

Model Optimization and Tuning Report

Date	15 April 2024	
Team ID	Team-738164	
Project Title	Rainfall Prediction Using Machine Learning	
Maximum Marks	10 Marks	

Model Optimization and Tuning Phase:

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Logistic Regression	<pre>Hyperparameter Tuning In [84]: logreg_params = { 'c': [1, 108, 106], 'fit_intercept': [True, False], 'max.iter': [50, 100, 150], 'random_state': [42] } logreg_gs = Gridsearckv(logreg, logreg_params, scoring='accuracy', n_jobs=-1, cv=3) logreg_gs_fit(X train, y train)</pre>	in [89]: [logreg.gs.hest.puram_ out[89]: ['C': 100000000.8, 'fit_intercept': True, 'max_itter': 50, 'random_state': 40] Checking model fitness Train score: 0.8469 Test score: 0.8421
Random Forest	<pre>Hyperparameter Tuning In [104]: rf_params = {</pre>	In [107]: rf_gs.best_params_ Out[107]: {'criterion': 'gini',

Performance Metrics Comparison Report (2 Marks):

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
XG-Boost	The best performing model is the hyperparameter-tuned XG-Boost model with an accuracy of approximately 86%. The scores for both the training and testing data were similar, reducing concerns of the model being overfit.