Multi-Objective Optimization Model for a Scrum-Based Software Development Organization

Generated Assistant

August 11, 2025

Contents

1	1. Sets (Entities)	2
2	2. Indices	3
3	3. Goals	4
4	4. Conditions	5
5	5. DecisionVariables	6

1 1. Sets (Entities)

- \mathcal{P} (P): set of Projects (*Project*)
- \mathcal{T} (T): set of Teams (Team)
- W (W): set of Workers (Worker)
- \mathcal{F} (F): set of Features (Feature)
- S (S): set of Skills (Skill)
- \mathcal{R} (R): set of Roles (Role)
- \mathcal{PO} (PO): set of Product Owners (ProductOwner)
- \mathcal{SM} (SM): set of Scrum Masters (ScrumMaster)
- \mathcal{PB} (PB): set of Product Backlogs (*ProductBacklog*)
- \mathcal{SP} (SP): set of Sprints (Sprint)
- SPP (SPP): set of Sprint Planning events (SprintPlanning)
- \mathcal{DS} (DS): set of Daily Scrums (DailyScrum)
- \mathcal{SR} (SR): set of Sprint Reviews (SprintReview)
- \mathcal{SRE} (SRE): set of Sprint Retrospectives (SprintRetrospective)
- \mathcal{SBL} (SBL): set of Sprint Backlogs (SprintBacklog)
- SG (SG): set of Sprint Goals (SprintGoal)
- \mathcal{E} (E): set of Epics (*Epic*)
- \mathcal{US} (US): set of User Stories (*UserStory*)
- TSK (TSK): set of Tasks (Task)
- \mathcal{DEV} (DEV): set of Development Snapshots (DevelopmentSnapshot)
- \mathcal{BL} (BL): set of Blockers (Blocker)
- \mathcal{SH} (SH): set of Stakeholders (Stakeholder)
- VEL (VEL): set of Velocity records (Velocity)
- \mathcal{REP} (REP): set of Release Plans (ReleasePlan)
- \mathcal{RM} (RM): set of Roadmaps (Roadmap)
- \mathcal{SCB} (SCB): set of Scrum Boards (ScrumBoard)
- \mathcal{FED} (FED): set of Feature Documents (Feature Documentation)

Relationship sets (from Relationships.csv):

- $\mathcal{R}^{\text{team_proj}} \subset \mathcal{T} \times \mathcal{P}$ (R1: team assigned to project)
- $\mathcal{R}^{\text{worker_team}} \subseteq \mathcal{W} \times \mathcal{T}$ (R2: worker belongs to team)¹

¹The CSV used "Employee"; here we map to Worker.

- $\mathcal{R}^{\text{worker_skill}} \subseteq \mathcal{W} \times \mathcal{S}$ (R3)
- $\mathcal{R}^{\text{worker_role}} \subseteq \mathcal{W} \times \mathcal{R}$ (R4)
- $\mathcal{R}^{\text{po-pb}} \subseteq \mathcal{PO} \times \mathcal{PB}$ (R5)
- $\mathcal{R}^{\text{team_sm}} \subseteq \mathcal{T} \times \mathcal{SM}$ (R6)
- $\mathcal{R}^{\text{pb_feature}} \subseteq \mathcal{PB} \times \mathcal{F}$ (R7)
- $\mathcal{R}^{\text{pb_epic}} \subset \mathcal{PB} \times \mathcal{E}$ (R8)
- $\mathcal{R}^{\text{epic_us}} \subseteq \mathcal{E} \times \mathcal{US}$ (R9)
- $\mathcal{R}^{\text{us_task}} \subseteq \mathcal{US} \times \mathcal{TSK}$ (R10)
- $\mathcal{R}^{\text{us_sbl}} \subseteq \mathcal{US} \times \mathcal{SBL}$ (R11)
- $\mathcal{R}^{\text{sbl_sp}} \subset \mathcal{SBL} \times \mathcal{SP}$ (R12)
- $\mathcal{R}^{\text{sp_goal}} \subseteq \mathcal{SP} \times \mathcal{SG}$ (R13)
- $\mathcal{R}^{\text{scb_task}} \subseteq \mathcal{SCB} \times \mathcal{TSK}$ (R14)
- $\mathcal{R}^{\text{fed_feature}} \subseteq \mathcal{FED} \times \mathcal{F} \text{ (R15)}$
- $\mathcal{R}^{\text{task_blocker}} \subseteq \mathcal{TSK} \times \mathcal{BL}$ (R16)
- $\mathcal{R}^{\text{sh_review}} \subseteq \mathcal{SH} \times \mathcal{SR}$ (R17)
- $\mathcal{R}^{\text{sm_retro}} \subseteq \mathcal{SM} \times \mathcal{SRE}$ (R18)
- $\mathcal{R}^{\text{vel_team}} \subseteq \mathcal{VEL} \times \mathcal{T}$ (R19)
- $\mathcal{R}^{\text{rep_feature}} \subseteq \mathcal{REP} \times \mathcal{F} \text{ (R20)}$
- $\mathcal{R}^{\text{rep_rm}} \subseteq \mathcal{REP} \times \mathcal{RM}$ (R21)
- $\mathcal{R}^{\text{sp_dev}} \subseteq \mathcal{SP} \times \mathcal{DEV}$ (R22)

