

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC154202

Page: 1 of 90

FCC Radio Test Report FCC ID:2ABHA0016

Original Grant

Report No. : TB-FCC154202

Applicant : NINGBO CSTAR IMP&EXP CO., LTD

Equipment Under Test (EUT)

EUT Name : Bluetooth earbuds

Model No. : 2788
Series Model No. : N/A

Brand Name : Cstar

Receipt Date : 2017-06-02

Test Date : 2017-06-03 to 2017-06-07

Issue Date : 2017-06-08

Standards : FCC Part 15: 2016, Subpart C(15.247)

Test Method : ANSI C63.10: 2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer :

Approved& Authorized :

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Page: 2 of 90

Contents

CON	VIENIS	
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	∠
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	5
	1.4 Description of Support Units	
	1.5 Description of Test Mode	
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	
3.	TEST EQUIPMENT	10
4.	CONDUCTED EMISSION TEST	11
	4.1 Test Standard and Limit	11
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	12
	4.5 Test Data	
5.	RADIATED EMISSION TEST	17
	5.1 Test Standard and Limit	17
	5.2 Test Setup	
	5.3 Test Procedure	19
	5.4 EUT Operating Condition	19
	5.5 Test Data	19
6.	RESTRICTED BANDS REQUIREMENT	40
	6.1 Test Standard and Limit	40
	6.2 Test Setup	40
	6.3 Test Procedure	40
	6.4 EUT Operating Condition	41
	6.5 Test Data	41
7.	NUMBER OF HOPPING CHANNEL	60
	7.1 Test Standard and Limit	60
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	
	7.5 Test Data	60
8.	AVERAGE TIME OF OCCUPANCY	63
	8.1 Test Standard and Limit	63
	8.2 Test Setup	

Report No.: TB-FCC154202 Page: 3 of 90

8.5 Test Data	64
9.1 Test Standard and Limit	70
9.2 Test Setup	70
9.3 Test Procedure	70
9.4 EUT Operating Condition	70
9.5 Test Data	71
PEAK OUTPUT POWER TEST	83
10.2 Test Setup	83
10.3 Test Procedure	83
10.4 EUT Operating Condition	83
ANTENNA REQUIREMENT	90
11.1 Standard Requirement	90
	8.3 Test Procedure. 8.4 EUT Operating Condition 8.5 Test Data

Page: 4 of 90

1. General Information about EUT

1.1 Client Information

Applicant : NINGBO CSTAR IMP&EXP CO., LTD

Address : Floor 4, Building E, No. 655-90, Qiming Road, Yinzhou Investment &

Innovation Center, Ningbo, China

Manufacturer : ShenZhen C-Star Electronic Tech. co., Ltd

Address : 2, 3/F, building B, No. 2 Bada Industrial Park, Yongfu Road, Heping

Community, Fuyong Town, Baoan, District, Shenzhen, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Bluetooth earbuds	Bluetooth earbuds		
Models No.		2788			
		Operation Frequency:	Bluetooth V4.0: 2402~2480 MHz		
		Number of Channel:	Bluetooth: 79 Channels see Note 2		
Product		Max Peak Output Power:	Bluetooth: 0.214 dBm(GFSK)		
Description		Antenna Gain: 0dBi PCB Antenna			
	0	Modulation Type:	GFSK (1 Mbps)		
			π /4-DQPSK (2 Mbps)		
1.D - 1			8-DPSK (3 Mbps)		
Power Supply		DC power by USB cable.			
		DC power by Li-ion battery.			
Power Rating		DC 5V by Host System.			
		DC 3.7V by 110mAh Li-ion Battery.			
Connecting I/O Port(S)		Please refer to the User's Manual			

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) Channel List:

Bluetooth Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
00	2402	27	2429	54	2456	
01	2403	28	2430	55	2457	
02	2404	29	2431	56	2458	
03	2405	30	2432	57	2459	
04	2406	31	2433	58	2460	
05	2407	32	2434	59	2461	

Page: 5 of 90

06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454	A BOTTON	
26	2428	53	2455		

⁽³⁾ The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

Charging + TX Mode

TX Mode

Page: 6 of 90

1.4 Description of Support Units

Equipment Information							
Name Model FCC ID/VOC Manufacturer Used "v							
AC/DC Adapter BSY02D050200V USB VOC BSY							
AC/DC Adapter: Input:100~240V, 50/60Hz, 0.2A. Output: 5V, 2A							
	Cal	ole Information					
Number Shielded Type Ferrite Core Length Note							
Cable 1	NO	NO	0.2M	an Dist			

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode Description				
Mode 1	Charging + TX Mode			

For Radiated Test					
Final Test Mode Description					
Mode 1	TX GFSK Mode				
Mode 2	TX Mode(GFSK) Channel 00/39/78				
Mode 3	TX Mode(π /4-DQPSK) Channel 00/39/78				
Mode 4	TX Mode(8-DPSK) Channel 00/39/78				
Mode 5	Hopping Mode(GFSK)				
Mode 6	Hopping Mode(π /4-DQPSK)				
Mode 7	Hopping Mode(8-DPSK)				

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test modes above.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)

TX Mode: π /4-DQPSK (2 Mbps)
TX Mode: 8-DPSK (3 Mbps)

Page: 7 of 90

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version	A	ppoTech RF Control Kit.	exe
Frequency	2402 MHz	2441MHz	2480 MHz
GFSK	DEF	DEF	DEF
π /4-DQPSK	DEF	DEF	DEF
8-DPSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.42 dB ±3.42 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 8 of 90

