

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NASIONALE SENIOR SERTIFIKAAT

GRAAD 12

WISKUNDE V2

NOVEMBER 2012

MEMORANDUM

PUNTE: 150

Hierdie memorandum bestaan uit 29 bladsye.

NOTA:

- Indien `n kandidaat `n vraag TWEE keer beantwoord het, merk slegs die EERSTE poging.
- Indien `n kandidaat `n poging van `n vraag gekanselleer het en nie die vraag weer gedoen het nie, merk die gekanselleerde weergawe.
- Volgehoue akkuraatheid is van toepassing in ALLE aspekte van die memorandum tensy anders aangedui.

VRAAG 1

1.1	Ongeveer 121cm (Aanvaar 120 – 122)	✓antwoord	
1.2	Soos die ouderdem teeneem sel die lengte teeneem	✓ beskrywing	(1)
1.2	Soos die ouderdom toeneem sal die lengte toeneem	• beskrywing	(1)
	OF		(-)
	Elke jaar die lengte sal toeneem met ongeveer 6,2 cm		
	OF		
	Reguit lyn (linieêr) met positiewe gradient		
	OF		
	Toename in lengte: toename in ouderdom is `n konstante		
	OF		
	Sterk positiewe korrelasie		
1.3	169 – 88	✓ lees van	
1.5	Geskatte toename in gemiddelde lengte = $\frac{169 - 88}{15 - 2}$	grafiek af	
	= 6,23	✓ noemer	
	Interval vir noemer (87 – 89; 167 – 170)	✓antwoord	(3)
	(Aanvaar enige antwoord tussen 6 – 6,4 cm)		(0)
1.4	Kinders hou op groei as hulle volwassenheid bereik.	✓opmerking	
			(1)
	OF Indien die neiging voortduur sal die seuns onmoontlike lengtes bereik		
	indich die heiging voortduur sar die seuns omnoontlike lengtes bereik		
	OF		
	Die neiging sal 'n konstante waarde nader.		[6]
	OF		լսյ
	Mense kan nie onbeperk groei nie.		

2.1	Gemiddelde aantal lopies	√ 128
	$\bar{x} = \frac{\sum x}{n} = \frac{128}{8} = 16$	(1.5
	$\frac{x-\frac{n}{n}-8}{8}$	✓16 (2)
2.2	Standaard afwyking = 7,55 NOTA : Penalisering van 1 punt vir nie-korrekte afronding	√ √ 7,55 (2)
2.3	Standaard afwyking = 9,71 Standaard afwyking vermeerder.	✓ 9,71 ✓ vermeerder (2)
	OF 2 en 35 is ver van die gemiddelde, naamlik 16. Die standaard afwyking hang af van hoe ver die data punte vanaf die gemiddelde is, en daarom word dit verwag dat die standaard afwyking sal toeneem	✓2 en 35 ver van gemiddelde ✓vermeerder
2.4	Totale aantal lopies benodig is $20 \times 16 = 320$ Totale aantal lopies aangeteken tydens die laaste vyf wedstryde = $320 - 59 - 128 = 133$ Gemiddelde aantal lopies vir die laaste wedstryd is $\frac{133}{5} = 26,6$	✓ 320 ✓ 133 ✓ 26,6 (3)
	OF $ \frac{128 + 59 + x}{16} = 20 $ $ 187 + x = 320 $ $ \therefore x = 133 $ $ \therefore \frac{133}{5} = 26,6 $ OF	✓ 320 ✓ 133 ✓ 26,6 (3)
	$\frac{128 + 59 + 5x}{16} = 20$ $5x = 133$ $\therefore x = 26,6$	✓ 320 ✓ 133 ✓ 26,6 (3) [9]

3.1	Omvang (Variasiewydte) = $85 - 30 = 55$	✓ 55 (1)
3.2	Skei •	
	Wisk	✓ maks 85 ✓ $Q_3 = 70$ ✓ $Q_1 = 40$
	25 30 35 40 45 50 55 60 65 70 75 80 85	✓ Mediaan = 55 (4)
3.3	Vanuit die inligting oor Wiskunde, die waarde van die derde kwartiel is 70%. Dus sal 75% van die leerder se punte onder 70% wees. Verwagte aantal leerders minder as 70% is $\frac{75}{100} \times 60 = \frac{3}{4} \times 60 = 45 \text{ leerders}$	✓ 75% van leerders ✓ 45 leerders (2)
3.4	Nee, Joe se stelling is nie geldig nie. 50% van die leerders het tussen 30% en 45% presteer in Skeinat. 50% van die leerders het tussen 30% en 55% presteer in Wiskunde. Daarom is die aantal leerders dieselfde OF Nee, Joe se stelling is nie geldig nie. Selfde aantal leerders (tussen min en mediaan)	✓ nie geldig nie/no ✓ mediaan represents 50% of leerders (2)

VRAAG 4

4.1	Modale interval(klas) is $50 \le x < 60$	✓korrekte interval
	OF	(1)
	$50 < x \le 60$	
	OF	
	50 tot 60	
4.2	Mediaan posisie is 15 leerders (gegroepeerde data).	✓ 53 kg
	Geskatte gewig is omtrent 53 kg.	(1)
	(Aanvaar 52 kg - 54 kg)	
4.3	30 - 23 = 7 leerders het meer as 60 kg versamel.	
		✓ ✓ 7 leerders
		(2)
		[4]

5.1	Hoeklyne halveer mekaar by M:	$ \checkmark x_M = 1$
	$x_M = \frac{-3+5}{2} = 1$; $y_M = \frac{8+(-4)}{2} = 2$	$\checkmark x_M = 1$ $\checkmark y_M = 2$
	M(1; 2)	(2)
5.2	$m_{BC} = \frac{1+4}{6-5}$	✓ vervanging in gradient formule
	$m_{BC} = 5$	√ 5
	OF	(2)
	$m_{BC} = \frac{-4 - 1}{5 - 6}$	$\checkmark m_{BC} = \frac{-4 - 1}{5 - 6}$ $\checkmark 5$
	$m_{BC} = 5$	✓ 5 (2)
5.3	$y - y_1 = m(x - x_1)$ $y - 8 = m(x + 3)$ $m_{AD} = m_{BC} = 5$ $y - 8 = 5(x + 3)$ $y = 5x + 23$ Ewewydige lyne	✓ vervanging (-3; 8) ✓ gradiente gelyk ✓ vergelyking (3)

