群论期末重点复习

严思伟1,2

- 1 中国科学院物理研究所
- 2 中国科学院大学物理学院

2025年1月4日

目录

1	前言		1
2	群的	基本概念	1
	2.1	群的定义	1
	2.2	有限群部分概念	1
	2.3	重排定理和乘法表	2
	2.4	子群、陪集和类	2
	2.5	群的同构同态	3
	2.6	点群	4
3	群的	线性表示理论	5
	3.1	线性表示基本概念	5
	3.2	等价表示和可约表示	6
	3.3	不等价不可约表示	6
	3.4	可约表示向不可约表示的约化	7
	3.5	新表示构成	8
	3.6	不可约表示的特征标表	8

目录 2

4	置换	群	10
	4.1	杨图, 杨表, 杨算符	10
	4.2	列表法计算置换群不可约表示矩阵	13
	4.3	相邻元素对换在表示中的实正交形式	15

1 前言 1

1 前言

由于本笔记于 1 月 3 日中午 12 时 16 分创建,而考试时间为 1 月 7 日早 8 时 30 分,故实际内容不会太多,仅会记录部分本人认为较为重要或作业中常出现、考试中出现可能性较大的内容,尽量捡重点、定理不给出证明只管用。

本课程由五个主要部分组成: 绪论和数学基础、群的基本概念、群的线性表示理论、置换群、三维转动群。其中绪论和数学基础不会作为独立的考试部分出现,故本复习笔记中将不会包含此部分内容。下面将对每个部分章节的重点内容做一个回顾。

本笔记仅作为复习参考,不能保证我认为的重点内容能够完全匹配考试中的重点内容。本笔记旨在帮助减小复习强度,给出针对考试的复习内容,如果希望全面整体深入地学习群论这门课程,还是不要看这篇了。

2 群的基本概念

本章主要给出了群的基本概念和乘法表、群的子集、同态同构、点群空间群简介这些内容。

2.1 群的定义

G 是一些元素的集合, $\forall R$ 、S、T 为 G 中元素,定义二元运算 RS,满足以下四个条件的 G 称为群:

- 1. 封闭性: $RS \in G$
- 2. 结合律: R(ST) = (RS)T
- 3. 恒元: $\exists E \in G, ER = R$
- 4. 逆元: $\exists R^{-1} \in G, R^{-1}R = E$

2.2 有限群部分概念

- 1. 有限群的阶: 群的元素数目.
- 2. 群元素的阶: 对群元素 R, 使 $R^n = E$ 成立的最小正整数 n.

2 群的基本概念 2

- 3. 周期: 由群元 R 及其所有幂次构成的集合 $\{R, R^2, ..., R^n = E\}$.
- 4. 生成元: 能够通过乘积生成整个群 G 中所有元素的一组最少群元.
- 5. 有限群的秩: 生成元的数目.

2.3 重排定理和乘法表

- 1. 重排定理: 群中任意元素和群中所有元素做乘积, 得到的集合和原群相同.
- 2. 乘法表: 有限群的二元运算规则,群的全部性质都体现在群的乘法表中。对于有限群,群元素数目有限,我们可能把元素的乘积全部排列出来,构成一个表,称为群的乘法表,简称群表。

重排定理在乘法表中的应用:

- 1. 乘法表的每一行(列)都是所有群元的一个重新排列.
- 2. 任一群元素在乘法表中的每一行(列)中只出现一次.

借助重排定理, 我们只需要知道群 G 中少数几个乘积结果就能够直接给出乘法表.

2.4 子群、陪集和类

- 1. 子群: H 是群 G 的子集, 且定义有和 G 相同的运算规则, 若满足群的 四条定义, 就称 H 是 G 的子群, 记为 $H \subset G$
- 2. 陪集: 设 H 是 G 的子群, $\forall R \notin H$ 且 $R \in G$, 则 RH 和 HR 分别称为 H 的左陪集和右陪集.
- 3. 陪集性质: 陪集 RH 和 H 没有公共元素, 且自身没有重复元素.
- 4. 陪集定理: H 的左右陪集 RH 和 HR, 要么拥有完全相同的元素, 要么拥有完全不同的元素.
- 5. 拉格朗日定理: 群 G 的阶 g 一定是子群 H 的阶 h 的整数倍, g = dh, d 为正整数, 称为子群 H 的指数.
- 6. 不变子群: 拥有相同左右陪集的子群.

