Rapid Assessment Method for Older People (RAM-OP): The Manual

Pascale Fritsch, Ernest Guevarra, Katja Siling, Mark Myatt 21/12/2015

Contents

1	Introduction	5
2	Sampling 2.1 The RAM-OP sample 2.2 Implicit stratification 2.3 RAM-OP survey sample size 2.4 RAM-OP survey sample size 2.5 Eligibility 2.6 Age distribution, eligibility criteria, and sample design 2.7 Practical sampling 2.8 Mapping the community - single and multiple clusters	7 7 8 9 10 11 12
3	Indicators	25
4	The RAM-OP questionnaire	27
5	Datasets	29
6	Practical Fieldwork	31
7	RAM-OP Software 7.1 Data entry	33 33
8	Conclusion	39

4 CONTENTS

Introduction

Older people (generally defined as people aged sixty years and older) are a vulnerable group for malnutrition in humanitarian and developmental contexts. Due to their age they have specific nutritional needs, such as easily digestible and palatable food adapted to those with chewing problems, which is dense in nutrients. In famine and displacement situations where populations are dependent on food distributions, older people often find the general ration inappropriate to their tastes and needs, have difficulties accessing the distributions, or have difficulties transporting rations home. As a result, older people can become malnourished and in need of specifically targeted food interventions. In times of drought or food scarcity, older people tend to reduce their food intake in order to share or give up their ration to younger members of their families. They are then at risk of malnutrition.

Despite these potential vulnerabilities in humanitarian situations, older people are rarely identified as a group in need of specific nutritional or food assistance. Surveys and assessments almost always focus on children, and sometimes on pregnant and lactating women. Humanitarian workers argue that assessing the nutritional status and needs of older people is both costly and complicated. As a consequence, the nutritional status and needs of older people in crisis go unidentified and unaddressed.

HelpAge International, VALID International, and Brixton Health, with financial assistance from the Humanitarian Innovation Fund (HIF), have developed a Rapid Assessment Method for Older People (RAM-OP) that provides accurate and reliable estimates of the needs of older people. The method uses simple procedures, in a short time frame (i.e. about two weeks including training, data collection, data entry, and data analysis), and at considerably lower cost than other methods. The RAM-OP method is based on the following principles:

- Use of a familiar "household survey" design employing a two-stage cluster sample design optimised to allow the use of a small primary sample (m 16 clusters) and a small overall (n 192) sample.
- Assessment of multiple dimensions of need in older people (including prevalence of global, moderate and severe acute malnutrition) using, whenever possible, standard and well-tested indicators and question sets.

• Data analysis performed using modern computer-intensive methods to allow estimates of indicator levels to be made with useful precision using a small sample size.

The following tools are currently available under the General Public Licence / Free Documentation License, meaning that you are free to copy and adapt these tools:

- an English language manual / guidebook
- a questionnaire (available in English and French)
- data entry and data checking software (available in English and French)
- data analysis software.

We believe that the availability of a rapid, low-cost, and user-friendly method will encourage governments, UN agencies, as well as international and local non-governmental organisations to actively assess the situation of older people in humanitarian contexts, and implement, monitor, and evaluate relevant and timely responses to address their needs.

Sampling

2.1 The RAM-OP sample

RAM-OP uses a two-stage sample:

First stage sample: A sample of communities (e.g. villages or city-blocks) in the survey area is taken. A sampled community is also called a primary sampling unit (PSU).

Second stage sample: Domestic dwellings are sampled from within the communities selected in the first stage sample. All eligible individuals in the sampled dwelling are included in the sample.

2.1.1 The first-stage sample

The first stage sample is a systematic spatial sample. Two methods can be used and both methods take the sample from all parts of the survey area:

List-based method: Communities to be sampled are selected systematically from a complete list of communities in the survey area. This list of communities is sorted by one or more non-overlapping spatial factors such as district and subdistricts within districts:

Map-based method: Communities to be sampled are selected from the centres of the squares of a grid drawn over a map. The map must be sufficiently well made and of sufficiently large scale to show the position of every community in the survey area. This type of sample is known as a centric systematic area sample and is often referred to as a CSAS sample.

Note: Population proportional sampling (PPS) is **not** used in RAM-OP surveys. Population estimates for all communities are **not** required for sampling purposes. Population estimates are required only for the selected communities. These are used during data analysis in order to weight results by population size. If this information is not available before the survey, it can be collected during the survey.

Figure 2.1: Communities listing by district and sub-district

2.1.2 The second stage sample

The second stage within-community sample uses a method called map-segment-sample. This method takes the within-community sample from all parts of a sampled community.

2.2 Implicit stratification

Both the first and second stage samples use a form of spatial stratification:

- The list-based method's first stage systematic spatial sample stratifies the sample by non-overlapping spatial factor such as districts and subdistricts within districts.
- The map-based (CSAS) method's first stage sample stratifies the sample by grid square.
- The map-segment-sample second stage within-community sample stratifies the sample by parts of the community being sampled.
- The first and second stage samples also ensure that a reasonably even spatial sample is taken from the entire survey area and from each of the sampled communities.

These sampling procedures provide implicit stratification and tend to spread the sample properly among important sub-groups of the population such as rural / urban / peri-urban populations, administrative areas, ethnic sub-populations, religious sub-populations, and socio-economic groups. This often improves the precision of estimates made from survey data.

The use of implicit stratification improves the efficiency of a two-stage cluster sample and

allows RAM-OP to use relatively small sample sizes compared to other methods, such as SMART surveys. The use of modern computer-intensive data analysis techniques also allows RAM-OP to make better use of the available sample than is done in other methods.

2.3 RAM-OP survey sample size

The following shorthand symbols will be used when describing sample designs:

m = Number of primary sampling units (PSUs).

n = Size of the sample of individuals or households from a PSU. n = May also mean the overall survey sa

N =Population

The overall sample size for a RAM-OP survey is about n=192 individual subjects. You should aim to collect an overall sample of at least n=192 individuals.

The RAM-OP sample is collected in two stages:

- The first stage sample uses a sample size of about m=16 communities (or PSUs).
- The second stage sample uses a sample size of about n = 12 eligible subjects sampled from each of the communities selected for inclusion in the first stage sample.

The overall sample size from m=16 communities and n=12 eligible subjects is about:

overall sample size
$$\approx m \times n \approx 16 \times 12 \approx 192$$

It is not recommended that fewer than m=16 communities are sampled.

2.4 RAM-OP survey sample size

Sampling fewer than m=16 communities will tend to reduce the precision with which estimates can be made. If you have the resources to sample more than m=16 communities then you should do so. A sample of m=24 communities and n=8 eligible subjects, for example, will tend to yield estimates with better precision than a sample with m=16 communities and n=12 eligible subjects.

Do not be tempted to increase the size of the within-community sample in order to achieve an overall sample size of n = 192 from fewer than m = 16 communities. Doing so will tend to reduce the precision with which estimates are made. It may also be impossible to do this in many settings.

Here, for example, is a *population pyramid* for a typical developing country:

Figure 2.2: Population pyramid for a typical developing country

Figure 2.3: Population pyramid for a setting with low life-expectancy

If the average community population is N=300 then there will be fewer than 15 people aged 60 years and older in about half of the selected communities. This is because about half of the selected communities are likely to have a population below the average population.

2.5 Eligibility

Older people are usual defined as persons aged 60 years and older (UN definition). This means your sample will usually be restricted to people aged 60 years and older.

In some settings different eligibility criteria may apply. This will likely be the case in settings with very high life-expectancies (usually middle and high income countries) or very low life-expectancies (usually low income countries and in emergencies).

In a setting of very high life-expectancy you may want to restrict eligibility - to persons aged 65 years or older, for example. A local definition of older people is likely to be available.

In a setting with very low life-expectancy, very few people are aged 60 years or older. For example:

It is common in such setting for there to be a local definition of older people. This will usually be "persons aged 50 years or older" or "persons aged 55 years or older".

2.6 Age distribution, eligibility criteria, and sample design

The age distribution of the population and the survey eligibility criteria will affect the sample design in terms of the number of communities that you will need to sample (m) and the number of older persons (n) that can be sampled from each community.

The overall sample size for a RAM-OP sample should be at least n=192 usually collected as n=12 eligible subjects sampled from m=16 communities. If older people make up a very small proportion (i.e. much less than 5%) of the total population and / or the average population of communities is small then you will usually need to sample more than m=16 communities in order to get about n=192 older people in the overall sample. This is likely to occur when there are fewer than 20 to 25 older people in a community of average size.

You can calculate the number of older people that you would expect to be living in a community of average size using the following formula:

$$n_{\rm aged~60+~in~an~average~village}~=~{\rm average~village~population_{all~ages}}\times\frac{{\rm percentage~of~population_{aged~60+}}}{100}$$

If this is below about 20 people then you should consider how you will collect the required overall sample size. Three approaches may be used:

- Relax the eligibility criteria: You may decide to define older people as "persons aged 50 years or older" or "persons aged 55 years or older". This may double the size of the eligible population and make the sample easier to collect. This approach is only reasonable if life-expectancy is low.
- Increase the number of communities that you plan to sample: You may choose to collect your sample as n=7 eligible subjects sampled from m=30 communities giving an expected overall sample size of n=210. This would be a very good sample. The disadvantage of this approach is that survey costs increase with the number of communities that are sampled, because a lot of survey time and vehicle costs are spent on travelling to and from the selected communities.
- Take a "top-up" sample only when you need to: The basic procedure when a selected community is small and likely to contain fewer than n = 12 older people is to collect data on all older people in the selected community using a door-to-door census. If the within-community sample size is much smaller than the required one then a

"top-up" sample is taken from the nearest neighbouring community using the mapsegment-sample method (or a door-to-door census if this community is also small). The advantage of this approach is that travelling time and survey costs are better controlled.

If the proportion of older people is not very small and / or communities are large then you should have no problems achieving the overall sample size.

2.7 Practical sampling

2.7.1 The first stage sample - list-based sampling

The first stage sample can be drawn from a list of all communities. The list-based sample is a simple systematic sample taken from a complete list of communities in the survey area sorted by one or more non- overlapping spatial factors (such as administrative units or electoral wards) in the survey area. *Population proportional sampling* (PPS) is not used since this would concentrate the sample in the larger communities.

Below is a worked example of how a RAM-OP first stage, list-based sample can be drawn from a survey area composed of 67 villages.

Step 1: Calculate the *sampling interval* by dividing the total villages in the survey area (67 villages) with the number of villages to be drawn from the sample (16 villages).

Sampling Interval
$$= \left\lfloor \frac{N_{villages}}{N_{sample}} \right\rfloor = \left\lfloor \frac{67}{16} \right\rfloor \approx \lfloor 4.19 \rfloor \approx 4$$

The sampling interval needs to be a whole number. Remember to always round down when calculating the sampling interval to the nearest whole number.

Step 2: Choose a random starting point between 1 and sampling interval. In this example, this would be a random number between 1 and 4.

A random number can be selected through simple lottery (i.e., draw from a lot of 4 numbered from 1 to 4). A standard spreadsheet software can also be used to draw the random number using the RANDBETWEEN function as follows:

RANDBETWEEN(1, 4)

Step 3: Using the *random starting point* and the *sampling interval*, select the sampling villages from a list of all villages organised/sorted by a **non-overalapping** spatial factor such as district or sub-district.

This procedure will sometimes select more than 16 communities. In this example, seventeen villages (i.e. at positions 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, and 66 in the list) will be selected. When this happens you should sample **all** of the selected communities.

Figure 2.4: Selection of sampling villages using lists

Figure 2.5: Selection of sampling villages using maps

2.7.2 The first stage sample - map-based sampling

An alternative approach to list-based sampling is to use map-based sampling. The map-based (CSAS) sample selects communities from the centre of squares of a grid drawn over a map. The map must be sufficiently well made and of sufficiently large scale to show the position of **all** communities in the survey area.

A square grid is drawn over the map. The size of the grid squares should be small enough so that the number of squares covering the survey area is the same as (or very similar to) the number of communities that you plan to sample. You may need to experiment with different grid sizes to achieve this. Figure 2.6 shows an example map and grid with m = 16 grid squares.

The sample is drawn by selecting the community that is located closest to the centre of each grid square:

If two or more villages are located the same distance from the centre of a grid square then

Figure 2.6: Drawing a square grid over the map

a single village is picked at random, by tossing a coin for example.

Figure 2.7 shows the sample selected by this process for the area shown in Figure 2.6.

Both the list-based and the map-based (CSAS) sampling methods spread the sample of communities evenly across the entire survey area. Each community has an equal chance of being included in the sample. Population proportional sampling (PPS) is not used since this would concentrate the sample in the larger communities.

The same method can be used when sampling in urban contexts. Figure 2.8 shows a sample drawn from a list of census enumeration areas sorted by administrative district. Figure 2.9 shows a sample drawn using the map- based (CSAS) method. In both cases the primary sampling units (PSUs) are census enumeration areas.

Note: In this example twenty-one (21) blocks have been selected. It can be difficult to achieve exactly the number of blocks that you need when using this type of sample. It is best to select more rather than fewer blocks than you need Here we would take our sample as n = 10 individuals from m = 21 blocks (overall n = 210).

Figure 2.7: Drawing the first-stage CSAS sample

Figure 2.8: Example of an urban sample (list-based)

Figure 2.9: Example of an urban sample (map-based)

Figure 2.10: Example of a ribbon of dwellings

Figure 2.11: Example of a cluster of dwellings

2.7.3 The second stage (within-community) sample

The second stage (within-community) sample uses a map-segment-sample approach:

Map: Make a rough map of the community to be sampled. It is helpful to think of communities as being made of ribbons (i.e. lines of dwellings located along roads, tracks, or rivers) and clusters of dwellings. Here is an example of a ribbon of dwellings:

Here is an example of a cluster of dwellings:

Segment: Divide the community into ribbon and cluster segments defined by the physical layout of the community being sampled.

Sample: Ribbons and clusters are sampled in different ways:

- Ribbons are sampled using systematic sampling.
- Clusters are sampled using a random walk method.

Note: If a small community is selected that is likely to have fewer than the required number of eligible persons then **all** eligible persons in that community are sampled by moving door-to-door.

Figure 2.12: Example of a cluster of dwellings

Figure 2.13: Example of a set of clusters of dwellings

2.8 Mapping the community - single and multiple clusters

Some communities consist of a single cluster of dwellings:

or a set of clusters of dwellings:

For communities (or parts of communities) structured in this way we use a sampling method called the **random walk**.

2.8.1 Mapping the community - ribbon communities

Ribbon communities have dwellings arranged in a line:

Figure 2.14: Dwellings arranged in a line

Figure 2.15: Dwellings arranged in several lines

or in a several lines:

For communities (or parts of communities) structured in this way we use a sampling method called **systematic sampling**.

2.8.2 Mapping the community - mixed communities

Some communities are a mixture of clusters and ribbons:

For mixed communities we use a mixture of the **random walk** method (in the clusters) and **systematic sampling** (along the ribbons).

Segmentation involves dividing a community into several parts and taking part of the within-community sample from each **segment**. With simple communities, segmentation is not required and we take a single sample from the entire community using the appropriate sampling method.

Figure 2.16: Mixture of clusters and ribbons

2.8.3 Segmentation

For more complicated communities we divide the community into several parts or segments, such as a community made up of several clusters:

or a community made up of several ribbons:

or a mixed community:

We take a small sample from each segment using the appropriate sampling method.

For example, with a community made up of three segments:

we would take one third of the overall sample from each segment.

If the within-community sample size is twelve eligible subjects. we would sample four eligible subjects from each segment (i.e. 12/3 = 4).

Dividing the sample up in this way means that we will sample from every part of the community rather than just one part of the community.

When taking the sample we use the random walk method to take part of the sample from clusters and the systematic sampling method to take part of the sample from ribbons.

Segments should be either ribbons or clusters but should **never** contain both a ribbon and a cluster. This is because clusters and ribbons are sampled in different ways.

A dwelling can only belong to one segment. Segments should **not** overlap.

2.8.4 Sample dwellings

All segments should be sampled.

If, for example, there are five segments in a community:

and the within-community sample size is twelve eligible subjects, then you would plan to sample two eligible subjects from each segment (i.e. 12/5 = 2.4 rounded down to two) and, if necessary, return to the **largest** segment to complete the sample.

All segments should be sampled, even if this means that you take a larger sample than you expected to.

Remember that different types of segment are sampled in different ways:

- Dwellings in **cluster segments** are sampled using a method called the **random walk**. This involves sampling houses by walking in random directions within the cluster.
- Dwellings in **ribbon segments** are sampled using a method called **systematic sampling**. This involves sampling houses at regular intervals along the ribbon.

We will look at each of these sampling methods in turn.

2.8.5 Random walk sampling

The **random walk** method is used to sample dwellings in **cluster segments**. Sampling proceeds as follows:

- 1. Move to the approximate centre of the cluster.
- 2. Select a **random direction** by spinning a bottle on the ground. The neck indicates the **sampling direction**. This is the direction you should walk in order to sample a dwelling. Walk in the sampling direction counting the dwellings that you pass. Sample the third **dwelling**. If there are no eligible persons in the selected dwelling then sample the **nearest** dwelling with an eligible person. Sample **all** eligible persons in the selected dwelling.
- 3. Apply the survey questionnaire for all eligible persons in the selected dwelling.
- 4. Select the next dwelling to sample by spinning a bottle and walking in the indicated direction. Count the dwellings you pass. Sample the **third** dwelling. If there are no eligible persons in the selected dwelling then sample the **nearest** dwelling with an eligible person. Sample all eligible persons in the selected dwelling. If you reach the edge of the cluster segment then return to the centre of the cluster and repeat step (2) above. Remember to keep count of the number of eligible persons sampled from the segment.
- 5. Stop sampling in the segment when you have sampled the required number of eligible persons from the segment. Since you sample **all** eligible persons in a selected dwelling, you may sample a few more eligible persons than expected. This is OK. Always sample **all** eligible persons in a selected dwelling.

If, when you have sampled all segments, you have not sampled twelve eligible persons, you should return to the **largest** segment to finish sampling using the appropriate sampling method.

The random walk method is illustrated in Figure 5.

2.8.6 Systematic sampling

The systematic sampling method is used to sample houses in ribbon segments.

Sampling proceeds as follows:

- 1. Move to one end of the ribbon segment.
- 2. Walk to the other end of the segment counting the houses that you pass.
- 3. Calculate the **step size** by dividing the number of dwellings in the segment by the required sample size for the segment. Use the **whole number** part of the result only. Do **not** round up.

- 4. Pick a random number between one and the step size. This is your **starting point**. Select the first dwelling to sample by walking along the segment counting the dwellings that you pass and sample the dwelling indicated by the **starting point**. If there are no eligible persons in the selected dwelling then sample the **nearest** dwelling in any direction with an eligible person. Sample **all** eligible persons in the selected dwelling.
- 5. Select the next dwelling to sample by walking along the segment. Count the dwellings that you pass. Sample the dwelling indicated by the **step size**. If there are no eligible persons in the selected dwelling then sample the **nearest** dwelling in any direction with an eligible person. Sample **all** eligible persons in the selected dwelling.
- 6. Stop sampling in the segment when you reach the end of the ribbon segment. This may mean that you sample extra eligible persons. This is OK. Do **not** stop sampling from a ribbon until you reach the end of the ribbon.

If, when you have sampled all segments, you have not sampled twelve eligible persons, you should return to the **largest** segment to finish sampling using the appropriate sampling method.

The systematic sampling method is illustrated in Figure 6.

Indicators

The RAM-OP questionnaire

Datasets

Practical Fieldwork

RAM-OP Software

7.1 Data entry

7.2 Data analysis

This manual covers analysing your data using the **RAnalyticFlow** workflow. An **RAnalyticFlow** workflow may be thought of as an "app" that makes it easy to analyse your survey data.

To use the **RAnalyticFlow** workflow you must install:

- The *R Language for Data-Analysis and Graphics* (R): This is the "engine" which does all the work of analysing your data. You can get the R installation program from: http://cran.r-project.org. Following are links to download operating sofware-specific versions of R:
 - Download R for Linux
 - Download R for (Mac) OS X
 - Download R for Windowx
- R packages (libraries of functions needed to work with the RAnalyticFlow workflow) : You can install these from within R using the Package Installer function within R. The libraries needed are:

Package	Comments
rJava	Required: Used by RAnalyticFlow
JavaGD	Required: Used by RAnalyticFlow
$\operatorname{codetools}$	Required: Used by RAnalyticFlow
$\mathbf{foreign}$	Required: Opens EpiData (REC) files
car	Required: Used for PROBIT estimator
$\operatorname{ggplot} 2$	Desirable: Provides many plotting functions

Package	Comments
data.table	Desirable: Speeds up working with large dataset

The Package Installer function can be called in R using the following command:

The repos argument in the R command above specifies the CRAN mirror from which you to download the package/s you want to install. Here we specify the cloud-based mirror for CRAN provided by RStudio. If unspecified, the installiation process will prompt you to select a mirror from which to download packages from. If you already know the URL of the CRAN mirror you want to use, specify this in the repos argument.

Note that **RAnalyticFlow** may require you to have **Java** installed. Check the instructions on the **RAnalyticFlow** download page and on this starter guide.

All of this software is open source and free to download, copy, and use. It will run on Windows, Mac OS X, and Linux (and other UNIX-like) operating systems. Your ICT department should be able to help you with installing this software.

In addition you will also need a copy of the **RAnalyticFlow** workflow and supporting files. These are available from:

http://www.brixtonhealth.com/ramOP.rflow.zip

You may need to extract the file from the ZIP archive before use if this is not done automatically.

Before starting to analyse your data you should create a project directory or project folder. This is just a normal folder or directory that can be created using your usual file manager (e.g. Windows ExplorerTM in WindowsTM or the FinderTM in Macintosh OS-XTM). The

Figure 7.1: Directory structure of RAM-OP RAnalyticFlow package

Figure 7.2: Creating an RAnalyticFlow project

project directory or project folder should contain:

- 1. Your PSU file (here we assume this file is called testPSU.csv but it could have any name). This file must be a comma-separated-value (CSV) file.
- 2. Your survey data file (here we assume this file is called testSVY.rec but it could have any name). This file can be an EpiData (REC) file or a comma-separated-value (CSV) file.
- 3. The language file (always called ramOP.language.csv). This file provides text that is used in reports and graphics. The purpose of this file is to make the data analysis software produce reports in any language. This file must be a comma-separated-value (CSV) file.
- 4. A copy of the file ramOP.rflow.

When you have created the project directory or project folder with the required files you can start RAnalyticFlow.

Note: The testSVY.rec and testPSU.csv files are example data files and are distributed with the **RAnalyticFlow** workflow. You can use these files to practice analysing data using **RAnalyticFlow**, and as examples of RAM-OP survey data and PSU files.

Before you start work you will need to create a project for your survey:

- 1. Click the **New Project...** button
- 2. Give your project a useful (i.e. descriptive and memorable) name. This might be a name that describes the survey. For example, if the survey was done in the Kereinik locality of West Darfur in December 2015 you might use the name WD.Kereinik.Dec2015.RAMOP
- 3. Give the location of your project directory or project folder. This is the directory or folder which contains your survey data file, your PSU file, the RAM-OP language file, and a copy of **RAMOP.rflow** (see previous page). The location of the project

Figure 7.3: Open an RAnalyticFlow workflow

Figure 7.4: Run an RAnalyticFlow workflow

directory or project folder (labeled "Path" by the software) that **RAnalyticFlow** selects automatically will almost always be wrong. You need to specify this manually.

4. Click the **OK** button

Double click the item named **ramOP.rflow** shown in the file manager pane of the **RAnalyticFlow** window. This will open the data-analysis workflow which will be shown in the workflow viewer / editor window of the **RAnalyticFlow** window.

Once you have opened the workflow you need to initialise it (i.e. load libraries, useful analysis function, and initialise the workspace for a new analysis):

Once this is done, you should:

- 1. Retrieve your survey data. This can be in EpiDat (REC) format or CSV format. Select and run the appropriate **Survey Data** node and select the survey data file.
- 2. Retrieve the PSU date data. Select and run the **PSU Data** node and select your PSU file.
- 3. Produce the survey report and graphics. Select and run the **Report** node. This will

37

take some time to complete because the analysis uses computer intensive techniques to make best use of the available data. The Report node/icon will have black lines around it has completed running the report.

Conclusion

We live in an ageing world, where people aged 60 or over will be 2 billion or about 22% of the world's population by 2050.

Currently, two in three people aged 60 years or older live in developing countries. By 2050, nearly four in five older people will be living in the developing world.

The changing demographics of ageing combined with the increasing number of disasters will exert a disproportionate impact on the world's oldest and poorest.

In this context, identifying the needs of older people as accurately as possible is a necessity. More and more donors and UN agencies are now willing to include older people in their programmes. Age markers, to complement gender markers, will be disseminated very soon

RAM-OP is offering a fast, robust, reliable, tested and user-friendly way of assessing the needs of older people. It can be used in humanitarian situations as well as in development contexts. The modular structure of RAM-OP allows for adaptations, making it exhaustive or limited to essential indicators according to the immediate needs.

As more organisations start to use it, RAM-OP will evolve and improve. New versions of RAM-OP can be created (for example, RAM-OP for refugee or displaced people camps). We wish that a greater number of actors will start using RAM-OP and make it their own.