Ewewydige lyne $m_{AD} = m_{BC}$ $m_{AD} = 5$ $y = 5x + c$ $8 = 5(-3) + c$ $c = 23$ $y = 5x + 23$ 5.4 ABCD is `n ruit, daarom $AB = BC$ $\theta = B\hat{C}A = A\hat{R}S - R\hat{S}C$ $= A\hat{R}S - B\hat{S}T$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5}$ $\tan A\hat{R}S = 123,69^{\circ}$ $\tan B\hat{S}T = m_{BC} = 5$ $B\hat{S}T = 78,69^{\circ}$ $A\hat{R}S = 123,69^{\circ} - 78,69^{\circ}$ $B\hat{C}A = 45^{\circ}$ OF $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $A\hat{R}S = 123,69^{\circ} - 78,69^{\circ}$ $A\hat{R}S = 123,69^{\circ}$	
Ewewydige lyne $m_{AD} = 5$ $y = 5x + c$ $8 = 5(-3) + c$ $c = 23$ $y = 5x + 23$ 5.4 ABCD is `n ruit, daarom $AB = BC$ $\theta = B\hat{C}A = A\hat{R}S - R\hat{S}C$ $= A\hat{R}S - B\hat{S}T$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5}$ $\tan A\hat{R}S = 123,69^{\circ}$ $\tan B\hat{S}T = m_{BC} = 5$ $B\hat{S}T = 78,69^{\circ}$ $A\hat{R}S = B\hat{C}A = 45^{\circ}$ OF $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $A\hat{R}S = 323,69^{\circ}$	lyking
y = 5x + c 8 = 5(-3) + c c = 23 y = 5x + 23 5.4 ABCD is `n ruit, daarom AB = BC $\theta = B\hat{C}A = A\hat{R}S - R\hat{S}C$ $= A\hat{R}S - B\hat{S}T$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5}$ $\tan A\hat{R}S = 123,69^{\circ}$ $\tan B\hat{S}T = m_{BC} = 5$ $B\hat{S}T = 78,69^{\circ}$ $A\hat{R}S = 123,69^{\circ} - 78,69^{\circ}$ $B\hat{C}A = 45^{\circ}$ OF $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$	lyking
8 = 5(-3) + c c = 23 y = 5x + 23 5.4 ABCD is `n ruit, daarom AB = BC $\theta = B\hat{C}A = A\hat{R}S - R\hat{S}C$ $= A\hat{R}S - B\hat{S}T$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5}$ $\tan A\hat{R}S = 123,69^{\circ}$ $\tan B\hat{S}T = m_{BC} = 5$ $B\hat{S}T = 78,69^{\circ}$ $A\hat{R}S = B\hat{C}A + B\hat{S}T$ $B\hat{C}A = 123,69^{\circ} - 78,69^{\circ}$ $B\hat{C}A = 45^{\circ}$ OF $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$	
$c = 23$ $y = 5x + 23$ 5.4 ABCD is `n ruit, daarom $AB = BC$ $\theta = B\hat{C}A = A\hat{R}S - B\hat{S}T$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5}$ $\tan A\hat{R}S = 123,69^{\circ}$ $A\hat{R}S = 123,69^{\circ} - 78,69^{\circ}$ $B\hat{C}A = 45^{\circ}$ OF $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AD} = 5$ ✓ tan A.	
5.4 ABCD is `n ruit, daarom $AB = BC$ $\theta = B\hat{C}A = AR\hat{S} - R\hat{S}C$ $= AR\hat{S} - B\hat{S}T$ $\tan AR\hat{S} = m_{AC} = \frac{8+4}{-3-5}$ $\tan AR\hat{S} = 123.69^{\circ}$ $\tan AR\hat{S} = m_{BC} = 5$ $B\hat{S}T = 78.69^{\circ}$ $AR\hat{S} = 123.69^{\circ} - 78.69^{\circ}$ $B\hat{C}A = 123.69^{\circ} - 78.69^{\circ}$ $AR\hat{S} = 123.69^{\circ}$ $\tan AR\hat{S} = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $AR\hat{S} = 123.69^{\circ}$ $\tan AR\hat{S} = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $AR\hat{S} = 123.69^{\circ}$ $\tan AR\hat{S} = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $AR\hat{S} = 123.69^{\circ}$ $\tan APR = m_{AD} = 5$ $\tan A\hat{S} = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $\tan APR = m_{AD} = 5$ $\tan A\hat{S} = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $\tan A\hat{S} = m_{AC} = \frac{8+4}{-3-5$	
5.4 ABCD is `n ruit, daarom $AB = BC$ $\theta = B\hat{C}A = A\hat{R}S - R\hat{S}C$ $= A\hat{R}S - B\hat{S}T$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5}$ $\tan A\hat{R}S = 180^{\circ} - 56,3099$ $A\hat{R}S = 123,69^{\circ}$ $\tan B\hat{S}T = m_{BC} = 5$ $B\hat{S}T = 78,69^{\circ}$ $A\hat{R}S = B\hat{C}A + B\hat{S}T$ $B\hat{C}A = 123,69^{\circ} - 78,69^{\circ}$ $B\hat{C}A = 45^{\circ}$ OF $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$	
AB = BC $\theta = B\hat{C}A = A\hat{R}S - R\hat{S}C$ $= A\hat{R}S - B\hat{S}T$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5}$ $\tan A\hat{R}S = 180^{\circ} - 56,3099$ $A\hat{R}S = 123,69^{\circ}$ $\tan B\hat{S}T = m_{BC} = 5$ $B\hat{S}T = 78,69^{\circ}$ $A\hat{R}S = B\hat{C}A + B\hat{S}T$ $B\hat{C}A = 123,69^{\circ} - 78,69^{\circ}$ $B\hat{C}A = 45^{\circ}$ OF $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AD} = 5$	
$= A\hat{R}S - B\hat{S}T$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5}$ $\tan A\hat{R}S = 180^{\circ} - 56,3099$ $A\hat{R}S = 123,69^{\circ}$ $\tan B\hat{S}T = m_{BC} = 5$ $B\hat{S}T = 78,69^{\circ}$ $A\hat{R}S = B\hat{C}A + B\hat{S}T$ $B\hat{C}A = 123,69^{\circ} - 78,69^{\circ}$ $D\mathbf{F}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}R = m_{AD} = 5$ $\tan A\hat{R}R = m_{AD} = 5$	
$\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5}$ $\tan A\hat{R}S = \frac{3}{2}$ $A\hat{R}S = 180^{\circ} - 56,3099$ $A\hat{R}S = 123,69^{\circ}$ $\tan B\hat{S}T = m_{BC} = 5$ $B\hat{S}T = 78,69^{\circ}$ $A\hat{R}S = 8\hat{C}A + B\hat{S}T$ $B\hat{C}A = 123,69^{\circ} - 78,69^{\circ}$ $B\hat{C}A = 45^{\circ}$ OF $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{P}R = m_{AD} = 5$ $\tan A\hat{P}R = m_{AD} = 5$ $\cot A\hat{R}S = \frac{8+4}{-3-5} = \frac{3}{2}$ $\cot A\hat{P}R = m_{AD} = 5$	RĈA
tan $ARS = m_{AC} = \frac{1}{-3-5}$ tan $ARS = 180^{\circ} - 56,3099$ $ARS = 123,69^{\circ}$ tan $BST = m_{BC} = 5$ $BST = 78,69^{\circ}$ $ARS = 123,69^{\circ} - 78,69^{\circ}$ $ARS = 123,69^{\circ}$	
$\tan A\hat{R}S = -\frac{3}{2}$ $A\hat{R}S = 180^{\circ} - 56,3099$ $A\hat{R}S = 123,69^{\circ}$ $\tan B\hat{S}T = m_{BC} = 5$ $B\hat{S}T = 78,69^{\circ}$ $A\hat{R}S = 123,69^{\circ} - 78,69^{\circ}$ $B\hat{C}A = 123,69^{\circ} - 78,69^{\circ}$ $B\hat{C}A = 45^{\circ}$ OF $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{P}R = m_{AD} = 5$ $\cot A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $\cot A\hat{R}R = m_{AD} = 5$ $\cot A\hat{R}S = m_{AD} = 5$	
$A\hat{R}S = 180^{\circ} - 56,3099$ $A\hat{R}S = 123,69^{\circ}$ $\tan B\hat{S}T = m_{BC} = 5$ $B\hat{S}T = 78,69^{\circ}$ $A\hat{R}S = B\hat{C}A + B\hat{S}T$ $B\hat{C}A = 123,69^{\circ} - 78,69^{\circ}$ $A\hat{R}S = B\hat{C}A + B\hat{S}T$ $B\hat{C}A = 123,69^{\circ} - 78,69^{\circ}$ $A\hat{R}S = B\hat{C}A + B\hat{S}T$ $B\hat{C}A = 123,69^{\circ} - 78,69^{\circ}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{P}R = m_{AD} = 5$ ✓ tan A.	ng 3
$A\hat{R}S = 180^{\circ} - 56,3099$ $A\hat{R}S = 123,69^{\circ}$ $\tan B\hat{S}T = m_{BC} = 5$ $B\hat{S}T = 78,69^{\circ}$ $A\hat{R}S = B\hat{C}A + B\hat{S}T$ $B\hat{C}A = 123,69^{\circ} - 78,69^{\circ}$ $B\hat{C}A = 45^{\circ}$ OF $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{P}R = m_{AD} = 5$ ✓ tan A. ✓ tan A.	$\kappa S = -\frac{1}{2}$
$A\hat{R}S = 123,69^{\circ}$ $\tan B\hat{S}T = m_{BC} = 5$ $B\hat{S}T = 78,69^{\circ}$ $A\hat{R}S = B\hat{C}A + B\hat{S}T$ $B\hat{C}A = 123,69^{\circ} - 78,69^{\circ}$ $B\hat{C}A = 45^{\circ}$ OF $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{P}R = m_{AD} = 5$ ✓ $\tan A$	
	9°
$B\hat{S}T = 78,69^{\circ}$ $A\hat{R}S = B\hat{C}A + B\hat{S}T$ $B\hat{C}A = 123,69^{\circ} - 78,69^{\circ}$ $B\hat{C}A = 45^{\circ}$ OF $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{P}R = m_{AD} = 5$ $\forall \tan A$	$\hat{G}T = m = -\frac{1}{2}$
$BST = 78,69^{\circ}$ $A\hat{R}S = B\hat{C}A + B\hat{S}T$ $B\hat{C}A = 123,69^{\circ} - 78,69^{\circ}$ $B\hat{C}A = 45^{\circ}$ OF $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{P}R = m_{AD} = 5$ $\forall \tan A$	De
$B\hat{C}A = 123,69^{\circ} - 78,69^{\circ}$ $B\hat{C}A = 45^{\circ}$ OF $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{P}R = m_{AD} = 5$ $ \checkmark \tan A$	
$BCA = 123,09 = 78,09$ $B\hat{C}A = 45^{\circ}$ OF $\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{P}R = m_{AD} = 5$ $4 \tan A$	
)° (6
$\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$ $A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{P}R = m_{AD} = 5$ $4 \tan A$	(0
$A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{P}R = m_{AD} = 5$ $\checkmark \tan A$	
$A\hat{R}S = 123,69^{\circ}$ $\tan A\hat{P}R = m_{AD} = 5$ $\checkmark \tan A$	âg 3
$\tan A\hat{P}R = m_{AD} = 5$ $\Rightarrow \tan A$	$RS = -\frac{1}{2}$
v tan A.	9°
v tan A.	
1 111 1 10,000 I V /X 64	ân
$P\hat{A}R = A\hat{R}S - A\hat{P}R$ Buitehoek van `n driehoek	$\hat{P}R = m_{AD} = 3$
$= 123,69^{\circ} - 78,69^{\circ}$	
450	0
$\checkmark \theta = 4$	° = 45°
	° = 45° 5°
= 45° teenoorstaande hoeke	° = 45°

