Photon Interference

Negron

Introduction Tools

Single Photoi Interference Set-Up Results

Biphoton Interference

Photon Interference Single Photon and Bi-Photon

K. Oskar Negron

Department of Physics, CSU Fullerton

May 22, 2017

Outline

Photon Interference

K. Oskar Negron

- Introduction
- Single Photoi Interference Set-Up Results

- 1 Introduction
 - Tools
- 2 Single Photon Interference
 - Set-Up
 - Results
- 3 Biphoton Interference

Wave-particle duality

Photon Interference

K. Oska Negron

Introduction Tools

Single Photo Interference Set-Up Results

- Light in the form of waves, in or out of phase, either constructively or destructively interfere with one another
- Incident discrete wave packets (photons) with sufficient energy may eject electrons
 - Photoelectric effect
- The fact that light can behave in either of these manners is referred to as Wave Particle Duality.

Outline

Photon Interference

K. Oskar Negron

ntroduction

Tools

Single Photo Interference Set-Up Results

- 1 Introduction
 - Tools
- 2 Single Photon Interference
 - Set-Up
 - Results
- 3 Biphoton Interference

Photon Interference

K. Oskar Negron

Introduction Tools

Single Photo Interference Set-Up Results

- The Single Photon Interference Experiment demonstrates that a photon may interfere with itself when it may reach a detector by means of either of 2 indistinguishable paths.
- Feynman provides three Quantum Mechanical Conditions by which interference may occur

Photon Interference

K. Oska Negron

Introductio Tools

Single Photo Interference Set-Up Results

Biphoton Interferenc ■ The probability P of an outcome from a particle interacting with an apparatus is the square of the absolute value of its complex probability amplitude ϕ

$$P = |\phi|^2$$

If the same outcome can occur in indistinguishable ways, the probability amplitude is the sum of probability amplitudes for each way separately:

$$P = |\phi_1 + \phi_2|^2$$

- If an experiment determines which way the outcome occurred, then the probability is the sum of each alternative
 - $P = P_1 + P_2 = |\phi_1|^2 + |\phi_2|^2$

Can it be explained classically?

Photon Interference

K. Oskar Negron

Tools

Single Photo Interference Set-Up Results

Figure: Beam splitting in the classical sense.

- ε_2 and ε_3 are the amplitude of the reflected and transmitted beams,
- r and t are the complex reflectance and transmittance of the beam-splitter

Can it be explained classically?

Photon Interference

K. Oskai Negron

Introductio

Single Photor Interference Set-Up Results

Biphoton Interference

$$ullet$$
 $\varepsilon_2 = r \varepsilon_1$ and $\varepsilon_3 = t \varepsilon_1$

Loss-less beam-splitters

$$|\varepsilon_1|^2 = |\varepsilon_2|^2 + |\varepsilon_3|^2$$

$$|r|^2 + |t|^2 = 1$$

If treat the beam-splitter quantum mechanically (replace ε_i with annihilation operators \hat{a}_i)

$$\begin{pmatrix} \hat{a}_2 \\ \hat{a}_3 \end{pmatrix} = \begin{pmatrix} r\hat{a}_1 \\ t\hat{a}_1. \end{pmatrix} \tag{1}$$

Photon Interference

K. Oskar Negron

Introductio Tools

Single Photo Interference Set-Up Results

Biphoton Interference ■ Fails the commutation relationships

$$\begin{aligned} [\hat{a}_{2}, \hat{a}_{2}^{\dagger}] &= |r|^{2} [\hat{a}_{1}, \hat{a}_{1}^{\dagger}] = |r|^{2} \\ [\hat{a}_{3}, \hat{a}_{3}^{\dagger}] &= |t|^{2} [\hat{a}_{1}, \hat{a}_{1}^{\dagger}] = |t|^{2} \\ [\hat{a}_{2}, \hat{a}_{3}^{\dagger}] &= rt \neq 0 \end{aligned}$$

What went wrong!?

