445 = 90 B Digest 6

Dir.

DOBLE TANGENTIAL WATER WHEELS

TANGER WILLIS

DOBLE TANGENTIAL WATER WHEELS

DOBLE PATENTED NEEDLE REGULATING NOZZLES DOBLE PATENTED ELLIPSOIDAL BUCKETS DOBLE HIGH-SPEED RING-OILING BEARINGS

MANUFACTURED BY

ABNER DOBLE COMPANY

ESTABLISHED 1850

ENGINEERS

SAN FRANCISCO, U. S. A.

CODES, A.R.C. FOURTH EDITION-WESTERN UNION CABLE ADDRESS, "DOBLE" SAN FRANCISCO

EXCLUSIVE LICENSEE IN CANADA THE JOHN McDOUGALL CALEDONIAN IRON WORKS CO., LTD. MONTREAL, CANADA

BULLETIN No. 7 1906

COPYRIGHT 1905
BY
ABNER DOBLE COMPANY

INTRODUCTION

Since the entrance of the Abner Doble Company into the field of hydraulic engineering, when its initial work was as consulting and advisory engineers, the attention of the company has been largely devoted to power plant engineering with special reference to hydro-electric development. Up to that period, we had not entered extensively into the manufacture of water wheels, or other hydraulic machinery. We did so then, only because the market did not afford machinery of a sufficient high grade, to conform with the designs and specifications, which we, as engineers, deemed necessary for the work in hand.

As there were no high-grade water wheels made at that time, we were compelled to manufacture them ourselves. This led to the design and development of the Doble Ellipsoidal Bucket, the Doble Needle Regulating Nozzle, and other essential parts. By applying such parts to the Tangential type of water wheel, combined with the use of the highest grade of materials and the most skilled workmanship, we produce a water wheel which is thoroughly durable and has a high operating efficiency.

Although still strictly maintaining our identity as engineers, particularly in the hydraulic field, it has always been our aim, in prosecuting any engineering work, to adapt the machinery which we specify to the local conditions. Consequently, whenever we have found that by the working out of certain details, or the construction or remodeling of particular features, the design as a whole could be made more efficient and durable, we have undertaken to build such machinery or parts in our own shops. Our clients are thus given the benefit of our extended experience as engineers, as well as afforded the advantage of securing machinery from a well-equipped shop, employing none but the most skilled workmen.

The introduction of the Doble Tangential Water Wheel has been the direct cause of a remarkable development in hydro-electric engineering and construction, and, because of the high standards which we originally established, a demand was created for water wheels of the highest efficiency, the closest regulation, and the strictest economy of maintenance. We have continued to do pioneer work in the development of the tangential type of wheel, all the improvements which have been made in its design and construction having originated with us. Our original work has been particularly noticeable in the introduction of wheels of large capacities, securing close speed regulation, and showing the highest efficiency in the use of water.

The Doble Tangential Water Wheel is the result of scientific investigation and experiment, sustained by practical application, and accurate mechanical and hydraulic tests. It has been demonstrated, that the greatest amount of effective power from the least amount of applied energy has been secured from the Doble type of tangential water wheel, i. e., the efficiency is greater than that of any other water wheel.

In the construction of wheels for various conditions of service, we have been singularly successful, and have built wheels to operate under heads from 25 feet up to 2,200 feet and in capacities up to 9,000 horse-power, these

having single wheel runners taking water from a single jet.

Doble wheels are now being used by the largest power-transmission companies on the Pacific Coast. In many power plants, by reason of their higher efficiency and greater durability, they have replaced wheels of other makes.

We are in a position to manufacture anything in the tangential water wheel line, and invite attention to the descriptions and illustrations in this Bulletin. Our types of wheels are by no means limited to those shown, as our apparatus is all specially designed to secure the highest efficiency from the water available, and to meet the operating conditions of the particular plants. We make no merchandise machinery.

Following the descriptive matter in this Bulletin will be found the Doble Water Wheel Tables, several pipe and reference tables, conversion factors,

and useful hydraulic information.

We trust that the contents will prove of value to our readers, and that the Bulletin may be retained as a book of reference.

NOTICE TO CORRESPONDENTS

If any of our readers desire additional information in regard to our water wheels, or wish to make inquiries with reference to proposed installations, we would respectfully solicit their further correspondence. Upon receipt of information covering the conditions to be met, we shall be pleased to prepare estimates, and submit details and specifications, of an arrangement particularly adapted to the requirements. An outline of such information as should be furnished, for the preparation of estimates, will be found on pages 63 and 64, with a blank data sheet opposite. Extra data sheets will be furnished upon request.

CANADIAN LICENSEE

We take pleasure in announcing that arrangements have been made with the John McDougall Caledonian Iron Works Company, Ltd., of Montreal, Canada, whereby this long-established company becomes our sole licensee for the manufacture of the Doble System of Water Wheels in the Dominion of Canada and Newfoundland. The McDougall Company has extensive machine works, and its plant is well equipped for the manufacture of water wheels and other hydraulic machinery. Our Canadian licensee is prepared to furnish the steel pipe, structural work, and machinery necessary for complete power plants, and has retained the Abner Doble Company as consulting engineers. We request that all engineers or parties interested in water-power developments in Canada, address the McDougall Company direct.

CONTRACTS FOR COMPLETE POWER PLANTS

By reason of our long experience in power plant work, and our particularly favorable connection with many of the largest manufacturing establishments, we are in a position to execute contracts for complete hydro-electric, steam and gas power plants, and long-distance transmission systems. We make a specialty of designing and rebuilding plants where economy in fuel is an object, and respectfully solicit correspondence with parties engaged in new construction, as well as those desirous of improving old properties.

CONSULTING ENGINEERING DEPARTMENT

Our Consulting Engineering Department is well organized, and embraces on its staff men who have had wide experience in power plant and general engineering work. We are prepared to make the necessary preliminary and other engineering determinations, prepare designs, plans, estimates, and specifications for power plants, pumping plants, and other engineering work. We take entire charge of the construction, guaranteeing maximum economy and efficiency in construction and operation. By reason of our favorable location on the Pacific Coast, and long experience in water-power work, we are particularly well prepared to design, construct, and place in operation hydroelectric power plants for both high and low heads, and long-distance transmission systems. We frequently are called in to act in an advisory capacity where there is an engineering staff already established, or where other consulting engineers have been retained.

TURBINES

In many cases, where the available head is low, especially if there is a large quantity of water, it may be more economical to install turbines. We are in a position to furnish turbines of the most modern designs, and of the highest operating efficiency. By reason of our long and extensive experience in the designing of hydro-electric power plants, we are able to install equipment which will best meet the conditions and give the best results.

All parties, therefore, whose hydraulic developments may require the use of turbines, are respectfully requested to send us complete data in order that we may prepare suitable estimates to cover their conditions. An outline of the information required will be found on pages 63 and 64.

If there is doubt as to whether a certain proposition would seem to require tangential wheels or turbines, state the conditions as fully as possible, and we will recommend the equipment which, from an engineering standpoint, would be best suited.

DOBLE WATER WHEEL EXHIBIT AT THE ST. LOUIS WORLD'S FAIR

AWARDED THE GRAND PRIZE

Fig. 1 illustrates the Abner Doble Company's exhibit at the St. Louis World's Fair. This exhibit was awarded the Grand Prize, the highest award given by the Exposition, and the only Grand Prize awarded for machinery manufactured west of St. Louis.

Fig. 1.

DOBLE WATER WHEEL EXHIBIT AT ST. LOUIS WORLD'S FAIR.

The exhibit was an operating one, and consisted of a 170-horse-power Doble Tangential Water Wheel. The details of its installation were carried out in a thoroughly scientific manner, and the successful working of the exhibit, from the time of its installation until the closing day of the exposition, formed one of the most interesting, as well as the most instructive, features in Machinery Hall.

The hydro-electric unit was an excellent illustration of the manner in which electricity is generated in high-head water-power plants on the Pacific Coast and elsewhere, and in fact was a typical water-power plant in itself. It is interesting to note that this was the first time that a water wheel had been shown in actual operation and doing useful work at a world's exposition.

Water, under the hydraulic pressure necessary, was furnished by a duplex triple-expansion mining pump, because no natural high head of water was available at St. Louis. This pump supplied the water to the wheel under a pressure equal to a head of 700 feet, its capacity being 1,200 gallons per minute

The wheel was directly connected to a 100-kilowatt railway-type generator, furnishing direct current at 550 volts to the feeder system of the Intramural Railway power plant. The speed of the unit was 700 revolutions per minute. Constant speed was maintained by means of a hydraulic governor.

The hydro-electric unit was of the two-bearing type, the water wheel being mounted on the extended end of the generator shaft. This two-bearing type of construction originated with the Ab-

ner Doble Company, and is now being generally adopted in modern water-power plants.

The wheel was of particular value as an exhibit, as it illustrated the standard construction of the Abner Doble Company, being built for commercial operation according to our regular practice.

In order that the action of the water on the buckets, as well as the perfect form of the jet issuing from the needle nozzle, might be observed at all times, the sides of the water-wheel housing were constructed of plate glass.

The water wheel was equipped with Doble Ellipsoidal Buckets, made of selected gun-metal castings. The stream of water used to drive the wheel under the 700-foot head issued from, and was controlled by, a Doble Needle Regulating Nozzle, actuated by the governor.

This exhibit wheel has been purchased by the University of Michigan for its Engineering Department. It is to form a special feature of the hydraulic laboratory in the University's new Engineering Building, where it will be operated by a fire pump under heads up to 580 feet.

BUCKETS

Doble Ellipsoidal Buckets (Patented) are used on all tangential water wheels made by the Abner Doble Company.

The superiority of the Doble Ellipsoidal Bucket lies in the fact that because of its form, the jet of water enters without shock or disturbance, and is discharged along natural lines over the entire bucket surface. The central portion of the front entering edge or lip of the bucket is cut away in the form of a semi-circular notch. This opening allows the solid jet to impinge on the dividing wedge of the bucket without being split in a horizontal plane, and thus wastefully diverting part of the water from the wheel. With the Ellipsoidal Bucket all eddy currents are avoided, and, as the full force of the jet is spent in doing useful work, the efficiency of the bucket is very high. The absence of eddy currents results in even wear and remarkable durability.

Each bucket straddles the rim of the wheel body, and the fastening lugs or flanges are milled to gauge, on a specially designed machine, so that the bucket will accurately fit the wheel on the periphery and on both sides of the rim. Each is fastened to the wheel rim by two body-bound bolts, fitted in reamed holes. Each bucket is carefully ground smooth and polished on the hydraulic surfaces, and the dividing wedge and entrance edges are accurately machined, and sharpened to a knife edge. The buckets are interchangeable, being accurately fitted, and drilled in jigs, and finally brought to the same weight, so that the wheels shall be dynamically and statically balanced.

Buckets are cast from different metals, depending principally on the head of water to be applied to the wheels. The metals used are a special mixture of close-grain cast iron, gun-brouze (United States Naval requirements) and openhearth steel.

Fig. 8. DOBLE ELLIPSOIDAL BUCKET

The condition of Ellipsoidal Buckets which have been in use for a number of years proves the correctness of the theories upon which this bucket is designed. Demonstrating this fact is the appearance of the bucket shown in the six views in Fig. 2. This bucket was in service 586 twenty-four-hour days under a head of 1,300 feet. Note the absence of irregular crosions of the hydraulic surfaces, and the absence of all wear on the back of the bucket, although the water carried much detritus.

Fig. 3 illustrates a Doble Fllipsoidal Bucket such as used on the Doble Tangential Water Wheels. Single wheels up to 9,000 horse-power capacity, and for operation under heads as high as 2,200 feet, have been built with these

buckets, and are in successful operation.

Fig. 4

RUNNER OF DOBLE TANGENTIAL WATER WHEEL, AWARDED THE GRAND PRIZE AT ST. LOUIS WORLD'S FAIR

RUNNERS

Fig. 4 illustrates the revolving element, or runner, of the Doble Tangential Water Wheel exhibited at the St. Louis World's Fair, and which was awarded the Grand Prize. The wheel body is a semi-steel casting, finished all over and balanced. The hub is bored and key-seated to fit the generator shaft. The buckets are gun-metal castings, of the Doble Ellipsoidal type. A description of this exhibit wheel is given on pages 8 and 9.

Fig. 5.

DOBLE WHEEL AFTER OPERATING OVER TWO VEARS UNDER 1960-FOOT HEAD

In Fig. 5 is illustrated a Doble Wheel installed at the Mill Creek No. 3 Power Plant of the Edison Electric Company of Los Angeles, Cal. The view shows the machine after two years and three mouths' continuous running under a head of 1,960 feet, at 430 revolutions per minute. Note the perfect condition of the buckets.

This wheel is one of the three Doble Tangential Water Wheels installed at the Mill Creek Plant, each having a capacity of 1,300 horse-power. These wheels have now been operating for over two years under a pressure of over 850 pounds to the square inch, and although the water at times carries considerable sand, the buckets show but little wear.

RUNNER OF 3700-HORSE-POWER WATER WHEEL, IN DE SABLA POWER PLANT

Figs. 6, 7 and 8 show types of Doble Tangential Water Wheels installed in the de Sabla Power Plant of the California Gas and Electric Corporation. This plant is a striking example of western power development, and embodies the most advanced features of engineering. The power house contains three two-bearing hydro-electric generating units—two of 3,700 horse-power and one of 8,000 horse-power capacity. A fourth unit, of 9,000 horse-power capacity, is now being installed.

Fig. 6 illustrates one of the 3,700-horse-power wheels, which operates under a head of 1,528 feet, driving a 2,000-kilowatt generator. The wheel-body is a nickel-steel forging, finished all over, and is bolted to the flanged end of the nickel-steel hollow-forged generator shaft. The buckets are open-hearth steel castings. The runner is 12 feet 5 inches in diameter, and weighs, complete with buckets, 17,000 pounds. The wheel has a speed of 240 revolutions per minute.

The wheel shown in Figs. 7 and 8 drives a 5,000-kilowatt generator which has regularly delivered 5,570 kilowatts on continuous load. This Doble Wheel is remarkable because of its high speed, i. e., 400 revolutions per minute, and

NEEDLE REGULATING NOZZLE

Regulation and conservation of water supply are important features of modern power plant practice. A plant may be arranged so as to be economically carried over the peak load by installing a Doble Needle Regulating Nozzle (Patented) and providing a moderate size storage reservoir at the head of the pressure pipe. Water may thus be accumulated in the reservoir during low-load periods, and become available for power when the station is called upon to carry a peak load.

Another economic advantage of the Doble Needle Regulating Nozzle is that it may be arranged to utilize the total power of the water where the supply is variable throughout the day, as may be the case where the water is drawn from snow fields, or where evaporation is excessive. By installing wheels and nozzles of sufficient capacity to carry the full overload on the generators, and by using a suitable governor on the nozzle, the water required for the wheels under variable load will be almost proportional to the power developed by the generators and delivered to the transmission lines, thus developing an ideal and uniform efficiency under a variable load.

While the Doble Needle Regulating Nozzle permits close regulation of speed, it also maintains a high efficiency of the jet over a wide range of discharge. As a result of the correct principles embodied in the design, the nozzle projects a solid cylindrical jet of high efficiency, free of any splash, spray, or rotating action. Investigations of this type of nozzle, made at the Massachusetts Institute of Technology in Boston, determined an efficiency as high as 99.3 per cent.

The regulating is done by moving an axial core—the needle—in a longitudinal direction within the nozzle, thus changing the annular area of the orifice and the quantity of water discharged. The regulating needle is machined all over, the bulb and point being finished to template and polished. The nozzle tip is a detachable piece, machined all over, the inner or hydraulic surface being finished to template and polished.

Fig. 11 shows a jet of water issuing from a three-inch Doble Needle Regulating Nozzle at the Snoqualmie Falls Power Plant near Seattle, Wash. The photograph was taken by flashlight, through an opening in the housing; the blur on the right is caused by the revolving buckets and wheel rim. When the photograph was taken the jet was reduced to two and one-fourth inches diameter.

Fig. 12

VARIOUS SIZED JETS FROM SMALL DOBLE NEEDLE REGULATING NOZZLE

Fig. 12 shows a small Needle Regulating Nozzle, under 55 pounds pressure, with the needle in eight different positions. The jet areas range from one-tenth to 25 per cent in excess of the full capacity of the normal opening. The jet is equally perfect in every instance, free of any spray, splash, or rotating action, such as would be detrimental to the efficiency of the jet, and which generally occur with plain nozzles without regulating needles.

The regulating needle of the Doble Nozzle may be arranged for operation by hand or by direct connection to an automatic governor.

DOBLE NEEDLE REGULATING NOZZLE UNDER TEST,
NOZZLE WIDE OPEN,

AN INVESTIGATION OF THE DOBLE NEEDLE REGU-LATING NOZZLE*

"The Abner Doble Company has for some years been studying nozzles to be used under high heads for power purposes, and, as a result of their investigations, have brought forth quite recently a needle regulating nozzle.

"For purposes of determining the efficiency of this nozzle, the Massachusetts Institute of Technology procured one of them.

"The nozzle (shown in Fig. 13) is similar to those now in use in connection with tangential water wheels in many large power plants on the Pacific Coast.

"Viewing the stream of water as it issues from the 'Doble' nozzle, one's attention is at once called to the clear, transparent, polished stream, the clean, glassy surface, and the absence of spraying in the proximity of the tip.

^{*}Abstract from thesi by H. C. Crowell and G. C. D. Leuth, Massachusetts Institute of Technology, Boston, June, 1903. The complete thesis is printed for gratuitous distribution in Bulletin No. 6, by the Abner Doble Company.

Fig. 14.

DOBLE NEEDLE REGULATING NOZZLE UNDER TEST.
MEASURING VELOCITY WITH PITOT TUBE.

"A general view of the special Pitot's tube used in the tests is shown in operation in Fig. 14.

"Remarkable symmetry of the velocity curve was found whenever a complete traverse of the stream was made.

"The most significant feature of all the velocity curves of the 'Doble' nozzle is the fact that the maximum velocity of the stream occurs within a few hundredths of an inch from the edge. This is a condition in streams from no other nozzle except the ring nozzle. Another surprising feature is the high velocity existing in the center of the jet from the 'Doble' nozzle, even within a half-inch from the needle. * * * The velocity in the center at this distance is 70 per cent of the maximum velocity. * * At nine and one-half inches from the needle, the center velocity is over 96 per cent of the

NEEDLE REGULATING AND DEFLECTING NOZZLE

The local conditions governing the installation of certain water-wheel plants require the adoption of deflecting nozzles, either of the needle-regulating or the plain type. By the adoption of the Doble Needle Regulating and Deflecting Nozzle (Patented) the regulation of the power demanded from the wheel is accomplished by deflecting a portion, or the whole, of the jet from the buckets to the tailrace, as well as by varying the size of the jet by means of the needle.

The Doble Needle Regulating and Deflecting Nozzle shown in Fig. 16 projects a stream which develops 8,000 horse-power under a head of 1,250 feet. The nozzle body consists of two principal parts—one stationary, the other swinging on a pair of trunnions. The governor is connected to the deflecting element of the nozzle, and, as the load fluctuates, the stream is deflected away from, or onto, the buckets of the wheel, according as the load decreases or increases. The needle is operated by a hand wheel and spindle, thus taking care of the average variations in load, and permitting the greatest economy in the use of the water.

This type of nozzle may be used in a station supplying power to an electric railway with but few car equipments, and one that also furnishes a lighting load. By means of a deflecting nozzle a very large proportion of the entire power output of the station may be suddenly thrown on or off the plant, and still maintain a steady lighting load.

The Deflecting Nozzle is also a valuable device where riparian water rights on a stream have to be considered. For example, if the law requires that the natural flow of a stream must not be interfered with, the power plant is prevented from storing up the water which is not required during periods of low load and which would become available for periods of peak load. In such cases a deflecting nozzle permits of suitable load governing without interfering with the quantity of water used.

The Needle Regulating and Deflecting Nozzle is also of great value where the daily flow of the stream is subject to a wide variation, as it permits the power company to set the discharge orifice of the nozzle so as to use to the best advantage the total available flow as it varies throughout the day.

In cases where the pipe line is of great length, as, for example, between 5,000 and 10,000 feet, where momentary changes in the rate of flow set up serious disturbances in the pipe line, the Doble Needle Regulating and Detlecting Nozzle is particularly of great service.

Of the plants in which this type of nozzle has been installed, may be mentioned the Mill Creek No. 3 Plant of the Edison Electric Company, Los Angeles, and the de Sabla and Electra Plants of the California Gas and Electric Corporation, described respectively on pages 49, 53 and 58.

Fig. 17

NICKEL-STEEL WATER-WHEEL SHAFT AND DISK FOR 8000-HORSE-POWER UNIT

Fig. 18

NICKEL-STEEL WATER-WHEEL SHAFT AND DISKS FOR DOUBLE UNIT. EACH WHEEL OF 8000 HORSE-POWER

SHAFTS

The forgings used for the shafts of Doble Water Wheels are made of special high-carbon open-hearth steel, rough-machined all over and carefully annealed. After annealing they are accurately machined to gauge, and the bearing surfaces are polished. In case of a hydro-electric unit, the shaft is extended so as to carry the revolving element of the generator.

For large water wheels, the shafts are made from fluid-compressed, 3½ per cent nickel steel. These shafts are hollow-forged under a hydraulic press, are rough-machined all over, and are then oil-hardened and tempered. The oil-tempered and annealed forging is then accurately machine-finished to gauge, and the bearing surfaces polished. As a rule, the hub for the water-wheel disk is forged with the shaft, in the form of a large flauge, from a single ingot of steel.

Fig. 17 illustrates a shaft of this type, manufactured for an 8,000-horse-power hydro-electric unit for operation under a head of 1,250 feet. The shaft is 21 feet 5 inches long and is 20 inches in diameter at the center. The two bearings are each 16 inches in diameter and 5 feet long. The flange for the wheel hub is 33 inches in diameter, and is fastened by means of twelve taper nickel-steel coupling bolts to the forged disk. This disk is forged from medium-carbon open-hearth steel, and, after being annealed is finish-machined complete, and accurately fitted to the forged end of the shaft, as shown. The weight of this shaft is 19,018 pounds.

In Fig. 18 is illustrated a nickel-steel shaft, built for a Doble hydro-electric unit composed of two 8,000-horse-power Doble Water Wheels with an electric generator mounted between the wheels. This shaft is 24 feet 7 inches long, and has the same bearing dimensions as the single shaft shown above. One end of the shaft is fitted with a forged disk similar to that on the single shaft, for operation under a 1,250-foot head, while at the other end is fitted a medium-carbon open-hearth cast-steel wheel center, for operation under a head of 1,465 feet. This disk is carefully annealed, bored, key-scated, and fitted, being held on the end of the shaft by a flange secured by four studs. This 16,000-horse-power water-wheel shaft weighs 26,366 pounds.

The specifications for the two shafts stipulated that they show a tensile strength of not less than 90,000 pounds per square inch, and an elastic limit of 60,000 pounds per square inch. Upon test conducted in accordance with the specifications of the United States Navy, the shafts showed the following physical properties: Tensile strength, over 101,000 pounds; elastic limit, over 67,000 pounds; elongation, 23 per cent in 8 inches; reduction of area, 51.5 per cent.

Both shafts were manufactured by the Bethlehem Steel Company for its Pacific Coast Branch, the Abner Doble Company.

Fig. 19.

DOBLE RING-OILING, REVOLVABLE-SHELL BEARING

Fig. 20.
DOBLE WATER-WHEEL HOUSING

BEARING

Fig. 19 illustrates one type of our high-grade, ring-oiling, revolvable-shell bearings, for heavy duty. A typical feature of this Doble Bearing is that the lower shell may be taken out for inspection or scraping without removing the shaft. For that purpose rack teeth are provided on the outside of the shell. After the shaft is properly jacked up, the bottom shell may be revolved around it by means of crowbars working into the rack teeth.

The bearing shells are lined with genuine babbitt. The oil rings are made in halves so that they may be removed without disturbing the shaft and bearing shells.

The pedestal of the bearing forms an ample oil receptacle, and is provided with gauge glasses and drain cocks. To keep the oil cool, a system of tubes for circulating water is provided in the oil receptacle.

The bearing illustrated in Fig. 19 was built for a 9,000-horse-power unit, operating at a speed of 400 revolutions per minute. Its shaft diameter is 16 inches, and its length 60 inches. The rubbing speed in this bearing is higher than has been used heretofore.

HOUSING

Fig. 20 illustrates one of our types of water-wheel housings. It is an example of first-class boiler construction, all seams being hot-riveted and caulked.

The heavy cast-iron frames are machined at joining surfaces, and the bottom frame is faced where it rests on a cast-iron base frame.

CENTRIFUGAL WATER GUARD

One of the typical features of all Doble Water Wheels is our Centrifugal Water Guard (Patented), which is provided where the shaft enters the housing. These water guards, besides providing ample ventilation, prevent splash water from

escaping the housing, thus serving the same purposes as stuffing boxes or packing glands without their objectionable feature, friction, to reduce the efficiency of the wheel.

The Doble Centrifugal Water Guard consist of two elements as indicated in Fig. 21. The revolving disk is fastened to the shaft, and revolves with it, and the stationary disk is bolted to the housing. The edges of the two elements overlap each other, forming an ample air space between them, through which air is drawn from the air inlet between the shaft and the stationary disk. The form of this device is such that water running down the side of the housing will flow around the stationary disk, while the revolving element throws off any water that may fall on it, thus preventing water from creeping along the shaft.

Fig. 21. DOBLE CENTRIFUGAL WATER GUARD

Fig. 22. WATER MOTOR FOR SMALL SIZES

Fig. 23. BELTED TYPE OF WATER WHEEL WITH JET DEFLECTOR OPERATED BY MECHANICAL GOVERNOR

WATER MOTOR FOR SMALL SIZES

Fig. 22 illustrates our motor type of wheel. It is provided with a cast-iron housing having a cover on each side, these covers carrying the ring-oiling bearings on brackets. The pulley is overhung at one end of the shaft, and the housing is arranged in such a way that either a plain nozzle or a needle-regulating nozzle can be attached. The wheel shown in the illustration is provided with a plain nozzle, the companion flange being threaded for pipe connection. This motor is designed for low-pressure service and moderate power output.

BELTED TYPE OF WATER WHEEL WITH JET DEFLECTOR OPERATED BY GOVERNOR

The machine shown in Fig. 23 is a two-bearing unit with belt drive. It is provided with a Doble Needle Regulating Nozzle for hand control, and is also arranged for a stream deflector to be operated by an automatic governor. This deflector is located in front of the nozzle tip, on the inside of the housing In case of partial or no load, the governor swings the deflector, by means of the rock shaft shown at the right, and thus intersects the stream before it reaches the buckets, deflecting it into the tailrace. The bearings, with their standards, and the water-wheel housing are mounted on a single substantial cast-iron bed-plate, thus making the entire machine self-contained and especially fitted for export purposes. The wheel shown in Fig. 23 is equipped with a Woodward compensating-type governor.

Fig. 24

BELTED WHEEL WITH REGULATING NOZZLI

OPERATED BY ROPE DRIVE

DIRECT-CONNECTED HYDRO-ELECTRIC UNIT

BELTED WHEEL WITH REGULATING NOZZLE OPERATED FROM A DISTANCE

In many instances, such as mining installations, the water wheel has to be placed where its immediate control by hand would be inconvenient. For such cases, the needle of the regulating nozzle may be arranged for operation from a distance by means of a suitable rope drive. Such an arrangement is illustrated in Fig. 24. Back of the nozzle there is provided a cast-iron stand with a vertical shaft, this shaft being connected to the regulating needle by means of a lever and links. The shaft carries a rope sheave, which, in connection with the rope drive, offers a convenient method for operating the needle from any desired point.

