MAT157 Problem Set 5

Nicolas Coballe

October 29, 2021

Lemma 1.1: If x > y > z, then 0 < |x-y| < |x-z| and if x > y > z, then |z-x| > |z-y| > 0

Proof.

x - y < x - z because y > z, but because x > y > z then x - z > x - y > 0 which is the same as |x - z| > |x - y| > 0.

z-x < z-y because x>y, but because x>y>z then z-x < z-y < 0 which is the the same as |z-x|>|z-y|>0.

1. a)

Proof.

We will prove this by cases where either $x \in \mathbb{Q}$ or $x \notin \mathbb{Q}$. Let $\epsilon > 0$ and let $\delta = \epsilon$.

Case 1: $x \in \mathbb{Q}$

$$|f(x) - 3| = |x + 1 - 3| = |x - 2| = \delta < \epsilon$$

Case 2: $x \notin \mathbb{Q}$

$$|f(x) - 3| = |5 - x - 3| = |2 - x| = |x - 2| < \delta = \epsilon$$

Thus, for all x such that $|x-2| < \delta \implies |f(x)-3| < \epsilon$

b)

Proof.

Assume for the sake of contradiction that $\lim_{x\to a} f(x)$ does exists. Then there exists some $\ell \in \mathbb{R}$ such that $\forall \epsilon > 0 \exists \delta > 0 \forall x \in \mathbb{R} : 0 < |x - a| < \delta \implies |f(x) - \ell| < \epsilon$. There are 3 cases: $1.\ell \neq f(a), \ \forall a \in \mathbb{R}, \ 2.\ell = f(a) \ \text{and} \ a \in \mathbb{Q}, \ \text{and} \ 3.\ell = f(a)$ and $a \notin \mathbb{Q}$.

Case 1: $\ell \neq f(a)$ Choose $\epsilon := |f(a) - \ell|$. Either $\ell > f(a)$ or $\ell < f(a)$. If $\ell > f(a)$, then any δ -interval around a will contain $f(a-x), \ \forall 0 < x < \delta$. Which is less than f(a) because f is strictly increasing on the rationals. Thus, by $Lemma\ 1.1$, $|f(a-x)-\ell|>|f(a)-\ell|=\epsilon$. Because δ was arbitrary, this is a contradiction. If $\ell < f(a)$, then any δ -interval around a will contain $f(a+x), \ \forall 0 < x < \delta$. Which is greater than f(a) because f is strictly increasing on the rationals. Thus, by $Lemma\ 1.1$, $|f(a+x)-\ell|>|f(a)-\ell|=\epsilon$. Because δ was arbitrary, this is a contradiction.

Case 2: $\ell = f(a)$ and $a \in \mathbb{Q}$. There are two cases here again. Either a > 2 or a < 2. If a > 2 then $\forall x > 2 \in \mathbb{Q} \forall y > 2 \notin \mathbb{Q}$, f(x) > f(y). This is because f is strictly increasing on the rationals and strictly decreasing on the irrationals and f(a) > 3, $\forall a > 2 \in \mathbb{Q}$ and $f(a) < 3, \ \forall a > 2 \notin \mathbb{Q}$. Thus, choose $\epsilon := |f(c) - \ell|$ for some $c \notin \mathbb{Q}$ such that 2 < c < a. Thus for any δ -interval around a there exists $f(a+x), \ \forall x \notin \mathbb{Q}$ such that $0 < x < \delta$ with $f(a+x) < f(c) < \ell$. By Lemma 1.1, $|f(a+x)-\ell| > |f(c)-\ell| = \epsilon$. Because δ was arbitrary, $\exists \epsilon > 0 \forall \delta > 0 \forall x \in \mathbb{R} : 0 < |x - a| < \delta \text{ and } |f(x) - \ell| \ge \epsilon.$ This is a contradiction. On the other side, if a < 2 then $\forall x < 2 \in \mathbb{Q} \forall y < 2 \notin \mathbb{Q}, f(x) < f(y).$ Thus, choose $\epsilon := |f(c) - \ell|$ for some $c \notin \mathbb{Q}$ such that 2 > c > a. Thus for any δ -interval around athere exists f(a-x), $\forall x \notin \mathbb{Q}$ such that $0 < x < \delta$ with $f(a-x) < f(c) < \ell$. By Lemma 1.1, $|f(a-x) - \ell| > |f(c) - \ell| = \epsilon$. Because δ was arbitrary, $\exists \epsilon > 0 \forall \delta > 0 \forall x \in \mathbb{R} : 0 < |x - a| < \delta \text{ and } |f(x) - \ell| \ge \epsilon.$ This is a contradiction.

