Implementazione di una Rete Convoluzionale in CUDA

Michele Valsesia Nicholas Aspes

Anno accademico 2018/2019

Introduzione

Obiettivi

► Descrivere brevemente l'architettura ed il funzionamento di una Rete Neurale

Introduzione

Obiettivi

► Descrivere brevemente l'architettura ed il funzionamento di una Rete Neurale

 Motivare le differenti scelte implementative adottate durante lo svolgimento del progetto

Introduzione

Obiettivi

► Descrivere brevemente l'architettura ed il funzionamento di una Rete Neurale

► Motivare le differenti scelte implementative adottate durante lo svolgimento del progetto

► Valutare l'accuratezza e lo speed-up della rete rispetto ad una sua implementazione sequenziale

Scopo

► Le *Reti Neurali* vengono principalmente usate per la classificazione di immagini

Scopo

- ► Le *Reti Neurali* vengono principalmente usate per la classificazione di immagini
- ► Il processo di classificazione consiste nell'assegnare ad un immagine un'etichetta che identifichi nel miglior modo possibile il suo contenuto semantico

Scopo

- ► Le *Reti Neurali* vengono principalmente usate per la classificazione di immagini
- ► Il processo di classificazione consiste nell'assegnare ad un immagine un'etichetta che identifichi nel miglior modo possibile il suo contenuto semantico
- ▶ L'insieme delle immagini che hanno tutte la stessa etichetta costituiscono una *classe*

Scopo

- ► Le *Reti Neurali* vengono principalmente usate per la classificazione di immagini
- ► Il processo di classificazione consiste nell'assegnare ad un immagine un'etichetta che identifichi nel miglior modo possibile il suo contenuto semantico
- ► L'insieme delle immagini che hanno tutte la stessa etichetta costituiscono una *classe*
- ► Le reti neurali ricevono in input un'immagine e forniscono in output la relativa classe

Funzionamento

► Una rete neurale deve *apprendere* come assegnare correttamente le immagini alle varie classi

- ► Una rete neurale deve *apprendere* come assegnare correttamente le immagini alle varie classi
- ▶ Un *esempio* è una coppia (immagine, etichetta)

- ► Una rete neurale deve *apprendere* come assegnare correttamente le immagini alle varie classi
- ▶ Un *esempio* è una coppia (immagine, etichetta)
- ► Un team di persone valuta il contenuto semantico di ciascuna immagine e assegna all'esempio l'etichetta corrispondente

- ► Una rete neurale deve *apprendere* come assegnare correttamente le immagini alle varie classi
- ▶ Un *esempio* è una coppia (immagine, etichetta)
- ► Un team di persone valuta il contenuto semantico di ciascuna immagine e assegna all'esempio l'etichetta corrispondente
- ▶ Il training set ed il test set sono insiemi di esempi

- ► Una rete neurale deve *apprendere* come assegnare correttamente le immagini alle varie classi
- ▶ Un *esempio* è una coppia (immagine, etichetta)
- ► Un team di persone valuta il contenuto semantico di ciascuna immagine e assegna all'esempio l'etichetta corrispondente
- ▶ Il training set ed il test set sono insiemi di esempi
- ► Il training set viene usato per l'addestramento (training) della rete

- ► Una rete neurale deve *apprendere* come assegnare correttamente le immagini alle varie classi
- ▶ Un *esempio* è una coppia (immagine, etichetta)
- ► Un team di persone valuta il contenuto semantico di ciascuna immagine e assegna all'esempio l'etichetta corrispondente
- ▶ Il training set ed il test set sono insiemi di esempi
- ► Il training set viene usato per l'addestramento (training) della rete
- ► Il test set serve a controllare che la rete abbia imparato a discriminare correttamente le immagini

Training

► Per ognuno degli esempi del training set

Training

► Per ognuno degli esempi del training set

■ La rete riceve in input l'immagine relativa all'esempio considerato e l'associa ad una delle classi presenti

Training

► Per ognuno degli esempi del training set

■ La rete riceve in input l'immagine relativa all'esempio considerato e l'associa ad una delle classi presenti

 Se la classe in output è diversa dall'etichetta dell'esempio, la rete corregge i suoi parametri interni e passa all'immagine successiva

Testing

► L'accuratezza della rete è data dal rapporto tra il numero di esempi classificati scorrettamente ed il numero totale di esempi

Testing

- ► L'accuratezza della rete è data dal rapporto tra il numero di esempi classificati scorrettamente ed il numero totale di esempi
- ► Per ognuno degli esempi del test set

Testing

- ► L'accuratezza della rete è data dal rapporto tra il numero di esempi classificati scorrettamente ed il numero totale di esempi
- ► Per ognuno degli esempi del test set
 - La rete riceve in input l'immagine dell'esempio considerato e l'associa ad una delle classi presenti

Testing

- ► L'accuratezza della rete è data dal rapporto tra il numero di esempi classificati scorrettamente ed il numero totale di esempi
- ► Per ognuno degli esempi del test set
 - La rete riceve in input l'immagine dell'esempio considerato e l'associa ad una delle classi presenti
 - Ogni volta che l'output della rete non corrisponde all'etichetta dell'esempio viene incrementato un contatore, necessario per il calcolo dell'accuratezza

Significato Biologico

► Le *Reti Neurali* nascono con lo scopo di modellare una rete neurale biologica

Significato Biologico

► Le *Reti Neurali* nascono con lo scopo di modellare una rete neurale biologica

▶ Una rete neurale biologica si compone di unità cellulari di base: i neuroni

Significato Biologico

► Le *Reti Neurali* nascono con lo scopo di modellare una rete neurale biologica

► Una rete neurale biologica si compone di unità cellulari di base: i neuroni

▶ I neuroni sono collegati tra loro per mezzo di specifiche giunture chiamate *sinapsi*

Neurone

Modello matematico di un neurone

Funzionamento Neurone

► Attraverso un meccanismo di eccitazione ed inibizione i pesi sinaptici controllano quanto un neurone sia influenzato dagli altri

Funzionamento Neurone

- ► Attraverso un meccanismo di eccitazione ed inibizione i pesi sinaptici controllano quanto un neurone sia influenzato dagli altri
- ► I segnali in ingresso al neurone vengono pesati dalle differenti sinapsi, trasportati dai dendriti all'interno del corpo cellulare e sommati tra loro

