Apuntes de clase

José Antonio de la Rosa Cubero

Teorema 1 (Teorema de Burnside). Sea G un p-grupo finito. Entonces |Z(G)| > p.

En particular Z(G) no es trivial.

Demostración. Supongamos $|G| = p^n$.

Si G es abeliano Z(G) = G y se tendría el resultado.

Si G no es abeliano, por la fórmula de las clases:

$$|Z(G)| = |G| - \sum_{h \notin Z(G)} |\operatorname{cl}(h)|$$

Si $h \notin Z(G)$, entonces $|\operatorname{cl}(h)| > 1$ y como $|\operatorname{cl}(h)| = [G : c_G(h)]$, es decir, $md\operatorname{cl}(h)||G| = p^n$, entonces $|\operatorname{cl}(h)| = p^k$. Consecuentemente, p es un divisor de $\sum_{h\notin Z(G)} |\operatorname{cl}(h)|$. Como p divide a |G|, obtenemos que p||Z(G)| y por lo tanto $|Z(G)| \geq p$.

Corolario 1. Sea p un número primo y G un grupo con $|G| = p^2$. Entonces G es abeliano.

Demostración. Por el teorema de Burnside, $|Z(G)| \ge p$. Con lo que |Z(G)| = p o $|Z(G)| = p^2$.

Supongamos que |Z(G)| = p entonces existe un $a \in G$ tal que $a \notin Z(G)$. $c_G(a) \leq G$ Es claro que $Z(G) < c_G(a)$ y eso implica que su orden es p^2 pero entonces $c_G(a) = G$ a $\in Z(G)$ lo que es una contradicción. Luego $|Z(G)| = p^2 = |G|$ entonces Z(G) = G y por tanto G es abeliano.

Corolario 2. Si G es un grupo finito, entonces G es resoluble.

Demostración. Sea $|G| = p^n$. Hacemos inducción en n. Para n = 1 tenemos que $G \equiv C_p$, y es resoluble.

Sea n > 1 y el resultado cierto para todo p-grupo de orden menor que p^n . Si G es abeliano ya sabiamos que es resoluble y lo tendríamos.

Supongamos G no abeliano.

$$1 \triangleleft Z(G) \triangleleft G$$

Entonces $|Z(G)| = p^k$. Por hipótesis de inducción, Z(G) es resoluble.

Por otro lado $|G/Z(G)| = p^{n-k}$ con $1 \le n-k < n$ y entonces por hipótesis de inducción, G/Z(G) es resoluble.

Definición 1. Sea G un grupo finito y p un número primo.

Un subgrupo H de G que sea p-grupo, lo llamaremos un p-subgrupo de G.

Teorema 2 (Primer teorema de Sylow). Sea G un grupo finito con |G| = n. Sea p un número primo divisor de n. Entonces, para cada potencia p^i que divida a n, existe $H \leq G$ tal que $|H| = p^i$.

Demostración. Para i = 1, el resultado se sigue del Teorema de Cauchy.

Sea i > 1 y supongamos cierto para los anteriores.

Veamoslo para i. |G| = n y $p^i | n$, hacemos inducción sobre n.

Para n = 1, tenemos $p^i|n$ el primer caso es $|G| = p^i$ y entonces basta tomar H = G. Supongamos que $n > p^i$ y el resultado cierto para todo grupo de orden menor a n y divisible por p^i .

Caso 1:

Existe un K < G tal que p no divide a [G:K], como |G| = [G:K] |K| y como $p^i|n$ tenemos que $p^i|K|$ y por hipótesis de inducción, existe un subgrupo $H \le K$ tal que $|H| = p^i$. Claramente $H \le G$ y se tiene el resultado.

Caso 2:

Para todo $K \leq G$, p[G:K]. Por la fórmula de las clases,

$$|Z(G)| = |G| - \sum_{h \notin Z(G)} [G : c_G(h)]$$

entonces p|G| y $p|\sum[G:c_G(h)]$ y entonces p|Z(G). Aplicamos el teorema de Cauchy a Z(G) y entonces existe $N \leq Z(G)$ tal que |N| = p. Como $N \leq Z(G)$ entonces $N \subseteq G$.

Consideramos el cociente G/N. Como $|N| = p y p^i |G|$ entonces $p^{i-1} |G/N|$. Por la hipótesis de inducción, existe L < G/N tal que $|L| = p^{i-1}$ y por

tanto existe un $N \leq H \leq G$ tal que L = H/N.

Como $|H/N| = p^{i-1}, |H| = |H/N| |N| = p^{i-1}p = p^i.$

Definición 2 (p-subgrupos de Sylow). Sea p^k la máxima potancia de p que divide a |G|, es decir, $|G|=p^km$, con p y m primos relativos.

Los p-subgrupos de G de orden p^k se llaman p-subgrupos de Sylow de G.

Corolario 3. Todo grupo G tiene p-subgrupos de Sylow, para cada p divisor de |G|.