Data Mining Classification: Alternative Techniques

Bayesian Classifiers

© Tan,Steinbach, Kumar

Introduction to Data Mining

09/27/2007

Bayes Classifier

- A probabilistic framework for solving classification problems
- Conditional Probability:

$$P(Y \mid X) = \frac{P(X,Y)}{P(X)}$$

$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

Bayes theorem:

$$P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)}$$

© Tan,Steinbach, Kumar

Introduction to Data Mining

09/27/2007

Example of Bayes Theorem

- Given:
 - A doctor knows that meningitis causes stiff neck 50% of the time
 - Prior probability of any patient having meningitis is 1/50,000
 - Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

© Tan, Steinbach, Kumar

Introduction to Data Mining

09/27/2007

(#)

Using Bayes Theorem for Classification

- Consider each attribute and class label as random variables
- Given a record with attributes (X₁, X₂,..., X_d)
 - Goal is to predict class Y
 - Specifically, we want to find the value of Y that maximizes P(Y| X₁, X₂,..., X_d)
- Can we estimate P(Y| X₁, X₂,..., X_d) directly from data?

© Tan,Steinbach, Kumar

Introduction to Data Mining

09/27/2007

Using Bayes Theorem for Classification

- Approach:
 - compute posterior probability P(Y | X₁, X₂, ..., X_d) using the Bayes theorem

$$P(Y \mid X_{1}X_{2} \dots X_{n}) = \frac{P(X_{1}X_{2} \dots X_{d} \mid Y)P(Y)}{P(X_{1}X_{2} \dots X_{d})}$$

- Maximum a-posteriori: Choose Y that maximizes
 P(Y | X₁, X₂, ..., X_d)
- Equivalent to choosing value of Y that maximizes $P(X_1, X_2, ..., X_d|Y) P(Y)$
- How to estimate P(X₁, X₂, ..., X_d | Y)?

© Tan, Steinbach, Kumar

Introduction to Data Mining

09/27/2007

(#)

Naïve Bayes Classifier

- Assume independence among attributes X_i when class is given:
 - $P(X_1, X_2, ..., X_d | Y_j) = P(X_1 | Y_j) P(X_2 | Y_j)... P(X_d | Y_j)$
 - Can estimate P(X_i| Y_i) for all X_i and Y_i from data
 - New point is classified to Y_j if $P(Y_j) \prod P(X_i|Y_j)$ is maximal.

© Tan,Steinbach, Kumar

Introduction to Data Mining

09/27/2007

Conditional Independence

- X and Y are conditionally independent given Z if P(X|YZ) = P(X|Z)
- Example: Arm length and reading skills
 - Young child has shorter arm length and limited reading skills, compared to adults
 - If age is fixed, no apparent relationship between arm length and reading skills
 - Arm length and reading skills are conditionally independent given age

© Tan,Steinbach, Kumar

Introduction to Data Mining

09/27/2007

(#)

Estimate Probabilities from Data

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

- Class: $P(Y) = N_c/N$
 - e.g., P(No) = 7/10, P(Yes) = 3/10
- For discrete attributes:

$$P(X_i \mid Y_k) = |X_{ik}| / N_{Ck}$$

- where |X_{ik}| is number of instances having attribute value X_i and belonging to class Y_k
- Examples:

P(Status=Married|No) = 4/7 P(Refund=Yes|Yes)=0

© Tan,Steinbach, Kumar Introduction to Data Mining

09/27/2007

Estimate Probabilities from Data

- For continuous attributes:
 - Discretization: Partition the range into bins:
 - · Replace continuous value with bin value
 - Attribute changed from continuous to ordinal
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, use it to estimate the conditional probability P(X_i|Y)

© Tan,Steinbach, Kumar

Introduction to Data Mining

09/27/2007

(#)

Estimate Probabilities from Data

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

• Normal distribution:

$$P(X_{i} | Y_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{(X_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

- One for each (X_i,Y_i) pair
- For (Income, Class=No):
 - If Class=No
 - ◆ sample mean = 110
 - ◆ sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)} e^{\frac{-(120-110)^2}{2(2975)}} = 0.0072$$

© Tan,Steinbach, Kumar

Introduction to Data Mining

09/27/2007

Example of Naïve Bayes Classifier

Given a Test Record:

X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7 P(Refund=No|No) = 4/7 P(Refund=Yes|Yes) = 0 P(Refund=No|Yes) = 1 P(Marital Status=Single|No) = 2/7 P(Marital Status=Divorced|No)=1/7 P(Marital Status=Married|No) = 4/7 P(Marital Status=Single|Yes) = 2/7 P(Marital Status=Divorced|Yes)=1/7 P(Marital Status=Divorced|Yes) = 0

For taxable income:

If class=No: sample mean=110 sample variance=2975

If class=Yes: sample mean=90 sample variance=25

P(X|Class=No) = P(Refund=No|Class=No) \times P(Married| Class=No) \times P(Income=120K| Class=No) = $4/7 \times 4/7 \times 0.0072 = 0.0024$

• P(X|Class=Yes) = P(Refund=No|Class=Yes) $\times P(Married|Class=Yes)$ $\times P(Income=120K|Class=Yes)$ $= 1 \times 0 \times 1.2 \times 10^{-9} = 0$

Since P(X|No)P(No) > P(X|Yes)P(Yes)Therefore P(No|X) > P(Yes|X)=> Class = No

© Tan, Steinbach, Kumar

Introduction to Data Mining

09/27/2007

(#)

Naïve Bayes Classifier

- If one of the conditional probabilities is zero, then the entire expression becomes zero
- Probability estimation:

Original:
$$P(A_i \mid C) = \frac{N_{ic}}{N_c}$$

Laplace:
$$P(A_i \mid C) = \frac{N_{ic} + 1}{N_c + c}$$

m - estimate :
$$P(A_i \mid C) = \frac{N_{ic} + mp}{N_c + m}$$

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attribute

M: mammals

N: non-mammals

$$P(A|M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A \mid M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A|N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

09/27/2007

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

P(A|M)P(M) > P(A|N)P(N)

=> Mammals

© Tan,Steinbach, Kumar Introduction to Data Mining 09/27/2007 (#)

Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)

© Tan,Steinbach, Kumar Introduction to Data Mining

Bayesian Belief Networks

- Provides graphical representation of probabilistic relationships among a set of random variables
- Consists of:
 - A directed acyclic graph (dag)
 - Node corresponds to a variable
 - Arc corresponds to dependence relationship between a pair of variables

 A probability table associating each node to its immediate parent

© Tan,Steinbach, Kumar

Introduction to Data Mining

09/27/2007

(#)

Conditional Independence

D is parent of C

A is child of C

B is descendant of D

D is ancestor of A

 A node in a Bayesian network is conditionally independent of all of its nondescendants, if its parents are known

© Tan,Steinbach, Kumar

Introduction to Data Mining

09/27/2007

Conditional Independence

• Naïve Bayes assumption:

© Tan,Steinbach, Kumar

Introduction to Data Mining

09/27/2007

(#)

Probability Tables

- If X does not have any parents, table contains prior probability P(X)
- If X has only one parent (Y), table contains conditional probability P(X|Y)
- If X has multiple parents (Y₁, Y₂,..., Y_k), table contains conditional probability P(X|Y₁, Y₂,..., Y_k)

