	Compito	1	Prima	Parte
--	---------	---	-------	-------

Nome \blacksquare	
Cognome _	
Matricola	

Architettura degli Elaboratori

Corso di Laurea in Informatica Prima Parte Prova Finale - 20 Giugno 2014

1.	$(4~\mathrm{punti})$ Codificare i numeri interi (a) -19 (b) 51 nelle notazioni in modulo e segno e complemento a 2 a 8 bit
	modulo e segno a 8 bit (a) (b)
	complemento a 2 a 8 bit (a) (b)
2.	$(3~{\rm punti})$ Determinare l'intero (in base 10) rappresentato dalla sequenza di bit 10100111 nelle codifiche in complemento a 2 e in modulo e segno.
	Modulo e segno Complemento a due
3.	(1.5 punti) Convertire da base 4 a base 8 il seguente numero intero. $1220_4 \qquad \underline{\hspace{1.5cm}}$
4.	(1.5 punti) Convertire da base 4 a base 16 il seguente numero intero. $1011002_4 \qquad \underline{\hspace{1.5cm}}$
5.	$(6~\mathrm{punti})$ Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:
	$x_1 \mid x_2 \mid x_3 \mid x_4 \mid f(x_1, x_2, x_3, x_4)$

SOP

x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	-
0	0	0	1	1
0	0	1	0	1
0	0	1	1	-
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	-

6. (7 punti) Disegnare di seguito il diagramma di stato di una Rete Sequenziale a singolo ingresso (x) e singola uscita (z) tale che agli istanti $5, 10, 15, 20, \ldots$ e in generale j = 5i per $i \ge 1$, $z_j = 1$ se e solo se gli ultimi 2 bit letti x_{j-1} x_j sono uguali a 1, mentre in tutti gli altri istanti $z_j = 0$.

7. (7 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo JK. In particolare determinare tutte le funzioni booleane e disegnare la rete sequenziale corrispondente.

\boldsymbol{x}	y_1	y_2	Y_1	Y_2	j_1	k_1	j_2	k_2	z
0	0	0							
0	0	1							
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1							

j_1 :		
j_2 :		
~ .		

k_1 ·		
n1 ·		

k_2 :			
.02			

Disegno della rete:

<u>ATTENZIONE</u>: scrivere le risposte su questo foglio; la vicinanza di borse o astucci e l'uso di calcolatrici e cellulari sono motivo di esclusione dalla prova.