctgccct acgtcctcgg ctccgcacac 1080 cagggtcag tgctctccgtt cccggcggac gttctcatga ttcctcagc gggatacct 1140 actctcaca acggtagtca gggcgtggga cgttctcct tctattgcct ggagtactc 1200 cccttctaga tgctgagaac gggcaacaac ttttccttca gctacacttt cgaggacggt 1260 ccttttcaca gcagtacc ggccgtggga cgttcttcct tctattgcct ggagtactc 1220 gaccagtacc tgtactacct gtcaagaac cagttggac aggtcacag ggggaaccag 1380 cagttgctgt tttctcaggc cgggcctag aacatgtcga ctcaggccag aaactggctg 1440 cctggaccct gcatcagcac gagagcgga acatttgaac ggctgaaaa caacaacagc 1500 aactttgcct ggactgggca cacaaggac gacgaggacc gcttcttccc atcaggcag 1620 atcctcatgt ttggcaagca gggagctgga aaagacacg ggctaaaa caacaacagc 1500 aactttgcct ggacagaac aggacggga aaagacaac ggcagagacc gcttcttcc atcaggga 1860 ccgggcgtcg ccatggcac caacaaggac gacgaggacc gcttcttccc atcagcgag 1680 ctaaccagg aggaagaat caagacacc acacaaggac ggcagagacc gcttcttccc acacaggac 1800 ggagccttac ctggcaagc gggaacacca caacacagg cggcagagac ggggaccag gggaccaga 1800 ggagccttac ctggcaagca gcgaaaaccc gcccctattg tggggggg cggcagaagc 294 cctaacaagt cgactgcaa gcgaagaac gcggacagac ggacagacc ggacagacc 2040 agcggcggaga ccgacagca gcgaaacacc acccgtcac cggacagc 2040 agcggcggag ccgacagca gcgaaacacc aatcacagc aggacagac 2040 agcggcggag ccggcaacc cgaaacc gggagaca agccaaga gagcaggac 2040 aggggggga ccggtaacc cgggagaca ccggacaa accttctcg ag	gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aagctgctaa	gacggctcct	420
gagtcagtcc ccgacctta accaategga gaaccaccag caggccctc tygtrtygga 600 tctggtacaa tggctgcag cggtggcgt ccaatggcag acaataacga aggcgccgac 660 gaggtgggta atgcctcagg cagggtttg ccacctaca catgccagg cagcaccac 720 atcaccacca gaccaccaac caccactaca acaacacct ctacaagaag cagacccca 840 tgggggtatt ttgaccacac cagaacgtca acttcacaca gacaagatca acttcacacac gacagacta cagcaccacc 640 caggtcaaga gatgcacacac cagatcaccac cagatcaccac cagatcaccac cagatcaccac 1020 caggtcaaga gattccagccac ctcgcacac ttgccacaccac 1020 accgttcacac 1020 caggtcacaga gattcacacacacacacaccaccaccacacaccaccaccac	ggaaagaaga	gaccggtaga	accgtcacct	cagcgttccc	ccgactcctc	cacgggcatc	480
tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac 660 ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggctttg cccacctaca acaaccacct ctacaagcaa 780 atctccacca gcacccgaac ctgggctttg cccacctaca acaaccacct ctacaagcaa 780 atctccacca gcacccgaac ctggggcttg cccacctaca acaaccacct ctacaagcag 780 atctccacca agtacgcagg tagcaccaac gacaacgtct acttcggcta caggaccccc 840 tgggggtatt ttgacttcaa cagattccac tgtcacttr caccacgtga ctggcagcgg 990 ctcacacca acaactgggg attccggccc aagaagctca acttcaagct gttcaacact 960 caggtcaagg aggtcacaac gaatgacggg gtcacgacca tcgccaataa ccttacacgc 1020 acggtcaagg tcttttcgga ctcggaataa cagctccct acgtcctcgg ctccgcacac 1080 cagggctgc tgcttccgtt cccggcggac gtcttcatga ttcctcaga cggtacctg 1140 actctcacac acggtagtca ggccgtggga cgttcctcct tctactgct ggagtacttc 1200 cccttctaga tgctgagaac ggccgtggga cgttcctcct tctactgct ggagtacttc 1200 cccttctcaca gcagctaccg gcacagcaag agtttggaca ggctgatgaa tccttctact 1320 gaccagtacc tgtactacct gtcaagaaca ctgtcaga ggcgacagc gggaaccag 1880 cagttgctgt tttctcaggc cgggccgac acacgacga gacggggcc gcacagaca ggcggggcg catcacacga gacggggcg catcacacga gacggggcg catcacacga gaggggcgg catcacacga gaggggcgg catcacacga gaggaccaca gacgggggg 1740 actctcatgt ttggcaagca gggagctgga aaagacacg tggactata caacaacacg 1500 aactttgctc ggacggaaa caacaacgac gagaggacc gcttcttcc atcagggg 1740 gtggctgata acctacagca ggaggctgga aaagacacg tggactata caacagcag 1800 ggagcttaa tctcacagaa gggagctgga cagcaggac gctcctattg tgggggcgt caacagcacag 1800 ggagcttaa ctcacacaga tggcaactt caccgtctc ctttaatggg cggcttcgg 1920 cttaaccagc gagcaggg ctgcagaacac cgggacgtg acccgaagac cggacagtc 2940 acgggggga tcgagtggg ctgcagaacact caccgctcc cttaatggg cggcttcga 1980 acaggttca accagcaca gatcgaacact cacaacacac cttaacacaca cggacagttc 2040 agcgtggaga tcgagtggg ctgcagaacact cacaacacac cgctcacaga accgggggg ccaagactt cacacagaaca ggcagaaca ccaacagaaca caggagaacacacag gagacagac	ggcaagaaag	gccagcagcc	cgctagaaag	agactgaact	ttgggcagac	tggcgactca	540
ggagtgggta aspectcagg asattggcat tgcgattca catggcttg ccacctaca acaccaccc 780 atcaccacca gacaccgaac ctgggctttg cccacctaca acaccacct ctacaagaag 780 atcaccacca agtactcaac gacaccact acaccacct 680 tgggggtatt ttgcacttca cagaagcca atcacactgagg 900 ctcacacaca cacactgggg atcacactgaga ctcacactgagg 900 ctcacacaca cacactggggggggg ctcacaccac caccactgagg 960 caggtcaagg atcacactgagg gactgaccac ctcacactacc 1080 caggtcaagg atcttcacaca cagattgccc ctcactcactaga cagctgccct ctcacactac 1200 cccttcacac gacagtacc gacagacac cttcatcact ttcactcact 1200 cccttcacac gacagacac ggactacct gacagacaca gagtactt cggggactgg 1260 cctttcacaca gacagacac ctacacacac cggactgat ctactcacac 1200 cctttcacaca gacag	gagtcagtcc	ccgaccctca	accaatcgga	gaaccaccag	caggcccctc	tggtctggga	600
ggagtgggta aspectcagg asattggcat tgcgattca catggcttg ccacctaca acaccaccc 780 atcaccacca gacaccgaac ctgggctttg cccacctaca acaccacct ctacaagaag 780 atcaccacca agtactcaac gacaccact acaccacct 680 tgggggtatt ttgcacttca cagaagcca atcacactgagg 900 ctcacacaca cacactgggg atcacactgaga ctcacactgagg 900 ctcacacaca cacactggggggggg ctcacaccac caccactgagg 960 caggtcaagg atcacactgagg gactgaccac ctcacactacc 1080 caggtcaagg atcttcacaca cagattgccc ctcactcactaga cagctgccct ctcacactac 1200 cccttcacac gacagtacc gacagacac cttcatcact ttcactcact 1200 cccttcacac gacagacac ggactacct gacagacaca gagtactt cggggactgg 1260 cctttcacaca gacagacac ctacacacac cggactgat ctactcacac 1200 cctttcacaca gacag	tctggtacaa	tggctgcagg	cggtggcgct	ccaatggcag	acaataacga	aggcgccgac	660
atctccagtc agtcagcagg tagcaccaac gacacagtct acttcggcta cagcaccccc 840 tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcgg 900 ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct gttcaacatc 960 caggtcaagg aggtcacaac gaatgacggc gtcacgacca tcgccaataa ccttaccagc 1020 acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacca 1080 cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttcctcatga cggctacctg 1140 actctcaaca acggtgatca ggccgtgggg cgttctcatga ttcctcatga cggctacctg 1140 actctcaaca acggtgatca ggccgtgggg cgttctcatga ttcctcatga cgggtacctg 1200 ccctctcaga tgctgagaac ggcacacac tttccttca gctacactt cgaggacgtg 1260 cccttctcaga tgctgagaac ggcaacaac ttttccttca gctacactt cgaggacctg 1380 cccttctcaga tgctgagaac gcacacacg agtttggaca ggctgatgaa tcctctcatc 1320 gaccagtacc tgtactacct gtcaagaac cagttggac ggctgatgaa tcctctcatc 1320 gaccagtacc tgtactacct gcaagaac cagttggac gcaggacacg gggaaccag 1380 cagttgctg tttctcaggc cgggcctagc acacatgtcga ctcaggcag aaactggcg 1440 cctggaccct gctacagaca gcagcgcgtc tccacgaca tgtcgcaaa cacacacac 1500 aactttgcct ggactggtg caccaagaca gcagaggac gcttcttcc atccagcgc 1620 accttcatgt ttggcaagca gggggtgga aaagacaacg tggactatag cacacgtgat 1680 ccgggcgtcg ccatggcaac cacacaagac gcagagacc gcctcttcc atccagcgg 1620 atcctcatgt ttggcaagca ggagacgac ccccagaacac gtatggggt 1740 gtggctgata acctacagca gcaaacacc accccgtgg ccacagaaca gtatggggt 1740 gtggctgata acctacagca gcaaacacc gctcctattg tgggggccgt caacagccag 1800 gagaccttac ctggcatggt ctggacactt caccgttc ctttataggg cggctttgga 1920 ctaaacact cgcctcctca gatccttatc aaaacacc ctcttattg gggggccg caacagccag 1920 gagacggttca accaggccaa gctgaatct ttcatcacgc agtacggcg 2040 agcgggggga tcgggtggg gctgcagaa gctgaaacgca agcgctggaa cccagagat 2040 agcgtggaga tcggctgga gctgcaagaa gctgaaacgca gcggcagacgca gcgacagac 2040 agcgtggaga tcggctgcc cattggcac ctggaacacca agcgccaga gcgacagac 2040 agcgtcggag acctgaacc tggaaccc aagcacaaga caccacagac gaagcaggc 120 aaaggggggg acctgaaacc tggaaccc aagcacaaga caccacagac gaagcagac 120 aagggggggg acctgaaacc tggagcccc aagcacaaa gcccaca							720
tgggggtatt ttgacttcaa cagattcac tgtcacttct caccacgtga ctggcagcgg 900 ctcatcacaca acaactgggg attccggcc aagaagctca acttcaagct gttcacact 960 caggtcaagg aggtcacaac gaatgacggc gtcacgacca tcgccaataa ccttaccagc 1020 acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacc 1080 cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttcctcagta cggctacctg 1140 actctcaaca acggtagtca ggccggggac gttctcctt tctactgcct ggagtacttc 1200 cccttctaga tgctgagaac ggccacaacac ttttccttca gctacacttt cgaggacgtg 1260 cctttccaca gcagtcacgc gcacagccag agtttggaca ggctgatgaa tcctctcatc 1320 gaccagtacc tgtactacct gtcaagaac cagttaggac ggcggacaga ggggacacag ggggacacag 1380 cagttgtgt tttctcaggc cggcctagc acatgtcag ctcaggacag gaggacacag gggaacccag 1380 cagttgtgt tttctcaggc cggcctagc acatgtcag ctcaggacaa cacacaacag 1500 accttfact ggactggtgc caccaagtat catctgaacg gcagaactc tctggtgaat 1560 cctggaccct gctacagaca gcaggcgct tccacgacac tgtcgcaaaa cacacacagc 1500 acctttactg ttggcaagac caacaaggac gacgaggacc gcttcttccc atcagggcg 1620 accttcatgt ttggcaagca gaggacgga aaagacacg tggactatag cacagtgag 1620 atcctcatgt ttggcaagc acaacaaggac gacgaggacc gcttcttcc atcagggcg 1620 atcctcatgt ttggcaagca gcaaaacacc accccgtgg ccacagaaca gtatggcgg 1740 gtggctgata acctacagac gcaaaacacc gctcctattg tgggggccgt caacagccag 1800 ggagccttac ctggcatggt ctggcagaac cgggacgtgt acctgcaggg tcctatttgg 1860 gccaagattc ctcacacaga tggcaacttt cacccgttc ctttaatggg cggctttgga 1920 cttaaacatc cgctcctca gatccttatc aaaaacacc cttgtctctg ggatcatcc 2040 agcgtggaga tcgagtgga gctgcagaag gagaacagca agcgtggaa cccagagatc 2040 agcgtggaga tcgagtgga gctgcagaag gagaacagca acctctctga gggcacagc 2210 <210> 42 <211> 2217 <212> DNA AAV serotype, clone rh.59 <400> 42 atggctgcga accggaacc caacacagc agagcagac gcccaagaca ggcctaga acctgcaac 180 aaggggggg ccggaacac tggagaccc aagcccaag ccaacaacaa ggcctagac 240 cagcagctca aagcagga acctggaacc ctggagaccc aagccagaa gcccttaa cggactagac 240 cagcagctca aaggggga acctggaacc tcgggagaccac agacagaac 240 cagcagctca aagcgggga caacccgaa gcggcccc aagccagaa ggcctacaa agcccagaa gccccaagaagc	atcaccacca	gcacccgaac	ctgggctttg	cccacctaca	acaaccacct	ctacaagcaa	780
ctcatcaaca acaactgggg attccggcc aagaagctca acttcaagct gttcaacat 960 caggtcaagg aggtcacaac gaatgacggc gtcacgacca tcgccaataa ccttaccagc 1020 acggttcaagg tcttttcggg tctcggaatac cagctgcct acgtcctcgg ctccgcacca 1080 cagggttcac tgcctccgtt cccggcgac gtcttcatga ttcctcagta cggctacctg 1140 actctcaaca acggtagtca ggccgtggga cgttctcct tctactgcct ggagtactt 1200 cccttctcaga tgctgagaac ggcacaaca ttttccttca gctacacttt cgaggacgtg 1260 cctttccaca gcagctacgc gcacagccag agtttggaca ggctgatgaa tcctctcat 1320 gaccagtacc tgtactacct gtcaagaac cagttacgg gaggcacagc ggggacacag 1380 cagttgctgt tttctcaggc cgggcctagc aacatgtcga ctcaggcag aaactggctg 1440 cctggaccct gcacagcag gaggcgcgt tccacgaac tgtgcaaaa caacacagc 1500 aactttgcct ggactggtg caccaagtaa caccaggagacc gcttcttcc atcaggcg 1620 actttgcct ggactggt caccaagaac gaggggacacg gctgagagact tctgggaat 1680 ctaaccagga aggaagaaat caagaccac aacaccaggagacc gcttcttcc atcaggagg 1740 gtggctgata acctacaggac aggagacaca ggagagacac gtgggaggactaggagacgagagagagagagagagagaga	atctccagtc	agtcagcagg	tagcaccaac	gacaacgtct	acttcggcta	cagcaccccc	840
caggtcaagg aggtcacaac gaatgacggc gtcacgacca tcgccaataa ccttaccagc 1020 acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacc 1080 cagggttgcc tgcctccgtt cccggcgac gtcttcatga ttcctcagta cggctacctg 1140 actctcaaca acggtagtca ggccgtggga cgttctcctct tctactgcct ggagtacttc 1200 ccctctcaga tgctgagaac gggcaacaac ttttcctca gctacacttt cgaggacgtg 1260 cctttccaca gcagctacgc gcacagccag agtttggaca ggctgatgaa tcctctcatc 1320 gaccagtacc tgtactacct gtcaagaac cagtcagg agttaggac gggagcacag gggaacccag 1380 cagttgctgt tttctcaggc cgggcctagc acacagtcag acacagtcag acacagcgggg 1440 cctggaccct ggaatgaga gcaggcgtc tccacgacac tgtgcgcag acacagcggg 1560 cctggacctt ggactggtgc caccaagtat catctggacg gcagagact tctgggaat 1560 ccgggggttg ccatggcaac caacaaggac gacgaggacc gcttcttcc atccagggg 1620 atcctcatgt ttggcaagac ggagagtgga aaagacaacg tggactata gcacgtggat 1680 ctaaccagga aggaagaaat caagaccac aacccgtgg ccacagaaca gtaggggtg 1740 gtggctgata acctacaagaa gcaaacacc gctcctatt tggggggcct cacaagaaca gtaggctg 1800 ggagccttac ctggcaatggt ctggcagaac cgggcagtgt acctgcaggg 1800 ggagccttac ctggcatggt ctggcagaac cgggaacgt tcttaatggg ggcttttgg 1800 ggagcttaacc cacaagaac gggaacacc ctttaacagaagac c	tgggggtatt	ttgacttcaa	cagattccac	tgtcacttct	caccacgtga	ctggcagcgg	900
acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacc 1080 cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttcctcagta cggctacctg 1140 actctcaaca acggtagtca ggccgtggga cgttcctcct tctactgcct ggagtacttc 1200 ccctctcaga tgctgagaac gggcaacaac ttttccttca gctacacttt cgaggacgtg 1260 cctttccaca gcagctacgc gcacagccag agtttggaca ggctgatgaa tcctctcatc 1320 gaccagtacc tgtactacct gtcaagaacc cagtctacgg gaggcacagc ggggaaccag 1380 cagttgctgt tttctcaggc cgggcctagc acatgtcag gaggcacagc ggggaaccag 1440 cctggaccct gctacagaca gcagcgcgt tccacgacac tgtcgcaaa caacaacagc 1500 aactttgcct ggactggtgc caccaagtat catctgaacg gcagagact tctggtgaat 1560 ccgggcgtcg ccatggcaac caacaaggac gacgaggacc gcttctccc atccagcgg 1620 accttactgt ttggcaagac ggaggcgga aaagacaacg tggactatag caacgtgatg 1680 ctaaccagcg aggaagaaat caagaccacc aaccccgtgg ccacagaaca gtatggcgtg 1740 gtggctgata acctacagca gcaaaacacc gctcctattg tggggggccgt caacagcaag 1800 ggagccttac ctggcatggt ctggcagaac cgggacgtgt acctgaggg tcctattgg 1860 gccaagattc ctcacacaga tggcaacttt caccgtctc ctttaatggg cggctttgga 1920 cttaaacatc cgcctcctca gatccttatc aaaaacacc ctgttcctgc ggatcagac 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatc 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatc 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatc 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agccttgta tactgagggt 2160 gcttactctg agcctcgcc cattggcact cgttacctca cccgtaatct gtaa 2214 <2210	ctcatcaaca	acaactgggg	attccggccc	aagaagctca	acttcaagct	gttcaacatc	960
acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacc 1080 cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttcctcagta cggctacctg 1140 actctcaaca acggtagtca ggccgtggga cgttcctcct tctactgcct ggagtacttc 1200 ccctctcaga tgctgagaac gggcaacaac ttttccttca gctacacttt cgaggacgtg 1260 cctttccaca gcagctacgc gcacagccag agtttggaca ggctgatgaa tcctctcatc 1320 gaccagtacc tgtactacct gtcaagaacc cagtctacgg gaggcacagc ggggaaccag 1380 cagttgctgt tttctcaggc cgggcctagc acatgtcag gaggcacagc ggggaaccag 1440 cctggaccct gctacagaca gcagcgcgt tccacgacac tgtcgcaaa caacaacagc 1500 aactttgcct ggactggtgc caccaagtat catctgaacg gcagagact tctggtgaat 1560 ccgggcgtcg ccatggcaac caacaaggac gacgaggacc gcttctccc atccagcgg 1620 accttactgt ttggcaagac ggaggcgga aaagacaacg tggactatag caacgtgatg 1680 ctaaccagcg aggaagaaat caagaccacc aaccccgtgg ccacagaaca gtatggcgtg 1740 gtggctgata acctacagca gcaaaacacc gctcctattg tggggggccgt caacagcaag 1800 ggagccttac ctggcatggt ctggcagaac cgggacgtgt acctgaggg tcctattgg 1860 gccaagattc ctcacacaga tggcaacttt caccgtctc ctttaatggg cggctttgga 1920 cttaaacatc cgcctcctca gatccttatc aaaaacacc ctgttcctgc ggatcagac 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatc 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatc 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatc 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agccttgta tactgagggt 2160 gcttactctg agcctcgcc cattggcact cgttacctca cccgtaatct gtaa 2214 <2210	caggtcaagg	aggtcacaac	gaatgacggc	gtcacgacca	tcgccaataa	ccttaccagc	1020
cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttcctcagta cggctacctg 1140 actctcaaca acggtagtca ggccgtggga cgttctcct tctactgcct ggagtacttc 1200 ccctctcaqa tgctgagaac gggcaacaac ttttccttca gctacacttt cgaggacgtg 1260 cctttccaca gcagctacgc gcacagccag agtttggaca ggctgatgaa tcctctcatc 1320 gaccagtacc tgtactacct gtcaagaacc cagtctacgg gaggcacagc gggaacccag 1380 cagttgctgt tttctcaggc cgggcctagc aacatgtcga ctcaggccag aaactggctg 1440 cctggaccct gctacagaca gcagcgcgtc tccacgacac tgtcgcaaaa caacacagc 1500 aactttgcct ggactggtgc caccaagtat catctgaacg gcagagactc tctggtgaat 1560 ccgggcgtcg ccatggcaac caacaaggac gacgaggacc gcttctccc atccagcggc 1620 acctttgctt ttggcaagca gggggctgga aaagacaacg tggactatag caacgtgatg 1680 ccgggcgtcg ccatggaac caacaagacc aaccccgtgg ccacagaaca gtatggcgtg 1740 gtggctgata acctacagca ggaaacacc ggctcctattg tgggggccgt caacagccag 1800 ggagccttac ctggcatggt ctggcagaac cgggacgtgt acctgcaggg tcctatttgg 1860 gccaagattc ctcacacaga tggcaactt caccggtcc ctttaatggg cggctttgga 1920 cttaaacatc cgcctcctca gatccttatc aaaaacacc ctgttcctgc ggatctcca 1980 acagcgttca accaggccaa gctgaattct ttcatcacgc agtacagca cggacaggtc 2040 agcgtggaga tcgagtgga gctgcagaag gagaacagca agcgtggaa cccagagatt 2100 cagtatactt ccaactacta caaatctaca aatgtggact ttgctgttaa tactgagggt 2160 gcttactctg agcctcgcc cattggcact cgttacctca cccgtaact gtaa 2214 <2210> 42 <2211> 2217 <2212> DNA <2113> new AAV serotype, clone rh.59 <400> 42 <tggggggggg acctgaaga="" aggccagaga="" cccaagacag="" ccgggaccaag="" gccctcaacag="" gcctggggg="" ggccagggggggg<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1080</td></tggggggggg>							1080
acteteaaca acggragtea ggccgtggga cgttectect tetactgeet ggagtactte							1140
cctttccaca gcagctacgc gcacagccag agtttggaca ggctgatgaa tcctccact 1320 gaccagtacc tgtactacct gtcaagaacc cagtctacgg gaggaccagc gggaacccag 1380 cagttgctgt tttctcaggc cgggcctagc aacatgtcga ctcaggccag aacatggctg 1440 cctggaccct gctacagaca gcagcgcgtc tccacgacac tgtcgcaaaa caacacagc 1500 aactttgcct ggactggtgc caccaagtat catctgaacg gcaggagctc tctggtgaat 1560 ccgggcgtcg ccatggcaac cacaaaggac gacgaggacc gcttcttccc atccagcgc 1620 atcctcatgt ttggcaagca gggagctgga aaagacaacg tggactatag caacgtgatg 1680 ctaaccagcg aggaagaaat caagaccacc aaccccgtgg ccacagaaca gtatggcgtg 1740 gtggctgata acctacagca gcaaaacacc gctcctattg tgggggccgt caacagccag 1800 ggagccttac ctggcatggt ctggcagaac cgggacgtgt acctgcaggg tcctatttgg 1860 gccaagattc ctcacacaga tggcaacttt cacccgtctc ctttaatggg cggctttgga 1920 cttaaacatc cgcctcctca gatccttatc aaaaacactc ctgttcctgc ggatcctca 1980 acagcgttca accaggccaa gctgaattct tccacacgc agtacagcac cggacaagtc 2040 agcgtggaga tcgagtgga gctgcagaag gagaacagca agcgctggaa cccaggatt 2100 cagtatactt ccaactacta caaatctaca aatgtggact ttgctgtaa tactgagggt 2160 gcttactctg agcctcgccc cattggcact cgttacctca cccgtaatct gtaa 2214 <210> 42 <211> 2217 <212> DNA							1200
qaccagtacc tgtactacct gtcaagaacc cagtctacgg gaggcacagc gggaacccag 1380 cagttgctgt tttctcaggc cgggcctagc aacatgtcga ctcaggccag aaactggctg 1440 cctggaccct gctacagaca gcagcgcgt tccacgacac tgtcgcaaaa caacaacagc 1500 aactttgcct ggactggtgc caccaagtat catctgaacg gcagagacct tctggtgaat 1560 ccgggcgtcg ccatggcaac caacaaggac gacgaggacc gcttcttcc atccagcggc 1620 atcctcatgt ttggcaagca gggaggtgga aaagacaacg tggactatag caacgtgatg 1680 ctaaccagcg aggaagaaat caagaccacc aaccccgtgg ccacagaaca gtatggcgtg 1740 gtggctgata acctacagca gcaaacacc gctcctattg tgggggccgt caacagccag 1800 ggagccttac ctggcatggt ctggcagaac cgggaggtgt acctgcaggg tcctatttgg 1860 gccaagattc ctcacacaga tggcaacttt cacccgtct ctttaatggg cggctttgga 1920 cttaaacatc cgctcctca gatccttatt aaaaacactc ctgttcctgc ggatcctca 1980 acagcgttca accaggcaa gctgcaagat gagaacagca agcgtggaa cccaagatc 2040 agcgtggaga tcgagtgga gctgcagaag gagaacagca agcgctggaa cccagagatt 2100 cagtatactt ccaaccaca caatctaca aaatgtggact ttgctgttaa tactgagggt 2160 gcttactctg agcctcgcc cattggcact cgttacctca cccgtaatct gtaa 2214 c211> 2217 c212> DNA c213> DNA c213> DNA c213> DNA c213> DNA c213> DNA c213> DNA c300 gggggggggggggggggggggggggggggggggg	ccctctcaga	tgctgagaac	gggcaacaac	ttttccttca	gctacacttt	cgaggacgtg	1260
cagettycty tetectagge cgggcctage aacatytega cteaggccag aaactggctg 1440 cctggaccct gctacagaca gcagcgcgt tecacgacac tytegeaaaa caacaacage 1500 aactttycct ggactggtyc caccaaytat catetyaacg gcagagacte tetggygaat 1560 ccgggcgtcg ccatggcaac caacaaytat catetyaacg gcagagacte tetggygaat 1560 ccgggcgtcg ccatggcaac caacaaytat catetyaacg gcagagacte tetggygaat 1620 atcettcaty ttggcaagca ggaggctgga aaagacaacg tggactatag caacgtgatg 1680 ctaaccagcg aggaagaaat caagaccacc aaccccgtgg ccacagaaca gtatygcgtg 1740 gtggctgata acctacagca gcaaaacacc gctcctatty tgggggccgt caacagccag 1800 ggagccttac ctggcatggt ctggcagaac cgggacgtgt acctgaggg tcctatttgg 1860 gccaagattc ctcacacaga tggcaacttt cacccgtct ctttaatggg cggctttgga 1920 cttaaacatc cgcctccta gatccttat aaaaacactc ctgttcctgc ggatcctca 1980 acagcgttca accaggccaa gctgaattct ttcatcacgc agtacagcac cggacaagtc 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt 2100 cagtatactt ccaactacta caaatctaca aatgtggact ttgctgttaa tactgagggt 2216 gcttactctg agcctcgcc cattggcact cgttacctca cccgtaatct gtaa 2214 <210> 42 <211> 2217 <2212> DNA <213> new AAV serotype, clone rh.59 <400> 42 atgggtggg acctgaaacc tggagcccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgtt tcctggctac aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagccccaag gcaccacac cggactcgac 240 cagcagccagac ccgtcaacgc ggcggacgca gcgccctcg agcacgaca ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300 caggagggagc tgcaagaag tacttcttt gggggcaacc tcgggcgac agtcttcca 360 gccaagaagc tgcaagaag tacttctcgg ctggttagg aagctgctaa agccgctcct 420 cagaagacgtc tgcaagaag tacttcttt gggggcaacc tcgggcgac agtcttcca 360 gccaagaagc gggttctcga acctcctcggt ctggttgag aagctgctaa agcagctcct 420	cctttccaca	gcagctacgc	gcacagccag	agtttggaca	ggctgatgaa	tcctctcatc	1320
cagettycty tetectagge cgggcctage aacatytega cteaggccag aaactggctg 1440 cctggaccct gctacagaca gcagcgcgt tecacgacac tytegeaaaa caacaacage 1500 aactttycct ggactggtyc caccaaytat catetyaacg gcagagacte tetggygaat 1560 ccgggcgtcg ccatggcaac caacaaytat catetyaacg gcagagacte tetggygaat 1560 ccgggcgtcg ccatggcaac caacaaytat catetyaacg gcagagacte tetggygaat 1620 atcettcaty ttggcaagca ggaggctgga aaagacaacg tggactatag caacgtgatg 1680 ctaaccagcg aggaagaaat caagaccacc aaccccgtgg ccacagaaca gtatygcgtg 1740 gtggctgata acctacagca gcaaaacacc gctcctatty tgggggccgt caacagccag 1800 ggagccttac ctggcatggt ctggcagaac cgggacgtgt acctgaggg tcctatttgg 1860 gccaagattc ctcacacaga tggcaacttt cacccgtct ctttaatggg cggctttgga 1920 cttaaacatc cgcctccta gatccttat aaaaacactc ctgttcctgc ggatcctca 1980 acagcgttca accaggccaa gctgaattct ttcatcacgc agtacagcac cggacaagtc 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt 2100 cagtatactt ccaactacta caaatctaca aatgtggact ttgctgttaa tactgagggt 2216 gcttactctg agcctcgcc cattggcact cgttacctca cccgtaatct gtaa 2214 <210> 42 <211> 2217 <2212> DNA <213> new AAV serotype, clone rh.59 <400> 42 atgggtggg acctgaaacc tggagcccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgtt tcctggctac aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagccccaag gcaccacac cggactcgac 240 cagcagccagac ccgtcaacgc ggcggacgca gcgccctcg agcacgaca ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300 caggagggagc tgcaagaag tacttcttt gggggcaacc tcgggcgac agtcttcca 360 gccaagaagc tgcaagaag tacttctcgg ctggttagg aagctgctaa agccgctcct 420 cagaagacgtc tgcaagaag tacttcttt gggggcaacc tcgggcgac agtcttcca 360 gccaagaagc gggttctcga acctcctcggt ctggttgag aagctgctaa agcagctcct 420	gaccagtacc	tgtactacct	gtcaagaacc	cagtctacgg	gaggcacagc	gggaacccag	1380
aactttgcct ggactggtgc caccaagtat catctgaacg gcagagactc tctgggtgaat 1560 ccgggcgtcg ccatggcaac caacaaggac gacgaggacc gcttctccc atccagcggc 1620 atcctcatgt ttggcaagca gggagctgga aaagacaacg tggactatag caacgtgatg 1680 ctaaccagcg aggaagaaat caagaccacc aaccccgtgg ccacagaaca gtatggcgtg 1740 gtggctgata acctacagca gcaaaacacc gctcctattg tgggggccgt caacagccag 1800 ggagccttac ctggcatggt ctggcagaac cgggacgtgt acctgcaggg tcctatttgg 1860 gccaagattc ctcacacga tggcaacttt cacccgtctc ctttaatggg cggctttgga 1920 cttaaacatc cgcctccta gatccttatc aaaaacactc ctgttcctgc ggatcctcca 1980 acagcgttca accaggccaa gctgaattct ttcatcacgc agtacagcac cggacaagtc 2040 agcgtggaag tcgaagtgga gctgcagaag gagaacagca agcgtggaa cccagaagtc 2100 cagtatactt ccaactacta caaatctaca aatgtggact ttgctgtaa tactgagggt 2160 gcttactctg agcctcgcc cattggcact cgttacctca cccgtaatct gtaa 2214							1440
aactttgcct ggactggtgc caccaagtat catctgaacg gcagagactc tctgggtgaat 1560 ccgggcgtcg ccatggcaac caacaaggac gacgaggacc gcttctccc atccagcggc 1620 atcctcatgt ttggcaagca gggagctgga aaagacaacg tggactatag caacgtgatg 1680 ctaaccagcg aggaagaaat caagaccacc aaccccgtgg ccacagaaca gtatggcgtg 1740 gtggctgata acctacagca gcaaaacacc gctcctattg tgggggccgt caacagccag 1800 ggagccttac ctggcatggt ctggcagaac cgggacgtgt acctgcaggg tcctatttgg 1860 gccaagattc ctcacacga tggcaacttt cacccgtctc ctttaatggg cggctttgga 1920 cttaaacatc cgcctccta gatccttatc aaaaacactc ctgttcctgc ggatcctcca 1980 acagcgttca accaggccaa gctgaattct ttcatcacgc agtacagcac cggacaagtc 2040 agcgtggaag tcgaagtgga gctgcagaag gagaacagca agcgtggaa cccagaagtc 2100 cagtatactt ccaactacta caaatctaca aatgtggact ttgctgtaa tactgagggt 2160 gcttactctg agcctcgcc cattggcact cgttacctca cccgtaatct gtaa 2214	cctggaccct	gctacagaca	gcagcgcgtc	tccacgacac	tgtcgcaaaa	caacaacagc	1500
ccgggcgtcg ccatggcaac caacaaggac gacgaggacc gcttctccc atccagcggc 1620 atcctcatgt ttggcaagca gggagctgga aaagacaacg tggactatag caacgtgatg 1680 ctaaccagcg aggaagaaat caagaccacc aaccccgtgg ccacagaaca gtatggcgtg 1740 gtggctgata acctacagca gcaaaacacc gctcctattg tgggggccgt caacagccag 1800 ggagccttac ctggcatggt ctggcagaac cgggacgtgt acctgcaggg tcctatttgg 1860 gccaagattc ctcacacaga tggcaacttt cacccgtctc ctttaatggg cggctttgga 1920 cttaaacatc cgcctcctca gatccttact aaaaacactc ctgttcctgc ggatcctcca 1980 acagcgttca accaggccaa gctgaattct ttcatcacgc agtacagcac cggacaagtc 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt 2100 cagtatactt ccaactacta caaatctaca aatgtggact ttgctgttaa tactgagggt 2160 gcttactctg agcctcgccc cattggcact cgttacctca cccgtaatct gtaa 2214 <2210> 42 <211> 2217 <212> DNA <213> new AAV serotype, clone rh.59 <4400> 42 atggctgctg acggttact tcctagattg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg gctggtgt tcctggtca aagtacccc aagtacctcg gaccacaga gacgagac 120 gacggccggg gtctgtgtct tcctggctac aagtacctcg gaccctcaa cggactcgac 180 aagggggagc Ccgtcaacgc ggcggacgca gcggccctcg agcacgaca ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata accacgcca cgccgagttt 300 caggagcgtc tgcaagaaga tacgtcttt gggggcaacc tcgggcgac agtcttcca 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgtaa gacggcccc 420 cagcagacgc gggttctcga acctctcggt ctggttgagg aagctgtaa gacggcccc 420 cagcagacgc gggttctcga acctctcggt ctggttgagg aagctgcaa acctctca 420						_	1560
ctaaccagcg aggaagaaat caagaccacc aaccccgtgg ccacagaaca gtatggcgtg 1740 gtggctgata acctacagca gcaaaacacc gctcctattg tgggggccgt caacagccag 1800 ggagccttac ctggcatggt ctggcagaac cgggacgtgt acctgcaggg tcctatttgg 1860 gccaagattc ctcacacaga tggcaacttt cacccgtctc ctttaatggg cggctttgga 1920 cttaaacatc cgcctccta gatccttatc aaaaacactc ctgttcctgc ggatcctcca 1980 acagcgttca accaggccaa gctgaattct ttcatcacgc agtacagcac cggacaagtc 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt 2100 cagtatactt ccaactacta caaatctaca aatgtggact ttgctgttaa tactgagggt 2160 gcttactctg agcctcgccc cattggcact cgttaccta cccgtaatct gtaa 2214 <210> 42 <211> 2217 <212> DNA <213> new AAV serotype, clone rh.59 <400> 42 atggctgctg accgttaatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagcccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgt tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300 caggagcgtc tgcaagaag tacgtcttt gggggcaacc tcgggcgac agtcttcaa 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420							1620
ctaaccagcg aggaagaaat caagaccacc aaccccgtgg ccacagaaca gtatggcgtg 1740 gtggctgata acctacagca gcaaaacacc gctcctattg tgggggccgt caacagccag 1800 ggagccttac ctggcatggt ctggcagaac cgggacgtgt acctgcaggg tcctatttgg 1860 gccaagattc ctcacacaga tggcaacttt cacccgtctc ctttaatggg cggctttgga 1920 cttaaacatc cgcctccta gatccttatc aaaaacactc ctgttcctgc ggatcctcca 1980 acagcgttca accaggccaa gctgaattct ttcatcacgc agtacagcac cggacaagtc 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt 2100 cagtatactt ccaactacta caaatctaca aatgtggact ttgctgttaa tactgagggt 2160 gcttactctg agcctcgccc cattggcact cgttaccta cccgtaatct gtaa 2214 <210> 42 <211> 2217 <212> DNA <213> new AAV serotype, clone rh.59 <400> 42 atggctgctg accgttaatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagcccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgt tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300 caggagcgtc tgcaagaag tacgtcttt gggggcaacc tcgggcgac agtcttcaa 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420	atcctcatgt	ttggcaagca	gggagctgga	aaagacaacg	tggactatag	caacgtgatg	1680
gtggctgata acctacagca gcaaaacacc gctcctattg tgggggccgt caacagccag 1800 ggagccttac ctggcatggt ctggcagaac cgggacgtgt acctgcaggg tcctatttgg 1860 gccaagattc ctcacacaga tggcaacttt cacccgtctc ctttaatggg cggctttgga 1920 cttaaacatc cgcctccta gatccttatc aaaaacactc ctgttcctgc ggatcctcca 1980 acagcgttca accaggccaa gctgaattct ttcatcacgc agtacagcac cggacaagtc 2040 agcgtggaga tcgagtggag gctgcagaag gagaacagca agcgctggaa cccagagatt 2100 cagtatactt ccaactacta caaatctaca aatgtggact ttgctgtaa tactgagggt 2160 gcttactctg agcctcgcc cattggcact cgttacctca cccgtaatct gtaa 2214							1740
gccaagattc ctcacacaga tggcaacttt cacccgtctc ctttaatggg cggctttgga 1920 cttaaacatc cgcctcctca gatccttatc aaaaacactc ctgttcctgc ggatcctcca 1980 acagcgttca accaggccaa gctgaattct ttcatcacgc agtacagcac cggacaagtc 2040 agcgtggaga tcgagtgga gctgcagaag gagaacagca agcgctggaa cccagagatt 2100 cagtatactt ccaactacta caaatctaca aatgtggact ttgctgttaa tactgagggt 2160 gcttactctg agcctcgccc cattggcact cgttacctca cccgtaatct gtaa 2214 2210> 42						· -	1800
Cttaaacatc Cgcctcctca gatccttatc aaaaacactc Ctgttcctgc ggatcctcca 1980 acagcgttca accaggccaa gctgaattct ttcatcacgc agtacagcac Cggacaagtc 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt 2100 cagtatactt ccaactacta caaatctaca aatgtggact ttgctgttaa tactgagggt 2160 gcttactctg agcctcgccc cattggcact cgttacctca cccgtaatct gtaa 2214 <210> 42 <211> 2217 <212> DNA <213> new AAV serotype, clone rh.59 <400> 42 atggctgctg accggtaacc tggagcccc aagcccaagg ccaaccagca gagcaggac 120 gacggccggg gtctggtgt tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctc agaccagaca agcctacgac 240 cagcagctca aagcggtga caatccgtac ctgcggtata accacgcca cgccgagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420	ggagccttac	ctggcatggt	ctggcagaac	cgggacgtgt	acctgcaggg	tcctatttgg	1860
acagcgttca accaggccaa gctgaattct ttcatcacgc agtacagcac cggacaagtc 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt 2100 cagtatactt ccaactacta caaatctaca aatgtggact ttgctgttaa tactgagggt 2160 gcttactctg agcctcgccc cattggcact cgttacctca cccgtaatct gtaa 2214 <210> 42 <211> 2217 <212> DNA <213> new AAV serotype, clone rh.59 <400> 42 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagcccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300 caggagcgtc tgcaagaaga tacgtcttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420	gccaagattc	ctcacacaga	tggcaacttt	cacccgtctc	ctttaatggg	cggctttgga	1920
agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt 2100 cagtatactt ccaactacta caaatctaca aatgtggact ttgctgttaa tactgagggt 2160 gcttactctg agcctcgccc cattggcact cgttacctca cccgtaatct gtaa 2214 <210> 42	cttaaacatc	cgcctcctca	gatccttatc	aaaaacactc	ctgttcctgc	ggatcctcca	1980
cagtatactt ccaactacta caaatctaca aatgtggact ttgctgttaa tactgagggt 2160 gcttactctg agcctcgccc cattggcact cgttacctca cccgtaatct gtaa 2214 <210> 42	acagcgttca	accaggccaa	gctgaattct	ttcatcacgc	agtacagcac	cggacaagtc	2040
gcttactctg agcctcgccc cattggcact cgttacctca cccgtaatct gtaa 2214 <210> 42 <211> 2217 <212> DNA <213> new AAV serotype, clone rh.59 <400> 42 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagcccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagtt 300 caggagcgtc tgcaagaaga tacgtcttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420	agcgtggaga	tcgagtggga	gctgcagaag	gagaacagca	agcgctggaa	cccagagatt	2100
<pre> <210> 42 <211> 2217 <212> DNA <213> new AAV serotype, clone rh.59 <400> 42 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300 caggagcgtc tgcaagaaga tacgtcttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420 </pre>	cagtatactt	ccaactacta	caaatctaca	aatgtggact	ttgctgttaa	tactgagggt	2160
<pre><211> 2217 <212> DNA <213> new AAV serotype, clone rh.59 </pre> <pre><400> 42 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300 caggagcgtc tgcaagaaga tacgtcttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420</pre>	gcttactctg	agcctcgccc	cattggcact	cgttacctca	cccgtaatct	gtaa	2214
atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagcccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300 caggagcgtc tgcaagaaga tacgtcttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggtgagg aagctgctaa gacggctcct 420	<211> 2217 <212> DNA <213> new		oe, clone rh	ı. 5 9			
gagtggtgggacctgaaacctggagccccaagcccaaggccaaccagcagaagcaggac120gacggccggggtctggtgcttcctggctacaagtacctcggacccttcaacggactcgac180aagggggagcccgtcaacgcggcggacgcagcggccctcgagcacgacaaggcctacgac240cagcagctcaaagcgggtgacaatccgtacctgcggtataaccacgccgacgccgagtt300caggagcgtctgcaagaagatacgtcttttgggggcaacctcgggcgagcagtcttccag360gccaagaagcgggttctcgaacctctcggtctggttgaggaagctgctaagacggctcct420		acggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300 caggagcgtc tgcaagaaga tacgtcttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420							120
cagcagctcaaagcgggtgacaatccgtacctgcggtataaccacgccgacgccgagtt300caggagcgtctgcaagaagatacgtcttttgggggcaacctcgggcgagcagtcttccag360gccaagaagcgggttctcgaacctctcggtctggttgaggaagctgctaagacggctcct420	gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420							240
gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420	cagcagctca	aagcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
	caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
	gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aagctgctaa	gacggctcct	420
	ggaaagaaga	gaccggtaga	accgtcacct	cagcgttccc	ccgactcctc	cacgggcatc	480

ggcaagaaag gccagcagcc cgctagaaag agactgaact ttgggcagac tggcgactca 540

gagtcagtcc	ccgaccctca	accaatcgga	gaaccaccag	caggcccctc	tggtctggga	600
tctggtacaa	tggctgcagg	cggtggcgca	ccaatggctg	acaataacga	gggcgccgac	660
ggagtgggta	atgcctcagg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggctttg	cccacctaca	acaaccacct	ctacaagcaa	780
atctccagtc	agtcagcagg	tagcaccaac	gacaacgtct	acttcggcta	cagcaccccc	840
tgggggtatt	ttgacttcaa	cagattccac	tgtcacttct	caccacgtga	ctggcagcgg	900
ctcatcaaca	acaactgggg	attccggccc	aagaagctca	acttcaagct	gttcaacatc	960
caggtcaagg	aggtcacaac	gaatgacggc	gtcacgacca	tcgccaataa	ccctaccagc	1020
acggttcagg	tcttttcgga	ctcggaatac	cagctgccct	acgtcctcgg	ctccgcacac	1080
cagggctgcc	tgcctccgtt	cccggcggac	gtcttcatga	ttccccagta	cggctacctg	1140
actctgaaca	atggcagcca	atcggtgggt	cgttcctctt	tctactgcct	ggaatatttc	1200
ccttctcaaa	tgctgagaac	gggcaacaac	ttcaccttca	gctacacctt	cgaggacgtt	1260
cccttccaca	gcagctacgc	acacagccag	agcctggacc	ggctgatgaa	tcctcttatc	1320
gaccagtacc	tgtattacct	ggccagaaca	cagagcaacg	caggaggcac	agctggcaat	1380
cgggaactgc	agttttatca	gggcgggcct	accaccatgg	ccgaacaagc	caaaaactgg	1440
ctgcctggac	cctgctacag	acagcagcgc	gtctccacga	cactgtcgca	aaacaacaac	1500
agcaactttg	cctggactgg	tgccaccaag	tatcatctga	acggcagaga	ctctctggtg	1560
aatccgggcg	tcgccatggc	aaccaacaag	gacgacgagg	accgcttctt	cccatccagc	1620
ggcatcctca	tgtttggcaa	gcagggagct	ggaaaagaca	acgtggacta	tagcaacgtg	1680
atgctaacca	gcgaggaaga	aatcaagacc	accaaccccg	tggccacaga	acagtatggc	1740
gtggtggctg	ataacctaca	gcagcaaaac	accgctccta	ttgtgggggc	cgtcaacagc	1800
cagggagcct	tacctggcat	ggtctggcag	aaccgggacg	tgtacctgca	gggtcctatt	1860
tgggccaaga	ttcctcacac	agatggcaac	tttcacccgt	ctcctttaat	gggcggcttt	1920
ggacttaaac	atccgcctcc	tcagatcctc	atcaaaaaca	ctcctgttcc	tgcggatcct	1980
ccaacagcgt	tcaaccaggc	caagctgaat	tctttcatca	cgcagtacag	caccggacaa	2040
gtcagcgtgg	agatcgagtg	ggagctgcag	aaggagaaca	gcaagcgctg	gaacccagag	2100
attcagtata	cttccaacta	ctacaaatct	acaaatgtgg	actttgctgt	taatactgag	2160
ggtgtttact	ctgagcctcg	cccattggc	actcgttacc	tcacccgtaa	tctgtaa	2217
210 42						
<210> 43 <211> 2211	L					
<212> DNA <213> new	AAV serotyp	oe, clone rh	1.43			
<400> 43	2+44+2+4	*****	********			60
		tccagattgg		-		60
		tggagccccg	_	_		120
•		tcctggctac	•	-		180
		ggcggacgca				240
		caatccgtac				300
		tacgtctttt			_	360
		acctctcggt				420
		gcagtcaccc				480
	_	cagaaaaaga				540
		tctcggagaa				600
		tggcgcacca				660
		ttggcattgc	_		-	720
		ggccctgccc				780
cccaacggga	catcgggagg	agccaccaac	_	acttcggcta	cagcaccccc	840

0 2000,00						- 0
tgggggtatt	ttoactttaa	canattccac	toccactttt	caccacataa	ctoocaocoa	900
ctcatcaaca						960
caggtcaagg						1020
accatccagg						1080
cagggctgcc						1140
acactcaaca						1200
ccttcgcaga	• •		•	_		1260
cctttccaca						1320
gaccagtacc						1380
actctgggct						1440
ccaggaccct						1500
aactttgcct	- •		_			1560
-		-				1620
tcctgttttt						1680
_						1740
accagcgagg						1800
gcagataact	• • •		_	-		
gccttacccg						1860
aagattcctc			_			1920
aaacatcctc			_		_	1980
accttcaacc						2040
gtggaaattg						2100
tacacctcca	actactacaa	atctacaagt	gtggactttg	ctgttaatac	agaaggcgtg	2160
tactctgaac	cccgccccat	tggcacccgt	tacctcaccc	gtaatctgta	a	2211
<210> 44 <211> 2211 <212> DNA <213> new		pe, clone hu	ı.3			
<400> 44 atggctgccg	atggttatct	tccagattgg	ctcgaggaca	ctctctctga	aggaataaga	60
cagtggtgga	agctcaaacc	tggcccacca	ccaccaaagc	ccgcagagcg	gcataaggac	120
gacagcaggg	gtcttgtgct	tcctgggtac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	cggtcaacga	ggcagacgcc	gcggccctcg	agcacgacaa	ggcctacgac	240
cggcagctcg	acagcggaga	caacccgtac	ctcaagtaca	accacgccga	cgcagagttt	300
caggagcgcc	ttaaagaaga	tacgtctttt	gggggcaacc	tcggacgagc	agtcttccag	360

gcgaaaaaga gggttcttga acctctgcgg cctggtttga ggaaacctgt taagacggct 420 ccgggaaaaa agaggccggt agagcactct cctgtggagc cagactcctc ctcgggaacc 480 ggaaaagcgg gccagcagcc tgcaagaaaa agattaaatt ttggtcagac tggagacgca 540 gactccgtac ctgaccccca gcctctcgga cagccaccag cagccccctc tggtctggga 600 tctactacaa tggctacagg cagtggcgca ccaatggcag acaataacga gggtgccgat 660 ggagtgggta attcctcagg aaattggcat tgcgattccc aatggctgga cgacagagtc 720 atcgccacca gcacccgaac ctgggccctg cccacataca acaaccacct ctacaagcaa 780 atctccagcc aatcaggagc ctgcaacgac aaccactact ttggctacag cacccctgg 840 gggtattttg acttcaacag attccactgc cacttttcac cacgtgactg gcaaagactc 900 atcaacagca actggggatt ccggcccaaa agactcaact tcaagctctt taatattcaa 960 gtcaaagagg tcacgcagaa tgacggtacg acgacgattg ccaataacct taccagcacg 1020 gttcaggtgt ttactgactc ggagtaccag ctcccgtacg tcccgggctc ggcgcatcaa 1080 ggatgcctcc cgccgtttcc agcggacgtc ttcatggtcc cacagtatgg atacctcacc 1140

