FIG. 1A. DNA SEQUENCE OF HIGH MOLECULAR WEIGHT PROTEIN I (HMW1)

\vdash	ACAGCGTTCT	CTTAATACTA	GTACAAACCC	GTACAAACCC ACAATAAAAT	ATGACAAACA
51	ACAATTACAA	CACCTTTTTT	GCAGTCTATA	TGCAAATATT	TTAAAAAATA
101	GTATAAATCC	GCCATATAAA	ATGGTATAAT	CTTTCATCTT	TCATCTTTCA
1,51	TCTTTCATCT	TTCATCTTTC	ATCTTTCATC	TTTCATCTTT	CATCTTTCAT
201	CTTTCATCTT	TCATCTTTCA	TCTTTCATCT	TTCATCTTTC	ACATGCCCTG
251	ATGAACCGAG	GGAAGGGAGG	GAGGGGCAAG	AATGAAGAGG	GAGCTGAACG
301	AACGCAAATG	ATAAAGTAAT	TTAATTGTTC	AACTAACCTT	AGGAGAAAAT
351	ATGAACAAGC	TATATCGTCT	CAAATTCAGC	AAACGCCTGA	ATGCTTTGGT
401	TGCTGTGTCT	GAATTGGCAC	GGGGTTGTGA	CCATTCCACA	GAAAAAGGCA
451	GCGAAAAACC	TGCTCGCATG	AAAGTGCGTC	ACTTAGCGTT	AAAGCCACTT
501	TCCGCTATGT	TACTATCTTT	AGGTGTAACA	TCTATTCCAC	AATCTGTTTT
551	AGCAAGCGGC	TTACAAGGAA	TGGATGTAGT	ACACGGCACA	GCCACTATGC
601	AAGTAGATGG	TAAŤAAAACC	ATTATCCGCA	ACAGTGTTGA	CGATATCATT
651	AATTGGAAAC	AATTTAACAT	CGACCAAAAI	GAAATGGTGC	AGTTTTTACA
701	AGAAAACAAC	AACTCCGCCG	TATTCAACCG	TGTTACATCT	AACCAAATCT

FIG.1B.

							2/82								
	CTAATGGCTT			TTGGTGGAA	ATTTCTTTAC	AACCATTACT	GCGATATTT	CGAAACCAAG	CAATATTGTT	TTTCCGCTCA	GATAAAGTCA	AGGGGGAGAA	GCATTCAATT	GTATCAGGCA	GTTAATTGAC
THUTTERUED				GTAAATCTTA	TGGTGGCAGC	TAATAAACCC	GTCAATCTGG	TGCCACTATT	ATAAAAGCGG	GGCGGTGTAA	GATTACAGGC	CAGGTAAAGA	GGTAAAAAGG	AACCATCAAT	GCGATATTGC
GATTCTAACG	TAAAGACGCA	TTTCTAACGA	GATAAAGCGC	AGACGGCAGT	TTAGCGTAAA	ATCAGCGATA	AAATGAAGCG	ATGTCCGTGC	GTAAGCAAAG	AGCGGAAATT	GCAAGCTGAT	ATCGACCTTT	GCGCGGCGAA	AAAAAGGCTC	ATTGTGTGGG
AGGGATTTTA	TCACAATAGG	ACGCTAGACA	GCAAACCAAA	CTGTCGGTAA	GAGGGTGTGA	AAAAATCACC	CCGCGCCTGA	GGTAACATTA	TGCTGATTCT	AAGAGGGTGA	GCTAAAGGCG	AGGTGCAGTT	GCGGTGACGA	ACCTCTTTAG	CGGACGCGCT
CCCAATTAAA	CCAAATGGTA	TACGGCTTCT	TCACCTTCGA	GGTTTAATTA	AGTGAAAAAC	TCGCAGGGCA	TACAGCATTG	TGCCAAAGGC	GTAAACTTTC	CTTTCCGCCA	AAATCAGCAA	CATTAAAAAC	ACTTACCTTG	AGCAAAGAAA	AAGAAAAAGG
751	801	851	901	951	1001	1051	1101	1151	1201	1251	1301	1351	1401	1451	1501

FIG.1C.

								3	/82								
		AT'UGCTAAAA CCGGTGGTTT	GCAATTGTTG	TAATGCAGAA	CGGGATCCGG		TAACATCACT	CCAATGGCAG	GAGATTAACA	AACAATTTAC	GGGCGCAAGG	AAAGGAAGCA	TCAAAAAGGT	GACTGCAATT	TTTGAAGGGA	ACCTAAAAAT	ATTTAACCTC
										GTGCAAACTT	ATCTCACTCG	CGCCTTTGAG		ACTGGCAGCG		CAATGGŢTTT ;	ACTTACTGGA ATTTAACCTC
					TICAGAGGGC		_	_		GATACCAGAG	ICAT'AAAAAT	AACAAGATAT	GGGACTATTA	T'C'I'AAACGGC			CAAAGGACGC
	A ACGCTCAAGG		_		•								ATABETORA		TTCAGGGAAA		TTWWTWOIG
)	GGCAATATTA	TGTGGAGACG	ACGCCAAAGA	ACAGCAGGAC	GAATAGTGCC	ACACAACTCT	GCTAATCAAC	CTTAACTCTT	ACGATATTAC	TCAGGCGGCT	TAACATAAAC	ACCAAGTCAT	TTTAGATTTA	CACCACTAAA	CTTTAAATAT	GAAAGTGGAT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1551	1601	1651	1701	1751	1801	1851	1901	1951	2001	2051	2101	2151	2201	2251	2301	

10092BBO.OBOBOB

FIG. 1D.

							4/8	82						•			
			CAMEGICAA	AGIIIGAATT	CAGIGITGAT	GIGIAGITAT.				IIIGAAGGAG	CGAAGGCAA'I'	CGGATTTTTGA	ATTAATAGCG	AAAICITACC	ATTGCCAAAG	AAGCATCACC	
CCTCACTATT		_	TAAGTATT			GTCAAGTTTA	TAGAGAAAGA	CAAGTTGAAG	AAACATAAAC					ACABATTTC	AAATATTTCC		
GCGAGTTTAA	CTTACCCAGC	CTTTAATGTT	TAGGGATAAA	ATTTCAGTTT	CTCTAACGTC	TTTCAACAGG	GGCTTCTCAA	AACACTTTTG	TAGCCAAAAA	SUUDAAABBA	TAACGECT	CTATTAAAAA	AATATTGTCA	CAAAGCTATC	AAGGCAATTC	ATTGATAATT	
TCCGAGAGTG	TGCAGGCACA	AAGACACTAC	AAGGCACCAA	TAATGGAAAC	TCGCCTCATC	TACTTTAATG	AACAAAAACT	GAGGCAACAT	AAAGGCATTG	CTTTGGCTCC	ATAACAACGC	AAACCTTTAA	CGCTGGAGGC	ACGCTAATTT	TTTGACAACA	CTTTAAAGAC	
CTTAAATGTT	GAAGCGATAG	TCATTCAACA	CTTTGACATC	ACGCATCATT	TTCACACTTC	AAATTCTAAA	CTTCAGGCTC	AATGCCACCG	AATGATTGGT	GTAACATCAC	GTTACTATCA	CAACCATCAA	GCAACCTTAC	GTTGAAAGTA	AGGCGGCTTG	GAGGGCTCG	
2351	2401	2451	2501	2551	2601	2651	2701	2751	2801	2851	2901	2951	3001	3051	3101	3151	

FIG. 1E.

5/82	
A ATATAACCAA T ACTGAAATGC C GATTTCTTCT G GATTTCAATAAA TTTCAATAAAA GTAACACCAA CAGGTTAAAAG CAGGTTAAAAG CAGCATAAAAG TACCACAAAGTG ACAATAATGC AATATTACTT TACCACTAAAA TACCACTCAA	CAGGCTCTAC
TATAAGCGGCA AGGTAGTGAT GTAATCTCAC ATCAAGGCAG TGCCAATCTA ATATTTCAGG TTAACTTTAAC TGACATTTAAC TGACACTACA GATAGCAGTG AGTAAACAAC TGACACTACA GATAGCAGAAAT TGACAGTGGAGA TGACATATTC GTGGAGAAAT TGACACTGGC TGACATATTTC GAGCTCTGGC TGACATATTTC GAGCTCTGGC TGACATATTTC GAGCTCTCGC TGACATATTTC GAGCTCTCTCC TGACATATTTC GAGCTCTCTCC TGACATATTTC GACATATTTC GACATATTC GACATATTTC GACATATTTC GACATATTTC GACATATTC GACATATTTC GACATATTTC GACATATTTC GACATATTC GACATTC GACATATTC GACATATTC GACATATTC GACATATTC GACATATTC GACATATTC GACATTC GAC	0 99,1.1.10800
A CCGCACTAT A TTACGAACG CAAAAAAAAA CGACAAAAAAA TGGTAGTGAT CCAAAAAAAG CCAAAAAAAG TGGTAGTGAA AAAATGTAAC TCTGCGACAA AAATGTAAC TCTGCGACAA AAACCACTGGT CAACACTGGT CAACACTGGT CGGTGCATAA	
A GCTCCACTT F GATTTAAAT GATTCAGACG GAAATTAACGA GAAATTAACGA GAAATTAACGA CAGCTAAAGA GTAGTAATAA GTAGTAATAA ATCGATGCAT ATCGATGCAT ATCGATGCAT ATCGATGCAT ATCGATGAT ATCGATGAT ATCGATGAG CCATTAACGC CCATTAACGC ATCCAAATAG CGAGGGCGCT	-
ACCAACTCCAA TAAAAACGGT AAATTGGCGG GACAAATTCC CCAAAGAATT GCAGAGATTA GCAGAGATTA TAGTGCTGAT ATTCAAAAAT GAAACATCCG CGGCTTAACT CTCACAAAGC CGGCTTAACT CTCACAAAGC CTCACAAAGC CGGCTTAACT CTCACAAAGC AACAGGTACAA CTTACTGCAAC CGGTTACTGCTT AGTGCTACAAC CGGTTACTGCTT AGTTACTGCTAC CGGTTACTGCTAC CGGTTACTGCTAC CGGTTACTGCTAC CGGTTACTTGCTAC CGGTTACTTGCTAC CCGGTTACTTGCTAC CCGCTTACTTGCTAC CCGCTTACTTGCTAC CCGCTTACTTGCTAC CCGCTTACTTGCTAC CCGCTTACTTGCTTAC CCGCTTACTTGCTAC CCGCTTACTTGCTTAC CCGCTTACTTGCTTAC CCCCTTACTTGCTTAC CCCCTTACTTGCTTAC CCCCTTACTTGCTTAC CCCCTTACTTGCTTAC CCCCTTACTTGCTTAC CCCTTACTTGCTTAC CCCTTACTTACTTACTTAC CCCTTACTTACTTA	
3201 3251 3301 3351 3401 3401 3501 3501 3601 3701 3701 3801 3851 3901	

FIG.1F.

I'CA GGCGATATCG	AAC CGAAAGTTTA				CGG GCAAATTAAC		CAATGTGACA	SAA ACATTAATGC 88	SAG CTAAATGGCG	GC AAATGGCTCC	PCA CTGGGGATTT	3GT ATAAACACCG	CA ACCGGGTATA	TG AGAAGGTAAA	TT GGAGTAAGTG	GA TACACAAAAT
AAGICAAICA	TTAAAGCAAC	·				CAAGGGTCAG	TTAATGCCGC	AAGGGTTCAA	AGACGCTGAG	CAACCAACGC	GTGAACATCA	AAAAAACGGT	AATACATTCA	CGCATCCTTG	AGCTAAACTT	TTACAGTCGA
	ACAGTAGAGG	AATTAAAGCA	TTGGTGGTAC	GATTTAACAG	AACCTTAACT	TTACTTCAGC	GCAGGAAGTA	AACTACCGTG	TTAACGCAAA	GTGGTAAATG	CTCAAGCAGA	ATATCATTTC	ATTGATGTGA	TGAAGCGAAA	GAGAAGCGTT	AATAATACAA
	TTCTGGTGGC	CCAATTCAAA	ACAGGTACAA	AAACGCTGGC	AAGGAGCTGC	AGTTCACACA	TGGTAGCGTT	CAGGCACTTT	ACCTTGGTTA	TAACCACACA	TCGCGACAAC	AATGGATTAA	AGGCGTTAAA	ATGAAGTAAT	GATGAAGAAA	TATTGAGCCA
	GCGGTACGAT	ACCACTCAAT	AACAAGTGCA	ATGTTACGGC	AATGCGACAG	TACCGAAGCT	CAGCTCAGGA	CTAAATACTA	AACCAGCGGT	CAGCATTGGG	GGCAGCGTAA	AATCACAATA	TACTGTTAAA	GCAAGCGTAG	AGATTTATCT	CTGTACGTTT
H O O	4051	4101	4151	4201	4251	4301	4351	1401	1451	1501	551	601	651	701	751	801

7/82

FIG.1G.

			ATTATG	ACAGGTTATT ATTATG	5101
AGTATTTTA	AATACAATAA	AATTACGGAG	GCTTTACCCA TCTTGTAAAA AATTACGGAG AATACAATAA AGTATTTTA	GCTTTACCCA	5051
TTCAGTACGG	TGGGTTAAAG	ATTTACTGTG	MATTACTGT TGGGTTAAAG TTCAGTACGG	WI I I I I I I I I I I I I I I I I I I	H (
				A C T C A TH THA	5001
CCTCAAACCA	TAGATTTCAT	ATTGACAAGG	ACGGGCGGTA GCGGTCAGTA ATTGACAAGG TAGATTTCAT CCTGCAATGA	ACGGGCGGTA	4951
ATCGCTGATA	GIGCGILIAAI.	「りりつはりつう))		1
\ \ \ \ \ \			GTGTTTCTCA AACAGTGATG GCGCCACCCT CHCCCCHM3, B CCCCC	GTGTTTCTCA	4901
AAGGCAGGGC	GTGATTTCTG	AAGTCGAATA	GAATTIGCAA CCAGACCATT AAGICGAATA GIGATTICIG AAGGCAGGGC	GAATTTGCAA	4851
					7

8/82

FIG. 2A. AMINO ACID SEQUENCE OF HIGH MOLECULAR WEIGHT PROTEIN

MNKIYRLKFS KRLNALVAVS ELARGCDHST EKGSEKPARM KVRHLALKPL DSNGQVFLIN PNGITIGKDA IINTNGFTAS TLDISNENIK ARNFTFEQTK DKALAEIVNH ISDIINPTIT GNINVRAATI RNQGKLSADS VSKDKSGNIV DKVTLKTGAV IDLSGKEGGE IIRNSVDAII IVWGDIALID SGHDLFIKDN AIVDAKEWLL DFDNVSINAE STPKRNKEKT TLTNTTLESI LKKGTFVNIT ISLGAQGNIN ITAKQDIAFE KGSNQVITGQ GTITSGNQKG INLSNGSLTL WSEGRSGGGV EINNDITTGD DTRGANLTIY TGSGLQFTTK RTNKYAITNK FEGTLNISGK VNISMVLPKN ISVSGGGSVD LTQPYNLNGI SIPQSVLASG LQGMDVVHGT ATMQVDGNKT NWKQFNIDQN EMVQFLQENN NSAVFNRVTS NQISQLKGIL ISLLAGQKIT GKNGIQLAKK TSLEKGSTIN VSGKEKGGRA ERNARVNFDI KAPIGINKYS SLNYASFNGN DSRGSDSAGT GLITVGKDGS VNLIGGKVKN EGVISVNGGS GGVISAQNQQ AKGGKLMITG SESGEFNLTI YSIAAPENEA VNLGDIFAKG TYWNLTSLNV IAKTGGFVET DEYTGSGNSA SAMLLSLGVT TYLGGDERGE LSAKEGEAEI GNINAQGSGD SGGWVDVHKN FRFNNVSLNG ESGYDKFKGR TAGRSNTSED ANORIYVNSS SFNKDTTFNV 51 101 201 151 251 301 351 401 451 701 501 551 601 651

FIG.2B.

