Want
$$P(study \mid pass) = \frac{P(pass|study)P(study)}{P(pass)}$$

Have
$$P(pass \mid study) = \frac{P(pass, study)}{P(study)} = 0.7426$$
 and $P(study) = 0.6$

Calculate P(pass). The same *-notation as in the example document has been used.

 $P(pass) = \sum P(pass \mid \textit{study}^*, prep^*, fair^*, smart^*) P(prep^* \mid \textit{study}^*, fair^*, smart^*) P(\textit{study}^*) P(fair^*) P(smart^*) P(prep^* \mid \textit{study}^*, fair^*, smart^*) P(smart^*) P$

$$\underbrace{\sum P(pass \mid prep^*, \ fair^*, \ smart^*)}_{A} \underbrace{P(prep^* \mid study^*, \ smart^*)}_{B} \underbrace{P(study^*)}_{C} \underbrace{P(fair^*)}_{D} \underbrace{P(smart^*)}_{E}$$

(t)										
pass	study	prep	fair	smart	A	В	\mathbf{C}	D	\mathbf{E}	TOT
	F	F	F	F	0.1	0.9	0.4	0.1	0.2	7.2e-4
	\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$	0.1	0.5	0.4	0.1	0.8	1.6e-3
	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	0.2	0.9	0.4	0.9	0.2	0.01296
	\mathbf{F}	\mathbf{F}	Τ	${ m T}$	0.7	0.5	0.4	0.9	0.8	0.1008
	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	0.1	0.1	0.4	0.1	0.2	8e-5
	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	0.1	0.5	0.4	0.1	0.8	1.6e-3
	\mathbf{F}	${ m T}$	Τ	\mathbf{F}	0.7	0.1	0.4	0.9	0.2	5.04e-3
	\mathbf{F}	${ m T}$	Τ	${ m T}$	0.9	0.5	0.4	0.9	0.8	0.1296
	${ m T}$	\mathbf{F}	F	\mathbf{F}	0.1	0.3	0.6	0.1	0.2	3.6e-4
	${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$	0.1	0.1	0.6	0.1	0.8	4.8e-4
	${ m T}$	\mathbf{F}	Τ	\mathbf{F}	0.2	0.3	0.6	0.9	0.2	6.48e-3
	${ m T}$	\mathbf{F}	${ m T}$	${ m T}$	0.7	0.1	0.6	0.9	0.8	0.03024
	${ m T}$	${ m T}$	\mathbf{F}	\mathbf{F}	0.1	0.7	0.6	0.1	0.2	8.4e-4
	${ m T}$	${ m T}$	\mathbf{F}	${ m T}$	0.1	0.9	0.6	0.1	0.8	4.32e-3
	${ m T}$	${ m T}$	${ m T}$	\mathbf{F}	0.7	0.7	0.6	0.9	0.2	0.05292
	${ m T}$	${ m T}$	\mathbf{T}	${ m T}$	0.9	0.9	0.6	0.9	0.8	0.34992
										= 0.69796

P(pass) = 0.69796

$$P(study \mid pass) = \frac{P(pass \mid study)P(study)}{P(pass)} = \frac{0.7426 \times 0.6}{0.69796} = 0.6384$$