Neighborhood based Collaborative Filtering

Jiho Kang 2022.04.01

1. Neighborhood based method

What is Neighborhood based Collaborative Filtering?

- Uses the rating data by the user on the item to make predictions for not yet scored item.
- Matrix(user*item) with score and empty values.
- By filling in blank values, high prediction ratings are recommended.
- Early algorithm developed for collaborative filtering as a memory-based algorithm.

Algorithm

User-based CF

Find a user similar to the user's purchase pattern (rating) and create a recommendation list.

Item-based CF

Find similar products between scores given by a particular user and create a recommendation list.

1. Neighborhood based method

2. Algorithm - user-based

cosine, Pearson

	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	mean	Pearson(i,3)
User 1	7	6	7	4	5	4	5.5	0.894
User 2	6	7		4	3	4	4.8	0.939
User 3	A	3	3	1	1	В	2	1.0
User 4	1	2	2	3	3	4	2.5	-1.0
User 5	1		1	2	3	3	2	-0.817

$$P_{u,i} = \frac{\sum_{\text{all similar items, N}} (s_{i,N} * R_{u,N})}{\sum_{\text{all similar items, N}} (|s_{i,N}|)}$$

S(i,N) = similarity of user R(u,N) = score of (user u, item N)

2. Algorithm - user-based

cosine, Pearson

	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	mean	Pearson(i,3)	
User 1	7	6	7	4	5	4	5.5	0.894	
User 2	6	7		4	3	4	4.8	0.939	
User 3	A 6.49	3	3	1	1	B 4	2	1.0	
User 4	1	2	2	3	3	4	2.5	-1.0	
User 5	1		1	2	3	3	2	-0.817	

$$P_{u,i} = \frac{\sum_{\text{all similar items, N}} (s_{i,N} * R_{u,N})}{\sum_{\text{all similar items, N}} (|s_{i,N}|)} \qquad A = \frac{7 \times 0.894 + 6 \times 0.939}{0.894 + 0.939} = 6.49$$

$$S(i,N)$$
 = similarity of user
 $R(u,N)$ = score of (user u, item N)

$$B = \frac{4x0.894 + 4x0.939}{0.894 + 0.939} = 4$$

2. Algorithm - user-based

cosine, Pearson

= 3.35

	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	mean	Pearson(i,3)	
User 1	7	6	7	4	5	4	5.5	0.894	
User 2	6	7		4	3	4	4.8	0.939	
User 3	A 3.35	3	3	1	1	B 0.86	2	1.0	
User 4	1	2	2	3	3	4	2.5	-1.0	
User 5	1		1	2	3	3	2	-0.817	

$$A = \frac{7x0.894 + 6x0.939}{0.894 + 0.939} = 6.49$$

$$A = \frac{2 + \frac{1.5x0.894 + 1.2x0.939}{0.894 + 0.939}}{0.894 + 0.939}$$

$$B = \frac{4x0.894 + 4x0.939}{0.894 + 0.939} = 4 \qquad B = 2 + \frac{-1.5x0.894 + -0.8x0.939}{0.894 + 0.939} = 0.86$$

2. Algorithm - item-based

	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6
User 1	7	6	7	4	5	4
User 2	6	7		4	3	4
User 3	A 3	3	3	1	1	B 1
User 4	1	2	2	3	3	4
User 5	1		1	2	3	3
Cosine(1,j)	1	0.735	0.912	-0.848	-0.813	-0.990
Cosine(6,j)	-0.990	-0.622	-0.912	0.829	0.730	1

$$\hat{r}_{31} = \frac{3 * 0.735 + 3 * 0.912}{0.735 + 0.912} = 3$$

$$\hat{r}_{36} = \frac{1 * 0.829 + 1 * 0.730}{0.829 + 0.730} = 1$$

3. Pros & Cons

Pros

- Because of a simple and intuitive approach, its easy to implement and debug.
- It is easy to explain the reason for recommending a specific ITEM, and the interpretability of ITEM-based methods stands out.
- o Relatively stable even with new items and users added to the recommendation list.

Cons

- User-based methods require a lot of time, speed, and memory.
- Limited range of items due to scarcity.
 - It is recommended only for items that are selected a lot.
 - If none of A's neighbors evaluates Harry Potter, A cannot be provided a rating forecast for Harry Potter.

References

- T아카데미 | 추천시스템 분석 입문하기
- https://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/itembased.html
- https://pearlluck.tistory.com/667
- https://hackersstudy.tistory.com/126