KLASSZIUKS FIZIKA LABORATÓRIUM

A nehézségi gyorsulás mérése megfordítható ingával jegyzőkönyv

Mérést végezte: Koroknai Botond Mérés időpontja: 2023.04.26

Neptun kód: AT5M0G Jegyzőkönyv leadásának időpontja: 2023.05.19

Tartalomjegyzék:

1	A mérés célja és menete:	2
2	A mérőeszközök:	2
3	Fontos összefüggések	2
4	A mérési adatok kiértékelése:	2
5	Reprodukciós mérés:	4
6	Korrekció:	4
7	Súlypont meghatározása:	4
R	Diszkusszió:	5

1 A mérés célja és menete:

A mérés célja a gravitációs gyorsulás értékének megállapítása volt. Ehhez a megfordítható inga lengésidejét vizsgáltam a tolósúly függvényében, mindkét ék esetén. A mérést követően ábrázoltam a két függvényt, majd a metszéspont meghatározása után további méréseket végeztem ezen pont körül, hogy pontosítsam az eredményt. Utolsó mérésként a tolósúly helyzetét változtatva 10 pontban megmértem az inga súlypontját.

2 A mérőeszközök:

- Megfordítható inga ($l = 1.0033 \pm 0.0002 m$)
- · Tolósúly
- Elektronikus számláló és időmérő

3 Fontos összefüggések

Nehézségi gyorsulás:

$$g = \frac{4\pi^2 l_e}{T^2} \tag{1}$$

Ahol g a gravitációs gyorsulás, T a lengésidő, l_e a két ék közti távolság. **Lengésidő:**

$$T = 2\pi \sqrt{\frac{l_e}{g}} \cdot \left(1 + \frac{1}{4}\sin^2\left(\frac{\alpha}{2}\right) + \frac{9}{64}\sin^4\left(\frac{\alpha}{2}\right) + \dots\right)$$
 (2)

ahol α a kitérés szöge.

Hidrodinamikai korrekció: az észlelt lengésidőt csökkenteni kell az alábbi korrekcióval.

$$\Delta T_{korr} = 0.8 \frac{\rho_{lev}}{\rho_{inqa}} T \tag{3}$$

Ahol ρ_{lev} a levegő és ρ_{inga} az inga sűrűsége.

Triviális megoldás: amikor a tolósúly a két ék felezőpontjába kerül.

$$x_{triv} = -\frac{b}{m} \tag{4}$$

4 A mérési adatok kiértékelése:

x [cm]	T_1 [s]	$T_2[s]$
-40 ± 0.05	2.0189 ± 0.0002	2.0171 ± 0.0002
-35 ± 0.05	2.0102 ± 0.0002	2.0106 ± 0.0002
-30 ± 0.05	2.0014 ± 0.0002	2.0050 ± 0.0002
-25 ± 0.05	1.9957 ± 0.0002	2.0003 ± 0.0002
-20 ± 0.05	1.9913 ± 0.0002	1.9966 ± 0.0002
-15 ± 0.05	1.9860 ± 0.0002	1.9939 ± 0.0002
-10 ± 0.05	1.9821 ± 0.0002	1.9915 ± 0.0002
-5 ± 0.05	1.9796 ± 0.0002	1.9902 ± 0.0002
0 ± 0.05	1.9784 ± 0.0002	1.9895 ± 0.0002
5 ± 0.05	1.9776 ± 0.0002	1.9893 ± 0.0002
10 ± 0.05	1.9781 ± 0.0002	1.9904 ± 0.0002
15 ± 0.05	1.9797 ± 0.0002	1.9917 ± 0.0002
20 ± 0.05	1.9842 ± 0.0002	1.9944 ± 0.0002
25 ± 0.05	1.9882 ± 0.0002	1.9973 ± 0.0002
30 ± 0.05	1.9940 ± 0.0002	2.0009 ± 0.0002
35 ± 0.05	2.0020 ± 0.0002	2.0050 ± 0.0002
40 ± 0.05	2.0101 ± 0.0002	2.0105 ± 0.0002

A mért adatokra negyedfokú polinomokat illesztettem, hogy pontosabban meg tudjam határozni a függvények metszéspontját. A metszéspontot úgy kaphatjuk meg, ha a két függvényt egyenlővé tesszük egymással. A gyökök keresését Python segítségvel végeztem el. Az egyik metszéspont így: x=36 cm körüli értékre esett. A további pontosítás érdekében a metszéspont közelében centiméterenként léptetve vizsgáltam a periódusidőket.