Funzionamento Neurone

- ► Attraverso un meccanismo di eccitazione ed inibizione i pesi sinaptici controllano quanto un neurone sia influenzato dagli altri
- ► I segnali in ingresso al neurone vengono pesati dalle differenti sinapsi, trasportati dai dendriti all'interno del corpo cellulare e sommati tra loro
- Quando la somma supera una certa soglia, il neurone spara un segnale lungo l'assone

Funzionamento Neurone

- ► Attraverso un meccanismo di eccitazione ed inibizione i pesi sinaptici controllano quanto un neurone sia influenzato dagli altri
- ► I segnali in ingresso al neurone vengono pesati dalle differenti sinapsi, trasportati dai dendriti all'interno del corpo cellulare e sommati tra loro
- Quando la somma supera una certa soglia, il neurone spara un segnale lungo l'assone
- ► La *frequenza di sparo* del neurone viene modellata con una funzione di attivazione *f*

Funzioni di Attivazione

Definizione

Una funzione di attivazione è una funzione matematica non lineare che viene usata per calcolare l'output di un neurone. Il suo input è dato dalla somma pesata dei segnali in ingresso al neurone

Funzioni di Attivazione

Definizione

Una funzione di attivazione è una funzione matematica non lineare che viene usata per calcolare l'output di un neurone. Il suo input è dato dalla somma pesata dei segnali in ingresso al neurone

► Rectifier Linear Unit

Funzioni di Attivazione

Definizione

Una funzione di attivazione è una funzione matematica non lineare che viene usata per calcolare l'output di un neurone. Il suo input è dato dalla somma pesata dei segnali in ingresso al neurone

- ► Rectifier Linear Unit
- ► Sigmoide

Funzioni di Attivazione

Definizione

Una funzione di attivazione è una funzione matematica non lineare che viene usata per calcolare l'output di un neurone. Il suo input è dato dalla somma pesata dei segnali in ingresso al neurone

- ► Rectifier Linear Unit
- ► Sigmoide
- ► Tangente Iperbolica

Funzioni di Attivazione

Definizione

Una funzione di attivazione è una funzione matematica non lineare che viene usata per calcolare l'output di un neurone. Il suo input è dato dalla somma pesata dei segnali in ingresso al neurone

- ► Rectifier Linear Unit
- ► Sigmoide
- ► Tangente Iperbolica
- ► Softplus

Rectifier Linear Unit

Definizione

La Rectifier Linear Unit (ReLU) $r : \mathbb{R} \to [0, +\infty)$ è definita come $r(x) = \max(0, x)$

Rectifier Linear Unit

Definizione

La Rectifier Linear Unit (ReLU) $r : \mathbb{R} \to [0, +\infty)$ è definita come $r(x) = \max(0, x)$

▶ Si differenzia da una funzione di tipo lineare per metà del suo dominio in quanto $\forall x < 0, max(0, x) = 0$

Rectifier Linear Unit

Definizione

La Rectifier Linear Unit (ReLU) $r : \mathbb{R} \to [0, +\infty)$ è definita come $r(x) = \max(0, x)$

- ▶ Si differenzia da una funzione di tipo lineare per metà del suo dominio in quanto $\forall x < 0, max(0, x) = 0$
- ▶ Presenta un punto di discontinuità in x = 0

Rectifier Linear Unit

Definizione

La Rectifier Linear Unit (ReLU) $r : \mathbb{R} \to [0, +\infty)$ è definita come $r(x) = \max(0, x)$

- ► Si differenzia da una funzione di tipo lineare per metà del suo dominio in quanto $\forall x < 0, max(0, x) = 0$
- ▶ Presenta un punto di discontinuità in x = 0
- ▶ La sua derivata è pari a $1(x \ge 0)$

Rectifier Linear Unit

Rappresentazione grafica ReLU

Sigmoide

Definizione

La Sigmoide $\sigma: \mathbb{R} \to [0,1]$ è definita come $\sigma(x) = \frac{1}{(1+e^{-x})}$

Sigmoide

Definizione

La Sigmoide $\sigma: \mathbb{R} \to [0,1]$ è definita come $\sigma(x) = \frac{1}{(1+e^{-x})}$

► Per elevati valori negativi di input la sigmoide restituisce 0: il neurone non spara affatto

Sigmoide

Definizione

La Sigmoide $\sigma:\mathbb{R} \to [0,1]$ è definita come $\sigma(x)=\frac{1}{(1+e^{-x})}$

- ► Per elevati valori negativi di input la sigmoide restituisce 0: il neurone non spara affatto
- ▶ Per elevati valori positivi la sigmoide restituisce 1: il neurone satura e spara con frequenza di sparo pari a 1

Sigmoide

Definizione

La Sigmoide $\sigma:\mathbb{R}\to [0,1]$ è definita come $\sigma(x)=\frac{1}{(1+e^{-x})}$

- ► Per elevati valori negativi di input la sigmoide restituisce 0: il neurone non spara affatto
- ► Per elevati valori positivi la sigmoide restituisce 1: il neurone satura e spara con frequenza di sparo pari a 1
- ▶ La sua derivata è uguale a $\sigma'(x) = \sigma(x)(1 \sigma(x))$

Sigmoide

Rappresentazione grafica Sigmoide

Tangente Iperbolica

Definizione

La Tangente Iperbolica $tanh: \mathbb{R} \to [-1,1]$ è definita come $tanh(x) = 2\sigma(2x) - 1$

Tangente Iperbolica

Definizione

La Tangente Iperbolica $tanh : \mathbb{R} \to [-1,1]$ è definita come $tanh(x) = 2\sigma(2x) - 1$

▶ La tangente iperbolica è una sigmoide scalata

Tangente Iperbolica

Definizione

La Tangente Iperbolica $tanh: \mathbb{R} \to [-1,1]$ è definita come $tanh(x) = 2\sigma(2x) - 1$

- ▶ La tangente iperbolica è una sigmoide scalata
- ► La sua derivata è uguale a $tanh'(x) = 1 tanh^2(x)$

Tangente Iperbolica

Rappresentazione grafica Tangente Iperbolica

Softplus

Definizione

La Softplus $s: \mathbb{R} \to (0, +\infty)$ è definita come $s(x) = \log(1 + e^x)$