2 2. Indices

• $p \in \mathcal{P}, t \in \mathcal{T}, w \in \mathcal{W}, f \in \mathcal{F}, s \in \mathcal{S}, r \in \mathcal{R}, po \in \mathcal{PO}, sm \in \mathcal{SM}, pb \in \mathcal{PB}, \sigma \in \mathcal{SP}, spp \in \mathcal{SPP}, ds \in \mathcal{DS}, sr \in \mathcal{SR}, sre \in \mathcal{SRE}, sbl \in \mathcal{SBL}, sg \in \mathcal{SG}, e \in \mathcal{E}, u \in \mathcal{US}, k \in \mathcal{TSK}, v \in \mathcal{DEV}, b \in \mathcal{BL}, sh \in \mathcal{SH}, vel \in \mathcal{VEL}, rep \in \mathcal{REP}, rm \in \mathcal{RM}, scb \in \mathcal{SCB}, fd \in \mathcal{FED}.$

Selected parameters (from entity attributes):

• budget_p (Project.budget), priority^F_f (Feature.priority), effort^{SBL}_{sbl} (SprintBacklog.total_effort), status^{BL}_b (Blocker.status; treated via binary condition), avail_w (Worker.availability), avgSP_{vel} (Velocity.avg_story_points), attend_{sr} (SprintReview.attendees_count), objdesc_{sg} (SprintGoal.objective_desc presence), acc_w (UserStory.acceptance_criteria presence), tests^{DEV}_v (DevelopmentSnapshot.test_status), cards_{scb} (ScrumBoard.number_of_cards), size_t (Team.team_size).

3 3. Goals

We formulate a scalarized multi-objective function using weights w_g from Goals.csv. For each goal g, let dir(g) = +1 if GoalType=max and dir(g) = -1 if GoalType=min. The master objective is:

$$\max \sum_{g \in \mathcal{G}} \operatorname{dir}(g) \, w_g \cdot \operatorname{GoalValue}_g$$

Below, each goal G#: name is defined.

• G0: maximize_team_velocity

$$GoalValue_{G0} = \sum_{vel \in \mathcal{VEL}} avgSP_{vel}$$

• G1: minimize_cycle_time

Proxy via snapshot creation lag; let $cycle(\sigma) = lag(\sigma)$ be a given metric.

$$GoalValue_{G1} = \sum_{\sigma \in \mathcal{SP}} cycle(\sigma)$$

• G2: minimize_open_blockers

Let $open_b \in \{0,1\}$ flag unresolved blockers. GoalValue_{G2} = $\sum_{b \in \mathcal{BC}} open_b$

• G3: maximize_sprint_goal_achievement

Let $ach_{\sigma} \in \{0,1\}$ indicate Sprint goal achieved. GoalValue_{G3} = $\sum_{\sigma} ach_{\sigma}$

• G4: minimize_total_effort GoalValue_{G4} =
$$\sum_{sh \in SBC}$$
 effort_{sbl}

• G5: maximize_feature_priority_delivered

Decision link via $x_{rep,f}^{rep} \in \{0,1\}$. GoalValue_{G5} = $\sum_{rep \in \mathcal{REP}} \sum_{f \in \mathcal{F}} \text{priority}_f^F x_{rep,f}^{rep}$

