Guilherme Rafael Soares	
Luteria Composicional de algoritmos pós-ton	ais
14 de março de 2014, v0.3beta	

Guilherme Rafael Soares

Luteria Composicional de algoritmos pós-tonais

Prévia da dissertação para a banca de qualificação para o Mestrado em Arte, Cultura e Linguagens do IAD-UFJF.

UFJF - Universidade Federal de Juiz de Fora Instituto de Artes e Design Programa de Pós-Graduação em Artes, Cultura e Linguagens

Orientador: Prof. Dr. Daniel Quaranta

14 de março de 2014, v0.3beta

Guilherme Rafael Soares

Luteria Composicional de algoritmos pós-tonais / Guilherme Rafael Soares. – , 14 de março de 2014, v
0.3 beta-

75 p. : il. (algumas color.) ; 30 cm.

Orientador: Prof. Dr. Daniel Quaranta

Tese (Mestrado) – UFJF - Universidade Federal de Juiz de Fora Instituto de Artes e Design

 Programa de Pós-Graduação em Artes, Cultura e Linguagens, 14 de março de 2014, v
0.3 beta.

1. Palavra-chave
1. 2. Palavra-chave
2. I. Orientador: Prof. Dr. Daniel Quaranta II. UFJF - Universidade Federal de Juiz de Fora. III. Instituto de Artes e Design IV. Luteria Composicional de algoritmos pós-tonais

 $CDU\ 02{:}141{:}005.7$

Guilherme Rafael Soares

Luteria Composicional de algoritmos pós-tonais

Prévia da dissertação para a banca de qualificação para o Mestrado em Arte, Cultura e Linguagens do IAD-UFJF.

Trabalho aprovado , 05 de março de 2014:

Prof. Dr. Daniel Quaranta Orientador

> **Professor** Convidado 1

Professor Convidado 2

14 de março de 2014, v
0.3
beta

Resumo

Esta pesquisa visa problematizar e sistematizar um catálogo de experimentos constituído de pequenas peças musicais e seus algoritmos geradores, objetivando a construção de uma biblioteca de objetos para composição assistida por computador que gere partituras baseadas em pequenas regras extraídas de análises.

Os procedimentos utilizados são derivados de aspectos intervalares singulares encontrados em algumas peças da suíte Mikrokosmos do compositor Béla Bartók. Este repertório foi escolhido devido a seu reconhecido contexto como composições pianísticas e pedagógicas situadas nas fronteiras da pós-tonalidade.

Formalizamos tais aspectos através de um estudo comparado de dois paradigmas de análise musical aplicáveis a estas peças: "A Teoria Gerativa da Música Tonal" (LERDAHL; JACKENDOFF, 1983) com algumas de suas continuidades propostas (LERDAHL, 2009; TEMPERLEY, 2004) e a teoria dos conjuntos e classes de alturas cromáticas. (FORTE, 1973; STRAUS, 2004)

Apontamos as limitações encontradas na aplicação dos paradigmas analíticos adotados aqui no contexto da suíte de peças escolhidas.

Detalhamos questões computacionais para esta implementação e deixamos um legado de código aberto para continuidades possíveis deste trabalho.

Palavras-chaves: Música algorítmica. Pós-tonalismo. Teoria dos conjuntos. Pitch class theory. Luteria. Composição assistida por computador. Cibernética. Software livre. Cognição musical.

Lista de ilustrações

Figura 1 -	Fluxograma de Lerdahl (2009) para a GTTM
Figura 2 –	Agrupamento de motivos do início da sinfonia K550 de Mozart 27
Figura 3 -	Exemplos de agrupamentos "mal formados" de acordo com a regra
	GWFR5
Figura 4 -	Open Music 01
Figura 5 -	Elisao ou Contração
Figura 6 –	Formalização visual dos problemas de elisão e sobreposição de camadas
	na GTTM. (LERDAHL; JACKENDOFF, 1983, p.69) 30
Figura 7 –	Notação analítica proposta pela GTTM que marca uma hierarquia das
	batidas por subdivisões de pulsos
Figura 8 –	Espaço tonal diatônico proposto por Fred Lerdahl (1988), Lerdahl (1996) 34
Figura 9 –	Notação analítica proposta pela GTTM para a ramificação dos intervalos-
	temporais
Figura 10 –	Forças tonais nos prolongamentos revistas por Fred Lerdahl (1988) 35
Figura 11 –	Exemplo de aplicação da fórmula das distâncias
Figura 12 –	Aplicação da fórmula das distâncias para medida comparativa de forças
	numa condução de vozes
Figura 13 –	Ciclo de dominantes e subdominantes em modo circular
Figura 14 –	Linha enarmônica das quintas proposta por Temperley
Figura 15 –	Escala de Dó maior na linha enarmônica das quintas proposta por
	Temperley
	Escalas modais na linha enarmônica das quintas proposta por Temperley. 38
Figura 17 –	"Supermodo" combinando os modos da figura anterior na linha enarmô-
	nica das quintas proposta por Temperley
Figura 18 –	Perfis de tonalidade propostos por Carol Krumhansl (1990) - compara-
TI 10	tivo entre tonalidades próximas ou distantes
Figura 19 –	Perfis de tonalidade propostos por Carol Krumhansl (1990) - histograma
D: 00	demonstrado por Temperley (2004)
Figura 20 –	Perfis de tonalidade para Do maior e Do menor modificados por Tem-
D: 01	perley (2004)
Figura 21 –	Extensão das regras de GTTM na obra "Tonal Pitch Space" propostas
Figure 22	por Lerdahl (2009)
_	[0,2,4,10]
rigura 20 –	cluster de 4 alturas
Figura 24 =	Forma Normal

Figura 25 –	Fórmulas de agrupamento de classes de altura	50
Figura 26 –	Notas comuns na transposição	52
Figura 27 –	Notas comuns na transposição com trítono.	53
Figura 28 –	A simetria transpositiva é obtida através de um padrão de intervalos	
	palíndromo.	53
Figura 29 –	A forma circular é mais geral do que a numérica para a visualização do	
	padrão de simetrias	54
Figura 30 -	O complemento contém todas alturas cromáticas que o conjunto original	
	não possui.	55
Figura 31 -	Dois conjuntos Z-relacionados possuem os mesmos intervalos sem serem	
	inversões ou transposições um dos outros	55

Lista de abreviaturas e siglas

GTTM Generative Theory of Tonal $Music^1$

TPS Tonal Pitch Space

Teoria Gerativa da Música Tonal"(LERDAHL; JACKENDOFF, 1983)

Sumário

	Par	adign	nas para uma Análise Musical Pós-Tonal
	Forn	nalizaç	ão linguística de gramáticas musicais
	1.1		áticas Musicais Computáveis
•	Teo		gnitivistas para uma Segmentação Tonal
4	2.1	Grama	ática Gerativa da Música Tonal (GTTM)
		2.1.1	Regras de boa formatividade dos agrupamentos (GWFRs)
			2.1.1.1 Regras de preferência para agrupamentos (GPRs)
		2.1.2	Regras de boa-formação métrica (MWFRs)
			2.1.2.1 Regras de preferência Métrica (MPFRs)
4	2.2		entação temporal de eventos cadenciais e a redução prolongacional na
		GTTN	M
			2.2.0.2 Calculando a tensão e o Espaço das alturas tonais (TPS)
4	2.3	Cogni	ção das Estruturas Musicais Básicas (CBMS)
			2.3.0.3 Solfejo Enarmônico das Classes de Alturas Tonais
			2.3.0.4 Algoritmo dos Perfis de Tonalidade
	2.4		ções Cognitivas versus Segmentação Atonal
•	Teo		Grupos das Classes de Alturas para uma Segmentação Atonal .
•	3.1	Fórmu	ılas de agrupamento e transformação dos intervalos
		3.1.1	Vetor intervalar
		3.1.2	Forma Normal
		3.1.3	Forma Prima
		3.1.4	Singularidades nos agrupamentos
			3.1.4.1 Notas Comuns sob transposição
			3.1.4.2 Notas Comuns sob inversão
			3.1.4.3 Simetria Transpositiva
			3.1.4.4 Complemento
			3.1.4.5 Relação Z entre grupos de classes de alturas
		3.1.5	Arbitrariedade e indução na segmentação atonal

61

Apêndice	es	55
APÊNDIC	E A Repositório de Códigos	67
Α.	0.6 Biblioteca de Algoritmos	67
Anexos		59
ANEXO A	A Tabela de Pitch Class Set de Allen Forte	71
ANEXO E	3 Regras da Teoria Gerativa da Musica Tonal	75

Introdução

Desde o momento que o computador sai do estúdio experimental dos aparelhos caros e institucionais e possibilita o processamento de dados em tempo real em gadgets que cabem no nosso bolso (e cada vez mais até dentro dos nossos corpos) fala-se constantemente na possibilidade de interação com a transformação de dados audiovisuais por uma computabilidade da escritura composicional ou do gestual performático.

Em seu livro sobre mediação tecnológica contemporânea na composição Fernando Iazzetta (2009) fala sobre um tipo de luteria que surge do experimento de estúdio migrando para os computadores pessoais, onde a criação dos instrumentos (que na verdade são códigos, procedimentos computacionais, "patches") agora já faria parte do processo composicional:

"Mesmo porque, muitas vezes, o trabalho de composição se confunde com o trabalho de criação dos instrumentos que serão usados na composição. O conhecimento do funcionamento interno destes instrumentos e a possibilidade de correção e aperfeiçoamento constante assim como o acoplamento de novas interfaces ao sistema, confere ao compositor um domínio maior da execução da sua obra" (IAZZETTA, 2009, p. 209).

Por outro lado, o fechamento deste processo em "microteorias composicionais derivadas da circulação dos manuais de softwares musicais" (IAZZETTA, 2009, p. 152) não parecem serem suficientes para dar conta de uma série de procedimentos composicionais que existiam muito antes de serem pensados a priori já por dentro destes sistemas.

"Qualquer estrutura, gramática ou modelo pode, em princípio, ser transposto para o âmbito sonoro com a intenção de produzir música. Uma vez que nos sistemas computacionais todo e qualquer elemento é transcrito na forma de símbolos abstratos do mesmo tipo (em última instância, bits representados por 0 e 1), esse tipo de procedimento se torna tentador, mas também vulnerável.(...)Certamente estas transposições de um campo a outro não destroem a coerência interna dos fenômenos transpostos, mas de forma alguma asseguram a geração de uma coerência musical, pelo menos não no nível perceptivo. (...) O discurso enfatizando o caráter inovador que acompanha cada novo invento geralmente esconde o quanto nossos avanços representam uma consolidação de conhecimentos existentes, mais do que saltos progressivos". (IAZZETTA, 2009, p. 151-153, grifo nosso.)

Esta pesquisa propõe um recorte específico de alguns procedimentos composicionais emergentes na primeira metade do século XX que apesar de estarem no limite experimental do cromatismo e sua relação com centros de atração tonais ou modais ainda não experimentavam o deleite das possibilidades que o serialismo integral, a computer music e a música eletrônica aproveitaram na primeira geração de mainframes das universidades e grandes centros de pesquisa.

