A Finite Expression Method (FEX) for Solving High-Dimensional Committor Problems

Zezheng Song

Joint work with Maria Cameron and Haizhao Yang

Department of Mathematics, University of Maryland CBMS Conference: Deep Learning and Numerical PDEs

June 24, 2023

Rare Transitions in Molecular Dynamics

Examples:

(a) Chemical Reaction

(b) Protein Folding

(c) Material Science

Phenomena: Long residence times in stable states, quick transitions between stable states

Problem Setting

where

- lacktriangledown $\mathbf{x}_t \in \Omega \subset \mathbb{R}^d$ is the state of the system,
- $lackbox{0} V: \mathbb{R}^d \to \mathbb{R}$ is a smooth potential,
- lacktriangledown eta=1/T is the inverse of temperature T,
- $lackbox{ } \mathbf{w}_t$ is the standard d-dimensional Brownian motion.

We are interested in

$$q(\mathbf{x}) = \mathbb{P}\left(\tau_B < \tau_A \mid \mathbf{x}_0 = \mathbf{x}\right)$$

Committor Function as a PDE Solution

$$q(\mathbf{x}) = \mathbb{P}\left(\tau_B < \tau_A \mid \mathbf{x}_0 = \mathbf{x}\right)$$
 is the solution to

$$\beta^{-1}\Delta q - \nabla V \cdot \nabla q = 0, \quad \mathbf{x} \in \Omega_{AB} := \Omega \setminus (\bar{A} \cup \bar{B}),$$

$$q(\mathbf{x})|_{\partial A} = 0, \quad q(\mathbf{x})|_{\partial B} = 1.$$
(1)

Lessen Curse of Dimensionality with FEX

The major difficulty in solving (1) is the curse of dimensionality.

Example: configuration spaces of dimension \propto number of atoms.

Lessen Curse of Dimensionality with FEX

The major difficulty in solving (1) is the curse of dimensionality.

Example: configuration spaces of dimension \propto number of atoms.

However, they usually possess a low-dimensional structure, e.g collective variables.

Lessen Curse of Dimensionality with FEX

The major difficulty in solving (1) is the curse of dimensionality.

Example: configuration spaces of dimension \propto number of atoms.

However, they usually possess a low-dimensional structure, e.g collective variables.

Our work: FEX can identify the low-dimensional structure inherent in the problem.

The Solution Model for the Committor Problem

• We minimize the variational formulation

$$\int_{\Omega_{AB}} \left\| \nabla q(\mathbf{x}) \right\|^2 \rho(d\mathbf{x}) + \tilde{c} \left(\int_{\partial A} q(\mathbf{x})^2 dm_{\partial A}(\mathbf{x}) + \int_{\partial B} \left(q(\mathbf{x}) - 1 \right)^2 dm_{\partial B}(\mathbf{x}) \right).$$

The Solution Model for the Committor Problem

- We minimize the variational formulation $\int_{\Omega_{AB}} \|\nabla q(\mathbf{x})\|^2 \, \rho(d\mathbf{x}) + \tilde{c}(\int_{\partial A} q(\mathbf{x})^2 dm_{\partial A}(\mathbf{x}) + \int_{\partial B} \left(q(\mathbf{x}) 1\right)^2 dm_{\partial B}(\mathbf{x})).$
- We model the committor $q(\mathbf{x})$ as FEX binary trees

Double-Well Potential

Consider the potential

$$V(\mathbf{x}) = \underbrace{\left(x_1^{\ 2} - 1\right)^2}_{\text{collective variable}} + 0.3 \sum_{i=2}^d x_i^2,$$

with

$$A = \left\{ x \in \mathbb{R}^d \mid x_1 \le -1 \right\}, \quad B = \left\{ x \in \mathbb{R}^d \mid x_1 \ge 1 \right\}$$

The ground truth solution is $q(\mathbf{x}) = f(x_1)$,

$$\frac{d^2f(x_1)}{dx_1^2} - 4x_1(x_1^2 - 1)\frac{df(x_1)}{dx_1} = 0, \quad f(-1) = 0, \quad f(1) = 1$$
 (2)

Numerical Results

(b) Error of FEX

Figure: The committor function for the double-well potential along x_1 dimension when $\beta^{-1}=0.2$ for an arbitrary (x_2,\cdots,x_d) with d=10.

Identification of Low-Dimensional Structure by FEX

FEX identifies the following expression

leaf 1: Id
$$\to \alpha_{1,1}x_1 + \ldots + \alpha_{1,10}x_{10} + \beta_1$$

leaf 2: $\tanh \to \alpha_{2,1} \tanh(x_1) + \ldots + \alpha_{2,10} \tanh(x_{10}) + \beta_2$
 $\mathcal{J}(\mathbf{x}) = \alpha_3 \tanh(\text{leaf } 1 + \text{leaf } 2) + \beta_3,$

where $\alpha_3 = 0.5, \ \beta_3 = 0.5.$

Identification of Low-Dimensional Structure by FEX

FEX identifies the following expression

leaf 1: Id
$$\to \alpha_{1,1}x_1 + \ldots + \alpha_{1,10}x_{10} + \beta_1$$

leaf 2: $\tanh \to \alpha_{2,1} \tanh(x_1) + \ldots + \alpha_{2,10} \tanh(x_{10}) + \beta_2$
 $\mathcal{J}(\mathbf{x}) = \alpha_3 \tanh(\text{leaf } 1 + \text{leaf } 2) + \beta_3,$

where $\alpha_3 = 0.5, \ \beta_3 = 0.5.$

node	α_1	α_2	α_3	α_4	α_5	α_6	α_7	α_8	α_9	α_{10}	β
leaf 1: Id	1.6798	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
leaf 2: tanh	1.9039	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Therefore, we can use spectral method to solve (2) to achieve spectral accuracy.

