

Report No.: FR6N0915-01AB

Project No: CB10512236

FCC Test Report

Equipment

: High Power AC2200 Tri-Band Wi-Fi Router

Brand Name

: amped wireless

Model No.

: RTA2200T

FCC ID

: ZTT-RTA2200T

Standard

: 47 CFR FCC Part 15.407

Operating Band

: 5150 MHz - 5250 MHz

5725 MHz - 5850 MHz

Applicant

: Amped Wireless

13089 Peyton Dr. #C307 Chino Hills, CA 91709 USA

Manufacturer

: Amped Wireless

13089 Peyton Dr. #C307 Chino Hills, CA 91709 USA

Function

Outdoor; Indoor; Fixed P2P

Client

The product sample received on Nov. 09, 2016 and completely tested on Dec. 13, 2016. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

SPORTON INTERNATIONAL INC.

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: ZTT-RTA2200T Page No.

: 1 of 33

Report Version Issued Date

: Rev. 01

: Jan. 09, 2017

Table of Contents

Report No.: FR6N0915-01AB

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Testing Applied Standards	8
1.3	Testing Location Information	8
1.4	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT	g
2.1	Test Channel Mode	g
2.2	The Worst Case Measurement Configuration	10
2.3	EUT Operation during Test	11
2.4	Accessories	12
2.5	Support Equipment	12
2.6	Test Setup Diagram	14
3	TRANSMITTER TEST RESULT	18
3.1	AC Power-line Conducted Emissions	18
3.2	Emission Bandwidth	20
3.3	Maximum Conducted Output Power	
3.4	Peak Power Spectral Density	
3.5	Unwanted Emissions	
3.6	Frequency Stability	30
4	TEST EQUIPMENT AND CALIBRATION DATA	32
APPE	ENDIX A. TEST RESULTS OF AC POWER-LINE CONDUCTED EMISSIONS	
APPE	ENDIX B. TEST RESULTS OF EMISSION BANDWIDTH	
APPE	ENDIX C. TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER	
APPE	ENDIX D. TEST RESULTS OF PEAK POWER SPECTRAL DENSITY	
APPE	ENDIX E. TEST RESULTS OF UNWANTED EMISSIONS	
APPE	ENDIX F. TEST RESULTS OF FREQUENCY STABILITY	
APPE	ENDIX G. TEST RESULTS OF RADIATED EMISSION CO-LOCATION	
APPE	ENDIX H. TEST PHOTOS	

Page No.

Report Version

Issued Date

: 2 of 33 : Rev. 01

: Jan. 09, 2017

Summary of Test Result

Conformance Test Specifications					
Report Ref. Std. Clause Description					
1.1.2	15.203	Antenna Requirement	Complied		
3.1	15.207	AC Power-line Conducted Emissions	Complied		
3.2	15.407(a)	Emission Bandwidth	Complied		
3.3	15.407(a)	Maximum Conducted Output Power	Complied		
3.4	15.407(a)	Peak Power Spectral Density	Complied		
3.5	15.407(b)	nwanted Emissions Com			
3.6	15.407(g)	Frequency Stability	Complied		

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456

FAX: 886-3-3270973

Issued Date

FCC ID: ZTT-RTA2200T

Issued Date : Jan. 09, 2017

: 3 of 33

: Rev. 01

Revision History

Report No.	Version	Description	Issued Date
FR6N0915-01AB	Rev. 01	Initial issue of report	Jan. 09, 2017

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: ZTT-RTA2200T Page No.
Report Version
Issued Date

: 4 of 33 : Rev. 01 : Jan. 09, 2017

1 General Description

1.1 Information

1.1.1 RF General Information

Frequency Range (MHz)	IEEE Std. 802.11	Ch. Frequency (MHz)	Channel Number
5150-5250	a, n (HT20), ac (VHT20)	5180-5240	36-48 [4]
5725-5850		5745-5825	149-165 [5]
5150-5250	n (HT40), ac (VHT40)	5190-5230	38-46 [2]
5725-5850		5755-5795	151-159 [2]
5150-5250	ac (VHT80)	5210	42 [1]
5725-5850		5775	155 [1]

Band	Mode	BWch (MHz)	Nant
5.2G	11a	20	2
5.2G	HT20	20	2
5.2G	HT20,BF	20	2
5.2G	VHT20	20	2
5.2G	VHT20,BF	20	2
5.2G	HT40	40	2
5.2G	HT40,BF	40	2
5.2G	VHT40	40	2
5.2G	VHT40,BF	40	2
5.2G	VHT80	80	2
5.2G	VHT80,BF	80	2
5.8G	11a	20	2
5.8G	HT20	20	2
5.8G	HT20,BF	20	2
5.8G	VHT20	20	2
5.8G	VHT20,BF	20	2
5.8G	HT40	40	2
5.8G	HT40,BF	40	2
5.8G	VHT40	40	2
5.8G	VHT40,BF	40	2
5.8G	VHT80	80	2
5.8G	VHT80,BF	80	2

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: ZTT-RTA2200T Page No. : 5 of 33
Report Version : Rev. 01
Issued Date : Jan. 09, 2017

Note:

- 5.2G/5.2G-I(IC) is the 5.2GHz Band (5.15-5.25GHz).
- 5.8G/5.8G-I(IC) is the 5.8GHz Band (5.725-5.850GHz).
- 11a, HT20 and HT40 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.
- VHT20, VHT40, VHT80 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM, modulation.

Report No.: FR6N0915-01AB

- BWch is the nominal channel bandwidth.
- Nss-Min is the minimum number of spatial streams.
- Nant is the number of outputs. e.g., 2(2,3) means have 2 outputs for port 2 and port 3. 2 means have 2 outputs for port 1 and port 2.

1.1.2 Antenna Information

Ant.	Brand	Model Name (Product number)	Antenna Type	Connector	Gain (dBi)
1	Cortec	AN2450-5010BRS	Dipole Antenna	Reversed-SMA	
2	Cortec	AN2450-5010BRS	Dipole Antenna	Reversed-SMA	Note 1
3	LYNwave	ALA110-091021-000000	PIFA Antenna	I-PEX	Note i
4	Cortec	AN2450-5010BRS	Dipole Antenna	Reversed-SMA	

Note1:

	Gain (dBi)			Cable loss			True Gain (dBi)		
Ant.	2.4GHz	5GHz Band 1	5GHz Band 4	2.4GHz	5GHz Band 1	5GHz Band 4	2.4GHz	5GHz Band 1	5GHz Band 4
1	5.03	5.59	-	0.8	1.3	-	4.23	4.29	-
2	5.03	5.59	-	0.8	1.3	-	4.23	4.29	-
3	-	-	2	-	-	1.3	-	-	0.7
4	-	-	5.59	-	-	1.3	ı	1	4.29

Note2:

These two radios will be operated in different bands. Radio 1 supports WLAN 2.4GHz/5GHz Band 1 function and Radio 2 supports WLAN 5GHz Band 4 function only.

Chain 1 connect Ant. 1, Chain 2 connect Ant. 2, Chain 3 connect Ant. 3 and Chain 4 connect Ant. 4.

For Radio 1:

<For 2.4GHz Function>

For IEEE 802.11b/g/n mode (2TX, 2RX):

Chain 1(Port 1) and Chain 2(Port 2) can be used as transmitting/receiving antenna.

Chain 1(Port 1) and Chain 2(Port 2) could transmit/receive simultaneously.

<For 5GHz Band 1 Function>

For IEEE 802.11a/n/ac mode (2TX/2RX):

Chain 1(Port 1) and Chain 2(Port 2) can be used as transmitting/receiving antenna.

Chain 1(Port 1) and Chain 2(Port 2) could transmit/receive simultaneously.

 SPORTON INTERNATIONAL INC.
 Page No.
 : 6 of 33

 TEL: 886-3-3273456
 Report Version
 : Rev. 01

 FAX: 886-3-3270973
 Issued Date
 : Jan. 09, 2017

For Radio 2:

<For 5GHz Band 4 Function>

For IEEE 802.11a/n/ac mode (2TX/2RX):

Chain 3(Port 1) and Chain 4(Port 2) can be used as transmitting/receiving antenna.

Chain 3(Port 1) and Chain 4(Port 2) could transmit/receive simultaneously.

1.1.3 Mode Test Duty Cycle

Mode	DC	T(s)	VBW(Hz) ≥ 1/T
11a	0.994	n/a (DC>=0.98)	n/a (DC>=0.98)
VHT20	1	n/a (DC>=0.98)	n/a (DC>=0.98)
VHT20,BF	0.94	1.748m	1k
VHT40	0.969	2.433m	1k
VHT40,BF	0.867	1.665m	1k
VHT80	0.93	1.148m	1k
VHT80,BF	0.9	1.923m	1k

Report No.: FR6N0915-01AB

1.1.4 EUT Operational Condition

EUT Power Type	From Power Adapter		
Beamforming Function			

 SPORTON INTERNATIONAL INC.
 Page No.
 : 7 of 33

 TEL: 886-3-3273456
 Report Version
 : Rev. 01

 FAX: 886-3-3270973
 Issued Date
 : Jan. 09, 2017

1.2 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR6N0915-01AB

- 47 CFR FCC Part 15
- ANSI C63.10-2013
- FCC KDB 789033 D02 v01r03
- FCC KDB 644545 D03 v01
- FCC KDB 662911 D01 v02r01

1.3 Testing Location Information

	Testing Location							
	HWA YA ADD : No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.							
		TEL	:	886-3-327-3456 FAX : 886-3-318-0055				
\boxtimes	JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.				
		TEL	:	886-3-656-9065 FAX : 886-3-656-9085				

Test Condition	Test Site No.	Test Engineer	Test Environment	Test Date
RF Conducted	TH01-CB	Serway Li	22°C / 54%	Nov. 19, 2016~ Dec. 12, 2016
Radiated	03CH01-CB	Mars Lin & Zero Chen & Stim Sung & Jay Luo	22°C / 54%	Nov. 13, 2016~ Dec. 13, 2016
AC Conduction	CO01-CB	Edison Lin	23°C / 60%	Nov. 15, 2016

Test site Designation No. TW0006 with FCC

Test site registered number IC 4086D with Industry Canada.