16 Introdução

Buscando uma amostra que desse conta de tais características ancoramos tal percurso em uma modesta visita a alguns aspectos algorítmicos do repertório pianístico e pedagógico de peças da suíte Mikrokosmos de Béla Bártok. Interessa a extração de algumas regras gerativas que possam ser aplicadas na construção de procedimentos computacionais que produzam composições derivadas destas fórmulas verificáveis.

Esta longe da ambição deste trabalho construir alguma tese inovadora sobre estas peças. Pelo contrário, partiremos de pistas já deixadas por autores que aprofundaram o tema (MARSHALL, 1946; SUCHOFF, 1971; LENDVAI; BUSH, 1971; ANTOKOLETZ, 1984; SUCHOFF, 2004) e buscaremos a partir de metodologias analíticas quantitativas verificar a consistência destes apontamentos e reutilizá-los.

A verificação computacional destas também não ambiciona dar uma solução definitiva e geral para uma automatização da segmentação destas peças. Consideramos aqui uma composição e uma análise musical "assistidas por computador" e não uma suposta inteligência artificial sem mediação humana. Interessa a problematização destas segmentações e sua implementação computacional como ideia geradora de novos procedimentos composicionais livres inspirados nestas.

Os problemas computacionais considerados no percurso compõe "uma suíte de objetos e funções"organizados em bibliotecas para as linguagens de programação musical OpenMusic e Puredata, facilitando um estudo comparado das implementações dos procedimentos algorítmicos em diferentes sintaxes.

Documentamos também com alguns scripts Python auxiliares para formatação e segmentação de partituras (em formatos midi, musicxml ou lilypond, dependendo do caso).

O percurso deste trabalho se dá em 3 etapas: ??:Problematização Computacional, Parte I:Paradigmas para uma Análise Musical Pós-Tonal e ??:Luteria Composicional.

Na ?? trabalhamos uma pequena reflexão histórica da música algorítmica, fazendo um paralelo entre a sistematização das gramáticas musicais descendentes da tradição pitagórica e as especulações da cibernética que levaram ao desenvolvimento das áreas de inteligência artificial, vida artificial e estudos de complexidade e padrões de emergência.

Na Parte I buscamos organizar tal processo criativo especializando uma epistemologia das gramáticas musicais a partir da influência que a linguística teve na musicologia. Atenção para as teorias derivadas da pesquisa Chomsky (1957) e sua aplicação no processamento de linguagens naturais. Buscamos aspectos que direcionaram pesquisas musicológicas para a possibilidade de aplicar regras analíticas em sistemas computáveis.

Fazemos um mergulho na pesquisa das gramáticas gerativas, sobretudo em um estudo de caso sobre a "Teoria Gerativa da Música Tonal" (GTTM) e seus desdobramentos.

Para concluir esta parte, documentamos alguns experimentos computacionais de analise musical de peças da suíte Mikrokosmos que aplicam as regras que fundamentamos neste percurso.

E finalmente na ?? utilizamos algumas ideias e particularidades retiradas dos procedimento analíticos detalhadas na Parte I para construir algumas composições musicais que aplicam estas estruturas das analises em algoritmos clássicos da música algorítmica, gerando material para debate sobre o ciclo que percorremos.

Todos os códigos e uma reflexão sobre as ferramentas e formatos estão no $\ref{eq:condition}$, $\ref{eq:condition}$ e Apêndice A.

Parte I

Paradigmas para uma Análise Musical Pós-Tonal

1 Formalização linguística de gramáticas musicais

Em seu ensaio "A comparação das análises sobre o ponto de vista semiológico", J.J. Nattiez (2003b) faz um balanço das diferentes abordagens analíticas na musicologia

As diversas práticas da análise musical no século XX podem, na minha opinião, estar, de início, repartidas em duas grandes categorias, (...):

1. Aquelas que admitem – e mesmo sublinham – as conotações emotivas, afetivas, imagéticas da obra musical. Designarei as mesmas com o termo genérico e moderno de análises de orientação semântica. (...) 2. Aquelas que se apoiam sobre as estruturas imanentes da obra e que se repartem em dois grandes grupos: a. as análises taxionômicas que cortam em unidades a substância musical, privilegiando este ou aquele parâmetro. (...) b. As análises que, na falta de melhor termo, chamarei "lineares" e que, (...), descrevem o prolongamento e as implicações das alturas, tanto no nível melódico (...), quanto no harmônico (...) (NATTIEZ, 2003b, grifos nossos)

Buscaremos aqui alguns caminhos para entender que procedimentos podem ser essenciais para a formalização de gramáticas musicais computáveis. Nossa intenção principal é encontrar um fio condutor para a didática de algoritmos composicionais e analíticos para a música que deem conta de estruturas da música pós-tonal anterior aos experimentos com timbre e música concreta que foram determinantes na segunda metade do século XX.

Partiremos de uma pequena revisão histórica e conceitual da aplicação do termo "gramática" no contexto da computação musical e suas derivações e implicações.

Utilizaremos o termo "gramática" em sentido mais estrito e para isso tomamos como ponto de partida o entendimento deste termo dentro das ciências computacionais. Em paralelo iremos pensando como este modelo influenciou a formalização de gramáticas musicais estruturalistas e quais alternativas vão aparecendo como adjacentes para formalização de algoritmos musicais.

O modelo de racionalização da linguística iniciado por Noam Chomsky com a obra "Syntactic Structures" (CHOMSKY, 1957) e formalizado na sua "Teoria da Sintaxe" (CHOMSKY, 1965) até hoje é uma das bases para o estudo algorítmico e algébrico de processamento linguagens naturais.

Sua influência na teoria musical pode ser encontrada em muitas tentativas de aproximar linguística e musicologia nas década de 70 e 80.

Inspirou as formalizações rígidas de modelos da musicologia da cognição inspirados na linguística na "Teoria Gerativa da Música Tonal" (LERDAHL; JACKENDOFF, 1983)

- um trabalho interdisciplinar do linguista Ray Jackendoff com o musicólogo Fred Lerdahl que detalharemos mais adiante.

Uma abordagem curiosa para comparação desta mesma época é a de Leonard Berstein na série de palestras "Unswared Question" (BERNSTEIN, 1976). Sua especulação empírica foi bastante alegórica e demonstrada inventivamente ao piano em seu registro em vídeo. Bersnstein fez comparações das estruturas de ordenamento das frases escritas e faladas com montagens de sessões motívicas de peças clássicas e chega a fazer algumas metáforas entre classes gramaticais e funções de acordes. Este tipo de metáfora parece ser de fato uma das motivações iniciais da pesquisa neste campo, porém muita coisa foi problematizada de maneira mais rigorosa, buscando métodos quantitativos, e nos anos seguintes contribuiu para as bases de organização de uma disciplina hoje conhecida por "cognição musical".

Pelo bem ou pelo mal, a abordagem de Bernstein parece estar muito mais para o universo das analogias poéticas livres do que a busca por uma formalização strictu sensu (LERDAHL, 2009) como a que se sucedeu nas derivações das gramáticas gerativas musicais (LERDAHL; JACKENDOFF, 1983; TEMPERLEY, 2004) ou em formulações algébricas e algoritmicas que Curtis Roads (1979) já apontava em seus estudos da época.

1.1 Gramáticas Musicais Computáveis

Uma interessante e histórica análise no ensaio de Curtis Roads (1979) é um panorama que fez sobre o estado da arte da influência da linguística sobre musicologia na época, fazendo um estudo comparado dos trabalhos de Smoliar (1976), Lindblom e Sundberg (1970), Laske (1977), Winograd (1968), Moorer (1972), Nattiez e Dunsby (1977), Ruwet (1975), Lerdahl e Jackendoff (1983) e o próprio trabalho anterior de Roads (1978).

O interessante deste panorama é que coloca lado a lado perspectivas mais empíricas como de Nattiez e Dunsby (1977) e Ruwet (1975) e outras que buscavam efetivamente uma inspiração para um rigor computacional de sintaxes musicais. Vale lembrar que Nattiez também tem um estudo comparado da influência da linguística na musicologia, com um ponto de vista menos pragmático e mais historicista, muito mais abrangente, e que traz um ponto de vista bem mais recente (NATTIEZ; SAMPAIO, 2004) do que decorreu a seguir.

Segundo Roads, Moorer (1972) e Winograd (1968) chegam a realizar alguns experimentos computacionais. Smoliar (1976) toca num ponto tecnologicamente complexo para a época: a segmentação de arquivos sonoros diretamente a partir de gravações.

Laske (1977) propõe analogias com a fonologia (relação entre sintaxe e sons da palavra falada) com uma recente "sonologia" (relação de uma sintaxe musical e os sons

musicais). A duplaLerdahl e Jackendoff (1983) investe numa normatização bastante inspirada nas segmentações propostas por Chomsky e procura problematizar aspectos de uma cognição musical tonal, que teria bases culturais sólidas na tradição ocidental, que veremos a seguir na seção 2.1.

2 Teorias Cognitivistas para uma Segmentação Tonal

2.1 Gramática Gerativa da Música Tonal (GTTM)

Jean Jaques Nattiez, em seu ensaio sobre música e linguística (NATTIEZ; SAM-PAIO, 2004) relativiza também o êxito do texto de Lerdahl e Jackendoff, porém reconhece uma importância que despertou nossa curiosidade por uma pequena revisão nas regras propostas por esta obra, o que faremos logo a seguir.

Porque, se a obra de Lerdahl e Jackendoff não conheceu um amplo reconhecimento sob o ponto de vista da análise das obras stricto sensu, em compensação, a psicologia cognitiva da música, que sabemos estar em plena efervescência, (...) Na medida em que 51 das 56 regras propostas são dadas como universais (LERDAHL; JACKENDOFF, 1983, p.345-352), os autores lançam aos etnomusicólogos um grande e salutar desafio que ainda não foi levado em consideração. A importância de um trabalho não se mede unicamente por seu caráter inovador e pelo valor dos modelos propostos, o que, por certo, ocorre neste caso, mas também pelo campo de investigações novas que propõe. (NATTIEZ; SAMPAIO, 2004)

O que buscamos como objeto no presente trabalho é um percurso composicional utilizando algum repertório significativo de critérios analíticos com enfase em abordagens que busquem métodos para extrair regras gerativas ¹ que estejam estruturalmente passíveis de serem descritas em forma de algoritmos.

Para isso iniciamos refletindo sobre uma das mais influentes teorias musicais com parentesco na linguística estruturalista e as tentativas de encontrar fórmulas de sintaxe para compreender os mecanismos seletivos da cognição musical: "A Teoria Gerativa da Musica Tonal", conhecida por "GTTM", sigla do termo inglês "Generative Theory of Tonal Music" (LERDAHL; JACKENDOFF, 1983).

A GTTM introduz uma taxonomia para separar de um plano musical seus agrupamentos melódicos, harmônicos e ritmicos, buscando uma maneira estruturada para fazer uma segmentação hierárquica de motivos que supostamente estariam dentro de uma previsibilidade de uma escuta ocidental tonal, apontando limitações e contradições entre estas regras e buscando apoiar-se em processos cognitivos rastreados pela audição, psicoacústica e cultura desta escuta.