The wheel is equipped with Doble Ellipsoidal Buckets and the shaft is mounted in three ring-oiling bearings. The outfit, as illustrated, is ready for the foundation.

DIRECT-CONNECTED HYDRO-ELECTRIC UNIT

Fig. 25 shows a typical, direct-connected, hydro-electric unit provided with needle regulating nozzle for hand control. In many instances the conditions are such that the wheel may be carried on the extended shaft of the generator, as shown in the illustration. In the particular case illustrated, the generator is very conveniently placed on the same bed frame as the water-wheel housing, so that the unit is entirely self-contained. This bed frame is also extended to furnish a support for the nozzle, which is bolted against the side of the housing.

HYDRO-ELECTRIC UNIT WITH NEEDLE NOZZLE OPERATED BY WOODWARD GOVERNOR

Fig. 27

HYDRO-ELECTRIC UNIT WITH DEFLECTING NOZZLE OPERATED BY REPLOGLE GOVERNOR

HYDRO-ELECTRIC UNIT WITH NEEDLE NOZZLE OPERATED BY WOODWARD GOVERNOR

The hydro-electric unit shown in Fig. 26 is similar in its arrangement to that illustrated in Fig. 25. Instead of having a needle nozzle arranged for hand control, however, the needle is directly operated by a Woodward compensating governor, which is mounted directly upon the nozzle body, and geared to the needle shaft. The needle shaft is threaded, and moves in a nut which forms a part of the nozzle body, so that the action of the governor regulates the position of the needle and the quantity of the water delivered, and thereby the output of the machine.

A wheel arranged with stream deflector, operated by a Woodward compensating governor, is illustrated in Fig. 23, on page 30.

HYDRO-ELECTRIC UNIT WITH DEFLECTING NOZZLE OPERATED BY REPLOGLE GOVERNOR

Fig. 27 illustrates an arrangement similar to the one shown above, the nozzle, which is of the deflecting type, being operated by a Replogle governor, mounted on a bracket of the housing. The gate valve, which is also shown in the photograph, is bolted directly to the nozzle flange. Manhole covers are provided on both sides of the housing, so that easy access may be had to the nozzle. The top cover of the housing body is also removable, so that the wheel may be readily inspected.

HYDRO-ELECTRIC UNIT WITH NEEDLE NOZZLE OPERATED BY LOMBARD GOVERNOR

Fig. 29.

LOW-HEAD HYDRO-ELECTRIC UNIT WITH SPECIALLY DESIGNED GOVERNOR OPERATING NEEDLE NOZZLE

HYDRO-ELECTRIC UNIT WITH NEEDLE NOZZLE OPERATED BY LOMBARD GOVERNOR

Fig. 28 shows a direct-connected hydro-electric unit, with needle regulating nozzle directly operated by a Lombard type J governor. This unit is also of the two-bearing construction, and illustrates the type of wheel for which we were awarded the Grand Prize at the St. Louis World's Fair in 1904.

LOW-HEAD HYDRO-ELECTRIC UNIT WITH SPECIALLY DE-SIGNED GOVERNOR OPERATING NEEDLE NOZZLE

A direct-connected two-bearing unit for a comparatively low head is shown in Fig. 29. In this case, the rotor of the engine-type generator is mounted on the water-wheel shaft. The bearings are of the ring-oiling type, and are independently mounted on sole plates, the latter being set in concrete piers, and held down by anchor bolts. The water-wheel housing has an independent base frame imbedded in concrete. The nozzle is of the needle regulating type, and is arranged for governor control in such a way that the governor may be easily disconnected, and the needle operated by hand. The governor is a specially designed Lombard governor, with a stroke-limit attachment, and is mounted directly upon brackets of the nozzle body.

FIR 31 DOUBLE HYDRO-ELECTRIC UNIT FOR LARGE CAPACITIES. TWO SOW-HORSE-POWER WATER WHEELS ON ONE SHAFT

LARGE HYDRO-ELECTRIC UNIT

Fig. 30 illustrates the design of a large unit, with needle regulating and deflecting nozzle. The machine is of the two-bearing type. The shaft is a hollow nickel-steel forging with a flange forged on at the end, against which the forged steel disk is bolted. The nozzle, ball joint, and buckets are steel eastings, the ball joint being directly bolted against the main gate valve. The deflecting end of the nozzle is supported by a hydraulic balancing cylinder (patent pending). The needle is operated by hand, the deflecting mechanism of the nozzle being operated by a Lombard governor. The governor rock shaft is shown in the illustration above the nozzle tip. We have built water wheels of 8,000 and 9,000 horse-power capacity of this type.

DOUBLE HYDRO - ELECTRIC UNIT FOR LARGE CAPACITIES

Fig. 31 in its general design is similar to that shown in Fig. 30, being a two-bearing unit, with the water applied to the wheels through needle regulating and deflecting nozzles. There is, however, a water wheel attached to each end of the shaft, the two wheels being designed to work under two different heads, so that the generator can be operated from either one of the pipe lines, or the load can, by means of the regulating needles, be divided between the two pipe lines in any desired proportion, depending upon the prevailing hydraulic conditions. A double unit of this type, consisting of two 8,000-horse-power wheels connected to a 5,000-kilowatt generator, has been built by us for the Electra Power House of the California Gas and Electric Corporation.

LABORATORY WATER MOTOR

Fig 32 shows a 12-inch Doble Water Motor designed especially for laboratory use, which we build for universities and technical colleges. This small machine is self-contained, and has the shaft extended far enough to carry a pulley or prony brake. The motor is provided with a Doble Needle Regulating Nozzle for hand

Fig. 32.

LABORATORY WATER MOTOR FOR TECHNICAL COLLEGES

control, so that the jet of water may be varied to give the desired regulation in speed. The housing has plate-glass sides in order that the students may easily observe the water acting on, and discharging from, the buckets.

These little machines embody the best workmanship that can be turned out, and are designed and inished exactly upon the same lines as our largest machines, the buckets being formed of independent gun-metal castings, ground and polished on the hydraulic surfaces, and bolted to the wheel disc, each by two body-bound bolts fitted into reamed holes.

The motors are designed and constructed so as to operate under heads up to 1.000 feet, and are therefore admirably suited for experimental use in a hydraulic laboratory under all pressures that are commonly available

We have furnished laboratory wheels of this type to Columbia University, Polytechnic Institute of Brooklyn, University of Iowa, University of Missouri,

University of Illmois, University of Texas, Michigan School of Mines, University of Wisconsin, University of Toronto, University of Colorado, Lafayette College, and University of Pennsylvania. Parts of wheels for experimental purposes have been furnished to the University of Michigan and Massachusetts Institute of Technology. The University of Michigan has also purchased, as mentioned on page 9, our St. Louis World's Fair exhibit wheel for its hydraulic laboratory.

 $\label{eq:Fig.33} {\rm Fig.\,33},$ Water wheel driving a centrifugal pump

VARIOUS APPLICATIONS OF WATER WHEELS

Doble Tangential Water Wheels may be applied for direct or belt connection to a great variety of high and low-speed machines, such as pumps, hoists, compressors, blowers, mining machinery, sawmills, etc.

In Fig. 33 is illustrated a centrifugal pump directly connected to a Doble Tangential Water Wheel. The wheel is operated by a jet of water projected from a Doble Needle Regulating Nozzle, arranged for hand control. In this case a comparatively small quantity of high-pressure water is utilized to lift a larger quantity of water against a comparatively low head.

Fig. 31 WATER WHEEL DRIVING SAW MILL

Fig. 34 shows a Doble Tangential Water Wheel as applied to the operation of a sawnill. As shown, the wheel is directly mounted on the mandrel of the circular saw of the mill. The water-wheel nozzle is bolted directly against the husk frame of the saw, and the pipe leads immediately into it. A quick-acting gate valve is located near the end of the frame, where the shipper lever of the friction feed of the sawnill is operated, so that one man can handle all operations of the mill without changing his position. This unique outfit, which is entirely self-contained, was shipped to the Philippine Islands, where it will do service in the rich timber district near Fidelesan.

We have built several sawmill units with needle regulating nozzles, adapted for hand control, an arrangement which we specially recommend.

SAFETY AIR VALVE FOR PIPE LINES

Figs. 35 and 36 illustrate a safety air valve as supplied for pipe lines. The purpose of this type of valve is to open automatically in case the pipe line

should be emptied suddenly, and to permit the air to rush in, thus preventing the pipe from collapsing on account of the vacuum formed inside. These valves have to be inspected occasionally, and therefore it is advisable to provide the portable clamp and hand-wheel attachment shown in Fig. 35. By means of this hand-wheel the valve can be screwed

down away from its seat when under pressure, thus permitting proper inspection and flushing.

Tig. 35

Fig. 36.

Fig. 37.

SPRING - BALANCED COMPENSATOR FOR PIPE LINES

SPRING-BALANCED COMPENSATOR FOR PIPE LINES

A spring-balanced compensator for pipe lines is illustrated in Fig. 37. This apparatus serves to take care of shocks in the pipe line which might be caused by sudden action of the governor, checking the flow of water, or by too rapid closing of a gate valve. It consists of a hydraulic plunger connected to the pipe line, and balanced by suitable steel springs. In case of an increase of pressure in the pipe line, the area at the particular point where the compensating plunger is located is increased, and the pressure relieved. Such compensators are very useful where an angle occurs in the pipe line.

Fig. 38.

JET FULL ON THE REVOLVING WATER WHEEL AND DEVELOPING 10.09 HORSE-POWER

JET FULL ON THE VORTEX BAFFLE PLATE, 1000 HORSE-POWER BEING HARMLESSLY ABSORBED

VIEWS OF A TAIL RACE EQUIPPED WITH THE ENSIGN VORTEX BAFFLE PLATE

ENSIGN VORTEX BAFFLE PLATE AS INSTALLED IN A TAIL RACE

PLAN OF THE VORTEX BAFFLE PLATE.
SHOWING THE THEORY
OF ITS ACTION

ENSIGN VORTEX BAFFLE PLATE

In the case of long pressure pipes, especially when under high pressure, it is difficult and dangerous to suddenly vary the quantity of water delivered by the nozzle, in such a manner as is necessary to regulate the speed of a hydro-electric generating unit, subject to sudden violent variations of load.

Consequently it has become customary to regulate the speed of such units by deflecting the jet of water, so that all, or part, of it misses the water-wheel buckets, and is for the moment necessarily wasted.

The water, which is thus prevented from giving its energy to the water wheel, is projected through the tailrace at a very high velocity—in some cases exceeding 300 feet per second (18,000 feet per minute)—and becomes destructive. In most cases the water unavoidably carries infinitesimal particles of sand. No masonry can long withstand the action of such a jet, and even iron and steel are rapidly worn away, as if by a terrific sand blast.

The Ensign Vortex Baffle Plate (Patented), illustrated in Fig. 40, is designed to divide such a jet in halves, and deflect the halves until they impinge upon each other, and harmlessly spend their force. The device is a trough-like structure with a sharp central vertical dividing wedge, made to be replaceable in case of wear. The device splits the impinging jet, and guides each half around the curved surfaces, spreading it out into two thin sheets which meet and harmlessly spend their force against each other. The water then falls by gravity into the tailrace with no more disturbance than is shown in Fig. 39.

As shown in the plan Fig. 41 the device is to be firmly anchored in the tailrace. It may be fastened by means of stirrup bolts to heavy "I" beams set in the masonry, and should have a V-shaped entrance, as shown in the plan, to guide all the spray into the arrester.

This baffle plate has been in successful operation for several years in the Mill Creek No. 3 Power Plant of the Edison Electric Company, where the static head of water is 1,960 feet, the pressure over 850 pounds per square inch, and the spouting velocity over 350 feet per second (about 4 miles per minute). Fig. 38 illustrates the Mill Creek tailrace with the jet full on the wheel, and Fig. 39 similarly shows the tailrace with the jet full on the baffle plate.

In plants where the water must be carefully conserved for irrigation or power, as at Mill Creek No. 3, the Vortex Baille Plate is desirable also as a water saver. Its influence is to eliminate the great clouds of fine spray which are noticeable over tailraces not equipped with the Vortex Baille Plate, and from which excessive evaporation takes place, especially in dry climates, such as that of Southern California and Colorado.

If the power plant is to be tested, or in any case where the water issuing from the tailrace is to be accurately measured by means of a weir or measuring flume, the Vortex Bassle Plate is almost a necessity in order to quiet the water so that reliable results may be obtained.

THE GRAND PRIZE awarded by the Louisiana Purchase Exposition, 1904, to the Abner Doble Company, San Francisco, U. S. A., for its exhibit in the Department of Machinery of a Doble Tangential Water Wheel.

GOLD MEDAL awarded by the Louisiana Purchase Exposition, 1904, to William A. Doble, president of the Abner Doble Company, San Francisco, U. S. A., as a collaborator's award, "In recognition of his distinguished services in Hydraulic Engineering."

JOHN SCOTT LEGACY PREMIUM AND MEDAL awarded by the City of Philadelphia, trustee under the will of John Scott of Edinburgh, Scotland, to William A. Doble, president of the Abner Doble Company, San Francisco, U. S. A., "For his Improvements in the form of Buckets for Tangential Water Wheels, on the recommendation of the Franklin Institute, 1904."

Fig. 12. MILL CREEK No. 3 POWER PLANT

Fig. 43. MILL CREEK No. 3 POWER PLANT

MILL CREEK NO. 3 POWER PLANT

The Mill Creek No. 3 Power Plant of the Edison Electric Company, Los Angeles, Cal., went into service in March, 1903. It is remarkable for the high head used. All of the water usually flowing in Mill Creek at Akers Narrows is diverted by a masonry dam, and conducted through 5 miles of pipe to a petty reservoir 1,960 feet above the power house in Mill Creek Canyon. The conducting pipe slopes 0.2 feet per 100 feet, and is designed to carry 20 cubic feet of water per second. It contains 5 inverted siphons of steel pipe, aggregating 3,585 feet in length, and 25,190 feet of concrete pipe, 3 inches thick and 32 inches inside diameter, and passes through 10 tunnels having an aggregate length of 7,500 feet.

From the petty reservoir the water descends through a steel pressure pipe, varying in diameter from 26 to 24 inches, and in thickness from No. 14 B. W. G. to 3% inch. The lower portion of this pipe is lap-welded. The pipe is protected from rust by a heavy coat of asphaltum, applied by dipping. At the lower end it branches, leading the water through 18-inch and 14-inch lap-welded pipe to the four generating units, which are housed in a concrete building, with steel roof trusses and galvanized from roof. Of these generating units, three were made by the Abner Doble Company.

Each Doble unit consists of a 1,300-horse-power Doble Tangential Water Wheel and a 750-kilowatt, three-phase generator, mounted on a single shaft. This shaft has a speed of 430 revolutions per minute, and is mounted in three bearings which rest on a single cast-iron base frame, set in concrete. Each wheel is provided with a Doble Needle Regulating and Deflecting Nozzle, with hand-operated balanced needle. With this apparatus the station attendant can set the needle by hand every half hour at the most economical point, in order to carry the load which, from experience, he is led to expect during the next half hour. The governor takes care of all sudden fluctuations of load, by deflecting the nozzle momentarily, so that all or part of the water issuing passes under the water wheel and wastes its energy against the Vortex Baifle Plate (pages 44 and 45), installed in the tailrace.

The static pressure due to the head of 1,960 feet is over \$50 pounds per square inch, and the spouting velocity of the jet is about 4 miles per minute. The nozzle and water wheel were carefully designed and constructed to meet these requirements. Not only were the hydraulic curves worked out to a high degree of refinement, but the machine work was executed and checked with equal care under the same painstaking supervision; the value of which is apparent after two years' operation.

The materials chosen for this unit were the best that could be found, regardless of cost. The needle stem is of forged marine steel. The nozzle is of semi-steel, and the wheel body is a steel casting. The buckets are of the well-known Doble Ellipsoidal form, and are interchangeable. They are fitted tightly to both the sides and edge of the wheel-body, and each is secured by two fitted bolts driven into reamed holes. Not a single bucket has yet had to be replaced, although the wheels have been operating continuously for over two years. The housing is of cast iron and plate steel, and is provided with Doble Centrifugal Water Guards.

The generating units deliver three-phase current at 750 volts to the switchboard, whence it passes through transformers, and out over the 33,000-volt 86-mile transmission line to Los Angeles.

Fig. II. ONTARIO POWER PLANT

Fig. 45. ONTARIO POWER PLANT-DOBLE UNIT

ONTARIO POWER PLANT

A hydro-electric power plant which has attracted some little attention, by reason of the excellent engineering features embodied in its construction, is that of the Ontario Power Company in Southern California. This plant is a part of the extensive and well-developed irrigation system of the Ontario Colony, and in addition to supplying all the power for pumping and lighting, needed by the colony, furnishes considerable power to outside customers. It is located near the mouth of San Antonio Canyon, about 9 miles from Ontario, and a short distance below the historic Pomona Plant.

At the headworks water is received from the tailrace of the Sierra Power Plant; it is then carried through a 30-inch concrete-pipe gravity line along the west side of the canyon, and dropped through a riveted-steel and lap-welded pipe to the power house, situated 700 feet below.

The equipment of the power house comprises three hydro-electric units, each consisting of a 460-horse-power Doble Tangential Water Wheel direct-connected to a 250-kilowatt, three-phase, 50-cycle, 11,500-volt alternator. Each unit is of the three-bearing type, and has a speed of 375 revolutions per minute. The water wheels are equipped with Doble Needle Regulating and Deflecting Nozzles, the deflecting elements being controlled by hydraulic governors.

Two 28-horse-power Doble Tangential Water Wheels operate the exciters and are equipped with Doble Needle Regulating Nozzles, the needles being controlled by Woodward governors.

The wheels of the Ontario Plant have been operating almost continuously for nearly three years, and, although there has been considerable sand in the water, the hydraulic surfaces of the buckets are remarkably smooth, indicating that the wear has been even over the entire working face of the buckets. These wheels have frequently been called upon for operation under heavy overloads.

Tests conducted by Mr. F. E. Trask show an average combined efficiency of the three units of 77.7 per cent at the switchboard, the efficiency of the Doble Wheel being 83.6 per cent (Trans. A. S. C. E., April 15, 1905). In the test, from which these figures were obtained, the water used on the exciter wheels was charged up against the water wheel, as was also the power consumed by friction and windage of the generator. Proper allowance for these factors would give the true efficiency of the wheel, and, of course, increase the figure above that noted.

Fig 46. DE SABLA POWER PLANT ON BUTTE CREEK

Fig. 47. INTERIOR OF DE SABLA POWER HOUSE

DE SABLA POWER PLANT

The de Sabla Power Plant in Butte County, California, embodies some of the most advanced ideas in hydro-electric power-plant practice. This plant was erected by the Valley Counties Power Company in 1903, and is now an important source of supply for the California Gas and Electric Corporation's extensive transmission system.

Water is taken from Butte Creek through a 12-mile ditch, and also from a branch of the Feather River, both conduits discharging into a regulating reservoir at the head of the pressure line. From this reservoir, two 30-inch steel pressure pipes, over 6,000 feet in length, conduct the water down to the power house, the total effective head being 1,528 feet. One pressure line supplies two 2,000-kilowatt hydro-electric units, and the second line supplies a 5,000-kilowatt unit. Hydraulically operated piston gate valves of a special design are installed in the branch pipes leading to the units.

Each of the 2,000-kilowatt units consists of an inductor-type, 60-cycle, three-phase, 2,300-volt alternator directly driven by a 3,700-horse-power Doble Tangential Water Wheel, the speed being 240 revolutions per minute. The 5,000-kilowatt alternator is of the revolving-field type, and is directly driven by an 8,000-horse-power Doble Tangential Water Wheel, the speed being 400 revolutions per minute.

All three units are of the two-bearing type, the water wheel being mounted on the extended end of the generator shaft and overhanging one bearing. Each water wheel is provided with a Doble Needle Regulating and Deflecting Nozzle.

The larger wheel was the most powerful single water wheel constructed at the time it was placed in operation, September, 1904. It delivers 8,000 horse-power from a single jet of water, the jet having a spouting velocity of approximately 20,000 feet per minute. The general design of this unit is shown in Fig. 30, on page 38. The shaft is of fluid-compressed, hydraulically forged, 3½ per cent nickel steel, oil-tempered and annealed, with an axial hole. It is 20 inches in diameter in the middle portion and 16 inches in the bearings, the latter being 60 inches long and of ring-oiling and water-cooled construction. These bearings have a higher rubbing speed than has been used heretofore, and their successful operation demonstrates the correctness of their design. The steel-cast Ellipsoidal Buckets are securely bolted to the periphery of a forged steel disk, which is machine-finished all over.

Regulation of this plant is secured by hydraulic governors, which deflect the nozzles as the load varies.

The transmission voltage is 55,000 volts, and current has been delivered from this plant, over the lines of the California Gas and Electric Corporation, a distance of 378 miles from the power house, the present record for long-distance transmission.

Considerable interest now centers in a new hydro-electric unit about to be installed in the de Sabla Plant, the hydraulic end of which will consist of a 9,000-horse-power Doble Tangential Water Wheel. This wheel will be driven by a single jet of water, and will embody the same general features of design as the 8,000-horse-power de Sabla wheel.

Fig. 48. CORNELL UNIVERSITY POWER PLANT

Fig 49 CORNELL UNIVERSITY POWER PLANT-EXCITER UNITS AND SWITCHBOARD

CORNELL UNIVERSITY POWER PLANT

The new hydro-electric power plant of Cornell University, Ithaca, N. Y., possesses many points of engineering interest. It furnishes power for lighting, ventilating, and the operation of shops and laboratories, and thus forms a very valuable acquisition to the engineering equipment of the college. The plant is located in Fall Creek Gorge, on the University Campus, directly in the rear of Sibley College, where it replaces an old turbine plant.

The selection of the type and character of the main generating units was made with special regard to high efficiency at low water. As the head of 134 feet introduced a likelihood of very low average operating efficiency for turbines, especially at partial loads, and because of the trouble experienced from the original turbine installation, particularly during occurrence of ice, it was decided that the more expensive tangential type of wheel should be used

Each of the two hydro-electric units installed consists of a 150-kilowatt, rotating-field, three-phase, 60-cycle, 2,200-volt generator, operated by a 280-horse-power Doble Tangential Water Wheel. The speed of rotation is 124 revolutions per minute, and the driving jet is 7 inches in diameter. The floor space occupied by each unit is 14 feet by 21 feet, the top of the wheel case being 9 feet above the operating floor.

The wheels are of the Abner Doble Company's design, and are mounted on the overhanging ends of the two-bearing shafts. These shafts are hollow-forged, oil-tempered, 3½ per cent nickel-steel, and measure 10 inches and 7 inches respectively in the bearing journals. The bearings are of the Doble ring-oiling, revolving-shell type, and are provided with water circulation. The wheels are equipped with Ellipsoidal Buckets, and the nozzles are of the Doble Needle Regulating type, arranged for operation by hydraulic governors, or by hand. All parts of the regulating apparatus of the nozzles are above the floor and readily accessible. Balanced relief valves are provided on each wheel as a precaution against excessive pressure in the pressure pipe.

Two 50-horse-power Doble Tangential Water Wheels drive the 30-kilowatt exciters. These wheels are provided with Doble Needle Regulating Nozzles for hand operation, and the housings have plate-glass sides which allow the action of the water upon the buckets, as well as the perfect form of the jet issuing from the needle nozzle, to be observed when the machines are running

Tests conducted on the Cornell Power Plant gave the following efficiencies for the water wheels:

1/4	1/2	3/4	Full	25%
load.	load.	load.	load.	overload.
Main Wheels70.8%	77.5%	79.8%	80.7%	82.1%
Exciter Wheels	82.4%	83.6%	84.5%	81.1%

In making these tests the windage and friction of the generators, both on the main units and the exciters, were charged against the water wheels. It must be considered, also, that these wheels operate under a head of 134 feet, which is commonly regarded as a head more suitable for turbines.

NOTE—A complete description of this power plant, together with interesting information relating to Cornell University and its scientific school, Sibley College, will appear in Doble Bulletin No. 10.

Fig. 50. SANTA ANA RIVER No. 2 POWER PLANT

Fig. 51. SANTA ANA RIVER No. 2 POWER PLANT-DOBLE UNIT

SANTA ANA RIVER No. 2 POWER PLANT

The latest power plant of the Edison Electric Company, Los Angeles, Cal, to be placed in operation is that known as Santa Ana River No. 2, situated in Santa Ana Canyon in the vicinity of Redlands. Water for this plant is diverted from the tailrace of Santa Ana Plant No 1 and is conveyed about two nules down the canyon through a series of 11 concrete-lined tunnels which have a water-carrying cross-section of 4½ feet by 5 feet. From the forebay at the lower end of the last tunnel, the pressure main is carried to the power house, 305 feet below. This pressure pipe consists of 645 feet of 36-inch riveted steel pipe. At the power station it branches by means of a curved "Y" to the two hydro-electric units.

Each unit consists of a 500-kilowatt, three-phase, 50-cycle, 750-volt alternator directly driven by an 800-horse-power Doble Tangential Water Wheel, the speed being 176 revolutions per minute. Water is delivered to each wheel through a Doble Needle Regulating and Deflecting Nozzle. Each unit is regulated by means of a hydraulic governor connected to the deflecting element of the nozzle.

Two 40-horse-power Doble Wheels, provided with deflecting nozzles controlled by governors, are used to drive the exciters.

This power plant transmits current at 33,000 volts, and feeds into the Edison Electric Company's main 86-mile transmission line leading to Los Angeles.

NEW ELECTRA POWER PLANT INSTALLATION

A new installation at the Electra Power Plant of the California Gas and Electric Corporation includes three 8,000-horse-power Doble Tangential Water Wheels, each being of the same general design and capacity as the 8,000-horse-power Doble Wheel installed in 1904 in the de Sabla Plant for the same corporation (described on pages 14 and 53).

One of the large Electra wheels operates under a head of 1,250 feet at 400 revolutions per minute, and drives a 5,000-kilowatt alternator. The other two 8,000-horse-power wheels drive a 5,000-kilowatt generator, forming a double unit for utilizing water from two separate sources under different heads. The design of this unit is an unusual one, inasmuch as each wheel has sufficient capacity to drive the generator at full load.

One of the wheels is driven by a single jet under a head of 1,465 feet, the water being taken directly from the main gravity conduit. The other wheel is driven by a single jet under a head of 1,250 feet, the source of supply being a large reservoir at the end of the main conduit. This arrangement permits the operation of the generator at full load, by running either wheel at its full capacity or by running both wheels under partial loads, according to the conditions of the water supply. These operating conditions are only made possible by the use of Doble Needle Regulating Nozzles which regulate the quantity of water delivered to each wheel. The hydraulic part of this unit is capable of delivering 16,000 horse-power.

The speed of all three Electra wheels is unusually high (400 revolutions per minute), considering the size of the machines, but is permitted by the use of specially designed Doble Bearings, similar to those so successfully introduced in the large de Sabla wheel.

Each of the three Electra wheels is operated from a Doble Needle Regulating and Deflecting Nozzle, the deflecting element in each case being controlled by a suitable hydraulic governor.

A 200-horse-power Doble Wheel operating under a head of 1,465 feet, with a single jet, at 720 revolutions per minute, furnishes power for the exciter.

An interesting feature brought out in the design of the new Electra Power Plant is that in the installation of the two 5,000-kilowatt units but 0.288 square feet of floor space is required per kilowatt. This area includes room for transformers, switches, and other accessories, and is but one-fourth the floor space per kilowatt required for the original Electra Plant, installed five years previous.

