LAB A-06 (Week 7) Construction and Implementation of Flip-flops, Counters, and Shift Registers

Objectives

- a. To get familiarity with the flip-flops, asynchronous counters, and shift registers by the construction of the circuit and studying the operation.
- b. To design and construct the synchronous counter and verify the counting sequence.

Tasks

Questions to be discussed in the lab and to be submitted in the report:

- 1. a. Verify the function table for 7476 Dual Negative Edge Triggered JK Flip-flop
 - b. Construct the following flip-flops using JK Flip-Flop andverify their truth tables
 - D (Data) Flip-Flop
 - T (Toggle) Flip-Flop
- 2. Design a 2-bit synchronous counter that can go through the following sequence in binary.

1, 3, 2, 0 and repeat

Use J-K Flip-flops for the design. Verify your design experimentally.

Questions to be submitted in the report:

- 3. Construct and explain the operation of the following ripple counters with positive edge triggered D Flip-flops.
 - 4 bit binary asynchronous UP counter
 - 4 bit binary asynchronous DOWN counter
 - Asynchronous BCD Counter
 - Asynchronous MOD-12 Counter
 - Ripple divide by 14 Counter
- 4. Design and Construct a parallel counter that has the following sequence. If the input (UP)/(DOWN)' = 1, it will count up, 000-010-100-110 and then recycle to 000

If the input (OP)/(DOWN)' = 0, it will count down, 110-100-010-000 and then recycle to 110.

- Undesired states are don't care states.
- (i) Use T flip-flops for the design.(ii) Use D flip-flops for the design.
- 5. With the help of timing diagrams, state the number of pulses required to perform shifting of binary number 1001 using
 - i. SISO shift register
 - ii. SIPO shift register
 - iii. PISO shift register
 - iv. PIPO shift register
 - v. Ring counter

TSN1101 Computer Architecture and Organization (Digital Logic Design Lab (A))

Report Format

- Tutorial number and objectives
- Ouestion 1
- Problem Statement
- Function table for JK Flip-flop,
- Connection diagram for D Flip-flop using JK Flip-flop and truth table for D Flip-flop
- Connection diagram for T Flip-flop using JK Flip-flop and truth table for T Flip-flop
- Question 2 and 4
 - Problem Statement
 - State Transition Diagram
 - Flip-flop Excitation Table
 - Circuit Excitation Table (State Table) showing present state, next state and Flip-flop inputs
 - Karnaugh maps for the simplification of Flip-flop inputs
 - Simplified Logical Expression for Flip-flop inputs
 - Construction diagram for the synchronous(parallel) counter using the simplified logic expressions
- Question 3 and 5
 - Problem Statement
 - Follow the instructions given in subdivisions of each question

Circuit Construction:

• Submit the constructed circuit (each question) via CircuitVerse, and label it according to question. Be self-explanatory.

Assessment:

Total marks = 20/10=2%

Construction/Connections of the Circuit and Result during lab session= Tutor to pick one of the questions for students to do and submit via CircuitVerse = 10 marks,

Report = 5 Questions \times 2 marks = 10 marks

Pin Configurations:

'LS76A FUNCTION TABLE

INPUTS					OUTPUTS	
PRE	CLR	CLK	J	К	a	ā
L	н	×	×	×	н	L
н	L	×	×	×	L	н
L	L	×	×	×	H†	HT
н	H		L	L	Q ₀	$\overline{\alpha}_0$
H	н	38	H	L	н	L
H	н	4	L	H	⊕E.	H
H	н	4	н	н	TOGGLE	
н	н	н	×	X	00	00

[†] This configuration is nonstable; that is, it will not persist when either preset or clear returns to its inactive (high) level.

