Лекция 2 (от 9.09)

Глава 2. Точечные оценки параметров

2.1. Статистики и оценки

Пусть $(\mathscr{X},\mathcal{B}_{\mathscr{X}},\mathcal{P})$ — вероятностно-статистическая модель, $\mathcal{P}=\{P_{\theta}\mid \theta\in\Theta\}$ — параметрическое семейство распределений.

3адача: оценить heta.

Пусть $X=(X_1,\ldots,X_n)$ — выборка из неизвестного распределения $P\in\mathcal{P}.$

Определение: Пусть (E,\mathcal{E}) — измеримое пространство. Тогда измеримая функция $S:\mathscr{X}^n o E$ называется *статистикой*.

Если $E=\Theta$, то S(X) называется оценкой heta.

Примеры статистик:

Пусть $X=(X_1,\ldots,X_n)$ — действительная выборка, т. е. $\mathscr{X}=\mathbb{R}.$

1. Выборочные характеристики:

$$\circ \ \overline{g(X)} = rac{1}{n} \sum_{i=1}^n g(X_i)$$
 — выборочная характеристика функции g (g борелевская).

$$\circ \ \overline{X} = rac{1}{n} \sum_{i=1}^n X_i$$
 — выборочное среднее.

$$\circ \ \overline{X^k} = rac{1}{n} \sum_{i=1}^n X_i^k$$
 — выборочный k -ый момент.

2. Функции от выборочных характеристик (т.е $h(\overline{g_1(X)},\dots,\overline{g_k(X)});\ h,g_i$ — борелевские):

$$\circ \ g_1(x)=x^2,g_2(x)=x,h(x,y)=x-y^2 \ h(g_1(X),\overline{g_2(X)})=\overline{X}^2-\overline{X}^2=S^2$$
— выборочная дисперсия.

Утверждение:
$$S^2=rac{1}{n}\sum_{i=1}^n(X_i-\overline{X})^2.$$

3. Порядковые статистики:

Упорядочим выборку по возрастанию: $(X_{(1)},\dots,X_{(n)})$ — вариационный ряд. $X_{(k)}$ — k-я порядковая статистика.

Пример:

$$(X_1,X_2,X_3)=(2,5,1).$$

$$\overline{X} = 8/3$$

$$\overline{X^2} = 10$$

 $S^2 = 10 - 64/9 = 26/9.$

Вариационный ряд: $(X_{(1)}, X_{(2)}, X_{(3)}) = (1, 2, 5)$.

2.2. Свойства оценок

Замечание: для распределения P_{θ} будем обозначать: E_{θ} — матожидание, D_{θ} — дисперсия, P_{θ} -п.н., d_{θ} .

Пусть $X=(X_1,\ldots,X_n)$ — выборка из неизвестного распределения $P\in\{P_{ heta}\,|\, heta\in\Theta\},\Theta\in\mathbb{R}^d.$

Определение: оценка $\hat{\theta}$ называется несмещенной оценкой $\tau(\theta)$, если $E_{\theta}\hat{\theta}(X)=\tau(\theta) \ \, orall \theta \in \Theta.$

Примеры:

- $\;\hat{ heta}_1=X_1,\;\hat{ heta}_2=\overline{X}$ несмещенные оценки для $au(heta)=E_{ heta}X_1.$
- $\mathcal{P}=\{Bern(heta)\ | heta\in(0,1)\}:\overline{X},X_1$ несмещенные оценки heta.
- $m{\cdot}$ $\mathcal{P} = \{Exp(heta) \, | heta > 0\} : \overline{X}, X_1$ несмещенные оценки $rac{1}{ heta}.$

Асимптотические свойства

Пусть $X=(X_1,\dots)$ — выборка неограниченного размера из $P\in\{P_{ heta}\,|\, heta\in\Theta\},\Theta\in\mathbb{R}^d.$

Определение:

