算法设计与分析

蒋婷婷

上节课回顾

- □算法研究的重要性
- □理论上和现实可计算性
- □计算复杂性理论
- □算法复杂度

函数渐近的界

设f和g是定义域为自然数集N上的函数

- (1) f(n)=O(g(n))若存在正数c和 n_0 使得对一切 $n \ge n_0$ 有 $0 \le f(n) \le cg(n)$
- (2) $f(n) = \Omega(g(n))$ 若存在正数c和 n_0 使得对一切 $n \ge n_0$ 有 $0 \le cg(n) \le f(n)$
- (3) f(n)=o(g(n)) 对所有正数c>0存在 n_0 使得对一切 $n\geq n_0$ 有 $0\leq f(n)< cg(n)$
- (4) $f(n)=\omega(g(n))$. 对所有正数c>0存在 n_0 使得对一切 $n\geq n_0$ 有 $0\leq cg(n)< f(n)$
- (5) $f(n) = \mathcal{O}(g(n)) \Leftrightarrow f(n) = \mathcal{O}(g(n)) \perp f(n) = \mathcal{O}(g(n))$
- (6) O(1)表示常数函数

函数渐近的界的基本性质

定理1.1 设f和g是定义域为自然数集N上的函数.

- (1) 如果 $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ 存在,并且等于某个常数c>0,那么 $f(n)=\Theta(g(n))$.
- (2) 如果 $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$,那么 f(n)=o(g(n)).
- (3) 如果 $\lim_{n\to\infty} \frac{f(n)}{g(n)} = +\infty$,那么 $f(n) = \omega(g(n))$.

证明定理1.1(1)

(1) 根据极限定义,对于给定的正数 $\varepsilon=c/2$,存在某个 n_0 ,只要 $n\geq n_0$,就有

$$\left| \frac{f(n)}{g(n)} - c \right| < \varepsilon \Rightarrow c - \varepsilon < \frac{f(n)}{g(n)} < c + \varepsilon$$

$$\Rightarrow \frac{c}{2} < \frac{f(n)}{g(n)} < \frac{3c}{2} < 2c$$

对所有的 $n \ge n_0$, $f(n) \le 2cg(n)$. 从而推出 f(n) = O(g(n)) 对所有的 $n \ge n_0$, $f(n) \ge (c/2)g(n)$,从而推出 $f(n) = \Omega(g(n))$,于是 $f(n) = \Theta(g(n))$

函数渐近的界的基本性质

定理1.2 设 f, g, h是定义域为自然数集合的函数,

- (1) 如果f = O(g)且g = O(h), 那么f = O(h).
- (2) 如果 $f = \Omega(g)$ 且 $g = \Omega(h)$, 那么 $f = \Omega(h)$.
- (3) 如果 $f = \Theta(g)$ 和 $g = \Theta(h)$,那么 $f = \Theta(h)$.

定理1.3 假设f和g是定义域为自然数集合的函数,若对某个其它的函数h,我们有f = O(h)和g = O(h),那么 f + g = O(h).

推论 假设 f 和 g 是定义域为自然数集合的函数,且满足 g=O(f),那么 f+g=O(f).

基本函数类

阶的高低

至少指数级: $2^n, 3^n, n!, ...$

多项式级: $n, n^2, n \log n, n^{1/2}, \dots$

对数多项式级: $logn, log^2n,...$

$$2^{2^{n}}$$
, $n!$, $n2^{n}$, $(3/2)^{n}$, $(\log n)^{\log n} = \Theta(n^{\log \log n})$, n^{3} , $\log(n!) = \Theta(n\log n)$, $n = 2^{\log n}$, $\log^{2} n$, $\log n$, $\sqrt{\log n}$, $\log \log n$, $n^{1/\log n} = \Theta(1)$

例题

例1 设
$$f(n) = \frac{1}{2}n^2 - 3n$$
,证明 $f(n) = \Theta(n^2)$.
$$\lim_{n \to +\infty} \frac{f(n)}{n^2} = \lim_{n \to +\infty} \frac{\frac{1}{2}n^2 - 3n}{n^2} = \frac{1}{2}$$

根据定理1.1有 $f(n) = \Theta(n^2)$.

