

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID:SSSPTA1617SXK

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

* * * * * * * * * * * * * * * * * Welcome to STN International * * * * * * * * * * * * * * *

NEWS 1 Web Page for STN Seminar Schedule - N. America
NEWS 2 JUL 02 LMEDLINE coverage updated
NEWS 3 JUL 02 SCISEARCH enhanced with complete author names
NEWS 4 JUL 02 CHEMCATS accession numbers revised
NEWS 5 JUL 02 CA/CAplus enhanced with utility model patents from China
NEWS 6 JUL 16 CAplus enhanced with French and German abstracts
NEWS 7 JUL 18 CA/CAplus patent coverage enhanced
NEWS 8 JUL 26 USPATFULL/USPAT2 enhanced with IPC reclassification
NEWS 9 JUL 30 USGENE now available on STN
NEWS 10 AUG 06 CAS REGISTRY enhanced with new experimental property tags
NEWS 11 AUG 06 FSTA enhanced with new thesaurus edition
NEWS 12 AUG 13 CA/CAplus enhanced with additional kind codes for granted patents
NEWS 13 AUG 20 CA/CAplus enhanced with CAS indexing in pre-1907 records
NEWS 14 AUG 27 Full-text patent databases enhanced with predefined patent family display formats from INPADOCDB
NEWS 15 AUG 27 USPATOLD now available on STN
NEWS 16 AUG 28 CAS REGISTRY enhanced with additional experimental spectral property data
NEWS 17 SEP 07 STN AnaVist, Version 2.0, now available with Derwent World Patents Index
NEWS 18 SEP 13 FORIS renamed to SOFIS
NEWS 19 SEP 13 INPADOCDB enhanced with monthly SDI frequency
NEWS 20 SEP 17 CA/CAplus enhanced with printed CA page images from 1967-1998
NEWS 21 SEP 17 CAplus coverage extended to include traditional medicine patents
NEWS 22 SEP 24 EMBASE, EMBAL, and LEMBASE reloaded with enhancements
NEWS 23 OCT 02 CA/CAplus enhanced with pre-1907 records from Chemisches Zentralblatt
NEWS 24 OCT 19 BEILSTEIN updated with new compounds
NEWS 25 NOV 15 Derwent Indian patent publication number format enhanced
NEWS 26 NOV 19 WPIX enhanced with XML display format
NEWS 27 NOV 30 ICSD reloaded with enhancements
NEWS 28 DEC 04 LINPADOCDB now available on STN

NEWS EXPRESS 19 SEPTEMBER 2007: CURRENT WINDOWS VERSION IS V8.2, CURRENT MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP), AND CURRENT DISCOVER FILE IS DATED 19 SEPTEMBER 2007.

NEWS HOURS STN Operating Hours Plus Help Desk Availability
NEWS LOGIN Welcome Banner and News Items
NEWS IPC8 For general information regarding STN implementation of IPC 8

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific

research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 16:24:20 ON 07 DEC 2007

FILE 'REGISTRY' ENTERED AT 16:24:32 ON 07 DEC 2007
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2007 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 6 DEC 2007 HIGHEST RN 957014-20-9
DICTIONARY FILE UPDATES: 6 DEC 2007 HIGHEST RN 957014-20-9

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH June 29, 2007

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/support/stnqen/stndoc/properties.html>

=> s cyclopentyl/cn
L1 1 CYCLOPENTYL/CN

=> d L1 str cn rn

L1 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2007 ACS on STN

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

CN Cyclopentyl (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

OTHER NAMES:

OTHER NAMES:
CN Cyclopentyl radical

CN cyclopentyl radical
BN 3889-74-5 REGISTRY

=> s bicyclopentyl/cn
1.2 1 BICYCLOPENTYL/CN

=> d str cp rp

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

CN 1,1'-Bicyclopentyl (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Bicyclopentyl (6CI, 7CI, 8CI)

OTHER NAMES:

CN Cyclopentane, cyclopentyl-

CN Cyclopentylcyclopentane

CN Dicyclopentyl

CN NSC 38865

RN 1636-39-1 REGISTRY

=> file caplus

COST IN U.S. DOLLARS

SINCE FILE

TOTAL

FULL ESTIMATED COST

ENTRY

SESSION

14.70

14.91

FILE 'CAPLUS' ENTERED AT 16:25:51 ON 07 DEC 2007

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2007 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 7 Dec 2007 VOL 147 ISS 25

FILE LAST UPDATED: 6 Dec 2007 (20071206/ED)

Effective October 17, 2005, revised CAS Information Use Policies apply. They are available for your review at:

<http://www.cas.org/infopolICY.html>

=> s 1636-39-1

REGISTRY INITIATED

Substance data SEARCH and crossover from CAS REGISTRY in progress...

Use DISPLAY HITSTR (or FHITSTR) to directly view retrieved structures.

```
=> dup rem L4
PROCESSING COMPLETED FOR L4
L5      132 DUP REM L4 (0 DUPLICATES REMOVED)

=> s cosmetic or pharmaceutical
    62494 COSMETIC
    67512 COSMETICS
    87025 COSMETIC
        (COSMETIC OR COSMETICS)
    254538 PHARMACEUTICAL
    90676 PHARMACEUTICALS
    309090 PHARMACEUTICAL
        (PHARMACEUTICAL OR PHARMACEUTICALS)
L6      383339 COSMETIC OR PHARMACEUTICAL

=> s L4 and L6
L7      1 L4 AND L6

=> d L7 ibib abs

L7      ANSWER 1 OF 1 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1991:478697 CAPLUS
DOCUMENT NUMBER: 115:78697
TITLE: Chemical constituents of "Lang-Du Dang-Gui" (Angelica sp.)
AUTHOR(S): Rao, Gaoxiong; Yu, Xuejian; Sun, Handong
CORPORATE SOURCE: Kunming Inst. Bot., Acad. Sin., Kunming, 650204, Peop. Rep. China
SOURCE: Yunnan Zhiwu Yanjiu (1991), 13(1), 85-8
CODEN: YCWCDP; ISSN: 0253-2700
DOCUMENT TYPE: Journal
LANGUAGE: Chinese
AB      Oil of "Langdu Danggui" (Angelica sp.) from the Lang-Du Mountain (Yunnan Province) has been analyzed qual. and quant. by capillary GC/MS/DS on the Finnigan-4510, and 42 constituents, which made up 96.83% of the total oil, have been identified. Ligustilide (73.98%) and cis- $\beta$ -ocimene (12.18%) were the principal components of the essential oil. In addition, 4 known compds. that are lignoceric acid,  $\beta$ -sitosterol, umbelliferone, and sucrose have been isolated from the non-volatile part of the same sample.

=> s bicyclohexyl or dicyclohexyl
    1727 BICYCLOHEXYL
    32 BICYCLOHEXYLS
    1738 BICYCLOHEXYL
        (BICYCLOHEXYL OR BICYCLOHEXYLS)
    7308 DICYCLOHEXYL
    8 DICYCLOHEXYLS
    7314 DICYCLOHEXYL
        (DICYCLOHEXYL OR DICYCLOHEXYLS)
L8      8923 BICYCLOHEXYL OR DICYCLOHEXYL

=> s L6 and L8
L9      112 L6 AND L8

=> dup rem L9
PROCESSING COMPLETED FOR L9
L10      112 DUP REM L9 (0 DUPLICATES REMOVED)

=> s L9 and (AY<2003 or PY<2003 or PRY<2003)
    4468230 AY<2003
    22908457 PY<2003
    3947151 PRY<2003
L11      88 L9 AND (AY<2003 OR PY<2003 OR PRY<2003)
```

=> d 1-2 ibib abs L11

L11 ANSWER 1 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 2007:126188 CAPLUS
DOCUMENT NUMBER: 146:435200
TITLE: Peptide derivatives of anticoagulant activity and pharmaceutical compositions containing them
INVENTOR(S): Bagdy, Daniel; Bajusz, Sandor; Barabas, Eva; Feher, Andras; Szabo, Gabriella; Szell, Gyoergyne; Veghelyi, Belane; Juhasz, Attila; Mohai, Laszalone; Makkne, Ocskay Klara; Szalkay, Gyoergyne; Szeker, Gaborne; Lango, Jozsef; Lavich, Janosne; Moravcsik, Imre; Pallagi, Istvan; Taschler, Istvan
PATENT ASSIGNEE(S): Gyogyszerkutato Intezet Kft., Hung.
SOURCE: Hung. Pat. Appl., 63pp.
CODEN: HUXXCV
DOCUMENT TYPE: Patent
LANGUAGE: Hungarian
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|--------------|
| HU 9601528 | A2 | 19981028 | HU 1996-1528 | 19960605 <-- |
| HU 9601528 | A3 | 19990301 | | |
| HU 224427 | B1 | 20050928 | | |

PRIORITY APPLN. INFO.: HU 1996-1528 19960605 <--
AB The subject of the invention is general formula new peptide derivs. Q-D-Xaa-Pro-Arg-H, where the meaning of Q is an acyl group with the formula Q'-O-CO, in which formula, the meaning of Q' is an alkyl group with 1-3 carbon atoms, the meaning of D-Xaa is D-amino acid radical with the formula NH-CH(R)-CO, where the meaning of R is an alkyl group with a straight or branching chain with 3-6 carbon atoms, a cycloalkyl group or cyclohexyl-Me group with 7-8 carbon atoms, the meaning of Pro is an L-proline-radical and the meaning of Arg is an L-arginine-radical and their acid addition salts formed with organic or inorg. acids, as well as the pharmaceutical products that contain the above chemical compds. These general formula compds. in the invention possess the property to prevent blood coagulation, the formation of thrombosis and inhibit the functions of the blood platelets.

L11 ANSWER 2 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 2007:126187 CAPLUS
DOCUMENT NUMBER: 146:415093
TITLE: Peptidyl-arginine-aldehyde derivatives of thrombin- and Xa-factor-inhibiting activity and pharmaceutical compositions containing them
INVENTOR(S): Bajusz, Sandor; Bagdy, Daniel; Barabas, Eva; Feher, Andras; Szabo, Gabriella; Szell, Gyoergyne; Veghelyi, Belane Dr.; Juhasz, Attila; Mohai, Laszalone; Moravcsik, Imre; Szeker, Gaborne; Lango, Jozsef; Lavich, Janosne; Makkne, Ocskay Klara; Pallagi, Istvan; Szalkay, Gyoergyne; Taschler, Istvanne
PATENT ASSIGNEE(S): Gyogyszerkutato Intezet Kft., Hung.
SOURCE: Hung. Pat. Appl., 36pp.
CODEN: HUXXCV
DOCUMENT TYPE: Patent
LANGUAGE: Hungarian
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|--------------|
| HU 9601525 | A2 | 19981028 | HU 1996-1525 | 19960605 <-- |

HU 9601525 A3 19990301
HU 224426 B1 20050928

PRIORITY APPLN. INFO.: HU 1996-1525 19960605 <--
AB The subject of the invention is general formula new peptidyl-arginine-aldehyde derivs. - Q-D-Xaa-Pro-Arg-H, where the meaning of Q is an acyl group with the formula Q'-O-CO, in which formula the meaning of Q' is an alkyl group with 1-3 carbon atoms, the meaning of D-Xaa is D-cyclohexylglycine- or D-cyclopentylglycine radical, the meaning of Pro is L-proline-radical and the meaning of Arg is L-arginine-radical and their acid additive salts formed with an organic or inorg. acid, as well as the pharmaceutical products containing the above chemical compds. The general formula compds. according to the invention have anticoagulant property.

=> d 3-5 ibib abs

L11 ANSWER 3 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 2005:2171 CAPLUS
DOCUMENT NUMBER: 142:86627
TITLE: N,N-dicyclohexyl-(1S)-isoborneol-10-sulfonamide (MT103) and related compounds for the treatment of cancer
INVENTOR(S): Galvez, Jorge; Llompart, Javier; Pal, Kollo
PATENT ASSIGNEE(S): Spain
SOURCE: U.S. Pat. Appl. Publ., 39 pp., Cont.-in-part of U.S. Ser. No. 251,616.
CODEN: USXXCO
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 2
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---|------|----------|-----------------|-----------------|
| US 2004266732 | A1 | 20041230 | US 2004-836638 | 20040430 <-- |
| US 2004059000 | A1 | 20040325 | US 2002-251616 | 20020920 <-- |
| US 6919376 | B2 | 20050719 | | |
| CA 2561116 | A1 | 20051013 | CA 2005-2561116 | 20050324 |
| WO 2005094554 | A2 | 20051013 | WO 2005-US9986 | 20050324 |
| WO 2005094554 | A3 | 20070426 | | |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW | | | | |
| RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, AP, EA, EP, OA | | | | |
| EP 1740165 | A2 | 20070110 | EP 2005-741749 | 20050324 |
| R: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LI, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, AL, BA, HR, LV, MK, YU | | | | |
| PRIORITY APPLN. INFO.: | | | US 2002-251616 | A2 20020920 <-- |
| | | | US 2004-556317P | P 20040325 |
| | | | US 2004-836638 | A 20040430 |
| | | | WO 2005-US9986 | W 20050324 |

OTHER SOURCE(S): MARPAT 142:86627

AB Compns. and uses associated with the MT103 family of compds. are disclosed. Particular structural features and properties of the compds. are described in detail. Uses include administering an MT103 family member to a patient for therapeutic purposes. Compns. include chems. belonging to the MT103

family and pharmaceuticals that contain such chems. Methods of treating cells are also described. Anticancer efficacy is included.

L11 ANSWER 4 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 2004:919503 CAPLUS
DOCUMENT NUMBER: 142:162597
TITLE: Pharmaceutical composites of the suppository for fever and influenza containing Chinese medicines
INVENTOR(S): Shiu, Wu-ching; Geng, Shu-shian
PATENT ASSIGNEE(S): Taiwan
SOURCE: Taiwan., 10 pp.
CODEN: TWXXA5
DOCUMENT TYPE: Patent
LANGUAGE: Chinese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|------|----------|------------------|--------------|
| ----- | ---- | ----- | ----- | ----- |
| TW 581686 | B | 20040401 | TW 1998-87114128 | 19980827 <-- |
| PRIORITY APPLN. INFO.: | | | TW 1998-87114128 | 19980827 <-- |

AB The present invention relates to the pharmaceutical composites of the suppository for fever and influenza and their pharmaceutical methods, more particularly, to an anti-pyretic and anti-influenza suppository, which combines all the advantages of traditional Chinese medicine, western medicine, and phys. temperature reduction in an effort to expel all the weaknesses of traditional Chinese medicine, western medicine, and phys. temperature reduction, and which can rapidly bring down fever and relieve symptoms of influenza with fewer side effects suitable for both man and woman and people of all ages.

L11 ANSWER 5 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 2003:610206 CAPLUS
DOCUMENT NUMBER: 139:164542
TITLE: Preparation of cycloalkyl inhibitors of potassium channel function for preventing/treating arrhythmia and IKur-associated conditions
INVENTOR(S): Lloyd, John; Jeon, Yoon T.; Finlay, Heather; Yan, Lin; Gross, Michael F.; Beaudooin, Serge
PATENT ASSIGNEE(S): Bristol-Myers Squibb Company, USA; Icagen, Inc.
SOURCE: PCT Int. Appl., 312 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|--|------|----------|-----------------|--------------|
| ----- | ---- | ----- | ----- | ----- |
| WO 2003063797 | A2 | 20030807 | WO 2003-US3170 | 20030131 <-- |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH,
PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW | | | | |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,
KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES,
FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG | | | | |
| CA 2474451 | A1 | 20030807 | CA 2003-2474451 | 20030131 <-- |
| US 2004072880 | A1 | 20040415 | US 2003-356158 | 20030131 <-- |
| EP 1507504 | A1 | 20050223 | EP 2003-735126 | 20030131 <-- |

| | | | |
|------------------------|---|-----------------|----------------|
| R: | AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK | | |
| CN 1732146 | A 20060208 | CN 2003-807570 | 20030131 <-- |
| JP 2006508016 | T 20060309 | JP 2003-563493 | 20030131 <-- |
| BR 2003007329 | A 20060411 | BR 2003-7329 | 20030131 <-- |
| NZ 534098 | A 20070427 | NZ 2003-534098 | 20030131 <-- |
| IN 2004DN02052 | A 20050401 | IN 2004-DN2052 | 20040716 <-- |
| MX 2004PA07365 | A 20050331 | MX 2004-PA7365 | 20040729 <-- |
| NO 2004003645 | A 20040831 | NO 2004-3645 | 20040831 <-- |
| US 2005234106 | A1 20051020 | US 2004-997734 | 20041124 <-- |
| US 7202253 | B2 20070410 | | |
| ZA 200405905 | A 20060531 | ZA 2004-5905 | 20060313 <-- |
| US 2007142333 | A1 20070621 | US 2007-670482 | 20070202 <-- |
| PRIORITY APPLN. INFO.: | | US 2002-353884P | P 20020201 <-- |
| | | US 2003-356158 | B1 20030131 |
| | | WO 2003-US3170 | W 20030131 |
| | | US 2004-997734 | A3 20041124 |

OTHER SOURCE(S): MARPAT 139:164542
GI

AB Claimed are novel cycloalkyl compds. (shown as I; variables defined below; e.g. cis- and trans-N-(4-hydroxy-1-thiophen-2-ylcyclohexylmethyl)-2-methoxybenzamide and trans-N-[4-[N'-cyano-N''-ethyl-N-(furan-2-ylmethy)guanidino]-1-phenylcyclohexyl]methyl]-2-methoxybenzamide) useful as inhibitors of K channel function (especially inhibitors of the Kv1 subfamily of voltage gated K⁺ channels, especially inhibitors Kv1.5 which was linked to the ultra-rapidly activating delayed rectifier K⁺ current IKur; no data), methods of using such compds. in the prevention and treatment of arrhythmia and IKur-associated conditions, and pharmaceutical compns. containing such compds. For I: dashed line = an optional double bond, provided that R1a is absent when a double bond is present; m and p = 0-3; R1 = H, NR8C(:W)NR6R7 (W = NR8a2, NCO2R8a2, NC(O)R8a2, NCN, NSO2R8a2), NR8SO2NR6R7, etc.; R1a = H, RX; or R1 and R1a together form oxo; or R1 and R1a together with the C atom to which they are attached combine to form an (un)substituted spiro-fused heterocyclo group; or R1 and R1a together combine to form :CR8R9. R2 is heteroaryl, (heteroaryl)alkyl, aryl, (aryl)alkyl, heterocyclo, (heterocyclo)alkyl, alkyl, alkenyl or cycloalkyl; J is a bond, C1-4 alkylene or C1-4 alkenylene; R3 = R5 (R5 = NR6aR7a, heteroaryl, (heteroaryl)alkyl, aryl, arylalkyl, alkyl, etc.), OR5, C(:Z1)R5, OC(:Z1)R5, C(:Z1)OR5, NR8a1C(:Z1)R5, etc.; RX is one or more optional substituents, attached to any available ring carbon atom; addnl. details including provisos are given in the claims. Although the methods of preparation are not claimed, >600 example preps. are included.

=> d 6-10 L11 ibib abs

L11 ANSWER 6 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2003:434325 CAPLUS
 DOCUMENT NUMBER: 139:11876
 TITLE: Coating for nail care having antimicrobial properties
 INVENTOR(S): Beaurline, Dani'el J.
 PATENT ASSIGNEE(S): Almell, Ltd., USA
 SOURCE: PCT Int. Appl., 21 pp.

CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---|------|----------|-----------------|----------------|
| WO 2003045339 | A2 | 20030605 | WO 2002-US37141 | 20021119 <-- |
| WO 2003045339 | A3 | 20031016 | | |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW | | | | |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG | | | | |
| AU 2002364898 | A1 | 20030610 | AU 2002-364898 | 20021119 <-- |
| US 2005069504 | A1 | 20050331 | US 2004-496617 | 20041118 <-- |
| PRIORITY APPLN. INFO.: | | | US 2001-334529P | P 20011130 <-- |
| | | | WO 2002-US37141 | W 20021119 <-- |

AB The present invention includes a nail coating composition substantially free to totally free of aromatic solvents, ketones, and formaldehyde-containing resins. Instead, the nail coating composition of the instant invention may include the following nitrocellulose, maleic-modified rosin based resin and polyester resin as film forming polymers; sucrose acetate isobutyrate, Bu benzyl phthalate, and glyceryl tribenzoate as plasticizers; at least one vitamin; at least one UV blocking agent; at least one protein; at least one moisturizer; at least one smoothing agent; at least one adhesion promoter; at least one antifungal/antimicrobial agent; and a mixture of solvents. The solvents in the nail coating composition are aliphatic solvents; cycloaliph. solvents or combinations. Exemplary solvents include C4-10 alkanes, C3-10 esters, C2-10 alkanols, C4-10 cycloalkanes, C4-10 cycloaliph. esters, C4-10 cycloalkanols, and mixts. Thus, a formulation contained EtOAc 41.70, BuOAc 28.38, BuOH 4.66, Lowlite-24 0.002, nitrocellulose 13.16, Uniplex 670P 6.44, BYK-301 0.26, Sant-160 5.41, and Irgasan DP300 5.41%.

L11 ANSWER 7 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 2003:110866 CAPLUS
 DOCUMENT NUMBER: 138:153931
 TITLE: β -Alkylcarboxylic acid esters and process for manufacturing them
 INVENTOR(S): Kikukawa, Tadashi
 PATENT ASSIGNEE(S): Chemical Soft Kaihatsu Kenkyusho Y. K., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 5 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|------|----------|-----------------|--------------|
| JP 2003040842 | A | 20030213 | JP 2001-231664 | 20010731 <-- |
| PRIORITY APPLN. INFO.: | | | JP 2001-231664 | 20010731 <-- |

OTHER SOURCE(S): MARPAT 138:153931

AB Claimed are R1R2C(OCOR4)CH₂CO₂R₃ [R₁, R₂ = H, alkyl, etc.; or R1R2C = alicyclic hydrocarbon; R₃ = alkyl; R₄ = alkyl, etc.]. The title compds. are useful as materials for polymers and as intermediates for pharmaceuticals and agrochems. The process for preparing the title compds. is disclosed. Thus, 2-tert-butoxycarbonylmethyl-2-adamantyl methacrylate was prepared in 35% yield.

L11 ANSWER 8 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2002:748787 CAPLUS
 DOCUMENT NUMBER: 137:242196
 TITLE: NAALADase inhibitors useful for treatment of neurological and other diseases
 INVENTOR(S): Jackson, Paul F.; MacLin, Keith M.; Wang, Eric;
 Slusher, Barbara S.; Lapidus, Rena S.; Majer, Pavel
 PATENT ASSIGNEE(S): Guilford Pharmaceuticals Inc., USA
 SOURCE: U.S., 90 pp., Cont.-in-part of U. S. Ser. No. 228,391.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 3
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|------|----------|-----------------|-----------------|
| US 6458775 | B1 | 20021001 | US 1999-346711 | 19990702 <-- |
| US 6395718 | B1 | 20020528 | US 1998-110262 | 19980706 <-- |
| US 6265609 | B1 | 20010724 | US 1999-228391 | 19990112 <-- |
| ZA 2001000055 | A | 20021105 | ZA 2001-55 | 20010103 <-- |
| US 2003064912 | A1 | 20030403 | US 2002-119828 | 20020411 <-- |
| US 2003083374 | A1 | 20030501 | US 2002-164553 | 20020610 <-- |
| PRIORITY APPLN. INFO.: | | | US 1998-110186 | A2 19980706 <-- |
| | | | US 1998-110262 | A2 19980706 <-- |
| | | | US 1999-228391 | A2 19990112 <-- |
| | | | US 1999-346711 | A3 19990702 <-- |

AB The present invention relates to N-Acetylated α -Linked Acidic Dipeptidase (NAALADase) inhibitors enzyme activity, pharmaceutical compns. comprising such inhibitors, and methods of their use to inhibit NAALADase enzyme activity, thereby effecting neuronal activities, inhibiting angiogenesis, and treating glutamate abnormalities, compulsive disorders, prostate diseases, pain and diabetic neuropathy.

REFERENCE COUNT: 124 THERE ARE 124 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L11 ANSWER 9 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2002:10432 CAPLUS
 DOCUMENT NUMBER: 136:85669
 TITLE: Preparation of (e.g.) N-alkylaryl-N-aryl-N'-aryl ureas as glucagon antagonists/inverse agonists
 INVENTOR(S): Jorgensen, Anker Steen; Christensen, Inge Thoger; Kodra, Janos Tibor; Madsen, Peter; Behrens, Carsten; Sams, Christian; Lau, Jesper
 PATENT ASSIGNEE(S): Novo Nordisk A/S, Den.
 SOURCE: PCT Int. Appl., 201 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---|------|----------|-----------------|--------------|
| WO 2002000612 | A1 | 20020103 | WO 2001-DK435 | 20010621 <-- |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW | | | | |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, | | | | |

| | | | | |
|--|----|-----------------|-----------------|--------------|
| BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG | | | | |
| CA 2411552 | A1 | 20020103 | CA 2001-2411552 | 20010621 <-- |
| BR 2001011908 | A | 20030401 | BR 2001-11908 | 20010621 <-- |
| EP 1296942 | A1 | 20030402 | EP 2001-943189 | 20010621 <-- |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
IE, SI, LT, LV, FI, RO, MK, CY, AL, TR | | | | |
| HU 2003001501 | A2 | 20030828 | HU 2003-1501 | 20010621 <-- |
| JP 2004501897 | T | 20040122 | JP 2002-505360 | 20010621 <-- |
| US 2002143186 | A1 | 20021003 | US 2001-888137 | 20010622 <-- |
| US 6562807 | B2 | 20030513 | | |
| ZA 2002009713 | A | 20030911 | ZA 2002-9713 | 20021129 <-- |
| MX 2002PA12273 | A | 20030425 | MX 2002-PA12273 | 20021211 <-- |
| NO 2002006149 | A | 20030221 | NO 2002-6149 | 20021220 <-- |
| IN 2002CN02119 | A | 20050225 | IN 2002-CN2119 | 20021220 <-- |
| US 2004024045 | A1 | 20040205 | US 2003-372536 | 20030224 <-- |
| US 6953812 | B2 | 20051011 | | |
| PRIORITY APPLN. INFO.: | | | | |
| | | DK 2000-984 | A 20000623 <-- | |
| | | DK 2000-1734 | A 20001117 <-- | |
| | | US 2000-215059P | P 20000629 <-- | |
| | | US 2000-252320P | P 20001120 <-- | |
| | | WO 2001-DK435 | W 20010621 <-- | |
| | | US 2001-888137 | A1 20010622 <-- | |

OTHER SOURCE(S): MARPAT 136:85669

GI

AB Title compds. R1OC(O)-A-CR2R3-N(R4)-C(O)-Z-CHR5-N(E)-X-D [R1-5 = H, alkyl; A = C(O), CH-alkoxy, CHF; Z = (un)substituted arylene or a divalent radical derived from a 5 or 6 membered heteroarom. ring containing 1 or 2 heteroatoms selected from N, O and S; X = alkyl, acyl, amido, etc.; D = (un)substituted Ph, naphthyl, pyridyl, benzothiophenyl, etc.; E = (un)substituted cyclohexyl, Ph, benzyl, phenethyl, etc.; I] were prepared Examples include data for 73 compds., two glucagon receptor binding assays and a glucose-dependent insulinotropic peptide (GIP) receptor binding assay. E.g., 4-cyclohexylaniline was reductively alkylated with 4-formyl benzoic acid Me ester (MeOH, HOAc, NaCNBH3) in 87% yield. The amine was added to an isocyanate derived from 5-methoxy-3-trifluoromethylaniline (preparation given; CH2Cl2, room temperature) to give a urea as an oil that was saponified (EtOH, NaOH, room temperature, 16 h) to give the solid carboxylic acid

in 49% yield. The carboxylic acid was coupled to (R)-isoserine Et ester (DMF, HOBT, EDAC) followed by hydrolysis to give example compound II as a crystalline solid. In a glucagon receptor binding assay, compds. of the invention had IC50 < 1500 nM and many were below 250 nM. I are useful in the treatment or prevention of any diseases wherein a glucagon antagonistic action is beneficial, such as hyperglycemia, type 1 diabetes,

type 2 diabetes, disorders of lipid metabolism and obesity.
 REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS
 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L11 ANSWER 10 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2001:526067 CAPLUS
 DOCUMENT NUMBER: 135:107243
 TITLE: Preparation of tricyclic heterocycles for pharmaceutical use as herpes antiviral agents
 INVENTOR(S): Booth, Richard John; Josyula, Vara Prasad Venkata Nagendra; Meyer, Annette Lynn; Steinbaugh, Bruce Allan
 PATENT ASSIGNEE(S): Warner-Lambert Company, USA
 SOURCE: PCT Int. Appl., 124 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|--|------|----------|-----------------|-----------------|
| WO 2001051479 | A2 | 20010719 | WO 2000-US32571 | 20001130 <-- |
| WO 2001051479 | A3 | 20020214 | | |
| W: AE, AG, AL, AU, BA, BB, BG, BR, BZ, CA, CN, CR, CU, CZ, DM, DZ,
EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KP, KR, LC, LK, LR, LT,
LV, MA, MG, MK, MN, MX, MZ, NO, NZ, PL, RO, SG, SI, SK, SL, TR,
TT, UA, US, UZ, VN, YU, ZA, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF,
BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG | | | | |
| CA 2396560 | A1 | 20010719 | CA 2000-2396560 | 20001130 <-- |
| AU 200118085 | A | 20010724 | AU 2001-18085 | 20001130 <-- |
| EP 1248777 | A2 | 20021016 | EP 2000-980882 | 20001130 <-- |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
IE, SI, LT, LV, FI, RO, MK, CY, AL, TR | | | | |
| BR 2000016937 | A | 20021231 | BR 2000-16937 | 20001130 <-- |
| JP 2003519693 | T | 20030624 | JP 2001-551861 | 20001130 <-- |
| MX 2002PA05485 | A | 20021129 | MX 2002-PA5485 | 20020531 <-- |
| US 2003229073 | A1 | 20031211 | US 2002-169590 | 20020705 <-- |
| US 6800656 | B2 | 20041005 | | |
| US 2005075332 | A1 | 20050407 | US 2004-901953 | 20040728 <-- |
| PRIORITY APPLN. INFO.: | | | US 2000-174883P | P 20000107 <-- |
| | | | WO 2000-US32571 | W 20001130 <-- |
| | | | US 2002-169590 | A3 20020705 <-- |

OTHER SOURCE(S): MARPAT 135:107243
 GI

AB Tricyclic heterocycles, such as I [Ar = Ph, substituted Ph, benzoheterocyclyl, heterocyclyl; X, Y, Z = O, (CH₂)_m, S, SO, SO₂, NH, NR₈; R₁₋₅ = H, OH, NH₂, CN, NO₂, CF₃, OCF₃, halogen, dialkylamino, alkoxy, aminoalkyl, aminoaryl, aryl, heterocyclyl; R₆, R₇ = H, CF₃, alkyl, cycloalkyl, halogen, alkoxy, aminoalkyl, aminoaryl, heterocyclyl; R₈ = H, Ph, alkyl, cycloalkyl, substituted Ph; m = 1-3, n = 0-2], having useful antiviral activity against viruses of the herpes family were prepared for pharmaceutical use. Thus, dibenzofuran II was prepared by cyclocondensation of 2-dibenzofuranamine and 1,2-bis(bromomethyl)benzene in CH₂Cl₂ using Et₃N. The prepared heterocycles were tested for antiviral efficacy against HSV-1 using a yield reduction assay.

=> d 85-88 L11 ibib abs

L11 ANSWER 85 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1942:24856 CAPLUS
 DOCUMENT NUMBER: 36:24856
 ORIGINAL REFERENCE NO.: 36:3811d-e,3812a-b
 TITLE: Phthalimide-4-sulfonamides
 INVENTOR(S): Koberle, Karl; Braun, Willy; Hanusch, Fritz
 PATENT ASSIGNEE(S): General Aniline & Film Corp.
 DOCUMENT TYPE: Patent
 LANGUAGE: Unavailable
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|-------|----------|-----------------|--------------|
| US 2273444 | ----- | 19420217 | US 1939-299974 | 19391018 <-- |

AB A process is employed for producing a phthalimide-4-sulfonamide which comprises treating a 2-halobenzoic acid with chlorosulfonic acid, thereby converting it into the corresponding 5-sulfonyl chloride, then treating the sulfonyl chloride with NH₃ or a primary or secondary alkylamine, aralkylamine, cycloalkylamine, arylamine, heterocyclic amine or secondary cyclic nitrogenous base to form the corresponding 5-sulfonamide, and heating this amide with cuprous cyanide. Details are given of the production of phthalimide-4-sulfonamide, m. about 275°, and the anilide, m. 199°, piperidide, m. 234-5°, methylphenylamide, diphenylamide, m. 248°, dicyclohexylamide, m. 327-8°, 1',2',3',4'-tetrahydroquinolylamide, m. 335°, methylamide, m. 213-14°, (N-ethyl-3'-carbazolyl)amide, m. 238°, and benzylamide, m. 237-9°, and a disulfonic acid dimethylamide of 2,3-naphthalenedicarboxylic acid imide, m. 300°. Various of the compds. formed may be used as intermediates or therapeutic agents.

L11 ANSWER 86 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1942:5487 CAPLUS
 DOCUMENT NUMBER: 36:5487
 ORIGINAL REFERENCE NO.: 36:911d-f
 TITLE: Substituted dihydroxybiphenyls
 INVENTOR(S): Britton, Edgar C.; Livak, John E.
 PATENT ASSIGNEE(S): The Dow Chemical Co.
 DOCUMENT TYPE: Patent
 LANGUAGE: Unavailable
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|-------|----------|-----------------|--------------|
| US 2260739 | ----- | 19411028 | US 1939-280846 | 19390623 <-- |

AB 4,4'-Dihydroxybiphenyl compds. are produced having aralkyl groups in the 3,3'-positions. Such compds. are generally soluble in solvents such as acetone, petroleum ether, CC₁₄ and benzene, and may be used as intermediates in the preparation of dyes, etc., or as plasticizers, wetting

agents, pharmaceuticals, toxicants, etc. They may be prepared by forming the p-iodo derivative of the corresponding o-alkyl- or -cycloalkylphenol and thereafter condensing 2 mols. of such iodo derivative to form the desired dihydroxybiphenyl compound. Since the free hydroxyl group of the phenol is reactive under the conditions employed for these reactions, it is necessary to protect the hydroxyl group, for example, by etherification, during the iodination and condensation reactions and thereafter regenerate the free phenol. Details are given of the production of the following 4,4'-dihydroxybiphenyls: 3,3'-diisobutyl, m. 136-8°; 3,3'-dicyclohexyl, m. 209-213°; and 3,3'-dibenzyl, m. about 151-8°; and general mention is made of the possible similar production of other compds. such as 3,3'-di-tert-butyl, 3,3'-diheptyl, 3,3'-diisoamyl, 3,3'-di-tert-octyl, 3,3'-diphenethyl, 3,3'-dicyclopentyl, 3,3'-bis-3-phenylpropyl, 3,3'-didodecyl, etc.

