Università degli Studi di Roma "Tor Vergata" Laurea in Informatica

Sistemi Operativi e Reti (modulo Reti) a.a. 2024/2025

Esercitazione: Livello di Rete (piano dei dati)

dr. Manuel Fiorelli

manuel.fiorelli@uniroma2.it
https://art.uniroma2.it/fiorelli

Esercizio 1

Si consideri il seguente indirizzo IP in notazione decimale puntata:

142.251.209.3

- 1. Qual è la sua rappresentazione in formato binario?
- 2. Considerando il sistema di indirizzamento a classi (ora non più in uso), dire:
 - 2.a qual è la maschera di sottorete (in notazione decimale puntata)
 - 2.b qual è il prefisso di rete in formato CIDR
 - 2.c quali sono la parte di sottorete e la parte di host nell'indirizzo
 - 2.d quante interfacce potrebbe supportare la sottorete
 - 2.e indirizzo di broadcast diretto della sottorete

Per rispondere alla domanda 1, osserviamo innanzitutto che nella *notazione decimale puntata*, i 4 numeri forniti (da sinistra verso destra) rappresentano i 4 byte che compongono l'indirizzo IP a 32 bit (dal più significativo al meno significativo).

Quindi:

convertiamo ciascuno numero in base 2

concateniamo le 4 rappresentazioni binarie

Un **byte** è un gruppo di 8 bit (binary digit).

La sua rappresentazione binaria (cioè in base 2) è:

$$d_7 d_6 d_5 d_4 d_3 d_2 d_1 d_0$$

dove $d_i \in \{0, 1\}$

La sua rappresentazione decimale (cioè in base 10) si può ottenere così:

numero di cifre - 1
$$x = \sum_{i=0}^{7} d_i \underline{2^i}$$
 bi per una generica base b

I bit a 1 ci indicano, quindi, quali potenze di 2 "prendere".

Potenza	Rappresentazione in base 10	Rappresentazione in base 2	
20	1	1	
21	2	10	
2 ²	4	100	
2 ³	8	1000	In generale:
24	16	10000	$ (2^i)_{10} = \left(1 \underbrace{0 \cdots 0}^i\right)_2 $
2 ⁵	32	100000	$(2)_{10} - (10 0))_{2}$
2 ⁶	64	1000000	Si noti che
27	128	1000000	$\left(\overbrace{1\cdots 1}^{i}\right)_{2} = \left(2^{i} - 1\right)_{10}$
28	256	10000000	$(1)^{2}$ $(2)^{1}$
2 ⁹	512	100000000	
2 ¹⁰	1024	10000000000	

Cambio di variabile: i' = i - 1 se e solo se i = i' + 1

Per convertire un numero *x* dalla base 10 alle base 2, possiamo considerare la seguente identità (n è il numero di bit):

$$x = \sum_{i=0}^{n-1} d_i 2^i = \left(\sum_{i=1}^{n-1} d_i 2^i\right) + d_0 2^0 = \left(\sum_{i=0}^{n-2} d_{i+1} 2^{i+1}\right) + d_0 2^0$$

$$= \left(\sum_{i=0}^{n-2} d_{i+1} 2^i \cdot 2\right) + d_0 2^0 = \left(\sum_{i=0}^{n-2} d_{i+1} 2^i\right) 2 + d_0$$

Per convertire un numero *x* dalla base 10 alle base 2, possiamo considerare la seguente identità (n è il numero di bit):

$$x = \sum_{i=0}^{n-1} d_i 2^i = \dots = \left(\sum_{i=0}^{n-2} d_{i+1} 2^i\right) 2 + d_0$$

Ovvero, dividendo x per 2:

- ullet il resto (che può essere solo 0 o 1) ci dà la cifra meno significativa d_0
- il quoziente è un numero sul quale continuare la conversione ricorsivamente (finché il quoziente non è uguale 0) per ottenere le restanti cifre $d_{n-1}\cdots d_1$.

