MİKRODENETLEYİCİLER

Mikroişlemci: Merkezi işlem biriminin fonksiyonlarını tek bir yarı iletken tümleşik devrede birleştiren programlanabilir sayısal elektronik devre

Mikrodenetleyici: Bir mikroişlemcinin merkezi işlem birimi, bellek ve giriş/çıkış birimlerinin bazı özelliklerinin azaltılarak tek bir entegre içerisinde üretilmiş biçimi

MİKRODENETLEYİCİ KULLANIMININ TERCİH EDİLME SEBEPLERİ

- Küçük boyutlu
- Güç tüketimi düşük
- Düşük maliyetli
- Yüksek performanslı

MİKRODENETLEYİCİ KULLANIM ALANLARI

MİKRODENETLEYİCİ SEÇİMİNDE DİKKAT EDİLMESİ GEREKENLER

- Programlanabilir sayısal paralel giriş/çıkış
- Programlanabilir analog giriş/çıkış
- Seri giriş/çıkış
- Motor veya servo kontrol için tetikleme sinyali çıkışı
- Harici giriş vasıtasıyla kesme

MİKRODENETLEYİCİ SEÇİMİNDE DİKKAT EDİLMESİ GEREKENLER

- Zamanlayıcı vasıtasıyla kesme
- Harici bellek arabirimi
- Harici veri yolu arabirimi
- Dahili bellek tipi seçenekleri (ROM, EEPROM...)
- Dahili RAM seçeneği
- Kayan nokta hesaplaması

PIC NEDİR?

- PIC: Peripheral Interface Controller
 - = Çevresel Arayüz Birimi Denetleyicisi
- Microchip firmasının ürettiği mikrodenetleyicilerin genel adı
- Amacı: Çok fonksiyonlu mantıksal uygulamaların hızlı ve ucuz bir mikroişlemci ile yazılım yoluyla karşılanması
- İlk PIC: PIC16C54 (1994)
- En yaygın kullanılan PIC: PIC16F(C)84

BAZI 16F SERİSİ MİKRODENETLEYİCİLER

MİKRODENETLEYİCİ MİMARİSİ

İki çeşit mikroişlemci mimarisi vardır.

1. Von Neuman Mimarisi

- Program kodları (komutlar) ve veriler aynı bellek biriminden tek bir yoldan alınıp işlemciye getirilir.
- Önce komut getirilir, daha sonra veri alınıp işlenir.
- Bu mimaride gecikmeler mevcuttur.

MİKRODENETLEYİCİ MİMARİSİ

2. Harvard Mimarisi

- Program kodları ve verilere ayrı yollardan ulaşılır.
- Çalışması daha hızlıdır.
- Mikrodenetleyicilerde genelde bu mimari tercih edilir.

MİKRODENETLEYİCİ MİMARİSİ

PIC PROGRAMLAMAK İÇİN GEREKENLER

- IBM uyumlu bilgisayar
- Metin editörü
- Derleyici programı (MPLAB, Micropro, PicEQ, Propic, ICProg...)
- PIC programlayıcı donanım ve yazılım
- PIC

PIC16F84 PİN GÖRÜNÜŞÜ

Pin Diagram

5 pin: A portu

8 pin: B portu

1 pin: Reset

1 pin: Pozitif besleme

1 pin: Toprak

2 pin: Osilatör uçları

+_____ 18 pin

PIC16F84 PİN TANIMLAMALARI

Pin no.1 RA2 Second pin on port A. Has no additional function

Pin no.2 **RA3** Third pin on port A. Has no additional function.

Pin no.3 **RA4** Fourth pin on port A. TOCK1 which functions as a timer is also found on this pin

Pin no.4 **MCLR** Reset input and Vpp programming voltage of a microcontroller Pin no.5 **Vss** Ground of power supply.

Pin no.6 **RB0** Zero pin on port B. Interrupt input is an additional function.

Pin no.7 **RB1** First pin on port B. No additional function.

Pin no.8 **RB2** Second pin on port B. No additional function. Pin no.9 **RB3** Third pin on port B. No additional function.

Pin no.10 **RB4** Fourth pin on port B. No additional function.

Pin no.11 **RB5** Fifth pin on port B. No additional function.

Pin no.12 **RB6** Sixth pin on port B. 'Clock' line in program mode.

Pin no.13 **RB7** Seventh pin on port B. 'Data' line in program mode.

Pin no.14 **Vdd** Positive power supply pole.

Pin no.15 **OSC2** Pin assigned for connecting with an oscillator

Pin no.16 **OSC1** Pin assigned for connecting with an oscillator

Pin no.17 RA2 Second pin on port A. No additional function

Pin no.18 **RA1** First pin on port A. No additional function.

PIC16F84 MİKRODENETLEYİCİ İÇ YAPISI

Memory organization

PIC16F84 has two separate memory blocks, one for data and the other for program. EEPROM memory and GPR registers in RAM memory make up a data block, and FLASH memory makes up a program block.