Page 39

1200 ctgaacaacg ggagtcaggc ggtaggacgc tcttcctttt actgcctgga gtactttcct 1260 tctcagatgc tgcgtactgg aaacaacttt cagttcagct acacttttga agacgtgcct 1320 ttccacagca gctacgctca ctgccagagt ctggatcggc tgatgaatcc tctgatcgac cagtacctgt attatctgaa caagacacaa acaaatagtg gaactcttca gcagtctcgg 1380 ctactgttta gccaagctgg accaaccaac atgtctcttc aagctaaaaa ctggctgcct 1440 ggaccttgct acagacagca gcgtctgtça aaacaggcaa acgacaataa caactgcaac 1500 tttccctgga ctqcaqctac aaaqtatcat ctaaatggcc gggactcgtt gqttaatcca 1560 1620 ggaccagcta tggccagtca caaggatgac gaagaaaagt ttttccccat gcatggaacc 1680 ctgatatttg gtaaacaagg aacaaatgcc aacgacgcgg atttggaaaa tgtcatgatt 1740 aCagatgaag aagaaatcag gcccaccaat cccgtggcta cggagcagta cgggactgtg tcaaataatt tgcaaaactc aaacactggt ccaactacag gaactgtcaa tcaccaagga 1800 gcgttacctg gtatggtgtg gcaggatcga gacgtgtacc tgcagggacc catttgggcc 1860 aagattcctc acaccgatgg acactttcat ccttctccac tgatgggagg ttttggactc 1920 aaacacccgc ctcctcagat catgatcaaa agcactcccg ttccagccaa tcctcccaca 1980 aacttcagtt ctgccaagtt tgcttcttcc atcacacagt attccacggg acaggtcagc 2040 gtggagatcg agtgggagct gcagaaggag aacagcaaac gctggaatcc cgaaattcag 2100 tacacttcca actacaacaa gtctgttaat gtggacttta ctgtggacac taatggtgtg 2160 tattcagage ctegececat tggcaccaga tacetgacte gtaatetgta a 2211

<210> 45 <211> 2208 <212> DNA

<213> new AAV serotype, clone hu.5

atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt 300 caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccqqa 480 aaagcgggcc agcagcctgc aagaaaaaga ttaaattttg gtcagactgg agacgcagac 540 tccgtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tctgggatct 600 actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga 660 gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720 accaccagea cccgaacctg ggccctgccc acatacaaca accacctcta caagcaaatc 780 tccagccaat caggagccag caacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaaaaga ctcaacttca agctctttaa tattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tgggctcggc gcatcaagga 1080 tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 Cagatgctgc gtactggaaa Caactttcag ttcagctaca cttttqaaqa cgtgcctttc 1260 cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct gatcgaccag 1320 tacctgtatt atctgaacaa gacacaaaca aatagtggaa ctcttcagca gtctcggcta 1380 ctgtttagcc aagctggacc aaccaacatg tctcttcaag ctaaaaactg gctgcctgga 1440

ccttgctaca gacagcagcg tctgtcaaaa caggcaaacg acaacaacaa cagcaacttt 1500 ccctggactg cagctacaaa gtatcatcta aatggccggg actcgttggt taatccagga 1560 ccagctatgg ccagtcgcaa ggatgacgaa gaaaagtttt tccccatgca tggaaccctg 1620 atatttggta aacaaggaac aaatgccaac gacgcggatt tggaaaatgt catgattaca 1680 gatgaaqaaq aaatcaqqqc caccaatccc gtgqctacgg aqcagtacqq qactqtqtca 1740 aataatttgc aaaactcaaa caCtggtcca aCtactggaa ctgtcaatca ccaaggagcg 1800 ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag 1860 attecteaca ecgatggaca ettteateet tetecaetga tgggaggttt tggaeteaaa 1920 caccegcete etcagateat gateaaaaac acteeegtte cageeaatee teccacaaac 1980 ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacgggaca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccqa aattcagtac 2100 acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 2208 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa <210> 2208 <211> DNA new AAV serotype, clone hu.1 <213> atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cgqactcgac 180 aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt 300 caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaagcgggcc agcagcctgc aagaaaaaga ttaaattttg gtcagactgg agacgcagac 540 tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggatct 600 actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga 660 gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acatacaaca accacctcta caagcaaatc 780 tccagccaat caggagccag caacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaaaaga ctcaacttca agctctttaa tattcaagtc 960 aaagaggtca cgcagaatgg cggtacgacg acgattgcca ataaccttac cagcacqgtt 1020 caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tgggctcggc gcatcaagga 1080 tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagatgctgc gtactggaaa caactttcag ttcagctaca cttttgaaga cgtgcctttc 1260 cacagcaget aegeteacag ecagagtetg gateggetga tgaateetet gategaecag 1320 tacctgtatt atctgaacaa gacacaaaca aatagtggaa ctcttcagca gtctcggcta 1380 ctgtttagcc aagctggacc aaccaacatg tctcttcaag ctaaaaactg gctgcctgga 1440 ccttgctaca gacagcagcg tctgtcaaaa caggcaaacg gcaacaacaa cagcaacttt 1500 ccctggactg cagctacaaa gtatcatcta aatggccggg actcgttggt taatccagga 1560 ccagctatgg ccagtcacaa ggatqacgaa gaaaaqtttt tccccatqca tqgaaccctg 1620 atatttggta aacaaggaac aaatgccaac gacgcggatt tggaaaatgt catgattaca 1680 gatgaagaag aaatcagggc caccaatccc gtggctacgg agcagtacgg gactgtgtca 1740

aataatttgc	aaaactcaaa	cactggtcca	actactggaa	ctgtcaatca	ccaaggagcg	1800
ttacctggta	tggtgtggca	ggatcgagac	gtgtacctgc	agggacccat	ttgggccaag	1860
attcctcaca	ccgatggaca	ctttcatcct	tctccactga	cgggaggttt	tggactcaaa	1920
cacccgcctc	ctcagatcat	gatcaaaaac	actcccgttc	cagccaatcc	tcccacaaac	1980
ttcagttctg	ccaagtttgc	ttctttcatc	acacagtatt	ccacgggaca	ggtcagcgtg	2040
gagatcgagt	gggagctgca	gaaggagaac	agcaaacgct	ggaatcccga	aattcagtac	2100
acttccaact	acaacaagtc	tgttaatgtg	gactttactg	tggacactaa	tggtgtgtat	2160
tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atctgtaa		2208
-210- 47						
<210> 47 <211> 2200 <212> DNA <213> new	B AAV serotyj	oe, clone hu	J.4			
<400> 47	2100112161	tcc303++00	C+C03003C3	*********	20022*2202	60
	atggttatct					
	agctcaaacc					120
	gtcttgtgct		•	_	•	180
	cggtcaacga					240
	acagcggaga	_	_			300
	ttaaagaaga					360
	gggttcttga	_				420
	ggccggtaga	_				480
	agcagcctgc	_				540
tccgtacctg	acccccagcc	tctcggacág	ccaccagcag	cccctctgg	tctgggatct	600
actacaatgg	ctacaggcag	tggcgcacca	atggcagaca	ataacgaggg	tgccgatgga	660
gtgggtaatt	cctcaggaaa	ttggcattgc	gattcccaat	ggctgggcga	cagagtcatc	720
	cccgaacctg				_	780
	caggagccag					840
tattttgact	tcaacagatt	ccactgccac	ttttcaccac	gtgactggca	aagactcgtc	900
aacaacaacc	ggggattccg	gcccaaaaga	ctcaacttca	agctctttaa	tattcaagtc	960
aaagaggtca	cgcagaatga	cggtacgaċg	acgattgcca	ataaccttac	cagcacggtt	1020
caggtgttta	ctgactcgga	gtaccagctc	ccgtacgtcc	tgggctcggc	gcatcaagga	1080
tgcctcccgc	cgtttccagc	ggacgtcttc	atggtcccac	agtatggata	cctcaccctg	1140
aacaacggga	gtcaggcggt	aggacgctct	tccttttact	gcctggagta	ctttccttct	1200
cagatgctgc	gtactggaaa	caactttcag	ttcagctaca	cttttgaaga	cgtgcctttc	1260
cacagcagct	acgctcacag	ccagagtctg	gatcggctga	tgaatcctct	gatcgaccag	1320
tacctgtatt	atctgaacaa	gacacaaaca	aatagtggaa	ctcttcagca	gtctcggcta	1380
ctgtttagcc	aagctggacc	aaccaacatg	tctcttcaag	ctaaaaactg	gctgcctgga	1440
ccttgctaca	gacagcagcg	tctgtcaaaa	caggcaaacg	acaacaacaa	cagcaacttt	1500
ccctggactg	cagctacaaa	gtatcatcta	aatggccggg	actcgttggt	taatccagga	1560
ccagctatgg	ccagtcacaa	ggatgacgaa	gaaaagtttt	tccccatgca	tggaaccctg	1620
atatttggta	aacaaggaac	aaatgccaac	gacgcggatt	tggaaaatgt	catgattaca	1680
gatgaagaag	aaatcagggc	caccaatccc	gtggctacgg	agcagtacgg	gactgtgtca	1740
aataatttgc	aaaactcaaa	cactggtcca	actactggaa	ctgtcaatca	ccaaggagcg	1800
	tggtgtggca	•				1860
	ccgatggaca					1920
	ctcagatcat					1980
	ccaagtttgc					2040
_				Page 42		

2100 gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 2208 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 48 2209 DNA new AAV serotype, clone hu.2 <213> atggctgccg atggttatcc tccagattgg ctcgaggaca ctctctctga agggataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt 300 caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaagcgggcc agcggcctgc aagaaaaaga ttaaattttg gtcagactgg agacgcagac 540 tccgtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tctgggatct 600 actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga 660 gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720 accaccagea cccgaacctg ggccctgccc acatacaaca accacctcta caagcaaatc 780 tccagccaat caggagccag caacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaaaaga ctcaacttca agctctttaa tattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacqgtt 1020 caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tgggctcggc gcatcaagga 1080 tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagatgctgc gtactggaaa caactttcag ttcagctaca cttttgaaga cgtgcctttc 1260 cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct gatcgaccag 1320 tacctgtatt atctgaacaa gacacaaaca aatagtggaa ctcttcagca gtctcggcta 1380 ctgtttagcc aagctggacc aaccaacatg tctcttcaag ctaaaaactg gctgcctgga 1440 ccttgctaca gacagcagcg tctgtcaaaa caggcaaacg acaacaacaa cagcaacttt 1500 ccctggactg cagctacaaa gtatcatcta aatggccggg actcgttggt taatccagga 1560 ccagctatgg ccagtcacaa ggatgacgaa gaaaagtttt tccccatgca tggaaccctg 1620 atatttggta aacaaggaac aaatgccaac gacgcggatt tggaaaatgt catgattaca 1680 gatgaagaag aaatcagggc caccaatccc gtggctacgg agcagtacgg gactgtgtca 1740 aataatttgc aaaactcaaa cactggtcca actactggaa ctgtcaatcg ccaaggagcg 1800 ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag 1860 attecteaca cegatggaca ettteateet tetecaetga tgggaggttt tggacteaaa 1920 caccegecte cteagateat gateaaaaac acteeegtte cageeaatee teecacaaac 1980 ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacgggaca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaat 2209

<210> 49 <211> 2208

42124 DNA" <213> new AAV serotype, clone hu.25 <400> 49 60 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 ggcagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 240 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 300 cggcagctca acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 360 caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gcaaaaaaga gggttcttga acctctgggc ctggttgagg agcctgttaa aacggctccg 420 480 ggaaaaaaga gaccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga 540 aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gtcagactgg agacgcagac 600 tCCgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggatct 660 actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720 accacaagca ctcgaacctg ggccctgccc acctacaaca accacctcta caagcaaatc 780 tccagccaat caggagcctc aaacgacaac cactattttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactgqca aaqactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgttcccagc ggacgtcttc atggtcccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcggt aggacgctct cccttttact gcctggagta ctttccttct 1200 cagatgctgc gtactggaaa caactttcag ttcagctaca cttttgaaga cgtgcctttc 1260 cacagcaget aegeteacag ceagagtetg gateggetga tgaateetet gategaecag 1320 tacctgtatt atctgaacaa gacacaaaca aatagtggaa ctcttcagca gtctcggcta 1380 ctgtttagcc aagctggacc caccaacatg tctcttcaag ctaaaaactg gctgcctgga 1440 ccttgctaca gacagcagcg tctgtcaaag caggcaaacg acaacaacaa cagcaacttt 1500 ccctggactg cagctacaaa gtatcatcta aatggccggg actcgttggt taatccagga 1560 ccagctatgg ccagtcacaa ggatgacgaa gaaaagtttt tccccatgca tggaaccctg 1620 atatttggta aacaaggaac aaatgccaac gacgcggatt tggaaaatgt catgattaca 1680 gatgaagaag aaatcaggac caccaatccc gtggctacgg agcagtacgg gactgtgtca 1740 aataatttgc aaaactcaaa cactggtcca actactggaa ctgtcaatca ccaaggagcg 1800 ttacctggta tggtgtggca ggatcgagat gtgtaccttc agggacccat ttgggccaag 1860 attcctcaca ccgatggaca ctttcatcct tctccactga tgggaggttt tqqactcaaa 1920 caccegete cteagattat gateaaaaac acteeegtte cageeaatee teetacaaac 1980 ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacggggca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacaataa tggcgtgtac 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208 2208 DNA new AAV serotype, clone hu.15 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactctac 180

aagggagage cogacgacaa ggcagacgcc gcggccctcg agcacgacaa ggcctacgac	240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt	300
caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag	360
gccaaaaaga gggttcttga acctctgggc ttggttgggg agcctgttaa aacggctccg	420
ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga	480
aaagcgggca accagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac	540
tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggatct	600
actacaatgg ctacaggcag tggcgcacca gtggcagaca ataacgaggg tgccgatgga	660
gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc	720
accaccagca cccgaacctg ggctctgccc acctacaata accacctcta caagcaaatc	780
tccagccaat caggagcctc aaacgacaac cactactttg gctacagcac cccctggggg	840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgaccggca aagactcatc	900
aacaacaact ggggattccg accaaaaaga ctcaacttca agctctttaa cattcaagtc	960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt	1020
caggtgttta ctgactcggg gtaccagctc ccgtacgtcc tcggcttggc gcatcaagga	1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg	1140
aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct	1200
cagatgctgc gtactggaaa caactttcag ttcagctaca cctttgaaga cgttcctttc	1260
cacagcaget aegeteacag ecagagtetg gateggetga tgaateetet gategaecag	1320
tacctgtatt atctgaacaa gacacaatca aatagtggaa ctcttcagca gtctcggcta	1380
ctgtttagcc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctgcctgga	1440
ccttgctaca gacagcagcg tctgtcaaag caggcaaacg acaacaacaa cagcaacttt	1500
ccctggactg cggctacaaa gtatcatcta aatggccggg actcgttggt taatccagga	1560
ccagctatgg ccagccacaa agacgatgaa gaaaagtttt tccccatgca tggaaccctg	1620
atatttggta aacaaggaac aaatgctaac gacgcggatt tggacaatgt catgattaca	1680
gatgaagaag aaatccgcac caccaatccc gtggctacgg agcagtacgg atatgtgtca	1740
aataatttgc aaaactcaaa tactggtcca actactggaa ctgtcaatca ccaaggagcg	1800
ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag	1860
attcctcaca ccgatggaca ctttcatcct tctccactta tgggaggttt tggactcaaa	1920
cacccacctc ctcagatcat gattaaaaac actcccgttc cagccaatcc tcccacaaac	1980
ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacgggaca agtcagcgtg	2040
gagatcgagt gggagctgca gaaggaggac agcaaacgct ggaaccccga gatccagtac	2100
acttccaact ataacaaacc tgttaatgtg gactttactg tggacactaa tggtgtgtat	2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa	2208
<210> 51 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.16	
<400> 51 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga	60
cagtggtgga agctcaaacc tggcccacca ccgccaaagc ccgcagagcg gcataaggac	120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactctac	180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac	240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccgg cgcggagttt	300
caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag	360
gccaaaaaga gggttcttga acctctgggc ttggttgagg agcctgttaa aacggctccg	420
ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga	480

aaagcgggca accagccctgc aagaaaaga ttgaattttg gtcagactgg agacgcagac

aaagcgggca	accageetge	aagaaaaaga	ttgaattttg	gtcagactgg	agacgcagac	540
tccgtacctg	acccccagcc	tctcggacag	ccaccagcag	cccctctgg	tctgggatct	600
actacaatgg	ctacaggcag	tggcgcacca	gtggcagaca	ataacgaggg	tgccgatgga	660
gtgggtaatt	cctcaggaaa	ttggcattgc	gattcccaat	ggctgggcga	cagagtcatc	720
accaccagca	cccgaacctg	ggctctgccc	acctacaaca	accacctcta	caagcaaatc	780
tccagccaat	caggagcctc	aaacgacaac	cactactttg	gctacagcac	cccctggggg	840
tattttgact	tcaacagatt	ccactgccac	ttttcaccac	gtgactggca	aagactcatc	900
aacaacaact	ggggattccg	accaaagaga	ctcaacttca	agctctttaa	cattcaagtc	960
aaagaggtca	cgcagaatga	cggtacgacg	acgattgcca	ataaccttac	cagcacggtt	1020
caggtgttta	ctgactcgga	gtaccagctc	ccgtacgtcc	tcggctcggc	gcatcaagga	1080
tgcctcccgc	cgttcccagc	agacgtcttc	atggtgccac	agtatggata	cctcaccctg	1140
aacaacggga	gtcaggcggt	aggacgctċt	tccttttact	gcctggagta	ctttccttct	1200
cagatgctgc	gtactggaaa	caactttcag	ttcagctaca	cctttgaaga	cgttcctttc	1260
cacagcagct	acgctcacag	ccagagtctg	gatcggctga	tgaatcctct	gatcgaccag	1320
tacctgtatt	atctgaacaa	gacacaatca	aatagtggaa	cccttcagca	gtctcggcta	1380
ctgtttagcc	aagctggacc	caccagcatg	tctcttcaag	ctaaaaactg	gctgcctgga	1440
ccttgctaca	gacagcagcg	tctgtcaaag	caggcaaacg	acaacaacaa	cagcaacttt	1500
ccctggactg	cggctacaaa	gtatcatcta	aatggccggg	actcgttggt	taatccagga	1560
ccagctatgg	ccagccacaa	agacgatgaa	gaaaagtttt	tccccatgca	tggaaccctg	1620
atatttggta	aacaaggaac	aaatgctaac	gacgcggatt	tggacaatgt	catgattaca	1680
gatgaagaag	aaatccgcac	caccaatccc	gtggctacgg	agcagtacgg	atatgtgtca	1740
aataatttgc	aagactcaaa	tactggtcca	actactggaa	ctgtcaatca	ccaaggagcg	1800
ttacctggta	tggtgtggca	ggatcgagac	gtgtacctgc	agggacccat	ttgggccaag	1860
attcctcaca	ccgatggaca	ctttcatcct	tctccactta	tgggaggttt	tggactcaaa	1920
cacccacctc	ctcagatcat	gattaaaaac	actcccgttc	cagccaatcc	tcccacaaac	1980
ttcagttctg	ccaagtttgc	ttctttcatc	acacagtatt	ccacgggaca	agtcagcgta	2040
gagatcgagt	gggagctgca	gaaggagaac	agcaaacgct	ggaaccccga	gatccagtac	2100
acttccaact	ataacaaatc	tgttaatgtg	gactttactg	tggacactaa	tggtgtgtat	2160
tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atctgtaa		2208
<210> 52						
<211> 2208 <212> DNA			. 10			
	AAV Seroty	pe, clone hu	1.18			
	atggttatct	tccagattgg	ctcgaggaca	ctctctctga	aggaataaga	60
cagtggtgga	agctcaaacc	tggcccacca	ccaccaaagc	ccgcagagcg	gcataaggac	120
gacagcaggg	gtcttgtgct	tcctgggtac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggagagc	cggtcaacga	ggcagacgcc	gcggccctcg	agcacgacaa	ggcctacgac	240
cggcagctcg	aaagcggaga	caacccgtac	ctcaagtaca	accacgccga	cgcggagttt	300
caggagcgtc	ttaaagaaga	tacgtctttt	gggggcaacc	tcggacgagc	agtcttccag	360
gcgaaaaaga	gggttcttga	acctctgggc	ctggttgagg	agcctgttaa	aacggctccg	420
ggaaaaaaga	ggccggtaga	gcactctcct	gtggagccag	actcctcctc	gggaaccgga	480
aaagcgggcc	agcagcctgc	gagaaaaaga	ttgaattttg	gtcagactgg	agacgcagac	540
tccgtacctg	acccccagcc	tctcggacag	ccaccagcag	cccctctgg	tctgggatct	600
actacaatgg	cttcaggcag	tggcgcacca	gtggcagaca	ataacgaggg	tgccgatgga	660
gtgggtaatt	cctcaggaaa	ttggcattgc	gattcccaat	ggctgggcga	cagagtcatc	720
accaccagca	cccgaacctg	ggccctgccc	acctacaaca	accacctcta	caagcaaatc	780

```
tccdgccadr caggagcctc aaacgacaac cactactttg gctacagcac cccctggggg
                                                                    840
                                                                    900
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
aacaacagct ggggattccg acccaaaaga ctcaacttca agctctttaa cattcaagtc
                                                                    960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                   1020
1080
tgcctcccgc cgttcccagc agacgtcttt atggtcccac agtatggata cctcacctg
                                                                   1140
aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct
                                                                   1200
cagatgctgc gtactggaaa caactttcag ttcagctaca cctttgaaga cgttcccttc
                                                                   1260
cacagcagct acgctcacag ccagagtctg gatcggctgc tgaatcctct gatcgaccag
                                                                   1320
tacctatatt atctgaacaa gacacaatċa aatagtggaa ctcttcagca gtctcggcta
                                                                   1380
ctgtttagcc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctgcctgga
                                                                   1440
ccttgctaca gacagcagcg tctgtcaaag caggcaaacg acaacaacaa cagcaacttt
                                                                   1500
ccctggactg cggctacaaa gtatcatcta aatggccggg actcgttggt taatccagga
                                                                   1560
ccagctatgg ccagccacaa agacgatgaa gaaaagtttt tccccatgca tqqaaccctq
                                                                   1620
atatttggta aacaaggaac aaatgctaac gacgcggatt tggacaatgt catgattaca
                                                                   1680
gatgaagaag aaatccgcac caccaatccc gtggctacgg agcagtacgg atatgtgtca
                                                                   1740
aataatttgc aaaactcaaa tactggtcca actactggaa ctgtcaatca ccaaggagcg
                                                                   1800
ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag
                                                                   1860
attcctcaca cggacgggca ctttcatcct tctccactaa tgggaggttt tgggctcaaa
                                                                   1920
caccegette etcagateat gateaaaaac actecegtte cagecaatee tectacaaac
                                                                   1980
ttcagttctt ccaagtttgc ttctttcatc acacagtatt ccacggggca ggtcagcgtg
                                                                   2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtat
                                                                   2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat
                                                                   2160
tcagagcctc gccccattgg caccagatac ccgactcgta atctgtaa
                                                                   2208
<210>
       53
2208
       DNA
       new AAV serotype, clone hu.8
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaacaaga
                                                                     60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac
                                                                    120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                    180
aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac
                                                                    240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt
                                                                    300
caggagcgtc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag
                                                                    360
gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg
                                                                    420
ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga
                                                                    480
aaagCgggCC agcagCCtgC aagaaaaaga ttgaattttg gtcagactgg agacgcagac
                                                                    540
tccgtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tttgggatct
                                                                    600
actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga
                                                                    660
gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc
                                                                    720
accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caagcaaatc
                                                                    780
tcaagccaat caggagcctc aaacgacaac cactactttg gctacagcac cccttggggg
                                                                    840
```

tattttgact tcaacagatt ccactgccac ttttcaccac gtgactqgca aagactcatc

aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc

aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt

900

960

1020

1080

```
"tgcdtcccac agtatggata cctcaccctg
                                                                    1140
aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct
                                                                    1200
cagatgette gtactggaaa caacttteag tteagetaea cetttgaaga egtteettte
                                                                    1260
cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct gatcgaccag
                                                                    1320
tacctgtatt atctgaacaa aacacaatca aatagtggaa ctcttcagca gtctcggcta
                                                                    1380
ctgtttagtc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctacctgga
                                                                    1440
ccttgctaca gacagcagcg tctgtcaaag caggcaaacg acaacaacaa cagcaacttt
                                                                    1500
ccctggactg cggctacaaa gtaccaccta aatggccggg actcgttggt taatccagga
                                                                    1560
ccagctatgg ccagtcacaa agacgatgaa gaaaagtttt tccccatgca tggaaccctg
                                                                    1620
atatttggta aacaaggaac aaatgctaac gacgcggatt tggacaatgt catgattaca
                                                                    1680
gatgaagaag aaatccgcac caccaatccc gtggctacgg agcagtacgg atatgtgtca
                                                                    1740
aataatttgc aaaactcaaa tactggtcca actactggaa ctgtcaatca ccaaggagcg
                                                                    1800
ttacctggca tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag
                                                                    1860
attoctcaca cogatggaca otttoatoot totocactga tgggaggttt tgggctcaaa
                                                                    1920
caccegette etcagateat gateaaaaac acteeegtte cageeaatee teccacaaac
                                                                    1980
ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacggggca ggtcagcgtg
                                                                    2040
gagatcgagt gggagctgca gaaagagaac agcaaacgct ggaatcccga aattcagtac
                                                                    2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggcgtgtat
                                                                    2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
                                                                    2208
<210>
       54
2208
       DNA
       new AAV serotype, clone rh.56
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                      60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac
                                                                     120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                     180
aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac
                                                                     240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt
                                                                     300
caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc aqtcttccag
                                                                     360
gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg
                                                                     420
ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga
                                                                     480
aaagcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac
                                                                     540
tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tttgggatct
                                                                     600
actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga
                                                                     660
gtgggtaatt Cttcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc
                                                                     720
accaccagca cocgaacctg ggcccagccc acctacaaca accacctcta caagcaaatc
                                                                     780
tcaagccaat caggagcctc aaacgacaac cactactttg gctacagcac cccttggggg
                                                                     840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                     900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                     960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac caqcacqqtt
                                                                    1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcgggtcggc gcatcaagga
                                                                    1080
tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatqqata cctcaccctq
                                                                    1140
aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct
                                                                    1200
cagatgcttc gtactggaaa caactttcag ttcagctaca cctttgaaga cgttcctttc
                                                                    1260
cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct gatcgaccag
                                                                    1320
tacctgtatt atctgaacaa aacacaatca aatagtggag ctcttcagca gtctcggcta
                                                                    1380
```

```
ctgtttägtt aagctggacc caccagcatg tetetteaag etaaaaactg getaeetgga
                                                                     1440
ccttgctaca gacagcagcg tctgtcaaag caggcaaacg acaacaacaa cagcaacttt
                                                                     1500
CCCtggactg cggctacaaa gtaccaccta aatggccggg actcgttggt taatccagga
                                                                     1560
CCagctatgg CcagtcaCaa agacgatgaa gaaaagtttt tccccatgca tggaaccctg
                                                                     1620
atatttggta aacaaggaac aaatgctaac gacgcggatt tggacaatgt catgattaca
                                                                     1680
gatgaagaag aaatccgcac caccaatccc gtggctacgg agcagtacgg atatgtgtca
                                                                     1740
aataatttgc aaaactcaaa tactggtcca actactggaa ctgtcaatca ccgaggagcg
                                                                     1800
ttacctggca tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag
                                                                     1860
attcctcaca ccgatggaca ctttcatcct tctccactga tgggaggttt tgggctcaaa
                                                                     1920
caccegette etcagateat gateaaaaac actecegtte cagecaatee teccacaaac
                                                                     1980
ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacggggca ggtcagcgtg
                                                                     2040
gagatcgagt gggagctgca gaaagagaac agcaaacgct ggaatcccga aattcagtac
                                                                     2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggcgtgtat
                                                                     2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
                                                                    2208
<210>
       55
2208
       DNA
       new AAV serotype, clone hu.7
<400×
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                       60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac
                                                                      120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                      180
aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac
                                                                      240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt
                                                                      300
caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag
                                                                      360
gcgaaaaaga gggttcttga acctctgggc ctggttgagg gacctgttaa gacggctccg
                                                                      420
ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga
                                                                      480
aaagcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac
                                                                      540
tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tttgggatct
                                                                     600
actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga
                                                                     660
gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc
                                                                     720
accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caagcaaatc
                                                                     780
tcaagccaat caggagcctc aaacgacaac cactactttg gctacagcac cccttggggg
                                                                     840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                     900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                     960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                    1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcgggtcggc gcatcaagga
                                                                    1080
tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcaccctg
                                                                    1140
aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct
                                                                    1200
cagatgette gtactggaaa caacttteag tteagetaea cetttgaaga egtteette
                                                                    1260
cacagcaget aegeteacag ecagagtetg gateggetga tgaateetet gategaecag
                                                                    1320
tacctgtatt atctgaacaa aacacaatca aatagtggaa ctcttcagca gtctcggcta
                                                                    1380
ctgtttagtc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctacctgga
                                                                    1440
ccttgctaca gacagcagcg tctgtcaaag caggcaaacg acaacaacaa cagcaacttt
                                                                    1500
ccctggactg cggctacaaa gtatcaccta aatggccggg actcgttggt taatccagga
                                                                    1560
ccagctatgg ccagtcacaa agacgatgaa gaaaagtttt tccccatgca tggaaccctg
                                                                    1620
atatttggta aacaaggaac aaatgctaac gacgcggatt tggacaatgt catgattaca
```

1680

gátgaagaag agcagtacgg atatgtgtca 1740 aataatttgc aaaactcaaa tactggtcca actactggaa ctgtcaatca ccaaggagcg 1800 ttacctggca tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag 1860 attecteaca eegatggaca ettteateet tetecaetga tgggaggttt tgggeteaaa 1920 caccegecte etcagateat gateaaaaae acteeegtte cageeaatee teceaeaaae 1980 ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacggggca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaagagaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggcgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208 <210> 2208 DNA new AAV serotype, clone hu.10 <213> atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc tcgcagagcg gcatcaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aaaggagagc Cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaggcgggcc atcagcctgc gagaaagaga ttgaattttg gtcagactqq agacqcagac 540 tccgtacctg acccccagcc tctcggacag ccaccagcag cccccacaag tctgggatct 600 actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga 660 gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720 accaccagea ceegaacetg ggeeetgeee acctacaaca accaeeteta caageaaate 780 tccagccaat caggagcctc gaacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgtcac ttctccccac gtgattggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgtttccagc ggacgtcttc acggtcccac agtatggata cctcacctg 1140 aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagatgctgc gtactggaaa caaccttacc ttcagctaca cctttgagga cgttcctttc 1260 cacagcaget aegeteacag ecagagetetg gaceggetga tgaateetet gategaecag 1320 tatctatatt atctgaacag gacacaatca aatagtggaa ctcttcagca gtctaggcta 1380 ctgtttagcc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctgcctgga 1440 cettgetaca gacageageg tettteaaag caggeaaaeg acaacaacaa cageaaettt 1500 ccctggactg cggctacaaa gtatcatcta aatggccggg actcgttggt taatccagga 1560 ccagctatgg ccagccacaa agacgatgaa gaaaagtttt tccccatgca tggaaccctg 1620 atatttggta aacaaggaac aaatgctaac gacgcggatt tggaqcatgt tatgattaca 1680 gatgaagaag aaatcaggac caccaatcct gtggctacag agcagtacgg aaacgtgtca 1740 aataatttgc aaaactcaaa tactggtcca actacagaaa atgtcaatca ccagggagcg 1800 ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag 1860 attecteaca ecgaeggaca ettteaceet tetecaetga tgggaggttt tggaeteaaa 1920 caccegecte etcaaateat gateaaaaac acteeegtte cageeaatee teccacaaac 1980

2040

tacagitictg ccaagtttgc ttctttcatc acacagtatt ccacgggcca ggtcagcgtg gagattgagt gggagctgcg gaaggagaac agcaaacgct ggaaccccga gatccagtat 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 2208 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa <210> 2208 <211> new AAV serotype, clone hu.11 <213> atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcatcaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aaaggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa qacggctccq 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaagcgggcc atcagcctgc gagaaagaga ttgaattttg gtcagactgg agacgcagac 540 tccgtacctg accccagcc tctcggacag ccaccagcag cccccacaag tttgggatct 600 actacaatgg CtaCaggCag tggCgCacca atggCagaca ataacgaggg tgcCgatgga 660 gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caagcaaatc 780 tccagccaat caggagcctc gaacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgtcac ttctccccac gtgattggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaggaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagatgctgc gtactggaaa caactttacc ttcagctaca cctttgagga cgttcctttc 1260 cacagcagct acgctcacag ccagagtttg gaccggctga tgaatcctct gatcgaccag 1320 tatctatatt atctgaacag gacacaatca aatagtggaa ctcttcagca gtctaggcta 1380 ctgtttagcc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctgcctgga 1440 ccttgctaca gacagcagcg tctttcaaag caggcaaacg acaacaacaa cagcaacttt 1500 ccctggactg cggctacaaa gtatcgtcta aatggccggg actcgttggt taatccagga 1560 ccagctatgg ccagccacaa agacgatgaa gaaaagtttt tccccatgca tggaaccctg 1620 atatttggta aacaaggaac aaatgctaac gacgcggatt tggagcatgt tatgattaca 1680 gatgaagaag aaatcaggac caccaatcct gtggctacag agcagtacgg aaacgtgtca 1740 aataatttgc aaaactcaaa tactggtcca actacagaaa atgtcaatca ccagggagcg 1800 ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag 1860 attcctcaca ccgacggaca ctttcaccct tctccactga tgggaqgttt tggactcaaa 1920 caccegette etcaaateat gateaaaaac acteeegtte cageeaatee teceacaaac 1980 ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacqqqcca ggtcagcgtq 2040 gagattgagt gggagctgca gaaggagaac agcaaacgct ggaaccccga gatccagtat 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208

<"211>"""2708" <212> DNA <213> new AAV serotype, clone hu.9 <400> atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcatcaggac 120 aacagcaggg gtcttgtgct tcctgggtac aagtacctcg gaccctccaa cggactcgac 180 aaaggagagc Cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaagcgggcc atcagcctgc gagaaagaga ttgaattttg gtcagactgg agacgcagac 540 tccgtacctg accccagcc tctcggacag ccaccagcag cccccacaaq tttgggatct 600 actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga 660 gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga caqagtcatc 720 accaccagea cccgaacctg ggccctgccc acctacaaca accacctcta caagcaaatc 780 tccagccaat caggagcctc gaacgacaac cactactttg gctgcagcac cccctggggg 840 tattttgact tcaacagatt ccactgtcac ttctccccac gtgattggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca Cgcagaatga Cggtacgacg acgattgcca ataaccttac caqcacgqtt 1020 1080 tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcacctg 1140 aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cctttgagga cgttcctttc 1260 cacagcagct acgctcacag ccagagtttg gaccggctga tgaatcctct gatcgaccag 1320 tatctatatt atctgaacag gacacaatca aatagtggaa ctcttcagca gtctaggcta 1380 ctgtttagcc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctgcctgga 1440 ccttgctaca gacagcagcg tctttcaaag caggcaaacg acaacaacaa cagcaacttt 1500 ccctggactg cggctacaaa gtatcatcta aatggccggg actcgttggt taatccagga 1560 ccagctatgg ccagccacaa agacgatgaa gaaaagtttt tccccatqca tqqaaccctq 1620 atatttggta aacaaggaac aaatgctaac gacgcggatt tggagcatgt tatgattaca 1680 gatgaagaag aaatcaggac caccaatcct gtggctacag agcagtacgg aaacgtgtca 1740 aataatttgc aaaactcaaa tactggtcca actacagaaa atgtcaatca ccagggagcq 1800 ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag 1860 attecteaca eegaeggaca ettteaceet tetecaetga tgggaggttt tggaeteaaa 1920 cacccgcctc ctcaaatcat gatcaaaaac actcccgttc cagccaatcc tcccacaaac 1980 ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacgggcca ggtcagcgtq 2040 gagattgagt gggagctgca gaaggagaac agcaaacgct ggaaccccga gatccagtat 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctt gccccattgg caccagatac ctgactcgta atctgtaa 2208 <210> 59 2208 DNA new AAV serotype, clone hu.12 <213> <400> atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcatcaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac

180

aaaggagagc	cggtcaacga	ggcagacgcc	gcggccctcg	agcacgacaa	ggcctacgac	240
cggcagctcg	acagcggaga	caacccgtac	ctcaagtaca	accacgccga	cgcggagttt	300
caggagcgtc	ttaaagaaga	tacgtctttt	gggggcaacc	tcggacgagc	agtcttccag	360
gcgaaaaaga	gggttcttga	acctctgggc	ctggttgagg	aacctgttaa	gacggctccg	420
ggaaaaaaga	ggccggtaga	gcactctcct	gtggagccag	actcctcctc	gggaaccgga	480
aaagcgggcc	atcagcctgc	gagaaagaga	ttgaattttg	gtcagactgg	agacgcagac	540
tccgtacctg	acccccagcc	tctcggacag	ccaccagcag	ccccacaag	tttgggatct	600
actacaatgg	ctacaggcag	tggcgcacca	atggcagaca	ataacgaggg	tgccgatgga	660
gtgggtaatt	cctcaggaaa	ttggcattgc	gattcccaat	ggctgggcga	cagagtcatc	720
accaccagca	cccgaacctg	ggccctgccc	acctacaaca	accacctcta	caagcaaatc	780
tccagccaat	caggagcctc	gaacgacaac	cactactttg	gctacagcac	cccctggggg	840
tattttgact	tcaacagatt	ccactgtcac	ttctccccac	gtgattggca	aagactcatc	900
aacaacaact	ggggattccg	acccaagaga	ctcaacttca	agctctttaa	cattcaagtc	960
aaagaggtca	cgcagaatga	cggtacgacg	acgattgcca	ataaccttac	cagcacggtt	1020
caggtgttta	ctgactcgga	gtaccagctc	ccgtacgtcc	tcggctcggc	gcatcaagga	1080
tgcctcccgc	cgtttccagc	ggacgtcttc	atggtcccac	agtatggata	cctcaccctg	1140
aacaacggga	gtcaggcggt	aggacgccct	tccttttact	gcctggagta	ctttccttct	1200
cagatgctgc	gtactggaaa	caactttacc	ttcagctaca	cctttgagga	cgttcctttc	1260
cacagcagct	acgctcacag	ccagagtttg	gaccggctga	tgaatcctct	gatcgaccag	1320
tatctatatt	atctgaacag	gacacaatca	aatagtggaa	ctcttcagca	gtctaggcta	1380
ctgtttagcc	aagctggacc	caccagcatg	tctcttcaag	ctaaaaactg	gctgcctgga	1440
ccttgctaca	gacagcagcg	tctttcaaag	caggcaaacg	acaacaacaa	cagcaacttt	1500
ccctggactg	cggctacaaa	gtatcatcta	aatggccggg	actcgttggt	taatccagga	1560
ccagctatgg	ccagccacaa	agacgatgaa	gaaaagtttt	tccccatgca	tgggaccctg	1620
atatttggta	aacaaggaac	aaatgctaac	gacgcggatt	tggagcatgt	tatgattaca	1680
gatgaagaag	aaatcaggac	caccaatcct	gtggctacag	agcagtacgg	aaacgtgtca	1740
aataatttgc	aaaactcaaa	tactggtcca	actacagaaa	atgtcaatca	ccagggagcg	1800
ttacctggta	tggtgtggca	ggatcgagac	gtgtacctgc	agggacccat	ttgggccaag	1860
attcctcaca	ccgacggaca	ctttcaccct	tctccactga	tgggaggttt	tggactcaaa	1920
cacccgcctc	ctcaaatcat	gatcaaaaac	actcccgttc	cagccaatcc	tcccacaaac	1980
ttcagttctg	ccaagtttgc	ttctttcatc	acacagtatt	ccacgggcca	ggtcagcgtg	2040
			agcaaacgct			2100
acttccaact	acaacaaatc	tgttaatgtg	gactttactg	tggacactaa	tggtgtgtat	2160
			ctgactcgta			2208
<210> 60 <211> 2208 <212> DNA <213> new	B AAV serotyp	oe, clone hu	1.23			
<400> 60	200000000	*****	C*******	***		
			ctcgaggaca			60
			ccaccaaagc			120
			aagtacctcg			180
			gcggccctcg			240
			ctcaagtaca			300
		•	gggggcaacc			360
gccaaaaaga	ggattcttga	acctctgggc	ctggttgagg	aacctgttaa	gacggctccg	420

ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga 480

tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600 aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgcacctg ggccctgccc acctgcaaca accatctgta caagcaaatc 780 tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgcacctg ggccctgccc acctgcaaca accatctgta caagcaaatc 780 tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg 840 tatttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc 960
accaccagca cccgcacctg ggccctgccc acctgcaaca accatctgta caagcaaatc 780 tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc 960
tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc 960
tattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc 960
aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc 960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140
aacaacggca gtcaggcggt aggacgctct tcctttact gcctggagta ttttccttct 1200
cagatgcttc gtaccggaaa caactttacc ttcagctaca cctttgaaga cgttcctttc 1260
catagcagct acgctcacag ccaaagtctg gaccgtctca tgaatcctct catcgaccag 1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgat gtccaggctt 1380
cagttttctc aggccggagc aagtgacatt cgggaccagt ctagaaactg gcttcctgga 1440
ccctgttacc gccagcagcg agtatcaaag acagctgcgg acaacaacaa cagtgattac 1500
tcgtggactg gagctaccaa gtaccacctc aatggaagag actctctggt gaatccgggc 1560
ccagctatgg ccagccacaa ggacgatgaa gaaaaatatt ttcctcagag cggggttctc 1620
atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt tatgattaca 1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct 1740
acctacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt 1800
cttccaggca tggtctggca ggacagagac gtgtacctgc gggggcccat ctgggcaaag 1860
attccacaca cggacggaca ttttcacccc tctccctca tgggcggatt tggacttaaa 1920
caccctcctc cacaaattct catcaagaac accccggtac ctgcgaatcc ttcgaccact 1980
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacggggca ggtcagcgtg 2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac 2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208
<210> 61 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.26 <400> 61
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300
caggagcgtc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag 360
gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420
ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga 480
aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gtcagactgg agacgcagac 540
tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600
aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720

