Practica2

Luis D. Hilario 10 de enero de 2019

1. Descripción del dataset. ¿Por qué es importante y qué pregunta/problema pretende responder?

Nos encontramos con un conjunto de datos compuesto de dos ficheros que contienen datos reales de ventas de un laboratorio farmacéutico y datos de ventas de distintas farmacias a lo largo del territorio nacional. Dichos datos han sido obtenidos del ERP de la empresa y de una consultora externa respectivamente. En concreto, tenemos:

- Fichero sell-in: contiene los datos de ventas que el laboratorio realiza a sus 13045 clientes; en particular, tenemos las ventas en número de unidades de tres productos exclusivos y las ventas en unidades monetarias del resto de productos que el laboratorio también les vende. Además, las ventas vienen desglosadas por población.
- Fichero sell-out: contiene los datos de ventas totales que una muestra de 438 farmacias realiza a sus clientes, es decir, son ventas de todos los productos que realiza cada establecimiento al cliente final.

La denominación "sell-in" y "sell-out" corresponde al origen de la información. Así, "sell-in" es un fichero de ventas internas que obtenemos del propio sistema informático de gestión del laboratorio y "sell-out" es un fichero de ventas externas, que obtenemos de una consultora externa la cual realiza un muestreo de 438 clientes de los cuales obtiene los datos mencionados anteriormente.

A partir de los datos suministrados se pretende generar un modelo predictivo para estimar el potencial que tenemos para aumentar las ventas que el laboratorio realiza a las distintas farmacias. La idea sobre la que gira el modelo es la siguiente: usaremos la muestra de 438 clientes, de los cuales conocemos sus ventas totales y las compras que hacen al laboratorio, para estimar las ventas totales del resto de farmacias, las cuales son desconocidas.

Con estas ventas totales podremos averiguar qué cantidad de compras están realizando a otros laboratorios, calculada como la diferencia entre sus ventas a clientes finales y el total de las compras que realizan al laboratorio menos el margen comercial medio. Esta diferencia determinará el potencial de venta o recorrido que tiene cada farmacia para el laboratorio, de manera que se pueda elaborar una estrategia específica para aumentar las ventas. En particular, nos interesa el potencial de ventas de nuestros tres mejores productos, de ahí la necesidad de incluirlos en el modelo.

2. Integración y selección de los datos de interés a analizar.

Los ficheros obtenidos se encuentran en formato "csv" por lo que pueden ser manejados con cualquier herramienta de análisis de datos. Lo primero que tenemos que tener en cuenta es que, para generar nuestro modelo, es necesario conocer las ventas que el laboratorio realiza a cada farmacia que aparece en la muestra, ya que en el fichero muestral no tenemos este dato. Este dato, en cambio, si lo tenemos en el fichero suministrado por el laboratorio.

Por otro lado, hemos de tener en cuenta que los clientes aparecen con sus datos, los cuales es necesario anonimizar previamente para cumplir con el RGPD. El proceso de anonimización consistiría en hacer corresponder cada registro de cliente con un código identificativo único, de manera que dicha empresa no pueda ser identificable por terceros. Solo quien tiene autorización para ver datos de cliente debe conocer este dato. Este proceso debe ser realizado con ambos ficheros. Por razones obvias, al ser datos reales, no muestro este proceso y para esta actividad parto de los ficheros anonimizados. Los ficheros leídos tienen la siguiente estructura y contenido:

Fichero **SELLIN**

```
# Cargamos los ficheros
SELLIN <- read.csv2("sell-in.csv")</pre>
head(SELLIN)
     Cod Cli PROVINCIA Uds AH Uds DNT Uds VH Resto Farmacos
## 1 anon S0
                                           117
                 ALAVA 90300
                                    162
                                                   21317197.4
## 2 anon S1
                 ALAVA 127200
                                   298
                                            42
                                                     321079.2
## 3 anon S2
                 ALAVA 45825
                                   286
                                            84
                                                    1749363.5
## 4 anon S3
                 ALAVA 258600
                                    152
                                            47
                                                    3960844.2
## 5 anon S4
                 ALAVA 210100
                                   327
                                           164
                                                    3079924.3
## 6 anon S5
                 ALAVA 7800
                                    35
                                             8
                                                     327995.5
```

Fichero **SELLOUT**

```
SELLOUT <- read.csv2("sell-out.csv")
head(SELLOUT)

##     Cod_Cli TOTAL_VOL
## 1     anon_S69     29506650
## 2     anon_S103     323450171
## 3     anon_S107     126806078
## 4     anon_S160     9523747
## 5     anon_S170     150234420
## 6     anon_S238     273268756</pre>
```

En esta fase integramos los dos ficheros en uno, uniéndolos por el código de cliente anonimizado y seleccionando los campos de nuestro interés para la integración. Por último, dado que el fichero final integrará los registros de ambos, podemos añadir una variable dicotómica con el objetivo de saber si un registro concreto pertenece a la muestra o no.

El fichero integrado tendría la siguiente forma:

# Añadimos a seli DATOS_UNIDOS <- n head(DATOS_UNIDOS	nerge(SELLIN			oresente	es en sellin
## Cod_Cli TOTAL VOL	PROVINCIA	Uds_AH	Uds_DNT	Uds_VH	Resto_Farmacos
## 1 anon_S10069 14985571	ZARAG0ZA	0	6	33	1811288
## 2 anon_S10181 65729190	LLEIDA	40200	28	33	3116607
## 3 anon_S10199 77156074	PONTEVEDRA	88600	36	40	6335775
## 4 anon_S10217 41015251	CACERES	38400	19	16	3180451
## 5 anon_S103	ALBACETE	5700	140	520	17555795
## 6 anon_S10361 288057061	HUELVA	72300	97	199	20349010

En resumen:

- Anonimizar datos
- Seleccionar campos necesarios
- · Integrar los ficheros en uno
- · Añadir una variable dicotómica

Nota: la variable dicotómica no es necesario añadirla durante este análisis, sino que se podrá añadir en una fase posterior de este proceso iterativo con el objetivo de dejar indicado en el fichero final los registros pertenecientes a la muestra.

3. Limpieza de los datos.

3.1. ¿Los datos contienen ceros o elementos vacíos? ¿Cómo gestionarías cada uno de estos casos?

En este caso, al unir los ficheros, aparece un campo ?TOTAL_VOL? que no se encuentra en ?sell-in? por lo que este valor queda indeterminado. Esto lo manejamos utilizando la función ?merge? de manera que se genere un tercer fichero solo para los códigos de clientes que aparecen en la muestra y que son los únicos códigos comunes a ambos ficheros.

Una vez realizada la fusión, para comprobar si los datos están completos, ejecutaríamos el siguiente ?test de valores ausentes?.

```
# Ejecutamos el test de valores ausentes para verificar que los
# datos están completos

sapply(DATOS_UNIDOS, function(x)(sum(is.na(x))))

## Cod_Cli PROVINCIA Uds_AH Uds_DNT
Uds_VH
## 0 0 0 0

## Resto_Farmacos TOTAL_VOL
## 0
```

Podemos observar que los datos están completos y no hay valores ausentes.

