

Sadece "Daha Fazla Veri" Neden Yeterli Değil?

Yüksek riskli kurumsal uygulamalarda ciddi sınırlamaları vardır.

Finans, sağlık, otonom sistemler gibi sektörlerde bir modelin sadece doğru olması yetmez; sonucuna nasıl ulaştığını da açıklayabilmesi gerekir.

Derin öğrenmenin doğasındaki "kara kutu" (black box) problemi, bu noktada önemli bir iş ve teknoloji riski oluşturmaktadır.

Bilişsel Model: Daniel Kahneman'ın Sistem 1 ve Sistem 2 Düşüncesi

Sistem 1 (Hızlı Düşünme) → Nöral Ağlar

- Sezgisel, otomatik, bilinçsizdir.
- Yüz tanıma gibi örüntü tanıma görevlerini yapar.
- İşlevi: Hızlı ve sezgisel tahminler üretir.

Sistem 2 (Yavaş Düşünme) → Sembolik Mantık

- Adım adım ilerleyen, bilinçli ve mantıksaldır.
- Karmaşık problemleri çözme, planlama ve doğrulama yapar.
- İşlevi: Mantıksal tutarlılığı kontrol eder ve bilinçli kararlar alır.

Symbolic vs Neural Al

Özellik	Symbolic AI (GOFAI)	Neural AI
Bilgi Temsili	Açık (explicit), insan tarafından okunabilir kurallar ve mantık	Örtük (implicit), ağırlık matrislerinde dağıtılmış örüntüler
Öğrenme Yaklaşımı	Yukarıdan aşağıya (Top-down), kural tabanlı	Aşağıdan yukarıya (Bottom-up), veri odaklı
Veri Gereksinimi	Minimal, uzman bilgisine dayanır	Çok büyük, etiketli veri setleri gerektirir
Yorumlanabilirlik	Yüksek, kararlar adım adım izlenebilir ("beyaz kutu")	Düşük, kararların nedeni anlaşılamaz ("kara kutu")
Belirsizlikle Başa Çıkma	Zayıf, kurallar katıdır ve gürültüye karşı kırılgandır	Güçlü, olasılıksal modellerle belirsizliği yönetir
Uygulama Alanları	Uzman sistemler, planlama, mantıksal ispat	Görüntü tanıma, doğal dil işleme, ses tanıma

Çözüm: Neuro-Symbolic Al

Tanım: Yapay sinir ağlarının örüntü tanıma yeteneğini, sembolik sistemlerin yapılandırılmış akıl yürütme gücüyle birleştiren hibrit bir yaklaşımdır.

Amaç: Bir paradigmanın zayıflığını diğerinin gücüyle telafi etmektir.

Nöral ağların **kara kutu** sorununu, sembolik sistemlerin **şeffaflığı** ile giderir.

Sembolik sistemlerin kırılganlığını, nöral ağların esnekliği ile aşar.

Avantajları

GELİŞMİŞ YORUMLANABİLİRLİK VE GÜVEN

VERİ VERİMLİLİĞİ (DATA EFFİCİENCY)

DAHA İYİ GENELLEŞTİRME VE SAĞLAMLIK (ROBUSTNESS)

Neuro-Symbolic Mimariler: Kautz'un Taksonomisi

Sinir ağları ve sembolik mantığın entegrasyonu için teorik çerçeveler ve taksonomiler geliştirmiştir:

AAAI (Association for the Advancement of Artificial Intelligence) 2020 Engelmore Lecture'da tanıttığı ünlü "Taxonomy of Neuro-Symbolic Architectures"

https://www.cs.virginia.edu/~rmw7my/

Henry Kautz Professor of Computer Science, University of Virginia

Symbolic → Neural → Symbolic

Girdi ve çıktılar semboliktir, işlem nöral ağ ile yapılır. Genellikle metin tabanlı görevlerde, semboller vektör temsillere dönüştürülür, nöral ağ bu temsiller üzerinde çalışır ve sonuçlar tekrar sembole çevrilir.

GPT-4 / ChatGPT: Dilsel sembolleri (kelimeleri) vektörlere dönüştürür, sinirsel olarak işler ve çıktıyı tekrar sembolik cümleler hâline getirir.

