Analyzing Massive Data Sets Summer Semester 2019

Prof. Dr. Peter Fischer
Institut für Informatik
Lehrstuhl für Datenbanken und Informationssysteme

Chapter 5: Clustering

High-Dimensional Data and Similarity

- First conceptual and algorithmic part of the lecture
- Two core concepts:
 - **High-Dimensional Data**: Data items represented by many data points (hundreds, thousands, ... possibly out of a much large space)
 - Analyzing a single or few dimensions insufficient to understand items
 - **Similarity/Distance**: Expressing pair-wise similarity over all features
- Applications:
 - Finding Similar Items: pairwise (this chapter)
 - **Clustering**: Identify structure / groups using similarity
 - Retrieval: Similarity between search expression and data set
- Strategies for massive volumes:
 - Model of clustering has significant impact on complexity (and semantics)
 - Getting from main memory to disk requires additional tweaking

High Dimensional Data

• Given a cloud of data points we want to understand its structure

The Problem of Clustering

- Given a set of points, with a notion of distance between points, group the points into some number of clusters, so that
 - Members of a cluster are close/similar to each other
 - Members of different clusters are dissimilar

Usually:

- Points are in a high-dimensional space
- Similarity is defined using a distance measure
 - Euclidean, Cosine, Jaccard, edit distance, ...

Example: Clusters & Outliers

Clustering is a hard problem!

Why is it hard?

- Clustering in two dimensions looks easy
- Clustering small amounts of data looks easy
- And in most cases, looks are not deceiving
- Many applications involve not 2, but 10 or 10,000 dimensions
- High-dimensional spaces look different: Almost all pairs of points are at about the same distance (unless there is a very strong imbalance)
- Intuition for Euclidean Distance (similar for others):
 - Assume a value space in each dimension from 0 to 1
 - Single dimension: points can be between 0 and 1 apart, average is 1/3
 - With many dimensions d, at least one dimension will be close to 1
 - Therefore, the minimum value is also at least 1
 - The maximum value is \sqrt{d} , but few dimensions actually close to maximum
 - Most values will be around the average

Clustering Problem: Music CDs

- Intuitively: Music divides into categories, and customers prefer a few categories
 - But what are categories really? (content-based recommendation)
- Represent a CD by a set of customers who bought it:
 Similar CDs have similar sets of customers, and vice-versa (collaborative recommendation)
- Think of a space with one dim. for each customer
 - Values in a dimension may be 0 or 1 only
 - A CD is a point in this space $(x_1, x_2, ..., x_k)$, where $x_i = 1$ iff the i th customer bought the CD
- For Amazon, the dimension is hundreds of millions
- Task: Find clusters of similar CDs

Clustering Problem: Documents

Finding topics:

- Represent a document by a vector $(x_1, x_2, ..., x_k)$, where $x_i = 1$ iff the i th word (in some order) appears in the document
 - It actually doesn't matter if k is infinite; i.e., we don't limit the set of words
- Documents with similar sets of words may be about the same topic

Huge Design Space for Clustering

Cluster Models:

- Connectivity: nearest fitting object
- Centroid: common center point
- Distributions: typically around "centers"
- Density: require substantial amount neighbors before linking
- Graphs: Cliques, high connectedness
- Subspace: consider only certain dimensions
- Neural networks: self-organizing maps

Assignment:

- Hard clustering: at most in one cluster
- Soft/fuzzy clustering: probability to belong to one or more clusters

• Refined Assigment:

- Strict partitioning (with outliers)
- Overlapping: at same level, often "hard"
- Hierarchical: contained in parent set

Focus of the lecture

1) Hierarchical (Linkage):

- Agglomerative (bottom up):
 - Initially, each point is a cluster
 - Repeatedly combine the two "nearest" clusters into one
- Divisive (top down):
 - Start with one cluster and recursively split it

2) Point assignment (partitioning):

- Maintain a set of clusters
- Points belong to "nearest" cluster

Hierarchical Clustering

- Key operation:
 Repeatedly combine two nearest clusters
- In case of ties, break randomly

