Scilab Textbook Companion for High Voltage Engineering by M. S. Naidu And V. Kamaraju¹

Created by
Patel Chaitanya Kishorbhai
B.TECH
Others
Dharmsinh Desai University
College Teacher
None
Cross-Checked by
Spandana

July 14, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: High Voltage Engineering

Author: M. S. Naidu And V. Kamaraju

Publisher: Tata Mc-graw Hill

Edition: 4

Year: 2008

ISBN: 9780070669284

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	Scilab Codes	
2	Conduction and Breakdown in Gases	5
3	Conduction and Breakdown in Liquid Dielectrics	9
4	Breakdown in Solid Dielectrics	11
6	Generation of High Voltages and Currents	15
7	Measurement of High Voltages and Currents	25
8	Overvoltage Phenomenon and Insulation Coordination in Electric Power Systems	32
9	Non Destructive Testing of Materials and Electrical Apparatus	40

List of Scilab Codes

Exa 2.1	calculation of breakdown strength of air	5
Exa 2.2	calculation of Townsend primary ionization coefficient	6
Exa 2.3	calculation of Townsend secondary ionization coefficient	6
Exa 2.4	calculation of breakdown voltage of a spark gap	7
Exa 2.5	calculation of minimum spark over voltage	8
Exa 3.1	determination of power law dependence between the gap	
	spacing and the applied voltage of the oil	9
Exa 4.1	calculation of heat generated in specimen due to dielec-	
	tric loss	11
Exa 4.2	calculation of voltage at which an internal discharge can	
	occur	12
Exa 4.3	calculation of the dimensions of electrodes in coaxial	
	cylindrical capacitor	12
Exa 6.1	calculation of percentage ripple the regulation and the	
	optimum number of stages for minimum regulation in	
	Cockcroft Walton type voltage multiplier	15
Exa 6.2	calculation of series inductance and input voltage to	
	transformer	16
Exa 6.3	calculation of series resistance damping resistance and	
	maximum output voltage of the generator	17
Exa 6.4	calculation of circuit inductance and dynamic resistance	18
Exa 6.5	calculation circuit inductance and dynamic resistance.	19
Exa 6.6	calculation of front and tail time	20
Exa 6.7	calculation of peak value of output voltage and highest	
	resonant frequency produced	21
Exa 6.8	calculation of output voltage	22
Exa 6.9	calculation of self capacitance and leakage reactance .	23
Exa 6.10	calculation of resistance and inductance	23

Exa 7.1	calculation of capacitance of generating voltmeter
Exa 7.2	Design of a peak reading voltmeter
Exa 7.3	calculation of correction factors for atmospheric condi-
	tions
Exa 7.4	calculation of divider ratio
Exa 7.5	calculation of capacitance needed for correct compensa-
	tion
Exa 7.6	calculation of ohmic value of shunt an its dimensions .
Exa 7.7	Estimation of values of mutual inductance resistance
	and capacitance
Exa 7.8	calculation of resistance and capacitance
Exa 8.1	calculation of surge impedance velocity and time taken
	by the surge to travel to the other end
Exa 8.2	calculation of the voltage build up at the junction
Exa 8.5	calculation of the transmitted reflected voltage and cur-
	rent waves
Exa 8.6	calculation of value of voltage at the receiving end in
	Bewley lattice diagram
Exa 8.7	calculation of sparkover voltage and the arrester current
Exa 8.8	calculation of rise in voltage at the other end
Exa 8.9	working out of insulation coordination
Exa 9.1	calculation of the volume resistivity
Exa 9.2	calculation of resistivity of the specimen
Exa 9.3	calculation of dielectric constant and complex permit-
	tivity of bakelite
Exa 9.4	calculation of capacitance and tandelta of bushing
Exa 9.5	calculation of dielectric constant and tandelta of the
	transformer oil
Exa 9.6	calculation of magnitude of the charge transferred from
	the cavity
Exa 9.7	calculation of dielectric constant and loss factor tandelta
Exa 9.8	calculation of voltage at balance
Exa 9.9	calculation of maximum and minimum value of capaci-
	tance and tandelta

Conduction and Breakdown in Gases

Scilab code Exa 2.1 calculation of breakdown strength of air

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear;
4 //example 2.1
5 //calculation of breakdown strength of air
7 //given data
8 d1=0.1//length (in cm) of the gap
9 d2=20//length(in cm) of the gap
10
11 //calculation
12 //from equation of breakdown strength
13 E1=24.22+(6.08/(d1^(1/2)))/for gap d1
14 E2=24.22+(6.08/(d2^{(1/2)}))//for gap d2
15
16 printf ('the breakdown strength of air for 0.1mm air
      gap is \%3.2 \,\mathrm{f}\,\mathrm{kV/cm}., E1)
17 printf('\nthe breakdown strength of air for 20 cm
      air gap is \%3.2 \,\mathrm{f}\,\mathrm{kV/cm}., E2)
```

Scilab code Exa 2.2 calculation of Townsend primary ionization coefficient

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear;
4 // \text{example } 2.2
5 //calculation of Townsend primary ionization
      coefficient
6
7 //given data
8 d1=0.4/gap distance(in cm)
9 d2=0.1//gap distance (in cm)
10 I1=5.5*10^-8//value of current(in A)
11 I2=5.5*10^-9//value of current(in A)
12
13 //calculation
14 //from equation of current at anode I=I0*exp(alpha*d)
15 alpha=(log(I1/I2))*(1/(d1-d2))
16
17 printf('Townsend primary ioniztion coefficient is %3
     .3f /cm torr', alpha)
```

