

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра прикладной математики
Лабораторная работа № 2
по дисциплине «Методы оптимизации»

МЕТОДЫ СПУСКА (0-го, 1-го и 2-го ПОРЯДКА И ПЕРЕМЕННОЙ МЕТРИКИ)

Бригада 1 ВОСТРЕЦОВА ЕКАТЕРИНА

Группа ПМ-13 ИСАКИН ДАНИИЛ

Вариант 1

Преподаватели ФИЛИППОВА ЕЛЕНА ВЛАДИМИРОВНА

Новосибирск, 2024

1. Цель

Ознакомиться с методами поиска минимума функции n переменных в оптимизационных задачах без ограничений.

2. Задание

Реализовать два метода поиска экстремума функции (разного порядка). Включить в реализуемый алгоритм собственную процедуру, реализующую одномерный поиск по направлению. Методы поиска для самостоятельной реализации выбираются студентом в зависимости от уровня сложности. Выбранные методы должны иметь разный порядок.

С использованием разработанного программного обеспечения исследовать алгоритмы на квадратичной функции $f(\overline{x}) = 100(x_2 - x_1)^2 + (1 - x_1)^2$, функции Розенброка

 $f\left(\overline{x}\right) = 100\left(x_2 - x_1^2\right)^2 + \left(1 - x_1\right)^2$ и на заданной в соответствии с вариантом тестовой функции, осуществляя спуск из различных исходных точек (не менее двух). Исследовать сходимость алгоритма, фиксируя точность определения минимума/максимума, количество итераций метода и количество вычислений функции в зависимости от задаваемой точности поиска. Результатом выполнения данного пункта должны быть выводы об объеме вычислений в зависимости от задаваемой точности и начального приближения.

Построить траекторию спуска различных алгоритмов из одной и той же исходной точки с одинаковой точностью. В отчете наложить эту траекторию на рисунок с линиями равного уровня заданной функции.

Реализовать метод квадратичной интерполяции (метод парабол) для приближенного нахождения экстремума при одномерном поиске. Исследовать влияние точности одномерного поиска на общее количество итераций и вычислений функции при разных методах одномерного поиска.

Найти максимум заданной функции:

$$f(x,y) = 2\exp\left\{-\left(\frac{x-1}{2}\right)^2 - \left(\frac{y-1}{1}\right)^2\right\} + 3\exp\left\{-\left(\frac{x-2}{3}\right)^2 - \left(\frac{y-3}{2}\right)^2\right\}$$

3. Результаты исследования

Метод наискорейшего спуска

Начальное приближение х ₀	Точность по функции	Точность по переменным	Количество итераций	Число вычислений целевой функции	Точка минимума	Значение функции в точке минимума
	1.0000000e-03	1.000000e-03	4	114	(1.1696674e+00,1.1728937e+00)	2.9827947e-02
	1.0000000e-04	1.0000000e-04	8	227	(1.0378030e+00,1.0387034e+00)	1.5101471e-03
	1.0000000e-05	1.0000000e-05	6	224	(1.0007293e+00,1.0007495e+00)	5.7272186e-07
(5.0000000e+00,	1.0000000e-06	1.0000000e-06	7	308	(1.0002553e+00,1.0002563e+00)	6.5276346e-08
1.0000000e+01)	1.0000000e-07	1.0000000e-07	7	357	(1.0000408e+00,1.0000410e+00)	1.6652900e-09
	1.0000000e-03	1.0000000e-03	4	106	(1.0761911e+00,1.0750723e+00)	5.9302431e-03
	1.0000000e-04	1.0000000e-04	8	231	(1.0190218e+00,1.0199350e+00)	4.4522080e-04
	1.0000000e-05	1.0000000e-05	6	222	(1.0017683e+00,1.0018107e+00)	3.3064383e-06
(4.0000000e+00,	1.0000000e-06	1.0000000e-06	7	303	(1.0001073e+00,1.0001076e+00)	1.1515858e-08
7.0000000e+00)	1.0000000e-07	1.0000000e-07	7	355	(1.0000188e+00,1.0000189e+00)	3.5518202e-10

Метод Ньютона

Начальное приближение х ₀	Точность по функции	Точность по переменным	Количество итераций	Число вычислений целевой функции	Точка минимума	Значение функции в точке минимума
	1.0000000e-03	1.000000e-03	1	5	(1.0000000e+00,1.0000000e+00)	0.000000e+00
	1.0000000e-04	1.0000000e-04	1	5	(1.0000000e+00,1.0000000e+00)	0.0000000e+00
(5.0000000e+00,	1.0000000e-05	1.0000000e-05	1	5	(1.0000000e+00,1.0000000e+00)	0.0000000e+00
1.0000000e+01)	1.0000000e-06	1.000000e-06	1	5	(1.0000000e+00,1.0000000e+00)	0.0000000e+00

