Coupling adaptive molecular evolution to phylodynamics using fitness-dependent birth-death models

Rasmussen and Stadler (eLife, 2019)

Seth D. Temple

STAT 591; APMA 990 Seattle, WA; Vancouver, BC March 29, 2023

Setting the scene: MTBD

Figure: Doctored version of Fig 1 (Rasmussen, 2019)

Contemporaneous challenges

- Fitness variation of muts affects tree process for microbes (viruses) → feedback loop
 - Common arg for indep. tree, mut processes in macro speciation is separate time scales
 - ▶ Distr. of fitness effects (DFE) is central ??? in evo bio
- 2. MTBD model (Stadler, 2013) compute scales $O(2^L)$ for binary char
 - (Stadler, 2013; Barrido-Sottani, 2018) study three phenotypes for HIV transmission
- Existing methods to study selection in phylogenetics use dN/dS w/ codon subs. models
 - ► (Harris slides, 2022; Temple, Waples, & Browning, 2023+) indicate other methods required for recent selection

Sneak peak: MFBD

Figure: Doctored version of Fig 1 (Rasmussen, 2019)

Remaining Agenda

- 1. Mathematical notation
- 2. MTBD: multi type birth death
 - 2.1 Two coupled ODEs
 - 2.2 Computing up tree to root
 - 2.3 Some equations explained
- 3. MFBD: marginal fitness birth death
 - 3.1 Key assumptions
 - 3.2 Some equations explained
- 4. Simulation studies
 - 4.1 Exact MTBD versus approx MFBD
 - 4.2 Distribution of fitness effects
- 5. Ebola analysis (epistasis)
- 6. Takeaways from influenza analysis

Notation

- n,m: lineages
- *i,j* : state types (genotypes, alleles)
- k,l : sites
- λ , d: birth, death rates
- γ : transition rates
- f, σ : fitness effects (gtype, site-specific)
- s, ρ : sampling rate at (death, t = 0)
- D(t): density subtree observations (descending)
- E(t): density state type leaves no observations (extinct)

More definitions at sdtemple.github.io/misc.html sdtemple.github.io/files/mfbd-handout-sdtemple.pdf

MTBD: D descending functions

$$\frac{d}{dt}D_{n,i}(t) = -(\lambda_i + \sum_{j=1}^{M} \gamma_{i,j} + d_i)D_{n,i}(t) \text{ no state transitions, no death}$$
You can develop/motivate this model as a continuous time Markov chain (Temple, 2021)
$$+2\lambda_i E_i(t)D_{n,i}(t) \qquad \text{(2) Birth of unsampled}$$

$$+\sum_{j=1}^{M} \gamma_{i,j}D_{n,j}(t) \qquad \text{(3) State transition}$$

Here + is separate in a total law sense.

The \times / \cdot is independence in contemporaneous event sense.

MTBD: E extinct functions

$$rac{d}{dt}E_i(t)=(1-s_i)d_i$$
 (1) not sampled at death $-(\lambda_i+\sum_{j=1}^M\gamma_{i,j}+d_i)E_i(t)$ (2) birth, both went extinct $+\sum_{j=1}^M\gamma_{i,j}E_j(t)$.

Those lines not annotated have similar interpretation as last.

Computing from tips to root

Based on pedigree peeling (Cannings, 1976) [Thompson], tree pruning (Felsenstein, 1981)

- 1. At tip of lineage $_n$, **initalize ODE** $D_{n,i}(t) = d_i s_i$ if t at death, else $= \rho_i$ (Also, initialize for $E(\cdot)$)
- 2. Solve ODEs
- 3. Moving up (back in real time), at branch point, $D_{a,i} = 2\lambda_i D_{m,i}(t) D_{n,i}(t)$
- 4. At root, form likelihood | non-extinction (akin to cond. sweep in SLiM)

$$D_n = \sum_{i=1}^{I} q_i D_{n,i}(t_{root})/[1 - E_i(t_{root})]$$

Computing from tips to root

MFBD: key assumptions

- 1. Approx genotype probs with marginal site probs
- Marginalize over genotype fitness w/ wtd geno probs to get site-specific fitness effects
- 3. Study discrete space of fitness classes for E densities
- 4. Trans rates $i \rightarrow j$ at site k don't depend on genetic background

Figure: 2.,3. explained next slide.

