(1.5) $\omega_1(A) = \inf\{\text{Re } \lambda : \text{weak-lim}_{t \to \infty} \int_0^t e^{-\lambda s} T(s) \text{ ds exists}\}$ = $\inf\{\text{Re } \lambda : \text{uniform-lim}_{t \to \infty} \int_0^t e^{-\lambda s} T(s) \text{ ds exists}\}$.

(b) In the equations (1.4) and (1.5) the term "Re λ " may be replaced by " $\lambda \in \mathbb{R}$ " (use (1.1)).

<u>Proof of Thm.1.4</u>. The equality $\omega_1(A) = \inf\{Re \ \lambda : \int_0^{\infty} \|e^{-\lambda t}T(t)f\| dt$ exists for all $f \in D(A)\}$ follows from the definition of $\omega_1(A)$ and the lemma used in the proof of Thm.1.3.

We prove $\omega_1(A) = \inf\{\text{Re } \lambda : \int_0^\infty e^{-\lambda s} T(s) f ds \text{ exists for every } f \in E\}$. The identity

$$T(t) f = e^{\lambda t} (f - \int_{0}^{t} e^{-\lambda s} T(s) (\lambda - A) f ds)$$

yields

 $\omega_1(A) \leq \inf\{\text{Re } \lambda : \int_0^\infty e^{-\lambda t} T(t) f dt \text{ exists for every } f \in \inf(\lambda - A)\}.$ Therefore

 $\omega_1(A) \leq \inf\{\text{Re } \lambda : \int_0^\infty e^{-\lambda t} \ \text{T(t)} f \ \text{dt} \ \text{exists for every} \ f \in E\} =: b \ .$ Take $\lambda \in \mathbb{C}$ with Re $\lambda > \omega_1(A)$. Then $\int_0^\infty e^{-\lambda t} \ \text{T(t)} f \ \text{dt} \ \text{exists for every} \ f \in D(A)$. Define $g := \int_0^1 e^{-\lambda t} \ \text{T(t)} f \ \text{dt}$. Then $g \in D(A)$ and $\int_0^n e^{-\lambda t} \ \text{T(t)} f \ \text{dt} = \sum_{k=0}^{n-1} e^{-\lambda k} \ \text{T(k)} g$. Since Re $\lambda > \omega_1(A)$ it follows that the sum converges for every $g \in D(A)$. Therefore the integral converges as $n \to \infty$ ($n \in \mathbb{N}$) for every $f \in E$. For every $f \in \mathbb{R}_+$ define a bounded operator $f \in \mathbb{N}$ by $f \to \int_0^t e^{-\lambda s} \ \text{T(s)} f \ \text{ds}$. As seen above, $f \in \mathbb{N}$ converges as $f \in \mathbb{N}$ by $f \to \mathbb{N}$ for every $f \in \mathbb{N}$. It follows from the Uniform Boundedness Principle that the family $f \in \mathbb{N}$ is uniformly bounded.

For every t $\in \mathbb{R}_+$ there exist n $\in \mathbb{N}$ and t' $\in [0,1)$ such that $T_t = T_t$, $+ e^{-\lambda t'} T(t') T_n$. Since the operator families on the right side of the equation are uniformly bounded the same is true for $(T_t)_{t \geq 0}$. Since $(T_t f)_{t \geq 0}$ converges for every $f \in D(A)$ it follows that $(T_t f)_{t \geq 0}$ converges for every $f \in E$. Thus $b \leq \omega_1(A)$.

The inequality

 $\omega(A) \; \geqq \; \inf\{ \text{Re } \lambda \; : \; \int_0^\infty \; \left\| e^{-\lambda t} \; T(t) \, f \right\| \; \text{d}t \quad \text{exists for every} \quad f \in E \}$ in combination with the lemma of Thm.1.3 implies that the growth bound $\omega(A) \quad \text{coincides with the abscissa of absolute convergence of the Laplace transform of <math>\left(T(t) \right)_{t \geq 0}$; i.e.,

(1.6) $\omega(A) = \inf\{Re \ \lambda : \int_{0}^{\infty} \|e^{-\lambda t} \ T(t)f\| \ dt \ exists for \ every \ f \in E\}$.

As seen in A-I,Prop.1.11, if $\int_0^\infty e^{-\lambda t} T(t) f dt$ exists for every $f \in E$, then $\lambda \in \rho(A)$ and $R(\lambda,A) f = \int_0^\infty e^{-\lambda t} T(t) f dt$. This and Thm.1.4 yield the following corollary.