《利用鸽巢定理反证 Erdős-Szekeres 定理》

方绍雷 416100210234

2021年10月22日

1 问题描述

If m and n are non-negative integers, then any sequence of m * n+1 distinct real numbers either has an increasing subsequence of m + 1 terms, or it has a decreasing subsequence of n + 1 terms.

2 证明思路

利用鸽巢定理的反证法: m,n 都为非负整数, 假设 m * n+1 个不同实数最多含有长度为 m 递增序列项或者是长度 n 递减子序列的项。由鸽巢定理导出矛盾,证明原命题。

3 具体证明

对于任意不同 m * n+1 的实数集合。

假设序列为: $x_1, x_2, ..., x_k, x_{m*n+1}$ (m * n + 1 个不同的实数)

令 g_k 为序号从 1 到 k (包括 k) 的递增子序列长度。

令 f_k 为序号从 1 到 k (包括 k) 的递减子序列长度。

对于每个实数 x_k ,都有一一对应的序列对: (g_k, f_k) 表示实数 x_k 的递增子序列和递减子序列长度。

则对于每个数字,都可以得出(1)中的 m*n+1个序列对。

$$(g_1, f_1), (g_2, f_2), ..., (g_{m*n+1}, f_{m*n+1})$$
 (1)

而对于前提假设所知: $1 \le g_k \le m, 1 \le f_k \le n$,

根据排列组合得,一共有 m*n 种组合方式,而 (1) 中有 m*n+1 个序列对。由鸽巢定理所知,说明 (1) 中至少有两个序列对完全相同。

设相同的序列对为 $(g_i, f_i), (g_i, f_i)$

假设序列对重复对应数字项为 $x_i, x_j, i \neq j$, 由于 m * n+1 的实数为不同实数。所以 x_i, x_j 为不同的两个实数。

易知有两种情况:

当 $x_i < x_j$ 时,由于 $x_i < x_j$,得 x_i 的最长递增子序列数目小于 x_j 当 $x_i > x_j$ 时,由于 $x_i > x_j$,得 x_i 的最长递减子序列数目小于 x_j 所以,综上证得 $(g_i, f_i), (g_j, f_j)$ 相同的结论不成立! 矛盾

所以结论 m*n+1 个不同实数最多含有长度为 m 递增序列项或者是长度 n 递减子序列的项不成立。对于 m*n+1 个不同实数,如果有小于 m 个递增子序列或者小于 n 个递减子序列,由鸽巢定理所得,则(1)中序列对中一定有重复。不合题意。

所以,当 $1 \le g_k \le m+1$ 或者是 $1 \le f_k \le n+1$ 时,(1) 中不存在重复,即由 m*n+1 个实数构成的不同实数序列,一定存在 m+1 个递增或者 n+1 个递减。