ESTIMATE THE CROP YIELD BY USING DATA ANALYTICS

Project report

submitted by

PETCHIMUTHU C	95191902072
PRIYADHARSHINI P	95191902078
SIVASANKARI S	95191902097
SHARA K	95191902095
SREENIDHI K	95191902101

BACHELOR OF ENGINEERING

in the department of

Electronics and Communication Engineering

TEAM ID:PNT2022TMID13569

GITHUB ID: IBM-Project-52917-1661227482

CONTENT

1.	INTRO	DUCTION	4
	1.1	Project Overview	4
	1.2	Purpose	4
2.	LITER	ATURE SURVEY	5
	2.1	Existing problem	5
	2.2	References	5
	2.3	Problem Statement Definition	6
3.	IDEAT	ION & PROPOSED SOLUTION	10
	3.1.	Empathy Map Canvas	10
	3.2	Ideation & Brainstorming	10
	3.3	Proposed Solution	15
	3.4	Problem Solution fit	16
4.	REQUI	REMENT ANALYSIS	17
	4.1	Functional requirement	17
	4.2	Non-Functional requirements	17
5.	PROJE	ECT DESIGN	18
	5.1	Data Flow Diagrams	18
	5.2	Solution & Technical Architecture	18
	5.3	User Stories	20

6.	PROJI	ECT PLANNING & SCHEDULING	22
	6.1	Sprint Planning & Estimation	22
	6.2	Sprint Delivery Schedule	24
	6.3	Reports from JIRA	24
7.	CODIN	IG & SOLUTIONING (Explain the features added in the project along with o	ode)
	a.	Feature 1	26
	b.	Feature 2	26
8.	TESTI	NG	29
	8.1	Test Cases	29
	8.2	User Acceptance Testing	31
9.	RESUL	.TS	33
	9.1	Performance Metrics	33
10	. ADVA	NTAGES & DISADVANTAGES	39
11	. CONC	LUSION	40
12	. FUTUI	RE SCOPE	41
13	. APPEI	NDIX	41
	So	urce Code	41
	Gi ⁻	tHub & Proiect Demo Link	41

1. INTRODUCTION

1.1. Project overview

Agriculture is the backbone of the Indian economy. The majority of farmers in India are not obtaining the expected agricultural production for a variety of reasons. Weatherhas a significant influence on agricultural productivity. The amount of rainfall also has an effect on rice farming. Farmers in this circumstance would undoubtedly want early aid in forecasting future crop productivity, and an analysis will be performed to assist farmers in optimising crop production in their crops. Yield prediction is a key topic in agriculture. Every farmer wants to know how much output to expect. Previously, farmer expertise with a certain crop was included when estimating productivity. In Indian agriculture, there is a massive amount of data. Data may be turned into information and utilised for a number of reasons. Cognos Business Intelligence is an IBM web-based comprehensive business intelligence suite. It provides a package of tools for analytics, score carding, reporting, and event and data tracking. The software is made up of severalparts that are designed to meet the various information needs of a business. IBM Cognos, for example, includesIBM Cognos Framework Manager, IBM Cognos, Cube Designer, and IBM Cognos Transformer. Cognos Analysis Studioenables business users to receive prompt responses to commercially relevant questions.

1.2. Purpose

Agriculture is important for human survival because it serves the basic need. A well-known fact that the majority of population (≥55%) in India is into agriculture. Due to variations in climatic conditions, there exist bottlenecks for increasing the crop production in India. It has become challenging task to achieve desired targets in Agri based crop yield. Various factors are to be considered which have directimpact on the production, productivity of the crops. Crop yield prediction is one of the important factors in agriculture practices. Farmers need information regarding crop yield before sowing seeds in their fields to achieve enhanced crop yield. The use of technology in agriculture has increased in recent year and data analytics is one such trend that has penetrated into the agriculture field. The main challenge in using data in agriculture is identification of effectiveness of data analytics. Efforts are going on to understand how data analytics can agriculture productivity.

2. Literature Survey

2.1. Existing problem

At present we are at the immenseneed of another Green revolution supply the food demand of growing population. With the decrease of available cultivable land globally and the decreased cultivable water resources, it is almost impossible to report higher crop yield. Agricultural based big data analytics is one approach, believed to have a significant role and positive impact on the increaseof crop yield by providing the optimum condition for the plant growth and decreasing the yield gaps and the crop damage and wastage.