Softplus

Definizione

La Softplus $s: \mathbb{R} \to (0, +\infty)$ è definita come $s(x) = \log(1 + e^x)$

► La softplus è una buona approssimazione della ReLU

Softplus

Definizione

La Softplus
$$s: \mathbb{R} \to (0, +\infty)$$
 è definita come $s(x) = \log(1 + e^x)$

- ▶ La softplus è una buona approssimazione della ReLU
- ▶ Viene solitamente usata per sostituire la ReLU perché non presenta punti di discontinuità

Softplus

Definizione

La Softplus
$$s: \mathbb{R} \to (0, +\infty)$$
 è definita come $s(x) = \log(1 + e^x)$

- ► La softplus è una buona approssimazione della ReLU
- Viene solitamente usata per sostituire la ReLU perché non presenta punti di discontinuità
- ▶ La sua derivata è uguale a $s'(x) = \frac{1}{(1+e^{-x})}$

Softplus

Confronto grafico tra ReLU e Softplus

Rete Neurale

Definizione

Rete Neurale

Definizione

Una *Rete Neurale* è composta da un insieme di neuroni connessi tra loro in un grafo aciclico

▶ I neuroni sono organizzati in insiemi distinti chiamati *livelli* o *layer*

Rete Neurale

Definizione

- ▶ I neuroni sono organizzati in insiemi distinti chiamati *livelli* o *layer*
- ▶ I livelli sono posti uno di seguito all'altro in modo da formare una sequenza

Rete Neurale

Definizione

- ▶ I neuroni sono organizzati in insiemi distinti chiamati *livelli* o *layer*
- ▶ I livelli sono posti uno di seguito all'altro in modo da formare una sequenza
- ▶ I livelli intermedi prendono il nome di *hidden*

Rete Neurale

Definizione

- ▶ I neuroni sono organizzati in insiemi distinti chiamati *livelli* o *layer*
- ▶ I livelli sono posti uno di seguito all'altro in modo da formare una sequenza
- ▶ I livelli intermedi prendono il nome di hidden
- ► L'output dei neuroni di un livello diventano l'input dei neuroni del livello successivo

Rete Neurale

► Quando si effettua il conteggio dei livelli di una rete non si considera il livello di input

Rete Neurale

► Quando si effettua il conteggio dei livelli di una rete non si considera il livello di input

▶ Una rete a *singolo livello* non presenta livelli hidden

Rete Neurale

► Quando si effettua il conteggio dei livelli di una rete non si considera il livello di input

▶ Una rete a singolo livello non presenta livelli hidden

► Per determinare la grandezza di una rete ci si concentra sul numero di neuroni e sui relativi pesi ad essi associati

Livello Fully-Connected

Definizione

Un livello è di tipo *Fully-Connected* quando i neuroni appartenenti a due livelli adiacenti sono completamente connessi tra loro mentre i neuroni associati ad un singolo livello non condividono nessuna connessione

Livello Fully-Connected

Definizione

Un livello è di tipo *Fully-Connected* quando i neuroni appartenenti a due livelli adiacenti sono completamente connessi tra loro mentre i neuroni associati ad un singolo livello non condividono nessuna connessione

 I pesi dei neuroni di ciascun livello sono salvati all'interno di matrici

Livello Fully-Connected

Definizione

Un livello è di tipo *Fully-Connected* quando i neuroni appartenenti a due livelli adiacenti sono completamente connessi tra loro mentre i neuroni associati ad un singolo livello non condividono nessuna connessione

- ► I pesi dei neuroni di ciascun livello sono salvati all'interno di matrici
- ► Le righe di una matrice identificano i neuroni del livello mentre le colonne contengono i pesi di ciascun neurone

Livello Fully-Connected

Definizione

Un livello è di tipo *Fully-Connected* quando i neuroni appartenenti a due livelli adiacenti sono completamente connessi tra loro mentre i neuroni associati ad un singolo livello non condividono nessuna connessione

- ► I pesi dei neuroni di ciascun livello sono salvati all'interno di matrici
- ► Le righe di una matrice identificano i neuroni del livello mentre le colonne contengono i pesi di ciascun neurone
- ► La struttura a livelli di una rete neurale permette di sfruttare le potenzialità del calcolo matriciale

Livello Fully-Connected

Una rete neurale a 3 livelli

Funzionamento

Funzionamento

Il processo di apprendimento di una rete neurale è suddiviso in quattro fasi distinte

► Inizializzazione dei pesi

Funzionamento

- ► Inizializzazione dei pesi
- ► Forward Propagation

Funzionamento

- ► Inizializzazione dei pesi
- ► Forward Propagation
- ► Calcolo della Funzione di Perdita

Funzionamento

- ► Inizializzazione dei pesi
- ► Forward Propagation
- ► Calcolo della Funzione di Perdita
- ► Back Propagation

Inizializzazione dei pesi

► Al momento della nascita gli esseri umani non sono in grado di discriminare nessun tipo di oggetto a causa del mancato addestramento della loro rete neurale biologica

Inizializzazione dei pesi

► Al momento della nascita gli esseri umani non sono in grado di discriminare nessun tipo di oggetto a causa del mancato addestramento della loro rete neurale biologica

▶ Per riprodurre questo comportamento, all'inizio della fase di training, i pesi sinaptici *w_i* di ciascun livello vengono inizializzati in maniera casuale

Forward Propagation

Definizione

Forward Propagation

Definizione

La Forward Propagation è il meccanismo utilizzato da una rete neurale per associare un'immagine ad una determinata classe

ightharpoonup L'output dei neuroni del livello i viene moltiplicato per la matrice dei pesi del livello i+1 ottenendo il vettore v

Forward Propagation

Definizione

- lackbox L'output dei neuroni del livello i viene moltiplicato per la matrice dei pesi del livello i+1 ottenendo il vettore v
- lacktriangle Al vettore v viene aggiunto il vettore dei bias del livello i+1

Forward Propagation

Definizione

- ightharpoonup L'output dei neuroni del livello i viene moltiplicato per la matrice dei pesi del livello i+1 ottenendo il vettore v
- lacktriangle Al vettore v viene aggiunto il vettore dei bias del livello i+1
- ightharpoonup L'output del livello i+1 si ottiene applicando la funzione di attivazione f ad ogni entry del vettore v

