Estadística

DENTRO!

Conceptos generales

Gonick, L; Smith, W. 1993. La Estadistica en Comic.

POPULATION VS. SAMPLING

Primero, ordena los números de menor a mayor. Ejemplo: 3, 5, 5, 6, 8, 10, 12

Media

el promedio de los números

- 1. Suma los números.
- Divide entre la cantidad de números en el conjunto.

3+5+5+6+8+10+12=49

49 / 7 = 7

Mediana

el número de la mitad

1. Coloca los números en orden de valor y encuentra el número del medio *Si hay dos números en el medio, la mediana es la media de los dos números.

3, 5, 5, 6, 8, 10, 12

Moda

el número que aparece con más frecuencia

 Halla el número que repite más en el conjunto de datos (puede haber más que un solo número).
 *Hay dos 5s y uno de cada otro número.

3, 5, 5, 6, 8, 10, 12

Rango

La diferencia entre el máximo y el mínimo

1. Resta el mínimo (número menor) del máximo (número mayor)

3, 5, 5, 6, 8, 10, 12

12 - 3 = 9

La media es 7 La mediana es 6 La moda es 5 El rango es 9

Población
$$\mu = \frac{\sum X}{N}$$
 Media $\overline{X} = \frac{\sum X}{n}$ $\overline{X} = \frac{\sum X}{n}$
$$\sigma^2 = \frac{\sum (X - \mu)^2}{N}$$

$$\sigma^2 = \sqrt{\frac{\sum (X - \mu)^2}{N}}$$

$$\hat{\sigma} = \sqrt{\frac{\sum (X - \mu)^2}{N}}$$

$$\hat{\sigma} = \sqrt{\frac{\sum (X - \overline{x})^2}{n - 1}}$$
 Desviación estándar
$$C.V. = \frac{\sigma}{\mu} * 100$$

$$C.V. = \frac{\hat{\sigma}}{\overline{x}} * 100$$
 Coeficiente de variación

Medidas de Variabilidad

PARA ILUSTRAR EL EJEMPLO DE AJUSTE DE LA RECTA, UTILIZAREMOS UN CON-JUNTO MÁS REDUCIDO DE DATOS FICTICIOS CON SÓLO NUEVE PAREJAS DE PESOS Y ESTATURAS DE ESTUDIANTES.

A IDEA CONSISTE EN MINI-MIZAR LA DISTANCIA TOTAL DE LOS VALORES Y A LA RECTA. IGUAL QUE CUANDO DEFINIAMOS LA VARIANZA. BUSCAMOS LAS DISTANCIAS AL CUADRADO DE V CON LA RECTA Y LAS SUMAMOS PARA OBTENER LA SUMA DE LOS ERRORES CUADRÁTICOS (55E):

$$SSE = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

ES UNA MEDIDA AGREGADA DE CUÁNTO PUEDEN DIFERIR LAS «PREDICCIONES y». LLAMADAS ŷ, CON RESPECTO A LOS VALORES REALES y;.

La recta de regresión o recta de mínimos cuadrados

ES LA RECTA CON LA MÍNIMA SSE

CADA RECTA?

$$y = a+bz$$

DONDE

$$\sum_{i=1}^{n} (x_i - \bar{x})^2$$

 $a = \bar{y} - b\bar{z}$

LA SUMA DE LOS CUADRADOS

ALREDEDOR DE LA MEDIA MIDE

LA DISPERSIÓN DE x, Y DE yi.

EL PRODUCTO CRUZADO DETERMINA (CON 55xx) EL COEFICIENTE b.

ESTE ES EL CÁLCULO TOTAL DE LOS VALORES FICTICIOS:

La Jan				**		0.0200300	44
	76	150	8	10	64	100	80
	74	197	6	57	36	3249	342
	72	145	4	5	16	25	20
	70	175	2	35	4	1225	70
	60	119	0	-21	0	441	0
	66	155	-2	15	4	225	-30
	64	140	-4	0	16	0	0
	62	95	-6	-45	36	2025	270
	60	84	-8	-56	64	3136	448
	z_l	¥i	$(z_i - \overline{z})$	(オーカ)	$(z_i - \overline{z})^2$	$(y_i - \bar{y})^2$	$(z_i - \bar{z})(y_i - \bar{y})$

Z=68 \(\) = 140

LO CUAL NOS DA VALORES PARA
$$a y b$$
:

$$b = \frac{1200}{240} = 5 \qquad \alpha = \vec{y} - b\vec{z} = 140 - 5(69) = -200$$

ENTONCES
$$y = -200 + 5x$$

Vamos a cuantificar esto desglosando la variabilidad de y. seguiremos como guía el dibujo de la derecha. Tenemos

$$\hat{y}_i = a + b z_i$$

ENTONCES. 2, SON LOS PESOS PREDI-CHOS POR LA RECTA DE REGRESIÓN.

Tabla ANOVA

FUENTE DE VARIABILIDAD

SUMA DE CUADRADOS

$$55R = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2$$

$$55E = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

$$55yy = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

El coeficiente de determinación

ES LA PROPORCIÓN DE TODAS LAS SS_{yy} EXPLICABLES POR LA REGRESIÓN:

(PORQUE SSR = SS_{yy} - SSE). R² ES SIEMPRE MENOR QUE 1. CUANTO MÁS SE APROXIMA A 1. MÁS PRECISO ES EL AJUSTE DE LA CURVA. R² = 1 CORRESPONDE AL AJUSTE PERFECTO.

Coeficiente de Determinación (R²)

POR OTRA PARTE, TENEMOS EL

coeficiente de correlación

QUE ES LA RAÍZ CUADRADA DE Rª CON EL SIGNO DE b.

r . (SIGNO DE b) VR2

ENTONCES, rES POSITIVA SI LA RECTA ES ASCENDENTE HACIA LA DERECHA, Y NEGATIVA SI LA RECTA TIENE FORMA DESCENDENTE HACIA LA DERECHA.

Coeficiente de Correlación (r)

One-way Analysis of Variance

ANOVA table

Two-way ANOVA Table

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F-ratio	P-value
Factor A	r-1	SS_A	MS_A	$F_A = MS_A / MS_E$	Tail area
Factor B	c-1	SS_B	MS_B	$F_B = MS_B / MS_E$	Tail area
Interaction	(r-1)(c-1)	SS_{AB}	MS_{AB}	$F_{AB} = MS_{AB}/MS_E$	Tail area
Error (within)	rc (n - 1)	SS_E	MS_E		
Total	rcn - 1	SS_T			

ANOVA table

Intervalo de confianza

Intervalo de confianza

CÓMO PODEMOS CONSEGUIRLO: AUMENTANDO EL TAMAÑO DE LA MUESTRA!
LA AMPLITUD DEL INTERVALO DE CONFIANZA DEPENDE DEL TAMAÑO MUESTRAL:
EL INTERVALO TIENE LA FORMA A + E, EN LA QUE E, EL ERROR, VIENE DADO POR

$$E = Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

ASÍ QUE CUANTO MAYOR SEA n. EL ERROR SERÁ MENOR. (ES DECIR, SI MULTI-PLICAMOS n POR CUATRO, LA AMPLITUD DEL INTERVA-LO SE REDUCE A LA MITAD.)

Intervalo de confianza

EN LOS ESTUDIOS CIENTÍFICOS, SE USA CON FRECUENCIA UN VALOR α FIJO DE 0,05 O 0,01. PODEMOS DECIR QUE ESTOS VALORES FIJOS SON RELIQUIAS DE LA ERA PREINFORMÁTICA, CUANDO NOS REFERÍAMOS A TABLAS QUE SÓLO SE PUBLICABAN PARA DETERMINADOS VALORES CRÍTICOS. AÚN HOY, EN ALGUNAS PUBLICACIONES CIENTÍFICAS SÓLO APARECEN LOS RESULTADOS SI EL VALOR P ≤ 0,05.

Nivel de significancia

Teoria de decision