JEE Advanced 2015 Paper 2 Offline

60 Questions

Question 001

Numerical

QUESTION

In dilute aqueous H_2SO_4 , the complex diaquodioxalatoferrate II is oxidized by

$$MnO_4^-$$

. For this reaction, the ratio of the rate of change of $[H^+]$ to the rate of change of

$$[MnO_4^-]$$

is

SOURCE

Chemistry • chemical-kinetics-and-nuclear-chemistry

EXPLANATION

In complex,

$$[Fe(C_2O_4)_2(H_2O)_2]^{2-}$$

Diaquodioxalatoferrate (II)

Fe is in +2 oxidation state.

In acidic medium,

 $KMnO_4$

oxidises

 Fe^{2+}

to

 Fe^{3+}

,

$$2MnO_4^- + 16H^+ + 10Fe^{2+} \rightarrow 2Mn^{2+} + 8H_2O + 10Fe^{3+}$$

or

$$MnO_4^- + 8H^+ + 5Fe^{2+} \rightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$$

$$\frac{Rate\,of\,change\,of\,[H^+]}{Rate\,of\,change\,of\,[MnO_4^-]} = \frac{8}{1} = 8$$

Question 002

Numerical

QUESTION

A closed vessel with rigid walls contains 1 mol of

$$^{238}_{92}U$$

and 1 mol of air at 298 K. Considering complete decay of

$$^{238}_{92}U$$

to

$$^{206}_{82}Pb$$

, the ratio of the final pressure to the initial pressure of the system at 298 K is

SOURCE

Chemistry • chemical-kinetics-and-nuclear-chemistry

EXPLANATION

$$_{92}U^{238}
ightarrow _{82}Pb^{206} + 8_{2}He^{4}(g) + 6_{-1}\beta^{0}$$

To calculate pressure, only gaseous products need to be considered.

Initially, only 1 mol of air is present and finally, after complete decay, 8 moles of

$$_2^4 He$$

gas are produced and 1 mol of air will also remain in the mixture.

Ratio of the final pressure to the initial pressure

$$=\frac{8+1}{1}=9$$

Question 003 Numerical

QUESTION

The molar conductivity of a solution of a weak acid HX 0.01M is 10 times smaller than the molar conductivity of a solution of a weak acid HY $0.10M_{\odot}$. If

$$\lambda_{x^-}^0pprox\lambda_{y^-}^0$$

the difference in their pK_a values, pK_aHX - pK_aHY , is consider degree of ionization of both a cids to be << 1

SOURCE

Chemistry • electrochemistry

EXPLANATION

Given:

$$\Lambda_{m(HX)}^c = rac{\Lambda_{m(HY)}^c}{10}$$

$$\Lambda^o_{m(HX)} = \Lambda^o_{m(HY)}$$

 $\$\$ \therefore \$\$\$\lambda_{X-}^o pprox \lambda_{Y-}^o \$\$$

$$K_{a(HX)} = \left(rac{Clpha^2}{1-lpha}
ight)_{HX}$$

$$K_{a(HX)}=0.01(lpha_{HX})^2$$

\$\$:: \$\$\$\$ $\alpha <<<1$ \$\$ i

Similarly,

$$K_{a(HY)} = 0.01(\alpha_{HY})^2$$

..... ii

On dividing equation i by ii, we get

$$rac{K_{a(HX)}}{K_{a(HY)}} = rac{0.01}{0.10} igg(rac{lpha_{HX}}{lpha_{HY}}igg)^2$$

..... iii

$$lpha = rac{\Lambda_m^c}{\Lambda_m^o}$$

$$\frac{\alpha_{HX}}{\alpha_{HY}} = \frac{(\Lambda_m^c/\Lambda_m^o)_{HX}}{(\Lambda_m^c/\Lambda_m^o)_{HY}} = \left(\frac{1}{10}\Lambda_{m(HY)}^c\right) \times \frac{1}{\Lambda_{m(HY)}^c} = \frac{1}{10}$$

Substituting above value in equation iii,

$$rac{K_{a(HX)}}{K_{a(HY)}} = rac{0.01}{0.10} igg(rac{1}{10}igg)^2 = 1 imes 10^{-3}$$

$$\log K_{a(HX)} - \log K_{a(HY)} = \log(1 imes 10^{-3})$$

$$-\log K_{a(HX)} - (-\log K_{a(HY)}) = -\log(1 imes 10^{-3})$$

$$pK_{a(HX)} - pK_{a(HY)} = 3$$

QUESTION

When O₂ is adsorbed on a metallic surface, electron transfer occurs from the metal to ${\rm O}_2$. The true statement s regarding this adsorption is are

- O₂ is physisorbed
- Heat is released

Occupancy of

 π_{2p}^*

of O_2 is increased

Bond length of O₂ is increased

CORRECT OPTION

Occupancy of

 π_{2p}^*

of O2 is increased

SOURCE

Chemistry • surface-chemistry

EXPLANATION

Since, adsorption involves electron transfer from metal to ${\rm O_2}$, it is chemical adsorption not physical adsorption, hence $\,a\,$ is incorrect. Adsorption is

spontaneous which involves some bonding between adsorbent and adsorbate, hence exothermic. The last occupied molecular orbital in O2 is

 π

*2p. Hence, electron transfer from metal to oxygen will increase occupancy of

*2p molecular orbitals. Also increase in occupancy of

*2p orbitals will decrease bond order and hence increase bond length of O2.

Question 005 MCQ

QUESTION

Paragraph

When 100 mL of 1.0 M KCl was mixed with 100 mL of 1.0 M NaOH in an insulated beaker at constant pressure, a temperature increase of 5.7° C was measured for the beaker and its contents Expt. 1. Because the enthalpy of neutralization of a strong acid with a strong base is constant -57.0kJ/mol, this experiment could be used to measure the calorimeter constant. In a second experiment Expt. 2 100 mL of 2.0 M acetic acid (K_a = 2.0

10⁻⁵) was mixed with 100 mL of 1.0 M NaOH underidentical conditions to Expt. 1 where a temperature rise of 5.6° C was measured.

Consider heat capacity of all solutions as 4.2 J/g Kandden sity of all solut

Question

The pH of the solution after Expt. 2 is

- B 4.7
- 5.0
- 7.0

CORRECT OPTION

- B 4
 - 4.7

SOURCE

Chemistry • ionic-equilibrium

EXPLANATION

In Expt. 2, the final solution is a buffer as it contains equimolar amounts of acid and salt.

$$pH = pK_a + \log rac{(salt)}{(acid)}$$

..... 1

$$egin{aligned} pK_a &= -\log(2 imes 10^{-5}) \ &= -0.3010 + 5 \ &= 4.699 pprox 4.7 \ &[Salt] = [CH_3COONa] = rac{100}{200} imes 2 = 1\,M \ &[Acid) = [CH_3COOH] = rac{200 - 100}{200} imes 2 = rac{100}{200} imes 2 = 1\,M \end{aligned}$$

Substituting the values in Eq. 1, we get

$$pH = 4.7 + \log \frac{1}{1} = 4.7$$

Question 006 MCQ

QUESTION

Paragraph

When 100 mL of 1.0 M HCl was mixed with 100 mL of 1.0 M NaOH in an insulated beaker at constant pressure, a temperature increase of 5.7° C was measured for the beaker and its contents Expt. 1. Because the enthalpy of neutralization of a strong acid with a strong base is constant -57.0kJ/mol, this experiment could be used to measure the calorimeter constant. In a second experiment Expt. 2 100 mL of 2.0 M acetic acid (K_a = 2.0

 \times

10⁻⁵) was mixed with 100 mL of 1.0 M NaOH underidentical conditions to Expt.~1~ where a temperature rise of 5.6 $^{\rm o}$ C was measured.

Consider heat capacity of all solutions as 4.2 J/g Kandden sity of all solut

Question

Enthalpy of dissociation inkJ/mol of acetic acid obtained from the Expt. 2 is

- 1.0
- 10.0
- 24.5
- 51.4

1.0

SOURCE

Chemistry • ionic-equilibrium

EXPLANATION

Energy evolved on neutralization of HCl and NaOH is

0.1

 \times

Energy utilized to rise the temperature of the solution is

ms .

 Δ

T = 200

X

1

X

4.2

 \times

$$5.7 = 4788 J$$

Energy used to increase temperature of calorimeter is

= 5700

_

4788 = 912 J

ms .

Question 007 Numerical **QUESTION** The number of hydroxyl group s in Q is _____. SOURCE Chemistry • alcohols-phenols-and-ethers **EXPLANATION** Therefore, the number of hydroxyl groups is 4. Question 008 Numerical **QUESTION** Among the following the number of reactions that produces benzaldehyde is **SOURCE** Chemistry • aldehydes-ketones-and-carboxylic-acids

Thus, enthalpy of dissociation is 1 kJ mol

EXPLANATION

Therefore, the number of reactions leading to the formation of benzaldehyde is 4.

Question 009 Numerical

QUESTION

In the complex acetylbromidodicarbonylbis triethylphosphine iron II, the number of Fe-C bond s is ______.

SOURCE

Chemistry • coordination-compounds

EXPLANATION

The structure of the given complex is

From the above structure, we can conclude the number of Fe-C bonds is 3.

Question 010 Numerical

QUESTION

Among the complex ions, $[Co(NH_2-CH_2-CH_2-NH_2)_2Cl_2]^+$, $[CrCl_2(C_2O_4)_2]^3$

, $\left[\mathrm{Fe}(\mathrm{H_2O})_4\right]\mathrm{OH}_2\right]^+$, $\left[\mathrm{Fe}(\mathrm{NH_3})_2\,CN_4\right]$

, $[Co(NH_2-CH_2-CH_2-NH_2)_2(NH_3)CI]^{2+}$ and $[Co(NH_3)_4(H_2O)CI]^{2+}$, the number of complex ions that shows cis-trans isomerism is _____

SOURCE

Chemistry • coordination-compounds

EXPLANATION

The complex is with ${\rm MA_2B_4}$ or ${\rm MA_4B_2}$ or ${\rm M}AA_2{\rm B}_2$ or ${\rm M}AA_2{\rm B}{\rm C}$ structure can exhibit cis-trans isomerism. Therefore, number of given complex ions showing cis-trans isomerism is 6.

Question 011 Numerical

QUESTION

Three moles of B₂H₆ are completely reacted with methanol. The number of moles of boron containing product formed is _____

SOURCE

Chemistry • p-block-elements

EXPLANATION

The reaction is

 $B_2H_6 + 6CH_3OH$

 $2B(OCH_3)_3 + 6H_2$

From the reaction, 1 mol of B_2H_6 reacts with 6 mol of CH_3OH to produce 2 mol of $B(OCH_3)_3$.

Therefore, 3 mol of B_2H_6 would react with 18 mol of CH_3OH to produce 6 mol of $B(OCH_3)_3$.

Question 012 MCQ **QUESTION** In the following reactions, the product S is D **CORRECT OPTION** SOURCE Chemistry • hydrocarbons

EXPLANATION

The product S is

In this reaction, NH₃ chooses to attack at aliphatic aldehyde group than a less reactive aromatic aldehyde group. Now,

Question 013 MCQ QUESTION The major product U in the following reactions is **CORRECT OPTION** SOURCE Chemistry • hydrocarbons

EXPLANATION

The reaction is

Question 014 MCQ **QUESTION** In the following reactions, the major product W is D **CORRECT OPTION** SOURCE Chemistry • compounds-containing-nitrogen **EXPLANATION**

The reaction is

Question 015 MCQ

QUESTION

The correct statements regarding i HClO, ii HClO₂, iii HClO₃ and iv HClO₄ is are

- The number of CI=O bonds ii and iii together is two.
- The number of lone pairs of electrons on CI in ii and iii together is three.
- The hybridization of CI in iv is ${\rm sp}^3$
- Amongst i to iv, the strongest acid is i.

CORRECT OPTION

The number of lone pairs of electrons on CI in ii and iii together is three.

SOURCE

Chemistry • p-block-elements

EXPLANATION

In all the oxyacids of chlorine: Cl undergoes sp³ hybridization HClO₄ is the strongest acid among the given compounds.

Question 016 MCQ

QUESTION

The pairs of ions where BOTH the ions are precipitated upon passing H₂S gas in presence of dilute HCl, is are

- A Ba²⁺, Zn²⁺
- Bi³⁺, Fe³⁺
- Cu²⁺, Pb²⁺
- D Hg²⁺, Bi³⁺

CORRECT OPTION

Cu²⁺, Pb²⁺

SOURCE

Chemistry • d-and-f-block-elements

EXPLANATION

The pairs Cu²⁺, Pb²⁺ and Hg²⁺, Bi³⁺ are precipitated as sulphides upon passing ${\rm H_2S}$ in acidic medium.

