

Device Descripsion

The TL431 is a three-terminal adjustable shunt regulator offering excellent temperature stability. This. device has a typical dynamic output impedance of 0.2Ω . The device can be used as a replacement for zener diodes in many applications.

FEATURES

- The output voltage can be adjusted to 36V
- Low dynamic output impedance, its typical value is 0.2Ω
- Trapping current capability is 1 to 100mA
- Low output noise voltage
- Fast on -state response
- The effective temperature compensation in the working range of full temperature
- The typical value of the equivalent temperature factor in the whole temperature scope is 50 ppm/°C

Applications

SYMBOL

- Shunt Regulator
- High-Current Shunt Regulator
- Precision Current Limiter

FUNCTIONAL BLOCK DIAGRAM

Limiting Values (Absolute Maximum Rating)

Parameter	Symbol	Value	Unit
Cathode Voltage	V_{KA}	37	V
Cathode Current Range (Continuous)	I _{KA}	-100~+150	mA
Reference Input Current Range	Iref	0.05~+10	mA
Power Dissipation	P _D	300	mW
Thermal Resistance from Junction to Ambient	R _{θJA}	417	°C/W
Operating Junction Temperature	Tj	150	°C
Operating Ambient Temperature Range	Topr	-25~+85	℃
Storage temperature Range	Tstg	-65~+150	°C

Electrical Characteristics (T_A=25 ℃ unless otherwise noted)

Parameter	Symbol	Test conditions		Min	Тур	Max	Unit
Reference input voltage (Fig.1)	V _{ref}	V _{KA} =V _{REF} , I _{KA} =10mA		2.475	2.5	2.525	V
Deviation of reference input voltage over temperature (note) (Fig.1)	$\triangle V_{ref}/\triangle T$	V _{KA} =V _{REF} , I _{KA} =10mA T _{MIN} ≤T _a ≤T _{MAX}			4.5	17	mV
Ratio of change in reference input voltage to the change in cathode $\Delta V_{ref}/\Delta V_{KA}$		I _{KA} =10mA	△V _{KA} =10V~V _{REF}		-1.0	-2.7	mV/V
voltage to the change in cathode voltage (Fig.2)	∠ V ref / ∠ V KA	/ VKA IKA=TOTIA	△V _{KA} =36V~ 10V		-0.5	-2.0	mV/V
Reference input current (Fig.2)	I _{ref}	I_{KA} = 10mA,R ₁ =10kΩ R_2 =∞			1.5	4	μΑ
Deviation Of reference input current over full temperature range (Fig.2)	$\triangle I_{ref} / \triangle T$	I_{KA} =10mA, R ₁ =10kΩ R ₂ =∞ T _A =-25 to 85°C			0.4	1.2	μΑ
Minimum cathode current for regulation (Fig.1)	I _{KA(min)}	V _{KA} =V _{REF}	CO.		0.45	1.0	mA
Off-state cathode Current (Fig.3)	I _{KA(OFF)}	V _{KA} =36V,V _{REF} =0			0.05	1.0	μΑ
Dynamic impedance	Z _{KA}	V _{KA} =V _{REF,} I _{KA} =1 to 100mA f≤1.0kHz			0.15	0.5	Ω

Note: T_{MIN} =-25°C , T_{MAX} =+85°C

CLASSIFICATION cZVref

Rank	··· 0.5%	······1%
Range	2.487-2.513	2.475-2.525

Figure 1. Test Circuit for $V_{KA} = V_{ref}$

Figure 2. Test Circuit for $V_{KA} > V_{ref}$

Figure 3. Test Circuit for Ioff

Typical Characteristics

Test Circuit for V_{KA}=V_{ref}

Typical Characteristics

Test Circuit for V_{KA}=V_{ref}(1+R1/R2)+R1*I_{ref}

Test Circuit for I_{ref}

Test Circuit for Ioff

SOT-23 Package Outline Dimensions

SOT-23 Suggested Pad Layout

Note:

- 1. Controlling dimension: in millimeters.
- 2.General tolerance:± 0.05mm.
- 3. The pad layout is for reference purposes only.

TO-92 Package Outline Dimensions

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	3.300	3.700	0.130	0.146	
A1	1.100	1.400	0.043	0.055	
b	0.380	0.550	0.015	0.022	
С	0.360	0.510	0.014	0.020	
D	4.400	4.700	0.173	0.185	
D1	3.430		0.135		
Е	4.300	4.700	0.169	0.185	
е	1.27) TYP	0.050 TYP		
e1	2.440	2.640	0.096	0.104	
L	14.100	14.500	0.555	0.571	
Ф		1.600		0.063	
h	0.000	0.380	0.000	0.015	

SOT-89 Package Outline Dimensions

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.197	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550 REF		0.061 REF		
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP		0.060TYP		
e1	3.000 TYP		0.118TYP		
L	0.900	1.200	0.035	0.047	

SOP-8 Package Outline Dimensions

Ch I	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1. 350	1. 750	0. 053	0. 069	
A1	0. 100	0. 250	0. 004	0. 010	
A2	1. 350	1. 550	0. 053	0. 061	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 170	0. 250	0. 006	0. 010	
D	4. 700	5. 100	0. 185	0. 200	
E	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0. 400	1. 270	0. 016	0. 050	
θ	0°	8°	0°	8°	