Forward Propagation

Definizione

- ightharpoonup L'output dei neuroni del livello i viene moltiplicato per la matrice dei pesi del livello i+1 ottenendo il vettore v
- lacktriangle Al vettore v viene aggiunto il vettore dei bias del livello i+1
- ightharpoonup L'output del livello i+1 si ottiene applicando la funzione di attivazione f ad ogni entry del vettore v
- ► Le operazioni precedenti sono svolte per tutti i livelli ad eccezione dell'ultimo

Calcolo della funzione di perdita

Definizione

Calcolo della funzione di perdita

Definizione

Una *funzione di perdita L* viene utilizzata per determinare l'errore di classificazione di una rete neurale

▶ La funzione di perdita più usata è la *Mean Squared Error (MSE)* $L = \frac{1}{2} \sum (y - o)^2$

Calcolo della funzione di perdita

Definizione

- ▶ La funzione di perdita più usata è la *Mean Squared Error (MSE)* $L = \frac{1}{2} \sum (y o)^2$
- ▶ y identifica l'output della rete mentre o l'etichetta dell'esempio considerato

Calcolo della funzione di perdita

Definizione

- ▶ La funzione di perdita più usata è la *Mean Squared Error (MSE)* $L = \frac{1}{2} \sum (y o)^2$
- ▶ y identifica l'output della rete mentre o l'etichetta dell'esempio considerato
- ► Minimizzando la funzione di perdita *L* si riduce l'errore di una rete neurale

Calcolo della funzione di perdita

Definizione

- ▶ La funzione di perdita più usata è la *Mean Squared Error (MSE)* $L = \frac{1}{2} \sum (y o)^2$
- ▶ y identifica l'output della rete mentre o l'etichetta dell'esempio considerato
- ► Minimizzando la funzione di perdita *L* si riduce l'errore di una rete neurale
- ► Calcolando la derivata di *L* in funzione dei pesi *w_i* si individua il minimo globale della funzione di perdita

Funzione di perdita

Mean Squared Error (MSE). I pesi w_1 e w_2 sono le variabili indipendenti. La funzione di perdita L è la variabile dipendente

Back Propagation

Definizione

La $Back\ Propagation\ è$ il meccanismo utilizzato da una rete neurale per correggere gli errori di classificazione. Vengono individuati i pesi w_i che hanno influenzato maggiormente l'errore commesso e viene aggiornato il loro valore in modo da ridurre la funzione di perdita

Back Propagation

Definizione

La Back Propagation è il meccanismo utilizzato da una rete neurale per correggere gli errori di classificazione. Vengono individuati i pesi w_i che hanno influenzato maggiormente l'errore commesso e viene aggiornato il loro valore in modo da ridurre la funzione di perdita

▶ Per calcolare la derivata della funzione L in funzione dei pesi w_i viene usata la regola della catena (chain rule)

Back Propagation

Definizione

La Back Propagation è il meccanismo utilizzato da una rete neurale per correggere gli errori di classificazione. Vengono individuati i pesi w_i che hanno influenzato maggiormente l'errore commesso e viene aggiornato il loro valore in modo da ridurre la funzione di perdita

- ▶ Per calcolare la derivata della funzione L in funzione dei pesi w_i viene usata la regola della catena (chain rule)
- Questa regola è usata per trovare la derivata di una funzione composta

Aggiornamento dei Pesi e Learning Rate

▶ Il nuovo valore del peso w_i è dato dalla regola di aggiornamento $w_i = w_i - \eta \frac{\partial L}{\partial w_i} = w_i + \Delta w_i$

Aggiornamento dei Pesi e Learning Rate

- ▶ Il nuovo valore del peso w_i è dato dalla regola di aggiornamento $w_i = w_i \eta \frac{\partial L}{\partial w_i} = w_i + \Delta w_i$
- ▶ Il learning rate η è un parametro usato per controllare la velocità di aggiornamento dei pesi

Aggiornamento dei Pesi e Learning Rate

- ▶ Il nuovo valore del peso w_i è dato dalla regola di aggiornamento $w_i = w_i \eta \frac{\partial L}{\partial w_i} = w_i + \Delta w_i$
- ▶ Il learning rate η è un parametro usato per controllare la velocità di aggiornamento dei pesi
- Un learning rate alto comporta aggiornamenti rapidi, un tempo di esecuzione più basso, ma una maggiore probabilità di finire in un minimo locale

Aggiornamento dei Pesi e Learning Rate

- ▶ Il nuovo valore del peso w_i è dato dalla regola di aggiornamento $w_i = w_i \eta \frac{\partial L}{\partial w_i} = w_i + \Delta w_i$
- ▶ Il learning rate η è un parametro usato per controllare la velocità di aggiornamento dei pesi
- ► Un learning rate alto comporta aggiornamenti rapidi, un tempo di esecuzione più basso, ma una maggiore probabilità di finire in un minimo locale
- ► Un learning rate basso diminuisce la probabilità di finire in un minimo locale, ma allunga notevolmente i tempi di esecuzione

$$oldsymbol{x} \in \mathbb{R}^{n,1} \quad oldsymbol{w^h} \in \mathbb{R}^{n,m}$$

$$oldsymbol{h} \in \mathbb{R}^{m,1} \quad oldsymbol{w^o} \in \mathbb{R}^{1,m}$$

$$z_j^h = \sum_{i=0}^n w_{ij}^h x_i$$

$$z^o = \sum_{j=0}^m w_j^o h_j$$

$$h_j = f(z_j^h)$$

$$o = f(z^o)$$

Esempio Back Propagation

$$\frac{\partial L}{\partial w_j^o} = \frac{\partial L}{\partial o} \cdot \frac{\partial o}{\partial z^o} \cdot \frac{\partial z^o}{\partial w_j}$$

Esempio Back Propagation

$$\frac{\partial L}{\partial w_j^o} = \frac{\partial L}{\partial o} \cdot \frac{\partial o}{\partial z^o} \cdot \frac{\partial z^o}{\partial w_j}$$

$$\frac{\partial L}{\partial o} = \frac{\partial}{\partial o} \left[\frac{1}{2} (y - o)^2 \right] = -(y - o)$$

