Analyse des Approches IA pour le Projet

1 Tableau comparatif des approches IA possibles

Approche IA	Description	Avantages	Inconvénients
Réseaux de neu-	Utilisation de modèles	Bonne compré-	Besoin de beau-
rones (DL)	comme RNN, LSTM,	hension du lan-	coup de données
	ou Transformers pour	gage, personnali-	et de puissance
	comprendre et générer	sation possible	de calcul
	du langage		
Systèmes de re-	Basé sur le filtrage col-	Personnalisation	Peut nécessiter
commandation	laboratif, contenu ou	efficace, bon	un historique
	modèles hybrides	ROI sur la	utilisateur im-
		fidélisation	portant
Systèmes ex-	Règles logiques défi-	Transparent, ex-	Peu adaptatif,
perts	nies à la main pour	plicable, rapide	ne gère pas bien
	guider les interactions	à prototyper	les conversations
			complexes
Systèmes NLP	TF-IDF, Word2Vec,	Moins coûteux à	Limité pour
classiques	chatbot à base de	implémenter, ra-	des conversa-
	règles ou similarité	pide	tions riches et
	sémantique		personnalisées
Large Language	Modèles pré-entraînés	Réponses na-	Complexité d'in-
Models (LLMs)	(GPT, BERT,	turelles, haute	tégration, coût,
	LLaMA) capables	compréhension	possible halluci-
	de comprendre et	contextuelle	nation
	générer des conversa-		
	tions		
Systèmes multi-	Plusieurs agents IA	Modulaire,	Complexité de
agents (SMA)	(ex. : dialogue, recom-	distribué, adap-	coordination et
	mandation, analyse)	tatif, facilement	de développe-
	coopèrent pour une	extensible	ment
	tâche commune		

Approche la plus adaptée : Systèmes Multi-Agents (SMA)

2 Approches NLP (Traitement du langage naturel)

Approche NLP	Description	Avantages	Inconvénients
TF-IDF / BM25	Pondération des mots	Simple, rapide,	Ignore le
	selon leur fréquence	utile pour la re-	contexte et
		cherche ou mat-	la sémantique
		ching basique	
Word2Vec/GloVe	Représentation sé-	Bon pour la si-	Ne prend pas
	mantique des mots	milarité séman-	bien en compte
		tique	le contexte
			global
BERT / Distil-	Encodage profond de	Excellent pour	Plus lent,
BERT	phrase, compréhen-	la classifica-	nécessite du
	sion contextuelle	tion, l'analyse	fine-tuning ou
		d'intention, le	des embeddings
		dialogue	adaptés
GPT (OpenAI,	Modèles généra-	Réponses na-	Coûteux, hal-
LLaMA, etc.)	tifs pour dialogue,	turelles et	lucinations
	reformulation, person-	contextuelles,	possibles, besoin
	nalisation	possible few-	d'un encadre-
		shot/fine-tuning	ment
Sentence Trans-	Embeddings de	Idéal pour les re-	Nécessite un in-
formers	phrases ou de docu-	cherches séman-	dex ou vectordb
	ments avec BERT	tiques, matching	pour l'efficacité
	optimisé pour la	utilisateur-	
	similarité	produit	

Approche NLP la plus efficace : Sentence Transformers ou GPT, selon la tâche

- Pour la compréhension et génération de dialogue \to GPT Pour la recommandation contextuelle via matching \to Sentence Transformers

Approches CNN (utiles dans certains modules du SMA) 3

Utilisation CNN	Description	Avantages	Inconvénients
Analyse	Pour analyser des	Extraction de	Hors du cœur
d'images (profil)	images de produit,	caractéristiques	du chatbot, mais
	photos clients, ou	visuelles utile	utile si multimo-
	profil visuel	pour la recom-	dalité
		mandation	
CNN pour NLP	Applique CNN sur	Rapide, bon	Moins perfor-
(TextCNN)	des représentations	pour la classi-	mant que les
	textuelles (embed-	fication (ex :	Transformers
	dings)	intention, senti-	sur du dialogue
		ments)	complexe
Hybrid CNN-	Mélange CNN (local	Meilleure cap-	Plus complexe,
LSTM	features) et LSTM	ture des patterns	mais pas tou-
	(séquence)	textuels qu'un	jours supérieur à
		CNN seul	BERT

