Feuille de travaux dirigés 4 : Modélisation bayésienne

Exercice 1 (Modèle gaussien):

On considère le modèle bayésien suivant sur $\mathcal{X} = \mathbb{R}$:

$$\begin{cases} X|\theta \sim \mathcal{N}(\theta, \sigma^2) \\ \boldsymbol{\theta} \sim \mathcal{N}(\mu_0, \tau_0^2) \end{cases}$$

où σ^2 , μ_0 et τ_0^2 sont des constantes supposées connues.

- 1. Quel est l'espace des paramètres? Donnez la loi a posteriori $\pi(\theta|x)$.
- 2. On considère maintenant un échantillon i.i.d. $Y = (X_1, ..., X_n)$, où $X_i \sim X$. Quelle est le modèle pour Y? Donnez la loi a posteriori $\pi(\theta|y)$. Que se passe-t-il lorsque $n \to \infty$?

Exercice 2 (Mélange d'opinions):

Une expérience aléatoire a deux résultats possibles (succès ou échec). On note X la variable aléatoire valant 1 en cas de succès, 0 en cas d'échec. X est supposée suivre une loi de Bernoulli de paramètre θ inconnu. On considère seulement deux valeurs possibles pour θ : $\theta \in \{\theta_1 = 0.2, \theta_2 = 0.6\}$.

- 1. Écrire le modèle statistique, détailler l'espace des paramètres.
- 2. Le premier expert accorde une confiance égale en les deux possibilités pour θ . Autrement dit, son prior est $\pi_1(\theta_1) = \pi_1(\theta_2) = 0.5$. Donnez la loi a posteriori $(\pi_1(\theta_i|x=1))_{i=1,2}$ et $\pi_1(\theta_i|x=0)_{i=1,2}$.
- 3. Même question pour un deuxième expert qui croit a priori plus à la seconde alternative : son prior est $\pi_2(\theta_1) = 1/4$, $\pi_2(\theta_2) = 3/4$.
- 4. La loi predictive a posteriori (sachant l'observation X = x) est par définition, la loi sur \mathcal{X} dont la densité par rapport à la mesure de référence est donnée par

$$p(y) = \int_{\Theta} p(y|\theta)\pi(\mathrm{d}\theta|x),$$

où $\pi(\cdot|x)$ est la loi a posteriori. Quelle est cette prédictive a posteriori pour le prior π_2 , lorsque x=1?

On observe maintenant un échantillon i.i.d. $X = (X_1, \ldots, X_n)$.

- 5. Montrer que les lois a posteriori $\pi(\theta|x)$ ne dépendent que de $s = \sum_{j=1}^{n} x_j$.
- 6. On suppose que s = n/2. Écrire la loi a posteriori $\pi_2(\theta|x)$ ($x \in \{0,1\}^n, \sum_i x_i = s, \theta \in \{\theta_1, \theta_2\}$) pour l'a priori π_2 . Que se passe-t-il lorsque $n \to \infty$? Même question pour l'a priori π_1 . Plus généralement, le comportement lorsque n tend vers l'infini dépend-il de l'a priori?

Exercice 3:

Une modélisation classique du trafic téléphonique repose sur l'hypothèse suivante, dite Poissonienne : le nombre d'appels des abonnés pendant un intervalle de temps Δt est supposé

suivre une loi de Poisson, et les nombres d'appels sur des intervalles de temps disjoints sont indépendants. Soit $\mathbf{X} = (X_1, \dots, X_n)$ les nombres d'appels observés sur $n \in \mathbb{N}^*$ intervalles de temps successifs. L'hypothèse est alors que les variables aléatoires X_1, \dots, X_n sont indépendantes et identiquement distribuées sur un espace probabilisé Ω selon une loi de Poisson notée $\mathcal{P}oiss(\theta)$, avec $\theta \in \Theta :=]0, \infty[$ inconnu. n dispose maintenant d'une information a priori π sur le paramètre θ . On note π la loi a priori et $\theta \sim \pi$ la variable aléatoire à valeurs dans $\Theta =]0, \infty[$ associée. On choisit pour π une loi Gamma, $\pi = \mathcal{G}amma(a, \lambda)$ avec $a > 0, \lambda > 0$ des quantités fixées par l'utilisateur en fonction de sa connaissance a priori sur θ . Soit $\pi(\cdot|\mathbf{x})$ la loi a posteriori sachant l'observation $\mathbf{X}(\omega) = \mathbf{x} \in \mathcal{X}^n$, pour un certain $\omega \in \Omega$. Dans la suite, on notera également $\pi(\theta)$ la densité de la loi a priori évaluée en $\theta \in \Theta$ et $\pi(\theta|\mathbf{x})$ la densité de la loi a posteriori.

- 1. Montrer que pour tout $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{X}^n$, la loi a posteriori $\pi(\cdot | \mathbf{x})$ est une loi Gamma dont on précisera les paramètres en fonction de \mathbf{x}, a, λ .
- 2. Quelle est l'espérance a posteriori $\mathbb{E}(\boldsymbol{\theta}|\mathbf{x})$?
- 3. On appelle θ_0 le « vrai » paramètre (inconnu) régissant les observations. En utilisant la loi des grands nombres, montrer que $\mathbb{E}(\boldsymbol{\theta}|\mathbf{X})$ converge presque sûrement vers une limite que l'on précisera, lorsque $n \to \infty$.
- 4. La variance a posteriori est définie par $\mathbb{V}ar(\boldsymbol{\theta}|\mathbf{x}) = \mathbb{V}ar(Y)$ où Y suit la loi a posteriori $\pi(\cdot|\mathbf{x})$. Que vaut $\mathbb{V}ar(\boldsymbol{\theta}|\mathbf{X})$? Montrer que $\mathbb{V}ar(\boldsymbol{\theta}|\mathbf{X})$ converge presque sûrement vers une limite que l'on précisera.