3.2. Identificación y tratamiento de valores extremos.

Un primer paso para averiguar la distribución de los datos consiste en una simple visualización de los mismos. Así, de manera rápida, se puede ver si hay valores extremos e investigar posibles errores en los datos que puedan llevar a un sesgo en la interpretación de resultados.

Variable **AH**

```
plot(DATOS_UNIDOS$Uds_AH)
```


Variable **DNT**

plot(DATOS_UNIDOS\$Uds_DNT)

Variable **VH**

plot(DATOS_UNIDOS\$Uds_VH)

Si bien existen valores po encima de lo normal en algunas de las variables, no se puede tratar como un caso fuera de lo común pues son datos que tienen sentido y su proporción es lo suficientemente pequeña como para no desvirtuar los valores medios.

4. Análisis de los datos.

4.1. Selección de los grupos de datos que se quieren analizar/comparar (planificación de los análisis a aplicar).

En el caso que nos ocupa lo que queremos es estimar las ventas del resto de clientes fuera de la muestra. Por ello, para generar el modelo, no vamos a necesitar los nombres de los clientes ni la población, tan solo seleccionaremos las ventas de los distintos medicamentos así como las ventas totales. No será necesario preseleccionar nada pues a la correspondiente función de R podemos pasarle como parámetros sólo las variables que necesitemos justo en el momento de ejecutar el modelo.

Una vez construyamos nuestro modelo, introduciremos en él los valores de las variables correspondientes al resto de clientes que no forman parte de la muestra, con el fin de estimar sus ventas. De esta manera, también sería posible estimar la cuota de mercado que tiene nuestro laboratorio como diferencia de las ventas totales menos las ventas que el laboratorio realiza dividido entre el total del mercado.

También es posible calcular el potencial o recorrido de cada cliente, de manera que si un cliente nos compra una proporción relativamente pequeña con respecto al total de sus ventas, sabemos que puede comprarnos muchos más productos. Con estos datos podemos segmentar el mercado con el objetivo de centrar nuestra estrategia de marketing y nuestros esfuerzos en aquellos clientes que nos sean más rentables y ganemos mayor cuota de mercado.

4.2. Comprobación de la normalidad y homogeneidad de la varianza.

Podemos ejectuar distintas pruebas para comprobar la normalidad de las variables. Por ejemplo, gráficamente tenemos:

Variable AH

```
# Comprobación de normalidad
qqnorm(DATOS_UNIDOS$Uds_AH)
qqline(DATOS_UNIDOS$Uds_AH)
```

Normal Q-Q Plot

Al parecer, esta variable no está normalmente distribuida, pues los puntos no quedan repartidos de forma, más o menos uniforme a cada lado de la línea. Al haber más de treina observaciones, podemos construir el estadístico de Shapiro-Wilk planteando las siguientes hipótesis:

Ho -> La variable sigue una distribución normal

H1 -> La variable no sigue una distribución normal

```
shapiro.test(DATOS_UNIDOS$Uds_AH)

##
## Shapiro-Wilk normality test
##
## data: DATOS_UNIDOS$Uds_AH
## W = 0.75247, p-value < 2.2e-16</pre>
```

Al ser el p-value menor que 0,05 rechazo la hipótesis nula, por tanto, la variable no está distribuida normalmente tal y como se apreciaba de manera gráfica.

Ejecutando ahora estos test para el resto de variables tenemos:

Variable **DNT**

```
# Comprobación de normalidad
qqnorm(DATOS_UNIDOS$Uds_DNT)
qqline(DATOS_UNIDOS$Uds_DNT)
```

Normal Q-Q Plot

Ho -> La variable sigue una distribución normal

H1 -> La variable no sigue una distribución normal

```
shapiro.test(DATOS_UNIDOS$Uds_DNT)
##
## Shapiro-Wilk normality test
##
```

```
## data: DATOS_UNIDOS$Uds_DNT
## W = 0.9466, p-value = 1.834e-11
```

Rechazamos la hipótesis nula.

Variable VH

```
# Comprobación de normalidad
qqnorm(DATOS_UNIDOS$Uds_VH)
qqline(DATOS_UNIDOS$Uds_VH)
```

Normal Q-Q Plot

Ho -> La variable sigue una distribución normal

H1 -> La variable no sigue una distribución normal

```
shapiro.test(DATOS_UNIDOS$Uds_VH)

##

## Shapiro-Wilk normality test

##

## data: DATOS_UNIDOS$Uds_VH

## W = 0.87707, p-value < 2.2e-16</pre>
```

Rechazamos la hipótesis nula.

Variable Resto_farmacos

```
# Comprobación de normalidad
qqnorm(DATOS_UNIDOS$Resto_Farmacos)
qqline(DATOS_UNIDOS$Resto_Farmacos)
```

Normal Q-Q Plot

Ho -> La variable sigue una distribución normal

H1 -> La variable no sigue una distribución normal

```
shapiro.test(DATOS_UNIDOS$Resto_Farmacos)

##

## Shapiro-Wilk normality test

##

## data: DATOS_UNIDOS$Resto_Farmacos

## W = 0.86123, p-value < 2.2e-16</pre>
```

Rechazamos la hipótesis nula.

Variable TOTAL_VOL

```
# Comprobación de normalidad
qqnorm(DATOS_UNIDOS$TOTAL_VOL)
qqline(DATOS_UNIDOS$TOTAL_VOL)
```


Ho -> La variable sigue una distribución normal

H1 -> La variable no sigue una distribución normal

```
shapiro.test(DATOS_UNIDOS$TOTAL_VOL)

##

## Shapiro-Wilk normality test

##

## data: DATOS_UNIDOS$TOTAL_VOL

## W = 0.94627, p-value = 1.661e-11
```

Rechazamos la hipótesis nula.

4.3. Aplicación de pruebas estadísticas para comparar los grupos de datos. En función de los datos y el objetivo del estudio, aplicar pruebas de contraste de hipótesis, correlaciones, regresiones, etc.

Podemos aplicar distintas pruebas sobre aspectos concretos de los datos. Por ejemplo, un resumen estadístico descriptivo como el siguiente:

```
# Ejecutamos algunos test básicos de estadística descriptiva
summary(DATOS_UNIDOS)

## Cod_Cli PROVINCIA Uds_AH Uds_DNT

## anon_S10069: 1 TOLEDO : 28 Min. : 0 Min. :
```

```
1.00
## anon S10181:
                 1
                      BADAJOZ: 23
                                     1st Qu.:
                                               9638
                                                      1st Qu.:
24.25
## anon S10199:
                 1
                     A CORUNA: 21
                                    Median : 39300
                                                      Median :
52.00
## anon S10217:
                 1
                     JAEN
                              : 21
                                     Mean : 53888
                                                      Mean :
58.09
## anon S103 :
                 1
                     MURCIA : 21
                                     3rd Qu.: 71538
                                                      3rd Qu.:
88.50
## anon S10361:
                     VALENCIA: 17
                 1
                                     Max.
                                            :439250
       :163.00
Max.
##
   (Other)
               :432
                      (Other) :307
##
        Uds VH
                    Resto Farmacos
                                         TOTAL VOL
##
   Min.
           : 0.0
                    Min.
                         : 123377
                                       Min.
                                                 2541182
                                             :
                                       1st Qu.: 60015040
##
   1st Qu.: 47.0
                    1st Qu.: 3875183
##
   Median: 93.5
                    Median : 8050155
                                       Median :130421221
##
   Mean
           :124.6
                    Mean
                           : 9799882
                                       Mean
                                              :145382223
##
   3rd Qu.:183.0
                    3rd Qu.:13820033
                                       3rd Qu.:218810932
           :565.0
                           :69609887
                                              :349199044
##
   Max.
                    Max.
                                       Max.
##
```