Scilab code Exa 2.3 calculation of Townsend secondary ionization coefficient

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear;
4 //example 2.3
5 //calculation of Townsend secondary ionization coefficient
```

```
6
7 //given data
8 d=0.9//gap distance(in cm)
9 alpha=7.676//value of alpha
10
11 //calculation
12 //from condition of breakdown....gama*exp(alpha*d)
=1
13 gama=1/(exp(d*alpha))
14
15 printf('the value of Townsend secondary ioniztion
coefficient is %3.3e',gama)
```

Scilab code Exa 2.4 calculation of breakdown voltage of a spark gap

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear;
4 // \text{example } 2.4
5 //calculation of breakdown voltage of a spark gap
7 //given data
8 A=15//value of A(in per cm)
9 B=360//value of B(in per cm)
10 d=0.1//spark gap(in cm)
11 gama=1.5*10^-4//value of gama
12 p=760//value of pressure of gas(in torr)
13
14 //calculation
15 //from equation of breakdown voltage
16 V=(B*p*d)/(log((A*p*d)/(log(1+(1/gama)))))
17
18 printf ('the value of breakdown voltage of the spark
      gap is %d V', V)
19 //correct answer is 5625 V
```

Scilab code Exa 2.5 calculation of minimum spark over voltage

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear;
4 // \text{example } 2.5
5 //calculation of minimum spark over voltage
7 // given data
8 A=15//value of A(in per cm)
9 B=360//value of B(in per cm)
10 gama=10^-4//value of gama
11 e=2.178//value of constant
12
13 //calculation
14 Vbmin = (B*e/A)*(log(1+(1/gama)))
16 printf ('the value of minimum spark over voltage is
     \%d\ V.', Vbmin)
17 //correct answer is 481 \text{ V}
```

Conduction and Breakdown in Liquid Dielectrics

Scilab code Exa 3.1 determination of power law dependence between the gap spacing

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear;
4 // \text{example } 3.1
5 //determination of power law dependence between the
     gap spacing and the applied voltage of the oil
7 // given data
8 d1=4//gap spacing (in mm)
9 d2=6/gap spacing(in mm)
10 d3=10//gap spacing (in mm)
11 d4=12//gap spacing(in mm)
12 V1=90//voltage(in kV) at breakdown
13 V2=140//voltage(in kV) at breakdown
14 V3=210//voltage(in kV) at breakdown
15 V4=255//voltage(in kV) at breakdown
16
17 //calculation
18 //from the relationship between breakdown voltage
```

```
and the gap spacing ..... V = K*d^n
19 //\text{we get } n = (\log(V) - \log(K)) / \log(d) = \text{slope of line}
      from given data
20 n = (\log(V4) - \log(V1)) / (\log(d4) - \log(d1))
21 K=\exp(\log(V1)-n*\log(d1))/Y intercept on the power
      law dependence graph
22 //plotting of graph
23 dn=[1:20]
24 \quad Vn = K * dn^n
25 plot(dn, Vn)
26 xlabel("Gas spacing (mm)")
27 ylabel("Breakdown voltage (kV)")
28
29 printf ('The power law dependence between the gap
      spacing and the applied voltage of the oil is \%3
      .2 f*d^{3}.3 f', K,n
```

Breakdown in Solid Dielectrics

Scilab code Exa 4.1 calculation of heat generated in specimen due to dielectric lo

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear;
4 // \text{example } 4.1
5 //calculation of heat generated in specimen due to
      dielectric loss
7 //given data
8 epsilonr=4.2//value of the dielectric constant
9 tandelta=0.001//value of tandelta
10 f=50//value of frequency (in Hz)
11 E=50*10^3/value of electric field (in V/cm)
12
13 //calculation
14 //from equation of dielectric heat loss ..... H=(E*E*
      f * epsilonr * tandelta) / (1.8 * 10^12)
15 H=(E*E*f*epsilonr*tandelta)/(1.8*10^12)
16
17 printf ('The heat generated in specimen due to
      dielectric loss is \%3.3 \text{ f mW/cm}^3., \#*10^3
```

Scilab code Exa 4.2 calculation of voltage at which an internal discharge can occu

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear;
4 //example 4.2
5 //calculation of voltage at which an internal
     discharge can occur
7 // given data
8 d1=1//thickness (in mm) of the internal void
9 dt=10//thickness(in mm) of the specimen
10 epsilon0=8.89*10^-12//electrical permittivity(in F/m
     ) of free space
11 epsilonr=4//relative permittivity of the dielectric
12 Vb=3//breakdown strength (in kV/mm) of air
13
14 //calculation
15 d2=dt-d1
16 epsilon1=epsilon0*epsilonr//electrical permittivity(
     in F/m) of the dielectric
17 V1=Vb*d1//voltage at which air void of d1 thickness
     breaks
V = (V1*(d1+(epsilon0*d2/epsilon1))/d1)
19
20 printf ('the voltage at which an internal discharge
     can occur is %3.2 f kV.', V)
21 //correction : we have to find applied voltage V
```

