FPGA-Based Traffic Light Controller with Priority System

Submitted by: Bende Rasagnya

Date: 21 July 2025

Abstract

This project presents a Verilog-based traffic light controller implemented on an FPGA with a priority

override system for emergency vehicles. The system ensures safe and intelligent management of

traffic lights at a four-way junction while giving immediate priority to emergency signals. Designed for

real-time response and low-latency operation, the system is simulated on Vivado and suitable for

Spartan FPGA boards.

Introduction

Traffic congestion and delays at intersections are a major concern in urban cities. This project uses

FPGA hardware and Verilog HDL to implement a 4-way traffic signal controller. An additional feature

ensures priority for emergency vehicles (ambulance, fire trucks) by detecting signals and overriding

the regular light sequence to allow safe passage.

Objectives

1. Design a 4-way traffic light controller using Verilog.

2. Implement emergency vehicle priority logic.

3. Deploy on a Xilinx Spartan FPGA board.

4. Simulate the system using Vivado or ModelSim.

System Design

The system uses a finite state machine (FSM) that cycles through four directions: North, East, South,

and West. Each direction has red, yellow, and green signals. Emergency inputs (4-bit) are monitored.

If a high signal is detected in any direction, the FSM immediately transitions to give green

to that direction. Verilog HDL is used to implement the logic.

Tools and Technologies Used

- Verilog HDL
- Xilinx Vivado
- ModelSim (for simulation)
- Spartan FPGA development board

Results and Conclusion

The project successfully simulates a smart traffic light controller that gives immediate green signal access to emergency vehicles. The FSM-based logic ensures that each direction receives fair access in normal conditions, while prioritizing emergencies effectively. This system improves traffic management, safety, and responsiveness.