Si agrupamos por provincia tenemos:

```
# Ejecutamos un resumen agrupado por provincias
library(abind, pos=17)
library(e1071, pos=18)
numSummary(DATOS UNIDOS[,c("Resto Farmacos", "TOTAL VOL"]
                           "Uds AH", "Uds DNT", "Uds VH"),
drop=FALSE],
           groups=DATOS_UNIDOS$PROVINCIA, statistics=c("mean",
"sd", "IQR",
"quantiles"), quantiles=c(0,.25,.5,.75,1))
## Variable: Resto Farmacos
##
                                      IQR
                                                  0%
                                                          25%
                   mean
                              sd
50%
                                                      3795692
## A CORUNA
                8358831
                         5462348 7614900
                                            329565.1
7216498
## ALAVA
                1461213
                              NA
                                           1461212.6
                                                      1461213
1461213
               11403746 9174223 12329800
## ALBACETE
                                           1663768.9
                                                      4425171
8285430
               10572745 6333000 7279962
                                            771271.2 7136175
## ALICANTE
9571778
## ALMERIA
                8384113 6173402 6278723 816907.5 4196250
```

8915250 ## ASTURIAS	8466419	5294232	8208077	1716101.4	3801331	
8195210 ## AVILA 12941556	13670413	12789977	21471908	554814.0	1961004	
## BADAJOZ 6721314	7443849	7583257	5421908	320548.6	3124717	
## BARCELONA 12268504	12268504	NA	Θ	12268504.5	12268504	
## BURGOS 12708138	11552856	7452299	10201430	2480426.7	5593463	
## CACERES 7117253	8330926	5522619	8471455	2769335.4	3564202	
## CADIZ 8794298	12535242	10292732	6293106	1922967.8	6303334	
## CANTABRIA 7730863	11804999	8087826	8978405	3405805.2	5718904	
## CASTELLON 12974643	12974643	12737972	9007106	3967536.4	8471089	
## CIUDAD REAL 4688182	8397712	9241360	6212140	1525848.2	2483474	
## CORDOBA 8218118	8727231	5632645	8854057	2352035.6	3846824	
## CUENCA 4598245	6402422	4496022	7713442	730166.2	2685138	
## GIRONA 4661383	4661383	NA	Θ	4661383.0	4661383	
## GRANADA 7536280	9970194	10751826	6288006	903206.9	3918987	
## GUADALAJARA 11417863	11968453	10931413	15677172	880954.7	3854572	
## HUELVA 15600558	13430838	6688935	9310410	2871939.9	8107029	
## HUESCA 6298348	9322764	10830066	4608316	1910571.5	3933815	
## JAEN 12277097	13303864	7992552	11492463	1826696.6	7794377	
## LA RIOJA 8377375	7958801	3528676	1448541	2628128.0	7450461	
## LEON 5938384	7090331	6268295	7913429	1239684.5	2337485	
## LLEIDA 7605144	7332586	5966426	5842159	770621.4	3116607	
## LUG0 5555796		11356245	10451515	2797811.7	4176804	
## MADRID 17358479	16896239	3203142	3178029	13487090.0	15422784	
## MALAGA 9989801	11360261	6824799	4188923	5221498.3	7379164	
## MURCIA	13107368	10349400	12376062	1492744.8	4963487	

10137558 ## NAVARRA	10600613	5861290	9416893	4448841.0	6159540	
11135361						
## OURENSE 4818729	5425178	3598683	1371826	1926342.0	3871309	
## PALENCIA	16130298	20713994	4198216	1199714.6	8061416	
10118451 ## PONTEVEDRA	5031055	3949346	4076889	417818.2	2258886	
4271384 ## SALAMANCA	6679609	6140744	7273200	407935.4	2289379	
5077668 ## SEGOVIA	9586016	8764087	6161877	4468871.8	4520800	
5617460	9300010	0704007	0101077	4400071.0	4320000	
## SEVILLA 8248054	9475801	4435539	5106900	1727741.3	7888809	
## SORIA	7615785	5398269	3817152	3798632.2	5707208	
7615785 ## TARRAGONA	6162264	4452483	4158544	2922255.3	3623725	
4325194						
## TERUEL 9464589	9056090	2369189	1514624	5804708.6	8503027	
## TOLEDO	12559899	4990648	6718398	3538271.7	8395276	
13498242 ## VALENCIA	14152865	8750734	15818158	2265520.8	5092979	
15082115 ## VALLADOLID	8302254	6741057	7992168	1149542.2	3295783	
7433513			7992100			
## VIZCAYA 5904338	5904338	NA	0	5904337.6	5904338	
## ZAMORA	3812069	4042538	2818692	123377.5	1295981	
2809948 ## ZARAGOZA	7671218	6972664	8516282	618628.2	2059518	
6589180						
## ## A CORUNA	75%	100% 19928095	n 21			
## A CORONA ## ALAVA		1461213	1			
## ALBACETE			11			
## ALICANTE		21944269				
## ALMERIA		18039142	6			
## ASTURIAS			12			
## AVILA		29461780	5			
## BADAJOZ	8546625	36989175	23			
## BARCELONA	12268504	12268504	1			
## BURGOS	15794893	21374717	6			
## CACERES		20580348	16			
## CADIZ		33393734	9			
## CANTABRIA		25502762				
## CASTELLON		21981749	2			
## CIUDAD REAL		29570778				
## CORDOBA	12/00881	19296481	13			

```
10398579 13202539 15
## CUENCA
## GIRONA
                4661383
                          4661383
                                   1
               10206993 43474994 14
## GRANADA
## GUADALAJARA 19531744 24157130
                                   4
## HUELVA
               17417439 21441741
## HUESCA
                8542131 35320123
                                   8
## JAEN
               19286840 29671404 21
                8899002 12439040
## LA RIOJA
                                   5
## LEON
               10250914 24572439
                                  15
## LLEIDA
                8958766 16211794
                                   5
## LUGO
               14628319 23700842
                                   3
## MADRID
               18600813 19843147
                                   3
               11568087 24357333
## MALAGA
                                   6
## MURCIA
               17339549 36513668 21
## NAVARRA
               15576434 15682890
## OURENSE
                5243134 14570743
                                   9
## PALENCIA
               12259632 69609887
                                   9
## PONTEVEDRA
                6335775 13595272
                                   9
                9562579 22457535 13
## SALAMANCA
               10682677 22640273
## SEGOVIA
## SEVILLA
               12995709 16157660 16
                9524361 11432937
## SORIA
                                   2
## TARRAGONA
                7782269 11239343
                                   3
## TERUEL
               10017652 11490475
               15113674 25623745
## TOLEDO
               20911138 31214473 17
## VALENCIA
## VALLADOLID
               11287951 19307655
## VIZCAYA
                5904338
                         5904338
## ZAMORA
                4114673 14893071 12
## ZARAGOZA
               10575801 21012939 10
## Variable: TOTAL VOL
##
                                 sd
                                          IOR
                                                      0%
                                                               25%
                    mean
50%
## A CORUNA
               132491031
                           75119010 116952313
                                                4348833
                                                         67282627
143813624
                29575163
                                 NA
                                               29575163
## ALAVA
                                             0
                                                         29575163
29575163
## ALBACETE
               166678399 114201212 202066612
                                               15394158
                                                          73058665
184520082
                                                9523747 102040824
## ALICANTE
               163744462 94351375 141590466
156382834
## ALMERIA
               108084912
                           69077380
                                    76930439
                                               12623842
                                                         64157713
117474574
## ASTURIAS
               132463698
                           84499087 111169882
                                               22967047
                                                         64312764
121294804
## AVILA
               195611944 164921276 311595039
                                                 9085677
                                                         33502476
242517058
               117561166 80246968 135484179
                                                 5383498
## BADAJOZ
                                                          45175996
117872396
```

