Examples for 10/19/2020 (2) (continued)

1. Let $\beta > 0$ and let X_1, X_2, \dots, X_n be a random sample from the distribution with probability density function

$$f(x; \beta) = \frac{\beta^2 \ln x}{x^{\beta+1}},$$
 $x > 1,$ zero otherwise.

Recall: $W = \ln X$ has a Gamma ($\alpha = 2$, $\theta = \frac{1}{\beta}$) distribution. ($\lambda = \beta$)

i) Recall: The maximum likelihood estimator for β is $\hat{\beta} = \frac{2n}{n - 1}$. $\sum_{i=1}^{n} \ln X_i$

Is $\hat{\beta}$ a consistent estimator of β ? Justify your answer.

(NOT enough to say "because it is the maximum likelihood estimator")

j) Assume $\beta > 1$.

Recall: A method of moments estimator for β is $\widetilde{\beta} = \frac{\sqrt{\overline{X}}}{\sqrt{\overline{X}} - 1}$.

Is $\widetilde{\beta}$ a consistent estimator of β ? Justify your answer.

(NOT enough to say "because it is a method of moments estimator")

Battleplan:

- ① WLLN, $\overline{\mathbf{v}} = \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{v}_{i} \stackrel{P}{\to} \mathrm{E}(\mathbf{v}).$

Answers:

1. Let $\beta > 0$ and let X_1, X_2, \dots, X_n be a random sample from the distribution with probability density function

$$f(x; \beta) = \frac{\beta^2 \ln x}{x^{\beta+1}},$$
 $x > 1,$ zero otherwise.

Recall: $W = \ln X$ has a $Gamma(\alpha = 2, \theta = \frac{1}{\beta})$ distribution. $(\lambda = \beta)$

i) Recall: The maximum likelihood estimator for β is $\hat{\beta} = \frac{2n}{\sum_{i=1}^{n} \ln X_i}$.

Is $\hat{\beta}$ a consistent estimator of β ? Justify your answer.

(NOT enough to say "because it is the maximum likelihood estimator")

$$\hat{\beta} = \frac{2n}{\sum_{i=1}^{n} \ln X_{i}} = \frac{2}{\frac{1}{n} \cdot \sum_{i=1}^{n} \ln X_{i}} = \frac{2}{\frac{1}{n} \cdot \sum_{i=1}^{n} W_{i}} = \frac{2}{\overline{W}}.$$

By WLLN,
$$\overline{W} = \frac{1}{n} \cdot \sum_{i=1}^{n} W_i \xrightarrow{P} E(W) = \alpha \theta = \frac{2}{\beta}.$$

 \spadesuit $\stackrel{P}{\rightarrow}$ a, g is continuous at $a \Rightarrow g(\spadesuit) \stackrel{P}{\rightarrow} g(a)$

Since $g(x) = \frac{2}{x}$ is continuous at $\frac{2}{\beta}$,

$$\hat{\beta} = g(\overline{W}) \xrightarrow{P} g(\frac{2}{\beta}) = \beta.$$
 $\hat{\beta}$ is a consistent estimator of β .

j) Assume $\beta > 1$.

Recall: A method of moments estimator for
$$\beta$$
 is $\widetilde{\beta} = \frac{\sqrt{\overline{X}}}{\sqrt{\overline{X}} - 1}$.

Is $\widetilde{\beta}$ a consistent estimator of β ? Justify your answer.

(NOT enough to say "because it is a method of moments estimator")

By WLLN,
$$\overline{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i \xrightarrow{P} \mu = \frac{\beta^2}{(\beta - 1)^2}.$$

Since
$$g(x) = \frac{\sqrt{x}}{\sqrt{x} - 1}$$
 is continuous at $\frac{\beta^2}{(\beta - 1)^2}$,

$$\widetilde{\beta} = g(\overline{X}) \xrightarrow{P} g(\frac{\beta^2}{(\beta-1)^2}) = \beta.$$

 $\widetilde{\beta}$ is a consistent estimator of β .