Исследование и модификация некоторых эвристических алгоритмов решения трехиндекскной аксиальной задачи

выполнил Н.С. Козловский. научный руководитель к.ф.-м.н., доцент С. Н. Медведев.

ВГУ, факультет ПММ кафедра ВМиПИТ

июль, 2018

Цель работы

- Исследовать
- Модифицировать

эвристический (приближенный) алгоритм решения 3-3OH, основанного на сведении задачи к двухиндексной с использованием перестановок.

Задачи

- Изучить математическую модель 3-АЗОН
- Изучить и проанализировать метод метод, сводящий задачу к двухиндексной
- Разработать модификации данного алгоритма
- Программно реализовать данный алгоритм и провести вычислительный эксперимент

Постановка двухиндексной ЗОН

есть некоторое количество работ и некоторе количество исполнителей. Любой исполнитель может быть назначен на выполнение любой (но только одной) работы, но с неодинаковыми затратами. Нужно распределить работы так, чтобы выполнить работы с минимальными затратами.

Мат модель 2-30Н

Пусть даны множества A, T и функционал стоимости $C: A \times T \to \mathbb{R}$. Необходимо найти биекцию $f: A \to T$, такую что $\sum_{a \in A} C(a, f(a))$ минимальна.

Постановка в виде ЗЛП

Пусть $\dim A = \dim T = n$, C – матрица $n \times n$. Тогда 30H можнопредставить в виде задачи линейного програмирования

$$\sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}$$

и ограничениями

$$\sum_{i=1}^n x_{ij} = 1$$
 $\sum_{j=1}^n x_{ij} = 1$ $x_{ij} \in 0,1$ для $i,j \in A,T$

Понятие перестановки

Будем понимать под перестановкой упорядоченный набор без повторений чисел $1,2,\ldots n$, то есть биекцию на множестве $1,2,\ldots n$

Пусть n=5, тогда одной из возможных перестановок является

$$\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
4 & 5 & 2 & 3 & 1
\end{array}\right)$$

Понятие назначения

Мы можем представлять назначение как некое биективное отображение ϕ , которое ставит элементы конечного множества U в соотвествие элементам конечного множества V.

Связь перестановок и назначение

назначение является перестановкой, которая записывается в виде

$$\left(\begin{array}{cccc} 1 & 2 & \dots & \mathsf{n} \\ \varphi(1) & \varphi(2) & \dots & \varphi(\mathsf{n}) \end{array}\right)$$

Матрица назначений

Каждой перестановке множества $\{1,2,\ldots,n\}$ соответсвует единственная матрица перестановок $X_{\varphi}\in \mathrm{Matrix}_{n\times n}$, элементы котороый определяются как

$$x_{ij} = egin{cases} 1 & ext{если } j = arphi(i) \ 0 & ext{иначе} \end{cases}$$

Матрицу X будем называть матрицей назначений

Естественное обобщение ЗОН

Рассмотрим обобщение 3OH – трехиндексную аксиальную задачу о назначениях

Она может быть определена следующим образом. Пусть даны n^3 весовых коэфициентов $c_{ijk}, (i,j,k=1\dots n)$. Необходимо найти такие перестановки φ и ξ , что

$$\min_{\varphi,\xi\in S_n}\sum_{i=1}^n c_{i\varphi(i)\xi(i)}$$

где S_n множество всех перестановок целых чисел от $1 \dots n$.

Н.С. Козловский (ВГУ, факультет ПМІИсследование и модификация некоторі

3-АЗОН как ЗЛП

Так же задача может быть переписана как задача целочисленного линейного программирования.

$$\min \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n c_{ijk} x_{ijk}$$
 ограничения $\sum_{i=1}^n \sum_{k=1}^n x_{ijk} = 1$ $(j=1,\ldots,n)$ $\sum_{j=1}^n \sum_{k=1}^n x_{ijk} = 1$ $(i=1,\ldots,n)$ $\sum_{i=1}^n \sum_{j=1}^n x_{ijk} = 1$ $(k=1,\ldots,n)$ $x_{ijk} \in \{0,1\}$ $(i,j,k=1,\ldots,n)$

Алгоритм, сводящий 3-АЗОН к двухмерному

виду

Пусть $\phi = X o \mathbb{N}$ – любая целочислено значащая функция, при этом $1 < \phi_n < n$

- Берем произвольную подстановку $\pi \in S_n$. Пусть (d_{jk}) $n \times n$ матрица, содержащая элементы исходной матрицы (c_{ijk}) , где индекс $j=\pi(i)$ такой, что $d_{ij}=c_{\pi^{-1}(j)jk}$ для любых $1\leq j,n\leq n$ Положим $f=0;j=1;K=1,2,\ldots,\phi_n$.
- $oldsymbol{\circ}$ Выберем номер $\sigma(j)$ минимального элемента из множества $\operatorname*{argmin} d_{jk}|k\in K.$
- lacksquare Полагаем $f=f+d_{j\sigma(j)}$; $\mathrm{K}=\mathrm{K}\setminus\sigma(j)$; $k=j+\phi_n$
- ullet Если $k \leq n$, то $K = K \cap k$.
- **5** j = j + 1
- Овторяем п.2, пока ј<п. В противном случае идем к п.7</p>
- $m{O}$ Результатом работы алгоритма $A(\phi_n)$ является значение функции f целевой функции $f_{A(\phi_n)}$.