Symbolic Neural

Sembolik sistem, belirli alt görevler için nöral modüller kullanır. Nöral ağ sadece bir "yardımcı" işlevi görür (ör. algı, sınıflandırma).

AlphaGo / AlphaZero: Ana karar süreci (Monte Carlo Tree Search) semboliktir; taş pozisyonlarını değerlendiren nöral ağ, sembolik arama algoritmasına destek olur.

Neural → **Symbolic**

Nöral ağ ham veriyi (görüntü, ses vb.) sembolik temsillere dönüştürür; sembolik sistem bu temsilleri kullanarak çıkarım yapar.

Self-Driving Cars (Tesla, Waymo): Görüntüden nesneleri tanıyan nöral ağ, bunları "yaya", "ışık kırmızı" gibi sembollere çevirir; sembolik planlayıcı güvenli rota kararını verir.

Neural: Symbolic → Neural

Sembolik bilgi, nöral ağın eğitimi için veri veya kural üretir. Sembolik sistem, nöral modelin öğrenme sürecini yönlendirir.

Neuro-Symbolic Concept Learner (MIT-IBM Watson Lab):

Sembolik kurallar, görsel sahne anlama için nöral modele öğretici örnekler sağlar.

NeuralSymbolic (Tensorized Logic)

Sembolik bilgi doğrudan nöral temsile gömülür; mantıksal objeler ve ilişkiler vektör/tensör olarak temsil edilir.

Logic Tensor Networks (LTN), DeepProbLog: Mantıksal çıkarımı diferansiyellenebilir hale getirip nöral ağ içinde doğrudan temsil eder.

Neural^{Symbolic}

Nöral sistem içinde sembolik modül barındırır; gerektiğinde sembolik çıkarım veya hesaplama yapar.

ChatGPT + Araç Kullanımı (Code Interpreter, Wolfram Plugin): Dil modeli (nöral) gerektiğinde sembolik bir çözümleyiciyi (ör. matematik motoru) çağırarak mantıksal işlemleri yapar.

Kautz'un Taksonomisi (Özet)

Gösterim	Eşleştiği Mimari Tür	Açıklama (Özet)
Symbolic → Neural → Symbolic	Pipeline / Loose Coupling	Sembolik giriş-çıkış, nöral işlem çekirdeği.
Symbolic ^{Neural}	Embedded Submodule	Sembolik sistem içinde nöral modül gömülüdür.
Neural → Symbolic	Pipeline / Loose Coupling	Nöral sistem, sembolik sisteme veri besler.
Neural: Symbolic → Neural	Knowledge-Driven Training	Sembolik bilgi, nöral sistemin eğitiminde kullanılır.
NeuralSymbolic veya Neural{Symbolic}	Tensorized Logic / Embedded Logic	Sembolik bilgi doğrudan nöral ağın temsiline gömülür. {} yazımı tam olarak bunu ifade eder.
Neural ^{Symbolic}	Neural System with Symbolic Module	Nöral sistem içinde sembolik çözümleyici yer alır; LLM + mantıksal araç çağırma tipi hibrit.

Sağlık: Açıklanabilir Tıbbi Teşhis

Problem: Nöral ağlar hastalıkları yüksek doğrulukla tespit edebilir, ancak teşhisin "nedenini" açıklayamazlar. Bu durum doktorların güvenini ve yasal kullanımı engeller.

Neuro-Symbolic Çözüm:

- Neural (Sistem 1): Hasta verilerindeki (yaş, BMI vb.) karmaşık örüntüleri öğrenir.
- Symbolic (Sistem 2): "Eğer açlık kan şekeri > 126 mg/dL ise..." gibi tıbbi kılavuzlardan gelen katı kuralları sisteme entegre eder.

Sonuç: Hem daha yüksek doğruluk hem de doktorların anlayabileceği, kural tabanlı, **açıklanabilir teşhisler**.

Robotik: Amazon'un Vulcan Robotu

Problem: Lojistik robotlarının, karmaşık ortamlarda milyonlarca farklı nesneyi güvenli bir şekilde manipüle etmesi gerekir.