L11 ANSWER 87 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1940:31045 CAPLUS
 DOCUMENT NUMBER: 34:31045
 ORIGINAL REFERENCE NO.: 34:4743c-d
 TITLE: C-Cyclohexyldiphenylamines.
 INVENTOR(S): Smith, Frank B.; Moll, Harold W.
 PATENT ASSIGNEE(S): Dow Chemical Co.
 DOCUMENT TYPE: Patent
 LANGUAGE: Unavailable
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|-------|----------|-----------------|--------------|
| US 2194079 | ----- | 19400319 | US 1938-205527 | 19380502 <-- |

AB By heating a mixture of diphenylamine and cyclohexene to about 150-250° in the presence of an acid-activated bleaching earth, C-cyclohexylated diphenylamines are produced suitable for use as plasticizing agents in cellulose acetate or ethylcellulose compns., etc., as rubber antioxidants, and as intermediates for the preparation of dyes and pharmaceutical compds., etc. By fractionation, sep. products such as 4-cyclohexyldiphenylamine, 4,4'-dicyclohexyldiphenylamine, etc., may be obtained.

L11 ANSWER 88 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1930:10602 CAPLUS
 DOCUMENT NUMBER: 24:10602
 ORIGINAL REFERENCE NO.: 24:1183h-i
 TITLE: Therapeutic pyridine and piperidine derivatives
 INVENTOR(S): Boehringer, A.
 PATENT ASSIGNEE(S): C. H. Boehringer Sohn
 DOCUMENT TYPE: Patent
 LANGUAGE: Unavailable
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|-------|----------|-----------------|------|
| GB 314019 | ----- | 19280621 | GB | <-- |

AB Pyridine and piperidine derivs. containing the group CH₂CO.R in the α-position or in the α,α'-positions are subjected to catalytic hydrogenation, by which one or both of the ketone groups is wholly or partially reduced, and by which the pyridine nucleus or one or both of the carboxylic residues (when R represents such) may be hydrogenated, according to reaction conditions. Examples are given of the production of α,α'-diphenylethylpyridine and α,α'-dicyclohexylhydroxyethylpiperidine.

=> d 8-85 L11 ibib abs

L11 ANSWER 8 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2002:748787 CAPLUS
 DOCUMENT NUMBER: 137:242196
 TITLE: NAALADase inhibitors useful for treatment of neurological and other diseases
 INVENTOR(S): Jackson, Paul F.; MacLin, Keith M.; Wang, Eric;
 Slusher, Barbara S.; Lapidus, Rena S.; Majer, Pavel
 PATENT ASSIGNEE(S): Guilford Pharmaceuticals Inc., USA
 SOURCE: U.S., 90 pp., Cont.-in-part of U. S. Ser. No. 228,391.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 3
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|------|----------|-----------------|-----------------|
| US 6458775 | B1 | 20021001 | US 1999-346711 | 19990702 <-- |
| US 6395718 | B1 | 20020528 | US 1998-110262 | 19980706 <-- |
| US 6265609 | B1 | 20010724 | US 1999-228391 | 19990112 <-- |
| ZA 2001000055 | A | 20021105 | ZA 2001-55 | 20010103 <-- |
| US 2003064912 | A1 | 20030403 | US 2002-119828 | 20020411 <-- |
| US 2003083374 | A1 | 20030501 | US 2002-164553 | 20020610 <-- |
| PRIORITY APPLN. INFO.: | | | US 1998-110186 | A2 19980706 <-- |
| | | | US 1998-110262 | A2 19980706 <-- |
| | | | US 1999-228391 | A2 19990112 <-- |
| | | | US 1999-346711 | A3 19990702 <-- |

AB The present invention relates to N-Acetylated α -Linked Acidic Dipeptidase (NAALADase) inhibitors enzyme activity, pharmaceutical compns. comprising such inhibitors, and methods of their use to inhibit NAALADase enzyme activity, thereby effecting neuronal activities, inhibiting angiogenesis, and treating glutamate abnormalities, compulsive disorders, prostate diseases, pain and diabetic neuropathy.

REFERENCE COUNT: 124 THERE ARE 124 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L11 ANSWER 9 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2002:10432 CAPLUS
 DOCUMENT NUMBER: 136:85669
 TITLE: Preparation of (e.g.) N-alkylaryl-N-aryl-N'-aryl ureas as glucagon antagonists/inverse agonists
 INVENTOR(S): Jorgensen, Anker Steen; Christensen, Inge Thoger; Kodra, Janos Tibor; Madsen, Peter; Behrens, Carsten; Sams, Christian; Lau, Jesper
 PATENT ASSIGNEE(S): Novo Nordisk A/S, Den.
 SOURCE: PCT Int. Appl., 201 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|--|------|----------|-----------------|--------------|
| WO 2002000612 | A1 | 20020103 | WO 2001-DK435 | 20010621 <-- |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,
LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU,
ZA, ZW | | | | |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, | | | | |

| | | | | |
|--|--|-----------------|-----------------|--------------|
| BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG | | | | |
| CA 2411552 | A1 | 20020103 | CA 2001-2411552 | 20010621 <-- |
| BR 2001011908 | A | 20030401 | BR 2001-11908 | 20010621 <-- |
| EP 1296942 | A1 | 20030402 | EP 2001-943189 | 20010621 <-- |
| R: AT, BE, CH, DE, DK, ES, FR, IE, SI, LT, LV, FI, RO, MK, | GB, GR, IT, LI, LU, NL, SE, MC, PT, CY, AL, TR | | | |
| HU 2003001501 | A2 | 20030828 | HU 2003-1501 | 20010621 <-- |
| JP 2004501897 | T | 20040122 | JP 2002-505360 | 20010621 <-- |
| US 2002143186 | A1 | 20021003 | US 2001-888137 | 20010622 <-- |
| US 6562807 | B2 | 20030513 | | |
| ZA 2002009713 | A | 20030911 | ZA 2002-9713 | 20021129 <-- |
| MX 2002PA12273 | A | 20030425 | MX 2002-PA12273 | 20021211 <-- |
| NO 2002006149 | A | 20030221 | NO 2002-6149 | 20021220 <-- |
| IN 2002CN02119 | A | 20050225 | IN 2002-CN2119 | 20021220 <-- |
| US 2004024045 | A1 | 20040205 | US 2003-372536 | 20030224 <-- |
| US 6953812 | B2 | 20051011 | | |
| PRIORITY APPLN. INFO.: | | | | |
| | | DK 2000-984 | A 20000623 <-- | |
| | | DK 2000-1734 | A 20001117 <-- | |
| | | US 2000-215059P | P 20000629 <-- | |
| | | US 2000-252320P | P 20001120 <-- | |
| | | WO 2001-DK435 | W 20010621 <-- | |
| | | US 2001-888137 | A1 20010622 <-- | |

OTHER SOURCE(S): MARPAT 136:85669

GI

AB Title compds. R1OC(O)-A-CR2R3-N(R4)-C(O)-Z-CHR5-N(E)-X-D [R1-5 = H, alkyl; A = C(O), CH-alkoxy, CHF; Z = (un)substituted arylene or a divalent radical derived from a 5 or 6 membered heteroarom. ring containing 1 or 2 heteroatoms selected from N, O and S; X = alkyl, acyl, amido, etc.; D = (un)substituted Ph, naphthyl, pyridyl, benzothiophenyl, etc.; E = (un)substituted cyclohexyl, Ph, benzyl, phenethyl, etc.; I] were prepared Examples include data for 73 compds., two glucagon receptor binding assays and a glucose-dependent insulinotropic peptide (GIP) receptor binding assay. E.g., 4-cyclohexylaniline was reductively alkylated with 4-formyl benzoic acid Me ester (MeOH, HOAc, NaCNBH3) in 87% yield. The amine was added to an isocyanate derived from 5-methoxy-3-trifluoromethylaniline (preparation given; CH2Cl2, room temperature) to give a urea as an oil that was saponified (EtOH, NaOH, room temperature, 16 h) to give the solid carboxylic acid

in 49% yield. The carboxylic acid was coupled to (R)-isoserine Et ester (DMF, HOBT, EDAC) followed by hydrolysis to give example compound II as a crystalline solid. In a glucagon receptor binding assay, compds. of the invention had IC50 < 1500 nM and many were below 250 nM. I are useful in the treatment or prevention of any diseases wherein a glucagon antagonistic action is beneficial, such as hyperglycemia, type 1 diabetes,

type 2 diabetes, disorders of lipid metabolism and obesity.
 REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS
 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L11 ANSWER 10 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2001:526067 CAPLUS
 DOCUMENT NUMBER: 135:107243
 TITLE: Preparation of tricyclic heterocycles for pharmaceutical use as herpes antiviral agents
 INVENTOR(S): Booth, Richard John; Josyula, Vara Prasad Venkata Nagendra; Meyer, Annette Lynn; Steinbaugh, Bruce Allan
 PATENT ASSIGNEE(S): Warner-Lambert Company, USA
 SOURCE: PCT Int. Appl., 124 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|--|------|----------|-----------------|-----------------|
| WO 2001051479 | A2 | 20010719 | WO 2000-US32571 | 20001130 <-- |
| WO 2001051479 | A3 | 20020214 | | |
| W: AE, AG, AL, AU, BA, BB, BG, BR, BZ, CA, CN, CR, CU, CZ, DM, DZ,
EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KP, KR, LC, LK, LR, LT,
LV, MA, MG, MK, MN, MX, MZ, NO, NZ, PL, RO, SG, SI, SK, SL, TR,
TT, UA, US, UZ, VN, YU, ZA, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF,
BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG | | | | |
| CA 2396560 | A1 | 20010719 | CA 2000-2396560 | 20001130 <-- |
| AU 200118085 | A | 20010724 | AU 2001-18085 | 20001130 <-- |
| EP 1248777 | A2 | 20021016 | EP 2000-980882 | 20001130 <-- |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
IE, SI, LT, LV, FI, RO, MK, CY, AL, TR | | | | |
| BR 2000016937 | A | 20021231 | BR 2000-16937 | 20001130 <-- |
| JP 2003519693 | T | 20030624 | JP 2001-551861 | 20001130 <-- |
| MX 2002PA05485 | A | 20021129 | MX 2002-PA5485 | 20020531 <-- |
| US 2003229073 | A1 | 20031211 | US 2002-169590 | 20020705 <-- |
| US 6800656 | B2 | 20041005 | | |
| US 2005075332 | A1 | 20050407 | US 2004-901953 | 20040728 <-- |
| PRIORITY APPLN. INFO.: | | | US 2000-174883P | P 20000107 <-- |
| | | | WO 2000-US32571 | W 20001130 <-- |
| | | | US 2002-169590 | A3 20020705 <-- |

OTHER SOURCE(S): MARPAT 135:107243
 GI

AB Tricyclic heterocycles, such as I [Ar = Ph, substituted Ph, benzoheterocyclyl, heterocyclyl; X, Y, Z = O, (CH₂)_m, S, SO, SO₂, NH, NR₈; R₁₋₅ = H, OH, NH₂, CN, NO₂, CF₃, OCF₃, halogen, dialkylamino, alkoxy, aminoalkyl, aminoaryl, aryl, heterocyclyl; R₆, R₇ = H, CF₃, alkyl, cycloalkyl, halogen, alkoxy, aminoalkyl, aminoaryl, heterocyclyl; R₈ = H, Ph, alkyl, cycloalkyl, substituted Ph; m = 1-3, n = 0-2], having useful antiviral activity against viruses of the herpes family were prepared for pharmaceutical use. Thus, dibenzofuran II was prepared by cyclocondensation of 2-dibenzofuranamine and 1,2-bis(bromomethyl)benzene in CH₂Cl₂ using Et₃N. The prepared heterocycles were tested for antiviral efficacy against HSV-1 using a yield reduction assay.

L11 ANSWER 11 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 2001:380565 CAPLUS

DOCUMENT NUMBER: 134:366869

TITLE: Benzoxa- and benzthiazoles and their pharmaceutical compositions and use as steroid sulfatase inhibitors

INVENTOR(S): Billich, Andreas; Schreiner, Erwin Paul;

Wolff-Winiski, Barbara

PATENT ASSIGNEE(S): Novartis A.-G., Switz.; Novartis Erfindungen Verwaltungsgesellschaft m.b.H.

SOURCE: PCT Int. Appl., 36 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---|------|----------|-----------------|----------------|
| WO 2001036398 | A1 | 20010525 | WO 2000-EP11475 | 20001117 <-- |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM | | | | |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG | | | | |
| EP 1230227 | A1 | 20020814 | EP 2000-981270 | 20001117 <-- |
| EP 1230227 | B1 | 20040623 | | |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR | | | | |
| JP 2003514806 | T | 20030422 | JP 2001-538887 | 20001117 <-- |
| AT 269853 | T | 20040715 | AT 2000-981270 | 20001117 <-- |
| PT 1230227 | T | 20041029 | PT 2000-981270 | 20001117 <-- |
| ES 2223620 | T3 | 20050301 | ES 2000-981270 | 20001117 <-- |
| US 6716865 | B1 | 20040406 | US 2002-130567 | 20020517 <-- |
| HK 1049329 | A1 | 20050324 | HK 2002-109307 | 20021223 <-- |
| PRIORITY APPLN. INFO.: | | | GB 1999-27439 | A 19991119 <-- |
| | | | GB 2000-7511 | A 20000328 <-- |
| | | | WO 2000-EP11475 | W 20001117 <-- |

OTHER SOURCE(S): MARPAT 134:366869

GI

AB Benzoxazoles and benzothiazoles which are inhibitors of steroid sulfatase are disclosed. In particular, benzoxazoles and benzothiazoles which are substituted at the 2 position, and which carry a sulfamic acid ester group bound via oxygen to the Ph part of the ring structure, are claimed. The compds. especially include those of formula I [sulfamate ester bound at position

5 or 6 of benzazole ring; X = O, S; R1, R2 = H, alkyl; or one of R1 and R2 = H, and the other = acyl or alkoxy carbonyl; R3 = alk(en/yn)yl, cycloalk(en)yl, aryl, acyl, cycloalkyl(idene)(alk(en)yl), aralkyl, heteroaryl, etc.] in free or salt form. The compds. can be prepared by sulfamoylation of corresponding compds. carrying a hydroxy group on the Ph part of the ring structure, or by N-substitution. They are indicated for use as steroid sulfatase inhibitors in the prevention and treatment of illnesses responsive to steroid sulfatase inhibition, such as acne, seborrhea, androgenic alopecia, hirsutism, estrogen- and androgen-dependent cancer, inflammatory or autoimmune diseases, skin disorders, or decreased cognitive function. Approx. 60 examples are given. For instance, (adamantan-1-yl)acetic acid was amidated with 2,4-dihydroxyaniline-HCl, and the resultant 2-(adamantan-1-yl)-N-(2,4-dihydroxyphenyl)acetamide was cyclized by Mitsunobu reaction to give 2-(adamantan-1-ylmethyl)benzoxazol-6-ol. Reaction of this with H₂NSO₂Cl in the presence of 2,6-di-tert-butyl-4-methylpyridine gave title compound II. The analog of II with R3 = adamant-2-ylidene methyl was deemed the most preferred agent of the invention. Compds. I had IC₅₀ values comparable to those of estrone 3-O-sulfamate in two bioassays for inhibition of steroid sulfatase in vitro.

REFERENCE COUNT: 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L11 ANSWER 12 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 2001:31473 CAPLUS

DOCUMENT NUMBER: 134:100864

TITLE: Indazole compounds and pharmaceutical compositions for inhibiting protein kinases, and methods for their use

INVENTOR(S): Kania, Robert Steven; Bender, Steven Lee; Borchardt, Allen J.; Braganza, John F.; Cripps, Stephan James; Hua, Ye; Johnson, Michael David; Johnson, Theodore Otto, Jr.; Luu, Hiep The; Palmer, Cynthia Louise; Reich, Siegfried Heinz; Tempczyk-russell, Anna Maria; Teng, Min; Thomas, Christine; Varney, Michael David; Wallace, Michael Brennan

PATENT ASSIGNEE(S): Agouron Pharmaceuticals, Inc., USA

SOURCE: PCT Int. Appl., 439 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 2
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---|------|----------|-----------------|-----------------|
| WO 2001002369 | A2 | 20010111 | WO 2000-US18263 | 20000630 <-- |
| WO 2001002369 | A3 | 20020425 | | |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, MZ, SZ, BE, CY, FR, GR, IE, IT, MC, NL, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG | | | | |
| RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG | | | | |
| CA 2383630 | A1 | 20010111 | CA 2000-2383630 | 20000630 <-- |
| BR 2000012352 | A | 20020514 | BR 2000-12352 | 20000630 <-- |
| EP 1218348 | A2 | 20020703 | EP 2000-943375 | 20000630 <-- |
| EP 1218348 | B1 | 20071024 | | |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL | | | | |
| HU 2002002490 | A2 | 20021128 | HU 2002-2490 | 20000630 <-- |
| JP 2003503481 | T | 20030128 | JP 2001-507809 | 20000630 <-- |
| JP 3878849 | B2 | 20070207 | | |
| NZ 516676 | A | 20030926 | NZ 2000-516676 | 20000630 <-- |
| CN 1495171 | A | 20040512 | CN 2003-154858 | 20000630 <-- |
| AU 777701 | B2 | 20041028 | AU 2000-57852 | 20000630 <-- |
| AP 1486 | A | 20051231 | AP 2002-2392 | 20000630 <-- |
| W: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW | | | | |
| EP 1614683 | A1 | 20060111 | EP 2005-15902 | 20000630 <-- |
| EP 1614683 | B1 | 20071121 | | |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL | | | | |
| NO 2001005797 | A | 20020301 | NO 2001-5797 | 20011128 <-- |
| NO 322507 | B1 | 20061016 | | |
| ZA 2001010061 | A | 20030206 | ZA 2001-10061 | 20011206 <-- |
| MX 2001PA12795 | A | 20020902 | MX 2001-PA12795 | 20011211 <-- |
| BG 106380 | A | 20020930 | BG 2002-106380 | 20020201 <-- |
| HK 1048813 | A1 | 20041210 | HK 2003-101000 | 20030212 <-- |
| HK 1065037 | A1 | 20060825 | HK 2004-107797 | 20030212 <-- |
| US 2004171634 | A1 | 20040902 | US 2003-326755 | 20030213 <-- |
| US 6884890 | B2 | 20050426 | | |
| NO 2006000596 | A | 20020301 | NO 2006-596 | 20060206 <-- |
| JP 2006348043 | A | 20061228 | JP 2006-232927 | 20060830 <-- |
| JP 3969669 | B2 | 20070905 | | |
| IN 2007DN04518 | A | 20070831 | IN 2007-DN4518 | 20070613 <-- |
| PRIORITY APPLN. INFO.: | | | | |
| | | | US 1999-142130P | P 19990702 <-- |
| | | | EP 2000-943375 | A3 20000630 <-- |
| | | | JP 2001-507809 | A3 20000630 <-- |
| | | | US 2000-609335 | B3 20000630 <-- |
| | | | WO 2000-US18263 | W 20000630 <-- |
| | | | US 2001-983786 | A3 20011025 <-- |
| | | | IN 2001-1148 | A3 20011212 <-- |
| | | | HK 2003-101000 | A 20030212 |

OTHER SOURCE(S):
 GI

MARPAT 134:100864

AB Indazole compds. I [R₁ = substituted or unsubstituted aryl or heteroaryl, R₃CH:CH, R₃N:CH; R₂ = substituted or unsubstituted aryl, heteroaryl, Y-X; R₃ = substituted or unsubstituted alkyl alkenyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl; Y = O, S, C(:CH₂), CO, SO, SO₂, alkylidene, NH, N(C₁-C₈ alkyl); X = substituted or unsubstituted aryl, heteroaryl, NH(alkyl), NH(cycloalkyl), NH(heterocycloalkyl), NH(aryl), NH(heteroaryl), NH(alkoxy), NH(dialkylamide)] and their pharmaceutically acceptable prodrugs, active metabolites, and salts are disclosed. The compds. modulate and/or inhibit the activity of certain protein kinases. In particular, I and pharmaceutical compns. containing them are capable of mediating tyrosine kinase signal transduction, and thereby modulate and/or inhibit unwanted cell proliferation. The invention is also directed to the therapeutic or prophylactic use of pharmaceutical compns. containing such compds., and to methods of treating cancer and other disease states associated with unwanted angiogenesis and/or cellular proliferation, such as diabetic retinopathy, neovascular glaucoma, rheumatoid arthritis, and psoriasis, by administering effective amts. of such compds. E.g., I [R₁ = (E)-3,4-(MeO)2C₆H₃CH:CH; R₂ = 4-HO-3-MeOC₆H₃] (II) was prepared from 6-aminoindazole by diazotization and substitution with iodide, protection of the indazole nitrogen with 2,4,6-Me₃C₆H₂SO₂Cl, coupling of the regioisomeric mixture with 4-(methoxymethoxy)-3-methoxybenzeneboronic acid in the presence of dichlorobis(triphenylphosphine)palladium, and deprotection of the indazole moiety and iodination at the 3-position of the indazole. Treatment of the 3-indazolyl iodide with sec-butyllithium, phenyllithium, and DMF, regioselective protection of the indazole with 2,4,6-Me₃C₆H₂SO₂Cl, olefination with 3,4-dimethoxybenzyltriphenylphosphonium bromide, deprotection of the indazole, deprotection of the methoxymethyl group, and equilibration of the double bond with iodine gave II. Biol. data on protein kinase inhibition, cell proliferation inhibition, neovascularization inhibition, and i.p. and oral bioavailability, are given.

L11 ANSWER 13 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 2000:321456 CAPLUS
 DOCUMENT NUMBER: 132:352791
 TITLE: Pharmaceutical suppository composites for fever and influenza and method of producing the composites
 INVENTOR(S): Hsu, Wu-ching; Keng, Su-hsien
 PATENT ASSIGNEE(S): Taiwan
 SOURCE: U.S., 17 pp.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|---|----------|-----------------|--------------|
| US 6063383 | A | 20000516 | US 1999-238744 | 19990128 <-- |
| PRIORITY APPLN. INFO.: | | | US 1999-238744 | 19990128 <-- |
| AB | Pharmaceutical suppository composites for fever and influenza and a method of producing them are disclosed. More particularly, the composites combine all the advantages of traditional Chinese medicine, | | | |

Western medicine, and phys. temperature reduction to relieve symptoms of influenza.

Poisonous side effects can be avoided by using the disclosed suppositories. The pharmaceutical suppository composites comprise 2750-3250 g radix bupleuri scorzoneraifolium wild, 1750-2250 g flos lonicerae japonicae, 1950-2450 g fructus forsythiae, 1650-2150 g fructus arctii, 2550-3050 g herba schizonepetae, 50-550 g calculus bovis, and 870-1370 g of excipients.

REFERENCE COUNT: 1 THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L11 ANSWER 14 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 2000:319704 CAPLUS

DOCUMENT NUMBER: 132:352000

TITLE: Identification of difficultly degradable nitrogen compounds in communal wastewater

AUTHOR(S): Mohle, Edda

CORPORATE SOURCE: Forschungs- und Entwicklungsinstitut fur Industrie- und Siedlungswasserwirtschaft sowie Abfallwirtschaft e.V., Stuttgart, Germany

SOURCE: Stuttgarter Berichte zur Siedlungswasserwirtschaft (2000), 155, 1-3, 5-174

CODEN: SBSWBO; ISSN: 0585-7953

PUBLISHER: R. Oldenbourg Verlag

DOCUMENT TYPE: Journal

LANGUAGE: German

AB Methods for the determination of total and dissolved organic N (DON) in municipal

wastewater, including the identification of heavily degradable single compds., were developed. A measurement apparatus for the determination of the total-N

content after high-temperature disintegration and chemiluminescence detection is

presented. The sum parameter for DON was determined directly with the help of the high-temperature disintegration for standardized solns. due to the effective

separation of the inorg. N with ion exchangers. Therefore, the determination of real

case DON was carried out with the difference method measuring an average value of 1.89 mg/L in the outlet of 9 communal wastewater treatment plants. A new developed GC-MS screening method allowed to identify 47 low-mol., polar and semipolar compds. including various pharmaceuticals and their metabolites. Several expts. were carried out in the µg/L range online with HPLC-MS-MS to test the aerobic degradability of the identified substances in an activated sludge process. For the most substances a significant reduction occurred in the first 15 min. that indicated an adsorption by the activated sludge. An addnl. decrease of some substances to <1% during several hours was interpreted as primary decomposition On the basis of known metabolites the decomposition schemes were investigated. Acetaminophenolglucuronide is presented as example for the decomposition of a pharmaceutical substance and hydrocodone was identified as metabolite of dihydrocodeine.

REFERENCE COUNT: 108 THERE ARE 108 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L11 ANSWER 15 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 2000:34855 CAPLUS

DOCUMENT NUMBER: 132:88185

TITLE: NAALADase inhibitors useful for treatment of neurological and other diseases

INVENTOR(S): Jackson, Paul F.; Maclin, Keith M.; Wang, Eric;

PATENT ASSIGNEE(S): Slusher, Barbara S.; Lapidus, Rena S.; Majer, Pavel
Guilford Pharmaceuticals Inc., USA

SOURCE: PCT Int. Appl., 234 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 3
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---|------|----------|-----------------|--------------|
| WO 20000001668 | A2 | 20000113 | WO 1999-US15128 | 19990702 <-- |
| WO 20000001668 | A3 | 20000921 | | |
| W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ,
DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW | | | | |
| RW: GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW, AT, BE, CH, CY, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG | | | | |
| US 6395718 | B1 | 20020528 | US 1998-110262 | 19980706 <-- |
| US 6265609 | B1 | 20010724 | US 1999-228391 | 19990112 <-- |
| CA 2337797 | A1 | 20000113 | CA 1999-2337797 | 19990702 <-- |
| AU 9948583 | A | 20000124 | AU 1999-48583 | 19990702 <-- |
| AU 770258 | B2 | 20040219 | | |
| EP 1093453 | A1 | 20010425 | EP 1999-932229 | 19990702 <-- |
| EP 1093453 | B1 | 20050928 | | |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
IE, FI | | | | |
| BR 9912516 | A | 20010918 | BR 1999-12516 | 19990702 <-- |
| JP 2002519408 | T | 20020702 | JP 2000-558073 | 19990702 <-- |
| NZ 508978 | A | 20050324 | NZ 1999-508978 | 19990702 <-- |
| AT 305449 | T | 20051015 | AT 1999-932229 | 19990702 <-- |
| RU 2268881 | C2 | 20060127 | RU 2001-103136 | 19990702 <-- |
| ZA 2001000055 | A | 20021105 | ZA 2001-55 | 20010103 <-- |
| NO 2001000052 | A | 20010302 | NO 2001-52 | 20010104 <-- |
| MX 2001PA00144 | A | 20021017 | MX 2001-PA144 | 20010108 <-- |
| IN 2001KN00030 | A | 20050311 | IN 2001-KN30 | 20010108 <-- |
| HK 1036617 | A1 | 20060203 | HK 2001-107357 | 20011019 <-- |
| US 2003064912 | A1 | 20030403 | US 2002-119828 | 20020411 <-- |
| PRIORITY APPLN. INFO.: US 1998-110186 A 19980706 <--
US 1998-110262 A 19980706 <--
US 1999-228391 A 19990112 <--
WO 1999-US15128 W 19990702 <-- | | | | |

OTHER SOURCE(S): MARPAT 132:88185

AB The present invention relates to N-Acetylated α -Linked Acidic Dipeptidase (NAALADase) inhibitors enzyme activity, pharmaceutical compns. comprising such inhibitors, and methods of their use to inhibit NAALADase enzyme activity, thereby effecting neuronal activities, inhibiting angiogenesis, and treating glutamate abnormalities, compulsive disorders, prostate diseases, pain and diabetic neuropathy.

L11 ANSWER 16 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1997:618765 CAPLUS
 DOCUMENT NUMBER: 127:264327
 TITLE: Fluorine-containing polymers prepared by using fluorine-containing azo initiators
 INVENTOR(S): Shiraki, Kazuo; Shimamura, Nobutaka
 PATENT ASSIGNEE(S): Wako Pure Chemical Industries, Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 10 pp.
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|------|-----------------|------|
|------------|------|------|-----------------|------|

 JP 09241307 A 19970916 JP 1996-84776 19960313 <--
 PRIORITY APPLN. INFO.: JP 1996-84776 19960313 <--
 AB Title polymers, useful for antifouling coatings and hair cosmetics
 with excellent elasticity and setting power, comprise F-containing segments
 derived from fluorine-containing azo compds., and segments derived from
 monomers. The polymers are prepared by polymerizing the monomers in the
 presence
 of F-containing azo compds. Thus, reacting 10.1 g 2-perfluoroctylethanol
 with 3.0 g 4,4'-azobis(4-cyanopentanoic acid) at 20-25° in MeCN in
 the presence of dicyclohexyl carbodiimide and
 4-dimethylaminopyridine gave a F-containing azo compound, 1.0 g of which was
 heated with 100 g Me methacrylate at 70° in PhMe to give a F-containing
 copolymer (number- and weight-average mol. weight 85,900 and 139,000, resp.)
 providing
 film of water contact angle 96.6°.

L11 ANSWER 17 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1997:366022 CAPLUS
 DOCUMENT NUMBER: 127:17391
 TITLE: Preparation of ethers by hydrogenation of carbonyl
 compounds
 INVENTOR(S): Fujii, Yasuyuki; Furugaki, Kuwa; Kita, Katsuki
 PATENT ASSIGNEE(S): Kao Corp., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 7 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|------|----------|-----------------|----------------|
| JP 09095461 | A | 19970408 | JP 1996-133204 | 19960528 <-- |
| PRIORITY APPLN. INFO.: | | | JP 1995-191582 | A 19950727 <-- |

OTHER SOURCE(S): CASREACT 127:17391; MARPAT 127:17391
 AB R1R2CHOCHR1R2 (R1-2 = H, C1-20 linear or branched alkyl, alkenyl; CR1R2
 may be a ring), useful as solvents and for cosmetics,
 lubricants, detergents, etc., are prepared by treatment of R1R2CO with
 catalysts, preferably Pd, Pd(OH)2, or Pd oxides supported on C, Al2O3,
 SiO2-Al2O3, or SiO2, under a H atmospheric PrCHO was autoclaved with Pd/C
 under
 60 kg/cm2 H at 150° under stirring for 8 h to give 90% Bu2O.

L11 ANSWER 18 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1997:145195 CAPLUS
 DOCUMENT NUMBER: 126:143919
 TITLE: Process for producing ethers
 INVENTOR(S): Fujii, Yasuyuki; Furugaki, Hisakazu; Kita, Katsumi;
 Uno, Mitsuru; Tamura, Eiko; Matsumoto, Hiromasa
 PATENT ASSIGNEE(S): Kao Corporation, Japan
 SOURCE: Eur. Pat. Appl., 38 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---------------|------|----------|-----------------|--------------|
| EP 753500 | A2 | 19970115 | EP 1996-111314 | 19960712 <-- |
| EP 753500 | A3 | 19970402 | | |
| EP 753500 | B1 | 20070307 | | |
| R: DE, FR, GB | | | | |
| JP 09202743 | A | 19970805 | JP 1996-138231 | 19960531 <-- |

| | | | | |
|------------------------|----|----------|----------------|----------------|
| JP 3025754 | B2 | 20000327 | | |
| US 5914430 | A | 19990622 | US 1996-675923 | 19960705 <-- |
| CN 1148584 | A | 19970430 | CN 1996-112106 | 19960712 <-- |
| CN 1066706 | B | 20010606 | | |
| PRIORITY APPLN. INFO.: | | | JP 1995-176089 | A 19950712 <-- |
| | | | JP 1995-301150 | A 19951120 <-- |

OTHER SOURCE(S): MARPAT 126:143919

AB Ethers (e.g., dicyclohexyl ether), useful as solvents, cosmetics, detergents, lubricants, emulsifiers, etc., are produced by reacting: (a) a hydroxy compound (e.g., cyclohexanol) with a carbonyl compound (e.g., cyclohexanone), or (b) a carbonyl compound under H₂ in the presence of a catalyst. The reaction is carried out while removing produced water by using a drying agent (e.g., silica gel) during the reaction, by distilling off the water, or by blowing gases (e.g., H₂) through the reaction system.

L11 ANSWER 19 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1996:699889 CAPLUS

DOCUMENT NUMBER: 126:16407

TITLE: Photocured polymers in ion-selective electrode membranes. Part 6: Photopolymerized lithium sensitive ion-selective electrodes for flow injection potentiometry

AUTHOR(S): Farrell, J. R.; Iles, P. J.; Dimitrakopoulos, T.

CORPORATE SOURCE: Department of Applied Chemistry, Royal Melbourne Institute of Technology, Melbourne, Victoria, 3001, Australia

SOURCE: Analytica Chimica Acta (1996), 335(1-2), 111-116

CODEN: ACACAM; ISSN: 0003-2670

PUBLISHER: Elsevier

DOCUMENT TYPE: Journal

LANGUAGE: English

AB A photocured lithium ion-selective electrode, based on the ionophore N,N-dicyclohexyl-N',N'-diisobutyl-cis-cyclohexane-1,2-dicarboxamide (ETH 1810), was developed and evaluated. The robust nature of the photocured membrane made it ideally suitable for measurements in flow injection potentiometry within a linear range 0.1-10-3M, detection limit of 5+10-4M, and sample throughput of 150h-1. The electrode was used successfully to determine lithium levels in pharmaceutical lithium carbonate tablets.

L11 ANSWER 20 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1996:693822 . CAPLUS

DOCUMENT NUMBER: 125:308714

TITLE: Cosmetics containing aqueous polymer emulsions and film-forming agents

INVENTOR(S): Tsutsumi, Takehiro; Hidaka, Yoshiki; Kuwabara, Kazuo; Sugawara, Susumu; Saito, Mizue

PATENT ASSIGNEE(S): Kao Corp, Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 8 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|------|----------|-----------------|--------------|
| ----- | ---- | ----- | ----- | ----- |
| JP 08231332 | A | 19960910 | JP 1995-38152 | 19950227 <-- |
| PRIORITY APPLN. INFO.: | | | JP 1995-38152 | 19950227 <-- |

AB Cosmetics, which show luster, water resistance, and film-forming property, contain aqueous polymer emulsions, prepared by polymerizing double bond-containing monomers in the presence of solid plasticizers, and film-forming agents. Me methacrylate 55, Bu acrylate 33, styrene 10, and

acrylic acid 2 parts by weight were polymerized in the presence of Na dodecylbenzenesulfonate, K2S2O8, sucrose octaacetate, and n-dodecylmercaptan in H₂O at 70° for 3 h and mixed with 8 % by weight Et Carbitol to prepare a polymer emulsion. An eye shadow was prepared from microcryst. wax 3.0, stearic acid 3.0, liquid paraffin 8.5, lanolin 1.0, sorbitan monostearate 1.5, glycerin 5.5, triethanolamine 1.5, Me cellulose 0.5, the emulsion 10.0, pearl pigment 10.0, ultramarine 2.0, perfume, antiseptic, and H₂O to 100 weight%.

