Majority Voting & Ensemble Learning

1. Example

KNN (k=3: 3 nearest neighbors)

3 votes [1,3,3] for final class decision: class label = 3.

1. Example

Random Forest

	DT1	DT ₂	 DT 100
X	l1	I 1	 I 100

100 votes [l1, l2, ..., l100] for final class decision

One decision tree (DT1) is described as follows

C 1	C ₂	 C 10
0.15	8.0	 0.9

Probabilities of being classified to each class

1. Example

Combination/Fusion of different methods

SVM	KNN	Decision Tree	Linear Regression	Logistic Regression
l1	12	l3	l 4	l 5

5 votes [l1, l2, l3, l4, l5] for final class decision

Decision Tree (DT)

	Correct	Incorrect	
p=	0.5	0.5	Bad Tree
p=	0.6	0.4	Good Tree

Probabilities of being classified to correct/incorrect class

- A variable described as the number of successes in a sequence of independent Bernoulli trials has **Binomial** distribution. Its parameters are n, the number of trials, and p, the probability of success.
- Binomial probability mass function is:

$$P(x) = P\{X = x\} = \binom{n}{x} p^x q^{n-x}, \quad x = 0, 1, ..., n,$$

Binomial distribution:

$$egin{array}{lll} n & = & {
m number \ of \ trials} \ p & = & {
m probability \ of \ success} \ P(x) & = & \left(egin{array}{c} n \\ x \end{array}
ight) p^x q^{n-x} \ & \mathbf{E}(X) & = & np \ {
m Var}(X) & = & npq \end{array}$$

Random Forest: Using 3 Decision Trees

DT1	DT2	DT3	Voting	Probability	
0.6	0.6	0.6			
С	С	С	3↑	$P\uparrow\uparrow\uparrow=0.6^3=0.216$	
С	С	INC	$2\uparrow 1\downarrow \qquad \qquad P\uparrow\uparrow\downarrow=3\times0.6^2\times0.4=0$		
С	INC	С		$P\uparrow\uparrow\downarrow=3\times0.6^2\times0.4=0.432$	
INC	С	С			
INC	INC	С			
INC	С	INC	$1 \uparrow 2 \downarrow \qquad P \uparrow \downarrow \downarrow = 3 \times 0.6 \times 0.4^2 = 0.2$	$P\uparrow\downarrow\downarrow=3\times0.6\times0.4^2=0.288$	
С	INC	INC			
INC	INC	INC	3↓	$P \downarrow \downarrow \downarrow = 0.4^3 = 0.064$	

Accuracy = $\frac{0.216+0.432}{1}$ = 0.648.

Using binomial distribution are for any number of votes.

Random Forest: Using 51 Decision Trees

Voting	Probability
51 ↑	$P(51\uparrow) = 0.6^{51} = 4.8497e - 12$
50↑, 1↓	$P(50\uparrow, 1\downarrow) = {51 \choose 50} \times 0.6^{50} \times 0.4 = 1.6489e-10$
26↑, 25↓	$P(26\uparrow, 25\downarrow) = {51 \choose 26} \times 0.6^{26} \times 0.4^{25} = 0.0476$
51↓	$P(51\downarrow) = 0.4^{51} = 5.0706e-21$

Accuracy =
$$\frac{P(51\uparrow)+P(50\uparrow,\ 1\downarrow)+...+P(26\uparrow,\ 25\downarrow)}{1}$$
 = 0.9265. Using binomial distribution are for any # of votes.

3. Ensemble Learning

Example: Voting Machine

- Bagging = Bootstrap Aggregating
- In the Bootstrap, we replicate our dataset by sampling with replacement:
 - Original Dataset: $Z = (z_1, z_2, ..., z_N)$, where $z_i = (x_i, y_i)$.
 - Bootstrap samples:
 - Z^{*1} = sample(x, 100, replace = True)
 - •
 - Z^{*B} = sample(x, 100, replace = True)

Bootstrap Samples (with replacement):

Bootstrap Process:

