Fano Threefolds

Ikhan Choi Lectured by Hiromu Tanaka University of Tokyo, Spring 2023

April 24, 2023

Contents

1	Day 1: April 6	2
2	Day 2: April 13	5
3	Day 3: April 20	8

1 Day 1: April 6

Grade: solve 2~4 exercises (report)

Throughout this lecture,

- we work over \mathbb{C} .
- A projective scheme is a projective scheme over \mathbb{C} , i.e. a closed subscheme of $\mathbb{P}^N_{\mathbb{C}}$ for some N.
- A variety is an integral scheme which is separated and of finite type over \mathbb{C} .

Definition 1.1. A Fano variety is a smooth projective variety X such that $-K_X$ is ample.

Definition 1.2. Let X be a smooth variety. A canonical divisor K_X is a Weil divisor such that $\mathcal{O}_X(K_X) \cong \omega_X := \bigwedge^{\dim X} \Omega_X^1 \in \operatorname{Pic}(X)$. (Ω is a locally free sheaf of $\operatorname{rank}(=\dim X)$) the canonical divisor

Example 1.3. If *X* is a smooth projective curve, then *X* is Fano iff $X \equiv \mathbb{P}^1$.

Proof. 1. A divisor *D* on *X* is ample iff deg D > 0. (deg $D = \sum_i a_i$ for $D = \sum_i a_i P_i$)

2.
$$\deg K_X = 2g - 2$$
, $(g := h^1(X, \mathcal{O}_X) \in \mathbb{Z}_{2n})$

3.
$$g = 0$$
 iff $X = \mathbb{P}^1$.

Moreover, \mathbb{P}^n is Fano.

Example 1.4. Let $X \subset \mathbb{P}^N$: smooth hypersurface of deg d. For example, we may consider $X = \{x_0^d + \cdots + x_N^d\}$. Then, X is Fano iff $d \leq N$.

Proof. (Sketch) By the adjunction formula,

$$\mathcal{O}_X(K_X) \cong \mathcal{O}_{\mathbb{P}^N}(K_{\mathbb{P}^N} + X)|_X \cong \mathcal{O}_{\mathbb{P}^N}(-N - 1 - d)|_X.$$

Then, $\operatorname{Pic} \mathbb{P}^N = \{\mathcal{O}_{\mathbb{P}^N}(m) | m \in \mathbb{Z}\} \cong \mathbb{Z}$ (group isomoprhism).

Why 3-folds? It is started by Gino Fano (1904~), and the following theorem gives a motivation:

Theorem 1.5 (Lüroth,1876). $\mathbb{C} \subset K \subset \mathbb{C}(x)$ be field extensions. Assume the trenscendental degree of K is one. Then, $K \cong \mathbb{C}(y)$.

The Lüroth problem states that: if $\mathbb{C} \subset K \subset \mathbb{C}(x_1, \dots, x_n)$ field extensions, assuming the trenscendental degree of K is n, then $K \cong \mathbb{C}(y_1, \dots, y_n)$?

Theorem 1.6 (Castelnuovo, 1886). *The Lüroth problem is true if* n = 2.

The idea of this theorem is to convert Lüroth problem into a geometric version. A field extension $K \subset \mathbb{C}(x)$ corresponds to a dominant rational map $\mathbb{P}^1_{\mathbb{C}} \to X$, and the trenscendental degree one is equivalent to that X is curve. Here we may assume X to be a smooth projective curve. So, the Lüroth theorem can be restated as

Theorem 1.7. If $\mathbb{P}^1_{\mathbb{C}} \twoheadrightarrow X$ for a smooth projective curve X, then $X \cong \mathbb{P}^1_{\mathbb{C}}$.

For n = 2, we consider the rationality criterion.

Theorem 1.8. Let X be a smooth projective surface. Then, X is rational iff $H^1(X, \mathcal{O}_X) = H^0(X, 2K_X) = 0$

Example 1.9. If a surface X is del Pezzo(=Fano surface), then X is rational. It is because if $-K_X$ is ample then $H^0(X, 2K_X) = 0$ (: if not, then $2K_X$ is linearly equivalent to an effective divisor D, and $2(-K_X)^2 = 2K_X \cdot K_X = D \cdot K_X = \sum a_i C_i \cdot K_X \ge 0$.) Also, by the Kodaira vanishing, we have $H^1(X, \mathcal{O}_X) = H^1(X, \mathcal{O}_X(K_X + (-K_X))) = 0$.

