DATA SCIENCE LAB

CYCLE-3

Mathplotlib

1. Sarah bought a new car in 2001 for \$24,000. The dollar value of her car changed each year as shown in the table below.

```
Value of Sarah's Car
```

```
Year Value
```

2001-\$24,000

2002-\$22,500

2003- \$19,700

2004- \$17,500

2005-\$14,500

2006-\$10,000

2007-\$5,800

Represent the following information using a line graph with following style properties

- a) X-axis Year
- b) Y -axis Car Value
- c) title -Value Depreciation (left Aligned)
- d) Line Style dashdot and Line-color should be red
- e) Point using * symbol with green color and size 20

Subplot() provides multiple plots in one figure.

```
import matplotlib.pyplot as plt
year=[2001,2002,2003,2004,2005,2006,2007]
car_value=[24000,22500,19700,17500,14500,10000,5800]
plt.figure(figsize=(8,4))
plt.subplot(1,1,1)
plt.plot(year,car_value,color='red',linestyle='-.',label='Car Value')
plt.scatter(year,car_value,color='green',marker='*',s=20,label='Data Point')
plt.xlabel('Year')
plt.ylabel('Car Value')
plt.title('Value Depreciation', loc='left')
plt.legend()
plt.show()
```


2. Following table gives the daily sales of the following items in a shop.

Day	Mon	Tues	Wed	Thurs	Fri		
Drinks	300	450	150	400	650		
Food	400	500	350	300	500		

Use subplot function to draw the line graphs with grids(color as blue and line style dotted) for the above information as 2 separate graphs in two rows

a) Properties for the Graph 1:

X label- Days of week

Y label-Sale of Drinks

Title-Sales Data1 (right aligned)

Line -dotted with cyan color

Points- hexagon shape with color magenta and outline black

b) Properties for the Graph 2:

X label- Days of Week

Y label-Sale of Food

Title-Sales Data2 (center aligned)

Line -dashed with yellow color

Points- diamond shape with color green and outline red

```
import matplotlib.pyplot as plt
days = ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri']
drinks sales = [300, 450, 150, 400, 650]
food sales = [400, 500, 350, 300, 500]
plt.figure(figsize=(8, 8))
plt.subplot(2, 1, 1)
plt.plot(days, drinks sales, linestyle='dotted', color='cyan', label='Sales Data1',
marker='H', markersize=8,
      markerfacecolor='magenta', markeredgecolor='black')
plt.xlabel('Days of the Week')
plt.ylabel('Sale of Drinks')
plt.title('Sales Data1', loc='right')
plt.grid(color='blue', linestyle='--')
plt.legend()
plt.subplot(2, 1, 2)
plt.plot(days, food_sales, linestyle='--', color='yellow', label='Sales Data2', marker='D',
markersize=8,
```

```
markerfacecolor='green', markeredgecolor='red')
plt.xlabel('Days of the Week')
plt.ylabel('Sale of Food')
plt.title('Sales Data2', loc='center')
plt.grid(color='blue', linestyle='--')
plt.legend()
plt.tight_layout()
plt.show()
```


3. Create scatter plot for the below data:(use Scatter function)

	-	-	-	_		-		-	-		-	
Product	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Affordable Segment	173	153	195	147	120	144	148	109	174	130	172	131
Luxury Segment	189	189	105	112	173	109	151	197	174	145	177	161
Super Luxury Segment	185	185	126	134	196	153	112	133	200	145	167	110

Create scatter plot for each Segment with following properties within one graph

- a) X Label- Months of Year with font size 18
- b) Y-Label- Sales of Segments
- c) Title -Sales Data
- d) Color for Affordable segment- pink
- e) Color for Luxury Segment- Yellow
- f) Color for Super luxury segment-blue

```
import matplotlib.pyplot as plt
month=["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"]
affordable_segment = [173,153,195,147,120,144,148,109,174,130,172,131]
luxury_segment = [189,189,105,112,173,109,151,197,174,145,177,161]
super_luxury_segment = [185,185,126,134,196,153,112,133,200,145,167,110]
plt.figure(figsize=(10, 6))
plt.scatter(month,affordable_segment,color='pink',label='Affordable',s=100)
plt.scatter(month,super_luxury_segment,color='pink',label='Luxury',s=100)
plt.scatter(month,super_luxury_segment,color='blue',label='Super Luxury',s=100)
plt.xlabel('Months of Year', fontsize=18)
plt.ylabel('Sales of Segments')
plt.title('Sales Data', fontsize=18)
plt.legend()
plt.show()
```


4. Display the above data using multiline plot(3 different lines in same graph) Display the description of the graph in upper right corner(use legend()) Use different colors and line styles for 3 different lines.

```
import matplotlib.pyplot as plt
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
affordable segment = [173,153,195,147,120,144,148,109,174,130,172,131]
luxury segment = [189,189,105,112,173,109,151,197,174,145,177,161]
super luxury segment = [185,185,126,134,196,153,112,133,200,145,167,110]
plt.figure(figsize=(10, 6))
plt.plot(months, affordable segment, label='Affordable', color='red', linestyle='-',
marker='o')
plt.plot(months, luxury segment, label='Luxury', color='green', linestyle='--', marker='s')
plt.plot(months, super luxury segment, label='Super Luxury', color='blue', linestyle='-.',
marker='^')
plt.xlabel('Months of Year')
plt.ylabel('Sales of Segments')
plt.title('Sales Data')
plt.legend(loc='upper right')
plt.show()
```


x= y=166.524

5. 100 students were asked what their primary mode of transport for getting to school was. The results of this survey are recorded in the table below. Construct a bar graph representing this information.

