Predicate Logic Rough Notes

Exam Technique

- For "impossible" questions, reasonable credit will be awarded for some attempt. For example, by testing notable cases
 like the empty set or the universal relation.
- For semantic proofs in second-order logic, "it is acceptable to use words once in the set-theoretic part of the proof, but the form of the proof is otherwise similar to the form of proofs in PL, MPL, PC, SC, LC".
- The ancestral relation R^*ab abbreviates $\forall X [\forall x (Rax \to Xx) \land \forall y_1 \forall y_2 (Xy_1 \land Ry_1y_2 \to Xy_2) \to Xb]$.

Classical Predicate Logic

Syntax

- Definition (PC-Term)
 - \neg , \rightarrow , \forall are the PC-connectives, $x, y, x_1, y_1, x_2, \ldots$ are the PC-variables, $F, G, F_1, G_1, F_2, \ldots$ are the n-place PC-predicates, $a, b, a_1, b_1, a_2, \ldots$ are the PC-constants. If α is a PC-variable or a PC-constant, then α is a PC-term.
- Definition (PC-wff)
 - If Π is a n-place PC-predicate, and each of $\alpha_1, \ldots, \alpha_n$ is a PC-term, then $\Pi \alpha_1 \ldots \alpha_n$ is a PC-wff.
 - If each of ϕ , ψ is a PC-wff, and α is a PC-variable, then each of $\neg \phi$, $(\phi \rightarrow \psi)$, and $\forall \alpha \phi$ is a PC-wff.
 - Only strings that can be shown to be PC-wffs by the above clauses are PC-wffs.
 - PC-term and PC-wff are defined simultaneously and recursively.
- Abbreviations
 - " $\exists \alpha \phi$ " abbreviates " $\neg \forall \alpha \neg \phi$.
 - Abbreviations for " $\phi \wedge \psi$ ", " $\phi \vee \psi$ ", and " $\phi \leftrightarrow \psi$ " are introduced in the familiar way.
 - The familiar bracketing conventions apply.
- Definition (Free Variable Occurrence)
 - An occurrence of PC-variable α in PC-wff ϕ is bound iff it occurs in a subformula of the form $\forall \alpha \psi$, an occurrence of α is free otherwise.

Semantics

- Definition (PC-Model)
 - A PC-model \mathcal{M} is a pair $\langle \mathcal{D}, \mathcal{I} \rangle$ such that:
 - ullet ${\cal D}$ is a non-empty set, the domain, and
 - \mathcal{I} is a function on the set of constants and predicates, the interpretation function, such that:
 - for all constants α , $\mathcal{I}(\alpha) \in \mathcal{D}$, and
 - for all n-place predicates Π , $\mathcal{I}(\Pi)$ is some n-place relation over \mathcal{D} .
- Definition (PC-Variable Assignment)
 - A PC-variable assignment g for model $\mathcal{M} = \langle \mathcal{D}, \mathcal{I} \rangle$ is a function on the set of variables such that for all variables α , $g(\alpha) \in \mathcal{D}$.
- Definition (PC-Variant Assignment)
 - A PC-variant assignment g_u^{α} , where α is some variable and $u \in \mathcal{D}$, of variable assignment g for model $\mathcal{M} = \langle \mathcal{D}, \mathcal{I} \rangle$ is the variable assignment such that $g_u^{\alpha}(\beta) = \begin{cases} u & \text{if } \beta = \alpha \\ g(\beta) & \text{otherwise} \end{cases}$. In words, g_u^{α} is the variable assignment that differs from g only in assigning u to α .
- Definition (PC-Term Denotation)
 - The PC-term denotation $[\alpha]_{\mathcal{M},g}$ of term α for model \mathcal{M} and variable assignment g for \mathcal{M} is such that $[\alpha]_{\mathcal{M},g} = \begin{cases} \mathcal{I}(\alpha) & \text{if } \alpha \text{ is a constant} \\ g(\alpha) & \text{if } \alpha \text{ is a variable} \end{cases}$.
- Definition (PC-Valuation)
 - The PC-valuation $V_{\mathcal{M},g}$ for model $\mathcal{M}=\langle \mathcal{D},\mathcal{I}\rangle$ and variable assignment g for \mathcal{M} is the unique function from the set of PC-wffs to the set of truth values $\{0,1\}$ such that:
 - $V_{\mathcal{M},q}(\Pi\alpha_1\dots\alpha_n)=1$ iff $\langle [\alpha_1]_{\mathcal{M},q},\dots,[\alpha_n]_{\mathcal{M},q}\rangle\in\mathcal{I}(\Pi)$, for all n-place predicates Π and terms α_1,\dots,α_n ,