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.2 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%
Output Power Measurement	1.33 dB	Confidence levels of 95%
Power Density Measurement	1.27 dB	Confidence levels of 95%
Bandwidth Measurement	9.74 x10 ⁻⁸	Confidence levels of 95%
Frequency Stability	6.06 x10 ⁻⁸	Confidence levels of 95%

 SPORTON INTERNATIONAL INC.
 Page No.
 : 8 of 33

 TEL: 886-3-3273456
 Report Version
 : Rev. 01

 FAX: 886-3-3270973
 Issued Date
 : Jan. 09, 2017

2 Test Configuration of EUT

2.1 Test Channel Mode

Band	Mode	BWch (MHz)	Nss-Min	Nant	Ch. (MHz)	Range	Power Setting
5.2G	11a	20	1	2	5180	L	24
5.2G	11a	20	1	2	5200	М	23.5
5.2G	11a	20	1	2	5240	Н	23.5
5.8G	11a	20	1	2	5745	L	18
5.8G	11a	20	1	2	5785	М	18
5.8G	11a	20	1	2	5825	Н	18
5.2G	VHT20	20	1,(M0)	2	5180	L	23
5.2G	VHT20	20	1,(M0)	2	5200	М	23
5.2G	VHT20	20	1,(M0)	2	5240	Н	23.5
5.8G	VHT20	20	1,(M0)	2	5745	L	19
5.8G	VHT20	20	1,(M0)	2	5785	М	19
5.8G	VHT20	20	1,(M0)	2	5825	Н	18
5.2G	VHT40	40	1,(M0)	2	5190	L	18.5
5.2G	VHT40	40	1,(M0)	2	5230	Н	24
5.8G	VHT40	40	1,(M0)	2	5755	L	20
5.8G	VHT40	40	1,(M0)	2	5795	Н	19
5.2G	VHT80	80	1,(M0)	2	5210	S	18.5
5.8G	VHT80	80	1,(M0)	2	5775	S	22
5.2G	VHT20,BF	20	1,(M0)	2	5180	L	24
5.2G	VHT20,BF	20	1,(M0)	2	5200	М	24
5.2G	VHT20,BF	20	1,(M0)	2	5240	Н	24
5.8G	VHT20,BF	20	1,(M0)	2	5745	L	23
5.8G	VHT20,BF	20	1,(M0)	2	5785	М	23
5.8G	VHT20,BF	20	1,(M0)	2	5825	Н	23
5.2G	VHT40,BF	40	1,(M0)	2	5190	L	22
5.2G	VHT40,BF	40	1,(M0)	2	5230	Н	24
5.8G	VHT40,BF	40	1,(M0)	2	5755	L	23
5.8G	VHT40,BF	40	1,(M0)	2	5795	Н	24
5.2G	VHT80,BF	80	1,(M0)	2	5210	S	21
5.8G	VHT80,BF	80	1,(M0)	2	5775	S	23

Note:

- Test range channel consist of L (Low Ch.), M (Middle Ch.), H (High Ch.), S (Single Ch.) and C (Straddle Band Ch.).
- VHT20/VHT40 covers HT20/HT40, due to same modulation. The power setting for 802.11n HT20 and HT40 are the same or lower than 802.11ac VHT20 and VHT40.
- There are two modes of EUT, one is beamforming mode, and the other is non-beamforming mode for 802.11n/ac in 5GHz, Beamforming mode and non-beamforming mode has been test and record in this test report.

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: ZTT-RTA2200T Page No. : 9 of 33
Report Version : Rev. 01

Report No.: FR6N0915-01AB

Issued Date : Jan. 09, 2017

2.2 The Worst Case Measurement Configuration

Tł	ne Worst Case Mode for Following Conformance Tests
Tests Item	AC power-line conducted emissions
Condition	AC power-line conducted measurement for line and neutral
Operating Mode	Normal Link
1	EUT + Adapter

Т	The Worst Case Mode for Following Conformance Tests		
Tests Item	Emission Bandwidth Maximum Conducted Output Power Peak Power Spectral Density Frequency Stability		
Test Condition	Conducted measurement at transmit chains		

Th	e Worst Case Mode for Following Conformance Tests
Tests Item	Unwanted Emissions
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.
Operating Mode < 1GHz	Normal Link
1	Place EUT in X axis + Adapter
2	Place EUT in Z axis + Adapter
For operating mode 2 is th	e worst case and it was record in this test report.
Operating Mode > 1GHz	CTX
The EUT was performed measurement will follow th	at X axis and Z axis position, and the worst case was found at X axis. So the is same test configuration.
1	Place EUT in X axis + Adapter

Т	he Worst Case Mode for Following Conformance Tests
Tests Item	Simultaneous Transmission Analysis
Test Condition	Radiated measurement
Operating Mode	Normal Link
1	Place EUT in X axis – Radio 1 (2.4GHz) + Radio 1 (5GHz band 1) + Radio 2 (5GHz band 4)
2	Place EUT in Z axis – Radio 1 (2.4GHz) + Radio 1 (5GHz band 1) + Radio 2 (5GHz band 4)

For operating mode 2 is the worst case and it was record in this test report.

Refer to Sporton Test Report No.: FA6N0915-01 for Co-location RF Exposure Evaluation and Appendix G for Radiated Emission Co-location.

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: ZTT-RTA2200T Page No. : 10 of 33
Report Version : Rev. 01

Issued Date : Jan. 09, 2017

2.3 EUT Operation during Test

For CTX Mode:

non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

beamforming mode:

For Conducted Mode:

The EUT was programmed to be in continuously transmitting mode.

For Radiated Mode:

During the test, the following programs under WIN XP were executed.

The program was executed as follows:

- 1. During the test, the EUT operation to normal function.
- 2. Executed command fixed test channel under Telnet.
- 3. Executed "Lantest.exe" to link with the remote workstation to receive and transmit packet by RX Device and transmit duty cycle no less 98%

Report No.: FR6N0915-01AB

For Normal Link:

During the test, the EUT operation to normal function.

 SPORTON INTERNATIONAL INC.
 Page No.
 : 11 of 33

 TEL: 886-3-3273456
 Report Version
 : Rev. 01

 FAX: 886-3-3270973
 Issued Date
 : Jan. 09, 2017

2.4 Accessories

		Accessories	
Equipment Name	Brand Name	Model Name	Rating
Adapter	DVE	DSA-36PFH-12 FUS 120300AN	INPUT: 100-240V~50/60Hz 1A OUTPUT: 12V, 3A
		Other	
Pedestal*1			

Report No.: FR6N0915-01AB

2.5 Support Equipment

For Test Site No: CO01-CB

	Support Equipment				
No.	Equipment	Brand Name	Model Name	FCC ID	
1	Notebook	DELL	E6430	DoC	
2	Notebook	DELL	E6430	DoC	
3	Notebook	DELL	E6430	DoC	
4	Notebook	DELL	E6430	DoC	
5	Flash disk3.0	Transcend	639205 7755	DoC	

For Test Site No: 03CH01-CB (below 1GHz)

	Support Equipment				
No.	Equipment	Brand Name	Model Name	FCC ID	
1	Notebook	DELL	E6430	DoC	
2	Notebook	DELL	E6430	DoC	
3	Notebook	Apple	Mac Book	DoC	
4	Notebook	Apple	Mac Book	DoC	
5	Flash disk3.0	Silicon Power	B06	DoC	

For Test Site No: 03CH01-CB (above 1GHz)

For non-beamforming mode

		Support Equ	ipment	
No.	Equipment	Brand Name	Model Name	FCC ID
1	Notebook	DELL	E4300	DoC

 SPORTON INTERNATIONAL INC.
 Page No.
 : 12 of 33

 TEL: 886-3-3273456
 Report Version
 : Rev. 01

 FAX: 886-3-3270973
 Issued Date
 : Jan. 09, 2017

For beamforming mode

	Support Equipment			
No.	Equipment	Brand Name	Model Name	FCC ID
1	Notebook	DELL	E4300	DoC
2	Notebook	DELL	E4300	DoC
3	Router (RX device)	Amped Wireless	AC2200 repeater router	DoC

For Test Site No: TH01-CB

		Support Equ	ipment	
No.	Equipment	Brand Name	Model Name	FCC ID
1	Notebook	DELL	E6430	DoC

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456

Report Ver
FAX: 886-3-3270973

Issued Dat

FCC ID: ZTT-RTA2200T

Page No. : 13 of 33
Report Version : Rev. 01
Issued Date : Jan. 09, 2017

Report No.: FR6N0915-01AB

Test Setup Diagram 2.6

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: ZTT-RTA2200T Page No. : 14 of 33 Report Version : Rev. 01 Issued Date : Jan. 09, 2017 Report No.: FR6N0915-01AB

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: ZTT-RTA2200T Page No. : 15 of 33 Report Version : Rev. 01 Issued Date : Jan. 09, 2017

Report No.: FR6N0915-01AB

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: ZTT-RTA2200T Page No. : 16 of 33 Report Version : Rev. 01 Issued Date : Jan. 09, 2017 Report No.: FR6N0915-01AB

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: ZTT-RTA2200T Page No. : 17 of 33 Report Version : Rev. 01 Issued Date : Jan. 09, 2017

3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit				
Frequency Emission (MHz)	Quasi-Peak	Average		
0.15-0.5	66 - 56 *	56 - 46 *		
0.5-5	56	46		
5-30	60	50		

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method
Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

SPORTON INTERNATIONAL INC. TEL: 886-3-3273456

FAX: 886-3-3270973 FCC ID: ZTT-RTA2200T Page No. : 18 of 33
Report Version : Rev. 01
Issued Date : Jan. 09, 2017

3.1.5 Test Result of AC Power-line Conducted Emissions

Refer as Appendix A

FCC ID: ZTT-RTA2200T

 SPORTON INTERNATIONAL INC.
 Page I

 TEL: 886-3-3273456
 Report

 FAX: 886-3-3270973
 Issued

Page No. : 19 of 33
Report Version : Rev. 01
Issued Date : Jan. 09, 2017

3.2 Emission Bandwidth

3.2.1 Emission Bandwidth Limit

	Emission Bandwidth Limit
UNI	I Devices
\boxtimes	For the 5.15-5.25 GHz band, N/A
	For the 5.25-5.35 GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz.
	For the 5.47-5.725 GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz.
\boxtimes	For the 5.725-5.85 GHz band, 6 dB emission bandwidth ≥ 500kHz.
LE-	LAN Devices
	For the band 5.15-5.25 GHz, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.
	For the 5.25-5.35 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz
	For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz
	For the 5.725-5.85 GHz band, 6 dB emission bandwidth ≥ 500kHz.

Report No.: FR6N0915-01AB

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method
•	For the emission bandwidth shall be measured using one of the options below:
	Refer as FCC KDB 789033, clause C for EBW and clause D for OBW measurement.
	Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.
	Refer as IC RSS-Gen, clause 4.6 for bandwidth testing.