2 群的基本概念 3

7. 商群: 群 G 的不变子群 H 和其所有陪集, 作为复元素、按复元素定义 乘积规则且满足群的四条定义, 则称为群 G 关于不变子群 H 的商群, 记为 G/H.

- 8. 商群性质: 恒元为不变子群 H; 商群的阶数是子群 H 的指数 d = g/h.
- 9. 共轭元素: 对群元 R、T, 若 $\exists S \in G$, 使得 $T = SRS^{-1}$, 则 R、T 相互 共轭.
- 10. 共轭类: 所有相互共轭的元素集合, 简称类

$$C_{\alpha} = \{R_k | R_k = SR_i S^{-1}, S \in G\}$$

,定义 $n(\alpha)$ 为类 C_{α} 中元素数目. 群可以按照类做划分, 所有元素会且仅会在一个类中出现.

在实际题目中,我们通常需要将群对类做划分,下面给出几种快速找出 共轭元素的方法:

- 1. 若已知乘法表, 共轭元素在乘法表中处于转置位置, 即两个关于对角线 对称的元素一定是共轭元素.
- 2. 对于 C_n 群, 所有元素都自成一类.
- 3. 对于 D_{2n} 群, 所有平面上的转动可分为两类; 对于 D_{2n+1} 群, 所有平面上的转动均属于同一类.

类的特殊意义在于,由于其中元素特殊的共轭性质,使得所有的不变子群一定是由若干个完整的类组成.

2.5 群的同构同态

- 1. 同态: 若群 G 中元素按某种规则和群 G' 中元素多一对应,且群元素乘积也满足对应关系,则称群 G' 与群 G 同态,记为 $G'\sim G$. 同态关系中,先后顺序很重要,在这类描述中,后者与前者多一对应.
- 2. 同态: 同态中的多一对应改为一一对应, 记为 $G' \approx G$. 和同态不同, 由于一一对应, 同构不再具有方向性.

(重要) 同态核定理: 群 G' 与群 G 同态, 与 G' 中恒元对应的 G 中元素的集合 H 称为同态核, H 具有以下性质:

2 群的基本概念

4

- 1. H 是 G的不变子群.
- 2. 与 G' 中每个其他元素对应的 G 中元素的集合构成 H 的陪集.
- 3. 群 G' 和群 G 关于群 H 的商群 G/H 同构, 即 $G' \approx G/H$. 除循环群外, 八阶即以下阶群仅有以下几种非同构群:
- 1. 四阶直积群: $V_4 = C_2 \otimes C_2$
- 2. 六阶 D₃ 群
- 3. 八阶 D₄ 群
- 4. 八阶直积群: $C_2 \otimes C_4$
- 5. 八阶直积群: $C_2 \otimes C_2 \otimes C_2$
- 6. 八阶四元数群 Q_4

2.6 点群

在这里不会详细说明课程中所提及的所有点群, 只会说明一些点群的独特性质.

 D_n 群:

- 1. 所有类均为自逆类.
- 2. D_{2n} 群有 n+3 个自逆类: 恒元,N 次轴对应转动角度相同、方向相反的转动操作对应元素,2n 个 2 次轴对应的转动元素间隔抽取组成 2 类.
- 3. D_{2n+1} 群有 n+2 个自逆类: 恒元,N 次轴对应转动角度相同、方向相反的转动操作对应元素,2n 个 2 次轴对应的转动元素全部属于一类.