780

accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc

tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg	840
tattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc	900
aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc	960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt	1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc	1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg	1140
aacaacggca gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct	1200
cagatgcttc gtaccggaaa caactttacc ttcagctaca cctttgaaga cgttcctttc	1260
catagcagct acgctcacag ccaaagtctg gaccgtctca tgaatcctct catcgaccag	1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgat gtccaggctt	1380
cagttttctc aggccggagc aagtgacatt cgggaccagt ctagaaactg gcttcctgga	1440
ccctgttacc gccagcagcg agtatcaaag acagctgcgg acaacaacaa cagtgattac	1500
tcgtggactg gagctaccaa gtaccacctc aatggaagag actctctggt gaatccgggc	1560
ccagctatgg ccagccacaa ggacgatgaa gaaaaatatt ttcctcagag cggggttctc	1620
atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt tatgattaca	1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct	1740
accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt	1800
cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctgggcaaag	1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa	1920
caccctcctc cacaaattct catcaagaac accccggtac ctgcgaatcc ttcgaccact	1980
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacggggca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac	2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat	2160

tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa	2208
<210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19	2208
<210> 62 <211> 2208 <212> DNA	2208
<210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62	
<210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga	60
<210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac	60 120
<210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac	60 120 180
<210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac	60 120 180 240
<210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt	60 120 180 240 300
<210> 62 <211> 2208 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag	60 120 180 240 300 360
<pre><210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg</pre>	60 120 180 240 300 360 420
<pre><210> 62 <211> 2208 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gccaaaaaga ggattcttga acctctggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcct gggaaccgga</pre>	60 120 180 240 300 360 420 480
<pre><210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtcttt gggggcaacc tcggacgagc agtcttccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcct gggaaccgga aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gccagactgg agacgcagac</pre>	60 120 180 240 300 360 420 480 540
<pre><210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gccaaaaaga ggattcttga acctctggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcct gggaaccgga aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gccagactgg agacgcagac tcagtacctg acccccagcc tctcggaccag ccaccagcag ccccctctgg tctgggaact</pre>	60 120 180 240 300 360 420 480 540 600
<pre><210> 62 <211> 2208 <211> 2208 <213> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gccagactgg agacgcagac tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga</pre>	60 120 180 240 300 360 420 480 540 600 660
<pre><210> 62 <211> 2208 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gccaaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaaga ggccggtaga gcactctcct gcggagccag actcctcct gggaaccgga aaagcgggcc agcagcctgc aagaaagaga ttgaatttg gccagactgg agacgcagac tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga gtgggtaatt cctcgggaaa ttggtattgc gattccacat ggatgggcga cagagtcatc</pre>	60 120 180 240 300 360 420 480 540 600 660 720
<pre><210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 <400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtcttt gggggcaacc tcggacgagc agcttccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gccagactgg agacgcagac tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga gtgggtaatt cctcgggaaa ttggtattgc gattccacat ggatgggcga cagagtcatc accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc</pre>	60 120 180 240 300 360 420 480 540 600 660 720 780
<pre><210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 </pre> <pre><400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtcttt gggggcaacc tcggacgagc agcttccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcct gggaaccgga aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gccagactgg agacgcagac tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga gtgggtaatt cctcgggaaa ttggtattgc gattccacat ggatgggcga cagagtcatc accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg</pre>	60 120 180 240 300 360 420 480 540 600 660 720 780 840
<pre><210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19 </pre> <pre><400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtcttt gggggcaacc tcggacgagc agtctccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcct gggaaccgga aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gccagactgg agacgcagac tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga gtgggtaatt cctcgggaaa ttggtattgc gattccacat ggatggcga cagagtcatc accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc tccagccagt ctggagccag caacgacaac cactactttg gctacagca ccccctggggg tattttgact tcaacagatt ccactgccac ttctccccc gtgactgga aagactcatc</pre>	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900

tgcctcccgc cgttcccagc agacgtcttc	atggtgccac agtatgga	a cctcaccctg	1140
aacaacggca gtcaggcggt aggacgctct	tccttttact gcctggag	a ctttccttct	1200
cagatgcttc gtaccggaaa caactttacc	ttcagctaca cctttgaag	a cgttcctttc	1260
catagcagct acgctcacag ccaaagtctg	gaccgtctca tgaatcct	t catcgaccag	1320
tacctgtatt acttgagcag aacaaacact	ccaagcggaa ccaccacga	t gtccaggctt	1380
cagttttctc aggccggagc aagtgacatt	cgggaccagt ctagaaact	g gcttcctgga	1440
ccctgttacc gccagcagcg agtatcaaag	acagctgcgg acaacaaca	a cagtgattac	1500
tcgtggactg gagctaccaa gtaccacctc	aatggaagag actctctg	t gaatccgggc	1560
ccagctatgg ccagccacaa ggacgatgaa	gaaaaatatt ttcctcaga	g cggggttctc	1620
atctttggaa aacaagactc gggaaaaact	aatgtggaca ttgaaaagg	t tatgattaca	1680
gacgaagagg aaatcaggac caccaatccc	gtggctacgg agcagtate	g ttctgtatct	1740
accaacctcc agagcggcaa cacacaagca	gctacctcag atgtcaaca	c acaaggcgtt	1800
cttccaggca tggtctggca ggacagagac	gtgtacctgc aggggccca	t ctgggcaaag	1860
attccacaca cggacggaca ttttcacccc	tctccctcg tgggcgga	t cggacttaaa	1920
caccctcctc cacaaattct catcaagaac	accccggtac ctgcgaato	c ttcgaccact	1980
ttcagtgcgg caaagtttgc ttccttcatc	acacagtact ccacgggg	a ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac	agcaaacgct ggaatccc	a aattcagtac	2100
acttccaact acaacaaatc tgttaatgtg	gactttactg tggacacta	a tggtgtgtat	2160
tcagagcctc gccccattgg caccagatac	ctgactcgta atctgtaa		2208
<210> 63 <211> 2208 <212> DNA <213> new AAV serotype, clone hu <400> 63	1.20		
atggctgccg atggttatct tccagattgg	ctcgaggaca ctctctctg	a aggaataaga	60
cagtggtgga agctcaaacc tggcccacca	ccaccaaagc ccgcagago	g gcataaggac	120
gacagcaggg gtcttgtgct tcctgggtac	aggtacctcg gacccttca	a cggactcgac	180
aagggagagc cggtcaacga ggcagacgcc	gcggccctcg agcacgaca	a ggcctacgac	240
cggcagctcg acagcggaga caacccgtac	ctcaagtaca accacgtc	a cgcggagttt	300
caggagcgtc ttaaagaaga tacgtctttt	gggggcaacc tcggacgag	c agtcttccag	360
gccaaaaaga ggattcttga acctctgggc	ctggttgagg aacctgtta	a ggcggctccg	420
ggagaaaaga ggccggtaga gcactctcct	gcggagccag actcctcci	c gggaaccgga	480
aaagcgggcc agcagcctgc aagaaagaga	ttgaattttg gtcagactg	g agacgcagac	540
tcagtacctg accccagcc tctcggacag	ccaccagcag cccctctc	g tctgggaact	600
aatacgatgg cttcaggcag tggcgcacca	atggcagaca ataacgagg	g cgccgacgga	660
gtgggtaatt cctcgggaaa ttggcattgc	gattccacat ggatgggcg	a cagagtcatc	720
accaccagca cccgcacctg ggccctgccc	acctacaaca accatctgt	a caagcaaatc	780
tccagccagt ctggagccag caacgacaac	cactactttg gctacagca	c cccctggggg	840
cattttgact tcaacagatt ccactgccac	ttctccccac gtgactggd	a aagactcatc	900
aacaacaact ggggattccg gcccaagaga	ctcagcttca agctcttta	a cattcaagtc	960
aaagaggtca cgcagaatga cggtacgacg			
caggtgttta ctgactcgga gtaccagctc	acgattgcca ataacctta	c cagcacggtt	1020
			1020 1080
tgcctcccgc cgttcccagc agacgtcttc	ccgtacgtcc tcggctcgg	c gcatcaagga	
tgcctccgc cgttcccagc agacgtcttc aacaacggca gtcaggcggt aggacgctct	ccgtacgtcc tcggctcgg atggtgccac agtatggat	c gcatcaagga a cctcaccctg	1080
	ccgtacgtcc tcggctcgg atggtgccac agtatggat tccttttact gcctggagt	c gcatcaagga a cctcaccctg a ctttccttct	1080 1140
aacaacggca gtcaggcggt aggacgctct	ccgtacgtcc tcggctcgg atggtgccac agtatggat tccttttact gcctggagt ttcagctaca cctttgaag	c gcatcaagga a cctcaccctg a ctttccttct a cgttcctttc	1080 1140 1200
aacaacggca gtcaggcggt aggacgctct cagatgcttc gtaccggaaa caactttacc	ccgtacgtcc tcggctcgg atggtgccac agtatggat tccttttact gcctggagt ttcagctaca cctttgaag gaccgtctca tgaatcctc	c gcatcaagga a cctcaccctg a ctttccttct a cgttcctttc t catcgaccag	1080 1140 1200 1260

cagttttctc aggccggagc	aagtgacatt	cgggaccagt	ctagaaactg	gcttcctgga	1440
ccctgttacc gccagcagcg	agtatcaaag	acagctgcgg	acaacaacaa	cagtgattac	1500
tcgtggactg gagctaccaa	gtaccacctc	aatggaagag	actctctggt	gaatccgggc	1560
ccagctatgg ccagccacaa	ggacgatgaa	gaaaaatatt	ttcctcagag	cggggttctc	1620
atctttggaa aacaagactc	gggaaaaact	aatgtggaca	ttgaaaaggt	tatgattaca	1680
gacgaagagg aaatcaggac	caccaatccc	gtggctacgg	agcagtatgg	ttctgtatct	1740
accaacctcc agagcggcaa	cacacaagca	gctacctcag	atgtcaacac	acaaggcgtt	1800
cttccaggca tggtctggca	ggacagagac	gtgtacctgc	aggggcccat	ctgggcaaag	1860
attccacaca cggacggaca	ttttcacccc	tctccccca	tgggcggatt	cggacttaaa	1920
caccctcctc cacaaattct	catcaagaac	accccggtac	ctgcgaatcc	ttcgaccact	1980
ttcagtgcgg caaagtttgc	ttccttcatc	acacagtact	ccacggggca	ggtcagcgtg	2040
gagatcgagt gggagctgca	gaaggagaac	agcaaacgct	ggaatcccga	aattcagtac	2100
acttccaact acaacaaatc	tgttaatgtg	gactttactg	tggacactaa	tggtgtgtat	2160
tcagagcctc gccccattgg	cgccagatac	ctgactcgta	atctgtaa		2208
<210> 64	•				
<211> 2208 <212> DNA	_				
<213> new AAV serotyp	oe, clone hu	J. 27			
<400> 64 atggctgccg atggttatct	tccagattgg	ctcgaggaca	ctctctctga	aggaataaga	60
cagtggtgga agctcaaacc	tggcccacca	ccaccaaagc	ccgcagagcg	gcataaggac	120
gacagcaggg gtcttgtgct	tcctgggtac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggagagc cggtcaacga	ggcagacgcc	gcggccctcg	agcacgacaa	ggcctacgac	240
cggcagctcg acagcggaga	caacccgtac	ctcaagtaca	accacgccga	cgcggagttt	300
caggagcgtc ttaaagaaga	tacgtctttt	gggggcaacc	tcggacgagc	agtcttccag	360
gccaaaaaga ggattcttga	acctctgggc	ctggttgagg	aacctgttaa	gacggctccg	420
ggaaaaaaga ggccggtaga	gcactctcct	gcggagccag	actcctcctc	gggaaccgga	480
aaagcgggcc agcagcctgc	aagaaagaga	ttgaattttg	gtcagactgg	agacgcagac	540
tcagtacctg acccccagcc	tctcggacag	ccaccagcag	cccctctgg	tctgggaact	600
aatacgatgg cttcaggcag	tggcgcacca	atggcagaca	ataacgaggg	cgccgacgga	660
gtgggtaatt cctcgggaaa	ttggcattgc	gattccacat	ggatgggcga	cagagtcatc	720
accaccagca cccgcacctg	ggccctgccc	acctacaaca	accatctgta	caagcaaatc	780
tccagccagt ctggagccag	caacgacaac	cactactttg	gctacagcac	cccctggggg	840
tatttcgact tcaacagatt	ccactgccac	ttctccccac	gtgactggca	aagactcatc	900
aacaacaact ggggattccg	gcccaagaga	ctcagcttca	agctctttaa	cattcaagtc	960
aaagaggtca cgcagaatga	cggtacgacg	acgattgcca	ataaccttac	cagcacggtt	1020
caggtgttta ctgactcggg	gtaccagctc	ccgtacgtcc	tcggctcggc	gcatcaagga	1080
tgccttccgc cgttcccagc	agacgtcttc	atggtgccac	agtatggata	cctcaccctg	1140
aacaacggca gtcaggcggt	aggacgctct	tccttttact	gcctggagta	ctttccttct	1200
cagatgcttc gtaccggaaa	caactttacc	ttcagctaca	cctttgaaga	cgttcctttc	1260
catagcagct acgctcacgg					1320
tacctgtatt acttgagcag	aacaaacact	ccaagcggaa	ccaccacgat	gtccaggctt	1380
cagttttctc aggccggagc		_	_		1440
ccctgttacc gccagcagcg					1500
tcgtggactg gagctaccaa					1560
ccagctatgg ccagccacaa					1620
gtctttggaa aacaagactc	gggaaaaact		ttgaaaaggt	tatgattaca	1680

1740

gacgaagagg aaatcaggac caccaatccc gcggctacgg agcagtatgg ttctgtatct

accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaqqcgtt 1800 cttcCaggca tggtCtggca ggacagagac gtgtacctgc aggggcccat ctgggcaaag 1860 attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa 1920 caccetecte cacaaattet cateaagaac acceeggtac etgegaatee ttegaceact 1980 ttcagtgcgg caaagtttgt ttccttcatc acacagtact ccacggggca ggtcagcgtg 2040 gagatcgagt gggagCtgca gaaggagaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 2208 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa <210> 65 2208 DNA new AAV serotype, clone hu.21 <213> atggctgccg atggttatct tccagattgg ctcgaggaca ccctctctqa aqqaataaqa 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga taacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgcc ttaaagagga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gccaaaaaga ggattettga acctetggge etggttgagg aacctgttaa gaeggeteeg 420 ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga 480 aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gtcagactgg agacgcagac 540 tcagtacctg accccggcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600 aatacgatgg Cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc 780 tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140 ত aacaacggca gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagatgcttc gtaccggaaa caactttacc ttcagctaca cctttgaaqa cgttcctttc 1260 catagcagct acgctcacag ccaaagtctg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgat gtccaggctt 1380 cagttttctc aggccggagc aagtgacatt cgggaccagt ctagaaactg gcttcctgga 1440 ccctgttacc gccagcagcg agtatcaaag acagctgcgg acaacaacaa cagtgattac 1500 tcgtggactg gagctaccaa gtaccacctc aatggaagag actctctggt gaatccgggc 1560 ccagctatgg ccagccacaa ggacgatgaa gaaaaatatt ttcctcagag cggggttctc 1620 atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt tatgattaca 1680 gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct 1740 accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt 1800 cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctgggcaaag 1860 attccacaca Cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa 1920 caccetecte cacaaattet cateaagaac acceeggtae etgegaatee ttegaceaet 1980 Page 58

ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacggggca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac	2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat	2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa	2208
<210> 66	
<pre><210> 02 <211> 02 <212> DNA <213> new AAV serotype, clone hu.24</pre>	
<400> 66	60
atggctgccg atggttatct tccagattgg ctcgaggaca ccctctctga aggaataaga	60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac	120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac	180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac	240
cggcagctcg acagcggaga taacccgtac ctcaagtaca accacgccga cgcggagttt	300
caggagegee ttaaagagga taegtetttt ggggggeaace teggaegage agtetteeag	360
gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg	420
ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga	480
aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gtcagactgg agacgcagac	540
tcagtacctg acccccggcc tctcggacag ccaccagcag ccccctctgg tctgggaact	600
aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga	660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc	720
accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc	780
tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg	840
tattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc	900
aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc	960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt	1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc	1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg	1140
aacaacggca gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct	1200
cagatgcttc gtaccggaaa caactttacc ttcagctaca cctttgaaga cgttcctttc	1260
catagcagct acgctcacag ccaaagtctg gaccgtctca tgaatcctct catcgaccag	1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgat gtccaggctt	1380
cagttttctc aggccggagc aagtgacatt cgggaccagt ctagaaactg gcttcctgga	1440
ccctgttacc gccagcagcg agtatcaaag acagctgcgg acaacaacaa cagtgattac	1500
·	
tcgtggactg gagctaccaa gtaccacctc aatggaagag actctctggt gaatccgggc	1560
ccagctatgg ccagccacaa ggacgatgaa gaaaaatatt ttcctcagag cggggttctc	1620
atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt tatgattaca	1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct	1740
accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt	1800
cttccaggca tggtctggca ggacagagac gtgtacctgc agggggcccat ctgggcaaag	1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa	1920
caccetecte cacaaattet catcaagaac acceeggtae etgegaatee ttegaceaet	1980
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacggggca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac	2100
acttccaact acaacaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat	2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa	2208

67 2208 DNA <213> new AAV serotype, clone hu.22 <400> atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 Cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcgqagttt 300 caggagcgcc ttaaaggaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga 480 aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gtcagactgg agacgcagac 540 tragtarrig accretager teteggarag craccagrag recentring tetgggaart 600 aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcgg cagagtcatc 720 accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc 780 tccagccagt ctggagccag caacgacaac cactactttg qctacagcac cccctggqqq 840 tattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac caqcacqgtt 1020 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140 aacaacggca gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagacgette gtaceggaaa caactttace tteagetaca cetttgaaga egtteettte 1260 catagcagct acgctcacag ccaaagtctg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgat gtccaggctt 1380 cagttttctc aggccggagc aagtgacatt cgggaccagt ctagaaactg gcttcctqqa 1440 ccctgttacc gccagcagcg agtatcaaag acagctgcgg acaacaacaa cagtgattac 1500 tcgtggactg gagctaccaa gtaccacctc aatggaagag actctctggt gaatccgggc 1560 ccagctatgg ccagccacaa ggacgatgaa gaaaaatatt ttcctcagag cggggttctc 1620 atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt tatgattaca 1680 gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct 1740 accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcqtt 1800 cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctggqcaaaq 1860 attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa 1920 caccetecte cacaaattet cateaagaac acceeggtae etgegaatee ttegaceaet 1980 ttcagtgCgg caaagtttgc ttccttcatc acacagtact ccacggggca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208 <210> 68 2208 DNA new AAV serotype, clone hu.28 <400> atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga aactcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120

gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac	180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac	240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt	300
Caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag	360
gcaaaaaaga gggttctgga acctctgagc ctggttgagg agcctgttaa gacggctccg	420
ggaaaaaaga ggccggtaga gcactctccc gcagagccag attcctcctc cggaactgga	480
aagtcgggca accagcctgc aagaaagaga ttgaatttcg gtcagactgg agactcagac	540
tccgtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact	600
aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga	660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc	720
accaccagca cccgaacctg ggccctgccc acctacaaca accatctgta caagcaaata	780
tccagccagt ctggagccag caacgacaat cactactttg gctacagcac cccctggggg	840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc	900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc	960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt	1020
	1080
caggigitta cigacicgga giaccagcic ccgiacgic tcggcicggc gcaicaagga	
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcacctg	1140
aacaacggga gtcaggcagt aggacgctct tcattttact gcctagagta ctttccttct	1200
cagatgctgc gtaccggaaa caactttacc ttcagctaca cctttgagga cgttcctttc	1260
cacagcagct acgctcacag ccagagtttg gaccgtctca tgaatcctct catcgaccag	1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgca gtccaggctt	1380
cagttttctc aggccggagc gagtgacatt caggaccagt ctaggaactg gcttcctgga	1440
ccctgttacc gtcagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac	1500
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc	1560
ccggccatgg ccagccacaa agacgatgaa gaaaagtttt ttcctcagag cggggttctt	1620
atctttggga agcaaggctc agagaaaaca aatgtggata ttgaaaaggt catgattaca	1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct	1740
accaacctcc agagcggcaa cacacaagca gctaccgcag atgtcaacac acaaggcgtt	1800
cttccaggca tggtcgggca agacagagac gtgtacctgc aggggcctac ttgggcaaag	1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt tggacttaaa	1920
caccetecte cacagattet cateaagaac acceeggtae etgegaatee ttegaceace	1980
ttcagtgcgg caaagtttgc ttccttcatt acacagtact ccacggggca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga gatccagtac	2100
acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggcgtgtat	2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa	2208
<210> 69	
<211> 2208 <212> DNA	
<400> 69 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga	60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac	120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac	180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac	240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt	300
caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag	360
gcaaaaaaga gggttctgga acctctgggc ctggttgagg agcctgttaa gacggctccg	420

480

ggaaaaaaga ggccggtaga gcactctcct gcagagccag attcctcctc cggaactgga

		_				
aagtcgggca	accagcctgc	aagaaagaga	ttgaatttcg	gtcagactgg	agactcagac	540
	_		ccaccagcag			600
			atggcagaca		-	660
			gattccacat			720
accaccagca	cccgaacctg	ggccctgccc	acctacaaca	accatctgta	caagcaaata	780
tccagccagt	ctggagccag	caacgacaat	cactactttg	gctacagcac	cccctggggg	840
tattttgact	tcaacagatt	ccactgccac	ttttcaccac	gtgactggca	aagactcatc	900
aacaacaact	ggggattccg	acccaagaga	ctcaacttca	agctctttaa	cattcaagtc	960
aaagaggtca	cgcagaatga	cggtacgacg	acgattgcca	ataaccttac	cagcacggtt	1020
caggtgttta	ctgactcgga	gtaccagctc	ccgtacgtcc	tcggctcggc	gcatcaagga	1080
tgcctcccgc	cgttcccagc	agacgtcttc	atggtgccac	agtatggata	cctcaccctg	1140
aacaacggga	gtcaggcagt	aggacgctct	tcattttact	gcctagggta	ctttccttct	1200
cagatgctgc	gtaccggaaa	caactttacc	ttcagctaca	cctttgagga	cgttcctttc	1260
cacagcagct	acgctcacag	ccagagtttg	gaccgtctca	tgaatcctct	catcgaccag	1320
tacctgtatt	acttgagcag	aacaaacact	ccaagcggaa	ccaccacgca	gtccaggctt	1380
cagttttctc	aggccggagc	gagtgacatt	cgggaccagt	ctaggaactg	gcttcctgga	1440
ccctgttacc	gtcagcagcg	agtatcaaag	acatctgcgg	ataacaacaa	cagtgaatac	1500
tcgtggactg	gagctaccaa	gtaccacctc	aatggcagag	actctctggt	gaatccgggc	1560
ccggccatgg	ccagccacaa	agacgatgaa	gaaaagtttt	ttcctcagag	cggggttctt	1620
atctttggga	agcaaggccc	agagaaaaca	aatgtggata	ttgaaaaggt	catgattaca	1680
gacgaagagg	aaatcaggac	caccaatccc	gtggctacgg	agcagtatgg	ttctgtatct	1740
accaacctcc	agagcggcaa	cacacaagca	gctaccgcag	atgtcaacac	acaaggcgtt	1800
cttccaggca	tggtctggca	agacagagac	gtgtacctgc	aggggcctat	ttgggcaaag	1860
attccacaca	cggacggaca	ttttcacccc	tctccctca	tgggcggatt	tggacttaaa	1920
caccctcctc	cacagattct	catcaagaac	accccggtac	ctgcgaatcc	ttcgaccacc	1980
ttcagtgcgg	caaagtttgc	ttccttcatt	acacagtact	ccacggggca	ggtcagcgtg	2040
			agcaaacgct			2100
			gactttactg			2160
			ctgactcgta			2208
				-		
<210> 70 <211> 2208	3					
<212> DNA <213> new	AAV seroty	oe, clone h	ı.30			
<400> 70						
			ctcgaggaca			60
			ccaccaaagc			120
			aagtacctcg			180
			gcggccctcg			240
cggcagctcg	acagcggaga	caacccgtac	ctcaagtaca	accacgccga	cgcggagttt	300
			gggggcaacc		•	360
			ctggttgagg			420
			gcagagccag			480
			ttgaatttcg			540
			ccaccagcag			600
	•		atggcagaca			660
gtgggtaatt	cctcgggaaa	ttggcattgc	gattccacat	ggatgggcga	cagagtcatc	720

```
780
accaccagca cccgaacctg ggccctgccc acctacaaca accatctgta caagcaaata
                                                                    840
tccagccagt ctggagccag caacgacaat cactactttg gctacagcac cccctggggg
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                    900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                    960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                   1020
                                                                   1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg
                                                                   1140
aacaacggga gtcaggcagt aggacgctct tcattttact gcctagagta ctttccttct
                                                                   1200
cagatgctgc gtaccggaaa cagctttacc ttcagctaca cctttgagga cgttcctttc
                                                                   1260
cacagcagct acgctcacag ccagagtttg gaccgtctca tgaatcctct catcgaccag
                                                                   1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgca gtccaggctt
                                                                   1380
cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga
                                                                   1440
ccctgttacc gtcagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac
                                                                   1500
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc
                                                                   1560
ccggccatgg ccagccacaa agacgatgaa gaaaagttct ttcctcagag cggggttctt
                                                                   1620
atctttggga agcaaggctc agagaaaaca aatgtggata ttgaaaaggt catgattaca
                                                                   1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctqtatct
                                                                   1740
accaacctcc agagcggcaa cacacaagca gctaccgcag atgtcaacac acaaggcgtt
                                                                   1800
cttccaggca tggtctggca agacagagac gtgtacctgc aggggcctat ttgggcaaag
                                                                   1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt tggacttaaa
                                                                   1920
caccetecte cacagattet cateaagaac acceggtac etgegaatec ttegaceace
                                                                   1980
ttcagtgcgg caaagtttgc ttccttcatt acacagtact ccacggggca ggtcagcgtg
                                                                   2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga gatccagtac
                                                                   2100
acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggcgtgtat
                                                                   2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
                                                                   2208
<210>
      71
2208
<213>
      new AAV serotype, clone hu.13
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                    60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac
                                                                    120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                    180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacqac
                                                                    240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt
                                                                    300
caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag
                                                                    360
gcaaaaaaga gggttcttga acctctgggc ctggttgagg agcctgttaa aacggctccg
                                                                    420
ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga
                                                                    480
aaagcgggcc agcagcctgc aagaaaaaga ttgaatttcg gtcagactgg agacgcagac
                                                                    540
tccgtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact
                                                                    600
aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga
                                                                    660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc
                                                                   720
accaccagca cccgaacttg ggccctgccc acctacaaca accatctcta caagcaaatc
                                                                   780
tccagccaat caggagccag caacgacaac cactactttg gctacagcac cccttggggg
                                                                   840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                   900
aacaacaact ggggattccg gcccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                   960
aaagaggtca cgcagaatga cggtacgaeg acgattgcca ataaccttac cagcacggtt
                                                                  1020
```

```
1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg
                                                                 1140
aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta Ctttccttct
                                                                 1200
cagatgctgc gtaccggaaa caactttacc ttcagctaca cctttgagga cgttcctttc
                                                                 1260
cacagcagct acgctcacag ccagagtttg gaccgtctca tgaatcctct catcgaccag
                                                                 1320
                                                                 1380
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgca gtccaggctt
cagttttctc aggccggagc aagtgacatt cgggaccagt ctaggaactg gcttcctgga
                                                                 1440
ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac
                                                                 1500
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc
                                                                 1560
ccggccatgg ccagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc
                                                                 1620
atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca
                                                                 1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct
                                                                 1740
accaacctgc agggcggcaa cacacaagca gctaccgcag atgtcaacac acaaggcgtt
                                                                 1800
cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctgggcaaag
                                                                 1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa
                                                                 1920
caccetecte cacagateet catcaagaac acceeggtac etgegaatee ttegaccace
                                                                 1980
ttcagtgcgg caaagtttgc ttctttcatc acacagtatt ccacggggca ggtcagcgtg
                                                                 2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga gatccagtac
                                                                 2100
acttccaact acaacaaatc tgttaatgtg gactttactg ttgacactaa tggcgtgtat
                                                                 2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
                                                                 2208
<210>
      72
2208
      DNA
      new AAV serotype, clone hu.34
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                   60
cagcggtgga agctcaaacc tggcccacca ccaccagagc ccgcagagcg gcataaggac
                                                                  120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                  180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac
                                                                  240
cggcagctcg acagcggaga Caacccgtac ctcaagtaca accacgccga cgcggagttt
                                                                  300
caggagcgcc ttaaagaaga tacgtccttt gggggcaacc tcggacgagc agtcttccag
                                                                  360
gcgaaaaaga gggtacttga acctctgggc ctggttgagg aacctgttaa gacggctccg
                                                                  420
ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga
                                                                  480
aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac
                                                                  540
tcagtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact
                                                                  600
aatacgatgg CtaCaggCag tggCgCacCa atggCagaca ataacgaggg cgcCgacgga
                                                                  660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc
                                                                  720
accaccagea eccgaacetg ggeeetgeee acctacaaca accaceteta caaacaaatt
                                                                  780
tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg
                                                                  840
tattttgact tcaacagatt Ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                  900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                  960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                 1020
1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg
                                                                 1140
aacaacgaga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct
                                                                 1200
cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc
                                                                 1260
cacagcagct acgctcacag ccagagtctg ggccgtctca tgaatcctct catcgaccag
                                                                 1320
```

```
tacctgtatt acttgagcag aacaaacact ccaagtggaa ccaccacgca gtcaaggctt
cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga
                                                                    1440
ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac
                                                                    1500
                                                                    1560
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc
ccggccatgg caagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc
                                                                    1620
atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca
                                                                    1680
gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagtatgg ttctgtatct
                                                                    1740
accaacctcc agagaggcaa cagacaagca gctaccgcag atgtcaacac acaaggcgtt
                                                                    1800
cttccaggca tggtctggca ggacagagat gtgtaccttc aggggcccat ctgggcaaag
                                                                    1860
                                                                    1920
attccacaca cggacggaca ttttcacccc tctcccctca tgggtggatt cggacttaaa
                                                                    1980
caccetecte caeagattet cateaagaac acceeggtae etgegaatee ttegaceace
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacgggaca ggtcagcgtg
                                                                    2040
gagatcgagt gggagctgca gaaggaaaac agcaaacgct ggaatcccga aattcagtac
                                                                    2100
acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggcgtgtat
                                                                    2160
                                                                    2208
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
```

<210> 73 <211> 2208 <212> DNA

<213> new AAV serotype, clone hu.35

atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagcggtgga agctcaaacc tggcccacca ccaccagagc ccgcagagcg gcataaggac 120 180 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 240 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac 300 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggtacttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac 540 tragtactty accercages teteggaray craccageay ecceptotyg tetgggaact 600 660 aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caaacaaatt 780 tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgttcccagc agacgtcttc atggtaccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc 1260 cacagcagct acgctcacag ccagagtctg ggccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagtggaa ccaccacgca gtcaaggctt 1380 cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga 1440 ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac 1500 tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc 1560 ccggccatgg caagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc 1620

atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt Catgattaca 1680 gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagtatgg ttctgtatct 1740 accaacctcc agagaggcaa cagacaagca gctaccgcag atgtcaacac acaaggcgtt 1800 cttccaggca tggtctggca ggacagagat gtgtaccttc aggggcccat ctgggcaaag 1860 1920 attccacaca cggacggaca ttttcacccc tctcccctca tgggtggatt cggacttaaa caccctcctc cacagattct catcaagaac accccggtac ctgcgaatcc ttcgaccacc 1980 ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacgggaca ggtcaqcgtg 2040 gagatcgagt gggagctgca gaaggaaaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggcgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208 <210> 2208 DNA <213> new AAV serotype, clone hu.36 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagcggtgga agctcaaacc tggcccacca ccaccagagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggtactcga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccqga 480 aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac 540 tcagtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600 aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caaacaaatt 780 tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 960 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcacctq 1140 aacaacggga gtcaggcagc aggacgctct tcattttact gcctggagta ctttccttct 1200 cagatgCtgC gtaCcggaaa caactttaCc ttCagctaCa cttttgagga cqttCctttC 1260 cacagcagct acgctcacag ccagagtctg ggccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagtggaa ccaccacgca gtcaaggctt 1380 cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga 1440 ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac 1500 tcgtggactg gagctaccaa gtaccaccic aatggcagag actctctggt gaatccgggc 1560 ccggccatgg caagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc 1620 atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca 1680 gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagtatgg ttctqtatct 1740 accaacctcc agagaggcaa cagacaagca gctaccgcag atgtcaacac acaaggcgtt 1800 cttccaggca tggtctggca ggacagagat gtgtaccttc aggggcccat ctgggcaaag 1860 attccacaca cggacggaca ttttcacccc tctcccctca tgggtggatt cggacttaaa 1920

caccetecte cacagattet cateaagaac acceeggtac etgegaatee ttegaceace	1980
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacgggaca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggaaaac agcaaacgct ggaatcccga aattcagtac	2100
acttccaact acaacaagtc cgttaatgtg gactttactg tggacactaa tggcgtgtat	2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa	2208
<210> 75 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.33	
<400> 75 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga	60
cagcggtgga agctcaaacc tggcccacca ccaccagagc ccgcagagcg gcataaggac	120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac	180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac	240
Cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt	300
caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag	360
gcgaaaaaga gggtacttga acctctgggc ctggttgagg aacctgttaa gacggctccg	420
ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga	480
aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac	540
tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact	600
aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga	660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc	720
accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caaacaaatt	780
tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg	840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc	900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc	960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cggcacggtt	1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc	1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg	1140
aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct	1200
cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc	1260
cacagcagct acgctcacag ccagagtctg ggccgtctca tgaatcctct catcgaccag	1320
tacctgtatt acttgagcag aacaaacact ccaagtggaa ccaccacgca gtcaaggctt	1380
cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga	1440
ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac	1500
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc	1560
ccggccatgg caagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc	1620
atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca	1680
gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagtatgg ttctgtatct	1740
accaacctcc agagaggcaa cagacaagca gctaccgcag atgtcaacac acaaggcgtt	1800
cttccaggca tggtctggca ggacagagat gtgtaccttc aggggcccat ctgggcaaag	1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggtggatt cggacttaaa	1920
caccctcctc cacagattct catcaagaac accccggtac ctgcgaatcc ttcgaccacc	1980
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacgggaca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggaaaac agcaaacgct ggaatcccga aattcagtac	2100
acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggcgtgtat	2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa	2208

<210> 76 2208 DNA new AAV serotype, clone hu.45 atggctgccg atggctatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcatagggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 240 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac 300 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 360 caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 540 aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac 600 tcagtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact aatacgatgg CtacaggCag tggCgcacCa atggCagaCa ataacgaggg cgcCqacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caaacaaatt 780 tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata ccccaccctq 1140 aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc 1260 cacagcagct acgctcacag ccagagtctg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcac aacaaacact ccaagtggaa ccaccacgca gtcaaggctt 1380 cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga 1440 ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac 1500 tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc 1560 ccggccgtgg caagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc 1620 atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca 1680 gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagtatgg ttctgtatct 1740 accaacctcc agagaggcaa cagacaagca gctaccgcag atgtcaacac acaaggcgtt 1800 cttccaggca tggtctggca ggacagagat gtgtaccttc aggggcccat ctgggcaaag 1860 attccacaca cggacggaca ttttcacccc tctcccctca tgggtggatt cggacttaaa 1920 caccetecte cacagattet cateaagaac acceeggtae etgegaatee ttegaceace 1980 ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacgggaca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaggaaaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggcgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208 77 2208 <210> <211> DNA new AAV serotype, clone hu.47 atggctgccg atggctatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcatagggac 120

gacagcaggg	gtcttgtgct	tcctgggtad	aagtacctcg	gaccettea	a cggactcgac	180
aagggagagc	cggtcaacga	ggcagacgco	gcggccctcg	agcacgaca	a agcctacgac	240
cggcagctcg	acagcggaga	caacccgtac	ctcaagtaca	accacgccga	a cgcggagttt	300
caggagcgcc	ttaaagaaga	tacgtcttt	gggggcaacc	tcggacgag	agtcttccag	360
gcgaaaaaga	gggttcttga	acctctgggc	ctggttgggg	aacctgttaa	gacggctccg	420
ggaaaaaaga	ggccggtaga	gcactctcct	gtggagccag	actcctcct	gggaaccgga	480
aaggcgggcc	agcagcctgc	aagaaaaaga	ttgaattttg	gtcagactgg	agacgcagac	540
tcagtacctg	acccccagcc	tctcggacag	ccaccagcag	cccctctg	tctgggaact	600
aatacgatgg	ctacaggcag	tggcgcacca	atggcagaca	ataacgaggg	cgccgacgga	660
gtgggtaatt	cctcgggaaa	ttggcattgc	gattccacat	ggatgggcga	cagagtcatc	720
accaccagca	cccgaacctg	ggccctgccc	acctacaaca	accacctcta	caaacaaatt	780
tccagccaat	caggagcctc	gaacgacagt	cactactttg	gctacagcac	cccttggggg	840
tattttgact	tcaacagatt	ccactgccac	ttttcaccac	gtgactggca	aagactcatc	900
aacaacaact	ggggattccg	acccaagaga	ctcaacttca	agctctttaa	cattcaagtc	960
aaagaggtca	cgcagaatga	cggtacgacg	acgattgcca	ataaccttac	cagcacggtt	1020
caggtgttta	ctgactcgga	gtaccagctc	ccgtacgtcc	tcggctcggc	gcatcaagga	1080
tgcctcccgc	cgttcccagc	agacgtcttc	atggtgccac	agtatggata	cctcaccctg	1140
aacaacggga	gtcaggcagt	aggacgctct	tcattttact	gcctggagta	ctttccttct	1200
					cgttcctttc	1260
					catcgaccag	1320
					gtcaaggctc	1380
cagttttctc	aggccggagc	gagtgacatt	cgggaccagt	ctaggaactg	gcttcctgga	1440
					cagtgaatac	1500
					gaatccgggc	1560
		ggacaatgaa				1620
		agagaaaaca				1680
		aaccaatccc				1740
		cagacaagca			_	1800
		ggacagagat				1860
		ttttcacccc				1920
		catcaagaac				1980
		ttccttcatc				2040
		gaaggaaaac				2100
		tgttaatgtg			tggcgtgtat	2160
tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atctgtaa		2208
<210> 78 <211> 2211 <212> DNA <213> new		oe, clone hu	.48			
<400> 78	3*Aa++	****				
atggctgccg						60
gagtggtggg						120
gacggccggg					_	180
aagggggagc					=	240
cagcagctca						300
caggagcgtc						360
gccaagaagc	yyyttetega	acctcicggt		aaggcgctaa Page 69	gacggctcct	420

ggaaagaaac gtccggtaga gcagtcgcca caagagccag actcctcctc gggcatcggc	480
aagacaggcc agcagcccgc taaaaagaga ctcaattttg gccagactgg cgactcagag	540
tcagtccccg atccacaacc tctcggagaa cctccagcaa cccccgctgc tgtgggacct	600
actacaatgg cttcaggcgg tggcgcacca atggcagaca ataacgaagg cgccgacgga	660
gtgggtaatg cctcaggaaa ttggcattgc gattccacat ggctgggcga cagagtcatc	720
accaccagca cccgcacctg ggccttgccc acctacaata accacctcta caagcaaatc	780
tccagtactt caacgggggc cagcaacgac aaccactact tcggctacgg cacccctgg	840
gggtattttg atttcaacag attccactgc cacttttcac cacgtgactg gcagcgactc	900
atcaacaaca attggggatt ccggcccaag agactcaact tcaaactctt caacatccaa	960
gtcgaggagg tcacgacgaa tgatggcgtc acaaccatcg ctaataacct taccagcacg	1020
gttcaagtct tctcggactc ggagtaccag cttccgtacg tcctcggctc tgcgcaccag	1080
ggctgcctcc ctccgttccc ggcggacgtg ttcatgattc cgcaatacgg ctacctgacg	1140
ctcaacaatg gcagccaagc cgtgggacgt tcatcctttt actgcctgga atatttccct	1200
tctcagatgc tgagaacggg caacaacttt accttcagct acacctttga ggaagtgcct	1260
ttccacagca gctacgcgca cagccagagc ctggaccggc tgatgaatcc tctcatcgac	1320
caatacctgt attacctgaa cagaacacaa aatcagtccg gaagtgccca aaacaaggac	1380
ttgctgttta gccgtgggtc tccagctggc atgtctgttc agcccaaaaa ctggctacct	1440
ggaccctgtt atcggcagca gcgcgtttct aaaacaaaaa cagacaacaa caacagcaat	1500
tttacctgga ctggtgcttc aaaatataac ctcaatgggc gtgaatccat catcaaccct	1560
ggcaccgctg tggcctcaca caaagacgac gaagacaagt tctttcccat gagcggtgtc	1620
atgatttttg gaaaagagag cgccggagct tcaagcactg cattggacaa tgtcatgatt	1680
acagacgaag aggaaattaa agccactaac cctgtggcca ccgaaagatt tgggaccgtg	1740
gcagtcaatt tccagagcag cagcacagac cctgcgaccg gagatgtgca tgctatggga	1800
gcattacctg gcatggtgtg gcaagataga gacgtgtacc tgcagggtcc catttgggcc	1860
aaaattcctc acacagatgg acactttcac ccgtctcctc ttatgggcgg ctttggactc	1920
aagaacccgc ctcctcagat cctcatcaaa aacacgcctg ttcctgcgaa tcctccggcg	1980
gagttttcag ctacaaagtt tgcttcattc atcacccaat actccacagg acaagtgagt	2040
gtggaaattg aatgggagct gcagaaagaa aacagcaagc gctggaatcc cgaagtgcag	2100
tacacatcca attatgcaaa atctgccaac gttgattta ctgtggacaa caatggactt	2160
tatactgage ctegececat tggcaccegt tacettacce gtecectgta a	
b b seed of the control of the contr	2211
<210> 79 <211> 2211	
<212> DNA <213> new AAV serotype, clone rh.71	
<400> 79	
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg acttgaaacc tggagccccg aagcccaaag ccaaccagca aaagcaggac	120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac	240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt	300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag	360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct	420
ggaaagaaac gtccggtaga gcagtcgcca caagagccag actcctcctc gggcatcggc	480
aagacaggcc agcagcccgc taaaaagaga ctcaattttg gtcagactgg cgactcagag	540
tcagtccccg atccacaacc tctcggagaa cctccagcaa cccccgctgc tgtgggacct	600
actacaatgg cttcaggcgg tggcgcacca atggcagaca ataacgaagg cgccgacgga	660
gtgggtaatg cctcaggaaa ttggcattgc gattccacat ggctgggcga cagagtcatc	720
Page 70	

accaccagca cccgcacctg ggccttgccc acctacaata accacctcta caagcaaatc	780
tccagtgctt caacgggggc cagcaacgac aaccactact tcggctacag cacccctgg	840
gggtattttg atttcaacag attccactgc cacttttcac cacgtgactg gcagcgactc	900
atcaacaaca attggggatt ccggcccaag agactcaact tcaaactctt caacatccaa	960
gtcaaggagg tcacgacgaa tgatggcgtc acaaccatcg ctaataacct taccagcacg	1020
gttcaagtct tctcggactc ggagtaccag cttccgtacg tcctcggctc tgcgcaccag	1080
ggctgcctcc ctccgttccc ggcggacgtg ttcatgattc cgcaatacgg ctacctgacg	1140
ctcaacaatg gcagccaagc cgtgggacgt tcatcctttt actgcctgga atatttccct	1200
tctcagatgc tgagaacggg caacaacttt accttcagct acacctttga ggaagtgcct	1260
ttccacagca gctacgcgca cagccagagc ctggaccggc tgatgaatcc tctcatcgac	1320
caatacctgt attacctgaa cagaactcaa aatcagtccg gaagtgccca aaacaaggac	1380
ttgctgttta gccgtgggtc tccagctggc atgtctgttc agcccaaaaa ctggctacct	1440
ggaccctgtt atcggcagca gcgcgtttct aaaacaaaaa cagacaacaa caacagcaat	1500
tttacctgga ctggtgcttc aaaatataac ctcaatgggc gtgaatccat catcaaccct	1560
ggcactgcta tggcctcaca caaagacgac gaagacaagt tctttcccat gagcggtgtc	1620
atgatttttg gaaaagagag cgccggagct tcaaacactg cattggacaa tgtcatgatt	1680
acagacgaag aggaaattaa agccactaac cctgtggcca ccgaaagatt tgggaccgtg	1740
gcagtcaatt tccagagcag cagcacagac cctgcgaccg gagatgtgca tgctatggga	1800
gcattacctg gcatggtgtg gcaagataga gacgtgtacc tgcagggtcc catttgggcc	1860
aaaattcctc acacagatgg acactttcac ccgtctcctc ttatgggcgg ctttggactc	1920
aagaacccgc ctcctcagat cctcatcaaa aacacgcctg ttcctgcgaa tcctccggcg	1980
gagttttcag ctacaaagtt tgcttcattc atcacccaat actccacagg acaagtgagt	2040
gtggaaattg aatgggagct gcagaaagaa aacagcaagc gctggaatcc cgaagtgcag	2100
tacacatcca attatgcaaa atctgccaac gttgatttta ctgtggacaa caatggactt	2160
tacacatcca attatgcaaa atctgccaac gttgatttta ctgtggacaa caatggactt tatactgagc ctcgccccat tggcacccgt taccttaccc gtcccctgta a	2160 2211
tatactgagc ctcgccccat tggcacccgt taccttaccc gtcccctgta a	
tatactgagc ctcgccccat tggcacccgt taccttaccc gtcccctgta a <210> 80 <211> 2214	
tatactgagc ctcgccccat tggcacccgt taccttaccc gtcccctgta a <210> 80	
<pre>tatactgagc ctcgccccat tggcacccgt taccttaccc gtccctgta a <210> 80 <211> 2214 <212> DNA <213> new AAV serotype, clone hu.43 <400> 80</pre>	2211
tatactgagc ctcgccccat tggcacccgt taccttaccc gtccctgta a <210> 80 <211> 2214 <212> DNA <213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	2211
tatactgagc ctcgccccat tggcacccgt taccttaccc gtcccctgta a <210> 80 <211> 2214 <212> DNA <213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagcccc aagcccaagg ccaaccagca gaagcaggac	2211 60 120
tatactgagc ctcgccccat tggcacccgt taccttaccc gtccctgta a <210> 80 <211> 2214 <212> DNA <213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	60 120 180
tatactgagc ctcgccccat tggcacccgt taccttaccc gtccctgta a <210> 80 <211> 2214 <212> DNA <213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gaccettcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac	60 120 180 240
<pre>tatactgagc ctcgccccat tggcacccgt taccttaccc gtccctgta a <210> 80 <211> 2214 <212> DNA <213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gaccettcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt</pre>	60 120 180 240 300
tatactgagc ctcgccccat tggcacccgt taccttaccc gtccctgta a <210> 80 <211> 2214 <212> DNA <213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gaccettcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgcctttt gggggcaacc tcgggcgagc agtcttccag	60 120 180 240 300 360
<pre>tatactgagc ctcgccccat tggcacccgt taccttaccc gtccctgta a <210> 80 <211> 2214 <212> DNA <213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gaccettcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgccttt gggggcaacc tcgggcgagc agtcttccag gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct</pre>	60 120 180 240 300 360 420
tatactgagc ctcgccccat tggcacccgt taccttaccc gtccctgta a <210> 80 <211> 2214 <212> DNA <213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgcctttt gggggcaacc tcgggcgagc agtcttccag gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc	60 120 180 240 300 360 420 480
<pre> <210> 80 <211> 2214 <212> DNA <213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgccttt gggggcaacc tcgggcgagc agtcttccag gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct ggaaagaaga gaccggtaga accgtcacct cagcgttcc ccgactcct cacgggcatc ggcaagaaag gccagcagcc cgctaaaaaa agactgaact ttggtcagac tggcgactca ggcaagaaaga gaccggtaga accgtcacct cagcgttcc ccgactcct cacgggcatc ggcaagaaaa gccagcagcc cgctaaaaaag agactgaact ttggtcagac tggcgactca ggcaagaaaag gccagcagcc cgctaaaaaag agactgaact ttggtcagac tggcgactca ggcaagaaaga gccagcagcc cgctaaaaaag agactgaact ttggtcagac tggcgactca gccagcagcagcagcagcagcagcagcagcagcagcagca</pre>	60 120 180 240 300 360 420 480 540
<pre> <210> 80 <211> 2214 <212> DNA <213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagcccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgccttt gggggcaacc tcgggcgagc agcttccag gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctct ggaaagaaga gaccggtaga accgccacct cagcgttcc ccgactcct cacgggcatc ggcaagaaag gccagcagc cgctaaaaag agactgaact ttggtcagac tggcgactca gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccct tggtctgga gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccct tggtctggga </pre>	60 120 180 240 300 360 420 480 540 600
<pre> <210> 80 <211> 2214 <212> DNA <213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagcccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gaccettcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgcctttt gggggcaacc tcgggcgagc agtcttccag gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct ggaaagaaga gaccggtaga acctctcggt ctggttgagg aagctgctaa gacggctcct ggcaagaaag gccagcagcc cgctaaaaag agactgaact ttggtcagac tggcgactca gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac</pre>	60 120 180 240 300 360 420 480 540 600 660
<pre> <210> 80 <211> 2214 <212> DNA <213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagcccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagtt caggagcgtc tgcaagaaga tacgccttt gggggcaacc tcgggcgagc agtcttccag gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctct ggaaagaaga gaccggtaga accgtcacct cagcgttcc ccgactcctc cacgggcatc ggcaagaaag gccagcagcc cgctaaaaag agactgaact ttggtcagac tggcgactca gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacaagagc ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacaagagtc ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacaagagc ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacaagagc ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacaagagc gaccacacacacacacacacacacacaca</pre>	60 120 180 240 300 360 420 480 540 600 660 720
<pre> <210> 80 <211> 2214 <212> DNA <400> 80 atggttgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagcccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgt tcctggctac aagtacctcg gacccttcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgac gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgccttt gggggcaacc tcgggcgagc agtcttccag gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactctc cacgggcatc ggcaagaaga gccagcagc cgctaaaaag agactgaact ttggtcagac tggcgactca gagtcagtc ccgaccctca accaatcgga gaaccaccag caggcccctt tggtcgga tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc atcaccacca gcacccgcac ctgggccttg cccacctaca ataaccacct ctacaagcaa </pre>	60 120 180 240 300 360 420 480 540 600 660
<pre> <210> 80 <211> 2214 <212> DNA <213> DNA <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagcccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gaccettcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgac gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgcctttt gggggcaacc tcgggcgagc agcttccag gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct ggaaagaaga gaccggtaga acctctcggt ctggttgagg aagctgctaa gacggctcct ggaaagaaag gccagcagc cgctaaaaag agactgaact ttggtcagac tggcgactc ggcaagaaag gccagcagc cgctaaaaag agactgaact ttggtcagac tggcgactca gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctgga tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctgg cgacagagtc atcaccacca gcacccgcac ctgggccttg cccacctaca ataaccacct ctacaagcaa atctccagtg cttcaacggg ggccagcaac gacaaccac acttcggcta cagcacccc accaccaca gcacccgcac ctgggccttg cccacctaca ataaccacct ctacaagcaa atctccagtg cttcaacggg ggccagcaac gacaaccac acttcggcta cagcaccccc </pre>	2211 60 120 180 240 300 360 420 480 540 600 660 720 780
<pre> <210> 80 <211> 2214 <212> DNA <213> new AAV serotype, clone hu.43 <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagcccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgcctttt gggggcaacc tcgggcgagc agtctccag gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct ggaaagaaga gaccggtaga accgtcacct cagcgttcc ccgactcct cacgggcatc ggcaagaaag gccagcagc cgctaaaaag agactgaact ttggtcagac tggcgactca ggcaagaaag gccagcagcc cgctaaaaag agactgaact ttggtcagac tggcgactca gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc atcaccacca gcacccgcac ctgggccttg cccacctaca ataaccacct ctacaagcaa atctccagtg cttcaacggg ggccagcaac gacaaccact acttcggcta cagcacccc tgggggtatt ttgatttcaa cagattccac tgccactttt caccacgtga ctggcagcgac tcggggggtatt ttgatttcaa cagattccac tgccactttt caccacgtga ctggcagcgc ttgggggtatt ttgatttcaa cagattccac tgccactttt caccacgtga ctggcagcgc ttggggggtatt ttgatttcaa cagattccac tgccactttt caccacgtga ctggcagcgac ttggggggtatt ttgatttcaa cagattccac tgccactttt caccacgtga ctggcagcgc ttggggggtatt ttgatttcaa cagattccac tgccactttt caccacgtga ctggcagcgac ttgggggtatt ttgatttcaa cagattccac tgccactttt caccacttga ctggcagcga tcggggggtatt ttgattcaa cagattccac tgccactttt caccacttt caccacgtga ctggcagcac ttggggggtatt ttgattcaa cagattccac tgccactttt caccactttt caccacgtga ctggcagcac ttggggggtattttacacactcaccactaccactaccactaccaccac</pre>	60 120 180 240 300 360 420 480 540 660 720 780 840
<pre> <210> 80 <211> 2214 <212> DNA <213> DNA <400> 80 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc gagtggtggg acctgaaacc tggagcccc aagcccaagg ccaaccagca gaagcaggac gacggccggg gtctggtgct tcctggctac aagtacctcg gaccettcaa cggactcgac aagggggagc ccgtcaacgc ggcggacgac gcggccctcg agcacgacaa ggcctacgac cagcagctca aagcgggtga caatccgtac ccgcggtata accacgccga cgccgagttt caggagcgtc tgcaagaaga tacgcctttt gggggcaacc tcgggcgagc agcttccag gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct ggaaagaaga gaccggtaga acctctcggt ctggttgagg aagctgctaa gacggctcct ggaaagaaag gccagcagc cgctaaaaag agactgaact ttggtcagac tggcgactc ggcaagaaag gccagcagc cgctaaaaag agactgaact ttggtcagac tggcgactca gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctgga tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctgg cgacagagtc atcaccacca gcacccgcac ctgggccttg cccacctaca ataaccacct ctacaagcaa atctccagtg cttcaacggg ggccagcaac gacaaccac acttcggcta cagcacccc accaccaca gcacccgcac ctgggccttg cccacctaca ataaccacct ctacaagcaa atctccagtg cttcaacggg ggccagcaac gacaaccac acttcggcta cagcaccccc </pre>	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900