Lerdahl e Jackendoff colocam o termo "gerativo" (que é derivado da linguística) de uma forma que não signifique a príncipio uma fórmula capaz de gerar aquela música, mas sim um estrutura pela qual a escuta já experimentada naquela cultura musical guia-se para segmentar e fruir sua sixtaxe. (LERDAHL; JACKENDOFF, 1983, p.6)

Desta maneira também problematiza e limita para fora do seu escopo peças que podem esconder segmentações registradas em esquemas composicionais anteriores a realização das obras, com estruturas racionalizadas porém fora do plano auditivo e cognitivo mais básico e intuitivo na cultura tonal ocidentalizada.

Estrutura
de Agrupamento

Segmentação
de Intervalos-temporais

Redução (resumo)
de Intervalos-temporais

Redução (resumo)
Prolongacional

Redução (resumo)
Prolongacional

Regras de boa-formação
Description Regras de transformacionais

Figura 1 – Fluxograma de Lerdahl (2009) para a GTTM

Fonte: Lerdahl (2009, p. 2, tradução do autor)

A teoria [GTTM] clama que, se um sinal permite, o ouvinte inconscientemente infere quatro tipos de estruturas hierárquicas de uma superfície musical:

1. estrutura de agrupamento, ou a segmentação do fluxo musical em unidades como motivos, frases e sessões; 2. estrutura métrica, ou padrão de batidas recorrentes periodicamente forte e fracas associadas com a superfície; 3. redução de intervalo temporal, ou a importância estrutural relativa dos eventos como são ouvidos dentro do contexto estabelecido pelas unidades rítmicas; e 4. redução prolongacional, ou os padrões percebidos pela tensão e relaxamento ao longo dos eventos em vários níveis da estrutura (LERDAHL, 1992) ²

2.1.1 Regras de boa formatividade dos agrupamentos (GWFRs)

GWFR 1 "Qualquer sequencia contígua de eventos de alturas, batidas percussivas, ou similares constituem um grupo, e somente sequencias contíguas constituem um grupo" (LERDAHL; JACKENDOFF, 1983, pg.37).

Esta regra estabelece que este tipo de escuta irá selecionar agrupamentos apenas por eventos sequenciados, não valendo por exemplo agrupar sons por estarem na mesma

[&]quot;The theory claims that, if the signal permits, the listener unconsciously infers four types of hierarchical structure from a musical surface: grouping structure, or the segmentation of the musical flow into units such as motives, phrases, and sections; metrical structure, or the pattern of periodically recurring strong and weak beats associated with the surface; time-span reduction, or the relative structural importance of events as heard within contextually established rhythmic units; and prolongational reduction, or the perceived pattern of tension and relaxation among events at various levels of structure"(LERDAHL, 1992)

Figura 2 – Agrupamento de motivos do início da sinfonia K550 de Mozart.

Fonte: (LERDAHL; JACKENDOFF, 1983)

oitava ou por serem de figuras rítmicas iguais, pois isto implicaria em uma seleção cognitivaauditiva de eventos num tempo não-linear, desconstruindo a escuta proposta pela sequencia de eventos da composição original.

As próximas regras de boa formatividade concluem por conjunção que os grupos se estabelecem por uma hierarquia de pequenos grupos contidos em grupos maiores, onde sempre um grupo grande pode ser decomposto em grupos menores:

GWFR 2 "Uma peça contem um grupo" GWFR 3 "Um grupo deve conter grupos menores" GWFR 4 "Se um grupo G1 contém G2 ele deve conter G2 inteira" (LERDAHL; JACKENDOFF, 1983, p.38)

Figura 3 – Exemplos de agrupamentos "mal formados" de acordo com a regra GWFR5

Fonte: (LERDAHL; JACKENDOFF, 1983)

GWFR 5 "Se o grupo G1 contém grupos menores , então ele deve ser exaustivamente particionado em pequenos grupos" (LERDAHL; JACKENDOFF, 1983, $\,$ p.38)

2.1.1.1 Regras de preferência para agrupamentos (GPRs)

GPR1 "Evite analises com pequenos grupos, quanto menor menos preferível". (LERDAHL; JACKENDOFF, 1983, $\rm ~p.43$)

Segundo a GTTM pequenos grupos geralmente não serão capazes de sozinhos estabelecer contextos. Uma pequena digressão: Isto seria questionável em uma teoria

que considerasse pequenos motivos como uma espécie de "objeto sonoro" , mas não é o caso desta abordagem, que está preocupada com uma camada exterior que supostamente é edificada por esta articulação contígua de grupos internos. A ideia de um pequeno motivo que irrompe esta superfície funcional linear como uma sonoridade articulada como entidade é extremamente interessante, mas por hora ficará fora do escopo.

GPR2 "(Proximidade) – Considere uma sequencia de quatro notas [n1-n2-n3-n4].

O restante sendo igual, a transição n2-n3 deve ser considerada uma fronteira de segmento se:
a) (Ligadura/Pausa) o intervalo-temporal desde o final de n2 ao ínicio de n3 é menor do que desde final de n3 ao início de n4.
b) (Ponto-de-ataque) o intervalo-temporal entre os pontos de ataque entre n2-n3 é maior do que entre n1-n2 e entre n3-n4. (LERDAHL; JACKENDOFF, 1983, p.45)

Esta regra é centrada na busca por rupturas no fluxo dos motivos, isolando as frases pelos pontos de ataque fortes, ligaduras ou intervalos claros entre dois motivos.

É notória a semelhança desta regra com o procedimento que aprendemos desde a alfabetização gramatical para a "separação de sílabas" - a procura de "respiros" das frases.

A busca de critérios para uma segmentação intuitiva destes "respiros" entre os motivos vai permear de alguma forma todo esforço da GTTM.

"Mas, precisamente, o que a comparação atenta da linguagem verbal e da música nos ensinou, é que a significação em música não tem o mesmo estatuto que na linguagem." (NATTIEZ; SAMPAIO, 2004, p.9)

Quanto a analogia com os critérios de segmentação da língua escrita e falada, percebemos na GTTM e outros trabalhos Lerdahl(1992, 2003, 2013) um descrédito quanto ao fato que a música poderia simplesmente transpor metaforicamente as regras transformacionais da linguistica chomskiana, como por exemplo nas separações por classes gramaticais em complementos nominais e complementos verbais. De fato para tal percurso seria necessário uma certa "licença poética" mais abitrária.1

Por outro lado, mesmo com todo rigor metodológico, seria preciso pensar todas características para além do aparecimento temporal dos eventos

Além do "respiro" passamos a levar em consideração alguns critérios de modificação do som como altura, força do ataque, gestual da articulação e o envelope de duração nas emendas dos segmentos.

GPR3 (Mudança) Considere uma sequencia de notas [n1-n2], a transição [n2-n3] deve ser ouvida como um grupo de fronteira se marcado por: a)

³ c.f. (GUIGUE, 1995)

⁴ c.f. (GUIGUE, 2012)

registro – a transição n2-n3 envolve uma maior distância intervalar de que n1-n2b) dinâmica - a transição n2-n3 envolve uma mudança dinâmica maior de que entre n1-n2ou n3-n4. c) articulação - a transição n2-n3 envolve uma mudança de articulação que entre n1-n2ou n3-n4, d) duração - há diferença de durações entr n2-n3 enquanto n1-n2 ou n3n4 permanecem com durações similares, (LERDAHL; JACKENDOFF,

c) articulação pitchbend GPR03 mudança d) duração mc->n a) registro œ, proximidade b) dinâmica ۴ flat (A2) 200 (249) (49) b) ponto de (B2) 100 250 (49) (249) (C3) ataque 250 500 200 (49) (249) a) ligadura/ (D3) -500 (49)(499)(A2) pausa 500 (49) (499) (A2) 250 250 0 (49) (249) (A2) 200 (249)(49)(B2) 100 250 (49) (249) (C3) 200 (49) (249) 250 (D3) -200 250 (249)(49)(C3) -100 250 (49) (249) (B2) -200 300 (49) (249) 250 (A2) (C3) 250 (249) (49)250 -100 (49) (249) (B2) -200 (49) (249) 250 249 (A2) (49)(249)

Figura 4 – Open Music 01

Fonte: autor

As regras seguintes especializam as GPRs anteriores, filtrando agrupamentos que tendem a ficar em níveis mais frasais do que os pequenos motivos que deverão conter em sua composição:

GPR4 (Intesificação) Onde os efeitos dos GPR 2 e 3 são relativamente mais pronunciados, um grupo de nível mais largo deve ser localizado. GPR5 (Simetria) Prefira análise de agrupamentos com a abordagem mais próxima da subdivisão de grupos em partes de duração iguais. GPR6 (Paralelismo) Onde dois ou mais segmentos musicais podem ser construídos em paralelo, eles preferivelmente formam partes paralelas dos grupos

GPR7 (Estabilidade de prolongacional e de intervalo-tempo) Prefira uma estrutura de agrupamento em um intervalo-tempo tempo mais estável e/ou reduções prolongacionais (LERDAHL; JACKENDOFF, 1983, pg.46-52)

As regras a seguir problematizam um ponto que é interessante a comparação entre as gramáticas musicais e as verbais. Em música é inevitavel que em certos momentos uma nota ou acorde ou tempo forte de pausa de um motivo "emende no próximo" (Sobreposição), o que poderia acontecer sonoramente em linguagem coloquial apressada, mas nunca na língua escrita, como por exemplo aglutinar uma estrutura substantivo-adjetivo criando uma palavra emendada por fonemas finais e iniciais como "cobrAzul" ou "barulhOrrível". Uma variação possível de analogia seria com uma emenda de uma frase inacabada onde a nova palavra parece chegar "adiantada", semelhante ao que acontece no substantivo composto "copo d'água".

Figura 5 – Elisao ou Contração

Fonte: Lerdahl e Jackendoff (1983, p. 2)

Figura 6 – Formalização visual dos problemas de elisão e sobreposição de camadas na GTTM. (LERDAHL; JACKENDOFF, 1983, p.69)

Fonte: autor

"Estes exemplos visuais parecem não ser apenas analogias triviais ao fenômeno musical. Como nas discussões de regras de preferência, a possibilidade de traçar paralelos entre os domínios auditivo e visual apontam a operação de processos fundamentais de da percepção e/ou cognição." (LERDAHL; JACKENDOFF, 1983) 3

2.1.2 Regras de boa-formação métrica (MWFRs)

Antes de entrar na taxonomia das regras de boa formação métrica convém entender o que a GTTM coloca como "acento". Há uma categorização que divide os acentos em fenomenológico , estrutural, ou métrico.4

Por fenomenológico os autores entendem acentos que são causados por eventos marcantes e destacados da superfície musical como pontos extremos no contorno melódico,

stress ou relaxamento súbito nas articulações ou pontos de tensão inesperada na harmonia, estruturais seriam acentos bem marcados pelas cadências de progressões harmônicas mais marcantes e esperadas.

Métricos seriam os acentos que intuitivamente estariam no pulso intuitivo da superfície musical, nos tempos fortes e síncopas e que de alguma maneira reforçam uma marcação rítmica esperada pela peridiocidade dos eventos.