## BARCELONA 111325237	111325237	NA	0	111325237	111325237
## BURGOS 193666037	178652557	122976900	165850523	22633714	86273833
## CACERES 120160377	134343068	90261570	122350999	39200244	60762892
## CADIZ 153725125	171400902	96703687	131405761	38523598	96340422
## CANTABRIA 130632642	173174771	92714980	120888016	61562939	105668287
## CASTELLON 181426918	181426918	204917568	144898602	36528316	108977617
## CIUDAD REAL 71945514	109534733	99651925	82716675	29099655	44575583
## CORDOBA 125636383	142962711	85571053	118905378	26727303	81680613
## CUENCA 58356462	106787524	88369938	140460509	6649916	36113576
## GIRONA 76849066	76849066	NA	0	76849066	76849066
## GRANADA 113422769	129147131	87396649	104881857	14829808	67183036
## GUADALAJARA 169678894	159377378	122692044	160342657	12721802	84356807
## HUELVA 237791755	219729553	85619643	130192698	64164005	162005529
## HUESCA 122837295	133249299	83720121	123632007	28622474	71505339
## JAEN 166524555	175903280	95446932	174436496	39249359	110787540
## LA RIOJA 138156753	127312871	80039001	54169972	21109552	91744653
## LEON 58665819	96829893	85819372	79083010	15637635	39381911
## LLEIDA 99280664	119487082	93355209	103230579	11701434	65729190
## LUG0 89603761	135390452	117999648	111137757	47146041	68374901
## MADRID 296278773	280583211	29745972	26458644	246276786	271277780
## MALAGA 170278858	181715330	86764567	130253089	92386080	111517626
## MURCIA 109734498	158540615	104604103	174304884	25964498	66400015
## NAVARRA 181220334	159045874	70767272	41905663	56077944	149180272
## OURENSE 81057595	79162233	48983960	50571701	35893417	40918081
## PALENCIA 167863499	162873695	81572762	81047301	13096669	130599102

## PONTEVEDRA 77156074	97651883	72904374	62068679	7291732	58900518
## SALAMANCA 73796224	104275308	98364309	107330389	5956947	35489371
## SEGOVIA 114438039	140461984	87948928	105089079	73028556	74905471
## SEVILLA 157411197	168778621	96719676	79180454	22918902	113976549
## SORIA 104777694	104777694	64125961	45343902	59433793	82105744
## TARRAGONA 44007829	82733593	67269950	58313657	43782819	43895324
## TERUEL 176346926	159447791	40568570	29772619	99329009	153011049
## TOLED0 208906454	202537122	69727927	95571575	52722420	151884634
## VALENCIA 257758452	219880312		255799362	36344748	74891013
## VALLADOLID 89653107	106908116	84086035	105486497	23319659	44510554
## VIZCAYA 137496238	137496238	NA	0	137496238	137496238
## ZAMORA 37240910	64323158	69625793	44587189	2541182	26054112
## ZARAGOZA 114485024 ##	122212057 75%	118211753 100%	111178344	6844511	22431821
## ## A CORUNA			n 21		
## A CURUNA ## ALAVA	29575163		1		
## ALAVA ## ALBACETE		323450171	11		
## ALBACETE ## ALICANTE		286844499	11		
## ALICANTE ## ALMERIA		205591711			
## ALMERIA ## ASTURIAS		301554456	6 12		
## ASTURIAS ## AVILA	345097515		5		
## BADAJOZ		271394998			
## BARCELONA		111325237	1		
## BURGOS	252124357		6		
## CACERES			16		
## CADIZ	227746183		9		
## CANTABRIA		339725648	_		
## CASTELLON	253876219		2		
## CIUDAD REAL	127292259		11		
## CORDOBA		317688294	13		
## CUENCA	176574085	257034407	15		
## GIRONA	76849066	76849066	1		
## GRANADA	172064893	317820340	14		
## GUADALAJARA	244699464	285429919	4		
## HUELVA	292198227		8		
## HUESCA	195137346		8		
## JAEN	285224036	346208196	21		

```
145914625 239638774 5
## LA RIOJA
## LEON
              118464920 321077496 15
## LLEIDA
              168959769 251764355
              179512658 269421555
                                  3
## LUG0
## MADRID
              297736424 299194075
## MALAGA
              241770714 299816305
              240704900 343627200 21
## MURCIA
              191085936 217664886
## NAVARRA
## OURENSE
              91489783 193450314
                                  9
              211646402 292855269
## PALENCIA
## PONTEVEDRA
              120969197 240279632
## SALAMANCA
              142819759 336694202 13
              179994551 259943300
## SEGOVIA
## SEVILLA
              193157004 349199044 16
## SORIA
              127449645 150121596
## TARRAGONA
              102208980 160410132
                                  3
              182783668 185768306 4
## TERUEL
## TOLEDO
              247456209 330737286 28
## VALENCIA
              330690375 348340966 17
## VALLADOLID 149997050 239248088
## VIZCAYA
              137496238 137496238
## ZAMORA
              70641300 259276634 12
## ZARAGOZA 133610165 342601893 10
## Variable: Uds AH
                                       IQR
                                                       25%
##
                             sd
                                              0%
                   mean
50%
## A CORUNA
               57851.19 62810.96 90500.00
                                           0
                                                   4800.00
40200.0
## ALAVA
               22500.00
                              NA
                                      0.00 22500
                                                  22500.00
22500.0
               51372.73 61344.81
## ALBACETE
                                  71050.00
                                                     0.00
50100.0
               24859.09
                        21992.58
                                               0
## ALICANTE
                                  43000.00
                                                      0.00
25950.0
               27450.00
                        25902.70
## ALMERIA
                                  39637.50
                                               0
                                                   4800.00
26475.0
               59350.00
## ASTURIAS
                        44260.77
                                  42637.50
                                           4800
                                                  29175.00
58400.0
## AVILA
               41004.00
                        41639.71
                                  57600.00
                                            2500
                                                   4800.00
34020.0
               31565.22 49706.99
## BADAJOZ
                                  44700.00
                                           0
                                                    0.00
7500.0
## BARCELONA
               86250.00
                              NA
                                      0.00 86250
                                                  86250.00
86250.0
               87745.83 74190.88 94906.25 15000
## BURGOS
                                                  36750.00
61862.5
               59159.38 59793.78
## CACERES
                                  37650.00
                                               0 27525.00
47500.0
               55583.33 51443.39 62850.00 0 12000.00
## CADIZ
```

