Tema 1: Representación del sonido

Contenidos

- Naturaleza y representación del sonido
 - Representación en el tiempo: la señal
 - Representación en la frecuencia: el espectro
- Representación digital
- Evolución temporal del espectro y FFT
- Caracterización del espectro:
 - Frecuencia fundamental y armonicidad
 - Envolvente espectral y formantes
- El ruido

Computer Music C. Dodge & T.A. Pierce

The Computer Music Tutorial Curtis Roads

John Watkinson

José Manuel Iñesta

Sonido y Música por Computador

El sonido en el dominio temporal

Naturaleza del sonido

- Las perturbaciones del aire que nos rodea las percibimos como sonido cuando llegan a nuestros oídos.
- Las perturbaciones se propagan desde los objetos que las producen hasta nuestros oídos como ondas de presión.

- Se trata de una onda longitudinal.
- En contraste con una onda en una cuerda, que sería transversal.
- Señales sonoras: Son la representación de las variaciones de presión.

El sonido en el dominio temporal

Naturaleza del sonido

¿A qué velocidad se propagan las ondas sonoras en el aire?

v = 340 m/s a 15 °C al nivel del mar ($P_{atm} = 1013$ mbar)

El sonido cruza una sala de 10 m en 29 ms (va y vuelve en 59 ms)

¿Cuál es el tamaño del sonido? (su longitud de onda)

- 32	t CII	1	C.
Hz ~	1 cal	beza	

Frecuencia (Hz)	Longitud de onda
20.000	1,7 cm
1.000	34 cm
440 (LA ₄)	77 cm
340 (~FA ₄)	1 m
20	17 m

3

El sonido en el dominio temporal

40 80 160 FREQUENCY (Hz), f

Representación del sonido

La señal más simple posible es la sinusoidal.

Se representa mediante la función seno.

Es simple porque contiene una única frecuencia (f):

$$1 \text{ Hz} = 1 \text{ ciclo/s}$$

 $s(t) = A \operatorname{sen} \left(2 \pi f t + \phi_0 \right)$ Frecuencia f = 1 / T**FASE INICIAL** (Hz)

FASE

Definiciones:

- El periodo T es el tiempo que tarda la onda en pasar 2 veces por la misma fase.
- La amplitud A es el valor máximo de la señal en valor absoluto.
- La **longitud de onda** λ es la distancia recorrida por la onda en un periodo.

El sonido en el dominio temporal

Representación del sonido

La influencia de la fase inicial (ϕ_0)

Permite describir cuál es el valor de la onda en el inicio del tiempo (t = 0), pero su influencia es mínima en la percepción del sonido (nula si es estacionario).

Las señales y sus frecuencias

Sonidos compuestos

- Cualquier sonido "real" se compone de múltiples frecuencias (frecuencias parciales) y es una combinación lineal de funciones sinusoidales.
- Cada sinusoide aporta una frecuencia y su amplitud es su "peso" en la combinación (en la composición del sonido).

$$s(t) = A_1 \operatorname{sen} (2\pi f_1 t) + A_2 \operatorname{sen} (2\pi f_2 t) + A_3 \operatorname{sen} (2\pi f_3 t) + A_4 \operatorname{sen} (2\pi f_4 t)$$

Si representamos qué amplitud tiene cada una de las frecuencias que componen la señal, entonces tendremos el ESPECTRO:

ver: 4armonicos-w.csd

Las señales y sus frecuencias

Señal y espectro son representaciones duales

- Representan la misma cosa en dos espacios distintos y pueden obtenerse una desde la otra.
- La conexión entre ambas representaciones es la **transformada de Fourier** que se puede calcular en ambas direcciones:

(una señal periódica puede descomponerse en un conjunto de ondas simples)

(las amplitudes del espectro multiplicadas por ondas simples recomponen una señal periódica)

Nota: estas S(f) son lo mismo que las anteriores A_i

7

Representación digital del sonido

Señales y espectros son diferentes dentro de un ordenador.

Representación del sonido digital

En digital

10

Para representar el sonido en un ordenador hay que convertirlo en números.

Transformada de Fourier discreta (TFD)

- Es la forma de calcular el espectro de una señal digital (por tanto, discreta).
- De una señal con N muestras, la TFD calcula N frecuencias de su espectro entre 0 y la frecuencia de muestreo, f_s

- Lo que hace la TFD es evaluar lo que se parece la señal a cada una de esas ondas sinusoidales.
- Las N frecuencias a las que se calcula el espectro están equiespaciadas entre 0 y f_s \rightarrow
 - ullet Resolución frecuencial: $\Delta \! f \! = \! f_{\scriptscriptstyle S} / N$

Transformada de Fourier discreta (TFD)

Gráficamente:

Cada valor de frecuencia $= k \Delta f = k f_s / N$ (en Hz) (entre $0 \text{ y} f_s$)

- En la TFD no todas las frecuencias están disponibles. Sólo los múltiplos de f_s / N .
- (!) Sólo las frecuencias entre 0 y $f_s/2$ son útiles (N/2 frecuencias). Los valores entre $f_s/2$ y f_s son duplicados de esas. No se usan.