How about n = 3? We may consider

- · Three-dimensional rationality criterion?
- Fano hypersurface $X \subset \mathbb{P}^4$ are rational?

To settle the second question, Fano studied similar and easier Fano threefolds.

Theorem 1.10. There is a counterexample to Lüroth's problem. Specifically, if X is the complete intersection of deg 2 hypersurface and deg 3 hypersurface in \mathbb{P}^5 , X is not rational (1908, Fano), but X is unirational (1912, Enriques).

Theorem 1.11 (1942, G. Fano). There is a hypersurface of degree $3 \ X \subset \mathbb{P}^4$ which is not rational but unirational.

Remark 1.12. The proof by Fano is not rigorous, so the second question(rationality of hypersurface) is now considered as results of

- Clemes-Griffiths (deg= 3)
- Iskovskih-Manin (deg≥ 4)

Classification of Fano 3-folds

Two invariants: Picard number ρ and index r.

Definition 1.13. Let *X* be a smooth projective variety.

$$\rho = \rho(X) := \dim_{\mathbb{Q}}((\operatorname{Pic} X \otimes_{\mathbb{Z}} \mathbb{Q}) / \equiv) \in \mathbb{Z}_{\geq 0}.$$

It is equal to $\dim_{\mathbb{Q}}((\text{Div}X \otimes_{\mathbb{Z}} \mathbb{Q})/\equiv$, where DivX is the group of Weil divisors so that $\text{Div}X \otimes_{\mathbb{Z}} \mathbb{Q}$ contains the formal linear combinations of prime divisors over \mathbb{Q} , and where the quivalence relation is given by $D \equiv D'$ iff $D \cdot C = D' \cdot C$ for every curve on X. From the intersection theory, $D \cdot C = \mathcal{O}_X(D) \cdot C = \deg(\mu^*\mathcal{O}_X(D))$ for $\mu : C^N \to C \hookrightarrow X$ (composition of normal and closed immersion). Then, $D \in \text{Div}X \otimes_{\mathbb{Z}} \mathbb{Q}$ implies that there is $m \in \mathbb{Z}_{\geq 0}$ such that $mD \in \text{Div}X$, then $D \cdot C := \frac{1}{m}((mD) \cdot C)$.

Remark 1.14. Let *X* be a Fano variety. Then, $\operatorname{Pic} X \cong \operatorname{Pic} X / \equiv \cong \mathbb{Z}^{\oplus \rho(X)}$. In particular, $D \sim D'$ implies $D \equiv D'$.

Definition 1.15. Let X be a Fano variety.

 $r = r_X$:= the largest positive integer that divides K_X ,

that is, there is a divisor H such that $-K_X \sim rH$, but for s > r there is no divisor H such that $-K_X \sim sH$.

We shall prove $1 \le r \le \dim X + 1$ (for $\dim X = 3$, then r = 1, 2, 3, 4).

Example 1.16. Let $X = \mathbb{P}^3$. Then, Pic $X \cong \mathbb{Z}H$, where H is a hyperplane, and $-K_x \equiv \sim 4H$, hence $\rho = 1$ and r = 4.

So here is the outline:

- 1. $r \ge 2$: Iskovskih, Fujita
- 2. $\rho = r = 1$: Iskovskih, Fujita
- 3. $\rho \ge 2$: Mori-Mukai

For 1, Δ -genus(Fujita) is used, and for 2 and 3, the cone theorem(minimal model program) is used. When $\dim X = 2$, using MMP, a del Pezzo surface X is reduced to \mathbb{P}^2 or $\mathbb{P}^1 \times \mathbb{P}^1$. When $\dim X = 3$, we have primitive Fano threefolds.

Our plan:

- 1. Cone theorem(mainly 2-dim)
- 2. $r \ge 2$
- 3. $\rho = r = 1$
- 4. $\rho \ge 2$ (primitive)
- 5. $\rho \ge 2$ (imprimitive)

Cone theorem

Theorem 1.17 (Cone theorem, Mori, 1982). Let X be a Fano variety. Then, there is rational curves l_1, \dots, l_m such that

$$NE(X) = \sum_{i=1}^{m} \mathbb{R}_{\geq 0}[l_i]$$
 and $-K_X \cdot l_i \leq \dim X + 1$.