55200.0 ## CANTABRIA	137189.29	129911.35	120168.75	28500	51525.00	ı
77050.0 ## CASTELLON	53550.00	75731.14	53550.00	0	26775.00	١
53550.0 ## CIUDAD REAL	31859.09	75950.14	19875.00	0	0.00	ı
4800.0 ## CORDOBA 41700.0	49305.77	43854.89	61350.00	0	14400.00	١
## CUENCA 25500.0	32373.33	28432.97	36500.00	0	11250.00	١
## GIRONA 52125.0	52125.00	NA	0.00	52125	52125.00	١
## GRANADA 19950.0	26057.14	33303.41	29381.25	0	0.00	١
## GUADALAJARA 78225.0	85987.50	77794.28	66337.50	0	48937.50	
## HUELVA 37600.0	38265.62	18430.47	14193.75	10600	29981.25	
## HUESCA 38000.0	44393.75	43636.54	57412.50	0	6825.00	١
## JAEN 47700.0	59142.86	76959.40	45000.00	0	19800.00	
## LA RIOJA 37000.0	31405.00	29252.54	50225.00	0	2500.00	1
## LEON 31500.0	37640.00	34204.18	47000.00	0	12150.00	1
## LLEIDA 29000.0	41470.00	34358.40	11850.00	10000	28350.00	
## LUG0 80100.0	73883.33	28095.66	27575.00	43200	61650.00	
## MADRID 152100.0	131450.00	69611.37	67275.00	53850	102975.00	
## MALAGA 64250.0	66175.00	61740.06	74612.50	1250	17062.50	
## MURCIA 32100.0	59347.62	79536.62	54900.00	0	14400.00	
## NAVARRA 27300.0	47662.50	62506.92	64162.50	0	5400.00	
## OURENSE 50850.0	46696.67	27191.87		0	26700.00	1
## PALENCIA 82350.0	68547.22	45487.42	67575.00	4800	25425.00	
## PONTEVEDRA 16200.0	34316.67	47519.96	32400.00		0.00	
## SALAMANCA 40900.0	50075.38	70182.21			16380.00	
## SEGOVIA 76800.0	77025.00					
## SEVILLA	68454.69	79990.67	56850.00	0	25650.00	

44725.0						
## SORIA	97350.00	137673.69	97350.00	0	48675.00	
97350.0						
## TARRAGONA	47200.00	28506.84	25800.00	14400	37800.00	
61200.0						
## TERUEL	11000.00	10152.26	15850.00	0	3562.50	
11975.0						
## TOLEDO	72712.32	83978.21	74306.25	0	19350.00	
53800.0						
## VALENCIA	61545.59	51350.61	46750.00	0	34950.00	
52100.0						
## VALLADOLID	36720.83	28962.21	38400.00	0	18000.00	
33300.0						
## VIZCAYA	31000.00	NA	0.00	31000	31000.00	
31000.0						
## ZAMORA	27404.17	30295.65	30187.50	0	7312.50	
17475.0				-		
## ZARAGOZA	66855.00	66782.71	58087.50	0	21900.00	
56100.0	00000.00	00702172	50007.50	·	21300.00	
##	75%	100% n				
## A CORUNA						
## ALAVA		22500 1				
## ALBACETE						
## ALICANTE						
## ALMERIA						
## ASTURIAS	71912 50	17/1200 12				
## ASTORIAS	62400.00	101200 12				
## AVILA	44700.00	207650 23				
## BADAJOZ ## BARCELONA						
## BURGOS		204450 6				
## CACERES						
## CACLRLS						
## CADIZ ## CANTABRIA	171693.75					
## CANTADRIA ## CASTELLON						
## CASTELLON ## CIUDAD REAL						
		132700 11				
## CORDOBA						
## CUENCA		104250 15				
## GIRONA	52125.00	52125 1				
## GRANADA	29381.25					
	115275.00					
## HUELVA	44175.00	72300 8				
## HUESCA	64237.50					
## JAEN	64800.00					
## LA RIOJA	52725.00	64800 5				
## LEON	59150.00					
## LLEIDA	40200.00	99800 5				
## LUGO	89225.00	98350 3				
## MADRID	170250.00					
## MALAGA	91675.00					
## MURCIA	69300.00	307500 21				

```
## NAVARRA
               69562.50 136050 4
                               9
## OURENSE
               63150.00 83820
               93000.00 138000
                               9
## PALENCIA
               32400.00 136550 9
## PONTEVEDRA
## SALAMANCA
               49000.00 275100 13
## SEGOVIA
              105750.00 116100
## SEVILLA
              82500.00 308100 16
              146025.00 194700
## SORIA
## TARRAGONA
               63600.00
                               3
                        66000
               19412.50
## TERUEL
                        20050 4
## TOLEDO
               93656.25 429050 28
## VALENCIA
               81700.00 213700 17
## VALLADOLID
               56400.00
                        76725
                              6
## VIZCAYA
               31000.00
                        31000 1
## ZAMORA
               37500.00 103100 12
## ZARAGOZA
               79987.50 215400 10
##
## Variable: Uds DNT
                                             25%
                                                         75%
                             sd
                                   IQR 0%
                                                   50%
                   mean
100% n
## A CORUNA
               51.95238 30.34547
                                 49.00 2
                                           26.00
                                                  61.0
                                                       75.00
100 21
## ALAVA
               14.00000
                             NA
                                  0.00 14
                                           14.00
                                                  14.0
                                                       14.00
14 1
## ALBACETE
               68.90909 49.93887 91.00
                                        6
                                           27.50
                                                  60.0 118.50
140 11
## ALICANTE
               65.72727 38.34864 58.00
                                        4
                                           42.00
                                                  61.0 100.00
121 11
## ALMERIA
               43.66667 30.23023 28.75
                                           25.25 43.0 54.00
                                        6
93 6
## ASTURIAS
               54.91667 33.91824 46.00 10
                                           25.00
                                                  53.5 71.00
116 12
               76.20000 66.23972 118.00 3
## AVILA
                                           12.00
                                                 89.0 130.00
147 5
## BADAJOZ
               46.08696 32.75933 48.00 2
                                           18.50
                                                  47.0
                                                       66.50
122 23
               43.00000
                             NA
                                  0.00 43
                                           43.00
                                                 43.0 43.00
## BARCELONA
43 1
## BURGOS
               78.50000 53.80242 83.50 9
                                           35.75
                                                 88.0 119.25
138 6
## CACERES
               51.00000 34.72175 47.50 15 22.00
                                                 44.0 69.50
132 16
## CADIZ
               68.88889 46.18020 57.00 13 34.00
                                                  55.0 91.00
156 9
## CANTABRIA
               73.42857 43.52137 63.00 22 43.25
                                                  52.0 106.25
158 14
## CASTELLON
               73.00000 84.85281 60.00 13 43.00 73.0 103.00
133 2
## CIUDAD REAL 43.45455 39.65189 38.00 10 17.50 26.0 55.50
125 11
```

