Interaktive Medien

Prof. Dr. Frank Steinicke
Human-Computer Interaction
Fachbereich Informatik
Universität Hamburg

Interaktive Medien Kapitel Mediensysteme & World Wide Web

Prof. Dr. Frank Steinicke

Human-Computer Interaction, Universität Hamburg

Internetnutzer

Internet Users in the World

Internetnutzer

Year	Internet Users**	Penetration (% of Pop)	World Population	Non-Users (Internetless)	1Y User Change	1Y User Change	World Pop. Change
2016*	3,424,971,237	46.1 %	7,432,663,275	4,007,692,038	7.5 %	238,975,082	1.13 %
2015*	3,185,996,155	43.4 %	7,349,472,099	4,163,475,944	7.8 %	229,610,586	1.15 %
2014	2,956,385,569	40.7 %	7,265,785,946	4,309,400,377	8.4 %	227,957,462	1.17 %
2013	2,728,428,107	38 %	7,181,715,139	4,453,287,032	9.4 %	233,691,859	1.19 %
2012	2,494,736,248	35.1 %	7,097,500,453	4,602,764,205	11.8 %	262,778,889	1.2 %
2011	2,231,957,359	31.8 %	7,013,427,052	4,781,469,693	10.3 %	208,754,385	1.21 %
2010	2,023,202,974	29.2 %	6,929,725,043	4,906,522,069	14.5 %	256,799,160	1.22 %
2009	1,766,403,814	25.8 %	6,846,479,521	5,080,075,707	12.1 %	191,336,294	1.22 %
2008	1,575,067,520	23.3 %	6,763,732,879	5,188,665,359	14.7 %	201,840,532	1.23 %
2007	1,373,226,988	20.6 %	6,681,607,320	5,308,380,332	18.1 %	210,310,170	1.23 %
2006	1,162,916,818	17.6 %	6,600,220,247	5,437,303,429	12.9 %	132,815,529	1.24 %
2005	1,030,101,289	15.8 %	6,519,635,850	5,489,534,561	12.8 %	116,773,518	1.24 %
2004	913,327,771	14.2 %	6,439,842,408	5,526,514,637	16.9 %	131,891,788	1.24 %
2003	781,435,983	12.3 %	6,360,764,684	5,579,328,701	17.5 %	116,370,969	1.25 %
2002	665,065,014	10.6 %	6,282,301,767	5,617,236,753	32.4 %	162,772,769	1.26 %
2001	502,292,245	8.1 %	6,204,310,739	5,702,018,494	21.1 %	87,497,288	1.27 %
2000	414,794,957	6.8 %	6,126,622,121	5,711,827,164	47.3 %	133,257,305	1.28 %

Inhalt

- Überblick
- Internet und WWW
- HTML
 - Medieneinbettung für Webseiten
 - Trennung von Inhalt und Darstellung
- Allgemeine Webdokumente: XML
- Dynamische Webseiten

Interaktive Medien Kapitel Mediensysteme & World Wide Web

Wie funktioniert das Internet?

Diskussion

Wie hängen die Begriffe Internet und WWW zusammen?

Entstehung des Internet

- Internet ≠ WWW
- Internet entstand in zwei Phasen
 - 1969: ARPANET (vernetztes Rechnersystem verschiedener Universitäten)
 - Anfang 1970er Jahre: Entwicklung von Protokollen zur Regelung und Vereinheitlichung von Sprachen Regeln für die Kommunikation

ARPANET

THE ARPA NETWORK

DEC 1969

4 Nobes

ARPANET LOGICAL MAP, MARCH 1977

(PLEASE NOTE THAT WHILE THIS MAP SHOWS THE HOST POPULATION OF THE NETWORK ACCORDING TO THE BEST INFORMATION OBTAINABLE, NO CLAIM CAN BE MADE FOR ITS ACCURACY)

NAMES SHOWN ARE IMP NAMES, NOT (NECESSARILY) HOST NAMES

Rechnernetze

- Server bietet Ressourcen für Client an bzw.
 Client fordert Ressourcen vom Server an
- Client und Server müssen physikalische Verbindung besitzen
 - Beispiele für physikalische Verbindungen: Kupferkoaxialkabel, Glasfaserkabel, Satelliten (Mikrowellen) ...

