

SEQUENCE LISTING

<110>	Evans, Thomas Xu, Ming-Qun	
<120>	Intein-Mediated Protein Ligation Of Expressed Proteins	RECEIVE
<130>	NEB-154-PUS	AUG 2 C
	09/249,543 1999-02-12	RECEIVED AUG 2 6 2003 ECH CENTER 1600/2900
<160>	26	12/1/600/2900
<170>	PatentIn Ver.2.0	
<210><211><212><213>	99	
<220> <223>	Description of Artificial Sequence: Chemically Synthesized From Methanobacterium thermoautotrophicum.	
	1 gcaac caacccctgc gtatccggtg acaccattgt aatgactagt ggcggtccg gtggc tgaactggag ggcaaaccgt tcaccgcac	gc 60 99
<210><211><211><212><213>	93	
<220> <223>	Description of Artificial Sequence: Chemically Synthesized From Methanobacterium thermoautotrophicum.	
<400>		- 60
	gget getegecaca gitgigtaca aigaageeat tageagigaa igegetage acag tagegicata aacaiceigg egg	93
<210><211><211><212><213>	100	
	Description of Artificial Sequence: Chemically Synthesized From Methanobacterium thermoautotrophicum.	
<400>		60
	gegg ctetggetae ceatgeeeet caggtttett cegeaeetgt gaaegtgae atet gegtaeaegt gagggteatt gettaegttt	g 60 100

RECEIVED

AUG 2 6 2003

TECH CENTER 1600/2900

<210><211><211><212><213>	100	T
<220> <223>	Description of Artificial Sequence: Chemically Synthesized From Methanobacterium thermoautotrophicum.	
	4 atgat caccgtgttc tggtgatgga tggtggcctg gaatggcgtg ccgcgggtga aacgc ggcgaccgcc tggtgatgga tgatgcagct	60 100
<210><211><212><213>	87	
<220> <223>	Description of Artificial Sequence: Chemically Synthesized From Methanobacterium thermoautotrophicum.	
	5 gtttc cggcactggc aaccttccgt ggcctgcgtg gcgctggccg ccaggatgtt cgcta ctgtttacgg tgctagc	60 87
<210><211><212><212><213>	49	
<220> <223>	Description of Artificial Sequence: Chemically Synthesized From Methanobacterium thermoautotrophicum.	
<400> gcatto	6 cactg ctaatggctt cattgtacac aactgtggcg agcagccaa	49
<210><211><211><212><213>	100	
	Description of Artificial Sequence: Chemically Synthesized From Methanobacterium thermoautotrophicum.	
<400> ccagcg atcacc	7 gecac geaggecacg gaaggttgee agtgeeggaa actegeeage tgeateatee gagge ggtegeegeg tteeagttea eeegeggeae	60 100

<210> 8

<211><212>		
	Artificial Sequence	
12132	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Chemically Synthesized From Methanobacterium thermoautotrophicum.	
<400>	8	
gccat	tccag gccaccatcc atcaccagaa cacggtgatc atgggtcaaa cgtaagcaat tcacg tgtacgcaga tcatatacgt	60 90
<210>	9	
<211>	97	
<212>		
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Chemically Synthesized From Methanobacterium thermoautotrophicum.	
<400>	9	
cacgtt	caca ggtgcggaag aaacctgagg ggcatgggta gccagagccg cgaatcagtg	60
	aacgg tttgccctcc agttcagcca cagtgcg	97
010	10	
<210><211>		
<212>		
	Artificial Sequence	
	•	
<220>		
<223>	Description of Artificial Sequence: Chemically Synthesized From Methanobacterium thermoautotrophicum.	
400	4.0	
<400>	10 Egcca ctagtcatta caatggtgtc accggatacg caggggttgg ttgcc	55
eggacc	speca cragicatra caarggryre accygaracy caygggrryg rryce	33
<210>	11	
<211>	45	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Chemically	
	Synthesized From Methanobacterium	
	thermoautotrophicum.	
<400>	11	
	rcaac caacgcatge gtateeggtg acaccattgt aatga	45
		-
<210>		
<211>		
<212>	DNA Artificial Sequence	
	ACLICIOLA COMICAGO	

<220> <223> Description of Artificial Sequence: Chemically Synthesized From Methanobacterium thermoautotrophicum.	
<400> 12 ctagtcatta caatggtgtc accggatacg catgcgttgg ttgcc	45
<210> 13 <211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Chemically Synthesized From Methanobacterium thermoautotrophicum.	
<400> 13 tcgagggctg cgtatccggt gacaccattg taatga	36
<210> 14 <211> 36 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Chemically Synthesized From Methanobacterium thermoautotrophicum.</pre>	
<400> 14 ctagtcatta caatggtgtc accggatacg cagccc	36
<210> 15 <211> 54 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Chemically Synthesized From Methanobacterium thermoautotrophicum.	
<400> 15 cgagggcat cgaggcaacc aacggatccg tatccggtga caccattgta atga	54
<210> 16 <211> 54 <212> DNA <213> Artificial Sequence	_
<220> <223> Description of Artificial Sequence: Chemically Synthesized From Methanobacterium thermoautotrophicum.	