Fig. 52. SHARP-CRESTED RECTANGULAR WEIR

MEASUREMENT OF WATER

Running water may be conveniently measured, First, by means of a weir. This method will give the most accurate results when properly used. Second, by estimating the cross-sectional area and the mean velocity of the stream, and multiplying them together.

These two methods are briefly described in what follows:

Weir Measurements—For estimating the discharge of small streams, a weir may be made by cutting a rectangular notch in a wooden plank (Fig. 52). The length of this notch should be at least three times its depth and about two-thirds the width of the stream. The bottom and sides of the notch must be beveled on the down-stream side, so that the up-stream edges are sharp.

The weir should be set at right angles to the direction of the current, with the sharp edges on the up-stream side, at a point where the water above the weir moves quietly through some small pond. By setting the weir properly, a pond may be created. The bottom of the weir notch, which is the crest of the weir, must be level. The water must discharge freely into the air. For accurate measurements stiff metallic plates with sharp straight edges should be used. Great care is necessary to set the weir so that no water leaks under it or around the ends. The depth of the pond above the weir should be greater than three times the head of water on the crest, and a similar or greater distance should exist between the vertical edges of the weir and the banks of the stream.

The height of the water surface above the crest of the weir should be measured about six feet up stream from the weir plank. At the point selected a stake may be driven, and in it a nail, so that the top of the nail is exactly level with the crest of the weir. The head on the weir is then the distance from

Fig 53

WEIR FOR MODERN POWER PLANT

the top of the nail to the surface of the water. This may be measured to thousandths of a foot with a hook gauge. Approximate results can be obtained with a two-foot rule.

The discharge may be calculated by Francis' formula,

(A) $Q=3.33 (L=0.2 \text{ H}) \text{ H}^{\frac{1}{2}}$

in which (Q) is the quantity of water discharged in cubic feet per second, (L) the length of the weir in feet, and (H) the head on the crest in feet.

This formula may also be expressed as

(B) $q=0.4 (1-0.2 h) h_2^2$

in which (q) is the quantity of water discharged in cubic feet per minute, and (l) and (h) are expressed in inches.

The following table, based on Francis' formula, gives the discharge in cubic feet per minute, per inch length of a sharp-crested rectangular weir, under heads from 1-16 inch to 24 15-16 inches. These values correspond to 3.33 Hi in formula (A) or 0.4 hi in formula (B). Multiplying the value taken from the table by the length of the weir crest in inches less 0.2 times the head in inches, gives the total discharge.

When the velocity of the approaching water is less than ½ foot per second, the result obtained as above is fairly accurate. When the velocity of approach is greater than ½ foot per second, a correction should be applied, for which refinement the reader is referred to the engineering handbooks.

WEIR TABLE

FLOW IN CUBIC FEET PER MINUTE FOR EACH INCH IN WIDTH AND FOR DEPTHS FROM $\frac{1}{16}$ TO $\frac{24\frac{1}{16}}{6}$ INCHES

	U	1/10		1,0	3.	10	34	316		-	7/16		16	9:	16	s _p	11/6	34	13/16	73	13/6
-					;	7			-¦				_								
0	000	0	063	018	1	032	.05	.0	7	.092		1	.141	ě	169	.198	228	.26	293	.327	.363
1	.4	-48	38	477		518	.559	-6)2	.645	.68	19	.735		781	.829	.877	. 92	. 976	1.027	1.079
2	1.13	1 1	85 :	1.239	1	294	1 35	1.4)7	1.464	1 5	22, 1	.581	1	641	1 701	1.762	1.82	1 1 887	1 95	2 014
3	2 078	2 1	H 1	2.21	2.	276	2 344	2 4	12	2.48	2.5	19, 2	.619	2	69	2 761	2.8/2	2 903	2 978	3 051	3 125
4	3.2	3.2	75	3.351	3.	428.	3 505	3.5	52	3.66	3.73	38 3	8.818	3.	898	3 979	1.06	1.14:	1 223	1/305	1 388
6	4.473	4.5	56	1 641	ī	726	1/812	1.8	98	1.984	5 0	72 3	5-16-	.5	248	5 346	5, 126	5 51	5 5 606	5 696	5.788
6	5.88	5 90	72 (064	б	156	6/25	6.3	11	6 438	6 53	\$1 C	625	b	721	6/82	6.948	7 01	7 7 113	7/21	7 008
7	7 108	7 5	35	7,608	7	708	7 808	7 9	1	8 011	8 1	12 8	\$ 216	8	319	8/42	8,525	8 63	8 731	8-84	8 946
8	9 05:	1 9 1	100	9-264	9	372	9 478	9.5	St.	9 691	9.8	11 9	913	10	024	10 132	10 242	10/35	2 10 - 164	10 576	10 688
9	10/8	10.9	12 1	F 026	11	1.359	H 254	11 3	67	11 482	11 5	97.11	712	11	827	11 911	112 062	12 17	842 296	12 413	12,531
10	12 648	12 70	i7 1	2 887	1.:	007	13 126	13/2	18	13 368	13 4	88 E	3-61	13	731	14 850	13 976	11.1	11 1999	11.311	14, 168
11	11 595	11.7	is i	1 811	11	1414	15-094	15/2	19,	15-346	15 F	72 1	5-6	15	728	15 851	15/982	16 11	246-24	16 368	16, 198
12	16.628	16.7	58 H	888	17.	02	17.15	17.2	81	17.413	17.5	45 [°] 17	7.677	17.	81	17 944	18.076	18.21	18,345	18.48	18,614
13	18 749	15 K	s1 1	9 02	19.	156	19 292	19.4	2q	19, 566	19.70	0119	841	19	977	20 117	20, 256	20 39	120 534	20 673	20.813
14	20 95	1 21 0	4 2	1 234	21	3767	21 518	21 0	59 ¹ :	21 801	21/9	132.	2 086	22	2.3	22 372	22 510	22 65	922 804	22 948	23 093
15	21 23	3 23 3	83 2	3.529	23.	675;	23 821	23.9	68	24, 115	24.2	62.24	1-409	24	556	21.701	21.858	(25.00	3 25 151	25 201	25 449
16	25 6	25.7	5 2	5-901	26	052.	26 202	26 3	51	26.505	26 6	57 2t	, 809	26	962	27 115	27 268	27 42	1.27 575	27, 728	27 882
17	28 (63)	7 28 1	12 2	8 047	25	502:	25 155	28 8	11	28 97	29 1	26 25	1 283	29	11	20 597	29 755	29,91	300 071	00-229	(3) (388
18	54.54	7 (6) 7	Mi d) S66	31.	026.	11 186	31 3	16	31 507	31 6	17 JI	829	31	99	32 132	32 311	32 47	602 608	32 801	32 961
19	33 128	8 333 23	и .:	3 455	23	62 3	13,784	:#1 9	is:	34.113	31.2	78.11	1.111	31	61	31.770	34 942	35.10	835,272	35 442	35-61
20	35.77	35,9	j5 - 3	111	36,	281	36 45	36.6	19	36.788	36.9	57,37	7.127	37.	297	37 -167	37 638	37.80	837.979	38.15	38 322
21	128 19	35 6	ah di	- NO.	39	01 .	39 183	39 3	ŭů,	39 53	39.70	02.33	876	10	052	10 227	40 009	10 57	F10 749	40 924	11 1
22	11.270	11 1	12 1	1 628	11	804	11 98	12 1	G	12 31	42.5	16 1.	2 691	42	569	13 048	40,226	43 40	F13 582	13.76	10 942
23	11 12:	2 11 3	1	1 48	11	GG	14-843	15 0	21	15.201	15 33	86 L	5 568	15.	70	15 983	36 11 6	36 29	0-16-18	(6,6)4	16 848
24	47 (0.5)	2 17 2	EG - 1		1						1								149-11		2
-					l				1		ı							4			1

Measurement of Cross-Section and Average Velocity.—Select a place where the stream is for some distance (the longer, the better) of fairly uniform cross-section and velocity, and free from counter-currents, eddies, rapids, still water, and other irregularities. Measure off a straight course over which the floats are to pass. From 50 feet for slow streams to 150 feet for rapid streams will answer. Plant two range poles at each end of the course. Prepare a careful cross-section, measuring the depth at a number of points, and the total width, and divide the stream into longitudinal sections by means of poles or buoys.

Observe the number of seconds required for floats to pass over the course in each section of the stream. From this the velocity in feet per second for each section may be estimated.

The area of each separate section of the stream, multiplied by its mean velocity, will give the discharge of that section. The sum of the discharges by sections will give the discharge of the stream.

To obtain even approximately reliable results, the floats must reach nearly to the bottom of the stream, must stand upright, and project as little as possible above the surface of the stream. Tin tubes or wooden rods of adjustable length, weighted at one end, are usually employed. Several observations should be taken for each section, and averaged.

A more accurate method for estimating the velocity of moving water at any point is afforded by the current meter, a delicate instrument extensively used by the United States Geological Survey. For directions on its use consult Water Supply and Irrigation Paper No. 94.

MINER'S INCH

The miner's inch is a measure of water which was first adopted by ditch companies in the State of California, and has been introduced to a limited extent in other Western States. The amount of water represented by a miner's inch is somewhat indefinite, as it varies in almost every locality, because of the different heads above the center of the aperture used by the water companies.

A miner's inch of water, legal measure, in California (see Water Rights, State of California, Civil Code, Section 1415) is that quantity of water which will flow through an opening of one square inch in the bottom or side of a vessel under a pressure of four inches above the opening. Fifty of the above "Miner's Inches" are equivalent to the discharge of one cubic foot of water a second.

The above mentioned act was amended in 1903 so as to read: "Each square inch of the opening represents a miner's inch, and is equal to a flow of 1½ cubic feet of water per minute."

The value of the miner's inch as expressed in the amendment (equivalent to a flow of 1½ cubic feet of water per minute) is now commonly accepted. Forty of these miner's inches are equivalent to the discharge of one cubic foot of water per second. This value is used throughout this Bulletin.

Although the legal value of the miner's inch for the State of California is now stated as equivalent to 1½ cubic feet per minute—forty of these miner's inches being equivalent to one cubic foot per second—the former value, 50 miner's inches equivalent to a cubic foot per second, is still extensively used in Southern California.

INFORMATION REQUIRED FOR MAKING ESTIMATES

As the conditions under which water wheels may be installed are seldom alike, each installation requiring a separate and frequently special construction, we are unable to quote prices in a publication of this nature. We are, however, always pleased to prepare estimates and make quotations for any installation after we have been furnished with complete data covering the proposed use of our machinery.

Many letters of inquiry received by us do not contain all the information necessary to enable us to make a definite reply, or to prepare suitable estimates for the proposed work. Additional correspondence is necessary, consuming time that is valuable to both parties.

Correspondents will therefore please furnish the following data, or as much thereof as may apply to their particular cases:

1. Head of Water.—State the full head or vertical distance, in feet, from the surface of headwater or source of supply (ditch, flume, reservoir or fore-bay) to the floor of the power house, or the point where the wheel is to be located; mention if the head is variable or constant.

If an estimate is required for turbines, state head from the surface of headwater to the surface of tailwater.

- 2. Quantity of Water.—Give the amount of water available, in cubic feet or gallons per minute or in miner's inches. If the quantity of water is variable at different seasons, state the maximum and minimum flow, and also what portion of the maximum flow it is desired to utilize.
- 3. Hydraulic Conduit.—State the character of hydraulic conduit (flume, ditch or pipe) used to carry the water to the top of the pressure pipe; also give, if possible, the size, velocity of flow, or grade of conduit, and its actual carrying capacity.
 - 4. Condition of Water.—State whether water is clear, gritty, or muddy.
- 5. Tail Water.—If the quantity of discharge water is to be kept constant by reason of irrigating or other conditions, please mention the fact so that proper arrangements may be made for controlling the load.
- 6. Pipe Line.—State the length along proposed pipe line from source of supply to the wheel. In case the pressure pipe line is already laid, give the diameters and lengths of the different sizes of pipe, if the pipe is of more than one size. A profile of the pipe line is essential, particularly if it is desired that the estimate include the furnishing of the pipe.
- 7. Storage Capacity.—If storage capacity is to be provided at the head of the pipe line, give the dimensions of the reservoir, or state its capacity.

- 8. Horse-Power Desired.—State the maximum and minimum capacity in horse-power which is desired.
- 9. Purpose of Water Wheels.—Mention specifically the character and speed of machinery to be driven, and whether it is to be driven by direct, belt, or other connection. If a belt drive is required, give the dimensions and speed of the driven pulley, and its distance from the water-wheel pulley; also state the direction in which the wheel is to run. If the water wheel is to be used for pumping purposes, give the quantity of water to be pumped and the head.

If an estimate is required for turbines, state whether they are to be installed vertically or horizontally, and what their direction of rotation is to be.

- 10. Hydro-Electric Units.—If the water wheel is to drive an electric generator and the estimate is to include the entire unit, state the type of generator (direct current or alternating current), its kilowatt capacity and voltage, and the speed desired. If an alternating-current generator, give also the frequency and phase. In case the water wheel is to drive a generator already purchased, state of what manufacture, its kilowatt capacity, speed, and the size of shaft. In all cases state whether the current is to be used for power transmission or lighting purposes, or both.
- 11. Number of Water Wheels.—State the number of water wheels desired, and whether two or more wheels are to be used to drive one unit.
- 12. Speed of Water Wheels.—State the limits of speed for which the wheel may be built, and what speed is preferred.
- 13. Regulation Desired.—State the degree of regulation desired and whether any particular make of governor is preferred.
- 14. Time for Estimates.—Give the date you wish the estimates placed in your hands, or, in case of competitive work, the date the bids will be opened
- 15. Address.—Write plainly full address, giving postoffice, county, and state; and, in case of foreign correspondents, the colony, or province, and country.

CANADIAN LICENSEE

All inquiries relating to proposed water wheel installations in the Dominion of Canada should be forwarded direct to the John McDougall Caledonian Iron Works Co., Ltd., of Montreal. The McDougall Company is the sole licensee for the manufacture of the Doble System of Water Wheels in Canada, and is prepared to furnish estimates on Doble Water Wheels in all sizes and for all heads, and to execute the work promptly and with the highest degree of skill.

ABNER DOBLE COMPANY

SAN FRANCISCO, U.S.A.

DATA SHEET FOR ESTIMATES

(For explanation, see page 63)

7.	Head of Waler
	State the full head or vertical distance in feet, from the surface of headwater or source of supply (ditch, flume, reservoir, or forebay) to the floor of the power house, or the point where the wheel is to be located; mention if the head is variable or constant. If an estimate is required for turbines, state head from the surface of headwater to the surface of tailwater,
2.	Quantity of Water
	Give the amount of water available in cubic feet or gallons per minute or in miner's inches. If the quantity of water is variable at different seasons, state the maximum and minimum flow, and also what portion of the maximum flow it is desired to utilize.
3.	Hydraulic Conduit
	State the character of hydraulic conduit (flume, ditch, or pipe) used to carry the water to the top of the pressure pipe; also give, if possible, the size, velocity of flow, or grade of conduit, and its actual carrying capacity.
4.	State whether water is clear, gritty, or muddy.
5.	Tail Water
	If the quantity of discharge water is to be kept constant by reason of irrigating or other conditions, please mention the fact so that proper arrangements may be made for controlling the load.
6.	Pipe Line
	State the length along proposed pipe line from source of supply to the wheel. In case the pressure pipe line is already laid, give the diameters and lengths of the different sizes of pipe, if the pipe is of more than one size. A profile of the pipe line is essential, particularly if it is desired that the estimate include the furnishing of the pipe.
7-	Storage Capacity
	If storage capacity is to be provided at the head of the pipe line, give the dimensions of the reservoir, or state its capacity.
8.	Horse-power Desired
	State the maximum and minimum canacity in horse nower which is decired

,	Mention specifically the character and speed of machinery to be driven, and whether it is to be driven by direct, belt, or other connection. If a belt drive is required, give the dimensions and speed of the driven pulley, and its distance from the water-wheel pulley; also state the direction in which the wheel is to run. If the water wheel is to be used for pumping purposes, give the quantity of water to be pumped and the head. If an estimate is required for turbines, state whether they are to be installed vertically or horizontally, and what their direction of rotation is to be.
1	
	Hydro-Electric Units
***	If the water wheel is to drive an electric generator and the estimate is to include the entire unit, state the type of generator (direct-current or alternating-current), it kilowatt capacity and voltage, and the speed desired. If an alternating-current generator, give also the frequency and phase. In case the water wheel is to drive a generator already purchased, state of what manufacture, its kilowatt capacity, speed, and the size of shaft. In all cases state whether the current is to be used for power transmission or lighting purposes, or both.
1	Number of Water Wheels. State the number of water-wheels desired and whether two or more wheels are to
	be used to drive one unit.
S	State the limits of speed for which the wheels may be built and what speed is pre ferred.
A	Regulation Desired State the degree of regulation desired and whether any particular make of governo is preferred.
2	Time for Estimates
	Give the date you wish the estimates placed in your hands, or, in case of competitive work, the date the bids will be opened.
Λ	Name of Firm or Corporation
L	cocation of Plant
0	General Manager
E	Engineer in Charge
S	Signature
A	Address

The calculations upon which the Doble Water Wheel Tables are based are made in the foot-pound-minute system. In order to calculate the results with sufficient accuracy for local conditions, it was found necessary to make proper allowances for temperature and latitude. Therefore the computations were based on a temperature of 50° F., taken as the average temperature of California, and a latitude of 38°, the average latitude of California.

The tables have been carried out for different diameters of jets and for effective heads from 10 to 2,550 feet. These computations give effective horse-powers up to 5,000 horse-power for the higher heads. The diameters of wheels have been carried up to 10 feet.

We desire to call special attention to the fact that these tables have been computed to cover average conditions and that they, in no way, express the limits of wheels which we have constructed or are in a position to build. As noted on preceding pages, we have built several water wheels which are operated by single jets of water with diameters up to and over 7 inches. In capacities we have built wheels for the actual development of water power in sizes up to 9,000 horse-power.

For ordinary conditions it may be assumed that, for the maximum allowable speed at which a wheel should operate, the diameter—expressed in feet—of the wheel will be equal to the diameter—expressed in inches—of the jet required for the given horse-power. The result gives the minimum pitch diameter of wheel, the speed of which can be readily obtained from the table. For example, a 1½-inch jet would require a 1½-foot or 18-inch wheel. For a given horse-power, say 60 horse-power, under 360-foot head, the maximum allowable speed would be 891 revolutions per minute. In special cases deviation from this rule may be made.

								_												
in Ft.	of Jet	s/							EFF	EC.	ΓIVE	но	RSE	-POV	VER					
- D L		A CLOCHE						C	UBIC) [EET	P	ER	MIN	UTE					
He2	X S	Z;					*	-												
ffective Hydrosta	. Au					,				Di	AME.	FER	OF	TEL						
Effective 113 drost		- 1- -		; ±"	34"	1	"	14"	11,	211	134	, 	211	25%	4 234	"	311	312"	` I''	152"
10	0.	16: 0	.03	0.0	5 0	07 0	. 12	0.1	9 0	. 28	C	38	0 5	0 0	E3 0	78	1 12	1 53	2 00	2 53
4.3	15:	!	07	0.0			.30	12.9	7, 18	67 52	25.	11; :	83. 19 0 92	9 12		87 43	2 06	102	1.3.1	168
6 5 20		2	54) .09	3.9	η ä.	72 10	.16	15.8 0.5!	8 22	87 . 79	31.		1.41	5] 51	15 63 79 2		91 17	121	163	206
8.6	$6 \mid -215$	2 2	.90	4.58	6 6	io 11	.74	18 3	1 26	जो)	35.5	H[4	6.94	59	11 7.3	10	106	4 33	150	205
25 10.8		6 8	26	0.19 5.13	7.5	8 13		0.77 20.50) 29	.52	40.1	$ \hat{\mathbf{S}} $. 5	1. 9 7 2.18	3 ¹ 66	13 82		4 44	6 04	7 89	9 93 266
30 EB 00	-	51 3.	1 6 59	5.61			65] .37] :	1.01 ≥2.46		.46 :::1	41.0		2.59 7.19		28' 4	81	5 71 129	7 94	10 37	13 12 291
35 15 17	1.0 281		20	6.00			82 , 52, 2	1.28		84	2.5		3 27 2 10			111	7 35	10 00	13 07	16 54
40 17 31	1.2		251 151	0 39 6.48			00	1.56 35,90		25	3 C		3.99 6.39			25	8 98 1 19	12 25 203	15 97 266	20 21
45 19:56	1 5		30 10	0 47 6 88	9.9	7 1	19 ¹	1 86 27 51		68	3 6		4 76 0 11	, 6 0 89 I	13, 7	44	10 72 158	14 59	19 05	24 11
50 21 67	1 1 7	3 0.	35.	0.54	, 37	8 1.	39	2.18 8.99	. 3.	.14	4.2	7	5 58	7 0		72	12 55 167	17 03	22 31	28 24 376
60 26 00	2 3	5 0	46	0 72 7.94	1 0	3 1	83	2 86 1.75	4	12	5 6 62 2	1	7 33	9 2	8, 11	48	16 50 183	22 48	23 32	37.12
70 30/34	2 94	0	58	0 90 8 58	1 3	0 2	31	3 61	5	20	7 0	7	9 24	11 6	9 14	1	20 79	28 30	36 96	46 78
80 34.67	3 55	0	71.	1 10 9.17	1 5:	3 2	82	4 41 6 67	6	35 81	8 6 71.8	4 11		14.2	9, 17	64	25 40 211	34 57 288	45 16 376	57 15
90 39.01	4 29	0 :	34	1 32 9.72	1 89	3	37	5 26 8 90	7	58	10 3 76.2	1 13	47 58	17 0. 126	5 21	05	30 31	41 26	53 38,	473 68 20
100 43 34	5 02 4811	0 !	99	1 54	2 22	. 3	94 (6 16 1.00	8	87	12 08 80.31	3. 15		19 9:	7, 24	65	35.50	305 . 48 32	398 93.11	79 87
110 47 67	5 79	1.1	4	1 78	2 56	4.	55	7 11	10	24	13 9	18	20	23 0	28	14	236 , 40 96	321 · 55 75	72 811	531 92 15
120	5 80	1.3	0	2 03	2 92	5		3 10	11 (67.	81 29 15 88	20	74	26 25		11, 4	218 16_67,	63 52	82 96	105
52.01 130	5271 7 44	7.1 1.4	8	2 28	16.17 3 29		35 9	1.92	13	15	88.01 17.91	23	15 ₁	1 66 29 60] 180), 36 {		259 52 62	352 71 62	93 54	582 118
56 34 140	5186 8 32	7.1	4	1.68 ¹ 2.56	16.88 3 68		92 - 46 35 - 10	3.75 23 3.51	67.3		91.69 20 08		20	33 16	187	1	269) 58 94	367 } 80 23	179 105	606 133
60.68 150	5693	7 7		2 131	4 08	7 2		32	69 a		95 09 22 19	1	99	36 69	19		279 5 22.	88.77	197	629
65 01 160	5893 10 16	8 0	4) 1:	3.65° 3.12	18.08		41.50	1.22	72.5	31	98 43 24 45	1:	93	163	201	1	289	394	511	651
69 31 170	6086 11 13	8 3	0] 1:	.97: 42	18.67	33.1 8 7	9 51	87	74.0	181	102	1	33	168	207		1 85 , 299	97 79 407	128 531	1 62 672
73.68	6274	8.5	5, 43	1.37	19 25	34.2	b) 53	.46	19 6 76.9	18	26 78 105	1;	97	44.26 173	214	1	8.69 308	107 -119	140 547	177 693
180 78 01	12 13	2 3 8 N	0 13	72	5 36 19 80	9 5 35 2		88	21 4 79 2	9-3	29.17 Tus	38		43 22 178	59 5 220		5 73 017 .	117	152 563	193 710
190 82 35 j	13 15 6632	2.5 9.0	1] 14	. 1:3"	$\frac{5}{20.35}$	10 3 36 1		14 52	23 2 81.3		31 64 111	41	32 5	52 30 183	64 5 226		2 97	127	165 579	209 782
200 Mi.68	14 20 6804	2.79 9.20		36 19	6 28 20 87	11 1 37 1		43 99	25 1 83 5		54 17 111	44		56 48 188	69 7 232	3	100	137 455 [178 591	226 751
210 91 01	15 28 6972	3.00			6 75 21 39	12 0 38 0	0 18	76 12	27.0 85.5	1 3	8.76 116	48	02	60 77 193	75 0 238	2,	108 342	147	192	243
220 95 35	16 39 7136	3.22 9.73	. 5	03	7 24 21 89	12 8	7 20	11	28 9	6 3	9 42	51.	48	65 16	80 4	1	116	158	008 206	770 261
230	17.52	3.44 9.93	5	37	7 74	13.7	6 21	50	31 0	3 4	119 2.14	55 55	03	197 69 65	213 85 9	3	350 124	169	623 220	788 279
99 68 240	7297] 18 67	3 67	5	73	8 25	14 6	22	92	89 5 33 0	0 4	122 4 91	15 58.		201 74 - 25	249 91 60	1	132	188 .	235	806 297
104.021	7454	10.17	15	200	22 87	10.67	i 63,	.52	9i . i		121	16	3 1	206	251		366	198	650	823

Note—One cubic foot of water per minute ~ 0.6606 California miner's inches. One California miner's inch ~ 1.5 cubic feet per minute.

pead					REV	OLUT	nons	PER	MIN	UTE				
Effective Head				-		DIAM	ETER (of Wi	IERL.					
<u> </u>	12"	15**	18" .	21"	21011	2'6"	3' 0"	4'0"	5'0"	6'0''	7'0"	8' 0"	9''0''	10' 0"
10	223	178	148	127	111	89	74	56	45	37	32	28	25	22
15	273	218	182	356	136	109	91	68	- 65	45	39	34	30	27
20	315	252	210	180	157	126	105	79	63	52	45	39	35	31
25	352	282	235	201	176	141	117	88	70	59	50	44	39	35
33	386	309	257	220	193	151	129	96	77	1 64	55	48	43	39
35	417	333	278	238	208	167	139	104	183	, G9	59	52	46	42
40	416	356	297	255	223	178	148	111	89	į 71	64	56	49	45
45	473	378	315	270	236	189	157	118	95	79	67	59	52	47
50	498	398	332	285	219	199	166	124	100	83	1 71	62	55	50
68	546	437	361	312	273	218	182	136	109	91	78	68	61	55
70	589	472	393	3:37	295	236	196	148	118	98	81	74	65	59
80	630	504	420	3850	315	252	1 210	157	126	105	90	79	70	63
90	GG8	535	145	382	335	267	223	167	134	111	95	83	74	67
100	701	561	470	402	352	282	235	176	111	117	[100	88	78	70
110	739	591	493	422	369	296	216	185	148	123	105	92	82	74
120	772	617	515	111	386	209	257	193	154	129	110	96	86	77
130	803	643	885	459	102	321	268	201	161	134	115	100	89	80
140	831	667	556	476	417	333	278	208	167	139	119	104	93	83
150	863	690	375	493	\$33	845	288	216	173	111	123	108	96	86
160	891	713	594	509	446	356	297	223	178	148	127	111	99	89
170	918	785	612	525	459	367	306	230	184	153	[131	115	102	92
180	945	756	6.30	540	473	378	315	236	189	[157	j 135	118	105	95
190	971	777	647	535	485	388	323	213	1 191	1 162	139	121	108	97
200	996	797	665	569	498	398	332	249	199	166	142	124	uı	100
210	1021	817	681	483	510	408	340	255	204	, 170	146	128	113	102
220	1045	830	696	597	522	418	348	261	209	179	149	131	116	101
230	1068	855	712	611	534	427	356	267	214	178	153	134	119	107
240	1091	878	728	624	546	487	364	273	218	182	156	136	121	109

