

Índice

1.	Introducción 2
2.	Contenido
3.	3 2.1 Materiales
4.	2.2 Procedimiento 3
5.	2.3 Registro de datos
6.	Conclusiones 5
7.	Bibliografía

Introducción

El presente informe tiene como propósito analizar cómo la presencia de electrolitos en diferentes sustancias determina su conductividad eléctrica en un circuito simple.

- Problema de indagación: ¿Cómo la presencia de electrolitos en una sustancia determina su conductividad eléctrica en un circuito?
- Hipótesis: Si una sustancia contiene electrolitos (iones libres), entonces permitirá el paso de corriente eléctrica con mayor facilidad; en cambio, las sustancias sin electrolitos o con muy pocos iones conducirán poca o nada de electricidad.
- Variable independiente (VI): Presencia de electrolitos en la sustancia.
- Variable dependiente (VD): Conductividad eléctrica de la sustancia en el circuito.

Contenido

Materiales utilizados

1 foco de linterna

1 batería de 9V (en lugar de la de 5V)

Cable mellizo

1 cuchara

1 taza de agua

1 cucharadita de sal

1 cucharadita de azúcar

Jugo de 1 limón

Jugo de naranja

Cinta aislante

Procedimiento

- 1. Se armó un circuito eléctrico simple con la batería de 9V, el foco y cables mellizos.
- 2. Se colocó agua en un recipiente.
- 3. Se prepararon distintas disoluciones:
 - Agua con sal (1 cucharada)
 - Agua con azúcar (1 cucharada)
 - Agua con limón.
 - Jugo de naranja.
- 4. Se probó cada muestra conectando el circuito con el líquido para observar si el foco encendía y con qué intensidad.
- 5. Se registraron los resultados observando la luminosidad del foco.

Registro de datos

Sustancia	Encendió del foco?
Agua con sal	Sí encendió
Agua con azúcar	Encendió poco
Agua con limón	Encendió poco
Jugo de naranja	Sí encendió

Conclusiones

- 1. La presencia de electrolitos en una sustancia influye directamente en su capacidad de conducir electricidad, ya que estos liberan iones que permiten el paso de corriente.
- 2. El agua con sal y el jugo de naranja mostraron alta conductividad, confirmando la hipótesis: ambos contienen electrolitos (iones de Na⁺ y Cl⁻ en la sal, ácidos y sales minerales en la naranja).
- 3. El agua con azúcar y el agua con limón presentaron baja conductividad, ya que el azúcar no se ioniza en agua y el limón, aunque contiene ácido, no generó suficiente cantidad de iones para mantener una corriente fuerte.
- 4. Este experimento confirma que los electrolitos son esenciales para la conductividad eléctrica en soluciones acuosas.

Bibliografía

- 1. LibreTexts. (2021). Electrolytes. Recuperado de: https://chem.libretexts.org/Bookshelves/Introductory
 Chemistry/Introduction to General Chemistry %
 28Malik%29/05%3A Solutions/5.03%3A Electroly
 tes
- 2. HORIBA. (2020). Ions in Water, and Conductivity. Recuperado de: https://www.horiba.com/usa/water-quality/support/electrochemistry/the-basis-of-conductivity/
- 3. Siyavula Education. (s.f.). Electrolytes, ionisation and conductivity. Recuperado de: https://www.siyavula.com/read/za/physical-sciences/grade-10/reactions-in-aqueous-solution-18-reactions-in-aqueous-solution-03
- 4. Pilgaard, M. (s.f.). Conductivity: Ions in solution. Recuperado de: https://pilgaard.info/Conductivity/Ions.htm