L11 ANSWER 21 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1996:686478 CAPLUS
 DOCUMENT NUMBER: 125:339214
 TITLE: Fluorimetric determination of potassium from pharmaceutical products featuring crown ethers
 AUTHOR(S): Mutihac, Lucia; Popescu, Daniela Oana
 CORPORATE SOURCE: Dep. Analytical Chem., Univ. Bucharest, Bucharest, Rom.
 SOURCE: Revue Roumaine de Chimie (1996), 41(5-6), 433-436
 CODEN: RRCHAX; ISSN: 0035-3930
 PUBLISHER: Editura Academiei Romane
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB K⁺ concentration was determined by liquid/liquid extraction using supramol. host-guest compds. of K⁺ with 18-crown-6 (18C6), dicyclohexyl 18-crown-6 (DC18C6) and dibenzo 18-crown-6 (DB18C6) in the presence of Eosine (tetrabromofluoresceine) as anion. The expts. were carried out in organic nonpolar media, such as CH₂Cl₂ and CH₂Cl₂:C₆H₅CH₃ (1:4) featuring fluorimetric determination

L11 ANSWER 22 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1996:462315 CAPLUS
 DOCUMENT NUMBER: 125:114623
 TITLE: Novel piperidine-imidazopyridine derivatives with PAF antagonist activity
 INVENTOR(S): Carceller, Elena; Jimenez, Pere J.; Recasens, Nuria; Salas, Jordi; Almansa, Carmen; Bartroli, Javier
 PATENT ASSIGNEE(S): J Uriach y Cia. S.A., Spain
 SOURCE: PCT Int. Appl., 70 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|--|------|----------|-----------------|--------------|
| WO 9614317 | A1 | 19960517 | WO 1995-EP3487 | 19950905 <-- |
| W: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI,
GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD,
MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ,
TM, TT | | | | |
| RW: KE, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE,
SN, TD, TG | | | | |
| ES 2087038 | A1 | 19960701 | ES 1994-2291 | 19941107 <-- |
| ES 2087038 | B1 | 19970316 | | |
| CA 2180660 | A1 | 19960517 | CA 1995-2180660 | 19950905 <-- |
| CA 2180660 | C | 20070403 | | |
| AU 9535636 | A | 19960531 | AU 1995-35636 | 19950905 <-- |
| EP 738269 | A1 | 19961023 | EP 1995-932668 | 19950905 <-- |
| EP 738269 | B1 | 20000426 | | |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE
JP 09507862 | T | 19970812 | JP 1996-514972 | 19950905 <-- |

| | | | | |
|------------------------|----|-------------------|----------------|----------------|
| JP 4018137 | B2 | 20071205 | | |
| AT 192152 | T | 20000515 | AT 1995-932668 | 19950905 <-- |
| PT 738269 | T | 20000831 | PT 1995-932668 | 19950905 <-- |
| ES 2147616 | T3 | 20000916 | ES 1995-932668 | 19950905 <-- |
| NO 9602855 | A | 19960705 | NO 1996-2855 | 19960705 <-- |
| NO 306345 | B1 | 19991025 | | |
| US 5705504 | A | 19980106 | US 1996-669440 | 19961022 <-- |
| GR 3033528 | T3 | 20000929 | GR 2000-401219 | 20000529 <-- |
| PRIORITY APPLN. INFO.: | | | ES 1994-2291 | A 19941107 <-- |
| OTHER SOURCE(S): | | MARPAT 125:114623 | WO 1995-EP3487 | W 19950905 <-- |
| GI | | | | |

AB Title compds. I [$m = 0-2$; R = (independently) H, alkyl; R1 = alkyl, cycloalkyl; A = CO, SO₂, NHCO, OCO; B = various functionalized or unsatd. sidechains] and their salts and solvates are platelet activating factor (PAF) antagonists, useful in the treatment of various diseases or disorders mediated by PAF. Pharmaceutical compns. including the compds., and processes for their preparation, are also provided. Examples include 76 preps. of I, 28 precursor preps., 6 formulations, and 2 pharmacol. tests. For instance, 4-(aminomethyl)piperidine was converted to the 1-BOC derivative, condensed with 4-chloro-3-nitropyridine (64%), hydrogenated to an amino compound (96%), cyclized with MeC(:NH)OEt.HCl to an imidazopyridine (95%), and deprotected (98%), to give 1-[4-piperidyl]methyl]-1H-2-methylimidazo[4,5-c]pyridine. Amidation of this with Ph₂CHCH₂CO₂H using DCC and HOBT in DMF gave 63% title compound II. In a test for inhibition of PAF-induced aggregation of rabbit platelets *in vitro*, II had IC₅₀ of 0.0076 μ M. It also inhibited PAF-induced hypertension in rats with ID₅₀ of 0.0086 mg/kg.

L11 ANSWER 23 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1996:425622 CAPLUS
 DOCUMENT NUMBER: 125:123702
 TITLE: Dense star polymer conjugates
 INVENTOR(S): Tomalia, Donald A.; Wilson, Larry R.; Hedstrand, David M.; Tomlinson, Ian A.; Fazio, Michael J.; Kruper, William J. Jr.; Kaplan, Donald A.; Cheng, Roberta C.; Edwards, David S.; Jung, Chu W.
 PATENT ASSIGNEE(S): The Dow Chemical Company, USA
 SOURCE: U.S., 49 pp., Cont.-in-part of U.S. 5,338,532.
 CODEN: USXXAM

DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 9
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|--|------|----------|-----------------|--------------|
| US 5527524 | A | 19960618 | US 1993-43198 | 19930405 <-- |
| BR 8707431 | A | 19881101 | BR 1987-7431 | 19870419 <-- |
| AT 89743 | T | 19930615 | AT 1987-307266 | 19870817 <-- |
| JP 63501878 | T | 19880728 | JP 1987-505282 | 19870818 <-- |
| JP 07002840 | B | 19950118 | | |
| JP 63502350 | T | 19880908 | JP 1987-505084 | 19870818 <-- |
| JP 07057735 | B | 19950621 | | |
| BR 8707433 | A | 19881101 | BR 1987-7433 | 19870818 <-- |
| FI 8801768 | A | 19880415 | FI 1988-1768 | 19880415 <-- |
| FI 103410 | B1 | 19990630 | | |
| US 5338532 | A | 19940816 | US 1991-654851 | 19910213 <-- |
| WO 9524221 | A1 | 19950914 | WO 1995-US3045 | 19950307 <-- |
| W: AU, BR, CA, CN, CZ, EE, FI, GE, HU, JP, KR, LT, LV, MX, NO, NZ,
PL, PT, RU, SI, SK, UA, US | | | | |
| RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE | | | | |
| US 5714166 | A | 19980203 | US 1995-400203 | 19950307 <-- |
| FI 9801807 | A | 19980824 | FI 1998-1807 | 19980824 <-- |
| FI 105693 | B1 | 20000929 | | |
| AU 200229312 | A | 20020523 | AU 2002-29312 | 20020328 <-- |
| AU 768662 | B2 | 20031218 | | |

PRIORITY APPLN. INFO.:

| | | |
|----------------|----|--------------|
| US 1986-897455 | B2 | 19860818 <-- |
| US 1987-87266 | B2 | 19870818 <-- |
| US 1989-386049 | B2 | 19890726 <-- |
| US 1991-654851 | A2 | 19910213 <-- |
| EP 1987-307266 | A | 19870817 <-- |
| WO 1987-US2075 | W | 19870818 <-- |
| WO 1987-US2076 | A | 19870818 <-- |
| US 1993-43198 | A2 | 19930405 <-- |
| US 1994-207494 | A2 | 19940307 <-- |
| US 1994-316536 | A2 | 19940930 <-- |
| AU 1999-64440 | A3 | 19991210 <-- |

AB Dense star polymer conjugates which are composed of at least one dendrimer in association with at least one unit of a carried agricultural, pharmaceutical, or other material have been prepared. These conjugates have particularly advantageous properties due to the unique characteristics of the dendrimer. Incorporation of aspirin into Starburst dendrimers was presented as an example.

L11 ANSWER 24 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1995:367750 CAPLUS
 DOCUMENT NUMBER: 122:142507
 TITLE: Conjugates of AZT and dextran for inhibiting the replication of human immunodeficiency virus
 INVENTOR(S): Usher, Thomas C.; Patel, Natu; Tele, Chhagan; Wolk, I. Louis
 PATENT ASSIGNEE(S): Dextran Products Ltd., Can.
 SOURCE: PCT Int. Appl., 30 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|--|------|----------|-----------------|--------------|
| WO 9500177 | A1 | 19950105 | WO 1994-CA343 | 19940617 <-- |
| W: BG, CA | | | | |
| RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE | | | | |

PRIORITY APPLN. INFO.: US 1993-77511 A 19930617 <--
US 1993-108813 A 19930819 <--

AB A pharmaceutical preparation and a method for inhibiting in vivo the reverse transcriptase enzyme and the replication of human immunodeficiency virus (HIV) is disclosed. The pharmaceutical preparation is a conjugate of dextran, modified dextran, dextran sulfate or polysaccharides and 3'-azido-2',3'-didesoxythymidine (AZT) which may be administered via different routes in appropriate dosage forms to patients suffering from a viral disease such as AIDS and its related disorders. This conjugate represent a novel structure which functions as a structural unit which combines the known additive and synergistic properties of dextran or dextran sulfate with AZT and at the same time appears to ameliorate the toxic effects of AZT. Dextran was reacted with chloroacetic acid and the product thus obtained was purified and reacted with AZT in presence of N-dicyclohexyl carbodiimide to obtain dextran-AZT conjugate.

L11 ANSWER 25 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1994:555913 CAPLUS
 DOCUMENT NUMBER: 121:155913
 TITLE: Chlorophyll and bacteriochlorophyll derivatives and pharmaceutical compositions containing them
 INVENTOR(S): Scherz, Avigdor; Salomon, Yoram; Fiedor, Leszek
 PATENT ASSIGNEE(S): Israel
 SOURCE: Can. Pat. Appl., 63 pp.
 CODEN: CPXXEB
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 3
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|------|----------|-----------------|-----------------|
| CA 2101227 | A1 | 19940127 | CA 1993-2101227 | 19930723 <-- |
| CA 2101227 | C | 20021112 | | |
| IL 102645 | A | 19980222 | IL 1992-102645 | 19920726 <-- |
| AU 9342148 | A | 19940127 | AU 1993-42148 | 19930722 <-- |
| AU 674315 | B2 | 19961219 | | |
| ZA 9305310 | A | 19940211 | ZA 1993-5310 | 19930722 <-- |
| HU 64949 | A2 | 19940328 | HU 1993-2149 | 19930723 <-- |
| HU 221186 | B1 | 20020828 | | |
| CN 1088210 | A | 19940622 | CN 1993-116862 | 19930726 <-- |
| CN 1040212 | B | 19981014 | | |
| JP 07033772 | A | 19950203 | JP 1993-226328 | 19930726 <-- |
| JP 3612343 | B2 | 20050119 | | |
| PL 173150 | B1 | 19980130 | PL 1993-299803 | 19930726 <-- |
| PL 173128 | B1 | 19980130 | PL 1993-319910 | 19930726 <-- |
| AT 196850 | T | 20001015 | AT 1993-111942 | 19930726 <-- |
| ES 2153367 | T3 | 20010301 | ES 1993-111942 | 19930726 <-- |
| PT 584552 | T | 20010430 | PT 1993-111942 | 19930726 <-- |
| US 5955585 | A | 19990921 | US 1995-461243 | 19950605 <-- |
| US 5650292 | A | 19970722 | US 1995-463950 | 19950731 <-- |
| GR 3035195 | T3 | 20010430 | GR 2001-400013 | 20010110 <-- |
| PRIORITY APPLN. INFO.: | | | IL 1992-102645 | A 19920726 <-- |
| | | | US 1993-71645 | A3 19930603 <-- |
| | | | US 1993-97384 | A3 19930726 <-- |

OTHER SOURCE(S): MARPAT 121:155913

AB Conjugates of chlorophyll (Chl) and bacteriochlorophyll (Bchl) derivs. with amino acids, peptides and proteins are provided by the invention. The amino acid, peptide or protein residue is linked to the 17-propionic acid group of a Chl or Bchl residue directly or through a chain. The conjugates are for use as photosensitizers in photodynamic therapy and in diagnostics of tumors. Conjugation with cell-specific ligands, such as hormones, growth factors or tumor-specific antibodies, will target the Chl or Bchl moiety to the tumor site. Thus, conjugates with melanocyte stimulating hormones are suitable for photodynamic therapy of melanoma

tumors.

L11 ANSWER 26 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1994:191149 CAPLUS
DOCUMENT NUMBER: 120:191149
TITLE: Noncorrosive method of producing N-hydroxycarbamates from hydroxylamine and carbonate esters
INVENTOR(S): Nishihira, Keigo; Tanaka, Shuji; Mizutare, Katsuhiko; Kondo, Masahiro
PATENT ASSIGNEE(S): Ube Industries, Ltd., Japan
SOURCE: Eur. Pat. Appl., 8 pp.
CODEN: EPXXDW
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---|------|----------|-----------------|----------------|
| EP 577167 | A2 | 19940105 | EP 1993-201479 | 19930525 <-- |
| EP 577167 | A3 | 19940126 | | |
| EP 577167 | B1 | 19960703 | | |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE | | | | |
| JP 06041047 | A | 19940215 | JP 1992-317125 | 19921126 <-- |
| JP 2798164 | B2 | 19980917 | | |
| US 5315032 | A | 19940524 | US 1993-67551 | 19930526 <-- |
| PRIORITY APPLN. INFO.: | | | JP 1992-189803 | A 19920526 <-- |
| | | | JP 1992-317125 | A 19921126 <-- |

OTHER SOURCE(S): CASREACT 120:191149; MARPAT 120:191149

AB N-hydroxycarbamates, RO₂CNHOH (R = C₁-8 alkyl, C₃-12 cycloalkyl, aryl, aralkyl) (e.g., MeO₂CNHOH), useful as intermediates in the production of pharmaceuticals and agrochems., are prepared in high yield and selectivity, without the use of toxic and corrosive chloroformate esters, by amidating a carbonic ester, RO₂COR, with H₂NOH in the presence of a base (e.g., alkali metal hydroxides or alkoxides).

L11 ANSWER 27 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1993:198316 CAPLUS
DOCUMENT NUMBER: 118:198316
TITLE: Determination of amines on the basis of competitive "host-guest" complexation
AUTHOR(S): Pletnev, I. V.; Pasekova, N. A.; Fedotov, P. S.; Zolotov, Yu. A.
CORPORATE SOURCE: Mosk. Gos. Univ., Moscow, Russia
SOURCE: Doklady Akademii Nauk (1992), 326(1), 109-12 [Chem.]
CODEN: DAKNEQ; ISSN: 0869-5652
DOCUMENT TYPE: Journal
LANGUAGE: Russian

AB A method is described for the selective (1-10 µM) determination of amines with the crown ether, dicyclohexyl-18-crown-6, under conditions of extraction, with the counterion being picrate. The "guest" was benzylamine, a component of several pharmacol. preps. and the near analogs of a number of amine drugs. Later a method was developed also for determining pharmaceutical primary amine, noradrenaline. The determination of benzylamine and noradrenaline by using the radioactive indicator ⁹⁰Sr is discussed. In addition, the determination of benzylamine by atomic-emission

(with indicators of Sr and Ba) is described, using inductively coupled plasma-detection. The developed method for determining amines is rather selective: neither secondary amines nor even a 10,000-fold amount of Li and Na; nor 100-fold amts. of K, NH₄, methylammonium, and butylammonium; nor 50-fold Ca interfere in the determination. The selectivity is notably higher than in the direct extraction-photometric determination

L11 ANSWER 28 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1992:551291 CAPLUS
 DOCUMENT NUMBER: 117:151291
 TITLE: Preparation of nucleotide phosphorate ester and amide derivatives as virucides and neoplasm inhibitor prodrugs
 INVENTOR(S): Starrett, John Edward, Jr.; Mansuri, Muzammil M.; Martin, John C.; Tortolani, David R.; Bronson, Joanne J.
 PATENT ASSIGNEE(S): Bristol-Myers Squibb Co., USA
 SOURCE: Eur. Pat. Appl., 45 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---|------|----------|-----------------|-----------------|
| EP 481214 | A1 | 19920422 | EP 1991-115312 | 19910910 <-- |
| EP 481214 | B1 | 19980624 | | |
| R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE | | | | |
| AT 167679 | T | 19980715 | AT 1991-115312 | 19910910 <-- |
| ES 2118069 | T3 | 19980916 | ES 1991-115312 | 19910910 <-- |
| CA 2051239 | A1 | 19920315 | CA 1991-2051239 | 19910912 <-- |
| CA 2051239 | C | 20030325 | | |
| JP 04230694 | A | 19920819 | JP 1991-233337 | 19910912 <-- |
| JP 3164385 | B2 | 20010508 | | |
| US 5663159 | A | 19970902 | US 1994-320632 | 19941011 <-- |
| US 5792756 | A | 19980811 | US 1995-481715 | 19950607 <-- |
| PRIORITY APPLN. INFO.: | | | US 1990-583906 | A 19900914 <-- |
| | | | US 1993-153556 | B1 19931116 <-- |
| | | | US 1994-320632 | A3 19941011 <-- |

OTHER SOURCE(S): MARPAT 117:151291
 GI

AB R1R2P(O)CH2OXB [B = adenine, cytosine, guanine, thymine, uracil, 2,6-diaminopurine, hypoxanthine, etc. residue; R1, R2 = OR4, NH2, NHR5 N(R5)2; R1R2, R1X = atoms to form a cyclic group; X = (substituted) alkylene; R4 = physiol. hydrolyzable ester group; R5 = (substituted) alkyl, aryl, arylalkyl], were prepared. Thus, I (R10 = R11 = OH) (II) was stirred 5 days with N,N'-dicyclohexyl-4-morpholine carboxyamidine and chloromethyl isobutyrate in DMF to give 9% I (R10 = R11 = isobutyryloxymethyl) (III). III showed ID50 < 0.1 µg/mL against HSU-2 (G stain) vs 39 µg/mL for II. III showed absolute bioavailability in rats of 14.6, vs. 7.8 for II.

L11 ANSWER 29 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1992:526237 CAPLUS
 DOCUMENT NUMBER: 117:126237

TITLE: Genotoxic potential of crown ethers in mammalian cells: induction of sister-chromatid exchanges
AUTHOR(S): Arenaz, P.; Bitticks, L.; Pannell, K. H.; Garcia, S.
CORPORATE SOURCE: Dep, Biol., Univ. Texas, El Paso, TX, 79968-0519, USA
SOURCE: Mutation Research, Genetic Toxicology Testing (1992), 280(2), 109-15
CODEN: MRGTE4; ISSN: 0165-1218

DOCUMENT TYPE: Journal
LANGUAGE: English

AB Crown ethers are macrocyclic polyethers which possess ionophoric properties. These compds. have been studied for potential use as pharmaceutical agents as well as antibacterials. Though crown ethers have been shown to be highly toxic in prokaryotes, there have been few investigations into the potential genotoxicity of these compds. When sister-chromatid exchanges (SCEs) were quantitated after exposure to crown ethers, the results reflected no significant genotoxic effects on Chinese hamster V-79 cells at any of the crown ether concns. utilized. One crown ether, dicyclohexyl 21-crown-7, did appear to possess antigenotoxic activity. The data on the induction of SCEs by crown ethers reported herein suggest that these compds. are not genotoxic in mammalian cells despite their cytotoxicity.

L11 ANSWER 30 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1992:201112 CAPLUS

DOCUMENT NUMBER: 116:201112

TITLE: Polyalkylene oxide-amino acid copolymers as drug carriers and charged copolymers based thereon

INVENTOR(S): Zalipsky, Samuel; Bolikal, Durgadas; Nathan, Aruna; Kohn, Joachim Benjamin

PATENT ASSIGNEE(S): Enzon, Inc., USA

SOURCE: PCT Int. Appl., 97 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 4

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|--|------|----------|-----------------|----------------|
| WO 9200748 | A1 | 19920123 | WO 1991-US4797 | 19910708 <-- |
| W: AU, CA, HU, JP, SU | | | | |
| RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, NL, SE | | | | |
| JP 05508879 | T | 19931209 | JP 1991-512668 | 19910708 <-- |
| PRIORITY APPLN. INFO.: | | | US 1990-549494 | A 19900706 <-- |
| | | | US 1991-726301 | A 19910705 <-- |
| | | | WO 1991-US4797 | W 19910708 <-- |

AB Copolymers of polyalkylene oxides and amino acids or peptide sequences are disclosed, which amino acids or peptide sequences have pendant functional groups that are capable of being conjugated with pharmaceutically active compds. for drug delivery systems and crosslinked to form polymer matrixes as hydrogel membranes. The copolymers can also be formed into conductive materials by combination with electrolyte salts. Thus, polyethylene glycol-lysine copolymer was treated with N-hydroxysuccinimide and dicyclohexyl carbodiimide. Cephradine dissolved in a water-dioxane mixture was reacted with the derivatized polyethylene glycol-lysine copolymer to prepare a conjugate.

L11 ANSWER 31 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1991:478697 CAPLUS

DOCUMENT NUMBER: 115:78697

TITLE: Chemical constituents of "Lang-Du Dang-Gui" (Angelica sp.)

AUTHOR(S): Rao, Gaoxiong; Yu, Xuejian; Sun, Handong

CORPORATE SOURCE: Kunming Inst. Bot., Acad. Sin., Kunming, 650204, Peop. Rep. China

SOURCE: Yunnan Zhiwu Yanjiu (1991), 13(1), 85-8
 CODEN: YCWCDP; ISSN: 0253-2700
 DOCUMENT TYPE: Journal
 LANGUAGE: Chinese
 AB Oil of "Langdu Danggui" (Angelica sp.) from the Lang-Du Mountain (Yunnan Province) has been analyzed qual. and quant. by capillary GC/MS/DS on the Finnigan-4510, and 42 constituents, which made up 96.83% of the total oil, have been identified. Ligustilide (73.98%) and cis- β -ocimene (12.18%) were the principal components of the essential oil. In addition, 4 known compds. that are lignoceric acid, β -sitosterol, umbelliferone, and sucrose have been isolated from the non-volatile part of the same sample.

L11 ANSWER 32 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1990:446273 CAPLUS
 DOCUMENT NUMBER: 113:46273
 TITLE: Sustained-release prodrugs comprising inflammation inhibitors linked to polysaccharides
 INVENTOR(S): Larsen, Claus Selch; Johansen, Marianne; Harboe, Elis; Kurtzhals, Peter; Olesen, Henning Peter
 PATENT ASSIGNEE(S): Den.
 SOURCE: Eur. Pat. Appl., 47 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---|------|----------|-----------------|----------------|
| EP 331471 | A1 | 19890906 | EP 1989-302051 | 19890301 <-- |
| EP 331471 | B1 | 19921216 | | |
| R: AT, BE, CH, DE, ES, FR, GB, GR, IT, LI, LU, NL, SE | | | | |
| WO 8908119 | A1 | 19890908 | WO 1989-DK47 | 19890301 <-- |
| W: JP, US | | | | |
| JP 04505334 | T | 19920917 | JP 1989-503409 | 19890301 <-- |
| AT 83383 | T | 19930115 | AT 1989-302051 | 19890301 <-- |
| PRIORITY APPLN. INFO.: | | | DK 1988-1101 | A 19880302 <-- |
| | | | EP 1989-302051 | A 19890301 <-- |
| | | | WO 1989-DK47 | W 19890301 <-- |

OTHER SOURCE(S): MARPAT 113:46273
 AB Prodrugs (Markush given) consists of an antiinflammatory agent linked covalently with a biodegradable saccharide, such as dextran, starch, alginate, glycogen, pullulan, agarose, cellulose, chitin and carrageenan. After parenteral administration of the prodrug, the active ingredient is slowly released at the site of administration. After oral administration, release occurs in the terminal ileum and colon. A solution of 1 g naproxen in 20 mL formamide-pyridine mixt (1:1) was treated with 990 mg N,N'-dicyclohexyl carbodiimide, 54 g 4-dimethylaminopyridine and a solution of 1 g dextran T-70 in 20 mL formamide-pyridine (1:1), to give O-[(+)-6-methoxy- α -methyl-2-naphthalenacetyl]dextrane T-70 (I), with a 6.9 degree of substitution. Degradation of I in aqueous solution at pH 6.54

and

37° showed a pseudo-first-order rate constant of 4.34 + 10-4 h-1.

L11 ANSWER 33 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1990:425929 CAPLUS
 DOCUMENT NUMBER: 113:25929
 TITLE: Manufacture of alkynyl group-containing fatty acids
 INVENTOR(S): Rubin, David
 PATENT ASSIGNEE(S): USA
 SOURCE: U.S., 4 pp. Cont.-in-part of U.S. Ser. No. 276,467.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|-----------------|
| US 4908162 | A | 19900313 | US 1989-310205 | 19890214 <-- |
| | | | US 1988-276467 | A2 19881122 <-- |

PRIORITY APPLN. INFO.:

AB The title compds., potentially useful in pharmaceuticals, are prepared by halogenating unsatd. fatty acids, dehydrohalogenating the products with dicyclohexylcarbodiimide (I) and strong bases, and acidifying the salts. Thus, 5,8,11,14,17-eicosapentaenoic acid was brominated and the decabromo derivative was dehydrobrominated with KOH and I to give K 5,8,11,14,17-eicosapentanoate, which was acidified with 5% AcOH to give the free acid.

L11 ANSWER 34 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1989:580705 CAPLUS

DOCUMENT NUMBER: 111:180705

TITLE: Pharmaceutical gels or highly viscous masses containing lecithins or lecithin-like materials and organic solvents

INVENTOR(S): Luisi, Pier Luigi

PATENT ASSIGNEE(S): Switz.

SOURCE: PCT Int. Appl., 24 pp.
CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---|------|----------|-----------------|----------------|
| WO 8900077 | A1 | 19890112 | WO 1988-CH114 | 19880627 <-- |
| W: US | | | | |
| RW: AT, BE, CH, DE, FR, GB, IT, LU, NL, SE | | | | |
| CH 681427 | A5 | 19930331 | CH 1987-2472 | 19870701 <-- |
| EP 323494 | A1 | 19890712 | EP 1988-905345 | 19880627 <-- |
| EP 323494 | B1 | 19940119 | | |
| R: AT, BE, CH, DE, FR, GB, IT, LI, LU, NL, SE | | | | |
| AT 100351 | T | 19940215 | AT 1988-905345 | 19880627 <-- |
| PRIORITY APPLN. INFO.: | | | CH 1987-2472 | A 19870701 <-- |
| | | | EP 1988-905345 | A 19880627 <-- |
| | | | WO 1988-CH114 | A 19880627 <-- |

AB Gels, i.e. highly viscous masses, are manufactured by mixing lecithin or a lecithin-containing material with an organic solvent; the suspensions thus formed

are maintained at 50° until ≥50% of lecithin or lecithin-containing material has dissolved, and then H₂O is added in small amts. until the solution solidifies. Com. soy or egg lecithin was purified by chromatog. over silica gel using CH₂Cl₂ as eluent. A solution contained 0.456 g soy lecithin and 3 mL Et myristate; 32.1 mg nifedipine/3 mL was added to the solution and it was stirred until after 30 min a clear yellow solution containing solubilized nifedipine was obtained. With the stepwise addition

of H₂O a gel was obtained with a H₂O/lecithin mol ratio of 5; the gelation of the solution was effected in a sudden manner via the addition of H₂O after the critical requirement for H₂O content was exceeded. Gels containing soy lecithin and n-octane or n-hexadecane are described and a number of other suitable organic solvents are listed. The gel structures were not elucidated.

L11 ANSWER 35 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1989:484098 CAPLUS

DOCUMENT NUMBER: 111:84098

TITLE: Transdermal pharmaceuticals containing
 indomethacin or diazepam with absorption accelerators
 INVENTOR(S): Hori, Mitsuhiro; Muraoka, Takamitsu; Watanabe,
 Shigeyuki; Sato, Susumu; Maruyama, Koji
 PATENT ASSIGNEE(S): Nitto Denko Corp., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 5 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|-------------|------|----------|-----------------|-----------------|
| JP 63225316 | A | 19880920 | JP 1987-1329 | 19870107 <-- |
| | | | JP 1986-251127 | A1 19861021 <-- |

PRIORITY APPLN. INFO.: AB Topical pharmaceutical compns. consist of the following 3 components: (1) indomethacin or diazepam, (2) at least one compound selected from the group consisting of 1-nonene, p-menthane, α -terpinene, butylcyclohexane, etc., and (3) at least one compound selected from lower alcs., glycols, and pyrrolidones. Indomethacin or diazepam is effectively absorbed through the skin from these compns. Indomethacin 1, Pr alc. 89, and pinane 10% by weight were mixed and applied to an isolated rat skin, and 4 h later the amount of indomethacin transported through the skin and dissolved in a saline solution set underneath the skin was measured by high performance liquid chromatog. The drug permeation acceleration rate was 32.9%.

L11 ANSWER 36 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1988:149966 CAPLUS
 DOCUMENT NUMBER: 108:149966
 TITLE: A process for preparation and purification of
 dicyclohexyl disulfide by treatment with metal powders
 INVENTOR(S): Yamamoto, Yoshikimi; Sako, Taizo; Shiota, Yutaka;
 Kawada, Hideaki
 PATENT ASSIGNEE(S): Ouchi Shinko Chemical Industrial Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 4 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|-------------|------|----------|-----------------|--------------|
| JP 62145057 | A | 19870629 | JP 1985-284305 | 19851219 <-- |
| JP 03017829 | B | 19910311 | | |

PRIORITY APPLN. INFO.: AB Dicyclohexyl disulfide (I), useful as intermediate for agrochems. and drugs, was purified by heating a mixture containing I in the presence of metal powders. Chlorocyclohexane (1.0 mol) was added dropwise to a homogeneous mixture of 0.75 Na₂S, 0.75 mol S and 100 mL H₂O at 80° in 30 min and the mixture was refluxed at 95° for 15 h. An oil layer was separated, washed with 10% aqueous NaCl and was concentrated at 100° and 40 mm Hg. Cu powder (10 g) was added to 100 g of the concentrate, and the mixture was heated at 100° for 4 h to give, after simple distillation, 87.2 g I (70.4% yield) with 92.9% purity.

L11 ANSWER 37 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1986:578209 CAPLUS
 DOCUMENT NUMBER: 105:178209
 TITLE: Dicyclohexylalkanes
 INVENTOR(S): Segnitz, Adolph; Oppenlaender, Knut; Naegele, Paul
 PATENT ASSIGNEE(S): BASF A.-G. , Fed. Rep. Ger.

SOURCE: Ger. Offen., 12 pp.
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---------------------------|------|----------|-----------------|----------------|
| DE 3507175 | A1 | 19860904 | DE 1985-3507175 | 19850301 <-- |
| US 4784843 | A | 19881115 | US 1986-831451 | 19860220 <-- |
| JP 61200929 | A | 19860905 | JP 1986-38435 | 19860225 <-- |
| EP 193884 | A2 | 19860910 | EP 1986-102601 | 19860228 <-- |
| EP 193884 | A3 | 19870930 | | |
| EP 193884 | B1 | 19890802 | | |
| R: DE, FR, GB, IT | | | | |
| PRIORITY APPLN. INFO.: GI | | | DE 1985-3507175 | A 19850301 <-- |

I

AB The dicyclohexylalkanes I ($x, y, z = 0-24; x + y + z = 24$) are prepared as oily components for cosmetics and pharmaceuticals, by hydrogenation of the corresponding diphenylalkanes, at 90-200 bar and $150-350^\circ$, in the presence of a catalyst, such as Raney Ni or Ni-Mo. The hydrogenation can be continuous or discontinuous. I are odorless, with a 0.01 extinction at 275 nm. Thus, a hand cream contained ethoxylated C16-18 fatty alcs. 4, I 9, cetyl alc. 5, glycerol monostearate 5, Siliconol 350 1, poly(vinylpyrrolidone) 1, glycerol 10, preservative 0.5, perfume 0.2 and water 64.3 parts by weight

L11 ANSWER 38 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1985:566231 CAPLUS
 DOCUMENT NUMBER: 103:166231
 TITLE: Quantitative gas chromatographic determination of tamoxifen citrate in pharmaceuticals
 AUTHOR(S): Sane, R. T.; Desai, S. V.; Sonawne, K. K.; Nayak, V. G.
 CORPORATE SOURCE: Dep. Chem., Ramnarain Ruia Coll., Bombay, 400 019, India
 SOURCE: Journal of Chromatography (1985), 331(2), 432-6
 CODEN: JOCRAM; ISSN: 0021-9673
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 GI

AB Tamoxifen citrate (I) [54965-24-1] was determined in pharmaceuticals

by gas chromatog. with dual flame ionization detectors and a stainless steel column packed with 3% Dexisil 300 on Chromosorb WHP (100-120 mesh). The amount of I found was 15.31 mg/tablet compared with the labeled claim of 15.2 mg/tablet. The recovery was 101.33%. The relative standard deviation was 1.21-2.70%. Dicyclohexyl phthalate was used as the internal standard. There was no interference from tablet excipients. The method is precise and reproducible and does not require derivatization.

L11 ANSWER 39 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1985:443595 CAPLUS
 DOCUMENT NUMBER: 103:43595
 TITLE: Ferric ion sequestering agents. 12. Gallium and indium imaging agents. 4. Lipophilic enterobactin analogs. Stabilities of the gallium and ferric ion complexes of terminally N-substituted catechoylamines
 AUTHOR(S): Kappel, Mary J.; Pecoraro, Vincent L.; Raymond, Kenneth N.
 CORPORATE SOURCE: Dep. Chem., Univ. California, Berkeley, CA, 94720, USA
 SOURCE: Inorganic Chemistry (1985), 24(15), 2447-52
 CODEN: INOCAJ; ISSN: 0020-1669
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB The formation consts. and metal-complex protonation behaviors of 4 lipophilic N-substituted tricatechoylamide analog of enterobactin with Fe³⁺ and Ga³⁺ were evaluated. The ligands (1) N,N''-diisopropyl-N,N',N'''-tris(5-sulfonato-2,3-dihydroxybenzoyl)-1,5,10-triazadecane (DiP-3,4-LICAMS), (2) N,N''-dibenzyl-N,N',N'''-tris(5-sulfonato-2,3-dihydroxybenzoyl)-1,5,10-triazadecane (DB-3,4-LICAMS), (3) N,N''-dicyclohexyl-N,N',N'''-tris(5-sulfonato-2,3-dihydroxybenzoyl)-1,5,10-triazadecane (DC-3,4-LICAM), and (4) N,N',N'''-triisopropyl-N,N',N'''-tris(5-sulfonato-2,3-dihydroxybenzoyl)-1,3,5-tris(aminoethyl)benzene (TiP-MECAMS) all form tris(catecholato) Fe³⁺ and Ga³⁺ complexes. Comparison of the metal complex stabilities of the N-substituted ligands to those of the nonlipophilic 3,4-LICAMS and MECAMS indicates that the ferric complexes are of similar stability and that the Ga complexes are significantly less stable.

