용인시 전기차 완속 충전소의 최적 입지 선정

부릉부릉 홍유빈 김수민 김태완 선대운 신유진

Contents

01

About the Project

- 배경
- 목적 및 필요성
- 프로젝트 개요

02

최적 입지 후보지 탐색

- 후보지 기준
- 데이터 전처리

03

수요 예측 모델

- 모델링
- 데이터 전처리
- Clustering 결과

04

최적 입지 선정

- 결과 해석
- 활용 방안
- 한계점

About the Project

목적 및 필요성

일반 자동차는 주유소에서 연료를 주입하는 방식을 사용하는 반면, 전기 자동차는 전기차 충전소에서 일정 시간 충전기를 연결해야 주행이 가능하다.

목적 및 필요성

불필요한 비용은 절감하고 이용자들에게 더 큰 효용을 줄 수 있 는

전기차 완속 충전소의 최적 입지를 선정!

충전전력: 7kW / 충전시간: 4~5시간

→ 급속 충전소의 입지 조건과 다르게 고려해야 함.

01

완속 충전소 입지 후보지 탐색

이용 선호도가 높은 설치지점 파악

02

충전 수요 예측 모델 구축

앱 사용자 수 데이터 기반 충전 수요 예측

03

충전 수요 기반 최적 입지 선정

전기차 충전소 최적 입지 선정

FIRST : 후보지 탐색

How

이용 선호도가 높은 설치지점

- 아파트단지
- 공영주차장
- 공공기관
- 직장 대단위 업무시설
- 대형쇼핑센터
- 산업단지
- 체육시설
- 공원
- 주유소

:

최대한 많이 포함하여 입지 후보지 선정

입지 후보지 탐색

후보지 유형

용인시 내 문화시설, 주차장, 산업단지, 점포단지, 주유소, 공원

도로명주소를 카카오 api를 활용하여 위경도로 변환 후 모든 dataframe 통합

위경도가 동일한 행 drop

활용 데이터

출처	데이터	
경기도 용인시	용인시내 아파트	
용인도시공사	용인도시공사_주차장 정보	
경기도 용인시 (공공데이터포털)	경기도 용인시_대규모 점포 현황	
한국환경공단 (공공데이터포털)	전기자동차 충전소 정보	

SECOND : 수요 예측 모델

박콘 데이터

테이블정의서							
	파일명	ev_app_resident.csv					
	테이블설명	2022.6.1~ 2022. 6.30 까지의 용인시 거주자의 전기차 앱실행 고객수					
No.	컬럼ID	컬럼명	타입	NULL	비고		
1	BASE_DT	기준일자	string	N	YYYYMMDD		
2	DOW	요일	string	N	요일(월~일)		
3	CCW_CD	시군구코드	string	N	셀 위치 시군구코드		
4	CCW_NM	시군구명	string	N	셀 위치 시군구명(용인시 한정)		
5	ADNG_CD	행정동코드	string	N	셀위치 행정동코드		
6	ADNG_NW	행정동명	string	N	셀 위치 행정동명		
7	CELL_ID	셀ID	bigint	N	지형지물정보 셀 ID		
8	CELL_XCRD	Cell center X	float	N	셀 중심점 Y 좌표 (위도)		
9	CELL_YCRD	Cell center Y	float	N	셀 중심점 X 좌표 (경도)		
10	GENDER	성별	string	N	성별 구분코드 : MALE/FEMALE		
11	AGE	연령	float	N	연령대 ID : 코드표 참조		
12	APP_WEB	앱웹	string	N	전기차 관련 앱 : 앱리스트 참조		
13	TIME ZONE	시간	strina	N	시간대 : 코드표 참조		
14	Count_cust	실행자수	float	N	앱/웹 실행자수 : 전국민 추정 계수 적용		

현재 운영 중인 주차장의 이용률을 활용하여 이용자의 수요를 만족시키는 정도를 기준으로 수요점별 count_cust 조정

전처리

list(battery_copy["충전소명"])

- ['에스지스크린골프',
- '용인스테이타워',
- '죽전누리에뜰',
- '동백중앙프라자상가',
- '삼성래미안1차아파트',
- '강남앤플러스'.
- '광교산 한양수자인더킨포크',
- '에버랜드 셔틀버스 주차장',
- '에버랜드 홈브릿지 캐빈호스텔'
- '한국국토정보공사 용인지사',
- '어반런드렛'
- '유니버스트윈1차오피스텔',
- '유니버스트윈2차오피스텔',
- '신봉동부센트레빌6단지아파트',
- '서홍마을벽산블루밍아파트'.
- '용인 호수청구아파트'
- '기흥 금화마을 주공3단지',
- '기흥 광림남교회'
- '기흥 삼정아파트',
- '용인 신촌마을포스홈타운2단지', '한국 대중불교불이종 동도사',
- 인독 대중론교 '보리원',
- '죽전효성해링턴플레이스'
- '대한불교조계종법륜사',
- '용인 도담마을 한양수자인',
- '용인 광교2차푸르지오시티A동'
- '용인 광교2차푸르지오시티B동'
- '용인 광교2차푸르지오시티C동'
- '용인 광교2차푸르지오시티D동',

현존하는 완속 충전소들을 살펴보면, 아파트 내에 설치된 충전기들이 대다수인 것을 알 수 있다.

제공된 resident 데이터셋에서 위경도를 활용하여 아파트 거주자와 비아파트 거주자와 비아파트 거주자를 구분하였다.

