SEMESTER 1, 2018 Campus: City

STATISTICS

Term Test, May 4, 2018

(Time allowed: ONE hour)

LAST NAME:	
GIVEN NAME:	
ID No:	

INSTRUCTIONS

- * Answer all parts of all questions.
- * Write your name and ID No. at the top of your answer sheet.
- * Total marks 40. Marks are shown for each question.

1 Consider an experiment in which the sample space Ω contains four outcomes $\{s_1, s_2, s_3, s_4\}$, and suppose that the probability of each outcome is 1/4. Let the three events A, B, C be defined as follows:

$$A = \{s_1, s_2\}$$

$$B = \{s_1, s_3\}$$

$$C = \{s_1, s_4\}$$

(a) Calculate $\mathbb{P}(A)$, $\mathbb{P}(B)$, $\mathbb{P}(C)$, $\mathbb{P}(A \cap B)$ and $\mathbb{P}(A \cap B \cap C)$. Show your working.

[4 marks]

(1/	1 1 1 1	\mathbf{r}		11.11
) I N		VI.	

	se the results obtained in part (a) in order to show that A is statisticall dependent of B .
	[1 mark
	ecide if the events A, B, C are mutually independent (or not). Show you orking.
[H	Iint: Use the results obtained in part (a)]
	[2 marks

101	State the distribution of Y with parameters. Explain you	r anguar
(=)	State the distribution of X , with parameters. Explain you	i answei.
		[2 mark
(b)	Calculate $\mathbb{P}(X \geq 1)$. Show your working.	
		[2 mark
(c)	Prove that $\mathbb{P}(X \geq 3) = 1/2$. Show your working.	
		[2 mark
(d)	If it is known that at least one of the five children in the	family has bli
(a)	eyes, what is the probability that at least three of the chi	
	eyes? Show all your calculations. [Hint: Use the results obtained in parts (b)-(c)]	
		[0 1
		[2 mark

J	The screens used for a certain type of cell phone are manufactured by three companies, A , B , and C . The proportions of screens supplied by A , B , and C are 0.5, 0.3, and 0.2, respectively, and their screens are defective with probabilitie 0.01, 0.02, and 0.03, respectively. Given that the screen on such a phone is defective, what is the probability that company A manufactured it?
	[4 marks
4	Suppose that the proportion p of defective items in a large population of items is unknown. Suppose also that a random sample of 20 items is drawn from the population, and 8 of them are found to be defective.
	(a) Let X denote the number of defective items in the sample. The null hypothesis is that $p=0.2$. Formulate the null hypothesis and alternative hypothesis, in terms of the distribution of X and its parameters. Remember to specify the full distribution of X , and use a two-sided alternative hypothesis.
	[3 marks

CONTINU	JED

(b) Part of the cumulative distribution function, $F_X(x) = \mathbb{P}(X \leq x)$, under the null hypothesis is shown below. Use the values in Table 1 in order to find $\mathbb{P}(X=6)$. Show your working. Give your answer to 4 decimal places.

\overline{x}	 2	3	4	5	6	7	8	
$F_X(x)$	 0.2061	0.4114	0.6296	0.8042	0.9133	0.9679	0.9900	

Table 1: Some values of the cumulative distribution function, $F_X(x)$, under the null hypothesis. The total number of items drawn from the population is 20.

[2 marks]

(c) Sketch as a curve the probability function of X under the null hypothesis. Your sketch should have axes labelled x and $\mathbb{P}(X=x)$, and the value of x where the curve peaks. Also mark the observed value of x so that you can see the tail probabilities required for the p-value, and shade under the curve the area represented by the p-value. Your sketch does not need to be an accurate plot of the probabilities above.

[3 marks]

				[1]
				[4 ma
	sider the exper tems). We wis			
(a)	Write down the of x . State the defined.			
				[2 ma

		[4 mark
 <u> </u>		

(c) The likelihood function is plotted in Figure 1. By referring to the graph and using your answer for part (b), find the maximum likelihood estimate of p and state what this maximum likelihood value represents.

[3 marks]

Figure 1: Likelihood function L(p;8) for the case when the total number of items is 20.
