Teoria Kategorii

Patryk Gronkiewicz

KN Machine Learning

2022-11-15

Ale co to w ogóle jest?

Straszna matematyka, blisko spokrewniona z topologią algebraiczną. Szczęśliwie, topologii tutaj dotykać nie będziemy. Na początek musimy zdefiniować sobie kilka podstawowych pojęć:

- Kategoria
- Morfizm

Ale co to w ogóle jest?

Straszna matematyka, blisko spokrewniona z topologią algebraiczną. Szczęśliwie, topologii tutaj dotykać nie będziemy. Na początek musimy zdefiniować sobie kilka podstawowych pojęć:

- Kategoria
- Morfizm

Ale co to w ogóle jest?

Straszna matematyka, blisko spokrewniona z topologią algebraiczną. Szczęśliwie, topologii tutaj dotykać nie będziemy. Na początek musimy zdefiniować sobie kilka podstawowych pojęć:

- Kategoria
- Morfizm

No dobra, kategoria kategorią, ale co to jest?!

Na kategorię składa się kilka bytów matematycznych (które nazywamy klasami):

- lacksquare Ob(C) obiekty
- \blacksquare hom(C) morfizmy/strzałki/mapy
- $lack |\circ|$ operator złożenia funkcji $(f\circ g=f(g))$

O każdym z nich porozmawiamy za chwilę.

Obiekty

Może to być... cokolwiek — liczby, kształty, zwierzątka. Do tego przejdziemy później. Ważne, żeby dało się zmienić jeden obiekt w drugi z małą pomocą.

Złożenia

Na początku dobrze jest pokazać na czym polega operator złożenia funkcji.

Przykład

$$f(x) = 2x \quad g(x) = x^{2}$$

$$f \circ g = f(g(x)) = 2(x^{2}) \neq g \circ f = g(f(x)) = (2x)^{2} = 4x^{2}$$

Morfizmy

Morfizmy to przekształcenia między konkretnymi obiektami

$$f: a \mapsto b$$

Taki obiekt nazywamy morfizmem f mapującym obiekt a w obiekt b. Jednym z podstawowych jest morfizm identycznościowy $id_a:a\mapsto a$

Typy morfizmów

Jest ich trochę, więc każdy dostanie swój slajd

Typy morfizmów — monomorfizm

ang. monomorphism/monic $\text{Jeśli} \ f\circ g_1=f\circ g_2, \text{to} \ g_1=g_2 \ \text{dla wszystkich morfizmów} \ g_1,g_2: x\mapsto a$

$$\underbrace{f \circ g_1 = f \circ g_2} \implies \forall (g_1, g_2 : x \mapsto a) : g_1 = g_2$$

Typy morfizmów — epimorfizm

ang. epimorphism/epic Jeśli $g_1\circ f=g_2\circ f$, to $g_1=g_2$ dla wszystkich morfizmów $g_1,g_2:x\mapsto a$

$$g_1 \circ f = g_2 \circ f \implies \forall (g_1, g_2 : x \mapsto a) : g_1 = g_2$$

Typy morfizmów — bimorfizm

ang. *bimorphism* jest zarówno monomorfizmem i epimorfizmem

Typy morfizmów — izomorfizm

$$g\circ f: b \to q \to b$$

$$f\circ g: a \to b \to a$$
 ang. isomorphism
$$f: a \to b$$
 Jeśli istnieje morfizm $g: b \mapsto a$, taki, że $f\circ g=id_b$ i $g\circ f=id_a$

Uwaga

Nie każdy bimorfizm jest izomorfizmem! Kategoria złożona z A, B, morfizmów identycznościowych (id_a, id_b) i pojedynczego morfizmu $f: a \mapsto b$ nie ma izomorfizmów, natomiast f jest bimorfizmem.

Typy morfizmów — endomorfizm

ang. endomorphism Każdy morfizm taki, że $f:a\mapsto a_{\mathbf{J}}$ Oznaczamy je End(a)

Typy morfizmów — automorfizm

ang. automorphism Morfizm, który jest zarówno lizomorfizmem jendomorfizmem. Oznaczamy je przez Aut(a).

Przykład

Najprostszym przykładem jest morfizm identycznościowy. Zachowuje się on tak samo, niezależnie od strony z której zostanie zaaplikowany

$$id_a \circ a = a \circ id_a = a$$

Typy morfizmów — retrakcja

ang. <code>retraction</code> Jeśli istnieje prawa odwrotność, np. $g:b \to a$ dla $f\circ g=id_b$

Typy morfizmów — sekcja

ang. section Jeśli istnieje lewa odwrotność, np. $g:b\to a$ dla $g\circ f=id_b$

Funktory

zwrot mapowania)

Kto powiedział, że nie można zmieniać całych kategorii w inne? Funktory to morfizmy między kategoriami. Funktor każdemu obiektowi z kategorii C przypisuje obiekt z kategorii D i tak samo dla morfizmów — każdy ma swój odpowiednik. Istnieją dwa typy funktorów — kowariantne

(niezmieniające zwrotu mapowania) i kontrawariantne (zmieniające

Dodatkowe materialy

- https://github.com/BartoszMilewski/Publications/blob/master/TheDaoOfFP/DaoFP.pdf (ciągle aktualizowane)
 https://www.youtube.com/user/DrBartosz (Wykłady po angielsku nt. teorii kategorii, programowania funkcyjnego itp.)
 - https://blog.ploeh.dk/2017/10/04/
 from-design-patterns-to-category-theory/ (na
 15 listopada 2022 jeszcze niedokończone, ale bardzo obszerne)
- https://www.cs.princeton.edu/~dpw/courses/
 cos326-12/notes/basics.php (kurs COS326 prowadzony
 przez Princeton University)