Analiza danych strumieniowych z użyciem uczenia maszynowego Problemy rozwiązywane z użyciem uczenia maszynowego:

1) Rozpoznawanie ataków zewnętrznych (neptune) w ruchu sieciowym TCP/IP

Dane historyczne są danymi rzeczywistymi i zostały pobrane ze strony:

https://www.kaggle.com/datasets/anushonkar/network-anamoly-detection/data?select=Network-anamoly-detection.docx i dotyczą ruchu TCP/IP.

Ruch TCP/IP, czyli Transmission Control Protocol/Internet Protocol to zbiór protokołów komunikacyjnych wykorzystywanych do przesyłania danych w sieciach komputerowych, w tym w globalnej sieci - Internet. Ruch TCP/IP jest bardzo narażony na ataki - może być przechwytywany przez atakujących, przez co dochodzi często do wycieku poufnych informacji.

Atak Neptune

Atak sieciowy Neptune to odmiana ataku typu DoS (Denial of Service), który ma na celu przeciążenie serwera i uniemożliwienie jego normalnej pracy. W szczególności atak Neptune jest rodzajem ataku SYN flood, w którym napastnik wysyła dużą liczbę pakietów SYN do serwera, inicjując proces otwierania połączenia TCP, ale nigdy go nie kończąc.

2) Przewidywanie zużycia energii przez urządzenie

Dane historyczne są danymi rzeczywistymi i zostały pobrane ze strony: https://www.kaggle.com/datasets/sohommajumder21/appliances-energy-prediction-data-set i zużycia energii przez urządzenia w budynku niskoenergetycznym.

Obróbka danych

W pierwszym przypadku skupiłam się na rozpoznawaniu ataku "neptune" oraz na ruchu normalnym - bez anomalii. W tym celu pozbyłam się rekordów, które dotyczyły innych ataków. Dla ruchu normalnego było o wiele więcej wierszy, więc dokonałam zbalansowania tej klasy. Kolejna obróbką w obu bazach danych było usunięcie duplikatów i pustych rekordów. Następną obróbką w projekcie było zredukowanie znacznej ilości kolumn, które odznaczały się słabą entropią, a na koniec dokonałam normalizacji danych. Za pomocą Google Coolab wygenerowałam pliki attack.csv oraz energy.csv.

Budowa projektu (cały system działa jako obrazy dockerowe)

Budowanie modelu jest możliwe albo z zadanym harmonogramem (co 20s) albo na żądanie.

```
consumer:

build:

context:.

dockerfile: Dockerfile.consumer

depends_on:

- kafka
environment:

- KAFKA_BROKER=kafka:9092

- MODEL_ATTACK=true

- MODEL_ENERGY=false

- DELAY_SECONDS=20 # Opóźnienie
restart: always
```

producer.py - generuje dane dla systemu Kafka (pobiera dane i wysyła strumieniowe)

Pobieranie danych historycznych rzeczywistych z pliku .csv

```
def generate_data_attack(start_row=0):
    label_mapping = {'neptune': 1, 'normal': 0}
   with open('attack.csv', 'r') as csvfile:
        csvreader = csv.reader(csvfile)
        for _ in range(start_row):
            next(csvreader)
        for row in csvreader:
            X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11 = row
            feature_11_numeric = label_mapping.get(X11, 0)
            data = {
                "feature_1": float(X1),
               "feature_2": float(X2),
               "feature_3": float(X3),
                "feature_4": float(X4),
                "feature_5": float(X5),
                "feature_6": float(X6),
               "feature_7": float(X7),
                "feature_8": float(X8),
                "feature_9": float(X9),
                "feature_10": float(X10),
                "feature_11": feature_11_numeric
            return json.dumps(data)
def generate_data_energy(start_row=0):
   with open('energy.csv', 'r') as csvfile:
        csvreader = csv.reader(csvfile)
        for _ in range(start_row):
           next(csvreader)
        for row in csvreader:
            X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16 = row
            data = {
                "feature_2": float(X2),
                "feature_3": float(X3),
                "feature_4": float(X4),
                "feature_5": float(X5),
                "feature_6": float(X6),
                "feature_7": float(X7),
                "feature_8": float(X8),
                "feature_9": float(X9),
                "feature_10": float(X10),
                "feature_11": float(X11),
                "feature_12": float(X12),
                "feature_13": float(X13),
                "feature_14": float(X14),
                "feature_15": float(X15),
                "feature_16": float(X16)
```