- 1. Оценка $\hat{ heta_n}(X_1,\ldots,X_n)$ называется состоятельной оценкой heta, если $\hat{ heta_n}(X_1,\ldots,X_n) \stackrel{P_{ heta}}{\longrightarrow} heta \quad orall heta \in \Theta.$
- 2. Оценка $\hat{\theta_n}(X_1,\ldots,X_n)$ называется сильно состоятельной оценкой heta, если $\hat{\theta_n}(X_1,\ldots,X_n) \xrightarrow{P_{ heta-\Pi.H.}} heta \quad orall heta \in \Theta.$
- 3. Оценка $\hat{\theta_n}(X_1,\ldots,X_n)$ называется асимптотически нормальной оценкой θ , если $\sqrt{n}(\hat{\theta_n}(X_1,\ldots,X_n)-X)\stackrel{d_\theta}{\longrightarrow} \mathcal{N}(0,\Sigma(\theta)) \quad \forall \theta\in\Theta$., где $\Sigma(\theta)$ асимптотическая матрица ковариаций. Если d=1, то $\Sigma(\theta)=\sigma^2(\theta)$ асимптотическая дисперсия.

Смысл:

- 1. Состоятельность: при больших n вероятность большого отклонения оценки $\hat{\theta_n}$ от heta мала, но нет численной характеристики степени отклонения.
- 2. Асимпт. нормальность: дает численную характеристику степени отклонения

Пусть
$$\hat{\theta_n}$$
 — а. н. о $\, heta$ с а. д $\sigma^2(heta)$. Тогда при больших n $\hat{\theta_n} \sim_{\mathrm{прибл.}} \mathcal{N}\left(heta, rac{\sigma^2(heta)}{n}
ight)$.

3. Сильная состоятельность важна тогда, когда данные поступают последовательно.

Пример: Пусть X_1,\ldots,X_n – выборка из распределения Лапласа со сдвигом θ .

$$p_{ heta}(x)=rac{1}{2}e^{-|x- heta|}. \quad E_{ heta}X_1= heta, D_{ heta}X_1=2.$$

УЗБЧ: $\overline{X} \xrightarrow{P_{ heta-\Pi.H.}} heta \implies \overline{X}$ — (сильно) состоятельная оценка heta.

$$heta - 3\sqrt{rac{2}{n}} < \overline{X} < heta + 3\sqrt{rac{2}{n}} \ \overline{X} - 3\sqrt{rac{2}{n}} < heta < \overline{X} + 3\sqrt{rac{2}{n}}$$

(доверительный интервал).

Пусть $n=200,\overline{X}=1.$ Тогда неравенство имеет вид

$$0.7 < \theta < 1.3$$

(реализация доверительного интервала).

Утверждение:

Сильная состоятельность

Состоятельность

Асимпт. нормальность

Других следствий нет.

Утверждение: Пусть X_1,\dots,X_n — выборка, т. ч. $E_{\theta}|X_1|^{2k}<+\infty$. Тогда $\overline{X^k}$ — несмещенная сильно состоятельная асимптотически нормальная оценка $E_{\theta}X^k$.

2.3 Наследование свойств

Цель: получить оценку для $\tau(\theta)$, обладающие некоторым свойством, если имеется оценка для $\psi(\theta)$ с тем же свойством.

Теорема (о наследовании сходимостей): Пусть $\{\xi_n, n\in \mathbb{N}\}, \xi$ — случайные векторы размерности d. Тогда:

- 1. Если $\xi_n \stackrel{P}{\longrightarrow} \xi$ и $h: \mathbb{R}^d \to \mathbb{R}^k$, т. ч. h непрерывна на $B: P(\xi \in B) = 1.$ Тогда $h(\xi_n) \stackrel{P}{\longrightarrow} h(\xi).$
- 2. Аналогично для сходимости п. н.
- 3. Если $\xi_n \stackrel{d}{\longrightarrow} \xi$ и $h: \mathbb{R}^d o \mathbb{R}^k$ непрерывна, то $h(\xi_n) \stackrel{d}{\longrightarrow} h(\xi)$.

Пример: Пусть $\{\xi_n, n\in\mathbb{N}\}$ — н.о.р.с.в., т.ч. $E\xi_1=a
eq 0$, $D\xi_n$ ограничена.

Из ЗБЧ: $\dfrac{S_n}{n} \overset{P}{\longrightarrow} a, \quad S_n = \sum \xi_i.$ Рассмотрим h(x) = 1/x и применим теорему:

$$h\left(rac{S_n}{n}
ight) = rac{n}{S_n} \stackrel{P}{\longrightarrow} h(a) = rac{1}{a}.$$

Утверждение: Пусть $\hat{\theta}$ — (сильно) состоятельная оценка θ . Пусть au непрерывна на Θ . Тогда $au(\hat{\theta})$ — (сильно) состоятельная оценка $au(\theta)$.

