Equivalence of Egorov's Theorem and Vitali-Hahn-Saks Theorem for σ -compact Spaces

BY ASSISTANT

Theorem 1. For σ -compact spaces, the following are equivalent:

- (a). Egorov's Theorem
- (b). Vitali-Hahn-Saks Theorem

Preliminaries: This proof relies on several advanced measure-theoretic results, including the Hahn Decomposition Theorem, Radon-Nikodym Theorem, and properties of weak convergence in L^1 spaces. Familiarity with these concepts is assumed.

We will prove both directions of the equivalence.

$$(a) \Rightarrow (b)$$
:

Assume Egorov's Theorem holds for σ -compact spaces. Let (X, Σ) be a σ -compact measurable space and $\{\mu_n\}$ a sequence of finite signed measures on (X, Σ) such that for each $E \in \Sigma$, $\lim_{n \to \infty} \mu_n(E)$ exists and is finite.

- 1. Define $\mu(E) = \lim_{n \to \infty} \mu_n(E)$ for $E \in \Sigma$. Note that μ is a finite signed measure.
- 2. Write $X = \bigcup_{i=1}^{\infty} K_i$, where each K_i is compact and $K_i \subset K_{i+1}$.
- 3. For each i, consider the restrictions of μ_n and μ to K_i , denoted $\mu_{n,i}$ and μ_i . These are finite signed measures on compact sets.
- 4. Apply the Hahn Decomposition Theorem to each $\mu_{n,i}$ and μ_i . Then, by the Radon-Nikodym theorem, there exist measurable functions $f_{n,i}$ such that:

$$\mu_{n,i}(E) = \int_E f_{n,i} d|\mu_i| \text{ for all } E \subset K_i, E \in \Sigma$$

5. The assumption $\lim_{n\to\infty} \mu_n(E) = \mu(E)$ for all $E \in \Sigma$ implies that $\{f_{n,i}\}$ converges weakly to f_i in $L^1(K_i, |\mu_i|)$ for each i. This follows from the definition of weak convergence in L^1 spaces: for any $g \in L^{\infty}(K_i, |\mu_i|)$,

$$\lim_{n \to \infty} \int_{K_i} f_{n,i} g \, d|\mu_i| = \lim_{n \to \infty} \mu_{n,i}(g) = \mu_i(g) = \int_{K_i} f_i g \, d|\mu_i|$$

- 6. Apply Egorov's Theorem to $\{f_{n,i}\}$ on each K_i : For any $\varepsilon > 0$, there exists $A_i \subset K_i$, $A_i \in \Sigma$ such that $|\mu_i| (K_i \setminus A_i) < \varepsilon/2^i$ and $f_{n,i}$ converges uniformly to f_i on A_i .
- 7. Define $A = \bigcup_{i=1}^{\infty} A_i$. A is measurable as it is a countable union of measurable sets. Note that $|\mu|(X \setminus A) \leq \sum_{i=1}^{\infty} |\mu_i|(K_i \setminus A_i) < \varepsilon$.
- 8. For any $\delta > 0$ and each i, choose N_i such that for all $n \geq N_i$ and $x \in A_i$, $|f_{n,i}(x) f_i(x)| < \delta$.
- 9. For any $E \subset A$, $E \in \Sigma$, and for all $n \ge \max \{N_i : i \in \mathbb{N}\}$:

$$|\mu_{n}(E) - \mu(E)| \leq \sum_{i=1}^{\infty} |\mu_{n,i}(E \cap A_{i}) - \mu_{i}(E \cap A_{i})|$$

$$= \sum_{i=1}^{\infty} \left| \int_{E \cap A_{i}} (f_{n,i} - f_{i}) d|\mu_{i}| \right|$$

$$\leq \sum_{i=1}^{\infty} \int_{E \cap A_{i}} |f_{n,i} - f_{i}| d|\mu_{i}|$$

$$< \delta \sum_{i=1}^{\infty} |\mu_{i}| (E \cap A_{i}) = \delta |\mu|(E)$$

This establishes uniform convergence for sufficiently large n.

10. This establishes uniform absolute continuity of $\{\mu_n\}$ with respect to $|\mu|$ on A, and thus on X since $|\mu|(X \setminus A) < \varepsilon$.

Therefore, the Vitali-Hahn-Saks Theorem holds for σ -compact spaces.

