Machine Learning

Lecture - 2

Muhammad Affan Alim

Learning Algorithm(Function)

Regression

- Regression is a supervised learning problem
- At given X and Y, we need to develop a model of linear regression which predict Y on new value of X

$$f: X \longrightarrow Y$$

• For regression Y is continuous

Hierarches of Regression

· Many types of regression models can be used

Linear Regression

- The simplest function is linear function for regression
 - Simple regression where instance *x* depends on single variable

Multiple regression where instance x depends on multiple

variables

A simple Example: Fitting a Polynomial

- There green curve is the true function (which is not a polynomial)
- Plot of a training data set of N=10
 points, shown as blue circles, each
 comprising an observation of the input
 variable x along with the corresponding-1
 target variable t.

• The green curve shows the function $\sin(2\pi x)$ used to generate the data

A simple Example: Fitting a Polynomial

We may used a *loss function* that measures the *squared* error in the prediction of y(x) from x

Some fits to the data: which is best? (1/2)

Some fits to the data: which is best? (2/2)

Explanation

- We notice that the constant (M=0) and first order (M=1) polynomials give rather poor fits to the data and consequently rather poor representations of the function sin(2 x). The third order (M=3) polynomial seems to give the best fit to the function sing (2πx) of the examples shown in figure.
- When we go to a much higher order polynomial (M=9), we obtain an excellent fit to the training data.
- In fact, the polynomial passes exactly through each data point and E(w*) = 0.

Linear Regression – Example (3/7)

d Size in feet² (x) Price (\$) in 1000's (y)

Size in feet- (x)	Price (\$) in 1000 s (y)
2104	460
1416	232 m=47
1534	315
852	178
	l J

Linear Regression – Example (4/7)

- Training set (this is your data set)
- Notation (used throughout the course)

m = number of training examples

x's = input variable "target" variables

y's = output variable target example

(x, y) - single training example

(xi, yj) - specific example (ith training example)

i is index to training set

Linear Regression – Example (5/7)

•

h is a function which maps x's to y's

Linear Regression – Example (6/7)

- With our training set defined how do we used it?
 - · Take training set
 - · Pass into a learning algorithm
 - Algorithm outputs a function (denoted h) (h = hypothesis)
 - This function takes an input (e.g. size of new house)
 - Tries to output the estimated value of Y

Linear Regression – Example (7/7)

- How do we represent hypothesis *h* ?
 - · Going to present h as;
 - $h_{\theta}(x) = \theta_0 + \theta_1 x$
 - *h*(x) (shorthand)
- What does this mean?
- Means Y is a linear function of x!
- θ_i are parameters
 - θ_0 is zero condition
 - θ_1 is gradient

• Linear regression with one variable or univariate linear regression

Linear Regression – Cost Function (1/7)

• $h_{\theta}(x) = \theta_0 + \theta_1 x$

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460)
1416	232 m=47
1534	315
852	178

- A cost function lets us figure out how to fit the best straight line to our data
- Choosing values for θ_i (parameters)

Linear Regression – Cost Function (2/7)

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0 = 1.5$$
$$\theta_1 = 0$$

$$\theta_1 = 0.5$$

$$\theta_0 = 1$$
$$\theta_1 = 0.5$$

Linear Regression – Cost Function (3/7)

• $h_{\theta}(x) = \theta_0 + \theta_1 x$

Linear Regression – Cost Function (4/7)

- *Idea*: Choose θ_{1} , θ_{2} so that h(x) is close to y for our training examples (x, y)
- · To formalize this;
 - · We want to want to solve a minimization problem
 - Minimize $(h_{\theta}(x) y)^2$
 - i.e. minimize the difference between h(x) and y for each/any/every example
- Sum this over the training set

Linear Regression – Cost Function (5/7)

· Sum this over the training set

Minimize squared different between predicted house price and actual house price

Linear Regression – Cost Function (6/7)

- Note:
- (1/2)m
- 1/m means we determine the average
- (1/2)m the 2 makes the math a bit easier, and doesn't change the constants we determine at all (i.e. half the smallest value is still the smallest value!)

Linear Regression – Cost Function (7/7)

· More cleanly, this is a cost function

• Some time it is called squared error function

Linear Regression – Cost Function Summary

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: $\underset{\theta_0,\theta_1}{\operatorname{minimize}} J(\theta_0,\theta_1)$

Linear Regression – Cost Function Example (1/4)

 $h_{\theta}(x)$ (for fixed θ_1 this is a function of x)

 $J(\theta_1)$ Function of the parameter θ_1

Linear Regression – Cost Function Example (2/4)

 $h_{\theta}(x)$ (for fixed θ_1 this is a function of x)

 $J(\theta_1)$ Function of the parameter θ_1

Linear Regression – Cost Function Example (3/4)

If $\theta_1 = 1$

(page number 13)

J(1) = 0

If $\theta_1 = 0.5$

J(0.5) = 0.58

If $\theta_1=0$

J(0) = 2.3

We can do for other values of θ_1 's

Linear Regression – Cost Function Example (4/4)

