AUA CS108, Statistics, Fall 2020 Lecture 35

Michael Poghosyan

16 Nov 2020

Contents

- ► Maximum Likelihood Method (MLE)
- ► Confidence Intervals

Examples, MLE

Example: Assume we have an observation

from the following Model:

$$\begin{array}{c|c|c} X & 0 & 1 & 2 \\ \hline \mathbb{P}(X=x) & \frac{\theta}{10} & \frac{\theta}{5} & 1 - \frac{3\theta}{10}, \end{array}$$

where $\theta \in [0, \frac{10}{3}]$.

Examples, MLE

Example: Assume we have an observation

from the following Model:

$$\begin{array}{c|cccc} X & 0 & 1 & 2 \\ \hline \mathbb{P}(X=x) & \frac{\theta}{10} & \frac{\theta}{5} & 1 - \frac{3\theta}{10}, \end{array}$$

where $\theta \in [0, \frac{10}{3}]$. Find the MLE Estimator and MLE Estimate for θ .

Solution: OTB

Examples, MLE

Example: Assume we have an observation

from the following Model:

$$\begin{array}{c|c|c} X & 0 & 1 & 2 \\ \hline \mathbb{P}(X=x) & \frac{\theta}{10} & \frac{\theta}{5} & 1 - \frac{3\theta}{10}, \end{array}$$

where $\theta \in [0, \frac{10}{3}]$. Find the MLE Estimator and MLE Estimate for θ .

Solution: OTB

Example: Find the MLE Estimator for (μ, σ^2) in the $\mathcal{N}(\mu, \sigma^2)$

Model.

Solution: OTB

Note: The MLE does not always exist;

Note: The MLE does not always exist;

Note: The MLE is not always unique;

Note: The MLE does not always exist;

Note: The MLE is not always unique;

Note: Sometimes it is necessary to find it numerically, say, using

the NR Method

Note: The MLE does not always exist;

Note: The MLE is not always unique;

Note: Sometimes it is necessary to find it numerically, say, using

the NR Method

Note: It is remarkable, that ML Estimators, in general (if they exist, of course $\ddot{-}$), possess some nice properties. These properties

make MLE one of the widely used methods of Estimation.

Properties of the MLE

It can be proven that, under some regularity conditions on the Parametric Family \mathcal{F}_{θ} ,

► The MLE $\hat{\theta}_n^{MLE}$ is Consistent, i.e.,

Properties of the MLE

It can be proven that, under some regularity conditions on the Parametric Family \mathcal{F}_{θ} ,

► The MLE $\hat{\theta}_n^{MLE}$ is Consistent, i.e.,

$$\hat{\theta}_n^{MLE} \stackrel{\mathbb{P}}{\longrightarrow} \theta$$

Properties of the MLE

It can be proven that, under some regularity conditions on the Parametric Family \mathcal{F}_{θ} ,

► The MLE $\hat{\theta}_n^{MLE}$ is Consistent, i.e.,

$$\hat{\theta}_n^{MLE} \stackrel{\mathbb{P}}{\longrightarrow} \theta$$

► The MLE $\hat{\theta}_n^{MLE}$ is Asymptotically Normal and Efficient:

$$\hat{\theta}_n^{MLE} \overset{D}{pprox} \mathcal{N}\left(\theta, \frac{1}{n \cdot \mathcal{I}(\theta)}\right)$$

We can interpret this as:

 $ightharpoonup \hat{\theta}_n^{MLE}$ is approximately (Asymptotically) Normal;

We can interpret this as:

- $\hat{\theta}_n^{MLE}$ is approximately (Asymptotically) Normal;
- ▶ The Variance of $\hat{\theta}_n^{MLE}$ is approximately $\frac{1}{n \cdot \mathcal{I}(\theta)}$. This is the possible smallest Variance we can have with Unbiased Estimators.