Case 3: $\ell = f(a)$ and $a \notin \mathbb{Q}$. There are two cases here again. Either a > 2 or a <. If a > 2 then $\forall x > 2 \in \mathbb{Q} \forall y > 2 \notin \mathbb{Q}$, f(x) > f(y). This is because f is strictly increasing on the rationals and strictly decreasing on the irrationals and f(a) > 3, $\forall a > 2 \in \mathbb{Q}$ and f(a) < 3, $\forall a > 2 \notin \mathbb{Q}$. Thus, choose $\epsilon := |f(c) - \ell|$ for some $c \notin \mathbb{Q}$ such that 2 < c < a. Thus for any δ -interval around a there exists f(a + x) such that $0 < x < \delta$ and x = -a + z, $\exists z \in \mathbb{Q}$ with

 $f(a+x) > f(c) > \ell. \text{ By } Lemma \ 1.1, \ |f(a+x)-\ell| > |f(c)-\ell| = \epsilon.$ Because δ was arbitrary, $\exists \epsilon > 0 \forall \delta > 0 \forall x \in \mathbb{R} : 0 < |x-a| < \delta \text{ and } |f(x)-\ell| \geq \epsilon. \text{ This is a contradiction. On the other side, if } a < 2 \text{ then} \\ \forall x < 2 \in \mathbb{Q} \forall y < 2 \notin \mathbb{Q}, f(x) < f(y). \text{ Thus, choose } \epsilon := |f(c)-\ell| \text{ for some } c \notin \mathbb{Q} \text{ such that } 2 > c > a. \text{ Thus for any } \delta\text{-interval around } a \text{ there exists } f(a-x), \ \forall x \notin \mathbb{Q} \text{ such that } 0 < x < \delta \text{ and } x = -a+z, \ \exists z \in \mathbb{Q} \text{ with } f(a-x) < f(c) < \ell. \text{ By } Lemma \ 1.1, \\ |f(a-x)-\ell| > |f(c)-\ell| = \epsilon. \text{ Because } \delta \text{ was arbitrary,} \\ \exists \epsilon > 0 \forall \delta > 0 \forall x \in \mathbb{R} : 0 < |x-a| < \delta \text{ and } |f(x)-\ell| \geq \epsilon. \text{ This is a}$

Thus $\lim_{x\to a} f(x)$ does not exist if $a\neq 2$.

contradiction.

Clearly, $f: \mathbb{R} \to [0,1)$ and f is a surjection. Consider any interval $[n,n+1), \ \forall n \in \mathbb{Z}.$ f is strictly increasing on this interval because for any $x < y \in [n,n+1)$, the fractional part of y is always greater than the fractional part of x. This functions is also the same as $g: \mathbb{R} \to [0,1), \ g(x) := x \mod 1$. Because f(x) = f(x+1) for all $x \in \mathbb{R}$, f is 1-periodic.

This function is almost the same as the first, except it is horizontally compressed by a factor of 3 and flipped vertically because it is multiplied by -3. Because it is horizontally compressed by a factor of 3, then the function is strictly decreasing on the interval

 $[a\frac{n}{3}, a\frac{n}{3} + \frac{1}{3}), \forall n \in \mathbb{Z} \text{ and } \forall a \in \{0, 1, 2\}.$ Because $f(x) = f(x + \frac{1}{3})$ for all $x \in \mathbb{R}$, f is $\frac{1}{3}$ -periodic.