- $V_{\mathcal{M},g}(\forall \alpha \phi) = 1$ iff for all $u \in \mathcal{D}$, $V_{\mathcal{M},g_u^\alpha}(\phi) = 1$, for all variables α and PC-wffs ϕ ,
- $V_{\mathcal{M},q}(\neg \phi) = 1$ iff $V_{\mathcal{M},q}(\phi) = 0$, and
- $ullet V_{\mathcal{M},g}(\phi o\psi)=1 ext{ iff } V_{\mathcal{M},g}(\phi)=0 ext{ or } V_{\mathcal{M},g}(\psi)=1.$
- The definition of PC-valuation and the definition of $\exists \alpha \phi$ together imply $V_{\mathcal{M},g}(\exists \alpha \phi)=1$ iff for some $u \in \mathcal{D}$, $V_{\mathcal{M},g_u^\alpha}(\phi)=1$, for all variables α and PC-wffs ϕ .
- Definition (PC-Validity)
 - PC-wff ϕ is valid iff for all models \mathcal{M} for all variable assignments g for \mathcal{M} , $V_{\mathcal{M},g}(\phi)=1$.
- Definition (PC-Semantic Consequence)
 - PC-wff ϕ is a PC-semantic consequence of set of wffs $\Gamma = \{\gamma_1, \gamma_2, \ldots\}$ iff for all models $\mathcal M$ for all variable assignments g for $\mathcal M$, if for all $\gamma \in \Gamma$, $V_{\mathcal M,g}(\gamma) = 1$, then $V_{\mathcal M,g}(\phi) = 1$.

Predicate Logic with Identity

Syntax

- The syntax of $PC_{=}$ is exactly analogous to that of PC except in:
 - including the connective =,
 - · including the additional clause in the definition of a wff:
 - if each of α, β is a term, then $\alpha = \beta$ is a wff.

Semantics

- Definition (PC=-Valuation)
 - The definition of PC=-valuation is exactly analogous to that of PC-valuation except in including the additional clause:
 - $V_{\mathcal{M},g}(\alpha=\beta)=1$ iff $[\alpha]_{\mathcal{M},g}=[\beta]_{\mathcal{M},g}$, for all terms α,β .

Predicate Logic with Complex Terms

Syntax

- The syntax of PC_{ι} is exactly analogous to that of PC except in:
 - including the connective ι,
 - including the additional clause in the definition of a term:
 - if α is a variable and ϕ is a wff, then $\iota\alpha\phi$ is a term.
- Note that PC_ι -term and PC_ι -wff are defined simultaneously and recursively, in the (non-trivial) sense that the definition of PC_ι -term refers to PC_ι -terms.

Semantics

- Definition (PC_ι-Term Denotation)
 - The definition of PC_i -term denotation is exactly analogous to that of PC-term denotation except in including the additional case:

$$\bullet \ \ [\iota\alpha\phi]_{\mathcal{M},g} = \begin{cases} \text{the unique } u \in \mathcal{D} \text{ such that } V_{\mathcal{M},g_u^\alpha}(\phi) = 1 & \text{if such } u \text{ exists} \\ \text{undefined} & \text{otherwise} \end{cases}.$$

- Definition (PC_ι-Valuation)
 - The definition of PC_{ι} -valuation is exactly analogous to that of PC-valuation except in modifying the clause for elementary wffs as follows:
 - $V_{\mathcal{M},g}(\Pi\alpha_1\dots\alpha_n)=1$ iff each of $[\alpha_1]_{\mathcal{M},g},\dots,[\alpha_n]_{\mathcal{M},g}$ is defined and $\langle [\alpha_1]_{\mathcal{M},g},\dots,[\alpha_n]_{\mathcal{M},g}\rangle\in\mathcal{I}(\Pi)$, for all n-place predicates Π and terms α_1,\dots,α_n .
 - This modification is simply to account for instances of undefined complex terms.
- Note that PC_ι -term denotation and PC_ι are defined simultaneously and recursively in a non-trivial sense.