 ${f Scilab\ code\ Exa\ 4.3}$ calculation of the dimensions of electrodes in coaxial cylindr

```
1 //developed in windows XP operating system
```

```
2 //platform Scilab 5.4.1
3 clc; clear;
4 //example 4.3
5 //calculation of the dimensions of electrodes in
      coaxial cylindrical capacitor
7 //given data
8 epsilon0=(36*%pi*10^9)^-1//electrical permittivity(
     in F/m) of free space
  //consider high density polyethylene as the
      dielectric material
10 epsilonr=2.3//relative permittivity of high density
      polyethylene
11 l=0.2//effective length(in m)
12 C=1000*10^-12//capacitance(in F) of the capacitor
13 V=15//operating voltage (in kV)
14 Emax=50//maximum stress(in kV/cm) for breakdown
      stress 200 kV/cm and factor of safety of 4
15
16 //calculation
17 //from equation of capacitance of coaxial
      cylindrical capacitor
18 //C = (2*\%pi*epsilon0*epsilonr*l)/(lod(d2/d1))
      19 //from equation of Emax occurring near electrodes
20 / \text{Emax=V/(r1*(log(r2/r1)))}
      21 //from equation (1) and equation (2), we get
22 \log r 2 b y r 1 = (2 \% p i * e p s i l o n 0 * e p s i l o n r * 1) / C / / l o g d 2 / d 1 =
     \log r 2 / r 1
23 r1=V/(Emax*logr2byr1)//from equation (1)
24 r2=r1*exp(logr2byr1)
25
26 printf ('the value of inner diameter of electrodes in
       coaxial cylindrical capacitor is %3.2 f cm',r1)
27 printf('\nthe value of outer diameter of electrodes
     in coaxial cylindrical capacitor is %3.2 f cm',r2)
28 printf('\nthe thickness of the insulation is \%3.2 f
```

 $\mathrm{cm}^{\,\prime}$,(r2-r1))

Generation of High Voltages and Currents

 ${
m Scilab\ code\ Exa\ 6.1}$ calculation of percentage ripple the regulation and the optimum

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear;
4 //example 6.1
5 //calculation of percentage ripple, the regulation
     and the optimum number of stages for minimum
     regulation in Cockcroft-Walton type voltage
     multiplier
7 //given data
8 C=0.05*10^-6//value of capacitance (in F)
9 Vmax=125*10^3//value of supply transformer secondary
      voltage (in V)
10 f=150//frequency(in Hz)
11 I=5*10^-3//load current (in A)
12 nst=8//number of stages
13
14 //calculation
15 n=nst*2//number of capacitors
```

 ${
m Scilab~code~Exa~6.2}$ calculation of series inductance and input voltage to transfor

```
15 perR1=2//percentage resistance
16 perR2=2//percentage resistance of inductor
17
18
19 //calculation
20 I=kva/V//maximum value of current that can be
     supplied
21 Xc=Vc/Ic//reactance of cable
22 Xl=(perX*V)/(100*I)//leakage reactance
23 adrec=Xc-X1//additional reactance
24 Xadrec=adrec/(2*%pi*f)
25 perR=perR1+perR2//total resistance
26 R=(perR*V)/(100*I)
27 VE2=I*R//excitation at secondary
28 VE1=VE2*Vi/V//primary voltage
29 IkW = (VE1/Vi) * 100 / / input kW
30
31 printf('The value of series inductance is %d H.',
     round(Xadrec))
32 printf('\nThe value of input voltage to the
     transformer is %d V.', VE1)
```

 ${f Scilab\ code\ Exa\ 6.3}$ calculation of series resistance damping resistance and maximum

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear;
4 //example 6.3
5 //calculation of series resistance ,damping resistance and maximum output voltage of the generator
6
7 //given data
8 n=8//number of stages
9 C=0.16*10^-6//value of condenser(in farad)
```

```
10 Cl=1000*10^-12//value of load capacitor (in farad)
11 t1=1.2*10^-6//time to front (in second)
12 t2=50*10^-6//time to tail(in second)
13 Vc=120*10^3//charging voltage(in V)
14
15 //calculation
16 C1=C/n//generator capacitance
17 C2=C1//load capacitance
18 R1=(t1*(C1+C2))/(3*C1*C2)
19 R2=(t2/(0.7*(C1+C2)))-R1
20 V=n*Vc//dc charging voltage for n stages
21 \quad alpha=1/(R1*C2)
22 betaa=1/(R2*C1)
23 \quad Vmax = (V*(exp(-alpha*t1)-exp(-betaa*t1)))/(R1*C2*(
      alpha-betaa))
24
25 printf ('The value of series resistance is %d ohm',
      round(R1))
26 printf('\nThe value of damping resistance is %d ohm'
      , round (R2))
27 printf('\nThe value of maximum output voltage of the
       generator is \%3.2 \, \text{f kV}, -Vmax*10^-3)
28
29 //Vmax value from the equation is 892.02 kV
```

Scilab code Exa 6.4 calculation of circuit inductance and dynamic resistance

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear;
4 //example 6.4
5 //calculation of circuit inductance and dynamic resistance
6
7 //given data
```

```
8 alpha=0.0535*10^6//from table
9 LC=65//value of product
10 C=8//value of capacitor (in microfarad)
11 Ip=10//output peak current(in kA)
12 t1=8//time to front(in microsecond)
13
14 //calculation
15 L=LC/C//inductance(in microhenry)
16 Rd=2*(LC*10^-6)*alpha/t1//dynamic resistance
17 V=Ip*14/C//charging voltage
18
19 printf ('The value of circuit inductance is %3.3 f
     microhenry',L)
20 printf('\nThe value of dynamic resistance is %3.4 f
     ohm', Rd)
21 printf('\nThe value of charging voltage is %3.1 f kV'
      , V)
22 //the correct value of charging voltage is 17.5 kV
```

Scilab code Exa 6.5 calculation circuit inductance and dynamic resistance

```
//developed in windows XP operating system
//platform Scilab 5.4.1
clc; clear all;
//example 6.5
//calculation circuit inductance and dynamic resistance