2.2.References

- [1] Dhivya B H, Manjula R, Siva Bharathi S, Madhumathi R. A Survey on Crop Yield Prediction based on Agricultural Data, International Journal of Innovative Research in Science, Engineering and Technology. 2017; 6(3).
- [2] Jharna Majumdar, Sneha Naraseeyappa, Shilpa Ankalaki. Analysis of agriculture data using datamining techniques: application of big data. Journal of Big data. 2017.
- [3] Majumdar J, Ankalaki S. Comparison of clustering algorithms using quality metrics with invariant features extracted from plant leaves. International Conference on Computational Science and Engineering. 2016.
- [4] D Ramesh, B Vishnu Vardhan. Data Mining Techniques and Applications to Agricultural Yield Data. International Journal of Advanced Research in Computer and Communication Engineering. 2013; 2(9).
- [5] Swarupa Rani. The Impact of Data Analytics in Crop Management based on Weather Conditions. International Journal of Engineering Technology Science and Research. 2017; 4(5):299-308.
- [6] F K Van Evert, S Fountas, D Jakovetic, V Crnojevic, I Travlos, C Kempenaar. Big Data for weed control and crop protection. John Wiley & Sons Ltd on behalf of European Weed Research Society, 2017: 218–233.
- [7] Wu Fan, Chen Chong, Guo Xiaoling, Yu Hua. Prediction of crop yield using Big Data. 8th International Symposium on Computational Intelligence and Design. 2015.
- [8] Dakshayini Patil, M.S, Shirdhonkar. Rice Crop Yield Prediction using Data Mining Techniques: An Overview. International Journal of Advanced Research in Computer Science and Software Engineering, 2017; 7(5):427-431.
- [9] Dhivya B H, Manjula R, Siva Bharathi S, Madhumathi R. A Survey on Crop Yield Prediction based on Agricultural Data, International Journal of Innovative Research in Science, Engineering and Technology. 2017; 6(3):4177-4182.

- [10] Yogesh Gandge, Sandhya. A Study on Various Data Mining Techniques for Crop Yield Prediction, International Conference on Electrical, Electronics, Communication, Computer and Optimization Techniques, IEEE, 2017;420-423
- [11] R. Sujatha, P.Isakki Devi. A Study on Crop Yield Forecasting Using Classification Techniques, IEEE, 2016.
- [12] V. Sellam and E. Poovammal. Prediction of Crop Yield using Regression Analysis, Indian Journal of Science and Technology, 2016; 9(38).
- [13] Patricio Grassinia, Lenny G.J. van Bussel, Justin Van Warta, Joost Wolf, Lieven Claessens, d, Haishun Yanga, Hendrik Boogaarde, Hugo de Groote, Martin K. van Ittersumb, Kenneth G. Cassman. How good is good enough?

Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Research. 2015; 49–63.

- [14] David B. Lobell, The use of satellite data for crop yield gap analysis, Field Crops Research-143, 2013; 56–64.
- [15] Martin K. van Ittersuma, Kenneth G. Cassmanb, Patricio Grassinib, Joost Wolfa, Pablo Tittonell, Zvi Hochmand. Yield gap analysis with local to global relevance-A review. Field Crops Research 143, 2013; 4–17

2.3. Problem Statement Definition:

Agriculture is the field that enables the farmers to grow ideal crops in accordance with the environmental balance. In India, wheat and rice are the major grown crops along with sugarcane, potatoes, oil seeds etc. Farmers also grow non-food items like rubber, cotton, jute etc. More than 70% of the household in the rural area depend on agriculture. This domain provides employment to more than 60% of the total population and has a contribution to GDP also (about 17%) [8]. In the farm output, India ranks second considering the world wide scenario. This is the widest economic sector and has an important role regarding the framework of socio-economic fabric of India. Farming depends on various factors like climate and economic factors like temperature, irrigation, cultivation, soil, rain fall, pesticide and fertilizers. Agriculture sector is struggling to increase the productivity of crop in India. Monsoon rainfall is the main source of water for more than 60 percent of the crops. Smart agriculture driven by Information Technology is the emerging trendin the research in this area in recent days. One of the areas being explored is the problem of yield prediction which is a major concern.

Agriculture contributes about 17% to the total GDP and provides employment to over 60% of the population.