- Three important questions:
 - 1) How do you represent a cluster of more than one point?
 - 2) How do you determine the "nearness" of clusters?
 - 3) When to stop combining clusters?
- Multiple options for 3, mostly orthogonal to 1 and 2:
 - Number of clusters known beforehand and reached
 - Single "root" cluster: utilize hierarchy
 - Quality of clusters too low or no longer increasing

Hierarchical Clustering

- Key operation: Repeatedly combine two nearest clusters
- (1) How to represent a cluster of many points?
 - Key problem: As you merge clusters, how do you represent the "location" of each cluster, to tell which pair of clusters is closest?
- Euclidean case: each cluster has a centroid = average of its (data)points
- (2) How to determine "nearness" of clusters?
 - Measure cluster distances by distances of centroids

Example: Hierarchical clustering

And in the Non-Euclidean Case?

What about the Non-Euclidean case?

- The only "locations" we can talk about are the points themselves
 - i.e., there is no "average" of two points

- Think of two sets or two strings!
- Approach 1:
 - (1) How to represent a cluster of many points?
 No explicit representative
 - (2) How do you determine the "nearness" of clusters?
 - 1.1 Minimum distance of any two nodes in either cluster (single linkage)
 - 1.2. Maximum distance of any two nodes in either cluster (complete linkage)
 - 1.3. Average distance among all pairs of nodes in each cluster/union ...

Approach 2:

- (1) How to represent a cluster of many points? clustroid = (data)point "closest" to other points
- (2) How do you determine the "nearness" of clusters?

 Treat clustroid as if it were centroid, when computing inter-cluster distances

"Closest" Point?

- (1) How to represent a cluster of many points? clustroid = point "closest" to other points
- Possible meanings of "closest":
 - Smallest maximum distance to other points
 - Smallest average distance to other points
 - Smallest sum of squares of distances to other points
 - For distance metric **d** clustroid **c** of cluster **C** is:

Centroid is the avg. of all (data)points in the cluster. This means centroid is an "artificial" point.

Clustroid is an **existing** (data)point that is "closest" to all other points in the cluster.

Defining "Nearness" of Clusters

- (2) How do you determine the "nearness" of clusters?
 - Approach 3:

Intercluster distance = minimum of the distances between any two points, one from each cluster

Approach 4:

Pick a notion of "cohesion" (intracluster quality) of clusters, e.g., maximum distance from the clustroid

- Merge clusters whose union is most cohesive
- Approach 4.1: Use the diameter of the merged cluster = maximum distance between points in the cluster
- Approach 4.2: Use the average distance between points in the cluster
- Approach 4.3: Use a density-based approach
 - Take the diameter or avg. distance, e.g., and divide by the number of points in the cluster

Implementation

- Naïve implementation of hierarchical clustering:
 - At each step, compute pairwise distances between all pairs of clusters, then merge
 - $O(N^3)$
- Careful implementation using priority queue can reduce time to $O(N^2 \log N)$
 - Still too expensive for really big datasets that do not fit in memory
- Constrained/naïve linkage models allow $O(N^2)$
 - But often create degraded clusters

k-means clustering

k–means Algorithm(s)

- Assumes Euclidean space/distance
- Minimizes
 - Squared distances to cluster centers
 - Variance among cluster members
- Start by picking k, the number of clusters (most difficult problem in practice)
- Initialize clusters by picking one point per cluster
- Result quality and runtime often depend on correct initialization
- Wide range of approaches
 - Naïve: Pick all k points at random
 - **Simple improvement:** Pick one point at random, then **k-1** other points, each as far away as possible from the previous points.

