${\bf Mini\text{-}Test}\ 1$

Nam	e: Email:
`	50 points) Check the correct answer. (a) (10 points) You can conclude proposition 2 4 using reflexivity . True False
	 (b) (10 points) The proof of an implication P → Q is a function that uses a proof of the proposition P to produce a proof of the proposition Q. ○ True ○ False
	(c) (10 points) If E has type Nat.eqb m n = true, then E can be applied to a goal m = n. True False
	 (d) (10 points) If X is an inductively defined type or proposition with no constructors and foo: X then destruct foo will finish any proof or subgoal. True False
	(e) (10 points) The type Inductive foo := bar: foo → foo. is an invalid type definition in Coq. True False
Ċ	10 points) Give the type of each of the following Coq expressions, or write "ill typed" if an expression loes not have a type. (a) (5 points) forall (x : nat) (y : Prop), $x \rightarrow y$
	(b) (5 points) forall (X Y : Prop), X \rightarrow Y
is is	20 points) For each of the following propositions, check "not provable" if it is not provable (in Coq's ore logic, without additional axioms), "induction" if it is provable only using induction, or "easy" if it is provable without using induction and without additional lemmas. (a) (4 points) exists s, In 3 (s \(\pi \) [1;2;3]) \(\sum_{\text{Easy}} \) \(\sum_{\text{Induction}} \) \(\sum_{\text{Not Provable}} \) (b) (4 points) forall s, In 3 (s \(\pi \) [1;2;3])
	○ Easy○ Induction

O Not Provable
(c) (4 points) forall n, n = S n
○ Easy
○ Induction
O Not Provable
(d) (4 points) forall n, n + \emptyset = n
○ Easy
○ Induction
○ Not Provable
(e) (4 points) forall $\{A: Type\}$ (l:list A), $l = [] \setminus / exists \times l'$, $l = \times :: l'$
\bigcirc Easy
○ Induction
○ Not Provable
4. (20 points) Complete each proof. Your proof cannot use auto nor intuition .
(a) P, Q : Prop
H : P \/ Q
H0 : ~ Q (1/1)
P
(b) forall (A: Type) (l:list A), l = [] \rightarrow l = []
(c) forall (A:Type) (x:A). $[x] = [x]$.

Page 2

(d) $H : P \rightarrow Q$ $H0 : P \setminus / \sim P$ $\sim P \setminus / Q$	(1/1)	