We can interpret this as:

- $\hat{\theta}_n^{MLE}$ is approximately (Asymptotically) Normal;
- ▶ The Variance of $\hat{\theta}_n^{MLE}$ is approximately $\frac{1}{n \cdot \mathcal{I}(\theta)}$. This is the possible smallest Variance we can have with Unbiased Estimators. So we interpret this as **MLE** is **Asymptotically Efficient**.

We can interpret this as:

- $\hat{\theta}_n^{MLE}$ is approximately (Asymptotically) Normal;
- ▶ The Variance of $\hat{\theta}_n^{MLE}$ is approximately $\frac{1}{n \cdot \mathcal{I}(\theta)}$. This is the possible smallest Variance we can have with Unbiased Estimators. So we interpret this as **MLE** is **Asymptotically Efficient**.

So, MLE is **Consistent** and **Asymptotocally Efficient**.

We can interpret this as:

- $\hat{\theta}_n^{MLE}$ is approximately (Asymptotically) Normal;
- ▶ The Variance of $\hat{\theta}_n^{MLE}$ is approximately $\frac{1}{n \cdot \mathcal{I}(\theta)}$. This is the possible smallest Variance we can have with Unbiased Estimators. So we interpret this as **MLE** is **Asymptotically Efficient**.

So, MLE is **Consistent** and **Asymptotocally Efficient**. And this is why, for large Sample Size n, MLE is the Top 1 Choice, is (almost) unbeatable.

Fisher Information

in the above formulas.

$$\mathcal{I}(heta) = -\mathbb{E}\left(rac{\partial^2}{\partial heta^2} \ln f(X| heta)
ight) = \mathbb{E}\left[\left(rac{\partial}{\partial heta} \ln f(X| heta)
ight)^2
ight],$$

is the **Fisher Information** for θ (X is a r.v. from the Distribution \mathcal{F}_{θ} , and $f(x|\theta)$ is the corresponding PD(M)F).

Also,

$$\hat{\theta}_{n}^{\textit{MLE}} \overset{D}{pprox} \mathcal{N} \left(\theta, \frac{1}{n \cdot \mathcal{I} \left(\hat{\theta}_{n}^{\textit{MLE}} \right)} \right)$$

Also,

$$\hat{\theta}_{n}^{\textit{MLE}} \overset{D}{pprox} \mathcal{N} \left(\theta, \frac{1}{n \cdot \mathcal{I} \left(\hat{\theta}_{n}^{\textit{MLE}} \right)} \right)$$

Note: This is almost the above Property,

$$\hat{\theta}_n^{MLE} \overset{D}{pprox} \mathcal{N}\left(\theta, \frac{1}{n \cdot \mathcal{I}(\theta)}\right),$$

but, instead of $\mathcal{I}(\theta)$ we have $\mathcal{I}\left(\hat{\theta}_{n}^{MLE}\right)$.

Also,

$$\hat{\theta}_{n}^{\textit{MLE}} \overset{D}{pprox} \mathcal{N} \left(\theta, \frac{1}{n \cdot \mathcal{I} \left(\hat{\theta}_{n}^{\textit{MLE}} \right)} \right)$$

Note: This is almost the above Property,

$$\hat{\theta}_n^{MLE} \stackrel{D}{pprox} \mathcal{N}\left(\theta, \frac{1}{n \cdot \mathcal{I}(\theta)}\right),$$

but, instead of $\mathcal{I}(\theta)$ we have $\mathcal{I}\left(\hat{\theta}_{n}^{MLE}\right)$.

Note: We will use this later, to construct an (approximate) Confidence Interval for θ and for testing Hypotheses about θ .

▶ If $\hat{\theta}$ is the MLE for θ , then for any function g, the MLE of $g(\theta)$ is $g(\hat{\theta})$, i.e.,

$$\widehat{g(\theta)}^{MLE} = g\left(\hat{\theta}^{MLE}\right).$$

▶ If $\hat{\theta}$ is the MLE for θ , then for any function g, the MLE of $g(\theta)$ is $g(\hat{\theta})$, i.e.,

$$\widehat{g(\theta)}^{MLE} = g\left(\hat{\theta}^{MLE}\right).$$

This is sometimes called the invariance Principle of MLE.

