# SAYISAL ÇÖZÜMLEME

## SAYISAL ÇÖZÜMLEME

#### 7. Hafta

LİNEER DENKLEM SİSTEMLERİ – (Devam)

# **İÇİNDEKİLER**

#### Doğrusal Denklem Sistemlerinin Çözümü

- ☐ İteratif Yöntemler
  - Jacobi Yöntemi
  - Gauss-Siedel Yöntemi

#### Yinelemeli Yöntemler

- Büyük katsayılar matrisi içeren lineer denklem sistemlerinin eliminasyon yöntemleriyle çözümü çoğu zaman kolay olmaz. Bu gibi durumlarda iteratif yöntemler seçilir.
- İteratif ve yaklaşık çözümler daha önce anlatılan yerine koyma yöntemlerine alternatif oluştururlar.

- Yinelemeli (iteratif) yöntemler
  - Jacobi Yöntemi
  - Gauss-Siedel Yöntemi

#### Jacobi Yöntemi

- Toplam adımlarla yineleme yöntemi olarak ta bilinir.
- Örneğin iki bilinmeyenli bir denklem ele alalım.
  - $a_{11} x_1 + a_{12} x_2 = c_1$
  - $a_{21} x_1 + a_{22} x_2 = c_2$
- Denklemler tekrar düzenlenirse (bilinmeyenler yalnız bırakılırsa)
  - $x_1 = (c_1 a_{12} x_2)/a_{11} = f(x_1, x_2)$
  - $x_2 = (c_2 a_{21} x_1)/a_{22} = g(x_1, x_2)$
- Jacobi iterasyonu bilinmeyenler için bir tahmin ile başlar.
  - Çözüm için bir başlangıç  $x_1$  ve  $x_2$  değerleri seçilir. (yani  $x_0$  vektörü)
    - Örneğin;  $X_1=Ax_0+C$  ve sırasıyla  $X_2=Ax_1+C$
    - genellersek,  $X_k = Ax_{k-1} + C$  ve  $X_k$  bilinmeyen vektör elemanları

• 
$$x_i^{(k)} = \sum_{j=1}^n a_{ij} x_j^{(k-1)} + c_i$$
,  $i = 1: n$ 

• Durdurma kriteri olarak ya iterasyon sayısı ya da hata sınırlaması kullanılır

$$\max_{i \le i \ge n} \frac{\left| x_i^k - x_i^{k-1} \right|}{x_i^k}$$

Jacobi iterasyon metodu kullanarak aşağıdaki lineer denklem sistemini çözünüz

$$10 x_1 + 2x_2 + 3x_3 = 23$$
  

$$2x_1 - 10x_2 + 3x_3 = -9$$
  

$$-x_1 - x_2 + 5x_3 = 12$$

#### Çözüm Yolu: yeniden düzenleme

$$x_1 = (23 - 2x_2 - 3x_3)/10$$
  
 $x_2 = (-9 - 2x_1 - 3x_3)/(-10)$   
 $x_3 = (12 + x_1 + x_2)/5$ 

 $x_1 = 0$ ,  $x_2 = 0$ , ve  $x_3 = 0$ . keyfî tahminlerle başlıyoruz ve iterasyon aşağıdaki sonuçları verir.

| ITER | $X_1$     | $X_2$    | $X_3$    | Hata normu, $E = \sum_{i=1}^{n}  X_i^{\text{new}} - X_i^{\text{old}} $ |
|------|-----------|----------|----------|------------------------------------------------------------------------|
| 0    | 0         | 0        | 0        |                                                                        |
| 1    | 2.300000  | 0.900000 | 2.400000 | 5.600000                                                               |
| 2    | 1.400000  | 2.080000 | 3.040000 | 2.720000                                                               |
| 3    | 0.972000  | 2.092000 | 3.096000 | 4.960001E-01                                                           |
| 4    | 0.952800  | 2.023200 | 3.012800 | 1.712000E-01                                                           |
| 5    | 0.991520  | 1.994400 | 2.995200 | 8.512014E-02                                                           |
| 6    | 1.002560  | 1.996864 | 2.997184 | 1.548803E-02                                                           |
| 7    | 1.001472  | 1.999667 | 2.999885 | 6.592035E-03                                                           |
| 8    | 1.000101  | 2.000260 | 3.000228 | 2.306700E-03                                                           |
| 9    | 0.9998797 | 2.000089 | 3.000072 | 5.483031E-04                                                           |
| 10   | 0.9999606 | 1.999998 | 2.999994 | 2.506971E-04                                                           |
|      |           |          |          |                                                                        |

$$Ax = b \longrightarrow \begin{bmatrix} 4 & 1 & 1 & 0 \\ 1 & 4 & 0 & 1 \\ 1 & 0 & 4 & 1 \\ 0 & 1 & 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} \qquad x = ?$$