Correct Interpretation

Photon Interference

K. Oskar Negron

Introduction
Tools

Single Photo Interference Set-Up Results

Biphoton

Figure: Beam splitting quantum-mechanically

 $\begin{pmatrix} \hat{a}_2 \\ \hat{a}_3 \end{pmatrix} = \begin{pmatrix} r\hat{a}_1 + t'\hat{a}_0 \\ t\hat{a}_1 + r'\hat{a}_0 \end{pmatrix}$ (2)

Mach-Zehnder interferometer

Photon Interference

K. Oskar Negron

Introductio Tools

Single Photo Interference Set-Up Results

Biphoton Interference

Figure: MZI. BS_1 and BS_2 are beam-splitters, θ is the phase difference, M_1 and M_2 are mirrors, and D_1 and D_2 are detectors.

Biphoton Interference ■ Consider the state $|0\rangle|1\rangle$ entering the MZI and interacting with the first beam splitter (BS_1)

$$|0\rangle|1\rangle \rightarrow t|0\rangle|1\rangle + r|1\rangle|0\rangle.$$

• Once this reaches the second beam-splitter (BS_2) there will/might be a phase length θ_1 and θ_2

$$egin{aligned} |0
angle |1
angle &
ightarrow e^{\mathrm{i} heta_1}(r|0
angle |1
angle + t|1
angle |0
angle \ |1
angle |0
angle &
ightarrow e^{\mathrm{i} heta_2}(t|0
angle |1
angle + r|1
angle |0
angle \end{aligned}$$

Mach-Zehnder interferometer

Photon Interference

K. Oskar Negron

Introduction
Tools

Single Photo Interference Set-Up Results

Biphoton Interferenc the final state is given by,

$$t(e^{\mathrm{i}\theta_1}(r|0\rangle|1\rangle+t|1\rangle|0\rangle))+r(e^{\mathrm{i}\theta_2}(t|0\rangle|1\rangle+r|1\rangle|0\rangle))$$

or

$$rt(e^{\mathrm{i} heta_1}+e^{\mathrm{i} heta_2})|0
angle|1
angle+(tte^{\mathrm{i} heta_1}+rre^{\mathrm{i} heta_2})|1
angle|0
angle.$$

$$P_{10} = (e^{i\theta_1}tr + e^{i\theta_2}rt)(\overline{e^{i\theta_1}tr + e^{i\theta_2}rt})$$

$$= 2|t|^2|r|^2 + 2|r|^2|t|^2 \frac{e^{i(\theta_1 - \theta_2)} + e^{-i(\theta_1 - \theta_2)}}{2}$$

$$= 2|t|^2|r|^2 + 2|r|^2|t|^2\cos(\theta_1 - \theta_2)$$

Mach-Zehnder interferometer

Photon Interference

K. Oskar

Introduction Tools

Single Photo Interference Set-Up Results

$$P_{10} = 2|t|^2|r|^2 + 2|r|^2|t|^2\cos\theta$$

- ullet $heta= heta_1- heta_2$ is the phase difference
- 50:50 beamsplitter have $|r| = |t| = \frac{1}{\sqrt{2}}$

$$P_{10} = \frac{1}{2}(1 + \cos \theta).$$

$$P_{01} = 1 - P_{10} = \frac{1}{2}(1 - \cos\theta)$$

Single Photons?

Photon Interference

K. Oskar

Introduction Tools

Single Photo Interference Set-Up

Biphoton

■ Spontaneous parametric down-conversion

Outline

Photon Interference

K. Oskar Negron

Introduction
Tools

Single Photon Interference

Set-Up Results

- 1 Introduction
 - Tools
- 2 Single Photon Interference
 - Set-Up
 - Results
- 3 Biphoton Interference

Experimental Set-up

Photon Interference

Negron

Introductio Tools

Single Photor Interference

Set-Up Results

Interference

Figure: Using an arc to determine the locations of the detectors D1 and D2

Experimental Set-up

Photon Interference

K. Oskar Negron

Introduction Tools

Single Photo Interference Set-Up

- First, we must assure that we are acquiring coincidence counts in our two detectors that is, they are equidistant from the BBO (Barium Borate) crystal.
- A 405 nm laser is carefully placed to go through the BBO crystal and by means of parametric down conversion, photon pairs are formed 3° apart to be detected in D1 and D2.
- With the use of a LabView program, our detectors let us know if there has been a photon pair detected in both detectors simultaneously.