	1.0000000e-07	1.0000000e-07	1	5	(1.0000000e+00,1.0000000e+00)	0.0000000e+00
	1.0000000e-03	1.0000000e-03	1	5	(1.0000000e+00,1.0000000e+00)	0.0000000e+00
	1.0000000e-04	1.0000000e-04	1	5	(1.0000000e+00,1.0000000e+00)	0.0000000e+00
	1.0000000e-05	1.0000000e-05	1	5	(1.0000000e+00,1.0000000e+00)	0.0000000e+00
(4.0000000e+00,	1.0000000e-06	1.0000000e-06	1	5	(1.0000000e+00,1.0000000e+00)	0.0000000e+00
7.0000000e+00)	1.0000000e-07	1.0000000e-07	1	5	(1.0000000e+00,1.0000000e+00)	0.0000000e+00

Функция Розенброка $f(\bar{x}) = 100(y-x^2)^2 + (1-x)^2$

Метод наискорейшего спуска

Начальное приближение х ₀	Точность по функции	Точность по переменным	Количество итераций	Число вычислений целевой функции	Точка минимума	Значение функции в точке минимума
	1.0000000e-03	1.0000000e-03	2	38	(1.7483851e+00,3.0607988e+00)	5.6163926e-01
	1.0000000e-04	1.0000000e-04	32	616	(1.0628757e+00,1.1295370e+00)	3.9561749e-03
-	1.0000000e-05	1.0000000e-05	217	5892	(1.0424041e+00,1.0867918e+00)	1.8015473e-03
(2.0000000e+00,	1.0000000e-06	1.0000000e-06	537	17614	(1.0066471e+00,1.0133668e+00)	4.4264320e-05
3.000000e+00)	1.0000000e-07	1.0000000e-07	1000	37022	(1.0051811e+00,1.0103603e+00)	2.6926665e-05
	1.0000000e-03	1.0000000e-03	44	583	(6.1056366e-01,3.6930812e-01)	1.5287161e-01
-	1.0000000e-04	1.0000000e-04	3	69	(1.1049098e+00,1.2212722e+00)	1.1026009e-02
-	1.0000000e-05	1.000000e-05	114	2678	(1.0340832e+00,1.0691727e+00)	1.1640717e-03
(2.0000000e+00,	1.0000000e-06	1.0000000e-06	407	11430	(1.0116213e+00,1.0234294e+00)	1.3532214e-04
1.0000000e+00)	1.000000e-07	1.0000000e-07	746	25193	(1.0029717e+00,1.0059340e+00)	8.8637347e-06

Метод Ньютона

Начальное приближение		Точность по	Количество	Число вычислений		Значение функции в точке
x ₀	Точность по функции	переменным	итераций	целевой функции	Точка минимума	минимума
	1.0000000e-03	1.0000000e-03	7	13370	(1.0017793e+00,1.0037548e+00)	6.8879281e-06
	1.0000000e-04	1.0000000e-04	8	13429	(9.9997949e-01,9.9996104e-01)	8.4763008e-10
	1.000000e-05	1.0000000e-05	8	13429	(9.9997949e-01,9.9996104e-01)	8.4763008e-10
(2.0000000e+00,	1.0000000e-06	1.0000000e-06	9	13435	(9.9999999e-01,9.9999998e-01)	4.1582144e-16
3.0000000e+00)	1.0000000e-07	1.0000000e-07	9	13435	(9.9999999e-01,9.9999998e-01)	4.1582144e-16
	1.000000e-03	1.0000000e-03	7	13388	(1.0019401e+00,1.0040987e+00)	8.3792187e-06
	1.000000e-04	1.0000000e-04	8	13452	(9.9997371e-01,9.9995001e-01)	1.3557974e-09
	1.0000000e-05	1.0000000e-05	8	13452	(9.9997371e-01,9.9995001e-01)	1.3557974e-09
(2.0000000e+00,	1.0000000e-06	1.0000000e-06	9	13458	(9.9999999e-01,9.9999998e-01)	5.1875879e-16
1.0000000e+00)	1.0000000e-07	1.0000000e-07	9	13458	(9.9999999e-01,9.9999998e-01))	5.1875879e-16

