Soluzioni Appello Teoria ed Elaborazione dei Segnali del 17-02-2021

1.

Si considerino i 4 segnali determinati a tempo continuo $x_1(t) = a(t)$; $x_2(t) = b(t)$; $x_3(t) = 13 \cdot a(t) + b(t)$; $x_4(t) = a(t) - 4 \cdot b(t)$, dove a(t) e b(t) sono due segnali tra di loro ortogonali ed entrambi non nulli. Dire quali delle seguenti affermazioni è vera:

- (a) l'insieme dei 4 segnali determinati $x_i(t)$ è rappresentabile su una base completa con cardinalità pari a 4.
- (b) l'insieme dei 4 segnali determinati $x_i(t)$ è rappresentabile su una base completa con cardinalità pari a 2. \checkmark
- (c) l'insieme dei 4 segnali determinati $x_i(t)$ è rappresentabile su una base completa con cardinalità pari a 3.
- (d) l'insieme dei 4 segnali determinati $x_i(t)$ non ammette una base completa di cardinalità finita

Soluzione

Ognuno dei 4 segnali è una combinazione lineare dei due segnali ortogonali a(t) e b(t). Una base completa per i 4 segnali è quindi costituita dai due segnali $\frac{a(t)}{||a(t)||}$ e $\frac{b(t)}{||b(t)||}$, che ha una cardinalità pari a 2.

2.

Si consideri un generico processo casuale x(t). Quale delle seguenti affermazioni è vera?

- (a) la stazionarietà in senso lato implica anche la stazionarietà in senso stretto
- (b) la stazionarietà in senso stretto implica anche l'ergodicità
- (c) la stazionarietà in senso stretto implica anche la stazionarietà in senso lato \checkmark
- (d) la stazionarietà in senso lato implica anche l'ergodicità

Soluzione

Un processo ergodico è sempre stazionario, ma non vale il viceversa. Quindi le risposte (b) e (d) sono errate. Per un processo stazionario in senso stretto, la statistica del primo ordine non dipende dal tempo e le statistiche congiunte tra campioni non dipendono dall'origine dell'asse dei tempi ma solo dalla differenza di tempo tra i vari campioni. Un processo si dice stazionario in senso lato quando le precedenti proprietà valgono per la media e l'autocorrelazione. Di conseguenza, se un processo è stazionario in senso stretto, lo è anche in senso lato (e non viceversa), quindi la risposta corretta è la (c).

3.

Si consideri un segnale a tempo discreto x[n] che abbia una trasformata zeta X(z) razionale. Dire quale delle seguenti affermazioni è vera:

- (a) per un segnale x[n] causale la regione di convergenza è l'interno di una circonferenza il cui raggio è pari al modulo del polo di modulo minimo
- (b) per un segnale x[n] causale la regione di convergenza è l'interno di una circonferenza il cui raggio è pari al modulo del polo di modulo massimo
- (c) per un segnale x[n] anti-causale la regione di convergenza è l'interno di una circonferenza il cui raggio è pari al modulo del polo di modulo massimo
- (d) per un segnale x[n] anti-causale la regione di convergenza è l'interno di una circonferenza il cui raggio è pari al modulo del polo di modulo minimo \checkmark

Soluzione

Per un segnale x[n] anti-causale la regione di convergenza (ROC) è l'interno di una circonferenza, mentre per un segnale x[n] causale la regione di convergenza è l'esterno di una circonferenza. Le risposte (a) e (b) sono quindi errate.

Per un segnale anti-causale, il raggio della ROC deve essere pari al modulo del polo di modulo minimo, in modo che tutti gli altri poli siano all'esterno della circonferenza e quiandi al di fuori della ROC. La risposta corretta è quindi la (d).

4.

Un segnale discreto x[n], che vale 3 per n=0, vale 2 per n=1 vale 1 per n=2 e vale 0 altrove, viene posto in ingresso ad un sistema LTI discreto con risposta all'impulso h[n] che vale 1 per n=0,1,2, vale -1 per n=3,4 e vale 0 altrove. Sia y[n] il segnale all'uscita.

