Title

Cyrille Chenavier¹ and Maxime Lucas²

¹ Inria Lille - Nord Europe, équipe Valse cyrille.chenavier@inria.fr ² Inria Rennes - Bretagne Atlantique, équipe Gallinette maxime.lucas@inria.fr

Abstract

1 Introduction

2 Well-formed rewriting steps

We fix a commutative field \mathbb{K} as well as a well-founded ordered set (X, <). We denote by $\mathbb{K}X$ the vector space spanned by X: an element $v \in \mathbb{K}X$ is a finite formal linear combination of elements of X with coefficients in \mathbb{K} . The sum of $u = \sum \lambda_x x$ and $v = \sum \mu_x x$ is equal to $\sum (\lambda_x + \mu_x) x$ and the product of $\lambda \in \mathbb{K}$ by v is equal to $\sum (\lambda \lambda_x) x$. We extend the order < into the multiset order, still written <, on $\mathbb{K}X$: we have u < v if for every element $x \in X$ which occurs in the decomposition of u but not in the one of v, there exists y > x occuring in the decomposition of v but not in the one of v.

We fix a set $R \subseteq X \times \mathbb{K}X$ which represents rewrite rules of the form $x \xrightarrow{R} v$. The set R induces the rewriting relation on $\mathbb{K}X$, still written \xrightarrow{R} , defined as follows:

$$\sum \lambda_x x + u' \xrightarrow{R} \sum \lambda_x r_x + u', \tag{1}$$

whenever $\lambda_x \neq 0$ and $x \xrightarrow{R} r_x$ are rewrite rules. We assume that for every $x \in X$, not minimal for <, there exists a rewrite rule in R with left-hand side x. We choose such a rule h_x for every non-minimal x.

Definition 2.1. A rewriting step as in (1) is said to be well-formed if each rewrite rule $x \xrightarrow{R} r_x$ is equal to h_x and if there does not exist any minimal y in the decomposition of u'. A vector $v \in \mathbb{K}X$ is a well-formed normal form if there is no well-formed rewriting step with left-hand side v.

Example 2.2. Donner un exemple et un contre-exemple.

For each $v \in \mathbb{K}X$, there exists at most one well-formed rewriting step with left-hand side v. Moreover, the well-formed rewriting steps are compatible with the termination order, so that we have a well-defined map $H : \mathbb{K}X \to \mathbb{K}X$, such that v rewrites into the unique well-formed normal form H(v) using only well-formed rewriting steps.

Proposition 2.3. The map H is linear.

Sketch of proof. TODO.

3 A confluence criterion

In this section, we assume that R satisfies the following property:

Property 3.1. For every rewrite rule $x \xrightarrow{R} v \in R$, we have $x - v \in \ker(H)$.

Example 3.2. Donner un exemple et un contre-exemple.

Proposition 3.3. Assume that Property 3.1 holds, then $u \stackrel{*}{\underset{R}{\longleftrightarrow}} v$ if and only if $u - v \in \ker(H)$.

Sketch of proof. Il faut montrer que les gens qui vérifient la propriété de standardisation sont clos par les opérations somme, composition et inverse.

In Theorem 3.5, we introduce a confluence criterion when R satisfies 3.1. For that, we assume that R is equipped with a well-founded order \prec satisfying the following decreasingness property:

Property 3.4. For every $x \in X$ and $r = x \to v$, if x is not minimal for <, then letting $h_x = x \xrightarrow{R} r_x$, we have the confluence diagram

where each rewriting step occurring in the dotted arrows are strictly smaller than r for \prec .

Theorem 3.5. Assume that R satisfies Properties 3.1 and 3.4. Then $\underset{R}{\longrightarrow}$ is confluent.

Proof. Adapter le cas ensembliste.