SeaXChange: Blockchain Driven App for Tuna Supply Chain Management

3	A Special Problem Proposal
4	Presented to
5	the Faculty of the Division of Physical Sciences and Mathematics
6	College of Arts and Sciences
7	University of the Philippines Visayas
8	Miag-ao, Iloilo
9	In Partial Fulfillment
10	of the Requirements for the Degree of
1	Bachelor of Science in Computer Science by
	•
	DAT OC Leff Dougal
12	BAT-OG, Jeff Rouzel CAHILIG, Maxinne Gwen
13	
14	Ganit, Zyrex Djewel
15	Francis DIMZON
16	Adviser
17	November 6, 2024
.1	11070111001 0, 2024

18 Abstract

27

The tuna supply chain faces critical challenges regarding traceability, transparency and sustainability due to certain issues such as illegal, unreported and unregulated fishing. Within the tuna supply chain, traceability can play a critical role in enhancing consumer transparency and ensuring adherence to environmental and legal standards. By leveraging blockchain technology, this research combines qualitative insights of supply chain stakeholders and uses the information to evaluate the potential of blockchain in improving product traceability and accountability within the supply chain.

Suggested keywords based on ACM Computing Classification system can be found at https://dl.acm.org/ccs/ccs_flat.cfm!!!!!!!!!!!!!

²⁹ Keywords: Blockchain, Traceability, Tuna, Supply Chain, etc.

30 Contents

31	1	Intr	roduction	1
32		1.1	Overview	1
33		1.2	Problem Statement	3
34		1.3	Research Objectives	3
35			1.3.1 General Objective	3
36			1.3.2 Specific Objectives	4
37		1.4	Scope and Limitations of the Research	4
38		1.5	Significance of the Research	4
39	2	Rev	view of Related Literature	6
40		2.1	Theme 1 Title	7
41		2.2	Theme 2 Title	7
42		2.3	Chapter Summary	7
43	3	Res	earch Methodology	8
44		3.1	Research Activities	8
45		3.2	Calendar of Activities	9
46	4	Pre	liminary Results/System Prototype	10

47	References	11
48	A Appendix Title	12
49	B Resource Persons	13

$_{50}$ List of Figures

51	1.1	This is the figure's caption – Disney stock chart. Captions should	
52		fully describe the figure in a concise manner such that there is not	
53		need to refer to the text when figuring out the graphic	4

List of Tables

	2.1	Timetable of Activities .	C
55	• • • • • • • • • • • • • • • • • • • •	Timetable of Activities.	 .~

56 Chapter 1

$_{\scriptscriptstyle 57}$ Introduction

$_{58}$ 1.1 Overview

77

This section gives the reader an overview of the real world problem that needs to be solved. It describes the exigency of the proposed solution. The consequences to the affected stakeholders that the problem may bring if it not addressed. Discussion must not be too technical or too detailed.

This section ends with a discussion on the problem/s faced by or that still exist in the specific technology or field (e.g., limitations of existing software or algorithms). The problem statement would lead to the research objectives.

It is easy to include a figure in JPG or PNG format as shown in the following example. Make sure that you explain what the figure is all about, and that you refer to your figure. For example, Figure 1.1 shows a graph of the performance of Disney stock from the 1980s to 2012.

Some notes on citing references. When using APA format, the author-date method of citation is followed. This means that the author's last name and the year of publication for the source should appear in the text, and a complete reference should appear in the reference list.

Here are some examples on how to do the referencing (note author's name and years are different from commented examples). For APA citation details, refer to http://www.ctan.org/tex-archive/biblio/bibtex/contrib/apacite/.

• Kartch (2000) compared reaction times...

Figure 1.1: This is the figure's caption – Disney stock chart. Captions should fully describe the figure in a concise manner such that there is not need to refer to the text when figuring out the graphic.

- In a recent study of reaction times (Kartch, 2000)...
- In 2000, Kartch compared reaction times...

80

82

- Fedkiw et al. (2001) compared reaction times...
- In a recent study of reaction times (Fedkiw et al., 2001)...
 - In 2001, Fedkiw et al., compared reaction times...

The following are references from journal articles (Park, Linsen, Kreylos, Owens, & Hamann, 2006; Pellacini et al., 2005; Sako & Fujimura, 2000). Here's an MS thesis document (Yee, 2000), and this is from PhD dissertation (Kartch, 2000). For a book, reference is given as (Parke & Waters, 1996). Proceedings from a conference samples are (Jobson, Rahman, & Woodell, 1995; Fedkiw et al., 2001; Levoy et al., 2000). The sample bibliography file named myreferences.bib is from the SIGGRAPH LATEX template. You can use a text editor to view the contents of the bib file. It is your task to create your own bibliography file. For those who downloaded papers from ACM or IEEE sites, there is a BibTeX link that you can click; thereafter, you just simply need to copy and paste the BibTeX entry into your own bibliography file.