11

Evolución temporal del espectro

Para sonidos que evolucionan en el tiempo debemos calcular muchos espectros y ponerlos todos unos junto a otros.

La TFD solo funciona en la practica para sonidos estacionarios

La T.F. es indefinida en el tiempo, pero en la práctica los sonidos evolucionan en el tiempo → Hacer la T.F. de la señal, pero "por trozos".

Solución matemática:

Multiplicar señal por una "ventana" y hacer la transformada del resultado = Transformada de Fourier a corto plazo (Short Time Fourier Transform, STFT)

- Así podemos calcular el espectro de la señal donde está la ventana.
- Luego hacemos avanzar la ventana y repetimos la operación, y así sucesivamente.

13

Evolución temporal del espectro

Funciones ventana:

Son funciones que se anulan en todos los puntos salvo en un entorno de cero.

P.ej.: VENTANA RECTANGULAR:
$$w[m] = \begin{cases} 1 & \text{si } 0 \le m \le N-1 \\ 0 & \text{para otro valor de } m \end{cases}$$

N debe ser potencia de 2

- La función ventana **se multiplica** por la señal, dejando sólo N muestras $\neq 0$
- El tamaño de la ventana debe ser potencia de 2, por razones de eficiencia:
 - → Transformada Rápida de Fourier (FFT, Fast Fourier Transform).
 - Tamaños habituales: ..., 256, 512, 1024, 2048, 4096, 8192, ...
- La presencia de la ventana modifica el espectro calculado:
 - El espectro de una señal enventanada ≠ espectro señal teórica infinita.

Tipos de ventanas:

Diferentes formas de ventanas modifican el espectro ideal de diferentes maneras.

Esas formas aparecerán en el espectro para cada parcial detectado.

15

Evolución temporal del espectro

Parciales y espectros "reales"

- · Los parciales como líneas, sólo aparecen en los espectros teóricos.
- Cualquier espectro calculado a partir de un sonido real tendrá el efecto de la aplicación de la ventana:

En los espectros teóricos, los parciales son líneas

En los espectros "reales", los parciales son picos (máximos locales)

Al aplicar otro tipo de ventana, cambia <u>la forma</u> del espectro pero no la posición de los parciales:

ver: audacity

Funcionamiento de la STFT short term fuorier transform

- La ventana w (de tamaño N) va avanzando cada vez I muestras sobre la señal.
 - \rightarrow Para cada posición se obtiene un nuevo espectro S[k,r] (en la posición r)
 - → El número de ventanas de análisis para una señal = Tamaño señal / N inicio r=0

• El espectrograma se representa como S[k,rI]; k: frecuencias calculadas del espectro

Evolución temporal del espectro

Resolución en tiempo y frecuencia:

Resolución frecuencial: Δf resolucion frencuencial = fs/N

Antes hemos dicho que si la TFD usa N valores para su cálculo:

obtengo N frecuencias entre 0 y f_s separadas f_s / N (Hz) $\rightarrow \Delta f = f_s / N$ (Hz)

Resolución temporal: Δt cada cuanto tiempo se analiza la señal

Se refiere al tamaño y avance de la ventana de análisis: ¿cada cuánto analizo?

Por lo tanto:

 \Rightarrow Resolución frecuencial: $\Delta f = f_s / N$ (Hz)

 \Rightarrow Resolución temporal: $\Delta t = N/f_s$ (s) inversamente proporcionales

Resolución en frecuencia y en tiempo se condicionan mutuamente: $\Delta f = 1 / \Delta t$

Resolución en tiempo y frecuencia:

- No podemos conocer con toda precisión qué frecuencias ocurren y cuándo.
- Si aumento la longitud de la ventana:
 - \rightarrow mejor cálculo de las frecuencias (más detalle, $\Delta f \downarrow$)
 - \rightarrow pero empeora la localización ($\Delta t \uparrow$)

(y viceversa)

Solución de compromiso (N = 1024)

Valores más usados: entre 512 y 4096 muestras.

19

Evolución temporal del espectro

Mejora de la resolución: incrementar tiempo sin causar problemas en la frecuencia

- Se puede **paliar** el problema de la resolución temporal usando información redundante: **SOLAPAMIENTO** (I < N) incremento menor a tamaño de ventana
- Se expresa con el % de solapamiento en el avance de la ventana respecto a ${\cal N}$

 No es gratis: el precio a pagar es la repetición de cálculos en la zona solapada.

