19.28. Ondes Em dans les milieux diélectiques

Plan: I. Les milien diélectiques

I. 1 . Polaisation d'on milieu

I.2. Vedeu polarisation

I.3. modèle de l'e-élastgauent lié

II. Peopagation des OETH dans les milieux diélectiques.

II.1. Égrations de maxwell

tt.2 Egadion de propagation

11.3 Disposalo et alacepto

III. Applications

· En tatoduction on peut faire l'expérieure de tauaday.

I les milieu diélectiques

Un milieu diélectique est un milieu qui, cos l'action d'un champ électique excitateme, léapart pou l'appartion d'one polarisation P au soin on son soin.

Dans on mederian: deux types de dranges: libres - pantiales

parvant se déplacer

en des échelles monaise.

(inducteurs)

de sa position d'équilibre

si Pelare = 0 -> alors diélectique parfait = isolant

Transition on va donc s'intéresser à ces changes dites liées et aux mécanismes microscopiques de polarisation parl extiguer les descrations macroscopiques. (l'expérience en introduction de Forraday).

I. 1. Polarisation d'un milieu. (Rapide!)

milieu polaireable dans champ \vec{E} = appaintson moment dipolaire \vec{P} : c'est le réponse du milieu à \vec{E} . ce moment dipolaire danne lieu à \vec{E}_p . de champ électique local est: $\vec{E}_0 = \vec{E}_p + \vec{E}$

Il existe diff types de polarisation: leçon Hugo.

- Polarisation d'orientation

> " ionique

-> " électorique

Trausi Kon

on dresche à déalise ce étéramère macuscopiquement pour celo on introduit le mon redeux polarisation.

I.2. Vecteur polarisation.

Ses l'action de É: apparition de moneroles dipolaries

Pi = $\Sigma 9; \vec{r}_i = \vec{o} \vec{A};$ Modière reutre: $|Q| = \tilde{\Sigma} 9; = 0$.

on définit le recteur dipolaire élbedige ? au recteur polaisation:

volume mesacopiste.

Loregre les changes composant ces dépôtes son en moneurent, une devesté volumique de coulant se crée:

$$\vec{J}_{R} = \frac{1}{V} \vec{z}_{1} \cdot \vec{g}_{1} \cdot \frac{d\vec{r}_{1}}{dt} = \frac{\partial \vec{P}}{\partial t}$$

ce carrant est appelé carrant de polarisation.

La noutablité du milieu n'est plus vérifiée localement cal déparement de la draige.

on associe la desité volumique de change glâce à l'équation de la change:

$$\frac{\partial P_{P}}{\partial t} + div \vec{P} = 0$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left(P_{P} + div \vec{P} \right) = 0.$$

$$\frac{\partial}{\partial t} \left$$

transition NOB avois défini des seamdants permettant de conadériser la polarisation du milian. Il rous sente à travel comment la polarisation et donc la réponse du milian. De comparte sous en chaup. Em. » Plutot on vout chercher la relation entre » Plutot on vout chercher la relation entre » Plutot on vout chercher la relation entre

I.3. modèle de l'e-ellothquement lié

· hypothèses:

- breng en caudre de la bajarisation apparaçõe
- pas de charge libres diélectique parfait isdant
- atome valume meso, modelisé par un ion a et un e- forteurat lié.
- let lié au royau de l'atome, salitér.
- par Intéraction entre e-
- milieu pou deuse.

folies: $\vec{f} = -K\vec{r}$ lappel élastie, de l'e-à son rajour (con oscillation harmonique autoul de la position d'équilibre, on peut t's approx au voisitage de la ços. d'ég.

$$\vec{j} = -\frac{n\vec{v}}{\vec{c}}$$
 force from the energy.
 $\vec{j} = -e(\vec{z} + \vec{v} \wedge \vec{B})$.

PFD:
$$m \cdot \frac{d^2}{dt^2} = -k^2 - m^2 - e^2$$
 si or pose

 $i^2 + \frac{\omega_0}{Q} + \frac{\omega_0^2}{Q} = -e^2$ si or pose

 $i^2 + \frac{\omega_0}{Q} + \frac{\omega_0^2}{Q} = -e^2$

At $Q = \omega_0^2$ factous de gracité

Atoms identiques, champ onitaine an un volume mesoscopique,

$$\overrightarrow{P} = \underbrace{\overrightarrow{P}}_{va} = \underbrace{\overrightarrow{Np}}_{va} = \underbrace{\overrightarrow{Np}}_{va} = \underbrace{-\overrightarrow{Npr}}_{va} = \underbrace{-\overrightarrow{Npr}}$$

On suppose su'or euvoie une orde dave == = = = = (Twt) > ==== exp(((w+4)).

$$\Rightarrow -\omega^2 \vec{P} + i \underline{\omega_0 \omega} \vec{P} + \omega_0^2 \vec{P} = \underline{me^2} \vec{E}$$

$$\omega_0^2 = \frac{1}{\omega_0^2} + \frac{1}{\omega_0} = \frac{me^2}{m} = \frac{1}{m}$$

On deficient:
$$\overrightarrow{P} = \frac{me^2}{m\omega_0^2}$$

$$1 - \frac{\omega^2}{\omega_0^2} + \frac{1}{\omega_0}$$

on définit le surptibilité délectique: P= & X/w/E

$$\frac{\partial}{\partial u} \chi_{e}(u) = \frac{\chi_{o}}{1 - \frac{u^{2}}{u^{2}} + \frac{1}{1} \frac{u}{u^{2}}} \quad \text{et } \chi_{o} = \frac{ne^{2}}{mu^{2}}$$

Le représente le répose du milieu à l'application d'un champ E. Complexe, dépend de u.

