

Dalian Good Display Co.,Ltd. GDE021A1

Dalian Good Display Co., Ltd.

Tel: +86-411-84619565 Fax: +86-411-84619585

WebSite: http://www.good-display.com

Rev.	Issued Date	Revised Contents
1.0	Jul. 1,2011	Preliminary
1.1	SEP.4.2011	 Modify Mechanical Drawing of EPD module Delete 7-3-1-2) MUC Parallel 6800-series Interface Delete7-3-1-3) MUC Parallel 8080-series Interface Delete7-3-2) Timing Characteristics of 6800-Series MCU Parallel Interface Delete 7-3-3) Timing Characteristics of 8080-Series MCU Parallel Interface Figure . 7-6 (1) Modify 41 pin conector to 24 pin connector

TECHNICAL SPECIFICATION

Ver 1.1 SEP.04.2011 2 / 26

CONTENTS

NO.	ITEM	PAGE
-	Cover	1
-	Revision History	2
-	Contents	3
1	Application	4
2	Features	4
3	Mechanical Specifications	4
4	Mechanical Drawing of EPD module	5
5	Input/Output Terminals	6
6	Command Table	10
7	Electrical Characteristics	13
8	Typical Operating Sequence	21
9	Optical Characteristics	23
10	Handling, Safety and Environment Requirements	25
11	Reliability test	26
12	Block Diagram	27

Ver 1.1 SEP.04.2011 3 / 26

1. Over View

The display is a TFT active matrix electrophoretic display , with interface and a reference system design. The 2.04" active area contains 172×72 pixels, and has 1-bit and 2-bit full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC. SRAM. LUT ,VCOM, and border are supplied with each panel.

2. Features

- ♦ High contrast
- ♦ High reflectance
- ♦Ultra wide viewing angle
- ◆Ultra low power consumption
- ◆Pure reflective mode
- **♦**Bi-stable
- ◆Commercial temperature range
- ◆Landscape, portrait mode
- ◆ Antiglare hard-coated front-surface
- ◆Low current deep sleep mode
- ◆On chip display RAM
- ◆ Waveform stored in On-chip OTP
- ◆ Serial peripheral interface available
- ♦On-chip oscillator
- ◆On-chip booster and regulator control for generating VCOM, Gate and source driving voltage.
- ◆I²C Signal Master Interface to read external temperature sensor
- ◆ Available in COG package IC thickness 250um

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.04	Inch	
Display Resolution	172(H)×72(V)	Pixel	Dpi:95
Active Area	20.16(H)×48.16(V)	Mm	
Pixel Pitch	0.280×0.280	Mm	
Pixel Configuration	Rectangle		
Outline Dimension	29.20(H×59.20(V) ×1.18(D)	Mm	
Weight	4±0.5	g	

4. Mechanical Drawing of EPD module

Ver 1.1 SEP.04.2011 5 / 26

5. Input/Output Terminals

5-1) Pin out List

Pin #	Type	Single	Description	Remark
1		NC	Do not connect with other NC pins	Keep Open
2	О	GDR	N-Channel MOSFET Gate Drive Control	
3	О	RESE	Current Sense Input for the Control Loop	
4	С	VGL	Negative Gate driving voltage	
5	С	VGH	Positive Gate driving voltage	
6	О	TSCL	I ² C Interface to digital temperature sensor Clock pin	
7	I/O	TSDA	I ² C Interface to digital temperature sensor Date pin	
8	I	BS1	Bus selection pin	Note 5-5
9	О	BUSY	Busy state output pin	Note 5-4
10	I	RES#	Reset	Note 5-3
11	I	D/C #	Data /Command control pin	Note 5-2
12	I	CS#	Chip Select input pin	Note 5-1
13	I/O	D0	serial clock pin (SPI)	
14	I/O	D1	serial data pin (SPI)	
15	С	VDDIO	Power for interface logic pins	
16	I	VCI	Power Supply pin for the chip	
17		VSS	Ground	
18	С	VDD	Core logic power pin	
19	С	VPP	Power Supply for OTP Programming	
20	С	VSH	Positive Source driving voltage	
21	С	PREVGH	Power Supply pin for VGH and VSH	
22	С	VSL	Negative Source driving voltage	
23	С	PREVGL	Power Supply pin for VCOM, VGL and VSL	
24	С	VCOM	VCOM driving voltage	

Note 5-1: This pin is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW in parallel interface. When CS# is not in use, please connect to VCI or VSS.