- S(Z) is any quantity computed from the data Z.
 - For example, its variance:

$$\widehat{\text{Var}}[S(\mathbf{Z})] = \frac{1}{B-1} \sum_{b=1}^{B} (S(\mathbf{Z}^{*b}) - \bar{S}^{*})^{2}$$

where
$$\bar{S}^* = \sum_b S(\mathbf{Z}^{*b})/B$$

- Apply the bootstrap to estimate prediction error.
 - If f^{*}b(x_i) is the predicted value at x_i, from the model fitted to the b-th bootstrap dataset, our estimate is:

$$\widehat{\text{Err}}_{\text{boot}} = \frac{1}{B} \frac{1}{N} \sum_{b=1}^{B} \sum_{i=1}^{N} L(y_i, \hat{f}^{*b}(x_i))$$

- For each bootstrap sample Z^{*b} , b = 1,2,...,B, we fit our model, giving prediction $f^{*b}(x)$.
- The bagging estimate is defined by

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x).$$

- Example: bagging the "linear regression".
 - Let y^{L,b} be the prediction of the decision tree applied to the b-th bootstrap sample.
 - Bagging prediction: $\hat{y}^{\text{boot}} = \frac{1}{B} \sum_{b=1}^{B} \hat{y}^{L,b}$.
- When a regression method or a classifier has a tendency to overfit, Bagging reduces the variance of the prediction.

- Example: Tree with simulated data.
 - We generated a sample of size N = 30, with two classes and p = 5 features.

Example: Tree with simulated data.

The orange points correspond to the consensus vote, while the green points average the probabilities.

- The motivation for boosting was a procedure that combines the outputs of many "weak" classifiers to produce a powerful "committee."
- Boosting learns slowly:
 - We first use the samples that are easiest to predict, then slowly down weigh these cases, moving on to harder samples.

Example: AdaBoost.

The data modifications at each boosting step consist of applying weights $w_1, w_2, ..., w_N$ to each of the training observations (x_i, y_i) , i = 1,2,...,N.

FINAL CLASSIFIER

Classifiers are trained on weighted versions of the dataset, and then combined to produce a final prediction.

Example: Algorithm - AdaBoost.M1

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \text{err}_m)/\text{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N.$
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

- Boosted Trees
 - A tree can be formally expressed as

$$T(x;\Theta) = \sum_{j=1}^{J} \gamma_j I(x \in R_j)$$

The parameters are found by minimizing the empirical risk

$$\tilde{\Theta} = \arg\min_{\Theta} \sum_{i=1}^{N} \tilde{L}(y_i, T(x_i, \Theta))$$

- Boosted Trees
 - The boosted tree model is a sum of such trees

$$f_M(x) = \sum_{m=1}^{M} T(x; \Theta_m)$$

Where at each step in the forward stagewise procedure one must solve

$$\hat{\Theta}_m = \arg\min_{\Theta_m} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + T(x_i; \Theta_m))$$

- Forward stagewise boosting: greedy strategy.
 - At each step the solution tree is the one that maximally reduces the loss, given the current model f_{m-1} and its fits $f_{m-1}(x_i)$.
 - Thus, the tree predictions $T(x_i; \Theta_m)$ are analogous to the components of the negative gradient:

$$g_{im} = \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x_i) = f_{m-1}(x_i)}$$

- Gradient boosting:
 - Induce a tree $T(x; \Theta_m)$ at the m-th iteration whose predictions tm are as close as possible to the negative gradient.
 - Using squared error to measure closeness, this leads us to:

$$\tilde{\Theta}_m = \arg\min_{\Theta} \sum_{i=1}^{N} (-g_{im} - T(x_i; \Theta))^2$$

Gradient Tree Boosting Algorithm

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m = 1 to M:
 - (a) For $i = 1, 2, \dots, N$ compute

Compute Negative Gradient with respect to 1,...,m-1 trees

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm},\ j=1,2,\ldots,J_m.$ (c) For $j=1,2,\ldots,J_m$ compute $\gamma_{jm}=\arg\min_{\gamma}\sum_{x_i\in R_{jm}}L\left(y_i,f_{m-1}(x_i)+\gamma\right).$

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma)$$

Update Boosted Tree (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.

3. Output $\hat{f}(x) = f_M(x)$.