Mejora de la resolución:

- La resolución frecuencial también se puede mejorar usando el RELLENO POR CEROS (zero padding).
- Se trata de añadir nN ceros al final de la ventana a analizar antes de calcular la TFD.

Los valores calculados son interpolados respecto a los sin relleno y Δt no cambia.

21

Evolución temporal del espectro

El problema de la eficiencia:

- Las soluciones para obtener una buena resolución espectral pasan por hacer muchos cálculos (ventanas grandes y solapadas).
- Esto puede ser inaceptable en dispositivos poco potentes.

La Transformada de Fourier usa todas las muestras (N) para calcular cada una de las frecuencias (N) \rightarrow Complejidad $O(N^2)$

 Por ejemplo: si la ventana es del orden de 10³ muestras hará del orden de 10⁶ operaciones!

... para cada posición de la ventana!!

En la práctica se usa la **Transformada Rápida de Fourier** (FFT) cuya complejidad es $O(N \log_2 N)$

• Para la misma ventana anterior sólo hará $10^3 \times \log_2 10^3 \cong 10^3 \times 10 = 10^4$ operaciones.

La **condición** para que la FFT sea realmente así de rápida es que el tamaño de la ventana sea $N = 2^n$

Elementos relevantes que podemos encontrar en el espectro.

23

Caracterización del espectro

Frecuencia nula

f = cuantas veces por unidad de tiempo sucede n

T = cada cuanto tiempo pasa algo

• Frecuencia = 0: S(0) es el desplazamiento de continua (DC offset)

S(0) se puede calcular como el valor promedio de la señal.

La presencia de un desplazamiento de continua <u>reduce la amplitud que puede tener la señal</u> al trabajar con ella: la señal de arriba "*toca*" el máximo (ya no puede aumentar su amplitud), la de abajo (que es la de arriba corregida) todavía tiene **margen** para aumentar su amplitud.

Frecuencias negativas

Son la misma frecuencia que una positiva pero con la fase invertida

$$sen(-\alpha) = sen(\alpha + 180^{\circ})$$

la f negativa es lo mismo que una positiva pero con la fase invertida = 180°

Si hay **dos componentes en una misma frecuencia** sumarán sus amplitudes si están en fase y se restarán si están en contrafase.

$$A_2 = A_{21} + (-A_{22})$$

25

Frecuencia fundamental

Definición:

- Las **ondas periódicas** tienen frecuencia fundamental (f_0)
 - ullet La f_0 es un parámetro psicoacústico muy importante.
 - En la onda se calcula como la inversa del periodo fundamental (f_0 = 1 / T_0).

- Para que se comporte como periodo fundamental, el valor de T_0 debe ser < 50 ms
- Si nos fijamos **en el espectro** para conocer la fundamental:
 - Se calcula como el máximo común divisor de las frecuencias parciales.
 - Sólo las f_0 > 20 Hz pueden serlo (la frecuencia fundamental es algo que se oye)
 - Si el M.C.D. es < 20 Hz \rightarrow se considera F_0 = primer parcial audible (> 20 Hz)
 - Los parciales < 20 Hz no intervienen en su cálculo.

no oimos por debajo de 20 Hz

Armonicidad

Definiciones:

- (Parciales) armónicos
 - Los múltiplos enteros de la fundamental
 - Espectros armónicos
 - Sonidos armónicos
- (Parciales) inarmónicos
 - Los múltiplos no enteros de la fundamental
 - Espectros inarmónicos
 - Sonidos inarmónicos

- Los sonidos reales no suelen ser perfectamente armónicos o inarmónicos:
 - \rightarrow Grado de armonicidad (entre 0 y 1) = NP_{ARM} / NP_{TOT}

las señales armonicas son perdiocas, las señales inarmonicas no

27

Armonicidad

Fusión espectral:

- Es la diferencia más importante entre los sonidos armónicos e inarmónicos.
- En los sonidos armónicos sólo se percibe la fundamental y los parciales no se oyen por separado sino como el "timbre" del sonido complejo.

Armonicidad

Fusión espectral:

La frecuencia fundamental (f_0) puede no ser un parcial del espectro: fundamental ausente. No está pero se oye.

Caracterización del espectro

Envolvente espectral:

- Línea imaginaria suave que sigue las amplitudes de los parciales.
- Sirve para describir de una manera sencilla el espectro.
- Por ej., los sonidos naturales tienden a tener parciales de amplitud decreciente.

Formantes:

Bandas de frecuencia en las que se dan las mayores amplitudes de un espectro.

