17 11 2/ A: Achiel Point (Mins) A' o localichon los (Ti, Ji) of line Prediction unavaible: m &C find mos slupe Co intercept Linear Regellion (1) Hypother's function 2) Cost Junchoon) Hypothets function-

y2 mn+C $\frac{1}{h_0(n)} = 000 + 0$ $m(\theta_0)$, $C(\theta_1)$ Cost functions-J(00,0,) Cost function: MSE MSEO Minimum squered distance fr break Regrestion.

1000) n-lows De localichon live Equation $y_i = f_0(x) > 0_0 x + 0_1$ $\frac{1}{2n} \sum_{i=1}^{v_1} (y_i - \overline{y_i})^2$ $O_0,O_1) =$ $J(\vartheta_0,\vartheta_1) = \frac{1}{2N} \sum_{i=1}^{N} \left(h_0(x) - y_i^2 \right)^2$

Dalaset (Kypec) (85 H) Price (Yi) restry Ideller Mes y sept rôu? (0.5,0) 3 Cise 23-Assur Consider Do= 0.5, D, > D 4 ho(x) = 00x + 01 0.5 xx + 0 ho(n)= 0.5 n

$$n=1$$
, $h_0(x)=0.5\times 1=0.5$ (1,0.5)
 $n=2$, $h_0(2)=0.5\times 2=1$ (2,1)
 $n=3$, $h_0(2)=0.5\times 3=1.5$ (3,1.5)
Cost functions-
 $T(0.5,0)=\frac{1}{2\times 3}\begin{bmatrix} h_0(x)-h_0(x$

$$\frac{2}{6}\left[\left(-0.5\right)^{2}+\left(-1\right)^{2}+\left(-1.5\right)^{2}\right]$$

= 0.58 Do Care 3 Ided Corr 00 = 1, 0, >0

 $f_{10}(x) = \theta_0 x + \theta_1$ 2/42/+0 to (n) = x $J(0_0,0_1) = \int_{2x3} (1-1)^{2} + (2-1)^{2} + (3-1)^{2}$ COR+=0, You Geno- How many value will Consider for (Do, O,) Whose will we stop? Gradient Slope descent — going down

00,01 « learning tak Gradient descent (one live also). repeat untill convergence $\int_{J} \theta_{0} = \theta_{0} - \alpha + \frac{\partial}{\partial \theta_{0}} J(\theta_{0}, \theta_{1})$

exparsion (00,0,)

repeat untill convergence
$$\frac{1}{2}$$
 $0, 0 = 0, -\infty \frac{\partial}{\partial 0} \left[J(0_0, 0_1) \right]$
 $0, 0 = 0, -\infty \frac{\partial}{\partial 0} \left[J(0_0, 0_1) \right]$

Uncar Repoelson us g Gradient descents- $J(0_0,0_1) = \frac{1}{9n} \sum_{i=1}^{n} (f_0(x) - f_i)^2$ $\frac{\partial}{\partial \theta_0} \left[J(\theta_0, \theta_1) \right] = \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_0 \chi_i + \theta_1 - \chi_i \right)^2$ $=\frac{2}{2n}\sum_{i=1}^{n}\left(\partial_{0}x_{i}^{\circ}+\partial_{i}-f_{i}\right)X\mathcal{N}_{i}^{\circ}$

 $\int \int \int \int (0_0, 0_1) = \int \int \int \int \int h_0(n) - y_0) \times \mathcal{N}_{c_0}$

M2 92-31 Z) Yi-Jmean

M2 M2-M1 Z) Mi-Jmean

C; Ymean- ma Mmean

a = 3 a = 3 a = 3 a = 4 a = 4 a = 4 a = 4 a = 4 a = 4 a = 4