# Axiomatic Foundations of Physics: Problems and Ideas

Yuri Ximenes Martins<sup>1</sup>

Department of Mathematics, UFMG, Brazil Math-Phys-Cat Group

 $\mathrm{Feb}\ 25\ 2022$ 

https://math-phys.group/~yxmartins

• Historically, the question of providing a *formal* understanding of the foundations was first considered for Mathematics;

- Historically, the question of providing a *formal* understanding of the foundations was first considered for Mathematics;
- The "axiomatization approach" was considered by *Hilbert's* formalist school;

- Historically, the question of providing a formal understanding of the foundations was first considered for Mathematics;
- The "axiomatization approach" was considered by *Hilbert's formalist school*;
- The problem of axiomatizing Mathematics was explicitly considered in his *Hilbert's Program* which is about finding a formalist approach to Mathematics through a consistent axiomatic language;

- Historically, the question of providing a formal understanding of the foundations was first considered for Mathematics;
- The "axiomatization approach" was considered by *Hilbert's formalist school*;
- The problem of axiomatizing Mathematics was explicitly considered in his *Hilbert's Program* which is about finding a formalist approach to Mathematics through a consistent axiomatic language;
- Similarly, one could consider an Axiomatization Program of Physics as the search for a formalist approach to Physics through a consistent axiomatic language.

Part I: The Program

1. Foundations of Mathematics

- 1. Foundations of Mathematics
- 2. Formalism

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

#### Part II: Towards an Approach

5. Remarks and Goal

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

- 5. Remarks and Goal
- 6. Strategies

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

- 5. Remarks and Goal
- 6. Strategies
- 7. Interpretation

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

- 5. Remarks and Goal
- 6. Strategies
- 7. Interpretation
- 8. Results

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

- 5. Remarks and Goal
- 6. Strategies
- 7. Interpretation
- 8. Results

- 1. what are "mathematical objects"?
- 2. are they "real"? Are they "abstract"?
- 3. what it means to "know" in mathematics?
- 4. when is a mathematical sentence true? In other words, what is "mathematical truth"?
- 5. what is the role of axioms?
- 6. what is their nature?

Around 1900 there was a debate about the philosophical foundations of Mathematics.

Phil. Found. = Ontology + Epistemology + Logic +  $\dots$ 

Around 1900 there was a debate about the philosophical foundations of Mathematics.

Phil. Found. = Ontology + Epistemology + Logic +  $\dots$ 

Ontology:

Around 1900 there was a debate about the philosophical foundations of Mathematics.

Phil. Found. = Ontology + Epistemology + Logic +  $\dots$ 

- Ontology:
- 1. what are "mathematical objects"?
- 2. are they "real"? Are they "abstract"?

Phil. Found. = Ontology + Epistemology + Logic + 
$$\dots$$

- Ontology:
- 1. what are "mathematical objects"?
- 2. are they "real"? Are they "abstract"?
- Epistemology:

Phil. Found. = Ontology + Epistemology + Logic + 
$$\dots$$

- Ontology:
- 1. what are "mathematical objects"?
- 2. are they "real"? Are they "abstract"?
- Epistemology:
- 3. what it means to "know" in mathematics?
- 4. What is a "mathematical truth"?

Phil. Found. = Ontology + Epistemology + Logic + 
$$\dots$$

- Ontology:
- 1. what are "mathematical objects"?
- 2. are they "real"? Are they "abstract"?
- Epistemology:
- 3. what it means to "know" in mathematics?
- 4. What is a "mathematical truth"?
- Logic:

Phil. Found. = Ontology + Epistemology + Logic + 
$$\dots$$

- Ontology:
- 1. what are "mathematical objects"?
- 2. are they "real"? Are they "abstract"?
- Epistemology:
- 3. what it means to "know" in mathematics?
- 4. What is a "mathematical truth"?
- Logic:
- 5. what is the role of axioms?
- 6. what is their nature?

- Ontology:
- 1. what are "mathematical objects"?
- 2. are they "real"? Are they "abstract"?
- Epistemology:
- 3. what it means to "know" in mathematics?
- 4. What is a "mathematical truth"?
- Logic:
- 5. what is the role of axioms?
- 6. what is their nature? (But this is actually an ontological question)

Main schools:

Main schools:

1. **Logicism** (Fregue, Russell and others)

#### Main schools:

- 1. Logicism (Fregue, Russell and others)
- 2. Formalism (mainly by Hilbert)

#### Main schools:

- 1. Logicism (Fregue, Russell and others)
- 2. Formalism (mainly by Hilbert)
- 3. Intuitionism (mainly by Brouwer)

## Foundations of Mathematics | Logicism

#### Logicism

Mathematics can be reduced to philosophical logic.

## Foundations of Mathematics | Logicism

#### Logicism

Mathematics can be reduced to philosophical logic.

- mathematical **ontology** reduces to logic.
- mathematical epistemology reduces to logic;

### Foundations of Mathematics | Formalism

#### Formalism

Mathematics can be formalized by an axiomatic logic.

### Foundations of Mathematics | Formalism

#### **Formalism**

Mathematics can be formalized by an axiomatic logic.

- none requirement on mathematical **ontology**;
- mathematical **epistemology** reduces to an axiomatic logic.

#### Intuitionism

#### Intuitionism

- mathematical **ontology** reduces to pure intuition;
- mathematical **epistemology** reduces to pure intuition;
- mathematical **logic** reduces to pure intuition.

#### Intuitionism

#### Intuitionism

Mathematics reduces to mental processes known as pure intuition.

• **intuition** = knowledge obtained from mental constructions on the *already existing knowledge*, but that do not derive from conscious reasoning.

#### Intuitionism

- **intuition** = knowledge obtained from mental constructions on the *already existing knowledge*, but that do not derive from conscious reasoning.
- **pure intuition** = intuition built from pure knowledge (i.e., that does not derive from sensations.)

#### Intuitionism

- **intuition** = knowledge obtained from mental constructions on the *already existing knowledge*, but that do not derive from conscious reasoning.
- **pure intuition** = intuition built from pure knowledge (i.e., that does not derive from sensations.)
- This is made precise via an approach to Philosophy of Mind and to Psychology.

#### Intuitionism

Mathematics reduces to mental processes known as pure intuition.

- **intuition** = knowledge obtained from mental constructions on the *already existing knowledge*, but that do not derive from conscious reasoning.
- **pure intuition** = intuition built from pure knowledge (i.e., that does not derive from sensations.)
- This is made precise via an approach to Philosophy of Mind and to Psychology.

Mathematics is fruit of our minds...

- Logicism: Mathematics reduces to philosophical logic
- Formalism: Mathematics can be formalized in an axiomatic logic
- Intuitionism: Mathematics reduces to pure intuition.

- Logicism: Mathematics reduces to philosophical logic
- Formalism: Mathematics can be formalized in an axiomatic logic
- Intuitionism: Mathematics reduces to pure intuition.
- In the broad sense, these schools **are not** directly related, so that they can co-exist without much conflict.

- Logicism: Mathematics reduces to philosophical logic
- Formalism: Mathematics can be formalized in an axiomatic logic
- Intuitionism: Mathematics reduces to pure intuition.
- In the broad sense, these schools **are not** directly related, so that they can co-exist without much conflict.
- However, under some assumptions they intersect at some fundamental points, motivating seminal debates, e.g.,

- Logicism: Mathematics reduces to philosophical logic
- Formalism: Mathematics can be formalized in an axiomatic logic
- Intuitionism: Mathematics reduces to pure intuition.
- In the broad sense, these schools **are not** directly related, so that they can co-exist without much conflict.
- However, under some assumptions they intersect at some fundamental points, motivating seminal debates, e.g.,
  - Fregue-Hilbert debate;
  - Brouwer-Hlbert debate.

• In Fregue's Logicism *axioms should have a clear* nature and should be precisely defined in terms of more fundamental philosophical entities.

- In Fregue's Logicism *axioms should have a clear* nature and should be precisely defined in terms of more fundamental philosophical entities.
- On the other hand, in Hilbert's Formalism the *nature of axioms do not matter*.

- In Fregue's Logicism *axioms should have a clear* nature and should be precisely defined in terms of more fundamental philosophical entities.
- On the other hand, in Hilbert's Formalism the nature of axioms do not matter.
- In the Brouwer view, intuitionistic logics are allowed to be axiomatic, but they avoid some axioms like Law of Excluded Middle and Axiom of Choice.

- In Fregue's Logicism axioms should have a clear nature and should be precisely defined in terms of more fundamental philosophical entities.
- On the other hand, in Hilbert's Formalism the *nature of axioms do not matter*.
- In the Brouwer view, intuitionistic logics are allowed to be axiomatic, but they avoid some axioms like Law of Excluded Middle and Axiom of Choice.
- On the other hand, these axioms are considered fundamental in Hilbert's formalism.

Forgetting the particular concerns above, "intuitionistic" can be regarded as an adjective:

Forgetting the particular concerns above, "intuitionistic" can be regarded as an adjective:

• intuitionistic logicism: is logicism for intuitionistic logic, i.e., it is the claim that mathematics reduces to intuitionistic logic

Forgetting the particular concerns above, "intuitionistic" can be regarded as an adjective:

- intuitionistic logicism: is logicism for intuitionistic logic, i.e., it is the claim that mathematics reduces to intuitionistic logic
- intuitionistic formalism: is formalism for axiomatic intuitionistic logic, i.e., it is the claim that mathematics can be formalized in an axiomatic intuitionistic logic.

#### Plain

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

#### Part II: Towards an Approach

- 5. Remarks and Goal
- 6. Strategies
- 7. Interpretation
- 8. Results

#### Plain

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

#### Part II: Towards an Approach

- 5. Remarks and Goal
- 6. Strategies
- 7. Interpretation
- 8. Results

• Formalism is an approach for the *philosophical foundations* of an *area of study*;

- Formalism is an approach for the *philosophical foundations* of an *area of study*;
- Thus, to "formalize formalism" we first need to say what we mean by:

- Formalism is an approach for the *philosophical foundations* of an *area of study*;
- Thus, to "formalize formalism" we first need to say what we mean by:
  - area of study;

- Formalism is an approach for the *philosophical foundations* of an *area of study*;
- Thus, to "formalize formalism" we first need to say what we mean by:
  - area of study;
  - philosophical foundations.

• In [Bunge??] Mario Bunge proposed that "area of study" should mean "system"...

- In [Bunge??] Mario Bunge proposed that "area of study" should mean "system"...
- ... so that "systemics" could be used as a unified language.

- In [Bunge??] Mario Bunge proposed that "area of study" should mean "system"...
- ... so that "systemics" could be used as a unified language.