751	FTLLASSSNV	QTPGVVINSK	YFWVSTGSSL	RFKTSGSTKT	GFSTEKDI,TT,	
801	NATGGNITLL	QVEGTDGMIG	KGIVAKKNIT	FEGGNITFGS		
851	VTINNNANVT	LIGSDFDNHQ	KPLTIKKDVI	DOST'INDSNI	E INCATINITA	
901	VESNANFKAI	TNFTFNVGGL	FDNKGNSNIS	IAKGGARFKD	TONSKNI STE	
951	TNSSSTYRTI	ISGNITNKNG	DLNITNEGSD	TEMOIGGDVS	OKEGNIT. TING	
1001	DKINITKQIT	IKAGVDGENS	DSDATNNANL	TIKTKELKLT	ODLINISGENK	
1051	AEITAKDGSD	LTIGNTNSAD	GTNAKKVTFN	QVKDSKISAD	GHKVTI, HSKV	
1101	ETSGSNNNTE	DSSDNNAGLT	IDAKNVTVNN	NITSHKAVSI	•	9/82
1151	TGTTINATTG	NVEITAQTGS	ILGGIESSSG	SVTLTATEGA		
1201.	VTVTANSGAL	TTLAGSTIKG	TESVTTSSQS	GDIGGTISGG	TVEVKATEST	
1251	TTQSNSKIKA	TTGEANVTSA	TGTIGGTISG	NTVNVTANAG	DLTVGNGAET	
1301	NATEGAATLT	TSSGKLTTEA	SSHITSAKGQ	VNLSAQDGSV	AGSINAANVT	
1351	LNTTGTLTTV	KGSNINATSG	TLVINAKDAE	LNGAALGNHT	VVNATNANGS	
1401	GSVIATTSSR	VNITGDLITI	NGLNIISKNG	INTVLLKGVK	IDVKYIOPGT	•
451	ASVDEVIEAK	RILEKVKDLS	DEEREALAKL	GVSAVRFIEP	NOTUTITAN	
1501	EFATRPLSRI	VISEGRACFS	NSDGATVCVN	IADNGR		

FIG.3A.

DNA SEQUENCE OF HIGH MOLECULAR WEIGHT PROTEIN II (HMW2)

TAAATATACA AGATAATAAA AATAAATCAA GATTTTTGTG ATGACAAACA ACAATTACAA CACCTTTTTT GCAGTCTATA TGCAAATATT TTAAAAAAT AGTATAAATC CGCCATATAA AATGGTATAA TCTTTCATCT TTCATCTTTA GAACGCAAAT GATAAAGTAA TTTAATTGTT CAACTAACCT TAGGAGAAAA ATCTTTCATC TTTCATCTTT CATCTTTCAT CTTTCATCTT TCATCTTTCA TCTTTCATCT TTCATCTTTC ATCTTTCATC TTTCATCTTT CACATGAAAT GATGAACCGA GGGAAGGGAG GGAGGGGCAA GAATGAAGAG GGAGCTGAAC TATGAACAAG ATATATCGTC TCAAATTCAG CAAACGCCTG AATGCTTTGG AAGAAAACAA CAACTCCGCC GTATTCAACC GTGTTACATC TAACCAAATC TIGCIGIGIC IGAATIGGCA CGGGGTIGIG ACCATICCAC AGAAAAGGC TTCCGCTATG TTACTATCTT TAGGTGTAAC CACTTAGCGT TAAAGCCACT TICCGCTAIG TIACTAICTI TAGGIGIAAC AICTAIICCA CAAICIGIIT ACGCTATCAT TAGCAAGCGG CTTACAAGGA ATGGATGTAG TACACGGCAC AGCCACTATG CAAGTAGATG GTAÄTAAAAC CATTATCCGC AACAGTGTTG TAATTGGAAA CAATTTAACA TCGACCAAAA TGAAATGGTG 57 301 351 401 451 501 551 601 701

10092980.030802

FIG.3B.

						1	1/82								
TTTTAATCAA	ACTAATGGCT	GGCGCGTAAT	TTGTGAATCA	ATTGGTGGCA	CATTTCTTTA	CAACCATTAC	GGCGATATTT	TCGAAACCAA	GCAATATTGT	ATTTCCGCTC	CGATAAAGTC	AAGGGGGAGA	GGCATTCAAT	TGTATCAGGC	CGTTAATTGA
GGACAAGTCT	AATTATTAAC	AAAACATCAA	CTCGCTGAAA	TGTAAATCTT	ATGGTGGCAG	ATAATAAACC	GGTCAATCTG	CTGCCACTAT	GATAAAAGCG	TGGCGGTGTA	TGATTACAGG	TCAGGTAAAG	AGGTAAAAAC	CAACCATCAA	GGCGATATTG
AGATTCTAAC	GTAAAGACGC	ATTTCTAACG	AGATAAAGCG	AAGACGGCAG	ATTAGCGTAA	CATCAGCGAT	AAAATGAAGC	AATĞTCCGTG	TGTAAGCAAA	AAGCGGAAAT	GGCAAGCTGA	TATCGACCTT	AGCGCGGCGA	GAAAAAGGCT	TATTGTGTGG
AAGGGATTTT	ATCACAATAG	TACGCTAGAC	AGCAAACCAA	ACTGTCGGTA	CGAGGGTGTG	AAAAAATCAC	GCCGCGCCTG	CGGTAACATT	CTGCTGATTC	AAAGAGGGTG	AGCTAAAGGC	CAGGTGCAGT	GGCGGTGACG	AACCTCTTTA	GCGGACGCGC
TCCCAATTAA	CCCAAATGGT	TTACGGCTTC	TTCACCTTCG	CGGTTTAATT	AAGTGAAAAA	CTCGCAGGGC	TTACAGCATT	TTGCCAAAGG	GGTAAACTTT	TCTTTCCGCC	AAAATCAGCA	ACATTAAAAA	AACTTACCTT	TAGCAAAGAA	AAAGAAAAG
751	801	851	901	951	1001	1051	1101	1151	1201	1251	1301	1351	1401	1451	1501

10092880.030802

FIG.3C.

						1	2/82							٠		
ACCGGTGGTT	TGCAATTGTT	TTGAAGCCGA	CCAACAGGCA	AACAACGCTA	CAATGAATAT	ATCGGAAGCA	AGGCGTTCAG	TTTATTCTGG	GGTTTTTAA	CAAAGCACGC	CCATTACAGG	GGAACGGGTA	CAATCTTAGT	CTACGAGAAA	AACGTCAGTG	ATACATTTCA
TATCGCTAAA	TTGACAGCAA	GATGTAACAA	TGATGAATTC	GCGAACTCAA		CTCAATCAAC	AGCGTGGCGG	AATTTAACCA	GCTTGATCAG	GTGGAAATAA	GGCACTGTAA	ATCTTTAAAC	ATTTAACCCA	ATTAACCAAA	TTCGCACTGG	CCTTTATTAA
GTAGTGGTGA	TATTTATCCA	AGACCCTGAT	CCGGTATAAA	AAAAAAATA	CTATTTCAAATTATCTGAAA AACGCCTGGA	CCGTTAATAG	AGTAAAGGTC	TAAAGGCGGA	AAAATATTAC	GCTTTTGAAG	TGTCGCCCAG	CTAACAACGT	TCAGTGAATA	GAATATAACA	CCAGCCATGA	GCAAATTTTA
AACGCTCAAG	ATCGGGGCAT	AGTGGTTGCT	CGCAATAATA	AAGCGACCCT	CTATTTCAAA	AGAAAACTTA	AATTCTCCAT	ATATTACTTC	GATGTTCATA	CGCTTCCGTA	ATGCTAAAAT	GATTTCAGGG	TATÇATTTCA	ACATATCTGG	TATTGGCAAA	AGAGACAGGC
CGGCAATATT	TTGTGGAGAC	AAAACAAAAG	AGACCCCCTT	CCGGTGAAGC	ACCAATACAA	AACGGCATCA	ACTCCCACTT	ATTGATGGAG	CGGATGGGTT	ATATTACCGC	GACGCGGCAA	AGAGGGAAAA	AAGGTCTGAA	GGCACAATTA	GAACACCTCG	CTCTTAATCT
1551	1601	1651	1701	1751	1801	1851	1901	1951	2001	2051	2101	2151	2201	2251	2301	2351

10092880,030802

FIG.3D.

	A J J A L A A D J A		E C C C C C C C C C C C C C C C C C C C	() () () () () ()		
ć	SCARIAGCA		AACACAGI'AI'	AGAAGCTCTG	CAGGGGTGAA	
È	TTTTAACGGC	GTAAATGGCA	ACATGTCATT	CAATCTCAAA	GAAGGAGCGA	
A	AAGTTAATTT	CAAATTAAAA	CCAAACGAGA	ACATGAACAC	AAGCAAACCT	
Ħ	TTACCAATTC	GGTTTTTAGC	CAATATCACA	GCCACTGGTG	GGGGCTCTGT	
Ē	TTTTTTGAT	ATATATGCCA	ACCATTCTGG	CAGAGGGGCT	GAGTTAAAAA	
Ē	TGAGTGAAAT	TAATATCTCT	AACGGCGCTA	ATTTACCTT	AAATTCCCAT	
Ö	GTTCGCGGCG	ATGACGCTTT	TAAAATCAAC	AAAGACTTAA	CCATAAATGC	-
Ø	AACCAATTCA	AATTTCAGCC	TCAGACAGAC	GAAAGATGAT	TTTTATGACG	13/82
Ö	GGTACGCACG	CAATGCCATC	AATTCAACCT	ACAACATATC	CATTCTGGGC	2
Ġ	GGTAATGTCA	CCCTTGGTGG	ACAAAACTCA	AGCAGCAGCA	TTACGGGGAA	
H	TATTACTATC	GAGAAAGCAG	CAAATGTTAC	GCTAGAAGCC	AATAACGCCC	
Ü	CTAATCAGCA	AAACATAAGG	GATAGAGTTA	TAAAACTTGG	CAGCTTGCTC	
Ö	GTTAATGGGA	GTTTAAGTTT	AACTGGCGAA	AATGCAGATA	TTAAAGGCAA	
Ĕ	TCTCACTATT	TCAGAAAGCG	CCACTTTTAA	AGGAAAGACT	AGAGATACCĊ	
Ţ,	TAAATATCAC	CGGCAATTTT	ACCAATAAŤG	GCACTGCCGA	AATTAATATA	
Ą	ACACAAGGAG	TGGTAAAACT	TGGCAATGTT	ACCAATGATG	GTGATTTAAA	,

FIG.3E.

GGCGGAGATA	3CT	3AT	3TA	4CT	ГТТ		14/82 DYS		306	AAA	TAC	LTA	AGT	4GC	3TA
	TAATGATGCT	ACCTCACGAT	AAAAAGGGTA	CAACCTAACT	TTTCAGGTTT	ACTATTGGCA	AACTTTTAAC	TGACACTAAA	AGCAATAGCG	AGTAAACAAA	AAAAGGTTAC	GCAAGTA'	CACGGTAAGT	AAATTGAAGC	ATTGGCG(
	CAGACAGTAA	AAAGAAGGCA	GATAACAATC	CAAGTAATGC	GACCTAAGTA	TAGAGATTTA	CCAAAACAGT	GGTCACAATG	CGGACGTGAA	AAAATGTAGA	ACCGCGTCGG	AAATGGCAAA GCAAGTATTA	TTTCCGGTAA	TCCGGCTCAA	AACAGGTACA ATTGGCGGTA
{ { { { { { { { { { { {}}}}}}}}	T"I'AAA'I'A'I'I'A	TATCTCGCAA	TCACCAAACA	TCAGATGCGA	ATTGACAGAA	CCAAAGAŢGG	GGTGCCGAAG	CTCTGCTGAC	GCAGCAATGG	ATTACTGCAA	AGTAAATATC	TTAACGCAAC	AGCGGTACGA	AACCACTAAA	TAACAAGTGC
	AAAAGGAAGC	TTGGCGGCAA	AAAATTAATA	GGACTCTAGT	AAGAATTGAA	GAGATTACAG	CGGTAACAGC	ATTCAAAAAT	AAAACATCTA	CGGCTTAACT	CTCTCAAAAC	GGCTCGACCA	AGGTGÀTATC	CTGGTGATTT	GAGGCTAATG
	TAATCAACAA	GAAATCCAAA	TTCTTCCGAT	TTGATGGAGA	ATTAAAACCA	CAATAAAGCA	ACAGTAATGA	AATGTTAAAG	TAGCAAAGTG	ACAACGATAC	GATATTACTT	CACCACAGCA	CAACCAAAAC	GTTAGCGCGA	GAAATCGGGT
	3251	3301	3351	3401	3451	3501	3551	3601	3651	3701	3751	801	851	3901	3951

10092880 OSOBOR

FIG. 3F.

4001	CAATTTCCGG	TAATACGGTA	AATGTTACGG	CAAACGCTGG	CGATTTAACA	
4051	GTTGGGAATG	GCGCAGAAAT	TAATGCGACA	GAAGGAGCTG	CAACCTTAAC	
4101	CGCAACAGGG	AATACCTTGA	CTACTGAAGC	CGGTTCTAGC	ATCACTTAGA	
4151	CTAAGGGTCA	GGTAGACCTC	TTGGCTCAGA	ATGGTAGCAT	CGCAGGAAGC	
4201	ATTAATGCTG	CTAATGTGAC	ATTAAATACT	ACAGGCACCT	TAACCACCGT	
4251	GGCAGGCTCG	GATATTAAAG	CAACCAGCGG	CACCTTGGTT	ATTAACGCAA	
4301	AAGATGCTAA	GCTAAATGGT	GATGCATCAG	GTGATAGTAC	AGAAGTGAAT	
4351	GCAGTCAACG	CAAGCGGCTC	TGGTAGTGTG	ACTGCGGCAA		15/
4401	TGTGAATATC	ACTGGGGATT	TAAACACAGT	AAATGGGTTA		82
4451	CGAAAGATGG	TAGAAACACT	GTGCGCTTAA	GAGGCAAGGA	AATTGAGGTG	
4501	AAATATATCC	AGCCAGGTGT	AGCAAGTGTA	GAAGAAGTAA	TTGAAGCGAA	
4551	ACGCGTCCTT	GAAAAAGTAA	AAGATTTATC	TGATGAAGAA	AGAGAAGAT	
4601	TAGCTAAACT	TGGTGTAAGT	GCTGTACGTT		AAATAATACA	
4651	ATTACAGTCA	ATACACAAAA	TGAATTTACA		CAAGTCAAGT	
4701	GATAATTTCT	GAAGGTAAGG	CGTGTTTCTC	AAGTGGTAAT	GGCGCACGAG	
4751	TATGTACCAA	TGTTGCTGAC	GATGGACAGC		AATTGACAAG.	
4801	GTAGATTTCA	TCCTGCAATG	AAGTCATTTT		TATTACTGT	

FIG.3G.