Ver 1.1 SEP.04.2011 6 / 26

- Note 5-2: This pin is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data at [7:0] will be interpreted as data. When the pin is pulled LOW, the data at D[7:0] will be interpreted as command.
- Note 5-3: This pin is reset signal input.

Active Low.

- Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. e.g., The chip would put Busy pin High when
 - Outputting display waveform; or
 - Programming with OTP
 - Communicating with digital temperature sensor

Note 5-5:

Table: Bus interface selection

BS1	MPU Interface
L	4-lines serial peripheral
	interface (SPI)
Н	3-lines serial peripheral
	interface (SPI) - 9 bits SPI
	,

Ver 1.1 SEP.04.2011 7 / 26

6. Command Table

D/C# =0, R/W# (WR#) =0, E (RD# =1) unless specific setting is stated.

Fund	ament	al Con	nmaı	nd Ta	able							
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
1	0 -		0	0	0	0	0	A2	A1	A0	Status Read	Read Drive Status on *A2:BUSY flag *A1,A0:Chip ID(01 as default)
0	-	010	0	0	0	0	0	0	0	A0	Deep Sleep mode	Deep Sleep mode Control
0	1 -		0	0	0	0	0	0	0	A0	-	A[0] Description 0 [POR] 1 Enter Deep Sleep Mode
0	0	20	0	0	1	0	0 0		0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is located at R22h User should not interrup t this o peration to avoid corruption of panel images
0	0	21	0	0	1	0	0	0	0	1	Display Update	Option for Display Update
0	1 -		A7	0	A5	A4	A3	A2	Al	A0	Control 1	Bypass Option Used for Pattern Display, which is used for display the RAM content into the Display. OLD RAM Bypass option A[7] 1 Enable bypass 0 Disable bypass [POR] A[5:4] valve will be used as for bypass 00 [POR] A[3:0] Initial Update Option-Source Control GSC GSD A[3:2] A[1:0] 0000 GS0 GS0 0001 GS0 GS1 0010 GS0 GS2 0011 GS0 GS3 [POR]

Ver 1.1 SEP.04.2011 8 / 26

	1											11 2		1
												0100	GS1	GS0
												0101	GS1	GS1
												0110	GS1	GS2
												0111	GS1	GS3
												1000	GS2	GS0
												1001	GS2	GS1
												1010	GS2	GS2
												1011	GS2	GS3
												1100	GS3	GS0
												1101	GS3	GS1
												1110	GS3	GS2
												1111	GS3	GS3
0	0	22	0	0	1	0	0 0		1	0	Display Update	Display Up	date Sequen	ce Option
												Enable the	stage for Ma	ıster
												Activation		
												Parameter		
												(in Hex)		
												Enable Clo	ck Single	
												Then Enabl	le CP	
												Then lo ac	d Temperatu	re
												Value		
												Then Load		FF
													AL DISPLA	
													ERN DISPI	LAY
												Then Disab		
												Then Disab		
												Enable Clo		
0	1 -		A7	A6	A5	A4	A3	A2	A1	A0	Control 2	Then Enabl		
													Temperature	2
												value	LIT	F.7
												Then Load		F7
													ERN DISPI	Δ A Y
												Then Disab		
													Clock Single	
												(CLKEN =		80
												,	1) Clock Single	
												Then Enable		C0
													1,CPEN =1)	
												To INITIAL		
												DIALAY+I		
												DISLAY		0C
													L DISPLAY	
	l											10 INITIAI	DISLEAT	00

