3.
$$\mathbf{w}_2 = \begin{bmatrix} 1 \\ \frac{5}{7} \end{bmatrix}, \ \mathbf{w}_3 = \begin{bmatrix} 1 \\ \frac{19}{29} \end{bmatrix}, \ \mathbf{w}_4 = \begin{bmatrix} 1 \\ \frac{65}{103} \end{bmatrix}$$

Rayleigh quotients: 6, $\frac{298}{74} \approx 4$, $\frac{4222}{1202} \approx 3.5$

Maximum eigenvalue 3, eigenvector $\begin{bmatrix} 1\\ \frac{3}{5} \end{bmatrix}$

5.
$$5\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} - \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

7.
$$2\begin{bmatrix} \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{6} & \frac{1}{6} \end{bmatrix} - \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} + 0\mathbf{b}_3\mathbf{b}_3$$

9.
$$\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

11.
$$\begin{bmatrix} -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \end{bmatrix}$$

3.
$$\lambda = 12$$
, $v = [-.7059, 1, -.4118]$

5.
$$\lambda = 6$$
, $v = [-.9032, 1, -.4194]$

7.
$$\lambda = .1883, \mathbf{v} = [1, .2893, .3204]$$

9.
$$\lambda_i = 4.732050807568877$$
,

$$\mathbf{v}_1 = r[1, -.7320508, 1]$$

$$\lambda_2 = 1.267949192431123,$$

 $v_2 = s[.3660254, 1, .3660254]$

$$\lambda_3 = -4, \mathbf{v}_3 = t[-1, 0, 1],$$

 $\lambda_3 = -4$, $\mathbf{v}_3 = t[-1]$, for nonzero r, s, t

1. $\lambda_1 = 16.87586339619508$

 $\mathbf{v}_1 = r[.9245289, 1, .3678643, .7858846]$

$$\lambda_2 = -15.93189429348535$$

$$\mathbf{v}_2 = s[-.3162426, .6635827, -1,$$

-.004253739<u>]</u>

 $\lambda_3 = 6.347821447472841$,

$$\mathbf{v}_3 = t[-.5527083, .9894762, .8356429,$$

, -1]

 $\lambda_4 = -.291790550182573,$

 $\mathbf{v}_4 = u[-1, .06924058, .3582734, .9206089]$

for nonzero r, s, t, and u

3. a. The characteristic polynomial
$$|A - \lambda|$$

= $\begin{vmatrix} a - \lambda & b \\ b & c - \lambda \end{vmatrix} = \lambda^2 + (-a - c)\lambda +$
 $(ac - b^2)$ has roots

$$\lambda = \frac{1}{2} \left(a + c \pm \sqrt{(a+c)^2 - 4(ac - b^2)} \right)$$
$$= \frac{1}{2} \left(a + c \pm \sqrt{(a-c)^2 + 4b^2} \right).$$

b. If we use part a, the first row vector of $A - \lambda I$ is

$$[a - \lambda, b] = \left[\frac{1}{2} (a - c \mp \sqrt{(a - c)^2 + 4b^2}), b \right]$$

= $[g \mp \sqrt{g^2 + b^2}, b].$

c. From part a, eigenvectors for the matrix are $[-b, g \pm \sqrt{g^2 + b^2}] = [-b, g \pm h]$. Normalizing, we obtain $\frac{(-b, g \pm h)}{\sqrt{b^2 + (g \pm h)^2}}$. Using the upper choice of sign and setting $r = \sqrt{b^2 + (g + h)^2}$, we obtain [-b/r, (g + h)/r] as the first column of C. Using the lower choice of sign and setting $s = \sqrt{b^2 + (g - h)^2}$, we obtain [-b/s, (g - h)/s] as the second column of C.

d. $det(C) = \frac{-b(g-h)}{rs} + \frac{b(g+h)}{rs} = \frac{2bh}{rs}$; because $h, r, s \ge 0$, we see that the

because h, r, $s \ge 0$, we see that the algebraic sign of det(C) is the same as that of b.

25. $\lambda_1 = -12.00517907692924$,

 $\lambda_2 = 7.906602974286551,$

 $\lambda_3 = 17.09857610264269$

27. $\lambda_1 = -5.210618568922174$,

 $\lambda_2 = 2.856693936892428$,

 $\lambda_3 = 3.528363748899602,$

 $\lambda_4 = 7.825560883130143$

29. 5.823349919059785,

 $-11.91167495952989 \pm$

1.357830063519836*i*

31. 57.22941613544168.