//given data
C=8*10^-6//value of capacitor (in farad)
Ip=10//output peak current(in kA)
t1=8*10^-6//time to front(in second)
t2=20*10^-6//time to first half cycle(in second)
V=25*10^3//charging voltage
im=10*10^3//output currennt(in A)
```

```
14
15 //calculation
16 omega=%pi/t2
17 omegat1=omega*t1
18 alpha=omega*(1/atan(omegat1))
19 LC=1/((t1^2)+(alpha^2))
20 L = LC/C
21 R=2*L*alpha
V = omega*L*10*exp(-alpha*t1)
24 printf ('The value of circuit inductance is %3.2 f
      microhenry',L*10^6)
25 printf('\nThe value of dynamic resistance is %3.4 f
     ohm',R)
26 printf('\nThe value of charging voltage is %3.2 f kV'
27
28 //correct answers is
29 //The value of charging voltage is 1.59 kV
```

Scilab code Exa 6.6 calculation of front and tail time

```
//developed in windows XP operating system
//platform Scilab 5.4.1
clc;clear;
//example 6.6
//calculation of front and tail time
//given data
n=12//number of stages
C=0.126*10^-6//capacitance(in Farad)
R1=800//wavefront resistance(in ohm)
R2=5000//xavetail resistance(in ohm)
C2=1000*10^-12//load capacitance(in Farad)
```

Scilab code Exa 6.7 calculation of peak value of output voltage and highest resona

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 //example 6.7
5 //calculation of peak value of output voltage and
     highest resonant frequency produced
6
7 //given data
8 V=10*10^3/voltage(in V) at primary winding
9 L1=10*10^{-3}/inductance (in H)
10 L2=200*10^{-3}/inductance(in H)
11 K=0.6//coefficient of coupling
12 C1=2*10^-6//capacitance(in Farad) on primary side
13 C2=1*10^-9//capacitance(in Farad) on secondary side
14
15 //calculation
16 M=K*sqrt(L1*L2)
17 omega1=1/sqrt(L1*C1)
18 sigma=sqrt(1-(K^2))
19 omega2=1/sqrt(L2*C2)
20 gama2=sqrt(((omega1^2+omega2^2)/2)+sqrt(((omega1^2+
     omega2^2)/2)-(sigma^2*omega1^2*omega2^2)))
```

Scilab code Exa 6.8 calculation of output voltage

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 // \text{example } 6.8
5 //calculation of output voltage
7 //given data
8 V1=10//voltage(in kV) at primary winding
9 C1=2*10^-6//capacitance(in Farad) on primary side
10 C2=1*10^-9//capacitance(in Farad) on secondary side
11 pern=5//energy efficiency (in percentage)
12
13 //calculation
14 n=pern/100
15 V2 = V1 * sqrt (n * C1/C2)
16
17 printf('The value of output voltage is %3.1 f kV', V2)
18 //correct answer is 100 kV
```

Scilab code Exa 6.9 calculation of self capacitance and leakage reactance

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 // \text{example } 6.9
5 //calculation of self capacitance and leakage
      reactance
7 //given data
8 Vi=350*10^3// rating(in VA)
9 V=350*10^3//secondary voltage(in V)
10 V1=6.6*10^3//primary voltage(in V)
11 perV=8//percentage ratedd voltage
12 perR=1//percentage rise
13 f=50//frequency(in Hz)
14
15 //calculation
16 I = Vi/V
17 X1 = (perV * V) / (100 * I)
18 IO=perR*V/(100*X1)
19 Xc = ((1+(perR/100))*V)/I0
20 C=1/(Xc*2*\%pi*f)
21
22 printf ('The value of self capacitance is %3.3 f nF', C
23 printf('\nThe value of leakage reactance is %d kohm'
      ,X1*10^-3)
```

Scilab code Exa 6.10 calculation of resistance and inductance

1 //developed in windows XP operating system

```
2 //platform Scilab 5.4.1
3 clc; clear all;
4 //example 6.10
5 //calculation of resistance and inductance
7 //given data
8 CR=70.6//value from table
9 LC=11.6//value from table
10 C=1//capacitance(in microfarad)
11 pern=98.8//percentage voltage efficiency
12 V=10//rating(in kV)
13 LC2=65//value from table
14 alpha=0.0535//value from table
15
16 //calculation
17 R = CR/C
18 L=LC/C
19 Vo=pern*V/100
20 L2=LC2/C
21 R2=2*L2*alpha
22 \text{ Ip=V*C/14}
23
24 printf ('The value of resistance for 1/50 microsecond
       voltage is %3.1 f ohm', R)
25 printf('\nThe value of inductance for 1/50
      microsecond voltage is %3.1f microhenry',L)
26 printf('\nThe value of output voltage is \%3.2\,\mathrm{f} kV',
     Vo)
27 printf('\nThe value of inductance for 8/20
      microsecond voltage is %d microhenry', L2)
28 printf('\nThe value of resistance for 8/20
      microsecond voltage is %3.3 f ohm', R2)
29 printf('\nThe peak value of current is %d A', Ip
      *10^3)
```

Measurement of High Voltages and Currents

Scilab code Exa 7.1 calculation of capacitance of generating voltmeter

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 //example 7.1
5 //calculation of capacitance of generating voltmeter
7 //given data
8 Irms=2*10^-6//current(in A)
9 V1=20*10^3/applied voltage (in V)
10 V2=200*10^3//applied voltage(in V)
11 rpm=1500//assume synchronous speed(in rpm) of motor
12
13 //calculation
14 Cm=Irms*sqrt(2)/(V1*(rpm/60)*2*%pi)
15 Irmsn=V2*Cm*2*%pi*(rpm/60)/sqrt(2)
16
17 printf ('The capacitance of the generating voltmeter
     is \%3.1 \, f \, pF', Cm*10^12)
```

Scilab code Exa 7.2 Design of a peak reading voltmeter

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 // \text{example } 7.2
5 //Design of a peak reading voltmeter
7 //given data
8 r=1000//ratio is 1000:1
9 V=100*10^3//read\ voltage(in\ V)
10 R=10^7//value of resistance (in ohm)
11
12 //calculation
13 //take range as 0-10 microampere
14 Vc2=V/r//voltage at C2 arm
15 //Cs * R = 1 to 10 s
16 \, \text{Cs} = 10/R
17
18 printf ('The value of Cs is %d microfarad', Cs*10^6)
19 printf('\nThe value of R is \%3.1e ohm',R)
```

Scilab code Exa 7.3 calculation of correction factors for atmospheric conditions

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 //example 7.3
5 //calculation of correction factors for atmospheric conditions
6
7 //given data
```

```
8 t=37//temperature(in degree celsius)
9 p=750//atmospheric pressure(in mmHg)
10
11 //calculation
12 d=p*293/(760*(273+t))
13
14 printf('The air density factor is %3.4f',d)
```

Scilab code Exa 7.4 calculation of divider ratio

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 // \text{example } 7.4
5 //calculation of divider ratio
7 //given data
8 R1=16*10^3//high voltage arm resistance(in ohm)
9 n=16//number of members
10 R=250//resistance(in ohm) of each member in low
      voltage arm
11 R2dash=75//terminating resistance (in ohm)
12
13 //calculation
14 R2=R/n
15 a=1+(R1/R2)+(R1/R2dash)
16
17 printf('The divider ratio is %3.1f',a)
```

 ${\bf Scilab}\ {\bf code}\ {\bf Exa}\ {\bf 7.5}\ {\bf calculation}$ of capacitance needed for correct compensation

```
1 //developed in windows XP operating system2 //platform Scilab 5.4.1
```

```
3 clc; clear all;
4 //example 7.5
5 //calculation of capacitance needed for correct
      compensation
6
7 //given data
8 Cgdash=20*10^-12//ground capacitance(in farad)
9 n=15//number of capacitors
10 r=120//resistance(in ohm)
11 R2=5//resistance(in ohm) of LV arm
12
13 //calculation
14 \text{ Ce} = (2/3) *n*Cgdash
15 R1 = n * r/2
16 T = R1 * Ce / 2
17 C2 = T/R2
18
19 printf ('The value of capacitance needed for correct
      compensation is %3.1e F or %d nf',C2,round(C2
      *10^9))
```

Scilab code Exa 7.6 calculation of ohmic value of shunt an its dimensions

```
//developed in windows XP operating system
//platform Scilab 5.4.1
clc;clear all;
//example 7.6
//calculation of ohmic value of shunt an its dimensions
//given data
I=50*10^3//impulse current (in A)
Vm=50//voltage(in V) drop across shunt
B=10*10^6//bandwidth(in Hz) of the shunt
mu0=4*%pi*10^-7//magnetic permeability(in H/m) of
```

```
free space
12
13 //calculation
14 R=Vm/I//resistance of shunt
15 L0=1.46*R/B
16 mu=mu0//in this case ... mu = mu0 * mur mu0
17 rho=30*10^-8//resistivity (in ohm m) of the tube
      material
18 d=sqrt((1.46*rho)/(mu*B))/thickness of the tube(in
19 l=10^-1//length(in m) (assume)
20 r = (rho*1)/(2*\%pi*R*d)
21
22 printf('The value of resistance is %d milliohm',
      round(R*10^3))
23 printf('\nThe length of shunt is \%d cm',1*100)
24 printf('\nThe radius of shunt is \%3.1 \text{ f mm',r*10^3})
25 printf('\nThe thickness of shunt is \%3.3 \, \mathrm{f} mm',d
      *10^3)
```

Scilab code Exa 7.7 Estimation of values of mutual inductance resistance and capac

```
//developed in windows XP operating system
//platform Scilab 5.4.1
clc; clear all;
//example 7.7
//Estimation of values of mutual inductance,
resistance and capacitance

//given data
It=10*10^3//impulse current(in A)
Vmt=10//meter reading(in V) for full scale
deflection
dibydt=10^11//rate of change of current(in A/s)
```

```
// calculation
MbyCR=Vmt/It
t=It/dibydt
f=1/(4*t)
omega=2*%pi*f
CR=10*%pi/omega
M=10^-3*CR
R=2*10^3//assume resistance(in ohm)
C=CR/R

printf('The value of mutual inductance is %d nH',M *10^9)
printf('\nThe value of resistance is %3.0 e ohm',R)
printf('\nThe value of capacitance is %d pF',round(C *10^12))
```

Scilab code Exa 7.8 calculation of resistance and capacitance

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 // \text{example } 7.8
5 //calculation of resistance and capacitance
7 //given data
8 t1=8*10^-6/fronttime(in s)
9 t2=20*10^-6//tailtime(in s)
10
11
12 //calculation
13 f2=1/t2//frequency corresponding to tail time
14 fl=f2/5
15 \text{ omega=2*\%pi*fl}
16 \quad CR = 10 * \%pi/omega
17 M = 10^{-3} * (1/CR)
```

Overvoltage Phenomenon and Insulation Coordination in Electric Power Systems

 ${f Scilab\ code\ Exa\ 8.1}$ calculation of surge impedance velocity and time taken by the

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 //example 8.1
5 //calculation of surge impedance, velocity and time
     taken by the surge to travel to the other end
7 // given data
8 L=1.26*10^-3//inductance(in H/km)
9 C=0.009*10^-6//capacitance (in F/km)
10 1=400//length(in km) of the transmission line
11
12 //calculation
13 v=1/sqrt(L*C)
14 Xs=sqrt(L/C)
15 t=1/v
16
```