GTGGGTTAAA GTTCAGTACG GGCTTTACCC ATCTTGTAAA AAATTACGGA 4851

GAATACAATA AAGTATTTTT AACAGGTTAT TATTATG 4901

FIG.4A. AMINO ACID SEQUENCE OF HIGH MOLECULAR WEIGHT PROTEIN 2

17/82 MNKIYRLKFS KRLNALVAVS ELARGCDHST EKGSEKPARM KVRHLALKPL DSNGQVFLIN YSIAAPENEA VNLGDIFAKG GNINVRAATI RNQGKLSADS VSKDKSGNIV IIRNSVDAII DKALAEIVNH ISDIINPTIT TYLGGDERGE GKNGIQLAKK TSLEKGSTIN VSGKEKGGRA IVWGDIALID IDLSGKEGGE GNINAQGSGD IAKTGGFVET SGHDLFIKDN AIVDAKEWLL DFDNVSINAE KGGNLTIYSG GWVDVHKNIT LDQGFLNITA ASVAFEGGNN KARDAANAKI VAQGTVTITG SDPKKNSELK TTLTNTTISN YLKNAWTMNI NITINOTIRK ETGANFTFIK YISSNSKGLT TQYRSSAGVN KLKPNENMNT SKPLPIRFLA NITATGGGSV ATMOVDGNKT PNGITIGKDA IINTNGFTAS TLDISNENIK ARNFTFEQTK LSAKEGEAEI GGVISAQNQQ AKGGKLMITG DKVTLKTGAV NWKQFNIDQN EMVQFLQENN NSAVFNRVTS NQISQLKGIL ISLLAGOKIT ILHSKGQRGG GVQIDGDITS IISSVNNLTH NLSGTINISG SIPQSVLASG LQGMDVVHGT GLITVGKDGS VNLIGGKVKN EGVISVNGGS DPLRNNTGIN DEFPTGTGEA SINIGSNSHL EGKDFRANNV SLNGTGKGLN SHWNVSALNL FNGVNGNMSF NLKEGAKVNF SAMLLSLGVT TASRKLTVNS OHSLOMASLN 51 101 151 201 301 401 351 501 451 551 601 651 701

FIG. 4B.

751	FFDIYANHSG	RGAELKMSEI	NISNGANFTL	NSHVRGDDAF	KINKDLTINA	
801	TNSNFSLRQT	KDDFYDGYAR	NAINSTYNIS	ILGGNVTLGG	QNSSSSITGN	
851	ITIEKAANVT	LEANNAPNQQ	NIRDRVIKLG	SLLVNGSLSL	TGENADIKGN	
901	· LTISESATFK	GKTRDTLNIT	GNFTNNGTAE	INITQGVVKL	GNVTNDGDLN	
951	ITTHAKRNQR	SIIGGDIINK	KGSLNITDSN	NDAEIQIGGN	ISQKEGNLTI	
001	SSDKINITKQ	ITIKKGIDGE	DSSSDATSNA	NLTIKTKELK	LTEDLSISGF	
051	NKAEITAKDG	RDLTIGNSND	GNSGAEAKTV	TFNNVKDSKI	SADGHNVTLN	18/8
101	SKVKTSSSNG	GRESNSDNDT	GLTITAKNVE	VNKDITSLKT	VNITASEKVT	82
151	TTAGSTINAT	NGKASITTKT	GDISGTISGN	TVSVSATVDL	TTKSGSKIEA	
201	KSGEANVTSA	TGTIGGTISG	NTVNVTANAG	DLTVGNGAEI	NATEGAATLT	
251	ATGNTLTTEA	GSSITSTKGQ	VDLLAQNGSI	AGSINAANVT	LNTTGTLTTV	
301	AGSDIKATSG	TLVINAKDAK	LNGDASGDST	EVNAVNASGS	GSVTAATSSS	
351	VNITGDLNTV	NGLNIISKDG	RNTVRLRGKE	IEVKYIQPGV	ASVEEVIEAK	
401	RVLEKVKDLS	DEERETLAKL	GVSAVRFVEP	NNTITVNTON	EFTTRPSSQV	
451	IISEGKACFS	SGNGARVCTN	VADDGQP			

FIG.5A.

shaded boxes indicate the locations of the structural genes. In the recombinant phage, transcription proceeds from left to right for the HMW1 gene and from right to left for the HMW2 gene. The methods used for construction of the plasmids shown are (A) Partial restriction maps of representative HMW1 and HMW2 recombinant phage and of HMW1 plasmid subclones. The described in the text. (B) Restriction map of the T7 expression vector pT7-7. This vector contains the T7 RNA polymerase promoter 女10, a ribosome - binding site (rbs), and the translational start site for the T7 gene 10 protein upstream from a multiple cloning site (37).

F16.5B.

1009EBBO.U3080E

FIG.6A.

						21	/82								
	TTAAAAAATA	TCATCTTTCA	CATCTTTCAT	ACATGAAATG	GAGCTGAACG	AGGAGAAAAT	ATGCTTTGGT	GAAAAAGGCA	AAAGCCACTT	AATCTGTTTT	GCCACTATGC	CGCTATCATT	AGTTTTACA	AACCAAATCT	TTTAATCAAC
ТАВТАВТАВ	TGCAAATATT	CTTTCATCTT	TTTCATCTTT	TTCATCTTTC	AATGAAGAGG	AACTAACCTT	AAACGCCTGA	CCATTCCACA	ACTTAGCGTT	TCTATTCCAC	ACACGGCACA	ACAGTGTTGA	GAAATGGTGC	TGTTACATCT	GACAAGTCTT
GTACAAACCC	GCAGTCTATA	ATGGTATAAT	ATCTTTCATC	TCTTTCATCT	GAGGGGCAAG	TTAATTGTTC	CAAATTCAGC	GGGGTTGTGA	AAAGTGCGTC	AGGTGTAACA	TGGATGTAGT	ATTATCCGCA	CGACCAAAAT	TATTCAACCG	GATTCTAACG
CTTAATACTA	CACCTTTTTT	GCCATATAAA	TTCATCTTTC	TCATCTTTCA	GGAAGGGAGG	ATAAAGTAAT	TATATCGTCT	GAATTGGCAC	TGCTCGCATG	TACTATCTTT	TTACAAGGAA	TAATAAAACC	AATTTAACAT	AACTCCGCCG	AGGGATTTTA
ACAGCGTTCT	ACAATTACAA	GTATAAATCC	TCTTTCATCT	CTTTCATCTT	ATGAACCGAG	AACGCAAATG	ATGAACAAGA	TGCTGTGTCT	GCGAAAAACC	TCCGCTATGT	AGCAAGCGGC	AAGTAGATGG	AATTGGAAAC	AGAAAACAAC	CCCAATTAAA
\leftarrow	51	101	151	201	251	301	351	401	451	501	551	601	651	701	751

EDBOEO. OBGEGOL

FIG.6B.

							22/8	2							
CTAATGGCTT	GCGCGTAATT	TGTGAATCAC	TTGGTGGCAA	ATTTCTTTAC	AACCATTACT	GCGATATTTT	CGAAACCAAG	TTTCCGCTCA	GATAAAGTCA	AGGGGGAGAA	GCATTCAATT	GTATCAGGCA	GTTAATTGAČ	CCGGTGGTTT	
ATTATTAACA	AAACATCAAG	TCGCTGAAAT	GTAAATCTTA	TGGTGGCAGC	TAATAAACCC	GTCAATCTGG	TGCCACTATT	GGCGGTGTAA	GATTACAGGC	CAGGTAAAGA	GGTAAAAACG	AACCATCAAT	GCGATATTGC	ATCGCTAAAA	CAAAGACAAT
TAAAGACGCA	TTTCTAACGA	GATAAAGCGC	AGACGGCAGT	TTAGCGTAAA	ATCAGCGATA	AAATGAAGCG	ATGTCCGTGC	AGCGGAAATT	GCAAGCTGAT	ATCGACCTTT	GCGCGGCGAA	AAAAAGGCTC	ATTGTGTGGG	TAGTGGTGAT	ATTTATTCAT
TCACAATAGG	ACGCTAGACA	GCAAACCAAA	CTGTCGGTAA	GAGGGTGTGA	AAAAATCACC	CCGCGCCTGA	GGTAACATTA	AAGAGGGTGA	GCTAAAGGCG	AGGTGCAGTT	GCGGTGACGA	ACCTCTTTAG	CGGACGCGCT	ACGCTCAAGG	TCGGGGCATG
CCAAATGGTA	TACGGCTTCT	TCACCTTCGA	GGTTTAATTA	AGTGAAAAAC	TCGCAGGGCA	TACAGCATTG	TGCCAAAGGC	CTTTCCGCCA	AAATCAGCAA	CATTAAAAAC	ACTTACCTTG	AGCAAAGAAA	AAGAAAAAGG	GGCAATATTA	TGTGGAGACG
801	851	901	951	1001	1051	1101	1151	1251	1301	1351	1401	1451	1501	1551	1601

1009<u>29</u>80.030802

FIG. 6C.

							23	/82										
		CGGGATCCGG	ACATTAACAA	TAACATCACT	CCAATGGCAG	GAGATTAACA	AACAATTTAC	GGGCGCAAGG	AAAGGAAGCA	TCAAAAAGGT			1 1 GAAGGGA	ACCIAAAAA'I'	AlTAACCTC	GACTCCAGAG	AAACGGTATA .	AAつ 1 りじりじひい
					ATTAATTAT	TGGCGGCGTT	GIGCAAACT"T	AICICACI'CG	CGCCTTTGAG	CCTCAGGCAA	ACTGGCAGCG							
GACCCGGATA				_		_			AACAAGATAT	GGGACTATTA	TCTAAACGGC	AATACGCTAT	GTGAACATCT	CAAAGGACGC				
A GTGGTTGTTA	GCAGCAATAC	·		_		CACCGGTGAT	GGGTTGATGT	ATTACACCTA		TUCAGGICAA	ATAATGTCTC	AGAACCAATA	TTCAGGGAAA	ATGATAAATT	ATGATAAATT	TGCAGGCACA	AAGACACTAĊ	-
ACGCCAAAGA	ACAGCAGGAC	GAATAGTGCC	ACACAACTCT	GCTAATCAAC	CTTAACTCTT	ACGATATTAC	TCAGGCGGCT	TAACATAAAC	ACCAAGTCAT		'I"I"I'AGATTTA	CACCACTAAA	CTTTAAATAT	GAAAGTGGAT	GAAAGTGGAT	GAAGCGATAG	TCATTCAACA	
1651	1701	1751	1801	1851	1901	1951	2001	2051	2101	71 11 1	T C T 7	2201	2251	2301	2351	2401	2451	

FIG.6D.

								24/8	32										
		GAGTGTTGAT	GTGTAGTTAT	AGATTTAAAA		1.1.1AAC.1"I'FA	GCACCGATGG	TTTGAAGGAG	CGAAGGCAAT		() () () (E & & E E & & E E & & E E & & E E & & E E & & E E & & E E & &	ALTAATAGUG	AAATCTTACC	CTTTTAATGT		A I GCCAAAG	AGCAICACC	AIATAACCAA. ACTGAAATGC	
			CAAACCCCCG	GTCAAGTTTA					TAACAGAAAT	CTTATCGGTT				ACAAATTTCA	AAATATTTCC				
A TAGGGATAAA				TTTCAACAGG	GGCTTCTCAA				りつうなななののな	TAACGTCACT	CTATTAAAA	AATATTGTCA		CAAAGCT'A'I'C	AAGGCAATTC	ATTGATAATT	CCGCACTATT	TTACGAACGA AGGTAGTGAT	
: AAGGCACCAA		-	_	IACI"I"I'AA'I'G	AACAAAAACT	GAGGCAACAT	AAAGGCATTG	GTTTGGCTCC)	A'I'AACAACGC	AAACCTTTAA	CGCTGGAGGC			TTTGACAACA	CTTTAAAGAC	GCTCCACTTA	GATTTAAATA	
CTTTGACATC	ACGCATCATT	TTCACACTTC	AAATTCAAAA	WWWIOI II	CTTCAGGCTC	AATGCCACCG	AATGATTGGT	GTAAGATGAG		GITACIAICA	CAACCATCAA	GCAACCTTAC	GTTGAAAGTA		AGGCGGCT,TG	GAGGGGCTCG	ACCAACTCCA	TAAAAACGGT	
2501	2551	2601	2651	1	270.1	2751	2801	2851	2901	H > 1	2951	3001	3051	2101	7 7 7	3151	3201	3251	

10092880 .030802

FIG.6E.

3301	AAATTGGCGG	CGATGTCTCG	CAAAAAGAAG	GTAATCTCAC	GATTTCTTCT	
3351	GACAAAATCA	ATATTACCAA	ACAGATAACA	ATCAAGGCAG	GTGTTGATGG	
3401	GGAGAATTCC	GATTCAGACG	CGACAAACAA	TGCCAATCTA	ACCATTAAAA	
3451	CCAAAGAATT	GAAATTAACG	CAAGACCTAA	ATATTTCAGG	TTTCAATAAA	
3501	GCAGAGATTA	CAGCTAAAGA	TGGTAGTGAT	TTAACTATTG	GTAACACCAA	
3551	TAGTGCTGAT	GGTACTAATG	CCAAAAAGT	AACCTTTAAC	CAGGTTAAAG	
3601	ATTCAAAAAT	CTCTGCTGAC	GGTCACAAGG	TGACACTACA		25
3651	GAAACATCCG	GTAGTAATAA	CAACACTGAA	GATAGCAGTG		5/82
3701	CGGCTTAACT	ATCGATGCAA	AAAATGTAAC	AGTAAACAAC	AATATTACTT	
3751	CTCACAAAGC	AGTGAGCATC	TCTGCGACAA	GTGGAGAAAT	TACCACTAAA	
3801	ACAGGTACAA	CCATTAACGC	AACCACTGGT	AACGTGGAGA	TAACCGCTCA	
3851	AACAGGTAGT	ATCCTAGGTG	GAATTGAGTC	CAGCTCTGGC	TCTGTAACAC	
3901	TTACTGCAAC	CGAGGGCGCT	CTTGCTGTAA	GCAATATTTC	GGGCAACACC	
3951	GTTACTGTTA	CTGCAAATAG	CGGTGCATTA	ACCACTTTGG	CAGGCTCTAC	
4001	AATTAAAGGA	ACCGAGAGTG	TAACCACTTC	AAGTCAATCA	GGCGATATCG.	
4051	GCGGTACGAT	TTCTGGTGGC	ACAGTAGAGG	TTAAAGCAAC CGAAAGTTTA	CGAAAGTTTA	

100929.030202

FIG.6F.

4101	ACCACTCAAT	CCAATTCAAA	AATTAAAGCA	ACAACAGGCG	AGGCTAACGT	
4151	AACAAGTGCA	ACAGGTACAA	TTGGTGGTAC	GATTTCCGGT	AATACGGTAA	
4201	ATGTTACGGC	AAACGCTGGC	GATTTAACAG	TTGGGAATGG	CGCAGAAATT	
4251	AATGCGACAG	AAGGAGCTGC	AACCTTAACT	ACATCATCGG	GCAAATTAAC	
4301	TACCGAAGCT	AGTTCACACA	TTACTTCAGC	CAAGGGTCAG	GTAAATCTTT	
4351	CAGCTCAGGA	TGGTAGCGTT	GCAGGAAGTA	TTAATGCCGC	CAATGTGACA	
4401	CTAAATACTA	CAGGCACTTT	AACTACCGTG	AAGGGTTCAA	ACATTAATGC 💆	
4451	AACCAGCGGT	ACCTTGGTTA	TTAACGCAAA	AGACGCTGAG	CTAAATGGCG 8	
4501	CAGCATTGGG	TAACCACACA	GTGGTAAATG	CAACCAACGC	AAATGGCTCC	
4551	GGCAGCGTAA	TCGCGACAAC	CTCAAGCAGA	GTGAACATCA	CTGGGGATTT	
4601	AATCACAATA	AATGGATTAA	ATATCATTTC	AAAAAACGGT	ATAAACACCG	
4651	TACTGTTAAA	AGGCGTTAAA	ATTGATGTGA	AATACATTCA	ACCGGGTATA	
4701	GCAAGCGTAG	ATGAAGTAAT	TGAAGCGAAA	CGCATCCTTG	AGAAGGTAAA	
4751	AGATTTATCT	GATGAAGAAA	GAGAAGCGTT	AGCTAAACTT	GGCGTAAGTG	
4801	CTGTACGTTT	TATTGAGCCA	AATAATACAA	TTACAGTCGA	TACACAAAAT	
4851	GAATTTGCAA	CCAGACCATT	AAGTCGAATA	GTGATTTCTG	AAGGCAGGGC.	
4901	GTGTTTCTCA	AACAGTGATG	GCGCGACGGT	GTGCGTTAAT	ATCGCTGATA	

ludued. Osubue

FIG.6G.

