Безусловная оптимизация

20 февраля 2019 г. 14:09

Tags used:

Homework

Example

Definitions used

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
- вектор (x в методичке)

В примерах accent обычно опускается, т.к. надо быстро печатать $x^{(0)}$, $x^{(1)}$, ... — результаты итерации, если используются x_n как компоненты. В противном случае, результаты итерации - $x_0, x_1, ...$

Безусловная оптимизация

Преподаватель - Балтрашевич В.Э.

$$X = \mathbb{R}^n$$

Если f- дифференцируема, то в точке минимума $\nabla f(x)=0$

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$$

Релаксационные методы - методы построения последовательности $\{x_i\}, x_i \in X$:

- $f(x_0) > f(x_1) > \cdots$
- $x_i \rightarrow x^* = \arg\min\{f(x), x \in X\}$

Порядок метода - порядок старшей производной f, используемой при работе метода.

Общая схема

$$\boxed{\overrightarrow{x_{k+1}} = \overrightarrow{x_k} + t_k \overrightarrow{S_k}}$$

 $\overrightarrow{\overline{S_k}}$ — некоторый вектор, определяющий направление изменения $\overrightarrow{x_k}$ t_k — длина шага

Методы могут быть

- Одношаговые $\overrightarrow{S_k} = \varphi(x_k)$
- Двухшаговые $\overrightarrow{S_k} = \varphi(x_k, x_{k-1})$

Сходимость релаксационного метода

d=const- наибольшее из чисел, при котором выполняется условие

$$\exists c: \forall k \ \|\overrightarrow{x_{k+1}} - \overrightarrow{x^*}\| \le c \cdot \|x_k - x^*\|^d$$
 Тогда d — скорость сходимости.

$$\Delta_k := \left\| \overrightarrow{x_k} - \overrightarrow{x^*} \right\|; \Delta_k \underset{k \to \infty}{\longrightarrow} 0 \Rightarrow d = \lim_{k \to \infty} \frac{\ln \Delta_{k+1}}{\ln \Delta_k}$$

Методы первого порядка (градиентные методы)

См. ФОИТ :: Метод градиентного спуска

Градиентный метод с постоянным шагом

 t_k не зависит k, т.е. $t_k = const$

Тогда итерационная формула:

$$\overrightarrow{x_{k+1}} = \overrightarrow{x_k} - t\nabla f(\overrightarrow{x_k})$$

Теорема о сходимости метода с постоянным шагом

Если:

- f дифференцируема на \mathbb{R}^n
- $\nabla f(x)$ удовлетворяет глобальному условию Липшица $\exists L > 0: \forall \vec{x}, \vec{y}: \|\nabla f(\vec{x}) - \nabla f(\vec{y})\| \le L \cdot \|\vec{x} - \vec{y}\|$
- f ограничена снизу, т.е. $\exists f^*$, т. ч. $\forall \vec{x} : f(\vec{x}) \ge f^* > -\infty$
- $0 < t < \frac{2}{r}$

Тогда для последовательности $\{\overrightarrow{x_k}\}$, получаемого по формуле $\overrightarrow{x}_{i+1} = \overrightarrow{x_k} - t \nabla f(x_k)$

- $\forall k: f(x_{k+1}) \le f(x_k) t\left(1 t^{\frac{L}{2}}\right) \cdot \|\nabla f(\overrightarrow{x_k})\|^2$ $\{f(\overrightarrow{x_k})\}$ монотонно убывает: $f(\overrightarrow{x_{k+1}}) < f(\overrightarrow{x_k})$ при $\nabla f(\overrightarrow{x_k}) \neq 0$
- $\nabla f(\overrightarrow{x_k}) \xrightarrow[k \to \infty]{} 0$

Доказательство

$$\frac{df(\vec{x} + \tau \vec{y})}{d\tau} = (\nabla f(\vec{x} + \tau \vec{y}), y) \Rightarrow$$

$$f(\vec{x} + \vec{y}) = f(\vec{x}) + (\nabla f(\vec{x}), y) + \int_0^1 (\nabla f(\vec{x} + \tau \vec{y}) - \nabla f(\vec{x}), y) d\tau$$
Пусть $\vec{x} = \overrightarrow{x_k}; y = -t \nabla f(\overrightarrow{x_k})$

Тогда

$$f(\overrightarrow{x_{k+1}}) = f(\overrightarrow{x_k}) - t \cdot \|\nabla f(x_k)\|^2 + \int_0^1 (\nabla f(\overrightarrow{x_k} + \tau t \nabla f(\overrightarrow{x_k})) - \nabla f(\overrightarrow{x_k}), -t \nabla f(\overrightarrow{x_k})) d\tau$$

С учётом $(x, y) \le ||x|| \cdot ||y||$ и неравенства Липшица:

$$\begin{split} & \left(\nabla f \left(\overrightarrow{x_k} - t \tau \nabla f \left(\overrightarrow{x_k} \right) \right) - \nabla f \left(\overrightarrow{x_k} \right), -t \nabla f \left(\overrightarrow{x_k} \right) \right) \leq \\ & \leq \left\| \nabla f \left(\overrightarrow{x_k} - t \tau \nabla f \left(\overrightarrow{x_k} \right) \right) - \nabla f \left(\overrightarrow{x_k} \right) \right\| \cdot \left\| -t \nabla f \left(\overrightarrow{x_k} \right) \right\| \leq \\ & \leq L \| -t \tau \nabla f \left(\overrightarrow{x_k} \right) \| \cdot \left\| -t \nabla f \left(\overrightarrow{x_k} \right) \right\| = L t^2 \tau \| \nabla f \left(\overrightarrow{x_k} \right) \|^2 \end{split}$$

