COMPS267F Chapter 1

Overview of Operating Systems

Dr. Andrew Kwok-Fai LUI

why studying OS?

My Short Answers

A good time to ask this question

- A few answer are provided for you
 - One most important software
 - Hardware is nothing
 - A major achievement in computing history
 - Effective use of computing resources
 - Techniques developed for OS are general and useful
 - Analysis of techniques and critical thinking

What are OS?

programmable computer systems

Programmability

- A computer that can be re-purposed
 - Game platform, word processor, slide presenter, ...
 - The program running determines the purposes

A Programmable Computer Systems

A Programmable Computer Systems

What is a Computer Program?

- Artefacts performs a purposefully designed sequence of operations
 - A programmable computer can do purposeful things
 - The purpose requires carefully designed sequence of operations
- What is a program?
 - Take over the control of a computer
 - The computer executes the instructions in programs
 - A program made up of instructions, each causing one or more computer operations

COMPS267F

the need for OS

An OS-less Computer System

How to use an OS-less computer system?

Serial Processing

An OS-less Computer System

It works well enough for making atomic bombs

Problems

Scheduling of usage and program setup time

Dr. Andrew Kwok-Fai Lui

Batch Systems

Use automation to solve the two problems

Batch Processing

COMPS267F

Dr. Andrew Kwok-Fai Lui

The Monitor

- A program residing in the computer memory
- Automates the setup and execution of programs
- Called batch processing
 - The Monitor is a early form of OS called Batch OS

Batch Systems

Use automation to solve the two problems

Batch Processing

COMPS267F

Dr. Andrew Kwok-Fai Lui

Uni-Programming

- Single programming (another name)
 - Only one program is running
 - Another program cannot run until the first program has finished
- Problems
 - The processor often got nothing to do
 - Most programs do not use the processor all the time
 - Doing I/O, reading data or writing data
 - The process should be made to do more work

Program A CPU IO CPU IO

Multi-Programmed Batch Systems

Use automation to solve the two problems

Multiprogrammed Batch Processing

Multi-Programming

The processor can execute another program if the current program is doing I/O

Processor utilization can be kept at a higher level when there are more programs

Dr. Andrew Kwok-Fai Lui COMPS267F

Multi-Programmed Batch Systems

Technical challenges

Benefits of Multiprogramming	Challenges to Overcome
Convenience to users. Able to do multiple tasks at the same time (multi-tasking)	Running multiple programs require a memory that is large enough to load multiple programs.
Increases the utilization of processors	Memory has to be managed so that each program can have its own space
Efficient in process execution	Memory of each program has to be secured to prevent other programs from attacking
	A large of memory is needed for effective multi- programming
	The monitor needs to manage the job scheduling effectively

Time Sharing Systems

- Interactions between users and computers are necessary
 - Batch processing does not allow user interaction
 - Response time
 - Users are unhappy if computer response is slow
- Time sharing systems allow for quicker responses
 - Now the standard for modern computing

Dr. Andrew Kwok-Fai Lui COMPS267F

Time Sharing Systems

Shorter response time due to more frequent but shorter running of Processor for each program

what is running a program

What is Running a Program?

- Can you give me an answer now?
- There are two different answers actually
 - From two different perspective
 - User perspective: Issued a command to execute a program
 - Processor perspective: Executing the instruction of a program
- They are not the same
 - The OS understands the difference between the two perspectives

Dr. Andrew Kwok-Fai Lui COMPS267F

What is Running a Program?

Dr. Andrew Kwok-Fai Lui

What is Running a Program by the Processor?

- Executes the instructions of difference programs
 - In a multi-programming systems
 - This moment, it executes a program
 - Next moment, it executes another program

What is Running a Program by the Processor?

