In [85]:

- 1 import numpy as np
- 2 import matplotlib.pyplot as plt
- 3 import seaborn as sns

4

- 5 import warnings
- 6 warnings.filterwarnings('ignore')

In [86]:

- 1 import pandas as pd
- 2 df=pd.read_csv('abalone.csv')
- 3 df.head()

Out[86]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	ı	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

In [87]:

1 df.shape

Out[87]:

(4177, 9)

In [88]:

1 df

Out[88]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
5	I	0.425	0.300	0.095	0.3515	0.1410	0.0775	0.1200	8
6	F	0.530	0.415	0.150	0.7775	0.2370	0.1415	0.3300	20
7	F	0.545	0.425	0.125	0.7680	0.2940	0.1495	0.2600	16
8	М	0.475	0.370	0.125	0.5095	0.2165	0.1125	0.1650	9
9	F	0.550	0.440	0.150	0.8945	0.3145	0.1510	0.3200	19

In [89]:

```
# This code will display all the rows in output(needed because we have 61 coulumns)
pd.set_option('display.max_rows', None)
```

In [90]:

- 1 #it shows the statistical summary,
- 2 #descripbe function is used for continues values not for categorical values hence for c
- 3 df.describe()

Out[90]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell we
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005
4							•

In [91]:

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Rings	4177 non-null	int64
dtyp	es: float64(7),	int64(1), object	(1)

memory usage: 293.8+ KB

In [92]:

1 df.Sex.value_counts()

Out[92]:

M 1528 I 1342 F 1307

Name: Sex, dtype: int64

In [93]:

1 df.hist(bins=50, figsize=(20,15))

plt.show()

In [94]:

1 df.duplicated().sum()

Out[94]:

0

In [95]:

```
1 #similarly
2 df.isnull().sum()
```

Out[95]:

Sex 0 0 Length Diameter 0 Height 0 0 Whole weight Shucked weight 0 Viscera weight 0 Shell weight 0 0 Rings dtype: int64

In [96]:

```
sns.heatmap(df.isnull())
plt.title("Null values")
plt.show()
```


In [97]:

```
corr_mat=df.corr()
plt.figure(figsize=[22,12])
sns.heatmap(corr_mat, annot=True)
plt.title("Correlation Matrix")
plt.show()
```


In [98]:

```
corr_matrix=df.corr()
corr_matrix
```

Out[98]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
Length	1.000000	0.986812	0.827554	0.925261	0.897914	0.903018	0.897706	0.556720
Diameter	0.986812	1.000000	0.833684	0.925452	0.893162	0.899724	0.905330	0.574660
Height	0.827554	0.833684	1.000000	0.819221	0.774972	0.798319	0.817338	0.557467
Whole weight	0.925261	0.925452	0.819221	1.000000	0.969405	0.966375	0.955355	0.540390
Shucked weight	0.897914	0.893162	0.774972	0.969405	1.000000	0.931961	0.882617	0.420884
Viscera weight	0.903018	0.899724	0.798319	0.966375	0.931961	1.000000	0.907656	0.503819
Shell weight	0.897706	0.905330	0.817338	0.955355	0.882617	0.907656	1.000000	0.627574
Rings	0.556720	0.574660	0.557467	0.540390	0.420884	0.503819	0.627574	1.000000

In [99]:

```
#we want only the correlation of class and +/-1 is higly corrrelated hence will display
corr_matrix=df.corr()
corr_matrix['Rings'].sort_values(ascending=False)
```

Out[99]:

Rings	1.000000
Shell weight	0.627574
Diameter	0.574660
Height	0.557467
Length	0.556720
Whole weight	0.540390
Viscera weight	0.503819
Shucked weight	0.420884
Name: Rings, dtype	e: float64

splitting the independent and target variables in x and y before removing the skewness

In [100]:

```
## Splitting the dataset to train, test and split
from sklearn.model_selection import train_test_split

X = df.iloc[:,0:-1]
Y = df.iloc[:,-1]
```

In [101]:

```
#similarl to above

x=df.drop("Rings", axis=1)
y=df["Rings"]
```

In [102]:

```
corr_matrix=df.corr()
corr_matrix['Rings'].sort_values(ascending=False)
```

Out[102]:

Rings 1.000000 Shell weight 0.627574 Diameter 0.574660 Height 0.557467 Length 0.556720 Whole weight 0.540390 Viscera weight 0.503819 Shucked weight 0.420884 Name: Rings, dtype: float64

In [103]:

1 df

Out[103]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
5	1	0.425	0.300	0.095	0.3515	0.1410	0.0775	0.1200	8
6	F	0.530	0.415	0.150	0.7775	0.2370	0.1415	0.3300	20
7	F	0.545	0.425	0.125	0.7680	0.2940	0.1495	0.2600	16
8	М	0.475	0.370	0.125	0.5095	0.2165	0.1125	0.1650	9
9	F	0.550	0.440	0.150	0.8945	0.3145	0.1510	0.3200	19

As Sex is a string data we have to convert it to numeric data

In [104]:

```
#we have only one column string data class

from sklearn.preprocessing import LabelEncoder

LE=LabelEncoder()

df['Sex']=LE.fit_transform(df['Sex'])

df['Sex'].value_counts()
```

