Pertidaksamaan Trigonometri

Untuk menyelesaikan pertidaksamaan trigonometri terdapat dua cara:

1. Menggunakan grafik fungsi trigonometri

- a) Sederhanakan fungsi trigonometri ke bentuk yang paling sederhana
- b) Gambar sketsa grafik fungsi trigonometrinya
- c) Gunakan grafik untuk menentukan batas-batasan nilai x yang memenuhi pertidaksamaan

2. Menggunakan garis bilangan

- a) Mengubah bentuk pertidaksamaan menjadi bentuk persamaan kemudian tentukan akar-akarnya
- b) Meletakkan akar-akar ke garis bilangan dan tetapkan tanda positif atau negatif pada garis bilangan
- c) Memberi tanda positif untuk penyelesaian pertidaksamaan yang bertanda ≥ atau >, tanda negatif untuk penyelesaian yang bertanda < atau ≤

Penyelesaian dari pertidaksamaan trigonometri ini dengan interval $0^{\circ} \le x \le 360^{\circ}$

$$\sin x \le \frac{1}{2}$$

Cara dengan grafik:

Gambar grafik $y = \sin x$

Cari tahu nilai x dari $\sin x = \frac{1}{2}$

$$x = 30^{\circ}, 150^{\circ}$$

Jika dilihat dari grafik nilai $\sin x \le \frac{1}{2}$ jika $0 \le x \le 30^\circ$ atau $150^\circ \le x \le 360^\circ$

Cara dengan garis bilangan:

Ubah pertidaksamaan $\sin x \le \frac{1}{2}$ menjadi persamaan $\sin x - \frac{1}{2} = 0$

Kemudian tentukan akar-akar persamaannya, $x = 30^{\circ}$ dan 150°

Akar-akarnya diletakkan di garis bilangan dan kita tetapkan tanda + atau - yang sesuai dengan $\sin x - \frac{1}{2}$

Dengan menguji nilai $x = 90^{\circ}$

$$\sin 90^{\circ} - \frac{1}{2} > 0$$
 berarti interval $30^{\circ} < x < 150^{\circ}$ bertanda +

Karena $sinx \le \frac{1}{2}$ berarti kita membutuhkan daerah dengan tanda negatif yaitu:

$$0^{\circ} \le x \le 30^{\circ}$$
 atau $150^{\circ} \le x \le 360^{\circ}$

Contoh Soal:

1)
$$\tan^4 x - 2\sec^2 x - 1 < 0$$
; $0^\circ < x < 180^\circ$

$$\Rightarrow \frac{\sin^4 x}{\cos^4 x} - \frac{2}{\cos^2 x} - 1 < 0$$

$$\Rightarrow \frac{\sin^4 x - 2\cos^2 x - \cos^4 x}{\cos^4 x} < 0$$
$$\Rightarrow \frac{(\sin^4 x - \cos^4 x) - 2\cos^2 x}{\cos^4 x} < 0$$

$$\Rightarrow \frac{(\sin^2 x + \cos^2 x)(\sin^2 x - \cos^2 x) - 2\cos^2 x}{\cos^4 x} < 0$$

$$\Rightarrow \frac{\sin^2 x - 3\cos^2 x}{\cos^4 x} < 0$$

 $\cos^4 x$ akan selalu positif

$$\cos^4 x \neq 0, x \neq 90^\circ, 180^\circ$$

$$\sin^2 x - 3\cos^2 x = 0$$

$$\sin^2 x = 3\cos^2 x$$
Uji nilai:

 $\frac{\sin^2 x}{\cos^2 x} = 3$ $\tan^2 x = 3$ $\tan x = \pm \sqrt{3}$

 $\tan^2 x < 3$ Misal $x = 30^{\circ}$ $\tan^2(30^\circ) < 3$

 $\frac{1}{3}$ < 3 (Benar)

2)
$$3 \tan x + \cot x > 5 \csc x$$
; $0^{\circ} < x < 180$

$$\Rightarrow \frac{3\sin x}{\cos x} + \frac{\cos x}{\sin x} > \frac{5}{\sin x}$$

$$\Rightarrow \frac{3\sin x}{\cos x} + \frac{\cos x}{\sin x} - \frac{5}{\sin x} > 0$$

$$\Rightarrow \frac{3\sin^2 x + \cos^2 x - 5\cos x}{\cos x \sin x} > 0$$

$$\Rightarrow \frac{3(1 - \cos^2 x) + \cos^2 x - 5\cos x}{\cos x \sin x} > 0$$

$$\Rightarrow \frac{-2\cos^2 x - 5\cos x + 3}{\cos x \sin x} > 0$$

$$-2\cos^2 x - 5\cos x + 3 = 0$$

$$2\cos^2 x + 5\cos x - 3 = 0$$

$$(2\cos x - 1)(\cos x + 3) = 0$$

$$\cos x = \frac{1}{2} atau \cos x = -3 (Tidak Memenuhi)$$

$$x = 60^\circ, 300^\circ$$

$$\cos x \sin x \neq 0$$

$$x \neq 0^\circ, 90^\circ, 180^\circ, 270^\circ, 360^\circ$$

$$x = 30^{\circ}$$

$$\cos x \sin x \quad (+)$$

$$2\cos^2 x + 5\cos x - 3$$
 (-)