Approche CNN la plus efficace : TextCNN pour des modules spécialisés (ex. détection d'intention rapide)

4 Orchestrateurs d'agents (LangGraph, CrewAI, Rasa, etc.)

Orchestrateur /	Description	Avantages	Inconvénients
Framework			
CrewAI	Coordination explicite d'agents autonomes avec rôles et outils	Facile à intégrer avec LLMs, agents spécia- lisés, bonne modularité	Encore jeune, limité pour des workflows complexes
LangGraph	Graphes d'agents avec	Parfait pour	Complexe à
(LangChain)	flux de conversation	workflows adap-	maintenir, dé-
	dynamique	tatifs, bonne	pendance forte à
		gestion du	LangChain
D	T) 1	contexte	M : 0 :11
Rasa	Framework open source de chatbot orienté dialogue et NLP	Excellent pour dialogues structurés, intégration avec actions backend	Moins flexible pour l'IA gé- nérative ou multi-agent
Autogen/ AutogenStudio	Outils Microsoft pour la coordination d'agents LLM	Fort potentiel, très modulaire, collaboration inter-agents poussée	Encore en évolution, nécessite une bonne configuration initiale
OpenAgents	Coordination d'outils	Simplicité	Fermé, peu
(OpenAI)	et agents via OpenAI	d'usage, bon	personnalisable
		pour tâches ciblées	pour SMA avancé

 ${\bf Approche\ d'orchestration\ la\ plus\ efficace: LangGraph\ {\rm pour\ SMA\ flexible,\ adaptatif\ et\ contextuel}}$

5 Systèmes de recommandation utilisables dans un SMA

Méthode de re-	Description	Avantages	Inconvénients
commandation			
Filtrage collabo-	Basé sur les préfé-	Très performant	Problème du dé-
ratif	rences d'utilisateurs	avec historique	marrage à froid,
	similaires	riche	biais

Méthode de re-	Description	Avantages	Inconvénients
commandation			
Filtrage basé sur	Basé sur les caractéris-	Recommandation	Moins adaptatif,
le contenu	tiques des produits ou	personnalisée	peut stagner
	profils	possible	sans nouveauté
Modèles hy-	Combine les deux ap-	Très bonne per-	Plus complexe à
brides	proches ci-dessus	formance globale	mettre en œuvre
Recommandation	Utilise GPT ou BERT	Personnalisé et	Peut halluciner,
par LLM	pour générer des re-	conversationnel	nécessite garde-
	commandations expli-		fous
	cites		

Approche recommandation la plus efficace : Modèle hybride + embeddings (ex. FAISS + SentenceTransformer)

6 Stockage / Base de connaissances / Mémoire des agents

Outil / Techno-	Description	Avantages	Inconvénients
logie			
FAISS / Chroma	Indexation vectorielle	Parfait pour la	Nécessite du pré-
/ Weaviate	pour similarité séman-	recherche d'info	traitement
	tique	contextuelle	
Redis(VectorDB)	Stockage clé-valeur ou	Très rapide,	Moins adapté
	vecteur rapide	bonne intégra-	pour grands
		tion	corpus
GraphDB/Neo4j	Base de données de	Idéal pour mo-	Moins optimisé
	graphes	déliser des rela-	pour NLP pur
		tions complexes	

 ${\bf Approche\ la\ plus\ efficace: Chroma\ ou\ FAISS\ avec\ Sentence\ Embeddings\ pour\ mémoire\ contextuelle}$