

Mathematics Specialist Unit 3

TEST 1 2016

Student name:	Teacher name:	
Class:		
Time allowed for this task:	50 minutes, in class, under test conditions Section One – calculator-free section – 30 minutes Section Two – calculator-assumed section – 20 minutes	(26 marks) (20 marks)
Materials required:	Calculator with CAS capability (to be provided by the student)	
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharp correction fluid/tape, eraser, ruler, highlights	ener,
Special items:	Drawing instruments, templates, notes on one unfolded sheets A4 paper, and up to three calculators approved for use in WACE examinations	of
Marks available:	46 marks	
Task weighting:	7%	

Section One - calculator-free section

(26 marks)

Question 1

(4 marks)

(a) Given $z = \sqrt{3} + i$ evaluate z^6 giving the answer in Cartesian form.

(2 marks)

(b) Solve $x^2 - 6x + 13 = 0$ for $x \in \text{Im}$ in exact form.

(2 marks)

Question 2

(6 marks)

(a) Sketch the set of points defined by $|z - (2 + 3i)| = \sqrt{13}$.

(3 marks)

Determine and locate all solutions in the Argand plane to the equation $\,z^{^5}= 1$.

Question 4 (8 marks)

Given $H(z) = z^5 - 2z^4 + 5z^3 - 10z^2 + 4z - 8$

(a) Evaluate H(i), H(-i) and H(2)

(b) Hence, find all roots of the equation $z^5 - 2z^4 + 5z^3 - 10z^2 + 4z - 8 = 0$. (5 marks)

Question 5 (10 marks)

(a) Expand and simplify the expression $F(\theta) = (\cos \theta + i \sin \theta)^5$. (2 marks)

(b) Hence, express the Re(F) in terms of $\cos \theta$. (3 marks)

(c) Use $\operatorname{Re}(F)$ to solve the equation $16x^5 - 20x^3 + 5x - 1 = 0$ and express the solutions in trigonometric form. (5 marks)

Given $z = \cos \theta + i \sin \theta$:

(a)

Express
$$\frac{\left(z-\frac{1}{z}\right)}{i\left(z+\frac{1}{z}\right)}$$
 in trigonometric form. (4 marks)

Show
$$z^2 + \frac{1}{z^2} = 2\cos 2\theta$$
 and hence prove $\cos 2\theta = 2\cos^2 \theta - 1$ (6 marks)

Solutions and marking key for Test 1 for concurrent Unit 3 and Unit 4 program

Section One - calculator-free section

(30 marks)

Question 1 (3.1.6, 3.1.15)

(8 marks)

(a) Given $z = \sqrt{3} + i$ evaluate z^6 giving the answer in Cartesian form.

(2 marks)

Given
$$z = \sqrt{3} + i$$
 evaluate z^6

$$z^6 = (\sqrt{3} + i)^6 = \sqrt{3}^6 + 6.(\sqrt{3})^5.(i)^1 + 15.(\sqrt{3})^4.(i)^2 + 20.(\sqrt{3})^3.(i)^3 + 15.(\sqrt{3})^2.(i)^4 + 6.(\sqrt{3})^1.(i)^5 + (i)^4 + 6.(\sqrt{3})^4.(i)^5 + 6.(\sqrt{3})^4.(i)^4 + 6.(\sqrt{3})^4.(i)^5 + 6.(\sqrt{3})^6.(i)^5 + 6.(\sqrt{3})^6.(i)^6 + 6.(\sqrt{3})^6$$

Specific behaviours	Mark	Item
Expands the Cartesian form of z ⁶	1	simple
Simplifies correctly	1	simple
Or		
Expresses z ⁶ in polar form	1	simple
Expresses the answer in Cartesian form	1	simple

(b) (4 marks)

Given $Z_1=\!cis\!\left(rac{\pi}{3}
ight)$ and $Z_2=\!cis\!\left(rac{\pi}{4}
ight)$ evaluate the following in exact Cartesian form:

(i)
$$\overline{Z_1}$$
 (ii) iZ_2 (iii) $cis\left(\frac{\pi}{12}\right)$

Given $Z_1=cis\left(\frac{\pi}{3}\right)$ and $Z_2=cis\left(\frac{\pi}{4}\right)$ evaluate the following in exact Cartesian form:

(i)
$$\overline{Z_1} = \frac{1 - \sqrt{3}i}{2}$$

$$(ii) \qquad iZ_2 = \frac{-\sqrt{2} + \sqrt{2}i}{2}$$

(iii)
$$cis\left(\frac{\pi}{12}\right) = \frac{Z_1}{Z_2} = \frac{1+\sqrt{3}i}{2} \times \frac{2}{\sqrt{2}+\sqrt{2}i} = \left[\frac{(\sqrt{2}+\sqrt{6})+(\sqrt{6}-\sqrt{2})i}{4}\right]$$

Specific behaviours	Mark	Item
7	1	simple
Writes the Cartesian form of Z_1 correctly	1	simple
Writes the Cartesian form of iZ_2 correctly		
$\frac{}{7}$	1	complex
Expresses polar term for \mathbb{Z}_3 in Cartesian form	1	complex
Simplifies the Cartesian form correctly		

Specific behaviours	Mark	Item
Completes the square correctly	1	simple
Solves the equation using the exact form	1	simple
Or		
Uses the quadratic formula	1	simple
Simplifies the expressions to the correct exact form	1	simple

Question 2 (1.1.7) (6 marks)

Sketch the set of points defined by $|z - (2 + 3i)| = \sqrt{13}$.

Specific behaviours	Mark	Item
Draws a circle	1	simple
Has the correct centre (2 + 3i)	1	simple
Has the correct radius	1	simple
Circumference passes through (0, 0) (4 + 0i) and (0 + 6i)	3	simple

Question 3 (3.1.11, 3.1.12)

(8 marks)

Determine and locate all solutions in the Argand plane to the equation $\,z^{^5}=\!\!1$.

Specific behaviours	Mark	Item
Expresses the five solutions correctly	5	simple
Locates the solutions accurately on a polar graph	3	simple

Question 4 (3.1.13, 3.1.15)

(8 marks)

Given $H(z) = z^5 - 2z^4 + 5z^3 - 10z^2 + 4z - 8$.

(a) Evaluate H(i), H(-i) and H(2)

(3 marks)

Given
$$H(z) = z^5 - 2z^4 + 5z^3 - 10z^2 + 4z - 8$$

(a) Evaluate H(i), H(-i) and H(2)

$$H(i)=i-2-5i+10+4i-8=0$$

$$H(-i) = -i - 2 + 5i + 10 - 4i - 8 = 0$$

$$H(2) = 32 - 32 + 40 - 40 + 8 - 8 = 0$$

Specific behaviours	Mark	Item
Evaluates each of the three terms $H(i)$, $H(-i)$ and $H(2)$	3	simple

(b) Hence, find all roots of the equation $z^5 - 2z^4 + 5z^3 - 10z^2 + 4z - 8 = 0$. (5 marks)

Given
$$H(z) = z^5 - 2z^4 + 5z^3 - 10z^2 + 4z - 8$$
 from part (a)
 $H(i) = 0 \Leftrightarrow (z - i)$ is a factor of $H(z)$
 $H(-i) = 0 \Leftrightarrow (z + i)$ is a factor of $H(z)$
And $\Leftrightarrow (z^2 + 1)$ is a factor of $H(z)$
 $H(2) = 0 \Leftrightarrow (z - 2)$ is a factor of $H(z)$
Since $z^5 - 2z^4 + 5z^3 - 10z^2 + 4z - 8 \div (z^2 + 1) = (z^3 - 2z^2 + 4z - 8)$
and $(z^3 - 2z^2 + 4z - 8) \div (z - 2) = (z^2 + 4)$
then $z^5 - 2z^4 + 5z^3 - 10z^2 + 4z - 8 = (z + i)(z - i)(z - 2)(z + 2i)(z - 2i)$
Hence the roots to $z^5 - 2z^4 + 5z^3 - 10z^2 + 4z - 8 = 0$ are $z = [\pm i, \pm 2i, 2]$

Specific behaviours	Mark	Item
Uses the factor theorem to give factors $(z+i)(z-i)(z-2)$	1	simple
(, , ,) (, , ,)	2	complex
Determines the remaining factors Correctly writes all the roots $(z + 2i)(z - 2i)$	2	complex

Section Two - calculator-assumed section

(20 marks)

Question 5 (3.1.7) (10 marks)

(a) Expand and simplify the expression $F(\theta) = (\cos \theta + i \sin \theta)^{\delta}$. (2 marks)

$$F(\theta) = (\cos\theta + i\sin\theta)^5$$

$$= (\cos^5\theta - 10\cos^3\theta\sin^2\theta + 5\cos\theta\sin\theta^4) + (\sin^5\theta + 5\cos^4\theta\sin\theta - 10\cos^2\theta\sin^3\theta)i$$

$$= \frac{\text{Specific behaviours}}{\text{Shows the real and imaginary terms correctly}} \qquad \frac{\text{Mark}}{2} \qquad \text{simple}$$

(b) Hence, express the Re(F) in terms of $\cos \theta$.

