Homework 1

Due: Friday, October 9, 2020

Question 1. Show that if matrix A is triangular and unitary, then it is diagonal

Let **A** be an unitary and lower triangular matrix with size $n \times n$. The (i, j) element of **A*** takes the form

$$(\mathbf{A}^*)_{ij} = \overline{a}_{ji} \tag{1}$$

and the (i, j) element of the product $\mathbf{A}\mathbf{A}^*$ takes the form

$$(\mathbf{A}\mathbf{A}^*)_{ij} = \sum_{k=1}^n a_{ik} \overline{a}_{kj} \tag{2}$$

Consider a special case where i = 1 and j = 2, the above reduces to

$$(\mathbf{A}\mathbf{A}^*)_{12} = \sum_{k=1}^n a_{1k} \overline{a}_{k2} \tag{3}$$

When k > 1, $a_{1k} = 0$ since **A** is lower triangular, so the expression can be further reduced to

$$(\mathbf{A}\mathbf{A}^*)_{12} = a_{11}\overline{a}_{12} \tag{4}$$

Since **A** is unitary, we know that $(\mathbf{A}\mathbf{A}^*)_{ij} = 0$ if $i \neq j$ and $(\mathbf{A}\mathbf{A}^*)_{ij} = 1$ if i = j. Since $|a_{11}|^2 = 1$, it must be true that $\overline{a}_{12} = 0 = a_{21}$. Repeat this process for the case of i = 1 and j = m $(m \neq 1)$, we can show that $a_{m1} = 0$. Repeat again for the case of i = n and j = m $(m \neq n)$, we can show that $a_{mn} = 0$, which is indeed diagonal.

If **A** is upper triangular, the proof will be almost identical, but this time we would show that $a_{1m} = 0$ where $m \neq 1$ and repeat the same process as before.

Question 2. Consider that the matrices $\mathbf{A} \in \mathbb{C}^{n \times m}$ and $\mathbf{B} \in \mathbb{C}^{n \times m}$ are Hermitian (self-adjoint)

• Prove that all eigenvalues λ_k of **A** are real

If **A** is Hermitian, it is also square, meaning that m = n. Consider an eigenvector $\mathbf{x} \in \mathbb{C}^{m \times 1}$, we have

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \tag{5}$$

where λ is an eigenvalue. Multiplying by \mathbf{x}^*

$$\mathbf{x}^* \mathbf{A} \mathbf{x} = \lambda \mathbf{x}^* \mathbf{x} \tag{6}$$

Now taking the conjugate transpose of equation 5, we get

$$\mathbf{x}^* \mathbf{A}^* = \lambda^* \mathbf{x}^* \tag{7}$$

Multiplying by \mathbf{x}

$$\mathbf{x}^* \mathbf{A}^* \mathbf{x} = \lambda^* \mathbf{x}^* \mathbf{x} \tag{8}$$

Since **A** is Hermitian, $\mathbf{A} = \mathbf{A}^*$. The above becomes

$$\mathbf{x}^* \mathbf{A} \mathbf{x} = \lambda^* \mathbf{x}^* \mathbf{x} \tag{9}$$

Comparing equation 6 and 9, the left hand sides are identical, thus we have

$$\lambda^* \mathbf{x}^* \mathbf{x} = \lambda \mathbf{x}^* \mathbf{x} \tag{10}$$

$$\lambda^* = \lambda \tag{11}$$

Therefore all eigenvalues must be real.

• Prove that if x_k is the k th eigenvector, then eigenvectors with distinct eigenvalues are orthogonal

Consider two distinct eigenvalues λ_1 and λ_2 , with corresponding eigenvectors $\mathbf{x_1}$ and $\mathbf{x_2}$. For λ_1

$$\mathbf{A}\mathbf{x}_1 = \lambda_1 \mathbf{x}_1 \tag{12}$$

Taking the conjugate transpose

$$\mathbf{x}_{1}^{*}\mathbf{A}^{*} = \lambda_{1}\mathbf{x}_{1}^{*} \tag{13}$$

Multiplying by $\mathbf{x_2}$ and using the fact that \mathbf{A} is Hermitian

$$\mathbf{x}_1^* \mathbf{A} \mathbf{x}_2 = \lambda_1 \mathbf{x}_1^* \mathbf{x}_2 \tag{14}$$

For λ_2 , we can find a similar expression

$$\mathbf{x}_{1}^{*}\mathbf{A}\mathbf{x}_{2} = \lambda_{2}\mathbf{x}_{1}^{*}\mathbf{x}_{2} \tag{15}$$

Comparing equation 14 and 15, we get

$$\lambda_1 \mathbf{x}_1^* \mathbf{x}_2 = \lambda_2 \mathbf{x}_1^* \mathbf{x}_2 \tag{16}$$

$$\mathbf{x}_{1}^{*}\mathbf{x}_{2}(\lambda_{1} - \lambda_{2}) = 0 \tag{17}$$

Since λ_1 and λ_2 are distinct, $\mathbf{x_1^*x_2} = 0$ and $\mathbf{x_1}$ and $\mathbf{x_2}$ are orthogonal.