Esempio Back Propagation

$$\frac{\partial L}{\partial w_j^o} = \frac{\partial L}{\partial o} \cdot \frac{\partial o}{\partial z^o} \cdot \frac{\partial z^o}{\partial w_j}$$

$$\frac{\partial L}{\partial o} = \frac{\partial}{\partial o} \left[\frac{1}{2} (y - o)^2 \right] = -(y - o)$$

Esempio Back Propagation

$$\frac{\partial L}{\partial w_j^o} = \frac{\partial L}{\partial o} \cdot \frac{\partial o}{\partial z^o} \cdot \frac{\partial z^o}{\partial w_j}$$

$$\frac{\partial L}{\partial o} = \frac{\partial}{\partial o} \left[\frac{1}{2} (y - o)^2 \right] = -(y - o)$$

$$\blacksquare \frac{\partial z^o}{\partial w_j^o} = h_j$$

Esempio Back Propagation

lacktriangle Risultato della derivata della funzione L in funzione del peso w_j^o

$$\frac{\partial L}{\partial w_j^o} = -(y - o) \cdot f'(z^o) \cdot h_j = -\delta_j^o h_j$$

Esempio Back Propagation

lacktriangle Risultato della derivata della funzione L in funzione del peso w_j^o

$$\frac{\partial L}{\partial w_j^o} = -(y - o) \cdot f'(z^o) \cdot h_j = -\delta_j^o h_j$$

ightharpoonup Aggiornamento del peso w_j^o

$$\Delta w_j^o = \eta \delta_j^o h_j$$

$$\frac{\partial L}{\partial w_{ij}^h} = \frac{\partial L}{\partial o} \cdot \frac{\partial o}{\partial z^o} \cdot \frac{\partial z^o}{\partial h_j} \cdot \frac{\partial h_j}{\partial z_j^h} \cdot \frac{\partial z_j^h}{\partial w_{ij}^h}$$

$$\frac{\partial L}{\partial o} = \frac{\partial}{\partial o} \left[\frac{1}{2} (y - o)^2 \right] = -(y - o)$$

$$\frac{\partial L}{\partial o} = \frac{\partial}{\partial o} \left[\frac{1}{2} (y - o)^2 \right] = -(y - o)$$
$$\frac{\partial o}{\partial z^o} = f'(z^o)$$

$$\frac{\partial L}{\partial o} = \frac{\partial}{\partial o} \left[\frac{1}{2} (y - o)^2 \right] = -(y - o)$$

$$\frac{\partial o}{\partial z^o} = f'(z^o)$$

$$\frac{\partial z^o}{\partial h_j} = w_j^o$$

$$\frac{\partial L}{\partial o} = \frac{\partial}{\partial o} \left[\frac{1}{2} (y - o)^2 \right] = -(y - o)$$

$$\frac{\partial o}{\partial z^o} = f'(z^o)$$

$$\frac{\partial z^o}{\partial h_j} = w_j^o$$

$$\frac{\partial h_j}{\partial z_j^h} = f'(z_j^h)$$

$$\frac{\partial L}{\partial o} = \frac{\partial}{\partial o} \left[\frac{1}{2} (y - o)^2 \right] = -(y - o)$$

$$\frac{\partial o}{\partial z^o} = f'(z^o)$$

$$\frac{\partial z^o}{\partial h_j} = w_j^o$$

$$\frac{\partial h_j}{\partial z_j^h} = f'(z_j^h)$$

$$\frac{\partial z_j^h}{\partial w_{ij}^h} = x_i$$

Esempio Back Propagation

lacktriangle Risultato della derivata della funzione L in funzione del peso w_{ij}^h

$$\frac{\partial L}{\partial w_{ij}^h} = -(y - o) \cdot f'(z^o) \cdot w_j^o \cdot f'(z_j^h) \cdot x_i = -\delta_j^h x_i$$

Esempio Back Propagation

lacktriangle Risultato della derivata della funzione L in funzione del peso w_{ij}^h

$$\frac{\partial L}{\partial w_{ij}^h} = -(y - o) \cdot f'(z^o) \cdot w_j^o \cdot f'(z_j^h) \cdot x_i = -\delta_j^h x_i$$

ightharpoonup Aggiornamento del peso w_{ij}^h

$$\Delta w_{ij}^h = \eta \delta_j^h x_i$$

Rete Neurale Convoluzionale

Definizione

Una Rete Neurale Convoluzionale è una variante di una rete neurale classica. Permette la condivisione dei pesi sinaptici tra i neuroni di un livello e consente di discriminare le varie feature che compongono un'immagine

Rete Neurale Convoluzionale

Definizione

Una Rete Neurale Convoluzionale è una variante di una rete neurale classica. Permette la condivisione dei pesi sinaptici tra i neuroni di un livello e consente di discriminare le varie feature che compongono un'immagine

► Viene definito un nuovo tipo di livello: il *Livello Convoluzionale*

Rete Neurale Convoluzionale

Definizione

Una Rete Neurale Convoluzionale è una variante di una rete neurale classica. Permette la condivisione dei pesi sinaptici tra i neuroni di un livello e consente di discriminare le varie feature che compongono un'immagine

- ► Viene definito un nuovo tipo di livello: il Livello Convoluzionale
- ▶ Un livello convoluzionale è formato da diversi filtri

Rete Neurale Convoluzionale

Definizione

Una Rete Neurale Convoluzionale è una variante di una rete neurale classica. Permette la condivisione dei pesi sinaptici tra i neuroni di un livello e consente di discriminare le varie feature che compongono un'immagine

- ► Viene definito un nuovo tipo di livello: il *Livello Convoluzionale*
- ▶ Un livello convoluzionale è formato da diversi filtri
- ▶ La profondità (depth) di un livello convoluzionale è data dal numero di filtri che lo compongono

Filtri e Livelli Convoluzionali

► I filtri sono le matrici contenenti i pesi sinaptici del livello convoluzionale

- ► I filtri sono le matrici contenenti i pesi sinaptici del livello convoluzionale
- ▶ Ogni filtro ricerca all'interno delle immagini della rete una o più feature: linee, curve, pattern