Predicate Logic with Complex Predicates

Syntax

• The syntax of PC_{λ} is exactly analogous to that of PC except in:

- including the additional clause in the definition of a *n*-place predicate:
 - if α is a variable and ϕ is a wff, then $\lambda \alpha \phi$ is a 1-place predicate.

Semantics

- Definition (Extension of a Complex Predicate)
 - The extension $\phi^{\mathcal{M},g,\alpha}$ of a complex predicate $\lambda \alpha \phi$ is given by $\phi^{\mathcal{M},g,\alpha} = \{u \in \mathcal{D} : V_{\mathcal{M},g_{\sigma}^{\alpha}}(\phi) = 1\}.$
- Definition (PC_{λ} -Valuation)
 - The definition of PC_{λ} -valuation is exactly analogous to that of PC-valuation except in:
 - modifying the clause for elementary wffs as follows:
 - $V_{\mathcal{M},g}(\Pi\alpha_1\dots\alpha_n)=1$ iff $\langle [\alpha_1]_{\mathcal{M},g},\dots,[\alpha_n]_{\mathcal{M},g}\rangle\in\mathcal{I}(\Pi)$, for all n-place simple predicates Π and terms α_1,\dots,α_n ,
 - including the additional clause:
 - $V_{\mathcal{M},q}((\lambda \alpha \phi)(\beta)) = 1$ iff $[\beta]_{\mathcal{M},q} \in \phi^{\mathcal{M},g,\alpha}$ for all variables α , terms β , and wffs ϕ .

Second-Order Logic

Syntax

- The syntax of SOL is exactly analogous to that of PC except in:
 - · including the following definition of predicate variables:
 - X,Y,X_1,Y_1,X_2,\ldots are the SOL-predicate variables,
 - including the additional clauses in the definition of a SOL-wff:
 - if π is a n-place predicate variable, and each of α_1,\ldots,α_n is a term, then $\pi\alpha_1\ldots\alpha_n$ is a wff,
 - if π is a n-place predicate variable and ϕ is a wff, then $\forall \pi \phi$ is a wff.

Semantics

- Definition (SOL-Model)
 - Th definition of a SOL model is identical to that of a PC model.
- · Definition (SOL-Variable Assignment)
 - A SOL-variable assignment g for model $\mathcal{M} = \langle \mathcal{D}, \mathcal{I} \rangle$ is a function on the set of variables and predicate variables such that for each variable α , $g(\alpha) \in \mathcal{D}$ and for each n-place predicate variable π , $g(\pi)$ is a n-place relation over \mathcal{D} .
- Definition (SOL-Variant Assignment)
 - A SOL-variant assignment g_u^{α} , where α is some variable and $u \in \mathcal{D}$, of variable assignment g for model $\mathcal{M} = \langle \mathcal{D}, \mathcal{I} \rangle$ is the variable assignment such that $g_u^{\alpha}(\beta) = \begin{cases} u & \text{if } \beta = \alpha \\ g(\beta) & \text{otherwise} \end{cases}$. In words, g_u^{α} is the variable assignment that differs from g only in assigning u to α .
 - A SOL-variant assignment g_U^π , where π is some n-place predicate variable and U is some n-place relation over \mathcal{D} , of variable assignment g for model $\mathcal{M}=\langle \mathcal{D},\mathcal{I}\rangle$ is the variable assignment such that $g_U^\pi(\rho)=\begin{cases} U & \text{if } \rho=\pi\\ g(\rho) & \text{otherwise} \end{cases}$. In words, g_U^π is the variable assignment that differs from g only in assigning U to π .
- Definition (SOL-Valuation)
 - The definition of SOL-valuation is exactly analogous to that of PC-valuation except in including the additional clauses:
 - $ullet V_{\mathcal{M},g}(\pilpha_1\dotslpha_n)=1 ext{ iff } \langle [lpha_1]_{\mathcal{M},g},\dots, [lpha_n]_{\mathcal{M},g}
 angle \in g(\pi),$
 - $V_{\mathcal{M},g}(orall \pi\phi)=1$ iff for every n-place relation U over $\mathcal{D},\,V_{\mathcal{M},g_U^\pi}(\phi)=1.$