F. F.	III.	20					EFFECT	TIVE I	torse:	POWE	R				
ad in Et. Pressure	- 6	Velocity								MINU					
Head tie Pro	$\tilde{x}_1 \in \mathbb{R}$														
Entry	. per	E.					Di	AMETE	R OF J	ET					
etiv rosi	per per	Sporting 72"	-	1			1	1		1		olt		1 4 8 2	
Effective Hea	를 불	n, 34"	36"	34"	1"	134"	13/2"	134"	217	254"	21/4"	3"	31,4"	4"	434"
			0 5 0	8 7	1 7 15 59	24 36	35 08	47 75	62 37	78 93	97 45	140	191	249	316
250 108.3	5 19.8 5 760			L) 23 3	4] 41 49	64.8	93 36	127	166	210	259	373	508	664	810
260 112.6	s 21 0	8 10 5	3 6 40 8 16 53	9 31	0 16 54 01 42.31				66 15 169	83 72 214	103	149 381	203 518	265 677	335 857
270	22 2	8. 4 3	8 6 84						70 00 172	88 59 218	103 269 :	157	214 528	280 690	354 873
117.0: 286	2 790 2 23 5	-1						56 60	1	93 56	115	166	226	296	374
121.3	5 805	1 10.9	8 17.13	24 70					77 92	98 62	274 122	395 175	239	703	889 394
290 125.69	24 8 9 819							137	179	226	279	402	547	715	905
300 130,00	26 1 2 833			$\frac{11.53}{1.25.57}$				62 77 139	81 98 182	104 230	128 284	184 109	251 557	328 727	415 920
310	27 4	1, 5.3	B 8 41	12.11	21 53	33 64	48.44	65.93	86 13 185	109 231	135 289	194 -116	264 566	344 739	436 936
134 30 320	28 7	1			1			141 69 15	90 31	114	141	203	277	361	457
138 69		7 11 7	1 18 01	26 41		73 .35	106 53.20.	72 42.	188 94 58	2.38 120	20:1 148	213	290	751 378	951 479
330 143,02	8720	11.9	18 62	26.82	47.67	74.49	107	146	191	241	298	429	581	763	965
340 147.86	31 49 8872	6.18 12.10		13 91 27.22	24 73 18 39	38 64 75.61	55 64 109	75 73 148	93 92 191	125 245 [155 302	223 435	303 593 [396 774	501 980
350 151.69	32 85 9001			14.53 27.62		40.36 76.71	58.11 110	79.10 150	183 196	131 249	1 61 307	232	316 601	413 785	523 994
360	34 30	6.74	10 53	15 16	26 94	42 10	80 62	82 51	103	136	163	242	330	431	546
370	9129 35 74			28 01 15 79	19 79 28 07	77 St) 43 86	63 16	152 85 97	112	252 142	311 175	253	344	797 44 9	10 15 568
160/36	92%	12 62	19.72	28/39	50 48	78 87 45 65	111:	155 89 48	202	256 148	183	263	61× 353	808 467	1022 592
380 164.69	37 20 9379	12.79		16 44 28.78	29 22 51.15	79.93	65 74 115	157	205	259	320	460	627	818	1036
390 169 03	38 68 9502			17 09 29.15	30 38 51.82	47 47 80 98	68 35 117	93 04 159	122 207	154 262	190 324	273 466	372 635	486 829	615 1019
400 173.26	40 18 9623	7 89 13 12	12 33 20 50	17 75 29.52	31 56 52.48	49 31 82.01	71 00 118	96 64 161	126 210	160 266 I	197 328	284 472 1	387 643	505 840	639 3063
410	41 69	8 19	12 79	18 42	32 75	51 17	73 68	100	131	166	205	295	403	524	862
177.69 420	9742 43.23	13.28 8.49	20.76 13.26	29.89 19.10	53.14 33.95	83 03 53.05	120 76 39	163	213	269 172	332 212	478 306	651 416	850 543	1076 887
182 03	9860	13 44	21 01:	30 25	53.78	81 03	121	165	215	272	336	181	659	860	1089
430 186,37	44 78 9977	8.78 13 60	13.74 21 26	19 78 30.61	35 17 54.41	54 96 85.03	79.13 122	108 167	141 218	178 ·	220	317 190	431 667	563 871	712 1102
440 190-70	46.35 10092	9.10 13.76	14.22	20 48 30.96	36.41 55.05	56.88 86.01	81 91 121	111	148 220	184 279	223	328 495	448 67 I	582 581	737 3115
450	47 94	9 41	14 71	21 18	37 65	58.83	84 72	115	151	191	235	339	461	602	762
195-03 460	10207 49 55	13 92 9 73	21 75 15 20	31 31 21 89	38 92	86 98 60 79	125 87 56	170 119	156	283 197	243	350	682 477	891 623	1127 788
199 36	10319	11.07	21/99	31 66	56 28	87 9 E	127	472 (225	285	352	507	689	900	1140
470 203.70 j	51 17 10421	10 05 14.22	15 70 22.22	22 61 32.00	40 19 56,89]	62 80 88 89 ₁	90 43 128	123 174.	161 228	203 288	251 356	362 512	492 697	643 910	814 1152
480 205 03	52 81 10540	10 37 11.37		23 33 33 32 34 32 34 34 34 34 34 34 34 34 34 34 34 34 34	41.48 57.49	64 81 89 83i	93 33 129	127 176	166	210	259	373 517	508 701	864 920	840 1164
490	54.47	10.70	16 71	24 07	42 78	66.85	96 26	131 1	171	217	267	385	524	685	866
212.37 500	10650 56 15	14.52 11.03	17.23	24.81	44.10	90.77± 68.91 ‡	131 99.22	178	176	293	276	397	712 540	706	3176 893
216.70 510		14.67		- [- 1	91.69 70.98	132 102	180	235	297 1 230	284	528 409	719 557	939 727	920
221.03	10866	14.82	23.15	33.33	59.26	92.60	133	181	207	300 1	870	533	726	948	1200
		17.69 i 14.96 J				73 - 98 [93 - 50]	105 135	143 183	187 239	237	292	421 539	573 733	748 957	947 1212

Ē	,				REV	OLUT	TONS	PER	MINU	TTF				
re H		-	_											-
Effective Head in Feel						Diam	ETER	OF W	HEEL					
Ξ.	12"	15′′	1577	21''	$2^{t}0^{tt}$	$2^{x}6^{xx}$	3/0//	4 0"	$5^{t}0^{H}$	6'0"	7'0"	8'0"	91011	10' 0"
250	1111	891	713	6.17	557	115	371	278	1923	186	159	139	121	111
260	1136	4835	757	649	568	151	379	281	227	189	162	142	126	314
270	1158	926	772	662	579	[63	386	289	231	193	165	1 115	129	. 116
280	1179	943	786	674	589	472	393	295	236	196	168	147	131	118
290	1200	96'()	799	686	600	480	400	300	240	200	171	150	133	120
300	1220	976	51.5	697	610	188	107	305	244	203	174	152	106	122
310	1240	1 005	827	709	620	196	413	310	248	207	177	155	138	124
320	1260	1008	840	720	630	504	420	315	252	210	180	157	140	126
330	1520	1021	851	7.11	640	512	427	320	256	213	183	160	142	128
340	1209	10.39	She	712	650	520	-133	325	260	216	186	162	111	130
350	1318	1054	879	753	659	527	439	329	264	220	188	165	146	132
360	13.7	1069	891	761	668	585	-146	334	267	223	191	167	149	134
370	1355	1081	50.1	774	678	543	452	339	271	226	191	169	151	136
380	1878	1099	915	785	687	549	458	343	275	229	196	172	153	137
390	; 1391	1113	927	795	696	557	464	348	278	232	198	174	355	109
400	1 109	1127	(90)19	505	701	564	170	352	282	235	201	176	157	111
410	1 126	1111	951	815	713	571	175	357	285	238	204	178	159	143
420	1111	1155	962	825	722	578	481 }	361	289	241	206	180	160	144
430	1161	1169	971	885	7:00	581	187	365	202	243	209	183	162	1 16
440	1178	1182	985	811	739	591 :	\$103	369	206	246	211	185	164	148
450	1 (91	1196	4(3)	851	717	598	198	371	299	219	213	187	166	149
460	1511	1209	1007	863	755	604	50 L	378	302			189	168	151
470	1527	1222	1018	878	761	611	509 !	382	305	255	218	191	170	153
480	1548	125	1029	882	772	617	514	386	309	257	220	193	171	154
490	\$559	1218	1039	891	780 1	621	520	390	312	260	()()() ()()()	195	173	156
500	1575	1260	1050 1	600	788 :	630	325		315	263		197		158
510	1 1591	127 ;	1061 1	909	795	636	530	398	318	265	- 12-3-1 	199	177	159
520	3606 	1285	1071	918	803 -	613	536	402	321	268	200	301	179	1 161

										POWE!					
ive f	in Lbs. pe -P. per Sq Spouting						Di	AMETE	R OF J	ET					
Effective He	#.P.1	34"	611	34"	1"	1¼"	11/2"	134"	2"	21/411	21/2"	3#	3)\$"	1''	11/4"
530 229 7	61 2			27.07	48 13		108	147	193	244	301	433	590	770	975
540 231 0	63 0	12 37	19 33 23.82	27 84	49.50	94.40 77 34 95.28	136	185 152	198	306 251 309	378 309	511 445 519	606	967 792	1002
550 238 3	84.78	12.72	1 19 87	28.62	50 88	79 50 96 16	137 114 138	187 156 188	244 204 216	258 312	381 318 385	458 551	7 17 623	976 814 985	1930
560 212 70	66 55	13.07	20 42 24,26	29 40	52 27	81 68 97.03	118 140	160 190	209 248	265 314	327 388	470 559	640	836 991	1216 1058 1257
578 217 0	58 34	13.42	20 97		53 68 62.65	83 87 97.90	121 141	164 192	215 251	272 317	335 392	483 561	G58	859 1002	1087
580 251 33	70.15	13.77	21.52 24.69	30 99	55 10	86 09 98.75	124 142	169 194	220 253	279 320	344 395	496 569	675 771	882 1011	1116 1280
590 255 71	71 97	14.13	22.08 21.90	31 79 35 85	56 53	88 32 99 60	127 143	173 195	226 255	286	353 398	509 571	692 751	904	1145 1291
600 260 04	73 81	14 49	22.64 25.11	32 61 36.16	58.10 64.28	90 58	130 145	178 197	232 257	293 325	362 402	522 579	710	927	1174
610 261.37	75 56 11883		23 21 25 32	33.43 36.46	59 43 64.82	92 86 101	134 146	182 198	238 259	301 328	371 405	535 583	728	951 1037	1203 1312
529 268,71	77 53	15.22	23 79 25 52	34 25 36.75	60 89 65,34	95 15 102	137 117	186 200	244 261	308	381 408	548 588	746	974 1045	1233 1323
630 273.01	79 42 12077		24 36 25.73	35 08 37.05	62 37 65 87	97 45 103	149 148	191 202	249 263	316 333	393 472	561 593	764	998 1051	1263 1331
640 277 38	81 31 12172		24 95 25, 93	35 92 37 31	63 86 66.39	99 79 101	144 149	196 203	255 266	323 336	399 415	575 597	782	1022 1062	1294 1311
850 281 71	83 23° 11267		25.53 26.14	36 77 37.63	65 37 66 90	102 105	147 151	200 205	261 268	331	408	585 602	801	1046	1324 1355
660 286 01	85 16 12361	16.72 16.85	26.12 26.31	37 62 37.92	65.88 67.42	104	150 152	205 206	268 270	339 341	418 421	602 607	819 826	1070 1079	1354 1365
670 290.38	87.10 12454	17 10 16.98	26.72 26.53	38 48 38.21	68.41 67.93	107	154 153	209	274 272	346	428 425	616	838 832	1094 1087	1388 1376
\$80 294 71	89 05 12547	17 49 17.11	27 32 26 73	39 34 35 19	69 94 68 43	107	157 151	214 210	280	354 346	437 128	629 616	857 838	1119 1095	1416 1386
690 299,05	91 03	17.87 : 17.23	27 93 26.92	40 21 38 77	71 49 68.93	112	161 155	219 211	286 276	362 349	447 431	643	876	1144 1103	1148 1396
700 303-38	93 01 12730	18 26 17 35 (28.53 27.12	41 09 39.05	73 05 69.43	114 108	164 156	224 213	292 278	370 351	457 431	657 625	895 851	1169	1479 1406
710 307.71	95 01 12820	18 65 17.48	29.15 27.32	41.97 39.33	74 62 69,92	117	168 157	229 214	298 280	378 351	466 487	672 629	914 857	1194 1119	1511 1416
720 312 05	1 1	19 05 17 61	29.77 27.51	42 85 39.61	76 20 70 11	119	171 158	233 216	305 282	386 356	476	686	934 86.3	1220 1127	1543 1426
730 316.38		19 45 17 78		43.76 39.88	77 80 70.90	122 111	175 160	238 217	311 281	394 359	486	700 638 1	953 869	1245 1131	1575 1436
740 330.72	1		27.89	44 66 40.16	79.48 71.39	124 112	179 161	243 219	318 286	402 361	496	715 j	973 871	1270 1112	1608 1445
750 325 05	13177	17.97	28.07 [45 57 40.42	81 02 71.87	127 112	182 162	248 220	324 287	410 361	506 119	729 617	992	1296 1150	1641 1455
329.38	13264		28.26	46 49 40 69	82 64 72.34	129 113	186 163	253 222	331 289	418 366	517 452	744 652	1012 886	1322 1157	1673 1465
333.72	13351	18.20 (28.45	47.41 40.96	84 28 72.52	132 114	190 161	258 223	337 291	427 369	527 155	7 59 656	1032 892	1348 1165	1707 1171
338.05	13438	18.32	28.63	48 33 41.23	85 93 73.29	134 115	193 165	263 224	344 293	435 371	537 458	773 660	1053 898	1375 1173	1740 1181
\$12.39	13523	18.44	28.81	48 27 41 . 49	87.58 73.76	137	197 166	268 226	350 295	443 373	547 161	788 664	1073	1401	1774 1491
	113 64 1 13609i .		34 86 29,001	50 20° 41.75	89 25 74.22	138	201 167	273	357 297	452 376	558 161	803 668	1093	1428 1188	1807 1500

					-								-	
l'ffective Head m Feet					REV	OLUT	ions	PER	MINU	TE.				
once II m Feet						DIAM	ETIR (of Wi	1EF).					av 10
T. E	12"	15"	ES"	21"	21011	2'6''	31011;	4'0"	5'0"	6'0"	7'0"	8'0"	9'0"	10' 0"
530	1622	1297	1081	927	811	618	511	405	321	270	232	203	180	162
540	1637	1310	1091	935	818	655	546	-109	327	273	234	205	182	164
550	1652		1101	911	1	661	551	413	330	275	236	207	181	165
560	1667	1331	1111	953	831	667	556	417		278	238	1 208	185	167
570	1682	1846	1121	961	811	673	561	420		280	210	210	187	168
530	1697	1,556	1131	969	818	679	566	421	339	283	212	212	189	170
590	1711	1.360	1111	978	856	681	570	428	342	285	244	214	190	. 171
600	1725	1 250	11541	986	863	690	575	431	315	288	216	216	192	173
610	1710	1492	1160	994	870	696	580	435	318	290	: 249	218	193	171
620	1751	1403	1169	1002	877	702	585	439	351	292	251	219	i 	175
630	1768	1115	1179	1010	881	707	589	412	354	295	253	221	197	177
640	1782	1426	1155	1018	891	713	594	446	356	297	255	223	198	178
650	1796	1 137	1197	1026	898	718	599	449	359	299	257	225	200	180
660	1810	1118	1207	1035	905	721	603	453	362	302	259	226	201	181
670	1824	1459	1216	1012	912	729	608	456	365	301	261	228	203	182
680	1807	1470	1225	1050	919	735	612	459	367	306	262	230	204	184
690	1851	1480	1234	1057	925	740	617	463	370	308	261	231	206	(185
700	1861	1490	1213	1065	932	746	621	466	373	311	266	233	207	186
710	1877	1502	1251	1073	939	751	626	169	375	313	268	235	1 209	188
720	1890	1512	1260	1080	945	756	630	472	378	315	270	236	210	189
730		1523	1269	1088	952	761	634	476	381	317	272	238	211	190
740		1503	1278	1095	958	767	639	479	383	319	274	240	213	1 192
750		1543	1286	1102	1 965	772	643	482	386	322	276	211	214	193
760		1551	1295	1109	971	777	617	486	888	324	277	243	216	194
770	*****	1564	1 10.1	1117	977	782	652	489	391	326	279	241	217	196
700		1574	1312	1124	984	787	656	492	394	328	281	246	218	197
790		1584	1320	1131	990	792	660	495	398	330	283	247	220	198
800		1594	1328	1139	996	797	661	498	398	1100	[285	219	1313	L / 199

											_				
in Ft.	Sq. In.					E	FFECT	IVE H	ORSE-	POWE	R				
걸친	100 <u>−</u> 0	,				CU	BIC F	EET !	PER N	MINU	ΓE				
e Hea	() 글 (Di	METER	- E OF J	et					
cfive	Lbs. pc.		i	1							•				
Effective	H-P.	1/2"	78"	3/4"	1"	1½"	1½"	134"	2''	21/4"	2½"	3"	335"	1"	4½"
810 351.3	11 5 7 05 1869	8 22.73 3 18 67	35.52 7 29.19		90 93 74.69	142 117	205 168	278 229	364 290	460 378	568 467	818 672	1114 915	1455 1195	1841 1512
820	117 9	3 ¹ , 23, 15	36.18	52.10	92.62	145	208	284	370	469	579	834	1135	1482	1876
355.3 830	120 0	9 23 58	36 84	53.05	75.15 94 32	117	169 212	230 289	301 378	380 478	470 589	849	92I 1155	1202	1522
359.1 840	72 1386 122.2			1 1	75 60 56 03 .	118 150	170 216	232 294	302 384	486	473 600	864	1176	1210 1536	1531
364.0 850	6 1394 124 4			1	76.06 97.75	119	171 220	233	30 t	385 495	475 611	880	1197	1217 1564	1540
368.3	39 1402	8 19 12	29.89	43 04	76.51	120	172	234	306	387	478	65,1	1437	1224	1549
860 372.7	- Ł	19.24	1 30.06	43,29	99 48 76.96	155 120	224 174	305 236	398 308	504 390	622 481	896	1219 943	1592 1231	2014 1558
870 377 (128 81 1419:		39.54 30.24		101 77.40	158 121	228 174	310 247	405 310	512 392	633 481	, 911 697	1240	1619 1238	2050 1567
880 381.3	131.10 9 1427				103 77.85	161 122	232 175	315 238	412 311	521 391	644 487	927 701	1261 951	1647 1245	2085 1576
890 385 7	133 39 3 1435		40 91 30.58		1 05 78 29	164 122	236 176	321 240	419 313	530 396	655 489	943	1283 959	1676 1253	2121
900 390.0	135 60	26 62	41 60	59 91	106 78.73	166 123	240	326	426	539	666	958	1305	1704	2157 1591
910	137.87	27.07	42 30	60.91	198	169	177 244	241 332	315 433	399 548	492 677	700 975	1326	1260 1732	2193
394.3 920	140 14	27.51	43.00	61.91	110	124 172	178 248	242 ± 337	317 ² 440	401 558	495 688	712 991	1 970	1267 1761	1603
930	(142 34	27.97	43.70	62.93		175	179 252	1 214 1 343	318 447	1 10.3 1 566	497 699	: 716 1007	975 1370	1273 1790	1612 2265
403 0 940	6 - 1467: - 1 44.7 4	1	31 26 44 41	7	80 03	125 178	180 256	215 348	320 455	105 575	500 710	721 1023	980 1393	1280 1819	1621 2302
407 40 950		20.11	45.12	45 26	80 16	126 180	181	246	322	407	503	721	986	, 1287	1630
-411.73	3 14825	20/22	31 60	15 50	115 80 88	126	260 182	354 248	462 321	585 109	722 506	1039 728	1415 991	1848 1291	2339 1638
960 416 (#		j 20 33			117 81.31,	183 127	264 183	359 249	325	594 112	733 508	1056 732	1437 996	1877 1301	2376 1616
97 0 420 10	151 74 1 14985		46 55 31 93	67.03 45.97		186 128	268 161	365 250	477 327	603	745 511	1072 7.36	1460	1907 1308	2413 1655
980 421.7:	154 08 15062		1 47 27 32 09	68 07 16 21	121 s 82 15	189 128	272 185	371 · 252	484 329	613 416	756 513	1039 739	1482	1936 1311	2450 1661
990 428-07	156 44		48.00 32.26	69 11 16 45	123 82 57	192 129	276 186	376 1 253	491 330	622 418	768 516	1106 713	1505 1011	1966 1821	2488 1672
1000	158 82 15215	32.18 20.75	48 73	70 16 16 68	125 82 98	195	281	382 254	499 332	631 420	780 519	1123	1528	1996	2564 1680
1010 437-73	161.20		49 46	71 22 16 91	127 83.40	198	285 188	388	506	641	791	717 1140	1017 1551	1328 2026	2526
1020	163.63	32.12	50.19	72.28	128	201	289	394	331 514	422 651	521 803	751 1156	1022 1574	1331 2056	1689 2602
442 07 1030	15366 166 01	32.60	32 74 50 94	17.11 73.34	130	204	189 a 293 t	257 399 ·	522	121 660	524 815	754 1174	1027 1597	1311 2086	1697 2640
1840	15132	21.05 33 07	32 90 51 58	74.41	132	132	189 298	255 i	337 529	426 670	526 827	758 1191	1032 1621	1317 2117	1705 2679
450 74 1050	15516 171.27	21 16 33 55	33 06 52 42	17.60 75.49	84 63 134	132 210	190	259 / 411	339 537	428 679	529	762 1208	1037	1351 2147	1711 2718
155 07 1100	15591 183 22	21 26 35 98	56 21	47 83, 80 95)	85 03	133	191	260	340	430	839 531	765	1644 1012	1361	1722
476 T.E	15958	21.76	34 00	18 96	87 01	1335	324 196	441 267	576 3 318	729 111	899 511	1295 783	1763 1066	2302 1393	2914 1762
1150 498 41	16316	38 46 1 22 25	60 09 31 76	86 53 50 (0)	154 SS 99	240 139	200	273	615 356 j	779 151	961 556	1384 801	1884 1090	2461 1421	3112 1802
1200 520 (8)	208 77 16667	40.99 22.78	64 05 35 51	92 23 51 13	164 90 91	256 142	369 205	502 278	656 361	830 -(G)	1025 568	1476 818	2009	2623 1454	3320 1819
							+							-	

												_	
ead	I			RE	VOLU	TIONS	PER	MIN	UTE				
Effective Head in Feet			-										
Tectiv m					Dia:	METER	OF II	HEEL					
Ĭ	15^{H}	18"	21"	2' 0"	2' 6"	3' 0"	4' 0''	5' 0"	6' 0''	7' 0"	8' 0"	9'0''	10' 0"
810	1601	1337	1146	1003	802	668	501	401	334	286	251	223	200
820	1617	1345	1153	1008	807	671	501	403	336	288	252	224	202
830	1624	1353	1160	1015	812	676	507	-406	338	290	254	226	203
840	1634	1361	1167	1020	817	681	- 510	403	340	292	255	227	204
850	1643	1369	1174	1027	822	685	513	411	342	293	257	228	205
860	1653	1377	1180	1033	826	689	516	413	344	295	258	230	207
870	1662	1385	1187	1039	831	693	519	416	346	297	260	231	208
880	1672	1393	1194	1045	836	697	522	418	348	298	261	232	209
890	1681	1401	1201	1051	811	701	525	420	350	300	263	234	210
900	1691	1409	1207	1056	845	701	528	423	352	302	264	285	211
910	1700	1417	1214	1063	850	708	531	425	354	304	266	236	213
920	1709	1425	1221	1068	855	712	534	427	356	303	267	237	214
930	1719	1432	1228	1074	859	716	537	430	358	807	268	239	215
940	1728	1440	1234	1080	864	720	540	432	360	309	270	240	216
950	1787	1447	1241	1086	868	724	542	434	362	310	271	241	217
960	1746	1455	1247	1091	873	728	546	437	364	312	273	242	-218
970	1755	1463	1254	1097	878	731	548	439	365	313	271	244	219
980	1764	1470	1260	1102	882	735	551	441	367	315	275	215	220
990	1773	1478	1267	1109	887	739	551	443	369	317	277	246	222
1000	1782	1485	1273	1114	891	743	557	-146	371	318	278	248	223
1010	1791	1492	1279	1119	895	746	560	418	373	319	280	249	224
1020	1800	1500	1286	1125	900	750	562	450	375	321	281	250	225
1030	1809	1507	1292	1130	904	753	565	452	376	323	282	251	226
1040	1818	1514	1298	1136	909	757	568	454	378	323	284	252	227
1050	1826	1522	1304	1141	913	761	570	456	380	326	285	253	228
1100	1869	1557	1335	1168	934	778	584	467	389	333	292	259	234
1150	******	1592	1365	1195	955	796	597	478	398	341	1 298	265	239
1200	*****	1627	1395	1220	976	813	610	488	406	348	303	271	244
												-	

