Measuring Performance: Evaluating SMOTE

$Spiro\ Stilianoudakis$

1

Contents

Loading Packages

Setting Working directory	2
Testing SMOTE	3
Bootstrap	5
Comparing additional performance metrics across all methods	6
Comparing $100/200$ SMOTE with Bootstrapped model	10
Loading Packages	
library(caret)	
<pre>## Warning: package 'caret' was built under R version 3.4.4 ## Loading required package: lattice ## Loading required package: ggplot2 ## Warning: package 'ggplot2' was built under R version 3.4.4 #library(data.table) library(gbm)</pre>	
<pre>## Loading required package: survival ## ## Attaching package: 'survival' ## The following object is masked from 'package:caret': ## ## cluster ## Loading required package: splines ## Loading required package: parallel ## Loaded gbm 2.1.3</pre>	
library(pROC)	
<pre>## Warning: package 'pROC' was built under R version 3.4.4 ## Type 'citation("pROC")' for a citation. ## ## Attaching package: 'pROC'</pre>	

```
## The following objects are masked from 'package:stats':
##
##
       cov, smooth, var
library(plyr)
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.4.4
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
##
##
       arrange, count, desc, failwith, id, mutate, rename, summarise,
##
       summarize
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
library(DMwR)
## Loading required package: grid
## Attaching package: 'DMwR'
## The following object is masked from 'package:plyr':
##
       join
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
library(ggplot2)
library(leaps)
#library(DT)
library(knitr)
## Warning: package 'knitr' was built under R version 3.4.4
```

Setting Working directory

```
setwd("C:/Users/Spiro Stilianoudakis/Documents/TAD_data/RData/GM12878/testing_SMOTE")
```

Testing SMOTE

```
enetlst_sm <- readRDS("C:/Users/Spiro Stilianoudakis/Documents/TAD_data/RData/GM12878/testing_SMOTE/ene</pre>
#Plotting Performance
auc.sm <- data.frame(Combination=c("100/200","200/200","300/200","400/200",
                                      "100/300","200/300","300/300","400/300"),
                       AUC=c(enetlst_sm[[3]][1],enetlst_sm[[3]][2],enetlst_sm[[3]][3],
                              enetlst_sm[[3]][4],enetlst_sm[[3]][5],enetlst_sm[[3]][6],
                              enetlst_sm[[3]][7],enetlst_sm[[3]][8]))
auc.sm <- auc.sm[order(auc.sm$AUC, decreasing=TRUE),]</pre>
auc.sm$Combination <- factor(auc.sm$Combination, levels=auc.sm$Combination)
auc.sm
                       AUC
    Combination
##
## 1
         100/200 0.7936148
## 5
         100/300 0.7898228
## 2
         200/200 0.7872268
## 6
         200/300 0.7864398
## 3
         300/200 0.7824853
## 7
         300/300 0.7820608
## 4
         400/200 0.7802347
## 8
         400/300 0.7790618
#datatable(auc.sm)
kable(auc.sm)
```

	Combination	AUC
1	100/200	0.7936148
5	100/300	0.7898228
2	200/200	0.7872268
6	200/300	0.7864398
3	300/200	0.7824853
7	300/300	0.7820608
4	400/200	0.7802347
8	400/300	0.7790618

```
p<-ggplot(data=auc.sm, aes(x=Combination, y=AUC, fill=Combination)) +
    xlab("Sampling Combination") + ylab("AUC") +
    geom_bar(stat="identity") + ylim(0,1) +
    scale_fill_manual(values=gray(seq(0,.7,.1)), guide=FALSE) +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
    ggtitle("Model Performance for Different \n Sampling Combinations using SMOTE")
p</pre>
```

Model Performance for Different Sampling Combinations using SMOTE


```
onetwo <- data.frame(fpr=enetlst_sm[[2]][,1],tpr=enetlst_sm[[1]][,1], Combo = "100/200");</pre>
twotwo <- data.frame(fpr=enetlst_sm[[2]][,2],tpr=enetlst_sm[[1]][,2], Combo = "200/200");</pre>
threetwo <- data.frame(fpr=enetlst_sm[[2]][,3],tpr=enetlst_sm[[1]][,3], Combo = "300/200");
fourtwo <- data.frame(fpr=enetlst_sm[[2]][,4],tpr=enetlst_sm[[1]][,4], Combo = "400/200");</pre>
onethree <- data.frame(fpr=enetlst_sm[[2]][,5],tpr=enetlst_sm[[1]][,5], Combo = "100/300");</pre>
twothree <- data.frame(fpr=enetlst_sm[[2]][,6],tpr=enetlst_sm[[1]][,6], Combo = "200/300");</pre>
threethree <- data.frame(fpr=enetlst_sm[[2]][,7],tpr=enetlst_sm[[1]][,7], Combo = "300/300");
fourthree <- data.frame(fpr=enetlst_sm[[2]][,8],tpr=enetlst_sm[[1]][,8], Combo = "400/300")
allrocdat <- rbind.data.frame(onetwo,
                               twotwo,
                               threetwo,
                               fourtwo,
                               onethree,
                               twothree,
                               threethree,
                               fourthree)
ggplot(data=allrocdat, aes(x=fpr, y=tpr, color=Combo)) +
  geom line(size=1) +
  scale_colour_manual(name="Combination",
    labels=c("100/200",
             "200/200",
             "300/200".
             "400/200",
             "100/300".
```

ROC Curves for Different Normalization Techniques

${\bf Bootstrap}$

[1] 0.805

```
enetlst_bs <- readRDS("C:/Users/Spiro Stilianoudakis/Documents/TAD_data/RData/GM12878/testing_SMOTE/ene
#Mean AUC across 100 bootstrap samples
enetlst_bs[[3]]
## [1] 0.8150594 0.8014177 0.8032703 0.8138675 0.7917615
auc.bs <- round(mean(enetlst_bs[[3]]),3)
auc.bs</pre>
```

```
#roc curve
fpr.bs <- rowMeans(enetlst_bs[[2]])
tpr.bs <- rowMeans(enetlst_bs[[1]])
rocdat.bs <- data.frame(fpr=fpr.bs, tpr=tpr.bs)
ggplot(rocdat.bs, aes(x=fpr, y=tpr)) +
    geom_line(size=1, color="black") +
    xlab("1-Specificity") +
    ylab("Sensitivity") +
    xlim(0, 1) +
    ylim(0, 1) +
    geom_abline(intercept=0, slope=1) +
    theme_minimal() +
    ggtitle("ROC Curve for Balanced Classes \n Using 100 Bootstrap Samples")</pre>
```

ROC Curve for Balanced Classes Using 100 Bootstrap Samples

Comparing additional performance metrics across all methods

```
options(scipen = 999)
enetperf_sm <- readRDS("C:/Users/Spiro Stilianoudakis/Documents/TAD_data/RData/GM12878/testing_SMOTE/enetperf_b <- readRDS("C:/Users/Spiro Stilianoudakis/Documents/TAD_data/RData/GM12878/testing_SMOTE/enetperf_sm <- round(enetperf_sm,2)
enetperf_b <- round(as.matrix(rowMeans(enetperf_b)),2)</pre>
```

Metric	100/200	200/200	300/200	400/200	100/300	200/300	300/300	400/300	Bootstraps
TN	57722.00	62345.00	64076.00	65046.00	62720.00	65803.00	66564.00	67192.00	333.00
FN	190.00	246.00	271.00	289.00	239.00	287.00	305.00	314.00	109.00
FP	16078.00	11455.00	9724.00	8754.00	11080.00	7997.00	7236.00	6608.00	155.00
TP	298.00	242.00	217.00	199.00	249.00	201.00	183.00	174.00	381.00
Total	74288.00	74288.00	74288.00	74288.00	74288.00	74288.00	74288.00	74288.00	978.00
Sensitivity	0.61	0.50	0.44	0.41	0.51	0.41	0.38	0.36	0.78
Specificity	0.78	0.84	0.87	0.88	0.85	0.89	0.90	0.91	0.68
Kappa	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.46
Accuracy	0.78	0.84	0.87	0.88	0.85	0.89	0.90	0.91	0.73
Precision	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.71
FPR	0.22	0.16	0.13	0.12	0.15	0.11	0.10	0.09	0.32
FNR	0.39	0.50	0.56	0.59	0.49	0.59	0.62	0.64	0.22
FOR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.25
NPV	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.75
MCC	0.08	0.08	0.07	0.07	0.08	0.08	0.07	0.07	0.46
F1	0.76	0.66	0.62	0.58	0.68	0.58	0.55	0.53	0.87

```
mccf1 <- data.frame(Metric = c(rep("MCC",9), rep("F1",9)),</pre>
                    Technique = rep(c("100/200",
                    "200/200",
                    "300/200",
                    "400/200",
                    "100/300",
                    "200/300",
                    "300/300",
                    "400/300",
                    "Bootstraps"), 2),
                    Value = c(as.numeric(perfdat[15,2:10]), as.numeric(perfdat[16,2:10])))
ggplot(data=mccf1, aes(x=Technique, y=Value, fill=Metric)) +
 geom_bar(stat="identity", position=position_dodge()) +
  scale_fill_manual(values=c('black','lightgray')) +
 xlab("Balancing Technique") +
 theme_minimal() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1))
```



```
MCCplot<-ggplot(data=mccf1[1:9,], aes(x=Technique, y=Value, fill=Technique)) +
    xlab("Balancing Technique") + ylab("MCC") +
    geom_bar(stat="identity") +
    scale_fill_manual(values=gray(rev(seq(0,.8,.1))), guide=FALSE) +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
    ggtitle("Model Performance for Different \n Class Balancing Techniques")
MCCplot</pre>
```

Model Performance for Different Class Balancing Techniques


```
F1plot<-ggplot(data=mccf1[10:18,], aes(x=Technique, y=Value, fill=Technique)) +
    xlab("Balancing Technique") + ylab("F1") +
    geom_bar(stat="identity") +
    scale_fill_manual(values=gray(rev(seq(0,.8,.1))), guide=FALSE) +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
    ggtitle("Model Performance for Different \n Class Balancing Techniques")
F1plot</pre>
```

Model Performance for Different Class Balancing Techniques

Comparing 100/200 SMOTE with Bootstrapped model

```
ggplot() +
  geom_line(aes(fpr, tpr, colour=gray(.7)[1]), rocdat.bs) +
  geom_line(aes(fpr, tpr, colour="black"), onetwo) +
  scale_colour_manual(name="Sampling \n Technique",
    labels=c("Bootstrap","SMOTE: \n 100/200"),
    values=c("black",gray(.7))) +
    xlab("1-Specificity") +
    ylab("Sensitivity") +
    xlim(0, 1) +
    ylim(0, 1) +
    geom_abline(intercept=0, slope=1) +
    theme_minimal() +
    ggtitle("100 Bootstrap Samples vs 100/200 SMOTE")
```



```
varimp.bs <- as.vector(rowMeans(enetlst bs[[4]]))</pre>
Labels <- rownames(enetlst_bs[[4]])</pre>
Labels[grep("Gm12878_", Labels)] <- gsub("Gm12878_","",Labels[grep("Gm12878_", Labels)])
varimp.bs.df <- data.frame(Feature=Labels,</pre>
                                   Importance=varimp.bs)
varimp.bs.df <- varimp.bs.df[order(varimp.bs.df$Importance),]</pre>
varimp.bs.df <- varimp.bs.df[(dim(varimp.bs.df)[1]-19):dim(varimp.bs.df)[1],]</pre>
varimp.bs.df$Feature <- factor(varimp.bs.df$Feature,</pre>
                                       levels=varimp.bs.df$Feature)
p.bs <- ggplot(varimp.bs.df, aes(x=Feature, y=Importance)) +</pre>
  xlab("Predictors") +
  ylab("Importance") +
  #qqtitle("Importance Plot for Gradient Boosting Machine") +
  geom_bar(stat="identity",
           width=.5,
           position="dodge",
           fill="black") +
  coord flip() +
  theme minimal() +
  ggtitle("Variable Importance Plot: \n 100 Bootstrap Samples")
p.bs
```

Variable Importance Plot: 100 Bootstrap Samples


```
varimp.sm <- as.vector(enetlst sm[[4]][,1])</pre>
Labels <- names(enetlst_sm[[4]][,1])</pre>
Labels[grep("Gm12878_", Labels)] <- gsub("Gm12878_","",Labels[grep("Gm12878_", Labels)])
varimp.sm.df <- data.frame(Feature=Labels,</pre>
                                   Importance=varimp.sm)
varimp.sm.df <- varimp.sm.df[order(varimp.sm.df$Importance),]</pre>
varimp.sm.df <- varimp.sm.df[(dim(varimp.sm.df)[1]-19):dim(varimp.sm.df)[1],]</pre>
varimp.sm.df$Feature <- factor(varimp.sm.df$Feature,</pre>
                                       levels=varimp.sm.df$Feature)
p.sm <- ggplot(varimp.sm.df, aes(x=Feature, y=Importance)) +</pre>
  xlab("Predictors") +
  ylab("Importance") +
  #ggtitle("Importance Plot for Gradient Boosting Machine") +
  geom_bar(stat="identity",
           width=.5,
           position="dodge",
           fill=gray(.7)) +
  coord flip() +
  theme minimal() +
  ggtitle("Variable Importance Plot: \n 100/200 SMOTE")
p.sm
```

Variable Importance Plot: 100/200 SMOTE