Convertiamo 142.251.209.3

$$142 = 71 \cdot 2 + 0$$

$$71 = 35 \cdot 2 + 1$$

$$35 = 17 \cdot 2 + 1$$

$$17 = 8 \cdot 2 + 1$$

$$8 = 4 \cdot 2 + 0$$

$$4 = 2 \cdot 2 + 0$$

$$2 = 1 \cdot 2 + 0$$

$$1 = 0 \cdot 2 + 1$$

Convertiamo 142.251.209.3

Possiamo fare più velocemente

$$251 = 255 - 4$$

255 sono un byte di soli 1, da cui dobbiamo sottrarre 4...è sufficiente mettere a 0 il bit d_2 che vale $2^2 = 4$

Convertiamo 142.251.209.3

$$209 = 104 \cdot 2 + 1$$

$$104 = 52 \cdot 2 + 0$$

$$52 = 26 \cdot 2 + 0$$

$$26 = 13 \cdot 2 + 0$$

$$13 = 6 \cdot 2 + 1$$

$$6 = 3 \cdot 2 + 0$$

$$3 = 1 \cdot 2 + 1$$

$$1 = 0 \cdot 2 + 1$$

Convertiamo 142.251.209.3

$$3 = 1 \cdot 2 + 1$$

$$1 = 0 \cdot 2 + 1$$

$$142_{10} = 1000 \ 1110_2$$

 $251_{10} = 1111 \ 1011_2$
 $209_{10} = 1101 \ 0001_2$
 $3_{10} = 0000 \ 0011_2$

La rappresentazione binaria dell'indirizzo IP 142.251.209.3 è

1000 1110 1111 1011 1101 0001 0000 0011

Si consideri la rappresentazione binaria dell'indirizzo IP

1000 1110 1111 1011 1101 0001 0000 0011

(ripasso: mostrare CIDR e classful addressing)

Il byte più significativo inizia con 10: si tratta di un indirizzo IP di classe B.

La conoscenza dell'indirizzo IP è sufficiente per determinare la sua classe e, sulla base di questa, la maschera di rete e tutto ciò che ne deriva (senza la necessità di doverlo indicare esplicitamente, a differenza che che classless addressing).

Nella classe B, la parte della rete è lunga 16 bit, così come la parte dell'host.

Considerando l'indirizzo IP fornito 142.251.209.3

- 2a: maschera di sottorete: 255.255.0.0 (equivalente a /16)
- 2b: prefisso della rete in formato CIDR: 142.251.0.0/16
- 2c: parte di sottorete: 142.251 parte di host: 209.3
- 2d: la sottorete 142.251.0.0/16 può supportare: $2^{16} 2$ interfacce = 65 534 (avendo escluso l'indirizzo della sottorete e l'indirizzo di broadcast diretto)
- 2e: la sottorete 142.251.0.0/16 ha indirizzo di broadcast (diretto) 142.251.255.255

Nota: se non ci fosse stato chiesto di convertire l'indirizzo IP nel formato binario, avremmo potuto determinare la classe di appartenenza nel modo seguente:

Classe A -> byte più significativo: $0b_6b_5b_4b_3b_2b_1b_0$ ha valori in 0 ..127

Classe B: byte più significativo: $10b_5b_4b_3b_2b_1b_0$ ha valori in 128 ..191

Classe D: byte più significativo: $110b_4b_3b_2b_1b_0$ ha valori in 192 .. 223

Classe C: [...]

Il byte più significativo dell'indirizzo IP dato vale 142 ed appartiene pertanto all'intervallo 128..191 associato alla classe B.

Detto altrimenti: la differenza tra il byte da testare e il byte del prefisso deve essere non negativa e minore stretto di 2⁸⁻ⁿ dove n è il numero di bit del prefisso che identifica la classe.

Ancora altrimenti: si poteva ragionare sul fatto che le classi A, B, .. corrispondo a blocchi di indirizzi IP crescenti e quindi prendere classe più alta tale che il byte da testare sia maggiore o uguale al "valore di partenza" della classe. Nel nostro caso 142 è maggiore di 0 (inizio della classe A), è maggiore di 128 (inizio della classe B) e minore di 192 (inizio della classe C): quindi scegliamo la classe B.

Per convertire un numero *x* dalla base 10 alle base 2, possiamo considerare la seguente identità (n è il numero di bit):

$$x = \sum_{i=0}^{n-1} d_i 2^i = d_{n-1} 2^{n-1} + \underbrace{\left(\sum_{i=0}^{n-2} d_i 2^i\right)}_{\leq 2^{n-1}}$$

Quindi partendo dalla potenza di due più alta:

- se $x \ge 2^i$ allora $d_i = 1$ e decrementiamo x di 2^i altrimenti $d_i = 0$
- Ripetiamo decrementando i finché arriva a zero

Esercizio 2

Si consideri la tabella di inoltro seguente:

Prefisso	Porta
142.251.200.0/24	0
142.251.192.0/18	1
142.251.0.0/16	2
0.0.0.0/0	3

Verso quale porta viene inoltrato un pacchetto destinato all'indirizzo IP 142.251.209.3?