T 群、O 群、I 群的群元不会作为知识点考察,故在这里不做说明. 非固有点群: 包含固有转动元素和非固有转动元素的点群, 按以下方式分为两类: 设群 G 为非固有点群, 群 H 为固有点群

1. I 型非固有点群: 包含空间反演变换 σ , 构造方式为 $G=H\cup \sigma H=H\otimes \{E,\sigma\}$

- 2. P型非固有点群: 不包含空间反演变换, 构造方式为取出 *H* 中的指数 为 2 的不变子群, 保持子群元素不变, 将陪集元素全部乘上空间反演. 注意:
- 1. 对循环群, 只有形如 C_{2n} 的群才具有 P 型非固有点群.
- 2. 对 D_n 群, 当 n 为奇数时, 仅有一种 P 型群; 当 n 为偶数时, 有两种 P 型群, 选取的不变子群分别为 C_{2n} 群和 D_n 群.

3 群的线性表示理论

本章主要围绕有限群的线性表示展开讨论. 由于作业和考试内容不涉及 诱导分导表示、物理应用、投影算符、不可约基,故在这里不做复习。复习 内容主要有:线性表示基本概念、正则表示、不等价不可约表示、正交和完 备性定理、特征标表。

由于考试题目中不会出现任何证明题,在这里所做的对基本概念的所有 回顾均是为了更好地理解计算过程和加快计算速度,而具体对考试的提升需 要结合对作业的回顾,我会在某一部分需要结合哪些题目复习时具体指出。

3.1 线性表示基本概念

- 1. 线性表示: 行列式不为零的 $m \times m$ 阶矩阵集合构成的群 D(G) 和群 G 同构,D(G) 称为群 G 的一个 m 维线性表示, 简称表示. 每一个群元 R 都对应表示矩阵 D(R). 恒元表示矩阵为单位矩阵, 逆元表示矩阵为逆矩阵.
- 2. 特征标: 表示矩阵 D(R) 的迹, $\chi(R) = \text{Tr}D(R)$ 称为 R 在表示 D(G) 中的特征标. 同类元素特征标相同.

普遍来说, 要给出群 G 的线性表示, 要满足两个条件:

- 1. 给出基矢 ψ_{μ} .
- 2. 给出群元在基矢下对应的对称变换算符 P_G .

则给出对称变换群元 P_R 在基 ψ 中的矩阵形式:

$$P_R \psi_{\mu} = \sum_{\nu=1}^{m} \psi_{\nu} D_{\nu\mu}(R) \tag{1}$$

当 P_R 和 R 存在一一对应关系时,D(R) 即是群 G 的线性表示.(其实一多对应也算, 但是这里为了方便理解, 毕竟都是复习了, 主打一个直接简洁)

如果取群元 R 作为基矢, 也取群元 S 作为算符, 那么会给出以下形式的表示:

$$SR = \sum_{P \in G} PD_{PR} \tag{2}$$

此时的 D 即为群 G 的正则表示, 由定义可以知道:

$$D_{PR} = \begin{cases} 1, & P = SR \\ 0, & P \neq SR \end{cases}$$

右正则表示在此不予列出.

3.2 等价表示和可约表示

- 1. 等价表示: 可以由相似变换联系起来的表示. 两表示等价的充要条件是对所有元素特征标相等.
- 2. 对有限群, 只需要研究幺正表示和幺正的相似变换.
- 3. 一个表示的表示矩阵如果能化成上三角阶梯矩阵, 那么就是可约表示, 否则为不可约表示.
- 4. 有限群的表示要么是完全可约表示, 要么是不可约表示.

3.3 不等价不可约表示

正交定理: 不等价不可约幺正表示 D^i 和 D^j 的矩阵元素, 作为群空间的矢量满足正交关系:

$$\sum_{R \in G} D^i_{\mu\rho}(R)^* D^j_{\nu\lambda}(R) = \frac{g}{m_j} \delta_{ij} \delta_{\mu\nu} \delta_{\rho\lambda}$$

其中 m_i 为 D^j 的维数,q 为群 G 的阶.

