Pole: VKnintky - Kp = 0 Kny = w + Znr Kno = w => J(w) 2 + Kg = Kp 1 Ky = + Kp? - (WU)2 4 Kp + ZX4 > W 2014 > W - Kp いる(かんり) W10 = C => 1 two = c = w = ac 2EF two = 1 × = × 2× 0.3 = 43 weV W/0+2NT/a=Kplw)
140
Wo(n) \$ = \$ dor + \$ ind Sp(w, Kg)

2)
$$|K_{nn}| < |K_{p}| \Rightarrow \delta_n \leq \mathbb{I}$$

$$K_y = \pm i \delta_n' \qquad \delta_n = i \delta_n'$$

$$I = \sum_{n=0}^{\infty} I_n = -2\pi i \sum_{n=0}^{\infty} \int_{0}^{\infty} (\delta_n) / 2\delta_n$$

Earl = $\frac{k^2}{(4\pi)^2} \int \frac{d^2\theta}{k^2} \left[(\hat{\mathcal{E}}_5, \bar{\mathcal{F}}) \hat{\mathcal{E}}_5 \right] = \frac{(k_1(2a+b))^2}{(k_2(2a+b))^2} = \frac{k^2}{(4\pi)^2} \int \frac{d^2\theta}{k^2} \left[(\hat{\mathcal{E}}_5, \bar{\mathcal{F}}) \hat{\mathcal{E}}_5 \right] = \frac{(k_1(2a+b))^2}{(4\pi)^2} = \frac{k^2}{(4\pi)^2} \int \frac{d^2\theta}{k^2} \left[(\hat{\mathcal{E}}_5, \bar{\mathcal{F}}) \hat{\mathcal{E}}_5 \right] = \frac{(k_1(2a+b))^2}{(4\pi)^2} = \frac{k^2}{(4\pi)^2} \int \frac{d^2\theta}{k^2} \left[(\hat{\mathcal{E}}_5, \bar{\mathcal{F}}) \hat{\mathcal{E}}_5 \right] = \frac{(k_1(2a+b))^2}{(4\pi)^2} = \frac{k^2}{(4\pi)^2} \int \frac{d^2\theta}{k^2} \left[(\hat{\mathcal{E}}_5, \bar{\mathcal{F}}) \hat{\mathcal{E}}_5 \right] = \frac{(k_1(2a+b))^2}{(4\pi)^2} = \frac{(k_1(2a+b$ Exist = 152 (d/a ((Es. \$) Es + (Et. \$) Ex] ciais eixfarts K² (1- € ⊗ k) \$. 1 (2m²) J40 [E85 + Ept 85t]. F ciare ist DOV) HOIKO (17) Kt 10.5 (K2+

P1 = Q1 E(I) = Q1 (Exxt + Exx) + Edip G + Edip To 野上: 02 E(元): 02 (· Fi = Qi [Ext (1+ Fa) + B1 Fi + B2 (1+ Fa) \$2] 「ち、= (det) [Eex(1+下c)+ ら(1+下c) た] Edit & W DEL とうなって 大日かり ナ 日から

$$\frac{K_{11} = Qp}{= \sqrt{K_{nn} + K_{y}^{2}}} = Qp$$

$$= K_{nn} + K_{y}^{2} = Qp^{2} = \sqrt{Qp^{2} - K_{nn}}$$

$$|In(Qp)| << |Re(Qp)|$$

$$|K_{nn} < Qp|$$

$$\frac{1}{n-n'+i\epsilon} \stackrel{\sim}{\sim} P.V. \frac{1}{n-n'} = i\pi S(n-n') \qquad \epsilon \rightarrow 0^{\dagger}$$

$$\int dk_{y} \frac{e^{-2\sqrt{k_{nh} \cdot k_{y}^{2}}} + k_{p}}{\sqrt{k_{nh} \cdot k_{y}^{2}} + k_{p}} e^{ik_{y}y}$$

$$= -i\pi \int dk_{y} \frac{e^{-2\sqrt{k_{nh} \cdot k_{y}^{2}}} + k_{p}}{\sqrt{k_{nh} \cdot k_{y}^{2}} + k_{p}} e^{ik_{y}y} \left\{ \left[k_{p} - \sqrt{k_{nh} \cdot k_{y}^{2}} \right] + k_{p}} \right]$$

$$= -i\pi \int dk_{y} \frac{e^{-2\sqrt{k_{nh} \cdot k_{y}^{2}}} + k_{p}}{\sqrt{k_{nh} \cdot k_{y}^{2}} + k_{p}} e^{ik_{y}y} \left\{ \left[k_{p} - \sqrt{k_{nh} \cdot k_{x}^{2}} \right] + k_{p}} \right]$$