Wiksunde/V2 DBE/November 2012

$$\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$$

$$A\hat{R}S = 123,69^{\circ}$$

$$\tan A\hat{P}R = 5$$

$$\hat{APR} = 78.69^{\circ}$$

$$Q = D\hat{A}D$$

Hoeklyne van `n ruit halveer $\theta = P\hat{A}R$ teenoorstaande hoeke

$$\theta = A\hat{R}S - A\hat{P}R$$

$$\theta = 123,69^{\circ} - 78,69^{\circ}$$

Buite hoek van driehoek

$$\theta = 45^{\circ}$$

$$\tan A\hat{R}S = m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$$

$$A\hat{R}S = 123,69^{\circ}$$

$$\tan B\hat{S}T = 5$$

$$B\hat{S}T = 78.69^{\circ}$$

$$\theta = R\hat{C}S$$

BA=BC

$$R\hat{C}S + B\hat{S}T = R\hat{C}S + R\hat{S}C$$

$$=A\hat{R}S$$

$$\theta = A\hat{R}S - B\hat{S}T$$
$$= 123,69^{\circ} - 78,69^{\circ}$$

 $\checkmark \theta = 45^{\circ}$

 $\checkmark \tan A\hat{R}S = -\frac{3}{2}$

 $\checkmark \tan A\hat{P}R = m_{AD} = 5$

(6)

(6)

✓ 123,69[®]

✓ 78,69°

 $\checkmark \theta = P\hat{A}R$

 $\checkmark \tan A\hat{R}S = -\frac{3}{2}$

✓ 123.69[®]

✓ 78.69°

 $\checkmark \theta = R\hat{C}S$

 $\checkmark \tan B\hat{S}T = 5$

OF

ABCD is `n ruit, daarom

$$AB = BC$$

$$\therefore A\hat{C}B = B\hat{A}C$$

$$\tan\theta = \tan A\hat{C}B$$

$$= \tan(A\hat{R}S - B\hat{S}T)$$

$$= \frac{\tan A\hat{R}S - \tan B\hat{S}T}{1 + \tan A\hat{R}S \cdot \tan B\hat{S}T}$$

$$=\frac{\left(\frac{12}{-8}\right) - \left(\frac{-5}{-1}\right)}{1 + \left(\frac{12}{8}\right)\left(\frac{5}{1}\right)}$$

$$\theta = 45^{\circ}$$

 $\checkmark A\hat{C}B = B\hat{A}C$

 $\checkmark \tan \theta = \tan A\hat{C}B$

✓ formule

✓ vervanging

 $\checkmark \tan \theta = 1$

 $\checkmark \theta = 45^{\circ}$ (6)

Kopiereg Voorbehou

Blaai om asseblief

OF

Uit 5.1, M se koordinate is (1; 2)

Verbind ME

$$m_{ME} = \frac{2-1}{1-6} = -\frac{1}{5}$$

$$m_{RC} = 5$$

$$\therefore m_{ME} \times .m_{BC} = -1$$

$$\therefore M\hat{E}C = 90^{\circ}$$

$$ME = \sqrt{(1-6)^2 + (2-1)^2} = \sqrt{26}$$

$$EC = \sqrt{(5-6)^2 + (-4-1)^2} = \sqrt{26}$$

∴ MEC is 'n reghoekige driehoek.

$$E\hat{C}M = 45^{\circ}$$

ABCD is 'n ruit, dus

$$AB = BC$$

$$\therefore \theta = B\hat{C}M = 45^{\circ}$$

OF

$$AM = \sqrt{(-3-1)^2 + (8-2)^2} = 2\sqrt{13}$$

Berekeninge om die koordinate van B te bepaal

$$m_{AC} = \frac{8+4}{-3-5} = -\frac{3}{2}$$

 $m_{BD} \times m_{AC} = -1$

$$m_{BD} = \frac{2}{3}$$

Hoeklyne halveer reghoekig

Vergelyking van BD is $y = \frac{2}{3}x + \frac{4}{3}$

Vergelyking van BC is y = 5x - 29

BD en BC ontmoet in B.

Los gelyktydig op om B(7; 6) te kry.

$$\therefore BM = \sqrt{(7-1)^2 + (6-2)^2} = \sqrt{52} = 2\sqrt{13}$$

 $\therefore BM = AM$

Omdat $\hat{AMB} = 90^{\circ}$

$$\tan \theta = \frac{BM}{AM}$$

 $\therefore \tan \theta = 1$

$$\theta = 45^{\circ}$$

✓ gradient van ME

✓ gradient van BC

$$\checkmark M\hat{E}C = 90^{\circ}$$

$$\checkmark MEC = 90^{\circ}$$

$$\checkmark ME = \sqrt{26}$$

$$\checkmark EC = \sqrt{26}$$

$$\checkmark E\hat{C}M = 45^{\circ}$$

$$\angle ECM = 45^{\circ}$$

✓ $AM = 2\sqrt{13}$

(6)

$$\checkmark y = \frac{2}{3}x + \frac{4}{3}$$

$$\checkmark y = 5x - 29$$

$$\checkmark y = 5x - 29$$

✓ B(7; 6)

$$\checkmark BM = 2\sqrt{13}$$

✓ 45°

(6) [13]

Blaai om asseblief

6.1	Die radius (NL) van `n sirkel is loodreg op die raaklyn (OL) by	✓ radius ⊥ raaklyn
	die kontakpunt	
		(1)
6.2	L(3;0)	✓ (3;0)
		(1)
6.3	Middelpunt N (3; 2) en $r = NL = 2$	$\checkmark r = 2$
	Vergelyking van die sirkel N:	
	$(x-a)^2 + (y-b)^2 = r^2$	$\checkmark (x-3)^2 + (y-2)^2$
	$(x-3)^2 + (y-2)^2 = 4$	√ 4
		(3)
6.4	koordinates van K.	
	K is die x-afsnit van die raaklyn.	
	$y = \frac{4}{3}x + \frac{4}{3}$	
	$0 = \frac{4}{3}x + \frac{4}{3}$	✓ vervanging $y = 0$ in
	0 = 4x + 4	vergelyking van
		raaklyn
	4x = -4	/ 1
	x = -1	$\checkmark x = -1$
	K(-1;0)	
	KL = 3 - (-1) of $KL = 3 + 1$	$\checkmark KL = 4$
	KL = 4	(3)
		(-,

K(-1;0)

x = -1

KL = 4

(3)

 $y = \frac{4}{3}x + \frac{4}{3}$ ✓ vervanging y = 0 in vergelyking van raaklyn

 $KL = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $KL = \sqrt{(3+1)^2 + (0-0)^2}$

 $KL = \sqrt{16}$ $\checkmark KL = 4$ KL = 4(3)

OF

Vir AK, $m = \frac{4}{3}$, $c = \frac{4}{3}$

 $\frac{\frac{4}{3}}{OK} = \tan A\hat{K}O = \frac{4}{3}$ OK = 1

 $\therefore KL = 4$

(3)

 $0 = \frac{4}{3}x + \frac{4}{3}$ 0 = 4x + 4

4x = -4

K(-1;0)

 $KN^{2} = NL^{2} + KL^{2}$ $(-1-3)^{2} + (0-2)^{2} = 4 + KL^{2}$ $20 = 4 + KL^{2}$ $16 = KL^{2}$ Pythagoras se stelling $\checkmark KL = 4$

6.5 $m_{AB} \times m_{AK} = -1$ raaklyn ⊥ radius $\therefore m_{AB} = -\frac{3}{4}$ $y - y_1 = m(x - x_1)$ $y - 2 = -\frac{3}{4}(x - 3)$ ✓ vervanging van punt (3;2) in vergelyking $y = -\frac{3}{4}x + \frac{9}{4} + \frac{8}{4}$ ✓ vergelyking **(4)** $y = -\frac{3}{4}x + \frac{17}{4}$ **OF** $m_{AB} \times m_{AK} = -1$ raaklyn ⊥ radius ✓ vervanging van punt (3;2) in vergelyking $y = -\frac{3}{4}x + \frac{17}{4}$ ✓ vergelyking (4)

Wiksunde/V2 12 DBE/November 2012

6.6 Punt A is op PQ en AB. Dus

$$\frac{4}{3}x + \frac{4}{3} = -\frac{3}{4}x + \frac{17}{4}$$

$$16x + 16 = -9x + 51$$

$$25x = 35$$

$$x = \frac{7}{5}$$

$$y = -\frac{3}{4} \left(\frac{7}{5} \right) + \frac{17}{4}$$

$$y = \frac{16}{5}$$

$$A\left(\frac{7}{5}; \frac{16}{5}\right)$$

OF

Punt A is op PQ en die sirkel. Dus

$$(x-3)^2 + (\frac{4}{3}x + \frac{4}{3} - 2)^2 = 4$$

$$(x-3)^2 + (\frac{4}{3}x - \frac{2}{3})^2 = 4$$

$$25x^2 - 70x + 49 = 0$$

$$(5x-7)^2=0$$

$$x = \frac{7}{5}$$

$$y = -\frac{3}{4} \left(\frac{7}{5} \right) + \frac{17}{4}$$

$$y = \frac{16}{5}$$

OF

✓ vergelyking

✓
$$25x = 35$$

✓ vervanging van x

(3)

