SSID: Password:

Register:

http://bit.ly/wwcodemanila

Github Project:

https://github.com/wwcodemanila/WWCodeManila-ML.AI

Gitter:

https://gitter.im/WWCodeManila/Machine-Learning-Al

WOMEN WHO

Artificial Intelligence Study Group

Twitter: @wwcodemanila FB: fb.com/wwcodemanila

#WWCodeManila #AI #StudyGroup

Our Awesome Mentors

- **Brian Baquiran** Managing Director for Engineering, Pez Al
- Marylette Roa Researcher at the Philippine Genome Center (PGC)

New Member's Introduction

<your current profession>
<why did you join this study group>
<what's your favorite horror movie/series>

OUR MISSION

Inspiring women to excel in technology careers.

OUR VISION

A world where women are representative as technical executives, founders, VCs, board members and software engineers.

STUDY GROUP

Study groups are events where women can come together and help each other learn and understand a specific programming language, technology, or anything related to coding or engineering.

GUIDELINES

- If you have a question, just **ask**
- If you have an idea, share it
- Make friends and learn from your study groupmates
- Do not recruit or promote your business

TOPIC FOR TODAY DECISION TREES

Session Resource:

Decision Trees Lecture by Victor Lavrenko (Youtube)

PREREQUISITES

- Knowledge of Python basics
- Accomplished Introduction To Machine Learning
- Understanding of Basic Math Notations

REVIEW

Two types of ML Algorithms:

- Supervised

- Data is labelled
- Goal: Predict or classify data

- Unsupervised

- Data is unlabelled
- Goal: Uncover patterns or structure in data

Supervised Learning

Unsupervised Learning

IRIS PLANT CLASSIFICATION

Supervised Learning Workflow

Supervised Learning Workflow

DECISION TREES

- A type of supervised learning algorithm
- Interpretable; mimics human decision making

If Salary > \$50,000 and commute is not more than 1 hour and offers free coffee, then accept offer!

Would you survive the sinking of the Titanic?

TERMINOLOGY

- Root Node: represents the entire training set
- **Splitting**: process of dividing a node into two or more subsets/nodes
- Internal/Decision Node: corresponds to an attribute
- Leaf/Terminal Node: corresponds to a class label

ramin	g examples:	9 yes / 5 no		
Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

New	data:			
D15	Rain	High	Weak	?

Training	g examples:	9 yes / 5 no		
Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

New data:							
D15	Rain	High	Weak	?			

- Hard to guess
- Try to understand *when*John plays tennis

Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
02	Sunny	High	Strong	No
03	Overcast	High	Weak	Yes
04	Rain	High	Weak	Yes
05	Rain	Normal	Weak	Yes
06	Rain	Normal	Strong	No
07	Overcast	Normal	Strong	Yes
08	Sunny	High	Weak	No
09	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

New data:							
D15	Rain	High	Weak	?			

- Divide and Conquer

- Split into subsets
- Are they all "pure"?
- If yes: stop
- If not: repeat
- See which subset new data falls into

Day	Outlook	Humid	Wind
D1	Sunny	High	Weak
D2	Sunny	High	Strong
D8	Sunny	High	Weak
D9	Sunny	Normal	Weak
D11	Sunny	Normal	Strong

Day	Outlook	Humid	Wind
D1	Sunny	High	Weak
D2	Sunny	High	Strong
D8	Sunny	High	Weak
D9	Sunny	Normal	Weak
D11	Sunny	Normal	Strong

Day	Outlook	Humid	Wind	Day	Outlook	Humid	Wind
D1	Sunny	High	Weak	D4	Rain	High	Weak
D2	Sunny	High	Strong	D5	Rain	Normal	Weak
D8	Sunny	High	Weak	D6	Rain	Normal	Strong
D9	Sunny	Normal	Weak	D10	Rain	Normal	Weak
D11	Sunny	Normal	Strong	D14	Rain	High	Strong

ID3 Algorithm

- ID3 Ross Quinlan, 1986
- Suppose feature A is the **best attribute** to split on.
 - Split entire training set on attribute A
 - For each subset/ child node:
 - If subset is pure: stop
 - Else: split subset

Which attribute to split on?

