# **CS 513 C - Knowledge Discovery and Data Mining Project**

Problem Definition: Algorithm Performance Analysis for Diabetes Classification

**Objective:** The primary goal is to analyze and compare the performance of various machine learning algorithms in accurately classifying individuals into categories such as diabetic, prediabetic, or non-diabetic. This involves understanding and quantifying how effectively each algorithm can handle the data provided, make predictions, and how their predictions align with actual clinical diagnoses.

```
In []:
In [19]: import pandas as pd
   import numpy as np
   from sklearn.metrics import accuracy_score, precision_score, recall_score,
   import matplotlib.pyplot as plt

In [20]: df = pd.read_csv("C:\\Users\prudh\Downloads\Project\Project\diabetes_binary
   reduced_df = df.sample(n=10000, random_state=42)
```

## **Step 1: Exploratory Data Analysis**

Data Understanding and Quality Checks



#### In [23]: reduced\_df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 10000 entries, 219620 to 125546

Data columns (total 22 columns):

| #  | Column                    | Non-Null Count | Dtype   |
|----|---------------------------|----------------|---------|
| 0  | Diabotos binany           | 10000 non-null | float64 |
| 1  | Diabetes_binary<br>HighBP |                | float64 |
|    | •                         | 10000 non-null |         |
| 2  | HighChol                  | 10000 non-null | float64 |
| 3  | CholCheck                 | 10000 non-null | float64 |
| 4  | BMI                       | 10000 non-null | float64 |
| 5  | Smoker                    | 10000 non-null | float64 |
| 6  | Stroke                    | 10000 non-null | float64 |
| 7  | HeartDiseaseorAttack      | 10000 non-null | float64 |
| 8  | PhysActivity              | 10000 non-null | float64 |
| 9  | Fruits                    | 10000 non-null | float64 |
| 10 | Veggies                   | 10000 non-null | float64 |
| 11 | HvyAlcoholConsump         | 10000 non-null | float64 |
| 12 | AnyHealthcare             | 10000 non-null | float64 |
| 13 | NoDocbcCost               | 10000 non-null | float64 |
| 14 | GenHlth                   | 10000 non-null | float64 |
| 15 | MentHlth                  | 10000 non-null | float64 |
| 16 | PhysHlth                  | 10000 non-null | float64 |
| 17 | DiffWalk                  | 10000 non-null | float64 |
| 18 | Sex                       | 10000 non-null | float64 |
| 19 | Age                       | 10000 non-null | float64 |
| 20 | Education                 | 10000 non-null | float64 |
| 21 | Income                    | 10000 non-null | float64 |
|    |                           |                |         |

dtypes: float64(22)
memory usage: 1.8 MB

## In [24]: reduced\_df.describe()

#### Out[24]:

|       | Diabetes_binary | HighBP       | HighChol     | CholCheck    | ВМІ          | Smoke       |
|-------|-----------------|--------------|--------------|--------------|--------------|-------------|
| count | 10000.000000    | 10000.000000 | 10000.000000 | 10000.000000 | 10000.000000 | 10000.00000 |
| mean  | 0.136000        | 0.428100     | 0.423300     | 0.963100     | 28.450800    | 0.44510     |
| std   | 0.342806        | 0.494828     | 0.494107     | 0.188526     | 6.481403     | 0.49700     |
| min   | 0.000000        | 0.000000     | 0.000000     | 0.000000     | 12.000000    | 0.00000     |
| 25%   | 0.000000        | 0.000000     | 0.000000     | 1.000000     | 24.000000    | 0.00000     |
| 50%   | 0.000000        | 0.000000     | 0.000000     | 1.000000     | 27.000000    | 0.00000     |
| 75%   | 0.000000        | 1.000000     | 1.000000     | 1.000000     | 31.000000    | 1.00000     |
| max   | 1.000000        | 1.000000     | 1.000000     | 1.000000     | 95.000000    | 1.00000     |

8 rows × 22 columns

 $\blacksquare$ 

In [25]: reduced\_df.sample(20)

