

ECE 602: LUMPED LINEAR SYSTEMS

Professor Jianghai Hu

State-Space Models of Lumped Systems

State-Space Model of General Lumped Systems

State-space model of a lumped system \mathcal{N} with state $x \in \mathbb{R}^n$:

Continuous-time case:

$$\begin{cases} \frac{dx}{dt} = f(x(t), u(t), t) \\ y(t) = g(x(t), u(t), t) \end{cases}, \quad t \in \mathbb{R}$$

where f and g are arbitrary (in general nonlinear) functions

Discrete-time case:

$$\begin{cases} x[k+1] = f(x[k], u[k], k) \\ y[k] = g(x[k], u[k], k) \end{cases}, \quad k \in \mathbb{Z}$$

State-Space Model of CT Lumped Linear Systems

 \mathcal{N} : lumped linear system with state $x \in \mathbb{R}^n$, input $u \in \mathbb{R}^m$, output $y \in \mathbb{R}^p$

State-space model of continuous-time linear time-invariant (LTI) systems:

$$\begin{cases} \frac{dx(t)}{dt} = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}, \quad t \in \mathbb{R}$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times m}$

State-space model of continuous-time linear time-varying (LTV) systems:

$$\begin{cases} \frac{dx(t)}{dt} = A(t)x(t) + B(t)u(t) \\ y(t) = C(t)x(t) + D(t)u(t) \end{cases}, \quad t \in \mathbb{R}$$

where $A(t) \in \mathbb{R}^{n \times n}$, $B(t) \in \mathbb{R}^{n \times m}$, $C(t) \in \mathbb{R}^{p \times n}$, $D(t) \in \mathbb{R}^{p \times m}$

State-Space Model of DT Lumped Linear Systems

 \mathcal{N} : lumped linear system with state $x \in \mathbb{R}^n$, input $u \in \mathbb{R}^m$, output $y \in \mathbb{R}^p$

State-space model of discrete-time linear time-invariant (LTI) systems:

$$\begin{cases} x[k+1] = Ax[k] + Bu[k] \\ y[k] = Cx[k] + Du[k] \end{cases}, \quad k \in \mathbb{Z}$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times m}$

State-space model of discrete-time linear time-varying (LTV) systems:

$$\begin{cases} x[k+1] = A[k]x[k] + B[k]u[k] \\ y[k] = C[k]x[k] + D[k]u[k] \end{cases}, \quad k \in \mathbb{Z}$$

where $A[k] \in \mathbb{R}^{n \times n}$, $B[k] \in \mathbb{R}^{n \times m}$, $C[k] \in \mathbb{R}^{p \times n}$, $D[k] \in \mathbb{R}^{p \times m}$

Deriving State-Space Model

Given a physical process, the steps for deriving state-space model are:

- 1 Identify a set of state variables
- ② Derive the dynamics of each state variable based on physical principles
- 3 Write output in terms of state variables
- 4 Assemble the obtained equations in standard space-space format

Example I: Systems given by ODEs

$$\ddot{y}(t) + 7\dot{y}(t) + 5y(t) = u(t)$$

Example II: Circuit Systems

Example III: Car Suspension System

General Linear Mechanical Systems

A mechanical system with n degrees of freedom:

$$M\ddot{q} + D\dot{q} + Kq = F$$

• q: vector of displacements

• M: mass matrix

• K: stiffness matrix

• D: damping matrix

• F: external force

Example IV: Digital Circuits

A digital circuit with two time-delay elements:

