System of Linear Equations

A System of Linear Equations can be written as set of *n* equations and *n* unknowns

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

. .

. .

$$a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n$$

1-Gaussian Elimination Method

A method to solve simultaneous linear equations of the form [A][X]=[C]

Two steps

- 1. Forward Elimination
- 2. Back Substitution

The goal of forward elimination is to transform the coefficient matrix into an upper triangular matrix

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

$$\downarrow$$

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ -96.21 \\ 0.735 \end{bmatrix}$$

A set of *n* equations and *n* unknowns

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n$$

(n-1) steps of forward elimination

Step 1

For Equation 2, divide Equation 1 by a_{11} and multiply by a_{21} .

$$\left[\frac{a_{21}}{a_{11}}\right](a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1)$$

$$a_{21}x_1 + \frac{a_{21}}{a_{11}}a_{12}x_2 + \dots + \frac{a_{21}}{a_{11}}a_{1n}x_n = \frac{a_{21}}{a_{11}}b_1$$

Subtract the result from Equation 2.

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{21}x_1 + \frac{a_{21}}{a_{11}}a_{12}x_2 + \dots + \frac{a_{21}}{a_{11}}a_{1n}x_n = \frac{a_{21}}{a_{11}}b_1$$

$$\left(a_{22} - \frac{a_{21}}{a_{11}}a_{12}\right)x_2 + \dots + \left(a_{2n} - \frac{a_{21}}{a_{11}}a_{1n}\right)x_n = b_2 - \frac{a_{21}}{a_{11}}b_1$$

or
$$a_{22}^{'}x_2 + ... + a_{2n}^{'}x_n = b_2^{'}$$

Repeat this procedure for the remaining equations to reduce the set of equations as

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1n}x_{n} = b_{1}$$

$$a'_{22}x_{2} + a'_{23}x_{3} + \dots + a'_{2n}x_{n} = b'_{2}$$

$$a'_{32}x_{2} + a'_{33}x_{3} + \dots + a'_{3n}x_{n} = b'_{3}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a'_{n2}x_{2} + a'_{n3}x_{3} + \dots + a'_{nn}x_{n} = b'_{n}$$

End of Step 1

Step 2

Repeat the same procedure for the 3rd term of Equation 3.

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1n}x_{n} = b_{1}$$

$$a'_{22}x_{2} + a'_{23}x_{3} + \dots + a'_{2n}x_{n} = b'_{2}$$

$$a''_{33}x_{3} + \dots + a''_{3n}x_{n} = b''_{3}$$

$$\vdots$$

$$\vdots$$

$$a''_{n3}x_{3} + \dots + a''_{nn}x_{n} = b''_{n}$$

End of Step 2

At the end of (n-1) Forward Elimination steps, the system of equations will look like

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1n}x_{n} = b_{1}$$

$$a'_{22}x_{2} + a'_{23}x_{3} + \dots + a'_{2n}x_{n} = b'_{2}$$

$$a''_{33}x_{3} + \dots + a''_{3n}x_{n} = b''_{3}$$

$$\vdots$$

$$a_{nn}^{(n-1)}x_{n} = b_{n}^{(n-1)}$$

End of Step (n-1)

Matrix Form at End of Forward Elimination

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a'_{22} & a'_{23} & \cdots & a'_{2n} \\ 0 & 0 & a''_{33} & \cdots & a''_{3n} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & 0 & a_{nn}^{(n-1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b'_2 \\ b''_3 \\ \vdots \\ b_n^{(n-1)} \end{bmatrix}$$

Back Substitution

Solve each equation starting from the last equation

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ -96.21 \\ 0.735 \end{bmatrix}$$