- (a) y[1] = 1, y[3] = 0, y[5] = -1
- (b) $y[1] = 5, y[3] = 0, y[5] = -3 \checkmark$
- (c) y[1] = 2, y[3] = 1, y[5] = 2
- (d) y[1] = 5, y[3] = 2, y[5] = 3

Soluzione

L'uscita del sistema è data dalla convoluzione tra x(n) e h(n):

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{+\infty} h(k)x(n-k)$$

Reappresentando i due segnali x(n) e h(n) come vettori di campioni:

$$x(n) = \{\underline{3}, 2, 1\} \qquad h(n) = \{\underline{1}, 1, 1, -1, -1\}$$

$$h(k) = \{0, 0, \underline{1}, 1, 1, -1, -1, 0, 0\}$$

$$y(0) = \sum_{k=-\infty}^{+\infty} h(k)x(-k) = 3 \qquad x(-k) = \{1, 2, \underline{3}, 0, 0, 0, 0, 0, 0, 0\}$$

$$y(1) = \sum_{k=-\infty}^{+\infty} h(k)x(1-k) = 5 \qquad x(1-k) = \{0, 1, 2, \underline{3}, 0, 0, 0, 0, 0, 0\}$$

$$y(2) = \sum_{k=-\infty}^{+\infty} h(k)x(2-k) = 6 \qquad x(2-k) = \{0, 0, 1, 2, \underline{3}, 0, 0, 0, 0, 0\}$$

$$y(3) = \sum_{k=-\infty}^{+\infty} h(k)x(3-k) = 0 \qquad x(3-k) = \{0, 0, 0, 1, 2, \underline{3}, 0, 0, 0, 0\}$$

$$y(4) = \sum_{k=-\infty}^{+\infty} h(k)x(4-k) = -4 \qquad x(4-k) = \{0, 0, 0, 0, 0, 1, 2, \underline{3}, 0, 0\}$$

$$y(5) = \sum_{k=-\infty}^{+\infty} h(k)x(1-k) = -3 \qquad x(5-k) = \{0, 0, 0, 0, 0, 1, 2, \underline{3}, 0\}$$

$$y(6) = \sum_{k=-\infty}^{+\infty} h(k)x(6-k) = -1 \qquad x(6-k) = \{0, 0, 0, 0, 0, 0, 1, 2, \underline{3}, 0\}$$

La soluzione corretta è quindi la (b).

5.

Ricavare la risposta all'impulso del filtro numerico specificato dalla seguente equazione ricorsiva:

$$y[n] = x[n] - x[n-1] + \frac{3}{2}y[n-1]$$

- (a) $h[n] = \delta[n] + \frac{1}{2}u[n-1] \left(\frac{3}{2}\right)^{n-1} \checkmark$ (b) $h[n] = \frac{1}{2}u[n] \left(\frac{3}{2}\right)^n$

- (c) $h[n] = \delta[n] + u[n-1] \left(\frac{3}{2}\right)^{n-1}$ (d) nessuna delle altre risposte è corretta
- (e) $h[n] = u[n] \frac{3}{2}u[n-1]$

Soluzione

La trasformata zeta della relazione ingresso uscita è:

$$Y(z) = X(z) - X(z)z^{-1} + \frac{3}{2}Y(z)z^{-1} \rightarrow \left[1 - \frac{3}{2}z^{-1}\right]Y(z) = \left[1 - z^{-1}\right]$$

La funzione di trasferimento H(z) vale quindi:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1 - z^{-1}}{1 - \frac{3}{2}z^{-1}} = \frac{1}{1 - \frac{3}{2}z^{-1}} - z^{-1}\frac{1}{1 - \frac{3}{2}z^{-1}}$$

Antitrasformando:

$$h(n) = \left(\frac{3}{2}\right)^n u(n) - \left(\frac{3}{2}\right)^{n-1} u(n-1)$$