**Definition**. A system is a tuple S = (T, C, E, S) given by:

- In [Bunge??] Mario Bunge proposed that "area of study" should mean "system"...
- ... so that "systemics" could be used as a unified language.

**Definition**. A *system* is a tuple S = (T, C, E, S) given by:

• a class T of terms (or things);

- In [Bunge??] Mario Bunge proposed that "area of study" should mean "system"...
- ... so that "systemics" could be used as a unified language.

**Definition**. A system is a tuple S = (T, C, E, S) given by:

- a class T of terms (or things);
- disjoint subclasses  $C, E \subset T$  describing the *components* (or *objects*) and the *environment* of S

- In [Bunge??] Mario Bunge proposed that "area of study" should mean "system"...
- ... so that "systemics" could be used as a unified language.

**Definition**. A system is a tuple S = (T, C, E, S) given by:

- a class T of terms (or things);
- disjoint subclasses  $C, E \subset T$  describing the *components* (or *objects*) and the *environment* of S
- a family S of relations in  $C \sqcup E$  defining the *structure* of S.

Thus, to Bunge

Thus, to Bunge

System = Objects + Relations

Thus, to Bunge

System = Objects + Relations

 Of course, this suggests a categorical interpretation of systemics.

Thus, to Bunge

System = Objects + Relations

- Of course, this suggests a categorical interpretation of systemics.
- Curiously, Bunge does not even define what is a "morphism" between systems, although there is a natural notion of that.

• Concerning axiomatization of Physics, I think that the above notion of system is not the correct formalization of "area of study"...

- Concerning axiomatization of Physics, I think that the above notion of system is not the correct formalization of "area of study"...
- ... we need "higher systems", so that "higher (or homotopical) systemics"

- Concerning axiomatization of Physics, I think that the above notion of system is not the correct formalization of "area of study"...
- ... we need "higher systems", so that "higher (or homotopical) systemics"

- Concerning axiomatization of Physics, I think that the above notion of system is not the correct formalization of "area of study"...
- ... we need "higher systems", so that "higher (or homotopical) systemics" (see Section 2.2 of the thesis).
- Thus, instead of fixing an *a priori* formalization to "area of study", we will first work *naively*.

In the following:

In the following:

• we will just say "let O be an area of study".

#### In the following:

- we will just say "let O be an area of study".
- the words "class", "subclass", etc., will be used naively

#### In the following:

- we will just say "let O be an area of study".
- the words "class", "subclass", etc., will be used naively
- thus, we can think of  $\mathcal{O}$  as a "class of systems" of a specific type.

- Formalism is an approach for the *philosophical foundations* of an *area of study*;
- Thus, to "formalize formalism" we first need to say what we mean by:
  - area of study;

- Formalism is an approach for the *philosophical foundations* of an *area of study*;
- Thus, to "formalize formalism" we first need to say what we mean by:
  - area of study;
  - philosophical foundations.

Phil. Found. = Ontology + Epistemology + Logic +  $\dots$ 

 $\begin{array}{c} \text{Phil. Found.} = \text{Ontology} + \text{Epistemology} + \text{Logic} + \textcolor{red}{\text{Phil.}} \\ \textcolor{blue}{\text{Mind}} \end{array}$ 

## Formalism | Ontology + Phil. Mind

### Formalism | Ontology + Phil. Mind

**Definition**. Let  $\mathcal{O}$  be an area of study.

• An ontological theory for  $\mathcal{O}$  is a subclass  $\mathcal{O}_{real} \subset \mathcal{O}$  of real systems.



### Formalism | Ontology + Phil. Mind

- An ontological theory for  $\mathcal{O}$  is a subclass  $\mathcal{O}_{real} \subset \mathcal{O}$  of real systems.
- A philosophy of mind for  $\mathcal{O}$  is a subclass  $\mathcal{O}_{mind} \subset \mathcal{O}$  of mental systems.



**Definition**. Let  $\mathcal{O}$  be an area of study.

• A epistemological theory for  $\mathcal{O}$  is given by:



- A epistemological theory for  $\mathcal{O}$  is given by:
  - a class  $Belief(\mathcal{O})$  of beliefs



- A epistemological theory for  $\mathcal{O}$  is given by:
  - a class  $Belief(\mathcal{O})$  of beliefs
  - a subclass  $\text{Just}(\mathcal{O}) \subset \text{Belief}(\mathcal{O})$  of justified beliefs;



- A epistemological theory for  $\mathcal{O}$  is given by:
  - a class  $Belief(\mathcal{O})$  of beliefs
  - a subclass  $\text{Just}(\mathcal{O}) \subset \text{Belief}(\mathcal{O})$  of *justified beliefs*;
  - a subclass  $\text{True}(\mathcal{O}) \subset \text{Belief}(\mathcal{O})$  of true beliefs;



- A epistemological theory for  $\mathcal{O}$  is given by:
  - a class  $Belief(\mathcal{O})$  of beliefs
  - a subclass  $\text{Just}(\mathcal{O}) \subset \text{Belief}(\mathcal{O})$  of *justified beliefs*;
  - a subclass  $\text{True}(\mathcal{O}) \subset \text{Belief}(\mathcal{O})$  of true beliefs;
  - a subclass  $Know(\mathcal{O}) \subset True(\mathcal{O}) \cap Just(\mathcal{O})$ , describing knowledge.



**Definition**. Let  $\mathcal{O}$  be an area of study.

• A logical theory for  $\mathcal{O}$  is given by:



- A logical theory for  $\mathcal{O}$  is given by:
  - a class  $Prop(\mathcal{O})$  of propositions;

$$\begin{array}{c} \operatorname{Prop}(\mathcal{O}) \\ \uparrow \\ \operatorname{Logic}(\mathcal{O}) \end{array}$$

- A logical theory for  $\mathcal{O}$  is given by:
  - a class  $Prop(\mathcal{O})$  of propositions;
  - a subclass  $Logic(\mathcal{O}) \subset Prop(\mathcal{O})$  of logically true propopositions.

$$\begin{array}{c} \operatorname{Prop}(\mathcal{O}) \\ & \uparrow \\ \operatorname{Logic}(\mathcal{O}) \end{array}$$



**Definition**. Let  $\mathcal{O}$  be an area of study.

• A formalist approach to  $\mathcal{O}$  is a philosophical theory for  $\mathcal{O}$  whose epistemology is implied by an axiomatic language.

**Definition**. Let  $\mathcal{O}$  be an area of study.

• A formalist approach to  $\mathcal{O}$  is a philosophical theory for  $\mathcal{O}$  whose epistemology is implied by an axiomatic language.

**Definition**. a formal language L is given by:

**Definition**. Let  $\mathcal{O}$  be an area of study.

• A formalist approach to  $\mathcal{O}$  is a philosophical theory for  $\mathcal{O}$  whose epistemology is implied by an axiomatic language.

**Definition**. a formal language L is given by:

• a class Word(L) of words;

**Definition**. Let  $\mathcal{O}$  be an area of study.

• A formalist approach to  $\mathcal{O}$  is a philosophical theory for  $\mathcal{O}$  whose epistemology is implied by an axiomatic language.

**Definition**. a formal language L is given by:

- a class Word(L) of words;
- a subclass  $\operatorname{Thm}(L) \subset \operatorname{Word}(L)$  of theorems.

**Definition**. Let  $\mathcal{O}$  be an area of study.

• A formalist approach to  $\mathcal{O}$  is a philosophical theory for  $\mathcal{O}$  whose epistemology is implied by an axiomatic language.

**Definition**. a formal language L is given by:

- a class Word(L) of words;
- a subclass  $\operatorname{Thm}(L) \subset \operatorname{Word}(L)$  of theorems.

**Definition**. An axiomatic structure for a formal language L is given by:

**Definition**. Let  $\mathcal{O}$  be an area of study.

• A formalist approach to  $\mathcal{O}$  is a philosophical theory for  $\mathcal{O}$  whose epistemology is implied by an axiomatic language.

**Definition**. a formal language L is given by:

- a class Word(L) of words;
- a subclass  $\operatorname{Thm}(L) \subset \operatorname{Word}(L)$  of theorems.

**Definition**. An axiomatic structure for a formal language L is given by:

• a subclass  $Axiom(L) \subset Word(L)$  of fundamental axioms;

**Definition**. Let  $\mathcal{O}$  be an area of study.

• A formalist approach to  $\mathcal{O}$  is a philosophical theory for  $\mathcal{O}$  whose epistemology is implied by an axiomatic language.

**Definition**. a formal language L is given by:

- a class Word(L) of words;
- a subclass  $\operatorname{Thm}(L) \subset \operatorname{Word}(L)$  of theorems.

**Definition**. An axiomatic structure for a formal language L is given by:

- a subclass  $Axiom(L) \subset Word(L)$  of fundamental axioms;
- a surjective inference map  $inf : \rho(\operatorname{Axiom}(L)) \to \operatorname{Thm}(L)$ .

**Definition**. Let  $\mathcal{O}$  be an area of study.

• A formalist approach to  $\mathcal{O}$  is a philosophical theory for  $\mathcal{O}$  whose epistemology is implied by an axiomatic language.

**Definition**. a formal language L is given by:

- a class Word(L) of words;
- a subclass  $\operatorname{Thm}(L) \subset \operatorname{Word}(L)$  of theorems.

**Definition**. An axiomatic structure for a formal language L is given by:

- a subclass  $Axiom(L) \subset Word(L)$  of fundamental axioms;
- a surjective inference map  $inf : \rho(\operatorname{Axiom}(L)) \to \operatorname{Thm}(L)$ .

**Definition**. An *axiomatic language* is a formal language with an axiomatic structure.

**Definition**. Let  $\mathcal{O}$  be an area of study.

**Definition**. Let  $\mathcal{O}$  be an area of study.



**Definition**. Let  $\mathcal{O}$  be an area of study.



**Definition**. Let  $\mathcal{O}$  be an area of study.



**Definition**. Let  $\mathcal{O}$  be an area of study.



**Definition**. Let  $\mathcal{O}$  be an area of study.



**Definition**. Let  $\mathcal{O}$  be an area of study.



**Definition**. Let  $\mathcal{O}$  be an area of study.



### Plain

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

#### Part II: Towards an Approach

- 5. Remarks and Goal
- 6. Strategies
- 7. Interpretation
- 8. Results

### Plain

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

#### Part II: Towards an Approach

- 5. Remarks and Goal
- 6. Strategies
- 7. Interpretation
- 8. Results

# Hilbert's Program

1899 - Hilbert publishes his  $Foundations\ of\ Geometry\ [Hilb??]$ 

1899 - Hilbert publishes his Foundations of Geometry [Hilb??]