QUESTION

Under hydrolytic conditions, the compounds used for preparation of linear polymer and for chain termination, respectively, are

- CH₃SiCl₃ and Si(CH₃)₄.
- $(CH_3)_2SiCl_2$ and $(CH_3)_3SiCl$.
- $(CH_3)_2SiCl_2$ and CH_3SiCl_3 .
- SiCl₄ and (CH₃)₃SiCl.

CORRECT OPTION

 $(CH_3)_2SiCl_2$ and $(CH_3)_3SiCl$.

SOURCE

Chemistry • polymers

EXPLANATION

The reaction involved in the preparation of liner polymer is

Question 018 MCQ

QUESTION

One mole of a monoatomic real gas satisfies the equation p V\$\$-\$\$b = RT where b is a constant. The relationship of interatomic potential Vr and interatomic distance r for the gas is given by

CORRECT OPTION

SOURCE

Chemistry • gaseous-state

EXPLANATION

The given equation is P(V - b) = RT,

On comparing with van Der Waal's equation

$$\left[\mathrm{P} + rac{a}{\mathrm{V}^2}
ight][\mathrm{V} - b] = \mathrm{RT} ext{ we get } a = 0$$

Hence, only repulsive forces are present which are contributive only at very close distance.

Thus, the potential energy will increase abruptly, so graph c is correct. The dominance of repulsive force can be shown by using the compressibility factor.

$$P(V - b) = RT$$

$$PV = Pb + RT$$

$$\frac{PV}{RT} = \frac{Pb}{RT} + 1$$

$$Z = rac{Pb}{ ext{RT}} + 1, ext{i.e., Z} > 1 ext{ (Repulsive forces)}$$

Question 019 MCQ

QUESTION

In the following reactions

Compound X is

CORRECT OPTION

SOURCE

Chemistry • aldehydes-ketones-and-carboxylic-acids

EXPLANATION

Question 021 MCQ

QUESTION

Let

S

be the set of all non-zero real numbers

 α

such that the quadratic equation

$$\alpha x^2 - x + \alpha = 0$$

has two distinct real roots

 x_1

and

 x_2

satisfying the inequality

$$|x_1 - x_2| < 1.$$

Which of the following intervals is $\ are$

a

 ${\sf subset}\, s$ os

S

?

A

$$\left(-\frac{1}{2}-\frac{1}{\sqrt{5}}\right)$$

В

$$\left(-\frac{1}{\sqrt{5}},0\right)$$

C

$$\left(0,\frac{1}{\sqrt{5}}\right)$$

D

$$\left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$$

CORRECT OPTION

$$\left(-\frac{1}{2}-\frac{1}{\sqrt{5}}\right)$$

SOURCE

Mathematics • quadratic-equation-and-inequalities

EXPLANATION

Given, x_1 and x_2 are roots of

$$lpha x^2 - x + lpha = 0$$
 \therefore
 $x_1 + x_2 = rac{1}{lpha}$

and

$$x_1x_2=1$$

Also,

$$egin{aligned} |x_1-x_2| < 1 \ \Rightarrow |x_1-x_2|^2 < 1 \Rightarrow (x_1-x_2)^2 < 1 \end{aligned}$$

or,

$$(x_1+x_2)^2-4x_1x_2<1$$
 $\Rightarrow rac{1}{lpha^2}-4<1$

or

$$rac{1}{lpha^2} < 5$$
 $\Rightarrow 5lpha^2 - 1 > 0$

or,

$$(\sqrt{5}lpha-1)(\sqrt{5}lpha+1)>0$$
 $lpha\in\left(-\infty,-rac{1}{\sqrt{5}}
ight)\cup\left(rac{1}{\sqrt{5}},\infty
ight)$

i

Also

$$\Rightarrow 1 - 4\alpha^2 > 0$$

or

$$lpha \in \left(-rac{1}{2},rac{1}{2}
ight)$$

$$\alpha \in \left(-\frac{1}{2}, \frac{-1}{\sqrt{5}}\right) \cup \left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$$

Question 022 Numerical

QUESTION

For any integer k, let

$$a_k = \cos\left(rac{k\pi}{7}
ight) + i \sin\left(rac{k\pi}{7}
ight)$$

, where

$$i = \sqrt{-1}$$

. The value of the expression

$$rac{\sum\limits_{k=1}^{12}|lpha_{k+1}-a_k|}{\sum\limits_{k=1}^{3}|lpha_{4k-1}-lpha_{4k-2}|}$$

is

SOURCE

Mathematics • complex-numbers

EXPLANATION

Given,

$$a_k = \cos\left(rac{k\pi}{7}
ight) + i\sin\left(rac{k\pi}{7}
ight) = e^{rac{k\pi}{7}i}$$

We have to find

$$\frac{\sum\limits_{k=1}^{12}|a_{k+1}-a_{k}|}{\sum\limits_{k=1}^{3}|a_{4k-1}-a_{4k-2}|}$$

$$a_{k+1} = \cos\left(\frac{k+1}{7}\right)\pi + i\sin\left(\frac{k+1}{7}\right)\pi = e^{i\left(\frac{k+1}{7}\right)\pi}$$

$$\vdots$$

$$a_{k+1} - a_{k} = e^{\left(\frac{k+1}{7}\right)\pi i} - e^{\frac{k\pi}{7}i}$$

$$= e^{\frac{k\pi}{7}i} \cdot e^{\frac{\pi}{7}i} - e^{\frac{k\pi}{7}i}$$

$$= e^{\frac{k\pi}{7}i} \left(e^{\frac{\pi}{7}i} - 1\right)$$

$$\vdots$$

$$|a_{k+1} - a_{k}| = \left|e^{\frac{k\pi}{7}i} \left(e^{\frac{\pi}{7}i} - 1\right)\right|$$

$$= \left|e^{\frac{k\pi}{7}i}\right| \left|e^{\frac{\pi}{7}i} - 1\right|$$

$$= \left|e^{\frac{k\pi}{7}i} - 1\right|$$

lf

$$z = e^{i\theta} = \cos \theta + i \sin \theta$$

then

$$|z| = \sqrt{\cos^2 \theta + \sin^2 \theta} = 1$$

that is why

$$\left|e^{rac{k\pi}{7}i}
ight|=1$$

Now,

$$a_{4k-1} = e^{\left(\frac{4k-1}{7}\right)\pi i}$$

$$a_{4k-2} = e^{\left(\frac{4k-2}{7}\right)\pi i}$$

$$a_{4k-1} - a_{4k-2} = e^{\left(\frac{4k-1}{7}\right)\pi i} - e^{\left(\frac{4k-2}{7}\right)\pi i}$$

$$= e^{\frac{4k\pi}{7}i} \cdot e^{-\frac{\pi}{7}i} - e^{\frac{4k\pi}{7}} \cdot e^{-\frac{2\pi}{7}i}$$

$$= e^{\frac{4k\pi}{7}i} \left(e^{-\frac{\pi}{7}i} - e^{-\frac{2\pi}{7}i}\right)$$

$$\vdots$$

$$|a_{4k-1} - a_{4k-2}| = \left|e^{\frac{4k\pi}{7}i}\right| \left|e^{-\frac{\pi}{7}i} - e^{-\frac{2\pi}{7}i}\right|$$

$$= \left|e^{-\frac{\pi}{7}i} - e^{-\frac{2\pi}{7}i}\right|$$

Now,

$$egin{aligned} rac{\sum\limits_{k=1}^{12}|a_{k+1}-a_k|}{\sum\limits_{k=1}^{3}|a_{4k-1}-a_{4k-2}|} \ &=rac{12\left|e^{rac{\pi}{7}i}-1
ight|}{3\left|e^{-rac{\pi}{7}i}-e^{-rac{2\pi}{7}i}
ight|} \ &=4. \ rac{\left|e^{rac{\pi}{7}i}-1
ight|}{\left|\left(e^{-rac{\pi}{7}i}1-e^{-rac{\pi}{7}i}
ight)
ight|} \ &=4. \ rac{\left|e^{rac{\pi}{7}i}-1
ight|}{\left|1-e^{-rac{\pi}{7}i}
ight|} \ &=4. \ rac{\left|e^{rac{\pi}{7}i}\left(1-e^{-rac{\pi}{7}i}
ight)
ight|}{\left|1-e^{-rac{\pi}{7}i}
ight|} \ &=4. \ \left|e^{rac{\pi}{7}i}
ight| \end{aligned}$$

= 4 as

$$\left|e^{rac{\pi}{7}i}
ight|=1$$

Question 023 Numerical

QUESTION

Suppose that

$$\overrightarrow{p},\overrightarrow{q}$$

and

$$\overrightarrow{r}$$

are three non-coplanar vectors in

$$R^3$$

. Let the components of a vector

along

$$\overrightarrow{p},$$

$$\overline{q}$$

and

$$\overrightarrow{r}$$

be

and

respectively. If the components of this vector

$$\overrightarrow{s}$$

along

$$\left(-\overrightarrow{p}+\overrightarrow{q}+\overrightarrow{r}\right),\left(\overrightarrow{p}-\overrightarrow{q}+\overrightarrow{r}\right)$$

and

$$\left(\overrightarrow{-p} - \overrightarrow{q} + \overrightarrow{r} \right)$$

are

x, y

and

z,

respectively, then the value of

$$2x + y + z$$

is

SOURCE

Mathematics • vector-algebra

EXPLANATION

Here,

$$\overrightarrow{s} = 4\overrightarrow{p} + 3\overrightarrow{q} + 5\overrightarrow{r}$$

 \dots i

and

$$\overrightarrow{s} = (-\overrightarrow{p} + \overrightarrow{q} + \overrightarrow{r})x + (\overrightarrow{p} - \overrightarrow{q} + \overrightarrow{r})y + (-\overrightarrow{p} - \overrightarrow{q} + \overrightarrow{r})z$$

..... ii

•

$$4\overrightarrow{p} + 3\overrightarrow{q} + 5\overrightarrow{r} = \overrightarrow{p}(-x + y - z) + \overrightarrow{q}(x - y - z) + \overrightarrow{r}(x + y + z)$$

On comparing both sides, we get

$$-x + y - z = 4$$

$$x - y - z = 3$$

and

$$x + y + z = 5$$

On solving above equations, we get

$$x = 4$$

$$y = \frac{9}{2}$$

$$z = \frac{-7}{2}$$

$$2x + y + z = 8 + \frac{9}{2} - \frac{7}{2} = 9$$

Question 024 MCQ

QUESTION

Let

 n_1

and

 n_2

be the number of red and black balls, respectively, in box

Ι . Let n_3 and n_4 be the number of red and black balls, respectively, in box II. One of the two boxes, box Ι and box II, was selected at random and a ball was drawn randomly out of this box. The ball was found to be red. If the probability that this red ball was drawn from box IIis then the correct option \boldsymbol{s} with the possible values of n_1 n_2 , n_3 and n_4 is are

 $n_1=3, n_2=3, n_3=5, n_4=15$

В

$$n_1=3, n_2=6, n_3=10, n_4=50$$

C

$$n_1=8, n_2=6, n_3=5, n_4=20$$

D

$$n_1=6, n_2=12, n_3=5, n_4=20$$

CORRECT OPTION

$$n_1=3, n_2=3, n_3=5, n_4=15$$

SOURCE

Mathematics • probability

EXPLANATION

Box I: red balls

 \rightarrow

 n_1

black balls

_

 n_2

Box II: red balls

 \rightarrow

 n_3

black balls

 \rightarrow

 n_4

$$P(R) = rac{1}{2} \cdot rac{n_1}{n_1 + n_2} + rac{1}{2} \cdot rac{n_3}{n_3 + n_4}$$

 $\mathrm{P} Box II/R$

$$=\frac{\frac{\frac{1}{2} \cdot \frac{n_3}{n_3+n_4}}{\frac{1}{2} \cdot \frac{n_1}{n_1+n_2} + \frac{1}{2} \cdot \frac{n_3}{n_3+n_4}}}{\frac{1}{1} + \left(\frac{\frac{n_1}{n_1+n_2}}{\frac{n_3}{n_3+n_4}}\right)} = \frac{1}{3}$$

Thus,

$$\frac{n_1}{n_1+n_2}=2\frac{n_3}{n_3+n_4}$$

i.e.

$$2\left(1 + \frac{n_2}{n_1}\right) = 1 + \frac{n_4}{n_3}$$

i.e.

$$\frac{n_4}{n_3} - 2\frac{n_2}{n_1} = 1$$

Question 025 MCQ

QUESTION

Let

 n_1

and

 n_2

be the number of red and black balls, respectively, in box

B and

$$n_2=3$$

 $n_1=10$

c and

$$n_2=20$$

 $n_1=3$

D and

$$n_2=6$$

CORRECT OPTION

 $n_1 = 10$

c and

$$n_2=20$$

SOURCE

Mathematics • probability

EXPLANATION

...

