# EE583 Pattern Recognition HW5

Kutay Uğurlu 2232841

January 2, 2022

## 1 Question 1

3 different experiments are conducted. In each experiment, ten models are individually used to calculate the accuracy, or equivalently misclassification loss.

## 1.1 Default settings



Figure 1: Visualization of the first tree

This 3 split tree resulted in a loss of 0.0267.

## 1.2 Maximum number of Splits Restriction



Figure 2: Visualization of the second tree

For this experiment the resultant number of splits was higher than the first one. Therefore, it resulted in less misclassification loss of 0.0240.

#### 1.3 Maximum number of Splits Restriction

Changing the split criterion from Gini's diversity index to deviance resulted in the improvement of the accuracy.

- 2 Question 2
- 3 Question 3
- 4 Question 4

#### 5 APPENDIX

The code given in this section is shared @**Q**.

#### 5.1 Q1

```
%%
2 clear; clc;
  chdir('...')
  addpath ('export_fig')
  chdir ('HW5')
  rng (101)
  %%
  load fisheriris.mat
  feats = meas(:, 3:4);
  Y = species;
11
  tree_model = fitctree (feats, species, 'CrossVal', 'on');
12
   view (tree_model.Trained {1}, 'Mode', 'graph')
  Ls = [];
  \begin{array}{cccc} \textbf{for} & i & = & 1:10 \end{array}
15
       model = tree_model.Trained{i};
16
       preds = predict(model, feats);
17
       confusion matrix = confusionmat (species, preds);
18
       accuracy = sum(diag(confusion matrix))/sum(sum(confusion matrix))
19
       loss = 1 - accuracy;
20
       Ls(end+1) = loss;
21
  end
22
  mean loss default = mean(Ls);
^{23}
24
  %%
25
  tree_model = fitctree (feats, species, 'CrossVal', 'on', 'MaxNumSplits',7)
26
   view (tree model. Trained {1}, 'Mode', 'graph')
27
  Ls = [];
28
  for i = 1:10
29
       model = tree model.Trained{i};
30
       preds = predict(model, feats);
31
       confusion matrix = confusionmat (species, preds);
32
       accuracy = sum(diag(confusion matrix))/sum(sum(confusion matrix))
33
       loss = 1 - accuracy;
34
       Ls(end+1) = loss;
35
36
  mean_loss_restricted_splits = mean(Ls);
37
  %%
38
  tree_model = fitctree (feats, species, 'CrossVal', 'on', 'SplitCriterion',
      'deviance');
  view (tree model. Trained {1}, 'Mode', 'graph')
  Ls = |\cdot|;
41
  for i = 1:10
```

```
model = tree model.Trained{i};
43
       preds = predict(model, feats);
44
       confusion matrix = confusionmat (species, preds);
45
       accuracy = sum (diag (confusion_matrix))/sum (sum (confusion_matrix))
46
       loss = 1 - accuracy;
47
       Ls(end+1) = loss;
48
49
  mean_loss_split_criterion = mean(Ls);
50
  figHandles = findall(0, 'Type', 'figure');
52
53
  for i = 1:numel(figHandles)
54
       export_fig(['Q1_',num2str(i)], '-png', figHandles(i), '-append')
55
  end
56
57
  hTree=findall(0, 'Tag', 'tree viewer');
  % close (hTree)
59
60
  mean loss default
61
  mean\_loss\_restricted\_splits
62
  mean loss split criterion
```