3)

✓ vergelyking

 $\checkmark (5x-7)^2 = 0$

✓ substitusie van x

Punt A lê op die sirkel en op lyn AB

$$(x-3)^2 + (y-2)^2 = 4$$
 -----(1)

$$y = -\frac{3}{4}x + \frac{17}{4} \qquad ----(2)$$

Subs (2) in (1):
$$x^2 - 6x + 9 + (-\frac{3}{4}x + \frac{17}{4} - 2)^2 = 4$$

$$x^{2} - 6x + 9 + \left(-\frac{3}{4}x + \frac{9}{4}\right)^{2} = 4$$

$$25x^{2} - 150x + 161 = 0$$
$$(5x - 23)(5x - 7) = 0$$

$$(5x - 23)(5x - 7) = 0$$

$$x = \frac{7}{5}$$

$$y = -\frac{3}{4} \left(\frac{7}{5} \right) + \frac{17}{4}$$

$$y = \frac{16}{5}$$

Gebruik rotasie:

Stel
$$\theta = A\hat{K}N = L\hat{K}N$$

Skuif die diagram met 1 eenheid regs. Dan is L' geroteer deur 2θ die punt A'.

$$\tan \theta = \frac{AN}{KA} = \frac{2}{4} = \frac{1}{2}$$

$$\therefore \sin 2\theta = 2\sin \theta \cos \theta = 2(\frac{1}{\sqrt{5}})(\frac{2}{\sqrt{5}}) = \frac{4}{5}$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = (\frac{2}{\sqrt{5}})^2 - (\frac{1}{\sqrt{5}})^2 = \frac{3}{5}$$

 $\therefore x_{A''} = x_{L'} \cos 2\theta - y_{L'} \sin 2\theta = 4(\frac{3}{5}) - (0)(\frac{4}{5}) = \frac{12}{5}$

$$y_{A''} = x_{L'} \sin 2\theta + y_{L'} \cos 2\theta = 4(\frac{4}{5}) - (0)(\frac{3}{5}) = \frac{16}{5}$$

$$A'(\frac{12}{5};\frac{16}{5})$$

Om terug te keer na A, skuif 1 eenheid links.

$$\therefore A(\frac{7}{5};\frac{16}{5})$$

✓ vergelyking

$$\checkmark (5x-23)(5x-7)=0$$

✓ vervanging van x

(3)

✓ waardes van sin 2θ en $\cos 2\theta$

✓ vervanging in die rotasie-formules

$$\bigwedge A'(\frac{12}{5}\;;\,\frac{16}{5})$$

(3)

OF

14 NSC – Memorandum

✓
$$\tan \theta = \frac{1}{2}$$

Stel $N\hat{K}L = \theta$. Dan sal $\tan \theta = \frac{NL}{KN} = \frac{2}{4} = \frac{1}{2}$.

Dus: $\sin \theta = \frac{1}{\sqrt{5}}$ en $\cos \theta = \frac{2}{\sqrt{5}}$

Laat $AM \perp x - as \text{ met M op } x - as$

$$\Delta NAK \equiv \Delta NLK$$

$$A\hat{K}N = N\hat{K}L = \theta$$

$$\therefore A\hat{K}L = 2\theta$$

 $y_A = AM = AK \sin 2\theta = KL \sin 2\theta = 4 \sin 2\theta$

 $\sin 2\theta = 2\sin \theta \cos \theta = 2\left(\frac{1}{\sqrt{5}}\right)\left(\frac{2}{\sqrt{5}}\right) = \frac{4}{5}$

$$y_A = 4\left(\frac{4}{5}\right) = \frac{16}{5}$$

$$\checkmark \sin 2\theta = \frac{4}{5}$$

 $x_A = OL - NA \sin M\hat{A}N$ $= 3 - 2\sin(90^\circ - M\hat{A}K)$ $= 3 - 2\sin 2\theta$ $= 3 - \frac{8}{5}$

$$=\frac{7}{5}$$

✓ los op vir x en y

(3)

6.7	$KA = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	✓ afstandformule
	$= \sqrt{\left(\frac{7}{5} + 1\right)^2 + \left(\frac{16}{5} - 0\right)^2}$ $= 4$	✓ vervanging ✓ 4 (3)
	OF	
	$KN = \sqrt{4^2 + 2^2} = \sqrt{20}$ $KA^2 = KN^2 - AN^2$ = 20 - 4	$\checkmark KN = \sqrt{20}$ $\checkmark KA^2 = KN^2 - AN^2$
	= 16 $KA = 4$	✓ 4 (3)
	\mathbf{OF} $\mathbf{KA} = \mathbf{KL}$ $\mathbf{KA} = 4$ Raaklyne van dieselfde punt af is gelyk	✓ KA=KL ✓ rede ✓ 4
6.8	AN = NL Radii is gelyk	$\checkmark AN = NL$
	KA = KL $\therefore KLNA$ is a kite twee paar aangrensde sye is gelyk.	✓ KA = KL
6.9	AB = AN + NB = 2 + 2 = 4 AK = 4= AB $\hat{KAB} = 90^{\circ}$ raaklyn ⊥ radius ∴ ΔAKB is `n reghoekige gelykbenige driehoek $\hat{AKB} + \hat{ABK} = 90^{\circ}$	(2) $\checkmark AB = 4$ $\checkmark AK = AB$ $\checkmark K\hat{A}B = 90^{\circ}$
	$2A\hat{B}K = 90^{\circ}$ $\therefore A\hat{B}K = 45^{\circ}$	(3)
	OF	

N is die middelpunt van AB

Veronderstel B is $(x_B; y_B)$

$$\frac{x_B + \frac{7}{5}}{2} = 3$$

$$\frac{x_B + \frac{7}{5}}{2} = 3 \qquad \frac{y_B + \frac{16}{5}}{2} = 2$$

$$\therefore x_B = \frac{23}{5} \qquad \qquad \therefore y_B = \frac{4}{5}$$

$$\therefore y_B = \frac{4}{5}$$

$$\therefore B\left(\frac{23}{5}; \frac{4}{5}\right)$$

$$\tan \beta = m_{AB} = -\frac{3}{4}$$

$$\beta = 180^{\circ} - 36,87^{\circ}$$

$$\beta = 143,13^{\circ}$$

✓ 143,13°

$$\tan \alpha = m_{KB} = \frac{\frac{4}{5} - 0}{\frac{23}{5} + 1} = \frac{1}{7}$$

$$\alpha = 8.13^{\circ}$$

$$A\hat{B}K = \alpha + (180^{\circ} - \beta)$$

= 8,13° + 36,87°
= 45°

$$\checkmark \hat{ABK} = \alpha + (180^\circ - \beta)$$

OF

N is die middelpunt van AB

Veronderstel B is $(x_B; y_B)$

$$\frac{x_B + \frac{7}{5}}{2} = 3$$

$$\frac{x_B + \frac{7}{5}}{2} = 3 \qquad \frac{y_B + \frac{16}{5}}{2} = 2$$

$$\therefore x_B = \frac{23}{5}$$

$$\therefore y_B = \frac{4}{5}$$

$$\therefore B(\frac{23}{5};\frac{4}{5})$$

$$KB = \sqrt{\left(\frac{23}{5} + 1\right)^2 + \left(\frac{4}{5}\right)^2} = 4\sqrt{2}$$

$$4^{2} = 4^{2} + (\sqrt{32})^{2} - 2(4)(\sqrt{32})\cos\theta$$

$$\cos\theta = \frac{\sqrt{2}}{2}$$

✓ vervanging in cosformule

$$\checkmark \cos \theta = \frac{\sqrt{2}}{2}$$

(3)

6.10 N'(3;-2) $\checkmark N'(3;-2)$

(1) [24]

Kopiereg Voorbehou

Blaai om asseblief

NOTA: CA nie van toepassing in hierdie VRAAG

7.1	Potosia om oorsprong daur 00° in `n klokegawweg rigting	✓ rotasie van 90°
7.1	Rotasie om oorsprong deur 90° in `n kloksgewyse rigting. OF Rotasie om oorsprong deur 270° in `n anti-kloksgewyse rigting. OF Rotasie om oorsprong deur -90°. $(x; y) \rightarrow (y; -x)$	✓ rotasie van 90° ✓ kloksgewyse rigting (2) ✓ rotasie of 270° ✓ anti-kloksgewyse rigting (2) ✓✓ stelling (2)
/.2		✓ (beide) $(x; y) \rightarrow (y; -x)$ (2)
7.3	A C 3 B C C 4 B X X X X X X X X X X X X X X X X X X	✓ een punt korrek ✓ alle punte korrek en driehoek geteken (2)
7.4	$(x;y) \rightarrow (2x;2y)$	$\checkmark (2x;2y) \tag{1}$
7.5.1	$A(-5;2) \to (-5;-2) \to D(5;-2)$	✓ 5 ✓-2 (2)
7.5.2	$(x;y) \rightarrow (x;-y) \rightarrow (-x;-y)$	$ \checkmark (x; -y) \checkmark (-x; -y) $ (2)
7.5.3	Rotasie deur 180° om die oorsprong in beide rigtings. OF	✓ rotasie ✓ 180° (2) ✓ refleksie
	Refleksie in die oorsprong.	✓ oorsprong (2) [13]