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Refer as Appendix B

 SPORTON INTERNATIONAL INC.
 Page No.
 : 20 of 33

 TEL: 886-3-3273456
 Report Version
 : Rev. 01

 FAX: 886-3-3270973
 Issued Date
 : Jan. 09, 2017

3.3 Maximum Conducted Output Power

3.3.1 Maximum Conducted Output Power Limit

	Maximum Conducted Output Power Limit
UNI	I Devices
\boxtimes	For the 5.15-5.25 GHz band:
	Outdoor AP: the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W. If G_{TX} > 6 dBi, then P_{Out} = 30 – (G_{TX} – 6). e.i.r.p. at any elevation angle above 30 degrees \leq 125mW [21dBm]
	Indoor AP: the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W. If G_{TX} > 6 dBi, then P_{Out} = 30 – (G_{TX} – 6)
	Point-to-point AP: the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W If $G_{TX} > 23$ dBi, then $P_{Out} = 30 - (G_{TX} - 23)$.
	■ Mobile or Portable Client: the maximum conducted output power (P _{Out}) shall not exceed the lesser of 250 mW. If G _{TX} > 6 dBi, then P _{Out} = 24 – (G _{TX} – 6).
	For the 5.25-5.35 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If G_{TX} > 6 dBi, then P_{Out} = 24 – (G_{TX} – 6).
	For the 5.47-5.725 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If G_{TX} > 6 dBi, then P_{Out} = 24 – (G_{TX} – 6).
\boxtimes	For the 5.725-5.85 GHz band:
	Point-to-multipoint systems (P2M): the maximum conducted output power (P _{Out}) shall not exceed the lesser of 1 W. If G _{TX} > 6 dBi, then P _{Out} = 30 − (G _{TX} − 6).
	 Point-to-point systems (P2P): the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W.
LE-	LAN Devices
	For the 5.15-5.25 GHz band, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.
	For the 5.25-5.35 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz
	For the $5.47-5.6$ GHz band and $5.65-5.725$ GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or $17+10\log B$, dBm, whichever power is less. B is the 99% emission bandwidth in MHz
	For the 5.725-5.85 GHz band:
	 Point-to-multipoint systems (P2M): the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W. If G_{TX} > 6 dBi, then P_{Out} = 30 - (G_{TX} - 6).
	 Point-to-point systems (P2P): the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W.
	= maximum conducted output power in dBm, = the maximum transmitting antenna directional gain in dBi.

Report No.: FR6N0915-01AB

 SPORTON INTERNATIONAL INC.
 Page No.
 : 21 of 33

 TEL: 886-3-3273456
 Report Version
 : Rev. 01

 FAX: 886-3-3270973
 Issued Date
 : Jan. 09, 2017

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

	Test Method							
•	Maximum Conducted Output Power							
	Average over on/off periods with duty factor							
	Refer as FCC KDB 789033, clause E Method SA-2 (spectral trace averaging).							
	Refer as FCC KDB 789033, clause E Method SA-2 Alt. (RMS detection with slow sweep speed)							
	Wideband RF power meter and average over on/off periods with duty factor							
	Refer as FCC KDB 789033, clause E Method PM-G (using an RF average power meter).							
•	For conducted measurement.							
	If the EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.							
	If multiple transmit chains, EIRP calculation could be following as methods: P _{total} = P ₁ + P ₂ + + P _n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG							

3.3.4 Test Setup

3.3.5 Test Result of Maximum Conducted Output Power

Refer as Appendix C

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: ZTT-RTA2200T

SPORTON INTERNATIONAL INC.

 Page No.
 : 22 of 33

 Report Version
 : Rev. 01

 Issued Date
 : Jan. 09, 2017

3.4 Peak Power Spectral Density

3.4.1 Peak Power Spectral Density Limit

	Peak Power Spectral Density Limit
UNI	Il Devices
\boxtimes	For the 5.15-5.25 GHz band:
	 Outdoor AP: the peak power spectral density (PPSD) shall not exceed the lesser of 17dBm/MHz. If G_{TX} > 6 dBi, then P_{Out} = 17 - (G_{TX} - 6).
	Indoor AP: the peak power spectral density (PPSD) shall not exceed the lesser of 17dBm/MHz. If G _{TX} > 6 dBi, then P _{Out} = 17 − (G _{TX} − 6).
	■ Point-to-point AP: the peak power spectral density (PPSD) shall not exceed the lesser of 17dBm/MHz. If $G_{TX} > 23$ dBi, then $P_{Out} = 17 - (G_{TX} - 23)$.
	 Mobile or Portable Client: the peak power spectral density (PPSD) ≤ 11 dBm/MHz. If G_{TX} > 6 dBi, then PPSD= 11 – (G_{TX} – 6)
	For the 5.25-5.35 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz. If $G_{TX} >$ 6 dBi, then PPSD= 11 $-$ ($G_{TX} -$ 6).
	For the 5.47-5.725 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz. If $G_{TX} >$ 6 dBi, then PPSD= 11 – $(G_{TX} - 6)$.
\boxtimes	For the 5.725-5.85 GHz band:
	Point-to-multipoint systems (P2M): the peak power spectral density (PPSD) ≤ 30 dBm/500kHz. If $G_{TX} > 6$ dBi, then PPSD= $30 - (G_{TX} - 6)$.
	 Point-to-point systems (P2P): the peak power spectral density (PPSD) ≤ 30 dBm/500kHz.
LE-	LAN Devices
	For the 5.15-5.25 GHz band, the peak power spectral density (PPSD) \leq 4 dBm/MHz and the e.i.r.p. peak power spectral density (PPSD) \leq 10 dBm/MHz.
	For the 5.25-5.35 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz and the e.i.r.p. peak power spectral density (PPSD) \leq 17 dBm/MHz.
	 e.i.r.p. greater than 200 mW shall comply with the following e.i.r.p. at different elevations, where θ is the angle above the local horizontal plane (of the Earth) as shown below: -13 dBW/MHz for 0° ≤ θ < 8°; -13 - 0.716 (θ-8) dBW/MHz for 8° ≤ θ < 40° -35.9 - 1.22 (θ-40) dBW/MHz for 40° ≤ θ ≤ 45°; -42 dBW/MHz for θ > 45°
	For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz and the e.i.r.p. peak power spectral density (PPSD) \leq 17 dBm/MHz.
	For the 5.725-5.85 GHz band:
	■ Point-to-multipoint systems (P2M): the peak power spectral density (PPSD) \leq 30 dBm/500kHz. If $G_{TX} > 6$ dBi, then PPSD= $30 - (G_{TX} - 6)$.
	Point-to-point systems (P2P): the peak power spectral density (PPSD) ≤ 30 dBm/500kHz.
pow	SD = peak power spectral density that he same method as used to determine the conducted output ver shall be used to determine the power spectral density. And power spectral density in dBm/MHz = the maximum transmitting antenna directional gain in dBi.

Report No.: FR6N0915-01AB

3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

 SPORTON INTERNATIONAL INC.
 Page No.
 : 23 of 33

 TEL: 886-3-3273456
 Report Version
 : Rev. 01

 FAX: 886-3-3270973
 Issued Date
 : Jan. 09, 2017

3.4.3 Test Procedures

		Test Method
•	outp funct	c power spectral density procedures that the same method as used to determine the conducted ut power shall be used to determine the peak power spectral density and use the peak search tion on the spectrum analyzer to find the peak of the spectrum. For the peak power spectral density be measured using below options:
		Refer as FCC KDB 789033, F)5) power spectral density can be measured using resolution bandwidths < 1 MHz provided that the results are integrated over 1 MHz bandwidth
	[duty	cycle ≥ 98% or external video / power trigger]
	\boxtimes	Refer as FCC KDB 789033, clause E Method SA-1 (spectral trace averaging).
		Refer as FCC KDB 789033, clause E Method SA-1 Alt. (RMS detection with slow sweep speed)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 789033, clause E Method SA-2 (spectral trace averaging).
		Refer as FCC KDB 789033, clause E Method SA-2 Alt. (RMS detection with slow sweep speed)
•	For o	conducted measurement.
	•	If the EUT supports multiple transmit chains using options given below:
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the NTX output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.
		Option 2: Measure and sum spectral maxima across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The maximum value (peak) of each spectrum is determined. These maximum values are then summed mathematically in linear power units across the outputs. These operations shall be performed separately over frequency spans that have different out-of-band or spurious emission limits,
		Option 3: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.
		If multiple transmit chains, EIRP PPSD calculation could be following as methods: $ PPSD_{total} = PPSD_1 + PPSD_2 + + PPSD_n \\ (calculated in linear unit [mW] and transfer to log unit [dBm]) \\ EIRP_{total} = PPSD_{total} + DG $

3.4.4 Test Setup

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: ZTT-RTA2200T Page No. : 24 of 33
Report Version : Rev. 01
Issued Date : Jan. 09, 2017

3.4.5 Test Result of Peak Power Spectral Density

Refer as Appendix D

SPORTON INTERNATIONAL INC. TEL: 886-3-3273456 FAX: 886-3-3270973

FCC ID: ZTT-RTA2200T

 Page No.
 : 25 of 33

 Report Version
 : Rev. 01

 Issued Date
 : Jan. 09, 2017

3.5 Unwanted Emissions

3.5.1 Transmitter Radiated Unwanted Emissions Limit

Unwanted emiss	Unwanted emissions below 1 GHz and restricted band emissions above 1GHz limit					
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)			
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300			
0.490~1.705	24000/F(kHz)	33.8 - 23	30			
1.705~30.0	30	29	30			
30~88	100	40	3			
88~216	150	43.5	3			
216~960	200	46	3			
Above 960	500	54	3			

Report No.: FR6N0915-01AB

· 26 of 33

: Rev. 01

: Jan. 09. 2017

Issued Date

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

	Un-restricted band emissions above 1GHz Limit					
Operating Band	Limit					
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]					
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]					
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]					
5.725 - 5.85 GHz	all emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.					

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

SPORTON INTERNATIONAL INC. Page No. TEL: 886-3-3273456 Report Version

FAX: 886-3-3270973 FCC ID: ZTT-RTA2200T

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

Test Method Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 m for frequencies above 30 MHz, unless it can be further demonstrated that measurements at a distance of 30 m or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements). The average emission levels shall be measured in [duty cycle ≥ 98 or duty factor]. For the transmitter unwanted emissions shall be measured using following options below: Refer as FCC KDB 789033, clause H)2) for unwanted emissions into non-restricted bands. Refer as FCC KDB 789033, clause H)1) for unwanted emissions into restricted bands. Refer as FCC KDB 789033, H)6) Method AD (Trace Averaging). Refer as FCC KDB 789033, H)6) Method VB (Reduced VBW). Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW ≥ 1/T, where T is pulse time. Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions. Refer as FCC KDB 789033, clause H)5) measurement procedure peak limit. Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit. For radiated measurement. Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m. Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m. Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1GHz. The any unwanted emissions level shall not exceed the fundamental emission level.

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value

Report No.: FR6N0915-01AB

 SPORTON INTERNATIONAL INC.
 Page No.
 : 27 of 33

 TEL: 886-3-3273456
 Report Version
 : Rev. 01

 FAX: 886-3-3270973
 Issued Date
 : Jan. 09, 2017

FCC ID: ZTT-RTA2200T

has no need to be reported.