"" CODDODA	F.C. 02200	25 60020	40.00	10	24.00	40.0	02.00	
## CORDOBA 137 13	56.92308	35.68020	49.00	12	34.00	48.0	83.00	
## CUENCA	41.00000	32.15365	53.50	3	13.50	27.0	67.00	
93 15								
## GIRONA 35 1	35.00000	NA	0.00	35	35.00	35.0	35.00	
	51.71429	38.26714	35.50	6	25.50	41.5	61.00	
148 14	56 75000	44 50000	- 4	_	20 75		04.50	
## GUADALAJARA 107 4	56./5000	44.58980	54.75	5	29.75	5/.5	84.50	
-	84.37500	36.04338	44.00	21	61.00	95.5	105.00	
131 8								
## HUESCA 114 8	53.62500	38.31053	46.50	10	25.25	47.5	71.75	
## JAEN	66.90476	36.41141	57.00	13	42.00	61.0	99.00	
129 21								
## LA RIOJA 82 5	52.20000	27.36238	22.00	10	43.00	61.0	65.00	
## LEON	43.13333	40.10498	37.50	7	15.00	25.0	52.50	
150 15								
## LLEIDA	49.80000	35.81480	51.00	4	28.00	47.0	79.00	
91 5 ## LUGO	64.00000	56.32051	53.00	22	32.00	42.0	85.00	
128 3					3			
## MADRID	111.33333	18.82374	17.00	99	100.50	102.0	117.50	
133 3 ## MALAGA	74.50000	36.44036	50.75	38	45.00	70.0	95.75	
128 6	, 1130000	30111030	30173	50	13100	, 0.0	33173	
## MURCIA	63.38095	44.57743	63.00	11	26.00	48.0	89.00	
163 21 ## NAVARRA	64 50000	32.10919	24.00	10	56.50	72.5	80.50	
94 4	04130000	32.10313	24100	13	30.30	72.3	00.50	
## OURENSE	31.88889	19.48361	18.00	14	19.00	28.0	37.00	
77 9 ## PALENCIA	60 55556	30 35256	41 00	6	48 00	65 0	80 00	
100 9	00.55550	30.33230	41.00	U	40.00	05.0	03.00	
## PONTEVEDRA	38.77778	31.28409	21.00	3	21.00	36.0	42.00	
108 9 ## SALAMANCA	30 538/16	37.17216	41.00	2	13.00	29.0	54.00	
132 13	39.33040	37.17210	41.00		13.00	29.0	34.00	
## SEGOVIA	54.50000	29.32007	32.50	31	34.00	46.0	66.50	
95 4 ## SEVILLA	66.81250	10 20225	3/1 75	a	40.50	62.0	75.25	
159 16	00.01230	40.00003	34.73	9	40.30	02.0	73.23	
	40.00000	18.38478	13.00	27	33.50	40.0	46.50	
53 2 ## TARRACONA	27 00000	22 04604	20 00	10	10 50	10.0	46 E0	
## TARRAGONA 74 3	37.00000	32.04004	20.00	то	18.50	19.0	46.50	
## TERUEL	64.50000	18.26655	16.00	38	59.75	71.0	75.75	
78 4								

## T0LED0 155 28	81.35714	30.62463	37.50	23 (62.75	80.0 1	00.25
## VALENCIA 151 17	89.00000	47.60121	89.00	12	31.00 1	02.0 1	20.00
## VALLADOLID 96 6	43.00000	34.54273	47.25	9	17.25	33.0	64.50
## VIZCAYA 59 1	59.00000	NA	0.00	59 !	59.00	59.0	59.00
## ZAMORA 105 12	26.16667	28.53653	16.00	1	11.75	16.5	27.75
## ZARAGOZA 123 10 ##	47.20000	44.06762	44.50	3	9.00	44.5	53.50
## Variable: U	ds_VH						
##	mean	sd	IQR	0%	25%	50%	75%
100% n ## A CORUNA 215 21	84.52381	62.78266	94.00	2	27.00	78.0	121.00
## ALAVA 20 1	20.00000	NA	0.00	20	20.00	20.0	20.00
## ALBACETE 520 11	183.00000	143.80125	148.50	15	90.50	187.0	239.00
## ALICANTE 508 11	168.63636	145.24894	183.00	49	57.50	135.0	240.50
## ALMERIA 325 6	192.50000	131.30537	204.00	20	85.25	233.0	289.25
	92.08333	68.38588	90.00	16	33.00	86.5	123.00
## AVILA 271 5	129.00000	110.87606	161.00	3	47.00	116.0	208.00
## BADAJOZ 252 23	103.82609	67.34015	76.50	6	59.00	108.0	135.50
	82.00000	NA	0.00	82	82.00	82.0	82.00
## BURGOS 231 6	125.50000	81.05245	110.25	17	70.00	128.5	180.25
## CACERES 535 16	133.37500	133.37060	164.75	12	48.75	99.5	213.50
## CADIZ 408 9	161.33333	111.95981	75.00	48	96.00	132.0	171.00
## CANTABRIA 253 14	104.07143	69.70318	80.75	26	59.50	67.5	140.25
## CASTELLON 243 2	131.00000	158.39192	112.00	19	75.00	131.0	187.00
## CIUDAD REAL 403 11	151.81818	149.30694	178.00	2	43.50	113.0	221.50
## CORDOBA 418 13	131.38462	109.80023	134.00	0	47.00	111.0	181.00
## CUENCA 219 15	83.40000	68.94180	78.00	4	34.00	55.0	112.00

## GIRONA 62 1	62.00000	NA	0.00	62	62.00	62.0	62.00
## GRANADA 357 14	108.07143	96.46240	108.50	3	49.50	63.5	158.00
## GUADALAJARA 265 4	142.50000	120.99725	165.00	1	64.75	152.0	229.75
## HUELVA 565 8	267.62500	178.27101	198.00	46	146.75	235.0	344.75
	80.62500	57.98507	74.25	18	35.25	66.0	109.50
## JAEN 332 21	142.19048	102.55273	154.00	18	53.00	108.0	207.00
## LA RIOJA 298 5	129.00000	119.49477	153.00	8	52.00	82.0	205.00
## LEON 304 15	73.26667	78.65973	78.50	6	22.00	33.0	100.50
## LLEIDA 121 5	72.40000	48.63949	72.00	9	33.00	94.0	105.00
## LUG0 97 3	56.33333			34			67.50
## MADRID 199 3	154.33333				132.00		
## MALAGA 233 6	130.33333			65			172.25
## MURCIA 281 21	139.19048						218.00
## NAVARRA 168 4	103.00000			42			141.00
85 9	48.00000			12	37.00		
## PALENCIA 186 9	94.55556			10	60.00		131.00
## PONTEVEDRA 142 9				3	40.00	82.0	86.00 72.00
## SALAMANCA 258 13 ## SEGOVIA							
## 3LGOVIA 148		129.37901					267.50
448 16	84.50000						112.75
141 2 ## TARRAGONA							75.00
87 3 ## TERUEL							
138 4 ## TOLEDO							
452 28 ## VALENCIA							
411 17	20712341Z	123.13231	199.00	73	75.00	107.0	270.00

```
## VALLADOLID
               92.33333 106.47003
                                   44.25
                                          26
                                              35.50
                                                     52.0
                                                           79.75
305 6
## VIZCAYA
               37.00000
                               NA
                                    0.00
                                          37
                                              37.00
                                                    37.0
                                                           37.00
37 1
## ZAMORA
               39.33333
                         49.77099
                                   25.50
                                              12.00
                                                    34.5
                                                           37.50
187 12
## ZARAGOZA
               94.80000
                         78.85965
                                              40.25 91.5 123.25
                                   83.00
                                           6
267 10
with(DATOS_UNIDOS, Barplot(PROVINCIA, xlab="PROVINCIA",
ylab="Frequency"))
```


