```
In [1]: import pandas as pd
         from ast import literal_eval
         import seaborn as sns
         import matplotlib.pyplot as plt
         %matplotlib inline
         import numpy as np
In [2]: import nltk
         import re
         nltk.download('stopwords')
         nltk.download('punkt')
         nltk.download('wordnet')
         from nltk.corpus import stopwords
         from nltk.stem import WordNetLemmatizer
         \textbf{from} \ \ \textbf{sklearn.feature\_extraction.text} \ \ \textbf{import} \ \ \textbf{TfidfVectorizer}, \ \ \textbf{CountVectorizer}
         from sklearn.model_selection import train_test_split
         from nltk.stem import PorterStemmer
         [nltk_data] Downloading package stopwords to
         [nltk data]
                       C:\Users\rezar\AppData\Roaming\nltk_data...
                      Package stopwords is already up-to-date!
         [nltk_data]
         [nltk_data] Downloading package punkt to
         [nltk_data]
                        C:\Users\rezar\AppData\Roaming\nltk_data...
         [nltk_data]
                      Package punkt is already up-to-date!
         [nltk_data] Downloading package wordnet to
         [nltk data]
                       C:\Users\rezar\AppData\Roaming\nltk_data...
         [nltk_data] Package wordnet is already up-to-date!
         Load Data
In [68]: path = 'dataset/' #change to your data location
         # Load downLoaded data
         df convos = pd.read csv(path+'/conversations.csv')
         df_speakers = pd.read_csv(path+'/speakers.csv')
         df_utts = pd.read_csv(path+'/utterances.csv')
         df_cases = pd.read_json(path_or_buf=path+'/cases.jsonl', lines=True)
         In [69]: # count number win/lose cases
         df_cases['win_side'].value_counts()
```

id year citation title petitioner respondent docket_no court decided_date url ... win_side_detail American American Bullock. Tradition 11-1179 Roberts Jun 25, 2012 https://www.oyez.org/cases/2011/11**o** 2011_11- 2011 567 US Tradition Attorney Partnership, 3.0 Partnership, General of Court Inc. v. Inc. Montana, Bullock et...

1 rows × 25 columns

In [72]: df_cases_convo.dropna(subset=['text'], inplace=True) df_cases_convo.shape[0]

```
Out[72]: 521
```

```
In [73]: # transform to pd.to_datetime
df_cases_convo.decided_date = pd.to_datetime(df_cases_convo.decided_date)
```

```
Data Preprocessing
 In [74]: # Cleaning the text
          def preprocess_text(text):
              text = text.lower() # Lowercase the text
              text = re.sub('[^a-z]+', ' ', text)  # Remove special characters and numbers \\ text = re.sub(r'\b\w{1,3}\b', '', text)  # Remove words with length less than 3
              words = nltk.word_tokenize(text) # Tokenize the text
              stop_words = set(stopwords.words('english')) # Remove stopwords
              words = [word for word in words if word not in stop_words]
              #Lemmatizer = WordNetLemmatizer() # Lemmatize the words comment because slow
              #words = [lemmatizer.lemmatize(word) for word in words]
              stemmer = PorterStemmer() # Stem the words
              words = [stemmer.stem(word) for word in words]
              text = ' '.join(words) # Reconstruct the text
              return text
 In [75]: df_cases_convo.loc[:,'text'] = df_cases_convo.loc[:,'text'].apply(preprocess_text) #apply preprocess
          df_cases_convo.to_csv('df_cases_clean.csv', index=False)
 In [76]: text = pd.read_csv('df_cases_clean.csv')
          text.head(1)
 Out[76]:
             id year citation
                                   title petitioner respondent docket_no court decided_date
                                                                                                                 url ... win_side_detail scdk
                                 Arizona
                                                                              2012-06-25 https://www.oyez.org/cases/2011/11-
          o 2011_11- 2011 567 US 182
                                                              11-182 Roberts
                                    v. Arizona et
                                                     United
                                                                                                                182 ...
                                  United
                                             al.
                                                      States
                                                                       Court
          1 rows × 25 columns
In [105... df_cases_convo.columns
'win_side_detail', 'scdb_docket_id', 'votes', 'votes_detail',
'is_eq_divided', 'votes_side', 'meta.case_id', 'text',
                 'num_conversations', 'num_utterances', 'start_date', 'develop_time'],
                dtype='object')
 In [77]: # preprocess develop time
          df_cases_convo.start_date = pd.to_datetime(df_cases_convo.start_date)
          df_cases_convo.loc[:, 'develop_time'] = df_cases_convo.loc[:, 'decided_date'] - df_cases_convo.loc[:, 'start_date']
```