Local Area Network Beispiel

 Local Area Network (LAN) bezeichnet lokales Netz, welches Verbindungen von PCs, Workstations oder Servern in räumlich begrenzten Raum realisiert

Patchkabel Beispiel

Manchester Codierung

Übertragungsrate

- Übertragungsrate bezeichnet digitale
 Datenmenge, die innerhalb einer Zeiteinheit über Übertragungskanal übertragen wird und hängt ab von
 - Bandbreite: Frequenzbereich, in dem elektrische Signale übertragen werden
 - Signalstufen: Anzahl der Zustände, die bei Codierung gleichzeitig verschickt werden

Übertragungsrate Beispiele

- FireWire 400: ca. 400 Mbit/s,
 FireWire 800: ca. 800 Mbit/s
- USB 3.0: 5 Gbit/s
- Bluetooth 2.0+EDR: 3 Mbit/s
- WLAN: 1 bis 1300 Mbit/s
- Ethernet: 10 Mbit/s, Fast Ethernet: 100 Mbit/s,
 Gigabit Ethernet: 1 Gbit/s

Diskussion

Wie lange dauert es eine MP3-Datei (3 MB) bei einer Verbindungsgeschwindigkeit von 16 Mbit/s herunterzuladen?

Datenübertragung Beispiele

	Größe	Modem 33 600 bps	ISDN 64 000 bps	T-ADSL 768 000 bps
Brief	10 kB	2.4s	1.2s	0.1s
Musikstück WAV	35 MB	2:20h	1:12h	6min
Musikstück MP3	3 MB	12min	6min	30s
CD	650 MB	43h	22h	2h

Internetworking

- Internetworking beschreibt Verbindungen von verschiedenen Netzwerken zueinander
- Interconnected Networks (kurz Internets) ist
 Computernetzwerk aus mehreren kleinen
 Teilnetzwerken

Internetworking Beispiel

Netzwerk-Topologien

 Topologie eines Computernetzes bezeichnet Struktur der Verbindungen mehrerer Geräte untereinander, um gemeinsamen Datenaustausch zu gewährleisten

Diskussion

Diskutieren Sie Vor- und Nachteile der verschiedenen Topologien!

Topologie des Internet

 Internet ist grundsätzlich dezentral angeordnet und besteht aus Vielzahl einzelner Netze, die in Gemeinsamkeit Internet bilden

Protokolle

 vollständiges Kommunikationsprotokoll muss alle Aspekte von physikalischer Signalübertragung bis zu komplexen Diensten (gefordert durch Anwendungsprogramme) beschreiben

Protokolle

- wichtigster Schritt für Internet war Definition von Protokollen zur Kommunikation verschiedener Netzwerke miteinander
 - Internet Protocol (IP)
 - Transmission Control Protocol (TCP)

IP-Adresse

- Computer werden innerhalb eines Netzwerkes in logische Einheiten (Subnetze) gruppiert und können so adressiert werden
- Beispiel: IP-Adresse (engl. IP-Address) bei IPv4 mit allgemeinem Aufbau:

$$x1.x2.x3.x4$$
,

wobei jedes xi mit 8-Bit repräsentiert wird, d.h. Wert zwischen 0 und 255

⇒ Datengröße: 4 Byte

Internet Protocol (IP)

Beispiel

Vergabe von IP-Adressen

- öffentliche IP-Adressen müssen weltweit eindeutig zugeordnet werden können
 - Beispiel: 216.58.213.36
 - Vergabe ist durch Internet Assigned
 Numbers Authority (IANA) geregelt
- Subnetze können z.B. an Internetprovider vergeben werden

Lokale IP-Adressen

- Unterscheidung zwischen internen und externen IP-Adressen
 - im Internet wird mit vom Internet-Provider vergebenen externen IP-Adresse kommuniziert
 - im internen Netzwerk wird über interne IP-Adresse kommuniziert
- Subnetzmaske gibt Bereich der internen IP-Adressen an

Lokale IP-Adressen Beispiele

IP-Adressen: IPv6

- Zur Lösung der Knappheit von IP-Adressen vervierfacht IPv6 die Länge der IP-Adressen auf 128 Bit statt 32 Bit

Diskussion

Wieviele im Internet erreichbare IP-Adressen kann es bei IPv4 maximal geben?

IP-Pakete

- Informationsübertragung erfolgt durch IP-Pakete
- IP-Paket (max. 64kB) ist Grundelement der Internet-Kommunikation und besteht aus
 - 1. **Kopfdaten** (ca. 60 Bytes) beinhalten Informationen über Quelle, Ziel, Status, Fragmentierung, Länge etc.
 - 2. Nutzdaten

Diagnose-Werkzeug Beispiel: Ping

- Ping ist Diagnose-Werkzeug, mit dem überprüft werden kann, ob bestimmter Host im IP-Netzwerk erreichbar ist
- Ping misst Zeitspanne zwischen Senden und Empfangen eines IP-Pakets (= Paketumlaufzeit (engl. Round trip time, RTT)

```
mcimacl1:code steinicke$ ping www.uni-hamburg.de
PING rzlinw1.rrz.uni-hamburg.de (134.100.29.217): 56 data bytes
64 bytes from 134.100.29.217: icmp_seq=0 ttl=62 time=0.901 ms
64 bytes from 134.100.29.217: icmp_seq=1 ttl=62 time=0.675 ms
64 bytes from 134.100.29.217: icmp_seq=2 ttl=62 time=0.716 ms
^C
--- rzlinw1.rrz.uni-hamburg.de ping statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.675/0.764/0.901/0.098 ms
mcimacl1:code steinicke$
```