- ▶ I filtri sono le matrici contenenti i pesi sinaptici del livello convoluzionale
- ▶ Ogni filtro ricerca all'interno delle immagini della rete una o più feature: linee, curve, pattern
- ► Per apprendere nel miglior modo possibile il contenuto semantico di un'immagine, la rete deve saper ricercare feature sempre più complesse

- ▶ I filtri sono le matrici contenenti i pesi sinaptici del livello convoluzionale
- ▶ Ogni filtro ricerca all'interno delle immagini della rete una o più feature: linee, curve, pattern
- Per apprendere nel miglior modo possibile il contenuto semantico di un'immagine, la rete deve saper ricercare feature sempre più complesse
- Mettendo in sequenza più livelli convoluzionali si possono ottenere feature complesse

- ▶ I filtri sono le matrici contenenti i pesi sinaptici del livello convoluzionale
- ▶ Ogni filtro ricerca all'interno delle immagini della rete una o più feature: linee, curve, pattern
- ► Per apprendere nel miglior modo possibile il contenuto semantico di un'immagine, la rete deve saper ricercare feature sempre più complesse
- ► Mettendo in sequenza più livelli convoluzionali si possono ottenere feature complesse
- ▶ L'output di un generico livello convoluzionale i diventa l'input del successivo livello i+1. Le feature prodotte da i sono meno complesse di quelle ottenute da i+1

Funzionamento

► I pesi dei filtri di un livello convoluzionale sono inizializzati in maniera casuale

Funzionamento

► I pesi dei filtri di un livello convoluzionale sono inizializzati in maniera casuale

 Vengono utilizzate le stesse funzioni di attivazione e le stesse funzioni di perdita dei livelli fully-connected

Funzionamento

► I pesi dei filtri di un livello convoluzionale sono inizializzati in maniera casuale

 Vengono utilizzate le stesse funzioni di attivazione e le stesse funzioni di perdita dei livelli fully-connected

► La forward e la back propagation sono le uniche fasi definite diversamente

Forward Propagation

► Le matrici di input e di output di un livello convoluzionale prendono il nome di *feature map*

- ► Le matrici di input e di output di un livello convoluzionale prendono il nome di *feature map*
- ▶ I filtri sono meglio conosciuti con il nome di kernel

Forward Propagation

► All'inizio della forward propagation, il kernel viene sovrapposto alla parte superiore sinistra della feature map di input

- ► All'inizio della forward propagation, il kernel viene sovrapposto alla parte superiore sinistra della feature map di input
- Viene eseguita la convoluzione tra le due sottomatrici ed il risultato ottenuto viene salvato nella feature map di output

- ► All'inizio della forward propagation, il kernel viene sovrapposto alla parte superiore sinistra della feature map di input
- ► Viene eseguita la *convoluzione* tra le due sottomatrici ed il risultato ottenuto viene salvato nella feature map di output
- ► Il kernel viene spostato di una posizione verso destra e viene rieseguita nuovamente la convoluzione

- ► All'inizio della forward propagation, il kernel viene sovrapposto alla parte superiore sinistra della feature map di input
- ► Viene eseguita la *convoluzione* tra le due sottomatrici ed il risultato ottenuto viene salvato nella feature map di output
- ► Il kernel viene spostato di una posizione verso destra e viene rieseguita nuovamente la convoluzione
- ► Terminata la riga, il kernel viene posizionato nuovamente nella parte sinistra della feature map di input, ma una riga più in basso

- ► All'inizio della forward propagation, il kernel viene sovrapposto alla parte superiore sinistra della feature map di input
- ► Viene eseguita la *convoluzione* tra le due sottomatrici ed il risultato ottenuto viene salvato nella feature map di output
- ► Il kernel viene spostato di una posizione verso destra e viene rieseguita nuovamente la convoluzione
- ► Terminata la riga, il kernel viene posizionato nuovamente nella parte sinistra della feature map di input, ma una riga più in basso
- ► Gli ultimi due passaggi vengono ripetuti fino a quando non è stata riempita completamente tutta la feature map di output

Forward Propagation

Il kernel viene ruotato di 180° per poter eseguire la convoluzione

Forward Propagation

Forward Propagation di un livello convoluzionale

Considerazioni Forward Propagation

► Al termine della forward propagation, la funzione di attivazione *f* viene applicata ad ogni elemento della feature map di output

Considerazioni Forward Propagation

► Al termine della forward propagation, la funzione di attivazione *f* viene applicata ad ogni elemento della feature map di output

▶ Un kernel è una matrice quadrata di dimensione $K \times K$

Considerazioni Forward Propagation

► Al termine della forward propagation, la funzione di attivazione *f* viene applicata ad ogni elemento della feature map di output

▶ Un kernel è una matrice quadrata di dimensione $K \times K$

▶ La feature map di input ha dimensione $W \times H$ con W = H

Considerazioni Forward Propagation

► Al termine della forward propagation, la funzione di attivazione *f* viene applicata ad ogni elemento della feature map di output

▶ Un kernel è una matrice quadrata di dimensione $K \times K$

▶ La feature map di input ha dimensione $W \times H$ con W = H

▶ La feature map di output è una matrice quadrata di dimensione $O \times O$ con O = (W - K) + 1

Back Propagation

Definizione

La Back Propagation di una rete neurale convoluzionale ha come obiettivo l'aggiornamento dei pesi contenuti nei kernel di un livello. Per ciascuno dei pesi di un kernel viene calcolata la derivata parziale $\frac{\partial L}{\partial w^l_{m',n'}}$ che rappresenta l'influenza del peso $w^l_{m',n'}$ sulla funzione di perdita L

Back Propagation

Definizione

La Back Propagation di una rete neurale convoluzionale ha come obiettivo l'aggiornamento dei pesi contenuti nei kernel di un livello. Per ciascuno dei pesi di un kernel viene calcolata la derivata parziale $\frac{\partial L}{\partial w^l_{m',n'}}$ che rappresenta l'influenza del peso $w^l_{m',n'}$ sulla funzione di perdita L

▶ La Back Propagation viene suddivisa in due fasi distinte

Back Propagation

Definizione

La Back Propagation di una rete neurale convoluzionale ha come obiettivo l'aggiornamento dei pesi contenuti nei kernel di un livello. Per ciascuno dei pesi di un kernel viene calcolata la derivata parziale $\frac{\partial L}{\partial w^l_{m',n'}}$ che rappresenta l'influenza del peso $w^l_{m',n'}$ sulla funzione di perdita L

