CS6462 Probabilistic and Explainable AI

Lesson 16 Bayesian Nonparametric Models *

Dirichlet Process Models for Clustering

Clustering:

- grouping similar data into clusters
- data mining technique data analytics for marketing, security, or sciences
- problem we don't know the number of clusters to be discovered
- Dirichlet Process Mixture (DPM) automatically detects the number of clusters

Mixture Modeling in ML:

 machine learning algorithms used to classify data into different categories based on probability distribution

Clustering with Mixture Models:

- traditional mixture modeling approach to clustering requires the number of clusters to be specified in advance of analyzing the data
- Bayesian nonparametric approach estimates the number of needed clusters automatically and allows more clusters to be discovered if needed

Bayesian nonparametric generalization of mixture models:

- estimates the number of components in a mixture model
- estimates the parameters of the individual mixture components

Finite Mixture Models:

• probability density function

$$P_X(x) = \sum_{k=1}^{\infty} \pi_k p(x|\Theta_k)$$

- X random variable vector
- K the number of components in the mixture model
- Θ_k set of parameters associated with component k
- π_k mixing proportion of the k component: the probability that observation x belongs to the k component of the mixture model

Clustering with Mixture Models (cont.)

Finite Mixture Models:

• probability density function: sum of the conditional probability that the observation x

belongs to the k component considering Θ_k

$$P_X(x) = \int p(x|\Theta) * G(\Theta) * d\Theta$$

$$G(\Theta) = \sum_{k=1}^K \pi_k \delta_{\Theta_k}$$
 Bayesian nonparametric mixtures us mixing distributions consisting of a countably infinite number of atoms.

$$P_X(x) = \sum_{k=1}^{K} \pi_k p(x|\Theta_k)$$

Bayesian nonparametric mixtures use

- $G(\Theta)$ a discrete mixing distribution encapsulating all the parameters Θ of the mixture model
- δ_{Θ_k} is a dirac delta distribution* (atom) centered at Θ_k (set of parameters associated with component k)

$$\int_{-\infty}^{\infty} \delta(\Theta_k) * d\Theta_k = 1, \delta(\Theta_k) = 0 \text{ if } \Theta_k \neq 0$$

^{*} Dirac Distribution at http://nlab-pages.s3.us-east-2.amazonaws.com/nlab/show/Dirac+distribution

Dynamism of Mixture Models:

- applied to a finite training set only a finite (but varying) number of components will be used to model the data
- one component k is associated with many data items X (random variables), but a data item x is associated with one component k only
- inference in the model automatically provides the number of components to use and the parameters of the components $G(\Theta) = \sum_{k=1}^{\infty} \pi_k \delta_{\Theta_k}$

Dirichlet Process Mixture:

- Dirichlet Process (DP) is a probability distribution over distributions
- $G(\Theta) \sim DP(\alpha, G_0(\Theta))$ where α positive scaling parameter, G_0 base distribution
- Bayesian approach requires a **prior** distribution over the mixing distribution $G(\Theta)$
- Dirichlet process (DP) the most common *prior* distribution to use

*

Dirichlet Process Mixture Models (cont.)

Formal definition of DP:

• we observe a sample $X = \{X_1, X_2, ..., X_n\}$ from a mixture of distributions controlled by the DP considering the parameters Θ :

$$G(\Theta) \sim DP(\alpha, G_0(\Theta))$$

- $\Theta = \{\theta_1, \theta_2, ..., \theta_k\}$ finite partition of the parameter space (K clusters)
- G_0 is a **prior** distribution over distributions (probability measures) $G(\Theta)$
- $G(\Theta) = \{G(\theta_1), G(\theta_2), ..., G(\theta_k)\}$ induced random vector of discrete mixing distributions
- $DP(\alpha * G_0(\theta_1), \alpha * G_0(\theta_2), ..., \alpha * G_0(\theta_k))$ Dirichlet process with parameters

$$\{G(\theta_1), G(\theta_2), \dots, G(\theta_k)\} = DP(\alpha * G_0(\theta_1), \alpha * G_0(\theta_2), \dots, \alpha * G_0(\theta_k))$$

Chinese Restaurant Process:

• DP induces a distribution over partitions of integers that describes the prior

Bayesian Nonparametric Models – Dirichlet Process Models for Clustering

Clustering

Mixture Modeling in ML

Clustering with Mixture Models

- Bayesian nonparametric generalization of mixture models
- Finite Mixture Models

$$P_X(x) = \int p(x|\Theta) * G(\Theta) * d\Theta$$

Dirichlet Process Mixture $G(\Theta) \sim DP(\alpha, G_0(\Theta))$

Next Lesson:

Bayesian Networks - Theoretical Foundations of Bayesian Networks

Thank You!

Questions?