$$= -i\pi \int dk_{y} \frac{e^{-2\sqrt{k_{nh} \cdot k_{y}^{2}}} + k_{p}}{\sqrt{k_{nh} \cdot k_{y}^{2}} + k_{p}^{2}} e^{ik_{y}y} \left\{ \left[k_{p} - \sqrt{k_{nh} \cdot k_{x}^{2}} \right] + k_{p}} \right\}$$

$$= -i\pi \int dk_{y} \frac{e^{-2\sqrt{k_{nh} \cdot k_{y}^{2}}} + k_{p}}{\sqrt{k_{nh} \cdot k_{y}^{2}} + k_{p}^{2}} e^{ik_{y}y} \left\{ \left[k_{p} - \sqrt{k_{nh} \cdot k_{y}^{2}} \right] + k_{p}} \right\}$$

$$= -i\pi \int dk_{y} \frac{e^{-2\sqrt{k_{nh} \cdot k_{y}^{2}}} + k_{p}}{\sqrt{k_{nh} \cdot k_{y}^{2}} + k_{p}^{2}} e^{ik_{y}y} \left\{ \left[k_{p} - \sqrt{k_{nh} \cdot k_{y}^{2}} \right] + k_{p}} \right\}$$

$$= -i\pi \int dk_{y} \frac{e^{-2\sqrt{k_{nh} \cdot k_{y}^{2}}} + k_{p}}{\sqrt{k_{nh} \cdot k_{y}^{2}} + k_{p}} e^{ik_{y}y} \left\{ \left[k_{p} - \sqrt{k_{nh} \cdot k_{y}^{2}} \right] + k_{p}} \right\}$$

$$= -i\pi \int dk_{y} \frac{e^{-2\sqrt{k_{nh} \cdot k_{y}^{2}}} + k_{p}}{\sqrt{k_{nh} \cdot k_{y}^{2}} + k_{p}} e^{ik_{y}y} \left\{ \left[k_{p} - \sqrt{k_{nh} \cdot k_{y}^{2}} \right] + k_{p}} \right\}$$

$$= -i\pi \int dk_{y} \frac{e^{-2\sqrt{k_{nh} \cdot k_{y}^{2}}} + k_{p}}{\sqrt{k_{nh} \cdot k_{y}^{2}}} e^{ik_{y}y} \left\{ \left[k_{p} - \sqrt{k_{nh} \cdot k_{y}^{2}} \right] + k_{p}} \right\}$$

$$= -i\pi \int dk_{y} \frac{e^{-2\sqrt{k_{nh} \cdot k_{y}^{2}}} + k_{p}}{\sqrt{k_{nh} \cdot k_{y}^{2}}} e^{ik_{y}y} \left\{ \left[k_{p} - \sqrt{k_{nh} \cdot k_{y}^{2}} \right] + k_{p}} \right\}$$

$$= -i\pi \int dk_{y} \frac{e^{-2\sqrt{k_{nh} \cdot k_{y}^{2}}} + k_{p}}{\sqrt{k_{nh} \cdot k_{y}^{2}}} e^{ik_{y}y} \left\{ \left[k_{p} - \sqrt{k_{nh} \cdot k_{y}^{2}} \right] + k_{p}} \right\}$$

$$= -i\pi \int dk_{y} \frac{e^{-2\sqrt{k_{nh} \cdot k_{y}^{2}}} + k_{p}} \left[\left[k_{p} - \sqrt{k_{nh} \cdot k_{y}^{2}} \right] + k_{p}} \right]$$

$$= -i\pi \int dk_{y} \frac{e^{-2\sqrt{k_{nh} \cdot k_{y}^{2}}} + k_{p}} \left[\left[k_{p} - \sqrt{k_{nh} \cdot k_{y}^{2}} \right] + k_{p}} \right]$$

$$= -i\pi \int dk_{y} \frac{e^{-2\sqrt{k_{nh} \cdot k_{y}^{2}}} + k_{p}} \left[\left[k_{p} - \sqrt{k_{nh} \cdot k_{y}^{2}} \right] + k_{p}} \right]$$

$$= -i\pi \int dk_{y} \frac{e^{-2\sqrt{k_{nh} \cdot k_{y}^{2}}} + k_{p}} \left[\left[k_{p} - \sqrt{k_{nh} \cdot k_{y}^{2}} \right] + k_{p}} \right]$$

$$= -i\pi \int dk_{y} \frac{e^{-2\sqrt{k_{nh} \cdot k_$$

 $M_1 = \sum_{n} e^{i k_{nn} n} \left(-i\pi\right) \kappa_{p} R_{p} \Theta(v_{nn} - n) \sum_{j=\pm 1} \frac{e^{-2 \kappa_{p} + p}}{|\kappa_{g}|^{2}} e^{i \kappa_{g} y} dy$ = \frac{\interpretection \text{eight}}{2 \text{eight}} \frac{\interpretection \text{e = Teikning (-iztr) Kp Rp = 2xptr (xgm) 110 0 85 de