acggttcaag tcttctcgga ctcggagtac cagcttccgt acgtcctcgg ctctgcg	cac 1080
cagggctgcc tccctccgtt cccggcggac gtgttcatga ttccgcaata cggctac	ctg 1140
acgctcaaca atggcagcca agccgtggga cgttcatcct tttactgcct ggaata	ttc 1200
ccttctcaga tgctgagaac gggcaacaac tttaccttca gctacacctt tgaggaa	igtg 1260
cctctccaca gcagctacgc gcacagccag agcctggacc ggctgatgaa tcctctc	atc 1320
gtccaatacc tgtattacct gaacagaact caaaatcagt ccggaagtgc ccaaaac	aag 1380
gacttgctgt tcagccgtgg gtctccagct ggcatgtctg ttcagcccaa aaactgg	cta 1440
cctggaccct gttatcggca gcagcgcgtt tctaaaacaa aaacagacaa caacaac	agc 1500
aattttacct ggactggtgc ttcaaaatat aacctcaatg ggcgtgaatc catcatc	aac 1560
cctggcactg ctatggcctc acacaaagac gacgaagaca agttctttcc catgag	ggt 1620
gtcatgattt ttggaaaaga gagcgccgga gcttcaaaca ctgcattgga caatgt	atg 1680
attacagacg aagaggaaat taaagccact aaccctgtgg ccaccgaaag atttgg	jacc 1740
gtggcagtca atttccagag cagcagcaca gaccctgcga ccggagatgt gcatgct	atg 1800
ggagcattac ctggcatggt gtggcaagat agagacgtgt acctgcaggg tcccatt	tgg 1860
gccaaaattc ctcacacaga tggacacttt cacccgtctc ctcttatggg cggcttt	gga 1920:
ctcaagaacc cgcctcctca gatcctcatc aaaaacacgc ctgttcctgc gaatcc	ccg 1980
gcggagtttt cagctacaaa gtttgcttca ttcatcaccc aatactccac aggacaa	igtg 2040
agtgtggaaa ttgaatggga gctgcagaaa gaaaacagca agcgctggaa tcccgaa	ngtg 2100
cagtacacat ccaattatgc aaaatctgcc agcgttgatt ttactgtgga caacaat	gga 2160
ctttatactg agcctcgccc cattggcacc cgttacctta cccgtcccct gtaa	2214
<210> 81 <211> 2211 <212> DNA <213> new AAV serotype, clone hu.44	
<400> 81 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaata	aga 60
cagtggtgga agctcagacc tggcccacca ccaccaaagc ccgcagagcg gcataag	gac 120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggact	gac 180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agccta	gac 240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggag	1ttt 300
caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcgggcgagc agtcttc	cag 360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctga gacggct	cct 420
ggaaagaaac gtccggtaga gcagtcgcca caagggccag actcctcctc gggcat	ggc 480
aagacaggcc agcagcccgc taaaaagaga ctcaattttg gtcagactgg cgactca	igag 540
tcagtccccg atccacaacc tctcggagaa cctccagcaa cccccgctgc tgtggga	icct 600
actacaatgg cttcaggcgg tggcgcacca atggcagaca ataacgaagg cgccga	:gga 660
gtgggtaatg cctcaggaaa ttggcattgc gattccacat ggctgggcga cagagtc	atc 720
accaccagca cccgcacctg ggccttgccc acctacaata accacctcta caagca	natc 780
tccagtgctt caacgggggc cagcaacgac aaccactact tcggctacag cacccc	tgg 840
gggtattttg atttcaacag attccactgc cacttttcac cacgtgactg gcagcga	ictc 900
atcaacaaca attggggatt ccggcccaag agactcaact tcaaactctt caacat	caa 960
gtcaaggagg tcacgacgaa tgatggcgtc acaaccatcg ctaataacct taccag	acg 1020
gttcaagtct tctcggactc ggagtaccag cttccgtacg tcctcggctc tgcgcad	cag 1080
ggctgcctcc ctccgttccc ggcggacgtg ttcatgattc cgcaatacgg ctacctg	acg 1140
ctcaacaatg gcagccaagc cgtgggacgt tcatcctttt actgcctgga atattt	cct 1200
tctcagatgc tgagaacggg caacaacttt accttcagct acacctttga ggaagtg	cct 1260

ttccacagca gctacgcgca cagccagagc ctggaccggc tgatgaatcc tctcatcgac 1320

WO 2005/033321 PCT/US2004/028817

caatacctgt attacccgaa cagaactcaa aatcagtccg gaagtgccca aaacaaggac	1380
ttgctgttta gccgtgggtc tccagctggc atgtctgttc agcccaaaaa ctggctacct	1440
ggaccctgtt atcggcagca gcgcgtttct aaaacaaaaa cagacaacaa caacagcaat	1500
tttacctgga ctggtgcttc aaaatataac ctcaatgggc gtgaatccat catcaaccct	1560
ggcactgcta tggcctcaca caaagacgac gaagacaagt tctttcccat gagcggtgtc	1620
atgatttttg gaaaagagag cgccggagct tcaaacactg cattggacaa tgtcatgatt	1680
acagacgaag aggaaattaa agccactaac cctgtggcca ccgaaagatt tgggaccgtg	1740
gcagtcaatt tccagagcag cagcacagac cctgcgaccg gagatgtgca tgctatggga	1800
gcattacctg gcatggtgtg gcaaggtaga gacgtgtacc tgcagggtcc catttgggcc	1860
aaaattcctc acacagatgg acactttcac ccgtctcctc ttatgggcgg ctttggactc	1920
aagaacccgc ctcctcagat cctcatcaaa aacacgcctg ttcctgcgaa tcctccggcg	1980
gagttttcag ctacaaagtt tgcttcattc atcacccaat actccacagg acaagtgagt	2040
gtggaaattg aatgggagct gcagaaagaa aacagcaagc gctggaatcc cgaagtgcag	2100
tacacatcca attatgcaaa atctgccaac gttgatttta ctgtggacaa caatggactt	2160
tatactgagc ctcgccccat tggcacccgt taccttaccc gtcccctgta a	2211
<210> 82	
<211> 2211	
<212> DNA <213> new AAV serotype, clone hu.46	
<400> 82	60
atggctgccg acggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga	170
cagtggtgga agetcaaace tggcccacca ccaccaaage ccgcagageg gcataaggac	120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac	180 240
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt	300
caggagegee ttaaagaaga taegtetttt gggggeaace tegggeggge agtetteeag	360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct	420
ggaaagaaac gtccggtaga gcagtcgcca caagagccag actcccctc gggcatcggc	480
aagacaggcc agcagcccgc taaaaagaga ctcaattttg gtcagactgg cgactcagag	540
tcagtccccg atccacaacc tctcggagaa cctccagcaa cccccgctgc tgtgggacct	600
actacaatgg Cttcaggcgg tggcgcacca atggcagaca ataacgaagg cgccgacgga	660
gtgggtaatg cctcaggaaa ttggcactgc gattccacat ggctgggcga cagagtcatc	720
accaccagea cocgcacctg ggccttgccc acctacaata accacctcta caagcaaatc	780
tccagtgctt caacgggggc cagcaacgac aaccactact tcggctacag cacccctgg	840
gggtattttg atttcaacag attccactgc cacttttcac cacgtgactg gcagcgactc	900
atcaacaaca attggggatt ccggcccaag agactcaact tcaaactctt caacatccaa	960
gtcaaggagg tcacgacgaa tgatggcgtc acaaccatcg ctaataacct taccaqcacq	1020
gttcaagtct tctcggactc ggagtaccag cttccgtacg tcctcggctc tgcgcaccag	1080
ggccgcctcc ctccgttccc ggcggacgtg ttcatgattc cgcaatacgg ctacctgacg	1140
Ctcaacaatg gcagccaagc cgtgggacgt tcatcctctt actgcctgga atatttccct	1200
tctcagatgc tgagaacggg caacaacttt accttcagct acacctttga ggaagtgcct	1260
ctccacagca gctgcgcgca cagccagagc ctggaccggc tgatgaatcc tctcatcgac	1320
Caatacctgt attacctgaa cagaactcaa aatcagtccg gaagtgccca aaacagggac	1380
ttgctgttca gccgtgggtc tccagctggc atgtctgttc agcccaaaaa ctggctacct	1440
ggaccctgtt atcggcagca gcgcgtttct aaaacaaaaa cagacaacaa caacagcaat	1500
tttacctgga ctggtgcttc aaaatataac Ctcaatgggc gtgaatccat catcaaccct	1560
ggcactgcta tggcctcaca caaagacgac gaagacaagt tctttcccat gagcggtgtc	1620

WO 2005/033321 PCT/US2004/028817

atgatttttg gaaaagagag cgccggagct tcaaacactg cattggacaa tgtcatgatt 1680 acagacgaag aggaaattaa agccactaac cctgtggcca ccgaaagatt tgggaccgtg 1740 gcagtcaatt tccagagcag cagcacagac cctgcgaccg gagatgtgca tgctatggga 1800 gcattacctg gcatggtgtg gcaagataga gacgtgtacc tgcagggtcc catttgggcc 1860 aaaattcctc acacagatgg acactttcac ccgtctcctc ttatgggcgg ctttggactc 1920 aagaacccgc ctcctcagat cctcatcaaa aacacgcctg ttcctgcgaa tcctccggcg 1980 gagttttcag ctacaaagtt tgcttcattc atcacccaat actccgcagg acaagtgagt 2040 gtggaaattg aatgggagct gcagaaagaa aacagcaagc gctggaatcc cgaagtgcag 2100 tacacatcca attatgcaaa atctgccaac gttgatttta ctgtggacaa caatggactt 2160 tatactgage etegececat tggcaccegt tacettacce gteceetgta a 2211

PRT vp1, clone hu.17

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15

Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro

Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45

Gly Cys Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60

Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80

Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110

Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125

Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160

Gly Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 165 170 175

Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190

Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205

Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220

Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235

Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255

Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 Phe Pro Ser Gln Met Arg Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 410 415 Gln Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Asn Asn Met Ser Ala Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Ser Val 545 550 555 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Ala Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610

615

Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 650 655 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn 705 710 715 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735 Asn Leu

84 738 PRT vp1, clone hu.6

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln
.165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly

205

Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Ala Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Pro Trp Ala Leu Pro Thr Tyr Asn Asn His $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$ Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 265 270Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn 305 310 315 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 · 345 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Arg Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 410 Gln Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 455 460 Phe Ser Gln Ala Gly Pro Asn Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 535 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Ser Val 545 550 560

Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Ala Ala 580 590 Pro Ile Val Gly Ala Val Asn. Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 650 655 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 665 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140

⁸⁵ 738 PRT Vp1, clone hu.42

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 180 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe $\frac{355}{360}$ Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 435 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Ser Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510

WO 2005/033321

Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 535 540 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 555 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Leu 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 650 655 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

86 738 PRT vpl, clone rh.38

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 125 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 150 155 160 Gly Lys Lys Gly Gln Arg Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 180 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 . 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Pro Phe Asn 305 310 320 ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu His Tyr Leu 435 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu 450 460 Page 81

WO 2005/033321

PCT/US2004/028817

Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp
465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 505 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Glm Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 665 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 15 School 15

<210> 87

<211> /30

<213> vpl, clone hu.40

<400> 87

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Ser Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 180 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Ser Glu Phe Ser Tyr

Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gln Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 . 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 665 670Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

⁸⁸ 738 PRT vp1, clone hu.37

<400> 88 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gla Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 505 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 535 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 555 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720

PCT/US2004/028817 WO 2005/033321

Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

<210> 89 <211> 738 <212> PRT <213> vpl, clone rh.39

<400> 89 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300

Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 440 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gln Gln Leu Leu 450 455 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp
465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 505 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 560 Met Leu Thr Ser Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 585 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 665 670

WO 2005/033321 PCT/US2004/028817

Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 715 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

90 738 PRT vp1, clone AAV4407

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His

WO 2005/033321 PCT/US2004/028817

Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 410 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 555 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile

Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

<210> 91 <211> 738 <212> PRT <213> vp1, clone hu.41

<400> 91

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Pro Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 180 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly **T95**

200 -

205

Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Val Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asm Pro Leu Ile Asp Glm Tyr Leu Tyr Tyr Leu
440
445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 560

'Met Leu Thr ser GIU Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 575 Thr Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Glo Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Glo His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe G40 G45 Pro Ala Asp Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val G10 Leu Lys His Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val G55 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe G65 Ile Thr G10 Tyr Ser Thr G10 G80 Val Ser Val G10 Ile G10 Trp G10 Leu G10 Lys G10 Asn Ser Lys Arg Trp Asn Pro G10 Ile G10 Tyr Thr Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr G10 G10 Thr Tyr Ser G10 Pro Arg Pro Ile G10 Thr Arg Tyr Leu Thr Arg G10 Thr Tyr Ser G10 Pro Arg Pro Ile G10 Thr Arg Tyr Leu Thr Arg Tyr Lys Ser G10 Pro Arg Pro Ile G10 Tyr Thr Arg Tyr Leu Thr Arg Tyr Lys Tyr Lys Tyr Lys Tyr Lys Pro Arg Pro Ile G10 Thr Arg Tyr Leu Thr Arg Tyr Lys T

<210> 92 <211> 738 <212> PRT <213> vpl, clone rh.40

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Is Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Gly Glu Pro Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg

َّPro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 ASN ASN Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe ASN 305 310 315 320 Ile Gln Val Lys Glu Val Thr Gln Asp Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 . 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Arg Ala Lys Asn Trp 465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His

Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 525. His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 555 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Ala Asn Thr Gly 580 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asm Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 665 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr
690 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Ser Glu 705 710 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro 20 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 . 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95

<210> 93 <211> 731 <212> PRT <213> vpl, clone pi.1

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Asp Ser Ser Gly Ile Gly Lys Ser Gly Gln Gln 145 155 160 Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser 165 170 175 Val Pro Asp Pro Gln Pro Leu Ser Glu Pro Pro Ala Gly Pro Ser Gly 180 185 190 Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp 200 205 Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Val Ser Gly Asn Trp His 210 220 Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg 225 230 235 240 Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser 245 250 255 Asn Gly Thr Ser Gly Gly Ser Ser Asn Asp Asn Thr Tyr Phe Gly Tyr 260 270 Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe 275 280 285 Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val 305 310 320 Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr 325 330 335 Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly 340 350 lle Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu 385 390 395 Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu Asp Val Pro
405 410 415 Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn 420 Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Gln Thr Asn 445 Gly Thr Asn Ala Thr Gln Thr Leu Leu Phe Ala Gln Ala Gly Pro Gln 450 455 460

Asn Met Ser Ala Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg
465 470 475 480 Gln Gln Arg Val Ser Thr Thr Val Ser Gln Asn Asn Asn Ser Asn Phe 485 490 495 Thr Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu 500 510 Val Ser Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg 515 520 525 Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly 530 540 Lys Asp Asn Val Glu Tyr Thr Asn Val Met Leu Thr Ser Glu Glu Glu 545 550 560 Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala 565 570 575 Asp Asn Leu Gln Gln Thr Asn Ser Ala Pro Ile Val Gly Ala Val Asn 580 585 Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr
595 600 605 Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe 610 620 His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro 625 630 635 640 Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Val Asn 645 650 Phe Thr Asp Ala Lys Leu Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly 660 665 670 Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys 675 680 685 Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Ala 690 695 700 Asn Val Asp Phe Ala Val Asn Ala Asp Gly Val Tyr Ser Glu Pro Arg 705 710 715 720 Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 . 10 . 15 Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro
20 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60

<210> 94 <211> 731 <212> PRT <213> vp1, clone pi.3

Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Asp Ser Ser Ser Gly Ile Gly Lys Ser Gly Gln Gln 145 150 160 Pro Ala Lys Lys Arg Leu Asn Phe Gly Pro Thr Gly Asp Ser Glu Ser 165 170 Val Pro Asp Pro Gln Pro Leu Ser Glu Pro Pro Ala Gly Pro Ser Gly 180 185 190 Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp 195 200 205 Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Val Ser Gly Asn Trp His 210 220 Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg 225 230 235 Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser 245 250 255 Asn Gly Thr Ser Gly Gly Ser Ser Asn Asp Asn Thr Tyr Phe Gly Tyr 260 270 Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe 275 280 285 Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg 290 295 300 Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val 305 310 320 Thr Gln Asn Glu Gly Thr Lys Thr Thr Ala Asn Asn Leu Thr Ser Thr 325 330 335 Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met 355 360 365 Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu 385 400 Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn

Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Gln Thr Asn 440 Gly Thr Asn Ala Thr Gln Thr Leu Leu Phe Ala Gln Ala Gly Pro Gln
450 455 460 Asn Met Ser Ala Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg 465 470 475 480 Gln Gln Arg Val Ser Thr Ala Val Ser Gln Asn Asn Asn Ser Asn Phe 485 490 495 Thr Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu 500 510 Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg 515 520 525 Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly 530 535 Lys Asp Asn Val Glu Tyr Thr Asn Val Met Leu Thr Ser Glu Glu Glu 545 550 560 Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala 565 570 575 Asp Asn Leu Gln Gln Thr Asn Ser Ala Pro Ile Val Gly Ala Val Asn 580 585 Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr 595 600 605 Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe 610 615 620 His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro 625 630 635 640 Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Val Asn 645 650 655 Phe Thr Asp Ala Lys Leu Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly 660 665 670 Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys 675 680 685 Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Ala 690 695 700 Asn Val Asp Phe Ala Val Asn Ala Asp Gly Val Tyr Ser Glu Pro Arg 705 710 715 720 Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 95 <211> 731 <212> PRT <213> vp1, clone pi.2

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 10 15 Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro

~20

25

30

Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 : Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Asp Ser Ser Ser Gly Ile Gly Lys Ser Gly Arg Gln 145 155 160 Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser 165 170 175 Val Pro Asp Pro Gln Pro Leu Ser Glu Pro Pro Ala Gly Pro Ser Gly 180 185 190 Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp 195 200 205 Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asn Trp His 210 220 Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg 225 230 240 Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser 245 250 255 Asn Gly Thr Ser Gly Gly Ser Ser Asn Asp Asn Thr Tyr Phe Gly Tyr 260 270 Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe 275 280 285 Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg 290 295 300 Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val 305 310 320 Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr 325 330 335 Val Gln Val Phe Thr Asp Ser Lys Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val "GTy Arg Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu 385 400 Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu Asp Val Pro 405 410 Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn 420 430 Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Gln Thr Asn 445 Gly Thr Asn Ala Thr Gln Thr Leu Leu Phe Ala Gln Ala Gly Pro Gln
450
460 Asn Met Ser Ala Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg 465 470 475 480 Gln Gln Arg Val Ser Thr Thr Val Ser Gln Asn Asn Asn Ser Asn Phe 485 490 495 Thr Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu 500 510 Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg 515 520 525 Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly 530 540 Lys Asp Asn Val Glu Tyr Thr Asn Val Met Leu Thr Ser Glu Glu Glu 545 550 560 Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala
565 570 575 Asp Asn Leu Gln Gln Thr Asn Ser Ala Pro Ile Val Gly Ala Val Asn 580 585 590 Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr 595 600 605 Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe 610 615 620 His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro 625 630 635 640 Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Val Asn 645 650 655 Phe Thr Asp Ala Lys Leu Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly
660 665 670 Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys 675 680 Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Ala 690 700 Asn Val Asp Phe Ala Val Asn Ala Asp Gly Val Tyr Ser Glu Pro Arg 705 710 715 720 Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 96 <211> 738 <212> PRT WO 2005/033321 PCT/US2004/028817

--<213> "-vp1", "clone "fi". 52 <400> 96 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro $\frac{35}{40}$ Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Ser Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Pro Asn 370 380 Asn Gly Ser Gln Ala val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 435 440 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Ser Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp
465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu
675
680
685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu WO 2005/033321

Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 735 735

<210> 97 <211> 738 <212> PRT <213> vpl, clone rh.53

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His $245 \hspace{1cm} 250 \hspace{1cm} 255$ Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300

ASN ASN Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe ASN 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Val His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Ser Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 535 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 585 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile
610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe

Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Pro Thr Arg 725 730 735 Asn Leu

<210> 98 <211> 738 <212> PRT <213> vp1, clone rh.70

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Ala Tyr Asn Asn His

255

Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 455 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Ser Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 . 585 . 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605

Try Gin Asn Arg Asp Val Tyr Leu Gln Gly Pro 11e Trp Ala Lys 11e

Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 640

Gly Leu Lys His Pro Pro Gln 11e Leu 11e Lys Asn Thr Pro Val

Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Ser

11e Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu 11e Glu Trp Glu

Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu 11e Gln Tyr Thr

Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu

705 Gly Val Tyr Ser Glu Pro Arg Pro 11e Gly Thr Arg Tyr Leu Thr Arg

<210> 99 <211> 738 <212> PRT <213> vp1, clone rh.64

Asn Leu

Met Ala Ala Asp Sly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Is Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Bro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Sor Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Sor Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Rob Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Asn Leu Gly Arg Val Leu Glu Pro Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Lys Gly Gln Gln Lys Lys Gly Gln Glo Arg Leu Arg Lys Arg Leu Asn Phe Gly Gln Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro

Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560

WO 2005/033321 PCT/US2004/028817

Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Val Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Arg Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140

¹⁰⁰ 738 PRT vpl, clone rh.68

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr
405
415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His

WO 2005/033321 PCT/US2004/028817

Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Pro Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 555 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Val Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Leu Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gin Gin Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala

¹⁰¹ 738 PRT vp1, clone rh.46

WO 2005/033321

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190 Pro Ala Ala Pro Ser Ser Val Glÿ Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu

450

455

Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 665 670 lle Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 715 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro

¹⁰² <210>

<400> 102

35 ---

40

45

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gin Gin Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Arg Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$ Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$ Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Leu Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn $290 \hspace{1.5cm} 295 \hspace{1.5cm} 300$ Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Ala Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Pro Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe $\frac{355}{360}$ Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400

410

Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Arg Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 470 . 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 555 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala Pro Thr Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 655 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Ala Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Ala Asp Phe Ala Val Asn Thr Glu 705 710 715 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

Page 116

<213> VpI, clone rh.49 <400> 103 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro His Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Leu Ile Gly Glu Pro 180 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln
340 345

Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Asn Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Met Gly Tyr Ser Asn Val Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile
610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Gly Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 725

Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 735
Asn Leu

104 738 PRT vp1, clone rh.51 Met Val Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 . 25 . 30Lys Ala Asn Gln Gln Lys Gln Gly Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Leu Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 180 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Page 119

WO 2005/033321 PCT/US2004/028817

Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Gln Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 410 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 535 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe

. 665

670

Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu
675 680 685 Pro Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735 Asn Leu

<210> 105 <211> 738 <212> PRT <213> vp1, clone rh.57

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Gln Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Thr Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 . 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn $370 \hspace{1cm} 375 \hspace{1cm} 380$ Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605

ਰੀਨਾ ਫੀਨਾ ਕਿੱਤੀ ਕਿੱਤੂ ਕਿੱਤੂ ਨੇ ਪੈਕੀ ਜਿੱਤਾਂ Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Ala Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

106 738 PRT vpl, clone rh.58

<400>

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190

Pro Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 255Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 . 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415Thr Phe Glu Asp Val Pro Phe®His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 435 440 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 455 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 . 505 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 535 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560

Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Ser Thr Pro Val 645 650 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 665 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Cys Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

<400>

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140

<210> 107 <211> 738 <212> PRT <213> vp1, clone rh.61

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Pro Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr Pro Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 455 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His

Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asp Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Val Leu Ile Lys Asn Thr Pro Val 645 650 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95

¹⁰⁸ 738 PRT vpl, clone rh.50

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Gly Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$ Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn $370 \hspace{1.5cm} 375 \hspace{1.5cm} 380$ Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Val Asp Gln Tyr Leu Tyr Tyr Leu
440 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu Page 128

Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 505 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 650 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Ser Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 725 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro

<210> 109 <211> 737 <212> PRT <213> vp1, clone rh.45

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His $\frac{245}{255}$ Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 330 Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe

Pro Ser Gin Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr Thr 405 410 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser 435 440 Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu Phe 450 460 Ser Gln Ala Gly Pro Ser Asn Met Ser Thr Gln Ala Arg Asn Trp Leu 465 470 475 480Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln 485 495 Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu 500 510 Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr Asn 515 520 525 Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met Phe 530 540 Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val Met 545 550 555 Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu 565 570 575 Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Asn Thr Ala Pro 580 585 Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 640 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu Gly 705 710 720 Ala Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn

Leu

<210> 110 <211> 738

'<213> ""vp1,""c15ne "rh. 59" <400> 110 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 180 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His $245 \ \ 250 \ \ 255$ Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 Asn Pro Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 345

WO 2005/033321

Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 445 445 Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp
465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720

Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 735 735

111 737 PRT Vp1, clone rh.44 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Ser Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Cys Asp 65 70 75 Gln Arg Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 . 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Gly 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His $245 \hspace{1cm} 255 \hspace{1cm}$ Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 265 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300

Asn Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 . 345 . 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 375 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 445 Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 . 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 615 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile

Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 700 Asn Phe Asp Glu Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 715 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725 Leu

<210> 112 <211> 737 <212> PRT <213> Vp1, clone rh.65

<400> 112 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 270 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 265 270Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn $370 \hspace{1cm} 375$ Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr
405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 435 445 Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Arg Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 700 Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 715 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn

Leu

113 737 PRT vp1, clone rh.67

<400> 113

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Leu Gli Ala Lys Lys Arg Val Leu Glu Pro 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190

Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 360 - 365Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gin Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 445 Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 \$50 \$55

Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 585 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 645 . 650 . 655Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 715 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725

Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 25Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Ala Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140

PRT vp1, clone rh.62

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Lys Gly Ala Asp Gly Val Gly Asn 210 215 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 265 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gin Val Lys Glu Val Thr Thr Gly Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn $370 \hspace{1cm} 375$ Asp Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ilè Asp Gln Tyr Leu Tyr Tyr Leu Ala 440 Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln
450
455 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp
465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His

Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 585 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 615 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 640Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 645 650 655Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 700 Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725 730 735 Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala

¹¹⁵ 737 PRT vpl, clone rh.48

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 . 185 . 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 Gly Ala Pro Met Ala Asp Asn Asn Lys Gly Ala Asp Gly Val Gly Asn 210 215 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Ser 290 295 . 300 Asn Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 330 335 Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 345 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 375 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 390 395 400Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420
430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln

Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 575 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 645 655 Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro

Leu

¹¹⁶ 737 PRT vpl, clone rh.54

35

40

45

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His $245 \hspace{1cm} 250 \hspace{1cm} 255$ Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 . 265 . 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 335 Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 375 . 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe

Pro Ser Gln Val Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 410 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 ASP Arg Leu Met ASR Pro Leu Ile ASP Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Asn Pro Gly Gly Thr Ser Gly Asn Arg Glu Leu Gln
450
450 Phe Tyr Gln Gly Gly Pro Ser Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Val Leu Ile Phe Gly Lys Thr Gly Ala Thr Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 570 575 Glu Tyr Gly Ile Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 585 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 645 655 Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 700 Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 715 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725 735

<210> 117 <211> 737 <212> PRT <213> "vp1, clone rh.55" <400> 117 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 . 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Arg Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 330 335 Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350

Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 390 395Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 445 Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp
465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Arg Arg Val Ser Lys Thr Leu Asp 485 490 495 Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 . 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 640 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 655 Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 695 700 Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 710 715 720

Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725 730 735 Leu

118 738 PRT vpl, clone rh.47 <400> 118 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys His Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300

Page 149

Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr 405 415Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ala Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu 450 455 460 Gln Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn 470 475 480 Trp Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu 485 490 495 Asp Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr 500 510 His Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala 515 520 525 Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu 530 540 Ile Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val 545 550 560 Leu Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr 565 570 Glu Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala 580 590 Ala Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe

Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735 Asn Leu

119 737 PRT vp1, clone rh.69

<400> 119 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser $1 \hspace{1cm} 15$ Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 \cdot 105 110Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Page 151

255

Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 265 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn $370 \hspace{1cm} 375 \hspace{1cm} 380$ Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Ile Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 445 Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Gln Glu Leu Gln
450
450
460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 555 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 580 580 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro
His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly
625 Thr Asp Fro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val
Leu Lys His Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val
Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe Ile
Thr Gln Tyr Ser Thr Gly Gln Val
680 Ser Val Glu Ile Gly Trp Glu Leu
Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser
Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu Gly
705 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn
Leu

<210> 120 <211> 735 <212> PRT <213> vp1, clone rh.60 <400> 120

 Met
 Ala
 Ala
 Asp
 Gly
 Tyr
 Leu
 Pro
 Asp
 Trp
 Leu
 Glu
 Asp
 Asp
 Asp
 Asp
 Leu
 Gly
 Ala
 Asp
 Lys
 Pro
 Gly
 Ala
 Asp
 Lys
 Pro
 Gly
 Asp
 Leu
 Asp
 Leu
 Pro

 Gly
 Tyr
 Lys
 Tyr
 Leu
 Gly
 Pro
 Phe
 Asn
 Gly
 Leu
 Asp
 Lys
 Gly
 Glu
 Pro

 Gly
 Tyr
 Lys
 Tyr
 Leu
 Gly
 Pro
 Phe
 Asn
 Gly
 Leu
 Asp
 Asp
 Lys
 Arg
 Tyr
 Asn
 His
 Asp
 Asp
 Asp

Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr His Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp $260 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$ Asn Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Arg Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445Ser Arg Thr Gln Ser Thr Glu Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 555 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 . 570 . 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 585 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 Leu Lys His Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Phe $690 \hspace{1cm} 695 \hspace{1cm} 700$ Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly 145 150 150 160

<210> 121 <211> 736 <212> PRT <213> vp1, clone hu.31

Lys Ser Gly Ser Gln Pro Ala Lys Lys Leu Asn Phe Gly Gln Thr Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro 180 185 190 Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly 195 205 Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser 210 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn 260 270 Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile 305 310 320 Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn 325 330 Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp 370 375 380 Gly Gly Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu 405 415Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser 450 460 Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro
465 470 475 Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn 485 . 490 . 495 Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn 500 Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys 515 520 525 Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly 530 535 Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile 545 550 560 Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser 575 Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln S80 585 Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met 625 630 635 Lys His Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 645 650 Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr 660 665 670Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 700 Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Ser Thr Glu Gly Val 705 710 715 720 Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser $1 \hspace{1cm} 15$ Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro 125 120 125

<210> 122 <211> 736 <212> PRT <213> vpl, clone hu.32

<400> 122

WO 2005/033321

Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly 145 150 160 Lys Ser Gly Ser Gln Pro Ala Lys Lys Leu Asn Phe Gly Gln Thr Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro 180 185 190 Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly 195 205 Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn 260 270 Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile 305 310 320 Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu 340 345 Ser Asp Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp 370 380 Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser 445 Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn

Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys Glu Gly Glu Asp Arg Phe Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly 535 Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile 545 Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Gly Ser Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln Ser Tyr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Gly Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met Gly His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Gln Val Gln Val Gln Ile Ceu Ile Gly Lys Leu Asn Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Tyr Ser Thr Gly Gln Val Gln Val Gln Val Glo Ile Glu Trp Glu Leu Gln Tyr Ser Thr Gly Gln Val Ger Val Glu Ile Glu Trp Glu Leu Gln Gro Tyr Ser Thr Gly Gln Val Ger Val Glu Ile Glu Trp Glu Leu Gln Gro Tyr Ser Thr Gly Gln Val Ger Val Glu Ile Glu Trp Glu Leu Gln Gro Tyr Ser Thr Gly Gln Val Ger Val Glu Ile Glu Trp Glu Leu Gln Gro Tyr Ser Thr Gly Gln Val Ger Val Glu Ile Glu Trp Glu Leu Gln Gro Tyr Gro Thr Gly Gln Val Ger Val Glu Ile Glu Trp Glu Leu Gln Gro Tyr Gro Thr Gly Gln Val Ger Val Glu Ile Glu Trp Glu Leu Gln Gro Tyr Gro Ty

Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 700

Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val 705 710 715 720

Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730

<210> 123 <211> 736 <212> PRT <213> capsid of hu.14\AAV9

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Is Ser Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala

95

Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly 145 155 160 Lys Ser Gly Ala Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro 180 185 Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn 260 . 265 . 270 Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn 325 Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp 370 380 Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 390 395Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser 440 445

Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn 500 510 Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys 515 520 525 Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly 530 535 540 Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile 545 550 560 Thr Asn Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser 565 570 575 Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln 580 590 Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met 625 630 635 640 Lys His Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr 660 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 695 700 Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val 705 710 715 720 Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Arg Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30Glu Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro

<210> 124 <211> 735 <212> PRT <213> vp1, clone hu.33

<400>

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Gly Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415

Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Gly Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440. Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly $500 \ \ \, 510$ Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 585 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

¹²⁵ 735 PRT vp1, clone hu.34

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser

Glu Gly Ile Arg Gln Arg Trp Lys Leu Lys Pro Gly Pro Pro Pro 25 Glu Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Glu Ser 370 380

Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Gly Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 485 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asm Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 585 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<211> 735 <212> PRT <213> vp1, clone hu.36

<400> 126 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Arg Trp Lys Leu Lys Pro Gly Pro Pro Pro Glu Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr

Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Ala Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 410 415Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Gly Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 485 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 585 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr
705 710 720

Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
735 735

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Gly Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Pro Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Thr Thr $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$ Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly $500 \hspace{1cm} 500 \hspace{1cm} 510$ Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Val Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<400> 128 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Arg Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Gly Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 . 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Ser His Tyr

<210> 128 <211> 735 <212> PRT <213> vpl, clone hu.47

Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Thr Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asn Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 585 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635

His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 129 <211> 735 <212> PRT <213> vp1, clone hu.13

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 101 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240

Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Glm Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 445 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 485 490 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Gly Gly Asn Thr Gln Ala Ala Thr 580 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp

595

Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 665 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Ser Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 Lys Ser Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly

¹³⁰ 735 PRT vp1, clone hu.28

195

200 .

205

Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 410 415Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Gln Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 485 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560

Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Gly Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Thr Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 . 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155

<210> 131 <211> 735 <212> PRT <213> vp1, clone hu.30

<400> 131

Gly Asp Ser Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200. 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Ser Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 440 445 ASN THE PEO SEE Gly THE THE GIN SEE AND LEU GIN PHE SEE GIN
450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly
465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 490 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asm Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp $600 \cdot 605$ Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro

<210> 132 <211> 735 <212> PRT <213> vp1, clone hu.29

Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly
145 150 160 Lys Ser Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Gly Tyr Phe Pro Ser 385 390 395 400 Gin Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 410 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 485 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 . 540 Gln Gly Pro Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp $600 \hspace{0.5cm} 605$ Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 20 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90

<210> 133 <211> 735 <212> PRT <213> vpl, clone hu.19

Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Glu Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 180 180 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp Tyr Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln

Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly
465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 ASP Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 615 620 Asp Gly His Phe His Pro Ser Pro Leu Val Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 134 <211> 735 <212> PRT <213> vp1, clone hu.20

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser $1 \hspace{1cm} 15$ Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Arg Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro

)

55

60

Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Val Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Ala Ala Pro Gly Glu Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly
145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly His Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu

Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$ Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 585 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 615 620Asp Gly His Phe His Pro Ser Pro Pro Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln lle Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Ala Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15

<210> 135 <211> 735 <212> PRT <213> vpl, clone hu.21

<400> 135

Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 25 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Arg Pro Leu Gly Gln Pro Pro Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser

Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 445 445 Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 490 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 585 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln lle Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675
680
685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 136 <211> 735

<212> PRT <213> vp1, clone hu.24 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Arg Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Page 187

Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 . 390 . 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Met Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 485 490 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 505 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 520 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 600 605Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln lle Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 665 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr

705

720

Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 137 <211> 735 <212> PRT <213> vp1, clone hu.23-2 <400> 137 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Cys Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Arn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val

320

Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 490 495 Asn Ser Asp Tyr Ser Trp Thr Gly. Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Ser Val Ser Thr Tyr Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Arg Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 WO 2005/033321 PCT/US2004/028817

Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 735

<210> 138 <211> 735 <212> PRT <213> vp1, clone hu.22

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Gly Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200. Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Gly Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270

Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Thr Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$ Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln
450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 490 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro lle Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn
645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 139 <211> 735 <212> PRT <213> vpl, clone hu.26

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240

Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Glm Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 410 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 445 Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 485 490 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Page 194

Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 140 <211> 735 <212> PRT <213> vpl, clone hu.27

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 200 205 WO 2005/033321

Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Gly Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Glm Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Gly Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Val Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 470 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asm Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Val Phe Gly Lys 530 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Ala Ala Thr Glu Gln Tyr

Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 585 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Val Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730

Met Ala Ala Asp Gly Tyr Leu Prò Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 25 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 . 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr

<210> 141 <211> 735 <212> PRT <213> vpl, clone hu.4

175

Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Val Asn Asn Asn Arg 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 460 Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 485 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515

Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Ala Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 645 . 650 . 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 142 <211> 735 <212> PRT <213> vp1, clone hu.5

<400> 142

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 . 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 "Ted Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 445 445 Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln
450 455 460 Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 485 490

Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 505 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser Arg Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Ala Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Glm Ile Met Ile Lys Asm Thr Pro Val Pro Ala Asm 645 650 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Pro Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 95

<210> 143 <211> 735 <212> PRT <213> vp1, clone hu.2

<400>

Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 ASN LEU Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Arg Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 . 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 445 445 Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460

Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 485 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asm Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Ala Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 . 585 Gly Thr Val Asn Arg Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60

¹⁴⁴ 735 PRT vpl, clone hu.1

Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120. 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 150 155 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly
195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr
260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Gly Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg

Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Gly Asn Asn 485 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly $500 \hspace{1.5cm} 510 \hspace{1.5cm}$ Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 520 520 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 560Asp Glu Glu Glu Ile Arg Ala Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620Asp Gly His Phe His Pro Ser Pro Leu Thr Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 665 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro

<210> 145 <211> 736 <212> PRT <213> vp1, clone hu.3

30

Lys Pro Ala Glu Arg His Lys Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Arg Pro Gly Leu Arg Lys Pro Val Lys Thr Ala Pro Gly Lys Lys 130 140 Arg Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Ser Gly Thr 145 150 160 Gly Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro 180 190 Pro Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Asp Asp Arg val 225 230 235 Ile Ala Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Cys Asn Asp Asn His 260 270 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 275 280 285 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Ser Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln 305 310 315 Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn 325 335 Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro 340 350 Tyr Val Pro Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 380

รริยา Ghr ล้าส์ Vai Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe
405 415 Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Cys Gln Ser Leu Asp 420 425 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys 445 Thr Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser 450 455 460 Gln Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn 495 Asn Asn Cys Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn 500 510 Gly Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys 515 520 525 Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly 530 540 Lys Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile 545 550 560 Thr Asp Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu Gln 565 570 575 Tyr Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr 580 595 Thr Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys His Pro Pro Pro Gln Ile Met Ile Lys Ser Thr Pro Val Pro Ala 645 650 655 Asn Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Ser Ile Thr 660 665 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675 680 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 695 700 Tyr Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730

<210> 146 <211> 735 <212> PRT

213 vp1; clone hu.25 <400> 146 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp GTy Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asn Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 . 90 . 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly
195 200 · 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 250 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350

Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Pro Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575 Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 595 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640His Pro Pro Pro Gln lle Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675
680
685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Asn Asn Gly Val Tyr 705 710 . 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735

<210> 147 <211> 735 <212> PRT <213> vpl, clone hu.15 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 20 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Tyr Lys Gly Glu Pro 50 60 Val Asp Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Gly Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Arg Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Gly Tyr Gln Leu Pro Tyr 340 345 Val Leu Gly Leu Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 460Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 470 475 480Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 485 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 535 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 590 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln lle Met lle Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys

Glu Asp Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Pro Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735

<210> 148 <211> 735 <212> PRT <213> vp1, clone hu.16 <400> 148 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Tyr Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Gly Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His ["]280

285

Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly
465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Tyr Val Ser Asn Asn Leu Gln Asp Ser Asn Thr Gly Pro Thr Thr Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys

Ais Pro Pro Pro Glin Tle Met Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 665 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 149 <211> 735 <212> PRT <213> vp1, clone hu.18

<400>

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Glu Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240

"The The See The Arg The Trp Ala Leu Pro The Tyr Asn Asn His Leu 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Ser Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 . 315 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Leu Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asm Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 535 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr 545 550 555 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 590 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 640 His Pro Pro Pro Gln lle Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ser Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Pro Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Gly Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly
195 200 205

<210> 150 <211> 735 <212> PRT <213> vpl, clone hu.7

Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gin Ser Asn Ser Gly Thr Leu Gin Gin Ser Arg Leu Leu Phe Ser Gin 450 455 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 485 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 535 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 575 575 Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 590 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Thr Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175

<210> 151 <211> 735 <212> PRT <213> vpl, clone hu.8

Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 · 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 · 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys "530" ····

535

540

Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 . 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln lle Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 . 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<400> 152

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg

<210> 152 <211> 735 <212> PRT <213> vp1, clone rh.56

130 135

140

Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly
145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Gln Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 . 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Ser Asn Ser Gly Ala Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 495

Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Gly Thr Val Asn His Arg Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn
645 650 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 153 <211> 735 <212> PRT <213> vpl, clone hu.11

<400>

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Lys Pro Ala Glu Arg His Gln Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 -sp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 . 460

Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly
465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr Arg Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu His Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Asn Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 595 Glu Asn Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 665 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 20 Lys Pro Ala Glu Arg His Gln Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro

<210> 154 <211> 735 <212> PRT <213> vpl, clone hu.12

<400> 154

Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 .345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Pro Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 435 440 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln
450 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 505 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu His Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Asn Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Glu Asn Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 155 <211> 735 <212> PRT <213> vpl, clone hu.9

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro

Lys Pro Ala Glu Arg His Gln Asp Asn Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Ser Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Cys Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Pro Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 "...

~~390 "

Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg
420
430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 435 440 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 . 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 485 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 535 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu His Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Asn Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 590 Glu Asn Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn
645 650 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Cys Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 156 <211> 735 <212> PRT <213> vp1, clone hu.10

<400> 156 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 25 Lys Leu Ala Glu Arg His Gln Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 . 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350

Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Thr Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 Gln Met Leu Arg Thr Gly Asn Asn Leu Thr Phe Ser Tyr Thr Phe Glu 405 415Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 435 440 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 470 475 480Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu His Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Asn Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 590 Glu Asn Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Tle Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Pro Thr Asn Tyr Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Arg Lys 675 680 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr

Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

157 736 PRT vp1, clone hu.48

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175 Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 190 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly 195 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 255 255 Tyr Lys Gln Ile Ser Ser Thr Ser Thr Gly Ala Ser Asn Asp Asn His 260 265 Tyr Phe Gly Tyr Gly Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 275 280 285 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Glu Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 325 . 330 . 335Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 340 350 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 380 Ser Gln Ala val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe 405 410 415 Glu Glu Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp 420 425 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser 450 455 460 Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro 465 470 475 480 Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 485 490 495 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 500 510 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Val Ala Ser His Lys 515 520 525 Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly 530 535 540 Lys Glu Ser Ala Gly Ala Ser Ser.Thr Ala Leu Asp Asn Val Met Ile 545 550 560 Thr Asp Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg 565 570 570 Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro Ala 580 585 Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 640 Lys Asn Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 685 Page 232

Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 695 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 720 Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu

<210> 158 <211> 736 <212> PRT <213> vp1, clone hu.44 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Arg Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Glu Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Gly Pro Asp Ser Ser Gly Ile Gly 145 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr 165 170 Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 190 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His 260 265 270 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 275 280 285

His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln 305 310 320 Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 325 330 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 340 350 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 380 Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro 385 400 Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe 405 410 415Glu Glu Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp 420 425 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Pro Asn Arg 445 445 Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser 450 460Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro 465 470 475 Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 485 495 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 500 510 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys 515 520 525 Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly 530 540 Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile $545 \hspace{0.5cm} 550 \hspace{0.5cm} 555 \hspace{0.5cm} 560$ Thr Asp Glu Glu Glu lle Lys Ala Thr Asn Pro Val Ala Thr Glu Arg 565 575 Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro Ala 580 585 Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Gly Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys Asn Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala

Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 695 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 715 720 Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu

<210> <211> <212> <213>

159 736 PRT vpl, clone hu.46

<400> 159

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Pro Ser Gly Ile Gly 145 150 155 160 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 190 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 230 235 240

Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu

250

Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln 305 310 315 Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 325 330 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 340 350 Tyr Val Leu Gly Ser Ala His Gln Gly Arg Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 380 Ser Gln Ala Val Gly Arg Ser Ser Ser Tyr Cys Leu Glu Tyr Phe Pro 385 400 Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe 405 410 415Glu Glu Val Pro Leu His Ser Ser Cys Ala His Ser Gln Ser Leu Asp 420 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg 445 Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Arg Asp Leu Leu Phe Ser Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro 465 470 475 480 Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 485 490 495 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 500 510 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys 515 520 525 Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly 530 540 Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile 545 550 555 560 Thr Asp Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg 565 570 575 Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro Ala 580 585 Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln
595 600 605

Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys Asn Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 655 655 Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr 660 670 Gin Tyr Ser Ala Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 715 720 Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu

<210> 160 <211> 737 <212> PRT <213> vpl, clone hu.43

<400> 160

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 . 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Pro Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Pro Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 125 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn 260 270 His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 330 335 Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 345 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Glu Val Pro Leu His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Val Gln Tyr Leu Tyr Tyr Leu Asn 445 Arg Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe 450 455 460 Ser Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu 465 470 475 480 Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp
485
490
495 Asn Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu 500 510 Asn Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His 515 520 525 Lys Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile Thr Asp Glu Glu Ile Lys Ala Thr Asp Pro Val Ala Thr Glu 565 570 575

Arg Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro 580 585 590 Ala Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp 595 600. Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 Leu Lys Asn Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser 690 700 Asn Tyr Ala Lys Ser Ala Ser Val Asp Phe Thr Val Asp Asn Asn Gly 705 710 720 Leu Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro 735

161 738 PRT vp1, clone hu.38

<400>

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40 . 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 180 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gln Gln Leu Leu
450 455 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 535 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Cys His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

<210> 162 <211> 736 <212> PRT <213> vp1, clone rh.71

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp.Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110

Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly 145 150 155 160 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 185 190 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His 260 . 265 . 270 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 275 280 285 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln 305 310 320Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 325 330 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 340 350 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 375 380 Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe 405 415 Glu Glu Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp 420 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg 445 Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro

465

470

475

480

Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 495 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 500 510 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys
520
525 Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly 530 540 Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile 545 550 560 Thr Asp Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro Ala 580 585 Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys Asn Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr 660 665 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 695 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 720 Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp

¹⁶³ 736 PRT vpl, clone rh.43

70

75

80

Gln Gln Leu Glu Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly 145 150 . 155 Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 185 190 Ala Ala Pro Ser Gly Val Gly Pro Asn Thr Met Ala Ala Gly Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ala Thr Asn Asp Asn 260 270 Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile 305 310 320 Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn 325 330 Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 375 380 Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 390 395 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Thr Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Île Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Gln Thr Thr Gly Gly Thr Ala Asn Thr Gln Thr Leu Gly Phe 450 460 Ser Gln Gly Gly Pro Asn Thr Met Ala Asn Gln Ala Lys Asn Trp Leu 465 470 475 480 Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Thr Gly Gln
485 490 495 Asn Asn Asn Ser Asn Phe Ala Trp Thr Ala Gly Thr Lys Tyr His Leu 500 510 Asn Gly Arg Asn Ser Leu Ala Asn Pro Gly Ile Ala Met Ala Thr His 515 520 525 Lys Asp Asp Glu Glu Arg Phe Phe Pro Val Thr Gly Ser Cys Phe Trp 530 535 540 Gln Gln Asn Ala Ala Arg Asp Asn Ala Asp Tyr Ser Asp Val Met Leu Thr Ser Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Glu 565 570 575 Tyr Gly Ile Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala Pro Gln
580
580 Ile Gly Thr Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 645 650 655 Asp Pro Pro Thr Thr Phe Asn Gln Ser Lys Leu Asn Ser Phe Ile Thr $660 \hspace{1.5cm} 665 \hspace{1.5cm} 670$ Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 695 700 Tyr Tyr Lys Ser Thr Ser Val Asp Phe Ala Val Asn Thr Glu Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Arg Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30

<210> 164 <211> 735 <212> PRT <213> vpl, clone hu.35

Glu Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395

Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 . 410 415 ASP Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Gly Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 445 445 Asn Thr Pro Ser Gly Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 485 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 · 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys
530
535
540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln lle Leu lle Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 103 <211> 3161