取 $\rho = \mu, \lambda = \nu$, 对 $\rho\lambda$ 求和, 则有特征标第一正交定理:

$$\sum_{R \in G} \sum_{\rho\lambda} D^i_{\rho\rho}(R)^* D^j_{\lambda\lambda}(R) = \frac{g}{m_j} \delta_{ij} \sum_{\rho\lambda} \delta_{\rho\lambda} \delta_{\rho\lambda}$$

即

$$\sum_{R \in G} \chi^i(R)^* \chi^j(R) = g \delta_{ij}$$

完备性定理: 有限群不等价不可约表示维数的平方和等于群的阶数:

$$g = \sum_{i} m_j^2$$

由此给出有限群不等价不可约幺正表示的矩阵元素 $D^{i}(G)$, 作为群空间的矢量, 构成群空间的正交完备基, 任何群函数 f(G) 均可按它们展开:

$$f(R) = \sum_{j\mu\nu} C^{j}_{\mu\nu} D^{j}_{\mu\nu}(R), \quad C^{j}_{\mu\nu} = \frac{m_{j}}{g} \sum_{R \in G} D^{j}_{\mu\nu}(R)^{*} f(R)$$

类似傅里叶展开的关系式.

将矩阵元替换为特征标, 群空间替换为类空间, 依然成立, 说明有限群不等价不可约表示的特征标 $\chi^j(G)$ 构成类空间的正交完备基, 任何类函数可以按照下面的关系对特征标做展开:

$$f(R) = f(SRS^{-1}) = \sum_{j} C_j \chi^j(R), \quad C_j = \frac{1}{g} \sum_{R \in G} \chi^j(R)^* f(R)$$

很容易得到有限群不等价不可约表示的个数等于群的类数.

这说明了特征标在群表示理论中的重要地位, 也是为什么群表示的特征标表如此重要且被列为考试重点.

3.4 可约表示向不可约表示的约化

对于可约表示, 总可以通过相似变换 X 将其变为已约表示, 即不可约表示的直和:

$$X^{-1}D(R)X = \bigoplus a_j D^j(R), \quad \chi(R) = \sum_j a_j \chi^j(R)$$

 a_j 为不可约表示 $D^j(R)$ 在 D(R) 中的重数. 将上面的群函数对特征标做展开中的群函数替换为特征标, 可以得到 a_i 的表达式:

$$a_j = \frac{1}{g} \sum_{R \in G} \chi^j(R)^* \chi(R)$$

表示为不可约表示的判据是: $\sum_{R \in G} |\chi(R)|^2 = g$, 若大于, 则此表示可约.

如何将可约表示化为不可约表示:

- 1. 选取一组生成元, 写出其在此表示下的表示矩阵.
- 2. 计算 $\sum_{R \in G} |\chi(R)|^2$, 判断表示是否可约.
- 3. 若可约, 给出此群对应的不可约表示个数及维数. 判据有二: 不等价不可约表示个数的和为类数; 不等价不可约表示维数的平方和为群的阶.
- 4. 计算此表示约化后各不等价不可约表示的重数

$$a_j = \frac{1}{g} \sum_{R \in G} \chi^j(R)^* \chi(R)$$

- ,并给出在选择约化的次序下给出之前选取生成元的表示矩阵.
- 5. 将各生成元的两个表示矩阵代入 $X^{-1}D(R)X=\oplus a_jD^j(R)$, 即可以给出变换矩阵 X.
- 6. 给出基矢变换 $\phi_{\mu} = \sum_{\nu} \psi_{\nu} X_{\nu\mu}$ 结合第 3 章作业第 17 题边做边看食用更佳.

3.5 新表示构成

这里仅简单提及,因为不是考试内容但是和特征标表的填写有关.

- 1. 商群的不可约表示也是原群的不可约表示.
- 2. 直乘群的不可约表示可以表示为两子群不可约表示的直乘.

3.6 不可约表示的特征标表

要顺利写出一个群的特征标表,以下几点性质是必须牢记的:

- 1. 不等价不可约表示的数目为类的个数 $\sum_{i} 1 = g_c$.
- 2. 不等价不可约表示维数的平方和为群的阶 $\sum_i m_i = g$.
- 3. 恒元的特征标为不可约表示的维数 $\chi^{j}(E) = m_{i}$.
- 4. 恒等表示的特征标均为 1.
- 5. 除了恒等表示,每一行特征标乘类中元素数目求和等于 0.
- 6. 每一列特征标平方和乘类中元素数目等于群的阶.