Os autores não associam diretamente este tipo de acento a uma declaração de assinatura de compasso na escritura da peça, mas sugerem que de alguma maneira este tipo de acento é justamente uma relação de afirmação ou negação dessa possibilidade de haver uma peridiocidade forte nos eventos, que a escritura tentaria prever.

Figura 7 – Notação analítica proposta pela GTTM que marca uma hierarquia das batidas por subdivisões de pulsos

Fonte: autor

As regras de boa formação métrica na GTTM estabelecem as condições mínimas para que o efeito de periodicidade aconteça. Observa-se que se por uma lado a escrita tradicional com seus compassos e assinaturas serve como um ponto de partida e apoio para contagem de batidas baseadas nas subdivisões das figuras métricas ela também é fator limitador na redução dos intervalos-temporais. Este problema aparece na GTTM como "apagamento métrico" (idem, pg.101), algo similar a colisões e elisões vistas nos agrupamentos.

Não é por acaso que a partir do século XX a escrita com mudanças constantes de assinatura de compasso chega em um ponto, após o serialismo integral principalmente, em que propõe-se a abolição da assinatura ou barra de compassos num extremo e no outro extremo uma complexidade tão alta na subdivisão de quiálteras que ficam totalmente arbitrários e subentendida na notação uma indução ao improviso do interprete.

Voltando às regras, como no agrupamento, na métrica também temos as regras de boa formação (WFRs - "Well Formed Rules") para os casos mais gerais e em seguida atemos as regras de preferência (PRs - "Preference rules") hierarquizando as decisões.

MWFR 1 "Todo ponto de ataque deve estar associado a uma batida de nível métrico menor presente naquele ponto da peça "MWFR 2 "Toda batida em dado nível deve também ser uma batida em níveis menores daquele presente ponto da peça "MWFR 3 "A cada nível métrico, batidas fortes são espaçados por uma separação de duas ou três batidas "MWFR 4 "O tátil e o material imediatamente mais largo devem consistir de batidas igualmente espaçadas através da peça. No nível subtátil, batidas fracas devem estar igualmente espaçadas entre as batidas fortes que os cercam." (LERDAHL; JACKENDOFF, 1983)

2.1.2.1 Regras de preferência Métrica (MPFRs)

MPFR1 (Paralelismo) "Onde dois ou mais grupos ou partes de grupos podem ser construídos em paralelo, eles preferivelmente recebem uma estrutura métrica paralela "MPFR2 (Batida forte adiantada) "Prefira raramente uma estrutura métrica onde a batida mais forte em um grupo aparece relativamente adiantada no grupo "MPFR3 (Evento) "Prefira uma estrutura material onde as batidas do nível Li coincidem com a inserção de eventos de altura nas batidas fortes de Li "MPFR4 (Tensão) "Prefira uma estrutura métrica onde as batidas do nível Li são tensionadas com as batidas fortes de Li "MPFR5 (Duração) "Prefira uma estrutura métrica onde batidas relativamente fortes ocorrem na inserção de também relativamente longos: a) evento de altura b) duração de dinâmica c) ligadura d) padrão de articulação e) duração de um pitch em níveis relevantes da redução intervalo-temporal f) duração da harmonia em níveis relevantes da redução intervalo-temporal (ritmo harmônico)

MPFR6 (Baixo) "Prefira um baixo metricamente estável"MPFR7 (Cadência) "Prefira fortemente uma estrutura métrica onde as cadências são metricamente estáveis; ou seja, evite fortemente violações das regras de preferência locais que possuem cadências "MPFR8 (Suspensão) "Prefira fortemente uma estrutura métrica onde a suspensão é uma batida mais forte que a resolução "MPFR9 (Interação intervalo-temporal) "Prefira uma análise metrica que minimize o conflito na redução do intervalo-temporal"MPFR10 (Regulação Binária) "Prefira estruturas métricas em que em cada nível toda a outra batida seja forte" (LERDAHL; JACKEN-DOFF, 1983)

2.2 Segmentação temporal de eventos cadenciais e a redução prolongacional na GTTM

É importante destacar a partir daqui que as continuidades e derivações da pesquisa iniciada pelo GTTM tiveram que buscar fórmulas mais rigorosas em pesquisas quantitativas sobre "cognição das alturas musicais" (KRUMHANSL, 1990) nos níveis de interação entre as camadas melódico-harmônica com os agrupamentos métrico-rítmicos para sustentar seus argumentos sobre as preferências condicionadas do tal "ouvinte experiente" (LERDAHL; JACKENDOFF, 1983, pg. 118) como fator organizador da teoria.

As regras de redução prolongacional, similares aos resumos cadenciais shenkerianos que segmentam os eventos melódico-harmônicos, são dependentes daquilo que a GTTM chama de intervalo-temporal ("time span") - regras de preferência determinadas por fatores

internos da superfície musical: proximidade de uma tônica, modulação de regiões funcionais de tonalidade, âmbito de registro de oitava, paralelismo motívico e toda uma suposta hierarquia destas interações. No entanto estes apontamentos foram desde então criticados por sua arbitrariedade indutiva.⁵

O próprio Lerdahl (2009) afirma em sua revisão da GTTM:

O princípio de interação talvez ainda seja muito técnico para ser testado empiricamente neste ponto; mas em seu contexto mais amplo, a percepção hierárquica das estruturas de alturas é um assunto de interesse considerável para a psicologia da música. O componente de prolongamento da GTTM de qualquer modo, apresenta dificuldades a este respeito.(LERDAHL, 2009, p. 191)⁶

O desenvolvimento da teoria de espaço tonal(LERDAHL, 1988) foi fortemente baseado nas pesquisas de quantificação das condições para estabilidade da percepção de contextos tonais argumentada por Carol Krumhansl em seu artigo "Perceptual structures of tonal music"(KRUMHANSL, 1983) e posteriormente fundamentada em mais profundidade no livro "Cognitive structures of pitch"(KRUMHANSL, 1990). Como veremos mais adiante este trabalho também influenciou os algoritmos de harmonia e tonalidade de David Temperley em seu "Cognitive Basic Music Structures"(TEMPERLEY, 2004).

Mais recentemente, Lerdahl atualiza sua teoria do espeço tonal(LERDAHL, 2001) buscando alguns argumentos novos sobre transformações cromáticas algébricas fundamentadas pela corrente musicológica "Neo-Riemaniana" (COHN, 1998; LEWIN, 2007) e escreve com Krumhansl um artigo chamado "Modeling Tonal Tension" (LERDAHL; KRUMHANSL, 2007) buscando legitimar sua teoria através de testes cognitivos com uma audiência.

A ideia é que a distância cognitiva de um evento de um ponto dado de referência mede a instabilidade do evento em relação a este ponto de referência. Na suposição que o ouvinte inconscientemente busca uma interpretação mais estável de uma passagem musical, o principio TPS ["Espaço de Alturas Tonais"] do menor caminho seleciona eventos revelando as menores distâncias disponíveis para superordenar eventos em cada estágio da redução prolongacional.(LERDAHL, 2009, p. 191)⁷

Decidimos portanto não entrar em detalhes destes dois escopos mais frágeis da GTTM e focaremos diretamente em derivações posteriores que os problematizam em outros

⁵ c.f. "Pontos típicos da crítica "da GTTM em (HANSEN, 2011, pg. 35)

The interaction principle itself may still be too technical to be tested empirically at this point, but its larger context, the perception of hierarchical pitch structures, is a topic of considerable interest to music psychology. GTTM's prolongational component, however, presents difficulties in this regard. (LERDAHL, 2009, p. 191)

The idea is that the cognitive distance of an event from a given reference point measures the instability of that event in relation to the reference point. On the assumption that the listener unconsciously seeks the most stable construal of a musical passage, TPS's principle of the shortest path selects events yielding the smallest available distances from superordinate events at each stage of prolongational reduction. (LERDAHL, 2009, p. 191)

termos. Tomaremos dos estudos de Lerdahl posteriores ao GTTM por enquanto apenas seu conceito de tensão e estabilidade desenvolvido em sua "teoria do espaço tonal" ("Tonal Pitch Space", doravante referida como TPS) na próxima sessão. Em seguida apresentamos uma alternativa derivada da GTTM, elaborada por David Temperley e implmentada computacionalmente em seu trabalho "Cognition of Basic Musical Structures" (TEMPERLEY, 2004).

2.2.0.2 Calculando a tensão e o Espaço das alturas tonais (TPS)

The tonal hierarchy- hence an implicit pitch space- appears in GTTM in incomplete form under the rubric of verbally stated stability conditions. The theory claims that listeners cannot infer complex event hierarchies without having access to such conditions, which are the main source for ranking the relative stability of events within embedded temporal regions. These regions in turn derive directly or indirectly from the grouping and metrical structures. Figure 1 illustrates schematically that the time-span reduction derives from the rhythmic components and the stability conditions, and the prolongational reduction derives from the time-span reduction and the stability conditions. In short, both a rhythmic framework and criteria for pitch stability are needed if the listener is to hear events in a dominating- subordinating manner.(LERDAHL, 1988)

Figura 8 – Espaço tonal diatônico proposto por Fred Lerdahl (1988), Lerdahl (1996)

Octave level:		3				
Fifth level:		3				10
Triadic level:		3		7		10
Diatonic level:	0	23	5	7	8	10
Chromatic level:	0 1	23	4 5 6	7	8 9	10 11

Fonte: (LERDAHL, 1996, p. 322)

(a) octave (root) level: (b) fifths level: (c) triadic level: (d) diatonic level: (e) chromatic level:

lerdahl testa a teoria TPS em (LERDAHL; KRUMHANSL, 2007)

Lerdahl(1996) propõe um modelo de cálculo para medir a intensidade do relaxamentotensão entre os agrupamentos prolongacionais em todos seus níveis, buscando um modelo quantitativo para inferir os graus.

figura prolongamentos

O modelo mediria a distância entre.... (demonstrar o exemplo do calculating)

O artigo aplica a fórmula para medida de tensão e relaxamento em alguns compassos da sonata K.282 de Mozart(lerdahl 1996 pg.tal). Questionamos se tal ideia de tensão e

Figura 9 – Notação analítica proposta pela GTTM para a ramificação dos intervalostemporais.

Figura 10 – Forças tonais nos prolongamentos revistas por Fred Lerdahl (1988)

Fonte: (LERDAHL, 1996, p. 322)

relaxamento é aplicável nas músicas pós-tonais, onde a condução de vozes pode não estar tão condicionada a esta ideia de prolongamento em função de uma tensão-resolução mas sim a um conceito de agrupamento de sonoridades por outros critérios.

2.3 Cognição das Estruturas Musicais Básicas (CBMS)

A teoria elaborada por David Temperley (2004) em seu livro "Cognição das Estruturas Musicais Básicas" foi declaradamente inspirada na GTTM. Seu esquema de enumeração de regras "bem formadas" e regras de "preferência" é tão similar que pode ser considerado uma tentantiva de continuidade desta.

⁸ "Cognitive Theory of Basic Musical Structures" doravante tratado por CBMS.

