Examen de rattrapage Maths S3 (2 heures)

Nom:	Prénom :	Classe:	
Documents et calcula	atrice interdits. Le barème est sur 40.	Note:	/20
Exercice 1 : séries	numériques (8 points)		
1. Déterminer la nature	de la série $\sum \frac{e^{1/n}}{\hat{z}}$.		
	\sum_{n^2}		
**************	••••••••••••••••••		
	***************************************	, ,	

**************	•••••		

2. Déterminer la nature	de la série $\sum \frac{e^n}{(2n)!}$.		
************		,	
***************	•••••	, , , , , , , , , , , , , , , , , , , ,	
• • • • • • • • • • • • • • • • • • • •	•••••		

3. Soit $a > 0$. Considéror	ns la série de terme général $u_n = \frac{(-1)^n}{n^a + (-1)^n}$ (défini pou	$(r \ n \geqslant 2).$	
(a) Trouver $k \in \mathbb{R}$ tel	que $u_n = \frac{(-1)^n}{n^a} + \frac{k}{n^{2a}} + o\left(\frac{1}{n^{2a}}\right)$.		

*************		• • • • • • • • • • • • • • • • • • • •	

***********			• • • • • • • • • • • • • • • • • • • •

***********		******	
**********	***************************************	****	

*********	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ons la série e	éries entières (8 points) ntière $\sum (-2)^n x^n$.
ns la série e	
ns la série e	ntière $\sum (-2)^n x^n$.
ns la série e	ntière $\sum (-2)^n x^n$.
ns la série e	ntière $\sum (-2)^n x^n$.
ns la série e	ntière $\sum (-2)^n x^n$.
ns la série e terminer sor	ntière $\sum (-2)^n x^n$.
ns la série e terminer sor $ x \in]-R, F$	ntière $\sum (-2)^n x^n$. rayon de convergence R .
as la série e erminer sor $x \in]-R, F$	ntière $\sum (-2)^n x^n$. rayon de convergence R . If fixé. Donner une expression simple de la somme partielle de la série numérique $\sum (-2)^n x^n$
ns la série e terminer sor $x \in]-R, F$	ntière $\sum (-2)^n x^n$. rayon de convergence R . If fixé. Donner une expression simple de la somme partielle de la série numérique $\sum (-2)^n x^n$
ns la série e terminer sor $x \in]-R, F$	ntière $\sum (-2)^n x^n$. rayon de convergence R . If fixé. Donner une expression simple de la somme partielle de la série numérique $\sum (-2)^n x^n$
ns la série e terminer sor $ x \in]-R, F$	ntière $\sum (-2)^n x^n$. rayon de convergence R . If fixé. Donner une expression simple de la somme partielle de la série numérique $\sum (-2)^n x^n$
ns la série e terminer sor $ x \in]-R, F$	ntière $\sum (-2)^n x^n$. rayon de convergence R . If fixé. Donner une expression simple de la somme partielle de la série numérique $\sum (-2)^n x^n$
ns la série e terminer sor $x \in]-R, F$	ntière $\sum (-2)^n x^n$. rayon de convergence R . If fixé. Donner une expression simple de la somme partielle de la série numérique $\sum (-2)^n x^n$
ns la série e terminer sor $x \in]-R, F$	ntière $\sum (-2)^n x^n$. A rayon de convergence R . Il fixé. Donner une expression simple de la somme partielle de la série numérique $\sum (-2)^n x^n$ Expression simple, à l'aide des fonctions usuelles, de la fonction définie pour tout $x \in]-R$
ns la série e terminer sor $x \in]-R, F$	ntière $\sum (-2)^n x^n$. A rayon de convergence R . Il fixé. Donner une expression simple de la somme partielle de la série numérique $\sum (-2)^n x^n$ Expression simple, à l'aide des fonctions usuelles, de la fonction définie pour tout $x \in]-R$
ns la série e terminer sor $x \in]-R, F$	ntière $\sum (-2)^n x^n$. I rayon de convergence R . Il fixé. Donner une expression simple de la somme partielle de la série numérique $\sum (-2)^n x^n$. Expression simple, à l'aide des fonctions usuelles, de la fonction définie pour tout $x \in]-R$.
ns la série e terminer sor $\mathbf{t} \ x \in]-R, F$	ntière $\sum (-2)^n x^n$. I rayon de convergence R . Il fixé. Donner une expression simple de la somme partielle de la série numérique $\sum (-2)^n x^n$. Expression simple, à l'aide des fonctions usuelles, de la fonction définie pour tout $x \in]-R$.
ns la série e terminer sor $x \in]-R, F$	ntière $\sum (-2)^n x^n$. I rayon de convergence R . Il fixé. Donner une expression simple de la somme partielle de la série numérique $\sum (-2)^n x^n$. Expression simple, à l'aide des fonctions usuelles, de la fonction définie pour tout $x \in]-R$.
ons la série e terminer sor it $x \in]-R, F$ ouver une e $+\infty$	ntière $\sum (-2)^n x^n$. I rayon de convergence R . Il fixé. Donner une expression simple de la somme partielle de la série numérique $\sum (-2)^n x^n$. Expression simple, à l'aide des fonctions usuelles, de la fonction définie pour tout $x \in]-R$.
ons la série e terminer sor it $x \in]-R, F$ ouver une e $+\infty$	ntière $\sum (-2)^n x^n$. I rayon de convergence R . Il fixé. Donner une expression simple de la somme partielle de la série numérique $\sum (-2)^n x^n$. Expression simple, à l'aide des fonctions usuelles, de la fonction définie pour tout $x \in]-R$.
ons la série e éterminer sor $x \in]-R, F$ ouver une e	ntière $\sum (-2)^n x^n$. I rayon de convergence R . Il fixé. Donner une expression simple de la somme partielle de la série numérique $\sum (-2)^n x^n$. Expression simple, à l'aide des fonctions usuelles, de la fonction définie pour tout $x \in]-R$.