• alternative axiomatic formulation of Euclidean geometry...

1899 - Hilbert publishes his Foundations of Geometry [Hilb??]

- alternative axiomatic formulation of Euclidean geometry...
- ... by a collection of axioms that is *semantically consistent*

1899 - Hilbert publishes his Foundations of Geometry [Hilb??]

- alternative axiomatic formulation of Euclidean geometry...
- ... by a collection of axioms that is *semantically consistent*

1900 - Presents his On the Concept of Number [Hilb??]

1899 - Hilbert publishes his Foundations of Geometry [Hilb??]

- alternative axiomatic formulation of Euclidean geometry...
- ... by a collection of axioms that is *semantically consistent*

1900 - Presents his On the Concept of Number [Hilb??]

• axiomatic characterization of the field of real numbers

1899 - Hilbert publishes his Foundations of Geometry [Hilb??]

- alternative axiomatic formulation of Euclidean geometry...
- ... by a collection of axioms that is *semantically consistent*

1900 - Presents his On the Concept of Number [Hilb??]

- axiomatic characterization of the field of real numbers
- $\bullet$  a proof sketch of  $semantical\ consistency$  was given ...

1899 - Hilbert publishes his Foundations of Geometry [Hilb??]

- alternative axiomatic formulation of Euclidean geometry...
- ... by a collection of axioms that is *semantically consistent*

1900 - Presents his On the Concept of Number [Hilb??]

- axiomatic characterization of the field of real numbers
- $\bullet$  a proof sketch of  $semantical\ consistency$  was given ...
- ... but was quickly showed to be wrong.

- 1899 Hilbert publishes his Foundations of Geometry [Hilb??]
  - alternative axiomatic formulation of Euclidean geometry...
  - ... by a collection of axioms that is *semantically consistent*
- 1900 Presents his On the Concept of Number [Hilb??]
  - axiomatic characterization of the field of real numbers
  - a proof sketch of *semantical consistency* was given ...
  - ... but was quickly showed to be wrong.
- 1900 Talk at ICM, Paris, presenting his 23 famous problems [Hilb??]

- 1899 Hilbert publishes his Foundations of Geometry [Hilb??]
  - alternative axiomatic formulation of Euclidean geometry...
  - ... by a collection of axioms that is *semantically consistent*
- 1900 Presents his On the Concept of Number [Hilb??]
  - axiomatic characterization of the field of real numbers
  - ullet a proof sketch of  $semantical\ consistency$  was given ...
  - ... but was quickly showed to be wrong.
- 1900 Talk at ICM, Paris, presenting his 23 famous problems [Hilb??]
  - 2nd of these problems was the axiomatization of arithmetics...

- 1899 Hilbert publishes his Foundations of Geometry [Hilb??]
  - alternative axiomatic formulation of Euclidean geometry...
  - ... by a collection of axioms that is *semantically consistent*
- 1900 Presents his On the Concept of Number [Hilb??]
  - axiomatic characterization of the field of real numbers
  - ullet a proof sketch of  $semantical\ consistency$  was given ...
  - ... but was quickly showed to be wrong.
- 1900 Talk at ICM, Paris, presenting his 23 famous problems [Hilb??]
  - 2nd of these problems was the axiomatization of arithmetics...
  - ... by a collection of axioms satisfying *synthatic consistency*

1899 - Hilbert publishes his Foundations of Geometry [Hilb??]

- alternative axiomatic formulation of Euclidean geometry...
- ... by a collection of axioms that is *semantically consistent*

1900 - Presents his On the Concept of Number [Hilb??]

- axiomatic characterization of the field of real numbers
- a proof sketch of *semantical consistency* was given ...
- ... but was quickly showed to be wrong.

1900 - Talk at ICM, Paris, presenting his 23 famous problems [Hilb??]

- 2nd of these problems was the axiomatization of arithmetics...
- ... by a collection of axioms satisfying *synthatic consistency*

1904 - Publishes his Foundations of Arithmetic [Hilb??]

- 1899 Hilbert publishes his Foundations of Geometry [Hilb??]
  - alternative axiomatic formulation of Euclidean geometry...
  - ... by a collection of axioms that is *semantically consistent*
- 1900 Presents his On the Concept of Number [Hilb??]
  - axiomatic characterization of the field of real numbers
  - ullet a proof sketch of  $semantical\ consistency$  was given ...
  - ... but was quickly showed to be wrong.
- 1900 Talk at ICM, Paris, presenting his 23 famous problems [Hilb??]
  - 2nd of these problems was the axiomatization of arithmetics...
  - ... by a collection of axioms satisfying synthatic consistency
- 1904 Publishes his Foundations of Arithmetic [Hilb??]
  - giving axiomatic characterization of arithmetic

- 1899 Hilbert publishes his Foundations of Geometry [Hilb??]
  - alternative axiomatic formulation of Euclidean geometry...
  - ... by a collection of axioms that is *semantically consistent*
- 1900 Presents his On the Concept of Number [Hilb??]
  - axiomatic characterization of the field of real numbers
  - ullet a proof sketch of  $semantical\ consistency$  was given ...
  - ... but was quickly showed to be wrong.
- 1900 Talk at ICM, Paris, presenting his 23 famous problems [Hilb??]
  - 2nd of these problems was the axiomatization of arithmetics...
  - ... by a collection of axioms satisfying *synthatic consistency*
- 1904 Publishes his Foundations of Arithmetic [Hilb??]
  - giving axiomatic characterization of arithmetic
  - with a proof sketch of syntactical consistency ...

- 1899 Hilbert publishes his Foundations of Geometry [Hilb??]
  - alternative axiomatic formulation of Euclidean geometry...
  - ... by a collection of axioms that is *semantically consistent*
- 1900 Presents his On the Concept of Number [Hilb??]
  - axiomatic characterization of the field of real numbers
  - a proof sketch of *semantical consistency* was given ...
  - ... but was quickly showed to be wrong.
- 1900 Talk at ICM, Paris, presenting his 23 famous problems [Hilb??]
  - 2nd of these problems was the axiomatization of arithmetics...
  - ... by a collection of axioms satisfying synthatic consistency
- 1904 Publishes his Foundations of Arithmetic [Hilb??]
  - giving axiomatic characterization of arithmetic
  - with a proof sketch of syntactical consistency ...
  - ... but was highly criticized by Fregue, Poincaré and others.

Hilbert's Program.

1930 - Gödel publishes his incompleteness theorem [Gödel?]

1930 - Gödel publishes his incompleteness theorem [Gödel?]

• It states that if Peano's arithmetics can be embedded in L, then L is not syntactically consistent...

#### 1930 - Gödel publishes his incompleteness theorem [Gödel?]

- It states that if Peano's arithmetics can be embedded in L, then L is not syntactically consistent...
- ... thus, if "arithmetic" means Peano's arithmetics, then as stated above Hilbert's Program is false!.

1930 - Gödel publishes his incompleteness theorem [Gödel?]

- It states that if Peano's arithmetics can be embedded in L, then L is not syntactically consistent...
- ... thus, if "arithmetic" means Peano's arithmetics, then as stated above Hilbert's Program is false!.

1936 - Gentzen proves  $semantical\ consistency$  of Peano's arithmetic

1930 - Gödel publishes his incompleteness theorem [Gödel?]

- It states that if Peano's arithmetics can be embedded in L, then L is not syntactically consistent...
- ... thus, if "arithmetic" means Peano's arithmetics, then as stated above Hilbert's Program is false!.

1936 - Gentzen proves *semantical consistency* of Peano's arithmetic

• This motivates us to reconsider Hilbert's Program for the case of *semantical consistency...* 

### 1930 - Gödel publishes his incompleteness theorem [Gödel?]

- It states that if Peano's arithmetics can be embedded in L, then L is not syntactically consistent...
- ... thus, if "arithmetic" means Peano's arithmetics, then as stated above Hilbert's Program is false!.

# 1936 - Gentzen proves *semantical consistency* of Peano's arithmetic

- This motivates us to reconsider Hilbert's Program for the case of *semantical consistency...*
- ... which was actually the initial task of Hilbert.

### Plain

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

#### Part II: Towards an Approach

- 5. Remarks and Goal
- 6. Strategies
- 7. Interpretation
- 8. Results

### Plain

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

#### Part II: Towards an Approach

- 5. Remarks and Goal
- 6. Strategies
- 7. Interpretation
- 8. Results

Hilbert's Program. To find a formalist approach for Mathematics by an axiomatic language L which is syntactically/semantically consistent.

Hilbert's Program. To find a formalist approach for Mathematics by an axiomatic language L which is syntactically/semantically consistent.

• being "syntactically/semantically consistent" is a property of the  $language\ L$  and not of Mathematics

Hilbert's Program. To find a formalist approach for Mathematics by an axiomatic language L which is syntactically/semantically consistent.

- being "syntactically/semantically consistent" is a property of the language L and not of Mathematics
- thus we could consider analogous axiomatization programs to other areas of study  $\mathcal{O}$ .

**Axiomatization Program of**  $\mathcal{O}$ . To find a formalist approach for  $\mathcal{O}$  by an axiomatic language L which is syntactically/semantically consistent.

Axiomatization Program of  $\mathcal{O}$ . To find a formalist approach for  $\mathcal{O}$  by an axiomatic language L which is syntactically/semantically consistent.

• Gödel theorems provide obstructions to realize the program by a syntactically consistent language L...

Axiomatization Program of  $\mathcal{O}$ . To find a formalist approach for  $\mathcal{O}$  by an axiomatic language L which is syntactically/semantically consistent.

- Gödel theorems provide obstructions to realize the program by a syntactically consistent language L...
- ... but they do not appear in the case of semantical consistency.

Axiomatization Program of  $\mathcal{O}$ . To find a formalist approach for  $\mathcal{O}$  by an axiomatic language L which is syntactically/semantically consistent.

- Gödel theorems provide obstructions to realize the program by a syntactically consistent language L...
- ... but they do not appear in the case of semantical consistency.

Axiomatization Program of Physics. To find a formalist approach for Physics by an axiomatic language L which is semantically consistent.



- Recall that a formalist approach depends on an epistemological theory
- in Physics there is a natural class of epistemological theories:

- Recall that a formalist approach depends on an epistemological theory
- in Physics there is a natural class of epistemological theories: the *empiricist* ones

- Recall that a formalist approach depends on an epistemological theory
- in Physics there is a natural class of epistemological theories: the *empiricist* ones
  - there is a class Exp(M) of "experiments" on a "spacetime";

- Recall that a formalist approach depends on an epistemological theory
- ullet in Physics there is a natural class of epistemological theories: the empiricist ones
  - there is a class Exp(M) of "experiments" on a "spacetime";
  - and a map  $e : \operatorname{Exp}(M) \to \operatorname{Belief}(\mathcal{O})$

- Recall that a formalist approach depends on an epistemological theory
- ullet in Physics there is a natural class of epistemological theories: the empiricist ones
  - there is a class Exp(M) of "experiments" on a "spacetime";
  - and a map  $e : \operatorname{Exp}(M) \to \operatorname{Belief}(\mathcal{O})$
  - whose image contains  $Know(\mathcal{O})$ .