$$G_{1} = K_{NN} \int dK_{y} \frac{e^{-2\sqrt{K_{x}^{2}+K_{y}^{2}}}}{\sqrt{K_{x}^{2}+K_{y}^{2}}} \int_{P} e^{i k_{y} y} \int_{-\infty}^{R_{p} K_{p}} K_{x}^{2} \int_{K_{x}^{2}+K_{y}^{2}}^{R_{p} K_{p}} \int_{P} e^{i k_{y} y} \int_{K_{x}^{2}+K_{y}^{2}}^{R_{p} K_{p}} \int_{P} e^{i k_{y} y} \int_{K_{x}^{2}+K_{y}^{2}}^{R_{p} K_{p}} \int_{R_{x}^{2}+K_{y}^{2}}^{R_{p} K_{p}} \int_{R_{x}^{p$$

Poles:
$$\sqrt{K_{nn}^{2}+K_{d}^{2}}=K_{p}$$
 $K_{y}=\pm\sqrt{K_{p}^{2}-K_{nn}^{2}}$
 $K_{z}=\pm\sqrt{K_{p}^{2}-\left(\frac{w}{v}+\frac{2n\pi}{a}\right)^{2}}$
 $K_{z}=\pm\sqrt{K_{p}^{2}-\left(\frac{w}{v}+\frac{2n\pi}{a}\right)^{2}}$

$$K_p > \left(\frac{\omega}{\omega} + \frac{2u\pi}{a}\right) \leq n < \left(\frac{K_p - \omega}{\omega}\right) \cdot \frac{a}{2\pi} = n_{max}$$
 $K_g \in \mathbb{T}_n$:

$$\frac{K_{11} = Qp}{= \sqrt{K_{nn} + K_{y}^{2}}} = Qp$$

$$= K_{nn} + K_{y}^{2} = Qp^{2} = \sqrt{Qp^{2} - K_{nn}}$$

$$|In(Qp)| << |Re(Qp)|$$

$$|K_{nn} < Qp|$$

$$\frac{1}{n-n'+i\epsilon} \stackrel{\sim}{\sim} P.V. \frac{1}{n-n'} = i\pi S(n-n') \qquad \epsilon \rightarrow 0^{\dagger}$$

(1) Sar -> E

Luces 28

$$S\left(K_{nn}-w/v\right)=S\left(-\frac{2\pi n}{a}\right)=\frac{2\pi n}{\left(\frac{2\pi n}{a}\right)}=\frac{2\pi n}{\left(\frac{2\pi n}{a}\right)}=\frac{2\pi n}{\left(\frac{2\pi n}{a}\right)}=\frac{2\pi n}{\left(\frac{2\pi n}{a}\right)}=\frac{2\pi n}{\left(\frac{2\pi n}{a}\right)}$$

$$S(f(n)) = \frac{\sum S(n-n_i)}{|g'(n_i)|}$$

Jakn Pp (Kn, w)

1 - In (Vp (Km, -))

-15 (K11-K45)

~ Z P.V. R; Ki - IT Z 8 (Kr 4) R; K;

E = Sdun F(Kn) VP(Kn) = Z P.V f du F(Kn) (P(Kn) -

\$ 20 de Julio

$$\begin{array}{lll}
e^{i \, K_{nn} \, n} & e^{i \, \sqrt{k_p^2 - k_{nn}^2} \, y} & \equiv e^{i \, K \cdot r} \\
\vec{K} &= \left(\left(K_{nn} \right) \sqrt{k_p^2 - k_{nn}^2} \right) \\
\vec{V} &= \operatorname{arcdam} \left(\frac{\sqrt{k_p^2 - k_{nn}^2}}{K_{nn}} \right) \\
\vec{K}_{nn} &= k_p \cos i \Theta_r \\
\vec{V} &= \operatorname{arccos} \left(\frac{k_{nn}}{k_p} \right) \\
&= \operatorname{arccos} \left(\frac{\sqrt{k_p^2 - k_{nn}^2}}{k_p} - n \frac{k_p}{a} \right) \\
\vec{K} &= \frac{2\pi}{k_p} \\
\vec{K}$$

$$\begin{array}{lll}
e^{i \, K_{nn} \, n} & e^{i \, \sqrt{k_p^2 - k_{nn}^2} \, y} & \equiv e^{i \, K \cdot r} \\
\vec{K} &= \left(\left(K_{nn} \right) \sqrt{k_p^2 - k_{nn}^2} \right) \\
\vec{V} &= \operatorname{arcdam} \left(\frac{\sqrt{k_p^2 - k_{nn}^2}}{K_{nn}} \right) \\
\vec{K}_{nn} &= k_p \cos i \Theta_r \\
\vec{V} &= \operatorname{arccos} \left(\frac{k_{nn}}{k_p} \right) \\
&= \operatorname{arccos} \left(\frac{\sqrt{k_p^2 - k_{nn}^2}}{k_p} - n \frac{k_p}{a} \right) \\
\vec{K} &= \frac{2\pi}{k_p} \\
\vec{K}$$

$$\cos(\Theta) = \frac{\lambda_{p}}{2\pi} \left[\frac{\omega}{\omega} + \frac{2\pi n}{\alpha} \right] \qquad \lambda_{p} = \frac{2\pi}{k_{p}} = \int(\omega)$$

$$= \omega_{mh} \leq \omega \leq \omega_{mex}$$

$$\int_{n}(\omega, \alpha)$$

$$k_{p} = A \cdot \omega^{2} \Rightarrow \lambda_{p} = \frac{2\pi}{k_{w}}$$

$$-1 \leq 2\pi$$

$$\int(E) \sum_{n} \int dy F_{n}(y)$$

$$= \sum_{n} \int d\theta F_{n}(\theta)$$

$$E^{(F)} \sum_{n} \int d\theta F_{n}(\theta)$$

$$\int(E) \int(E) F_{n}(\theta)$$

$$\int(E) \int(E) F_{n}(\theta)$$

$$\int(E) \int(E) F_{n}(\theta)$$

$$\int(E) \int(E) F_{n}(\theta)$$

$$\int$$

$$CIL \left\{ \begin{array}{l} b^{*} \cdot \vec{G} \cdot \vec{F} \end{array} \right\}$$

$$C\left[\begin{array}{l} b^{+} \cdot \vec{G} \cdot \vec{F} \end{array} \right] \left[\begin{array}{l} c_{+} \cdot \vec{G} \cdot \vec{F} \end{array} \right]$$

$$= CG_{11} \left(\begin{array}{l} \left[\begin{array}{l} b^{+} \cdot \vec{G} \cdot \vec{F} \end{array} \right] + G_{+} \cdot \left[\begin{array}{l} b^{+} \cdot \vec{G} \end{array} \right] \left[\begin{array}{l} b^{+} \cdot \vec{G} \cdot \vec{F} \end{array} \right]$$

$$CG_{1} = C\left[\begin{array}{l} \left[\begin{array}{l} b^{+} \cdot \vec{G} \cdot \vec{F} \end{array} \right] + G_{+} \cdot \left[\begin{array}{l} b^{+} \cdot \vec{G} \cdot \vec{F} \end{array} \right]$$

$$CG_{1} = C\left[\begin{array}{l} \left[\begin{array}{l} b^{+} \cdot \vec{G} \cdot \vec{F} \end{array} \right] + G_{+} \cdot \left[\begin{array}{l} b^{+} \cdot \vec{G} \cdot \vec{F} \end{array} \right]$$

$$CG_{1} = C\left[\begin{array}{l} \left[\begin{array}{l} b^{+} \cdot \vec{G} \cdot \vec{F} \end{array} \right] + G_{+} \cdot \left[\begin{array}{l} b^{+} \cdot \vec{G} \cdot \vec{F} \end{array} \right]$$

$$CG_{1} = C\left[\begin{array}{l} \left[\begin{array}{l} b^{+} \cdot \vec{G} \cdot \vec{F} \end{array} \right] + G_{+} \cdot \left[\begin{array}{l} b^{+} \cdot \vec{F} \cdot \vec{F} \end{array} \right]$$

$$CG_{1} = C\left[\begin{array}{l} \left[\begin{array}{l} b^{+} \cdot \vec{G} \cdot \vec{F} \end{array} \right] + G_{+} \cdot \left[\begin{array}{l} b^{+} \cdot \vec{F} \cdot \vec{F} \end{array} \right]$$

Ved 19-10-2022 tw- 3 eV K1 = 3000 /-1 NP = 21 /m = 2 nm Lower > yb = 50 m d=100m (/p >> d/ when lot a tox Zp 9 (p= (..)

we = \langle = \frac{\sue^2}{\xi_m^2} = \frac{\sue^2}{\xi_m^2} = \frac{\sue^2}{\xi_m} = \frac{\sue^2}{\sum} = \frac{\sue^2}{\sum} = \frac{\sue^2}{\sum} W = (tr.d. wp. 50 e2 4TR a 1/4T 12 22 23 W 7 2 - 2 m = 2 k 2 (problem) ws = d. wp. Eo (problem) as = d. wp. Eo 4 × 0 1/4 × Westro seg 1 > 2
Westro seg seg

WD = WP-d WD = WP-d 21T