

## Calcolo differenziale — Scheda di esercizi n. 5 20 Novembre 2023 — Compito n. 00017

Istruzioni: le prime due caselle  $(\mathbf{V} \ / \mathbf{F})$  permettono di selezionare la risposta vero/falso. La casella "C" serve a correggere eventuali errori invertendo la risposta data.

Per selezionare una casella, annerirla completamente:  $\blacksquare$  (non  $\boxtimes$  o  $\boxdot$ ).

| Nome:      |      |      |      |      |  |
|------------|------|------|------|------|--|
| Cognome:   | <br> | <br> | <br> | <br> |  |
| Matricola: |      |      |      |      |  |

|              | <b>1A</b> | 1B | 1C | 1D | 2A | 2B | 2C | 2D | 3A | $^{3B}$ | 3C | 3D | <b>4A</b> | <b>4</b> B | <b>4</b> C | 4D |
|--------------|-----------|----|----|----|----|----|----|----|----|---------|----|----|-----------|------------|------------|----|
| $\mathbf{v}$ |           |    |    |    |    |    |    |    |    |         |    |    |           |            |            |    |
| $\mathbf{F}$ |           |    |    |    |    |    |    |    |    |         |    |    |           |            |            |    |
| $\mathbf{C}$ |           |    |    |    |    |    |    |    |    |         |    |    |           |            |            |    |

- 1) Dire se le seguenti affermazioni sono vere o false.
- 1A)

$$\lim_{x \to +\infty} \frac{\sin(6x)}{8x} = \frac{3}{4}.$$

1B)

$$\lim_{x \to -\infty} \frac{x^2 + 2x}{x + 7} = -\infty.$$

1C)

$$\lim_{x \to 0^+} \frac{\tan(7x)}{9x} = \lim_{x \to 0^-} \frac{9x}{\log(1+7x)}$$

1D)

$$\lim_{x \to 0} x^7 \sin\left(\frac{8}{x}\right) = 0.$$

- 2) Dire se le seguenti affermazioni sono vere o false.
- 2A)

$$\lim_{x \to +\infty} \left[ \sqrt{16 x + 8 \sqrt{x}} - 4 \sqrt{x} \right] = 1.$$

2B)

$$\lim_{x \to -\infty} \left( 1 + \frac{5}{x} \right)^x = e^{-5}.$$

2C)

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos(17x)}{x - \frac{\pi}{2}} = -17.$$

**2**D)

$$\lim_{x \to 0^+} \frac{\mathrm{e}^{-5/x}}{x^2} = 0.$$

**3)** Sia

$$f(x) = \begin{cases} \frac{\log(1+8x^2)}{x} & \text{se } x > 0, \\ \cos(8x) & \text{se } x \le 0. \end{cases}$$

- **3A)** Il dominio della funzione f(x) non è tutto  $\mathbb{R}$ .
- **3B)** La funzione f(x) è continua in 4.
- **3C)** La funzione f(x) è continua in -9.
- **3D)** La funzione f(x) è continua in 0.
- **4)** Sia

$$f(x) = \begin{cases} 6x + 5 & \text{se } x \ge 0, \\ \frac{\sin(5x)}{x} & \text{se } x < 0. \end{cases}$$

- **4A)** La funzione f(x) non è continua in 7.
- **4B)** La funzione f(x) è continua in -9.
- **4C)** La funzione f(x) è continua in 0.
- **4D)** La funzione f(x) ha massimo e minimo su [-9,7].

### Docente

- ☐ Garroni [A, F]
  - $\Box$  Orsina [ $\dot{G}$ ,  $\dot{Z}$ ]