Sostituendo u(n) con $\delta(n) + u(n-1)$:

$$h(n) = \left(\frac{3}{2}\right)^n \left[\delta(n) + u(n-1)\right] - \left(\frac{3}{2}\right)^{n-1} u(n-1) = \left(\frac{3}{2}\right)^n \delta(n) + \frac{3}{2} \left(\frac{3}{2}\right)^{n-1} u(n-1) - \left(\frac{3}{2}\right)^{n-1} u(n-1) = \delta(n) + \left[\frac{3}{2} - 1\right] \left(\frac{3}{2}\right)^{n-1} u(n-1) = \delta(n) + \frac{1}{2} \left(\frac{3}{2}\right)^{n-1} u(n-1)$$

6.

E' dato un processo casuale X(t) con densità di probabilità $f_X(x,t)$ uniforme nell'intervallo [-1,1] e autocorrelazione $R_X(t_1,t_2)=0$ se $|t_1-t_2|>T$. Calcolare la varianza di una variable casuale ottenuta da X(t) come $Y(t_1)=t$ $X(t_1) + 2X(t_1 + 2T).$

- (a) $\frac{5}{3}$ \checkmark (b) $\frac{T}{3}$ (c) $\frac{1}{2}$ (d) 1

Soluzione

X(t) è un processo casuale stazionario del primo ordine (siccome la sua d.d.p. non dipende dal tempo) e a media nulla, in quanto:

$$E[X(t)] = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_{-1}^{+1} x \frac{1}{2} dx = \frac{1}{2} \frac{x^2}{2} \Big|_{-1}^{1} = 0$$

Anche la media di $Y(t_1)$ è quindi nulla:

$$E[Y(t_1)] = E[X(t_1) + 2X(t_1 + 2T)] = E[X(t_1)] + 2E[X(t_1 + 2T)] = 0$$

Di conseguenza, la varianza di $Y(t_1)$ coincide con il suo valore quadratico medio:

$$\sigma^2 = E[Y^2(t_1)] = E\{[(X(t_1) + 2X(t_1 + 2T))^2\} = E[(X^2(t_1)] + 4E[X^2(t_1 + 2T)] + 4E[(X(t_1)X(t_1 + 2T))]\}$$

Il valore quadratico medio di X(t) non dipende dal tempo e vale:

$$E[X^{2}(t)] = \int_{-\infty}^{+\infty} x^{2} f_{X}(x) dx = \int_{-1}^{+1} x^{2} \frac{1}{2} dx = \frac{1}{2} \frac{x^{3}}{3} \Big|_{-1}^{1} = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

Inoltre $E[(X(t_1)X(t_1+2T)] = R_X(t_1,t_1+2T) = 0$, poiché $|t_1+2T-t_1| = 2T > T$. Quindi:

$$\sigma^2 = E[Y^2(t_1)] = \frac{1}{3} + 4\frac{1}{3} = \frac{5}{3}$$

7.

Un segnale determinato x(t), che vale 1 per 0 < t < T e 0 altrove, viene sommato ad un rumore gaussiano bianco con densità spettrale di potenza pari a $N_0/2$. Il processo casuale cosí ottenuto viene posto in ingresso ad un sistema lineare e tempo invariante con risposta all'impulso $h(t) = x(t/\alpha)$, dove α è una costante reale maggiore di 1. Sia y(t) il segnale in uscita. La probabilità $P\{y(T) < 0\}$

- (a) cresce al crescere di α
- (b) non dipende da α
- (c) decresce al crescere di α
- (d) non ha un andamento monotono al variare di α

