#### **IRTForests**

Random Forest × Item Response Theory Diagnostics

Andrew T. Scott · Fall 2025

github.com/ascott02/IRTForests

### Random Forest × Item Response Theory

- Trees become respondents, images become items.
- Response matrix records per-tree correctness on held-out examples.
- Goal: explain RF behavior via IRT ability & difficulty signals.

#### GenAI In the Loop Scientific Exploration

- Started from a focused README spec outlining goals, datasets, and diagnostics.
- Automated notebook + CLI runs to regenerate every experiment end-to-end.
- Promoted the resulting figures and tables into this deck, sharpening the story each loop.

#### **Motivation & Guiding Questions**

- Random forests bundle weak learners; IRT recasts each tree as a respondent with latent ability (  $\theta$ ).
- Held-out images become items whose difficulty ( $\delta$ ) emerges from tree wins and losses.
- How do  $\theta$  and  $\delta$  steer backbone choices, surface label issues, and focus the next curation loop?

#### **Story Arc**

- 1. **Background:** IRT mechanics + RF diagnostics we rely on.
- 2. **Pipeline:** Datasets, embeddings, and response matrices powering the studies.
- 3. Case Studies: Baseline CIFAR, MobileNet upgrade, and MNIST control.
- 4. **Synthesis:** Cross-study comparisons, takeaways, and next steps.

### Why Item Response Theory for Random Forests?

- Trees answer the same held-out images, so treat them as "test takers."
- Latent **ability** ( $\theta$ ) ranks trees; latent **difficulty** ( $\delta$ ) flags ambiguous images.
- Shared scales let us compare studies, backbones, and curation tactics directly.

# **Item Response Theory Building Blocks**

#### **Core Terms**

- Ability (θ): respondent skill; higher → higher success odds.
- Difficulty ( $\delta$ ): item hardness; higher  $\rightarrow$  harder even for strong respondents.
- Discrimination (a): slope near  $\delta$ .
- Guessing (*c*): floor for multiple-choice exams (rare here).

#### **Ensemble Analogy**

- Respondents → decision trees on a shared test set.
- Items → images; responses are binary (tree correct?).
- ullet Response matrix  $R_{ij} \in \{0,1\}$  feeds variational IRT.
- Outputs: posteriors over  $\theta_i$ ,  $\delta_j$ , and information curves.

#### Rasch (1PL) Model in One Picture

$$\Pr(R_{ij} = 1 \mid heta_i, \delta_j) = rac{1}{1 + e^{-( heta_i - \delta_j)}}$$

- Single global slope keeps parameters on a shared logit scale.
- $(\theta \delta) = 0 \Rightarrow$  50% success; shifts left/right change odds.
- Fisher information peaks where curves are steepest—prime for spotting uncertainty.
- IRT ICC Visualizer



1PL logistic curves for items of varying difficulty

#### What We Extract from IRT

- **Ability histograms** flag low-skill trees worth pruning.
- Difficulty ladders highlight mislabeled or ambiguous items.
- ullet Wright maps overlay heta and  $\delta$  to expose coverage gaps.
- **Information curves** reveal where ensemble confidence is fragile.
- Together they explain *who* struggles and *why* beyond RF metrics.

### Margins, Entropy, and Ensemble Confidence

- Tree votes yield class probabilities we mine for uncertainty signals.
- Margin  $m(x)=P(\hat{y}=y_{true})-\max_{c\neq y_{true}}P(\hat{y}=c)$  near 0 marks ambiguity; negative marks systematic flips.
- ullet **Entropy** captures ensemble disagreement; combining both with  $\delta$  surfaces mislabeled or OOD items and tracks curation gains.

# Margins & Entropy — Why They Matter

- Aggregated tree votes turn into class probabilities, giving us raw material for uncertainty scoring.
- The margin gap shows whether the forest is decisive (large positive) or split/incorrect (near or below zero).
- ullet Entropy summarizes how scattered those votes are; mixing it with  $\delta$  spotlights mislabeled or out-of-distribution items and lets us watch them shrink after curation.

#### **Pipeline Overview**

#### Data Prep (done)

- Stratified CIFAR-10 subset: 10k / 2k / 2k splits.
- Resize 64×64, normalize, PCA → 128-D embeddings (plus MobileNet-V3 cache).
- MNIST mini: 4k / 800 / 800 digits, normalized 28×28 grayscale.
- Artifacts cached in data/cifar10\_subset.npz, data/cifar10\_embeddings.npz, and data/mnist/mnist\_split.npz.

