

7 – Evoluzione del livello rete: IPv6

Architetture e Protocolli per Internet

IPv6 (Internet Protocol version 6)

IPv6

- IP versione 6 è la nuova versione dell'Internet
 Protocol (IP) il cui processo di standardizzazione è iniziato negli anni '90
- Mantiene l'impostazione fondamentale di IPv4 ma cambia molti aspetti
- ... e soprattutto aumenta la lunghezza degli indirizzi da 32 a 128 bit

Motivazioni per passare a IPv6

- Esaurimento dello spazio di indirizzamento (stimato attorno all'anno 2020)
- Introduzione di un supporto per applicazioni Real-Time
- Supporto per autenticazione (ingrediente importante, ad esempio, in applicazioni tipo Electronic Commerce)

IPv6: le novità principali

- IPv6
 - Indirizzi, gestione delle opzioni, gestione della frammentazione, introduzione identificativo flussi, classi di traffico, niente header checksum, ecc.
- ICMPv6:
 - Nuova versione di ICMP con funzionalità aggiuntive
- ARP:
 - Eliminato e sostituito da ICMPv6 Address Resolution
- DHCPv6
 - Modificato per il nuovo protocollo (alcune funzioni sono svolte da ICMPv6)
- Routing
 - RIPng e OSPFv6

Base Header IPv6

- La dimensione del Base Header è <u>fissa</u> (<u>40 byte</u>)
- J. Elias: Architetture e Protocolli per Internet

Header IPv6

Campo	Lung. (bit)	Descrizione
Version	4	Versione del Protocollo (6)
Traffic Class	8	Campo utilizzabile per distinguere diversi tipi di traffico
		nelle reti Differentiated Services
Flow Label	20	Campo utilizzabile per identificare un flusso di
		pacchetti (stessa lunghezza di MPLS)
Payload Length	16	Lunghezza del payload del pacchetto in byte (eccetto
		gli header, basic + eventuali extension)
Next Header	8	Identifica il tipo di header che segue il basic header
		(può essere di livello superiore come TCP o un
		extension header)
Hop Limit	8	Stessa funzione del TTL di IPv4
Source Address	128	Indirizzo di sorgente
Destination Add	128	Indirizzo di destinazione

Next Header

IPv6 Extension Headers

Routing Header:

- IPv6 mantiene la possibilità, già presente in IPv4, di implementare un loose source routing
- A differenza di IPv4, in cui tale possibilità era implementata in un'opzione IP, in IPv6 viene usato un Extension Header apposito
- Il Routing Header è utilizzato da una sorgente IPv6 per specificare una lista di uno o più nodi intermedi (router) che devono essere attraversati da un pacchetto nella sua strada verso la destinazione
- Questa funzione è molto simile alle opzioni Loose Source e Record Route di IPv4. Il Routing header è identificato da un valore di Next Header pari a 43.

IPv6 Extension Headers

Fragment Extension Header:

- Serve a gestire la frammentazione. In IPv6 solo il mittente può frammentare un pacchetto, a differenza che in IPv4 in cui può essere un router lungo il cammino.
- Questo serve a ridurre l'overhead dovuto a tale operazione nei router
- Per poter capire se la frammentazione è necessaria o meno, il trasmettitore deve conoscere la massima MTU del path (la ottiene mediante i messaggi di MTU Path discovery di ICMPv6)
- Nel caso in cui una route cambi, anche la MTU può ridursi, rendendo necessaria la frammentazione
- In tal caso ICMPv6 è stato esteso per far sì che il router possa segnalare al trasmettitore la necessità di frammentare
- Lo standard IPv6 scoraggia l'uso della frammentazione, incoraggiando invece le applicazioni ad utilizzare pacchetti di dimensione inferiore od uguale al path MTU
- Il Fragment Header è identificato da un Next Header value pari a 44

IPv6 Extension Headers

- Authentication Header
 - Serve per l'autenticazione del mittente
- Encrypted Security Payload
 - Serve per crittografare il payload (altro pacchetto IP o livelli superiori)

Indirizzi IPv6

Notazioni sintetiche:

La notazione di IPv4 (dotted decimal) risulterebbe inefficiente:

104.230.140.100.255.255.255.255.0.0.17.128.150.10.255.255

Viene usata la Colon Hexadecimal Notation:

68E6:8C64:FFFF:FFFF:0:1180:96A:FFFF

gli zeri possono essere omessi (op. eseguibile una sola volta!!!):

FF05:0:0:0:0:0:0:B3 → FF05::B3

notazione speciale per supportare la transizione da IPv4

0:0:0:0:0:0:128.10.2.1 → ::128.10.2.1

Ultimi 32 bit

Utilizzo della Notazione Sintetica

I seguenti indirizzi, ad esempio...