P (drawing red ball from B_1) =

$$\frac{1}{3}$$

$$\Rightarrow \left(\frac{n_1 - 1}{n_1 + n_2 - 1}\right) \left(\frac{n_1}{n_1 + n_2}\right) + \left(\frac{n_2}{n_1 + n_2}\right) \left(\frac{n_1}{n_1 + n_2 - 1}\right) = \frac{1}{3}$$

$$\Rightarrow \frac{n_1^2 + n_1 n_2 - n_1}{(n_1 + n_2)(n_1 + n_2 - 1)} = \frac{1}{3}$$

Clearly, options c and d satisfy.

Question 026 Numerical

QUESTION

Let

be a continuous odd function, which vanishes exactly at one point and

$$f(1) = \frac{1}{2}$$

Suppose that

$$F(x) = \int_{-1}^{x} f(t)dt$$

for all

$$x\in\ [-1,2]$$

and

$$G(x) =$$

$$\int_{1}^{x} t \left| f\left(f\left(t\right)\right) \right| dt$$

for all

$$x \in [-1, 2].$$

lf

$$\lim_{x
ightarrow1}rac{F\left(x
ight) }{G\left(x
ight) }=rac{1}{14},$$

then the value of

$$f\left(\frac{1}{2}\right)$$

is

SOURCE

Mathematics • application-of-integration

EXPLANATION

Here,

$$\lim_{x o 1}rac{F(x)}{G(x)}=rac{1}{14}$$

$$\Rightarrow \lim_{x\to 1}\frac{F'(x)}{G'(x)}=\frac{1}{14}$$

using L'Hospital's rule

..... *i*

As

$$F(x) = \int_{-1}^{x} f(t)dt$$

$$\Rightarrow F'(x) = f(x)$$

..... *ii*

and

$$G(x)=\int_{-1}^x t|f\{f(t)\}|dt$$

$$\Rightarrow G'(x) = x|f\{f(x)\}|$$

..... iii

$$egin{split} \lim_{x o 1}rac{F(x)}{G(x)} &= \lim_{x o 1}rac{F'(x)}{G'(x)} = \lim_{x o 1}rac{f(x)}{x|f\{f(x)\}|} \ &= rac{f(1)}{1|f\{f(1)\}|} = rac{1/2}{|f(1/2)|} \end{split}$$

 $\dots iv$

Given,

$$\lim_{x o 1}rac{F(x)}{G(x)}=rac{1}{14}$$

$$\frac{\frac{1}{2}}{\left|f\left(\frac{1}{2}\right)\right|} = \frac{1}{14} \Rightarrow \left|f\left(\frac{1}{2}\right)\right| = 7$$

Question 027 Numerical

QUESTION

Suppose that all the terms of an arithmetic progression A.P are natural numbers. If the ratio of the sum of the first seven terms to the sum of the first eleven terms is 6: 11 and the seventh term lies in between 130 and 140, then the common difference of this A.P. is

SOURCE

Mathematics • sequences-and-series

EXPLANATION

$$\frac{S_7}{S_{11}} = \frac{6}{11}$$

..... 1

$$130 \le t_7 \le 140$$

..... 2

$$\Rightarrow \frac{\frac{7}{2}[2a+6d]}{\frac{11}{2}[2a+10d]} = \frac{6}{11}$$
$$\Rightarrow \frac{a+3d}{a+5d} = \frac{6}{7}$$

..... 3

$$\Rightarrow rac{t_4}{4_6} = rac{6}{7}$$

Let

$$t_4=6k$$

.

$$t_6 = 7k$$

:

$$2d = k \Rightarrow d = k/2$$

and

$$a + 3d = 6k$$
$$\Rightarrow a = 6k - 3k/2 = 9k/2$$

Hence,

$$130 \le t_7 \le 140$$

.

$$\Rightarrow 130 \le \frac{9k}{2} + 3k \le 140$$

$$\Rightarrow 130 \le \frac{15k}{2} \le 140$$

$$\Rightarrow \frac{52}{3} \le k \in \frac{56}{3}$$

Since,

$$k \in N \Rightarrow k = 18$$

$$\Rightarrow d = \frac{k}{2} = \frac{18}{2} = 9$$

Question 028 Numerical

QUESTION

The coefficient of

$$x^9$$

in the expansion of 1+x $1+\$\$x^2)\$\$(1+\$\$x^3\$\$$

$$(1+x^{100})$$

is

SOURCE

Mathematics • sequences-and-series

EXPLANATION

Given expression is

$$E = (1+x)(1+x^2)(1+x^3).\dots.(1+x^{100})$$

Coefficient of x^9 in E

= coefficient of x^9 in

$$(1+x)(1+x^2)(1+x^3)....(1+x^9)$$

Terms containing x⁹

$$= (1 \, . \, x^9 + x^1 \, . \, x^8 + x^2 \, . \, x^7 + x^3 \, . \, x^6 + x^4 \, . \, x^5 + x^1 \, . \, x^2 \, . \, x^6 + x^1 \, . \, x^3 \, . \, x^5 + x^4 \, . \, x^5 + x^4 \, . \, x^5 + x^5 \, .$$

Term containing x^9 is $8x^9$ in E

 \Rightarrow

Coefficient of $x^9 = 8$.

Question 029 MCQ

QUESTION

Let

 E_1

and

 E_2

be two ellipses whose centres are at the origin. The major axes of

 E_1

and

 E_2

lie along the

 \boldsymbol{x}

-axis and the y-axis, respectively. Let Sbe the circle $x^2 + (y-1)^2 = 2$. The straight line x + y = 3touches the curves S E_1 and E_2 at P,Qand Rrespectively. Suppose that $PQ = PR = \frac{2\sqrt{2}}{3}$. If e_1 and e_2

are the eccentricities of

 E_1

and

 E_2

, respectively, then the correct expression s is $\ are$

A

$$e_1^2+e_2^2=\frac{43}{40}$$

В

$$e_1e_2=\frac{\sqrt{7}}{2\sqrt{10}}$$

C

$$\left| e_1^2 + e_2^2 \right| = \frac{5}{8}$$

D

$$e_1e_2=rac{\sqrt{3}}{4}$$

CORRECT OPTION

$$e_1^2 + e_2^2 = \frac{43}{40}$$

SOURCE

Mathematics • ellipse

EXPLANATION

Here,

$$E_1:rac{x^2}{a^2}+rac{y^2}{b^2}=1,\,(a>b)$$

$$E_2: rac{x^2}{c^2} + rac{y^2}{d^2} = 1, \, (c < d)$$

and

$$S: x^2 + (y-1)^2 = 2$$

as tangent to E_1 , E_2 and S is

$$x + y = 3$$

.

Let the point of contact of tangent be

$$(x_1, y_1)$$

to S.

•

$$x \cdot x_1 + y \cdot y_1 - (y + y_1) + 1 = 2$$

or

$$xx_1 + yy_1 - y = (1 + y_1)$$

, same as

$$x + y = 3$$

.

$$\Rightarrow \frac{x_1}{1} = \frac{y_1 - 1}{1} = \frac{1 + y_1}{3}$$

i.e.

$$x_1 = 1$$

and

$$y_1 = 2$$

$$\therefore$$

$$P = (1, 2)$$

Since,

$$PR = PQ = \frac{2\sqrt{2}}{3}$$

. Thus, by parametric form,

$$\frac{x-1}{-1/\sqrt{2}} = \frac{y-2}{1/\sqrt{2}} = \pm \frac{2\sqrt{2}}{3}$$
$$\Rightarrow \left(x = \frac{5}{3}, y = \frac{4}{3}\right)$$

and

$$\left(x = \frac{1}{3}, y = \frac{8}{3}\right)$$

$$\therefore$$

$$Q = \left(\frac{5}{3}, \frac{4}{3}\right)$$

and

$$R = \left(\frac{1}{3}, \frac{8}{3}\right)$$

Now, equation of tangent at Q on ellipse E_1 is

$$\frac{x \cdot 5}{a^2 \cdot 3} + \frac{y \cdot 4}{b^2 \cdot 3} = 1$$

On comparing with x + y = 3, we get

$$a^{2} = 5$$

and

$$b^2 = 4$$

$$\vdots$$

$$e_1^2 = 1 - \frac{b^2}{a^2} = 1 - \frac{4}{5} = \frac{1}{5}$$

Also, equation of tangent at R on ellipse E_2 is

$$\frac{x \cdot 1}{a^2 \cdot 3} + \frac{y \cdot 8}{b^2 \cdot 3} = 1$$

On comparing with x + y = 3, we get

$$a^2 = 1, b^2 = 8$$

$$e_2^2 = 1 - \frac{a^2}{b^2} = 1 - \frac{1}{8} = \frac{7}{8}$$

$$e_1^2 \cdot e_2^2 = \frac{7}{40} \Rightarrow e_1 e_2 = \frac{\sqrt{7}}{2\sqrt{10}}$$

and

$$e_1^2 + e_2^2 = \frac{1}{5} + \frac{7}{8} = \frac{43}{40}$$

Also,

$$\left|e_1^2 - e_2^2\right| = \left|\frac{1}{5} - \frac{7}{8}\right| = \frac{27}{40}$$

Question 030 MCQ

QUESTION

Consider the hyperbola
$H:x^2-y^2=1$
and a circle
S
with center
$N\left(x_{2},0 ight)$. Suppose that
H
and
S
touch each other at a point
$P\left(x_{1},y_{1} ight)$
with
$x_1>1$ and
$y_1>0$
. The common tangent to
H
and
S
at P
intersects the
x
-axis at point

M

. If

(l, m)

is the centroid of the triangle

PMN

, then the correct expressions $s\,$ is $are\,$

$$\frac{dl}{dx_1}=1-\frac{1}{3x_1^2}$$

A for

 $x_1 > 1$

$$rac{dm}{dx_1} = rac{x_1}{3\left(\sqrt{x_1^2-1}
ight)}$$

B

 $x_1 > 1$

$$rac{dl}{dx_1}=1+rac{1}{3x_1^2}$$

c fo

$$x_1 > 1$$

$$\frac{dm}{dy_1} = \frac{1}{3}$$

for

$$y_1 > 0$$

CORRECT OPTION

$$\frac{dl}{dx_1} = 1 - \frac{1}{3x_1^2}$$

for

$$x_1 > 1$$

SOURCE

Mathematics • hyperbola

EXPLANATION

Equation of family of circles touching hyperbola at (x_1, y_1) is

(x

_

$$(x_1)^2 + (y_1)^2$$

_

$$y_1)^2 +$$

 λ

 (xx_1)

_

уу₁

_

Now, its centre is $(x_2, 0)$.

•

$$egin{aligned} \left[rac{-(\lambda x_1-2x_1)}{2},rac{-(-2y_1-\lambda y_1)}{2}
ight] &=(x_2,0) \ \Rightarrow 2y_1+\lambda y_1=0 \Rightarrow \lambda=-2 \end{aligned}$$

and

$$2x_1 - \lambda x = 2x_2 \Rightarrow x_2 = 2x_1$$
 \therefore
 $P(x_1, \sqrt{x_1^2 - 1})$

and

$$N(x_2,0) = (2x_1,0)$$

As tangent intersect X-axis at

$$M\left(\frac{1}{x},0\right)$$

.

Centroid of

$$egin{align} \Delta PWN &= (l,m) \ \Rightarrow \left(rac{3x_1+rac{1}{x_1}}{3},rac{y_1+0+0}{3}
ight) &= (l,m) \ \ \Rightarrow l &= rac{3x_1+rac{1}{x_1}}{3} \ \end{aligned}$$

On differentiating w.r.t. x₁, we get

$$egin{aligned} rac{dl}{dx_1} &= rac{3-rac{1}{x_1^2}}{3} \ \Rightarrow rac{dl}{dx_1} &= 1-rac{1}{3x_2^1} \end{aligned}$$

, for $x_1 > 1$

and

$$m=\frac{\sqrt{x_1^2-1}}{3}$$

On differentiating w.r.t. x_1 , we get

$$rac{dm}{dx_1} = rac{2x_1}{2 imes 3\sqrt{x_1^2-1}} = rac{x_1}{3\sqrt{x_1^2-1}}$$

, for $x_1 > 1$

Also,

$$m=rac{y_1}{3}$$

On differentiating w.r.t. y_1 , we get

$$\frac{dm}{dy_1} = \frac{1}{3}$$

, for $y_1 > 0$

Question 031 Numerical

QUESTION

Suppose that the foci of the ellipse

$$\frac{x^2}{9} + \frac{y^2}{5} = 1$$

are

$$(f_1, 0)$$

and

/ f _ O \				
$(f_2,0)$				
where				
$f_1>0$				
and				
$f_2 < 0$				
. Let				
P_1				
and				
P_2				
be two parabolas with a common vertex at				
(0,0)				
and with foci at				
$(f_1,0)$				
and				
$(2f_2,0)$				
, respectively. Let				
T_1				
be a tangent to				
P_1				
which passes through				
$(2f_2,0)$				
and				
T_{2}				
be a tangent to				

 P_2

which passes through

 $(f_1, 0)$

. If

 m_1

is the slope of

 T_1

and

 m_2

is the slope of

 T_2

, then the value of

$$\left(\frac{1}{m_1^2}+m_2^2\right)$$

is

SOURCE

Mathematics • parabola

EXPLANATION

$$e^2 = 1 - \frac{b^2}{a^2} = 1 - \frac{5}{9} = \frac{4}{9}$$

The foci are $\$\$\pm\$\$ ae,0$ i.e. 2,0 and \$\$-\$\$2,0 .