Data mining is defined as a process of identifying previously unknown inferences from the huge volume of available data. It finds application in market analysis, production control, fraud detection, customer retention, E commerce etc. Data mining software analyses relationships and patterns in storedtransaction data based on open ended user queries.

On the basis of the nature of data being mined there are two categories of functions involved in data mining namely, Descriptive function that deals with general properties of data and Prediction function that identifies the trends based on available data. As far as agriculture is concerned predictive types that include classification, association, clustering and regression are used.

Author and publication	Techniquesused	Parameters achieved	Limitations	
Grajales , 2015	A web is	The details of the	Nil	
	application	selectedlocation		
	developed using	from map are		
	Open source tools.	available at one look to theuser.		
Bendre , 2015	Map Reduce and	The effective		
	Linear Regression	modelto improve the		
	algorithm are used for	accuracy of rainfall	,	
	weatherforecasting.	forecasting is investigated.	weatherdata.	
Hemageethaa,	Naïve Bayes,Appriori	Focuses mainly on	Only 77% of	
2016	algorithm are used for	various soil	accura i	
	yield prediction.	parameters like pH,	cy s	
		Nitrogen, moisture	achieve	
		etc and comparison	d.	
		accuracy is		
		also presented.		
Rub , 2009	MLP, Regression	Comparative of	Nil	
	tree,RBF,SVM are used.	studyvarious i		
		algorithms s		
		presented.		
Sujatha , 2016	Naïve Bayes,J48,	Climate data and	Other	
	randomforests,	Crop parameters are	parameters like	
	support	used forcrop yield is	soil are not	
	vector	predicted.	considered.	
	machines, artificial neuralnetworks are			
	Hediailletworks are			

	implemented.		
Kushwala , 2015	Hadoop File Distributed System (HDFS) is used.	The proposed prediction algorithm helps in building a decision supportsystem for precision farming.	the suitability of crop for the givensoil
Fathima , 2014	k means and Appriorialgorithm are used.	Crop type and Irrigationparameters are considered.	Focus on the policies that government could frame by the cropping practices of farmers
Veenadhari , 2014	k-means, ID3 algorithms, the k nearestneighbor, support vectormachines, artificial neural networks are discussed.	The purpose of Data Miningtechniques in the field of agriculture is presented.	Nil
Sellam , 2016	Regression Analysis (RA), Linear Regression (LR) are cited.	Describes aboutvarious environmental factorsthat influence the crop yieldand the relationship among these parameters is also established.	Nil
Raorane , 2012	Artificial Neural Network (ANN), Decision Tree	The techniques used for crop production is	Nil

	algorithm, Regression Tree,	discussed.	
	Bayesian network, Support		
	Vector Machine(SVM) and		
	K means arediscussed.		
Kaur , 2014	They use BP neural network	The suitable data model	The prediction is
	and simulate the result using	for achieving	mainly based on
	MATLAB.	highaccuracy for price	onlyprice.
		prediction is	
		found.	
Ankalaki,	DBSCAN, AGNES	The comparative	The formula
2016	and	studybetween	isderived
	MLR are used.	DBSCAN and	for each
		AGNES is presented.	crop separately.
Gayatri , 2015	IOT and GPS	Images are captured. Far	Focuses mainlyon
	Imagecapturing are	and near nodes are	image processing
	used.	communicated through	techniques.
		cloud.	

3. Ideation and Proposed Solution

3.1. Empathy map canvas:

3.2. Ideation and Brainstorming

Brainstorm & Idea Prioritization Template:

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions.

Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

Reference: https://www.mural.co/templates/empathy-map-canvas

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Brainstorm & idea prioritization

Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

10 minutes to prepare

1 hour to collaborate

2-8 people recommended

Open article →

erson 1			Person	2	
sage of nanure	cilmate change	problems with extreme weather reasons	Industrial poliution	quality of seeds	how to recycle the waste
lecting seed's orice	estimation of crop's price	quantity of manure to be used	predicting the quality of solls	wind energy	farmer's budget
ng the solar nergy	due to heavy rainfall crops may damage	over use of fertilizers and manures	poor storage facilities	predicting the weather conditions	managing
_	_				
Person	3		Person 4		
quantity of fertilizers used		decrease of soil fertility	buying relevant tools	quantity of water to be supplied	blodiversity affects
quantity of fertilizers	to remove the weeds on the fleid		buying relevant	quantity of water to be supplied fertilizers quality	•

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. Once all sticky notes have been grouped, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

1 20 minutes

Step-3: Idea Prioritization

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

(†) 20 minutes

3.3. Proposed Solution

S.No.	Parameter	Description
1.	l ·	To estimate crop yields using data analytics, to aid farmers in making better decisions in
		order to have healthy crop production.
2.	Idea / Solution description	Provide perfect data report after deep
		analysis of the past data. Helping them out
		to overcome loss in farming and business.