When $\rho = 3$, $NE(X) \subset N_1(X) \cong \mathbb{R}^{\rho(X)}$ is a triangular pyramid.

Definition 1.18. Let *X* be a smooth projective variety.

- 1. $Z_1(X) := \bigoplus_{C:\text{curve on } X} \mathbb{Z}C$,
- 2. $N_1(X) := (Z_1(X) \otimes_{\mathbb{Z}} \mathbb{R}) / \equiv$, where $Z \equiv Z'$ iff $L \cdot Z = L \cdot Z'$ for all $L \in \text{Pic } X$.

It is well-known that

$$N_1(X) \times \left(\frac{\operatorname{Pic} X \otimes_{\mathbb{Z}} \mathbb{R}}{\equiv}\right) \to \mathbb{R}$$

induces a bijection

$$N_1(X) \to \operatorname{Hom}_{\mathbb{R}} \left(\frac{\operatorname{Pic} X \otimes_{\mathbb{Z}} \mathbb{R}}{\equiv}, \mathbb{R} \right),$$

therefore $\dim_{\mathbb{R}} N_1(X) = \rho(X)$.

Definition 1.19. Let *X* be a smooth projective variety.

- 1. For $Z \in Z_1(X) \otimes \mathbb{R}$, denote by $[Z] \in N_1(X)$ the numerical equivalence class of Z.
- 2. For $Z \in Z_1(X) \otimes \mathbb{R}$ is an effective 1-cycle.
- 3. $NE(X) := \{ [Z] \in N_1(X) : Z \text{ effective 1-cycles} \}$

Remark 1.20. NE(X) is a convex cone.

Example 1.21. Let $X := \mathbb{P}^1 \times \mathbb{P}^1$. Let $l_i = \pi_i^{-1}(*)$ for i = 1, 2 be any fibers. Then, $NE(X) = \mathbb{R} \ge_0 [l_1] + \mathbb{R}_{\ge 0}[l_2]$. One direction is clear, and for the opposite, pick $[D] = [a_1C_1 + \cdots + a_rC_r] \in NE(X)$ $(a_i \ge 0)$. It is enough to show $C_i \equiv b_1l_1 + b_2l_2$ for some $b_1, b_2 \ge 0$. Fix a curve C on X. Note that since $PicX = \mathbb{Z}l_1 \oplus \mathbb{Z}l_2$, we have $C \equiv b_1l_1 + b_2l_2$, so $0 \le C \cdot l_i = (b_1l_1 + b_2l_2) \cdot l_i = b_il_1 \cdot l_2 > 0$, we are done.

References for surfaces:

- Beauville: Complex algebraic surfaces (over C),
- Bădescu: Algebraic surfaces

References for cone thm:

- Kollár-Mori: Birational geometry of algebraic varieties
- Debarre: Higher-dimensional algebraic geometry

2 Day 2: April 13

Extremal rays

Definition 2.1. Let *X* be a Fano variety. A ray *R* is called an extremal ray (of NE(X) or of *X*) if $\zeta, \xi \in NE(X)$ and $\zeta + \xi \in R$ imply $\zeta, \xi \in R$.

Theorem 2.2 (Contraction theorem). Let X be a Fano variety, $R = \mathbb{R}_{\geq 0}[l]$ an extremal ray for a curve l on X. Then, there is a unique morphism $f: X \to Y$ such that

- (i) Y is a projective normal variety,
- (ii) $f_*\mathcal{O}_X = \mathcal{O}_Y$,
- (iii) For a curve C on X, f(C) is point iff $[C] \in R$.

Note that such f can define the associated extremal ray. Moreover, we have $\rho(X) = \rho(Y) + 1$ and an exact sequence $0 \to \operatorname{Pic} Y \xrightarrow{f^*} \operatorname{Pic} X \xrightarrow{l} \mathbb{Z}$. The morphism f is called the contraction morphism of R.