Prefisso	Porta
142.251.200.0/24	0
142.251.192.0/18	1
142.251.0.0/16	2
0.0.0.0/0	3

Nell'instradamento tradizionale basato sulla destinazione, la porta su cui viene inoltrato un pacchetto è determinata dalla riga cui è associato il prefisso più lungo tra quelli cui corrisponde l'indirizzo IP del destinatario del pacchetto.

← il prefisso a 24 bit, ci chiede di confrontare i primi 3 byte dell'indirizzo 142.251.209.3 con i byte 142.251.200.

Chiaramente non c'è una corrispondenza, perché il terzo byte è diverso.

Prefisso	Porta
142.251.200.0/24	0
142.251.192.0/18	1
142.251.0.0/16	2
0.0.0.0/0	3

La porta di uscita è dunque la 1, senza bisogno di controllare gli altri prefissi, che hanno lunghezza inferiore.

Nell'instradamento tradizionale basato sulla destinazione, la porta su cui viene inoltrato un pacchetto è determinata dalla riga cui è associato il prefisso più lungo tra quelli cui corrisponde l'indirizzo IP del destinatario del pacchetto.

← il prefisso di 18 bit comprende i primi due byte che corrispondono e del terzo byte solo i due bit più significativi. Usando la rappresentazione binaria:

$$192_{10} = 11000000_2$$

Vediamo che c'è una corrispondenza sui due bit più significativi del terzo byte.

Prefisso	Porta
142.251.200.0/24	0
142.251.192.0/18	1
142.251.0.0/16	2
0.0.0.0/0	3

In alternativa al confronto tra le rappresentazioni binarie del terzo byte, si poteva osservare quanto segue.

← negli indirizzi IP in questa sottorete /18, il terzo byte può avere qualsiasi valore per i restanti 6 bit (da tutti 0 a tutti 1). Quindi, il terzo byte può assumere i valori da 192 a 255 (cioè 192 + 63, il valore di 11 1111₂). Il terzo byte dell'indirizzo IP dato (209) cade in questo intervallo.

Esercizio 3

Definire un piano di partizionamento per la seguente rete (131.175.0.0/21), gli indirizzi dei router, gli indirizzi di broadcast, e le tabelle di inoltro. Il numero di host non include i 750 host

Definire un piano di partizionamento per la seguente rete (131.175.0.0/21), gli indirizzi dei router, gli indirizzi di broadcast, e le tabelle di inoltro. Il numero di host non include i

Identifichiamo le sottoreti: gruppi di interfacce che possono comunicare direttamente senza la mediazione di un router (o altro dispositivo di livello 3 o superiore).

Subnet A: # interfacce = 250 + 750 + 1 = 1001

Subnet B: # interfacce = 255 + 1 = 256

Subnet C: # interfacce = 50 + 1 = 51

Subnet D: # interfacce = 200 + 1 = 201

Subnet E: # interfacce = 2

Definire un piano di partizionamento per la seguente rete (131.175.0.0/21), gli indirizzi dei router, gli indirizzi di broadcast, e le tabelle di inoltro. Il numero di host non include i

Ordiniamo le subnet per numero decrescente di interfacce.

	Parte di host	Prefisso
Subnet A: # interfacce = 1001	10 bit (1022 interf.)	22 bit
Subnet B: # interfacce = 256	9 bit (510 interf.)	23 bit
Subnet D: # interfacce = 201	8 bit (254 interf.)	24 bit
Subnet C: # interfacce = 51	6 bit (62 interf.)	26 bit
Subnet E: # interfacce = 2	2 bit (2 interf.)	30 bit

Abbiamo scelto la parte di host più piccola sufficiente a indirizzare le interfacce nella sottorete; o equivalentemente, abbiamo scelto il prefisso di rete più lungo. Ricordiamo che con un prefisso di n bit si possono indirizzare $2^{32-n} - 2$ interfacce (ho una parte di host di 32 - n bit e devo togliere l'indirizzo per la sottorete e quello per il broadcast diretto).

Definire un piano di partizionamento per la seguente rete (131.175.0.0/21), gli indirizzi dei router, gli indirizzi di broadcast, e le tabelle di inoltro. Il numero di host non include i router.

Prefisso

Subnet A: 22 bit (1022 interf.)

Subnet B: 23 bit (510 interf.)