Example of a system of 3 equations

Back Substitution Starting Eqns

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1n}x_{n} = b_{1}$$

$$a'_{22}x_{2} + a'_{23}x_{3} + \dots + a'_{2n}x_{n} = b'_{2}$$

$$a''_{33}x_{3} + \dots + a''_{n}x_{n} = b''_{3}$$

$$\vdots$$

$$a_{nn}^{(n-1)}x_{n} = b_{n}^{(n-1)}$$

Back Substitution

Start with the last equation because it has only one unknown

$$x_{n} = \frac{b_{n}^{(n-1)}}{a_{nn}^{(n-1)}}$$

Back Substitution

$$x_{n} = \frac{b_{n}^{(n-1)}}{a_{nn}^{(n-1)}}$$

$$x_{i} = \frac{b_{i}^{(i-1)} - a_{i,i+1}^{(i-1)} x_{i+1} - a_{i,i+2}^{(i-1)} x_{i+2} - \dots - a_{i,n}^{(i-1)} x_{n}}{a_{ii}^{(i-1)}}$$
for $i = n - 1, \dots, 1$

$$x_{i} = \frac{b_{i}^{(i-1)} - \sum_{j=i+1}^{n} a_{ij}^{(i-1)} x_{j}}{a_{ij}^{(i-1)}}$$
for $i = n-1,...,1$

Example 1

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

Results in a matrix template of the form:

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix} \Rightarrow \begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 64 & 8 & 1 & \vdots & 177.2 \\ 144 & 12 & 1 & \vdots & 279.2 \end{bmatrix}$$

Number of steps of forward elimination is (n-1)=(3-1)=2

Forward Elimination: Step 1

Divide Equation 1 by 25 and multiply it by 64, $\frac{64}{25} = 2.56$.

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \end{bmatrix} \times 2.56 = \begin{bmatrix} 64 & 12.8 & 2.56 & \vdots & 273.408 \end{bmatrix}$$

Subtract the result from Equation 2

$$\begin{bmatrix}
 64 & 8 & 1 & \vdots & 177.2 \\
 -[64 & 12.8 & 2.56 & \vdots & 273.408] \\
 \hline
 [0 & -4.8 & -1.56 & \vdots & -96.208]$$

Substitute new equation for Equation 2

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.208 \\ 144 & 12 & 1 & \vdots & 279.2 \end{bmatrix}$$

Forward Elimination: Step 1 (cont.)

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.208 \\ 144 & 12 & 1 & \vdots & 279.2 \end{bmatrix}$$
 Divide Equation 1 by 25 and multiply it by 144, $\frac{144}{25} = 5.76$.

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \end{bmatrix} \times 5.76 = \begin{bmatrix} 144 & 28.8 & 5.76 & \vdots & 615.168 \end{bmatrix}$$

Substitute new equation for
$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.208 \\ 0 & -16.8 & -4.76 & \vdots & -335.968 \end{bmatrix}$$

Forward Elimination: Step 2

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.208 \\ 0 & -16.8 & -4.76 & \vdots & -335.968 \end{bmatrix}$$

Divide Equation 2 by -4.8and multiply it by -16.8, $\frac{-16.8}{-4.8} = 3.5$.

$$\begin{bmatrix} 0 & -4.8 & -1.56 & \vdots & -96.208 \end{bmatrix} \times 3.5 = \begin{bmatrix} 0 & -16.8 & -5.46 & \vdots & -336.728 \end{bmatrix}$$

Subtract the result from Equation 3

$$\begin{bmatrix}
0 & -16.8 & -4.76 & \vdots & 335.968 \\
-[0 & -16.8 & -5.46 & \vdots & -336.728] \\
\hline
[0 & 0 & 0.7 & \vdots & 0.76]
\end{bmatrix}$$

Substitute new equation for Equation 3

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.208 \\ 0 & 0 & 0.7 & \vdots & 0.76 \end{bmatrix}$$

Back Substitution

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.2 \\ 0 & 0 & 0.7 & \vdots & 0.7 \end{bmatrix} \Rightarrow \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ -96.208 \\ 0.76 \end{bmatrix}$$

Solving for a_3

$$0.7a_3 = 0.76$$

$$a_3 = \frac{0.76}{0.7}$$

$$a_3 = 1.08571$$

Back Substitution (cont.)

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ -96.208 \\ 0.76 \end{bmatrix}$$

Solving for a_2

$$-4.8a_2 - 1.56a_3 = -96.208$$

$$a_2 = \frac{-96.208 + 1.56a_3}{-4.8}$$

$$a_2 = \frac{-96.208 + 1.56 \times 1.08571}{-4.8}$$

$$a_2 = 19.6905$$

Back Substitution (cont.)