IP-Router

- Versand der IP-Pakete erfolgt über Netzwerkgeräte, die IP-Pakete zwischen mehreren Rechnernetzen weiterleiten, sogenannte Verteilerknoten (engl. IP-Router)
- Absender und Empfänger werden durch IP-Adressen spezifiziert

Diagnose-Werkzeug Beispiel: Traceroute

 Traceroute ist Diagnose-Werkzeug, mit dem IP-Router ermitteln werden können, über die IP-Pakete vermittelt werden

```
Terminal - bash - 80x24
frank-steinickes-macbook-pro-Z:~ fsteini$ traceroute www.google.de
traceroute: Warning: www.google.de has multiple addresses; using 173.194.44.23
traceroute to www.google.de (173.194.44.23), 64 hops max, 52 byte packets
1 192.168.2.1 (192.168.2.1) 5.339 ms 1.864 ms 1.346 ms
2 217.0.116.10 (217.0.116.10) 7.498 ms 7.902 ms 10.492 ms
3 87,186,248,142 (87,186,248,142) 8,899 ms 9,586 ms 11,948 ms
4 217.239.41.46 (217.239.41.46) 15.259 ms
   217.239.41.98 (217.239.41.98) 15.687 ms
   217.239.41.102 (217.239.41.102) 15.810 ms
5 80,150,170,74 (80,150,170,74) 19,449 ms
   74.125.50.149 (74.125.50.149) 75.079 ms 23.398 ms
6 66.249.94.86 (66.249.94.86) 21.158 ms 18.651 ms 18.401 ms
7 289.85.248.93 (289.85.248.93) 23.978 ms 19.714 ms 18.126 ms
8 muc03s07-in-f23.1e100.net (173.194.44.23) 15.401 ms 14.772 ms 19.714 ms
frank-steinickes-macbook-pro-2:~ fsteini$
```


Netzverbindung

- Verbindungen werden zwischen zwei Software-Modulen einer Netzverbindung (Sockets) hergestellt
 - Stream Sockets (meist über Transmission Control Protocol, TCP)
 - Datagram Sockets (meist über User Datagram Protocol, UDP)

Protokolle Beispiel: TCP

- Transmission Control Protocol (TCP)
 vereinbart, wie Daten ausgetauscht werden
- TCP ist Ende-zu-Ende-Verbindung in vollduplex, welche Übertragung der Informationen in beide Richtungen zur selben Zeit zulässt
- Endpunkt stellt Netzwerk-Adresse, d.h. IP-Adresse und Portnummer

TCP Beispiel

IP-Datenfluss TCP-Port Dienst/ Protokoll Anwendung

FTP

FTP-Client

SMTP

SMTP (E-Mail)

HTTP

Browser (WWW)

OSI-Referenzmodell

Open Systems Interconnection (OSI-)
 Referenzmodell zerlegt Protokoll in sieben
 Schichten, wobei jede Schicht Funktion alität für nächsthöhere Schicht bereitstellt

OSI-Schicht	TCP/IP-Schicht	Beispiel
Anwendungen (7)	Anwendungen	Email, Browser,
Darstellung (6)		HTTP, FTP,
Sitzung (5)		RPC
Transport (4)	Transport	TCP, UDP
Vermittlung (3)	Internet	IP (IPv4, IPv6)
Sicherung (2)	Netzzugang	Ethernet, 802.11 (WLAN)
Bitübertragung (1)		

OSI-Referenzmodell TCP/IP-Schicht

- Anwendungsschicht umfasst Protokolle der Anwendungsprogramme
- Transportschicht stellt Ende-zu-Ende-Verbindung her
- Internetschicht ist für Weitervermittlung von Paketen und Wegwahl (*Routing*) zuständig
- Netzzugangsschicht ist Platzhalter für verschiedene Datenübertragungstechniken

Interaktive Medien

Kapitel Mediensysteme & World Wide Web

World Wide Web

World Wide Web (WWW)

 World Wide Web ist über Internet abrufbares System von elektronischen Hypertext-Dokumenten

Internet ist Basistechnologie f
ür das WWW

Gründer des WWW

- Sir Timothy John Berners-Lee
 - britischer Physiker und Informatiker

- Robert Cailliau
 - belgischer Informatiker

Hypertext

- Hypertext ist Text, der mit netzartiger
 Struktur von Informationsblöcken durch
 Querverweise (Hyperlinks) verknüpft
- Hypertext wird zu nichtlinearem Text, der in beliebiger Reihenfolge abrufbar ist