dem_judge = ['j__ruth_bader_ginsburg', 'j__stephen_g_breyer','j__sonia_sotomayor','j__elena_kagan']

```
rep_y_ct = 0
            for judge in x:
                if judge in rep_judge:
                    if x[judge] > 0:
                        rep_y_ct += 1
            return rep_y_ct/len(x)
In [80]: # get dem_judge yes
         def check_dem_j_y_pc(x):
            dem_y_ct = 0
            for judge in x:
                if judge in dem_judge:
                    if x[judge] > 0:
                        dem \ v \ ct += 1
            return dem_y_ct/len(x)
In [81]: def check_party(x):
            if x > 2009:
                return 0
             else:
                return 1
In [82]: # get M-F percentage in judges
         def check_FM_jpc(x):
            male_judge = ['j__clarence_thomas',
                           j__anthony_m_kennedy',
                          'j__antonin_scalia',
                          'j john g roberts jr',
                           'j__samuel_a_alito_jr'<mark>,</mark>
                          'j__john_paul_stevens',
                          'j__david_h_souter',
                           'j__william_h_rehnquist',
                          'j__neil_gorsuch',
                          'j__brett_m_kavanaugh',
                          'j__stephen_g_breyer']
            female_judge = ['j__ruth_bader_ginsburg',
                            'j__sonia_sotomayor',
                            'j__elena_kagan']
            male ct = 0
            for judge in x:
                if judge in male_judge:
                    male ct += 1
            return male_ct/len(x)
In [83]: # get rep_judge yes
         def check_M_j_y_pc(x):
            male_judge = ['j__clarence_thomas',
                          'j__anthony_m_kennedy',
                           j__antonin_scalia',
                          'j__john_g_roberts_jr',
                          'j__samuel_a_alito_jr',
                           'j__john_paul_stevens',
                          'j__david_h_souter',
                          'j__william_h_rehnquist',
                           'j__neil_gorsuch',
                          'j__brett_m_kavanaugh',
                          'j__stephen_g_breyer']
            female_judge = ['j__ruth_bader_ginsburg',
                             j__sonia_sotomayor',
                            'j__elena_kagan']
            male_y_ct = 0
            for judge in x:
                if judge in male_judge:
                    if x[judge] > 0:
                        male_y_ct += 1
            return male_y_ct/len(x)
In [84]: # get rep_judge yes
         def check_F_j_y_pc(x):
            male_judge = ['j__clarence_thomas',
                          'j__anthony_m_kennedy',
```

```
j__john_g_roberts_jr',
                                j__samuel_a_alito_jr'
                               'j__john_paul_stevens',
                                'j__david_h_souter',
                                j__william_h_rehnquist',
                               'j__neil_gorsuch',
                               'j__brett_m_kavanaugh',
                                j__stephen_g_breyer']
               female_judge = ['j__ruth_bader_ginsburg',
                                  'j__sonia_sotomayor',
                                  'j__elena_kagan']
               female_y_ct = 0
                for judge in x:
                    if judge in female_judge:
                        if x[judge] > 0:
                            female_y_ct += 1
               return female_y_ct/len(x)
 In [85]: # get first name of speakers
           df_test = df_cases_convo.loc[:, ['advocates']]
           def get_side1_fstname(x):
               return list(x.keys())[0].split()[0]
           def get_side0_fstname(x):
                   return list(x.keys())[-1].split()[0]
               except:
                    return list(x.keys())[-2].split()[0]
           df_test.loc[:, 'side1_fstname'] = df_test['advocates'].apply(get_side1_fstname)
           df_test.loc[:, 'side0_fstname'] = df_test['advocates'].apply(get_side0_fstname)
           # read gender dataset
           df gender = pd.read csv('dataset/name gender dataset.csv')
           idx = df_gender.groupby(['Name'])['Probability'].idxmax()
           df_gender = df_gender.loc[idx]
           # join the gender dataset to predict gender of speakers
           df_test = pd.merge(df_test, df_gender, how='left', left_on = 'side1_fstname', right_on = 'Name')
           df_test = pd.merge(df_test, df_gender, how='left', left_on = 'side0_fstname', right_on = 'Name')
In [113... # only numbers can apply to Random Forest Model
           df_rf = pd.DataFrame()
           \label{eq:df_rf_loc} $$ df_rf.loc[:, 'text_len'] = df_cases\_convo['text'].apply(lambda \ x \ : len(x)) $$
           df_rf.loc[:, 'num_utterances'] = df_cases_convo['num_utterances']
df_rf.loc[:, 'win_side'] = df_cases_convo['win_side']
           df_rf.loc[:, 'develop_time'] = df_cases_convo['develop_time'].apply(lambda x : x.days)
           df_rf.loc[:, 'rep_jpc'] = df_cases_convo['votes_side'].apply(check_party_pc)
           df_rf.loc[:, 'dem_jpc'] = 1 - df_rf.loc[:, 'rep_jpc']
           df_rf.loc[:, 'rep_j_y_pc'] = df_cases_convo['votes_side'].apply(check_rep_j_y_pc)
           df_rf.loc[:, 'dem_j_y_pc'] = df_cases_convo['votes_side'].apply(check_dem_j_y_pc)
           df_rf.loc[:, 'party'] = df_cases_convo['year'].apply(check_party) # 1: rep, 0: dem
           df_rf.loc[:, 'male_jpc'] = df_cases_convo['votes_side'].apply(check_FM_jpc)
           df_rf.loc[:, 'female_jpc'] = 1 - df_rf.loc[:, 'male_jpc']
           df_rf.loc[:, 'male_y_jpc'] = df_cases_convo['votes_side'].apply(check_M_j_y_pc)
           df_rf.loc[:, 'female_y_jpc'] = df_cases_convo['votes_side'].apply(check_F_j_y_pc)
df_rf.loc[:, 'text'] = df_cases_convo['text']
           df_rf.loc[:, 'num_conversations'] = df_cases_convo['num_conversations']
           # reset the index
           df_rf = df_rf.reset_index(drop=True)
           df_rf.loc[:, 'side1_gender'] = df_test['Gender_x'].apply(lambda x: 0 if(x == 'F') else 1)
df_rf.loc[:, 'side0_gender'] = df_test['Gender_y'].apply(lambda x: 0 if(x == 'F') else 1)
 In [88]: df_rf.to_csv('dataset/df_rf.csv', index=False)
 In [3]: df_rf = pd.read_csv('dataset/df_rf.csv')
```

Additional Graphs for Checkpoint 1

'j__antonin_scalia',

```
In [4]: # Histogram of text length, number of utterances, and development time, and number of conversations for win_side = 1
fig, ax = plt.subplots(2, 2, figsize=(10, 10))
ax[0, 0].hist(df_rf[df_rf['win_side'] == 1]['text_len'], bins=50)
ax[0, 0].set_title('Histogram of Text Length')
ax[0, 1].hist(df_rf[df_rf['win_side'] == 1]['num_utterances'], bins=50)
ax[0, 1].set_title('Histogram of Number of Utterances')
ax[1, 0].hist(df_rf[df_rf['win_side'] == 1]['develop_time'], bins=50)
```

```
ax[1, 0].set_title('Histogram of Development Time')
ax[1, 1].hist(df_rf[df_rf['win_side'] == 1]['num_conversations'], bins=50)
ax[1, 1].set_title('Histogram of Number of Conversations')
fig.suptitle('Histograms for Petitioner Wins', fontsize=16)
plt.savefig('histogram1.png')
# Histogram of text length, number of utterances, and development time, and number of conversations for win_side = 0
fig, ax = plt.subplots(2, 2, figsize=(10, 10))
ax[0, 0].hist(df_rf[df_rf['win_side'] == 0]['text_len'], bins=50)
ax[0, 0].set_title('Histogram of Text Length')
ax[0, 1].hist(df_rf[df_rf['win_side'] == 0]['num_utterances'], bins=50)
ax[0, 1].set_title('Histogram of Number of Utterances')
ax[1, 0].hist(df_rf[df_rf['win_side'] == 0]['develop_time'], bins=50)
ax[1, 0].set_title('Histogram of Development Time')
ax[1, 1].hist(df_rf[df_rf['win_side'] == 0]['num_conversations'], bins=50)
ax[1, 1].set_title('Histogram of Number of Conversations')
fig.suptitle('Histograms for Respondent Wins', fontsize=16)
plt.savefig('histogram0.png')
```