Proof. See [Kollár-Mori]. □

Theorem 2.3. Let X be a del Pezzo surface. Let $R = \mathbb{R}_{\geq 0}[l]$ be an extremal ray for a curve l on X and $f: X \to Y$ be its contraction. Then, one of the following holds:

- (A) l is a (-1)-curve and f is a blow down of l (hence dim Y = 2),
- (B) dim Y = 1 (i.e. Y is a smooth projective curve) and $\rho(X) = 2$, and f is a \mathbb{P}^1 -bundle with fiber l.
- (C) dim Y = 0 (i.e. $Y = \operatorname{Spec} \mathbb{C}$) and $\rho(X) = 1$.

Remark 2.4. Let Y be a smooth projective surface and $f: X \to Y$ be the blowup at a point $P \in Y$. Then, $l:=f^{-1}(p)$ satisfies $l \cong \mathbb{P}^1$ and $l^2=-1$; called (-1)-curve. In this case we say f is the blowdown of l.

Remark 2.5. Let *X* be a del Pezzo surface and $\rho(X) = 1$. Then, it is known that $X \cong \mathbb{P}^2$.

Exercise 2.6. Show the above remark.

Remark 2.7. Let X be a smooth projective rational surface. If there is no (-1)-curve on X, then $X \cong \mathbb{P}^2$ or X is isomorphic to the Hirzeburch surface $\mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n))$, where $n \in \mathbb{Z}_{>0} \setminus \{1\}$.

Remark 2.8. Let *X* be a del Pezzo surface and $f: X \to Y$ be a \mathbb{P}^1 -bundle on a smooth projective curve *Y*. Then, $Y = \mathbb{P}^1$ and $X \cong \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n)), n \in \{0, 1\}.$

Sketch. Leray spectral sequence gives $H^1(Y, f_*\mathcal{O}_X(=\mathcal{O}_Y)) \hookrightarrow H^1(X, \mathcal{O}_X) = 0$, so $H^1(Y, \mathcal{O}_Y) = 0$ implies $Y = \mathbb{P}^1$.

Also, \mathbb{P}^1 -bundle, $X \cong \mathbb{P}_{\mathbb{P}^1}(E)$ of rank two, it is well known that $E \cong \mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(b)$ and $X \cong \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(a) \oplus \mathcal{O}(b)) \cong \mathbb{P}_{\mathbb{P}^1}(\mathcal{O} \oplus \mathcal{O}(b-a))$ for $n := b-a \geq 0$. It is known that for a \mathbb{P}^1 -bundle over \mathbb{P}^1 there is a section c such that $c^2 = -n$, then $n \in \{0, 1\}$.

Lemma 2.9. Let X be a del Pezzo surface and C a curve on X. Then, $C^2 \ge -1$.

Proof. Write $(K_X + C) \cdot C = 2h^1(C, \mathcal{O}_C) - 2$. Recall that $(\omega_X \otimes \mathcal{O}_X(C))|_C \cong \omega_C$ holds even if C is a singular curve. Hence, $C^2 \geq -K_X \cdot C - 2 \geq 1 - 2 = -1$.

Example 2.10. Let $X = \mathbb{P}^1 \times \mathbb{P}^1$ and $l_i = \pi_i^{-1}(*)$ fibers. Then, each projection map π_i corresponds to the extremal rays $\mathbb{R}_{>0}[l_i]$.

Example 2.11. Let $X = \mathbb{P}^2$. Then, $NE(X) = \mathbb{R}_{\geq 0}[l] = \mathbb{R}_{\geq 0}[l'] = \cdots$ since $N_1(X) = \mathbb{R}^{\rho(X)} = \mathbb{R}$.

Example 2.12. Let $X = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(1))$, which is del Pezzo. Then, if f is a blowdown of a section $l \cong \mathbb{P}^1$, then $\rho(Y) = 1$ and $Y \cong \mathbb{P}^2$. Then, we have two extremal rays [l] and [l'] which correspond to f and π respectively.

Remark 2.13. Let *X* be a del Pezzo surface with $\rho(X) \ge 3$. Then,

$$\{\text{extremal rays}\} \longleftrightarrow \{(-1)\text{-curves}\}.$$

Therefore, a del Pezzo surface has a finitely many (-1)-curves.

