# Top-down constraints on reactive nitrogen from biomass burning in Sub-Saharan Africa



Eloise Marais (UCL) with Martin Van Damme, Lieven Clarisse, Christine Wiedinmyer, Killian Murphy, Guido van der Werf, Nana Wei, Gongda Lu, Mogesh Naidoo, Rebecca Garland, Keita Sekou

ETH Colloquium 2 October 2025

# **Open Fire Emissions of Reactive Nitrogen**



NO<sub>x</sub> and NH<sub>3</sub> affect local air quality, regional climate, and global atmospheric composition

# Global Context for Southern Africa Biomass Burning

Biomass burning carbon emissions from the Global Fire Emissions Database (GFED) inventory



Open fire emissions in southern Africa outcompete most anomalous fires in other regions, so is a potentially large global source of reactive nitrogen

# Yearly Variability in Southern Africa Biomass Burning

Long-term record of annual fire emissions for select regions in Teragrams carbon



Dampened interannual variability in southern Africa in comparison to other fire-prone regions

### Seasonality in Southern Africa Biomass Burning

Multiyear mean monthly carbon emissions from biomass burning [Tg C]



Southern Africa fire season persists for all 6 months of the dry season, peaking in July and August

# **Categorization of Pyrome Types**

Pyrome classes derived with satellite data and clustering algorithms



Data source: <a href="https://archibaldlab.weebly.com/datasets.html">https://archibaldlab.weebly.com/datasets.html</a>

[Archibald et al., 2013]

Southern Africa fires mostly frequent, but near-equal contribution of **cool** (low combustion efficiency) and **intense** (high combustion efficiency) fires, affecting reactive nitrogen emissions

### Persistent Model Bias for a "Traditional" Source



Model annual mean more than double the observations for a seasonal source

### Instruments in space measuring NH<sub>3</sub> and NO<sub>2</sub> column densities

**IASI**: Infrared Atmospheric Sounding Interferometer



Resolution: 12 km (elliptical pixels) at nadir

Swath width: 2200 km

Launch date: 2012

Year used: 2019

**TROPOMI**: TROPOspheric Monitoring Instrument



Resolution: 5.5 km x 3.5 km at nadir

Swath width: 2600 km

Launch date: 2017

Year used: 2019

### **Fires Detected with Both Instruments**





[Clarisse et al., 2023]

TROPOMI annual mean NO<sub>2</sub> (2018-2020)



[https://www.esa.int/Applications/Observing\_the\_Earth/Cope rnicus/Sentinel-5P/Nitrogen\_dioxide\_pollution\_mapped]

Instruments provide constraints on  $NH_3$  for IASI and  $NO_x$  for TROPOMI  $NO_2$   $NO_x$  and  $NH_3$  account for most reactive nitrogen from open fires

# **Bottom-Up Biomass Burning Emissions**

### **Emission = DMB x EF**

**DMB**: dry matter burned

**EF**: emission factor

### DMB = Area burned x above-ground biomass x combustion completeness

#### 3 prominent inventories:

**GFED**: Global Fire Emissions Database

**FINN**: Fire INventory for NCAR

**GFAS**: Global Fire Assimilation System (CAMS)

DMB determined using distinct satellite data products for each inventory

### **GFED Uses Burned Area**



### **FINN Uses Fire Counts**



Data from MODIS (1 km) and more recent finer resolution VIIRS (375 m)

### **GFAS** Uses Fire Radiative Power



# Landcover Specific Emission Factors (EF)

Emission = DMB x **EF** 

| Vegetation type       | Emission factor [g kg <sup>-1</sup> ] a |                       |          |
|-----------------------|-----------------------------------------|-----------------------|----------|
|                       | GFEDv4s                                 | FINNv2.5 <sup>b</sup> | GFASv1.2 |
| NO <sub>x</sub> as NO | - 7.4.                                  |                       |          |
| Tropical forest       | 2.55                                    | 2.6                   | 2.3      |
| Savanna               | 3.9                                     | 3.9                   | 2.1      |
| Woody savanna c       | -                                       | 3.65                  | -        |
| NH <sub>3</sub>       |                                         |                       |          |
| Tropical forest       | 1.33                                    | 1.3                   | 0.93     |
| Savanna               | 0.52                                    | 0.56                  | 0.74     |
| Woody savanna c       | <u> </u>                                | 1.2                   | =        |

[Marais et al., 2025]

Biggest difference for NO<sub>x</sub> applied to savannas

FINN emits NO<sub>x</sub> as NO and NO<sub>2</sub>

#### **MODIS Landcover**



### Reactive Nitrogen Emissions in Southern Africa

#### Monthly bottom-up June-October 2019 emissions



Other differences: Time and spatial resolution, injection height, landcover classes

Mostly savanna fires

In FINN, ~20-times more fuel consumed for tropical forest fires (smouldering) than the other inventories

### **Drive GEOS-Chem with all Three Inventories**



Simulate model with each inventory turned on to compare the model to IASI and TROPOMI Sample the model at the same overpass time as the instruments

### **Account for Instrument Vertical Sensitivities**



#### Different approach for each instrument:

TROPOMI: apply averaging kernels (quantifies vertical sensitivity) to GEOS-Chem

**IASI**: reprocess (re-retrieve) IASI NH<sub>3</sub> with local GEOS-Chem a priori profiles

### Reprocess IASI with Local GEOS-Chem Priors

IASI columns for July-October 2019. Prior from GEOS-Chem using FINN



Overall decline in columns with local a priori, as more NH<sub>3</sub> placed higher up Less noisy over Atlantic Ocean east of Angola and northern Namibia More retrievals pass quality checks

