Projet R de Classification binaire avec gestion de VMs

ZHANG Xiaopeng

Sorbonne Université

8 mai 2024

Vue d'ensemble

- Présentation du jeu de donnée
- ② Gestion des valeurs manquantes
- 3 Présentation de la méthode Régression logistique
- 4 Application Régression logistique (glm)
- 5 Sélection du meilleur modèle
- 6 Conclusion

Spam E-mail Database

- library("kernlab")
- Le jeu de données comprend 4601 e-mails, classifiés comme spam ou non-spam, avec 57 variables liés à la fréquence des mots et symboles spécifiques.
- Les variables incluent des fréquences de mots clés, des symboles de ponctuation et des statistiques sur l'utilisation des majuscules.
- La dernière variable catégorise chaque e-mail en « non spam » ou « spam ».

Table – head(spam) avec les 3 types de variable

type	capitalTotal	capitalLong	capitalAve	char Square bracket	charRoundbracket	char Semicolon	all	address	make
spam	278	61	3.756	0.0	0.000	0.00	0.64	0.64	0.00
spam	1028	101	5.114	0.0	0.132	0.00	0.50	0.28	0.21
spam	2259	485	9.821	0.0	0.143	0.01	0.71	0.00	0.06
spam	191	40	3.537	0.0	0.137	0.00	0.00	0.00	0.00
nonspam	3	1	1.000	0.0	0.000	0.00	0.00	0.00	0.00
nonspam	3	1	1.000	0.0	0.000	0.00	0.00	0.00	0.00
nonspam	282	16	2.779	0.0	0.032	0.00	0.21	0.00	0.09
nonspam	7	3	2.000	0.0	0.000	0.00	0.00	0.00	0.00

Pré-sélection des variables

- H₀: Pour la variable testée, les espérances mathématiques de la fréquence de ce mot-clé dans les courriels spam et non-spam sont égales.
- H₁: Négative de H₀, ce qui suggère que cette variable est significative pour déterminer si un mail est spam ou non.
- Le test ne suppose pas une variance homogène pour spam et nonspam comme le suggère le warning.

library(furniture)

	nonspam	spam	p-Value
	n = 2788	n = 1813	
make			<.001
	0.1 (0.3)	0.2 (0.3)	
address	()	()	0.013
all	0.2 (1.6)	0.2 (0.3)	<.001
dii	0.2 (0.5)	0.4 (0.5)	<.001
num3d	0.2 (0.0)	0.1 (0.0)	0.002
	0.0 (0.0)	0.2 (2.2)	
our			<.001
	0.2 (0.6)	0.5 (0.7)	<.001
over	0.0 (0.2)	0.2 (0.3)	<.001
remove	0.0 (0.2)	0.2 (0.0)	<.001
	0.0 (0.1)	0.3 (0.6)	
internet			<.001
order	0.0 (0.2)	0.2 (0.5)	<.001
order	0.0 (0.2)	0.2 (0.4)	<.001
mail	0.0 (0.2)	0.2 (0.4)	<.001
	0.2 (0.6)	0.4 (0.6)	

Gestion des VMs - Génération

Soient n et m, nrows et ncols, soit μ , le taux de VM. la méthode implémentée dans la fonction Fonction_MCAR() consiste à choisir uniformément $\lfloor \mu nm \rfloor$ nombres sans remise entre $[\![1,n\times m]\!]$, les nombres choisis sont les indices des valeurs dans le jeu de donnée qui seront remplacé par NA.

Table – Partie du dataset spam avec 15% de VM

make	address	all	num3d	our	over	remove	internet	order	mail
	0.64	0.64		0.32	0.00	0.00		0.00	0.00
0.21	0.28	0.50	0.00	0.14	0.28	0.21	0.07	0.00	0.94
	0.00		0.00	1.23	0.19	0.19	0.12	0.64	0.25
0.00	0.00	0.00	0.00		0.00	0.31	0.63	0.31	0.63
0.00	0.00	0.00	0.00	0.63	0.00	0.31	0.63		0.63
0.00	0.00	0.00	0.00		0.00	0.00	1.85	0.00	0.00
0.00	0.00	0.00	0.00	1.92	0.00	0.00	0.00	0.00	0.64
	0.00	0.00	0.00	1.88	0.00	0.00	1.88	0.00	0.00
0.15		0.46	0.00	0.61	0.00	0.30	0.00		0.76
0.06	0.12		0.00	0.19	0.32	0.38		0.06	0.00