Scilab code Exa 8.2 calculation of the voltage build up at the junction

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 // \text{example } 8.2
5 //calculation of the voltage build up at the
      junction
7 //given data
8 Z1=500//surge impedance(in ohm) of transmission line
9 Z2=60//surge impedance(in ohm) of cable
10 e=500//value of surge(in kV)
11
12 //calculation
13 tau=(Z1-Z2)/(Z2+Z1)//coefficient of reflection
14 \ V_{j} = (1 + tau) * e
15
16 printf ('The value of the voltage build up at the
      junction is %d kV', round(Vj))
```

 ${
m Scilab\ code\ Exa\ 8.5}$ calculation of the transmitted reflected voltage and current w

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 //example 8.5
```

```
5 //calculation of the transmitted, reflected voltage
      and current waves
7 //given data
8 L1=0.189*10^-3//inductance(in H/km) of the cable
9 C1=0.3*10^-6//capacitance(in Farad/km) of the cable
10 L2=1.26*10^{-3}/inductance(in H/km) of the overhead
      line
11 C2=0.009*10^-6//capacitance (in Farad/km) of the
      overhead line
12 e=200*10^3/surge volatge(in kV)
13
14 //calculation
15 Z1=sqrt(L1/C1)//surge impedance of the cable
16 Z2=sqrt(L2/C2)//surge impedance of the line
17 tau=(Z2-Z1)/(Z2+Z1)/when wave travels along the
      cable
18 edash=tau*e//reflected wave
19 edashdash=(1+tau)*e//transmitted wave
20 Idash=edash/Z1//reflected current wave
21 Idashdash=edashdash/Z2//transmitted current wave
22 \quad Z2n = Z1
23 \quad Z1n = Z2
24 \text{ taun} = (Z2n - Z1n)/(Z2n + Z1n)/\text{when wave travels along}
      the line
25 edashn=taun*e//reflected wave
26 edashdashn=(1+taun)*e/transmitted wave
27 Idashdashn=edashdashn/Z2n//transmitted current wave
28 Idashn=edashn/Z1n//reflected current wave
29
30 printf ('When wave travels along the cable, the
      transmitted voltage is %3.2 f kV', edashdash*10^-3)
31 printf('\nWhen wave travels along the cable, the
      reflected voltage is %3.2 f kV', edash*10^-3)
32 printf('\nWhen wave travels along the cable, the
      transmitted current is \%3.3 \, \text{f kA}', Idashdash*10^-3)
33 printf('\nWhen wave travels along the cable, the
      reflected current is \%3.2 \, \text{f kA}', Idash*10^-3)
```

 ${
m Scilab\ code\ Exa\ 8.6}$ calculation of value of voltage at the receiving end in Bewley

```
//developed in windows XP operating system
//platform Scilab 5.4.1
clc;clear all;
//example 8.6
//calculation of value of voltage at the receiving end in Bewley lattice diagram

//given data
alpha=0.8
//calculation
Vut=2*alpha/(1+alpha^2)

printf('The value of voltage at the receiving end in Bewley lattice diagram is %3.4 fu(t) V', Vut)
```

 ${
m Scilab\ code\ Exa\ 8.7\ calculation\ of\ sparkover\ voltage\ and\ the\ arrester\ current}$

1 //developed in windows XP operating system

```
2 //platform Scilab 5.4.1
3 clc; clear all;
4 // \text{example } 8.7
5 //calculation of sparkover voltage and the arrester
      current
7 //given data
8 Xs=400//surge impedance(in ohm)
9 Xv=1000//surge voltage(in kV)
10
11 //calculation
12 //for line terminated
13 Iam=2*Xv/Xs//maximum arrester current
14 //as Iam = 5 kA from graph Vd = 330 kV
15 Vd=330//sparkover voltage(in kV)
16 \text{ Vso=Vd+(Vd*5/100)}
17 //for continuous line
18 Iamn=Xv/Xs//maximum arrester current
19 / as Iamn = 2.5 kA from graph
                                        Vdn = 280 kV
20 Vdn=280//sparkover voltage (in kV)
21 Vson=Vdn+(Vdn*5/100)
22
23 printf ('The sparkover voltage for terminated line is
       %d kV', Vso)
24 printf('\nThe arrester current for terminated line
      is \%d kA', Iam)
25 printf('\nThe sparkover voltage for continuous line
      is %d kV', Vson)
26 printf('\nThe arrester current for continuous line
      is \%3.1 \, f \, kA', Iamn)
27 //values of sparover voltages are
\frac{28}{\text{for terminated line}} = 346 \text{ kV}
\frac{29}{\text{for continuous line}} = 294 \text{ kV}
```

