

11th BSC PhD Symposium

Reconstructing prokaryotic metabolic contributions to LECA

Saioa Manzano-Morales Comparative Genomics - Life Sciences

Prokaryotes and eukaryotes, the great divide

Adapted from Hug et al. (2016)

Prokaryotes and eukaryotes, the great divide

Prokaryotes and eukaryotes, the great divide

Adapted from Hug et al. (2016)

Adapted from Hug et al. (2016)

Eukaryotes stem from an **endosymbiotic event** between an Asgard archaeon (the host) and an alpha-proteobacterial endosymbiont

Eukaryotes stem from an **endosymbiotic event** between an Asgard archaeon (the host) and an alpha-proteobacterial endosymbiont

But this story does not explain all:

- How did **eukaryotic traits** emerge and evolve?
 - nucleus
 - introns
 - phagocytosis
 - endomembrane system
 - ...
- Why does a two-partner
 scenario not fit all data?

But this story does not explain all:

- How did eukaryotic traits emerge and evolve?
- Why does a two-partner scenario not fit all data?

Why now?

2011 2022

Sequencing boom allows us to gain information on underrepresented and key eukaryotic clades

Better taxon sampling allows for a more representative image of eukaryotes

2.93M proteins 2.91M proteins 2.89M proteins

Better taxon sampling allows for a more representative image of eukaryotes

TOLDBB

TOLDBC

2.93M proteins 2.91M proteins

2.89M proteins

Taxonomically balanced, focus on underrepresented groups

TOLDBA TOLDBB TOLDBC

2.93M proteins 2.91M proteins 2.89M proteins

gene family inference

	Prok+	Prok-	NonLECA
TOLDBA	5152	7567	70204
TOLDBB	4458	6470	73382
TOLDBC	4371	6181	74319

	Prok+	Prok-	NonLECA
TOLDBA	5152	7567	70204
TOLDBB	4458	6470	73382
TOLDBC	4371	6181	74319

For each gene family:

Search against dataset of prokaryotic proteins (BROAD-DB) - 232M proteins → Known prokaryotic protein universe

	Prok+	Prok-	NonLECA
TOLDBA	5152	7567	70204
TOLDBB	4458	6470	73382
TOLDBC	4371	6181	74319

For each gene family:

- Search against dataset of prokaryotic proteins (BROAD-DB) 232M proteins
- 2. Gene tree inference (FastTree)

	Prok+	Prok-	NonLECA
TOLDBA	5152	7567	70204
TOLDBB	4458	6470	73382
TOLDBC	4371	6181	74319

For each gene family:

- Search against dataset of prokaryotic proteins (BROAD-DB) - 232M proteins
- 2. Gene tree inference (FastTree)
- 3. Tree pruning

	Prok+	Prok-	NonLECA
TOLDBA	5152	7567	70204
TOLDBB	4458	6470	73382
TOLDBC	4371	6181	74319

For each gene family:

- Search against dataset of prokaryotic proteins (BROAD-DB) 232M proteins
- 2. Gene tree inference (FastTree)
- 3. Tree pruning
- 4. Final gene tree inference (IQ-TREE)

	Prok+	Prok-	NonLECA
TOLDBA	5152	7567	70204
TOLDBB	4458	6470	73382
TOLDBC	4371	6181	74319

For each gene family:

- . Search against dataset of prokaryotic proteins (BROAD-DB) 232M proteins
- Gene tree inference (FastTree)
- 3. Tree pruning
- 4. Final gene tree inference (IQ-TREE)

1 single tree for step 4, in 4 threads - 4h (optimistically)

All trees on 1 thread: 547184h - **62 years**

Branch lengths - relative timing

$$sI = \frac{rsI}{Median (ebl)}$$

(Pittis & Gabaldón, 2016)

Branch lengths - relative timing

$$sl = \frac{rsl}{Median (ebl)}$$

(Pittis & Gabaldón, 2016)