• G6: minimize_technical_debt_proxy

Proxy via high-effort tasks done: $z_{\sigma,k}^{done} \in \{0,1\}$. GoalValue_{G6} = $\sum_{\sigma \in SP} \sum_{k \in TSK} \text{effort}_k z_{\sigma,k}^{done}$

• G7: maximize_stakeholder_satisfaction_proxy

$$GoalValue_{G7} = \sum_{sr \in \mathcal{SR}} attend_{sr}$$

• G8: minimize_requirement_ambiguity_proxy

Missing acceptance criteria: let $m_u = 1$ if acc_u is missing, else 0. GoalValue_{G8} = $\sum_{u=0}^{\infty} m_u$

• G9: maximize_resource_availability
$$\operatorname{GoalValue}_{G9} = \sum_{w \in \mathcal{W}} \operatorname{avail}_w$$

• G10: minimize_budget_usage

Let use_p be planned/used budget. GoalValue_{G10} = \sum_{p} use_p

• G11: maximize_roadmap_progress

Let milestones Hit_{rm} be achieved milestones. Goal $\operatorname{Value}_{G11} = \sum_{rm \in \mathcal{RM}} \operatorname{milestones} \operatorname{Hit}_{rm}$

4

• G12: maximize_feature_throughput

Proxy via versions advanced: GoalValue $_{G12} = \sum_{v \in \mathcal{DEV}} \text{version_number}_v$

4. Conditions 4

Each condition is encoded as a hard constraint (Criteria Type 2 = must-match, 0 = cannotmatch) or a structural rule. Below, w_c denotes the weight of soft constraints (Criteria Type 1), if relaxed in a penalty term (not shown in the master objective for brevity).

• C0: must_have_product_owner

For each $pb \in \mathcal{PB}$, $\exists po \in \mathcal{PO} : (po, pb) \in \mathcal{R}^{\text{po-pb}}$ and $\text{avail}_{po} > 0$.

• C1: must_have_scrum_master

For each $t \in \mathcal{T}$, $\exists sm \in \mathcal{SM} : (t, sm) \in \mathcal{R}^{\text{team_sm}}$.

• C2: must_define_sprint_goal

For each $\sigma \in \mathcal{SP}$, $\exists sg \in \mathcal{SG}$: $(\sigma, sg) \in \mathcal{R}^{\text{sp-goal}}$ and objdesc_{sg} present.

• C3: cannot_exceed_team_capacity

For each $\sigma \in \mathcal{SP}$ and team t active in σ :

$$\sum_{k \in \mathcal{TSK}} \sum_{w \in \mathcal{W}} a_{k,t}^{\sigma} \, y_{k,w}^{alloc} \cdot \text{effort}_{k} \leq \kappa \cdot \text{size}_{t}$$

where $a_{k,t}^{\sigma} = 1$ if task k of sprint σ belongs to team t; κ converts headcount to capacity (hours/points).

• C4: must_backlog_items_ready

If $x_{u,sbl}^{us}=1$ (US u selected into sprint backlog sbl), then acc_u present. (Implication: $x_{u,sbl}^{us} \leq {\rm ready}_u$.)

• C5: cannot_schedule_blocked_tasks

If a blocker b is active for task k in σ , then $z_{\sigma,k}^{done}=0$. (i.e., $z_{\sigma,k}^{done}\leq 1-open_b$.)

• C6: must_lock_sprint_scope

For in-progress σ , sprint backlog sbl linked via $(sbl, \sigma) \in \mathcal{R}^{\text{sbl.sp}}$ remains fixed: $\Delta x_{u,sbl}^{us} = 0$ after start.

• C7: must_ci_green

For deployment decision $d_v^{prod} \in \{0,1\}$ on snapshot v, require $\text{tests}_v^{DEV} = \text{pass: } d_v^{prod} \leq$ $pass_v$.

• C8: must_review_documented

For each $sr \in \mathcal{SR}$, feedback_documentation_{sr} present.