L11 ANSWER 40 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1984:451309 CAPLUS
 DOCUMENT NUMBER: 101:51309
 TITLE: Unsymmetrical fluorescein derivatives
 INVENTOR(S): Khanna, Pyare; Colvin, Warren
 PATENT ASSIGNEE(S): Syva Co., USA
 SOURCE: U.S., 14 pp.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|--------------|
| US 4439356 | A | 19840327 | US 1981-240031 | 19810303 <-- |
| US 4652531 | A | 19870324 | US 1984-587085 | 19840307 <-- |

PRIORITY APPLN. INFO.: US 1981-240031 A3 19810303 <--
 OTHER SOURCE(S): MARPAT 101:51309
 AB Unsym. fluorescein derivs. were prepared, particularly 1,8-unsubstituted-9-substituted-6-hydroxy-3H-xanthen-3-ones, having 1 aliphatic substituent at any of the remaining positions, where the aliphatic substituent is separated from the annular C atom by 0-1 O atom. These fluorescent compds. have absorption maximum in 0.5M phosphate buffer pH 8 usually at least .apprx.500 nm, and they can be used to reduce background fluorescence interference occurred in chemical anal. They are potentially useful for detection or determination of proteins, polysaccharides, nucleic acids, drugs, metabolites and

others by competitive protein binding assays, e.g., immunoassay.

L11 ANSWER 41 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1981:609756 CAPLUS
DOCUMENT NUMBER: 95:209756
ORIGINAL REFERENCE NO.: 95:34957a,34960a
TITLE: Colorimetric determination of mebendazole in pharmaceutical formulation
AUTHOR(S): Rana, N. G.; Dave, Rita V.; Patel, M. R.
CORPORATE SOURCE: Res. Dev. Div., Cadila Lab., Ahmedabad, 380 008, India
SOURCE: Indian Drugs (1981), 18(9), 333-4
CODEN: INDRBA; ISSN: 0019-462X
DOCUMENT TYPE: Journal
LANGUAGE: English
AB Mebendazole [31431-39-7] anthelmintic was determined in tablets and suspensions by adding H₂NOH-HCl, dicyclohexyl carbodiimide, and FeCl₃ to a tablet solution or suspension dilution in iso-PrOH and HCO₂H, and measuring the absorbance at 520 nm. The calibration curve was linear for 0.4-2.0 µg mebendazole/mL.

L11 ANSWER 42 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1976:483235 CAPLUS
DOCUMENT NUMBER: 85:83235
ORIGINAL REFERENCE NO.: 85:13299a,13302a
TITLE: Pharmaceutical composition based on guanidine derivatives
INVENTOR(S): Du Charme, Donald W.
PATENT ASSIGNEE(S): Upjohn Co., USA
SOURCE: Fr. Demande, 31 pp.
CODEN: FRXXBL
DOCUMENT TYPE: Patent
LANGUAGE: French
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|------|----------|-----------------|----------------|
| FR 2272645 | A1 | 19751226 | FR 1975-4133 | 19750210 <-- |
| FR 2272645 | B1 | 19800111 | | |
| US 3961056 | A | 19760601 | US 1974-441399 | 19740211 <-- |
| GB 1490015 | A | 19771026 | GB 1975-4846 | 19750205 <-- |
| PRIORITY APPLN. INFO.: | | | US 1974-441399 | A 19740211 <-- |
| GI | | | | |

AB The synthesis and pharmaceutical formulation and compounding of antiarrhythmic and diuretic guanidine derivs. R₁N:C(NHR₂)NR₃R₄ is described. N,N'-dicyclohexyl-4-morpholinocarboxamidine-HCl (I) [59995-77-6], for example, is prepared from morpholine [110-91-8] and N,N'-dicyclohexylcarbodiimide [538-75-0] which is obtained by reacting N,N'-dicyclohexylthiourea [1212-29-9], Ph₃P, CCl₄, and Et₃N in CH₂C₁₂. Tablets of I are prepared with di-Ca phosphate, methylcellulose, talc, corn starch, and Mg stearate.

L11 ANSWER 43 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1974:83052 CAPLUS

DOCUMENT NUMBER: 80:83052
 ORIGINAL REFERENCE NO.: 80:13373a,13376a
 TITLE: Pharmaceutical 2-(hydroxymethyl)-3-phenyl-4(3H)-quinazolinone
 INVENTOR(S): Inoue, Michiro; Ishikawa, Masayuki; Tsuchiya, Takashi;
 Shimamoto, Takio
 SOURCE: Ger. Offen., 25 pp.
 CODEN: GWXXBX
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|-------------|------|----------|-----------------|----------------|
| DE 2329815 | A1 | 19740103 | DE 1973-2329815 | 19730612 <-- |
| DE 2329815 | B2 | 19760226 | | |
| DE 2329815 | C3 | 19761007 | | |
| JP 49014482 | A | 19740207 | JP 1972-57631 | 19720612 <-- |
| JP 54042991 | B | 19791217 | | |
| CA 998339 | A1 | 19761012 | CA 1973-173223 | 19730605 <-- |
| ZA 7303834 | A | 19740424 | ZA 1973-3834 | 19730606 <-- |
| BE 800595 | A1 | 19731001 | BE 1973-131994 | 19730607 <-- |
| NL 7308045 | A | 19731214 | NL 1973-8045 | 19730608 <-- |
| AU 7356717 | A | 19741212 | AU 1973-56717 | 19730608 <-- |
| HU 165940 | B | 19741228 | HU 1973-10201 | 19730611 <-- |
| ES 415794 | A1 | 19760201 | ES 1973-415794 | 19730611 <-- |
| GB 1443829 | A | 19760728 | GB 1973-27718 | 19730611 <-- |
| SU 563915 | A3 | 19770630 | SU 1973-1930852 | 19730611 <-- |
| CS 184815 | B2 | 19780915 | CS 1973-4198 | 19730611 <-- |
| FR 2187353 | A1 | 19740118 | FR 1973-21301 | 19730612 <-- |
| AT 7305144 | A | 19750915 | AT 1973-5144 | 19730612 <-- |
| AT 330187 | B | 19760625 | | |
| CH 582160 | A5 | 19761130 | CH 1973-8457 | 19730612 <-- |
| | | | JP 1972-57631 | A 19720612 <-- |

PRIORITY APPLN. INFO.:

GI For diagram(s), see printed CA Issue.

AB The quinazolinone (I) and its acetylsalicylate, hydrobromide, hydrochloride, maleate, nicotinate, oxalate, and tartrate were prepared and used in the treatment of arteriosclerosis, hemorrhage, and thrombosis. Thus, I was prepared by refluxing the acetate II in EtOH containing 10% HCl.

II

was prepared a) by reaction of 2-AcOCH₂CONHC₆H₄CO₂H with PhNH₂ in PhMe in the presence of PCl₃, b) by reaction of 2-ClCH₂CONHC₆H₄CO₂H with PhNH₂ in PhMe in the presence of PCl₃ and reaction of the resulting chloride III with AcONa, c) by cyclization of 2-AcOCH₂CONHC₆H₄CONHPh in the presence of dicyclohexyl-carbodiimide, or d) by reduction of the aldehyde IV.

L11 ANSWER 44 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1972:103835 CAPLUS

DOCUMENT NUMBER: 76:103835

ORIGINAL REFERENCE NO.: 76:16693a,16696a

TITLE: Quality of pharmaceutical preparations.

AUTHOR(S): III. Determination of naphazoline and other components in drugs by gas chromatography

CORPORATE SOURCE: Minamikawa, Tsutanori; Yamagishi, Noriaki

SOURCE: Hokuriku Pharm. Co., Ltd., Katsuyama, Japan

DOCUMENT TYPE: Eisei Kagaku (1971), 17(5), 341-6

LANGUAGE: CODEN: ESKGA2; ISSN: 0013-273X

AB N-Acylation of naphazoline (I) afforded a rapid simultaneous gas chromatog. determination of I, T-caine (II) and chlorpheniramine maleate (III)

in eye solution. If II was absent, the residue from evaporation of a CHCl₃ or CC₁₄ extract of the sample was dissolved in CHCl₃ containing 0.2 dioctyl phthalate as

internal standard, treated with Ac₂O, and extracted into CHCl₃. Dicyclohexyl phthalate and n-butyric anhydride, resp., were used if II was present. A standard solution of I was similarly treated.

Calibration

curves of peak height ratio (sample/standard) were linear for 5-20 mg/ml of I, II, and III. Synthetic preps. containing I, II, III, homosulfamine, and NaCl gave 99.9, 99.8, and 99.0 recovery (coefficient of variation 0.59, 0.87, and 0.83) for I, II, and III, resp. Decomposition products of I did not interfere.

L11 ANSWER 45 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1970:41870 CAPLUS
DOCUMENT NUMBER: 72:41870
TITLE: Food additives. Vinyl chloride-propylene copolymers
AUTHOR(S): Anon.
SOURCE: Federal Register (1969), 34(221), 18382-4,
18 Nov 1969
CODEN: FEREAC; ISSN: 0097-6326

DOCUMENT TYPE: Journal
LANGUAGE: English

AB The use of the title copolymers (I) as a polymer modifier is extended to semi-rigid and rigid vinyl chloride plastic food-contact articles under the U.S. Federal Food, Drug, and Cosmetic Act. The following addnl. substances may be used as adjuvants in I: dicyclohexyl and diphenyl phthalates as plasticizers; chlorinated polyethylene as a modifier; NH₄ salt of epoxidized oleic acid as a polymerization emulsifier; tetrahydrofuran as a solvent in the casting of film; N,N'-diphenylthiourea, hydrogenated 4,4'-isopropylidenediphenol phosphite ester resins, 2-(2-hydroxy-5-methylphenyl)benzotriazole, Mg and Zn salicylates, pentaerythritol and its stearate ester, and tris-(2-methyl-4-hydroxy-5-tert-butylphenyl)butane as antioxidants and (or) stabilizers; octyltin stabilizers; and polyhydric alc. diesters of oxidatively refined (Gersthoffen process) montan wax acids.

L11 ANSWER 46 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1969:512900 CAPLUS
DOCUMENT NUMBER: 71:112900
ORIGINAL REFERENCE NO.: 71:21015a,21018a
TITLE: Cleavage of aminals and 1,3-dialkylimidazolidines with heterocumulenes
AUTHOR(S): Boehme, Horst; Pasche, W.
CORPORATE SOURCE: Pharm.-Chem. Inst., Philipps Univ. Marburg/L., Marburg/L., Fed. Rep. Ger.
SOURCE: Archiv der Pharmazie und Berichte der Deutschen Pharmazeutischen Gesellschaft (1969), 302(2), 81-90
CODEN: APBDAJ; ISSN: 0376-0367

DOCUMENT TYPE: Journal
LANGUAGE: German
OTHER SOURCE(S): CASREACT 71:112900

AB Bispiperidinomethane (I) mixed with PhNCO (II) (ethereal solns.) gave, under exothermic reaction, 96% N-phenyl-N-(piperidinomethyl)-carbamic acid piperidide, m. 66° (ether). On attempted crystallization from EtOH N-phenylcarbamic acid piperidide was obtained. With PhNCS and I (ethereal solns.), 84% N-phenyl-N-(piperidinomethyl)thiocarbamic acid piperidide, decompose 80-2°, was formed. I and 3,4-dichlorophenyl isocyanate (III) gave 95% N-(3,4-dichlorophenyl)-N-(piperidinomethyl)carbamic acid piperidide (IV), m. 92-4°(ether). Gentle heating of IV in Me₂CO gave piperidinocarboxylic acid 3,4-dichloroanilide. N,N'-Benzylidenebismorpholine mixed with II and warmed to 60° (C₆H₆) solns.) gave 96% N-phenyl-N-(1-morpholinobenzyl)carbamic acid morpholide (V), m. 116-19°. Attempted crystallization of V from EtOH gave morpholinocarboxylic acid anilide. BzNCO (VI) was allowed to react with I (ethereal solns.), and the reaction product was recrystd. from EtOH to give N-benzoylcarbamic acid piperidide, m. 175°. VI treated in the same way with dimorpholinomethane gave N-benzoylcarbamic acid morpholide,

m. 137-8°. VI reacted with dipyrrolidinomethane to give, after recrystn. from MeOH, benzoylcarbamic acid pyrrolidide, m. 140-1°. 1,3-Disubstituted imidazolidines reacted with isocyanates to give hexahydro-1,3,5-triazepin-2-ones by ring enlargement. Thus, solns. of the isocyanate and the 1,3-disubstituted imidazolidine in C6H6 or toluene were mixed dropwise and refluxed for 1-2 hrs. in N. II gave with dibutylimidazolidine (VII) 58% 1,5-dibutyl-3-phenylhexahydro-1,3,5-triazepin-2-one b. 62-4°/10-2 torr. II with dicyclohexylimidazolidine (VIII) gave 85% 1,5-dicyclohexyl-3-phenylhexahydro-1,3,5-triazepin-2-one (VIIIa), m. 110-11° (Me2CO) (hydrochloride m. 166-8°), and with 1,5-dibenzylimidazolidine (IX), 86% 1,5-dibenzyl-3-phenylhexahydro-1,3,5-triazepin-2-one, m. 113° (Me2CO). Treatment of a solution of VIIIa in toluene with COCl2 gave 63% 1,5-dicyclohexyl-2-chloro-3-phenylhexahydro-1,3,5-triazepinium chloride, m. 124-6° (Me2CO). III with VII gave 50% 1,5-dibutyl-3-(3,4-dichlorophenyl)hexahydro-1,3,5-triazepin-2-one, b. 150/10-1torr; with VIII, 82% 1,5-dicyclohexyl-3-(3,4-dichlorophenyl)hexahydro-1,3,5-triazepin-2-one, m. 134-6° (Me2CO); and with IX, 51% 1,5-dibenzyl-3-(3,4-dichlorophenyl)hexahydro-1,3,5-triazepin-2-one, m. 84-6° (ether). 1,3-Diphenylimidazoline or 1-phenyl-3-butyylimidazoline (X), b.p. 130°/1.5 torr, n21D 1.5493, was synthesized in 84% yield by condensation of the molar amount of CH2O with N-phenyl-N'-butylethylenediamine in C6H6; the latter was obtained by heating PhNHCHCH2OSO3H with BuNH2 for 12 hrs. in an autoclave at 170°, b. 125°/1.5 torr, n20D 1.5370, yield 40%. VI with VIII gave 75% 1,5-dicyclohexyl-3-benzoylhexahydro-1,3,5-triazepin-2-one, m. 155-7° (Me2CO); and with IX, 90% 1,5-dibenzyl-3-benzoylhexahydro-1,3,5-triazepin-2-one, m. 90° (EtOAc). 4-Methylbenzoyl isocyanate gave with VIII, 63% 1,5-dicyclohexyl-3-(4-methylbenzoyl)hexahydro-1,3,5-triazepin-2-one, m. 167° (EtOH); with IX, 92% 1,5-dibenzyl-3-(4-methylbenzoyl)hexahydro-1,3,5-triazepin-2-one, m. 143° (EtOH); and with X, 78% N-phenyl-N'-butyl-N'-(β-anilinoethyl)thiourea, m. 112° (EtOH). 4-Chlorobenzoyl isocyanate gave with VIII 66% 1,5-dicyclohexyl-3-(4-chlorobenzoyl)hexahydro-1,3,5-triazepin-2-one, decompose 206° (EtOH); and with IX, 59% 1,5-dibenzyl-3-(4-chlorobenzoyl)hexahydro-1,3,5-triazepin-2-one, m. 128° (EtOH). Also were prepared 48% 1,5-dicyclohexyl-3-(p-tolylsulfonyl)hexahydro-1,3,5-triazepin-2-one, m. 138-41° (EtOAc); 42% 1,3,5-tributylhexahydro-1,3,5-triazepin-2-one, b. 114-15°/10-2 torr; 92% 1,5-dibutyl-3-phenylhexahydro-1,3,5-triazepine-2-thione, m. 77-8° (MeOH); 56% 1,5-dicyclohexyl-3-phenylhexahydro-1,3,5-triazepine-2-thione, decompose 230-2° (EtOAc); 55% 1,5-dibenzyl-3-phenylhexahydro-1,3,5-triazepine-2-thione, m. 151° (Me2CO); 96% 1,5-dibenzyl-3-benzoylhexahydro-1,3,5-triazepine-2-thione, m. 155-6° (EtOAc); and 65% 1,5-dibenzyl-3-(4-methylbenzoyl)hexahydro-1,3,5-triazepine-2-thione, m. 148-50° (EtOAc); the ketene (XI) was allowed to pass through an ethereal solution of VIII in the presence of ZnCl2 at 0-5° and the mixture kept for 20 hrs. at ambient temperature to give 29% 1,4-dicyclohexylhexahydro-1,4-diazepin-5-one, m. 116-18°. IX was allowed to react with XI in the same way to give 41% 1,4-dibenzylhexahydro-1,4-diazepin-5-one, m. 56-8° (petroleum ether). 1,5-Dibenzyl-3-phenyl-2-(diethoxycarbonylmethylene)hexahydro-1,3,5-triazepine, m. 144-6°, was formed in 33% yield by reaction of PhN:C:C(CO2Et)2 (XII) with IX in toluene at 60-80°. An ethereal solution of XII added dropwise to CH2(NEt2)2 in boiling ether gave 75% 1-anilino-1-diethylamino-2,2-bis(ethoxycarbonyl)ethylene, m. 135-7° (iso-PrOH). Pharmacol. testing of the described compds. did not show promise of pharmaceutical use.

DOCUMENT NUMBER: 65:82177
ORIGINAL REFERENCE NO.: 65:15342a-h, 15343a-h, 15344a-e
TITLE: Cycloaliphatic amines
PATENT ASSIGNEE(S): CIBA Ltd.
SOURCE: 61 pp.
DOCUMENT TYPE: Patent
LANGUAGE: Unavailable
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|------|----------|-----------------|--------------|
| NL 6513784 | | 19660427 | NL 1965-13784 | 19651025 <-- |
| PRIORITY APPLN. INFO.: | | | US | 19641026 <-- |

AB Described is the preparation of the title compds. which are useful as pharmaceuticals and as veterinary products. The compds. are prepared by the condensation of cycloaliph. ketones with NH₃ or an amine or by reaction of cycloaliph. ketones with organic metal compds. or by conversion of the substituent in substituted cycloaliph. ketones into an amino group, followed by further substitution, replacement, or conversion. Thus, 81 g. 2-phenylacetyl pyridine was added with stirring to 7.6 g. Na in 900 mL. EtOH under N, 60 g. benzalacetone added, and the solution stirred 30 min. and filtered to give pure 3,5-diphenyl-3-hydroxy-4-(2-pyridyl)cyclohexanone (I), m. 247-50° (C₆H₆). Recrystn. of the mother liquid yielded 1,3-diphenyl-2-(2-pyridyl)-1,5-hexanedione, m. 168-70° (C₆H₆). A mixture of 30 mL. 85% H₃PO₄ and 10 g. I was heated 1 h. under N, poured into H₂O, treated with NH₃, and extracted with CH₂Cl₂, the organic extract dried and concentrated, and the residue heated with cyclohexane to

give a mixture of threo and erythro isomers of 3,5-diphenyl-4-(2-pyridyl)-2-cyclohexen-1-one (II), m. 122-5° (cyclohexane). II (11.9 g.) in 300 mL. EtOAc was hydrogenated 2 days over 4 g. 10% Pd-C at 3.5 atmospheric to give pure 3,5-diphenyl-4-(2-pyridyl)cyclohexanone (III), m. 240°.

Pyridine (1.52 g.) and 3.5 g. III in 100 mL. C₆H₆ was heated 6 h. under N, H₂O and C₆H₆ were removed, the enamine obtained was hydrogenated in 125 mL. EtOH over 1 g. 10% Pd-C, the catalyst removed, the solvent evaporated, and the residue treated with Et₂O to give 3,5-diphenyl-4-(2-pyridyl)-1-(1-pyrrolidinyl)cyclohexane (IV), m. 107-9° (n-hexane). Equivalent amts. of 3,5-diphenyl-3-hydroxy-4-(2-pyridyl)cyclohexanone (V) instead of III and condensation with pyrrolidine followed by hydrogenation of the enamine formed gave 3,5-di-Ph 3-hydroxy-4-(2-pyridyl)-1-(1-pyrrolidinyl)cyclohexane (VI), m. 163-4° (cyclohexane).

Hydrogenation of 3.43 g. I, 0.5 g. PtO₂, and 0.88 g. N,N-dimethylethylenediamine in 250 mL. EtOH, and treatment of the product with 2.2 g. maleic acid in Me₂CO yielded 1-(2-dimethylaminoethylamino)-3,5-diphenyl-3-hydroxy-4-(2-pyridyl)cyclohexane dimaleate, m. 185-7° (MeOH).

Similarly was prep'd. the dimaleate of 1-(2-dimethylaminoethylamino)-3,4,5-triphenylcyclohexane, m. 145-6°, from the product of maleic acid with the hydrogenation product of 3,4,5-triphenyl-2-cyclohexen-1-one (VII) and N,N-dimethylethylenediamine over PtO₂ in EtOH. Heating 1 g. VII, 1 g. NH₂OH.HCl, 5 mL. pyridine, and 5 mL. anhydrous EtOH, 4 h. removal of the solvent, and treatment of the residue with H₂O gave pure VII oxime (VIII), m. 221-3° (95% EtOH).

To 0.34 g. VIII in 60 mL. glacial HOAc was added 2 mL. concentrated HCl, the mixture hydrogenated and filtered, the filtrate concentrated and dissolved in

95%

EtOH, and the solution treated with HCl in EtOH to give 3,4,5-triphenylcyclohexylamine-HCl (IX), m. >260°. IX in H₂O was treated with NH₄OH to give 3,4,5-triphenylcyclohexylamine, m. 170.5-72° (n-hexane). A solution of 0.48 g. 3,4,5-triphenylcyclohexyl p-toluenesulfonate (X) and 0.71 g. pyridine in 25 mL. dioxane was heated 6 days and filtered, the filtrate evaporated, and the residue dissolved in CH₂Cl₂, washed with 5% aqueous Na₂CO₃, dried, and concentrated to give 1-(1-pyrrolidinyl)-3,4,5-triphenylcyclohexane. X, m. 180-80.5° was prepared by the hydrogenation of VII in EtOAc to yield 3,4,5-

triphenylcyclohexanol, m. 156-9°, which was heated with p-MeC₆H₄SO₂Cl in pyridine 75 min. and worked up with EtOH. Hydrogenation of 2.7 g. 3β, 5β-diphenyl-4α-(2-pyridyl)cyclohexanone (XI), 1.4 g. piperidine, a crystal of p-MeC₆H₄SO₃H, and 100 mL C₆H₆ (previously heated together 22 h. under N) gave 3β, 5β-diphenyl-1ξ-piperidino-4α-(2-pyridyl)cyclohexane, (XII), m. 129-40° (n-hexane). To 3.2 g. Na in 300 mL EtOH was added with stirring under N 22.1 g. 2-phenylacetylpyridine and 20.1 g. benzalacetone and the precipitate formed treated with hot EtOH, cooled, filtered off, and treated with C₆H₆ to give I, m. 246-8° (EtOH-CH₂C₁₂). I heated with 85% H₃PO₄ at 100° 1 h. yielded after workup a mixture of 3α- and 3β, 5β-diphenyl-4ξ-(2-pyridyl)-2-cyclohexen-1-ones, m. 122.5-5°. Separation gave the 4α-epimer (trans), m. 140-1°, and the 4β-epimer (cis), m. 170-1.5°. Hydrogenation of the 4α-epimer in EtOAc gave XI, m. 241-2° (C₆H₆), while the mother liquor gave the 3α, 4α, 5β epimer, m. 157-8° (elution with 1:9 CH₂C₁₂-C₆H₆, recrystn. from cyclohexane). Hydrogenation of 3.27 g. III and 5.7 g. anhydrous Me₂NH in 250 mL EtOH gave a 1:1 mixture of the epimeric 1ξ-dimethylamino-3, 5-diphenyl-4-(2-pyridyl)cyclohexanes, m. 80-115°. Sepn gave 2 epimers, m. 125-6°, and 134-6°. VII (9.72 g.), 2.34 g. pyrrolidine, and 175 mL C₆H₆ containing p-MeC₆H₄SO₃H acid was heated under N, H₂O removed, the product in 175 mL EtOH and 5 mL pyrrolidine hydrogenated over Pd-C 31 h., the mixture filtered, the precipitate dissolved in Et₂O and treated with

HCl

gas, the residue dissolved in CH₂C₁₂, and the solution diluted with EtOAc, boiled, cooled, and filtered to give the high-m. epimer of 1ξ-(1-pyrrolidinyl)-3, 4, 5-triphenylcyclohexane-HCl, m. 246-8°. The mother liquid treated with NH₃ and chromatographed (C₆H₆, AlCl₃) gave the low-melting epimer, m. 127-30° (MeCN). Hydrogenation of VI in 500 mL 95% EtOH at 3.5 atmospheric/80° 13 h. yielded 3, 5-dicyclohexyl-3-hydroxy-4-(2-pyridyl)-1-(1-pyrrolidinyl)cyclohexane, m. 205-8°. Hydrogenation of 3.27 g. III and 1.76 g. N,N-dimethylethylenediamine yielded an epimer of 1-(2-dimethylaminoethylamino)-3, 5-diphenyl-4-(2-pyridyl)cyclohexane, m. 122-4° (n-hexane). The residue of the mother liquor treated with maleic acid gave the dimaleate monohydrate of the other epimer, m. 110°. Heating 10 g. VI in 50 mL PhMe and 100 mL EtCOCl 5 h. gave 3, 5-diphenyl-3-propionyloxy-4-(2-pyridyl)-1-(1-pyrrolidinyl)cyclohexane, m. 127-30° (n-hexane). Hydrogenation of 3.27 g. III in 275 mL EtOH and 4.3 g. NH₃ over 0.5 g. Pd-C gave 1-amino-3, 5-diphenyl-4-(2-pyridyl)cyclohexane, m. 157.5-8.5° (C₆H₆cyclohexane). A solution of 5.2 g. XII in 25 mL EtOH was cooled and filtered and the filtrate concentrated to give (in the form of its equatorial epimers) 3β, 5β-diphenyl-1β-piperidino-4α-(2-pyridyl)-cyclohexane, m. 171-3° (n-hexane-MeCN). The mother liquor gave the corresponding axial 1α-epimer, m. 148-50° (EtOH-MeCN). Hydrogenation of XI and Me₂NH gave 1ξ-dimethylamino-3β, 5β-diphenyl-4α-(2-pyridyl)cyclohexane, m. 80-115°, separated into the equatorial 1β epimer, m. 132-3° (MeCN) and the axial 1α epimer, m. 122-4° (n-hexane). 1ξ-(1-Pyrrolidinyl)-3β, 4α, 5β-triphenylcyclohexane, m. 93.5-96°, was obtained from 3β, 4α, 5β-triphenylcyclohexanone (XIIa) (m. 204-6°), pyrrolidine, and p-MeC₆H₄SO₃H in 100 mL C₆H₆ (heated 12 h. under N and the product hydrogenated and worked up). Hydrogenation of XI and PrNH₂ and the product treated with maleic acid gave the maleate of 3β, 5β-diphenyl-1ξ-propylamino-4α-(2-pyridyl)cyclohexane monohydrate, m. 189-90°. Similarly was obtained 3β, 5β-diphenyl-1ξ-(4-methyl-1-piperazinyl)-4α-(2-pyridyl)cyclohexane dimaleate, m. 187-9°, from XI and N-methylpiperazine; and also 1α-(1-pyrrolidinyl)-3α, 4α, 5β-diphenylcyclohexane, m. 148-51°, and its corresponding 1β epimer, m. 124-6°, from XIIa and pyrrolidine. XI and morpholine yielded 3β, 5β-diphenyl-1βmorpholino-4α-(2-pyridyl)cyclohexane, m. 166-7°, and its 1α

epimer, m. 159-61°. Hydrogenation of XI and pyrrolidine yielded 3β,5β-diphenyl-4α-(2-pyridyl)-1α-(1-pyrrolidinyl)cyclohexane (XIII), m. 107-10°, and its corresponding 1β epimer, m. 129-31°. XIII and MeI gave 3β,5β-diphenyl-4α-(2-pyridyl)-1α-(1-pyrrolidinyl)cyclohexane methiodide, m. 239-41°. XIII (3.825 g.) in 100 mL glacial HOAc was treated with 2 mL. 30% H2O2, the mixture kept 3 h. at 75-80°, 1.6 mL H2O2 added, the mixture kept 9 h. at 75-80°, concentrated to 15 mL, diluted with 100 mL. H2O, and evaporated, the residue treated with 5 mL. H2O, excess Na2CO3 added, the mixture extracted with CH2Cl2, the dried organic extract

filtered, the filtrate cooled to -5° and filtered, and the precipitate washed with cold CH2Cl2 and dried to give the bis(N-oxide) of 3β,5β-diphenyl-4α-(2-pyridyl)-1α-(1-pyrrolidinyl)cyclohexane hemihydrate, m. 176-6.5°. A mixture of 6.9 g. XI, 3 mL. 3-pyrroline, 0.01 g. p-MeC6H4SO3H, and 125 mL. C6H6 was heated 1.5 h. and concentrated, the residue dissolved in 20 mL. C6H6 and treated

with 0.82 mL. 97% HCO2H, and the solution boiled 2 h. under N, concentrated, and

chromatographed to give 3β,5β-diphenyl-4α(2-pyridyl)1α[1-(3-pyrrolinyl)]cyclohexane, m. 132 (n-hexane). Hydrogenation of 3,5-diphenyl-4-(4-pyridyl)cyclohexanone (XIV) and pyrrolidine gave 3,5-diphenyl-4-(4-pyridyl)-1-(1-pyrrolidinyl)cyclohexane, m. 162-5°. XIV, m. 236-40°, was prepared from 3,5-diphenyl-1-hydroxy-4-(4-pyridyl)cyclohexane, m. 193-4° (EtOAc), which in turn was prepared from 3,5-diphenyl-4-(4-pyridyl)-2-cyclohexen-1-one, m. 240.2°. Similarly were prepared 3,5-di(2-furyl)-4-(2-pyridyl)-1-(1-pyrrolidinyl)cyclohexane, m. 70-5°; 3,5-diphenyl-4-(4-pyrimidinyl)-1-(1-pyrrolidinyl)cyclohexane, m. 190-5°; 4-(2-quinoliny)-3,5-diphenyl-1-(1-pyrrolidinyl)cyclohexane (ν (Nujol) 1610, 1140, 825, 755, and 695 cm.-1). 3β,5β-bis(4-methoxyphenyl)-4α-(2-pyridyl)-1β-(1-pyrrolidinyl)cyclohexane m. 129-31°; the dimaleate of the corresponding 1α epimer m. 147-50° its free base had λ (MeOH) 226, 257, 263, 269.7, 276, and 284 mμ; ε 23,330, 4140, 6270, 4670, 3210, and 2370, resp. A mixture of 3.4 g. 3β,5β-bis(4-methoxyphenyl)-4α-(2-pyridyl)cyclohexanone, 2 mL. pyrrolidine, and 100 mL. C6H6 was heated 4 h. cooled to room temperature, and hydrogenated to give 3β,5β-bis(4-methoxyphenyl)-4α-(2-pyridyl)-1β-(1-pyrrolidinyl)cyclohexane, m. 129-31°. Also obtained was the corresponding 1α epimer dimaleate, m. 147-50°. The corresponding base had λ (MeOH) 226, 257, 263, 269.7, 276, and 284 mμ; ε 23,330, 4140, 6270, 4670, 3210, and 2370, resp. 3β,5β-Bis(4-methoxyphenyl)-4α-(2-pyridyl)-1α-(1-pyrrolidinyl)cyclohexane (1.08 g.) in 5 mL. concentrated HCl was heated 2 h. at 165°, the residue evaporated and dissolved in 12 mL. H2O, and the solution treated with dilute NH4OH to give 3β,5β-bis(4-hydroxyphenyl)-4α-(2-pyridyl)-1α-(1-pyrrolidinyl)cyclohexane, m. 254-64°. The corresponding 1β derivative was treated with HCl to give the hydrochloride, m. 338-40°; the free base m. 248-50°. Also prepared were: 3-hydroxy-3,5β-bis(4-methoxyphenyl)-4α-(2-pyridyl)-1ξ-(1-pyrrolidinyl)cyclohexane, mineral oil ν (Nujol) 1630, 1250, 1050, 840, and 760 cm.-1; 3β,5β-bis(4-chlorophenyl)-4α-(2-pyridyl)1ξ-1-pyrrolidinylcyclohexane (1590, 1150, 1085, 1005, 810, and 760 cm.-1); 3β-(4-chlorophenyl)-5β(4-methoxyphenyl)-4α-(2-pyridyl)-1ξ-(1-pyrrolidinyl)cyclohexane (1620, 1600, 1250, 825, and 750 cm.-1); 4α-(2-pyridyl)-1ξ-(1-pyrrolidinyl)-3β,5β-bis(3,4,5-trimethoxyphenyl)cyclohexane, m. 145° (EtOAc-Et2O), 4hydroxy-4-(2-pyridyl)-1-(1-pyrrolidinyl)cyclohexane (XV) m. 112-14° (n-hexane); 4-(2-pyridyl)-1-(1-pyrrolidinyl)-3-cyclohexane (XVI), m. 63-5° (n-hexane) (from XV and concentrated H2SO4 heated at 120-30°). Hydrogenation of XVI gave 4-(2-pyridyl)1-pyrrolidinyl cyclohexane, b0.1 146-8°. The latter was also obtained by the hydrogenation of the residue obtained when 4(2-pyridyl)cyclohexanone,

pyrrolidine, p-MeC₆H₄SO₃H, and 60 mL. C₆H₆ was heated, concentrated, and dissolved in 150 mL. EtOH. A solution of 0.44 g. 1 β -(4-bromophenylsulfonyloxy)-3 β ,5 β -diphenyl-4 α -(2-pyridyl)cyclohexane (m. 164-4.5°) in 10 mL. dioxane and 0.71 g. pyrrolidine was heated 24 h. under N and concentrated, the residue dissolved in Et₂O, the solution washed with 5% NaHCO₃ solution, dried, and concentrated, and the

residue fractionally distilled from n-hexane to obtain 3 β ,5 β -diphenyl-4 α -(2-pyridyl)-1 α -(1-pyrrolidinyl)cyclohexane, m. 107-10°. Similarly was obtained 3 β ,5 β -diphenyl-4 α -(2-pyridyl)-1-(1-pyrrolidinyl)cyclopentane, (ν 1595, 1375, 750, and 690 cm.⁻¹) from 3 β ,5 β -diphenyl-4 α -(2-pyridyl), cyclopentanone, ν 1745 cm.⁻¹. A mixture of 4-cyano-3,5-diphenyl-4-(2-pyridyl)cyclohexanone, pyrrolidine, C₆H₆ and p-MeC₆H₄SO₃H was heated 6 h. under N, concentrated, suspended in EtOH, and hydrogenated to give 4-cyano-3,5-diphenyl-4-(2-pyridyl)-1 ξ -(1-pyrrolidinyl)cyclohexane, m. 215-16° (CHCl₃-n-hexane). Similarly were prepared 4-cyano-3,4,5-triphenyl-1-(1-pyrrolidinyl)cyclohexane, m. 182°, from 4-cyano-3,5-diphenyl-4-(2-pyridyl)cyclohexanone, m. 176-8°; 3 β ,5 β -diphenyl-4 β -(2-pyridyl)-1 ξ -(1-pyrrolidinyl)cyclooctane, ν 1595, 1375, 750 and 690 cm.⁻¹ (n-hexane) from 3 β ,5 β -diphenyl-4 α -(2-pyridyl)cyclooctanone, m. 187-90° (cyclohexane) ° 1695 cm.⁻¹. The latter was prepared from 8-carbethoxy-3 β ,5 β -diphenyl-4 α -(2-pyridyl)cyclooctanone, m. 95-100° and H₂SO₄. The ketone in turn was prepared by the hydrogenation of 8-carbethoxy-3 β ,5 β -diphenyl-4 α -(2-pyridyl)-7cycloocten-1-one (XVII) obtained from 8-carbethoxy-3 β ,5 β -diphenyl-4 α -(2-pyridyl)-1-(1-pyrrolidinyl)-6,8-cyclooctadiene (XVIII) treated with AcOH, H₂O, and dioxane. XVIII was prepared from 3 β ,5 β -diphenyl-4 α -(2-pyridyl)cyclohexanone, pyrrolidine, C₆H₆, and p-MeC₆H₄SO₃H. XVII had λ maximum at 330 and 262 m μ , medium 282 and 269 m μ , and min. at 313 and 245 m μ . XVIII λ maximum 290 m μ , medium 272 and 262 m μ , min. 275 and 247 m μ ; ν CO at 1715 cm.⁻¹ and olefin absorption at 1670 cm.⁻¹. A mixture of 5 g. 3,4-diphenyl-5-(4-pyridyl)-2-cyclohexen-1-one, m. 180-3° 3.3 mL. pyrrolidine, 150 mL. C₆H₆, and 0.05 g. p-MeC₆H₄SO₃H.H₂O was heated 24 h., hydrogenated, and filtered, the filtrate washed with dilute NH₄OH, the organic solution dried, filtered, and concentrated, and the residue chromatographed over Al₂O₃ (2:3:2 C₆H₆-CHCl₃-EtOAc) to give 3,4-di-Ph 5(4-pyridyl)-1 ξ -(1-pyrrolidinyl)cyclohexane, ν 1135, 1380, 1415, 1460, 1495, and 1600 cm.⁻¹ Pharmaceutical compns. were given.

L11 ANSWER 48 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1966:59179 CAPLUS
DOCUMENT NUMBER: 64:59179
ORIGINAL REFERENCE NO.: 64:11027d
TITLE: Na tetraphenylborate as a reagent for identification and assay of organic bases
AUTHOR(S): Matta, Gerardo; Silva, M. J.; Lopes, M. M. Simoes
SOURCE: Revista Portuguesa de Farmacia (1965), 15(3), 341-57
CODEN: RPTFAU; ISSN: 0484-811X
DOCUMENT TYPE: Journal
LANGUAGE: Portuguese
AB Description of general technique for identification and determination at the 100 γ level of alkaloids and antibiotics of pharmaceutical interest, with uv and ir spectra of many of the compds.

L11 ANSWER 49 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1966:26924 CAPLUS
DOCUMENT NUMBER: 64:26924
ORIGINAL REFERENCE NO.: 64:4906g-h
TITLE: Identification of primary, secondary, and tertiary

AUTHOR(S): pharmaceutical amines by the infrared spectra
of their salts
Thompson, W. E.; Warren, R. J.; Eisdorfer, I. B.;
Zaremba, J. E.
CORPORATE SOURCE: Smith Kline & French Labs., Philadelphia, PA
SOURCE: Journal of Pharmaceutical Sciences (1965),
54(12), 1819-21
CODEN: JPMSAE; ISSN: 0022-3549
DOCUMENT TYPE: Journal
LANGUAGE: English

AB The spectra of 80 pharmaceutically active amine salts have been analyzed in the range of 4000-2000 cm.⁻¹. The amine salts have characteristic absorption bands in this region. The wave nos. at which these absorption bands occur are specific for each given class of amine. Spectrastructure correlations and assignments of these bands are given and discussed.

L11 ANSWER 50 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1966:19202 CAPLUS
DOCUMENT NUMBER: 64:19202
ORIGINAL REFERENCE NO.: 64:3497d-h
TITLE: Cycloaliphatic carboxylic acid esters
PATENT ASSIGNEE(S): Biochemie G.m.b.H.
SOURCE: 10 pp.
DOCUMENT TYPE: Patent
LANGUAGE: Unavailable
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|-------|----------|-----------------|--------------|
| AT 243780 | ----- | 19651125 | AT 1964-232 | 19640113 <-- |
| PRIORITY APPLN. INFO.: | | | AT | 19640113 <-- |

GI For diagram(s), see printed CA Issue.

AB New basic substituted cycloaliphatic carboxylic acid esters of formula I, in which A is an optionally substituted alkylene residue with more than 4 C atoms, or a substituted alkylene residue with 3 or 4 C atoms in the alkylene chain, Q is an optionally substituted alkylene residue preferably with up to 5 C atoms, Y is an optionally substituted basic residue preferably with tertiary N atom, and R is an optionally substituted aralkyl or aralkenyl residue, or an optionally substituted alkyl or alkenyl residue, or the salts of such acid, are prepared by allowing cycloakanonecarboxylic acid esters (II) to react in the form of the alkali compds., especially the Na compound, or in the presence of a condensing agent, e.g. Na₂O, with haloalkylamines (XQY). Thus were prepared 2-(β-piperidinoethyl)-cyclooctanone-2-carboxylic acid benzyl ester hydrochloride, m. 158-9°, and the hydrochloride of the resp. cyclodecanone compound, m. 139-40° and the following I: (R = PhCH₂; A, QY, salt, and m.p. of salt given) were similarly prepared: CH₂CHMe₂CH₂CH₂, 2-piperidinoethyl (M), oxalate, 230-4° (decomposition); CH(Pr-iso)(CH₂)₃, M, oxalate, 129-41° (decomposition); CHR₁(CH₂)₃ (R₁ = cyclohexyl), M, hydrochloride, 172-4° (decomposition); CHR₁(CH₂)₃ (R₁ = 1-cyclohexenyl), M, hydrochloride, 160-6° (decomposition); (CH₂)₅, 2-pyrrolidin-1-ylethyl, hydrochloride, 136-7°; (CH₂)₅, M, hydrochloride, 153-5°; (CH₂)₅, 2-hexamethyleneiminoethyl, hydrochloride, 137-8°; (CH₂)₆, 2-pyrrolidin-1-ylethyl, hydrochloride, 161-2°; (compound = III), maleinate, 118-19°; (compound = IV), hydrochloride, 174-6°; (compound = V), hydrochloride, 185-7°. The compds. are of pharmaceutical value as antitussives.

L11 ANSWER 51 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1966:3932 CAPLUS
DOCUMENT NUMBER: 64:3932
ORIGINAL REFERENCE NO.: 64:658g-h,659a-b
TITLE: Compounds containing sulfur and nitrogen

INVENTOR(S): Metzger, Horst; Koenig, Horst
 PATENT ASSIGNEE(S): Badische Anilin- & Soda-Fabrik A.-G.
 SOURCE: 6 pp.
 DOCUMENT TYPE: Patent
 LANGUAGE: Unavailable
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|-------|----------|-----------------|--------------|
| GB 1004660 | ----- | 19650915 | GB 1964-12796 | 19640326 <-- |
| DE 1226561 | ----- | | DE | |
| FR 1408203 | ----- | | FR | |

PRIORITY APPLN. INFO.: DE 19630403 <--
 AB A solution of 44 g. trimethyloxosulfonium iodide (I) in 300 ml. Me₂SO containing

5.34 g. 90% NaOH is added during 30 min. with ice cooling and stirring to a solution of 36 g. PhNCO in 100 ml. Me₂SO. After stirring an addnl. hr., the mixture is poured onto ice to give 47 g. RNHCOC(CONHR):S(:O)Me₂ (II) (R = R₁ = Ph) (III), m. 174.5-75°. Desulfurization of III with Raney Ni in EtOH at 70° gave 98% (PhNHCO)₂CH₂, m. 223-4°. A solution of 22.0 g. I in 150 ml. Me₂SO is treated at 20° with 2.67 g. 90% NaH. When H evolution ceases, 11.9 parts PhNCO is added over 30 min. and the mixture poured onto ice to give 5.4 g. ArNHCOCH₂SOMe₂ (IV) (Ar = Ph) (V), m. 178-9° (EtOH). Desulfurization of IV gives PhNHAc, m. 114°. Similarly, from p-ClC₆H₄NCO is obtained IV (Ar = p-ClC₆H₄), m. 183-5°, which was desulfurized to give p-ClC₆H₄N-HAc, m. 176-8°. Allowing a mixture of 2.11 g. V in 20 ml. Me₂SO to stand with 1.19 g. PhNCO 24 hrs. at 20° then pouring onto ice gives 3 g. III. Me₂NCHO or N-methylpyrrolidone are also used as solvents in this reaction. From 1.25 g. C₆H₁₁NCO and 2.11 g. V are similarly obtained 3.12 g. II (R = Ph, R₁ = C₆H₁₁), m. 163° (CCl₄). By the method used to prepare IV are obtained II (R = R₁ = C₆H₁₁), m. 216.5° (EtOH), and II (R = R₁ = Bu), m. 116-18° (C₆H₁₂). A suspension of 22 g. I and 8 g. NaH in 500 ml. tetrahydrofuran is heated 1 hr. at 70°, then treated with 24.3 g. iso-PrNHCOCl at 50° and kept at this temperature 2 hrs. Removal of the solvent gives 21.8 g. II (R = R₁ = iso-Pr), m. 213.5-14° (EtOH). This product is also obtained by heating 40 g. iso-PrNCO with 60 g. iso-PrNHCOCl and a solution of Me₂SO:CH₂ (VI) in Me₂SO. VI is formed by treating I with NaOH. Other compds. prepared according to the route used for IV are IV (Ar = tert-Bu), 30%, m. 195° (CHCl₃); IV (Ar = C₆H₁₁), m. 178° (55%); IV (Ar = PhCH₂CH₂), m. 149 (52%). I (R = R₁ = tert-Bu) (50% yield) m. 221° (MeOH); I (R = R₁ = CH₂C₁) (52%) m. 131°; I (R = R₁ = PhCH₂CH₂) (60%) m. 128°. The substances prepared after removal of the Me₂SO group are intermediates for pharmaceuticals, dyes, and pesticides.

L11 ANSWER 52 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1965:498364 CAPLUS
 DOCUMENT NUMBER: 63:98364
 ORIGINAL REFERENCE NO.: 63:18094c-g
 TITLE: 6-[α -Hydroxy- and α -amino- α -pyridylacetamido]penicillanic acids and their salts
 INVENTOR(S): Cheney, Lee C.; Godfrey, John C.
 PATENT ASSIGNEE(S): Bristol-Myers Co.
 SOURCE: 9 pp.
 DOCUMENT TYPE: Patent
 LANGUAGE: Unavailable
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|-------|----------|-----------------|--------------|
| US 3202653 | ----- | 19650824 | US 1963-269716 | 19620427 <-- |

PRIORITY APPLN. INFO.: US 19620427 <--
 AB A solution of 44 g. trimethyloxosulfonium iodide (I) in 300 ml. Me₂SO containing

AB H₂S gas is bubbled through a suspension containing 40.5 g. of the cupric salt of α -hydroxy- α -(2-pyridyl)acetic acid (I) and 200 ml. water, cooled to 0°, for 30 min. The mixture is filtered to give a solution (II) containing I. II is diluted to 660 ml. by the addition of dioxane. To a solution containing 43.2 g. 6-aminopenicillanic acid, 16.8 g. NaHCO₃, and 1000 ml. water is added 1660 ml. anhydrous dioxane, the solution cooled to 14.9° and 41.2 g. dicyclohexylidimide in 500 ml. dioxane added. After 1 min., II is added to this solution. The mixture is stirred 2 hrs. at 13.5-15.7° and filtered. The filtrate is lyophilized to give dry product which is extracted with two 600 ml. portions of Et acetate and filtered. The insol. matter is extracted with three 500 ml. portions anhydrous acetone and the combined extract filtered, treated with 20 g. K 2-ethylhexanoate in ether, and worked up to give 12.8 g. of the K salt of 6-[α -hydroxy- α -(2-pyridyl)acetamido]penicillanic acid (III), m. 190-5°. N,N'-Dicyclohexylureide derivative of III, m. 100-10°; 6-[α -hydroxy- α -(3-pyridyl)acetamido]penicillanic acid Na salt, m. 213-16°; 6-[α -(3-pyridyl)propionamido]penicillanic acid K salt, m. 160-70°; 6-[α -(3-pyridyl)glycylamido]penicillanic acid-HCl (free acid m. 110-15°) K salt; 6-[α -phenyl- α -(3-pyridyl)acetamido]-penicillanic acid K salt; 6-[α -hydroxy- α -(R)-acetamido]penicillanic acid K salt, R : 5-chloro-3-pyridyl (IIIa), 4-bromo-3-pyridyl (IV), 3-chloro-4-pyridyl (V), 5-methyl-3-pyridyl (VI), 5-phenyl-3-chloro-2-pyridyl (VII), 4-o-chlorophenyl-3-pyridyl (VIII), 5-nitrophenyl-3-pyridyl (IX), 3,5-dimethyl-4-ethyl-2-pyridyl (X), 5-cyclohexyl-3-pyridyl (XI), 5-diethylamino-4-pyridyl (XII), 4-methylsulfonyl-3-pyridyl (XIII), 3-ethylthio-2-pyridyl (XIV), 4-cycloheptyloxy-3-pyridyl (XV); 6-[α -(R1)-propionamido]penicillanic acid K salt, R1 = IIIa, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV, XV, 5-propylamino-4-pyridyl, 5-hexoyl-3-pyridyl; 6-[α -(R2)-glycylamido]penicillanic acid K salt, R2 = III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV, or XV; 6-(3-pyridylacetamido)penicillanic acid K salt, m. 224-7°; 6-[α -(6-methyl-3-pyridyl)acetamido]penicillanic acid K salt, m. 187-9°; 6-[α -(2-methyl-3-pyridyl)acetamido]penicillanic acid K salt, m. 186-8°; 6-[α -(R3)-acetamido]penicillanic acid K salt, R3 : 2-chloro-3-pyridyl, 5-bromo-3-pyridyl, 2-phenyl-5-chloro-3-pyridyl, VIII, IX, 3,5-dimethyl-4-ethyl-3-pyridyl, XI, 2-diethylamino-3-pyridyl, 2-propylamino-3-pyridyl, XIII, 2-hexoyl-3-pyridyl, 4-ethylthio-3-pyridyl, or 2-cycloheptyloxy-3-pyridyl are prepared and found useful as pharmaceuticals.

L11 ANSWER 53 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1965:73491 CAPLUS
DOCUMENT NUMBER: 62:73491
ORIGINAL REFERENCE NO.: 62:12979f-h,12980a-d
TITLE: Determination of organic bases by semimicrotitrimetry using sodium lauryl sulfate. III. Application in pharmaceutical preparations
AUTHOR(S): Pellerin, Fernand; Gautier, Jean Albert; Demay, Dominique
CORPORATE SOURCE: Fac. Pharm., Paris
SOURCE: Ann. Pharm. Franc. (1964), 22(8-9), 559-65
DOCUMENT TYPE: Journal
LANGUAGE: French

AB The method is applied to the determination of 0.01-0.05 millimole each of the following, in the presence of the resp. named compds.: benzethonium chloride (I), 25 mg./100 ml., chloramphenicol, urethan, NaCl, propylene glycol, and H₂O; acepromazine maleate (II), 13.5 mg./5 ml.; benzododecinium chloride (III), 50 mg./100 ml., mephetedrine sulfate, chloretoone (chlorbutol), extract of bergamot, NaCl, and H₂O; dodecyldimethyl(carbethoxymethyl)ammonium bromide (IV), 1.5 g./100 ml., with pentaethylene glycol dichlorocresol ether and H₂O; cethexonium bromide (V), 100 mg./100 ml., EtOH, Me₂CO, NaCl, and H₂O; phenoxyadrine citrate (VI), sucrose, essential oils, Me p-hydroxybenzoate and yellow

acid R; propiomazine maleate (VII) in tablets containing VII 45.7, meprobamate 300, Mg stearate 5, and excipients 149.3 mg. (Mg stearate, 5 mg., does not interfere); papaverine (VIII) in tablets containing VIII base 10, nicotinic acid 10, and excipients 180 mg.; cinnama-verine-HCl (IX) in tablets containing IX and excipients (Levilit 18, Mg stearate 5, talc 18, poly(methylsiloxane) S.I. 200 mg.); dicyclomine-HCl (X) in tablets containing X 10, phenobarbital 15, Ponceau S.X. trace, and excipients 275 mg. To determine X, use 1 ml. of 0.008% Methyl Yellow-0.005% methylene blue indicator (in aqueous 80% EtOH), add 5 ml. 1.8M H₂SO₄, and titrate with 0.01M Na lauryl sulfate (XI) to the rose color in the aqueous solution, and a violet color in

the

CHCl₃ phase; propanocaine-HCl (XII) is an ointment containing XII 1.5%, eucalyptol, poly(oxyethylene) derivs. (XIII) of fatty alcs., glycerol (XIV), essential oils, and H₂O; V in an ointment containing V 0.25%, hydrocortisone, dichlorodiphenoxide, XIII, XIV, corn oil (interesterified), lauryl gallate, and V in an ointment containing V 0.25%, cetyl alc., XI 1%, and H₂O. To der. V in the presence of XI, dissolve 3-4 g. of the ointment with 10 ml. of 95% EtOH, pass the solution slowly through a 6-8 cm. high column of 6 ml. of Amberlite IRA 400 resin (prepared by washing the resin with 2.5M NaOH, H₂O, N HCl, and H₂O (4 times), and with aqueous 50% EtOH), wash the column with 50% EtOH (three 5-ml. vols. + one 10-ml. volume),

evaporate

the EtOH from the combined eluate in vacuo; to the aqueous solution, add 10 ml. H₂O and 20 ml. CHCl₃, and titrate with 0.01M XI as described. The capacity of the resin is 0.35 g. XI/g. Determine promethazine-HCl (XV) in suppositories containing XV 10, aspirin 500 mg., and glycerides (semi-synthetic) 1.49 g., by the described method without modifying. The results of the detns. of I-X, XII, and XV are quant. The precision is ±2% of the amount of I-X, XII or XV determined

L11 ANSWER 54 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1964:432184 CAPLUS
DOCUMENT NUMBER: 61:32184
ORIGINAL REFERENCE NO.: 61:5564a-h
TITLE: Preparation of new dihaloaminobenzylamines
PATENT ASSIGNEE(S): Dr. Karl Thomae G.m.b.h.
SOURCE: 34 pp.
DOCUMENT TYPE: Patent
LANGUAGE: German
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|------|
| BE 625022 | ---- | 19630520 | BE | <-- |
| DE 1169939 | ---- | | DE | |
| FR M2770 | ---- | | FR | |
| GB 968254 | ---- | | GB | |

PRIORITY APPLN. INFO.: DE 19611120 <--

OTHER SOURCE(S): MARPAT 61:32184

GI For diagram(s), see printed CA Issue.

AB I, useful for pharmaceutical purposes, where X is Cl or Br, were prepared by (a) chlorination or bromination of aminobenzylamines, (b) amination of acylaminodihalobenzyl halide followed by hydrolysis, or (c) reduction of dihalonitrobenzylamines. Br (11.6 g.) in 50 cc. CHCl₃ was added dropwise to 2-aminobenzyldiethylamine in 50 cc. CHCl₃, the CHCl₃ extracted with 100 cc. 2N NaOH and concentrated, and the residue dissolved in 50 cc.

EtOH,

and treated with HCl to give N-(2-amino-3,5-dibromobenzyl)diethylamine-HCl (II), m. 214-14.5°. Br (39.5 g.) in 150 cc. AcOH was added dropwise to 12.6 g. N-(4-aminobenzyl)diethylamine in 150 cc. AcOH to give N-(4-amino-3,5-dibromobenzyl)diethylamine-HBr (III), m. 218° (decomposition) (EtOH). N-(2-Amino-3,5-dibromobenzyl)diisobutylamine-HBr, m. 165-7°, was prepared similarly. 2-Diacetylamino-3,5-dibromobenzyl bromide (24.7 g.) was boiled 24 hrs. with 11.8 g.

diallylamine in 300 cc. EtOH, the mixture distilled, the residue dissolved in 1 l. 3N HCl, refluxed 12 hrs., made alkaline, and extracted with CHCl₃ to give N-(2-amino-3,5-dibromobenzyl)diallylamine-HCl, m. 109-13°. Prepared in similar manner were N-(4-amino-3,5-dibromobenzyl)diallylamine-HCl, m. 191-5°, N-(2-Amino-3,5-dibromobenzyl)-N-methylcyclohexylamine-HCl (IV.HCl), m. 232-5°, and N-(4-amino-3,5-dibromobenzyl)-N-methylbenzylamine-HBr, m. 202-6°. Other IV salts were prepared (salt and m.p. given): p-MeC₆H₄SO₃H, 218-19°; HClO₄, 132.5-4°; H₃PO₄, 137-8.5°; HBr, 227.5-8°; (CO₂H)₂, 182-3°; HCl, 240-2°; HNO₃, 135-6°; H₂SO₄, 108-9°. Br (34 g.) in 500 cc. CHCl₃ was added portionwise to 17 g. N-(2-aminobenzyl)pyrrolidine in 500 cc. CHCl₃ at the b.p. to give N-(2-amino-3,5-dibromobenzyl)pyrrolidine-HCl, m. 219-20°. N-(2-Amino-3,5-dibromobenzyl)piperidine-HCl, m. 244-5°, was prepared in similar manner to II. I (2-amino) prepared by method a were (X, R, R₁, salt, m.p. given): Br, Me, Me, HCl, 235-7°; Br, Pr, Pr, HCl, 153-6°; Br, iso-Pr, iso-Pr, HCl, 159-60°; Br, C₅H₁₁, C₅H₁₁, HCl, 111-13°; Br, isohexyl, isohexyl, HCl, 209-15°; Br, Et, PhCH₂, HBr, 179-82°; Br, PhCH₂, PhCH₂, HBr, 192-6°; Br, Me, Me, HCl, 252-6°; Br, Pr, Pr, HBr, 227°; Br, iso-Pr, iso-Pr, HCl, 141-4°; Br, Me, C₆H₁₁, HCl, 232-5°; Br, (RR₁) pentamethylene, HBr, 224-6°; Br, Et, PhCH₂, HBr, 198-203°; Br, PhCH₂, PhCH₂, HCl, 233-5°. I (2-amino) prepared by method b were (X, R, R', salt, m.p. given): Br, C₆H₁₁, C₆H₁₁, HBr, 308-12°; Br, Et, Et, HCl, 123-30°; Br, (RR') tetramethylene, HCl, 200-5°; Br, Et, Ph, HCl, 211-15°. 3,5-Dichloro-2-acetamidotoluene (19 g.) was refluxed in 250 cc. Ac₂O for 2 hrs. to give 3,5-dichloro-2-diacetylaminotoluene (V), m. 84-6° (EtOH). V (15.1 g.) was refluxed with 11.0 g. N-bromosuccinimide and 0.5 g. Bz₂O in 250 cc. CC₁₄ to give 3,5,2-C₁₂-(Ac₂N)C₆H₂CH₂Br (VI), m. 122-5°. VI (9.5 g.) was refluxed 18 hrs. with 5 g. piperidine and 250 cc. EtOH to produce N-(2-amino-3,5-dichlorobenzyl)piperidine-HCl, m. 234-5°. Prepared in similar manner were I (position of H₂N, X, R, R', salt, and m.p. given): 4, Cl, Me, C₆H₁₁, -, - (free base m. 62-4°); 2, Cl, Me, C₆H₁₁, HCl, 224-5°; 2, Cl, iso-Bu, iso-Bu, HCl, 142-8°; 4, Cl, Et, Et, H₂SO₄, 132-4°; 4, Cl, PhCH₂, PhCH₂, HCl, 237.5-238°; 2, Br, (RR'N) camphidino, -, - (free base m. 109-11°); 4, Br, (RR'N) camphidino, HCl, 238-41°. o-O₂ NC₆H₄CHO (1.51 g.) was refluxed 5 hrs. with 0.73 g. iso-BuNH₂, distilled, the residue dissolved in 40 cc. AcOH and 1.64 g. AcoNa, 3.2 g. Br in 10 cc. AcOH added dropwise, and the mixture worked up with CC₁₄ to give 2.56 g. N-(2-amino-3,5-dibromobenzyl)isobutylamine (VII); VII.HCl X. 211-31°. Prepared in similar manner were I (position of H₂N, X, R, R', salt, m.p. given): 4, Br, H, C₆H₁₁, HCl, 259-62°; 2, Br, H, C₆H₁₁, HCl, 247-8°; 4, Br, H, iso-Bu, HCl, 180-3°; 4, Br, cyclopentyl, cyclopentyl, HCl, 189-97°. N-(2-Nitro-3,5-dibromobenzyl)-N-methylcyclohexylammonium chloride was hydrogenated to produce N-(2-amino-3,5-dibromobenzyl)-N-methylcyclohexylamine, m. 235-5.5° (EtOH). Prepared in same manner was I (2-amino): Br, H, Me, HBr, m. 244-7°. N-(2-Amino-3,5-dibromobenzyl) methylamine (4.4 g.) was heated 8 hrs. with 50 cc. EtOH and 1.9 g. PhCH₂Cl, treated with 100 cc. 2N NaOH, extracted with CHCl₃, dried over Na₂SO₄, concentrated. dissolved

in

EtOH, treated with 2 cc. concentrated HBr and recrystd. from EtOH to give N-(2-amino-3,5-dibromobenzyl)-N-methylbenzylamine-HBr, m. 218.5-219°. I have low toxicities, abate secretions, calm coughs, inhibit monoamine oxidase, and are antipyretics. Pharmacol. tests are described.

L11 ANSWER 55 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1964:33780 CAPLUS
DOCUMENT NUMBER: 60:33780
ORIGINAL REFERENCE NO.: 60:6047c-d
TITLE: Reduction of duration of restraint for production of experimental [gastric] ulcers in the rat, and

AUTHOR(S): application to the study of protective substances
Buchel, L.; Gallaire, D.
CORPORATE SOURCE: Fac. Med., Paris
SOURCE: Comptes Rendus des Seances de la Societe de Biologie
et de Ses Filiales (1963), 157, 1225-8
CODEN: CRSBAW; ISSN: 0037-9026
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable
AB For Wistar strain rats about 50 days old, complete immobilization in a wire mesh jacket, with feet taped together, for 2.5 hrs. after a 24-hr. fast regularly produced gastric ulcers in 82-5%. This is a much shorter time than previously required for fed rats. Prior intraperitoneal injection of atropine sulfate (1.25 mg./kg.), chlorpromazine (20 mg./kg.), or dihexyverine (HCl salt of 2-piperidylethyl 1-cyclohexylcyclohexanecarboxylate, a cholinolytic) (50 mg./kg.) reduced the incidence of ulcer to about 25% of the immobilized rats.

L11 ANSWER 56 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1964:30811 CAPLUS
DOCUMENT NUMBER: 60:30811
ORIGINAL REFERENCE NO.: 60:5450c-f
TITLE: Spiranes. IV. Alkyl, cycloalkyl, alkenyl, aryl, aralkyl, and hydrazone azaspirane derivatives
Grogan, Charles H.; Geschickter, Charles F.; Rice, Leonard M.
AUTHOR(S):
CORPORATE SOURCE: Georgetown Univ. Med. Center, Washington, DC
SOURCE: Journal of Medicinal Chemistry (1964), 7(1), 78-88
CODEN: JMCMAR; ISSN: 0022-2623
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable
OTHER SOURCE(S): CASREACT 60:30811
GI For diagram(s), see printed CA Issue.
AB cf. preceding abstract The previous investigation of dialkylaminoalkyl and heterocyclic-alkyl azaspirodiones and azaspiranes has been extended to include alkyl, alkenyl, alkoxyalkyl, cycloalkyl, aryl, aralkyl, and hydrazone N-substituents of 2-azaspido[4.4]nonanes (I), 3-azaspido[5.5]undecanes (II), 2-azaspido[4.5]decanes (III), 8-azaspido[4.5]decanes (IV), 2-azaspido[4.6]undecanes (V), 3-azaspido[5.6]dodecanes (VI), 2-azaspido[4.7]dodecanes (VIa), spiro-trans-decalin-2,4'-piperidines (VIb), spirotrans-decalin-2,3'-pyrrolidines (VIC), 8-oxa-2-azaspido[4.5]dodecanes (VII), and 7-thia-2-azaspido[4.4]-nonanes. Biol. screening and pharmacol. studies of these compds. have revealed a wide range of useful activity. Most notable were the effects produced on the peripheral and central nervous system. A number of compds. of these types exhibited, in varying degree, central nervous stimulant and depressant, local anesthetic, sedative, "tranquilizing," and hypnotic properties. Several of the azaspirodiones produced marked hypotension in dogs.

L11 ANSWER 57 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1963:431480 CAPLUS
DOCUMENT NUMBER: 59:31480
ORIGINAL REFERENCE NO.: 59:5685b-c
TITLE: Food additives. Plasticizers
AUTHOR(S): Anon.
SOURCE: Federal Register (1963), 28, 6679-80, 28 Jun 1963
CODEN: FEREAC; ISSN: 0097-6326
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable
AB The previous regulations under the Federal Food, Drug, and Cosmetic Act for triethylene glycol (CA 55, 19051d), bis(2-ethylhexyl) adipate (CA 56, 3854a), epoxidized linseed oil (CA 56, 7755e), and di-n-hexyl azelate (CA 57, 1332e) are combined into a single

regulation together with dicyclohexyl and diphenyl phthalate for use as plasticizers in polymeric substances used in the manufacture of articles that contact food. The latter two compds. may be used in poly(vinyl chloride) and acetate film and sheet at room temperature provided that total phthalate, calculated as phthalic acid does not exceed 10% by weight of the finished film or sheet.

L11 ANSWER 58 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1963:431474 CAPLUS
DOCUMENT NUMBER: 59:31474
ORIGINAL REFERENCE NO.: 59:5684d-e
TITLE: Food additives. Resinous and polymeric coatings for paper and paperboard
AUTHOR(S): Anon.
SOURCE: Federal Register (1963), 28, 6068, 14 Jun 1963
CODEN: FEREAC; ISSN: 0097-6326
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable
AB cf. CA 56, 5165i. The previous regulation under the Federal Food, Drug, and Cosmetic Act is revised to permit the use of the following addnl. substances in the title material that contacts food:
butadiene-styrene-itaconic acid copolymer; dibutyl phthalate; dicyclohexyl phthalate; EtOAc; EtOH; nitrocellulose (10.9-12.2% N); rosin esterified with MeOH and condensed with the reaction product of maleic anhydride, ethylene glycol, and phthalic anhydride; toluene; toluenesulion-amide-H₂CO resin; and petroleum wax.

L11 ANSWER 59 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1963:73061 CAPLUS
DOCUMENT NUMBER: 58:73061
ORIGINAL REFERENCE NO.: 58:12458b-c
TITLE: Physiologically active compounds. V. Aminothiol esters of substituted acetic, chloroacetic, benzilic, and related acids
AUTHOR(S): Buehler, C. A.; Smith, Hilton A.; Kryger, Allen C.; Wells, Roy L.; Thamess, Shelby F.
CORPORATE SOURCE: Univ. of Tennessee, Knoxville
SOURCE: Journal of Medicinal Chemistry (1963), 6, 230-3
CODEN: JMCMAR; ISSN: 0022-2623
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable
OTHER SOURCE(S): CASREACT 58:73061
AB cf. CA 55, 25844h. Twenty-one salts of aminothiol esters of substituted acetic, chloroacetic, benzilic, and related acids were synthesized. The acetic and chloroacetic esters were prepared from the appropriate acid chlorides and the aminothiol; the hydroxy esters, by the hydrolysis of the α -chloroaminothiol esters. A method of preparing aminothiol esters of hydroxy acids from the sodium adduct of the ketone in liquid ammonia by treatment with bis(2-diethylaminoethyl)thiol carbonate proved to be satisfactory for the benzilic acid ester only. The order of increasing activity among the salts of the esters is acetic < chloroacetic < α -hydroxy. The greatest activity among the salts of the α -hydroxy esters [RR'C(OH)COS(CH₂)_xNR₂'] is shown when x = 2 and when R and R' are unsubstituted rings. Four of these latter esters are superior to benactyzine, although the atropine-like activity of two of them exceeds that of this standard

L11 ANSWER 60 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1962:451474 CAPLUS
DOCUMENT NUMBER: 57:51474
ORIGINAL REFERENCE NO.: 57:10293f-g
TITLE: Food additives. Corrosion inhibitors for steel or tinplate

AUTHOR(S): Anon.
 SOURCE: Federal Register (1962), 27, 6878, 20 Jul
 1962
 CODEN: FEREAC; ISSN: 0097-6326
 DOCUMENT TYPE: Journal
 LANGUAGE: Unavailable
 AB Dicyclohexylamine and morpholine and their salts of fatty acids derived from animal or vegetable oils may be used under the Federal Food, Drug, and Cosmetic Act, together with polyethylene glycol and propylene glycol as adjuvants, as corrosion inhibitors for steel or tinplate for use in contact with food.