#### **Modeling Status**

- RF (200 trees) trained for every study;
  metrics and importances saved.
- Response matrices persisted: CIFAR (200 × 2000) for PCA & MobileNet, MNIST (200 × 800).
- 1PL Rasch (SVI, 600 epochs) complete for CIFAR; MNIST mirrors the same notebook.

#### **Dataset Overview**

| Dataset            | Train  | Val   | Test  | Feature Pipeline                              | Notes                                |
|--------------------|--------|-------|-------|-----------------------------------------------|--------------------------------------|
| CIFAR-10<br>subset | 10,000 | 2,000 | 2,000 | 64×64 RGB → PCA-128 /<br>MobileNet-V3 (960-D) | Shared splits across<br>Study I & II |
| MNIST mini         | 4,000  | 800   | 800   | 28×28 grayscale → raw pixels (no PCA)         | Control for clean handwriting        |

- All studies reuse cached artifacts under data/.
- CIFAR runs differ only by embeddings; labels and splits stay fixed.
- MNIST mirrors the workflow to confirm signals on cleaner data.

# Section I · Baseline Study (CIFAR + PCA)

- Establish the PCA baseline and its uncertainty signals.
- Use IRT to pinpoint weak trees and hard items that motivate stronger features.

# Study I: CIFAR-10 + PCA-128 Embeddings

- Baseline vision setup: 64×64 resize + PCA to 128 dims.
- 200-tree Random Forest with a 200 × 2000 response matrix anchors the diagnostics.
- Use this run to surface weak trees and mislabeled items.

#### Study I Setup: CIFAR-10 + PCA-128

- Fixed stratified CIFAR-10 split (10k / 2k / 2k).
- Resize 64×64, normalize, PCA → 128-D embeddings
   (`data/cifar10\_embeddings.npz`).
- Response matrix 200 × 2000 with mean tree accuracy 0.176.
- Artifacts: metrics, margins, entropy, IRT outputs under `data/` and `figures/`.



Study I sample grid — stratified CIFAR-10 slices

### Study I Performance (PCA-128)

| Metric                             | Value                      |  |  |
|------------------------------------|----------------------------|--|--|
| Test / Val / OOB acc               | 0.4305 / 0.4145 / 0.3730   |  |  |
| Per-class range                    | 0.225 (cat) → 0.595 (ship) |  |  |
| Mean tree accuracy                 | 0.1759                     |  |  |
| Mean margin / entropy              | -0.0028 / 2.1503           |  |  |
| δ ➡ margin (Pearson)               | -0.8286                    |  |  |
| δ <mark>↔</mark> entropy (Pearson) | 0.6782                     |  |  |

- Baseline ensemble underperforms due to weak PCA features yet preserves  $\delta$  alignment.
- Margins sit near zero and entropy stays high, signalling broad disagreement—prime for IRT.
- Artifacts: metrics (data/rf\_metrics.json), confusion (data/rf\_confusion.npy), importances, permutations.

# **Study I Confusion Matrix**



#### Reading the matrix

- Off-diagonal spikes (cat dog, bird dog, b
- Ships/trucks stay >80% on-diagonal; the highlighted hotspots mark curation targets.

# Study I Diagnostics: Ability Profiles





Ability ( $\theta$ ) vs tree accuracy — Spearman  $\approx 0.99$ 

Wright map:  $\theta$  cluster near -11;  $\delta$  stretches to 14

- Trees with  $\theta$  above -10 beat peers by ~3 pp even with PCA features.
- Long-tail  $\theta$  < -11.5 drags accuracy, and the Wright map shows  $\delta$  stretching far beyond the compressed ability range.

#### Study I Diagnostics: δ vs Error Rate



- $\delta$  > 10 maps to >80% tree error—mostly ambiguous animals—while  $\delta$  < 0 becomes "free points."
- Pearson ≈ 0.95, Spearman ≈ 0.94: difficulty doubles as an error heat-map.

# Study I Diagnostics: δ vs RF Signals





PCA run:  $\delta$  vs margin (Pearson -0.83)

PCA run: δ vs entropy (Pearson 0.68)

- Hard items cluster bottom-right (low margin, high entropy); opposite corner houses easy wins.
- Study II mirrors the trend with even stronger correlations.

# Study I Evidence: Hard vs Easy Examples





- Hardest items skew toward ambiguous airplane/ship silhouettes and cluttered cat/dog scenes.
- Easy set is dominated by high-contrast cues (e.g., red fire trucks), yielding low  $\delta$  and entropy.