Histograms for Petitioner Wins

Histograms for Respondent Wins

Baseline

```
In [5]: # Calculate The Baseline for Accuracy, Precision, Recall, F1
accuracy = df_rf['win_side'].value_counts()[1]/df_rf['win_side'].shape[0]
print('Accuracy: ', accuracy)

Accuracy: 0.6353166986564299
```

Model Selection and Vectorize

```
In [45]: from sklearn.linear_model import LogisticRegression, Perceptron, SGDClassifier
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.naive_bayes import MultinomialNB
    from sklearn.svm import LinearSVC
    from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, \
        fl_score, make_scorer, precision_score, recall_score, ConfusionMatrixDisplay, roc_auc_score, roc_curve, auc

def Classifier(X_train, X_test, y_train, y_test):

# Train and evaluate the classifiers
    classifiers = {
        "Logistic Regression": LogisticRegression(max_iter=1000),
```

```
results = []
            for classifier_name, classifier in classifiers.items():
                # Train the classifier
                classifier.fit(X_train, y_train)
                # Make predictions on the test set
                y_pred = classifier.predict(X_test)
                # Add the scores to the results dictionary
                results.append({
                    'classifier': classifier_name,
                     'accuracy': accuracy_score(y_test, y_pred),
                    'f1': f1_score(y_test, y_pred),
                    'precision': precision_score(y_test, y_pred),
                     'recall': recall_score(y_test, y_pred),
                    'True Negative Rate': confusion_matrix(y_test, y_pred)[0][0]/(confusion_matrix(y_test, y_pred)[0][0]+confusion_matrix(
                    'True Positive Rate': confusion_matrix(y_test, y_pred)[1][1]/(confusion_matrix(y_test, y_pred)[1][1]+confusion_matrix(
                    'auc': roc_auc_score(y_test, y_pred)
                })
                # Make a confusion matrix
                print(f"Confusion Matrix for {classifier_name}:")
                if classifier_name == "Logistic Regression":
                    print("Coefficients: \n", classifier.coef_)
                cm = confusion_matrix(y_test, y_pred, labels=y_test.unique())
                disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=y_test.unique())
                fig, ax = plt.subplots(figsize=(3, 3))
                ax.set_title(f"CM {classifier_name}:")
                disp.plot(ax=ax)
                plt.show()
            return pd.DataFrame(results)
In [5]: def Vectorize(vectorizer, X, y):
            X = vectorizer.fit_transform(X)
            y = y
            return X, y
```

Using 'Text' as the feature

Text as Features and using TF-IDF Vectorizer

"Naive Bayes": MultinomialNB(),
"Linear SVC": LinearSVC(),

"Perceptron": Perceptron(),

"Random Forest": RandomForestClassifier(),

"KNN": KNeighborsClassifier(n_neighbors=7)

```
In [10]: # Vectorize the text using TF-IDF
        vectorizer = TfidfVectorizer(min_df=5, max_df=0.7)
        X, y = Vectorize(vectorizer, df_rf['text'], df_rf['win_side'])
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=55)
        Classifier(X_train, X_test, y_train, y_test)
        Confusion Matrix for Logistic Regression:
        Coefficients:
         0.02283127]]
               CM Logistic Regression:
                                          60
                    71
                                8
           1.0
                                          50
        True label
                                           40
                                          30
           0.0
                                          20
                                           10
                    1.0
                               0.0
                    Predicted label
```

Confusion Matrix for Naive Bayes:

Confusion Matrix for Linear SVC:

Confusion Matrix for Random Forest:

Confusion Matrix for Perceptron:

Confusion Matrix for KNN:

Out[10]:		classifier	accuracy	f1	precision	recall	True Negative Rate	True Positive Rate	auc
	0	Logistic Regression	0.714286	0.825581	0.763441	0.898734	0.153846	0.898734	0.526290
	1	Naive Bayes	0.761905	0.863388	0.759615	1.000000	0.038462	1.000000	0.519231
	2	Linear SVC	0.571429	0.697987	0.742857	0.658228	0.307692	0.658228	0.482960
	3	Random Forest	0.733333	0.840909	0.762887	0.936709	0.115385	0.936709	0.526047
	4	Perceptron	0.600000	0.700000	0.803279	0.620253	0.538462	0.620253	0.579357
	5	KNN	0.600000	0.723684	0.753425	0.696203	0.307692	0.696203	0.501947

Text as Features and using Count Vectorizer

```
In [9]: # Vectorize the text using CountVectorizer
vectorizer = CountVectorizer(min_df=5, max_df=0.8)
X, y = Vectorize(vectorizer, df_rf['text'], df_rf['win_side'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=55)
Classifier(X_train, X_test, y_train, y_test)
```

Confusion Matrix for Logistic Regression:

Confusion Matrix for Naive Bayes:

Confusion Matrix for Linear SVC:

Confusion Matrix for Random Forest:

Confusion Matrix for Perceptron:

Out[9]:		classifier	accuracy	f1	precision	recall	True Negative Rate	True Positive Rate	auc
	0	Logistic Regression	0.619048	0.726027	0.791045	0.670886	0.461538	0.670886	0.566212
	1	Naive Bayes	0.561905	0.684932	0.746269	0.632911	0.346154	0.632911	0.489533
	2	Linear SVC	0.619048	0.714286	0.819672	0.632911	0.576923	0.632911	0.604917
	3	Random Forest	0.714286	0.831461	0.747475	0.936709	0.038462	0.936709	0.487585
	4	Perceptron	0.638095	0.739726	0.805970	0.683544	0.500000	0.683544	0.591772