4951	ACGGGCGGTA	GCGGTCAGTA	ATTGACAAGG	TAGATTTCAT	CCTGCAATGA	
5001	AGTCATTTTA	TTTTCGTATT	ATTTACTGTG	TGGGTTAAAG	TTCAGTACGG	
5051	GCTTTACCCA	TCTTGTAAAA	AATTACGGAG	AATACAATAA	AGTATTTTA	
5101	ACAGGTTATT	ATTATGAAAA	ATATAAAAAG	CAGATTAAAA	CTCAGTGCAA	
5151	TATCAGTATT	GCTTGGCCTG	GCTTCTTCAT	CATTGTATGC	AGAAGAAGCG	
5201	TTTTAGTAA	AAGGCTTTCA	GTTATCTGGT	GCACTTGAAA	CTTTAAGTGA	
5251	AGACGCCCAA	CTGTCTGTAG	CAAAATCTTT	ATCTAAATAC	CAAGGCTCGC	27
5301	AAACTTTAAC	AAACCTAAAA	ACAGCACAGC	TTGAATTACA	GGCTGTGCTA	/82
5351	GATAAGATTG	AGCCAAATAA	GTTTGATGTG	ATATTGCCAC AACAAACCAT	AACAAACCAT	
5401	TACGGATGGC	AATATTATGT	TTGAGCTAGT	CTCGAAATCA	GCCGCAGAAA	
5451	GCCAAGTTTT	TTATAAGGCG	AGCCAGGGTT	ATAGTGAAGA	AAATATCGCT	
5501	CGTAGCCTGC	CATCTTTGAA	ACAAGGAAAA	GTGTATGAAG	ATGGTCGTCA	
5551	GTGGTTCGAT	TTGCGTGAAT	TCAATATGGC	AAAAGAAAAT	CCACTTAAAG	
5601	TCACTCGCGT	GCATTACGAG	TTAAACCCTA	AAAACAAAAC	CTCTGATTTĞ	
5651	GTAGTTGCAG	GTTTTTCGCC	TTTTGGCAAA	ACGCGTAGCT	TTGTTTCCTA	
5701	TGATAATTTC	GGCGCAAGGG	AGTTTAACTA	TCAACGTGTA	AGTCTAGGTT	

10092920.030202

FIG.6H.

							28	/82								
TCTAAACGCA	GCATAGGATA	TATACCAGCA	TGCGATTAAT	AATGGAGTTA	AAAATTAATT	AAACACCCTG	CAGGCATTGA 2	GATTTAACTC 6	GGAGCGCATT	GTTTAGGGTT	TTATCGGGTC	TGTAACAGGT	GTGAGCGCGG	CGCTTTCAAA	TAATAGCGAA	CTGCGGGTTT
ATGTATTAAA	TATGCGGTAG	CTTAAGTCTT	GCTTACCAAG	GCGAATCTGA	AGACCAGTTT	CATCCGAGTT	GGCGTAAGTG	CTTTAATATT	CTTTTGGAAT	AGCACAGCCA	TAGCAGTCAA	ATTTATTCTC	GGTGCAAGTG	AAAATACACC	AGTTCCGTTA	ACGGTATCCT
GGACATGATG	ATCAAAATCT	AACACCAATC	GATATCGACG	ATCTATCTCT	TTGGAATGGA	ATTAATCAAA	TGCAGTATCA	CTAAAACAAT	TTACCAGGCT	CTATCACATT	GTTGGCATTT	AGTAGCATAG	TAAATACGGC	TAAGTATGCC	GATGCAGGTC	AGATATGCAC
CAATTTGACC	TAAAAGCACC	TTTTATGATA	TGATTCTAAT	CAAAAGGTCA	ACATTTAACC	CTACCGCCAT	AGAAAAATT	CAATTTACCC	CGCGAGTAAA	TTAATCGCAG	TTTGCTCAAG	ACAAGATATA	TCAGAGGCTT	CGTAATGAAT	TGCGTTTTAT	CTTACGGCGA
TTGTAAATGC	TTGACCAATG	TACTTATCCG	TGAGTTATGC	CGTAAATTAT	TTATCTCCCG	TAGGCTACAA	GGTGCAACGA	TGGACATATC	ATCATTATTA	GGCGAAACAT	GAGTCAAGAG	AGTTTACTCT	ACTTATGGCG	TCTTGTATGG	TCAGCCCTTA	AATGCTAAAA
5751	5801	5851	5901	5951	6001	6051	6101	6151	6201	6251	6301	6351	6401	6451	6501	6551

loogeeo .osoeoe

FIG.61.

6601	AGGCATTAAA	ACCTCTCCTA	CACAAAACTT	AAGCTTAGAT	GCTTTTGTTG	
6651	CTCGTCGCTT	TGCAAATGCC	AATAGTGACA	ATTTGAATGG	CAACAAAAA	
6701	CGCACAAGCT	CACCTACAAC	CTTCTGGGGT	AGATTAACAT	TCAGTTTCTA	
6751	ACCCTGAAAT	TTAATCAACT	GGTAAGCGTT	CCGCCTACCA	GTTTATAACT	
6801	ATATGCTTTA	CCCGCCAATT	TACAGTCTAT	ACGCAACCCT	GTTTTCATCC	
6851	TTATATATCA	AACAAACTAA	GCAAACCAAG	CAAACCAAGC	AAACCAAGCA	
6901	AACCAAGCAA	ACCAAGCAAA	CCAAGCAAAC	CAAGCAAACC	AAGCAAACCA N	2
6951	AGCAAACCAA	GCAAACCAAG	CAAACCAAGC	AAACCAAGCA	ATGCTAAAAA	9/82
7001	ACAATTTATA	TGATAAACTA AAACATACTC	AAACATACTC	CATACCATGG	CAATACAAGG	
7051	GATTTAATAA	TATGACAAAA	GAAAATTTAC	AAAGTGTTCC	ACAAAATACG	
7101	ACCGCTTCAC	TTGTAGAATC	AAACAACGAC	CAAACTTCCC	TGCAAATACT	
7151	TAAACAACCA	CCCAAACCCA	ACCTATTACG	CCTGGAACAA	CATGTCGCCA	
7201	AAAAAGATTA	TGAGCTTGCT	TGCCGCGAAT	TAATGGCGAT	TTTGGAAAAA	
7251	ATGGACGCTA	ATTTTĠGAGG	CGTTCACGAT	ATTGAATTTG	ACGCACCTGC	
7301	TCAGCTGGCA	TATCTACCCG AAAAACTACT	AAAAACTACT	AATTCATTT	GCCACTCGTC	
7351	TCGCTAATGC	AATTACAACA	CTCTTTTCCG	ACCCCGAATT	GGCAATTTCC	

1009PEO.OZOBUE

FIG.6J.

۲		√ r	٠, ٠	- ، ،			30/82								•
		HILL WALLER IN THE COLUMN TO THE COLUMN THE					TATATGACT							CGAAACTTTC) + + + +) +
CAACGCTGGT				ACAACTTTCT	GTACTGCATC	AAAAAACTCG	TCATGATGTA	ATGTTAAGCG	GGATGGCAAG	TGTGATGATG	GCACGCATTC	GGCTTAGGCC	GTTCTTGAA		
GATTAGCCTG	TTAACGCAGA	GGTGGCTTTC	TTTTACTTA	CAGGGAATCA	CGTTTTATTG	GTGGTTTCCT	CAAATATCCT	AACAAGCACG	CCTCACGCAA	ACGGCAAACC	TCGATTTATC	CTATTTAGTC	TGTTTGACGA		
CATTAAAGAT	TCCCCCTACG	AGATTCCGAA	AATTCTGTAT	GCGTTATGGG	GCAGTCTTCA	TGGTTTTACA	GAATTGCCTG	TTTAGCAAAA	GCAAGCATAT	GGTAAAAAGG	TTCGGGACAT	GAGAAAAATT	GGTCGAGAAG	GGAGAGACTG	
 GAAGAAGGGG	TTTTGCCTCT	ATATCAACCC	TCTATTGCTA	GAGTTTAGAT	GTTTTGCGTT	AAAAGAGCGG	TAATTTAGAT	GCAGTTATGA	GAACTTGTCC	TTACACCTTA	AACATTTAA	ATTGCTGCTC	TGATAACATA	ATAATATAAT	
7401	7451	7501	7551	7601	7651	7701	7751	7801	7851	7901	7951	8001	8051	8.101	7 1 7

1009EBO.OZOBOZ

FIG.6K.

8201	TTTTGTGAGC	AACACTCGGC	TTGCCCCTAT	TCAAGCTGTA	GCCTTGGGTC
8251	ATCCTGCCAC	TACGCATTCT	GAATTTATTG	ATTATGTCAT	CGTAGAAGAT
8301	GATTATGTGG	GCAGTGAAGA	TTGTTTAGC	GAAACCCTTT	TACGCTTACC
8351	CAAAGATGCC	CTACCTTATG	TACCATCTGC	ACTCGCCCCA	CAAAAAGTGG
8401	ATTATGTACT	CAGGGAAAAC	CCTGAAGTAG	TCAATATCGG	TATTGCCGCT
8451	ACCACAATGA	AATTAAACCC	TGAATTTTTG	CTAACATTGC	AAGAAATCAG
8501	AGATAAAGCT	AAAGTCAAAA	TACATTTTCA	TTTCGCACTT	GGACAATCAA
8551	CAGGCTTGAC	ACACCCTTAT	GTCAAATGGT	TTATCGAAAG	CTATTTAGGT
8601	GACGATGCCA	CTGCACATCC	CCACGCACCT	TATCACGATT	ATCTGGCAAT
8651	ATTGCGTGAT	TGCGATATGC	TACTAAATCC	GTTTCCTTTC	GGTAATACTA
8701	ACGGCATAAT	TGATATGGTT	ACATTAGGTT	TAGTTGGTGT	ATGCAAAACG
8751	GGGGATGAAG	TACATGAACA	TATTGATGAA	GGTCTGTTTA	AACGCTTAGG
8801	ACTACCAGAA	TGGCTGATAG	CCGACACACG	AGAAACATAT	ATTGAATGTG
8851	CTTTGCGTCT	AGCAGAAAAC	CATCAAGAAC	GCCTTGAACT	CCGTCGTTAC
8901	ATCATAGAAA	ACAACGGCTT	ACAAAAGCTT	TTTACAGGCG	ACCCTCGTCC
8951	ATTGGGCAAA	ATACTGCTTA	AGAAAACAAA	TGAATGGAAG	CGGAAGCACT
9001	TGAGTAAAAA	ATAACGGTTT	TTTAAAGTAA	AAGTGCGGTT	AATTTTCAAA

31/82

32/82

FIG. 6L.

9051	GCGTTTTAAA	AACCTCTCAA	SCGTTTTAAA AACCTCTCAA AAATCAACCG CACTTTTATC	CACTTTTATC	TTTATAACGC
9101	TCCCGCGCGC	TGACAGTTTA	rcccccccc reacagitta ictctitctt aaaataccca taaaattgig	AAAATACCCA	TAAAATTGTG
9151	GCAATAGTTG	GGTAATCAAA	SCAATAGTTG GGTAATCAAA TTCAATTGTT GATACGGCAA ACTAAAAAAAAAA	A A D B B D A A B B	
9201	GCGCGTTCTT	CTT CGGCAGACAA	ر		50454411011

1019EKBO .O3080E

FIG. 7A.

						3	3/82									
AACTAACCAA AAAGTGCGGT					GCGAAT'ACG'I	CATAATAGGT	TITCCAAGAT.	IIIAATICA	IAAAIAIACA	ACAATTACAA	AGTATAAATC	ATCTTTCATC	TCTTTCATCT	GATGAACCGA	GAACGCAAAT	TATGAACAAG
AACTAACCAA							AAATUSTET			TI GACAGACA	TAAAAAAT	TTCATCTTTC	TCATCTTTCA	CACATGAAAT	GGAGCTGAAC	
GTTGAAATTC	GGTTGTAGTG	TTGGGCATTG	GACGACTATG				ATTTGTGGCG	TCCCACTCAA	CATTTTTCTC			TCT"I"ICATICT	CTTTCATCTT	TTTCATCTTT	GAATGAAGAG	
ATTTTGGATT	GGAGAAAATA	GCTCTCTTAA	TTATATTCTG	AAGCGTTAAT	TTTGTTTAGC	AATAAATTTT	TTCAATACCT	GCATAATATT	AATAAATCAA	GCAGTCTATA		PAIGGIAIAA	CATCTTTCAT	ATCTTTCATC	GGAGGGGCAA	TTTAATTGTT CAACTAACCT
CGCCACTTCA	TAAAATCTGT	AAAGGATAAA	TAATAGTAAA	CGTTGGTTTT	AATCCCATTT	GTTGCCCAAA	ATTGTGGCAA	ATTTCTTGTA	AGATAATAAA	CACCTTTTTT	CGCCATATA		TTTCATCTTT	TTCATCTTTC	GGGAAGGGAG	GATAAAGTAA
\vdash	21	101	151	201	251	301	351	401	451	501	551	1 0 7	T O O	651	701	751

FIG.7B.

801	ATATATCGTC	TCAAATTCAG	CAAACGCCTG	AATGCTTTGG	TTGCTGTGTC
851	TGAATTGGCA	CGGGGTTGTG	ACCATTCCAC	AGAAAAAGGC	AGCGAAAAAC
901	CTGCTCGCAT	GAAAGTGCGT	CACTTAGCGT	TAAAGCCACT	TTCCGCTATG
951	TTACTATCTT	TAGGTGTAAC	ATCTATTCCA	CAATCTGTTT	TAGCAAGCGG
1001	CAATTTAACA	TCGACCAAAA	TGAÀATGGTG	CAGTTTTTAC	AAGAAAACAA
1051	GTAATAAAAC	CATTATCCGC	AACAGTGTTG	ACGCTATCAT	TAATTGGAAA
1101	CAATTTAACA	TCGACCAAAA	TGAAATGGTG	CAGTTTTTAC	AAGAAAACAA ,
1151	CAACTCCGCC	GTATTCAACC	GTGTTACATC	TAACCAAATC	TCCCAATTAA
1201	AAGGGATTTT	AGATTCTAAC	GGACAAGTCT	TTTTÄATCAA	CCCAAATGGT
1251	ATCACAATAG	GTAAAGACGC	AATTATTAAC	ACTAATGGCT	TTACGGCTTC
1301	TACGCTAGAC	ATTTCTAACG	AAAACATCAA	GGCGCGTAAT	TTCACCTTCG
1351	AGCAAACCAA	AGATAAAGCG	CTCGCTGAAA	TTGTGAATCA	CGGTTTAATT
1401	ACTGTCGGTA	AAGACGGCAG	TGTAAATCTT	ATTGGTGGCA	AAGTGAAAAA
1451	CGAGGGTGTG	ATTAGCGTAA	ATGGTGGCAG	CATTTCTTTA	CTCGCAGGGC
1501	AAAAATCAC	CATCAGCGAT	ATAATAAACC	CAACCATTAC	TTACAGCATT
1551	GCCGCGCCTG	AAAATGAAGC	GGTCAATCTG	GGCGATATTT	TTGCCAAAGG

34/82

10092<u>9</u>80 "OSUBUL

FIG.7C.