- Recall that a formalist approach depends on an epistemological theory
- ullet in Physics there is a natural class of epistemological theories: the empiricist ones
  - there is a class Exp(M) of "experiments" on a "spacetime";
  - and a map  $e : \operatorname{Exp}(M) \to \operatorname{Belief}(\mathcal{O})$
  - whose image contains  $Know(\mathcal{O})$ .
- They define the "physically interesting" Axiomatization Programs of Physics.

Why should we demand synthatic/semantical consistency?

• What is synthatic/semantical consistency?

- What is synthatic/semantical consistency?
- $syntactic \ consistency$  is the nonexistence of contradictions in L;

- What is synthatic/semantical consistency?
- $syntactic \ consistency$  is the nonexistence of contradictions in L;
- semantical consistency is about nonexistence of contradictions in some model L' of L.

- What is synthatic/semantical consistency?
- $syntactic \ consistency$  is the nonexistence of contradictions in L;
- semantical consistency is about nonexistence of contradictions in some model L' of L.
- But "contradictions" are defined in terms of logical connectives including negation ¬

- What is synthatic/semantical consistency?
- $syntactic \ consistency$  is the nonexistence of contradictions in L;
- semantical consistency is about nonexistence of contradictions in some model L' of L.
- But "contradictions" are defined in terms of logical connectives including negation ¬
- The proofs of consistency given by Hilbert were done by contradiction...

- What is synthatic/semantical consistency?
- $syntactic \ consistency$  is the nonexistence of contradictions in L;
- semantical consistency is about nonexistence of contradictions in some model L' of L.
- But "contradictions" are defined in terms of logical connectives including negation ¬
- The proofs of consistency given by Hilbert were done by contradiction...
- ... which depends on an explicit property of  $\neg$ : the Law of Middle Excluded

- What is synthatic/semantical consistency?
- $syntactic \ consistency$  is the nonexistence of contradictions in L;
- semantical consistency is about nonexistence of contradictions in some model L' of L.
- But "contradictions" are defined in terms of logical connectives including negation ¬
- The proofs of consistency given by Hilbert were done by contradiction...
- ... which depends on an explicit property of  $\neg$ : the Law of Middle Excluded
- Thus, we returned to Fregue-Hilbert and Brouwer-Hilbert debates

- What is synthatic/semantical consistency?
- $syntactic \ consistency$  is the nonexistence of contradictions in L;
- semantical consistency is about nonexistence of contradictions in some model L' of L.
- But "contradictions" are defined in terms of logical connectives including negation ¬
- The proofs of consistency given by Hilbert were done by contradiction...
- ... which depends on an explicit property of  $\neg$ : the Law of Middle Excluded
- Thus, we returned to Fregue-Hilbert and Brouwer-Hilbert debates
- justifying why Fregue, Brouwer and even Weyl doubt of the need of demanding consistency...

- What is synthatic/semantical consistency?
- $syntactic\ consistency$  is the nonexistence of contradictions in L;
- semantical consistency is about nonexistence of contradictions in some model L' of L.
- But "contradictions" are defined in terms of logical connectives including negation ¬
- The proofs of consistency given by Hilbert were done by contradiction...
- ... which depends on an explicit property of  $\neg$ : the Law of Middle Excluded
- Thus, we returned to Fregue-Hilbert and Brouwer-Hilbert debates
- justifying why Fregue, Brouwer and even Weyl doubt of the need of demanding consistency...
- ... as a property of a logic to be used to formalize *Mathematics*.

• In the case of Physics the situation is quite different:

- In the case of Physics the situation is quite different:
- as observed by Bunge in [Bunge??],

- In the case of Physics the situation is quite different:
- as observed by Bunge in [Bunge??], semantical consistency of a language L in a formalist approach for Physics captures precisely empirical stability ...

- In the case of Physics the situation is quite different:
- as observed by Bunge in [Bunge??], semantical consistency of a language L in a formalist approach for Physics captures precisely empirical stability ...
- ... i.e., that L is strong enough to axiomatize any new physical discovering.

#### Plain

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

#### Part II: Towards an Approach

- 5. Remarks and Goal
- 6. Strategies
- 7. Interpretation
- 8. Results

#### Plain

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

#### Part II: Towards an Approach

- 5. Remarks and Goal
- 6. Strategies
- 7. Interpretation
- 8. Results

# Remarks and Goal

## Remarks and Goal | Remarks

**Axiomatization Program of**  $\mathcal{O}$ . To find a formalist approach for  $\mathcal{O}$  by an axiomatic language L which is semantically consistent.

**Axiomatization Program of**  $\mathcal{O}$ . To find a formalist approach for  $\mathcal{O}$  by an axiomatic language L which is semantically consistent.

Thus, given an area of study  $\mathcal{O}$  we want to

**Axiomatization Program of**  $\mathcal{O}$ . To find a formalist approach for  $\mathcal{O}$  by an axiomatic language L which is semantically consistent.

Thus, given an area of study  $\mathcal{O}$  we want to

1 build a philosophical theory for  $\mathcal{O}$ 

**Axiomatization Program of**  $\mathcal{O}$ . To find a formalist approach for  $\mathcal{O}$  by an axiomatic language L which is semantically consistent.

Thus, given an area of study  $\mathcal{O}$  we want to

- 1 build a philosophical theory for  $\mathcal{O}$
- 2 show that the underlying epistemological theory is determined by an axiomatic language L

**Axiomatization Program of**  $\mathcal{O}$ . To find a formalist approach for  $\mathcal{O}$  by an axiomatic language L which is semantically consistent.

Thus, given an area of study  $\mathcal{O}$  we want to

- 1 build a philosophical theory for  $\mathcal{O}$
- 2 show that the underlying epistemological theory is determined by an axiomatic language L
- 3 prove that the axiomatic language L satisfies additional properties, including consistency.

#### Remark.

• Every epistemological theory for  $\mathcal{O}$  defines an ontological theory for  $\mathcal{O}$ :

#### Remark.

• Every epistemological theory for  $\mathcal{O}$  defines an ontological theory for  $\mathcal{O}$ : epistemic ontology (see Example 2.3, p.16)

- Every epistemological theory for  $\mathcal{O}$  defines an ontological theory for  $\mathcal{O}$ : epistemic ontology (see Example 2.3, p.16)
- Every formal/axiomatic language L defines a logic for every  $\mathcal{O}$ :

- Every epistemological theory for  $\mathcal{O}$  defines an ontological theory for  $\mathcal{O}$ : epistemic ontology (see Example 2.3, p.16)
- Every formal/axiomatic language L defines a logic for every  $\mathcal{O}$ :  $formal/axiomatic\ logic\ (see p.15)$ .

- Every epistemological theory for  $\mathcal{O}$  defines an ontological theory for  $\mathcal{O}$ : epistemic ontology (see Example 2.3, p.16)
- Every formal/axiomatic language L defines a logic for every  $\mathcal{O}$ :  $formal/axiomatic\ logic\ (see p.15)$ .
- Thus, an epistemological theory for  $\mathcal{O}$  and an axiomatic language L define a philosophical theory for  $\mathcal{O}$ .

- Every epistemological theory for  $\mathcal{O}$  defines an ontological theory for  $\mathcal{O}$ : epistemic ontology (see Example 2.3, p.16)
- Every formal/axiomatic language L defines a logic for every  $\mathcal{O}$ :  $formal/axiomatic\ logic\ (see p.15)$ .
- Thus, an epistemological theory for  $\mathcal{O}$  and an axiomatic language L define a philosophical theory for  $\mathcal{O}$ .
- This means that:

- Every epistemological theory for  $\mathcal{O}$  defines an ontological theory for  $\mathcal{O}$ : epistemic ontology (see Example 2.3, p.16)
- Every formal/axiomatic language L defines a logic for every  $\mathcal{O}$ :  $formal/axiomatic\ logic\ (see p.15)$ .
- Thus, an epistemological theory for  $\mathcal{O}$  and an axiomatic language L define a philosophical theory for  $\mathcal{O}$ .
- This means that:
  - for every pair  $(\text{Ep}(\mathcal{O}), L)$  we get the step 1. above;

- Every epistemological theory for  $\mathcal{O}$  defines an ontological theory for  $\mathcal{O}$ : epistemic ontology (see Example 2.3, p.16)
- Every formal/axiomatic language L defines a logic for every  $\mathcal{O}$ :  $formal/axiomatic\ logic\ (see p.15)$ .
- Thus, an epistemological theory for  $\mathcal{O}$  and an axiomatic language L define a philosophical theory for  $\mathcal{O}$ .
- This means that:
  - for every pair  $(\text{Ep}(\mathcal{O}), L)$  we get the step 1. above;
  - step 2. is about finding pars  $(\text{Ep}(\mathcal{O}), L)$  for which there is a "morphism"  $f : \text{Ep}(\mathcal{O}) \Rightarrow L$ ;

- Every epistemological theory for  $\mathcal{O}$  defines an ontological theory for  $\mathcal{O}$ : epistemic ontology (see Example 2.3, p.16)
- Every formal/axiomatic language L defines a logic for every  $\mathcal{O}$ :  $formal/axiomatic\ logic\ (see p.15)$ .
- Thus, an epistemological theory for  $\mathcal{O}$  and an axiomatic language L define a philosophical theory for  $\mathcal{O}$ .
- This means that:
  - for every pair  $(\text{Ep}(\mathcal{O}), L)$  we get the step 1. above;
  - step 2. is about finding pars  $(\text{Ep}(\mathcal{O}), L)$  for which there is a "morphism"  $f : \text{Ep}(\mathcal{O}) \Rightarrow L$ ;
  - step 3. consists in proving that such a morphism exist if L is suitable (e.g., semantically consistent).

Goal.

58 / 86

#### Goal.

• In the thesis we sketched ideas on how to deal with step 2;

#### Goal.

- In the thesis we sketched ideas on how to deal with step 2;
- i.e., on how to build "morphisms"  $f : \text{Ep}(\mathcal{O}) \Rightarrow L$  for given epistemological theory and axiomatic language.

58 / 86

#### Goal.

- In the thesis we sketched ideas on how to deal with step 2;
- i.e., on how to build "morphisms"  $f : \text{Ep}(\mathcal{O}) \Rightarrow L$  for given epistemological theory and axiomatic language.

We presented three strategies, all of them based on the following additional epistemological requirement.

Definition.

**Definition.** We say that an epistemological theory  $Ep(\mathcal{O})$  for an area of study  $\mathcal{O}$  is *coherent* if:

**Definition.** We say that an epistemological theory  $\text{Ep}(\mathcal{O})$  for an area of study  $\mathcal{O}$  is *coherent* if:

• for every subclass  $\mathcal{O}_0 \subset \mathcal{O}$  is a subclass of  $\mathcal{O}$  we have a corresponding epistemological theory  $\mathrm{Ep}(\mathcal{O}_0)$ ;

**Definition.** We say that an epistemological theory  $\text{Ep}(\mathcal{O})$  for an area of study  $\mathcal{O}$  is *coherent* if:

- for every subclass  $\mathcal{O}_0 \subset \mathcal{O}$  is a subclass of  $\mathcal{O}$  we have a corresponding epistemological theory  $\mathrm{Ep}(\mathcal{O}_0)$ ;
- there is a "morphism"  $\operatorname{Ep}(\mathcal{O}_0) \Rightarrow \operatorname{Ep}(\mathcal{O})$ .

**Definition.** We say that an epistemological theory  $\text{Ep}(\mathcal{O})$  for an area of study  $\mathcal{O}$  is *coherent* if:

- for every subclass  $\mathcal{O}_0 \subset \mathcal{O}$  is a subclass of  $\mathcal{O}$  we have a corresponding epistemological theory  $\mathrm{Ep}(\mathcal{O}_0)$ ;
- there is a "morphism"  $\operatorname{Ep}(\mathcal{O}_0) \Rightarrow \operatorname{Ep}(\mathcal{O})$ .

**Definition.** We say that an epistemological theory  $Ep(\mathcal{O})$  for an area of study  $\mathcal{O}$  is *coherent* if:

- for every subclass  $\mathcal{O}_0 \subset \mathcal{O}$  is a subclass of  $\mathcal{O}$  we have a corresponding epistemological theory  $\mathrm{Ep}(\mathcal{O}_0)$ ;
- there is a "morphism"  $\operatorname{Ep}(\mathcal{O}_0) \Rightarrow \operatorname{Ep}(\mathcal{O})$ .



**Definition.** We say that an epistemological theory  $\text{Ep}(\mathcal{O})$  for an area of study  $\mathcal{O}$  is *coherent* if:

- for every subclass  $\mathcal{O}_0 \subset \mathcal{O}$  is a subclass of  $\mathcal{O}$  we have a corresponding epistemological theory  $\mathrm{Ep}(\mathcal{O}_0)$ ;
- there is a "morphism"  $\operatorname{Ep}(\mathcal{O}_0) \Rightarrow \operatorname{Ep}(\mathcal{O})$ .



**Definition.** We say that an epistemological theory  $\text{Ep}(\mathcal{O})$  for an area of study  $\mathcal{O}$  is *coherent* if:

- for every subclass  $\mathcal{O}_0 \subset \mathcal{O}$  is a subclass of  $\mathcal{O}$  we have a corresponding epistemological theory  $\mathrm{Ep}(\mathcal{O}_0)$ ;
- there is a "morphism"  $\operatorname{Ep}(\mathcal{O}_0) \Rightarrow \operatorname{Ep}(\mathcal{O})$ .



• Notice that the above is satisfied if the rule  $\mathcal{O} \mapsto \mathrm{Ep}(\mathcal{O})$  is functorial in some "category of areas of study", i.e., some "systemic category".

- Notice that the above is satisfied if the rule  $\mathcal{O} \mapsto \mathrm{Ep}(\mathcal{O})$  is functorial in some "category of areas of study", i.e., some "systemic category".
- This motivates again using categorical language to discuss philosophy.

- Notice that the above is satisfied if the rule  $\mathcal{O} \mapsto \mathrm{Ep}(\mathcal{O})$  is functorial in some "category of areas of study", i.e., some "systemic category".
- This motivates again using categorical language to discuss philosophy.
- But, as discussed above, one should have a notion of "morphism" between systems. Thus, the "systemic category" would be a "category of categories" and, therefore, some sort of 2-category.

- Notice that the above is satisfied if the rule  $\mathcal{O} \mapsto \mathrm{Ep}(\mathcal{O})$  is functorial in some "category of areas of study", i.e., some "systemic category".
- This motivates again using categorical language to discuss philosophy.
- But, as discussed above, one should have a notion of "morphism" between systems. Thus, the "systemic category" would be a "category of categories" and, therefore, some sort of 2-category.
- In this case, one could assume that  $\mathcal{O} \mapsto \mathrm{Ep}(\mathcal{O})$  is a 2-functor.

- Notice that the above is satisfied if the rule  $\mathcal{O} \mapsto \mathrm{Ep}(\mathcal{O})$  is functorial in some "category of areas of study", i.e., some "systemic category".
- This motivates again using categorical language to discuss philosophy.
- But, as discussed above, one should have a notion of "morphism" between systems. Thus, the "systemic category" would be a "category of categories" and, therefore, some sort of 2-category.
- In this case, one could assume that  $\mathcal{O} \mapsto \mathrm{Ep}(\mathcal{O})$  is a 2-functor.
- On the other hand, as commented, in my opinion a categorical view of systems is not enough: one needs "higher systems", so that a ∞-category of systems and, therefore, "∞-category of areas of study"

- Notice that the above is satisfied if the rule  $\mathcal{O} \mapsto \mathrm{Ep}(\mathcal{O})$  is functorial in some "category of areas of study", i.e., some "systemic category".
- This motivates again using categorical language to discuss philosophy.
- But, as discussed above, one should have a notion of "morphism" between systems. Thus, the "systemic category" would be a "category of categories" and, therefore, some sort of 2-category.
- In this case, one could assume that  $\mathcal{O} \mapsto \mathrm{Ep}(\mathcal{O})$  is a 2-functor.
- On the other hand, as commented, in my opinion a categorical view of systems is not enough: one needs "higher systems", so that a ∞-category of systems and, therefore, "∞-category of areas of study"
- In this case, one could suppose that  $\mathcal{O} \mapsto \mathrm{Ep}(\mathcal{O})$  is a  $\infty$ -functor...

- Notice that the above is satisfied if the rule  $\mathcal{O} \mapsto \mathrm{Ep}(\mathcal{O})$  is functorial in some "category of areas of study", i.e., some "systemic category".
- This motivates again using categorical language to discuss philosophy.
- But, as discussed above, one should have a notion of "morphism" between systems. Thus, the "systemic category" would be a "category of categories" and, therefore, some sort of 2-category.
- In this case, one could assume that  $\mathcal{O} \mapsto \mathrm{Ep}(\mathcal{O})$  is a 2-functor.
- On the other hand, as commented, in my opinion a categorical view of systems is not enough: one needs "higher systems", so that a ∞-category of systems and, therefore, "∞-category of areas of study"
- In this case, one could suppose that  $\mathcal{O} \mapsto \mathrm{Ep}(\mathcal{O})$  is a  $\infty$ -functor...
- ... revealing higher category theory as a natural language to discuss philosophy.

#### Plain

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

#### Part II: Towards an Approach

- 5. Remarks and Goal
- 6. Strategies
- 7. Interpretation
- 8. Results

#### Plain

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

#### Part II: Towards an Approach

- 5. Remarks and Goal
- 6. Strategies
- 7. Interpretation
- 8. Results

# Strategies

Given an area of study  $\mathcal{O}$  we suggested three strategies, corresponding to the following cases:

1 when  $\mathcal{O}$  has at most one distinguished subclass  $\mathcal{O}' \subset \mathcal{O}$ ;

- 1 when  $\mathcal{O}$  has at most one distinguished subclass  $\mathcal{O}' \subset \mathcal{O}$ ;
- 2 when has exactly two distinguished classes  $\mathcal{O}', \mathcal{O}'' \subset \mathcal{O};$

- 1 when  $\mathcal{O}$  has at most one distinguished subclass  $\mathcal{O}' \subset \mathcal{O}$ ;
- 2 when has exactly two distinguished classes  $\mathcal{O}', \mathcal{O}'' \subset \mathcal{O};$
- 3 when has a span  $\mathcal{O}' \to \mathcal{O}''' \leftarrow \mathcal{O}''$  of subclasses  $\mathcal{O}', \mathcal{O}'', \mathcal{O}''' \subset \mathcal{O}$ .

- 1 when  $\mathcal{O}$  has at most one distinguished subclass  $\mathcal{O}' \subset \mathcal{O}$ ;
- 2 when has exactly two distinguished classes  $\mathcal{O}', \mathcal{O}'' \subset \mathcal{O};$
- 3 when has a span  $\mathcal{O}' \to \mathcal{O}''' \leftarrow \mathcal{O}''$  of subclasses  $\mathcal{O}', \mathcal{O}'', \mathcal{O}''' \subset \mathcal{O}$ .



- 1 when  $\mathcal{O}$  has at most one distinguished subclass  $\mathcal{O}' \subset \mathcal{O}$ ;
- 2 when has exactly two distinguished classes  $\mathcal{O}', \mathcal{O}'' \subset \mathcal{O};$
- 3 when has a span  $\mathcal{O}' \to \mathcal{O}''' \leftarrow \mathcal{O}''$  of subclasses  $\mathcal{O}', \mathcal{O}'', \mathcal{O}''' \subset \mathcal{O}$ .



- 1 when  $\mathcal{O}$  has at most one distinguished subclass  $\mathcal{O}' \subset \mathcal{O}$ ;
- 2 when has exactly two distinguished classes  $\mathcal{O}', \mathcal{O}'' \subset \mathcal{O};$
- 3 when has a span  $\mathcal{O}' \to \mathcal{O}''' \leftarrow \mathcal{O}''$  of subclasses  $\mathcal{O}', \mathcal{O}'', \mathcal{O}''' \subset \mathcal{O}$ .



 ${\bf Example}.$ 

#### Example.

1 for every  $\mathcal{O}$ , consider  $\mathcal{O}'$  as  $\mathcal{O}_{real}$  or  $\mathcal{O}_{mind}$  for given ontological theory or philosophy of mind theory;

#### Example.

- 1 for every  $\mathcal{O}$ , consider  $\mathcal{O}'$  as  $\mathcal{O}_{real}$  or  $\mathcal{O}_{mind}$  for given ontological theory or philosophy of mind theory;
- 1 In the case of Physics, consider  $\mathcal{O}' = \mathcal{O}_{real}$  for the epistemic ontology induced by some empiricist theory.

