Interpolujące funkcje sklejane 2-go i 3-go stopnia.

Wiktor Gut, 411 761

1. Dane techniczne i treść zadania

Środowisko

Program wykonany w systemie Windows x64, na procesorze AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx, za pomocą programu Pycharm w języku Python.

Treść zadania:

Dla funkcji

$$f(x) = 40 + \frac{x^2}{2} - 40 \cdot \cos(2x)$$
 $x \in [-4\Pi, 4\Pi]$ (Wzór 1)

wyznaczyć interpolacyjną funkcję sklejaną trzeciego stopnia oraz drugiego stopnia. Dla obu rodzajów funkcji (2-go i 3-go stopnia) należy wykonać obliczenia dla co najmniej dwóch różnych warunków brzegowych. Podobnie jak poprzednio określić dokładność interpolacji – dla różnej liczby przedziałów i dla różnych warunków brzegowych. Porównać interpolację funkcjami sklejanymi drugiego i trzeciego stopnia. Graficznie zilustrować interesujące przypadki. Opisać dokładnie przyjęte warunki brzegowe.

Funkcja rysująca wykres a jego prawidłowy wygląd

Na potrzeby zadania funkcja została przepisana na język python a następnie narysowana przez zaimplementowaną funkcję rysującą wykres według zadanych n punktów, tutaj dla n=1000 (Wykres 1). Obok został przedstawiony obraz wyglądu funkcji według programu WolphramAlpha (Wykres 2).

Widać więc, że funkcja została zapisana dobrze, a program rysuje wykres w dokładny sposób.

2. Wprowadzenie teoretyczne

2.1 Interpolacja funkcji liniowej

Funkcja interpolująca 1-go stopnia (Wzór 1), czyli wzór na funkcję liniową pomiędzy dwoma punktami: (x_i, y_i) i (x_{i+1}, y_{i+1}) :

$$y(x) = y_i + \frac{y_{i+1} - y_i}{x_{i+1} - x_i} (x - x_i) = \frac{x_{i+1} - x}{x_{i+1} - x_i} y_i + \frac{x - x_i}{x_{i+1} - x_i} y_{i+1}$$
Wzór 2.

Powyższy wzór przyda się przy wyznaczaniu interpolacji sześciennej w kolejnym punkcie.

2.2 Interpolacja sklejana funkcjami 3-go stopnia

Interpolacja sklejana polega na sklejeniu funkcji do której dążymy w jak najgładszy sposób odcinkami wielomianów; na zadanej dziedzinie wyznaczamy n węzłów dzieląc ją na n-1 przedziałów, a dla każdego z osobna zostanie wyznaczony wielomian. Przy funkcjach 3-go stopnia wygląda on tak jak na Wzorze 3,

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

Wzór 3

gdzie $s_i(x)$ to wielomian wyznaczony do sklejenia na przedziale $\left[x_i, x_{i+1}\right]$, a a_i, b_i, c_i i d_i to współczynniki wyznaczone indywidualnie dla każdego wielomianu. Każdy z wyznaczanych wielomianów obowiązują 4 warunki (Wzory 4.1 - 4.4):

$$\begin{split} s_i^{}(x_{i+1}^{}) &= f(x_{i+1}^{}) &, i \in \{1, \, 2, \, 3 \, \dots \, n \, - \, 1\} & \text{(Wz\'or 4.1)} \\ s_i^{}(x_{i+1}^{}) &= s_{i+1}^{}(x_{i+1}^{}) &, i \in \{1, \, 2, \, 3 \, \dots \, n \, - \, 2\} & \text{(Wz\'or 4.2)} \\ s_i^{'}(x_{i+1}^{}) &= s_{i+1}^{'}(x_{i+1}^{}) &, i \in \{1, \, 2, \, 3 \, \dots \, n \, - \, 2\} & \text{(Wz\'or 4.3)} \\ s_i^{''}(x_{i+1}^{}) &= s_{i+1}^{''}(x_{i+1}^{}) &, i \in \{1, \, 2, \, 3 \, \dots \, n \, - \, 2\} & \text{(Wz\'or 4.4)} \end{split}$$

Wzór 4.1 mówi, że wyznaczane wielomiany muszą na swoich końcach, czyli w węzłach określonych na funkcji interpolowanej, mieć identyczną wartość, co interpolowana funkcja (oznaczona przez literę f). Wzory 4.2-4.4 odpowiadają za ciągłość funkcji interpolującej pomiędzy jej składowymi oraz ich 1 i 2 pochodnymi w węzłach.