3.	Novelty / Uniqueness	The dataset contains information about the crops in various districts, states, seasons and areas. Using all these facts, farmers making the best crop choice for their region during a specific growing season to increase output.
4.	Social Impact/ Customer	Perfect data visuals create large impact of
	Satisfaction	the crop yield and hence farmers will be able
		to gain more benefit.
5.	Business Model(Revenue Model)	A profit will be made by promoting this
		solution a an easily available mobile app for
		anyone to access and get benefit from it.
		Venture partnership with government may
		yield financial rewards.
6.	Scalability of the Solution	There are no issues about the storage of
		dataset and collection of data. Hence, the
		solution can be easily scaled results in
		positive impact on traffic and increased
		number of users.

3.4. Problem Solution Fit

4.Requirement Analysis

4.1.Functional Requirement

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form
		Registration through Gmail
		Registration through LinkedIN
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	User profile	User Details
		Farm Details
FR-4	Required Data	The past crop yield data and data of the farmer
		to analyze their yield.
FR-5	Analysis	An analysis is done by the given data to gain
		useful insights on the crop yields.
FR-6	Estimation	Creating the perfect data module, visuals using
		IBM Cognos to increase the estimation of the
		crop yield.

4.2 Non-functional Requirement:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Ease of usage along with ease in-access of
		tools and features
NFR-2	Security	The user information is protected by the user
		login and registration with a secured
		password
NFR-3	Reliability	The interactive data visuals of the dashboard
		can make easy to understand by the farmers
NFR-4	Performance	Multiple technologies and services that will
		improve the usability in agricultural activities.
NFR-5	Availability	The dashboard could be easily available
		viewed in every devices like smart phones,
		laptops and systems, etc
NFR-6	Scalability	Should be able to incorporate as many
		visualizations and datasets as possible

5. Project Design

5.1.Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2. Solution and Technical Architecture:

Solution Architecture:

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, and delivered.

Technical Architecture:

5.3.User Stories

User Type	Function al Require ment (Epic)	User Story Numb er	User Story / Task	Acceptance criteria	Priority	Release
Custom er (Mobile user)	Registrat ion	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through Gmail		Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application by entering email & password		High	Sprint-1
	Dashboa rd	USN-6	As a user, I can access the dashboard to get insights on a particular crop or region		Medium	Sprint-2

Custom er (Web user)	Activity	USN-7	As a user, I can register for the application any webbrowser	I can get a pop up or a notification from the browser about the login	Low	Sprint-1
Custom er Care Executi ve	Access resourc es	USN-8	As a user, I can use my login credentials in the web appplication to access the available resources	No one else can login into my account without the knowledge of the user	High	Sprint-1
Adminis trator	Set events	USN-9	As a user, I can plan some events for the upcoming days or to do list for a day		High	Sprint-2

6. PROJECT PLANNING & SCHEDULING

6.1.Sprint Planning & Estimation

Spri nt	Functional Requireme nt (Epic)	User Story Numb er	User Story / Task	Story Points	Priority	Team Members
Sprin t-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	2	High	Petchimuthu Sreenidhi Shara Sivasankari Priyadharshini
		USN-2	As a user, I will receive confirmation email. I confirmed the mail .	2	High	Petchimuthu Sreenidhi Shara Sivasankari Priyadharshini
	Login	USN-3	As a user, I can call and request or approach for the dataset.	2	Medium	Petchimuthu Sreenidhi Shara Sivasankari Priyadharshini
Sprin t-2	Working with the data set	USN-4	Work on the given dataset, understand the given dataset.	2	Medium	Petchimuthu
		USN-5	Load the dataset to cloud platform	2	High	Sivasankari

