

In re: Deok-Hyung Lee et al.
Serial No.: 10/801,614
Filed: March 16, 2004
Page 2 of 8

In the Claims:

1. (Currently Amended) A field effect transistor comprising:
a fin extending from a substrate, the fin including an upper portion remote from the substrate and sidewalls that extend between the upper portion and the substrate;
a channel region in the fin;
a gate electrode adjacent the channel region and crossing over the fin;
a gate insulation layer interposed between the gate electrode and the fin;
[[and]]
source/drain regions formed at both sides of the gate electrode, wherein the channel region at the upper portion of the fin is doped higher than sidewalls of the fin;
and
a punch-through stop layer that is confined to beneath the channel region and having a higher doping concentration than the sidewalls of the fin in the channel region.

2. (Original) The transistor of Claim 1, wherein the channel region comprises:
a first layer in the upper portion of the fin; and
a second layer beneath the first layer, wherein the second layer is lightly doped relative to the first layer.

3. (Currently Amended) The transistor of Claim 1.
A field effect transistor comprising:
a fin extending from a substrate, the fin including an upper portion remote from the substrate and sidewalls that extend between the upper portion and the substrate;
a channel region in the fin;
a gate electrode adjacent the channel region and crossing over the fin;
a gate insulation layer interposed between the gate electrode and the fin; and
source/drain regions formed at both sides of the gate electrode, wherein the channel region at the upper portion of the fin is doped higher than sidewalls of the fin;

In re: Deok-Hyung Lee et al.
Serial No.: 10/801,614
Filed: March 16, 2004
Page 3 of 8

wherein the substrate includes a semiconductor layer and an insulation layer on the semiconductor layer; and

wherein the fin is on the insulation layer opposite the semiconductor layer.

4. (Original) The transistor of Claim 1:

wherein the substrate is a bulk semiconductor layer; and

wherein the semiconductor layer extends vertically to form the fin.

5. (Original) The transistor of Claim 4, further comprising an insulation layer disposed between the gate electrode and the semiconductor layer at a periphery of the fin.

6. (Currently Amended) The transistor of Claim 4, further comprising a 2, wherein the punch-through stop layer beneath the channel region having has a higher doping concentration than the second layer.

7. (Original) The transistor of Claim 2, wherein the second layer has uniform concentration in the channel region.

8-12. (Canceled)

13. (Currently Amended) An integrated circuit field effect transistor comprising:

an integrated circuit substrate;

a fin that projects away from the integrated circuit substrate, extends along the integrated circuit substrate and includes a top that is remote from the integrated circuit substrate;

a channel region in the fin that is doped a predetermined conductivity type and having a higher doping concentration of the predetermined conductivity type adjacent the top than remote from the top;

a source region and a drain region in the fin on respective opposite sides of the channel region; [[and]]

In re: Deok-Hyung Lee et al.
Serial No.: 10/801,614
Filed: March 16, 2004
Page 4 of 8

an insulated gate electrode that extends across the fin, adjacent the channel region; and

a punch-through stop layer that is confined to beneath the channel region and having a higher doping concentration of the predetermined conductivity type than the channel region remote from the top.

14. (Original) The integrated circuit field effect transistor according to Claim 13 wherein the channel region is uniformly doped the predetermined conductivity type at a first doping concentration except for being doped the predetermined conductivity type at a second doping concentration that is higher than the first doping concentration adjacent the top.

15. (Original) The integrated circuit field effect transistor according to Claim 13 wherein the channel region comprises a first region of the predetermined conductivity type adjacent the top and a second region of the predetermined conductivity type remote from the top, wherein the first region is more heavily doped than the second region.

16. (Original) The integrated circuit field effect transistor according to Claim 13 wherein the fin also includes first and second sidewalls that extend between the top and the substrate and wherein the channel region has the higher doping concentration of the predetermined conductivity type directly beneath the top, from the first sidewall to the second sidewall.

17. (Original) The integrated circuit field effect transistor according to Claim 13:

wherein the integrated circuit substrate is a bulk semiconductor substrate such that the bulk semiconductor substrate includes a projection that defines the fin;

the integrated circuit field effect transistor further comprising a region of the predetermined conductivity type in the bulk semiconductor substrate beneath the fin.

In re: Deok-Hyung Lee et al.
Serial No.: 10/801,614
Filed: March 16, 2004
Page 5 of 8

18. (Currently Amended) ~~The integrated circuit field effect transistor according to Claim 13~~

An integrated circuit field effect transistor comprising:
an integrated circuit substrate;

a fin that projects away from the integrated circuit substrate, extends along the integrated circuit substrate and includes a top that is remote from the integrated circuit substrate;

a channel region in the fin that is doped a predetermined conductivity type and having a higher doping concentration of the predetermined conductivity type adjacent the top than remote from the top;

a source region and a drain region in the fin on respective opposite sides of the channel region; and

an insulated gate electrode that extends across the fin, adjacent the channel region;

wherein the integrated circuit substrate comprises an insulating layer on a substrate and wherein the fin is on the insulating layer, opposite the substrate.

19. (Original) The integrated circuit field effect transistor according to Claim 13 further comprising:

a capacitor connected to the source region.

20. (Original) The integrated circuit field effect transistor according to Claim 13 further comprising:

a bit line connected to the drain region.

21-22. (Canceled)