The parabola P_1 is

$$y^2 = 8x$$

and P₂ is

$$y^2 = -16x$$

As tangent with slope m_1 to P_1 passes through \$\$-\$\$4,0 , we have

$$y=m_1x+\frac{2}{m_1}$$

giving

$$0 = -4m_1 + \frac{2}{m_1}$$

i.e.

$$4m_1^2=2\Rightarrow m_1^2=rac{1}{2}$$

Again for tangent with slope m_2 to P_2 passing through $\,2,0\,,$ we have

$$y=m_2x-rac{4}{m_2}\Rightarrow 0=2m_2-rac{4}{m_2}$$
 $\Rightarrow 2m_2^2=4$ \therefore $m_2^2=2$

Thus,

$$rac{1}{m_1^2} + m_2^2 = 2 + 2 = 4$$

Question 032 MCQ

QUESTION

$$\alpha = 3\sin^{-1}\left(\frac{6}{11}\right)$$

and

$$eta=3 ext{cos}^{-1}\left(rac{4}{9}
ight),$$

where the inverse trigonimetric functions take only the principal values, then the correct options s is are

A

 $cos\beta > 0$

В

 $\sin\beta < 0$

C

 $\cos\left(\alpha+\beta\right)>0$

D

 $\cos \alpha < 0$

CORRECT OPTION

В

 $\sin\beta < 0$

SOURCE

Mathematics • inverse-trigonometric-functions

EXPLANATION

Here,

$$\alpha = 3\sin^{-1}\left(\frac{6}{11}\right)$$

and

$$eta=3 ext{cos}^{-1}\left(rac{4}{9}
ight)$$

as

$$\frac{6}{11} > \frac{1}{2}$$

$$\Rightarrow \sin^{-1}\left(\frac{6}{11}\right) > \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

$$lpha = 3 \mathrm{sin}^{-1} \left(rac{6}{11}
ight) > rac{\pi}{2} \Rightarrow \cos lpha < 0$$

Now,

$$eta=3 ext{cos}^{-1} \left(rac{4}{9}
ight)$$

As

$$\frac{4}{9} < \frac{1}{2} \Rightarrow \cos^{-1}\left(\frac{4}{9}\right) > \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$$

$$\therefore$$

$$\beta = 3\cos^{-1}\left(\frac{4}{9}\right) > \pi$$

$$\cos \beta < 0$$

and

$$\sin \beta < 0$$

Now,

$$\alpha + \beta$$

is slightly greater than

$$\frac{3\pi}{2}$$

$$\cos(\alpha+eta)>0$$

Question 033 MCQ

QUESTION

Let

$$[-1,2] o R$$

be continuous functions which are twice differentiable on the interval

$$(-1, 2)$$

. Let the values of f and g at the points

$$-1, 0$$

and

2

be as given in the following table:

	X = -1	X = 0	X = 2
f x	3	6	0
g x	0	1	-1

In each of the intervals

$$(-1, 0)$$

and

(0, 2)

the function

$$(f-3g)''$$

never vanishes. Then the correct statement s is are

$$f'\left(x\right) - 3g'\left(x\right) = 0$$

A has exactly three solutions in

$$(-1,0)\cup(0,2)$$

$$f'\left(x\right) - 3g'\left(x\right) = 0$$

B has exactly one solution in

$$(-1, 0)$$

$$f'\left(x\right) - 3g'\left(x\right) = 0$$

c has exactly one solution in

$$f'(x) - 3g'(x) = 0$$

has exactly two solutions in

(-1,0)

and exactly two solutions in

(0, 2)

CORRECT OPTION

$$f'\left(x\right) - 3g'\left(x\right) = 0$$

C

has exactly one solution in

(0, 2)

SOURCE

Mathematics • application-of-derivatives

EXPLANATION

Let

$$F(x) = f(x) - 3g(x)$$

. .

$$F(-1) = 3$$

,

$$F(0) = 3$$

and

$$F(2) = 3$$

So,

will vanish at least twice in

$$(-1,0)\cup(0,2)$$

.

•••

$$F''(x) > 0$$

or

< 0

$$orall x \in (-1,0) \cup (0,2)$$

Hence,

$$f'(x) - 3g'(x) = 0$$

has exactly one solution in

$$(-1, 0)$$

and one solution in

(0, 2)

Question 034 MCQ

QUESTION

Let

$$f(x) = 7\tan^8 x + 7\tan^6 x - 3\tan^4 x - 3\tan^2 x$$

for all

$$x\in \left(-rac{\pi}{2},rac{\pi}{2}
ight).$$

Then the correct expression s is are

$$\int\limits_{0}^{\pi/4}xf\left(x
ight) dx=rac{1}{12}$$

$$\int\limits_{0}^{\pi/4}f\left(x
ight) dx=0$$

$$\int\limits_{0}^{\pi/4}xf\left(x
ight) dx=rac{1}{6}% \int\limits_{0}^{\pi/4}xf\left(x
ight) dx$$

$$\int\limits_{0}^{\pi/4}f\left(x
ight) dx=1$$

CORRECT OPTION

$$\int\limits_{0}^{\pi/4}xf(x)dx=rac{1}{12}% \int\limits_{0}^{\pi/4}xf(x)dx$$

SOURCE

Mathematics • definite-integration

EXPLANATION

$$egin{aligned} f(x) &= 7 an^8x + 7 an^6x - 3 an^4x - 3 an^2x \, orall x \in \left(rac{-\pi}{2},rac{\pi}{2}
ight) \ &= 7 an^6x \, . \, \sec^2x - 3 an^2x \, . \, \sec^2x \ &= (7 an^6x - 3 an^2x) \, . \, \sec^2x \end{aligned}$$

$$\Rightarrow \int\limits_{0}^{\pi/4} f(x) dx = \int\limits_{0}^{\pi/4} (7 an^6x - 3 an^2x) ext{sec}^2 dx = \int\limits_{0}^{1} (7 + 603t^2) dt = [t^7 - t^3]$$

Also

$$I=\int\limits_{0}^{\pi/4}xf(x)dx$$

$$=\left|x\,.\,\int (7 an^6x-3 an^2x){
m sec}^2xdx
ight|_0^{\pi/4}-\int\limits_0^{\pi/4}1\,.\,\int (7 an^6x-3 an^2x){
m sec}^2x$$

$$=\left|x \cdot (an^7 x - an^3 x
ight|_0^{\pi/4} - \int\limits_0^{\pi/4} (an^7 x - an^3 x) dx$$

$$x=0-\int\limits_0^{\pi/4} an^3x(an^4x-1)dx$$

$$=-\int\limits_0^{\pi/4} an^3x(an^2x-1)(\sec^2x)dx$$

$$=-\int\limits_{0}^{1}(t^{5}-t^{3})dt$$

$$=-\left\lceil rac{t^6}{6} - rac{t^4}{4}
ight
ceil_0^1 = \left\lceil rac{1}{4} - rac{1}{6}
ight
ceil = rac{1}{12}$$

Question 035

QUESTION

The option \boldsymbol{s} with the values of a and

that satisfy the following equation is $\ are$

$$\$rac{\int\limits_0^{4\pi}e^t\left(\sin^6at+\cos^4at
ight)dt}{\int\limits_0^{\pi}e^t\left(\sin^6at+\cos^4at
ight)dt}=L?$$

\$

A

$$a=2, L=rac{e^{4\pi}-1}{e^{\pi}-1}$$

В

$$a=2, L=\frac{e^{4\pi}+1}{e^\pi+1}$$

C

$$a=4, L=rac{e^{4\pi}-1}{e^\pi-1}$$

D

$$a=4, L=rac{e^{4\pi}+1}{e^{\pi}+1}$$

CORRECT OPTION

$$a=2, L=rac{e^{4\pi}-1}{e^{\pi}-1}$$

SOURCE

Mathematics • definite-integration

$$I_1=\int_0^{4\pi}e^t(\sin^6\!at+\cos^6\!at)dt$$

$$I_1=\int_0^{4\pi}e^t(\sin^6at+\cos^6at)dt$$
 $=\int_0^{\pi}e^t(\sin^6at+\cos^6at)dt+\int_{\pi}^{2\pi}e^t(\sin^6at+\cos^6at)dt+\int_{2\pi}^{3\pi}e^t(\sin^6at+\cos^6at)dt+\int_{\pi}^{3\pi}e^t(\sin^6at+\cos^6at)dt+\int_{\pi}^{3\pi}e^t(\sin^6at+\cos^6at)dt$ \therefore $I_1=I_2+I_3+I_4+I_5$ i Now,

$$I_1 = I_2 + I_3 + I_4 + I_5$$

$$I_3=\int_{\pi}^{2\pi}e^t(\sin^6\!at+\cos^6\!at)dt$$

$$t = \pi + t \Rightarrow dt = dt$$

$$I_3=\int_0^\pi e^{\pi+t}.\;(\sin^6 at+\cos^6 at)dt \ =e^t\,.\;I_2$$

$$I_4=\int_{2\pi}^{3\pi}e^t(\sin^6\!at+\cos^6\!at)dt$$

$$t=2\pi+t\Rightarrow dt=dt$$

$$I_4=\int_0^\pi e^{t+2\pi}(\sin^6\!at+\cos^6\!at)dt$$

$$=e^{2\pi}.I_{2}$$

..... *iii*

and

$$I_5=\int_{3\pi}^{4\pi}e^t(\sin^6\!at+\cos^6\!at)dt$$

Put

$$t=3\pi+t$$
 \therefore $I_5=\int_0^\pi e^{3\pi+t}(\sin^6at+\cos^6at)dt$ $=e^{3\pi}.\ I_2$

 $\dots iv$

From Eqs. i, ii, iii and iv, we get

$$I_1 = I_2 + e^{\pi}$$
. $I_2 + e^{2\pi}$. $I_2 + e^{3\pi}$. I_2

$$= (1 + e^{\pi} + e^{2\pi} + e^{3\pi})I_2$$

$$\therefore$$

$$L = \frac{\int_0^{4\pi} e^t (\sin^6 at + \cos^6 at) dt}{\int_0^{\pi} e^t (\sin^6 at + \cos^6 at) dt}$$

$$= (1 + e^{\pi} + e^{2\pi} + e^{3\pi})$$

$$= \frac{1 \cdot (e^{4\pi} - 1)}{e^{\pi} - 1}$$

for

$$a \in R$$

QUESTION

Let

$$f^{\prime}\left(x
ight) =rac{192x^{3}}{2+\sin^{4}\pi x}$$

for all

$$x \in R$$

with

$$f\left(\frac{1}{2}\right) = 0$$

lf

$$m\leq\int\limits_{1/2}^{1}f\left(x
ight) dx\leq M,$$

then the possible values of

m

and

M

are

$$m=\frac{1}{4}, M=\frac{1}{2}$$

m=13,

M = 24

В

$$m = -11,$$

$$M = 0$$

$$m=1$$
,

$$M = 12$$

CORRECT OPTION

$$m=1,$$

$$M = 12$$

SOURCE

Mathematics • definite-integration

EXPLANATION

We have,

$$f'(x)=\frac{192x^3}{2+\sin^4\!\pi x}$$

Given,

$$f\left(\frac{1}{2}\right) = 0$$

and

$$m \leq \int\limits_{1/2}^1 f(x) dx \leq m$$

٠.

fx is increasing in

$$\left(\frac{1}{2},1\right)$$

$$f'(x)_{\text{max}} = \frac{192}{24} = 96$$

$$\Rightarrow 96 = \frac{f(1) - f(1/2)}{1/2} \Rightarrow f(1) = 96 \times \frac{1}{2} = 48$$

$$M = \frac{1}{2} \times \frac{1}{2} \times 48 = 12$$

$$f'(x)_{\text{min.}} = \frac{\left(\frac{192}{8}\right)}{3} = \frac{192}{24}$$

$$\Rightarrow \frac{192}{24} = \frac{f(1) - 0}{(1/2)} \Rightarrow f(1) = \frac{192}{24} \times \frac{1}{2}$$

$$\therefore$$

$$m = \frac{1}{2} \times \frac{1}{2} \times \frac{192}{24} \times \frac{1}{2} = 1$$