- 7. 阿贝尔群的表示都是一维的.
- 8. 商群和直乘群表示的性质.
- 9. D_{2n} 群有 n+3 个自逆类,4n 个元素, 有 4 个一维和 n-1 个二维不等价不可约表示.
- 10. D_{2n+1} 群有 n+1 个自逆类,4n+2 个元素, 有 2 个一维和 n 个二维不等价不可约表示.

结合第3章作业第14题边做边看食用更佳. 给出几个常见的特征标表:

 C_3 群:

C_3	E	R	R^2
A	1	1	1
E	1	ω	ω^*
E^*	1	ω^*	ω

D₄ 群:

D_4	E	$2C_4$	C_4^2	$2C_2'$	$2C_2''$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
E	2	0	-2	0	0

T 群:

T	E	$3C_2$	$4C_3'$	$4C_3'^2$
a_{51}	1	1	1	1
a_{51}	1	1	ω	ω^*
a_{51}	1	1	ω^*	ω
a_{51}	3	-1	0	0

○ 群:

О	E	$3C_4^2$	$8C_3'$	$6C_4$	$6C_2''$	
A	1	1	1	1	1	
B	1	1	1	-1	-1	
E	2	2	-1	0	0	
T_1	3	-1	0	1	-1	
T_2	3	-1	0	-1	1	

建议读者推导试试,有助于理解上文所给出的方法.

4 置换群

本章主要考察部分为: 杨图杨表杨算符、置换群的不可约表示、置换群不可约表示的内积和外积. 具体考查方式可能为:

- 1. 写出置换群对应的杨图, 杨表, 杨算符.
- 2. 使用列表法计算置换群元素的不可约表示.
- 3. 使用等效方法计算置换群的特征标表.
- 4. 写出置换群元素在表示中的实正交形式.
- 5. 按照 Littlewood-Richardson 规则, 写出: 置换群的某表示, 作为子群直积的分导表示, 按子群的不可约表示约化, 并验证维数.
- 6. 按照 Littlewood-Richardson 规则, 写出: 置换群某表示的外积, 约化为一系列置换群不可约表示的直和, 并验证维数.

置换群的基本概念在考察中并不重要, 所以我直接从置换群和杨图杨表杨算符的关系开始. 本章我的部分分析过程非常粗暴, 有部分错误, 但是能够得到正确的结果, 旨在帮助大家应对考试, 望海涵.

4.1 杨图,杨表,杨算符

为什么要有杨图?原因如下:

1. 在置换群 S_n 中, 相互共轭的两个置换一定具有相同的置换结构. 例如: 置换 (12)(34) 与 (13)(24) 共轭, 但与 (123)(4) 不共轭. 于是对置换群

来说, 在不同类中的元素一定拥有不同的置换结构, 故置换群类的个数即为对 n 做整数划分的个数.

2. 有限群不等价不可约表示的数目等于类的个数, 也等于 n 做整数划分的个数. 将这个过程可视化, 即使用格子在某一行 (列) 上的增减来替代配分数的变化, 这就是我们需要杨图的原因.

正则杨图: 在绘制杨图的过程中, 某一个格子如果不在左边界, 则保证他左边有格子; 如果不在上边界, 则保证他上面有格子. 正则杨图可以由配分数描写: 对一个杨图, 第一行含 λ_1 格, 第二行含 λ_2 格, 以此类推, 得到的杨图称为配分数 $[\lambda]$ 对应的杨图, 简称杨图 $[\lambda]$

正则杨图有大小之分: 从上往下第一行左起开始向右数, 如果存在某个位置杨图 A 有格子而杨图 B 没有, 则此时称杨图 A 小于杨图 B. 按照定义可以得到正则杨图的个数就是 n 配分数 $(\lambda)_n = (\lambda_1, \lambda_2, ..., \lambda_m)$ 的个数, 即是不等价不可约表示的个数. 可以通过画图或者是配分数计算来给出正则杨图的个数. 例如, S_4 有 5 个正则杨图, S_5 有 7 个正则杨图.