Cognome Nome Compito 00017 Matricola

**5)** Sia

$$f(x) = x^{15} e^x - 6.$$

a) Calcolare

$$\lim_{x \to +\infty} f(x), \qquad \lim_{x \to -\infty} f(x).$$

- $\lim_{x\to +\infty} f(x)\,,\qquad \lim_{x\to -\infty} f(x)\,.$  **b)** Dimostrare che esiste  $0< x_0< 6$  tale che  $f(x_0)=0.$  **c)** Dimostrare che f(-15)>0. **d)** Dimostrare che esiste  $x_1<-15$  tale che  $f(x_1)=0.$

| Cognome | Nome | Matricola | Compito 00017 |
|---------|------|-----------|---------------|
|---------|------|-----------|---------------|

$$f(x) = e^{2x} - (x^2 - 9x + 18).$$

a) Calcolare

$$\lim_{x \to +\infty} f(x)$$
,  $\lim_{x \to -\infty} f(x)$ 

- a) Calcolare
   \$\lim\_{x \to +\infty} f(x)\$, \$\lim\_{x \to -\infty} f(x)\$.
  b) Dimostrare che \$f(x)\$ ha massimo e minimo su [3,6].
  c) Dimostrare che esiste \$x\_0\$ in \$\mathbb{R}\$ tale che \$f(x\_0) = 0\$.
  d) Dimostrare che per ogni \$t\$ in \$\mathbb{R}\$ esiste \$x\_t\$ in \$\mathbb{R}\$ tale che \$f(x\_t) = t\$.

# Soluzioni del compito 00017

1) Dire se le seguenti affermazioni sono vere o false.

1A)

$$\lim_{x \to +\infty} \frac{\sin(6x)}{8x} = \frac{3}{4}.$$

**Falso:** Si tratta del prodotto di una funzione limitata  $(\sin(6x))$  e di una infinitesima  $(\frac{1}{8x})$ . Il limite vale, pertanto, zero.

1B)

$$\lim_{x\to -\infty} \frac{x^2+2x}{x+7} = -\infty.$$

Vero: Si ha

$$\lim_{x \to -\infty} \left[ x^2 + 2x \right] = +\infty \,,$$

perché è un polinomio di secondo grado (pari), e

$$\lim_{x \to -\infty} [x+7] = -\infty.$$

Dato che il grado del numeratore è maggiore, e che la frazione è negativa (per x sufficientemente negativo) si ha

$$\lim_{x \to -\infty} \frac{x^2 + 2x}{x + 7} = -\infty.$$

 $\lim_{x\to -\infty}\frac{x^2+2x}{x+7}=-\infty\,.$  Alternativamente, si poteva mettere in evidenza  $x^2$  al numeratore e x al denominatore, e semplificare:

$$\frac{x^2 + 2x}{x + 7} = \frac{x^2}{x} \frac{1 + \frac{2}{x}}{1 + \frac{7}{x}} = x \frac{1 + \frac{2}{x}}{1 + \frac{7}{x}},$$

da cui segue che

$$\lim_{x \to -\infty} \frac{x^2 + 2x}{x + 7} = \lim_{x \to -\infty} x \frac{1 + \frac{2}{x}}{1 + \frac{7}{x}} = (-\infty) \cdot \frac{1 + 0}{1 + 0} = -\infty.$$

1C)

$$\lim_{x \to 0^+} \frac{\tan(7x)}{9x} = \lim_{x \to 0^-} \frac{9x}{\log(1+7x)}$$

**Falso:** Dato che  $\tan(7x) \approx 7x$  e che  $\log(1+7x) \approx 7x$  per x tendente a zero, si ha

$$\lim_{x\to 0^+} \frac{\tan(7\,x)}{9\,x} = \lim_{x\to 0^+} \frac{7\,x}{9\,x} = \frac{7}{9}\,,$$

e

$$\lim_{x \to 0^{-}} \frac{9x}{\log(1+7x)} = \lim_{x \to 0^{-}} \frac{9x}{7x} = \frac{9}{7},$$

e quindi i due limiti sono diversi

1D)

$$\lim_{x \to 0} x^7 \sin\left(\frac{8}{x}\right) = 0.$$

Vero: Si tratta del prodotto tra una funzione limitata ed una infinitesima. Il limite, pertanto, vale

2A)

$$\lim_{x \to +\infty} \left[ \sqrt{16 x + 8 \sqrt{x}} - 4 \sqrt{x} \right] = 1.$$