1650 336 60 66 09 103 149 264 413 595 830 1057 1333 1652 2379 3238 42 715.11 19514 26 48 41.37 59.58 100 165 298 321 424 536 662 953 1.297 14 1700 352 02 68 12 103 156 276 432 622 847 1106 1400 1726 2483 3387 44 736 78 18838 25.88 41.99 60.47 108 168 212 329 430 544 672 968 137 11 1750 367 66 72.13 113 162 283 451 650 884 1155 1462 1805 2599 3537 44	
Diameter of Jet	
1250 221 85 43 58 68 68 68 68 68 68 68	
541 75 17011 23 19 36 21 52 19 92 781 115 209 281 371 170 580 835 835 1137 14 1300 235 40 46 22 72 22 104 885 289 416 566 740 936 1156 1156 127 170 580 83 12 17318 23 65 36 96 32 29 462 118 213 290 378 179 591 1852 1159 17 1350 249 11 48 91 76 43 110 186 306 440 599 763 980 1223 1761 2397 31 1855 09 17678 24.10 37.67 54.24 96.42 151 217 295 386 488 603 868 1181 11 1400 263 03 51 68 80 71 116 207 323 465 633 826 1046 1291 1860 2531 33 (106 76 1816) 24 55 08 36 55 23 98 18 153 221 301 99.3 197 611 881 1203 11 1450 277 30 54 45 85 03 123 218 340 490 667 871 1103 1361 1960 2668 36 628 43 18321 24.88 39 03 56.21 99.93 156 225 306 400 506 625 809 1224 11 1500 291 76 57 29 89 51 129 229 358 516 702 917 1160 1432 2062 2307 36 650 10 16631 2531 39.57 56 96 101 158 228 310 405 513 633 911 1210 1210 1550 306 47 60 18 94 02 135 241 376 542 737 963 1219 1504 2166 2949 36 671.77 18942 25.66 40.10 57.74 103 160 231 314 411 520 642 921 124 126 160 321 42 165 20 73 44 19246 26.07 40.74 86.67 101 163 235 319 417 528 652 939 1278 1650 336 60 60 9 103 149 264 413 595 310 1057 1333 1652 2379 3238 4715.11 19544 26 48 41.37 59.58 106 165 238 321 424 536 662 953 1279 1278 1650 336 60 60 9 103 149 264 413 595 310 1057 1333 1652 2379 3238 4715.11 19544 26 48 41.37 59.58 106 165 238 321 424 536 662 953 1278 1278 1750 367 86 77 1980 28 28 419 264 413 595 310 1057 1333 1652 2379 3238 4715.11 19544 26 48 41.37 59.58 106 165 238 321 424 536 602 953 1278 1750 1750 367 86 78 1888 26 26 84 1.99 60.47 108 168 212 329 430 1455 1462 1805 289 3537 147 1750 367 86 72 19 113 162 289 451 850 384 1155 1462 1805 2599 3537 147 1750 367 86 72 19 113 162 289 451 850 367 884 1155 1462 1805 2599 3537 147 1750 367 86 72 19 113 162 289 451 850 384 1155 1462 1805 2599 3537 147 1750 367 86 72 19 113 160	434"
5x8 12 17318 23 65 68 95 53 29 44 62 148 91 76 33 110 196 306 440 599 763 990 1223 1761 2397 31 585.09 17678 24.10 37.67 54.21 96.42 151 217 295 386 488 603 868 1181 11 1400 263 03 51 66 80 71 116 207 323 465 633 826 1048 1291 1860 2531 33 450 277 30 54 5 80 35 52 98 18 103 221 301 393 197 611 884 120 1450 2278 306 400 506 625 809 1221 1150 11 1580 225 306 400 506 625 809	31 1879
585.09 17678 24.10 37.67 54.24 96.42 151 217 295 386 488 603 868 1181 17 1400 263 35 56 80 71 116 207 323 485 633 826 1048 1291 1860 2531 33 1450 277 30 54 55 38 123 218 340 490 667 871 1103 1361 1960 2668 36 628 43 18321 24.98 39 03 56,21 99.93 156 225 306 400 506 625 809 1221 15 1500 291 76 57 29 89 51 29 229 358 518 702 917 1160 1432 2062 2307 36 650.10 16631 253.31 39.57 56 96 101	11 1916
1450 277 30 54 45 85 03 123 218 340 490 667 871 1103 1361 1360 2668 34	
1450 277 30 54 45 85 03 123 218 340 490 667 871 1103 1361 1960 2668 34 18321 24.88 39 03 56.21 99.93 136 225 306 400 506 625 809 1221 17 1500 291 76 57 29 89 51 129 229 358 518 702 917 1160 1432 2062 2307 360 360 18631 23.31 39.57 56 96 101 158 228 310 405 513 633 911 1240 14 1550 366 47 60 18 94 02 135 241 376 542 737 963 1219 1504 2166 2949 36 671.77 18942 25.66 40.10 57.74 103 160 231 314 411 520 642 921 12.8 14 1600 321 42 63.11 98.61 142 252 384 563 773 1010 1278 1678 2272 3092 46 693 44 19246 20.07 40.74 58.67 104 163 235 319 417 528 652 939 1278 1650 336 60 60 9 103 149 264 413 595 310 1057 1333 1652 2379 3238 47 15.11 19544 23 248 41.37 59.58 106 165 238 321 424 536 662 953 1297 14 1700 352 62 63 12 103 156 276 432 622 647 1106 1400 1726 2483 3337 44 736 78 18685 25.88 41.99 60.47 108 168 242 329 430 544 672 968 137 171 1750 367 66 72.19 113 162 289 451 650 884 1155 1462 1805 2599 3537 44 1750 1750 367 66 72.19 113 162 289 451 650 884 1155 1462 1805 2599 3537 44 1750	
1500	
1550 306 47 60 18 94 02 135 241 376 542 737 963 1219 1504 2166 2949 36 671.77 18942 25.66 40.10 57.74 103 160 231 314 411 520 642 921 12.8 10 1800 321.42 63.11 98.61 142 252 384 563 773 1010 1278 1578 2272 3092 44 693 44 19246 20.07 40.74 58.67 104 163 235 319 417 528 652 939 1278 16 1650 336 60 66 93 143 44 1057 1333 1652 2379 3238 42 715.11 19544 26 48 41.37 59.58 106 165 218 321 424 536 602 953 1297 14 1700 </th <th>66 4640</th>	66 4640
1600 321.42 63.11 98.61 142 252 384 563 773 1010 1278 1578 2272 3092 44 693 44 19246 26.07 40.74 58.67 104 163 235 319 417 528 652 939 1278 16 1650 336 60 65 9 103 149 264 413 595 810 1057 1338 1652 2379 3238 42 715.11 19544 26 48 41.37 59.58 106 165 238 321 424 536 662 933 12.97 16 1700 352 02 89 12 103 156 276 432 822 847 1106 1400 1728 2483 338.7 44 736 78 19838 26.28 44 193 544 672 968 1 37<	51 4874
1650 336 60 66 09 103 149 264 413 595 810 1057 1338 1652 2379 3238 42 715.11 19544 23 48 41.37 59.58 106 165 238 321 424 536 662 953 1297 14 1700 352 02 68 12 103 156 276 432 622 847 1106 1400 1728 2483 3387 44 736 78 18635 25.88 41.99 60.47 108 168 212 329 430 544 672 968 137 15 1750 367 56 72.19 113 162 289 451 650 884 1155 1462 1305 2599 3537 44	39 5112
1700 352 02 68 12 103 156 275 432 622 847 1106 1400 1728 2483 3387 44 736 78 19838 26.88 41.99 60.47 108 168 212 329 430 544 672 968 1417 1750 367 66 72.19 113 162 289 451 650 884 1155 1462 1805 2599 3537 44	30 5353
736 78 19838 26.88 41.99 60.47 108 168 242 329 430 544 672 968 1417 1750 367 66 72.19 113 162 283 451 650 884 1155 1462 1805 2599 3537 44	95 2159 24 5599
	20 2191
	15 2223 20 6100
780 12 20413 27 66 43.21 62.23 111 173 249 339 442 560 691 996 1555 15	73 2255
801.79 20695 28.04 43.81 63.08 112 175 252 343 449 568 701 1010 1371 18	22 6356 05 2286
	30
	34
2000 449 19 88 20 138 198 353 551 794 1030 1411 1786 2205 3175 4322 51	45
2050 466 14 91 53 143 208 366 572 824 1121 1464 1853 2288 3295 4485 58	58
2100 483 30 54 90 148 214 380 593 854 1162 1518 1922 2372 3416 4650 6	73
2150 500 66 98 31 154 221 393 614 885 1204 1573 1991 2458 3539 4317 6	92
2200 518 23 102 159 229 407 636 916 1246 1623 2061 2544 3663 4986 6	12
953 18 22567 (3) 57 47 77 68 79 122 191 275 375 189 619 761 1101 1198 17 2250 536 00 105 164 237 421 658 947 1289 1684 2131 2631 3789 5157	69 1
975 15 22822 30.92 48.31 60 57; 124 193 278 379 495 626 773 1113 1515	
996.82 23075 31.26 48.85 70.34 125 195 281 383 500 633 782 1125 1532	
1018,19 23324, 31.60 19.37 71.10 126 198 284 387 507 610 790 1138 1598	
1040,16 23571 31.93 49.90 71.85 128 200 287 391 511 647 798 1150 1564	
final 53 90845 99 96 % III 79 ca 190 t oak oak oak joet Fin Jose Final Final	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	***) *****
2550 646 69, 127 198 286 503 794 1143 1555 2032 2571 3174 4571 6222 1105.17 24296 32 92 51 13 71 06 132 206 296 103 527 667 823 1385 1613	

DOBLE WATER WHEEL TABLES

Effective Head in Feet				RE	EVOLU	TIONS	PER M	HNUT	Ε			
a Fe					Dias	teter (— 01 Whe	₹F.L.				
Effer	18"	21"	2'0"	2'6"	3,0,,	4'0"	5'0"	6'0"	7'0"	8'0"	9'0"	10'0"
1250	1660	1423	1215	996	839	622	498	115	lőti	311	276	249
1300	1693	1451	1270	1016	846	635	508	423	362	317	282	254
1350	1725	1479	1294	1035	862	617	518	131	369	321	287	259
1400	1757	1506	1318	1054	878	659	527	439	376	330	293	264
1450	1788	1533	1311	1073	894	670	536	417	383	335	298	268
1500	1819	1559	1364	1091	910	682	546	455	390	341	303	273
1550	1819	1585	1387	1109	925	693	555	462	396	347	208	277
1600	1879	1610	1409	1127	939	701	564	470	403	352	313	282
1650		1635	1431	1145	954	715	572	477	409	358	318	286
1700	*****	1660	1452	1162	968	726	581	481	415	363	323	290
1750		1684	1474	1179	982	737	589	491	421	368	327	295
1800	0+0+0	1708	1491	1196	996	747	598	498	427	374	332	299
1850		1732	1515	1212	1010	758	606	50å	133	379	11.17	2393
1900	*****	1755	1535	1228	1021	768	614	512	439	381	341	307
1950		1778	1555	1241	1037	778	622	518	444	389	346	311
2000		1800	1575	1260	1050	788	630	525	450	391	350	315
2050		1823	1595	1276	1063	797	638	582	456	399	351	319
2100	*****	1845	1614	1291	1076	807	646	588	461	403	359	323
2150	.,	1867	1633	1307	1089	817	653	541	467	408	363	327
2200	*****	1888	1652	1322	1101	826	661	551	472	113	367	330
2250	*****	411177	1671	: 1337	1114	835	668	557	477	118	371	334
2300			i 1689	1351	1 1126	845	676	563	483	122	, 375	338
2350	*****		1708	1366	1138	854	683	569	488	427	379	341
2400	*****	******	1726	1380	1150	860	690	575	493	431	383	345
2450	*****	*****	1743	1395	1162	872	697	581	498	436	387	349
2500	44444	1	1761	1409	1174	881	704	587	503	440	391	359
2550	*****	400000	1779	1423	1186	889	711	593	7.08	145	395	356

HEAD REQUIRED TO OVERCOME FRICTION IN CLEAN IRON PIPES FOR EACH 100 FEET OF LENGTH, AND DISCHARGE IN CUBIC FEET PER MINUTE

		ENGTH, A			CUBIC 1	FEET PER	MINUTI	-
Velocity in Ft. per Sec. 227		1		2		3		
Dia, of Pipe in Inches.	Loss of head in ft.	Dis. in cu. ft p. min.	Loss of head in ft	Dîs, în cu. ft. p-min.	Loss of head in it	Dis. in cu. ft p min.	Loss of head in ft.	Dis. in cu
1 2 3 4 5	1.637 0,579 0.315 0.204 0.146	0.33 1.32 2.94 5.24 6.16	6.548 2 316 1 261 0 818 0 585	0.65 2 63 5 89 10 47 16 36	14 748 5 209 2 845 1 842	0 98 3 95 8 83 15 71	26 192 9 260 5 041 3 274	1 31 5 27 11 78 20 91 32 72
6 7 8 9	0 111 0 088 0 072 0.061	8 18 11 78 16.03 20 91 26 50	0 145 0,353 0 289 0 212	23 56 32 07 41 88 53 01	1 318 1 003 0,796 0 651 0,546	35 34 48 10 62 82 79 51	2 343 1 782 1 414 1 158 0 970	47 12 64 13 83 76 106 01
10 11 12 13	0,052 0,045 0,039 0,035	32 72 39 59 47 12 55 30	0 201 0 179 0 157 0 140	65 14 79.18 91 23 110 59	0 466 0 404 0 354 0 314	98 16 118 77 111 35 165 89	0 828 0 718 0 639 0 559	130 88 158 36 188 17 221 18
14 15 16 17	0 031 0.028 0 025 0 023	64-13 73-62 83-76 91-56	0.125 0.113 0.102 0.093	128 26 147 23 167,52 189 12	0 281 0 254 0 230 0 210	192.39 220.85 251.28 283.68	0 500 0 451 0 409 0 374	256 53 294 17 335 05 378 21
18 19 20 22	0.021 0.020 0.018 0.016	106-01 118-12 130-88 158-36	0 086 0 079 0 073 0 063	212 02 236 24 261 76 316 72	0.193 0.178 0.165 0.143	318 01 354 36 392 61 475 09	0 343 0 316 0 293 0 254	424 05 472, 17 523 52 633 45
24 26 28 30 32	0 014 0.012 0 011 0.010	188 47 221 19 256 52 294 48	0 056 0 049 0 011 0 040	376 93 442 37 513 04 588 96 670 10	0 125 0 111 0 100 0 090	563-56 663-56 769-56 883-43	0 223 0 198 0 177 0 159	753 86 881 74 1026 00 1177 91
34 36 38 40	0.009 0.008 0.007 0.007 0.006	335-05 378-21 424.06 472-47 523-50	0 036 0.033 0 0.0 0.028 0 026	756 18 848 11 914 93 1047 00	0 081 0 074 0 068 0 063 0 058	1005-15 1134-72 1272-17 1117, 10 1570-50	0 144 0.132 0 121 0.112 0 104	1340-20 1512-96 1696-23 1889-86 2094-00
42 48 54 60	0.096 0.005 0.001 0.003	577.16 753.88 954.10 1177.89	0 024 0 019 0 017 0 011	1154 32 1507 76 1908 19 2355 79	0 054 0 014 0 037 0 032	1781 17 2261 61 2862 29 3533,68	0 096 0 079 0 066 0 056	2308 63 3015 52 3816 39 4744 58
Velocity in Ft., per Sec. ##	5	,		5		7		3
1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18	40 925 14 469 7 876 5 116 3 660 2 784 2 210 1 809 1 516 1 294 1 122 0 985 0 873 0 781 0 705 0 640 0 536	1 64 6 58 11 72 26 18 40 90 58 89 80 16 104.70 132.51 163.60 197.95 225.59 276.48 320.66 368.09 448.81 172.80 530.06	88, 932 20, 836 11, 342 7, 367 5, 271 4, 010 3, 182 2, 605 2, 183 1, 861 1, 615 1, 118 1, 257 1, 125 1, 015 0, 921 0, 841 0, 772	1 96 7 90 17 67 31 41 49 08 70 67 96 20 125 61 159 02 196 32 237 54 282 70 331 77 341 79 111 70 502 57 507 36	\$0 213 28 359 15 437 10 027 7 171 5, 458 4, 331 3 515 2 971 2, 537 2 198 1, 930 1, 711 1 381 1 253 1 141 1 050	2 29 9 222 20 61 36 65 57 26 82 15 112 23 146 58 185 52 229 04 277 13 329 82 387 07 448 92 515 32 586 33 661 92 742 09	104 768 37,041 20,163 13,096 9,371 7,129 5,657 4,630 3,880 3,313 2,869 2,235 2,000 1,801 1,637 1,491 1,372	2.62 10 st 23 56 41 88 65 11 91.23 128 26 167 52 212.02 261 76 376 94 412.36 588 94 670 00 756 48 818 10
19 20 22 24 26 28 30 32 31 36 38 40 42 48 54 60	0 494 0 158 0 397 0 348 0 309 0 276 0 279 0 297 0 297 0 162 0 163 0 163 0 163 0 688	590 59 651 10 791 81 912 33 1105 93 1282 61 1172 39 1675 25 1891 20 2120 29 2362 33 2617 50 2885 79 3769 10 1770 49 5889 17	0 712 0.659 0 501 0 415 0 389 0 325 0 297 0 273 0 252 0 233 0 216 0 177 0 119 0 127	708 71 785 27 950 17 1130 79 1327 11 1539 13 1768 87 2010 30 2269. 11 2511.31 2831.80 3141 00 3462 95 4523 28 5724 58 7067 37	0 969 0 807 0 777 0 682 0 605 0 541 0 488 0 443 0 405 0 317 0 313 0 317 0 244 0 202 0 172	826 83 916 15 1108 53 1319 26 1548 30 1795 65 2061 31 2345 35 2647 68 2968 40 3307,26 3661,50 4040,10 5277 16 6678 68 8245 26	1,265 1,171 1,015 0,891 0,790 0,707 0,637 0,579 0,529 0,185 0,417 0,411 0,315 0,264 0,225	911 95 1017 03 1266 90 1507 72 1769 18 2052 17 2355 82 2680 40 3025 92 3379 73 4188 00 4617 26 6031 04 7632 78 9123 16

HEAD REQUIRED TO OVERCOME FRICTION IN CLEAN IRON PIPES FOR EACH 100

FI	ET OF L	ENGTH, A	ND DISC	HARGE IN	CUBIC F	EET PER	MINUTE	
Velocity in Ft. per Sec. #27)		10	1	1	1	2
Dia of Pipe	Loss of head in ft.	Dis in cu	Loss of	Dis. in cu		Dis. in cu.		Dis in cu.
1 22 23 -1 23 23	1 52 597 16 880 25 519 16 575 11 860	2 95 11 85 26 50 47,12 73 62	163 700 37 877 31 504 20 462 14 642	3 27 13 17 29 15 52 35 81 80	198 077 70 031 38 120 21 760 17 717	3 60 14 48 32 39 57,59 89 98	235-728 83-343 45-366 29-466 21-084	3 93 15 80 35 34 62 82 98,16
6 7 8 9 10	9 022 7 159 5 860 4 911 1 194 3 635	106 01 114 30 188 46 238 53 294 48 356 32	11 1.38 8 839 7 231 6 063 5 177 4 187	117 79 160 33 209 10 265 03 327 20 395 91	13 177 10 695 8 754 7 336 6 264 5 129	129 57 176 36 230 31 291 53 359 92 135 50	16 009 12 728 10 448 8 731 7 455 6 461	141 35 192 39 251 28 318 03 392 64 475 09
12 13 14 15 16	3 190 2 829 2 531 2 283 2 072	424 06 497 06 577 18 662 56 753 85	3 938 3 192 3 125 2 819 2 558	471 17 552 95 611 31 736 17 847 62	1 765 4.225 3 781 3.411 3 095	518 29 608 25 705 45 809.79 921 38	5 671 5 028 4 500 4 059 3 684	563-41 663-54 769-58 883-41 1005-14
17 18 19 20 22	1 891 1 736 1,602 1 482 1 285 1,128	851-04 951-11 1063-07 1177-91 1425-26 1696-19	2 335 2 143 1 977 1 830 1 586 1 392	945-60 1060-12 1181-19 1308-79 1583-62 1884-66	2 825 2 594 2 392 2 393 2 214 1 919 1 681	1040-16 1166-13 1289-30 1439-67 1741-98 2073-12	3 362 3 687 2 847 2 635 2 284 2 004	1134 72 1272 15 1117 42 1570 55 1900 35 2261 59
26 25 80 2 1	1 000 0.895 0.807 0.732 0 669	1990 67 2308 69 2650 30 [3015 45 3101 15	1 245 1 105 0 996 0 901 0 826	2211 85 2565 21 2944 78 3350 50 3782 39	1 494 1 337 1 205 1 094 0 999	2133 04 2821 71 3289 26 3685 56 4160 63	1 778 1 591 1 134 1 302 1 189	2654 22 2078 26 3543 73 4020 61 4588 87
35 40 42 48	0 614 0 566 0.624 0 187 0 399	3816 51 4252 19 4711 50 5191 42 6781 91	0 758 0 699 0 647 0 601 0 492	4210 57 4721 66 5235 00 5771.58 7538 79	0 917 0 846 0 783 0 727 0 595	4664 63 5197 13 5758 49 6348 73 8292 67	1 092 1 007 0 932 0 865 0 708	5088-69 5669-59 6281-99 6925-89 , 9046-55
51		8586-88	0 413	9540-97	0.500	10495 07	0.595	11449 17
	0.335 0.285	10601-05	_ 0 52	11778 95	0.150	12956-84	0.507	11131.71
Velocity in let.	0.285	10601-05	= 0 52 1	11778 95	0 126 1	12956-81	0 507	6
Velocity in let.	0.285 0.285	10601-05	_ 0 52	11778 95	0.150	12956-84	0.507	11131.71
Velocity in let. per Sec. #20* 1 2 3 4 5 6 7 8 9 10	0 :::5 0 ::285 1 276 ::653 97 ::812 ::33 ::532 ::34 ::582 ::21 ::745 ::18 ::824 ::19 ::282 ::19 ::19 ::19 ::19 ::19 ::19 ::19 ::19	10601 05 3 1 25 17 12 38 28 68 06	0 452 1 1 320 852 113 439 61 749 40 107 28 698 21 812 17 324 14 181 11 883 10 147	11778 95 4 4 1 58 18 41 11 23 73 30 114 52 164 90 224 16 203 17 371 01 158 08	0 126 368 325 100 223 70 885 46 011 32 914 25 064 19 888 16 27 11 648	12956 81 4 91 19 75 11 17 78 53 122 70 176 68 230 19 314 11 397 54 490 80	0 507 419 672 148 165 80 651 52 684 37 486 28 514 22 628 18 521 15 521 13 253	14134.74 6 21 07 47 12 83 76 100 88 188 46 256 52 335 05 121 04 523 52
51 60 Velocity in l-t. per Sec. Rat* 3 4 5 6 7 8 9 10 11 12 13 14 15	0 :::5 0 ::285 1 276 653 97 812 53 242 24 745 18 824 11 9.8 12 227 10 246 8 719 7 580 6 655 5 901 5 281 4 764	10501 05 d 3	0 552 1 320 852 113 359 61 749 40 107 28 698 21 812 17 324 11 181 11 883 10 147 7 748 6 844 6 125 5 525	11778 95 1 1 58 11 11 23 78 30 114 52 164 90 224 86 233 17 371 04 158 08 554 27 659 61 771 13 897 81 1020 64	0 126 11 11 12 12 12 12 12 12 12 12 12 12 12	12956 84 4 91 19 75 44 17 78 53 122 70 176 68 230 49 334 41 397 54 490 80 706 76 820 43 706 76 820 43 101 26	0 507 419 072 148 165 80 651 52 384 37 183 28 514 22 628 18 521 15 521 13 253 11 186 10 081 8 940 8 000 7 217	14131.74 6 21 07 47 12 83 76 130 88 188 46 256 52 335 05 121 04 523 52 688 45 734 88 884 72 1026 10 1177 88
Velocityin I-t. per Sec. Rat* 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0 .885 0.285 1 276 653 97 812 53 242 34 582 24 745 14 938 12 227 10 216 8 719 7 580 6 655 5 901 5 281 4 76 1 .323 3 946 3 622 3 311 3 093	10501 05 1 25 1 1 25 1 1 25 1 1 25 1 1 25 1 2 28 28 68 06 106 34 1 153 13 208 43 272 23 344 51 425 36 612 53 612 53 71 957 02 1088 90 1229 28 1378 16 1505 54 1701 13	0 552 113 639 61 739 61 739 40 107 28 698 21 812 17 324 11 181 11 183 10 147 8 794 7 718 6 684 6 125 5 525 5 014 4 577 1 201 3 885 3 387	11778 95 1588 18 41 11 23 73 30 114 52 164 90 224 16 226 17 371 01 158 08 554 27 659 64 177 13 897 81 1020 64 1172 66 1223 84 1181 17 1633 66 1832 31 1832	0 126 1 368 325 1 100 223 70 885 16 011 32 914 25 061 19 888 16 279 13 612 11 648 16 096 8 861 7 857 7 041 6 343 5 756 5 254 1 822 4 418 4 118	12956 84 4 91 19 75 44 17 78 53 122 70 176 68 240 19 344 11 397 54 490 80 593 86 706 76 820 43 961 97 1104 26 1256 12 1448 10 1450 18 1771 78 19 33 19	0 507 419 072 118 165 80 651 52 084 57 186 28 514 12 628 18 521 15 521 16 081 10 081 8 940 8 940 7 217 6 548 5 985 5 966 5 061 1 685	6 24 21 07 47 12 83 76 100 88 188 46 256 52 335 05 421 04 523 52 633 45 753 88 884 72 1026 10 1177 88 1310 19 1512 96 1696 20 1889 90 2091 06
Velocity in lat. per Sec. Ren' 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0 .835 0 .285 1 276 653 97 812 34 782 24 745 11 9.88 12 227 10 246 8 749 7 580 6 655 5 901 5 281 4 764 4 764 4 .323 3 946 3 622 3 311 3 093 2 382 2 087 1 683	10501 05 1 25 1 25 1 25 1 25 28 28 68 06 06 34 153 13 208 13 272 23 341 54 425 36 612 53 748 84 834 71 857 02 1088 90 1229 28 1578 16 1535 54 1701 13 2058 74 2150 05 2875 44 3334 78 3328 21	0 552 113 359 61 749 40 107 28 698 21 812 17 324 14 181 11 883 10 147 8 794 7 718 6 844 6 125 5 525 5 044 4 577 4 577 3 875 3 387 3 109 2 728 2 421 2 166 1 952	11778 95 1 58 18 11 11 23 73 30 111 52 161 90 224 16 233 17 371 01 158 08 551 27 659 61 771 13 897 81 1020 64 1172 65 1172 65 1232 84 1172 65 1232 84 1172 65 1232 84 1172 65 1232 84 1232 84 1232 84 1232 84 1334 85 1334 86 1335 66 1852 31 2217 07 2638 52 306 60 3591 20 3122 69	0 126 11 11 11 12 12 12 12 12 12 12 12 12 12	12956 84 -1 91 -19 75 -14 17 -78 56 -122 70 -176 68 -220 49 -176 68 -220 49 -189 54 -490 80 -593 86 -706 76 -820 43 -961 97 -1104 26 -1256 12 -1418 10 -1590 18 -1771 78 -1973 13 -2826 98 -3317 78 -3817 82 -4117 17	0 507 419 072 148 165 80 651 52 884 57 186 28 514 22 628 15 521 13 253 11 186 10 081 8 940 8 060 7 217 6 548 5 948 5 948 5 948 5 948 5 948 5 95 1 081 1 081 2 8 54 3 54 3 55 4 6 55 5 95 6 5 95 6 7 95	6 24 21 07 47 12 83 76 130 88 188 46 256 52 335 05 121 04 523 52 1625 10 1177 88 1310 19 1512 96 1889 90 2503 79 2015 45 2528 97 1101 51 4711 61
51 60 Velocity in lat. per Sec. #20" 1 2 3 4 5 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 24 26 28 30	0 .885 0 .285 0 .285 97 .812 34 .582 24 .745 11 .9.48 12 .227 10 .216 8 .749 7 .6 .655 5 .901 4 .764 1 .323 3 .946 2 .331 2 .8311 3 .936 2 .352 2 .837 1 .837	10501 05 1 25 1 25 1 25 1 25 28 28 68 06 106 34 153 18 272 23 341 54 425 36 511 68 612 53 718 81 833 71 957 02 1088 90 1299 28 1378 16 1535 54 1 2450 05 2875 41 2450 05 2875 41 3331 78	0 552 113 359 61 749 40 107 28 698 21 812 17 324 11 183 10 147 7 748 6 844 6 125 5 525 5 014 4 577 1 201 3 875 3 109 2 728 2 421 2 166	11778 95 1 58 11 123 73 30 114 52 164 90 224 16 233 17 371 04 158 08 554 27 659 64 1771 13 897 81 1030 64 1172 65 1334 17 1653 66 1823 84 184 17 1653 66 1822 31 2217 07 2638 52 3096 60 3091 30	0 126 11 11 11 12 12 12 12 12 12 12 12 12 12	12956 84 -4 91 -19 75 -44 17 -78 53 -122 70 -176 68 -230 19 -3314 11 -397 54 -490 80 -706 76 -820 43 -490 80 -706 76 -820 43 -1104 26 -1236 12 -1438 10 -1590 18 -1771 78 -19 31 19 -2675 43 -2866 98 -3317 78 -3817 82	0 507 419 072 118 165 80 651 52 384 37 183 28 514 22 628 13 253 11 186 10 081 8 000 7 217 6 548 5 958 5 960 1 000 3 531 3 162 2 829	14131.74 6 21 07 47 12 83 76 130 88 188 46 256 52 333 05 121 04 523 52 623 45 734 88 884 72 1026 10 1177 88 1310 19 1512 96 1696 20 1889 90 2513 79 6015 45 6328 97 4104 31