Para ver la correlación existente entre las distintas variables podemos ejecutar un test de correlaciones.

Las variables con coeficiente superior a 0,80 están fuertemente correlacionadas.

Dado que queremos generar un modelo predictivo para estimar las ventas, podemos realizar una regresión lineal. Para ello planteamos la siguiente regresión multivariante:

```
Ventas<sub>i</sub> = \beta_1 + \beta_2 U dsAH + \beta_3 U dsDNT + \beta_4 U dsVH + \beta_5 Resto
```

Ejecutamos en modelo en R con el siguiente comando:

```
MODELO <- lm(TOTAL_VOL~Uds_AH + Uds_DNT + Uds_VH +
Resto_Farmacos, data = DATOS_UNIDOS)</pre>
```

La regresión lineal multivariante tiene 5 supuestos:

- Linealidad
- Independencia
- Homocedasticidad
- Normalidad
- · No-Colinealidad

La independencia, homocedasticidad y normalidad están asociados al comportamiento de los residuos, que son los errores que comete el modelo. A efectos prácticos, la homocedasticidad y la normalidad son DESEABLES pero no OBLIGATORIAS, ya que podemos asumir que los errores que cometamos "se comportan de una determinada manera".

En este momento, ya tenemos el modelo de estimación creado. Ahora hay que comprobar si es bueno y además si se cumplen los supuestos que acabamos de enunciar.

5. Representación de los resultados a partir de tablas y gráficas.

Una vez generado el modelo vamos a ir desgranando los resultados y comprobando los supuestos.

Coeficientes del modelo

```
coefficients (MODELO)

## (Intercept) Uds_AH Uds_DNT
Uds_VH
```

```
## 6328724.2778273 24.8554394 2159021.5282567 50037.4370553 ## Resto_Farmacos ## 0.6180379
```

Por tanto el modelo quedaría como sigue:

```
Ventas_i = 6328724.277 + 24.8554394 \beta_2 + 2159021.5282567 \beta_3 + 50037.4370553 \beta_4 + 0.6180379 \beta_5
```

Con la siguiente instrucción podemos ver el ajuste del modelo y la validez de los coeficientes y la constante:

```
summary(MODELO)
##
## Call:
## lm(formula = TOTAL VOL ~ Uds AH + Uds DNT + Uds VH +
Resto Farmacos,
       data = DATOS UNIDOS)
##
##
## Residuals:
##
         Min
                    10
                          Median
                                         30
                                                  Max
## -54013255
              -9501017
                         -2928854
                                   10204964
                                             65791858
##
## Coefficients:
##
                                  Std. Error t value
                      Estimate
                                                      Pr(>|t|)
## (Intercept)
                  6328724.2778 1591871.0857
                                               3.976 0.0000822
## Uds AH
                       24.8554
                                     15.2991
                                               1.625
                                                      0.104969
## Uds DNT
                  2159021.5283
                                              44.922
                                  48061.4009
                                                        < 2e-16 ***
                                  13225.1621
## Uds VH
                    50037.4371
                                               3.784
                                                      0.000176
## Resto Farmacos
                         0.6180
                                      0.1952
                                               3.166
                                                      0.001657 **
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 18330000 on 433 degrees of freedom
## Multiple R-squared: 0.9634, Adjusted R-squared:
## F-statistic: 2849 on 4 and 433 DF, p-value: < 2.2e-16
```

El valor de R cuadrado corregida nos indica si la recta de regresión se ha ajustado bien a la nube de puntos. Este valor siempre oscila entre 0 y 1, cuanto más cercano a 1 esté R cuadrado mejor será nuestro modelo ya que la nube de puntos se ha ajustado perfectamente. Por el contrario, un R cuadrado próximo a cero indicará que las variables independientes no están explicando a la variable dependiente y por tanto, nuestro modelo tendrá una capacidad predictiva nula. En la práctica, un modelo se considera útil con un R cuadrado a partir de 0.7, por debajo de esta cifra el modelo comienza a ser muy mediocre. En nuestro caso, tenemos un valor de 0.9631, lo cual nos indicaría que se trata de un buen ajuste.

Para determinar la bondad del modelo no basta con un buen R cuadrado sino que tenemos que fijarnos en los valores p, los cuales siempre deben ser menores que

0.05 para que los coeficientes y la constante sean significativos, es decir, que aseguren que el modelo es consiste y realiza buenas estimaciones.

Para ello, debemos analizar la significación de cada variable por separado y al final del proceso analizaremos la significación conjunta.

A continuación, realizamos el análisis de la significación individual de cada variable, estableciendo la hipótesis nula y la alternativa:

Significación individual

```
H_0: \beta_2 = 0

H_1: \beta_2 \neq 0
\alpha = 0.05
```

Comparamos Valor p con α Si valor p < α rechazamos H₀

0,1049689766 > 0,05 aceptamos H_0 , por lo tanto, la variable Uds_AH **NO** es una buena variable explicativa de las ventas o es no significativa.

No podríamos garantizar que nuestro modelo, a pesar de tener un R cuadrado muy alto, va a realizar estimaciones consistentes. En estos casos lo que hacemos es eliminar la variable que tiene un p-valor superior a 0.05 y volvemos a construir el modelo.