Wypisując warunki (Wzory 4.1-4.4) dla każdego z (n-2) punktów wewnętrznych i dodając warunki brzegowe jesteśmy w stanie stworzyć układ, rozwiązać go i otrzymać składowe wielomiany. Uzyskany układ byłby bardzo czasochłonny dla dużej ilości danych, dlatego użyję metody doprowadzenia do łatwiejszego układu rozpisanej poniżej.

Chcemy wielomiany $s_i(x)$ interpolujące 3-go stopnia na każdym przedziale $[x_i, x_{i+1}]$, więc ich 2-gie pochodne $s''_i(x)$ będą liniowe, a dzięki Wzorowi 2 wiemy jak je otrzymać:

$$s''_{i}(x) = s''_{i}(x_{i}) \frac{x_{i+1} - x}{h_{i}} + s''_{i}(x_{i+1}) \frac{x_{i} - x_{i}}{h_{i}}$$

Wzór 5

dla n węzłów $\boldsymbol{x}_i, i \in [1, \ n]$, przy $\ \boldsymbol{h}_i = \boldsymbol{x}_{i+1} - \boldsymbol{x}_i$.

Aby otrzymać szukany wielomian $S_{i}(x)$ całkujemy podwójnie Wzór 5 otrzymując Wzór 6,

$$s_{i}(x) = \frac{s_{i}(x_{i})}{6h_{i}}(x_{i+1} - x)^{3} + \frac{s_{i}(x_{i+1})}{6h_{i}}(x - x_{i})^{3} + C(x - x_{i}) + D(x_{i+1} - x)$$

$$Wzór 6$$

gdzie C i D to stałe całkowania. Korzystając z 1 warunku interpolacji - Wzoru 4.1 - wiemy że:

$$s_i^{}(x_i^{}) = f(x_i^{}) = y_i^{}$$
 oraz $s_i^{}(x_{i+1}^{}) = f(x_{i+1}^{}) = y_{i+1}^{}$
Wzór 7.1 Wzór 7.2

 $\operatorname{gdzie} \boldsymbol{y}_{_{l}} \text{ to wartość funkcji w punkcie } \boldsymbol{x}_{_{l}}.$

Po podstawieniu x_i za x otrzymujemy równanie $y_i = \frac{s''_i(x_i)}{6h_i}(h_i)^3 + D(h_i)$ (Wzór 8.1)

a przy podstawieniu
$$x_{i+1}$$
 za x dostajemy $y_{i+1} = \frac{s''_i(x_{i+1})}{6h_i}(h_i)^3 + C(h_i)$ (Wzór 8.2)

Wzory 8.1 i 8.2 pozwalają nam wyznaczyć
$$C=\frac{y_i}{h_i}-\frac{s"_i(x_i)h_i}{6}$$
 i $D=\frac{y_{i+1}}{h_i}-\frac{s"_i(x_{i+1})h_i}{6}$. Wzór 9.1 Wzór 9.2

Wzory 9.1 i 9.2 podstawione do Wzoru 6 dają nam Wzór 10:

$$s_{i}(x) = \frac{s_{i}^{"}(x_{i})}{6h_{i}} (x_{i+1} - x)^{3} + \frac{s_{i}^{"}(x_{i+1})}{6h_{i}} (x - x_{i})^{3} + (\frac{y_{i}}{h_{i}} - \frac{s_{i}^{"}(x_{i})h_{i}}{6})(x - x_{i})$$

$$+ (\frac{y_{i+1}}{h_{i}} - \frac{s_{i}^{"}(x_{i+1})h_{i}}{6})(x_{i+1} - x) \qquad (Wz\'or 10)$$

