Exploring Vectors

Practical Linear Algebra | Lecture 2

A scalar is a single number

• A scalar is a single number

A scalar is a single number

A scalar is a single number

• A scalar is a single number

 x_1

A vector is an ordered sequence of numbers

$$\begin{bmatrix} -11 \\ 4 \\ 9 \end{bmatrix}$$

• A vector is an ordered sequence of numbers

$$\begin{bmatrix} -1\\0\\\pi\\98 \end{bmatrix}$$

• A vector is an ordered sequence of numbers

 $egin{bmatrix} y_1 \ y_2 \ y_3 \end{bmatrix}$

• A vector is an ordered sequence of numbers

$$x = \begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix}$$

$$x \in \mathbb{R}^n$$

$$\alpha \in \mathbb{R}$$

Column Vectors and Row Vectors

$\lceil x_1 \rceil$	Γ_1]	$\lfloor 15$	3 -	-1	$\begin{bmatrix} 0 & 1 \end{bmatrix}$
$\begin{bmatrix} x_2 \\ \vdots \end{bmatrix} \begin{bmatrix} -11 \\ 4 \\ 9 \end{bmatrix}$	$\left egin{array}{c} 0 \\ \pi \end{array} \right $	$[y_1$	y_2	y_3	$y_4ig]$
$\begin{bmatrix} \cdot \\ x_n \end{bmatrix}$	$\begin{bmatrix} \pi \\ 98 \end{bmatrix}$	$\lceil x_1 \rceil$	x_2		x_n

Transpose

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}^T = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}$$

Transpose

$$\begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T = \begin{bmatrix} x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Visualizing Vectors

• A vector is a line or a direction

Visualizing Vectors

• A vector is a line or a direction

Visualizing Vectors

• A vector is a line or a direction

Examples of Vectors

Forces on an aircraft

Examples of Vectors

Movie ratings

Ratings

		Movie A	Movie B	Movie C	Movie D	Movie E	Movie F	Movie G	Movie ZZ	
	User A	5	5		90 4 .	4	3	4	 -	
User B User C	User B	1	3	3	5		-	3	 -	
	User C	-	-	-	1	5	-	-	 -	
Users	User D	4	-			5	3	4	 -	
	User ZZZ	2	-	-	-	1	-	3	 -	

Examples of Vectors

Web Search

Site 1	1
Site 2	0
Site 3	1
Cito 0	
Site $n-2$	U
Site $n-1$	0
Site n	1

Scalar-Vector Multiplication

$$egin{array}{c|cccc} & v_1 & & lpha v_1 \ v_2 & & & lpha v_2 \ dots & & & dots \ v_n & & & lpha v_n \ \end{array}$$

Vector Addition

$$egin{array}{|c|c|c|c|c|} x_1 & y_1 & x_1 + y_1 \\ x_2 & y_2 & x_2 + y_2 \\ \vdots & \vdots & \vdots \\ x_n & y_n & x_n + y_n \\ \hline \end{array}$$

- Element-wise multiplication
 - Also known as the Hadamard product or Schur product

$$x \circ y = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \circ \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1y_1 \\ x_2y_2 \\ \vdots \\ x_ny_n \end{bmatrix}$$

- Element-wise multiplication
 - Written using either O or •

$$x \odot y = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \odot \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1y_1 \\ x_2y_2 \\ \vdots \\ x_ny_n \end{bmatrix}$$

• Dot product or inner product

$$x \cdot y = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

Dot product or inner product

$$x \cdot y = x^T y = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Vector Norm

• The (Euclidean) norm of a vector is its length

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

Vector Norm

• The (Euclidean) norm of a vector is its length

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}$$

Angle

- Formula for the angle between two vectors
 - Angle will lie between 0 and 180 degrees

$$\theta = \cos^{-1} \frac{x^* y}{\|x\| \|y\|}$$

Angle

- Formula is more intuitive if we rearrange it
 - Dot product tells you how "aligned" two vectors are

$$x^T y = ||x|| ||y|| \cos \theta$$

Angle

Subspaces

• A subspace is a set $S \subset \mathbb{R}^n$ that satisfies these two constraints:

- $\circ \quad x+y \in S \quad \text{ for all } x,y \in S$
- $\circ \quad \alpha x \in S \qquad \text{ for all } \alpha \in \mathbb{R} \text{ and } x \in S$

Subspaces

- A subspace is a set $S \subset \mathbb{R}^n$ that satisfies these two constraints:
 - \circ S is closed under addition
 - \circ S is closed under scalar multiplication

Span

- The span of a set of vectors is the set of all linear combinations of those vectors
 - Spans are also subspaces

$$\mathbf{span}(v_1, v_2, \dots, v_k) = \{\alpha_1 v_1 + \dots + \alpha_k v_k \mid \alpha_i \in \mathbb{R}\}$$

Linear Independence

• A set of vectors $\{v_1, v_2, \dots, v_k\}$ is linearly independent (or just independent) if none of the vectors in the set can be expressed as a linear combination of the other vectors

Linear Independence

- A set of vectors $\{v_1, v_2, \dots, v_k\}$ is linearly independent (or just independent) if none of the vectors in the set can be expressed as a linear combination of the other vectors
- Equivalent condition:

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k = 0 \Rightarrow \alpha_1 = \alpha_2 = \dots = 0$$

Linear Independence

- Intuitive definition: A set of vectors is independent if removing any of the vectors would make the span smaller
- Said another way, if you have a set of linearly dependent vectors, then removing one vector won't change the span – you won't lose any information
 - You can remove one vector at a time until you get a set of independent vectors

Basis and Dimension

• A set of vectors $\{v_1, v_2, \dots, v_k\}$ is a basis for a subspace S if these two constraints are satisfied:

- $\circ \quad S = \mathbf{span}(v_1, v_2, \dots, v_k)$
- v_1, v_2, \dots, v_k is independent

Basis and Dimension

- A set of vectors $\{v_1, v_2, \dots, v_k\}$ is a basis for a subspace S if these two constraints are satisfied:
 - $\circ S = \mathbf{span}(v_1, v_2, \dots, v_k)$
 - v_1, v_2, \dots, v_k is independent

- The number of vectors in any basis of a given subspace S is always the same. This number is called the dimension of S.
 - \circ Notation: $d = \dim S$

Next Time

- Vectors in NumPy
- Application: k-Nearest Neighbors algorithm in Scikit-learn