- The optimization objective for the learning algorithm is find the value of θ_1 which minimizes $J(\theta_1)$
- So, here $\theta_1 = 1$ is the best value for θ_1

Linear Regression – Cost Function Two or more constants (1/10)

- Assume you're familiar with contour plots or contour figures
 - · Using same cost function, hypothesis and goal as previously
 - It's OK to skip parts of this section if you don't understand contour plots
- Using our original complex hypothesis with two variables,
 - So cost function is $J(\theta_0, \theta_1)$

Linear Regression – Cost Function Two or more constants - Example (2/10)

- Suppose
 - $\theta_0 = 50 \text{ and } \theta_1 = 0.06$
- Previously we plotted our cost function by plotting θ_1 vs $J(\theta_1)$
- Now we have two parameters
 - · Plot becomes a bit more complicated
 - Generates a 3D surface plot where axis are
 - $X = \theta_1$
 - $Z = \theta_0$
 - $Y = J(\theta_0, \theta_1)$

Linear Regression – Cost Function Two or more constants – Example (3/10)

Linear Regression – Cost Function Two or more constants - Example (4/10)

• Function of the parameters θ_0 , θ_1

• We can see that the height (y) indicates the value of the cost function, so find where y is at a minimum

Linear Regression – Cost Function Two or more constants - Example (5/10)

- Instead of a surface plot we can use a contour figures/plots
 - Set of ellipses in different colors
 - Each color is the same value of $J(\theta_0, \theta_1)$, but obviously plot to different locations because θ_1 and θ_0 will vary
 - Imagine a bowl shape function coming out of the screen so the middle is the concentric circles

Linear Regression – Cost Function Two or more constants - Example (6/10)

• X

Linear Regression – Cost Function Two or more constants – Example (7/10)

- Each point (like the red one above) represents a pair of parameter values for Θ_0 and Θ_1
 - Our example here put the values at
 - $\theta_0 = ~800$
 - $\theta_1 = \sim -0.15$
- Not a good fit
- i.e. these parameters give a value on our contour plot far from the center

Linear Regression – Cost Function Two or more constants – Example (8/10)

- If we have
 - $\theta_0 = ~360$
 - $\theta_1 = 0$
 - This gives a better hypothesis, but still not great not in the center of the contour plot
- Finally we find the minimum, which gives the best hypothesis
- Doing this by eye/hand is a pain
- What we really want is an efficient algorithm fro finding the minimum for θ_0 and θ_1

Linear Regression – Cost Function Two or more constants – Example (10/10)

Gradient Decent Algorithm

- It uses all over machine learning domain for finding the minimum cost function
- IMPORTANCE
 - After finding the first values of parameters of θ then it would be difficult to find the next best value of θ which converge the minimum of cost function.
- Basically, gradient descent algorithm depends on first order newton Rapson's method

Gradient Decent Algorithm

The more generalized gradient decent algorithm is

```
repeat until convergence { \Theta_j = \Theta_j - \alpha \frac{\partial}{\partial \Theta_j} J(\Theta_0, \Theta_1) \qquad \begin{array}{c} \text{(simultaneously updated j= 0} \\ \text{and j=1)} \end{array}
```

here, α = learning rate

Gradient Decent Algorithm - Example

• Consider the previous example, where we have selected single parameter θ_1 then the cost function is

min
$$J(\theta_1)$$

 The derivative of any curve at specific point produces the slope of tangent at same point

Gradient Decent Algorithm - Example

Suppose our cost function is

Gradient Decent Algorithm - Example

• In given diagram, at point θ_1 , the slope of tangent produces the positive value because of the acute inclination

then
$$rac{d}{d heta_1} J(heta_1) \geq 0$$
 positive value of

now gradient descent function

$$\theta_1 = \theta_1 - \alpha(positive\ value)$$

Gradient Decent Algorithm - Example

- In this case the value of new θ_1 will be smaller then the old θ_1
- It will move (converge) to left side and approach to min $J(\boldsymbol{\theta}_1)$

Gradient Decent Algorithm - Example

Consider the second diagram

$$\frac{d}{d\theta_{i}} J(\theta_{i})$$

$$0_{i} = 0, -d \text{ (negative number)}$$

Gradient Decent Algorithm - Example

 Here at the point θ1, the derivative value (slope of the tangent) will be negative because of obtuse angle of tangent

$$rac{d}{d heta_1} J(heta_1) \leq \mathbf{0}$$
 negative value

· now gradient descent function

$$\theta_1 = \theta_1 - \alpha(negative \ value)$$

Gradient Decent Algorithm - Example

- In this case the value of new θ_1 will be greater then the old θ_1
- It will move (converge) to right-side and approach to min J(θ₁)

Gradient Decent for Linear Regression

 Gradient descent algorithm repeat until convergence {

$$\Theta_{j} = \Theta_{j} - \alpha \frac{\partial}{\partial \Theta_{j}} J(\Theta_{0}, \Theta_{1}) \dots (i)$$

see copy for further prove

Cost Function with two parameters $(\theta_0 \ , \, \theta_1)$

• Function of the parameters θ_0 , θ_1