Jedynymi niewiadomymi we Wzorze 10 są wartości drugiej pochodnej w węzłach. Różniczkujemy Wzór 10 po zmiennej x otrzymując Wzór 11:

$$s'_{i}(x) = -\frac{s''_{i}(x_{i})}{3}h_{i} - \frac{s''_{i}(x_{i+1})}{6}h_{i} - \frac{y_{i}}{h_{i}} + \frac{y_{i+1}}{h_{i}}$$
 (Wzór 11)

Po wprowadzeniu symboli 1 i 2 dla większej przejrzystości, otrzymujemy postać Wzoru 12, przy założeniu, że wartości pochodnych w symbolu σ_i odnoszą się do tej samej funkcji wielomianu, w której wzorze zostają użyte.

$$\sigma_i = \frac{s''(x_i)}{6} \quad \text{(Symbol 1)} \quad \text{oraz} \quad \Delta_i = \frac{y_{i+1} - y_i}{h_i} \quad \text{(Symbol 2)}$$

$$s'_i(x) = \Delta_i - h_i(2\sigma_i + \sigma_{i+1}) \quad \text{(Wz\'or 12)}$$

Po dodatkowym wyznaczeniu wzoru dla $s'_{i-1}(x)$ (Wzór 13) oraz zastosowaniu 3 warunku interpolacji (Wzór 4.3) dochodzimy do kluczowego równania (Wzór 14)

$$\begin{split} s'_{i-1}(x) &= \Delta_{i-1} + h_{i-1}(2\sigma_i + \sigma_{i-1}) & \text{(Wz\'or 13)} \\ \\ \Delta_{i-1} + h_{i-1}(2\sigma_i + \sigma_{i-1}) &= \Delta_i - h_i(2\sigma_i + \sigma_{i+1}) & \text{(Wz\'or 14)} \end{split}$$

W tym momencie dochodzimy do sytuacji w której możemy utworzyć układ n-2 równań analogicznych do Wzoru 15 (mamy n-2 punktów "wewnętrznych" na których możemy zrobić takie równania) i mamy n niewiadomych (σ_i , $i \in \{1, 2, 3 n\}$), dlatego potrzebujemy dodać 2 **warunki brzegowe** żeby móc znaleźć niewiadome (potrzebujemy przynajmniej n równań niezależnych dla n niewiadomych), dlatego dokończenie liczenia tej funkcji w części 3. Warunki Brzegowe

$$h_{i-1}\sigma_{i-1} + (h_{i-1} + h_i)2\sigma_i + h_i\sigma_{i+1} = \Delta_i - \Delta_{i-1} \qquad , \ i \in \{2,\ 2,\ 3\\ n-1\}$$
 (Wzór 15)

2.3 Interpolacja kwadratowa

Analogicznie do interpolacji sześciennej (Wzór 3), funkcje składowe 2-go stopnia $s_i(x)$ dla każdego przedziału $\left[x_i, x_{i+1}\right]$, $i \in \{1, 2, 3 n\}$ jesteśmy w stanie zapisać Wzorem 16:

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2$$
 (Wzór 16)

Analogicznie do warunków obowiązujących przy interpolacji funkcjami 3-go stopnia (Wzory 4.1-4.4), funkcje składowe 2-go stopnia muszą spełniać następujące 3 warunki (Wzory 17.1-17.3):

$$s_i(x_{i+1}) = f(x_{i+1})$$
 , $i \in \{1, 2, 3 \dots n-1\}$ (Wzór 17.1)

$$s_{i}(x_{i+1}) = s_{i+1}(x_{i+1})$$
 , $i \in \{1, 2, 3 \dots n-2\}$ (Wzór 17.2)

$$s'_{i}(x_{i+1}) = s'_{i+1}(x_{i+1})$$
, $i \in \{1, 2, 3 \dots n-2\}$ (Wzór 17.3)

Korzystając ze wzorów 17.1 i 7.1 oraz podstawiając x_i za x_i do Wzoru 16 dostajemy równość:

$$a_i = y_i$$
 (Wzór 18)

Czyli wyraz wolny każdego z wielomianów składowych jest równy wartości funkcji dla węzła rozpoczynającego przedział na którym będzie sklejona. Korzystając z 3 warunku (Wzór 17.3) otrzymujemy Wzór 19:

Korzystając ze wzorów 17.1 i 17.2 a następnie podstawiając Wzór 19 za $\,c_{_i}\,$ otrzymujemy Wzór 20:

$$y_{i+1} = y_i + b_i(x - x_i) + c_i(x - x_i)^2 \Rightarrow$$

$$b_i + b_{i+1} = 2\frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$
(Wzór 20)

Dochodzimy do momen, że znamy a_i , b_i możemy wyznaczyć z układu równań, a c_i otrzymamy znając b_i i b_{i+1} . Musimy więc zacząć od wyznaczenia wartości b_i dla każdego przedziału. Jedyny problem to posiadanie tylko n-1 równań dla n niewiadomych, ale przy dołożeniu **warunku brzegowego** dla przedziału $\begin{bmatrix} x_{n-1} \\ x_n \end{bmatrix}$ możemy za pomocą wzoru iteracyjnego obliczyć wartości wszystkich współczynników b. Dokończenie liczenia tej funkcji w części **3. Warunki Brzegowe**

3. Warunki brzegowe

Warunki brzegowe wykorzystujemy ponieważ potrzebujemy wartości σ_1 i σ_n przy funkcji 3-go stopnia oraz wartości b_n przy funkcji 2-go stopnia.

3.1 Natural spline

Warunek Natural spline przyjmuje postać Wzoru 21.1 dla funkcji 3-go stopnia a Wzoru 21.2 dla 2-go stopnia,

$$s''(x_1) = s''(x_n) = 0$$
 $s'(x_n) = 0$ (Wzór 21.2)

dzięki którym dowiadujemy się że $\boldsymbol{\sigma}_1 = \boldsymbol{\sigma}_n = \boldsymbol{b}_n = \, \boldsymbol{0} \,$, co prowadzi do sposobów rozwiązań:

3.1.1 Funkcja 3-go stopnia

Poniższy układ równań to zapisany za pomocą macierzy Wzór 22, czyli Wzór 15 dla wszystkich możliwych i, to znaczy dla $i \in \{2, 2, 3 n-1\}$ wraz ze zdefiniowanymi za pomocą warunków brzegowych wartościami dla $i \in \{1, n\}$. Ponieważ mamy n niewiadomych σ oraz n równań niezależnych, możemy rozwiązać ten układ otrzymując wartości każdej σ , a pamiętając sposób otrzymania σ (Symbol 1) również wartości każdej s" (x_i) niezbędne do otrzymania wzoru na wielomian (Wzór 10).

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ h_1 & 2(h_1 + h_2) & h_2 & 0 & 0 & 0 \\ 0 & h_2 & 2(h_2 + h_3) & h_3 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \vdots \\ \sigma_{n-1} \\ \sigma_n \end{bmatrix} = \begin{bmatrix} 0 \\ \Delta_2 - \Delta_1 \\ \Delta_3 - \Delta_2 \\ \vdots \\ \Delta_{n-1} - \Delta_{n-2} \\ 0 \end{bmatrix}$$

(Wzór 22)

3.1.2 Funkcja 2-go stopnia

Mając Wzór 21.2 możemy bardzo łatwo wyznaczyć szukane b_n , wystarczy różniczkować obustronnie Wzór 16 a następnie podstawić x_n za x:

$$s'(x_n) = b_n + c_n(x_n - x_n) \Rightarrow b_n = 0$$
 (Wzór 23)

Poniższy wzór iteracyjny (Wzór 24), to Wzór 20 dla wszystkich możliwych i, to znaczy dla $i \in \{1, 2, 2, 3 \dots n-1\}$ wraz ze zdefiniowaną za pomocą warunku brzegowego i jego zastosowaniem (Wzory 21.2 i 23) wartością dla i=n. Ponieważ mamy końcową wartość, możemy po kolei otrzymać każdą poprzednią aż do b_1 , z kolei mając wartości b_i wyznaczyć c_i dla $i \in \{1, 2, 2, 3 \dots n-1\}$ ze Wzoru 19. Znając wartości a_i (Wzór 18), b_i i c_i (Wzór 23) znamy wzór na wielomian $s_i(x)$ dla każdego z przedziałów.