Out[25]:

|        | Diabetes_binary | HighBP | HighChol | CholCheck | ВМІ  | Smoker | Stroke | HeartDiseased |
|--------|-----------------|--------|----------|-----------|------|--------|--------|---------------|
| 191955 | 0.0             | 1.0    | 1.0      | 1.0       | 37.0 | 0.0    | 0.0    |               |
| 118464 | 0.0             | 0.0    | 0.0      | 1.0       | 25.0 | 1.0    | 0.0    |               |
| 43112  | 0.0             | 1.0    | 0.0      | 1.0       | 17.0 | 1.0    | 0.0    |               |
| 66532  | 0.0             | 0.0    | 0.0      | 1.0       | 26.0 | 0.0    | 0.0    |               |
| 245567 | 0.0             | 0.0    | 0.0      | 1.0       | 48.0 | 1.0    | 0.0    |               |
| 151028 | 1.0             | 1.0    | 1.0      | 1.0       | 28.0 | 0.0    | 0.0    |               |
| 130405 | 0.0             | 0.0    | 0.0      | 1.0       | 31.0 | 0.0    | 0.0    |               |
| 187701 | 0.0             | 0.0    | 0.0      | 1.0       | 30.0 | 0.0    | 0.0    |               |
| 91650  | 0.0             | 0.0    | 0.0      | 1.0       | 27.0 | 1.0    | 0.0    |               |
| 117086 | 0.0             | 0.0    | 1.0      | 1.0       | 32.0 | 1.0    | 0.0    |               |
| 43946  | 0.0             | 0.0    | 0.0      | 1.0       | 24.0 | 0.0    | 0.0    |               |
| 161908 | 0.0             | 0.0    | 0.0      | 1.0       | 27.0 | 0.0    | 0.0    |               |
| 236364 | 0.0             | 0.0    | 0.0      | 1.0       | 49.0 | 0.0    | 0.0    |               |
| 59747  | 0.0             | 0.0    | 1.0      | 0.0       | 21.0 | 0.0    | 0.0    |               |
| 197068 | 0.0             | 0.0    | 1.0      | 1.0       | 24.0 | 0.0    | 0.0    |               |
| 80261  | 0.0             | 1.0    | 1.0      | 1.0       | 26.0 | 0.0    | 0.0    |               |
| 117141 | 0.0             | 0.0    | 0.0      | 1.0       | 41.0 | 0.0    | 0.0    |               |
| 85241  | 0.0             | 0.0    | 0.0      | 1.0       | 28.0 | 1.0    | 0.0    |               |
| 231302 | 0.0             | 0.0    | 0.0      | 1.0       | 28.0 | 0.0    | 0.0    |               |
| 68787  | 0.0             | 1.0    | 1.0      | 1.0       | 23.0 | 0.0    | 0.0    |               |

20 rows × 22 columns

4

•

In [26]: reduced\_df.isnull().sum() #Checking for the duplicates in the features Out[26]: Diabetes\_binary 0 HighBP 0 HighChol 0 **CholCheck** 0 BMI 0 0 Smoker Stroke 0 HeartDiseaseorAttack 0 PhysActivity 0 Fruits 0 0 **Veggies** HvyAlcoholConsump 0 AnyHealthcare 0 NoDocbcCost 0 GenHlth 0 MentHlth 0 PhysHlth 0 DiffWalk 0 0 Sex 0 Age 0 Education Income 0 dtype: int64





```
In [28]: import seaborn as sns

sns.boxplot(x=reduced_df['Diabetes_binary'])
plt.title('Boxplot of Diabetes_binary')
plt.xlabel('Diabetes_binary')
plt.show()
```

## Boxplot of Diabetes\_binary



```
In [29]: plt.scatter(reduced_df['BMI'], reduced_df['Age'])
    plt.title('Scatter Plot of BMI vs Age')
    plt.xlabel('BMI')
    plt.ylabel('Age')
    plt.show()
```

#### Scatter Plot of BMI vs Age



```
In [30]: plt.scatter(reduced_df['HighBP'], reduced_df['HighChol'])
    plt.title('Scatter Plot of HighBP vs HighChol')
    plt.xlabel('High Blood Pressure')
    plt.ylabel('High Cholesterol')
    plt.show()
```





```
In [31]: plt.scatter(reduced_df['PhysActivity'], reduced_df['BMI'])
    plt.title('Scatter Plot of Physical Activity vs BMI')
    plt.xlabel('Physical Activity')
    plt.ylabel('BMI')
    plt.show()
```

#### Scatter Plot of Physical Activity vs BMI



```
In [32]: x = reduced_df.drop(['Diabetes_binary'], axis = 1)
y = reduced_df['Diabetes_binary']
```