The following shows how to include a program source code (or algorithm).
The verbatim environment, as the name suggests, outputs text (including white spaces) as is...

```
97  #include <stdio.h>
98  main()
99  {
100  printf("Hello world!\n");
101 }
```

Alternatively, you can also use the *lstlisting* environment from the **listings** package.

$_{\scriptscriptstyle 4}$ 1.2 Problem Statement

DO NOT FORGET to write the statement of the research problem here, i.e., before the Research Objectives.

A problem statement is your research problem written explicitly. The problem statement should do four things:

- 1. Specify and describe the problem (with appropriate citations)
- 2. Provide evidence of the problem's existence
- 3. Explain the consequences of NOT solving the problem
- 4. Identify what is not known about the problem that should be known.
 - 5. Subdivide the main problem into several subproblems.

1.3 Research Objectives

1.3.1 General Objective

109

110

111

113

This subsection states the over—all goal that must be achieved to answer the problem. Address the following: Given your research challenge or opportunity, how do you intend to solve it? What is the output of your research?

19 1.3.2 Specific Objectives

128

This subsection is an elaboration of the general objective. It states the specific steps that must be undertaken to accomplish the general objective. These objectives must be Specific, Measurable, Attainable, Realistic, Time-bounded. Also, they are manageable and communicable.

A specific objective start with "to <verb>" for example: to design/survey/review/analyze.

Studying a particular programming language or development tool (e.g., to study Windows/Object-Oriented/Graphics/C++ programming) to accomplish the general objective is inherent in all thesis and, therefore, must not be included here.

- 1. To compare and contrast existing algorithms (on what problem?);
- 2. To develop a new algorithm (for what purpose?)
- 3. To analyze the algorithm (based on what criteria?)

1.4 Scope and Limitations of the Research

The scope of this study focuses on how blockchain technology can be applied to enhance traceability and transparency within the tuna supply chain. It will involve features such as smart contracts for recording the transactions and user interface for stakeholders. The study will also focus exclusively on whole, caught tuna products in the supply chain, excluding processed forms such as canned or packaged tuna. The research will examine the traceability of whole tuna from capture to market sale, specifically centering on a supplier based in Iloilo.

This study will only be limited to the supply chain in Iloilo, so findings may not fully represent global practices. Since this will only focus on blockchain's function in traceability, other functions are outside the scope of this research.

1.5 Significance of the Research

This study serves a significant purpose for several stakeholders in the tuna supply chain. This study aims to solve the problems related to the management of tuna supply chain, particularly with regards to product traceability.

• The Stakeholders

146

147

148

149

150

152

153

154

155

156

157

158

159

160

161

162

163

164

This study enhances transparency and accountability which allows stake-holders such as the fishers, suppliers and retailers to access tamper-proof and accurate information promoting a more ethical and authentic supply chain. Providing a digital record of the product's history, this study can be beneficial in ensuring the compliance with environmental and legal standards.

• The Consumers

Since consumers are now becoming concerned regarding the sustainable sourcing and ethical practices on the products they purchase, this study will be able to help in verifying the history of the tuna product from its origin up until its journey to the consumers, therefore increasing the trust and transparency.

• For Future Researchers

- As blockchain technology continues to grow, this study contributes to the application of blockchain in the supply chain management and the insights regarding its benefits and limitations. This research can be helpful in the growing knowledge on digital solutions for traceability and transparency for future research.

$_{\tiny 65}$ Chapter 2

173

178

179

180

Review of Related Literature

This chapter discusses the features, capabilities, and limitations of existing research, algorithms, or software that are related/similar to the Special Problem.

The reviewed works and software must be arranged either in chronological order, or by area (from general to specific). Observe a consistent format when presenting each of the reviewed works. This must be selected in consultation with the adviser.

DO NOT FORGET to cite your references.

- A literature review must do these things:
- be organized around and related directly to the thesis or research question you are developing
 - synthesize results into a summary of what is and is not known
 - identify areas of controversy in the literature
 - formulate questions that need further research

A literature review is a piece of discursive prose, not a list describing or summarizing one piece of literature after another. It's usually a bad sign to see every paragraph beginning with the name of a researcher. Instead, organize the literature review into sections that present themes or identify trends, including relevant theory. You are not trying to list all the materials published, but to synthesize and evaluate them according to the guiding concept of your thesis or research question. You should also state the limits or gaps of their researches wherein you will try to fill these gaps in accordance to your research problem and objectives.