-92.88108454947197,

-54.25594801085533,

47.45380821244281 ±

44.48897425527453*i*

CHAPTER 9

Section 9.1

1. a.
$$z + w = 4 + i$$
, $zw = 5 + 5i$
b. $z + w = 3 + 2i$, $zw = -1 + 3i$

3. a.
$$|z| = \sqrt{13}$$
, $\overline{z} = (3 - 2i)$, $z\overline{z} = (3 + 2i)(3 - 2i) = 13 = |z|^2$

b.
$$|z| = \sqrt{17}, \overline{z} = 4 + i, z\overline{z} = (4 - i)(4 + i) = 17 = |z|^2$$

7. **a**.
$$\frac{3}{2} + \frac{1}{2}i$$

7. **a.**
$$\frac{3}{2} + \frac{1}{2}i$$
 b. $\frac{13}{25} + \left(-\frac{9}{25}\right)i$

9. a. Modulus $2\sqrt{2}$, principal argument $3\pi/4$

17. FTFFTFFTFT

19.
$$\sqrt{2} + \sqrt{2}i$$
, $-\sqrt{2} + \sqrt{2}i$, $-\sqrt{2} - \sqrt{2}i$, $\sqrt{2} - \sqrt{2}i$

21. 1,
$$i$$
, -1 , $-i$

23.
$$2, \sqrt{2} + \sqrt{2}i, 2i, -\sqrt{2} + \sqrt{2}i, -2, -\sqrt{2} - \sqrt{2}i, -2i, \sqrt{2} - \sqrt{2}i$$

Section 9.2

3.
$$AB = \begin{bmatrix} -3 + 2i & 2i & 2i \\ 2 & 2i & 1 \\ 2 + 3i & -1 + i & 2 + i \end{bmatrix}$$
, $BA = \begin{bmatrix} -2 + 2i & i & 2 - i \\ 2 + 3i & 1 + 3i & 0 \\ 2i & -1 + i & 0 \end{bmatrix}$

5.
$$\frac{1}{3} \begin{bmatrix} 2+i & -i \\ -1-i & 1 \end{bmatrix}$$

7.
$$\frac{1}{10} \begin{bmatrix} 9 - 3i & 1 + 3i & -4 + 8i \\ -3 + i & 3 - i & -2 - 6i \\ -2 + 4i & 2 - 4i & 2 - 4i \end{bmatrix}$$

9.
$$\mathbf{z} = \frac{1}{10} \begin{bmatrix} -7 + 9i \\ 9 - 3i \\ 6 - 2i \end{bmatrix}$$
 11. $\operatorname{sp} \left[\begin{bmatrix} 1 + i \\ 1 + 3i \\ 2 \end{bmatrix} \right]$

11. sp
$$\begin{bmatrix} 1+i\\1+3i\\2 \end{bmatrix}$$

13. 3 15. a.
$$\langle \mathbf{u}, \mathbf{v} \rangle = 0$$
, $\langle \mathbf{v}, \mathbf{u} \rangle = 0$

b.
$$\langle \mathbf{u}, \mathbf{v} \rangle = 5 - 3i, \langle \mathbf{v}, \mathbf{u} \rangle = 5 + 3i$$

- 21. a. Perpendicular
- d. Parallel
- b. Parallel
- e. Perpendicular
- c. Neither

23.
$$\frac{2}{\sqrt{7}}[i, 1-i, 1+i, 1-i]$$

25.
$$[-3i, 1, 2 + 2i]$$

27.
$$\{[2+i, 1+i], [1-i, -2+i]\}$$

29. {[1,
$$i$$
, i], [1 + 3 i , 3 - 2 i , i], [1 + i , i , 1 - 2 i]}

- 31. a. Both
 - b. Hermitian but not unitary
 - c. Not Hermitian but unitary
 - d. Neither

33. TTFFTTTTFF

- 41. Diagonal matrices with entries of moduli 1 on the diagonal.
- M1. See answer to Exercise 3.

M3.
$$\begin{bmatrix} -i & 1+i & 0 \\ 1+i & -1+i & 1 \\ -1+i & -1-2i & i \end{bmatrix}$$
 M5.
$$\begin{bmatrix} 2+4 & 4 & 1 \\ -4+1 & -6i & 1 \end{bmatrix}$$

M7. 2

M9. Entering [Q, R] = qr(A), where A is the matrix having the given vectors a₁, a₂, a₃: column vectors, returns a matrix Q havin as column vectors an orthonormal basis $\{\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3\}$, where

$$\mathbf{q}_1 \approx [-0.5774, -0.5774i, -0.5774i],$$

$$\mathbf{q}_2 \approx [-0.4695 - 0.1719i,$$

$$-0.4695 - 0.1719i$$
, $0.2977 + 0.6414i$],

$$\mathbf{q}_3 \approx [0.4695 + 0.429i, 0.0726 - 0.6414i, 0.3703 + 0.1719]$$

To check, using MATLAB, the Student's Solutions Manual's answers

$$\mathbf{v}_1 = \mathbf{a}_1, \, \mathbf{v}_2 = \mathbf{a}_2, \, \mathbf{v}_3 = [1 - 3i, \, -3 + i, \, -2]$$

for an orthogonal basis, enter

((1-i)/Q(1,1))*Q(:,1) to check v_1 , enter (1/Q(1,2))*Q(:,2) to check v_2 , and enter ((1-3*i)/Q(1,3))*Q(:,3) to check v_3 .

