Examen Parcial I de Sistemas Telemáticos para Medios Audiovisuales Dispositivos de Interconexión, OSPF y BGP

GSyC, Universidad Rey Juan Carlos 22 de diciembre de 2015

DISPOSITIVOS DE INTERCONEXIÓN

ATENCIÓN:

- Si ya has usado NetGUI con otro diagrama de red, cierra NetGUI y ejecuta clean-netgui.sh antes de volver a lanzar NetGUI.
- En NetGUI, en el menú "Archivo" elige la opción "Abrir" y carga el nombre de archivo /opt/stma1/disp.
- Se cargará el escenario mostrado en la figura 1.
- NO ARRANQUES POR AHORA NINGUNA MÁQUINA. Es importante que las arranques en el orden indicado.
- Si en algún momento quieres volver a tener el escenario en su estado inicial, cierra NetGUI, ejecuta clean-netgui.sh y ejecuta después /opt/stma1/disp/reset-lab.

En la figura 1 se muestra el escenario que has cargado en NetGUI. Ten en cuenta que:

- Las máquinas s1, s2, s3, s4, s5 están configuradas como switches.
- Las máquinas r1, r2, r3 están configuradas como routers.

Arranca de una en una las máquinas (pc1, pc2, pc3, pc4) y los routers (r1, r2, r3). NO arranques aún ninguno de los switches.

- 1. Partiendo de la configuración inicial del escenario, se arranca exclusivamente los *switches* s5, s1 y s4. Indica qué configuración adicional es necesaria para que pc3 pueda enviar datagramas IP a pc1 (y que pc1 los reciba):
 - (A) Ejecutar en r3: ifconfig eth0:0 12.0.0.3 netmask 255.255.255.0
 - Ejecutar en r3: route add -host 11.0.0.101 gw 14.0.0.2
 - (B) Ejecutar en r3: route add -host 11.0.0.101 gw 12.0.0.1
 - (C) Ejecutar en r3: ifconfig eth0:0 11.0.0.3 netmask 255.255.255.0
 - Ejecutar en r3: route del -net 11.0.0.0/24 gw 14.0.0.2
 - (D) Ejecutar en r3: ifconfig eth1:0 12.0.0.3 netmask 255.255.255.0

2. Partiendo de la configuración inicial del escenario, se arrancan exclusivamente los *switches* s2, s3 y s5. A continuación se ejecuta en pc2 la orden:

Cuando dicha orden haya terminado de ejecutarse completamente, indica qué direcciones Ethernet ha aprendido s2:

- (A) Por s2-eth0 habrá aprendido pc2-eth0 y pc3-eth0
 - Por s2-eth1 no habrá aprendido ninguna dirección Ethernet.
- (B) Por s2-eth0 habrá aprendido exclusivamente pc2-eth0.
 - Por s2-eth1 habrá aprendido exclusivamente pc3-eth0.
- (C) Por s2-eth0 habrá aprendido exclusivamente pc2-eth0.
 - Por s2-eth1 no habrá aprendido ninguna dirección Ethernet.
- (D) Por s2-eth0 no habrá aprendido ninguna dirección Ethernet.
 - Por s2-eth1 no habrá aprendido ninguna dirección Ethernet.
- 3. Partiendo de la configuración inicial del escenario, se arrancan exclusivamente los switches \$1, \$2, \$4 y \$5.

A partir de ese momento, pasa un tiempo tal que se vacían las tablas de direcciones aprendidas de todos los *switches* encendidos, pero la caché de ARP de pc1 y pc3 permanece con los mismos valores que tras de ejecutarse dicho *ping*. Justo en ese instante, se ejecuta la siguiente orden en pc1:

pc3:~# ping -c 1 11.0.0.101

Indica cuál de las siguientes afirmaciones es correcta:

- (A) En el hub3 NO aparece ninguna trama Ethernet con dirección Ethernet de origen de pc1.
- (B) En el hub4 NO aparece ninguna trama Ethernet con dirección Ethernet de origen de pc1.
- (C) En el hub5 NO aparece ninguna trama Ethernet con dirección Ethernet de origen de pc1.
- (D) El resto de afirmaciones son falsas.
- 4. En un cierto switch (que no está en la figura) se ejecuta la siguiente orden:

s9:~# brctl show

bridge name vs100	bridge id 8000.1a65e4986698	STP enabled no	interfaces eth0 eth1.100 eth2.100
vs200	8000.1a65e4986698	no	eth1.200 eth2.200
vs300	8000.1a65e4986698	no	eth1.300 eth2.300

En ese momento, recibe por su eth1 la siguiente trama:

Eth. Destino	Eth. Origen	Tipo
00:07:e9:00:00:02	00:07:e9:00:00:01	IP

Teniendo en cuenta que dicha trama NO tiene etiqueta de VLAN, y que el *switch* no ha aprendido ninguna dirección Ethernet todavía, indica cuál de las siguientes afirmaciones es correcta:

(A) El switch enviará por eth0 y eth2 la trama siguiente:

Eth. Destino	Eth. Origen	Tipo	
00:07:e9:00:00:02	00:07:e9:00:00:01	IP	

(B) El switch enviará por eth0, eth1 y eth2 la trama siguiente:

Eth. Destino	Eth. Origen	ETIQUETA VLAN	Tipo
00:07:e9:00:00:02	00:07:e9:00:00:01	100	IP

(C) El switch enviará por eth0 y eth2 la trama siguiente:

Eth. Destino	-	Eth. Origen	ETIQUETA VLAN	Tipo
00:07:e9:00:00:02	00	:07:e9:00:00:01	100	IP

(D) El resto de afirmaciones son falsas.

ENCAMINAMIENTO: OSPF

ATENCIÓN:

- Si ya has usado NetGUI con otro diagrama de red, cierra NetGUI y ejecuta clean-netgui.sh antes de volver a lanzar NetGUI.
- En NetGUI, en el menú "Archivo" elige la opción "Abrir" y escribe como nombre de archivo /opt/stma1/ospf
- Se cargará el escenario mostrado en la figura 2.
- NO ARRANQUES NINGUNA MÁQUINA. Es importante que las arranques en el orden indicado.
- Si en algún momento quieres volver a tener el escenario en su estado inicial, cierra NetGUI, ejecuta clean-netgui.sh y ejecuta después /opt/stma1/ospf/reset-lab

El sistema autónomo tiene configurado OSPF como protocolo de encaminamiento interior. Arranca todos los *routers* de la figura salvo as20-r3.

Espera unos segundos para que los *routers* se hayan intercambiado la información de encaminamiento usando OSPF y hayan configurado sus tablas de encaminamiento.

Arranca as20-r3.

Espera unos segundos para que los *routers* se hayan intercambiado la información de encaminamiento usando OSPF y hayan configurado sus tablas de encaminamiento.

- 5. Observa la captura de tráfico /opt/stmal/ospf.cap que se ha realizado en el escenario. Indica cuál de las siguientes afirmaciones es correcta con respecto al paquete 39:
 - (A) Es un mensaje OSPF que contiene 3 anuncios Router-LSA indicando la información de las interfaces de los routers as20-r6, as20-r5 y as20-r3, respectivamente.
 - (B) Es un mensaje OSPF que confirma la recepción de 3 anuncios Router-LSA de los routers as20-r6, as20-r5 y as20-r3, respectivamente.
 - (C) Es un mensaje OSPF que contiene un Router-LSA de as20-r3 dirigido hacia los routers as20-r6, as20-r5 y as20-r3 ya que previamente no lo han recibido.
 - (D) Es un mensaje OSPF que contiene la descripción de 3 anuncios Router-LSA de los routers as20-r6, as20-r5 y as20-r3, respectivamente. Los routers que lo reciban podrán detectar si les falta alguno de esos anuncios, en cuyo caso lo solicitarán.
- 6. Partiendo de la situación inicial (todos los *routers* están arrancados en el orden indicado y ya han configurado sus tablas de encaminamiento). Observa la siguiente información que se consulta en uno de los routers de la figura:

Neighbor ID	Prio	State	Dead Time	Address	Interface
12.0.9.1	1	Full/Backup	37.993s	12.0.1.1	eth0:12.0.1.3
12.0.6.5	1	Full/Backup	30.531s	12.0.2.5	eth1:12.0.2.3
12.0.12.6	1	Full/Backup	39.183s	12.0.12.6	eth2:12.0.12.3

En este instante, si el router as20-r5 interrumpiera su ejecución de quagga y volviera a arrancar en exactamente 35 segundos, indica cuál de las siguientes afirmaciones sería correcta:

- (A) Con la información mostrada no se puede saber qué ocurriría con el DR y BDR de la subred 12.0.2.0/24.
- (B) as20-r3 pasaría a ser DR y no habría BDR en la subred 12.0.2.0/24.
- (C) No habrá ningún cambio en DR y BDR en la subred 12.0.2.0/24 ya que la interrupción habría sido menor a 40 segundos.
- (D) as20-r3 pasaría a ser DR y as20-r5 pasaría a ser BDR de la subred 12.0.2.0/24.

7. Partiendo de la situación inicial (todos los *routers* están arrancados en el orden indicado y ya han configurado sus tablas de encaminamiento). El *router* as20-r5 tiene almacenado el siguiente anuncio para el que sólo se muestran algunos de los campos más relevantes:

LS Age: 10

LS Type: router-LSA Link State ID: 12.0.9.1 Advertising Router: 12.0.9.1 LS Seq Number: 80000008 Number of Links: 5

. . .

Supón que el router as 20-r5 recibe a través de su interfaz eth1 el siguiente anuncio:

LS Age: 3

LS Type: router-LSA Link State ID: 12.0.9.1 Advertising Router: 12.0.9.1 LS Seq Number: 80000009 Number of Links: 5

• •

Indica cuál de las siguientes afirmaciones es correcta:

- (A) De los datos del enunciado no se puede saber si as20-r5 almacenará el anuncio recibido y/o lo reenviará a través de sus interfaces.
- (B) El router as20-r5 no almacenará el anuncio recibido pero sí lo reenviará a través de su interfaces eth0 y eth2.
- (C) El router as 20-r5 almacenará el anuncio recibido y lo reenviará a través de su interfaces etho y eth2.
- (D) El router as20-r5 no almacenará el anuncio recibido y no lo reenviará a través de su interfaces eth0 y eth2.
- 8. Partiendo de la situación inicial (todos los *routers* están arrancados en el orden indicado y ya han configurado sus tablas de encaminamiento). Observa el contenido del siguiente mensaje:

OSPF Hello Packet

Network Mask: 255.255.255.0 Hello Interval: 10 seconds

Options: 0x02 (E)
Router Priority: 1

Router Dead Interval: 40 seconds Designated Router: 12.0.12.3 Backup Designated Router: 0.0.0.0

Indica cuál de las siguientes afirmaciones es correcta:

- (A) Es imposible que ese mensaje se haya capturado en el escenario descrito.
- (B) El mensaje se ha capturado al arrancar as20-r6 cuando as20-r6 ya ha detectado a as20-r3.
- (C) El mensaje se ha capturado al arrancar as 20-r3 cuando todavía as 20-r6 no ha detectado a as 20-r6.
- (D) El mensaje se ha capturado al arrancar as20-r3 cuando as20-r3 ya ha detectado a as20-r6.

ENCAMINAMIENTO: BGP

ATENCIÓN:

- Si ya has usado NetGUI con otro diagrama de red, cierra NetGUI y ejecuta clean-netgui.sh antes de volver a lanzar NetGUI.
- En NetGUI, en el menú "Archivo" elige la opción "Abrir" y escribe como nombre de archivo /opt/stma1/bgp
- Se cargará el escenario mostrado en la figura 3.
- NO ARRANQUES NINGUNA MÁQUINA. Es importante que las arranques en el orden indicado.
- Si en algún momento quieres volver a tener el escenario en su estado inicial, cierra NetGUI, ejecuta clean-netgui.sh y ejecuta después /opt/stma1/bgp/reset-lab

Los sistemas autónomos AS10, AS20, AS30, AS40, AS50, AS60, AS70, AS80 y AS90 están utilizando BGP como protocolo de encaminamiento exterior para intercambiar sus tablas de encaminamiento. Se han definido entre ellos las siguientes relaciones entre sistemas autónomos:

- AS10 y AS20 mantienen una relación de tránsito donde AS10 es el proveedor y AS20 es el cliente.
- AS10 y AS30 mantienen una relación de tránsito donde AS10 es el proveedor y AS30 es el cliente.
- AS20 y AS90 mantienen una relación de tránsito donde AS20 es el proveedor y AS90 es el cliente.
- AS20 y AS70 mantienen una relación de tránsito donde AS20 es el proveedor y AS70 es el cliente.
- AS30 y AS50 mantienen una relación de tránsito donde AS30 es el proveedor y AS50 es el cliente.
- AS30 y AS60 mantienen una relación de tránsito donde AS30 es el proveedor y AS60 es el cliente.
- AS40 y AS20 mantienen una relación de tránsito donde AS40 es el proveedor y AS20 es el cliente.
- AS50 y AS70 mantienen una relación de tránsito donde AS50 es el proveedor y AS70 es el cliente.
- AS70 y AS80 mantienen una relación de tránsito donde AS70 es el proveedor y AS80 es el cliente.
- AS10 y AS40 mantienen una relación entre iguales.
- AS50 y AS90 mantienen una relación entre iguales.
- AS60 y AS70 mantienen una relación entre iguales.

Arranca todos los *routers* de la figura. Espera unos minutos a que los *routers* se intercambien la información de encaminamiento a través de BGP.

- 9. Se desea conectar un nuevo sistema autónomo AS200 al escenario de la figura. Este sistema autónomo tiene asignadas las siguientes subredes:
 - **2**0.128.0.0/16
 - **2**0.129.0.0/16
 - **2**0.130.0.0/16
 - **2**0.131.0.0/16
 - **2**0.132.0.0/16

Indica cuál de las siguientes agregaciones de rutas es más conveniente para la asignación descrita previamente:

- (A) 20.128.0.0/14
- **(B)** 20.128.0.0/14 20.132.0.0/16
- (C) 20.128.0.0/16 20.129.0.0/14
- (**D**) 20.128.0.0/16 20.129.0.0/15 20.131.0.0/15
- 10. Partiendo de la situación inicial (todos los *routers* están arrancados y tienen sus tablas de encaminamiento configuradas), fíjate en la tabla BGP de as40-r1. Indica cuál de las siguientes afirmaciones es cierta dadas las relaciones entre sistemas autónomos previamente definidas:
 - (A) La tabla BGP de as40-r1 es correcta.
 - (B) La tabla BGP de as40-r1 debería mostrar una ruta para alcanzar las subredes de AS90 a través de as20-r1. El problema es una configuración errónea en as40-r1.
 - (C) La tabla BGP de as40-r1 debería mostrar una ruta para alcanzar las subredes de AS90 a través de as20-r1. El problema es una configuración errónea en as90-r1.
 - (D) La tabla BGP de as40-r1 debería mostrar una ruta para alcanzar las subredes de AS90 a través de as20-r1. El problema es una configuración errónea en as20-r1.
- 11. Partiendo de la situación inicial (todos los routers están arrancados y tienen sus tablas de encaminamiento configuradas), consulta la configuración BGP de as30-r1 e indica cuál de las siguientes razones es la que ha utilizado as30-r1 para decidir cuál es su ruta preferida para alcanzar las subredes de AS80, entre las alternativas que tiene en su tabla BGP:
 - (A) as30-r1 ha decidido elegir su ruta preferida hacia las subredes de AS80 porque es la que tiene un atributo LOCAL_PREF mayor.
 - (B) as30-r1 ha decidido elegir su ruta preferida hacia las subredes de AS80 porque es la que tiene un atributo AS_PATH más corto.
 - (C) as30-r1 ha decidido elegir su ruta preferida hacia las subredes de AS80 porque es la que única que tiene un atributo NEXT_HOP accesible desde as30-r1.
 - (D) as30-r1 ha decidido elegir su ruta preferida hacia las subredes de AS80 porque es la única que tiene un atributo ORIGIN con valor IGP.
- 12. Partiendo de la situación inicial (todos los *routers* están arrancados y tienen sus tablas de encaminamiento configuradas), indica cuál de las siguientes afirmaciones es correcta:
 - (A) as90-r1 debería tener configurado el atributo LOCAL_PREF para dar preferencia a los anuncios que recibe de as50-r1.
 - (B) as90-r1 debería tener configurado el atributo LOCAL_PREF para dar preferencia a los anuncios que recibe de as20-r1.
 - (C) Con este escenario no es necesario definir el atributo LOCAL_PREF en as90-r1 ya que siempre se seleccionarán correctamente las rutas preferidas en este router.
 - (D) as90-r1 debería tener configurado el atributo LOCAL_PREF que tuviera el mismo valor tanto para los anuncios que recibe de as20-r1 como para los que recibe de as50-r1.

Figura 1: Dispositivos de Interconexión

Figura 2: Encaminamiento OSPF $\,$

Figura 3: Encaminamiento BGP $_9^{\rm P}$