

Fahrzeug - Querregelung

- Dortmund 25.06.2010 -

Dr.-Ing. Xiuxun Yin

Übersicht

- Einführung
- Fahrdynamik
- Querregelung
- Fahrversuch
- Zusammenfassung

Einführung Fahrzeugquerführung

Brauchen wir eine Fahrzeugquerführung?

Beispiel 1:

- Lane Centering Control
- Lane Keeping Support

Einführung Fahrzeugquerführung

Beispiel 2: Ausweichassistent (ESA)

Einführung Fahrzeugquerführung

Beispiel 3: Baustellenassistent

Einführung Aufgabe der Querführung

Querführung ist eine durch das Fahrerassistent System ausgeführte Lenkaktivität, um das Fahrzeug so zu führen, dass es dem Sollspurverlauf mit erlaubter Fehlertoleranz folgt.

- Vermeidet Unfälle
- Verbessert Fahrsicherheit
- Erhöht Fahrkomfort
- Ermöglicht (Teil-) Autonomesfahren

Übersicht

- Einführung
- Fahrdynamik
- Querregelung
- Fahrversuch
- Zusammenfassung

Fahrdynamik: Einspurmodell

EinspurmodellBeschreibt wesentliche Fahrzeugdynamik

$$\dot{\beta} = \frac{a_{11}}{v}\beta + (\frac{a_{12}}{v^2} - 1)\dot{\psi} + \frac{b_1}{v}\delta_L$$

$$\ddot{\boldsymbol{\psi}} = a_{21}\boldsymbol{\beta} + \frac{a_{22}}{v}\dot{\boldsymbol{\psi}} + b_2\boldsymbol{\delta}_L$$

Querabweichung- und Kurswinkelfehlerdynamik

$$\dot{y}_d = v\theta_d + v\beta$$

$$\dot{\theta}_d = vk_R - \dot{\psi}$$

Fahrdynamikmodell

Gesamte Fahrdynamik

$$\begin{bmatrix} \dot{\beta} \\ \ddot{\psi} \\ \dot{\theta}_d \\ \dot{y}_d \end{bmatrix} = \begin{bmatrix} a_{11} & (a_{12}/v^2 - 1) & 0 & 0 \\ a_{21} & a_{22}/v & 0 & 0 \\ 0 & -1 & 0 & 0 \\ v & 0 & v & 0 \end{bmatrix} \begin{bmatrix} \beta \\ \dot{\psi} \\ \theta_d \\ y_d \end{bmatrix} + \begin{bmatrix} b_1/v & 0 \\ b_2 & 0 \\ 0 & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \delta_L \\ k_R \end{bmatrix}$$

- ○Eingangsgröße: Lenkwinkel
- Ausgangsgrößen: Querabweichung und Kurswinkelfehler
- Störgröße: Sollspurkrümmung

Fahrdynamik: Identifikation

- Experimentelle Bestimmung des dynamischen Modells eines Systems.
- Das identifizierte Modell soll das Ein-/Ausgangsverhalten hinreichend genau darstellen.
- Die Modellstruktur ist bekannt oder vorgegeben.
- □ Identifikation der Modellparameter durch nicht-lineare Optimierung der Zielfunktion

$$J(\theta) = \frac{1}{L} \sum_{k=0}^{L} [z(t_k) - y(t_k)] R^{-1} [z(t_k) - y(t_k)]$$

Nichtlineare Optimierung

Identifikation Modell und Parameter

Fahrzeugmodell:

$$\dot{x} = v\cos(\beta + \psi)$$

$$\dot{y} = v\sin(\beta + \psi)$$

$$\psi = \int \dot{\psi}dt$$

$$\dot{\beta} = \frac{a_{11}}{v}\beta + (\frac{a_{12}}{v^2} - 1)\dot{\psi} + \frac{b_1}{v}\delta_L$$

$$\ddot{\psi} = a_{21}\beta + \frac{a_{22}}{v}\dot{\psi} + b_2\delta_L$$

Zu identifizierende Parameter:

$$a_{11}$$
, a_{12} , a_{21} , a_{22} , b_{1} , b_{2}

Gemessen werden:

: Längengrad (DGPS mit Basisstation)

: Breitengrad

: Kurswinkel

: Gierrate (ESP Sensor)

: Längsgeschwindigkeit (Raddrehzahl + DGPS)

