Estrutura de Dados - 1o. período de 2018

Primeira Avaliação a Distância

- 1. (1,0) Escreva as seguintes funções em notação O: $\sqrt{n} + 2n^3$; $2^n + n^5$; $n \log n + n^2$; $n + 10^{10}$; $n! + 10^n$.
- 2. (1,5) Sejam V_1 e V_2 dois vetores ordenados de tamanhos m e n, respectivamente. Escreva um algoritmo que intercale os dois vetores de forma que o vetor resultante V_3 esteja também ordenado. Os vetores V_1 e V_2 não podem ser alterados. Seu agoritmo deve ter complexidade O(n+m).
- 3. Para cada item abaixo, responda "certo" ou "errado", justificando em ambos os casos:
 - a. (0,5) Se a complexidade de caso médio de um algoritmo for O(f), então o número de passos que o algoritmo efetua no melhor caso é O(f).
 - b. (0,5) A complexidade de melhor caso de um algoritmo para um certo problema P é necessariamente maior que o limite inferior de P.
 - c. (0,5) Se um limite inferior para um problema $P \in n^2$, então nenhum algoritmo ótimo para P pode ter complexidade de melhor caso n^3 .
- 4. Dado um vetor contendo os números 25, 18, 7, 3, 40, 12, pede-se:
 - a. (1,0) Desenhe todas as trocas de elementos que o *método de ordenação por seleção* efetua. **Exemplo:** se as trocas fossem "25 por 40", "7 por 3", "12 por 40" etc., você deveria desenhar a seguinte sequência de vetores:

- b. (1,0) Desenhe todas as trocas de elementos que o *método de ordenação da bolha* efetua. Utilize na resposta o mesmo sistema do item anterior.
- 5. (2,0) Escreva um algoritmo que, a partir de uma lista simplesmente encadeada com nó cabeça L_1 , crie outra lista encadeada com nó cabeça L_2 , contendo apenas os elementos pares de L_1 . A lista L_1 não pode ser alterada. Qual a complexidade do seu algoritmo? Justifique sua resposta.

- 6. Considere um vetor V que armazena duas pilhas P_1 e P_2 , que compartilham V da seguinte forma: P_1 se desenvolve sequencialmente da extremidade esquerda de V para a direita, enquanto que P_2 ocupa as posições a partir da extremidade direita e se desenvolve, em sequência, para a esquerda. Para inserirmos um dado x em uma pilha P ($P = P_1$ ou $P = P_2$), usamos o comando I(P,x); para removermos um dado, usamos o comando R(P). Pede-se:
 - a. (1,0) Considerando que V tem 5 posições e que, inicialmente, P_1 e P_2 estão vazias, desenhe V após cada comando, para a seguinte sequência de comandos: $I(P_1,a)$, $I(P_1,b)$, $I(P_1,c)$, $I(P_2,d)$, $I(P_2,e)$, $R(P_1)$, $R(P_1)$, $R(P_2)$, $I(P_2,f)$, $I(P_2,g)$.
 - b. (1,0) Determine as condições de overflow e underflow para cada pilha.