3.5.4 Test Setup

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: ZTT-RTA2200T Page No. : 28 of 33
Report Version : Rev. 01
Issued Date : Jan. 09, 2017

3.5.5 Transmitter Unwanted Emissions (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

3.5.6 Test Result of Transmitter Unwanted Emissions

Refer as Appendix E

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: ZTT-RTA2200T Page No. : 29 of 33
Report Version : Rev. 01

Issued Date : Jan. 09, 2017

3.6 Frequency Stability

3.6.1 Frequency Stability Limit

Frequency Stability Limit

UNII Devices

• In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

LE-LAN Devices

N/A

IEEE Std. 802.11

■ The transmitter center frequency tolerance shall be ± 20 ppm maximum for the 5 GHz band and ± 25 ppm maximum for the 2.4 GHz band.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.6.3 Test Procedures

Test Method

- Refer as ANSI C63.10, clause 6.8 for frequency stability tests
 - Frequency stability with respect to ambient temperature
 - Frequency stability when varying supply voltage
 - Extreme temperature is 0°C~40°C.

3.6.4 Test Setup

FCC ID: ZTT-RTA2200T

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456

FAX: 886-3-3270973

Page No.

Report Version

Issued Date

Issued Date : Jan. 09, 2017

: 30 of 33

: Rev. 01

3.6.5 Test Result of Frequency Stability

Refer as Appendix F

 SPORTON INTERNATIONAL INC.
 Page

 TEL: 886-3-3273456
 Repo

 FAX: 886-3-3270973
 Issue

FCC ID: ZTT-RTA2200T

 Page No.
 : 31 of 33

 Report Version
 : Rev. 01

 Issued Date
 : Jan. 09, 2017

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Receiver	Agilent	N9038A	My52260123	9kHz ~ 8.45GHz	Jan. 27, 2016	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16- 2	04083	150kHz ~ 100MHz	Dec. 08, 2015	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Dec. 23, 2015	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	150kHz ~ 30MHz	May 24, 2016	Conduction (CO01-CB)
Software	Audix	E3	6.120210n	-	N.C.R.	Conduction (CO01-CB)
BILOG ANTENNA with 6dB Attenator	TESEQ & EMCI	CBL6112D & N-6-06	37880 & AT-N0609	20MHz ~ 2GHz	Aug. 30, 2016	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Nov. 10, 2016	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jul. 25, 2016	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Mar. 15, 2016	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 18, 2016	Radiation (03CH01-CB)
Pre-Amplifier	MITEQ	TTA1840-35-HG	1864479	18GHz ~ 40GHz	Jun. 28, 2016	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP-40	100019	9kHz ~ 40GHz	Apr. 21, 2016	Radiation (03CH01-CB)
EMI Test	R&S	ESCS	100355	9kHz ~ 2.75GHz	May 16, 2016	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-16+17	N/A	30 MHz ~ 1 GHz	Oct. 24, 2016	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16	N/A	1 GHz ~ 18 GHz	Oct. 24, 2016	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16+17	N/A	1 GHz ~ 18 GHz	Oct. 24, 2016	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G#1	N/A	18GHz ~ 40 GHz	Oct. 24, 2016	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G#2	N/A	18GHz ~ 40 GHz	Oct. 24, 2016	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Mar. 16, 2016*	Radiation (03CH01-CB)
Test Software	Audix	E3	6.2009-10-7	N/A	N/A	Radiation (03CH01-CB)

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: ZTT-RTA2200T Page No. : 32 of 33
Report Version : Rev. 01
Issued Date : Jan. 09, 2017

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum analyzer	R&S	FSV40	101027	9kHz~40GHz	Jul. 26, 2016	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 03, 2016	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-6	1GHz – 26.5GHz	Oct. 24, 2016	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-7	1GHz – 26.5GHz	Oct. 24, 2016	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-8	1GHz – 26.5GHz	Oct. 24, 2016	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-9	1GHz – 26.5GHz	Oct. 24, 2016	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1GHz – 26.5GHz	Oct. 24, 2016	Conducted (TH01-CB)
Power Sensor	Anritsu	MA2411B	1126203	300MHz~40GHz	Sep. 09, 2016	Conducted (TH01-CB)
Power Meter	Anritsu	ML2495A	1210004	300MHz~40GHz	Sep. 09, 2016	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

NCR means Non-Calibration required.

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: ZTT-RTA2200T Page No. : 33 of 33
Report Version : Rev. 01

Issued Date : Jan. 09, 2017

 $[\]ensuremath{^{"\star"}}$ Calibration Interval of instruments listed above is two years.

Note 2: "N/F" means Nothing Found emissions (No emissions were detected.)

SPORTON INTERNATIONAL INC. Page No. : 1 of 1

TEL: 886-3-327-3456 FAX: 886-3-327-0973

EBW Result
Appendix B

Summary

Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
5.2G;11a;Nss1;Ntx2	34.925M	16.692M	16M7D1D	21.525M	16.467M
5.8G;11a;Nss1;Ntx2	16.3M	16.442M	16M4D1D	16.05M	16.392M
5.2G;VHT20;Nss1,(M0);Ntx2	36.25M	17.866M	17M9D1D	20.9M	17.616M
5.8G;VHT20;Nss1,(M0);Ntx2	17.55M	17.641M	17M6D1D	16.525M	17.591M
5.2G;VHT40;Nss1,(M0);Ntx2	81M	37.681M	37M7D1D	39.45M	35.932M
5.8G;VHT40;Nss1,(M0);Ntx2	35.65M	36.032M	36M0D1D	33.85M	35.932M
5.2G;VHT80;Nss1,(M0);Ntx2	83.9M	75.862M	75M9D1D	83.6M	75.662M
5.8G;VHT80;Nss1,(M0);Ntx2	75.7M	75.862M	75M9D1D	75.5M	75.862M
5.2G;VHT20,BF;Nss1,(M0);Ntx2	22.25M	17.666M	17M7D1D	20.625M	17.616M
5.8G;VHT20,BF;Nss1,(M0);Ntx2	17.55M	17.641M	17M6D1D	17.125M	17.591M
5.2G;VHT40,BF;Nss1,(M0);Ntx2	41.9M	36.032M	36M0D1D	39.7M	35.932M
5.8G;VHT40,BF;Nss1,(M0);Ntx2	35.35M	36.032M	36M0D1D	34.9M	35.882M
5.2G;VHT80,BF;Nss1,(M0);Ntx2	83.7M	75.962M	76M0D1D	83.7M	75.662M
5.8G;VHT80,BF;Nss1,(M0);Ntx2	74.3M	75.862M	75M9D1D	74.1M	75.662M

SPORTON INTERNATIONAL INC. : 1 of 5

TEL: 886-3-327-3456 FAX: 886-3-327-0973

EBW Result
Appendix B

Result

Mode	Result	Limit	P1-N dB	P1-OBW	P2-N dB	P2-OBW
		(Hz)	(Hz)	(Hz)	(Hz)	(Hz)
5.2G;11a;Nss1;Ntx2;5180	Pass	Inf	23.825M	16.467M	23.25M	16.467M
5.2G;11a;Nss1;Ntx2;5200	Pass	Inf	21.525M	16.467M	25.925M	16.517M
5.2G;11a;Nss1;Ntx2;5240	Pass	Inf	29.675M	16.517M	34.925M	16.692M
5.8G;11a;Nss1;Ntx2;5745	Pass	500k	16.3M	16.442M	16.3M	16.392M
5.8G;11a;Nss1;Ntx2;5785	Pass	500k	16.05M	16.417M	16.3M	16.417M
5.8G;11a;Nss1;Ntx2;5825	Pass	500k	16.3M	16.392M	16.275M	16.417M
5.2G;VHT20;Nss1,(M0);Ntx2;5180	Pass	Inf	20.9M	17.641M	21.1M	17.641M
5.2G;VHT20;Nss1,(M0);Ntx2;5200	Pass	Inf	21.15M	17.616M	26M	17.666M
5.2G;VHT20;Nss1,(M0);Ntx2;5240	Pass	Inf	28.125M	17.741M	36.25M	17.866M
5.8G;VHT20;Nss1,(M0);Ntx2;5745	Pass	500k	16.8M	17.591M	17.175M	17.641M
5.8G;VHT20;Nss1,(M0);Ntx2;5785	Pass	500k	16.525M	17.591M	17.55M	17.641M
5.8G;VHT20;Nss1,(M0);Ntx2;5825	Pass	500k	16.925M	17.591M	17.25M	17.616M
5.2G;VHT40;Nss1,(M0);Ntx2;5190	Pass	Inf	39.45M	35.932M	39.65M	35.982M
5.2G;VHT40;Nss1,(M0);Ntx2;5230	Pass	Inf	70.45M	36.282M	81M	37.681M
5.8G;VHT40;Nss1,(M0);Ntx2;5755	Pass	500k	33.85M	36.032M	34.45M	35.982M
5.8G;VHT40;Nss1,(M0);Ntx2;5795	Pass	500k	35.3M	35.932M	35.65M	36.032M
5.2G;VHT80;Nss1,(M0);Ntx2;5210	Pass	Inf	83.9M	75.862M	83.6M	75.662M
5.8G;VHT80;Nss1,(M0);Ntx2;5775	Pass	500k	75.5M	75.862M	75.7M	75.862M
5.2G;VHT20,BF;Nss1,(M0);Ntx2;5180	Pass	Inf	20.775M	17.641M	20.625M	17.641M
5.2G;VHT20,BF;Nss1,(M0);Ntx2;5200	Pass	Inf	20.825M	17.641M	20.925M	17.641M
5.2G;VHT20,BF;Nss1,(M0);Ntx2;5240	Pass	Inf	20.875M	17.666M	22.25M	17.616M
5.8G;VHT20,BF;Nss1,(M0);Ntx2;5745	Pass	500k	17.55M	17.641M	17.525M	17.591M
5.8G;VHT20,BF;Nss1,(M0);Ntx2;5785	Pass	500k	17.525M	17.641M	17.2M	17.616M
5.8G;VHT20,BF;Nss1,(M0);Ntx2;5825	Pass	500k	17.125M	17.616M	17.15M	17.591M
5.2G;VHT40,BF;Nss1,(M0);Ntx2;5190	Pass	Inf	39.7M	36.032M	39.7M	35.932M
5.2G;VHT40,BF;Nss1,(M0);Ntx2;5230	Pass	Inf	39.95M	36.032M	41.9M	35.982M
5.8G;VHT40,BF;Nss1,(M0);Ntx2;5755	Pass	500k	35.25M	35.882M	34.9M	36.032M
5.8G;VHT40,BF;Nss1,(M0);Ntx2;5795	Pass	500k	35.3M	35.982M	35.35M	35.882M
5.2G;VHT80,BF;Nss1,(M0);Ntx2;5210	Pass	Inf	83.7M	75.962M	83.7M	75.662M
5.8G;VHT80,BF;Nss1,(M0);Ntx2;5775	Pass	500k	74.3M	75.862M	74.1M	75.662M