Замечание: Условие непрерывности на Θ нельзя ослабить.

Теорема: (лемма Слуцкого)

Пусть $\{\xi_n,n\in\mathbb{N}\},\ \{\eta_n,n\in\mathbb{N}\},\ \xi$ — случайные величины, $C\in\mathbb{R}$. Пусть $\xi_n\stackrel{d}{\longrightarrow}\xi,\ \eta_n\stackrel{d}{\longrightarrow}C.$ Тогда $\xi_n+\eta_n\stackrel{d}{\longrightarrow}\xi+C,$ $\xi_n\cdot\eta_n\stackrel{d}{\longrightarrow}\xi C.$

Теорема: (о производной)

Пусть $\{\xi_n,n\in\mathbb{N}\},\ \xi$ — случайные векторы размерности d, т.ч. $\xi_n\stackrel{d}{\longrightarrow}\xi,h:\mathbb{R}^d\to\mathbb{R}^k$ непрерывно дифференцируема в точке $a\in\mathbb{R}^d,$ $\{b_n\}:b_n>0,b_n\to0$ — числовая последовательность. Тогда

$$rac{h(a+\xi_n b_n)-h(a)}{b_n}\stackrel{d}{\longrightarrow}rac{\partial h}{\partial x}\Big|_a\cdot \xi,$$

где $\left. \frac{\partial h}{\partial x} \right|_a$ — матрица Якоби функции h в точке a.

Док-во (d = 1):

Определим функцию
$$H(x)=\left\{egin{aligned} rac{h(x+a)-h(a)}{x}, & ext{если } x
eq 0 \end{aligned}
ight..$$

Функция H непрерывна в нуле. Тогда по лемме Слуцкого $\xi_n b_n \stackrel{d}{\longrightarrow} \xi \cdot 0 = 0 \implies \xi_n b_n \stackrel{p}{\longrightarrow} 0$. Применим теорему о наследовании сходимостей:

$$H(\xi_n b_n) = rac{h(\xi_n b_n + a) - h(a)}{\xi_n b_n} \stackrel{p}{\longrightarrow} H(0) = h'(a) \implies rac{h(\xi_n b_n + a) - h(a)}{\xi_n b_n} \stackrel{d}{\longrightarrow} h'(a).$$

Применим еще раз лемму Слуцкого:

$$\xi_n H(\xi_n b_n) \stackrel{d}{\longrightarrow} h'(a) \xi.$$

Следовательно, $rac{h(\xi_n b_n + a) - h(a)}{b_n} \stackrel{d}{\longrightarrow} h'(a)$ \Box .

Пример: Пусть $\{\xi_n, n\in\mathbb{N}\}$ — н.о.р.с.в, т.ч. $E\xi_1=a
eq 0,\;,D\xi_1=\sigma^2.$

$$\sqrt{n}\left(\frac{n}{S_n} - \frac{1}{a}\right) \stackrel{d}{\longrightarrow} ?$$

riangle ЦПТ: $\sqrt{n}(rac{S_n}{n}-a) \stackrel{d}{\longrightarrow} \mathcal{N}(0,\sigma^2)$.

Воспользуемся теоремой о производной с $\xi_n=\sqrt{n}(rac{S_n}{n}-a),$ $\xi\sim\mathcal{N}(0,\sigma^2),\;h(x)=rac{1}{x},\;b_n=rac{1}{\sqrt{n}}$:

$$egin{aligned} rac{h(\xi_n b_n + a) - h(a)}{b_n} &= \sqrt{n} \left[h \left(a + \left(rac{S_n}{n} - a
ight)
ight) - h(a)
ight] &= \sqrt{n} \left(rac{n}{S_n} - rac{1}{a}
ight) \stackrel{d}{\longrightarrow} \ rac{d}{s} \, \xi \cdot \left(rac{1}{x}
ight)
ight|_a &= - \xi \cdot rac{1}{a^2} \sim \mathcal{N} \left(0, rac{\sigma^2}{a^4}
ight) \end{aligned} \quad \Box.$$

Замечание: Если мы рассмотрим ξ_n как выборку (X_1,X_2,\dots) , то $1/\overline{X}$ — а. н. о. для 1/a с асимптотической дисперсией σ^2/a^4 .