Regular Expression Matching

Difficulty: Hard

这是一道正则表达式匹配的问题。和普通的字符串匹配的区别在于,由于引入了通配符,就从一个DFA变成了NFA。理论上是可以通过将NFA转换为DFA来做的,判定算法的复杂度应该是 $O(ns^2)$,这里n是字符串长度,s为NFA状态数目。

这里采用的是dp的思想。首先将模式串p分段为x或x*的形式,这里的x表示任意字母或"."。例如,样例5中的

mis*is*p*.

被分成

"m", "i", "s*", "i", "s*", "p*", "."

然后用两个数组来记录上面分段的结果。数组np记录所有的分段中的字母,即

np = ["m", "i", "s", "i", "s", "p", "."]

用数组star记录对应位置的字母是否跟有星号*。

star = [false, false, true, false, true, true, false]

接下来就是dp的部分了。用一个矩阵d来记录匹配的结果。 d_{ij} 表示从 $s[0,\cdots,j-1]$ 与 $p[0,\cdots,i-1]$ 匹配。初始 d_{00} 为true,其余元素均为false. 这里的 d_{00} 作为哨兵,可以简化边界条件的判断。

然后就可以写 d_{ij} 的递推式了。下面所有的情况都是在字符 p_i 与 s_j 的条件下讨论的,否则 d_{ij} 一定为false.

- Case 1: d_{ij} 为true,那么 $d_{i+1,j+1}$ 也为true。这是因为, $s[0,\cdots,j-1]$ 与 $p[0,\cdots,i-1]$ 匹配, p_i 又与 s_j 匹配,所以 $s[0,\cdots,j]$ 与 $p[0,\cdots,i]$ 匹配。
- Case 2: star[i]为true,同时 $d_{i+1,j}$ 为true,那么 $d_{i+1,j+1}$ 也为true。这是因为, $p[0,\cdots,i]$ 与 $s[0,\cdots,j-1]$ 匹配,而p[i]又含有星号,也就是可以继续向后匹配,所以 $p[0,\cdots i]$ 与 $s[0,\cdots,j]$ 匹配。
- Case 3: 其它情况,依次遍历 d_{ij} , $d_{i-1,j}$, \cdots , d_{kj} , 其中 $0 \le k \le i$, 满足 $\forall x, k \le x \le i$, star[x-1]为true,同时 $\forall x, k < x \le i$, d_{xj} 为false, d_{kj} 为true。这种情况对应了 p_i 前面有数个连续的带星号的字符 $p[k-1,\cdots,i-1]$,这些字符都没有和s中的任何字符匹配。例如,p="a*b*c",s="c",这种情况下,"a*","b*"都没有匹配到任何字符,p中的"c"与s中的"c"匹配。

当计算完整个矩阵d后,显然如果d最右下角的元素为true,就意味着p与s全部 匹配了。除此以外,类似于上述Case 3,如果p的末尾有一连串连续的带星号的字符 $p[i,\cdots,m]$,并且这些字符都没有匹配,那么如果 $d_{i-1,n}$ 为true,同样是可以完全匹配的。例如p="ab*c*",s="a"。

最后放上样例4对应的矩阵d。

s="aab", p="c*a*b"

		A	A	В
	\checkmark			
C*				
a*		✓	\checkmark	
b				\checkmark