Aufgabe 1.

a) h ist ein Graphenhomomorphismus. Es gilt

$$\forall u, v \in V_1 : (u, v) \in E_1 \Rightarrow (h(u), h(v)) \in E_2$$

unter Annahme von $G_1 = (V_1, E_1)$ und $G_2 = (V_2, E_2)$.

- b) h ist ein Graphenhomomorphismus. Für alle $x \in V_1$ gilt auch h(x) = 1, somit gilt auch immer $h(x) \in \{1\}$.
- c) h ist kein Graphenhomomorphismus. Es gibt keinen direkten Weg von der Kreuzung Graben/Kollegiumgasse (1) zur Kreuzung Kollegiumgasse/Pfarrplatz (2), die entsprechende Straße ist eine Einbahn in die entgegengesetzte Richtung.

Aufgabe 2. G_1 und G_3 können nicht zu G_2 isomorph sein. G_1 und G_3 beinhalten beide einen Knoten (1 bzw. 7) mit zwei nach außen und keinen nach innen gerichteten Kanten. G_2 beinhaltet keinen solchen Knoten.

 G_1 und G_3 sind zueinander isomorph, ein Isomorphismus h ist etwa

Aufgabe 3. Es gibt einen bijektiven Graphenhomomorphismus $h: V_1 \to V_2$ (und einen Graphenhomomorphismus $h^{-1}: V_2 \to V_1$). Der Graph $U = (V_u, E_u)$ sei ein beliebiger Untergraph von G_1 , somit gibt es einen injektiven Graphenhomomorphismus $t: V_u \to V_1$. Zu zeigen ist, dass es nun auch einen einen injektiven Graphenhomomorphismus $f: V_u \to V_2$ gibt.

Es gelte $f = h \circ t$. Diese Funktion ist injektiv (Skriptum, Satz 1.1, S. 15) und ein Graphenhomomorphismus von V_u nach V_2 nachdem gilt, dass

$$\forall u, v \in V_u : (u, v) \in E_u \Rightarrow (t(u), t(v)) \in E_1$$

und

$$\forall u, v \in V_1 : (u, v) \in E_1 \Rightarrow (h(u), h(v)) \in E_2$$

beziehungsweise also

$$\forall u, v \in V_u : (u, v) \in E_u \Rightarrow (h(t(u)), h(t(v))) \in E_2.$$