Vero: Razionalizzando "al contrario" si ha

$$\sqrt{16 x + 8 \sqrt{x}} - 4 \sqrt{x} = \frac{\left[\sqrt{16 x + 8 \sqrt{x}} - 4 \sqrt{x}\right] \left[\sqrt{16 x + 8 \sqrt{x}} + 4 \sqrt{x}\right]}{\sqrt{16 x + 8 \sqrt{x}} + 4 \sqrt{x}} \\
= \frac{16 x + 8 \sqrt{x} - 16 x}{\sqrt{16 x + 8 \sqrt{x}} + 4 \sqrt{x}} = \frac{8 \sqrt{x}}{\sqrt{16 x + 8 \sqrt{x}} + 4 \sqrt{x}}.$$

Pertanto, mettendo in evidenza  $4\sqrt{x}$  al denominatore, si ha

$$\sqrt{16\,x + 8\,\sqrt{x}} - 4\,\sqrt{x} = \frac{8\,\sqrt{x}}{4\,\sqrt{x}\left[\sqrt{1 + \frac{1/2}{\sqrt{x}}} + 1\right]} = 2\,\frac{1}{\sqrt{1 + \frac{1/2}{\sqrt{x}}} + 1}\,.$$

Dato che  $\frac{1/2}{\sqrt{x}}$  tende a zero quando x tende a più infinito, si ha

$$\lim_{x \to +\infty} \left[ \sqrt{16 \, x + 8 \, \sqrt{x}} - 4 \, \sqrt{x} \right] = \lim_{x \to +\infty} \, 2 \, \frac{1}{\sqrt{1 + \frac{1/2}{\sqrt{x}}} + 1} = 2 \, \frac{1}{1+1} = 1 \, .$$

2B)

$$\lim_{x \to -\infty} \left( 1 + \frac{5}{x} \right)^x = e^{-5}.$$

**Falso:** Si ha, con il cambio di variabile y = -x,

$$\lim_{x \to -\infty} \left( 1 + \frac{5}{x} \right)^x = \lim_{y \to +\infty} \left( 1 + \frac{5}{-y} \right)^{-y} = \lim_{y \to +\infty} \frac{1}{\left( 1 - \frac{5}{y} \right)^y} = \frac{1}{e^{-5}} = e^5 \neq e^{-5}.$$

2C)

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos(17 x)}{x - \frac{\pi}{2}} = -17.$$

**Vero:** Si ha, con il cambio di variabile  $y = x - \frac{\pi}{2}$ ,

$$\lim_{x \to \frac{\pi}{2}} \, \frac{\cos(17\,x)}{x - \frac{\pi}{2}} = \lim_{y \to 0} \, \frac{\cos(17\,y + 17\,\pi/2)}{y} \, .$$

Ricordando le formule di addizione degli archi, si ha

$$\cos(17y + 17\pi/2) = \cos(17y)\cos(17\pi/2) - \sin(17y)\sin(17\pi/2) = -\sin(17y).$$

Pertanto,

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos(17 x)}{x - \frac{\pi}{2}} = \lim_{y \to 0} -\frac{\sin(17 y)}{y} = -17.$$

2D)

$$\lim_{x \to 0^+} \frac{e^{-5/x}}{x^2} = 0.$$

**Vero:** Si ha, con il cambio di variabile  $y = \frac{1}{x}$ ,

$$\lim_{x \to 0^+} \frac{e^{-5/x}}{x^2} = \lim_{y \to +\infty} y^2 e^{-5y} = \lim_{y \to +\infty} \frac{y^2}{e^{5y}} = 0,$$

dato che  $e^{5y} \bigcirc y^5$ .

$$f(x) = \begin{cases} \frac{\log(1+8x^2)}{x} & \text{se } x > 0, \\ \cos(8x) & \text{se } x \le 0. \end{cases}$$

**3A)** Il dominio della funzione f(x) non è tutto  $\mathbb{R}$ .

**Falso:** Dato che  $1+8x^2>1$  per ogni x>0, l'argomento della funzione logaritmo è sempre positivo (e quindi il logaritmo può essere calcolato); inoltre, se x>0 si ha  $x\neq 0$ , e quindi è possibile dividere per x. Se  $x\leq 0$ , invece,  $\cos(8x)$  è definita.