正则杨表: 对于一个给定的正则杨图, 可以向其中从 1 开始按顺序填入自然数, 填充规则如下:

- 1. 每一行中, 右边的填数大于左边的填数.
- 2. 每一列中, 下面的填数大于上面的填数.

这样得到的杨表即是正则杨表. 例如: 杨图 [3,2] 的全部正则杨表从小到大排列如下:

1 2 3	1 2 4	1 2 5	1 3 4	1 3 5
4 5	3 5	$\boxed{3}\boxed{4}$	2 5	2 4

正则杨表的个数由钩形数规则给出:

- 1. 对杨图第 i 行第 j 列的格子, 定义钩形数 h_{ij} , 等于一条钩形在杨图中经过的格子数. 这条钩形是这样的: 它从第 i 行的最右边向选定格子前进, 到达选定格子后向下转向, 并行进到第 j 列的最下面.
- 2. 杨图 [λ] 对应的正则杨表个数为

$$d_{\lambda}(S_n) = \frac{n!}{\prod_{ij} h_{ij}}$$

正则杨图, 正则杨表的一些性质:

1. 所有 n 格杨图的正则杨表数的平方和等于 n!:

$$\sum_{[\lambda]} d_{[\lambda]} (S_n)^2 = n!$$

2. 每个 n 格正则杨图 [λ] 都唯一地对应置换群 S_n 的一个不可约表示,不同的正则杨图对应的不可约表示不等价,杨图 [λ] 对应的不可约表示的维数等于杨图对应的正则杨表个数 $d_{[\lambda]}(S_n)$.

对某一杨表, 我们可以定义:

- 1. 横向置换: 同行数字间的置换. 记为 P.
- 2. 横算符: 杨表中所有横向置换的和, 记为 P.
- 3. 纵向置换: 同列数字间的置换. 记为 Q.
- 4. 纵算符: 杨表中所有横向置换与其置换字称相乘后加和得到, 记为 Q.
- 5. 杨算符: 横算符与纵算符的乘积 y = PQ 给定杨表写出杨算符的方法:
- 1. 列出每一行所有的横向置换之和, 然后把不同行的置换之和相乘.
- 2. 列出每一列的纵向置换, 乘上每个置换的置换字称后加起来, 然后把不同列的置换字称与置换的乘积之和相乘.
- 3. 把步骤一和步骤二得到的结果相乘, 并把每一项化成没有公共客体的轮换乘积.

例: 写出该杨表的杨算符: 123 45

$$\begin{split} \mathcal{Y} &= \{E + (12) + (13) + (23) + (123) + (321)\}\{E + (45)\}\{E - (14)\}\{E - (25)\} \\ &= \{E + (12) + (13) + (23) + (123) + (321)\} \times \{E + (45)\}\{E - (25) - (14) + (14)(25)\} \\ &= \{E + (12) + (13) + (23) + (123) + (321)\} \\ &\times \{E - (25) - (14) + (14)(25) + (45) - (452) - (541) + (4152)\} \\ &= \{E - (25) - (14) + (14)(25) + (45) - (452) - (541) + (4152)\} \\ &+ \{(12) - (125) - (214) + (1425) + (12)(45) - (1245) - (2154) + (15)(24)\} \\ &+ \{(13) - (13)(25) - (314) + (314)(25) + (13)(45) - (13)(452) - (3154) + (31524)\} \\ &+ \{(23) - (325) - (23)(14) + (14)(325) + (23)(45) - (3245) - (23)(541) + (32415)\} \\ &+ \{(123) - (3251) - (3214) + (14253) + (123)(45) - (12453) - (23154) + (24)(153)\} \\ &+ \{(321) - (3251) - (3214) + (32514) + (321)(45) - (32451) - (32154) + (15)(324)\} \end{split}$$

4.2 列表法计算置换群不可约表示矩阵

上一节中提到,每个正则杨图 $[\lambda]$ 都唯一地对应置换群 S_n 的一个不可约表示,且此不可约表示的维数等于杨图 $[\lambda]$ 对应的正则杨表的个数. 我们在这里不讨论表示的基是什么、如何由理想和幂等元给出等等,仅给出计算表示矩阵的必需知识和计算步骤.