Soluzione

Il segnale all'uscita del sistema lineare può essere scritto come y(t) = z(t) + m(t), con z(t) = x(t) * h(t) e m(t) = n(t) * h(t), dove $x(t) = p_T(t - \frac{T}{2})$, $h(t) = p_{\alpha T}(t - \frac{\alpha T}{2})$ e n(t) è un rumore gaussiano bianco con densità spettrale di potenza pari

m(t)=n(t)*h(t)) è un processo casuale gaussiano, con media nulla e densità spettrale di potenza $S_m(f)=\frac{N_0}{2}|H(f)|^2$, quindi m(T) è una variablile casuale gaussiana, con media nulla e varianza $\sigma_m^2=E[m^2(t)]=\int_{-\infty}^{+\infty}\frac{N_0}{2}|H(f)|^2df$.

y(T) = z(T) + m(T) è una variabile casuale gaussiana con media pari a z(T) e varianza pari a σ_m^2 .

z(t) è la convoluzione tra due porte causali di supporto T e αT (con $\alpha T > T$). È quindi pari ad un trapezio con base maggiore pari ad $(\alpha + 1)T$, base minore pari a $(\alpha - 1)T$ e altezza pari a T. Il valore di z(t) in t = T è pari a T, qualuque sia il valore di α .

La varianza di m(t) vale:

$$\sigma_m^2 = E[m^2(t)] = \frac{N_0}{2} \int_{-\infty}^{+\infty} |H(f)|^2 df = \frac{N_0}{2} \int_{-\infty}^{+\infty} |h(t)|^2 dt = \frac{N_0}{2} \int_0^{\alpha T} dt = \frac{N_0}{2} \alpha T.$$

La d.d.p. di y(T) è quindi una gaussiana centrata in m(T) = T, con varianza che cresce al crescere di α . La probabilità che y(T) sia minore di 0 cresce al crescere della varianza, ossia al crescere di α .

8.

Si consideri il segnale

$$x(t) = u(t) - 2u(t - T) + u(t - 2T)$$

in cui T è una costante reale positiva e u(t)=1 per $t\geq 0$ e 0 altrove. Si calcoli la sua funzione di autocorrelazione $R_x(\tau)$ e si dica quale delle seguenti risposte è VERA

- (a) $\max\{R_x(\tau)\} = 2T \text{ e } \min\{R_x(\tau)\} = -T \checkmark$
- (b) $\max\{R_x(\tau)\}=2T$ e $R_x(\tau)$ è sempre positiva
- (c) $\max\{R_x(\tau)\}=1$ e $\min\{R_x(\tau)\}=-1$
- (d) $\max\{R_x(\tau)\} = T \text{ e } \min\{R_x(\tau)\} = -\frac{T}{2}$
- (e) nessuna delle altre risposte

Soluzione

La soluzione si ottiene facilmente per via grafica. Occorre innanzitutto osservare la forma di x(t).

Da cui si ottiene per via grafica la funzione di autocorrelazione $R_x(\tau)$.

Si vede immediatamente che $\max\{R_x(\tau)\}=2T$ e $\min\{R_x(\tau)\}=-T$

9.

 ${\rm Il} \ {\rm segnale}$

$$x(t) = \frac{\sin(\pi B t)}{\pi t} - \frac{2}{B} \frac{\sin^2\left(\frac{\pi B t}{2}\right)}{\pi^2 t^2}$$

in cui B è una costante reale positiva, viene campionato alla frequenza $f_c = B$ e filtrato da un sistema LTI con funzione di trasferimento

$$H(f) = P_{2B}(f)$$

dove $P_{\alpha}(t)$ vale 1 per $|t| < \alpha/2$ e 0 altrove. Il segnale y(t) all'uscita del filtro vale

(a)
$$y(t) = \frac{4}{B} \frac{\sin^2(\frac{\pi Bt}{2})\cos(\pi Bt)}{\pi^2 t^2} \checkmark$$

(b) $y(t) = \frac{1}{B} \frac{\sin^2(\pi Bt)\cos(2\pi Bt)}{\pi^2 t^2}$
(c) $y(t) = \frac{4}{B} \frac{\sin^2(\frac{\pi Bt}{2})}{\pi^2 t^2}$
(d) $y(t) = \frac{2}{B} \frac{\sin^2(\frac{\pi Bt}{2})}{\pi^2 t^2}$
(e) nessuna delle altre risposte

