

Radians-problems involving area 5ii

Figure 1 shows a sector OAB of a circle, centre O and radius $8\,\mathrm{cm}.$ The angle AOB is $46\,^{\circ}.$

Figure 1: Sector AOB.

Part B	
Arc length	
Find the length of the arc AB.	
D. 10	
Part C Area of sector	
Alea of Sector	
Find the area of the sector OAB.	
Jsed with permission from UCLES A-level Maths papers, 2003-2017.	

Radians-problems involving area 1ii

Figure 1: The sector OAB.

A sector OAB of a circle of radius r cm has angle θ radians. The length of the arc of the sector is 12 cm and the area of the sector is 36 cm 2 (see Figure 1).

Second equation
By considering the area of the sector, write down another equation involving r and θ , where one side of the equation is a numerical constant.
The following symbols may be useful: r, theta
Part C $ \label{eq:Values} \textbf{Values of } r \ \textbf{and} \ \theta $
Hence show that $r=6\mathrm{cm}$ and find the value of $ heta.$
Part D Area of segment
Find the area of the segment bounded by the arc AB and the chord AB . Give your answer to 3 sf.
Jsed with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

Part B

<u>STEM SMART Double Maths 24 - Radians, Trigonometric</u>

Radians and Trig Functions 1i

Subject & topics Maths		
Status Not started	Stage & difficulty A Level Practice 2	

A curve has equation $y=\sin{(ax)}$, where a is a positive constant and x is in radians.

Part A Period

State the period of $y = \sin{(ax)}$, giving your answer in an exact form in terms of a.

The following symbols may be useful: a, pi, t

Part B
$$\sin{(ax)} = k$$

The two smallest positive solutions of $\sin{(ax)}=k$, where k is a positive constant, are $x=\frac{1}{5}\pi$ and $x=\frac{2}{5}\pi$.

Find the exact values of a and k.

$$a = \bigcirc$$

$$k = \bigcirc \sqrt{}$$

Part C

$$\sin\left(ax\right) = \sqrt{3}\cos\left(ax\right)$$

Given instead that $\sin{(ax)} = \sqrt{3}\cos{(ax)}$, find the two smallest positive solutions for x, giving your answers in an exact form.

Enter your answers in order from lowest value of \boldsymbol{x} to highest.

$$x=$$
 $\frac{\pi}{a}$ (lowest value)

$$x=$$
 $\frac{\pi}{a}$ (highest value)

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Double Maths 24 - Radians, Trigonometric

Small Angle Approximations 3ii

Subject & topics Maths		
Status Not started	Stage & difficulty A Level Practice 1	

Part A **Expression**

Use the small angle approximation to write an approximate expression for $(\cos \theta + 5)(1 + \sin(2\theta))$ in powers of θ up to θ^2 .

The following symbols may be useful: theta

Part B Approximation

Use your answer from the above part to work out an approximate value for $(\cos\theta+5)(1+\sin(2\theta))$ when $\theta=0.075$. Give your answer to 3 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

<u>STEM SMART Double Maths 24 - Radians, Trigonometric</u>

Sketching Reciprocal Trigonometric Functions

Subject & topics

Maths | Functions | Graph Sketching

Status

Not started

Stage & difficulty

A Level Practice 2

Sketch the graph of $y=2\sec x+2$ in the interval $0^\circ \le x \le 360^\circ$.

Part B

Sketch $\cot{(x+\frac{\pi}{4})}-1$

Sketch the graph of $y=\cot{(x+\frac{\pi}{4})}-1$ in the interval $0\leq x\leq 2\pi$.

Part C

Sketch
$$-\csc{\frac{x}{2}}-3$$

Sketch the graph of $y=-\csc{rac{x}{2}}-3$ in the interval $-2\pi \leq x \leq 2\pi$.

Created for isaacphysics.org by Matthew Rihan

Question deck:

STEM SMART Double Maths 24 - Radians, Trigonometric

Advanced Trig Identities 2ii

Subject & topics Maths		
Status Not started	Stage & difficulty A Level Practice 2	

Part A	
$2 an^2 heta$ –	$-\frac{1}{\cos\theta}$

Express $2 an^2 heta - rac{1}{\cos heta}$ in terms of $\sec heta$.

The following symbols may be useful: sec(), theta

Part B Solve

Hence solve, for $0^\circ < heta < 360^\circ$, the equation

$$2\tan^2\theta - \frac{1}{\cos\theta} = 4$$

Enter your answers	in order from lowest value of $ heta$ to highest. Give inexact answers to 1 dp.
	(lowest value)
	(highest value)

Sketching Inverse Trigonometric Functions

Subject & topics

Maths | Functions | Graph Sketching

Status

Not started

Stage & difficulty

A Level Practice 2

Sketch the graph of $y = \arcsin \frac{x}{3} + \frac{\pi}{2}$.

Part B ${\bf Sketch} \ 2\arctan{(x-1)}$

Sketch the graph of $y=2\arctan{(x-1)}$.

Part C

Sketch $\arccos\left(-\frac{x}{2} + \frac{1}{2}\right) - \frac{\pi}{3}$

Sketch the graph of $y=\arccos{(-\frac{x}{2}+\frac{1}{2})}-\frac{\pi}{3}$.

Created for isaacphysics.org by Matthew Rihan

Question deck:

STEM SMART Double Maths 24 - Radians, Trigonometric

Functions: Reciprocal Trig 1i

Subject & topics

Maths

Status

Not started

Stage & difficulty

A Level Practice 2

Part A **Sketch**

Sketch the graph of $y = \operatorname{cosec} x$ for $0 < x < 4\pi$.

Part B β in terms of α

It is given that $\csc\alpha=\csc\beta$, where $\frac{1}{2}\pi<\alpha<\pi$ and $2\pi<\beta<\frac{5}{2}\pi$. By using your sketch, or otherwise, express β in terms of α .

The following symbols may be useful: alpha, beta, pi

Part C

Double angle \tan properties

Write down the identity giving $\tan 2\theta$ in terms of $\tan \theta$.

The following symbols may be useful: cos(), sin(), tan(), theta

Part D

 $\tan\phi\cot2\phi\tan4\phi$

Given that $\cot \phi = 4$, find the exact value of $\tan \phi \cot 2\phi \tan 4\phi$.

The following symbols may be useful: phi

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Double Maths 24 - Radians, Trigonometric

t-Formulae Substitution

Subject & topics Maths Geometry Trigonometry		
Status Not started	Stage & difficulty Further A Practice 3	

Part A **Substitution**

Using the substitution $t=\tan\frac{\theta}{2}$, write the equation $2\cos\theta-5\sin\theta=2-5\tan\theta$ in the form f(t)=0 where f(t) is a polynomial with integer coefficients and degree 4.

The following symbols may be useful: cos(), cosec(), cot(), sec(), sin(), t, tan()

Part B **Solutions**

Hence find all the solutions to the equation $2\cos\theta-5\sin\theta=2-5\tan\theta$ in the range $0\leq\theta<2\pi$. Where necessary, give irrational solutions to 3 sf.

()

Created for isaacphysics.org by Matthew Rihan