

THE HASTINGS ALGORITHM AT FIFTY

Paper discussion

Ola Rasmussen & Khanh Truong

February 12, 2024

Contents

Summary

1. INTRODUCTION

2. SOME KEY HISTORICAL DEVELOPMENTS

Science and Technolo

Summary

- ▶ 1970, W. K. Hastings, Markov chain algorithms, sampling
- Stationary distribution is target distribution
- Hastings improved Metropolis, allowed asymmetry
- Bayesian posterior distributions

- lacktriangle Study, characteristics, probability distribution $f\left(\cdot\right)$
- ► If simple, analytically
- If complicated, numerical integration, issues, accuracy, stability, and scalability to higher dimensions
- Solution, Monte Carlo algorithms, estimate features, samples
- **Example:**
 - Estimate mean
- ► Solution:
 - With samples $x_t \sim f$, we can estimate the mean of f(x) as $\hat{\mu} = \frac{1}{T} \sum_{t=1}^T x_t$

- Key challenge, efficiently generate samples
- Univariate case, many, inverse cumulative distribution function algorithm is popular
- Arbitrary multivariate distributions, challenging
- Rejection sampling attempts to solve this problem
- ightharpoonup Problem, how to select good $g\left(x\right)$ that is easy to sample from

- Markov chain Monte Carlo algorithms
- Markov chain $\{x_t\}_{t=1}^T$, transition kernel $K(x_t \mid x_{t-1})$
- ightharpoonup Samples $\{x_t\}$, converge, stationary distribution is target distribution
- Burn in, isn't stationary at the beginning
- Particularly popular in Bayesian inference

- Metropolis, 1953, built on rejection sampling
- ightharpoonup Samples candidate \tilde{x} from proposal density (symmetric)
- Set $x_t = \tilde{x}$ with probability $\alpha\left(\tilde{x} \mid x_{t-1}\right) = min\left\{1, \frac{f(\tilde{x})}{f(x_{t-1})}\right\}$ and $x_t = x_{t-1}$ otherwise
- Big problem, only symmetric distributions

- ► Hastings, 1970
- ► Improved, asymmetry
- ▶ Set $x_t = \tilde{x}$ with probability $\alpha\left(\tilde{x} \mid x_{t-1}\right) = min\left\{1, \frac{f(\tilde{x})}{f(x_{t-1})} \cdot \frac{g(x_{t-1}|\tilde{x})}{g(\tilde{x}|x_{t-1})}\right\}$ and $x_t = x_{t-1}$ otherwise
- Most popular MCMC algorithm
- Most common approach to modern Bayesian computation

- ▶ Top 10 most important algorithms of the 20th century
- Hydrogen bomb, "mathematical analyzer, numerical integrator, and computer"
- Didn't mention Bayesian statistics, but is most prominent today
- Made Bayesian statistics feasible

2.1. Overview

- How to choose a good proposal having high computational efficiency?
 - (i) Computational cost per iteration of the sampler
 - (ii) Mixing rate of the Markov chain $\{x_t\}$
- (i), dependent, cost of sampling, calculating acceptance probability
- lacktriangle (ii), samples are not independent, x_t and $x_{t+\Delta}$ are correlated
- ▶ Slow mixing, correlation between x_t and $x_{t+\Delta}$ decreases slowly, samples contribute less information
- ► Effective sample size

2. Extensions

- Gibbs
- Metropolis-within-Gibbs
- Blocking
- Adaptive algorithms
- Gradient-based algorithms
 - Metropolis-adjusted Langevin
 - ► Hamiltonian Monte Carlo

3. Challenging – Multimodal targets

Hasting algorithm can fail to move among modes of the multimodal distribution.

3. Challenging – Intractable likelihoods

Example of intractable likelihoods:

· g-and-k distribution:

$$Q(u;A,B,g,k) = A + B \left[1 + c \frac{1 - \exp\{-g\Phi(u)\}}{1 + \exp\{-g\Phi(u)\}} \right] \left\{ 1 + \Phi(u)^2 \right\}^k \Phi(u)$$

$$Q(u;A,B,g,k) = A + B \left[1 + c \frac{1 - \exp\{-g\Phi(u)\}}{1 + \exp\{-g\Phi(u)\}} \right] \left\{ 1 + \Phi(u)^2 \right\}^k \Phi(u)$$

$$Q(u;A,B,g,k) = A + B \left[1 + c \frac{1 - \exp\{-g\Phi(u)\}}{1 + \exp\{-g\Phi(u)\}} \right] \left\{ 1 + \Phi(u)^2 \right\}^k \Phi(u)$$

Two-dimensional summary statistics:

$$x_1, \dots, x_n \stackrel{\text{iid}}{\sim} N(\theta, \sigma^2),$$

$$S(x_1, \dots, x_n) = (\text{med}(x_1, \dots, x_n), \text{mad}(x_1, \dots, x_n)),$$

=> We need unbiased estimate of the likelihood in the acceptance probability

Solutions for incomputable likelihoods:

- auxiliary variable scheme
- rejection sampling
- Pseudo-marginal Metropolis Hastings

Likelihood functions can be intractable, meaning it is not computable even up to a normalizing constant.

3. Challenging – Distributions with constrained support

Solution for constrained support distribution:

- ignore the constraint and simply reject proposals falling outside of C;
- reparameterize to an unconstrained space before running the sampler
- · Gibbs sampling with the conditional posterior distributions truncated to reflect the constraint

Hard to implement appropriate proposal distribution with the same support

Bonus: The effect of proposal selection in MCMC

Given a target distribution,

- What is the difference we select one proposal over another?
- Is there a "better" proposal distribution over some others?

Case 1: Target and proposal are both Gaussian

Case 1: Target and proposal are both Gaussian

Case 2: Target is Gaussian, proposals are skew Gaussian

Case 2: Target is Gaussian, proposals are skew Gaussian

Case 3: Target is Gaussian, proposals are gama / log

Case 3: Target is Gaussian, proposals are gama / log

Note that the support of gama and log normal are not the same as Gaussian.

But still, they give reasonable result.

Acceptance rate: 37% Acceptance rate: 66%

The effect of proposal selection in MCMC

Given a target distribution,

- What is the difference we select one proposal over another?
- -> It seems that the more "similar" to the target the proposal is, the better the samples are (in term of autocorrelation)
- Is there a "better" proposal distribution over some others?
- -> Choose the best-knowledge proposal that is similar to target , i.e. the prior distribution?

Questions

- 1. Adaptive algorithms
- **2.** What are some advantages of gradient-based algorithms compared to other MCMC methods?
- **3.** What is the best proposal distribution? Should we choose the one that is similar to prior distribution?

