

Александр Дьяконов

12 октября 2020 года

Методы оптимизации (пока безусловная оптимизация)

Методы нулевого порядка / метаэвристики

- используют лишь значения функции
 - Покоординартный спуск
 - Стохастическая оптимизация

ещё вспомним при селекции признаков

Методы первого порядка

- используют первые производные
- Градинтный спуск (+стохастический, наискорейший и т.п.)
 - Квазиньютоновские методы (BFGS, ...)
 - Stochastic Average Gradient, momentum, Nesterov, ...

Методы второго порядка

- используют вторые производные
 - Метод Ньютона

Покоординатный спуск (Coordinate descent)

Перебираем координаты вектора параметров Оптимизируем по каждой координате (любым способом)

Итерации быстрые, но сходимость медленная Можно, как и любой метод нулевого порядка, использовать, когда производная не вычисляется

Стохастическая оптимизация

Полный перебор
Направленный перебор
Стохастические алгоритмы

генетические алгоритмы имитация отжига

когда будем говорить про селекцию

Градиент

 $abla f(w_0)$ – направление наискорейшего возрастания функции

$$f(w) = f(w_0) + (w - w_0)^{\mathrm{T}} \nabla f(w_0) + o(||w - w_0||)$$

$$f(w) - f(w_0) \approx (w - w_0)^{\mathrm{T}} \nabla f(w_0)$$

если выбирать из всех векторов $w-w_0$ единичной нормы, то по неравенству К-Б-Ш

$$|(w-w_0)^{\mathrm{T}}\nabla f(w_0)| \le 1 ||\nabla f(w_0)|| = \frac{\nabla f(w_0)^{\mathrm{T}}}{||\nabla f(w_0)||} \nabla f(w_0)$$

Антиградиент $(-\nabla f(w_0))$ – направление наискорейшего убывания функции

Градиент и антиградиент

[Glassner]

Градиентный спуск (GD = Gradient Descent)

$$w^{(t+1)}=w^{(t)}-\eta
abla L(w^{(t)})$$
 $\eta>0$ – шаг / темп обучения (step size / learning rate)

Хотим
$$\lim_{t\to\infty} w^{(t)} = \underset{w}{\arg\min} L(w)$$

неудачно выбран темп

Градиентный спуск: проблема выбора темпа

темп, возможно, маленький

темп, возможно, большой

Градиентный спуск: проблема масштаба признаков

вот для чего нормируют признаки

Проблема постоянного шага

Выбор шага – важно! Большой – можем не сойтись Маленький – долгая сходимость

Теорема (просто GD)

Пусть $L: \mathbb{R}^d \to \mathbb{R}$ выпукла и дифференцируема, ∇L липшецева (Lipschitz continuous) с константой $\lambda > 0$:

$$\|\nabla L(z_1) - \nabla L(z_2)\| \le \lambda \|z_1 - z_2\|$$

для любых $z_1, z_2 \in \mathbb{R}^d$.

Тогда метод градиентного спуска с фиксированной скоростью $\eta \leq 1/\lambda$ сходится, в частности,

$$L(z^{(t)}) - L(z^*) \le \frac{\|z^{(0)} - z^*\|^2}{2\eta t}$$

Переменный шаг

$$w^{(t+1)} = w^{(t)} - \eta^{(t)} \nabla L(w^{(t)})$$

Достаточные условия сходимости:

(иногда условия Роббинса-Монро)

$$\sum_{t=1}^{+\infty} \eta^{(t)} = +\infty$$

$$\sum_{t=1}^{+\infty} (\eta^{(t)})^2 < +\infty$$

Пример

$$\eta^{(t)} = \frac{1}{t}$$

Leon Bottou's «Tricks» http://research.microsoft.com/pubs/192769/tricks-2012.pdf

Скорость сходимости

Для выпуклых функций

$$L(w^{(t)}) - \min L(w) \le O\left(\frac{1}{\sqrt{k}}\right)$$

Для строго выпуклых функций

$$L(w^{(t)}) - \min L(w) \le O\left(\frac{1}{k}\right)$$

Без дополнительных предположений нельзя улучшить оценки

Оптимальный шаг

Наискорейший градиентный спуск

$$w^{(t+1)} = w^{(t)} - \eta^{(t)} \nabla L(w^{(t)})$$

$$\eta^{(t)} = \underset{\eta}{\operatorname{arg\,min}} L(w^{(t)} - \eta \nabla L(w^{(t)}))$$

