

SF1624 Algebra och geometri Tentamen Måndagen den 28 oktober, 2013

Skrivtid: 14:00-19:00 Tillåtna hjälpmedel: inga Examinator: Roy Skjelnes

Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Del A på tentamen utgörs av de tre första uppgifterna. Till antalet erhållna poäng från del A adderas dina bonuspoäng. Poängsumman på del A kan dock som högst bli 12 poäng. Bonuspoängen beräknas automatiskt. Antal bonuspoäng framgår från resultatsidan.

De tre följande uppgifterna utgör del B och de tre sista uppgifterna del C, som främst är till för de högre betygen.

Betygsgränserna vid tentamen kommer att ges av

Betyg	Α	В	C	D	E	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst två poäng.

DEL A

1. Vi har matriserna

$$A = \begin{bmatrix} 1 & 1 & -1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 0 & 0 & -1 \end{bmatrix} \quad \text{och} \quad E = \begin{bmatrix} 1 & 0 & -3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

- (a) Bestäm vilka elementära radoperationer vi måste utföra på matrisen A för att få matrisen EA. (1 p)
- (b) Bestäm en matris E_2 sådan att E_2A byter plats på rad 1 och 4 i matrisen A. (1 p)
- (c) Bestäm rangen till A. (1 p)
- (d) Bestäm determinanten till A. (1 \mathbf{p})
- 2. Lösningsmängden V till ekvationssystemet

$$\begin{cases} x_1 + x_2 - x_3 - x_4 = 0 \\ 2x_1 + 3x_2 - x_3 - x_4 = 0 \\ x_2 + x_3 + x_4 = 0 \end{cases}$$

är ett delrum av \mathbb{R}^4 .

- (a) Bestäm en bas för V. (1 p)
- (b) Bestäm en avbildning $T : \mathbb{R}^5 \to \mathbb{R}^4$ sådan att bildrummet är V. (1 $\hat{\mathbf{p}}$)
- (c) Bestäm en bas för det ortogonala komplementet V^{\perp} . (2 p)
- 3. Avbildningen $T \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ ges av matrisen

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}.$$

- (a) Bestäm egenvektorer och egenvärden till T. (1 \mathbf{p})
- (b) Rita upp egenrummen till T. (1 \mathbf{p})
- (c) Bestäm två linjärt oberoende egenvektorer för T. (1 \mathbf{p})
- (d) Bestäm matrisrepresentationen av T med avseende på en bas av egenvektorer.

(1 p)

DEL B

- 4. Anna, Bertil, Cecilia och Daniel köper snask i en kiosk där alla priser är i hela kronor.
 - Anna köper 1 lakritsklubba, 2 salta remmar och 8 hallonkolor.
 - Bertil köper 2 lakritsklubbor, 3 salta remmar och 10 hallonkolor.
 - Cecilia köper 3 lakritsklubbor, 4 salta remmar och 12 hallonkolor.
 - Daniel köper 5 lakritsklubbor, 4 salta remmar och 3 hallonkolor.

Anna betalar 21 kronor, Bertil 31 kronor och Cecilia 41 kronor. Vad betalar Daniel?

(4 p)

- 5. En två meter lång man står i en plan sluttning med ekvationen x-2y+2z=3. Han har fötterna i punkten P=(1,2,3) och huvudet i punkten Q=(1,2,5). Det är mitt i natten och den enda ljuskällan i närheten är en lampa i punkten R=(-5,-4,8). Hur lång är mannens skugga? (4 p)
- 6. Låt

$$A = \vec{u}\vec{u}^T + 2\vec{v}\vec{v}^T,$$

där

$$\vec{u} = \frac{1}{5} \begin{bmatrix} 3 \\ 4 \end{bmatrix} \text{ och } \vec{v} = \frac{1}{5} \begin{bmatrix} 4 \\ -3 \end{bmatrix}.$$

(a) Visa att \vec{u} och \vec{v} är egenvektorer till A.

- (2 p)
- (b) Visa att A är ortogonalt diagonaliserbar genom att ange en ortognal matris P och en diagonalmatris D så att $A = PDP^T$. (2 p)

4

DEL C

7. Till varje tal a har vi följande tre vektorer i \mathbb{R}^3 ,

$$\vec{u} = \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} 1-a\\a\\2a-1 \end{bmatrix} \quad \text{och} \quad \vec{w} = \begin{bmatrix} 2\\3\\a \end{bmatrix}.$$

(a) Bestäm för vilka tal a vektorerna \vec{u} , \vec{v} och \vec{w} är linjärt beroende.

(2 p)

(b) Låt $a=\frac{2}{3}$. Förklara att det finns oändligt många linjära avbildningar $T\colon \mathbb{R}^3 \to \mathbb{R}^2$ med egenskapen att

$$T(\vec{u}) = \begin{bmatrix} 3 \\ 6 \end{bmatrix}, \ T(\vec{v}) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ T(\vec{w}) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}.$$

8. I \mathbb{R}^2 har vi linjen L som ges av ekvationen 4x+3y=0. Låt

$$A = \frac{1}{50} \begin{bmatrix} -9 & -48 \\ -48 & 19 \end{bmatrix},$$

och låt \vec{x} vara en godtycklig vektor i \mathbb{R}^2 Visa/förklara att när n växer, så kommer $A^n\vec{x}$ närma sig (konvergera mot) linjen L. (Ledning: $\frac{9\cdot 19 + 48^2}{50^2} = \frac{9\cdot 11}{10^2}$.) (4 p)

9. Låt $A=(a_{i,j})$ vara en *strikt* övretriangluär 4×4 -matris; dvs $a_{i,j}=0$ om $i\geq j$. Låt I beteckna identitetsmatrisen, och låt V vara vektorrummet av alla (4×4) -matriser.

(a) Visa att
$$A^4 = 0$$
.

(b) Visa att $(I - A)^{-1}$ är med i det linjära höljet $Span\{I, A, A^2, A^3\}$. (2 p)