Moisès Bernabeu

LECA is a mosaic of proteins of vastly different origins

LECA is a mosaic of proteins of vastly different origins

(Pittis & Gabaldón, 2016)

We can classify these into roughly 17 "modules" - major waves of gene acquisition from same donor at roughly the same time

Moisès Bernabeu

We can classify these gene families into units of functional "equivalence" and map them to known metabolic functions

KO (Kegg Orthology) object:

Functional ortholog sensu KEGG

Each module donates a distinct set of gene families with different functionalities

We can classify these gene families into units of functional "equivalence" and map them to known metabolic functions

KO (Kegg Orthology) object:

Functional ortholog sensu KEGG

1 KO = many genes

if catalytic

KEGG Reaction:

Catalytic reaction

1 KO = 1+ reaction 1 reaction = many KOs can be grouped into

KEGG Module

Set of catalytic steps that go together

1 module = 1+ reactions | can be grouped into

KEGG Pathway

Biological pathway

1 pathway = 1+ modules
Not ALL reactions in pathway
in a module

Each donor module is enriched in different pathways and contributed to the proto-eukaryote in distinct metabolic abilities

Mapping to metabolic functions allows us then to reconstruct the metabolism of the organism as a whole

11th BSC PhD symposium - Saioa Manzano-Morales

HPC allows us to automatize analysis of metabolic networks

KO2Reaction

Reaction	EC	КО
R00014	1.2.4.1 2.2.1.6 4.1.1.1	K00161 pyruvate dehydrogenase E1 component subunit alpha pyruvate dehydrogenase E1 component subunit beta k00163 pyruvate dehydrogenase E1 component [EC:1.2.4.1] k01568 pyruvate decarboxylase [EC:4.1.1.1] acetolactate synthase I/II/III large subunit [EC:2.2.1.6] k01653 acetolactate synthase I/III small subunit [EC:2.2.1.6] acetolactate synthase II small subunit [EC:2.2.1.6]

Reaction2 Metabolite

Reaction	Substate	Product
R00014	C00022 C00068	C05125 C00011

Pathway reaction Network

KO00010 (GLYCOLYSIS/GLUCONEOGENESIS)

Missing reactions:

- rn:R02189
- rn:R02187
- rn:R05132
- rn:R04394
- rn:R09127
- rn:R07159
- rn:R09532
- rn:R09479
- rn:R09127

Completeness: 91.08%

Missing metabolites:

- Salicin
- Salicin-6P
- Arbutin
- Arbutin-6P

1. Eukaryotes are a **mosaic** of genes of many prokaryotic donors, outside a simple alphaproteobacteria-Asgard endosymbiotic scenario

- Eukaryotes are a mosaic of genes of many prokaryotic donors, outside a simple alphaproteobacteria-Asgard endosymbiotic scenario
- 2. These **gene acquisitions** can be grouped into waves, discernible from the **topology** of the **gene trees**

- 1. Eukaryotes are a **mosaic** of genes of many prokaryotic donors, outside a simple alphaproteobacteria-Asgard endosymbiotic scenario
- These gene acquisitions can be grouped into waves, discernible from the topology of the gene trees
- 3. Each donor left **unique functionalities** into the proto-eukaryote, that correspond to **distinct metabolic pathways**

- 1. Eukaryotes are a **mosaic** of genes of many prokaryotic donors, outside a simple alphaproteobacteria-Asgard endosymbiotic scenario
- These gene acquisitions can be grouped into waves, discernible from the topology of the gene trees
- 3. Each donor left **unique functionalities** into the proto-eukaryote, that correspond to **distinct metabolic pathways**
- 4. This will allow us to relatively time the origin of the complex features that differentiate prokaryotes and eukaryotes

Thank you

11th BSC PhD Symposium

Reconstructing prokaryotic metabolic contributions to LECA

Saioa Manzano-Morales Comparative Genomics - Life Sciences