Sprint -3	Data Visualization Chart	USN-6	Using the crop production in india dataset, create various graphs and charts to highlight the insights and visualizations. Build the seasons with average productions.	10	High	Priyadharshini
		USN-7	Build the visualizations for with years usage of area and production	4	High	Shara
		USN-8	Create visualizations for Top 10 States with most area	4	High	Sreenidhi
		USN-9	Create visualizations for state with crop production	4	High	Petchimuthu
		USN- 10	Create state with crop production along with Season (text table) in cognos	4	Medium	Sivasankari
Sprin t-4	Creating The Dashboard	USN-11	In Cognos, create the dashboard using the dataset.	20	High	Petchimuthu Sivasankari Priyadharshini
	Export The Analytics	USN- 12	Export the created Dashboard	20	High	Sreenidhi Shara

6.2.Sprint Delivery Schedule

Sprint	Total	Duration	Sprint Start	Sprint End	Story Points	Sprint Release
	Story		Date	Date	Completed	Date (Actual)
	Points			(Planned)	(as on Planned End	
					Date)	
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov	20	05 Nov 2022
				2022		
Sprint-3	20	6 Days	07 Nov 2022	12 Nov	20	12 Nov 2022
				2022		
Sprint-4	20	6 Days	14 Nov 2022	19 Nov	20	19 Nov 2022
				2022		

6.3.Reports from JIRA

7.CODING & SOLUTIONING (Explain the features added in the project along with code)

1. Dashboard Design

The dashboard is createdusing IBM cognos tool which efficiently visualises a given data

The design is incorporated along with login page and provides excellent
insights on variousdata regarding crops.

```
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Login Page in HTML with CSS Code Example</title>
 <link href="https://fonts.googleapis.com/css?family=Open+Sans" rel="stylesheet">
link
               href="https://maxcdn.bootstrapcdn.com/font-
awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet"
integrity="sha384-
wvfXpqpZZVQGK6TAh5PVlGOfQNHSoD2xbE+QkPxCAFlNEevoEH3Sl0sibVcOQVn
N"crossorigin="anonymous"><link rel="stylesheet" href="./style.css">
</head>
<body>
<!-- partial:index.partial.html -->
<div class="box-form">
<div class="left">
<div class="overlay">
<h2>ESTIMATION OF CROP YIELD USING DATA ANALYTICS</h2>
<span>
<a href="#"><i class="fa fa-facebook" aria-hidden="true"></i></a>
<a href="#"><iclass="fa fa-twitter" aria-hidden="true"></i> Login with Twitter</a>
</span>
</div>
```

```
</div>
<div class="right">
<h2>Login</h2>
<div class="inputs">
<input type="text" placeholder="User name">
<br>
<input type="password" placeholder="Password">
</div>
<br>><br>>
<div class="remember-me--forget-password">
</div>
<br>
<a href="dashboard.html"><button>Login</button></a>
</div>
</div>
<!-- partial -->
</body>
</html>
```

2. Webpage creation

```
<h1 style="background-color:DodgerBlue;">&#160;&#160;&#160;&#160;
Using Data Analytics!!!...</marquee>
</h1>
</h1>
<img src="https://user-images.githubusercontent.com/111339599/195016514-24efecef-255c-4aa8</pre>
<p1 style="font-family:verdana;"> <br> <h3 style="background-color:DodgerBlue;"><
</h3>
<br> Crop production in India is one of the most important sources of income and India is
As per this project we will be analyzing some important visualization, creating a dashboard
Let us look upon an attractive dashboard to know the crop production using IBM COGNOS A
<iframe src="https://us1.ca.analytics.ibm.com/bi/?perspective=dashboard&amp;pathRef=.my_
allowfullscreen=""></iframe>
</p1><br>
Please use the below link to see our Git repository...
<a href="https://github.com/IBM-EPBL/IBM-Project-52917-1661227482">Github </a>
<iframe src="https://us1.ca.analytics.ibm.com/bi/?perspective=story&amp;pathRef=.my_folder</pre>
allowfullscreen=""></iframe>
</body>
</html>
```

