Лекция 3. Кинематика вращательного движения. Динамика материальной точки

План лекции

- Угловые величины: угол поворота, угловая скорость
- Взаимосвязь между линейными и угловыми величинами
- Плоское движение
- Динамика материальной точки
- Законы Ньютона. Силы в механике
- Принципы работы акселерометра

Движение по окружности

Возьмем точку A, положение которое определим через \vec{r} . Точка A движется по окружности вокруг неподвижной оси OO'

Тогда $d\vec{r}$ - перемещение, $d\vec{\phi}$ - элементарный угол поворота (вектор определяет в какую сторону, по часовой или против, обращается по окружности тело; вектор направлен перпендикулярно окружности)

$$|d\vec{r}| = Rd\varphi = r \cdot \sin \alpha d\varphi$$

 $R = r \cdot \sin \alpha$

$$d\vec{r} = [d\vec{\varphi}\vec{r}]$$

здесь и далее $[\vec{x}\vec{y}]$ - векторное произведение

Угловая скорость - векторная величина, показывающая как меняется угол поворота тела со временем: $\langle \omega \rangle = \frac{\Delta \varphi}{\Delta t}$ $\vec{\omega} = \frac{d\vec{\varphi}}{dt}$

Направление совпадает с направлением угла поворота $d\vec{\varphi}$: $\vec{\omega} \uparrow \uparrow d\vec{\varphi}$

Угловое ускорение - векторная величина, показывающая как меняется угловая скорость тела со временем

$$\langle \beta \rangle = \frac{\Delta \omega}{\Delta t}$$
 $\vec{\beta} = \frac{d\vec{\omega}}{dt} = \frac{d^2 \vec{\varphi}}{dt^2}$

Направление совпадает с направлением вектора изменения скорости $\Delta \vec{\omega} \colon \vec{\beta} \uparrow \uparrow d\vec{\omega}$

$$d\vec{r} = [d\vec{\varphi}\vec{r}]$$

$$dr = d\varphi \cdot r \cdot \sin \alpha = d\varphi \cdot R$$

Выразим скорость
$$\vec{v} = \frac{d\vec{r}}{dt} = \left[\frac{d\vec{\phi}}{dt}\vec{r}\right] = \left[\vec{\omega}\vec{r}\right]$$

$$v = \omega \cdot r \cdot \sin \alpha = \omega \cdot R$$

Выразим ускорение:
$$\vec{a} = \frac{d\vec{v}}{dt} = \left[\frac{d\vec{\omega}}{dt}\vec{r}\right] + \left[\vec{\omega}\frac{d\vec{r}}{dt}\right] = \left[\vec{\beta}\vec{r}\right] + \left[\vec{\omega}\vec{v}\right] = \vec{a}_{\tau} + \vec{a}_{n}$$

 $\vec{a}_{ au}$ называют тангенциальным ускорением (напраленным по касательной), \vec{a}_n - нормальным (направленным к центру)

$$a_{\tau} = \beta \cdot r \cdot \sin \alpha = \beta \cdot R$$

Перемещение, путь, скорость:

$$d\vec{r} = [d\vec{\varphi}\vec{\rho}](\vec{\rho}$$
 - вектор радиуса окружности) $\vec{v} = [\vec{\omega}\vec{\rho}]$ $dr = d\varphi \cdot R$ $v = \omega \cdot R$ $v = \omega \cdot R$

Ускорение: $\vec{a} = [\vec{\beta}\vec{r}] + [\vec{\omega}\vec{v}]$

$$ec{a}_{ au} = [ec{eta}ec{r}]$$
 $ec{a}_{n} = [ec{\omega}ec{v}] = [ec{\omega}[ec{\omega}ec{
ho}]]$ $T = rac{2\pi}{\omega} = rac{1}{v}$ - период $a_{n} = \omega^{2}R = rac{1}{R}v^{2}$ $v = rac{\omega}{2\pi} = rac{1}{T}$ - частота