L11 ANSWER 61 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1962:60319 CAPLUS
 DOCUMENT NUMBER: 56:60319
 ORIGINAL REFERENCE NO.: 56:11450d-f
 TITLE: Chloroformamidine chlorides
 INVENTOR(S): Seefelder, Matthias
 PATENT ASSIGNEE(S): Badische Anilin- & Soda-Fabrik AG
 DOCUMENT TYPE: Patent
 LANGUAGE: Unavailable
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|--------------|
| DE 1119258 | ---- | 19611214 | DE 1960-B58412 | 19600630 <-- |

PRIORITY APPLN. INFO.: DE 1960-B58412
 DE 19600630 <--
 AB Chloroformamidine chlorides were obtained by the reaction at room temperature of

COCl₂ with thioureas, with separation of COS. Thus, N-tertbutylthiourea 66 was added over 0.5 hr. with stirring to COCl₂ 60 in tetrahydrofuran 200 parts. Brisk evolution of COS occurred. After 4 hrs. the product was filtered off and purified by reppn. from CHCl₃ solution by tetrahydrofuran to yield N-tert-butylchloroformamidine hydrochloride 60 parts, m. 110-13°. Preparation details and analyses were also given for the following chloroformamidine hydrochlorides: N,N'-dimethyl, m. 138-43°; N,N''-diisopropyl, m. 100-5°; N,N'-diisobutyl, m. 60-3°; N,N'-dicyclohexyl, m. 39-41°; N,N'-diphenyl, m. 123-5°; N-phenyl-N'-benzyl, m. 141-4° (decomposition); N-phenyl-N',N'-tetramethylene, m. 166-70°; N,N'-bis(p-methoxyphenyl), m. 116-18°; and N,N'-bis(m-chlorophenyl), m. 108-9°. Also described was N,N,N',N'-tetramethylchloroformamidinium chloride. The compds. existed in an unionized form, represented as dichlorodiaminomethanes, the equilibrium between the two forms depending on the N-substituents. They were hygroscopic and potentially useful intermediates in the preparation of pharmaceuticals.

L11 ANSWER 62 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1962:25404 CAPLUS
 DOCUMENT NUMBER: 56:25404
 ORIGINAL REFERENCE NO.: 56:4880d-f
 TITLE: Stable aqueous solutions of drugs difficultly soluble in water
 PATENT ASSIGNEE(S): Chemische Pharmazeutische Fabrik Dr. Hermann Thiemann G.m.b.H.
 SOURCE: Addn. to Ger. 1,058,697 (CA 55,9797c)
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|--------------|
| DE 1085296 | ---- | 19600714 | DE 1957-C15664 | 19571019 <-- |

PRIORITY APPLN. INFO.: DE 19571019 <--

AB $\alpha, \beta, \gamma, \gamma$ -Tetra-substituted crotonolactones are effective solubilizing agents; the d. substituent is an aliphatic, hydroaromatic, or an ali phatic-aromatic group of 4-15 C atoms which are attached to the lactone ring by a primary or secondary C atom; the β -substitute is a OH group, and the γ -substituents are H or C10 aliphatic groups. Thus, 30 parts 1-phenyl-2,3-dimethyl-4-dimethylamino-5-pyrazolone was dissolved in a hot solution of the Na salt of 3,5-diphenyl-4-hydroxycrotonolactone (I) (prepared from I 30 and NaCHO₃ 9.98), the solution cooled, and diluted to 10 parts to give a stable solution even on refrigeration.

L11 ANSWER 63 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1961:111966 CAPLUS

DOCUMENT NUMBER: 55:111966

ORIGINAL REFERENCE NO.: 55:21052b-i

TITLE: Organic nitrogen-containing phosphorus compounds

INVENTOR(S): Binder, Hans; Heinle, Rudolf

PATENT ASSIGNEE(S): Rottweiler Kunstseidefabrik Akt.-Ges.

DOCUMENT TYPE: Patent

LANGUAGE: Unavailable

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|-------|----------|-----------------|--------------|
| DE 1084716 | ---- | 19600707 | DE 1958-R22830 | 19580305 <-- |
| US 3127445 | ----- | 19640331 | US 1960-26418 | 19600503 <-- |

AB Phosphonic acid or phosphoric acid monoester imides were treated at 110-240° with compds., containing one reactive H atom to give the title compds., useful as fungicides, insecticides, flame protection agents, lubricants, pharmaceuticals, and as intermediates in the manufacture of polymerizates, and plastics. Thus, ethylphosphonic acid cyclohexylimide (I) was heated 5 hrs. with excess anhydrous cyclohexanol at elevated pressures to 230°, the mixture concentrated, and the resulting crystals washed with EtOAc, and recrystd. from MeOH-EtOAc to give ethylphosphonic acid cyclohexylamide cyclohexyl ester, m. 117°; benzyl ester, m. 194-5°. Similarly I treated with cyclohexylamine (II) at 150° gave ethylphosphonic acid di(cyclohexyl amide), m. 161-2°; cyclohexylamide anilide, m. 182° (MeOH-EtOAc). Similarly were treated the following substituted phosphonic acid imides (PA) with the following reactive H compds. to give the following products (reagents, product, and m.p. given): ethylphosphonic acid anil (III), phenol (IV), ethylphosphonic acid Ph ester anilide, -; III, II, ethylphosphonic acid anilide cyclohexylamide, 153-5° (EtOAc); phenylphosphonic acid cyclohexylimide (V), IV, phenylphosphonic acid cyclohexylamide Ph ester, 234-6° (EtOAc-EtOH); V, II, phenylphosphonic acid di(cyclohexyl amide), 169° (aqueous MeOH); V, glacial AcOH, phenylphosphonic acid cyclohexylamide, -; V, AcCH₂COMe, acetylphenylphosphonic acid cyclohexylamide, 285-9° (decomposition); V, Et malonate, phenylisoamylphosphonic acid cyclohexylamide; benzylphosphonic acid cyclohexylimide, IV, benzylphosphonic acid Ph ester cyclohexylamide, 198-200° (xylene); cyclohexylphosphonic acid cyclohexylimide (VI), MeOH, cyclohexylphosphonic acid Me ester cyclohexylamide, 260-5° (dioxane-glacial AcOH); VI, II, cyclohexylphosphonic acid di(cyclohexyl amide), 280-1° (dioxane-H₂O); phosphonic acid Ph ester cyclohexylimide (VII), MeOH, phosphoric acid Ph Me ester cyclohexylamide, 268-9°; VII, iso-PrOH, phosphoric acid Ph iso-Pr ester, cyclohexylamide, 271°; VII, IV, phosphoric acid diphenyl ester cyclohexylamide, 199-200° (H₂O); VII, excess glycol, diglycol ester of phosphoric acid Ph ester cyclohexylamide, 254-6° (MeCN-H₂O); VII, glycol, phosphoric acid Ph monoglycol ester, cyclohexylamide, -; VII, BuNH₂, phosphoric acid Ph ester cyclohexylamide butylamide, -; VII, excess II, phosphoric acid Ph ester

di(cyclohexyl amide), 202° (MeOH-EtOAc); VII, excess PhNH₂, phosphoric acid Ph ester cyclohexylamide anilide, 212° (MeOH); VII, H₂N(CH₂)₆NH₂, bis(phosphoric acid Ph ester cyclohexylamide) hexamethylene amide, 209° (H₂O-MeOH); VII, MeOH, phosphoric acid Ph Me ester methylamide, -; VII, glycol, diglycol ester of phosphoric acid Ph ester methylamide, -; phosphoric acid Ph ester benzylimide (VIII), IV, phosphoric acid diphenyl ester benzylamide, 105-7° (petr. ether-EtOAc); VIII, PhNH₂, phosphoric acid Ph ester benzylamide anilide, 184° (EtOAc-MeOH); phosphoric acid Ph ester hexamethylenimide, MeOH, bis(phosphoric acid Ph Me ester) hexamethyleneamide, -; VII, H₂O, phosphoric acid monophenyl ester cyclohexylamide, 268.5° (MeOH-H₂O); phosphoric acid Ph ester anil (IX), IV, phosphoric acid diphenyl ester anilide, 167-8° (H₂O); IX, II, phosphoric acid Ph ester cyclohexylamide anilide, 192-4° (MeCN-MeOH); phosphoric acid Ph ester p-tolylimide, IV, phosphoric acid diphenyl ester p-toluidide, 150° (xylene); phosphoric acid cyclohexyl ester cyclohexylimide, cyclohexanol, phosphoric acid dicyclohexyl ester cyclohexylamide, 225-6°.

L11 ANSWER 64 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1961:87344 CAPLUS
 DOCUMENT NUMBER: 55:87344
 ORIGINAL REFERENCE NO.: 55:16485d-g
 TITLE: 2,5-Dihalo-3,6-diaminobenzoquinone-N3, N6-disulfonic acid derivatives
 INVENTOR(S): Neeff, Rutger; Bayer, Otto
 PATENT ASSIGNEE(S): Farbenfabriken Bayer Akt.-Ges.
 DOCUMENT TYPE: Patent
 LANGUAGE: Unavailable
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|-------|----------|-----------------|--------------|
| DE 1083832 | ----- | 19600623 | DE 1957-F25312 | 19570403 <-- |

AB Cyclic sulfimidic acid esters (prepared according to Ger. 1,032,253, CA 54, 19717i) were treated with primary or secondary amines to give the amino salts of 3,6-diaminobenzoquinone-N3,N6-disulfonamides, useful as intermediates in the manufacture of pharmaceuticals. Thus, I 10 in MeCN 78 was treated with Et₂NH 8.8 in MeCN 19.5 parts to give the bis(diethylamino) salt of 2,5-dichloro-3,6-diamino-1,4-benzoquinone-N3,N6-disulfonic acid bis(diethylamide), m. 135.5° (decomposition), which with glacial AcOH gave the free amide, m. 83.5° (decomposition). Similarly were prepared the following bisamine salts of 2,5-dichloro-3,6-diamino-1,4-benzoquinone-N3,N6-disulfonic acid bis amides (amine radical, amide radical, m.p., and m.p. of the free amide given): piperidine, piperidide, 139.5° (decomposition), 128° (decomposition); morpholine, morpholide, 143° (decomposition), -; diallylamine, diallylamide, 117.5° (decomposition), -; dipropylamine, dipropylamide, 135° (decomposition), -; dibutylamine, dibutylamide, 126.5°, -; cyclohexylamine, cyclohexamide, above 360°, -; aniline, anilide, above 360°, -.

L11 ANSWER 65 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1960:128528 CAPLUS
 DOCUMENT NUMBER: 54:128528
 ORIGINAL REFERENCE NO.: 54:24533f-i,24534a-i,24535a-f
 TITLE: Physiologically active compounds. III. Hydrochlorides of amino esters of phenylcyclohexylglycolic acids, of amides of benzilic, phenylcyclohexyl- and dicyclohexylglycolic, and phenylcyclohexylacetic acids; 2-methylthioethyl ester methiodides of substituted benzilic acids
 AUTHOR(S): Smith, H. A.; Buehler, C. A.; Magee, T. A.; Nayak, K. V.; Glenn, D. M.

CORPORATE SOURCE: Univ. of Tennessee, Knoxville
SOURCE: Journal of Organic Chemistry (1959), 24,
1301-9
CODEN: JOCEAH; ISSN: 0022-3263
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable
AB cf. CA 53, 7163e. In continuation of syntheses and tests for physiol. activity of compds. related to benzilic acid amino esters, 14 glycolic amino ester HCl salts, RR₁C(OH)CO₂(CH₂)₂NR₂R₃.HCl (I), 8 acid amide amino ester HCl salts, RR₁C(X)CONR₂(CH₂)₂NR₃R₄.HCl (II), and 3 substituted benzilic acid thioalkyl ester MeI salts, R₂C(OH)CO₂(CH₂)₂SMe.MeI (III) were prepared KOH (30 g.) in 700 ml. absolute alc. stirred with 100 g. Ph₂C(OH)CO₂H and the salt (107 g.) refluxed 1 hr. with 30 ml. MeI in 500 ml. HOCH₂CH₂OCH₂CH₂OBu and 80 ml. H₂O, the mixture poured into 2.5 l. H₂O and the product (93.5 g.) recrystd. twice from hot alc., the Ph₂C(OH)CO₂Me (98%, m. 76-6.5°) in AcOH hydrogenated 48 hrs. at 20°/4 atmospheric with PtO₂, and the filtered solution (containing partially reduced ester from

475

g. material) distilled from a pot attached to an 8-ft. Vigreux column equipped with a total reflux variable take-off distilling head gave Ph(C₆H₁₁)C(OH)CO₂Me, m. 40°, hydrolyzed to Ph(C₆H₁₁)C(OH)CO₂H (IV) m. 160-2° (alc.), also produced from BzCN according to Smith, et al. (CA 44, 2354h). I (nos. 65, 66) were prepared from IV and the appropriate ClCH₂CH₂NR₂R₃ according to Smith, et al. (CA 51, 17843h). I (nos. 68-78) were obtained by partial hydrogenation of the corresponding benzilic acid ester hydrochlorides. Ph(RC₆H₄)C(OH)CO₂(CH₂)₂NET₂.HCl (V, R = alkyl) (2-3 g.) in a min. of AcOH hydrogenated (3.4 moles H) over 0.4 g. prereduced PtO₂ and the filtered solution evaporated in vacuo, the residue digested in hot alc., and the cooled clarified extract (Norit) diluted with Et₂O gave I, recrystd. from alc.-Et₂O. V (R = Ph) (1.5 g.) in 30 ml. AcOH was hydrogenated (3.0 moles) over 0.4 g. prereduced PtO₂ and the product digested in 50 ml. hot EtOAc, the filtered solution cooled, and the solid salt crystallized twice from alc.-Et₂O. SOC_l (10 ml.) and 95 g. p-MeC₆H₄CO₂H refluxed 3 hrs. on a steam bath, the excess SOC_l evaporated, and the residue distilled in vacuo yielded 100.5 g. p-MeC₆H₄COCl (VI), b₀3 57°. VI (27 g.) and 26.5 g. dried Cu₂CN₂ refluxed 1.5 hrs. at 250-60° (metal bath) and the product distilled yielded 43.5% p-MeC₆H₄COCN (VII), b. 222-4°, m. 50-1°. VII (23 g.) in 100 ml. absolute alc. saturated below 10° with dry HCl and, after keeping 8 days at 0°, poured into a large volume of H₂O, extracted 3 times with Et₂O, and the washed and dried exts. distilled in vacuo yielded 50% p-MeC₆H₄CH(OH)CO₂Et (VIII), b_{3.5} 124-6°. Mg turnings (1.98 g.) covered with Et₂O (Na-dried), heated 5-10 min. on a steam bath with 1.5-2.0 g. pure ClC₆H₁₁ and a crystal of iodine, the colorless solution stirred 40 min. under reflux with more Et₂O and 7.63-8.13 g. ClC₆H₁₁, the Grignard solution added dropwise to 10.4 g. VIII in dry Et₂O and, after refluxing 1 hr., poured onto cracked ice and dilute H₂SO₄, the aqueous layer washed with Et₂O, and the organic solns.

evaporated gave 8.9 g. ester, b₃ 155-8°, hydrolyzed with dilute alc. NaOH and acidified to yield 65% p-MeC₆H₄(C₆H₁₁)C(OH)CO₂H, m. 189-90°, converted in 93.5% yield by treatment with Cl(CH₂)₂NET₂ to give the ester, compound number 70. Concentrated HCl (1250 ml.) and 159 g. purified

2,4-Me₂C₆H₃NH₂

stirred with cooling to 5-10° and stirred with slow addition of 70 ml. Br in 250 mg. 1:1 48% HBr-concentrated HCl below 20°, the mixture heated to 50-70° and the colorless mixture vigorously stirred at 0° with addition of ice, stirred at 0-5° with 109 g. NaNO₂ in 300 ml. H₂O and the completely diazotized solution added to a cold (0°) mixture of 526 g. SnCl₂ in 3 l. H₂O and 1313 g. NaOH in 2 l. H₂O with vigorous stirring, the mixture kept overnight and the organic layer steam distilled, the washed (H₂SO₄, H₂O, dilute NaOH, H₂O) product dried, and distilled gave 136 g. 3,5-Me₂C₆H₃Br, b₆ 70° treated (85 g.) with 12.16 mg. Mg in Et₂O and the Grignard reagent poured gently into a slurry of solid CO₂ in dry Et₂O to yield 67.5% 3,5-Me₂C₆H₃CO₂H, m. 169-70° (alc.). The corresponding 3,5-Me₂C₆H₃Cl, b_{3.5} 90°, and 3,5-Me₂C₆H₃CN, m.

61-2°, were similarly prepared in 89 and 61.5% yields, resp. Conversion of 7 g. cyanide yielded 4.2 g. 3,5-Me₂C₆H₃CH(OH)CO₂Et, b4.5 130°, pos. test with 2,4-(O₂N)C₆H₃NHNH₂, and converted (6.4 g.) through the Grignard reagent to 18% 3,5-Me₂C₆H₃(C₆H₁₁)C(OH)CO₂Et, b4.5 170°, hydrolyzed to 41.5% acid, m. 170-1°, transformed in the usual manner to 63.5% ester, compound number 72, m. 217-18°. Data were tabulated for the ester hydrochlorides I (compound number, R, R₁, R₂, R₃, % yield, and m.p. given): 65, Ph, C₆H₁₁, Me, Me, 47 (on Me ester), 219-20°; 66, Ph, C₆H₁₁, (R₂R₃=)(CH₂)₅, 47 (on Me ester), 223-4°; 67, Ph, C₆H₁₁, (R₂R₃=)(CH₂)₅, 24 (on free acid), 176-7° (MeBr salt); 68, o-MeC₆H₄, C₆H₁₁, Et, Et, 55 (on corresponding acid ester hydrochloride), 191-3°; 69, m-MeC₆H₄, C₆H₁₁, Et, Et, 66, 187-9°; 70, p-MeC₆H₄, C₆H₁₁, Et, Et, 75, 200-1°; 71, 2,3-Me₂C₆H₃, C₆H₁₁, Et, Et, 38, 170-2°; 72, 3,5-Me₂C₆H₃, C₆H₁₁, Et, Et, 83, 217-18°; 73, 2,4,6-Me₃C₆H₂, C₆H₁₁, Et, Et, 64, 206-7°; 74, 3,4,5-Me₃C₆H₂, C₆H₁₁, Et, Et, 85, 223-4°; 75, 2,3,5,6-Me₄C₆H, C₆H₁₁, Et, Et, 66, 204-5°; 76, m-MeC₆H₄, m-MeC₆H₁₀, Et, Et, 31, 181-2°; 77, Ph, m-C₆H₁₁C₆H₄, Et, Et, 34, 138-9°; 78, Ph, p-C₆H₁₁C₆H₄, Et, Et, 21, 148-9°. The indicated formulas were assigned on the evidence of ultraviolet absorption curves. II (R = Me) were prepared by the method of Krapcho, et al. (CA 50, 16769g), from the appropriate acid chloride and II (R = H) obtained according to Miescher, et al. (U.S. 2,009,114). The 2-(N,N-dialkylaminoethyl)methylamines were prepared by the methods of Kermack and Wight (CA 30, 1026) and Damiens (CA 47, 2695c). BrCH₂(CH₂)₃CH₂Br (100 g.) by the method of von Alphen (CA 31, 53617) yielded 58% 2-piperidinoethylamine (IX), b. 187-9°. Ph₂C(OH)CO₂Me (11.0 g.) and 10.1 g. IX refluxed 2 hrs. and the cooled mixture taken up in Et₂O, extracted 3 times with dilute HCl, and the extract made basic gave 41% material, m. 115-16°, taken up in Et₂O, saturated with dry HCl, and the HCl salt, m. 203-4°, completely reduced at 20° in AcOH with prereduced PtO₂ to yield 35% compound number 86. Ph₂C(OH)CO₂H (20 g.) converted according to King and Holmes (CA 41, 5121g) yielded 46% Ph₂CClCOCl (X), m. 47-9°. Ph(C₆H₁₁)CHCO₂H (43.6 g.) with SOC₁₂ gave 40 g. Ph(C₆H₁₁)CHCOCl, b3 136-9°. X (2.3 g.) in 10 ml. 3:2 C₆H₁₄-C₆H₆ at 20-30° treated dropwise with 1.18 g. 2-piperidinoethylmethylamine in 2 ml. C₆H₆ and the mixture stirred 1 hr. at 20°, refluxed 1 hr. and the cooled solution diluted with H₂O, the organic layer washed with dilute HCl and the combined aqueous layers washed with Et₂O, heated 10 min. at 100° and the hydrolyzation mixture made strongly basic, extracted with Et₂O, and the extract saturated at 0° with HCl yielded 47% material, m. 215-17°, recrystd. from alc. and Et₂O to give 46% compound number 80. The phys. properties of II were (compound number, R, R₁, R₂, R₃, % yield, and m.p. given): 79, Ph, Ph, OH, Me, Me, Me, 26, 272-4°; 80, Ph, Ph, OH, Me, (R₃R₄=)(CH₂)₅, 46, 226-7°; 81, Ph, C₆H₁₁, H, Me, Me, 89, 206-7°; 82, Ph, C₆H₁₁, OH, H, Me, Me, 12, 215-16°; 83, Ph, C₆H₁₁, OH, H, (R₃R₄=)(CH₂)₅, 18, 222-3°; 84, Ph, C₆H₁₁, OH, H, Me, Me, 29, 233-4°; 85, C₆H₁₁, C₆H₁₁, OH, H, Et, Et, 50, 231-2°; 86, C₆H₁₁, C₆H₁₁, OH, H, (R₃R₄=)(CH₂)₅, 35, 260-1°. Na (47.9 g.) in 1 l. absolute alc. boiled with 100 g. Me₂S and the hot solution stirred 2 hrs. with dropwise addition of 302 g. ClCH₂CH₂OH, excess alc. evaporated on a steam bath and the cooled solution filtered, the precipitated NaCl washed twice with 100 ml. 95% alc., and the combined filtrate and washings concentrated in vacuo yielded 76% HOCH₂CH₂SMe, b20 68-70°, converted to 133 g. ClCH₂CH₂SMe (XI), b20 54-6°. The appropriate benzilic acid (0.05 mole) in EtONa (0.05 mole Na in 50 ml. absolute alc.) refluxed 4 hrs. with 0.055 mole XI and the filtered solution distilled in vacuo gave thioesters, converted by keeping in the dark in a closed vessel with an equal volume of MeI to III (compound number, R, % yield, b.p./1.0 mm. of ester, and m.p. of III given): 87, o-MeC₆H₄, 37, 175-80°, 61-2°; 88, p-MeC₆H₄, 26, 155-60°, 44-5°; 89, o-MeOC₆H₄, -, 63°, 190-4°. Anticholinesterase screening tests, blood pressure, gut, and respiration effects, eye effects, and tests for cerebral stimulation and atropine-like

activity were made and tabulated together with results given by previous compds. Compds. 70 and 80 appeared to be more active than atropine in preventing mortality from an anticholinesterase compound Compds. 65, 66, and 67 were especially active against acetylcholine and compound 54 was particularly active against histamine. Compds. 67, 68, 70, 81, and 83 were active mydriatics, compds. 53 and 66 were active in producing miosis, and nos. 53, 67, and 70 also produced local irritation. Compound 65 was slightly more active in the cerebral stimulation test than the tranquilizer, benactyzine, and had 5 times the atropine-like activity; nos. 35 and 68 had equal benactyzine activity but only 10-20% atropine-like activity. All compds. showed less activity than atropine in tests on the eye pupil of rabbits.

L11 ANSWER 66 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1960:128527 CAPLUS
 DOCUMENT NUMBER: 54:128527
 ORIGINAL REFERENCE NO.: 54:24533d-f
 TITLE: Hydrogenation of benzene by silent electric discharge
 AUTHOR(S): Brown, G. P.; Rippere, R. E.
 CORPORATE SOURCE: Gen. Elec. Co., Schenectady, NY
 SOURCE: Am. Chem. Soc., Div. Petrol. Chem., Preprints (1957), 2(No. 3), 149-54
 DOCUMENT TYPE: Journal
 LANGUAGE: Unavailable

AB In the title reaction C₆H₆ yielded detectable amts. of 1,3-cyclohexadiene (I), 1,4-cyclohexadiene (II), cyclohexene, biphenyl, hydrogenated biphenyl, and polymer. The reaction of C₆H₆ in H and He, resp., and of cyclohexane and H was investigated. The hydrocarbon was distilled and the condensate passed downward through the space between the electrodes while the gas flowed upwards through the same space. In reaction of C₆H₆ in H, the vapor fractometer indicated the formation of traces of I and II after 1 hr. and after 24 hrs. the relative concns. of I and II were 1:2 with 0.02% II; the duration of the run was 56 hrs. After 2 weeks' storage of the mixture under N, I had essentially disappeared. After 2 months storage, the products were isolated and found to be biphenyl and a polymer consisting of a mixture of partially hydrogenated polyphenyls. In the reaction of C₆H₆ in He the peak concns. of I and II appeared after 18 hrs. and a lower concentration of cyclohexadiene was indicated as compared to the reaction in H. Cyclohexane formed cyclohexene and an unidentifiable compound after 25 hrs.

L11 ANSWER 67 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1960:74722 CAPLUS
 DOCUMENT NUMBER: 54:74722
 ORIGINAL REFERENCE NO.: 54:14276b-d
 TITLE: N,N-Disubstituted sulfamide acid chlorides
 INVENTOR(S): Bodenbrenner, Kurt; Wegler, Richard
 PATENT ASSIGNEE(S): Farbenfabriken Bayer Akt.-Ges.
 DOCUMENT TYPE: Patent
 LANGUAGE: Unavailable
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|-------|----------|-----------------|--------------|
| DE 1028129 | ----- | 19580417 | DE 1956-F21569 | 19561103 <-- |

AB The title compds., suitable as insecticides, pharmaceuticals and for dyes, were prepared by treating N-chloramines, obtained by the reaction of secondary amines with NaOCl in the presence of organic solvents, with SO₂ at 5-30°. Thus, morpholine 435 in concentrated HCl 400 and H₂O 500 was mixed at -5 to -2° with CC₁₄ 2000 and hypochlorite solution 2860 by volume, containing NaOCl 372 parts by weight. The organic layer was separated, extracted with dilute acid and aqueous NaHCO₃, and dried over Na₂SO₄ to obtain 82.4% N-chloromorpholine. Into this solution was introduced SO₂ 360 at -5 to

5° and Cl 40 parts. This mixture was left 24 hrs. and then refluxed 1-2 hrs. under SO₂, poured after cooling into H₂O and extracted with NaHCO₃. After drying, the solvent was evaporated to give morpholine N-sulfochloride, b0.5 85°, 649 parts. Other N-sulfochlorides similarly obtained were (N-substituent, b.p./mm., and % yield given): diethylamino, 90-3°, 70; dibutylamino, 88-90°, 73; pyrrolidino, 80-6°, 89; dicyclohexylamino, m. 117-18°, 75.

L11 ANSWER 68 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1959:51220 CAPLUS
 DOCUMENT NUMBER: 53:51220
 ORIGINAL REFERENCE NO.: 53:9254b-i,9255a-g
 TITLE: Tertiary amines
 INVENTOR(S): Seeger, Ernst; Kottler, August
 PATENT ASSIGNEE(S): Dr. Karl Thomae G. m. b. H. Chemisch-pharmazeutische Fabrik
 DOCUMENT TYPE: Patent
 LANGUAGE: Unavailable
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|-------|----------|-----------------|-------------|
| DE 963424 | ----- | 19570509 | DE 1954-T10011 | 19540924 <- |
| US 3109845 | ----- | 19631105 | US 1960-6616 | 19600204 <- |

AB Tertiary α-aminoacetonitriles of the general formula X(CN)CHNR'R'' where X denotes a 2,5-endomethylenecyclohex-3-en-1-yl (I), cyclohexyl (II), cyclohexenyl, 4-hydroxy-3-methoxyphenyl, 3,4-dimethoxyphenyl, naphthyl, anthranyl, furyl, thieryl, or a 5,6-dihydropyranyl radical, R' and R'' an alkyl, hydroxyalkyl, cycloalkyl, aralkyl, or aryl radical, or R' and R'' together (CH₂)₄, (CH₂)₅, or (CH₂)₂O(CH₂)₂, were treated with organomagnesium halides in the presence of solvents to give the title compds., which can be converted to quaternary ammonium compds. by known methods. Thus, 16.2 g. I piperid-1-yl-acetonitrile derivative in 30 cc.

absolute

Et₂O was added dropwise to PhMgBr (prepared from 4.6 g. Mg and 31.4 g. PhBr), the mixture refluxed 3 hrs., cooled, decomposed with ice and 12% HCl, the Et₂O layer separated, the residual aqueous solution made alkaline by aqueous NH₄Cl and

concentrated NH₃, and the resulting oil taken up in Et₂O, the Et₂O solution dried

over Na₂SO₄, the solvent evaporated, and the residue fractionated in vacuo to give I N-piperidylphenylmethane derivative, b0.2 121°, HCl salt, m. 223°. Similarly were prepared the following tertiary amines X(Y)CHZ (X, Y, and Z, b.p./mm., m.p. of the HCl salt given): I, (CH₂)₃Ph, NMe₂, 138°/0.15, 153°; I, (CH₂)₄Ph, N-piperidyl, 198-200°/0.7, -; I, α-naphthyl, NBu₂, 180°/0.3, -; I, CH₂-p-C₆H₄, N-piperidyl, 151-2°/0.5, 195°; I, (CH₂)₉Me, N-piperidyl, 163°/0.2, -; I, II, NMe₂, 63°/0.5, -; I, Ph, N-morpholinyl, 146-7°/0.2, -; I, m-C₆H₄Me, N-piperidyl, 138°/0.2, -; I, p-C₆H₄Me, N-piperidyl, 141°/0.1, m. (base) 70-1°, -; II, (CH₂)₂Ph, NET₂, 142°/0.8, 141-2°; II, (CH₂)₈Me, NMe₂, 137°/0.3, 157-8°; II, CH₂CH(Me)Ph, N-pyrrolidyl, 150°/0.4, 150-1°, cyclohex-1-en-1-yl, (CH₂)₃Ph, NET₂, 157-8°/0.6, -; 4-hydroxy-3-methoxyphenyl, (CH₂)₃Ph, N-morpholinyl, -, 176°; 4-hydroxy-3-methoxyphenyl, II, N-piperidyl, -, 114°; 4-hydroxy-3-methoxyphenyl, (CH₂)₇Me, N-piperidyl, -, 140°; 3,4-dimethoxyphenyl, (CH₂)₃Ph, NBu₂, 210°/0.4, 139-40°; α-naphthyl, (CH₂)₃Ph, NET₂, 197°/0.5, -; 9-anthranyl, (CH₂)₃Ph, NMe₂, -, 77-8°; 2-furyl, CH₂-p-C₆H₄Me, NMe₂, 123-5°/0.8, 188-90°; 2-furyl, α-naphthyl, NMe₂, 123°/0.2, -; 2-furyl, (CH₂)₆Me, NMe₂, 80°/0.25, -; 2-thienyl, (CH₂)₃Ph, N-piperidyl, 182°/0.4, 162°; 2-thienyl, Et, NMe₂, 47-8°/0.25, 121°; 5,6-dihydropyran-3-yl, (CH₂)₃Ph, NMe₂, 134°/0.2, 152°; I,

CH₂Ph, N(CH₂CH₂OH)₂, -, -; I, Ph, NMe₂, 103°/0.35, 191-2°;
I, CH₂Ph, NMe₂, 119°/0.5, 182°; I, (CH₂)₂Ph, NMe₂,
135°/0.8, 184°; I, Ph, NET₂, 140-3°/1, 183°;
I, CH₂Ph, NET₂, 153°/1, 163-4°; I, (CH₂)₂Ph, NET₂,
146°/0.15, 146°; I, (CH₂)₃Ph, NET₂, 165°/1,
152-3°; methiodide, m. 158°; I, Pr, NET₂, 78°/0.15,
122°; I, (CH₂)₃Ph, NBu₂, 154-6°/0.6, -; I, Ph, N(Me)CH₂Ph,
183°/0.6, -; I, CH₂Ph, N(Me)CH₂Ph, 188°/0.9, 182-3°;
I, (CH₂)₂Ph, N(Me)CH₂Ph, 188°/0.7, 179°; I, (CH₂)₃Ph,
N(Me)CH₂Ph, 178°/0.9, 190-2°; I, (CH₂)₃Ph, N(C₆H₁₁)₂,
205°/0.25, -; I, Ph, N-pyrrolidyl, 133°/0.6, 221°;
methiodide, m. 162-3°; I, CH₂Ph, N-pyrrolidyl, 151-2°/0.5,
181°; I, (CH₂)₂Ph, N-pyrrolidyl, 154°/0.5, 112°; I,
(CH₂)₃Ph, N-pyrrolidyl, 165°/0.6, -; I, II, N-pyrrolidyl,
78°/0.5, 229°; I, Et, N-pyrrolidyl, 82°/0.2,
95°; I, CH₂Ph, N-piperidyl, 150°/0.3, 157°; I,
(CH₂)₂Ph, N-piperidyl, 152°/0.6, 144-5°; I, (CH₂)₃Ph,
N-piperidyl, 156°/1, -; I, II, N-piperidyl, 60°/0.4,
162°; I, Et, N-piperidyl, 102-3°/0.5, 130-2°; I,
Pr, N-piperidyl, 110-12°/0.5, 132-3°; I, Bu, N-piperidyl,
106°/0.1, 152-3°; I, (CH₂)₆Me, N-piperidyl,
140°/0.3, -; I, iso-PrPh, N-piperidyl, 156-8°/0.3, -; I, Ph,
N(Me)Ph, 159-60°/0.35, -; I, (CH₂)₃Ph, N(Me)Ph, 180-3°/0.5,
-; I, p-C₆H₄Me, N(Me)Ph, 170-2°/0.2, -; II, CH₂Ph, NMe₂,
135-6°/0.7, 207°; II, (CH₂)₂Ph, NMe₂, 142-3°/0.65,
169-70°, bromobenzylate, m. 188-9°; II, (CH₂)₃Ph, NMe₂,
153°/0.7, 152-3°, methiodide, m. 195-6°; II,
(CH₂)₉Me, NMe₂, 146-8°/0.4, 147-8°; II, CH₂Ph, NET₂,
131-2°/0.8, 110°; II, (CH₂)₃Ph, NET₂, 150-2°/0.7, -;
II, p-C₆H₄Me, NET₂, 122°/0.2, 167-9°; II, CH₂-p-C₆H₄Me,
NET₂, 135-7°/0.5, 140-2°; II, (CH₂)₄Ph, N-pyrrolidyl,
162°/0.2, -; II, Ph, N-piperidyl, 118-20°/0.9, -; II, CH₂Ph,
N-piperidyl, 135°/0.7, 206°; II, (CH₂)₂Ph, N-piperidyl,
133-4°/0.15, 178°; II, (CH₂)₃Ph, N-piperidyl,
145°/0.1, 171°; II, α -naphthyl, N-piperidyl,
185°/0.4, 119-21°; cyclohex-1-ene-1-yl, (CH₂)₃Ph,
N-pyrrolidyl, 160-2°/0.5, 157-8°; cyclohex-1-en-1-yl,
(CH₂)₃Ph, N-piperidyl, 170-2°/0.5, 196-7°;
4-hydroxy-3-methoxyphenyl, (CH₂)₃Ph, NMe₂, m. (base) 106°, -,
146°; 4-hydroxy-3-methoxyphenyl, Et, NMe₂, m. (base), 124°,
-, 160°; 4-hydroxy-3-methoxyphenyl, CH₂-p-C₆H₄Me, NMe₂, -,
126°; 4-hydroxy-3-methoxyphenyl, (CH₂)₃Ph, N-pyrrolidyl, -, about
160°; 4-hydroxy-3-methoxyphenyl, Et, N-pyrrolidyl, m. (base)
96°, -, -; 4-hydroxy-3-methoxyphenyl, Ph, N-piperidyl, -,
207-9°; 4-hydroxy-3-methoxyphenyl, CH₂Ph, N-piperidyl, m. (base)
141°, -, 165°; 4-hydroxy-3-methoxyphenyl, (CH₂)₂Ph,
N-piperidyl, m. (base) 111°, -, 186°; 4-hydroxy-3-
methoxyphenyl, (CH₂)₃Ph, N-piperidyl, m. (base) 103-4°, -,
120°; 4-hydroxy-3-methoxyphenyl, (CH₂)₄Ph, N-piperidyl, m. (base)
113-14°, -, -; 4-hydroxy-3-methoxyphenyl, α -naphthyl,
N-piperidyl, m. (base) 160°, -, 172° (decomposition);
4-hydroxy-3-methoxyphenyl, II, N-piperidyl, 140-5°/0.4, -;
4-hydroxy-3-methoxyphenyl, Et, N-piperidyl, m. (base) 118°, -,
174°; 3,4-dimethoxyphenyl, Ph, NMe₂, -, 110°;
3,4-dimethoxyphenyl, (CH₂)₃Ph, NMe₂, 166-8°/0.1, 146-8°;
3,4-dimethoxyphenyl, II, NMe₂, 118-20°/0.4, -; 3,4-dimethoxyphenyl,
 α -naphthyl, NMe₂, m. (base) 98-100°, -, -;
3,4-dimethoxyphenyl, iso-PrPh, NMe₂, 156°/0.3, -;
3,4-dimethoxyphenyl, (CH₂)₃Ph, N-pyrrolidyl, 215°/0.6, -;
3,4-dimethoxyphenyl, Ph, N-piperidyl, m. (base) 82°, -,
137°; 3,4-dimethoxyphenyl, (CH₂)₃Ph, N-piperidyl, 200°/0.1,
158°; α -naphthyl, Et, NET₂ 177°/0.2, -;
 α -naphthyl, Ph, N-pyrrolidyl, 157-8°/0.1, -;
 α -naphthyl, (CH₂)₂Ph, N-piperidyl, 207°/0.4, -;
 α -naphthyl, (CH₂)₃Ph, N-piperidyl, 187°/0.2, -; 9-anthranyl,

(CH₂)₃Ph, N-piperidyl, -, 130°; 2-furyl, Ph, NMe₂, 89°/0.4, 188°; 2-furyl, (CH₂)₃Ph, NMe₂, 145°/0.7, 136°; 2-furyl, (CH₂)₄Ph, NMe₂, 112-14°/0.15, -; 2-furyl, p-C₆H₄Me, NMe₂, 85°/0.15, -; 2-furyl, iso-PrPh, NMe₂, 96-7°/0.2, 148-9°; 2-furyl, (CH₂)₃PhNET₂, 142°/0.7, -; 2-furyl, CH₂Ph, NBu₂, 145°/0.3, -; 2-furyl, (CH₂)₃Ph, NBu₂, 162°/0.3, -; 2-furyl, Ph, N-piperidyl, 125°/0.3, -; 2-furyl, (CH₂)₃Ph, N-piperidyl, 149°/0.3, 151°; 2-thienyl, Ph, NMe₂, 93-4°/0.2, -; 2-thienyl, (CH₂)₃Ph, NMe₂, 149°/0.5, 110°; 2-thienyl, iso-PrPh, NMe₂, 120°/0.2, -; 2-thienyl, Ph, N-piperidyl, -, 211°; 2-thienyl, (CH₂)₃Ph, N-pyrrolidyl, 175°/0.2, 120°; 2-thienyl, Et, N-piperidyl, 88-90°/0.25, -; 5,6-dihydropyran-3-yl, Ph, NMe₂, 110°/0.2, 232°; 5,6-dihydropyran-3-yl, Et, NMe₂, 50°/0.4, -; 5,6-dihydropyran-3-yl, (CH₂)₆Me, NMe₂, 101°/0.2, -; 5,6-dihydropyran-3-yl, α-naphthyl, NMe₂, 157-8°/0.4, -; 5,6-dihydropyran-3-yl, p-C₆H₄Me, N-piperidyl, 153-6°/0.4, -; 5,6-dihydropyran-3-yl, II, N-piperidyl, 138-9°/0.5, -; cyclohex-1-en-1-yl, CH₂Ph, N-pyrrolidyl, 142-3°/0.3, 212°; cyclohex-1-en-1-yl, CH₂Ph, N-piperidyl, 170-2°/0.9, -; I, (CH₂)₃Ph, N-morpholinyl, 165-6°/0.3, -; II, (CH₂)₃Ph, N-morpholinyl, 166-7°/0.35, -; I, CH₂Ph, N(Me)CH₂CH₂OH, 137-8°/0.1, -. The compds. thus prepared are useful as pharmaceuticals.

