# Matemáticas Discretas Relaciones

Nicolás Alvarado nfalvarado@mat.uc.cl

Sebastián Bugedo bugedo@uc.cl Bernardo Barías bjbarias@uc.cl

Gabriel Diéguez gsdieguez@ing.puc.cl

Departamento de Ciencia de la Computación Escuela de Ingeniería Pontificia Universidad Católica de Chile

13 de septiembre de 2023

# Objetivos

- Formular enunciados formales en notación matemática usando lógica, conjuntos, relaciones, funciones, cardinalidad, y otras herramientas, desarrollando definiciones y teoremas al respecto, así como demostrar o refutar estos enunciados, usando variadas técnicas.
- Aplicar inducción como técnica para demostración de propiedades en conjuntos discretos y como técnica de definición formal de objetos discretos.
- Modelar formalmente un problema usando lógica, conjuntos, relaciones, y las propiedades necesarias, y demostrar propiedades al respecto de su modelo.

#### Contenidos

- Objetivos
- 2 Introducción
- 3 Definiciones básicas
- 4 Relaciones binarias

#### Introducción

Las relaciones son un concepto muy usado en computación.

- Principalmente en Bases de Datos.
- ; Bases de datos relacionales?

Intuitivamente, una relación matemática puede verse como una correspondencia entre elementos de distintos dominios.

• En una base de datos, esta correspondencia está dada por una tabla.

# Introducción

| $N^\circ$ alumno | Nombre   | Apellido | Carrera              | Año |
|------------------|----------|----------|----------------------|-----|
| 154              | Diego    | Valdés   | Ingeniería comercial | 5   |
| 339              | María    | Espinoza | Pedagogía            | 2   |
| 271              | José     | Barros   | Periodismo           | 3   |
| 404              | Josefina | Sáez     | Medicina             | 1   |

#### Definición

Sean  $a, b \in \mathcal{U}$  (donde  $\mathcal{U}$  es un conjunto universal). Definimos el **par ordenado** (a, b) como

$$(a,b) = \{\{a\}, \{a,b\}\}$$

¿Por qué lo definimos así?

• Para establecer la igualdad entre dos pares ordenados.

#### **Propiedad**

$$(a,b)=(c,d)$$
 si y sólo si  $a=c \wedge b=d$ .

## **Ejercicio**

Demuestre la propiedad anterior.

#### Propiedad

(a,b)=(c,d) si y sólo si  $a=c \wedge b=d$ .

#### Demostración:

- $(\Rightarrow)$  Debemos demostrar que si (a,b)=(c,d), entonces  $a=c \land b=d$ . Por definición de par ordenado, tenemos que  $\big\{\{a\},\{a,b\}\big\}=\big\{\{c\},\{c,d\}\big\}$ . Para facilitar la demostración veremos dos casos:
  - ① a=b: En este caso  $\big\{\{a\},\{a,b\}\big\}=\big\{\{a\},\{a,a\}\big\}$ , y por axioma de extensión esto es igual a  $\big\{\{a\},\{a\}\big\}$ . Nuevamente por axioma de extensión, obtenemos  $\big\{\{a\}\big\}$ . Luego, tenemos que  $\big\{\{a\}\big\}=\big\{\{c\},\{c,d\}\big\}$ . Por axioma de extensión, tenemos que  $\big\{a\}=\big\{c\}$  y  $\big\{a\}=\big\{c,d\big\}$ . De lo primero, por axioma de extensión obtenemos que a=c, y aplicando esto último en lo segundo tenemos que  $\big\{c\}=\big\{c,d\big\}$ , y por lo tanto por axioma de extensión c=d. Como a=b, a=c y c=d, se deduce también que b=d, y queda demostrado lo que queríamos.

## Propiedad

(a,b)=(c,d) si y sólo si  $a=c \wedge b=d$ .

#### Demostración:

 $(\Rightarrow)$ 

2  $a \neq b$ : Como  $\big\{\{a\}, \{a,b\}\big\} = \big\{\{c\}, \{c,d\}\big\}$ , por axioma de extensión se debe cumplir que  $\{a\} = \{c\}$  o  $\{a,b\} = \{c\}$ . Como  $a \neq b$ , por axioma de extensión no puede ser posible la segunda opción (pues los conjuntos tienen distinta cantidad de elementos), y entonces necesariamente  $\{a\} = \{c\}$ . Aplicando nuevamente el axioma de extensión, concluimos que a = c. Aplicando este resultado a la igualdad inicial obtenemos que  $\big\{\{a\}, \{a,b\}\big\} = \big\{\{a\}, \{a,d\}\big\}$ , y luego por axioma de extensión  $\{a,b\} = \{a,d\}$ . Finalmente, aplicando nuevamente el axioma de extensión, se deduce que b = d, quedando demostrado lo deseado.

## Propiedad

(a,b)=(c,d) si y sólo si  $a=c\wedge b=d.$ 

#### Demostración:

 $(\Leftarrow) \text{ Debemos demostrar que si } a=c \land b=d \text{, entonces } (a,b)=(c,d). \text{ Si se cumplen tales igualdades, entonces la siguiente igualdad también se cumple: } \left\{\{a\},\{a,b\}\right\}=\left\{\{c\},\{c,d\}\right\}. \text{ Aplicando la definición de par ordenado, obtenemos entonces que } (a,b)=(c,d). \ \square$ 

## Ejercicio

Considere la siguiente definición alternativa de un par ordenado:

$$(a,b) = \{a, \{b\}\}$$

¿Se cumple la propiedad anterior?

R: No. Tomemos por ejemplo los siguientes elementos:

$$a = \{x\}, b = y, c = \{y\}, d = x, \text{ con } x \neq y.$$

Es claro que  $a \neq c$  y  $b \neq d$ . Sin embargo, si construimos los pares ordenados con esta definición alternativa:

$$(a,b) = (\{x\},y) = \{\{x\},\{y\}\}\}$$
  
 $(c,d) = (\{y\},x) = \{\{y\},\{x\}\}$ 

Estos conjuntos son iguales por axioma de extensión, y luego la propiedad de igualdad de pares ordenados no se cumple con esta definición.

Podemos extender el concepto a tríos ordenados:

$$(a,b,c) = ((a,b),c)$$

o a cuadruplas ordenadas:

$$(a, b, c, d) = ((a, b, c), d) = (((a, b), c), d)$$

En general:

#### Definición

Sean  $a_1, \ldots, a_n \in \mathcal{U}$ . Definimos una n-tupla como:

$$(a_1,\ldots,a_n)=((a_1,\ldots,a_{n-1}),a_n).$$

#### Definición

Dados dos conjuntos A y B, definimos el **producto cartesiano** entre A y B como

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

# Ejemplo

Si  $A=\{1,2\}$  y  $B=\{3,4\}$ , entonces  $A\times B=\{(1,3),(1,4),(2,3),(2,4)\}.$ 

También podemos extender esta noción.

#### Definición

Dados conjuntos  $A_1,\ldots,A_n$ , definimos el **producto cartesiano** entre los  $A_i$  como

$$A_1 \times \ldots \times A_n = \{(a_1, \ldots, a_n) \mid a_1 \in A_1 \wedge \ldots \wedge a_n \in A_n\}$$

# Ejercicio

Defina el producto cartesiano de dimensión n usando la definición de producto cartesiano entre dos conjuntos.

Respuesta:  $A_1 \times \ldots \times A_n = (A_1 \times \ldots \times A_{n-1}) \times A_n$ 

Note que esta definición es recursiva: para calcular  $A_1 \times ... \times A_{n-1}$  se debe aplicar de nuevo la definición hasta llegar a un producto cartesiano entre dos conjuntos.

#### Definición

Dados conjuntos  $A_1, \ldots, A_n$ , diremos que R es una **relación** sobre tales conjuntos si  $R \subseteq A_1 \times \ldots \times A_n$ .

#### **Ejercicio**

Defina la suma sobre los naturales como una relación sobre  $\mathbb{N}, \mathbb{N}, \mathbb{N}$ .

$$+_{\mathbb{N}} = \{(n_1, n_2, n_3) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} \mid sum(n_1, n_2) = n_3\}$$

$$(3, 4, 7) \in +_{\mathbb{N}} \qquad (0, 0, 1) \notin +_{\mathbb{N}}$$

Recuerde que sum es la suma que definimos en el capítulo de teoría de conjuntos.

La aridad de una relación R es el tamaño de las tuplas que la componen.

• Equivalentemente, diremos que R es una relación n-aria.

# Ejemplo

La tabla que vimos al inicio:

| $N^\circ$ alumno | Nombre   | Apellido | Carrera              | Año |
|------------------|----------|----------|----------------------|-----|
| 154              | Diego    | Valdés   | Ingeniería comercial | 5   |
| 339              | María    | Espinoza | Pedagogía            | 2   |
| 271              | José     | Barros   | Periodismo           | 3   |
| 404              | Josefina | Sáez     | Medicina             | 1   |

representa una relación 5-aria.

Un caso particular de suma importancia:

#### Definición

Dados conjuntos A y B, diremos que R es una **relación binaria** de A en B si  $R \subseteq A \times B$ .

# Ejemplo

Si  $A=\{1,2\}$  y  $B=\{3,4\}$ , entonces  $R=\{(1,3),(2,4)\}$  es una relación binaria de A en B.

# Ejercicio

¿Cuántas posibles relaciones binarias hay sobre dos conjuntos A y B?

Respuesta: Hay tantas como el tamaño del conjunto potencia de  $A \times B$ . Si A y B son finitos y de tamaño m y n respectivamente, entonces hay  $2^{m \cdot n}$  relaciones binarias posibles.

Podemos tener una relación sobre un solo conjunto:

#### Definición

Dado un conjunto A, diremos que R es una **relación binaria** sobre A si  $R \subseteq A \times A = A^2$ .

**Notación:** cuando tengamos productos cartesianos entre un mismo conjunto, usaremos una notación de "potencia":

$$A \times \stackrel{(n-2 \text{ veces})}{\dots} \times A = A^n$$

# Ejemplo

La relación binaria menor que:

$$\leq \subseteq \mathbb{N}^2$$
,

definida como sigue: dados  $m, n \in \mathbb{N}$ :

$$(m,n) \in < \text{si y sólo si } m \in n.$$

$$(1,3) \in < \qquad (10,4) \not\in < \qquad (7,7) \not\in <$$

La notación de conjuntos es un poco incómoda:  $i(3,17) \in <?$ 

Dados  $a, b \in A$ , para indicar que están relacionados a través de R usamos cualquiera de las siguientes notaciones:

- $\bullet$   $(a,b) \in R$
- $\bullet$  R(a,b)
- aRb
  - Si no están relacionados, podemos escribir a Rb.

Nuestra elección dependerá del contexto.

# **Ejemplo**

Ahora podríamos escribir:

$$3 < 17$$
  $7 \nleq 6$ 

# Paréntesis: notación infija

La última forma de escribir relaciones se llama notación infija.

Podemos extender tal notación a relaciones de mayor aridad. Por ejemplo, podríamos escribir  $n_1+n_2=n_3$  si  $(n_1,n_2,n_3)\in +_{\mathbb{N}}$ :

$$3 + 4 = 7$$

y por lo tanto  $n_1 + n_2 = n_3$  si y sólo si  $sum(n_1, n_2) = n_3$ .

¡Cuidado! El símbolo = ocupado en la primera parte es sólo un símbolo que forma parte de nuestra notación, y no debe ser confundido con el símbolo = usado en la segunda parte, que representa la igualdad de conjuntos definida en el capítulo anterior.

# Matemáticas Discretas Relaciones

Nicolás Alvarado nfalvarado@mat.uc.cl

Sebastián Bugedo bugedo@uc.cl Bernardo Barías bjbarias@uc.cl

Gabriel Diéguez gsdieguez@ing.puc.cl

Departamento de Ciencia de la Computación Escuela de Ingeniería Pontificia Universidad Católica de Chile

13 de septiembre de 2023