Name:-Sanket Ambalal Patil

Roll :- 43

Div:-B

Subject :- Data Mining & Warehousing

Experiment No.: 3

Title:

Apply a-priori algorithm to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds.

Objectives:

Model associations between products by determining sets of items frequently purchased together and building association rules to derive recommendations.

Hardware Requirement:

Pentium or higher processor, 2GB RAM and 500 GB HDD.

Software Requirement:

Rapid Miner

Outcomes:

Create association rules which can be used for product recommendations depending on the confidences of the rules

Theory:

- Association rule for mining:
 - Proposed by R Agrawal and R Srikant in 1994.
 - It is an important data mining model studied extensively by the database and data mining community.
 - Assume all data are categorical.

- Initially used for Market Basket Analysis to find how items purchased by customers are related.
- · The Apriori algorithm:
 - The best known algorithm
 - Two steps:
 - Find all item sets that have minimum support (frequent item sets, also called large item sets).
 - It Create Association rule with support and Confidence.
 - E.g. if we buy tooth brush: it suggest Colgate and tongue cleaner
- · Data Set

T-Id Item Set

T-1000 M,O,N,K,E,Y

T-1001 D,O,N,K,E,Y

T-1002 M,A,K,E

T-1003 M,U,C,K,Y

T-1004 C,O,O,K,E

Table: Data Set

Given: Minimum Support = 60%

Minimum Confidence = 80%

· Candidate Table C1: Now find support count of each item set

Item Set	Support Count
M	3
0	4
N	2
E	4
Υ	3
D	1
A	1
U	1
С	2
K	5

Table: Candidate Table C1

- Now find out minimum Support
- Support = 60/100*5 =3
- Where 5 is Number of entry
- Compare Min Support with each item set

· L1 Support Count

Item Set	Support Count
M	3
0	4
К	5
E	4
Υ	3

Table: L1 Support Count

· Candidate Table C2:

Item Set	Support Count
MO	1
MK	3
ME	2
MY	2
OK	3
OE	3
OY	2
KE	4
KY	3
EY	2

Table: Candidate Table C2

• Now again Compare C2 with Min Support 3

· L2 Support Count

Item Set	Support Count
MK	3
ОК	3
OE	3
KE	4
KY	3

Table: L2 Support Count

- After satisfied minimum support criteria
- Make Pair to generate C3

· Candidate Table C3

Item Set	Support count
M,K,O	1
M,K,E	2
M,K,Y	2
O,K,E	3
O,K,Y	2

Table: Candidate Table C3

· L3 Support Count

Now again compare the item set with min support 3

Item Set	Support Count
O,K,E	3

Table: L3 Support Count

- · Now create association rule with support and Confidence for {O,K,E}
 - Confidence =Support/No. of time it Occurs

Association Rule	Support	Confidence	Confidence (%)
$O \land K \Rightarrow E$	3	3/3 = 1	1*100=100
$O \land E \Rightarrow K$	3	3/3 = 1	1*100=100
K ^ E ⇒ O	3	3/4 = 0.75	0.75*100=75
E⇒O ^K	3	3/4 = 0.75	0.75*100=75
K⇒O ^E	3	3/5 = 0.6	0.6*100=60
O⇒K ^ E	3	3/4 = 0.75	0.75*100=75

Table: Association Rule

• Compare this with Minimum Confidence=80%

Rule	Support	Confidence	
$O \land K \Rightarrow E$	3	100	
O ^ E ⇒ K	3	100	

Table: Support and Confidence

Hence final Association rule are $\{O \land K \Rightarrow E\}$ $\{O \land E \Rightarrow K\}$

- · From first observation we predict that if the customer buy item O and item K then defiantly he will by item E
- · From Second observation we predict that the customer buy item O and item E then defiantly he will by item K

Figure: MARKET BASKET ANALYSIS

No. of Sets: 47	Size	Support	Item 1	Item 2	Item 3 ↓
Total Max. Size: 3	3	0.006	Product 12	Product 20	Product 27
Min. Size: 1	3	0.006	Product 11	Product 12	Product 20
Max. Size: 3	3	0.006	Product 11	Product 20	Product 19
Contains Item:	1	0.138	Product 11		
] 1	0.136	Product 12		
Update View	1	0.103	Product 20		
	1	0.079	Product 10		
	1	0.079	Product 18		
	1	0.079	Product 23		
	.1	0.073	Product 15		
	3	0.071	Product 26		
	1	0.067	Product 13		
	1	0.059	Product 21		

Figure: Frequent Item Sets (FP Growth)

Conclusion:

Thus we learn that to find frequently occurring items from given data and generate strong association rules using support and confidence thresholds using a-priori algorithm.