HEAD REQUIRED TO OVERCOME FRICTION IN CLEAN IRON PIPES FOR EACH 100 FEET OF LENGTH, AND DISCHARGE IN CUBIC FEET PER MINUTE

Velocity in Ft.		17		8 8		FEET PER		20
Dia of Pipe	Loss of	Dis. in cu.	Loss of	Dis. in cu.		Dis. in cu.		Dis. in cu.
in Inches.	178 093	<u>ift p. mm.</u>	head in It.	5 89	head in it	6 22		. ft. p. min. 6.51
3	167 285 91 048 59 137 42 315	22 39 50 06 89 00 1 139 06	187 521 102 074 66 298 47 439	24 70 53 01 94 23 147 24	208 936 113 731 73 870 52 857	25 02 55 95 90 17 155 12	231 508 126 018 51 850 58 567	26 34 58 90 101 70 163 60
5 8 9	22 189 25 515 20 909 17 522	1 200 23 272 56 355 99 350 55	36 088 27 6.38 23 111 19 614	212 02 288 59 376 94 177 05	30 209 31 909 26 118 21 887	223 80 304 62 397 87 593 55	13 553 35 356 28 940	235 58 329 66 418 81 530 0a
10 11 12 13	14 962 12 967 11 381 10 092	556 23 673 04 801 00 940 02	16 773 14 538 12 759 11 314	588-95 712-63 848-11 995-32	18 689 16 195 11 216 12 606	621 67 752 92 895 23 1050 61	21 252 20 708 17 918 15 752 15 968	651 39 791 81 (942 35 1105 91
11 15 16	9 031 8 147 7 593	1090 23 1251 49 1423 95	10 125 9 134 8 288	1154 37 1325 11 1507 71	11 281 10 177 9 234	1218 50 1398 73	12 530 11 276	1282 63 1472 35
17 18 19 10	6 748 6 193 5 714 5 289	1607-52 1802-21 2008-02 2221-94	7 565 6 946 6 105 5 929	1702 08 1908 22 2126 13 2355 82	8 129 7 739 7 137 6 603	1591 47 (1796 61 2014 23 2241 25 2186 70	2 (20 2 (2) 4 (3) 5 (3) 5 (3)	1675-23 1891-20 2120-24 2362-37 2617-58
22 24 46 28 30	1 584 4 023 3 570 3 193 2 878	2692-16 3203-92 3760-15 1300-86 5006-12	5 138 4 510 4 001 3 580 3 227	2850 52 3392 38 3981 31 617 39 5300 60	5 725 5 025 1 158 2 989 3 596	3008-88 3580-85 4202-52 4873-91 5595-08	6 D11 5 5 5 1 91 5 1 1 7 6 5 45 1	3167 21 3769 31 1423 71 5130 43 5889 56
82 83 86 88 40	2 613 2 387 2 191 2 020 1 870	5695-86 6430-07 7208-97 8031-92 8899-19	2 929 2,676 2 456 2 265	6030-91 6808-01 7603-03 8504-39	2 263 2 982 2 736 2 523	6365-96 7186-55 8057-08 8976-85	(G) () ;	6701 01 7561 79 8181 14 9119 32
12 18 51 60	1 737 1 422 1 191 1 017	9811 68 12815 95 16219 65 20021 21	2.096 1.947 1.594 1.338 1.140	9422 99 16388 84 13569 83 17173 75 21202 11	2 336 2 170 1 776 1 191 1 271	9946 49 10965 99 14323 71 18127 85 22380 00	2 75 2 101 1 9 5 1 62 1 108	10 69 99 115 43 15 15 15 15 15 17 19 19 19 19 19 19 19
Velocity in Ft. per Sec Ant	2	1	22	2	2	!3	2	
1 2 3 4 5	721 917 255 237 168 934 90 240 61 570	6 87 27 65 61 81 109 91 171 78	792 :008 280 125 152 481 99 0.38 70 866	7 20 28 97 61 79 115 17 179 96	865 973 306 169 166 658 108 247 77 445	7 53 30 29 67 73 120 40 188 14	912 912 333 372 181 465 117 864 81 337	7 85 31 60 70 68 125 64 196 32
6 7 8 9 10	19 120 38 980 31 906 26 738 22 801	247-36 336-69 439-75 556-56 687-11	53 910 12 781 35 017 29 345 25 057	259-14 352-72 360-69 583-06 719-83	58 922 16 758 38 273 32 073 27 386	270 91 368 75 481 63 609 56 752 55	64 157 50 913 11 671 34 923 29 819	282 69 384 79 502 57 636 07 785 27
11 12 13 14 15	19 788 17 367 15 400 13 781 12 632	831 40 989 47 1161 20 1346 76 1545 96	21 717 19 060 16 901 15 125 13 614	871 00 1036 58 1216 50 1410 89 1619 58	23 736 20 832 18 473 46 531 14 913	910 59 1083 70 1271 80 1475 02 1693 20	25 845 22 683 20 114 18 000 16,237	950 18 1130 82 1327 09 1539 15 1766 82
16 17 18 19 20	11 281 10 297 9 151 8 708 8 070	1759 00 1985 76 2226 26 2480 19 2748 46	12 381 11 301 1 10 372 9 569 8 857	1842-76 2080-32 2332-27 2598-61 2879-34	13 532 12 352 11 336 10 458 9 681	1926 52 2174 88 2438 28 2716 73 3010 22	11.731 13.460 12.314 11.388 10.514	2010 28 2269 44 2544 29 2834 85 3141 40
23 24 26 28 20	6 994 6 139 5 116 4 873 1 392	3957 78 ¹ 3957 78 ¹ 4644.89 5386 95 6181 03	7,676 6,737 5,977 5,348 4,821	3483-97 4146-24 4866-08 5643-47 6478.51	8 390 7 364 6 533 5 845 5 269	3642 33 4334 71 5087 26 5899 99 6773 00	9 435 8 018 7 114 6 365	3800 69 4523 17 5308 15 6156 51
32 34 36 38 40	3 987 3 643 3 343 3 063	7036-06 7943-03 8905,20 9921-79 10993-19	4 375 3 998 3 669 3 383	7371 11 8321 27 9329 26 10391 25 11516 99	4 782 1 370 4 010 3 608 3 123	7706 16 8699 51 9753 31 10866 72	5.737 5.207 1.758 4.366 4.026	7067-67 8041-21 9077-75 10177-37 11339-18 12559-00
42 48 54 60	2,650 2,170 1,821 ; ;	12120 31 15831 47 20036 01 24735 79	2 909 2 081 1 909	12697, 47 ¹ 16585 31 2090 14 25913,69	3,179 2,603 2,185 1,862	12040 49 13274 62 17339 22 21944 24 27091 58	3 727 3 462 2 831 2 379 2 028	12563 99 13851 78 18093 10 22898 31 28269 48

ENAMPLES ILLUSTRATING THE USE OF THE TABLES ON PAGES 76, 77 AND 78.

EXAMPLE: Having a head of 1,000 feet and 3,000 feet of pipe, carrying 750 cubic feet of water per minute, to find the size of pipe and loss of head, allowing a velocity of 8 feet per second. In the right-hand column under 8-foot velocity, find 756.48 cubic feet (the nearest to 750). Opposite will be found 17-inch pipe, the size required. The loss of head is 1.494 for each 100 feet of pipe or 30 × 1.494 44.82 for the total length. The effective head, therefore, is 750 - 44.82 = 705 18 feet.

EXAMPLE: With a head of 500 feet and 1250 feet of pipe carrying 1200 cubic feet of water per minute, to find the size of pipe, allowing 5 per cent loss of head due to friction. For each 100 feet of pipe the loss would be 5 per cent of 500 or 25 feet ÷ 12.50 = 2 feet loss. In the columns find the figures corresponding nearest to 2 feet loss of head and a discharge of 1200 cubic feet. These are found to be 1.977 feet loss for 1181.19 cubic feet, and call for a 19-inch pipe and a velocity of 10 feet per second.

EXAMPLE: Having a head of 700 feet and 2200 feet of 20-inch pipe, carrying 1832 cubic feet per minute, to find effective head and velocity. In the right-hand column opposite 20-inch pipe, find 1832. Opposite this will be found the loss of head in feet for this amount of water for 100 feet of pipe, which is 3.587. Multiply this by the number of hundred feet of pipe, which is 22, which gives 79.9 feet, the loss of head. Therefore the effective head is 700-79.9=620.1 feet. The velocity is denoted at the top of the column and is 14 feet per second.

LOSS OF HEAD IN CIRCULAR BENDS

HEAD REQUIRED TO OVERCOME RESISTANCE IN CIRCULAR BENDS OF 90°, EXCLUSIVE OF FRICTION.

For a bend of less than 90° , divide the resistance given in this table by 90° and multiply by the number of degrees of bend.

Velocity			RATIO ()F RADIUS	OF BEND A	OF PIPE			
in Feet per Second	1	1.25	1.5	1 75	2	2.5	3	3 5	1
				LOSS OF	F HEAD IN	FEET			
1 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25	0 001 0 018 0 018 0 011 0 073 0 114 0 164 0 221 0 292 0 370 0 156 0 552 0 657 0 771 0 895 1 169 1 319 1 489 1 648 1 826 2 209 2 415 2 629	0 003 0 013 0 029 0 051 0 029 0 051 0 156 0 204 0 259 0 319 0 386 0 460 0 540 0 626 0 719 0 818 0 923 1 134 1 278 1 408 1 566 1 690 1,810 1,810 1,935	0.003 0.010 0.012 0.012 0.066 0.005 0.130 0.169 0.214 0.265 0.320 0.381 0.417 0.519 0.596 0.678 0.765 0.858 0.956 1.059 1.167 1.281 1.100 1.525	0 002 0,009 0 021 0 038 0,050 0 086 0,117 0 153 0 194 0 239 0 314 0 404 0 469 0 538 0 612 0 691 0 775 0 863 0 975 1 157 1 157 1 157 1 157 1 157	0 002 0 009 0 036 0 036 0 056 0 056 0 051 0 111 0 114 0 183 0 226 0 273 0 325 0 325 0 558 0 578 0 652 0 731 0 815 0 903 1 194 1 30)	0 002 0 008 0 019 0 034 0 053 0 077 0 105 0 137 0 214 0 258 0 308 0 308 0 319 0 517 0 617 0 617 0 692 0 771 0 .855 0 .942 1 034 1 130 1 231	0 002 0 003 0 008 0 019 0 033 0 052 0 075 0 102 0 134 0 169 0 209 0 253 0 301 0 353 0 109 0 470 0 505 0 603 0 677 0 754 0 835 0 921 1 101 1 105 1 203	0 002 0 008 0 008 0 033 0 052 0 052 0 074 0 101 0 132 0 245 0 246 0 246 0 105 0 105	0 002 0 008 0 008 0 018 0 031 0 051 0 074 0 101 0 131 0 166 0 205 0 296 0 347 0 102 0 526 0 598 0 598 0 741 0 804 1 0

RIVETED HYDRAULIC PIPE

Made of sheet steel plates, ultimate tensile strength 55,000 lbs. per square inch, double-riveted longitudinal joints and single-riveted circular joints. Strength of longitudinal joints, 70%. Strain by safe pressure, ¼ of ultimate strength.

Internal Diam.	C	kness of ate	Sate	Safe	Weight per lin. ft.	Internal Diam.	Thick of Pla	Ē.	Safe	Safe	Weight per lin. ft.	Internal Diam.	Thick of Pla		Safe	Safe Pressure	Weight per lin. it.
Ins.	U.S. St'd. G'ge	Ins.	Ft.	Sq. In.	lbs	Ins.	U.S. St'd. G'ge	Ins.	Ft.	bs Sq. In.	ibs	Ins.	U.S. St'd G'ge	Ins.	Ft	1bs Sq. In.	lbs
3 444 555 6 6 6 6 7777 8 8 8 8 8	18 18 16 14 18 16 14 18 16 14 12 18 16 14 12 18 16 14 12	.050 .050 .050 .062 .078 .050 .062 .078 .109 .050 .062 .078 .109 .050 .062 .078 .109	740 555 693 866 444 555 693 370 462 578 808 317 396 495 693 277 316 433 606	320 240 309 375 192 210 300 160 200 250 350 137 171 214 300 120 150 150	2.2 2.8 3.7 4.4 3.5 4.1 5.2 6.1 8.8 4.7 5.9 7.3 10.0 5.3 6.7 8.2	8 9 9 9 10 10 10 10 10 11 11 11 11 11 11	10 16 11 12 10 16 14 12 10 8 8 8 16 14 12 10 8 8 16 14 11 12 10 16 16 16 16 16 16 16 16 16 16 16 16 16	.140 .062 .078 .109 .140 .062 .078 .100 .141 .187 .062 .078 .109 .140 .140 .171 .187	777 308 385 539 693 277 316 485 623 761 832 252 314 439 565 693 757 231 269	337 133 167 233 300 120 150 210 270 330 361 109 136 190 245 300 328 100 125	14.5 7.5 9.2 12.6 16.4 8.3 10.2 14.2 18.0 21.5 23.5 9.0 11.0 15.2 19.3 23.5 25.5 9.9 9.9 9.9 9.9 9.9 9.9 9.9	12 12 12 12 13 13 13 13 14 14 14 14 14 14 15	12 10 8 3/6 16 11 12 10 8 3/6 16 14 12 10 8 3/6 16 14	109 110 171 187 1062 .078 .109 1.140 .171 .187 .062 .078 .109 1.140 .171 .187 .062 .078 .098 .0	401 519 635 693 266 372 478 587 639 198 218 316 115 543 792 185 231	175 225 275 300 92 115 161 207 254 277 86 107 150 193 235 237 348 100	16 7 21 0 25 6 27 7 10 7 13 1 17 8 22 5 27.5 29 8 11.4 11.0 22 1 2 29.5 31 9 42.7 12.0

RIVETED HYDRAULIC PIPE-Continued.

Internal Dram.	Thicks of Plat	1	Saic	Safe	Weight '	Internal Diam.	Thick of Pla		Safe Head	Safe	Weight per lin it	Internal Diam.	Thicki of Plat	ness le 1	Sale Head	Sate	Weight per lin. ft.,
Ins.	U S St'd G'ge	Ins.	Ft.	Sq. In	ths	Ins.	U.S. St'd G'ge	Ins.	Ft.	fbs Sq. In.	Ths !	lns.	U.S. St'd G'ge	Ins.	Ft	Sq.,	lbs -
15 15 15 15 15 15	12 10 8 3/6 3/4	109 .140 .171 .187 .250	323 415 507 555 739	140 180 220 240 320	20 3 25 7 30.4 34.0 45.5	26 26 26 26 26 26	5/0 7/6 7/6 7/8	312 .375 437 .500 .625	533 640 747 854 1066	370	95.5 114.5 131.0 153.0 191.0	42 42 42 42 42 42	34 34 34 1 m.	.509 .625 750 875 1.000	528 660 792 924 1056	286 343 400	240 5 502 0 561 5 421 0 486 0
16 16 16 16 16 16 16 16 18	16 14 12 10 8 3 16 5 16	.062 078 .109 140 .171 .187 .250 .312	173 217 303 388 475 520 693 866	75 94 131 168 206 225 300 375	12 8 16.0 21.5 27 3 33 3 36 0 48 2 60 6	28 28 28 28 28 28 28 28 28 28 28 28 28 2	11 12 10 8 3 10 14 16 17 16 17 18	.078 .109 .140 .171 .187 .250 .437 .500 .623	272 297 396 496 595 695 794	54 75 96 118 129 172 215 238 301 344 430	27 2 37 5 47 5 58 0 62.0 82.2 102 5 123.0 143.5 161 0 205.0	48 48 48 48 48 48 48 48 48 48	10 8 3,00 3,4 1,6 1,6 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7	140 171 187 250 312 375 147 500 625 750 875	150 158 173 281 289 404 462 578 693 808	100 125 150 175 200 250 250	
18 18 18 18 18 18 18	12 10 8 3 10	.109 .110 .171 .187 .250 .812 .375	270 346 422 462 616 770 924	117 150 183 200 267 333 100	21 4 30 7 38 4 10 5 51 1 67 7 81 3	30 30 30 30 30 30 30 30	12 10 8	109 -140 171 187 -250 312 -37 -137	162 208 254 277 370 370 462 555	70 90 110 120 160 200 216 280	39 5 50.3 60 5 65 5 87.5 109 0 130 5	48 51 51 54 54 54	1 in. 8	1 000 1.171 187 250 312 375 -437 00	924 141 154 205 256 348 359	61 67 81 111 132	110 0 119.0 1159.0 1 198.0 3 237 0 5 277.5
20 20 20 20 20 20 20 20 20 20	11 12 10 8 3,10 3,10 3,10 3,10 3,10 3,10 3,10 3,10	.178 .109 110 .171 .187 .250 .312 .375 .437	173 242 311 380 416 555 693 831 970	75 105 135 165 180 240 300 360 420	19 6 27 3 34 5 41 5 45 0 59.6 74.6 89.5 105 0	05.	12 10 8 316 314	.109 109 140 171 185 250	739 924 1108 1108 1134 173 1 211 231 2 308	320 400 480 1 58	171 5 220 0 261 0 47.7 60.0 75.0 79.0	54 54 54 54 60 60	1 12 8 1 in. 8 1 15 10 10 10 10 10 10 10 10 10 10 10 10 10	171 1875 1 1875 1 187 250 312	513 616 719 822 127 139 185	202 267 313 356 36 36 84	2 399,5 7 179,5 2 563 5 6 647,5 0 121,0 0 131 0 0 175,0
92 92 92 92 92 92 92 92 92 92	16 14 12 10 8 3 16 14 5 16	.062 .078 .109 .110 .171 .187 .250 .312	157 220 283 346 378 505 631	55 68 95 123 150 164 219 273 328	17.7 21.2 29.2 37.1 45.2 49.0 65.5 81.5 98.0	36 36 36 36 36 36 36 36 36	5/16 5/16 5/16 5/16 1 in.	.31: .37: .43: .50: .62: .75: .87: 1.00:	5 462 539 616 770 6 924 5 1078	200 233 267 344 400 167	182.5 207.0 260.0 312.5 366.0	60 60 60 60 60 60	78 766 78 78 1 in.		325 376 376 465 333 64 647 735	19 16 20 21 28 32 32	0 261 0 0 363 0 0 319 0 0 410 0 0 528 0 0 620 0 712 0
22 22 24 24 24 24 24 24 24 24 24 24 24 2	11 12 10 8	. 137 .500 078 109 140 171 187 250	883 1008 144 202 259 317 316	63 437 63 88 112 137 150 200	23 7 32 5 49 2 53 0 71 0	40 40 40 40 40 40 40 40 40	10 8 3/0 3/4 5/16/2 3/4	.116 .17 .18 .25 .31 .37 .37 .43 .50 .02	1] 190 7 208 0] 277 2 310 5 110 7 187 0 557 5 698	81 80 11 120 11 150 11 180 12 210 13 30	2 81.0	66 66 66 66 66 66 66 66 66 66 66 66 66	3/6 5/6 1/2 5/8 1/10	1 .485 500 62 .756 87	1 160 210 210 210 220 230 240 250 250 250 250 250 250 250 250 250 25	7 9 10 12 10 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	33 193 0 01 239 0 19 256 5 25 334.0 16 382 0 82 480 0 18 577 5 15 677 0 22 777 5
24 24 24 24 26 26 26 26	14 12 10 8	312 375 437 500 1.078 109 .110 .171	578 693 808 921 133 186 239	250 300 350 400 58 81 101	88 5 106.0 124 5 142 0 25 5 31 5 13 7 53 0	40 40 40 42 42 42 42 42 42	10 8 319 516 38	1.00 1.00 1.17 18 23 31	5 970 0 1110 0 140 0 148 1 18 7 190 0 26	0 42 0 48 8 6 1 7 8 8 1 11 0 1 14	1 405 (0 464.3 1 69 84.4 6 91 1 122	72 72 72 72 72 72 72 72 72 72 72 72 72 7	37	.37 .37 .43 .50 .62	19 23 27 37 38 36 36 36 36 36 36 36 36 36 36 36 36 36	H 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 158,0 67 211,0 84 260 0 80 312 0 17 365 0 33 414 0 67 520 0 00 624 0
26 26	319	187	320	139 185	57 5 76 5	42 42	7/16	31		6 17	2/180	5 - 72	1	5 57	3. 6	39" 2	81 752 0 67 810 0

CIRCUMFERENCES AND AREAS OF CIRCLES

FROM 164 TO 100

Diam.	Circum.	Area	Diam.	Circum.	Area	Diam.	Circum	Атеа
1/64	.04909	.00019	2 3/8	7.4613	4.4301	6	18.850	28.274
1/32	.09818	.00077	7/16	7.6576	4.6664		19.242	29.465
3/64	-14726	.00173	1/2	7.8540	4.9087	1/8 1/4/8 1/2/8 3/4/8	19.635	30.680
1/16	.19635	.00307	9/16	8.0503	5.1572	32	20.028	31.919
3/32	.29452	.00690	5/2	8.2467	5.4119	18	20.420	33.183
1/8	.39270	.01227	5/8 11/16	8.4430	5.6727	5/2	20.813	34.472
5/32	-49087	.01917	3/4	8.6394	5.9396	3,	21.206	35.785
3/16	.58905	.02761	13/16	8.8357	6.2126	72	21.598	37.122
7/32	.68722	.03758	1/8	9.0321	6.4918	7 ′°	21.991	38.485
			15/16	9.2284	6.7771	16	22.384	39.871
1/4 9/32	.78540	.04909	3	9.4248	7.0686	1 / 8 1 / 4 3 / 8	22.776	41.282
9/32	.88357	.06213	1/16	9.6211	7.3662	3%	23.169	42.718
5/16	.98175	.07670	1/8	9.8175	7.6699	38	23.562	44.179
11/32	1.0799	.09281	3/16	10.014	7.9798	5/2	23.955	45.664
3/8	1.1781	.11045	1/4	10.210	8.2958	5/8 3/1 7/8	24 347	47.173
13/32	1.2763	.12962	5/16	10.407	8.6179	7,	21.740	48.707
7/16	1.3744	.15033	3/8	10.603	8.9462	8	25.133	50.265
15/32	1.4726	.17257	7/16	10.799	9.2806	14	25.525	51.849
	1		36	10.996	9.6211	1/4	25.918	53.456
1/2	1.5708	.19635	9/16	11.192	9,9678	3/8	26.311	55.088
$17/\tilde{3}2$	1.6690	.22166	5/8	11.388	10.321	1/2	26.704	56.745
9/16	1.7671	.24850	11/16	11.585	10.680	1/8 1/4 3/8 1/4 5/8 3/1 7/8	27.096	58.426
19/32	1.8653	.27688	3/4	11.781	11.045	3/4	27.489	60.132
5/B	1.9635	.30680	13/16	11.977	11.416	7/8	27.882	61.862
21/32	2.0617	.33824	7/8	12.174	11.793	9	28,274	63.617
11/16	2.1598	.37122	15/16	12.370	12.177	1/8	28,667	65.397
23/32	2.2580	.40574	4	12.566	12.566	1/4	29.060	67.201
2/	0.0500		1/16	12.763	12.962	1/8 11/4 3/8 1/2 5/8 3/1 7/8	29.452	69.029
$\frac{34}{25/32}$	2.3562	.44179	78	12.959	13.364	1/2	29.845	70.882
19/10	2.4544	.47937	3/16	13.155	13.772	5/8	30.238	72.760
13/16	2.5525	.51849	1/4	13.352	14.186	3/1	30.631	74.662
27/32	2.6507	.55914	5/16	13.548	14.607	/8	31.023	76.589
7/8 29/32	2.7489	.60132	3/8	13.744	15.033	10	31.416	78.540
15/10	2 8471	.64504	7/16	13.941	15.466	1/8 1/4 3/8 1/2 5/6 3/4 7/8	31.809	80.516
15/16 31/32	2.9452	.69029	1/6	14.137	15.904	1/4	32.201	82.516
01/02	3.0434	.73708	9/16	14.334	16.349	3/8	32.594	\$4.541
1/16	3.1416 3.3379	.7854	5/8	14.530	16.800	1/2	32.987	86.590
1/10	3.5343	-8866	11/16	14.726	17.257	2/8	33.379	88.664
3/16	3.7306	.9940	13/16	14.923	17.728	3/4	33.772	90.763
1/4	3.9270	1.1075 1.2272	13/16	15.119	18.190	/8	34.165	92.886
5/16	4.1233	1.3530	7/8	15.315	18.665	H j	34.558	95.033 97.205
3/8	4.3197	1.4849	15/16 5	15.512	19.147	78	34.950	99.402
7/16	4.5160	1.6230		15.708	19.635	1/8 1/4/3/8 1/2/8 3/4 7/8	35.343	
3/2	4.7124	1.7671	1/16	15.904	20.129	/8	35.736	101.62 103.87
9/16	4.9087	1.9175	2/16	16.101	20.629	1/2	36.128	106.14
5/8	5.1051	2.0739	3/16	16.297 16.493	21.135 21.648	3/8	36.521	108.43
11/16	5.3014	2.2365	5/16		22.166	74	36.914	110.75
3/4	5.4978	2.4053	3/8	16.690 16.886	22.691	/8	37.306 37.699	113.10
13/16	5.6941	2.5802	7/16	17 082	23.221	12	38.092	115.47
13/16	5.8905	2.7612	1/2	17.279	23.758	1/8 1/4 3/8 1/2/8 1/2/8 3/4 7/8	38.485	117.86
15/1°G	6.0868	2.9483	9/16	17.475	24.301	3/	38.877	120.28
2	6.2832	3.1416	5/2	17.671	24.850	78	39.270	122.72
1/16	6.4795	3.3410	5/8 11/16	17.868	25.406	72 57	39.663	125.19
18	6,6759	3.5466	3/	18.064	25.967	38	40.055	127.68
3/16	6.8722	3.7583	13/16	18.261	26.535	74	40.448	130.19
14	7.0686	3.9761	7/8	18.457	27.109	12 /8	40.446	132.73
5/16	7.2649	4.2000	15/16	18.653	27.109	13	41.233	135.30
			10/10	1 10,000	21.000	38	1 41.200	100.00

