

Machine Learning

Lecture 5.

Supervised learning
Support Vector Machine (SVM)

Alireza Rezvanian

Fall 2022

Last update: Nov. 09, 2022

Amirkabir University of Technology (Tehran Polytechnic)

Outline

- SVM Intuitions
- Maximizing the Margin
- Soft Margin Hyperplane
- Slack variables
- Kernel function
- Multiclass SVMs

Support Vector Machine (SVM)

- Support Vector Machines are systems for efficiently training linear learning machines in kernel-induced feature spaces, while respecting the insights of generalisation theory and exploiting optimisation theory.
 - Cristianini & Shawe-Taylor (2000)
- Also called Sparse kernel machines
 - Kernel methods predict based on linear combinations of a kernel function evaluated at the training points,
 - Sparse because not all pairs of training points need be used
- Also called Maximum margin classifiers
- Widest street approach

SVM is easy

- \blacksquare Input: x
- ► Model: w
- \blacksquare Score: w^Tx
- ightharpoonup Prediction: $sgn(w^Tx)$
- But how do we learn w?

$$h(\mathbf{x}) = sign(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$$

$$\min_{w,b} \frac{1}{2} w^{\mathsf{T}} w + c \sum_{i} \xi_{i}$$

$$\xi_{i} = \max(0, 1 - y_{i}(w^{\mathsf{T}}x_{i} + b))$$

SVM Intuitions

- Vladimir Vapnik
- If $(w.x_t \ge 0)$ then class is O If $(w.x_t + b = 0)$ then class is O, s.b. b=-c
- o h: $X \rightarrow \{-1, +1\}$
- Maximum margin classifiers
- Widest street approach w.x + b = 0

Machine Learning, Alireza Rezvanian, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran, Fall 2022.

Noise in the Observations

Noise in the Observations

Noise in the Observations

Maximizing the Margin

How would you classify this data?

Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint

$$f(x, w, b) = sgn(w. x - b)$$

A "good" separator

Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint

$$f(x, w, b) = sgn(w. x - b)$$

The maximum margin linear classifier is the linear classifier with the, um, maximum margin.
This is the simplest kind of SVM (Called an LSVM)

Linear Classifiers f(x, w, b) = sgn(w. x - b)maximum margin a

$$h(x) = sign(w^T x + b)$$

 x_1 , x_2 , and x_3 are support vectors

$$width = (x^{+} - x^{-}) \cdot \frac{w}{||w||}$$
$$= (w \cdot x^{+} - w \cdot x^{-}) \cdot \frac{1}{||w||} = \frac{2}{||w||}$$

Note:

$$w.x^{+} + b = +1$$

 $w.x^{-} + b = -1$

$$\frac{|w.x + b|}{||w||} = \frac{1}{||w||}$$

$$M = \frac{2}{||w||}$$

Compute margin

$$w^T x_1 + b = + c$$

and
$$w^T x_2 + b = -c$$

Maximize margin

$$\max_{w,b} \frac{2}{||w||}$$

$$\min_{w,b} ||w||^2$$

$$||w||^2 = w^T w$$

s.t.

$$(w^T x_1 + b) \ge 1$$

 $(w^T x_1 + b) \le -1$

$$\mathbf{v}_{y=1}$$

$$(w^T x_1 + b) \ge 1 \qquad \forall_{y=1}$$

 $(w^T x_1 + b) \le -1 \qquad \forall_{y=-1}$ $\longleftrightarrow y_i(w^T x_1 + b) \ge 1$

- Solve efficiently by quadratic programming (QP)
 - Well-studied solution algorithms
- Hyperplane defined by support vectors

 Solving SVM by Quadratic Programming (QP) a.k.a., primal problem

 α_i : Lagrange Multiplier

$$f(x) - \sum_{i=1}^{n} \alpha_i g(x)$$
: Lagrange function

$$L(w,b,\alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{n} \alpha_i [y_i(w,x_i+b) - 1]$$

$$\frac{\partial L(\mathbf{w}, b, \alpha)}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i = 0$$

combination of training points $y_i = 0$, $\sum_{i=0}^{N} \alpha_i y_i = 0$

$$\frac{\partial L(\mathbf{w}, b, \alpha)}{\partial b} = -\sum_{i=1}^{N} \alpha_i y_i = 0, \qquad \sum_{i=1}^{N} \alpha_i y_i = 0$$

