Summary of Notebooks

Notebook 1: Image Classification with Hugging Face

• Model: ViT (Vision Transformer)

```
ViTImageProcessor {
  "do_convert_rgb": null,
  "do_normalize": true,
  "do_rescale": true,
  "do resize": true,
  "image_mean": [
    0.5,
    0.5,
    0.5
  ],
"image_processor_type": "ViTImageProcessor",
  "image_std": [
    0.5,
    0.5,
    0.5
  "resample": 2,
  "rescale factor": 0.00392156862745098,
  "size": {
    "height": 224,
    "width": 224
```

- Process: Feature extraction → DataLoader setup → Training with PyTorch Trainer →
 Evaluation
- Input: Images (batch size = 16)

• Output: Classification (Healthy or Not)

• Hardware: CUDA (GPU)

• Performance:

o Accuracy: **0.992**

Macro F1-score: 0.992

• Improvements: Hyperparameter tuning

Model: TF-IDF Vectorizer + Naïve Bayes Classifier

```
from sklearn.model_selection import StratifiedKFold, cross_val_score

def get_auc_CV(model):
    """
    Return the average AUC score from cross-validation.
    """
    # Set KFold to shuffle data before the split
    kf = StratifiedKFold(5, shuffle=True, random_state=1)

# Get AUC scores
    auc = cross_val_score(
        model, X_val_tfidf, y_val, scoring="roc_auc", cv=kf)

return auc.mean()
```

- Process: Data loading → Train/Test split (60/20/20) → Text processing → Training →
 Evaluation
- Input: Review sentences

	review	label
0	So there is no way for me to plug it in here i	0
1	Good case, Excellent value.	1
2	Great for the jawbone.	1
3	Tied to charger for conversations lasting more	0
4	The mic is great.	1

Output: Classification (0 or 1)Hardware: CUDA (GPU) or CPU

Performance:

Accuracy: 0.78AUC: 0.8938

Notebook 3: Text Classification (BERT)

Model: BERT

Load model
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=2)

- **Process**: Data loading → Tokenization → Training → Evaluation
- Input: Review sentences

	review	label
0	So there is no way for me to plug it in here i	0
1	Good case, Excellent value.	1
2	Great for the jawbone.	1
3	Tied to charger for conversations lasting more	0
4	The mic is great.	1

Output: Classification (0 or 1)Hardware: CUDA (GPU)

Performance:

F1-score: 0.88Recall: 0.87

```
{'eval_loss': 0.3862229883670807,
  'eval_accuracy': 0.885,
  'eval_runtime': 0.8504,
  'eval_samples_per_second': 235.179,
  'eval_steps_per_second': 58.795,
  'epoch': 2.0}
```

• Improvements: More epochs, hyperparameter tuning

Notebook 4: Text Classification (PhayaThaiBERT)

• **Model**: PhayaThaiBERT (Pretrained)

checkpoint = "clicknext/phayathaibert" tokenizer = AutoTokenizer.from_pretrained(checkpoint)

- **Process**: Data loading → Tokenization → DataLoader setup → Training → Evaluation
- Input: Review sentences

	review_body	star_rating
0	ร้านอาหารใหญ่มากกกกกกก ∖ทเลี้ยวเข้ามาเจอห้องน้	2
1	อาหารที่นี่เป็นอาหารจีนแคะที่หากินยากในบ้านเรา	3
2	ปอเปี๊ยะสด ทุกวันนี้รู้สึกว่าหากินยาก (ร้านที่	2
3	ร้านคัพเค้กในเมืองไทยมีไม่มาก หลายๆคนอาจจะสงสั	4
4	อร่อย!!! เดินผ่านDigital gatewayทุกวัน ไม่ยักร	4

Output: Rating (0 to 5)Hardware: CUDA (GPU)

• Performance:

Accuracy: 0.58Recall: 0.40

F1-score: 0.5070952837216167								
Accuracy: 0.564								
Classification Report:								
	precision	recall	f1-score	support				
1	0.33	0.20	0.25	5				
2	0.43	0.16	0.23	19				
3	0.53	0.73	0.62	141				
4	0.59	0.71	0.65	243				
5	0.40	0.02	0.04	92				
accuracy			0.56	500				
macro avg	0.46	0.36	0.36	500				
weighted avg	0.53	0.56	0.51	500				

• Improvements: More epochs, hyperparameter tuning