#### Example.

- 1 for every  $\mathcal{O}$ , consider  $\mathcal{O}'$  as  $\mathcal{O}_{real}$  or  $\mathcal{O}_{mind}$  for given ontological theory or philosophy of mind theory;
- 1 In the case of Physics, consider  $\mathcal{O}' = \mathcal{O}_{real}$  for the epistemic ontology induced by some empiricist theory.
- 2 for every  $\mathcal{O}$ , take  $\mathcal{O}' = \mathcal{O}_{real}$  and  $\mathcal{O}'' = \mathcal{O}_{mind}$ ;

#### Example.

- 1 for every  $\mathcal{O}$ , consider  $\mathcal{O}'$  as  $\mathcal{O}_{real}$  or  $\mathcal{O}_{mind}$  for given ontological theory or philosophy of mind theory;
- 1 In the case of Physics, consider  $\mathcal{O}' = \mathcal{O}_{real}$  for the epistemic ontology induced by some empiricist theory.
- 2 for every  $\mathcal{O}$ , take  $\mathcal{O}' = \mathcal{O}_{real}$  and  $\mathcal{O}'' = \mathcal{O}_{mind}$ ;
- 2 in the case of Physics, take  $\mathcal{O}' = \mathcal{O}_{cls}$  and  $\mathcal{O}'' = \mathcal{O}_{qnt}$ ;

3 for every  $\mathcal{O}$ , consider the span  $\mathcal{O}_{real} \hookrightarrow \mathcal{O} \leftarrow \mathcal{O}_{mind}$ ;

- 3 for every  $\mathcal{O}$ , consider the span  $\mathcal{O}_{real} \hookrightarrow \mathcal{O} \leftarrow \mathcal{O}_{mind}$ ;
- 3 in the case of Physics, take  $\mathcal{O}' = \mathcal{O}_{cls}$ ,  $\mathcal{O}'' = \mathcal{O}_{qnt}$  and  $\mathcal{O}''' = \mathcal{O}_{prt}$ . Furthermore, take the morphisms

- 3 for every  $\mathcal{O}$ , consider the span  $\mathcal{O}_{real} \hookrightarrow \mathcal{O} \leftarrow \mathcal{O}_{mind}$ ;
- 3 in the case of Physics, take  $\mathcal{O}' = \mathcal{O}_{cls}$ ,  $\mathcal{O}'' = \mathcal{O}_{qnt}$  and  $\mathcal{O}''' = \mathcal{O}_{prt}$ . Furthermore, take the morphisms
  - $PQ: \mathcal{O}_{cls} \to \mathcal{O}_{prt}$  given by perturbative quantization;

- 3 for every  $\mathcal{O}$ , consider the span  $\mathcal{O}_{real} \hookrightarrow \mathcal{O} \leftarrow \mathcal{O}_{mind}$ ;
- 3 in the case of Physics, take  $\mathcal{O}' = \mathcal{O}_{cls}$ ,  $\mathcal{O}'' = \mathcal{O}_{qnt}$  and  $\mathcal{O}''' = \mathcal{O}_{prt}$ . Furthermore, take the morphisms
  - $PQ: \mathcal{O}_{cls} \to \mathcal{O}_{prt}$  given by perturbative quantization;
  - $PE: \mathcal{O}_{qnt} \to \mathcal{O}_{prt}$  given by perturbative expansion.

- 3 for every  $\mathcal{O}$ , consider the span  $\mathcal{O}_{real} \hookrightarrow \mathcal{O} \leftarrow \mathcal{O}_{mind}$ ;
- 3 in the case of Physics, take  $\mathcal{O}' = \mathcal{O}_{cls}$ ,  $\mathcal{O}'' = \mathcal{O}_{qnt}$  and  $\mathcal{O}''' = \mathcal{O}_{prt}$ . Furthermore, take the morphisms
  - $PQ: \mathcal{O}_{cls} \to \mathcal{O}_{prt}$  given by perturbative quantization;
  - $PE: \mathcal{O}_{qnt} \to \mathcal{O}_{prt}$  given by perturbative expansion.



The strategy of each approach is the following:

1 use of induction on the subclasses  $\mathcal{O}'_i$  of  $\mathcal{O}' \subset \mathcal{O}$ ;

- 1 use of induction on the subclasses  $\mathcal{O}'_i$  of  $\mathcal{O}' \subset \mathcal{O}$ ;
- 2 (a) show that it is enough to prove the result for  $\mathcal{O}', \mathcal{O}''$  and that there is a morphism  $\mathcal{O}' \to \mathcal{O}''$  which induces a morphism  $(\text{Ep}(\mathcal{O}'), L') \Rightarrow (\text{Ep}(\mathcal{O}''), L'')$  between the solutions

- 1 use of induction on the subclasses  $\mathcal{O}'_i$  of  $\mathcal{O}' \subset \mathcal{O}$ ;
- 2 (a) show that it is enough to prove the result for  $\mathcal{O}', \mathcal{O}''$  and that there is a morphism  $\mathcal{O}' \to \mathcal{O}''$  which induces a morphism  $(\text{Ep}(\mathcal{O}'), L') \Rightarrow (\text{Ep}(\mathcal{O}''), L'')$  between the solutions
  - (b) apply approach 1. on  $\mathcal{O}'$  and on  $\mathcal{O}''$ ;

- 1 use of induction on the subclasses  $\mathcal{O}'_i$  of  $\mathcal{O}' \subset \mathcal{O}$ ;
- 2 (a) show that it is enough to prove the result for  $\mathcal{O}', \mathcal{O}''$  and that there is a morphism  $\mathcal{O}' \to \mathcal{O}''$  which induces a morphism  $(\text{Ep}(\mathcal{O}'), L') \Rightarrow (\text{Ep}(\mathcal{O}''), L'')$  between the solutions
  - (b) apply approach 1. on  $\mathcal{O}'$  and on  $\mathcal{O}''$ ;
  - (c) use of induction on morphism  $\mathcal{O}_i' \to \mathcal{O}_j''$  between subclasses

- 1 use of induction on the subclasses  $\mathcal{O}'_i$  of  $\mathcal{O}' \subset \mathcal{O}$ ;
- 2 (a) show that it is enough to prove the result for  $\mathcal{O}', \mathcal{O}''$  and that there is a morphism  $\mathcal{O}' \to \mathcal{O}''$  which induces a morphism  $(\text{Ep}(\mathcal{O}'), L') \Rightarrow (\text{Ep}(\mathcal{O}''), L'')$  between the solutions
  - (b) apply approach 1. on  $\mathcal{O}'$  and on  $\mathcal{O}''$ ;
  - (c) use of induction on morphism  $\mathcal{O}_i' \to \mathcal{O}_j''$  between subclasses
- 3 similar, but now the induction is on spans that has a section.

- 1 use of induction on the subclasses  $\mathcal{O}'_i$  of  $\mathcal{O}' \subset \mathcal{O}$ ;
- 2 (a) show that it is enough to prove the result for  $\mathcal{O}', \mathcal{O}''$  and that there is a morphism  $\mathcal{O}' \to \mathcal{O}''$  which induces a morphism  $(\text{Ep}(\mathcal{O}'), L') \Rightarrow (\text{Ep}(\mathcal{O}''), L'')$  between the solutions
  - (b) apply approach 1. on  $\mathcal{O}'$  and on  $\mathcal{O}''$ ;
  - (c) use of induction on morphism  $\mathcal{O}'_i \to \mathcal{O}''_j$  between subclasses
- 3 similar, but now the induction is on spans that has a section.



- 1 use of induction on the subclasses  $\mathcal{O}'_i$  of  $\mathcal{O}' \subset \mathcal{O}$ ;
- 2 (a) show that it is enough to prove the result for  $\mathcal{O}', \mathcal{O}''$  and that there is a morphism  $\mathcal{O}' \to \mathcal{O}''$  which induces a morphism  $(\text{Ep}(\mathcal{O}'), L') \Rightarrow (\text{Ep}(\mathcal{O}''), L'')$  between the solutions
  - (b) apply approach 1. on  $\mathcal{O}'$  and on  $\mathcal{O}''$ ;
  - (c) use of induction on morphism  $\mathcal{O}'_i \to \mathcal{O}''_j$  between subclasses
- 3 similar, but now the induction is on spans that has a section.



- 1 use of induction on the subclasses  $\mathcal{O}'_i$  of  $\mathcal{O}' \subset \mathcal{O}$ ;
- 2 (a) show that it is enough to prove the result for  $\mathcal{O}', \mathcal{O}''$  and that there is a morphism  $\mathcal{O}' \to \mathcal{O}''$  which induces a morphism  $(\text{Ep}(\mathcal{O}'), L') \Rightarrow (\text{Ep}(\mathcal{O}''), L'')$  between the solutions
  - (b) apply approach 1. on  $\mathcal{O}'$  and on  $\mathcal{O}''$ ;
  - (c) use of induction on morphism  $\mathcal{O}'_i \to \mathcal{O}''_j$  between subclasses
- 3 similar, but now the induction is on spans that has a section.



#### Plain

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

#### Part II: Towards an Approach

- 5. Remarks and Goal
- 6. Strategies
- 7. Interpretation
- 8. Results

#### Plain

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

#### Part II: Towards an Approach

- 5. Remarks and Goal
- 6. Strategies
- 7. Interpretation
- 8. Results

In the case of  $\mathcal{O} = \text{Physics}$ , the three strategies above can be interpreted as follows:

1 We are ignoring the division of classical/quantum physics, so that this is an "axiomatization via unification" approach.

