

Universidade Tecnológica Federal do Paraná

Departamento Acadêmico de Física

Disciplina: Física Experimental 1

EXPERIMENTO 1: MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO (MRUV)

Nome:		
Turma:	Professor(a)	

1. Objetivos

1.1. Objetivo geral

Estudar as características do Movimento Retilíneo Uniformemente Variado (MRUV) e obter as equações horárias do movimento. Elaboração de gráficos com papel dilog (log x log) e papel milimetrado.

1.2. Objetivo específicos

Utilizar os instrumentos de medidas, realizar propagação de erros, construir gráficos, obter a aceleração do movimento de um objeto por equações de movimento e pelas leis de Newton.

2. Fundamentação Teórica

O Movimento Retilíneo Uniformemente Variado (MRUV) demonstra que a velocidade varia uniformemente em razão ao tempo. O MRUV pode ser definido como um movimento de um corpo em relação a uma referência ao longo de uma reta, na qual sua aceleração é sempre constante. Diz-se que a velocidade do móvel sofre variações iguais em intervalos de tempo iguais.

2.1. Equações do movimento

A equação do MRUV da posição em função do tempo pode ser dada por:

Universidade Tecnológica Federal do Paraná

Departamento Acadêmico de Física

Disciplina: Física Experimental 1

$$x = x_0 + v_0 t + \frac{1}{2} a t^2 \tag{1}$$

onde x é a posição final em metros, x_0 é a posição inicial em metro, v_0 é a velocidade inicial em m/s, t o tempo em segundos e a a aceleração em m/s².

Quando a aceleração é constante, a velocidade final em função do tempo é escrita como:

$$v = v_0 + at \tag{2}$$

onde v_0 é a velocidade inicial em m/s, t o tempo em segundos e a a aceleração em m/s².

Para não haver confusão com a notação de coordenadas para elaboração de gráficos (x,y) vamos assumir $x-x_0=d$. Assim, se $v_0=0$, a equação (1) pode ser reescrita como

$$d = \frac{1}{2}at^2 \tag{3}$$

2.2. Leis de Newton para um corpo de massa m suspenso acoplado ao um corpo de massa M deslizante

Ao aplicar as leis de Newton num bloco deslizante M e bloco suspenso m acoplados conforme Figura 1 pode-se obter a seguinte equação para a aceleração:

$$a = \frac{m}{M+m}g\tag{4}$$

Onde $g = 9,79 \text{ m/s}^2$.

Universidade Tecnológica Federal do Paraná

Departamento Acadêmico de Física

Disciplina: Física Experimental 1

Figura 1.

2.3. Método dos mínimos quadrados.

Esse método permite encontrar a reta que melhor descreve um conjunto de dados. Essa é a operação que o computador realiza quando fazemos uma regressão linear em um conjunto de dados.

Os coeficientes de uma reta do tipo y = Ax + B podem ser obtidos da seguinte forma:

$$A = \frac{\sum_{i=1}^{N} \delta_{x_i} \delta_{y_i}}{\sum_{i=1}^{N} \delta_{x_i}^2} = \frac{a}{2}$$

$$B=\bar{y}-A\bar{x}$$

Onde *A* e *B* são os coeficientes angular e linear da reta, respectivamente.

3. Materiais Utilizados

Trilho de ar e acessórios (sensores, cronômetro digital, carrinho), papel *dilog*, papel milimetrado.

4. Procedimento experimental

4.1. Obtenção da curva distância versus tempo

- 4.1.1. Prenda uma massa (m) na extremidade livre do barbante
- 4.1.2. Coloque o 1º sensor justaposto ao pino do carrinho (esse sensor ficará desligado);

Universidade Tecnológica Federal do Paraná

Departamento Acadêmico de Física

Disciplina: Física Experimental 1

- 4.1.3. Coloque o 2º sensor a uma distância variável do pino do carrinho (conforme indicado na tabela 1);
- 4.1.4. Libere o carrinho e verifique no cronômetro o tempo (*t*) gasto para percorrer a distância (*d*) entre os sensores, anotando o resultado (com todos os algarismos significativos) na Tabela 1.
- 4.1.5. Repita este procedimento mais quatro vezes.
- 4.1.6. Messa as massas m e M e anote na parte inferior da Tabela 1. Anote também os erros dos equipamentos utilizados.
- 4.1.7. Calcule o valor teórico da aceleração através da equação (4).
- 4.1.8. Na tabela 2 calcule o tempo médio \bar{t} , o erro do tipo A do tempo $\sigma_{A,t}$ (desvio padrão) o erro do tipo B do tempo $\sigma_{B,t}$ (erro da média, aplique a fórmula da expansão na fórmula da média), o erro total do tempo $\sigma_{T,t}$
- 4.1.9. Adicione mais uma massa ao conjunto e faça medidas análogas completando a tabela 3 e a tabela 4.

5. Resultados

- 5.1. Construa o gráfico d versus \bar{t} (Gráfico 1), utilizando dados da Tabela 2 e 4, no software de sua preferência. Inclua, neste caso, o ponto (0,0). Qual o tipo de relação entre estas duas grandezas (d e \bar{t})?
- 5.2. Construa o gráfico d versus \bar{t}^2 (Gráfico 2), utilizando dados da Tabela 2 e 4, no software de sua preferência. Inclua, neste caso, o ponto (0,0). Qual o tipo de relação, entre estas grandezas (d e \bar{t}^2)?
- 5.3. Calcule manualmente o coeficiente angular das retas do Gráfico 2, utilizando dois pontos que passam sobre a reta (utilize os pontos da tabela 2 e 4).
- 5.4. Utilizando o método dos mínimos quadrados (ver item 2.3), calcule o coeficiente angular e linear das retas. Use a tabela 5 e 6 como referência.
- 5.5. Faça a regressão linear nas retas do gráfico apresentado em 5.1 com o software e obtenha os coeficientes das retas.