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 9 of 90

2. Test Summary

	F	CC Part 15 Subpart C(15.247)/ RSS	247 Issue 1		
Standard S	ection	-	1 1	_	
FCC	IC	Test Item	Judgment	Remark	
15.203	9	Antenna Requirement	PASS	N/A	
15.207	RSS-GEN 7.2.2	Conducted Emission	PASS	N/A	
15.205	RSS-Gen 7.2.3	Restricted Bands	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (2)	Hopping Channel Separation	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (4)	Dwell Time	PASS	N/A	
15.247(b)(1)	RSS 247 5.4 (2)	Peak Output Power	PASS	N/A	
15.247(b)(1)	RSS 247 5.1 (4)	Number of Hopping Frequency	PASS	N/A	
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A	
15.247(c)& 15.209	RSS 247 5.5	Radiated Spurious Emission	PASS	N/A	
15.247(a)	RSS 247 5.1 (1)	99% Occupied Bandwidth & 20dB Bandwidth	PASS	99%OBW GFSK:1002.5kHz π/4-DQPSK: 1152.9kHz 8-DPSK: 1144.4KHz	

Page: 10 of 90

3. Test Equipment

AC Main C	onducted Emis	sion			
Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
EMI Test Receiver	ROHDE& SCHWARZ	ESCI	100321	Jul. 22, 2016	Jul. 21, 2017
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 22, 2016	Jul. 21, 2017
L.I.S.N	Rohde & Schwarz	ENV216	101131	Jul. 22, 2016	Jul. 21, 2017
L.I.S.N	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 22, 2016	Jul. 21, 2017
Radiation Description	Spurious Emiss Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 22, 2016	Jul. 21, 2017
EMI Test Receiver	Rohde & Schwarz	ESPI	1027880/007	Jul. 22, 2016	Jul. 21, 2017
Bilog Antenna	ETS-LINDGREN	3142E	278817537	Mar.25, 2017	Mar. 24, 2018
Horn Antenna	ETS-LINDGREN	3117	278843207	Mar.25, 2017	Mar. 24, 2018
Pre-amplifier	Sonoma	310N	185903	Mar.24, 2017	Mar. 23, 2018
Pre-amplifier	HP	8449B	3008A00849	Mar.24, 2017	Mar. 23, 2018
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.24, 2017	Mar. 23, 2018
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna C	conducted Emis	sion			
Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 22, 2016	Jul. 21, 2017
Spectrum Analyzer	Rohde & Schwarz	ESPI	100321	Jul. 22, 2016	Jul. 21, 2017

Page: 11 of 90

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Eroguanov	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 12 of 90

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Test data please refer the following pages.

13 of 90 Page:

Page: 14 of 90

EUT:	Bluetooth eark	ouds	Model Name	:	2788	9		
Temperature:	25℃	-	Relative Hur	nidity:	55%			
Test Voltage:	AC 120V/60 H	AC 120V/60 Hz						
Terminal:	Neutral		V		133			
Test Mode:	USB Charging			10				
Remark:	Only worse ca	ise is reported						
90.0 dBuV					QP:			
					AVG:	_		
40								
40	*							
· WWWWWWW		ж. и						
VV V V V V V V V V V V V V V V V V V V	xxi _{nxx} + xxi ^{nx} iyahalikahaliki	HATANANA MAHAMATANA MAHAMATANANA MAHAMATANANA MAHAMATANANA MAHAMATANANA MAHAMATANANA MAHAMATANANA MAHAMATANANA	\ /\/1/\	man	hotely the design paper production of	h/h/h/h/h/h/h		
A A A A A A A A A A A A A A A A A A A	AND AND SHANIFA WARRING PORTOR	HARAN MARKANAN MARKAN		MVVVVVVVV	Manusakhama	weren AVG		
					A A granum and Employment			
-10 0.150	0.5	(MHz)	5			30.000		
0.130			_			36.000		
No. Mk. F	Reading req. Level	g Correct Factor	Measure- ment	Limit	Over			
	MHz dBuV	dB	dBu∀	dBu∀	dB	Detector		
	4260 14.71	10.04	24.75	57.33		QP		
	4260 6.88	10.04	16.92		-30.41	AVG		
3 0.4	1420 15.18	10.04	25.22	57.02	-31.80	QP		
4 0.4	14 20 7.13	10.04	17.17	47.02	-29.85	AVG		
5 0.4	4580 15.69	10.03	25.72	56.73	-31.01	QP		
6 0.4	4580 6.62	10.03	16.65	46.73	-30.08	AVG		
7 * 0.4	4700 21.56	10.03	31.59	56.51	-24.92	QP		
8 0.4	4700 10.67	10.03	20.70	46.51	-25.81	AVG		
	6020 10.54		20.56		-35.44	QP		
	6020 10.54 6020 2.97		12.99		-33.01	AVG		
	6180 8.75		18.77		-37.23	QP		
12 0.6	6180 1.20	10.02	11.22	46.00	-34.78	AVG		
Emission Level=	= Read Level+ C	orrect Factor						

EUT: Bluetooth earbuds **Model Name:** 2788 25℃ Temperature: **Relative Humidity:** 55% Test Voltage: AC 240V/60 Hz Terminal: Line Test Mode: **USB Charging Mode** Remark: Only worse case is reported 90.0 dBuV QP: AVG: www. 0.150 0.5 (MHz) 30.000 Reading Correct Measure-Limit Over No. Mk. Freq. Factor Level ment dBuV MHz dΒ dBuV dBuV dΒ Detector 0.4140 13.59 10.02 23.61 57.57 -33.961 QΡ 2 0.4140 10.02 19.13 47.57 -28.44 9.11 AVG 3 0.4260 13.63 10.02 23.65 57.33 -33.68 QΡ 10.02 47.33 -28.02 AVG 4 0.4260 9.29 19.31 56.58 -38.52 5 0.4660 8.04 10.02 18.06 QΡ 0.4660 5.96 10.02 15.98 46.58 -30.60 AVG 6 7 0.4740 19.27 10.02 29.29 56.44 -27.15 QΡ 8 0.4740 16.04 10.02 26.06 46.44 -20.38 AVG 9 0.4860 14.58 10.02 24.60 56.24 -31.64 QΡ 0.4860 10.20 10.02 20.22 46.24 -26.02 AVG 10 QΡ 11 2.9460 9.37 10.03 19.40 56.00 -36.60 AVG 12 2.9460 2.73 10.03 12.76 46.00 -33.24 **Emission Level= Read Level+ Correct Factor**

