Université Kasdi Merbah, Ouargla

Faculté des Mathématiques et des Sciences de la Matière

Module: Calcul stochastique

Serie N°4 Mouvement Brownien

Département de Mathématiques Master-1 Probabilités et statistique 2023/2024

Exercice 1_____

Soit $(B_t)_{t \in \mathbb{R}_+}$ un mouvement Brownien. Trouver la loi de B_t^2 .

Exercice 2 Soit $(B_t)_{t \in \mathbb{R}_+}$ un mouvement Brownien.

- 1. Montrer que $\phi_{B_t}(u) = \exp\left(-\frac{1}{2}u^2t\right)$, $\forall u \in \mathbb{R}$, avec ϕ la fonction caractéristique de la loi de la variable aléatoire B_t .
- 2. Deduire $\mathbb{E}\left(B_t^4\right) = 3t^2$ et

$$\mathbb{E}\left(B_t^{2k}\right) = \frac{2k!}{2^k k!} t^k; \ k \in \mathbb{N}.$$

Exercice 3_____

Soit $(B_t)_{t \in \mathbb{R}_+}$ un mouvement Brownien.

• Montrer que $\forall c > 0$, $\hat{B}_t = \frac{1}{c}B_{c^2t}$ est un mouvement Brownien par rapport à la filtration $\mathcal{F}_t = \sigma\left(B_{c^2s}, \ s \le t\right).$

Exercice 4_

On dit que un processus $(B_t)_{t \in \mathbb{R}_+}$ est autosimilaire si $\forall a > 0, \exists b > 0$ telque B_{at} et bB_t de même loi. Soit $(B_t)_{t \in \mathbb{R}_+}$ un mouvement Brownien.

• Montrer que $(B_t)_{t \in \mathbb{R}_+}$ est autosimilaire.

Exercice 5.

Soit $(B_t)_{t \in \mathbb{R}_+}$ un mouvement Brownien et $f \in C_b^1$.

• Trouver la fonction h(t, x) tel que

$$\mathbb{E}\left(f\left(B_{t}\right)\right) = \mathbb{E}\left(f\left(B_{t}\right)h\left(t, B_{t}\right)\right).$$

Exercice 6.

Soit $(M_t)_{t \in \mathbb{R}_+}$ une martingale par rapport à la filtration \mathcal{F}_t de carré intégrable $(\mathbb{E} |M_t^2| < \infty, \ \forall t)$.

Montrer que

$$\mathbb{E}\left(\left(M_t - M_s\right)^2 \middle| \mathcal{F}_s\right) = \mathbb{E}\left(\left.M_t^2 - M_s^2\right| \mathcal{F}_s\right),\,$$

et déduire que $(M_t^2)_{t\in\mathbb{R}_+}$ est un sous martingale.

Exercice 7_

Soit $(B_t)_{t \in \mathbb{R}_+}$ un mouvement Brownien, telque

$$X_t = \alpha t + \sigma B_t$$
, avec α, σ constants.

• Montrer que $(X_t)_{t \in \mathbb{R}_+}$ un martingale si et seulement si $\alpha = 0$.