- 1. is nearly same as MTBD but w/ fitness-dependent births.
 - 1. Update $D_{n,k,i}$ by numerically integrating (**Equation 19**) over time step Δt .
 - 2. Update the marginal site probabilities $\omega_{n,k,i}$ using (**Equation 20**)
- 3. Update the expected marginal fitness values $\hat{f}_{n,k,i}$ using (**Equation 13**) or (**Equ**

MFBD: genotype probabilities, fitness

2.
$$\hat{\omega}_{n,g} = \frac{\prod_{k=1}^{L} \omega_{n,k,g_k}}{\sum_{g \in \mathcal{G}} \prod_{k=1}^{L} \omega_{n,k,g_k}}.$$

\sum over genotypes is a total law

3.

$$\hat{f}_{n,k,i} = \sum_{\{g \in \mathcal{G}: g_k = i\}} f_g \hat{\omega}_{n,g}.$$
 weighted average infer its

If fitness multiplicative

$$\hat{f}_{n,k,i} = \sigma_{ki} \prod_{l=1,l
eq k}^{L} \sum_{j=1}^{M} \sigma_{lj} \omega_{n,l,j},$$

Sim study: exact MTBD or approx MFBD

Figure: Comparing MFBD versus MTBD truth, where mean is over genotypes and time-integrated. Genotypes with favored allele 1, i.e., 01, 10, 11, more frequent as $t \to 0$

Sim study: exact MTBD or approx MFBD

Figure: Comparing MFBD versus MTBD truth, where mean is over genotypes and time-integrated. Uncoupled (dashed) is naive method and not of interest. Qualitatively similar finding when study epistatis.

Sim study: site-specific fitness

Figure: Site-specific fitness estimates and true fitness decreasing with num sites

Ebola data analysis

- Outbreak in West Africa 2014-2016
- 1610 viral samples

Figure: Epi dynamics from (Suchard, 2018). Also studied by (Stockdale, 2021), (Temple, 2021), others.

Ebola results: superimposed phylo tree

Figure: Inferred tree and MFBD params for Ebola 2014-2016. Red star highlights recent triple mutation of highest fitness, evidencing epistasis.

Ebola results: genotypes table

Genotype	Sample freq	Base model
Makona	0.036	1.00
A82V	0.720	1.05 (1.04–1.07)
P330S	0.002	0.98 (0.82–1.14)
P330S+N107D+G480D	0.037	1.04 (0.98–1.12)
A82V+R410S	0.044	1.09 (1.00–1.18)
A82V+R410S+K439E	0.035	1.14 (1.01–1.26)
A82V+R29K	0.019	1.06 (0.93–1.19)
A82V+T230A	0.026	1.03 (0.93–1.11)
A82V+I371V	0.067	1.03 (0.98–1.09)

Figure: Doctored Table 1 from (Rasmussen, 2019). Used genotype instead of site MFBD model b/c other study suggested epistasis. Genotype ranks preserved when geography incorporated.

Fitness between hosts in pop attenuated compared to Urbanowski cell culture infectivity

Influenza data analysis o takeaways

- BEAST2 MCMC never converged → caution
- Pop level fitness est in vivo did not correlate well with deep mutational scanning in vitro (yeast?)
 - But, ad hoc effort to incorporate DMS outside info improved likelihood substantially
- Rapid turnover in flu viruses (we all get sick) (Volz, 2013)
 - Phylogeography may be important
- Many muts occur once in phylogeny, same background as other muts in HA protein
 - "identifiability ... akin to ... collinearity in ... regression"

Concluding remarks

- Marginal fitness birth death model is approx, scalable way to study fitness effects in rapidly evolving microbes
 - Builds upon multi type birth death model by approximating multi site genotypes with site-specific contributions
- Real data analysis teaches that epidemiological fitness in vivo population ≠ cellular infectivity in vitro
- Class: build up likelihoods w/ coupled ODEs, model correlated phylogenetic obs with trees
- Stats lesson: take a simplifying assumption, and test how well things work
- (Opinion: baking MFBD into tree explore in BEAST2 still does not fully study HUGE tree space. Know from coalescent theory how unwieldy trees are.)

Pause: Q & A

Appendices and references following

More relevant materials at sdtemple.github.io, including:

- Commentary on unifying BDS and SIR (MacPherson et al., 2021)
- Report on PBLA (Stockdale et al., 2021): https://github.com/sdtemple/pblas

Stochastic epidemic (Stockdale, 2021; Temple, 2021)

Infection rates β_{kj} and removals after $r_j - i_j \sim \mathsf{Gamma}(m_j, \gamma_j)$

Stochastic epidemic

At time t, S(t) susceptibles, I(t) infecteds, and R(t) removeds, with N = S(t) + I(t) + R(t).

Stochastic epidemic

Epidemic ends when I(t) = 0.