Page: 16 of 90

EUT:	Bluetooth earbu	ds	Model Name	9 :	2788	
Temperature:	25 ℃	11/1	Relative Hu	midity:	55%	1
Test Voltage:	AC 240V/60 Hz	33	0.00			MARIE
Terminal:	Neutral			600	1:30	
Test Mode:	USB Charging M	lode		1 10		
Remark:	Only worse case	e is reported	alle	3	5 W	
40		Ill Marie Control			QP: AVG:	
-10 0.150	0.5	(MHz)	5	MV V	mander Managher	peak AVG 30.000
	Reading req. Level	Factor	Measure- ment	Limit	Over	
	lHz dBu∨	dB	dBu∨	dBuV	dB	Detector
	220 10.14	10.05	20.19	57.41	-37.22	QP
2 0.43	220 1.18	10.05	11.23	47.41	-36.18	AVG
3 0.43	300 16.89	10.04	26.93	57.25	-30.32	QP
4 * 0.43	300 7.35	10.04	17.39	47.25	-29.86	AVG
5 0.44	460 9.94	10.04	19.98	56.95	-36.97	QP
6 0.44	460 1.12	10.04	11.16	46.95	-35.79	AVG
7 0.4	700 14.40	10.03	24.43	56.51	-32.08	QP
8 0.4	700 2.68	10.03	12.71	46.51	-33.80	AVG
9 0.4	820 15.34	10.03	25.37	56.30	-30.93	QP
10 0.4	820 5.17	10.03	15.20	46.30	-31.10	AVG
11 0.49	900 15.68	10.02	25.70	56.17	-30.47	QP
12 0.49	900 5.85	10.02	15.87	46.17	-30.30	AVG
Emission Level=	Read Level+ Cor	rect Factor				

Page: 17 of 90

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limit (9 kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Class B (dBuV/m)(at 3m)			
(MHz)	Peak	Average		
Above 1000	74	54		

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

Page: 18 of 90

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 19 of 90

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power in TX mode.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Test data please refer the following pages.

Page: 20 of 90

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

EUT:		Blueto	ooth earbu	uds	Model N	ame:	2788	
Tempera	emperature: 25°C				Relative H	lumidity:	55%	
Test Volt	tage:	DC 3.	.7V			(MIND)		a 1
Ant. Pol.		Horizontal						100
Test Mod	de:	TX G	FSK Mode	e 2402MHz	CHILL		1600	
Remark:		Only	worse cas	se is reported		200		
80.0 dBuV	/m							
						(RF)FCC 15	iC 3M Radiation	
							Margin -6	6 dB
-								
30						5		6
						4 X	Love Jamphynninghold	N DE LOS CONTRACTOR OF THE PARTY OF THE PART
1 V. X				3	Mary Mary Mary Mary	angplus/Aller Aller Anna Anna Anna Anna Anna Anna Anna Ann	Miles II	
Maryand	Lynna y y y	physical phy	paletypper had berganis any organise	Mary Mary Mary Mary Mary	and the second of the second of the second			
-20 30.000	40 50	60 70	80	(MHz)	300	400 50	0 600 700	1000.00
			Daadisa	Correct	Magazira			
No. M	lk. Fre		Reading Level	Factor	Measure- ment	Limit	Over	
	MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	34.88	323	27.56	-17.15	10.41	40.00	-29.59	peak
2	53.88	317	29.89	-24.54	5.35	40.00	-34.65	peak
3	167.2	366	29.77	-20.74	9.03	43.50	-34.47	peak
4	397.6	333	32.92	-12.49	20.43	46.00	-25.57	peak
5	492.4	685	35.62	-11.17	24.45	46.00	-21.55	peak
_		968	31.98	-5.01	26.97	46.00	-19.03	peak

Page: 21 of 90

EUT:	Bluetooth earbuds	Model Name:	2788					
Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V		18.0					
Ant. Pol.	Vertical	Vertical						
Test Mode:	TX GFSK Mode 2402MHz		LITTLE OF					
Remark:	Only worse case is reported							
80.0 dBuV/m								

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		44.2752	37.98	-22.09	15.89	40.00	-24.11	peak
2		49.3594	40.10	-24.22	15.88	40.00	-24.12	peak
3	*	75.7114	42.07	-23.48	18.59	40.00	-21.41	peak
4		86.2001	41.05	-22.97	18.08	40.00	-21.92	peak
5		157.5588	33.48	-20.45	13.03	43.50	-30.47	peak
6		237.4760	32.26	-18.31	13.95	46.00	-32.05	peak

^{*:}Maximum data x:Over limit !:over margin

Page: 22 of 90

Above 1GHz(Only worse case is reported)

EUT:	Bluetooth earbuds	Model Name:	2788				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal						
Test Mode:	TX GFSK Mode 2402MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No	o. Mk	c. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4803.461	35.54	13.44	48.98	54.00	-5.02	AVG
2		4804.360	45.72	13.44	59.16	74.00	-14.84	peak