Denklem sisteminin direkt yöntemlerle çözümü
 x=[0.1667 0.4167 -0.0833 0.1667] dir. Çözümde ondalık sayıdan sonra 4 hane verilmiştir. Aynı denklem sistemini JACOBI iterasyonu ile çözelim. Denklem sistemini

$$x_1 = \frac{1}{4}(1 - x_2 - x_3), \quad x_2 = \frac{1}{4}(2 - x_1 - x_4), \quad x_3 = \frac{1}{4}(-x_2 - x_4), \quad x_4 = \frac{1}{4}(1 - x_2 - x_3)$$

şeklinde yazalım. i. bilinmeyenin k. Ve k-1. adımda hesaplanan iki değerinin farkı  $x_i^k - x_i^{k-1}$  olmak üzere,  $Max \mid x_i^k - x_i^{k-1} \mid \le \epsilon$  koşulu **sağlanınca iterasyonu durduralım**.  $\epsilon = 0.0001$  seçelim. Çözümde 4 ondalık hane kullanalım. Başlangıç için  $x = x^{(0)} = [0\ 0\ 0\ 0]^T$  alalım.

| $X_1$  | X <sub>2</sub>                                                                                                  | <b>X</b> <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                       | <b>X</b> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0      | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.2500 | 0.5000                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                           | 0.2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.1250 | 0.3750                                                                                                          | -0.1250                                                                                                                                                                                                                                                                                                                                                                     | 0.1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.1875 | 0.4375                                                                                                          | -0.0625                                                                                                                                                                                                                                                                                                                                                                     | 0.1875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.1563 | 0.4063                                                                                                          | -0.0938                                                                                                                                                                                                                                                                                                                                                                     | 0.1563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.1719 | 0.4219                                                                                                          | -0.0782                                                                                                                                                                                                                                                                                                                                                                     | 0.1719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.1641 | 0.4141                                                                                                          | -0.0860                                                                                                                                                                                                                                                                                                                                                                     | 0.1641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.1680 | 0.4180                                                                                                          | -0.0821                                                                                                                                                                                                                                                                                                                                                                     | 0.1680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.1660 | 0.4160                                                                                                          | -0.0840                                                                                                                                                                                                                                                                                                                                                                     | 0.1660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.1670 | 0.4170                                                                                                          | -0.0830                                                                                                                                                                                                                                                                                                                                                                     | 0.1670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.1665 | 0.4165                                                                                                          | -0.0835                                                                                                                                                                                                                                                                                                                                                                     | 0.1665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.1668 | 0.4168                                                                                                          | -0.0833                                                                                                                                                                                                                                                                                                                                                                     | 0.1667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.1666 | 0.4166                                                                                                          | -0.0834                                                                                                                                                                                                                                                                                                                                                                     | 0.1666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.1667 | 0.4167                                                                                                          | -0.0833                                                                                                                                                                                                                                                                                                                                                                     | 0.1667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | 0<br>0.2500<br>0.1250<br>0.1875<br>0.1563<br>0.1719<br>0.1641<br>0.1680<br>0.1660<br>0.1670<br>0.1665<br>0.1668 | 0         0           0.2500         0.5000           0.1250         0.3750           0.1875         0.4375           0.1563         0.4063           0.1719         0.4219           0.1641         0.4141           0.1680         0.4180           0.1660         0.4160           0.1665         0.4165           0.1668         0.4168           0.1666         0.4166 | 0         0         0           0.2500         0.5000         0           0.1250         0.3750         -0.1250           0.1875         0.4375         -0.0625           0.1563         0.4063         -0.0938           0.1719         0.4219         -0.0782           0.1641         0.4141         -0.0860           0.1680         0.4180         -0.0821           0.1660         0.4160         -0.0840           0.1670         0.4170         -0.0830           0.1665         0.4165         -0.0835           0.1668         0.4168         -0.0833           0.1666         0.4166         -0.0834 |

