Spider: High-Efficiency Cryptocurrency Routing for Payment Channel Networks

Vibhaalakshmi Sivaraman¹, Shaileshh Bojja Venkatakrishnan¹, Kathleen Ruan², Lei Yang¹, Parimarjan Negi¹, Radhika Mittal^{1,3}, Mohammad Alizadeh¹, Giulia Fanti², Pramod Viswanath³

spider.network@mit.edu

'MIT CSAIL

 ^{2}CMU

3UIUC

Motivation

- Blockchains are not scalable.
 - slow confirmation times, high transaction costs.
- Leading solution: Payment channel networks (PCNs)
 - speed up transactions by reducing use of blockchain.
- Inefficient transaction routing in PCNs degrades transaction throughput and latency.

Goal: Routing for high transaction throughput on PCNs with small network capital.

Routing in Payment Channel Networks

State of the art: atomic shortest path routing

Problems:

- Cannot route large payments.
- Causes channel imbalance.

Spider:

- Packetized payments: Split payments into "transaction units" that are routed independently on multiple paths over time.
- Balance aware-routing: Route based on real time channel balance information.

a multi-path transport protocol.

Senders: Pick rates to send on K candidate paths based on network feedback.

Example topology:

Entire demand can be satisfied indefinitely by alternating between the shorter and longer paths.

Spider Design Router: **Congestion Price** q_u

Imbalance prices

Transaction Queue

Funds needed from v->u Funds needed from v->u Δ = Transaction confirmation delay

End-Host:

Arrival Rate

Transaction Queue

Periodic probes to compute path price for candidate K paths.