3080:0:0:0:8:800:200C:417A FF01:0:0:0:0:0:0:43 0:0:0:0:0:0:0:0:1 0:0:0:0:0:0:0:0:0

unicast-address multicast-address loopback-address unspecified-address

...possono essere espressi come segue:

3080::8:800:200C:4170 FF01::43 ::1

unicast-address multicast-address loopback-address unspecified-address

Indirizzi IPv6

Dimensione dello spazio di indirizzamento in IPv6:

$$\checkmark 2^{128} = 3.4 * 10^{38}$$

Numero di indirizzi per metro quadro terrestre: 7x10²³

(maggiore del numero di Avogadro!!!)

- Assegnando 1 milione di indirizzi ogni nanosecondo
 - ✓ Sono necessari 10¹⁶ anni per assegnarli tutti

Tipi di indirizzi IPv6

- IPv6 prevede un ricca varietà di indirizzi e assume che normalmente un'interfaccia abbia più di un indirizzo associato
- Tipi di indirizzi:
 - Unicast (una sola destinazione)
 - Multicast (tutti quelli di un gruppo)
 - Anycast
 - **✓** Come gli indirizzi multicast identificano un gruppo di nodi
 - ✓ Diversamente dai multicast, un pacchetto destinato ad un indirizzo anycast verrà consegnato al nodo (appartenente al gruppo anycast) più vicino al nodo mittente (in base alle metriche presenti sul router)
 - ✓ In questo modo risulta possibile identificare il più vicino router, DNS ...
- J. Elias: Architetture e Protocolli per Internet

Spazio di Indirizzamento IPv6

Riservati per:

✓ Unspecified

✓ Loopback

✓Indirizzi IPv6 compatibili

con IPv4

Indirizzi Unicast per uso locale:

✓ Link Local: usato per autoconfigurazione e neighbor discovery

✓ Site Local: analoghi agli indirizzi IPv4 di classe 10

prefix (binary)	usage	fraction	
0000 0000	Reserved	1/256	
0000 0001	Unassigned	1/256	
0000 001	Reserved for NSAP Allocation	1/128	
0000 010	Reserved for IPX Allocation	1/128	
0000 011	Unassigned	1/128	
0000 1	Unassigned	1/32	
0001	Unassigned	1/16	
001	Aggregatable Global Unicast addr.	1/8	
010	Unassigned	1/8	
011	Unassigned	1/8	
100	Unassigned	1/8	
101	Unassigned	1/8	
110	Unassigned	1/8	
1110	Unassigned	1/16	
1111 0	Unassigned	1/32	
1111 10	Unassigned	1/64	
1111 110	Unassigned	1/128	
1111 1110 0	Unassigned	1/512	
1111 1110 10	Link local Unicast Addresses 1/1024		
1111 1110 11	Site local Unicast addresses 1/1024		
1111 1111	Multicast 1/256		

Indirizzi speciali (Reserved)

- Unspecified address (0:0:0:0:0:0:0:0)
 - Usato come indirizzo di sorgente quando il nodo non conosce altri suoi indirizzi (fase di bootstrap)
 - Non può essere usato come indirizzo di destinazione
- **Loopback address (0:0:0:0:0:0:0:1)**
 - Indirizzo di loopback analogo al 127.x.y.z di IPv4
- IPv4-compatible IPv6 address (::IPv4_addr)
 - L'host con tale indirizzo è dotato ANCHE di un indirizzo IPv6 valido
 - Utilizzato per far comunicare host IPv6 quando occorre attraversare una rete IPv4
 - Formato: 80 zeri + 16 zeri + 32 bit IPv4_address
- IPv4-mapper IPv6 address (::FFFF:IPv4_addr)
 - L'host con tale indirizzo è dotato SOLO di un indirizzo IPv4
 - Utilizzati per far comunicare host IPv6 con host IPv4
 - Formato: 80 zeri + 16 uni + 32 bit IPv4_address

Aggregatable Global Unicast Address (RFC 3587)

- Formato unicast globale
- Indirizzo pensato con struttura gerarchica per permettere la massima aggregazione e ridurre i problemi di scalabilità delle tabelle di routing
- Global Routing Prefix (tipicamente è organizzato gerarchicamente): assegnato ad un Site/Organizzazione
- Subnet ID: identifica una Subnet all'interno del Site.
 - questo campo è usato dalle singole organizzazioni per definire una propria gerarchia ed identificare le proprie subnet
 - i 16 bit disponibili consentono di arrivare fino a 65536 subnet
- Interface ID
 - 64 bit con formato derivato da IEEE EUI-64