Hypertext Beispiel

Verzweigte lineare Struktur

Hypertext-Struktur

Hypermedia

- Knoten können neben Text auch
 Multimedia-Dokumente beinhalten
- Bsp: HyperCard (Karteikartensystem, Karten enthalten verschiedene Medientypen)
 - Autorensystem zur visuellen Programmierung
 - Vorgänger von aktuellen Multimedia-Autorensystemen (z.B. Adobe Flash)

Hypermedia

Bsp: HyperCard

WWW

Standardisierungsgremien

 International Organization for Standardization (ISO): grundlegende Standards, z.B.
 Zeichensätze

International Telecommunication
 Union (ITU): grundlegende
 Standards zur Datenübertragung
 und Multimedia-Standards

WWW

Standardisierungsgremien

 Internet Engineering Task Force (IETF): Technologie des Internets, z.B. TCP/IP und HTTP

 World Wide Web Consortium (W3C): Standardisierung von Technologien für das WWW, z.B.
 XML, SVG, X3D, HTML

HTTP

- Hypertext Transfer Protocol (HTTP) beschreibt Art und Weise der Übertragung von Webseiten
- Grundprinzip:
 - Identifizierung über Domain Name Service (DNS)
 - Datenverbindungsaufbau über TCP
 - Datenaustausch (IP-Pakete) über Requests und Responses

HTTP Beispiel

URL

- Uniform Resource Locator (URL) ist Adresse der zu ladenden Daten auf Webserver
- Mischung verschiedener Informationen in Adressleiste
 - Allgemeine Zusammensetzung: protokoll://hostname/dateiname

URL Beispiel

- Protokollname (z.B. http://,ftp://)
- Hostname/domain (hier: de.wikipedia.org)
- Pfadname (hier: /wiki/)
- Dateiname (hier: Wikipedia: Hauptseite)

Domain Name Service

- Domain Name Service (DNS) ist verantwortlich für Auflösung von Hostnamen, die sich leichter merken lassen als IP-Adressen
- Beispiel: DNS liefert auf Anfrage mit Hostnamen www.example.org als Antwort zugehörige IP-Adresse: 192.0.43.10

Domain Name Service Beispiel

 (Web-)Browser sind spezielle
 Computerprogramme zur Darstellung von Webseiten im World Wide Web oder allgemein von Dokumenten und Daten


```
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
      "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
chtml xmlns="http://www.w3.org/1999/xhtml">
chead>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
<meta name="Copyright" content="Copyright Statement" />
<title>Title of the document</title>
<meta name="Description" content="Your description" />
cmeta name="Keywords" content="first, second, third" />
clink rel="stylesheet" type="text/css" href="stylesht.css" />
<script type="text/javascript">
      </--Your script-->
   </acript>
</head>
dody>
</body>
</html>
```


Bsp: WorldWideWeb (1990)

Interaktive Medien Kapitel Mediensysteme & World Wide Web

Allgemeine Webdokumente

Markup-Sprache

- Markup-Sprache (engl. markup = Auszeichnung)
 - Auszeichnungen sind Ergänzungen im Text, die Eigenschaften, Zugehörigkeiten und Darstellungsformen eines Bereichs beschreiben
- Beispiel: Hallo im HTML-Code ergibt Hallo in Ausgabe

XML

- Extensible Markup Language (XML) ist Auszeichnungssprache zur Darstellung hierarchisch strukturierter Daten in Form von Textdateien
- Einsatz für vielfältige Zwecke, z.B.
 Betriebssysteme, Formulierung von Wissen in diversen Fachdisziplinen...

XML

- Familie von Sprachen umfasst mehrere konkrete Sprachen
- konkrete Sprachen legen jeweils zusätzlich fest, welche Elemente und Attribute es gibt und wie diese kombiniert werden können (für HTML z.B. html, head, body, p, ...)

X/\L Syntax

- Generische Auszeichnungssprachen verwenden ähnlichen Syntax
- Beispiel: Syntax von HTML ähnlich zu SVG (spitze Klammern, Element-Attribut-System ...)

X/VL Syntax

- ähnlicher Syntax ist sinnvoll, weil
 - Sprachkonstrukte in andere Sprachen übernommen werden können (z.B. Links werden in vielen Sprachen benötigt)
 - Editoren für Sprachfamilie entworfen werden (und nicht nur für eine Sprache)
 - Arbeitsersparnis bei Entwicklung neuer Sprachen in dieser Familie möglich ist

XML

Beispiel: Postadresse

```
<adresse>
    <namensangabe>
        <vorname>Max</vorname>
        <nachname>Mustermann</nachname>
    </namensangabe>
    <strassenangabe>
        <strasse>Musterstrasse/strasse>
        <hausnr>1</hausnr>
    </strassenangabe>
    <ortsangabe>
        <pl><plz>12345</pl>></pl>
        <ort>Musterstadt</ort>
    </ortsangabe>
</adresse>
```


