$$I(J^P) = \frac{1}{2}(1^+)$$

78 HBC + 4.2 $K^- p \rightarrow \Xi^- (K \pi \pi)^+$

K₁(1270) MASS

VALUE (MeV) DOCUMENT ID

1272±7 OUR AVERAGE Includes data from the 2 datablocks that follow this one.

PRODUCED BY K^- , BACKWARD SCATTERING, HYPERON EXCHANGE

DOCUMENT ID TECN CHG COMMENT

The data in this block is included in the average printed for a previous datablock.

700 PRODUCED BY K BEAMS

 1275 ± 10

VALUE (MeV) DOCUMENT ID TECN CHG COMMENT

GAVILLET

The data in this block is included in the average printed for a previous datablock.

 1 DAUM 81c CNTR -63 $K^- p \to K^- 2\pi p$

• • • We do not use the following data for averages, fits, limits, etc. • • •

~ 1276	² TORNQVIST	82 B	RVUE		
~ 1300					4.2 $K^- p \rightarrow (\overline{K}\pi\pi)^- p$
1289 ± 25	³ CARNEGIE	77	ASPK	\pm	13 $K^{\pm} p \rightarrow (K \pi \pi)^{\pm} p$
~ 1300	BRANDENB	76	ASPK	\pm	$13 K^{\pm} p \rightarrow (K \pi \pi)^{\pm} p$
~ 1270	OTTER	76	HBC	_	10,14,16 $K^- p \to (\overline{K} \pi \pi)^- p$
1260	DAVIS	72	HBC	+	12 K ⁺ p
1234 ± 12	FIRESTONE	72 B	DBC	+	12 $K^+ d$

 $^{^{}m 1}$ Well described in the chiral unitary approach of GENG 07 with two poles at 1195 and 1284 MeV and widths of 246 and 146 MeV, respectively.

PRODUCED BY BEAMS OTHER THAN K MESONS

VALUE (MeV)	EVIS	DOCUMENT ID	'	IECN	CHG	COMMENT
1248.1± 3.3±1.4		GULER	11	BELL		$B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$
• • • We do not us	e the fol	lowing data for	avera	ges, fits,	limi	ts, etc. • • •
1279 ± 10	25k	⁴ ABLIKIM	06 C	BES2		$J/\psi \to \overline{K}^*(892)^0 K^+ \pi^-$
1294 ± 10	310	RODEBACK	81	HBC		$4 \pi^- p \rightarrow \Lambda K 2\pi$
1300	40	CRENNELL	72	HBC	0	$4.5 \pi^- p \rightarrow \Lambda K 2\pi$
$1242 \begin{array}{c} + 9 \\ -10 \end{array}$		⁵ ASTIER	69	НВС	0	p ρ
1300	45	CRENNELL	67	HBC	0	$6 \pi^- p \rightarrow \Lambda K 2\pi$

⁴ Systematic errors not estimated.

PRODUCED IN TIEPTON DECAYS

<i>VALUE</i> (MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	CHG	COMMENT
1254±33±34	7k	ASNER	00 B	CLEO	\pm	$ au^- ightarrow K^- \pi^+ \pi^- u_ au$

² From a unitarized quark-model calculation.

 $^{^3}$ From a model-dependent fit with Gaussian background to BRANDENBURG 76 data.

⁵ This was called the *C* meson.

K₁(1270) WIDTH

VALUE (MeV) DOCUMENT ID

90\pm20 OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values.

87± 7 OUR AVERAGE Includes data from the 2 datablocks that follow this one.

PRODUCED BY K^- , BACKWARD SCATTERING, HYPERON EXCHANGE

VALUE (MeV) ____EVTS __DOCUMENT ID ____TECN__CHG__COMMENT

The data in this block is included in the average printed for a previous datablock.

75±15 700 GAVILLET 78 HBC + 4.2 $K^-p \rightarrow \Xi^-K\pi\pi$

PRODUCED BY K BEAMS

VALUE (MeV) <u>DOCUMENT ID TECN</u> CHG COMMENT

The data in this block is included in the average printed for a previous datablock.

90± 8 6 DAUM 81C CNTR - 63 $K^-p \to K^-2\pi p$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$\sim 150$$
 VERGEEST 79 HBC $-$ 4.2 $K^-p \rightarrow (\overline{K}\pi\pi)^-p$ 150 ± 71 7 CARNEGIE 77 ASPK \pm 13 $K^{\pm}p \rightarrow (K\pi\pi)^{\pm}p$ ~ 200 BRANDENB... 76 ASPK \pm 13 $K^{\pm}p \rightarrow (K\pi\pi)^{\pm}p$ 120 DAVIS 72 HBC $+$ 12 K^+p FIRESTONE 72B DBC $+$ 12 K^+d