- Se deben a <u>resonancias del generador</u> del sonido → a su geometría.
- Son independientes de la frecuencia fundamental del sonido.
- Se especifican por su frecuencia central, ancho de banda y amplitud.

$$F_i$$
 (Hz)

$$W_i$$
 (Hz)

$$A_i$$
 (dB)

tienen que ver con las posibles resonancias con la fuente del sonido, dependen de la geometría de las cavidades resonantes de la fuente

Caracterización del espectro

Formantes:

- Son determinantes para caracterizar sonidos.
- Por ejemplo, en el habla nos permiten distinguir las vocales.
- Al hablar cambiamos la forma del tracto vocal y, por tanto, sus resonancias.

Ejemplo:

Las vocales del habla \rightarrow (Las vocales son la parte armónica del habla, con f₀ ~ 100 Hz hombres, 200 Hz mujeres)

frecuencia

Formantes:

- Síntesis de las vocales usando la caracterización de sus formantes:
 - Las cuerdas vocales se comportan como un emisor de pulsos a la frecuencia fundamental.

 A esta señal le aplicamos un filtro pasa-banda por cada formante, centrado en la frecuencia del formante y con el mismo ancho de la banda pasante:

Vocal	Formante(s) en castellano		
/a/	1000 ± 200 Hz		
/e/	500 ± 100 y 2400 ± 200 Hz		
/i/	$300 \pm 100 \text{ y } 3250 \pm 250 \text{ Hz}$		
/o/	$500 \pm 100 \text{ y } 4200 \pm 250 \text{ Hz}$		
/u/	$300\pm100~\text{Hz}$		

33

El ruido

Las perturbaciones no periódicas son percibidas como ruidos.

Definición

- El ruido es un componente no periódico del sonido, caracterizado en el espectro por tener parciales en todas las frecuencias.
- Mientras que los parciales son líneas o picos bien definidos, el ruido siempre es una "mancha" en el espectrograma:

EN EL ESPECTRO arciales Ruido (fondo irregular)

- Existen diferentes tipos de ruidos estacionarios en función de la distribución de la energía en su espectro.
 - Se les atribuyen colores en analogía a cómo se "verían" si fueran luz en el espectro visible.

35

Ruido

Tipos

- Ruido Banco
 - Distribución de frecuencias = constante.
 - En el espectro, todos sus parciales tienen la misma amplitud promedio.
 - En digital: la señal se construye como una sucesión de números aleatorios.
 - Es un sonido artificial: inexistente en la naturaleza.
 - Lo producen dispositivos eléctricos o electrónicos (radios no sintonizadas, p.ej.)

Ruido

Tipos

la mitad de amplitud a 2Khz que a 1Khz

- Ruido Rosa
 - Distribución de frecuencias del tipo 1 / $f \rightarrow$ a mayor frecuencia, menos amplitud.
 - En concreto: mitad de amplitud cada doble de frecuencia.
 - Es un sonido muy frecuente en la naturaleza.
 - Muy utilizado en acústica porque tiene <u>la misma energía proporcionalmente</u> en todo el espectro → P.ej.: entre 100 y 200 Hz tiene la misma que entre 1000 y 2000 Hz.

Ruido

37

38

Tipos

1/4 de amplitud cada doble de frecuencia

- Ruido Marrón o Rojo
 - Distribución de frecuencias $1/f^2 \rightarrow$ a mayor frecuencia, mucha menos amplitud.
 - ej.: 1/4 de amplitud cada doble de frecuencia. La energía se concentra en los graves.
 - Es un ruido existente en la **naturaleza**. Los ruidos distantes se perciben así.
 - El término marrón proviene de la traducción de "Brown", físico que descubrió el movimiento y los procesos naturales (brownianos) involucrados en este ruido.

Ruido

amplitud proporcional al cuadrado

Otros tipos de ruidos

Ruido Azul

- Distribución de frecuencias = f
- La amplitud se duplica cada doble de frec.

Ruido Violeta

- Distribución de frecuencias = f^2
- La amplitud x 4 cada doble de frecuencia.
- Se obtiene restando cada 2 valores consecutivos del ruido blanco .

Ruidos no estacionarios

- Cualquier movimiento no periódico de un objeto produce una alteración en el aire que percibimos como un ruido.
- Por ejemplo, las consonantes del habla son fundamentalmente ruidos.
- En este espectrograma no hay "líneas" horizontales (parciales), son todo "manchas".

39

Tema 1: Representación del sonido

Contenidos

- Naturaleza y representación del sonido
 - Representación en el tiempo: la señal
 - Representación en la frecuencia: el espectro
- Representación digital
- Evolución temporal del espectro y FFT
- Caracterización del espectro:
 - Frecuencia fundamental y armonicidad
 - Envolvente espectral y formantes
- El ruido