Плоское движение - движение твердого тела, при котором каждая его точка движется в плоскости, параллельной некоторой неподвижной в данной системе отсчета плоскости

$$\vec{r} = \vec{r}_0 + \vec{r}'$$

$$d\vec{r} = d\vec{r}_0 + d\vec{r}' = d\vec{r}_0 + [d\vec{\varphi}\vec{r}]$$

$$\vec{v} = \vec{v}_0 + [\vec{\omega}\vec{r}]$$

 \vec{v}_C - скорость центра колеса относительно точки отсчета

 $\vec{v}_{\text{вр}}$ - скорость точек колеса относительное его центра

Def. Динамика - раздел механики, изучающий причины, вызывающие движение тел 1687 г. - законы Ньютона, основа классической механики (механики Ньютона), обобщение большего количества опытов (Г. Галилей)

Классическая механика - частный случай 1) СТО при скоростях много меньших скорости света $v \ll c$; 2) квантовой механики при массах, много больших массы атома

В динамике существуют различия между системами отсчета и преимущества одних СО над другими.

Существуют такие системы отсчета, относительно которых свободное тело (тело, на которое не действуют другие тела) движется равномерно и прямолинейно или находится в состоянии покоя. Таким системы называются инерциальными (ИСО)

Принцип относительности Галилея:

Любая CO, движущаяся с постоянной скоростью относительно ИСО, также является ИСО. Тогда справедливо любое из этих утверждений:

- 1. все ИСО эквивалентны друг другу по своим механическим свойствам
- 2. во всех ИСО свойства пространства и времени одинаковы
- 3. законы механики одинаковы во всех ИСО

Преобразования Галилея - преобразования координат при переходе от одной ИСО к другой K,K' - ИСО

 \vec{V} - скорость, с которой движется СО K' относительно K t=t' $\vec{r}=\vec{r}'+\vec{V}t$ $\vec{c}=\vec{v}'+\vec{V}$

$$\vec{a} = \vec{a}'$$

Def. Сила - физическая величина, определяющая количественную характеристику и напраление воздействия, оказываемого на данное тело со стороны других тел.

Силы условно можно разделить на силы, возникающие при непосредственном контакте (силы трения, давления) и на силы, возникающие через поля (электрические, гравитационные).

Def. Инертная масса - мера инертности тела, то есть способности тела сохранять свою скорость при движении

Def. Гравитационная масса - мера гравитацонного взаимодействия, величина, определяющая вес тел.

 $m_{\rm ин} = m_{\rm гр}$ с точностью до 10^{-13} кг

В классической механике 1) масса - величина аддитивная $(m_1 + m_2 + \cdots = m)$; 2) m = const

Законы Ньютона

І закон Ньютона

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальные точки, когда на них не действуют никакие силы (или действуют силы взаимно уравновешенные), находятся в состоянии покоя или равномерного прямолинейного движения.

II закон Ньютона

Ускорение тела пропорционально действующей на него силе и обратно пропорционально его массе $\vec{a} = \frac{\vec{F}}{m}$

Под равнодействующей всех сил понимают векторную сумму всех сил, действующих на тело (принцип суперпозиции)

 $ec{F} = rac{dec{p}}{dt}$ - II закон в импульсной (дифференциальной) форме

III закон Ньютона

Силы, с которыми два тела действуют друг на друга равны по модулю и направлены в противоположные стороны $\vec{F}_{12}=-\vec{F}_{21}$

Закон Гука: $F = k|\Delta l|$ - сила упругости пропорциональна изменению длины тела Акселерометр - прибор, измеряющий ускорение, точнее проекцию кажущегося ускорения. Акселерометр использует II закон Ньютона $(mg - k\Delta l = ma)$ во всех трех осях, что позволяет измерение ускорения в трех направлениях. Акселерометр используется в автомобилях,

авиации, телефонах, игровых контроллерах, компьютерах (защита жесткого диска). Сейчас акселерометры изготавливаются в размерах от 20 мкм до 1 мм из кремния