

MESTRADO INTEGRADO EM ENGENHARIA INFORMÀTICA E COMPUTAÇÃO \mid 3° Ano

EICO029 | INTELIGÊNCIA ARTIFICIAL | 2012-2013 - 2° SEMESTRE

Prova com consulta. Duração: 2h30m.

1. [4 valores] Pretende-se organizar uma tarde de atividade desportiva num recinto, ao mesmo tempo que se quer garantir variedade nas modalidades executadas. Assim, não é permitido ter jogos consecutivos da mesma modalidade. Como diferentes modalidades requerem diferentes equipamentos, existem tempos de preparação do recinto

	Modalidade antecedente				
Modalidade (min)	Futsal	Ténis	Badminton	Andebol	
Futsal (60)		20	30	5	
Ténis (45)	20		10	20	
Badminton (30)	30	10		30	
Andebol (70)	5	20	30		

dependentes das modalidades a praticar em sequência. A tabela mostra as modalidades e a duração de um jogo (e.g. um jogo de Futsal dura 60 minutos), bem como os tempos de preparação do recinto de acordo com a modalidade antecedente (e.g. o tempo de preparação para um jogo de ténis logo a seguir a um jogo de Andebol é de 20 minutos). Considere que a tarde de atividade tem 4h consecutivas (240 minutos), e despreze qualquer tempo de preparação para a primeira atividade desportiva a realizar. Identifique cada modalidade pela sua inicial (F, T, B ou A).

a) A estratégia de pesquisa **primeiro em largura** permitirá encontrar o número mínimo de jogos a realizar de modo a ocupar a tarde (podendo sobrar algum tempo, insuficiente para mais um jogo). Apresente a árvore de pesquisa obtida por esta estratégia. Identifique a solução encontrada.

Considere agora que se pretende contratar árbitros para cada um dos jogos a efetuar. Cada jogo envolve o número de árbitros indicado na tabela. Pretende-se minimizar o número de árbitros necessários para o conjunto de jogos a realizar (de acordo com as regras já descritas atrás).

- b) Apresente a <u>árvore de pesquisa</u> obtida pela estratégia de pesquisa do **custo uniforme** (*branch and bound*). Identifique a <u>solução encontrada</u>, bem como o seu <u>custo</u>.
- c) Sugira uma <u>função heurística admissível</u> que estime o custo da solução parcial por encontrar. (Sugestão: considere o custo menor para o jogo de maior duração possível, tendo em conta o tempo de preparação.)
- d) Apresente a <u>árvore de pesquisa</u> obtida pela estratégia de pesquisa A*, utilizando a heurística definida na alínea anterior. Identifique a <u>solução encontrada</u>, bem como o seu <u>custo</u>.
- 2. [4 valores] Numa planta fabril, é necessário efetuar as tarefas TA, TB, TC, TD, TE. Existem máquinas próprias para a execução dessas tarefas, sendo a distribuição indicada na tabela. Uma tarefa tem um tempo de execução de 5min, independentemente da máquina. Pretende-se otimizar a

Tarefa	TA	ТВ	TC	TD	TE
Máquinas	M1	M1	M1	M2	M2
possíveis	M2	M3	M3		M3
	M3				

alocação das tarefas TA...TE às máquinas M1...M3, maximizando a taxa de ocupação das máquinas e equilibrando a distribuição das tarefas pelas máquinas. Pretende-se usar <u>Algoritmos Genéticos</u> na determinação da alocação ótima. A população inicial é constituída pelos seguintes 4 indivíduos:

- i) TA->M2, TB->M1, TC->M3, TD->M2, TE->M3; ii) TA->M3, TB->M3, TC->M3, TD->M2, TE->M3;
- iii) TA->M1, TB->M1, TC->M1, TD->M2, TE->M2; iv) TA->M2, TB->M1, TC->M3, TD->M2, TE->M2;
- a) Proponha uma estrutura para a representação do indivíduo. <u>Explique</u>. Represente a população inicial.
- b) Uma avaliação possível de um plano de alocação é:

aval = num_máquinas_usadas * Σ_i (ocupação_máquina; / duração_plano) Calcule o valor de adaptação dos indivíduos da população inicial.

