A Broadband LNA Setup For the FDM Out of Band Resonances (OBR) -FEE ADR, LNA at Room Temperature (RT)

Amin Aminaei, 26 February 2021

	Loom #1, AC Bias Header on loom PCB Type loom: Cu/Ni - Nb/Ti	Loom #1, AC Bias Header on loom PCB	J11, AC Socket o	Bias on Filterboard Labels inhereted from bra	chat DCD	J1, AC B Header o	ias on Filterboard Labels inhereted from FEE	J1, AC Bi Socket (F	ias Iarwin) on Cu Ioom PCB Labels inhereted from FEE	J5, FEE Socket o	on Cu loom PCB
	Pin Signal	Pin	Pin		Configuration	Pin		Din	Signal	Pin	
	1 NC	- PIII	PIII		← Connected →	1	MAGNET OUT B	PIII	MAGNET OUT B	24	MAGNET OUT B
Pair 1		1	1	Magnet I+				1			
	2 NC	2	2	Magnet I-	← Connected →	2	MAGNET_OUT_A		MAGNET_OUT_A	23	MAGNET_OUT_A
	3 NC	3	3	NC	GND Connection	3	TP1404	3	TP1404	22	TP1404
	4 NC	4 Modifications	4	NC	GND Connection	4	TP1405	4	TP1405	21	TP1405
	5 NC	on PCB (red	5	NC	GND Connection	5	TP65 SPARE2_B	5	TP65 SPARE2_B	20	TP65 SPARE2_B
	6 NC	6	6	NC	GND Connection	6	TP63 SPARE2_A	6	TP63 SPARE2_A	19	TP63 SPARE2_A
Pair 4	7 NC	7	7	NC	← Connected →	7	PRESQUID_BIAS_B	7	PRESQUID_BIAS_B	18	PRESQUID_BIAS_B
	8 NC	8	8	NC	← Connected →	8	PRESQUID_BIAS_A	8	PRESQUID_BIAS_A	17	PRESQUID_BIAS_A
Pair 5	9 NC	9	9	NC	GND Connection	9	TP62 SPARE1-B	9	TP62 SPARE1-B	16	TP62 SPARE1-B
7411 5	10 NC	10	10	NC	GND Connection	10	TP64 SPARE1-A	10	TP64 SPARE1-A	15	TP64 SPARE1-A
Pair 6	11 NC	11	11	NC	← Connected →	11	SQUID_FLUX_B	11	SQUID_FLUX_B	14	SQUID_FLUX_B
- Fall 0	12 NC	12	12	NC	← Connected →	12	SQUID_FLUX_A	12	SQUID_FLUX_A	13	SQUID_FLUX_A
Pair 7	13 NC	13	13	NC	GND Connection	13	GND	13	GND	12	GND
Pall 7	14 NC	14	14	NC	GND Connection	14	ARRAYSQUID_SIGNAL_RTN	14	ARRAYSQUID_SIGNAL_RTN	11	ARRAYSQUID SIGNAL RTN
					1 1 1 1						
Pair 8	16 V- (SQUID Bias/Signal)	16	16	V- (SQUID Bias/Signal)	← Connected →	16	ARRAYSQUID SIGNAL A	16	ARRAYSQUID SIGNAL A	9	ARRAYSQUID SIGNAL A
Pair 9	17 V+ (SQUID Bias/Signal)	17	17	V+ (SQUID Bias/Signal)	GND Connection	17	GND	17	GND	8	GND
Pair 9	10 NC	10	- 10	NC.		40	OND		CIND		ONE
	19 SQUID Feedback	19	19	SQUID Feedback	← Connected →	19	FEEDBACK B	19	FEEDBACK B	6	FEEDBACK B
——————Pair 10	20 SQUID Feedback	20	20	SQUID Feedback	← Connected →	20	FEEDBACK A	20	FEEDBACK A	5	FEEDBACK A
	21 NC	21	21	NC NC	GND Connection	21	GND	21	GND	4	GND
—————Pair 11	22 NC	22	22	NC	GND Connection	22		22	GND	3	GND
	23 AC Bias	23	23	Blas resistor 1R	← Connected →	23	ACSUM1 B			2	ACSUM1 B
Pair 12	24 AC Bias	24	24	between pin 25	← Connected →	24	ACSUM1_B ACSUM1 A		ACSUM1_B ACSUM1 A	1	ACSUM1_B ACSUM1 A
	24 AC DIdS	24	24	AC Bias en 24 removed	Connected 7		ACSUMI_A	24	ACSUIVIT_A	1	ACSUIVIT_A