<213> new AAV serotype, clone hu 136.1

<400> 165

gattgaattt	agcggccgcg	aattcgccct	tgctgcgtca	actggaccaa	tgagaacttt	60
ccattcaatg	attgcgtcga	caagatggtg	atctggtggg	aggagggaaa	gatgaccgcc	120
aaggtcatgg	agtcggccaa	agccattctc	ggaggaagca	aggtgcgcgt	ggaccagaaa	180
tgtaagtcct	cggcccagat	agacccgact	cccgtgattg	tcacctccaa	caccaacatg	240
tgcgccgtga	ttgacgggaa	ctcaacgacc	ttcgagcacc	agcagccgtt	gcaagaccgg	300
atgttcaaat	ttgaactcac	ccgccgtctg	gatcatgact	ttgggaaggt	caccaagcag	360
gaagtcaaag	actttttccg	gtgggcaaag	gatcacgtgg	ttgaggtgga	gcatgaattc	420
tacgtcaaaa	agggtggagc	caagaaaaga	cccgccccca	gtgacgcaga	tataagtgag	480
cccaaacggg	cgcgcgggtc	agttgcgcag	ccatcgacgt	cagacgcgga	agcttcgatc	540
aactacgcgg	acaggtacca	aaacaaatgt	tctcgtcacg	tgggcatgaa	tctgatgctg	600
tttccctgca	gacaatgcga	gagaatgaat	caaaattcaa	atatctgctt	cactcacgga	660
cagaaggact	gtttagagtg	ctttcccgtg	tcagaatctc	aacccgtttc	tgtcgtcaaa	720
aaggcgtatc	agaaactttg	ctacattcat	catatcatgg	gaaaggtgcc	agacgcttgc	780
actgcctgcg	atctggtcaa	tgtggatttg	gatgactgca	tctctgaaca	ataaatgatt	840
taaatcaggt	atggctgccg	atggttatct	tccagattgg	ctcaaggaca	ctctctctga	900
aggaataaga	cagtggtgga	agctcaaacc	tggcccacca	ccaccaaagc	ccgcagagcg	960
	gacagcgggg					1020
cggactcgac	aagggagagc	cggtcaacga	ggcagacgcc	gcggccctcg	agtacgacaa	1080
ggcctacgac	cggcagctcg	acagcggaga	caacccgtac	ctcaagtaca	accacgccga	1140
	caggagcgcc		_	_		1200
	gcgaaaaaga					1260
	ggaaaaaaga				_	1320
	aaagcgggcc					1380
	tccgtacctg					1440
	aatacgatgg					1500
	gtgggtaatt					1560
	accaccagca					1620
	tccagccaat				_	1680
	tattttgact					1740
	aacaacaact					1800
	aaggaggtca	_			_	1860
	caggtgttta					1920
	tgcctcccgc					1980
	aacaacggga					2040
	cagatgcttc					2100
	cacagcagct					2160
	tacctgtatt			-	_	2220
	cagttttctc	_			•	2280
						2340
	ccctgttacc					
	tcgtggactg					2400
	ccggccatgg	-			•	2460
	atctttggga				_	2520
	gacgaagagg					2580
	accaacctcc					2640
	cttccaggca					2700
ctgggcaaag	attccacaca	cggacggaca	TTTTCACCCC	tctcccctca	tgggcggatt	2760

tggacttaaa caccetecte cacagattet catcaagaac acceeggtae etgcaaatee 2820 ttcgaccacc ttcagtgcgg caaagtttgc ttccttcatc acacagtatt ccacagggca 2880 ggtcagcgtg gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaaccccga 2940 gatccagtac acttccaact acaacaaatc tgttaatgtg gactttactq tqqacactaa 3000 tggtgtgtat tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaatt 3060 gcttgttaat caataaaccg tttaattcgt ttcagttgaa ctttggtctc tgcgaagggc 3120 gaattcgttt aaaccctgca ggactagtcc ctttagtgag g 3161 <210> 166 3162 DNA new AAV serotype, clone hu 140.1 <400× 166 gaattgaatt tagcggccgc gaattcgccc ttcgcagaga ccaaagttca actgaaacga 60 attaaacggt ttattgatta acaagcaatt acagattacg agtcaggtat ctggtgccaa 120 tggggcgagg ctctgaatac acgccattag tgtccacagt aaagtccaca ttaacagact 180 tgttgtagtt ggaagtgtac tgaatttcgg gattccagcg tttgctgttt tccttctgca 240 gctcccactc gatctccacg ctgacctgtc ccgtggagta ctgtgtgatg aaggaagcaa 300 actttgCCgC actgaaggtg gtcgaaggat tcgcaggtac cggggtgttc ttgatgagaa 360 tctgtggagg agggtgttta agtccgaatc cacccatgag gggagagggg tgaaaatgtc 420 cgtccgtgtg tggaatcttt gcccagatgg gcccctgaag gtacacatct ctgtcctgcc 480 agaccatgcc tggaagaacg ccttgtgtgt tgacatctgc ggtagctgct tgtctgttgc 540 ctctctggag gttggtagat acagaaccgt actgctccgt agccacggga ttggttgtcc 600 tgatttcctc ttcgtctgta atcatgacct tttcaatgtc cacatttgtt ttctctgagc 660 cttgcttccc aaagatgaga accccgctct gaggaaaaaa cttttcttca ttgtccttgt 720 ggcttgccat ggccgggccc ggattcacca gagagtctct gccattgagg tggtacttgg 780 tagctccagt ccacgagtat tcactgttgt tgttatccgc agatgtcttt qatactcqct 840 gctggcggta acagggtcca ggaagccagt tcctagactg gtcccgaatg tcactcgctc 900 cggcctgaga aaactgaagc cttgactgcg tggtggttcc acttggagtg tttgttgtgc 960 tcaagtaata caggtactgg tcgatgagag gattcatgag acggtccaga ctctggctgt 1020 gagcgtagcc gctgtggaaa ggaacgtcct caaaagtgta gctgaaggta aagttgtttc 1080 cggtacgcag catctgagaa ggaaagtact ccaggcagta aaatgaagag cgtcctactg 1140 cctgactccc gttgttcagg gtgaggtatc catactgtgg caccatgaag acgtctgctg 1200 ggaacggcgg gaggcatcct tgatgcgccg agccgaggac gtacgggagc tggtactccg 1260 agtcagtaaa cacctgaacc gtgctggtaa ggttattggc aatcgtcgtc gtaccgtcat 1320 tctgcgtgac ctctttgact tgaatgttaa agagcttgaa gttgagtctc ttgggtcgga 1380 atccccagtt gttgttgatg agtctttgcc agtcacgtgg tgaaaagtgg cagtggaatc 1440 tgttgaagtc aaaatacccc caaggggtgc tgtagccaaa gtagtgattg tcgttcgagg 1500 ctcctgattg gctggaaatt tgtttgtaga ggtggttgtt gtaggtgggc agggcccagg 1560 ttcgggtgct ggtggtgatg actctgtcgc ccatccatgt ggaatcgcaa tgccaatttc 1620 ccgaggaatt acccactccg tcggcgccct cgttattgtc tgccattggt gcgccactgc 1680 ctgtagccat cgtattagtt cccagaccag agggggctgc tggtggctgt ccgagaggct 1740 gggggtcagg tactgagtct gcgtctccag tctgaccaaa attcaatctt tttcttgcag 1800 gctgctggcc cgcctttccg gttcccgagg aggagtctgg ctccacagga gagtgctcta 1860 ccggcctctt ttttcctgga gccgtcttga caggttcccc aaccaggccc agaggttcaa 1920 gaaccctctt tttcgcctgg aagactgctc gtccgaggtt gcccccaaaa gacgtatctt 1980 ctttaaggcg ctcctgaaac tccgcgtcgg cgtggttgta cttgaggtac gggttgtctc 2040 cgctgtcgag ctgccggtcg taggctttgt cgtgctcgag ggccgcggcg tctgcctcgt 2100

```
tgaccggctc tcccttgtcg agtccgttga agggtccgag gtacttgtac ccaggaagca
                                                                    2160
caagacccct gctgtcgtcc ttatgccgct ctgcgggctt tggtggtggt gggccaggtt
                                                                    2220
tgagcttcca ccactgtctt attccttcag agagagtgtc ctcgagccaa tctggaagat
                                                                    2280
                                                                    2340
aaccatcggc agccatacct gatttaaatc atttattgtt caaagatgca gtcatccaaa
tccacattga ccagatcgca ggcagtgcaa gcgtctggca cctttcccat gatatgatga
                                                                     2400
                                                                     2460
atgtagcaca gtttctgata cgcctttttg acgacagaaa cgggttgaga ttctgacacg
ggaaagcact ctaaacagtc tttctgtccg tgagtgaagc agatatttga attctgattc
                                                                     2520
attctctcgc attgtctgca gggaaacagc atcagattca tgcccacgtg acgagaacat
                                                                     2580
                                                                     2640
ttgttttggt acctgtctgc gtagttgatc gaagcttccg cgtctgacgt cgatggctgc
gcaactgact cgcgcacccg tttgggctca cttatatctg cgtcactggg ggcgggtctt
                                                                     2700
ttcttggctc cacccttttt gacgtagaat tcatgctcca cctcaaccac gtgatccttt
                                                                     2760
gcccaccgga aaaagtcttt gacttcctgc ttggtgacct tcccaaagtc atgatccaga
                                                                     2820
cggcgggtga gttcaaattt gaacatccgg tcttgcaacg gctgctggtg ttcgaaggtc
                                                                     2880
gttgagttcc cgtcaatcac ggcgcacatg ttggtgttgg aggtgacgat cacgggagtc
                                                                     2940
 gggtctatct gggccgagga cttgcatttc tggtccacgc gcaccttgct tcctccgaga
                                                                      3000
 atggctttgg ccgactccac gaccttggcg gtcatcttcc cctcctcca ccagatcacc
                                                                      3060
 atcttgtcga cacagtcgtt gaagggaaag ttctcattgg tccagttgac gcagcaaggg
                                                                      3120
                                                                      3162
 cgaattcgtt taaacctgca ggactagtcc ctttagtgag gg
        167
 <210>
        3164
        DNA
        new AAV serotype, clone hu 140.2
 gcgaattgaa tttagcggcc gcgaattcgc ccttcgcaga gaccaaagtt caactgaaac
        167
                                                                        60
                                                                       120
 gaattaaacg gtttattgat taacaagcaa ttacaaatta cgagtcaggt atctggtgcc
 aatggggcga ggctctgaat acacgccatt agtgtccaca gtaaagtcca cattaacaga
                                                                       180
 cttgttgtag ttggaagtgt actgaatttc gggattccag cgtttgctgt tttccttctg
                                                                       240
                                                                       300
  cagctcccac tcgatctcca cgctgacctg tcccgtggag tactgtgtga tgaaggaagc
  aaactttgcc gcactgaagg tggtcgaagg attcgcaggt accggggtgt tcttgatgag
                                                                       360
  aatctgtgga ggagggtgtt taggtccgaa tccacccatg aggggagagg ggtgaaaatg
                                                                       420
  tccgtccgtg tgtggaatct ttgcccagat gggcccctga aggtacacat ctctgtcctg
                                                                        480
  ccagaccatg cctggaagaa cgccttgtgt gttgacatct gcggtagctg cttgtctgtt
                                                                        540
  gcctctctgg aggttggtag atacagaacc atactgctcc gtagccacgg gattggttgt
                                                                        600
  cctgatttcc tcttcgtctg taatcatgac cttttcaatg tccacatttg ttttctctga
                                                                        660
  gccttgcttc ccaaagatga gaaccccgct ctgaggaaaa aacttttctt cattgtcctt
                                                                        720
  gtggcttgcc atggccgggc ccggattcac cagagagtct ctgccattga ggtggtactt
                                                                        780
  ggtagctcca gtccacgagt attcactgtt gttgttatcc gcagatgtct ttgatactcg
                                                                        840
  ctgctggcgg taacagggtc caggaagcca gttcctagac tggtcccgaa tgtcactcgc
                                                                        900
  tccggcctga gaaaactgaa gccttgactg cgtggtggtt ccacttggag tgtttgttgt
                                                                        960
   gctcaagtaa tacaggtact ggtcgatgag aggattcatg agacggtcca gactctggct
                                                                       1020
   gtgagcgtag ctgctgtgga aaggaacgtc ctcaaaagtg tagctgaagg taaagttgtt
                                                                       1080
                                                                       1140
   tccggtacgc agcatctgag aaggaaagta ctccgggcag taaaatgaag agcgtcctac
   tgcctgactc ccgttgctca gggtgaggta tccatactgt ggcaccatga agacgtctgc
                                                                       1200
   tgggaacggc gggaggcatc cttgatgcgc cgagccgagg acgtacggga gctggtactc
                                                                       1260
   cgagtcagta aacacctgaa ccgtgctggt aaggttattg gcaatcgtcg tcgtaccgtc
                                                                        1320
```

attctgcgtg acctctttga cttgaatgtt aaagagcttg aagttgagtc tcttgggtcg

gaatccccag ttgttgttga tgagtctttg ccagtcacgt ggtgaaaagt ggcagtggaa

Page 250

1380

1440

1500

tctgttgaag tcaaaatacc cccaaggggt gctgtagcca aagtagtgat tgtcgttcga

ceegeegaag e	,caaaa cacc	cccaaggggc	getgtageta	augtagegae	cgccgccga	2300
ggctcctgat t	:ggctggaaa	tttgtctgta	gaggtggttg	ttgtaggtgg	gcagggccca	1560
ggttcgggtg c	tggtggtga:	tgactctgtc	gcccatccat	gtggaatcgc	aatgccgatt	1620
tcccgaggaa t	tacccactc:	cgtcggcgcc	ctcgttattg	tctgccattg	gtgcgccact	1680
gcctgtagcc a	itcgtattag	ttcccagacc	agagggggct	gctggtggct	gtccgagagg	1740
ctgggggtca g	gtactgagt	ctgcgtctcc	agtctgacca	aaattcaatc	tttttcttgc	1800
aggctgctgg c	ccgcctttc	cggttcccga	ggaggagtct	ggctccacag	gagagtgctc	1860
taccggcctc t	tttttcccg	gagccgtctt	aacaggttcc	ccaaccaggc	ccagaggttc	1920
aagaaccctc t	ttttcgcct	ggaagactgc	tcgtccgagg	ttgcccccaa	aagacgtatc	1980
ttctttaagg c	:gctcctgaa	actccgcgtc	ggcgtggttg	tacttgaggt	acgggttgtc	2040
tccgctgtcg a	ıgctgccggt	cgtaggcttt	gtcgtgctcg	agggccgcgg	cgtctgcctc	2100
gttgaccggc t	ctcccttgt:	cgagtccgtt	gaagggtccg	aggtacttgt	acccaggaag	2160
cacaagaccc c	tgctgtcgt:	ccttatgccg	ctctgcgggc	tttggtggtg	gtgggccagg	2220
tttgagcttc c	:accactgtc	ttattccttc	agagagagtg	tcctcgagcc	aatctggaag	2280
ataaccatcg g	jcagccatac	ctgatttaaa	tcatttattg	ttcaaagatg	cagtcatcca	2340
aatccacatt g	accagatcg	caggcagtgc	aagcgtctgg	cacctttccc	atgatatgat	2400
gaatgtagca c	:agtttctga	tacgcctttt	tgacgacaga	aacgggttga	gattctgaca	2460
cgggaaagca c	:tctaaacag	tctttctgtc	cgtgagtgaa	gcagatattt	gaattctgat	2520
tcattctctc g	cattgtctg	cagggaaaca	gcatcagatt	catgcccacg	tgacgagaac	2580
atttgttttg g	tacctgtct	gcgtagttga	tcgaagcttc	cgcgtctgac	gtcgatggct	2640
gcgcaactga c	tcgcgcacc	cgtttgggcċ	cacttatatc	tgcgtcactg	ggggcgggtc	2700
ttttcttggc t	ccacccttt	ttgacgtaga	attcatgctc	cacctcaacc	acgtgatcct	2760
ttgcccaccg g	aaaaagtct	ttgacttcct	gcttggtgac	cttcccaaag	tcatgatcca	2820
gacggcgggt g	agttcaaat	ttgaacatcc	ggtcttgcaa	cggctgctgg	tgttcgaagg	2880
tcgttgagtt c	ccgtcaatc	acggcgcaca	tgttggtgtt	ggaggtgacg	atcacgggag	2940
tcgggtctat c	:tgggccgag	gacttgcatt	tctggtccac	gcgcaccttg	cttcctccga	3000
gaatggcttt g	gccgactcc	acgaccttgg	cggtcatctt	cccctcctcc	caccagatca	3060
ccatcttgtc g	acacagtcg	ttgaagggaa	agttctcatt	ggtccagttg	acgcagcaag	3120
ggcgaattcg t	ttaaacctg:	caggactagt	ccctttagtg	aggg		3164
	ων serotyp	e, clone hu	ı 147.2			
<400> 168 gattgattta g	Jeggeegega	attcgccctt	gctgcgtcaa	ctggaccaat	gagaactttc	60
ccttcaacga t	tgcgtcgac:	aagatggtga	tctggtggga	ggagggaaag	atgaccgcca	120
aggtcgtgga g	tcggccaaa	gccattctcg	gaggaagcaa	ggtgcgtgtg	gaccaaaagt	180
gcaagtcttc g	gcccagatc	gacccgactc	ccgtgatcgt	cacctccaac	accaacatgt	240
gcgccgtgat t	:gatggaaac	tcaacgacct	tcgagcacca	gcagccgttg	caagaccgga	300
tgttcaaatt t	gaacttacc	cgccgtctgg	atcatgactt	tggaaaggtc	accaagcagg	360
aagtgaaaga c	tttttccgg	tgggcaaagg	atcacgtggt	tgaggtggag	catgagttct	420
acgtcaaaaa g	ggtggagcc	aaaaaaagac	ccgcccccag	tgacgcagat	ataagtgagc	480
ccaaacgggc g	cgcgagtca	gttgcgcagc	catcgacgtc	agacgcggaa	gcttcgatca	540
actacgcgga c	aggtaccaa	aacaaatgtt	ctcgtcacgt	gggcatgaat	ctgatgctgt	600
ttccctgcag a	caatgcgag	agaatgaatc	agaattcaaa	tatctgcttc	actcacggac	660
agaaagactg t	ccatagtgc	tttcccgtgt	cagaatctca	acccgtttct	gtcgtcaaaa	720
aggcgtatca g	aaactgtgc	tacattcatc			gacgcttgca	780
			F	age 251		

	0.40
ctgcttgcga cctggtcaat gtggatttgg atgactgcat ctctgaacaa taaatgattt	840
aaatcaggta tggctgccga tggttatctt ccagattggc tcgaggacac tctctctgaa	900
ggaataagac agtggtggaa gctcaaacct ggcccaccac caccaaagcc cgcagagcgg	960
cataaggacg acagcagggg tcttgtgctt cctggataca agtacctcgg acccttcaac	1020
ggactcgaca agggagagcc ggtcaacgag gcagacgccg cggccctcga gcacgacaag	1080
gcctacgacc ggcagctcga cagcggagac aacccgtacc tcaagtacaa ccacgccgac	1140
gcggagtttc aggagcgcct taaagaagat acgtcttttg ggggcaacct cggacgagca	1200
gtcttccagg cgaaaaagag ggttcttgaa cctctgggcc tggttgagga acctgttaag	1260
acggctccgg gaaaaaagag gccggtagag cactctcctg tggagccaga ctcctcctcg	1320
ggaaccggaa aagcgggcaa ccagcctgca agaaaaagat tgaatttcgg tcagactgga	1380
gacgcagact ccgtacctga cccccagcct ctcggacagc caccagcatc cccctctggt	1440
ctgggaacta atacgatggc tacaggcagt ggcgcaccaa tggcagacaa taacgagggc	1500
gccgacggag tgggtaattc ctcgggaaat tggcattgcg attccacatg gatgggcgac	1560
agagtcgtca ccaccagcac ccgcacctgg gccctgccca cctacaacaa ccacctctac	1620
aagcagattt ccagccaatc aggagccagc aacgacaacc actactttgg ctacagcacc	1680
ccttgggggt attttgactt caacagattc cactgccact tttcgccacg cgactggcag	1740
agactcatca acaacaactg gggattccgg cccaaaagac tcaacttcaa gctgtttaac	1800
attcaagtca aggaggtcac gcagaatgac ggtacgacga cgattgccaa taaccttacc	1860
agcacggttc aggtgtttac tgacttggag taccagctcc cgtacgtcct cggctcggcg	1920
catcaaggat gcctcccgcc gttcccagca gacgtcttca tggtgccaca gtatggatac	1980
ctcaccctga acaacgggag tcaggcggta ggacgctctt ccttttactg cctggagtac	2040
tttccttctc agatgcttcg caccggaaac aactttacct tcagctacac ttttgaagac	2100
gttcctttcc acagcagcta cgctcacagt caaagtctgg accgtctcat gaatcctctc	2160
atcgaccagt acctgtatta cttgagcaga acaaacactc caagcggaac cactacgcag	2220
tccaggcttc agttttctca ggccggagcg agtgacattc gggaccagtc taggaactgg	2280
cttcctggac cctgttaccg ccagcagcga gtatcaaaga cagctgcgga taacaacaac	2340
agtgaatact cgtggactgg agctaccaag taccacctca atggcagaga ctctctggtg	2400
aatccgggcc cggccatggc cagccacaag gacgatgaag aaaagttttt tcctcaaagc	2460
ggggttctca tctttgggaa gcaaggctca gagaaaacaa atgtggacat tgaaaaggtc	2520
atgattacag acgaagagga aatcaggacc accaatcccg tggctacgga gcagtatggt	2580
tctgtatcta ccaacctcca gagcggcaac acacaagcag ctacctcaga tgtcaacaca	2640
caaggcgttc ttccaggcat ggtctggcag gacagagacg tgtacctgca ggggcccatc	2700
tgggcaaaaa ttccacacac ggacggacat tttcacccct ctcccctcat gggcggattt	2760
ggacttaaac accetectec acagattete attaagaata ecceggtace tgcgaateet	2820
tcgaccacct tcagcgcggc aaagtttgct tccttcatca cacagtattc cacggggcag	2880
gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaaacgctg gaatcccqaa	2940
attcagtaca cttccaacta caacaaatct gttaatgtgg actttactgt ggacactaat	3000
ggggtgtatt cagagcctcg ccctattggc accagatacc tgactcgtaa tctgtaattg	3060
	3120
cttgttaatc aataaaccgt ttaattcgtt tcagttgaac tttggtctct gcgaagggcg	
aattcgttta aacctgcagg actagtccct ttagtgagg	3159
<210> 169	
<211> 3156 <212> DNA <213- new AAV serotype clone by 147 3	
<213> new AAV serotype, clone hu 147.3	
<400> 169 cgattgaatt tagcggccgc gaattcgccc ttgctgcgtc aacggaccaa tgagaacttt	60
cccttcaacg attgcgtcga caagatggtg atctggtggg aggagggaaa gatgaccgcc	120

cccttcaacg attgcgtcga caagatggtg atctggtggg aggagggaaa gatgaccgcc 120

aaggtcgtgg	agtcggccaa	agccattctc	ggaggaagca	aggtgcgtgt	ggaccaaaag	180
tgcaagtctt	cggcccagat	cgacccgact	cccgtgatcg	tcacctccaa	caccaacatg	240
tgcgccgtga	ttgatggaaa	ctcaacgacc	ttcgagcacc	agcagccgtt	gcaagaccgg	300
atgttcaaat	ttgaacttac	ccgccgtctg	gatcatgact	ttggaaaggt	caccaagcag	360
gaagtgaaag	actttttccg	gtgggcaaag	gatcacgtgg	ttgaggtgga	gcatgagttc	420
tacgtcaaaa	agggtggagc	caaaaaaaga	cccgccccca	gtgacgcaga	tataagtgag	480
cccaaacggg	cgcgcgagtc	agttgcgcag	ccatcgacgt	cagacgcgga	agcttcgatc	540
aactacgcgg	acaggtacca	aaacaaatgt	tctcgtcacg	tgggcatgaa	tctgatgctg	600
tttccctgca	gacaatgcga	gcgaatgaaṭ	cagaattcaa	atatctgctt	cactcacgga	660
cagaaagact	gtttagagtg	ctttcccgtg	tcagaatctc	aacccgtttc	tgtcgtcaaa	720
aaggcgtatc	agaaactgtg	ctacattcat	cacatcatgg	gaaaggtgcc	agacgcttgc	780
actgcttgcg	acctggtcaa	tgtggatttg	gatgactgca	tctctgaaca	ataaatgatt	840
taaatcaggt	atggctgccg	atggttatct	tccagattgg	ctcgaggaca	ctctctctga	900
aggaataaga	cagtggtgga	agctcaaacc	tggcccacca	ccaaagcccg	cagagcggca	960
taaggacgac	agcaggggtc	ttgtgcttcc	tggatacaag	tacctcggac	ccttcaacgg	1020
actcgacaag	ggagagccgg	tcaacgaggc	agacgccgcg	gccctcgagc	acgacaaggc	1080
ctacgaccgg	cagctcgaca	gcggagacaa	cccgtacctc	aagtacaacc	acgccgacgc	1140
ggagtttcag	gagcgcctta	aagaagatac	gtcttttggg	ggcaacctcg	gacgagcagt	1200
cttccaggcg	aaaaagaggg	ttcttgaacc	tctgggcctg	gttgaggaac	ctgttaagac	1260
ggctccggga	aaaaagaggc	ccgtagagca	ctctcctgtg	gagccagact	cctcctcggg	1320
aaccggaaaa	gcgggcaacc	agcctgcaag	aaaaagattg	aatttcggtc	agactggaga	1380
cgcagactcc	gtacctgacc	cccagcctct	cggacagcca	ccagcagccc	cctctggtct	1440
gggaactaat	acgatggcta	caggcagtgg	cgcaccaatg	gcagacaata	acgagggcgc	1500
cgacggagtg	ggtaattcct	cgggagattg	gcattgcgat	tccacatgga	tgggcgacag	1560
agtcatcacc	accagcaccc	gcacctgggc	cctgcccacc	tacaacaacc	acctctacaa	1620
gcagatttcc	agccaatcag	gagccagcaa	tgacaaccac	tactttggct	acagcacccc	1680
ttgggggtat	tttgacttca	acagattcca	ctgccacttt	tcgccacgcg	actggcagag	1740
actcatcaac	aacaactggg	gattccggcc	caaaagactc	aacctcaagc	tgtttaacat	1800
tcaagtcaag	gaggtcacgc	agaatgacgg	tacgacgacg	attgccaata	accttaccag	1860
cacggttcag	gtgtttactg	acttggagta	ccagctcccg	tacgtcctcg	gctcggcgca	1920
tcaaggatgc	ctcccgccgt	tcccagcaga	cgtcttcatg	gtgccacagt	atggatacct	1980
caccctgaac	aacgggagtc	aggcggtagg	acgctcttcc	ttttactgcc	tggagtactt	2040
tccttctcag	atgcttcgta	ccggaaacaa	ctttaccttc	agctacactt	ttgaagacgt	2100
	agcagctacg		-			2160
	ctgtattact					2220
caggcttcag	ttttctcagg	ccggagcgag	tgacattcgg	gaccagtcta	ggaactggct	2280
	tgttaccgcc					2340
	tggactggag	-				2400
	gccatggcca					2460
	tttgggaagc			_		2520
_	gaagaggaaa					2580
	aacctccaga					2640
	ccaggcatgg					2700
	ccacacacgg					2760
acttaaacac	cctcctccac	agattctcat	taagaatacc	ccggtacctg	cgaatccttc	2820

gaccaccitic agcgcggcaa agcttgcttc cttcatcaca cagtattcca cggggcaggt 2880 cagcgtggag atcgagtggg agctgcagaa ggagaacagc aaacgctgga atcccgaaat 2940 tcagtacact tccaactaca acaaatctqt taatgtggac tttactgtgg acactaatgg 3000 ggtgtattca gagcctcgcc ctattggcac cagatacctg actcgtaatc tgtaattgct 3060 3120 tgttaatcaa taaaccgttt aattcgtttc agttgaactt tggtctctgc gaagggcgaa ttcgtttaaa cctgcaggac tagtcccttt agtgag 3156 <210> 170 3158 <211><212> DNA <213> new AAV serotype, clone hu 161.10 <400> 170 gattgaattt agcggccgcg aattcgccct tgctgcgtca actggaccaa tgagaacttt 60 cctttcaatg attgcgtcga caagatggtg atctggtggg aggagggaaa gatgaccgcc 120 aaggtcgtgg agtcggccaa agccattctc ggaggaagca aggtgcgcgc ggaccagaaa 180 tgcaagtcct cggcccagat agacccgact cccgtgattg tcacctccaa caccaacatg 240 tgcgccgtga ttgacgggaa ctcaacgacc ttcgaacacc agcagccgtt gcaagaccgg 300 atgttcaaat ttgaactcac ccgccgtctg gatcatgact ttgggaaggt caccaagcag 360 gaagtcaaag actttttccg gtgggcaaag gatcacgtgg ttgaggtgga gcatgaattc 420 tacgtcaaaa agggtggagc taagaaaaga cccgcccca gtgacgcaga tataagtgag 480 cccaaacggg cgcgcgagtc agttgcgcag ccatcgacgt cagacgcgga agcttcgatc 540 aactacgcgg gcaggtacca aaacaaatgt tctcgtcacg tgggcatgaa tctgatgctg 600 tttccctgca gacaatgcga gagaatgaat cagaattcaa atatctgctt cactcacgga 660 cagaaagact gtttagagtg ctttcccgtg tcagaatctc aacccgtttc tgtcgtcaaa 720 aaggcgtatc agaaactttg ctacattcat catatcatgg gaaaggtgcc agacgcttgc 780 actgcctgcg atctggtcaa tgtggatttg gatgactgca tctctgaaca ataaatgatt 840 taaatcaggt atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga 900 aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg 960 gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa 1020 cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa 1080 ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga 1140 cgcggagttt caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc 1200 agtcttccag gcaaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa 1260 aacggctccg ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc 1320 gggaaccgga aaagcgggcc agcagcctgc aagaaaaaga ttgaatttcg gtcagactgg 1380 agacgcagac tccgtacctg accccagcc tctcggacag ccaccagcag ccccctctgg 1440 tctgggatct actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg 1500 tgccgatgga gtgggtaatt cctcgggaaa ttggcattgc gattcccaat ggctgggcga 1560 cagagtcatc accaccagca cccgcacctg ggccctgccc acctacaaca accacctcta 1620 caagcaaatc tccagccaat caggagcctc aaacgacaac cactactttg gctacagcac 1680 cccctggggg tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca 1740 aagactcatc aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa 1800 cattcaagtc aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac 1860 1920 gcatcaagga tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata 1980 cctcaccctg aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta 2040 ctttccttct cagatgctgc gtaccggaaa caactttcaa ttcagctaca cttttgaaga 2100 cgtgcctttc cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct 2160

```
2220
 gtctcggcta ctgtttagcc aagctggacc caccaacatg tctcttcaag ctaaaaactg
                                                                     2280
 gctgcctgga ccttgctaca gacagcagcg tctgtcaaag Caggcaaacg acaacaacaa
                                                                     2340
 cagcaacttt ccctggactg cagctacaaa gtatcatcta aatggccggg actcgttggt
                                                                     2400
 taatccagga ccagctatgg ccagtcacaa ggatgacgaa gaaaagtttt tccccatgca
                                                                     2460
 tggaaccctt atatttggta aacaaggaac aaatgccaac gacgcggatt tggaaaatgt
                                                                     2520
 catgattaca gatgaagaag aaatcaggac caccaatccc gtggctacgg agcagtacgg
                                                                     2580
 aactgtatca aataatttgc aaaactcaaa cactggtcca actactggaa ctgtcaatca
                                                                     2640
 ccaaggagcg ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat
                                                                     2700
 ttgggccaag attcctcaca ccgatggaca ctttcatcct tctccactga tgggaggttt
                                                                     2760
 tggactcaaa cacccacctc ctcaaatcat gatcaaaaac actcccgttc cagccaatcc
                                                                     2820
 tcccacaaac ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacggggca
                                                                     2880
 ggtcagcgtg gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga
                                                                     2940
 aattcagtac acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa
                                                                     3000
 tggtgtgtat tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaatt
                                                                     3060
 gcttgttaat caataaaccg tttaattcgt ttcagttgaa ctttggtctc tgcgaagggc
                                                                     3120
 gaattcgttt aaacctgcag gactagtccc tttagtga
                                                                     3158
 <210>
        171
        3167
        DNA
        new AAV serotype, clone hu 172.1
 <400> 171
 attgaattta gcggccgcga attcgccctt cgcagagacc aaagttcaac tgaaacgaat
                                                                      60
 taaacggttt attgattaac aagcaattac agattacgag tcaggtacct qqtqccaatq
                                                                     120
 gggcgaggct ctgaatacac accattagtg tccacagtaa agtccacatt aacagatttg
                                                                      180
 ttgtagttgg aagtgtactg aatctcggga ttccagcgtt tgctgttctc cttctgcagc
                                                                     240
 tcccactcga tctccacgct gacctgcccc gtggagtact gtgtaatgaa ggaagcaaac
                                                                     300
 tttgccgcac tgaaggtagt cgaaggattc gcaggtaccg gggtgttctt gatgagaatc
                                                                     360
 tgcgggggag ggtgtttaag tccgaatccg cccatgaggg gagaggggtg aaaatgtccg
                                                                     420
 tccgtgtgtg gaatctttgc ccagatgggc ccctgcaggt acacgtctct gtcctgccac
                                                                     480
 accatgcctg gaagaacgcc ttgtgtgttg acatctgagg tagctgcttg tgtgttgccg
                                                                     540
 ctctggaggt tggtagatac agaaccatac tgctccgtag ccacgggatt ggtggtcctg
                                                                     600
 atttcctctt cgtctgtaat catgaccttt tcaatgtcca cattagtttt tcccgagtct
                                                                     660
 tgttttccaa agatgagaac cccgctctga ggaaaaaact tttcttcatc gtccttgtgg
                                                                     720
 ctggccatgg ccgggcccgg attcaccaga gagtctcttc cattaaggtg gtacttggta
                                                                     780
 gctccagtcc acgagtattc actgttgttg ttatccgcag atgtctttga tactcgctgc
                                                                     840
 tggcggtaac agggtccagg aagccagttc ctagactggt cccgaatgtc acttgctccg
                                                                     900
 gcctgagaaa actgaagcct tgactgcgtg gtggttccgc ttggagtgtt tgttctgctc
                                                                     960
 aagtaataca ggtactggtc gatgagagga ttcatgagac ggtccaaact ctggctgtgg
                                                                     1020
 gcgtagctgc tgtggaaagg aacgtcctca aaggtgtagc tgaaggtaaa gttqtttccg
                                                                    1080
 gtacgcagca tctgagaagg aaagtactcc aggcagtaaa atgaagagcg tcctactgcc
                                                                     1140
 tgactcccgt tgttcagggt gaggtatcca tactgtggca ccatgaagac gtctgctggg
                                                                    1200
 aacggcggga ggcatccttg atgcgccgag ccgaggacgt acgggagctg gtactccgag
                                                                     1260
 tcagtaaaca cctgaaccgt gctggtaagg ttattggcaa tcgtcgtcgt accgtcattc
                                                                     1320
 tgcgtgacct ccttgacttg aatgttaaag agcttgaagt tgagtctttt gggccggaat
                                                                    1380
 ccccaattgt tgttgatgag tctttgccag tcacgtggcg aaaagtggca gtggaatctg
                                                                     1440
 ttgaagtcaa aataccccca aggggtgctg tagccaaagt agtggttgtc gtttgaggct
                                                                    1500
```

```
"cdtgattggt "tggaaatctg cttgtagagg tggttgttgt aggtgggcag agcccaggtg
                                                                      1560
 cgggtgctgg tggtgatgac tctgtcgccc atccatgtgg aatcgcaatg ccaatttccc
                                                                      1620
 gaggaattac ccactccgtc ggcgccctcg ttattgtctg ccattggtgc gccactgcct
                                                                      1680
 gtagccatcg tattagttcc cagaccagag ggggctgctg gtggctgtcc gagaggctgg
                                                                      1740
 gggtcaggta cggagtctgc gtctccagtc tgaccgaaat tcaatctctt tcttgcaggc
                                                                      1800
 tgctggcccg cttttccggt tcccgaggag gagtctggct ccgcaggaga gtgctctacc
                                                                      1860
 ggcctctttt ttcccggagc cgtcttaaca ggttcctcaa ccaggcccag aggttcaaga
                                                                      1920
 accetettt tegeetggaa gaetgetegt eegaggttge eeccaaaaga egtatettet
                                                                      1980
 ttaagacgct cctggaactc cgcgtcggcg tggttgtact tggggtacgg gttgtctccg
                                                                      2040
 ctgtcgagct gccggtcgta ggccttgtcg tgctcgaggg ccgcggcgtc tgcctcgttg
                                                                      2100
 accggctctc ccttgtcgag tccgttgaag ggtccaaggt acttgtaccc aggaagcaca
                                                                      2160
 agacccctgc tgtcgtcctt atgccgctct gcgggctttg gtggtggtgg gccaggtttg
                                                                      2220
 agcttccacc actgtcttat tccttcagag agagtgtcct cgagccaatc tggaagataa
                                                                      2280
 ccatcggCag ccatacctga tttaaatcat ttattgttca gagatgcagt catccaaatc
                                                                      2340
 cacattgacc agatcgcaag cagtgcaagc gtctggcacc tttcccatga tatgatgaat
                                                                      2400
 gtagcacagt ttctgatacg cctttttgac gacagaaacg ggttgagatt ctgacacggg
                                                                      2460
 aaagcactct aaacagtctt tctgtccgtg agtgaagcag atatttgaat tctgattcat
                                                                      2520
 tctctcgcat tgtctgcagg gaaacagcat cagattcatg cccacgtgac gagaacattt
                                                                      2580
 gttttggtac ctgtccgcgt agttgattga agcttccgcg tctgacgtcg atggctgcgc
                                                                      2640
 aactgactcg cgcgcccgtt tgggctcact tatatctgcg tcactggggg cgggtctttt
                                                                      2700
 tttggctcca ccctttttga cgtagaattc atgctctacc tcaaccacgt gatcctttgc
                                                                      2760
 ccaccggaaa aagtctttga cttcctgctt ggtgaccttc ccaaagtcat gatccagacg
                                                                      2820
 gcgggtgagt tcaaatttga acatccggtc ttgcaacggc tgctggtgtt cgaaggtcgt
                                                                      2880
 tgagttcccg tcaatcactg cgcacatgtt ggtgttggag gtgacaatca cgggagtcgg
                                                                      2940
 gtctatctgg gccgaggact tgcatttctg gtccacgcgc accttgcttc ctccgagaat
                                                                      3000
 ggctttggcc gactccacga ccttggcggt catcttcccc tcctcccacc agatcaccat
                                                                      3060
 cttgtcgacg caatcattga aaggaaagtt ctcattggtc cagttgacgc agccgtagaa
                                                                      3120
 agggcgaatt cgtttaaacc tgcaggacta gtccctttag tgagggt
                                                                      3167
 <210>
        172
        3161
        new AAV serotype, clone hu 172.2
 aattgaattt agcggccgcg aattcgccct tcgcagagac caaagttcaa ctgaaacgaa
                                                                        60
 ttaaacggtt tattgattaa caagcaatta cagattacga gtcaggtatc tggtgccaat
                                                                       120
 ggggcgaggc tctgaataca caccattagt gtccacagta aagtccacat taacagattt
                                                                       180
 gttgtagttg gaagtgtact gaatctcggg attccagcgt ttgctgttct ccttctgcag
                                                                       240
 ctcccactcg atctccacgc tgacctgccc cgtggagtac tgtgtaatga aggaagcaaa
                                                                       300
 ctttgccgca ctgaaggtag tcgaaggatt cgcaggtacc ggggtgttct tgatgagaat
                                                                       360
 ctgcggggga gggtgtttaa gtccgaatcc.gcccatgagg ggagaggggt gaaaatgtcc
                                                                       420
 gtccgtgtgt ggaatctttg cccagatggg cccctgcagg tacacgtctc tqtcctqcca
                                                                       480
 caccatgcct ggaagaacgc cttgtgtgtt gacatctgag gtagctgctt gtgtgttgcc
                                                                       540
 gctctggagg ttggtagata cagaaccata ctgctccgta gccacgggat tggtggtcct
                                                                       600
 gatttcctct tcgtctgtaa tcatgacctt ttcaatgtcc acattagttt ttcccgagtc
                                                                       660
 ttgttttcca aagatgagaa ccccgctctg aggaaaaaac ttttcttcat cgtccttgtg
                                                                       720
 gctggccatg gccgggcccg gattcaccag agagtctctt ccattaaggt ggtacttggt
                                                                       780
 agctccagtc cacgagtatt cactgttgtt gttatccgca gatgtctttg atactcgctg
                                                                       840
```

-	"ctggcggtaa cagggtccag	gaagccagtt	cctagactgg	tcccgaatgt	cacttgctcc	900
	ggcctgagaa aactgaagcc					960
	caagtaatac aggtactggt	cgacgagagg	attcatgaga	cggtccaaac	tctggctgtg	1020
	ggcgtagctg ctgtggaaag	gaacgtcctc	aaaggtgtag	ctgaaggtaa	agttgtttcc	1080
	ggtacgcagc atctgagaag	gaaagtactc	caggcagtaa	aatgaagagc	gtcctactgc	1140
	ctgactcccg ttgttcaggg	tgaggtatcc	atactgtggc	accatgaaga	cgtctgctgg	1200
	gaacggcggg aggcatcctt	gatgcgccga	gccgaggacg	tacgggagct	ggtactccga	1260
	gtcagtaaac acctgaaccg	tgctggtaag	gttattggca	atcgtcgtcg	taccgtcatt	1320
	ctgcgtgacc tccttgactt	gaatgttaaa.	gagcttgaag	ttgagtcttt	tgggccggga	1380
	tccccaattg ttgttgatga	gtctttgcca	gtcacgtggc	gaaaagtggc	agtggaatct	1440
	gttgaagtca aaataccccc	aaggggtgct	gtagccaaag	tagtggttgt	cgtttgaggc	1500
	tcctgattgg ctggaaatct	gcctgtagag	gtggttgttg	taggtgggca	gagcccaggt	1560
	gcgggtgctg gtggtgatga	ctctgtcgcc	catccatgtg	gaatcgcaat	gccaatttcc	1620
	cgaggaatta cccactccgt	cggcgccctc	gttattgtct	gccattggtg	cgccactgcc	1680
	tgtagccatc gtattagttc	ccagaccaga	gggggctgct	ggtggctgtc	cgagaggctg	1740
	ggggtcaggt acggagtctg	cgtctccagt.	ctgaccgaaa	ttcaatctcc	ttcttgcagg	1800
	ctgctggccc gcttttccgg	ttcccgagga	ggagtctggc	tccgcaagag	agtgctctac	1860
	cggcctcttt tttcccggag	ccgtcttaac	aggttcctca	accaggccca	gaggttcaag	1920
	aaccctcttt ttcgcctgga	agactgctcg	tccgaggttg	ccccaaaag	acgtatcttc	1980
	tttaagacgc tcctggaact	ccgcgtcggc	gtggttgtac	ttgaggtacg	ggttgtctcc	2040
	gccgtcgagc tgccggtcgt	aggccttgtc	gtgctcgagg	gccgcggcgt	ctgcctcgtt	2100
	gaccggctct cccttgtcga	gtccgttgaa	gggtccaagg	tacttgtacc	caggaagcac	2160
	aagacccctg ctgtcgtcct	tatgccgctc-	tgcgggcttt	ggtggtggtg	ggccaggttt	2220
	gagcttccac cactgtctta	ttccttcaga	gagagtgtcc	tcgagccaat	ctggaagata	2280
	accatcggca gccatacctg	atttaaatca	tttattgttc	agagatgcag	tcatccaaat	2340
	ccacattgac cagatcgcaa	gcagtgcaag	cgtctggcac	ctttcccatg	atatgatgaa	2400
	tgtagcacag tttctgatac	gcctttttga	cgacagaaac	gggttgagat	tctgacacgg	2460
	gaaagcactc taaacagtct	ttctgtccgt	gagtgaagca	gatatttgaa	ttctgattca	2520
	ttctctcgca ttgtctgcag	ggaaacagca	tcagattcat	gcccacgtga	cgagaacatt	2580
	tgttttggta cctgtccgcg	tagttgattg	aagcttccgc	gtctgacgtc	gatggctgcg	2640
	caactgactc gcgcgcccgt	ttgggctcac	ttatatctgc	gtcactgggg	gcgggtcttt	2700
	ttttggctcc accctttttg	acgtagaatt	catgctctac	ctcaaccacg	tgatcctttg	2760
	cccaccggaa aaagtctttg	acttcctgct	tggtgacctt	cccaaagtca	tgatccagac	2820
	ggcgggtgag ttcaaatttg	aacatccggt	cttgcaacgg	ctgctggtgt	tcgaaggtcg	2880
	ttgagttccc gtcaatcact	gcgcacatgt	tggtgttgga	ggtgacaatc	acgggagtcg	2940
	ggtctatctg ggccgaggac	ttgcatttct	ggtccacgcg	caccttgctt	cctccgagaa	3000
	tggctttggc cgactccacg	accttggcgg	tcatcttccc	ctcctcccac	cagatcacca	3060
	tcttgtcgac gcaatcattg	aaaggaaagt	tctcattggt	ccagttgacg	cagcaagggc	3120
	gaattcgttt aaacctgcag	gactagtccc	tttagtgagg	g		3161
	<210> 173 <211> 3172 <212> DNA <213> new AAV seroty	pe, clone hu	ı 173.4			
	<400> 173 gattgaattt agcggccgcg	aattcgccct	tgctgcgtca	actggaccaa	tgagaacttt	60
	cccttcaacg attgcgtcga	caagatggtg	atctggtggg	aggagggcaa	gatgaccgcc	120
	aaggtcgtgg agtccgccaa	ggccattctg	ggtggaagca	aggtgcgcgt	ggaccaaaag	180

'tgcäağtcät	čģgcccagat	cgaccccacg	cccgtgatcg	tcacctccaa	caccaacatg	240
tgcgccgtga	tcgacgggaa	cagcaccacc	ttcgagcacc	agcagcccct	gcaggaccgc	300
atgttcaagt	tcgagctcac	ccgccgtctg	gagcacgact	ttggcaaggt	gaccaagcag	360
gaagtcaaag	agttcttccg	ctgggctcag	gatcacgtga	ctgaggtggc	gcatgagttc	420
tacgtcagaa	agggcggagc	caccaaaaga	cccgcccca	gtgacgcgga	tataagcgag	480
cccaagcggg	cctgcccctc	agttgcggag	ccatcgacgt	cagacgcgga	agcaccggtg	540
gactttgcgg	acaggtacca	aaacaaatgt	tctcgtcacg	cgggcatgct	tcagatgctg	600
tttccctgca	agacatgcga	gagaatgaat	cagaatttca	acgtctgctt	cacgcacggg	660
gtcagagact	gctcagagtg	cttccccggc	gcgtcggaat	ctcaacccgt	cgtcagaaaa	720
aagacgtatc	agaaactgtg	cgcgattcat	catctgctgg	ggcgggcacc	cgagattgcg	780
tgttcggcct	gcgatctcgt	caacgtggac	ttggatgact	gtgtttctga	gcaataaatg	840
acttaaacca	ggtatggctg	ctgacggtta	tcttccagat	tggctcgagg	acaacctctc	900
tgagggcatt	cgcgagtggt	gggacctgaa	acctggagcc	cccaagccca	aggccaacca	960
gcagaagcag	gacgacggcc	ggggtctggt	gcttcctggc	tacaagtacc	tcggaccctt	1020
caacggactc	gacaaggggg	agcccgtcaa	cgcggcggac	gcagcggccc	tcgagcacga	1080
	gaccagcagc					1140
cgacgccgag	tttcaggagc	gtctgcaaga	agatacgtct	tttgggggca	acctcgggcg	1200
agcagtcttc	caggccaaga	agcgggttct	cgaacctctc	ggtctggttg	aggaagctgc	1260
	cctggaaaga					1320
	atcggcaaga					1380
gactggcgac	tcagagtcag	tccccgaccc	tcaaccaatc	ggagaaccac	cagcaggccc	1440
	ggatctggta					1500
cgaaggcgcc	gacggagtgg	gtagttcctc	aggaaattgg	cattgcgatt	ccacatggct	1560
gggcgacaga	gtcatcacca	ccagcacccg	aacctgggcc	ctgcccacct	acaacaacca	1620
	caaatatcca					1680
	accccctggg					1740
acgtgactgg	cagcgactca	tcaacaacaa	ctggggattc	cggccaaaaa	gactcagctt	1800
caagctcttc	aacatccagg	tcaaggaggt	cacgcagaat	gaaggcaccg	agaccatcgc	1860
caataacctt	accagcacga	ttcaggtatt	tacggactcg	gaataccagc	tgccgtacgt	1920
cctcggctcc	gcgcaccagg	gctgcctgcc	tccgttcccg	gcggacgtct	tcatgattcc	1980
ccagtacggc	taccttacac	tgaacaatgg	aagtcaagcc	gtaggccgtt	cctccttcta	2040
ctgcctggaa	tattttccat	ctcaaatgct	gcgaactgga	aacaattttg	aattcagcta	2100
caccttcgag	gacgtgcctt	tccacagcag	ctgcgcacac	agccagagct	cggaccgact	2160
gatgaatcct	ctcatcgacc	agtacctgta	ctacttatcc	agaactcggt	ccacaggagg	2220
aactcaaggt	acccagcaat	tgttattttc	tcaagctggg	cctgcaaaca	tgtcggctca	2280
ggctaagaac	tggctacctg	gaccttgcta	ccggcagcag	cgagtctcta	cgacactgtc	2340
gcaaaacaac	aacagcaact	ttgcttggac	tggtgccacc	aaatatcacc	tgaacggaag	2400
agactctttg	gtaaatcccg	gtgtcgccat	ggcaacccac	aaggacgacg	aggaacgctt	2460
cttcccgtcg	agtggagtcc	tgatgtttgg	aaaacagggt	gctggaagag	acaatgtgga	2520
ctacagcagc	gttatgctaa	ccagcgaaga	agaaattaaa	accactaacc	ctgtagccac	2580
agaacaatac	ggtgtggtgg	ctgacaactt	gcagcaaacc	aatacagggc	ctattgtggg	2640
aaatgtcaac	agccaaggag	ccttacctgg	catggtctgg	cagaaccgag	acgtgtacct	2700
gcagggtccc	atctgggcca	agattcctca	cacggacggc	aacttccacc	cttcaccgct	2760
aatgggagga	tttggactga	agcacccacc	tcctcagatc	ctgatcaaga	acacgccggt	2820
acctgcggat	cctccaacaa	cgttcagcca	ggcgaaattg	gcttccttca	ttacgcagta	2880
cagcaccgga	caggtcagcg	tggaaatcga	gtgggagctg	cagaaggaga	acagcaaacg	2940
				Page 258		