Тестовая функция
$$f(x,y) = -2\exp\left\{-\left(\frac{x-1}{2}\right)^2 - (y-1)^2\right\} - 3\exp\left\{-\left(\frac{x-2}{3}\right)^2 - \left(\frac{y-3}{2}\right)^2\right\}$$

Метод наискорейшего спуска

Начальное приближение х ₀	Точность по функции	Точность по переменным	Количество итераций	Число вычислений целевой функции	Точка максимума	Значение функции в точке минимума
	1.0000000e-03	1.0000000e-03	1	13	(1.2626298e+00,1.3343754e+00)	3.1693171e+00
	1.0000000e-04	1.0000000e-04	1	13	(1.2626298e+00,1.3343754e+00)	3.1693171e+00
	1.0000000e-05	1.0000000e-05	4	73	(1.2627217e+00,1.3344412e+00)	3.1693172e+00
(1.2600000e+00,	1.0000000e-06	1.0000000e-06	2	51	(1.2626727e+00,1.3344467e+00)	3.1693171e+00
1.3300000e+00)	1.0000000e-07	1.0000000e-07	2	68	(1.2626726e+00,1.3344466e+00)	3.1693171e+00

		1.0000000e-03	1.0000000e-03	3	71	(1.3311639e+00,1.3143170e+00)	3.1657330e+00
		1.000000e-04	1.0000000e-04	3	71	(1.3311639e+00,1.3143170e+00)	3.1657330e+00
		1.0000000e-05	1.0000000e-05	4	82	(1.3304899e+00,1.3135783e+00)	3.1657336e+00
(1.500	00000e+00,	1.0000000e-06	1.0000000e-06	4	82	(1.3304899e+00,1.3135783e+00)	3.1657336e+00
0.0000	0000e+00)	1.0000000e-07	1.000000e-07	11	132	(1.3304940e+00,1.3135745e+00)	3.1657330e+00

Метод Ньютона

Начальное приближение х ₀	Точность по функции	Точность по переменным	Количество итераций	Число вычислений целевой функции	Точка максимума	Значение функции в точке минимума
	1.0000000e-03	1.0000000e-03	1	1973	(1.2647765e+00,1.3326518e+00)	3.1693107e+00
	1.0000000e-04	1.0000000e-04	1	1973	(1.2647765e+00,1.3326518e+00)	3.1693107e+00
	1.000000e-05	1.0000000e-05	2	3977	(1.2647765e+00,1.3326518e+00)	3.1693107e+00
(1.2600000e+00,	1.0000000e-06	1.0000000e-06	2	3777	(1.2647765e+00,1.3326518e+00)	3.1693107e+00
1.3300000e+00)	1.000000e-07	1.0000000e-07	2	3777	((1.2647765e+00,1.3326518e+00))	3.1693107e+00
	1.000000e-03	1.0000000e-03	4	9663	(1.0277332e+00,1.1696086e+00)	3.1117328e+00
	1.0000000e-04	1.0000000e-04	5	11954	(1.0237734e+00,1.1718803e+00)	3.1117525e+00
	1.0000000e-05	1.0000000e-05	6	13866	(1.0248622e+00,1.1712630e+00	3.1117540e+00
(1.5000000e+00,	1.0000000e-06	1.0000000e-06	7	15894	(1.0245652e+00,1.1714319e+00)	3.1117541e+00
0.0000000e+00)	1.0000000e-07	1.0000000e-07	8	17891	(1.0246508e+00,1.1713833e+00)	3.1117541e+00

Квадратичная функция $f(\overline{x}) = 100(y-x)^2 + (1-x)^2$, точность поиска по переменным и функции $\varepsilon = 0,001$ начальная точка (5.0000000e+00, 1.0000000e+01)

