Problem Statement

It's New Year's Day, and Balsa and Koca are stuck inside watching the rain. They decide to invent a game, the rules for which are described below.

Given array \$a\$ containing \$n\$ integers, they take turns making a single move. Balsa always moves first, and both players are moving optimally (playing to win and making no mistakes).

During each move, the current player chooses one element from \$a\$, adds it to their own score, and deletes the element from \$a\$; because the size of \$a\$ decreases by \$1\$ after each move, \$a\$'s size will be \$0\$ after \$n\$ moves and the game ends (as all elements were deleted from \$a\$). We refer to Balsa's score as \$S_b\$ and Koca's score as \$S_k\$. Koca wins the game if |\$S_b\$-\$S_k\$| is divisible by \$3\$; otherwise Balsa wins.

Given \$a\$, determine the winner.

Note: S + S + S = a + 0 + a + 1 + ... + a + n-2 + a + n-1 + ... + a + n-2 + a + n-1 + a + n-

Input Format

The first line contains an integer, \$T\$, denoting the number of test cases.

Each test case is comprised of two lines; the first line has an integer $n\$, and the second line has $n\$ space-separated integers $a\$, and the second line has $a\$ space-separated integers $a\$, and the second line has $a\$ space-separated integers $a\$, and the second line has $a\$ space-separated integers $a\$, and the second line has $a\$ space-separated integers $a\$, and the second line has $a\$ space-separated integers $a\$, and the second line has $a\$ space-separated integers $a\$, and the second line has $a\$ space-separated integers $a\$, and the second line has $a\$ space-separated integers $a\$, and the second line has $a\$ space-separated integers $a\$, and the second line has $a\$ space-separated integers $a\$, and the second line has $a\$ space-separated integers $a\$, and the second line has $a\$ space-separated integers $a\$, and the second line has $a\$ space-separated integers $a\$, and the second line has $a\$ space-separated integers $a\$, and the second line has $a\$ space-separated integers $a\$, and the second line has $a\$ space-separated integers $a\$, and the second line has $a\$ space-separated integers $a\$, and the second line has $a\$ space-separated integers $a\$ space-separated integers $a\$ space-separated integers $a\$ space-separated $a\$ space-separa

Constraints

\$1 \leq T \leq 100 \$ \$1 \leq a_i \leq 2000 \$ \$1 \leq n \leq 2000 \$

Subtasks

For \$50\%\$ score: \$1 \leq n \leq 200 \$ For \$100\%\$ score: \$1 \leq n \leq 2000 \$

Output Format

For each test case, print the winner's name on a single line; if Balsa wins print Balsa, otherwise print Koca.

Sample Input

2 3 7618 1 3

Sample Output

Balsa Koca

Explanation

Test Case 1

Array $a = {7, 6, 18}$. The possible play scenarios are:

- 1. $S_b=13$, $S_k=18$, $S_b-S_k=5$, and S_0 \mathre{\mathre
- 2. $S_b=24$, $S_k=7$, $S_b-S_k=17$, and $17 \% 3 \neq 0$.
- 3. $S_b=25$, $S_k=6$, $S_b=5$, k=19, and 19 % 3 \neq 0\$.

In this case, it doesn't matter what Balsa chooses because the difference between their scores isn't divisible by \$3\$. Thus, Balsa wins.

Test Case 2

Array $a = {3}$. Balsa must choose that element, the first move ends the game.

 $S_b=3$, $S_k=0$, $S_b=3$, and $S_k=3$, and $S_k=3$, and $S_k=3$. Thus, Koca wins.