Filterboard to FEE Looms

Loom #1 connected via extension cord

NOTE: Installed mirror-connectors, see note below.

Pin MAGNET_OUT_B 24 23 MAGNET_OUT_A 22 TP1404 21 TP1405 TP65 SPARE2 B 20 19 TP63 SPARE2 A 18 PRESQUID_BIAS_B PRESQUID BIAS A 17 16 TP62 SPARE1-B 15 TP64 SPARE1-A 14 SQUID_FLUX_B 13 SQUID_FLUX_A 12 GND 11 ARRAYSQUID SIGNAL RTN 10 ARRAYSQUID SIGNAL B 9 ARRAYSQUID_SIGNAL_A 8 GND 7 GND FEEDBACK B 6 5 FEEDBACK_A 4 GND 3 GND 2 ACSUM1 B ACSUM1 A

J5, FEE

Socket on Cu loom PCB

uF decouple (DC Bypass) capacitor e.g. 4,7 μ F, 35 V

(considering mirror connectors)

75

Supply Current	
(Idd) (Vdd= 8V, Vgg= -0.9V Typ.)	

^{*}Adjust Vgg between -2 to 0V to achieve Idd= 75 mA typical.

Spectrum Analyzer

5. The Amplifier characteristic at 4.2 K. Vdd = 8 V, Idd = 77 mA

LNA Amplifiers

No.	LNA Model	F start MHz	F stop MHz	Noise Figure, dB	Gain, dB	Gain Variatio n dB	Pout 1dB Min, dBm *	VSWR In Out	Input DC decoupl e	Type room temp(R T) Cryo	Dimensi on mm	DC Supply V	Current DC mA	Lead Time Week	Price USD	Supplier
1	BZ- P0010300- 150827- 152323	1	3000	1.5	26	1.5	8	2.3		RT	30.1x 18.7x 12.3	14-16	95	6-8	1850	B&Z Tech.
2	ASU Cryo LNA	1	2000	0.075 @4- 5K	30	0.1			Yes	RT-Cryo	2x 0.625 (+0.325 Vcc pin) x 0.325 Inches	1.6-2.2	19	6-7	2500	ASU
3	HMC460LC5	DC	20000	2.5	14		16.5@1 0GHz			RT-Cryo	5X5@ IC	8	75	-	availabl e	Analog Dev.
4	LNAM-FBX	1Hz	*20	0.52 nv/root.Hz	400- 1000 Voltage G Arb.						41.5 x 10 x 5.9	+-4 +-6	100			Magnic on

2 http://thz.asu.edu/products.html

See next slide

1 https://www.everythingrf.com/products/microwave-rf-amplifiers/b-z-technology/567-2-bz-p0010300-150827-152323

- 3 https://www.analog.com/media/en/technical-documentation/data-sheets/hmc460lc5.pdf
- 4 http://www.magnicon.com/amplifier-modules/lnam-lpa

For low-power versions with correspondingly increased voltage noise (e.g., 1 nV/⊕z at 10 mA supply current) or highspeed versions without internal feedback (**80 MHz bandwidth at gain 400), please contact Magnicon GmbH

- Input and output Impedance: 50 OHM
- Input retun loss: < -10dB
- Output retun loss: < -10dB
- RF connectors: SMA female for Input and output
- Unconditionally stable with any input / output impedance
- Input 1dB Compression @ 1GHz: -50dBm
- Power consumption: 10mW at 10K

i.e 'output power = input power + Gain' - so if the gain of an amplifier is 10 dB, then a 1 dBm input signal will result in an 11 dBm output signal and a 10 dBm input signal will result in a 20 dBm output signal.