Text as Features and using TF-IDF Vectorizer and using Over and Under Sampling

```
In [11]: # USING IMBLEARN
from imblearn.over_sampling import SMOTE
from imblearn.under_sampling import RandomUnderSampler

vectorizer = TfidfVectorizer(min_df=5, max_df=0.8)
    X, y = Vectorize(vectorizer, df_rf['text'], df_rf['win_side'])
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=55)

# Resample the training data
    print('--OVERSAMPLING--')
    ros = SMOTE(random_state=0)
    X_train_resampled, y_train_resampled = ros.fit_resample(X_train, y_train)
    classifier = Classifier(X_train_resampled, X_test, y_train_resampled, y_test)
    print('--UNDERSAMPLING--')
```

ros = RandomUnderSampler(random_state=0)
X_train_resampled, y_train_resampled = ros.fit_resample(X_train, y_train)
classifier = Classifier(X_train_resampled, X_test, y_train_resampled, y_test)
print(classifier)

--OVERSAMPLING--

Confusion Matrix for Logistic Regression:

Confusion Matrix for Naive Bayes:

Confusion Matrix for Linear SVC:

Confusion Matrix for Random Forest:

Confusion Matrix for Perceptron:

	classifier	accuracy	f1	precision	recall	\
0	Logistic Regression	0.561905	0.684932	0.746269	0.632911	
1	Naive Bayes	0.542857	0.661972	0.746032	0.594937	
2	Linear SVC	0.571429	0.680851	0.774194	0.607595	
3	Random Forest	0.619048	0.753086	0.734940	0.772152	
4	Percentron	0.580952	0.681159	0.796610	0.594937	

	True Negative Rate	True Positive Rate	auc
0	0.346154	0.632911	0.489533
1	0.384615	0.594937	0.489776
2	0.461538	0.607595	0.534567
3	0.153846	0.772152	0.462999
4	0.538462	0.594937	0.566699

--UNDERSAMPLING--

Confusion Matrix for Logistic Regression:

Confusion Matrix for Naive Bayes:

Confusion Matrix for Linear SVC:

Confusion Matrix for Random Forest:

Confusion Matrix for Perceptron:


```
classifier accuracy
                                      f1 precision
                                                       recall \
0 Logistic Regression 0.466667
                                           0.716981 0.481013
                                0.575758
          Naive Bayes 0.476190 0.592593
                                           0.714286
                                                    0.506329
1
2
           Linear SVC 0.514286
                                0.610687
                                           0.769231
                                                    0.506329
3
        Random Forest 0.523810 0.621212
                                           0.773585
                                                    0.518987
4
           Perceptron 0.495238 0.589147
                                           0.760000 0.481013
   True Negative Rate True Positive Rate
                                              auc
0
            0.423077
                               0.481013 0.452045
            0.384615
                                        0.445472
                               0.506329
1
2
            0.538462
                               0.506329 0.522395
3
            0.538462
                               0.518987
                                         0.528724
            0.538462
                               0.481013 0.509737
```

Try using k-fold cross validation

```
In [33]: from sklearn.model_selection import cross_val_score

def Classifier_kfold(X, y):

    classifiers = {
        "Logistic Regression": LogisticRegression(max_iter=1000),
            "Naive Bayes": MultinomialNB(),
            "Linear SVC": LinearSVC(),
            "Random Forest": RandomForestClassifier(),
            "Perceptron": Perceptron(),
        }
    results = []
```

```
for classifier_name, classifier in classifiers.items():
                  # Perform k-fold cross-validation
                  scores = cross_val_score(classifier, X, y, cv=5, scoring='accuracy') # 5-fold cross-validation
                  # Add the scores to the results list
                  results.append({
                      'classifier': classifier_name,
                      'mean_f1': scores.mean(),
                      'std_f1': scores.std(),
                 })
                  print(f"f1 for {classifier_name}: {scores.mean()} (+/- {scores.std() * 2})")
             return pd.DataFrame(results)
          # Vectorize the text using TF-IDF
          vectorizer = TfidfVectorizer(min_df=5, max_df=0.7)
         X, y = Vectorize(vectorizer, df_rf['text'], df_rf['win_side'])
         Classifier_kfold(X, y)
         f1 for Logistic Regression: 0.6237912087912088 (+/- 0.008850077622725633)
         f1 for Naive Bayes: 0.6353113553113553 (+/- 0.002783882783882774)
          f1 for Linear SVC: 0.608333333333334 (+/- 0.06005147912118134)
          f1 for Random Forest: 0.6276373626373626 (+/- 0.03304313560378509)
          f1 for Perceptron: 0.5853663003663004 (+/- 0.054826294118804415)
Out[33]:
                    classifier mean f1
                                       std f1
          0 Logistic Regression 0.623791 0.004425
                  Naive Bayes 0.635311 0.001392
          2
                   Linear SVC 0.608333 0.030026
          3
               Random Forest 0.627637 0.016522
                  Perceptron 0.585366 0.027413
```

Using ngrams

```
In [11]: # Vectorize the text using TF-IDF and bigrams
         vectorizer = TfidfVectorizer(min_df=5, max_df=0.7, ngram_range =(2, 2))
         X, y = Vectorize(vectorizer, df_rf['text'], df_rf['win_side'])
         \textbf{X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.2, random\_state=55) } 
        Classifier(X_train, X_test, y_train, y_test)
        Confusion Matrix for Logistic Regression:
         Coefficients:
         -0.16882371]]
               CM Logistic Regression:
                                             70
                                             60
            1.0
                     79
                                  0
                                             50
         True label
                                             40
                                             30
            0.0
                                            20
                                             10
                     1.0
                                 0.0
```

Confusion Matrix for Naive Bayes:

Predicted label

Confusion Matrix for Linear SVC:

Confusion Matrix for Random Forest:

Confusion Matrix for Perceptron:

Confusion Matrix for KNN:

Out[11]:		classifier	accuracy	f1	precision	recall	True Negative Rate	True Positive Rate	auc
	0	Logistic Regression	0.761905	0.863388	0.759615	1.000000	0.038462	1.000000	0.519231
	1	Naive Bayes	0.752381	0.858696	0.752381	1.000000	0.000000	1.000000	0.500000
	2	Linear SVC	0.647619	0.770186	0.756098	0.784810	0.230769	0.784810	0.507790
	3	Random Forest	0.723810	0.837989	0.750000	0.949367	0.038462	0.949367	0.493914
	4	Perceptron	0.600000	0.716216	0.768116	0.670886	0.384615	0.670886	0.527751
	5	KNN	0.600000	0.727273	0.746667	0.708861	0.269231	0.708861	0.489046

```
In [12]: # Vectorize the text using TF-IDF: Trigrams
  vectorizer = TfidfVectorizer(min_df=5, max_df=0.7, ngram_range =(3, 3))
  X, y = Vectorize(vectorizer, df_rf['text'], df_rf['win_side'])
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=55)
  Classifier(X_train, X_test, y_train, y_test)
```

Confusion Matrix for Logistic Regression:

 ${\tt Coefficients:}$

Confusion Matrix for Naive Bayes:

Confusion Matrix for Linear SVC:

Confusion Matrix for Random Forest:

Confusion Matrix for Perceptron:

Confusion Matrix for KNN:

Out[12]:		classifier	accuracy	f1	precision	recall	True Negative Rate	True Positive Rate	auc
	0	Logistic Regression	0.761905	0.863388	0.759615	1.000000	0.038462	1.000000	0.519231
	1	Naive Bayes	0.761905	0.863388	0.759615	1.000000	0.038462	1.000000	0.519231
	2	Linear SVC	0.628571	0.766467	0.727273	0.810127	0.076923	0.810127	0.443525
	3	Random Forest	0.685714	0.811429	0.739583	0.898734	0.038462	0.898734	0.468598
	4	Perceptron	0.561905	0.697368	0.726027	0.670886	0.230769	0.670886	0.450828
	5	KNN	0.619048	0.746835	0.746835	0.746835	0.230769	0.746835	0.488802

```
In [13]: # Vectorize the text using TF-IDF: range 1 to 3 grams
vectorizer = TfidfVectorizer(min_df=5, max_df=0.7, ngram_range =(1, 3))
X, y = Vectorize(vectorizer, df_rf['text'], df_rf['win_side'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=55)
Classifier(X_train, X_test, y_train, y_test)
```

Confusion Matrix for Logistic Regression: Coefficients:

Confusion Matrix for Naive Bayes:

Confusion Matrix for Linear SVC:

Confusion Matrix for Random Forest:

Confusion Matrix for Perceptron:

Out[13]:		classifier	accuracy	f1	precision	recall	True Negative Rate	True Positive Rate	auc
	0	Logistic Regression	0.714286	0.827586	0.757895	0.911392	0.115385	0.911392	0.513389
	1	Naive Bayes	0.752381	0.858696	0.752381	1.000000	0.000000	1.000000	0.500000
	2	Linear SVC	0.571429	0.709677	0.723684	0.696203	0.192308	0.696203	0.444255
	3	Random Forest	0.704762	0.826816	0.740000	0.936709	0.000000	0.936709	0.468354
	4	Perceptron	0.600000	0.720000	0.760563	0.683544	0.346154	0.683544	0.514849
	5	KNN	0.609524	0.732026	0.756757	0.708861	0.307692	0.708861	0.508277

```
In [70]: # Calculate The Baseline based on y_test
accuracy = y_test.value_counts()[1]/y_test.shape[0]
print('Accuracy: ', accuracy)
```

Accuracy: 0.7523809523809524

-0.00045653]]

Using 'Text' + rep_pct + male_jpc + develop_time as the feature

```
In [14]: tfidf = TfidfVectorizer(min_df=5, max_df=0.8,ngram_range =(2, 2))
X_text = tfidf.fit_transform(df_rf['text'])
X_rep_pct = np.array(df_rf['rep_jpc']).reshape(-1, 1)
X_male_jpc = np.array(df_rf['male_jpc']).reshape(-1, 1)
X_dev_time = np.array(df_rf['develop_time']).reshape(-1, 1)
X_party = np.array(df_rf['party']).reshape(-1, 1)
y = df_rf['win_side']
# Horizontally stack the TF-IDF other features
X = np.hstack((X_text.toarray(), X_rep_pct, X_male_jpc, X_dev_time))

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=55)
Classifier(X_train, X_test, y_train, y_test)

Confusion Matrix for Logistic Regression:
Coefficients:
```


Confusion Matrix for Naive Bayes:

Confusion Matrix for Linear SVC:

C:\Users\rezar\anaconda3\envs\torch_cuda\lib\site-packages\sklearn\svm_base.py:1244: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
warnings.warn(

Confusion Matrix for Random Forest:

Confusion Matrix for Perceptron:

C:\Users\rezar\anaconda3\envs\torch_cuda\lib\site-packages\sklearn\metrics_classification.py:1344: UndefinedMetricWarning: Precis ion is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))

-0.00045276]]

Out[14]:		classifier	accuracy	f1	precision	recall	True Negative Rate	True Positive Rate	auc
	0	Logistic Regression	0.761905	0.863388	0.759615	1.000000	0.038462	1.000000	0.519231
	1	Naive Bayes	0.752381	0.858696	0.752381	1.000000	0.000000	1.000000	0.500000
	2	Linear SVC	0.752381	0.858696	0.752381	1.000000	0.000000	1.000000	0.500000
	3	Random Forest	0.733333	0.846154	0.747573	0.974684	0.000000	0.974684	0.487342
	4	Perceptron	0.247619	0.000000	0.000000	0.000000	1.000000	0.000000	0.500000
	5	KNN	0.685714	0.800000	0.767442	0.835443	0.230769	0.835443	0.533106

Using 'Text' + rep_pct + male_jpc as the feature

```
In [15]: tfidf = TfidfVectorizer(min_df=5, max_df=0.8,ngram_range =(2, 2))
    X_text = tfidf.fit_transform(df_rf['text'])
    X_rep_pct = np.array(df_rf['rep_jpc']).reshape(-1, 1)
    X_male_jpc = np.array(df_rf['male_jpc']).reshape(-1, 1)
    X_dev_time = np.array(df_rf['develop_time']).reshape(-1, 1)
    X_party = np.array(df_rf['party']).reshape(-1, 1)
    y = df_rf['win_side']
    # Horizontally stack the TF-IDF other features
    X = np.hstack((X_text.toarray(), X_rep_pct, X_dev_time))

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=55)
    Classifier(X_train, X_test, y_train, y_test)

Confusion Matrix for Logistic Regression:
    Coefficients:
    [[ 0.01901738    0.05252966   -0.01400972    ...   -0.16520139    0.01492379]
```


