Learning Hyperparameters using Bayesian Optimization with Optimized Precision

Mattias Villani

Department of Statistics Stockholm University

Overview

- Hyperparameter learning
- Gaussian processes and Bayesian optimization
- BOOP: Bayesian Optimization with Optimized Precision
- Applications in Econometrics

■ Slides: http://mattiasvillani.com/news

Joint work with

- Oskar Gustafsson, Dept of Statistics, Stockholm University
- Pär Stockhammar, Sveriges Riksbank

Parameters and Hyperparameters - examples

- Distinction:
 - **Parameters**, β , typically top level, high-dim.
 - **Hyperparameters** θ , typically low level, low-dim.
- Bayesian vector autoregressive models (VAR) models

$$oldsymbol{y}_t = oldsymbol{\mu} + \sum_{k=1}^K oldsymbol{A}_k (y_{t-k} - oldsymbol{\mu}) + oldsymbol{arepsilon}_t, \quad oldsymbol{arepsilon}_t \stackrel{ ext{iid}}{\sim} oldsymbol{\mathcal{N}}(oldsymbol{0}, oldsymbol{\Sigma})$$

Hyperparameters $\boldsymbol{\theta} = (\lambda_1, \lambda_2, \lambda_3)$. Prior $\operatorname{Std}(A_{ii}^{(k)}) = \frac{\lambda_1 \lambda_2}{\iota \lambda_2}$.

State-space models

$$y_t = h(x_t) + \varepsilon_t, \quad \varepsilon_t \stackrel{\text{iid}}{\sim} N(0, \sigma_{\varepsilon}^2)$$

 $x_t = g(x_{t-1}) + \nu_t \quad \nu_t \stackrel{\text{iid}}{\sim} N(0, \sigma_{\nu}^2)$

- **DSGE**. β persistence/variance of shocks, θ steady state.
- **Deep neural net**: β are weights, θ is network architecture.

Hyperparameter optimization

- Practitioners prefer to fix θ "once and for all". Move on to parameter inference, model checking, forecasting, policy etc
- BVARs: "... use the hyperparameters from Doan et al (1984)"
- Maximize marginal likelihood

$$\hat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} \; \log p(\boldsymbol{Y}_{1:T}|\boldsymbol{\theta})$$

Empirical Bayes: maximize marginal posterior $p(\theta|\mathbf{Y}_{1:T})$

$$\hat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} \; \log p(\boldsymbol{Y}_{1:T}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})$$

22-variable steady-state BVAR

	Standard	BO-EI	BOOP-EI	Medium BVAR
Log ML	-7576.31	-7402.50	-7401.09	-7532.61
Sd log ML	0.54	0.81	0.16	0.49
Gibbs iterations		3.75×10^{6}	1.8×10^{6}	
CPU time (h)		64.90	20.22	
$ heta_1$	0.1	0.47	0.56	0.27
$ heta_2$	0.5	0.06	0.05	0.41
θ_3	1	1.46	1.51	0.76

Hyperparameters - It's complicated

- Weakly identified flat regions
- Weakly identified ridges
- Multimodal

Hyperparameter optimization is tricky

- Marginal likelihood often intractable:
 - ▶ analytical approximation (Laplace, INLA, Variational inference)
 - ▶ HMC/MCMC simulation to compute $p(\mathbf{Y}_{1:T}|\boldsymbol{\theta})$.
- Typical hyperparameter optimization setup:
 - costly function evaluations
 - noisy function evaluations (marginal likelihood from MCMC)
 - function argument is low-dimensional.
- **Bayesian optimization** well suited for all three issues.
- Treats the underlying function as unknown and puts a Gaussian process prior on it. Bayesian numerics.

Gaussian processes regression

■ Gaussian process regression

$$y_i = f(\mathbf{x}_i) + \epsilon_i, \qquad \epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma_n^2)$$

■ Gaussian process prior over the space of functions

$$f(\mathbf{x}) \sim \mathcal{GP}\left(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')\right)$$

Squared exponential covariance function

$$k(\mathbf{x}, \mathbf{x}') \equiv \operatorname{Cov}(f(\mathbf{x}), f(\mathbf{x}')) = \sigma_f^2 \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\ell^2}\right)$$

Posterior of f(x) is also a Gaussian process.

Bayesian optimization

Aim: maximization of expensive function

$$\mathrm{argmax}_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$$

- Bayesian optimization:
 - ▶ Assume $f \sim \mathcal{GP}$
 - \triangleright Evaluate f at $x_1, x_2, ..., x_n$.
 - ▶ Update to posterior distribution $f|x_1,...,x_n \sim \mathcal{GP}$.
 - ▶ Use posterior of f to find a new x_{n+1} .
 - Iterate until convergence.
- Find new x_{n+1} by optimizing an acquisition function.

Acquisition function

■ Probability of Improvement (PI)

$$a(x_{n+1}) \equiv \Pr(f(x_{n+1}) > \max(f_{1:n}) \mid f_{1:n})$$

- Expected Improvement (EI) takes also into account the size of the improvement.
- Expected Improvement per Second takes a known function evaluation cost into account.
- Non-convex acquisition function optimization, but deterministic and cheaper than original problem.
 Particle swarm optimization.

