# "Simple is the Best"

- 예측모델을 사용한 영화 관객수 예측 -



### 데이터 분석 개요



1. 개봉예정 영화 관객수 예측



#### 데이터 수집 기간 및 채널

1. 기간: 2015.01.01.~2018.07.13.

2. 채널: 영화진흥위, 네이버 영화

3. 수집도구: Python, R



#### 분석방법

- 1. 다중 회귀 모형
- 2. 랜덤 포레스트



#### 수집 데이터

1. 독립 변수 개수: 50개

2. 표본 개수: 520개

## 역할 분담



#### 강동현

중앙대 응용통계학과 데이터 분석 (R)



#### 이승화

중앙대 응용통계학과 데이터 수집 및 PPT



#### 한승훈

중앙대 응용통계학과 데이터 분석(Python)



#### 성의창

중앙대 응용통계학과 데이터 분석(Python)



#### 이영훈(팀장)

중앙대 응용통계학과 데이터 분석(R)

# 목차

- 01. 변수 설명 및 전처리
- 02. 분석 방법
- 03. 분석 과정
- 04. 결과 도출



편향된 총관객수 분포를 로그변환을 통해 개선

#### 01. 변수 설명 및 전처리 **| 내적 변수**





장르

액션 → 1 멜로/로맨스 → 2 드라마 → 3 공포 → 4 (애니메이션의 경우 미포함)



배우

최근 3년 동안 주연배우의 관객수 평균



관람 등급

전체 관람가 → 1 12세 관람가 → 2 15세 관람가 → 3 청소년 관람불가 → 4



제작 국가

한국영화 → 1 그 외 → 0

#### 01. 변수 설명 및 전처리 **| 외적 변수**





관객수

종속 변수와 동일한 변환



스크린 수

종속 변수와 동일한 변환



평점

평점 → 스케일링 참여자수 → 종속 변수와 동일한 변환



기타

기대지수 → 종속 변수와 동일한 변환

#### 01. 변수 설명 및 전처리 **| 가공 변수**





경쟁 변수

영화 개봉일 전후 10일 이내에 개봉한 10만 이상의 영화 수



단독 개봉

특정 영화관에서만 상영 → 1 복수 영화관에서 상영 → 0



연휴 변수

연휴에 개봉 → 1 그 외에 개봉 → 0



지속 변수

제곱근 변환

#### 01. 변수 설명 및 전처리 **| 가공변수 - 지속 변수**

#### <23일 이후의 관객수 변동률과 상관성이 가장 높은 비율 찾기 위해 상관분석 실시 >

| 변수명   | 상관계수 |
|-------|------|
| Rate1 | 0.82 |
| Rate2 | 0.86 |
| Rate3 | 0.91 |

Rate1: 18일부터 23일까지의 누적 관객수 변동률

Rate2: 19일부터 23일까지의 누적 관객수 변동률

Rate3: 22일부터 23일까지의 누적 관객수 변동률

#### 02. 분석 방법 | Linear Regression



종속 변수와 한 개 이상의 독립 변수의 선형 상관 관계를 모델링하는 분석 방법



의사결정나무들의 예측 결과들을 종합하여 추정하는 방법

#### 02. 분석 방법

#### **| K -Fold Cross validation**

| Round 1      | Round 2      | Round 3      |       | Round 10     |
|--------------|--------------|--------------|-------|--------------|
| TEST SET     | TRAINING SET | TRAINING SET |       | TRAINING SET |
| TRAINING SET | TEST SET     | TRAINING SET |       | TRAINING SET |
| TRAINING SET | TRAINING SET | TEST SET     |       | TRAINING SET |
| TRAINING SET | TRAINING SET | TRAINING SET |       | TRAINING SET |
| TRAINING SET | TRAINING SET | TRAINING SET |       | TRAINING SET |
| TRAINING SET | TRAINING SET | TRAINING SET | ••••• | TRAINING SET |
| TRAINING SET | TRAINING SET | TRAINING SET |       | TRAINING SET |
| TRAINING SET | TRAINING SET | TRAINING SET |       | TRAINING SET |
| TRAINING SET | TRAINING SET | TRAINING SET |       | TRAINING SET |
| TRAINING SET | TRAINING SET | TRAINING SET |       | TEST SET     |

k개의 fold를 만들어서 진행하는 교차검증

#### 03. 분석 과정 **| 2가지 모델**

| 일  | 월  | 화  | 수  | 목  | 금  | 토   |
|----|----|----|----|----|----|-----|
| 19 | 20 | 21 |    | 23 | 24 | 25  |
| 26 | 27 | 28 | 29 | 30 | 31 | 9/1 |
| 2  | 3  | 4  | 5  | 6  | 7  | 8   |
| 9  | 10 | 11 | #  | 13 | 14 | 15  |
| 16 | 17 | 18 | 19 | 20 | 21 | 22  |
| 23 | 24 | 25 | 26 | 27 | 28 | 29  |
| 30 |    |    |    |    |    |     |