Subnet D: 24 bit (254 interf.)

Subnet C: 26 bit (62 interf.)

Subnet E: 30 bit (2 interf.)

Estendo il prefisso di rete 131.175.0.0/21 di un bit ottenendo due blocchi /22.

Il prefisso di rete *lascia fuori i 2 bit meno significativi* del terzo byte, quindi la differenza tra due blocchi consecutivi nel terzo byte è $100_2 = 4_{10}$

Il primo blocco lo uso per la subnet A.

L'altro blocco può essere ulteriormente suddiviso.

Definire un piano di partizionamento per la seguente rete (131.175.0.0/21), gli indirizzi dei router, gli indirizzi di broadcast, e le tabelle di inoltro. Il numero di host non include i router.

Prefisso

Subnet A: 22 bit (1022 interf.)

Subnet B: 23 bit (510 interf.)

Subnet D: 24 bit (254 interf.)

Subnet C: 26 bit (62 interf.)

Subnet E: 30 bit (2 interf.)

```
131.175.0.0/21
1000 0011 . 1010 1111 . 0000 0|000 . 0000

\begin{array}{c}
0 \\
131.175.0.0/22 \text{ (subnet A)} \\
1000 0011 . 1010 1111 . 0000 00|00 . 0000
\end{array}
```

Ripeto il ragionamento di prima in binario.

Definire un piano di partizionamento per la seguente rete (131.175.0.0/21), gli indirizzi dei router, gli indirizzi di broadcast, e le tabelle di inoltro. Il numero di host non include i router.

Prefisso

Subnet A: 131.175.0.0/22

Subnet B: 23 bit (510 interf.)

Subnet D: 24 bit (254 interf.)

Subnet C: 26 bit (62 interf.)

Subnet E: 30 bit (2 interf.)

Estendo il prefisso di rete 131.175.4.0/22 di un bit ottenendo due blocchi /23.

Il prefisso di rete *lascia fuori 1 bit meno significativo* del terzo byte, quindi la differenza tra due blocchi consecutivi nel terzo byte è $10_2 = 2_{10}$

Il primo blocco lo uso per la subnet B.

L'altro blocco può essere ulteriormente suddiviso.

Definire un piano di partizionamento per la seguente rete (131.175.0.0/21), gli indirizzi dei router, gli indirizzi di broadcast, e le tabelle di inoltro. Il numero di host non include i router.

Prefisso

Subnet A: 131.175.0.0/22

Subnet B: 23 bit (510 interf.)

Subnet D: 24 bit (254 interf.)

Subnet C: 26 bit (62 interf.)

Subnet E: 30 bit (2 interf.)

Ripeto il ragionamento di prima in binario.

Definire un piano di partizionamento per la seguente rete (131.175.0.0/21), gli indirizzi dei router, gli indirizzi di broadcast, e le tabelle di inoltro. Il numero di host non include i router.

Prefisso

Subnet A: 131.175.0.0/22

Subnet B: 131.175.4.0/23

Subnet D: 24 bit (254 interf.)

Subnet C: 26 bit (62 interf.)

Subnet E: 30 bit (2 interf.)

→ 131.175.7.0/24

Estendo il prefisso di rete 131.175.6.0/23 di un bit ottenendo due blocchi /24.

Il prefisso di rete *lascia fuori 0 bit meno significativo* del terzo byte, quindi la differenza tra due blocchi consecutivi nel terzo byte è $1_2 = 1_{10}$ Il primo blocco lo uso per la subnet D.

L'altro blocco può essere ulteriormente suddiviso.

Definire un piano di partizionamento per la seguente rete (131.175.0.0/21), gli indirizzi dei router, gli indirizzi di broadcast, e le tabelle di inoltro. Il numero di host non include i router.

Prefisso

Subnet A: 131.175.0.0/22

Subnet B: 131.175.4.0/23

Subnet D: 131.175.6.0/24

Subnet C: 26 bit (62 interf.)

Subnet E: 30 bit (2 interf.)

Ho esteso il prefisso di rete 131.175.7.0/24 di 2 bit ottenendo 4 blocchi /26.

Il prefisso di rete *lascia fuori i 6 bit meno significativi* del quarto byte, quindi la differenza tra due blocchi consecutivi nel quarto byte è $100\ 0000_2 = 64_{10}$

Il primo blocco lo uso per la subnet C.