$$b_i + b_{i+1} = 2 \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$
 $i \in \{1, 2, 2, 3 \dots n - 1\}, b_n = 0$
(Wzór 24)

3.2 Clamped spline

Warunek Clamped spline przyjmuje postać Wzorów 25.1 i 25.2 dla funkcji 3-go stopnia a dla 2-go stopnia wykorzystujemy tylko Wzór 25.2;

$$s'(x_1) = f'(x_1)$$
 $s'(x_n) = f'(x_n)$ (Wzór 25.1) (Wzór 25.2)

3.2.1 Funkcja 3-go stopnia

Do wyznaczenia funkcji 3-go stopnia potrzebujemy wartości drugich pochodnych, tymczasem we Wzorach 25.1 i 25.2 mamy wartości 1 pochodnej. Wyznaczamy więc wartości drugich pochodnych za pomocą ilorazów różnicowych (Wzory 26.1 i 26.2):

$$s''(x_1) = \frac{f'(x_2) - f'(x_1)}{x_2 - x_1} \qquad s''(x_n) = \frac{f'(x_n) - f'(x_{n-1})}{x_n - x_{n-1}}$$
(Wzór 26.1) (Wzór 26.2)

Korzystając z wzoru na Symbol 1 możemy wyznaczyć Wzory 27.1 i 27.2:

$$\sigma_{1} = \frac{f'(x_{2}) - f'(x_{1})}{6(x_{2} - x_{1})} \qquad \sigma_{n} = \frac{f'(x_{n}) - f'(x_{n-1})}{6(x_{n} - x_{n-1})}$$
(Wzór 27.1) (Wzór 27.2)

Poniższy układ równań to zapisany za pomocą macierzy Wzór 28, czyli Wzór 15 dla wszystkich możliwych i, to znaczy dla $i \in \{2, 2, 3 n-1\}$ wraz ze zdefiniowanymi za pomocą warunków brzegowych wartościami dla $i \in \{1, n\}$. Ponieważ mamy n niewiadomych σ oraz n równań niezależnych, możemy rozwiązać ten układ otrzymując wartości każdej σ , a pamiętając sposób otrzymania σ (Symbol 1) również wartości każdej $s''(x_i)$ niezbędne do otrzymania wzoru na wielomian (Wzór 10).

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ h_1 & 2(h_1 + h_2) & h_2 & 0 & 0 \\ 0 & h_2 & 2(h_2 + h_3) & h_3 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \vdots \\ \sigma_{n-1} \\ \sigma_n \end{bmatrix} = \begin{bmatrix} \frac{f(x_2) - f(x_1)}{6(x_2 - x_1)} \\ \Delta_2 - \Delta_1 \\ \Delta_3 - \Delta_2 \\ \vdots \\ \Delta_{n-1} - \Delta_{n-2} \\ \frac{f(x_n) - f(x_{n-2})}{6(x_n - x_{n-1})} \end{bmatrix}$$

(Wzór 28)

3.2.2 Funkcja 2-go stopnia

Mając Wzór 25.2 możemy bardzo łatwo wyznaczyć szukane b_n , wystarczy różniczkować obustronnie Wzór 16 a następnie podstawić x_n za x:

$$f'(x_n) = s'(x_n) = b_n + c_n(x_n - x_n) \Rightarrow b_n = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$
 (Wzór 29)

Poniższy wzór iteracyjny (Wzór 30), to Wzór 20 dla wszystkich możliwych i, to znaczy dla $i \in \{1, 2, 2, 3 \dots n-1\}$ wraz ze zdefiniowaną za pomocą warunku brzegowego i jego przekształcenia (Wzory 25.2 i 29) wartością dla i=n. Ponieważ mamy końcową wartość b_n , możemy po kolei otrzymać każdą poprzednią aż do b_1 , z kolei mając wartości b_i wyznaczyć c_i dla $i \in \{1, 2, 2, 3 \dots n-1\}$ ze Wzoru 19. Znając wartości a_i (Wzór 18), b_i i c_i (Wzór 29) znamy wzór na wielomian $s_i(x)$ dla każdego z przedziałów.