• C9: must_retro_actions_tracked

For each $sre \in SRE$, record improvement_actions_{sre} and team satisfaction.

$$\begin{array}{l} \bullet \ \, \mathbf{C10:} \ \, \mathbf{cannot_exceed_budget} \\ \sum_{rep \in \mathcal{REP}} \sum_{f \in \mathcal{F}} \mathrm{cost}_f \, x_{rep,f}^{rep} \, \leq \, \sum_{p \in \mathcal{P}} \mathrm{budget}_p \end{array}$$

• C11: must_prioritize_epics

If $(e, u) \in \mathcal{R}^{\text{epic_us}}$, then priority_e defined.

• C12: must_update_velocity_window

For each $vel \in \mathcal{VEL}$, $\operatorname{avgSP}_{vel}$ is computed over exactly number_of_sprints_used_vel recent sprints.

• C13: cannot_overload_columns

For each $scb \in \mathcal{SCB}$, $cards_{scb} \leq WIPLimit_{scb}$.

5 5. Decision Variables

Let the following decision variables encode assignment, selection, and capacity choices. Domains and bounds follow DecisionVariables.csv.

• DV0: assign_user_story_to_sprint

 $x_{u,\sigma}^{us} \in \{0,1\}$: 1 if user story u is assigned to sprint σ ; else 0.

• DV1: select_feature_for_release

 $x_{rep,f}^{rep} \in \{0,1\}$: 1 if feature f is included in release plan rep.

• DV2: allocate_task_to_worker

 $y_{k,w}^{alloc} \in \{0,1\}$: 1 if task k is executed by worker w.

• DV3: set_task_status_done

 $z_{\sigma,k}^{done} \in \{0,1\} \text{: } 1 \text{ if task } k \text{ is completed within sprint } \sigma.$

• DV4: activate_blocker_resolution

 $r_{\sigma,b}^{blk} \in \{0,1\} \text{: } 1 \text{ if blocker } b \text{ is resolved in sprint } \sigma.$

• DV5: choose_sprint_goal_commitment

 $c_{\sigma}^{goal} \in \{0,1\}$: 1 if sprint goal for σ is committed.

\bullet DV6: allocate_team_to_project

 $x_{t,p}^{tp} \in \{0,1\}$: 1 if team t is assigned to project p.

• DV7: prioritize_user_story

 $\pi_u^{us} \in \{1, 2, 3, 4, 5\}$: integer priority rank for user story u.

• DV8: estimate_story_points

 $sp_u \in \{1, 2, 3, 5, 8, 13, 20\}$: integer story-point estimate for u.

• DV9: set_worker_availability

 $\alpha_w \in [0, 100]$: availability percentage for worker w in the sprint.

• DV10: limit_sprint_wip

 $L_{\sigma,w}^{wip} \in [1,10] \cap \mathbb{Z}$: max concurrent tasks per worker w in sprint σ .

• DV11: select_epic_for_decomposition

 $x_e^{epic} \in \{0,1\}$: 1 if epic e is selected for decomposition this increment.

• DV12: choose_deployment_target

 $d_v^{prod} \in \{0,1\}$: 1 if development snapshot v targets production.

Linking/structural constraints (typical):

• User Story-Sprint Backlog linkage: if $x_{u,\sigma}^{us} = 1$ then $\exists sbl : (u, sbl) \in \mathcal{R}^{us_sbl} \land (sbl, \sigma) \in \mathcal{R}^{sbl_sp}$.

- Task completion implies allocation: $z_{\sigma,k}^{done} \leq \sum_{w \in \mathcal{W}} y_{k,w}^{alloc}$.
- WIP limit: $\sum_k y_{k,w}^{alloc} \leq L_{\sigma,w}^{wip}$ for each σ, w concurrently active.
- Capacity vs availability: $\sum_k y_{k,w}^{alloc}$ effort_k $\leq \gamma \cdot \alpha_w$ (calibration factor γ).
- Team–Project consistency: $x_{t,p}^{tp} = 1 \Rightarrow (t,p) \in \mathcal{R}^{\text{team_proj}}$ (or create/activate such assignment).
- Release membership feasibility: $x_{rep,f}^{rep} = 1 \Rightarrow (rep, f) \in \mathcal{R}^{\text{rep_feature}}$.