Components of a Network

- Objects: nodes, vertices
- Interactions: links, edges
- System: network, graph

N

 \boldsymbol{E}

G(N,E)

Graphs: A Common Language

How do you define a graph?

- How to build a graph:
 - What are nodes?
 - What are edges?
- Choice of the proper network representation of a given domain/problem determines our ability to use networks successfully:
 - In some cases, there is a unique, unambiguous representation
 - In other cases, the representation is by no means unique
 - The way you assign links will determine the nature of the question you can study

Directed vs. Undirected Graphs

Undirected

Links: undirected (symmetrical, reciprocal)

- Examples:
 - Collaborations
 - Friendship on Facebook

Directed

Links: directed (arcs)

- Examples:
 - Phone calls
 - Following on Twitter

Heterogeneous Graphs

- A heterogeneous graph is defined as G = (V, E, R, T)

- Nodes with node types $v_i \in V$
- Edges with relation types $(v_i, r, v_j) \in E$
- Node type $T(v_i)$
- Relation type $r \in R$

Many Graphs are Heterogeneous Graphs

Biomedical Knowledge Graphs

Example node: Migraine

Example edge: (fulvestrant, Treats, Breast Neoplasms)

Example node type: Protein

Example edge type (relation): Causes

Academic Graphs

Example node: ICML

Example edge: (GraphSAGE, NeurIPS)

Example node type: Author

Example edge type (relation): pubYear

Node Degrees

Jndirected

Directed

Source: Node with $k^{in} = 0$

Sink: Node with $k^{out} = 0$

Node degree, k_i : the number of edges adjacent to node i

$$k_{A} = 4$$

Avg. degree:
$$\overline{k} = \langle k \rangle = \frac{1}{N} \prod_{i=1}^{N} k_i = \frac{2E}{N}$$

In directed networks we define an **in-degree** and **out-degree**. The (total) degree of a node is the sum of in- and out-degrees.

$$k_C^{in} = 2 \qquad k_C^{out} = 1 \qquad k_C = 3$$

$$\overline{k} = \frac{E}{N} \qquad \overline{k^{in}} = \overline{k^{out}}$$

Bipartite Graph

Bipartite graph is a graph whose nodes can be divided into two disjoint sets *U* and *V* such that every link connects a node in *U* to one in *V*; that is, *U* and *V* are independent sets

Examples:

- Authors-to-Papers (they authored)
- Actors-to-Movies (they appeared in)
- Users-to-Movies (they rated)
- Recipes-to-Ingredients (they contain)

"Folded" networks:

- Author collaboration networks
- Movie co-rating networks

Folded/Projected Bipartite Graphs

Projection U

U V

Projection V

Representing Graphs: Adjacency Matrix

if there is a link from node i to node j

 $A_{ii} = 0$ otherwise

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \qquad A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Note that for a directed graph (right) the matrix is not symmetric.

Adjacency Matrix

Undirected

$$A_{ij} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

$$A_{ii} = A_{ii}$$

$$k_i = \prod_{j=1}^N A_{ij}$$

$$k_{j} = \prod_{i=1}^{N} A_{ij}$$

$$L = \frac{1}{2} \prod_{i=1}^{N} k_i = \frac{1}{2} \prod_{ij}^{N} A_{ij}$$

Directed

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$\begin{array}{ccc} A_{ij} & \square & A_{ji} \\ A_{ii} & = 0 \end{array}$$

$$k_i^{out} = \sum_{j=1}^N A_{ij}$$

$$k_j^{in} = \prod_{i=1}^N A_{ij}$$

$$L = \prod_{i=1}^{N} k_i^{in} = \prod_{j=1}^{N} k_j^{out} = \prod_{i,j}^{N} A_{ij}$$

Adjacency Matrices are Sparse

Networks are Sparse Graphs

Most real-world networks are sparse

 $E \ll E_{max}$ (or $k \ll N-1$)

NETWORK	NODES	LINKS	DIRECTED/ UNDIRECTED	N	L	<k></k>
Internet	Routers	Internet connections	Undirected	192,244	609,066	6.33
www	Webpages	Links	Directed	325,729	1,497,134	4.60
Power Grid	Power plants, transformers	Cables	Undirected	4,941	6,594	2.67
Phone Calls	Subscribers	Calls	Directed	36,595	91,826	2.51
Email	Email Addresses	Emails	Directed	57,194	103,731	1.81
Science Collaboration	Scientists	Co-authorship	Undirected	23,133	93,439	8.08
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908	83.71
Citation Network	Paper	Citations	Directed	449,673	4,689,479	10.43
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802	5.58
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930	2.90

Consequence: Adjacency matrix is filled with zeros!

(Density of the matrix (E/N^2): WWW=1.51x10⁻⁵, MSN IM = 2.27x10⁻⁸)

Representing Graphs: Edge list

- Represent graph as a list of edges:
 - **(2, 3)**
 - -(2,4)
 - **(**3, 2)
 - **(3, 4)**
 - **4** (4, 5)
 - **(5, 2)**
 - **(5, 1)**

Representing Graphs: Adjacency list

Adjacency list:

- Easier to work with if network is
 - Large
 - Sparse
- Allows us to quickly retrieve all neighbors of a given node

- **2**: 3, 4
- **3**: 2, 4
- **4**: 5
- **5**: 1, 2

Node and Edge Attributes

Possible options:

- Weight (e.g., frequency of communication)
- Ranking (best friend, second best friend...)
- Type (friend, relative, co-worker)
- Sign: Friend vs. Foe, Trust vs. Distrust
- Properties depending on the structure of the rest of the graph: Number of common friends

More Types of Graphs

Unweighted

Examples: Friendship, Hyperlink

Weighted

Examples: Collaboration, Internet, Roads

More Types of Graphs

Self-edges (self-loops)

$$A_{ii} \neq 0$$
 $A_{ij} = A_{ji}$ $E = \frac{1}{2} \sum_{i,j=1,i\neq j}^{N} A_{ij} + \sum_{i=1}^{N} A_{ii}$

Examples: Proteins, Hyperlinks

Multigraph

$$A_{ii} = 0$$
 $A_{ij} = A_{ji}$ $E = \frac{1}{2} \sum_{i,j=1}^{N} nonzero(A_{ij})$ $\overline{k} = \frac{2E}{N}$

Examples: Communication, Collaboration

Connectivity of Undirected Graphs

- Connected (undirected) graph:
 - Any two vertices can be joined by a path
- A disconnected graph is made up by two or more connected components

Largest Component: **Giant Component**

Isolated node (node H)

Connectivity: Example

The adjacency matrix of a network with several components can be written in a block-diagonal form, so that nonzero elements are confined to squares, with all other elements being zero:

Connectivity of Directed Graphs

Strongly connected directed graph

 has a path from each node to every other node and vice versa (e.g., A-B path and B-A path)

Weakly connected directed graph

is connected if we disregard the edge directions

Graph on the left is connected but not strongly connected (e.g., there is no way to get from F to G by following the edge directions).

Connectivity of Directed Graphs

 Strongly connected components (SCCs) can be identified, but not every node is part of a nontrivial strongly connected component.

In-component: nodes that can reach the SCC,

Out-component: nodes that can be reached from the SCC.