

Doctorado en Biotecnología PUCV - UTFSM

CURSO

Análisis de expresión diferencial de genes e investigación reproducible con R

Dra. Débora Torrealba Sandoval

Doctorado en Biotecnología PUCV - UTFSM

Clase 4

Diseño y ejecución de PCR en tiempo real

Plan de la clase

- Selección de química
- ¿Cómo funciona la PCR en tiempo real?
- ¿Qué es el Ct, el Cq y la curva de fusión?
- Replicas biológicas y técnicas
- Preparación de placa y master mix

Paso a paso

Selección de química

Basados en sondas

✓ TaqMan

TaqMan

Thermo Fisher Scientific

TaqMan

Thermo Fisher Scientific

Colorante de unión al ADN

- ✓ SYBR Green Colorante intercalado
- Se une inespecíficamente a dsDNA
- Su fluorescencia aumenta proporcionalmente a la cantidad de dsDNA presente
- Solo se necesitan dos primers

SYBR Green

Unbound SYBR Green I

Bound SYBR Green I

Pasos de la PCR en tiempo real

¿Qué es el valor de Ct?

Línea base y umbral de la PCR en tiempo real

Valor Rn o valor normalizado

¿Qué es el valor de Cq?

Clinical Chemistry 55:4 611–622 (2009) **Special Report**

The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments

Stephen A. Bustin, ^{1*} Vladimir Benes, ² Jeremy A. Garson, ^{3,4} Jan Hellemans, ⁵ Jim Huggett, ⁶ Mikael Kubista, ^{7,8} Reinhold Mueller, ⁹ Tania Nolan, ¹⁰ Michael W. Pfaffl, ¹¹ Gregory L. Shipley, ¹² Jo Vandesompele, ⁵ and Carl T. Wittwer^{13,14}

Ct: threshold cycle (Ct)

Cp: crossing point (Cp)

TOP: take-off point (TOP)

Cq: quantification cycle

Number of Cycles

¿Qué es la curva de fusión (melt curve)?

¿Qué es el Curva de fusión (melt curve)?

Melt curves

Replicas biológicas y técnicas

Replica biológica

- Replica muestras de prueba del mismo experimento
- Mide la variabilidad entre muestras

Replica técnica

- Réplicas de la misma muestra de prueba
- Mide la variabilidad de la configuración y el protocolo

Replicas biológicas

Replicas técnicas

Replicas técnicas

Replicas técnicas

Preparación de la placa y Master Mix

Organización de la placa

Plantilla placa de 96

Organización de la placa

Recomendaciones Generales

- Limpiar las estaciones de trabajo
- Preparar las muestras en una sala limpia
- Usar pipetas con puntas con barrera contra aerosoles
- Limpiar las pipetas
- Usar agua de grado PCR y reactivos exclusivos para PCR
- Preparar un control sin muestra

Preparación de Mater Mix

• n= 42 preparado una Master mix para 47 muestras

Master Mix	Volumen	X 47
SYBR green	10 μΙ	470 μΙ
Primer Fw (10μM)	1 μΙ	47 μΙ
Primer Rv (10μM)	1 μΙ	47 μΙ
Agua	5 μΙ	141 μΙ
Volumen final	20 μΙ	

- SYBR green protegido de la luz
- Usar tubos y puntas DNA-free

Herramientas útiles para cargar una placa

- ✓ Pipetas de repetición digitales
- ✓ Trackman
- ✓ Robot para cargar placas

Placa de 384-well

Dra. Débora Torrealba – https://genomics.pucv.cl

Carga de la placa

Carga de la placa

- Mantener muestras en hielo
- Vortear muestras
- Puntas con filtro cambiar entre cada muestra

Carga de la placa

- Sellar con film
- Centrifugar
- Proteger de la luz
- Guardar a 4ºC

Resumen de la clase

- Como funciona el Sybr green y TaqMan
- Etapas de la PCR en tiempo real
- Aprendimos que es Ct, el Cq y la curva de fusión
- Diferenciar las replicas biológicas y técnicas
- Como preparar la placa y master mix
- Analizamos gráficas de amplificación, línea base, curva de fusión de PRC en tiempo real.

Próximas clases

 Clase 5: Programación con R: Visualización y manipulación de datos con ggplot2 y dplyr
 R Studio

Clase 6: Eficiencia de cebadores