Il secondo le uso per una sottorete /30 per la subnet E

131.175.7.0/24 131.175.7.0/26 131.175.7.64/26 131.175.7.128/26 131.175.7.192/26

Definire un piano di partizionamento per la seguente rete (131.175.0.0/21), gli indirizzi dei router, gli indirizzi di broadcast, e le tabelle di inoltro. Il numero di host non include i router.

131.175.0.0/21 **Prefisso** Subnet A: 131.175.0.0/22 131.175.0.0/22 (subnet A) Subnet B: 131.175.4.0/23 131.175.4.0/22 Subnet D: 131.175.6.0/24 131.175.4.0/23 (subnet B) Subnet C: 131.175.7.0/26 Subnet E: 131.175.7.64/30 131.175.6.0/23 → 131.175.6.0/24 (subnet D) 131.175.7.0/24 (Subnet C) 131.175.7.0/26 + 131.175.7.64/30 (Subnet E) 131.175.7.64/26 131.175.7.68/30 131.175.7.128/26 16 sottoreti 131.175.7.192/26

Definire un piano di partizionamento per la seguente rete (131.175.0.0/21), gli indirizzi dei router, gli indirizzi di broadcast, e le tabelle di inoltro. Il numero di host non include i router.

Definire un piano di partizionamento per la seguente rete (131.175.0.0/21), gli indirizzi dei router, gli indirizzi di broadcast, e le tabelle di inoltro. Il numero di host non include i router.

Definire un piano di partizionamento per la seguente rete (131.175.0.0/21), gli indirizzi dei router, gli indirizzi di broadcast, e le tabelle di inoltro. Il numero di host non include i

router.

Subnet D

(131.175.6.0/24)

Subnet C

(131.175.7.0/26)

Ho identificato le interfacce e assegnato loro indirizzi IP. **Tabella di inoltro di R1**: le righe con *next hop* indicano i casi di *instradamento indiretto*, le altre i casi di *instradamento diretto*.

Destinazione	Interfaccia	Next Hop
131.175.0.0/22	eth3	
131.175.4.0/23	eth0	131.175.7.66
131.175.7.0/26	eth0	131.175.7.66
131.175.6.0/24	eth1	
131.175.7.64/30	eth0	
130.0.10.0/30	eth2	
0.0.0.0/0	eth2	130.0.10.1

Negli esercizi con soluzione del libro, i casi di inoltro diretto sono omessi perché implicati dalle configurazioni delle varie interfacce.

Definire un piano di partizionamento per la seguente rete (131.175.0.0/21), gli indirizzi dei router, gli indirizzi di broadcast, e le tabelle di inoltro. Il numero di host non include i

Tabella di inoltro di R2: le righe con *next hop* indicano i casi di *instradamento indiretto*, le altre i casi di *instradamento diretto*.

Destinazione	Interfaccia	Next Hop
131.175.4.0/23	eth0	
131.175.7.0/26	eth1	
131.175.7.64/30	eth2	
131.175.0.0/22	eth2	131.175.7.65
131.175.6.0/24	eth2	131.175.7.65
130.0.10.1	eth2	131.175.7.65
0.0.0.0/0	eth2	131.175.7.65

Esercizio 4

È possibile ridurre la dimensione della seguente tabella di inoltro?

Destinazione	Netmask	Next Hop
131.175.132.0	255.255.255.0	131.123.124.125
131.175.21.0	255.255.255.0	131.123.123.121
131.175.20.0	255.255.255.0	131.123.123.121
131.175.133.0	255.255.255.0	131.123.124.125
131.175.134.0	255.255.255.0	131.123.124.130
131.175.135.0	255.255.255.0	131.123.124.125
131.175.50.0	255.255.254.0	131.123.124.126
0.0.0.0	0.0.0.0	131.123.124.126

È possibile ridurre la dimensione della seguente tabella di inoltro?

Destinazione	Netmask	Next Hop
131.175.132.0	255.255.255.0	131.123.124.125
131.175.21.0	255.255.255.0	131.123.123.121
131.175.20.0	255.255.255.0	131.123.123.121
131.175.133.0	255.255.255.0	131.123.124.125
131.175.134.0	255.255.255.0	131.123.124.130
131.175.135.0	255.255.255.0	131.123.124.125
131.175.50.0	255.255.254.0	131.123.124.126
0.0.0.0	0.0.0.0	131.123.124.126

Approccio:

- Identificare gruppi di 2^k reti adiacenti (opportunamente allineate) e con pari next hop, che saranno sostituite da una sola voce per il gruppo (supernet) la cui netmask è stata accorciata di k bit. In sintesi: è il contrario di quanto fatto per estendere un prefisso di rete.
- 2. Come al punto 1, ma se una o più reti nel gruppo hanno next hop diverso, si lasciano le loro voci come exception route.
- 3. Come al punto 1, ma se una o più reti nel gruppo sono mancanti, si aggiunge una voce per ciascuna rete mancante con next hop pari a quello della rotta di default.
- 4. Si tolgono tutte le voci con next hop pari a quello della rotta di default (purché quelle destinazioni non corrispondano alle destinazioni di altre voci [meno specifiche]).