Scilab code Exa 8.8 calculation of rise in voltage at the other end

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 // \text{example } 8.8
5 //calculation of rise in voltage at the other end
7 //given data
8 R=0.1//resistance (in ohm/km)
9 L=1.26*10^-3//inductance(in H/km)
10 C=0.009*10^-6//capacitance (in F/km)
11 1=400/length (in km) of the line
12 V1=230//line\ voltage(in\ kV)
13 f=50/frequency(in Hz)
14 G=0
15
16 //calculation
17 // Neglecting resistance of line
18 V1p=V1/sqrt(3)
19 omega=2*\%pi*f
20 X1=complex(0,omega*L*1)
21 Xc = complex(0,-1/(omega*C*1))
22 V2=V1p*((1-(X1/(2*Xc)))-1)
23
24 // Considering all the parameters
25 omegaL=complex(0,omega*L)
26 omegaC=complex(0,omega*C)
27 i=l*sqrt((R+omegaL)*(G+omegaC))
28 \text{ betal=imag(i)*1}
29 V2n=V1p/cos(betal)
30
31 printf ('Neglecting resistance of line, the rise in
      voltage at the other end is %3.1 f kV', V2)
32 printf('\nConsidering all the parameters, the rise in
       voltage at the other end is \%3.2 \, \text{f kV}, \mbox{V2n-V1p})
33
34 //By considering all the parameters the rise in
      voltage at the other end is 94.50 kV
```

Scilab code Exa 8.9 working out of insulation coordination

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 // \text{example } 8.9
5 //working out of insulation coordination
7 // given data
8 V=220//voltage(in kV) of substation
9 BIL=1050//value of BIL(in kV)
10 BtoS=1.24//ratio of BIL to SIL
11
12 //calculation
13 Vh=245//highest voltage(in kV)
14 Vg=Vh*sqrt(2)/sqrt(3)//highest system voltage
15 Vs=3*Vg//expected switching voltage(in kV)
16 Vfw=760//impulse sparkover voltage(in kV)
17 Vd1=690//discharge voltage(in kV) for 5 kA
18 Vd2=615//discharge voltage(in kV) for 2 kA
19 //SIL = BIL/BtoS = 846 \sim 850 \text{ kV}
20 SIL=850//value of SIL(in kV)
21 Pmlig=(BIL-Vd1)/BIL//protective margin for lightning
       impulses
22 Pmswi=(SIL-Vd2)/SIL//protective margin for switching
23 Pmspr=(BIL-Vfw)/BIL//margin when lightning arrester
     just sparks
24
25 printf ('The protective margin for lightning impulses
       is %3.1f percentage', Pmlig*100)
26 printf('\nThe protective margin for switching gears
      is %3.1f percentage', Pmswi*100)
27 printf('\nThe margin when lightning arrester just
```

Chapter 9

Non Destructive Testing of Materials and Electrical Apparatus

 ${\bf Scilab}\ {\bf code}\ {\bf Exa}\ 9.1$ calculation of the volume resistivity

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 // \text{example } 9.1
5 //calculation of the volume resistivity
7 // given data
8 V=1000//applied voltage (in V)
9 Rs=10^7//standard resistance (in ohm)
10 n=3000//universal shunt ratio
11 Ds=33.3//deflection(in cm) for Rs
12 D=3.2//deflection(in cm)
13 d=10//diameter(in cm) of the electrodes
14 t=2*10^-1/thickness(in cm) of the specimen
15
16 //calculation
17 G=V/(Rs*n*Ds)//galvanometer sensitivity
```

```
18 R=V/(D*G)//resistance of the specimen
19 r=d/2//radius of the electrodes
20 rho=(%pi*r^2*R)/t//volume resistivity
21
22 printf('The volume resistivity is %3.3e ohmcm',rho)
```

Scilab code Exa 9.2 calculation of resistivity of the specimen

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 // \text{example } 9.2
5 //calculation of resistivity of the specimen
7 //given data
8 tm=30//time (in minute)
9 ts=20//time(in second)
10 Vn=1000//voltage(in V) to which the condenser was
      charged
11 V=500//voltage(in V) fall to
12 C=0.1*10^-6/ capacitance (in Farad)
13 d=10//diameter(in cm) of the electrodes
14 \text{ th}=2*10^-1//\text{thickness} (in cm) of the specimen
15
16 //calculation
17 t = (tm*60) + ts
18 R=t/(C*log(Vn/V))/resistance
19 r=d/2//radius of the electrodes
20 rho=(%pi*r^2*R)/th//volume resistivity
21
22 printf('The resistivity of the specimen is %3.3e
     ohmcm', rho)
```

Scilab code Exa 9.3 calculation of dielectric constant and complex permittivity of

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 // \text{example } 9.3
5 //calculation of dielectric constant and complex
      permittivity of bakelite
7 //given data
8 C=147*10^-12//capacitance (in Farad)
9 Ca=35*10^-12//air capacitance(in Farad)
10 tandelta=0.0012
11 epsilon0=(36*\%pi*10^9)^-1//electrical permittivity(
      in F/m) of free space
12
13
14 //calculation
15 epsilonr=C/Ca//dielectric constant
16 Kdash=epsilonr
17 Kdashdash=tandelta*Kdash
18 Kim=complex(Kdash,-Kdashdash)
19 epsilonast=epsilon0*Kim
20
21 printf ('The dielectric constant is %3.1f', epsilonr)
22 disp(epsilonast, 'The complex permittivity (in F/m) is
      ')
```

Scilab code Exa 9.4 calculation of capacitance and tandelta of bushing

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 //example 9.4
5 //calculation of capacitance and tandelta of bushing
```

```
7 //given data
8 R3=3180//resistance(in ohm)
9 R4=636//resistance(in ohm)
10 Cs=100//standard condenser(in pF)
11 f=50//frequency(in Hz)
12 C3=0.00125*10^-6//capacitance(in farad)
13
14 //calculation
15 omega=2*%pi*f
16 Cx=R3*Cs/R4//unknown capacitance
17 tandelta=omega*C3*R3
18
19 printf('The capacitance is %d pF',Cx)
20 printf('\nThe value of tandelta of bushing is %3.5f', tandelta)
```