# Evaluate Inventory NO<sub>x</sub> Emissions with TROPOMI NO<sub>2</sub>

NO<sub>2</sub> vertical column densities for Jun-Oct 2019

GC (GFEDv4s) **TROPOMI** R: 0.93 **NMB: 44%** GC (GFASv1.2) **GC** (FINNv2.5) DRC **ZMB AGO** R: 0.64 R: 0.93 NMB: -21%

GC: GEOS-Chem

5°S

10°S

15°S

5°S

20°S

TZA

MWI

[10<sup>15</sup> molecules cm<sup>-2</sup>]

MOZ

GFED and GFAS NO<sub>2</sub> spatially similar, but >50% difference due to emission factors

Low emissions in Malawi, as spread of fire suppressed by dense population

Far more NO<sub>x</sub> from tropical forests in FINN (fuel load)

**NMB: 14%** 

# Influence of Population Density on Fires



People cause more fires, but suppress the spread of fires

Conveniently, pollution from anthropogenic activities and open fires not collocated

### Impact of Different NO<sub>x</sub> Emissions on Ozone Formation

Ozone production efficiency (OPE) = ozone produced per mass unit  $NO_x$  emitted

GFAS: 13 Tg O<sub>3</sub> (Tg NO)-1

FINN: 9.6 Tg O<sub>3</sub> (Tg NO)<sup>-1</sup>

GFED: 6.9 Tg O<sub>3</sub> (Tg NO)-1

FINN OPE > GFED OPE, as far more VOCs and CO in FINN:

FINN: 108 Tg CO and 13 Tg C for 21 NMVOCs

GFED: 82 Tg CO and 2 Tg C for 13 NMVOCs

Less NO<sub>x</sub> from GFAS increases OPE, as O<sub>3</sub> more sensitive to NO<sub>x</sub>

### **Evaluation of Inventories with Satellite Observations**

NH<sub>3</sub> vertical column densities for Jul-Oct 2019 [10<sup>15</sup> molecules cm<sup>-2</sup>]

IASI with GEOS-Chem prior:



**GEOS-Chem:** 



June excluded, as no inventories consistent with IASI observations (R < 0.5)

### **Top-down emissions estimate**

Convert atmospheric column concentrations to surface emissions using a model

**COLUMNS Conversion Factor EMISSIONS** Satellite columns **Satellite-derived Column-to-Emission ratio** surface emissions (model) **Emission** Column **Surface** 

Simple mass balance approach, as it's a first order problem (very large errors)

Use best-performing inventory (**GFAS** for  $NO_x$ , **FINN** for  $NH_3$ ) for gridsquares where open fires > 50% total emissions

# **Top-down Emissions with Best Performing Inventories**



Distribution normal for NO<sub>x</sub>, long-tailed for NH<sub>3</sub>

Correlation between top-down  $NO_x$  and  $NH_3$  weak (R < 0.4), but strong in inventories (R > 0.8), as none account for the impact of combustion efficiency/pyrome regime on emission factors

Emissions peak in similar month to bottom-up: July and August for NO<sub>x</sub> and August in NH<sub>3</sub>

Total anthropogenic emissions in Europe in 2019: ~1.4 Tg N for NO<sub>x</sub> and ~8 Tg for NH<sub>3</sub>

### **Consistency of Top-down Emissions and Pyrome Regimes**

Archibald et al. (2013) pyrome regimes



**NO<sub>x</sub> emissions** coincide with intense fires that would tend to flame (efficient)

#### Pyrome type



#### NH<sub>3</sub> emissions coincide with cool fires that would tend to smoulder (inefficient)





# **Top-down vs Best Performing Inventory Emissions**



Observationally constrained ozone production from biomass burning NO<sub>x</sub> emissions in southern Africa: **25 Tg O**<sub>3</sub>

Top-down minus bottom-up emissions [kt]



Emissions uncertainty estimate (mostly due to instruments):

31% for  $NO_x$ , 33% for  $NH_3$ 

 $NO_x$ : 1.9 ± 0.6 Tg NO

 $NH_3$ : 1.2 ± 0.4 Tg

### **Summary**

Top-down approach could be further refined with more complex inverse modelling methods or with iteration. Regardless, highlights the large disparities between top-down and bottom-up emissions.

Inventories collocate  $NH_3$  and  $NO_x$  emissions (smouldering and flaming fires), but these are mostly separate in the top-down estimates

Could adopt hybrid approach: FINN for smouldering fire emissions of NH<sub>3</sub>, VOCs, CO, organic aerosols and methane and GFAS or GFED for flaming fire emissions of NO<sub>x</sub>, black carbon and CO<sub>2</sub>

Choice of emission factors remains an issue without observations to constrain these

Critical need for observations to validate satellite observations and top-down estimates. Ideally in National Parks and in anticipation of geostationary Sentinel-4 IR instrument measuring NH<sub>3</sub> and CO (both markers of smouldering fires)

Invited contribution in Royal Society of Chemistry *Environmental Science: Atmospheres* journal (https://pubs.rsc.org/en/content/articlelanding/2025/ea/d5ea00041f)