Question 037 MCQ

QUESTION

Let

be a thrice differentiable function. Suppose that

$$F(1) = 0, F(3) = -4$$

and

for all

$$x\in \left(rac{1}{2},3
ight).$$

Let

$$f\left(x\right) = xF\left(x\right)$$

for all

 $x \in R$.

lf

$$\int_{1}^{3}x^{2}F^{\prime}\left(x\right) dx=-12$$

and

$$\int_{1}^{3}x^{3}F^{\prime\prime}\left(x
ight) dx=40,$$

then the correct expression s is are

A

$$9f^{\prime}\left(3
ight) +f^{\prime}\left(1
ight) -32=0$$

В

$$\int_{1}^{3}f(x)dx=12$$

C

$$9f'\left(3\right) - f'\left(1\right) + 32 = 0$$

D

$$\int_{1}^{3}f(x)dx=-12$$

CORRECT OPTION

$$9f'(3) - f'(1) + 32 = 0$$

SOURCE

Mathematics • application-of-integration

EXPLANATION

Given,

$$\int_{1}^{3} x^{2} F'(x) dx = -12$$

$$\Rightarrow [x^{2} F(x)]_{1}^{3} - \int_{1}^{3} 2x \cdot F(x) dx = -12$$

$$\Rightarrow 9F(3) - F(1) - 2 \int_{1}^{3} f(x) dx = -12$$

$$\$\$ \cdot \cdot \$\$\$ x F(x) = f(x) \$\$ given$$

$$\Rightarrow -36 - 0 - 2 \int_{1}^{3} f(x) dx = -12$$

$$\vdots$$

$$\int_{1}^{3} f(x) dx = -12$$

and

$$\int_{1}^{3} x^{3} F''(x) dx = 40$$

$$\Rightarrow [x^{3} F'(x)]_{1}^{3} - \int_{1}^{3} 3x^{2} F'(x) dx = 40$$

$$\Rightarrow [x^{2} (xF'(x)]_{1}^{3} - 3 \times (-12) = 40$$

$$\Rightarrow \{x^{2} \cdot [f'(x) - F(x)]\}_{1}^{3} = 4$$

$$\Rightarrow 9[f'(3) - F(3)] - [f'(1) - F(1)] = 4$$

$$\Rightarrow 9[f'(3) + 4] - [f'(1) - 0] = 4$$

$$\Rightarrow 9f'(3) - f'(1) = -32$$

Question 038 MCQ

QUESTION

Let

be a thrice differentiable function. Suppose that

$$F(1) = 0, F(3) = -4$$

and

for all

$$x\in \left(rac{1}{2},3
ight).$$

Let

$$f\left(x\right) = xF\left(x\right)$$

for all

$$x \in R$$
.

The correct statement s is are

В

 $f^{\prime}\left(x
ight)
eq0$

c for any

 $x\in(1,3)$

f'(x) = 0

D for some

 $x\in(1,3)$

CORRECT OPTION

$$f^{\prime}\left(1
ight) <0$$

SOURCE

Mathematics • differentiation

EXPLANATION

Given,

F1 = 0, F3 = 4

F'x < 0 for all x

 \in

1,3

and fx = xFx

Now, f'x = Fx + xF'x \Rightarrow f1 = F1 + 1.F'1 \Rightarrow f'1 = 0 + F'1 1 As F'x < 0 for all x \in 1,3 ... F'1 < 0From 1, we get f'1 = F'1 < 0From Lagrange theorem $F'(2) = \frac{F(3) - F(1)}{3 - 1}$ $=\frac{-4-0}{2}$ 2 As fx = xFxf3 = 3.F3 = 3.\$\$ - \$\$4 =12 and f1 = 1 . F1 = 0

...

$$f'(2) = \frac{f(3) - f(1)}{3 - 1}$$
$$= \frac{-12}{2} = -6$$

As, $f'x = Fx + x \cdot F'x$

...

 $f'2 = F2 + 2 \cdot F'2$

$$\Rightarrow -6 = \frac{f(2)}{2} + 2. (-2)$$

$$\Rightarrow \frac{f(2)}{2} = -2$$

$$\Rightarrow$$

f2 =

_

4

•

f2 < 0

$$f'(x) = \frac{f(3) - f(1)}{3 - 1}$$

when x

 \in

1.3

f3 =

_

12

and f1 = 0

.

$$f'(x) = \frac{-12}{2} = -6$$

f x

 \neq

0 for any x

 \in

1,3

Question 039 Numerical

QUESTION

lf

$$lpha = \int\limits_0^1 \left(e^{9x+3 an^{-1}x}
ight)\left(rac{12+9x^2}{1+x^2}
ight)\!dx$$

where

$$\tan^{-1}x$$

takes only principal values, then the value of

$$\left(\log_e|1+lpha|-rac{3\pi}{4}
ight)$$

is

SOURCE

Mathematics • definite-integration

EXPLANATION

$$lpha = \int\limits_{0}^{1} e^{(9x+3 an^{-1}x)} \left(rac{12+9x^{2}}{1+x^{2}}
ight)\! dx$$

Set

$$9x + 3\tan^{-1}x = t$$

so that

$$\frac{dt}{dx} = 9 + \frac{3}{1+x^2} = \frac{12+9x^2}{1+x^2}$$

We have,

$$lpha = \int\limits_{0}^{9+rac{3\pi}{4}} e^t dt = e^{9+rac{3\pi}{4}} - 1$$

...

$$\ln|\alpha+1| = 9 + \frac{3\pi}{4}$$

Thus

$$\ln|\alpha+1|-\frac{3\pi}{4}=9$$

Question 040

Numerical

QUESTION

Let m and n be two positive integers greater than 1. If

$$\$\lim_{lpha o 0}\left(rac{e^{\cos(lpha^n)}-e}{lpha^m}
ight)=-\left(rac{e}{2}
ight)$$

then the value of $\frac{m}{n}$ \$ is _____.

SOURCE

Mathematics • limits-continuity-and-differentiability

EXPLANATION

Given.

$$egin{aligned} &\lim_{lpha o 0} \left[rac{e^{\cos(lpha^n)}-e}{lpha^m}
ight] = -rac{e}{2} \ &\Rightarrow \lim_{lpha o 0} rac{e\{e^{\cos(lpha^n)-1}-1\}}{\cos(lpha^n)-1} \cdot rac{\cos(lpha^n)-1}{lpha^m} = rac{-e}{2} \ &\Rightarrow \lim_{lpha o 0} e\left\{rac{e^{\cos(lpha^n)-1}-1}{\cos(lpha^n)-1}
ight\} \cdot \lim_{lpha o 0} rac{-2\sin^2rac{lpha^n}{2}}{lpha^m} = -e/2 \ &\Rightarrow e imes 1 imes (-2)\lim_{lpha o 0} rac{\sin^2\left(rac{lpha^n}{2}
ight)}{rac{lpha^{2n}}{4}} \cdot rac{lpha^{2n}}{4lpha^m} = rac{-e}{2} \ &\Rightarrow e imes 1 imes -2 imes 1 imes \lim_{lpha o 0} rac{lpha^{2n}-m}{4} = rac{-e}{2} \end{aligned}$$

For this to be exists,

$$2n-m=0\Rightarrow rac{m}{n}=2$$

Question 041 MCQ

QUESTION

Consider a uniform spherical charge distribution of radius

$$R_1$$

centred at the origin

0.

In this distribution, a spherical cavity of radius

 R_2 ,

centred at

P

with distance

$$OP = a$$
$$= R_1 - R_2$$

 $see figure \$ is made. If the electric field inside the cavity at position

 \overrightarrow{r}

is

$$\overrightarrow{E(r)}$$
,

then the correct statement s is are

 \overrightarrow{E}

is uniform, its magnitude is independent of

 R_2

but its direction depends on

 \overrightarrow{r} .

 \overrightarrow{E}

is uniform, its magnitude depends on

В

 R_2

and its direction depends on $\overrightarrow{r}.$	
\overrightarrow{E} is uniform, its magnitude is independent of a but its direction dependent \overrightarrow{a}	ends on
\overrightarrow{E} is uniform and both its magnitude and direction depend on \overrightarrow{a}	
CORRECT OPTION \overrightarrow{E} is uniform and both its magnitude and direction depend on \overrightarrow{a}	
SOURCE Physics • electrostatics	
EXPLANATION Let ρ	

be the charge density of the spherical	charge distribution of radius r ₁ centred at	
the origin O. A spherical cavity of radius r_2 centred at P with distance OP = $a = r_1$		
	_	
r is made in the enhanced charge dist	ribution	
r ₂ is made in the spherical charge distribution.		
The sphere with cavity is equivalent to a sphere of uniform charge density		
	_	
	ho	
and radius $\rm r_2$ centred at P embedded in the original sphere. Thus, the electric field at a point Q in the cavity is superposition of i electric field at Q due to the sphere of charge density		
	ho	
and radius r ₁ centred at O (say		
	\overrightarrow{E}	
$_{ m 1}$), and ii electric field at Q due to the sphere of charge density		
	_	
	ρ	
and radius r ₂ centred at P (say		
	\overrightarrow{E}	
₂). Let		
	\overrightarrow{a}	
,		
	\overrightarrow{r}	
, and		
	\overrightarrow{r}	
	r	
	_	

be the vectors as shown in the figure. The electric fields

1,

2, and their superposition

₁₂ are given by

$$\overrightarrow{E}_1 = rac{1}{4\pi \in_0} rac{rac{4}{3}\pi |\overrightarrow{r}|^3
ho}{|\overrightarrow{r}|^2} \hat{r} = rac{
ho}{3 \in_0} \overrightarrow{r}$$

$$\overrightarrow{E}_2 = -rac{
ho}{3{\in}_0}(\overrightarrow{r}-\overrightarrow{a})$$

$$\overrightarrow{E}_{12} = \overrightarrow{E}_1 + \overrightarrow{E}_2 = rac{
ho}{3 \in _0} \overrightarrow{a}$$

Thus, the electric field at a point within the cavity is uniform and its magnitude and direction both depend on

 \overrightarrow{a}

QUESTION

A spherical body of radius R consists of a fluid of constant density and is in equilibrium under its own gravity. If P r is the pressure at r r < R, then the correct option s is are

$$P(r = 0) = 0$$

$$\frac{P(r=3R/4)}{P(r=2R/3)} = \frac{63}{80}$$

$$rac{P(r=3R/5)}{P(r=2R/5)} = rac{16}{21}$$

$$rac{P(r=R/2)}{P(r=R/3)} = rac{20}{27}$$

CORRECT OPTION

$$\frac{P(r=3R/4)}{P(r=2R/3)} = \frac{63}{80}$$

SOURCE

Physics • properties-of-matter

EXPLANATION

The acceleration due to gravity at a radial distance r $\,r < R\,$ from the centre of a sphere of constant mass density

 ρ

is given by

$$g=rac{G\left(rac{4}{3}\pi r^3
ight)
ho}{r^2}=rac{4\pi
ho G}{3}r$$

.

Consider a spherical shell of radius r and thickness dr.

Let P and P + dP be the fluid pressures inside and outside the shell. Consider a small element of area A and mass

$$dm = \rho A dr$$

on the shell. The forces on this element are gravitational force dmg directed inwards, the force due to pressure of the fluid outside the shell

$$((P+dP)A)$$

directed inwards, and the force due to pressure of the fluid inside the shell $\,PA\,$ directed outwards. In equilibrium, net force on the element is zero, i.e.,

$$(
ho A dr) rac{4}{3} \pi
ho G r + (P+dP) A = P A$$

, or

$$dP = -rac{4}{3}\pi G
ho^2 r \, dr$$

.