Sprachebenen

Sprachdefinition	Sprach-
(Metaebene)	verwendung
 Festlegung der Elemente (z.B. adresse, vorname, strasse, plz,) Reihenfolge und Position der Elemente 	 konkrete Angaben der Elemente Beispiel: Musterstadt für ort

Dokumenttypdefinition

- Dokumenttypdefinition ist Satz an Regeln, der benutzt wird, um Dokumente eines bestimmten Typs zu deklarieren
- Document Type Definition (DTD) ist eigene Sprache zur Definition von Dokumenttypen auf Metaebene in XML

Dokumenttypen Beispiel

DTD Beispiel

Element-Deklaration von "ort":

```
<!Element ort (#PCDATA)>
```

- #PCDATA (parsed character data) besagt, dass beliebige Zeichenkette folgen darf
- beachten: #PCDATA beinhaltet keine Sonderzeichen der XML-Syntax, z.B. "<", ">"

DTD

Beispiel: Postadresse

```
<!Element adresse (namensangabe, strassenangabe,
                   ortsangabe)>
<!Element namensangabe (vorname?, nachname)>
<!Element vorname (#PCDATA)>
<!Element nachname (#PCDATA)>
<!Element strassenangabe (strasse, hausnr)>
<!Element strasse (#PCDATA)>
<!Element hausnr (#PCDATA)>
<!Element ortsangabe (plz, ort)>
<!Element plz (#PCDATA)>
<!Element ort (#PCDATA)>
```


XML

Beispiel: Postadresse

```
<adresse>
    <namensangabe>
        <vorname>Max</vorname>
        <nachname>Mustermann</nachname>
    </namensangabe>
    <strassenangabe>
        <strasse>Musterstrasse
        <hausnr>1</hausnr>
    </strassenangabe>
    <ortsangabe>
        <pl><plz>12345</pl>></pl>
        <ort>Musterstadt</ort>
    </ortsangabe>
</adresse>
```


DTD

Vorschriften

- Optionales Element: gekennzeichnet durch "?"
- **Alternative** zwischen zwei Möglichkeiten: gekennzeichnet durch " | "
- Wiederholung eines Unterelements:
 gekennzeichnet durch "+" oder "*", d.h.
 "+" = Element ist 1 bis n mal vorhanden
 "*" = Element ist 0 bis n mal vorhanden

DTD

Alternative & Wiederholung

Attribute

 Beschreibung von Attributen für Elemente optional

```
<!ATTLIST ort bundesland CDATA #IMPLIED>
<!ATTLIST ort bundesland CDATA #REQUIRED>
```

verpflichtend

Datentypen

- Beliebige Zeichenkette (CDATA) (character data)
- Eindeutige Bezeichner (ID)
 <!ATTLIST eintrag name ID #REQUIRED>
- Verweise auf Bezeichner (IDREF)
 <!ATTLIST eintrag elterneintrag
 IDREF #REQUIRED)

Datentypen
ID und IDREF

```
<eintrag
   name="wurzel">Inhalt
</eintrag>
<eintrag
   name="einleitung"
   elterneintrag="wurzel">Einleitung
</eintrag>
```


XML-Syntax

- DTD beschreibt nur Struktur und Grammatik von XML-Dokumenten
- XML-Dokumente müssen sich an weitere Regeln halten

XML-Syntax Regeln

XML-Dokument beginnt mit Präambel, z.B.
<?xml version="1.0"
encoding="ISO-8859-1" ?>

- XML-Dokument enthält nur XML-Elemente
- XML-Dokument hat genau ein XML-Element als Beginn ("Wurzelelement")

XML-Syntax Regeln

- öffnende Element müssen geschlossen werden (inhaltlich leere Elemente werden als <element/> dargestellt)
- Elemente müssen direkt geschachtelt sein
 - d.h. <a>...... istnicht erlaubt
- Attributwerte müssen in doppelten
 Anführungszeichen angegeben werden

XML-Syntax Regeln

- jedes Attribut darf beim selben Element nur einmal angegeben werden
- Groß- und Kleinschreibung wird unterschieden

XML-Syntax Wohlgeformtheit

- XML-Dokument, dass vorherige Regeln befolgt, wird als wohlgeformt (engl. wellformed) bezeichnet
- Parser-Programme können
 Wohlgeformtheit überprüfen

XML-Syntax Gültigkeit

- hat XML-Dokument zusätzlich eine DTD und entspricht dieser, wird es als gültig (engl. valid) bezeichnet
- Parser sind meist schon in XML-Editoren integriert

- XML-Sprachen können auch in anderen XML-Dokumenten verwendet werden
- XML-Dokument kann Elemente verschiedener XML-Sprachen beinhalten, z.B. Links

- Elemente gehört einem Namensraum (engl. name space) an
- Basis ist immer der Standardnamensraum
- Elemente anderer Namensräume müssen mit Präfix gekennzeichnet werden
- Allgemein:

<nr:element>

Beispiel: Links

- SVG-Dokument soll Link nutzen (xlink-Standard)
- Standardnamensraum ist Namensraum von SVG
- Einbinden von xlink an entsprechenden Stellen <use xlink:href...>

Beispiel: Links

Code:

```
<svg xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink">
```

- erste Zeile:Standardnamensraum SVG wird gesetzt
- zweite Zeile:Verweis auf Namensraum von xlink
- xlink-Definitionen k\u00f6nnen nun im Dokument verwendet werden

XML-Sprachen Beispiele

- Vektorgrafikformat SVG wird von meisten Browsern unterstützt
- 3D-Vektorgrafikformat X3D zum Austausch von 3D-Szenenmodellen
- Multimedia-Dokumentformat
 SMIL (Synchronized Multimedia Integration Language)

XML-Sprachen Beispiele

- VoiceXML zur
 Dialogbeschreibung von
 Sprachdialogsystemen
 (Telefonnavigation)
- Nachrichtenquellen, die als RSS Feeds abgelegt werden
- moderne Podcasts sind i.d.R als RSS Feeds realisiert

XML-Sprachen Beispiele

 Konfigurationsdateien in Programmsystemen, z.B. Mac OS X

 Dokumentablage von Office-Programmpaketen,
 z.B. Microsoft Office

 XML-Dateien können als Baumansicht in Browser-Programmen angezeigt werden

Interaktive Medien Kapitel Mediensysteme & World Wide Web

Erstellung von Webseiten

HTML

- HTML (Hypertext Markup Language) ist Kerntechnologie für das WWW
- HTML ist textbasierte Auszeichnungssprache zur semantischen Auszeichnung von Inhalten wie Texten, Bildern und Hyperlinks
- HTML erlaubt geräteunabhängige Mediendateien zu erstellen, die über einheitliches Verweissystem (engl. Links) verbunden werden können

HTML Beispiel

HTML

- Stetiges Wachstum der Dokumente im Indexable Web (Teil des Web, der von Suchmaschinen erfasst wird)
- Tatsächlich verfügbare Informationsmenge aufgrund von dynamischen Webseiten ist viel größer (wird teilweise als Deep Web bezeichnet)

Geschichte von HTML

- Generic Markup Language (GML) war erster Vorläufer von HTML (1969) (IBM: Goldfarb, Mosher, Lorie)
 - Beinhaltet bereits Möglichkeit,
 Dokumenttypen zu definieren und zu verfassen
- Auszeichnungen wurden in spitzen Klammern ("<" und ">") definiert

Geschichte von HTML

- 1978: GML wurde als ISO-Standard verabschiedet → Ergebnis: Standard Generic Markup Language (SGML)
- 1989: Berners-Lee und Cailleau entwickelten darauf basierend HTML
- 1990: Anzeigeprogramm für HTML namens "WorldWideWeb" (erster Browser)
- Stufenweise Weiterentwicklung von HTML (aktuell Version 5)

HT/ML Beispiel

```
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"</pre>
      "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
<meta name="Copyright" content="Copyright Statement" />
<title>Title of the document</title>
<meta name="Description" content="Your description" />
<meta name="Keywords" content="first, second, third" />
<link rel="stylesheet" type="text/css" href="stylesht.css" />
<script type="text/javascript">
      <!--Your script-->
    </script>
</head>
<body>
</body>
</html>
```


Warum HTML lernen?

 HTML-Seiten können mit Hilfe von Autorenwerkzeugen automatisch erzeugt werden

- dennoch sorgen HTML-Kenntnisse für:
 - grundlegendes Verständnis von Mediensystemen im Internet
 - einfachere Fehlerquellenfindung
 - Verständnis des von fortgeschrittenen Programmen erzeugten HTML-Codes

Autorenwerkzeuge

Beispiel: Word

HTML

- Markup-Sprache (engl. markup = Auszeichnung)
 - Auszeichnungen sind Ergänzungen im Text, die Formatierung und Struktur eines Bereichs genauer beschreiben
- Beispiel:

Hallo

im HTML-Code ergibt "Hallo" in Ausgabe

Grundlagen

• **Elemente** (engl. *Tags*) werden in spitzen Klammern und klein geschrieben:

<elementname>

- Beispiele:
 - Elementname br (= break, beginnt neue Zeile)
 - Elementname b (= bold, Fettdruck)
 - ...