■ 2.1 Theme 1 Title

- 189 This chapter contains a review of research papers that:
- Describes work on a research area that is similar or relevant to yours
- Describes work on a domain that is similar or relevant to yours
- Uses an algorithm that may be useful to your work
- Uses a software / tool that may be useful to your work
- 194 It also contains a review of software systems that:
- Belongs to a research area similar to yours
- Addresses a need or domain similar to yours
- Is your predecessor

198 2.2 Theme 2 Title

2.3 Chapter Summary

- 200 Should include a table of related studies comparing them based on several criteria.
- Highlight research gaps and the research problem.

202 Chapter 3

Research Methodology

This chapter lists and discusses the specific steps and activities that will be performed to accomplish the project. The discussion covers the activities from preproposal to Final SP Writing.

207 3.1 Research Activities

- Research activities include inquiry, survey, research, brainstorming, canvassing, consultation, review, interview, observe, experiment, design, test, document, etc.
 Be sure that for each method, process, or algorithm used, there is a justification why that method was chosen. The methodology also includes the following information:
- who is responsible for the task
- the resource person to be contacted
- what will be done
- when and how long will the activity be done
- where will it be done
- why should be activity be done
- DO NOT FORGET to cite your references.

220 3.2 Calendar of Activities

A Gantt chart showing the schedule of the activities should be included as a table. For example:

Table 3.1 shows a Gantt chart of the activities. Each bullet represents approximately one week worth of activity.

Table 3.1: Timetable of Activities

Activities (2009)	Jan	Feb	Mar	Apr	May	Jun	Jul
Study on Prerequisite			••	••••			
Knowledge							
Review of Existing Racing	••	••••	••••	••••			
Strategies							
Identification of Best Fea-				••••	••		
tures							
Development of Racing				••	••••	••	
Strategies							
Simulation of Racing Strate-				••	••••	•••	
gies							
Analysis and Interpretation					••••	••••	•
of the Results							
Documentation	••	••••	••••	••••	••••	••••	••

²²⁵ Chapter 4

Preliminary Results/System Prototype

- This chapter presents the preliminary results or the system prototype of your SP.
- Include screenhots, tables, or graphs and provide the discussion of results.

References

- Fedkiw, R., Stam, J., & Jensen, H. W. (2001). Visual simulation of smoke. In E. Fiume (Ed.), *Proceedings of siggraph 2001* (pp. 15–22). ACM Press / ACM SIGGRAPH.
- Jobson, D. J., Rahman, Z., & Woodell, G. A. (1995). Retinex image processing: Improved fidelity to direct visual observation. In *Proceedings of the is&t* fourth color imaging conference: Color science, systems, and applications (Vol. 4, pp. 124–125).
- Kartch, D. (2000). Efficient rendering and compression for full-parallax computergenerated holographic stereograms (Unpublished doctoral dissertation). Cornell University.
- Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., ...
 Fulk, D. (2000). The digital michelangelo project. In K. Akeley (Ed.),

 Proceedings of siggraph 2000 (pp. 131–144). New York: ACM Press / ACM
 SIGGRAPH.
- Park, S. W., Linsen, L., Kreylos, O., Owens, J. D., & Hamann, B. (2006, March/April). Discrete sibson interpolation. *IEEE Transactions on Visualization and Computer Graphics*, 12(2), 243–253.
- Parke, F. I., & Waters, K. (1996). Computer facial animation. A. K. Peters.
- Pellacini, F., Vidimče, K., Lefohn, A., Mohr, A., Leone, M., & Warren, J. (2005, August). Lpics: a hybrid hardware-accelerated relighting engine for computer cinematography. *ACM Transactions on Graphics*, 24(3), 464–470.
- Sako, Y., & Fujimura, K. (2000). Shape similarity by homotropic deformation.

 The Visual Computer, 16(1), 47–61.
- Yee, Y. L. H. (2000). Spatiotemporal sensistivity and visual attention for efficient rendering of dynamic environments (Unpublished master's thesis). Cornell University.

- $_{\scriptscriptstyle 257}$ Appendix A
- $_{258}$ Appendix Title

Appendix B

Resource Persons

```
Mr. Firstname1 Lastname1
Role1
Affiliation1
emailaddr1@domain.com

Ms. Firstname2 Lastname2
Role2
Affiliation2
emailaddr2@domain.net
```