Rugged-Mueller's Potential

Consider the committor function corresponding to the following rugged-Mueller's potential:

$$V(\mathbf{x}) = \underbrace{\tilde{V}\left(x_1, x_2\right)}_{\text{collective variables}} + \frac{1}{2\sigma^2} \sum_{i=3}^{10} x_i^2,$$

where

$$\tilde{V}\left(x_{1}, x_{2}\right) = \sum_{i=1}^{4} D_{i} e^{a_{i}(x_{1} - X_{i})^{2} + b_{i}(x_{1} - X_{i})(x_{2} - Y_{i}) + c_{i}(x_{2} - Y_{i})^{2}} + \gamma \sin\left(2k\pi x_{1}\right) \sin\left(2k\pi x_{2}\right)$$

The domain of interest Ω is $[-1.5,1] \times [-0.5,2] \times \mathbb{R}^8$ and the regions A and B are two cylinders:

$$A = \left\{ \mathbf{x} \in \mathbb{R}^{10} \mid \sqrt{(x_1 + 0.57)^2 + (x_2 - 1.43)^2} \le 0.3 \right\}$$
$$B = \left\{ \mathbf{x} \in \mathbb{R}^{10} \mid \sqrt{(x_1 - 0.56)^2 + (x_2 - 0.044)^2} \le 0.3 \right\}$$

Numerical Results

(b) T=22 committor function (FEX)

Т	Method			No. of samples in Ω_{AB}	No. of testing samples			
22	NN	3.70×10^{-2}	1.3×10^{2}	1.0×10^{5}	1.5×10^{5}			
22	FEX	2.90×10^{-2}	1.3×10^2	1.0×10^{5}	1.5×10^{5}			

Identification of Low-Dimensional Structure by FEX

The FEX formula for \mathcal{J}_1 is

leaf 1:
$$(\cdot)^4 \to \alpha_{1_1} x_1^4 + \ldots + \alpha_{1_{10}} x_{10}^4 + \beta_1$$
,

leaf 2:
$$(\cdot)^4 \to \alpha_{2_1} x_1^4 + \ldots + \alpha_{2_{10}} x_{10}^4 + \beta_2$$

leaf 3:
$$(\cdot)^4 \to \alpha_{3_1} x_1^4 + \ldots + \alpha_{3_{10}} x_{10}^4 + \beta_3$$
,

leaf 4:
$$(\cdot)^2 \to \alpha_{4_1} x_1^2 + \ldots + \alpha_{4_{10}} x_{10}^2 + \beta_4$$
,

$$\mathcal{J}_1(\mathbf{x}) = \alpha_7 \tanh((\alpha_5 \cos(\text{leaf 1} \times \text{leaf 2}) + \beta_5) - (\alpha_6 \text{sigmoid}(\text{leaf 3} \times \text{leaf 4}) + \beta_6)$$

Identification of Low-Dimensional Structure by FEX

The FEX formula for \mathcal{J}_1 is

leaf 1:
$$(\cdot)^4 \to \alpha_{1_1} x_1^4 + \ldots + \alpha_{1_{10}} x_{10}^4 + \beta_1$$
,

leaf 2:
$$(\cdot)^4 \to \alpha_{2_1} x_1^4 + \ldots + \alpha_{2_{10}} x_{10}^4 + \beta_2$$

leaf 3:
$$(\cdot)^4 \to \alpha_{3_1} x_1^4 + \ldots + \alpha_{3_{10}} x_{10}^4 + \beta_3$$
,

leaf 4:
$$(\cdot)^2 \to \alpha_{4_1} x_1^2 + \ldots + \alpha_{4_{10}} x_{10}^2 + \beta_4$$
,

$$\mathcal{J}_1(\mathbf{x}) = \alpha_7 \tanh((\alpha_5 \cos(\mathsf{leaf}\ 1 \times \mathsf{leaf}\ 2) + \beta_5) - (\alpha_6 \mathsf{sigmoid}(\mathsf{leaf}\ 3 \times \mathsf{leaf}\ 4) + \beta_6)$$

Furthurmore, FEX can identify the low-dimensional structure of the problem

node	α_1	α_2	α_3	α_4	α_5	α_6	α_7	α_8	α_9	α_{10}	β
leaf 1: $(\cdot)^4$	0.0893	-0.0217	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9460
leaf 2: $(\cdot)^4$	-0.0660	0.2018	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8938
leaf 3: $(\cdot)^4$	-0.4211	0.1263	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-3.3150
leaf 4: $(\cdot)^2$	0.9242	1.1818	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.6088

Conclusion

 FEX is a new methodology to solve high-dimensional PDEs, demonstrating comparable or higher accuracy compared to the neural network method.

Conclusion

- FEX is a new methodology to solve high-dimensional PDEs, demonstrating comparable or higher accuracy compared to the neural network method.
- FEX can identify the low-dimensional structure inherent in the problem.

Conclusion

- FEX is a new methodology to solve high-dimensional PDEs, demonstrating comparable or higher accuracy compared to the neural network method.
- FEX can identify the low-dimensional structure inherent in the problem.
- Once FEX successfully identifies the low-dimensional structure, we can achieve arbitrary accuracy by solving the reduced low-dimensional problem (1) with the finite element method.

Thank you!

https://arxiv.org/pdf/2306.12268.pdf