Example 2.14. Let $f: X \to \mathbb{P}^2$ be a blowup at two points P and Q with $l_P = f^{-1}(P)$ and $l_Q = f^{-1}(Q)$. Lifting a line m passing through P and Q, we obtain m_X the proper transform of m. Then, $\rho(X) = 3$ and $NE(X) = \mathbb{R}_{\geq 0}[l_P] + \mathbb{R}_{\geq 0}[l_Q] + \mathbb{R}_{\geq 0}[m_X]$.

Remark 2.15. Let $X \subset \mathbb{P}^3$ be a smooth cubic surface, for example, $X: x^3 + y^3 + z^3 + w^3 = 0$. It is well-known that X has exactly 27 (-1)-curves so that $NE(X) = \sum_{i=1}^{27} \mathbb{R}_{\geq 0}[l_i]$.

Remark 2.16. Minimal model program for del Pezzo surfaces.

Remark. Let $X \cong \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n))$ with $n \in \{0, 1\}$.

If
$$n = 0$$
, then $X \cong \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}) \cong \mathbb{P}^1 \times \mathbb{P}^1$.

If n = 1, then $X \cong \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(1))$, there is a (-1)-curve on X (cf.(2.11))

Outline of (2.3). For an extremal ray $R = \mathbb{R}_{>0}[l]$, (A) for $l^2 < 0$, (B) for $l^2 = 0$, (C) for $l^2 > 0$.

Proposition 2.17. Let X be a del Pezzo surface and l be a curve on X with $l^2 < 0$. Then,

- (a) l is a (-1)-curve,
- (b) $\mathbb{R}_{>0}[l]$ is an extremal ray,
- (c) the contraction of R is the blowdown of l.

In particular, $\dim Y = \dim X = 2$.

Proof. (a) We will show the following statements are equivalent:

- (i) l is a (-1)-curve,
- (ii) $l \cong \mathbb{P}^1$ and $l^2 = -1$,
- (iii) $K_X \cdot l = l^2 = -1$,
- (iv) $K_X \cdot l < 0$ and $l^2 < 0$.

Here X is a smooth projective surface and l a curve on it. Note (i) and (ii) are equivalent by definition. The equivalence between (ii) and (iii) is due to $(K_X + l) \cdot l = 2h^1(l, \mathcal{O}_l) - 2 \ge -2$. The equivalence between (iii) and (iv) is clear.

- (b) Omitted.
- (c) Let $f: X \to Y$ blowdown of l and P:=f(l). Recall that f is a contraction of R iff

- (i) Y is a projective normal variety,
- (ii) $f_*\mathcal{O}_X = \mathcal{O}_Y$,
- (iii) for a curve C on X, f(C) is a point iff $[C] \in \mathbb{R}_{>0}[1]$.

It follows (ii) from the following lemma (2.18). For (iii), (\Rightarrow) is clear. (\Leftarrow) Suppose $[C] \in \mathbb{R}_{\geq 0}[l]$ and $C \neq l$ so that $C \cdot l \geq 0$. Then, $C \equiv al$ for $a \in \mathbb{R}_{\geq 0}$, and a > 0 since $C \cdot H = al \cdot H$ for ample H. Now $0 \leq C \cdot l = al \cdot l = a(>0) \cdot l^2(=-1) < 0$, a contradiction.

Lemma 2.18. If f is a projective birational morphism of normla varieties, then $f_*\mathcal{O}_X = \mathcal{O}_Y$.

Proof. Consider the Stein factorization

such that $g_*\mathcal{O}_X = \mathcal{O}_Z$ and h finite. Then,

implies $Z \xrightarrow{h} Y$ is finite birational morphism, and $A \hookrightarrow B$ is integral extension with K(A) = K(B) where $\text{Spec } A \subset Y$ is affine open and Spec B is given by the pullback(inverse image of h), hence A = B.

Lemma 2.19. Let X be a del Pezzo surface and $\mathbb{R}_{\geq 0}[l]$ be an extremal ray for a curve l on X, whose contraction is $f: X \to Y$. Then,

- (A) $l^2 < 0$ iff dim Y = 2,
- (B) $l^2 = 0$ iff dim Y = 1,
- (C) $l^2 > 0$ iff dim Y = 0.

Proof. Next lecture.

Proposition 2.20 ((B)). If $l^2 = 0$, then the fiber is isomorphic to \mathbb{P}^1 .