PRODUCED BY BEAMS OTHER THAN K MESONS

<i>VALUE</i> (MeV)	EVTS	DOCUMENT ID		TECN	CH	G COMMENT
119.5± 5.2±6	.7	GULER	11	BELL		$B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$
• • • We do no	t use the fol	lowing data for	avera	ages, fits	s, lin	nits, etc. • • •
131 ± 21	25k	⁸ ABLIKIM	060	BES2		$J/\psi \rightarrow \overline{K}^*(892)^0 K^+ \pi^-$
66 ± 15	310	RODEBACK	81	HBC		$4 \pi^- p \rightarrow \Lambda K 2\pi$
60	40	CRENNELL	72	HBC	0	4.5 $\pi^- p \rightarrow \Lambda K 2\pi$
$127 \begin{array}{c} + 7 \\ -25 \end{array}$		ASTIER	69	HBC	0	p p
60	45	CRENNELL	67	HBC	0	$6 \pi^- p \rightarrow \Lambda K 2\pi$

⁸ Systematic errors not estimated.

PRODUCED IN au LEPTON DECAYS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
260 ⁺⁹⁰ ₋₇₀ ±80	7k	ASNER	00 B	CLEO	±	$\tau^- \underset{K^- \pi^+ \pi^- \nu_\tau}{\to}$

⁶ Well described in the chiral unitary approach of GENG 07 with two poles at 1195 and 1284 MeV and widths of 246 and 146 MeV, respectively.

⁷ From a model-dependent fit with Gaussian background to BRANDENBURG 76 data.

$K_1(1270)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$K\rho$	(42 ±6)%
Γ_2	$K_0^*(1430)\pi$	(28 ±4) %
Γ3	$K^*(892)\pi$	(16 ± 5) %
	$K\omega$	(11.0 ± 2.0) %
Γ_5	$K f_0(1370) \gamma K^0$	(3.0±2.0) %
Γ ₆	γK^0	seen

K₁(1270) PARTIAL WIDTHS

	N1(12/0) F	AKI	IAL W	יו טוי	13	
$\Gamma(K\rho)$					Г1	
VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
• • • We do not use the	e following data	for av	erages, f	fits, lin	nits, etc. • • •	
57±5	MAZZUCATO		HBC		4.2 $K^- p \to \Xi^- (K \pi \pi)^+$	
75 ± 6	CARNEGIE	77 B	ASPK	\pm	$13 K^{\pm} p \rightarrow (K\pi\pi)^{\pm} p$	
$\Gamma(K_0^*(1430)\pi)$					Γ ₂	
VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
• • • We do not use the	e following data	for av	erages, i	fits, lin	nits, etc. • • •	
26±6	CARNEGIE	77 B	ASPK	±	$13 K^{\pm} p \rightarrow (K\pi\pi)^{\pm} p$	
$\Gamma(K^*(892)\pi)$					Гз	
VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
• • • We do not use the	e following data	for av	erages, f	fits, lin	nits, etc. • • •	
14 ± 11	MAZZUCATO				4.2 $K^- p \rightarrow \Xi^- (K \pi \pi)^+$	
2 ± 2	CARNEGIE	77 B	ASPK	\pm	$13 K^{\pm} p \rightarrow (K\pi\pi)^{\pm} p$	
$\Gamma(K\omega)$					Γ ₄	
VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
• • • We do not use the	following data	for av	erages, i	fits, lin	nits, etc. • • •	
4 ± 4	MAZZUCATO	79	HBC	+	4.2 $K^- p \rightarrow \Xi^- (K \pi \pi)^+$	
24 ± 3	CARNEGIE	77 B	ASPK	\pm	$13 K^{\pm} p \rightarrow (K\pi\pi)^{\pm} p$	
$\Gamma(K f_0(1370))$					Г ₅	
VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
● ● We do not use the following data for averages, fits, limits, etc. ● ●						
22±5	CARNEGIE	77 B	ASPK	±	$13 K^{\pm} p \rightarrow (K \pi \pi)^{\pm} p$	
$\Gamma(\gamma K^0)$					Γ ₆	
VALUE (keV)	<u>DOC</u>	CUMEN	IT ID	TE	ECN COMMENT	
73.2±6.1±28.3	ALA	AVI-H	ARATI0)2B K	TEV $K + A \rightarrow K^* + A$	