Figura 11 – Exemplo de aplicação da fórmula das distâncias

Fonte: (LERDAHL, 1996, p. 323)

Figura 12 – Aplicação da fórmula das distâncias para medida comparativa de forças numa condução de vozes

Fonte: (LERDAHL, 1996, p. 325)

Temperley divide as regras em seis grupos: estrutura métrica, frase melódica, estrutura contrapontual, solfejo enarmônico das classes de altura tonais, estrutura harmônica, estrutura de tonalidade.

As regras de estrutura métrica são bastante similares⁹ e as regras de frase melódica e estrutura contrapontual são uma proposta próxima das regras de agrupamento da GTTM, porém levando em conta algumas ideias para interação polifônica e determinando métodos para pensar contorno melódico e o fluxo das vozes.

Decidimos iniciar o percurso pelas regras da CBMS pelos dois grupos de regras

Colocamos no apêndice um quadro comparativo das regras feito por David Meredith (2002) em sua crítica do livro.

que parecem indispensáveis para pensar todas as outras e que parece mais deficiente na GTTM: o solfejo enarmônico das classes de altura tonais e a estrutura de tonalidade.

2.3.0.3 Solfejo Enarmônico das Classes de Alturas Tonais

Figura 13 – Ciclo de dominantes e subdominantes em modo circular

Fonte: (LERDAHL, 2009, tradução do autor.)

Temperley justifica esta abordagem por estar buscando um agrupamento das classes de altura que considere os cromatismos fora de uma escala como notas de passagem ou ornamentais dentro de uma função tonal.

A inferência de tonalidade proposta por Lerdahl é inspirada no modelo cognitivista de "distâncias percebidas entre as alturas" (lerdahl 1996 pg.359 paragrafo 3) proposto por Krumsahl (1982,1990), que entre outras propostas constrói histogramas de referência de um "perfil tonal" (krum 1982) dada pelas notas presentes em um segmento.

imagem temperley pg.154

Figura 14 – Linha enarmônica das quintas proposta por Temperley.

Fonte: (TEMPERLEY, 2004, pg. 116)

Figura 15 – Escala de Dó maior na linha enarmônica das quintas proposta por Temperley.

Fonte: (TEMPERLEY, 2004, pg. 127)

Figura 16 – Escalas modais na linha enarmônica das quintas proposta por Temperley.

Fonte: (TEMPERLEY, 2004, pg. 260)

Figura 17 – "Supermodo" combinando os modos da figura anterior na linha enarmônica das quintas proposta por Temperley.

Fonte: (TEMPERLEY, 2004, pg. 260)

2.3.0.4 Algoritmo dos Perfis de Tonalidade

Krumhansl Schmuckler

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 \sum (y - \overline{y})^2}}$$

For a number of years, it was recognized that the Krumhansl–Kessler key profiles are similar—but not identical—to the frequency of occurrence for scale degrees in the

Figura 18 – Perfis de tonalidade propostos por Carol Krumhansl (1990) - comparativo entre tonalidades próximas ou distantes.

Fonte: (KRUMHANSL, 1990, pg. 36)

actual music. In her landmark 1990 book, Krumhansl argued that this similarity implicates learning-from-exposure. The psychological schemas for the major and minor key profiles are cognitive reflections of an objective statistical regularity in Western musical practice. Unfortunately, the evidence seemed imperfect. As we have seen, the dominant is the most frequently occurring pitch in both the major and minor modes, yet the Krumhansl and Kessler profiles consistently rate the tonic higher than the dominant. In addition, the second and fourth scale degrees (supertonic and subdominant) are rated significantly less highly than the actual presence of these tones would suggest. Why do the Krumhansl–Kessler "key profile" distributions differ from the pitch-class distributions of the music itself?

Vejamos por exemplo o perfil do histograma para algumas segmentações de classes de alturas de Mikrokosmos 113[nota m21]:

Segundo tal proposta e as re-elaborações sugeridas por Temperley(2001) pg.173-181, poderíamos tentar inferir uma tonalidade "cognitiva" que permeie os segmentos da peça,

Figura 19 – Perfis de tonalidade propostos por Carol Krumhansl (1990) - histograma demonstrado por Temperley (2004).

Fonte: (TEMPERLEY, 2004, pg. 174)

buscando agrupar algumas famílias de "eixos paradigmáticos" (nattiez, tripartite, pg.26) a partir de certa tendência que mesmo em dado cromatismo teríamos de associar o segmento a certa tonalidade.

No entanto antes de pensar estas inferências tonais em peças pós-tonais gostaríamos de problematizar abordagens que não estão tão condicionadas por uma suposta cognição tonal predominante. Discutiremos o problema logo a seguir. ¹⁰

(TEMPERLEY, 1999)

2.4 Restrições Cognitivas versus Segmentação Atonal

Quase 10 anos após a publicação da GTTM Lerdahl publica um ensaio chamado "Restrições cognitivas nos sistemas composicionais" (LERDAHL, 1992)¹¹, ancorando observações em uma aproximação bastante conservadora e crítica da música serial, tomando como caso a peça "Le Marteau Sans Maitre" de Pierre Boulez, e defendendo a tese de que uma música tão distante dos perfis cognitivos básicos da musica tonal seria

 $^{^{10}}$ < http://web.mit.edu/music21/doc/moduleReference/moduleAnalysisDiscrete.html>

Aesthetic Claim 1: The best music utilizes the full potential of our cognitive resources. Aesthetic Claim 2: The best music arises from an alliance of a compos- itional grammar with the listening grammar. (LERDAHL, 1992)

Figura 20 – Perfis de tonalidade para Do maior e Do menor modificados por Temperley (2004).

Fonte: (TEMPERLEY, 2004, pg. 174)

inapreensível para os sentidos¹².

Importante levar em conta portanto que a GTTM e suas derivações insistem sempre numa afirmação de uma suposta preferência cognitiva regida pelos princípios "atrativos" tonais, o que pode ser interessante em teorias pós-tonais para pensar ambiguidade de sistemas que induzem uma intenção auditiva politonal, mas não parece ser suficiente para pensar critérios que considerem uma busca auditiva pelas sonoridades de grupos de intervalos não organizados a partir da suposta ordem dos "espaços de alturas tonais" (lerdal 1988,2001) intuídos pela cognição de uma escuta ocidentalizada ou ocidentalizante.

Cabe pensar aqui aquilo que nattiez diferencia como estésica externa e estésica indutiva(nattiez pg.18-20). Estésica externa é aquela baseada em critérios que entrariam na análise por via de uma comprovação de pesquisa de campo, buscando legitimar que os paradigmas apontados são estatisticamente comuns para a percepção de um determinado grupo de ouvintes. Já a estésica indutiva seria determinada por uma inferência explícita e autoral do musicólogo, que aponta aquilo que segundo seus próprios critérios poderia ser percebido como relevante e importante numa escuta. Poderia-se inclusive argumentar

Conferir também o ensaio de Milton Babbitt (1958) chamado "Who Cares If you Listen"que argumenta os pressupostos que sustentariam uma pesquisa **despreocupada da escuta leiga** e que necessita o suporte da ciência para abrir novas fronteiras no desconhecido, assim como ocorre com as ciências exatas não-aplicadas.

um interesse declaradamente apenas estrutural, por aquilo que Nattiez chama de "nível neutro", "análise imanente" ou "análise material- onde estruturas presentes são destacadas mesmo que possa-se argumentar que foram ali colocadas de maneira inconsciente pelo compositor ou que são imperceptíveis para o ouvinte médio.

Trabalharemos no capítulo seguinte uma abordagem sobre as alturas cromáticas que parte de outros princípios de agrupamento, buscando fórmulas composicionais algorítmicas por meio de uma abordagem que rompe com a normatização da cultura tonal clássica e busca novos critérios para observar transformações nas alturas e seus agrupamentos.

Where does a compositional grammar come from? The answer varies, but a few generalizations may be helpful. Let us distinguish between a "natural"and an "artificial"compositional grammar. A natural grammar arises spontaneously in a musical culture. An artificial grammar is the conscious invention of an indi- vidual or group within a culture. The two mix fruitfully in a complex and long- lived musical culture such as that of Western tonality. A natural grammar will dominate in a culture emphasizing improvisation and encouraging active participation of the community in all the varieties of musical behaviour. An artificial grammar will tend to dominate in a culture that utilizes musical notation, that is self-conscious, and that separates musical activity into composer, performer, and listener. (LERDAHL, 1992, p. 100-101)

Temperley adopts the plan outlined by Krumhansl and Schmuckler (de-scribed in Krumhansl, 1990): (1) segment a composition into small sections, (2) tally the tones within a segment (weighting each pitch class by its total duration as well as by other possible measures of salience), (3) mathematically correlate the vector of tone tallies with the tone-profile vectors for all twenty-four major and minor keys, and (4) select the highest correlation as the best candidate for representing the per- ceived key of that segment.

Lerdahl logo em seguida flerta com musica atonal, etc... (LERDAHL, 1992) antes de buscar sua atualização da teoria após a influencia das teorias de Forte, Babbit e outros na musicologia americana influencia da teoria de grupos (o que foge um pouco de nosso escopo) e sim no próximo capitulo buscar um entendimento básico da eoria de grupos blabla

abaixo um esquema feito por ele no seu artigo de revisão da GTTM

How does the theoretical description of pitch-class and interval-class content relate to the listener's organization of pitches at the musical surface? The relationship often seems remote. The very notions "pitch class" and "interval class" are abstractions from the pitch and interval content of a musical passage. And the various concepts invoked for set equivalence or similarity (inversional equivalence, normal form, interval vectors, Z-relatedness, the R relations, the inclusion relation, the K and Kh complexes) also create a distancing from the surface. There is nothing wrong with this in principle: all theories generalize from phenomena. The question is whether these particular abstractions reflect and illuminate our hearing. The little experimental research that has been done on such matters (...) has not been very encouraging. (LERDAHL, 1989)

Figura 21 – Extensão das regras de GTTM na obra "Tonal Pitch Space" propostas por Lerdahl (2009)

Fonte: (LERDAHL, 2009, tradução do autor.)

Diante destes posicionamentos consideramos essencial um estudo comparado da abordagem cognitivista com este este contraponto das teorias de classes da altura, justamente por estas partirem de outros pressupostos. Faremos um percurso por estas teorias no próximo capítulo.

3 Teorias de Grupos das Classes de Alturas para uma Segmentação Atonal

Vimos na teoria do "solfejo das classes de altura" (TEMPERLEY, 2004, p. 115) de David Temperley (2004) a categorização de uma divisão de grupos de altura que ele denomina "Altura de Classes Tonais" (TEMPERLEY, 2004, p. 115). Neste capítulo exploramos teorias pós-tonais que são geralmente evitadas pela abordagem cognitivista por partirem de princípios de agrupamento que não são argumentados por uma funcionalidade tonal normativa, mas sim pela formalização de relações de simetria, similaridade e transformação entre os doze intervalos cromáticos que trariam o sentido musical por outros tipos de fruição da forma musical.

Na teoria de grupos de classes de altura ("Pitch Class Theory") os intervalos são tratados de maneira neutra em relação a qualquer centro tonal pré-determinado e parte-se do princípio de que agrupamentos de alturas podem gerar estruturas de derivadas por uma espécie de parentesco intervalar, incluindo a similaridade por inversão ou retrógrado destes como veremos mais adiante.