解决问题: 计算置换 R 在表示 $[\lambda]$ 中的表示矩阵.

例:用列表法计算轮换 $S = (1 \ 2 \ 3 \ 4 \ 5)$ 在表示 [3,2] 中的表示矩阵。

$$y_1 = E - P_{15} = E - (2 \ 4)(5 \ 3), \quad y_2 = y_3 = y_4 = y_5 = E$$

————————————————————————————————————	1 2 3 4 5	1 2 4 3 5	1 2 5 3 4	1 3 4 2 5	1 3 5 2 4	
$\sum_{k} \delta_{k} \{ 杨表 \mathcal{Y}_{\nu k} \}$	杨表 $\mathcal{Y}_{\mu}(S)$					
	2 3 4 5 1	2 3 5 4 1	$\begin{array}{c cccc} 2 & 3 & 1 \\ 4 & 5 & \end{array}$	2 4 5 3 1	2 4 1 3 5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1 - 0	0 - 1	1 - 0	0+1	0 - 0	
1 2 4 3 5	-1	0	0	0	1	
1 2 5 3 4	0	-1	0	0	0	
1 3 4 2 5	-1	0	0	1	0	
1 3 5 2 4	0	-1	0	1	0	

4.2.1 给出表示的基

在置换群中, 表示的基为群代数, 是若干置换的线性组合, 则其一定可以写为若干杨算符的线性组合, 于是我们用杨图 $[\lambda]$ 的杨表的线性组合来指代这个群代数.

如何找出这些杨表?一个简单的想法是直接从正则杨表开始,因为它们的个数正好等于此表示的维数.列出此杨图的所有正则杨表,并由此构造出互相正交的杨表线性组合,即是我们想要的基.

考虑这些正则杨表 \mathcal{Y}_{μ} 的杨算符 \mathcal{Y}_{μ} , 如果这些杨算符的乘积 $\mathcal{Y}_{\mu}\mathcal{Y}_{\nu}$ 为零,则它们相互正交;如果不为零,则需要去掉非正交的分量才能作为基. 在这里给出以下结论:

- 1. $\stackrel{\text{def}}{=} \mu > \nu$ 时, $\mathcal{Y}_{\mu}\mathcal{Y}_{\nu} = 0$.
- 2. 当 $\mu < \nu$ 时,需要比较杨表 \mathcal{Y}_{μ} 中每一列出现的两个数字和杨表 \mathcal{Y}_{ν} 中每一行出现的两个数字。如果没有任何两个数字是同时出现在杨表 \mathcal{Y}_{μ} 的一列和杨表 \mathcal{Y}_{ν} 的一行,则说明 $\mathcal{Y}_{\mu}\mathcal{Y}_{\nu} \neq 0$,反之则 $\mathcal{Y}_{\mu}\mathcal{Y}_{\nu} = 0$.
- 3. 如果出现了 $\mathcal{Y}_{\mu}\mathcal{Y}_{\nu}\neq 0$ 的情况, 则需要寻找杨表 \mathcal{Y}_{ν} 中的横向置换 $P_{\mu\nu}$, 它的效果是左乘在杨算符 \mathcal{Y}_{ν} 上, 即对杨表 \mathcal{Y}_{ν} 做 $P_{\mu\nu}$ 置换得到 \mathcal{Y}'_{ν} 后, 所有出现在 \mathcal{Y}_{μ} 中同一列的数字均出现在了 \mathcal{Y}'_{ν} 中对应的列中 (如 \mathcal{Y}_{μ} 中第一列的数字出现在 \mathcal{Y}'_{ν} 中的第一列).
- 4. 如果没有出现步骤三中的情况, 则 $P_{\mu\nu}=0$.
- 5. 基由以下公式给出:

$$y_{\mu} = \left(E - \sum_{\nu} P_{\mu\nu}\right) \mathcal{Y}_{\mu}$$

6. 若对 \mathcal{Y}_{μ} , 所有的 $P_{\mu\nu}$ 均为 0, 则其对应正交基 $y_{\mu}=\mathcal{Y}_{\mu}$

将得到的 y_{μ} 按顺序写到待求表示矩阵的左边, 即得到例题中左边的部分.