3000

ctggaaccca gagattcagt acacttcaaa ctactacaaa tctacaaatg tggactttgc tgtcaataca gagggaactt attctgagcc tcgccccatt ggtactcgtt acctcacccg 3060 3120 taatctgtaa ttgctggtta atcaataaac cgtttgattc gtttcagttg aactttggtc 3172 tctgcgaagg gcgaattcgt ttaaacctgc aggactagtc cctttagtga gg <210> 174 3159 <211> <212> DNA <213> new AAV serotype, clone hu 161.8 <400> 60 gattgaattt agcggccgcg aattcgccct tgctgcgtca actggaccaa tgagaacttt cctttcaatg attgcgtcga caagatggtg atctggtggg aggagggaaa gatgaccgcc 120 aaggtcgtgg agtcggccaa agccattctc ggaggaagca aggtqcgcgt ggaccagaaa 180 tgcaagtcct cggcccagat agacccgact cccgtgattg tcacctccaa caccgacatg 240 300 tgcgccgtga ttgacgggaa ctcaacgacc ttcgaacacc agcagccgtt gcaagaccgg atgttcaaat ttgaactcac ccgccgtctg gatcatgact ttgggaaggt caccaagcag 360 gaagtcaaag actttttccg gtgggcaaag gatcacgtgg ttgaggtgga gcatgaattc 420 tacgtcaaaa agggtggagc taagaaaaga cccgcccca gtgacgcaga tataagtgag 480 cccaaacggg cgcgcgagtc agttgcgcag ccatcgacgt cagacgcgga agcttcgatc 540 aactacgcgg acaggtacca aaacaaatgt tctcgtcacg tgggcatgaa tctgatgctg 600 tttccctgca gacaatgcga gagaatgaat cagaattcaa atatctgctt cactcacgga 660 cagaaagact gtttagagtg ctttcccgtg tcagaatctc aacccgtttc tgtcgtcaaa 720 aaggcgtatc agaaactttg ctacattcat catatcatgg gaaaggtgcc agacgcttgc 780 actgcctgcg atctggtcaa tgtggatttg gatgactgca tctctgaaca ataaatgatt 840 taaatcaggt atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga 900 aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg 960 gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa 1020 cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa 1080 ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga 1140 cgcggagttt caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcgqacqaqc 1200 agtcttccag gcaaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa 1260 aacggctccg ggaaaaaaga ggccggtaga gcaccctcct gtggagccag actcctcctc 1320 gggaaccgga aaagcgggcc agcagcctgc aagaaaaaga ttgaatttcg gtcagactqq 1380 agacgcagac teegtacetg acceetagee teteggacag ecaecageag ecceetetgg 1440 tctgggatct actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg 1500 tgccgatgga gtgggtaatt cctcgggaaa ttggcattgc gattcccaat ggctgggcga 1560 cagagtcatc accaccagca cccgcacctg ggccctgccc acctacaaca accacctcta 1620 caagcaaatc tccagccaat caggagcctc aaacgacaac cactactttg gctacagcac 1680 cccctggggg tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca 1740 aagactcatc aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa 1800 cattcaagtc aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac 1860 1920 gcatcaagga tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata 1980 cctcaccctg aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta 2040 ctttccttct cagatgctgc gtaccggaaa caactttcag ttcagctaca cttttgaaga 2100 cgtgcctttc cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct 2160 gatcgaccag tacctgtatt atctgaacaa gacacaaaca aatagtggaa ctcttcagca 2220 gtctcggcta ctgtttagcc aagctggacc caccaacatg tctcttcaag ctaaaaaccg 2280

					•	
gctgcctgga	ccttgctaca	gacagcagcg	tctgtcaaag	caggcaaacg	acaacaacaa	2340
cagcaacttt	ccctggaccg	cagctacaaa	gtatcatcta	aatggccggg	actcgttggt	2400
taatccagga	ccagctatgg	ccagtcacaa	ggatgacgaa	gaaaagtttt	tccccatgca	2460
tggaaccctt	atatttggta	aacaaggaac	aaatgccaac	gacgcggatt	tggaaaatgt	2520
catgattaca	gatgaagaag	aaatcaggac	caccaatccc	gtggctacgg	agcagtacgg	2580
aactgtatca	aataatttgc	aaaactcaaa	cactggtcca	actactggaa	ctgtcaatca	2640
ccaaggagcg	ttacctggta	tggtgtggca	ggatcgagac	gtgtacctgc	agggacccat	2700
ttgggccaag	attcctcaca	ccgatggaca	ctttcatcct	tctccactgg	tgggaggttt	2760
tggactcaaa	cacccacctc	ctcaaatcat	gatcaaaaac	actcccgttc	cagccaatcc	2820
tcccacaaac	ttcagttctg	ccaagtttgc	ttctttcatc	acacagtatt	ccacggggca	2880
ggtcagcgtg	gagatcgagt	gggagctgca	gaaggagaac	agcaaacgct	ggaatcccga	2940
aattcagtac	acttccaact	acaacaaatc	tgttaatgtg	gactttactg	tggacactaa	3000
tggtgtgtat	tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atctgtaatt	3060
gcttgttaat	caataaaccg	tttaattcgt	ttcagttgaa	ctttggtctc	tgcgaagggc	3120
gaattcgttt	aaacctgcag	gactagtccc	tttagtgag			3159
<210> 175						
<211> 3172 <212> DNA	2					
	AAV seroty	pe, clone hu	173.8			
<400> 175 gattgaattt	agcggccgcg	aattcgccct	tgctgcgtca	actggaccaa	tgaqaacttt	60
		caagatggtg			• •	120
aaggtcgtgg	agtccgccaa	ggccattctg	ggtggaagca	aggtgcgcgt	ggaccaaaag	180
tgcaagtcat	cggcccagat	cgaccccacg	cccgtgatcg	tcacctccaa	caccaacatg	240
tgcgccgtga	tcggcgggaa	cagcaccacc	ttcgagcacc	agcagcccct	gcaggaccgc	300
atgttcaagt	tcgagctcac	ccgccgtctg	gagcacgact	ttggcaaggt	gaccaagcag	360
gaagtcaaag	agttcttccg	ctgggctcag	gatcacgtga	ctgaggtggc	gcatgagttc	420
tacgtcagaa	agggcggagc	caccaaaaga	cccgccccca	gtgacgcgga	tataagcgag	480
cccaagcggg	cctgcccctc	agttgcggag	ccatcgacgt	cagacgcgga	agcaccggtg	540
gactttgcgg	acaggtacca	aaacaaatgt	tctcgtcacg	cgggcatgct	tcagatgctg	600
tttccctgca	agacatgcga	gagaatgaat	cagaatttca	acgtctgctt	cacgcacggg	660
gtcagagact	gctcagagtg	cctccccggċ	gcgtcagaat	ctcaacccgt	cgtcagaaaa	720
aagacgtatc	agaaactgtg	cgcgattcat	catctgctgg	ggcgggcacc	cgagattgcg	780
tgttcggcct	gcgatctcgt	caacgtggac	ttggatgact	gtgtttctga	gcaataaatg	840
		ctgacggtta				900
		gggacctgaa				960
		ggggtctggt				1020
caacggactc	gacaaggggg	agcccgtcaa	tgcggcggac	gcagcggccc	tcgagcacga	1080
		tcaaagcggg			_	1140
		gtctgcaaga				1200
		agcgggttct			_	1260
		agagaccggt				1320
		aaggccagca				1380
		tccccgaccc				1440
		caatggctgc				1500
		gtagttcctc				1560
ayycyacaga	yıcatcacca	ccagcacccg		ctgcccacct Page 260	acaacaacca	1620

·	
cctctacaag caaatatcca atgggacatc gggaggaagc accaacgaca acacctactt	1680
cggctacagc accccctggg ggtattttga cttcaacaga ttccactgcc acttctcacc	1740
acgtgactgg cagcgactca tcaacaacaa ctggggattc cggccaaaaa gactcagctt	1800
caagctcttc aacatccagg tcaaggaggt cacgcagaat gaaggcacca agaccatcgc	1860
caataacctt accagcacga ttcaggtatt tacggactcg gaataccagc tgccgtacgt	1920
cctcggctcc gcgcaccagg gctgcctgcc tccgttcccg gcggacgtct tcatgattcc	1980
ccagtacggc taccttacac tgaacaatgg aagtcaagcc gtaggccgtt cctccttcta	2040
ctgcctggaa tattttccat ctcaaatgct gcgaactgga aacaattttg aattcagcta	2100
caccttcgag gacgtgcctt tccacagcgg ctacgcacac agccagagct tggaccgact	2160
gatgaatcct ctcatcgacc agtacctgta ctacttatcc agaactcagt ccacaggagg	2220
aactcaaggt acccagcaat tgttattttc tcaagctggg cctgcaaaca tgtcggctca	2280
ggctaagaac tggctacctg gaccttgcta ccggcagcag cgagtctcta cgacactgtc	2340
gcaaaacaac aacagcaact ttgcttggac tggtgccacc aaatatcacc tgaacggaag	2400
agactetttg gtaaateeeg gtgtegeeat ggeaaceeac aaggaegaeg aggaaegett	2460
cttcccgtcg agtggagtcc tgatgtttgg aaaacagggt gctggaagag acaatgtgga	2520
ctacagcagc gttatgctaa ccagcgaaga agaaattaaa accactaacc ctgtagccac	2580
agaacaatac ggtgtggtgg ctgacaactt gcagcaaacc aatacagggc ctattgtggg	2640
aaatgtcaac agccaaggag ccttacctgg catggtctgg cagaaccgag acgtgtacct	2700
gcagggtccc atctgggcca agattcctca cacggacggc aacttccacc cttcaccgct	2760
aatgggagga tttggactga agcacccacc tcctcagatc ctgatcaaga acacgccggt	2820
acctgcggat cctccaacga cgttcagcca ggcgaaattg gcttccttca ttacgcagta	2880
cagcaccgga caggtcagcg tggaaatcga gtgggagctg cagaaggaga acagcaaacg	2940
ctggaaccca gagattcagt acacttcaaa ctactacaaa tctacaaatg tggactttgc	3000
tgtcaataca gagggaactt attctgagcc tcgccccatt ggtactcgtt acctcacccg	3060
taatctgtaa ttgctggtta atcaataaac cgtttgattc gtttcagttg aactttggtc	3120
tctgcgaagg gcgaattcgt ttaaacctgc aggactagtc cctttagtga gg	3172
	3272
<210> 176 <211> 3160 .	
<212> DNA <213> new AAV serotype, clone hu 145.1	
<400> 176	
accettcact aaagggacta gteetgeagg tttaaacgaa ttegeeettg etgegteaac	60
tggaccaatg agaactttcc cttcaacgac tgtgtcgaca agatggtgat ttggtgggag	120
gaggggaaga tgaccgccaa ggtcgtggag tcggccaaag ccattctcgg aggaagcaag	180
gtgcgcgtgg accagaaatg caagtcctcg gcccagatag atccgactcc cgtgatcgtc	240
acctccaaca ccaacatgtg cgccgtgatt gacgggaact caacgacctt cgaacaccag	300
cagccgttgc aagaccggat gttcaaattt gaactcaccc gccgtctgga tcatgacttt	360
gggaaggtca ccaagcggga agtcaaagac tttttccggt gggcaaagga tcacgtggtt	420
gaggtggagc atgaattcta cgtcaaaaag ggtggagcca agaaaagacc cgcccctagt	480
gacgcagata taagtgagcc caaacgggtg cgcgagtcag ttgcgcagcc atcgacgtca	540
gacgcggaag cttcgatcaa ctacgcggac aggtaccaaa acaaatgttc tcgtcacgtg	600
ggcatgaatc tgatgctgtt tccctgcaga caatgcgaga gaatgaatca aaattcaaat	660
atctgcttca ctcacggaca gaaagactgt ttagagtgct ttcccgtgtc agaatctcaa	720
cctgtttctg tcgtcaaaaa ggcgtatcag aaactgtgct acattcatca tatcatggga	780
aaggtgccag acgcttgcac tgcctgcgat ctggtcaatg tggatttgga tgactgcatc	840
tctgaacaat aaatgattta aatcaggtat ggctgccgat ggttatcttc cagattggct	900

accaaagccc gcagagcggc					1020
gtacctcgga cccttcaacg					1080
ggccctcgag cacgacaagg					1140
caagtacaac cacgccgacg					1200
gggcaacctc ggacgagcag			-	• • •	1260
ggttgaggaa cctgttaaga					1320
ggagccagac tcctcctcgg	gaaccggaaa	agcgggccag	cagcctgcaa	gaaaaagact	1380
gaatttcggt cagactggag	acgcagactc	cgtacctgac	ccccagcctc	tcagacagcc	1440
accagcagcc cccacaagtt					1500
ggcagacaat aacgagggtg					1560
ttcccaatgg ctgggcgaca	gagtcatcac	caccagcacc	cgaacctggg	ccctgcccac	1620
ctacaacaac cacctttaca	agcaaatctc	cagccaatca	ggagcctcaa	acgacaacca	1680
ctactttggc tacagcaccc	cctgggggta	ttttgacttc	aacagattcc	actgccactt	1740
ttcaccacgt gactggcaaa	gactcatcaa	caacaactgg	ggattccgac	ccaagagact	1800
caacttcaag ctctttaaca	ttcaagtcaa	agaggtcacg	cagaatgacg	gtacgacgac	1860
gattgccaat aaccttacca	gcacggttca	ggtgtttact	gactcggagt	accagctccc	1920
gtacgtcctc ggctcggcgc	atcaaggatg	cctcccgccg	tttccagcgg	acgtcttcat	1980
ggtcccacag tatggatacc	tcaccctgaa	caacgggagt	caggcggtag	gacgctcttc	2040
cttttactgc ctggagtact	ttccttctca	gatgctgcgt	actggaaaca	actttcagtt	2100
cagctacact tttgaagacg	tgcctttcca	cagcagctac	gctcacagcc	agagtttgga	2160
tcggctgatg aatcctctga	tcgaccagta	cctgtattat	ctaaacagaa	cacaaacagc	2220
tagtggaact cagcagtctc	ggctactgtt	tagccaagct	ggacccacaa	gcatgtctct	2280
tcaagctaaa aactggctgc	ctggaccgtg	ttatcgccag	cagcgtttgt	caaagcaggc	2340
aaacgacaac aacaacagca	actttccctg	gactggagct	accaagtact	acctcaatgg	2400
cagagactct ttggtgaacc	cgggcccggc	catggccagc	cacaaggacg	atgaagaaaa	2460
gtttttcccc atgcatggaa	ccctaatatt	tggtaaagaa	ggaacaaatg	ctaccaacgc	2520
ggaattggaa aatgtcatga	ttacagatga	agaggaaatc	aggaccacca	atcccgtggc	2580
tacagagcag tacggatatg	tgtcaaataa	tttgcaaaac	tcaaatactg	ctgcaagtac	2640
tgaaactgtg aatcaccaag	gagcattacc	tggtatggtg	tggcaggatc	gagacgtgta	2700
cctgcaggga cccatttggg	ccaagattcc	tcacaccgat	ggacactttc	atccttctcc	2760
actgatggga ggttttggac	tcaaacaccc	gcctcctcag	attatgatca	aaaacactcc	2820
cgttccagcc aatcctccca	caaacttcag	ttctgccaag	tttgcttcct	tcatcacaca	2880
gtattccacg ggacaggtca	gcgtggagat [.]	cgagtgggag	ctgcagaagg	agaacagcaa	2940
acgctggaat cccgaaattc	agtacacttc	caactacaac	aaatctgtta	atgtggactt	3000
tactgtggac actaatggtg	tgtattcaga	gcctcgcccc	attggcacca	gatacctgac	3060
tcgtaatctg taattgcttg	ttaatcaata	aaccgtttaa	ttcgtttcag	ttgaactttg	3120
gtctctgcga agggcgaatt	cgcggccgct	aaatcaatcg			3160
<210> 177 <211> 3157 <212> DNA <213> new AAV seroty	pe, clone hi	145.5			
<400> 177					
ctcactaagg gactagtcct					60
caatgagaac tttcccttca					120
gaagatgacc gccaaggtcg					180
cgtggaccag aaacgcaagt					240
caacaccaac atgtgcgccg	tgattgacgg	gaactcaacg	accttcgaac	accagcagcc	300

gttgcaagac cgaatgttca	aatttgaact	cacccgccgt	ctggatcatg	acttcgggaa	360
ggtcaccaag caggaagtca	aagacttttt	ccggtgggca	aaggatcacg	tggttgaggt	420
ggagcatgaa ttctacgtca	aaaagggtgg	agccaagaaa	agacccgccc	ctagtgacgc	480
agatataagt gagcccaaac	gggtgcgcga	gtcagttgcg	cagccatcga	cgtcagacgc	540
ggaagcttcg atcaactacg	cggacaggta	ccaaaacaaa	tgttctcgtc	acgtgggcat	600
gaatctgatg ctgtttccct	gcagacaatg	cgagagaatg	aatcaaaatt	caaatatctg	660
cttcactcac ggacagaaag	actgtttaga	gtgctttccc	gtgtcagaat	ctcaacctgt	720
ttctgtcgtc aaaaaggcgt	atcagaaact	gtgctacatt	catcatatca	tgggaaaggt	780
gccagacgct tgcactgcct	gcgatctggt	caatgtggat	ttggatgact	gcatctctga	840
acaataaatg atttaaatca	ggtatggctg	ccgatggtta	tcttccagat	tggctcgagg	900
acactctctc tgaaggaata	agacagtggt	ggaagctcaa	acctggccca	ccaccaccaa	960
agcccgcaga gcggcataag	gacgacagca	ggggtcttgt	gcttcctggg	tacaagtacc	1020
tcggaccctt caacggactc	gacaagggag	agccggtcaa	cgaggcagac	gccgcggctc	1080
tcgagcacga caaggcctac	gaccggcagc	tcgacagcgg	agacaacccg	tacctcaagt	1140
acaaccacgc cgacgcggag	tttcaggagc	gtcttaaaga	agatacgtct	tttgggggca	1200
acctcggacg agcagtcttc	caggcgaaaa	agagggttct	tgaacctctg	ggcctggttg	1260
aggaacctgt taagacggct	ccgggaaaaa	agaggccggt	agagcactct	cctgcggagc	1320
cagactcctc ctcgggaacc	ggaaaagcgg	gccagcagcc	tgcaagaaaa	agactgaatt	1380
tcggtcagac tggagacgca	gactccgtac	ctgaccccca	gcctctcgga	cagccaccag	1440
cagcccccac aagtttggga	tctactacaa	tggctacagg	cagtggcgca	ccaatggcag	1500
acaataacga gggtgccgat	ggagtgggta	attcctcagg	aaattggcat	tgcgattccc	1560
aatggctggg cgacagagtc	atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	1620
acaaccacct ttacaagcaa	atctccagcc	aatcaggagc	ctcaaacgac	aaccactact	1680
ttggctacag cacccctgg	gggtattttg	acttcaacag	attccactgc	cgcttttcac	1740
cacgtgactg gcaaagactc	atcaacaaca	actggggatt	ccgacccaag	agactcaact	1800
tcaagctctt taacattcaa	gtcaaagagg	tcacgcagaa	tgacggtacg	acgacgattg	1860
ccaataacct taccagcacg	gttcaggtgt	ttactgactc	ggagtaccag	ctcccgtacg	1920
tcctcggctc ggcgcatcaa	ggatgcctcc	cgccgtttcc	agcggacgtc	ttcatggtcc	1980
cacagtatgg atacctcacc	ctgaacaacg	ggagtcaggc	ggtaggacgc	tcttcctttt	2040
actgcctgga gtactttcct	tctcagatgc	tgcgtactgg	aaacaacttt	cagttcagct	2100
acacttttga agacgtgcct	ttccacagca	gctacgctca	cagccagggt	ttggatcggc	2160
tgatgaatcc tctgatcgac	cagtacctgt	attatctaaa	cagaacacaa	acagctagtg	2220
gaactcagca gtctcggcta	ctgtttagcc	aagctggacc	cacaagcatg	tctcttcaag	2280
ctaaaaactg gctgcctgga	ccgtgttatc	gccagcagcg	tttgtcaaag	caggcaaacg	2340
acaacaacaa cagcaacttt	ccctggactg	gagctaccaa	gtaccacctc	aatggcggag	2400
actctttggt gaacccgggc	ccggccatgg	ccagccacaa	ggacgatgaa	gaaaagtttt	2460
tccccatgca tggaacccta	atatttggta	aagaaggaac	aaatgctacc	aacgcggaat	2520
tggaaaatgt catgattaca	gatgaagaġg	aaatcaggac	caccaatccc	gtggctacag	2580
agcagtacgg atatgtgtca	aataatttgc	aaaactcaaa	tactgctgca	agtactgaaa	2640
ctgtgaatca ccaaggagca	ttacctggta	tggtgtggca	ggatcgagac	gtgtacctgc	2700
ggggacccat ttgggccaag	attcctcacg	ccgatggaca	ctttcatcct	tctccactga	2760
tgggaggttt tggactcaaa	cacccgcctc	ctcagattat	gatcaaaaac	actcccgttc	2820
cagccaatcc tcccacaaac	ttcagttctg	ccaagtttgc	ttccttcatc	acacagtatt	2880
ccacgggaca ggtcagcgtg	_				2940
ggaatcccga aattcagtac	acttccaact	acaacaaatc	tgttaatgtg	gactttactg	3000

العمرال حاغ والمائم المائم	tgtgtat tcagagccto	00000011100	C2CC2C2*2C	ctarctcata	3060
					3120
	tgttaat caataaaccg		cccayccgaa	cittggtete	3157
tycyaayyyc yaa	ttcgcgg ccgctaaatt	caaticy			2127
<210> 178 <211> 3163					
<212> DNA		145 C			
	serotype, clone h	u 145.6			
<400> 178 accctcacta aag	ggactag tcctgcaggt	ttaaacgaat	tcgcccttgc	tgcgtcaact	60
ggagcaatga gaa	ctttccc ttcaacgact	gtgtcgacaa	gatggtgatt	tggtgggagg	120
aggggaagat gac	cgccaag gtcgtggagt	cggccaaagc	cattctcgga	ggaagcaagg	180
tgcgcgtgga cca	gaaatgc aagtcctcgg	cccagataga	tccgactccc	gtgatcgtca	240
cctccaacac caa	catgtgc gccgtgattg	acgggaactc	aacgaccttc	gaacaccagc	300
agccgttgca aga	ccggatg ttcaaatttg	aactcacccg	ccgtctggat	catgactttg	360
ggaaggtcac caa	gcaggaa gtcaaagact	ttttccggtg	ggcaaaggat	cacgtggttg	420
aggtggagca tgg	attctac gtcaaaaagg	gtggagccaa	gaaaagaccc	gcccctagtg	480
acgcagatat aag	tgagccc aaacgggtgc	gcgagtcagt	tgcgcagcca	tcgacgtcgg	540
acgcggaagc ttc	gatcaac tacgcggaca	ggtaccaaaa	caaatgttct	cgtcacgtgg	600
gcatgaatct gat	gctgttt ccctgcagac	aatgcgagag	aatgaatcaa	aattcaaata	660
tctgcttcac tca	cggacag aaagactgtt	tagagtgctt	tcccgtgtca	gaatctcaac	720
ctgtttctgt cgt	caaaaag gcgtatcaga	aactgcgcta	cattcatcat	atcatgggaa	780
aggtgccaga cgc	ttgcact gcctgcgatc	tggtcaatgt	ggatttggat	gactgcatct	840
ctgaacaata aat	gatttaa atcaggtatg	gctgccgatg	gttatcttcc	agattggctc	900
gaggacactc tct	ctgaagg aataagacag	tggtggaagc	tcaaacctgg	cccaccacca	960
	agcggca taaggacgac				1020
	tcaacgg actcgacaag				1080
	acaaggc ctacgaccgg				1140
	ccgacgc ggagtttcag				1200
	gagcagt cttccaggcg				1260
	ttaagac ggctccggga				1320
	CCtcggg aaccggaaaa				1380
	ctggaga cgcagactcc				1440
	caagttt gggatctact				1500
	agggtgc cgatggagtg				1560
tcccaatggc tgg	gcgacag agtcatcacc	accagcaccc	gaacctgggc	cctgcccacc	1620
	tttacaa gcaaatctcc				1680
	gcacccc ctgggggtat				1740
	ggcaaag actcatcaac				1800
aacttcaagc tct	ttaacat tcaagtcaaa	gaggtcacgc	agaatgacgg	tacgacgacg	1860
attgccaata acc	ttaccag cacggttcag	gtgtttactg	actcggagta	ccagctcccg	1920
tacgtcctcg gct	cggcgca tcaaggatgc	ctcccgccgt	ttccagcgga	cgtcttcatg	1980
	gatacct caccctgaac				2040
	agtgctt tccttctcag				2100
	aagacgt gcctttccac				2160
	ctctgat cgaccagtac				2220
	agtctcg gctactgttt				2280
	ggctgcc tggaccgtgt				2340

```
aacgacaaca acaacagcaa ctttccctgg actggagcta ccaagtacca cctcaatggc
                                                                     2400
 agagactett tggtgaacce gggcccggce atggccagce acaaggacga tgaagaaaag
                                                                    2460
 tttttcccca tgcatggaac cctaatattt ggtaaagaag gaacaaatgc taccaacgcg
                                                                     2520
                                                                    2580
 gaattggaaa atgtcatgat tacagatgaa gaggaaatca ggaccaccaa tcccgtggct
 acagagcagt acggatatgt gtcaaataat ttgcaaaact caaatactgc tgcaagtact
                                                                    2640
 gaaactgtga atcaccaagg agcattacct ggtatggtgt ggcaggatcg agacgtgtac
                                                                     2700
 ctgcagggac ccatttgggc caagattcct cacaccgatg gacactttca tccttctcca
                                                                    2760
 ctgatgggag gttttggact caaacacccg cctcctcaga ttatgatcaa aaacactccc
                                                                    2820
 gttccagcca atcctcccac aaacttcagt tctgccaagt ttgcttcctt catcacacag
                                                                    2880
 tattccacgg gacaggtcag cgtggagatc gagtgggagc tgcagaagga gaacagcaaa
                                                                    2940
 cgctggaatc ccgaaattca gtacacttcc aactacaaca aatctgttaa tgtggacttt
                                                                     3000
 actgtggaca ctaatggtgt gtattcagag cctcgcccca ttggcaccag atacctgact
                                                                     3060
 cgtaatctgt aattgcttgt taatcaataa accgtttaat tcgtttcagt tgaactttgg
                                                                     3120
 3163
 <210>
        179
        3161
       new AAV serotype, clone hu 156.1
 <213>
 <400>
       179
 cgaattgatt tagcggccgc gaattcgccc ttcgcagaga ccaaagttca actgaaacga
                                                                       60
 attaaacggt ttattgatta acaagcaatt acagattacg agtcaggtat ctggtgccaa
                                                                     120
 tggggcgagg ctctgaatac acaccattag tgtccacagt aaagtccaca ttaacagatt
                                                                     180
 tgttgtagtt ggaagtgtac tggatctcgg gattccagcg tttgctgttc tccttctgta
                                                                     240
 gctcccactc gatctccacg ctgacccgcc ccgtggaata ctgtgtgatg aaggaagcaa
                                                                     300
 actitigccgc actgaaggtg gtcgaaggat tcgcaggtac cggggtqttt ttgatqaqaa
                                                                     360
 tctgtggagg agggtgttta agtccgaatc cgcccatgag gggagagggg tgaaaatgtc
                                                                     420
 cgtccgtgtg cggaatcttt gcccagatag gcccctgcag gtacacgtct ctgtcctgcc
                                                                     480
 agaccatgcc tggaagaacg ccttgtgtgt tgacatctgc agtagatgct tgtgttgc
                                                                     540
 cgctctggag gttggtagat acagaaccat actgctccgt ggccacggga ttggtggttc
                                                                     600
 tgatttcctc ttcgtctgta atcatgacct tttcaatgtc cacatttgtt ttctctgatc
                                                                     660
 cttgttttcc aaagatgaga accccgctct gaggaaaaaa cttttcttca tcgtccttgt
                                                                     720
 ggctggccat tgccgggccc ggattcacca gagagtctct gccattgagg tggtacttgg
                                                                     780
 tagctccaat ccacgagtat tcactgttgt tgttgtccgc agatgtcttt gatactcgct
                                                                     840
 gctggcggta acagggtcca ggaagccagt tcctagactg atcccgaatg tcactcgctc
                                                                     900
 cggcctgaga aaactgaagc ctggactgcg tggtggttcc gcttggagtg tttgttctqc
                                                                     960
 tcaagtaata caggtactgg tcgatgagag gattcatgag acggtccaaa ctctggctgt
                                                                    1020
 gagcgtagct gctgtggaaa ggaacatcct caaaggtgta gctgaaggta aagttgtttc
                                                                    1080
 cggtacgcag catctgagaa gggaagtact ccaggcagta aaatgaagag cgtcctactg
                                                                    1140
 cctgactccc gttgttcagg gtgaggtatc catactgtgg caccatgaag acgtctgctg
                                                                    1200
 ggaacggcgg gaggcatcct tgatgcgccg agccgaggac gtacgggagc tggtactccg
                                                                    1260
 agtcagtaaa cacctgaacc gtgctggtaa ggttattggc aatcgtcgtc gtaccatcat
                                                                    1320
 tctgcgtgac ctctctgact tgaatgttaa agagcttgaa gttgagtctc ttgggccgga
                                                                    1380
 atccccagtt gttgttgatg agtctttgcc agtcacgtgg tgaaaagtgg cagtggaatc
                                                                    1440
 tgttgaagtc aaaatacccc caaggggtgc tgtagccaaa gtagtggttg tcgttgctgg
                                                                    1500
 ctcctgattg gctggaaatc tgcttgtaca gatggttgtt gtaggtgggc agagcccagg
                                                                    1560
 ttcgggtgct ggtggtgatg actctgtcgc ccatccatgt ggaatcgcaa tgccaatttc
                                                                    1620
 ccgaggaatt acccactccg tcggcgccat cgttattgtc tgccattggt gcgccactgc
                                                                    1680
```

```
ctgtagccat cgtattagtt cccagaccag agggggctgc tggtggctgt ccgagaggct
                                                                     1740
gggggtcagg tacggagtct gcgtctccag tctgaccgaa attcaatctc tttcttgcag
                                                                     1800
gctggttgcc cgcttttccg gttcccgagg aggagtctgg ctccacagga gagtgctcta
                                                                     1860
ccggcctctt ttttcccgga gccgtcttaa caggctcctc aaccaggccc agaggttcaa
                                                                     1920
gaaccctctt ttttgcctgg aagactgctc gtccgaggtt gcccccaaaa gacgtatctt
                                                                     1980
ctttaaggcg ctcctgaaac tccgcgtcgg cgtggtcgta cttgaggtac gggttgtctc
                                                                     2040
cgctgtcgag ctgccggtcg taggccttgt cgtgctcgag ggccgcggcg tctgcctcgt
                                                                     2100
tgaccggctc tcccttgtcg agtccgttga agggtccgag gtacttgtac ccaggaagca
                                                                     2160
caagacccct gctgtcgtcc ttatgccgct ctgcgggctt tggtggtggt gggccaggtt
                                                                     2220
tgagcttcca ccactgtctt attccttcag agagagtgtc ctcgagccaa tctggaagat
                                                                     2280
aaccatcggc agccatacct gatttaaatc atttattgtt cagagatgca gtcatccaaa
                                                                     2340
tccacattga ccagatcgca ggcagtgcaa gcgtctggca cctttcccat gatatgatga
                                                                     2400
atgtagcaaa gtttctgata cgcctttttg acgacagaaa cgggttgaga ttctgacacg
                                                                     2460
ggaaagcact ctaaacagtc tttctgtccg tgagtgaagc agatatttga attctgattc
                                                                     2520
attetetege attgtetgea gggaaacage atcagattea tgcccaegtg acgagaacat
                                                                     2580
ttgttttggt acctgtccgc gtagttgatc gaagcttccg cgtctgacgt cgatggctgc
                                                                     2640
gcaactgact cgcgcgcccg tttgggctca cttatatctg cgtcactggg ggcgggtctt
                                                                     2700
ttcttggctc caccetttt gacgtagaat tcatgctcca cctcaaccac gtgatccttt
                                                                     2760
gcccaccgga aaaagtcttt cacttcctgc ttggtgacct tcccaaagtc atgatccaga
                                                                     2820
cggcgggtta gttcaaattt gaacatccgg tcttgcaacg gctgctggtg ttcgaaggtc
                                                                     2880
gttgagttcc cgtcaatcac ggcgcacatg ttggtgttgg aggtggcgat cacgggagtc
                                                                     2940
gggtctatct gggccgagga cttgcacttt tggtccacgc gcaccttgct tcctccgaga
                                                                     3000
atggcttcgg ccgattccac gaccttggcg gtcatctttc cctcctcca ccagatcacc
                                                                     3060
atcttgtcga cacagtcgtt gaagggaaag ttctcattgg tccagttgac gcagcaaggg
                                                                     3120
cgaattcgtt taaacctgca ggaactagtc ccttagtgag g
                                                                     3161
<210>
      180
<211>
       4721
      DNA
<213> adeno-associated virus serotype 7
ttggccactc cctctatgcg cgctcgctcg ctcggtgggg cctgcggacc aaaggtccgc
                                                                       60
agacggcaga gctctgctct gccggcccca ccgagcgagc gagcgcgcat agagggagtg
                                                                      120
gccaactcca tcactagggg taccgcgaag cgcctcccac gctgccgcgt cagcgctgac
                                                                      180
gtaaatcacg tcatagggga gtggtcctgt attagctgtc acgtgagtgc ttttgcgaca
                                                                      240
ttttgcgaca ccacgtggcc atttgaggta tatatggccg agtgagcgag caggatctcc
                                                                      300
attttgaccg cgaaatttga acgagcagca gccatgccgg gtttctacga gatcgtgatc
                                                                      360
aaggtgccga gcgacctgga cgagcacctg ccgggcattt ctgactcgtt tgtgaactgg
                                                                      420
gtggccgaga aggaatggga gctgcccccg gattctgaca tggatctgaa tctgatcgag
                                                                      480
caggcacccc tgaccgtggc cgagaagctg cagcgcgact tcctggtcca atggcgccgc
                                                                      540
gtgagtaagg ccccggaggc cctgttcttt gttcagttcg agaagggcga gagctacttc
                                                                      600
caccttcacg ttctggtgga gaccacgggg gtcaagtcca tggtgctagg ccgcttcctg
                                                                      660
agtcagattc gggagaagct ggtccagacc atctaccgcg gggtcgagcc cacgctgccc
                                                                      720
aactggttcg cggtgaccaa gacgcgtaat ggcgccggcg gggggaacaa ggtggtggac
                                                                      780
gagtgctaca tccccaacta cctcctgccc aagacccagc ccgagctgca gtgggcgtgg
                                                                      840
actaacatgg aggagtatat aagcgcgtgt ttgaacctgg ccgaacgcaa acggctcgtg
                                                                      900
gcgcagcacc tgacccacgt cagccagacg caggagcaga acaaggagaa tctgaacccc
                                                                      960
aattctgacg cgcccgtgat caggtcaaaa acctccgcgc gctacatgga gctggtcggg
                                                                     1020
```

WO 2005/033321	PCT/US2004/028817
"tggctggtgg" accgggcat caccccga aagcagtgga tccaggagga ccaggcctcg	1080
tacatetect teaaegeege etecaaeteg eggteecaga teaaggeege getggacaat	1140
gccggcaaga tcatggcgct gaccaaatcc gcgcccgact acctggtggg gccctcgctg	1200
cccgcggaca ttaaaaccaa ccgcatctac cgcatcctgg agctgaacgg gtacgatcct	1260
gcctacgccg gctccgtctt tctcggctgg gcccagaaaa agttcgggaa gcgcaacacc	1320
atctggctgt ttgggcccgc caccaccggc aagaccaaca ttgcggaagc catcgcccac	1380
gccgtgccct tctacggctg cgtcaactgg accaatgaga actttccctt caacgattgc	1440
gtcgacaaga tggtgatctg gtgggaggag ggcaagatga cggccaaggt cgtggagtcc	1500
gccaaggcca ttctcggcgg cagcaaggtg cgcgtggacc aaaagtgcaa gtcgtccgcc	1560 1620
cagatcgacc ccacccccgt gatcgtcacc tccaacacca acatgtgcgc cgtgattgac gggaacagca ccaccttcga gcaccagcag ccgttgcagg accggatgtt caaatttgaa	1680
ctcacccgcc gtctggagca cgactttggc aaggtgacga agcaggaagt caaagagttc	1740
ttccgctggg ccagtgatca cgtgaccgag gtggcgcatg agttctacgt cagaaagggc	1800
ggagccagca aaagacccgc ccccgatgac gcggatataa gcgagcccaa gcgggcctgc	1860
ccctcagtcg cggatccatc gacgtcagac gcggaaggag ctccggtgga ctttgccgac	1920
aggtaccaaa acaaatgttc tcgtcacgcg ggcatgattc agatgctgtt tccctgcaaa	1980
acgtgcgaga gaatgaatca gaatttcaac atttgcttca cacacggggt cagagactgt	2040
ttagagtgtt tccccggcgt gtcagaatct caaccggtcg tcagaaaaaa gacgtatcgg	2100
aaactctgcg cgattcatca tctgctgggg cgggcgcccg agattgcttg ctcggcctgc	2160
gacctggtca acgtggacct ggacgactgc gtttctgagc aataaatgac ttaaaccagg	2220
tatggctgcc gatggttatc ttccagattg gctcgaggac aacctctctg agggcattcg	2280
cgagtggtgg gacctgaaac ctggagcccc gaaacccaaa gccaaccagc aaaagcagga	2340
caacggccgg ggtctggtgc ttcctggcta caagtacctc ggacccttca acggactcga	2400
caagggggag cccgtcaacg cggcggacgc agcggccctc gagcacgaca aggcctacga	2460
ccagcagctc aaagcgggtg acaatccgta cctgcggtat aaccacgccg acgccgagtt	2520
tcaggagcgt ctgcaagaag atacgtcatt tgggggcaac ctcgggcgag cagtcttcca	2580
ggccaagaag cgggttctcg aacctctcgg tctggttgag gaaggcgcta agacggctcc	2640
tgcaaagaag agaccggtag agccgtcacc tcagcgttcc cccgactcct ccacgggcat cggcaagaaa ggccagcagc ccgccagaaa gagactcaat ttcggtcaga ctqgcgactc	2700 2760
agagtcagtc cccgaccctc aacctctcgg agaacctcca gcagcgccct ctagtgtggg	2820
atctggtaca gtggctgcag gcggtggcgc accaatggca gacaataacg aaggtgccga	2880
cggagtgggt aatgcctcag gaaattggca ttgcgattcc acatggctgg gcgacagagt	2940
cattaccacc agcacccgaa cctgggccct gcccacctac aacaaccacc tctacaagca	3000
aatctccagt gaaactgcag gtagtaccaa cgacaacacc tacttcggct acagcacccc	3060
ctgggggtat titgactita acagaticca ctgccactic icaccacgig actggcagcg	3120
actcatcaac aacaactggg gattccggcc caagaagctg cggttcaagc tcttcaacat	3180
ccaggtcaag gaggtcacga cgaatgacgg cgttacgacc atcgctaata accttaccag	3240
cacgattcag gtattctcgg actcggaata ccagctgccg tacgtcctcg gctctgcgca	3300
ccagggctgc ctgcctccgt tcccggcgga cgtcttcatg attcctcagt acggctacct	3360
gactctcaac aatggcagtc agtctgtggg acgttcctcc ttctactgcc tggagtactt	3420
cccctctcag atgctgagaa cgggcaacaa ctttgagttc agctacagct tcgaggacgt	3480
gcctttccac agcagctacg cacacagcca gagcctggac cggctgatga atcccctcat	3540
cgaccagtac ttgtactacc tggccagaac acagagtaac ccaggaggca cagctggcaa	3600
tcgggaactg cagttttacc agggcgggcc ttcaactatg gccgaacaag ccaagaattg gttacctgga ccttgcttcc ggcaacaaag agtctccaaa acgctggatc aaaacaacaa	3660 3720
cagcaacttt gcttggactg gtgccaccaa atatcacctg aacggcagaa actcgttggt	3720 3780
page 267	3.00

PCT/US2004/028817 WO 2005/033321

taatcccggc gtcgccatgg caactcacaa ggacgacgag gaccgctttt tcccatccag 3840 cggagtcctg attttggaa aaactggagc aactaacaaa actacattgg aaaatgtgtt 3900 aatgacaaat gaagaagaaa ttcgtcctac taatcctgta gccacggaag aatacgggat 3960 4020 agtcagcagc aacttacaag cggctaatac tgcagcccag acacaagttg tcaacaacca gggagcctta cctggcatgg tctggcagaa ccgggacgtg tacctgcagg gtcccatctg 4080 ggccaagatt cctcacacgg atggcaactt tcacccgtct cctttgatgg gcggctttgg 4140 acttaaacat ccgcctcctc agatcctgat caagaacact cccgttcccg ctaatcctcc 4200 ggaggtgttt actcctgcca agtttgcttc gttcatcaca cagtacagca ccggacaagt 4260 cagcgtggaa atcgagtggg agctgcagaa ggaaaacagc aagcgctgga acccggagat 4320 4380 tcagtacacc tccaactttg aaaagcagac tggtgtggac tttgccgttg acagccaggg tgtttactct gagcctcgcc ctattggcac tcgttacctc acccgtaatc tgtaattgca 4440 tgttaatcaa taaaccggtt gattcgtttc agttgaactt tgqtctcctq tgcttcttat 4500 cttatcggtt tccatagcaa ctggttacac attaactgct tgggtgcgct tcacgataag 4560 aacactgacg tcaccgcggt acccctagtg atggagttgg ccactccctc tatgcgcgct 4620 cgctcgctcg gtggggcctg cggaccaaag gtccgcagac ggcagagctc tgctctgccg 4680 4721 gccccaccga gcgagcgagc gcgcatagag ggagtggcca a

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15

Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30

Lys Ala Asn Gln Gln Lys Gln Asp Asn Gly Arg Gly Leu Val Leu Pro
35 40 45

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60

Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp

Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110

Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125

Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Ala Lys Lys Arg 130 135 140

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160

Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 175

Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro 180 185 190

Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Val Ala Ala Gly Gly
195 200 205

<212> PRT
<213> capsid protein of adeno-associated virus serotpye 7

Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Glu Thr Ala Gly Ser Thr Asn Asp Asn 265 270 Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Arg Phe Lys Leu Phe Asn Ile 305 310 315 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 345 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr Ser Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 445 445 Arg Thr Gln Ser Asn Pro Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 460 Phe Tyr Gln Gly Gly Pro Ser Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Val Leu Ile Phe Gly Lys Thr Gly Ala Thr Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu Page 269

ร์ธร

570

575

 Glu
 Tyr
 Gly
 586
 val
 Ser
 Ser
 Asn
 Leu
 Ala
 Ala</th

Leu

<210> 182 <211> 4393

<213> adeno-associated virus serotype 8

<400> 182

cagagaggga gtggccaact ccatcactag gggtagcgcg aagcgcctcc cacgctgccg 60 cgtcagcgct gacgtaaatt acgtcatagg ggagtggtcc tgtattagct gtcacgtgag 120 tgcttttgcg gcattttgcg acaccacgtg gccatttgag gtatatatgg ccgagtgagc 180 gagcaggatc tccattttga ccgcgaaatt tgaacgagca gcagccatgc cgggcttcta 240 cgagatcgtg atcaaggtgc cgagcgacct ggacgagcac ctgccgggca tttctqactc 300 gtttgtgaac tgggtggccg agaaggaatg ggagctgccc ccggattctg acatggatcg 360 gaatctgatc gagcaggcac ccctgaccgt ggccgagaag ctgcagcgcg acttcctggt 420 ccaatggcgc cgcgtgagta aggccccgga ggccctcttc tttgttcagt tcgagaaggg 480 cgagagctac tttcacctgc acgttctggt cgagaccacg ggggtcaagt ccatggtgct 540 aggccgcttc ctgagtcaga ttcgggaaaa gcttggtcca gaccatctac ccgcggggtc 600 gagccccacc ttgcccaact ggttcgcggt gaccaaagac gcggtaatgg cgccggcggg 660 ggggaacaag gtggtggacg agtgctacat ccccaactac ctcctgccca agactcagcc 720 cgagctgcag tgggcgtgga ctaacatgga ggagtatata agcgcgtgct tgaacctggc 780 cgagcgcaaa cggctcgtgg cgcagcacct gacccacgtc agccagacgc aggagcagaa 840 caaggagaat ctgaacccca attctgacgc gcccgtgatc aggtcaaaaa cctccgcgcg 900 ctatatggag ctggtcgggt ggctggtgga ccggggcatc acctccgaga agcagtggat 960 ccaggaggac caggcctcgt acateteett caacgccgcc tccaactcgc ggtcccagat 1020 caaggccgcg ctggacaatg ccggcaagat catggcgctg accaaatccg cgcccgacta 1080 cctggtgggg ccctcgctgc ccgcggacat tacccagaac cgcatctacc gcatcctcgc 1140

ecteaacggc	ˈtacgacccttg	้ cั่ctัลcัติccgg	ctccgtcttt	ctcggctggg	ctcagaaaaa	1200
gttcgggaaa	cgcaacacca	tctggctgtt	tggacccgcc	accaccggca	agaccaacat	1260
tgcggaagcc	atcgcccacg	ccgtgccctt	ctacggctgc	gtcaactgga	ccaatgagaa	1320
ctttcccttc	aatgattgcg	tcgacaagat	ggtgatctgg	tgggaggagg	gcaagatgac	1380
ggccaaggtc	gtggagtccg	ccaaggccat	tctcggcggc	agcaaggtgc	gcgtggacca	1440
aaagtgcaag	tcgtccgccc	agatcgaccc.	caccccgtg	atcgtcacct	ccaacaccaa	1500
catgtgcgcc	gtgattgacg	ggaacagcac	caccttcgag	caccagcagc	ctctccagga	1560
ccggatgttt	aagttcgaac	tcacccgccg	tctggagcac	gactttggca	aggtgacaaa	1620
gcaggaagtc	aaagagttct	tccgctgggc	cagtgatcac	gtgaccgagg	tggcgcatga	1680
gttttacgtc	agaaagggcg	gagccagcaa	aagacccgcc	cccgatgacg	cggataaaag	1740
cgagcccaag	cgggcctgcc	cctcagtcgc	ggatccatcg	acgtcagacg	cggaaggagc	1800
tccggtggac	tttgccgaca	ggtaccaaaa	caaatgttct	cgtcacgcgg	gcatgcttca	1860
gatgctgttt	ccctgcaaaa	cgtgcgagag.	aatgaatcag	aatttcaaca	tttgcttcac	1920
acacggggtc	agagactgct	cagagtgttt	ccccggcgtg	tcagaatctc	aaccggtcgt	1980
cagaaagagg	acgtatcgga	aactctgtgc	gattcatcat	ctgctggggc	gggctcccga	2040
gattgcttgc	tcggcctgcg	atctggtcaa	cgtggacctg	gatgactgtg	tttctgagca	2100
ataaatgact	taaaccaggt	atggctgccg	atggttatct	tccagattgg	ctcgaggaca	2160
acctctctga	gggcattcgc	gagtggtggg	cgctgaaacc	tggagccccg	aagcccaaag	2220
ccaaccagca	aaagcaggac	gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	2280
gacccttcaa	cggactcgac	aagggggagc [.]	ccgtcaacgc	ggcggacgca	gcggccctcg	2340
agcacgacaa	ggcctacgac	cagcagctgc	aggcgggtga	caatccgtac	ctgcggtata	2400
accacgccga	cgccgagttt	caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	2460
tcgggcgagc	agtcttccag	gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	2520
aaggcgctaa	gacggctcct	ggaaagaaga	gaccggtaga	gccatcaccc	cagcgttctc	2580
cagactcctc	tacgggcatc	ggcaagaaag	gccaacagcc	cgccagaaaa	agactcaatt	2640
ttggtcagac	tggcgactca	gagtcagttc	cagaccctca	acctctcgga	gaacctccag	2700
cagcgccctc	tggtgtggga	cctaatacaa [.]	tggctgcagg	cggtggcgca	ccaatggcag	2760
acaataacga	aggcgccgac	ggagtgggta	gttcctcggg	aaattggcat	tgcgattcca	2820
catggctggg	cgacagagtc	atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	2880
acaaccacct	ctacaagcaa	atctccaacg	ggacatcggg	aggagccacc	aacgacaaca	2940
cctacttcgg	ctacagcacc	ccctgggggt	attttgactt	taacagattc	cactgccact	3000
tttcaccacg	tgactggcag	cgactcatca	acaacaactg	gggattccgg	cccaagagac	3060
tcagcttcaa	gctcttcaac	atccaggtca	aggaggtcac	gcagaatgaa	ggcaccaaga	3120
ccatcgccaa	taacctcacc	agcaccatcc [*]	aggtgtttac	ggactcggag	taccagctgc	3180
cgtacgttct	cggctctgcc	caccagggct	gcctgcctcc	gttcccggcg	gacgtgttca	3240
tgattcccca	gtacggctac	ctaacactca	acaacggtag	tcaggccgtg	ggacgctcct	3300
ccttctactg	cctggaatac	tttccttcgc	agatgctgag	aaccggcaac	aacttccagt	3360
ttacttacac	cttcgaggac	gtgcctttcc	acagcagcta	cgcccacagc	cagagcttgg	3420
accggctgat	gaatcctctg	attgaccagt	acctgtacta	cttgtctcgg	actcaaacaa	3480
				aggtgggcct		3540
				ccaacaacgc		3600
				tgggaccaaa		3660
				aacacacaaa		3720
				acaaaatgct		3780
				aatcaaaacc		3840
tggctacaga	ggaatacggt	atcgtggcag		gcagcaaaac	acggctcctc	3900
			P	Page 271		

aaattggaac tgtcaacagc cagggggcct tacccggtat ggtctggcag aaccgggacg 3960 4020 tgtacctgca gggtcccatc tgggccaaga ttcctcacac ggacggcaac ttccacccgt 4080 ctccgctgat gggcggcttt ggcctgaaac atcctccgcc tcagatcctg atcaagaaca cgcctgtacc tgcggatcct ccgaccacct tcaaccagtc aaagctgaac tctttcatca 4140 4200 cgcaatacag caccggacag gtcagcgtgg aaattgaatg ggagctgcag aaggaaaaca 4260 gcaagcgctg gaaccccgag atccagtaca cctccaacta ctacaaatct acaagtgtgg actttgctgt taatacagaa ggcgtgtact ctgaaccccg ccccattggc acccgttacc 4320 tcacccgtaa tctgtaattg cctgttaatc aataaaccgg ttgattcgtt tcagttgaac 4380 tttggtctct gcg 4393