- 1 We are ignoring the division of classical/quantum physics, so that this is an "axiomatization via unification" approach.
- 2 In the case  $\mathcal{O}' = \mathcal{O}_{cls}$  and  $\mathcal{O}'' = \mathcal{O}_{qnt}$ :

- 1 We are ignoring the division of classical/quantum physics, so that this is an "axiomatization via unification" approach.
- 2 In the case  $\mathcal{O}' = \mathcal{O}_{cls}$  and  $\mathcal{O}'' = \mathcal{O}_{qnt}$ :
  - a the maps  $Q_{ij}: (\text{Ep}(\mathcal{O}_{cls,i}), L_{cls,i}) \Rightarrow (\text{Ep}(\mathcal{O}_{qnt,j}), L_{qnt,j})$  are interpreted as local axiomatic quantizations

- 1 We are ignoring the division of classical/quantum physics, so that this is an "axiomatization via unification" approach.
- 2 In the case  $\mathcal{O}' = \mathcal{O}_{cls}$  and  $\mathcal{O}'' = \mathcal{O}_{qnt}$ :
  - a the maps  $Q_{ij}: (\text{Ep}(\mathcal{O}_{cls,i}), L_{cls,i}) \Rightarrow (\text{Ep}(\mathcal{O}_{qnt,j}), L_{qnt,j})$  are interpreted as local axiomatic quantizations
  - b the underlying  $Q_{ij} : \text{Ep}(\mathcal{O}_{cls,i}) \Rightarrow \text{Ep}(\mathcal{O}_{qnt,j})$  are local philosophical quantizations

- 1 We are ignoring the division of classical/quantum physics, so that this is an "axiomatization via unification" approach.
- 2 In the case  $\mathcal{O}' = \mathcal{O}_{cls}$  and  $\mathcal{O}'' = \mathcal{O}_{qnt}$ :
  - a the maps  $Q_{ij}: (\text{Ep}(\mathcal{O}_{cls,i}), L_{cls,i}) \Rightarrow (\text{Ep}(\mathcal{O}_{qnt,j}), L_{qnt,j})$  are interpreted as local axiomatic quantizations
  - b the underlying  $Q_{ij} : \text{Ep}(\mathcal{O}_{cls,i}) \Rightarrow \text{Ep}(\mathcal{O}_{qnt,j})$  are local philosophical quantizations
  - c as a result of the induction we get a map  $Q: (\text{Ep}(\mathcal{O}_{cls}), L_{cls}) \Rightarrow (\text{Ep}(\mathcal{O}_{qnt}), L_{qnt})$ , which is the global axiomatic quantization

- 1 We are ignoring the division of classical/quantum physics, so that this is an "axiomatization via unification" approach.
- 2 In the case  $\mathcal{O}' = \mathcal{O}_{cls}$  and  $\mathcal{O}'' = \mathcal{O}_{qnt}$ :
  - a the maps  $Q_{ij}: (\text{Ep}(\mathcal{O}_{cls,i}), L_{cls,i}) \Rightarrow (\text{Ep}(\mathcal{O}_{qnt,j}), L_{qnt,j})$  are interpreted as local axiomatic quantizations
  - b the underlying  $Q_{ij} : \text{Ep}(\mathcal{O}_{cls,i}) \Rightarrow \text{Ep}(\mathcal{O}_{qnt,j})$  are local philosophical quantizations
  - c as a result of the induction we get a map  $Q: (\text{Ep}(\mathcal{O}_{cls}), L_{cls}) \Rightarrow (\text{Ep}(\mathcal{O}_{qnt}), L_{qnt})$ , which is the global axiomatic quantization
  - d the underlying  $Q : \text{Ep}(\mathcal{O}_{cls}) \to \text{Ep}(\mathcal{O}_{qnt})$  is the global philosophical quantization.

Remark.

#### Remark.

 local/global axiomatic quantization depends on the axiomatic language

#### Remark.

- local/global axiomatic quantization depends on the axiomatic language
- Ex. Groenewold theorem establishes that there is no "suitable" axiomatic quantization, defined in any class of classical physical systems containing classical mechanics, relative to a certain axiomatic language...

#### Remark.

- local/global axiomatic quantization depends on the axiomatic language
- Ex. Groenewold theorem establishes that there is no "suitable" axiomatic quantization, defined in any class of classical physical systems containing classical mechanics, relative to a certain axiomatic language...
- ...however it tells nothing about philosophical quantization or axiomatic quantization relative to other axiomatic languages.

3 take a local span.

3 take a local span.



- 3 take a local span.
  - a if it has a section  $C_{kj}$  from the right (called *local* philosophical completion), we can define a local philosophical quantization by  $Q_{ij} = C_{jk} \circ PQ_{ik}$ .



- 3 take a local span.
  - a if it has a section  $C_{kj}$  from the right (called *local* philosophical completion), we can define a local philosophical quantization by  $Q_{ij} = C_{jk} \circ PQ_{ik}$ .



- 3 take a local span.
  - a if it has a section  $C_{kj}$  from the right (called *local* philosophical completion), we can define a local philosophical quantization by  $Q_{ij} = C_{jk} \circ PQ_{ik}$ .



- 3 take a local span.
  - a if it has a section  $C_{kj}$  from the right (called *local* philosophical completion), we can define a local philosophical quantization by  $Q_{ij} = C_{jk} \circ PQ_{ik}$ .
  - b a subclass  $\mathcal{O}_{prt,k} \subset \mathcal{O}_{prt}$  such that right-hand side section  $C_{kj}$  exist is said to be a class of *j-renormalizable* k-perturbative systems.



- 3 take a local span.
  - a if it has a section  $C_{kj}$  from the right (called *local* philosophical completion), we can define a local philosophical quantization by  $Q_{ij} = C_{jk} \circ PQ_{ik}$ .
  - b a subclass  $\mathcal{O}_{prt,k} \subset \mathcal{O}_{prt}$  such that right-hand side section  $C_{kj}$  exist is said to be a class of *j-renormalizable* k-perturbative systems.
  - c a subclass  $\mathcal{O}_{cls,i} \subset \mathcal{O}_{cls}$  of physical systems is said to be (j,k)-renormalizable if the philosophical perturbative quantization onto a class of j-renormalizable k-perturbative systems is well-defined.



#### Plain

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

#### Part II: Towards an Approach

- 5. Remarks and Goal
- 6. Strategies
- 7. Interpretation
- 8. Results

#### Plain

#### Part I: The Program

- 1. Foundations of Mathematics
- 2. Formalism
- 3. Hilbert's Program
- 4. Axiomatization Program of Physics

#### Part II: Towards an Approach

- 5. Remarks and Goal
- 6. Strategies
- 7. Interpretation
- 8. Results

# Results

**Definition.** An axiomatic language L is given by:

• a class Word(L) of words;

- a class Word(L) of words;
- a subclass  $Thm(L) \subset Word(L)$  of theorems;

- a class Word(L) of words;
- a subclass  $\operatorname{Thm}(L) \subset \operatorname{Word}(L)$  of theorems;
- a subclass  $Axiom(L) \subset Word(L)$  of axioms;

- a class Word(L) of words;
- a subclass  $Thm(L) \subset Word(L)$  of theorems;
- a subclass  $Axiom(L) \subset Word(L)$  of axioms;
- a map  $inf : \rho(\operatorname{Axiom}(L)) \to \operatorname{Thm}(L)$ .

**Definition.** An axiomatic language L is given by:

- a class Word(L) of words;
- a subclass  $\operatorname{Thm}(L) \subset \operatorname{Word}(L)$  of theorems;
- a subclass  $Axiom(L) \subset Word(L)$  of axioms;
- a map  $inf : \rho(\operatorname{Axiom}(L)) \to \operatorname{Thm}(L)$ .

**Definition.** A morphism  $f: L \to L'$  of axiomatic languages is a map  $f: \operatorname{Word}(L) \to \operatorname{Word}(L')$  such that:

**Definition.** An axiomatic language L is given by:

- a class Word(L) of words;
- a subclass  $Thm(L) \subset Word(L)$  of theorems;
- a subclass  $Axiom(L) \subset Word(L)$  of axioms;
- a map  $inf : \rho(\operatorname{Axiom}(L)) \to \operatorname{Thm}(L)$ .

**Definition.** A morphism  $f: L \to L'$  of axiomatic languages is a map  $f: \operatorname{Word}(L) \to \operatorname{Word}(L')$  such that:

• We have the category **Axiom** of axiomatic languages.

- We have the category **Axiom** of axiomatic languages.
- We say that L' is an extension of L if there is a monomorphism  $f: L \to L'$  in **Axiom**.

- We have the category **Axiom** of axiomatic languages.
- We say that L' is an extension of L if there is a monomorphism  $f: L \to L'$  in **Axiom**.

**Definition.** An abstraction process is given by:

- We have the category **Axiom** of axiomatic languages.
- We say that L' is an extension of L if there is a monomorphism  $f: L \to L'$  in **Axiom**.

**Definition.** An abstraction process is given by:

• a functor  $E : \mathbf{Axiom} \to \mathbf{Axiom}$ ;

- We have the category **Axiom** of axiomatic languages.
- We say that L' is an extension of L if there is a monomorphism  $f: L \to L'$  in **Axiom**.

**Definition.** An abstraction process is given by:

- a functor  $E : Axiom \to Axiom$ ;
- a monomorphic natural transformation  $ext: id \Rightarrow E$ , which assigns to each L an extension  $ext_L: L \to E(L)$ .

**Definition.** Let **H** be a category with finite limits.

**Definition.** Let  ${\bf H}$  be a category with finite limits. An axiomatic language internal to  ${\bf H}$  is given by the same data, but now internal to L

**Definition.** Let  $\mathbf{H}$  be a category with finite limits. An axiomatic language internal to  $\mathbf{H}$  is given by the same data, but now internal to L(the power set is replaced by the power object).

**Definition.** Let  $\mathbf{H}$  be a category with finite limits. An axiomatic language internal to  $\mathbf{H}$  is given by the same data, but now internal to L(the power set is replaced by the power object).

morphisms are defined analogously

**Definition.** Let  $\mathbf{H}$  be a category with finite limits. An axiomatic language internal to  $\mathbf{H}$  is given by the same data, but now internal to L(the power set is replaced by the power object).

- morphisms are defined analogously
- we have the category  $\mathbf{Axiom_H}$  of axiomatic languages internal to  $\mathbf{H}$

**Definition.** Let  $\mathbf{H}$  be a category with finite limits. An axiomatic language internal to  $\mathbf{H}$  is given by the same data, but now internal to L(the power set is replaced by the power object).

- morphisms are defined analogously
- we have the category  $\mathbf{Axiom_H}$  of axiomatic languages internal to  $\mathbf{H}$
- define abstraction process internal to **H** similarly.

**Definition.** Let  $\mathbf{H}$  be a category with finite limits. An axiomatic language internal to  $\mathbf{H}$  is given by the same data, but now internal to L(the power set is replaced by the power object).

- morphisms are defined analogously
- we have the category  $\mathbf{Axiom_H}$  of axiomatic languages internal to  $\mathbf{H}$
- define abstraction process internal to **H** similarly.

**Definition.** Let **H** be a category and let  $\mathcal{O}$  be an area of study.

**Definition.** Let  $\mathbf{H}$  be a category with finite limits. An axiomatic language internal to  $\mathbf{H}$  is given by the same data, but now internal to L(the power set is replaced by the power object).

- morphisms are defined analogously
- we have the category  $\mathbf{Axiom_H}$  of axiomatic languages internal to  $\mathbf{H}$
- define abstraction process internal to **H** similarly.