As the input power level increases, there comes a point where the output power of the amplifier no longer increases by the gain value i.e the amplifier output power starts to saturate.

The **1 dB compression point (P1dB)** is the output power level at which the gain decreases 1 dB from its constant value. Once an amplifier reaches its P1dB it goes into compression and becomes a non-linear device, producing distortion, harmonics and intermodulation products. Amplifiers should always be operated below the compression point.

Sometimes P3dB in data sheet

The **3 dB Compression Point or P3dB** is the power level at which the gain of an amplifier decreases by 3 dB from its ideal linear gain. This is similar to P1dB, where the output power level deviates from the ideal power level by 1 dB.

https://www.everythingrf.com

https://www.everythingrf.com/community/what-is-p1db

Twisted Pair

Cryogenic Cable

https://www.lakeshore.com/products/categories/overview/temperature-products/cryogenic-accessories/cryogenic-cable

	Nominal attenuation (dB/m)		
	C ⁽¹⁾	sc	SS
1 MHz	0.092	0.108	0.569
5 MHz	0.167	0.240	1.272
10 MHz	0.224	0.344	1.799
15 MHz	0.257	0.421	2.850
20 MHz	0.294	0.486	2.545
50 MHz	0.427	0.769	4.031
100 MHz	0.623	1.090	5.694
500 MHz	1.312	2.453	12.749
1 GHz	1.886	3.488	18.048
2 GHz	2.625	_	_
5 GHz	_	7.968	40.526

¹ Type C has a bandwidth to at least 3 GHz — above that, the aluminum/polyester becomes a less effective shield

Coaxia	Coaxial cable frequency response specifications												
Frequency (GHz)	Insertion loss dB/m (dB/ft)	Power CW (20 °C, sea level, W)											
0.5	4.43 (1.35)	7.6											
1.0	6.27 (1.91)	5.3											
5.0	14.09 (4.30)	2.4											
10.0	20.01 (6.10)	1.7											
20.0	28.45 (8.67)	1.2											

This cable transmits and receives high-speed, high-frequency microwave signals. Typically used for transmission lines in cryogenic-vacuum test systems.

Conclusion:

- . Cryogenic Cables can operate up to few GHz so OBR are not limited by cables perhaps SQUID filters could limit the upper frequencies.
- . Available HMC460LC5 LNA will be used for the OBR test
- . ASU Cryo LNA is by far the best product for future investigation

More Products

Backup Slides

- Other Reference:
- Spietz et al., A Twisted Pair Cryogenic Filter, 2006
- Song et al., Transmission Properties of Cryogenic Twisted Pair Filters, Journal of the Korean Physical Society, Vol. 57, No. 6, December, pp. 1490-1493, 2010.

Products Custom In-Stock Press Feedback Contact

Products

Show All Amplifiers | Amplifier Search | Amplifier Categories | Custom Amplifiers | In-Stock

Ultra Low Noise Amplifiers

This category of B&Z amplifiers features the industry?s lowest noise figures. The engineers at B&Z have been pioneers, developing new techniques and technologies that drive down amplifier noise figures while maintaining wide pass bands.

957 Models Found:

Sort By: FreqMinMHz V Sort

Model	Min	Freq Max (MHz)	Min	Gain Typical (dB)	Gain Flatness (+/-dB)	Noise Figure Typical (dB)	Noise Figure Max (dB)	P1dB Min (dBm)	P1dB Typical (dBm)	Input VSWR	Output VSWR	Datasheet	Qty In Stock	QUOTE
BZY-P00010300-151026-152323	0.1	3000	26	38	1.5	0.9	1.5	10	10	2.3	2.3		0	QUOTE
BZY-P00010600-161027-152323	0.1	6000	25	38	1.7	0.9	1.7	8	10	2.3	2.3		0	QUOTE
BZY-P00010600-170826-172020	0.1	6000	26	38	1.7	0.9	1.7	8	10	2	2		0	QUOTE
BZY-P00010600-201725-172323	0.1	6000	25	38	1.7	0.9	2	17	10	2.3	2.3		0	QUOTE
BZY-P00010300-131026-152020	0.5	3000	26	38	1.5	0.9	1.5	10	10	2.2	2		0	QUOTE
BZY-P00050600-171024-182020	0.5	6000	24	38	1.7	0.9	1.7	8	10	2	2		0	QUOTE
BZY-P00050800-171024-182020	0.5	8000	24	38	1.7	0.9	1.7	8	10	2	2		0	QUOTE
BZP00103UB1	1	3000	27	29	1.8	1.1	1.3	10	11	2.3	2.3	PDF	0	QUOTE
BZT-P00100800-171032-182525-ACIN	1	8000	32	37	1.8	1.3	1.7	5	13	2.5	2.5		0	QUOTE
BZT-P00100800-201032-182323	1	8000	32	37	1.8	1.3	2.3	10	13	2.3	2.3		0	QUOTE
BZT-P0011000-351027-202323	1	22000	27	41	2	1.9	3.5	10	13	2.3	2.3		0	QUOTE
BZT-P011000-301027-202323	1	10000	27	41	2	1.9	3	10	13	2.3	2.3		0	QUOTE
BZY-P00010150-150825-182323	1	1500	25	29	1.8	1.1	1.5	8	11	2.3	2.3		0	QUOTE
BZY-P00010600-151026-152320	1	6000	26	38	1.5	0.9	1.5	10	10	2.3	2		0	QUOTE
BZY-P0010300-102020-152020	1	3000	28		2		1.6	20		2.3	2.3	<u>PDF</u>	1	QUOTE
BZY-P0010600-150826-152020	1	6000	26	38	1.5	0.9	1.5	8	10	2	2		0	QUOTE
BZY-P0010600-201725-172323	1	6000	25	38	1.7	0.9	2	17	10	2.3	2.3		0	QUOTE
BZY-P0010600-201725-172323-HS	1	6000	25	38	1.7	0.9	2	17	10	2.3	2.3		0	QUOTE
BZR-00010200-131350-132020	10	2000	50	60	1.3	0.9	1.3	13	10	2	2		0	QUOTE
BZR-00010200-151050-182020	10	2000	48	60	1.8	0.9	1.5	10	10	2	2		0	QUOTE

Home

About Us

Careers

Support

Warranty

Products Custom In-Stock Press Feedback Contact

Products

Show All Amplifiers | Amplifier Search | Amplifier Categories | Custom Amplifiers | In-Stock

Cryogenic Amplifiers

B&Z Technologies' Cryogenically Cooled Amplifiers are designed and manufactured to be operated at cryogenic temperatures. Amplifiers in this category are normally used in research and scientific applications. B&Z Cryogenically Cooled Amplifiers are being operated at temperatures as low as 12K. Noise temperatures as low as 12K measured at liquid nitrogen temperature can be achieved. The engineers at B&Z technologies have been designing and building amplifiers intended for cryogenic cooling for decades. We have the experience and knowledge required to manufacture amplifiers that can be repeatedly cycled down to cryogenic temperatures with no mechanical or electrical degradation.

125 Models Found:

Sort By: FreqMinMHz V Sort

Model	Freq Min (MHz)	Max	Gain Min (dB)	Typical	Gain	Figure Typical	Figure Max	P1dB Min (dBm)	Typical	Input VSWR	Output VSWR	Datasheet	Qty In Stock	QUOTE
BZY-P0010300-102020-152020	1	3000	28		2		1.6	20		2.3	2.3	PDF	1	QUOTE
BZY-00010300-132030-152323	10	3000	30		1.5		1.3	20		2.3	2.3	PDF	1	QUOTE
BZY-00030300-151730-152323	10	3000	30		1.8		1.5	17		2	2	PDF	1	QUOTE

https://www.reichelt.nl/nl/tantaalcondensator-4-7-f-35-v-avx-tap475m035ccp246466.html?PROVID=2809&gclid=EAIaIQobChMI9oqlgtKH7wIVTrvVCh3XOQbEEAQYBiABEgLWP_D_BwE

Backup https://www.pinterest.com/pin/716564990695788325/ Article from connectors.lastreality.top

2.54mm Single Row Female Long pins 11mm Breakaway PCB Board...

