Ecuaciones lineales: teorema de existencia y unicidad

Dados un intervalo abierto $(\alpha, \beta) \subset \mathbb{R}$, una función matricial $A: (\alpha, \beta) \to \mathcal{M}_d(\mathbb{R})$ continua y una función vectorial $b: (\alpha, \beta) \to \mathbb{R}^d$ continua, consideramos la ecuación diferencial lineal:

$$(*) x' = A(t)x + b(t)$$

Teorema de existencia y unicidad de solución

Dados $t_0 \in (\alpha, \beta)$ y $x_0 \in \mathbb{R}^d$, consideramos el problema de valores iniciales

$$\begin{cases} x' = A(t)x + b(t) \\ x(t_0) = x_0. \end{cases}$$

Entonces existe una única función $\varphi:(\alpha,\beta)\to\mathbb{R}^d$ de clase \mathcal{C}^1 que verifica:

$$\varphi'(t) = A(t)\varphi(t) + b(t) \qquad \forall t \in (\alpha, \beta)$$

y además $\varphi(t_0) = x_0$.

Ecuaciones lineales homogéneas: matriz fundamental

Si en la ecuación lineal suponemos que $b \equiv 0$:

$$(**) y' = A(t)y$$

podemos usar el teorema anterior y la linealidad de la ecuación para probar que el conjunto de soluciones de (**) tiene la estructura de espacio vectorial de dimensión d.

Cada base del conjunto de soluciones de (**) recibe el nombre de sistema fundamental de soluciones.

Si $\{\phi_1, \dots, \phi_d\}$ es un sistema fundamental de soluciones de (**) entonces la función matricial cuyas columnas son el sistema fundamenta de soluciones:

$$\Phi: (\alpha, \beta) \to \mathcal{M}_d(\mathbb{R}), \ \Phi(t) := (\phi_1 | \cdots | \phi_d)$$

recibe el nombre de matriz fundamental.

Una única función $\Phi:(\alpha,\beta)\to\mathcal{M}_d(\mathbb{R})$ de clase \mathcal{C}^1 que verifica:

$$\Phi'(t) = A(t)\Phi(t) \qquad \forall t \in (\alpha, \beta)$$

recibe el nombre de matriz solución de (**).

Jacobi-Liouville

Si Φ : $(\alpha, \beta) \to \mathcal{M}_d(\mathbb{R})$ es matriz solución de (**) y $t_0 \in (\alpha, \omega)$ entonces:

$$\det \Phi(t) = \det \Phi(t_0) e^{\int_{t_0}^t \operatorname{traza} A(s) \, ds} \qquad \forall t \in (\alpha, \beta).$$

Una matriz solución de (**) que es regular recibe el nombre de *matriz* fundamental de (**).

Una matriz fundamental que verifica $\Phi(t_0) = I$ (la matriz identidad) recibe el nombre de **matriz fundamental** principal en t_0 .

Si Φ : $(\alpha, \beta) \to \mathcal{M}_d(\mathbb{R})$ es matriz fundamental de (**) entonces

$$\Phi(t)\Phi(t_0)^{-1}$$

es matriz fundamental principal en t_0 .

Conjunto de soluciones de la ecuación completa

El conjunto de soluciones de (*) tiene la estructura de **espacio afín** y el espacio vectorial asociado es el conjunto de soluciones de (**). Es decir: si φ es solución de (*), y es solución de (**) entonces

$$x:(\alpha,\beta)\to\mathbb{R}^d,\ x(t):=\varphi(t)+y(t)$$

es solución de (*).

Fórmula de variación de las constantes

Si $\Phi: (\alpha, \beta) \to \mathcal{M}_d(\mathbb{R})$ es matriz fundamental de (**) que es principal en t_0 entonces la solución del PVI

$$\begin{cases} x' = A(t)x + b(t) \\ x(t_0) = x_0. \end{cases}$$

es

$$x(t) = \Phi(t)[x_0 + \int_{t_0}^t \Phi(s)^{-1}b(s) ds].$$

El caso de coeficientes constantes

Dada una EDO lineal homogénea con coeficientes constantes

$$(**) y' = Ay$$

la matriz fundamental principal en t_0 es $\Phi(t) = e^{A(t-t_0)}$.

Para simplificar, supongamos que $t_0 = 0$.

Cálculo de la exponencial

¿Cómo se calcula $\Phi(t)=e^{At}$ cuando la matriz A es diagonalizable?

Cálculo de la exponencial

¿Cómo se calcula $\Phi(t) = e^{At}$ cuando la matriz A no es diagonalizable?

Estabilidad en el sentido de Liapunov

Sean $-\infty \le \alpha \le t_0 < +\infty$, $A: (\alpha, +\infty) \to \mathcal{M}_d(\mathbb{R})$ continua y $b: (\alpha, +\infty) \to \mathbb{R}^d$ continua. Se considera la ecuación diferencial lineal:

$$(*) x' = A(t)x + b(t)$$

Dada una solución $\varphi:(\alpha,+\infty)\to\mathbb{R}^d$ de la ecuación (*), diremos que es **estable** si para todo $\epsilon>0$ existe $\delta>0$ tal que si $x:(\alpha,+\infty)\to\mathbb{R}^d$ es otra solución de (*) y verifica

$$\|x(t_0)-\varphi(t_0)\|<\delta$$

entonces

$$||x(t) - \varphi(t)|| < \epsilon$$
 $\forall t \ge t_0.$

Estabilidad asintótica en el sentido de Liapunov

Dada una solución $\varphi:(\alpha,+\infty)\to\mathbb{R}^d$ de la ecuación (*), diremos que es un **atractor** si existe $\mu>0$ tal que si $x:(\alpha,+\infty)\to\mathbb{R}^d$ es otra solución de (*) y verifica

$$\|x(t_0)-\varphi(t_0)\|<\mu$$

entonces

$$\lim_{t\to+\infty}\|x(t)-\varphi(t)\|=0.$$

Dada una solución $\varphi:(\alpha,+\infty)\to\mathbb{R}^d$ de la ecuación (*), diremos que es asintóticamente estable si es estable y es un atractor.