BO - expected improvement

Marginal likelihood estimated from sampling

- Marginal likelihood $f(\theta) \equiv \log p(\mathbf{Y}_{1:T}|\theta)$ estimated by:
 - ► Chib (Gibbs) and Chib-Jeliazkov (MH)
 - ► Importance sampling
 - Particle filters
- Noisy evaluations $\hat{f}(\theta)$.
- **Precision** of $\hat{f}(\theta)$ controlled via number of samples G.
- **Sampling efficiency,** $\mathbb{V}(\hat{f}(\theta))$ varies over θ -space.
- **Stopping early** when probability of improvement (PI) is low.

Bayesian Optimization with Optimized Precision

- **Early stopping of evaluation** when $PI < \alpha$.
- **El** per second, but with G predicted for every θ .
- **BOOP** acquisition function from baseline a(x) (e.g. EI):

$$\tilde{a}_{\alpha}(\mathbf{x}) = \frac{a(\mathbf{x})}{\hat{G}_{\alpha}(\mathbf{x})}$$

- Early stopping affects the **planning of future computations**.
- \blacksquare BOOP can try heta with low EI, if expected to be cheap.
- Heteroscedastic GP regression model for the estimates

$$\hat{f}(\boldsymbol{\theta}_i) = f(\boldsymbol{\theta}_i) + \epsilon_i, \qquad \epsilon_i \stackrel{\text{iid}}{\sim} N\left(0, \sigma^2(\boldsymbol{G}_i)\right)$$

■ GP for predicting the number of samples *G*:

$$\ln G_i = h(\mathbf{z}_i) + \varepsilon_i \qquad \varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \psi^2),$$

where z are variables with predictive power for G.

7-variable Steady-state BVAR

- 7 variable steady-state BVAR on US data.
- Gibbs sampling with Chib's marginal likelihood estimator.
- BO to find optimal prior hyperparameters $\theta = (\lambda_1, \lambda_2, \lambda_3)$.

7-variable BVAR - true ML surface vs predicted

FIGURE 9 Log marginal likelihood surfaces over a fine grid of (θ_1, θ_2) values. The hyperparameter values for the lag decay are (a) $\theta_3 = 0.76$, (b) $\theta_3 = 1$, and (c) $\theta_3 = 2$ (left to right). The red dot denotes the maximum log marginal likelihood value for the given θ_3 , and the black dot, in the middle plot, shows the standard values.

FIGURE 10 GP predictions of the hyperparameter surfaces in Figure 9 based on 250 evaluations for one BOOP-EI run. The hyperparameter for the lag decay is $\theta_3 = 0.76$, 1, and 2 (left to right). Red dot indicates the highest predicted value in the subplot, and the black dot, in the middle plot, shows the standard values.

22-variable steady-state BVAR

	Standard	BO-EI	BOOP-EI	Medium BVAR
Log ML	-7576.31	-7402.50	-7401.09	-7532.61
Sd log ML	0.54	0.81	0.16	0.49
Gibbs iterations		3.75×10^{6}	1.8×10^{6}	
CPU time (h)		64.90	20.22	
$ heta_1$	0.1	0.47	0.56	0.27
$ heta_2$	0.5	0.06	0.05	0.41
θ_3	1	1.46	1.51	0.76

TVP-SV BVAR [Chan and Eisenstat (2018, JAE)]

Time-varying parameter stochastic volatility BVAR:

$$A_{0,t}y_t = c_t + \sum_{k=1}^K A_{k,t}y_{t-k} + \varepsilon_t, \quad \varepsilon_t \stackrel{\mathrm{iid}}{\sim} N(0, \Sigma_t)$$

- Random walk evolution of $A_{k,t}$ and log variances.
- Three hyperparameters: prior mean of innovation variances $(c_t, A_t \text{ and } \Sigma_t)$.
- Marginal likelihood estimated by costly *IS*²-type algorithm.

	CE	BO1	BO2	BO3	BOOP1	BOOP2	BOOP3
Log ML	-1180.2	-1169.25	-1170.57	-1178.34	-1167.32	-1172.92	-1168.49
SE	0.12	0.89	0.49	0.32	1.24	0.47	1.60
$\theta_1 \times 10^3$	40	19.05	8.66	29.53	7.65	12.22	15.14
$\theta_2 \times 10^5$	40	9.81	10.65	11.07	10.26	7.06	8.70
$\theta_3 \times 10^3$	40	77.56	119.07	25.04	73.81	25.12	114.42
Iterations	-	67	35	46	81	44	157
CPU time (h)	-	83.40	42.47	56.25	34.90	22.49	77.89

TVP-SV BVAR

FIGURE 12 Predicted log marginal likelihood over the hyperparameters for stochastic volatility and the VAR dynamics for $\theta_1 = 0.0086$ (left), 0.05 (middle), and 0.1 (right). The mode in each plot is marked out by a red point. A distant local optimum is also marked out by an orange point.

Conclusions

- Bayesian optimization is an attractive method for costly, noisy, low-dimensional functions.
- Hyperparameter optimization using marginal likelihood estimated from MC sampling.
- We extend BO to exploit that the user controls the precision of the evaluations via the number of samples.
- Successful applications to steady-state and TVP-SV BVARs.
- Current work: applications to particle methods for challenging nonlinear and non-Gaussian state space models.