Grundlagen

- Unterscheidung alleinstehende und paarweise auftretende Elemente, die Beginn und Ende markieren
 - Alleinstehende Elemente:

Paarweise auftretende Elemente:

fett gedruckter Text

Attribute

- Zusätzliche Informationen für Elemente, z.B. die Definition des Elements als Link mit a für anchor (dt. Anker)
- Attributwert in Anführungszeichen
- Beispiel:

```
<a href="http://www.example.de">Link</a>
```


Besonderheiten

- Formatierung des HTML-Dokuments hat keinen Einfluss auf Ausgabe, sondern Auszeichnungselemente sind entscheidend
- Text, der nicht in Ausgabe erscheinen soll, ist
 Kommentar

```
<!-- HTML-Kommentar -->
```


Besonderheiten

- Sonderzeichen werden bei ASCII/ANSI-Kodierung nicht ausgeschrieben, sondern sollten codiert werden
- Beispiele:

```
"ä" = ä "Ä" = Ä
"ö" = ö "Ö" = Ö
"ß" = ß
```

 Weitere Informationen und Beispiele: *SELFHTML, W3Schools, MDN*

Dokumentation

SELFHTML

Dokumentation

W3Schools

Dokumentation

MDN

Struktur

- Beginnt i.d.R. mit Kopfzeile, dem **DOCTYPE**, der HTML-Version festlegt
- Für HTML5:

<!DOCTYPE html>

Struktur

- Hauptteil wird in HTML-Element eingeschlossen
- Dokument wird in zwei Teile geteilt:
 Kopf- und Rumpfbereich
- Kopfbereich enthält immer Titel, der in Kopfzeile des Browser-Fensters angezeigt wird:

<title>Der Titel</title>

Struktur

Metainformationen

- Metainformation beschreiben Dokument genauer
 - z.B. Autor, letztes Änderungsdatum,
 Suchbegriffe ...
- Metainformation werden im Header spezifiziert und somit nicht dargestellt, aber von Suchmaschinen ausgewertet

Metainformationen

Allgemeiner Aufbau:
 <meta name="Bezeichnung"
 content="Inhalt">

- Analog für andere Informationen, z.B. Inhaltsbeschreibung (*description*),
 Schlüsselwörter (*keywords*) ...

Übersicht

```
DOCTYPE
```

<!DOCTYPE html>

<html>

HEAD

```
<head>
        <title>Titel</title>
        <meta charset=UTF-8" />
        <meta name="description" content="Homogene Koordinaten" />
        <meta name="author" content="Frank Steinicke" />
        <meta name="keywords" content="Vektorgrafiken,2D" />
</head>
```

BODY

```
<body>
</body>
```

</html>

Rumpfbereich (Body)

- Body enthält eigentlichen Inhalt der Seite
- Body benötigt keine besondere Struktur
- Unterschiedliche Auszeichnungen:
 - Logische Auszeichnungen beschreiben Strukturelemente
 - Physische Auszeichnungen beschreiben Formatierung

Auszeichnungen

Logische

- Logische Auszeichnungen beschreiben Strukturelemente
- Wichtigste logische Auszeichnungen:
 - Normaler Textabsatz (paragraph):

- Überschrift (*heading*):

```
<h1>...</h1> für die erste Ebene <h2>...</h2> für die zweite Ebene
```

• • •

Auszeichnungen

Logische

- Wichtigste logische Auszeichnungen:
 - Unnummerierte Liste (unordered list mit list items):

Auszeichnungen Logische

- Wichtigste logische Auszeichnungen:
 - Nummerierte Liste (orderer list):

Auszeichnungen Physische

- Physische Auszeichnungen beschreiben Formatierung
- wichtigste physische Auszeichnungen:
 - Fett (bold): ...
 - Kursiv (italic): <i>...</i></i>
 - Betonter Text (emphasis): ...
 - Erzwungenes Leerzeichen (no-break space):

Hyperlinks

- Hyperlinks werden per Auszeichnung <a>
 (anchor) definiert, href (hyper reference) gibt Ziel
 des Links an
- Beispiel (hier ist nur das Wort "Link" ein Hyperlink):

```
Dies ist ein
<a href="www.example.de">Link</a>.
```


Hyperlinks

- Falls Ziel des Hyperlinks sich auf gleichem Server befindet, genügt Angabe des Pfadund/oder Dateinamens
- Hyperlinks auf Stellen innerhalb des gleichen Dokuments werden mit Zeichen "#" gekennzeichnet

Hyperlinks

Beispiel

- Tabellen dienen der tabellarischen Darstellung von Text und Zahlen, aber auch Links und Grafiken
- universell einsetzbar
 (z.B. für Layout, obwohl nicht empfohlen)
- Tabellen werden von Tag
 umschlossen und können Kopfzeile besitzen

Auszeichnungen

• Tabelle (*table*):

• Tabellenzeilen (*table row*):

• Tabelleneinträge Kopfzeile (*table head*):

restliche Tabelleneinträge (table data):

Übersicht

	>	>	
>		>	

- Weitere Formatierungsmöglichkeiten:

Spaltenbreite (absolut oder prozentual):

```
<colgroup>
<col width=...>
</colgroup>
```

