PMI 214 Notes

Sam Fleischer

October 25, 2016

1 Entomological Inoculation Rate

• Rate at which a person is bitten by infectious vectors per day

$$EIR = ma\phi\theta \tag{1}$$

where

- -m is the number of mosquitoes
- -a is the number of bites per day
- $-\phi$ is the faction of bites which are on humans
- $-\theta$ is the fraction of vectors which are transmitting the disease

2 What is "mathematical epidemilogy?"

- based on theory of transmission process
- provides a conceptual representation of what is known about the mechanisms of a system
- helps identify knowledge gaps
- often used for hypothesis testing (tests scenarios that cannot be easily/safely tested in nature)

3 Vectorial Capacity

$$C = \frac{ma^2b}{-\ln p}p^n \tag{2}$$

 $C = \text{number of infective vector bites that would arise from all the mosquitoes that bite a single host on a single day$

- m, a same as before
- \bullet b is the vector competence
- \bullet n is the extrinsic incubation period for pathogen
- \bullet p is the daily mosquito survival probability

4 Basic Reproductive Rate

$$R_0 = \frac{C}{r} \tag{3}$$

 R_0 = the avg. number of future host infections that will arise following introduction of a single infectious host in a susceptible population

• r is the host recovery rate... unit: 1/(infectious period)

5 SIR/SEIR

For hosts, susceptible \rightarrow exposed \rightarrow infective \rightarrow removed. For vectors, no exposed period.