La partie réalle décrit beaucorp ples lartement que la partie imaginaire. Il y a résonance à w=us.

- Si
$$\omega \in \omega_0$$
 $X_e(\omega) = X_0$. $\in \mathbb{R}$.
- Si $\omega = \omega_0$ $X_e(\omega) = -iX_0Q$. $\overrightarrow{P}, \overrightarrow{E}$ on quadrative.
- Si $\omega > \omega_0$ $X_e(\omega) = -X_0 \frac{\omega^2}{\omega^2}$ $\overrightarrow{P}, \overrightarrow{E}$ ou opposition.

II. Propagation des ondes Em dans les milians diélectiques.

II.s. Equation de Maxwell.

m.G:
$$\operatorname{div} \overrightarrow{E} = \underbrace{R + P_{P}}_{\varepsilon_{0}} \Rightarrow \operatorname{div} \overrightarrow{E} = \underbrace{R - \operatorname{div} \overrightarrow{P}}_{\varepsilon_{0}}$$

$$\Rightarrow \operatorname{div} (\varepsilon_{0} \overrightarrow{E} + \overrightarrow{P}) = P_{L}$$

On introduit le verteur déplacement \overrightarrow{D} :

La unités de D.

C.m.2

si an considère un diélectique parfait: fi=0 et Ti=0, on dotient les ests de mexuell dans les diélectiques:

$$\begin{cases}
 \text{div } \vec{D} = 0 \\
 \vec{R} \vec{O} + \vec{E} = -\frac{\partial \vec{B}}{\partial t}
 \end{cases}$$

$$\frac{\partial \vec{D}}{\partial t} \vec{B} = 0.$$

$$\frac{\partial \vec{D}}{\partial t} \vec{B} = \frac{\partial \vec{D}}{\partial t}$$

8 égts → 9 inconnues, pour fermou le système on a besoin de rélation de formeture:

P = & XeE Vaie dem milieu lineaire isotope

 $\vec{D} = \mathcal{E}_0(n + X_0)\vec{E} = \mathcal{E}_0\vec{E}$ où $\mathcal{E}_r = 2 + X_0$ permittinte relative

du milieu.

És, de propagation dans milleu linéaire isotope honogène?

2. Ég. de propagation.

$$\overrightarrow{D} = 8.8 \overrightarrow{E} \qquad \text{div} \overrightarrow{D} = 0 \qquad \text{doc} \qquad \text{div} \overrightarrow{E} = 0.$$
et $\overrightarrow{\partial B} = 8.8 \cdot \overrightarrow{\partial E}$
et $\overrightarrow{\partial A} = 8.8 \cdot \overrightarrow{\partial E}$.

⇒ Ect(Ect E) = gead(div E) - DE = - 2 Ect B

$$| \Delta \vec{E} = | \sqrt{2} \vec{E} \cdot | \Rightarrow | \Delta \vec{E} = \frac{1}{c^2} \frac{\partial^2 \vec{E}_x}{\partial t^2} | \exp(in_r)$$

Même chose avec B. Es de d'Abendont avec Er Ce n'est pas l'éq de d'Alembert car le coeff lepsilon_r est à priori complexe!

Chercher solution sais la forme == to exp (i (wt-Kz))

II.3 Dispelsion et absalption.

| k = kiu) = i k'(u) k complexe car & complexe.

où
$$m = m' - im''$$
 $m^2 = \varepsilon_r$ $m'^2 - m''^2 = \varepsilon_r'$ $\varepsilon_r'' = \varepsilon_r''$ $\varepsilon_r'' = \varepsilon_r''$

-> L'indice m' est l'indice de réfroction que nous adlisons en ophque. Il pouvet d'expliner la vitesse de plase d'une onde pauve.

$$V_p = \frac{v}{k'} = \frac{c}{n'}$$
 n' cauadécise la dispersion du militer (si m' dépend bien de w).

→ l'indice m' caractérise l'absorption de l'orde par le milieu. C'est l'indice d'extinction. · 是中国人的主要不为一个

Images.

Application: Formule de Cauchy pour l'indice d'un veue.

Dans le donaine vissible, et « Et car la rene de d'absorption dans ce donaine est très faible. (5 sophes

a peut alors écrise: Er 2 Er > 2 l'Airdice du milieu s'identifie à son indice de réfraction:

 $m \approx n' \gg m''$

En considérant un milieu ne comporteur qu'un seul type de changes liées, on peut utiliser la forme approchée:

$$\frac{\mathcal{E}_{r} = \mathcal{E}_{r} = 2 + \frac{1}{\sqrt{6}} \frac{1}{\sqrt{6}}$$
 are $\frac{1}{\sqrt{6}} = 2$ are $\frac{1}{\sqrt{6}} =$

montrer que l'indice du rerre docit la loi de Cauchy:

to supposant wello

$$m^2 = \varepsilon_1 \approx \Delta + \chi_0 \left(1 + \frac{\omega^2}{\omega_0^2} + \frac{\omega^4}{\omega_0^4} \right)$$

$$\lambda = \frac{2\pi c}{\omega}$$

donc
$$n^2 = (1 + \chi_0) + \left(\frac{2\pi c}{\omega_0}\right)^2 \cdot \frac{1}{\lambda^2} + \left(\frac{2\pi c}{\omega_0}\right)^4 \cdot \frac{1}{\lambda^4}$$