1. (2 points) By forming the augmented matrix and transforming it into reduced row echelon form, find the general solution to the following system of linear equations:

$$\begin{cases} x_1 + 4x_2 + 5x_3 + 2x_4 + 3x_5 = 1, \\ -x_1 + 6x_2 + x_3 + 3x_4 + 2x_5 = 2, \\ 3x_1 + 2x_2 - 2x_3 + x_4 = -7, \\ -x_1 + 2x_2 + 4x_3 + x_4 + 2x_5 = 3. \end{cases}$$

1 4 -1 6 3 2 -1 2	5 1 -2 4	2 3 1 1	3 2 0 2	1 2 -7 3	62 Ly,	-,4,1 -,1,-	\$ }	1 0 0 0	4 10 -10	5 6 -14 9	2 5 -5	3 5 -9 5	1 3 -10 4		2,10	- -	0000	4 1 -10	5 3 5 -14 9	212-5	3 1 2 -9 5	1 3 10 -10 4	L1,	2,- >	4	000	0 1 -10 6	13 5 3 5 14 9	0 1 2 -5	1 1 2 -9 5	15 2 10 10 4
L3,2,10	>	1 0 0 0	0 1 0 6	13 5 5 -11 9	0 12 0 3	1 1 2 -4 5	15 210 -7 4	Ly	1,2,	-6 ->	000	0 1 0 0	13535-1275	0 12 0 0	1 12-4 2	15 270 77 115	d	5,- 1	<u>1</u> Y	000	0 1 0 0	15251215	0 1200	1 12412	15 20 21115	_	•	>			
L1,3,-		1 0 0 0	0 1 0 0	035125	0 1 2 0 0	35512472	102 55 20 24 11 15) - <u>-</u>		1 0 0 0						Ly	1,3,	_2	4	0000	0 1 0 0	0 0 1 0	0 1 2 0 0	355 31 700 44 255	102 55 410 41 41 55	-		>	
du, 55		1 0 0 0	0 1 0	0 0 1 0	0 1 2 0 0	_	102 55 9 110 2 74		1,4,	3 55	000	0 1 0 0	0			1			31 40	0	10	0 0 1 0	0 12 0 0	0 9 4 1		_		>			
L3,4,-3		0000		0 0 1 0	0 1 2 0 0	0 0 0 1	0 19 13 13			>	X ₁ X ₂ X ₃ X ₄ X ₅	5	1 0	13 L E	1/2 a																

2. (2 points) For any $\lambda \in \mathbb{R}$, solve the following system of linear equations:

$$\left[\begin{array}{cc|cc|c} \lambda & 0 & 3 & -2 \\ 0 & -2 & 2 & 3 \\ -2 & 2 & 1 & 1 \end{array}\right].$$

[hint: you want λ to be in the (3,3)-th position of the augmented matrix; if you swap some columns then do not forget to pay attention to the names of the variables.]

3 0 A 2 -2 0 1 2 -2									1 2 0 -6	-2 4 342-	6			
if λ= if λ=-	2 -> n													
1 0 0	2 -2 1 -6 4 1 0 x42 -6	d _{5,} λ.	1 +2 1 -> 0 0	2 -2 + -6 4 1 0 1 \(\frac{7}{2} \)	L2,3,	-4 -> 2	0	2 -6	0	1-2 1+2 1+2 1+2	9 2 2	_>)	
1 1	2	0	1-24		- X3	X ₂	o _	0 1 <u>4)-</u> 3)+	1 4 6	<u>-6</u> λ+2	- X ₁		<u>-6</u> λ+2	
		1	_\(\lambda\)+12 6\(\lambda\)+12 -\(\lambda\) \(\lambda\)+2	4,2,-2	0	0	1	<u>-λ</u> 4 6λ4 -6 λ+		=>) X ₂		_ <u>λ+26</u> 6)+12 <u>4λ-4</u> 3λ+6	
Angwe			-2 ⇒ 2: [_{X.}		0 uf,	ons.								
			X ₂	= -	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\									
				-4 6	,,, -]									

3. (1 point) Find quadratic polynomials (that is, polynomials of the form $f(x) = ax^2 + bx + c$, where $a, b, c \in \mathbb{R}$) $f_1(x), f_2(x), f_3(x)$ such that

$$\begin{bmatrix} f_1(1) & f_1(2) & f_1(3) \\ f_2(1) & f_2(2) & f_2(3) \\ f_3(1) & f_3(2) & f_3(3) \end{bmatrix} = \begin{bmatrix} 2 & 0 & 4 \\ 4 & 1 & 2 \\ 0 & 3 & 2 \end{bmatrix}.$$

[hint: form and then solve 3 systems of linear equations.]

(a+b+c=2)	(a+b+c=4	(a+b+c=0)
1. $4/a + 2b + c = 0$	2. $ 4a+2b+c=1 $	3. $ 4\alpha + 2b + c = 3$
3 a + 4 b + c = 4	(9a+4b+c=2)	$\begin{cases} 3a+4b+c=2 \\ a & c \end{cases}$
1 1 1 2 L _{2,1,-4} 4 2 0 6	a s c 1 1 1 4 L2,1,-4 4 2 0 1 5,1,-9 9 4 0 2	$ \begin{bmatrix} 1 & 1 & 1 & 0 \\ 4 & 2 & 0 & 3 \\ 9 & 4 & 0 & 2 \end{bmatrix} $ $ \begin{bmatrix} L_{2}, I_{2} - 4 \\ L_{5}, I_{7} - 9 \end{bmatrix} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
-) \[1 1 1 2 \(\) \(\	-> \[1 1 \q	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 0 -1 \frac{2}{2} \begin{aligned} \lambda_2, 3, -2 \\ -2 \\ 0 0 1 \frac{1}{2} \\ \lambda_7, 3, 1 \end{aligned}	$ \begin{bmatrix} 1 & 0 & -1 & \frac{3}{2} \\ -7 & 0 & 1 & 2 & -\frac{3}{2} \\ 0 & 0 & 1 & -\frac{11}{2} \end{bmatrix} $ $ \begin{array}{c} L_{2,3,-2} \\ -7 \\ C_{7,3,1} \end{array} $
-> \begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & -8 \\ 0 & 0 & 1 & 6 \end{bmatrix}	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 -4 0 1 0 12 0 0 1 -11
[a] [4] b = -8 c [6]	$\begin{bmatrix} a & 0 \\ b & = \frac{1}{2} \\ c & \frac{3}{2} \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

4. (1 point) Find numbers $a, b, c \in \mathbb{R}$ such that the following equality holds true

$$\frac{x(5+x)}{(1-x)(2+x^2)} = \frac{a}{1-x} + \frac{b+cx}{2+x^2}.$$

5. (1 point) Let $X \in M_3(\mathbb{R})$. By finding the inverse of the first matrix, find the solution to the following matrix equation:

$$\left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{array}\right] X = \left[\begin{array}{ccc} 2 & 4 & 0 \\ 0 & 1 & 3 \\ 4 & 2 & 2 \end{array}\right].$$

$$\begin{bmatrix} 1 & 4 & 7 & 1 & 0 & 0 \\ 1 & 2 & 9 & 0 & 7 \\ 1 & 2 & 9 & 0 & 7 \\ 1 & 3 & 9 & 0 & 0 & 7 \\ \end{bmatrix} \begin{bmatrix} 1 & 4 & 7 & 7 & 1 & 1 & 7 & 1 & 0 \\ 0 & 7 & 3 & -1 & 7 & 0 \\ 0 & 2 & 8 & -1 & 0 & 7 \\ \end{bmatrix} \begin{bmatrix} 1 & 4 & 7 & 7 & 7 & 7 \\ 0 & 2 & 8 & -1 & 0 & 7 \\ 0 & 2 & 8 & -1 & 0 & 7 \\ 0 & 2 & 8 & -1 & 0 & 7 \\ \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 & 2 & -7 & 0 \\ 0 & 1 & 9 & -1 & 1 \\ 0 & 0 & 1 & 1 & -1 & 1 \\ 0 & 0 & 1 & 1 & -1 & 1 \\ 0 & 1 & 1 & -1 & 1 \\ 0 & 1 & 2 & -1 & 1 \\ 0 & 1 & 3 & -1 & 1 & 0 \\ 0 & 1 & 3 & -1 & 1 & 0 \\ 0 & 1 & 3 & -1 & 1 & 0 \\ 0 & 1 & 3 & -1 & 1 & 1 \\ 0 & 1 & 3 & -1 & 1 & 1 \\ 0 & 1 & 3 & -1 & 1 & 1 \\ 0 & 1 & 3 & -1 & 1 & 1 \\ 0 & 1 & 3 & -1 & 1 & 1 \\ 0 & 1 & 3 & -1 & 1 & 1 \\ 0 & 1 & 3 & -1 & 1 & 1 \\ 0 & 1 & 3 & -1 & 1 & 1 \\ 0 & 1 & 3 & -1 & 1 \\ 0 & 1 & 3 & -1 & 1 & 1 \\ 0 & 1 & 3 & -1 & 1 & 1 \\ 0 & 1 & 3 & -1 & 1 & 1 \\ 0 & 1 & 3 & -1 & 1 & 1 \\ 0 & 1 & 3 & -1 & 1 & 1 \\ 0 & 1 & 2 & 1 & -1 & 1 \\ 0 & 1 & 3 & -1 & 1 \\ 0 & 1 & 3 & -1 & 1 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1$$

6. (3 point) Let $X \in M_3(\mathbb{R})$. Without finding the inverse of the first matrix, find the solution to the following matrix equation:

$$\begin{bmatrix} -4 & 1 & -1 \\ 4 & 7 & 6 \\ 1 & 1 & 1 \end{bmatrix} X = \begin{bmatrix} 5 & 2 & 1 \\ 3 & -4 & -1 \\ 2 & -2 & 0 \end{bmatrix}.$$

χ _γ Χ ₂ Χ ₃											-16 -24 38				: ; ;	کر کر او کر او کر	<i>-</i>	3 5 .8			
-4 4 1	1 4	-1 6 1	- (25 - 41 - 64	-16 -24 38	3 5 -8	11	5 3 2	2 -4 -2	1 -1 O											