Estas teorias são fortemente influenciadas pela ideia de serialismo formalizada pelo dodecafonismo frequentemente atribuído a Arnold Shoenberg e seus pupilos da segunda escola de Vienna, mas é bom lembrar que o pensamento serial é um pensamento composicional que pode também ser encontrado em compositores muito anteriores a estas formalizações, portanto podemos encontrar esta abordagem analítica sendo usada para destacar aspectos de composições de outros contextos que não o restrito ao repertório atonal clássico, como faz por exemplo Joel Lester (1989) em sua didática para análises de um repertório pós-tonal do ínicio do século XX ou Allen Forte na sua tese sobre a "Sagração da Primavera" de Stravinski (FORTE, 1978).

It was, of course, Allen Forte who in the USA pioneered the analytical with a taxonomy of pc-set application of concepts from mathematics, first arose also in serial Babbittian types (the concept theory), and following as some inclusion and with relations abstract up (such similarity relations) meant for analytical use. Forte's "set theory" (as it is somewhat misleadingly known, because it deals with sets of pitch classes) has had its own ramifications and influence. In particular, Forte's own analyses of individual pieces of music have led many others to do likewise, and Forte's initial idea of similarity relations (as distinct from equivalence relations) among pitch-class sets has seen a flourishing theoretical industry grow around it, after seminal articles by Morris, Rahn, and Lewin appeared in 1980.(RAHN, 2004)

Com formalização de uma teoria de grupos de classes de alturas pela geração

de musicólogos e compositores seriais da segunda metade do século XX e com os avanços exponenciais da computação nas últimas décadas estas teorias vão sendo testadas e aplicadas a ponto de já constituírem uma área bastante específica da musicologia contemporânea.(ANDREATTA; RAHN; BARDEZ, 2013)

Um exemplo de interesse do presente trabalho é a classe de objetos "Math Tools" (ANDREATTA; AGON, 2003; ANDREATTA, 2014; DEBRIL, 2014) da linguagem de programação OpenMusic, que organiza em orientação a objetos muitos dos conceitos que veremos logo a seguir.

3.1 Fórmulas de agrupamento e transformação dos intervalos

a equivalência enarmônica das oitavas

diferença entre NPC e TPC (TEMPERLEY, 2004, p. 118)

os intervalos também passam a não serem mais nomeados funcionamente (exemplo quarta aumentada e quinta diminuta)

mostrar formula do modulo em pd, om e python

Os intervalos são distâncias, nas teorias de classes de alturas estas distâncias podem estar categorizadas como intervalos ordenados - usando número negativos para os intervalos descendentes, ou não-ordenados - considerando intervalos equivalentes independentes de suas direções.(STRAUS, 2004, pg. 6)

Isso cria imediatamente uma relação de parentesco entre pares em todos intervalos da escala cromática exceto para os trítonos, intervalos de sexta ordem, que está equidistante de 0 e 12 e portanto não possui uma inversão propriamente dita, mas sim tem o papel de cortar ao meio este espelhamento.

grafico que mostra essa relação

3.1.1 Vetor intervalar

A operação obtenção do vetor intervalar é a primeira das reduções sugeridas para propor uma similaridade entre agrupamentos que seja neutra quanto inversões e oitavas.

Tomemos um exemplo de um cluster C-D-E-Bb.

Este trecho pode ser reduzido a sequencia de alturas [0,2,4,10]

Organizamos seus intervalos fazendo todas as combinações possíveis entre estas distâncias:

Figura 22 – [0,2,4,10]

$$invers\tilde{o}es = \begin{cases} 2 - 0 = 2\\ 4 - 0 = 4\\ 10 - 0 = 10 \end{cases}$$
$$4 - 2 = 2$$
$$10 - 2 = 8$$
$$10 - 4 = 6$$

O vetor de intervalos pode ser reduzido então a uma contagem que coloca no mesmo grupo os intervalos que são inversões dos primeiros 5 intervalos possíveis, já que seus pares apos o trito no são considerados espelhamentos. No exemplo acima temos 10 que é a inversão de 2 e 8 que é a inversão de 4. Portanto nosso vetor fica assim:

1	2	3	4	5	6
0	3	0	2	0	1

Pode-se dizer então que a classe de alturas [0,2,4,10] possui o vetor intervalar <0,3,0,2,0,1>.

3.1.2 Forma Normal

Figura 23 – Redução de um segmento do Microkosmos 101 de Bártok para um cluster de 4 alturas.

Fonte: autor

Figura 24 – Forma Normal.

3.1.3 Forma Prima

Two Algorithms for Computing the Prime Form

There are two algorithms for computing the prime form of a Pitch Class Set. The first was introduced by Allen Forte in The Structure of Atonal Music and the second is used by John Rahn in his book Basic Atonal Theory and is also used by Joseph N. Straus in his Introduction to Post-Tonal Theory.

The difference between the two algorithms is apparent when examining Pitch Class Set 6-31. The Prime Form using the Forte algorithm is (0,1,3,5,8,9), and the prime form using the Rahn algorithm is (0,1,4,5,7,9). As you can see, the Forte algorithm puts a priority on making the small numbers smaller (i.e. 3 instead of 4), whereas the Rahn algorithm wants the larger numbers to be smaller (i.e. 7 instead of 8).

Which is better? Well, it depends on who you ask. Computer programmers and computer music people will typically prefer the Rahn algorithm because it is computationally more elegant. However, the Forte algorithm has the more established pedigree, and so it tends to be preferred by academics.

Fortunately, this is usually a minor issue because it only affects the following $5 \ \mathrm{sets}$:

Pitch Class Set Forte Prime Rahn Prime 5-20 (0,1,3,7,8) (0,1,5,6,8) 6-Z29 (0,1,3,6,8,9) (0,2,3,6,7,9) 6-31 (0,1,3,5,8,9) (0,1,4,5,7,9) 7-20 (0,1,2,4,7,8,9) (0,1,2,5,6,7,9) 8-26 (0,1,2,4,5,7,9,10) (0,1,3,4,5,7,8,10)

Figura 25 – Fórmulas de agrupamento de classes de altura.

3.1.4 Singularidades nos agrupamentos

Algumas propriedades entre os grupos de classes de alturas são muito interessantes como princípio composicional, e mesmo quando não tao obvias em primeiras audições, ao menos ajudam garantir alguma coerência estrutural conceitual. George Perle argumenta sobre "funções motívicas" em grupos de de alturas (PERLE, 1991, p.60-85) e observa algumas estratégias de compositores para aproveitar algumas propriedades encontradas em relações internas das series. Perle no entanto mostra-se cético a formalização de nomenclaturas analíticas derivadas da classificação de Allen Forte e sua aplicação em argumentações para análises de composições que tenham sido compostas antes fórmulas tornarem-se ferramentas musicológicas. (PERLE, 1990)

Levantaremos aqui algumas destas propriedades conforme o resumo didático pro-

posto por (STRAUS, 2004), sem ainda estarmos certos de sua efetividade para analises mas interessados na formalização computacional possível destas para processos composicionais.

3.1.4.1 Notas Comuns sob transposição

Tomemos o seguinte exemplo: Dado um grupo em sua forma prima [0,2,5] (ou "4-10"na forma cardinal) quando transpomos para o intervalo 2 e seu inverso 10, obtemos duas notas iguais para cada um destes grupos.

Figura 26 – Notas comuns na transposição.

Fonte: autor

Isso acontece porque o vetor de intervalos para esta forma é <1,2,2,0,1,0> e podemos observar que há uma fórmula geral que prova que o número de incidências comuns de uma determinada classe de alturas em sua transposição será o número de repetições deste intervalo em seu vetor original. Neste caso por exemplo temos duas incidências do intervalo de classe 2 portanto as transposições T2 e T10 terão duas notas em comum com T0.

Há uma exceção a esta regra:

É preciso observar que para o caso do trítono a inversão é simétrica, portanto para cada trítono teremos duas notas em comum. Como no exemplo acima: 10 e 4 geram as duas simétricas 4 e 10 e portanto um trítono gerou duas notas em comum e assim por diante.

Interessante pensar também que o vetor de intervalos irá determinar transposições onde não existem notas nenhumas em comum. Composicionalmente isso pode ser visto como uma possibilidade de transpor para uma sessão totalmente distinta da anterior, criando algum discurso com estas transições.

Figura 27 – Notas comuns na transposição com trítono.

Figura 28 – A simetria transpositiva é obtida através de um padrão de intervalos palíndromo.

Fonte: autor

(6 11 13 18) (0 1 2 6 8) y-form (1 1 4 2)

Figura 29 – A forma circular é mais geral do que a numérica para a visualização do padrão de simetrias.

- 3.1.4.2 Notas Comuns sob inversão
- 3.1.4.3 Simetria Transpositiva
- 3.1.4.4 Complemento

3.1.4.5 Relação Z entre grupos de classes de alturas

George Perle exemplifica a relação Z como uma das relações que não são intuitivas em sua rotina composicional:

Mas nenhum destes argumentos teria qualquer peso para mim se eu pudesse ao menos escutar as correspondências que Forte descreve. Eu posso descobrir estas conexões entre coleções Z-relacionadas somente sujeitando-as a um escrutínio analítico que não tem nada a ver com minha experiência intuitiva como ouvinte ou compositor. Ou, para falar de maneira mais sincera, permitir que o Professor Forte conduza seu escrutínio analítico para mim. (PERLE, 1990, p.168)¹

Perguntamo-nos se este tipo de afirmação não seria um tanto arbitrária, afinal as diferenças entre terças maiores e menores não são também no fundo resultado de uma

But none of these arguments would carry any weight with me if I could only hear thes correspondences that Forte describes. I can discover these connections between Z-related collections only by sub-jecting them to an analytical scrutiny that has nothing whatever to do with my intuitive experience as a listener or as a composer. Or, to speak more candidly, by allowing Professor Forte to conduct this analytical scrutiny for me. (PERLE, 1990, p.168)

Figura 30 – O complemento contém todas alturas cromáticas que o conjunto original não possui.

Figura 31 – Dois conjuntos Z-relacionados possuem os mesmos intervalos sem serem inversões ou transposições um dos outros.

Fonte: autor (adaptado de exemplo do tutorial MathTools do OM)

exposição cultural associativa a esta nomenclatura e consequentemente a sua geometria e particularidade numérica em relação a uma funcionalidade dentro dos grupos diatônicos a quais pertencem? Se tudo entao e um condicionamento cultural da escuta por onde buscar novas escutas?

Parece que de alguma maneira a relação Z acaba por nomear uma sonoridade por uma particularidade entre relação numérica e geométrica curiosa, e no mínimo serve como mnemônico de uma relação entre estas sonoridades.

3.1.5 Arbitrariedade e indução na segmentação atonal

Encontrar estas relações em composições anteriores a sua formalização é que obviamente é um problema para uma estésica indutiva(NATTIEZ, 2001) que se vale de todos esforços documentais para provar o quanto esta atitude composicional já existiu inconscientemente em gestos instrumentais não condicionados pela geometria constatada.