**Definition.** Let **H** be a category and let  $\mathcal{O}$  be an area of study. An *epistemological theory for*  $\mathcal{O}$  *internal to*  $\mathcal{H}$  is given by the diagram below, but now as a diagram in **H**.

**Definition.** Let  $\mathbf{H}$  be a category with finite limits. An axiomatic language internal to  $\mathbf{H}$  is given by the same data, but now internal to L(the power set is replaced by the power object).

- morphisms are defined analogously
- we have the category  $\mathbf{Axiom_H}$  of axiomatic languages internal to  $\mathbf{H}$
- define abstraction process internal to **H** similarly.

**Definition.** Let **H** be a category and let  $\mathcal{O}$  be an area of study. An *epistemological theory for*  $\mathcal{O}$  *internal to*  $\mathcal{H}$  is given by the diagram below, but now as a diagram in **H**.



**Definition.** Let **H** be a category with finite limits and  $\mathcal{O}$  an area of study.

**Definition.** Let **H** be a category with finite limits and  $\mathcal{O}$  an area of study. A formalist approach to  $\mathcal{O}$  internal to **H** is given by:

• an epistemological theory  $Op(\mathcal{O})$  internal to  $\mathbf{H}$ ;

- an epistemological theory  $Op(\mathcal{O})$  internal to  $\mathbf{H}$ ;
- an axiomatic language L internal to  $\mathbf{H}$  ...

- an epistemological theory  $Op(\mathcal{O})$  internal to  $\mathbf{H}$ ;
- an axiomatic language L internal to  $\mathbf{H}$  ...
- such that the following diagram commutes:

- an epistemological theory  $Op(\mathcal{O})$  internal to  $\mathbf{H}$ ;
- an axiomatic language L internal to  $\mathbf{H}$  ...
- such that the following diagram commutes:



**Definition.** Let **H** be a category and let  $\mathcal{O}$  be an area of study.

**Definition.** Let **H** be a category and let  $\mathcal{O}$  be an area of study. An epistemological theory  $\mathrm{Ep}(\mathcal{O})$  internal to  $\mathcal{H}$  is *coherent* if for every  $\mathcal{O}_0 \subset \mathcal{O}$  we have:

**Definition.** Let **H** be a category and let  $\mathcal{O}$  be an area of study. An epistemological theory  $\mathrm{Ep}(\mathcal{O})$  internal to  $\mathcal{H}$  is *coherent* if for every  $\mathcal{O}_0 \subset \mathcal{O}$  we have:

• a corresponding  $\mathrm{Ep}(\mathcal{O}_0)$ ;

**Definition.** Let **H** be a category and let  $\mathcal{O}$  be an area of study. An epistemological theory  $\mathrm{Ep}(\mathcal{O})$  internal to  $\mathcal{H}$  is *coherent* if for every  $\mathcal{O}_0 \subset \mathcal{O}$  we have:

- a corresponding  $\mathrm{Ep}(\mathcal{O}_0)$ ;
- a monomorphism  $\operatorname{Ep}(\mathcal{O}_0) \hookrightarrow \operatorname{Ep}(\mathcal{O})$ .

**Definition.** Let **H** be a category and let  $\mathcal{O}$  be an area of study. An epistemological theory  $\mathrm{Ep}(\mathcal{O})$  internal to  $\mathcal{H}$  is *coherent* if for every  $\mathcal{O}_0 \subset \mathcal{O}$  we have:

- a corresponding  $\mathrm{Ep}(\mathcal{O}_0)$ ;
- a monomorphism  $\mathrm{Ep}(\mathcal{O}_0) \hookrightarrow \mathrm{Ep}(\mathcal{O})$ .

**Definition.** Let **H** be a category and let  $\mathcal{O}$  be an area of study. An epistemological theory  $\operatorname{Ep}(\mathcal{O})$  internal to  $\mathcal{H}$  is *coherent* if for every  $\mathcal{O}_0 \subset \mathcal{O}$  we have:

- a corresponding  $\mathrm{Ep}(\mathcal{O}_0)$ ;
- a monomorphism  $\mathrm{Ep}(\mathcal{O}_0) \hookrightarrow \mathrm{Ep}(\mathcal{O})$ .

#### Definition.

• Let **H** be a category. An object  $X \in \mathcal{H}$  is *injective* if every monomorphism  $f: X \to Y$  is a split monomorphism.

#### Theorem.

• Let  $\mathcal{O}$  be an area of study internal to a category  $\mathbf{H}$  with finite limits and let  $\mathcal{O}'$  be a distinguished subclass  $\mathcal{O}'$ . Suppose given:

- Let  $\mathcal{O}$  be an area of study internal to a category  $\mathbf{H}$  with finite limits and let  $\mathcal{O}'$  be a distinguished subclass  $\mathcal{O}'$ . Suppose given:
  - an axiomatic language  $L_0 \in \mathbf{Axiom_H}$  internal to  $\mathbf{H}$ ;

- Let  $\mathcal{O}$  be an area of study internal to a category  $\mathbf{H}$  with finite limits and let  $\mathcal{O}'$  be a distinguished subclass  $\mathcal{O}'$ . Suppose given:
  - an axiomatic language  $L_0 \in \mathbf{Axiom_H}$  internal to  $\mathbf{H}$ ;
  - a coherent epistemological theory  $\mathrm{Ep}(\mathcal{O})$  internal to  $\mathbf{H}$ .

- Let  $\mathcal{O}$  be an area of study internal to a category  $\mathbf{H}$  with finite limits and let  $\mathcal{O}'$  be a distinguished subclass  $\mathcal{O}'$ . Suppose given:
  - an axiomatic language  $L_0 \in \mathbf{Axiom_H}$  internal to  $\mathbf{H}$ ;
  - a coherent epistemological theory  $\text{Ep}(\mathcal{O})$  internal to **H**.
- In this case, if there is some  $\mathcal{O}_0 \subset \mathcal{O}'$  such that:

- Let  $\mathcal{O}$  be an area of study internal to a category  $\mathbf{H}$  with finite limits and let  $\mathcal{O}'$  be a distinguished subclass  $\mathcal{O}'$ . Suppose given:
  - an axiomatic language  $L_0 \in \mathbf{Axiom_H}$  internal to  $\mathbf{H}$ ;
  - a coherent epistemological theory  $\mathrm{Ep}(\mathcal{O})$  internal to  $\mathbf{H}.$
- In this case, if there is some  $\mathcal{O}_0 \subset \mathcal{O}'$  such that:
  - $\operatorname{Ep}(\mathcal{O}_0) \in \mathbf{H}$  is an injective object;

- Let  $\mathcal{O}$  be an area of study internal to a category  $\mathbf{H}$  with finite limits and let  $\mathcal{O}'$  be a distinguished subclass  $\mathcal{O}'$ . Suppose given:
  - an axiomatic language  $L_0 \in \mathbf{Axiom_H}$  internal to  $\mathbf{H}$ ;
  - a coherent epistemological theory  $\mathrm{Ep}(\mathcal{O})$  internal to  $\mathbf{H}$ .
- In this case, if there is some  $\mathcal{O}_0 \subset \mathcal{O}'$  such that:
  - $\operatorname{Ep}(\mathcal{O}_0) \in \mathbf{H}$  is an injective object;
  - the pair  $(\text{Ep}(\mathcal{O}_0), L_0)$  is a a formalist approach  $\mathcal{O}_0$  internal to  $\mathbf{H}$ ,

- Let  $\mathcal{O}$  be an area of study internal to a category  $\mathbf{H}$  with finite limits and let  $\mathcal{O}'$  be a distinguished subclass  $\mathcal{O}'$ . Suppose given:
  - an axiomatic language  $L_0 \in \mathbf{Axiom_H}$  internal to  $\mathbf{H}$ ;
  - a coherent epistemological theory  $\mathrm{Ep}(\mathcal{O})$  internal to  $\mathbf{H}$ .
- In this case, if there is some  $\mathcal{O}_0 \subset \mathcal{O}'$  such that:
  - $\operatorname{Ep}(\mathcal{O}_0) \in \mathbf{H}$  is an injective object;
  - the pair  $(\text{Ep}(\mathcal{O}_0), L_0)$  is a a formalist approach  $\mathcal{O}_0$  internal to  $\mathbf{H}$ ,
- then every abstraction process internal to  $\mathbf{H}$  defines an "universal" axiomatic language L such that  $(\mathrm{Ep}(\mathcal{O}',L)$  is a formalist approach for  $\mathcal{O}'$  internal to  $\mathbf{H}$ .

 $\bullet$  take **H** as ZFC or NBG.

- take **H** as ZFC or NBG.
- Then we have an Axiom of Choice

- take **H** as ZFC or NBG.
- Then we have an Axiom of Choice
- which in these cases imply that every monomorphism is a split monomorphism.

- take **H** as ZFC or NBG.
- Then we have an Axiom of Choice
- which in these cases imply that every monomorphism is a split monomorphism.

#### Corollary.

- take **H** as ZFC or NBG.
- Then we have an Axiom of Choice
- which in these cases imply that every monomorphism is a split monomorphism.

#### Corollary.

• Let  $\mathcal{O}$  an area of study internal to ZFC or NBG. If there is some  $\mathcal{O}_0 \subset \mathcal{O}$  which admits a formalist approach, then every abstraction process extends this formalist approach from  $\mathcal{O}_0$  to  $\mathcal{O}$ .

 We can build a formalist approach internal to ZFC/NBG for many branches of Physics, e.g., classical and quantum mechanics.

- We can build a formalist approach internal to ZFC/NBG for many branches of Physics, e.g., classical and quantum mechanics.
- Thus, if *every* branch of Physics could be internalized in ZFC/NBG, then the choice of an abstraction process would provide a formalist approach to the entire Physics

- We can build a formalist approach internal to ZFC/NBG for many branches of Physics, e.g., classical and quantum mechanics.
- Thus, if every branch of Physics could be internalized in ZFC/NBG, then the choice of an abstraction process would provide a formalist approach to the entire Physics
- But gauge theories, supergravity and string theory are examples of classes of Physical systems in which "homotopies" play a fundamental role...

- We can build a formalist approach internal to ZFC/NBG for many branches of Physics, e.g., classical and quantum mechanics.
- Thus, if every branch of Physics could be internalized in ZFC/NBG, then the choice of an abstraction process would provide a formalist approach to the entire Physics
- But gauge theories, supergravity and string theory are examples of classes of Physical systems in which "homotopies" play a fundamental role...
- ... which forces us to look for languages internal to more abstract categories than ZFC/NBG.

That is all...

A minha vó caiu e quebrou o fêmur Caiu o meu avô e perdeu os dentes.

Espero que a chuva que cai lá fora lave a culpa da ausência e leve embora o desatino que assola minh'alma fina.