1601	CGGTAACATT	AATGTCCGTG	CTGCCACTAT	TCGAAACCAA	GGTAAACTTT	
1651	CTGCTGATTC	TGTAAGCAAA	GATAAAAGCG	GCAATATTGT	TCTTTCCGCC	
1701	AAAGAGGGTG	AAGCGGAAAT	TGGCGGTGTA	ATTTCCGCTC	AAAATCAGCA	
1751	AGCTAAAGGC	GGCAAGCTGA	TGATTACAGG	CGATAAAGTC	ACATTAAAAA	
1801	CAGGTGCAGT	TATCGACCTT	TCAGGTAAAG	AAGGGGGAGA	AACTTACCTT	
1851	GGCGGTGACG	AGCGCGGCGA	AGGTAAAAAC	GGCATTCAAT	TAGCAAAGAA	
1901	AACCTCTTTA	GAAAAAGGCT	CAACCATCAA	TGTATCAGGC	AAAGAAAAG	
1951	GCGGACGCGC	TATTGTGTGG	GGCGATATTG	CGTTAATTGA	CGGCAATATT 52	
2001	AACGCTCAAG	GTAGTGGTGA	TATCGCTAAA	ACCGGTGGTT	TTGTGGAGAC	
2051	ATCGGGGCAT	TATTTATCCA	TTGACAGCAA	TGCAATTGTT	AAAACAAAAG	
2101	AGTGGTTGCT	AGACCCTGAT	GATGTAACAA	TTGAAGCCGA	AGACCCCCTT	
2151	CGCAATAATA	CCGGTATAAA	TGATGAATTC	CCAACAGGCA	CCGGTGAAGC	
2201	AAGCGACCCT	AAAAAAATA	GCGAACTCAA	AACAACGCTA	ACCAATACAA	
2251	CTATTTCAAA	TTATCTGAAA	AACGCCTGGA	CAATGAATAT	AACGGCATCA	
2301	AGAAAACTTA	CCGTTAATAG	CTCAATCAAC	ATCGGAAGCA	ACTCCCACTT	
2351	AATTCTCCAT	AGTAAAGGTC	AGCGTGGCGG	AGGCGTTCAG	ATTGATGGAG	
2401	ATATTACTTC	TAAAGGCGGA	AATTTAACCA	TTTATTCTGG CGGATGGGTT	CGGATGGGTT	

TOBBEBB BBBBBB

FIG.7D.

	GATGTTCATA	AAAATATTAC	GCTTGATCAG	GGTTTTTAA	ATATTACCGC	
Ü	CGCTTCCGTA	GCTTTTGAAG	GTGGAAATAA	CAAAGCACGC	GACGCGGCAA	
A;	ATGCTAAAAT	TGTCGCCCAG	GGCACTGTAA	CCATTACAGG	AGAGGGAAAA	
O	GATTTCAGGG	CTAACAACGT	ATCTTTAAAC	GGAACGGGTA	AAGGTCTGAA	
Н	TATCATTTCA	TCAGTGAATA	ATTTAACCCA	CAATCTTAGT	GGCACAATTA	
ď	ACATATCTGG	GAATATAACA	ATTAACCAAA	CTACGAGAAA	GAACACCTCG	
Н	TATTGGCAAA	CCÁGCCATGA	TTCGCACTGG	AACGTCAGTG	CTCTTAATCT	36/
A,	AGAGACAGGC	GCAAATTTTA	CCTTTATTAA	ATACATTTCA	AGCAATAGCA	82
4	AAGGCTTAAC	AACACAGTAT	AGAAGCTCTG	CAGGGGTGAA	TTTTAACGGC	
O	GTAAATGGCA	ACATGTCATT	CAATCTCAAA	GAAGGAGCGA	AAGTTAATTT	
O	CAAATTAAAA	CCAAACGAGA	ACATGAACAC	AAGCAAACCT	TTACCAATTC	
0	GGTTTTTAGC	CAATATCACA	GCCACTGGTG	GGGGCTCTGT	TTTTTTGAT	
7	ATATATGCCA	ACCATTCTGG	CAGAGGGGCT	GAGTTAAAAA	TGAGTGAAAT	
[TAATATCTCT	AACGGCGCTA	ATTTTACCTT	AAATTCCCAT	GTTCGCGGCG	,
7	ATGACGCTTT	TAAAATCAAC	AAAGACTTAA	CCATAAATGC	AACCAATTCA	
7	AATTTCAGCC	TCAGACAGAC	GAAAGATGAT	TTTTATGACG	GGTACGCACG	

10092390.0308UE

FIG.7E.

								37	/82						•		
CATTOTAGGG GOTANATIONS	GGIAAIGICA		CTAATCAGCA	GTTAATGGGA	TCTCACTATT	TAAATATCAC	ACACAAGGAG	CATTACOATTAC		IAAICAACAA	GAAA'I'CCAAA	TTCTTCCGAT	TTGATGGAGA		CONTANTO		ACAGITAAIGA AATGTTAAAG
						AGAGATACCC	AATTAATATA	GTGATTTAAA	AT AT ATUSTES			ACCTCACGAT	AAAAAGGGTA	CAACCTAACT	TTTCAGGTTT		
ACAACATATC				I PARAMET I GG	AAIGCAGATA		GCACTGCCGA	ACCAATGATG	AAGCATCATC	CAGACAGTAA		AAAGAGGCA	GATAACAATC	CAAGTAATGC	GACCTAAGTA	TAGAGATTTA	CCAAAACAGT AACTTTTAAC
AATTCAACCT	ACAAAACTCA						פושעונהיי	TGGCAATGTT	GCAACCAAAG	TTAAATATTA		ではつりつこうでき	TCACCAAACA	TCAGATGCGA	ATTGACAĠAA GACCTAAGTA	CCAAAGATGG	GGTGCCGAAG
CAATGCCATC	CCCTTGGTGG	GAGAAAGCAG	AAACATAAGG	GTTTAAGTTT	TCAGAAAGCG	CGGCAATTTT		I GGTAAAAC'F	CACGCTAAAC	AAAAGGAAGC	TTGGCGGCAA		AAAATTAATA	GGACTCTAGT	AAGAATTGAA	GAGATTACAG	CGGTAACAGC
3251	3301	3351	3401	3451	3501	3551	3601	T 000	3651	3701	3751	6	3 & O T	3851	3901	3951	4001

10092880.030ave

FIG.7F.

4051	ATTCAAAAAT	CTCTGCTGAC	GGTCACAATG	TGACACTAAA	TAGCAAAGTG	
4101.	AAAACATCTA	GCAGCAATGG	CGGACGTGAA	AGCAATAGCG	ACAACGATAC	
4151	CGGCTTAACT	ATTACTGCAA	AAAATGTAGA	AGTAAACAAA	САТАТАСТТ Т	
4201	CTCTCAAAAC	AGTAAATATC	ACCGCGTCGG	AAAAGGTTAC	CACCACAGCA	
4251	GGCTCGACCA	TTAACGCAAC		GCAAGTATTA		
4301	AGGTGATATC	AGCGGTACGA	TTTCCGGTAA	CACGGTAAGT	GTTAGGGGA	
4351	CTGGTGATTT	AACCACTAAA	TCCGGCTCAA	AAATTGAAGC	GAAATCGGGT	
4401	GAGGCTAATG	TAACAAGTGC	AACAGGTACA	ATTGGCGGTA		38
4451	TAATACGGTA	AATGTTACGG	CAAACGCTGG	CGATTTAACA		/82
4501	GCGCAGAAAT	TAATGCGACA	GAAGGAGCTG	CAACCTTAAC	CGCAACAGGG	
4551	AATACCTTGA	CTACTGAAGC	CGGTTCTAGC	ATCACTTCAA	CTAAGGGTCA	
4601	GGTAGACCTC	TTGGCTCAGA	ATGGTAGCAT	CGCAGGAAGC	ATTAATGCTG	
4651	CTAATGTGAC	ATTAAATACT	ACAGGCACCT	TAACCACCGT		
4701	GATATTAAAG	CAACCAGCGG	CACCTTGGTT	ATTAACGCAA	AAGATGCTAA	•
4751	GCTAAATGGT	GATGCATCAG	GTGATAGTAC	AGAAGTGAAT	GCAGTCAACG	
4801	ACTGGGGATT	TGGTAGTGTG	ACTGCGGCAA	CCTCAAGCAG	TGTGAATATC	
4851	ACTGGGGATT	TAAACACAGT	AAATGGGTTA AATATCATTT		CGAAAGATGG	

10092EBO.O30802

FIG.7G.

,T,C,C	CTT	ACT	TCA	PCT	CAA		9/82 YYY	ATA	AAA	ATG	3AA	ATA	FAC .	SCG	\TC
	ACGCGTCCTT	TAGCTAAACT	ATTACAGTCA	GATAATTTCT	TATGTACCAA	GTAGATTTCA	GTGGGTTAAA	GAATACAATA	GCAGATTAAA	TCATTGTATG	TGCACTTGAA	TATCTAAATA	CTTGAATTAC	GATATTGCCG	TCTCGAAATC
)	TTGAAGCGAA	AGAGAAACAT	AAATAATACA	CAAGTCAAGT	GGCGCACGAG	AATTGACAAG	TATTTACTGT	AAATTACGGA	AATATAAAA	GGCTTCTTCA	AGTTATCTGG	GCAAAATCTT	AACAGCACAG	AATTTGATGT	TTTGAGCTAG
	GAAGAAGTAA	TGATGAAGAA	TTGTTGAGCC	ACCAGACCGT	AAGTGGTAAT	CGTAGTCAGT	ATTTTCGTAT	ATCTTGTAAA	TATTATGAAA	TGCTTGGCCT	AAAGGCTTTC	ACTGTCTGTA	CAAACCTAAA	GAGCCAAATA	CAATATCATG
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AGCAAGTGTA	AAGATTTATC	GCTGTACGTT	TGAATTTACA	CGTGTTTCTC	GATGGACAGC	AAGTCATTTT	GGCTTTACCC	AACAGGTTAT	ATATCAGTAT	GTTTTTAGTA	AAGACGCCCA	CAAACTTTAA	AGATAAGATT	TTACGGATGG
	AGCCAGGTGT	GAAAAAGTAA	TGGTGTAAGT	ATACACAAAA	GAAGGTAAGG	TGTTGCTGAC	TCCTGCAATG	GTTCAGTACG	AAGTATTTT	ACTCAGTGCA	CAGAAGAAGC	ACTTTAAGTG	CCAAGGCTCG	AGGCTGTGCT	CAACAAACCA
ナつつが	4951	5001	5051	5101	5151	5201.	5251	5301	5351	5401	5451	5501	5551	5601	5651

TOOSERT CREEDOF

FIG.7H.

4G	4A	4.A	4A) (1)	E	1 4	40/8		Τť	Ę		T	F	Ď	Ą	Ę
TATAG'I'GAAG	AGTGTATGAA	CAAAAGAAAA	AAAAACAAAA	AACGCGTAGC	ACCAACGTGT	GATGTGTTAA	GGCTTACCAA	TGCGAATCTG	AAGACCAATT	ACCTCCGCGT	AGGCGTAAGT	TCTTTAATAT	TCTTTTGGAA	TAGCACAGCC	TTAGCAGTCA	GATTTATTCT
「うりりせつつうせり	AACAAGGAAA	TTTAATATGG	ACTAAACCCT	CTTTTGGTAA	GAGTTTAACT	TGGTCATGAT	TGATATCGAC	AATCTATCTC	CTTGGCATGG	TATTAATCAA	TTGCAGTATC	CCTAAAACAA	ATTACCAGGC	GCTATCACAT	GGTTGGCATT	TAGCAGTATA
	CCATCTTGA	TTTGCGTGAA	TACATTACGA	GGCTTCTCGC	CGGCGCGAGA	CCAATTTAAC	CTGATTCTAA	TCAAAAGGTC	AACATTTAAC	ACTACCGCCA	AAGAAAAAAT	CCAATTTACC	ACGCGAGTAA	TTTAATCGCA	GTTTGCTCAA	TACAAGATAT
	TCGTAGCCTG	AGTGGTTCGA	GTTACCCGTG	GATAATTGCG	ATGATAATTT	TTTGTTAATG	ATGAGTTATG	TCGTAAATTA	ATTATCTCCC	TTAGGCTACA	GGGTGAAACG	ATGGACATAT	CATCATTATT	TGGCGAAACA	TGAGTCAAGA	CAATTTACTC
	AAAATATCGC	GATGGTCGTC	CCCGCTTAAG	CCTCTAATTT	TTTATTTCTT	AAGCTTGGGT	TTATACCAGT	GTGCGATTAA	AAATGGAGTT	TAAATTAAT	TAAATCGCTT	GCAGGCATTG	TGATTTAACT	TGGAGCGCAT	AGTTTAGGGT	ATTATCAGGT
H > `	5751	5801	5851	5901	5951	6001	6151	6201	6251	6301	6351	6401	6451	6501	6551	6601

10092280 . OSOSOR

FIG.71.

GGTGAGCGCG GTCTTGTATGC GTCAGAGGCT GGTGAGCGCG GTCTTGTATG GCGTAATGAA ATAATAGCGA AAATGCTAAA ACTTACGGCG TCTGCGGGTT TAGGCATTAA AACCTCTCCT TGCTTTTGTT GCTCGTCGCT TTGCAAATGC GCAACAAAA ACGCACAAGC TCACCTACAA TTCAGTTTTTTCT AACCCTGAAA TTTAATCAAC AGTTTTTACC CTTATATATAC AAATAAACAA CCAAGCAAACAA AATTTGCAAA GCAAGTAATAC TAAACTAAAG TATACTCCAT GCCATGGCGA GACAAAAGAA AATTTGCAAA ACGCTCCTCA CGGAATTAAG CAACAATCAA ACGCTCCTCA AAGCCCAGCC TATTACGCTT GGAACAACAT CGGAATTAAG CAACAATCAA ACGCTCCTCA AAGCCCAGCC TATTACGCTT GGAACAACAT

ingose or in a sour

FIG.7J.

				-	
$_{ m LL}$	TTGGAGGCGT	TCACGATATT	GAATTTGACG	CACCCGCTCA	GCTGGCATAT
CT	CTACCCGAAA	AATTACTAAT	TTATTTTGCC	ACTCGTCTCG	CTAATGCAAT
ΤA	TACAACACTC	TTTTCCGACC	CCGAATTGGC	AATTTCTGAA	GAAGGGGCGT
TA	TAAAGATGAT	TAGCCTGCAA	CGCTGGTTGA	CGCTGATTTT	TGCCTCTTCC
\mathcal{C}	CCCTACGTTA	ACGCAGACCA	TATTCTCAAT	AAATATAATA	TCAACCCAGA
TJ	TTCCGAAGGT	GGCTTTCATT	TAGCAACAGA	CAACTCTTCT	ATTGCTAAAT
T.	TCTGTATTT	TTACTTACCC	GAATCCAATG	TCAATATGAG	TTTAGATGCG \$
Ţ	TTATGGGCAG	GGAATCAACA	ACTTTGTGCT	TCATTGTGTT	TTGCGTTGCA
G.	GTCTTCACGT	TTTATTGGTA	CCGCATCTGC	GTTTCATAAA	AGAGCGGTGG
Ħ	TTTTACAGTG	GTTTCCTAAA	AAACTCGCCG	AAATTGCTAA	TTTAGATGAA
7	TTGCCTGCAA	ATATCCTTCA	TGATGTATAT	ATGCACTGCA	GTTATGATTT
A	AGCAAAAAAC	AAGCACGATG	TTAAGCGTCC	ATTAAACGAA	CTTGTCCGCA
A(AGCATATCCT	CACGCAAGGA	TGGCAAGACC	GCTACCTTTA	CACCTTAGGT
AZ	AAAAAGGACG	GCAAACĊTGT	GATGATGGTA	CTGCTTGAAC	ATTTTAATTC
9	GACATTCG.	GGGACATTCG, ATTTATCGTA	CACATTCAAC	TTCAATGATT	GCTGCTCGAG
A	AAAAATTCTA	TTTAGTCGGC	TTAGGCCATG	AGGGCGTTGA	TAAAATAGGT

							43/8	32								
ATATAATGGA	CCCGCAGTGT	TGTGAGCAAC	CTGCCACTAC	TATGTGGGCA	AGATGCCCTA	ATGTACTCAG	ACAATGAAAT	TAAAGCTAAA	GCTTGACACA	GATGCCACTG	GCGTGATTGC	GCATAATTGA	GATGAAGTAC	ACCAGAATGG	TGCGTCTAGC	ATAGAAAACA
AGTAGCAATA	AACTTTCCAA	CCACGATTTT	CTGGGTCATC	AGAAGATGAT	GCTTACCCAA	AAAGTGGATT	TGCCGCTACC	AAATCAGAGA	CAATCAACAG	TTTAGGTGAC	TGGCAATATT	AATACTAACG	CAAAACGGGG	GCTTAGGACT	GAATGTGCTT	TCGTTACATC
CTTTGAAATC	AACAGTGCGA	ATGGATATTA	AGCTGTAGCC	ATGTCATCGT	ACCCTTTTAC	CGCCCCACAA	ATATCGGTAT	ACATTGCAAG	CGCACTTGGA	TCGAAAGCTA	CACGATTATC	TCCTTTCGGT	TTGGTGTATG	CTGTTTAAAC	AACATATATT	TTGAACTCCG
TTGACGAGTT	TTTATCCGTA	AAGCATTGGC	CCCCTATTCA	TTTATTGATT	TTTCAGCGAA	CTTCTGCACT	GAAGTAGTCA	ATTTTTGCTA	ATTTTCATTT	AAATGGTTTA	CGCACCTTAT	TAAATCCGTT	TTAGGTTTAG	TGATGAAGGT	ACACACGAGA	CAAGAACGCC
CGAGAAGTGT	GAGACTGTTT	TCTATATGCC	ACTCGGCTTG	GCATTCTGAA	GTGAAGATTG	CCTTATGTAC	GGAAAACCCT	TAAACCCTGA	GTCAAAATAC	CCCTTATGTC	CACATCCCCA	GATATGCTAC	TATGGTTACA	ATGAACATAT	CTGATAGCCG	AGAAAACCAT
8251	8301	8351	8401	8451	8501	8551	8601	8651	8701	8751	8801	8851	8901	8951	9001	9051

FIG.7K.