: Lenkwinkel (ESP Lenkwinkelsensor)

Identifikation Vergleich Messung und identifiziertes Modell

Fahrdynamik Einfluss des Schwimmwinkels

Modell mit Schwimmwinkel

$$\begin{bmatrix} \dot{\beta} \\ \dot{\theta}_d \\ \dot{y}_d \end{bmatrix} = \begin{bmatrix} a_{11} & (a_{12}/v^2 - 1) & 0 & 0 \\ a_{21} \\ 0 \\ v \end{bmatrix} \begin{bmatrix} a_{22}/v & 0 & 0 \\ -1 & 0 & 0 \\ v & 0 \end{bmatrix} \begin{bmatrix} \dot{\psi} \\ \theta_d \\ y_d \end{bmatrix} + \begin{bmatrix} b_2 & 0 \\ 0 & v \\ k_R \end{bmatrix}$$

Modell ohne Schwimmwinkel

$$\begin{bmatrix} \ddot{\psi} \\ \dot{\theta}_d \\ \dot{y}_d \end{bmatrix} = \begin{bmatrix} a_{22}/v & 0 & 0 \\ -1 & 0 & 0 \\ 0 & v & 0 \end{bmatrix} \begin{bmatrix} \dot{\psi} \\ \theta_d \\ y_d \end{bmatrix} + \begin{bmatrix} b_2 & 0 \\ 0 & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \delta_L \\ k_R \end{bmatrix}$$

Fahrdynamik Lenk-Aktordynamik

Vereinfachte Fahrdynamik

$$\begin{bmatrix} \ddot{\psi} \\ \dot{\theta}_d \\ \dot{y}_d \end{bmatrix} = \begin{bmatrix} a_{22}/v & 0 & 0 \\ -1 & 0 & 0 \\ 0 & v & 0 \end{bmatrix} \begin{bmatrix} \dot{\psi} \\ \theta_d \\ y_d \end{bmatrix} + \begin{bmatrix} b_2 \\ 0 \\ 0 \end{bmatrix} \mathcal{S}_L$$

Lenk-Aktor mit Lenkwinkelregler

$$\dot{\delta}_L = a_w \delta_L + b_w \delta_c$$

Fahrdynamik Modell für die Querregelung

Besonderheiten des Models

- System (Linear Parameter-Varying System)
- \mathcal{V} = Konstante.
- Entwurfsmethode linearer Systeme könnte bei sich langsam ändernder Geschwindigkeit gültig sein.

$$\begin{bmatrix} \dot{\mathcal{S}}_L \\ \dot{\ddot{\psi}} \\ \dot{\theta}_d \\ \dot{\dot{y}}_d \end{bmatrix} = \begin{bmatrix} a_w & 0 & 0 & 0 \\ b_2 & a_{22}/v & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & v & 0 \end{bmatrix} \begin{bmatrix} \mathcal{S}_L \\ \dot{\psi} \\ \theta_d \\ y_d \end{bmatrix} + \begin{bmatrix} b_w \\ 0 \\ 0 \\ 0 \end{bmatrix} \mathcal{S}_c$$

$$A(v) \qquad \qquad x \qquad B$$

$$\dot{x} = A(v) \cdot x + B \cdot u$$

Übersicht

- Einführung
- Fahrdynamik
- Querregelung
- Fahrversuch
- Zusammenfassung

Querregelung

- LQR (Lineare Quadratisch Optimale Regelung)
- LQR mit Luenberger-Beobachter als Störgrößenkompensator
- Gain Scheduling: Geschwindigkeitsabhängige Regler und Beobachter

LQR für geraden Spurverlauf

Lineares quadratisches Optimierungsproblem für das lineare System

$$\dot{x}(t) = Ax(t) + Bu(t)$$

durch eine Zustandsrückführung

$$u(t) = -k_c x(t) = -R^{-1}B^T P x(t)$$

soll das Gütekriterium minimiert werden

$$J = \int_{0}^{\infty} [x^{T}(t)Qx(t) + u^{T}(t)Ru(t)]dt$$

Lösung mit Matlab: $k_c = lqr(A, B, Q, R)$

Struktur der Zustandsrückführung

LQR

Simulation für geraden Sollspurverlauf

Solllenkwinkel:
$$\delta_{c} = -k_{c} \begin{bmatrix} \delta_{L} \\ \dot{\psi} \\ \theta_{d} \\ y_{d} \end{bmatrix} \quad , \qquad \text{Anfangszustand:} \quad \begin{bmatrix} x(0) \\ y(0) \\ \beta(0) \\ \psi(0) \\ \dot{\psi}(0) \\ \delta_{L}(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 1.5 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Geschwindigkeit: v = 16.6667 [m/s] (60 kmh)