Out[104]:

2 15281 13420 1307

Name: Sex, dtype: int64

In [105]:

1 df

Out[105]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
5	1	0.425	0.300	0.095	0.3515	0.1410	0.0775	0.1200	8
6	0	0.530	0.415	0.150	0.7775	0.2370	0.1415	0.3300	20
7	0	0.545	0.425	0.125	0.7680	0.2940	0.1495	0.2600	16
8	2	0.475	0.370	0.125	0.5095	0.2165	0.1125	0.1650	9
9	0	0.550	0.440	0.150	0.8945	0.3145	0.1510	0.3200	19

```
In [106]:
```

```
1 y.value_counts()
Out[106]:
9
      689
10
      634
8
      568
11
      487
7
      391
12
      267
6
      259
13
      203
14
      126
      115
5
15
      103
16
       67
17
       58
4
       57
18
       42
       32
19
20
       26
3
       15
21
       14
23
        9
22
        6
27
        2
24
        2
1
        1
26
        1
29
        1
2
        1
25
        1
Name: Rings, dtype: int64
```

As the output is imbalance we have to scale the data

Scaling

```
In [107]:
    1 x.shape
Out[107]:
```

(4177, 8)

In [108]:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
y = scaler.fit_transform(np.array(y).reshape(-1,1))
```

```
In [109]:
```

```
1 y
```

Out[109]:

```
In [112]:
```

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
x = scaler.fit_transform(x)
```

```
Traceback (most recent call last)
C:\Users\ACERAS~1\AppData\Local\Temp/ipykernel_1168/2036666876.py in <module
      1 from sklearn.preprocessing import StandardScaler
      2 scaler = StandardScaler()
----> 3 x = scaler.fit transform(x)
~\AppData\Roaming\Python\Python39\site-packages\sklearn\base.py in fit_trans
form(self, X, y, **fit_params)
                if y is None:
    850
    851
                    # fit method of arity 1 (unsupervised transformation)
--> 852
                    return self.fit(X, **fit params).transform(X)
    853
                else:
                    # fit method of arity 2 (supervised transformation)
    854
~\AppData\Roaming\Python\Python39\site-packages\sklearn\preprocessing\_data.
py in fit(self, X, y, sample_weight)
                # Reset internal state before fitting
                self. reset()
    805
--> 806
                return self.partial_fit(X, y, sample_weight)
    807
    808
            def partial_fit(self, X, y=None, sample_weight=None):
~\AppData\Roaming\Python\Python39\site-packages\sklearn\preprocessing\ data.
py in partial_fit(self, X, y, sample_weight)
    839
    840
                first call = not hasattr(self, "n samples seen ")
                X = self._validate_data(
--> 841
    842
                    Χ,
                    accept sparse=("csr", "csc"),
    843
~\AppData\Roaming\Python\Python39\site-packages\sklearn\base.py in validate
_data(self, X, y, reset, validate_separately, **check_params)
                    raise ValueError("Validation should be done on X, y or b
    564
oth.")
                elif not no val X and no val y:
    565
                    X = check array(X, **check params)
--> 566
    567
                    out = X
    568
                elif no_val_X and not no_val_y:
~\AppData\Roaming\Python\Python39\site-packages\sklearn\utils\validation.py
 in check_array(array, accept_sparse, accept_large_sparse, dtype, order, cop
y, force all finite, ensure 2d, allow nd, ensure min samples, ensure min fea
tures, estimator)
                            array = array.astype(dtype, casting="unsafe", co
    744
py=False)
    745
                        else:
--> 746
                            array = np.asarray(array, order=order, dtype=dty
pe)
    747
                    except ComplexWarning as complex warning:
    748
                        raise ValueError(
C:\ProgramData\Anaconda3\lib\site-packages\numpy\core\_asarray.py in asarray
(a, dtype, order, like)
```

ValueError: could not convert string to float: 'M'

In [115]:

1	df										
122	0	1	0.330	0.250	0.095	0.2085	0.1020	0.0395	0.0520	7	•
122	1	1	0.330	0.205	0.095	0.1595	0.0770	0.0320	0.0435	5	
122	2	1	0.335	0.245	0.090	0.2015	0.0960	0.0405	0.0480	7	
122	3	1	0.340	0.250	0.090	0.1790	0.0775	0.0330	0.0550	6	
122	4	1	0.345	0.255	0.095	0.1945	0.0925	0.0370	0.0550	6	
122	5	1	0.345	0.255	0.085	0.2005	0.1050	0.0370	0.0500	5	
122	6	1	0.350	0.270	0.075	0.2150	0.1000	0.0360	0.0650	6	
122	7	1	0.350	0.255	0.090	0.1785	0.0855	0.0305	0.0525	8	
122	8	1	0.360	0.270	0.085	0.1960	0.0875	0.0350	0.0640	4	
122	9	1	0.365	0.270	0.085	0.1875	0.0810	0.0420	0.0580	6	
123	0	1	0.365	0.270	0.085	0.1960	0.0825	0.0375	0.0600	7	
123	1	1	0.365	0.265	0.085	0.2130	0.0945	0.0490	0.0600	7	
123	2	1	0.370	0.290	0.090	0.2445	0.0890	0.0655	0.0750	7	•

In []:

1