Ciągłe wysyłanie wiadomości do Kafki

```
p = Producer(conf)
#Główna pętla
#symuluje ciągłą generację danych i wysyłanie ich do Kafki za pomocą producenta
start_row1 = 1
while True:
    try:
        print("Producent: generuje nowe dane", flush=True)
        print(start_row1, flush=True)
       #Generuje nowe dane
        if (os.getenv('MODEL_ENERGY', 'false').lower() == 'true'):
            activity = generate_data_energy(start_row1)
            start_row1 = start_row1 + 1
            p.produce('historic_data', activity)
            p.flush()
        elif (os.getenv('MODEL_ATTACK', 'false').lower() == 'true'):
            activity = generate_data_attack(start_row1)
            start_row1 = start_row1 + 1
            #Wysyła wygenerowane dane do tematu Kafka o nazwie 'historic_data'
            p.produce('historic_data', activity)
            p.flush()
        #Oczekuje przez sekundę przed ponownym wykonaniem pętli.
        time.sleep(1)
    #W przypadku wystąpienia błędu, wyświetla komunikat i czeka 3 sekundy przed ponownym wykonaniem pętli.
    except Exception as e:
       print(f"Btad: {e}")
        time.sleep(3)
```

consumer.py

Funkcje związane z odbieraniem wiadomości strumieniowo:

```
consumer.py
      #Funkcja consume_messages_to_latest jest odpowiedzialna za konsumowanie wiadomości z topiku Kafka do momentu osiągnięcia najnowszego
     def consume_messages_to_latest():
          #Tworzy instancję konsumenta Kafka za pomocą dostarczonej konfiguracji conf.
         c = Consumer(conf)
          #Subskrybuje konsumenta do określonego topiku.
          topic = 'historic_data'
          c.subscribe([topic])
         #Inicjalizuje pustą listę do przechowywania skonsumowanych wiadomości.
         messages = []
              latest_offsets = get_latest_offsets(c, topic)
             #Tworzy listę obiektów TopicPartition dla każdej partycji z offsetem początkowym równym 0.
              partitions = [TopicPartition(topic, p, 0) for p in latest_offsets]
              c.assign(partitions)
              #Rozpoczyna nieskończoną pętlę do konsumowania wiadomości.
              while True:
                 #Pobiera wiadomość z topiku z czasem oczekiwania 1 sekundy.
                  msg = c.poll(timeout=1.0)
                  if msg is None:
                      continue
                  if msg.error():
                      #Jeśli kod błędu to _PARTITION_EOF, oznacza to koniec partycji, więc przechodzi do następnej iteracji.
                      if msg.error().code() == KafkaError._PARTITION_EOF:
                         continue
                      else:
                          raise KafkaException(msg.error())
                  partition = msg.partition()
                  #Pobiera offset wiadomości.
                  offset = msg.offset()
                  messages.append(json.loads(msg.value().decode('utf-8')))
                  if offset == latest_offsets[partition] - 1:
                     del latest_offsets[partition]
                  if not latest_offsets:
                     break
          except Exception as e:
             print(f"B{ad: {e}")
             c.close()
          return messages
```