VRAAG 8 Geen sakrekenaar toegelaat in hierdie VRAAG

8.1.1 OT = k, PT = 8 en OP = 17 $k^2 + 8^2 = 17^2$ $k^2 = 289 - 64$ $k^2 = 225$ $k = \pm 15$ $k > 0$ $k = 15$ OF $k^2 = 17^2 - 8^2$ $k^2 = (17 - 8)(17 + 8)$ $= 25 \times 9$ $= 225$ $k = \pm 15$ $k > 0$ $k = 15$ OF $k^2 = 17^2 - 8^2$ $k^2 = 17^2 - 8^2$ $k^2 = 17^2 - 8^2$ $k^2 = 17 - 8 \cdot 17 - 8 \cdot 17 \cdot 17 \cdot 17$ $k^2 = 17^2 - 8^2$ $k = 15$ $k > 0$ $k = 15$ $k > 0$ $k = 15$ 8.1.2 $\cos \alpha = \frac{15}{17}$ $\sqrt{\frac{15}{17}}$ OF OF $\sqrt{\cos (180^\circ - \alpha)}$			T	
$k^{2} = 289 - 64$ $k^{2} = 225$ $k = \pm 15$ $k > 0$ $k = 15$ OF $k^{2} = 17^{2} - 8^{2}$ $k^{2} = (17 - 8)(17 + 8)$ $= 25 \times 9$ $= 225$ $k = \pm 15$ $k > 0$ $k = 15$ $k > 0$ $k = 15$ $\sqrt{k} = 180^{\circ}$ $\beta = 180^{\circ} - \alpha$ $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ OF $\frac{17}{\alpha}$ $0 = -\cos \alpha$ $= -\frac{15}{17}$	8.1.1			
$k^{-} = 289-64$ $k^{2} = 225$ $k = \pm 15$ $k > 0$ $k = 15$ OF $k^{2} = 17^{2} - 8^{2}$ $k^{2} = (17 - 8)(17 + 8)$ $= 25 \times 9$ $= 2225$ $k = \pm 15$ $k > 0$ $k = 15$ 8.1.2 $\cos \alpha = \frac{15}{17}$ (2) 8.1.3 $\alpha + \beta = 180^{\circ}$ $\beta = 180^{\circ} - \alpha$ $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ OF $\cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ (2) $\cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ (2) $\cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ (2)				
$k = \pm 15$ $k > 0$ $k = 15$ OF $k^{2} = 17^{2} - 8^{2}$ $k^{2} = (17 - 8)(17 + 8)$ $= 25 \times 9$ $= 225$ $k = \pm 15$ $k > 0$ $k = 15$ $8.1.2 \cos \alpha = \frac{15}{17}$ $8.1.3 \alpha + \beta = 180^{\circ}$ $\beta = 180^{\circ} - \alpha$ $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ OF $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ OF $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ $\Rightarrow \cos \alpha = \frac{15}{17}$			1 yulagoras	
$k > 0 \\ k = 15$ OF $k^{2} = 17^{2} - 8^{2}$ $k^{2} = (17 - 8)(17 + 8)$ $= 25 \times 9$ $= 225$ $k = \pm 15$ $k > 0$ $k = 15$ $8.1.2 \cos \alpha = \frac{15}{17}$ $8.1.3 \alpha + \beta = 180^{\circ}$ $\beta = 180^{\circ} - \alpha$ $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ OF $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ OF $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $\Rightarrow -\cos \alpha$ $= -\frac{15}{17}$ $\Rightarrow -\frac{15}{17}$		$k^2 = 225$		
$k = 15$ OF $k^{2} = 17^{2} - 8^{2}$ $k^{2} = (17 - 8)(17 + 8)$ $= 25 \times 9$ $= 225$ $k = \pm 15$ $k > 0$ $k = 15$ $k > 0$ $k > 0$ $k = 15$ $k > 0$		$k = \pm 15$./ 1 15	
$\begin{array}{c} k = 15 \\ \textbf{OF} \\ k^2 = 17^2 - 8^2 \\ k^2 = (17 - 8)(17 + 8) \\ = 25 \times 9 \\ = 225 \\ k = \pm 15 \\ k > 0 \\ k = 15 \\ \hline \\ 8.1.2 \\ \cos \alpha = \frac{15}{17} \\ \hline \\ 8.1.3 \\ \alpha + \beta = 180^{\circ} \\ \beta = 180^{\circ} - \alpha \\ \therefore \cos \beta = \cos(180^{\circ} - \alpha) \\ = -\cos \alpha \\ = -\frac{15}{17} \\ \hline \textbf{OF} \\ \\ \therefore \cos \beta = \cos(180^{\circ} - \alpha) \\ = -\cos \alpha \\ = \frac{15}{17} \\ \hline \\ \frac{17}{17} \\ \hline \\ (2) \\ \\ \therefore \cos \beta = \cos(180^{\circ} - \alpha) \\ = -\cos \alpha \\ = \frac{15}{17} \\ \hline \\ \frac{17}{17} \\ \hline \\ (2) \\ \\ \\ \frac{1}{17} \\ \\ \frac{1}{17} \\ \hline \\ (2) \\ \\ \frac{1}{17} \\ \frac{1}{17} \\ \frac{1}{17} \\ \frac{1}{17} \\ \frac{1}{17} \\ \frac{1}{17} \\ \\ $		k > 0	$\kappa = 15$	(2)
$k^{2} = 17^{2} - 8^{2}$ $k^{2} = (17 - 8)(17 + 8)$ $= 25 \times 9$ $= 225$ $k = \pm 15$ $k > 0$ $k = 15$ $8.1.2 \cos \alpha = \frac{15}{17}$ $8.1.3 \alpha + \beta = 180^{\circ}$ $\beta = 180^{\circ} - \alpha$ $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ OF $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ $\cos \beta = \cos(180^{\circ} - \alpha)$ \cos		k = 15		(2)
$k^{2} = (17-8)(17+8)$ $= 25 \times 9$ $= 225$ $k = \pm 15$ $k > 0$ $k = 15$ $8.1.2 \cos \alpha = \frac{15}{17}$ $8.1.3 \alpha + \beta = 180^{\circ}$ $\beta = 180^{\circ} - \alpha$ $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ $0F$ $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ $\Rightarrow \cos \beta = \cos(180^{\circ} - \alpha)$ $\Rightarrow $		OF		
Pythagoras $k^{-} = (17-8)(17+8)$ $= 25 \times 9$ $= 225$ $k = \pm 15$ $k > 0$ $k = 15$ 8.1.2 $\cos \alpha = \frac{15}{17}$ (1) 8.1.3 $\alpha + \beta = 180^{\circ}$ $\beta = 180^{\circ} - \alpha$ $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ OF $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ (2) $\cos \beta = \cos(180^{\circ} - \alpha)$ $\cos \beta = \cos(1$		$k^2 = 17^2 - 8^2$		
		$k^2 = (17 - 8)(17 + 8)$		
$k = \pm 15 \\ k > 0 \\ k = 15$ $8.1.2 \cos \alpha = \frac{15}{17}$ $8.1.3 \alpha + \beta = 180^{\circ} \\ \beta = 180^{\circ} - \alpha \\ \therefore \cos \beta = \cos(180^{\circ} - \alpha) \\ = -\cos \alpha \\ = -\frac{15}{17}$ OF $0 \Rightarrow 0 \Rightarrow$		$=25\times9$		
$k > 0 k = 15$ $8.1.2 \cos \alpha = \frac{15}{17}$ $8.1.3 \alpha + \beta = 180^{\circ} \beta = 180^{\circ} - \alpha \therefore \cos \beta = \cos(180^{\circ} - \alpha) = -\cos \alpha = -\frac{15}{17}$ 0 $\therefore \cos \beta = \cos(180^{\circ} - \alpha) = -\cos \alpha = -\frac{15}{17}$ $\therefore \cos \beta = \cos(180^{\circ} - \alpha) = -\cos \alpha = -\frac{15}{17}$ (2) (2) $\checkmark \cos(180^{\circ} - \alpha) or - \cos \alpha \checkmark \cos(180^{\circ} - \alpha) or - \cos \alpha \checkmark -\frac{15}{17}$		=225		
$k > 0 $ $k = 15$ $8.1.2 \cos \alpha = \frac{15}{17}$ $8.1.3 \alpha + \beta = 180^{\circ}$ $\beta = 180^{\circ} - \alpha$ $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ OF $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ $0 \Rightarrow -\cos \alpha$ $= -\frac{15}{17}$ (2) (2) (2) (3) (4) (5) (2) (5) (6) (7) (8) (9) (1) (1) (1) (1) (1) (1) (2) (2) (3) (4) (5) (6) (7) (8) (9) (1) (1) (1) (1) (1) (1) (2) (2) (3) (4) (5) (6) (7) (8) (9) (1) (1) (1) (1) (1) (2) (2) (3) (4) (5) (6) (7) (8) (9) (9) (1) (1) (1) (1) (1) (1) (1) (2) (2) (2) (3) (4) (5) (6) (7) (8) (9) (9) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (2) (2) (3) (4) (5) (6) (7) (7) (8) (9)		$k = \pm 15$	$\checkmark k = 15$	
8.1.2 $\cos \alpha = \frac{15}{17}$ $\checkmark \frac{15}{17}$ (1) 8.1.3 $\alpha + \beta = 180^{\circ}$ $\beta = 180^{\circ} - \alpha$ $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $\Rightarrow -\cos \alpha$ $\Rightarrow -\frac{15}{17}$ OF $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $\Rightarrow -\cos \alpha$ $\Rightarrow -\frac{15}{17}$ (2) $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $\Rightarrow -\cos \alpha$ $\Rightarrow -\frac{15}{17}$ $\Rightarrow -\cos \alpha$ $\Rightarrow -\frac{15}{17}$		k > 0		(2)
$ \cos \alpha = \frac{17}{17} $ $ 8.1.3 \alpha + \beta = 180^{\circ} $ $ \beta = 180^{\circ} - \alpha $ $ \therefore \cos \beta = \cos(180^{\circ} - \alpha) $ $ = -\cos \alpha $ $ = -\frac{15}{17} $ $ 0F $ $ \therefore \cos \beta = \cos(180^{\circ} - \alpha) $ $ = -\cos \alpha $ $ = -\cos \alpha $ $ = -\frac{15}{17} $ $ \cos \beta = \cos(180^{\circ} - \alpha) $ $ \cot \beta = \cos(180^{\circ} - \alpha) $				
8.1.3 $\alpha + \beta = 180^{\circ}$ $\beta = 180^{\circ} - \alpha$ $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ OF $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ $\Rightarrow \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ $\Rightarrow \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ (2)	8.1.2	$\cos \alpha = \frac{15}{2}$	$\sqrt{\frac{15}{1}}$	
8.1.3 $\alpha + \beta = 180^{\circ}$ $\beta = 180^{\circ} - \alpha$ $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ OF $\frac{8}{17}$ $\alpha + \beta = 180^{\circ}$ $= -\cos \alpha$ $= -\frac{15}{17}$ $\Rightarrow -\frac{15}{17}$ $\Rightarrow \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ $\Rightarrow \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ $\Rightarrow \cos \beta = \cos(180^{\circ} - \alpha)$ $\Rightarrow \cos \beta = \cos$		17	17	(1)
$\beta = 180^{\circ} - \alpha$ $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ OF $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{15}$ $\Rightarrow \cos(180^{\circ} - \alpha)$ $\Rightarrow \cos(180^{\circ} -$	8.1.3	$\alpha + \beta = 180^{\circ}$		(1)
$\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ OF $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ $\Rightarrow \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ $\Rightarrow \cos \beta = \cos(180^{\circ} - \alpha)$ $\Rightarrow \cos \beta = \cos(180^{\circ}$				
$=-\cos \alpha$ $=-\frac{15}{17}$ OF $\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $=-\cos \alpha$ $=-\frac{15}{17}$ (2) $\Rightarrow \cos(180^{\circ} - \alpha)$ $=-\cos \alpha$ $=-\frac{15}{17}$ $\Rightarrow \cos(180^{\circ} - \alpha)$ $\Rightarrow \cos(18$				
$ \begin{array}{c} $			or $-\cos \alpha$	
OF $ \begin{array}{c} $		15	. 15	
OF $ \begin{array}{c} $		$=-\frac{17}{17}$	$\sqrt{-\frac{13}{17}}$	
$\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ $\Rightarrow \cos \beta = \cos(180^{\circ} - \alpha)$ $\Rightarrow \cos \alpha$		OF		(2)
$\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ $\Rightarrow \cos \beta = \cos(180^{\circ} - \alpha)$ $\Rightarrow \cos \alpha$				
$\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ or $-\cos \alpha$ $\checkmark -\frac{15}{17}$				
$\therefore \cos \beta = \cos(180^{\circ} - \alpha)$ $= -\cos \alpha$ $= -\frac{15}{17}$ or $-\cos \alpha$ $\checkmark -\frac{15}{17}$./ 222(1900	
$=-\cos\alpha$ $=-\frac{15}{17}$		$\therefore \cos \beta = \cos(180^{\circ} - \alpha)$		
$=-\frac{15}{17}$				
		_ 15		
		$=-\frac{16}{17}$	• ,	(2)

