Automi e Linguaggi Formali

Indecidibilità, riduzioni e teorema di Rice

Lamberto Ballan lamberto.ballan@unipd.it

Esercizi

• TM che accetta L delle stringhe binarie palindrome

• Esercizio (9.3.1): mostrare che l'insieme dei codici di TM che accettano tutti gli input palindromi è indecidibile

Il linguaggio universale

- Il linguaggio universale L_u è l'insieme delle stringhe binarie che codificano una coppia (M, w) dove $w \in L(M)$
 - detto diversamente, L_u è RE ed è l'insieme delle stringhe che rappresentano una TM e un input da essa accettato
- Esiste una TM *U*, detta "TM universale", tale che $L_u=L(U)$
 - U ha tre nastri: uno per la codifica di M e di w, uno per il nastro di M, e uno per la codifica dello stato di M; così U simula M su w, e accetta (M, w) se e solo se M accetta w
- Indecidibilità di L_u: dato che alcune TM M corrispondono a linguaggi non ricorsivi, ma RE, non si fermano quando la stringa w in input non è del linguaggio. Anche U si comporterà allo stesso modo su (M, w), e quindi L_u è RE ma non ricorsivo.

Riduzioni

- Possiamo "servirci" di linguaggi di cui conosciamo lo status in termini di decidibilità ed enumerabilità ricorsiva (come L_u e L_d) per studiare nuovi linguaggi
- Dato un problema noto P_1 indecidibile, vorremmo vedere se un nuovo problema P_2 è a sua volta indecidibile
- Un problema P_1 si *riduce* a P_2 se abbiamo un algoritmo per convertire le istanze P_1 in istanze di P_2 con stessa risposta
 - possiamo quindi avvalerci della riduzione per provare che P_2 è "difficile" almeno quanto P_1
- Teorema (9.7): se esiste una riduzione da P_1 a P_2 : (a) se P_1 è indecidibile, lo è anche P_2 ; (b) se P_1 è non RE, lo è anche P_2

- Vediamo due esempi di riduzioni che coinvolgono le TM (utilizzando la codifica *M_i* precedentemente introdotta)
- Definiamo i due linguaggi sull'alfabeto binario {0, 1}:
 - $L_e = \{M \mid L(M) = \emptyset\}$
 - $L_{ne} = \{ M \mid L(M) \neq \emptyset \}$
- Vogliamo verificare se sono ricorsivi, RE o neanche RE

• Teorema (9.8): Lneè ricorsivamente enumerabile

D: Dobbiamo dimostrare che esiste una TM M che lo accetta.

Lo si dimostra costruendo una TM non-deterministica M che, data una TM M_i in input, simula in modo non deterministico M_i su tutte le possibili stringhe in input w.

Detto diversamente, M verifica se Mi accetta w, e per questa parte M simula la TM universale U che accetta il linguaggio Lu. Se Mi accetta w, allora M accetta il proprio input, ovvero la TM Mi.

Perciò, se M_i accetta anche solo una stringa w_i essa sarà tra quelle "congetturate" da M che perciò accetta M_i . Se però $L(M_i) = \emptyset$, nessun w congetturato porta all'accettazione di M_i (e quindi di M).

Di conseguenza possiamo affermare che L(M)=L(Lne), cioè Lne è RE.

• Teorema (9.9): L_{ne} non è ricorsivo

D: Lo dimostriamo riducendo L_u a L_{ne} . Essendo L_u non ricorsivo, non potrà esserlo neanche L_{ne} .

Per ridurre L_u a L_{ne} dobbiamo convertire ogni coppia (M, w) per cui $w \in L(M)$ in una nuova TM M' t.c. $w \in L(M)$ se e solo se $L(M') \neq \emptyset$

Sia M' una TM che (ignora il suo input e) simula M su w:

- se M accetta w, allora M' accetta il suo input e quindi L(M') non è vuoto
- se M non accetta w, allora M' non accetta nessun input e quindi L(M') è vuoto

Questo significa che abbiamo ridotto L_u a L_{ne} per via dell'algoritmo che costruisce M' da M e w. Possiamo perciò concludere che, essendo L_u non ricorsivo, anche L_{ne} sarà non ricorsivo.

• Teorema (9.10): Le non è ricorsivamente enumerabile

D: Dato che L_{ne} non è ricorsivo (per il teorema 9.9), e che L_e è il complemento di L_{ne} , allora L_e non può essere ricorsivamente enumerabile.

Se lo fosse allora sarebbero entrambi ricorsivi (per il teorema 9.3 che abbiamo dimostrato nella precedente lezione).