Mode of transport	Frequency				
Walking	29				
Cycling	15				
Car	35				
Bus	18				
Train	3				

Create a bar graph with

- X axis -mode of Transport and Y axis 'frequency'
- Provide appropriate labels and title
- Width .1, color green

```
import matplotlib.pyplot as plt
modes_of_transport=["Walking","Cycling","Car","Bus","Train"]
frequency=[29,15,35,18,3]
plt.figure(figsize=(8, 6))
plt.bar(modes_of_transport,frequency,width=0.1,color='green')
plt.xlabel('Mode of Transport')
plt.ylabel('Frequency')
plt.title('Primary mode of Transport to School')
plt.show()
```


6. We are provided with the height of 30 cherry trees. The height of the trees (in inches): 61, 63, 64, 66, 68, 69, 71, 71.5, 72, 72.5, 73, 73.5, 74, 74.5, 76, 76.2, 76.5, 77, 77.5, 78, 78.5, 79, 79.2, 80, 81, 82, 83, 84, 85, 87. Create a histogram with a bin size of 5.

CODE:

Import pandas and seaborn packages:

- 7. Using the pandas function read csv(), read the given 'iris' data set.
 - i) Display Shape of the data set.
 - ii) First 5 and last five rows of data set(head and tail).
 - iii) Size of dataset.
 - iv) No. of samples available for each variety.
 - v) Description of the data set(use describe).

```
print("Name:Gopika Unnikrishnan\nRoll No:22MCA030\nCourse Name:DATA SCIENCE
LAB\nCourse Code:20MCA241\nDate:17/10/2023")
import pandas as pd
iris data=pd.read csv('iris.csv')
print("\ni) Shape of the dataset:")
print(iris data.shape)
print("\nii) First 5 and last five rows of data set(head and tail):")
print(iris data.head())
print(iris data.tail())
dataset size = iris data.shape[0]
print("\niii)Size of the dataset:", dataset size)
sample_counts = iris_data['variety'].value_counts()
print("\niv) Number of samples available for each variety:")
print(sample counts)
dataset description = iris data.describe()
print("\nv) Description of the dataset:")
print(dataset description)
```

OUTPUT:

Roll No:22MCA030

Name:Gopika Unnikrishnan

```
Course Name:DATA SCIENCE LAB
Course Code:20MCA241
Date:17/10/2023
i) Shape of the dataset:
(150, 5)
ii) First 5 and last five rows of data set(head and tail):
                                          0.2 Setosa
    sepal.length sepal.width petal.length petal.width variety
                     3.0
                                           2.3 Virginica
                                5.0
                                           1.9 Virginica
                                           2.0 Virginica
                                           2.3 Virginica
                                           1.8 Virginica
iii)Size of the dataset: 150
iv) Number of samples available for each variety:
variety
Setosa
Versicolor
Virginica
Name: count, dtype: int64
v) Description of the dataset:
        sepal.length sepal.width petal.length petal.width
          150.000000
                       150.000000
                                        150.000000
                                                      150.000000
            5.843333
                           3.057333
                                          3.758000
                                                         1.199333
mean
std
            0.828066
                           0.435866
                                          1.765298
                                                         0.762238
                                          1.000000
min
            4.300000
                           2.000000
                                                         0.100000
25%
             5.100000
                           2.800000
                                           1.600000
                                                         0.300000
50%
            5.800000
                           3.000000
                                          4.350000
                                                         1.300000
75%
             6.400000
                           3.300000
                                          5.100000
                                                         1.800000
max
             7.900000
                           4.400000
                                          6.900000
                                                         2.500000
```

8. Use pairplot() function in seaborn to display pairwise relationships between attributes. Try different kind of plots {'scatter', 'kde', 'hist', 'reg'} and different kind of markers.

CODE:

```
import seaborn as sns
import matplotlib.pyplot as plt
iris = sns.load_dataset("iris")
sns.pairplot(iris, kind='scatter', markers='s')
plt.suptitle("Pairwise Relationships (Scatter - Squares)")
plt.show()
sns.pairplot(iris, kind='kde', markers='o')
plt.suptitle("Pairwise Relationships (KDE - Circles)")
plt.show()
sns.pairplot(iris, kind='hist', markers='D')
plt.suptitle("Pairwise Relationships (Histograms - Diamonds)")
plt.show()
sns.pairplot(iris, kind='reg', markers='x')
plt.suptitle("Pairwise Relationships (Regression - X)")
plt.show()
```


9. Using the iris data set,get familiarize with functions:

- 1) displot()
- 2) histplot()
- 3) relplot()

CODE:

import seaborn as sns
import matplotlib.pyplot as plt
iris = sns.load_dataset("iris")
sns.displot(iris['sepal_length'], kde=True)
plt.title("Univariate Distribution Plot (KDE) for Sepal Length")
plt.show()
sns.histplot(iris['sepal_width'], kde=True)
plt.title("Histogram for Sepal Width")
plt.show()
sns.relplot(x='sepal_length', y='sepal_width', data=iris, kind='scatter', hue='species')
plt.title("Relational Plot: Sepal Length vs Sepal Width (Colored by Species)")
plt.show()

