Student: Đ²Đ¿Đ²Đ¿Đ²Đ¿Đ²Đ¿Đ²Đ¿Đ²Đ¿Đ²Đ¿Đ

Total scores: 0

1. If $a \le 0$, then $ax^2 + bx + c = 0$ has two solutions, $x = -b \ge 3$.

Attachments:

Scores: 0

2. If $a \neq 0$, then $ax^2 + bx + c = 0$ has two solutions, $x = -b \neq 0$.

Attachments:

1. If $a \neq 0$, then $ax^2 + bx + c = 0$ has two solutions, $x = -b \neq 0$. Attachments:

Scores: 0

2. If \$a \ne 0\$, then \$ax^2 + bx + c = 0\$ has two solutions, \$\$xy = {-b \pm \sqrt{b^2-4ac} \over 2a}.\$\$ Attachments:

1. If $a \neq 0$, then $ax^2 + bx + c = 0$ has two solutions, $x = -b \neq 0$. Attachments:

Scores: 0

2. If \$a \ne 0\$, then \$ax^2 + bx + c = 0\$ has two solutions, \$\$xy = {-b \pm \sqrt{b^2-4ac} \over 2a}.\$\$ Attachments:

1. If $a \neq 0$, then $ax^2 + bx + c = 0$ has two solutions, $x = -b \neq 0$. Attachments:

Scores: 0

2. If \$a \ne 0\$, then \$ax^2 + bx + c = 0\$ has two solutions, \$\$xy = {-b \pm \sqrt{b^2-4ac} \over 2a}.\$\$ Attachments:

Student: 155 155

Total scores: 0

1. If $a \le 0$, then $ax^2 + bx + c = 0$ has two solutions, $x = -b \ge 3$.

Attachments:

Scores: 0

2. If \$a \ne 0\$, then \$ax^2 + bx + c = 0\$ has two solutions, \$\$xy = {-b \pm \sqrt{b^2-4ac} \over 2a}.\$\$

Attachments:

https://wt75.fei.stuba.sk/tests_project/images/76_55_my_drawing (3).png

Student: рррррррррррррррррÑ€Ñ

Total scores: 0

1. If $a \neq 0$, then $ax^2 + bx + c = 0$ has two solutions, $x = -b \neq ax^2 + bx + c = 0$ has two solutions, $x = -b \neq ax^2 + bx + c = 0$

Attachments:

Scores: 0

2. If $a \neq 0$, then $ax^2 + bx + c = 0$ has two solutions, $x = -b \neq 0$.

Attachments:

Student: stud stud

Total scores: 0

1. If $a \neq 0$, then $ax^2 + bx + c = 0$ has two solutions, $x = -b \neq 0$.

Attachments:

Scores: 0

2. If \$a \ne 0\$, then \$ax^2 + bx + c = 0\$ has two solutions, \$\$xy = {-b \pm \sqrt{b^2-4ac} \over 2a}.\$\$

Attachments:

Student: stud stud 1

Total scores: 0

1. If $a \neq 0$, then $ax^2 + bx + c = 0$ has two solutions, $x = -b \neq 0$.

Attachments:

Scores: 0

2. If $a \neq 0$, then $ax^2 + bx + c = 0$ has two solutions, $x = -b \neq 0$.

Attachments:

Student: stud stud 3

Total scores: 10

1. If $a \neq 0$, then $ax^2 + bx + c = 0$ has two solutions, $x = -b \neq 0$.

Attachments:

Scores: 10

2. If \$a \ne 0\$, then \$ax^2 + bx + c = 0\$ has two solutions, \$\$xy = {-b \pm \sqrt{b^2-4ac} \over 2a}.\$\$

Attachments:

Test:	Ð»Đ»Đ»
-------	--------

Student: 1ii 1ii

Total scores: 0

1. If \$a \ne 0\$, then \$ax^2 + bx + c = 0\$ has two solutions, \$\$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.\$\$

Attachments:

Scores: 0

2. If \$a \ne 0\$, then \$ax^2 + bx + c = 0\$ has two solutions, \$\$xy = {-b \pm \sqrt{b^2-4ac} \over 2a}.\$\$

Attachments:

Student: 144 144

Total scores: 0

1. If $a \neq 0$, then $ax^2 + bx + c = 0$ has two solutions, $x = -b \neq 0$.

Attachments:

Scores: 0

2. If \$a \ne 0\$, then \$ax^2 + bx + c = 0\$ has two solutions, \$\$xy = {-b \pm \sqrt{b^2-4ac} \over 2a}.\$\$

Attachments:

Student: 5555 5555

Total scores: 0

1. If $a \neq 0$, then $ax^2 + bx + c = 0$ has two solutions, $x = -b \neq 0$.

Attachments:

Scores: 0

2. If $a \neq 0$, then $ax^2 + bx + c = 0$ has two solutions, $x = -b \neq 0$.

Attachments:

Student: 55 66

Total scores: 0

1. If $a \neq 0$, then $ax^2 + bx + c = 0$ has two solutions, $x = -b \neq 0$.

Attachments:

https://wt75.fei.stuba.sk/tests_project/images/86_54_my_drawing (4).png

Scores: 0

2. If $a \neq 0$, then $ax^2 + bx + c = 0$ has two solutions, $x = -b \neq 0$.

Attachments:

https://wt75.fei.stuba.sk/tests_project/images/86_55_my_drawing (5).png