INGENIERÍA DE SOFTWARE - PROYECTO JORGE CRESPO

Proyecto: FISK (Jorge Crespo)

FISK es una aplicación de código abierto diseñada para mejorar la simulación y análisis del comportamiento térmico del hormigón frente a distintas agresiones térmicas.

Mejoras:

- 1. Código Abierto: Se pretende que sea una aplicación de codigo abierto, para permitir la colaboración y la continua mejora por parte de la comunidad.
- 2. Se pretende minimizar el tiempo de cómputo.
- 3. Mejorar la interfaz de Usuario: La interfaz busca ser intuitiva y fácil de usar.
 - a. Se busca minimizar la cantidad de clics al usuario.
 - b. No abrir múltiples ventanas, realizar todas las acciones dentro de la misma.
 - c. Si falta la introducción de algún dato, se resalta visualmente. En el momento que se introducen todos los datos, el usuario es llevado a una ventana de revisión antes de ejecutar la simulación.
 - d. Si hay algún error o fallo, se redirecciona al usuario a la ventana específica que contiene el fallo.
- 4. Simulación: El usuario debe seleccionar la tipología del elemento a simular.
 - a. Selección del material:
 - i. Elementos planos (ya incluido en versiones anteriores).
 - ii. Bidimensionales (nueva característica).
 - iii. Tridimensionales (nueva característica).
 - b. Características del material: Se introducen datos como la permeabilidad al agua y gas y otras propiedades como la conductividad térmica.
 - c. Tipo de agresión térmica: El usuario define parámetros como temperatura, tiempo de calentamiento, humedad exterior (con opción a geolocalización) o puede diseñar su propia agresión térmica.
- 5. Gestión de Proyectos y Materiales.
 - a. Opción para guardar y seleccionar materiales previamente ingresados, llenando automáticamente sus parámetros.
 - b. Función de exportación e importación de materiales en formatos como JSON.
 - c. Capacidad para guardar proyectos con nombres específicos. Dentro de un proyecto, se pueden tener múltiples simulaciones.
 - d. Posibilidad de reutilizar un proyecto previo en uno nuevo, modificando las condiciones iniciales.
- 6. Reportes y Exportación.
 - a. Una vez generada la gráfica de reacción del material, el usuario puede:
 - b. Exportar la información en diversos formatos.
 - c. Exportar reportes completos o parciales.
 - d. Interactuar con un panel de reporte (dashboard) con múltiples funcionalidades.

CODIGO ABIERTO

minimizar tiempos de cómputo, facilidad de uso mejorar la interfaz de entrada (al meter los datos)

no hay login. log a jorge del uso de la aplicación por usuarios FISK - nombre

mejorar el flujo d interfaz- no perder el tiempo con clicks, es decir, no "esconder" datos/botones. facilidad de uso.

no abrir ventanas nuevas cada paso, si no abrir dentro del la interfaz.

en el log, sale si faltan datos, son incorrectos, o se han completado correctamente, etc...

- -log de acciones
- -barra de progreso

no dejar continuar si los requisitos de los parámetros no cumplen si falta un dato se remarca visualmente si no faltan datos, pasa a ventana de revisión de datos para ejecutar.

si existe error, el programa te dirige a la ventana que contiene el error.

- 1º al iniciar sale un selector de tipologia de elementos:
- -elementos planos esto es lo que tenia
- -bidimensionales extendemos a esto
- -tridimensionales extendemos a esto
- 2º caracteristicas del material usado en el modelo(permeabilidad al agua, y al gas, el hormigon es poroso)

primero generar el modelo con la seleccion de elemento (medidas etc), luego seleccion de caracteristicas del material (conductor calor, etc)

- 3º tipo de agresion termica: (temperatura, tiempo que lleva a calentarse un material a una temp determinada, humedad exterior (geolocalizacion),) poder diseñar propia agresion termica
- 4º una vez todos los parametros-> boton de ejecutar, y ventana de confirmacion con todos los parametros introducidos para comprobar.

al volver pasos atras, los datos de los pasos siguientes

una vez generada la grafica de reaccion del hormigon, opciones:

- -exportar informacion en diferentes formatos.
- -exportar reporte completo o parcial reporte dashboard.
 añadir muchas funcionalidades de interaccion en el reporte final

poder guardar nuevo material para luego poder seleccionar con facilidad y rellenar los parametros automaticamente

poder exportar e importar materiales en archivo json por ejemplo.

guardar proyectos con nombre. o al crearlo. dentro del proyecto puede haber varias simulaciones poder coger un proyecto y utilizarle en un proyecto nuevo cambiando las condiciones iniciales. **Proyecto: FISK**

Desarrollador: Jorge Crespo

Resumen:

FISK es una aplicación de código abierto diseñada para mejorar la simulación y análisis del comportamiento térmico de diferentes tipos de elementos y materiales, en especial el hormigón, frente a distintas agresiones térmicas. Busca simplificar la interfaz y reducir los tiempos de cómputo, proporcionando un flujo de trabajo optimizado.

Características Principales:

- 1. **Código Abierto**: FISK es de código abierto, lo que permite la colaboración y mejora continua por parte de la comunidad.
- 2. **Interfaz de Usuario**: La interfaz busca ser intuitiva y fácil de usar.
 - No se esconden botones o datos, minimizando la cantidad de clics necesarios.
- No se abren nuevas ventanas; todas las acciones se realizan dentro de la misma interfaz.
- Si falta algún dato, se resalta visualmente. Una vez completados, el usuario es llevado a una ventana de revisión antes de ejecutar la simulación.
 - En caso de error, se direcciona al usuario a la ventana específica que contiene el fallo.
- 3. **Proceso de Simulación**:
- **Selección de Tipología**: El usuario debe seleccionar la tipología del elemento a simular:
 - Elementos planos (ya incluido en versiones anteriores).
 - Bidimensionales (nueva característica).
 - Tridimensionales (nueva característica).
- **Características del Material**: Se introducen datos como la permeabilidad al agua y gas, y otras propiedades como la conductividad térmica.
- **Tipo de Agresión Térmica**: El usuario define parámetros como temperatura, tiempo de calentamiento, humedad exterior (con opción a geolocalización) o puede diseñar su propia agresión térmica.
- 4. **Gestión de Proyectos y Materiales**:
- Opción para guardar y seleccionar materiales previamente ingresados, llenando automáticamente sus parámetros.
 - Función de exportación e importación de materiales en formatos como JSON.
- Capacidad para guardar proyectos con nombres específicos. Dentro de un proyecto, se pueden tener múltiples simulaciones.
- Posibilidad de reutilizar un proyecto previo en uno nuevo, modificando las condiciones iniciales.
- 5. **Reportes y Exportación**:
 - Una vez generada la gráfica de reacción del material, el usuario puede:
 - Exportar la información en diversos formatos.
 - Exportar reportes completos o parciales.

- Interactuar con un panel de reporte (dashboard) con múltiples funcionalidades.

6. **Registro de Uso**:

- Aunque la aplicación no requiere inicio de sesión, mantiene un registro (log) de acciones para informar a Jorge sobre la utilización de la herramienta.
 - El log identifica si hay datos faltantes, incorrectos o completados adecuadamente.
 - Se incluye una barra de progreso para guiar al usuario a través de la simulación.

Objetivo:

Ofrecer una herramienta robusta y amigable que ayude en la simulación y análisis del comportamiento térmico de materiales, mejorando la eficiencia y precisión de los resultados.

Diagrama de Estados - Proceso en Aplicación FISK