<400>	16	
ctagto	catta caatggtgtc accggatacg gatccgttgg ttgcctcgat gccc	54
<210>		
<211>	54	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Chemically	
	Synthesized From Methanobacterium thermoautotrophicum.	
<400>	17	
tcgagg	gcat cgaggcaacc aacggcgccg tatccggtga caccattgta atga	54
552	gene egaggenne naoggegoog oncooggegoga oncoucegen aega	J4
<210>		
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Chemically	
	Synthesized From Methanobacterium	
	thermoautotrophicum.	
<400>	18	
	atta caatggtgtc accggatacg gcgccgttgg ttgcctcgat gccc	54
<210>	19	
<211>		
<211>		
	Artificial Sequence	
-41J/	vicilioral pedaence	
<220>		
	Description of Artificial Sequence: Chemically	
	Synthesized From Methanobacterium	
	thermoautotrophicum.	
<400>	19	
gtacac	gcat gcggcgagca gcccggga	28
<210>	20	
<211>	28	
<212>		
	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Chemically	
	Synthesized From Methanobacterium	
	thermoautotrophicum.	
<400>	20	
	ccgg gctgctcgcc gcatgcgt	28
		20
<210>	21	

```
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Chemically
      Synthesized From Methanobacterium
      thermoautotrophicum.
<220>
<223> At position 12, "Xaa" = any amino acid
<400> 21
Thr Leu Glu Gly Cys Gly Glu Gln Pro Thr Gly Xaa Leu Lys
<210> 22
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Chemically
      Synthesized From Methanobacterium
      thermoautotrophicum.
<400> 22
Cys Gly Glu Gln Pro Thr Gly
                  5
<210> 23
<211> 462
<212> DNA
<213> Artificial Sequence
<220>
<221> CDS
<222> (1)..(462)
<223> Description of Artificial Sequence: Chemically
      Synthesized From Methanobacterium
      thermoautotrophicum.
<400> 23
caa ctc ggg agg ata gag gca acc aac ccc tgt gta tcc ggt gac acc
                                                                        48
Gln Leu Gly Arg Ile Glu Ala Thr Asn Pro Cys Val Ser Gly Asp Thr
att gta atg aca tcc ggg ggt ccg cgg aca gtg gct gaa ctg gag ggc
                                                                        96
Ile Val Met Thr Ser Gly Gly Pro Arg Thr Val Ala Glu Leu Glu Gly
                                25
aag ccc ttc acc gca ctt atc agg ggc tca ggg tac ccc tgc ccc tca
                                                                      144
Lys Pro Phe Thr Ala Leu Ile Arg Gly Ser Gly Tyr Pro Cys Pro Ser
        35
                            40
                                                 45
```

		ttc Phe											192
		cat His											240
		ggt Gly											288
		gtg Val											336
		ggc Gly 115											384
		ggt Gly											432
		gag Glu											462
<210 <211 <212 <213	> 1 > F	24 .54 PRT ctifi	.cial	Sec	_{[uenc}	ee							
<223		scri mthe	_				_	: Ch	emic	ally	•		

<223> Description of Artificial Sequence: Chemically Synthesized From Methanobacterium thermoautotrophicum.