$$b_{i} + b_{i+1} = 2 \frac{y_{i+1} - y_{i}}{x_{i+1} - x_{i}} \quad i \in \{1, 2, 2, 3 \dots n - 1\}, \quad b_{n} = \frac{f(x_{n}) - f(x_{n-1})}{x_{n} - x_{n-1}}$$

$$(Wz \acute{o}r 30)$$

4. Analiza błędów oraz wykresów

Liczba węzłów	3 stopień natural	3 stopień clamped	2 stopień natural	2 stopień clamped
5	80.285	147.017	94.918	139.994
6	68.213	271.993	84.8968	67.644
7	71.886	318.508	103.120	114.915
8	79.691	223.581	78.831	81.476
9	80.118	83.909	89.867	84.333
10	79.842	80.341	88.699	81.610
12	78.098	77.982	87.990	92.221
14	68.889	68.901	109.321	116.706
16	50.090	50.090	227.558	220.619
18	30.789	30.789	173.421	167.808
20	23.520	19.136	50.351	54.667
25	13.941	9.985	13.288	15.453
30	8.473	5.923	6.487	7.612
40	4.043	3.026	3.016	3.378
50	2.327	1.877	1.957	2.098
60	1.573	1.344	1.512	1.575
80	0.773	0.703	1.051	1.067
100	0.518	0.487	0.816	0.821
120	0.360	0.345	0.672	0.674
150	0.213	0.207	0.533	0.533
200	0.085	0.084	0.397	0.397

(Tabela 1)

Błędy przedstawione w Tabeli 1 to błędy maksymalne - wartości bezwzględne różnic pomiędzy wartościami funkcji interpolowanej a wartościami wyliczonymi na bazie wielomianów interpolujących dla 300 równomiernie rozłożonych punktów na dziedzinie.

Analizując Tabelę 1 oraz odrzucając odstające przypadki możemy zauważyć, że warunek natural spline powoduje delikatnie mniejsze błędy dla funkcji 2-go stopnia niż warunek clamped spline (szczególnie widoczne na Wykresie 4, różnice na Wykresie są zbyt małe by zauważyć), ale dla funkcji 3-go stopnia dzieje się dokładnie odwrotnie - to clamped spline przybliża dokładniej (widać delikatną różnicę na Wykresie 2, szczególnie w skrajnych przedziałach, na wykresie 3 obie funkcje już dość dokładnie przybliżają funkcję interpolowaną).

Porównując interpolację funkcjami 2-go i 3-go stopnia dla tych samych warunków brzegowych widzimy, że dla prawie wszystkich ilości węzłów w przypadku warunku natural spline (Wykresy 6 i 7) i dla wszystkich przy warunku clamped spline (Wykresy 8 i 9), funkcja interpolująca 3-go stopnia przybliża trafniej (szczególnie widoczne przy mniejszej liczbie węzłów - na wykresach 6 i 8).

5. Wnioski:

W wyniku przeprowadzonych doświadczeń, interpolacja funkcjami sklejanymi 3-go stopnia jest dokładniejsza, niż funkcjami 2-go stopnia. Wynik zależy jednak nie tylko od wybranego stopnia wielomianów, lecz również od koniecznych warunków brzegowych (1 w przypadku funkcji 2-go stopnia, 2 w przypadku funkcji 3-go stopnia). Podczas tego eksperymentu zbadane zostały warunki Natural Spline oraz Clamped Spline, lecz nie można wybrać spośród nich jednego dokładniejszego - Natural Spline działa lepiej w przypadku funkcji 2-go stopnia, natomiast Clamped Spline sprawdza się lepiej przy funkcjach 3-go stopnia. Zgodnie z oczekiwaniami, błąd interpolacji zmniejsza się razem ze zwiększaniem liczby węzłów.

Bibliografia: sprawozdanie powstało na bazie slajdów wykładu z przedmiotu MOWNiT oraz doświadczeń własnych wykonanych w programie Pycharm z użyciem języka Python.