**3B)** La funzione f(x) è continua in 4.

**Vero:** In un intorno di 4 > 0 si ha  $f(x) = \frac{\log(1+8x^2)}{x}$ , che è una funzione continua essendo il rapporto di funzioni continua (con il denominatore diverso da zero).

**3C)** La funzione f(x) è continua in -9.

**Vero:** In un intorno di -9 < 0 si ha  $f(x) = \cos(8x)$ , che è una funzione continua.

**3D)** La funzione f(x) è continua in 0.

**Falso:** Si ha, ricordando che  $\log(1+8x^2) \approx 8x^2$  quando x tende a zero,

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\log(1 + 8x^2)}{x} = \lim_{x \to 0^+} \frac{8x^2}{x} = \lim_{x \to 0^+} 8x = 0,$$

mentre

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \cos(8x) = 1.$$

Dato che i due limiti sono diversi, non esiste il limite di f(x) per x tendente a zero (e quindi f(x) non è continua in 0.

$$f(x) = \begin{cases} 6x + 5 & \text{se } x \ge 0, \\ \frac{\sin(5x)}{x} & \text{se } x < 0. \end{cases}$$

**4A)** La funzione f(x) non è continua in 7.

**Falso:** In un intorno di 7 > 0 si ha f(x) = 6x + 5, che è una funzione continua essendo un polinomio di primo grado.

**4B)** La funzione f(x) è continua in -9.

**Vero:** In un intorno di -9 < 0 si ha  $f(x) = \frac{\sin(5x)}{x}$ , che è una funzione continua essendo il rapporto di funzioni continua (con il denominatore diverso da zero).

**4C)** La funzione f(x) è continua in 0.

**Vero:** Si ha, ricordando che  $\sin(5x) \approx 5x$  quando x tende a zero,

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\sin(5 x)}{x} = \lim_{x \to 0^{-}} \frac{5 x}{x} = 5,$$

e

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} [6x + 5] = 5 = f(0).$$

Dato che i due limiti sono uguali, esiste il limite di f(x) per x tendente a zero, e vale 5. Dato che tale limite è uguale a f(0), la funzione è continua in 0.

**4D)** La funzione f(x) ha massimo e minimo su [-9, 7].

**Vero:** La funzione f(x) è continua su [-9,0) (come rapporto di funzioni continue con il denominatore diverso da zero), è continua in (0,7] (essendo un polinomio di primo grado), ed è continua in 0 (per l'esercizio **4C**). Pertanto è continua sull'intervallo chiuso e limitato [-9,7] e quindi ha massimo e minimo per il teorema di Weierstrass.

$$f(x) = x^{15} e^x - 6$$
.

a) Calcolare

$$\lim_{x \to +\infty} f(x), \qquad \lim_{x \to -\infty} f(x).$$

- **b)** Dimostrare che esiste  $0 < x_0 < 6$  tale che  $f(x_0) = 0$
- c) Dimostrare che f(-15) > 0.
- d) Dimostrare che esiste  $x_1 < -15$  tale che  $f(x_1) = 0$ .

### Soluzione:

a) Si ha

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} [x^{15} e^x - 6] = (+\infty) \cdot (+\infty) - 6 = +\infty.$$

Inoltre

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} [x^{15} e^x - 6] = [\lim_{x \to -\infty} x^{15} e^x] - 6,$$

e quindi si tratta di calcolare

$$\lim_{x \to -\infty} x^{15} e^x.$$

Ponendo y = -x si ha

$$\lim_{x \to -\infty} x^{15} e^x = \lim_{y \to +\infty} (-y)^{15} e^{-y} = \lim_{y \to +\infty} \frac{y^{15}}{e^y} = 0,$$

dato che  $e^y$  ( $\searrow y^{15}$ . Pertanto,

$$\lim_{x \to -\infty} f(x) = -6.$$

**b)** Si ha f(0) = -6 > 0 e

$$f(6) = 6^{15} e^6 - 6 > 6^{15} - 6 > 6 - 6 = 0$$
.

