Ziheng Cheng

EDUCATION

B.S. in Mathematics

Sep, 2020-Jun, 2024 (Expected)

Peking University, Beijing, China

- Overall GPA: 3.892/4.0, Ranking: 3/50.
- Selected Coursework: Mathematical Analysis III (99), Linear Algebra I (100), Real Analysis (99), Abstract Algebra (99.5),
 Probability Theory (94), Mathematical Statistics (96), Measure Theory (99), Optimization Methods (96), Data Structure and Algorithm (95).
- Graduate Courses: High-Dimensional Probability (99), Deep Learning and Reinforcement Learning (91), Bayesian Theory and Computation (95), Learning by Research (96).

PUBLICATIONS & MANUSCRIPTS

(* stands for equal contribution)

- Momentum Benefits Non-IID Federated Learning Simply and Provably Ziheng Cheng*, Xinmeng Huang*, Pengfei Wu, Kun Yuan (preprint, under review)
- Particle-based Variational Inference with Generalized Wasserstein Gradient Flow Ziheng Cheng*, Shiyue Zhang*, Longlin Yu, Cheng Zhang (NeurIPS 2023, Poster)
- Joint Graph Learning and Model Fitting in Laplacian Regularized Stratified Models
 Ziheng Cheng*, Junzi Zhang*, Akshay Agrawal, Stephen Boyd
 (preprint, under review at Journal of Machine Learning Research)

WORKING PAPERS

 Distributed Adaptive Algorithms with Local Updates Ziheng Cheng, Margalit Glasgow, Tengyu Ma

RESEARCH EXPERIENCE

Distributed Adaptive Optimization

Jun, 2023 - Oct, 2023

Advisor: Prof. Tengyu Ma, Department of Computer Science, Stanford University

- Studied the benefits of local iterations to reduce communication in distributed setting.
- · Proposed a distributed adaptive optimization algorithm based on gradient-clipping and Adam.
- Achieved the convergence result of Adam in distributed setting for the first time.

Optimization Theory of Federated Learning

Mar, 2023 - Jun, 2023

Advisor: Prof. Kun Yuan, Center for Machine Learning Research, Peking University

- Studied the theoretical benefits of momentum in federated learning with heterogeneous clients
- Proved that momentum can accelerate the convergence of FedAvg and Scaffold without additional assumption.
- Achieved the state of the art convergence result under this setting.

Multi-task Learning / Stratified Models

Oct, 2022 - May, 2023

Advisor: Prof. Stephen Boyd, Department of Electrical Engineering, Stanford University

- · Studied and improved the method to jointly learn both the graph and the model in Laplacian Regularized stratified models.
- · Proposed an optimization algorithm for the joint learning framework and proved its convergence under nonconvex setting.
- Conducted related empirical analysis to validate our method based on both synthetic and real data.

Particle-based Variational Inference

May, 2022 - May, 2023

Advisor: Prof. Cheng Zhang, School of Mathematical Sciences, Peking University

• Studied general Wasserstein gradient flow in probability space to propose a general particle-based VI algorithm with functional gradient.

- Established the first convergence guarantee of particle-based VI in this setting and exhibited the advantages over traditional sampling methods such as Langevin Monto Carlo.
- Conducted numerical experiments on Bayesian inference and confirmed the effectiveness of our method.

AWARDS AND HONORS

Δ	w	ıa	rd	١c

Awards	
 Honorable Mention in Alibaba Global Mathematics Competition 	2022, 2023
 Bronze Medal in ST. Yau College Student Mathematics Contest 	2022
 Meritorious Winner in Mathematical Contest in Modeling 	2022
Honors	
 May-Fourth Scholarship (top scholarship in Peking University, 0.5%) 	2023
 National Scholarship (top 0.2% nation-wide) 	2021
Merit Student of Peking University	2021-2023

TECHNICAL SKILLS

• Programming: Python, Matlab, Latex