Başlangıç değerleri

$$Max \mid x_i^k - x_i^{k-1} \mid = \mid x_4^2 - x_4^1 \mid = \mid 0.1250 - 0.2500 \mid = 0.1250 > \varepsilon = 0.0001$$
 olduğundan **iterasyona devam!**

$$|0.1875 - 0.1250| = 0.0625 > \varepsilon = 0.0001$$
, iterasyona devam!

$$|0.1660 - 0.1680| = 0.0020 > \varepsilon = 0.0001$$
, iterasyona devam!

$$|0.1668 - 0.1665| = 0.0003 > \varepsilon = 0.0001$$
, iterasyona devam!

$$|0.1667 - 0.1666| = 0.0001 = \varepsilon = 0.0001$$
, iterasyon durduruldu

İterasyon no

13. iterasyon sonunda bulunan çözüm

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0.1667 \\ 0.4167 \\ -0.0833 \\ 0.1667 \end{bmatrix}$$

#### Jacobi Yöntemi - MATLAB



```
Editor - C:\Users\asondas\Desktop\Sayısal Analiz\Sayısal Çözümleme\Örnekler\jaco...
File Edit Text Go Cell Tools Debug Desktop Window Help
                                                         X 5 K
                                                        » □ ▼
           × 8% 8% 0
             + ÷ 1.1
       clc; close all; clear all;
2
       a=[4 1 1 0;1 4 0 1;1 0 4 1;0 1 1 4]
3 -
       b = [1;2;0;1]
5
       x0=[0;0;0;0]; %başlangıç değeri
7
      [satir sutun]=size(a);
      tol=0.0001;
9 -
       hata=1;
10 -
       iter=0;
11 -
     mata>tol
12 -
           iter=iter+1;
13 -
          for i=1:satir
14 -
                fark=0;
15 -
                for j=1:sutun
16 -
17 -
                    if i==i
                         fark=fark;
18 -
                    else
19 -
                        fark=fark+a(i, j) *x0(j);
20 -
21 -
                    end
22 -
                end
                x(i,1) = (b(i) - fark)/a(i,i);
23 -
24 -
25 -
           hata=\max(abs(x-x0));
26 -
           x0=x;
27 -
       end
       iter
28 -
29 -
                                            Ln 1
                                                   Col 1
                                                         OVR
                        script
```

#### **Gauss-Siedel Yöntemi**

- En çok kullanılan iteratif yöntemdir.
- Değişkenlerin yeni değerleri, tüm değişkenler için bir iterasyonun tamamlanması beklenmeden, sonraki hesaplamalarda kullanılır.
- 3'e 3'lük bir denklem sistemi üzerinde Gauss-Siedel yönteminin çalışması.

Başlangıç koşulları:  $x_1=0$ ;  $x_2=0$ ;  $x_3=0$ 

$$x_{1} = \frac{b_{1} - a_{12}x_{2} - a_{13}x_{3}}{a_{11}}$$

$$x_{2} = \frac{b_{2} - a_{21}x_{1} - a_{23}x_{3}}{a_{22}}$$

$$x_{3} = \frac{b_{3} - a_{31}x_{1} - a_{32}x_{2}}{a_{33}}$$

$$a_{11} x_1 + a_{12} x_2 + a_{13} x_3 = b_1$$
  
 $a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = b_2$   
 $a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = b_3$ 

n değişken için Gauss-Siedel formülü;

$$x_i^{k+1} = \frac{b_i}{a_{ii}} - \sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{k+1} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_j^{k}$$

Yakınsama koşulu 
$$|a_{ii}| \ge \sum_{\substack{j=1 \ j \ne i}}^{n} |a_{ij}|$$

Aşağıdaki denklemi Gauss-Siedel yöntemini kullanarak 2 iterasyon için çözünüz?