L11 ANSWER 69 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1959:40022 CAPLUS

DOCUMENT NUMBER: 53:40022

ORIGINAL REFERENCE NO.: 53:7206i,7207a-i,7208a-h

TITLE: Diquaternary compounds

INVENTOR(S): Coker, Geoffrey G.; Billing-Hurst, John E. W.; Phillips, Denys A. B.

PATENT ASSIGNEE(S): Wellcome Foundation Ltd.

DOCUMENT TYPE: Patent

LANGUAGE: Unavailable

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|-----|---|-------|----------|-----------------|-------------|
| | GB 800695 | ----- | 19580903 | GB 1955-23822 | 19550818 <- |
| AB | To 7.2 g. N1-(2-hydroxyethyl)-N2-methylpiperazine in 20 ml. C ₆ H ₆ is added during 20 min. with stirring 11.5 g. diphenylacetyl chloride (I) in 40 ml. C ₆ H ₆ . N2-Methyl-N1-(2-diphenylacetoxyethyl)piperazine (II), m. 85-6° (EtOH), is obtained from the mixture, which is stirred and kept at 70° 3 hrs., cooled, excess aqueous NH ₃ added, and then the benzene layer separated, washed with H ₂ O, dried, and evaporated II (2 g.), 2 ml. MeI, | | | | |
| and | 15 ml. acetone allowed to stand at room temperature several hrs. gives N ₁ ,N ₂ ,N ₂ -trimethyl-N1-(2-diphenylacetoxyethyl)piperazinium diiodide, m. 194° (decomposition) (aqueous MeOH). I (4.6 g.) and 3.7 g. N-(2-hydroxyethyl)-N-methyl-N-(2-piperidinoethyl)amine allowed to stand at room temperature 16 hrs., warmed on steam bath 1 hr., the product dissolved in cold dilute HCl, the solution washed with ether, and excess aqueous NH ₃ added | | | | |
| to | the acid solution which is extracted with CHCl ₃ gives 2-[N-methyl-N-(2-piperidinoethyl)-amino]-1-(diphenylacetoxy)ethane (III), oil, on evaporation of the CHCl ₃ . III (5 g.), 5 ml. MeI, and 25 ml. acetone refluxed several hrs. gives a solid on cooling, N ₁ ,N ₁ ,N ₂ -trimethyl-N1-(2-diphenylacetoxyethyl)ethylene-1-ammonium-2-piperidinium diiodide, m. 205° (MeOH). Similarly prepared are: 2-[N-(2-di-n-butylamino)ethyl-N-methylamino]-1-diphenylacetoxyethane, b0.2 210-20° (di-MeI salt, hygroscopic gum); 4-[N-methyl-N-(3-morpholinopropyl)amino]-1-(diphenylacetoxy)butane (IV), an oil; 4-[N-methyl-N-(6-morpholinohexyl)-amino]-1-(diphenylacetoxy)butane (V), an oil; 1-dicyclohexylacetoxy-4-[N-methyl-N-(2-piperidinoethyl)amino]butane, b0.05 185-8° [oxalate, m. | | | | |

188° (decomposition); di-MeI salt, m. 198° (EtOH)];
6-[N-methyl-N-(2-piperidinoethyl)amino]-1-(diphenylacetoxyl)hexane, b0.05
200-6°; oxalate, m. 202° (decomposition); di-MeI salt, m.
147°]; and N1-[4-bis(4-methoxyphenyl)acetoxybutyl]-N1,N1,N2-
trimethylene-1-ammonium-2-piperidinium diiodide. K
bis(4-chlorophenyl)acetate (6.4 g.) in 3.25 g. N1-2-chloroethyl-N2-
methyldipiperazine and 50 ml. xylene refluxed 24 hrs., the mixture extracted with
dilute HCl, excess aqueous NaOH added to the acid extract, and the liberated
base
extracted with C6H6 gives N1-[2-bis(4-chlorophenyl)acetoxyethyl]-N2-
methyldipiperazine (VI), an oil, after evaporation of the benzene from the dried
solution, finally in vacuo; VI.2MeI, m. 189° (decomposition) (acetone).
Bis(4-methylphenyl)acetyl chloride (27 g.), 8 g. trimethylenechlorohydrin,
and 150 ml. C6H6 refluxed several hrs., the solvent evaporated (finally in
vacuo), the residue dissolved in ether, the ether solution washed with
saturated
NaHCO3 solution, dried over anhydrous MgSO4, and the solvent evaporated gives
3-bis(4-methylphenyl)acetoxypropyl chloride (VII), b0.1 170°. VII
(6.33 g.) and 6.25 g. N-methyl-N-(2-piperidinoethyl)amine in 25 ml. dry
C6H6 with 2.0 g. NaI refluxed several hrs., ether added to the cooled
mixture, the mixture extracted with dilute HCl, excess aqueous NH3 added to
the acid
extract, the liberated base extracted with ether, the ether extract washed with
water, dried, and the solvent evapd, gives 3-[N-methyl-N-(2-
piperidinoethyl)amino]-1-bis(4-methylphenyl)acetoxypropane (VIII):
VIII.2MeI, m. 185-7° (EtOH). Similarly are prepared:
N2-methyl-N1-[3-bis(4-methylphenyl)acetoxypropyl]piperazine [di-MeI salt,
m. 189-190° (decomposition) (MeOH)]; 4-[N-methyl-N-(2-
pyrrolidinoethyl)amino]-1-(diphenylacetoxyl)butane (di-MeI salt,
hygroscopic gum); di-MeI salt of V, hygroscopic gum; 4-bis(4-methylphenyl)-
acetoxybutyl chloride, b0.07 176°, n21D 1.5479;
N2-methyl-N1-[4-bis(4-methylphenyl)acetoxybutyl]piperazine (oil);
N1,N2,-N2-trimethyl-N1-[4-bis(4-methylphenyl)acetoxybutyl]piperazinum
diiodide, m. 224-6° (decomposition) (MeOH); 4-[N-methyl-N-(2-
pyrrolidinoethyl)amino]-1-[bis(4-methylphenyl)acetoxy]butane di-MeI salt,
m. 166-8° (decomposition) (EtOH)]; 4-[N-methyl-N-(2-
piperidinoethyl)amino]-1-[bis(4-methylphenyl)acetoxy]butane [di-MeI salt,
m. 166-8° (EtOH)]; 4-[N-methyl-N-(2-morpholinoethyl)amino]-1-[bis(4-
methylphenyl)acetoxy]butane [di-MeI salt, m. 186-8° (decomposition)
(EtOH)]. 1-(Dicyclohexylacetoxyl)-4-[N-methyl-N-(2-
piperidinoethyl)amino]butane (2 g.) in 5 ml. EtI refluxed 4 hrs., the
excess solvent distilled in vacuo, and the pasty residue crystallized from
EtOH-EtOAc gives N1,N2-diethyl-N1-(4-dicyclohexylacetoxylbutyl)-N1-
methylethylene-1-ammonium-2-piperidinium diiodide, hygroscopic needles, m.
165°. N1-Methyl-N1-(6-diphenylacetoxylhexyl)-N1,N2-dipropylethylene-
1-ammonium-2-piperidinium diiodide, hygroscopic gum, is similarly prepared
6-(Diphenylacetoxyl)hexyl bromide (11 g.) and 4 g. N-(2-
diethylaminoethyl)methylamine, warmed on a steam bath 2 hrs., cooled,
dissolved in dilute HCl, the solution washed with ether, treated with crushed
ice and excess aqueous NH3, and extracted with CHCl3 gives 6-[N-(2-
diethylaminoethyl)-N-methylamino]-1-(diphenylacetoxyl)hexane; di-MeI salt,
hygroscopic gum. Ethylene bromohydrin (10 g.) and 15 g.
N-methyl-N-(2-piperidinoethyl)amine warmed to 60° 5 min., then
heated on the steam bath 1 hr., the product dissolved in dilute HCl, the
solution washed with ether, made alkaline with NaOH, and extracted with CHCl3
gives
on distillation of the dried extract N-(2-hydroxyethyl)-N-methyl-N-(2-
piperidinoethyl)amine (IX), b10 133-5°; oxalate, m. 185°
(decomposition). Et 3,3-diphenylpropionate (6 g.) added to 6 g. IX in which 0.1
g. Na has been dissolved, the mixture heated at 180° 4 hrs., cooled,
dissolved in dilute HCl, the solution washed with ether, treated with crushed
ice and excess aqueous NH3, and rapidly extracted with CHCl3 gives on
evaporation of
the dried exts. 1-[N-methyl-N-(2-piperidinoethyl)amino]-2-(3,3-
diphenylpropionoxy)ethane, b0.05 185-90°; oxalate, m. 232°

(decomposition); di-MeI salt, m. 221-3°. Similarly are prepared: 1-[N-methyl-N-(3-morpholinopropyl)amino]-2-(3,3-diphenylpropionoxy)ethane, b0.06 220° [oxalate, m. 212° (decomposition) (EtOH)] (di-MeI salt, hygroscopic gum); 1-[N-(2-diethylaminoethyl)-N-methylamino]-6-(3,3-diphenylpropionoxy)hexane, b0.1 210° (picrate, m. 130°; di-MeI salt, hygroscopic gum); 1-[N-methyl-N-(2-piperidinoethyl)amino]-2-(4,4-diphenylbutyroxy)ethane, b0.1 204-6° [oxalate, m. 219° (decomposition); di-MeI salt, m. 217-18°]. Et bromoacetate (10 g.) added dropwise to 10 g. N-(2-diethylaminoethyl)-methylamine with stirring and cooling, the exothermic reaction completed by warming on the steam bath 30 min., the mixture dissolved in dilute HCl, the solution washed with ether, made alkaline at 0° with NH₃, extracted with CHCl₃, and distilled gives Et N-(2-diethylaminoethyl)-N-methylaminoacetate (X), b15 124-5°; oxalate, m. 168° (decomposition). Na (0.1 g.) in small pieces dissolved in 3 g. 2,2-diphenylethanol at 160°, 2.5 g. X added, the mixture heated on an oil bath 6 hrs. at 160°/50 mm., the cooled product dissolved in cold dilute HCl, the acid solution washed with ether, the aqueous phase made alkaline with NH₃ at 0°, and rapidly extracted with CHCl₃ gives on distillation of the dried exts. 2,2-diphenylethyl N-(2-diethylaminoethyl)-N-(methylamino)acetate, b0.2 165-70°; oxalate, m. 159°; di-MeI salt m. 148° (EtOH). Similarly are prepared: 3,3-diphenylpropyl N-(2-diethylaminoethyl)-N-(methylamino)acetate, b0.1 182-4° (oxalate, m. 164; di-MeI salt, m. 152°); 2,2-diphenylethyl N-methyl-N-(2-piperidinoethyl)aminoacetate, b0.1 192°, m. 199° (decomposition) (di-MeI salt, m. 127°); 3,3-diphenylpropyl N-methyl-N-(2-piperidinoethyl)aminoacetate, b0.05 195° [oxalate, m. 207° (decomposition); di-MeI salt, m. 161-2°]; diphenylmethyl 4-[N-methyl-N-(2-morpholinoethyl)amino]butyrate, b0.04 185-90° [oxalate, m. 182° (EtOH); di-MeI salt, m. 218° (decomposition)]; 2,2-diphenylethyl 4-[N-methyl-N-(2-morpholinoethyl)amino]butyrate, b0.05 207-8° [oxalate, m. 185° (decomposition); di-MeI salt, m. 220° (decomposition)]; 3,3-diphenylpropyl 4-[N-methyl-N-(2-morpholinoethyl)amino]butyrate, b0.05 211-12° [oxalate, m. 182-3° (decomposition); di-MeI salt, m. 175°]; 2,2-diphenylethyl 5-[N-methyl-N-(2-piperidinoethyl)amino]pentanoate, b0.05 202-6° [oxalate, m. 197°; di-MeI salt, m. 190° (EtOH)]; 3,3-diphenylpropyl 5-[N-methyl-N-(2-piperidinoethyl)amino]pentanoate, b0.05 220°, m. 176-8° (decomposition) (di-MeI salt, m. 169-70°); di-Ph 6-[N-methyl-N-(2-piperidinoethyl)amino]hexanoate, b0.025 206° [oxalate, m. 184°; di-MeI salt, m. 136-6° (acetone)]; 2,2-diphenylethyl 6-[N-methyl-N-(2-piperidinoethyl)amino]hexanoate, b0.04 200-5° [oxalate, m. 183°; di-MeI salt, m. 213° (EtOH)]; 3,3-diphenylpropyl 6-[N-methyl-N-(2-piperidinoethyl)amino]hexanoate, b0.05 210° [oxalate, m. 175°; di-MeI salt, hygroscopic plates, m. 145° (acetone)]. These compds. have pharmacol. properties resembling those of known ganglion blocking agents. They lower blood pressure and block the hypertensive action of N₁,N₁-dimethyl-N₂-phenylpiperazinium iodide, increase the hypertensive effects of adrenaline and noradrenaline, inhibit gastric secretion and bradycardia of vagal origin, and cause mydriasis; in vitro they inhibit the peristaltic reflex of the isolated guinea pig ileum.

L11 ANSWER 70 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1959:39918 CAPLUS
 DOCUMENT NUMBER: 53:39918
 ORIGINAL REFERENCE NO.: 53:7163e-i,7164a-h
 TITLE: Physiologically active compounds. II. Hydrochlorides of aminoesters of substituted benzilic and glycolic acids
 AUTHOR(S): Buehler, C. A.; Smith, H. A.; Glenn, D. M.; Nayak, K. V.
 CORPORATE SOURCE: Univ. of Tennessee, Knoxville
 SOURCE: Journal of Organic Chemistry (1958), 23, 1432-7

DOCUMENT TYPE:

Journal

LANGUAGE:

Unavailable

OTHER SOURCE(S):

CASREACT 53:39918

AB cf. C.A. 51, 17843h. Aminoester hydrochlorides of 39 substituted benzilic and glycolic acids were synthesized; 2 of them appear to be more active in exptl. animals than atropine in preventing mortality from an anticholinesterase compound, and 4 of them exhibit the highest anticholinergic activity. One compound previously reported offers some advantage over these as an anticholinergic. β -Aminoethyl chlorides were prepared by the procedures given in the previous paper.

Tetrahydrofurfuryl alc. with SOCl_2 gave 73% tetrahydrofurfuryl chloride (I). I, NH_2Et_3 , and NaI gave 53% N,N-diethyltetrahydrofurfurylamine (II). II was converted by HBr to 80% N-ethyl-3-hydroxypiperidine (III). III with SOCl_2 gave N-ethyl-3-chloropiperidine-HCl which with aqueous NaOH gave the free N-ethyl-3-chloropiperidine. The following $\text{RR}'\text{C}(\text{OH})\text{CO}_2(\text{CH}_2)\times\text{R}''\text{HCl}$ were prepared by refluxing the proper benzilic acid with the aminoethyl chloride in dry iso-PrOH ($\text{R}, \text{R}', \text{R}''$, X, % yield, and m.p. given): 2-MeC₆H₄, 2-MeC₆H₄, N-ethyl-3-piperidyl (IV), 0, 69, 186-7°; 3-MeC₆H₄, 3-MeC₆H₄, N-ethyl-3-piperidyl, 0, 81, 150-1°; 4-iso-PrC₆H₄, 4-iso-PrC₆H₄, Et₂N, 2, 64, 181-2°; 2-MeOC₆H₄, 2-MeOC₆H₄, Et₂N, 2, 65, 171-2°; 4-MeOC₆H₄, 4-MeOC₆H₄, Et₂N, 2, 77, 167-8.5°; 4-MeOC₆H₄, 4-MeOC₆H₄, pyrrolidino, 2, 92, 181-2°; 4-MeOC₆H₄, 4-MeOC₆H₄, pyrrolidino (MeBr derivative), 2, 53, 147-8°; 2,3-(MeO)C₆H₃, 2,3-(MeO)C₆H₃, Et₂N (V), 2, 83, 184-5°; 3,4-(MeO)C₆H₃, 3,4-(MeO)C₆H₃, Et₂N, 2, 79, 167.5-8.5°; 3,4-methylenedioxyphenyl, Ph, Et₂N (VI), 2, 73, 164-5.5°; 3-PhC₆H₄, Ph, Et₂N, 2, 73, 136-7°; 3-PhC₆H₄, Ph, Et₂N (VII), 2, 60, 178-9°; 4-PhC₆H₄, Ph, piperidyl, 2, 70, 189-90°; 4-PhC₆H₄, Ph, N-ethyl-3-piperidyl (VIII), 0, 65, 149-50°; 3-PhC₆H₄, 3-PhC₆H₄, Et₂N (IX), 2, 59, 158-9°; 3-PhC₆H₄, 3-PhC₆H₄, piperidino, 2, 68, 197-8°; 4-PhC₆H₄, 4-PhC₆H₄, Et₂N, 2, 72, 183-5°; 4-PhC₆H₄, 4-PhC₆H₄, piperidino (X), 2, 47, 192-3°; 4-PhC₆H₄, 4-PhC₆H₄, N-ethyl-3-piperidyl (XI), 0, 74, 190-1°. 2-Phenylbenzilic acid could be prepared neither by an analogous procedure from 2-bromobiphenyl through the action of 2-biphenylmagnesium iodide on isonitrosoacetophenone nor through a mixed benzoin condensation of BzH and 2-PhC₆H₄CHO (XIa). The Grignard reagent of 3-bromobiphenyl (XII) reacted with N-methylformanilide to form 3-phenylbenzaldehyde (XIII) which was subjected to the benzoin condensation to give 3,3'-diphenylbenzoin (XIV). XIV was oxidized with CuSO_4 in C₅H₅N to the corresponding benzil (XV) which on rearrangement with KOH gave 3,3'-diphenylbenzilic acid (XVI). 2,2'-Diphenylbenzilic acid could not be produced because of the failure of XIa to undergo the benzoin condensation. XII and Et phenylglyoxylate (XVII) were prepared by known methods. XII (23.4 g.) in 300 ml. Et₂O added dropwise to 2.51 g. Mg and Et₂O under N, the solution refluxed 2 hrs., the Grignard solution added dropwise to 17.8 g. XVII in 200 ml. Et₂O, the solution refluxed 2 hrs., 250 ml. dilute HCl added, the Et₂O layer separated, the H₂O portion extracted with

more

Et₂O, the exts. combined, and distilled gave 18 g. Et 3-phenylbenzilate (XVIII), b₁ 213-18°. XVIII (18 g.) in 30 ml. alc. refluxed 3 hrs. with 20 g. KOH in 100 ml. H₂O, diluted with H₂O, acidified, and the precipitate collected gave 11 g. 3-phenylbenzilic acid, m. 127-8° (C₆H₆). XII (23.4 g.) in 250 ml. Et₂O treated with 2.51 g. Mg, then 13.5 g. N-methylformanilide added during 2 hrs., stirred 1 hr., decomposed, and separated gave 14 g. XIII, b₂ 138-44°; 2,4-dinitrophenylhydrazone, m. 234-5°. XIII (8 g.), 3 g. KCN, 40 ml. H₂O, and 80 ml. alc. refluxed. 10 hrs., cooled, diluted with H₂O, extracted with Et₂O, dried, and distilled gave 6 g. orange oil. This oil, 14 g. CuSO₄, 100 ml. C₅H₅N, and 30 ml. H₂O refluxed 6 hrs., the mixture poured onto ice and H₂O, the liquid decanted, and the solid dissolved in alc. gave 2.7 g. XV, m. 119-20° (MeOH); quinoxaline, m. 156°. XV (8 g.) in 300 ml. Et₂O left 24 hrs. with frequent shaking with 4 g. Na in 50 ml. 95% alc. and 25 ml. absolute alc., the solution extracted with H₂O, the aqueous solution extracted with

Et₂O, heated to 90°, and acidified gave 3 g. crude XVI, m. 155-7° (C₆H₆). RR'C(OH)CO₂CH₂CH₂N_{ET}₂.HCl (XIX) were prepared by dissolving 0.01 mole corresponding benzilate in AcOH, hydrogenating at 3 atmospheric over 0.1 g. Pt catalyst until reduction was complete, removing the catalyst and AcOH, and crystallizing the solid to give pure XIX. The following XIX were thus prepared (R, R', % yield, and m.p. given): C₆H₁₁, C₆H₁₁, 72, 258-9°; C₆H₁₁, C₆H₁₁, 35, 212-13°; 2-MeC₆H₁₀, C₆H₁₁, 76, 165-6.5°; 3-MeC₆H₁₀, C₆H₁₁, 86, 181-2°; 4-MeC₆H₁₀, C₆H₁₁ (XX), 87, 190.5-2.0°; 2-MeC₆H₁₀, 2-MeC₆H₁₀, 80, 163.5-4.5°; 2,3-Me₂C₆H₉, C₆H₁₁, 79, 174-5°; 2,4-Me₂C₆H₉, C₆H₁₁, 79, 155-6°; 2,6-Me₂C₆H₉, C₆H₁₁, 81, 181-2°; 3,4-Me₂C₆H₉, C₆H₁₁, 80, 177.5-8.5°; 3,5-Me₂C₆H₉, C₆H₁₁, 73, 171.5-3.0°; 3-MeC₆H₁₀, 3-MeC₆H₁₀, 84, 178.5-9.5°; 4-MeC₆H₁₀, 4-MeC₆H₁₀, 82, 187-8°; 2,3,5-Me₃C₆H₈, C₆H₁₁, 76, 193-4°; 3,4,5-Me₃C₆H₈, C₆H₁₁ (XXI), 90, 216.5-18.0°; 3,5-Me₂C₆H₉, 3,5-Me₂C₆H₉, 84, 183-4°; 4-iso-PrC₆H₁₀, 4-iso-PrC₆H₁₀, 84, 185-7°; 3-C₆H₁₁C₆H₁₀, C₆H₁₁, 43, 133-4°; 4-C₆H₁₁C₆H₁₀, C₆H₁₁, 74, 174.5-5.5°; 2,3,6-Me₃C₆H₈, C₆H₁₁, 76, 199-200°. The above method was used to prepare all of the above XIX except with the di-C₆H₁₁ member in which the unreduced ester was prepared by the method of Hill and Holmes (U.S. 2,294,770) wherein the Me ester was refluxed with the appropriate amino alc. These compds. were tested for anticholinesterase activity, blood pressure, gut, respiration, and eye effects. VII and VIII appeared to be more active than atropine in preventing mortality from an anticholesterase compound. The most active anticholinergic compds. are VI, XX, and XXI. VI and XXI are surpassed in activity by a previously prepared compound; this compound has much more marked effects on blood pressure and respiration than any of the 4 new compds. Compds. effective in dilating the pupil of the eye without significant irritant action are IV, V, VI, VIII, X, and XI. 3-PhC₆H₄CPh(OH)CO₂(CH₂)₂N_{ET}₂.HCl and IX, which resemble V and VI in being diethylaminoethanol derivs., are as active as the latter 2 compds. in dilating the pupil, but are definitely irritating.

L11 ANSWER 71 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1958:50926 CAPLUS

DOCUMENT NUMBER: 52:50926

ORIGINAL REFERENCE NO.: 52:9226i, 9227a-c

TITLE: Condensation products containing γ -carbonyl radicals

INVENTOR(S): Wolf, Anton

DOCUMENT TYPE: Patent

LANGUAGE: Unavailable

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|-------|----------|-----------------|--------------|
| DE 876237 | ----- | 19530511 | DE 1942-W2640 | 19420626 <-- |

AB Treatment of compds. containing 1 CO radical and 1 or more H at the adjacent C with PbO₂ in a neutral medium, perhaps in the presence of solvents or diluents (alc., C₆H₆, cyclohexane), yields the title compds., especially γ -di-ketones. Heating 300 g. MeCOEt with 100 g. PbO₂ under reflux over 15 hrs., filtering off the yellow PbO₂, and fractionating the filtrate in vacuo yield 40% 3,4-dimethylhexane-2,5-dione, b₁₈ 90-105°. The following compds. are similarly prepared (starting material, product, m.p. or b.p., and derivs. given): Et₂CO, 4,5-dimethyloctane-3,6-dione, b₈ 85-95°; MeCOC₉H₁₉, 3,4-di-n-octylhexane-2,5-dione, m. 74° (from alc.) (dioxime, m. 138°) (the mother liquor contains 3-n-octyl-4-methyltridec-3-en-2-one, b₇ 200-10°); 2-methyl-hept-2-en-6-one, 3,4-di(2-methylbut-2-enyl)hexane-2,5-dione, yellowish oil, b₁₀ 156-60°; EtCOPh, 1,4-diphenyl-2,3-dimethylbutane-1,4-dione, m. 67° (dioxime, m. 245°); cyclohexanone, 1,1'-bicyclohexanonyl, yellowish liquid, b₁₀ 155-65° (dioxime, m. 226°) (by-product 1,1-dicyclohexenylhexan-2-one, colorless liquid, b₁₀ 130-35°);

5-isopropyl-N-methylbarbituric acid, 5,5'-di(5-isopropyl-N-methylbarbituric acid), m. 230°. The products are useful intermediates in the preparation of pharmaceuticals, odor reagents, and plastics.

L11 ANSWER 72 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1957:36583 CAPLUS
DOCUMENT NUMBER: 51:36583
ORIGINAL REFERENCE NO.: 51:6945g
TITLE: Tablet identification by spot tests on paper. II.
Reactions with ferric iron and dimethylaminobenzaldehyde
AUTHOR(S): Cooper, Peter
SOURCE: Pharmaceutical Journal (1956), 177, 495-6
CODEN: PHJOAV; ISSN: 0031-6873
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable
AB cf. C.A. 50, 17317h. Color reaction of 96 drugs with the two reagents are tabulated.

L11 ANSWER 73 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1957:35011 CAPLUS
DOCUMENT NUMBER: 51:35011
ORIGINAL REFERENCE NO.: 51:6696b-e
TITLE: Dehydroabietyl ethylenediamine
INVENTOR(S): Cheney, Lee C.
PATENT ASSIGNEE(S): Bristol Laboratories, Inc.
DOCUMENT TYPE: Patent
LANGUAGE: Unavailable
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|--------------|
| US 2767161 | ---- | 19561016 | US 1956-595093 | 19560702 <-- |

AB N,N'-Disubstituted ethylenediamines (I) are prepared, and with the CHO group of streptomycin (II), give 1,3-disubstituted 2-streptomycyltetrahydroimidazoles (III). Dehydroabietylamine (190 g.), 59.3 g. (CH₂Br)₂, 92 g. K₂CO₃, and 2.5 l. PhMe boiled overnight, filtered, washed with dilute NaOH and with H₂O, concentrated, and the 175.3 g. crude product

distilled gave N,N'-bis(dehydroabietyl)ethylenediamine (IV), b₁ 275°. Similarly prepared are 92% di-tert-octyl analog, b_{0.5} 120°, and the bis(α -methylbenzyl) analog, b₄ 176-85°. 1,2,5,6-Tetrahydrobenzaldehyde (30 g.), 50 ml. MeOH, and 7.5 g. (CH₂NH₂)₂ (V) reduced at 60° with H (50 lb./sq. in.) and 40 g. Raney Ni gave with concentrated HCl N,N'-bis(cyclohexylmethyl)ethylenediamine-2HCl (VI), m. 318-19° (from H₂O); VI with NaOH gives the oily base. V (30 g.) and 122 g. 4,1,3-HOC₆H₄Me₂ in 250 ml. MeOH was treated dropwise with 75 ml. formalin, the mixture boiled 19 hrs., and 200 ml. concentrated HCl added;

the cooled product with PhMe precipitated [3,5,2-Me₂(HO)C₆H₂NHCH₂]₂.2HCl, m. 225.5-8.5° (from 1:1 H₂O-MeOH containing 0.05 part concentrated HCl). II.1.5-H₂SO₄ (7.3 g.) in 50 ml. H₂O, 5.4 g. (CH₂NHCH₂Ph)₂ (VII) in 25 ml. MeOH, and 45 ml. MeOH steamed 10 min. precipitated 7.2 g. 1,3-dibenzyl-2-streptomycyltetrahydroimidazole-1.5-H₂SO₄ (VIII), m. 243-7°, H₂O solubility 4980 units/ml. (8 mg./ml.), potency 512 units/mg. (87% of theory). Also prepared were the following III (1,3-substituents given): PhCH₂CH₂, m. 195-205° (decomposition, darkens above 160°); dehydroabietyl; cyclohexyl. VIII boiled 3 hrs. with 6N HCl gives II and VII.2HCl, m. 305-6°. The III are useful in repository preps.