È possibile ridurre la dimensione della seguente tabella di inoltro?

Destinazione	Binario (131.175.X.0)	Next Hop
131.175.132.0/24	1000 0100	131.123.124.125
131.175.21.0/24	0001 0101	131.123.123.121
131.175.20.0/24	0001 0100	131.123.123.121
131.175.133.0/24	1000 0101	131.123.124.125
131.175.134.0/24	1000 0110	131.123.124.130
131.175.135.0/24	1000 0111	131.123.124.125
131.175.50.0/23	0011 001	131.123.124.126
0.0.0.0/0		131.123.124.126

Esprimiamo le destinazioni in formato CIDR e convertiamo in binario (ci soffermiamo sul terzo byte, perché i primi due sono uguali per tutte le rotte e il quarto è zero)

È possibile ridurre la dimensione della seguente tabella di inoltro?

Destinazione	Binario (131.175.X.0)	Next Hop
0.0.0.0/0		131.123.124.126
131.175.20.0/24	0001 0100	131.123.123.121
131.175.21.0/24	0001 0101	131.123.123.121
131.175.50.0/23	0011 001	131.123.124.126
131.175.132.0/24	1000 0100	131.123.124.125
131.175.133.0/24	1000 0101	131.123.124.125
131.175.134.0/24	1000 0110	131.123.124.130
131.175.135.0/24	1000 0111	131.123.124.125

Ordiniamo le voci rispetto al prefisso: ci aiuterà nel raggruppamento delle voci.

È possibile ridurre la dimensione della seguente tabella di inoltro?

Destinazione	Binario (131.175.X.0)	Next Hop
0.0.0.0/0		131.123.124.126
131.175.20.0/24	0001 010 0	131.123.123.121
131.175.21.0/24	0001 0101	131.123.123.121
131.175.50.0/23	0011 001	131.123.124.126
131.175.132.0/24	1000 01 00	131.123.124.125
131.175.133.0/24	1000 01 01	131.123.124.125
131.175.134.0/24	1000 01 10	131.123.124.130
131.175.135.0/24	1000 0111	131.123.124.125

- 1) Possiamo accorparle per il prefisso 131.175.20.0/24 e next hop 131.123.123.121
- 3) questa voce con next hop pari a quello della rotta di default non corrisponde ad altre voci e può quindi essere cancellato
- 2) Possiamo accorparle per il prefisso 131.175.132.0/22 e next hop 131.123.124.125; ma occorre una exception router per la voce con next hop diverso

È possibile ridurre la dimensione della seguente tabella di inoltro?

Destinazione	Binario (131.175.X.0)	Next Hop
0.0.0.0/0		131.123.124.126
131.175.20.0/24	0001 010 0	131.123.123.121
131.175.21.0/24	0001 010 1	131.123.123.121
131.175.50.0/23	0011 001	131.123.124.126
131.175.132.0/24	1000 0100	131.123.124.125
131.175.133.0/24	1000 01 01	131.123.124.125
131.175.134.0/24	1000 01 10	131.123.124.130
131.175.135.0/24	1000 0111	131.123.124.125

Destinazione	Next Hop	
0.0.0.0/0	131.123.124.126	
131.175.20.0/23	131.123.123.121	
131.175.132.0/22	131.123.124.125	
131.175.134.0/24	131.123.124.130	

Destinazione	Next Hop	
0.0.0.0/0	131.123.124.126	
131.175.20.0/23	131.123.123.121	
131.175.132.0/22	131.123.124.125	
131.175.134.0/24	131.123.124.130	

Destinazione	Netmask	Next Hop
0.0.0.0	0.0.0.0	131.123.124.126
131.175.20.0/23	255.255.254.0	131.123.123.121
131.175.132.0/22	255.255.252.0	131.123.124.125
131.175.134.0/24	255.255.255.0	131.123.124.130