Note that the pressure decreases with increase in r. The pressure is zero at the surface of the sphere i.e., P = 0 at r = R. Integrate to get

$$\int_0^{P(r)} dP = P(r) = -rac{4}{3}\pi G
ho^2 \int_R^r r dr$$
 $=rac{2}{3}\pi G
ho^2 (R^2-r^2)$

Now,

$$P(r=0) = rac{2\pi}{3}
ho^2 G R^2
eq 0$$
 $rac{P(r=3R/4)}{P(r=2R/3)} = rac{R^2 - (3R/4)^2}{R^2 - (2R/3)^2} = rac{7}{16} imes rac{9}{5} = rac{63}{80}$ $rac{P(r=3R/5)}{P(r=2R/5)} = rac{R^2 - (3R/5)^2}{R^2 - (2R/5)^2} = rac{16}{25} imes rac{25}{21} = rac{16}{21}$ $rac{P(r=R/2)}{P(r=R/3)} = rac{R^2 - (R/2)^2}{R^2 - (R/3)^2} = rac{3}{4} imes rac{9}{8} = rac{27}{32}
eq rac{20}{27}$

Question 043 Numerical

QUESTION

The densities of two solid spheres A and B of the same radii R vary with radial distance r as

$$ho_A(r) = k\left(rac{r}{R}
ight)$$

and

$$ho_B(r) = k \Big(rac{r}{R}\Big)^5$$

, , respectively, where k is a constant. The moments of inertia of the individual spheres about axes passing through their centres are

 I_A

and

 I_B

, respectively. If,

$$rac{I_B}{I_A} = rac{n}{10}$$

, the value of n is

SOURCE

Physics • rotational-motion

EXPLANATION

Consider a spherical shell of radius r and small thickness dr.

The volume of the shell is

$$dV = 4\pi r^2 dr$$

and its mass is

$$dm =
ho dV = 4\pi
ho r^2 dr$$

.

The moment of inertia of the spherical shell of mass dm and radius r about an axis passing through its centre O is given by

$$dI=rac{2}{3}dm\,r^2$$

. Substitute the expressions for dm and

 ρ

and then integrate to get the moment of inertia of the two spheres.

$$I_A = \int_0^R rac{2}{3} (4\pi
ho_A r^4) dr = rac{8\pi k}{3R} \int_0^R r^5 dr = rac{8\pi k R^5}{18}$$

,

$$I_B = \int_0^R rac{2}{3} (4\pi
ho_B r^4) dr = rac{8\pi k}{3R^5} \int_0^R r^9 dr = rac{8\pi k R^5}{30}$$

Divide to get

$$I_B/I_A = 6/10$$

Question 044 Numerical

QUESTION

The energy of a system as a function of time t is given as $\mathsf{E}\,t$ =

$$A^2 \exp\left(-\alpha t\right)$$

, where

$$lpha = 0.2\,s^{-1}$$

. The measurement of A has an error of 1.25 %. If the error in the measurement of time is 1.50 %, the percentage error in the value of Et at t = 5 s is

SOURCE

Physics • units-and-measurements

EXPLANATION

$$E(t) = A^2 e^{-\alpha t}$$

 \dots i

 α

= 0.2 s

1

$$\left(rac{dA}{A}
ight) imes 100 = 1.25\%$$

$$\left(rac{dt}{t}
ight) imes 100 = 1.50$$

$$\Rightarrow (dt \times 100) = 1.5t = 1.5 \times 5 = 7.5$$

Differentiating on both sides of equation i, we get

$$dE = (2 Ad A)e^{-\alpha t} + A^2 e^{-\alpha t}(-\alpha dt)$$

Dividing throughout by $E=A^2e^{-lpha t}$

$$rac{d{
m E}}{{
m E}} = rac{2}{{
m A}} d\,{
m A} + lpha dt$$

Considering worst possible case

$$\left(rac{dE}{E}
ight) imes 100 = 2 \left(rac{dA}{A}
ight) imes 100 + lpha (dt imes 100) \ = 2(1.25) + 0.2(7.5) \ = 2.5 + 1.5 \ = 4\%$$

Question 045 MCQ

QUESTION

In terms of potential difference V, electric current I, permittivity

, permeability

 μ_0

and speed of light c, the dimensionally correct equation s is are:

$$\mu_0 I^2 = arepsilon_0 V^2$$

$$arepsilon_0 I = \mu_0 V$$

$$I = \varepsilon_0 cV$$

$$\mu_0 cI = arepsilon_0 V$$

CORRECT OPTION

$$\mu_0 I^2 = arepsilon_0 V^2$$

SOURCE

Physics • electromagnetic-waves

EXPLANATION

The speed of light in vacuum is given by,

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

and The impedance $\ensuremath{\textit{resistance}}$ of free space is defined a

$$R=\sqrt{rac{\mu_0}{arepsilon_0}}$$

. Using this check the dimensional correctness of equations.

a

$$\mu_0 I^2 = \varepsilon_0 V^2$$
 $\frac{\mu_0}{\varepsilon_0} = \frac{V^2}{I^2} = R^2$ \therefore $R^2 = R^2$

which is dimensionally correct.

b

$$arepsilon_0 I = \mu_0 V \Rightarrow rac{arepsilon_0}{\mu_0} = rac{V}{I} \Rightarrow rac{1}{R^2} = R$$

which is dimensionally incorrect.

c

$$I = arepsilon_0 cV \Rightarrow rac{I}{V} = arepsilon_0 C = rac{arepsilon_0}{\sqrt{arepsilon_0 \mu_0}}$$

=

$$\sqrt{rac{arepsilon_0}{\mu_0}}$$

_

$$\frac{\frac{1}{R}}{\frac{1}{R}} = \sqrt{\frac{\varepsilon_0}{\mu_0}} \Rightarrow \frac{1}{R} = \frac{1}{R}$$

which is dimensionally correct.

d

$$egin{align} \mu_0 cI &= arepsilon_0 V \Rightarrow rac{\mu_0 c}{arepsilon_0} = rac{V}{I} \ &rac{\mu_0}{arepsilon_0} rac{1}{\sqrt{arepsilon_0 \mu_0}} = R \Rightarrow rac{1}{arepsilon_0} \sqrt{rac{\mu_0}{arepsilon_0}} = R \ &rac{R}{arepsilon_0} = R \ & rac{R}{arepsilon_0} = R \ & rac{R}{arepsilon_0} = R \ & rac{R}{arepsilon_0} = R \ & rac{R}{arepsilon_0} = R \ & rac{R}{arepsilon_0} = R \ & R \ & rac{R}{arepsilon_0} = R \ &$$

, which is dimensionally incorrect.

Question 046 Numerical

QUESTION

Four harmonic waves of equal frequencies and equal intensities I₀ have phase angles 0,

$$\frac{\pi}{3}, \frac{2\pi}{3}$$

and

. When they are superposed, the intensity of the resulting wave is nI₀. The value of n is

SOURCE

Physics • waves

EXPLANATION

The intensity of a wave is proportional to the square of its amplitude i.e., I_0 = $cA^2,\,where\,\,c$ is a constant. The amplitudes of four harmonic waves are equal as their intensities are equal. Let these waves be travelling along the x direction with wave vector k and angular frequency

. The resultant displacement of these waves is given by

$$egin{align} y &= y_1 + y_2 + y_3 + y_4 \ &= A\sin(\omega t - kx + 0) + A\sin(\omega t - kx + \pi/3) + A\sin(\omega t - kx + 2\pi/3) + A\sin(\omega t - kx + 2\pi/3) \ &= A\sin(\omega t - kx + \pi/3) + A\sin(\omega t - kx + 2\pi/3) \end{gathered}$$

$$=2A\sin(\omega t-kx+\pi/2)\cos(\pi/6)$$

$$= \sqrt{3}A\cos(\omega t - kx)$$

.

The amplitude of the resultant wave is

$$A_r = \sqrt{3}A$$

and its intensity is

$$I_r = cA_r^2 = 3cA^2 = 3I_0$$

.

Question 047

Numerical

QUESTION

For a radioactive material, its activity A and rate of change of its activity R are defined as

$$A = -\frac{dN}{dt}$$

and

$$R = -\frac{dA}{dt}$$

, where N t is the number of nuclei at time t. Two radioactive source P $meanlife\$\$\tau\$\$$ and Q $meanlife2\$\$\tau\$\$$ have the same activity at t = 0. Their rate of change of activities at t = 2

 τ

are R_P and R_Q , respectively. If

$$\frac{R_P}{R_Q} = \frac{n}{e}$$

, then the value of n is

SOURCE

Physics • atoms-and-nuclei

EXPLANATION

Law of radioactivity:

$$N = N_0 e^{-\lambda t}$$

where

 λ

= decay constant

Activity

$$|A| = \left| \frac{-dN}{dt} \right| = N_0 \lambda e^{-\lambda t}$$

Rate of activity

$$R = rac{d|A|}{dt} = N_0 \lambda^2 e^{-\lambda t}$$

At t = 0, $A_1 = A_2$. Therefore,

$$N_{OP}\lambda_P=N_{OQ}\lambda_Q$$

At

$$t=2 au,\,rac{R_P}{R_Q}=\left(rac{\lambda_P}{\lambda_Q}
ight)^2\left(rac{N_{OP}}{N_{OQ}}
ight)rac{e^{-\lambda P(25)}}{e^{-\lambda Q(25)}}=rac{\lambda_P}{\lambda_Q}e^{(\lambda_Q-\lambda_P)25}$$

Since mean life is given by

$$au=rac{1}{\lambda}$$

Therefore,

$$rac{R_P}{R_Q} = rac{\lambda_P}{\lambda_Q} e^{\left(rac{1}{25} - rac{1}{5}
ight)^{25}} = rac{\lambda_P}{\lambda_Q} e^{-1}$$
 $rac{R_P}{R_Q} = rac{\lambda_{\{}}{\lambda_Q} rac{1}{e} = rac{n}{e}$ $n = rac{\lambda_P}{\lambda_Q} = rac{2 au}{ au} = 2$

Question 048 Numerical

QUESTION

A monochromatic beam of light is incident at 60

0

on one face of an equilateral prism of refractive index n and emerges from the opposite face making an angle

 θ

n with the normal see figure . For n =

 $\sqrt{3}$

the value of

 θ

is 60

0

and

$$\frac{d\theta}{dn} = m$$

. The value of m is

SOURCE

Physics • geometrical-optics

EXPLANATION

Using Snell's law:

$$\sin 60^\circ = n \sin r_1$$

..... 1

$$\sin r_1 = rac{\sqrt{3}}{2 imes\sqrt{3}} = rac{1}{2}
onumber$$
 $r_1 = 30^\circ$

Also,

$$n\sin r_2 = 1\sin heta$$

Also

$$r_1+r_2=A=60^\circ$$

Therefore,

$$n\sin(60^\circ-r_1)=1\sin heta$$

..... 2

Differentiating on both sides, we get

$$\sin(60^\circ-r_1)-n\cos(60^\circ-r_1)rac{dr_1}{dn}=\cos hetarac{d heta}{dn}$$

Differentiating Eq. 1 on both sides, we get

$$0 = \sin r_1 + n \cos r_1 \frac{dr_1}{dn}$$

$$0 = \frac{1}{2} + \sqrt{3}. \, \frac{\sqrt{3}}{2} \frac{dr_1}{dn}$$

Therefore,

$$\frac{dr_1}{dn} = \frac{-1}{3}$$

Hence, substituting

$$r_1=30^\circ$$

, we get

$$\frac{dr_1}{dn} = \frac{-1}{3}$$

Now,

$$\sin 30^{\circ} - \sqrt{3}\cos 30^{\circ} \left(-\frac{1}{3}\right) = \cos 60^{\circ} \frac{d\theta}{dn}$$
 $\frac{1}{2} + \frac{3}{2 \times 3} = \frac{1}{2} \frac{d\theta}{dn}$ $\frac{d\theta}{dn} = 2$

Question 049 Numerical

QUESTION

In the following circuit, the current through the resistor R $=2\$\$\Omega\$\$$ is I amperes. The value of I is:

SOURCE

Physics • current-electricity

EXPLANATION

Consider the following figure:

ACGA constitutes a Wheatstone bridge; hence, 8

 Ω

is redundant and hence can be removed. Therefore,

$$R_{AG}=rac{3 imes 6}{9}=\,2\,\Omega$$

AGDFA again constitutes a Wheatstone bridge 10

 Ω

which is redundant and hence can be removed.

$$R_{AB}=rac{6 imes18}{24}=4.5\;\Omega$$

$$I = \frac{6.5}{6.5} = 1 A$$

Question 050

Numerical

QUESTION

An electron in an excited state of Li²⁺ ion has angular momentum

$$\frac{3h}{2\pi}$$

. The de Broglie wavelength of the electron in this state is p

 π

 a_0 (where a_0 is the Bohr radius). The value of p is

SOURCE

Physics • dual-nature-of-radiation

EXPLANATION

Angular momentum

$$mvr=rac{nh}{2\pi}$$

where

$$r = 3a_0$$

where

$$n = 3$$

, that is, electron in

$$Li^{2+}$$

is in second excited state

$$\lambda = \frac{h}{mv} = p\pi a_0$$

$$\Rightarrow n = p\pi(mva_0) = p\pi\left(rac{mvr}{3}
ight) = rac{p\pi}{3}\left(rac{3h}{2\pi}
ight) = rac{ph}{2}$$

Therefore,

$$p = 2$$

Question 051 Numerical

QUESTION

A large spherical mass M is fixed at one position and two identical masses m are kept on a line passing through the centre of M see figure. The point masses are connected by a rigid massless rod of length I and this assembly is free to move along the line connecting them.