Метод наискорейшего спуска

					x(i) - x(i-1)		
					y(i) - y(i-1)		
Iter	(x, y)	f(x, y)	(s1, s2)	lambda	f(i) - f(i-1)	grad(x, y)	
					2.4739339e+00		
	(7.4739339e+00,		(2.0475000e+00,		2.4938850e+00	(-9.9200000e+02,	
1	7.5061150e+00)	4.2015383e+01	8.1915000e+00)	3.5128068e+00	2.4739846e+03	1.0000000e+03)	
					3.8775775e+00		
	(1.1224225e+00,		(4.0955000e+00,		8.7718138e+00	(6.5116529e+00,	
2	1.2281862e+00)	1.1335845e+00	1.6383500e+01)	8.9305144e+00	4.0881798e+01	6.4362150e+00)	
					3.8252820e+00		
	(1.1747180e+00,		(3.1500000e-02,		8.8247217e+00	(-2.0907907e+01,	
3	1.1752783e+00)	3.0557761e-02	1.2750000e-01)	7.4391303e-02	1.1030267e+00	2.1152752e+01)	
					3.8303326e+00		
	(1.1696674e+00,		(3.5000000e-03,		8.8271063e+00	(2.3736584e-01,	
4	1.1728937e+00)	2.9827947e-02	1.5500000e-02)	5.5851449e-03	7.2981389e-04	1.1207006e-01)	
				<u>І</u> Метод Ны	отона		<u> </u>
					x(i) - x(i-1)		
					y(i) - y(i-1)		
Iter	(x, y)	f(x, y)	(s1, s2)	lambda	f(i) - f(i-1)	grad(x, y)	Hesse(dx2, dxdy, dydx, dy2)

	1		1	•	1	r	
					4.0000000e+00		
					9.0000000e+00		(5.0000000e-01,
	(1.0000000e+00,		(-4.0000000e+00, -		3.00000000	(-9.9200000e+02,	5.0000000e-01, 5.0000000e-
1	1.0000000e+00)	0.0000000e+00	9.0000000e+00)	1.0000000e+00	2.5160000e+03	1.0000000e+03)	01, 5.0500000e-01)

Функция Розенброка $f(\overline{x}) = 100(y-x^2)^2 + (1-x)^2$, точность поиска по переменным и функции $\varepsilon = 0,001$ начальная точка (2.0000000e+00, 3.0000000e+00)

Метод наискорейшего спуска

			·		,		
					x(i) - x(i-1)		
					y(i) - y(i-1)		
Iter	(x, y)	f(x, y)	(s1, s2)	lambda	f(i) - f(i-1)	grad(x, y)	
					2.5052327e-01		
	(1.7494767e+00,		(1.2750000e-01,		6.2474631e-02	(8.0200000e+02,	
1	3.0624746e+00)	5.6204146e-01	5.1150000e-01)	2.5819564e-01	1.0043796e+02	-2.0000000e+02)	
					2.5161493e-01		
	(1.7483851e+00,		(5.0000000e-04,		6.0798838e-02	(2.3527003e-01,	
2	3.0607988e+00)	5.6163926e-01	3.5000000e-03)	2.0000000e-03	4.0219642e-04	3.6116040e-01)	
				Метод Ны	ютона		
					x(i) - x(i-1)		
Iter	(x, y)	f(x, y)	(s1, s2)	lambda	y(i) - y(i-1)	grad(x, y)	

					f(i) - f(i-1)		Hesse(dx2, dxdy, dydx, dy2)
1	(1.9983361e+00, 3.9933444e+00)	9.9667498e-01	(-1.6638935e-03, 2.9933444e+00)	1.0000000e+00	1.6638935e-03 2.9933444e+00 9.0000333e+02	(2.4020000e+03, -6.0000000e+02)	(8.3194676e-04, 3.3277870e 03, 3.3277870e-03, 1.8311148e-02)
2	(1.8376929e+00, 3.3513068e+00)	7.6833759e-01	(-1.6230706e-01, 2.3513068e+00)	1.6100000e-01	1.6230706e-01 2.3513068e+00 2.2833740e-01	(1.9988852e+00, -5.5370832e-04)	(4.9972330e-01, 1.9972302e+00, 1.9972302e+00, 7.9872745e+00)
3	(1.6329502e+00, 2.6376658e+00)	4.8391864e-01	(-3.6704983e-01, 1.6376658e+00)	1.5060000e+00	3.6704983e-01 1.6376658e+00 2.8441895e-01	(2.0646661e+01, -5.1617098e+00)	(8.1146308e-02, 2.9824400 01, 2.9824400e-01, 1.1011618e+00)
4	(1.3693804e+00, 1.8582598e+00)	1.6514819e-01	(-6.3061956e-01, 8.5825985e-01)	2.8200000e+00	6.3061956e-01 8.5825985e-01 3.1877044e-01	(2.0116990e+01, -5.7720958e+00)	(7.3832387e-02, 2.4112922 01, 2.4112922e-01, 7.9250399e-01)
5	(1.1924584e+00, 1.4093267e+00)	5.2992691e-02	(-8.0754162e-01, 4.0932667e-01)	2.1020000e+00	8.0754162e-01 4.0932667e-01 1.1215550e-01	(1.0019288e+01, -3.3885860e+00)	(1.1393191e-01, 3.1203227e 01, 3.1203227e-01, 8.5958176e-01)
6	(1.0229549e+00, 1.0442985e+00)	9.8416342e-04	(-9.7704505e-01, 4.4298517e-02)	3.1055000e+00	9.7704505e-01 4.4298517e-02 5.2008527e-02	(6.4093626e+00, -2.5260613e+00)	