L11 ANSWER 74 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 1957:25797 CAPLUS
DOCUMENT NUMBER: 51:25797

ORIGINAL REFERENCE NO.: 51:5127f-i,5128a-f
 TITLE: 1,3-Disubstituted-2-streptomycyltetrahydroimidazole,
 its acid addition salts, and therapeutic compositions
 therefrom
 INVENTOR(S): Cheney, Lee C.
 PATENT ASSIGNEE(S): Bristol Laboratories Inc.
 DOCUMENT TYPE: Patent
 LANGUAGE: Unavailable
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|--------------|
| US 2767116 | | 19561016 | US 1953-357620 | 19530526 <-- |

GI For diagram(s); see printed CA Issue.
 AB The names "streptomycyl" and "hydrostreptomycyl" represent the radicals attached to the CHO group in the antibiotics. The series of compds. prepared from streptomycin (I) or hydrostreptomycin and equimolar amts. of an N,N'-substituted- α , β -diaminoalkane with 2-4 C atoms in the alkane chain and acid addition salts of these compds. are nontoxic, therapeutically effective, relatively insol. in H₂O, stable in aqueous alkali, and easily regenerated by aqueous acid to the original soluble, active I. The products are useful therapeutic agents providing prolonged, therapeutic blood levels, and are of particular value in the com. production of I. Streptomycin sulfate (Ia) (7.3 g.) in 50 ml. H₂O treated with 5.4 g. (PhCH₂NHCH₂)₂ (II) in 25 ml. MeOH, diluted with 45 ml. MeOH, and the clear solution heated on a steam bath 10 min. at 45-50°, the 8.4 g. crude product slurried with 50 ml. H₂O, filtered, and air-dried gave 7.2 g. 1,3-dibenzyl-2-streptomycyltetrahydroimidazole sulfate (III), m. 243-7° (decomposition), solubility 4980 u./ml.; potency 512 u./mg. (u. = units determined by bioassay on *Bacillus subtilis* and *Escherichia coli*), hydrolyzed by heating 3 hrs. at 100° with 6N HCl to II.2HCl, m. 305-6°, and active regenerated I. Similarly were prepared the sulfates of R'N.CHX.NR3.CHR4.CHR5 (IIIA), where X is the radical X in streptomycin, OHCX. IIIA (R₄ and R₅ = H; R₁ = R₃ given): PhCH₂CH₂, m. 195-205° (decomposition), solubility 4400 u./ml., potency 396 u./mg.; dehydroabietyl, solubility 352 u./ml., potency 185 u./mg.; C₆H₁₁; Me₃C; Me₃CCH₂CMe₂; C₇H₁₅; Ph₂CH; Ph; piperonyl; furfuryl; 2-heptyl; Ph(CH₂)₃; Me₂CHCH₂CHMe; Me₃CCH₂CHMeCH₂CH₂; p-C₁C₆H₄CH₂; 2,4-C₁₂C₆H₃CH₂; p-O₂NC₆H₄CH₂; p-H₂N C₆H₄CH₂; p-MeOC₆H₄CH₂; 2-thenyl; 2-, 3-, and 4-MeC₆H₁₀CH₂; 4- and 3-MeOC₆H₁₀CH₂; "2-methylthenyl"; "2(quinolylethyl)"; p-, m-, and o-MeC₆H₄CH₂; lauryl; 3-, 2-, and 4-MeC₆H₁₀; 3-O₂NC₆H₄; 6-, 5-, 4-, and 3-methyl-2-pyridyl; 2-thiazolyl; 5-methyl-2-furyl; p-HOC₆H₄CH₂; C₅H₉; C₁₁H₂₃; 4-MeOC₆H₁₀; vanillyl; Bu; iso-Bu; sec-Bu; 1- and 2-C₁₀H₇; 2-pyridyl; 3,4-(MeO)₂C₆H₃CH₂; o-C₁C₆H₄CH₂. IIIA (R₄ and R₅ = H, R₁ and R₃ shown): PhCH₂, PhCHET; C₆H₁₁, Et; PhCH₂, vanillyl; PhCH₂, 3,4-EtO(HO)C₆H₃CH₂. IIIA (R₁ = R₃, R₄ = R₅; R₁ and R₄ shown): PhCH₂, Me; C₇H₁₅, Me; C₆H₁₁CH₂, Me. IIIA (R₁ = R₂; R₁, R₄, and R₅ shown): C₇H₁₅, H, Me. I liquor (50 ml.) assaying 182,000 u./ml., obtained by elution of broth on an ion-exchange column, added to 10 ml. II in 65 ml. MeOH, and the clear solution heated 1 hr. at 50° and kept overnight yielded 4.1 g. III, potency 528 u./mg., and 39 ml. filtrate, potency 2480 u./ml. III (4 g.) in dilute H₂SO₄ at pH 2.0 evaporated to 50% volume in vacuo, the precipitated II sulfate filtered off, and 5 vols. MeOH added to the filtrate precipitated 2.53 g. Ia, potency 560 u./mg. The filtrate (925 ml.) assayed 122 u./ml. III (2%) in 4% aqueous acacia suspension has LD₅₀ 342 ± 21 mg./kg. by intraperitoneal injection in mice. Ia, III, and 1,3-diphenethyl-2-streptomycyltetrahydroimidazole sulfate (IV) in vitro have min. inhibitory concns. of 0.0002 mg./ml. against streptomycin-sensitive strain H37Rv of *Mycobacterium tuberculosis*, and all fail to inhibit streptomycin-resistant strain H37RvR. Aqueous suspensions of Ia, III, and IV containing Na carboxymethylcellulose at pH 7 have CD₅₀ (curative dose) values of 6.8, 45, and 60 mg./kg. (intraperitoneal injection in mice), resp. The

invention also includes all acid addition salts for processing purposes and all nontoxic addition salts for therapeutic purposes, including HCl, citric, AcOH, PhOH, ascorbic, and the like. For therapeutic purposes the compds. may be used in aqueous suspensions or in injectable oils. Micronized III (1.592 g.) thoroughly mixed with up to 20 cc. peanut oil gelled with 2% Al monostearate (cf. U.S. 2,507,193, C.A. 44, 8056f) gave a suspension containing 50 mg. I/cc. Micronized III (300 g.) in 35 cc. CHCl₃ containing 3.99 g. lecithin, 1.88 g. Span 40, and 5.30 g. Tween 40 mixed 7 hrs. in a 35 steelball mill, the CHCl₃ aspirated at room temperature, the coated product passed through a 250-mesh screen, sterilized 40 hrs. with HCHO gas, placed in 20 cc. silicone-coated vials, and reconstituted by addition of 7.22 cc. H₂O gave 10 cc. suspension containing the equivalent of 200 mg. I/cc. Various comparison examples of tests on mice previously injected with 100 LD₅₀ doses of Diplococcus pneumoniae show that products containing III are less toxic and exert far greater repository action than similar products containing Ia.

L11 ANSWER 75 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1956:82218 CAPLUS

DOCUMENT NUMBER: 50:82218

ORIGINAL REFERENCE NO.: 50:15582h-i,15583a-g

TITLE: Polymethylene- and phenylenebis(carbamic acid esters)

INVENTOR(S): Schmied, Otto; Bilek, Ludwig; Seifried, Walter

PATENT ASSIGNEE(S): Osterreichische Stickstoffwerke A.-G.

DOCUMENT TYPE: Patent

LANGUAGE: Unavailable

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|----|---|------|----------|-----------------|------|
| | AT 185371 | | 19560425 | AT | <-- |
| AB | New polymethylenebis(carbamic acid esters) or phenylenebis(carbamic acid esters) of amino alcs. or aminophenols having a quaternary N atom, of the general formula: XRR'R''NAO ₂ CNHB _N HCO ₂ ANRR'R''X, wherein R and R' are alkyl groups having 1-4 C atoms, R'' the same or a cyclohexyl or benzyl group, A = -CH ₂ CH ₂ - or -C ₆ H ₄ -, B = a polymethylene group having more than 2 and preferably 4-10 CH ₂ groups, or a C ₆ H ₄ group, X = an acid group e.g. Cl, Br, I, OSO ₃ Me, are prepared by the reaction of organic diisocyanates of the polymethylene series or of phenylene isomers of the general formula O:C:NBN:C:O, or compds. capable of being converted into such compds., e.g. phenylene- or polymethylenedicarbamic acid dichlorides or phenylenediacrylic acid diazides, with amino hydroxy compds. of the general formula RR'NAOH, and quaternization of the tertiary bases of the general formula RR'NAO ₂ CNHB _N HCO ₂ ANRR' thus formed with compds. of the general formula R''X. Preferably, the following compds. are made by aid of this method: salts of: hexamethylenebis(carbamic acid choline esters), p-phenylenebis(carbamic acid choline esters), octamethylenebis(carbamic acid m-trimethylaminophenyl esters), octamethylenebis(carbamic acid 2-dimethylaminoethyl esters), p-phenylenebis[carbamic acid β-(methyldiethylamino)ethyl esters], octamethylene[biscarbamic acid β-(dimethylbenzylamino)Et esters], hexamethylenebis [carbamic acid-(methyldicyclohexylamino)ethyl esters], decamethylenebis[carbamic acid m-trimethylamino)phenyl esters]. Thus, 9.5 parts OCN(CH ₂) ₄ NCO mixed with cooling with 14.6 parts Me ₂ NCH ₂ OH, the mixture allowed to stand 24 h., the resulting crystalline mass dissolved in 36 parts Me ₂ CO, filtered, low-boiling petr. ether added at 0° to the clear solution, and the crystalline product sucked off and washed with a cold petr. ether-Me ₂ CO mixture yields 19.6 parts (91%) [CH ₂ CH ₂ NHCO ₂ (CH ₂)NMe ₂] ₂ (I), white crystalline flakes, m. 58°. I (5) in Me ₂ CO 8 treated portionwise with cooling with MeI 10, and the crystals which soon form from the precipitated oil sucked off and recrystd. from 96% EtOH 120 give 9.3 parts (98%) of the choline iodide ester, white crystals, m. 190-3°. Similarly are obtained the following compds. (% yield and m.p. given): | | | | |

$[(CH_2)_4NHCO_2CH_2CH_2NMe_2]_2$ (II), silky crystals, 83, 78° (choline chloride ester, white crystalline powder, 91, 205-8°; II.2EtBr, 96, 135-47°); $[(CH_2)_4NHCO_2CH_2CH_2NET_2]_2$ (III), 83, 58° (III.2EtBr, 95, colorless viscous oil); $[(CH_2)_5NHCO_2CH_2CH_2NMe_2]_2$, 81, 77-9° (choline iodide ester, 90, 135-6.5°); $[(CH_4)_4NHCO_2C_6H_4NMe_2-m]_2$ (IV), 53, 93-5° (IV.2MeI, 89, 150-2°); p-C₆H₄(NHCO₂CH₂CH₂NMe₂)₂ (V), 92, 165-7° (V.2MeI, 87, decompose 260°); $[(CH_2)_3NHCO_2CH_2CH_2NMe_2$, 82, 68-70° [choline chloride ester, quant., approx. 187°; choline bromide ester, 87, 174-6°; choline iodide ester dihydrate, -, approx. 118° (anhydrous, 173°)]; I.2EtI, -, 109-10°); $(CH_2CH_2CO_2CH_2CH_2NET_2)_2$ (VI), -, 39-41° (VI.2EtI, 95, 163.5-66°); III. 2(p-MeC₆H₄SO₃Et), -, 125-6.5°; $[(CH_2)_3NHCO_2CH_2CH_2NET_2]_2$ (VII), 87, 60-2° [VII.2(p-MeC₆H₄SO₃Et), -, 130 1°]; p-C₆H₄(NHCO₂CH₂CH₂NET₂)₂ (VIII), 84, 138-40° (VIII.2EtI, 99, 98. 237.5-42°; VIII.2MeI, approx. quant., 227-9°); m-C₆H₄(NHCO₂CH₂CH₂NMe₂)₂ (IX), -, oil [IX.2MeI, -, 232-3° (dihydrate, quant., -)]; m-C₆H₄(NHCO₂CH₂CH₂NET₂)₂ (X) (X.2EtI.H₂O, 97, 223-5°); (m-Me₂NC₆H₄O₂CNHCH₂), (XI), -, 130-5° [XI.2MeI, -, 175-9° (decomposition)]; (m-Me₂NC₆H₄O₂CNHCH₂CH₂CH₂)₂ (XIII), 81, 141-4° [XIII.2MeI, 63, 130-5° (unsharp); XIII. 2(p-MeC₆H₄SO₂Me), 96, 257-61°]]; [(m-Me₂N C₆H₄O₂ CNH-.(CH₂)₅]₂ (XIII), 66, 90-101° [XIII.2MeI, 71, 115° (decomposition)]; II.2Ph₂Cl, 78, 166-8°; [(C₆H₁₁)₂NCH₂CH₂O₂CNH₂CH₂CH₂)₂ (C₆H₁₁ = cyclohexyl) (XVI), 87, 122-4° (XIV.2MeI, 96, 180-1°). (Bu₂NCH₂CH₂OCONHCH₂CH₂)₂ and its methiodide can be similarly obtained. The new compds. are useful as pharmaceuticals (muscle-paralyzing agents) and as pesticides.

L11 ANSWER 76 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1956:21775 CAPLUS
 DOCUMENT NUMBER: 50:21775
 ORIGINAL REFERENCE NO.: 50:4456h-i
 TITLE: Exemption of dicyclomine hydrochloride and neomycin sulfate from prescription requirements
 AUTHOR(S): Anon.
 SOURCE: Federal Register (1956), 21, 420, 20 Jan 1956
 CODEN: FEREAC; ISSN: 0097-6326
 DOCUMENT TYPE: Journal
 LANGUAGE: Unavailable
 AB The restrictions of usage, dosage, and labeling are proscribed whereby preparation of dicyclomine-HCl (1-cyclohexylcyclohexanecarboxylic acid 2-diethylaminoethyl ester-HCl) and of neomycin sulfate can be dispersed without prescription under jurisdiction of the Federal Food, Drug, and Cosmetic Act.

L11 ANSWER 77 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN
 ACCESSION NUMBER: 1955:46428 CAPLUS
 DOCUMENT NUMBER: 49:46428
 ORIGINAL REFERENCE NO.: 49:9039g-i,9040a-c
 TITLE: Basic tertiary alcohols
 INVENTOR(S): Adamson, Donald W.; Wilkinson, Samuel
 PATENT ASSIGNEE(S): Wellcome Foundation Ltd.
 DOCUMENT TYPE: Patent
 LANGUAGE: Unavailable
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|-------|----------|-----------------|-------------|
| GB 708805 | ----- | 19540512 | GB 1950-14348 | 19500608 <- |

AB Ph₂C(OH)CH₂CHR'NR''R''', where R' is H or an alkyl having 1-3 C atoms and R'' and R''' are identical or different and are Me or Et groups, or where N''R''' is morpholino, pyrrolidino, or piperidino, can be catalytically

hydrogenated to the fully saturated $(C_6H_{11})_2C(OH)CH_2CHR'NR''R'''$ or to the partially saturated $Ph(C_6H_{11})C(OH)CH_2CHR'NR''R'''$. Thus, 5 g. of 1,1-diphenyl-3-piperidinopropan-1-ol was dissolved in 50 ml. glacial HOAc, 1.3 g. Pt oxide (Adams catalyst) was added and the mixture shaken in an atmospheric of H until an equivalent of 3.4 moles of H was absorbed. The catalyst was filtered off, the filtrate diluted with 150 ml. H₂O, made alkaline with aqueous KOH, cooled in an ice-bath and extracted with ether. The ether extract was H₂O-washed, dried over anhydrous Na₂SO₄, and concentrated. The 4.96 g. residue was

crystallized twice from light petroleum to give 4.3 g. 1-cyclohexyl-1-phenyl-3-piperidinopropan-1-ol (I), m. 112°. The following compds. were similarly prepared: 1-cyclohexyl-1-phenyl-3-pyrrolidinopropan-1-ol (II), m. 85.5-86.5° (hydrochloride, m. with decomposition at 226-7°); 1-cyclohexyl-1-phenyl-3-dimethylaminopropan-1-ol, m. 44-5° [hydrochloride, m. 213-14° (decomposition)]; 1-cyclohexyl-1-phenyl-3-piperidinobutan-1-ol hydrochloride (III), m. 244-5°; 1-cyclohexyl-1-phenyl-3-diethylaminopropan-1-ol, m. 50.5-52° (hydrochloride, m. 184-5°); 1-cyclohexyl-1-phenyl-3-morpholinopropan-1-ol, m. 114-16° (hydrochloride, m. 271-2°); 1-cyclohexyl-1-phenyl-3-dimethylaminobutan-1-ol (IV) (hydrochloride, m. 198°); 1-cyclohexyl-1-phenyl-3-dimethylaminohexan-1-ol (V) (hydrochloride, m. 243-4°; 1-cyclohexyl-1-phenyl-3-piperidinohexan-1-ol (VI) (hydrochloride, m. 258-9°). 1,1-dicyclohexyl-3-piperidinopropan-1-ol (hydrochloride, m. 241-2°), were obtained by the semi- and complete reduction, resp., of 1-cyclohexyl-1-phenyl-3-piperidinopropan-1-ol and the 1,1-diphenyl-3-piperidinopropan-1-ol hydrochloride. These compds. are of pharmaceutical value, I a therapeutic agent in cases of paralysis agitans, and II-VI showing local anaesthetic properties.

L11 ANSWER 78 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1950:24984 CAPLUS
 DOCUMENT NUMBER: 44:24984
 ORIGINAL REFERENCE NO.: 44:4925e
 TITLE: Improvements in or relating to the preparation of 1,2-disubstituted-3-cyanoguanidines
 PATENT ASSIGNEE(S): American Cyanamid Co.
 DOCUMENT TYPE: Patent
 LANGUAGE: Unavailable
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---|-------|----------|-----------------|--------------|
| GB 626663 | ----- | 19490719 | GB 1946-27994 | 19460918 <-- |
| AB See U.S. 2,455,894 (C.A. 42, 5468d) and U.S. 2,479,498 (C.A. 44, 4027e). | | | | |

L11 ANSWER 79 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1950:20186 CAPLUS
 DOCUMENT NUMBER: 44:20186
 ORIGINAL REFERENCE NO.: 44:4027e-h
 TITLE: 1,2-Disubstituted 3-cyanoguanidines
 INVENTOR(S): Lecher, H. Z.; Parker, R. P.; Long, R. S.
 PATENT ASSIGNEE(S): American Cyanamid Co.
 DOCUMENT TYPE: Patent
 LANGUAGE: Unavailable
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|--|-------|----------|-----------------|--------------|
| US 2479498 | ----- | 19490816 | US 1946-689201 | 19460808 <-- |
| AB 1,2-Disubstituted 3-cyanoguanidines suitable for use in the fields of | | | | |

synthetic resins, pharmaceuticals, textile assistants, and dyestuff assistants are prepared by treating the appropriately disubstituted carbodiimide, RN:C:NR', with NH₂CN (I). Thus CS(NHET)₂ 13.2 in Et₂O 145 is treated with anhydrous Na₂SO₄ 22, and HgO 43.2 parts, the HgS filtered, the Et₂O evaporated, and the EtN:C:NET (II) distilled at 35-40°/1 mm. To II 9.8 in Et₂O is added I 4.2, followed by MeONa 0.15 in MeOH 1.6 parts, the mixture stirred 3 days at room temperature, and the Et₂O evaporated; the crude

1,2-diethyl-3-cyanoguanidine, recrystd. from H₂O, m. 129-9.2°. Similarly, 1,2-diphenyl-3-cyanoguanidine, m. 195-5.8°, is prepared from PhN:C:NPh, b₁ 95-100°, and I. BuN:C:NBu, b_{0.5} 55-60°, and I form 1,2-dibutyl-3-cyanoguanidine, m. 63.5-4.5° (from MeOH). (Iso-PrN:)₂C, b. 155-60°, and I yield 80% 1,2-diisopropyl-3-cyanoguanidine, m. 193-5° (from 50% MeOH). p-ClC₆H₄N:C:NCHMe₂, b_{0.5} 85-7°, and I yield 1-p-chlorophenyl-2-isopropyl-3-cyanoguanidine, m. 148-9.5°. From dicyclohexylcarbodiimide, m. 35-6°; and I is obtained 1,2-dicyclohexyl-3-cyanoguanidine, m. 189-92° (from MeOH-H₂O). p-MeOC₆H₄N:C:-NPr, b₁ 110-15°, and I form 1-p-methoxyphenyl-2-propyl-3-cyanoguanidine, m. 130-1° (from C₆H₆). 1-Naphthyl(3-methoxypropyl)carbodiimide, yellow oil, in 100 parts EtOH and I in EtOH containing a small piece of Na, permitted to stand 24 h., yield on cooling crude 1-(1-naphthyl)-2-(3-methoxypropyl)-3-cyanoguanidine, m. 180-3°; recrystd. from MeOH, it m. 185-6°. Cf. C.A. 43, 1799c.

L11 ANSWER 80 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1949:38982 CAPLUS

DOCUMENT NUMBER: 43:38982

ORIGINAL REFERENCE NO.: 43:7040i,7041a-b

TITLE: α-Phenylcyclohexaneacetic acid esters

PATENT ASSIGNEE(S): Soc. pour l'ind. chim. a Bale

SOURCE: Addn. to Swiss 227,885 (C.A. 43, 3453e)

DOCUMENT TYPE: Patent

LANGUAGE: Unavailable

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|------|
| CH 235488 | | 19450501 | CH | <-- |

AB C6H₁₁PhCHCOOM 22 was converted to the acid chloride with SOCl₂, treated with 1-piperidineethanol 13, water, K₂CO₃ solution, and Et₂O, shaken vigorously, and the Et₂O layer separated, washed with water, dried over K₂CO₃, and concentrated to yield 2-(1-piperidyl)ethyl α-phenylcyclohexaneacetate, b_{0.15} 180-2°. In a similar manner the following esters of α-phenylcyclohexaneacetic acid were prepared: Swiss 235,489, tropine, b_{0.15} 186°; Swiss 235,490, dimethylaminoethyl, b_{0.1} 150-5°; and Swiss 235,491, dimethylaminopropyl, b_{0.1} 169°. Also prepared were: Swiss 235,492, diethylaminoethyl α-phenyl-2-cyclohexene-1-acetate-HCl, m. 153-4°; and Swiss 235,493, diethylaminoethyl dicyclohexylacetate, b_{0.2} 154-7°. The compds. are therapeutically useful.

L11 ANSWER 81 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1949:2806 CAPLUS

DOCUMENT NUMBER: 43:2806

ORIGINAL REFERENCE NO.: 43:679e-g

TITLE: Phenylcyclohexyl acetic esters

PATENT ASSIGNEE(S): Soc. pour l'ind. chim. a Bale

DOCUMENT TYPE: Patent

LANGUAGE: Unavailable

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|------|-----------------|------|
|------------|------|------|-----------------|------|

AB CH 220972 19420801 CH <--
Phenylcyclohexylacetic acid (I) 22, (chloroethyl)piperidine-HCl 19, and K2CO3 35 in Me2CO 300 parts were heated on a steam bath 24 h., filtered, the filtrate concentrated, the residue dissolved in Et2O, washed with water, dried over K2CO3, concentrated, and the residue distilled for an almost quant. yield of 2-(1-piperidyl)ethyl phenylcyclohexylacetate, b0.15 180-2°; HCl salt, m. 166-7°; the product is therapeutically useful. Similarly prepared with the appropriate halogenated alc. were the following esters of I: Swiss 220,973, tropine, b0.15 186° (HCl salt, m. 231-2°). Swiss 220,974, 2-dimethylaminoethyl b0.1 150-5°. Swiss 220,975, uses an identical procedure with dicyclohexylacetic acid and ClCH2CH2NET2.HCl to yield 2-diethylaminoethyl dicyclohexylacetate, b0.2 154-7°; HCl salt, m. 167-9°; allobromide, m. 152-3°; methobromide, m. 176-7.5°; ethobromide, m. 178-80°; and PhCH2 Br compound, m. 155-6°.

L11 ANSWER 82 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1948:21447 CAPLUS
DOCUMENT NUMBER: 42:21447
ORIGINAL REFERENCE NO.: 42:4606i,4607a-b
TITLE: Basic amides of 1-aryl-1-cycloalkanecarboxylic acids
INVENTOR(S): Martin, Henry; Hafliger, Franz
PATENT ASSIGNEE(S): J. R. Geigy A.-G.
DOCUMENT TYPE: Patent
LANGUAGE: Unavailable
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|--------------|
| US 2437545 | | 19480309 | US 1945-607274 | 19450726 <-- |

AB Compds. of the type R:CArCONX(CH2)2N(alkyl)2, where Ar is Ph or Me-substituted Ph, R is -(CH2)n- (n = 4 or 5), and X is H or a small alkyl group, possess valuable therapeutic properties. The compds. may be prepared by reaction of a diamine with an appropriate acid derivative, or by reaction of the R:CArCONH2 with the (alkyl)2N(CH2)2Cl in the presence of NaNH2. Examples are given of the preparation of N-(2-diethylaminoethyl)-1-phenylcyclopentanecarboxamide (I) b0.03 140-2°; the N-(2-diethylaminoethyl)-N-Me analog. of I, b0.05 138-40°; N-(2-diethylaminoethyl)-N-ethyl-1-(3,4-dimethylphenyl)cyclohexanecarboxamide, b0.04 159-61°; N-(2-diethylaminoethyl)-1-phenylcyclohexanecarboxamide, b0.03 148-50°. Cf. C.A. 40, 6500.8..

L11 ANSWER 83 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1946:17843 CAPLUS
DOCUMENT NUMBER: 40:17843
ORIGINAL REFERENCE NO.: 40:3474b-i,3475a-e
TITLE: Amino ethers
INVENTOR(S): MacMullen, Clinton W.; Bruson, Herman A.
PATENT ASSIGNEE(S): Rohm and Haas Co.
DOCUMENT TYPE: Patent
LANGUAGE: Unavailable
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|------|----------|-----------------|--------------|
| US 2395336 | | 19460219 | US 1942-445452 | 19420602 <-- |

AB Aminomethyl ethers of the general formula (ZCH2)nArXAY in which Z is a secondary or tertiary amine or amine salt or a quaternary NH4 group, n is 1 or 2, Ar is a carbocyclic aromatic nucleus, X is O or S, A is an alkylene group, the chain of which may be interrupted by O or S, and Y is a polar group based upon the elements C, H, O, N, and halogens, useful as textile finishing agents, disinfectants, bactericides, wetting agents,

detergents, insecticidal preps., drugs, fungicides, etc., are prepared by the reaction of an amine with a halomethyl aryl aliphatic ether in the presence of a strong base. Thus a cold solution of 40 g. NaOH in 120 g. H₂O was treated with 73 g. Et₂NH and the resulting mixture at -6 to -11° was treated with 70 g. (chloromethyl-o-toloxo)ethoxyethyl chloride. The viscous mixture was stirred 25 hrs. while the temperature rose to 27°. The aqueous layer was removed and the oil was taken up in C₆H₆ and washed with H₂O. The crude amine was acidified with aqueous HCl and steam-distilled. The aqueous

residue was clarified with absorbent clay, neutralized with NaOH, extracted with C₆H₆, and washed. Removal of the C₆H₆ and treatment of the oil with active carbon yielded 42 g. (diethylaminomethyl-o-toloxo)ethoxyethyl chloride (I), Et₂NCH₂C₆H₃MeOC₂H₄OC₂H₂Cl, yellow oil. Refluxing 10 g. I with 11 g. EtBr 1 hr. at 54° and distilling the excess EtBr gave [(2-chloroethoxyethoxy)methylbenzyl]triethylammonium bromide, viscous paste which did not crystallize. Reaction of 10 g. I with 5 g. PhCH₂Cl 8 hrs. at 70° gave [(2-chloroethoxyethoxy)methylbenzyl]diethylbenzylammonium chloride, viscous orange oil. Similar heating of 6 g. I with 4 g. decyl chloromethyl ether 4.5 hrs. at 90° gave [(2-chloroethoxyethoxy)methylbenzyl] (decyloxymethyl) diethylammonium chloride, viscous red paste, soluble in H₂O with suds. A mixture of 156 g. (p-tert-octylphenoxyethoxy)ethyl chloride, 30 g. paraformaldehyde, and 200 g. ClCH₂CH₂Cl was stirred and saturated with gaseous HCl for 7 hrs. at 50-3°. The mixture was washed with ice-H₂O, dried with Na₂SO₄, and filtered. Distillation of the solvent yielded 140 g. crude

(chloromethyl-p-tert-

octylphenoxy)ethoxyethyl chloride, clear amber oil, which was added during 35 min. to a mixture of 360 g. 25% Me₂NH solution and 80 g. NaOH at 3-5°, and the mixture stirred 9 hrs. at 5-18°. The HCl salt was prepared as above and then the mixture was steam-distilled and purified as before to yield (dimethylaminomethyl-p-tert-octylphenoxy)ethoxyethyl chloride (II), clear amber, viscous oil. Reaction of 7.5 g. II with 3 g. methallyl chloride at 90° for 5 hrs. gave [(2-chloroethoxyethoxy)-p-tert-octylbenzyl]dimethylmethallylammonium chloride, clear yellow viscous oil, soluble in H₂O with suds. A mixture of 145 g. II, 180 g. 25% Me₂NH, 1000 g. H₂O, and 20 g. NaOH was stirred and heated in an autoclave 6.5 hrs. at 95-159°. After cooling overnight, the oil layer was separated, washed with H₂O, and distilled in vacuo to give [(dimethylaminomethyl-p-tert-octylphenoxy)ethoxyethyl]dimethylamine (III), b1 170-90°, clear yellow oil. Reaction of III with MeI in the regular manner gave the quaternary NH₄ salt, [(dimethylaminomethyl-p-tert-octylphenoxy)-ethoxyethyl]dimethylamine dimethiodide, colorless crystals, soluble in H₂O. The diquaternary salt of III with diethyl sulfate having the formula EtMe₂N(OSO₂OEt) CH₂C₆H₃(C₈H₁₇)OC₂H₄OC₂H₄N(OSO₂OEt)Me₂Et, viscous paste, soluble in H₂O with suds. By essentially similar procedures were prepared (morpholinomethyl-p-tert-octylphenoxy)ethoxyethyl chloride (IV), viscous amber oil; [(2-chloroethoxyethoxy)-p-tert-octylbenzyl] (decyloxymethyl)morpholinium chloride (from IV and decyl chloromethyl ether), viscous clear amber oil, soluble in H₂O with suds; [(2-chloroethoxyethoxy)-p-tert-octylbenzyl] (carbethoxymethyl)morpholinium chloride (from IV and ClCH₂CO₂Et), clear amber viscous oil; [(2-chloroethoxyethoxy)-p-tert-octylbenzyl] (nitrobenzyl)morpholinium chloride (from IV and O₂NC₆H₄CH₂Cl), dark viscous oil, soluble in H₂O with suds; (dicyclohexylaminomethyl-p-tert-octylphenoxy) ethoxyethyl chloride (V), viscous yellow oil; [(2-chloroethoxyethoxy)-p-tert-octylbenzyl]dicyclohexyl (carbethoxymethyl) ammonium chloride (from V and ClCH₂CO₂Et), yellow paste; [bis(dimethylaminomethyl)phenoxy]ethylene, yellow oil, b1 110-40°; [bis(morpholinomethyl)phenoxy]ethoxyethyl chloride (VI), clear amber oil; quaternary salt of VI with PhCH₂Cl, soluble in H₂O; quaternary salt of VI with ClCH₂C₆H₃MeO C₂H₄Cl, solid, soluble in H₂O; mixed[(dimethylaminomethyl)phenoxy]ethanol and [bis(dimethylaminomethyl)phenoxy] ethanol (VII), viscous oil, b1-2 133-165°; quaternary salt of VII with hexyl bromide, sticky solid, soluble in H₂O; mixed[(dimethylaminomethyl)phenoxy]acetone and [bis(dimethylaminomethyl)phenoxy]acetone, clear yellow oil, b2

120-55°, soluble in dilute HCl; mixed{[(morpholinomethyl)phenoxy]acetyl}morpholine and {[bis(morpholinomethyl)phenoxy]acetyl}morpholine, viscous deep yellow oil, b1 237-75°; [(anilinomethyl)phenoxy]ethyl laurate, brown oil which crystallized on standing; [(dodecylaminomethyl)phenoxy]ethyl acetate, clear amber oil, b3 170-245°; mixed{[(2-ethylhexylamino)methyl]phenoxy}ethyl acetate and {bis[(2-ethylhexylamino)methyl]phenoxy}ethyl acetate, clear amber oil, b2 120-260°; [(cyclohexylaminomethyl)-p-tert-octylphenoxy]ethoxyethoxyethyl dodecyl ether, brown oil, b2 180-280°; and [(isopropylaminomethyl)-p-tert-octylphenoxy]ethoxyethoxyethyl dodecyl ether, clear red oil, b2 150-250°. The variations of the process are discussed at length.

L11 ANSWER 84 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1942:42955 CAPLUS

DOCUMENT NUMBER: 36:42955

ORIGINAL REFERENCE NO.: 36:6814d-g

TITLE: Substituted dihydroxybiphenyls

INVENTOR(S): Britton, Edgar C.; Livak, John E.

PATENT ASSIGNEE(S): The Dow Chemical Co.

DOCUMENT TYPE: Patent

LANGUAGE: Unavailable

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|-------|----------|-----------------|--------------|
| US 2285563 | ----- | 19420609 | US 1941-391510 | 19410502 <-- |

AB Compds. are formed which may be used as dye intermediates, plasticizers, wetting agents, "pharmaceuticals, toxicants, etc." and which have the general formula 4-HO-3-RC6H3C6H3R-3'-OH-4', where R represents a cycloalkyl group, such compds. being formed by preparing the p-iodo derivative of

the corresponding o-alkyl- or -cycloalkylphenol and thereafter condensing 2 mols. of such iodo derivative to form the desired dihydroxybiphenyl compound. Since the free hydroxyl group of the phenol is reactive under the conditions employed for these reactions, it is necessary to protect the hydroxyl group, e. g., by etherification, during the iodination and condensation reactions and thereafter regenerate the free phenol. Details are given for the production of: 3,3'-dicyclohexyl-4,4'-dihydroxybiphenyl, m. 209-13°; 3,3'-diisobutyl-4,4'-dihydroxybiphenyl, m. 136-8°; and 3,3' dibenzyl-4,4'-dihydroxybiphenyl, m. 151-8°; and general mention is made of the similar possible production of other 4,4'-dihydroxybiphenyl compds. such as the 3,3'ditert-butyl, 3,3'-diheptyl, 3,3'-diisoamyl, 3,3'-di-tert-octyl, 3,3'-di-βphenylethyl, 3,3'-dicyclopentyl, 3,3'-di-γ-phenylpropyl, 3,3'-dilauryl, etc., derivs. Cf. C. A. 36, 911.4.

L11 ANSWER 85 OF 88 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1942:24856 CAPLUS

DOCUMENT NUMBER: 36:24856

ORIGINAL REFERENCE NO.: 36:3811d-e,3812a-b

TITLE: Phthalimide-4-sulfonamides

INVENTOR(S): Koberle, Karl; Braun, Willy; Hanusch, Fritz

PATENT ASSIGNEE(S): General Aniline & Film Corp.

DOCUMENT TYPE: Patent

LANGUAGE: Unavailable

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------|-------|----------|-----------------|--------------|
| US 2273444 | ----- | 19420217 | US 1939-299974 | 19391018 <-- |

AB A process is employed for producing a phthalimide-4-sulfonamide which

comprises treating a 2-halobenzoic acid with chlorosulfonic acid, thereby converting it into the corresponding 5-sulfonyl chloride, then treating the sulfonyl chloride with NH₃ or a primary or secondary alkylamine, aralkylamine, cycloalkylamine, arylamine, heterocyclic amine or secondary cyclic nitrogenous base to form the corresponding 5-sulfonamide, and heating this amide with cuprous cyanide. Details are given of the production of phthalimide-4-sulfonamide, m. about 275°, and the anilide, m. 199°, piperidide, m. 234-5°, methylphenylamide, diphenylamide, m. 248°, dicyclohexylamide, m. 327-8°, 1',2',3',4'-tetrahydroquinolylamide, m. 335°, methylamide, m. 213-14°, (N-ethyl-3'-carbazolyl)amide, m. 238°, and benzylamide, m. 237-9°, and a disulfonic acid dimethylamide of 2,3-naphthalenedicarboxylic acid imide, m. 300°. Various of the compds. formed may be used as intermediates or therapeutic agents.

=> end

ALL L# QUERIES AND ANSWER SETS ARE DELETED AT LOGOFF
LOGOFF? (Y)/N/HOLD:end

=>