- ► La Back Propagation viene suddivisa in due fasi distinte
 - lacksquare II calcolo della matrice degli errori δ

Back Propagation

Definizione

La Back Propagation di una rete neurale convoluzionale ha come obiettivo l'aggiornamento dei pesi contenuti nei kernel di un livello. Per ciascuno dei pesi di un kernel viene calcolata la derivata parziale $\frac{\partial L}{\partial w^l_{m',n'}}$ che rappresenta l'influenza del peso $w^l_{m',n'}$ sulla funzione di perdita L

- ► La Back Propagation viene suddivisa in due fasi distinte
 - lacksquare Il calcolo della matrice degli errori δ
 - L'aggiornamento dei pesi del kernel

Calcolo matrice dei δ

Le linee tratteggiate presenti nella feature map di output individuano la regione dei pixel influenzati dal pixel $x_{i',j'}$. k_1 e k_2 definiscono la grandezza della regione considerata

Calcolo matrice dei δ

▶ L'influenza del pixel $x_{i',j'}$ sulla funzione di perdita L è data da

$$\delta_{i',j'}^I = \frac{\partial L}{\partial x_{i',j'}^I}$$

Calcolo matrice dei δ

▶ L'influenza del pixel $x_{i',j'}$ sulla funzione di perdita L è data da

$$\delta_{i',j'}^I = \frac{\partial L}{\partial x_{i',j'}^I}$$

► Applicando la regola della catena si ottiene

$$\frac{\partial L}{\partial x_{i',j'}^{l}} = \sum_{m=0}^{k_1-1} \sum_{n=0}^{k_2-1} \frac{\partial L}{\partial x_{i'-m,j'-n}^{l+1}} \frac{\partial x_{i'-m,j'-n}^{l+1}}{\partial x_{i',j'}^{l}}$$
$$= \sum_{m=0}^{k_1-1} \sum_{n=0}^{k_2-1} \delta_{i'-m,j'-n}^{l+1} \frac{\partial x_{i'-m,j'-n}^{l+1}}{\partial x_{i',j'}^{l}}$$

Calcolo matrice dei δ

$$\frac{\partial L}{\partial x_{i',j'}^{l}} = \sum_{m=0}^{k_1-1} \sum_{n=0}^{k_2-1} \delta_{i'-m,j'-n}^{l+1} w_{m,n}^{l+1} f'\left(x_{i',j'}^{l}\right)$$

$$= \operatorname{rot}_{180^{\circ}} \left\{ \sum_{m=0}^{k_1-1} \sum_{n=0}^{k_2-1} \delta_{i'+m,j'+n}^{l+1} w_{m,n}^{l+1} \right\} f'\left(x_{i',j'}^{l}\right)$$

$$= \delta_{i',j'}^{l+1} * \operatorname{rot}_{180^{\circ}} \left\{ w_{m,n}^{l+1} \right\} f'\left(x_{i',j'}^{l}\right)$$

Aggiornamento dei pesi

Durante la fase di forward propagation, il peso $w_{m',n'}$ ha contribuito a calcolare tutti i valori che costituiscono la feature map di output

Aggiornamento dei pesi

lacktriangle Il calcolo di $rac{\partial L}{\partial w^I_{m',n'}}$ usando la regola della catena è dato da

$$\frac{\partial L}{\partial w_{m',n'}^{l}} = \sum_{i=0}^{W-K} \sum_{j=0}^{W-K} \frac{\partial L}{\partial x_{i,j}^{l}} \frac{\partial x_{i,j}^{l}}{\partial w_{m',n'}^{l}}$$
$$= \sum_{i=0}^{W-K} \sum_{j=0}^{W-K} \delta_{i,j}^{l} \cdot o_{i+m',j+n'}^{l-1}$$
$$= rot_{180^{\circ}} \{\delta_{i,j}^{l}\} * o_{m',n'}^{l-1}$$

Aggiornamento dei pesi

 \blacktriangleright Il calcolo di $\frac{\partial L}{\partial w^l_{m',n'}}$ usando la regola della catena è dato da

$$\frac{\partial L}{\partial w_{m',n'}^{l}} = \sum_{i=0}^{W-K} \sum_{j=0}^{W-K} \frac{\partial L}{\partial x_{i,j}^{l}} \frac{\partial x_{i,j}^{l}}{\partial w_{m',n'}^{l}}$$

$$= \sum_{i=0}^{W-K} \sum_{j=0}^{W-K} \delta_{i,j}^{l} \cdot o_{i+m',j+n'}^{l-1}$$

$$= rot_{180^{\circ}} \{\delta_{i,j}^{l}\} * o_{m',n'}^{l-1}$$

Aggiornamento dei pesi

 \blacktriangleright Il calcolo di $\frac{\partial L}{\partial w^l_{m',n'}}$ usando la regola della catena è dato da

$$\frac{\partial L}{\partial w_{m',n'}^{l}} = \sum_{i=0}^{W-K} \sum_{j=0}^{W-K} \frac{\partial L}{\partial x_{i,j}^{l}} \frac{\partial x_{i,j}^{l}}{\partial w_{m',n'}^{l}}$$

$$= \sum_{i=0}^{W-K} \sum_{j=0}^{W-K} \delta_{i,j}^{l} \cdot o_{i+m',j+n'}^{l-1}$$

$$= rot_{180^{\circ}} \{\delta_{i,j}^{l}\} * o_{m',n'}^{l-1}$$

- $ightharpoonup o_{m',n'}^{l-1} = f(x_{i',j'}^{l-1})$
- ▶ La feature map di output ha una dimensione pari a (W K + 1) sia in altezza che in larghezza

Aggiornamento dei pesi

▶ Il risultato della convoluzione tra $\delta_{i,j}^I$ e $o_{m',n'}^{I-1}$ individua il nuovo valore del peso $w_{m',n'}^I$

Aggiornamento dei pesi

▶ Il risultato della convoluzione tra $\delta_{i,j}^I$ e $o_{m',n'}^{I-1}$ individua il nuovo valore del peso $w_{m',n'}^I$