(b)
$$y(t) = \frac{1}{R} \frac{\sin^2(\pi B t) \cos(2\pi B t)}{\pi^2 t^2}$$

(c)
$$y(t) = \frac{4}{B} \frac{\sin^2(\frac{\pi B t}{2})}{\pi^2 t^2}$$

(d)
$$y(t) = \frac{2}{D} \frac{\sin^2(\frac{\pi B(t-T)}{2})}{2}$$

Soluzione

Dalle tavole si possono ottenre le trasformate dei due termini che compongono il segnale x(t)

$$X(f) = p_B(f) - \operatorname{tri}(2f/B)$$

Disegnando la trasformata del segnale

si vede che si ottiene un segnale di banda B/2. Il segnale viene quindi campionato alla frequenza di Nyquist (quindi replicando lo spettro a multipli di B e filtrando con un passabasso ideale di banda 2B restano solo due compnenti in frequenza di tipo triangolare centrate in $\pm B/2$. Il segnale quindi si può scrivere come il segnale che ha spettro triangolare con supporto B e modulato da un coseno con frequenza B/2. Da cui $y(t) = \frac{4}{B} \frac{\sin^2\left(\frac{\pi Bt}{2}\right)\cos(\pi Bt)}{\pi^2 t^2}$

10.

Il segnale treno di delta $x_{\delta}(t) = \sum_{n=-\infty}^{+\infty} \delta(t-nT)$) viene posto all'ingresso di un sistema LTI con risposta all'impulso

$$h_1(t) = e^{-\frac{|t|}{T}}$$

e successivamente filtrato da un sistema LTI con funzione di trasferimento

$$H_2(f) = P_{\frac{3}{T}}(f)$$

,dove $P_{\alpha}(f)$ vale 1 per $|f| < \alpha/2$ e 0 altrove.

$$x_{\delta}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT) \qquad x(t) \qquad y(t) \qquad b_{2}(t)$$

La potenza del segnale in uscita y(t) dal sistema vale:

- (a) $\frac{8}{(1+4\pi^2)^2} + 4$ \checkmark (b) $\frac{8}{(1+4\pi^2)^2}$ (c) 0

- (d) nessuna delle altre risposte
- (e) $\frac{6}{(1+4\pi^2)^2} + 4$

Il segnale all'uscita del filtro è la convoluzione del treno di delta con la risposta all'impulso del filtro stesso, quindi

$$x(t) = x_{\delta}(t) * h_1(t) = \sum_{n = -\infty}^{+\infty} e^{-\frac{|t - nT|}{T}}$$

trattandosi di un segnale periodico ha spettro a righe spaziate di 1/T. Il filtro $H_2(f)$ ha banda $B=\frac{3}{2T}$ quindi all'uscita del filtro si avrá un segnale con le sole righe per $n=0,\pm 1$. Lo spettro X(f) vale

$$X(f) = \frac{1}{T} \sum_{n=-\infty}^{+\infty} H_1\left(\frac{n}{T}\right) \delta(f - n/T)$$

in cui, usando le tavole

$$H_1(f) = \frac{\frac{2}{T}}{\frac{1}{T^2} + 4\pi^2 f^2}$$

lo spettro all'uscita ha le sole tre componenti

$$Y(f) = \frac{1}{T} 2T\delta(f) + \frac{1}{T} \frac{\frac{2}{T}}{\frac{1}{T^2} + 4\pi^2 \frac{1}{T^2}} \delta(f - 1/T) + \frac{1}{T} \frac{\frac{2}{T}}{\frac{1}{T^2} + 4\pi^2 \frac{1}{T^2}} \delta(f - 1/T)$$

La potenza vale dunque

$$P_y = \sum_{n=-1}^{1} \mu_n^2 = 2^2 + 2 \cdot \frac{4}{(1+4\pi^2)^2} = 4 + \frac{8}{(1+4\pi^2)^2}$$