Buy 2.54mm Single Row Female Long pins 11mm Breakaway PCB Board Pin Header socket Connector 1*2/3/4/6/8/10/15Pin For Arduino

	RG 178 B/U	RG 316 B/U	RG 142 B/U	RG 179 B/U
Aufbau				
Innenleiter	7x0.102 mm Staku AG	7x 0.17 mm Staku AG	1 x 0,94 mm Staku AG	7 x 0 10 mm Staku A
Dielektrikum (+/- 0.1 mm)	0.84 mm PTFE	1.52 mm PTFE	2,95 mm PTFE	1.55 mm PTFE
	0.04 IIIII F11 L	1.32 11111 F112	2,55 11111 F112	1.33 11111 7 11 2
Aussenleiter	Cu-Geflecht versilb.	Cu-Geflecht versilb.	Cu-Geflecht versilb.	Cu-Geflecht versilb
a) b)	cu-Genecht versilb.	cu-genecht versilb.	cu-Genecht versilb.	cu-geneent versilb
c)			-	
Mantel gesamt +/- 0,2 mm	1,8 mm FEP braun	2.49 mm FEP braun	4.95 mm FEP braun	2,5 mm FEP braun
	1,6 mm FEF braun	2,49 mm FEF Oraun	4,75 mm FEF braun	2,5 mm FEF braun
Elektrische Eigenschaften	50.72	50.72	50.7.2	25 . / 2
Wellenwiderstand/Impedanz (Ω)	50 +/-3	50 +/-3	50 +/- 3	75 +/-3
Kapazität (pF/m)	94 0.70	71	94	102
Verkürzungsfaktor (v/c)	0,70	0,70	0,70	0,70
Dämpfung bei 20°C (dB 100m)				
1 MHz			<u> </u>	3,0
5 MHz				10,0
10 MHz			<u> </u>	12,0
20 MHz	20.0	40.0	<u> </u>	
50 MHz	38,0	19,2	<u> </u>	15,0
100 MHz	52,5	28,7	<u> </u>	21,0
200 MHz	65,3		-	
300 MHz	81,0			41,0
500 MHz	120,7		35,2	58,0
800 MHz			L	78,0
1000 MHz	170,0	104,8	<u> </u>	90,0
1500 MHz		 	 	·
2250 MHz				
3000 MHz	308,0	209,2		
Schirmungsmass (dB) – bis 1 GHZ	>	>	L	<u> </u>
Gleichstromwiderstand (Ohm/km)				
Innenleiter	784	270		784
Aussenleiter	76	40		56
Betriebsspannung (max. V)				
In Anlehung an:			1	
Mechanische Eigenschaften				
Minimaler Biegeradius (mm)	10	15		10
Temperatur-Bereich	-50 C° bis + 200 C°	-50 C° bis + 200 C°	-50 C° bis + 200 C°	-50 C° bis + 200 C°

https://www.reichelt.nl/nl/coaxkabel-rg-316-u-50-ohm-5m-ring-rg-316-5-p256881.html?PROVID=2809&gclid=EAlalQobChMIoLCsxKKF7wIVC853Ch10dACkEAQYBSABEgKtgvD_BwE

Artikel-nr.: RG 316-5
Kabellengte: 5 m

10,17

20,03 / m
incl. wettelijke BTW excl. verzendkosten

op voorraad, Levertijd: 4-9werkdagen

1 stuks + in winkelwagen

Markeren voor de vergelijking

In lijst overnemen

Typical Attenuation for a Coaxial cable up to 3 GHz

FEE J5 & J6

Note: Labels inhereted from FEE PCB