SPORTON INTERNATIONAL INC. : 2 of 5

TEL: 886-3-327-3456 FAX: 886-3-327-0973

EBW Result
Appendix B

SPORTON INTERNATIONAL INC. : 3 of 5

EBW Result
Appendix B

SPORTON INTERNATIONAL INC. : 4 of 5

EBW Result
Appendix B

Sample

FI-6dB(Hz) Fh-6dB(Hz) OBW(Hz) FI-OBW(Hz) Fh-OBW(Hz) Limit(Hz)
5.7369G 5.8112G 75.862M 5.736819G 5.812681G 500k
5.7371G 5.8112G 75.662M 5.737019G 5.812681G 500k

-55¹ 5.675G 5.7G 5.725G 5.75G 5.775G 5.8G 5.825G 5.85G 5.875G

TEL: 886-3-327-3456 FAX: 886-3-327-0973

Port 1 Port 2

PowerAV Result
Appendix C

Summary

Mode	Sum	Sum	EIRP	EIRP
	(dBm)	(W)	(dBm)	(W)
5.2G;11a;Nss1;Ntx2	26.55	0.45186	30.84	1.21339
5.8G;11a;Nss1;Ntx2	20.44	0.11066	24.73	0.29717
5.2G;VHT20;Nss1,(M0);Ntx2	25.96	0.39446	30.25	1.05925
5.8G;VHT20;Nss1,(M0);Ntx2	21.04	0.12706	25.33	0.34119
5.2G;VHT40;Nss1,(M0);Ntx2	26.81	0.47973	31.10	1.28825
5.8G;VHT40;Nss1,(M0);Ntx2	22.50	0.17783	26.79	0.47753
5.2G;VHT80;Nss1,(M0);Ntx2	21.43	0.139	25.72	0.37325
5.8G;VHT80;Nss1,(M0);Ntx2	24.09	0.25645	28.38	0.68865
5.2G;VHT20,BF;Nss1,(M0);Ntx2	24.26	0.26669	31.56	1.43219
5.8G;VHT20,BF;Nss1,(M0);Ntx2	22.73	0.1875	28.42	0.69502
5.2G;VHT40,BF;Nss1,(M0);Ntx2	24.34	0.27164	31.64	1.45881
5.8G;VHT40,BF;Nss1,(M0);Ntx2	25.26	0.33574	30.95	1.24451
5.2G;VHT80,BF;Nss1,(M0);Ntx2	20.97	0.12503	28.27	0.67143
5.8G;VHT80,BF;Nss1,(M0);Ntx2	22.92	0.19588	28.61	0.72611

SPORTON INTERNATIONAL INC. 2 1 of 2

PowerAV Result
Appendix C

Result

Mode	Result	DG	Sum	Sum Lim.	EIRP	P1	P2
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
5.2G;11a;Nss1;Ntx2;5180	Pass	4.29	26.55	30.00	30.84	23.67	23.41
5.2G;11a;Nss1;Ntx2;5200	Pass	4.29	26.25	30.00	30.54	23.21	23.26
5.2G;11a;Nss1;Ntx2;5240	Pass	4.29	25.97	30.00	30.26	22.89	23.02
5.8G;11a;Nss1;Ntx2;5745	Pass	4.29	19.73	30.00	24.02	16.41	17.01
5.8G;11a;Nss1;Ntx2;5785	Pass	4.29	20.14	30.00	24.43	16.94	17.32
5.8G;11a;Nss1;Ntx2;5825	Pass	4.29	20.44	30.00	24.73	17.43	17.43
5.2G;VHT20;Nss1,(M0);Ntx2;5180	Pass	4.29	25.72	30.00	30.01	22.78	22.63
5.2G;VHT20;Nss1,(M0);Ntx2;5200	Pass	4.29	25.79	30.00	30.08	22.72	22.84
5.2G;VHT20;Nss1,(M0);Ntx2;5240	Pass	4.29	25.96	30.00	30.25	22.87	23.03
5.8G;VHT20;Nss1,(M0);Ntx2;5745	Pass	4.29	20.57	30.00	24.86	17.35	17.76
5.8G;VHT20;Nss1,(M0);Ntx2;5785	Pass	4.29	21.04	30.00	25.33	17.89	18.17
5.8G;VHT20;Nss1,(M0);Ntx2;5825	Pass	4.29	20.28	30.00	24.57	17.12	17.42
5.2G;VHT40;Nss1,(M0);Ntx2;5190	Pass	4.29	21.78	30.00	26.07	18.75	18.79
5.2G;VHT40;Nss1,(M0);Ntx2;5230	Pass	4.29	26.81	30.00	31.10	23.61	23.98
5.8G;VHT40;Nss1,(M0);Ntx2;5755	Pass	4.29	22.50	30.00	26.79	19.32	19.65
5.8G;VHT40;Nss1,(M0);Ntx2;5795	Pass	4.29	21.96	30.00	26.25	18.85	19.04
5.2G;VHT80;Nss1,(M0);Ntx2;5210	Pass	4.29	21.43	30.00	25.72	18.23	18.61
5.8G;VHT80;Nss1,(M0);Ntx2;5775	Pass	4.29	24.09	30.00	28.38	21.52	20.58
5.2G;VHT20,BF;Nss1,(M0);Ntx2;5180	Pass	7.30	24.26	28.70	31.56	21.35	21.14
5.2G;VHT20,BF;Nss1,(M0);Ntx2;5200	Pass	7.30	23.69	28.70	30.99	20.84	20.51
5.2G;VHT20,BF;Nss1,(M0);Ntx2;5240	Pass	7.30	23.74	28.70	31.04	20.89	20.57
5.8G;VHT20,BF;Nss1,(M0);Ntx2;5745	Pass	5.69	22.71	30.00	28.40	19.12	20.21
5.8G;VHT20,BF;Nss1,(M0);Ntx2;5785	Pass	5.69	22.47	30.00	28.16	19.21	19.7
5.8G;VHT20,BF;Nss1,(M0);Ntx2;5825	Pass	5.69	22.73	30.00	28.42	19.02	20.32
5.2G;VHT40,BF;Nss1,(M0);Ntx2;5190	Pass	7.30	22.24	28.70	29.54	19.37	19.08
5.2G;VHT40,BF;Nss1,(M0);Ntx2;5230	Pass	7.30	24.34	28.70	31.64	21.53	21.11
5.8G;VHT40,BF;Nss1,(M0);Ntx2;5755	Pass	5.69	23.91	30.00	29.60	20.3	21.42
5.8G;VHT40,BF;Nss1,(M0);Ntx2;5795	Pass	5.69	25.26	30.00	30.95	21.61	22.81
5.2G;VHT80,BF;Nss1,(M0);Ntx2;5210	Pass	7.30	20.97	28.70	28.27	18.14	17.78
5.8G;VHT80,BF;Nss1,(M0);Ntx2;5775	Pass	5.69	22.92	30.00	28.61	19.59	20.21

SPORTON INTERNATIONAL INC. : 2 of 2

Summary

Mode	PD	EIRP.PD
	(dBm/RBW)	(dBm/RBW)
5.2G;11a;Nss1;Ntx2	13.21	20.51
5.8G;11a;Nss1;Ntx2	6.71	12.40
5.2G;VHT20;Nss1,(M0);Ntx2	12.68	19.98
5.8G;VHT20;Nss1,(M0);Ntx2	6.78	12.47
5.2G;VHT40;Nss1,(M0);Ntx2	10.92	18.22
5.8G;VHT40;Nss1,(M0);Ntx2	5.67	11.36
5.2G;VHT80;Nss1,(M0);Ntx2	2.05	9.35
5.8G;VHT80;Nss1,(M0);Ntx2	3.21	8.90
5.2G;VHT20,BF;Nss1,(M0);Ntx2	11.00	18.30
5.8G;VHT20,BF;Nss1,(M0);Ntx2	5.47	11.16
5.2G;VHT40,BF;Nss1,(M0);Ntx2	8.52	15.82
5.8G;VHT40,BF;Nss1,(M0);Ntx2	4.61	10.30
5.2G;VHT80,BF;Nss1,(M0);Ntx2	2.06	9.36
5.8G;VHT80,BF;Nss1,(M0);Ntx2	-0.38	5.31

SPORTON INTERNATIONAL INC. : 1 of 5

Result

Mode	Result	DG	PD	PD.Limit	P1	P2
		(dBi)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)
5.2G;11a;Nss1;Ntx2;5180	Pass	7.30	13.21	15.70	10.41	10.15
5.2G;11a;Nss1;Ntx2;5200	Pass	7.30	13.01	15.70	9.99	10.06
5.2G;11a;Nss1;Ntx2;5240	Pass	7.30	12.93	15.70	9.82	10.10
5.8G;11a;Nss1;Ntx2;5745	Pass	5.69	5.96	30.00	3.46	2.66
5.8G;11a;Nss1;Ntx2;5785	Pass	5.69	6.26	30.00	3.74	3.28
5.8G;11a;Nss1;Ntx2;5825	Pass	5.69	6.71	30.00	4.01	3.56
5.2G;VHT20;Nss1,(M0);Ntx2;5180	Pass	7.30	12.06	15.70	9.17	9.10
5.2G;VHT20;Nss1,(M0);Ntx2;5200	Pass	7.30	12.10	15.70	9.15	9.21
5.2G;VHT20;Nss1,(M0);Ntx2;5240	Pass	7.30	12.68	15.70	9.66	9.74
5.8G;VHT20;Nss1,(M0);Ntx2;5745	Pass	5.69	6.48	30.00	3.87	3.04
5.8G;VHT20;Nss1,(M0);Ntx2;5785	Pass	5.69	6.78	30.00	4.18	3.51
5.8G;VHT20;Nss1,(M0);Ntx2;5825	Pass	5.69	5.96	30.00	3.36	2.70
5.2G;VHT40;Nss1,(M0);Ntx2;5190	Pass	7.30	5.65	15.70	2.69	2.81
5.2G;VHT40;Nss1,(M0);Ntx2;5230	Pass	7.30	10.92	15.70	7.73	8.08
5.8G;VHT40;Nss1,(M0);Ntx2;5755	Pass	5.69	5.67	30.00	3.08	2.54
5.8G;VHT40;Nss1,(M0);Ntx2;5795	Pass	5.69	5.15	30.00	2.56	1.94
5.2G;VHT80;Nss1,(M0);Ntx2;5210	Pass	7.30	2.05	15.70	-1.15	-0.61
5.8G;VHT80;Nss1,(M0);Ntx2;5775	Pass	5.69	3.21	30.00	-1.05	1.30
5.2G;VHT20,BF;Nss1,(M0);Ntx2;5180	Pass	7.30	11.00	15.70	7.55	8.49
5.2G;VHT20,BF;Nss1,(M0);Ntx2;5200	Pass	7.30	10.68	15.70	7.30	8.12
5.2G;VHT20,BF;Nss1,(M0);Ntx2;5240	Pass	7.30	10.70	15.70	7.39	8.06
5.8G;VHT20,BF;Nss1,(M0);Ntx2;5745	Pass	5.69	4.46	30.00	1.84	1.42
5.8G;VHT20,BF;Nss1,(M0);Ntx2;5785	Pass	5.69	5.05	30.00	2.16	2.04
5.8G;VHT20,BF;Nss1,(M0);Ntx2;5825	Pass	5.69	5.47	30.00	2.74	2.32
5.2G;VHT40,BF;Nss1,(M0);Ntx2;5190	Pass	7.30	6.43	15.70	3.00	3.97
5.2G;VHT40,BF;Nss1,(M0);Ntx2;5230	Pass	7.30	8.52	15.70	5.04	5.96
5.8G;VHT40,BF;Nss1,(M0);Ntx2;5755	Pass	5.69	2.96	30.00	0.54	-0.30
5.8G;VHT40,BF;Nss1,(M0);Ntx2;5795	Pass	5.69	4.61	30.00	1.82	1.61
5.2G;VHT80,BF;Nss1,(M0);Ntx2;5210	Pass	7.30	2.06	15.70	-1.67	-0.25
5.8G;VHT80,BF;Nss1,(M0);Ntx2;5775	Pass	5.69	-0.38	30.00	-2.72	-3.66

