

ELECTRONICS TRAINING

Oriol Baldrís and Roger Vendrell

UNIVERSITAT POLITÈCNICA
DE CATALUNYA
BARCELONATECH

WHO WE ARE

We are Oriol (right) and Roger (left), two engineering students from Barcelona who are staying in Cambodia to carry out a collaboration with Trash Is Nice, a plastic recycling station based in Phnom Penh.

Our fields of study are Physics and Artificial Intelligence respectively.

oriol.baldris@estudiantat.upc.edu roger.vendrell.colet@estudiantat.upc.edu

CONTENTS

SETUP

- Acces Tinkercad Online
- Register for free
- Create a new project

3

COMPONENTS

- LED
- Sensors

2

BASICS

- Navigation
- Basic tools
- Code and circuit

4

CODING

- Information entry
- Variables

Click here to access.

Create a circuit

We will work with Arduino Uno board What is Arduino?

A look at our board

PROJECT I:

We will implement a blinking LED, creating the circuit and the code.

BLINK

2.0 Breadboard

2.1 Circuit

2.2 Code

```
void setup()
{
  pinMode(13, OUTPUT);
}
```

The **setup** function helps us define our circuit setup, it will only be executed once at the beginning of the code.

2.2 Code

```
void setup()
 pinMode (13, OUTPUT);
void loop()
 // Set PIN 13, the LED ON
  digitalWrite(13, HIGH);
  delay(500); // Wait for 500 millisecond(s)
  // Switch PIN 13, the LED OFF
  digitalWrite(13, LOW);
  delay(500); // Wait for 500 millisecond(s)
```

The function **loop** helps us define our main actions in the code, one after the other. It will continuously run in a loop for as long as we run our code.

2.3 Exercise: Traffic light

3

TEMPERATURE SENSOR

We will NOW introduce sensors and variables, in this case used to measure temperature.

3.1 Sensors

Sensors receive an **input** current and extract an **output** current. This can be either digital or analogue.

It's very important to learn the **characteristics** of each sensor and how to use them.

3.2 Temperature sensor

It has three "legs":

- Voltage in
- Voltage out
- Ground

We have to find an appropriate connection in the board for each!

3.3 Circuit design

3.4 Coding: variables

We need a place to store our data (in this case, voltage and temperature).

These are variables!

Different types:

- Integer
- Float (decimal values)
- Double (decimal values with extra precision)

And a few more...

```
int baselineTemp = 0;
int celsius = 0;
int fahrenheit = 0;
```

3.4 Coding: if

We want something to happen if a condition is given.

We use the **if** statement to apply this.

```
if (celsius < baselineTemp) {
  digitalWrite(2, LOW);
  digitalWrite(3, LOW);
  digitalWrite(4, LOW);
}</pre>
```

PLANT WATERING

A bit more advanced project to automatically water your plants.

4.1 Concept

We want to water our plants when humidity levels are below desired.

We sense moisture with a sensor.

We use a motor to open our water flow when moisture is too low.

THAT'S ALL FOLKS

Thank you for your interest.