 $KKT \ cond : \alpha_i[y_i(\mathbf{wx}_i + b) - 1] = 0$

 \rightarrow only SVs will have non-zero α_i

→parameters are expressed as a linear

s. t. $\alpha_i \ge 0$

The Dual Problem

If we substitute $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$ to Lagrangian, we have

$$\mathcal{L} = \frac{1}{2} \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i^T \sum_{j=1}^{n} \alpha_j y_j \mathbf{x}_j + \sum_{i=1}^{n} \alpha_i \left(1 - y_i (\sum_{j=1}^{n} \alpha_j y_j \mathbf{x}_j^T \mathbf{x}_i + b) \right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j + \sum_{i=1}^{n} \alpha_i - \sum_{i=1}^{n} \alpha_i y_i \sum_{j=1}^{n} \alpha_j y_j \mathbf{x}_j^T \mathbf{x}_i - b \sum_{i=1}^{n} \alpha_i y_i$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j + \sum_{i=1}^{n} \alpha_i$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j + \sum_{i=1}^{n} \alpha_i$$

- Note that $\sum_{i=1}^{n} \alpha_i y_i = 0$
- lacktriangle This is a function of α_i only
- The problem space is convex, then it does not get stuck in local minimum/maximam

SVM remarks

- $\mathbf{w}^* = \sum_i \alpha_i y_i x_i$
- $-w^*x^+ + b = 1 \rightarrow b^* = 1 \sum_i \alpha_i y_i x_i x_i^+$
- lacktriangle Classifying new sample x_{test} using w^* and b^*
- $\sum_i \alpha_i y_i x_i + b^* \ge 0$ then Class is +

SVM example

$$L(\boldsymbol{\alpha}) = -\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \boldsymbol{x_{i}}. \boldsymbol{x_{j}} + \sum_{i} \alpha_{i}, (\boldsymbol{x_{i}}, \boldsymbol{x_{j}} \text{ are SV & } \alpha_{i}, a_{j} > 0)$$

$$\begin{split} L(\pmb{\alpha}) &= -\frac{1}{2} (\alpha_1 \begin{bmatrix} -1 \\ 2 \end{bmatrix} - \alpha_2 \begin{bmatrix} 3 \\ -2 \end{bmatrix}).(\alpha_1 \begin{bmatrix} -1 \\ 2 \end{bmatrix} - \alpha_2 \begin{bmatrix} 3 \\ -2 \end{bmatrix}) + \alpha_1 + \alpha_2 = -\frac{1}{2} (\alpha_1^2 + 6\alpha_1\alpha_2 + 9\alpha_2^2 + 4\alpha_1^2 + 8\alpha_1\alpha_2 + 4\alpha_2^2) + \alpha_1 + \alpha_2 = -\frac{1}{2} (5\alpha_1^2 + 14\alpha_1\alpha_2 - 2\alpha_1 - 2\alpha_2) \end{split}$$

SVM example

$$L(\pmb{\alpha}) = -\frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j \pmb{x_i}. \pmb{x_j} + \sum_i \alpha_i , (\pmb{x_i}, \pmb{x_j} \text{ are SV \& } \alpha_i, a_j > 0)$$

$$\begin{split} L(\pmb{\alpha}) &= -\frac{1}{2}(\alpha_1 {\begin{bmatrix} -1 \\ 2 \end{bmatrix}} - \alpha_2 {\begin{bmatrix} 3 \\ -2 \end{bmatrix}}).(\alpha_1 {\begin{bmatrix} -1 \\ 2 \end{bmatrix}} - \alpha_2 {\begin{bmatrix} 3 \\ -2 \end{bmatrix}}) + \alpha_1 + \alpha_2 = -\frac{1}{2}(\alpha_1^2 + 6\alpha_1\alpha_2 + 9\alpha_2^2 + 4\alpha_1^2 + 8\alpha_1\alpha_2 + 4\alpha_2^2) + \alpha_1 + \alpha_2 = -\frac{1}{2}(5\alpha_1^2 + 14\alpha_1\alpha_2 - 2\alpha_1 - 2\alpha_2) \end{split}$$