- c) No processo de <u>seleção dos indivíduos a utilizar na formação da geração seguinte</u>, é usada uma política elitista (mas só para o melhor). Considere que foram gerados os seguintes números aleatórios (entre 0 e 1): 0.85 / 0.35 / 0.5. Apresente o resultado deste processo de seleção, explicando.
- d) Calcule a 2ª geração da população, explicando. Sugira uma estratégia de cruzamento, <u>explicando</u>. A probabilidade de cruzamento é 75% e foram gerados os números aleatórios: 0.88 / 0.41 / 0.22. A probabilidade de mutação é 3% e só no 14º número aleatório surgiu um inferior a 0.03.

MESTRADO INTEGRADO EM ENGENHARIA INFORMÀTICA E COMPUTAÇÃO | 3º ANO EICO029 | INTELIGÊNCIA ARTIFICIAL | 2012-2013 - 2º SEMESTRE

Prova com consulta. Duração: 2h30m.

- 3. [4 valores] Bobby é um cão da raça Collie e João é o seu dono. Hoje está uma temperatura de 18°C e não chove. Pelo comportamento do Bobby, este parece ser um cão treinado (FC=0,8). É sabido que:
 - R1: SE está calor E não chove ENTÃO o João passeia no parque bastante tempo (FC=0,9)
 - R2: SE está frio OU chove ENTÃO o João passeia no parque pouco tempo (FC=0,8)
 - R3: SE é um cão da raça Spaniel OU Collie ENTÃO é um bom cão (FC=0,7)
 - R4: SE é um cão treinado E tem dono ENTÃO é um bom cão (FC=0,9)
 - R5: SE é um bom cão ENTÃO está sempre com o seu dono (FC=0,9).

Pretende-se saber quanto tempo passa o Bobby no parque hoje.

O conceito <u>temperatura</u> é descrito pelo conjunto difuso da figura ao lado.

b) Considere a função de pertença do conjunto difuso <u>tempo</u> representada na figura. Quantos minutos passa o Bobby no parque?

<u>calor</u>

- 4. [8 valores] Responda a seis (6) das seguintes sete (7) questões (cada uma em 5-10 linhas).
 - a) Considerando um espaço de estados em que todas as soluções têm custos diferentes, a estratégia de pesquisa do custo uniforme encontra sempre a mesma solução encontrada pelo A* usando uma heurística admissível?
 - b) Explique o que caracteriza os algoritmos de pesquisa local (*iterative improvement*). Dê dois exemplos de algoritmos deste tipo, explicando sucintamente as suas diferenças.
 - c) Na aplicação do algoritmo minimax com cortes alfa-beta, explique que papel pode ter a ordenação dos nós gerados e avaliados pela função de avaliação.
 - d) Considerando o conjunto de treino da tabela, indique, justificando, que atributo é escolhido para a raiz de uma árvore de decisão, usando como critério (i) o ganho de informação e (ii) a razão do ganho.

 | Idade | Score | Resultado | >30 | 2 | Não | | ≤30 | 3 | Sim |
 - e) Em aprendizagem supervisionada, existem métodos simbólicos e métodos sub-simbólicos para a construção de modelos representativos dos exemplos pré-classificados. Indique o que distingue estes dois tipos de métodos e nomeie um exemplo de cada um deles.

luuue	Score	Kesuttaao
>30	2	Não
≤30	3	Sim
>30	1	Não
≤30	3	Sim
≤30	1	Não
>30	3	Sim
≤30	2	Sim
>30	1	Não
≤30 >30 ≤30	1 3	Não Sim Sim

- f) Construa uma DCG que permita validar sintática e semanticamente frases do tipo [X, subiu/desceu, de, N1, valore(s) para, N2, valore(s)]. Por exemplo, a frase "Ana subiu de 14 valores para 12 valores" tem um erro semântico, e a frase "Rui desceu de 5 valor para 1 valores" tem dois erros sintáticos.
- g) Caracterize o conceito de *overfitting* e indique que cuidados devem ser tidos em conta na aplicação de redes neuronais de modo a evitar este problema.