Ver 1.1 SEP.04.2011 9 / 26

												To DISPLAY PATTEN 04
												To Disable CP
												then Disable Clock Single
												(CLKEN =1) 01
												Remark:
												CLKEN=1
												If CLS = VDDIO then Enable OSC
												If CLS = VSS then Enable External
												Clock
												CLKEN=0
												If CLS = VD DIO then Disable OSC
												AND
												INTERNAL CLOCK Single = VSS
												After this command, data entries will be
												written into the RAM un til another
0	0	24	0	0	1	0	0 1		0	0	Write RAM	command is written. Address pointers
												will advance accordingly.
0	0	3C	0	0	1	1	1 1		0	0	Border Waveform	Select border waveform for VBD
												A [7] Follow Source at initial Update
												Display
												A [7] = 0: [POR]
												A [7] = 1: Follow Source at initial
												Update Display for VBD
												A [6] setting are being overridden at Initial Display
												STAGE
												SINGL
												A[6] Select GS Transition/ Fix Level for
0	1 -		A7	A6	A5	A4	A3	A2	A1	A0	Control	VBD
								1				1
												A[6] = 0: Select GS Transition
												A[6] = 0: Select GS Transition A[3:0] for VBD
												A[3:0] for VBD A[6] = 0: Select Fix level Setting A[5:4] for VBD [POR]
												A[3:0] for VBD A[6] = 0: Select Fix level Setting A[5:4] for VBD [POR] A[5:4] Fix Level Setting for VBD
												A[3:0] for VBD A[6] = 0: Select Fix level Setting A[5:4] for VBD [POR] A[5:4] Fix Level Setting for VBD
												A[3:0] for VBD A[6] = 0: Select Fix level Setting A[5:4] for VBD [POR] A[5:4] Fix Level Setting for VBD VBD 00 VSS
												A[3:0] for VBD A[6] = 0: Select Fix level Setting A[5:4] for VBD [POR] A[5:4] Fix Level Setting for VBD

Ver 1.1 SEP.04.2011 10 / 26

												11[POR]		HiZ	
												L	tran sit	ion setting f or	_l VBD
												(Select way			, DD
												A[3:2] to da			
													L	1/	
													GSA	GSB	
												0000	GS0	GS0	
												0001	GS0	GS1	
												0010	GS0	GS2	
												001	GS0	GS3	
												[POR]			
												0100	GS1	GS0	
												0101	GS1	GS1	
												0110	GS1	GS2	
												0111	GS1	GS3	_
												1000	GS2	GS0	_
												1001	GS2	GS1	_
												1010	GS2	GS2	
												1011	GS2	GS3	_
												1100	GS3	GS0	_
												1101	GS3	GS1	_
												1110	GS3 GS3	GS2 GS3	-
												1111		end positions	of the
0	0	44	0	1	0	0	0 1		0	0				the X direction	
							0 1					address unit		the 24 direction	oy un
											Set RAM X —	A[7:0]:X S		OR = 00h	
0	1 -		0	0	0	A4	A3	A2	A1	A0	address Start / End	B[7:0]:X F			
											position				
0	1 -		0	0	0	В4	В3	В2	B1	В0					
0	0	4E	0	1	0	0	1 1		1	0				ng for the RA	
				_							Set RAM X		ne addr	ess counter (AC)) POR
0	1 -		0	0	0	A4	A	A2	A1	A0	address counter	is 0			
												Malas initis	.1	D.A	MW
0	0	4F	0	1	0	0	1 1		1	1	Set RAM Y			ng for the RA ess counter (AC)	
											address counter	is 0	ic auul	os counter (AC)	JIOK
0	1 -		A7	A6	A5	A4	A3	A2	A1	A0		-50			
0	0	F0	1	1	1	1	0 0		0	0		Set Booster	Feedba	ck Selection	
U	U	UT	I	1	1	1	00		U	U	Booster Feedback	0×1F=Inte	ernal l	Feedback is u	sed
0	1 -		A7	A6	A5	A4	A3	A2	A1	A0	Selection	POR is 0×3	3F		
	=														

Ver 1.1 SEP.04.2011 11 / 26

7. Electrical Characteristics

7-1) Absolute maximum rating

Parameter	Symbol	Rating	Unit
Logic Supply Voltage	V_{CI}	-0.5 to +3.6	V
Logic Input Voltage	V_{IN}	-0.5 to VCI +0.5	V
Logic Output Voltage	$V_{ m OUT}$	-0.5 to VCI +0.5	V
Operating Temp. range	T_{OPR}	0 to +50	${\mathbb C}$
Storage Temp. range	T_{STG}	-25 to +70	${\mathbb C}$