All three masses interact only through their mutual gravitational interaction. When the point mass nearer to M is at a distance r = 3I from M the tension in the rod is zero for m = 3I

$$k\left(\frac{M}{288}\right)$$

. The value of k is

SOURCE

Physics • gravitation

EXPLANATION

The acceleration \vec{a} of the point masses are equal because they are connected by a massless rigid rod.

Consider the situation when tension in the rod is zero. The gravitational forces on the two point masses are shown in the figure. The forces $f_1=\frac{GMm}{r^2}$ and $f_3=\frac{GMm}{(r+l)^2}$ are due to the attraction by the larger mass M. The force $f_2=\frac{Gmm}{l^2}$ is due to mutual attraction between the two point masses. Apply Newton's second law on the two point masses to get

$$\frac{GMm}{r^2} - \frac{Gmm}{l^2} = ma$$

..... 1

$$\frac{GMm}{(r+l)^2} + \frac{Gmm}{l^2} = ma$$

..... 2

From eqn. 1 and 2, we get

$$rac{GM}{9l^2} - rac{Gm}{l^2} = rac{GM}{16l^2} + rac{Gm}{l^2}$$

$$\frac{M}{9} - \frac{M}{16} = m + m \Rightarrow \frac{7M}{144} = 2m$$

$$m=rac{7M}{288}=k\left(rac{M}{288}
ight)$$

k = 7

Question 052 MCQ

QUESTION

In plotting stress versus strain curves for two materials P and Q, a student by mistake puts strain on the y-axis and stress on the x-axis as shown in the figure. Then, the correct statements is/are

- P has more tensile strength than Q
- P is more ductile than Q

The Young's modulus of P is more than that of Q

CORRECT OPTION

P has more tensile strength than Q

SOURCE

Physics • properties-of-matter

EXPLANATION

We know,

$$Y = rac{Stress}{Strain}$$

According to graph,

Slope of curve

$$=\frac{Change\,in\,strain}{Change\,in\,stress}=\frac{1}{Y}$$

 $Slope_{P} > Slope_{Q}$

. .

$$Y_P < Y_Q$$

P has more tensile strength than Q as it sustains more stress after elastic limit.

There is large deformation between the elastic limit and the fracture point for material P as compared to material Q. Hence, P is more ductile than Q.

After the elastic limit, Q breaks soon as compared to P. So, Q is more brittle than P.

QUESTION

A parallel plate capacitor having plates of area S and plate separation d, has capacitance C_1 in air. When two dielectrics of different relative permittivities (

 ε

 $_1$ = 2 and

 ε

 $_2$ = 4) are introduced between the two plates as shown in the figure, the capacitance becomes C_2 . The ratio

is

CORRECT OPTION

 $\frac{7}{3}$

SOURCE

Physics • capacitor

EXPLANATION

We can think of this configuration to be made up of three parts:

a Capacitor of plate area s/2, plate separation d, and filled with a dielectric of relative permittivity

 \in

 $_{1}$ = 2 lowerhalf. The capacitance of this part is

$$C_a = \in_1 \in_0 rac{s/2}{d} = \in_0 rac{s}{d} = C_1$$

.

b Capacitor of plate area s/2, plate separation d/2, and filled with a dielectric of relative permittivity

 \in

 $_{\rm 1}$ = 2 leftupperhalf . The capacitance of this part is

$$C_b = \in_1 \in_0 rac{s/2}{d/2} = 2 \in_0 rac{s}{d} = 2C_1$$

.

c Capacitor of plate area s/2, plate separation d/2, and filled with a dielectric of relative permittivity

 \in

 $_{2}$ = 4 $\ rightupperhalf$. The capacitance of this part is

$$C_c = \in_2 \in_0 rac{s/2}{d/2} = 4 \in_0 rac{s}{d} = 4C_1$$

The capacitors C_b and C_c are connected in series with equivalent capacitance

$$C_{bc} = rac{C_b C_c}{C_b + C_c} = rac{(2C_1)(4C_1)}{(2C_1) + (4C_1)} = rac{4}{3}C_1$$

The capacitor C_{bc} is connected in parallel with C_a. The equivalent capacitance is

$$C_2 = C_{abc} = C_a \| C_{bc} = C_1 + rac{4}{3} C_1 = rac{7}{3} C_1$$

Question 054 MCQ

QUESTION

An ideal monoatomic gas is confined in a horizontal cylinder by a spring loaded piston as shown in the figure . Initially the gas is at temperature T_1 , pressure P_1 and volume V_1 and the spring is in its relaxed state. The gas is then heated very slowly to temperature T₂, pressure P₂ and volume V₂. During this process the piston moves out by a distance x.

Ignoring the friction between the piston and the cylinder, the correct statements is/are

If $V_2 = 2V_1$ and $T_2 = 3T_I$, then the energy stored in the spring is

$$\frac{1}{4}P_1V_1$$

If $V_2 = 2V_1$ and $T_2 = 3T_1$, then the change in internal energy is

$$3P_{1}V_{1}$$

If $V_2 = 3V_1$ and $T_2 = 4T_1$, then the work done by the gas is

$$\frac{7}{3}P_1V_1$$

If $V_2 = 3V_1$ and $T_2 = 4T_1$, then the heat supplied to the gas is

$$\frac{17}{6}P_1V_1$$

CORRECT OPTION

If $V_2 = 2V_1$ and $T_2 = 3T_1$, then the change in internal energy is

$$3P_1V_1$$

SOURCE

Physics • heat-and-thermodynamics

EXPLANATION

Initially both the compartments has same pressure as they are in equilibrium.

Suppose spring is compressed by x on heating the gas.

Let A be the area of cross-section of piston. As gas is ideal monoatomic, so

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

..... *i*

Force on spring by gas = kx

...

$$P_2 = P_1 + rac{kx}{A}$$

..... *ii*

Case I: When

$$V_2=2V_1$$

,

$$T_2 = 3T_1$$

From Eqn. i

$$rac{P_1V_1}{T_1} = rac{P_2(2V_1)}{3T_1} \Rightarrow P_2 = rac{3}{2}P_1$$

Putting this value in eqn. ii we get

$$\frac{3}{2}P_1 = P_1 + \frac{kx}{A} \Rightarrow kx = \frac{P_1A}{2}$$

$$x = rac{V_2 - V_1}{A} = rac{2V_1 - V_1}{A} = rac{V_1}{A}$$

Energy stored in the spring

$$=rac{1}{2}kx^2=rac{1}{2}(kx)(x)=rac{P_1V_1}{4}$$

So, option a is correct.

Change in internal energy,

$$\Delta U = rac{f}{2}(P_2 V_2 - P_1 V_1) = rac{3}{2}\left(rac{3}{2}P_1 imes 2V_1 - P_1 V_1
ight) = 3P_1 V_1$$

So, option b is correct.

Case II: When

$$V_2 = 3V_1$$

and

$$T_2 = 4T_1$$

From Eqn. i,

$$rac{P_1 V_1}{T_1} = rac{P_2 (3 V_1)}{4 T_1} \Rightarrow P_2 = rac{4}{3} P_1$$
 $x = rac{V_2 - V_1}{A} = rac{2 V_1}{A}$

From eqn. ii,

$$\frac{4}{3}P_1 = P_1 + \frac{kx}{A} \Rightarrow kx = \frac{P_1A}{3}$$

Gas is heated very slowly so pressure on the other compartment remains same.

Work done by gas = Work done by gas on atmosphere + Energy stored in spring.

$$egin{align} W_g &= P_1 A x + rac{1}{2} k x^2 = P_1 (2 V_1) + rac{1}{2} \left(rac{P_1 A}{3}
ight) \left(rac{2 V_1}{A}
ight) \ &= 2 P_1 V_1 + rac{1}{3} P_1 V_1 = rac{7}{3} P_1 V_1 \end{split}$$

So, option c is correct.

Heat supplied to the gas,

$$egin{align} \Delta Q &= W_g + \Delta U \ &= rac{7}{3} P_1 V_1 + rac{3}{2} (P_2 V_2 - P_1 V_1) \ &= rac{7}{3} P_1 V_1 + rac{3}{2} \left(rac{4}{3} P_1 imes 3 V_1 - P_1 V_1
ight)
onumber \end{align}$$

$$=rac{7}{3}P_{1}V_{1}+rac{9}{2}P_{1}V_{1}=rac{41}{6}P_{1}V_{1}$$

So, option d is incorrect.

Question 055 MCQ

QUESTION

A fission reaction is given by

$$^{236}_{92}U
ightarrow ^{140}_{54}Xe + ^{94}_{38}Sr + x + y$$

, where x and y are two particles. Considering

$$^{236}_{92}U$$

to be at rest, the kinetic energies of the products are denoted by

$$K_{Xe}, K_{Sr}, K_x(2MeV)$$

and
$$K_y(2 \text{MeV})$$

, respectively. Let the binding energies per nucleon of

$$_{92}^{236}U$$

$$^{140}_{54} Xe$$

and

$$^{94}_{38} Sr$$

be 7.5 MeV, 8.5 MeV and 8.5 MeV, respectively. Considering different conservation laws, the correct options is/are

$$x = n, y = n, K_{sr} = 129 \text{ MeV}, K_{Xe} = 86 \text{ MeV}$$

$$x = p, y = e$$

,
$$K_{sr}$$
 = 129 MeV, K_{Xe} = 86 MeV

- $x = p, y = n, K_{sr} = 129 \text{ MeV}, K_{Xe} = 86 \text{ MeV}$
- $x = n, y = n, K_{sr} = 86 \text{ MeV}, K_{Xe} = 129 \text{ MeV}$

CORRECT OPTION

$$x = n, y = n, K_{Sr} = 129 \text{ MeV}, K_{Xe} = 86 \text{ MeV}$$

SOURCE

Physics • atoms-and-nuclei

EXPLANATION

$$^{236}_{92}U
ightarrow ^{140}_{54}Xe + ^{94}_{38}Sr + x + y$$

$$K_x$$
 = 2 MeV, K_y = 2 MeV, K_{Xe} = ?, K_{Sr} = ?

By conservation of charge number and mass number, $\boldsymbol{\boldsymbol{x}}$

 \equiv

У

 \equiv

n

B.E. per nucleon of

$$_{92}^{236}U = 7.5$$

MeV

B.E. per nucleon of

$$^{140}_{54}Xe$$

or

$$^{94}_{38}Sr = 8.5$$

MeV

Q value of reaction,

Q = Net kinetic energy gained in the process

$$=K_{Xe}+K_{Sr}+2+2-0=K_{Xe}+K_{Sr}+4$$

..... 1

As number of nucleons is conserved in a reaction, so Q = Difference of binding energies of the nuclei

$$=140 \times 8.5 + 94 \times 8.5 - 236 \times 7.5 = 219$$

MeV 2

From eqns. i and ii

$$K_{Xe} + K_{Sr} = 219 - 4 = 215$$

MeV 3

The linear momentum of a particle of mass m and kinetic energy K is given by

$$p = \sqrt{2mK}$$

. Since the masses and kinetic energies of x and y are very small in comparison to that of

$$^{140}_{54}Xe$$

and

$$^{94}_{38} Sr$$

, we can neglect the linear momentum of these particles. Initially, the linear momentum of

$$^{236}_{92}U$$

is zero atrest. Finally, the products

$$^{140}_{54} Xe$$

and

$$^{94}_{38} Sr$$

will move in opposite direction with equal linear momentum $by conservation of linear momentum\,.\, {\tt Thus},$

$$\sqrt{2M_{Xe}K_{Xe}}=\sqrt{2M_{Sr}K_{Sr}}$$

, i.e.,

$$140K_{Xe} = 94K_{Sr}$$

Solve equations 3 and 4 to get $\rm K_{Xe}$ = 86 MeV and $\rm K_{Sr}$ = 129 MeV.

Question 056 MCQ

QUESTION

Two spheres P and Q for equal radii have densities

 ρ

₁ and

 ρ

2, respectively. The spheres are connected by a massless string and placed in liquids L₁ and L₂ of densities

 σ

₁ and

 σ

2 and viscosities

 η_1

and

 η_2

, respectively. They float in equilibrium with the sphere P in L $_1$ and sphere Q in L $_2$ and the string being taut $see figure\,$ If sphere P along in L $_2$ has terminal velocity v $_P$ and Q alone in L $_1$ ha terminal velocity v $_Q$, then

A

$$rac{|v_P|}{|v_Q|} = rac{\eta_1}{\eta_2}$$

В

$$rac{|v_P|}{|v_Q|} = rac{\eta_2}{\eta_1}$$

 $v_P \cdot v_Q > 0$

D $v_P \cdot v_Q < 0$

CORRECT OPTION

A

$$rac{|v_P|}{|v_Q|} = rac{\eta_1}{\eta_2}$$

SOURCE

Physics • properties-of-matter

EXPLANATION

Let $V=\frac{4}{3}\pi r^3$ be the volume of the spheres P and Q of equal radii r. The forces acting on the sphere P are its weight $\rho_1 V g$, tension from the string T, and the buoyancy force $\sigma_1 V g$.