Esta questão sobre arbitrariedade na busca por estas particularidades de relações entre grupos em análises de peças principalmente anteriores a estas formulações nos parecem no fundo uma aporia. Esforços foram feitos de todas as maneiras para comprovar a tanto a eficacia quanto a ineficácia do sistema para aplicação em analises, como por exemplo a tese Haimo (1996) buscando "falácias" no esquema analítico clássico de teoria de grupos quando confrontado com anotações originais de Arnold Shoenberg.

(STRAUS, 2004) sentencia:

A resposta é que você não pode saber com antecedência. Você tem que entrar no mundo da peça — ouvindo, tocando, e cantando — até que você obtenha um senso de quais ideias musicais são fundamentais e recorrentes. No processo, você encontrar-se-á movendo-se em torno de um tipo familiar de círculo conceitual. Você não pode saber quais são as principais ideias até que você as veja recorrer; mas você não pode encontrar recorrências até que você saiba quais são as ideias principais. A única solução prática é bisbilhotar a peça, propondo e testando hipóteses conforme você prossegue. (STRAUS, 2004)

Nattiez(NATTIEZ, 2003a) faz uma crítica minuciosa da aplicação da teoria de grupos das classes de altura derivada do trabalho de Allen Forte, em busca de uma descrição estésica que justifique a aplicação de toda a formalização de seu nível neutro de nomenclaturas e chega a seguinte conclusão:

(...)seria fascinante ver que resultados obteríamos comparando grupos quais descreveriam unidades previamente segmentadas por uma análise paradigmática num nível neutro. Se nos sentimos intimidados a confiar nas análises preliminares, com efeito, o caleidoscópio com qual o analista vai descobrir trabalhos atonais vai efetivamente ser fruto de operações mágicas, não porque o compositor escondeu-as ali, mas porque

o musicologista, através do truque com as mãos, esta agindo como um mágico!(NATTIEZ, 2003a, $\ p.16)^2$

^(...)it would be fascinating to see what results we would obtain from comparing sets which would describe units previously segmented by a paradigmatic analysis at the neutral level. If we do feel compelled to rely on this preliminary analysis, in effect, the kaleidoscope which the analyst will discover in atonal works will effectively be the fruit of magical operations, not because the composer hid them there, but because the musicologist, through sleight of hand, was acting like a magician! (NATTIEZ, 2003a, p.16)

Conclusão

Sed consequat tellus et tortor. Ut tempor laoreet quam. Nullam id wisi a libero tristique semper. Nullam nisl massa, rutrum ut, egestas semper, mollis id, leo. Nulla ac massa eu risus blandit mattis. Mauris ut nunc. In hac habitasse platea dictumst. Aliquam eget tortor. Quisque dapibus pede in erat. Nunc enim. In dui nulla, commodo at, consectetuer nec, malesuada nec, elit. Aliquam ornare tellus eu urna. Sed nec metus. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

Phasellus id magna. Duis malesuada interdum arcu. Integer metus. Morbi pulvinar pellentesque mi. Suspendisse sed est eu magna molestie egestas. Quisque mi lorem, pulvinar eget, egestas quis, luctus at, ante. Proin auctor vehicula purus. Fusce ac nisl aliquam ante hendrerit pellentesque. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Morbi wisi. Etiam arcu mauris, facilisis sed, eleifend non, nonummy ut, pede. Cras ut lacus tempor metus mollis placerat. Vivamus eu tortor vel metus interdum malesuada.

Sed eleifend, eros sit amet faucibus elementum, urna sapien consectetuer mauris, quis egestas leo justo non risus. Morbi non felis ac libero vulputate fringilla. Mauris libero eros, lacinia non, sodales quis, dapibus porttitor, pede. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Morbi dapibus mauris condimentum nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Etiam sit amet erat. Nulla varius. Etiam tincidunt dui vitae turpis. Donec leo. Morbi vulputate convallis est. Integer aliquet. Pellentesque aliquet sodales urna.

ANDREATTA, M. *OM Pitch Class Set Tutorial*. 2014. Disponível em: http://recherche.ircam.fr/equipes/repmus/OpenMusic/user-doc/DocFiles/znTutorial/. Citado na página 46.

ANDREATTA, M.; AGON, C. Implementing algebraic methods in openmusic. In: *Proceedings of the International Computer Music Conference, Singaphore.* [S.l.: s.n.], 2003. Citado na página 46.

ANDREATTA, M.; RAHN, J.; BARDEZ, J. M. Around set theory. [S.l.]: Delatour France, 2013. ISBN 2752100523. Citado na página 46.

ANTOKOLETZ, E. The music of Béla Bartók: a study of tonality and progression in twentieth-century music. [S.l.]: Univ of California Press, 1984. Citado na página 16.

BABBITT, M. Who cares if you listen? *High Fidelity*, v. 8, n. 2, p. 38–40, 1958. Citado na página 41.

BERNSTEIN, L. The unanswered question: Six talks at Harvard. [S.l.]: Harvard University Press, 1976. Citado na página 22.

CHOMSKY, N. Syntactic structures. Mouton, 1957. Citado 2 vezes nas páginas 16 e 21.

CHOMSKY, N. Aspects of the Theory of Syntax. [S.l.]: MIT press, 1965. Citado na página 21.

COHN, R. Introduction to neo-riemannian theory: a survey and a historical perspective. Journal of Music Theory, JSTOR, p. 167–180, 1998. Citado na página 33.

CORTAZAR, J. O Jogo Da Amarelinha. [S.l.]: Editora Civilizacao Brasileira, 1963. Citado na página 5.

DEBRIL, D. *OM Pitch Class Set Tutorial FR*. 2014. Disponível em: http://www.deb8076.eu/AnalyseBeethovenST/index.html>. Citado na página 46.

FORTE, A. The structure of atonal music. [S.l.]: Yale University Press, 1973. Citado na página 7.

FORTE, A. The harmonic organization of the rite of spring. [S.l.]: Yale University Press, 1978. Citado na página 45.

GUIGUE, D. Para uma análise orientada a objetos. *Cadernos de Estudo: Análise Musical*, n. 8/9, p. 47–57, 1995. Citado na página 28.

GUIGUE, D. *Estética da Sonoridade*. São Paulo: Editora Perpectiva, 2012. Citado na página 28.

HAIMO, E. Atonality, analysis, and the intentional fallacy. *Music Theory Spectrum*, Oxford University Press, v. 18, n. 2, p. 167–199, 1996. Citado na página 56.

HANSEN, N. C. The legacy of lerdahl and jackendoff 's a generative theory of tonal music. *Danish Yearbook of Musicology*, v. 2010, n. 38, p. 33–55, 2011. Citado na página 33.

IAZZETTA, F. Música e mediação tecnológica. São Paulo: Perspectiva-Fapesp, 2009. Citado na página 15.

KRUMHANSL, C. L. Perceptual structures for tonal music. *Music Perception*, JSTOR, p. 28–62, 1983. Citado na página 33.

KRUMHANSL, C. L. Cognitive foundations of musical pitch. [S.l.]: Oxford University Press New York, 1990. Citado 5 vezes nas páginas 9, 32, 33, 39 e 40.

LASKE, O.-E. Music, memory, and thought: Explorations in cognitive musicology. [S.l.]: Music Department, University of Pittsburgh, 1977. Citado na página 22.

LENDVAI, E.; BUSH, A. *Béla Bartók: an analysis of his music.* [S.l.]: Kahn & Averill London, 1971. Citado na página 16.

LERDAHL, F. Tonal pitch space. *Music Perception: An Interdisciplinary Journal*, University of California Press, v. 5, n. 3, p. pp. 315–349, 1988. ISSN 07307829. Disponível em: http://www.jstor.org/stable/40285402. Citado 4 vezes nas páginas 9, 33, 34 e 35.

LERDAHL, F. Atonal prolongational structure. *Contemporary Music Review*, Taylor & Francis, v. 4, n. 1, p. 65–87, 1989. Citado na página 42.

LERDAHL, F. Cognitive constraints on compositional systems. *Contemporary Music Review*, Taylor & Francis, v. 6, n. 2, p. 97–121, 1992. Citado 3 vezes nas páginas 26, 40 e 42.

LERDAHL, F. Calculating tonal tension. *Music Perception*, JSTOR, p. 319–363, 1996. Citado 4 vezes nas páginas 9, 34, 35 e 36.

LERDAHL, F. *Tonal pitch space*. [S.l.]: Oxford University Press, 2001. Citado na página 33.

LERDAHL, F. Genesis and architecture of the gttm project. JSTOR, 2009. Citado 7 vezes nas páginas 7, 9, 22, 26, 33, 37 e 43.

LERDAHL, F.; JACKENDOFF, R. S. A generative theory of tonal music. [S.l.]: MIT press, 1983. Citado 13 vezes nas páginas 7, 9, 11, 21, 22, 23, 25, 26, 27, 28, 29, 30 e 32.

LERDAHL, F.; KRUMHANSL, C. L. Modeling tonal tension. *Music Perception: An Interdisciplinary Journal*, University of California Press, v. 24, n. 4, p. pp. 329–366, 2007. ISSN 07307829. Disponível em: http://www.jstor.org/stable/10.1525/mp.2007.24.4.329. Citado 2 vezes nas páginas 33 e 34.

LESTER, J. Analytic approaches to twentieth-century music. WW Norton & Company, 1989. Citado na página 45.

LEWIN, D. Generalized musical intervals and transformations. [S.l.]: Oxford University Press, 2007. Citado na página 33.

LINDBLOM, B.; SUNDBERG, J. Towards a generative theory of melody. [S.l.]: Department of Phonetics, Institute of Linguistics, University of Stockholm, 1970. Citado na página 22.

MARSHALL, W. E. An Analysis Of The Mikrokosmos Of Béla Bartók. Tese (Doutorado), 1946. Citado na página 16.

MEREDITH, D. Review of david temperley's the cognition of basic musical structures. *Musicae Scientae*, v. 6, n. 2, p. 287–302, 2002. Citado na página 36.

MOORER, J. A. Music and computer composition. Communications of the ACM, ACM, v. 15, n. 2, p. 104–113, 1972. Citado na página 22.

NATTIEZ, J. O modelo tripartite de semiologia musical. *Debates 6*, Unirio, Rio de Janeiro, v. 6, p. pp. 7–39, 2001. Disponível em: http://www.unirio.br/conferir. Citado na página 56.

NATTIEZ, J.-J. Allen forte's set theory, neutral level analysis and poietics. *Around Set Theory*, p. 1, 2003. Citado 2 vezes nas páginas 56 e 57.

NATTIEZ, J.-J. A comparação das análises sob o ponto de vista semiológico (a propósito do tema da sinfonia em sol menor, k. 550, de mozart). Per Musi-Revista de Performance Musical, p. 5–40, 2003. Citado na página 21.

NATTIEZ, J.-J.; DUNSBY, J. M. Fondements d'une sémiologie de la musique. *Perspectives of New Music*, JSTOR, p. 226–233, 1977. Citado na página 22.