Page: 23 of 90

EUT:	Bluetooth earbuds	Model Name:	2788					
Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	DC 3.7V						
Ant. Pol.	Vertical	Vertical						
Test Mode:	TX GFSK Mode 2402MH	z	CHILL STREET					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.							
100.0 dPu\//m								

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.010	44.90	13.44	58.34	74.00	-15.66	peak
2	*	4804.310	34.54	13.44	47.98	54.00	-6.02	AVG

Page: 24 of 90

EUT:	Bluetooth earbuds	Model Name:	2788			
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	DC 3.7V				
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	TX GFSK Mode 2441MHz		THE PERSON NAMED IN			
Remark:	No report for the emission prescribed limit.	which more than 10 dB	3 below the			

No.	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4882.300	35.79	13.90	49.69	54.00	-4.31	AVG
2		4882.310	45.41	13.90	59.31	74.00	-14.69	peak

Page: 25 of 90

EUT:	Bluetooth earbuds	Model Name:	2788				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX GFSK Mode 2441MHz	(U) 32	LINE TO SERVICE				
Remark:	No report for the emission who prescribed limit.	nich more than 10 dB b	elow the				
100.0 dP ₁ M/m							

No.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.694	47.33	13.90	61.23	74.00	-12.77	peak
2	*	4881.870	36.41	13.90	50.31	54.00	-3.69	AVG

Page: 26 of 90

EUT:	Bluetooth earbuds	Model Name:	2788					
Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	DC 3.7V						
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	TX GFSK Mode 2480MHz	COURT IN	LINE TO					
Remark:	No report for the emission w prescribed limit.	hich more than 10 dB b	elow the					
100 0 10 1/1								

No.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4960.210	45.99	14.36	60.35	74.00	-13.65	peak
2	*	4960.320	35.33	14.36	49.69	54.00	-4.31	AVG

Page: 27 of 90

EUT:	Bluetooth earbuds	Model Name:	2788			
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V		(3)			
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX GFSK Mode 2480MHz		LINE TO SERVICE			
Remark:	No report for the emission v prescribed limit.	which more than 10 dB	below the			

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.850	44.60	14.36	58.96	74.00	-15.04	peak
2	*	4960.310	34.49	14.36	48.85	54.00	-5.15	AVG

Page: 28 of 90

EUT:	Bluetooth earbuds	Model Name:	2788				
Temperature:	25℃ Relative Humidity: 55%						
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX π /4-DQPSK Mode 2402	MHz	- TILL				
Remark:	No report for the emission which more than 10 dB below the						
	prescribed limit.						

No.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4803.985	34.85	13.44	48.29	54.00	-5.71	AVG
2		4804.027	44.35	13.44	57.79	74.00	-16.21	peak

Page: 29 of 90

EUT:	Bluetooth earbuds	Model Name:	2788				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX π /4-DQPSK Mode 2	2402MHz	THE PARTY OF THE P				
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4802.848	43.68	13.43	57.11	74.00	-16.89	peak
2	*	4802.848	30.47	13.43	43.90	54.00	-10.10	AVG

Page: 30 of 90

EUT:	Bluetooth earbuds	Model Name:	2788				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V		133				
Ant. Pol.	Horizontal						
Test Mode:	TX π /4-DQPSK Mode 2441	MHz	A LIVE				
Remark:	Remark: No report for the emission which more than 10 dB below the prescribed limit.						

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.166	44.24	13.90	58.14	74.00	-15.86	peak
2	*	4882.246	31.69	13.90	45.59	54.00	-8.41	AVG

Page: 31 of 90

EUT:	Bluetooth earbuds	Model Name:	2788					
Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	DC 3.7V						
Ant. Pol.	Vertical							
Test Mode:	TX π /4-DQPSK Mode 2441	MHz	- TILLE					
Remark:	No report for the emission which more than 10 dB below the							
100.0 40.377	prescribed limit.							

No	. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4881.322	32.00	13.90	45.90	54.00	-8.10	AVG
2		4881.970	43.01	13.90	56.91	74.00	-17.09	peak

Page: 32 of 90

EUT:	Bluetooth earbuds	Model Name:	2788				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V		13.9				
Ant. Pol.	Horizontal						
Test Mode:	TX π /4-DQPSK Mode 2480M	lHz	LITTLE TO				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
100 0 10 11							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4958.590	45.66	14.35	60.01	74.00	-13.99	peak
2	*	4961.413	34.93	14.38	49.31	54.00	-4.69	AVG

Page: 33 of 90

EUT:	Bluetooth earbuds	Model Name:	2788
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	1	18.
Ant. Pol.	Vertical		
Test Mode:	TX π /4-DQPSK Mode 2480M	Hz	L. C. L.
Remark:	No report for the emission wh prescribed limit.	ich more than 10 dB bo	elow the

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4959.205	34.00	14.36	48.36	54.00	-5.64	AVG
2		4960.690	43.79	14.36	58.15	74.00	-15.85	peak

Page: 34 of 90

EUT:	Bluetooth earbuds	Model Name:	2788	
Temperature:	25°C Relative Humidity: 55%			
Test Voltage:	DC 3.7V	V C		
Ant. Pol.	Horizontal			
Test Mode:	TX 8-DPSK Mode 2402MHz		- TILLE	
Remark:	No report for the emission was prescribed limit.	hich more than 10 dB	below the	

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.980	45.90	13.44	59.34	74.00	-14.66	peak
2	*	4804.631	37.58	13.44	51.02	54.00	-2.98	AVG

Page: 35 of 90

tooth earbuds	Model Name:	2788			
	Relative Humidity:	55%			
5.7V		7733			
cal	W Comments				
-DPSK Mode 2402MI	-lz	THE PARTY OF THE P			
No report for the emission which more than 10 dB below the prescribed limit.					
	.7V cal -DPSK Mode 2402Ml eport for the emission	Relative Humidity: 2.7V cal -DPSK Mode 2402MHz eport for the emission which more than 10 dE			