Drawback: outliers

• K-Means++: Middle ground, draw from distribution

Populating Clusters

- 1. For each point, place it in the cluster whose current centroid it is nearest
- 2. After all points are assigned, update the locations of centroids of the k clusters
- Reassign all points to their closest centroid
 - Sometimes moves points between clusters

Repeat 2 and 3 until convergence

- Convergence: Points don't move between clusters and centroids stabilize
- Note: Generalization for different models
 GMM EM (statistical assignment)
 - Same steps
 - More general meaning: assign to distribution, adapt distribution

Example: Assigning Clusters

Clusters after round 1

Example: Assigning Clusters

x ... data point ... centroid

Example: Assigning Clusters

x ... data point ... centroid

Clusters at the end

Getting the *k* right

How to select *k*?

- Try different k, looking at the change in the average distance to centroid as k increases
- Average falls rapidly until right k, then changes little

Example: Picking k

Too few; many long distances to centroid.

Example: Picking k

Just right; distances rather short.

Example: Picking k

Too many;

little improvement in average

distance.

Limitations of k-means

Assumes "spherical data"

Assumes evenly sized clusters

The BFR Algorithm

Extension of k-means to large data

BFR Algorithm

• BFR [Bradley-Fayyad-Reina] is a variant of *k*-means designed to handle **very large** (disk-resident) data sets

- Assumes that clusters are normally distributed around a centroid in a Euclidean space
 - Standard deviations in different dimensions may vary
 - Clusters are axis-aligned ellipses
- Efficient way to summarize clusters (want memory required O(clusters) and not O(data))

BFR Algorithm - Overview

- Standard k-means needs to access every data element at every iteration (to check / adapt points with cluster centers)
- In BFR, points are read from disk one main-memory-full at a time
 - Build initial information by sampling
 - Load data block (~ RAM size) and process it
 - Single pass over full data
 - Incremental results possible: Return initial, not fully precise results, improve with additional data

BFR Summaries and Initialization

- Most points from previous memory loads are summarized by simple statistics
- To begin, from the initial load we select the initial **k** centroids by some sensible approach:
 - Take **k** random points
 - Take a small random sample and cluster optimally
 - Take a sample; pick a random point, and then
 k-1 more points, each as far from the previously selected points as possible

Summary: Three Classes of Points

3 sets of points which we keep track of:

- Discard set (DS):
 - Points close enough to a centroid to be summarized
- Compression set (CS):
 - Groups of points that are close together but not close to any existing centroid
 - These points are summarized, but not assigned to a cluster
- Retained set (RS):
 - Isolated points waiting to be assigned to a compression set

BFR: "Galaxies" Picture

Intuition:

- Due to the data distribution, most points are close to a center
- Summaries are mostly precise and cover many points in little space

Discard set (DS): Close enough to a centroid to be summarized **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

Summarizing Sets of Points

For each cluster, the discard set (DS) is <u>summarized</u> by:

- The number of points, N
- The vector SUM, whose i^{th} component is the sum of the coordinates of the points in the i^{th} dimension
- The vector **SUMSQ**: *i*th component = sum of squares of coordinates in *i*th dimension
- Space requirements (d = number of dimensions)
 - 2d + 1 values represent any size cluster
 - Without summary: d * n

37

Summarizing Points: Comments

- Average in each dimension (the centroid)
 can be calculated as SUM_i / N
 - $SUM_i = i^{th}$ component of SUM
- Variance of a cluster's discard set in dimension i is: (SUMSQ_i / N) (SUM_i / N)²
 - And standard deviation is the square root of that
- Adding points or full clusters to cluster are straightforward
- Unless we run into an overflow, the computation is stable
- Next step: Actual clustering

Note: Dropping the "axis-aligned" clusters assumption would require storing full covariance matrix to summarize the cluster. So, instead of **SUMSQ** being a *d*-dim vector, it would be a *d* x *d* matrix, which is too big!

The "Memory-Load" of Points

Processing the "Memory-Load" of points (1):

- 1) Find those points that are "sufficiently close" to a cluster centroid and add those points to that cluster and the DS
 - These points are so close to the centroid that they can be summarized and then discarded
- 2) Use any main-memory clustering algorithm to cluster the remaining points and the old **RS**
 - Clusters go to the CS; outlying points to the RS

Discard set (DS): Close enough to a centroid to be summarized. **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

The "Memory-Load" of Points

Processing the "Memory-Load" of points (2):

- 3) DS set: Adjust statistics of the clusters to account for the new points
 - Add Ns, SUMS, SUMSQs
- 4) Consider merging compressed sets in the CS
- 5) If this is the last round, merge all compressed sets in the CS and all RS points into their nearest cluster

Discard set (DS): Close enough to a centroid to be summarized. **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

BFR: "Galaxies" Picture

Discard set (DS): Close enough to a centroid to be summarized **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

A Few Details...