Simulation für geraden Sollspurverlauf

- Keine bleibende Querabweichung und Kurswinkelfehler
- Gute dynamische Ausregelung der Querabweichung

Sollspurverlauf mit sich ändernder Krümmung

Sollspur:

- Krümmung variieren kontinuierlich
- Größte Krümmung 0.0109, entspricht Krümmungsradius 91.8m
- Positive und negative Krümmung (Links- und Rechtskurve)

Simulationskonfiguration

- Geschwindigkeit 68 180 kmh
- Querbeschleunigung 0.4g (an möglichen Strecken)
- Anfangsquerabweichung ca. 1.0 m

Simulierter Fahrzeugspurverlauf

LQR: Inakzeptable große Querabweichung

Störgrößenbeobachter Krümmung als Störung am Lenkwinkel

Suche nach einem Lenkwinkelkommando δ_s , das die gleiche Auswirkung wie die Sollspurkrümmung auf die Fahrdynamik hat.

Luenberger-Beobachter als Störgrößenbeobachter

Störlenkwinkel δ_s als eine Zustandsvariable betrachten und mit Luenberger-Beobachter alle Zustände beobachten.

$$\begin{bmatrix} \dot{\delta}_{L} \\ \dot{\psi} \\ \dot{\theta}_{d} \\ \dot{y}_{d} \\ \dot{\delta}_{s} \end{bmatrix} = \begin{bmatrix} a_{w} & 0 & 0 & 0 & b_{w} \\ b_{2} & a_{22}/v & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & v & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \delta_{L} \\ \dot{\psi} \\ \theta_{d} \\ y_{d} \\ \delta_{s} \end{bmatrix} + \begin{bmatrix} b_{w} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \delta_{c} \qquad \qquad \dot{x} = A_{o}(v)x + B_{o}u$$

Luenberger-Beobachter

$$\begin{split} \dot{\hat{x}}_o &= A_o(v)\hat{x}_o + B_ou + k_o(y - C_ox_o) \\ \hat{y}_o &= C_o\hat{x}_o \end{split}$$

Beobachtermatrix

$$k_{o}(v) = lqr(A_{o}^{T}(v), C_{o}^{T}, Q_{o}(v), R_{o})$$

Struktur LQR mit Störgrößenkompensation

LQR mit Störgrößenkompensation

Vergleich der Querabweichungen

Deutlich kleinere Querabweichungen bei LQR mit Störgrößenkompensation

Vergleich der Lenkwinkel

Schnellere Reaktion des LQRs mit Störgrößenkompensation

LQR mit Gain Scheduling

Entwurf des Reglers und Beobachters für die diskrete konstante Geschwindigkeit

$$k_c(v_i) = lqr(A(v_i), B, Q(v_i), R), \quad v_i = 15,20,25,30,....$$

 $k_o(v_i) = lqr(A_o^T(v_i), C_o^T, Q_o(v_i), R_o)$

Anwenden für alle sich ändernde

Geschwindigkeiten durch Interpolation

$$\begin{aligned} k_c(v) &= (k_c(v_{i+1}) - k_c(v_i)) \frac{v - v_i}{v_{i+1} - v_i} + k_c(v_i), & v_i < v < v_{i+1} \\ k_o(v) &= (k_o(v_{i+1}) - k_o(v_i)) \frac{v - v_i}{v_{i+1} - v_i} + k_o(v_i) \end{aligned}$$

Übersicht

- Einführung
- Fahrdynamik
- Querregelung
- Fahrversuch
- Zusammenfassung

Fahrversuch

Zusammenfassung

- ○Identifikation als m\u00e4chtiges Werkzeug zur Erlangung eines guten anwendbaren Modells.
- ○Vereinfachter Regler-/Beobachterentwurf durch zweckmäßige Modellkomplexität.
- Modellbasierte Entwicklung reduziert Aufwand und Zeit, liefert dennoch gutes Regelungsergebnis.
- Autonomes Fahren ist möglich!