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.891	46.24	13.44	59.68	74.00	-14.32	peak
2	*	4804.361	36.87	13.44	50.31	54.00	-3.69	AVG

Page: 36 of 90

EUT:	Bluetooth earbuds	earbuds Model Name:					
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal						
Test Mode:	TX 8-DPSK Mode 2441MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No.	Mk.	Freq.	_		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.364	46.41	13.90	60.31	74.00	-13.69	peak
2	*	4882.301	35.77	13.90	49.67	54.00	-4.33	AVG

Page: 37 of 90

EUT:	Bluetooth earbuds	Model Name:	2788						
Temperature:	25℃	Relative Humidity:	55%						
Test Voltage:	DC 3.7V	DC 3.7V							
Ant. Pol.	Vertical	Vertical							
Test Mode:	TX 8-DPSK Mode 2441MH	z	LINE TO SERVICE						
Remark:	No report for the emission versity prescribed limit.	vhich more than 10 dB	below the						
100.0 dP.4//m									

No.	Mk.	Freq.	_		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.674	45.77	13.90	59.67	74.00	-14.33	peak
2	*	4882.310	36.26	13.90	50.16	54.00	-3.84	AVG

Page: 38 of 90

EUT:	Bluetooth earbuds	Model Name:	2788					
Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	DC 3.7V						
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	TX 8-DPSK Mode 2480MHz		LINE TO SERVICE					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.							
100.0 dB, M/m								

No.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4960.100	44.93	14.36	59.29	74.00	-14.71	peak
2	*	4960.320	33.27	14.36	47.63	54.00	-6.37	AVG

Page: 39 of 90

EUT:	Bluetooth earbuds	Model Name:	2788					
Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	DC 3.7V						
Ant. Pol.	Vertical	Vertical						
Test Mode:	TX 8-DPSK Mode 2480MHz	COU.32	TULL					
Remark:	No report for the emission wh prescribed limit.	ich more than 10 dB b	elow the					
100 0 - 40-40-								

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.364	46.41	13.90	60.31	74.00	-13.69	peak
2	*	4882.301	35.77	13.90	49.67	54.00	-4.33	AVG

Page: 40 of 90

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Class B (dBuV/m)(at 3m)			
Band (MHz)	Peak	Average		
2310 ~2390	74	54		
2483.5 ~2500	74	54		

Note: All restriction bands have been tested, only the worst case is reported.

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Report No.: TB-FCC154202 Page: 41 of 90

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with AVG Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

All restriction bands have been tested, only the worst case is reported.

Page: 42 of 90

(1) Radiation Test

EU	T:		Bluet	tooth eark	ouds	M	odel N	Name:	2788	MILL
Ten	nperatu	ıre:	25 ℃			Re	elative	Humidity:	55%	
Tes	t Volta	ge:	DC 3	3.7V	- 611			a W		66
Ant	t. Pol.		Horiz	ontal		-		20	- CII	1111
Tes	t Mode	:	TX G	FSK Mod	de 2402MHz	2	1		10	6
Rer	mark:		Only	worse ca	se is report	ed	-	THU THE		
110.0	0 dBuV/m									
50		1130-11							PART 15C (PEAK 2 X 1	
-10 21	308.000 23	18.00 2	328.00	2338.00	2348.00 2358.	00 236	8.00 2:	378.0 0 2388.00	1 2	408.00 MHz
		-								
N	lo. Mk	. Fre	eq.	Readin	g Correc Facto		asure- nent	Limit	Over	
		MH	z	dBuV	dB/m	dE	BuV/m	dBuV/m	dB	Detector
1		2394.	100	34.85	0.79	3	5.64	54.00	-18.36	AVG
2		2394.	200	46.22	0.79	4	7.01	74.00	-26.99	peak
3	X	2402.	000	91.66	0.82	9	2.48	Fundamental	Frequency	peak

Emission Level= Read Level+ Correct Factor

88.96

0.82

89.78

Fundamental Frequency

2402.000

AVG

Page: 43 of 90

EUT:	Bluetooth earbuds	Model Name:	2788					
Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	DC 3.7V						
Ant. Pol.	Vertical		S. France					
Test Mode:	TX GFSK Mode 2402MHz							
Remark:	Only worse case is reported							

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	44.65	0.77	45.42	74.00	-28.58	peak
2		2390.000	32.38	0.77	33.15	54.00	-20.85	AVG
3	X	2402.100	88.97	0.82	89.79	Fundamenta	l Frequency	peak
4	*	2402.100	85.28	0.82	86.10	Fundamental	Frequency	AVG

Page: 44 of 90

EUT:	Bluetooth earbuds	2788					
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Horizontal						
Test Mode:	TX GFSK Mode 2480 MHz	TX GFSK Mode 2480 MHz					
Remark:	Only worse case is reported						

No.	. Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Х	2479.900	94.69	1.15	95.84	Fundamenta	I Frequency	peak
2	*	2480.000	90.86	1.15	92.01	Fundamenta	al Frequency	AVG
3		2483.500	55.71	1.17	56.88	74.00	-17.12	peak
4		2483.500	50.95	1.17	52.12	54.00	-1.88	AVG

Page: 45 of 90

EUT:	Bluetooth earbuds	Model Name:	2788				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Vertical						
Test Mode:	TX GFSK Mode 2480 MHz						
Remark:	Only worse case is reported						