## In [10]: pip install scikit-learn --upgrade

Requirement already satisfied: scikit-learn in ./opt/anaconda3/lib/python 3.9/site-packages (1.3.2)
Requirement already satisfied: numpy<2.0,>=1.17.3 in ./opt/anaconda3/lib/python3.9/site-packages (from scikit-learn) (1.21.5)
Requirement already satisfied: joblib>=1.1.1 in ./opt/anaconda3/lib/python 3.9/site-packages (from scikit-learn) (1.3.2)
Requirement already satisfied: scipy>=1.5.0 in ./opt/anaconda3/lib/python

3.9/site-packages (from scikit-learn) (1.9.1)
Requirement already satisfied: threadpoolctl>=2.0.0 in ./opt/anaconda3/li

b/python3.9/site-packages (from scikit-learn) (2.2.0)

Note: you may need to restart the kernel to use updated packages.

```
In [33]: from sklearn.model_selection import train_test_split
# Split the data into training and testing sets
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, ra
```

# **Naive Bayes**

```
In [44]:
         from sklearn.naive_bayes import GaussianNB
         # Create a Naive Bayes classifier
         classifier = GaussianNB()
         # Train the classifier on the training data
         classifier.fit(x_train, y_train)
         # Make predictions on the testing data
         y_pred = classifier.predict(x_test)
         # Compute confusion matrix
         tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel()
         # Compute accuracy
         accuracy_nb = accuracy_score(y_test, y_pred)
         print('Accuracy:', accuracy_nb)
         # Compute precision
         precision_nb = precision_score(y_test, y_pred)
         print('Precision:', precision_nb)
         # Compute specificity
         specificity_nb = tn / (tn + fp)
         print('Specificity:', specificity_nb)
         # Compute recall
         recall_nb = recall_score(y_test, y_pred)
         print('Recall:', recall_nb)
         # Compute sensitivity
         sensitivity_nb= tp / (tp + fn)
         print('Sensitivity:', sensitivity_nb)
         # Compute F1-score
         f1_nb = f1_score(y_test, y_pred)
         print('F1 Score:', f1_nb)
         print(classification_report(y_test, y_pred))
         print(confusion_matrix(y_test,y_pred))
         print(y_pred)
         print(y test)
```

| F1 Score: 0.44389844389844385 |             |        |          |         |  |
|-------------------------------|-------------|--------|----------|---------|--|
|                               | precision   | recall | f1-score | support |  |
| 0.0                           | 0.93        | 0.80   | 0.86     | 2568    |  |
| 1.6                           | 0.34        | 0.63   | 0.44     | 432     |  |
| accuracy                      | ,           |        | 0.77     | 3000    |  |
| macro avg                     | 0.64        | 0.71   | 0.65     | 3000    |  |
| weighted avg                  |             | 0.77   | 0.80     | 3000    |  |
| [[2050 518]                   |             |        |          |         |  |
| [ 161 271]                    | 1           |        |          |         |  |
| [1. 0. 0                      | . 1. 0. 0.] |        |          |         |  |
| 93489 1.                      | 0           |        |          |         |  |
| 119707 0.                     | 0           |        |          |         |  |
| 51691 0.                      | 0           |        |          |         |  |
| 247820 1.                     | 0           |        |          |         |  |
| 16592 0.                      | 0           |        |          |         |  |
|                               |             |        |          |         |  |
| 221028 0.                     | 0           |        |          |         |  |
| 124217 1.                     | 0           |        |          |         |  |
| 43599 1.                      | 0           |        |          |         |  |
| 114510 0.                     | 0           |        |          |         |  |
| 172978 0.                     | 0           |        |          |         |  |