7-2) Panel DC Characteristics

The following specifications apply for : VSS = 0V, VCI = 3.0V, TA = 25° C

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Single ground	V_{SS}	-	-	0	1	V
Logic Supply Voltage	VCI	-	2.4	3.0	3.3	V
High level input voltage	VIH	-	0.8VCI	-	-	V
Low level input voltage	VIL	-	-	-	0.2VCI	V
High level output voltage	VOH	IOH= -100uA	0.9VCI	-	-	V
Low level output voltage	VOL	IOH= 100uA		-	0.1VCI	V
Maximum power panel	P _{MAX}		-	-	3.610	mW
Standby power panel	T_{STBY}	-	-	-	TBD	mW
Typical power panel	P_{TYP}	-	-	0.657	-	mW
Operating temperature	-	-	0	-	50	$^{\circ}$
Storage temperature	-	-	-25	-	70	$^{\circ}$
Maximum image update Time at 25℃	-			1000	-	ms
Deep sleep mode current	VCI	DC/DC off No clock No input load Ram data not retain	-	2	5	uA
Sleep mode current	VCI	DC/DC off No clock No input load Ram data retain	-	35	50	uA

- The Typical power consumption is measured with following pattern transition: from horizontal 4 gray scale pattern to vertical 4 gray scale pattern.(Note 7-1)
- The standby power is the consumed power when the panel controller is in standby mode.
- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by OED

Ver 1.1 SEP.04.2011 12 / 26

- Vcom is recommended to be set in the range of assigned value \pm 0.1V.

Note 7-1 The Typical power consumption

7-3) Panel AC Characteristics

The following specifications apply for : VSS = 0V, VCI = 3.0V, T_A = 25 $^{\circ}$ C

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Internal Oscillator frequency	Fosc	VCI=2.4 to 3.3V	0.95	1	1.05	MHz

7-3-1) MCU Interface

Note 7-2: L is connected to VSS Note 7-3: H is connected to VCI

7-3-1-1) MCU Interface Selection

MCU interface consist of 2 data/command pins and 3 control pins .The pin assignment at different interface mode is summarized in Table 7-1. Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports spi4 or spi3 interface mode.

Pin Name	Tame Data/Command Interface Control Signal				
Bus interface	D1	D0	CS#	D/C#	RES#
SPI4	SDin	SCLK	CS#	D/C#	RES#
SPI3	SDin	SCLK	CS#	L	RES#

MCU interface assignment under different bus interface mode

7-3-1-2) MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCLK, serial data SDIN, D/C#, CS#. In SPI mode ,D0 acts a s SCLK, D1 acts as SDIN .

Ver 1.1 SEP.04.2011 13 / 26

Function	CS#	D/C#	SCLK
Write Command	L	L	†
Write data	L	Н	1

Control pins of Serial interface

Note 7-9: ↑ stands for rising edge of signal

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in order of D7,D6, D0.D/C# is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data RAM(RAM) or command register in the same clock.

Under serial mode, only write operations are allowed.

7-3-1-3) MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCLK, serial data ADIN and CS#. In 3-wire SPI mode,D0 acts as SCLK, D1 acts as SDIN, The pin D/C# can be connected to an external ground.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0). Under serial mode, only write operations are allowed.

Ver 1.1 SEP.04.2011 14 / 26

Function	CS#	D/C#	SCLK
Write Command	L	Tie LOW	†
Write data	L	Tie LOW	†

Control pins of 3-wire Serial interface

Note 7-10: ↑ stands for rising edge of signal

Figure 7-6: Write procedure in 3-wire Serial interface mode

7-3-2) Timing Characteristics of Series Interface

◆ Series Interface Timing Characteristics

(VCI - VSS = 1.8 V to 2.0 v , T_A = 25 $^{\circ}\!\!\mathrm{C}$, C_L = 20 pF)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	250	-	-	ns
t_{AS}	Address Setup Time	150	-	-	ns
t _{AH}	Address Hold Time	150	-	-	ns
$t_{\rm CSS}$	Chip Select Setup Time	120	-	-	ns
t_{CSH}	Chip Select Hold Time	60	-	-	ns
$t_{ m DSW}$	Write Data Setup Time	50	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	15	-	-	ns
t_{CLKL}	Clock Low Time	100	-	-	ns
t _{CLKH}	Clock High Time	100	-	-	ns
t_R	Rise Time [20%~80%]	-	-	15	ns
$t_{ m F}$	Fall Time [20%~80%]	-	-	15	ns

◆ Series interface characteristics

D0

7-4) Power Consumption

SDIN(D1)

Parameter	Symbol	Conditions	TYP	Max	Unit	Remark
Panel power consumption during update	-	-	0.657	3.610	mW	-
Power consumption in standby mode	-	-	-	TBD	mW	-

D6

Ver 1.1 SEP.04.2011 16 / 26

7-5) Reference Circuit

Figure . 7-5 (1)

Ver 1.1 SEP.04.2011 17 / 26

Figure . 7-5 (2)

Figure . 7-5 (3)

Ver 1.1 SEP.04.2011 18 / 26

Figure . 7-5 (4)

Ver 1.1 SEP.04.2011 19 / 26

8. Typical Operating Sequence

Initialize display:

Close charge pump (shut down):

Open charge pump:

Ver 1.1 SEP.04.2011 20 / 26

Note: 1

Normal display sequence:

Image resolution: 72×172

Image type : 24-bit.