Stochastic epidemic

To simulate an epidemic, we exploit **Poisson processes (PPs)**. Define a *race* as the minimum of (exponential) rvs.

Algorithm (Epidemic Simulator)

- 1. S(0) = N 1, I(0) = 1
- 2. Until I(t) = 0:
 - 2.1 Race S(t)I(t) PPs with rate β and I(t) PPs with rate γ , where t_1 is the winning race time.
 - 2.2 If a γ -PP wins, $I(t_1) = I(t) 1$ and $R(t_1) = R(t) + 1$.
 - 2.3 If a β -PP wins, $S(t_1) = S(t) 1$ and $I(t_1) = I(t) + 1$.
 - 2.4 Update $t = t_1$.

This is way to frame (Gillespie, 1977) for SIR model

Stochastic epidemic model

 $\{S(t),I(t)\}$ is a continuous-time Markov chain (CTMC) with "jumps" based on an underlying Poisson process.

- $\tau_{kj} := r_k \wedge i_j i_k \wedge i_j$
 - ► Time *k* tries to infect *j*
- $\psi_j = \exp(-\sum_{k \neq j}^n \beta_{kj} \tau_{kj})$
 - ightharpoonup Probability j not infected before i_i
 - $\psi_{kj} = \exp(-\beta_{kj}\tau_{kj})$ is marginal term
- $\chi_j = \sum_{k \neq j}^n \beta_{kj} \mathbb{1}_{\{i_k < i_j < r_k\}}$
 - ightharpoonup Probability j infected at i_j
- $\phi_j = \exp(-\sum_{k=n+1}^N \beta_{jk}(r_j i_j))$
 - ▶ Probability *j* doesn't infect never-infecteds

References I

- M. A. Suchard, P. Lemey, G. Baele, D. L. Ayres, et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 virus evolution 4 (1): vey016. *DOI: http://doi. org/10.1093*, 1093.
- D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. *J. Phys. Chem.*, 81(25):2340–2361, Dec. 1977.
- C. Cannings, E. A. Thompson, and M. H. Skolnick. Probability functions on complex pedigrees. *Adv. Appl. Probab.*, 10(1):26–61, Mar. 1978.
- J. Felsenstein. Evolutionary trees from DNA sequences: a maximum likelihood approach. en. *J. Mol. Evol.*, 17(6):368–376, 1981.

References II

- J. F. C. Kingman. On the genealogy of large populations. *J. Appl. Probab.*, 19(A):27–43, 1982.
- J. F. C. Kingman. The coalescent. *Stochastic Process. Appl.*, 13(3):235–248, Sept. 1982.
- R. C. Griffiths and S. Tavare. Simulating probability distributions in the coalescent. *Theor. Popul. Biol.*, 46(2):131–159, Oct. 1994.
- A. Eyre-Walker and P. D. Keightley. The distribution of fitness effects of new mutations. en. *Nat. Rev. Genet.*, 8(8):610–618, Aug. 2007.

References III

T. Stadler and S. Bonhoeffer. Uncovering epidemiological dynamics in heterogeneous host populations using phylogenetic methods. en. *Philos. Trans. R. Soc. Lond. B Biol. Sci.*, 368(1614):20120198, Mar. 2013.

E. M. Volz, K. Koelle, and T. Bedford. Viral phylodynamics. en. *PLoS Comput. Biol.*, 9(3):e1002947, Mar. 2013.

J. Barido-Sottani, T. G. Vaughan, and T. Stadler. Detection of HIV transmission clusters from phylogenetic trees using a multi-state birth-death model. en. *J. R. Soc. Interface*, 15(146), Sept. 2018.

References IV

D. A. Rasmussen and T. Stadler. Coupling adaptive molecular evolution to phylodynamics using fitness-dependent birth-death models. en. *Elife*, 8, Aug. 2019.

A. MacPherson, S. Louca, A. McLaughlin, J. B. Joy, and M. W. Pennell. Unifying phylogenetic Birth–Death models in epidemiology and macroevolution. en. *Syst. Biol.*, June 2021.

J. E. Stockdale, T. Kypraios, and P. D. O'Neill. Pair-based likelihood approximations for stochastic epidemic models. en. *Biostatistics*, 22(3):575–597, July 2021.

References V

S. D. Temple. PhD preliminary exam report on PBLA for stochastic epidemic models. https://github.com/sdtemple/pblas, 2021.

S. D. Temple, R. W. Waples, and S. R. Browning. Robust statistical inference of very recent and strong incomplete selective sweeps. https://github.com/sdtemple/iSWEEP, 2023.