El nuevo modelo eliminando esta variable es:

$$Ventas_i = \beta_1 + \beta_2 UdsDNT + \beta_3 UdsVH + \beta_4 Resto$$

Ejecutando en R tenemos:

```
MODEL02 <- lm(TOTAL_VOL~Uds_DNT + Uds_VH + Resto_Farmacos, data =
DATOS UNIDOS)</pre>
```

Los coeficientes obtenidos son:

```
coefficients(MODEL02)
## (Intercept) Uds_DNT Uds_VH
Resto_Farmacos
## 6790675.4776084 2182195.3409091 46548.1348928
0.6145876
```

Analizando los valores estadísticos asociados al modelo tenemos:

```
summary(MODEL02)

##

## Call:

## lm(formula = TOTAL_VOL ~ Uds_DNT + Uds_VH + Resto_Farmacos,
data = DATOS_UNIDOS)

##
```

```
## Residuals:
##
         Min
                    10
                          Median
                                         30
                                                  Max
## -55272123
              -9638341
                        -3087770
                                   10043680
                                             65632450
## Coefficients:
##
                      Estimate
                                  Std. Error t value Pr(>|t|)
## (Intercept)
                  6790675,4776 1569225,8943
                                               4.327 0.0000187 ***
## Uds DNT
                  2182195.3409
                                  45982.5194
                                              47.457
                                                       < 2e-16 ***
## Uds VH
                    46548.1349
                                  13074.2247
                                               3.560
                                                      0.000411 ***
                                                      0.001792 **
## Resto Farmacos
                        0.6146
                                      0.1956
                                               3.142
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 18370000 on 434 degrees of freedom
## Multiple R-squared: 0.9632, Adjusted R-squared:
## F-statistic: 3783 on 3 and 434 DF, p-value: < 2.2e-16
```

Pasamos a

Significación individual

$$H_0: \beta_2 = 0$$

 $H_1: \beta_2 \neq 0$ $\alpha = 0.05$

2e-16 < 0.05 rechazamos H_0 , por lo tanto, la variable Uds_DNT es una buena variable explicativa de las ventas o es significativa.

$$\left.\begin{array}{l}
H_0: \beta_3 = 0 \\
H_1: \beta_3 \neq 0
\end{array}\right\} \qquad \alpha = 0,05$$

0,000411 < 0,05 rechazamos H_0 , por lo tanto, la variable Uds_VH es una buena variable explicativa de las ventas o es significativa.

$$H_0: \beta_4 = 0$$

$$H_1: \beta_4 \neq 0$$

$$\alpha = 0.05$$

0,001792 < 0,05 rechazamos H_0 , por lo tanto, la variable Resto_Farmacos es una buena variable explicativa de las ventas o es significativa.

Además de verificar la significación individual de cada variable, debemos verificar la significación conjunta. Para ello hemos de comparar el valor crítico del estadístico teórico F con el obtenido en la regresión. Construimos el estadístico (3,434) grados de libertad:

```
local({
    .x <- seq(0.005, 6.025, length.out=1000)
    plotDistr(.x, df(.x, df1=3, df2=434), cdf=FALSE, xlab="x",
    ylab="Density",
        main=paste("F Distribution: Numerator df = 3, Denominator df
= 434"))
})</pre>
```

F Distribution: Numerator df = 3, Denominator df = 4

Vamos a estudiar la significación conjunta de todas las variables:

Significación conjunta

$$H_0: \beta_2=\beta_3=\beta_4=0 \\ H_1: al \ menos \ un \ \beta_j\neq 0$$

 $F^* = F(3,434) = 3783,457393$ $F^* > F_{tco}$ rechazo H_0 , es decir, el modelo es significativo en su conjunto

 $F_{tco} = 2,62546$ (se saca de la tabla estadística)

Siguiendo con el análisis de la bondad del ajuste analizamos los coeficientes de regresión:

Coeficiente de determinación R^2	0,9632
R^2 ajustado	0,9629

Por tanto, nos encontramos ante un buen ajuste por ser datos de corte transversal y R2 > 50%.

El 96,31% de las variaciones de la variable endógena (Ventas) son explicadas a través de las variables del modelo.

Ahora analizamos la independencia de los residuos:

plot(MODELO2\$residuals)

El gráfico de dispersión de los residuos no presenta un patrón definido, es decir, una recta, una parábola, tendencias de crecimiento o decrecimiento, sino que los residuos están distribuidos de forma aleatoria. Esto significa que cuando nuestro modelo falle, unas veces será al alza y otras a la baja. Esto es un requisito que deben cumplir los modelos estadísticos.

Se observa la presencia de homocedasticidad, ya que el comportamiento de los errores tiene varianza constante. Al parecer, el modelo es consistente.

El gráfico de componentes y residuos por variable es:

crPlots(MODEL02, span=0.5)

Por último, representamos gráficamente el ajuste de cada variable en el modelo:

```
avPlots(MODELO2, id.method="mahal", id.n=1)
```


6.Resolución del problema. A partir de los resultados obtenidos, ¿cuáles son las conclusiones? ¿Los resultados permiten responder al problema?

Tras el estudio realizado, hemos obtenido un buen modelo, por lo que podemos estimar las ventas totales con la siguiente ecuación:

*Ventas*_i=6790675,48+2182195,34
$$\beta_2$$
+46548,1349 β_3 +0,61458762 β_4

Los resultados permiten responder al problema planteado.

Para estimar el total del mercado usamos nuestra recta de regresión y vamos a sustituir las variables para cada uno de sus valores.

Coeficientes del modelo		
B1	6790675,48	Constante
B2	2182195,34	Uds_DNT
B3	46548,1349	Uds_VH
B4	0,61458762	Resto_Farmacos

A modo de ejemplo:

Uds_DNT	Uds_VH	Resto_Farmacos	Facturacion estimada
162	117	21317197,37	378853738,10
298	42	321079,2096	659237240,04
286	84	1749363,513	635883723,47
152	47	3960844,178	343106415,44

La suma de la facturación estimada de cada cliente del modelo dará la facturación total del mercado. En este caso:

Para calcular el potencial de cada cliente simplemente hemos de restarle a la facturación estimada la facturación actual:

$$\mathbf{FP} = \mathbf{FE} - \mathbf{FA}$$

Facturacion estimada	Facturacion actual	Diferencia
378853738,10	21407776,37	400080914,47
659237240,04	448619,2096	659431459,25
635883723,47	1795558,513	637587631,98
343106415,44	4219643,178	346808858,61
729895329,43	3290515,312	732765644,74

La cuota de mercado máxima para cada cliente la calculamos dividiendo la facturación estimada por el total:

$$CM = FE / FT$$

La cuota actual para cada cliente se calcula dividiendo la facturación actual entre la facturación estimada del mercado:

$$CA = FA / FT$$

Por último, la cuota potencial, es decir, la cuota de cada cliente que aún no hemos alcanzado, es decir, la diferencia entre lo que le facturamos y lo que le podríamos llegar a facturar o, lo que es lo mismo, el recorrido que tenemos con cada cliente lo calculamos como la diferencia entre las dos cuotas anteriores:

$$CP = CM - CA$$

Este último resultado es el que realmente nos interesa y es la base para seleccionar los clientes y proceder a establecer una estrategia.

Facturacion		Cuota total		Cuota
estimada	Diferencia	mercado	Cuota actual	potencial
378853738,10	400080914,47	0,005652%	0,000319%	0,005333%
659237240,04	659431459,25	0,009835%	0,000007%	0,009829%
635883723,47	637587631,98	0,009487%	0,000027%	0,009460%
343106415,44	346808858,61	0,005119%	0,000063%	0,005056%
729895329,43	732765644,74	0,010890%	0,000049%	0,010840%

Con una herramienta de visualización podemos crear unos mapas por cada variable donde aparezcan la distinta intensidad de las ventas con una escala de colores diferentes. En ese caso, realizo este trabajo con la herramienta QLIK SENSE y obtengo el siguiente resultado:

Facturación estimada

Volumen unidades VH

Volumen unidades AH

Volumen unidades DNT

Resto de productos