(b)
$$\Rightarrow$$
 (a):

Assume the Vitali-Hahn-Saks Theorem holds for σ -compact spaces. Let (X, Σ, λ) be a σ -compact measure space and $\{f_n\}$ a sequence of measurable functions converging pointwise λ -almost everywhere to f.

- 1. Write $X = \bigcup_{i=1}^{\infty} K_i$, where each K_i is compact and $K_i \subset K_{i+1}$.
- 2. Define measures ν_n on (X, Σ) by:

$$\nu_n(E) = \int_E \min(1, |f_n - f|) d\lambda \text{ for } E \in \Sigma$$

Note that ν_n are indeed finite measures:

• Non-negative: $\min(1, |f_n - f|) \ge 0$

- Countably additive: follows from the countable additivity of the integral
- $\nu_n(\emptyset) = 0$: integral over empty set is zero
- $\nu_n(X) \le \lambda(X) < \infty$: since min $(1, |f_n f|) \le 1$
- 3. For each $E \in \Sigma$, by the Dominated Convergence Theorem:

$$\lim_{n \to \infty} \nu_n(E) = \int_{E^{n \to \infty}} \min(1, |f_n - f|) d\lambda = 0$$

This holds because min $(1, |f_n - f|)$ is bounded by 1 and converges pointwise to 0 λ -almost everywhere.

- 4. Apply the Vitali-Hahn-Saks Theorem to $\{\nu_n\}$: For any $\varepsilon > 0$, there exists $\delta > 0$ such that for all $E \in \Sigma$ with $\lambda(E) < \delta$, we have $\nu_n(E) < \varepsilon$ for all n.
- 5. For each $k \in \mathbb{N}$ and $i \in \mathbb{N}$, define sets:

$$A_{k,i} = \{x \in K_i: |f_n(x) - f(x)| \ge 1/k \text{ for infinitely many } n\}$$

These sets are measurable as they are countable intersections and unions of measurable sets.

- 6. By pointwise convergence, $\lambda(A_{k,i}) \to 0$ as $k \to \infty$ for each i. This is true because for each x where $f_n(x)$ converges to f(x), there exists a k large enough such that $|f_n(x) f(x)| < 1/k$ for all but finitely many n. As k increases, fewer points fail to meet this criterion, so the measure of $A_{k,i}$ decreases to zero.
- 7. For each i, choose K_i such that $\lambda(A_{K_i,i}) < \delta/2^i$.
- 8. Define $B = \bigcup_{i=1}^{\infty} A_{K_i,i}$. Note that $\lambda(B) < \delta$.
- 9. By the uniform absolute continuity from step 4:

$$\int_{B} \min(1, |f_n - f|) d\lambda < \varepsilon \text{ for all } n$$

10. This implies that for any $\eta > 0$, there exists a set $C_{\eta} \subset X \setminus B$ with $\lambda(C_{\eta}) < \eta$ such that:

$$|f_n(x) - f(x)| < \varepsilon$$
 for all n sufficiently large and all $x \in X \setminus (B \cup C_\eta)$

Detailed explanation: Suppose this were not true. Then there would exist a set $D \subset X \setminus B$ of positive measure such that for each $x \in D$, $|f_n(x) - f(x)| \ge \varepsilon$ for infinitely many n. This would imply:

$$\int_{D} \min(1, |f_n - f|) d\lambda \ge \int_{D} \min(1, \varepsilon) d\lambda = \varepsilon \lambda(D) > 0$$

for infinitely many n. However, this contradicts the uniform absolute continuity established in step 4, which implies that for any set E with $\lambda(E) < \delta$, we have $\int_E \min(1,|f_n-f|) d\lambda < \varepsilon$ for all n. We can choose η small enough so that $\lambda(D) < \delta$, leading to this contradiction.

11. Since $\lambda(B \cup C_{\eta}) < \delta + \eta$, which can be made arbitrarily small, we have established Egorov's Theorem for σ -compact spaces.

This completes the proof of the equivalence between Egorov's Theorem and the Vitali-Hahn-Saks Theorem for σ -compact spaces.

Note: This equivalence is specific to σ -compact spaces. The σ -compactness property is crucial for this proof as it allows us to decompose the space into a countable union of compact sets. This decomposition enables us to apply Egorov's Theorem on each compact set in the (a) \Rightarrow (b) direction, and to construct the set B in the (b) \Rightarrow (a) direction. For more general spaces, this approach might not work, and the relationship between these theorems could be different or require alternative methods of proof.