Universidade Tecnológica Federal do Paraná

Departamento Acadêmico de Física

Disciplina: Física Experimental 1

- 5.6. Faça uma regressão de potência nas curvas apresentadas em 5.2 com o software.
- 5.7. Calcule a aceleração experimental (a_{exp}) utilizando a relação entre o coeficiente angular das retas e de potência obtidos em 5.3, 5.4, 5.5, e 5.6. Para isso, observe a equação (3). Os valores estão próximos? Se não, por quê.
- 5.8. Construa **manualmente** o gráfico d versus t (Gráfico 3) no papel di-log onde, tanto d e quanto t devem ser plotados em escala logarítmica. Qual o tipo de relação entre estas duas grandezas na base log?
- 5.9. Construa o gráfico o gráfico d versus t (Gráfico 4) no software de sua preferência.

Universidade Tecnológica Federal do Paraná

Departamento Acadêmico de Física

Disciplina: Física Experimental 1

Tabela 1: Para uma massa m_1

d (m)	t ₁ (s)	t_2 (s)	t ₃ (s)	t_4 (s)	t ₅ (s)
0.1					
0.2					
0.3					
0.4					
0.5					
	1	1	-	1	,
<i>m</i> ₁ (Kg)	M (Kg)		σ_m (Kg)	σ_t (s)	σ_d (m)

Tabela 2: Tratamento de dados para m_1

d (m)	\bar{t} (s)	$\sigma_{A,t}$ (s)	$\sigma_{B,t}$ (s)	$\sigma_{T,t}$ (s)	\bar{t}^2 (s²)	$\sigma_{T,ar{t}^2}$ (s)
0.1						
0.2						
0.3						
0.4						
0.5						

Universidade Tecnológica Federal do Paraná

Departamento Acadêmico de Física

Disciplina: Física Experimental 1

Tabela 3: Para uma massa m_2

d (m)	t ₁ (s)	t_2 (s)	t ₃ (s)	t ₄ (s)	t ₅ (s)
0.1					
0.2					
0.3					
0.4					
0.5					
	l	1	.	- 1	,
m ₂ (Kg)	M (Kg)		σ_m (Kg)	σ_t (s)	σ_d (m)

Tabela 4: Tratamento de dados para m_2

d (m)	\bar{t} (s)	$\sigma_{A,t}$ (s)	$\sigma_{B,t}$ (s)	$\sigma_{T,t}$ (s)	\bar{t}^2 (s²)	$\sigma_{T,ar{t}^2}$ (s)
0.1						
0.2						
0.3						
0.4						
0.5						

Universidade Tecnológica Federal do Paraná

Departamento Acadêmico de Física

Disciplina: Física Experimental 1

 $\textit{Tabela 5: Para a determina} \ \textit{Gas coeficientes angular e linear da reta de} \ \textit{m}_1 \ \textit{atrav\'es do m\'etodo dos m\'inimos quadrados}$

Ponto	$x_i = t_i^2$	$y_i = d_i$	$\delta_{x_i} = (x_i - \bar{x})$	$\delta_{y_i} = (y_i - \bar{y})$	$\delta_{x_i}\delta_{y_i}$	$\delta_{x_i}^2$
1						
2						
3						
4						
5						
	$\bar{x} =$	$\bar{y} =$			$\sum_{i=1}^{N} \delta_{x_i} \delta_{y_i}$	$\sum_{i=1}^{N} \delta_{x_i}^2$

Tabela 6: Para a determinação dos coeficientes angular e linear da reta de m_2 através do método dos mínimos quadrados

Ponto	$x_i = t_i^2$	$y_i = d_i$	$\delta_{x_i} = (x_i - \bar{x})$	$\delta_{y_i} = (y_i - \bar{y})$	$\delta_{x_i}\delta_{y_i}$	$\delta_{x_i}^2$
1						
2						
3						
4						
5						
	$\bar{x} =$	$\bar{y} =$			$\sum_{i=1}^{N} \delta_{x_i} \delta_{y_i}$	$\sum_{i=1}^N \delta_{x_i}^2$

Universidade Tecnológica Federal do Paraná

Departamento Acadêmico de Física

Disciplina: Física Experimental 1

Tabela 7: Comparação dos resultados da aceleração

	a (5.3)	a (5.4)	a (5.5)	a (5.6)	$a_{teorico}$
m_1					
m_2					

6. Conclusões

Para responder este item, solicita-se ao aluno levar em conta as seguintes perguntas: Os objetivos foram atingidos? Caso não tenham sido atingidos na totalidade, quais foram as dificuldades? Como foram os resultados obtidos? Qual o desvio percentual destes resultados, com relação aos valores esperados (caso tenhamos estes valores). Quais as principais fontes de erro nestas determinações?

ATENÇÃO

Esse roteiro **NÃO** é um modelo para o relatório do experimento. Aqui, você coletou os dados e foi instruído sobre o procedimento experimental para realizar o experimento. Sim, muita coisa do que está aqui deverá ser apresentada no relatório, mas atente-se às instruções sobre os relatórios apresentados na primeira aula.