							(1.4180128e-01, 3.3818425e- 01, 3.3818425e-01, 8.1154127e-01)
7	(1.0019401e+00, 1.0040987e+00)	8.3792187e-06	(-9.9805993e-01, 4.0987314e-03)	1.3070000e+00	9.9805993e-01 4.0987314e-03 9.7578421e-04	(9.2086489e-01, -4.2766058e-01)	(3.5022330e-01, 7.1652532e- 01, 7.1652532e-01, 1.4709462e+00)

Тестовая функция $f(x,y) = -2\exp\left\{-\left(\frac{x-1}{2}\right)^2 - (y-1)^2\right\} - 3\exp\left\{-\left(\frac{x-2}{3}\right)^2 - \left(\frac{y-3}{2}\right)^2\right\}$, точность поиска по переменным и функции $\varepsilon = 0,001$, начальная точка (1.2600000e+00, 1.3300000e+00)

Метод наискорейшего спуска

					x(i) - x(i-1)			
					y(i) - y(i-1)			
Iter	(x, y)	f(x, y)	(s1, s2)	lambda	f(i) - f(i-1)	grad(x, y)		
					2.6297638e-03			
	(1.2626298e+00,		(1.5000000e-03,		4.3754001e-03	(2.2926571e-01,		
1	1.3343754e+00)	3.1693171e+00	7.5000000e-03)	5.1048784e-03	2.4286208e-05	3.8145221e-01)		
Метод Ньютона								
					x(i) - x(i-1)			
					y(i) - y(i-1)			

lambda

(x, y)

Iter

f(x, y)

(s1, s2)

|f(i) - f(i-1)|

grad(x, y)

Hesse(dx2, dxdy, dydx, dy2)

1	(1.2647765e+00, 1.3326518e+00)	3.1693107e+00	(4.7764901e-03, 2.6517760e-03)	1.6000000e-02	4.7764901e-03 2.6517760e-03 1.7876497e-05	(2.2926571e-01, 3.8145221e-01)	(1.1861104e+00, 6.9723510e-02, 6.9723510e- 02, 3.9258074e-01)

4. Вывод

Метод наискорейшего спуска обладает линейной скоростью сходимости, Метод Ньютона — квадратичной. С повышением точности, результат работы программы становится близким к истинному, что влечет за собой увеличение количества итераций и числа вычислений функции. Следует отметить, что в случае квадратичной функции метод Ньютона находит экстремум за одну итерацию. Упомянем, что метод наискорейшего спуска может иметь трудности в патологических случаях овражных функций, так, к примеру, в случае функции Розенброка. Нахождение матрицы Гессе связано с большими вычислительными затратами, и поэтому Метод Ньютона сложнее и затратнее Метода наискорейшего спуска.