<210> 183 <211> 738

<213> capsid protein of adeno-associated virus serotype 8

<400> 183

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 10 15

Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Lys Pro 20 30

Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60

Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80

Gln Gln Leu Gln Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110

Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125

Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160

Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln

Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro 180 190

Pro Ala Ala Pro Ser Gly Val Gly Pro Asn Thr Met Ala Ala Gly Gly 195 200 205

Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220

Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235

Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His $245\,$. $250\,$ 255

្នុម្ភី ស្ត្រី ទៅក្រុម ទីខ្លាំ Asn Gly Thr Ser Gly Gly Ala Thr Asn Asp 260 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Thr Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu ASP Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Thr Thr Gly Gly Thr Ala Asn Thr Gln Thr Leu Gly Phe Ser Gln Gly Gly Pro Asn Thr Met Ala Asn Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Thr Gly 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Ala Gly Thr Lys Tyr His
500 510 Leu Asn Gly Arg Asn Ser Leu Ala Asn Pro Gly Ile Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Asn Gly Ile Leu Ile 530 540 Phe Gly Lys Gln Asn Ala Ala Arg Asp Asn Ala Asp Tyr Ser Asp Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Glu Tyr Gly Ile Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Gln Ile Gly Thr Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620

WO 2005/033321

Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Thr Phe Asn Gln Ser Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 700 Ser Asn Tyr Tyr Lys Ser Thr Ser Val Asp Phe Ala Val Asn Thr Glu 705 710 715 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

<210> 184 <211> 735 <212> PRT <213> vp1, clone hu.60

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly
195 200 205

Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Val Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln
450 455 460 Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 485 490 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 505 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys
530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570

Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 595 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 630 640 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675
680
685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 695 700 Asn Lys Ser Val Asn Val Asp Phe.Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Pro Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr

<210> 185 <211> 735 <212> PRT <213> vp1, clone hu.61

Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln
450 455 460 Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Arg Leu Pro Gly
465 470 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys

 Gly
 Thr
 Asn
 Ala
 Asn
 Pro
 Val
 Ala
 Thr
 Glu
 Glu
 Glu
 Glu
 Fro
 Fro
 Fro
 Val
 Ala
 Thr
 Glu
 Glu
 Fro
 Fro
 Fro
 Val
 Ala
 Thr
 Glu
 Fro
 Fro</th

<210> 186 <211> 734 <212> PRT <213> vp1, clone hu.53

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 10 15

Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30

Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 45

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60

Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80

Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90

Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110

Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 120 125

Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg

1.130

" ""135

140

Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Arg Gln Pro Pro 180 190 Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly
195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 445 445 Gln Thr Ala Ser Gly Thr Gln Gln Ser Arg Leu Leu Phe Ser Gln Ala 450 460 Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly Pro 465 470 475 480 Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn Asn 485 490

ቴer Åển ኮኮሮ ፑኮሪ ተኮኮ ተከኮ Gly Ala Thr Lys Tyr Tyr Leu Asn Gly Arg 500 510 Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp 525 525 Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys Glu 530 535 540 Gly Thr Asn Ala Thr Asn Ala Glu Leu Glu Asn Val Met Ile Thr Asp 545 550 560 Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Ala Ala Ser Thr Glu 580 590 Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg 595 600 605 Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp 610 620 Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His 625 630 635 640 Pro Pro Pro Gln lle Met lle Lys Asn Thr Pro Val Pro Ala Asn Pro 645 650 655 Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr 660 665 670 Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu 675 680 Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Asn 690 700 Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser 705 710 715 Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730

<210> 187 <211> 734 <212> PRT <213> vp1, clone hu.55

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Is

Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 20

Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 45

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 55

Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65

Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 95

ชีครัก ฟิโล ซีโน Phe เร็าก็ เร็านี้ เล้า g Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly
195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gin Ile Ser Ser Gin Ser Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Cys Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 435 440 445 Gln Thr Ala Ser Gly Thr Gln Gln Ser Arg Leu Leu Phe Ser Gln Ala 450 455 460

Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly Pro 465 470 475 480 Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn Asn 495 Ser Asn Phe Pro Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg 500 510 Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp 520 525 Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys Glu 530 535 540 Gly Thr Asn Ala Thr Asn Ala Glu Leu Glu Asn Val Met Ile Thr Asp 545 550 560 Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly 565 575 Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Ala Ala Ser Thr Glu 580 585 590 Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg 595 600 Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp 610 620 Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His 625 630 635 Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn Pro 645 650 Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr 660 670 Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu 675 680 . 685 Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Asn 690 695 700 Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser 705 710 715 720 Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60

<210> 188 <211> 734 <212> PRT <213> vpl, clone hu.54

Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys Arg Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 315 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Gly Leu Asp Arg
420
430

Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 445 445 Gln Thr Ala Ser Gly Thr Gln Gln Ser Arg Leu Leu Phe Ser Gln Ala 450 455 460 Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly Pro 465 470 475 480 Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn Asn 495 Ser Asn Phe Pro Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Gly 500 505Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp 515 Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys Glu 530 535 540 Gly Thr Asn Ala Thr Asn Ala Glu Leu Glu Asn Val Met Ile Thr Asp 545 550 560 Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly 575 575 Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Ala Ala Ser Thr Glu 580 585 Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg 595 600 Asp Val Tyr Leu Arg Gly Pro Ile Trp Ala Lys Ile Pro His Ala Asp 610 615 . 620 Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His 625 630 635 Pro Pro Pro Gln lle Met lle Lys Asn Thr Pro Val Pro Ala Asn Pro 645 650 Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr 660 665 670 Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu 675 680 685 Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Asn 690 695 700 Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser 705 710 715 720 Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730

<210> 189 <211> 735 <212> PRT <213> vpl, clone hu.49

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Lys Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30

Lys Pro Ala Glu Arg His Lys Asp Asp Ser Gly Gly Leu Val Leu Pro 35 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu Tyr Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Ser Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Pro Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser

Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 485 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 . 555 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 585 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val His Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 190 <211> 735 <212> PRT <213> vpl, clone hu.51

<400> 190 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Gly Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 . 250 . 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345

ਪਿਕੀ ਪਿੰਦਰਾ ਰੰਜੀ ਤੌਵਾ ਕੈਰਕਾਮੀਤ ਫੀਜੰ Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 : 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Gly Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Thr Thr 435 440 445Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asn Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 665 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr

Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

191 735 PRT vp1, clone hu.52 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 . 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Gly Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Arg His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Arg Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln val 305 310 320

Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Glm Val Phe Thr Asp Ser Glu Tyr Glm Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Ser Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Pro Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr.Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Thr Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly $500 \hspace{1cm} 505 \hspace{1cm} 510$ Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asn Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gin Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 . Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Pro Lys 625 630 635 His Pro Pro Pro Gln lle Leu lle Lys Asn Thr Pro Val Pro Ala Asn 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685

Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe.Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 192 <211> 735 <212> PRT <213> vp1, clone hu.56 <400> 192 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ser Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Val 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270

Cys His Phe Ser Pro Arg Asp Trp.Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Leu Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 410 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 . 570 . 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 585 590 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 630 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn

Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Lys 20 25 30Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly 40 45 Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp 85 90Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn 100 110 Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu 115 120 125 Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg Pro 130 140 Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly Lys 145 150 155 Ala Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly 165 170 175 Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro Ala 180 190 Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser 210 215 220 Gly Asp Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg val Ile Thr 225 230 235 240 Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr

<210> 193 <211> 734 <212> PRT <213> Vp1, clone hu.57

Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe 260 270 Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys 285 His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly 290 295 300 Phe Arg Pro Lys Arg Leu Asn Leu Lys Leu Phe Asn Ile Gln Val Lys 305 310 315 Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr 325 330 335 Ser Thr Val Gln Val Phe Thr Asp Leu Glu Tyr Gln Leu Pro Tyr Val 340 350 Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val 355Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln 370 380 Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln 385 390 . 395 400 Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu Asp 405 410 Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu 420 425 430 Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Asn 435 440 445Thr Pro Ser Gly Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly Pro 465 470 475 Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 485 490 495 Gly Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg 500 510 Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp 515 520 525 Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys Gln 530 540 Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly
565 570 575 Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Arg Ala Ala Thr Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp Arg 595 600 605

Asp Val Tyr Leu Gin Gly Pro lle Trp Ala Lys lle Pro His Thr Asp 610 620 Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His 625 630 635 640 Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro 655 Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr 660 670 Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu 675 680 Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Asn 690 695 700 Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser 705 710 715 720 Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730

<400> 194

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asp His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 Lys Ala Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly
195 200 205

<210> 194 <211> 735 <212> PRT <213> vp1, clone hu.58

Ala Pro Met Ala Asp Asn Asn Asp Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Arg Glu Val Thr Gln Asn Asp Gly.Thr Thr Thr Ile Ala Asn Asn Leu 325 330 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln
450
455
460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 485 490 495 Asn Ser Glu Tyr Ser Trp Ile Gly Ala Thr Lys Tyr His Leu Asn Gly $500 \hspace{1.5cm} 510$ Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575

Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ser Thr 580 585 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln lle Leu lle Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Arg Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725
730

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Pro Lys Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175

<210> 195 <211> 735 <212> PRT <213> vp1, clone hu.63

<400>

Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 255 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 410 415Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$ Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465. 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540

Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 615 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Gly Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 125 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140

<210> 196 <211> 735 <212> PRT <213> vp1, clone hu.64

WO 2005/033321

Pro Val Glu His Ser Leu Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro
180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Arg Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Ser Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 . 345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Val Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 445 Asn Thr Pro Ser Gly Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 . 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly

505

Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 · 585 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 615 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln lle Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40. Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly

¹⁹⁷ 738 PRT vp1, clone hu.66

100

105

110

Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Ala Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 165 . 170 . 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 lle Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Glu Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Cys Ala His Ser Gln Ser 420 425 430 Ser Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 435 440 Ser Arg Thr Arg Ser Thr Gly Gly Thr Gln Gln Gln Leu Leu 450 460

"Phe "Ser" Gin Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 505 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 535 540 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 555 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 . 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 715 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

198 738 PRT vp1, clone hu.67

<400> 198

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Leu
40 GIÝ TÝT LYS TYT LEU GIY PTO PHE ASH GIY LEU ASP LYS GIY GIU PTO 50 55 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 80 65 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 95 ASP Ala Glu Phe Gln Glu Arg Leu Gln Glu ASP Thr Ser Phe Gly Gly 100 100 ASN LEU Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 125 115 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 180 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 230 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 265 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 320 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe \$355\$Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 415 Thr Phe Glu Asp Val Pro Phe His Ser Gly Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 480 465 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 495 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 500 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 555 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 575 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 585 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 665 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 720 705 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 735 730 735 Asn Leu

<210> 199 <211> 2175 <212> DNA <213> adeno-associated virus serotype 5 <400> 199

60

atgtcttttg trgatcaccc tccagattgg ttggaagaag ttggtgaagg tcttcgcgag

-33						•
tttttgggcc	ttgaagcggg	cccaccgaaa	ccaaaaccca	atcagcagca	tcaagatcaa	120
gcccgtggtc	ttgtgctgcc	tggttataac	tatctcggac	ccggaaacgg	tctcgatcga	180
ggagagcctg	tcaacagggc	agacgaggtc	gcgcgagagc	acgacatctc	gtacaacgag	240
cagcttgagg	cgggagacaa	cccctacctc	aagtacaacc	acgcggacgc	cgagtttcag	300
gagaagctcg	ccgacgacac	atccttcggg	ggaaacctcg	gaaaggcagt	ctttcaggcc	360
aagaaaaggg	ttctcgaacc	ttttggcctg	gttgaagagg	gtgctaagac	ggcccctacc	420
ggaaagcgga	tagacgacca	ctttccaaaa	agaaagaagg	ctcggaccga	agaggactcc	480
aagccttcca	cctcgtcaga	cgccgaagct	ggacccagcg	gatcccagca	gctgcaaatc	540
ccagcccaac	cagcctcaag	tttgggagct	gatacaatgt	ctgcgggagg	tggcggccca	600
ttgggcgaca	ataaccaagg	tgccgatgga	gtgggcaatg	cctcgggaga	ttggcattgc	660
gattccacgt	ggatggggga	cagagtcgtc	accaagtcca	cccgaacctg	ggtgctgccc	720
agctacaaca	accaccagta	ccgagagatc	aaaagcggct	ccgtcgacgg	aagcaacgcc	780
aacgcctact	ttggatacag	cacccctgg	gggtactttg	actttaaccg	cttccacagc	840
cactggagcc	cccgagactg	gcaaagactc	atcaacaact	actggggctt	cagaccccgg	900
tccctcagag	tcaaaatctt	caacattcaa	gtcaaagagg	tcacggtgca	ggactccacc	960
accaccatcg	ccaacaacct	cacctccacc	gtccaagtgt	ttacggacga	cgactaccag	1020
ctgccctacg	tcgtcggcaa	cgggaccgag	ggatgcctgc	cggccttccc	tccgcaggtc	1080
tttacgctgc	cgcagtacgg	ttacgcgacg	ctgaaccgcg	acaacacaga	aaatcccacc	1140
gagaggagca	gcttcttctg	cctagagtac	tttcccagca	agatgctgag	aacgggcaac	1200
aactttgagt	ttacctacaa	ctttgaggag	gtgcccttcc	actccagctt	cgctcccagt	1260
cagaacctgt	tcaagctggc	caacccgctg	gtggaccagt	acttgtaccg	cttcgtgagc	1320
acaaataaca	ctggcggagt	ccagttcaac	aagaacctgg	ccgggagata	cgccaacacc	1380
tacaaaaact	ggttcccggg	gcccatgggc	cgaacccagg	gctggaacct	gggctccggg	1440
gtcaaccgcg	ccagtgtcag	cgccttcgcc	acgaccaata	ggatggagct	cgagggcgcg	1500
agttaccagg	tgcccccgca	gccgaacggc	atgaccaaca	acctccaggg	cagcaacacc	1560
tatgccctgg	agaacactat	gatcttcaac	agccagccgg	cgaacccggg	caccaccgcc	1620
acgtacctcg	agggcaacat	gctcatcacc.	agcgagagcg	agacgcagcc	ggtgaaccgc	1680
gtggcgtaca	acgtcggcgg	gcagatggcc	accaacaacc	agagctccac	cactgccccc	1740
gcgaccggca	cgtacaacct	ccaggaaatc	gtgcccggca	gcgtgtggat	ggagagggac	1800
gtgtacctcc	aaggacccat	ctgggccaag	atcccagaga	cgggggcgca	ctttcacccc	1860
tctccggcca	tgggcggatt	cggactcaaa	cacccaccgc	ccatgatgct	catcaagaac	1920
acgcctgtgc	ccggaaatat	caccagcttc	tcggacgtgc	ccgtcagcag	cttcatcacc	1980
cagtacagca	ccgggcaggt	caccgtggag	atggagtggg	agctcaagaa	ggaaaactcc	2040
aagaggtgga	acccagagat	ccagtacaca -	aacaactaca	acgaccccca	gtttgtggac	2100
tttgccccgg	acagcaccgg	ggaatacaga	accaccagac	ctatcggaac	ccgatacctt	2160
acccgacccc	tttaa					2175
<210> 200						
<211> 2213 <212> DNA	L					
<213> ader	no-associate	ed virus, se	rotype 3-3			
<400> 200 atggctgctg	acggttatct	tccagattgg	ctcgaggaca	acctttctga	aggcattcgt	60
		tggagtccct				120
		tccgggttac				180
		ggcggacgcg				240
		caacccgtac				300

caggagcgtc ttcaagaaga 1	tacgtctttt	gggggcaacc	ttggcagagc	agtcttccag	360
gccaaaaaga ggatccttga g	gcctcttggt	ctggttgagg	aagcagctaa	aacggctcct	420
ggaaagaagg gggctgtaga t	tcagtctcct	caggaaccgg	actcatcatc	tggtgttggc	480
aaatcgggca aacagcctgc	cagaaaaaga	ctaaatttcg	gtcagactgg	agactcagag	540
tcagtcccag accctcaacc	tctcggagaa [°]	ccaccagcag	ccccacaag	tttgggatct	600
aatacaatgg cttcaggcgg 1	tggcgcacca	atggcagaca	ataacgaggg	tgccgatgga	660
gtgggtaatt cctcaggaaa 1	ttggcattgc	gattcccaat	ggctgggcga	cagagtcatc	720
accaccagca ccagaacctg	ggccctgccc	acttacaaca	accatctcta	caagcaaatc	780
tccagccaat caggagcttc a	aaacgacaac	cactactttg	gctacagcac	cccttggggg	840
tattttgact ttaacagatt (ccactgccac	ttctcaccac	gtgactggca	gcgactcatt	900
aacaacaact ggggattccg	gcccaagaaa	ctcagcttca	agctcttcaa	catccaagtt	960
agaggggtca cgcagaacga	tggcacgacg	actattgcca	ataaccttac	cagcacggtt	1020
caagtgttta cggactcgga g	gtatcagctc	ccgtacgtgc	tcgggtcggc	gcaccaaggc	1080
tgtctcccgc cgtttccagc g	ggacgtcttc	atggtccctc	agtatggata	cctcaccctg	1140
aacaacggaa gtcaagcggt g					1200
cagatgctaa ggactggaaa	taacttccaa	ttcagctata	ccttcgagga	tgtacctttt	1260
cacagcagct acgctcacag	ccagagtttg	gatcgcttga	tgaatcctct	tattgatcag	1320
tatctgtact acctgaacag					1380
ctgcttttta gccaggctgg					1440
gggccctgct accggcaaca	gagactttca	aagactgcta	acgacaacaa	caacagtaac	1500
tttccttgga cagcggccag	caaatatcat	ctcaatggcc	gcgactcgct	ggtgaatcca	1560
ggaccagcta tggccagtca	caaggacgat	gaagaaaaat	ttttccctat	gcacggcaat	1620
ctaatatttg gcaaagaagg	gacaacggca	agtaacgcag	aattagataa	tgtaatgatt	1680
acggatgaag aagagattcg					1740
gcaaataact tgcagagctc	aaatacagct.	cccacgactg	gaactgtcaa	tcatcagggg	1800
gccttacctg gcatggtgtg	gcaagatcgt	gacgtgtacc	ttcaaggacc	tatctgggca	1860
aagattcctc acacggatgg	acactttcat	ccttctcctc	tgatgggagg	ctttggactg	1920
aaacatccgc ctcctcaaat	catgatcaaa	aatactccgg	taccggcaaa	tcctccgacg	1980
actttcagcc cggccaagtt	tgcttcattt	atcactcagt	actccactgg	acaggtcagc	2040
gtggaaattg agtgggagct	acagaaagaa	aacagcaaac	gttggaatcc	agagattcag	2100
tacacttcca actacaacaa	gtctgttaat	gtggacttta	ctgtagacac	taatggtgtt	2160
tatagtgaac ctcgccctat	tggaacccgg.	tatctcacac	gaaacttgta	a	2211
<210> 201					
<211> 2205 <212> DNA					
<213> adeno-associated	d virus, se	erotype 4-4			
<400> 201 atgactgacg gttaccttcc	agattggcta	gaggacaacc	tctctgaagg	cgttcgagag	60
tggtgggcgc tgcaacctgg	agcccctaaa	cccaaggcaa	atcaacaaca	tcaggacaac	120
gctcggggtc ttgtgcttcc	gggttacaaa	tacctcggac	ccggcaacgg	actcgacaag	180
ggggaacccg tcaacgcagc	ggacgcggca [.]	gccctcgagc	acgacaaggc	ctacgaccag	240
cagctcaagg ccggtgacaa	cccctacctc	aagtacaacc	acgccgacgc	ggagttccag	300
cagcggcttc agggcgacac	atcgtttggg	ggcaacctcg	gcagagcagt	cttccaggcc	360
aaaaagaggg ttcttgaacc	tcttggtctg	gttgagcaag	cgggtgagac	ggctcctgga	420
aagaagagac cgttgattga	atccccccag	cagcccgact	cctccacggg	tatcggcaaa	480
aaaggcaagc agccggctaa	aaagaagctc	gttttcgaag	acgaaactgg	agcaggcgac	540
ggacccctg agggatcaac	ttccggagcc	atgtctgatg	acagtgagat	gcgtgcagca	600

"gctggcggagg ctgcagtcga gggcggacaa ggtgccgatg gagtgggtaa tgcctcgggt	660
gattggcatt gcgattccac ctggtctgag ggccacgtca cgaccaccag caccagaacc	720
tgggtcttgc ccacctacaa caaccacctc tacaagcgac tcggagagag cctgcagtcc	780
aacacctaca acggattctc caccccctgg ggatactttg acttcaaccg cttccactgc	840
cacttctcac cacgtgactg gcagcgactc atcaacaaca actggggcat gcgacccaaa	900
gccatgcggg tcaaaatctt caacatccag gtcaaggagg tcacgacgtc gaacggcgag	960
acaacggtgg ctaataacct taccagcacg gttcagatct ttgcggactc gtcgtacgaa	1020
ctgccgtacg tgatggatgc gggtcaagag ggcagcctgc ctcctttcc caacgacgtc	1080
tttatggtgc cccagtacgg ctactgtgga ctggtgaccg gcaacacttc gcagcaacag	1140
actgacagaa atgccttcta ctgcctggag tactttcctt cgcagatgct gcggactggc	1200
aacaactttg aaattacgta cagttttgag aaggtgcctt tccactcgat gtacgcgcac	1260
agccagagcc tggaccggct gatgaaccct ctcatcgacc agtacctgtg gggactgcaa	1320
tcgaccacca ccggaaccac cctgaatgcc gggactgcca ccaccaactt taccaagctg	1380
cggcctacca acttttccaa ctttaaaaag aactggctgc ccgggccttc aatcaagcag	1440
cagggcttct caaagactgc caatcaaaac tacaagatcc ctgccaccgg gtcagacagt	1500
ctcatcaaat acgagacgca cagcactctg gacggaagat ggagtgccct gacccccgga	1560
cctccaatgg ccacggctgg acctgcggac agcaagttca gcaacagcca gctcatcttt	1620
gcggggccta aacagaacgg caacacggcc accgtacccg ggactctgat cttcacctct	1680
gaggaggagc tggcagccac caacgccacc gatacggaca tgtggggcaa cctacctggc	1740
ggtgaccaga gcaacagcaa cctgccgacc gtggacagac tgacagcctt gggagccgtg	1800
cctggaatgg tctggcaaaa cagagacatt tactaccagg gtcccatttg ggccaagatt	1860
cctcataccg atggacactt tcacccctca ccgctgattg gtgggtttgg gctgaaacac	1920
ccgcctcctc aaatttttat caagaacacc ccggtacctg cgaatcctgc aacgaccttc	1980
agetetacte eggtaaacte etteattact eagtacagea etggeeaggt greggtgeag	2040
attgactggg agatccagaa ggagcggtcc aaacgctgga accccgaggt ccagtttacc	2100
tccaactacg gacagcaaaa ctctctgttg tgggctcccg atgcggctgg gaaatacact	2160
gagcctaggg ctatcggtac ccgctacctc acccaccacc tgtaa	2205
242	
<210> 202 <211> 2211	
<pre><212> DNA <213> adeno-associated virus, serotype 1</pre>	
<400> 202	
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg acttgaaacc tggagccccg aagcccaaag ccaaccagca aaagcaggac	120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac	240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt	300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag	360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct	420
ggaaagaaac gtccggtaga gcagtcgcca caagagccag actcctcctc gggcatcggc	480
aagacaggcc agcagcccgc taaaaaagaga ctcaattttg gtcagactgg cgactcagag	540
tcagtccccg atccacaacc tctcggagaa cctccagcaa cccccgctgc tgtgggacct	600
actacaatgg cttcaggcgg tggcgcacca atggcagaca ataacgaagg cgccgacgga	660
gtgggtaatg cctcaggaaa ttggcattgc gattccacat ggctgggcga cagagtcatc	720
accaccagca cccgcacctg ggccttgccc acctacaata accacctcta caagcaaatc	780
tccagtgctt caacgggggc cagcaacgac aaccactact tcggctacag caccccttgg	840
gggtattttg atttcaacag attccactgc cacttttcac cacgtgactg gcagcgactc	900

 atčaačaaca	attggggatt	ccggcccaag	agactcaact	tcaaactctt	caacatccaa	960
gtcaaggagg	tcacgacgaa	tgatggcgtc	acaaccatcg	ctaataacct	taccagcacg	1020
gttcaagtct	tctcggactc	ggagtaccag	cttccgtacg	tcctcggctc	tgcgcaccag	1080
ggctgcctcc	ctccgttccc	ggcggacgtg	ttcatgattc	cgcaatacgg	ctacctgacg	1140
ctcaacaatg	gcagccaagc	cgtgggacgt	tcatcctttt	actgcctgga	atatttccct	1200
tctcagatgc	tgagaacggg	caacaacttt	accttcagct	acacctttga	ggaagtgcct	1260
ttccacagca	gctacgcgca	cagccagagc	ctggaccggc	tgatgaatcc	tctcatcgac	1320
caatacctgt	attacctgaa	cagaactcaa	aatcagtccg	gaagtgccca	aaacaaggac	1380
ttgctgttta	gccgtgggtc	tccagctggc	atgtctgttc	agcccaaaaa	ctggctacct	1440
ggaccctgtt	atcggcagca	gcgcgtttct	aaaacaaaaa	cagacaacaa	caacagcaat	1500
tttacctgga	ctggtgcttc	aaaatataac	ctcaatgggc	gtgaatccat	catcaaccct	1560
ggcactgcta	tggcctcaca	caaagacgac	gaagacaagt	tctttcccat	gagcggtgtc	1620
atgatttttg	gaaaagagag	cgccggagct	tcaaacactg	cattggacaa	tgtcatgatt	1680
acagacgaag	aggaaattaa	agccactaac	cctgtggcca	ccgaaagatt	tgggaccgtg	1740
gcagtcaatt	tccagagcag	cagcacagac	cctgcgaccg	gagatgtgca	tgctatggga	1800
gcattacctg	gcatggtgtg	gcaagataga	gacgtgtacc	tgcagggtcc	catttgggcc	1860
aaaattcctc	acacagatgg	acactttcac	ccgtctcctc	ttatgggcgg	ctttggactc	1920
aagaacccgc	ctcctcagat	cctcatcaaa	aacacgcctg	ttcctgcgaa	tcctccggcg	1980
gagttttcag	ctacaaagtt	tgcttcattc	atcacccaat	actccacagg	acaagtgagt	2040
gtggaaattg	aatgggagct	gcagaaagaa	aacagcaagc	gctggaatcc	cgaagtgcag	2100
tacacatcca	attatgcaaa	atctgccaac	gttgatttta	ctgtggacaa	caatggactt	2160
tatactgagc	ctcgccccat	tggcacccgt	taccttaccc	gtcccctgta	a	2211
<210> 203 <211> 221: <212> DNA <213> ader <400> 203	L 10-associate	ed virus, so	erotype 6			
	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg	acttgaaacc	tggagccccg	aaacccaaag	ccaaccagca	aaagcaggac	120
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	ccgtcaacgc	ggcggatgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctca	aagcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
caggagcgtc	tgcaagaaga	tacgtcttt	gggggcaacc			360
gccaagaaga			3333	tcgggcgagc	agtettecag	
	gggttctcga	accttttggt	ctggttgagg			420
ggaaagaaac				aaggtgctaa	gacggctcct	420 480
	gtccggtaga	gcagtcgcca	ctggttgagg	aaggtgctaa actcctcctc	gacggctcct gggcattggc	
aagacaggcc	gtccggtaga agcagcccgc	gcagtcgcca taaaaagaga	ctggttgagg caagagccag	aaggtgctaa actcctcctc gtcagactgg	gacggctcct gggcattggc cgactcagag	480
aagacaggcc tcagtccccg	gtccggtaga agcagcccgc acccacaacc	gcagtcgcca taaaaagaga tctcggagaa	ctggttgagg caagagccag ctcaattttg	aaggtgctaa actcctcctc gtcagactgg cccccgctgc	gacggctcct gggcattggc cgactcagag tgtgggacct	480 540
aagacaggcc tcagtccccg actacaatgg	gtccggtaga agcagcccgc acccacaacc cttcaggcgg	gcagtcgcca taaaaagaga tctcggagaa tggcgcacca	ctggttgagg caagagccag ctcaattttg cctccagcaa	aaggtgctaa actcctcctc gtcagactgg cccccgctgc ataacgaagg	gacggctcct gggcattggc cgactcagag tgtgggacct cgccgacgga	480 540 600
aagacaggcc tcagtccccg actacaatgg gtgggtaatg	gtccggtaga agcagcccgc acccacaacc cttcaggcgg cctcaggaaa	gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgc	ctggttgagg caagagccag ctcaattttg cctccagcaa atggcagaca	aaggtgctaa actcctcctc gtcagactgg cccccgctgc ataacgaagg ggctgggcga	gacggctcct gggcattggc cgactcagag tgtgggacct cgccgacgga cagagtcatc	480 540 600 660
aagacaggcc tcagtccccg actacaatgg gtgggtaatg accaccagca	gtccggtaga agcagcccgc acccacaacc cttcaggcgg cctcaggaaa cccgaacatg	gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgc ggccttgccc	ctggttgagg caagagccag ctcaattttg cctccagcaa atggcagaca gattccacat	aaggtgctaa actcctcctc gtcagactgg cccccgctgc ataacgaagg ggctgggcga accacctcta	gacggctcct gggcattggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caagcaaatc	480 540 600 660 720
aagacaggcc tcagtccccg actacaatgg gtgggtaatg accaccagca tccagtgctt gggtattttg	gtccggtaga agcagcccgc acccacaacc cttcaggcgg cctcaggaaa cccgaacatg caacgggggc atttcaacag	gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgc ggccttgccc cagcaacgac attccactgc	ctggttgagg caagagccag ctcaattttg cctccagcaa atggcagaca gattccacat acctataaca aaccactact catttctcac	aaggtgctaa actcctcctc gtcagactgg cccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag cacgtgactg	gacggctcct gggcattggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caagcaaatc cacccctgg gcagcgactc	480 540 600 660 720 780
aagacaggcc tcagtccccg actacaatgg gtgggtaatg accaccagca tccagtgctt gggtattttg	gtccggtaga agcagcccgc acccacaacc cttcaggcgg cctcaggaaa cccgaacatg caacgggggc atttcaacag	gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgc ggccttgccc cagcaacgac attccactgc	ctggttgagg caagagccag ctcaattttg cctccagcaa atggcagaca gattccacat acctataaca aaccactact	aaggtgctaa actcctcctc gtcagactgg cccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag cacgtgactg	gacggctcct gggcattggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caagcaaatc cacccctgg gcagcgactc	480 540 600 660 720 780 840
aagacaggcc tcagtccccg actacaatgg gtgggtaatg accaccagca tccagtgctt gggtattttg atcaacaaca gtcaaggagg	gtccggtaga agcagcccgc acccacaacc cttcaggcgg cctcaggaaa cccgaacatg caacgggggc atttcaacag attggggatt tcacgacgaa	gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgc ggccttgccc cagcaacgac attccactgc ccggcccaag	ctggttgagg caagagccag ctcaattttg cctccagcaa atggcagaca gattccacat acctataaca aaccactact catttctcac agactcaact	aaggtgctaa actcctcctc gtcagactgg cccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag cacgtgactg tcaagctctt ctaataacct	gacggctcct gggcattggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caagcaaatc cacccctgg gcagcgactc caacatccaa taccagcacg	480 540 600 660 720 780 840 900
aagacaggcc tcagtccccg actacaatgg gtgggtaatg accaccagca tccagtgctt gggtattttg atcaacaaca gtcaaggagg	gtccggtaga agcagcccgc acccacaacc cttcaggcgg cctcaggaaa cccgaacatg caacgggggc atttcaacag attggggatt tcacgacgaa tctcggactc	gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgc ggccttgccc cagcaacgac attccactgc ccggcccaag tgatggcgtc	ctggttgagg caagagccag ctcaattttg cctccagcaa atggcagaca gattccacat acctataaca aaccactact catttctcac agactcaact acgaccatcg ttgccgtacg	aaggtgctaa actcctcctc gtcagactgg cccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag cacgtgactg tcaagctctt ctaataacct tctctcggctc	gacggctcct gggcattggc cgactcagag tgtgggacct Cgccgacgga cagagtcatc caagcaaatc cacccctgg gcagcgactc caacatccaa taccagcacg	480 540 600 660 720 780 840 900 960
aagacaggcc tcagtccccg actacaatgg gtgggtaatg accaccagca tccagtgctt gggtattttg atcaacaaca gtcaaggagg gttcaagtct	gtccggtaga agcagcccgc acccacaacc cttcaggcgg cctcaggaaa cccgaacatg caacgggggc atttcaacag attggggatt tcacgacgaa tctcggactc ctccgttccc	gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgc ggccttgccc cagcaacgac attccactgc ccggcccaag tgatggcgtc ggagtaccag ggcggacgtg	ctggttgagg caagagccag ctcaattttg cctccagcaa atggcagaca gattccacat acctataaca aaccactact catttctcac agactcaact atgaccatcg ttgccgtacg	aaggtgctaa actcctcctc gtcagactgg cccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag cacgtgactg tcaagctctt ctaataacct tcctcggctc cgcagtacgg	gacggctcct gggcattggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caagcaaatc cacccctgg gcagcgactc caacatccaa taccagcacg tgcgcaccag ctacctaacg	480 540 600 660 720 780 840 900 960 1020
aagacaggcc tcagtccccg actacaatgg gtgggtaatg accaccagca tccagtgctt gggtattttg atcaacaaca gtcaaggagg gttcaagtct	gtccggtaga agcagcccgc acccacaacc cttcaggcgg cctcaggaaa cccgaacatg caacgggggc atttcaacag attggggatt tcacgacgaa tctcggactc ctccgttccc	gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgc ggccttgccc cagcaacgac attccactgc ccggcccaag tgatggcgtc ggagtaccag ggcggacgtg	ctggttgagg caagagccag ctcaattttg cctccagcaa atggcagaca gattccacat acctataaca aaccactact catttctcac agactcaact acgaccatcg ttgccgtacg	aaggtgctaa actcctcctc gtcagactgg cccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag cacgtgactg tcaagctctt ctaataacct tcctcggctc cgcagtacgg	gacggctcct gggcattggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caagcaaatc cacccctgg gcagcgactc caacatccaa taccagcacg tgcgcaccag ctacctaacg	480 540 600 660 720 780 840 900 960 1020 1080

1260

tcgcagatgc tgagaacggg caataacttt accttcagct acaccttcga ggacgtgcct

ttccacagca gctacgcgca cagccagagc ctggaccggc tgatgaatcc tctcatcgac 1320 cagtacctgt attacctgaa cagaactcag aatcagtccg gaagtgccca aaacaaggac 1380 ttgctgttta gccgggggtc tccagctggc atgtctgttc agcccaaaaa ctqqctacct 1440 ggaccctgtt accggcagca gcgcgtttct aaaacaaaaa cagacaacaa caacagcaac 1500 tttacctgga ctggtgcttc aaaatataac cttaatgggc gtgaatctat aatcaaccct 1560 ggcactgcta tggcctcaca caaagacgac aaagacaagt tctttcccat gaqcqqtqtc 1620 atgatttttg gaaaggagag cgccggagct tcaaacactg cattggacaa tgtcatgatc 1680 acagacgaag aggaaatcaa agccactaac cccgtggcca ccgaaagatt tgggactgtg 1740 gcagtcaatc tccagagcag cagcacagac cctgcgaccg gagatgtgca tgttatggga 1800 gccttacctg gaatggtgtg gcaagacaga gacgtatacc tgcagggtcc tatttgggcc 1860 aaaattcctc acacggatgg acactttcac ccgtctcctc tcatgggcgg ctttggactt 1920 aagcacccgc ctcctcagat cctcatcaaa aacacgcctg ttcctgcgaa tcctccggca 1980 gagttttcgg ctacaaagtt tgcttcattc atcacccagt attccacagg acaagtgagc 2040 gtggagattg aatgggagct gcagaaagaa aacagcaaac gctggaatcc cgaagtgcag 2100 tatacatcta actatgcaaa atctgccaac gttgatttca ctgtggacaa caatggactt 2160 tatactgagc ctcgccccat tggcacccgt tacctcaccc gtcccctgta a 2211 <210> 204 2208 <211> <212> DNA <213> new AAV serotype, clone hu.63 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtaccttg gacccttcaa cggactcgac 180 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac cccaagtaca accacgccga cgcggagttc 300 caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga 480 aaagcgggcc agcagcctgc aagaaagaga ttgaatttcg gtcagactgg agacgcagac 540 tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600 aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgcacctg ggctctgccc acctacaaca accacctcta caagcagatt 780 tccagccaat caggagcctc aaacgacaac cactactttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcgccac gtgactggca aagactcatc 900 aacaacaatt ggggattccg gcccaaaaga ctcaacttca agctctttaa cattcaagtc 960 aaggaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cctttgagga cgttcctttc 1260 cacagcaget acgeceacag ecagagettg gacegretea tgaateetet categaceag 1320 tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgca gtcaaggctt 1380 cagttttctc aggccggagc aagtgacatt cgggaccagt ctaggaactg gcttcctgga 1440 ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac

1500

tcgtggactg gagctaccaa gtaccacctt aatggaagag actctctggt gaatccgggc 1560 CCGGCCatgg ccagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc 1620 atCtttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt catgattaca 1680 gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct 1740 accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt 1800 cttccaggca tggtgtggca ggacagagac gtgtacctgc aggggcccat ctgggcaaag 1860 attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa 1920 caccetecce egeagattet cateaagaac acceeggtac etgegaatee ttegactace 1980 ttCagtgCgg CaaagtttgC ttCCttCatt aCacagtaCt CCaCggggCa ggtCagCgtg 2040 gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga gattcagtac 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctc gccccattgg caccaggtac ctgactcgta atctgtaa 2208 2208 DNA new AAV serotype, clone hu.56 <213> atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctggatac aagtacctcg gacccttcaa cggactcgac 180 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacqac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaagcgggca accagcctgc aagaaaaaga ttgaatttcg gtcagactgg agacgcagac 540 tccgtacctg acccccagcc tctcggacag ccaccagcat ccccctctgg tctgggaact 600 aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcgtc 720 accaccagea eccgeacetg ggeeetgeee acctacaaca accaceteta caageagatt 780 tccagccaat caggagccag caacgacaac cactactttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcgccac gcgactggca gagactcatc 900 aacaacaact ggggattccg gcccaaaaga ctcaacttca agctgtttaa cattcaagtc 960 aaggaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 caggigitta cigacitgga giaccagcic cogiacgice toggetogge geatcaagga 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagatgcttc gcaccggaaa caactttacc ttcagctaca cttttgaaqa cqttcctttc 1260 cacagcagct acgctcacag tcaaagtctg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagcggaa ccactacgca gtccaggctt 1380 cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctqqa 1440 ccctgttacc gccagcagcg agtatcaaag acagctgcgg ataacaacaa cagtgaatac 1500 tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc 1560 ccggccatgg ccagccacaa ggacgatgaa gaaaagtttt ttcctcaaag cggggttctc 1620 atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca 1680 gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct 1740 accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt 1800

cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctgggcaaaa	1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt tggacttaaa	1920
caccctcctc cacagattct cattaagaat accccggtac ctgcgaatcc ttcgaccacc	1980
ttcagcgcgg caaagtttgc ttccttcatc acacagtatt ccacggggca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac	2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggggtgtat	2160
tcagagcctc gccctattgg caccagatac ctgactcgta atctgtaa	2208
<210> 206 <211> 2205 <212> DNA <213> new AAV serotype, clone hu.57 <400> 206	
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga	60
cagtggtgga agctcaaacc tggcccacca ccaaagcccg cagagcggca taaggacgac	120
agcaggggtc ttgtgcttcc tggatacaag tacctcggac ccttcaacgg actcgacaag	180
ggagagccgg tcaacgaggc agacgccgcg gccctcgagc acgacaaggc ctacgaccgg	240
cagctcgaca gcggagacaa cccgtacctc aagtacaacc acgccgacgc ggagtttcag	300
gagcgcctta aagaagatac gtcttttggg ggcaacctcg gacgagcagt cttccaggcg	360
aaaaagaggg ttcttgaacc tctgggcctg gttgaggaac ctgttaagac ggctccggga	420
aaaaagaggc ccgtagagca ctctcctgtg gagccagact cctcctcggg aaccggaaaa	480
gcgggcaacc agcctgcaag aaaaagattg aatttcggtc agactggaga cgcagactcc	540
gtacctgacc cccagcctct cggacagcca ccagcagccc cctctggtct gggaactaat	600
acgatggcta caggcagtgg cgcaccaatg gcagacaata acgagggcgc cgacggagtg	660
ggtaattcct cgggagattg gcattgcgat tccacatgga tgggcgacag agtcatcacc	720
accagcaccc gcacctgggc cctgcccacc tacaacaacc acctctacaa gcagatttcc	780
agccaatcag gagccagcaa tgacaaccac tactttggct acagcacccc ttgggggtat	840
tttgacttca acagattcca ctgccacttt tcgccacgcg actggcagag actcatcaac	900
aacaactggg gattccggcc caaaagactc aacctcaagc tgtttaacat tcaagtcaag	960
gaggtcacgc agaatgacgg tacgacgacg attgccaata accttaccag cacggttcag	1020
gtgtttactg acttggagta ccagctcccg tacgtcctcg gctcggcgca tcaaggatgc	1080
ctcccgccgt tcccagcaga cgtcttcatg gtgccacagt atggatacct caccctgaac	1140
aacgggagtc aggcggtagg acgctcttcc ttttactgcc tggagtactt tccttctcag	1200
atgcttcgta ccggaaacaa ctttaccttc agctacactt ttgaagacgt tcctttccac	1260
agcagctacg ctcacagtca aagtctggac cgtctcatga atcctctcat cgaccagtac	1320
ctgtattact tgagcagaac aaacactcca agcggaacca ctacgcagtc caggcttcag	1380
ttttctcagg ccggagcgag tgacattcgg gaccagtcta ggaactggct tcctggaccc	1440
tgttaccgcc agcagcgagt atcaaagaca gctgcggata acaacaacgg tgaatactcg	1500
tggactggag ctaccaagta ccacctcaat ggcagagact ctctggtgaa tccgggcccg	1560
gccatggcca gccacaagga cgatgaagaa aagtttttc ctcaaagcgg ggttctcatc	1620
tttgggaagc aaggctcaga gaaaacaaat gtggacattg aaaaggtcat gattacagac	1680
gaagaggaaa tcaggaccac caatcccgtg gctacggagc agtatggttc tgtatctacc	1740
aacctccaga gcggcaacac acgagcagct acctcagatg tcaacacaca aggcgttctt	1800
ccaggcatgg tctggcagga cagagacgtg tacctgcagg ggcccatctg ggcaaaaatt	1860
ccacacacgg acggacattt tcacccctct cccctcatgg gcggatttgg acttaaacac	1920
cctcctccac agattctcat taagaatacc ccggtacctg cgaatccttc gaccaccttc	1980
agcgcggcaa agtttgcttc cttcatcaca cagtattcca cggggcaggt cagcgtggag	2040
atcgagtggg agctgcagaa ggagaacagc aaacgctgga atcccgaaat tcagtacact	2100

2160

tccaactaca acaaatctgt taatgtggac tttactgtgg acactaatgg ggtgtattca gagectegee ctattggeae cagatacetg actegtaate tgtaa 2205 <210> <211> 2208 <212> DNA new AAV serotype, clone hu.58 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggagage eggteaacga ggeagaegee geggeeeteg ageaegaeaa ggeetaegae 240 cggcagctcg acagcggaga caacccgtac ctcaagtacg accacgccga cgcggagttt 300 caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gCaaaaaaga gggttcttga acctctgggc ctggttgagg agcctgttaa gacgqctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaagcgggca accagcctgc aagaaagaga.ttgaatttcg gtcagactgg agacgcagac 540 tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgqgaact 600 aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgatgg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgaacctg ggctctgccc acctacaaca accatctgta caagcagatt 780 tccagccaat caggagccag caacgacaac cactactttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaagaga ctcaacttca agctctttaa cattcaagtc 960 agagaggtca Cgcagaatga tggtacgacg acgattgcca ataaccttac caqcacqqtt 1020 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta cttcccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cctttgagga tgttcctttc 1260 cacagcagct acgctcacag ccagagtttg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgca gtccaggctt 1380 cagttttctc aggccggagc gagtgacatt cgggatcagt ctaggaactg gcttcctgga 1440 ccctgttacc gccagcagcg agtatcaaag acatctgcgg acaacaacaa cagtgaatac 1500 tcgtggattg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc 1560 ccggcaatgg ccagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc 1620 atctttggaa aacaaggatc agagaaaaca aatgtggaca ttgaaaaggt catgattaca 1680 gacgaagagg aaatcagaac caccaatccc gtggccacgg agcagtatgg ttctgtatct 1740 accaacctcc agagcggcaa cacacaagca tctactgcag atgtcaacac acaaggcgtt 1800 cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcctat ctgggcaaag 1860 attccgcaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa 1920 caccetecte cacagattet cateaaaaac acceeggtae etgegaatee ttegaceaec 1980 ttcagtgcgg caaagtttgc ttccttcatc acacagtatt ccacggggcg ggtcagcgtg 2040 gagatcgagt gggagctaca gaaggagaac agcaaacgct ggaatcccga gatccagtac 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208

<210> 208 2208 DNA

new AAV serotype, clone hu.51

<400> 208	
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga a	ggaataaga 60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg g	cataaggac 120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa c	ggactcgac 180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa a	gcctacgac 240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga c	gcggagttt 300
caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc a	gtcttccag 360
gcgaaaaaga gggttcttga acctctgggc ctggttgggg aacctgtcaa g	acggctcca 420
ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc g	ggaaccgga 480
aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg a	gacgcagac 540
tragtacity acceptage tetegracas coaccageas coccetting to	ctgggaact 600
aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg c	gccgacgga 660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga c	agagtcatc 720
accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta c	aaacaaatt 780
tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac c	ccttggggg 840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca a	agactcatc 900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa c	
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac c	agcacggtt 1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc	catcaagga 1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata c	ctcaccctg 1140
aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta c	tttccttct 1200
cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga c	
cacagegget aegeteacag ceagagtetg gacegtetea tgaateetet e	
tacctgtatt acttgagcac aacaaacact ccaagtggaa ccaccacgca g	
cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg g	
ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa c	
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt g	
ccggccatgg caagccacaa ggacaatgaa gaaaagtttt ttcctcagag c	
atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt c	
gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagtacgg t	
accaacctcc agagaggcaa cagacaagca gctaccgcag atgtcaacac a	
cttccaggca tggtctggca ggacagagat gtgtaccttc aggggcccat c	
attccacaca cggacggaca ttttcacccc tctcccctca tgggtggatt c	
caccetecte caeagattet cateaagaac acceeggtac etgegaatee t	
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacgggaca g	
gagatcgagt gggagctgca gaaggaaaac agcaaacgct ggaatcccga a	
acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa t	
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa	2208
<210> 209 <211> 2208 <212> ONA <213> new AAV serotype, clone hu.49	
<pre><400> 209 atggctgccg atggttatct tccagattgg ctcaaggaca ctctctctga a</pre>	aggaataaga 60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg g	33
gacagogggg gtottgtgot tootgggtac aagtacotog gaccottcaa o	
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agtacgacaa g	33
aayyyayayı cyyrtaatya yytayatytt ytyyttiig agiatgacaa g	gycciacyae 240

caggagcgcc	ttaaagaaga	tacgtctttt	gggggcaacc	tcggacgagc	agtcttccag	360
gcgaaaaaga	gggttcttga	acctctgggc	ctggttgagg	aacctgttaa	gacggctccg	420
ggaaaaaaga	ggccggtaga	gcactctcct	gtggagccag	actcctcctc	gggaacagga	480
aaagcgggcc	agcagcctgc	gagaaagaga	ttgaattttg	gtcagactgg	agacgcagac	540
tccgtacctg	acccccagcc	tctcggacag	ccaccagcag	cccctctgg	tctgggaact	600
aatacgatgg	ctacaggcag	tggcgcacca	atggcagaca	ataacgaggg	cgccgacgga	660
gtgggtaatt	cctcgggaag	ttggcattgc	gattccacat	ggatgggcga	cagagtcatc	720
accaccagca	cccgaacctg	ggctctgccc	acctacaaca	accatctgta	caagcagatc	780
tccagccaat	caggagccag	caacgacaac	cactactttg	gctacagcac	cccttggggg	840
tattttgact	tcaacagatt	ccactgccàc	ttttcaccac	gtgactggca	aagactcatc	900
aacaacaact	ggggattccg	gcccaagaga	ctcaacttca	agctctttaa	cattcaagtc	960
aaggaggtca	cgcagaatga	cggtacgacg	acgattgcca	ataaccttac	cagcacggtt	1020
caggtgttta	ctgactcgga	gtaccagctc	ccgtacgtcc	ccggctcggc	gcatcaagga	1080
tgcctcccgc	cgttcccagc	agacgtcttc	atggtgccac	agtatggata	cctcaccctg	1140
aacaacggga	gtcaggcagt	aggacgctct	tcattttact	gcctggagta	ctttccttct	1200
cagatgcttc	gtaccggaaa	caactttacc	ttcagctaca	cctttgagga	tgttcctttc	1260
cacagcagct	acgctcacag	ccagagttig	gaccgtctca	tgaatcctct	catcgaccag	1320
tacctgtatt	acttgagcag	aacaaacact	ccaagcggaa	ccaccacgca	gtccaggctt	1380
cagttttctc	aggccggagc	aagtgacatt	cgggaccagt	ctaggaactg	gcttcctgga	1440
ccctgttacc	gccagcagcg	agtatcaaag	acagctgcgg	acaacaacaa	cagtgaatac	1500
tcgtggactg	gagctaccaa	gtaccacctc	aatggcagag	actctctggt	gaatccgggc	1560
ccggccatgg	ccagccacaa	ggacgatgaa	gaaaagtttt	ttcctcaaag	cggggttctc	1620
atctttggga	agcaaggctc	agagaaaaca	aatgtggaca	ttgaaaaggt	catgattaca	1680
gacgaagagg	aaatcagaac	caccaatccc	gtggccacgg	agcagtatgg	ttctgtatct	1740
accaacctcc	agagcggcaa	cacacaagca	gctactgcag	atgtcaacac	acaaggcgtt	1800
cttccaggca	tggtctggca	ggacagagac	gtgcacctgc	aggggcctat	ctgggcaaag	1860
	cggacggaca					1920
	cacagattct					1980
ttcagtgcgg	caaagtttgc	ttccttcatc	acacagtatt	ccacagggca	ggtcagcgtg	2040
	gggagctgca	•				2100
	acaacaaatc				tggtgtgtat	2160
tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atctgtaa		2208
<210> 210 <211> 2208 <212> DNA <213> new		o slone b	. 52			
<400> 210	AAV seroty	be, crone nu	1.52			
	atggttatct	tccagattgg	ctcgaggaca	ctctctctga	aggaataaga	60
cagtggtgga	agctcaaacc	tggcccacca	ccaccaaagc	ccgcagagcg	gcataaggac	120
gacagcaggg	gtcttgtgct	tcctgggtac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggagagc	cggtcaacga	ggcagacgcc	gcggccctcg	agcacgacaa	agcctacgac	240
cggcagctcg	acagcggaga	caacccgtac	ctcaagtaca	accacgccga	cgcggagttt	300
	ttaaagaaga					360
	gggttcttga					420
	ggccggtaga					480
	agcagcctgc					540
tcagtacctg	acccccagcc	tctcggacag	ccaccagcag	cccctctgg	tctgggaact	600