Imputation des valeurs manquants par 2 méthodes

Remplacement par la moyenne

 On remplace simplement les NAs par la moyenne empirique de chaque variable

library(DMwR2)

```
\label{eq:data_spc_impute} $$ - knnImputation(data_VM$taux_5pc[,-n], $$ = k_voisins)$$ data_10pc_impute <- knnImputation(data_VM$taux_10pc[,-n], $$ = k_voisins)$$ data_15pc_impute <- knnImputation(data_VM$taux_15pc[,-n], $$ = k_voisins)$$ $$ =
```

Méthode kNN

 L'algorithme k plus proches voisins(kNN) est appliqué à l'ensemble des individus en prenant les individus qui ont au moins une valeur NA comme des centres, pour ces centres on trouve k plus proches voisins(complets) et on remplace les NAs par la moyenne empirique des valeurs respectives des k voisins.

Qualité d'imputation

Table – **métrique** moyenne de 100 expériences par imputation kNN

	5рс	10pc	15pc
rmse	2.59	4.71	5.99
mae	0.23	0.55	0.84
R2	0.95	0.89	0.83

Table – variance moyenne de 100 expériences par imputation kNN

	5рс	10pc	15pc
rmse	0.96	1.24	1.29
mae	0.00	0.00	0.01
R2	0.00	0.00	0.00

Table – **métrique** moyenne de 100 expériences par imputation moyenne

	5рс	10pc	15pc
rmse	3.21	4.80	5.91
mae	0.27	0.55	0.81
R2	0.95	0.89	0.84
ΠZ	0.95	0.09	0.04

Table – variance moyenne de 100 expériences par imputation moyenne

	5рс	10рс	15pc
rmse	0.88	1.26	1.36
mae	0.00	0.00	0.01
R2	0.00	0.00	0.00

Régression Logistique

- La régression logistique est une technique de modélisation statistique utilisée pour la classification binaire.
- Elle prédit la probabilité qu'une entrée donnée appartienne à une catégorie particulière.
- Le résultat est binaire (par exemple, Oui/Non, Succès/Échec).
- Elle estime les paramètres d'un modèle logistique, qui est un cas particulier des modèles linéaires.

Formulation

Le modèle logistique (ou modèle logit) est formulé comme suit :

$$\mathbb{P}(Y = 1 | X = x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}}$$

où $\mathbb{P}(Y=1|X=x)$ est la probabilité de la classe positive.

La fonction sigmoïde

La fonction Sigmoïde $\sigma(z)$ est la pierre angulaire de la régression logistique. Elle mappe tout nombre réel dans l'intervalle (0, 1), la rendant idéale pour modéliser la probabilité :

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Estimation des Coefficients β

- Les coefficients β de la régression logistique sont estimés en maximisant la fonction de vraisemblance.
- Cette méthode cherche à maximiser la probabilité que le modèle produise les classes observées, données les observations.

Estimation par la méthode du maximum de vraisemblance

La fonction de vraisemblance $L(\beta)$ pour le modèle logistique est définie par:

$$L(\beta) = \prod_{i=1}^{n} [\mathbb{P}(Y_i = 1 | X_i = x_i)]^{y_i} [1 - \mathbb{P}(Y_i = 1 | X_i = x_i)]^{1-y_i}$$

où y_i est la classe observée pour chaque observation i, et x_i sont les prédicteurs associés.

