Universidad de las Fuerzas Armadas -ESPE

Fundamentos de Circuitos Electrónicos

Laboratorio NRC 8703

TEMA: RECONOCIMIENTO DE ELEMENTOS ELÉCTRICOS E INSTRUMENTOS DE MEDICIÓN EN LABORATORIO

INTEGRANTES:

- ❖ Jhennifer Tatiana Guamán Bashui
- ❖ Brianda Lisbeth Lema Usiña
- Christopher David Mayorga Ricachi

CARRERA: Mecatrónica

DOCENTE: Ing. Darwin Alulema

FECHA: 03 DE JUNIO DEL 2020

PRÁCTICA No. 1 LEYES DE KIRCHHOFF

1.1. OBJETIVO DE LA PRÁCTICA

Explicar y demostrar experimentalmente la Ley de Kirchhoff de Voltajes y la Ley de Kirchhoff de Corrientes.

1.2. REQUISITOS PREVIOS.

Se requiere el análisis analítico del circuito mostrado en la figura 1.1. Anote los resultados obtenidos en las tablas 1.1, 1.2. y 1.3.

1.3. INFORMACIÓN GENERAL

Uno de los métodos ampliamente utilizados en el análisis de circuitos eléctricos son las Leyes de Kirchhoff de voltaje y corriente, ya que con ellas se puede determinar el valor de voltaje o corriente en cualquier elemento que forme parte del circuito. Las Leyes de Kirchhoff se enuncian a continuación:

- a) Ley de Kirchhoff de Corrientes: La suma de las corrientes que entran a un nodo es igual a la suma de las corrientes que salen del mismo.
- b) Ley de Kirchhoff de Voltajes: La suma de las caídas de voltaje en una trayectoria cerrada es igual a la suma de las elevaciones de voltaje en la misma.

1.4. MATERIAL Y EQUIPO REQUERIDO

-1 Fuente de Voltaje de C.D. 2 -Multímetros Digitales 1 Resistor de 1 k

Figura 1.1. Circuito Resistivo Mixto

- Ω 2 -Resistores de 2.2 k Ω 1 Resistor de 1.8 k Ω
 - -1 Resistor de 3.9 k Ω 1 Protoboard

1.5. PROCEDIMIENTO

- 1.5.1. Arme el circuito que se muestra en la figura 1.1.
- 1.5.2. Mida el voltaje y corriente en cada uno de los elementos del circuito. Anote los resultados de las mediciones en la tabla 1.1.

Tabla 1.1. Resultados obtenidos de voltaje y corriente, en cada elemento del circuito.

VARIABLE	VALOR CALCULADO	VALOR MEDIDO
VR1 (V)	2.0544 V	2.05 V
I _{R1 (mA)}	2. 0544 mA	2.05 mA
VR2 (V)	4.2475 V	4.25 V
IR2 (mA)	1. 089 mA	1.09 mA
VR3 (V)	2.1235 V	2.12 V
IR3 (mA)	0. 9653 mA	0.965 mA
VR4 (V)	2.1235 V	2.12 V
I _{R4} (mA)	0. 9653 mA	0.965 mA
VR5 (V)	3. 6979 V	3.70 V
IR5 (mA)	2.0544 mA	2.05 mA

1.5.3. Verifique si se cumple la Ley de Kirchhoff de Voltajes en cada trayectoria cerrada, considerando las elevaciones de voltaje con signo positivo y las caídas de voltaje con signo negativo. Anote los resultados en la tabla 1.2.

Tabla 1.2. Verificación de la LVK.

VOLTAJE	TRAYECTORI A 1		TRAYECTORI A 2		TRAYECTORI A3	
	Calculado	Medido	Calculado	Medido	Calculado	Medido
V _T (V)	10.002	10	8.496	8.49	10.002	9.99
Vr1 (V)	2.055	2.05	-	-	2.055	2.05
VR2 (V)	4.248	4.25	4.248	4.25	-	-
VR3 (V)	-	-	2.125	2.12	2.125	2.12
VR4 (V)	-	-	2.123	2.12	2.123	2.12
VR5 (V)	3.699	3.70	-	-	3.699	3.70
ΣV	-10.002	-10	0	0.01	-10.002	-9.99

1.5.4. Verifique si se cumple la Ley de Kirchhoff de Corrientes en cada nodo, tomando con signo positivo las corrientes que entran al nodo y con signo negativo las que salen del nodo.

Anote los resultados en la tabla 1.3.

Tabla 1.3. Verificación de la LCK.

CORRIENTE	NODO 1		NODO 2	
	Calculado	Medido	Calculado	Medido
IT (mA)	4.11	4.105	4.11	4.105
Irı (mA)	2.055	2.05	-	-
IR2 (mA)	1.089	1.09	1.089	1.09
Ir3 (mA)	0.966	0.965	-	-
Ir4 (mA)	-	-	0.966	0.965

IR5 (mA)	-	-	2.055	2.05
ΣI	0	-0.005	0	0.005

1.5.5. Compare los resultados medidos con los valores obtenidos al analizar el circuito analíticamente y concluya al respecto.

1.6. ANEXOS

Circuito Tinkercad:

https://www.tinkercad.com/things/kxOtDkJhQC9-terrific-albar/editel?sharecode=Mow T4py8IMS84YMppdhfD6xl8rw49IUb7DTvqPhR7FY

Cálculos Intensidad y Voltaje de resistencias:

CÁLCULOS DE VERIFICACIÓN DE LA LCK Y LVK

	Tabla	12	Verific	aci of	96	19	41	/K				100		
	V. II			11/1	-	-	Tro		tenia	2	A		Trave	ctona 3
	Voltage	Calcula	rayact	Medid	0	Col	ماس			edi	do		alado	
	V+ (v)	10,00	2	10		8	,496			8,40	3	10,	002	9,99
	V# 1 (V)	2,055		2,05							- 4	2	055	2,05
	VRZ (V)	4,249	3	4,25	V	4	248		-	1,2	5			
1	JR3 (V)		TV.	22.3	14	2	125			2,1	2	2,	125	2,12
1	/R4(V)					2	,123			2,12		2	123	2,12
1	VRS(V)	3,699		3,70						-		3,	699	3,70
	ZV	- 10,00	2	-10			0			0,0	1	- (0)	00 2	-9,99
LV	(4)	Ri J	1	sodo P	0.						7 1			
1	+	I kohm	1/1	4 5,5	kohin		0							
-	TOV	3 9806	S Ri			- 5	R4	roh	m		T			
		1,8 Koh +									- 7			
		RS		10. 2										
-		ctonia -						-				Co	mprebne	5
1					8	Vi	(1)	0				- N	5 - V2 - V	1=-10
+	+10V /	1			della									- 2,055 =-10
1		1	FRE	-	VS	- V2	-N	1+	10 =	0				- 10 = -10
	-	*				V5-	Vz-	VI:)	0			
-		Rs							-	-				
		RJ	2		1	-V4	- V -	+	V-	= 0)	V	Vu	V3=0 5-2/15=0
	+		+				12-	14-	V3	10	6	V 4 21	18 - 2173	+2.15-A
	* R2	T	I R	4		1	1100	1			0			0=0
										-				
	Tray	Polona 3		-	-	1			-			1		
KON:	+ + -	+***	+ +		1	1.4	11			10	N			
		3				7	V4-	V3 -	· VI -	Vs	= -	10 3) -2,123	4-V3 - V1 - V3 = - -2,125 - 2,055-3,1
	R5	-	-	-	1									-10

