L2 Foundation of Physics 2B Optics 2018-19

O.WP.1 Harmonic waves

January 17, 2020

- (a) 1. What are \underline{k} and ω ? [2 marks] \underline{k} is the wave vector. [1] ω is the angular frequency. [1]
 - 2. Write expressions for \underline{k} and ω in terms of the wavelength of light λ . [2 marks] The modulus of \underline{k} , $k = 2\pi/\lambda$.^[1] $\omega = 2\pi c/\lambda$.^[1]
 - 3. For the case where $\underline{\mathcal{E}}_0$ is a constant, sketch the magnitude of the electric field as a function of position for a harmonic wave with wavelength $\lambda = 0.45~\mu\text{m}$. Include a scale on both axes. [Hint: Assume that \underline{k} is parallel the z axis.] [2 marks] The plot is the cosine wave [1] with the maxima at multiples of $0.45~\mu\text{m}$. [1] See Fig. 1(a).
 - 4. Now plot the magnitude of the field as a function of time. Include a scale on both axes. [2 marks] The plot is similar^[1] except that now the x-axis has units of time and the maxima are at multiples of 1.5 fs.^[1] See Fig. 1(b).
 - 5. Now plot the intensity as a function of time and show the time-averaged intensity $\mathcal{I}_0 = \frac{1}{2}c\epsilon_0\mathcal{E}_0$. Include a scale on both axes with the vertical axis in units of \mathcal{I}_0 . [2 marks] The plot is a cosine squared. [1] The time-averaged intensity is equal to $\frac{1}{2}$ of the maximum. [1] See Fig. 1(d).

Figure 1: Harmonic wave in space (a) and time (b). The intensity (c) and time averaged intensity (red) (d).

(b and c) My Notes Page 1