Régression Logistique

Modélisation par régression logistique en R

```
# Data wrangling & Train test split
n<-nrow(spam)
# Using sample(n) for a specific set.seed(n=seed) deter
shuffled_indices<-sample(n)
split_point<-round(0.8*n)
indices_train<-shuffled_indices[1:split_point]</pre>
indices_test<-shuffled_indices[(split_point+1):n]</pre>
#indices_train <- sort(indices_train)</pre>
#indices test <- sort(indices test)</pre>
rm(n, shuffled_indices, split_point)
# Données train et train pour tableau initial
spam_train <- spam[indices_train,]</pre>
#spam_test <- spam[indices_test,]</pre>
# Modeling for spam_train
mod_spam_train <- glm(type~. , data = modeling_data$train$origin .
family=binomial)
```

Figure – train-test split et modélisation par glm()

On a généré au total 7 modèles par le même processus en vue de comparer entre les jeux de données avec les valeurs manquantes imputées et celui complet ainsi que l'influence de différentes technique d'imputation

Comparaison des modèles

	origin					imputation_moyenne_5pc					imputation_knn_5pc			
Predictors	Odds Ratio	s std. Error	CI	p	Odds Ratio	s std. Error	CI	р	Odds Ratio	s std. Error	CI	р		
(Intercept)	0.20	0.03	0.14 - 0.27	< 0.001	0.21	0.04	0.15 - 0.29	<0.001	0.23	0.04	0.16 - 0.31	< 0.001		
make	0.69	0.17	0.41 - 1.10	0.143	0.68	0.17	0.41 - 1.07	0.111	0.66	0.16	0.40 - 1.03	0.080		
address	0.84	0.07	0.66 - 0.96	0.053	0.83	0.08	0.63 - 0.95	0.041	0.86	0.06	0.71 - 0.96	0.031		
all	1.08	0.13	0.85 - 1.37	0.513	1.10	0.14	0.86 - 1.40	0.422	1.10	0.13	0.87 - 1.39	0.410		
num3d	8.49	16.09	1.17 - 1000.46	0.259	14.89	28.84	1.66 - 1595.50	0.163	14.82	26.42	1.47 - 1320.79	0.130		
our	1.81	0.22	1.45 - 2.30	< 0.001	1.57	0.18	1.27 - 1.98	<0.001	1.56	0.17	1.27 - 1.95	< 0.001		
over	1.89	0.48	1.20 - 3.20	0.011	1.84	0.45	1.18 - 3.06	0.012	1.60	0.34	1.07 - 2.44	0.028		

Figure – modèles établis à partir des données ayant 5pc de VMs

	origin			origin imputation_moyenne_15pc				imputation_knn_15pc				
Predictors	Odds Ratios	s std. Error	CI	p	Odds Ratio	s std. Error	CI	p	Odds Ratio	s std. Error	CI	р
(Intercept)	0.20	0.03	0.14 - 0.27	< 0.001	0.16	0.03	0.12 - 0.22	< 0.001	0.19	0.03	0.14 - 0.27	< 0.001
make	0.69	0.17	0.41 - 1.10	0.143	0.51	0.13	0.31 - 0.83	0.009	0.51	0.13	0.31 - 0.83	0.009
address	0.84	0.07	0.66 - 0.96	0.053	0.88	0.08	0.69 - 1.00	0.124	0.89	0.08	0.70 - 1.01	0.179
all	1.08	0.13	0.85 - 1.37	0.513	1.13	0.14	0.89 - 1.44	0.313	1.10	0.14	0.86 - 1.40	0.424
num3d	8.49	16.09	1.17 - 1000.46	0.259	5.43	8.42	1.09 - 499.61	0.275	9.26	13.87	1.44 - 620.08	0.137
our	1.81	0.22	1.45 - 2.30	< 0.001	1.83	0.21	1.48 - 2.30	< 0.001	1.77	0.18	1.46 - 2.18	< 0.001

Figure – modèles établis à partir des données ayant 15pc de VMs

Qualité du modèle à seuil 0.5 sur train dataset

À présent, les résultats présentés sont ceux obtenus de l'échantillon original

$$\mathbf{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Sensitivity = \frac{TP}{TP + FN}$$

$$\textbf{Specificity} = \frac{TN}{TN + FP}$$

Table – valeur numérique

Accuracy	Sensitivity	Specificity
0.93	0.93	0.93

Table - Confusion Matrix

	Predicted Positive	Predicted Negative
Actual Positive	True Positives (TP)	False Negatives (FN)
Actual Negative	False Positives (FP)	True Negatives (TN)

Table – Confusion matrix of fitted value

	nonspam fitted	spam fitted
nonspam réel	2131	148
spam réel	99	1303

Analyse ROC et optimisation du seuil

- Prédiction des probabilités
- Construction de la courbe ROC
- Calcul de AUC

Closet top left

 Détermination des seuils optimaux : Youden's index

```
ROC_AUC_Youden_Closet <- function(modele.data){
  predicted_probs<-predict(modele,data,type="response")
  roc_obi<-roc(response=data$type.predictor=predicted_probs.levels=c("nonspam","spam"))
  #plot(roc_obj.main="ROC Curve")
  auc_value<-auc(roc_obi)
  #print(paste("AUC:",auc_value))
  optimal_youden<-coords(roc_obi, "best", ret="threshold", best.method="youden")
  optimal_threshold_vouden<-optimal_vouden[1]
  sensitivity_youden<-coords(roc_obj, "best", ret="sensitivity", best.method="youden")
  specificity_youden<-coords(roc_obj, "best", ret="specificity", best.method="youden")
  optimal_closest<-coords(roc_obj, "best", ret="threshold", best.method="closest.topleft")
  optimal_threshold_closest<-optimal_closest[1]
  sensitivity_closest<-coords(roc_obj, "best", ret="sensitivity", best.method="closest.topleft")
  specificity_closest<-coords(roc_obj, "best", ret="specificity", best.method="closest.topleft")
  Youden <- data.frame(
    Seuil_optim = optimal_threshold_youden,
   Sensitivity = sensitivity_youden,
   Specificity = specificity_youden
  Closet <- data.frame(
    Seuil_optim = optimal_threshold_closest,
    Sensitivity = sensitivity_closest,
   Specificity = specificity_closest
  return(list(AUC = auc_value,
              ROC = roc obi.
              Youden = Youden.
              Closet = Closet))
```

Figure - ROC_AOC_Youden_Closet()

14 / 23

Sélection du seuil de probabilité sur train dataset

Commentaire

On remarque qu'un seuil inférieur à 0.5 permet d'obtenir une meilleure performance du modèle

Figure – ROC original

Figure - Sélection du seuil par Youden et par Closet

Name	Туре	Value
appli_spam_train	list [4]	List of length 4
AUC	double [1] (S3: auc, numeric)	0.9773981
ROC	list [15] (S3: roc)	List of length 15
Youden	list [1 x 3] (S3: data.frame)	A data.frame with 1 row and 3 columns
threshold	double [1]	0.3447498
sensitivity	double [1]	0.9434873
specificity	double [1]	0.9197309
Closet	list [1 x 3] (S3: data.frame)	A data.frame with 1 row and 3 columns
threshold	double [1]	0.360984
sensitivity	double [1]	0.9379738
specificity	double [1]	0.9242152

Z.X (ISUP) Régression Logistique 8 mai 2024 15 / 23

Qualité du modèle à seuil 0.5 sur test dataset

$$\textbf{Accuracy} = \frac{\textit{TP} + \textit{TN}}{\textit{TP} + \textit{TN} + \textit{FP} + \textit{FN}}$$

$$\mathbf{Sensitivity} = \frac{TP}{TP + FN}$$

$$\mathbf{Specificity} = \frac{TN}{TN + FP}$$

Table – valeur numérique

Accuracy	Sensitivity	Specificity
0.94	0.94	0.93

Table – Confusion Matrix

	Predicted Positive	Predicted Negative
Actual Positive	True Positives (TP)	False Negatives (FN)
Actual Negative	False Positives (FP)	True Negatives (TN)

Table – Confusion matrix of predicted value

	nonspam fitted	spam fitted
nonspam réel	538	38
spam réel	20	324

Sélection du seuil de probabilité sur test dataset

Commentaire

On remarque aussi qu'un seuil inférieur à 0.5 permet d'obtenir une meilleure performance du modèle

Figure – ROC original

Figure – Sélection du seuil par Youden et par Closet

Name	Type	Value
appli_spam_test	list [4]	List of length 4
AUC	double [1] (S3: auc, numeric)	0.9741777
ROC	list [15] (S3: roc)	List of length 15
Youden	list [1 x 3] (S3: data.frame)	A data.frame with 1 row and 3 columns
threshold	double [1]	0.3714531
sensitivity	double [1]	0.9337017
specificity	double [1]	0.937276
Closet	list [1 x 3] (S3: data.frame)	A data.frame with 1 row and 3 columns
threshold	double [1]	0.3714531
sensitivity	double [1]	0.9337017
specificity	double [1]	0.937276

17/23

Z.X (ISUP) Régression Logistique 8 mai 2024

Non-consensus des méthodes backward, forward et both

```
consensus <- function(modele){</pre>
 name backward <- names(modele$Backward$coefficients)
 name forward <- names(modele%Forward%coefficients)
 name both <- names(modele$Both$coefficients)
 name_commun <- Reduce(intersect, list(name_backward,name_forward,name_both))</pre>
 meme <- identical(name_backward.name_commun) &&</pre>
identical(name_forward.name_commun) && identical(name_both.name_commun)
 modele_name <- deparse(substitute(modele)) #Pour obtenir le nom du modèle
  if(meme){
    out <- sprintf("Les trois approches pour modèle ** %s ** sélectionnent les
mêmes noms de variables ",modele_name)
    print(out)
 }else{
    out <- sprintf("Les trois approches pour modèle ** %s ** n'ont pas de
consensus ",modele_name)
    print(out)
```

Figure – function determine if there is a consensus

```
> minAIC_appli_spam_train <- minAIC_mod(AICmod_spam_train)
> sprintf("The model with least AIC is %s", minAIC_appli_spam_train[[2]])
[1] "The model with least AIC is Backward"
```

Figure – code finding the lowest AIC model

Régression Logistique

Z.X (ISUP)

8 mai 2024

18 / 23

Qualité du modèle optimisant AIC à seuil 0.5

Table - train dataset

Accuracy	Sensitivity	Specificity
0.93	0.93	0.93

Table – test dataset

Accuracy	Sensitivity	Specificity
0.94	0.94	0.93

Table – Confusion matrix of train

	nonspam fitted	spam fitted
nonspam réel	2135	148
spam réel	95	1303

Table - Confusion matrix of test

	nonspam fitted	spam fitted
nonspam réel	538	38
spam réel	20	324

Seuil de probabilité pour modèle least AIC sur train set

Figure - ROC original

Figure - Sélection du seuil par Youden et par Closet

Seuil de probabilité pour modèle least AIC sur test set

Figure - ROC original

Figure – Sélection du seuil par Youden et par Closet

Name	Type	Value
minAIC_appli_spam_test	list [4]	List of length 4
AUC	double [1] (S3: auc, numeric)	0.9745639
ROC	list [15] (S3: roc)	List of length 15
Youden	list [1 x 3] (S3: data.frame)	A data.frame with 1 row and 3 columns
threshold	double [1]	0.3633923
sensitivity	double [1]	0.9337017
specificity	double [1]	0.9390681
Closet	list [1 x 3] (S3: data.frame)	A data.frame with 1 row and 3 columns
threshold	double [1]	0.3633923
sensitivity	double [1]	0.9337017
specificity	double [1]	0.9390681

Conclusion

- Imputation par méthode kNN a une meilleure performance sur les jeux de données ayant un faible taux de valeur manquante. Or si le taux de valeur manquante est élevé, aucun modèle n'a une performance satisfaisante.
- L'étude de la modélisation sur les jeux de données avec différents taux de VMs et différentes techniques d'imputation a aussi confirmé que kNN est une meilleur méthode en général comme les modèles établis à base des données imputés par kNN est plus cohérents aux modèles depuis les données originales.
- Enfin on remarque que la performance de modèle peut être améliorer en diminuant le seuil de probabilité et, on risque de diminuer la performance de modèle en réduisant les variables dû à la nature du jeu de donnée.

bibliotheques utilisées

```
library("kernlab") # For spam dataset
library(furniture) # For table1()
library(dplyr) # For mutate()
library(DMwR2) # For knnImputation()
library(pROC)
library(sjPlot) # For tab_model(), plot_model()
library(MASS)
```