例题

例2 PrimalityTest(n)

输入: n,n为大于 2 的奇整数

输出: true 或者false

- 1. $s \leftarrow \sqrt{n}$
- 2. for $j \leftarrow 2$ to s
- 3. if j 整除 n
- 4. then return false
- 5. return true

假设计算 \sqrt{n} 可以在O(1)时间完成,可以写 $O(\sqrt{n})$,不能写 $O(\sqrt{n})$

多项式时间的算法

□多项式时间的算法

时间复杂度函数为O(p(n))的算法,其中p(n)是n的多项式

□不是多项式时间的算法

不存在多项式 p(n) 使得该算法的时间复杂度为 O(p(n))

包含指数时间甚至更高阶的算法

多项式函数与指数函数

时间复杂	问题规模					
度函数	10	20	30	40	50	60
n	10 ⁻⁵	2*10 ⁻⁵	3*10 ⁻⁵	4*10 ⁻⁵	5*10 ⁻⁵	6*10 ⁻⁵
n^2	10-4	4*10-4	9*10-4	16*10-4	25*10-4	36*10-4
n^3	10-3	8*10-3	27*10 ⁻³	64*10-3	125*10-3	216*10 ⁻³
n^5	10-1	3.2	24.3	1.7 分	5.2 分	13.0 分
2^n	.001 秒	1.0 秒	17.9 分	12.7 天	35.7年	366 世纪
3 ⁿ	.059 秒	58分	6.5年	3855 世纪	2*10*世纪	1.3*1013世纪

表中默认单位为秒

多项式函数与指数函数

时间复杂	1小时可解的问题实例的最大规模					
度函数	计算机	快100倍的计算机	快1000倍的计算机			
n	N ₁	100 N ₁	1000 N ₁			
n^2	N_2	10 N ₂	31.6 N ₂			
n^3	N ₃	4.64 N ₃	10 N ₃			
n^5	N_4	2.5 N ₄	3.98 N ₄			
2 ⁿ	N ₅	N ₅ + 6.64	$N_5 + 9.97$			
3 ⁿ	N ₆	N ₆ + 4.19	N ₆ + 6.29			

10亿次/秒机器求解的问题

- □ 快速排序算法给10万个数据排序,运算量约为 10⁵×log₂10⁵≈1.7×10⁶,仅需1.7×10⁶/10⁹=1.7×10⁻³秒.
- □ Dijkstra算法求解1万个顶点的图的单源最短路径问题, 运算量约为 $(10^4)^2=10^8$,约需 $10^8/10^9=0.1$ 秒.
- □ 回溯法解100个顶点的图的最大团问题,运算量为 100×2¹⁰⁰≈1.8×10³², 需要1.8×10³²/10⁹=1.8×10²¹秒 =5.7×10¹⁵年,即5千7百万亿年!
- □ 1 分钟能解多大的问题. 1分钟60秒, 这台计算机可做用 快速排序算法可给2×109(即, 20亿)个数据排序,用 Dijkstra算法可解2.4×105个顶点的图的单源最短路径问 题. 而用回溯法一天只能解41个顶点的图的最大团问题 ;

问题的复杂度分析

多项式时间可解的问题与难解的问题

- □ 多项式时间可解的问题 *P* 存在着解*P* 的多项式时间的算法
- □ 实际上可计算的问题 多项式时间可解的问题

不同复杂性类的基本层次结构

算复杂

算法及计算复杂性理论的拓广

□算法

- ■概率算法
- ■近似算法
- 在线算法
- 分布式算法

□计算复杂性

- 概率Turing机与概率复杂性
- ■近似求解的复杂性
- ■参数复杂性
- ■计数复杂性
- ■通信复杂性

计算理论的发展

□新的理论

- 新的计算模型 算法和计算复杂度理论的基础是Turing机模型,现在 有许多非Turing机的计算模型,如DNA计算,量子计 算等
- 新的环境 正在提出的云计算等新的计算环境,不再是传统的顺序算法、并行算法或者分布式算法等,更加重视协同与博弈,可能需要研究关于刻画独立个体群体行为的新的计算理论、模型和分析方法
- □ 在软件开发中算法好坏有时不是最重要的因素, 更重要的可能是标准化、质量保证、实现成本等¹⁸

数学基础:对数函数

```
符号:
   \log n = \log_2 n, (\lg n = \log_{10} n)
   \log^k n = (\log n)^k
   \log\log n = \log(\log n)
性质:
   \log_b n = o(n^a) \quad \alpha > 0
   a^{\log_b n} = n^{\log_b a}
   \log_k n = \Theta(\log_l n)
```