#### **Study I Takeaways**

- Weak PCA features create long tails in both ability ( $\theta$ ) and difficulty ( $\delta$ ), exposing erratic trees.
- Margin and entropy correlate with  $\delta$ , but clusters of high-difficulty animals persist across diagnostics.
- Visual inspection confirms mislabeled or low-signal items driving high  $\delta$ , motivating feature upgrades.

#### Section II · Feature-Rich CIFAR (MobileNet)

- Hold the splits fixed to isolate feature gains.
- Test whether richer embeddings tighten  $\theta$  spread and retain  $\delta$  alignment.

### Study II: CIFAR-10 + MobileNet Embeddings

- Swap PCA features for MobileNet-V3 (960-D) while keeping tree count and splits constant.
- Compare RF metrics, uncertainty signals, and IRT parameters against the baseline.

# Study II Setup: CIFAR-10 + MobileNet-V3

- Reuse Study I splits to isolate feature effects.
- Extract 960-D MobileNet-V3 Small embeddings
   (`data/cifar10\_mobilenet\_embeddings.npz`).
- Response matrix 200 × 2000 with mean tree accuracy 0.482.
- Artifacts live under `data/mobilenet/\*` and `figures/mobilenet/`.



Study II sample grid — same splits, MobileNet embeddings

#### Study II Performance (MobileNet-V3)

| Metric                | Value                     |  |  |
|-----------------------|---------------------------|--|--|
| Test / Val / OOB acc  | 0.8090 / 0.8135 / 0.7967  |  |  |
| Per-class range       | 0.68 (cat) → 0.915 (ship) |  |  |
| Mean tree accuracy    | 0.4817                    |  |  |
| Mean margin / entropy | 0.2806 / 1.4663           |  |  |
| δ 🖶 margin (Pearson)  | -0.8825                   |  |  |
| δ 🖶 entropy (Pearson) | 0.8113                    |  |  |

- Pretrained features boost accuracy by 37 pp while strengthening  $\delta$  correlations.
- Higher margins and lower entropy show confidence gains except on stubborn animal classes.
- Artifacts: metrics, response matrix, signals, and IRT outputs under data/mobilenet/.

# Study II Diagnostics: δ vs RF Signals





 $\delta$  vs margin (Pearson -0.88)

 $\delta$  vs entropy (Pearson 0.81)

- MobileNet compresses the easy cluster (high margin, low entropy) while isolating true hard cases.
- Andrew 🖰 skargerozkork / yalues show tighter agreement between δ and RF uncertainty.
  - Cat/dog confusions parsist marking suration targets

### Study II Diagnostics: Ability Profiles



Ability ( $\theta$ ) vs tree accuracy — Pearson 0.983



Wright map:  $\theta$  variance shrinks to 0.25

- $\theta$  mean  $-0.21 \pm 0.25$ : trees cluster far tighter than the PCA baseline ( $\sigma$  0.55  $\rightarrow$  0.25).
- Ability remains tied to per-tree accuracy, so feature quality—rather than tree diversity—now caps gains.

# Study II Diagnostics: δ vs Error Rate



- Pearson 0.922 keeps  $\delta$  aligned with mean tree error even at the higher accuracy ceiling.
- Hardest items ( $\delta$  > 8) persist—mostly cat/dog overlaps and ambiguous aircraft—while the easy zone ( $\delta$  < -3) expands.

### Study II Takeaways

- MobileNet embeddings add 37 pp of accuracy while collapsing ability variance ( $\sigma\theta$  0.55  $\rightarrow$  0.25).
- $\delta$  stays aligned with RF uncertainty, isolating a smaller yet stubborn ambiguous cluster.
- Residual cat/dog confusion points to data curation as the next lever.

# Section III · Control Study (MNIST)

- Probe the pipeline on a high-signal, low-noise dataset.
- Confirm that IRT still mirrors RF uncertainty when accuracy is near perfect.

### Study III: MNIST Mini-Study

- Lightweight handwriting dataset to validate RF × IRT beyond CIFAR-10.
- Acts as a control where ambiguity is rare yet still detectable.

# Study III Setup: MNIST Mini-Study

- Split 4k / 800 / 800 digits with stratified sampling and a fixed seed.
- Flatten 28×28 grayscale digits; no augmentation.
- Train a 200-tree RF on raw pixels; response matrix 200 × 800.
- Artifacts land in `data/mnist/` with plots in `figures/mnist/`.