- Mehrspaltige/-reihige Tabelleneinträge:

```
...
...
```


Beispiel

Grid-Layout

Beispiel

Layout mit div


```
CSS
#header {
    background-color:black;
    color:white;
    text-align:center;
    padding:5px;
#section {
    width: 350px;
    float:left;
    padding:10px;
                            HTML
<div id="header">...</div>
<div id="section">...</div>
<div id="footer">...</div>
```


Layout mit HTML5

Einführung neuer semantischer Elemente:

Layout mit HTML5


```
CSS
header {
    background-color:black;
    color:white;
    text-align:center;
    padding:5px;
section {
    width: 350px;
    float:left;
    padding:10px;
                            HTML
<header>...</header>
<section>...</section>
<footer>...</footer>
```


Layout div vs. HTML5

Interaktive Medien Kapitel Mediensysteme & World Wide Web

Dynamik im WWW

Dynamische Webseiten

- Dynamische Webseiten werden vor jeder Anzeige neu berechnet
- Statische Webseiten besitzen festgelegte Inhalte
 - Interaktivität kann nur durch interaktive Multimedia-Dokumente umgesetzt werden, z.B. Flash-Dokumente ...

Dynamische Webseiten

- Auswertung zur dynamischen Anzeige findet i.d.R. anhand von Skriptsprachen statt
- Skript ist Bestandteil der vom Browser aufgerufenen Datei
- Beispiele:
 - Inhalt eines Online-Warenkorbs
 - Verwendung aktueller Uhrzeit

-

Dynamische Webseiten

- Zwei verschiedene Ansätze:
 - Serverseitige Dynamik: Berechnung findet auf dem Server (Rechner mit den anzuzeigenden Informationen) statt
 - Clientseitige Dynamik: Berechnung findet auf dem Rechner des Webnutzers statt

Serverseitige Dynamik Ablauf

Serverseitige Dynamik Ablauf

- 1. Zugriff auf angeforderte Datei
- 2. Standardkonformes HTML-Dokument wird direkt beim Server erzeugt
- 3. HTML-Dokument wird an Client übertragen
- 4. Anzeige im Browser basierend auf dem erhaltenen HTML-Dokument

Diskussion

Was sind die Vor- und Nachteile von serverseitiger Dynamik?

Serverseitige Dynamik

Vorteil:

- Konfiguration des clientseitigen Browsers spielt keine Rolle
- Abstimmung zwischen Serversoftware und Dateien einfacher
- einzige Möglichkeit für Zugriff auf Datenbestände (z.B. Datenbanken) auf Server

Nachteil:

 dynamische Vorgänge hängen von Internetverbindung ab

Serverseitige Dynamik Sprachen

- Beispiele für typische Sprachen serverseitiger Ausführung:
 - PHP
 - ASP
 - Java Server Pages (JSP)
 - ASP.Net

Clientseitige Dynamik Ablauf

Clientseitige Dynamik Ablauf

- Datei mit Skriptinformationen liegt auf Server
- 2. Server leitet Datei an Client
- 3. Skript wird beim Client ausgeführt
- 4. Berechnung startet
- 5. Anzeige wird je nach Berechnung modifiziert

Diskussion

Was sind die Vor- und Nachteile von clientseitiger Dynamik?

Clientseitige Dynamik

• Vorteil:

- Ausführung des Skripts benötigt keinen Internetzugriff mehr
- ⇒ sehr schnelle Reaktionszeit
- Nachteil:
 - verwendeter Browser (beim Nutzer)
 muss Skriptsprache unterstützen und zulassen

Clientseitige Dynamik Sprachen

- Beispiele für typische Sprachen clientseitiger Ausführung:
 - JavaScript
 - ECMAScript
 - VBScript

JavaScript

- JavaScript (JS) ist Skriptsprache, die hauptsächlich für dynamisches HTML in Web-Browsern eingesetzt wird
- Ursprung 1995 bei Firma Netscape
- Inzwischen internationaler Standard für JavaScript:
 - ECMAScript bzw. ISO-16262

JavaScript Typische Anwendungsgebiete

- Dynamische Manipulation von Webseiten
- Plausibilitätsprüfung (Datenvalidierung) von Formulareingaben noch vor der Übertragung zum Server
- Sofortiges Vorschlagen von Suchbegriffen
- Banner oder Laufschriften
- ...

JavaScript Einbindung in HTML

- Einbindung über script-Element
- Direkte Anbindung an HTML-Elemente als Ereignisbehandlung (*Event-Handler*) möglich
 - → mehr dazu in Abschnitt "Events"
- Einbindung externer JavaScript-Datei

JavaScript

Einbindung: Beispiel

```
<html>
  <head>
     <title>Test</title>
     <script>
        alert("Hallo Welt!");
     </script>
  </head>
  <body>
                            http://de.selfhtml.org
                            Hallo Welt!
  </body>
</html>
                                                   OK
```