8.1.4	$\sin(\beta - \alpha)$	
	$= \sin \beta \cos \alpha - \cos \beta \sin \alpha$	✓ uitbreiding
	$= \left(\frac{8}{17}\right) \left(\frac{15}{17}\right) - \left(-\frac{15}{17}\right) \left(\frac{8}{17}\right)$	$\checkmark \sin \beta = \frac{8}{17}$ $\checkmark \sin \alpha = \frac{8}{17}$
	$=\frac{120}{289} + \frac{120}{289}$	17
		240
	$=\frac{240}{289}$	$\checkmark \frac{240}{289}$
	209	(4)
	OF (coor)	. (
	$\beta - \alpha = (180^{\circ} - \alpha) - \alpha$	✓ vervanging β
	$=180^{\circ}-2\alpha$	
	$\sin(\beta - \alpha) = \sin(180^\circ - 2\alpha)$	
	$=\sin 2\alpha$	✓ 2sinacosa
	$=2\sin\alpha.\cos\alpha$	
	2 8 1 15	8
	$=2\left(\frac{8}{17}\right)\left(\frac{15}{17}\right)$	$\checkmark \sin \alpha = \frac{8}{17}$
	240	$\checkmark \frac{240}{}$
	$=\frac{240}{289}$	$\sqrt{\frac{289}{289}}$
		(4)
8.2.1	$LK = \frac{1 - \cos 2x - \sin x}{1 + \cos 2x - \sin x}$	
	$\sin 2x - \cos x$	(1 2 : 2
	$=\frac{1-(1-2\sin^2 x)-\sin x}{1-(1-2\sin^2 x)}$	$\sqrt{1-2\sin^2 x}$ $\sqrt{2\sin x \cos x}$
	$2\sin x \cos x - \cos x$	· 25111 x COS x
	$= \frac{2\sin^2 x - \sin x}{1 + \sin x}$	\checkmark of $\sin x(2\sin x - 1)$
	$-\frac{1}{2}\sin x \cos x - \cos x$	of
	$=\frac{\sin x(2\sin x-1)}{}$	$\cos x(2\sin x - 1)$
	$\cos x(2\sin x-1)$	$\sqrt{\frac{\sin x}{}}$
	$=\frac{\sin x}{x}$	$\cos x$
	$\cos x$	(4)
	$= \tan x$	
	=RK	
	OF.	
	OF	

$$LK = \frac{1 - \cos 2x - \sin x}{\sin 2x - \cos x}$$

$$= \frac{1 - (2\cos^2 x - 1) - \sin x}{2\sin x \cos x - \cos x}$$

$$= \frac{2 - 2\cos^2 x - \sin x}{2\sin x \cos x - \cos x}$$

$$= \frac{2(1 - \cos^2 x) - \sin x}{2\sin x \cos x - \cos x}$$

$$= \frac{2\sin^2 x - \sin x}{2\sin x \cos x - \cos x}$$

$$= \frac{\sin x(2\sin x - 1)}{\cos x(2\sin x - 1)}$$
of
$$\cos x(2\sin x - 1)$$

$$= \frac{\sin x}{\cos x}$$

$$= \tan x$$

$$= RK$$

$$(4)$$

OF

$$LK = \frac{1 - \cos 2x - \sin x}{\sin 2x - \cos x}$$

$$= \frac{1 - (\cos^2 x - \sin^2 x) - \sin x}{2 \sin x \cos x - \cos x}$$

$$= \frac{1 - \cos^2 x + \sin^2 x - \sin x}{2 \sin x \cos x - \cos x}$$

$$= \frac{2 \sin^2 x - \sin x}{2 \sin x \cos x - \cos x}$$

$$= \frac{\sin x (2 \sin x - 1)}{\cos x (2 \sin x - 1)}$$

$$= \frac{\sin x}{\cos x}$$

$$= \tan x$$

$$= RK$$

$$\sqrt{\cos^2 x - \sin^2 x}$$

$$\sqrt{2 \sin x \cos x}$$

$$\sqrt{\cos x}$$

$$\sqrt{\sin x (2 \sin x - 1)}$$

$$\sqrt{\sin x}$$

$$\cos x (2 \sin x - 1)$$

$$\sqrt{\sin x}$$

$$\cos x (2 \sin x - 1)$$

Wiksunde/V2 21 DBE/November 2012

8.2.2 $\sin 2x - \cos x = 0$ $\checkmark 2\sin x \cos x$ $2\sin x \cos x - \cos x = 0$ $\cos x = 0$ $\cos x(2\sin x - 1) = 0$ en $\sin x = \frac{1}{2}$ $\cos x = 0$ $x = 90^{\circ} + 360^{\circ}k$ of $x = 270^{\circ} + 360^{\circ}k$ $k \in \mathbb{Z}$

of $\sin x = \frac{1}{2}$ $x = 30^{\circ} + 360^{\circ}k$ of $x = 150^{\circ} + 360^{\circ}k$