Proprietà dei linguaggi RE

- Tutte le proprietà non banali di una macchina di Turing (cioè dei linguaggi RE) sono indecidibili
 - cioè è impossibile riconoscere per mezzo di una TM le stringhe che rappresentano codici di TM il cui L soddisfa la proprietà
 - un esempio di proprietà è "essere un linguaggio libero dal contesto" (quindi il problema se una particolare TM accetti un linguaggio libero dal contesto è indecidibile)
 - un altro esempio di proprietà è "essere un linguaggio vuoto"
- Formalmente, una proprietà dei linguaggi RE è semplicemente un insieme di linguaggi RE
 - quindi, ad esempio, la proprietà di essere "libero dal contesto"
 è l'insieme di tutti i linguaggi CFL

Proprietà dei linguaggi RE

- Una proprietà è banale se viene soddisfatta da tutti i linguaggi
 RE oppure da nessuno (cioè è vuota), altrimenti è non banale
- Se P è una proprietà dei linguaggi RE, il linguaggio L_p è l'insieme dei codici di TM M_i tali che $L(M_i)$ è un linguaggio in P
 - quando parliamo di decidibilità di una proprietà P, ci riferiamo alla decidibilità del linguaggio L_p

Il teorema di Rice

Teorema di Rice (9.10): ogni proprietà non banale dei linguaggi
 RE è indecidibile

D: Sia P una proprietà non banale dei linguaggi RE.

Allora deve esistere un linguaggio RE L che abbia la proprietà P. Sia quindi M_L una TM che accetta L.

Riduciamo L_u a L_p , dimostrando che L_p è indecidibile, dato che come abbiamo già dimostrato L_u è indecidibile.

L'input della riduzione è una coppia (M, w), mentre l'output è una TM M' t.c. L(M') è vuoto se M non accetta w, e L(M')=L se M accetta w.

M' simula M su w. Se M non accetta w, M' non accetta nessuna stringa x in input. Se M accetta w, M' simula M_L su x e perciò accetterà esattamente il linguaggio L.

Poiché L ha la proprietà P, M' è in Lp.

Alcuni problemi indecidibili

- Tutti i problemi sulle TM che riguardano i linguaggi accettati sono indecidibili. Vediamo alcuni esempi:
 - il linguaggio accettato da una TM è vuoto?
 - il linguaggio accettato da una TM è finito?
 - il linguaggio accettato da una TM è regolare?
 - il linguaggio accettato da una TM è libero da contesto?
 - il linguaggio accettato da una TM contiene la stringa 'ab'?
 - il linguaggio accettato da una TM contiene tutti i numeri pari?

Non tutti i problemi sono indecidibili...

- Problemi che riguardano gli stati di una TM, e non il linguaggio accettato, possono essere decidibili. Alcuni esempi:
 - dire se una TM ha un certo numero k di stati (es. k=5)
 - dire se esiste un input tale che una TM faccia almeno k passi prima di fermarsi
 - dire se una TM esegue una certa transizione
 - dire se una TM passa per lo stato p (o, viceversa, se non passa mai per lo stato p)
 - dire se una TM passa dallo stato p allo stato q in al più k passi

Un esempio "concreto" di problema indecidibile

- Vediamo un esempio "concreto" di problema indecidibile, svincolato dall'astrazione della TM (che riguarda sempre stringhe)
- Il PCP ("problema di corrispondenza di Post") consiste in due liste di stringhe A e B, di uguale lunghezza k, sullo stesso alfabeto Σ
 - siano $A=w_1, w_2, ..., w_k$ e $B=x_1, x_2, ..., x_k$; per ogni intero i, la coppia (w_i, x_i) si dice coppia corrispondente
 - I'istanza di PCP ha soluzione se esiste una sequenza $i_1, i_2, ..., i_m$ di indici per A e B che danno la stessa stringa $w_{i_1}w_{i_2}...w_{i_m} = x_{i_1}x_{i_2}...x_{i_m}$
 - in questo caso diciamo che la sequenza i₁, i₂,..., i_m è una soluzione dell'istanza di PCP

Un esempio "concreto" di problema indecidibile

- Il problema di corrispondenza di Post è perciò definito così: data una istanza di PCP stabilire se essa ha soluzione
- Vediamo un primo esempio di istanza di PCP:

	Lista A	Lista B
i	Wi	Xį
1	1	111
2	10111	10
3	10	0

La lista 2,1,1,3 è soluzione.

Analogamente, 2,1,1,3,2,1,1,3 è un'altra soluzione.

Un'istanza di PCP (con soluzione)

Un esempio "concreto" di problema indecidibile

Vediamo adesso un secondo esempio di istanza di PCP:

	Lista A	Lista B
j	Wi	Xi
1	10	101
2	011	11
3	101	011

Un'istanza di PCP (senza soluzione)

Abbiamo necessariamente i₁=1 e quindi le stringhe inizieranno così: A: 10... e B: 101...

Per i₂ solo 3 è possibile. Le stringhe saranno perciò: A: 10101... e B: 101011...

Nulla vieta che le stringhe si estendano portando a soluzione. Però si può provare che non è possibile farlo perché ci siamo riportati nella stessa situazione iniziale successiva a i₁=1. Quindi dovremo scegliere sempre i=3 per mantenere corrispondenza.