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ -96.2 \\ 0.76 \end{bmatrix}$$

Solving for a_1

$$25a_1 + 5a_2 + a_3 = 106.8$$

$$a_1 = \frac{106.8 - 5a_2 - a_3}{25}$$

$$= \frac{106.8 - 5 \times 19.6905 - 1.08571}{25}$$

$$= 0.290472$$

Gaussian Elimination Solution

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0.290472 \\ 19.6905 \\ 1.08571 \end{bmatrix}$$

Gauss Elimination Pitfalls

Pitfall#1. Division by zero

$$10x_2 - 7x_3 = 3$$

$$6x_1 + 2x_2 + 3x_3 = 11$$

$$5x_1 - x_2 + 5x_3 = 9$$

$$\begin{bmatrix} 0 & 10 & -7 \\ 6 & 2 & 3 \\ 5 & -1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 11 \\ 9 \end{bmatrix}$$

Is division by zero an issue here?

$$12x_1 + 10x_2 - 7x_3 = 15$$

$$6x_1 + 5x_2 + 3x_3 = 14$$

$$5x_1 - x_2 + 5x_3 = 9$$

$$\begin{bmatrix} 12 & 10 & -7 \\ 6 & 5 & 3 \\ 5 & -1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 15 \\ 14 \\ 9 \end{bmatrix}$$

Is division by zero an issue here? YES

$$12x_1 + 10x_2 - 7x_3 = 15$$
$$6x_1 + 5x_2 + 3x_3 = 14$$
$$24x_1 - x_2 + 5x_3 = 28$$

$$\begin{bmatrix} 12 & 10 & -7 \\ 6 & 5 & 3 \\ 24 & -1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 15 \\ 14 \\ 28 \end{bmatrix} \longrightarrow \begin{bmatrix} 12 & 10 & -7 \\ 0 & 0 & 6.5 \\ 12 & -21 & 19 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 15 \\ 6.5 \\ -2 \end{bmatrix}$$

Division by zero is a possibility at any step of forward elimination

Pitfall#2. Large Round-off Errors

$$\begin{bmatrix} 20 & 15 & 10 \\ -3 & -2.249 & 7 \\ 5 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 45 \\ 1.751 \\ 9 \end{bmatrix}$$

Exact Solution

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Pitfall#2. Large Round-off Errors

$$\begin{bmatrix} 20 & 15 & 10 \\ -3 & -2.249 & 7 \\ 5 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 45 \\ 1.751 \\ 9 \end{bmatrix}$$

Solve it on a computer using 6 significant digits with chopping

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.9625 \\ 1.05 \\ 0.999995 \end{bmatrix}$$

Pitfall#2. Large Round-off Errors

$$\begin{bmatrix} 20 & 15 & 10 \\ -3 & -2.249 & 7 \\ 5 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 45 \\ 1.751 \\ 9 \end{bmatrix}$$

Solve it on a computer using $\mathbf{5}$ significant digits with chopping

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.625 \\ 1.5 \\ 0.99995 \end{bmatrix}$$

Is there a way to reduce the round off error?

Avoiding Pitfalls

Increase the number of significant digits

- Decreases round-off error
- Does not avoid division by zero

Avoiding Pitfalls

Gaussian Elimination with Partial Pivoting

- Avoids division by zero
- Reduces round off error

Gauss Elimination with Partial Pivoting

What is Different About Partial Pivoting?

At the beginning of the k^{th} step of forward elimination, find the maximum of

$$|a_{kk}|, |a_{k+1,k}|, \dots, |a_{nk}|$$

If the maximum of the values is $\left|a_{pk}\right|$ in the p^{th} row, $k \le p \le n$, then switch rows p and k.