Name: Diabetes\_binary, Length: 3000, dtype: float64

# **K-Nearest Neighbour**

In [36]: from sklearn.neighbors import KNeighborsClassifier

```
In [45]:
         knn = KNeighborsClassifier(n_neighbors = 3)
         knn.fit(x_train,y_train)
         y_pred = knn.predict(x_test)
         # Compute confusion matrix
         tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel()
         print("Knn Output")
         # Compute accuracy
         accuracy_knn = accuracy_score(y_test, y_pred)
         print('Accuracy:', accuracy_knn)
         # Compute precision
         precision_knn = precision_score(y_test, y_pred)
         print('Precision:', precision_knn)
         # Compute specificity
         specificity_knn = tn / (tn + fp)
         print('Specificity:', specificity_knn)
         # Compute recall
         recall_knn = recall_score(y_test, y_pred)
         print('Recall:', recall_knn)
         # Compute sensitivity
         sensitivity_knn= tp / (tp + fn)
         print('Sensitivity:', sensitivity_knn)
         # Compute F1-score
         f1_knn = f1_score(y_test, y_pred)
         print('F1 Score:', f1_knn)
         print(classification_report(y_test, y_pred))
         print(confusion_matrix(y_test,y_pred))
         Knn Output
         Accuracy: 0.8333333333333334
         Precision: 0.3440366972477064
         Specificity: 0.9443146417445483
         Recall: 0.1736111111111111
         Sensitivity: 0.1736111111111111
```

```
F1 Score: 0.23076923076923075
             precision recall f1-score
                                            support
                  0.87
0.34
                            0.94
        0.0
                                     0.91
                                               2568
        1.0
                            0.17
                                                432
                                     0.23
                                               3000
                                     0.83
   accuracy
                  0.61
                            0.56
                                     0.57
                                               3000
  macro avg
                  0.80
                            0.83
                                     0.81
                                               3000
weighted avg
[[2425 143]
[ 357 75]]
```

#### CART

```
In [106]: from sklearn.tree import DecisionTreeClassifier
          CART = DecisionTreeClassifier()
          CART.fit(x_train, y_train)
          y pred = CART.predict(x test)
          # Compute accuracy
          accuracy_cart = accuracy_score(y_test, y_pred)
          print('Accuracy:', accuracy_cart)
          # Compute precision
          precision_cart = precision_score(y_test, y_pred)
          print('Precision:', precision_cart)
          # Compute specificity
          specificity_cart = tn / (tn + fp)
          print('Specificity:', specificity_cart)
          # Compute recall
          recall_cart = recall_score(y_test, y_pred)
          print('Recall:', recall_cart)
          # Compute sensitivity
          sensitivity_cart= tp / (tp + fn)
          print('Sensitivity:', sensitivity_cart)
          # Compute F1-score
          f1_cart = f1_score(y_test, y_pred)
          print('F1 Score:', f1 cart)
          print(classification_report(y_test, y_pred))
          print(confusion_matrix(y_test,y_pred))
          Accuracy: 0.801666666666666
          Precision: 0.3224400871459695
          Specificity: 0.963006230529595
          Recall: 0.3425925925925926
          Sensitivity: 0.19907407407407407
```

```
F1 Score: 0.33221099887766553
            precision recall f1-score support
                 0.890.880.320.34
                                    0.88
        0.0
                                              2568
        1.0
                                    0.33
                                              432
                                    0.80
                                             3000
   accuracy
               0.61
                0.61 0.61
0.81 0.80
  macro avg
                                   0.61
                                             3000
                                    0.80
                                             3000
weighted avg
[[2257 311]
[ 284 148]]
```

## **Decision Tree**

```
In [107]:
          from sklearn.tree import DecisionTreeClassifier
          DecisionTree = DecisionTreeClassifier(max depth = 6)
          DecisionTree.fit(x_train,y_train)
          y_pred = DecisionTree.predict(x_test)
          # Compute confusion matrix
          tn, fp, fn, tp = confusion matrix(y test, y pred).ravel()
          print(" Decision Tree Output")
          # Compute accuracy
          accuracy_dt = accuracy_score(y_test, y_pred)
          print('Accuracy:', accuracy_dt)
          # Compute precision
          precision_dt = precision_score(y_test, y_pred)
          print('Precision:', precision_dt)
          # Compute specificity
          specificity_dt = tn / (tn + fp)
          print('Specificity:', specificity_dt)
          # Compute recall
          recall_dt = recall_score(y_test, y_pred)
          print('Recall:', recall_dt)
          # Compute sensitivity
          sensitivity_dt= tp / (tp + fn)
          print('Sensitivity:', sensitivity_dt)
          # Compute F1-score
          f1_dt = f1_score(y_test, y_pred)
          print('F1 Score:', f1_dt)
          print(classification_report(y_test, y_pred))
          print(confusion_matrix(y_test,y_pred))
           Decision Tree Output
          Accuracy: 0.853666666666667
          Precision: 0.4808743169398907
          Specificity: 0.963006230529595
          Recall: 0.2037037037037037
          Sensitivity: 0.2037037037037037
          F1 Score: 0.28617886178861784
```

precision recall f1-score support 0.0 0.88 0.96 0.92 2568 1.0 0.48 0.20 0.29 432 0.85 3000 accuracy 0.68 0.82 0.58 0.60 3000 macro avg weighted avg 0.85 0.83 3000 [[2473 95] [ 344 88]]