4.2.2 给出群元素的作用结果

实际的计算比较复杂, 直观上理解作用结果是群元素 S 作为置换对正则杨表作用得到的杨表 $S\mathcal{Y}_{\mu}$, 即例题中待求矩阵的上部.

4.2.3 计算矩阵

矩阵元 $D_{\mu\nu}$ 实际上是杨表运算的线性组合, 所以按照类似 4.2.1 中提及的乘积判定规则计算每一个即可, 但规则略有不同: 对于杨表乘积 $\mathcal{Y}_{\mu}\mathcal{Y}_{\nu}$

- 1. 如果没有任何两个数字同时出现在 \mathcal{Y}_{μ} 的一列内和 \mathcal{Y}_{ν} 的一行内, 则乘积 $\mathcal{Y}_{\mu}\mathcal{Y}_{\nu}\neq 0$. 对于这样两个杨表, 给出 \mathcal{Y}_{μ} 中的纵向置换 $Q_{\nu\mu}$, 使得 $\mathcal{Y}'_{\nu}=Q_{\nu\mu}\mathcal{Y}_{\mu}$ 中的每个数字均出现在和这个数字在 \mathcal{Y}_{ν} 出现的相同一行中. 这个乘积结果规定为这个纵向置换 $Q_{\nu\mu}$ 的置换字称.
- 2. 不满足 1 中条件, 则 $\mathcal{Y}_{\mu}\mathcal{Y}_{\nu} = 0$.

注意:

- 1. 矩阵元可能包含多个乘积, 请注意不要遗漏.
- 2. 此结果仅用于计算, 如有什么问题还请查阅教材, 在此只能保证结果的准确性.

4.3 相邻元素对换在表示中的实正交形式

等效方法正则填充计算置换群的特征标表原理非常简单,但对于稍微高维数一些的表示就无能为力,所以我认为考试中不会涉及,故跳过,特此说明.

实正交表示 $\bar{D}^{[\lambda]}$ 可以通过 4.2 中得到的不可约表示做相似变换得到, 但这里只给出简单的计算办法: 设 $P_a=(a,a+1)$, 则 $\bar{D}^{[\lambda]}(P_a)$ 是由 $1\times 1,2\times 2$ 子矩阵的直和构成的实正交矩阵.

- 1. 当 a 和 a+1 在正则杨表 $\mathcal{Y}_{\nu}^{[\lambda]}$ 中填在同一行 (列) 中时,有 1×1 子矩 阵 $\bar{D}_{\nu\nu}^{[\lambda]}=1(-1);$
- 2. 当 a 和 a+1 在正则杨表 $\mathcal{Y}_{\nu}^{[\lambda]}$ 中既不填在同一行也不填在同一列时,则交换 a 和 a+1 的位置,杨表 $\mathcal{Y}_{\nu}^{[\lambda]}$ 变为 $\mathcal{Y}_{\nu_a}^{[\lambda]}$, 不失一般性,设杨表 $\mathcal{Y}_{\nu}^{[\lambda]}$ 小于 $\mathcal{Y}_{\nu_a}^{[\lambda]}$, 则填入 2×2 子矩阵:

$$\begin{pmatrix} \bar{D}_{\nu\nu}^{[\lambda]} & \bar{D}_{\nu\nu_a}^{[\lambda]} \\ \bar{D}_{\nu_a\nu}^{[\lambda]} & \bar{D}_{\nu_a\nu_a}^{[\lambda]} \end{pmatrix} = \frac{1}{m} \begin{pmatrix} -1 & \sqrt{m^2 - 1} \\ \sqrt{m^2 - 1} & 1 \end{pmatrix}$$

其中 m 是在杨表 $\mathcal{Y}_{\nu}^{[\lambda]}$ 中从 a 走到 a+1 所需要的最短步数.