Confusion Matrix for Naive Bayes:

Confusion Matrix for Linear SVC:

C:\Users\rezar\anaconda3\envs\torch_cuda\lib\site-packages\sklearn\svm_base.py:1244: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
warnings.warn(

Confusion Matrix for Random Forest:

Confusion Matrix for Perceptron:

C:\Users\rezar\anaconda3\envs\torch_cuda\lib\site-packages\sklearn\metrics_classification.py:1344: UndefinedMetricWarning: Precis ion is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))

-0.00044994]]

Out[15

5]:		classifier	accuracy	f1	precision	recall	True Negative Rate	True Positive Rate	auc
	0	Logistic Regression	0.761905	0.863388	0.759615	1.000000	0.038462	1.000000	0.519231
	1	Naive Bayes	0.752381	0.858696	0.752381	1.000000	0.000000	1.000000	0.500000
	2	Linear SVC	0.752381	0.858696	0.752381	1.000000	0.000000	1.000000	0.500000
	3	Random Forest	0.695238	0.818182	0.742268	0.911392	0.038462	0.911392	0.474927
	4	Perceptron	0.247619	0.000000	0.000000	0.000000	1.000000	0.000000	0.500000
	5	KNN	0.685714	0.800000	0.767442	0.835443	0.230769	0.835443	0.533106

Using 'Text' + male_jpc + develop_time as the feature

Confusion Matrix for Naive Bayes:

Confusion Matrix for Linear SVC:

C:\Users\rezar\anaconda3\envs\torch_cuda\lib\site-packages\sklearn\svm_base.py:1244: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
warnings.warn(

C:\Users\rezar\anaconda3\envs\torch_cuda\lib\site-packages\sklearn\metrics_classification.py:1344: UndefinedMetricWarning: Precis ion is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))

Confusion Matrix for Random Forest:

Confusion Matrix for Perceptron:

C:\Users\rezar\anaconda3\envs\torch_cuda\lib\site-packages\sklearn\metrics_classification.py:1344: UndefinedMetricWarning: Precis ion is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))

Out[16]:		classifier	accuracy	f1	precision	recall	True Negative Rate	True Positive Rate	auc
	0	Logistic Regression	0.761905	0.863388	0.759615	1.000000	0.038462	1.000000	0.519231
	1	Naive Bayes	0.752381	0.858696	0.752381	1.000000	0.000000	1.000000	0.500000
	2	Linear SVC	0.247619	0.000000	0.000000	0.000000	1.000000	0.000000	0.500000
	3	Random Forest	0.704762	0.826816	0.740000	0.936709	0.000000	0.936709	0.468354
	4	Perceptron	0.247619	0.000000	0.000000	0.000000	1.000000	0.000000	0.500000
	5	KNN	0.685714	0.800000	0.767442	0.835443	0.230769	0.835443	0.533106

Using 'Text' + rep_jpc as the feature

-1.68158369e-01 -1.17107435e-04]]

```
In [17]: tfidf = TfidfVectorizer(min_df=5, max_df=0.8, ngram_range =(2, 2))
    X_text = tfidf.fit_transform(df_rf['text'])
    X_rep_pct = np.array(df_rf['rep_jpc']).reshape(-1, 1)
    X_male_jpc = np.array(df_rf['male_jpc']).reshape(-1, 1)
    X_dev_time = np.array(df_rf['develop_time']).reshape(-1, 1)
    X_party = np.array(df_rf['party']).reshape(-1, 1)
    y = df_rf['win_side']
    # Horizontally stack the TF-IDF other features
    X = np.hstack((X_text.toarray(), X_rep_pct))

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=55)
    Classifier(X_train, X_test, y_train, y_test)

Confusion Matrix for Logistic Regression:
    Coefficients:
    [[ 1.91723738e-02     5.28830096e-02  -1.40558302e-02     ... -5.77817776e-03
```


Confusion Matrix for Naive Bayes:

Confusion Matrix for Linear SVC:

Confusion Matrix for Random Forest:

Confusion Matrix for Perceptron:

Out[1

7]:		classifier	accuracy	f1	precision	recall	True Negative Rate	True Positive Rate	auc
	0	Logistic Regression	0.761905	0.863388	0.759615	1.000000	0.038462	1.000000	0.519231
	1	Naive Bayes	0.752381	0.858696	0.752381	1.000000	0.000000	1.000000	0.500000
	2	Linear SVC	0.647619	0.770186	0.756098	0.784810	0.230769	0.784810	0.507790
	3	Random Forest	0.752381	0.857143	0.757282	0.987342	0.038462	0.987342	0.512902
	4	Perceptron	0.533333	0.620155	0.800000	0.506329	0.615385	0.506329	0.560857
	5	KNN	0.600000	0.727273	0.746667	0.708861	0.269231	0.708861	0.489046

Using 'Text' + male_jpc as the feature

Confusion Matrix for Naive Bayes:

Confusion Matrix for Linear SVC:

Confusion Matrix for Random Forest:

Confusion Matrix for Perceptron:

Out[18]:		classifier	accuracy	f1	precision	recall	True Negative Rate	True Positive Rate	auc
	0	Logistic Regression	0.761905	0.863388	0.759615	1.000000	0.038462	1.000000	0.519231
	1	Naive Bayes	0.752381	0.858696	0.752381	1.000000	0.000000	1.000000	0.500000
	2	Linear SVC	0.647619	0.770186	0.756098	0.784810	0.230769	0.784810	0.507790
	3	Random Forest	0.685714	0.813559	0.734694	0.911392	0.000000	0.911392	0.455696
	4	Perceptron	0.561905	0.676056	0.761905	0.607595	0.423077	0.607595	0.515336
	5	KNN	0.609524	0.735484	0.750000	0.721519	0.269231	0.721519	0.495375