Sean $-\infty \le \alpha \le t_0 < +\infty$, $A: (\alpha, +\infty) \to \mathcal{M}_d(\mathbb{R})$ continua y $b: (\alpha, +\infty) \to \mathbb{R}^d$ continua. Se considera la ecuación diferencial lineal:

$$(*) x' = A(t)x + b(t)$$

y su parte homogénea

$$(**) y' = A(t)y$$

Proposición 1

Las siguientes afirmaciones son equivalentes:

- Todas las soluciones de (*) son estables.
- 2 Existe una solución de (*) que es estable.
- 3 La solución trivial $y \equiv 0$ de (**) es estable.
- Todas las soluciones de (**) son acotadas en $[t_0, +\infty)$.
- **1** La matriz fundamental de (**) principal en t_0 es acotada en $[t_0, +\infty)$.

Proposición 2

Las siguientes afirmaciones son equivalentes:

- Todas las soluciones de (*) son atractores.
- Existe una solución de (*) que es un atractor.
- **3** La solución trivial $y \equiv 0$ de (**) es un atractor.
- Todas las soluciones de (**) convergen hacia el vector O cuando $t \to +\infty$.
- **1** La matriz fundamental de (**) principal en t_0 converge hacia la matriz O cuando $t \to +\infty$.

Corolario

Los atractores de la ecuación (*) son asintóticamente estables.

Definiciones

- Se dice que la ecuación (*) es estable si todas sus soluciones son estables.
- Se dice que la ecuación (*) es asintóticamente estable si todas sus soluciones son asintóticamente estables.

Estabilidad de ecuaciones lineales escalares

Sean $a, b: (\alpha, +\infty) \to \mathbb{R}$ continuas. Se consideran la ecuación diferencial lineal escalar:

$$(*) x' = a(t)x + b(t)$$

y sea $t_0 \in (\alpha, +\infty)$.

La matriz fundamental principal en t_0 es $\Phi(t) = \exp(\int_{t_0}^t a(s) \, ds)$ y por tanto podemos caracterizar la estabilidad de (*) controlando una primitiva del coeficiente a(t).

Proposición 3

- La ecuación (*) es estable si y sólo si la función a(t) tiene una primitiva acotada superiormente en $[t_0, +\infty)$.
- ② La ecuación (*) es asintóticamente estable si y sólo si la función a(t) tiene una primitiva que converge hacia $-\infty$ cuando $t \to +\infty$.

Ejemplos

Clasifica las siguientes ecuaciones según sean asintóticamente estables, estables (no A.E.) o inestables:

2
$$x' = -6x + sen(t)$$

$$x' = \cos(t)x + e^{-t}$$

$$x' = -2tx + e^{t^2}$$

$$x' = e^t x + t$$

$$x' = e^{-t}x + e^{t}$$

$$x' = \frac{1}{1+t^2}x + \frac{t}{1+t^2}$$

$$3 x' = \frac{2t}{1+t^2}x + \frac{4}{1+t^2}$$

Estabilidad de ecuaciones lineales con coeficientes constantes

Sea $A \in \mathcal{M}_d(\mathbb{R})$ una matriz cuadrada. Usaremos la siguiente notación:

• El espectro de *A*: el conjunto de valores propios de *A*, tanto reales como complejos:

$$\sigma(A) = \{\lambda_1, \ldots, \lambda_d\}$$

La multiplicidad de cada valor propio:

$$m(\lambda_j)$$
 para cada $\lambda_j \in \sigma(A)$

• La dimensión de cada subespacio propio E_{λ_i} :

$$\dim E_{\lambda_j} = \dim \ker(A - \lambda_j I) = d - \operatorname{rango}(A - \lambda_j I)$$

Los valores propios de A cuya parte real es 0

$$\sigma_0(A) = \{\lambda \in \sigma(A) : \operatorname{Re}(\lambda) = 0\}$$

Consideramos la EDO lineal homogénea y autónoma:

$$(*) x' = Ax x \in \mathbb{R}^d$$

El principal indicador para determinar la estabilidad de (*) es el máximo de las partes reales de los valores propios de A:

$$\mu(A) = \max \{ \operatorname{Re}(\lambda) : \lambda \in \sigma(A) \}$$

Teorema

- **①** Si $\mu(A) < 0$ entonces la EDO lineal (*) es asintóticamente estable.
- ② Si $\mu(A) = 0$ y $m(\lambda) = \dim E_{\lambda}$ para todo $\lambda \in \sigma_0(A)$, entonces la EDO lineal (*) es estable (pero no asintóticamente estable).
- **3** Si $\mu(A) = 0$ y existe $\lambda \in \sigma_0(A)$ tal que $m(\lambda) \neq \dim E_{\lambda}$, entonces la EDO lineal (*) es inestable.
- Si $\mu(A) > 0$ entonces la EDO lineal (*) es inestable.