SPORTON INTERNATIONAL INC. : 2 of 5

SPORTON INTERNATIONAL INC.

SPORTON INTERNATIONAL INC.

Page No.

RSE below 1GHz Result Appendix E.1

Note 1: ">20dB" means emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found emissions (No emissions were detected.)

Summary

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Pol.	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)	(H/V)	(°)	(m)	
5.8G;VHT20,BF;Nss1,(M0);Ntx2;5825	Pass	AV	11.64694G	53.99	54.00	-0.01	17.65	3	Н	288	2.12	-

SPORTON INTERNATIONAL INC. Page No. : 1 of 26

PK

ΑV

PK

PK

15.54726G

15.53766G

10.36144G

15.53892G

66.80

50.57

62.36

64.71

74.00

54.00

68.20

74.00

-7.20

-3.43

-5.84

-9.29

17.32

17.34

15.53

17.34

244

263

288

263

1.50

1.52

1.50

1.52

RSE TX above 1GHz Result Appendix E.2

RE TX above 1GHz;Band:5.2G;11a;BWch;20MHz;Nss;1;Nant;2;Ch;5200MHz;TX

: 2 of 26

SPORTON INTERNATIONAL INC. Page No.

ΑV

ΑV

PK

5.1464G

5.2008G

5.1456G

5.2064G

47.85

100.42

61.41

111.55

54.00

74.00

Inf

-6.15

-Inf

-Inf

-12.59

7.70

7.82

7.70

7.83

114

114

114

114

1.00

1.00

1.00

1.00

RSE TX above 1GHz Result Appendix E.2

SPORTON INTERNATIONAL INC. : 3 of 26

11.48442G

-11.75

17.79

1.02

SPORTON INTERNATIONAL INC. : 4 of 26

AV 5.457G

50.61

54.00

-3.39

8.48

1.50

201612 EUT X_ setting 06-S-6	2TX_Non-TX 18	(BF									
Туре	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments	
AV	5.457G	51.90	54.00	-2.10	8.48	3	Н	204	2.27	-	
ΔV	5.781G	107.81	Inf	-Inf	8 92	3	н	204	2 27		

Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
ΑV	5.457G	51.90	54.00	-2.10	8.48	3	Н	204	2.27	-
ΑV	5.781G	107.81	Inf	-Inf	8.92	3	Н	204	2.27	-
PK	5.459G	62.97	74.00	-11.03	8.49	3	Н	204	2.27	-
PK	5.465G	63.19	68.20	-5.01	8.50	3	H	204	2.27	-
PK	5.783G	118.92	Inf	-Inf	8.92	3	Н	204	2.27	-
PK	5.939G	61.35	68.20	-6.85	9.35	3	H	204	2.27	-
ΑV	5.457G	50.61	54.00	-3.39	8.48	3	V	69	1.50	-
ΑV	5.781G	103.11	Inf	-Inf	8.92	3	V	69	1.50	-
PK	5.457G	61.56	74.00	-12.44	8.48	3	V	69	1.50	-
PK	5.463G	62.36	68.20	-5.84	8.49	3	V	69	1.50	-
PK	5.781G	112.90	Inf	-Inf	8.92	3	V	69	1.50	-
PK	5.955G	60.76	68.20	-7.44	9.40	3	V	69	1.50	-
ΑV	11.57174G	53.96	54.00	-0.04	17.71	3	Н	222	1.90	-
PK	11.56634G	68.63	74.00	-5.37	17.72	3	Н	222	1.90	-
ΑV	11.56922G	48.84	54.00	-5.16	17.71	3	V	272	2.34	-
PK	11.56976G	62.60	74.00	-11.40	17.71	3	٧	272	2.34	-

Туре	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
ΑV	5.781G	107.81	Inf	-Inf	8.92	3	Н	204	2.27	-
PK	5.465G	63.19	68.20	-5.01	8.50	3	Н	204	2.27	-
PK	5.783G	118.92	Inf	-Inf	8.92	3	Н	204	2.27	-
PK	5.939G	61.35	68.20	-6.85	9.35	3	Н	204	2.27	-
PK	5.459G	62.97	74.00	-11.03	8.49	3	Н	204	2.27	-
ΑV	5.457G	51.90	54.00	-2.10	8.48	3	Н	204	2.27	-

									Lim.PK
									PK
									Lim.AV
	14/1 5/1 04		, ,						AV /
		•							
		•							
G2G 4G	6G 8G 10G	12G 14G 1	6G 18G 200	G 22G 24G	26G 28	G 30G 3	2G 34G 36	38G 40G	
X_Non-TXE	BF								
								_	Comments
1.56922G 1.56976G	48.84 62.60	54.00 74.00	-5.16 -11.40	17.71 17.71	3	V	272 272	2.34	-
	32G 4G	52G 4G 6G 8G 10G X_Non-TXBF 3	52G 4G 6G 8G 10G 12G 14G 10 X_Non-TXBF Teq(Hz) Level(dBuV/m) Limit(dBuV/m)	52G 4G 6G 8G 10G 12G 14G 16G 18G 200 X_Non-TXBF 3 req(Hz) Level(dBuV/m) Limit(dBuV/m) Margin(dB)	52G 4G 6G 8G 10G 12G 14G 16G 18G 20G 22G 24G X_Non-TXBF req(Hz) Level(dBuV/m) Limit(dBuV/m) Margin(dB) Factor(dB)	52G 4G 6G 8G 10G 12G 14G 16G 18G 20G 22G 24G 26G 28 X_Non-TXBF req(Hz) Level(dBuV/m) Limit(dBuV/m) Margin(dB) Factor(dB) Dist(m)	\$2G 4G 6G 8G 10G 12G 14G 16G 18G 20G 22G 24G 26G 28G 30G 3; X_Non-TXBF req(Hz) Level(dBuV/m) Limit(dBuV/m) Margin(dB) Factor(dB) Dist(m) Pol.(H/V)	\$2G 4G 6G 8G 10G 12G 14G 16G 18G 20G 22G 24G 26G 28G 30G 32G 34G 36G X_Non-TXBF Teq(Hz) Level(dBuV/m) Limit(dBuV/m) Margin(dB) Factor(dB) Dist(m) Pol.(H/V) Azimuth(*)	\$2G 4G 6G 8G 10G 12G 14G 16G 18G 20G 22G 24G 26G 28G 30G 32G 34G 36G 38G 40G X_Non-TXBF req(Hz) Level(dBuV/m) Limit(dBuV/m) Margin(dB) Factor(dB) Dist(m) Pol.(H/V) Azimuth(*) Height(m)

SPORTON INTERNATIONAL INC. : 5 of 26

SPORTON INTERNATIONAL INC. : 6 of 26

RE TX above 1GHz;Band:5.2G;VHT20;BWch:20MHz;Nss:1,(M0);Nant:2;Ch:5200MHz;TX

SPORTON INTERNATIONAL INC. : 7 of 26

Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
ΑV	5.14G	48.16	54.00	-5.84	7.69	3	V	164	2.29	-
ΑV	5.1976G	104.29	Inf	-Inf	7.82	3	V	164	2.29	-
PK	5.1392G	61.54	74.00	-12.46	7.68	3	V	164	2.29	-
PK	5.1992G	114.98	Inf	-Inf	7.82	3	V	164	2.29	-

130 Lim.PK 120 PK 100 Lim.AV 80 40 20 0-| 5.1G 5.11G5.12G5.13G5.14G5.15G5.16G5.17G5.18G5.19G 5.2G 5.21G5.22G5.23G5.24G5.25G5.26G5.27G5.28G5.29G 5.3G 20161116 EUT X_2TX_Non-TXBF Setting 23 03-S-5 Type Freq(Hz) | Level(dBuV/m) | Limit(dBuV/m) | Margin(dB) | Factor(dB) | Dist(m) | Pol.(H/V) | Azimuth(°) | Height(m) ΑV 5.1496G 48.31 54.00 -5.69 7.71 Н 189 1.88 ΑV 5.1956G 105.56 Inf -Inf 7.81 189 1.88 PK 5.1324G 74.00 7.67 189 1.88 61.51 -12.49 PK 5.1944G 116.22 -Inf 7.81 189 1.88

RE TX above 1GHz;Band:5.2G;VHT20;BWch:20MHz;Nss:1,(M0);Nant:2;Ch:5200MHz;TX

RE TX above 1GHz;Band:5.2G;VHT20;BWch:20MHz;Nss:1,(M0);Nant:2;Ch:5200MHz;TX

SPORTON INTERNATIONAL INC. : 8 of 26

SPORTON INTERNATIONAL INC. : 9 of 26

RE TX above 1GHz;Band:5.8G;VHT20;BWch:20MHz;Nss:1,(M0);Nant:2;Ch:5785MHz;TX Lim.PK PK PK Lim.AV AV N 1G2G 4G 6G 8G 10G 12G 14G 16G 18G 20G 22G 24G 26G 28G 30G 32G 34G 36G 38G 40G