Diam. Circum. Area Diam. Circum. A		- 1.	OBLE	IANGE	IN I TALL	WAIRN	. AA LEEST	TES	<u> </u>
14	Diam.	Circum.	Area	Diam,	Circum.	Arca	Diam,	Circum.	Area
14	13 1/4	41,626	137 80	21 36	66.366	350.50	29	91,106	1 660.52
14	3/8			1/4					
14	1/2	42.412		3/8		358.84	1/4		671,96
14	5/8	42.804	145.80	1/2		363.05	3/8	92.284	
14	3/4		148.49	3/8	67.937		1/2		
14	7/8			3/4	68.330		5/8		
14				/8			34		
15	18						% ×8		
15	24			18				94.248	
15	78			4	70.900		28	94.640	
15	7 <u>0</u> 5/		165.13	78 1/			24 32		
15	3/8			5/2	71.079		78 1/2	05.920	
15	7/		179.07	3/			5%		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 [°]		176.73	7%	71.864		3,		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				123		415,48	3/2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/4	47.909		36		420.00	31		
19	3/8		185.66	1/4			1/8	97.782	
19	1/2		188.69	3/8			1/4		
16	5/8				73.827		3/8		773.14
16	34			58	74.220		1/2		779.31
16	16 18		197.93	3/4			2/8		785.51
14				24 /8		447.69	24		
17	18	51.051			75.701		22 /8		
18		51.001	207.39	18					810.51
18	78	51.836	210.00	74 32	76.576	461.60	78 1/		
18	5%	52.229		18	76.969		3/2		
18	3,7		220.35	5/6	77.362		18		
18	7/8		223.65	3/4	77.754		5%		
18	17			7/8	78.147	485.98	3/4		
14	16	53.800	230.33	25	78.540		7/8		\$48.83
18 56.549 254.47 258 02 26 81.289 525.84 34 106.029 894.62 901.26 901.26 901.26 901.26 901.26 901.26 901.26 901.26 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92	4			38			33	103.673	
18 56.549 254.47 258 02 26 81.289 525.84 34 106.029 894.62 901.26 901.26 901.26 901.26 901.26 901.26 901.26 901.26 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92	3/8			1/4			1/8		861.79
18 56.549 254.47 258 02 26 81.289 525.84 34 106.029 894.62 901.26	1/2	54 978		38			1/4		
18 56.549 254.47 258 02 26 81.289 525.84 34 106.029 894.62 901.26 901.26 901.26 901.26 901.26 901.26 901.26 901.26 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92	3/8	55.371		1/2	80.111		38	104.851	874,85
18 56.549 254.47 258 02 26 81.289 525.84 34 106.029 894.62 901.26 901.26 901.26 901.26 901.26 901.26 901.26 901.26 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92 901.26 907.92	24			28			1/2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 8			74			38		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.2	56.049		26 /8			74		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	78 1/	57 334					34 /8		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3%	57.727		18				107.207	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1%	58.119		3/8			1%		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5/8	58.512	272.45	. 1/2	83.252		3/2	107.992	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3/4	58.905	276.12	5/8	\$3.645	556.76	1/2	108.385	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7/8			3/4			5/8		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			283.53	- ½		567.27	3/4	109.170	
20 62.832 314.16 318.10 28 87.572 610.27 34 112.312 1003.8 112.705 1010.8	18				84.823	572.56	7/8		
20 62.832 314.16 318.10 28 87.572 610.27 34 112.312 1003.8 112.705 1010.8	24			78		577.87		109.956	
20 62.832 314.16 318.10 28 87.572 610.27 34 112.312 1003.8 112.705 1010.8	28			34		583.21	78		
20 62.832 314.16 318.10 28 87.572 610.27 34 112.312 1003.8 112.705 1010.8	22 57			78 1			33		
20 62.832 314.16 318.10 28 87.572 610.27 34 112.312 1003.8 112.705 1010.8	3/			70 5/			78	111 597	
20 62.832 314.16 318.10 28 87.572 610.27 34 112.312 1003.8 112.705 1010.8	7/			3/4			72 5/		
38 63.225 318.10 28 87.965 615.75 38 112.705 1010.8	20 /8			7/2			3/4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		63.225		28 ´°			7%	112,705	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/4.	63.617		36			36	113.097	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3/8	64.010	326.05	1/4	88.750	626.80		113.490	1025,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2	64,403	330.06	3/8		632.36	34	113.883	1032.1
21 65.188 338.16	58			1/2			3/8		
21 65.973 346.36 34 90.321 649.18 38 115.061 1053.5 65.973 346.36 36 90.713 654.84 34 115.454 1060.7	34			5/8			1 9		
21 [103.313] 346.36] % [100.713] 654.84] % [115.454] 1060.7	01 /8			34			5/8		
	21	00.975	346.36		70.713	094.84	74	115.454	1000.7

	78	24.151	VEK DO	BILE C	OMPAN	Y. SAN	PRAN	CISCO	
	Diam_	. Circum	Area	Diam.	Circum.	Area	Diam,	Circum.	Area
3	6 7 ₈	115.846	1068.0	44 3,	140.586	1572,8	52 5	165.326	2175.1
3	7 "	116.239	1075.2	7/8	140.979	1581.6	52 58 34 78	165.719	2185.4
	18	116.632	1082.5	45	141.372	1590.4	7.	166.112	2195.8
	14	117.024	1089.8	18	141.764	1599.3	53 👕	166.504	2206.2
	32	117.417	1097.1	18 14	142.157	1608.2	1,	166.897	2216.6
	1/2	117.810	1104.5	38	142.550	1617.0	12	167.290	2227.0
	5/8	118.202	1111.8	16	142.942	1626.0	3/8	167.683	2237.5
	34 74 78	118.596	1119.2	5/8	143.335	1634.9	1/2	168.075	2248 0
	1/8	118.988	1126.7	3/8 1/2 5/8 3/4 -7/8	143.728	1643.9	5/8	168.468	2258.5
38		119.381	1134.1	.7/8	144.121	1652.9	3/4	168.861	2269.1
	18	119.773	1141.6	46	144.513	1661.9	74 78	169.253	2279.6
	12 4 3	120.166	1149.1	18	144.906	1670.9	54	169.646	2290.2
	78	120.559 120.951	1156.6 1164.2	34	145.299	1680.0	26	170.039	2300.8
	72 50	121.344	1104.2	78	145.691	1689.1	24	170.431	2311 5
	3.8 1.27.8 3.4 5.8 3.4 7.8	121.737	1179.3	3.7 1.8 1.9 5.7 8 3.4 7.8	146.084	1698.2	28	170.824	2322.1
	7/2	122.129	1186.9	78 37	146.477 146.869	1707.4	72	171.217	2332.8
39	78	122.522	1194.6	74	147.262	$1716.5 \\ 1725.7$	38	171 609	2343.5
		122.915	1202.3	47 /8	147.655	1734.9	1/8 1/4 3/8 1/2 5/8 3/4 7/8	172,002 172,005	2354.3 2365.0
	iž	123.308	1210.0		148.048	1744,2	55 /8	172,788	2375.8
	3/8	123.700	1217.7	1%	148.440	1753.5		173.180	2386 6
	1/2	124.093	1225.4	3%	148.833	1762.7	28 17	173 573	2397 5
	5/8	124.486	1233.2	1%	149.226	1772.1	32	173.966	2408 3
	1/8 1/4 3/8 1/2 5/8 3/4 7/8	124.878	1241.0	1/8 1/4 3/6 1/2/8 3/4 7/8	149.618	1781.4	1/8 1/4/8 1/2/8 1/2/8 3/4 7/8	171.358	2419.2
	78	125.271	1248.8	3/4	150.011	1790.8	5/8	171,751	2430.1
40		125.664	1256.6	7/8	150.404	1800.1	37	175.144	2441.1
	18	126.056	1264.5	48	150.796	1809.6	$\frac{7}{28}$	175.536	2452.0
	1/8 1/4 3/8	126.449	1272.4	1/8 1/4 3/1	151.189	1819.0	56	175.929	2463.0
	18	126.842	1280.3	24	151.582	1828.5	18	176.522	2474.0
	50	127.235	1288.2	.38	151.975	1837.9	14	176,715	2485.0
	5 8 3 4 7 8	127.627 128.020	1296.2 1304.2	12	152.367	1847.5	3 H 122 5 8 4 7 8	177.107	2496.1
	74	128.413	1312.2	58 34 7/8	152.760	1857.0	20	177,500	2507.2
41	/8	128 805	1320.3	74	153.153 153.545	1866.5	38	177.893	2518.3
• • •	13	129.198	1328.3	49 /8	153.938	1876.1 1885.7	2/4	178.285	2529.4
	18	129.591	1336.4		154.331	1895.4	57 28	178.678 179.071	2540.6
	3/8	129.983	1344.5	1/8 1/4	154.723	1905.0	12	179.463	2551.8 2563.0
		130.376	1352.7	3%	155.116	1914.7	1/8 1/4	179.856	2574.2
	1/2 5 6	130.769	1360.8	3/8/1/2 5/8/1/7/8	155,509	1924.4	3.,	180.249	2585.4
	3/	131.161	1369.0	5/8	155.902	1934.2	10	180.642	2596.7
	74 78	131 554	1377.2	3,1	156.294	1943.9	5,0	181.034	2608.0
42		131.947	1385.4	78	156.687	1953.7	3°4 74 78	181.427	2619.4
	1/8 1/4	132.340	1393.7	50	157.080	-1963.5 =	78	181,820	2630.7
		132.732	1402.0	18	157.472	1973.3	58	182.212	2642.1
	78	133.125 133.518	1410.3	14	157.865	1983.2	18 1/4	182.605	2653.5
	72 5/	133.910	1418.6 1427.0	78	158.258	1993.1	1/4	182,998	2664.9
	5/8 3/4	134.303	1435.4	72	158.650	2003.0	38	183 390	2676.4
	78	134.696	1443.8	1 2 5 8 3 4 7 8	159.043	2012.9	5	183,783	2687.8
43	/ B	135.088	1452.2	7-1	159,436 159,829	2022.8 2032.8	5/8	184.176	2699,3
	16	135.481	1460.7	51 18	160.221	2042.8	3,1	184.569 184.961	2710.9
	1/8	135.874	1469.1	1.0	160.614	2052.8	59 78	185.354	2722.4 2734.0
	38	136.267	1477.6	1 / 1 / 1 /	161.007	2062.9	18	185 747	2745.6
	35	136.659	1486.2		161.399	2073.0	18	186,139	2757.2
	5 8	137.052	1494.7	78 1 ₆	161.792	2083.1	34	186,532	2768.8
	34	137.445	1503.3	20	162.185	2093.2	1.8	186,925	2780.5
	3.8 1.2 5.8 3.4 7.8	137.837	1511.9	3.4 7.8	162.577	2103.3	3,8 1,2 5,8 3,1 7,1	187.317	2792 2
44		138,230	1520.5	7	162.970	2113.5	3	187.710	2803.9
	1 / B	138.623	1529.2	52	163,363	2123.7	7	188.103	2815.7
	4	139.015	1537.9	18	163.756	2133.9	60	188.496	2827.4
	38	139.408	1546.6	14	161.148	2144.2	13	188.888	2839.2
	58	139. 8 01 140.194	1555.3	38	164.541	2154.5	1,1	189.281	2851.0
-	8	140.184	1564.0	36	164.934	2164.8	38	189.674	2862.9

1)	iam.	Circum.	Area	Diam.	Circum	Area	Diam.	Circum.	Area
60	16	190.066	2874.8	68 3 ₈	214,806	3671.8	76 14	239.546	4566.4
60	54	190.459	2886.6	12	215.199	3685.3	38	239.939	4581.3
	78	190.852	2898.6	5/8	215.592	3698.7	1/2	240,332	4596.3
	5/8 3/4 7/8	191.244	2910.5	34	215.984	3712.2	5/8	240.725	4611.4
61	/8	191.637	2922.5	7/8	216.377	3725.7	3,1	241.117	4626.4
٥.	16	192.030	2934.5	69 👕	216.770	3729.3	3.1 7.6	241.510	4641.5
	14	192,423	2946.5	18	217.163	3752.8	77	241.903	4656.6
	38	192 815	2958.5	14	217.555	3766.4	18	242.295	4671.8
		193,208	2970.6	38	217.948	3780.0	124	242.688	4686.9
	1/2 5/8 3/4 7/8	193,601	2982.7	1/2	218.341	3793.7	38	243.081	4702.1
	3/4	193.993	2994.8	58	218.733	3807.3	1.6	243,473	4717.3
	7,8	194,386	3006.9	3.1	219,126	3821.0	58	243,866	4732.5
62		194.779	3019.1	7.1 7.8	219.519	3834.7	5 8 3/4 7/8	244.259	4747.8
	18	195.171	3031.3	70	219.911	3848.5	7/8	244.652	4763.1
	1/8	195.564	3043.5	18 17	220.304	3862.2	78	245.044	4778.4
	3/8	195.957	3055.7		220.697	3876.0	1/8 1/4 3/8	245.437	4793.7
	16	196.350	3068.0	38	221.090	3889.8	14	245.830	4809.0
	5/8	196.742	3080.3	22	221.482	3903.6		246.222	4824.4
	3/4 7/8	197.135	3092.6	5/8 3/4	221.875	3917.5	16	246.615	4839.8
	/8	197.528	3104.9	3/4	222.268	3931.4	5 3 8	247.008	4855.2 4870.7
63		197.920	3117.2	7/8	222.660 223.053	3945.3 3959.2	3.1 7.8	247.400 247.793	4886.2
	18	198.313	3129.6	71	223.446		70 /8	248.186	4901.7
	14	198,706	3142.0	18	223.838	3973.1 3987.1	79	248.579	4917.2
	38	199.098	3154.5	(1	224.231	4001.1	1 / 8 1 / 4 2 / 4	248.971	4932.7
	29	199.491 199. 8 84	3166.9 3179.4	18	224.231	4015.2	74 32	249.364	4948.3
	5/8 3 1	200,277	3191.9	12	225.017	4029.2	3/8 1/2	249.757	4963,9
	74 7n	200.669	3204.4	58	225.409	4043.3	5,8	250.149	4979.5
64	78	201.062	3217.0	34 78	225.802	4057.4	32	250.542	4995.2
04	1%	201.455	3229.6	72 /8	226.195	4071.5	3/4 7/8	250.935	5010.9
	14	201.847	3242.2		226.587	4085.7	80 ′ °	251.327	5026.5
	38	202.240	3254.8	18 14	226.980	4099.8	18	251.720	5042.3
	1/.	202.633	3267.5	38	227.373	4114.0	3/4	252.113	5058.0
	5/8 3/4 7/8	203.025	3280.1	15	227.765	4128.2	3/8	252.506	5073.8
	3/4	203.418	3292.8	5 B	228.158	4142 5	36	252.898	5089.6
	7.8	203.811	3305.6	1/	228.551	4156,8	58	253.291	5105.4
65		204.204	3318.3	74 78	228.944	4171.1	1/2 5/8 3/4 7/8	253.684	5121.2
	1,11	204.596	3331.1	73	229.336	4185.4	/8	254.076	5137.1
	4	204.989	3343.9	18	229.729	4199.7	81	254.469	5153.0
	38	205.382	3356.7	28 12 24	230.122	4214.1 4228.5	18 14	254.862 255.254	5168.9 5184.9
	20	205.774	3369.6	/R	230.514	4242.9	34	255.647	5200.S
	5 8 3 7	206.167 206.560	3382.4	1/6 5/8	$\begin{bmatrix} 230.907 \\ 231.300 \end{bmatrix}$	4257.4	38	256.040	5216.8
	- 1	206.952	3395.3 3408.2	38	231.692	4271.S	3 <u>6</u> 5.1	256.433	5232.8
66	7'B	200.332	3421.2	3/4 7/8	232.085	4286.3	3/	256.825	5248.9
00	1.7	207.738	3434.2	74 /8	232.478	4300.8	58 37 74 78	257.218	5264.9
	18	208.131	3447.2		232.871	4315.4	82 /8	257,611	5281.0
	38	208.523	3460.2	18	233.263	4329.9	1,4	258.003	5297.1
		208.916	3473 2	3%	233,656	4344.5	14	258.396	5313.3
	1 2 5 8 3 A	209.309	3486.3	1.0	234.049	4359.2	3/8	258,789	5329.4
	3,4	209.701	3499.4	5,	234,441	4373.8	36	259.181	5345.6
	74 7/8	210.094	3512 5	3,1	234.834	4388.5	5/8	259,574	5361.8
67	∠ B	210.487	3525.7	78 12 58 37 78	235.227	4403.1	56 58 34 78	259,967	5378.1
	1,7	210.879	3538.8	75	235.619	4417.9	78	260.359	5394.3
	17	211.272	3552.0		236.012	4432.6	83	260,752	5410.6
	3,3	211.665	3565.2	34	236.405	4447.4	1.8	261.145	5426.9
	1/2	212.058	3578.5	38	236.798	4462.2	1.	261,538	5413.3
	5/8	212.450	3591.7	35	237.190	4477.0		261.930	5459.6
	3/1	212.843	3605.0	5,8	237.583	4491.8	12	262,323	5476.0
	1 8 14 3 6 12 5 6 3 4 7 6	213,236	3618.3	1/8 1/4 8/2 8/4 5/8 3/4 7/8	237.976	4506.7	5 8 3 3	262.716	5492.4
68		213.628	3631.7	78	238,368	4521.5	7	263.108	5508.8
	1 / 8 1 / 4	214.021	3645.0	176	238.761	4536.5		263.501	5525.3
	4	214.414	3658.4	18	239,154	4551.4	84	263.894	5541.8
-			-		Aurilla .				

		ADN	EX DO	BLE CC	DRIPANI	, SAN	PRANC	1300	
	Diam.	Circum,	Area	Diam.	Circum.	Area	Diam.	Circum.	Area
84	/ 0	264.286	5558.3	89 13 58 3	281.173	6291.2	94 %	298.059	7069 6
	14	264.679	5574.8	5/8	281.565	6308.8	95	298.451	7088.2
	38	265.072	5591.4	$\frac{3}{24}$	281.958	6326.4	18	298.844	7106.9
	1/2	265.465	5607.9	7/8	282.351	6344.1	1 1/	299.237	7125.6
	1/4 3/8 1/2/8 1/5/8 3/1/8	265.857	5624.5	90	282.743	6361.7	3/8	299,629	7144.3
	34	266.250	5641.2	18	283.136	6379.4	15	300.022	7163.0
	78	266.643	5657.8	1/8 1/4	283,529	6397.1	5 8	300.415	7181.8
85		267.035	5674 5	3/8	283.921	6414.9	5 8 3 4 7 8 7 8	300.807	7200.6
	18	267.428	5691.2	1/2	234.314	6432.6	78	301.200	7219.4
	1/8 1/4 3/	267.821	5707.9	3/8 1/2 5/8 3/1 7/8	284.707	6450.4	98	301.593	7238.2
	38	26S,213	5724.7	3/4	285.100	6468,2	16	301.986	7257.1
	15	268.606	5741.5	7/8	285.492	6486.0	17	302.378	7276.0
	20	268.999	5758.3	91	285.885	6503.9	48 48	302,771	7294.9
	3 12 5 3 4 7 8	269.392	5775.1	1/8	286.278	6521.8	32	303.164	7313.8
00	1/8	269.784	5791.9	24	286.670	6539.7	3 2 5 8	303,556	7332.8
86		270.177	5808.8	38	287.063	6557.6	7/8	303.949	7351.8
	18	270.570	5825.7	1/2	287.456	6575.5	7/8	304.342	7370.8
	1/8/4 5/5 8/4/8	270.962	5842.6	1/8 1/4/8 1/4/8 1/6/8 1/6/8 1/6/8 1/7/8	287.848	6593.5	97	304.734	7389.8
	18	271.355	5859.6	34	288.241	6611.5	18	305.127	7408.9
	12	271.748	5876.5	7/8	288.634	6629,6	1 /	805.520	7428.0
	28	272.140	5893.5	92	289.027	6647.6	34	305 913	7447.1
	24	272.533	5910.6	1/8 1/4	289.419	6665.7	10	306,305	7466.2
	18	272.926	5927.6	1/4	289.812	6683.8	5/8	206,695	7485.3
87		273.319	5944.7	3/8	290.205	6701.9	34	307,091	7504.5
	48	273.711	5961.8	12	290.597	6720.1	1 e 5 8 3 4 7 8	#07.4S3	7523.7
	18/4/8 2 8/4/6	274.104	5978.9	15 5% 3/ 3/ 74 78	290.990	6738.2	98	307.876	7543.0
	18	274.497	5996.0	24	291.383	6756.4	18	308,269	7562.2
	22 I	274.889	6013.2	/8	291.775	6774.7	11	308,661	7581.5
	38	275.282	6030.4	93	292.168	6792.9	38	309.054	7600.8
	24	275.675	6047.6	1/8 1/4	292.561	6811.2	16	309.447	7620.1
88	/8	276.067	6064.9	14	292 954	6829.5	5.7	309.840	7639.5
00	17	276.460	6082.1	3/8 1/2 5/8 3/1 7/8	293.346	6847.8	3 7 8	310,232	7658.9
	18	276.853 277.246	6099.4	1/2	293.739	6866.1	78	310.625	7678.3
	31		6116.7	38	294 132	6884.5	99	311.018	7697.7
	78	277.638 278 031	6134.1	24	294.524	6902.9	18	311.410	7717.1
	22		6151.4	/8	294.917	6921.3	$\frac{1}{4}$	311.803	7736.6
	1/8/1-1/8/1/	278.424 278.816	6168.8	94	295.310	6939.8	3.8	312,196	7756.1
	74	279,209	$6186.2 \\ 6203.7$	18	295.702	6958.2	1/2	312.588	7775.6
89	/8	279,209 279,602	6221.1	13	296.095	6976 7	5/8	312.981	7795.2
03	1/	279,602	6221.1	78	296.488	6995.3	3/4	313.374	7814.8
	1/8			23	296,881	7013.8	7/8	313.767	7834.4
	1/4 3/8	280.387 280.780	6256.1 6273.7	3/8 1/2 5/8 3/4	297.273	7032 4	100	314.159	7854.0
	78	200.700 1	02/3./	1/4	297.666	7051.0		,	

STRENGTH OF WROUGHT IRON BOLTS

Computed by A. F. Nagle-(Kent) STRESS UPON BOLT UPON BASIS OF Diameter Area at Number Diameter Bottom of 3030 or Bolt. Bottom of 1000 7000 TORIGINA Probable oí Thread, Lbs. per Lbs. per Lbs. per Lbs. per Sq. Inch Sq. Inch Lbs, per | Breaking Sq. Inch | Load Threads Inches Thread, Square' Inches Inches Lbs. Lbs. Lbs. Lbs. Lbs. Lbs. 1/2 1/2 1/6 1/8 1/4 1/4 13 12 460) 580 810 1160 5500 ,44 450 $\begin{array}{c} 600 \\ 750 \end{array}$ 750 930 7500 9000 1050 15c0 11 .49.19 560 $\frac{1310}{1980}$ 1870 10 .60 $.28 \\ .39$ 7501130 1410 14000 2830 3940 .71 .81 9 $\frac{1180}{1550}$ 1570 1970 2760 19000 .52 .65 8 7 7 6 2070 2600 36.30 5180 25000 1% 1% 1% 1% 1% 1% 91 1950 $2600 \\ 3360$ 0250 1560 6510 30000 1 04 84 2520 $4200 \\ 5000$ 29060 5900 8110 1.12 1.25 1.35 $1.00 \\ 1.23 \\ 1.41$ 3000 4000 46000 7000 $\frac{10000}{12280}$ 6 3680 4910 6140 56000 8600 51/2 \$300 5710 7180 14360 65000 10000 $\frac{1}{1}, \frac{45}{57}$ 1.65 4950. 6600 8250 11560 16510 74000 1.95 5810 $\begin{array}{c} 7800 \\ 8720 \\ 11530 \end{array}$ 85000 9800 13640 19500 2 18 2 88 3 55 1,66 6510 95000 10900 15260 21800 2½ 2½ 1.92 2.42 2.37 2.57 8650 $\frac{11400}{17730} \\ 22150$ 20180 24830 2880010640 11200 150000 35500 4.4313290 1558017720 31000 11300 186000 31/4 5.20213000 26000 26260 52000

DECIMAL EQUIVALENTS

DECIMAL EQUIVALENTS OF FRACTIONS OF 1 INCH FOR EACH 1/4

Fraction	1/32	r/ /64	Decimals of an Inch		Fraction	1/32	1/64	Decimals of an Inch
		1	015 62a				***	515-625
	1	'	.031 250			17	1313	.541 250
		.:	036 875				15	.516.875
1/			062.500	,	9/			.562 500
/16		- ;	078 125		/16		37	578 125
	;		093-750			19		590 750
		7 1	109 375				.39	.609 375
1/8			125 000		5.8			625 000
/ 0		- 91	EIO 625		, 0		- 11	640-625
	5		156-250			21		6.65 250
		11	171 875				13	.671 873
5.16		1	187 500		716			,687,500
7 10		13 }	.203 [25]		,		15	700-125
	7		218 750			-):}	•	.718 750
		15	234 (75				17	731 375
- 1/4 - 1		1	250 000		34			.750 000
· · · · ·	- 1	17	265 625				49	,765-625
	9 -		281 250			25	;	.781 250
- 1		19	,296 875		2.1		51	796 875
5/			.312 500		13/		·	.812 500
		21	128 125				- Sic.	.828 125
	11		311.750			27		840, 750
		2.3	.350 .875		- /	1	1 55	859 375
3/8			375 000		7/8		!	875 000
		25	,390 (625)				57	890 625
	10		106 250			50		90n 250
21		27	421 875		15/		59	921 875
7/16			. 187 500		15/			937 500
		29	. 153 125			,,	61	953 125
	15		. 168 750			31		968 750
1/		31	181 375	•	1 .		63	981 375
1/2	- 1		500 000		1		_	1 (100 000

DECIMALS OF A FOOT EQUIVALENT TO INCHES AND FRACTIONS OF AN INCH

Inches	0	1/4	34	36	35	54	3%	3 a
0	.0000	.01042	.02083	.03125	.04166	.05208	06250	(00000
1	. 0833	.0937	.1012	.1146	.1250	.1351	1459	1563
12	1667	.1771	1875	.1979	2083	.2188	.9999	2,566
3	.2500	.2601	.2708	2813	.2917	.3021	.3125	Charles (C
4	.3333	.3437	.3542	.3646	.3750	.3851	8765	1000
5	. 1167	. 4271	,4375	.4479	. 4583	. 4688	1792	1896
6	.5000	.5101	.5208	.5313	.5417	.5521	,5625	5729
ř	.5888	.5937	.6042	.6146	.6250	,6354	6459	6563
8	.6667	6771	.6875	.6979	.7083	.7188	7000	200 Mg
9	7500	.7604	.7708	.7813	.7917	.8021	8125	$S^{(n)}_{n+1}(t)$
10	. 8333	.8137	.8542	. 8646	.8750	.8851	.8958	9863
11	.9167	.9271	,9373	.9479	.9583	9688	9792	.9896

USEFUL HYDRAULIC INFORMATION

In the hydraulic formulae given in the following notes, unless otherwise expressly stated, let

H = Head of water, expressed in feet;

P = Pressure of water, in pounds per square inch;

D = Diameter in feet or

d = Diameter in inches:

A = Area in square feet or

a = Area in square inches;

Q = Quantity in cubic feet per second;

T = Time in seconds;

V = Velocity in feet per second.

The following computations are based on an average temperature of 50° F., and an average latitude of 38°, as for California

Atmospheric pressure is usually reckoned at 14.7 pounds per square inch Theoretically, it is equivalent to the pressure of a column of water 33.91 feet high, or each 2.307 feet in height is equivalent to 1 pound pressure, or each foot in height is equivalent to a pressure of 0.4334 pound per square inch Therefore

Pressure of water (P) = $0.4334 \times \text{Head}$ of water. Head of water (H) = $2.307 \times \text{Pressure}$ of water.

The theoretical velocity of water issuing from an orifice is the same as that which would be acquired by a body falling from the height of the head of water above the orifice. That is

$$V = \sqrt{2g \times H}$$

in which (H) is the head of water; (g) the acceleration due to gravity = 32.15; and (V) the velocity in feet per second. In practice, this theoretical velocity is not attained, owing to various resistances, but the principle should always be borne in mind. This formula is usually expressed

Spouting Velocity =
$$8.03 \text{ V}^{-}\text{H}$$

The quantities of water discharged in equal times by the same aperture under different heads are proportional to the square roots of the corresponding heads, measurements being made from the center of the orifice.

Relation between Area, Velocity and Discharge.

Let Q = Quantity of water discharged (in cubic feet per second).