Proof. For $P \in Y$, let $F := f^*P = \sum_{i=1}^r a_i C_i$ with $a_i \in \mathbb{Z}_{>0}$ and C_i prime divisors.

Claim 2.21. Every fiber is irreducible.

Proof. If it is reducible, then there are $C_1 \neq C_2$ in the fiber, then

$$F \cdot C_1 = (\sum_{i=1}^r a_i C_i) \cdot C_1 = a_1 C_1^2 + (\text{positive}),$$

so $C_1^2 < 0$. Then, $C_i \equiv b_i l$, so $C_1^2 < 0$ implies $l^2 < 0$ and $C_1 \cdot C_2 \ge 0$ implies $l^2 \ge 0$, a contradiction. \square

We can show that every fiber *F* is reduced:

$$(K_X + F) \cdot F = K_X \cdot F + F^2 = K_X \cdot F + 0 < 0,$$

by the adjunction, $F \cong \mathbb{P}^1$.

3 Day 3: April 20

Nef divisors and big divisors

Our today's goal is to prove Lemma 2.19.

Remark 3.1. Since $f_*(\mathcal{O}_X) = \mathcal{O}_Y$, $f: X \to Y$ is surjective so that dim $Y \in \{0, 1, 2\}$. If we prove (A) and (C) in the Lemma 2.19, then we are enough.

Proof of Lemma 2.19 (A). (\Rightarrow) Proposition 2.17.

(⇐) Note that dim $X = \dim Y$ and $f_*(\mathcal{O}_X) = \mathcal{O}_Y$ imply f is birational. For an ample Cartier divisor A_Y on Y, f^*A_Y is a big divisor(defined later). Then,

$$f^*A_Y \cdot l = \deg(f^*A_Y|_l) = \deg(i^*f^*A_Y) = \deg((f|_l)^*j^*A_Y) = \deg((f|_l)^*\mathcal{O}_{f(l)}) = \deg\mathcal{O}_l = 0,$$

where $i: l \hookrightarrow X$ and $j: f(l) = * \hookrightarrow Y$ such that $fi = jf|_l$.

We can define f^*A_Y to be a big divisor if and only if there is $m \in \mathbb{Z}_{>0}$ such that mf^*A_Y is the sum of an ample divisor A and an effective divisor E. Then, $A \cdot l + E \cdot l = 0$ implies $E \cdot l < 0$, so if we write $E = \sum a_i C_i$, then $l = C_i$ for some i, hence $l^2 < 0$.

Definition 3.2. Let X be a projective normal variety and D a Cartier divisor. Then, D is called to be big if and only if there are $m \in \mathbb{Z}_{>0}$, an ample Cartier divisor A, and an effective Cartier divisor E such that mD = A + E.

Remark 3.3. In the above definition, the equality mD = A + E can be replaced by \sim or \equiv .

Remark 3.4. A divisor *D* is big iff nD is big for all $n \in \mathbb{Z}_{>0}$ iff nD is big for some $n \in \mathbb{Z}_{>0}$.

Proposition 3.5. Let $f: X \to Y$ be a birational morphism of projective normal varieties. For a Cartier divisor D on Y, f^*D is big iff D is big.

Proof. Since $f_*\mathcal{O}_X = \mathcal{O}_Y$, by tensoring $\mathcal{O}_Y(mD)$ we get

$$\mathcal{O}_{Y}(mD) = (f_{*}\mathcal{O}_{X}) \otimes_{\mathcal{O}_{Y}} \mathcal{O}_{Y}(mD) = f_{*}(\mathcal{O}_{X} \otimes_{\mathcal{O}_{Y}} f^{*}\mathcal{O}_{Y}(mD)) = f_{*}f^{*}\mathcal{O}_{Y}(mD)$$

(the second equality is due to the projection formula), so

$$H^{0}(Y, \mathcal{O}_{Y}(mD)) = H^{0}(Y, f_{*}f^{*}\mathcal{O}_{Y}(mD)) = H^{0}(X, f^{*}\mathcal{O}_{Y}(mD)) = H^{0}(X, \mathcal{O}_{X}(mf^{*}(D))).$$

Therefore, f^*D is big iff D is big by Proposition 3.6.

