Tushar Rathi 2012174

COA Assignment

Solution 2

(i)
$$Q = 0.10111$$
 $D = 110110$
 $-0 = 2^{1}s$ compliment of D

= 001010

Cycle	AC	Q	1.	
1)	000000		0-1	1 operation
		010111	Ō	AC = AC - D = 000000
				001010
		010111		001010
	001010	010111	Q	ASR
2)	000 101	001011	1	ASR
3.)	000010	100 101	1	AS R
4.)	000001	010010	<u> </u>	AC = AC + D
				= 000001
	110111	010010		110111 ASR
5)	111011.	101001	ō	AC=AC-P = 111011 00 1010
	000 101	101001	0	000 101 ASR

$$Ans = (111100 011010)$$

$$= -1 \times (0000 11100110)$$

$$= -1 \times 230$$

(ii)
$$M = 110011$$

 $-M = 001101$

	٦ , ١٠	, • •			
Cycle	AC 000 000	Q	0	Chasation	
1	000 000	101100	0	Operation ASR	
2.	000000	010110	0	ASR	
3.)	000000	001011	0	AC= AC-M ASR	
4.)	000110	100101	1	ASR	
5.)	110110	010010	<u> </u>	AC = AC+M ASR	
6.)	001000	001001	<u>o</u> o	Ac = Ac - M $As R$	
	000100	000100	Arsus	=(0001000000100),	= (260) An

(111)
$$M = 110101$$

 $Q = 011011$
 $-M = 001011$
Cycle | AC | Q

	0.0	1 - 1		
(yde	Ac	\ Q	1 Q	operation
**	000 000	OFIOII	Ō	AC = AC - M
	001011	011011	0	ASR.
2.)	000101	101101		ASR
3.)	000010	110110	1 ,	AC = Ac + M
		110110	*	ASR
4.3	111011	111011	0	Ac= Ac-M
-	000110	111011	0	ASR.
(.z.)	000011	011101	1	ASR
6.)	000001	101110	1	Ac= Ac+M
	110110	101110	(AS R
	111011	010111	Ange	mes = (11101101011))2
_				(11010101)2

(iv)
$$M = 1111$$

 $-M = 0001$
 $Q = 1111$

cycle	AC	Q	6_,	peration
19)	0000	1111	0	AC= AC-M ASR

2.	0000	1111	1	ASR
3.)	0000	0111	1	ASR
4.)	0000	0011	1	ASR
5.)	0000	0001	1	ASR

Assur: = (0000 0000) = 1 Assur.