 $\tilde{V} = \tilde{M}$ can velocity (in feet per second).

A = Area of cross section (in square feet).

Then
$$Q = A \times V$$
; $V = \frac{Q}{A}$; $A = \frac{Q}{V}$

Kinetic energy (K), or foot pounds, stored in a column of water in a round pipe of any diameter (D) and of any length (L), when moving at any velocity (V) per second:

$$K = 0.78 \times D^2 \times L \times V^2$$

If (a) be the area of a jet, in square inches; (V) its velocity, in feet per second; and (W) the weight of a cubic foot of water, the energy in foot-pounds per second will be

$$K = \frac{W \times a \times V}{2g \times 144}$$

$$W \times a \times V^{2}$$

$$92.59$$

$$0.0108 \times W \times a \times V^{2}$$

The total horizontal pressure against a wall or dam varies as the square of the height. If (H) be the height of the dam, and (W) the weight of a cubic foot of water, the pressure per foot-width will be ½ WH², and its point of application will be two-thirds of the distance from the top. Substituting 62.408 pounds for (W), the formula becomes

Pressure per foot-width = 31,204 H²

or where (w) is the width of the dam or surface in feet,

Total pressure =
$$31.204 \text{ h}^2 \times \text{w}$$

The theoretical horse-power of a stream is determined by multiplying the available flow in cubic feet per-minute by 62,408 pounds (weight of a cubic foot of water) and by the vertical head in feet, and dividing the product by 33,000 (number of foot-pounds per minute equal to one horse-power).

Thus the theoretical horse-power (HP) developed by any quantity (Q) of water in cubic feet per second falling through any head (H).

$$HP = \frac{62,408 \times Q \times H \times 60}{33000} = 0.1134 \, Q \times H = \frac{Q \times H}{8.81}$$

The theoretical quantity (Q) of water which will develop any horsepower (HP), when falling through any head (H).

$$Q = {8.81 \times HP \atop H}$$

If the efficiency of the water wheel is 80 per cent the above formula becomes

$$Q = \frac{8.81 \times HP}{0.8 \times H}$$
 or approximately $\frac{11 \times HP}{H}$

or, on the same efficiency basis

$$HP = \frac{Q \times H}{11} \text{ or, } Q \times H \times 0.09$$

A convenient rule for use in determining the thickness of riveted steel pipe for given pressures is as follows: Multiply the given pressure in pounds by the radius of the pipe in inches, and divide by 10,000. The result will give approximately the thickness of plate required in inches. For example: A pressure of 160 pounds in a 30-inch pipe would require

$$\frac{160 \times 15}{10,000} = 0.2400$$
 inch thickness.

The nearest commercial size of plate to this figure is ¼ inch which is the required thickness of plate to be used. Such a pipe would be strained to about one-fourth of its ultimate or bursting strength.

For a given diameter of pipe and velocity of flow, the loss of head due to friction in a pipe increases directly with the length and with the roughness of the pipe.

For a given length of pipe and velocity of flow, the loss of head due to friction decreases approximately as the diameter of the pipe increases.

For a given diameter and length of pipe, the loss of head due to friction increases directly as the roughness of the pipe and the square of the velocity of flow.

In the above cases the loss of head due to friction is independent of the pressure or head of water in the pipe.

To find the capacity of cylindrical tanks or pipes in U. S. gallous—the dimensions being given in inches: Square the diameter, and multiply by the length and by 0.0034. Thus

Capacity in gallons 0.7854 d² \times 1 = 0.0034 d² \times 1; where I is length of pipe in inches:

or, if the dimensions are given in feet

Capacity in gallons = $\frac{0.07854 \text{ D}^2 \times \text{L}}{0.13368} = 5.87 \text{ D}^2 \times \text{L}$; where L is length of pipe in feet.

The capacity of pipes increases with the square of their diameter; thus doubling the diameter increases the capacity four times.

Capacity of pipes: A pipe one yard long holds approximately as many pounds of water as the square of its diameter, in inches. Thus a 6-inch pipe holds approximately 36 pounds of water in each yard of length. For more accurate results add 2¼ per cent to this value.

USEFUL DATA

Acceleration due to gravity, for 38 degrees latitude = 32.15

 $\sqrt{32.15} = 8.03$

 $\pi = 3.1416$

 $\frac{\pi}{1} = 0.7854$

Circumference of a circle = diameter x 3.1416

Diameter of a circle = circumference x 0.3183

Area of a circle = square of diameter x 0.7854

Side of square with area equal to a circle = diameter of circle x 0.8862

Side of square inscribed in a circle = diameter of circle x 0.7071

Diameter of circle of area equal to a square = side of square x 1.128

Doubling the diameter of a circle increases its area four times.

Diameter of circle equal to a given area = square root of area x 1.128

Area of a rectangle = length multiplied by breadth.

Area of a triangle = base multiplied by ½ the altitude.

Area of a sector of a circle = 1/2 the length of the arc multiplied by the radius of the circle.

Surface of a sphere = square of diameter x 3.1416

Volume of a sphere = cube of diameter x 0.5236

Weight of cast iron, per cubic inch, 0.26 pound; of wrought iron, 0.278; of steel, 0.283; of copper and bronze, 0.32; of brass, 0.3

Steel is about two per cent heavier than wrought iron.

Cast iron is about six per cent lighter than wrought iron and about eight per cent lighter than steel.

Double riveting is from 18 per cent (for thin plates) to 28 per cent (for thick plates) stronger than single riveting.

Weight of round wrought iron per linear foot = square of diameter in quarter inches ÷ 6

Weight of flat wrought iron per linear foot = width in inches x thickness in inches x 10 \div 3; for more accurate results subtract 1.8 per cent of the weight.

Weight of flat wrought iron plates per square foot = approximately 5 pounds for each 1/8 inch thickness.

READY CONVERSION TABLES *

LINEAR MEASURES

1 inch		1 link (surveyor's)	=
0.083 333 0.027 777 8 0.000 015 78 25.400 05 2.540 005 0.025 4	foot yard mile millimeters centimeters meter	7.92 0.201 17 1 chain (surveyor's	inches meter
1 foot ==	***************************************		links
12. 0.333 333 33 0.000 189 39 30.480 1 0.304 801 0.000 304 8	inches yard mile centimeters meter kilometer	100. 66. 20.117 4. 0.012 5	feet meters rods mile
1 yard ==		1 millimeter =	
36. 3. 0.000 568 18 91.440 2 0.914 402	inches feet mile centimeters mcter kilometer	0.039 37 0.001	inch meter
0,000 914 40	knometei	1 centimeter =	
1 rod = 198. 16.5 5.5 0.25 0.003 125 5.029 2	inches feet yards chain mile meters	0.393 70 0.032 808 3 0.01	inch foot meter
0.005 029	kilometer	1 meter =	
1 mile = 63,360. 5,280. 1,760. 320.	inches feet yards rods	39.370 000 3.280 83 1.093 61	inches feet yards
80.	chains	1 kilometer ==	
1,609.35 1,609.35 0,868.392	meters kilometers nautical mile or knot	3,280.83 1,093.61 0.621 370	feet yards mile

SURFACE MEASURES

1 square inch ==		1 square foot	
0.006 944 44 0.000 771 6 645.163 6.451 63	square foot square yard square millimeters square centimeters	144. 0.111 111 0.092 903 4	square inches square yard square meter

^{*}Based on the legal standard values of the United States Government. Ready Reference Tables, Vol. I, Conversion Factors, by Carl Hering.

SURFACE MEASURES—Continued

1 square yard :		1 square centimeter	r ==
1,296. 9. 0.836 126	square inches square feet square meter	0.115 0 0.001 076 387	square inch square foot
1 acre =		1 square meter =	
43,560. 4,840. 208.710 0.001 562 50 4,046 87	square feet square yards feet square square mile square meters	10.763 87 1.195 99 0.000 247 104	
0.404 687	hectare	1 hectare =	
1 square mile:= 27,878,400. 640. 1. 259	square feet acres section hectares	10,000. 107,638.7 2 471 04 0.003 861	square meters square feet acres square mile
2.590	square kilometers	I square kilometer	WILLIAM TO THE PARTY OF THE PAR
1 square millimeter 0.001 550		100. 247.104 0.386.101	hectares acres square mile

MEASURES OF VOLUME AND CAPACITY

1 cubic inch =		 I English gallon (In 	nperial) =
16.387 16 0.017 316 0 0.004 329 00	cubic centimeters quart (liquid) U. S. gallons	277.410 1.200 91 4.545 963 1	cubic inches U. S. gallons liters
		I cubic centimeter	
1 cubic foot		0.061 023 4	cubic inch
1,728.	cubic inches	0.001 020 ¥	cubic men
29.922 1 7.480 52	quarts (liquid) U.S. gallons '	1 cubic meter ==	
0 037 037 0	cubic yard	1,000.	liters
0.028 317 0	cubic meter	10,	hectoliters
28.317 0	liters	264.17	U. S. gallons
		35 314 5	cubic feet cubic vards
1 cubic yard =		1.307/94	enoie yards
46,656. 27. 807.896 201.974 764.559 0.764 559	cubic inches cubic feet quarts (liquid) U. S. gallons liters cubic meter	1 liter == 1. 0.001 61.023 4 1.056 68 0.264 170 0.035 314 5	cubic decimeter cubic meter cubic inches quarts (liquid) U. S. gallon cubic foot
231.	cubic inches	1 hectoliter ==	
0.133 681	cubic foot	100.	liters
0.832 702 4	English gallon	105,668	quarts (liquid)
	(Imperial)	3.531 45	cubic feet
0.037 854 3	hectoliter	$\begin{array}{c} 26.417.0 \\ 0.130.794 \end{array}$	U. S. gallons cubic yard
3,785 43	liters	0.130 794	choic yard

WEIGHTS AND LENGTHS

	WEIGHTS A	ND LENGTHS	
1 pound per linear	foot =	I pound per linear	
3. 0.083 333 33 3.280 83	pounds per yard pound per inch pounds per meter	0.914 402 0.304 801 0.025 4	pound per yard pound per foot pound per inch
1.488 16	kilograms per me- ter	1 kilogram per line	ar meter =
	ter	2.015 91 0 671 970 0.055 997 5	pounds per yard pound per foot pound per inch
P	RESSURES; WEIGH	ATS AND SURFACE	S
1 pound per square	inch =	1 kilogram per squa	are centimeter ==
144. 2.306 65	pounds per sq. ft. feet of water	10,000,	kilograms per sq.
0.703 067 0.070 306 7	meter of water kilogram per sq. centimeter	10. 2,048.17	meters of water pounds persquare
1 pound per square	foot =	32.808 3 14.223 4	feet of water pounds per square
0.016 018 4 0.006 944 44	pound per sq. inch	l kilogram per squa	inch
0.004 882 41 4.882 41	meter of water kilogram per sq. meter	0.001 0.001 422 34	meter of water pound per sq. inch
1 pound per cubic fe	oot =	0.204 817 0.003 280 83	pound per sq. foot
27.	pounds per cubic vard	I kilogram per cubi	c meter
0.133 681	pounds per U. S.	1,685 56	pounds per cubic
16.018 4	kilograms per cub- ic meter	0.062 428 3	pound per cubic
	WO	RK	
1 foot-pound =		1 watt-hour =	
0.001 818 18	horse-power-sec- ond	1.	ampere-hour x one volt
0.000.000.001		0.001	hilowald have

	WORK					
1 foot-pound =		1 watt-hour =				
0.001 818 18	horse-power-sec-	1.	ampere-hour x one volt			
0,000 376 591 0,138 255	watt-hour kilogram-meter	$\begin{array}{c} 0.001 \\ 2,655.403 \\ 0.001 \ 341 \ 11 \end{array}$	kilowatt-hour foot-pounds horse-power-hour			
1 horse-power-seco	nd ==	1 kilowatt-hour =				
550. 0.207 125	foot-pounds watt-hour	1,000. 367,123. 2,655,403	watt-hours kilogram-meters foot-pounds			
1 horse-power-hour	Mored array	4,828.01 1.341.11	hpower-seconds horse-power-hours			
1,980,000. 3,600.	foot-pounds horse-power-sec-	l kilogram-meter =	:			
745.650 0.745.650 273,745.	onds watt-hours kilowatt-hour kilogram-meters	0.002 723 88 7.233 00 0.013 150 9 0.013 333 33	watt-hour foot-pounds U. S. hpsecond metric h p sec- ond			

	POWER OR RATE	OF DOING WORK	
1 horse-power ==		1 metric horse - p horse-power or	ower or French cheval vapeur ==
33,000.	foot - pounds per minute	32,548.5	foot-pounds per
550.	foot-pounds per second	542.475	minute foot - pounds per
4,562,42	kilogram-meters per minute	0.986 318	second horse-power
745.650	watts	735.448	watts
0.745 650	kilowatt	0 735 448	kilowatt
1.013 87	metric hpower	4,500.	kilogram - meters
1.	second-foot of wa- ter falling 8,8 ft.	75.	per minute kilogram - meters per second
1 kilowatt =		1 watt =	
2,655,402.	foot - pounds per	1.	ampere per second at one volt
44,256.7	foot-pounds per minute	44.256 7	foot-pounds per minute
737.612	foot-pounds per second	0.737 612	foot - pound per second
1.341 11	horse-power	0.001 341 11	horse-power
1,000.	watts	0.001	kilowatt
	LINEAR V	ELOCITIES	
1 foot per second =	:	1 mile per hour ==	
60. 0.681 818 0.011 363 6	feet per minute mile per hour mile per minute	88. 1.466 67 0.016 666 7	feet per minute feet per second mile per minute

meters per minute 26.822418.283 0 meters per minute 1.609 35 kilometersper 0.304 801 meter per second hour 1.097 28 kilometersper 1 mile per minute = hour SS. feet per second 60. miles per hour 1,609 35 kilometers per 1 foot per minute == minute 0.016 666 7 foot per second 1 meter per second =

WEIGHTS, VOLUMES AND COMPOUND FACTORS OF WATER*

196.850

3.280 83

2,236 93

feet per minute

feet per second

miles per hour

1 U.S. gallon =		1 cubic inch =	
8.345 45	pounds	$\begin{array}{ccc} 0.578 & 040 \\ 0.036 & 127 & 5 \end{array}$	ounce
231.	cubic inches		pound
0.133 681 3.785 43	cubic foot kilograms	1 cubic foot ==	
1 English gallon (1	mperial) ==	$\begin{array}{c} 62.428 \ 3 \\ 0.031 \ 214 \ 2 \end{array}$	pounds# ton (short)
10.022 1	pounds	0.027 869 8	ton (long)
277.41	cubic inches	7.480 52	U. S. gallons
0.160 538	cubic foot	28.317 0	kilograms
4.545 963 1	kilograms	28.317 0	liters

^{*} At 50° F, one cubic foot of water weighs 62 408 pounds.

mile per hour

meter per minute

0 011 363 6

0 304 801

WEIGHTS, VOLUMES AND COMPOUND FACTORS OF WATER—Continued

1,000,000 cubic feet	t ==	1 ton (short) ==	
22.956 S 1 liter == 1.	acre-feet kilogram	2,000. 32.036 7 9.071 85 239.652	pounds cubic feet hectoliters U. S. gallons
2.204 62 61.023 4 0.035 314 5 0.264 170	pounds cubic inches cubic foot U. S. gallon	1 ton (long) := 2,240. 35,881 1 10 160 5 268,410 24	pounds cubic feet hectoliters U. S. gallons
1 hectoliter == 100.	kilograms	1 ton (metric) ==	
220.462 0.110 231 0.098 420 6 3.531 45	pounds ton (short) ton (long) cubic feet	2,204.62 35.314 5 10 1.	pounds cubic feet hectoliters cubic meter
1 pound ==		1 kilogram =	
27.679 7 0.016 018 4 0.119 826 0.099 779 2 0.453 592 0.004 535 92	cubic inches cubic foot U. S. gallon English gallon liter hectoliter	$\begin{array}{c} 2.204 \ 62 \\ 61.023 \ 4 \\ 0.035 \ 314 \ 5 \\ 0.264 \ 170 \\ 0.219 \ 975 \\ 0.01 \end{array}$	pounds cubic inches cubic foot U. S. gallon English gallon hectoliter
1 California miner's	inch ==		
11,220	7 013	cubic foot per second cubic feet per minute U. S. gallon per second U. S. gallons per minute cubic meter per second horse-power at 80 per c the head is 440 feet	
1 cubic foot per sec	ond (known as	"second-foot") =	
101.941 100.	1 2 0 52 3 47 735 5	U. S. gallons per day of U. S. gallons per hour U. S. gallons per minute U. S. gallons per second California miner's inches cubic feet per minute acre-feet per day of 24 hacre-inch per hour cubic meters per hour horse-power at 80 per cuthe head is 1,100 feet	ours
I cubic foot per min		11.0 0 1	Of house
10,771,948 448,831 7,480 0,666 0,016 0,033 1,699	52 667 667 057 85	U. S. gallons per day of U. S. gallons per hour U. S. gallons per minute California miner's inch cubic foot per second acre-foot per day of 24 h cubic meters per hour horse-power at 80 per cubic meters in 660 feet	oours

WEIGHTS, VOLUMES AND COMPOUND FACTORS OF WATER-Continued

1,000,000 U. S. gallons per day of 24 hours =

 1.547
 228
 cubic feet per second cubic feet per minute

 92.833
 67
 cubic feet per minute

 61.889
 1
 California miner's inches

 41,666.666
 7
 U. S. gallons per hour

 694.444
 U. S. gallons per minute

 11.574
 U. S. gallons per second

 3.068
 883
 acre-feet per day of 24 hours

1 cubic foot per second for one day of 24 hours (run-off) =

0.003 099 174 square-mile foot 0.037 190 082 square-mile inch

1 U. S. gallon per minute ==

0.002 228 009 cubic-foot per second 0.004 420 19 cubic-foot per day of 24 hours

1 acresfoot is a body of water 1 acre in area and 1 foot in depth =

325,851. U. S. gallons
43,560. cubic feet
1,613.33 cubic yards
1,233.49 cubic meters
0.018 75 square-mile-inch
0.504 17 cubic-feet per second for 24 hours

1 square-mile-inch ==

53.33 acre-feet 2,323,200. cubic feet 17,378,733. U. S. gallons

I inch in depth =

27,154.3 U. S. gallons per acre
0.623 376 6 U. S. gallon per square foot
3,630, cubic feet per acre
cubic meters per hectare

I foot in depth =

43,560. cubic feet per acre
67.324 7 U. S. gallons per square yard
3,048.01 cubic meters per hectare

I centimeter in depth ==

10. liters per square meter cubic feet per acre 0.245 576 U. S. gallon per square foot

1 cubic foot per acre =

0.000 275 482 inch in depth 0.000 699 727 centimeter in depth

1 cubic inch per square foot =

0.006 944 4 inch in depth 0.017 638 958 centimeter in depth

WEIGHTS, VOLUMES AND COMPOUND FACTORS OF WATER-Continued

1 U. S. gallon per square foot =

1.604 17 inches in depth 4.074 59 centimeters in depth

I cubic foot per acre per second =

1.983 47 feet depth per day of 24 hours

1 U. S. gallon per acre per second ==

0.132 575 7 inch per hour 0.265 152 foot per day of 24 hours

1 foot per second ==

26,929.87 U. S. gallons per square foot per hour

Water is at its greatest density at 39.2° F. Sea water is 1.6 to 1.9 heavier than fresh water.

ERRATA

Page 89. Formula on fourth line should read:

$$K=0.762\times D^{\mathfrak s}\times L\times V^{\mathfrak s}$$

Formulas on eighth, ninth and tenth lines should read:

$$K = \frac{W \times a \times V^{3}}{2g \times 144} = \frac{W \times a \times V^{3}}{9259} = 0.000108 \times W \times a \times V^{3}.$$

Page 90. Second formula under "Capacity of Cylindrical Tanks," should read:

Capacity in gallons = $\frac{0.7854 \text{ D}^2 \times \text{L}}{0.13368} = 5.87 \text{ D}^2 \times \text{L}$; where L is length of pipe in feet.

Page 91. Formula on second line should read

 $\sqrt{2\times32.15} = 8.03$

Page 98. Eleventh line should read:

Water is at its greatest density at 39.2° F. Sea water is from 1.6 to 1.9 pounds per cubic foot heavier than fresh water.

INDEX

	I	Page
Abner Doble Company's Bulletins		98
Baffle Plate, Ensign Vortex Bearing Belted Water Wheels Buckets	28 30 to	4, 45 8, 29 0 33 0, 11
Canadian Licensee Centrifugal Water Guard Circumferences and Areas of Circles Consulting Engineering Department Cornell University Power Plant	82 10	6, 64 29 0 86 7 1, 55
Decimal Equivalents of Fractions of 1 Inch. Decimals of a Foot Equivalent to Inches de Sabla Power Plant Direct-Connected Hydro-Electric Units Doble Water Wheel Tables		
Electra Power Plant Installation, New Ensign Vortex Bassle Plate Estimates, Information Required for Making		58 1, 45 3, 64
Head Required to Overcome Resistance in Circular Bends—Table Housing, Water Wheel Hydraulic Information, Useful Hydro-Electric Unit, Direct-Connected Hydro Electric Unit, Double, for Large Capacities Hydro-Electric Unit, Large Hydro-Electric Unit, Low-Head	28 88 to 32 38	80 8, 29 0 90 2, 33 8, 39 8, 39 6, 37
Hydro-Electric Unit with Deflecting Nozzle Operated by Replogle Governor Hydro-Electric Unit with Needle Nozzle Operated by Lombard Governor		4, 35 5, 37
Hydro-Electric Unit with Needle Nozzle Operated by Woodward Governor	3.	4, 35
Information Required for Making Estimates		3, 64 5
Introduction		o 23 0, 41
Laboratory Water Motor Lombard Governor, Needle Nozzle Operated by Loss of Head in Pipe by Friction—Tables Low-Head Hydro-Electric Unit with Specially Designed Governor	76 i	6, 37 o 79
Operating Needle Nozzle		6, 37 o 62
Measurement of Water Medals and Awards Mill Creek No. 3 Power Plant Miner's Inch	4:	6, 17 8, 49 62
Needle Nozzle Operated by Lombard Governor Needle Nozzle Operated by Woodward Governor Needle Regulating Nozzle Needle Regulating and Deflecting Nozzle	3- 18 t	6, 37 4, 35 0 23 4, 25

WEIGHTS, VOLUMES AND COMPOUND FACTORS OF WATER-Continued

1 U. S. gallon per square foot =

inches in depth centimeters in depth 1.604 17 4.074 59

1 cubic foot per acre per second =

feet depth per day of 24 hours 1.983 47

1 U. S. gallon per acre per second =

inch per hour foot per day of 24 hours 0.132 575 7 $0.265\ 152$

1 foot per second ==

U. S. gallons per square foot per hour 26,929,87

Water is at its greatest density at 39.2° F. Sea water is 1.6 to 1.9 heavier than fresh water.

ABNER DOBLE COMPANY BULLETINS

We plan to publish bulletins from time to time relating to our waterwheel and other hydraulic products, notable hydro-electric developments, iron and steel goods, and other lines of work in which we are concerned. Following is alist of our present bulletins and others which we have in preparation:

Bulletin No. 3. Iron and Steel.

Bulletin No. 4. Tools.

Bulletin No. 5. Tangential Water Wheels (out of print).

An Investigation of the Doble Needle Regulating Bulletin No. Nozzle (Mass. Inst. of Tech.).

Doble Tangential Water Wheels (Superseding Bulletin Bulletin No.

Hydro-Electric Power Development and Transmission in California (Tech. Soc. of Pac. Coast). Bulletin No. 8.

The Irrigation System of Ontario, California (Am. Soc. Bulletin No. 9.

Cornell University and Its New Hydro-Electric Power Bulletin No. 10. Plant (in preparation).

If you are interested in any of the above bulletins kindly address us___ stating in what line of work you are engaged.

ABNER DOBLE COMPANY,

Fremont and Howard Sts.,

San Francisco, Cal.

INDEX

111,001	
	Page
Abner Doble Company's Bulletins	
Abner Doble Company's Duncting	44, 45
Baffle Plate, Ensign Vortex	
Baffle Plate, Ensign Vortex Bearing	30 to 33
Bearing Belted Water Wheels	10, 11
Belted Water Wheels	10,
Belted Water Wheels Buckets	6, 64
T 1-1000	29
Canadian Licensee Centrifugal Water Guard Circumferences and Areas of Circles Circumferences and Areas of Circles	82 to 86
Centrifugat Water Garas of Circles	7
Circumferences and Areas of Circles Consulting Engineering Department Consulting Engineering Plant	54, 55
Consulting Engineering Department Cornell University Power Plant	0.77
Decimal Equivalents of Fractions of 1 Inch Decimal Equivalents of Fractions of 1 Inch	87
Decimal Equivalents of Fractions of 1 Inch. Decimals of a Foot Equivalent to Inches Decimal Private Plant	87
Decimals of a Foot Equivalent to Inches	52, 53
Decimals of a Foot Equivalent to Thereo de Sabla Power Plant Direct-Connected Hydro-Electric Units Direct-Water Wheel Tables	65 to 75
Direct-Connected Hydro-Electric Units Doble Water Wheel Tables	58
Doble Water	
Electra Power Plant Installation No.	20 01
Literia 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
-Tab	le 80
	28, 29
	88 to 90
	32
	nlog!

	overnor
	5
	59 to 62
	46, 47
K	48, 49
	62
	36, 37
	34, 3
	18 to 2

***************************************	24, 2

Notice to Correspondents Nozzle, Deflecting, Operated by Replogle Governor. Nozzle, Needle Regulating Nozzle, Neede Regulating and Deflecting Nozzle, Operated from a Distance Ontario Power Plant Operation of Regulating Nozzle from a Distance	18 to 24 32 50	, 3, 3, 3, 3, 5, 5, 3	5 3 5 3
Pipe Lines, Safety Air Valve for. Pipe Lines, Spring-Balanced Compensator for Pipe, Loss of Head in, bŷ Friction—Tables Pipe, Riveted Hydraulic—Tables Power Plants Cornell University de Sabla	76 to 80 54 52	4 4 7 0, 8 1, 5 2, 5	3 3 9 1 5 3
Mill Creek No. 3. New Electra Installation Ontario Santa Ana River No. 2.	50	5, 4	8
Ready Conversion Factors Replogle Governor, Deflecting Nozzle Operated by. Riveted Hydraulic Pipe—Table Runners	34 80	1, 3	5
Safety Air Valve for Pipe Lines. Santa Ana River No. 2 Power Plant. Shafts Spring-Balanced Compensator for Pipe Lines. St. Louis World's Fair Exhibit. Strength of Wrought Iron Bolts—Table.	20	4 3, 5 3, 2 4 3, 8	7 13 9
Tables Circumferences and Areas of Circles. Decimal Equivalents of Fractions of 1 inch. Decimals of a Foot Equivalent to Inches. Doble Water Wheel Tables. Head Required to Overcome Resistance in Circular Bends. Loss of Head in Pipe by Friction Riveted Hydraulic Pipe Strength of Wrought Iron Bolts Weir Table	65 to	8 8 0 7 8 0 7 8 0, 8	37 37 30 30 31 36 31
Turbines Useful Data Useful Hydraulic Information		5	7 91 90
Various Applications of Water Wheels	4	1, 4	42
Water Guard, Centrifugal Water Motor for Small Sizes Water Motor, Laboratory Water Wheel Tables, Doble Water Wheels for Belt Drive Weights, Volumes and Compound Factors of Water	30 t	0, 10 to 10 to 10 to 1	41 75 33
Weir Table	. 3	4,	

