

Review Notes

Ch 2.2 Set Operations

Introduction

Let A and B be sets. The union of the sets A and B, denoted by $A \cup B$, is the set that contains those elements that are either in A or in B, or in both.

Let A and B be sets. The intersection of the sets A and B, denoted by $A\cap B$, is the set containing those elements in both A and B.

Two sets are called *disjoint* if their intersection is the empty set.

The principle of inclusion-exclusion

The generalization of the result to unions of an arbitrary number of sets. An important technique used in enumeration. (Discussed in Ch6 & 8)

Let A and B be sets. The *difference* of A and B, denoted by A-B (A/B), is the set containing those elements that are in A but not in B. The difference of A and B is also called the *complement of B with respect to A*.

Let U be the universal set. The complement of the set A, denoted by \overline{A} , is the complement of A with respect to U. Therefore, the complement of the set A is U-A

$$A - B = A \cap \overline{B}$$

Set Identities

lacktriangle [EXAMPLE 10] Prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$

Prove that $A \cap B = A \cup B$.

Solution: We will prove that the two sets $\overline{A\cap B}$ and $\overline{A}\cup \overline{B}$ are equal by showing that each set is a subset of the other.

First, we will show that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$. We do this by showing that if x is in $\overline{A \cap B}$, then it must also be in $\overline{A} \cup \overline{B}$. Now suppose that $x \in \overline{A \cap B}$. By the definition of complement, $x \notin A \cap B$. Using the definition of intersection, we see that the proposition $\neg((x \in A) \land (x \in B))$ is true.

By applying De Morgan's law for propositions, we see that $\neg(x \in A)or \neg(x \in B)$. Using the definition of negation of propositions, we have $x \notin A$ or $x \notin B$. Using the definition of the complement of a set, we see that this implies that $x \in \overline{A}$ or $x \in \overline{B}$. Consequently,

Review Notes 1

by the definition of union, we see that $x\in \overline{A}\cup \overline{B}$. We have now shown that $\overline{A\cap B}\subseteq \overline{A}\cup \overline{B}$.

Next, we will show that $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$. We do this by showing that if x is in $\overline{A} \cup \overline{B}$, then it must also be in $\overline{A \cap B}$. Now suppose that $x \in \overline{A} \cup \overline{B}$. By the definition of union, we know that $x \in \overline{A}$ or $x \in \overline{B}$. Using the definition of complement, we see that $x \notin A$ or $x \notin B$. Consequently, the proposition $\neg(x \in A) \lor \neg(x \in B)$ is true.

By De Morgan's law for propositions, we conclude that $\neg((x \in A) \land (x \in B))$ is true. By the definition of intersection, it follows that $\neg(x \in A \cap B)$. We now use the definition of complement to conclude that $x \in \overline{A \cap B}$. This shows that $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$. Because we have shown that each set is a subset of the other, the two sets are equal, and the identity is proved.

lacktriangledown [EXAMPLE 11] Use set builder notation and logical equivalences to establish the first De Morgan law $\overline{A\cap B}=\overline{A}\cup\overline{B}$

Solution: We can prove this ientity with the following steps.

$$\overline{A \cap B} = \{x \mid x \notin A \cap B\}$$

$$= \{x \mid \neg(x \in (A \cap B))\}$$

$$= \{x \mid \neg(x \in A \land x \in B)\}$$

$$= \{x \mid \neg(x \in A) \lor \neg(x \in B)\}$$

$$= \{x \mid x \notin A \lor x \notin B\}$$

$$= \{x \mid x \in \overline{A} \lor x \in \overline{B}\}$$

$$= \{x \mid x \in \overline{A} \cup \overline{B}\}$$

$$= \overline{A} \cup \overline{B}$$

 $A \cap B = \{x \mid x \in A \cap B\}$ by definition of complement

- = $\{x \mid \neg(x \in (A \cap B))\}\$ by definition of does not belong symbol
- = $\{x \mid \neg (x \in A \land x \in B)\}$ by definition of intersection
- = $\{x \mid \neg(x \in A) \lor \neg(x \in B)\}$ by the first De Morgan law for logical equivalences
- = $\{x \mid x \neq A \lor x \neq B\}$ by definition of does not belong symbol
- = $\{x \mid x \in A \lor x \in B\}$ by definition of complement
- = $\{x \mid x \in A \cup B\}$ by definition of union
- = A \cup B by meaning of set builder notation

▼ [EXAMPLE 12]

Prove the second distributive law from Table 1, which states that $A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$ for all sets A, B, and C. Solution: We will prove this identity by showing that each side is a subset of the other side.

Suppose that $x\in A\cap (B\cup C)$. Then $\mathbf{x}\in \mathbf{A}$ and $x\in B\cup C$. By the definition of union, it follows that $x\in A$, and $x\in B$ or $x\in C$ (or both). In other words, we know that the compound proposition $(x\in A)\wedge ((x\in B)\vee (x\in C))$ is true. By the distributive law for conjunction over disjunction, it follows that $((x\in A)\wedge (x\in B))\vee ((x\in A)\wedge (x\in C))$. We conclude that either $\mathbf{x}\in \mathbf{A}$ and $x\in B$, or $x\in A$ and $x\in C$. By the definition of intersection, it follows that $x\in A\cap B$ or $x\in A\cap C$. Using the definition of union, we conclude that $x\in (A\cap B)\cup (A\cap C)$. We conclude that $x\in A\cap B\cup C$.

Now suppose that $x\in (A\cap B)\cup (A\cap C)$. Then, by the definition of union, $x\in A\cap B$ or $x\in A\cap C$. By the definition of intersection, it follows that $x\in A$ and $x\in B$ or that $x\in A$ and $x\in C$. From this we see that $x\in A$, and $x\in B$ or $x\in C$.

TABLE 1 Set Identities.	
Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\frac{\overline{A \cap B}}{\overline{A \cup B}} = \overline{A} \cup \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

Review Notes 2

Consequently, by the definition of union we see that $x \in A$ and $x \in B \cup C$. Furthermore, by the definition of intersection, it follows that $x \in A \cap (B \cup C)$. We conclude that $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. This completes the proof of the identity.

Generalized Unions and Intersections

The *union* of a collection of sets is the set that contains those elements that are members of at least one set in the collection.

The *intersection* of a collection of sets is the set that contains those elements that are members of all the sets in the collection.

Computer Representation of Sets (Bit Strings)

▼ [EXAMPLE18]

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, and the ordering of elements of U has the elements in increasing order; that is, $a_i = i$. What bit strings represent the subset of all odd integers in U, the subset of all even integers in U, and the subset of integers not exceeding 5 in U?

$$(1) \{1, 3, 5, 7, 9\} \rightarrow 1010101010$$

$$(2) \{2,4,6,8,10\} \rightarrow 0101010101$$

$$(3) \{1, 2, 3, 4, 5\} \rightarrow 11111100000$$

▼ [EXAMPLE20]

The bit strings for the sets $\{1,2,3,4,5\}$ and $\{1,3,5,7,9\}$ are 1111100000 and 1010101010, respectively. Use bit strings to find the union and intersection of these sets.

- Union \rightarrow 1111101010 \rightarrow $\{1, 2, 3, 4, 5, 7, 9\}$
- Intersection \rightarrow 1010100000 \rightarrow $\{1,3,5\}$