M	ATH	202,	Fall	2023
In	clas	C MOI	rle 1	=

Name:	
Row and Seat	

"The pencil is mightier than the pen."

ROBERT M. PIRSIG

In class work **15** has questions **1** through **9** with a total of **6** points. Turn in your work at the end of class *on paper*. This assignment is due *Thursday 19 October 13:20*.

- 1. Use *integration by parts* to find an antiderivative of each of the following:
 - (a) $\int x e^{-x} dx$

Solution:

$$\int x e^{-x} dx = (-x - 1) e^{-x}$$

(b) $\int x^2 e^{-x} dx$

$$\int x^2 e^{-x} dx = (-x^2 - 2x - 2) \% e^{-x}.$$

- 2. Define a region of the xy plane Q by $Q = \{(x, y) | 0 \le y \le xe^{-x} \text{ and } 0 \le x \le 5\}$. **Hint:** For both parts of this question, use an answer from Question 1.
 - (a) Find Area(Q)

Area(Q) =
$$\int_{0}^{5} xe^{-x} dx = 7e^{-5} - 2$$
.

(b) Find the x coordinate of the centroid of Q.

- 3. Find a formula for each antiderivative.
 - (a) $\int \frac{x+9}{(x+4)(x+5)} dx$ (Use partial fractions).

(b) $\int \frac{x^3}{\sqrt{1-x^2}} dx$. (Use the substitution $x = \sin(\theta)$, where $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$.)

- 4. Find the limit of each sequence a whose formula is
 - (a) $a_n = \frac{(2n-1)(7n+1)}{n^2+1}$

(b) $a_n = n \ln \left(1 + \frac{\sqrt{2}}{n}\right)$

(c)
$$a_n = \sqrt{n^2 + 46n + 1} - n$$

5. Give an example of a sequence a such that $\lim_{k\to\infty} a_k = 0$ and $\lim_{n\to\infty} \sum_{k=1}^n a_k = \infty$.

Solution:

6. Give an example of a sequence a such that $\lim_{k\to\infty} a_k = 0$ and $\lim_{n\to\infty} \sum_{k=1}^n a_k$ is a real number.

7. Show that the series	$\sum_{k=0}^{\infty} \sqrt{k^2 + 46k + 1} - k$ diverges. Justify your answer.
	:=1

8. Find the numerical value of the sum $\sum_{k=0}^{\infty} 5\left(\frac{2}{3}\right)^k$.

9. Find the numerical value for each improper integral.

(a)
$$\int_{-\infty}^{\infty} \frac{1}{81 + x^2} \, \mathrm{d}x.$$

Solution:

(b)
$$\int_{0}^{\infty} \sin(x) e^{-x} dx.$$