▶ If $\hat{\theta}$ is the MLE for θ , then for any function g, the MLE of $g(\theta)$ is $g(\hat{\theta})$, i.e.,

$$\widehat{g(\theta)}^{MLE} = g\left(\hat{\theta}^{MLE}\right).$$

This is sometimes called the invariance Principle of MLE.

Example Find the MLE for σ in $\mathcal{N}(\mu, \sigma^2)$ Model.

Solution: OTB

Other Methods to construct Point Estimators/Estimates

There are other important methods to construct Estimators: e.g.

- Bayesian Estimation: Maximum APosteriori (MAP) Estimators
- Bayesian Estimation: Bayes Estimators;
- OLS
- ▶ etc

Confidence Intervals

So far we have studied the Parametric Point Estimation Problem: we were assuming that our data is coming from a Parametric Family of Distribution, and our aim was to find a best guess for that Parameter.

So far we have studied the Parametric Point Estimation Problem: we were assuming that our data is coming from a Parametric Family of Distribution, and our aim was to find a best guess for that Parameter.

Assume θ is our Parameter to be Estimated, and $\hat{\theta}$ is a good Estimator for θ .

So far we have studied the Parametric Point Estimation Problem: we were assuming that our data is coming from a Parametric Family of Distribution, and our aim was to find a best guess for that Parameter.

Assume θ is our Parameter to be Estimated, and $\hat{\theta}$ is a good Estimator for θ . Assume $\hat{\theta}$ is a Continuous r.v.

So far we have studied the Parametric Point Estimation Problem: we were assuming that our data is coming from a Parametric Family of Distribution, and our aim was to find a best guess for that Parameter.

Assume θ is our Parameter to be Estimated, and $\hat{\theta}$ is a good Estimator for θ . Assume $\hat{\theta}$ is a Continuous r.v. If the True value of our Parameter is θ^* , then

$$\mathbb{P}(\hat{\theta} = \theta^*) = 0,$$

i.e., we will (almost) never be correct in our guess.

So far we have studied the Parametric Point Estimation Problem: we were assuming that our data is coming from a Parametric Family of Distribution, and our aim was to find a best guess for that Parameter.

Assume θ is our Parameter to be Estimated, and $\hat{\theta}$ is a good Estimator for θ . Assume $\hat{\theta}$ is a Continuous r.v. If the True value of our Parameter is θ^* , then

$$\mathbb{P}(\hat{\theta} = \theta^*) = 0,$$

i.e., we will (almost) never be correct in our guess. Sad news!

But the good news is that even when we cannot exactly find the True value of our Parameter using $\hat{\theta}$, if $\hat{\theta}$ possesses some good properties, we believe that the Estimate obtained is a good approximation/Estimate for θ^* .

¹Recall the \widehat{SE} , the Estimated Standard Error reporting story.

But the good news is that even when we cannot exactly find the True value of our Parameter using $\hat{\theta}$, if $\hat{\theta}$ possesses some good properties, we believe that the Estimate obtained is a good approximation/Estimate for θ^* .

In fact, we think as

$$\theta^* = \hat{\theta} \pm \textit{error},$$

where error is small¹,

¹Recall the \widehat{SE} , the Estimated Standard Error reporting story.

But the good news is that even when we cannot exactly find the True value of our Parameter using $\hat{\theta}$, if $\hat{\theta}$ possesses some good properties, we believe that the Estimate obtained is a good approximation/Estimate for θ^* .

In fact, we think as

$$\theta^* = \hat{\theta} \pm \textit{error},$$

where *error* is small¹, or, rather, as

$$\theta^* \in (\hat{\theta} - error, \hat{\theta} + error).$$

¹Recall the \widehat{SE} , the Estimated Standard Error reporting story.