FIG.7L.

ACGGCTTACA AAAGCTTTTT ACAGGCGACC CTCGTCCATT GGGCAAATA CTGCTTAAGA AAACAAATGA ATGGAAGCGG AAGCACTTGA GTAAAAAAA CTCTCAAAAA TCAACCGCAC TTTTATCTTT ATAACGATCC CGCACGCTGA CAGTTTATCA GCCTCCCGCC ATAAAACTCC GCCTTTCATG GCGGAGATTT ACGGTTTTTT AAAGTAAAAG TGCGGTTAAT TTTCAAAGCG TTTTAAAAAC TAGCCAAAAC TGGCAGAAAT TAAAGGCTAA AATCACCAAA TTGCACCACA AAATCACCAA TACCCACAAA AAA 9151 9251 9101 9201 9301 9351 9401

FIG.8A

1 ATGAACAAGA TATATCGTCT CAAATTCAGC AAACGCCTGA ATGCTTTGGT

TECTICTICT GAATTGACAC GGGGTTGTGA CCATTCCACA GAAAAAGGCA

101 GIGAAAACC IGIICGIACG AAAGIACGCC ACIIGGCGII AAAGCCACII

TCCGCTATAT TGCTATCTTT GGGCATGGCA TCCATTCCGC AATCTGTTTT 201 AGCGAGCGGT TTACAGGGAA TGAGCGTCGT ACACGGTACA GCAACCATGC

AAGTAGACGG CAATAAAACC ACTATCCGTA ATAGCGTCAA TGCTATCATC

301 AATTGGAAAC AATTTAACAT TGACCAAAAT GAAATGGTGC AGTTTTTACA

45/82 AGAAAGCAGC AACTCTGCCG TTTTCAACCG TGTTACATCT GACCAAATCT

401 CCCAATTAAA AGGGATTTTA GATTCTAACG GACAAGTCTT TTTAATCAAC

CCAAATGGTA TCACAATAGG TAAAGACGCA ATTATTAACA CTAATGGCTT

501 TACTGCTTCT ACGCTAGACA TITCTAACGA AAACATCAAG GCGCGTAATT

TCACCCTTGA GCAAACCAAG GATAAAGCAC TCGCTGAAAT CGTGAATCAC

601 GGTTTAATTA CCGTTGGTAA AGACGGTAGC GTAAACCTTA TTGGTGGCAA

AGTGAAAAAC GAGGGCGTGA TTAGCGTAAA TGGCGGTAGT ATTTCTTTAC

701 TTGCAGGGCA AAAAATCACC ATCAGGGATA TAATAAATCC AACCATCACT

TACAGCATTG CTGCACCTGA AAACGAAGCG ATCAATCTGG GCGATATTTT

FIG 8B

801 TGCCAAAGGT GGTAACATTA ATGTCCGCGC TGCCACTATT CGCAATAAAG

GTAAACTTTC TGCCGACTCT GTAAGCAAAG ATAAAAGTGG TAACATTGTT

901 CICICIGCCA AAGAAGGIGA AGCGGAAAIT GGCGGIGIAA TITICCGCTCA

AAATCAGCAA GCCAAAGGTG GTAAGTTGAT GATTACAGGC GATAAAGTTA

1001 CATTGAAAAC GGGTGCAGTT ATCGACCTTT CGGGTAAAGA AGGGGGAGAA

ACTIVATICITIG GCGGTGACGA GCGTGAGAGAAGCG GCATTICAATT

1101 AGCAAAGAAA ACCACTTTAG AAAAAGGCTC AACAATTAAT GTGTCAGGTA

46/82 AAGAAAAAGG TGGGCGCCT ATTGTATGGG GCGATATTGC GTTAATTGAC

1201 GGCAATATTA ATGCCCAAGG TAAAGATATC GCTAAAACTG GTGGTTTTTGT

GGAGACGTCG GGGCATTACT TATCCAITGA TGATAACGCA ATTGTTAAAA

1301 CAAAAGAATG GCTACTAGAC CCAGAGAATG TGACTAITGA AGCTCCTTCC

GCTTCTCGCG TCGAGCTGGG TGCCGATAGG AATTCCCACT CGGCAGAGGT

1401 GATAAAAGTG ACCCTAAAAA AAAATAACAC CTCCTTGACA ACACTAACCA

ATACAACCAT TTCAAATCTT CTGAAAAGTG CCCACGTGGT GAACATAACG

1501 GCAAGGAGAA AACTTACCGT TAATAGCTCT ATCAGTATAG AAAGAGGCTC

CCACTTAATT CTCCACAGTG AAGGTCAGGG CGGTCAAGGT GTTCAGATTG

FIG.8C

1601 ATAAAGATAT TACITCIGAA GGCGGAAAIT TAACCAITITA ITCIGGCGGA

TGGGITGATG TTCATAAAA TAITACGCIT GGTAGCGGCT TTTTAAACAT

1701 CACAACTAAA GAAGGAGATA TCGCCTTCGA AGACAAGTCT GGACGGAACA

ACCTAACCAT TACAGCCCAA GGGACCATCA CCTCAGGTAA TAGTAACGGC

1801 TITAGATITA ACAACGICIC TCTAAACAGC CTTGGCGGAA AGCTGAGCTT

TACTGACAGC AGAGAGACA GAGGTAGAAG AACTAAAGGGT AATATCTCAA

1901 ACAAATTTGA CGGAACGITA AACAITITCCG GAACTGTAGA TATCTCAATG

IGTAGA TATCTCAATG
AAAGCACCCA AAGTCAGCTG GTTTTACAGA GACAAAGGAC GCACCTACTG 8

2001 GAACGTAACC ACTITAAATG TTACCTCGGG TAGTAAATTT AACCTCTCCA

TTGACAGCAC AGGAAGTGGC TCAACAGGTC CAAGCATACG CAATGCAGAA

2101 TTAAATGGCA TAACATTTAA TAAAGCCACT TTTAATATCG CACAAGGCTC

AACAGCTAAC TTTAGCATCA AGGCATCAAT AATGCCCTTT AAGAGTAACG

2201 CTAACTACGC ATTATTTAAT GAAGATATTT CAGTCTCAGG GGGGGGTAGC

CITAATITICA AACITAACGC CICAICTAGC AACATACAAA CCCCTGGCGT

3301 AATTATAAAA TCTCAAAACT TTAATGTCTC AGGAGGGTCA ACTTTAAATC

TCAAGGCTGA AGGTTCAACA GAAACCGCTT TTTCAATAGA AAATGATTTA

FIG.8D

2401 AACTTAAACG CCACCGGTGG CAATATAACA ATCAGACAAG TCGAGGGTAC

CGATTCACGC GTCAACAAAG GTGTCGCAGC CAAAAAAAA ATAACTTTTA

2501 AAGGGGGTAA TATCACCTTC GGCTCTCAAA AAGCCACAAC AGAAATCAAA

GGCAATGTTA CCATCAATAA AAACACTAAC GCTACTCTTT GTGGTGCGAA

2601 TITIGCCGAA AACAAATCGC CTTTAAATAT AGCAGGAAAT GTTATTAATA

ATGGCAACCT TACCACTGCC GGCTCCATTA TCAATATAGC CGGAAATCTT

2701 ACTGTTTCAA AAGGCGCTAA CCTTCAAGCT ATAACAAATT ACACTTTTAA

48/82 TGTAGCCGGC TCATTTGACA ACAATGGCGC TTCAAACATT TCCATTGCCA

2801 GAGGAGGGC TAAATTTAAA GATATCAATA ACACCAGTAG CTTAAATATT

ACCACCAACT CTGATACCAC TTACCGCACC ATTATAAAAG GCAATATATC

2901 CAACAAATCA GGTGATTTGA ATATTATTGA TAAAAAAGC GACGCTGAAA

TCCAAATTGG CGGCAATATC TCACAAAAG AAGGCAATCT CACAATTTCT

3001 TCTGATAAAG TAAATATTAC CAATCAGATA ACAATCAAAG CAGGCGTTGA

AGGGGGCGT TCTGATTCAA GTGAGGCAGA AAATGCTAAC CTAACTATTC

3101 AAACCAAAGA GTTAAAATTG GCAGGAGACC TAAATATTTC AGGCTTTAAT

AAAGCAGAAA TTACAGCTAA AAATGGCAGT GATTTAACTA TTGGCAATGC

FIG.8E

3201 TAGCCGTGGT AATGCTGATG CTAAAAAGT GACTTTTGAC AAGGTTAAAG

AITCAAAAAI CICGACIGAC GGICACAAIG IAACACIAAA IAGCGAAGIG

3301 AAAACGICTA AIGGIAGIAG CAAIGCIGGI AAIGAIAACA GCACCGGIII

AACCATTITCC GCAAAAGATG TAACGGTAAA CAATAACGTT ACCTCCCACA

3401 AGACAATAAA TATCTCTGCC GCAGCAGGAA ATGTAACAAC CAAAGAAGGC

ACAACTATCA ATGCAACCAC AGGCAGCGTG GAAGTAACTG CTCAAAATGG

3501 TACAATTAAA GGCAACATTA CCTCGCAAAA TGTAACAGTG ACAGCAACAG

49/82 AAAATCTTGT TACCACAGAG AATGCTGTCA TTAATGCAAC CAGCGGCACA

3601 GTAAACATTA GTACAAAAAC AGGGGATAIT AAAGGTGGAA TTGAATCAAC

TTCCGGTAAT GTAAATATTA CAGCGAGCGG CAATACACTT AAGGTAAGTA

3701 ATATCACTGG TCAAGATGTA ACAGTAACAG CGGATGCAGG AGCCTTGACA

ACTACAGCAG GCTCAACCAT TAGTGCGACA ACAGGCAATG CAAATATTAC

3801 AACCAAAACA GGTGATATCA ACGGTAAAGT TGAATCCAGC TCCGGCTCTG

TAACACTIGT TGCAACTGGA GCAACTCTTG CTGTAGGTAA TATTTCAGGT

3901 AACACTGTTA CTATTACTGC GGATAGCGGT AAAITAACCT CCACAGTAGG

TTCTACAATT AATGGGACTA ATAGTGTAAC CACCTCAAGC CAATCAGGCG

FIG.8F

4001 ATATTGAAGG TACAATTTCT GGTAATACAG TAAATGTTAC AGCAAGCACT

GGTGATTTAA CTATTGGAAA TAGTGCAAAA GTTGAAGCGA AAAATGGAGC

1101 TGCAACCITA ACTGCTGAAT CAGGCAAAIT AACCACCCAA ACAGGCTCTA

GCATTACCTC AAGCAATGGT CAGACAACTC TTACAGCCAA GGATAGCAGT

1201 ATCGCAGGAA ACATTAATGC TGCTAATGTG ACGTTAAATA CCACAGGCAC

TITAACTACT ACAGGGATT CAAAGATTAA CGCAACCAGT GGTACCTTAA

301 CAATCAATGC AAAGATGCC AAATTAGATG GTGCTGCATC AGGTGACCGC

401 AACCTCAAGC AGCGTGAATA TCACCGGGGA TTTAAACACA ATAAATGGGT

TAAATATCAT TTCGGAAAAT GGTAGAAACA CTGTGCGCTT AAGAGGCAAG

501 GAAATTGATG TGAAATATAT CCAACCAGGT GTAGCAAGCG TAGAAGAGGT

AATTGAAGCG AAACGCGTCC TTGAGAAGGT AAAAGATTTA TCTGATGAAG

101 AAAGAGAAAC ACTAGCCAAA CITGGTGTAA GTGCTGTACG TTTCGTTGAG

CCAAATAATG CCATTACGGT TAATACACAA AACGAGTTTA CAACCAAACC

'01 ATCAAGTCAA GTGACAATTT CTGAAGGTAA GGCGIGTTTC TCAAGTGGTA

ATGGCGCACG AGTATGTACC AATGTTGCTG ACGATGGACA GCAG

FIG.9A

TECTGTGTCT GAATTGACAC GGGGTTGTGA CCATTCCACA GAAAAAGGCA 1 ATGAACAAGA TATATCGTCT CAAATTCAGC AAACGCCTGA ATGCTTTGGT

TCCGCTATAT TGCTATCTTT GGGCATGGCA TCCATTCCGC AATCTGTTTT 101 GIGAAAAACC IGIICGIACG AAAGIACGCC ACIIGGCGIII AAAGCCACIII

AAGTAGACGG CAATAAAACC ACTATCCGTA ATAGCGTCAA TGCTATCATC 201 AGCGAGCGGT TTACAGGGAA TGAGCGTCGT ACACGGTACA GCAACCATGC

301 AAITIGGAAAC AAITITAACAT TGACCAAAAT GAAATIGGTGC AGTTTTTTACA

CCAAATGGTA TCACAATAGG TAAAGACGCA AITTATTAACA CTAATGGCTT 401 CCCAATTAAA AGGGATTTTA GATTCTAACG GACAAGTCTT TTTAATCAAC

501 TACTGCTTCT ACGCTAGACA TITICTAACGA AAACATCAAG GCGCGTAATT

TCACCCTTGA GCAAACCAAG GATAAAGCAC TCGCTGAAAT CGTGAATCAC

AGTGAAAAAC GAGGGCGTGA TTAGCGTAAA TCGCCGGTAGT ATTTTCTTTTAC 601 GGTTTPAITTA CCGTTGGTAA AGACGGTAGC GTAAACCTTA TTGGTGGCAA

TACAGCATTIG CTGCACCTGA AAACGAAGCG ATCAATCTGG GCGATATTTT 701 TICCAGGGCA AAAAATCACC ATCAGCGATA TAATAAATCC AACCATCACT

FIG.9B

801 TGCCAAAGGT GGTAACATTA ATGTCCGCGC TGCCACTATT CGCAATAAAG

GTAAACTTTC TGCCGACTCT GTAAGCAAAG ATAAAAGTGG TAACATTGTT

901 CTCTCTGCCA AAGAAGGTGA AGCGGAAATT GGCGGTGTAA TITTCCGCTCA

AAATCAGCAA GCCAAAGGTG GTAAGTTGAT GATTACAGGT GATAAAGTCA

1001 CATTAAAAAC AGGTGCAGTT ATCGACCTTT CAGGTAAAGA AGGGGGAGAG

ACTIVATOTIG GCGGIGATGA GCGTGGCGAA GGTAAAAATG GTATICAATT

1101 AGCGAAGAAA ACCTCTTTAG AAAAAGGCTC GACAATTAAT GTATCAGGCA

TAAT GTATCAGGCA
AAGAAAAGG CGGGCGCGCT ATTGTATGGG GCGATATTGC ATTAATTAAT 5

1201 GGTAACATTA ATGCTCAAGG TAGCGATATT GCTAAAACTG GCGGCTTTGT

GGAAACATCA GGACATGACT TATCCATTGG TGATGATGTG ATTGTTGACG

1301 CTAAAGAGIG GITATTAGAC CCAGAIGAIG IGICCATIGA AACICITACA

TCTGGACGCA ATAATACCGG CGAAAACCAA GGATATACAA CAGGAGATGG

.401 GACTAAAGAG TCACCTAAAG GTAATAGTAT TTCTAAACCT ACATTAACAA

ACTCAACTCT TGAGCAAATC CTAAGAAGAG GTTCTTATGT TAATATCACT

