Classification

Chapter 3: pp 85 – 109

MNIST Dataset

- 70,000 28x28 pixel labeled images of handwritten digits of high school students
 - 784 features
- Train a binary classifier to distinguish two classes
 - "5" and "not 5"
 - Use SGD-Classifier

Performance Measures

- SGD-Classifier with three-fold cross validation
 - Accuracy = 93%
- Dumb classifier (classify every digit as "not-5" class)
 - Accuracy = 90%
 - Why?
- Accuracy is not sufficient as a performance measure when dealing with skewed datasets.

Confusion Matrix

- Each row represents an actual class
- Each column represents a predicted class

	Predicted Class "Not-5"	Predicted Class "5"
Actual Class "Not-5"	53,057 (true negatives)	1,522 (false positives)
Actual Class "5"	1,325 (false negatives)	4,096 (true positives)

Precision & Recall

Equation 3-1. Precision

$$precision = \frac{TP}{TP + FP}$$

Equation 3-2. Recall

$$recall = \frac{TP}{TP + FN}$$

F1 Score

$$F_1 = \frac{2}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} = \frac{TP}{TP + \frac{FN + FP}{2}}$$

- F1 score is the harmonic mean of precision and recall
 - Arithmetic mean treats all values equally
 - Harmonic mean gives more weight to low values
- Good for balanced dataset
- High F1 score means recall and precision are high, but sometimes you care more about precision than recall (and vice versa)

Low Recall, High Precision

- Detecting videos that are safe for children
 - Reject many potentially good videos (low recall)
 - Keep only safe ones (high precision)

Good video → positive class

$$recall = \frac{TP}{TP + FN}$$

$$precision = \frac{TP}{TP + FP}$$

High Recall, Low Precision

- Detecting shoplifter
 - Catch almost all shoplifter (high recall)
 - Deal with unhappy customers (low precision)

Shoplifter → positive class

$$recall = \frac{TP}{TP + FN}$$

$$precision = \frac{TP}{TP + FP}$$

Precision/Recall Tradeoff

$$recall = \frac{TP}{TP + FN}$$

- Consider a decision function
 - If Score > Threshold then *Positive Class*
 - Else Negative Class

$$precision = \frac{TP}{TP + FP}$$

Precision/Recall Tradeoff

- High precision classifier is not very useful the recall is too low
- If someone says "we have 99% precision", ask "what's the recall?"

How to choose the threshold?

Find a threshold that produces results before the sharp drop of the

precision vs recall function

Receiver Operating Characteristic (ROC) Curve

- Plots True Positive Rate (*Recall*) vs False Positive Rate (*1-Specificity*)
 - Specificity = True Negative Rate

- Good classifier produces results closer to top left corner
 - Perfect classifier has AUC = 1
- Dotted line is random classifier
 - AUC = 0.5

How to choose a model

- Train binary classifiers
- Evaluate using cross-validation
- Select precision/recall tradeoff
- Compare models using ROC curves & AUC scores

Multiclass Classification

- Binary classifiers (SVM) vs multiclass classifiers (Random Forest, Naïve Bayes)
- Multiple binary classifiers can be used for multiclass classification
- One-vs-all / one-vs-rest / one-against-rest
 - Train N classifiers, each to distinguish its own label from the remaining classes
 - N = number of classes
 - Apply new data to all N classifiers. The one that produces the largest output is chosen
- All-vs-all / one-vs-one / all-pairs
 - Train N x (N-1)/2 classifiers to distinguish each pairs of labels
 - Apply new data to all N classifiers. The final class label is determined by majority voting

Error Analysis for MNIST Dataset with SGD Classifier

Confusion matrix

```
array([[5578,
                        22.
                                           45.
                                                  35.
                                                              222.
                                                                      1],
            0.6410.
                        35.
                              26.
                                           44,
                                                              198.
                                                                      13],
                 27. 5232.
                             100.
                                     74.
                                           27.
                                                  68.
                                                              354.
                                                                      11],
           23,
                 18,
                      115, 5254,
                                      2,
                                          209,
                                                  26,
                                                         38,
                                                              373,
                                                                      73],
                       45,
           11.
                              12. 5219.
                                           11.
                                                  33.
                                                              299.
                                                                     172].
           26.
                             173,
                                     54, 4484,
                                                  76.
                                                              482,
                                                                      65],
                        45.
                                     42,
                                           98, 5556.
           31.
                 17.
                                                              123.
                                                                      1],
                                                                    220],
           20.
                 10.
                        53,
                              27,
                                     50,
                                           13,
                                                   3, 5696,
           17.
                        47,
                              91,
                                      3,
                                          125,
                                                  24,
                 64,
                                                        11, 5421,
                                                                      48],
          24,
                              67,
                                    116.
                                           39.
                                                       174, 329, 5152]])
                 18.
```


"5" looks darker, smaller accuracy

- Fill the diagonal with zeros to keep only the errors.
- Column for class 8 is bright, but the row for class 8 is not
 - Many images misclassified as 8s
 - Actual 8s classified correctly
- Focus on reducing false 8's
 - Find more training data for digits that look like 8s (but are not) to distinguish them from real 8s

Multilabel Classification

- Outputs multiple classes
- Classifier trained to recognize three faces (Alice, Bob, Charlie)
 - Output = [1 0 1] → Alice & Charlie on the picture but not Bob

Multioutput Classification

- aka Multioutput-Multiclass Classification
- Generalization of multilabel classification
 - Classifier's output is multilabel
 - Each label can be multiclass (can have more than 2 values)
- Classifier is trained to output a clean digit image from a noisy digit image
 - One label per pixel (clean or noisy) → multilabel
 - Each pixel can have multiple values (0-255) → multioutput

Noisy input image

Clean target image

Classifier output