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2479.900	83.70	1.15	84.85	Fundamenta	I Frequency	AVG
2	X	2480.000	87.27	1.15	88.42	Fundamenta	I Frequency	peak
3		2483.500	48.69	1.17	49.86	74.00	-24.14	peak
4		2483.500	44.00	1.17	45.17	54.00	-8.83	AVG

Page: 46 of 90

EUT:	Bluetooth earbuds	Model Name:	2788				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Horizontal						
Test Mode:	TX π /4-DQPSK Mode 2402	MHz	2 130				
Remark: Only worse case is reported							
110.0 dBuV/m							

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	42.91	0.77	43.68	74.00	-30.32	peak
2		2390.000	32.23	0.77	33.00	54.00	-21.00	AVG
3	Х	2402.100	95.33	0.82	96.15	Fundamen	tal Frequenc	y beak
4	*	2402.100	88.92	0.82	89.74	Fundamen	tal Frequenc	y I VG

Page: 47 of 90

EUT:	Bluetooth earbuds Model Nam		2788				
Temperature:	perature: 25°C Relative		55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Vertical		CETO.				
Test Mode:	TX π /4-DQPSK Mode 2402M	IHz	A Aller				
Remark:	Only worse case is reported						
110.0 dBuV/m							

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	43.23	0.77	44.00	74.00	-30.00	peak
2		2390.000	32.07	0.77	32.84	54.00	-21.16	AVG
3	X	2402.000	89.17	0.82	89.99	Fundamental	Frequency	peak
4	*	2402.000	82.90	0.82	83.72	Fundamental	Frequency	AVG

Page: 48 of 90

EUT:	Bluetooth earbuds	Model Name:	2788			
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal					
Test Mode:	TX π /4-DQPSK Mode 2480MHz					
Remark:	Only worse case is reported					

l								
No. Mk.		. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2479.900	95.93	1.15	97.08	Fundamental	Frequency	peak
2	*	2479.900	89.53	1.15	90.68	Fundamental	Frequency	AVG
3		2483.500	56.36	1.17	57.53	74.00	-16.47	peak
4		2483.500	49.31	1.17	50.48	54.00	-3.52	AVG

Page: 49 of 90

EUT:	Bluetooth earbuds	Model Name:	2788				
Temperature:	25℃	Relative Humidity:					
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Vertical						
Test Mode:	TX π /4-DQPSK Mode 2480	MHz	3 130				
Remark:	Only worse case is reported						

No. Mk.		. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2479.900	89.13	1.15	90.28	Fundamenta	Frequency	peak
2	*	2480.000	82.99	1.15	84.14	Fundamenta	Frequency	AVG
3		2483.500	49.83	1.17	51.00	74.00	-23.00	peak
4		2483.500	43.07	1.17	44.24	54.00	-9.76	AVG

Page: 50 of 90

EUT:	Bluetooth earbuds	Model Name:	2788				
Temperature:	25℃	Relative Humidity:					
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Horizontal						
Test Mode:	TX 8-DPSK Mode 2402MH	lz (VIII)	2 100				
Remark:	Remark: Only worse case is reported						

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	42.87	0.77	43.64	74.00	-30.36	peak
2		2390.000	32.07	0.77	32.84	54.00	-21.16	AVG
3	X	2402.000	95.32	0.82	96.14	Fundamenta	l Freauencv	peak
4	*	2402.100	88.77	0.82	89.59	Fundamenta	l Frequency	AVG

Page: 51 of 90

EUT:	Bluetooth earbuds	Model Name:	2788			
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 8-DPSK Mode 2402MHz					
Remark:	Only worse case is reported		3 0			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	44.12	0.77	44.89	74.00	-29.11	peak
2		2390.000	32.01	0.77	32.78	54.00	-21.22	AVG
3	X	2402.000	89.04	0.82	89.86	Fundamenta	l Frequency	peak
4	*	2402.000	82.78	0.82	83.60	Fundamenta	I Frequency	AVG

Page: 52 of 90

EUT:	Bluetooth earbuds	Model Name:	2788		
Temperature:	25℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V	nm e	333		
Ant. Pol.	Horizontal	Horizontal			
Test Mode:	TX 8-DPSK Mode 2480MHz				
Remark:	Only worse case is reported	CITIES .	3 _ 6		

No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2479.900	95.65	1.15	96.80	Fundamenta	I Frequency	peak
2	*	2480.000	89.07	1.15	90.22	Fundamenta	I Frequency	AVG
3		2483.500	56.25	1.17	57.42	74.00	-16.58	peak
4		2483.500	49.34	1.17	50.51	54.00	-3.49	AVG

Page: 53 of 90

EUT:	Bluetooth earbuds	Model Name:	2788		
Temperature:	25℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V				
Ant. Pol.	Vertical	Vertical			
Test Mode:	TX 8-DPSK Mode 2480MHz				
Remark:	emark: Only worse case is reported				

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2479.900	88.05	1.15	89.20	Fundamental	Frequency	peak
2	*	2479.900	81.87	1.15	83.02	Fundamental Frequency		AVG
3		2483.500	49.10	1.17	50.27	74.00	-23.73	peak
4		2483.500	42.33	1.17	43.50	54.00	-10.50	AVG

Page: 54 of 90

(2) Conducted Test

Page: 55 of 90

Page: 56 of 90

Page: 57 of 90

Page: 58 of 90

Report No.: TB-FCC154202 Page: 59 of 90

EUT:	Bluetooth earbuds	Model Name:	2788	
Temperature:	25℃	Relative Humidity:	55%	
Test Voltage:	DC 3.7V		33	
Test Mode:	8-DPSK Hopping Mode			
Remark:	Only worse case is reported		ALL STREET	

Page: 60 of 90

7. Number of Hopping Channel

7.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247 (a)(1)