- How the processor changes the program it is executing?
 - The Program Counter (PC)

Program Counter (PC) Address The process is 20000 Kernel **Processor** executing Program B 250000 Input Either a BRANCH Interpreter 200000 instruction occurs, or a Free system interrupt Memory 55000 The process is Program C 260000 **Processor** 50000 executing the Kernel Free (OS) Memory 30000 Program B 10000 The process is Program A 50000 **Processor** 0 executing Program C

The Hazards of the BRANCH Instruction

- The PC can only be changed by the BRANCH instructions (and similar instructions)
 - Any other possible way for the PC to change?
- Must be restricted due to security reasons
 - Depends on who you are (what program you are)
 - OS can freely change the programs
 - Start running a user program after loading
 - Resume running a user program after being suspended
 - Other user programs do not enjoy the same privilege
 - Can only jump to addresses of the program itself
 - The address of OS function calls

system interrupts

System Interrupts

- The most important mechanism in a running computer system
 - It is an event or signal
 - The system control goes back to the OS
 - The program counter is set to an address of the OS program

Dr. Andrew Kwok-Fai Lui COMPS267F

System Interrupts

Handling of Interrupts

System Interrupts

Handling of Interrupts

Importance of System Interrupts for Computer Systems

- The OS can regain control
 - Not possible to know how long a user program will run
 - Interrupts force suspension of user programs
- OS can deal with any issue
- Modern computer systems run in a cycle

Dr. Andrew Kwok-Fai Lui

Types of Interrupts

- Indicates something is happening or has happened
- Three types of interrupts
 - IO Interrupts or external interrupts
 - Internal or hardware interrupts
 - System clocks, serious errors
 - Software interrupts
 - User programs

Interrupt Service Routine (ISR)

- Interrupt Service Routine is a function that is designed to deal with a particular type of interrupts.
- The addresses of each ISR are stored in the Interrupt Vector Table (IVT)
 - Maps the interrupt type to the address of ISR.

COMPS267F

security issues in multi-programming systems

Security Issues

- Multiprogramming systems execute many user programs at a time
 - User programs should not be trusted
 - May attack the OS
 - May attack other user programs

Dual-Mode Protection

- The system can be in one of two modes
 - User mode
 - Running user programs limited privileges
 - Monitor mode
 - Can execute privileged instructions that can cause harm
- A monitor bit in the hardware that indicates the state
 - Hardware is safer and prevent attack
 - OS is in control of the computer system monitor mode
 - Before OS pass control to a user program switches to user mode
 - System call allows a user program asking the OS to perform privileged instructions in monitor mode

Memory Protection

- Preventing mishaps
 - Examples: accessing another program's data or modifying the interrupt vector
 - Define legal memory addresses
 - Range of must be managed by the OS
 - A base register and a limit register

Memory Protection

CPU Protection

- OS maintaining control of the computer systems
 - OS to regain control in regularly time intervals
 - A timer for user program
 - Time is up interrupt is generated OS regains control.
 - OS assigns a timer when a program is first executed.
 - The timer interrupts every second and the counter is decreased

case study: pseudo-multitasking in DOS

DOS

 Disk Operating System (DOS) is a famous operating system for IBM PC compatibles

```
C:\>dir
Volume in drive C is MS-DOS_6
Volume Serial Number is 40B4-7F23
Directory of C:\
DOS
            <DIR>
                          12.05.20 15:57
COMMAND
        COM
                   54 645 94.05.31 6:22
WINAZO
                    9 349 94.05.31 6:22
        386
CONFIG
        SYS
                      144 12.05.20 15:57
AUTOEXEC BAT
                      188 12.05.20
                                     15:57
       5 file(s)
                         64 326 bytes
                     24 760 320 bytes free
```

DOS

- Adopted by other personal computers
 - MS-DOS
 - Apple DOS
 - Included in Windows OS series

- https://github.com/microsoft/ms-dos
- Over 2000 games are also available in the Internet Archive

Apple II DOS

Execution Model of MSDOS

- Early versions did not support multi-tasking
 - One process is loaded into the memory and executed at one time
 - The OS is also loaded in the memory

Execution Model of MSDOS

COMPS267F Dr. Andrew Kwok-Fai Lui

end of user programs

- Multi-tasking is simulated with the Terminate and Stay Resident (TSR) mechanism
 - It is a system call that can be called by user programs
 - Modify the interrupt vector table so that one of the vector points to the user program

COMPS267F

- The system clock is involved
 - An interrupt is sent by system clock regularly (several times a second or more)
 - Every user program registered in the interrupt vector table is executed

Dr. Andrew Kwok-Fai Lui COMPS267F

