Got 2 Minutes? Start here \$\\

Summary

Unlike existing feature vector embedding, we learn Ours a feature matrix representation, regularised by a pretrained StyleGAN.

- > Tackles the abstraction problem as a whole for the task of FG-SBIR.
- > Proposes a differentiable Acc.@q surrogate loss for retrieval.

Problems

Freehand sketches exhibit varied levels of abstraction, formed by many interlacing factors such as drawing skill, style, culture & subjectivity.

- > The gold-standard Triplet loss is solely concerned with bringing the best match to top-1, regardless of how good or bad the input sketch is.
- > Existing methods uses a fixed embedding matrix to perform retrieval.

Solutions

We tailor abstraction understanding in our system's DNA by specifically designing feature-level and retrieval granularitylevel innovations.

- We utilise the information-rich StyleGAN latent space to guide learning of abstraction-aware feature embedding.
- An abstraction-level selector to dynamically assess levels of input abstraction, and select appropriate levels in our feature matrix embedding.
- Proposed Acc.@q surrogate loss allows the retrieval metric to accommodate different levels of sketch-abstraction.

How to Handle Sketch-Abstraction in Sketch-Based Image Retrieval?

Subhadeep Koley^{1,2}, Ayan Kumar Bhunia¹, Aneeshan Sain¹, Pinaki Nath Chowdhury¹, Tao Xiang^{1,2}, Yi-Zhe Song^{1,2}

- ¹SketchX, CVSSP, University of Surrey
- ²iFlyTek-Surrey Joint Research Centre on Artificial Intelligence

Proposed Model

- > Salient Components
 - 1. Harness the rich semantic embedding of pre-trained StyleGAN model.
 - 2. Abstraction-level selector to dynamically assess input sketch-abstraction.
 - 3. Differentiable Acc.@q surrogate loss.
- To distil the knowledge from a frozen StyleGAN, we use, sketch-tophoto & photo-tophoto reconstruction losses, which align the sketch/photo feature matrix embedding to that of the disentangled latent space of StyleGAN.

def sigmoid(tensor, tau):

return y

tensor = tensor / tau

y = 1.0 / (1.0 + torch.exp(-tensor))

- \triangleright Abstraction identification head $\mathcal{A}(\cdot)$ takes global average pooled sketch feature from the backbone network as input, and predicts probability distribution over 3 latent groups (i.e., coarse, medium, or fine).
- Optimising test-time evaluation metrics (e.g., Acc.@q) directly via gradient descent is difficult in practice, as they invoke non-differentiability, owing to operations like sorting, counting, etc.
- We present a surrogate differentiable approximation of Acc.@q via a temperature-controlled Sigmoid function.

Algorithm 1 PyTorch-like code for differentiable Acc. @q

Table 1. Results for standard FG-SBIR task.

Methods	ChairV2			ShoeV2		
	Acc.@1	Acc.@5	$\mu \pm \sigma$	Acc.@1	Acc.@5	$\mu \pm \sigma$
Triplet-SN [86] HOLEF-SN [65]	47.4 50.7	71.4 73.6	2.6 ± 0.4 2.7 ± 0.6	28.7 31.2	63.5 66.6	2.2±0.2 2.5±0.1
B-pSp B-pix2pix B-CycleGAN	47.8 44.2 45.1	70.2 66.9 67.1	2.9 ± 0.2 2.8 ± 0.7 2.7 ± 0.3	30.1 26.7 27.8	63.9 60.2 62.6	2.8 ± 0.9 2.3 ± 0.1 2.5 ± 0.4
Partial-OT [18] CrossHier [56] StyleMeUp [57] On-the-fly [8] SketchPVT [60] Proposed	63.3 62.4 62.8 51.2 71.2 72.1	79.7 79.1 79.6 73.8 80.1 80.9	3.6 ± 0.7 3.5 ± 0.3 3.7 ± 0.2 3.2 ± 0.5 3.3 ± 0.7 4.4\pm0.5	39.9 36.2 36.4 30.8 44.1 45.3	68.2 67.8 68.1 65.1 70.8	3.5 ± 0.6 3.3 ± 0.1 3.3 ± 0.3 2.8 ± 0.5 2.9 ± 0.9 4.1\pm0.5