(3 marks)

Re(F) =
$$\cos^5 \theta - 10\cos^3 \theta \cdot \sin^2 \theta + 5\cos \theta \cdot \sin \theta^4$$

= $\cos^5 \theta - 10\cos^3 \theta (1 - \cos^2 \theta) + 5\cos \theta (1 - \cos^2 \theta)^2$
= $\cos^5 \theta - 10\cos^3 \theta + 10\cos^5 \theta + 5\cos \theta (1 - 2\cos^2 \theta + \cos^4 \theta)$
= $16\cos^5 \theta - 20\cos^3 \theta + 5\cos \theta$

Specific behaviours	Mark	Item
$F(\theta)$	1	simple
Writes the real part of $F(\theta)$	1	simple
Substitutes for $\sin^2 \theta = 1 - \cos^2 \theta$	1	•
$\operatorname{Re}(F)$	1	simple
Gives the correct expression for		

(c) Use Re(F) to solve the equation $16x^5 - 20x^3 + 5x - 1 = 0$ and express the solutions in trigonometric form. (5 marks)

Specific behaviours	Mark	Item
Uses De Moivre to state $Re(F) = \cos 5\theta$	1	complex
Makes the substitution $X = \cos \theta$ in polynomial	1	complex
Replaces the polynomial in $\cos\theta$ with $\cos5\theta$	1	complex
Solves $\cos 5\theta = 1$ in terms of θ	1	complex
Gives all five solutions in terms of <i>x</i>	1	complex

Question 6 (3.1.7) (10 marks)

Given $z = \cos\theta + i\sin\theta$:

Express $\frac{\left(z-\frac{1}{z}\right)}{i\left(z+\frac{1}{z}\right)}$ in trigonometric form.

(a) (4 marks)

$$\frac{\left(z - \frac{1}{z}\right)}{i\left(z + \frac{1}{z}\right)} = \frac{\left(\cos\theta + i\sin\theta\right) - \left(\cos\theta - i\sin\theta\right)}{i\left(\left(\cos\theta + i\sin\theta\right) + \left(\cos\theta - i\sin\theta\right)\right)}$$
$$= \frac{2i\sin\theta}{2i\cos\theta}$$
$$= \tan\theta$$

Specific behaviours	Mark	Item
	2	simple
Simplifies both numerator and denominator Writes the correct final term	2	simple

Show $z^2 + \frac{1}{z^2} = 2\cos 2\theta$ and hence prove $\cos 2\theta = 2\cos^2 \theta - 1$ (6 marks)

$$z^{2} + \frac{1}{z^{2}} = (\cos 2\theta + i \sin 2\theta) + (\cos 2\theta - i \sin 2\theta)$$

$$= 2\cos 2\theta \dots (1)$$

$$z^{2} + \frac{1}{z^{2}} = (\cos \theta + i \sin \theta)^{2} + (\cos \theta - i \sin \theta)^{2}$$

$$= (\cos^{2} \theta + 2i \sin \theta \cos \theta - \sin^{2} \theta) + (\cos^{2} \theta - 2i \sin \theta \cos \theta - s \sin^{2} \theta)$$

$$= 2(\cos^{2} \theta - \sin^{2} \theta) \dots (2)$$

$$(1) = (2) \Leftrightarrow 2\cos 2\theta = 2(\cos^{2} \theta - \sin^{2} \theta)$$

$$\Leftrightarrow \cos 2\theta = 2\cos^{2} \theta - 1$$

Specific behaviours	Mark	Item
Rewrites z^2 and $\frac{1}{z^2}$ using double angle form 2θ Gathers terms and simplifies Rewrites z^2 and $\frac{1}{z^2}$ using single angle form θ	1 1	complex complex complex
Gathers terms and simplifies Equates both equations Writes correct final expression	1 1 1	complex complex complex

Question	1	2	3	4	5	6	Total
Simple	8	6	8	4	5	4	35
Complex	0	0	0	4	5	6	15
	8	6	8	8	10	10	50