$$3x_1 -0.1x_2 -0.2x_3 = 7.85$$
  
 $0.1x_1 +7x_2 -0.3x_3 =-19.3$   
 $0.3x_1 +0.2x_2 +10x_3 = 71.4$ 



#### • Bilinmeyen x değerlerini diğerleri cinsinden bul

$$x_{1} = \frac{7.85 + 0.1x_{2} + 0.2x_{3}}{3}$$

$$x_{2} = \frac{-19.3 - 0.1x_{1} + 0.3x_{3}}{7}$$

$$x_{3} = \frac{71.4 - 0.3x_{1} + 0.2x_{2}}{10}$$

**2** **iterasyon 0** için 
$$x_1 = 0$$
,  $x_2 = 0$ ,  $x_3 = 0$ 

#### **1** <u>İterasyon 1</u>

$$\mathbf{x}_1$$
 hesabi için,  $\mathbf{x}_2 = \mathbf{0}$ ,  $\mathbf{x}_3 = \mathbf{0}$ 

$$x_1 = \frac{7.85 + 0 + 0}{3} = 2.616667$$

$$x_2$$
 hesabi için,  $x_1 = 2.616667$ ,  $x_3 = 0$ 

$$x_2 = \frac{-19.3 - 0.1(2.616667) + 0}{7} = -2.794524$$

$$x_3$$
 hesabı için,  $x_1 = 2.616667$ ,  $x_2 = -2.794524$ 

$$x_3 = \frac{71.4 - 0.3(2.616667) + 0.2(-2.794524)}{10} = 7.005610$$

#### 4 İterasyon 2

$$x_1 \text{ hesabi için, } x_2 = -2.794524, x_3 = 7.005610,$$

$$x_1 = \frac{7.85 + 0.1(-2.794524) + 0.2(7.005610)}{3} = 2.990557$$

$$x_2 \text{ hesabi için, } x_1 = 2.990557, x_3 = 7.005610$$

$$x_2 = \frac{-19.3 - 0.1(2.990557) + 0.3(7.005610)}{7} = -2.499625$$

$$x_3 \text{ hesabi için, } x_1 = 2.990557, x_2 = -2.499625,$$

$$x_3 = \frac{71.4 - 0.3(2.990557) + 0.2(-2.499625)}{10} = 7.000291$$

Hatayı tahmin etmek için bilinmeyenlerin bağıl yaklaşım yüzde hatalarına bakılır. Örneğin  $x_1$  için:

$$\left| \in_{a,1} \right| = \left| \frac{2.990557 - 2.616667}{2.990557} \right| \% 100 = \% 12.5 \text{ 'tir. } x_2 \text{ ve } x_3 \text{ için hata tahminleri}$$

$$\left| \in_{a,2} \right| = \left| \frac{-2.499625 - 2.794524}{-2.499625} \right| \% 100 = \% 11.8$$

$$\left| \in_{a,3} \right| = \left| \frac{7.000291 - 7.005610}{7.000291} \right| \% 100 = \% 0.076$$

Bu şekilde tüm hatalar belirlenen bir tolerans sınırı altına düşene kadar iterasyona devam edilir.

$$Ax = b \longrightarrow \begin{bmatrix} 4 & 1 & 1 & 0 \\ 1 & 4 & 0 & 1 \\ 1 & 0 & 4 & 1 \\ 0 & 1 & 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} \qquad x = ?$$

Denklem sisteminin direkt yöntemlerle çözümü x=[0.1667 0.4167 -0.0833 0.1667] dir. Çözümde ondalık sayıdan sonra 4 hane verilmiştir. Aynı denklem sistemini GAUSS-SIEDEL iterasyonu ile çözelim. Denklem sistemini

$$x_1 = \frac{1}{4}(1 - x_2 - x_3), \quad x_2 = \frac{1}{4}(2 - x_1 - x_4), \quad x_3 = \frac{1}{4}(-x_2 - x_4), \quad x_4 = \frac{1}{4}(1 - x_2 - x_3)$$

şeklinde yazalım. i. bilinmeyenin k. Ve k-1. adımda hesaplanan iki değerinin farkı  $x_i^k - x_i^{k-1}$  olmak üzere,  $\max_i |x_i^k - x_i^{k-1}| \le \epsilon$  koşulu **sağlanınca iterasyonu durduralım**.  $\epsilon = 0.0001$  seçelim. Çözümde 4 ondalık hane kullanalım. Başlangıç için  $x = x^{(0)} = [0\ 0\ 0\ 0]^T$  alalım.