Proposition 3.6. Let X be a projective normal variety and D a Cartier divisor on X. Then D is big iff there is $c \in \mathbb{Q}_{>0}$ such that for all sufficiently large m we have

$$h^0(X, \mathcal{O}_X(mD)) > c \cdot m^{\dim X}$$
.

Proof. (\Rightarrow) We may assume D = A + E with A ample and E effective. Then, $H^0(X, mD) = H^0(X, m(A + E)) \leftrightarrow H^0(X, mA)$ by

$$0 \to \mathcal{O}_X(-mE) \to \mathcal{O}_X \to \mathcal{O}_{mE} \to 0.$$

Thus we may assume D is ample.

It is well-known that

$$\chi(X, mD) = \frac{D^{\dim X}}{(\dim X)!} m^{\dim X} + O(m^{\dim X - 1}) \in \mathbb{Z}[m]$$

from the Riemann-Roch, and by the Serr vanishing we have $\chi(X, mD) = h^0(X, mD)$ for large m, and we also have $D^{\dim X} > 0$ by Nakai's criterion.

 (\Leftarrow) Fix A a very ample divisor on X. We may assume by Bertini that A is a normal prime divisor. We have

$$0 \to \mathcal{O}_X(mD - A) \to \mathcal{O}_X(mD) \to \mathcal{O}_X(mD)|_A \to 0$$
,

and $\mathcal{O}_X(mD)|_A \cong \mathcal{O}_A(mD_A)$ for some Cartier divisor D_A on A such that $\mathcal{O}_X(D)|_A \cong \mathcal{O}_A(D_A)$.

Write

$$0 \rightarrow H^0(X, mD - A) \rightarrow H^0(X, mD) \rightarrow H^0(A, mD_A).$$

Here $h_0(X, mD) \ge c \cdot m^{\dim X}$ and $h^0(A, mD_A) \le b \cdot m^{\dim A}$ by the Exercise 3.7, we have $H^0(X, mD - A) \ne 0$ for some m > 0, i.e. mD - A is linearly equivalent to an effective divisor.

Exercise 3.7. Let Z be a projective normal variety and D a Cartier divisor on Z. Show that there exists b > 0 such that $h^0(Z, mD) \le b \cdot m^{\dim Z}$ for all $m \in \mathbb{Z}_{>0}$. If you want, you may assume that Z is smooth.

Proof of Lemma 2.19 (C). (\Leftarrow) Let dim Y=0 i.e. $Y=\operatorname{Spec}\mathbb{C}$ with $\rho(X)=\rho(Y)+1=1$, which implies that $l\equiv cA$ for some $c\in\mathbb{Q}$ and an ample divisor A on X. Then, we can prove c>0 from $A\cdot l=A\cdot (cA)=cA^2$, hence $l^2=(cA)\cdot (cA)=c^2A^2>0$.

(⇒) Let $l^2 > 0$. Note that if l is a curve on a smooth projective surface X such that $l^2 > 0$, then l is nef because $l \cdot C > 0$ if l = C and $l \cdot C \ge 0$ if $l \ne C$, and furthermore l is big by Proposition 3.9. Fix C a curve on X. We are enough to show $[C] \in \mathbb{R}_{\ge 0}[l]$. Then, $N_1(X) = \bigoplus_C \mathbb{R}_C / \equiv$ is generated by [l], we get $\rho(X) = \dim N_1(X) = 1$ and $\dim Y = 0$.

Let l be a big divisor so that there is a sufficiently large m with a rational map $f: X \dashrightarrow \mathbb{P}^N$ defined by the complete linear system |ml| whose image is a surface. By considering the defining polynomials of $\varphi(C) = \overline{V_+}(f_1, \cdots, f_r)$ such that $\varphi(ml)$ is a hyperplane section, there must be f_i not vanishing on X, so we have f_i with $\overline{V_+}(f_i) \cap \varphi(X) = \varphi(C) + \varphi(E)$, where $E = \varphi^{-1}(\varphi(E))$. Then, since $\overline{V_+}(f_i) \sim \varphi((\deg f_i)ml)$, which implies $(\deg f_i)ml \sim C + E$. Thus, using the definition of extremal rays, we have $[C] \in \mathbb{R}_{\geq 0}[l]$.