501 GCTAATAATA GAATTTATGT TAATAGCTCC ATCAACTTAT CTAATGGCAG

TITIAACACIT CACACTAAAC GAGATGGAGT TAAAATTAAC GSTGATATTA

FIG.9C

1601 CCTCAAACGA AAATGGTAAT TTAACCAITA AAGCAGGCTC TTGGGTTGAT

GITCATAAAA ACAICACGCT IGGIACGGGT IITIIGAAIA IIGICGCIGG

1701 GGATTCTGTA GCTTTTGAGA GAGAGGGCGA TAAAGCACGT AACGCAACAG

ATGCTCAAAT TACCGCACAA GGGACGATAA CCGTCAATAA AGATGATAAA

1801 CAATTTAGAT TCAATAATGT ATCTATTAAC GGGACGGGCA AGGGTTTAAA

GTTTATTGCA AATCAAAATA ATTTCACTCA TAAATTTGAT GGCGAAATTA

TACTGGAATG CATCAAAGA CTCTTACTGG AATGTTTCTT CTCTTACTTT 68 1901 ACATATCTGG AATAGTAACA ATTAACCAAA CCACGAAAAA AGATGTTAAA

2001 GAATACGGIG CAAAAATITIA CCITTIATAAA AITCGITGAT AGCGGCTCAA

ATTCCCAAGA TTTGAGGTCA TCACGTAGAA GTTTTGCAGG CGTACATTTT

101 AACGGCATCG GAGGCAAAAC AAACTTCAAC ATCGGAGCTA ACGCAAAAGC

CTTATTTAAA TTAAAACCAA ACGCCGCTAC AGACCCAAAA AAAGAATTAC

201 CTATTACTTT TAACGCCAAC ATTACAGCTA CCGGTAACAG TGATAGCTCT

GTGATGTTTG ACATACACGC CAATCTTACC TCTAGAGCTG CCGGCATAAA

301 CAIGGAITICA ATTAACAITIA CCGGCGGGCT TGACTITICC ATAACATCCC

ATAATOGCAA TAGTAATGCT TITGAAATCA AAAAGACTT AACTATAAAT

FIG.9D

2401 GCAACTGGCT CGAATTTTAG TCTTAAGCAA ACGAAAGATT CTTTTTATAA

TGAATACAGC AAACACGCCA TTAACTCAAG TCATAATCTA ACCATTCTTG 2501 GCGGCAATGT CACTCTAGGT GGGGAAATT CAAGCAGTAG CATTACGGGC

AATATCAATA TCACCAATAA AGCAAATGTT ACATTACAAG CTGACACCAG

2601 CAACAGCAAC ACAGGCTTGA AGAAAAGAAC TCTAACTCTT GGCAATATAT

CIGITGAGGG GAAITTAAGC CTAACTGGTG CAAATGCAAA CATTGTCGGC

2701 AATCITICIA ITGCAGAAGA ITCCACAITT AAAGGAGAAG CCAGIGACAA

CCTAAACATC ACCGGCACCT TTACCAACAA CGGTACCGCC AACATTAATA

2801 TAAAACAAGG AGTGGTAAAA CTCCAAGGCG ATATTATCAA TAAAGGTGGT

Thaataica characc cicagocact caaaaaacca italiaacce

1901 AAATATAACT AACGAAAAAG GCGACTTAAA CATCAAGAAT ATTAAAGCCG

ACGCCCAAAT CCAAATTGGC GGCAATATCT CACAAAAAA AGGCAATCTC

.001 ACAATTTCTT CTGATAAAGT AAATATTACC AATCAGATAA CAATCAAAGC

AGGCGTTGAA GGGGGGCGTT CTGATTCAAG TGAGGCAGAA AATGCTAACC

101 TAACTATTCA AACCAAAGAG TTAAAATTGG CAGGAGACCT AAATATTTCA

GCCITTAATA AAGCAGAAAT TACAGCTAAA AATGGCAGTG ATTTAACTAT

201 TGGCAATGCT AGCGGTGGTA ATGCTGATGC TAAAAAAGTG ACTTTTGACA

AGGITAAAGA TICAAAAATC ICGACIGAGG GICACAAIGI AACACIAAAI

FIG.9E

3301 AGCGAAGTGA AAACGTCTAA TGGTAGTAGC AATGCTGGTA ATGATAACAG

CACCGGTTTA ACCATTTCCG CAAAAGATGT AACGGTAAAC AATAACGTTA

3401 CCICCCACAA GACAATAAAT ATCICTGCCG CAGCAGGAAA TGTAACAACC

3501 TCAAAATGGT ACAATTAAAG GCAACATTAC CTCGCAAAAT GTAACAGTGA

AAAGAAGGCA CAACTATCAA TGCAACCACA GGCAGCGTGG AAGTAACTGC

CAGCAACAGA AAATCTTGTT ACCACAGAGA ATGCTGTCAT TAATGCAACC

3601 AGCCGCACAG TAAACATTAG TACAAAAACA GCCGATATTA AAGGTGGAAT

TGAATCAACT TCCGGTAATG TAAATATTAC AGCGAGCGGC AATACACTTA 50

3701 AGGTAAGTAA TATCACTGGT CAAGATGTAA CAGTAACAGC GGATGCAGGA

GCCTTGACAA CTACAGCAGG CTCAACCATT AGTGCGACAA CAGGCAATGC

1801 AAATATTACA ACCAAAACAG GTGATATCAA CGGTAAAGTT GAATCCAGCT

CCGGCICIGT AACACTIGIT GCAACTGGAG CAACTCITGC TGTAGGTAAT

.901 ATTICAGGTA ACACTGTTAC TATTACTGCG GATAGCGGTA AATTAACCTC

. CACAGTAGGT TCTACAATTA ATGGGACTAA TAGTGTAACC ACCTCAAGCC

001 AATCAGGCGA TATTGAAGGT ACAATTTCTG GTAATACAGT AAATGTTACA

SCAAGCACTG GTGATTTAAC TATTGGAAAT AGTGCAAAAG TTGAAGCGAA

FIG.9F

4101 AAATGGAGCT GCAACCTTAA CTGCTGAATC AGGCAAATTA ACCACCAAA

CAGGCTCTAG CATTACCTCA AGCAATGGTC AGACAACTCT TACAGCCAAG

4201 GATAGCAGTA TCGCAGGAAA CATTAATGCT GCTAATGTGA CGTTAAATAC

CACAGGCACT TTAACTACTA CAGGGGATTC AAAGATTAAC GCAACCAGTG

1301 GTACCTTAAC AATCAATGCA AAAGATGCCA AATTAGATGG TGCTGCATCA

GGTGACCGCA CAGTAGTAAA TGCAACTAAC GCAAGTGGCT CTGGTAACGT

401 GACTGCGAAA ACCTCAAGCA GCGTGAATAT CACCGGGGAT TTAAACACAA

TAAATGGGTT AAATATCATT TCGGAAAATG GTAGAAACAC TGTGCGCTTA 99 88

501 AGAGGCAAGG AAATTGATGT GAAATATATC CAACCAGGTG TAGCAAGCGT

AGAAGAGGTA ATTGAAGCGA AACGCGTCCT TGAGAAGGTA AAAGATTTAT

601 CTGATGAAGA AAGAGAAACA CTAGCCAAAC TTGGTGTAAG TGCTGTACGT

TICGTTGAGC CAAATAATGC CATTACGGTT AATACACAAA ACGAGTTTAC

101 AACCAAACCA TCAAGICAAG TGACAAITITC TGAAGGIAAG GCGIGITITCI

CAAGTGGTAA TGGCGCACGA GTATGTACCA ATGTTGCTGA CGATGGACAG

101 CAG

lulychan lauch

FIG.10A

COMPARISON OF DERIVED AMINO ACID SEQUENCE

7.72 Com	1				20	
FILMSCOM	MINKL Y.KL.K.F.'S	KRLNALVAVS	ELTRGCDHST	EKGSEKPVRT	KVRHLALKPL	
Hmw4com	MIKIYRLKFS	KRLNALVAVS	ELTRGCDHST	EKGSEKPVRT	KVRHLALKPL	
Hmlcom	MNKIYRLKES	KRLNALVAVS	ELIRGCDHST	EKGSEKPVRT	KVRHLALKPL	
Hmv2com	MIKIYRLKFS	KRLNALVAVS	ELTRGCDHST	EKGSEKPVRT	KVRHLALKPL 52/85	
Hmw3com	51 SAILLSLAMA	SIPQSVLASG	TQAMSVVHGT	ATMOVIDGNIKT	100 TIRNSVNAII	
Hrw4com	SAILLSLAMA	SIPOSVLASG	LQGMSVVHGT	ATMQVDGNKT	TIRNSVNAII	
Hmw2com	SAMLLSLGVT	SIPOSVLASG	LQGMSWHGT	ATIMOVIDGINKT	TIRNSVNAII	
Hmw2com	SAMLLSLGVT	SIPOSVLASG	LQCMSVVHGT	ATMOVIDGINKT	TIRNSVNALI	

FIG.10B

			58	3/82				
150 DSNSQVFLIN	DSNSQVFLIN	DSNSQVFLIN	DSNSQVFLIN		200 DKALAEIVNH	DKALAETVNH	DKALAEIVNH	DKALAEIVNH
MISQLKSIL	DQISQLKGIL	NQISQLKGIL	NQİSQLKGIL		ARNFTILEQTIK	ARNFTLEQTK	ARNFTLEQTK	ARNFTLEQTK
NSAVFNRVTS	NSAVFNRVTS	NSAVFNRVTS	NSAVFNRVTS		TLDISNENIK	TLDISNENIK	TLDISNENIK	TLDISNENIK
EMEQFIQESS	EMEQFTQESS	EMVQFTQEINI	EMVQFIQENN		IININSFTAS	IININSFTAS	IINTINSFTAS	IINTNSFTAS
101 NWKQFNIDQN	NWKQFNIDQN	NWKQFNIDQN	NWKQFINIDQN	,	151 PNGITIGKDA	PNGITIGKDA	PNGITIGKDA	PNGITIGKDA
Hmw3com	Hrw4com	Hmwlcom	Hmw2com		Hrw3com	Hmw4com	Himlcom	Hmw2com

FIG.10C

C	OCZ LILIANII I GSI	ISDIINPTIT	ISDIINPTIT	59/82 LILIANIIQSI	300 VSKDKSGNIV
	ISLLAGOKIT	ISLLAGOKIT	ISLLAGOKIT	ISLLAGQKIT	RNKGKLSADS
	EGVISVNGGS	EGVISVNGGS	EGVISVNGGS	EGVISVNGGS	GNINVRAATI
	VNLIGGKVKN	VNLIGGKVKN	VNLIGGKVKN	VNLIGGKVKN	INLGDIFAKG
201	GLITVGKDGS	GLITVGKDGS	GLITVGKDGS	GLITVGKDGS	251 YSIAAPENEA
	Hmv3com	Hmv4com	Hmw1com	Hrw2com	Hmv3com

FIG. 10D.

VSKDKSGNIV YSIAAPENEA INLGDIFAKG GNINVRAATI RNKGKLSADS VSKDKSGNIV YSIAAPENEA VNLGDIFAKG GNINVRAATI RNKGKLSADS VSKDKSGNIV YSIAAPENEA VNLGDIFAKG GNINVRAATI RNKGKLSADS Hmw4com Hmw1com Hmw2com

350 301

GGVISAQNQQ AKGGKLMITG DKVTLKTGAV IDLSGKEGGE 80 LSAKEGEAEI GGVISAQNQQ AKGGKLMITG DKVTLKTGAV IDLSGKEGGE GGVISAQNQQ AKGGKLMITG DKVTLKTGAV IDLSGKEGGE GGVISAQNQQ AKGGKLMITG DKVTLKTGAV IDLSGKEGGE LSAKEGEAEI LSAKEGEAEI LSAKEGEAEI Hmw3com Hmw4com Hmw1com Hmw2com

351

400 TYLGGDERGE GKNGIQLAKK TTLEKGSTIN VSGKEKGGRA IVWGDIALID TYLGGDERGE GKNGIQLAKK TTLEKGSTIN VSGKEKGGRA IVWGDIALID TYLGGDERGE GKNGIQLAKK TTLEKGSTIN VSGKEKGGRA IVWGDIALID GKNGIQLAKK TTLEKGSTIN VSGKEKGGRA IVWGDIALID TYLGGDERGE Hmw3com Hmw2com Hmw4com Hmw1com

FIG. 10E.

401

450

GNINAQGK.D IAKTGGFVET SGHYLSIDDN AIVKTKEWLL DPENVTIEAP DPDDVSIETL GNINAQGSGD IAKTGGFVET SGHDLFIKDN AIVDAKEWLL DPDNVTINAE GNINAQGSGD IAKTGGFVET SGHYLSIESN AIVKTKEWLL DPDDVTIEAE GNINAQGS.D IAKTGGFVET SGHDLSIGDD VIVDAKEWLL Hmw3com Hmw4com Hmw2com Hmw1com

500

1/82 ILRRGSYVNI DPLRNNTGIN DEFPTGTGEA SDPKKNSELK TTLTNTTISN YLKNAWTMNI SASRVELGAD RNSHSAEVIK VTLKKNNTSL TTLTNTTISN LLKSAHVVNI ILKKGTFVNI PTLTNSTLEQ STPKRNKE.K TTLTNTTLES TSGRNNTGEN QGYTTGDGTK ESPKGNSISK TAGRSNTSED DEYTGSGNSA Hmw3com Hmw4com Hmw2com Hmw1com

550 501

SISIERGSHL ILHSEGQGGQ GVQIDKDITS .E...GGNLT TANNRIYVNS SINLSNGS.L TLHTK...RD GVKINGDITS NE...NGNLT TANORIYVNS SINL. SNGSL TLWSEGRSGG GVEINNDITT GDDTRGANLT ... SKGGNLT TASRKLTVNS SINGSNGSHL ILHSKGQRGG GVQIDGDIT. TARRKLTVNS Hmw3com Hmw4com Hmw1com Hmw2com

1009E39U USUCU

FIG. 10F.

551

009 IYSGGWVDVH KNITLGS.GF LNITTKEGDI AFEDKSGR.. ..NNLTITAQ IKAGSWVDVH KNITLGT.GF LNIVAGDS.V AFEREGDKAR NATDAQITAQ IYSGGWVDVH KNISLGAQGN INITAKQD.I AFEKGSNQV.ITGQ IYSGGWVDVH KNITLD.QGF LNITA.AS.V AFEGGNNKAR DANNLTITAQ Hmw3com Hmw4com Hmw2com Hmw1com

601

62/82 650 GTITSG.NSN GFRFNNVSLN SLGGKLSFTD SREDRGRRTK GNISNKFDGT .NFTHKFDGE GTIT.SGNQK GFRFNNVSLN GTGSGLQFTT KRTN....K YAITNKFEGT SVNN......LTHNLSGT GTITVNKDDK QFRFNNVSIN GTGKGLKFIA NQN...... GTVTITGEGK DFRANNVSLN GTGKGLNIIS Hmw2com Hmw1com Hmw3com Hmw4com

651

700 LNISGTVDIS MKAPKVSWFY RD.KGRTYWN VTTLNVTSGS KFNLSIDSTG KFTF.IKFVD MVLPKNESGY DKFKGRTYWN LTSLNVSESG EFNLTIDSRG QTTKKDVKYW NA.SKDSYWN VSSLTLNTVQ INISGIVTIN LNISGKVNIS Hmw3com Hmw4com Hmw1com

FIG. 10G.