But the good news is that even when we cannot exactly find the True value of our Parameter using $\hat{\theta}$, if $\hat{\theta}$ possesses some good properties, we believe that the Estimate obtained is a good approximation/Estimate for θ^* .

In fact, we think as

$$\theta^* = \hat{\theta} \pm \textit{error},$$

where error is small¹, or, rather, as

$$\theta^* \in (\hat{\theta} - error, \hat{\theta} + error).$$

And we can ask questions about how small is the *error* or how much sure are we in our Estimate (for the Unknown Parameter), and how large n needs to be to have a good estimate.

¹Recall the \widehat{SE} , the Estimated Standard Error reporting story.

But the good news is that even when we cannot exactly find the True value of our Parameter using $\hat{\theta}$, if $\hat{\theta}$ possesses some good properties, we believe that the Estimate obtained is a good approximation/Estimate for θ^* .

In fact, we think as

$$\theta^* = \hat{\theta} \pm \textit{error},$$

where error is small¹, or, rather, as

$$\theta^* \in (\hat{\theta} - error, \hat{\theta} + error).$$

And we can ask questions about how small is the *error* or how much sure are we in our Estimate (for the Unknown Parameter), and how large n needs to be to have a good estimate.

Here we want to develop the theory of Confidence Intervals, which will contain answers to these questions.

¹Recall the \widehat{SE} , the Estimated Standard Error reporting story.

Assume we have a Random Sample from a Parametric Model \mathcal{F}_{θ} :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

Assume we have a Random Sample from a Parametric Model \mathcal{F}_{θ} :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

Our aim is to find an interval containing the Unknown Parameter value.

Assume we have a Random Sample from a Parametric Model \mathcal{F}_{θ} :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

Our aim is to find an interval containing the Unknown Parameter value.

More rigorously, we want to have an interval

which contains the True Parameter value with high Probability;

Assume we have a Random Sample from a Parametric Model \mathcal{F}_{θ} :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

Our aim is to find an interval containing the Unknown Parameter value.

More rigorously, we want to have an interval

- which contains the True Parameter value with high Probability;
- which has the possible smallest length.

Assume we have a Random Sample from a Parametric Model \mathcal{F}_{θ} :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

Our aim is to find an interval containing the Unknown Parameter value.

More rigorously, we want to have an interval

- which contains the True Parameter value with high Probability;
- which has the possible smallest length.

Let us state this in Mathematical terms. We will consider here only 1D case, i.e., we will assume $\theta \in \Theta \subset \mathbb{R}$.

We start by Random Intervals:

We start by **Random Intervals:**

Assume X and Y are two r.v. on the same probability space and $X \leq Y$ a.s., that is, $\mathbb{P}(X > Y) = 0$.

We start by **Random Intervals:**

Assume X and Y are two r.v. on the same probability space and $X \leq Y$ a.s., that is, $\mathbb{P}(X > Y) = 0$. We will call intervals of the form [X,Y] or (X,Y) or

We start by Random Intervals:

Assume X and Y are two r.v. on the same probability space and $X \leq Y$ a.s., that is, $\mathbb{P}(X > Y) = 0$. We will call intervals of the form [X,Y] or (X,Y) or

Example: Assume $X \sim Pois(2.3)$. Then

$$[X, X + 2)$$

is a Random Interval.

We start by Random Intervals:

Assume X and Y are two r.v. on the same probability space and $X \leq Y$ a.s., that is, $\mathbb{P}(X > Y) = 0$. We will call intervals of the form [X,Y] or (X,Y) or

Example: Assume $X \sim Pois(2.3)$. Then

$$[X, X + 2)$$

is a Random Interval.

Example: Let $X_1, X_2, ..., X_n$ are IID r.v.s. Then

$$\left(\overline{X}-0.1,\ \overline{X}+0.1\right)$$

is a Random Interval.