6.1.2 Test Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.

7.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

7.5 Test Data

Page: 61 of 90

EUT:	Bluetooth earbuds	Model Name:	2788
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	nm V	30

Test Mode: Hopping Mode

Frequency Range	Test Mode	Quantity of Hopping Channel	Limit
	GFSK	79	
2402MHz~2480MHz	π /4-DQPSK	79	>15
	8-DPSK	79	

GFSK Mode

π /4-DQPSK Mode

Page: 62 of 90

Page: 63 of 90

8. Average Time of Occupancy

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(1)

8.1.2 Test Limit

Section	Test Item	Limit	
15.247(a)(1)/ RSS-210	Average Time of	0.4.000	
Annex 8(A8.1d)	Occupancy	0.4 sec	

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=1MHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

8.4 EUT Operating Condition

The average time of occupancy on any channel within the Period can be calculated with formulas:

 $\{Total \ of \ Dwell\} = \{Pulse \ Time\} * (1600 / X) / \{Number \ of \ Hopping \ Frequency\} * \{Period\} = 0.4s * \{Number \ of \ Hopping \ Frequency\}$

Note: X=2 or 4 or 6 (1DH1=2, 1DH3=4, 1DH5=6. 2DH1=2, 2DH3=4, 2DH5=6. 3DH1=2,3DH3=4, 3DH5=6)

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

The EUT was set to the Hopping Mode by the Customer.

Page: 64 of 90

8.5 Test Data

Test	Chan	nel	Pulse	Total of Dwell	Period Time	Limit	Result
Test Mode:		Нор	ping Mode (G	GFSK)			ALL DO
Test Voltage: DC 3.7V							
Temperature: 25		25℃ Relative Humidity:			55%		
EUT:		Bluetooth earbuds		s M	Model Name:		

Test	Channel	Pulse	Total of Dwell	Period Time	Limit	Result
Mode	(MHz)	Time (ms)	(ms)	(s)	(ms)	Result
1DH1	2441	0.52	166.40	31.60	400	PASS
1DH3	2441	1.78	284.80	31.60	400	PASS
1DH5	2441	3.02	322.13	31.60	400	PASS

¹DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

GFSK Hopping Mode 1DH1

¹DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

¹DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

Page: 65 of 90

Page: 66 of 90

EUT:	Bluetooth earbuds	Model Name:	2788
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		19.11

Test Mode: Hopping Mode (π /4-DQPSK)

Test	Channel	Pulse	Total of Dwell	Period Time	Limit	Popult
Mode	(MHz)	Time (ms)	(ms)	(s)	(ms)	Result
2DH1	2441	0.53	169.60	31.60	400	PASS
2DH3	2441	1.77	283.20	31.60	400	PASS
2DH5	2441	3.04	324.27	31.60	400	PASS

2DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

2DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

2DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

π /4-DQPSK Hopping Mode 2DH1

Page: 67 of 90

Page: 68 of 90

EUT:	Bluetooth earbuds	Model Name:	2788
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		

Test Mode: Hopping Mode (8-DQPSK)

Test	Channel	Pulse	Total of Dwell	Period Time	Limit	Result
Mode	(MHz)	Time (ms)	(ms)	(s)	(ms)	Result
3DH1	2441	0.52	166.40	31.60	400	PASS
3DH3	2441	1.77	283.20	31.60	400	PASS
3DH5	2441	3.05	325.33	31.60	400	PASS

2DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

2DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

2DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

8-DQPSK Hopping Mode 2DH1

Page: 69 of 90

8-DQPSK Hopping Mode 2DH5

Page: 70 of 90

9. Channel Separation and Bandwidth Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)	
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5	
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5	

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Channel Separation: RBW=100 kHz, VBW=100 kHz.

Bandwidth: RBW=30 kHz, VBW=100 kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
 - (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

9.4 EUT Operating Condition

The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

Page: 71 of 90

9.5 Test Data

EUT: Bluetooth earbuds		Model Name:	2788		
Temperature: 25℃		Relative Humidity:	55%		
Test Voltage: DC		3.7V			
Test Mode:	TX N	Mode (GFSK)	CHILLES	2 Million	
Channel frequency (MHz)		99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)	
2402		984.2791	1055	703.33	
2441		1002.500	1053	702.00	
2480		1000.300	1052	701.33	

GFSK TX Mode

Report No.: TB-FCC154202 Page: 72 of 90

73 of 90 Page:

EUT:	Blu	etooth earbuds	Model Name:	2788
Temperature:	25°	C	Relative Humidity:	55%
Test Voltage:	DC	3.7V	10	130
Test Mode:	TX	Mode (π/4-DQPSK)		
Channel freque	ency	99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
2402		1.1529	1208	805.33
2441		1.1518	1211	807.33
2480		1.1515	1221	814.00
		π /4-DOPSK 1	TX Mode	