- M11. a. $\sqrt{274}$, $\sqrt{476}$, $\sqrt{458}$, and $\sqrt{353}$ for rows 1, 2, 3, and 4, respectively.
 - b. $\sqrt{277}$, $\sqrt{192}$, $\sqrt{529}$, $\sqrt{124}$, and $\sqrt{439}$ for columns 1, 2, 3, 4, and 5, respectively.

c.
$$-45 - 146i$$

d.
$$31 + 14i$$

Section 9.3

1.
$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} -i & i \\ 1 & 1 \end{bmatrix}$$
, $D = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$

5.
$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} -i & 0 & i \\ i & 0 & 1 \\ 0 & \sqrt{2} & 0 \end{bmatrix}, D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

7.
$$U = \begin{bmatrix} (1-i)/\sqrt{6} & 0 & (1-i)/\sqrt{3} \\ -2\sqrt{6} & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix},$$

$$D = \begin{bmatrix} -3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

9.
$$U = \begin{bmatrix} (1+i)/\sqrt{6} & 0 & (1+i)/\sqrt{3} \\ 0 & 1 & 0 \\ -2/\sqrt{6} & 0 & 1/\sqrt{3} \end{bmatrix},$$

$$D = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

11.
$$U = \begin{bmatrix} (-1-i)/\sqrt{8} & 0 & (3+3i)/\sqrt{24} \\ (1-i)/\sqrt{8} & (1+i)/\sqrt{3} & (1-i)/\sqrt{24} \\ 2/\sqrt{8} & -i/\sqrt{3} & 2/\sqrt{24} \end{bmatrix},$$

$$D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

13.
$$\{a \in \mathbb{C} \mid |a| = 4\}$$

15.
$$a = -1$$

19. FTTFTFTTFF

ction 9.4

5. No

7. a.
$$\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = -2$$
.

b. J + 2I has rank 3 and nullity 1, $(J + 2I)^2$ has rank 2 and nullity 2, $(J + 2I)^3$ has rank 1 and nullity 3, $(J + 2I)^k$ has rank 0 and nullity 4 for $k \ge 4$.

c.
$$J + 2I$$
: $e_4 \rightarrow e_3 \rightarrow e_7 \rightarrow e_1 \rightarrow 0$.

d.
$$Je_1 = -2e_1$$
, $Je_2 = e_1 - 2e_2$,
 $Je_3 = e_2 - 2e_3$, $Je_4 = e_3 - 2e_4$.

9. a.
$$\lambda_1 = -1$$
, $\lambda_2 = \lambda_3 = \lambda_4 = \lambda_5 = 2$.

b.
$$(J + I)^k$$
 has rank 4 and nullity 1 for $k \ge 1$,

$$(J-2I)$$
 has rank 3 and nullity 2,

 $(J-2I)^k$ has rank 1 and nullity 4 for $k \ge 2$.

c.
$$J + I$$
: $e_1 \rightarrow 0$,

$$J-2I$$
: $e_3 \rightarrow e_2 \rightarrow 0$, $e_5 \rightarrow e_4 \rightarrow 0$.

d.
$$J\mathbf{e}_1 = -\mathbf{e}_1$$
, $J\mathbf{e}_2 = 2\mathbf{e}_2$, $J\mathbf{e}_3 = \mathbf{e}_2 + 2\mathbf{e}_3$, $J\mathbf{e}_4 = 2\mathbf{e}_4$, $J\mathbf{e}_5 = \mathbf{e}_4 + 2\mathbf{e}_5$.

11.
$$\begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

13.
$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 \end{bmatrix}$$

15.
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, $\left\{ \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\}$ (Other bases are possible.)

17.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 5 \\ 5 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 (Other answers are possible.)

$$\mathbf{19.} \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 5 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

(Other answers are possible.)

21.
$$\begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}, \{\mathbf{e}_1 + \mathbf{e}_3, \, \mathbf{e}_5, \, \mathbf{e}_2, \, \mathbf{e}_4, \, \mathbf{e}_1 - \mathbf{e}_3 \}$$

27. O

(Other answers are possible.)

29.
$$A^4 + (3 - i)A^3 + (3 - 3i)A^2 + (1 - 3i)A - iI$$