## 5.2 Q2

```
1 clc, clear;
2 load fisheriris.mat
  feats = meas(:,3:4);
 Y = species;
  rng(101)
5
  % Cross varidation (train: 50%, test: 50%)
  cv = cvpartition(size(feats,1),'HoldOut',0.5);
  idx = cv.test;
9
10
  % Separate to training and test data
11
  feats Train = feats(~idx,:);
  feats Test = feats(idx,:);
  Y \text{ Train} = Y(\tilde{idx});
14
  Y_{\text{Test}} = Y(idx);
15
16
  % To amplify the difference of the classification success, the number
17
       o f
  % splits are restricted for a single tree to also highlight the
      a da boost
  % success
19
  t = templateTree('MaxNumSplits',1);
20
  Mdl = fitcensemble (feats_Train, Y_Train, 'Method', 'AdaBoostM2', ...
21
       'Learners',t,'NumLearningCycles',25);
22
  view (Mdl. Trained {1}, 'Mode', 'graph')
23
  preds = predict (Mdl. Trained {1}, feats Test);
24
  confusionmatrix = confusionmat(Y_Test, preds);
25
  first\_tree\_accuracy = sum(diag(confusionmatrix))/sum(sum(
26
      confusion matrix))
  preds = predict (Mdl, feats Test);
  confusionmatrix = confusionmat(Y_Test, preds);
  ensemble_tree_accuracy = sum(diag(confusionmatrix))/sum(sum(
29
      confusion matrix))
30
31
32
  accs = [];
33
  for lr = 10.^{-1} - 8:0
34
       t = templateTree('MaxNumSplits',1);
35
       Mdl = fitcensemble (feats_Train, Y_Train, 'Method', 'AdaBoostM2', ...
36
       'Learners', t, 'NumLearningCycles', 25, 'LearnRate', lr);
37
       preds = predict(Mdl, feats Test);
       confusionmatrix = confusionmat(Y_Test, preds);
39
       model\_accuracy = sum(diag(confusionmatrix))/sum(sum(
40
          confusionmatrix));
       accs(end+1) = model \ accuracy;
41
  end
42
43
  figure
```

```
plot(-8:0,1-accs)

ylim([0 0.5])

title('Misclassification Rate vs Learning Rate')

ylabel('Misclassification Rate')

xlabel('Learning Rate Power')
```

#### 5.3 Q3

```
1 clc, clear;
2 load fisheriris.mat
  feats = meas(:, 3:4);
_{4} Y = species;
  rng (101)
  % Cross varidation (train: 50%, test: 50%)
  cv = cvpartition(size(feats,1),'HoldOut',0.5);
  idx = cv.test;
9
10
  % Separate to training and test data
11
  feats Train = feats(~idx,:);
  feats Test = feats(idx,:);
  Y \text{ Train} = Y(\tilde{idx});
14
  Y_Test = Y(idx);
15
16
  Mdl = TreeBagger (25, feats, Y, 'OOBPrediction', 'On', ...
17
       'Method', 'classification', 'SampleWithReplacement', 'on');
18
19
20
  view (Mdl. Trees {1}, 'Mode', 'graph')
21
  preds = predict(Mdl.Trees{1},feats_Test);
22
  confusionmatrix = confusionmat(Y Test, preds);
23
  first tree accuracy = sum(diag(confusionmatrix))/sum(sum(
24
      confusion matrix))
  preds = predict(Mdl, feats Test);
^{25}
  confusionmatrix = confusionmat(Y_Test, preds);
  ensemble\_tree\_accuracy = sum(diag(confusionmatrix))/sum(sum(
      confusionmatrix))
```

#### 5.4 Q4

```
1 load lawdata
  rhohat = corr(lsat, gpa);
  %%
4
  rng default; % For reproducibility
  jackrho = jackknife(@corr,lsat,gpa);
  meanrho = mean(jackrho);
  yyaxis left
  plot (lsat)
9
  ylabel ('LSAT')
10
  hold on
11
  yyaxis right
12
  plot (gpa)
  h = ylabel ('GPA', 'Rotation', 270);
14
  xlabel ('Samples')
  h. Position (1) = 16.5; % change horizontal position of ylabel
  legend('LSAT,GPA')
17
   title ({['Real Correlation: ',num2str(rhohat)],['Estimated Correlation
         , num2str(meanrho)])
19
  n = length(lsat);
20
  biasrho = (n-1) * (meanrho-rhohat)
21
22
23
  %%
24
  rng default; % For reproducibility
^{25}
  jackmed = jackknife (@median, lsat);
26
  meanmed lsat = mean(jackmed);
27
  n = length(lsat);
28
  bias lsat median = (n-1) * (meanmed <math>lsat-median(lsat))
  jackmed = jackknife (@median, gpa);
31
  meanmed gpa = mean(jackmed);
32
  figure
33
  yyaxis left
34
  hp1 = plot(lsat);
35
  ylabel ('LSAT')
  hold on
37
  yyaxis right
38
  hp2 = plot(gpa);
  legend ([hp1,hp2], 'LSAT', 'GPA')
  xlabel ('Samples')
  h = ylabel('GPA', 'Rotation', 270);
  h. Position (1) = 16.5; % change horizontal position of ylabel
  n = length(gpa);
  bias gpa median = (n-1) * (meanmed gpa-median(gpa))
  title ({['Real medians: ',num2str(median(lsat)),' - ',num2str(median(
      gpa))],['Estimated medians: ',num2str(meanmed_lsat),' - ',num2str(
      meanmed_gpa)],['Jackknife Estimate Bias for LSAT & GPA: ',num2str(
```