The group G is isomorphic to the group labelled by [40, 4] in the Small Groups library. Ordinary character table of $G \cong C5$: Q8:

	1a	4a	2a	20a	20b	10a	10b	5a	5b	20c	20d	4b	4c
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	-1	-1	1	1	1	1	-1	-1	-1	1
χ_3	1	-1	1	-1	-1	1	1	1	1	-1	-1	1	-1
χ_4	1	1	1	1	1	1	1	1	1	1	1	-1	-1
χ_5	2	0	-2	0	0	-2	-2	2	2	0	0	0	0
χ_6	2	0	-2	$E(20)^{13} - E(20)^{17}$	$-E(20)^{13} + E(20)^{17}$	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$-E(20) + E(20)^9$	$E(20) - E(20)^9$	0	0
χ_7	2	0	-2	$-E(20)^{13} + E(20)^{17}$	$E(20)^{13} - E(20)^{17}$	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(20) - E(20)^9$	$-E(20) + E(20)^9$	0	0
χ_8	2	0	-2	$-E(20) + E(20)^9$	$E(20) - E(20)^9$	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$-E(20)^{13} + E(20)^{17}$	$E(20)^{13} - E(20)^{17}$	0	0
χ_9	2	0	-2	$E(20) - E(20)^9$	$-E(20) + E(20)^9$	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(20)^{13} - E(20)^{17}$	$-E(20)^{13} + E(20)^{17}$	0	0
χ_{10}	2	2	2	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	0	0
χ_{11}	2	2	2	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5)^{2} + E(5)^{3}$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	0	0
χ_{12}	2	-2	2	$-E(5)^2 - E(5)^3$	$-E(5)^2 - E(5)^3$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$	$-E(5) - E(5)^4$	0	0
χ_{13}	2	-2	2	$-E(5) - E(5)^4$	$-E(5) - E(5)^4$	$E(5) + E(5)^4$	$E(5)^{2} + E(5)^{3}$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$	$-E(5)^2 - E(5)^3$	0	0

Trivial source character table of $G \cong C5$: Q8 at p = 2:

Normalisers N_i		N_1			N_2			N_3				N	6
p-subgroups of G up to conjugacy in G		P_1			P_2			P_3			P_5		
Representatives $n_j \in N_i$	1a	5a	5b	1a	5a	5b	1a	5a	5b	1a	1a	10	ı
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 2 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	8	8	8	0	0	0	0	0	0	0	0	0	\neg
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13}$	8	$4*E(5)^2+4*E(5)^3$	$4*E(5) + 4*E(5)^4$	0	0	0	0	0	0	0	0	0	
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} $	8	$4*E(5) + 4*E(5)^4$	$4*E(5)^2 + 4*E(5)^3$	0	0	0	0	0	0	0	0	0	
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	4	4	4	4	4	4	0	0	0	0	0	0	\neg
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13}$	4	$2*E(5)^2 + 2*E(5)^3$	$2*E(5) + 2*E(5)^4$	4	$2*E(5)^2 + 2*E(5)^3$	$2*E(5) + 2*E(5)^4$	0	0	0	0	0	0	,
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13}$	4	$2*E(5) + 2*E(5)^4$	$2*E(5)^2 + 2*E(5)^3$	4	$2*E(5) + 2*E(5)^4$	$2*E(5)^2 + 2*E(5)^3$	0	0	0	0	0	0	,
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	2	2	2	2	2	2	2	2	2	0	0	0	$\overline{}$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	0	0	,
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	0	0	,
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	2	2	2	2	2	2	0	0	0	2	0	0	7
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	2	2	2	2	2	2	0	0	0	0	2	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	1	1	1	1	1	1	1	1	1	1	1	1	

 $P_1 = Group([()]) \cong 1$

 $P_2 = C_{roun}([(1.4)(2.7)(3.0)(5.11)(6.13)(8.15)(10.17)(12.10)(14.21)(16.23)(18.25)(20.27)(22.20)(24.31)(26.33)(28.35)(30.36)(32.38)(34.30)(37.40)]) \simeq C_2$

 $P_3 = Group([(1, 4)(2, 7)(3, 9)(5, 11)(6, 13)(8, 15)(10, 17)(12, 19)(14, 21)(16, 23)(18, 25)(20, 27)(22, 29)(24, 31)(26, 33)(28, 35)(30, 36)(32, 38)(34, 39)(37, 40), (1, 3, 4, 9)(2, 6, 7, 13)(5, 10, 11, 17)(8, 14, 15, 21)(12, 18, 19, 25)(16, 22, 23, 29)(20, 26, 27, 33)(24, 30, 31, 36)(28, 34, 35, 39)(32, 37, 38, 40)]) \cong C4$

 $P_{A} = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40), (1,2,4,7)(3,13,9,6)(5,32,11,38)(8,35,15,28)(10,40,17,37)(12,24,19,31)(14,34,21,39)(16,27,23,20)(18,36,25,30)(22,26,29,33)]) \cong C4$

14 - GFOMP([(1, 1)(2, 1)(0, 3)(0, 11)(0, 10)(0, 10)(10, 10)(

 $P_5 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40), (1,13,4,6)(2,3,7,9)(5,40,11,37)(8,34,15,39)(10,38,17,32)(12,36,19,30)(14,28,21,35)(16,26,23,33)(18,31,25,24)(20,29,27,22)]) \cong C4$

 $P_6 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40), (1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,21)(12,18,19,25)(16,22,23,29)(20,26,27,33)(24,30,31,36)(28,34,35,39)(32,37,38,40), (1,2,4,7)(3,13,9,6)(5,32,11,38)(8,35,15,28)(10,40,17,37)(12,24,19,31)(14,34,21,39)(16,27,23,20)(18,36,25,30)(22,26,29,33)]) \cong Q8$

 $N_2 = Group((1,2,4,7)(3,13,9,6)(5,32,11,38)(8,35,15,28)(10,40,17,37)(12,24,19,31)(14,34,21,39)(16,27,23,29)(20,26,27,33)(24,30,31,36)(28,34,35,39)(32,37,38,40), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40), (1,5,12,20,28)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40), (1,2,4,7)(3,19,10,11,17)(8,14,15,21)(12,18,19,25)(16,22,23,29)(20,26,27,33)(24,30,31,36)(28,34,35,39)(32,37,38,40), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40), (1,2,4,7)(3,19,42,19,31)(14,34,21,39)(16,27,23,20)(18,36,25,30)(22,26,29,33), (1,3,4,9)(2,4,19,31)(14,34,21,39)(16,27,23,20)(18,36,25,30)(22,26,29,33), (1,3,4,9)(2,6,7,13)(5,10,11,17)(2,19)(14,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40), (1,2,4,7)(3,19,4,12,19)(14,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40), (1,2,4,7)(3,13,9,6)(5,32,11,38)(8,35,15,28)(10,40,17,37)(12,24,19,31)(14,34,21,39)(16,27,23,20)(18,36,25,30)(22,26,29,33), (1,3,4,9)(2,4,19,31)(14,21,19)(24,21,19,31)(24,21,19,31)(24,21,19,31)(24,21,19,31)(24,21,19,31)(24,21,19,31)(24,31,31)($