Conjuntos y Números, UAM

Convocatoria Extraordinaria

20 de junio de 2022

Apellidos y Nome	BRE:				Grupo:		

Se pide razonar y justificar todas las respuestas

Tiempo disponible: 3 horas

1. (1 punto) Sea $f:A\longrightarrow B$ una función definida entre dos conjuntos arbitrarios no vacios A y B. Demostrar la doble implicación

f es sobreyectiva $\iff B \setminus f(A_1) \subset f(A \setminus A_1)$ para <u>todo</u> subconjunto A_1 de A

- 2. (1 punto) Demostrar que $n^7 n$ es divisible por $42 = 2 \cdot 3 \cdot 7$ para todo $n \in \mathbb{N}$.
- 3. (2 puntos) Una empresa de camiones tiene que transportar 600 cajas. Pueden usar dos tipos de camiones: grandes con capacidad 34 cajas y pequeños con capacidad 28 cajas. Todos los camiones parten simultáneamente y a su máxima capacidad. Determinar las posibles formas de realizar el envío.
- 4. (2 puntos) En el conjunto $X := \mathbb{R}^2 \setminus \{(0,0)\}$ definimos la relación

$$(a,b) \mathcal{R}(c,d) \iff a^2 d = c^2 b$$

- (a) Demostrar que es una relación de equivalencia.
- (b) Describir la clase de equivalencia $\overline{(a,b)} := \{(c,d) \in X : (c,d) \mathcal{R}(a,b)\}$ para (a,b) = (1,1) y (a,b) = (0,1). Realizar los correspondientes dibujos en X.
- (c) Describir el conjunto cociente X/\mathcal{R} sin repetir elementos. Comparar(justificadamente) su cardinalidad con la de \mathbb{N} o \mathbb{R} .
- 5. (**2 puntos**) Sean A y B dos conjuntos <u>disjuntos</u> cualesquiera. Demostrar que los conjuntos $\mathcal{P}(A \cup B)$ y $\mathcal{P}(A) \times \mathcal{P}(B)$ tienen la misma cardinalidad. Usamos $\mathcal{P}(X)$ para denotar al conjunto de partes del conjunto X.

Debes definir las funciones y comprobar las propiedades de las mismas que te permitan concluir tus afirmaciones.

6. (a)(1 punto) En $\mathbb{Z}_3[x]$ se consideran los polinomios

$$p(x) = x^5 + 2x^4 + 2x^3 + 1$$
 y $q(x) = x^4 + 1$

Calcular su máximo común divisor y determinar dos polinomios $u(x), v(x) \in \mathbb{Z}_3[x]$ tales que:

$$u(x) \cdot p(x) + v(x) \cdot q(x) = \operatorname{mcd}(p(x), q(x))$$

(b)(1 punto) Encontrar las 5 raices de la ecuación $z^5 - \sqrt{3} + \mathbf{i} = 0$ y determina cuál de ellas es la más cercana al eje imaginario.

Recordar:
$$\operatorname{sen}(\frac{\pi}{6}) = \cos(\frac{\pi}{3}) = \frac{1}{2}, \quad \operatorname{sen}(\frac{\pi}{3}) = \cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}$$