8.Testing

8.1.Test cases

Test	Feature	Compone	Test Scenario	Steps To Execute	Result	Status
case	Туре	nt				
ID						
Home	Functional	Home	Verify user is able	1.Enter URL and	Login page	Pass
Page_		Page	to see the	click go	shouldpop	
TC_O			Login/Signup	2.Click on Login	up as soon	
01			popupwhen user	Button	as the Login	
			clickedon Login	3.Verify	buttonis	
			Buttonin the	login/Singup	clicked	
			Homepage	popupdisplayed		
				or not		
Login	UI	Login	Verify the UI	1.Enter URL and	Application	Fail
Page_		Page	elementsin	click go 2.Click	should	
TC_O			Login/Signup	on Login Button	showbelow	
02			popup	3.Verify	Ulelements:	
				login/Singup	a.login with	
				popupwith below	twitter	
				UI elements:	&facebook	
				a.emailtext box	b.password	
				b.pass	text box	
				word	c.Loginbutt	
				textbox	on with	
				c.Login	orangecolo	
				button	ur	
				d.New	d.Last	
				customer?	password?	
				Createaccount	Recovery	
				link	password	

								vord? very vord lir	nk	link	
Login	Functional	Login	Verify		is		1.	Enter		User should	Pass
Page_		Page	to	log		into		URL(I		navigate to	
TC_O			applica			with		html)		user	
03			Valid c	reden	tial	S		click (account	
							2.	Click	on	homepage	
								Му			
								Accou	ınt		
								dropd	own		
								butto	า		
							3.	Enter			
								Validu			
								ame/			
								in Em			
								text b	ох		
							4.	Enter			
								valid	_		
								passv	vord		
								in	_		
								passv	vord		

				text box 5. Click on login button		
Dash	Functional	Dashboa	Verify user is able	1.Enter	Application	Pass
board_		rd page	toview the	URL(dashboard.h	shouldshow	
TC_O			dashboard and	tml) 2.Clickon the	the	
04			see the charts	different charts	expected	
				that the user	charts	
				wants.	fromcognos	

8.2. User Acceptance Testing

Purpose of Document:

The purpose of this document is to briefly explain the test coverage and open issues of Estimate TheCrop Yield UsingData Analytics project the time of the release to User Acceptance Testing (UAT).

Defect Analysis:

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved.

Resolution	Severity 1	Severity 2	Severity 2	Severity 4	Subtotal
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	11	2	4	20	37
Not	0	0	1	0	1
Reproduced					
Skipped	0	0	1	1	2
Totals	24	9	11	25	69

Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client Application	51	0	0	51
Outsource Shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

9. Results

Log in to IBM Cognos:

Create the Dashboard:

Data visualization charts:

Seasons With Average Productions

With Years Usage Of Area Production

Top 10 States With Most Area

State With Crop Production

State With The Crop Production Along With Season(Text Table)

Create the dashboard

Explore the analytics:

10. ADVANTAGES & DISADVANTAGES

10.1 Advantages

- Among the various methods present for this problem Data visualization charts helps us to understand the problem easier.
- Pictorial representation so easy to analyse
- . Saves times for the farmers because it gives most of the insights.
- Easily portable to any servers.
- Also helps new persons to sow crops in seasonal base.
- More profitable.

10.2 Disadvantages

- Helps only for the literates because of the usage app is not easier.
- Common language is required to study the charts.
- But this does not give the exact production reports.

11. CONCLUSION

As a result of penetration of technology into agriculture field, there is a marginal improvement in the productivity. The innovations have led to new concepts like digital agriculture, smart farming, precision agriculture etc. In the literature, it has been observed that analysis has been done on agriculture productivity, hidden patternsdiscovery using data set related to seasons and crop yields data. We have noticed and made analysis about different crops cultivated, area and productions in different states and districts using IBM Cognos some of them are 1) Seasons with average productions. In this analytics we come to know in which seasons the average production is more and in which seasons the production is less. 2) Production by crop year. In this analysis we come to know in which years the production is high and low. 3) Production by District. With this analytics we can aware of the districts with the selected crops cultivated and states too.4) Production by Area. From this we can know how much area should be cultivated and the production will be getting will be estimated. Finally created the dashboard and made analysis that in which state and in which year with crop area and to what extent the production will be are analysed.

12. FUTURE SCOPE

- Farmers get most of the insights about crop production in India.
- As it works for all the land fields the India will get higher production and get more profits.

13. APPENDIX

Source code:

IBM Cognos Link

https://www.ibm.com/account/reg/us-en/login?formid=urx-47688

Github Link:

https://github.com/IBM-EPBL/IBM-Project-52917-1661227482

Project Demo Link: