Esercitazioni del 4-16-17-18 Aprile di Geometria A

Università degli Studi di Trento Corso di laurea in Matematica A.A. 2017/2018

> Matteo Bonini matteo.bonini@unitn.it

Esercizio 1

Si considerino in $\mathbb{E}^3(\mathbb{R})$ i piani π_1, π_2, π_3 di equazione

$$\pi_1: 2x - y - 1 = 0$$
 $\pi_2: x + y + z = 0$ $\pi_3: x - 2z - 1 = 0$

si determinino

- (i) Si trovino lo spazio $\pi_1 \cap \pi_2 \cap \pi_3$.
- (ii) Si trovi il piano π_4 passante per l'origine e perpendicolare a $\pi_1 \cap \pi_2$.
- (iii) Una volta determinate le coordinate dei punti $A = \pi_1 \cap \pi_2 \cap \pi_3$, $B = \pi_1 \cap \pi_3 \cap \pi_4$ e $C = \pi_2 \cap \pi_3 \cap \pi_4$ si calcoli l'area del triangolo ABC.

Soluzione dell'esercizio 1

Calcoliamo $\pi_1 \cap \pi_2 \cap \pi_3$ risolvendo il sistema che ha come matrice completa

$$\begin{pmatrix}
2 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
1 & 0 & -2 & 1
\end{pmatrix}$$

riduciamo il sistema a gradini

$$\begin{pmatrix} 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & -2 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 & -1 & 0 & 1 \\ 0 & 3 & 2 & -1 \\ 0 & -1 & -3 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 & -1 & 0 & 1 \\ 0 & 3 & 2 & -1 \\ 0 & 0 & -7 & 2 \end{pmatrix}$$

e quindi risolviamo il sistema

$$\begin{cases} 2x - y = 1\\ 3y + 2z = -1\\ -7z = 2 \end{cases}$$

che ha come soluzione il punto $A = (\frac{3}{7}, -\frac{1}{7}, -\frac{2}{7})$.

Analogamente a quanto fatto sopra per calcolare la retta $\pi_1 \cap \pi_2$ risolviamo il sistema associato a

$$\begin{pmatrix} 2 & -1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 & -1 & 0 & 1 \\ 0 & 3 & 2 & -1 \end{pmatrix} \Rightarrow \begin{cases} 2x - y = 1 \\ 3y + 2z = -1 \end{cases}$$

da cui abbiamo l'equazione parametrica della retta

$$r: \begin{cases} x = -\frac{1}{3}t + \frac{1}{3} \\ y = -\frac{2}{3}t - \frac{1}{3} \\ z = t \end{cases}$$

La retta in questione ha direzione $(1,2,-3)^t$, quindi il piano ortogonale a r passante per l'origine ha equazione $\pi_4 : x + 2y - 3z = 0$.

Troviamo B risolvendo il sistema associato a

$$\begin{pmatrix} 2 & -1 & 0 & 1 \\ 1 & 0 & -2 & 1 \\ 1 & 2 & -3 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 & -1 & 0 & 1 \\ 0 & 1 & -4 & 1 \\ 0 & 5 & -6 & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 & -1 & 0 & 1 \\ 0 & 1 & -4 & 1 \\ 0 & 0 & 14 & -6 \end{pmatrix} \Rightarrow \begin{cases} 2x - y = -1 \\ y - 4z = -1 \Rightarrow \begin{cases} x = \frac{1}{7} \\ y = -\frac{5}{7} \\ z = -\frac{3}{7} \end{cases}$$

per cui $B = (\frac{1}{7}, -\frac{5}{7}, -\frac{3}{7})$. Analogamente per trovare C risolviamo

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & -2 & 1 \\ 1 & 2 & -3 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -1 & -3 & 1 \\ 0 & 1 & -4 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -1 & -3 & 1 \\ 0 & 0 & -7 & 1 \end{pmatrix} \Rightarrow \begin{cases} x + y + z = 0 \\ -y - 3z = 1 \\ -7z = 1 \end{cases} \Rightarrow \begin{cases} x = \frac{5}{7} \\ y = -\frac{4}{7} \\ z = -\frac{1}{7} \end{cases}$$

da cui $C = \left(\frac{5}{7}, -\frac{4}{7}, -\frac{1}{7}\right)$. Per trovare l'area del triangolo dobbiamo calcolare il modulo del prodotto vettore di due lati del triangolo, abbiamo quindi che

$$\overrightarrow{AC} = \left(\frac{2}{7}, -\frac{3}{7}, \frac{1}{7}\right), \quad \overrightarrow{BC} = \left(\frac{4}{7}, \frac{1}{7}, \frac{2}{7}\right)$$

da cui

$$Area = \frac{1}{2}||\overrightarrow{AC} \times \overrightarrow{BC}|| = \frac{1}{2}||\det\begin{pmatrix} e_1 & e_2 & e_3 \\ \frac{2}{7} & -\frac{3}{7} & \frac{1}{7} \\ \frac{4}{7} & \frac{1}{7} & \frac{2}{7} \end{pmatrix}|| = \frac{1}{2}||(1,0,-2)|| = \frac{\sqrt{5}}{2}.$$

Esercizio 2

Si calcoli in $\mathbb{E}^3(\mathbb{R})$ il volume del parallelepipedo di lati a=(1,0,0), b=(3,13,4) e c=(-2,2,5).

Soluzione dell'esercizio 2

Il volume del parallelepipedo è dato dal prodotto misto dei vettori che formano i lati del parallelepipedo. Abbiamo che

$$a \times b = \det \begin{pmatrix} e_1 & e_2 & e_3 \\ 1 & 0 & 0 \\ -3 & 1 & 1 \end{pmatrix} = (3, 13, -4)$$

per cui $Vol = |(a \times b) \cdot c| = |(3, 13, 4) \cdot (-2, 2, 5)| = 3.$

Esercizio 3

Si considerino le tre trasformazioni lineari ρ_z, ρ_y, ρ_x di $\mathbb{E}^3(\mathbb{R})$, tali che:

- ρ_z rappresenta la rotazione di \mathbb{E}^3 attorno all'asse z di un angolo (antiorario) θ_1 .
- ρ_y rappresenta la rotazione di \mathbb{E}^3 attorno all'asse y di un angolo (antiorario) θ_2 .
- ρ_x rappresenta la rotazione di \mathbb{E}^3 attorno all'asse x di un angolo (antiorario) θ_3 .
- (i) Trovare le matrici alle isometrie che rappresentano ρ_z, ρ_y e ρ_x e quella che rappresenta ρ $\rho_x \circ \rho_y \circ \rho_z$.
- (ii) Considerato un punto $P = (a, b, c)^t$ appartente alla sfera di centro \mathcal{O} e raggio r > 0 si calcoli $\rho(P)$ e si dica se $\rho(P)$ è un vettore della medesima sfera.

Soluzione dell'esercizio 3

Calcoliamo $\rho_z: P \mapsto A_z P$ che ruota di un angolo θ_1 attorno all'asse z lo spazio \mathbb{E}^3 . Avremo che

$$A_z = \begin{pmatrix} \rho(\mathbf{e_1}) & \rho(\mathbf{e_2}) & \rho(\mathbf{e_3}) \end{pmatrix}$$

da questo possiamo ricavare che

$$A_z = \begin{pmatrix} \cos(\theta_1) & -\sin(\theta_1) & 0\\ \sin(\theta_1) & \cos(\theta_1) & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Analogamente a quanto fatto possiamo ricavare che

$$A_y = \begin{pmatrix} \cos(\theta_2) & 0 & -\sin(\theta_2) \\ 0 & 1 & 0 \\ \sin(\theta_2) & 0 & \cos(\theta_2) \end{pmatrix}$$

e

$$A_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_3) & -\sin(\theta_3) \\ 0 & \sin(\theta_3) & \cos(\theta_3) \end{pmatrix}.$$

Possiamo ricavare quindi la matrice A che rappresenta ρ nel seguente modo

$$A = A_x A_y A_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_3) & -\sin(\theta_3) \\ 0 & \sin(\theta_3) & \cos(\theta_3) \end{pmatrix} \begin{pmatrix} \cos(\theta_2) & 0 & -\sin(\theta_2) \\ 0 & 1 & 0 \\ \sin(\theta_2) & 0 & \cos(\theta_2) \end{pmatrix} \begin{pmatrix} \cos(\theta_1) & -\sin(\theta_1) & 0 \\ \sin(\theta_1) & \cos(\theta_1) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

e quindi abbiamo che

$$A = \begin{pmatrix} \cos(\theta_1)\cos(\theta_2) & -\sin(\theta_1)\cos(\theta_2) & -\sin(\theta_2) \\ \sin(\theta_1)\cos(\theta_3) - \cos(\theta_1)\sin(\theta_2)\sin(\theta_3) & \cos(\theta_1)\cos(\theta_3) + \sin(\theta_1)\sin(\theta_2)\sin(\theta_3) & -\cos(\theta_2)\sin(\theta_3) \\ \sin(\theta_1)\cos(\theta_3) - \cos(\theta_1)\sin(\theta_2)\cos(\theta_3) & \cos(\theta_1)\sin(\theta_3) - \sin(\theta_1)\sin(\theta_2)\cos(\theta_3) & \cos(\theta_2)\cos(\theta_3) \end{pmatrix}.$$

Visto che P=(a,b,c) appartiene alla sfera centrata nell'origine e di raggio r abbiamo che $c=\sqrt{r^2-a^2-b^2}$ per cui $\rho(P)=AP=w=(w_1,w_2,w_3)$ con

$$w_{1} = a\cos(\theta_{1})\cos(\theta_{2}) - b\sin(\theta_{1})\cos(\theta_{2}) - \sqrt{r^{2} - a^{2} - b^{2}}\sin(\theta_{2})$$

$$w_{2} = a\sin(\theta_{1})\cos(\theta_{3}) - \cos(\theta_{1})\sin(\theta_{2})\sin(\theta_{3}) + b\cos(\theta_{1})\cos(\theta_{3}) + \sin(\theta_{1})\sin(\theta_{2})\sin(\theta_{3})$$

$$- \sqrt{r^{2} - a^{2} - b^{2}}\cos(\theta_{2})\sin(\theta_{3})$$

$$w_{3} = a\sin(\theta_{1})\cos(\theta_{3}) - \cos(\theta_{1})\sin(\theta_{2})\cos(\theta_{3}) + b\cos(\theta_{1})\sin(\theta_{3}) - \sin(\theta_{1})\sin(\theta_{2})\cos(\theta_{3})$$

$$+ \sqrt{r^{2} - a^{2} - b^{2}}\cos(\theta_{2})\cos(\theta_{3})$$

Per stabilire l'appartenenza alla sfera di $\rho(P)$ non c'è bisogno di verificare $w_1^2 + w_2^2 + w_3^2 = r^2$ visto che ρ_z, ρ_y e ρ_x sono isometrie e la composizione di isometrie è ancora un'isometria, abbiamo quindi $||\rho(P)|| = ||P|| = r$.

Esercizio 4

Si consideri in $\mathbb{E}^3(\mathbb{R})$ la trasformazione T che proietta i punti di \mathbb{E}^3 ortogonalmente sul piano

$$\pi: \ ax + by + cz = 0.$$

(i) Si trovi la matrice che rappresenta T.

(ii) Si trovi l'equazione parametrica della retta \hat{r} , la proiezione ortogonale della retta

$$r: \begin{cases} x = t + 2 \\ y = -t + 1 \\ z = 3t - 1 \end{cases} \quad t \in \mathbb{R}$$

sul piano

$$\hat{\pi}: x + 2y - 3z.$$

Soluzione dell'esercizio 4

Sia A la matrice cercata, allora abbiamo

$$A = \begin{pmatrix} T(e_1) & T(e_2) & T(e_3) \end{pmatrix}.$$

Sia n = (a, b, c) il vettore ortogonale a π , abbiamo che $T(e_1) + \overrightarrow{Q_1P_1} = e_1$, dove $T(e_1) = \overrightarrow{\mathcal{O}Q_1}$ e $\overrightarrow{Q_1P_1}$ è la proiezione ortogonale di e_1 sul piano π , quindi la proiezione di e_1 secondo il vettore normale (a, b, c). Otteniamo quindi

$$T(e_1) = e_1 - \frac{e_1 \cdot n}{||n||^2} n = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \frac{a}{a^2 + b^2 + c^2} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \frac{1}{a^2 + b^2 + c^2} \begin{pmatrix} b^2 + c^2 \\ -ab \\ -ac \end{pmatrix}$$

Analogamente abbiamo che

$$T(e_2) = \frac{1}{a^2 + b^2 + c^2} \begin{pmatrix} -ab \\ a^2 + c^2 \\ -bc \end{pmatrix}$$

 \mathbf{e}

$$T(e_3) = \frac{1}{a^2 + b^2 + c^2} \begin{pmatrix} -ac \\ -bc \\ a^2 + b^2 \end{pmatrix}$$

da cui otteniamo

$$A = \frac{1}{a^2 + b^2 + c^2} \begin{pmatrix} b^2 + c^2 & -ab & -ac \\ -ab & a^2 + c^2 & -bc \\ -ac & -bc & a^2 + b^2 \end{pmatrix}$$

Per trovare la proiezione ortogonale della retta r sul piano $\hat{\pi}$ scegliamo due punti qualsiasi su r, proiettiamoli su $\hat{\pi}$ tramite \hat{A} (che si trova utilizzando il punto (i)) e calcoliamo la retta che passa per le proiezioni. Prendiamo quindi $P=(2,1,-1),\ Q=(3,0,2)$ e

$$\hat{A} = \frac{1}{14} \begin{pmatrix} 13 & -2 & 3 \\ -2 & 10 & 6 \\ 3 & 6 & 5 \end{pmatrix}$$

abbiamo quindi

$$\overrightarrow{OP_1} = \frac{1}{14} \begin{pmatrix} 13 & -2 & 3 \\ -2 & 10 & 6 \\ 3 & 6 & 5 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$$

е

$$\overrightarrow{OQ_1} = \frac{1}{14} \begin{pmatrix} 13 & -2 & 3 \\ -2 & 10 & 6 \\ 3 & 6 & 5 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} = \frac{1}{14} \begin{pmatrix} 45 \\ 6 \\ 19 \end{pmatrix}.$$

Abbiamo quindi $\overrightarrow{P_1Q_1} = \left(\frac{12}{7}, \frac{3}{7}, \frac{6}{7}\right)$ che ci fornisce la direzione di \hat{r} , da cui ricaviamo l'equazione parametrica

$$\hat{r} := \begin{cases} x = \frac{12}{7}t + \frac{3}{2} \\ y = \frac{3}{7}t \\ z = \frac{6}{7}t + \frac{1}{2} \end{cases} \quad t \in \mathbb{R}.$$

Esercizio 5

Si consideri lo spazio vettoriale $V = \mathbb{C}^4$ munito del sistema di coordinate standard. Sia $\mathbb{P}^3 = \mathbb{P}(V)$ lo spazio proiettivo con il sistema di coordinate indotto da quello di V. Si considerino i punti

$$A = [1, 1, 2, 1], \quad B = [0, 2, 3, 0], \quad C = [1, -1, -1, -1], \quad D = [1, 3, 2, 3].$$

Si considerino inoltre le quadriche proiettive $Q_1,Q_2\subset\mathbb{P}^3$ date dalle equazioni

$$Q_1: x_0^2 + 4x_1^2 - x_2^2 - 4ix_0x_2 = 0$$
 $Q_2: 3x_1^2 + 2ax_0x_1 - 3a^2x_2^2 + 2ix_0x_2 + x_3^2$

- (i) Si dimostri che i punti A, B, C sono allineati. Si calcoli un sistema di equazioni cartesiane per la retta che li contiene.
- (ii) Si dimostri che tale retta non contiene D e si calcoli un sistema di equazioni per un sottospazio vettoriale W di \mathbb{C}^4 tale che lo spazio L di dimensione minima che contiene A, B, C, D sia $L = \mathbb{P}(W)$.
- (iii) si dica per quali valori di a le due quadriche sono proiettivamente equivalenti.

Soluzione dell'esercizio 5

Per controllare la posizione reciproca dei punti A, B e C calcoliamo il rango della matrice che si ottiene dalle loro coordinate proiettive

$$A = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 2 & 3 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix}$$

visto che la terza riga è ottenuta dalla sottrazione della seconda riga dalla prima abbiamo che il rango della matrice A è 2, e quindi i tre punti sono allineati. Troviamo quindi qual'è la retta in questione semplicemente calcolando la retta passante per A e B. Questo si può fare imponendo che la matrice

$$M = \begin{bmatrix} x_0 & x_1 & x_2 & x_3 \\ 1 & 1 & 2 & 1 \\ 0 & 2 & 3 & 0 \end{bmatrix}$$

Andiamo quindi ad annullare i minori in questione

$$\det \begin{bmatrix} x_0 & x_1 & x_2 \\ 1 & 1 & 2 \\ 0 & 2 & 3 \end{bmatrix} = \det \begin{bmatrix} x_0 & x_1 & x_3 \\ 1 & 1 & 1 \\ 0 & 2 & 0 \end{bmatrix} = \det \begin{bmatrix} x_0 & x_2 & x_3 \\ 1 & 2 & 1 \\ 0 & 3 & 0 \end{bmatrix} = \det \begin{bmatrix} x_1 & x_2 & x_3 \\ 1 & 2 & 1 \\ 2 & 3 & 0 \end{bmatrix} = 0$$

dal quale otteniamo che il sistema di equazioni cartesiane per la retta r è

$$r: \begin{cases} x_0 + 3x_1 - 2x_2 = 0 \\ x_0 - x_3 = 0 \end{cases}$$

Sostituendo le coordinate di D in r abbiamo che il punto non appartiene alla retta. Calcoliamo quindi lo spazio minimo che contiene r e D. Per far questo consideriamo il fascio di iperpiani che contiene r e imponiamo il passaggio di questo per D

$$L_{\lambda,\mu}: \lambda(x_0+3x_1-2x_2)+\mu(x_0-x_3)=0$$

visto che D non appartiene a r avremo che esisterà una sola coppia (λ, μ) , a meno di fattori di proporzionalità, che verifica $L_{\lambda,\mu}(D) = 0$.

$$0 = L_{\lambda,\mu}(D) =: \lambda(1+9-4) + \mu(1-3) = 6\lambda - 2\mu$$

e quindi la soluzione cercata è (3,1) e lo spazio che contiene i quattro punti è dato da $L_{3,1}:4x_0+9x_1-6x_2-x_3=0$.

Siccome siamo in uno spazio proiettivo complesso, le due quadriche sono proiettivamente equivalenti se e solo se le matrici che le rappresentano hanno lo stesso rango. Se chiamiamo M^1 e M_a^2 le due matrici avremo che $Rk(M^1)=3$ e

$$Rk \begin{bmatrix} 0 & a & i & 0 \\ a & -3 & 0 & 0 \\ i & 0 & -3a^2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = 1 + Rk \begin{bmatrix} 0 & a & i \\ a & -3 & 0 \\ i & 0 & -3a^2 \end{bmatrix}$$

Notando che

$$\det \begin{bmatrix} a & -3 \\ i & 0 \end{bmatrix} \neq 0$$

quello che resta da imporre per fare in modo che le due matrici abbiano lo stesso rango è

$$\det \begin{pmatrix} 0 & a & i \\ a & -3 & 0 \\ i & 0 & -3a^2 \end{pmatrix} = 0$$

e quindi

$$-3 - 3a^4 = 0.$$

Da quanto detto le due quadriche sono equivalenti se a è una radice quarta di -1.

Esercizio 6

Si considerino $\mathbb{P}^2 = \mathbb{P}(\mathbb{R}^3)$ con coordinate proiettive (x_0, x_1, x_2) e lo spazio euclideo \mathbb{E}^2 di coordinate (y_1, y_2) identificato con $U_0 = \{x_0 \neq 0\}$ dove $y_1 = x_1/x_0$ e $y_2 = x_2/x_0$.

- (i) Si considerino in U_0 la retta euclidea $r_{1,s}$ passante per il punto P=(0,3) e avente direzione $d_s=(s,1)$ e la retta euclidea r_2 di equazione $2y_1-5y_2-2=0$. Si ricavino le chiusure proiettive $\hat{r}_{1,s},\hat{r}_2$ delle due rette e si calcolino $r_{1,s}\cap r_2$ e $\hat{r}_{1,s}\cap \hat{r}_2$.
- (ii) Si consideri, al variare di s l'isometria $h(y_1, y_2) = (y_2 + 3, y_1 s + 1)$. Si scriva la proiettività \hat{h} che estende h a \mathbb{P}^2 e si calcolino i punti fissi di \hat{h} .

Soluzione dell'esercizio 6

Si vede facilmente che un'equazione cartesiana per $r_{1,s}$ è data da

$$\begin{cases} y_1 = st \\ y_2 = 3 + t \end{cases}$$

dalla quale ricaviamo che l'equazione cartesiana della retta è

$$r_{1,s}: y_1 - sy_2 + 3s = 0$$

Per ricavare le chiusure proiettive basta omogeneizzare le rette

$$\hat{r}_{1,s}: x_1 - sx_2 + 3sx_0 = 0$$

$$\hat{r}_2: 2x_1 - 5x_2 - 2x_0 = 0$$

Calcoliamo ora $\hat{r}_{1,s} \cap \hat{r}_2$, la matrice dei coefficienti del sistema in questione è

$$\begin{pmatrix} 3s & 1 & -s \\ -2 & 2 & 5 \end{pmatrix}$$

e ha rango massimo 2 per ogni valore di s. Questo significa che $\hat{r}_{1,s} \cap \hat{r}_2$ è un punto P_s , andiamo a calcolarlo

$$\begin{cases} x_1 - sx_2 + 3sx_0 = 0\\ 2x_1 - 5x_2 - 2x_0 = 0 \end{cases}$$

$$\begin{cases} x_1 - sx_2 + 3sx_0 = 0\\ (2s - 5)x_1 + (6s + 2)x_0 = 0 \end{cases}$$
$$\begin{cases} x_1 - sx_2 + 3sx_0 = 0\\ (2s - 5)x_1 - (6s + 2)x_0 = 0 \end{cases}$$
$$\begin{cases} x_1 - sx_2 + 3sx_0 = 0\\ (2s - 5)x_1 - 2(3s + 1)x_0 = 0 \end{cases}$$

• Se $s = -\frac{1}{3}$

$$\begin{cases} x_1 - \frac{1}{3}x_2 - x_0 = 0 \\ -\frac{13}{3}x_1 = 0 \end{cases}$$
$$\begin{cases} x_2 = -3x_0 \\ x_1 = 0 \end{cases}$$

e quindi l'intersezione è data dal punto [1,0,-3]

• Se $s \neq -\frac{1}{3}$

$$\begin{cases} x_1 - sx_2 + 3sx_0 = 0 \\ x_0 = \frac{2s - 5}{-6s - 2}x_1 \end{cases}$$

$$\begin{cases} sx_2 = x_1 + 3s \frac{2s - 5}{-6s - 2}x_1 \\ x_0 = \frac{2s - 5}{-6s - 2}x_1 \end{cases}$$

$$\begin{cases} x_2 = \frac{15s + 2s}{6s^2 + 2s}x_1 \\ x_0 = \frac{2s - 5}{-6s - 2}x_1 \end{cases}$$

e quindi l'intersezione è data dal punto $\left[\frac{2s-5}{-6s-2},1,\frac{15s+2s}{6s^2+2s}\right]$

Da questo deduciamo che se $s=-\frac{1}{3}$ l'intersezione tra $r_{1,s}$ e r_2 è (0,-3), se $s\in\mathbb{R}\setminus\left\{-\frac{1}{3},\frac{5}{2}\right\}$ è $\left(-\frac{2(3s+1)}{2s-5},-\frac{(15s+2s)}{s(2s-5)}\right)$ mentre per $s=\frac{5}{2}$ non ci sono intersezioni.

La proiettività \hat{h} che estende h a \mathbb{P}^2 è rappresentata dalla matrice

$$\hat{A} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 0 & 1 \\ -s+1 & 1 & 0 \end{bmatrix}.$$

I punti fissi di \hat{h} si trovano proiettivizzando gli autospazi di \hat{A} . Otteniamo facilmente che il polinomio caratteristico di \hat{A} è dato da $p_{\lambda} = (x-1)^2(x+1)$. Calcoliamo gli autospazi

$$V_1: \begin{cases} x_0 = x_0 \\ 3x_0 + x_2 = x_1 \\ (-s+1)x_0 + x_1 = x_2 \end{cases} \begin{cases} x_1 = 3x_0 + x_2 \\ (-s+1)x_0 + 3x_0 = 0 \end{cases} \begin{cases} x_1 = 3x_0 + x_2 \\ (-s+4)x_0 = 0 \end{cases}$$

da cui per $s \neq 4$ otteniamo

$$\begin{cases} x_0 = 0 \\ x_1 = x_2 \end{cases}$$

e quindi abbiamo che $V_1 = <(0,1,1)>$, se invece s=4 abbiamo che $V_1 = <(1,3,0),(0,1,1)>$.

$$V_{-1}: \begin{cases} x_0 = -x_0 \\ 3x_0 + x_2 = -x_1 \\ (-s+1)x_0 + x_1 = -x_2 \end{cases} \begin{cases} x_0 = 0 \\ x_2 = -x_1 \end{cases}$$

da cui $V_{-1} = <(0, 1, -1)>.$

Abbiamo per cui che i punti fissi sono:

• se $s \neq 4$ abbiamo i punti [0, 1, -1] e [0, 1, 1];

• se s=4 abbiamo il punto [0,1,-1] e la retta di equazione $3x_0-x_1+x_2=0$.

Esercizio 7

Sia \mathbb{K} un campo e si consideri lo spazio proiettivo \mathbb{P}^3 su \mathbb{K} munito di un sistema di coordinate omogenee $\underline{x} = [x, y, z, w]$. Si consideri, al variare di $a \in \mathbb{K}$ la forma quadratica

$$q(x, y, z, w) = (a+1)x^{2} + 2xy + 2axz - y^{2} - 4yw + az^{2} - w^{2}$$

e la quadrica Q: q(x, y, z, w) = 0. Si indichino con $\underline{x}_1 = [x_1, y_1, z_1, w_1]$ delle nuove coordinate su \mathbb{P}^3 in modo che valga

$$[x_1, y_1, z_1, w_1] = [x, y, z - y, w - 2y].$$

- (i) Supponendo $\mathbb{K} = \mathbb{R}$ o $\mathbb{K} = \mathbb{C}$, scrivere le matrici rappresentative della quadrica rispetto alle coordinate \underline{x} e \underline{x}_1 . Ricavare, al variare di a, il rango della quadrica specificando quando è degenere;
- (ii) Supponendo $\mathbb{K} = \mathbb{R}$, si scriva la forma canonica di Q e una proiettività che riduce Q in forma canonica (Hint: iniziare sommando e sottraendo all'espressione polinomiale di Q il termine $4y^2$);
- (iii) Supponendo $\mathbb{K}=\mathbb{C}$, si dica per quali valori di a si ha che Q è proiettivamente equivalente alla quadrica

$$Q': q'(x, y, z, w) = (a - i)x^2 - 123123123y^2 + \frac{\pi}{6}z^2 - 2018(a^2 + 1)w^2 = 0.$$

Soluzione dell'esercizio 7

Si vedano le soluzioni in rete dell'esercizio 4 della prova scritta di Gennaio 2018.

Esercizio 8

Si consideri in \mathbb{E}^2 la conica di equazione

$$2x^2 + 4xy + 5y^2 + 2x - 2y + 1 = 0$$

- (i) Si determini il tipo di conica.
- (ii) Si trovi l'eventuale centro della conica e gli eventuali assi di simmetria.
- (iii) Si trovi la forma canonica della conica.

Soluzione dell'esercizio 8

La matrice associata alla conica è

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix}$$

visto che $det(A) = -5 \neq 0$ abbiamo che la conica è non degenere e visto che

$$\det(A_0) = \det\begin{pmatrix} 2 & 2\\ 2 & 5 \end{pmatrix} = 6 \neq 0$$

la conica è a centro. Caliamo i suoi autovalori per stabilire se si tratta di un'iperbole o un'ellisse

$$p_A(\lambda) = \det(A - \lambda I) = \det\begin{pmatrix} 1 - \lambda & 1 & -1 \\ 1 & 2 - \lambda & 2 \\ -1 & 2 & 5 - \lambda \end{pmatrix} = (2 - \lambda)(5 - \lambda) - 4 = \lambda^2 - 7\lambda + 6$$

quindi abbiamo $\lambda_1=1$ e $\lambda_2=6$ e visto che sono concordi abbiamo a che fare con un'ellisse. Per trovare il centro dobbiamo risolvere il sistema associato a $\begin{pmatrix} 2 & 2 & -1 \\ 2 & 5 & 1 \end{pmatrix}$. La soluzione è data da $C=\left(-\frac{7}{6},\frac{2}{3}\right)$.

Calcoliamo ora gli autospazi di A_0 ,

$$V_1: \begin{cases} x = -2t \\ y = t \end{cases}$$

da cui abbiamo che $V_1 = <(-2,1)>$, mentre

$$V_6: \begin{cases} x = t \\ y = 2t \end{cases}$$

da cui ricaviamo che $V_6 = <(1,2)>$.

Gli assi di simmetria sono le rette passanti per il centro e aventi direzione parallela agli autovettori, quindi saranno dati da

$$x + 2y - \frac{1}{6} = 0$$

 \mathbf{e}

$$2x - y + 3 = 0.$$

La conica sarà quindi equivalente a quella associata ad una matrice diagonale di questa forma

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & k \end{pmatrix}$$

dalla quale troviamo che $k=\frac{5}{6}$ imponendo $\det(B)=\det(A)$. Da questo otteniamo che la forma canonica della conica è

$$x^2 + 6y^2 - \frac{5}{6} = 0$$

$$\frac{6}{5}x^2 + \frac{36}{5}y^2 - 1 = 0.$$

Esercizio 9

Si consideri in $\mathbb{E}^2(\mathbb{R})$ il fascio di coniche di equazione

$$C_t$$
: $x^2 + (1-t)y^2 + 2tx - 2(1-t)y + 2 - t = 0$.

Si determini, al variare di $t \in \mathbb{R}$, i valori per cui C_t risulta essere

- (i) una conica degenere, specificandone il tipo;
- (ii) una parabola;
- (iii) un'iperbole;
- (iv) un'ellisse a punti reali;
- (v) un'ellisse senza punti reali;
- (vi) una circonferenza.

Soluzione dell'esercizio 9

La matrice associata a C_t è la seguente

$$A = \begin{pmatrix} 2 - t & t & t - 1 \\ t & 1 & 0 \\ t - 1 & 0 & 1 - t \end{pmatrix}$$

dove

$$A_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 - t \end{pmatrix}.$$

Visto che $det(A) = (t-1)^2(t+1)$ abbiamo che la conica è degenere solo se $t=\pm 1$.

- Se t = 1 abbiamo che C_1 : $x^2 + 2x + 1 = 0$ e quindi C_1 : $(x + 1)^2 = 0$ che risulta essere una retta doppia.
- Se t = -1 abbiamo che C_{-1} : $x^2 + 2y^2 2x 4y + 3 = 0$ e quindi C_{-1} : $(x-1)^2 + 2(y-1)^2 = 0$ che risulta essere un'ellisse degenere avente solo il punto reale (1,1).

Per discernere iperboli, ellissi e parabole dobbiamo studiare gli autovalori di A_0 , questi sono chiaramente $\lambda_1 = 1$ e $\lambda_2 = 1 - t$. Abbiamo una parabola se e soltanto se uno dei due si annulla, ovvero t = 1, caso che abbiamo già trattato nel punto precedente. Se gli autovalori sono discordi (ovvero per t > 1) abbiamo che C_t è un'iperbole, mentre se sono concordi (t < 1) abbiamo che C_t è una ellisse. Per riconoscere se l'ellisse è a punti reali dobbiamo studiare il segno del terzo autovalore di A, se questo è discorde con gli altri due abbiamo che l'ellisse è a punti reale mentre se è concorde abbiamo che C_t è a punti immaginari. Per verificare questa condizione possiamo studiare il segno di $f(A) = \operatorname{tr}(A_0) \det(A) = (2-t)(t-1)^2(t+1)$. Se questo valore è negativo (t < -1) siamo nel primo caso, mentre se f(A) > 0 siamo nel secondo caso (t > -1). Infine se t = 0 abbiamo che i due autovalori sono coincidenti, e quindi C_0 è una circonferenza (a punti immaginari).