Link-Local Unicast Address

- FP = 1111 1110 10
- Sono indirizzi utilizzabili solo per l'indirizzamente su un singolo link (sottorete, per es. LAN)
- IPv6 prevede che ogni interfaccia disponga di almeno un link-local unicast address
 - che viene normalmente assegnato per autoconfigurazione a partire dall'indirizzo fisico di interfaccia (IEEE EUI-64) (EUI= Extended Unique Identifier)
- Questi indirizzi sono fondamentali nel processo di Neighbor Discovery

1111 1110 10	0000	Interface ID
FP – 10 bit	54 bit	64 bit

Site-Local Unicast Address

- FP = 1111 1110 11
- Anche questi sono destinati ad uso locale
- Definiscono una spazio di indirizzamento privato (equivalente, per esempio, agli indirizzi di classe 10 in IPv4)

Nota: Sostituendo il prefisso Site Local con il Subscriber Prefix si ottiene facilmente un indirizzo globale

Il formato EUI-64

- L'interface ID identifica un'interfaccia e deve essere univoco
- L'identificatore EUI-64 è un numero di 64 bit che serve a identificare il produttore ed il "numero di serie" di un'apparecchiatura di qualche tipo (analogamente agli indirizzi MAC che identificano ogni scheda di rete Ethernet)
- 1. Se un'interfaccia di rete possiede già il suo identificativo EUI-64 allora abbiamo già quasi l'interface ID.
- 2. Per le interfacce Ethernet esiste una procedura che dal MAC-Address (lungo 48 bit) consente di arrivare al formato EUI-64

Costruzione dell'Interface-ID

L'identificatore di interfaccia IPv6 si ottiene dall'indirizzo data-link EUI-64 invertendo il bit Universal/Local (il 7º bit)

Costruzione dell'Interface-ID

Partendo invece da un indirizzo MAC

Esempio

MAC Address: 00-AA-00-3F-2A-1C

EUI-64 Address: 00-AA-00-FF-FE-3F-2A-1C

Complemento U/L: 02-AA-00-FF-FE-3F-2A-1C

In notazione IPV6: 2AA:FF:FE3F:2A1C

Multicast Address

- FP = 1111 1111
- Diversi sotto-tipi
 - Multicast global
 - Multicast link-local
 - Multicast site-local
- All'interno esistono indirizzi per usi speciali

1111 1111	000T	Scope	Group identifier
FP	Flags	4 bit	112 bit
8 bit	4 bit		

Multicast Address

- Flags:
 - T=1 indirizzo temporaneo
 - T=0 indirizzo permanente
- Scope:
 - 0: reserved
 - 1: node-local scope
 - 2: link-local scope
 - 5: site-local scope
 - 8: organization-local scope
 - E: global scope
 - Altri: unassigned

1111 1111	000T	Scope	Group identifier
FP	Flags	4 bit	112 bit
8 bit	4 bit		

Indirizzi Multicast Speciali

- **■** FF01::1 = all systems node-local scope
- **■** FF02::1 = all systems link-local scope
- **■** FF01::2 = all-routers node-local scope
- FF02::2 = all-routers link-local scope
- **■** FF05::2 = all-routers site-local scope

Indirizzi utilizzati in modo simile al broadcast locale suddividendo tra tutti i sistemi e tutti i router

Indirizzi Multicast Speciali

- Solicited-Node Multicast address
 - Ogni sistema IPv6 deve avere un "solicited-node multicast address" per ogni indirizzo unicast o anycast configurato
 - Tale indirizzo viene costruito automaticamente concatenando il prefix

FF02::1:FF00:0/104

 con gli ultimi 24 bit del corrispondente indirizzo unicast o anycast

Molti indirizzi per diversi scopi

- IPv6 prevede l'uso di processi di autoconfigurazione
- Normalmente un nodo deve:
 - Autoconfigurarsi un link-local address a partire dall'indirizzo fisico di 64 bit
 - Autoconfigurarsi un solicited-node multicast address per ogni indirizzo
 - Può autoconfigurarsi altri indirizzi mediante diverse procedure (vedi ICMP e DHCP)

ICMP version 6

- ICMP ha un'importanza molto maggiore con IPv6
- Vengono svolte molte funzioni:
 - Error reporting e diagnostica di rete
 - Risoluzione degli indirizzi di livello link
 - Individuazione del router corretto
 - Controllo degli indirizzi IPv6 assegnati
 - Autoconfigurazione degli indirizzi IPv6
 - Calcolo del PATH-MTU per la frammentazione

ICMPv6: struttura dei messaggi

ICMP_Type ICMP_Code Checksum

Message Body

Alcuni tipi comuni

- Type=1 destination unreachable
- Type=2 Packet too big
- Type=3 Time excedeed
- Type=4 Parameter problem,
- Type=128 Echo request
- Type=129 Echo reply