Matrix Form at Beginning of 2nd Step of Forward Elimination

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a'_{22} & a'_{23} & \cdots & a'_{2n} \\ 0 & a'_{32} & a'_{33} & \cdots & a'_{3n} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & a'_{n2} & a'_{n3} & a'_{n4} & a'_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b'_2 \\ b'_3 \\ \vdots \\ b'_n \end{bmatrix}$$

Example (2nd step of FE)

$$\begin{bmatrix} 6 & 14 & 5.1 & 3.7 & 6 \\ 0 & -7 & 6 & 1 & 2 \\ 0 & 4 & 12 & 1 & 11 \\ 0 & 9 & 23 & 6 & 8 \\ 0 & -17 & 12 & 11 & 43 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 5 \\ -6 \\ 8 \\ 9 \\ 3 \end{bmatrix}$$

Which two rows would you switch?

Example (2nd step of FE)

$$\begin{bmatrix} 6 & 14 & 5.1 & 3.7 & 6 \\ 0 & -17 & 12 & 11 & 43 & x_2 \\ 0 & 4 & 12 & 1 & 11 & x_3 \\ 0 & 9 & 23 & 6 & 8 & x_4 \\ 0 & -7 & 6 & 1 & 2 & x_5 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 9 \\ -6 \end{bmatrix}$$

Switched Rows

Gaussian Elimination with Partial Pivoting

A method to solve simultaneous linear equations of the form [A][X]=[C]

Two steps

- 1. Forward Elimination
- 2. Back Substitution

Forward Elimination

Same as naïve Gauss elimination method except that we switch rows before **each** of the (n-1) steps of forward elimination.

Example: Matrix Form at Beginning of 2nd Step of Forward Elimination

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a'_{22} & a'_{23} & \cdots & a'_{2n} \\ 0 & a'_{32} & a'_{33} & \cdots & a'_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & a'_{n2} & a'_{n3} & a'_{n4} & a'_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b'_2 \\ b'_3 \\ \vdots \\ b'_n \end{bmatrix}$$

Matrix Form at End of Forward Elimination

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a'_{22} & a'_{23} & \cdots & a'_{2n} \\ 0 & 0 & a''_{33} & \cdots & a''_{3n} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & 0 & a_{nn}^{(n-1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b'_2 \\ b''_3 \\ \vdots \\ b_n^{(n-1)} \end{bmatrix}$$

Back Substitution Starting Eqns

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1n}x_{n} = b_{1}$$

$$a'_{22}x_{2} + a'_{23}x_{3} + \dots + a'_{2n}x_{n} = b'_{2}$$

$$a''_{33}x_{3} + \dots + a''_{n}x_{n} = b''_{3}$$

$$\vdots$$

$$a_{nn}^{(n-1)}x_{n} = b_{n}^{(n-1)}$$

Back Substitution

$$x_n = \frac{b_n^{(n-1)}}{a_{nn}^{(n-1)}}$$

$$x_{i} = \frac{b_{i}^{(i-1)} - \sum_{j=i+1}^{n} a_{ij}^{(i-1)} x_{j}}{a_{ii}^{(i-1)}}$$
for $i = n-1,...,1$

Gauss Elimination with Partial Pivoting Example

Consider the system of equations

$$10x_1 - 7x_2 = 7$$

$$-3x_1 + 2.099x_2 + 6x_3 = 3.901$$

$$5x_1 - x_2 + 5x_3 = 6$$

In matrix form

$$\begin{bmatrix} 10 & -7 & 0 \\ -3 & 2.099 & 6 \\ 5 & -1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 3.901 \\ 6 \end{bmatrix}$$

Solve using Gaussian Elimination with Partial Pivoting using five significant digits with chopping

Forward Elimination: Step 1

Examining the values of the first column

|10|, |-3|, and |5| or 10, 3, and 5

The largest absolute value is 10, which means, to follow the rules of Partial Pivoting, we switch row1 with row1.