Program memory:

Program memory has been realized in FLASH technology which makes it possible to program a microcontroller many times before it's installed into a device, and even after its installment if eventual changes in program or process parameters should occur. The size of program memory is 1024 locations with 14 bits width where locations zero and four are reserved for reset and interrupt vector.

Data memory

Data memory consists of EEPROM and RAM memories. EEPROM memory consists of 64 eight bit locations whose contents is not lost during loosing of power supply. EEPROM is not directly addressible, but is accessed indirectly through EEADR and EEDATA registers. As EEPROM memory usually serves for storing important parameters (for example, of a given temperature in temperature regulators), there is a strict procedure for writing in EEPROM which must be followed in order to avoid accidental writing. RAM memory for data occupies space on a memory map from location 0x0C to 0x4F which comes to 68 locations. Locations of RAM memory are also called GPR registers which is an abbreviation for General Purpose Registers. GPR registers can be accessed regardless of which bank is selected at the moment.

PIC16F84 MİKRODENETLEYİCİ İÇ YAPISI

• PIC belleğinde bulunan program komutlarının çalıştırılması için kare dalga sinyale ihtiyaç vardır. Bu sinyale **saat sinyali**, bu sinyali sağlayan devreye de **osilatör** adı verilir.

• PIC16F84'ün osilatör girişi olarak kullanılan iki pini vardır.

• Bu pinlere farklı tipte osilatörlerden elde edilen sinyaller uygulanabilir.

RC-Direnç/Kapasitör (0-4MHz)

XT-Kristal veya seramik resonatör (XTAL) (0.1-4MHz)

HS-Yüksek hızlı kristal veya resonatör (High Speed) (4-20

MHz)

LP-Düşük frekanslı kristal (Low Power) (5-200KHz)

 PIC'e bağlanan osilatörün tipi programlama sırasında konfigürasyon bitlerine yazılır.

RESET DEVRESI

BANK (16F84)

• 8086'daki segmentler yerine PIC'te Bank'lar ve Bank'ların içinde özel ve genel amaçlı yazmaçlar vardır.

• Bir yazmacı kullanabilmek için, yazmacın ait olduğu Bank'a geçiş yapılmalıdır.

BANK (16F84)

File Address File Address Indirect addr. (1) Indirect addr.(1) 80h 00h 01h TMR0 OPTION 81h 02h PCL PCL 82h STATUS STATUS 83h 03h 04h FSR FSR 84h PORTA TRISA 05h 85h PORTE TRISE seh 06h 07h 87h 08h EEDATA EECON1 88h EECON2(1) EEADR 89h 09h 0Ah PCLATH PCLATH 8Ah 0Bh INTCON INTCON 8Bh 0Ch 8Ch 68 General Mapped Purpose (accesses) (SRAM) in Bank 0 4Fh CFh 50h D0h FFh 7Fh Bank 0 Unimplemented data memory location; read as '0'. Note 1: Not a physical register.

BANK (16F877)

- 35 komut mevcuttur.
- Her komut 14 bit uzunluğundadır.
- İstisnai birkaç komut haricinde (CALL, GOTO, BTFSS...) her komut tek bir saat çevrim süresinde çalışır.

1. Byte Yönlendirmeli Komutlar: ADDWF, ANDWF, CLRF, CLRW, COMF, DECF, DECFSZ, INCF, INCFSZ, IORWF, MOVF, MOVWF, NOP, RLF, RRF, SUBWF, SWAPF, XORWF)

2. Bit Yönlendirmeli Komutlar: BCF, BSF, BTSFC, BTFSS

3. Sabit İşleyen Komutlar: ANDLW, ADDLW, IORLW, MOVLW, RETLW, SUBLW, XORLW

4. Kontrol Komutları: CALL, CLRWDT, GOTO, RETFIE, RETURN, SLEEP

Mnemonic, Operands		Description	Cycles	14-Bit Opcode				Status	Notes
		Description		MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	STER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	0.0	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	0.0	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	0.0	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	0.0	0001	0xxx	XXXX	Z	
COMF	f, d	Complement f	1	0.0	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	0.0	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	0.0	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	0.0	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	0.0	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	0.0	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	0.0	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	0.0	0000	lfff	ffff		
NOP	-	No Operation	1	0.0	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	0.0	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	0.0	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	0.0	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	0.0	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	0.0	0110	dfff	ffff	Z	1,2

BIT-ORIENTED FILE REGISTER OPERATIONS									
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

KONFIGÜRASYON BİTLERİNİN AYARLANMASI

Konfigurasyon bit'leri, PIC'e gerilim uygulandığı anda PIC'in uyması gereken koşulları belirler.