ICMPv6 Neighbor Discovery

- Sono previste diverse procedure di *ND*
 - Address Resolution
 - ✓ Funzione analoga a quella di ARP per IPv4
 - Router Discovery
 - **✓** Segnalare e scoprire presenza di router sul link
 - Redirection
 - ✓ Simile all'opzione redirect di IPv4
 - Neighbor Unreachability Detection
 - ✓ Scopre irraggiungibilità di host noti

ICMPv6 Neighbor Discovery

- Sono utilizzati molti indirizzi speciali (link-scope):
 - All-systems Multicast Address (FF02::1)
 - All-Routers Multicast Address (FF02::2)
 - Solicited-node Multicast Address
 - Unicast Link-Local Address
 - Unspecified Address (0::0)
- E sono introdotti 5 nuovi tipi di messaggio:

Router Solicitation message: type=133

Router Advertisement message: type=134

Neighbor Solicitation message: type=135

Neighbor Advertisement message: type=136

Redirect message: type=137

ICMPv6 Address Resolution

- Stessa funzione di ARP
- Servono indirizzi multicast/broadcast sul livello inferiore
 - Si suppone l'esistenza di un mappaggio tra indirizzi multicast IPv6 e multicast/broadcast a livello link
- Si fa uso dei messaggi di "Neighbor Solicitation" e "Neighbor Advertisement"

ICMPv6 Address Resolution

IPv6_addr

FE80::0800:2001:C782

IPv6_addr

FE80::0:C033:6382

- Il messaggio di Neighbor Solicitation viene inviato all'indirizzo Solicited-Mode multicast address che può essere ricavato anche dal richiedente
- Il messaggio di Neighbor Advertisement viene inviato all'indirizzo IPv6 di sorgente del pacchetto di richiesta

ICMPv6 Address Resolution

Router Discovery

Autoconfigurazione Indirizzi

- Oltre agli indirizzi Link-local si possono autoconfigurare indirizzi globali
 - Stateful configuration (tramite DHCPv6)
 - Stateless configuration (tramite ICMP)
 - **✓** Noto il prefisso annunciato dai router
 - ✓ Si può ricavare l'indirizzo a partire dall'indirizzo fisico a 64 bit

MTU Path Discovery

- Il mittente deve sapere la MTU più piccola sul percorso
- Invia 1 pacchetto lungo quanto MTU primo link
- Se arriva messaggio ICMP errore "Packet too big" ridurre MTU
- Fino a che non arrivano più messaggi di errore

Migrazione IPv4 – IPv6

- Si basa principalmente sull'uso di queste componenti:
 - Dual stack:
 - ✓ Sistemi con doppio stack IPv4 e IPv6
 - Tunneling:
 - ✓ Attraversamento di porzioni di rete IPv4 mediante tunneling
 - Header translation:
 - **✓** Traduzione degli header dei due formati

Aggregatable Global Unicast Address (Formato Obsoleto)

- Formato unicast globale
- Indirizzo pensato con struttura gerarchica per permettere la massima aggregazione e ridurre i problemi di scalabilità delle tabelle di routing
- Suddiviso in una gerarchia a 3 livelli: Public Topology, Site Topology, Interface Identifier

Aggregatable Global Unicast Address

Public Topology

 individua i provider o gli exchanges disposti a fornire transito nativo per il traffico IPv6. La public topology è costituita da una /48

Site Topology

 identifica un sito o un'organizzazione che non fornisce servizi di transito e connessione a nodi esterni al sito

Interface ID

 identifica un'interfaccia su di un link. La parte interface ID (rappresentata da una /64) non può essere sub-nettata

Aggregatable Global Unicast Address

- Lo spazio di indirizzamento non viene organizzato in classi ma secondo una gerarchia basata sul provider. L'assegnamento degli indirizzi rispetta tale gerarchia:
- TLA (Top Level Aggregator)
 - organizzazioni disposte ad offrire transito nativo per il traffico IPv6 (Long-Haul Provider o Exchange)
 - ad ogni TLA viene assegnato un prefisso (TLA ID o TLA Prefix) corrispondente ai 16 bit più significativi dell'indirizzo
 - ogni TLA può utilizzare i 32 bit successivi per assegnare blocchi di indirizzi agli NLA
- Res (Reserved) riservato per future espansioni

Aggregatable Global Unicast Address

- NLA (Next Level Aggregator)
 - provider o grandi organizzazioni
 - ogni NLA può assegnare porzioni del suo spazio di indirizzamento ad altri provider o agli utenti (subscriber)
- SLA (Site Level Aggregator)
 - il campo SLA ID è usato dalle singole organizzazioni per definire una propria gerarchia ed identificare le proprie subnet
 - I 16 bit disponibili consentono di arrivare fino a 65535 subnet
- Interface ID
 - 64 bit con formato derivato da IEEE EUI-64