<400> 24

Gln Leu Gly Arg Ile Glu Ala Thr Asn Pro Cys Val Ser Gly Asp Thr 1 5 10 15

Ile Val Met Thr Ser Gly Gly Pro Arg Thr Val Ala Glu Leu Glu Gly 20 25 30

Lys Pro Phe Thr Ala Leu Ile Arg Gly Ser Gly Tyr Pro Cys Pro Ser 35 40 45

Gly Phe Phe Arg Thr Cys Glu Arg Asp Val Tyr Asp Leu Arg Thr Arg 50 55 60

Glu Gly His Cys Leu Arg Leu Thr His Asp His Arg Val Leu Val Met Asp Gly Gly Leu Glu Trp Arg Ala Ala Gly Glu Leu Glu Arg Gly Asp 90 85 Arg Leu Val Met Asp Asp Ala Ala Gly Glu Phe Pro Ala Leu Ala Thr 105 100 Phe Arg Gly Leu Arg Gly Ala Gly Arg Gln Asp Val Tyr Asp Ala Thr 115 120 125 Val Tyr Gly Ala Ser Ala Phe Thr Ala Asn Gly Phe Ile Val His Asn 130 Cys Gly Glu Gln Pro Leu Leu Thr His Glu 150 145 <210> 25 <211> 447 <212> DNA <213> Artificial Sequence <220> <221> CDS <222> (1)..(447) <223> Description of Artificial Sequence: Chemically Synthesized From Methanobacterium thermoautotrophicum. <400> 25 ctc gag gca acc aac ccc tgc gta tcc ggt gac acc att gta atg act 48 Leu Glu Ala Thr Asn Pro Cys Val Ser Gly Asp Thr Ile Val Met Thr 10 96 agt ggc ggt ccg cgc act gtg gct gaa ctg gag ggc aaa ccg ttc acc Ser Gly Gly Pro Arg Thr Val Ala Glu Leu Glu Gly Lys Pro Phe Thr 144 gca ctg att cgc ggc tct ggc tac cca tgc ccc tca ggt ttc ttc cgc Ala Leu Ile Arg Gly Ser Gly Tyr Pro Cys Pro Ser Gly Phe Phe Arg 192 acc tgt gaa cgt gac gta tat gat ctg cgt aca cgt gag ggt cat tgc Thr Cys Glu Arg Asp Val Tyr Asp Leu Arg Thr Arg Glu Gly His Cys 50 55 60 tta cgt ttg acc cat gat cac cgt gtt ctg gtg atg gat ggt ggc ctg 240

65	Thr His A	sp His Arg)	Val Leu	Val Met 75	Asp Gly		Leu 80
gaa tgg cgt Glu Trp Arg							
gat gat gca Asp Asp Ala							
cgt ggc gct Arg Gly Ala 115			Tyr Asp	_	_		_
agc gca ttc Ser Ala Phe 130							
cca acc ggt Pro Thr Gly 145	_						447
<210> 26 <211> 149 <212> PRT <213> Artif	icial Seque	ence					
_	iption of A esized From cautotrophi	n Methanob	_	e: Chemio	cally		
Synthe	esized From	n Methanob	_	e: Chemic	cally		
Synthe thermo	esized From	n Methanob .cum.	acterium			Met ' 15	Thr
Synthe thermo <400> 26 Leu Glu Ala	esized From Dautotrophi Thr Asn Pr 5	n Methanob .cum. co Cys Val	acterium Ser Gly 10	Asp Thr	Ile Val	15	
Synthe thermo <400> 26 Leu Glu Ala 1	esized From Dautotrophic Thr Asn Pro 5	n Methanob cum. To Cys Val	Ser Gly 10 Glu Leu 25	Asp Thr	Ile Val Lys Pro 30	15 Phe	Thr
Synthe thermo <400> 26 Leu Glu Ala 1 Ser Gly Gly Ala Leu Ile	esized From Dautotrophic Thr Asn Pro 5 Pro Arg The 20 Arg Gly Se	n Methanob cum. To Cys Val ar Val Ala er Gly Tyr 40	Ser Gly 10 Glu Leu 25 Pro Cys	Asp Thr Glu Gly Pro Ser	Ile Val Lys Pro 30 Gly Phe 45	Phe i	Thr Arg
Synthermoderic statements of the statements of the statements of the statement of the state	esized From Dautotrophic Thr Asn Pro 5 Pro Arg The 20 Arg Gly See Arg Asp Va	n Methanobacum. To Cys Val Ar Val Ala er Gly Tyr 40 al Tyr Asp 55	Ser Gly 10 Glu Leu 25 Pro Cys	Asp Thr Glu Gly Pro Ser Thr Arg 60	Ile Val Lys Pro 30 Gly Phe 45 Glu Gly	Phe A	Thr Arg Cys

Asp Asp Ala Ala Gly Glu Phe Pro Ala Leu Ala Thr Phe Arg Gly Leu 100 105 110

Arg Gly Ala Gly Arg Gln Asp Val Tyr Asp Ala Thr Val Tyr Gly Ala 115 120 125

Ser Ala Phe Thr Ala Asn Gly Phe Ile Val His Asn Cys Gly Glu Gln 130 135 140

Pro Thr Gly Glu Phe 145

4 1 6