K₁(1270) BRANCHING RATIOS

$\Gamma(K ho)/\Gamma_{ m total}$		Γ_1/Γ
VALUE	DOCUMENT ID TECN COMMENT	
0.42 ±0.06	⁹ DAUM 81C CNTR 63 $K^-p \rightarrow K^-2\pi p$	
	use the following data for averages, fits, limits, etc. • •	
0.584 ± 0.043	¹⁰ GULER 11 BELL $B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$	
dominant	RODEBACK 81 HBC 4 $\pi^- p \rightarrow \Lambda K 2\pi$	
$\Gamma(K_0^*(1430)\pi)$		Γ_2/Γ
VALUE	_	
0.28 ±0.04	⁹ DAUM 81C CNTR 63 $K^-p \rightarrow K^-2\pi p$	
	use the following data for averages, fits, limits, etc. • •	
0.0201 ± 0.0064	¹⁰ GULER 11 BELL $B^+ o J/\psi K^+ \pi^+ \pi^-$	
Γ(K*(892)π)/I	Γ _{total}	Г ₃ /Г
VALUE	DOCUMENT ID TECN COMMENT	
0.16 ±0.05	⁹ DAUM 81C CNTR 63 $K^-p \rightarrow K^-2\pi p$	
	use the following data for averages, fits, limits, etc. • •	
0.171 ± 0.023	¹⁰ GULER 11 BELL $B^+ o J/\psi K^+ \pi^+ \pi^-$	
$\Gamma(K\omega)/\Gamma_{\text{total}}$		Γ ₄ /Γ
VALUE	DOCUMENT ID TECN COMMENT 9 DAUM 81C CNTR 63 $K^-p \rightarrow K^-2\pi p$	
0.11 ±0.02	, ,	
	use the following data for averages, fits, limits, etc. \bullet \bullet \bullet 10 GULER 11 BELL $B^+ \to J/\psi K^+ \pi^+ \pi^-$	
0.225 ± 0.052	GULER II BELL $B^+ o J/\psi K^+ \pi^+ \pi^-$	
$\Gamma(K\omega)/\Gamma(K\rho)$		Γ_4/Γ_1
VALUE		
ullet $ullet$ We do not	use the following data for averages, fits, limits, etc. ● ●	
< 0.30	95 RODEBACK 81 HBC 4 $\pi^- p \rightarrow \Lambda K 2\pi$	
$\Gamma(K f_0(1370))/$	Γ _{total}	Γ_5/Γ
VALUE	DOCUMENT ID TECN COMMENT	
0.03 ± 0.02	⁹ DAUM 81C CNTR 63 $K^-p \rightarrow K^-2\pi p$	
D-wave/S-wave	PRATIO FOR $K_1(1270) \rightarrow K^*(892)\pi$ DOCUMENT ID TECN COMMENT	
1.0±0.7	⁹ DAUM 81C CNTR 63 $K^-p \rightarrow K^-2\pi p$	
⁹ Average from	low and high t data. t decays are saturated by the $K ho$, $K_0^*(1430)\pi$, $K^*(892)\pi$, $K_0^*(1430)\pi$	ω decay
modes and ne	eglecting interference between them. The values B($\omega o \pi^-$ 6 and B($K_0^*(1430) o \kappa\pi)=(93\pm 10)\%$ are used. System	$^{+}\pi^{-}) =$

K₁(1270) REFERENCES

	11 07	PR D83 032005 PR D75 014017	H. Guler <i>et al.</i> L.S. Geng <i>et al.</i>	(BELLE Collab.)
ABLIKIM (06C	PL B633 681	M. Ablikim <i>et al.</i>	(BES Collab.)
ALAVI-HARATI (02B	PRL 89 072001	A. Alavi-Harati et al.	(FNAL ŘTeV Collab.)
ASNER (00B	PR D62 072006	D.M. Asner et al.	` (CLEO Collab.)
TORNQVIST 8	82B	NP B203 268	N.A. Tornqvist	` (HELS)
DAUM 8	81C	NP B187 1	C. Daum et al.	(AMST, CERN, CRAC, MPIM+)
RODEBACK 8	81	ZPHY C9 9	S. Rodeback et al.	(CERN, CDEF, MADR+)
MAZZUCATO 7	79	NP B156 532	M. Mazzucato et al.	(CERN, ZEEM, NIJM+)
VERGEEST 7	79	NP B158 265	J.S.M. Vergeest et al.	(NIJM, AMST, CERN+)
GAVILLET 7	78	PL 76B 517	P. Gavillet et al.	(AMST, CERN, NIJM+) JP
CARNEGIE 7	77	NP B127 509	R.K. Carnegie et al.	(SLAC)
CARNEGIE 7	77B	PL 68B 287	R.K. Carnegie et al.	(SLAC)
BRANDENB 7	76	PRL 36 703	G.W. Brandenburg et a	ol. (SLAC) JP
OTTER 7	76	NP B106 77	G. Otter <i>et al.</i>	(AACH3, BERL, CERN, LOIC+) JP
CRENNELL 7	72	PR D6 1220	D.J. Crennell et al.	(BNL)
DAVIS 7	72	PR D5 2688	P.J. Davis et al.	(LBL)
FIRESTONE 7	72B	PR D5 505	A. Firestone et al.	(LBL)
ASTIER 6	69	NP B10 65	A. Astier et al.	(CDEF, CERN, IPNP, LIVP) IJP
CRENNELL 6	67	PRL 19 44	D.J. Crennell et al.	(BNL) I