## **Random Forest**

```
In [108]: from sklearn.ensemble import RandomForestClassifier
          Random_forest = RandomForestClassifier()
          Random_forest.fit(x_train,y_train)
          y_pred = Random_forest.predict(x_test)
          #classification_report(y_test,y_pred)
          # Compute confusion matrix
          tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel()
          print("Output Random Forest")
          # Compute accuracy
          accuracy_rf = accuracy_score(y_test, y_pred)
          print('Accuracy:', accuracy_rf)
          # Compute precision
          precision_rf = precision_score(y_test, y_pred)
          print('Precision:', precision_rf)
          # Compute specificity
          specificity_rf = tn / (tn + fp)
          print('Specificity:', specificity_rf)
          # Compute recall
          recall_rf = recall_score(y_test, y_pred)
          print('Recall:', recall_rf)
          # Compute sensitivity
          sensitivity_rf= tp / (tp + fn)
          print('Sensitivity:', sensitivity_rf)
          # Compute F1-score
          f1_rf = f1_score(y_test, y_pred)
          print('F1 Score:', f1_rf)
          print(classification_report(y_test, y_pred))
          print(confusion_matrix(y_test,y_pred))
          Output Random Forest
          Accuracy: 0.856
          Precision: 0.5
          Specificity: 0.9809190031152648
          Recall: 0.11342592592592593
          Sensitivity: 0.11342592592592593
          F1 Score: 0.1849056603773585
                        precision recall f1-score support
                             0.87
                                     0.98
                   0.0
                                                 0.92
                                                           2568
```

weighted avg [[2519 49] [ 383 49]]

1.0

accuracy

macro avg

0.50

0.68 0.55 0.82 0.86

0.11

0.18

0.86

0.55

0.82

432

3000

3000

3000

```
In [109]:
          import seaborn as sns
          from sklearn.tree import plot_tree
          model = DecisionTreeClassifier(criterion='entropy', max depth=3,splitter='b
          model.fit(x_train,y_train)
          target_pred = model.predict(x_test)
          # Compute accuracy
          accuracy c50 = accuracy score(y test, y pred)
          print('Accuracy:', accuracy_c50)
          # Compute precision
          precision_c50 = precision_score(y_test, y_pred)
          print('Precision:', precision_c50)
          # Compute specificity
          specificity_c50 = tn / (tn + fp)
          print('Specificity:', specificity_c50)
          # Compute recall
          recall_c50 = recall_score(y_test, y_pred)
          print('Recall:', recall_c50)
          # Compute sensitivity
          sensitivity_c50= tp / (tp + fn)
          print('Sensitivity:', sensitivity_c50)
          # Compute F1-score
          f1_c50 = f1_score(y_test, y_pred)
          print('F1 Score:', f1_c50)
          print(f"\n Classification Report:")
          print(classification_report(y_test,y_pred))
          plt.figure(figsize=(50,30), dpi=250)
          plot_tree(model, fontsize=20, filled=True, feature_names=x.columns);
          Accuracy: 0.856
          Precision: 0.5
          Specificity: 0.9809190031152648
          Recall: 0.11342592592592593
          Sensitivity: 0.11342592592592593
          F1 Score: 0.1849056603773585
```

Classification Report:

|             | precision | recall | f1-score | support |
|-------------|-----------|--------|----------|---------|
| 0.0         | 0.87      | 0.98   | 0.92     | 2568    |
| 1.0         | 0.50      | 0.11   | 0.18     | 432     |
| accuracy    |           |        | 0.86     | 3000    |
| macro avg   | 0.68      | 0.55   | 0.55     | 3000    |
| eighted avg | 0.82      | 0.86   | 0.82     | 3000    |
| macro avg   |           |        | 0.55     | 300     |