4. En déduire une expression de $g: x \mapsto \frac{1}{(2x+1)^2}$ sous la forme d'une série entière.
Exercice 3 : probabilités (8 points)
Sur le site www.promo2027.com, on a observé que le nombre de connexions est en moyenne de 10 par heure. Pour chaque heure h à venir, on définit la variable aléatoire $X_h=$ « nombre de connexions pendant cette heure h ». On suppose que X_h suit une loi de Poisson, c'est-à-dire qu'il existe $\lambda>0$ tel que :
$X_h(\Omega)=\mathbb{N} \qquad ext{et} \qquad orall n\in \mathbb{N}, P(X_h{=}n)=e^{-\lambda}rac{\lambda^n}{n!}$
De plus, les variables X_h sont supposées indépendantes deux à deux et de même loi.
1. Déterminer la fonction génératrice $G_{X_h}(t)$ de X_h .
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2. Calculer l'espérance et la variance de X_h .
3. Compte tenu des données observées, que vaut λ ?
de la VIII de la
4. Soit Y la variable aléatoire égale au nombre de connexions sur une journée entière. (a) En écrivant Y comme une somme de variables aléatoires, déterminer sa fonction génératrice $G_Y(t)$.

(b) En déduire $P(Y=0)$ et $P(Y=1)$.

Exer	cice 4 : construction d'un projecteur (8 points)
Dans E	$=\mathbb{R}^2$, considérons les sev $F=\left\{(x,y)\in E, x+y=0 ight\}$ et $G=\left\{(x,y)\in E, x-2y=0 ight\}$.
	Frouver une base \mathcal{B}_1 de F et une base \mathcal{B}_2 de G .

_	***************************************
	,

2. (On admet que $E = F \oplus G$. Ainsi, pour tout $u \in E$, $\exists ! (u_1, u_2) \in F \times G$ tel que $u = u_1 + u_2$.
(Considérons l'endomorphisme f de E défini pour tout $u \in E$ par : $f(u) = u_1$.
(a	a) Si $u \in F$, que vaut $f(u)$? Justifier soigneusement.
(t	o) Si $u \in G$, que vaut $f(u)$? Justifier soigneusement.

(6	e) Soit $\mathcal B$ la base obtenue par concaténation des bases $\mathcal B_1$ et $\mathcal B_2$. Donner la matrice A' de f dans la base $\mathcal B$ au départ
`	et à l'arrivée.
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(a)	Trouver la matrice A de j dans la base canonique au depart et a l'arrivée.
	,
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
From	ce 5 : diagonalisation (8 points)
Exerci	ce 5. diagonalisation (8 points)
	/-2 -3 3\
Soit la ma	atrice $A = \begin{pmatrix} -2 & -3 & 3 \\ -3 & -2 & 3 \\ -3 & -3 & 4 \end{pmatrix}$.
	· ·
1. Ca	lculer sous forme factorisée son polynôme caractéristique. Vérifier que ses valeurs propres sont -2 et 1.
• • •	
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	· ·
	······
	······································
	······································
	•••••••••••••••••••••••••••••••••••••

•	La matrice A est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$? Si oui, donner P et D. Vous prendrez soin de votre rédaction.

	······································