Using 'Text' + dev_time as the feature

Confusion Matrix for Naive Bayes:

C:\Users\rezar\anaconda3\envs\torch_cuda\lib\site-packages\sklearn\svm_base.py:1244: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
warnings.warn(

Confusion Matrix for Linear SVC:

Confusion Matrix for Random Forest:

Confusion Matrix for Perceptron:

C:\Users\rezar\anaconda3\envs\torch_cuda\lib\site-packages\sklearn\metrics_classification.py:1344: UndefinedMetricWarning: Precis ion is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))

Out[29]:		classifier	accuracy	f1	precision	recall	True Negative Rate	True Positive Rate	auc
	0	Logistic Regression	0.761905	0.863388	0.759615	1.000000	0.038462	1.000000	0.519231
	1	Naive Bayes	0.752381	0.858696	0.752381	1.000000	0.000000	1.000000	0.500000
	2	Linear SVC	0.257143	0.048780	0.666667	0.025316	0.961538	0.025316	0.493427
	3	Random Forest	0.733333	0.840909	0.762887	0.936709	0.115385	0.936709	0.526047
	4	Perceptron	0.247619	0.000000	0.000000	0.000000	1.000000	0.000000	0.500000
	5	KNN	0.676190	0.792683	0.764706	0.822785	0.230769	0.822785	0.526777

In [20]: # USING IMBLEARN

from imblearn.over_sampling import SMOTE

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=55)

Classifier(X_train, X_test, y_train, y_test)

ros = SMOTE(random_state=0)

X_train_resampled, y_train_resampled = ros.fit_resample(X_train, y_train)

 ${\tt Classifier}({\tt X_train_resampled}, \ {\tt X_test}, \ {\tt y_train_resampled}, \ {\tt y_test})$

Confusion Matrix for Logistic Regression:

Coefficients:

Confusion Matrix for Naive Bayes:

Confusion Matrix for Linear SVC:

C:\Users\rezar\anaconda3\envs\torch_cuda\lib\site-packages\sklearn\svm_base.py:1244: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.

warnings.warn(

Confusion Matrix for Random Forest:

Confusion Matrix for Perceptron:

C:\Users\rezar\anaconda3\envs\torch_cuda\lib\site-packages\sklearn\metrics_classification.py:1344: UndefinedMetricWarning: Precis ion is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))

Confusion Matrix for KNN:

Confusion Matrix for Logistic Regression: Coefficients:

Confusion Matrix for Naive Bayes:

Confusion Matrix for Linear SVC:

C:\Users\rezar\anaconda3\envs\torch_cuda\lib\site-packages\sklearn\svm_base.py:1244: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
warnings.warn(

Confusion Matrix for Random Forest:

Confusion Matrix for Perceptron:

Confusion Matrix for KNN:

Out[20]:		classifier	accuracy	f1	precision	recall	True Negative Rate	True Positive Rate	auc
	0	Logistic Regression	0.647619	0.764331	0.769231	0.759494	0.307692	0.759494	0.533593
	1	Naive Bayes	0.238095	0.000000	0.000000	0.000000	0.961538	0.000000	0.480769
	2	Linear SVC	0.752381	0.858696	0.752381	1.000000	0.000000	1.000000	0.500000
	3	Random Forest	0.657143	0.783133	0.747126	0.822785	0.153846	0.822785	0.488315
	4	Perceptron	0.752381	0.858696	0.752381	1.000000	0.000000	1.000000	0.500000
	5	KNN	0.466667	0.555556	0.744681	0.443038	0.538462	0.443038	0.490750

Check using different hyperparameter

```
results = pd.DataFrame(grid.cv_results_)
results['param_penalty'] = results['param_penalty'].astype('str')
scores_matrix = results.pivot(index='param_penalty', columns='param_C', values='mean_test_score')

plt.figure(figsize=(8, 6))
sns.heatmap(scores_matrix, annot=True, fmt=".2f", linewidths=.5, cmap='viridis')
plt.title('Hyperparameter Gridsearch - f1 Score')
plt.show()
```

C:\Users\rezar\AppData\Local\Temp\ipykernel_10152\1042704739.py:19: FutureWarning: In a future version, the Index constructor will
not infer numeric dtypes when passed object-dtype sequences (matching Series behavior)
scores_matrix = results.pivot(index='param_penalty', columns='param_C', values='mean_test_score')

Trying using pretrained model

Try using pretrained model from transformers.

