MATH 216A HOMEWORK 4

ARPON RAKSIT

original: October 20, 2016 updated: October 26, 2016

§1 Varieties and schemes

NOTATION — Let k be a field.

I.I LEMMA — Let A a finite k-algebra which is a domain. Then A is a field.

PROOF — For any nonzero $x \in A$, multiplication by x is an injective k-linear map m_x : $A \longrightarrow A$, since A is a domain. Since A is finite over k, m_x is also surjective by rank-nullity. Thus x must be a unit.

I.2 LEMMA — Let X be a scheme locally of finite type over k. Then $x \in X$ is a closed point if and only if the the field extension $k \to \kappa(x)$ to its residue field is finite.

PROOF — (\Rightarrow) Suppose given a closed point $x \in X$. Passing to an affine open, we may assume X is an affine scheme Spec A, where A is of finite type over k. Then x is a maximal ideal \mathfrak{m} in A, with $\kappa(x) \simeq A/\mathfrak{m}$; so $\kappa(x)$ is finite type over k, hence by the Nullstellensatz is finite over k.

- (\Leftarrow) Suppose given a point $x \in X$ with $\kappa(x)$ finite over k. Recall that to show a subset $Z \subseteq X$ is closed it suffices to give an open cover $\{U_i\}$ of X such that $Z \cap U_i$ is closed in U_i for each i. Thus to show x is a closed point, it suffices to show that x is closed in any affine open of X containing x. So we may again assume $X \simeq \operatorname{Spec} A$ with A of finite type over k. Then x is a prime ideal $\mathfrak p$ in A, with $\kappa(x) \simeq \operatorname{Frac}(A/\mathfrak p)$ finite over k. It follows that $A/\mathfrak p$ is finite over k, and hence by $(\mathbf I.\mathbf I)$ that $A/\mathfrak p$ is a field. I.e. $\mathfrak p$ is maximal, so x is closed.
- 1.3 Let X be a scheme locally of finite type over k. Let $T(X) \subseteq X$ be the subset of closed points. Put T(X) in the subspace topology, let $i: T(X) \hookrightarrow X$ denote the inclusion, and let $\mathcal{O}_{T(X)} := i^{-1}(\mathcal{O}_X)$.
- I.3.I LEMMA Let $j: Y \hookrightarrow X$ be an open or closed immersion. Then $T(Y) = j^{-1}(T(X))$.

PROOF — This is immediate from (1.2), since passing to an open or closed subscheme does not affect residue fields.

1.3.2 LEMMA — T(X) is dense in X.

PROOF — We need to show any any nonempty open subset $U \subseteq X$ contains a closed point. By (I.3.I) we may pass to an nonempty open affine contained in U, hence assume U = X is an affine scheme. But then we're done, since any affine scheme has a closed point.

1.3.3	PROPOSITION — The map i^{-1} : Opens (X) — Opens $(T(X))$ pulling back open sets from X to $T(X)$ is a bijection.
	PROOF — It's equivalent to show that i^{-1} : Closeds $(X) \to \text{Closeds}(T(X))$, pullback of closed sets, is bijective. We claim that the map $\text{Closeds}(T(X)) \to \text{Closeds}(X)$ given by taking the closure inside X is a two-sided inverse.
	If $Y \subseteq X$ is closed, then we may put a closed subscheme structure on Y such that it is still locally of finite type over k . By (1.3.1) we have $T(Y) = T(X) \cap Y$, and by (1.3.2) this is dense in Y . Thus $\overline{i^{-1}(Y)} = Y$.
	Conversely, that $i^{-1}(\overline{Z})$ for closed subsets $Z \subseteq T(X)$ is evident, since taking closure commutes with restricting to subspaces. (Alternatively one could note that i^{-1} is obviously surjective by definition of the subspace topology.)
1.3.4	PROPOSITION — Let A be a k -algebra of finite type and $X := \operatorname{Spec} A$. Then $(T(X), \mathcal{O}_{T(X)})$ is isomorphic to MaxSpec A (as a ringed space).
	PROOF — By definition we see that $T(X)$ is homeomorphic to the space of maximal ideals in A in the Zariski topology. And by (1.3.3) we see that on the basic opens $D(f)$ of $T(X)$ for $f \in A$ the sheaf $\mathcal{O}_{T(X)}$ is given exactly as \mathcal{O}_X is. This is also exactly how we define the structure sheaf of MaxSpec A , so we clearly have an isomorphism. \Box
1.3.5	Proposition — Suppose X is moreover reduced. Then $(T(X), \mathcal{O}_{T(X)})$ is an abstract algebraic set.
	PROOF — If $U \subseteq X$ is an open subset then by $(\mathbf{I.3.I})$ we have $T(X) \cap U = T(U)$, and since the two composite inclusions $T(U) \longrightarrow T(X) \longrightarrow X$ and $T(U) \longrightarrow U \longrightarrow X$ are equal, we must have $\mathcal{O}_{T(X)} _{T(U)} \simeq \mathcal{O}_{T(U)}$. Since the question is local on X we are reduced to the case that X is an affine scheme Spec A with A reduced and finite type over k . But then we're done by $(\mathbf{I.3.4})$.
1.4	Lemma — Let $\phi: A \longrightarrow B$ be a map of k -algebras, with B finite type. Let \mathfrak{m} be a maximal ideal of B . Then $\phi^{-1}(\mathfrak{m})$ is a maximal ideal of A .
	PROOF — Consider the induced injection $A/\phi^{-1}(\mathfrak{m}) \hookrightarrow B/\mathfrak{m}$. We know $\phi^{-1}(\mathfrak{m})$ is a prime, so the source is a domain. The target is a field, and finite type over k , so finite over k by the Nullstelensatz. Thus the source is also finite over k , so by (I.I) it is a field, i.e. $\phi^{-1}(\mathfrak{m})$ is maximal.
1.5	LEMMA — Let A be a k -algebra of finite type. Then A is Jacobson, i.e. for any prime ideal $\mathfrak p$ of A , we have $\mathfrak p = \bigcap_{\mathfrak m\supseteq \mathfrak p} \mathfrak m$, where the intersection is over all maximal ideals $\mathfrak m$ in A containing $\mathfrak p$.
	PROOF — Passing to A/\mathfrak{p} , we may reduce to the case $\mathfrak{p}=0$. I.e. A is a domain and we need to show that given any nonzero $f\in A$, there is some maximal ideal \mathfrak{m} in A such that $f\notin \mathfrak{m}$. Since A is a domain and $f\neq 0$, the localization A_f is nonzero, hence contains a maximal ideal \mathfrak{m}' . The localization $A_f\simeq A[t]/(1-ft)$ is still finite type over k , so by (1.4) the preimage \mathfrak{m} of \mathfrak{m}' in the localization $A\to A_f$ is maximal. And clearly \mathfrak{m} does not contain f .