Ver 1.1 SEP.04.2011 21 / 26

Command 20H

9. Optical characteristics

9-1) Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

T=25°C

SYMBOL	PARAMETER	CONDITIONS	MIN	YPY	MAX	UNIT	Note
D	Deflectores	White	20	25		%	Note
R	Reflectance	White	30	35	-	70	9-1
Gn	N _{th} Grey Level	-	-	DS+(WS-DS) xn (m-1)	-	L* -	
CR	Contrast Ratio	-	6		-		
T _{update}	Update time	2~4-bit mode	-	-		sec	-

WS: White state, DS: Dark state

Gray state from Dark to White: DS, G1, G2 ..., Gn ..., Gm-2, WS

m: 4, when 2 bits mode

Note 9-1: Luminance meter: Eye – One Pro Spectrophotometer

9-2) Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (R1) and the reflectance in a dark area (Rd):

$$CR = R1/Rd$$

9-3) Reflection Ratio

The reflection ratio is expressed as:

 $R = Reflectance \; Factor \; _{white \; board} \quad x \; (L \; _{center} \, / \; L \; _{white \; board} \;)$

 L_{center} is the luminance measured at center in a white area (R=G=B=1) . $L_{white\,board}$ is the luminance of a standard white board . Both are measured with equivalent illumination source . The viewing angle shall be no more than 2 degrees .

10. HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS

Ver 1.1 SEP.04.2011 23 / 26

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care.

Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status					
Product specification	Product specification The data sheet contains final product specifications.				
Limiting values					

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134).

Stress above one or more of the limiting values may cause permanent damage to the device.

These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Ver 1.1 SEP.04.2011 24 / 26

11. Reliability test

	TEST	CONDITION	METHOD	REMARK
1	High-Temperature Operation	$T = 50^{\circ}\text{C},30\% \text{ for } 240 \text{ hrs}$	IEC 60 068-2-2Bp	
2	Low-Temperature Operation	T = 0°C for 240 hrs	IEC 60 068-2-2Ab	
3	High-Temperature Storage	$T = +70^{\circ}\text{C}$, 23% for 240 hrs	IEC 60 068-2-2Bp	
		Test in white pattern		
4	Low-Temperature Storage	T = -25°C for 240 hrs	IEC 60 068-2-2Ab	
		Test in white pattern		
5	High Temperature, High- Humidity Operation	T=+40°C,RH=90%for168hrs	IEC 60 068-2-3CA	
6	High Temperature, High-	T=+60°C,RH=80%for240hrs	IEC 60 068-2-3CA	
0	Humidity Storage	Test in white pattern	IEC 00 008-2-3CA	
		-25°C → +70°C,100 cycles		
7	Temperature Cycle	30mins 30mins	IEC 60 068-2-14	
		Test in white pattern		
8	UV exposure Resistance	765 W/m ² for 1688 hrs,40°C	IEC 60 068-2-5 Sa	
9	Electrostatic Effect	Machine mode	IEC62179,	
9	(non-operating)	+/- 250V, 0 Ω ,200pF	IEC62180	
		1.04G,Frequency: 10~500Hz	Full packed for	
10	Package Vibration	Direction: X,Y,Z	shipment	
		Duration:1hours in each direction	sinpinent	
		Drop from height of 122 cm on		
		Concrete surface	Full packed for	
11	Package Drop Impact	Drop sequence:1 corner, 3edges,	•	
		6face	shipment	
		One drop for each.		
12	Altitude test Operation	700hPa (=3000 m),48Hr		
13	Altitude test Storage	260hPa (=10000 m),48Hr		
13	Aimude test Storage	Test in white pattern		

Actual EMC level to be measured on customer application.

Note: The protective film must be removed before temperature test.

Ver 1.1 SEP.04.2011 25 / 26

12. Block Diagram

Ver 1.1 SEP.04.2011 26 / 26