

INDIAN INSTITUTE OF SCIENCE, BENGALURU

DEPARTMENT OF ELECTRONIC SYSTEMS ENGINEERING

DESIGN FOR ANALOG CIRCUITS LABORATORY REPORT

 ${\bf ASSIGNMENT~10}$ SENSOR AMPLIFIERS AND PHASE TRIPLER

SOUMYA KANTA RANA

S.R. No.: 04-01-00-10-51-21-1-19261

October 17, 2021

Contents

1	Neg	gative Impedance Converter	1
	1.1	Aim	1
	1.2		1
	1.3	DC operating point simulation	
2	Sen	sor Amplifier (0.2-140 Hz)	2
	2.1	Aim	2
	2.2	Schematic	2
	2.3	Frequency Response	2
	2.4	Summary	2
3	Sen	asor Amplifier (0-20 Hz)	3
		Aim	3
	3.2	Schematic	3
	3.3	Frequency Response	4
	3.4	Summary	4
4	Pha	ase Tripler	5
		Aim	5
	4.2	Schematic	5
		Transient Response	5

List of Figures

1	LTSpice schematic of negative impedance converter	1
2	DC operating point simulation of negative impedance converter	1
3	LTSpice schematic of (a) Sensor Amplifier (0.2-140 Hz), (b) With negative impedance converter.	2
4	Frequency Response of Sensor Amplifier (0.2-140 Hz)	3
5	LTSpice schematic of (a) Sensor Amplifier (0-20 Hz), (b) With negative impedance converter	3
6	Frequency Response of Sensor Amplifier (0-20 Hz)	4
7	LTSpice schematic of Phase Tripler	
8	Transient response of Phase Tripler	6

1 Negative Impedance Converter

1.1 Aim

To perform DC operating point simulation of the negative impedance converter.

1.2 Schematic

Figure 1: LTSpice schematic of negative impedance converter.

1.3 DC operating point simulation

The figure 2 shows the dc sweep simulation results (output voltage and input current) of the negative impedance converter versus input voltage. The negative impedance seen by the voltage source is -308.78Ω , making the effective source impedance 86.22Ω .

Figure 2: DC operating point simulation of negative impedance converter

2 Sensor Amplifier (0.2-140 Hz)

2.1 Aim

To perform frequency response simulation of the Sensor Amplifier.

2.2 Schematic

Figure 3: LTSpice schematic of (a) Sensor Amplifier (0.2-140 Hz), (b) With negative impedance converter.

2.3 Frequency Response

The figure 4 shows the frequency response of the sensor amplifier. The gain in the frequency range of interest is 97.3. The gain rolls off at -60 dB/decade after 140 Hz. There is also a low frequency zero as the gain rises at 20dB/decade till 0.16 Hz. The Negative impedance converter reduces the gain to 1.6.

2.4 Summary

- 1. The first stage (op-amp U1) is a low pass filter with its pole at 208.04 Hz.
- 2. The second stage (op-amp U2) is a sallen key low pass filter with $\omega_0 = 297.14 Hz$ (two poles).
- 3. The third stage $(C_4 \& R_5)$ is a high pass filter with its pole at 0.16 Hz.
- 4. The fourth stage (op-amp U3) is a low pass filter with its pole at 212.2 Hz.

Figure 4: Frequency Response of Sensor Amplifier $(0.2\text{-}140~\mathrm{Hz})$

3 Sensor Amplifier (0-20 Hz)

3.1 Aim

To perform frequency response simulation of the Sensor Amplifier.

3.2 Schematic

Figure 5: LTSpice schematic of (a) Sensor Amplifier(0-20 Hz), (b) With negative impedance converter.

3.3 Frequency Response

The figure 6 shows the frequency response of the sensor amplifier. The gain in the frequency range of interest is **97.39** and the high frequency gain roll-off is **-40dB/decade**. The notch at 60Hz helps in reducing the 60Hz power supply noise. The notch also comprises of a RHP zero. The Negative impedance converter reduces the gain to **1.62**.

Figure 6: Frequency Response of Sensor Amplifier (0-20 Hz)

3.4 Summary

- 1. The first stage (op-amp U1) is a low pass filter with its pole at $48.23~\mathrm{Hz}$.
- 2. The second stage (op-amp U2) is a sallen key low pass filter with $\omega_0 = 47.41 Hz$ (two poles).
- 3. The third stage (op-amp U3) is a notch filter with its zeroes at 60 Hz.
- 4. The fourth stage (op-amp U4) is a low pass filter with its pole at 48.23 Hz.

4 Phase Tripler

4.1 Aim

To perform transient simulation of the Phase Tripler.

4.2 Schematic

Figure 7: LTSpice schematic of Phase Tripler

4.3 Transient Response

The figure 8 shows the transient simulation waveforms of the phase tripler. The output P0 is same as the input, whereas P1 lags P0 by 120° and P2 lags P1 by 120° .

Figure 8: Transient response of Phase Tripler