LinearRegression

```
#Budowanie modelu REGRESJI LINIOWEJ
def build_model_energy():
       messages = consume_messages_to_latest()
   except Exception as e:
       print(f"B{ad: {e}")
   #Dane z Kafki są najpierw wczytywane do Pandas DataFrame,
   df = pd.DataFrame(messages)
   # a następnie konwertowane do Dask DataFrame przy użyciu dd.from_pandas().
    # Dask DataFrame umożliwia rozproszone przetwarzanie dużych zbiorów danych,
    df = dd.from_pandas(pd.DataFrame(df), npartitions=8)
   X = df[['feature_3', 'feature_4', 'feature_5', 'feature_6', 'feature_7', 'feature_8', 'feature_
   y = df['feature_2']
   X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)
    clf = LinearRegression()
    # Trenujemy model
    clf.fit(X_train.values.compute(), y_train.values.compute())
    # Przewidujemy wartości
   y_pred = clf.predict(X_test.values.compute())
    # Obliczamy metryki regresji
   mae = mean_absolute_error(y_test.compute(), y_pred)
    mse = mean_squared_error(y_test.compute(), y_pred)
    rmse = np.sqrt(mse)
    r2 = r2_score(y_test.compute(), y_pred)
    explained_variance = explained_variance_score(y_test.compute(), y_pred)
   mape = np.mean(np.abs((y_test.compute()) - y_pred) / y_test.compute())) * 100
    print(f"Mean Absolute Error: {mae}")
    print(f"Mean Squared Error: {mse}")
    print(f"Root Mean Squared Error: {rmse}")
    print(f"R-squared: {r2}")
    print(f"Explained Variance: {explained_variance}")
    print(f"Mean Absolute Percentage Error: {mape}")
    print(f"Ilość odebranych wiadomości: {len(df)}")
```

Model klasyfikacji - LogisticRegression

```
#Budowanie modelu KLASYFIKACJI
def build_model_attack():
       messages = consume_messages_to_latest()
    except Exception as e:
       print(f"Btad: {e}")
    df = pd.DataFrame(messages)
    # a następnie konwertowane do Dask DataFrame przy użyciu dd.from_pandas().
    df = dd.from_pandas(pd.DataFrame(df), npartitions=8)
    X = df[['feature_1', 'feature_2', 'feature_3', 'feature_4', 'feature_5', 'feature_6', 'feature_
    y = df['feature_11']
    # Dzielimy dane na zestawy treningowe i testowe
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, shuffle=False)
    clf = LogisticRegression()
    # Trenujemy model
    clf.fit(X_train.values.compute(), y_train.values.compute())
    clf.decision_function(X_train.values.compute())
    y_pred = clf.predict(X_test.values.compute())
    # Prawdopodobieństwa dla klas (potrzebne do obliczenia AUC i Log Loss)
    y_prob = clf.predict_proba(X_test.values.compute())
```

Działanie systemu

Generowanie danych strumieniowo

Uruchomienie na żądanie

```
Mac-mini-admin-2:ZPI admin$
Mac-mini-admin-2:ZPI admin$ docker-compose up -d zookeeper kafka
Creating network "zpi_default" with the default driver
Creating zpi_zookeeper_1 ... done
Creating zpi_kafka_1 ... done

Mac-mini-admin-2:ZPI admin$ docker-compose up -d producer
zpi_zookeeper_1 is up-to-date
zpi_kafka_1 is up-to-date
Creating zpi_producer_1 ... done
Mac-mini-admin-2:ZPI admin$
Mac-mini-admin-2:ZPI admin$
Mac-mini-admin-2:ZPI admin$ docker-compose run --rm consumer
Creating zpi_consumer_run ... done
Pierwsze uruchomienie, brak opóźnienia.
Accuracy: 0.9847775175644028
Precision: 0.9829787234042553
Recall: 0.9892933618843683
F1 Score: 0.9861259338313768
Log Loss: 0.050464220760565406
Mean Absolute Error: 0.01522248243559719
Mean Squared Error: 0.01522248243559719
Root Mean Squared Error: 0.12337942468498217
Ilość odebranych wiadomości: 2113
Mac-mini-admin-2:ZPI admin$
```

Uruchomienie co 20 sekund

