Radomized Algorithms Problemes 3 Fall 2019. To hand Problem 15 on the 15th of October. To hand the remaining ones (or mail it before) October 29

15.- (*) (**Recall exercise 5**) In cryptographic applications we often need to generate random integer $r \in \{1, \ldots, n\}$ together with the factorization of r. Note the obvious method of just generating r u.a.r. and then factoring r, is not efficient for large r as factoring is not known to be in P. Consider the following algorithm:

```
generate an integer sequence n \geq s_1 \geq s_2 \geq \cdots \geq s_t = 1

chose u.a.r. s_1 \in \{1, \ldots, n\}

until reaching 1 do

chose s_i u.a.r. from \{1, \ldots, s_{i-1}\}

select the set S = \{s_i | s_i \text{ is prime}\}

do r = \prod_{s_i \in S} s_i

if r \leq n output r with prob = r/n

else FAIL
```

You can generate u.a.r. $r \in \{1, ..., n\}$ by using biased coins as in Problem 4. To test for primality we can either use the deterministic algorithm AKS (Agrawal–Kayal–Saxena) $(O(\lg n)^6)$) or the faster probabilistic algorithms from Miller-Rabin a Monte-Carlo, one side error that runs in $(O(\ln n)^4)$).

- (a) Suppose we represent the sequence $\{s_i\}$ obtained by the algorithm as a vector (m_1, \ldots, m_n) , where m_i is the number of times the number j occurs in the sequence (for ex. if n = 10 and the sequence is $s_1 = 8, s_2 = 5, s_3 = 5, s_4 = 1$ the vector would be (1, 0, 0, 0, 2, 0, 0, 1, 0, 0).) Show that the probability of generating the sequence is given by $\prod_{j=2}^{n} (\frac{1}{j})^{m_j} (1 \frac{1}{j}).$ (Hint: the entire generating process can be thought of as a tossing of a sequence of coins)
- (b) Show (from the previous item) that the algorithm outputs each $r \in \{1, \ldots, n\}$ with equal probability α_n/n where $\alpha_n = \prod_p (1-1/p)$, and the product is over all primes $p \leq n$.
- (c) A standard theorem from number theory says that $\alpha_n^{-1} \sim 1.8 \ln n$. Suppose we repeat the algorithm until it outputs a r. What is the expected number of repetitions needed?
- (d) The running time of each trial of the algorithm is dominated by the primality test. Show that the expected number of primality test is bounded by $H_n = \Theta(\ln n)$.
- (e) Show that the expected number of primality tests performed before an output r is produced is $O(\lg^2 n)$. Justify why it is not enough to multiply the expectations obtained in items (c) and (d).

- 16.- Let X a r.v. such that X = Rand(1, n). Find Var[X].
- 17.- Sigui a_1, a_2, \ldots, a_n una llista de n enters diferents. Direm que a_i i a_j estan invertits si i < j però $a_i > a_j$. L'algorisme de la bombolla intercanvia parells d'elements invertits fins que tots els elements són ordenats. Suposeu que l'entrada a l'algorisme és una permutació amb n enters diferents (agafada d'una distribució uniforme).
 - (a) Digueu quin és el nombre esperat μ d'inversions que realitzarà l'algorisme de la bombolla.
 - (b) Calculeu la variança del nombre d'inversions. Si X representa la variable aleatòria del nombre d'inversions, X està concentrada al voltant de μ ?
- 18.- (MU 3.15) Let the random variable X be representable as a sum of random variables $X = \sum_{i=1}^{n} X_i$. Show that, if $\mathbf{E}[X_i X_j] = \mathbf{E}[X_i] \mathbf{E}[X_j]$ for every pair of i and j with $1 \le i < j \le n$, then $\mathbf{Var}[X] = \sum_{i=1}^{n} \mathbf{Var}[X_i]$.
- 19.- (MU 3.15) (*) Suppose that we flip a fair coin n times to obtain n random bits. Consider all $m = \binom{n}{2}$ pairs of these bits in some order. Let Y_i be the exclusive or \oplus of the i-th pair of bits, and let $Y = \sum_{i=1}^{m} Y_i$ the number of Y_i that equal 1.
 - (a) Show that each $Y_i = 0$ with prob = 1/2 (therefore, $Y_i = 1$ with probability also 1/2)
 - (b) Show that Y_i are not mutually independent.
 - (c) Show that $\mathbf{E}[Y_iY_j] = \mathbf{E}[Y_i]\mathbf{E}[Y_j]$.
 - (d) Find Var[Y].
 - (e) Use Chebyshev to bound $\Pr[|Y \mathbf{E}[Y]| \ge n]$.
- 20.- (*) (MU 4.9) Suppose that we can obtain independent samples $X_1, X_2, \ldots X_n$ of a random variable X and that we want to use these samples to estimate $\mathbf{E}[X]$. Using t samples, we use $(\sum_{i=1}^n X_i/t)$ for our estimate of $\mathbf{E}[X]$. We want the estimate to be within $\epsilon \mathbf{E}[X]$ from the true value of $\mathbf{E}[X]$ with probability $\geq (1 \delta)$. We develop an alternative approach that requires only having a bound on the $\mathbf{Var}[X]$. Let $r = \sqrt{\mathbf{Var}[X]}/\mathbf{E}[X]$.
 - (a) Show using Chebyshev that $O(r^2/\epsilon^2\delta)$ samples are sufficient to solve the problem.
 - (b) Suppose that we need only a weak estimate that is within $\epsilon \mathbf{E}[X]$ of $\mathbf{E}[X]$, with probability at least 3/4. Argue that. $O(r^2/\epsilon^2)$ samples are enough for this weak estimate.
 - (c) Show that, by taking the median of $O(\lg(1/\delta))$ weak estimates, we can obtain an estimate within $\epsilon \mathbf{E}[X]$ of $\mathbf{E}[X]$ with probability at least (1δ) . Conclude that we need only $(r^2 \lg(1/\delta)/\epsilon^2)$ samples.