x [cm]	T_1 [s]	T_2 [s]
33 ± 0.05	2.0039 ± 0.0002	2.0017 ± 0.0002
34 ± 0.05	2.0046 ± 0.0002	2.0030 ± 0.0002
35 ± 0.05	2.0054 ± 0.0002	2.0054 ± 0.0002
36 ± 0.05	2.0063 ± 0.0002	2.0068 ± 0.0002
37 ± 0.05	2.0071 ± 0.0002	2.0092 ± 0.0002
38 ± 0.05	2.0082 ± 0.0002	2.0107 ± 0.0002
39 ± 0.05	2.0092 ± 0.0002	2.0126 ± 0.0002

	meredekség - T_1 $\left[\frac{s}{cm}\right]$	tengelymetszet - T_1 [s]	meredekség - T_2 $\left[\frac{s}{cm}\right]$	tengelymetszet - T_2 [s]
érték	0.0009	1.9745	0.0019	1.9403
hiba	0.00003	0.0010	0.00005	0.0018

Ezek után a metszéspontot meghatározhatjuk a

$$x = \frac{b_2 - b_1}{m_1 - m_2} = (35.31 \pm 0.01) cm \tag{5}$$

képlet segítségével. Az egyik egyenes egyenletébe vissza helyettesítve ezt az értéket azt kapom, hogy a periódus idő értéke így: $T=2.0057\,s$

(1)-es összefüggés alapján a gravitációs gyorsulás értéke: $g = 9.846 \pm 0.051 \frac{m}{c^2}$

5 Reprodukciós mérés:

Sorszám	T(x) [s]
1	2.0105
2	2.0106
3	2.0108
4	2.0107
5	2.0105

Az adatok szórása így:

$$\Delta T = 0.0001 s \tag{6}$$

6 Korrekció:

A lengőhossz kb. 100 cm volt, és az ingát 7 centivel térítettem ki, így a kitérítés nagysága: $\alpha \approx 4.02^{\circ}$ volt. Így $\Delta T_{korr1} = 0.0002. \, s$

A (3)-as összefüggés alapján a hidrodinamikai korrekció értéke az alábbi adatokat felhasználva:

$$\rho_{inga} = 8500 \, \frac{kg}{m^3} \, \text{\'es} \, \rho_{lev} = 1.259 \, \frac{kg}{m^3}.$$

$$\Delta T_{korr2} = 0.0002 \, s$$

A korrigált lengésidőt így a

$$T_{korr} + \Delta T_{korr1} - \Delta T_{korr2} \pm \Delta T = 2.0057 \pm 0.0001 s$$
 (7)

képlet alapján számoltam. A két korrekció összege éppen nullát adott eredményül.

7 Súlypont meghatározása:

x [cm]	S(x) [cm]
-35	8.05
-34	8.12
-33	8.22
-30	8.45
-29	8.50
-28	8.60
-20	9.30
-19	9.40
-18	9.49
-15	9.70

	meredekség	tengelymetszet
érték	0.084	10.98
hiba	0.001	0.03

A súlypont képlete így:

$$S(x) = 0.084 \cdot x + 10.98 \tag{8}$$

Ebbe behelyettesítve a metszéspontot (35.31 cm): $X_m = 13.95 \, cm$.

A másik megoldás -39 cm körül volt található, így azt nem tudtam precízebben megvizsgálni, de mivel $s_1 \neq s_2$ ezért egyik sem a triviális megoldás. A triviális megoldás: $-\frac{b}{m} = -137.25cm$

8 Diszkusszió:

Mint már említettem a -39 cm körül lévő metszéspont nagyon a szélén lett, ezért sajnos nem tudtam rá elvégezni a megfelelő méréseket. Mindazonáltal a mérést sikeresnek mondhatom, hisz bár viszonylag nagy hibával, de hibahatáron belül sikerült meghatároznom a gravitációs gyorsulás irdoalmi értékét, ami $g=9.80815\,\frac{m}{s^2}$. A mérés sorrán a korrekciót nem használtam, mivel a két különböző érték kinullázta magát.