A Comparison of Approaches to Large-Scale Data Analysis

Magnus Kirø

Norwegian University of Science and Technology October 25, 2012

The purpose of paper is to consider MapReduce and a regular Database Management Systems for large-scale data analysis.

- Parallel DBMS and MR, two approaches to large-scale data analysis.
- Thee Architectural Elements of DBMS and MR.
- Outlinei of Benchmark Results and Best Practice for large-scale data analysis.

DBMS

Outline

- Map Reduce
- **Architectural Elements**
 - Schema Support
 - Indexing
 - Programming Model
 - Data Distribution
 - Execution Strategy
 - Flexibility
 - Fault Tolerance
- Results
 - Benchmark Results
 - Best Practice

Database Management System

Title: Tracking the flu pandemic by monitoring the Social Web

Authors: V. Lampos and N. Cristianini

Submitted to: IAPR Cognitive Information Processing 2010 (accepted)

- Twitter and Health Protection Agency data for weeks 26-49, 2009 (on average 160,000 tweets collected per day geolocated in 54 urban centres in the UK)
- Frequency of **41 flu related words** (markers) in Twitter corpus had a correlation of >80% with the HPA flu rates in all UK regions
- Learn a better list of weighted markers automatically:
 - Generate a list of candidate markers (1560 words taken from flu related web pages)
 - Use LASSO for feature selection

Validation schemes:

1 Train on one region, validate regularisation parameter on another, test on the remaining regions (for all possible combinations)

Train/Validate (regions)	Α	В	С	D	E
A	=	0.9594	0.9375	0.9348	0.9297
В	0.9455	-	0.9476	0.9267	0.9003
С	0.9154	0.9513	-	0.8188	0.908
D	0.9463	0.9459	0.9424	-	0.9337
E	0.8798	0.9506	0.9455	0.8935	-
			Total Avg.		0.9256

- 97 selected words: lung, unwel, temperatur, like, headach, season, unusu, chronic, child, dai, appetit, stai, symptom, spread, diarrhoea, start, muscl, weaken, immun, feel, liver, plenti, antivir, follow, sore, peopl. nation, small, pandem, pregnant, thermomet, bed, loss, heart, mention, condit, ...
- Aggregate data from all regions, test on weeks 28 and 41 (2009) and train using the rest of the data set

DBMS - hei

Outline

Inferred vs Official flu rate in North England

figures/Lasso_Inference_regionC_

Inferred vs Official rates in all regions (aggregated data set)

figures/Lasso_Inference_Aggregate

Architectural Elements

MR -

Title: Flu detector - Tracking epidemics on Twitter

Authors: V. Lampos, T. De Bie, and N. Cristianini Submitted to: ECML PKDD 2010 Demos (under review)

- Extending and making more robust the methodology of P1
- Larger data sets (bigger time series) and more (2675) candidate features
- Select a list of features (markers) using BoLASSO (bootstrap version of LASSO)
- Then learn weights of those markers via linear least squares regression
- Stricter evaluation of the methodology **Available online**
- Put all this into practice and come up with the Flu detector

Schema Support

- ... (content omitted)
- ② ... (content omitted)
- ... (content omitted)
- ... (content omitted)

Indexing

- ... (content omitted)
- ② ... (content omitted)
- 3 ... (content omitted)
- ... (content omitted)

Programming Model

Outline

- ... (content omitted)
- ... (content omitted)
- ... (content omitted)
- ... (content omitted)

Data Distribution

- ... (content omitted)
- ... (content omitted)
- ... (content omitted)
- ... (content omitted)

Architectural Elements

0000000

Execution Strategy

- ... (content omitted)
- ② ... (content omitted)
- ... (content omitted)
- ... (content omitted)

Flexibility

- ... (content omitted)
- ② ... (content omitted)
- ... (content omitted)
- ... (content omitted)

Architectural Elements

0000000

Fault Tolerance

Outline

- ... (content omitted)
- ... (content omitted)
- ... (content omitted)
- ... (content omitted)

A more time specific tentative plan

A more time specific tentative plan

This is the last slide.

Any questions?