точная оптимизация в направлении антиградиента

Свойства градиентного спуска

- + если функция выпуклая градиентный спуск сойдётся в минимум (при правильном выборе шагов)
- если нет в один из локальных минимумов
- + простой метод
- + может использоваться в онлайн-режиме (см. дальше)

https://distill.pub/2017/momentum/

Стохастический градиентный спуск (SGD = Stochastic gradient descent)

Если есть «большая» сумма

(если без регуляризации)

$$L(w) = \sum_{t=1}^{m} L_t(w)$$

Слишком долго вычислять полный градиент!

Не вычисляем полный градиент:

$$\nabla L(w) = \sum_{t=1}^{m} \nabla L_{t}(w)$$

А выцепляем случайное (!) слагаемое и делаем шаг с помощью такого частичного антиградиента:

$$w^{(t+1)} = w^{(t)} - \eta \nabla L_t(w^{(t)})$$

Стохастический градиентный спуск (SGD)

Можно учиться в online-режиме

(когда функция становится известна по частям – некоторые слагаемые),

но порядок здесь не совсем случайный

Метод быстрый

(не надо вычислять градиенты всех слагаемых на каждом шаге)

темп сходимости определяется на CV

Стохастический градиентный спуск (SGD)

Стохастический градиентный спуск (SGD)

Критерии останова

• слабо меняется значение функции

$$|L(w^{(t+1)}) - L(w^{(t)})| < \varepsilon$$

• слабо меняется аргумент

$$|| w^{(t+1)} - w^{(t)} || < \varepsilon$$

• слишком много итераций

$$t \ge t_{\text{max}}$$

нормализация...

многое зависит от начальной точки...

Пакетное (Batch / Offline)-обучение

$$w^{(t+1)} = w^{(t)} - \eta \sum_{i=1}^{m} \nabla L_i(w^{(t)})$$

Онлайн (Online)-обучение

stochastic gradient descent – если слагаемые случайные

$$w^{(t+1)} = w^{(t)} - \eta \nabla L_i(w^{(t)})$$

Minibatch Online обучение

$$w^{(t+1)} = w^{(t)} - \eta \sum_{i \in I} \nabla L_i(w^{(t)})$$

See Yoshua Bengio's «Practical recommendations for gradient-based training of deep architectures» http://arxiv.org/abs/1206.5533

Stochastic average gradient (SAG)

на каждом t-м шаге выбираем случайный индекс $j \in \{1, 2, \dots, m\}$

$$g_j = \nabla L_j(w^{(t)})$$

$$w^{(t+1)} = w^{(t)} - \frac{\eta}{m} \sum_{i=1}^{m} g_i$$

Другие приёмы

- Momentum
- адаптивные шаги

см. http://github.com/Dyakonov/DL/

(оптимизация в DL)

Метод градиентного спуска в машинном обучении

Оптимизация в ML: минимизация эмпирического риска (empirical training loss) + регуляризатора (regularizer term)

пока пусть нет регуляризатора

$$\frac{1}{2} \sum_{i=1}^{m} (a(x_i \mid w) - y_i)^2 \rightarrow \min$$

Gradient Descent

$$w^{(t+1)} = w^{(t)} - \eta \sum_{i=1}^{m} (a(x_i \mid w^{(t)}) - y_i) \frac{\partial a(x_i \mid w^{(t)})}{\partial w}$$

Метод градиентного спуска в машинном обучении

Gradient Descent в линейной модели

$$a(x \mid w) = w^{\mathrm{T}} x$$

$$w^{(t+1)} = w^{(t)} - \eta \sum_{i=1}^{m} (a(x_i \mid w^{(t)}) - y_i) x_i$$

Есть аналитическое решение, но данные м.б. большими функция ошибки чуть сложнее

в матричной форме
$$w^{(t+1)} = w^{(t)} - \eta X^{\mathrm{T}}(a-y)$$

Stochastic Gradient Descent (SGD)