| k   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | <b>X</b> <sub>4</sub> |
|-----|----------------|----------------|-----------------------|-----------------------|
| 0   | 0              | 0              | 0                     | 0 -                   |
| 1   | 0.2500         | 0.4375         | -0.0625               | 0.1563                |
| 2   | 0.1563         | 0.4219         | -0.0782               | 0.1641                |
| 3   | 0.1641         | 0.4180         | -0.0821               | 0.1660                |
| 4   | 0.1660         | 0.4170         | -0.0830               | 0.1665                |
| 5   | 0.1665         | 0.4168         | -0.0833               | 0.1666                |
| 6   | 0.1666         | 0.4167         | -0.0833               | 0.1667                |
| 7 < | 0.1667         | 0.4167         | -0.0834               | 0.1667                |

Başlangıç değerleri

 $Max \mid x_i^k - x_i^{k-1} \mid = \mid x_1^2 - x_1^2 \mid = \mid 0.1563 - 0.2500 \mid = 0.0937 > \varepsilon = 0.0001$  olduğundan **iterasyona devam!** 

 $|0.1641 - 0.1563| = 0.0078 > \varepsilon = 0.0001$ , iterasyona devam!

 $|0.1667 - 0.1666| = 0.0001 = \varepsilon = 0.0001$ , iterasyonu durdur!

İterasyon adımları 7. iterasyon sonunda bulunan çözüm

Çözüm: 
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0.1667 \\ 0.4167 \\ -0.0834 \\ 0.1667 \end{bmatrix}$$

#### **Gauss-Siedel Yöntemi - MATLAB**



```
Editor - C:\Users\asondas\Desktop\Sayısal Analiz\Sayısal Çözümleme\Örnekler\qaus...
File Edit Text Go Cell Tools Debug Desktop Window Help
                                                           X 5 E
                                                          » □ •
                       1 -
        clc; close all; clear all;
 2
        a=[4 1 1 0;1 4 0 1;1 0 4 1;0 1 1 4]
 3 -
 4 -
        b = [1;2;0;1]
 5
        x0=[0;0;0;0]; %başlangıç değeri
 6 -
 7
        [satir sutun]=size(a);
 8 -
        tol=0.0001;
 9 -
10 -
        hata=1;
        iter=0:
11 -
12 -
      -while hata>tol
            x=x0;
13 -
14 -
            iter=iter+1;
15 -
            for i=1:satir
16 -
                 fark=0;
17 -
                 for i=1:sutun
18 -
                     if i==i
                          fark=fark:
19 -
20 -
                     else
                          fark=fark+a(i,j)*x(j);
21 -
22 -
                     end
23 -
                 x(i,1) = (b(i) - fark) / a(i,i);
24 -
25 -
26 -
            hata=max(abs(x-x0));
27 -
            x=0x
28 -
        end
        iter
29 -
30 -
        x
                                                            OVR
                         script
                                              Ln 27
                                                     Col 10
```

#### Jacobi ile Gauss-Siedel Yöntemlerinin karşılaştırılması



Her x değeri bulundukça bir sonraki x değerini belirleyen denklemde hemen hesaplanır.

Eğer çözüm yakınsıyorsa her zaman en iyi tahminler kullanılmış olur.

$$x_2=(b_2-a_{21} x_1-a_{23} x_3)/a_{22}$$
 $x_3=(b_3-a_{31} x_1-a_{32} x_2)/a_{33}$ 
 $x_1=(b_1-a_{12} x_2-a_{13} x_3)/a_{11}$ 
 $x_2=(b_2-a_{21} x_1-a_{23} x_3)/a_{22}$ 
 $x_3=(b_3-a_{31} x_1-a_{32} x_2)/a_{33}$ 
(b)

Jacobi

Her iterasyonda hesaplanan bütün *x* değerleri bir sonraki x değerleri bulunurken toplu olarak yerine koyulur.

$$-2x + y = -1$$
$$2x - 3y = 5$$

denklem sistemini Jacobi ve Gauss-Siedel yöntemleri ile çözen MATLAB programlarını yazınız.

### **KAYNAKLAR**

- Serhat YILMAZ, "Bilgisayar İle Sayısal Çözümleme", Kocaeli Üniv. Yayınları
- Cüneyt BAYILMIŞ, Sayısal Analiz Ders Notları, Sakarya Üniversitesi.
- Mehmet YILDIRIM, Sayısal Analiz Ders Notları, Sakarya Üniversitesi
- İlyas ÇANKAYA, Devrim AKGÜN, "MATLAB ile Meslek Matematiği" Seçkin
   Yayıncılık
- Irfan Karagöz, "Sayısal Analiz ve Mühendislik Uygulamaları" Vipaş Yayıncılık