Convex Optimization: Homework 2

Due to Oct. 29, 2023

Problem 1: For each of the following functions determine whether it is convex, concave, quasiconvex, or quasiconcave?

- 1. $f(x) = e^x 1$ on **R**.
- 2. $f(x_1, x_2) = x_1 x_2$ on \mathbf{R}^2_+ .
- 3. $f(x_1, x_2) = 1/(x_1x_2)$ on \mathbb{R}^2_+ .
- 4. $f(x_1, x_2) = x_1/x_2$ on \mathbf{R}^2_+ .
- 5. $f(x_1, x_2) = x_1^2/x_2$ on $\mathbf{R} \times \mathbf{R}_+$.
- 6. $f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, where $0 \le \alpha \le 1$ on \mathbb{R}^2_+ .

Problem 2: Let x be a real-valued random variable which takes values in $\{a_1, \ldots, a_n\}$ where $a_1 < a_2 < \ldots < a_n$, with $\mathbf{prob}(x = a_i) = p_i$, $i = 1, \ldots, n$. For each of the following functions of p (on the probability simplex $\{\mathbf{p} \in \mathbf{R}_+^n | \mathbf{1}^T \mathbf{p} = 1\}$), determine if the function is convex, concave, quasiconvex, or quasiconcave.

- 1. **E** *x*
- 2. $\operatorname{\mathbf{prob}}(x \ge \alpha)$
- 3. $\operatorname{prob}(\alpha \leq x \leq \beta)$
- 4. $\sum_{i=1}^{n} p_i \log p_i$, the negative entropy of the distribution.
- 5. $var x = E(x E x)^2$
- 6. quartile(x) = $\inf\{\beta | \operatorname{prob}(x \le \beta) \ge 0.25\}.$

- 7. The cardinality of the smallest set $A \subseteq \{a_1, \ldots, a_n\}$ with probability $\geq 90\%$. (By cardinality we mean the number of elements in A.
- 8. The minimum width interval that contains 90% of the probability, i.e.,

$$\inf\{\beta - \alpha | \mathbf{prob}(\alpha \le x \le \beta) \ge 0.9\}.$$

Problem 3: Prove that for strictly positive definite symmetric matrices, the following holds

- $f(\mathbf{X}) = \operatorname{tr}{\{\mathbf{X}^{-1}\}}$ is convex.
- $f(\mathbf{X}) = (\det \mathbf{X})^{1/n}$ is concave.

Problem 4: Prove that if $h(\mathbf{x})$ is twice continuously differentiable, then $h(\mathbf{x})$ is convex in \mathbb{R}^n is equivalent to

$$\nabla^2 h(\mathbf{x}) \succeq 0 \qquad \forall \mathbf{x} \in R^n.$$

Problem 5: First, show that the sum of r largest components of a vector $\mathbf{x} \in \mathbf{R}^n$ is a convex function.

Then let the eigenvalues of symmetric $n \times n$ matrix \mathbf{X} are denoted and ordered as

$$\lambda_1(\mathbf{X}) \geq \lambda_2(\mathbf{X}) \geq \cdots \geq \lambda_n(\mathbf{X}).$$

Take integer k as $1 \le k \le n$, and consider the function defined as

$$f(\mathbf{X}) = \sum_{i=1}^{k} \lambda_k(\mathbf{X}).$$

For k = n, this function is called the nuclear norm of a matrix, and for k < n it is just a partial sum of eigenvalues.

Prove that the above defined function $f(\mathbf{X})$ is a convex function.

Hint: Show that

$$f(\mathbf{X}) = \sup \left\{ \operatorname{tr}(\mathbf{U}^T \mathbf{X} \mathbf{U}) \mid \mathbf{U} \in R^{n \times k}, \ \mathbf{U}^T \mathbf{U} = I_k \right\}.$$

Problem 6: A quadratic-over-linear composition: Suppose that $f: \mathbf{R}^n \to \mathbf{R}$ is nonnegative and convex, and $g: \mathbf{R}^n \to \mathbf{R}$ is positive and concave. Show that the function f^2/g , with domain dom $f \cap \text{dom} g$, is convex.

Problem 7: Let $D_{\rm KL}$ be the Kullback-Leibler divergence (if you do not know what it is, see equation (3.17) in the textbook). Prove the information theoretic inequality:

$$D_{\mathrm{KL}}(\mathbf{u}, \mathbf{v}) \ge 0$$

for all \mathbf{u} , \mathbf{v} .

Also show that

$$D_{\mathrm{KL}}(\mathbf{u}, \mathbf{v}) = 0$$

if and only if $\mathbf{u} = \mathbf{v}$.

It is useful to know that the Kullback-Leibler divergence can be expressed as

$$D_{\mathrm{KL}} = f(\mathbf{u}) - f(\mathbf{v}) - \nabla f^{T}(\mathbf{v})(\mathbf{u} - \mathbf{v})$$

where $f(\mathbf{v}) = \sum_{i=1}^{n} v_i \log v_i$ is the negative entropy of \mathbf{v} .