Scilab code Exa 9.5 calculation of dielectric constant and tandelta of the transfo

```
//developed in windows XP operating system
//platform Scilab 5.4.1
clc; clear all;
//example 9.5
//calculation of dielectric constant and tandelta of the transformer oil

//given data
f=1*10^3//frequency(in Hz)
Cl=504//capacitance(in pF) for standard condenser and leads
Dl=0.0003//dissipation factor for standard condenser and leads
C2=525//capacitance(in pF) for standard condenser in parallel with the empty test cell
D2=0.00031//dissipation factor for standard
```

```
condenser in parallel with the empty test cell

C3=550//capacitance(in pF) for standard condenser in parallel with the test cell and oil

D3=0.00075//dissipation factor for standard condenser in parallel with the test cell and oil

// calculation

Ctc=C2-C1//capacitance of the test cell

Ctcoil=C3-C1//capacitance of the test cell + oil epsilonr=Ctcoil/Ctc//dielectric constant of oil deltaDoil=D3-D2//deltaD of oil

printf('The dielectric constant is %3.2f',epsilonr)

printf('\nThe value of tandelta of the transformer oil is %3.5f',deltaDoil)
```

 ${f Scilab\ code\ Exa\ 9.6}$ calculation of magnitude of the charge transferred from the ca

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 // \text{example } 9.6
5 //calculation of magnitude of the charge transferred
      from the cavity
6
7 //given data
8 Vd=0.2//discharge voltage (in V)
9 s=1/sensitivity (in pC/V)
10 epsilonr=2.5//relative permittivity
11 epsilon0=(36*%pi*10^9)^-1//electrical permittivity(
     in F/m) of free space
12 d1=1*10^-2/diameter(in m) of the cylindrical disc
13 t1=1*10^-2//thickness(in m) of the cylindrical disc
14 d2=1*10^-3//diameter(in m) of the cylindrical cavity
15 t2=1*10^-3//thickness(in m) of the cylindrical
```

```
cavity

16

17

18 //calculation

19 Dm=Vd*s//discharge magnitude

20 Ca=epsilon0*(%pi*(d2/2)^2)/t2//capacitance of the cavity

21 Cb=epsilon0*epsilonr*(%pi*(d2/2)^2)/(t1-t2)//capacitance

22 qc=((Ca+Cb)/Cb)*Dm

23

24 printf('The charge transferred from the cavity is %3.2 f pC',qc)
```

Scilab code Exa 9.7 calculation of dielectric constant and loss factor tandelta

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 // \text{example } 9.7
5 //calculation of dielectric constant and loss factor
       tandelta
6
7 //given data
8 R3=1000/%pi//resistance(in ohm) in CD branch
9 R4=62//variable resistance (in ohm)
10 Cs=100*10^-12//standard\ capacitance\ (in\ F)
11 epsilon0=8.854*10^--12//electrical permittivity(in F/
     m) of free space
12 f=50/frequency(in Hz)
13 C3=50*10^{-9}//variable capacitor(in F)
14 d=1*10^-3/thickness(in m) of sheet
15 a=100*10^-4//electrode effective area(in m<sup>2</sup>)
16
17 //calculation
```

Scilab code Exa 9.8 calculation of voltage at balance

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 // \text{example } 9.8
5 //calculation of voltage at balance
7 //given data
8 V=10000//applied voltage (in V)
9 R3=1000/%pi//resistance(in ohm) in CD branch
10 R4=62//variable resistance (in ohm)
11 Cs=100*10^-12//standard capacitance(in F)
12 f = 50 / frequency (in Hz)
13 C3=50*10^-9//variable capacitor(in F)
14
15 //calculation
16 \text{ Rx} = \text{C3} \times \text{R4}/\text{Cs}
17 Cx = R3 * Cs / R4
18 \text{ omega=2*\%pi*f}
19 zx=complex(Rx,-1/(omega*Cx))
20 VR4 = R4 * V / (R4 + zx)
21 MVR4=sqrt((real(VR4))^2+(imag(VR4))^2)//magnitude
22
23 printf ('The voltage across AD branch at balance is
```

Scilab code Exa 9.9 calculation of maximum and minimum value of capacitance and ta

```
1 //developed in windows XP operating system
2 //platform Scilab 5.4.1
3 clc; clear all;
4 // \text{example } 9.9
5 //calculation of maximum and minimum value of
      capacitance and tandelta
7 // given data
8 R3min=100//minimum value of R3 resistance(in ohm)
9 R3max=11100//maximum value of R3 resistance(in ohm)
10 R4min=100//minimum value of R4 resistance(in ohm)
11 R4max=1000//maximum value of R4 resistance(in ohm)
12 Cs=100*10^-12//standard capacitance(in farad)
13 C3min=1*10^-9//minimum value of C3 capacitance(in
      farad)
14 C3max=1.11*10^-6//maximum value of C3 capacitance(in
       farad)
15 f = 50 / frequency (in Hz)
16
17 //calculation
18 \quad Cxmax = R3max * Cs / R4min
19 Cxmin=R3min*Cs/R4max
20 \text{ omega=2*\%pi*f}
21 tandeltamax=omega*R3max*C3max
22 tandeltamin=omega*R3min*C3min
23
24 printf ('The maximum value of capacitance is %3.1 f nF
      ', Cxmax * 10^9)
25 printf('\nThe minimum value of capacitance is %d pF'
      ,Cxmin *10^12)
26 printf('\nThe maximum value of tandelta is \%3.2 \,\mathrm{f}',
```

```
tandeltamax) 27 printf('\nThe minimum value of tandelta is \%3.2\,\mathrm{e}', tandeltamin)
```