01612 UT X_ etting 6-S-6	2TX_Non-T) 19	(BF								
Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
AV	5.459G	52.18	54.00	-1.82	8.49	3	Н	213	1.69	-
ΑV	5.779G	106.37	Inf	-Inf	8.92	3	Н	213	1.69	-
PK	5.457G	61.68	74.00	-12.32	8.48	3	Н	213	1.69	-
PK	5.465G	64.41	68.20	-3.79	8.50	3	Н	213	1.69	-

Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
ΑV	5.459G	52.18	54.00	-1.82	8.49	3	Н	213	1.69	-
ΑV	5.779G	106.37	Inf	-Inf	8.92	3	Н	213	1.69	-
PK	5.457G	61.68	74.00	-12.32	8.48	3	Н	213	1.69	-
PK	5.465G	64.41	68.20	-3.79	8.50	3	Н	213	1.69	-
PK	5.779G	116.34	Inf	-Inf	8.92	3	Н	213	1.69	-
PK	5.929G	60.75	68.20	-7.45	9.32	3	Н	213	1.69	-
ΑV	5.459G	50.35	54.00	-3.65	8.49	3	V	71	1.50	-
ΑV	5.789G	102.91	Inf	-Inf	8.93	3	V	71	1.50	-
PK	5.459G	61.89	74.00	-12.11	8.49	3	V	71	1.50	-
PK	5.461G	62.39	68.20	-5.81	8.49	3	V	71	1.50	-
PK	5.789G	112.99	Inf	-Inf	8.93	3	V	71	1.50	-
PK	5.971G	60.87	68.20	-7.33	9.44	3	V	71	1.50	-
ΑV	11.57354G	53.97	54.00	-0.03	17.71	3	Н	223	1.93	-
PK	11.57276G	69.13	74.00	-4.87	17.71	3	Н	223	1.93	-
ΑV	11.567G	49.49	54.00	-4.51	17.72	3	V	270	2.35	-
PK	11.56802G	65.09	74.00	-8.91	17.72	3	V	270	2.35	-

Туре	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
ΑV	5.779G	106.37	Inf	-Inf	8.92	3	Н	213	1.69	-
PK	5.465G	64.41	68.20	-3.79	8.50	3	H	213	1.69	-
PK	5.779G	116.34	Inf	-Inf	8.92	3	H	213	1.69	-
PK	5.929G	60.75	68.20	-7.45	9.32	3	H	213	1.69	-
PK	5.457G	61.68	74.00	-12.32	8.48	3	H	213	1.69	-
ΑV	5.459G	52.18	54.00	-1.82	8.49	3	Н	213	1.69	-

130										Lim.PK	Г
120	-									PK	ľ
100										Lim.AV	ľ
100										AV	ľ
80											P
		╜┖╌ѵ╌╙		\Box	$\neg \neg \neg \neg$						
60							_				
40			•								
40											
20	-										
0		- da - da - da	12G 14G 1		!!.				!!.		
	1G2G 4G	6G 8G 10G	12G 14G 10	OG 18G 20	G 22G 24G	26G 28	30G 3	2G 34G 36	G 38G 40G		
01612	05										_
UT X_	2TX_Non-TX	BF									
etting 6-S-6	19										
0-3-0											
-	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments	
Type	11.567G	49.49	54.00	-4.51	17.72	3	V	270	2.35	-	
Type AV	11.5070										

SPORTON INTERNATIONAL INC. : 10 of 26

SPORTON INTERNATIONAL INC. : 11 of 26

PK

PK

ΑV

PK

10.38054G

15.56826G

15.55794G

10.38204G

61.86

63.53

49.96

60.13

68.20

74.00

54.00

68.20

-6.34

-10.47

-4.04

-8.07

15.55

17.27

17.29

15.55

332

221

202

287

2.23

1.61

1.98

2.04

RSE TX above 1GHz Result Appendix E.2

RETX above 1GHz:Band:5.2G:VHT40:BWch:40MHz:Nss:1.(M0):Nant:2:Ch:5190MHz:TX

						$\mathcal{A}_{\mathcal{A}}$				
40										
20	-									
0 5.	.09G 5.1G	5.12G 5.	14G 5.16G	5.18G	5.2G	5.22G	5.24G	5.26G	5.28G 5.29G	
01611: UT X_ etting 3-J-4-	2TX_Non-TXE 18.5	BF								
Туре	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
Type AV	Freq(Hz) 5.1496G	Level(dBuV/m) 53.71	Limit(dBuV/m) 54.00	Margin(dB) -0.29	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments -
									-	I I
AV	5.1496G	53.71	54.00	-0.29	7.71	3	Н	186	1.50	-

RE TX above 1GHz;Band:5.2G;VHT40;BWch:40MHz;Nss:1,(M0);Nant:2;Ch:5230MHz;TX

Lim.PK

PK Lim.AV

ΑV

SPORTON INTERNATIONAL INC. Page No. : 12 of 26

120-

100

SPORTON INTERNATIONAL INC. : 13 of 26

SPORTON INTERNATIONAL INC. : 14 of 26

RE TX above 1GHz;Band:5.8G;VHT40;BWch:40MHz;Nss:1,(M0);Nant:2;Ch:5795MHz;TX 130 Lim.PK 120 -PK Lim.AV 100 80 60 -40 -20 -1G2G 4G 6G 8G 10G 12G 14G 16G 18G 20G 22G 24G 26G 28G 30G 32G 34G 36G 38G 40G 20161206 EUT X_2TX_Non-TXBF Setting 19 06-S-6

RE TX above 1GHz;Band:5.2G;VHT80;BWch:80MHz;Nss:1,(M0);Nant:2;Ch:5210MHz;TX 120 -Lim.AV 100 -ΑV 80 40 20 -1G2G 4G 6G 8G 10G 12G 14G 16G 18G 20G 22G 24G 26G 28G 30G 32G 34G 36G 38G 40G

O1611 UT X_ etting 3-J-4	2TX_Non-T	XBF								
Туре	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
ΑV	5.142G	53.64	54.00	-0.36	7.69	3	Н	195	2.23	-
ΑV	5.222G	94.53	Inf	-Inf	7.85	3	Н	195	2.23	-
ΑV	5.45G	48.87	54.00	-5.13	8.20	3	Н	195	2.23	-
PK	5.142G	66.12	74.00	-7.88	7.69	3	Н	195	2.23	-
PK	5.223G	104.17	Inf	-Inf	7.85	3	Н	195	2.23	-
PK	5.45G	61.28	74.00	-12.72	8.20	3	Н	195	2.23	-
A1/	E 141C	E1 E0	E4.00	2.42	7.00	-	14	170	1.15	

Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(")	Height(m)	Comments
ΑV	5.142G	53.64	54.00	-0.36	7.69	3	Н	195	2.23	-
ΑV	5.222G	94.53	Inf	-Inf	7.85	3	Н	195	2.23	-
ΑV	5.45G	48.87	54.00	-5.13	8.20	3	Н	195	2.23	-
PK	5.142G	66.12	74.00	-7.88	7.69	3	Н	195	2.23	-
PK	5.223G	104.17	Inf	-Inf	7.85	3	Н	195	2.23	-
PK	5.45G	61.28	74.00	-12.72	8.20	3	Н	195	2.23	-
ΑV	5.141G	51.58	54.00	-2.42	7.69	3	V	170	1.15	-
ΑV	5.197G	92.98	Inf	-Inf	7.82	3	V	170	1.15	-
ΑV	5.448G	48.84	54.00	-5.16	8.20	3	V	170	1.15	-
PK	5.143G	64.22	74.00	-9.78	7.69	3	V	170	1.15	-
PK	5.198G	103.65	Inf	-Inf	7.82	3	V	170	1.15	-
PK	5.457G	61.27	74.00	-12.73	8.22	3	V	170	1.15	-
ΑV	15.63692G	50.03	54.00	-3.97	17.11	3	Н	210	1.59	-
PK	10.41844G	59.82	68.20	-8.38	15.58	3	Н	181	2.43	-
PK	15.62928G	63.91	74.00	-10.09	17.13	3	Н	210	1.59	-
ΑV	15.63716G	50.09	54.00	-3.91	17.11	3	V	109	2.47	-
PK	10.4248G	59.94	68.20	-8.26	15.59	3	V	351	2.38	-
PK	15.63468G	64.06	74.00	-9.94	17.12	3	V	109	2.47	-

Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
AV	5.142G	53.64	54.00	-0.36	7.69	3	Н	195	2.23	-
ΑV	5.222G	94.53	Inf	-Inf	7.85	3	Н	195	2.23	-
ΑV	5.45G	48.87	54.00	-5.13	8.20	3	Н	195	2.23	-
PK	5.142G	66.12	74.00	-7.88	7.69	3	Н	195	2.23	-
PK	5.223G	104.17	Inf	-Inf	7.85	3	Н	195	2.23	-
PK	5.45G	61.28	74.00	-12.72	8.20	3	Н	195	2.23	-

Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
AV	5.141G	51.58	54.00	-2.42	7.69	3	V	170	1.15	-
ΑV	5.197G	92.98	Inf	-Inf	7.82	3	٧	170	1.15	-
ΑV	5.448G	48.84	54.00	-5.16	8.20	3	٧	170	1.15	-
PK	5.143G	64.22	74.00	-9.78	7.69	3	٧	170	1.15	-
PK	5.198G	103.65	Inf	-Inf	7.82	3	٧	170	1.15	-
PK	5.457G	61.27	74.00	-12.73	8.22	3	V	170	1.15	-

130 -																			Lim.PK	/
120-																			PK	7
100-																			Lim.AV	7
																			AV	
80-	WTL		DN E	\rightarrow	A 4	\Box	_		٦.	١٨				Л		į,	- 1			
60 -			•			•	_		4								T	-		
			- -			•								-			'			
40 -																				
20 -																				
0-	10 0		100	126	140	100	100	20.5	226	210	250	20.0	20.0	226	246	266	20.0	100		
1G2G	4G 6	G 8G	10G	12G	14G	16G	18G	20G	22G	24G	26G	28G	300	32G	34G	300	386	40G	J	

ſ											
	Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
	AV	15.63716G	50.09	54.00	-3.91	17.11	3	V	109	2.47	-
	PK	10.4248G	59.94	68.20	-8.26	15.59	3	٧	351	2.38	-
	PK	15.63468G	64.06	74.00	-9.94	17.12	3	V	109	2.47	-

