Transformers: Razonamiento y Representación del Conocimiento

Introducción

Las **redes neuronales** son modelos computacionales inspirados en el cerebro humano que procesan información mediante la combinación lineal del vector de entrada con los pesos de la red. Con el avance del **deep learning**, estas redes han evolucionado para incluir muchas capas, principalmente **convolucionales**, permitiendo aprender relaciones complejas en los datos.

Limitaciones de las Redes Neuronales Convolucionales

Las redes neuronales convolucionales (CNNs) son especialmente efectivas en el procesamiento de datos donde las relaciones locales son importantes, como en imágenes y señales. Capturan relaciones entre datos que están localmente "cerca" entre sí. Sin embargo, presentan limitaciones al manejar **secuencias de datos largas**, donde las dependencias pueden abarcar largas distancias:

- Lenguaje Natural: Las relaciones entre palabras pueden ser a largo plazo, y palabras distantes en una oración pueden influir en el significado.
- Secuencias de Video: La comprensión de eventos puede requerir información de fotogramas distantes.

Transformers

Los **Transformers** surgen como una solución para abordar las limitaciones de las CNNs y otros modelos al procesar secuencias largas de datos. Fueron introducidos por Vaswani et al. en 2017 en el artículo "Attention is All You Need".

Características Clave

- Captura de Relaciones a Largo Plazo: Pueden modelar dependencias entre elementos distantes en una secuencia.
- Dependencia de la Entrada: Las relaciones se aprenden de manera adaptativa en función de la entrada específica.

Por ejemplo, en las oraciones:

- "El gato está sobre la mesa."
- "El gato, que es de color negro, está sobre la mesa."

En ambas oraciones, la relación entre "gato" y "está" es importante, incluso si están separadas por varias palabras.

Procesamiento de Secuencias en Transformers

El proceso general para manejar secuencias de datos en Transformers consta de tres pasos principales:

- 1. Tokenización
- 2. Embeddings
- 3. Aprendizaje mediante Autoatención

1. Tokenización

La tokenización consiste en separar la secuencia de datos de entrada en unidades discretas llamadas tokens.

Tipos de Tokenizadores

- Character Tokenizer: Divide la entrada en caracteres individuales.
- Word Tokenizer: Separa la entrada en palabras completas.
- Sub-word Tokenizer: Combina los anteriores, dividiendo en unidades menores que palabras pero mayores que caracteres.

Byte-Pair Encoding (BPE)

El GPT Tokenizer utiliza el método de Byte-Pair Encoding (BPE):

- Inicio: Comienza con un conjunto de n-gramas de 1 carácter.
- Proceso Iterativo:
 - Se identifican las parejas de caracteres adyacentes más frecuentes y se combinan en nuevos tokens.
 - Se repite hasta alcanzar el tamaño de vocabulario deseado.
- Resultado: Un vocabulario eficiente que equilibra entre tokens de un solo carácter y palabras completas.

Nota: GPT-4 utiliza un vocabulario de 100,256 n-gramas.

2. Embeddings

Los embeddings transforman los tokens en vectores numéricos que capturan características semánticas y sintácticas.

- Proceso:
 - A cada token se le asigna un vector en un espacio de alta dimensión.
 - Estos vectores se entrenan para que tokens con significados similares tengan representaciones cercanas.
- Ajuste del Embedding:
 - Utiliza una red neuronal (como una CNN o una capa densa) para aprender las representaciones vectoriales.

3. Mecanismo de Autoatención (Self-Attention)

El núcleo del Transformer es el **mecanismo de autoatención**, que permite al modelo enfocarse en diferentes partes de la secuencia al procesar cada elemento.

Problemas con Convoluciones Largas

- Limitaciones:
 - Las convoluciones tradicionales tienen un alcance local limitado.
 - Para capturar dependencias a larga distancia, se necesitarían convoluciones con kernels muy grandes o muchas capas, lo cual es ineficiente.

Introducción al Mecanismo de Autoatención

- Idea Fundamental: Permitir que cada elemento de la secuencia preste atención a todos los demás elementos, ponderando su influencia.
- Función de Puntuación de Atención (Attention Scoring Function):
 - o Calcula una puntuación que indica la importancia de cada elemento en relación con los demás.

Definición de Matrices Entrenables

Se definen tres matrices entrenables que transforman los embeddings de entrada:

- Query (Q): Representa la consulta que hacemos sobre otros elementos.
- Key (K): Representa la clave que otros elementos usan para comparar con la consulta.
- Value (V): Contiene la información que se agregará a la salida.

Cálculo en la Capa de Autoatención

1. Cálculo de Q, K y V:

$$\mathbf{Q} = \mathbf{X}\mathbf{W}^Q$$

 $\mathbf{K} = \mathbf{X}\mathbf{W}^K$
 $\mathbf{V} = \mathbf{X}\mathbf{W}^V$

Donde:

- $oldsymbol{\cdot}$ $oldsymbol{X}$ es la matriz de embeddings de entrada.
- $\mathbf{W}^Q, \mathbf{W}^K, \mathbf{W}^V$ son matrices de pesos entrenables.

2. Cálculo de Puntuaciones de Atención:

$$\operatorname{Atenci\'on}(\mathbf{Q},\mathbf{K},\mathbf{V}) = \operatorname{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d_k}}\right)\mathbf{V}$$

Donde d_k es la dimensión de los vectores de clave.

3. Salida:

Se obtiene un nuevo conjunto de representaciones que incorporan información global de la secuencia.

Multi-Head Attention (Atención Multi-Cabeza)

En lugar de calcular una única función de atención, se utilizan múltiples cabezas de atención para capturar diferentes tipos de relaciones.

• Proceso:

- $\circ~$ Se realizan varias operaciones de autoatención en paralelo, cada una con sus propias matrices $\mathbf{W}^Q,\mathbf{W}^K,\mathbf{W}^V$.
- Las salidas de cada cabeza se concatenan y pasan a través de una capa lineal final.

Ventajas:

- o Permite que el modelo preste atención a diferentes posiciones y relaciones en simultáneo.
- Mejora la capacidad de captura de patrones complejos.

Arquitectura del Transformer

El Transformer está compuesto por la repetición de bloques que combinan mecanismos de autoatención y redes neuronales feed-forward.

Bloque Básico del Transformer

- 1. Capa de Multi-Head Attention
- 2. Adición y Normalización: Residual connection seguida de Layer Normalization.
- 3. Capa Feed-Forward: Red neuronal con una o más capas ocultas.
- 4. Adición y Normalización: Otra residual connection y layer normalization.

Pre-normalización vs. Post-normalización

- Pre-normalización: La normalización se aplica antes del bloque.
- Post-normalización: La normalización se aplica después del bloque.

Modelo Básico del Transformer

1. Tokenización y Embeddings:

- Se tokeniza y se embeben los datos de entrada.
- Se añaden positional embeddings para incorporar información sobre el orden de los tokens.

2. Aplicación de Bloques del Transformer:

• Se aplican uno o más bloques básicos descritos anteriormente.

3. Capa de Salida:

o Dependiendo de la tarea (e.g., clasificación, traducción), se aplica una capa de salida apropiada.

Ejemplo de Aplicación: Traducción Automática

En tareas de traducción:

- Entrada: Secuencia de tokens en el idioma de origen.
- Proceso:
 - El encoder procesa la secuencia de entrada y genera representaciones internas.
 - El decoder utiliza estas representaciones junto con mecanismos de atención para generar la secuencia traducida.
- Salida: Secuencia de tokens en el idioma de destino.

Transformer en Traducción

Bibliografía Recomendada

• "Alice's Adventures in a Differentiable Wonderland" de Simone Scardapane.

Este recurso proporciona una introducción accesible y amigable a los conceptos detrás de los Transformers y el deep learning.

Conclusiones

Los **Transformers** han revolucionado el campo del procesamiento de lenguaje natural y han sido adaptados a otras áreas como visión por computador y generación de secuencias.

· Ventajas:

- Capturan dependencias a largo plazo de manera efectiva.
- Paralelización eficiente durante el entrenamiento.
- Flexibilidad para diversas tareas de secuencias.

Avances Recientes:

• Modelos como GPT-3 y GPT-4 demuestran el poder de los Transformers en generación de texto coherente y tareas complejas.

• Desafíos:

Alto costo computacional y requerimientos de datos masivos para entrenar grandes modelos.

Este resumen ha explorado los fundamentos de los Transformers, su arquitectura y su importancia en la representación del conocimiento y el razonamiento en secuencias de datos. Comprender estos conceptos es esencial para avanzar en el desarrollo de sistemas de inteligencia artificial capaces de manejar información compleja y secuencial como lenguaje natural y video.