 $x = 90^{\circ} \text{ of } x = 270^{\circ} \text{ of } x = 30^{\circ} \text{ of } x = 150^{\circ}$

✓ vir twee korrekte antwoorde

✓ vir vier korrekte antwoorde (4)

OF

 $\sin 2x = \cos x$ $\checkmark \sin(90^{\circ} - x)$

 $\sin 2x = \sin(90^{\circ} - x)$ $2x = 90^{\circ} - x + 360^{\circ}k; k \in \mathbb{Z}$ of $2x = 180^{\circ} - (90^{\circ} - x) + 360^{\circ}k$

 $3x = 90^{\circ} + 360^{\circ}k$ $2x = 90^{\circ} + x + 360^{\circ}k$ $x = 30^{\circ} + 120^{\circ}.k$

 $x = 30^{\circ} + 120^{\circ}k$ $x = 90^{\circ} + 360^{\circ}k$ $x = 90^{\circ} + 360^{\circ}.k$

✓ vir twee korrekte $x = 30^{\circ}$ of $x = 150^{\circ}$ of $x = 270^{\circ}$ of $x = 90^{\circ}$ antwoorde

✓ vir vier korrekte

antwoorde (4)

[17]

DBE/November 2012

VRAAG 9

9.1	$\sin^2 \theta$		
	$\frac{\sin(180^\circ - \theta).\cos(90^\circ + \theta) + \tan^2 \theta}{\sin(180^\circ - \theta).\cos(90^\circ + \theta) + \tan^2 \theta}$		
	$\sin^2 \theta$		$\checkmark \sin\theta$
	$=\frac{1}{(\sin\theta)(-\sin\theta)+1}$		$\sqrt{-\sin\theta}$
	$\sin^2 \theta$		✓ 1
	$=\frac{1}{-\sin^2\theta+1}$		
	$=\frac{\sin^2\theta}{1}$		
	$\cos^2 \theta$		$\checkmark \cos^2 \theta$
	$= \tan^2 \theta$		$\checkmark \tan^2 \theta$
9.2	$\sin 104^{\circ}(2\cos^2 15^{\circ} - 1)$		(5)
	$\frac{\sin 104 (2\cos^3 13^{\circ})}{\tan 38^{\circ} \sin^2 412^{\circ}}$		
	sin 76°.cos 30°		✓ sin 76° ✓ cos30°
	$=\frac{1}{\tan 38^{\circ}.(\sin 52^{\circ})^{2}}$		$\sqrt{\frac{\sin 38^{\circ}}{}}$
	$\sqrt{3}$	22000	$\sqrt{\frac{1}{\cos 38^{\circ}}}$
	$2\sin 38^{\circ}\cos 38^{\circ}\left(\frac{\sqrt{3}}{2}\right)$	NOTA: • Indien cos 30° nie getoon word	✓ sin52°
	$=\frac{1}{(\sin 38^\circ)(\cos 300)^2}$	nie: -1	✓2sin38°cos38°
	$-\frac{\sin 38^{\circ}}{\cos 38^{\circ}}\cos (\cos 38^{\circ})^{2}$	• Slegs antwoord: 0/8	
	$\sqrt{3}\sin 38^{\circ}\cos 38^{\circ}$		$\checkmark \frac{\sqrt{3}}{2}$
	$= \frac{\sin 38^{\circ} \cos 38^{\circ}}{\sin 38^{\circ} \cos 38^{\circ}}$		✓
	$=\sqrt{3}$		$\sin 52^{\circ} = \cos 38^{\circ}$
	0.7		$\checkmark \sqrt{3}$ (8)
	OF		(6)
	$\sin 104^{\circ}(2\cos^2 15^{\circ} - 1)$		
	tan 38° sin² 412°		✓ sin2(52°)
	$-\frac{\sin 2(52^{\circ}).(2\cos^2 15^{\circ}-1)}{\cos^2 15^{\circ}}$		$\sqrt{\frac{\sin 38^{\circ}}{}}$
	$=\frac{\sin 38^{\circ}}{\cos 38^{\circ}}.(\sin 52^{\circ})^2$		cos38°
	cos 38° \		✓ sin52°
	$=\frac{2\sin 52^{\circ}\cos 52^{\circ}.\cos 30^{\circ}}{(\cos 52^{\circ})}$		✓2sin52°cos52° ✓cos30°
	$\left(\frac{\cos 52^{\circ}}{\sin 52^{\circ}}\right) (\sin 52^{\circ})^2$		✓
	$=2\cos 30^{\circ}$		cos52°=sin38°
			en sin52°=cos38°
	$=2.\frac{\sqrt{3}}{2}$ $=\sqrt{3}$		
	$=\sqrt{3}$		$\checkmark \frac{\sqrt{3}}{2}$ $\checkmark \sqrt{3}$
	•		
			(8)

$$\frac{\text{OF}}{\frac{\sin 104^{\circ}(2\cos^{2}15^{\circ}-1)}{\tan 38^{\circ}\sin^{2}412^{\circ}}} = \frac{\cos 14^{\circ}(\cos 30^{\circ})}{\frac{\sin 38^{\circ}}{\cos 38^{\circ}}} (\sin 52^{\circ})^{2}}$$

$$= \frac{\cos 14^{\circ}\left(\frac{\sqrt{3}}{2}\right)}{\left(\frac{\sin 38^{\circ}}{\cos 38^{\circ}}\right) (\sin 52^{\circ})^{2}}$$

$$= \frac{\sqrt{3}\cos 14^{\circ}}{2\sin 38^{\circ}\cos 38^{\circ}}$$

$$= \frac{\sqrt{3}\cos 14^{\circ}}{\sin 76^{\circ}}$$

$$= \frac{\sqrt{3}\cos 14^{\circ}}{\cos 14^{\circ}}$$

$$= \sqrt{3}$$

$$\frac{\text{OF}}{\sin 104^{\circ}(2\cos^{2}15^{\circ}-1)}$$

$$\tan 38^{\circ}\sin^{2}412^{\circ}$$

$$= \frac{\sin 104^{\circ}(2\cos^{3}15^{\circ}-1)}{\tan 38^{\circ}\sin^{2}412^{\circ}}$$

$$= \frac{\sin 104^{\circ}(2\cos^{3}15^{\circ}-1)}{\sin 104^{\circ}(2\cos 30^{\circ})}$$

$$= \frac{\sin 104^{\circ}(2\cos^{3}15^{\circ}-1)}{\sin 104^{\circ}(2\cos^{3}15^{\circ}-1)}$$

$$= \frac{\sin 104^{\circ}(2\cos^{3}15^{\circ}-1)}{\sin 104^{\circ}(2\cos^{3}15^{\circ}-1)}$$

$$= \frac{\sin 104^{\circ}(2\cos^{3}15^{\circ}-1)}{\sin 104^{\circ}(2\cos^{3}15^{\circ}-1)}$$

$$= \frac{\sin 104^{\circ}(2\cos^{3}15^{\circ}-1)}{\sin 104^{\circ}(2\cos^{3}15^{\circ}-1)}$$

$$= \frac{\sin 104^{\circ}(2\cos^{3}15^{\circ}-1)}{\sin 104^{\circ}(2\cos^$$

10.1	•	./ 2.5
10.1	f(0) - g(0) = 0.5 - (-2) = 2.5	✓ 2,5 (1)
10.2	$\sin(x+30^\circ) = -2\cos x$	✓ vergelyking
	$\sin x \cdot \cos 30^\circ + \cos x \cdot \sin 30^\circ = -2\cos x$	✓ uitbreiding
		$\sin(x+30^{\circ})$
	$\left(\frac{\sqrt{3}}{2}\right)\sin x + \left(\frac{1}{2}\right)\cos x = -2\cos x$	/ warvanging wan
		✓ vervanging van spesiale hoeke
	$\sqrt{3}\sin x + \cos x = -4\cos x$	sposition notice
	$\sqrt{3}\sin x = -5\cos x$	✓ vereenvoudiging
	$\tan x = -\frac{5}{\sqrt{3}}$	5
	$\sqrt{3}$	$ \checkmark \tan x = -\frac{5}{\sqrt{3}} $ $ \checkmark x_p = -70,89^\circ $ $ \checkmark x_Q = 109,11^\circ $
	$x = 109,11^{\circ} + 180^{\circ}.k \; ; \; k \in \mathbb{Z}$	$\checkmark x_n = -70.89^{\circ}$
	$x_P = -70,89^{\circ} \ en \ x_Q = 109,11^{\circ}$	$\sqrt{x_0} = 109.11^{\circ}$
		$\chi_{Q} = 105,11$ (7)
	OF	
	$\sin(x+30^\circ) = -2\cos x$	✓ vergelyking
	$\cos(90^{\circ} - x - 30^{\circ}) = -2\cos x$. (with maiding a som
	$\cos(60^\circ - x) = -2\cos x$	✓ uitbreiding van $cos(60^{\circ} - x)$
	$\cos 60^{\circ} \cos x + \sin 60^{\circ} \sin x = -2\cos x$	$\cos(60-x)$
	$\int \frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x = -2\cos x$	✓ vervanging van
		spesiale hoeke
	$\cos x + \sqrt{3}\sin x = -4\cos x$	vereenvoudiging
	$\sqrt{3}\sin x = -5\cos x$	vercenvoudiging
	ton x = 5	$\checkmark \tan x = -\frac{5}{\sqrt{3}}$
	$\tan x = -\frac{5}{\sqrt{3}}$	$\sqrt{3}$
	$x = 109,11^{\circ} + 180^{\circ}.k \; ; \; k \in \mathbb{Z}$	
	$x_P = -70,89^{\circ} \text{ and } x_Q = 109,11^{\circ}$	$\checkmark x_P = -70,89^{\circ}$
		$\checkmark x_Q = 109,11^{\circ}$
10.2	70.000 < < 100.110	(7)
10.3	$-70.89^{\circ} \le x \le 109.11^{\circ}$ OF	✓ hoeke ✓ korrekte interval
	[-70,89°; 109,11°]	(2)
	OF	
	$x_p \le x \le x_Q$	
10.4	$h(x) = 2\sin(x + 60^\circ + 30^\circ) = 2\sin(x + 90^\circ) = 2\cos x$	✓✓ refleksie
	h is die refleksie van g in die x -as.	in die x-as of lyn
		y = 0
	OF	(2) ✓ ✓ refleksie
	f word na links geskuif deur 60° en dan verdubbel.	iIn die x-as of lyn y
	\therefore h is die refleksie van g in die x-as.	= 0
		(2)
		[12]

