

信息安全数学基础

第二章 同余

熊虎 电子科技大学

2.2 同余类与剩余系

2.3 同余方程与中国剩余定理

定义2.1.1 (同余) 给定3个整数 a, b, m, 如果m|(a-b), 则称a模m同余于b或 a, b 模m同余,记作 $a \equiv b \pmod{m}$; 若 $m \not ((a-b))$,则称a, b模m不同余。

注:由于m|(a-b)等价于(-m)|(a-b),所以在后续内容中,总假定 m是一个正整数。

定理2.1.1

(1) $a \equiv b \pmod{m}$ 当且仅当存在整数k, 使得a = km + b。

证明思路: 利用同余和整除的定义可直接验证。

证明: $a \equiv b \pmod{m}$ 根据同余的定义有 $m \mid (a - b)$, 不妨设

a-b=km, 故a=km+b。 反之a=km+b, 则有

a-b=km, 所以 m|(a-b)。 故 $a\equiv b \pmod m$ 。

定理2.1.1

(2) 设 $a = k_1 m + r_1$, $b = k_2 m + r_2$, $0 \le r_1 < m$, $0 \le r_2 < m$, $a \equiv b \pmod{m}$ 当且仅当 $r_1 = r_2$ 。

证明: $a-b=(k_1-k_2)m+(r_1-r_2)$, $a\equiv b \pmod{m}$,根据同余定义有m|(a-b)所以 $m|(r_1-r_2)$,又 $0 \le r_1 < m$,

 $0 \le r_2 < m$, 故有 $r_1 - r_2 = 0$, 即 $r_1 = r_2$ 。反之,由 $r_1 = r_2$

可知 $a-b=(k_1-k_2)m$,所以m|(a-b)。 故 $a\equiv b \pmod{m}$ 。

例2.1.1 $39 \equiv 29 \pmod{10}$,因为 $10 \mid (39 - 29)$ 。

同样 $55 \equiv 3 \pmod{26}$ 。

例2.1.2 某月的1号为星期二,问该月的25号为星期几?

解: 因为 $25 \equiv 4 \pmod{7}$, 而根据已知条件该月的4号为星期五,所以25号为星期五。

定理2.1.2 设a, b, c, m 是正整数,

自反性: $a \equiv a \pmod{m}$;

证明思路:直接利用同余定义验证。

定理2.1.3 设a, b, d, a_1 , a_2 , b_1 , b_2 , m为正整数,则

(1) 若 $a_1 \equiv a_2 \pmod{m}$, $b_1 \equiv b_2 \pmod{m}$, 则 $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ 。

证明:

若 $a_1 \equiv a_2 \pmod{m}$, $b_1 \equiv b_2 \pmod{m}$, 则 $m|a_1 - a_2$, $m|b_1 - b_2$, 所以 $m|(a_1-a_2)+(b_1-b_2)=m|(a_1+b_1)-(a_2+b_2)$ 。故 $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ 。

(2) 若
$$a_1 \equiv a_2 \pmod{m}$$
, $b_1 \equiv b_2 \pmod{m}$, 则 $a_1 - b_1 \equiv a_2 - b_2 \pmod{m}$ 。

证明:
$$m|(a_1-a_2)-(b_1-b_2)=(a_1-b_1)-(a_2-b_2),$$

故 $(a_1-b_1)\equiv (a_2-b_2)\pmod{m}$ 。

定理2.1.3

(3) 若 $a_1 \equiv a_2 \pmod{m}$, $b_1 \equiv b_2 \pmod{m}$, 则 $a_1b_1 \equiv a_2b_2 \pmod{m}$ 。

证明:

定理2.1.3

(5) 若 $a \equiv b \pmod{m}$, $d \not\in a$, b, m 的任意公因数,则 $\frac{a}{d} \equiv \frac{b}{d} \pmod{\frac{m}{d}}$ 。

定理2.1.3

- (6) 若 $a \equiv b \pmod{m}$, d|m, d > 0, 则 $a \equiv b \pmod{d}$ 。 证明: 若 $a \equiv b \pmod{m}$, 则m|a-b, 又d|m, 所以 d|a-b, 故 $a \equiv b \pmod{d}$ 。
- (7) 若 $a \equiv b \pmod{m_i}$, $i = 1, 2, \dots, k$, 则 $a \equiv b \pmod{[m_1, m_2, \dots, m_k]}$ 。 证明: 若 $a \equiv b \pmod{m_i}$, $i = 1, 2, \dots, k$, 则 $m_i | a b$, $i = 1, 2, \dots, k$, 所以 $\lim_{k \to \infty} [m_1, m_2, \dots, m_k] | a b$, 故 $a \equiv b \pmod{[m_1, m_2, \dots, m_k]}$ 。

例2.1.3
$$30 \equiv 3 \pmod{9}$$
 , $47 \equiv 2 \pmod{9}$, 则 $77 \equiv 30 + 47 \equiv 3 + 2 \equiv 5 \pmod{9}$ $1410 \equiv 30 \cdot 47 \equiv 3 \cdot 2 \equiv 6 \pmod{9}$ 由于3是30, 3, 9的公因数,所以 $\frac{30}{3} \equiv \frac{3}{3} \pmod{\frac{9}{3}}$, 即 $10 \equiv 1 \pmod{3}$ 由于 $3|9$,所以 $47 \equiv 2 \pmod{\frac{9}{3}}$,即 $47 \equiv 2 \pmod{3}$

例2.1.4 计算 3⁸⁰¹(mod 10)

解: 因为 $3^2 \equiv 9 \mod 10$, $3^3 \equiv 7 \mod 10$, $3^4 \equiv 1 \mod 10$,

又
$$801 = 4 \times 200 + 1$$
, 所以

$$3^{801} = 3^{4 \times 200 + 1} = (3^4)^{200} \times 3 \equiv 1 \times 3 \mod (10) = 3 \pmod {10}$$

例2.1.5 设 n 是一个十进制整数,设 $n = (a_k a_{k-1} \cdots a_0)_{10}$,则

(1) 3|n的充要条件是 $3|\sum_{i=0}a_i$; (2) 9|n的充要条件是 $9|\sum_{i=0}a_i$;

证明: n的十进制表示形式为

$$n = a_k \cdot 10^k + a_{k-1} \cdot 10^{k-1} + \dots + a_1 \cdot 10 + a_0$$

因为 $10 \equiv 1 \pmod{3}$, 所以 $n = \sum_{i=0}^{n} a_i \pmod{3}$, 因此 $3 \mid n$

的当且仅当 $3|\sum_{i=0}^k a_i$ 。对于9的情形同理可证。

例2.1.6 设n = 6789,则n可被3整除,但不能被9整除。

解: 因为 $\sum_{i=0} a_i = 6 + 7 + 8 + 9 = 30$, 又 3|30, 9 $\cancel{1}30$,

所以3 | 6789, 9 ∤ 6789。