Тогда

$$f(\overrightarrow{x_{k+1}}) \leq f(\overrightarrow{x_k}) - t \|\nabla f(\overrightarrow{x_k})\|^2 + Lt^2 \|\nabla f(\overrightarrow{x_k})\|^2 \int_0^1 \tau d\tau = f(\overrightarrow{x_k}) - \tau \left(1 - \frac{Lt}{2}\right) \|\nabla f(\overrightarrow{x_k})\|^2$$

$$a := t \left(1 - \frac{Lt}{2}\right); 0 < t < \frac{2}{L} \Rightarrow a > 0 \Rightarrow \forall k : f(\overrightarrow{x_{k+1}}) \leq f(\overrightarrow{x_k}) - a \|\nabla f(\overrightarrow{x_k})\|^2$$

Сложим полученные неравенства при k = 0,1,...,s:

$$f(\overrightarrow{x_{s+1}}) \leq f(\overrightarrow{x_0}) - a \sum_{k=0}^{s} \|\nabla f(\overrightarrow{x_k})\|^2$$

$$a > 0 \Rightarrow \sum_{k=0}^{s} \|\nabla f(\overrightarrow{x_k})\|^2 \leq a^{-1} \left(f(\overrightarrow{x_0}) - f(\overrightarrow{x_{s+1}}) \right)$$

$$f(\overrightarrow{x}) \geq f^* > -\infty \Rightarrow \forall s: \sum_{k=0}^{s} \|\nabla f(\overrightarrow{x_k})\|^2 \leq a^{-1} \left(f(\overrightarrow{x_0}) - f^* \right) \Rightarrow$$

$$\Rightarrow \sum_{k=0}^{s} \|\nabla f(\overrightarrow{x_k})\|^2 < \infty; \ \|\nabla f(\overrightarrow{x_k})\|_{\overrightarrow{k} \to \infty} 0 \blacksquare$$

Покоординатный спуск

На каждом этапе выполняется шаг только по одной координате

<u> Пример [ДЗ 27.02.2019]</u>

$$f(x_1, x_2) = x_1^2 + (x_2 - 1)^2$$

Пусть метод градиентного спуска начинается из точки (0,0)

Первое направление - $\binom{1}{0}$, второе - $\binom{0}{1}$

$$x^{(0)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x^{(1)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \gamma \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -\gamma \\ 0 \end{pmatrix}$$

$$f(x^{(1)}) = \gamma^{2}$$

$$f' = 2\gamma$$

$$f' = 0 \Rightarrow \gamma = 0 \Rightarrow x^{(1)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x^{(2)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \gamma \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -\gamma \end{pmatrix}$$

$$f(x^{(2)}) = (-\gamma - 1)^{2} = \gamma^{2} + 2\gamma + 1 = \psi(\gamma)$$

$$f' = 2\gamma + 2$$

$$f' = 0 \Rightarrow \gamma = -1 \Rightarrow x^{(2)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Выпуклые функции и множества

$$\overrightarrow{X} \subseteq \mathbb{R}^n$$
 — выпуклое, если $\forall \overrightarrow{x_1}, \overrightarrow{x_2} \in X, \lambda \in [0,1]$: $\lambda \overrightarrow{x_1} + (1-\lambda)\overrightarrow{x_2} \in X$ \overrightarrow{z} — выпуклая комбинация $\overrightarrow{x_1}, \overrightarrow{x_2}, \dots, \overrightarrow{x_m}$, если $\overrightarrow{z} = \sum_{i=1}^m a_i \overrightarrow{x_i}$, $a_i \geq 0, \sum a_i = 1$

Теорема о выпуклом множестве

Выпуклое множество X содержит все выпуклые комбинации своих точек

План доказательства

Доказательство методом индукции.

Для двух точек очевидно

 $\forall x \; \exists \lambda \colon x_1 \cdot \lambda + x_2 \cdot (1 - \lambda) = x$

Добавим ещё одну точку:

$$x' = \lambda_1 x_1 + (1 - \lambda_1) x_2$$

$$x = \lambda_2 x' + (1 - \lambda_2) x_3 = \lambda_2 \lambda_1 x_1 + \lambda_2 (1 - \lambda_1) x_2 + (1 - \lambda_2) x_3$$

$$\alpha_1 = \lambda_1 \lambda_2$$

$$\alpha_2 = \lambda_2 - \lambda_1 \lambda_2$$

$$\alpha_3 = 1 - \lambda_2$$

$$\sum \alpha_i = \lambda_1 \lambda_2 + \lambda_2 - \lambda_1 \lambda_2 + 1 - \lambda_2 = 1$$

Далее по индукции

Теорема. Пересечение выпуклых множеств выпукло.

Доказательство

Пусть X, Y — выпуклые, т.е.

 $Z \coloneqq X \cap Y -$ пересечение

По определению $Z \subseteq X$, $Z \subseteq Y$. По теореме о выпуклом множестве Z — выпукло \blacksquare

Функция f называется **выпуклой**, если:

- D(f) область определения выпукла
- $\forall \overrightarrow{x_1}, \overrightarrow{x_2} \in D(f): f(\lambda \overrightarrow{x_1} + (1 \lambda) \overrightarrow{x_2})) \le \lambda f(\overrightarrow{x_1}) + (1 \lambda) f(\overrightarrow{x_2}), \lambda \in (0,1)$

Функция f называется **вогнутой**, если -f выпукла.

Функция f называется **строго выпуклой**, если $\forall \vec{x} \neq y, 0 < \lambda < 1 : f(\lambda \vec{x} + (1 - \lambda) \vec{y}) < \lambda f(x) + (1 - \lambda) f(y)$

Функция f называется **сильновыпуклой** с константой l>0, если $\forall \lambda \in [0,1]$: $f(\lambda \vec{x} + (1-\lambda)\vec{y}) \leq \lambda f(x) + (1-\lambda)f(y) - l\lambda(1-\lambda)\|\vec{x} - \vec{y}\|$

Свойства выпуклых функций

1. Любая точка локального минимума выпуклой функции является точкой её глобального минимума Доказательство Пусть \vec{x}^* — локальный, но не глобальный минимум. Значит

$$\exists \vec{y} \in X : f(\vec{y}) < f(\vec{x}^*)$$

Пусть $\vec{x} = \lambda \vec{y} + (1 - \lambda) \vec{x}^*, \lambda \in (0,1)$

Т.к. X — выпукло, $\vec{x} \in X$.

Т.к. f — выпукла, $f(\vec{x}) = f(\lambda \vec{y} + (1 - \lambda) \vec{x}^*) \le \lambda f(y) + (1 - \lambda) f(\vec{x}^*) + (1 - \lambda) f(\vec{x}^*)$ $\lambda f(\vec{x}^*) = f(\vec{x}^*)$

Выходит, что $\forall \lambda \in (0,1)$: $f(\vec{x}) < f(\vec{x}^*)$. Значит, \vec{x}^* — не локальный минимум.

2. Критерий выпуклости дифференцируемых функций

Пусть $\exists f''$ — непрерывна.

f — выпукла $\Leftrightarrow f^{\prime\prime} > 0$

f — сильновыпукла $\Leftrightarrow \exists l, \forall x : \nabla^2 f(\vec{x}) \geq l\vec{l}$

3. Неравенство Йенсена

f — выпукла

$$\Longleftrightarrow \forall m \geq 2, \overrightarrow{x_1}, \overrightarrow{x_2}, \dots, \overrightarrow{x_m} \in X, \lambda_i \geq 0, \sum_{i=1}^m \lambda_i = 1:$$

$$f\left(\sum_{i=1}^{m} \lambda_i \overrightarrow{x_i}\right) \le \sum_{i=1}^{m} \lambda_i f(\overrightarrow{x_i})$$

[док-во см. 9-10 мет. опт.]

5. f — дифференцируемая функция на выпуклом множестве X.

$$\forall \vec{x}, \vec{y} \in X: f(\vec{x} + \vec{y}) \ge f(\vec{x}) + (\nabla f(\vec{x}), \vec{y})$$

> Строгая выпуклость эквивалентна

$$\forall \vec{y} \neq 0, \vec{x} \in X: f(\vec{x} + \vec{y}) \geq f(\vec{x}) + (\nabla f(\vec{x}), \vec{y})$$

> Сильная выпуклость эквивалентна

$$\forall \vec{x}, \vec{y} \in X, l > 0: f(\vec{x} + \vec{y}) \ge f(\vec{x}) + (\nabla f(\vec{x}), \vec{y}) + \frac{l ||\vec{y}||^2}{2}$$

6. Для сильновыпуклых функций:

$$> f(\vec{x}) \ge f(\vec{x}^*) + \frac{l||\vec{x} - \vec{x}^*||^2}{2}$$

$$> (\nabla f(\vec{x}), x - \vec{x}^*) \ge l ||\vec{x} - \vec{x}^*||^2$$

$$> \|\nabla f(\vec{x})\| \ge l\|\vec{x} - \vec{x}^*\|$$

Теорема. Пусть $\exists f''$. Если для $l, L > 0 \ \forall x$ верно:

$$l\vec{l} \leq \nabla^2 f(x) \leq L\vec{l}$$

To
$$\|\overrightarrow{x_k} - \overrightarrow{x^*}\| \le \|x_0 - x^*\| \cdot q^k$$

$$q = \max\{|1 - \gamma l|, |1 - \gamma L|\}$$

$$\min q = \frac{L - l}{l + l} < 1$$

$$\min q = \frac{L - l}{l + l} < 1$$

[доказательство см. 11 мет. опт.]

Доказательство.

По определению выпуклой функции

$$\lambda \in (0,1), \forall \overrightarrow{x_1}, \overrightarrow{x_2} \in X:$$

$$\varphi(\lambda \overrightarrow{x_1} + (1-\lambda)\overrightarrow{x_2})) \leq \lambda \varphi(\overrightarrow{x_1}) + (1-\lambda)\varphi(\overrightarrow{x_2})$$

Докажем, что: $\max\{a + b, 0\} \le \max\{a, 0\} + \max\{b, 0\}$

- $a \ge 0, b \ge 0 \Rightarrow \max\{a + b, 0\} = a + b = \max\{a, 0\} + \max\{b, 0\}$
- $a < 0, b \ge 0, a + b > 0 \Rightarrow a + b < b \Rightarrow$ $\max\{a + b, 0\} = a + b < b = \max\{a, 0\} + \max\{b, 0\}$
- $a < 0, b \ge 0, a + b < 0 \Rightarrow$ $\max\{a + b, 0\} = 0 < b = \max\{a, 0\} + \max\{b, 0\}$

Очевидно: $\max\{ac, 0\} = c \cdot \max\{a, 0\}$, если c > 0

Очевидно: $max\{a, 0\} \le max\{b, 0\}$, если $a \le b$

$$\begin{split} &f(\lambda \overrightarrow{x_1} + (1-\lambda)\overrightarrow{x_2}) = \max\{\varphi(\lambda \overrightarrow{x_1} + (1-\lambda)\overrightarrow{x_2}), 0\} \leq \max\{\lambda \varphi(\overrightarrow{x_1}) + (1-\lambda)\varphi(\overrightarrow{x_2}), 0\} \leq \\ &\leq \max\{\lambda \varphi(\overrightarrow{x_1}), 0\} + \max\{(1-\lambda)\varphi(\overrightarrow{x_2}), 0\} = \lambda \max\{\varphi(\overrightarrow{x_1}, 0\} + (1-\lambda)\max\{\varphi(\overrightarrow{x_2}), 0\} = \\ &= \lambda f(\overrightarrow{x_1}) + (1-\lambda)f(\overrightarrow{x_2}) \blacksquare \end{split}$$

Метод с дроблением шага, метод наискорейшего спуска

См. ФОИТ :: Метод градиентного спуска

Пример метода наискорейшего спуска

$$\overline{f(x_1, x_2) = x_1^2 + (x_2 - 1)^2}$$

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{pmatrix} = \begin{pmatrix} 2x_1 \\ 2x_2 - 2 \end{pmatrix}$$

$$x^{(0)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x^{(1)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \gamma \begin{pmatrix} 0 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ 2\gamma \end{pmatrix}$$

$$f\Big|_{\gamma^{(1)}} = (2\gamma - 1)^2 = 4\gamma^2 - 4\gamma + 1$$

$$f' = 8\gamma - 4 = 0 \Rightarrow \gamma = \frac{1}{2} \Rightarrow x^{(1)} = {0 \choose 1}$$

Чтобы проверить, что это точка минимума, нужно найти вторую производную

$$\nabla^2 f(x_1, x_2) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$

$$\nabla^2 f \Big|_{x^{(1)}} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

Функция положительно определена, значит $x^{(1)}$ - точка минимума

Масштабирование

Заключается в замене переменных вида

$$x_i = \mu_i y_i$$

Это позволяет уменьшить вытянутость функции вдоль некоторых осей.

\bigcap Пример. ДЗ 06.03.2019 $f(x) \coloneqq x_1^2 + 16x_2^2$

$$f(x) \coloneqq x_1^2 + 16x_2^2$$

Найти минимум с масштабированием и без масштабирования.

$$x^{(0)} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}$$

Не получается

Без масштабирования

$$\begin{split} \nabla f(x) &= \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{pmatrix} = \begin{pmatrix} 2x_1 \\ 32x_2 \end{pmatrix} \\ x^{(0)} &= \begin{pmatrix} 5 \\ 5 \end{pmatrix} \\ x^{(1)} &= \begin{pmatrix} 5 \\ 5 \end{pmatrix} - \gamma \begin{pmatrix} 10 \\ 160 \end{pmatrix} = \begin{pmatrix} 5 - 10\gamma \\ 5 - 160\gamma \end{pmatrix} \\ f \Big|_{x^{(1)}} &= (5 - 10\gamma)^2 + 16(5 - 160\gamma)^2 \\ &= 25 - 100\gamma + 100\gamma^2 + 400 - 25600\gamma + 409600\gamma^2 \\ &= 409700\gamma^2 - 25700\gamma + 425 \\ f' \Big|_{x^{(1)}} &= 819400\gamma - 25700 \\ f' \Big|_{x^{(1)}} &= 0 \Rightarrow 891400\gamma = 25700 \Rightarrow \gamma = \frac{257}{8194} \\ x^{(1)} &= \begin{pmatrix} \frac{5 \cdot 8194 - 10 \cdot 257}{8194 - 160 \cdot 257} \\ \frac{5 \cdot 8194 - 160 \cdot 257}{8194} \end{pmatrix} = \begin{pmatrix} \frac{38400}{8194} \\ -150 \\ \frac{32x_1^{(1)}}{2} \end{pmatrix} = \begin{pmatrix} x_1^{(1)} - 2\gamma x_1^{(1)} \\ x_2^{(1)} - 32\gamma x_2^{(1)} \end{pmatrix} = \begin{pmatrix} x_1^{(1)} (1 - 2\gamma) \\ x_2^{(1)} (1 - 32\gamma) \end{pmatrix} \\ &= \begin{pmatrix} \frac{38400}{8194} \begin{pmatrix} 1 - 2 \cdot \frac{257}{8194} \cdot \gamma \\ -\frac{150}{8194} \begin{pmatrix} 1 - 32 \cdot \frac{257}{8194} \cdot \gamma \end{pmatrix} \\ -\frac{150}{8194} \begin{pmatrix} 1 - 32 \cdot \frac{257}{8194} \cdot \gamma \end{pmatrix} \\ &= \begin{pmatrix} \frac{314649600 - 19737600\gamma}{8194} \\ -1229100 + 2529600\gamma \\ 8194 \end{pmatrix} \\ f \Big|_{x^{(2)}} &= \begin{pmatrix} \frac{314649600 - 19737600\gamma}{8194} \end{pmatrix}^2 + 16\left(\frac{1229100 - 2529600\gamma}{8194}\right)^2 \end{split}$$

Методы оптимизации (VI) Page 7

С масштабированием

$$f(x) = x_1^2 + 16x_2^2$$

$$\mu_1 = \frac{1}{\sqrt{\frac{\partial^2 f}{\partial x_1^2}(x^{(0)})}} = \frac{1}{\sqrt{2}}$$

$$\mu_2 = \frac{1}{\sqrt{\frac{\partial^2 f}{\partial x_2^2}(x^{(0)})}} = \frac{1}{\sqrt{32}} = \frac{1}{4\sqrt{2}}$$

$$f(y) = \frac{y_1^2}{2} + \frac{y_2^2}{2}$$

$$\nabla f(y) = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

$$x^{(0)} = \begin{pmatrix} \frac{5}{\sqrt{2}} \\ \frac{5}{4\sqrt{2}} \end{pmatrix} - \gamma \begin{pmatrix} \frac{5}{\sqrt{2}} \\ \frac{5}{4\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{5}{\sqrt{2}}(1 - \gamma) \\ \frac{5}{4\sqrt{2}}(1 - \gamma) \end{pmatrix}$$

$$f\Big|_{x^{(1)}} = \frac{\left(\frac{5}{\sqrt{2}}(1 - \gamma)\right)^2}{2} + \frac{\left(\frac{5}{4\sqrt{2}}(1 - \gamma)\right)^2}{2} = \frac{(1 - \gamma)^2}{2} \begin{pmatrix} \frac{25}{2} + \frac{25}{32} \end{pmatrix}$$

$$= \frac{425}{64} - \frac{425}{32}\gamma + \frac{425}{64}\gamma^2$$

$$f'\Big|_{x^{(1)}} = \frac{425}{32}\gamma - \frac{425}{32} = 0 \Rightarrow \gamma = 1$$

$$x^{(1)} = \begin{pmatrix} \frac{5}{\sqrt{2}}(1 - 1) \\ \frac{5}{4\sqrt{2}}(1 - 1) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Метод Ньютона

Ряд Тейлора:

$$f(\vec{x}) = f(\vec{x}_k) + (\nabla f(\vec{x}_k), \vec{x} - \vec{x}_k) + \frac{1}{2}(\nabla^2 f(\vec{x}_k)(\vec{x} - \vec{x}_k), \vec{x} - \vec{x}_k) + o(||\vec{x} - \vec{x}_k||)$$

Пусть $f_2(\vec{x})$ — квадратичная аппроксимация $f(\vec{x})$

 $f_2(\vec{x})$ имеет единственную точку минимума, которая является корнем $\nabla f_2(\vec{x}) = 0$ В данном случае

$$\nabla f_2(\vec{x}) = 0 = \nabla f(\vec{x}_k) + \nabla^2 f(\vec{x}_k)(\vec{x} - \vec{x}_k)$$

$$\vec{x}_{k+1} = \vec{x}_k - [\nabla^2 f(\vec{x}_k)]^{-1} \nabla f(\vec{x}_k)$$

Пример

$$\overrightarrow{f(\vec{x})} = \frac{1}{2} (A\vec{x}, \vec{x}) - (\vec{b}, \vec{x})$$

$$\nabla f(\vec{x}) = A\vec{x} - \vec{b}$$

$$\nabla f(\vec{x}) = 0 \Rightarrow \vec{x} = A^{-1}\vec{b}$$

$$\nabla^2 f(\vec{x}_k) = A$$

$$\overrightarrow{x_1} = \overrightarrow{x_0} - A^{-1} (A\overrightarrow{x_0} - \vec{b}) = A^{-1}b$$

Достоинства и недостатки

Градиентный метод	Метод Ньютона
 ✓ Слабые требования к исходным данным. x₀ может быть далека от x* ✓ Используется только градиент функции f 	✓ Быстрая скорость сходимости (квадратичная) —Только локальная сходимость. Начальное приближение должно быть достаточно близким —Жесткие требования к функции (должна быть
✓ Относительная простота вычислений — Медленная скорость сходимости	дважды непрерывно дифференцируема) — Большой объем вычислений, связанный с необходимостью вычисления матрицы вторых производных и её обращений

Метод Пауэлла

- Выбираются две точки и направление
- Через две точки рисуются векторы
- На векторах ищется минимальное значение
- Через точки, в которых на векторе минимальное значение рисуется следующий вектор

Пример

$$\overline{f(x_1,x_2)} = x_1^2 + (x_2 - 1)^2$$

$$x^{(-1)} = {2 \choose 2}; x^{(0)} = {2 \choose 3}; \text{ Направление - } {1 \choose 0}$$

$$x^{(1)} = {2 \choose 2} - \gamma {1 \choose 0} = {2 - \gamma \choose 2}$$

$$f(x^{(1)}) = (2 - \gamma)^2 + 1$$

$$f'(x^{(1)}) = 2\gamma - 4 = 0 \Rightarrow \gamma = 2$$

$$x^{(1)} = {0 \choose 2}$$

$$x^{(2)} = {2 \choose 3} - \gamma {1 \choose 0} = {2 - \gamma \choose 3}$$

$$f(x^{(2)}) = (2 - \gamma)^2 + 4$$

$$f'(x^{(2)}) = 2\gamma + 4 = 0 \Rightarrow \gamma = 2$$

$$x^{(2)} = {0 \choose 3}$$

Новое направление - $x^{(2)} - x^{(1)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $x^{(3)} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} - \gamma \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 - \gamma \end{pmatrix}$ $f(x^{(3)}) = (1 - \gamma)^2$

$$f'(x^{(3)}) = 2\gamma - 2 = 0 \Rightarrow \gamma = 1 \Rightarrow x^{(3)} = {0 \choose 1}$$

Многошаговые методы

Метод тяжелого шарика

Заключается в учёте "инерции движения" $\vec{x}_{k+1} = \overrightarrow{x_k} - \alpha \nabla f(\overrightarrow{x_k}) + \beta (\overrightarrow{x_k} - \overrightarrow{x_{k-1}})$

Теорема о скорости сходимости метода тяжелого шарика

Если:

• $0 < l \le \nabla^2 f(\vec{x}) \le L$ (сильная выпуклость функции)

•
$$0 \le \beta \le 1; 0 \le \alpha \le \frac{2(1+\beta)}{L}$$

To:

$$\begin{aligned} \bullet & \exists c, q, \forall k \colon ||\vec{x}_k - \vec{x}^*|| \le cq^k \\ \bullet & q_{min} = \frac{\sqrt{L} - \sqrt{l}}{\sqrt{L} + \sqrt{l}} \end{aligned}$$

Получается, что этот метод сходится не быстрее геометрической прогрессии. Поэтому

при плохой обусловленности предпочтительно применение одношагового градиентного метода.

Метод сопряженных градиентов

$$\vec{x}_{k+1} = \vec{x}_k - \alpha_k \nabla f(\vec{x}_k) + \beta(\vec{x}_k - \vec{x}_{k-1})$$
 В отличие от метода тяжелого шарика, α, β вычисляются следующим образом: $(\alpha_k, \beta_k) = \arg\min\{f(\vec{x}_k - \alpha \nabla f(\vec{x}_k) + \beta(\vec{x}_k - \vec{x}_{k-1})): \alpha > 0, \beta > 0\}$

Для квадратичной функции $\frac{1}{2}(A\vec{x},\vec{x}) - (\vec{b},\vec{x})$, A > 0

- Метод сходится за конечное число шагов, не превосходящее размерности пространства состояний
- Градиенты в точках \vec{x}_k попарно ортогональны $\forall i \neq k : (\nabla f(\vec{x}_i), \nabla f(\vec{x}_k)) = 0$
- $\vec{p}_k := \vec{x}_k \vec{x}_{k-1}$ $\forall i \neq j : (A\vec{p}_i, \vec{p}_j) = 0$

Для некоторой положительно определенной матрица A векторы \vec{p}_i , связанные соотношением $\left(A \vec{p}_i, \vec{p}_j \right) = 0$, называются **сопряженными** или A — **ортогональными**

Модификация Полака-Ривьера

$$\begin{split} \vec{x}_{k+1} &= \vec{x}_k + \alpha_k \vec{p}_k \\ \alpha_k &= \arg\min f(\vec{x}_k + \alpha \vec{p}_k), \alpha > 0 \\ \vec{p}_k &= -\nabla f(\vec{x}_k) + \beta \vec{p}_{k-1} \\ \beta_k &= \frac{\left(\left(\nabla f(\vec{x}) - \nabla f(\vec{x}_{k-1})\right), \nabla f(\vec{x}_k)\right)}{\|\nabla f(\vec{x}_{k-1})\|}, \beta_0 = 0 \end{split}$$

Квазиньютоновские методы

Итерационная схема метода имеет вид:

$$ec{x}_{k+1} = ec{x}_k - \gamma_k H_k \nabla f(ec{x}_k)$$
 Если $H_k = 1$, это градиентный метод Если $H_k = \left(\nabla^2 f(ec{x}_k) \right)^{-1}$, $\gamma_k = 1$ — это метод Ньютона

Достоинство такого подхода в том, что не нужно вычислять обратную матрицу вторых производных.

Обозначим:

$$p_k \coloneqq -H \nabla f(\vec{x}_k)$$
 $y_k \coloneqq \nabla f(\vec{x}_{k-1}) - \nabla f(\vec{x}_k)$ $f(\vec{x}) \coloneqq \frac{A\vec{x}, \vec{x}}{2} + \left(\vec{b}, \vec{x}\right), A > 0$ Тогда для $\vec{y}_k = A(\vec{x}_{k+1} - \vec{x}_k) = \gamma_k A \vec{p}_k, \gamma_k \vec{p}_k = A^{-1} \vec{\gamma}_k$ Квазиньютоновское условие: $H_{k+1} \vec{y}_k = \gamma_k \vec{p}_k$

Метод Давидона-Флетчера-Пауэлла

$$\overline{H_{k+1} = H_k - \frac{H_k \vec{y}_k (H_k \vec{y}_j)^T}{(H_k \vec{y}_k, \vec{y}_k)} + \gamma_k \frac{\vec{p}_k \vec{p}_k^T}{(\vec{p}_k, \vec{y}_k)}; H_0 > 0}$$

На каждом шаге, имея H_k , делается шаг в направлении \vec{p}_k . γ_k можно получить, например, по методу наискорейшего спуска.

После чего получается x_{k+1} , вычисляется y_k и пересчитывается H_{k+1}

Метод Бройдена-Флетчера-Шенно

$$H_{k+1} = H_k - \frac{\rho_k \vec{p}_k (\vec{p}_k)^T - \vec{p}_k (\vec{y}_k)^T H_k - H_k \vec{y}_k (\vec{p}_k)}{(\vec{y}_k, \vec{p}_k)}$$

$$\rho_k = \gamma_k + \frac{(H_k \vec{y}_k, \vec{y}_k)}{(\vec{y}_k, \vec{p}_k)}$$

Методы нулевого порядка

Методы аппроксимации

Пусть
$$e_j$$
 — орт оси j
$$\varphi(\vec{x} + \gamma \vec{e}_j) \approx f(\vec{x}) + \frac{\partial f}{\partial \vec{x}} \gamma + o(\gamma)$$

$$\frac{\partial f}{\partial \vec{x}_i} \approx \frac{f(\vec{x} + \gamma \vec{e}_j) - f(\vec{x})}{\gamma} \approx \frac{f(\vec{x} + \gamma \vec{e}_j) - f(\vec{x} - \gamma \vec{e}_j)}{2\gamma}$$

Метод покоординатного спуска

Метод симплексов

Задача - найти экстремум функции $c_1x_1+c_2x_2+\cdots+c_nx_n\to min$ При ограничениях: $a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n\leq b_1$ $a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n\leq b_2$... $a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n\leq b_m$

Симплекс-таблица

	x_1	x_2	•••	x_n	
y_1	a_{11}	a_{12}		a_{1n}	b_1
y_2	a_{21}	a_{22}		a_{2n}	b_2
y_m	a_{m1}	a_{m2}		a_{mn}	b_m
	c_1	c_2		c_n	0

Алгоритм

1. Выбрать разрешающий элемент Для поиска крайней точки:

- ullet Разрешающая строка j- любой, где $b_i<0$
- ullet Разрешающий столбец i такой, чтобы $a_{ij}>0$, и $rac{b_j}{a_{ij}}$ было максимальным

Для оптимальной точки:

- ullet Разрешающий столбец i такой, где $c_i < 0$
- Разрешающая строка j такая, чтобы $a_{ij} < 0$, и $\frac{b_j}{a_{ij}}$ было максимальным Оптимальная точка ищется после крайней, поэтому все b_j будут положительными
- 2. Строится новая симплекс-таблица.
 - x_i меняется местами с y_i
 - Элемент (i, j) возводится в -1 степень
 - Все остальные элементы разрешающего столбца делятся на (i,j)
 - Все остальные элементы разрешающей строки делятся на (i,j) и умножаются на -1.
 - Все остальное вычисляется следующему правилу:

$$a_{qv} \coloneqq \frac{a_{ij} \cdot a_{qv} - a_{iv} \cdot a_{qv}}{a_{ij}}$$

- 3. Крайняя точка не существует, если в таблице существует строка, в которой все элементы ≤ 0 , а последний < 0 Оптимальная точка не существует, если в таблице есть столбец, в котором $c_j < 0$; но все $a_{i,i} > 0$
- 4. Если в столбце b есть отрицательные элементы, обратно на шаг 1. Иначе решение найдено

Оптимальная точка ищется следующим образом:

- ullet Если x_j находится на $i-{ ext{M}}$ месте левого столбца, то его значение равно b_i
- ullet Если x_i находится на j- м месте верхней строки, то его значение равно 0

Пример

Нужно найти минимум функции:

$$f(x) = x_1 + x_2$$

Ограничения:

$$\begin{cases} 3x_1 + 2x_2 - 6 > 0 \\ x_1 + 4x_2 - 4 > 0 \end{cases}$$

Симплекс-таблица:

	x_1	x_2	b
y_1	3	2	-6
y_2	1	4	-4
	1	1	0

1. Разрешающая строка - 1

$$-\frac{6}{3} > -\frac{6}{2} \Rightarrow a_{11}$$
 — разрешающий элемент y_1 x_2 b

x_1	3-1	$-\frac{2}{3}$	$-\frac{-6}{3}$
y_2	1	$3 \cdot 4 - 2 \cdot 1$	$-4\cdot 3-(-6)\cdot 1$
	3	3	3
	1	$3 \cdot 1 - 2 \cdot 1$	$3 \cdot 0 - (-6) \cdot 1$
	$\overline{3}$	3	3

	y_1	x_2	b
x_1	$\frac{1}{3}$	$-\frac{2}{3}$	2
y_2	$\frac{1}{3}$	$\frac{10}{3}$	-2
	$\frac{1}{3}$	$\frac{1}{3}$	2

2. Разрешающая строка - 2.
$$-\frac{2\cdot 3}{1}<-\frac{2\cdot 3}{10}\Rightarrow a_{22}-$$
 разрешающий элемент

	y_1	y_2	b
x_1	$\frac{1}{3}$	$-\frac{2}{3}$	2
x_2	$\frac{1}{3}$	$\frac{10}{3}$	-2
	$\frac{1}{3}$	$\frac{1}{3}$	2

	y_1	y_2	b
x_1	$\frac{\frac{1}{3} \cdot \frac{10}{3} + \frac{2}{3} \cdot \frac{1}{3}}{\left(\frac{10}{3}\right)}$	$-\frac{2}{3} \cdot \frac{3}{10}$	$\frac{2 \cdot \frac{10}{3} - 2 \cdot \frac{2}{3}}{\left(\frac{10}{3}\right)}$
x_2	$-\frac{1}{3}\cdot\frac{3}{10}$	$\frac{3}{10}$	$-\left(-2\cdot\frac{3}{10}\right)$
	$\frac{\frac{1}{3} \cdot \frac{10}{3} - \frac{1}{3} \cdot \frac{1}{3}}{\left(\frac{10}{3}\right)}$	$\frac{1}{3} \cdot \frac{3}{10}$	$\frac{2 \cdot \frac{10}{3} + 2 \cdot \frac{1}{3}}{\left(\frac{10}{3}\right)}$

	y_1	y_2	b
x_1	0.4	-0.2	1.6
x_2	-0.1	0.3	0.6

0.1

2.2

Поиск ответа

Если х находится вверху, то это свободная переменная и он равен 0. Если x находится слева, он равен b.

Ответ: $x_1 = 1.6$; $x_2 = 0.6$

Методы прямого поиска

f — унимодальная функция.

Общая схема метода: $x^{(k+1)} = x^{(k)} + t_k$

Нужно определить t_k . Для этого ищется минимум функции $y(t) = f(x^{(k)} + t)$

Метод квадратичной интерполяции

Пусть f задана на прямой. Даны точки a < b < c: $f(a) \ge f(b)$; $f(b) \le f(c)$. На отрезке [a,c] ищется минимум.

Через эти три точки проводится парабола:

$$g(t) = g_0 + g_1 t + g_2 t^2$$

Коэффициенты находятся из системы:

$$\begin{cases} g(a) = f(a) \\ g(b) = f(b) \\ g(c) = f(c) \end{cases}$$

Решение

Tellerwic:

$$x_{1} \coloneqq a; x_{2} \coloneqq b; x_{3} \coloneqq c; y_{1} \coloneqq f(x_{1}); y_{2} \coloneqq f(x_{2}); y_{3} \coloneqq f(x_{3})$$

$$g_{2} = \frac{y_{3} - \frac{x_{3}(y_{2} - y_{1}) + x_{2}y_{1} - x_{1}y_{2}}{x_{2} - x_{1}}}{x_{3}(x_{3} - x_{1} - x_{2}) + x_{1}x_{2}}$$

$$g_{1} = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} - g_{2}(x_{1} + x_{2})$$

$$g_{0} = \frac{x_{2}y_{1} - x_{1}y_{2}}{x_{2} - x_{1}} + g_{2}x_{1}x_{2}$$

После этого находится значение минимума:

$$t^* = \arg\min g(t) \Rightarrow -\frac{g_1}{2g_2}$$

После этого:

$$a \le t^* \le b \Rightarrow c \coloneqq b; b \coloneqq t^*$$

$$b \le t^* \le c \Rightarrow a \coloneqq b; b \coloneqq t^*$$

Метод дихотомии (половинного деления)

См. ВМ :: метод бисекции

Метод "золотого" сечения

[a, b] — интервал. $t', t'' \in [a, b]$

Пусть минимум функции расположен на интервале.

Тогда выберем точки так:

$$\begin{cases} t' = a + F_1(b - a) \\ t'' = a + F_2(b - a) \end{cases}; F_1, F_2 \in (0,1)$$

Как и прежде, идея состоит в замене [a,b] на $[a,t^{\prime\prime}]$ или $[t^{\prime},b]$

Выбор коэффициентов

$$rac{b-t'}{b-a}=rac{t''-a}{b-a}=F_2\Rightarrow F_1+F_2=1$$
, т.к. $rac{b-a-F_1(b-a)}{b-a}=1-F_1=F_2$ - после замены отрезок уменьшится в $rac{1}{F_2}= au$

По правилу "золотого" сечения

$$\frac{t'-a}{t''-a} = F_2 \Rightarrow F_1 = F_2^2, \text{ т.к. } \frac{F_1(b-a)}{F_2(b-a)} = \frac{F_1}{F_2} = F_2$$

$$\begin{cases} F_1 = F_2^2 \\ F_1 + F_2 = 1 \end{cases} \Rightarrow F_2^2 + F_1 = 1 \Rightarrow \begin{cases} F_1 = \frac{3-\sqrt{5}}{2} \approx 0.382 \\ F_2 = \frac{\sqrt{5}-1}{2} \approx 0.618 \end{cases}$$

Алгоритм

$$f(t') \ge f(t'') \Rightarrow a := t'; t' = t''; t'' = a + F_2(b - a)$$

 $f(t') < f(t'') \Rightarrow b := t''; t'' = t'; t' = a + F_1(b - a)$