> O ( + O ) > O ( + O ) > O ( + O ) > O ( + O ) > O ( + O ) > O ( + O ) > O ( + O ) > O ( + O ) > O ( + O ) > O ( + O ) > O (

## CI/CD in the ML era

**PyCon LT 2024** 05/04/2024

#### Who am I?



Emmanuel-Lin **TOULEMONDE** 

About 10 years in Data Science, MLEng, MLOps







https://eltoulemonde.fr/

### A topic extracted fom Culture MLOps

CI/CD in the ML era

My intention is to show different patterns of what can be done and take a step back on what is done.



#### Continuous \*



#### Example of CI/CD code

#### With GitHub Actions

```
name : validate code
    on : push
4
       runs-on: ubuntu-latest
6
       - uses: actions/checkout@v4
       - name: Setup Python
         uses: actions/setup-python@v5
10
12
       - name : install dependencies
13
         run : pip install -r requirements.txt
14
       - name : install dev dependencies
16
         run : python -m pytest tests
```

#### What CI / CD can do for us

\*non-exhaustive list



## Why is it different in an ML context?

A new artifact to build and deploy



Packaged code



#### Why is it different in an ML context?

A new event may justify the deployment of a new artefact



Code change



Data change

### 3 ways to use a model artifact







Download an existing model And run it on our infrastructure



Train or fine-tune a model

#### Artifact construction and management in these cases?







Like a library



#### **Our focus**

- 1. Where to train models?
- 2. Where to store model versions?
- 3. When to load the desired model version?

All this through three examples

02

# Making a prototype or demonstrator

#### **Our needs**

I want to show marketing teams that ML can help them.

The use case: show that I can predict appeal for a product.

My challenges:

Go fast - Be frugal

There is a better way

#### Where to train?

Inside inference service



CI/CD pipeline

#### Where can I store versions of the model?

In memory, during inference



Model is not persisted

#### When to load model version?

During inference, in-memory

```
@app.get("/predict")
   def predict(X):
       model = Model()
       X train, y train = get train data()
5
       model.fit(X train, y train)
        return model.predict(X)
```

Python code, training model before performing inference

There is a better way

#### Sequence diagram to get a prediction



03

# Starting to develop a product

#### **Our needs**

I want to build a product in an iterative way.

The use case: I want to serve my first models to my users.

My challenges:

Start to measure the product value.

Being able to pivot quickly based on first users feedbacks.

## Where to train?

In developer environment (like code)



CI/CD pipeline

#### Where to store model versions?

Git

```
~/my-project$ git add .
c~/my-project$ git commit -m "New model version"
model version
0 deletions(-)
pickle
c~/my-project$ git push
```

Git command to save a new version of model

#### When to load the desired model version?

During deployment, with code artifact

```
1 FROM python:3.11-slim
2 COPY . /source
3 COPY model.joblib /model
4 WORKDIR /source
5 RUN pip install -r requirements.txt
6 CMD streamlit run main.py
```

Dockerfile copying model and code is the same artefict

There is a better way

#### Sequence diagram to get an inference





# Scaling

#### Our needs

I want to scale.

The use case: serving lots of users, I want to be able to test and update quickly models.

My challenges:

Have a robust production - acting in case of drift - keep on deploying on demand.

There is a better way

#### Where to train?

In a production service



#### Where to store model versions?

Blob, S3, etc.

```
def save model (model, model name):
       with open ("modle.pickle") as f:
           pickle.dump(f, model)
4
       container client = ContainerClient(
6
8
      file name = f"models/{model name}.pickle"
10
      blob client = container client.get blob client(file name)
11
12
           blob client.upload blob(f)
```

Code of training service, Saves produced model into a blob



#### Where to store model versions?

Alternatives...

#### In the save registry as code artifact



... but represent a weird artifact flow with a service that write onto registry instead of CI

#### In a specialized model regristy



... but it requires more pros to decide to have a new service

#### 0

#### When to change model version?

During inference, if it changed

```
@app.get("/predict")
   def predict(X):
      model handler = ModelHandler()
      model = model handler.load()
      return model.predict(X)
6
   class ModelHandler:
8
      def load(self):
9
           if self.check if model changed():
10
               self.model = self. load()
           return self.model
```

Pseudocode of inference, that check if model was updated at each inference to update it if necessary.

**Alternative**: load model at each inference, or at each start of the service

There is a better way

#### Sequence diagram to get an inference



# Conclusion

#### Where to train?

#### In a few words

|                                   | 17 When?                                          |
|-----------------------------------|---------------------------------------------------|
| Inside inference service          | For a prototype or online learning                |
| In data scientist env             | Training is not frequent                          |
| In a dedicated production service | When training is triggered mainly by data changes |

#### Where to store model versions?

#### In a few words

|                           | When to use it?                                                    |
|---------------------------|--------------------------------------------------------------------|
| Git                       | When train is performed in dev env                                 |
| Storages such as blob     | When train is performed in a dedicated service                     |
| Same registry as software | When train is performed in the CI                                  |
| A specialized registry    | When organization already have the tool, or other needs justify it |



#### When to load a new version?

#### In a few words

|                                         | When?                                                                                    |
|-----------------------------------------|------------------------------------------------------------------------------------------|
| During deployment                       | When train is performed in CI or in dev                                                  |
| At service start                        | When model change only on code change                                                    |
| During inference                        | When train can be triggered by a data change When inference are not too frequent (batch) |
| During inference, when model is updated | When train can be triggered by a data change<br>When inferences are frequent             |

#### **Takeaway**

- CI/CD is a bit more complex in ML because there is a **new artifact** and a **new reason source of** change.
- There is no single good way to perform CI/CD when in an ML context: choose your pattern depending on your **context** and document then in **Architecture Decision Records.**
- Software tools are not always enough to deploy ML but they can be, at least temporarily.
- A software with ML can look like all three examples during its lifecycle: CI/CD will need to change with its needs.

**Thanks** 

Questions?