► La convoluzione è svolta per ciascuno dei pesi che costituiscono un kernel

Back Propagation

La matrice degli errori δ deve essere ruotata di 180° per poter eseguire la convoluzione

Esempio Back Propagation

Esempio Back Propagation

Il kernel aggiornato viene ricavato dalla convoluzione tra la matrice degli errori δ e la feature map di input

Obiettivo

► Si vuole costruire una rete neurale convoluzionale che permetta il riconoscimento di cifre numeriche scritte a mano

Objettivo

- ► Si vuole costruire una rete neurale convoluzionale che permetta il riconoscimento di cifre numeriche scritte a mano
- ► Le cifre da riconoscere sono salvate come immagini in scala di grigio a 8 bit. Un pixel può assumere solo i valori che sono compresi nell'intervallo [0, 255]

Objettivo

- ► Si vuole costruire una rete neurale convoluzionale che permetta il riconoscimento di cifre numeriche scritte a mano
- ► Le cifre da riconoscere sono salvate come immagini in scala di grigio a 8 bit. Un pixel può assumere solo i valori che sono compresi nell'intervallo [0,255]
- ► L'output della rete è dato dalle 10 cifre numeriche che si vogliono riconoscere

Obiettivo

- ► Si vuole costruire una rete neurale convoluzionale che permetta il riconoscimento di cifre numeriche scritte a mano
- ► Le cifre da riconoscere sono salvate come immagini in scala di grigio a 8 bit. Un pixel può assumere solo i valori che sono compresi nell'intervallo [0, 255]
- ► L'output della rete è dato dalle 10 cifre numeriche che si vogliono riconoscere
- ► La rete riceve in input un'immagine e le associa la cifra numerica corrispondente

► La dimensione delle immagini che costituiscono gli esempi del training e del test set hanno una dimensione di 28 × 28

► La dimensione delle immagini che costituiscono gli esempi del training e del test set hanno una dimensione di 28 × 28

► Le etichette sono numeri interi positivi e consentono di associare una classe ad una determinata immagine

► La dimensione delle immagini che costituiscono gli esempi del training e del test set hanno una dimensione di 28 × 28

► Le etichette sono numeri interi positivi e consentono di associare una classe ad una determinata immagine

► Il training ed il test set provengono dal database MNIST e contengono rispettativamente 60000 esempi di train e 10000 di test

Rete Sequenziale

► La rete sequenziale utilizzata per il confronto dei tempi di esecuzione è chiamata *EduCNN*

Rete Sequenziale

► La rete sequenziale utilizzata per il confronto dei tempi di esecuzione è chiamata *EduCNN*

► Ammette sia livelli di tipo fully-connected che convoluzionali

Rete Sequenziale

► La rete sequenziale utilizzata per il confronto dei tempi di esecuzione è chiamata *EduCNN*

► Ammette sia livelli di tipo fully-connected che convoluzionali

► La funzione di attivazione scelta è la sigmoide

Rete Sequenziale

► La rete sequenziale utilizzata per il confronto dei tempi di esecuzione è chiamata *EduCNN*

► Ammette sia livelli di tipo fully-connected che convoluzionali

► La funzione di attivazione scelta è la sigmoide

► La rete è stata implementata usando il linguaggio di programmazione C++

Considerazioni

► I calcoli interni alla rete vengono svolti usando il formato di dato double in modo da non perdere precisione numerica tra i vari passaggi

Considerazioni

- ▶ I calcoli interni alla rete vengono svolti usando il formato di dato double in modo da non perdere precisione numerica tra i vari passaggi
- ► All'inizio della fase di training i pixel delle immagini vengono riscalati nell'intervallo [0,1] per poter essere compatibili con il formato di dato usato dalla rete

Considerazioni

- ▶ I calcoli interni alla rete vengono svolti usando il formato di dato double in modo da non perdere precisione numerica tra i vari passaggi
- ► All'inizio della fase di training i pixel delle immagini vengono riscalati nell'intervallo [0,1] per poter essere compatibili con il formato di dato usato dalla rete
- ► Tutti i dati e le strutture necessarie al funzionamento della rete vengono allocate all'inizio dell'esecuzione e deallocate al suo termine

Considerazioni

- ► I calcoli interni alla rete vengono svolti usando il formato di dato double in modo da non perdere precisione numerica tra i vari passaggi
- ► All'inizio della fase di training i pixel delle immagini vengono riscalati nell'intervallo [0,1] per poter essere compatibili con il formato di dato usato dalla rete
- ► Tutti i dati e le strutture necessarie al funzionamento della rete vengono allocate all'inizio dell'esecuzione e deallocate al suo termine
- ► Le funzioni di attivazione utilizzate dalla rete CUDA sono le stesse della rete sequenziale

Configurazioni

► Il testing della rete viene effettuato combinando tra loro differenti tipi di livelli

Configurazioni

- ► Il testing della rete viene effettuato combinando tra loro differenti tipi di livelli
- ► Le diverse combinazioni vengono chiamate Configurazioni

Configurazioni

- ► Il testing della rete viene effettuato combinando tra loro differenti tipi di livelli
- ► Le diverse combinazioni vengono chiamate Configurazioni
- Per studiare il comportamento della rete vengono definite tre configurazioni

Configurazioni

- ► Il testing della rete viene effettuato combinando tra loro differenti tipi di livelli
- ► Le diverse combinazioni vengono chiamate Configurazioni
- Per studiare il comportamento della rete vengono definite tre configurazioni
- ▶ Il numero di nodi e di livelli di ciascuna configurazione viene scelto tenendo conto della componentistica hardware utilizzata per eseguire i test

Configurazioni

Livello	Output
Fully Connected	300 × 1
Fully Connected	10 × 1

Table: Configurazione 1

Livello	Output	Dimensione Filtro
Convoluzionale	24 × 24	$5 \times 5 \times 1$
Convoluzionale	22 × 22	$5 \times 5 \times 1$
Fully Connected	10 × 1	Х

Table: Configurazione 2

Configurazioni

Livello	Output	Dimensione Filtro
Convoluzionale	24 × 24	$5 \times 5 \times 1$
Convoluzionale	22 × 22	$5 \times 5 \times 1$
Fully Connected	300 × 1	Х
Fully Connected	10 × 1	Х

Table: Configurazione 3

Analisi dei Risultati