

5 when applying the liquid onto the first surface, the substrate is present in a separate
6 extension body;
7 the extension body having substantially circumferential contact with the periphery of the
8 substrate, wherein said substantially circumferential contact limits fluid flow therebetween to, at
9 most, capillary flow;
10 the extension body having a surface substantially flush with the first surface of the
11 substrate; and
12 after at least partial solidification of the liquid, the extension body and the substrate are
13 separated.

1 2. (amended) The method as claimed in claim 1, wherein said extension body has an outer
2 periphery which has a circular shape.

1 3. (amended) The method as claimed in claim 1, wherein said extension body has an outer
2 periphery which has a polygonal shape.

1 4. (amended) The method as claimed in claim 3, wherein said extension body has an outer
2 periphery which has a regular polygonal shape.

1 5. (amended) The method as claimed in claim 1, wherein the surface of the extension body
2 consists of substantially the same material as the substrate of the optical storage disc.

1 6. (amended) The method as claimed in claim 1, wherein the surface of the extension body
2 consists of a material to which the coating adheres relatively poorly.

1 7. (amended) The method as claimed in claim 1, wherein said extension body is composed
2 of at least two parts with surfaces substantially flush with the first surface of the substrate.

1 8. (amended) The method as claimed in claim 1, wherein the liquid is solidified by
2 exposure to UV light.

Identification of Amended Material**In the Claims**

Please amend claim 1 as follows:

1. 1. (twice amended) A method of manufacturing a circular optical storage disc, comprising:
 2. providing a substrate with a first surface and a periphery; and
 3. providing a coating on the first surface by applying a liquid, rotating the substrate, and
 4. solidifying the liquid; and wherein:
 5. when applying the liquid onto the first surface, the substrate is present in a separate extension body;
 7. the extension body having substantially circumferential circumferentially contact with the periphery of the substrate, wherein said substantially circumferential contact limits fluid flow
 9. therebetween to, at most, capillary flow;
 10. the extension body having a surface substantially flush with the first surface of the substrate; and
 12. after at least partial solidification of the liquid, the extension body and the substrate are separated.