• Q1) How do we decide if a point is "close enough" to a cluster that we will add the point to that cluster?

• Q2) How do we decide whether two compressed sets (CS) deserve to be combined into one?

How Close is Close Enough?

- Q1) We need a way to decide whether to put a new point into a cluster (and discard)
- BFR suggests two ways:
 - 1. High likelihood of the point belonging to currently nearest centroid
 - Many assumptions on current and future distribution
 - 2. The Mahalanobis (Normalized Euclidean) distance is less than a threshold
 - Normalize in each dimension: $y_i = (x_i c_i) / \sigma i$ (Standard Deviation)
- If clusters are normally distributed in **d** dimensions, then after transformation, one standard deviation = \sqrt{d}
 - i.e., 68% of the points of the cluster will have a Mahalanobis distance $< \sqrt{d}$
 - Typical threshold < 2 standard deviations

Should 2 CS clusters be combined?

Q2) Should 2 CS subclusters be combined?

- Compute the variance of the combined subcluster
 - N, SUM, and SUMSQ allow us to make that calculation quickly
- Combine if the combined variance is below some threshold

- Treat dimensions differently
- consider density
- ...
- Similar tradeoffs as for hierarchical clustering

Discussion of BFR

- Old algorithm (1998), not much practical use any more
- Introduces a number of techniques and strategies
 - Incremental evaluation in memory-sized chunks
 - Online algorithm for preliminary results
 - Microclusters with count/sum/squared sum summaries
- Works well if assumptions are held
- Assumptions not always realistic, without
 - Axis alignment of clusters: summaries don't work
 - Normal distribution: too many outliers (RS), high memory consumption
 - Stable distribution: suboptimal clustering
- Initialization/initial sampling weak
- Shape/structure assumption: CURE
- Unstable distributions/drift: Stream clustering (maybe later)

The CURE Algorithm

Extension of *k*-means to clusters of arbitrary shapes

The CURE Algorithm

Problem with BFR/k-means:

- Assumes clusters are normally distributed in each dimension
- And axes are fixed ellipses at an angle are not OK

CURE (Clustering Using REpresentatives):

- Assumes a Euclidean distance
- Allows clusters to assume any shape
- Uses a collection of representative points to represent clusters instead of

Example: Stanford Salaries

Starting CURE

2 Pass algorithm. Pass 1:

0) Pick a random sample of points that fit in main memory

1) Initial clusters:

 Cluster these points hierarchically – group nearest points/clusters

2) Pick representative points:

- For each cluster, pick a sample of points, as dispersed as possible
- From the sample, pick representatives by moving them (say) 20% toward the centroid of the cluster
- 3) Merge cluster if representatives sufficiently close

Example: Initial Clusters

Example: Pick Dispersed Points

Example: Pick Dispersed Points

Finishing CURE

Pass 2:

- Now, rescan the whole dataset and visit each point p in the data set
- Place it in the "closest cluster"
 - Normal definition of "closest":
 Find the closest representative to p and assign it to representative's cluster

p

Summary

 Clustering: Given a set of points, with a notion of distance between points, group the points into some number of clusters

Algorithms:

- Agglomerative hierarchical clustering:
 - Centroid and clustroid
- k-means:
 - Initialization, picking *k*
- BFR:
 - Scaling to very large datasets by summarizing
- CURE
 - Supporting irregular shapes by representatives
- Beyond the lecture:
 - **EM/GMM:** Iteratively fit a model like normal distribution (~algorithms similar to k-means)
 - DBScan: Density-based clustering with index support
 - ...