Apellido y nombre:

Corrigió: Revisó:

T1	T2	P1	P2	Р3	P4	Califcación

Condición mínima para aprobar con calificación 6: cuatro ejercicios bien, uno de los cuales debe ser T1 o T2.

T1. Defina solución general, solución particular y solución singular de una ecuación diferencial ordinaria de orden 1.

Halle una función f tal que $y = 2x^2 + 3x$ es una solución de la ecuación xy' - 2y = f(x) y determine si se trata de una solución general, particular o singular.

- T2. Determine si las siguientes proposiciones son verdaderas o falsas. Justifque su respuesta.
 - a) La función $f(x,y)=\left\{ egin{array}{ll} \dfrac{x^2+x^4}{y}, & \mbox{ si } y \neq 0, \\ 0, & \mbox{ si } y=0 \end{array} \right.$

tiene derivadas en todas las direcciones en el origen.

- b) La longitud de la curva definida por la intersección de las superficies $S_1: 2x^2+z^2=2$ y $S_2: y=x$ es $2\sqrt{2}\pi$.
- P1. Calcule el área de la porción del plano 2x-2y-z=2 que verifica las condiciones $x^2+y^2\geq 2$ y $x^2+(y-1)^2\leq 1$.
- P2. Calcule el flujo del campo $\vec{f}(x,y,z)=(z-xg(xy),\ yg(xy),\ 2z)\,,\ g\in C^1$, a través de la superficie frontera del sólido $V: \left\{ egin{array}{ll} \sqrt{x^2+y^2} \leq z \leq 4, \\ x \geq 0,\ y \geq 0, \end{array} \right.$

orientada con el campo normal exterior

- P3. Halle y clasifique los extremos locales de $f(x,y) = x^2y + 4xy + y^2 3$
- P4. Calcule la circulación de $\vec{f}(x,y,z)=(y+3xz,\ y^4+3yz,\ z^6)$ a lo largo del borde de la porción del paraboloide $z=9-x^2-y^2$ que está contenida en el primer octante. Indique la orientación elegida para la curva.