660

aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga

gtgggtaatt cctcgggaaa tcggcattgc gattccacat ggatgggcga	cagagtcatc 7	'20
accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta	cagacaaatt 7	'80
tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac	cccttggggg 8	340
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca	aagactcatc 9	000
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa	cattcaagtc 9	160
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac	cagcacggtt 10	20
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc	gcatcaagga 10	080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata		40
agcaacggga gtcaggcagt aggacgctct tcattttact gcccggagta		200
cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga	cgttcctttc 12	:60
cacagcagct acgctcacag ccagagtctg gaccgtctca tgaatcctct	catcgaccag 13	20
tacctgtatt acttgagcac aacaaacact ccaagtggaa ccaccacgca		80
cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg		40
ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa		000
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt		60
ccggccatgg caagccacaa ggacaatgaa gaaaagtttt ttcctcagag		20
atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt		80
gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagtatgg		40
accaacctcc agagaggcaa cagacaagca gctaccgcag atgtcaacac		800
cttccaggca tggtctggca ggacagagat gtgtaccttc aggggcccat		60
attccacaca cggacggaca ttttcacccc tctcccctca tgggtggatt		20
caccetecte cacagattet cateaagaac acceeggtac etgegaatee	33	80
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacgggaca		40
gagatcgagt gggagctgca gaaggaaaac agcaaacgct ggaatcccga		.00
acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa		.60
tcagagcctc gccccattgg caccagatac ctgactcgta atttgtaa		08
<210> 211 <211> 2208		
<212> DNA <213> adeno-associated virus, serotype 2		
<400> 211 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga	aogaataaga	60
Cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg		20
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa		.80
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa		40
Cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga		00
CaggagCgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc		60
gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa	•	20
ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc		80
aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg		40
tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg		00
aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg		60
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga		20
accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta		80
tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac		40
tatttgact tcaacagatt ccactgccac ttttcaccac gtgactggca		00
5 5 35	uugueteute 3	
Page 316	augueteute ,	

aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc

960

aaagaggtca	cgcagaatga	cggtacgacg	acgattgcca	ataaccttac	cagcacggtt	1020
caggtgttta	ctgactcgga	gtaccagctc	ccgtacgtcc	tcggctcggc	gcatcaagga	1080
tgcctcccgc	cgttcccagc	agacgtcttc	atggtgccac	agtatggata	cctcaccctg	1140
aacaacggga	gtcaggcagt	aggacgctct	tcattttact	gcctggagta	cttccttct	1200
cagatgctgc	gtaccggaaa	caactttacc	ttcagctaca	cttttgagga	cgttcctttc	1260
cacagcagct	acgctcacag	ccagagtctg	gaccgtctca	tgaatcctct	catcgaccag	1320
tacctgtatt	acttgagcag	aacaaacact	ccaagtggaa	ccaccacgca	gtcaaggctt	1380
cagttttctc	aggccggagc	gagtgacatt	cgggaccagt	ctaggaactg	gcttcctgga	1440
ccctgttacc	gccagcagcg	agtatcaaag	acatctgcgg	ataacaacaa	cagtgaatac	1500
tcgtggactg	gagctaccaa	gtaccacctc	aatggcagag	actctctggt	gaatccgggc	1560
ccggccatgg	caagccacaa	ggacgatgaa	gaaaagtttt	ttcctcagag	cggggttctc	1620
atctttggga	agcaaggctc	agagaaaaca	aatgtggaca	ttgaaaaggt	catgattaca	1680
gacgaagagg	aaatcaggac	aaccaatccc	gtggctacgg	agcagtatgg	ttctgtatct	1740
accaacctcc	agagaggcaa	cagacaagca	gctaccgcag	atgtcaacac	acaaggcgtt	1800
cttccaggca	tggtctggca	ggacagagat	gtgtaccttc	aggggcccat	ctgggcaaag	1860
attccacaca	cggacggaca	ttttcacccc	tctcccctca	tgggtggatt	cggacttaaa	1920
caccctcctc	cacagattct	catcaagaac	accccggtac	ctgcgaatcc	ttcgaccacc	1980
ttcagtgcgg	caaagtttgc	ttccttcatc	acacagtact	ccacgggaca	ggtcagcgtg	2040
gagatcgagt	gggagctgca	gaaggaaaac	agcaaacgct	ggaatcccga	aattcagtac	2100
acttccaact	acaacaagtc	tgttaatgtg	gactttactg	tggacactaa	tggcgtgtat	2160
tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atctgtaa		2208
<210> 212 <211> 2200 <212> DNA <213> new	B AAV serotyp	pe, clone þi	J.64			
<211> 2208 <212> DNA <213> new <400> 212	AAV serotyp	•	J.64 CtCgaggaca	ctctctctga	aggaataaga	60
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg	AAV serotyp atggttatct	tccagattgg		_		60 120
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga	AAV serotyp atggttatct agctcaaacc	tccagattgg tggcccacca	ctcgaggaca	ccgcagagcg	gcataaggac	, -
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg	AAV serotyp atggttatct agctcaaacc gtcttgtgct	tccagattgg tggcccacca tcctgggtac	ctcgaggaca ccaccaaagc	ccgcagagcg gacccttcaa	gcataaggac cggactcgac	120
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc	AAV serotyp atggttatct agctcaaacc gtcttgtgct cggtcaacga	tccagattgg tggcccacca tcctgggtac ggcagacgcc	ctcgaggaca ccaccaaagc aagtaccttg	ccgcagagcg gacccttcaa agcacgacaa	gcataaggac cggactcgac ggcctacgac	120 180
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg	AAV serotyp atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg	ccgcagagcg gacccttcaa agcacgacaa accacgccga	gcataaggac cggactcgac ggcctacgac cgcggagttc	120 180 240
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagctcg	AAV serotyp atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag	120 180 240 300
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga	AAV serotyp atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg	120 180 240 300 360
<211> 2204 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaga	AAV serotyp atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg	120 180 240 300 360 420
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaaga aaagcgggcc	atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac	120 180 240 300 360 420 480
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaaga aaagcgggcc tccgtacctg	AAV serotypa atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact	120 180 240 300 360 420 480 540
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaaga ggaaaaaaga aagcgggcc tccgtacctg aatacgatgg	atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact	120 180 240 300 360 420 480 540
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt	atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag cctcgggaaa	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc	120 180 240 300 360 420 480 540 600 660
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaaga ggaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt accaccagca	AAV serotypates agotcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag cctcgggaaa cccgcacctg	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtcttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca ttggcattgc	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg ggatgggcga accacctcta	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc	120 180 240 300 360 420 480 540 600 660 720
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt accaccagca tccagccaat	AAV serotypes of the se	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca ttggcattgc ggctctgccc aaacgacaac	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca gattccacat acctacaaca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg ggatgggcga accacctcta gctacagcac	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc caggcagatt cccttggggg	120 180 240 300 360 420 480 540 600 660 720 780
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt accaccagca tccagccaat tatttgact	AAV serotypes of the se	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca ttggcattgc ggctctgccc aaacgacaac ccactgccac	ctcgaggaca ccaccaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca gattccacat acctacaaca cactactttg	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg ggatgggcga accacctcta gctacagcac gtgactggca	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc caggcagatt cccttggggg aagactcatc	120 180 240 300 360 420 480 540 600 660 720 780 840
<211> 2206 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt accaccagca tccagccaat tattttgact aacaacaatt	atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag cctcgggaaa cccgcacctg caggagcctc tcaacagatt	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca ttggcattgc ggctctgccc aaacgacaac ccactgccac	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca gattccacat acctacaaca cactactttg	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg ggatgggcga accacctcta gctacagcac gtgactggca agctctttaa	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc caggcagatt cccttggggg aagactcatc cattcaagtc	120 180 240 300 360 420 480 540 600 660 720 780 840 900
<211> 2200 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt accaccagca tccagccaat tattttgact aacaacaatt aaggaggtca	AAV serotypes atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag cctcgggaaa cccgcacctg caggagcctc tcaacagatt ggggatcccg cgcagaatga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca ttggcattgc ggctctgccc aaacgacaac ccactgccac gcccaaaaga cggtacgacg	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaattcg ccaccagcag atggcagaca gattccacat acctacaaca cactactttg ttttcgccac ctcaacttca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg ggatgggcga accacctcta gctacagcac gtgactggca agctctttaa ataaccttac	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc caggcagatt cccttggggg aagactcatc cattcaagtc cagcacggtt	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
<211> 2206 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt accaccagca tccagccaat tatttgact aacaacaatt aaggaggtca caggtgttta	atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag cctcgggaaa cccgcacctg caggagcctc tcaacagatt ggggatcccg cgcagaatga ctgactcgga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtcttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca ttggcattgc ggctctgccc aaacgacaac ccactgccac gcccaaaaga cggtacgacg gtaccagctc	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaattcg ccaccagcag atggcagaca gattccacat acctacaca cactactttg ttttcgccac ctcaacttca acgattgcca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg ggatgggcga accacctcta gctacagcac gtgactggca agctctttaa ataaccttac tcggctcggc	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc caggcagatt ccttgggga cagagtcatc cattaagtc cattcaagtc cagcacggt	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020

cagatgctgc gt	taccggaaa	caactttacc	ttcagctaca	cctttgagga	cgttcctttc	1260
cacagcagct ad	gcccacag	ccagagtttg.	gaccgtctca	tgaatcctct	cgtcgaccag	1320
tacctgtatt ac	ttgagcag	aacaaacact	ccaagcggaa	ccaccacgca	gtcaaggctt	1380
cagttttctc ag	ggccggagc	aagtgacatt	cgggaccagt	ctaggaactg	gcttcctgga	1440
ccctgttacc go	ccagcagcg	agtatcaaag	acatctgcgg	ataacaacaa	cagtgaatac	1500
tcgtggactg ga	agctaccaa	gtaccacctt	aatggaagag	actctctggt	gaatccgggc	1560
ccggccatgg co	cagccacaa	ggacgatgaa	gaaaagtttt	ttcctcagag	cggggttctc	1620
atctttggaa aa	acaagactc	gggaaaaact	aatgtggaca	ttgaaaaggt	catgattaca	1680
gacgaagagg aa	aatcaggac	caccaatccc.	gtggctacgg	agcagtatgg	ttctgtatct	1740
accaacctcc ag	gagcggcaa	cacacaagca	gctacctcag	atgtcaacac	acaaggcgtt	1800
cttccaggca to	ggtgtggca	ggacagagac	gtgtacctgc	aggggcccat	ctgggcaaag	1860
attccacaca co	ggacggaca	ttttcacccc	tctccctca	tgggcggatt	cggacttaaa	1920
caccctcccc cg	gcagattct	catcaagaac	accccggtac	ctgcgaatcc	ttcgactacc	1980
ttcagtgcgg ca	aagtttgc	ttccttcatt	acacagtact	ccacggggca	ggtcagcgtg	2040
gagatcgagt gg	ggagctgca	gaaggagaac	agcaaacgct	ggaatcccga	gattcagtac	2100
acttccaact ac	caacaaatc	tgttaatgtg.	gactttactg	tggacactaa	tggtgtgtat	2160
tcagagcctc go	cccattgg	caccagatac	ctgactcgta	atctgtaa		2208
240 242						
<210> 213 <211> 2214						
<212> DNA <213> adeno-	-associate	d virus, se	erotype 7			
<400> 213 atggctgccg at	ggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg ad						120
aacggccggg gt		•				180
aagggggagc co						240
cagcagctca aa						300
caggagcgtc to						360
gccaagaagc gg						420
gcaaagaaga ga						480
ggcaagaaag go						540
gagtcagtcc co						600
tctggtacag tg						660
ggagtgggta at						720
attaccacca go						780
atctccagtg aa						840
tgggggtatt tt	gactttaa	cagattccac	tgccacttct	caccacgtga	ctggcagcga	900
ctcatcaaca ac						960
caggtcaagg ag	gtcacgac	gaatgacggc	gttacgacca	tcgctaataa	ccttaccagc	1020
acgattcagg ta	ttctcgga	ctcggaatac	cagctgccgt	acgtcctcgg	ctctgcgcac	1080
cagggctgcc tg	cctccgtt	cccggcggac	gtcttcatga	ttcctcagta	cggctacctg	1140
actctcaaca at						1200
ccctctcaga tg						1260
cctttccaca go						1320
gaccagtact tg						1380
cgggaactgc ag						1440
ttacctggac ct						1500
			_	310		

agcaactttg	cttggactgg	tgccaccaaa	tatcacctga	acggcagaaa	ctcgttggtt	1560
aatcccggcg	tcgccatggc	aactcacaag	gacgacgagg	accgctttt	cccatccagc	1620
ggagtcctga	tttttggaaa	aactggagca	actaacaaaa	ctacattgga	aaatgtgtta	1680
atgacaaatg	aagaagaaat	tcgtcctact	aatcctgtag	ccacggaaga	atacgggata	1740
gtcagcagca	acttacaagc	ggctaatact	gcagcccaga	cacaagttgt	caacaaccag	1800
ggagccttac	ctggcatggt	ctggcagaac	cgggacgtgt	acctgcaggg	tcccatctgg	1860
gccaagattc	ctcacacgga	tggcaacttt	cacccgtctc	ctttgatggg	cggctttgga	1920
cttaaacatc	cgcctcctca	gatcctgatc	aagaacactc	ccgttcccgc	taatcctccg	1980
gaggtgttta	ctcctgccaa	gtttgcttcg	ttcatcacac	agtacagcac	cggacaagtc	2040
agcgtggaaa	tcgagtggga	gctgcagaag	gaaaacagca	agcgctggaa	cccggagatt	2100
cagtacacct	ccaactttga	aaagcagact	ggtgtggact	ttgccgttga	cagccagggt	2160
gtttactctg	agcctcgccc	tattggcact	cgttacctca	cccgtaatct	gtaa	2214
<210> 214						
<211> 2217 <212> DNA		ed virus, se	erotype 8			
<400> 214			oc, pc o			
	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg	cgctgaaacc	tggagccccg	aagcccaaag	ccaaccagca	aaagcaggac	120
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctgc	aggcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aaggcgctaa	gacggctcct	420
ggaaagaaga	gaccggtaga	gccatcaccc	cagcgttctc	cagactcctc	tacgggcatc	480
ggcaagaaag	gccaacagcc	cgccagaaaa	agactcaatt	ttggtcagac	tggcgactca	540
gagtcagttc	cagaccctca	acctctcgga	gaacctccag	cagcgccctc	tggtgtggga	600
cctaatacaa	tggctgcagg	cggtggcgca	ccaatggcag	acaataacga	aggcgccgac	660
ggagtgggta	gttcctcggg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	acaaccacct	ctacaagcaa	780
atctccaacg	ggacatcggg	aggagccacc	aacgacaaca	cctacttcgg	ctacagcacc	840
ccctgggggt	attttgactt	taacagattc	cactgccact	tttcaccacg	tgactggcag	900
cgactcatca	acaacaactg	gggattccgg	cccaagagac	tcagcttcaa	gctcttcaac	960
atccaggtca	aggaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taacctcacc	1020
agcaccatcc	aggtgtttac	ggactcggag.	taccagctgc	cgtacgttct	cggctctgcc	1080
caccagggct	gcctgcctcc	gttcccggcg	gacgtgttca	tgattcccca	gtacggctac	1140
ctaacactca	acaacggtag	tcaggccgtg	ggacgctcct	ccttctactg	cctggaatac	1200
tttccttcgc	agatgctgag	aaccggcaac	aacttccagt	ttacttacac	cttcgaggac	1260
gtgcctttcc	acagcagcta	cgcccacagc	cagagcttgg	accggctgat	gaatcctctg	1320
attgaccagt	acctgtacta	cttgtctcgg	actcaaacaa	caggaggcac	ggcaaatacg	1380
cagactctgg	gcttcagcca	aggtgggcct	aatacaatgg	ccaatcaggc	aaagaactgg	1440
ctgccaggac	cctgttaccg	ccaacaacgc.	gtctcaacga	caaccgggca	aaacaacaat	1500
agcaactttg	cctggactgc	tgggaccaaa	taccatctga	atggaagaaa	ttcattggct	1560
aatcctggca	tcgctatggc	aacacacaaa	gacgacgagg	agcgttttt	tcccagtaac	1620
gggatcctga	tttttggcaa	acaaaatgct	gccagagaca	atgcggatta	cagcgatgtc	1680
atgctcacca	gcgaggaaga	aatcaaaacc	actaaccctg	tggctacaga	ggaatacggt	1740
atcgtggcag	ataacttgca	gcagcaaaac	acggctcctc	aaattggaac	tgtcaacagc	1800

cagggggcct	tacccggtat	ggtctggcag	aaccgggacg	tgtacctgca	gggtcccatc	1860
tgggccaaga	ttcctcacac	ggacggcaac	ttccacccgt	ctccgctgat	gggcggcttt	1920
ggcctgaaac	atcctccgcc	tcagatcctg	atcaagaaca	cgcctgtacc	tgcggatcct	1980
ccgaccacct	tcaaccagtc	aaagctgaac	tctttcatca	cgcaatacag	caccggacag	2040
gtcagcgtgg	aaattgaatg	ggagctgcag	aaggaaaaca	gcaagcgctg	gaaccccgag	2100
atccagtaca	cctccaacta	ctacaaatct	acaagtgtgg	actttgctgt	taatacagaa	2160
ggcgtgtact	ctgaaccccg	ccccattggc	acccgttacc	tcacccgtaa	tctgtaa	2217
210 215						
<210> 215 <211> 221 <212> DNA <213> new		pe, clone hu	J. 67			
<400> 215	aconttatct	tccagattgg	C†C03003C3	2001010102	agacattcac	60
				-		120
		tggagccccc				
		tcttggctac	-			180
		ggcggacgca				240
		caatccgtac				300
		tacgtctttt				360
		acctctcggt				420
		accgtcacct				480
		cgctaaaaag	_			540
		accaatcgga				600
		cggtggcgct				660
		aaattggcat				720
		ctgggccctg			_	780
		aggaagcacc			_	840
ccctgggggt	attttgactt	caacagattc	cactgccact	tctcaccacg	tgactggcag	900
cgactcatca	acaacaactg	gggattccgg	ccaaaaagac	tcagcttcaa	gctcttcaac	960
atccaggtca	aggaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taaccttacc	1020
		ggactcggaa				1080
caccagggct	gcctgcctcc	gttcccggcg	gacgtcttca	tgattcccca	gtacggctac	1140
cttacactga	acaatggaag	tcaagccgta	ggccgttcct	ccttctactg	cctggaatat	1200
tttccatctc	aaatgctgcg	aactggaaac	aattttgaat	tcagctacac	cttcgaggac	1260
gtgcctttcc	acagcggcta	cgcacacagc	cagagettgg	accgactgat	gaatcctctc	1320
atcgaccagt	acctgtacta	cttatccaga	actcagtcca	caggaggaac	tcaaggtacc	1380
cagcaattgt	tattttctca	agctgggcct	gcaaacatgt	cggctcaggc	taagaactgg	1440
ctacctggac	cttgctaccg	gcagcagcga	gtctctacga	cactgtcgca	aaacaacaac	1500
agcaactttg	cttggactgg	tgccaccaaa	tatcacctga	acggaagaga	ctctttggta	1560
aatcccggtg	tcgccatggc	aacccacaag	gacgacgagg	aacgcttctt	cccgtcgagt	1620
ggagtcctga	tgtttggaaa	acagggtgct	ggaagagaca	atgtggacta	cagcagcgtt	1680
atgctaacca	gcgaagaaga	aattaaaacc	actaaccctg	tagccacaga	acaatacggt	1740
gtggtggctg	acaacttgca	gcaaaccaat	acagggccta	ttgtgggaaa	tgtcaacagc	1800
caaggagcct	tacctggcat	ggtctggcag	aaccgagacg	tgtacctgca	gggtcccatc	1860
tgggccaaga	ttcctcacac	ggacggcaac	ttccaccctt	caccgctaat	gggaggattt	1920
ggactgaagc	acccacctcc	tcagatcctg	atcaagaaca	cgccggtacc	tgcggatcct	1980
ccaacgacgt	tcagccaggc	gaaattggct	tccttcatta	cgcagtacag	caccggacag	2040
gtcagcgtgg	aaatcgagtg	ggagctgcag	aaggagaaca	gcaaacgctg	gaacccagag	2100
			F	age 320		

attcagtaca cttcaaacta ctacaaatct acaaatgtgg actttgctgt caatacagag ggaacttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa

2217

<210> <211> <212> vp1, serotype 5 <400> 216 Met Ser Phe Val Asp His Pro Pro Asp Trp Leu Glu Glu Val Gly Glu
1 5 10 15 Gly Leu Arg Glu Phe Leu Gly Leu Glu Ala Gly Pro Pro Lys Pro Lys Pro Asn Gln Gln His Gln Asp Gln Ala Arg Gly Leu Val Leu Pro Gly
40
45 Tyr Asn Tyr Leu Gly Pro Gly Asn Gly Leu Asp Arg Gly Glu Pro Val Asn Arg Ala Asp Glu Val Ala Arg Glu His Asp Ile Ser Tyr Asn Glu 65 70 80 Gln Leu Glu Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp 90 95 Ala Glu Phe Gln Glu Lys Leu Ala Asp Asp Thr Ser Phe Gly Gly Asn 100 110 Leu Gly Lys Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Phe 115 120 125 Gly Leu Val Glu Glu Gly Ala Lys. Thr Ala Pro Thr Gly Lys Arg Ile 130 135 140 Asp Asp His Phe Pro Lys Arg Lys Lys Ala Arg Thr Glu Glu Asp Ser 145 150 160 Lys Pro Ser Thr Ser Ser Asp Ala Glu Ala Gly Pro Ser Gly Ser Gln
165 170 175 Gln Leu Gln Ile Pro Ala Gln Pro Ala Ser Ser Leu Gly Ala Asp Thr 180 185 Met Ser Ala Gly Gly Gly Pro Leu Gly Asp Asn Asn Gln Gly Ala 195 200 205 Asp Gly Val Gly Asn Ala Ser Gly Asp Trp His Cys Asp Ser Thr Trp 210 215 220 Met Gly Asp Arg Val Val Thr Lys Ser Thr Arg Thr Trp Val Leu Pro 225 230 235 240 Ser Tyr Asn Asn His Gln Tyr Arg Glu Ile Lys Ser Gly Ser val Asp 245 255 Gly Ser Asn Ala Asn Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr 260 265 270 Phe Asp Phe Asn Arg Phe His Ser His Trp Ser Pro Arg Asp Trp Gln
280 285 Arg Leu Ile Asn Asn Tyr Trp Gly Phe Arg Pro Arg Ser Leu Arg Val Lys Ile Phe Asn Ile Gln Val Lys Glu Val Thr Val Gln Asp Ser Thr 305 310 315 320

Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Asp Asp Tyr Gln Leu Pro Tyr Val Val Gly Asn Gly Thr Glu Gly Cys 340 350 Leu Pro Ala Phe Pro Pro Gln Val Phe Thr Leu Pro Gln Tyr Gly Tyr 355 360 365 Ala Thr Leu Asn Arg Asp Asn Thr Glu Asn Pro Thr Glu Arg Ser Ser Phe Phe Cys Leu Glu Tyr Phe Pro Ser Lys Met Leu Arg Thr Gly Asn 385 400 Asn Phe Glu Phe Thr Tyr Asn Phe Glu Glu Val Pro Phe His Ser Ser 405 415 Phe Ala Pro Ser Gln Asn Leu Phe Lys Leu Ala Asn Pro Leu Val Asp 420 425 430 Gln Tyr Leu Tyr Arg Phe Val Ser Thr Asn Asn Thr Gly Gly Val Gln
445 Phe Asn Lys Asn Leu Ala Gly Arg Tyr Ala Asn Thr Tyr Lys Asn Trp 450 460 Phe Pro Gly Pro Met Gly Arg Thr Gln Gly Trp Asn Leu Gly Ser Gly 465 470 475 480 Val Asn Arg Ala Ser Val Ser Ala Phe Ala Thr Thr Asn Arg Met Glu 485 490 495 Leu Glu Gly Ala Ser Tyr Gln Val Pro Pro Gln Pro Asn Gly Met Thr 500 510 Asn Asn Leu Gln Gly Ser Asn Thr Tyr Ala Leu Glu Asn Thr Met Ile 515 520 525 Phe Asn Ser Gln Pro Ala Asn Pro Gly Thr Thr Ala Thr Tyr Leu Glu 530 535 . 540 Gly Asn Met Leu Ile Thr Ser Glu Ser Glu Thr Gln Pro Val Asn Arg 545 550 560 Val Ala Tyr Asn Val Gly Gly Gln Met Ala Thr Asn Asn Gln Ser Ser 575 575 Thr Thr Ala Pro Ala Thr Gly Thr Tyr Asn Leu Gln Glu Ile Val Pro 580 585 Gly Ser Val Trp Met Glu Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp 595 600 Ala Lys Ile Pro Glu Thr Gly Ala His Phe His Pro Ser Pro Ala Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Met Met Leu Ile Lys Asn 625 630 635 Thr Pro Val Pro Gly Asn Ile Thr Ser Phe Ser Asp Val Pro Val Ser 650 655 Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Thr Val Glu Met Glu 660 670 Trp Glu Leu Lys Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln 675

680

685

Tyr Thr Asn Asn Tyr Asn Asp Pro Gln Phe Val Asp Phe Ala Pro Asp 690 695 700 Ser Thr Gly Glu Tyr Arg Thr Thr Arg Pro Ile Gly Thr Arg Tyr Leu

Thr Arg Pro Leu

<210> 217 <211> 736 <212> PRT <213> vpl, serotype 3-3 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Val Pro Gln Pro 25 30 Lys Ala Asn Gln Gln His Gln Asp Asn Arg Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gin Gin Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Gly 130 135 140 Ala Val Asp Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Val Gly 145 150 155 160 Lys Ser Gly Lys Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 190 Ala Ala Pro Thr Ser Leu Gly Ser Asn Thr Met Ala Ser Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His

285

Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Leu Ser Phe Lys Leu Phe Asn Ile Gln Val 305 310 315 320 Arg Gly Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 445 Gln Gly Thr Thr Ser Gly Thr Thr Asn Gln Ser Arg Leu Leu Phe Ser 450 455 460 Gln Ala Gly Pro Gln Ser Met Ser Leu Gln Ala Arg Asn Trp Leu Pro 465 470 . 475 480 Gly Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Thr Ala Asn Asp Asn 495 Asn Asn Ser Asn Phe Pro Trp Thr Ala Ala Ser Lys Tyr His Leu Asn 500 510 Gly Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys 515 520 525 Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Asn Leu Ile Phe Gly 530 540 Lys Glu Gly Thr Thr Ala Ser Asn Ala Glu Leu Asp Asn Val Met Ile 545 550 560 Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln 565 570 575 Tyr Gly Thr Val Ala Asn Asn Leu Gln Ser Ser Asn Thr Ala Pro Thr 580 590 Thr Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Thr Thr Phe Ser Pro Ala Lys Phe Ala Ser Phe Ile Thr 660 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 700 Tyr Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val 705 710 715 720 Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 218 <211> 734 <212> PRT <213> vpl, serotype 4-4

<400> 218

Met Thr Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu 1 15 15 Gly Val Arg Glu Trp Trp Ala Leu Gln Pro Gly Ala Pro Lys Pro Lys 25 30 Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Gln Arg Leu Gln Gly Asp Thr Ser Phe Gly Gly Asn 100 110 Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu 115 120 125 Gly Leu Val Glu Gln Ala Gly Glu Thr Ala Pro Gly Lys Lys Arg Pro 130 135 140 Leu Ile Glu Ser Pro Gln Gln Pro Asp Ser Ser Thr Gly Ile Gly Lys 145 150 155 Lys Gly Lys Gln Pro Ala Lys Lys Lys Leu Val Phe Glu Asp Glu Thr 165 170 Gly Ala Gly Asp Gly Pro Pro Glu Gly Ser Thr Ser Gly Ala Met Ser 180 190 Asp Asp Ser Glu Met Arg Ala Ala Ala Gly Gly Ala Ala Val Glu Gly Gly Gln Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asp Trp His Cys Asp Ser. Thr Trp Ser Glu Gly His Val Thr Thr Thr Ser Thr Arg Thr 225 230 235

Trp Val Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Arg Leu Gly Glu Ser Leu Gln Ser Asn Thr Tyr Asn Gly Phe Ser Thr Pro Trp Gly Tyr 260 265 270 Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Met Arg Pro Lys Ala Met Arg Val 290 295 300 Lys Ile Phe Asn Ile Gln Val Lys Glu Val Thr Thr Ser Asn Gly Glu 305 310 315 320Thr Thr Val Ala Asn Asn Leu Thr Ser Thr Val Gln Ile Phe Ala Asp 325 330 335 Ser Ser Tyr Glu Leu Pro Tyr Val Met Asp Ala Gly Gln Glu Gly Ser 340 350 Leu Pro Pro Phe Pro Asn Asp Val Phe Met Val Pro Gln Tyr Gly Tyr 355 360 365 Cys Gly Leu Val Thr Gly Asn Thr Ser Gln Gln Gln Thr Asp Arg Asn 370 380 Ala Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly 385 400 Asn Asn Phe Glu Ile Thr Tyr Ser Phe Glu Lys Val Pro Phe His Ser 405 410 415 Met Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile 420 430 Asp Gln Tyr Leu Trp Gly Leu Gln Ser Thr Thr Thr Gly Thr Thr Leu 435 440 445 Asn Ala Gly Thr Ala Thr Thr Asn Phe Thr Lys Leu Arg Pro Thr Asn 450 455 460 Phe Ser Asn Phe Lys Lys Asn Trp Leu Pro Gly Pro Ser Ile Lys Gln 465 470 475 480 Gln Gly Phe Ser Lys Thr Ala Asn Gln Asn Tyr Lys Ile Pro Ala Thr 485 490 495 Gly Ser Asp Ser Leu Ile Lys Tyr Glu Thr His Ser Thr Leu Asp Gly 500 510 Arg Trp Ser Ala Leu Thr Pro Gly Pro Pro Met Ala Thr Ala Gly Pro 515 520 . 525 Ala Asp Ser Lys Phe Ser Asn Ser Gln Leu Ile Phe Ala Gly Pro Lys 530 535 540 Gln Asn Gly Asn Thr Ala Thr Val Pro Gly Thr Leu Ile Phe Thr Ser 545 550 560 Glu Glu Glu Leu Ala Ala Thr Asn Ala Thr Asp Thr Asp Met Trp Gly
575 Asn Leu Pro Gly Gly Asp Gln Ser Asn Ser Asn Leu Pro Thr Val Asp Arg Leu Thr Ala Leu Gly Ala Val Pro Gly Met Val Trp Gln Asn Arg

ASP Ile Tyr Tyr Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr ASP 610 620 Gly His Phe His Pro Ser Pro Leu Ile Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln lle Phe lle Lys Asn Thr Pro Val Pro Ala Asn Pro 645 . 650 . 655 Ala Thr Thr Phe Ser Ser Thr Pro Val Asn Ser Phe Ile Thr Gln Tyr 660 665 670 Ser Thr Gly Gln Val Ser Val Gln Ile Asp Trp Glu Ile Gln Lys Glu 680 685 Arg Ser Lys Arg Trp Asn Pro Glu Val Gln Phe Thr Ser Asn Tyr Gly 690 700 Gln Gln Asn Ser Leu Leu Trp Ala Pro Asp Ala Ala Gly Lys Tyr Thr 705 710 725 720 Glu Pro Arg Ala Ile Gly Thr Arg Tyr Leu Thr His His Leu

<210> 219 <211> 736 <212> PRT <213> vpl, serotype 1

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
40
45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly 145 150 155 160 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 185 190 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly 195 200 205

Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His 260 270 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 275 280 285 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 325 330 335 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 340 345 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 375 380 Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe
405 415 Glu Glu Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp 420 425 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg 445 445 Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser 450 460 Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro 465 470 475 Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 495 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 505 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly 530 540 Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile 545 550 560 Thr Asp Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg 565 570 575

Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro Ala Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys Asn Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 655 655 Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr 660 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 715 720 Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly AST LEU Gly Arg Ala Val Phe Glm Ala Lys Lys Arg Val Leu Glu Pro Phe Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly 145 150 155 160 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr

<210> 220 <211> 736 <212> PRT <213> vp1, serotype 6

Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 185 190 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 235 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His 260 270 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln 305 310 320 Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 325 330 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 340 350 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 375 380 Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro 385 390 395 400 Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe 405 410 415 Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp 420 425 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser 450 460 Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro 465 470 475 Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 485 490 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 500 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys Asp Asp Lys Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly

Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile 545 550 560 Thr Asp Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg 565 570 575 Phe Gly Thr Val Ala Val Asn Leu Gln Ser Ser Thr Asp Pro Ala 580 590 Thr Gly Asp Val His Val Met Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 645 650 Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr 660 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 720 Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu 725 730

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg

²²¹ 735 PRT vp1, serotype 2

<400> 221

130

135

140

Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 . 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 485 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp. Asn Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95

<210> 222 <211> 737 <212> PRT <213> vpl, serotype 7

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Ala Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Val Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 215 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Glu Thr Ala Gly Ser Thr Asn Asp Asn 260 270 Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Arg Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 330 335 Asn Leu Thr Ser Thr Ile Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro $360 ext{ } 365$ Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 375 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 390 395 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr Ser 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 440 445 Arg Thr Gln Ser Asn Pro Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 455 460

Phe Tyr Gln Gly Gly Pro Ser Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr $515 \hspace{1.5cm} 520 \hspace{0.5cm} \cdot \hspace{0.5cm} 525$ His Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 540 Phe Gly Lys Thr Gly Ala Thr Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Ile Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 635 640Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 655 655 Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 700 Asn Phe Glu Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 715 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725 735

Leu

<210> 223

<400× 223

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 10 .

Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Lys Pro 25 Lys Ala Asp Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 40 40

<211> 730

<213> vp1, serotype 8

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Gln Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 · 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Gly Val Gly Pro Asn Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ala Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Thr Tyr 405 410 415

Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 435 440 445 Ser Arg Thr Gln Thr Thr Gly Gly Thr Ala Asn Thr Gln Thr Leu Gly
450 455 460 Phe Ser Gln Gly Gly Pro Asn Thr Met Ala Asn Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Gly 485 490 Gln Asn Asn Ser Asn Phe Ala Trp Thr Ala Gly Thr Lys Tyr His
500 510 Leu Asn Gly Arg Asn Ser Leu Ala Asn Pro Gly Ile Ala Met Ala Thr 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Asn Gly Ile Leu Ile 530 535 540 Phe Gly Lys Gln Asn Ala Ala Arg Asp Asn Ala Asp Tyr Ser Asp val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 Glu Glu Tyr Gly Ile Val Ala Asp Asn Leu Gln Gln Asn Thr Ala 580 590 Pro Gln Ile Gly Thr Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 655 655 Pro Ala Asp Pro Pro Thr Thr Phe Asn Gln Ser Lys Leu Asn Ser Phe 660 665 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 700Ser Asn Tyr Tyr Lys Ser Thr Ser Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

<210> 224 <211> 736 <212> PRT <213> vpl, modified hu.46

<400> 224 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 20 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly 145 150 155 160 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 190 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His $260 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$ Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 275 280 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln 305 310 315Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 325 330 335 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro

Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala

ASP Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 380 Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro 385 390 400 Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe
405 415 Glu Glu Val Pro Leu His Ser Ser Cys Ala His Ser Gln Ser Leu Asp 420 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg 445 445 Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Arg Asp Leu Leu Phe Ser 450 460 Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro 465 470 475 Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 485 490 495 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 500 510 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys 515 520 525 Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly 530 540 Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile 545 550 560 Thr Asp Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg 565 . 570 575 Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro Ala 580 585 590 Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys Asn Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 645 650 Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr 660 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 · 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 720

Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu 725 735

225 735 PRT vpl, modified hu.29 <400> 225 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ser Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ser Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln val 305 310 320

Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 . 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 410 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 445 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Pro Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp $595 \hspace{0.5cm} 600 \hspace{0.5cm} 605$ Arg Asp Val Tyr Leu Gln Gly Pro I]e Trp Ala Lys Ile Pro His Thr 610 620Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 630 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 665 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685

Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 226 <211> 735 <212> PRT <213> vp1, modified hu.7

<400> 226 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 · 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Pro Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285

Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 520 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 535 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575 Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 590 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln lle Met Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655

Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 227 <211> 728 <212> PRT <213> vpl, modified cy.5

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Arg Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Lys Gln Leu Glu Gln Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Ile Glu Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Asn Gly Gln 145 150 150 160 Pro Pro Ala Lys Lys Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu 165 170 175 Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro Ala Ala Pro Ser 180 185 Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala 195 200 205 Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asn Trp 210 220 His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr 225 230 235 240 Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile 245 250 255

Ser Ser Gln Ser Gly Ala Thr Asn Asp Asn His Phe Phe Gly Tyr Ser 260 270 Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Trp Gly Phe Arg Pro 290 295 300 Arg Lys Leu Arg Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile 325 330 Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser 340 345 Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile 355 360 365 Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ser Val Gly 370 380 Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg 385 390 395 Thr Gly Asn Asn Phe Glu Phe Ser Tyr Thr Phe Glu Glu Val Pro Phe
405 410 415 His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro
420 430 Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Thr Thr 435 440 Gly Ser Thr Arg Glu Leu Gln Phe His Gln Ala Gly Pro Asn Thr Met 450 460 Ala Glu Gln Ser Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln 465 470 475 480 Arg Leu Ser Lys Asn Ile Asp Ser Asn Asn Ser Asn Phe Ala Trp 485 490 495 Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Thr Asn 500 Pro Gly Val Ala Met Ala Thr Asn Lys Asp Glu Asp Gln Phe Phe 515 525 Pro Ile Asn Gly Val Leu Val Phe Gly Lys Thr Gly Ala Ala Asn Lys 530 540 Thr Thr Leu Glu Asn Val Leu Met Thr Ser Glu Glu Glu Ile Lys Thr 545 550 560 Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Val Val Ser Ser Asn Leu 565 570 Gln Ser Ser Thr Ala Gly Pro Gln Thr Gln Thr Val Asn Ser Gln Gly 580 590 Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser

Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Gln Ile Leu 625 630 635 640 Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Glu Val Phe Thr Pro 645 650 655 Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser 660 670 Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn 675 685 Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Ala Lys Ser Asn Asn Val Glu 690 695 700 Phe Ala Val Asn Asn Glu Gly Val Tyr Thr Glu Pro Arg Pro Ile Gly 705 710 715 720 Thr Arg Tyr Leu Thr Arg Asn Leu 725

<210> 228 <211> 728 <212> PRT <213> vpl, modified rh.13

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Lys Gln Leu Glu Gln Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 . 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Ile Glu Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln 145 150 155 160 Gln Pro Ala Lys Lys Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu 165 170 175 Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro Ala Ala Pro Ser 180 190 Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala 195 200 Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asn Trp

His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr 225 230 235 240 Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile 245 250 255 Ser Ser Gln Ser Gly Ala Thr Asn Asp Asn His Phe Phe Gly Tyr Ser 260 270 Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser 275 280 285 Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Trp Gly Phe Arg Pro Arg Lys Leu Arg Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr 305 310 315 Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile 325 330 335 Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser 340 350 Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile 355 360 . 365 Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ser Val Gly 370 380 Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg 385 390 395 400 Thr Gly Asn Asn Phe Glu Phe Ser Tyr Thr Phe Glu Glu Val Pro Phe 405 415 His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro 420 430 Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Thr Thr 445 Gly Ser Thr Arg Glu Leu Gln Phe His Gln Ala Gly Pro Asn Thr Met Ala Glu Gln Ser Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln 465 470 475 480 Arg Leu Ser Lys Asn Ile Asp Ser Asn Asn Ser Asn Phe Ala Trp
485 490 495 Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Thr Asn 500 510 Pro Gly Val Ala Met Ala Thr Asn Lys Asp Glu Asp Gln Phe Phe Pro Ile Asn Gly Val Leu Val Phe Gly Lys Thr Gly Ala Ala Asn Lys 530 540 Thr Thr Leu Glu Asn Val Leu Met Thr Ser Glu Glu Glu Ile Lys Thr 545 550 555 560 Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Val Val Ser Ser Asn Leu 565 575

WO 2005/033321 PCT/US2004/028817

Gln Ser Ser Thr Ala Gly Pro Gln Thr Gln Thr Val Asn Ser Gln Gly
Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly
Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser
Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Gln Ile Leu
625 Leu Met Gly Gly Pro Ala Asn Pro Pro Glu Val Phe Thr Pro
Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser
Val Glu Ile Gln Tyr Thr Ser Asn Tyr Ala Lys Ser Asn Asn Val Glu
Phe Ala Val Asn Asn Glu Gly Val Tyr Thr Gly Pro Arg Pro Ile Gly
705 Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 229 <211> 729 <212> PRT <213> vp1, modified rh.37

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Asp Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro So Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Ro Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Asp Lys Arg Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Ile Asp Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln Pro Ala Lys Lys Lys Lys Gly Gln Thr Gly Asp Ser Glu Gln Pro Ala Lys Lys Lys Lys Gly Gln Pro Ala Lys Lys Lys Lys Lys Gly Gln Pro Ala Lys Lys Lys Lys Lys Gly Gln Pro Ala Lys Lys Lys Lys Lys Gly Gln Pro Ala Lys Lys Lys Lys Lys Gly Gln Pro Ala Lys Lys Lys Lys Lys Lys Gly Gln Pro Ala Lys Lys Lys Lys Lys Lys Gly Gln Pro Ala Lys Lys Lys Lys Lys Lys Gly Gln Pro Ala Lys Lys Lys Lys Lys Lys Gly Gln Pro Ala Lys Lys Lys Lys Lys Lys Gly Gln Pro Ala Lys Lys Lys Lys Lys Lys Gly Gln Pro Ala Lys Lys Lys Lys Lys Lys Gly Gln Pro Ala Lys Lys Lys Lys Lys Lys Gly Gln Pro Ala Lys Lys Lys Lys Lys Lys Lys Lys Lys Info

Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Thr Ala 195 200 Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asn Trp 210 220 His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr 225 230 235 240 Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile 245 250 255 Ser Ser Ser Ser Gly Ala Thr Asn Asp Asn His Tyr Phe Gly Tyr 260 265 Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe 275 280 285 Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Leu Arg Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val 305 310 320 Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr 325 330 335 Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly 340 350 Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met 355 360 365 lle Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ser Val 370 380 Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu 385 390 400 Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr Ser Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn 420 430 Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Thr 440 445 Thr Gly Ser Thr Arg Glu Leu Gln Phe His Gln Ala Gly Pro Asn Thr 450 460 Met Ala Glu Gln Ser Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln 465 470 475 480 Gin Arg Leu Ser Lys Asn Leu Asp Phe Asn Asn Asn Ser Asn Phe Ala Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Thr Asn Pro Gly Ile Pro Met Ala Thr Asn Lys Asp Asp Glu Asp Gln Phe Phe Pro Ile Asn Gly Val Leu Val Phe Gly Lys Thr Gly Ala Ala Asn 530 540

Lys Thr Thr Leu Glu Asn Val Leu Met Thr Ser Glu Glu Glu Ile Lys 545 555 560 Thr Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Val Val Ser Ser Asn 570 Leu Gln Ser Ser Thr Ala Gly Pro Gln Ser Gln Thr Ile Asn Ser Gln 580 590 Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln 595 600 Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro 610 620 Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile 625 630 635 Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Glu Val Phe Thr 645 655 Pro Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp 675 680 685 Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Ala Lys Ser Asn Asn Val 690 695 700 Glu Phe Ala Val Asn Pro Asp Gly Val Tyr Thr Glu Pro Arg Pro 1le 705 710 720 Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 230 <211> 737 <212> PRT <213> vpl, modified rh.67

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 390 395 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr $405 \ \ 410 \ \cdot \ \ 415$ Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Tro 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His

Leu

Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 555 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 570 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 615 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 640 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 655 Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 700 Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725 730 735

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Pro Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 . 380Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gln Gln Leu Leu

Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 475 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 535 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Ser Val 555 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Gly Ala 580 590 Pro Ile Val Gly Thr Val Asm Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 655 655 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 715 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25

Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro

<210> 232 <211> 738 <212> PRT <213> vpl, modified rh.58

<400>

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 350Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400

WO 2005/033321 PCT/US2004/028817

Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu
450 455 460 Phe Ser Gln Ala Gly Pro Ser Asm Met Ser Ala Gln Ala Arg Asm Trp
465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 505 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Ser Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 715 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

<210> 233 <211> 738 <212> PRT <213> vpl, modified rh.64 <400> 233

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 180 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 . 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350

Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 410 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu
450 455 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp
465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 · 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 650 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 715 720 WO 2005/033321 PCT/US2004/028817

Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

vp1, modified ch.5

<400> 234 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Asn Gln Gln His Arg Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 His Gln Leu Lys Gln Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Ile Glu Gln Ser Pro Ala Glu Pro Asp Ser Ser Gly Ile Gly 145 150 155 160 Lys Ser Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro 180 185 190 Ala Ala Pro Ser Gly Val Gly Ser Asn Thr Met Ala Ser Gly Gly Gly 195 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Glu Ser Gly Ala Thr Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300

Page 359

Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 315 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 \cdot 410 \cdot 415Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Lys Thr 435 440 445 Gln Gly Thr Ser Gly Thr Thr Gln Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Pro Ser Ser Met Ala Gln Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 480 Pro Ser Tyr Arg Gln Gln Arg Met Ser Lys Thr Ala Asn Asp Asn Asn 485 490 495 Asn Ser Glu Phe Ala Trp Thr Ala Ala Thr Lys Tyr Tyr Leu Asn Gly 500 505 510 Arg Asn Ser Leu Val Asn Pro Gly Pro Pro Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Tyr Phe Pro Met His Gly Asn Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Gly Thr Thr Asn Val Asp Ile Glu Ser Val Leu Ile Thr 545 550 555 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 Gly Gln Val Ala Thr Asn His Gln Ser Gln Asn Thr Thr Ala Ser Tyr 580 590 Gly Ser Val Asp Ser Gln Gly Ile Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ala Thr Thr Phe Thr Pro Gly Lys Phe Ala Ser Phe Ile Thr Gln

Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Glu Phe Thr Val Asp Ala Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 235 <211> 736 <212> PRT <213> vp1, modified rh.8

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly 145 150 155 160 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 185 Ala Ala Pro Ser Gly Leu Gly Pro Asn Thr Met Ala Ser Gly Gly Gly 195 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp Asn 265

Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 Gln Val Lys Glu Val Thr Thr Asn Glu Gly Thr Lys Thr Ile Ala Asn 325 330 Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu 340 345 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 375 380 Gly Ser Gln Ala Leu Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Val 445 445 Arg Thr Gln Thr Thr Gly Thr Gly Gly Thr Gln Thr Leu Ala Phe Ser 450 460 Gln Ala Gly Pro Ser Ser Met Ala Asn Gln Ala Arg Asn Trp Val Pro 465 470 475 480 Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Thr Asn Gln Asn 495 Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Ala Lys Phe Lys Leu Asn 500 510 Gly Arg Asp Ser Leu Met Asn Pro Gly Val Ala Met Ala Ser His Lys 515 520 525 Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Val Leu Ile Phe Gly 530 535 Lys Gln Gly Ala Gly Asn Asp Gly Val Asp Tyr Ser Gln Val Leu Ile 545 550 555 Thr Asp Glu Glu Ile Lys Ala Thr Asp Pro Val Ala Thr Glu Glu 565 570 575 Tyr Gly Ala Val Ala Ile Asn Asn Gln Ala Ala Asn Thr Gln Ala Gln 580 590 Thr Gly Leu Val His Asn Gln Gly Val Ile Pro Gly Met Val Trp Gln 595 600 Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620

Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 655 655 Asp Pro Pro Leu Thr Phe Asn Gln Ala Lys Leu Asn Ser Phe Ile Thr 660 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 700 Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu Gly Val 705 710 725 720 Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Pro Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 180 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220

<210> 236 <211> 737 <212> PRT <213> vpl, modified hu.43

Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn 260 270 His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 $$ 330 $$ 335 Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 390 395 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu Glu Val Pro Leu His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn 435 445Arg Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe 450 460 Ser Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu 465 470 475 Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu 500 510 Asn Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His 515 520 525 Lys Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe 530 540 Gly Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met 545 550 560 Ile Thr Asp Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu 565 570 Arg Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Ser Thr Asp Pro

Leu

Ala Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp

Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro

His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly

Eeu Lys Asn Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro

Ala Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile

Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Gly Trp Glu Leu

Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser

Asn Tyr Ala Lys Ser Ala Ser Val Asp Phe Thr Val Asp Asn Asn Gly

725

Leu Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro

735