Similarly, forces on the sphere Q are $\rho_2 Vg, T$, and $\sigma_1 Vg$. In equilibrium, the net force on the spheres P and Q are separately zero i.e.,

$$T + \rho_1 Vg = \sigma_1 Vg.\dots\dots(1)$$

$$T + \sigma_2 V g =
ho_2 V g \ldots \ldots (2)$$

The tension T>0 because the string is taut. Thus, equation 1 gives $\rho_1<\sigma_1$ and equation 2 gives $\rho_2>\sigma_2$. Eliminate T from equations 1 and 2 to get

$$\sigma_1 - \rho_1 = \rho_2 - \sigma_2$$

.....3

Now, consider the situation when the sphere P moves in liquid L_2 and the sphere Q moves in liquid L_1 . These spheres will attain the terminal velocities \vec{v}_P and \vec{v}_Q after some time. The direction of the velocity upwardsordownwards will depend on the density of the sphere in comparison to the density of the liquid. Let us consider the case when $\rho_1 > \sigma_2$. In this case, the velocity of the sphere P is downwards. From equation S, if $\rho_1 > \sigma_2$ then $\rho_2 < \sigma_1$. If the density of a sphere is less than the density of the liquid in which it is immersed, it will move up. Thus, the velocity of the sphere Q is upwards i.e., the directions of \vec{v}_P and \vec{v}_Q are opposite.

Hence, $ec{v}_{
m P} \cdot ec{v}_{
m Q} < 0$.

The forces on the sphere P are its weight $\rho_1 V g$, buoyancy force $\sigma_2 V g$, and viscous drag $6\pi\eta_2 rv_{\rm P}$ see figure . Similarly, the forces on the sphere Q are $ho_2 Vg, \sigma_1 Vg$ and $6\pi \eta_1 rv_{
m Q}$. Net forces on the spheres are zero when they move with terminal velocities i.e.,

$$6\pi\eta_2 rv_{
m P} +
ho_1 Vg = \sigma_2 Vg.\dots\dots(4)$$

$$6\pi\eta_1 rv_Q + \sigma_2 Vg = \rho_1 Vg.\dots\dots(5)$$

Solving equations 4 and 5, we get

$$v_{\mathrm{P}} = rac{2r^2\left(
ho_1 - \sigma_2
ight)}{9\eta_2}.....(6)$$

$$v_{\mathrm{Q}} = rac{2r^2\left(\sigma_1 -
ho_2
ight)}{9\eta_1}.....(7)$$

By dividing equation 6 by 7, we get

$$rac{\left|ec{v}_{\mathrm{P}}
ight|}{\left|ec{v}_{\mathrm{Q}}
ight|} = rac{\eta_{1}}{\eta_{2}}rac{
ho_{1}-\sigma_{2}}{\sigma_{2}-
ho_{2}} = rac{\eta_{1}}{\eta_{2}}.$$

Question 057 MCQ

QUESTION

For two structures namely S_1 with n_1 =

$$\frac{\sqrt{45}}{4}$$

and n₂ =

 $\frac{3}{2}$

, and S_2 with n_1 =

 $\frac{8}{5}$

and $n_2 =$

 $\frac{7}{5}$

and taking the refractive index of water to be

 $\frac{4}{3}$

and that to air to be 1, the correct options is/are:

NA of S_1 immersed in water is the same as that of S_2 immersed in a liquid of refractive index

$$\frac{16}{3\sqrt{15}}$$

NA of S_1 immersed in liquid of refractive index

$$\frac{6}{\sqrt{15}}$$

is the same as that of S_2 immersed in water

NA of S_1 placed in air is the same as that S_2 immersed in liquid of refractive index

$$\frac{4}{\sqrt{15}}$$

D

NA of S_1 placed in air is the same as that of S_2 placed in water

CORRECT OPTION

NA of S_1 immersed in water is the same as that of S_2 immersed in a liquid of refractive index

$$\frac{16}{3\sqrt{15}}$$

SOURCE

Physics • geometrical-optics

EXPLANATION

Let the whole structure be placed in the medium of refractive index n_0 . From geometry, if the angle of incidence at Q is

 θ

then the angle of refraction at P is 90

0

_

 θ

.

The ray will undergo total internal reflection at Q if the angle of incidence at Q is greater than or equal to the critical angle i.e.,

 θ

 \geq

 θ

 $_{\rm c}$ = \sin

_

Apply Snell's law for refraction at P to get

 $n_0 \sin i = n_1 \sin 90\$\$^\circ\$\$\$ - \$\$\$\$\theta\$\$ = n_1 \cos i$

A

=

$$n_1\sqrt{1-\sin^2\! heta}$$

. 2

From equation 2, the angle of incidence is maximum (i = i_m) when

 θ

is minimum i.e., when

 θ

=

 θ

 $_{\mathtt{C}}\ from equation (1).$ Thus, the numerical aperture is given by

$$NA = \sin i_m = rac{n_1 \sqrt{1 - \sin^2 \! heta_c}}{n_0} = rac{\sqrt{n_1^2 - n_2^2}}{n_0}$$

..... 3

Substitute

$$n_1=\sqrt{45}/4$$

and

$$n_2 = 3/2$$

in equation $\,3\,$ to get the numerical aperture for the structure $\,{\rm S}_{1}$ is

$$NA_1 = rac{\sqrt{45/16 - 9/4}}{n_0} = rac{3}{4n_0}$$

..... 4

Similarly, substitute n_1 = 8/4 and n_2 = 7/5 in equation 3 to get the numerical aperture for the structure S_2 as

$$NA_2=rac{\sqrt{64/25-49/25}}{n_0}=rac{\sqrt{15}}{5n_0}$$

..... 5

In case A, substitute n_0 = 4/3 in equation 4 to get NA_1 = 9/16 and substitute n_0 = 16/3

$$\sqrt{15}$$

in equation 5 to get $NA_2 = 9/16$.

In case B, substitute $n_0 = 6/$

$$\sqrt{15}$$

in equation 4 to get NA_1 =

$$\sqrt{15}$$

/8 and substitute n_0 = 4/3 in equation 5 to get NA_2 = 3

$$\sqrt{15}$$

/20.

In case C, substitute \mathbf{n}_0 = 1 in equation 4 to get NA_1 = 3/4 and substitute \mathbf{n}_0 = 4/

$$\sqrt{15}$$

equation 5 to get $NA_2 = 3/4$.

In case D , substitute ${\bf n_0}$ = 1 in equation 4 to get NA₁ = 3/4 and substitute ${\bf n_0}$ = 4/3 equation 5 to get NA₂ = 3

Question 058 MCQ

QUESTION

If two structures of same cross-sectional area, but different numeral apertures NA_1 and NA_2 ($NA_2 < NA_1$) are joined longitudinally, the numerical aperture of the combined structure is

 $\frac{NA_1NA_2}{NA_1+NA_2}$

 $NA_1 + NA_2$

 NA_1

 NA_2

CORRECT OPTION

 NA_2

SOURCE

Physics • geometrical-optics

EXPLANATION

$$\sin i_m = n_1 \sin (90 - \theta_c)$$

$$\Rightarrow \sin i_m = n_1 \cos heta_c$$

$$\Rightarrow NA=n_1\sqrt{1-\sin^2 heta_c}$$
 $=n_1\sqrt{1-rac{n_2^2}{n_1^2}}=\sqrt{n_1^2-n_2^2}$

Substituting the values we get,

$$NA_1=rac{3}{4}$$

and
$$NA_2=rac{\sqrt{15}}{5}=\sqrt{rac{3}{4}}$$

and

$$NA_2 < NA_1$$

Therefore, the numerical aperture of combined structure is equal to the lesser of the two numerical aperture, which is NA_2 .

Question 059 MCQ

QUESTION

Consider two different metallic strips 1 and 2 of the same material. Their lengths are the same, widths are w₁ and w₂ and thickness are d₁ and d₂, respectively. Two points K and M are symmetrically located on the opposite faces parallel to the x-y plane see figure. V_1 and V_2 are the potential differences between K and M in strips 1 and 2, respectively. Then, for a given current I flowing through them in a given magnetic field strength B, the correct statements is/are

- If $w_1 = w_2$ and $d_1 = 2d_2$, then $V_2 = 2V_1$
- If $w_1 = w_2$ and $d_1 = 2d_2$, then $V_2 = V_1$
- If $w_1 = 2w_2$ and $d_1 = d_2$, then $V_2 = 2V_1$
- If $w_1 = 2w_2$ and $d_1 = d_2$, then $V_2 = V_1$

CORRECT OPTION

If $w_1 = w_2$ and $d_1 = 2d_2$, then $V_2 = 2V_1$

SOURCE

Physics • magnetism

EXPLANATION

At equilibrium,

 $i = ne \; \mathrm{A} v_d$

where $\mathit{v}_d = \mathsf{drift}$ speed of electrons and $\mathit{n} = \mathsf{electron}$ density

$$\mathrm{E} = rac{i}{ne~\mathrm{A}}~\mathrm{B} \ = rac{i}{ne(\omega d)}$$

Area of cross section is always taken normal to the direction of flow of current. Potential difference,

$$m V =
m E \omega = rac{i \,
m B}{ned}$$

For the two strips

$$\mathrm{V}_1 = rac{i\,\mathrm{B}}{ne} \Big(rac{1}{d_1}\Big)$$

$${
m V}_2=rac{iB}{ne}igg(rac{1}{d_2}igg)$$

For option $\,A\,$

$$\frac{V_1}{V_2} = \frac{d_2}{d_1} = \frac{1}{2}$$

For option $\,B\,$

$$rac{{
m V}_1}{{
m V}_2}=1, rac{d_2}{d_1}=rac{1}{2}$$

For option C

$$\frac{\mathrm{V}_1}{\mathrm{V}_2} = \frac{1}{2}, \frac{d_2}{d_1} = 1$$

For option D

$$rac{\mathrm{V}_1}{\mathrm{V}_2} = rac{d_2}{d_1} = 1$$

Question 060 MCQ

QUESTION

Consider two different metallic strips 1 and 2 of same dimensions lengthl, widthwandthicknessd with carrier densities n_1 and n_2 , respectively. Strip 1 is placed in magnetic field B₁ and strip 2 is placed in magnetic field B₂, both along positive y-directions. Then V₁ and V₂ are the potential differences developed between K and M in strips 1 and 2, respectively. Assuming that the current I is the same for both the strips, the correct options is/are:

- A If $B_1 = B_2$ and $n_1 = 2n_2$, then $V_2 = 2V_1$
- B If $B_1 = B_2$ and $n_1 = 2n_2$, then $V_2 = V_1$
- If $B_1 = 2B_2$ and $n_1 = n_2$, then $V_2 = 0.5V_1$
- D If $B_1 = 2B_2$ and $n_1 = n_2$, then $V_2 = V_1$

CORRECT OPTION

A If $B_1 = B_2$ and $n_1 = 2n_2$, then $V_2 = 2V_1$

SOURCE

Physics • magnetism

EXPLANATION

$$\mathrm{V}_1 = rac{i \; \mathrm{B}_1}{n_1 e d}$$

$$ext{and} \qquad ext{V}_2 = rac{i ext{ B}_2}{n_2 e d}$$

$$rac{\mathrm{V}_1}{\mathrm{V}_2} = rac{\mathrm{B}_1}{\mathrm{B}_2} rac{n_2}{n_1}$$

For option A:

$$\frac{V_1}{V_2} = \frac{1}{2}$$

and
$$\frac{\mathrm{B_1}}{\mathrm{B_2}}\frac{n_2}{n_1}=1 imes\frac{1}{2}=\frac{1}{2}$$
 For option B :

$$\frac{V_1}{V_2} = 1$$

and
$$rac{\mathrm{B}_1}{\mathrm{B}_2}rac{n_2}{n_1}=1 imesrac{1}{2}=rac{1}{2}$$

For option $\,C\,$:

$$rac{\mathrm{V}_1}{\mathrm{V}_2}=2$$

and
$$rac{\mathrm{B}_1}{\mathrm{B}_2}rac{n_2}{n_1}=2 imes 1=2$$

For option $\,D\,$:

$$\frac{\mathrm{V}_1}{\mathrm{V}_2} = 1$$

and
$$\frac{\mathrm{B}_1}{\mathrm{B}_2}\frac{n_2}{n_1}=2 imes 1=2$$