GPTIPS pareto front report

02-May-2019 17:38:24

Config file: Y11_config.m

Number of models on front: 9

Total models: 100

This report shows the expressional complexity/performance characteristics (on training data) of symbolic models on the pareto front.

Numerical precision is reduced for display purposes.

Click on column headers to sort models by expressional complexity and goodness of fit (R²).

Model ID	Goodness of fit (R ²)	Model complexity	Model
13	0.958	222	$\begin{array}{c} 0.32\ x_1 - 0.0336\ x_2 - 0.865\ x_3 - 0.412\ x_4 + 0.0426\ x_5 - 1.44e-5\ x_1\ (x_2 + x_3) + 0.0331\ x_4\ (x_2 + x_3) - 0.017\ (x_1 - 1.0\ x_3)\ (x_3 - 1.0\ x_4) - 0.0662\ x_3\ (x_1 - 1.0\ x_5) - 0.0241\ x_2\ x_4 - 0.0451\ x_3\ x_5 - 2.99e-5\ x_4\ (x_2 + x_3)\ (2.0\ x_1 + x_2) - 1.44e-5\ x_1\ x_2\ x_4^2 - 4.15e-5\ x_2\ x_4\ (x_3 + x_5) + 2.42 \end{array}$
15	0.871	138	$\begin{array}{l} 0.00463\ x_2 - 0.0012\ x_1 + 0.0123\ x_3 + 0.0629\ x_4 + 0.0752\ x_5 \\ - 1.4\text{e}5\ x_1\ (x_2 + x_3) + 0.00583\ (x_1 - 1.0\ x_3)\ (x_3 - 1.0\ x_4) - \\ 1.4\text{e}5\ x_1\ x_2\ x_4^2 - 2.49 \end{array}$
24	0.954	208	$\begin{array}{l} 0.152\ x_1 - 0.0258\ x_2 - 0.691\ x_3 - 0.364\ x_4 + 0.024\ x_5 - 9.13e-6\ x_1\ (x_2 + x_3) + 0.0106\ x_4\ (x_2 + x_3) + 0.00386\ (x_1 - 1.0\ x_3)\ (x_3 - 1.0\ x_4) - 0.0212\ x_3\ (x_1 - 1.0\ x_5) - 0.00209\ x_2\ x_4 - 3.32e-5\ x_4\ (x_2 + x_3)\ (2.0\ x_1 + x_2) - 9.13e-6\ x_1\ x_2\ x_4^2 - 2.87e-5\ x_4\ (x_2 + x_3)\ (x_3 + x_5) + 1.89 \end{array}$
48	0.958	228	$\begin{array}{l} 0.32\ x_1 - 0.0336\ x_2 - 0.865\ x_3 - 0.412\ x_4 + 0.0426\ x_5 - 1.44e-5\ x_1\ (x_2 + x_3) + 0.0331\ x_4\ (x_2 + x_3) - 0.017\ (x_1 - 1.0\ x_3)\ (x_3 - 1.0\ x_4) - 0.0662\ x_3\ (x_1 - 1.0\ x_5) - 0.0241\ x_2\ x_4 - 0.0451\ x_3\ x_5 - 2.99e-5\ x_4\ (x_2 + x_3)\ (2.0\ x_1 + x_2) - 1.44e-5\ x_1\ x_2\ x_4^2 - 4.15e-5\ x_2\ x_4\ (x_3 + x_5) + 2.42 \end{array}$
49	0.958	218	$\begin{array}{c} 0.32\ x_1 - 0.0336\ x_2 - 0.865\ x_3 - 0.412\ x_4 + 0.0426\ x_5 - 1.44e-5\ x_1\ (x_2 + x_3) + 0.0331\ x_4\ (x_2 + x_3) - 0.017\ (x_1 - 1.0\ x_3)\ (x_3 - 1.0\ x_4) - 0.0662\ x_3\ (x_1 - 1.0\ x_5) - 0.0241\ x_2\ x_4 - 0.0451\ x_3\ x_5 - 2.99e-5\ x_4\ (x_2 + x_3)\ (2.0\ x_1 + x_2) - 1.44e-5\ x_1\ x_2\ x_4^2 - 4.15e-5\ x_2\ x_4\ (x_3 + x_5) + 2.42 \end{array}$
53	0.958	214	$\begin{array}{c} 0.32\ x_1 - 0.0336\ x_2 - 0.865\ x_3 - 0.412\ x_4 + 0.0426\ x_5 - 1.44e-5\ x_1\ (x_2 + x_3) - 0.017\ (x_1 - 1.0\ x_3)\ (x_3 - 1.0\ x_4) - 0.0662\ x_3\ (x_1 - 1.0\ x_5) + 0.00897\ x_2\ x_4 + 0.0331\ x_3\ x_4 - 0.0451\ x_3\ x_5 - 2.99e-5\ x_4\ (x_2 + x_3)\ (2.0\ x_1 + x_2) - 1.44e-5\ x_1\ x_2\ x_4^2 - 4.15e-5\ x_2\ x_4\ (x_3 + x_5) + 2.42 \end{array}$
66	0.925	154	$\begin{array}{c} 0.0195\ x_5 - 0.0164\ x_2 - 0.553\ x_3 - 0.108\ x_4 - 0.00895\ x_1 - \\ 7.53e-6\ x_1\ x_2 - 0.0268\ x_1\ x_3 + 0.00117\ x_2\ x_4 + 0.0134\ x_3\ x_4 + \\ 0.0137\ x_3\ x_5 - 7.53e-6\ x_1\ x_2\ x_4^2 + 1.98 \end{array}$
69	0.958	252	$\begin{array}{c} 0.352\ x_1 - 0.0333\ x_2 - 0.899\ x_3 - 0.41\ x_4 + 0.036\ x_5 - 1.48e-5 \\ x_1\ (x_2 + x_3) + 0.0352\ x_4\ (x_2 + x_3) - 0.0176\ (x_1 - 1.0\ x_3)\ (x_3 - 1.0\ x_4) - 0.0703\ x_3\ (x_1 - 1.0\ x_5) - 0.0263\ x_2\ x_4 - 0.0482\ x_3\ x_5 - 2.98e-5\ x_4\ (x_2 + x_3)\ (2.0\ x_1 + x_2) - 1.48e-5\ x_1\ x_2\ x_4^2 - 3.86e-5 \\ x_4\ (x_2 + x_3)\ (x_3 + x_5) + 2.58 \end{array}$
72	0.958	230	$\begin{array}{c} 0.352\ x_1 - 0.0333\ x_2 - 0.899\ x_3 - 0.41\ x_4 + 0.036\ x_5 - 1.48e-5 \\ x_1\ (x_2 + x_3) + 0.0352\ x_4\ (x_2 + x_3) - 0.0176\ (x_1 - 1.0\ x_3)\ (x_3 - 1.0\ x_4) - 0.0703\ x_3\ (x_1 - 1.0\ x_5) - 0.0263\ x_2\ x_4 - 0.0482\ x_3\ x_5 - 2.98e-5\ x_4\ (x_2 + x_3)\ (2.0\ x_1 + x_2) - 1.48e-5\ x_1\ x_2\ x_4^2 - 3.86e-5 \\ x_4\ (x_2 + x_3)\ (x_3 + x_5) + 2.58 \end{array}$

GPTIPS - the symbolic data mining platform for MATLAB

© Dominic Searson 2009-2015