Dato che la funzione f(x) è continua su  $\mathbb{R}$ , applicando il teorema di esistenza degli zeri all'intervallo [0,6], si ha che esiste  $x_0$  in (0,6) tale che  $f(x_0)=0$ .

c) Si ha

$$f(-15) = (-15)^{15} e^{-15} - 6 = 15^{15} e^{15} - 6 = \left(\frac{15}{e}\right)^{15} - 6.$$

Ricordando che e < 3 si ha

$$\left(\frac{15}{e}\right)^{15} > \left(\frac{15}{3}\right)^{15} = 5^{15} > 6,$$

e quindi f(-15) > 0.

d) Già sappiamo, dall'esercizio precedente, che f(-15) > 0. Dall'esercizio a) sappiamo che f(x) tende a -6 quando x tende a meno infinito. Quindi, per il teorema della permanenza del segno, esiste  $x_- < 0$  tale che  $f(x) \le -3 < 0$  per ogni  $x \le x_-$ . Scegliendo  $x_- < -15$ , abbiamo così costruito l'intervallo  $[x_-, -15]$  sul quale la funzione è continua ed è tale che  $f(x_-) < 0 < f(-15)$ . Per il teorema di esistenza degli zeri, esiste  $x_1$  in  $[x_-, -15]$  tale che  $f(x_1) = 0$ .

$$f(x) = e^{2x} - (x^2 - 9x + 18).$$

a) Calcolare

$$\lim_{x \to +\infty} f(x), \qquad \lim_{x \to -\infty} f(x).$$

- **b)** Dimostrare che f(x) ha massimo e minimo su [3, 6].
- c) Dimostrare che esiste  $x_0$  in  $\mathbb{R}$  tale che  $f(x_0) = 0$ .
- d) Dimostrare che per ogni t in  $\mathbb{R}$  esiste  $x_t$  in  $\mathbb{R}$  tale che  $f(x_t) = t$ .

### Soluzione:

a) Si ha, ricordando che  $e^{2x}$  ( $\langle x^k \rangle$  per ogni k > 0,

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[ e^{2x} - (x^2 - 9x + 18) \right] = +\infty.$$

Ricordando poi che  $e^{2x}$  tende a zero per x tendente a meno infinito, mentre  $x^2 - 9x + 18$  tende a più infinito, si ha

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left[ e^{2x} - (x^2 - 9x + 18) \right] = 0 - (+\infty) = -\infty.$$

- b) La funzione f(x) è continua su  $\mathbb{R}$ . Pertanto lo è sull'intervallo chiuso e limitato [3, 6]. Per il teorema di Weierstrass, esistono massimo e minimo di f(x) su tale intervallo.
- c) Dai risultati del punto a) sappiamo che f(x) diverge positivamente a più infinito, e quindi esiste  $x_+ > 0$  tale che  $f(x_+) > 0$ . Dato che f(x) diverge negativamente a meno infinito, esiste  $x_- < 0$  tale che  $f(x_-) < 0$ . Ma allora la funzione continua f(x) soddisfa le ipotesi del teorema di esistenza degli zeri sull'intervallo chiuso e limitato  $[x_-, x_+]$ , e quindi esiste  $x_0$  in tale intervallo per il quale si ha  $f(x_0) = 0$ .
- d) Consideriamo la funzione g(x) = f(x) t; la funzione g(x) è continua (come differenza tra una funzione continua ed una costante), ed è tale che

$$\lim_{x \to +\infty} g(x) = +\infty, \qquad \lim_{x \to -\infty} g(x) = -\infty,$$

dato che la sottrazione di t non cambia i limiti. In poche parole, la funzione g(x) ha le stesse proprietà della funzione f(x). Ripetendo lo stesso ragionamento del punto  $\mathbf{c}$ ), si dimostra che esiste  $x_t$  in  $\mathbb{R}$  tale che  $g(x_t) = 0$ . Ma allora

$$0 = g(x_t) = f(x_t) - t \qquad \Longrightarrow \qquad f(x_t) = t,$$

come volevasi dimostrare.