

Control in Robotics Course Outline

Mohammad Motaharifar

Department of Electrical Engineering University of Isfahan

Spring 2023

Table of Contents

- About the Instructor
 - Contact
 - Background
- About the Course
 - Objective and Course Content
 - Syllabus
 - References
- Course Evaluation
- Important Notes
 - Projects
 - Important Dates

Contact

- Email: m.motaharifar@eng.ui.ac.ir md.motaharifar@gmail.com
- Office: Sanaat Building (Room 302), meetings with prior appointments

Background

- Research Interests:
 - Advanced Control Theories for Robotic Manipulators
 - Medical Robotics
 - Nonlinear, Adaptive, and Robust Control
 - Cyber-Physical Systems
 - Internet of Thongs (IoT)
 - Computational Intelligence
- More Information:

```
https://engold.ui.ac.ir/~m.motaharifar/
https://scholar.google.com/citations?user=au_
KZ5cAAAAJ&hl=en
```


Objective and Course Content

- The aim of this course is to introduce you to basics concepts, principles and techniques involved in control of robot manipulators.
- Part 1- Preliminaries:
 - History
 - Introduction to Robotics
 - Robot Classification
 - Associated Problems
 - Kinematics
 - Jacobians
 - Dynamics
 - Path planning and Trajectory Planning

Syllabus

- Part 2- Motion Control:
 - Linear Feedback Control
 - Feedforward Control
 - Control in Task Space and Joint Space
- Part 3- Nonlinear Control:
 - PD Control
 - Jacobian Transpose Control
 - Inverse Dynamics Control
 - Adaptive Inverse Dynamics Control
 - Robust Inverse Dynamics Control
 - Passivity based Control
 - Adaptive Passivity based Control
 - Robust Passivity based Control

Syllabus

- Part 4- Force Control:
 - Natural and Artificial Constraints
 - Impedance Operator
 - Impedance Control
 - Hybrid Position/Force Control
- Part 5- Telerobotics:
 - Introduction to Telerobotics
 - Haptic Systems
 - Control Theories for Single user Telerobotics Systems
 - Applications of Multi-User Telerobotics Systems
 - Control Theories for Multi-User Telerobotics Systems

Syllabus

- Part 6- Control of Under-Actuated Robots:
 - Flexible-Joint Manipulators
 - Flexible-Link Manipulators
 - Robot Manupulators with Faulty Actuators
- Part 7- Computer Vision:
 - Camera Calibration
 - Image Processing
 - Vision-Based Control

References

- J.J. Craig, "Introduction to Robotics: Mechanics and Control", 3rd Edition, Pearson Prentice Hall, Upper Saddle River, NJ, 2004.
- Mark W. Spong, Seth Hutchinson, M. Vidyasagar, "Robot Modeling and Control", Wiley 2005.
- Hamid D Taghirad. "Parallel robots: mechanics and control", CRC press, 2013.
- Carlos Canudas de Wit, Bruno Siciliano, and Georges Bastin.
 "Theory of robot control", Springer Science & Business Media, 2012.
- Suguru Arimoto. "Control Theory of Nonlinear Mechanical Systems", Oxford University Press, Inc., 1996.

Course Evaluation

• Class Activity: 10%

Continuous Project: 20%

Final Project: 20%

Midterm: 25%

• Final Exam: 25%

Projects

- The project is intended to help students acquire a better understanding of the basic concepts and techniques introduced in the course. It is assumed that students have the ability to program in MATLAB.
- For your projects, you can utilize any paper from:
 - Jornals: IEEE, Elsevier, Springer, Wiley, etc.
 - Conferences: ICRA, IROS, ACC, CDC, AIM.
- More recent papers are preferred (after 2010).
- You have to prepare a project report in PDF format.
 - It is recommended to prepare your projects in the standard conference paper template.
 - It is recommended to use latex to prepare your reports.
- You have to present your project for the students.

Projects

Hint: It is better to use reputable journals in the robotics field such as:

- International Journal of Robotic Research
- IEEE Transactions on Robotics
- IEEE Transactions on Mechatronics
- IEEE Transactions on Control Systems Technology
- IEEE Robotics and Automation Letters
- IEEE Transactions on Automatic Control
- Mechatronics

Important Dates

• Midterm: week 8 or 9

• Project selection: week 12

• Project first report: week 16

Project final report: after the exam