Koşul	Yazılacak Tanım Kodu
Kod koruma var	_CP_ON
Kod koruma yok	_CP_OFF
Power-on-reset var	_PWRTE_ON
Power-on-reset yok	_PWRTE_OFF
Watchdog timer devrede	_WDT_ON
Watchdog timer devrede yok	_WDT_OFF
Low Power Osilatör	_LP_OSC
Kristal Osilatör	_XT_OSC
High Speed Osilatör	_HS_OSC
RC Osilatör	_RC_OSC

AKÜMÜLATÖR

• 8086'da kullanılan yamaçlar yerine (AX, BX, CX, DX) PIC yalnızca W yazmacını kullanır.

• Bir değer bir değişkene atanmak istendiğinde W yazmacının kullanılması zorunludur.

AKÜMÜLATÖR

• Bu yazmaç sanal bir saklayıcıdır. İçeriğine doğrudan ulaşmak mümkün değildir. Ancak bütün yükleme işlemleri bu yazmaç aracılığı ile yapılır.

• Bir değişkene, bir yazmaca ya da bir porta bilgi göndermek için önce bu bilgi W yazmacına, daha sonra W yazmacını ilgili porta ya da değişkene yüklemek yolunu izlemek gerekmektedir.

AKÜMÜLATÖR

• Örnek: Bir değişkene bilgi yükleme

MOVLW D'15'; W=15

MOVWF SAYAC; SAYAC=15

STATUS YAZMACI

Bank'lar arasındaki geçişi sağlar.

R/W-0	R//N-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	C
þ8.¥							bit0
bit 6-5	11 = Bar 10 = Bar 01 = Bar 00 = Bar	rk 3 (180	h - 1FFh) h - 17Fh) - FFh) - 7Fh)		used for (direct add	dressing)

STATUS YAZMACI

```
■ BSF STATUS,RPO ;Bit Set f
;(Status'da RPO)

■ BSF STATUS,5 ;Bit Set f
```

;(Status'da Bit 5)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	С

bit 7 bit 0

PROGRAM BÖLÜMLERİ

Sonlandırma Bloğu

BAŞLIK BLOKU

• LIST P=16F877; Kullanılacak PIC tanımlanır.

• INCLUDE P16F877.INC; Kullanılan ;PIC'teki yazmaç tanımlamaları bu dosyada ;saklanır. Böylece yazmaç değerlerinin teker ;teker tanımlanması gerekmez.

BÜYÜK/KÜÇÜK HARF KULLANIMI

• PIC komutlarının büyük veya küçük harfle yazılması önemli değildir.

movlw = MOVLW = MoVlW

 Ancak etiketler harf büyüklüğüne duyarlıdır. dongu≠DONGU

KULLANILAN SAYI/KARAKTER TİPLERİ

Hexadecimal

Binary

MOVLW b'00010110'

Decimal

MOVLW d'15'

ASCII Character

RETLW 'A'

ÖRNEK PROGRAM

LIST P=16F877

INCLUDE P16F877.INC

ORG 0 ; PROGRAMI 0X00'DAN BAŞLAT

BSF STATUS, RPO ; BANK1'E GEÇİŞ

CLRF TRISD ; TRISD ÇIKIŞ MODUNA ATANIR

BCF STATUS, RPO ; BANKO'A GEÇİŞ

MOVLW b'01100110' ;D PORTUNA 01100110 BILGISI GONDER

MOVWF PORTD

DONGU

GOTO DONGU ; SONSUZ LOOP

END

ÖRNEK PROGRAM

LIST	ľ	P=16F877			CALL	BEK
INCLUDE P16		P16F877.INC			MOVLW	DSAYI
CONFIG _CP_OFF & _WDT_OFF & _PWRTE_ON &					MOVWF	PORTD
XT_OSC					CALL	BEK
;					MOVLW	0x05
	DSAYI	0xFF			MOVWF	PORTE
	EQU				CALL	BEK
	EQU				CALL	BEK
	EQU				GOTO	DONGU
ORG	0x00			; BEK		
BASLA					MOVLW	0x05
CLRF	PORTA				MOVWF	CNTKM
CLRF	PORTB			TEKN	1	
CLRF	PORTC				MOVLW	0XF0
CLRF	PORTD				MOVWF	CNTKH
CLRF	PORTE			TEK1	L	
					MOVLW	OXFF
BSF	STATUS, RP)			MOVWF	CNTKL
CLRF	TRISB			TEK2	2	
CLRF	TRISC				DECFSZ	CNTKL, F
CLRF	TRISD				GOTO	TEK2
CLRF	TRISE				DECFSZ	CNTKH, F
BCF	STATUS, RP)			GOTO	TEK1
;					DECFSZ	CNTKM, F
CALL	BEK				GOTO	TEKM
MOVLW	b'01010101	L'			RETURN	
MOVWF	PORTB					
CALL	BEK			DONG	ξU	
MOVLW	b'11001100)'				GOTO BASLA
MOVWF	PORTC					END