INISGNITIN QTTRKNTSYW QTSHD.SHWN VSALNLETGA NFTF.IKYIS Hmw2com

750

701

SGSTG...PS IRNA..ELNG ITFN....KA TFNIAQGSTA NFSIKASIMP SGSNS...QD LRSSRRSFAG VHFNGIGGKT NFNIGANAKA LFKLKPNAAT SNSKGLTTQY RSSAGVNFNG V..N., GNM SFNLKEGAKV NFKLKPNENM SDSAGTLTQ.PYNLNG ISFN...KDT TFNVERNARV NFDIKAPIGI Hmw2com Hmw4com Hmw3com Hmw1com

751

63/82 0 0 8 GGSVNFKLN ASSSNIQTPG VIIKSONFNV DPKKELPIT. FNANITATGN SDSSVMFDIH A...NLTSRA AGINMDSINI GGSVDFTLL ASSSNVQTPG VVINSKYFNV NTSKPLPI.R FLANITATG. .GGSVFFDIY ANHS...GRG AELKMSEINI FKSNANYAL. FNEDISVSG. NKYSSLNYAS FNGNISVSG. Hmw4com Hmw3com Hmw2com Hmw1com

850 801

SGGSTLNLKA EGSTETAFSI ENDLNLNATG GNITIRQVEG T..DSRVNKG TGGLDFSITS HNRNSNAFEI KKDLTINATG SNFSLKQTKD SFYNEYSKHA Hmw4com Hmw3com

1004egau .ususu

FIG. 10H.

SNGANFTLNS HVRGDDAFKI NKDLTINATN SNFSLRQTKD DFYDGYARNA STGSSLRFKT SGSTKTGFSI EKDLTLNATG GNITLLQVEG T..DGMIGKG Hmw2com Hmw1com

900

851

64/82 INSTYNISIL GGNVTLGGQN SSSSITGNIT IEKAANVTLE ANNAPNQQNI INSSHNLTIL GGNVTLGGEN SSSSITGNIN ITNKANVTLQ ADTSNSNTGL VAAKKNITFK GGNITFGSQK ATTEIKGNVT INKNTNATLR GANFAEN... IVAKKNITFE GGNITFGSRK AVTEIEGNVT INNNANVTLI GSDFDNHQ. Hmw3com Hmw4com Hmw1.com Hmw2com

950 901

RDRVIKLGSL LVNGSLSLTG ENADIKGNLT ISESATFKGK TRDTLNITGN SVEGNLSLTG ANANIVGNLS IAEDSTFKGE ASDNLNITGT INSGNLTAGG NIVNIAGNLT VESNANFKAI TNFTFNVGGL SIINIAGNLT VSKGANLQAI TNYTFNVAGS KSPLNIAGNV INNGNLTTAG KPLTIKKDVI KKRTLTLGNI Hmw4com Hmw1com Hmw3com Hmw2com

951

FTNNGTAEIN ITQGVVKLG. NVTNDGDLNI TTHAKRNQRS IIGGDIINNK IARGGAKFK. DINNTSSLNI TINSDTTYRT IIKGNISNKS FTNNGTANIN IKQGVVKLQG DINNKGGLNI TTNASGTQKT TTNSSSTYRT DIDNSKNLSI IAKGGARFK. FDNNGASNIS FDNKGNSNIS FIG. 10I. Hmw3com Hmw2com Hmw4com Hmw1com

LINGNITNEK

IISGNITNKN

65/82 TIKAGVDGEN 1050 GDLNIIDKKS DAEIQIGGNI SQKEGNLTIS SDKVNITNQI TIKAGVEGGR TIKAGVEGGR SDKINITKQI TIKKGIDGED SDKINITKQI SDKVNITNQI SQKEGNLTIS SOKEGNLTIS SQKEGNLTIS GSLNITDSNN DAEIQIGGNI GDLNIKNIKA DAEIQIGGNI GDLNITNEGS DTEMQIGGDI Hmw3com Hmw4com Hmwlcom Hmw2com

1100 SDSSEAENAN LTIQTKELKL AGDLNISGFN KAEITAKNGS DLTIGNASGG SSSDATSNAN LTIKTKELKL TEDLSISGFN KAEITAKDGR DLTIGNSNDG SDSSEAENAN LTIQTKELKL AGDLNISGFN KAEITAKNGS DLTIGNASGG SDSDATNNAN LTIKTKELKL TQDLNISGFN KAEITAKDGS DLTIGNTNSA 1051 Hmw2com Hmw3com Hmw4com Hmw1com

1250

FIG. 10J.

1101

1150

SNAGNDNSTG SNAGNDNSTG TEDSSDNNAG RESNSDNDTG D.GTNAKKVT FNQVKDSKIS ADGHKVTLHS KVETSGSNNN N. . ADAKKVT FDKVKDSKIS TDGHNVTLNS EVKT. . SNGS N. ADAKKVT FDKVKDSKIS TDGHNVTLNS EVKT. . SNGS NSGAEAKKVT FNNVKDSKIS ADGHNVTLNS KVKTSSSNGG Hmw3com Hmw4com Hmw1com Hmw2com

1151

66/82 LTISAKDVTV NNNVTSHKTI NISAAAGNVT TKEGTTINAT TGSVEVTAQN LTISAKDVTV NNNVTSHKTI NISAAAGNVT TKEGTTINAT TGSVEVTAQN Hmw3com Hmw4com

1200

LTIDAKNVTV NNNITSHKAV SISATSGEIT TKTGTTINAT TGNVEIT.. Hmw1com

LTITAKNVEV NKDVTSLKTV NITA.SEKVT TTAGSTINAT NGKASIT... Hmw2com

1201

GTIKGNITSQ NVTVTATENL VTTENAVINA TSGTVNISTK TGDIKGGIES Hmw3com

GTIKGNITSQ NVTVTATENL VTTENAVINA TSGTVNISTK TGDIKGGIES Hmw4com Hmw1com

T MT	. 1300	GNTLKVSNIT GQDVTVTADA GALTTTAGST ISATTGNANI	GNTLKVSNIT GQDVTVTADA GALTTTAGST ISATTGNANI	EGALAVSNIS GNTVTVTANS GALTTLAGST IKG. TESVTT		1350	VESSSGSVTL VATGATLAVG NISGNTVTIT ADSGKLTSTV	VESSSGSVTL VATGATLAVG NISGNTVTIT ADSGKLTSTV	G TISGGTVEVK ATESLTTQSN	ATVDLTTKSG
	1251					1301		TTKTGDINGK VESSSGSVTL	ssosgng	GDIS
FIG.10K. Hmw2com		Hmw3com	Hmw4com	Hmw1com	Hmw2com		Hmw3com	Hmw4com	Hmw1com	Hmw2com

FIG. 10L.

SKIKATTGEA NVTSATGTIG GTISGNTVNV TANAGDLTVG NGAEINATEG SKIEAKSGEA NVTSATGTIG GTISGNTVNV TANAGDLTVG NGAEINATEG Hmw1com Hmw2com

1450

AATLTTSSGK LTTEASSHIT SAKGQVNLSA QDSSVAGSIN AANVTLNTTG AATLTAESGK LTTQTGSSIT SSNGQTTLTA KDSSIAGNIN AANVTLNTTG AATLTATGNT LTTEAGSSIT STKGQVDLLA QNSSIAGNIN AANVTLNTTG SSNGQTTLTA KDSSIAGNIN AANVTLNTTG AATLTAESGK LTTQTGSSIT Hmw1com. Hmw3com Hmw4com Hmw2com

1451

1500 TLTTTGDSKI NATSGTLTIN AKDAKLDGAA SGDRTVVNAT NASGSGNVTA TLTTTGDSKI NATSGTLTIN AKDAKLDGAA SGDRTVVNAT NASGSGNVTA TLTTVKGSNI NATSGTLTIN AKDAELNGAA LGNHTVVNAT NANGSGSVIA TLTTVAGSDI KATSGTLTIN AKDAKLNGDA SGDSTEVNAV NASGSGSVTA Hmw3com Hmw4com Hmw1com Hmw2com

FIG. 10M.

ATSSSVNITG DLNTVNGLNI ISKDGRNTVR LRGKEIEVKY IQPGVASVEE IQPGVASVEE IQPGIASVDE KTSSSVNITG DLNTINGLNI ISENGRNTVR LRGKEIDVKY IQPGVASVEE ISENGRNTVR LRGKEIDVKY ISKNGINTVL LKGVKIDVKY DLITINGLNI DLNTINGLNI TTSSRVNITG KTSSSVNITG Hmw3com Hmw2com Hmw4 com Hmw1com

1551

69/82 VIEAKRVLEK VKDLSDEERE TLAKLGVSAV RFVEPNNAIT VNTONEFTTK VIEAKRILEK VKDLSDEERE ALAKLGVSAV RFIEPNNTIT VDTQNEFATR VIEAKRVLEK VKDLSDEERE TLAKLGVSAV RFVEPNNTIT VNTQNEFTTR VIEAKRVLEK VKDLSDEERE TLAKLGVSAV RFVEPNNAIT VNTONEFTTK Hmw3com Hmw4com Hmw1com Hmw2com

1601

1632

(SEQ ID No: 10) PSSQVTISEG KACFSSGNGA RVCTNVADDG QQ (SEQID No: 9) (SEQ ID No: 2) PSSQVIISEG KACFSSGNGA RVCTNVADDG QP (SEQID No: 4) PSSQVTISEG KACFSSGNGA RVCTNVADDG QQ PLSRIVISEG RACFSNSDGA TVCVNIADNG R. Hmw3com Hmw1com Hmw2com Hmw4com

FIG. 10M.

ISENGRNTVR LRGKEIDVKY IQPGVASVEE ISENGRNTVR LRGKEIDVKY IQPGVASVEE ISKDGRNTVR LRGKEIEVKY IQPGVASVEE IQPGIASVDE ISKNGINTVL LKGVKIDVKY KTSSSVNITG DLNTINGLNI DLITINGLNI DLNTVNGLNI DLNTINGLNI ATSSSVNITG KTSSSVNITG TTSSRVNITG Hmw3com Hmw4com Hmw1com Hmw2com

69/82 TLAKLGVSAV RFVEPNNAIT VNTQNEFTTK VIEAKRVLEK VKDLSDEERE TLAKLGVSAV RFVEPNNAIT VNTQNEFTTK VIEAKRVLEK VKDLSDEERE TLAKLGVSAV RFVEPNNTIT VNTQNEFTTR ALAKLGVSAV RFIEPNNTIT VDTQNEFATR VIEAKRVLEK VKDLSDEERE VIEAKRILEK VKDLSDEERE Hmw4com Hmw3com Hmw1com Hmw2com

1551

1601

1632 PSSQVTISEG KACFSSGNGA RVCTNVADDG QQ PSSQVTISEG KACFSSGNGA RVCTNVADDG PLSRIVISEG RACFSNSDGA TVCVNIADNG RVCTNVADDG PSSQVIISEG KACFSSGNGA Hmw3com Hmw4com Hmw1com Hmw2com

kDa 200

116

94

67

43

HMW1

FIG. 11 HMW 2

WESTERN IMMUNOBLOT ASSAY OF PHAGE LYSATES CONTAINING EITHER THE HMW1 OR HMW2 RECOMBINANT PROTEINS. LYSATES WERE PROBED WITH AN E. COLIABSORBED ADULT SERUM SAMPLE WITH HIGH-TITER ANTIBODY AGAINST HIGH-MOLECULAR-WEIGHT PROTEINS. THE ARROWS INDICATE THE MAJOR IMMUNOREACTIVE PROTEIN BANDS OF 125 AND 120 kDa IN THE HMW1 AND HMW2 LYSATES, RESPECTIVELY.

43K

U | U | U | U | DHMW1-14
pHMW1-4

FIG. 12

WESTERN IMMUNOBLOT ASSAY OF CELL SONICATES PREPARED FROM *E. COLI* TRANSFORMED WITH PLASMID pT7-7 (LANES 1 AND 2) pHMW1-2 (LANES 3 AND 4), pHMW1-4 (LANES 5 AND 6), OR pHMW1-14 (LANES 7 AND 8). THE SONICATES WERE PROBED WITH AN *E. COLI*-ABSORBED ADULT SERUM SAMPLE WITH HIGH -TITER ANTIBODY AGAINST HIGH - MOLECULAR -WEIGHT PROTEINS. LANES LABELED U AND I REPRESENT SONICATES PREPARED BEFORE AND AFTER INDUCTION OF THE GROWING SAMPLES WITH IPTG, RESPECTIVELY. THE ARROWS INDICATE PROTEIN BANDS OF INTEREST AS DESCRIBED IN THE TEXT.

FIG. 13
ELISA WITH rHMW1 ANTISERUM ASSAYED AGAINST PURIFIED FILAMENTOUS HEMAGLUTININ OF B. PERTUSSIS. Ab, ANTIBODY.

200K

116K

94K

67K

43K

5 7 12 14 15 16 17 18

FIG. 14
WESTERN IMMUNOBLOT ASSAY OF CELL SONICATES FROM A
WESTERN IMMUNOBLOT ASSAY OF CELL SONICATES FROM A
PANEL OF EPIDEMIOLOGICALLY UNRELATED NONTYPEABLE H.
INFLUENZAE STRAINS. THE SONICATES WERE PROBED WITH
INFLUENZAE STRAINS. THE SONICATES WERE PROBED WITH
RABBIT ANTISERUM PREPARED AGAINST HMW1-4 RECOMBINANT
RABBIT ANTISERUM PREPARED AGAINST HMW1-4 RECOMBINANT
PROTEIN. THE STRAIN DESIGNATIONS ARE INDICATED BY THE
NUMBERS BELOW EACH LANE.

200K

116K

94K

67K

43K

5 7 12 14 15 16 17 18

FIG. 15

WESTERN IMMUNOBLOT ASSAY OF CELL SONICATES FROM A PANEL OF EPIDEMIOLOGICALLY UNRELATED NONTYPEABLE H. INFLUENZAE STRAINS. THE SONICATES WERE PROBED WITH MONOCLONAL ANTIBODY X3C, A MURINE IgG ANTIBODY WHICH RECOGNIZES THE FILAMENTOUS HEMAGGLUTININ OF B. PERTUSSIS (13). THE STRAIN DESIGNATIONS ARE INDICATED BY THE NUMBERS BELOW EACH LANE.

1 2 3 4

kDa

200

116

94

67

43

FIG. 16

IMMUNOBLOT ASSAY OF CELL SONICATES OF NONTYPABLE H. INFLUENZAE STRAIN 12 DERIVATIVES. THE SONICATES WERE PROBED WITH RABBIT ANTISERUM PREPARED AGAINST HMW-1 RECOMBINANT PROTEIN. LANES: 1, WILD-TYPE STRAIN; 2, HMW-2 MUTANT; 3, HMW-1 MUTANT; 4, HMW-1 / HMW-2 DOUBLE MUTANT.

IMMUNOELECTRON MICROSCOPY WITH Mab AD6 FIG.20

WESTERN IMMUNOBLOT ASSAY WITH Mab AD6 AND HMW1A OR HMW2A RECOMBINANT PROTEINS

FIG.21

WESTERN IMMUNOBLOT ASSAY WITH Mab 10C5 AND HMW1A OR HMW2A RECOMBINANT PROTEINS

FIG.22

WESTERN IMMUNOBLOT ASSAY WITH Mab AD6 AND TEN UNRELATED NONTYPABLE HAEMOPHILUS INFLUENZAE

FIG.23