Key Procedures

Photon Interference

K. Oskai Negron

Introduction
Tools

Interference
Set-Up

- Assure all pieces are the exact same height
- Assure the beam remains that height during its path entirety. (Iris iteration method with EVERY piece)
- Best to have beam remain parallel to holes in breadboard
- Use plumb-bob to accurately place pieces and align beams
- Alignment is done using the red beam to mimic the 405nm beams path
- Optimize coincidence counts

Iris

Photon Interference

K. Oskar Negron

Introduction

Single Photo

Set-Up

MZI initial set-up

Photon Interference

K. Oskar Negron

Introduction Tools

Single Photon Interference Set-Up Results

- Placing the first beam splitter, assure the incident beam is reflected down its path of incidence and reflected perpendicular relative to incidence
- Assure reflected path is parallel to holes in table using iris iteration
- Place a mirror to reflect the initially transmitted beam parallel to the holes (iterate)
- The first reflected beam hits a mirror on top of a translational stage with a piezo electric to drive the stage very slightly forward, pushing the mirror slightly forward with a small voltage applied.

MZI initial set-up

Photon Interference

K. Oskar Negron

Introductio Tools

Single Photor

Set-Up Results

Figure: Piezo Driver in the Translational Stage

MZI final piece

Photon Interference

K. Oskar Negron

Introductio Tools

Interference
Set-Up
Results

- Place the final beam splitter where the two beams intersect in space.
- Similar to the previous iris iteration process to assure the beams are parallel with the holes and at the correct height
- With the first reflected path blocked, we can align the beam exiting the beam splitter
- Then blocking the first transmitted path, align the translational stage with mirror to superimpose the beam previously aligned and iterate.

MZI final piece

Photon Interference

K. Oskar Negron

Introductio

Single Photo

Interference Set-IIn

Biphoton

MZI final piece

Photon Interference

K. Oskar

Introductio

Single Photo

Set-Up

MZI with white light

Photon Interference

K. Oskar

Introductio

Single Photor

Set-Up

Biphoton Interference

Figure: Both the bulb and Fiber Optic Cable are set up

MZI with white light

Photon Interference

K. Oskai Negron

Introduction Tools

Single Photor Interference Set-Up Results

- Determine if the interferometer arms are the exact same length
- Placing a white light source in front of the interferometer and a spectrometer with fiber optic cable to receive the light at the end we can view the white light spectrum.
- If the arm lengths are very near identical, interference will begin.
- Translational stage can be slightly adjusted to an optimal interference of white light or just before that point.

MZI with white light

Photon Interference

K. Oskar Negron

Introductio

Single Photor

Set-Up Results

Figure: Some wavelengths interfering

Results

Photon Interference

K. Oskar

Introduction

Single Photoi Interference

Results

Results

Photon Interference

K. Oskai Negron

Introductio

Single Photon Interference Set-Up

Results
Biphoton

Biphoton Interference MZI

Photon Interference

K. Oskar

Introduction Tools

Single Photor Interference Set-Up Results

Biphoton Cases

Photon Interference

Case 1: Both of the photons will go through one of the arms MZI.

Introduction
Tools
Single Photon

Single Photo Interference Set-Up Results

Biphoton Interference

Case 2: Both of the photons will go through the other arm (different from Case 1) of the MZI.

Biphoton Cases

Photon Interference

K. Oskar Negron

Introduction Tools

Single Photo Interference Set-Up Results

Biphoton Interference Case 3: One photon will go through one of the hands of the MZI and the other photon through the other hand of the MZI.

Case 4: Same as Case 3, but the photons pass though the other hand of the MZI.

Complete set-up

Photon Interference

K. Oskar Negron

Introductio

Single Photor Interference Set-Up Results

Complete set-up

Photon Interference

K. Oskar Negron

Introductio

Single Photor Interference Set-Up Results

Results

Photon Interference

K. Oskar

Introductio

Single Photor Interference Set-Up Results