Performing Forward Elimination

$$\begin{bmatrix} 10 & -7 & 0 \\ -3 & 2.099 & 6 \\ 5 & -1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 3.901 \\ 6 \end{bmatrix} \longrightarrow \begin{bmatrix} 10 & -7 & 0 \\ 0 & -0.001 & 6 \\ 0 & 2.5 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 6.001 \\ 2.5 \end{bmatrix}$$

Forward Elimination: Step 2

Examining the values of the first column

|-0.001| and |2.5| or 0.0001 and 2.5

The largest absolute value is 2.5, so row 2 is switched with row 3

Performing the row swap

$$\begin{bmatrix} 10 & -7 & 0 \\ 0 & -0.001 & 6 \\ 0 & 2.5 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 6.001 \\ 2.5 \end{bmatrix} \implies \begin{bmatrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & -0.001 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 2.5 \\ 6.001 \end{bmatrix}$$

Forward Elimination: Step 2

Performing the Forward Elimination results in:

$$\begin{bmatrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & 0 & 6.002 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 2.5 \\ 6.002 \end{bmatrix}$$

Back Substitution

Solving the equations through back substitution

$$\begin{bmatrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & 0 & 6.002 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 2.5 \\ 6.002 \end{bmatrix}$$

$$x_3 = \frac{6.002}{6.002} = 1$$

$$x_2 = \frac{2.5 - 5x_3}{2.5} = -1$$

$$x_1 = \frac{7 + 7x_2 - 0x_3}{10} = 0$$

Compare the calculated and exact solution

The fact that they are equal is coincidence, but it does illustrate the advantage of Partial Pivoting

Determinant of a Square Matrix Using Gauss Elimination

Theorem of Determinants

If a multiple of one row of $[A]_{nxn}$ is added or subtracted to another row of $[A]_{nxn}$ to result in $[B]_{nxn}$ then det(A)=det(B)

Theorem of Determinants

The determinant of an upper triangular matrix

 $[A]_{nxn}$ is given by

$$\det(\mathbf{A}) = a_{11} \times a_{22} \times ... \times a_{ii} \times ... \times a_{nn}$$

$$=\prod_{i=1}^n a_{ii}$$

Forward Elimination of a Square Matrix

Using forward elimination to transform $[A]_{nxn}$ to an upper triangular matrix, $[U]_{nxn}$.

$$[A]_{n\times n}\to [U]_{n\times n}$$

$$\det\left(A\right) = \det\left(U\right)$$

Example

Using Gaussian elimination find the determinant of the following square matrix.

```
    25
    5

    64
    8

    144
    12
```

Forward Elimination: Step 1

Divide Equation 1 by 25 and multiply it by 64, $\frac{64}{25} = 2.56$.

$$[25 5 1] \times 2.56 = [64 12.8 2.56]$$

Subtract the result from Equation 2

$$\begin{bmatrix}
 12.8 & 2.30 \\
 \hline
 [64 & 8 & 1] \\
 -[64 & 12.8 & 2.56] \\
 \hline
 [0 & -4.8 & -1.56]$$

Substitute new equation for Equation 2

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 144 & 12 & 1 \end{bmatrix}$$

Forward Elimination: Step 1 (cont.)

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 144 & 12 & 1 \end{bmatrix}$$

 $\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 144 & 12 & 1 \end{bmatrix}$ Divide Equation 1 by 25 and multiply it by 144, $\frac{144}{25} = 5.76$.

$$[25 5 1] \times 5.76 = [144 28.8 5.76]$$

Subtract the result from **Equation 3**

$$\begin{bmatrix}
 144 & 12 & 1 \\
 -[144 & 28.8 & 5.76] \\
 \hline
 [0 & -16.8 & -4.76]
 \end{bmatrix}$$

Substitute new equation for **Equation 3**

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & -16.8 & -4.76 \end{bmatrix}$$

Forward Elimination: Step 2

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & -16.8 & -4.76 \end{bmatrix}$$

Divide Equation 2 by -4.8and multiply it by -16.8, $\frac{-16.8}{-4.8} = 3.5$.

$$([0 -4.8 -1.56]) \times 3.5 = [0 -16.8 -5.46]$$

Subtract the result from Equation 3

$$\begin{bmatrix}
 0 & -16.8 & -4.76 \\
 -[0 & -16.8 & -5.46] \\
 \hline
 [0 & 0 & 0.7]
 \end{bmatrix}$$

Substitute new equation for Equation 3

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix}$$

Finding the Determinant

After forward elimination

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix}$$

$$\det(A) = u_{11} \times u_{22} \times u_{33}$$
$$= 25 \times (-4.8) \times 0.7$$
$$= -84.00$$