• Prove the sum of two Hermitian matrices is Hermitian

For the sum to be Hermitian, we want show that $(\mathbf{A} + \mathbf{B})^* = \mathbf{A} + \mathbf{B}$. Notice that

$$(\mathbf{A} + \mathbf{B})^* = \mathbf{A}^* + \mathbf{B}^* \tag{18}$$

Since **A** and **B** are Hermitian, we complete the proof.

• Prove the inverse of an invertible Hermitian matrix is Hermitian as well

Since A is Hermitian and invertible, we have

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I} = \mathbf{A}^*\mathbf{A}^{-1} \tag{19}$$

Multiply by $(A^{-1})^*$

$$(\mathbf{A}^{-1})^*)\mathbf{A}\mathbf{A}^{-1} = (\mathbf{A}^{-1})^*\mathbf{A}^*\mathbf{A}^{-1}$$
 (20)

$$(\mathbf{A}^{-1})^* = (\mathbf{A}^*)^{-1} \mathbf{A}^* \mathbf{A}^{-1}$$
 (21)

$$(\mathbf{A}^{-1})^* = \mathbf{A}^{-1} \tag{22}$$

• Prove the product of two Hermitian matrices is Hermitian if and only if AB = BA.

 (\rightarrow) Given $AB = (AB)^*$, we want to show that AB = BA

$$\mathbf{AB} = (\mathbf{AB})^* = \mathbf{B}^* \mathbf{A}^* = \mathbf{BA} \tag{23}$$

 (\leftarrow) Given AB = BA, we want to show $AB = (AB)^*$

$$(\mathbf{A}\mathbf{B})^* = \mathbf{B}^*\mathbf{A}^* = \mathbf{B}\mathbf{A} = \mathbf{A}\mathbf{B} \tag{24}$$

Question 3. Consider the matrix. $U \in \mathbb{C}^{n \times m}$ which is unitary

• Prove that the matrix is diagonalizable

By Schur decomposition, we can write U as

$$\mathbf{U} = \mathbf{Q}\mathbf{A}\mathbf{Q}^* \tag{25}$$

where \mathbf{Q} is unitary and \mathbf{A} is upper triangular. For \mathbf{U} to be diagonalizable, we want \mathbf{A} to be diagonal. From $\mathbf{Question}\ \mathbf{1}$, we know that triangular unitary matrices are diagonal, thus we only need to show that \mathbf{A} is unitary. Taking the conjugate transpose

$$\mathbf{U}^* = \mathbf{Q}\mathbf{A}^*\mathbf{Q}^* \tag{26}$$

Multiplying U and U^*

$$UU^* = QA^*Q^*QAQ^*$$
 (27)

$$\mathbf{I} = \mathbf{Q}\mathbf{A}^*\mathbf{A}\mathbf{Q}^* \tag{28}$$

$$\mathbf{Q}^*\mathbf{I}\mathbf{Q} = \mathbf{I} = \mathbf{A}^*\mathbf{A} \tag{29}$$

This proves **A** is unitary.

• Prove that the inverse is $U^{-1} = U^*$

Since U is unitary, it follows that $UU^* = I$. By definition of the inverse, $U^{-1} = U^*$.

• Prove it is isometric with respect to the ℓ_2 norm, i.e. $\|\mathbf{U}\mathbf{x}\| = \|\mathbf{x}\|$.

$$\|\mathbf{U}\mathbf{x}\| = \sqrt{(\mathbf{U}\mathbf{x})^*\mathbf{U}\mathbf{x}} \tag{30}$$

$$= \sqrt{\mathbf{x}^* \mathbf{U}^* \mathbf{U} \mathbf{x}} \tag{31}$$

$$= \sqrt{\mathbf{x}^* \mathbf{x}} = \|\mathbf{x}\| \tag{32}$$

• Prove that all eigenvalues have modulus unity

Suppose λ is an eigenvalue, we have

$$\mathbf{U}\mathbf{x} = \lambda\mathbf{x} \tag{33}$$

Multiplying by U^*

$$\mathbf{U}^*\mathbf{U}\mathbf{x} = \lambda \mathbf{U}^*\mathbf{x} \tag{34}$$

$$\mathbf{x} = \lambda \mathbf{U} \mathbf{x} \tag{35}$$

Substitute equation 33 into the above

$$\mathbf{x} = \lambda \cdot \lambda \mathbf{x} \tag{36}$$

$$\lambda^2 = 1 \tag{37}$$

$$|\lambda| = 1 \tag{38}$$