NATTIEZ, J.-J.; SAMPAIO, R. d. L. P. Modelos lingüísticos e análise das estruturas musicais. *Per Musi*, v. 9, p. 5–46, 2004. Citado 3 vezes nas páginas 22, 25 e 28.

PERLE, G. Pitch-class set analysis: An evaluation. *Journal of Musicology*, JSTOR, p. 151–172, 1990. Citado 2 vezes nas páginas 50 e 54.

PERLE, G. Serial Composition and Atonality: An Introduction to the Music of Schoenberg, Berg, and Webern. University of California Press, 1991. ISBN 9780520074309. Disponível em: http://books.google.com.br/books?id=4C8RjEaBRf4C. Citado na página 50.

RAHN, J. The swerve and the flow: Music's relationship to mathematics. *Perspectives of New Music*, Perspectives of New Music, v. 42, n. 1, p. pp. 130–148, 2004. ISSN 00316016. Disponível em: http://www.jstor.org/stable/25164542. Citado na página 45.

ROADS, C. Composing grammars. international Computer Music Conference, UCSD, San Diego, 1978. Citado na página 22.

ROADS, C. Grammars as representations for music. *Computer Music Journal*, JSTOR, p. 48–55, 1979. Citado na página 22.

RUWET, N. Théorie et méthodes dans les études musicales. *Musique en jeu*, v. 17, p. 11–35, 1975. Citado na página 22.

SMOLIAR, S. W. Music programs: An approach to music theory through computational linguistics. *Journal of Music Theory*, JSTOR, p. 105–131, 1976. Citado na página 22.

STRAUS, J. N. Introduction to Post-Tonal Theory (3rd Edition). [S.l.]: Pearson, 2004. Citado 4 vezes nas páginas 7, 46, 51 e 56.

SUCHOFF, B. *Guide to Bartók's Mikrokosmos*. [S.l.]: Boosey and Hawkes, 1971. Citado na página 16.

SUCHOFF, B. Bartók's Mikrokosmos: Genesis, Pedagogy, and Style. [S.l.]: Scarecrow Press, 2004. Citado na página 16.

TEMPERLEY, D. What's key for key? the krumhansl-schmuckler key-finding algorithm reconsidered. *Music Perception*, JSTOR, p. 65–100, 1999. Citado na página 40.

TEMPERLEY, D. The cognition of basic musical structures. [S.l.]: MIT press, 2004. Citado 12 vezes nas páginas 7, 9, 22, 33, 34, 35, 37, 38, 40, 41, 45 e 46.

WINOGRAD, T. Linguistics and the computer analysis of tonal harmony. *Journal of Music Theory*, JSTOR, p. 2–49, 1968. Citado na página 22.

APÊNDICE A - Repositório de Códigos

A.0.6 Biblioteca de Algoritmos

```
\mathbf{def} \mod 12(n):
      \longrightarrowreturn n % 12
def note_name(number):
     \longrightarrow notes = "C_{\sqcup \sqcup}D_{\sqcup}E_{\sqcup}F_{\sqcup}G_{\sqcup}A_{\sqcup}B".split()
      \longrightarrow return notes [mod12(number)]
for i in intervalos:
      \longrightarrow \mathbf{if} (i in maiores):
         \rightarrow \longrightarrow \mathbf{i} \mathbf{f} \quad (i = (4,7)):
               \longrightarrow tipos.append(("maior",0))
                     \longrightarrow i f (i == (5,9)):
                  \longrightarrow tipos.append (("maior",1))
                \longrightarrow if (i = (3,8)):
                      \rightarrow \longrightarrow \text{tipos.append}(("maior",2))
          \rightarrow if (i in menores):
               \longrightarrow \mathbf{i} \mathbf{f} \ (i = (3,7)):
                   \longrightarrow tipos.append (("menor",0))
                   \longrightarrow \mathbf{i} \mathbf{f} \quad (\mathbf{i} = (5, 8)):
                  \longrightarrow tipos.append (("menor",1))
                     \longrightarrow \mathbf{i} \mathbf{f} \quad (\mathbf{i} = (4,9)):
                  \rightarrow tipos.append(("menor",2))
          \rightarrow if (i in aumentados):
                   \longrightarrow tipos.append(("aumentado", "not"))
         \rightarrow if (i in diminutos):
               \longrightarrow if (i = (3,6)):
                     \longrightarrow tipos.append(("diminuto",0))
                \longrightarrow if (i = (6,9)):
                   \longrightarrow tipos.append(("diminuto",1))
                \longrightarrow if (i = (3,9)):
                 \longrightarrow tipos.append (( "diminuto",2))
```


ANEXO A – Tabela de Pitch Class Set de Allen Forte

#	Fortecross-referenced Set-name	Prime	Interval Vector	Descriptive name/properties
0	0-1	empty	000000	Null set
$\frac{1}{2}$	1-1* 2-1*	0 01	000000 100000	Unison Semitone
3	2-2*	02	010000	Whole-tone
3 4	2-3*	02	001000	Minor Third
5	2-4*	03	000100	Major Third
6	2-5*	05	000100	Perfect Fourth
7	2-6*(6)	06	000010	Tritone
8	3-1*	012	210000	BACH /Chromatic Trimirror
9	3-2	013	111000	Phrygian Trichord
10	3-2B	023	111000	Minor Trichord
11	3-3	014	101100	Major-minor Trichord.1
12	3-3B	034	101100	Major-minor Trichord.2
13	3-4	015	100110	Incomplete Major-seventh Chord.1
14	3-4B	045	100110	Incomplete Major-seventh Chord.2
15	3-5	016	100011	Rite chord.2, Tritone-fourth.1
16	3-5B	056	100011	Rite chord.1, Tritone-fourth.2
17	3-6*	024	020100	Whole-tone Trichord
18	3-7	025	011010	Incomplete Minor-seventh Chord
19	3-7B	035	011010	Incomplete Dominant-seventh Chord.2
20	3-8	026	010101	Incomplete Dominant-seventh Chord.1/
21	3-8B	046	010101	Incomplete Half-dim-seventh Chord
22	3-9*	027	010020	Quartal Trichord
23	3-10*	036	002001	Diminished Chord
24	3-11	037	001110	Minor Chord
25	3-11B	047	001110	Major Chord
26	3-12*(4)	048	000300	Augmented Chord
27	4-1*	0123	321000	BACH /Chromatic Tetramirror
28	4-2	0124	221100	Major-second Tetracluster.2
29	4-2B	0234	221100	Major-second Tetracluster.1
30	4-3*	0134	212100	Alternating Tetramirror
31	4-4	0125	211110	Minor Third Tetracluster.2
32	4-4B	0345	211110	Minor Third Tetracluster.1
33	4-5	0126	210111	Major Third Tetracluster.2
34	4-5B	0456	210111	Major Third Tetracluster.1
35	4-6*	0127	210021	Perfect Fourth Tetramirror
36	4-7*	0145	201210	Arabian Tetramirror
37	4-8*	0156	200121	Double Fourth Tetramirror
38	4-9*(6)	0167	200022	Double Tritone Tetramirror
39	4-10*	0235	122010	Minor Tetramirror
40	4-11	0135	121110	Phrygian Tetrachord
41	4-11B	0245	121110	Major Tetrachord
42	4-12<	0236	112101	Harmonic-minor Tetrachord
43	4-12B<	0346	112101	Major-third Diminished Tetrachord
44	4-13	0136	112011	Minor-second Diminished Tetrachord
45	4-13B	0356	112011	Perfect-fourth Diminished Tetrachord
46	4-14<	0237	111120	Major-second Minor Tetrachord
47	4-14B<	0457	111120	Perfect-fourth Major Tetrachord
48	4-Z1529	0146	111111	All-interval Tetrachord.1
49	4-Z15B29	0256	111111	All-interval Tetrachord.2

50	4-16	0157	110121	Minor-second Quartal Tetrachord
51	4-16B	0267	110121	Tritone Quartal Tetrachord
52	4-17*	0347	102210	Major-minor Tetramirror
53	4-18	0147	102111	Major-diminished Tetrachord
54	4-18B	0367	102111	Minor-diminished Tetrachord
55	4-19	0148	101310	Minor-augmented Tetrachord
56	4-19B	0348	101310	Augmented-major Tetrachord
57	4-20*	0158	101220	Major-seventh Chord
58	4-21*	0246	030201	Whole-tone Tetramirror
59	4-22	0247	021120	Major-second Major Tetrachord
60	4-22B	0357	021120	Perfect-fourth Minor Tetrachord
61	4-23*	0257	021030	Quartal Tetramirror
62	4-24*	0248	020301	Augmented Seventh Chord
63	4-25*(6)	0268	020202	French-sixth Chord
64	4-26*	0358	012120	Minor-seventh Chord
65	4-27	0258	012111	Half-diminished Seventh Chord
66	4-27B	0368	012111	Dominant-seventh/German-sixth Chord
67	4-28*(3)	0369	004002	Diminished-seventh Chord
68	4-Z2915	0137	111111	All-interval Tetrachord.3
69	4-Z29B15	0467	111111	All-interval Tetrachord.4
70	5-1*	01234	432100	Chromatic Pentamirror
71	5-2	01235	332110	Major-second Pentacluster.2
72	5-2B	02345	332110	Major-second Pentacluster.1
73	5-3	01245	322210	Minor-second Major Pentachord
74	5-3B	01345	322210	Spanish Pentacluster
75	5-4	01236	322111	Blues Pentacluster
76	5-4B	03456	322111	Minor-third Pentacluster
77	5-5	01237	321121	Major-third Pentacluster.2
78	5-5B	04567	321121	Major-third Pentacluster.1
79	5-6	01256	311221	Oriental Pentacluster.1, Raga Megharanji (13161)
80	5-6B	01456	311221	Oriental Pentacluster.2
81	5-7	01267	310132	DoublePentacluster.1, Raga Nabhomani (11415)
82	5-7B	01567	310132	Double Pentacluster.2
83	5-8*	02346	232201	Tritone-Symmetric Pentamirror
84	5-9	01246	231211	Tritone-Expanding Pentachord
85	5-9B	02456	231211	Tritone-Contracting Pentachord
86	5-10	01346	223111	Alternating Pentachord.1
87	5-10B	02356	223111	Alternating Pentachord.2
88	5-11	02347	222220	Center-cluster Pentachord.1
89	5-11B	03457	222220	Center-cluster Pentachord.2
90	5-Z12*36	01356	222121	Locrian Pentamirror
91	5-13	01248	221311	Augmented Pentacluster.1
92	5-13B	02348	221311	Augmented Pentacluster.2
93	5-14	01257	221131	Double-seconds Triple-fourth Pentachord.1
94	5-14B	01257 02567	221131	Double-seconds Triple-fourth Pentachord.2
95	5-14D 5-15*	01268	220222	Assymetric Pentamirror
96	5-16	01203 01347	213211	Major-minor-dim Pentachord.1
97	5-16B	03467	213211	Major-minor-dim Pentachord.2
98	5-Z17*37	01348	212320	Minor-major Ninth Chord
99	5-Z18<38	01343 01457	212221	Gypsy Pentachord.1
		J	 _	- 9 E - 9

ANEXO B – Regras da Teoria Gerativa da Musica Tonal