SPORTON INTERNATIONAL INC. Page No. : 15 of 26

SPORTON INTERNATIONAL INC. : 16 of 26

RE TX above 1GHz;Band:5.2G;VHT20,BF;BWch:20MHz;Nss:1,(M0);Nant:2;Ch:5200MHz;TX

Lim.PK

PK

SPORTON INTERNATIONAL INC. Page No. : 17 of 26

130

120

5.206G

115.38

RSE TX above 1GHz Result Appendix E.2

1.48

-Inf

SPORTON INTERNATIONAL INC. : 18 of 26

TEL: 886-3-327-3456 FAX: 886-3-327-0973

PK

15.71418G 59.97

74.00

-14.03

16.93

235

1.50

SPORTON INTERNATIONAL INC. : 19 of 26

Setting 23 06-S-5 FSP

RSE TX above 1GHz Result Appendix E.2

130

120 -

100 80 60 40 20 0-| 1G2G 4G 6G 8G 10G 12G 14G 16G 18G 20G 22G 24G 26G 28G 30G 32G 34G 36G 38G 40G 20161208 EUT X_2TX_TXBF Setting 23 06-S-5 FSP Type Freq(Hz) Level(dBuV/m) Limit(dBuV/m) Margin(dB) Factor(dB) Dist(m) Pol.(H/V) Azimuth(°) Height(m) Comments AV 11.49188G 53.94 54.00 -0.06 17.78 H PK 11.48588G 70.22 74.00 -3.78 17.79

RE TX above 1GHz;Band:5.8G;VHT20,BF;BWch:20MHz;Nss:1,(M0);Nant:2;Ch:5745MHz;TX

Lim.PK

Lim.AV

PK

219

219

1.88

1.88

130										Lim.PK
120	-									PK Z
100	-									Lim.AV
80		WL7V7WL		\			Л			AV
60			•				_			
40										
20										
0	1G2G 4G	6G 8G 10G	6 12G 14G 1	5G 18G 20	G 22G 24G	26G 28	G 30G 3	2G 34G 36	G 38G 40G	
	24									
tting	2TX_TXBF									
T X_2	2TX_TXBF									
T X_2 ting ·S-5	2TX_TXBF 23	Laure/ADA//	Lina M. D. M. C.	Mania/20	Forter(JP)	Dist.	D-1/1/02	A		Comment
T X_2 ting ·S-5	2TX_TXBF	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments

SPORTON INTERNATIONAL INC. : 20 of 26 Page No.

SPORTON INTERNATIONAL INC. : 21 of 26

SPORTON INTERNATIONAL INC. : 22 of 26

SPORTON INTERNATIONAL INC. 23 of 26

SPORTON INTERNATIONAL INC. : 24 of 26

Туре	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
ΑV	11.58276G	49.66	54.00	-4.34	17.70	3	V	265	1.02	-
PK	11.58984G	64.86	74.00	-9.14	17.70	3	V	265	1.02	-

130										Lim.PK
120	-									PK
100	-									Lim.AV
-00										AV
80					$\neg \neg \neg$, <u>-</u>	
60				_						
00		-	- · · ·	+ +			_			
40	-		•							
20	-									
0	1G2G 4G	6G 8G 10G	12G 14G 10	G 18G 200	G 22G 24G	26G 28	C 20C 2	20 240 26	G 38G 40G	
	1020 40	66 86 106	120 140 10	DG 18G 200	3 220 240	200 28	300 3	20 340 30	G 38G 40G	
01611	16									
	2TX_TXBF									
etting	21									
3-J-4										
Туре	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
Type AV	Freq(Hz) 15.62718G	Level(dBuV/m) 47.02	Limit(dBuV/m) 54.00	Margin(dB) -6.98	Factor(dB) 17.13	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments -

SPORTON INTERNATIONAL INC. Page No. : 25 of 26

SPORTON INTERNATIONAL INC. : 26 of 26

FS Result Appendix F

Mode: 20 MHz / Chain 2 for 5G Band 1 and Chain 4 for 5G Band 4 $\,$

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)					
0.0		5200 MHz				
(V)	0 Minute	2 Minute	5 Minute	10 Minute		
126.50	5199.9962	5199.9955	5199.9946	5199.9937		
110.00	5199.9961	5199.9951	5199.9944	5199.9935		
93.50	5199.9959	5199.9955	5199.9954	5199.9949		
Max. Deviation (MHz)	0.0041	0.0049	0.0056	0.0065		
Max. Deviation (ppm)	0.79	0.94	1.08	1.25		
Result		Pass				

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)					
(°C)		5200 MHz				
(℃)	0 Minute	2 Minute	5 Minute	10 Minute		
0	5199.9993	5199.9984	5199.9982	5199.9973		
10	5199.9976	5199.9971	5199.9969	5199.9959		
20	5199.9961	5199.9957	5199.9955	5199.9945		
30	5199.9891	5199.9882	5199.9880	5199.9872		
40	5199.9885	5199.9878	5199.9868	5199.9867		
Max. Deviation (MHz)	0.0115	0.0122	0.0132	0.0133		
Max. Deviation (ppm)	2.21	2.35	2.54	2.56		
Result		Pa	iss			

Mode: 40 MHz / Chain 2 for 5G Band 1 and Chain 4 for 5G Band 4

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)					
0.0		5190 MHz				
(V)	0 Minute	2 Minute	5 Minute	10 Minute		
126.50	5189.9963	5189.9960	5189.9956	5189.9953		
110.00	5189.9961	5189.9956	5189.9949	5189.9943		
93.50	5189.9959	5189.9957	5189.9951	5189.9942		
Max. Deviation (MHz)	0.0041	0.0044	0.0051	0.0058		
Max. Deviation (ppm)	0.79	0.85	0.98	1.12		
Result		Pa	ISS			

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)				
(°C)	5190 MHz				
(℃)	0 Minute	2 Minute	5 Minute	10 Minute	
0	5189.9967	5189.9963	5189.9961	5189.9951	
10	5189.9966	5189.9963	5189.9954	5189.9946	
20	5189.9961	5189.9960	5189.9954	5189.9944	
30	5189.9891	5189.9890	5189.9883	5189.9881	
40	5189.9875	5189.9867	5189.9863	5189.9862	
Max. Deviation (MHz)	0.0125	0.0133	0.0137	0.0138	
Max. Deviation (ppm)	2.41	2.56	2.64	2.66	
Result	Pass				

Voltage vs. Frequency Stability

Voltage		Measurement F	requency (MHz)			
0.0		5785 MHz				
(V)	0 Minute	2 Minute	5 Minute	10 Minute		
126.50	5784.9963	5784.9953	5784.9946	5784.9936		
110.00	5784.9961	5784.9956	5784.9950	5784.9945		
93.50	5784.9959	5784.9953	5784.9947	5784.9941		
Max. Deviation (MHz)	0.0041	0.0047	0.0054	0.0064		
Max. Deviation (ppm)	0.71	0.81	0.93	1.11		
Result		Pa	ISS			

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)			
(°G)		5785	MHz	
(℃)	0 Minute	2 Minute	5 Minute	10 Minute
0	5784.9994	5784.9991	5784.9989	5784.9986
10	5784.9979	5784.9973	5784.9969	5784.9968
20	5784.9961	5784.9960	5784.9950	5784.9943
30	5784.9891	5784.9883	5784.9874	5784.9867
40	5784.9888	5784.9886	5784.9884	5784.9883
Max. Deviation (MHz)	0.0112	0.0117	0.0126	0.0133
Max. Deviation (ppm)	1.94	2.02	2.18	2.30
Result	Pass			

Voltage vs. Frequency Stability

Voltage		Measurement Frequency (MHz)			
0.0		5755	MHz		
(V)	0 Minute	2 Minute	5 Minute	10 Minute	
126.50	5754.9971	5754.9969	5754.9966	5754.9958	
110.00	5754.9961	5754.9957	5754.9952	5754.9949	
93.50	5754.9951	5754.9944	5754.9942	5754.9940	
Max. Deviation (MHz)	0.0049	0.0056	0.0058	0.0060	
Max. Deviation (ppm)	0.85	0.97	1.01	1.04	
Result		Pa	iss		

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)			
(°G)	5755 MHz			
(℃)	0 Minute	2 Minute	5 Minute	10 Minute
0	5754.9979	5754.9974	5754.9970	5754.9964
10	5754.9973	5754.9966	5754.9965	5754.9958
20	5754.9961	5754.9952	5754.9945	5754.9936
30	5754.9891	5754.9884	5754.9876	5754.9870
40	5754.9878	5754.9868	5754.9866	5754.9859
Max. Deviation (MHz)	0.0122	0.0132	0.0134	0.0141
Max. Deviation (ppm)	2.12	2.29	2.33	2.45
Result	Pass			

SPORTON INTERNATIONAL INC. Page No. : 1 of 2

FS Result Appendix F

Mode: 80 MHz / Chain 2 for 5G Band 1 and Chain 4 for 5G Band 4

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)			
0.0		5210	MHz	
(V)	0 Minute	2 Minute	5 Minute	10 Minute
126.50	5209.9962	5209.9957	5209.9951	5209.9941
110.00	5209.9961	5209.9960	5209.9956	5209.9953
93.50	5209.9958	5209.9956	5209.9947	5209.9941
Max. Deviation (MHz)	0.0042	0.0044	0.0053	0.0059
Max. Deviation (ppm)	0.81	0.84	1.02	1.13
Result	Pass			

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)					
(°C)		5210 MHz				
(℃)	0 Minute	2 Minute	5 Minute	10 Minute		
0	5209.9976	5209.9970	5209.9964	5209.9956		
10	5209.9973	5209.9969	5209.9966	5209.9958		
20	5209.9961	5209.9959	5209.9954	5209.9945		
30	5209.9891	5209.9887	5209.9883	5209.9880		
40	5209.9871	5209.9868	5209.9859	5209.9852		
Max. Deviation (MHz)	0.0129	0.0132	0.0141	0.0148		
Max. Deviation (ppm)	2.48	2.53	2.71	2.84		
Result	_	Pass				

Voltage vs. Frequency Stability

Voltage		Measurement Frequency (MHz)			
0.0		5775	MHz		
(V)	0 Minute	2 Minute	5 Minute	10 Minute	
126.50	5774.9966	5774.9958	5774.9948	5774.9944	
110.00	5774.9961	5774.9952	5774.9942	5774.9935	
93.50	5774.9951	5774.9941	5774.9933	5774.9928	
Max. Deviation (MHz)	0.0049	0.0059	0.0067	0.0072	
Max. Deviation (ppm)	0.85	1.02	1.16	1.25	
Result		Pa	iss		

Temperature vs. Frequency Stability

Temperature		Measurement F	requency (MHz)	
(°a)		5775	MHz	
(℃)	0 Minute	2 Minute	5 Minute	10 Minute
0	5774.9995	5774.9987	5774.9982	5774.9976
10	5774.9977	5774.9973	5774.9970	5774.9964
20	5774.9961	5774.9952	5774.9951	5774.9941
30	5774.9891	5774.9882	5774.9875	5774.9869
40	5774.9886	5774.9878	5774.9873	5774.9863
Max. Deviation (MHz)	0.0114	0.0122	0.0127	0.0137
Max. Deviation (ppm)	1.97	2.11	2.20	2.37
Result		Pa	ass	

SPORTON INTERNATIONAL INC. : 2 of 2