из обучения выбирается случайный объект \mathcal{X}_i

$$w^{(t+1)} = w^{(t)} - \eta_t (a(x_i \mid w^{(t)}) - y_i) x_i$$

Метод градиентного спуска в машинном обучении

если заменить в формуле значение $a(x_i \mid w^{(t)})$, т.е. оценку принадлежности к классу 1 на округлённое значение, т.е. предсказываемую метку... то получим алгоритм персептрона

- один из первых алгоритмов линейной классификации (Розенблат, 1958)

Гарантированно находит разделяющую классы прямую, если она существует

SGD может применяться в онлайн-режиме (Online Learning), когда объекты поступают по одному и на больших данных

Пример градиентного спуска – квадратичный функционал (*)

Рассмотрим функцию

$$f(w) = \frac{1}{2} w^{\mathrm{T}} A w - b^{\mathrm{T}} w$$

пусть матрица симметричная и невырожденная

$$w^{(t+1)} = w^{(t)} - \alpha (Aw^{(t)} - b)$$

трюк... симметричная матрица допускает разложение

$$A = Q\Lambda Q^{\mathrm{T}}$$

$$\Lambda = \operatorname{diag}(\lambda_{1}, \dots, \lambda_{n})$$

переход к новым координатам:

$$v = Q^{ \mathrm{\scriptscriptstyle T} }(w - w^*)$$
, где $w^* = A^{-1}b = Q\Lambda^{-1}Q^{ \mathrm{\scriptscriptstyle T} }b$ – оптимальное решение, тогда $Q^{ \mathrm{\scriptscriptstyle T} }w^{(t+1)} = Q^{ \mathrm{\scriptscriptstyle T} }w^{(t)} - \alpha Q^{ \mathrm{\scriptscriptstyle T} }(Q\Lambda Q^{ \mathrm{\scriptscriptstyle T} }w^{(t)} - b)$

Пример градиентного спуска – квадратичный функционал (*)

$$Q^{\mathsf{T}} w^{(t+1)} = Q^{\mathsf{T}} w^{(t)} - \alpha Q^{\mathsf{T}} (Q \Lambda Q^{\mathsf{T}} w^{(t)} - b)$$

$$Q^{\mathsf{T}} (w^{(t+1)} - w^*) = Q^{\mathsf{T}} (w^{(t)} - w^*) - \alpha (\Lambda Q^{\mathsf{T}} w^{(t)} - Q^{\mathsf{T}} b)$$

$$v^{(t+1)} = v^{(t)} - \alpha (\Lambda Q^{\mathsf{T}} w^{(t)} - \Lambda Q^{\mathsf{T}} w^*)$$

$$v^{(t+1)} = v^{(t)} - \alpha \Lambda v^{(t)} = (I - \alpha \Lambda) v^{(t)}$$

в новом пространстве всё покоординатно...

$$v_{[i]}^{(t+1)} = (1 - \alpha \lambda_i) v_{[i]}^{(t)}$$

Пример градиентного спуска – квадратичный функционал (*)

Норма вектора в новом пространстве – расстояние до оптимума

$$v_{[i]}^{(t)} = (1 - \alpha \lambda_i)^t v_{[i]}^{(0)}$$

Для сходимости

$$|1-\alpha\lambda_i|<1$$

Вопрос - какой темп сходимости оптимален?

Стационарные точки

Особенность многомерных пространств

В пространствах большой размерности стационарные точки, как правило, седловые (а не локальные минимумы и максимумы)

$$f(w) = f(w_0) + (w - w_0)^{\mathrm{T}} \nabla f(w_0) + \frac{1}{2} (w - w_0)^{\mathrm{T}} H(w - w_0) + o(||w - w_0||^2)$$

зависит от с.з. матрицы Гессе Если есть и положительные и отрицательные – седло

Если представить, что знак определяется подбрасыванием монетки...

