TRON GAME

A. Catherine ATTY Sékou DOUMBOUYA Manne Emile KITSOUKOU Amirath Fara OROU-GUIDOU

Université de Caen Normandie

13 avril 2023

OBJECTIFS DU PROJET

CE PROJET AVAIT POUR OBJECTIF DE :

- Modélisation du jeu
- Mise en place d'une interface graphique
- Implémentation et optimisation des algorithmes de recherche
- Analyser et comparer les performances des algorithmes Maxn et paranoid

ENJEUX DU PROJET

LES ENJEUX QU'IL A FALLU RELEVER :

- Evaluation de l'efficacité de différentes approches algorithmiques
- Identification des paramètres influant sur les performances des algorithmes
- Comprendre les mécanismes de prise de décision

PLAN DU PROJET

Modélisation du jeu

Les principaux éléments du jeu sont :

• Player : représente un joueur

• Move : structure les données d'un mouvement

• Board : modelise le plateau de jeu

• State : représente l'état du jeu

FIGURE - Modélisation du jeu

MISE EN PLACE D'UNE INTERFACE GRAPHIQUE

FIGURE - Interface graphique

FONCTIONNALITÉS INTERFACE GRAPHIQUE

ON PEUT PRINCIPALEMENT:

- Lancer une partie : lancer une partie avec les paramètres choisis
- Rejouer une partie : rejouer une partie déjà jouée
- Changer les paramètres : changer les paramètres de la partie

HEURISTIQUES

Comment choisir le meilleur coup?

HEURISTIQUES

DÉFINITION

- Une heuristique est une fonction qui permet de déterminer la valeur d'un état du jeu
- Elle est utilisée pour choisir le meilleur coup à jouer

Présentation des heuristiques

On a utilisé les heuristiques suivantes :

- OpenSpace
- GSALAP
- Voronoi
- Checker

OPENSPACE

DESCRIPTION

- On compte le nombre de cases vides autour de la case où on veut jouer
- On choisit le coup qui maximise ce nombre

FIGURE - OpenSpace

GSALAP

GSALAP OU Go AS Long As Possible

- On compte le nombre de pions qu'on peut jouer avant de bloquer
- On choisir le coup qui maximise ce nombre

FIGURE - GSALAP

Voronoi

DESCRIPTION

- On détermine la distance entre chaque case vide et la tête de chaque joueur
- On choisit le coup qui maximise la distance entre la tête du joueur et la case vide

FIGURE - Voronoi

CHECKER

DESCRIPTION

- On compte le nombre de cases vides autour de la case où on veut jouer
- On choisit le coup qui maximise ce nombre

COMPLEXITÉ DES HEURISTIQUES

Complexité en temps des heuristiques :

	Complexité en temps
OpenSpace	$\mathcal{O}(J)$
GSLASP	$\mathcal{O}(J \times N)$
Voronoï	O(J(A + S log S) + S J)
Checker	O(J(A + S log S) + S J)

PERFORMANCES DES HEURISTIQUES AVEC Maxⁿ

 $\label{eq:figure} \mathbf{Figure} - \text{Victoire par heuristique}$

FIGURE – Durée des parties gagnantes

PERFORMANCES DES HEURISTIQUES AVEC Maxⁿ

 $\mathbf{FIGURE} - \text{Victoire par heuristique}$

FIGURE – Durée des parties gagnantes