阶乘

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

$$n! = o(n^n), \quad n! = \Omega(2^n)$$

$$\log(n!) = \Theta(n\log n)$$

$$\log(n!) = \sum_{k=1}^{n} \log k$$

$$\geq \int_{1}^{n} \log x dx$$

$$=\Omega(n\log n)$$

阶乘 (续)

$$\log(n!) = \sum_{k=1}^{n} \log k \le \int_{2}^{n+1} \log x dx = O(n \log n)$$

取整函数

[x]: 表示小于等于x的最大的整数

「x]: 表示大于等于x的最小的整数

取整函数具有下述性质:

- $(1) x-1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x+1$
- (2) $\lfloor x+n \rfloor = \lfloor x \rfloor + n$, $\lceil x+n \rceil = \lceil x \rceil + n$, 其中n为整数
- $(3) \quad \left\lceil \frac{n}{2} \right\rceil + \left\lfloor \frac{n}{2} \right\rfloor = n$

$$\left[\frac{\left[\frac{n}{a} \right]}{b} \right] = \left[\frac{n}{ab} \right], \quad \left[\frac{\left[\frac{n}{a} \right]}{b} \right] = \left[\frac{n}{ab} \right]$$

求和公式

基本求和公式

$$\sum_{k=1}^{n} a_k = \frac{n(a_1 + a_n)}{2}, \quad \{a_k\}$$
 等差数列
$$\sum_{k=0}^{n} aq^k = \frac{a(1 - q^{n+1})}{1 - q}, \quad \sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x},$$

$$\sum_{k=0}^{\infty} aq^k = \frac{a}{1 - q} \quad (q < 1)$$

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + O(1)$$

估计和式上界的方法

放大法:

- $1. \sum_{k=1}^{n} a_k \le n a_{\max}$
- 2. 假设存在常数 r < 1,使得 对一切 $k \ge 0$ 成立 $\frac{a_{k+1}}{a_k} \le r$,则 $\sum_{k=0}^n a_k \le \sum_{k=0}^\infty a_0 r^k = a_0 \sum_{k=0}^\infty r^k = \frac{a_0}{1-r}$

求和实例

例 求和

$$(1) \quad \sum_{k=1}^{n-1} \frac{1}{k(k+1)}$$

$$(2) \sum_{t=1}^{k} t 2^{t-1}$$

解

$$(1) \sum_{k=1}^{n-1} \frac{1}{k(k+1)} = \sum_{k=1}^{n-1} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$= \sum_{k=1}^{n-1} \frac{1}{k} - \sum_{k=1}^{n-1} \frac{1}{k+1} = \sum_{k=1}^{n-1} \frac{1}{k} - \sum_{k=2}^{n} \frac{1}{k} = 1 - \frac{1}{n}$$

求和实例

$$(2) \sum_{t=1}^{k} t 2^{t-1} = \sum_{t=1}^{k} t (2^{t} - 2^{t-1})$$

$$= \sum_{t=1}^{k} t 2^{t} - \sum_{t=1}^{k} t 2^{t-1}$$

$$= \sum_{t=1}^{k} t 2^{t} - \sum_{t=0}^{k-1} (t+1)2^{t}$$

$$= \sum_{t=1}^{k} t 2^{t} - \sum_{t=0}^{k-1} t 2^{t} - \sum_{t=0}^{k-1} 2^{t}$$

$$= k 2^{k} - (2^{k} - 1)$$

$$= (k-1)2^{k} + 1$$

实例

例 估计
$$\sum_{k=1}^{n} \frac{k}{3^k}$$
 的上界。

解 由
$$a_k = \frac{k}{3^k}$$
, $a_{k+1} = \frac{k+1}{3^{k+1}}$

得
$$\frac{a_{k+1}}{a_k} = \frac{1}{3} \frac{k+1}{k} \le \frac{2}{3}$$

$$\sum_{k=1}^{n} \frac{k}{3^{k}} \le \sum_{k=1}^{\infty} \frac{1}{3} \left(\frac{2}{3}\right)^{k-1} = \frac{1}{3} \frac{1}{1 - \frac{2}{3}} = 1$$

估计和式渐近的界

估计 $\sum_{k=1}^{n} \frac{1}{k}$ 的渐近的界。

$$\sum_{k=1}^{n} \frac{1}{k} \ge \int_{1}^{n+1} \frac{dx}{x}$$
$$= \ln(n+1)$$

$$\sum_{k=1}^{n} \frac{1}{k} = \frac{1}{1} + \sum_{k=2}^{n} \frac{1}{k}$$

$$\leq 1 + \int_1^n \frac{dx}{x}$$

$$= \ln n + 1$$

