Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

1 Input Parameters

Modu	ıle		Beam	Coverplate Weld Connection
MainMo	odule			Moment Connection
Moment(l	kNm)*			10.0
Shear(k	:N)*			10.0
Axial (k	·N) *			10.0
		Section	•	
	Beam S	ection *		NPB 270x135x30.7
	Mate	rial *		E 250 (Fe 410 W)A
т Ү	Ultimate stren	ngth, fu (MPa)		410
	Yield Strength , fy (MPa)		250	
α	Mass	30.73	Iz(mm4)	49173000.0
4	Area(mm2) -	3910.0	Iy(mm4)	3574200.0
ZZ D	A			
R1	D(mm)	267.0	rz(mm)	112.10000000000001
R ₁	B(mm)	135.0	ry(mm)	30.2
В	t(mm)	5.5	Zz(mm3)	368340.0
P	T(mm)	8.7	Zy(mm3)	52950.0
· ·	FlangeSlope	90	Zpz(mm3)	412490.0
	R1(mm)	1.5	Zpy(mm3)	52950.0
	R2(mm)	0.0		
		Weld Details		
Weld T	ype			Fillet
Type of weld	fabrication			Shop Weld
Material grade over	rwrite (MPa) Fu			410.0

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Member Capacity

Check	Required	Provided	Remarks
Axial Capacity Ac (kN)		$Ac = \frac{A * f_y}{\gamma_{m0} * 1000}$ $= \frac{3910.0 * 250}{1.1 * 1000}$ $= 888.64$	
Shear Capacity Sc (kN)		$S_c = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo} * 1000}$ $= \frac{249.6 * 5.5 * 250}{\sqrt{3} * 1.1 * 1000}$ $= 180.1332799999998$	
Plastic Moment Capacity Pmc (kNm)		$Pmc = \frac{\beta_b * Z_p * fy}{\gamma_{mo} * 1000000}$ $= \frac{1 * 85663 * 250}{1.1 * 1000000}$ $= 19.47$	
Moment Deformation Criteria Mdc (kNm)		$Mdc = \frac{1.5 * Z_e * fy}{1.1}$ $= \frac{1.5 * 368340.0 * 250}{1.1}$ $= 125.57$	
Moment Capacity Mc (kNm)		$M_c = min(Pmc, Mdc)$ = $min(19.47, 125.57)$ = 19.47	

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.2 Load Consideration

Check	Required	Provided	Remarks
	$Ac_{min} = 0.3 * A_c$	$Au = max(A, Ac_{min})$	
Axial Load Au (kN)	= 0.3 * 888.64	= max(10.0, 266.59)	Pass
	= 266.59	=266.59	
	$Sc_{min} = 0.6 * A_c$	$Vu = max(V, Vc_{min})$	
Shear Load Vu (kN)	= 0.6 * 180.13	= max(10.0, 108.08)	Pass
	= 108.08	= 108.08	
	$Mc_{min} = 0.5 * M_c$	$Mu = max(M, Mc_{min})$	
Moment Load Mu (kNm)	= 0.5 * 19.47	= max(10.0, 9.73)	Pass
	= 9.73	= 10.0	
		$A_w = Axial \ force \ in \ web$	
		$=\frac{(D-2*T)*t*Au}{A}$	
		11	
		$=\frac{(267.0 - 2 * 8.7) * 5.5 * 266.59}{3910.0}$	
		= 93.6	
Forces Carried by Web		$M_w = Moment \ in \ web$	
		$=\frac{Z_w*Mu}{Z}$	
	E E		
		$=\frac{85663*10.0}{412490.0}$	
		= 2.08	
		$A_f = Axial \ force \ in \ flange$	
		$= \frac{Au * B * T}{A}$	
		A 266 59 * 135 0 * 8 7	
		$= \frac{266.59 * 135.0 * 8.7}{3910.0}$	
		= 80.08	
		$M_f = Moment \ in \ flange$	
		$=Mu-M_w$	
Forces Carried by Flange		= 10.0 - 2.08	
		= 7.92	
		$F_f = flange\ force$	
		$=\frac{M_f*1000}{D-T}+A_f$	
		7.92	
		$=\frac{7.92}{267.0-8.7}+80.08$	
		= 110.75	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2.3 Weld Design Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)	$Thickness of Thicker part \\ = max(8.7, 14.0) \\ = 14.0 \\ IS800: 2007 \ cl.10.5.2.3 \ Table 21, \\ t_{w_{min}} = 5$	7	Pass
Max Weld Size (mm)	$Thickness of Thinner part \\ = Min(8.7, 14.0) = 8.7 \\ t_{w_{max}} = 8.7$	7	Pass
Flange Weld Strength (N/mm)	$Stress = \frac{F_f * 1000}{F_{rl}}$ $= \frac{110.75 * 1000}{391}$ $= 283.2588987614436$	927.92	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2.4 Flange Plate Check

Check	Required	Provided	Remarks
Min. Plate Height (mm)	50	$b_{fp} = B - 2 * sp$ $= 135.0 - 2 * 15$ $= 105$	Pass
Max. Plate Height (mm)	$b_{fp} = B - 2 * sp$ = 135.0 - 2 * 15 = 105	105	Pass
Min. Plate Length (mm)	105	$l_{fp} = [2 * (l_w + 2 * s) + g]$ $= [2 * (1502 * 7) + 10.0]$ $= 340$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View