This file was provided by: Muath Alghamdi

$a^n \pm 1$ and exponent lifting

- 1. (Revision) Prove that there are infinitely many primes of the form 4m + 1.
- 2. (Revision) Determine whether there exist rational numbers r and q such that $r^2 + q^2 = 38$.

Definition 1. For a prime number p and a nonnegative integer k, write $p^k \mid\mid n$ to mean that $p^k \mid n$ and $p^{k+1} \nmid n$.

In the case we will say that n is exactly (or fully) divisible by p^k . For example, $5^2 \parallel 50$. It means the same as $\nu_5(50) = 2$.

Lemma 1 (Exponent lifting). Let $a \ge 2$, $k \ge 1$, $l \ge 0$ be integers, and p be a prime number. Suppose $(p,k) \ne (2,1)$ and

$$p^k \mid\mid a-1, \qquad p^l \mid\mid n.$$

Then

$$p^{k+l} \mid\mid a^n - 1.$$

The same fact can be presented as

$$\nu_p(a^n - 1) = \nu_p(a - 1) + \nu_p(n).$$

For example,

$$\nu_3(14^{18} - 2^{18}) = \nu_3(14 - 2) + \nu_3(18) = 1 + 2 = 3$$

- 3. Let k be a nonnegative integer. Using exponent lifting lemma, prove that $3^{k+1} \parallel 2^{3^k} + 1$.
- 4. Prove Lemma 1.

Definition 2. Recall that a **primitive root** \pmod{n} is a number g such that the smallest positive integer k for which $g^k \equiv 1 \pmod{n}$ is $\varphi(n)$.

- 5. Show that 2 is a primitive root $\pmod{3^n}$ for any $n \in \mathbb{N}$.
- 6. Show that if p > 2 is a prime, g is a primitive root \pmod{p} , and $p^2 \nmid g^{p-1} 1$, then g is a primitive root $\pmod{p^n}$ for any $n \in \mathbb{N}$.
- 7. Find the smallest positive integer n such that 3^n ends with 01 when written in base 143.
- 8. (USA TST) Prove that $n^7 + 7$ is not a perfect square for any positive integer n.
- 9. Find all primes p > 2 and positive integers (x, y) such that $x^{p-1} + y$ and $y^{p-1} + x$ are powers of p.

$a^n \pm 1$ and exponent lifting (homework)

- 10. Show that if p > 2 is a prime, g is an odd primitive root \pmod{p} , and $p^2 \nmid g^{p-1} 1$, then g is a primitive root $\pmod{2p^n}$ for any $n \in \mathbb{N}$.
- 11. Let n be a square-free integer (that is n is not divisible by any perfect square $b^2 > 1$). Find all pairs of coprime positive integers (x, y) such that $x^n + y^n$ is divisible by $(x + y)^3$.
- 12. (Exponent lifting lemma generalization) Let a and b be an integers and p a prime. Assume that
 - (a) p | (a b)
 - (б) $p \nmid a$ and $p \nmid b$
 - (B) p > 2.

Then

$$\nu_p(a^n - b^n) = \nu_p(a - b) + \nu_p(n).$$