π/4-DQPSK TX Mode

Page: 74 of 90

Page: 75 of 90

mperature:	25℃		Relative Humidity:	55%			
	DC 3.7\		Relative Hulliuity.	33 /0			
est Voltage:	t Worldge. DC 3.7 V t Mode: TX Mode (8-DPSK)						
est Mode:	e. TA Wode (6-DPSK)		60.10				
hannel freque	ncy	99% OBW	20dB Bandwidth	20dB Bandwidth *2			
(MHz)		(kHz)	(kHz)	(kHz)			
2402		1.1444	1208	805.33			
2441		1.1422	1208	805.33			
2480		1.1316	1211	807.33			
		8-DPSK	TX Mode				
* Agilent 1	0:06:09 Ju Freq 2.4	n 3, 2017 102 GHz	Trig Free	Freq/Channel			
Ch F	Freq 2.4 dwidth	102 GHz	Trig Free	Freq/Channel Center Freq 2.40200000 GHz			
Occupied Band Center 2.	Freq 2.4 dwidth 402000	0000 GHz	Trig Free	Center Freq			
Center 2. Ref 10 dBm #Peak Log 10	Freq 2.4 dwidth 402000	102 GHz	Trig Free	Center Freq 2.40200000 GHz Start Freq 2.40050000 GHz Stop Freq 2.40350000 GHz			
Center 2. Ref 10 dBm #Peak Log	Freq 2.4 dwidth 402000	0000 GHz		Center Freq 2.40200000 GHz Start Freq 2.40050000 GHz			
Center 2. Ref 10 dBm #Peak Log 10 dB/ Offst	Freq 2.4 dwidth 40200C Atte	0000 GHz	←	Center Freq 2.40200000 GHz Start Freq 2.40050000 GHz Stop Freq 2.40350000 GHz CF Step 300.0000000 kHz Auto Man Freq Offset 0.000000000 Hz			
Center 2. Ref 10 dBm #Peak Log 10 dB/ Offst 1 dB Center 2.402 G	Atte	#VBW 100 kHz	Span 3 MHz	Center Freq 2.40200000 GHz Start Freq 2.40050000 GHz Stop Freq 2.40350000 GHz CF Step 300.000000 kHz Auto Man Freq Offset			

Page: 76 of 90

Page: 77 of 90

EUT:	Bluetooth earbuds	Model Name:	2788
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		

Test Mode: Hopping Mode (GFSK)

Channel frequency	Separation Read Value	Separation Limit		
(MHz)	(kHz)	(kHz)		
2402	997.5	703.33		
2441	997.5	702.00		
2480	997.5	701.33		

GFSK Hopping Mode

78 of 90 Page:

Page: 79 of 90

01 1 6		0	137.1	42 1 2 24			
Test Mode:	Hopping Mo	Hopping Mode (π /4-DQPSK)					
Test Voltage:	DC 3.7V	DC 3.7V					
Temperature:	25℃	MILLION TO THE PARTY OF THE PAR	Relative Humidity:	55%			
EUT:	Bluetooth ea	arbuds	Model Name:	2788			

Channel frequency	Separation Read Value	Separation Limit				
(MHz)	(kHz)	(kHz)				
2402	997.5	805.33				
2441	1005.0	807.33				
2480	1005.0	814.00				

π /4-DQPSK Hopping Mode

Page: 80 of 90

Page: 81 of 90

EUT:	Bluetooth earbuds	Model Name:	2788
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		

Test Mode: Hopping Mode (8-DPSK)

Channel frequency	Separation Read Value	Separation Limit
(MHz)	(kHz)	(kHz)
2402	1005.0	805.33
2441	997.5	805.33
2480	997.5	807.33

8-DPSK Hopping Mode

Page: 83 of 90

10. Peak Output Power Test

10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (b) (1)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm)	2400~2483.5
	Other <125 mW(21dBm)	

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=3 MHz for bandwidth more than 1MHz.

10.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

Page: 84 of 90

10.5 Test Data

JT:		Blueto	Bluetooth earbuds			Mode	l Name:		2788
mperati	ure:	25℃		A 1	11/1	Relativ	Relative Humidity:		55%
st Volta	ge:	DC 3.7	7 V	49		(III)	The same		a William
st Mode) :	TX Mo	de (GF	SK)	A.	10			0
nannel 1	frequer	тсу (МН	z)	Test I	Result	(dBm)		L	imit (dBm)
	2402				-0.70	1			
	2441				0.214	1			21
	2480				-0.24	1			
				GFS	K TX	Mode	<u>.</u>		
				2	402 M	lHz			
Ref 10 Peak Log 10 dB/	dBm	Atte	n 20 dB		1		-0.701 dBi	m	Meas Tools
Peak Log 10	Mark	er			1		-0.701 dBi	m	Meas Toolsh Next Peak Next Pk Right
Peak Log 10 dB/ Offst	Mark 2.402		0 GHz		1		-0.701 dBi	m	Next Peak
Peak Log 10 dB/ Offst	Mark 2.402 -0.70	er 211250	0 GHz		1		-0.701 dBi		Next Peak Next Pk Right
Peak Log 10 dB/ Offst 1 dB	Mark 2.402 -0.70	er 211250	0 GHz		1		-0.701 dBi		Next Peak Next Pk Right Next Pk Left

Page: 85 of 90

Page: 86 of 90

EUT:	Bluetooth	earbuds	Model Name:	2788
Temperature:	25℃		Relative Humidity:	55%
Test Voltage:	DC 3.7V	W. Comment	V C	133
Test Mode:	TX Mode	(π /4-DQPSK)		
Channel frequen	cy (MHz)	Test Result	(dBm) L	.imit (dBm)
2402		-1.463		
2441		-1.702		21
2480		-2.361		
		- /4 DODOK I	V Mada	

π /4-DQPSK TX Mode

Page: 87 of 90

Page: 88 of 90

EUT:	Bluetooth	earbuds	Model Name:	2788
Temperature:	25℃		Relative Humidity:	55%
Test Voltage:	DC 3.7V			339
Test Mode:	TX Mode	(8-DPSK)		
Channel frequen	icy (MHz)	Test Result (d	dBm) Lir	nit (dBm)
2402		-1.103		
2441	2441 -1.350			21
2480		-1.896		
		8-DPSK TX N	lode	

Page: 89 of 90

Page: 90 of 90

11. Antenna Requirement

11.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 0 dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.3 Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

Antenna Type	
⊠Permanent attached	d antenna
☐Unique connector a	ntenna
☐Professional installation antenna	

----END OF REPORT----