В любом случае, полезно смотреть за нормой градиента – попали ли в стационарную точку

Другой взгляд на градиентный метод

$$f(w) = f(w_0) + (w - w_0)^{\mathsf{T}} \nabla f(w_0) + \frac{1}{2} (w - w_0)^{\mathsf{T}} H(w - w_0) + o(\| w - w_0 \|^2)$$

$$f(w) \approx f(w_0) + (w - w_0)^{\mathsf{T}} \nabla f(w_0) + \frac{1}{2} (w - w_0)^{\mathsf{T}} H(w - w_0)$$

$$\min f(w) \approx \min \left[f(w_0) + (w - w_0)^{\mathsf{T}} \nabla f(w_0) + \frac{1}{2} (w - w_0)^{\mathsf{T}} H(w - w_0) \right]$$

$$\nabla_w \left[f(w_0) + (w - w_0)^{\mathsf{T}} \nabla f(w_0) + \frac{1}{2} (w - w_0)^{\mathsf{T}} H(w - w_0) \right] = 0$$

$$\nabla f(w_0) + (w - w_0)^{\mathsf{T}} H(w - w_0)$$

Другой взгляд на градиентный метод

Получаем формулу

$$w = w_0 - H^{-1} \nabla f(w_0)$$

- 1) если положить H = I , то получаем метод градиентного спуска
 - 2) если применяем формулу так метод Ньютона

$$w^{(t+1)} = w^{(t)} - H_{(t)}^{-1} g^{(t)}$$

Метод Ньютона

60 - 40 -

Градиентный спуск использует только первые производные

Метод Ньютона использует вторые производные

~ Локальная линейная аппроксимация ~ аппроксимация рядом Тейлора до 2го порядка

Шаг по методу Ньютона

$$w^{(t+1)} = w^{(t)} - H_{(t)}^{-1} g^{(t)}$$

Нет гиперпараметров и темпа обучения!

Применим, если матрица Гессе положительно определённая

$$w^{(t+1)} = w^{(t)} - (H_{(t)} + \alpha I)^{-1} g^{(t)}$$

обращение матрицы трудоёмко (но не всегда необходимо – там умножается на вектор

Матрица Гессе – матрица вторых производных

$$H = \frac{\partial}{\partial w} \left[\frac{\partial L(w)}{\partial w} \right]^{\mathrm{T}}$$

Квази-ньютоновские методы

• BFGS = Бройдена-Флетчера-Гольдфарба-Шанно

вместо обращение Гессиана $H_{(t)}^{-1}$ – (O(n 3) операций)

– низкоранговая аппроксимация обратного гессиана $M_{(t)} pprox H_{(t)}^{-1}$, которая итеративно уточняется (O(n²) для хранения)

$$w^{(t+1)} = w^{(t)} - \varepsilon M_{(t)} g^{(t)}$$

Е специально подбирается линейным поиском http://fa.bianp.net/teaching/2018/eecs227at/quasi_newton.html

• Limited memory BFGS – с ограниченной памятью Хорошо на всех данных (не мини батчах)

Le et al, «On optimization methods for deep learning, ICML 2011»

Ba et al, «Distributed second-order optimization using Kronecker-factored approximations», ICLR 2017

Дальше, что понадобится в SVM (немного про условную оптимизацию)

Оптимизация с ограничениями

$$f(w) \to \min$$

$$g_i(w) \le 0, i \in I,$$

$$h_j(w) = 0, j \in J.$$

Выпишем Лагранжиан

$$L(w,\alpha,\beta) = f(w) + \sum_{i \in I} \alpha_i g_i(w) + \sum_{j \in J} \beta_j h_j(w)$$

$$\alpha = (\alpha_i)_{i \in I} \ge 0, \ \beta = (\beta_i)_{i \in J}.$$

Заметим, что

$$\max_{\alpha,\beta} L(w,\alpha,\beta)$$

обращается в бесконечность, если нарушено хотя бы одно ограничение (по g_i или h_j), в противном случае, совпадает с f(w)

Оптимизация с ограничениями

Поэтому можно решать такую задачу:

$$\min_{w} \max_{\alpha,\beta} L(w,\alpha,\beta)$$

из-за выпуклости всех функций min и max можно переставлять

Условия Кунна-Таккера (Karush-Kuhn-Tucker (KKT) Conditions): в оптимальной точке

$$\alpha_i g_i(w) = 0$$

Ссылки

Более продвинутые современные подходы к оптимизации в DL см. в

http://github.com/Dyakonov/DL/

Léon Bottou «Stochastic Gradient Descent Tricks» // Microsoft Research, Redmond, WA https://www.microsoft.com/en-us/research/wp-content/uploads/2012/01/tricks-2012.pdf

Хороший обзор методов оптимизации с интерактивными примерами

http://fa.bianp.net/teaching/2018/eecs227at/