The Drinfeld centre

CLASSICALLY, THE CENTRE CONSTRUCTION IS used to build a braided monoidal category from a monoidal one, see for example [EGNO15, Chapter 7]. Throughout especially Chapters 4 and 5, we work in a slightly more general setting, see for example [GNN09; BV12; HKS19; FH23; Kow24].

Definition 2.75. Let \mathscr{C} be a monoidal category, \mathscr{M} a \mathscr{C} -bimodule category, and $m \in \mathcal{M}$. A half-braiding on m is a natural isomorphism $\sigma_{-,=}: - \triangleleft = \Longrightarrow - \triangleright =$, such that for all $x, y \in \mathcal{C}$ we have $\sigma_{M,1} = \mathrm{id}_M$ and

 $\sigma_{m,x\otimes y} = (\mathrm{id}_x \triangleright \sigma_{m,y}) \circ (\sigma_{m,x} \triangleleft \mathrm{id}_y).$

Definition 2.76. The *centre* of a \mathscr{C} -bimodule category \mathscr{M} is the category $\mathsf{Z}(\mathscr{M})$ defined as follows:

- Objects are pairs $(m, \sigma_{m,-})$ of an object $m \in \mathcal{M}$ and a half-braiding $\sigma_{m,-}$.
- A morphism $f:(m,\sigma_{m,-}) \longrightarrow (n,\sigma_{n,-})$ consists of an $f \in \mathcal{M}(m,n)$ that commutes with the half-braidings:

$$(\mathrm{id}_x \triangleright f) \circ \sigma_{m,x} = \sigma_{n,x} \circ (f \triangleleft \mathrm{id}_x),$$
 for all $x \in \mathscr{C}$.

There is a canonical forgetful functor $U^{(M)}: \mathsf{Z}(\mathcal{M}) \longrightarrow \mathcal{M}$. Unlike classical representation theory where the centre of a bimodule is a subset of the bimodule, $U^{(M)}$ need not be injective on objects in general.

Example 2.77. The centre $Z(\mathcal{C})$ of the regular bimodule of a monoidal category €, see Theorem 2.44, is the *Drinfeld centre* of €. The tensor product is defined by $(x, \sigma_{x,-}) \otimes (y, \sigma_{y,-}) := (x \otimes y, \sigma_{x \otimes y,-})$, with

$$\sigma_{x \otimes y, z} := (\sigma_{x, z} \otimes \mathrm{id}_y) \circ (\mathrm{id}_x \otimes \sigma_{y, z}),$$
 for all $z \in \mathscr{C}$.

The centre is braided monoidal, with braiding given by gluing together the respective half-braidings. The hexagon axioms follow from the definition of the half-braiding and the tensor product of $Z(\mathscr{C})$.

Example 2.78. Let $H \in \text{Vect}$ be a finite-dimensional Hopf algebra. Then the category of left-left Yetter–Drinfeld modules of Theorems 2.33 and 2.54 is, as a braided monoidal category, equivalent to the Drinfeld centre of the category Wect of left *H*-modules, [Dri87; Yet90].

Further, by [Dri87] there exists another Hopf algebra D(H), the Drin*feld double* of H, that has $Z(H_Vect) \simeq H_V y \mathfrak{D}$ as its category of modules. We refer to [Kas98, Definition 1x.4.1] for a complete definition, and to [Kas98, Theorem xIII.5.1] for a proof of the above equivalence.

Analogously to Theorem 2.53, one can show that $\sigma_{M,1} = \mathrm{id}_M$ is implied by the hexagon axiom. **Remark 2.79.** The category of anti-Yetter–Drinfeld modules of Theorem 2.42 is also the category of modules over a certain Hopf algebra: the *anti-Drinfeld double* [CMZ97; Sch99]. In analogy to how the anti-Yetter–Drinfeld modules are a module category over the Yetter–Drinfeld modules, the anti-Drinfeld double is a comodule algebra over the Drinfeld double.

For the next result, recall Theorem 2.71 for iterated duals.

Proposition 2.80 ([JS91, Lemma 7]). The centre of a (strict) rigid category \mathscr{C} is (strict) rigid: for all $(x, \sigma_{x,-}) \in \mathsf{Z}(\mathscr{C})$, we have that $\mathsf{U}^{(\mathsf{Z})}({}^{\vee}(x, \sigma_{x,-})) = {}^{\vee}x$ and $\mathsf{U}^{(\mathsf{Z})}((x, \sigma_{x,-})^{\vee}) = x^{\vee}$. Moreover, for every $n \in \mathbb{Z}$ and $x \in \mathsf{Z}(\mathscr{C})$, the equality $\sigma_{(x)^n,(y)^n} = (\sigma_{x,y})^n$ holds for all $y \in \mathsf{Z}(\mathscr{C})$.

2.5 Linear and abelian categories

We shall pay special attention to k-linear categories, for some field k. Indeed, k-linear functor categories encompass many phenomena in representation theory; see for example Section 3.2 and Chapter 9. We shall denote the category k-vector spaces by Vect, and write vect for the full subcategory of finite-dimensional k-vector spaces.³

Definition 2.81. A k-linear category is a category enriched in Vect

Example 2.82. Let $\mathscr C$ be an ordinary category. Its *linearisation* $\&\mathscr C$ has the same objects, and the space of morphisms between two objects $a,b\in \&\mathscr C$ is $\&\mathscr C(a,b):=\operatorname{span}_{\&\mathscr C}(a,b)$. To define the composition in $\&\mathscr C$, note that for any $a,b,c\in \&\mathscr C$ there is a unique linear map

$$-\circ =: \mathbb{k}\mathscr{C}(b,c) \otimes_{\mathbb{k}} \mathbb{k}\mathscr{C}(a,b) \longrightarrow \mathbb{k}\mathscr{C}(a,c),$$

such that $g \circ f = gf$ for all $g \in \mathcal{C}(b,c)$ and $f \in \mathcal{C}(a,b)$.

Let $\iota: \mathscr{C} \longrightarrow \Bbbk\mathscr{C}$ be the functor that is the identity on objects and maps any morphism to the corresponding basis vector. For any functor $F: \mathscr{C} \longrightarrow \mathfrak{D}$ whose codomain is a \Bbbk -linear category, we obtain a commuting triangle:

As a consequence, if we endow the ordinary functor category [\mathscr{C} , Vect] with the pointwise k-linear structure, we obtain an isomorphism of linear categories between it and the category of k-linear functors from $k\mathscr{C}$ to Vect.

³ This will be a general theme throughout the thesis: whenever there exists a full subcategory of "finite-dimensional objects" inside of a lager category of all objects, the finite-dimensional subcategory will start with a lower case letter, and we use a capital for the larger category.