거주지 데이터

아파트 거주자

비아파트 거주자

수요예측

수요 예측 모델

충전소가 충족시킬 수 있는 충전 수요 예측

기존 충전소 좌표를 기준으로 주변의 수요점들을 파악

하나의 충전소가 만족시킬 수 있는 수요를 예측

수요 예측

현재 운영 중인 주차장 내 완속 충전기가 만족시키는 수요 계산

- 용인시 내 주차장 데이터 중 아파트가 아닌 곳들만 리스트업 (총 199개)
 - 웹크롤링을 통해 2시간 간격으로 각 시간별 이용량 파악

Notapart 1day charge.csv

[Row] 용인시 내 비아파트 주차장
[Column] 주차장명, 도로명주소, 위경도, 완속충전기수, 전체충전기수, 운영시간, 시간대별 이용량

- 평균이용량 = (각 시간별 이용량 평균) / (주차장별 전체 충전기수)
 운영시간비 = (운영시간) / 24
 - 급속 충전기가 완속 충전기보다 4배 많은 수요를 처리한다고 가정하여, 급속 충전기에 4배의 가중치를 부가한다.

• 현재는 사용 중이지 않은 여분의 충전 가능 시설에 대해서는 0.3의 가중치를 주어 잠재적으로 수용된다고 가정한다.

최종적으로 도출된 만족하는 수요 (Final Estimate)

= Total Estimate + 0.3*(Potentially Useable Charger)

수요 예측

현재 운영 중인 주차장 내 완속 충전기가 만족시키는 수요 계산

- 충전기 1개 당 최적의 coverage는 3대라고 가정
- → 용인시의 총 비아파트 충전소는 579개이므로, 이상적인 coverage는 이의 3배인 1737대
- Final estimate의 총합이 1737이 되도록 비례식에 상수를 곱하여 이상적인 주차장별 coverage 계산

Weight = 1737 / sum(Final Estimate)
Final Weighted Estimate = Final Estimate * Weight

• 하지만 방금 구한 Weight는 **주차장의 total coverage를 맞춰주는 과정에 활용되는 것으로**, 실제 주차장이 부담하고 있는 수치에 대한 가중치 또한 구한다.

수요 예측

유입인구에 대한 고려 필요

- 3번 데이터 : 용인시 거주자 이면서 용인 시내 활동자의 앱사용 = sum(count_cust) = 약 128만 건
- 2번 데이터 : 용인시 총 활동인구의 앱사용 = 3번데이터 + 활동만 용인시 = sum(count_cust) = 약 177만 건
- 1번 데이터 : 용인시 총 거주자의 앱사용 = 3번데이터 + 거주만 용인시 = sum(count_cust) = 약 191만 건
 - → 유출 활동자는 63만 건, 유입 활동자는 49만 건으로 정의 (3번데이터를 1번과 2번 데이터의 교집합으로 고려)

활동지 데이터에서 (49만/177만) * 100 에 해당하는 자료를 임의로 sampling → 주간 활동 인구로 정의 → 수요점에 추가 Countcust_weight: 전기차 대수와 count_cust의 비례계수(전기차 1대당 count_cust 비율) (이를 활용하여 유입인구 전기차 대수를 역산해 계산)

실제로 부담하고 있는 수치에 대한 Weight (Real Weight)
= (비아파트 수요 + 유입인구 수요 전기차수) / 비아파트 충전소 개수
= 약 7.24

현재 전기차 충전소가 만족시킬 수 있는 수요 (%) = 이상적 Weight / 실제 Weight = 약 41%

현재 41%에 해당하는 전기차 수요를 만족시키고 있으므로,
 총 count_cust의 41%를 만족시키는 중이라고 추정

각 법정동별 수요 예측

유입인구에 대한 고려 필요

- 수요가 만족되었다고 판단되는 수요점 제거 후 남은 수요점들
 → Groupby 활용하여 법정동별로 총합 계산 및 비율 계산
 - 더 필요하다고 판단되는 충전기 대수: 1550대

각 법정동별로 더 필요로 하는 충전기 대수 = (각 법정동의 count_cust 비율) x 1550 Countcust_weight: 전기차 대수와 count_cust의 비례계수(전기차 1대당 count_cust 비율) (이를 활용하여 유입인구 전기차 대수를 역산해 계산)

실제로 부담하고 있는 수치에 대한 Weight (Real Weight)
= (비아파트 수요 + 유입인구 수요 전기차수) / 비아파트 충전소 개수
= 약 7.24

현재 전기차 충전소가 만족시킬 수 있는 수요 (%) = 이상적 Weight / 실제 Weight = 약 41%

현재 41%에 해당하는 전기차 수요를 만족시키고 있으므로,
 총 count cust의 41%를 만족시키는 중이라고 추정

각 법정동별 수요 예측

K-Means Clustering 실행

각 법정동 별로 clustering을 실행하여 입지 후보 선정의 기준이 될 군집점들을 파악

>>

- Cluster 개수: 이전 단계에서 조정된 count_cust (adj_count_cust) 사용
- 각 label 별 중심점의 위경도 저장 → 새로운 'clusters' dataframe 생성

Clustering.csv

[Row] 각 법정동별 도출된 군집점

[Column]

- 1. cluster_label: 각 clustering에서 도출된 label
- 2. Cell_xcrd, cell_ycrd : 중심점의 위경도 좌표
- 3. Count_point: 각 cluster별 몇 개의 수요점이 존재하는지
- 4. Adj_count_cust_sum: 각 cluster별 adj_count_cust 총합
 - 5. Charger_number: 각 cluster에 필요한 충전기 대수

• Charger_number = 0 인 cluster 에 대하여 drop 실행 → cluster_final dataframe 생성

FINAL : 최적 입지 선정

최적 입지 선정 모델

기존 충전소 데이터

모델링

Clustering 시행

감사합니다!