Informatica teorica

Indice

1. Introduzione	
1.1. Definizione	
1.2. Cosa e come	
2. Richiami matematici	3
2.1. Funzioni	
2.2. Totalizzare una funzione	
2.3. Prodotto cartesiano	
2.4. Insieme di funzioni	
2.5. Funzione valutazione	
3. Teoria della calcolabilità	6
3.1. Sistema di calcolo	
3.2. Potenza computazionale	6

1. Introduzione

1.1. Definizione

L'informatica teorica è quella branca dell'informatica che si "contrappone" all'informatica applicata: in quest'ultima, l'informatica è usata solo come uno *strumento* per gestire l'oggetto del discorso, mentre nella prima l'informatica diventa l'*oggetto* del discorso, di cui ne vengono studiati i fondamenti.

1.2. Cosa e come

Analizziamo i due aspetti fondamentali che caratteristicano ogni materia:

- 1. il **cosa**: l'informatica è la scienza che studia l'informazione e la sua elaborazione automatica mediante un sistema di calcolo. Ogni volta che ho un *problema* cerco di risolverlo automaticamente scrivendo un programma. *Posso farlo per ogni problema? Esistono problemi che non sono risolubili?* Possiamo chiamare questo primo aspetto con il nome di **teoria della calcolabilità**, quella branca che studia cosa è calcolabile e cosa non lo è, a prescindere dal costo in termini di risorse che ne deriva. In questa parte utilizzeremo una caratterizzazione molto rigorosa e una definizione di problema il più generale possibile, così che l'analisi non dipenda da fattori tecnologici, storici...
- 2. il **come**: è relazionato alla **teoria della complessità**, quella branca che studia la quantità di risorse computazionali richieste nella soluzione automatica di un problema. Con *risorsa computazionale* si intende qualsiasi cosa venga consumato durante l'esecuzione di un programma, ad esempio:
 - elettricità;
 - numero di processori;
 - tempo;
 - spazio di memoria.

In questa parte daremo una definizione rigorosa di tempo, spazio e di problema efficientemente risolubile in tempo e spazio, oltre che uno sguardo al famoso problema P = NP.

Possiamo dire che il cosa è uno studio qualitativo, mentre il come è uno studio quantitativo.

Grazie alla teoria della calcolabilità individueremo le funzioni calcolabili, di cui studieremo la complessità.

2. Richiami matematici

2.1. Funzioni

Una **funzione** da un insieme A ad un insieme B è una legge, spesso indicata con f, che spiega come associare agli elementi di A un elemento di B.

Abbiamo due tipi di funzioni:

- generale: la funzione è definita in modo generale come f : A → B, in cui A è detto dominio di f e B è detto codominio di f;
- locale/puntuale: la funzione riguarda i singoli valori a e b:

$$f(a) = b \mid a \stackrel{f}{\longmapsto} b$$

in cui b è detta **immagine** di a rispetto ad f e a è detta **controimmagine** di b rispetto ad f.

Possiamo categorizzare le funzioni in base ad alcune proprietà:

• iniettività: una funzione $f:A\longrightarrow B$ si dice iniettiva se e solo se:

$$\forall a_1, a_2 \in A \quad a_1 \neq a_2 \Longrightarrow f(a_1) \neq f(a_2)$$

In poche parole, non ho confluenze, ovvero elementi diversi finiscono in elementi diversi.

• suriettività: una funzione $f:A\longrightarrow B$ si dice suriettiva se e solo se:

$$\forall b \in B \quad \exists a \in A \mid f(a) = b.$$

In poche parole, ogni elemento del codominio ha almeno una controimmagine.

Se definiamo l'insieme immagine:

$$\operatorname{Im}_f = \{b \in B \mid \exists a \in A \text{ tale che } f(a) = b\} = \{f(a) \mid a \in A\} \subseteq B$$

possiamo dare una definizione alternativa di funzione suriettiva, in particolare una funzione è *suriettiva* se e solo se ${\rm Im}_f=B.$

Infine, una funzione $f:A\longrightarrow B$ si dice **biiettiva** se e solo se è iniettiva e suriettiva, quindi vale: $\forall b\in B \quad \exists ! a\in A \mid f(a)=b.$

Se $f:A\longrightarrow B$ è una funzione biiettiva, si definisce **inversa** di f la funzione $f^{-1}:B\longrightarrow A$ tale che:

$$f(a) = b \iff f^{-1}(b) = a.$$

Per definire la funzione inversa f^{-1} , la funzione f deve essere biiettiva: se così non fosse, la sua inversa avrebbe problemi di definizione.

Un'operazione definita su funzioni è la **composizione**: date $f:A \longrightarrow B$ e $g:B \longrightarrow C$, la funzione f composto g è la funzione $g \circ f:A \longrightarrow C$ definita come $(g \circ f)(a)=g(f(a))$.

La composizione non è commutativa, quindi $g \circ f \neq f \circ g$ in generale, ma è associativa, quindi $(f \circ g) \circ h = f \circ (g \circ h)$.

La composizione f composto g la possiamo leggere come prima agisce f poi agisce g.