 $https://hugging face.co/models?pipeline_tag=text-classification \& sort=downloads$

```
In [38]: import torch
         import pandas as pd
         from sklearn.model selection import train test split
         from \ sklearn.metrics \ import \ accuracy\_score, \ precision\_score, \ recall\_score, \ f1\_score
         # from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
         from transformers import DistilBertTokenizer, DistilBertForSequenceClassification, Trainer, TrainingArguments
         # Load your data
         data = pd.read_csv('text_clean.csv')
         # Swapped 0 and 1 in win_side
         # data['win_side'] = data['win_side'].apply(lambda x: 0 if x == 1 else 1)
         # Split your data into training and testing sets
         train_texts, test_texts, train_labels, test_labels = train_test_split(data['text'], data['win_side'], test_size=0.2, stratify=data
         # Initialize the BERT tokenizer
         # tokenizer = BertTokenizer.from pretrained('bert-base-uncased')
         tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
         # Tokenize the text data
         train_encodings = tokenizer(train_texts.tolist(), truncation=True, padding=True)
         test_encodings = tokenizer(test_texts.tolist(), truncation=True, padding=True)
         # Create PyTorch Class from dataset
         class SCOTUSDataset(torch.utils.data.Dataset):
             def __init__(self, encodings, labels):
```

```
self.encodings = encodings
        self.labels = labels
    def __getitem__(self, idx):
        item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
        item['labels'] = torch.tensor(self.labels[idx]).long()
        return item
    def __len__(self):
        return len(self.labels)
train_dataset = SCOTUSDataset(train_encodings, train_labels.tolist())
test_dataset = SCOTUSDataset(test_encodings, test_labels.tolist())
# Initialize the BERT model for sequence classification
# model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
# https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english
model = DistilBertForSequenceClassification.from pretrained("distilbert-base-uncased")
# Set up training arguments
training args = TrainingArguments(
    output_dir='./results',
    num_train_epochs=10,
    per_device_train_batch_size=2, #changed to 2 because the GPU
    per_device_eval_batch_size=4,
    warmup_steps=500,
    weight_decay=0.01,
    logging_dir='./logs',
    logging_steps=100,
    evaluation_strategy="steps",
    save_strategy="steps",
    save steps=1000,
    load_best_model_at_end=True,
# Create the Trainer
trainer = Trainer(
    model=model,
    args=training args,
    train_dataset=train_dataset,
    eval_dataset=test_dataset
# Train the model
trainer.train()
# Evaluate the model
predictions = trainer.predict(test_dataset)
predicted_labels = predictions.label_ids
y_pred = (predictions.predictions.argmax(-1)).tolist()
# Calculate performance metrics
accuracy = accuracy_score(test_labels, y_pred)
precision = precision_score(test_labels, y_pred)
recall = recall_score(test_labels, y_pred)
f1 = f1_score(test_labels, y_pred)
print(f"Accuracy: {accuracy:.4f}")
print(f"Precision: {precision:.4f}")
print(f"Recall: {recall:.4f}")
print(f"F1-Score: {f1:.4f}")
Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassificatio
n: ['vocab_projector.weight', 'vocab_projector.bias', 'vocab_layer_norm.bias', 'vocab_transform.bias', 'vocab_transform.weight',
'vocab_layer_norm.weight']
- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another t
ask or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect
to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and
are newly initialized: ['pre_classifier.bias', 'classifier.weight', 'classifier.bias', 'pre_classifier.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
C:\Users\rezar\anaconda3\envs\torch_cuda\lib\site-packages\transformers\optimization.py:391: FutureWarning: This implementation of
```

AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no

deprecation_warning=True` to disable this warning

warnings.warn(

Step	Training Loss	Validation Loss
100	0.694300	0.668718
200	0.664300	0.656595
300	0.687600	0.654255
400	0.679200	0.660695
500	0.673700	0.654594
600	0.694700	0.651798
700	0.651100	0.674763
800	0.680400	0.689492
900	0.686100	0.665781
1000	0.670000	0.656918
1100	0.672700	0.657205
1200	0.656400	0.654485
1300	0.676800	0.665568
1400	0.671300	0.656507
1500	0.634500	0.665914
1600	0.684400	0.656613
1700	0.665900	0.655252
1800	0.660500	0.654917
1900	0.671700	0.654646
2000	0.632400	0.656990

Accuracy: 0.6381 Precision: 0.6381 Recall: 1.0000 F1-Score: 0.7791

```
In [59]: def Classifier2(X_train, X_test, y_train, y_test):
                                     # Train and evaluate the classifiers
                                     classifiers = {
                                                 "Logistic Regression": LogisticRegression(max_iter=1000, penalty='12', C=1, solver='lbfgs'),
                                                 "Naive Bayes": MultinomialNB(),
                                                "Linear SVC": LinearSVC(),
                                                 "Random Forest": RandomForestClassifier(),
                                                 "Perceptron": Perceptron(),
                                               "KNN": KNeighborsClassifier(n_neighbors=11)
                                     results = []
                                     for classifier_name, classifier in classifiers.items():
                                                # Train the classifier
                                               classifier.fit(X_train, y_train)
                                               # Make predictions on the test set
                                               y_pred = classifier.predict(X_test)
                                               # Add the scores to the results dictionary
                                                results.append({
                                                           'classifier': classifier_name,
                                                            'accuracy': accuracy_score(y_test, y_pred),
                                                            'f1': f1_score(y_test, y_pred),
                                                            'precision': precision_score(y_test, y_pred),
                                                           'recall': recall_score(y_test, y_pred),
                                                            \label{thm:confusion_matrix} \textbf{'True Negative Rate': confusion_matrix} (y\_test, y\_pred)[0][0]/(confusion\_matrix(y\_test, y\_pred)[0][0]+confusion\_matrix(y\_test, y\_test, y\_t
                                                            'True Positive Rate': confusion_matrix(y_test, y_pred)[1][1]/(confusion_matrix(y_test, y_pred)[1][1]+confusion_matrix(
                                                            'auc': roc_auc_score(y_test, y_pred)
                                               })
                                               # Make a confusion matrix
                                                print(f"Confusion Matrix for {classifier_name}:")
                                               if classifier_name == "Logistic Regression":
```

```
print("Coefficients: \n", classifier.coef_)

cm = confusion_matrix(y_test, y_pred, labels=y_test.unique())
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=y_test.unique())
fig, ax = plt.subplots(figsize=(3, 3))
ax.set_title(f"CM {classifier_name}:")
disp.plot(ax=ax)
plt.show()
return pd.DataFrame(results)
```

```
In [60]: X, y = Vectorize(vectorizer, df_rf['text'], df_rf['win_side'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=55)
Classifier2(X_train, X_test, y_train, y_test)
```

Confusion Matrix for Logistic Regression:

Coefficients:

CM Logistic Regression:

- 70
- 60
- 50
- 40
- 30
- 20
- 1.0
- 1.0
- 0.0

Predicted label

Confusion Matrix for Naive Bayes:

Confusion Matrix for Linear SVC:

Confusion Matrix for Random Forest:

Confusion Matrix for Perceptron:

Confusion Matrix for KNN:

Out[60]:		classifier	accuracy	f1	precision	recall	True Negative Rate	True Positive Rate	auc
	0	Logistic Regression	0.761905	0.863388	0.759615	1.000000	0.038462	1.000000	0.519231
	1	Naive Bayes	0.752381	0.858696	0.752381	1.000000	0.000000	1.000000	0.500000
	2	Linear SVC	0.647619	0.770186	0.756098	0.784810	0.230769	0.784810	0.507790
	3	Random Forest	0.733333	0.846154	0.747573	0.974684	0.000000	0.974684	0.487342
	4	Perceptron	0.600000	0.716216	0.768116	0.670886	0.384615	0.670886	0.527751
	5	KNN	0.685714	0.795031	0.780488	0.810127	0.307692	0.810127	0.558909

In []: