Apuntes sobre Cálculo Diferencial e Integral III

Elmer Ortega

7 de septiembre de 2021

Un pequeño recordatorio sobre vectores

Se conoce a un **vector** como la conexión de n números reales. Se denota como $\vec{v} \in \mathbb{R}^n, \vec{v} = (v_1, v_2, v_3 \dots, v_n)$. Además, el conjunto \mathbb{R}^n se define como $\mathbb{R}^n = \{a_1, a_2, a_3 \dots, a_n | a_i \in \mathbb{R}\}$

Definición de la suma

Sea $\vec{v} = (v_1, v_2, v_3 \dots, v_n)$, $\vec{u} = (u_1, u_2, u_3 \dots, u_n)$, se define la suma de $\vec{v} + \vec{u}$ como:

$$\vec{v} + \vec{u} = (v_1 + u_1, v_2 + u_2, \dots, v_i + u_i, \dots, v_n + u_n)$$

Definición del producto por un escalar

Sea $\lambda \in \mathbb{R}, \vec{v} = (v_1, v_2, v_3, \dots, v_n)$, se define el producto de $\lambda * \vec{v}$ como

$$\lambda * \vec{v} = (\lambda v_1, \lambda v_2 +, \dots, \lambda v_i, \dots, \lambda v_n)$$

Todos los \mathbb{R}^n con estas definiciones son un **espacio vectorial**.

La base canónica en \mathbb{R}^n

Se define a la base canónica de \mathbb{R}^n como el conjunto de:

$$\vec{e}_1 = (1, 0, 0, \dots, 0), \vec{e}_2 = (0, 1, 0, \dots, 0), \dots, \vec{e}_n = (0, 0, 0, \dots, 1)$$

En especial, la base canónica de \mathbb{R}^2 se define como $\{i = (1,0), j = (0,1)\}$ y $\mathbb{R}^3 = \{i = (1,0,0), j = (0,1,0), k = (0,0,1)\}$ Y, ¿por qué es útil? porque puedes pensar los vectores como: $(a_1,a_2,a_3\ldots,a_n)=a_1\vec{e_1}+a_2\vec{e_2}+\cdots+a_n\vec{e_n}$ que es un vector como la combinación lineal de la base canónica y es útil a la hora de diferenciar e integrar.

Definición de norma

Sea el vector $\vec{v} \in \mathbb{R}^n$, $\vec{v} = (v_1, v_2, \dots, v_n)$, se define la norma de \vec{v} como: $\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2 + \dots + v_n^2}$, que es igual a la distancia del punto al origen.

Propiedades de la norma

- 1. $\|\vec{v}\| \ge 0$
- $2. \|\vec{v}\| = 0 \Leftrightarrow \vec{v} = \vec{0}$
- 3. $\|\lambda \vec{v}\| = |\lambda| \|\vec{v}\|$
- 4. Desigualdad del triángulo: $\|\vec{u}+\vec{v}\| \leq \|\vec{u}\| + \|\vec{v}\|$, la igualdad se da $\Leftrightarrow \vec{u}=\lambda \vec{v}, \text{ con } \lambda \geq 0$

Definición de producto punto o producto interno

Para $\vec{u}, \vec{v} \in \mathbb{R}^n$, se define el producto punto de $\vec{u} \cdot \vec{v}$ como:

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

Propiedades del producto punto

- 1. $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$
- $2. \ (\lambda \vec{u}) \cdot \vec{v} = \lambda \left(\vec{u} \cdot \vec{v} \right)$
- 3. $\vec{u} \cot \vec{v} = \vec{v} \cot \vec{u}$
- $4. \ \vec{u} \cdot \vec{u} > 0$
- 5. $\vec{u} \cdot \vec{u} = 0 \Leftrightarrow \vec{u} = \vec{0}$
- 6. $\sqrt{\vec{u} \cdot \vec{u}} = ||\vec{u}||$
- 7. $\cos\theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|} \|\vec{v}\|,$ donde θ es el ángulo entre \vec{u} y \vec{v}

Nota:
$$\vec{u} \perp \vec{v}$$
 (son ortogonales) $\Leftrightarrow \theta = 90 = \frac{\pi^r}{2} \Leftrightarrow \vec{u} \cdot \vec{v} = 0$

Representación paramétrica de la recta

En general, dado $\vec{p} \in \mathbb{R}^n, \vec{d} \in \mathbb{R}^n, \vec{d} \neq \vec{0}, t \in \mathbb{R}$,

 $\vec{v} = \vec{p} + t \vec{d}$ representa una línea recta en \mathbb{R}^n

Representación de un hiper-plano

En general, en \mathbb{R}^n , la ecuación del hiper-plano está dada por,

$$(\vec{v} - \vec{p}) \cdot \vec{n} = 0$$
, que es un objeto de dimensión \mathbb{R}^{n-1}

Por ejemplo, en \mathbb{R}^3 , con $\vec{n}=(n_1,n_2,n_3), \vec{p}=(p_1,p_2,p_3), \vec{v}=(x,y,z)$, se tiene que $n_1x+n_2y+n_3z-(n_1p_1+n_2p_2+n_3p_3)=0$, por lo que, dado una ecuacion Ax+By+Cz+F=0, el vector $\vec{d}=(A,B,C)$ es perpendicular a los vectores \vec{v},\vec{p}

1. Funciones y diferenciación

• Se conoce como funciones con valores escalares o campos escalares a las funciones del tipo $f: \mathbb{R}^n \to \mathbb{R}$

Por ejemplo, $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = 3x^2 + 5xy + e^y$

 \bullet Se conoce como funciones con valores escalares o campos escalares a las funciones del tipo $f:\mathbb{R}^n\to\mathbb{R}$

Por ejemplo, $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = 3x^2 + 5xy + e^y$

Definición: Sea $f: \mathbb{R}^n \to \mathbb{R}$ la gráfica de f es

$$\{(x_1, x_2, x_3, \dots, x_n, f(x_1, x_2, x_3, \dots, x_n)) : x_1, x_2, x_3, \dots, x_n \in \mathbb{R}\}$$

Definición: Se define a las curvas de nivel de $f: \mathbb{R}^2 \to \mathbb{R}$ como

$$L_c := \{(x, y) \in \mathbb{R}^2 : f(x, y) = c\}$$

Definición: Se define a las superficies de nivel de $f: \mathbb{R}^3 \to \mathbb{R}$ como

$$L_c := \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = c\}$$

*Notas: La gráfica $f: \mathbb{R}^3 \to \mathbb{R}$ es un objeto que vive en \mathbb{R}^4 . En general, la gráfica $f: \mathbb{R}^n \to \mathbb{R}$ es un objeto que vive en \mathbb{R}^{n+1} .

Definición: Se define al **conjunto de nivel** de $f: \mathbb{R}^n \to \mathbb{R}$ como

$$L_c := \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : f(x_1, x_2, x_3, \dots, x_n) = c\}$$

Conjuntos abiertos y conjuntos cerrados

Definición: Dado $\vec{x}_0 \in \mathbb{R}^n$ y $\epsilon > 0$, la **bola (abierta)** es el conjunto

$$B_{\epsilon}(\vec{x}_0) = \{ \vec{x} \in \mathbb{R}^n : ||\vec{x} - \vec{x}_0|| < \epsilon \}$$

Se le denota como la bola de radio ϵ centrada en \vec{x}_0

Definición: Dado un conjunto $A \subseteq \mathbb{R}^n$ es abierto si

$$\forall \vec{x}_0 \in A, \text{existe un } \epsilon > 0 \text{ tal que } B_{\epsilon}(\vec{x}_0) \subseteq A$$

Proposición: La bola $B_{\epsilon}(\vec{x}_0)$ es abierta.

Pd. $\forall B_{\epsilon}(\vec{y_0}) \subseteq B_{\epsilon}(\vec{x_0})$. Sea $\vec{z_0} \in B_{\epsilon}(\vec{y_0})$

$$\begin{split} \|\vec{z}_0 - \vec{x}_0\| &= \|\vec{z}_0 + \vec{y}_0 - \vec{y}_0 - \vec{x}_0\| \le \|\vec{z}_0 - \vec{y}_0\| + \|\vec{y}_0 - \vec{x}_0\| \\ &\Rightarrow \|\vec{z}_0 - \vec{y}_0\| + \|\vec{z}_0 - \vec{x}_0\| < \epsilon - \|\vec{y}_0 - \vec{x}_0\| = \epsilon \\ &\Rightarrow \vec{z}_0 \in B_{\epsilon}(\vec{x}_0) \therefore \text{ la bola } B_{\epsilon}(\vec{x}_0) \text{ es abierta.} \end{split}$$

Propiedades de los conjuntos abiertos

- 1. Si $V_1, V_2, V_3, \ldots, V_n$ son conjuntos abiertos en \mathbb{R}^n , entonces $V_1 \cup V_2 \cup V_3 \cup \ldots V_n$ es abierto (Aplica para una union finita e infinita).
- 2. Si $V_1, V_2, V_3, \ldots, V_n$ son conjuntos abiertos en \mathbb{R}^n , entonces $V_1 \cap V_2 \cap V_3 \cap \ldots V_n$ es abierto (Solo para una intersección finita).
- 3. \mathbb{R}^n es abierto.
- 4. \emptyset es abierto. \rightarrow argumento de vacuidad o vacío.

Puntos frontera

Definición: Sea $A \in \mathbb{R}_n$. Un punto $\vec{x}_0 \in \mathbb{R}^n$ es un **punto frontera** de A si todas las bolas abiertas centradas en \vec{x}_0 tienen en A y puntos no en A.

El conjunto de puntos frontera de A se llama la **frontera de** A. **Ejemplos de puntos fronteras:**

Conjunto A	frontera de A
$A = (-2, 3) \subseteq \mathbb{R}$	$\{-2,3\}$
$A = [-2, 3) \subseteq \mathbb{R}$	$\{-2, 3\}$
$A = (-2, 3) \cup \{6\} \subseteq \mathbb{R}$	$\{-2, 3, 6\}$
$A = (-2,3) \cup [3,6) \subseteq \mathbb{R}$	$\{-2, 6\}$
$A = (-2,3) \cup (3,6] \subseteq \mathbb{R}$	$\{-2, 3, 6\}$
$A = \{ x \in \mathbb{Q} : 0 \le x \le 1 \}$	[0, 1]
$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$	$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$
A es un finito	El mismo conjunto A
$A = \left\{1 + \frac{1}{n} : n \in \mathbb{N}\right\} = \left\{2, 1 + \frac{1}{2}, \dots\right\}$	$A \cup \{1\}$
$A = \mathbb{R}^n$	Ø
$A = \emptyset$	Ø

Definición: Sea $B \subseteq \mathbb{R}^n$. Decimos que B es un conjunto **cerrado** si B^c es abierto.

Propiedades de conjuntos cerrados:

- 1. Si $V_1, V_2, V_3, \ldots, V_n$ son conjuntos cerrados en \mathbb{R}^n , entonces $V_1 \cup V_2 \cup V_3 \cup \ldots V_n$ es abierto (Solo para una intersección finita).
- 2. Si $V_1, V_2, V_3, \ldots, V_n$ son conjuntos abiertos en \mathbb{R}^n , entonces $V_1 \cap V_2 \cap V_3 \cap \ldots V_n$ es abierto (Aplica para una union finita e infinita).
- 3. \emptyset es cerrado.
- 4. \mathbb{R}^n es cerrado.

*Nota: y \mathbb{R}^n son los únicos conjuntos abiertos y cerrados.

*Nota: La frontera de A y A^c es el mismo conjunto.

*Nota: Si A es un conjunto finito de \mathbb{R}^n , entoces A es cerrado y no abierto.

*Nota: "Entre 2 números racionales, hay un irracional y hay un racional entre 2 números irracionales".

Conjunto A	Características de A
$A = \{(x, y) \subseteq \mathbb{R}^2 : y \le x^2\}$	Pensando en $y = x^2 \to A^c$ es abierto : A es cerrrado
$A = (1, 1, 1) \subseteq \mathbb{R}^3$	A es cerrado
$A = [2, 5] \subseteq \mathbb{R}$	Como $A^c = (-\infty, 2) \cup (5\infty)$ es abierto : A es cerrado
$A = [2, 5) \subseteq \mathbb{R}$	A es no abierto y no cerrado
$A = [2, \infty) \subseteq \mathbb{R}$	Como $A^c = (-\infty, 2)$ es abierto, A es cerrado
$A = \{x \in \mathbb{Q} : 0 \le x \le 1\}$	A es no abierto, no cerrado
$A = \left\{ 1 + \frac{1}{n} : n \in \mathbb{N} \right\}$	A es no abierto, no cerrado

Límites

Definición de límite: Sea $f:A\subseteq\mathbb{R}^n\to\mathbb{R}^m$ con A abierto y sea $\vec{a}\in A$ Decimos que

$$\lim_{\vec{x}\to\vec{a}} f(\vec{x}) = \vec{b}$$
, $(\vec{b}\in\mathbb{R}^m)$

Si $\forall \epsilon > 0, \exists \delta > 0$ tq si $\vec{x} \in A$ y $\|\vec{x} - \vec{a}\| < \delta \Rightarrow \|f(\vec{x}) - \vec{b}\| < \epsilon$.

Para mostrar que un límite no existe es necesario mostrar dos trayectorias (ecuaciones) tales que el limite sea diferente en ellas.

Propiedades de los límites:

Sea $f \subseteq \mathbb{R}^n \to \mathbb{R}^m, g \subseteq \mathbb{R}^n \to \mathbb{R}^m$ y sea $\vec{a} \in A$ o en la frontera de A.

- 1. Si $\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = \vec{L}$ y $\lim_{\vec{x} \to \vec{a}} g(\vec{x}) = \vec{M}$ $\Rightarrow \lim_{\vec{x} \to \vec{a}} f(\vec{x}) + g(\vec{x}) = \vec{L} + \vec{M}$
- 2. Si $c \in \mathbb{R}$ y $\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = \vec{L}$ $\Rightarrow \lim_{\vec{x} \to \vec{a}} cf(\vec{x}) = c\vec{L}$
- 3. Si m=1 (Imagen), $\lim_{\vec{x}\to\vec{a}} f(\vec{x}) = \vec{L}$ y $\lim_{\vec{x}\to\vec{a}} g(\vec{x}) = \vec{M}$ $\Rightarrow \lim_{\vec{x}\to\vec{a}} f(\vec{x})g(\vec{x}) = L*M$
- 4. Si m=1 (Imagen), $\lim_{\vec{x}\to\vec{a}} f(\vec{x}) = \vec{L} \neq 0$ $\Rightarrow \lim_{\vec{x}\to\vec{a}} \frac{1}{f(\vec{x})} = \frac{1}{L}$
- 5. Si m > 1 y $f(\vec{x}) = (f_1(\vec{x}), f_2(\vec{x}), \dots, f_m(\vec{x}))$ con $f_i : A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ $\Rightarrow \lim_{\vec{x} \to \vec{a}} f(\vec{x}) = \vec{L} \Leftrightarrow \lim_{\vec{x} \to \vec{a}} f_i(\vec{x}) = \vec{L}_i, \forall i = 1, 2, 3, \dots, m \text{ donde}$ $\vec{L} = (L_1, L_2, L_3, \dots, L_m)$

Continuidad

Definición: Sea $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m y sea \vec{a} \in A$. Decimos que f es continua en \vec{a} si

$$\lim_{\vec{x}\to\vec{a}} f(\vec{x}) = f(\vec{a})$$

Propiedades de continuidad puntual:

Sea $f \subseteq \mathbb{R}^n \to \mathbb{R}^m$, $g \subseteq \mathbb{R}^n \to \mathbb{R}^m$ y sea $\vec{a} \in A$ y $c \in \mathbb{R}$.

1. Si f y g son continuas en \vec{a}

$$\Rightarrow f + g$$
 es continua en \vec{a}

2. Si f es continua en \vec{a}

$$\Rightarrow cf$$
 es continua en \vec{a}

3. Si m=1 (Imagen), f y q son continuas en \vec{a}

$$\Rightarrow f \cdot g$$
 es continua en \vec{a}

4. Si m=1 (Imagen), f es continua en \vec{a} y $f(\vec{a}) \neq 0$

$$\Rightarrow \frac{1}{f}$$
 es continua en \vec{a}

5. Si m > 1 y $f(\vec{x}) = (f_1(\vec{x}), f_2(\vec{x}), \dots, f_m(\vec{x}))$

$$\Rightarrow f$$
 es continua en $\vec{a} \Leftrightarrow f_i$ es continua en $\vec{a}, \forall i = 1, 2, ..., m$

Definición (semi-formal): Sea $f: \mathbb{R}^n \to \mathbb{R}^m$, se dice que f es un polinomio si es una combinación lineal de productos de potencias no negativas de $x_i \in \mathbb{R}^n$ con i = 1, 2, 3, ..., n.

Teorema (semi-formal): Si $f(\vec{x})$ es un polinomio entonces f es continua para todo \vec{a} .

Teorema (semi-formal): Si $f(\vec{x})$ es una función racional, es decir, cociente de polinomios entonces f es continua en \vec{a} si el denominador de $f(\vec{x}) \neq 0$ en \vec{a} .

Composición de funciones

Teorema: Si $g: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ y $f: b \subseteq \mathbb{R}^m \to \mathbb{R}^p$ y $f(A) \subseteq B$ y f es continua en \vec{a} yg es continua en $f(\vec{a}) \Longrightarrow$

$$g \circ f$$
 es continua en \vec{a}

Observación Una funcion f es continua en un conjunto A si es continua en cada vector \vec{a} .

Derivadas

Definición: Se define como derivada parcial de f con respecto a x en (a,b)

$$\frac{\partial f}{\partial x}(a,b) := \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

Definición: Se define como derivada parcial de f con respecto a y en (a,b)

$$\frac{\partial f}{\partial x}(a,b) := \lim_{k \to 0} \frac{f(a,b+k) - f(a,b)}{k}$$

En general, sea $f: u \subseteq \mathbb{R}^n \to \mathbb{R}$ con u abierto, se define a la derivada parcial en dirección de x_i :

$$\frac{\partial f}{\partial x_i}(a_1, a_2, \dots, a_n) := \lim_{h \to 0} \frac{f(a_1, a_2, \dots, x_i + h, \dots, a_n) - f(a_1, a_2, \dots, a_n)}{h}$$

$$= \lim_{h \to 0} \frac{f(\vec{a} + h\vec{e_i}) - f(\vec{a})}{h}$$

Notación:

$$\frac{\partial f}{\partial x_i}$$
, $\frac{\partial f}{\partial x_i}|_{\vec{x}=\vec{a}}$, $f_{(x_i)}(\vec{a})$, $D_{x_i}f(\vec{a})$

La ecuación del plano tangente a la superficie z = f(x, y) está dada por la ecuación:

$$z = \frac{\partial f(x_0, y_0)}{\partial x} (x - x_0) + \frac{\partial f(x_0, y_0)}{\partial y} (y - y_0) + f(x_0, y_0)$$

Definición: Sea $U \subseteq \mathbb{R}^2$ abierto y $f: U \to \mathbb{R}$. Decimos que f es **diferenciable** en $(x_0, y_0) \in U$ si $\frac{\partial f(x_0, y_0)}{\partial x}$ y $\frac{\partial f(x_0, y_0)}{\partial y}$ existen y

$$\lim_{(x,y)\to(x_0,y_0)}\frac{f(x,y)-f(x_0,y_0)-\frac{\partial f(x_0,y_0)}{\partial x}(x-x_0)-\frac{\partial f(x_0,y_0)}{\partial y}(y-y_0)}{\|(x,y)-(x_0,y_0)\|}=0$$
 Solamente diremos que **existe** el plano tangente en (x_0,y_0) si f es diferen-

ciable en (x_0, y_0)

Definición: El gradiente de f es el vector

$$\nabla f(x_0, y_0) = \left(\frac{\partial f(x_0, y_0)}{\partial x}, \frac{\partial f(x_0, y_0)}{\partial y}\right)$$

También se denota como $Df(x_0, y_0)$ o $(grad\ f)(x_0, y_0)$

Entonces la definición de **diferenciabilidad** se puede leer como el gradiente existe:

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y) - (f(x_0,y_0) - \nabla f(x_0,y_0)) \cdot (x - x_0, y - y_0)}{\|(x,y) - (x_0,y_0)\|} = 0$$