This function is very different from the first two because it is not just a scalar multiple of the first function. If x>1 then $f(\frac{1}{x})<1$ and strictly decreasing. But because $\frac{1}{x}<1$ then $x=f(\frac{1}{x}),\ \forall x>1$. A similar thing happens if x<-1. If $x\in(-1,1)\setminus\{0\}$, then as x gets closer to zero, $\frac{1}{x}$ grows reciprocally. Because $g:\mathbb{R}\setminus\{0\}\to\mathbb{R},\ g(x):=\frac{1}{x}$ is strictly decreasing, all intervals of $(\frac{1}{n},\frac{1}{n+1}],\ \forall n\in\mathbb{N}:-1<\frac{1}{n}<1$ are strictly decreasing, and as $\frac{1}{n}$ gets closer to 0, these intervals get arbitrarily small. That is why you see this area near zero where the lines almost do not look separated.

3.

Proof.

 \Rightarrow

Let A be closed. For the sake of contradiction assume that there exists a limit point of A, a such that $a \notin A$. Because a is a limit point of A:

$$\forall \epsilon > 0 \exists x \in A : 0 < |x - a| < \epsilon$$

Consider we choose some $b \in A$ such that b := x. Since A is closed, then A^c is open:

$$\forall c \in A^c \exists \epsilon > 0 \forall y \in \mathbb{R} : |c - y| < \epsilon \implies y \in A^c$$

Because we are assuming that $a \in A^c$, then we can choose c := a and y := b. By a being a limit point of A, $|b - a| = |a - b| < \epsilon$ meaning that $|c - y| < \epsilon$. This implies that y = b is in A^c , but we specifically chose b such that $b \in A$. Hence, this a contradiction.

Therefore, we have shown that if A is closed, then A contains all of its limit points.

 \Leftarrow

We will prove the contrapositive. Assume that A is not closed, then A^c is not open. Thus:

$$\exists x \in A^c \forall \epsilon > 0 \exists y \in R : |x - y| < \epsilon \text{ and } y \notin A^c$$

If $y \notin A^c$ then $y \in A$. Thus, $\forall \epsilon > 0 : |x - y| < \epsilon$, and because $y \in A$, x is a limit point of A. However, by assumption, $x \in A^c$. Thus, A does not contain all of its limit points.

Therefore, if A contains all of its limits points, then A is closed.

4. a)

Proof.

Because $f(x) \leq g(x) \leq h(x)$, $\forall x \in A$, then $f(x) - \ell \leq g(x) - \ell \leq h(x) - \ell$. For any $\epsilon > 0$ we can choose a $\delta_1 > 0$ such that if $|x - a| < \delta_1 \implies |f(x) - \ell| < \epsilon$. We can also choose a $\delta_2 > 0$ such that if $|x - a| < \delta_2 \implies |h(x) - \ell| < \epsilon$. Suppose we chose $\delta := \min\{\delta_1, \delta_2\}$. Thus if $|x - a| < \delta \implies$

$$-\epsilon < f(x) - \ell \le g(x) - \ell \le h(x) - \ell < \epsilon$$
$$-\epsilon < g(x) - \ell < \epsilon$$
$$|g(x) - \ell| < \epsilon$$

Therefore, $\lim_{x\to a} g(x) = \ell$.

b)

Proof.

By assumption,

$$\forall \epsilon_1 > 0 \exists \delta_1 > 0 \forall x \in A : 0 < |x - a| < \delta_1 \implies |f(x) - \ell| < \epsilon_1 \text{ and } \forall \epsilon_2 > 0 \exists \delta_2 > 0 \forall x \in A : 0 < |x - a| < \delta_2 \implies |g(x) - m| < \epsilon_2.$$

Suppose that $\max\{\ell, m\} = \ell$.

$$\forall \epsilon > 0 \exists \delta' := \min\{\delta_1, \delta_2\} \forall x \in A : |x - a| < \delta' \implies |f(x) - \ell| < \epsilon \text{ and } |g(x) - m| < \epsilon.$$

Assume for the sake of contradiction

 $\exists \epsilon > 0 \forall 0 < \delta \leq \delta' : f(x) < g(x), \ \forall x \in (a - \delta, a + \delta).$ Let $\kappa := \min(g(x) - f(x))$ on $(a - \delta, a + \delta)$. Notice that $\kappa > 0$ because $g(x) > f(x), \ \forall x \in (a - \delta, a + \delta).$ Choose ϵ' such that $\epsilon' < \min\{\epsilon, \kappa\}.$ This implies that:

$$|f(x) - \ell| < \frac{\epsilon'}{2}$$

$$|g(x) - m| < \frac{\epsilon'}{2}$$

$$|g(x) - | + |f(x) - \ell| < \epsilon'$$

$$|g(x) - f(x) + \ell - m| \le |f(x) - \ell| + |g(x) - m|$$

$$|\kappa + \ell - m| \le |g(x) - f(x) + \ell - m|$$

$$-\epsilon < \kappa + \ell - m < \epsilon'$$

$$\kappa - \epsilon + \ell < m, \ \kappa - \epsilon' > 0$$

This is a contradiction because $\max\{\ell,m\}=\ell$. Thus, $\forall \epsilon>0 \exists 0<\delta\leq \delta': f(x)\geq g(x), \ \forall x\in (a-\delta,a+\delta).$ If $|x-a|<\delta$ then $|\max\{f(x),g(x)\}-\max\{\ell,m\}|=|f(x)-\ell|<\epsilon$

We can make a similar case if $\max\{\ell, m\} = m$, where we simply says that there is some ϵ -interval where $g(x) \geq f(x)$ for all x in the interval.

Therefore, $\lim_{x\to a} \max\{f(x), g(x)\} = \max\{\ell, m\}.$

5.

Proof.

 \Rightarrow

Consider $\forall \epsilon > 0 \exists \delta > 0 \forall x \in A : 0 < |x-a| < \delta \implies |f(x)-\ell| < \epsilon$ and $U \subseteq \mathbb{R}$ is open and $\ell \in U$. We will claim that there exists some $\epsilon > 0$ such that $(\ell - \epsilon, \ell + \epsilon) \subseteq U$. Consider this is false, and $\{\ell\} \subseteq U$, but $(\ell - \epsilon, \ell + \epsilon) \not\subseteq U$, $\forall \epsilon > 0$, then $\{\ell\} \notin U^c$, but ℓ is a limit point of U^c . This means that U^c does not contain all of its limit points, making it not closed, meaning that U is not open, a contradiction. Therefore, we can follow along with the existence of an $\epsilon > 0$ such that $(\ell - \epsilon, \ell + \epsilon) \subseteq U$. Because $\forall \epsilon > 0 \exists \delta > 0 \forall x \in A : 0 < |x-a| < \delta \implies |f(x)-\ell| < \epsilon$ we can simply choose $V := (a-\delta, a+\delta)$. Thus, V is open and $f((V \cap A) \setminus \{a\}) \subseteq U$.

Therefore, if $\lim_{x\to a} f(x) = \ell$ then $\forall U \subseteq \mathbb{R} \exists V \subseteq \mathbb{R} : U$ is open and $\ell \in U \implies V$ is open and $a \in V$ and $f((V \cap A) \setminus \{a\}) \subseteq U$.

 \Leftarrow

Consider that $\forall U \subseteq \mathbb{R} \exists V \subseteq \mathbb{R} : U$ is open and $\ell \in U \Longrightarrow V$ is open and $a \in V$ and $f((V \cap A) \setminus \{a\}) \subseteq U$. Consider $U := (\ell - \epsilon, \ell + \epsilon), \ \forall \epsilon > 0$. Then there exists some V such that $a \in V$ and V is open and $f((V \cap A) \setminus \{a\}) \subseteq U$. We will claim that there exists some $\delta > 0$ such that $(a - \delta, a + \delta) \subseteq V$. Consider that this is false, and $\{a\} \subseteq V$, but $(a - \delta, a + \delta) \not\subseteq V$, $\forall \delta > 0$, then $\{a\} \notin V^c$, but a is a limit point of V^c . This means that V^c does not contain all of its limit points, meaning V is not open, a contradiction. Thus, $\exists \delta > 0$ such that $(a - \delta, a + \delta) \subseteq V$. Because our choice of ϵ was arbitrary, we can now choose this δ to prove that $\forall \epsilon > 0 \exists \delta > 0 \forall x \in \mathbb{R} : 0 < |x - a| < \delta \implies |f(x) - \ell| < \epsilon$.

Therefore, if $\forall U \subseteq \mathbb{R} \exists V \subseteq \mathbb{R} : U$ is open and $\ell \in U \Longrightarrow V$ is open and $a \in V$ and $f((V \cap A) \setminus \{a\}) \subseteq U$ then $\lim_{x \to a} f(x) = \ell$.