'물괴'의 개봉일이 다른 두 영화의 개봉일과 다르기 때문에 두 개의 모델 설정

#### | 첫 번째 모델 – 선형 모형

$$\widehat{\log Y} = \widehat{\beta}_0 + \widehat{\beta}_1 \sqrt{X_1} + \log X_2 + \log X_3$$

| 변수                    | 계수                         | 유의확률    | 분산 팽창 계수     |
|-----------------------|----------------------------|---------|--------------|
| 절편                    | $\hat{\beta}_0 = 0.092942$ | 0.00649 |              |
| <b>X</b> <sub>1</sub> | $\hat{\beta}_1 = 1.7412$   | <2e-16  | 1.1614       |
| <b>X</b> <sub>2</sub> | $\hat{\beta}_2 = 0.9922$   | <2e-16  | 1.2673       |
| <b>X</b> <sub>3</sub> | $\hat{\beta}_3 = -0.0154$  | 0.05015 | 1.1366       |
| $R^2 = 0.9988$        |                            | 모델유의확   | 量 = <2.2e-16 |





Root mean square error(RMSE) 가 Linear model 이 더 작으므로 선택

03. 분석 과정

#### | 두 번째 모델 - 선형 모형

 $\widehat{logY} = \hat{\beta}_0 + \hat{\beta}_1 log X_1 + \hat{\beta}_2 log X_2 + \hat{\beta}_3 X_+ \hat{\beta}_4 log X_4 + \hat{\beta}_5 X_5 + \hat{\beta}_6 log X_6 + \hat{\beta}_7 log X_7 + \hat{\beta}_8 log X_8 + \hat{\beta}_9 log X_9$ Y= 19일차 관객수  $X_1 =$ 배우  $X_2 = 2$ 일차 박스오피스 순위  $X_3 =$ 연휴  $X_4 = 2$ 일차 관객수  $X_5 =$ 제작국가  $X_6 =$ 시사회 관객수  $X_7 =$ 시사회 스크린 수  $X_8 =$ 개봉 전 좋아요 수  $X_9 =$ 경쟁 변수

| 변수                    | 계수                        | 유의확률     | 분산 팽창 계수     |
|-----------------------|---------------------------|----------|--------------|
| 절편                    | $\hat{\beta}_0 = 3.2598$  | 4.30e-10 |              |
| <b>X</b> <sub>1</sub> | $\hat{eta}_1 = 0.2195$    | 4.38e-12 | 2.6946       |
| $X_2$                 | $\hat{\beta}_2 = -0.4632$ | <2e-16   | 3.7120       |
| <b>X</b> <sub>3</sub> | $\hat{\beta}_3 = -0.0991$ | 4.89e-06 | 1.1584       |
| $X_4$                 | $\hat{eta}_4 = -0.5747$   | <2e-16   | 5.2359       |
| <b>X</b> 5            | $\hat{eta}_5 = 0.1279$    | 9.29e-09 | 1.4199       |
| $X_6$                 | $\hat{eta}_6 = 0.1626$    | 2.39e-08 | 5.3655       |
| <b>X</b> <sub>7</sub> | $\hat{\beta}_7 = -0.0984$ | 8.21e-05 | 4.5641       |
| <b>X</b> 8            | $\hat{eta}_{8}$ = 0.0532  | 0.00793  | 1.7978       |
| <b>X</b> 9            | $\hat{\beta}_9 = -0.1154$ | 0.07130  | 1.1542       |
| $R^2 =$               | 0.9192                    | 모델유의확·   | 률 = <2.2e-16 |











Root mean square error(RMSE) 가 Random forest 가 더 작으므로 선택

#### 04. 결과 도출 **| 영화 별 관객수 예측**



2,918,481



271,007



1,250,791

# THANK YOU Q & A