Dato l'insieme A, la **funzione identità** su A è la funzione $i_A:A\longrightarrow A$ tale che:

$$i_A(a) = a \quad \forall a \in A,$$

ovvero è una funzione che mappa ogni elemento su se stesso.

Grazie alla funzione identità, possiamo dare una definizione alternativa di funzione inversa: data la funzione $f:A\longrightarrow B$ biiettiva, la sua inversa è l'unica funzione $f^{-1}:B\longrightarrow A$ che soddisfa:

$$f \circ f^{-1} = f^{-1} \circ f = \mathrm{id}_A.$$

Possiamo vedere f^{-1} come l'unica funzione che ci permette di tornare indietro.

Definiamo un'ulteriore classificazione per le funzioni. Data $f:A\longrightarrow B$, diciamo che f è:

- **totale**, se è definita per *ogni* elemento $a \in A$. Formalmente, scriviamo $f(a) \uparrow$;
- parziale, se è definita per qualche elemento $a \in A$. Formalmente, scriviamo $f(a) \downarrow$.

Chiamiamo **dominio di esistenza** di f l'insieme:

$$Dom_f = \{a \in A : f(a) \downarrow\} \subseteq A.$$

Notiamo che:

- $Dom_f \subseteq A \Rightarrow f$ parziale;
- $Dom_f = A \Rightarrow f$ totale.

2.2. Totalizzare una funzione

Data $f:A\to B$ parziale, possiamo renderla totale aggiungendo un valore speciale, utilizzeremo \bot , per tutti i valori per cui la funzione di partenza non è definita. La funzione risultante sarà:

$$f': A \to B \cup \{\bot\}.$$

Questa viene interpretata nel seguente modo:

$$f'(a) = \begin{cases} f(a) & \text{se } a \in \text{Dom}_f\\ \bot & \text{altrimenti} \end{cases}$$

Da qui in avanti utilizzeremo B_{\perp} come abbreviazione di $B \cup \{\bot\}$.

2.3. Prodotto cartesiano

Chiamiamo prodotto cartesiano l'insieme:

$$A \times B = \{(a, b) : a \in A \land b \in B\}$$

che rappresenta tutte le coppie di valori in A e in B.

In generale, il prodtto cartesiano **non è commutativo**, a meno che A=B.

Possiamo estendere il concetto di prodotto cartesiano a *n*-uple di valori:

$$A_1 \times ... \times A_n = \{(a_1, ..., a_n) : a_i \in A_i\}.$$

Ad ogni prodotto cartesiano possiamo associare una proiezione che recupera un componente della tupla:

$$\pi_i: A_1 \times ... \times A_n \to A_i.$$

2.4. Insieme di funzioni

Per indicare l'insieme di tutte le funzioni da A a B, scriviamo:

$$B^A = \{ f : A \to B \}.$$

Viene utilizzata questa notazione in quanto la cardinalità di B^A è esattamente $|B|^{|A|}$.

Se può succedere che f sia parziale, scriviamo: $B^A = \{f: A \to B_\perp\}$.

2.5. Funzione valutazione

Dati A,Be B_{\perp}^{A} si definisce **funzione di valutazione** la funzione:

$$\omega:B_\perp^A\times A\to B$$

$$w(f,a) = f(a).$$

Tenendo fisso a posso scorrere tutte le funzioni su a, mentre tenendo fisso f riesco a trovare il grafico di f.

3. Teoria della calcolabilità

3.1. Sistema di calcolo

Definiamo un programma P come una sequenza di regole che trasformano un dato di input in uno di output. Diciamo che $P \in \mathrm{DATI}^{\mathrm{DATI}}_{+}$

Il modello classico che viene considerato quando si parla di calcolatori è quello di Von Neumann.

In questa architettura \mathcal{C} , dato il programma P e input x, abbiamo due possibili situazioni:

- la macchina restituisce un output -> y;
- la macchina entra in loop -> \perp .

Formalmente, abbiamo che $\mathcal{C}: \mathrm{DATI}^{\mathrm{DATI}}_{\perp} \times \mathrm{DATI}_{\perp}$. Possiamo interpretare una funzione di valutazione come una macchina di Von Neumann, in cui $\mathcal C$ è la funzione di valutazione e $\mathcal C(P,x)$ è la funzione calcolata da P (anche chiamata **semantica** di P).

3.2. Potenza computazionale

Definiamo la potenza computazionale di un calcolatore \mathcal{C} :

$$F(\mathcal{C}) = \{\mathcal{C}(P_{,}) : P \in PROG\} \subseteq DATI_{\perp}^{DATI}.$$

Stabilire cosa può l'informatica equivale a studiare quest'ultima inclusione, in particolare se:

- F(C) ⊊ DATI^{DATI} ⇒ esistono compiti non automatizzabili;
 F(C) = DATI^{DATI} ⇒ l'informatica può fare tutto.

Dato che ogni problema può essere visto come una "funzione soluzione", calcolare funzioni equivale a risolvere problemi.

Ma in che modo possiamo risolvere l'inclusione?

Possiamo analizzare la cardinalità dei due insiemi e metterli a confronto. Questo discorso ha senso ovviamente solo se abbiamo a che fare con insiemi di cardinalità finita.