Study III sample grid — curated MNIST mini split

### **Study III Performance (MNIST)**

| Metric                            | Value                    |  |  |
|-----------------------------------|--------------------------|--|--|
| Train / Val / Test                | 4000 / 800 / 800         |  |  |
| RF test / val / OOB               | 0.9475 / 0.9413 / 0.9140 |  |  |
| Mean margin / entropy             | 0.5546 / 1.0351          |  |  |
| δ <mark>⇔</mark> margin (Pearson) | -0.950                   |  |  |
| δ ➡ entropy (Pearson)             | 0.958                    |  |  |
| θ mean ± σ                        | 4.23 ± 0.44              |  |  |
| δ mean ± σ                        | -1.75 ± 8.19             |  |  |

- Ambiguous digits (e.g., brushed 5 vs 6) spike  $\delta$  toward ±20; elsewhere the forest is decisive.
- Low entropy + high margin line up with low  $\delta$ , giving a "sanity benchmark" beyond CIFAR.

# Study III Diagnostics: δ vs RF Signals





 $\delta$  vs margin (Pearson -0.95)

 $\delta$  vs entropy (Pearson 0.96)

- Clean digits show near-perfect alignment between δ and RF uncertainty.
- Only a handful of  $\delta$  > 12 digits drive the residual uncertainty (stroke collisions like 3/5, 4/9).

### Study III Diagnostics: Ability Profiles



Ability ( $\theta$ ) vs tree accuracy — Pearson 0.995



Wright map:  $\theta$  mean 4.23  $\pm$  0.44;  $\delta$  mean -1.75  $\pm$  8.19

- $\theta$  mean 4.23  $\pm$  0.44 shows strong consensus, while  $\delta$  mean  $-1.75 \pm 8.19$  keeps heavy tails for ambiguous strokes.
- Shared scales expose plentiful easy wins with a few sharp spikes—opposite of the CIFAR

# Study III Diagnostics: δ vs Error Rate



- Pearson 0.962 keeps  $\delta$  tied to mean tree error despite the high accuracy ceiling.
- $\delta > 12$  corresponds to stroke-collided 3/5/8 and 4/9 pairs; the long negative tail is trivial for the ensemble.

### Study III Takeaways

- $\delta$  and RF uncertainty agree almost perfectly, while  $\theta$  stays high yet still flags the rare ambiguous strokes.
- The control study confirms the RF × IRT pipeline holds outside noisy vision data.

# Section IV · Cross-Study & Diagnostics

- Compare backbones and datasets on a shared  $\theta/\delta$  scale.
- Surface recurring themes before the close.

### **Cross-Study Snapshot**

| Study                          | Feature<br>Backbone     | Test<br>Acc | δ ➡ margin<br>(Pearson) | δ <mark>⇔</mark> entropy<br>(Pearson) | θσ   | δσ   |
|--------------------------------|-------------------------|-------------|-------------------------|---------------------------------------|------|------|
| Study I: CIFAR +<br>PCA-128    | PCA-128                 | 0.4305      | -0.8286                 | 0.6782                                | 0.55 | 4.10 |
| Study II: CIFAR +<br>MobileNet | MobileNet-V3<br>(960-D) | 0.8090      | -0.8825                 | 0.8113                                | 0.25 | 4.67 |
| Study III: MNIST<br>Mini       | Raw pixels              | 0.9475      | -0.950                  | 0.958                                 | 0.44 | 8.19 |

- Feature backbone drives both accuracy gains and  $\delta$  alignment strength.
- $\theta$  variance collapses with MobileNet (0.25) while MNIST keeps moderate spread despite high accuracy.
- MNIST  $\delta$   $\sigma$  expands to 8.19, highlighting rare but extreme digit ambiguities versus CIFAR's

#### **Key Takeaways**

- IRT mirrors RF uncertainty:  $\theta$  tracks per-tree accuracy and  $\delta$  tracks item error across studies.
- Feature backbones reshape the  $\theta/\delta$  landscape—MobileNet curbs variance yet preserves a harditem tail.
- Pairing  $\delta$  with margins and entropy cleanly triages ambiguous classes without manual inspection.
- MNIST confirms the pipeline before we branch to new domains.

#### **Next Steps**

- Extend notebooks to auto-export the comparison tables and montages.
- Run the queued 2PL/3PL experiments (reports/discrimination\_analysis\_plan.md).
- Correlate θ with tree structure (depth, leaf count) to guide pruning.
- Scale the  $\delta$  + margin triage on CIFAR before moving to tabular studies.