Теоретическое обоснование

Пусть весовые коэфициенты $c_{ijk} \in C$ лежат в отрезке $[a_n, b_n]$, $a_n > 0$, M_n – множество всех возможных C. Тогда

Теорема

При $b_n/a_n = o(n/\ln n)$ алгоритм является ассимптотически оптимальным для 3-АЗН на классе матриц M_n и его временная сложность $O(n^2)$.

Теорема

При $b_n/a_n=o(\ln n)$ алгоритм является ассимптотически оптимальным для 3-АЗН на классе матриц M_n и его временная сложность $O(n \ln n)$.

Выявленные недостатки. Предлагаемые модификации

- Алгоритм чувствителен к выбору начальной перестановки
- Показна сходимость алгоритма при $n \to \infty$, что неприменимо в практических задачах

Для исправления этих недостатков предлагаются следующие модификации к алгоритму

Наивный итеративный алгоритм

- $oldsymbol{0}$ положим счетчик i=1, зафикируем p число итераций
- **2** Берем произвольную подстановку $\pi \in S_n$. Пусть (d_{jk}) $n \times n$ матрица, содержащая элементы исходной матрицы (c_{ijk}) , где индекс $j=\pi(i)$ такой, что $d_{ij}=c_{\pi^{-1}(j)jk}$ для любых $1 \le j, n \le n$ Положим $f=0; j=1; \mathrm{K}=1,2,\ldots,\phi_n$.
- $oldsymbol{\mathfrak{G}}$ Выберем номер $\sigma(j)$ минимального элемента из множества $\operatorname*{argmin} d_{jk}|k\in K.$
- igoplus 1 Полагаем $f=f+d_{j\sigma(j)}; \mathrm{K}=\mathrm{K}\setminus\sigma(j); k=j+\phi_n$
- **5** Если $k \le n$, то $K = K \cap k$.
- 0 j = j + 1
- О Повторяем п.3, пока ј<п. В противном случае идем к п.7</p>
- f 0 Результатом работы итерации $A_i(\phi_n)$ на шаге i является значение функции f_i целевой функции $f_{A(\phi_n)}$.
- і=i+1, если і<p, идем на п3</p>
- $m{ ilde{ ilde{O}}}$ Результатом работы алгоритма $\mathbf{A}(\phi_n)$ является значение функции $f=\min_i f_i, \quad i=1\dots p$

Наивный итеративный алгоритм

альтернативный вариант слайда Итеративно запустим исходный алгоритм. Получим множество решений $f=f_i,\ i=1\dots p$, где p – количество итераций. Результатом работы алгоритма $A_2(\phi_n)$ является $f=\min_i f_i,\quad i=1\dots p$

Итеративный алгоритм с улучшением исходной перестановки

- **1** положим счетчик i=1, зафикируем p- число итераций
- 2 Возьмем и запомним произвольную подстановку $\pi \in S_n$.
- ③ Пусть (d_{jk}) $n \times n$ матрица, содержащая элементы исходной матрицы (c_{ijk}) , где индекс $j=\pi(i)$ такой, что $d_{ij}=c_{\pi^{-1}(j)jk}$ для любых $1\leq j,n\leq n$ Положим $f=0; j=1; \mathrm{K}=1,2,\ldots,\phi_n$.
- igotimes Выберем номер $\sigma(j)$ минимального элемента из множества $rgmin d_{jk}|k\in K$.
- **5** Полагаем $f = f + d_{j\sigma(j)}$; $K = K \setminus \sigma(j)$; $k = j + \phi_n$
- **6** Если k ≤ n, то K = K ∩ k.
- 0 j = j + 1
- 🔞 Повторяем п.3, пока j<n. В противном случае идем к п.7
- ullet Результатом работы итерации ${
 m A}_{
 m i}(\phi_n)$ является значение функции f_i целевой функции $f_{{
 m A}(\phi_n)}.$
- lacktriangledown Если $f_i < f_{i-1}$, случайным образом изменим 2 элемента π , иначе возьмем новую случайную перестановку pi.
- і=i+1, если і<р, идем на п3</p>
- Результатом работы алгоритма $\mathrm{A}(\phi_n)$ является значение функции f целевой функции $f_{\mathrm{A}(\phi_n)}$.

Наивный итеративный алгоритм

альтернативный вариант слайда Исходный алгоритм запускается итеративно. Вместо выбора новой случайной перестановки, введем перестановку π' , которая или получается из перестановки π перестановкой двух случайных ее элементов, если текущий результат $f_i < f_{i-1}$, или является новой случайной перестановкой. Результатом работы алгоритма $A_3(\phi_n)$ является значение функции f целевой функции $f_{A_3(\phi_n)}$.

Блок-схема алгоритма