$$\Rightarrow \begin{cases} \frac{\partial L(\boldsymbol{\alpha})}{\partial \alpha_1} = 10\alpha_1 + 14\alpha_2 - 2 = 0 \\ \frac{\partial L(\boldsymbol{\alpha})}{\partial \alpha_2} = 14\alpha_1 + 26\alpha_2 - 2 = 0 \\ \sum_{i} \alpha_i y_i = 0 \end{cases} \Rightarrow \begin{cases} 6\alpha_1 + 10\alpha_2 = 1 \\ \alpha_1 = \alpha_2 \end{cases} \Rightarrow \begin{bmatrix} \alpha_1 = \alpha_2 = \frac{1}{16} \end{bmatrix}$$

$$\begin{cases} \mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \rightarrow \mathbf{w} = \frac{1}{16} \begin{bmatrix} -1 \\ 2 \end{bmatrix} - \frac{1}{16} \begin{bmatrix} 3 \\ -2 \end{bmatrix} \rightarrow \mathbf{w} = \begin{bmatrix} -1/4 \\ 1/4 \end{bmatrix} \\ y_{i}(\mathbf{w}, \mathbf{x}_{i} + b) - 1 = 0 \rightarrow \begin{bmatrix} -\frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} + b - 1 = 0 \rightarrow b = 1/4 \end{cases}$$

Verification

$$\mathbf{w}. \mathbf{x} + b = 0 \rightarrow w_1 x_1 + w_2 x_2 + b = 0$$

Standard equation of a line: $x_2 = -\frac{w_1}{w_2}x_1 - \frac{b}{w_2}$

The separator line equation: $x_2 = x_1 - 1$

$$\begin{cases} x_2 = -\frac{w_1}{w_2} x_1 - \frac{b}{w_2} \\ x_2 = x_1 - 1 \end{cases} \Rightarrow \frac{w_1}{w_2} = -1, \frac{b}{w_2} = 1$$

This =
$$2\sqrt{2} = \frac{1}{||w||} \Rightarrow ||w|| = \frac{\sqrt{2}}{4} = \sqrt{w_1^2 + w_2^2}$$

$$\begin{cases} w_1 = -k \\ w_2 = k \\ b = k \end{cases} (k > 0) \Rightarrow \begin{cases} \sqrt{w_1^2 + w_2^2} = \frac{\sqrt{2}}{4} \\ \sqrt{w_1^2 + w_2^2} = \sqrt{2} k \end{cases} \Rightarrow \begin{cases} w_1 = -\frac{1}{4} \\ w_2 = \frac{1}{4} \\ b = \frac{1}{4} \end{cases}$$

$$\begin{cases} \alpha_{+} = \alpha_{-} \\ \begin{bmatrix} -1/4 \\ 1/4 \end{bmatrix} = \alpha_{+} \begin{bmatrix} -1 \\ 2 \end{bmatrix} - \alpha_{-} \begin{bmatrix} 3 \\ -2 \end{bmatrix} \Rightarrow \boxed{\alpha_{+} = \alpha_{-} = \frac{1}{16}}$$

What if the data is not linearly separable?

- Hyperplane with the largest margin
- A hyperplane that correctly separates many instances as possible

Soft Margin Hyperplane with slack variables

$$w^T x + b \ge +1$$

$$w^T x + b \ge 1 - \xi_i \quad \xi_i \ge \mathbf{0}$$

$$w^T x + b \le -1 + \xi_i \quad \xi_i \ge \mathbf{0}$$

 ξ_i are "slack variables" in optimization

$$w^{T}x + b = +1$$

$$w^{T}x + b = 0$$

$$w^{T}x + b = -1$$

Minimize
$$\frac{1}{2} ||w||^2 + C \sum_i \xi_i^2$$
 $\xi_i \ge 0$, $C > 0$
Subject to $y_i(w^T x + b) \ge 1 - \xi_i$ $\xi_i \ge 0$

C: tradeoff parameter between error and margin (undrfitting vs. overfitting)

$$\begin{aligned} \text{Maximize:} & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\ \text{S.t.} & \sum_{i=1}^{N} \alpha_{i} y_{i} = 0, \\ & 0 \leq \alpha_{i} \leq C, \quad \forall i \end{aligned}$$

Soft margin SVM

■ The effect of the C parameter on the margin

Kernel trick intuition

- SVM solution for linearly inseparable problems, such as XOR
 - Kernel trick: using a linear classifier to solve a nonlinear problem

Kernel trick (cont.)