VKAA	10 11		1
11.1	Area parallelogram ABO	CD = $2 \times \text{Area } \Delta \text{ABC}$ = $2\left[\left(\frac{1}{2}\right)(3)(2)\sin\theta\right]$ = $6\sin\theta$ NOTA: Geen bewerkings dan 0/3	✓✓ 2area ∆ABC ✓ vervanging in area reel (3)
	$\frac{h}{2} = \sin \theta$ $h = 2\sin \theta$ $\therefore \text{ Area } ABCD = b.h = 3$	9/2	$\frac{h}{2} = \sin \theta$ $4 = 2\sin \theta$ $4 = bh$ $5 = bh$ $6 = 3 = bh$ $7 = 3 = bh$ $8 = 3 = bh$
	OF Area van parallelogram OF Area = $\frac{1}{2}$ (sum of // side	ABCD = area of \triangle ABC + area of \triangle ADC = $\left(\frac{1}{2}\right)(3)(2)\sin\theta + \left(\frac{1}{2}\right)(3)(2)\sin\theta$ = $6\sin\theta$ es)× h	✓ som van areas ✓✓ gelyke sye en gelyke hoeke (3)
	$= \frac{1}{2}(3+3) \times 2\sin \theta$ $= 6\sin \theta$	θ	✓ formule ✓ $h = 2 \sin \theta$ ✓ vervanging (3)
11.2	Area van parallelogram $6\sin\theta = 3\sqrt{3}$ $\sin\theta = \frac{\sqrt{3}}{2}$ $\theta = 60^{\circ}$ OF	ABCD = $3\sqrt{3}$ NOTA: `n Penalisasie van 1 punt indien beide 60° en 120°	$\checkmark 6\sin\theta = 3\sqrt{3}$ $\checkmark \sin\theta = \frac{\sqrt{3}}{2}$ $\checkmark 60^{\circ}$ (3)
11.3	$6 \sin 60^{\circ} = 3\sqrt{3}$ $\therefore \theta = 60^{\circ}$	rallelogram verkry as $\sin \theta = 1$, dit is waar	$\checkmark 6 \sin \theta = 3\sqrt{3}$ $\checkmark 60^{\circ}$ $\checkmark \sin \theta = 1$ (3)
11.3	$\theta = 90^{\circ}$	tunciogram verkry as sin 0 – 1, uit is waar	$\checkmark \ \theta = 90^{\circ}$ (2) $[8]$

Kopiereg Voorbehou

 $=2k^2(2\sin^2 x)$

 $=4k^2\sin^2 x$

 $= (2k\sin x)^2$ $CB = 2k\sin x$

(5)

✓ faktore

✓ vereenvoudiging

12.2	$\cos x = \frac{BC}{HC}$	$\checkmark \cos x = \frac{BC}{HC}$
	$HC = \frac{BC}{\cos x}$	
	$HC = {\cos x}$	$\checkmark HC = \frac{BC}{\cos x}$
	$=\frac{2k\sin x}{x}$	$\frac{1}{\cos x}$
	$=\frac{-\cos x}{\cos x}$	
	$=2k \tan x$	✓ vervanging van BC
	2N taris	(3)
	OF	
	HC RC	n.c
	$\frac{HC}{\sin 90^{\circ}} = \frac{BC}{\sin(90^{\circ} - x)}$	$\checkmark HC = \frac{BC}{\sin(90^{\circ} - x)}$
		$\sin(90^\circ - x)$
	$HC = \frac{BC}{\sin(90^\circ - x)}$	
	$\sin(90^{\circ} - x)$	
	$=\frac{2k\sin x}{x}$	✓ vervanging van BC
	$\cos x$	$\checkmark \sin(90^\circ - x) = \cos x$
	$=2k \tan x$	
		(2)
12.3	HC = $2k \tan x = 2(40) \cdot \tan(23^\circ) = 33,9579 \dots$	(3) ✓ waarde van HC
12.3	$11C - 2k \tan x - 2(40) \cdot \tan(23) - 33,9379$	• waarde van He
	In ΔHCD:	
	$CD^2 = HC^2 + HD^2 - 2HC.HD.\cos\theta$	
	$HC^2 + HD^2 - CD^2$	
	$\cos\theta = \frac{HC^2 + HD^2 - CD^2}{2HC.HD}$	✓ vervanging in cos
		formule
	$=\frac{(33,9579)^2 + 31,8^2 - 40^2}{2(33,9579)(31,8)}$	$\checkmark \cos \theta = 0.2613$
		000 0 = 0,2015
	$\cos\theta = 0.2613$	✓ 74,85°
	$\therefore \theta = 74,85^{\circ}$	(4)
		[12]

13.1 Hoek waardeur minuut wyser beweeg is:

$$\frac{37}{60} \times 360^{\circ}$$
$$= 222^{\circ}$$

P is geroteer deur 138° in `n anti-kloksgewyse rigting:

$$a = 2\cos 138^{\circ} - 4\sin 138^{\circ}$$

= -4,16

en
$$b = 4\cos 138^{\circ} + 2\sin 138^{\circ}$$

= -1.63

$$\checkmark\checkmark \frac{37}{60} \times 360^{\circ}$$

✓ 222°

✓ vervanging van 138^0 in formule vir x en y

(6)

OF

Hoek waardeur minuut wyser beweeg is:

$$\frac{37}{60} \times 360^{\circ}$$
$$= 222^{\circ}$$

P is geroteer deur 222° in `n **kloksgewyse** rigting:

$$a = 2\cos 222^{\circ} + 4\sin 222^{\circ}$$
 en $b = 4\cos 222^{\circ} - 2\sin 222^{\circ}$
= -4.16 = -1.63

 $\checkmark\checkmark \frac{37}{60} \times 360^{\circ}$

✓ 222°

✓ vervanging van 222^0 in formule vir x en y

OF

 $\tan \alpha = 2$

$$\alpha = 63,43^{\circ}$$

$$\alpha + 180^{\circ} - \beta = 222^{\circ}$$

$$\beta = 63,43^{\circ} + 180^{\circ} - 222^{\circ}$$
$$- 21.43^{\circ}$$

$$\therefore a = -\sqrt{20}\cos 21,43^{\circ} = -4,16$$

$$b = -\sqrt{20} \sin 21,43^\circ = -1,63$$

 $\checkmark \tan \alpha = 2$

$$< \alpha = 63,43^{\circ}$$

$$\checkmark \alpha + 180^{\circ} - \beta = 222^{\circ}$$

$$\checkmark$$
 β = 21,43°

$$\sqrt{-1,63}$$

(6)

(6)

NSC – Memorandum

13.2	Die minuut-wyser beweeg deur 360° in 60 minute.	✓ _{360°}	
	Die uur-wyser beweeg deur 30° in 60 minute, dus `n $\frac{1}{12}$ van die	✓ 360° ✓ 30°	
	minuut-wyser. Daarom as die minuut-wyser deur 222° beweeg,	✓ 1/12 ✓ 18,5°	
	beweeg die uur-wyser deur $\frac{222^{\circ}}{12} = 18,5^{\circ}$	✓ 18,5°	(4)
	12		(4)
	OF		
	360°	✓ 360° ✓ 30°	
	Uur-wyser beweeg deur $\frac{360^{\circ}}{12} = 30^{\circ}$ grade in 60 minute.	✓ 30°	
	\therefore 37 minute: $\frac{37}{60} \times 30^{\circ} = 18,5^{\circ}$	$\checkmark \frac{37}{60} \times 30^{\circ}$	
	60	✓ 18,5°	
			(4)
			[10]

TOTAAL: 150