- Want to measure the "purity" of the split
- More certain about Yes/No after the split
 - Pure set → (4 Yes / 0 No) 100% certain
 - Impure Set → (3 Yes / 3 No) 50 % certain
- **Entropy** a way to measure certainty
 - Higher entropy → more uncertain

Entropy

$$E(S) = -p_{yes}\log_2 p_{yes} - p_{no}\log_2 p_{no}$$

S - subset of training examples

 p_{yes} - proportion of positive (yes) examples

 p_{no} - proportion of negative (no) examples

Entropy, more generally

$$E(S) = -\sum_{c \in Classes} p_c \log_2 p_c$$

S - subset of examples

 p_c - proportion of examples in S belonging to class c

e.g. (3 yes / 3 no)

e.g. (3 yes / 3 no)

Entropy =
$$-\frac{3}{6}\log_2\frac{3}{6} - \frac{3}{6}\log_2\frac{3}{6} = 1$$

e.g. (3 yes / 3 no)

Entropy =
$$-\frac{3}{6}\log_2\frac{3}{6} - \frac{3}{6}\log_2\frac{3}{6} = 1$$

e.g. (4 yes / 0 no)

e.g. (3 yes / 3 no)

Entropy =
$$-\frac{3}{6}\log_2\frac{3}{6} - \frac{3}{6}\log_2\frac{3}{6} = 1$$

e.g. (4 yes / 0 no)

Entropy =
$$-\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4} = O$$

e.g. (3 yes / 3 no)

Entropy =
$$-\frac{3}{6}\log_2\frac{3}{6} - \frac{3}{6}\log_2\frac{3}{6} = 1$$

e.g. (4 yes / 0 no)

Entropy =
$$-\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4} = O$$

exercise: (9 yes / 5 no)

exercise: (9 yes / 5 no)

Answer: 0.940

exercise: (9 yes / 5 no)

Answer: 0.940

exercise: (3 yes / 4 no)

Answer: 0.985

Entropy

- You can think of entropy as the measure of disorder or chaos
- Imagine asking a group of 100 people whether they will vote for Donald Trump or Michelle Obama in the 2020 elections (supposing they run).
 - If half of the people vote for Trump and the other half vote for Obama (50 Trump / 50 Obama), then your **entropy is high**. The people don't agree on who should lead them!
 - If everyone votes for Obama (0 Trump / 100 Obama), then you have stability; thus **entropy is low.** (Same goes if everyone votes for Trump (100 Trump / 0 Obama)). You want stability over disorder.

Entropy

- Entropy tells us how pure one subset is.
- But we want a measure of the **effectiveness of an attribute** in classifying the training data.
- We actually want to combine info on different subsets.
- Simply averaging the entropies don't work. (Why not?)

- **Information Gain** – expected reduction in entropy after a split on an attribute

$$Gain(S, A) = E(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} E(S_v)$$

A - Attribute

Values(A) – possible values of A

S – subset of training examples

 S_v - subset of S for which attribute A have value v

e.g. Find Gain(S, Wind).

_				
Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

e.g. Find Gain(S, Wind).

Answer: 0.048

ex. Find Gain(S, Humidity)

Training	g examples:	9 yes / 5 no		
Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

e.g. Find Gain(S, Wind).

Answer: 0.048

ex. Find Gain(S, Humidity)

Answer: 0.151

ex. Find Gain(S, Outlook).

_				
Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

e.g. Find Gain(S, Wind).

Answer: 0.048

ex. Find Gain(S, Humidity)

Answer: 0.151

ex. Find Gain(S, Outlook).

Answer: 0.246

Training examples:		9 yes / 5 no		
Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

EXERCISE OPTIONS

- 1. Solve by hand / calculator (takes a lot of time!)
- 2. Use python to to write function(s) that compute the entropy, gini index, and information gain.
- 3. Advanced: Write a program that builds a decision tree!
 - Requires some knowledge on recursion, ADTs

Partner/Group/Individual Exercise

Predicting virus infection in files:

	WRITABLE	UPDATED	SIZE	CLASS
1	yes	no	small	infected
2	yes	yes	large	infected
3	no	yes	med	infected
4	no	no	med	clean
5	yes	no	large	clean
6	no	no	large	clean

Challenge

Classify the type of vegetation that is likely to grow in areas of land based on descriptive feature.

ID	Stream	Slope	Elevation	Vegetation
1	False	Steep	High	Chapparal
2	True	Moderate	Low	Riparian
3	True	Steep	Medium	Riparian
4	False	Steep	Medium	Chapparal
5	False	Flat	High	Conifer
6	True	Steep	Highest	Conifer
7	True	Steep	High	Chapparal

What type of vegetation would likely grow on terrain with a steep slope and medium elevation and is near a stream?

How about on terrain near a stream with high elevation, moderate slope?

Partner/Group/Individual Presentation

Next time

- More on decision trees pros and cons
- Random Forests!

References

Decision Tree Lecture by Victor Lavrenko (Youtube)

T.I.L.

SHARE IT! In front!

On Twitter: @wwcodemanila

Or FB: fb.com/wwcodemanila

Don't forget to tag WWCodeManila so we can retweet or share it.

Feedback Form

https://goo.gl/YzSqcS

Please don't rate the event on meetup.

Not helpful. It is best to just tell your concerns via the feedback form. We are a building a community not a Yelp restaurant.

THANK YOU:)