Definition 3.8. Let *X* be a projective normal variety. A Cartier divisor *D* is called nef iff $D \cdot C \ge 0$ for all curves *C* on *X*.

Proposition 3.9. Let X be a projective normal variety and D a nef Cartier divisor. Then, D is big iff $D^{\dim X} > 0$.

Proof. For simplicity, assume $\dim X = 2$.

- (⇒) Let mD = A + E with $z \in \mathbb{Z}_{>0}$, A ample, E effective. Since $mD \cdot E \ge 0$ and $mD \cdot A = A^2 + E \cdot A > 0$, we have $(mD)^2 = mD \cdot A + mD \cdot E > 0$.
- (\Leftarrow) We may assume X is smooth by taking a resolution of X (the pullback via a rational map of a nef or big divisor is also nef of big respectively). Take H a very ample divisor on X. We also may assume $H K_X$ is ample by the Serre criterion. Then,

$$0 \to \mathcal{O}_X(mD) \to \mathcal{O}_X(mD+H) \to \mathcal{O}_X(mD+H)|_H \to 0$$

and

$$0 \to H^0(\mathcal{O}_X(mD)) \to H^0(\mathcal{O}_X(mD+H)) \to H^0(\mathcal{O}_X(mD+H)|_H)$$

are exact. Note that we have

$$h^{0}(\mathcal{O}_{X}(mD+H)) = \chi(X, mD+H) = \frac{(mD+H)^{2}}{2!} + O(m) \ge c \cdot m^{2}$$

by the Kodaira vanishing

$$H^{i}(X, mD + H) = H^{i}(X, K_{X} + (mD)_{\text{(it is nef)}} + (H - K_{X})_{\text{(it is ample)}}) = 0$$

(sum of nef and ample is ample :: Corollary 3.12.) and $h^0(\mathcal{O}_X(mD+H)|_H) \leq b \cdot m^{\dim H} = b \cdot m$. Therefore, $h^0(X, \mathcal{O}(mD)) \geq c' \cdot m^2$ for some c' and sufficiently large m.

Remark 3.10. Let *X* be a projective normal variety with a nef divisor *D*. Then,

- (a) $D \cdot \forall$ (curve) ≥ 0 (by def),
- (b) $D \cdot \forall$ (effective 1-cycle) ≥ 0 .

In particular, $NE(X) \subset D^{\geq 0} := \{\zeta \in N_1(X) : D \cdot \zeta \geq 0\} = D^{>0} \cup D^{\perp}$. In fact,

(c) The Kleiman-Mori cone is contained in $D^{\geq 0}$, i.e. $\overline{NE(X)} \subset D^{\geq 0}$.

Theorem 3.11 (Kleiman's ampleness criterion). Let X be a projective normal variety and D a Cartier divisor. Then, D is ample iff $\overline{NE(X)} \setminus \{0\} \subset D^{>0}$.

Proof. Omitted. □

Corollary 3.12. If N is nef and A is ample, then N + A is ample.

Proof. $\zeta \in \overline{NE(X)} \setminus \{0\}$ implies $(N+A) \cdot \zeta = N \cdot \zeta + A \cdot \zeta > 0$ because $N \cdot \zeta \ge 0$ and $A \cdot \zeta > 0$.

Remark 3.13. It is useful to use \mathbb{Q} -divisors. For $D \in \text{Div} X \otimes_{\mathbb{Z}} \mathbb{Q}$, D is defined to be nef if there is $m \in \mathbb{Z}_{>0}$ such that D is a nef Cartier divisor, and defined to be ample if there is $m \in \mathbb{Z}_{>0}$ such that D is a ample Cartier divisor. Then, a nef divisor can be approximated by $D = \lim_{\varepsilon \to 0+} (D + \varepsilon A)$.

Theorem 3.14 (Nakai-Moishezon). Let X be a projective normal variety and D a Cartier divisor. Then, D is ample (resp. nef) iff for a subvariety $Y \subset X$ we have $Y \cdot D^{\dim Y} > 0$ (resp. ≥ 0).

Proof. For amples, well-known. For nefs, it follows from $Y \cdot D^{\dim Y} = \lim_{\varepsilon \to 0+} Y \cdot (D + \varepsilon A)^{\dim Y} \ge 0$. \square