# **Support Vector Machine**

```
In [110]:
          from sklearn.svm import SVC
          svm = SVC(gamma = 'auto')
          svm.fit(x_train,y_train)
          y_pred = svm.predict(x_test)
          # Compute confusion matrix
          tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel()
          print("Support Vector Machines (SVM) Output")
          # Compute accuracy
          accuracy_svm = accuracy_score(y_test, y_pred)
          print('Accuracy:', accuracy_svm)
          # Compute precision
          precision_svm = precision_score(y_test, y_pred)
          print('Precision:', precision_svm)
          # Compute specificity
          specificity_svm = tn / (tn + fp)
          print('Specificity:', specificity_svm)
          # Compute recall
          recall_svm = recall_score(y_test, y_pred)
          print('Recall:', recall_svm)
          # Compute sensitivity
          sensitivity_svm= tp / (tp + fn)
          print('Sensitivity:', sensitivity_svm)
          # Compute F1-score
          f1_svm = f1_score(y_test, y_pred)
          print('F1 Score:', f1_svm)
          print(classification_report(y_test, y_pred))
          print(confusion_matrix(y_test,y_pred))
          Support Vector Machines (SVM) Output
          Accuracy: 0.858
          Precision: 0.6071428571428571
          Specificity: 0.9957165109034268
          Recall: 0.03935185185185
          Sensitivity: 0.03935185185185185
          F1 Score: 0.07391304347826087
                        precision recall f1-score support
```

0.86 1.00 0.92 0.0 2568 0.04 0.07 432 1.0 0.61 0.86 3000 accuracy 0.73 0.52 0.82 0.86 3000 macro avg 0.50 weighted avg 0.80 3000 [[2557 11] [ 415 17]]

## **ANN**

```
In [111]:
          from sklearn.neural_network import MLPClassifier
          ann = MLPClassifier(hidden_layer_sizes=(10,10,10), max_iter = 1000)
          ann.fit(x_train,y_train.values.ravel())
          y_pred = ann.predict(x_test)
          # Compute confusion matrix
          tn, fp, fn, tp = confusion matrix(y test, y pred).ravel()
          print(" Artifical Neural Network ANN Output")
          # Compute accuracy
          accuracy_ann = accuracy_score(y_test, y_pred)
          print('Accuracy:', accuracy_ann)
          # Compute precision
          precision_ann = precision_score(y_test, y_pred)
          print('Precision:', precision_ann)
          # Compute specificity
          specificity_ann = tn / (tn + fp)
          print('Specificity:', specificity_ann)
          # Compute recall
          recall_ann = recall_score(y_test, y_pred)
          print('Recall:', recall_ann)
          # Compute sensitivity
          sensitivity_ann= tp / (tp + fn)
          print('Sensitivity:', sensitivity_ann)
          # Compute F1-score
          f1_ann = f1_score(y_test, y_pred)
          print('F1 Score:', f1_ann)
          print(classification_report(y_test, y_pred))
          print(confusion_matrix(y_test,y_pred))
           Artifical Neural Network ANN Output
          Accuracy: 0.862
          Precision: 0.60975609756
          Specificity: 0.9875389408099688
          Recall: 0.11574074074074074
          Sensitivity: 0.11574074074074074
          F1 Score: 0.19455252918287938
                        precision recall f1-score support
                   0.0
                             0.87 0.99
                                                 0.92
                                                           2568
                   1.0
                             0.61
                                     0.12
                                                 0.19
                                                           432
                                                 0.86
                                                           3000
              accuracy
```

0.74

0.83 0.86

macro avg

32]

50]]

weighted avg

[[2536

[ 382

0.55

0.56

0.82

3000

3000

```
In [116]:
          # Algorithms used
          algorithms = ['NB', 'KNN', 'CART', 'DT', 'RF', 'C_50', 'SVM', 'ANN']
          accuracies = [accuracy_nb, accuracy_knn,accuracy_cart , accuracy_dt, accura
          precisions = [precision_nb, precision_knn, precision_cart , precision_dt, p
          recalls = [recall_nb, recall_knn,recall_cart , recall_dt, recall_rf, recall
          f1_scores = [f1_nb, f1_knn,f1_cart , f1_dt, f1_rf, f1_svm,f1_c50 , f1_ann]
          specificities = [specificity_nb, specificity_knn,specificity_cart , specifi
          # Plotting
          x = np.arange(len(algorithms))
          width = 0.15
          fig, ax = plt.subplots()
          rects1 = ax.bar(x - width*2, accuracies, width, label='Accuracy')
          rects2 = ax.bar(x - width, precisions, width, label='Precision')
          rects3 = ax.bar(x, recalls, width, label='Recall')
          rects4 = ax.bar(x + width, f1_scores, width, label='F1 Score')
          rects5 = ax.bar(x + width*2, specificities, width, label='Specificity')
          ax.set_xlabel('Algorithms')
          ax.set_ylabel('Scores')
          ax.set_title('Scores by Algorithm and Metric')
          ax.set xticks(x)
          ax.set_xticklabels(algorithms)
          ax.legend()
          plt.show()
```

