FIG. 1 (PRIOR ART)

FIG. 2 (PRIOR ART)

FIG.3 (PRIOR ART)

Coesto cureci

FIG. 4 (PRIOR ART)

FIG. 5 (PRIOR ART)

FIG. 6 (PRIOR ART)

FIG. 7 (PRIOR ART)

FIG. 8 (PRIOR ART)

FIG. 9 (PRIOR ART)

FIG. 10 (PRIOR ART)

FIG. 11 (PRIOR ART)

rucin cereta

FIG. 12 (PRIOR ART)

FIG. 13 (PRIOR ART)

FIG. 14 (PRIOR ART)

FIG. 15

Ш

,				,	
9.	The mean is (a) 2	(b) 3	(c) 4	(d) 5	(e) 8
10	. The standard	deviation is			
	(a) 2	(b) 3	(c) 4	(d) 5	(e) 8
11	. The median is	3			
	(a) 2	(b) 3	(c) 4	(d) 5	(e) 8
12	. The first quar	tile is			
	(a) 2	(b) 3	(c) 4	(d) 5	(e) 8

Consider the 7 observations: 10, 4, 2, 5, 4, 2, 8.

[III] The next four questions refer to data sets and their histograms in general.

(c) 8

14. All large data sets have bell-shaped histograms. Is this statement true or false?

(a) True

(b) False

(d) 9

(e) 10

- 15. For large data sets, very close to 50% of the data are smaller than the mean and very close to 50% are greater than the mean.
 - (a) True for every such large data set

(b) 6.5

(b) False for some large data sets

13. The third quartile is

(a) 5

- 16. The median is preferable to the mean as a measure of the center when a data set (a) is large.
 - (b) has outliers (unusually large or unusually small values).
 - (c) is symmetric but is not bell shaped.
 - (d) has an odd number of points in it.
- 17. Suppose a large data set has a histogram that is roughly bell-shaped. Suppose that there are no outliers. Then
 - (a) roughly 68% of the data lies within $\pm s$ of \bar{x} .
 - (b) exactly 68% of the data lies within $\pm s$ of \bar{x}
 - (c) roughly 95% of the data lies within $\pm 3s$ of \bar{x}
 - (d) exactly 95% of the data lies within $\pm 3s$ of \overline{x}
- 18. The median is preferable to the mean as a measure of the center when a data set (a) is small.
 - (b) is symmetric but not bell-shaped.
 - (c) is strongly skewed to the left.
 - (d) involves biological or financial data.

FIG. 19

	Attributes									
item	1	2	3	4	5	6	7	8		
		-0	0	0	0	- 0	0	0		
2	1	0	0	0	0	0	0	0		
3		0	0	0	0	0	0	0		
4	1	0	0	0	0	0	0	0		
3		0	0	0	0	0	0	0		
6		0	0	0	0	0	0	0		
7			0	0	0	0	0	0		
8	1	0	1	0	0	0	0	0		
9	0	0		0	0	0	0	0		
10	0	0	0	1	0	0	0	0		
	Q	1	O.	0	0	0	0	0		
12	0	1	0	0	0	0	0	0		
13	0		0	0	0	0	0	0		
14	1	0	0	0	0	0	0	0		
15	0		0		. 0	0	9	0		
16	0	0	<u>l</u>	0		0	0	0		
3.7		0			0	0	0	Ð		
18	0	l	} ********	0	0	0	0	0		
19	0	1		***********	0	0	0	0		
20	l	0	1	0	0	0	0	0		
21		0	0		0		0	0		
22	1	0	0	1	0	0	0	0		
23	0	0	0	0	0	!	0	0		
24	0	0	0	0	0	l	0	0		
25	0	0	0)	0	0		
26	0	0	1	0	0	0	0	0		
27	0	Q	.	0	0	0	0	0		
28	0	0	0	1	0	0	0	0		
29	0	0	0		0	0	0	0		
30	0	0	0	0	0	1	0	0		
31	0	O	0	0	0	0	.	0		
32	0	0	0	0 0	0 0	0 0	<u> </u>	0		
34	0	0 0	0 0			()	:::::#:::::: 1			
35	0	0	0	0	0	0				
36						0	::::::#:::::: }	≉		
37	0	0	0	0	0 1	0) 0	1 0		
38	0	0	0	0	::::::::#35555 1	0	0	0		
39	Ö.	0	0	0		0	. 0	0		
40	0	0	0	0	0	1	0	0		
1		7	9	6	3	5	6	4		
total	13		<u> </u>	0	3	<u> </u>	0	4		