Higher dimensional feature space

Kernel function

Input space

Feature space

Note: feature space is of higher dimension than the input space in practice

$$\begin{cases} L(\alpha) = -\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} \cdot x_{j} + \sum_{i} \alpha_{i} \\ h(x_{test}) = sgn(\sum_{i} \alpha_{i} y_{i} x_{i} \cdot x_{test} + b) \end{cases}$$

$$h(\mathbf{x_{test}}) = sgn(\sum_{i} \alpha_{i} y_{i} \mathbf{x_{i}} \cdot \mathbf{x_{test}} + b)$$

$$L(\boldsymbol{\alpha}) = -\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \boldsymbol{\Phi}(\boldsymbol{x_{i}}). \boldsymbol{\Phi}(\boldsymbol{x_{j}}) + \sum_{i} \alpha_{i}$$

Kernel

- \blacksquare Transform $\mathbf{x} \rightarrow \phi(\mathbf{x})$
- The linear algorithm depends only on $\mathbf{x}\mathbf{x}_i$, hence transformed algorithm depends only on $\phi(\mathbf{x})\phi(\mathbf{x}_i)$
- Use kernel function $K(x_i, x_j)$ such that $K(x_i, x_j)$ =

Kernel function properties

Function K(x, x') is a valid kernel if:

- o It computes an inner product in <u>some</u> space \mathbb{Z} .
 - We just need to know that space Z exists!
- o It is symmetric / commutative, i.e. K(x, x') = K(x', x).
- It should (preferably) be positive semi-definite, i.e. satisfy Mercer's theorem.

Kernel functions

Time of learning

Linear

$$\circ K(x,x') = (x.x'+c)$$

- For c=0, it is homogenous
- Polynomial

$$\circ K(x,x') = (ax.x' + c)^d$$

- *d* > 1
- Gaussian RBF

$$K(x, x') = exp\left(-\frac{||x - x'||^2}{2\sigma^2}\right) = exp(-\gamma||x - x'||^2)$$

$$\gamma = \frac{1}{2\sigma^2}$$

Sigmoid function (Hyperbolic tangent)

$$\circ K(x, x') = tanh(kx, x' + c)$$

Harder 1-dimensional dataset

Remember how permitting non-linear basis functions made linear regression so much nicer?

Let's permit them here too

$$\mathbf{z}_k = (x_k, x_k^2)$$

Harder 1-dimensional dataset

Remember how permitting non-linear basis functions made linear regression so much nicer?

Let's permit them here too

$$\mathbf{z}_k = (x_k, x_k^2)$$

Kernel rules

- If K, K' are kernels, then:
 - K+K' is a kernel
 - o cK is a kernel, if c>0
 - o aK+bK' is a kernel, for a,b >0
 - Etc etc etc.....

Multiclass SVMs (one-versus rest)

- SVM is a two-class classifier
- Several suggested methods for combining multiple two-class classifiers
- Most used approach: one versus rest
 - Also recommended by Vapnik
 - o using data from class C_k as the positive examples and data from the remaining k-1 classes as negative examples
- Disadvantages
 - Input assigned to multiple classes simultaneously
 - Training sets are imbalanced (90% are one class and 10% are another) – symmetry of original problem is lost

Multiclass SVMs (one-versus one)

- Train k(k-1)/2 different 2-class SVMs on all possible pairs of classes
- Classify test points according to which class has highest number of votes
- Again leads to ambiguities in classification
- For large k requires significantly more training time than one-versus rest
 - Also more computation time for evaluation
 - Can be alleviated by organizing into a directed acyclic graph (DAGSVM)

SVM

Strengths

- Training is relatively easy
- Good generalization in theory and practice
- Work well with few training instances
- Find globally best model, No local optimal, unlike in neural networks
- It scales relatively well to high dimensional data
- Tradeoff between classifier complexity and error can be controlled explicitly

Weaknesses

Need to choose a "good" kernel function.

Conclusion

- SVMs find optimal linear separator
 - They pick the hyperplane that maximises the margin
 - The optimal hyperplane turns out to be a linear combination of support vectors
- The kernel trick makes SVMs non-linear learning algorithms
 - Transform nonlinear problems to higher dimensional space using kernel functions; then there is more chance that in the transformed space the classes will be linearly separable.

Reading

- C. M. Bishop, Pattern recognition and machine learning, Springer, 2006. (ch. 7)
- E. Alpaydin, Introduction to Machine Learning, 3rd ed., The MIT Press, 2014. (ch. 13)
- C. Cortes, V. Vapnik. Support-vector networks, Machine Learning, (20) 273-297, 1995.
- V. Vapnik. The nature of statistical learning theory. 2nd ed., Springer, 1999.