Neuro-Symbolic Çözüm:

- Neural Perception (Sistem 1): Kameralar ile nesneleri tanır ve konumlarını belirler.
- Symbolic Reasoning (Sistem 2): Dokunma ve kuvvet sensörlerinden gelen veriye dayanarak, bir nesneyi yerleştirmek için ne kadar kuvvet uygulayacağını mantıksal kurallarla planlar.

Sonuç: Sadece "gören" değil, aynı zamanda "hisseden" ve "akıl yürüten" robotlar sayesinde depo verimliliği artar.

https://www.amazon.science/blog/how-amazons-vulcan-robots-use-touch-to-plan-and-execute-motions

Örnek Proje: Kredi Onay Sistemi

Problem: Kredi başvurularını otomatikleştirmek; hem geri ödeme olasılığını doğru tahmin etmek, hem de yasalara (ayrımcılık yapmama) ve katı iş kurallarına uymak.

1.Nöral Bileşen (Python): Başvuru verilerinden bir "risk skoru" üretir.

• Eğitimde Sembolik Kısıt: Modelin eğitimine, "korunan özelliklere (örn. cinsiyet) göre karar vermeyi cezalandıran" bir adillik kuralı eklenir.

2.ONNX Aktarımı: Eğitilen "adil" model, ONNX formatına aktarılır.

3.Sembolik Bileşen (C#): ONNX'ten gelen risk skorunu alır ve bankanın katı iş kurallarını uygular.

• "IF Risk Skoru < 0.8 AND Gelir > 50000 TL THEN Onayla".

DEMO

```
operation == "MIRROR_Y"
__ror_mod.use_x = False
lrror_mod.use_y = True
lrror_mod.use_z = False
 _operation == "MIRROR_Z"
 rror_mod.use_x = False
 rror_mod.use_y = False
 rror_mod.use_z = True
 election at the end -add
  ob.select= 1
  er ob.select=1
  ntext.scene.objects.action
  "Selected" + str(modifies
  irror_ob.select = 0
 bpy.context.selected_obj
 ata.objects[one.name].se
 int("please select exaction
 - OPERATOR CLASSES ----
  ypes.Operator):
  X mirror to the selected
 ject.mirror_mirror_x"
Fror X"
```

mirror_mod_mir

object to min

= Fairlearn

--- Exporting Bias-Mitigated Model to ONNX Format ---

Bias-mitigated model successfully exported to ONNX format at 'output/bias_mitigated_model.onnx'.

```
Dataset 'input/employers_data.csv' loaded successfully.
Target variable created. High salary threshold: 150000.00
Data prepared and split into training and testing sets.
--- Training Standard Model (Unmitigated) ---
Standard Model Results (By Group):
        accuracy selection_rate
Gender
Female 0.875000
                       0.190476
Male 0.850806
                       0.202285
--- Training Bias-Mitigated Model (Fairlearn GridSearch) ---
Bias-Mitigated Model Results (By Group):
        accuracy selection_rate
Gender
Female 0.882937
                       0.160053
       0.863575
                       0.162634
Male
_____
--- COMPARISON OF RESULTS ---
Overall Accuracy:
Standard Model
                          : 0.863
Bias-Mitigated Model
                          : 0.873
Selection Rates (High Earner Prediction Rate):
Standard Model:
Gender
         0.190476
Female
Male
         0.202285
Name: selection_rate, dtype: float64
Bias-Mitigated Model:
Gender
Female
         0.160053
Male
         0.162634
Name: selection_rate, dtype: float64
Disparity in Selection Rates:
Standard Model
                          : 0.012
Bias-Mitigated Model
                          : 0.003
Bias-mitigated model saved successfully to 'output/bias_mitigated_model.pth'.
```

#devnotsummit25

Kaynaklar

https://fairlearn.org/

Neuro-Symbolic Artificial Intelligence (arxiv.org)

Mapping the Neuro-Symbolic Al Landscape by Architectures: A Handbook on Augmenting Deep Learning Through Symbolic Reasoning (arxiv.org)