NUMERICAL ANALYSIS QUALIFYING EXAM Fall, 2003

(Do at least 3 problems from problems 1-4, and do at least 3 problems from problems 5-8, you may do as many as you can)

1. Let \mathbf{A}_n be a symmetric positive-definite matrix of the form

$$\mathbf{A}_n = \left[\begin{array}{cc} \mathbf{A}_{n-1} & \mathbf{b} \\ \mathbf{b}^T & a_{nn} \end{array} \right].$$

(a). Show that if A_{n-1} has a Cholesky factorization

$$\mathbf{A}_{n-1} = \mathbf{L}_{n-1} \mathbf{L}_{n-1}^T,$$

with L_{n-1} nonsingular, then there exist a vector **c** and a real number d such that

$$\mathbf{A}_n = \left[\begin{array}{cc} \mathbf{L}_{n-1} & 0 \\ \mathbf{c}^T & d \end{array} \right] \left[\begin{array}{cc} \mathbf{L}_{n-1}^T & \mathbf{c} \\ 0 & d \end{array} \right].$$

- (b). Use the observation in part (a) in an inductive argument to prove that every symmetric positive-definite matrix has a Cholesky factorization.
- 2. Let A be nonsingular and suppose that $A = LU = \hat{L}\hat{U}$, where L and \hat{L} are unit lower-triangular (i.e., their diagonal entries are all 1s) and U and \hat{U} are upper-triangular. Show that $L = \hat{L}$ and $U = \hat{U}$.
- 3. For the linear system

$$x + \alpha y = a$$
$$-\alpha x + y = b$$

- (a). Write out the Jacobi method, the Gauss-Seidel method, and the SOR method for the system.
- (b). Under what conditions on α will Jacobi and Gauss-Seidel converge?
- (c). Under what conditions on α and ω will SOR converge?
- 4. Let A be a real symmetric matrix whose eigenvalues λ_j , $j = 1, \ldots, m$, satisfy

$$|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_m|.$$

Denote by \mathbf{q}_j a unit eigenvector corresponding to λ_j . The power iteration is the following algorithm:

 $\mathbf{v}^{(0)}$ is some vector with Euclidean norm $\|\mathbf{v}^{(0)}\| = 1$. for $k = 1, 2, \dots$

$$\mathbf{w} = A\mathbf{v}^{(k-1)} \qquad \text{apply } A$$

$$\mathbf{v}^{(k)} = \mathbf{w}/\|\mathbf{w}\| \qquad \text{normalize}$$

$$\lambda^{(k)} = (\mathbf{v}^{(k)})^T A \mathbf{v}^{(k)} \qquad \text{Rayleigh quotient}$$

Show that if $\mathbf{q}_1^T \mathbf{v}^{(0)} \neq 0$, then

$$\|\mathbf{v}^{(k)} - (\pm \mathbf{q}_1)\| = O(|\lambda_2/\lambda_1|^k),$$

and

$$|\lambda^{(k)} - \lambda_1| = O(|\lambda_2/\lambda_1|^{2k}).$$

The \pm sign means that at each step k, one or the other choice of sign is to be taken, and then the indicated bound holds.

5. Suppose

$$\frac{dy}{dx} = f(x, y),$$

$$y(x_0) = y_0,$$

and let

$$y_1(h) = y_0 + h f(x_0, y_0)$$

$$y_2(h) = y_0 + h \frac{f(x_0, y_0) + f(x_0 + h, y_1(h))}{2}$$

Assuming $y \in C^{\infty}(\mathbb{R})$ and $f \in C^{\infty}(\mathbb{R} \times \mathbb{R})$, show that

$$|y_2(h) - y(x_0 + h)| = O(|h|^3). (1)$$

- 6. The Chebyshev polynomials are defined by $T_n(x) = \cos(n\cos^{-1}(x))$.
 - (a) Show the Chebyshev polynomials are actually polynomials.
 - (b) Find a weight function w(x) so the Chebyshev polynomials are orthogonal on [-1,1]. Justify your work.
- 7. Approximate $\int_0^4 \frac{e^{-x}}{\sqrt{x}} dx$. Show your work and give a bound for the error in your approximation.
- 8. Given the data points (-2, -4), (-1, -1), (0, 1), (1, 4), approximate y(0.5) using a natrual cubic spline interpolation.