5. Текст программы

```
File - Source.cpp
#include "Function.h"
#include <fstream>
#include <iomanip>
using namespace std;
ofstream fout;
//Интервал, содержащий минимум функции
int IntervalMinimumFunction(method &md, double x0, int &countf)
{
   double x1, x01, x2, f0, f01, f1, f2, h = e / 2;
   int count = 1;
   bool flag = true;
   f0 = LambdaFunction(md.point, md.grad, x0, countf);
   x1 = x0 + h;
   f1 = LambdaFunction(md.point, md.grad, x1, countf);
   if (f0 > f1)
          x1 = x0 + h;
   else
   {
          x01 = x0 - h;
          f01 = LambdaFunction(md.point, md.grad, x01, countf);
          if (f01 > f0)
          {
                 md.a = x01;
                 md.b = x1;
                 return 1;
```

```
}
          h *= -1;
   }
   f1 = LambdaFunction(md.point, md.grad, x1, countf);
   while (flag)
   {
          h *= 2;
          x2 = x1 + h;
          f2 = LambdaFunction(md.point, md.grad, x2, countf);
          if (f1 > f2)
          {
                 x0 = x1;
                 f0 = f1;
                 x1 = x2;
                 f1 = f2;
                 count++;
          }
          else
                 flag = false;
   if (x2 < x0)
   {
          double t = x2;
          x2 = x0, x0 = t;
   }
   md.a = x0;
   md.b = x2;
   return 1;
}
//Метод золотого сечения для решения одномерной задачи оптимизации
int GoldenRatioMethod(method &md, int &countf)
{
   const double c1 = (3 - sqrt(5.)) / 2;
   double x1, x2, f1, f2, a = md.a, b = md.b;
   int count = 1, k;
```

```
x1 = a + c1 * (b - a);
x2 = b - c1 * (b - a);
f1 = LambdaFunction(md.point, md.grad, x1, countf);
f2 = LambdaFunction(md.point, md.grad, x2, countf);
while (abs(b - a) > e)
{
       if (f1 > f2)
       {
              a = x1;
             x1 = x2;
             f1 = f2;
              k = 0;
       }
       else
       {
             b = x2;
             x2 = x1;
             f2 = f1;
              k = 1;
       }
       if (abs(b - a) < e)
       {
             md.lambda = (a + b) / 2.0;
             return 1;
       }
       if (k)
       {
             x1 = a + c1 * (b - a);
             f1 = LambdaFunction(md.point, md.grad, x1, countf);
       }
       else
       {
             x2 = b - c1 * (b - a);
             f2 = LambdaFunction(md.point, md.grad, x2, countf);
       }
       count++;
```

```
}
}
//Метод наискорейшего спуска
void SteepestDescent(double _x, double _y)
{
        int count = 0, countf = 0; //Количество итераций
        double fpred, fnext;
       method sd;
        sd.point.x = _x, sd.point.y = _y; //Начальное приближение (x, y)
        coords pointpred = sd.point;
        fout << scientific << setprecision(7) << "Iter\t(x, y)\t f(x, y)\t (s1, s2)\t
lambda\t |x(i) - x(i-1)| \ |y(i) - y(i-1)| \ |f(i) - f(i-1)| \ |x(i) - y(i-1)| \ |
        fnext = Function(sd.point, countf); //Считаем значение функции
        fpred = fnext;
        double fend = abs(fnext - fpred), xend = abs(sd.point.x - pointpred.x), yend =
abs(sd.point.y - pointpred.y);
        do
        {
                        fpred = fnext;
                        GradFunction(sd.point, sd.grad); //Считаем частные производные
                        if (Norm(sd.grad) != 0)
                                        IntervalMinimumFunction(sd, 0, countf); //Находим интервал минимума
функции
                                        GoldenRatioMethod(sd, countf); //Находим значение лямбды
                                        sd.point.x -= sd.lambda * sd.grad.x / Norm(sd.grad); //Находим
координаты новой точки (- минимум, + максимум)
                                        sd.point.y -= sd.lambda * sd.grad.y / Norm(sd.grad);
                                        fnext = Function(sd.point, countf); //Считаем значение функции в новой
точке
                                        count++;
                                        fend = abs(fnext - fpred);
                                        xend = abs(sd.point.x - pointpred.x);
                                        yend = abs(sd.point.y - pointpred.y);
                                        fout << count << "\t(" << sd.point.x << ", " << sd.point.y << ")\t" <<
fnext << "\t(" << sd.a << ", " << sd.b << ")\t" << sd.lambda;</pre>
                                       fout << "\t" << xend << "\t" << fend << "\t(" <<
sd.grad.x << ", " << sd.grad.y << ") " << endl;</pre>
```

```
}
          else
          {
                 fnext = fpred;
                 fend = abs(fnext - fpred);
          }
   } while (fend > sd.ef && (xend > sd.epoint || yend > sd.epoint) && count < sd.max-
iter);
   fout << "\nStart point\t(" << \_x << ", " << \_y << ")\t" << "Eps f:\t" << sd.ef <<
"\tEps point:\t" << sd.epoint << "\tIter: " << count << "\tFunction iter: " << countf <<
endl;
   fout << "Minimum of function in \t(" << sd.point.x << "," << sd.point.y << ")\tValue</pre>
= " << fnext << endl;</pre>
}
//Обратная матрица Гессе
void InverseHesse(coords point, hesse &H)
{
   Hessian(point, H); //Считаем вторые частные производные в точке
   double det = H.dx2 * H.dy2 - H.dxdy * H.dydx; //Считаем определитель матрицы
   if (det != 0)
          double tmp = H.dx2; //Получаем обратную матрицу
          H.dx2 = H.dy2 / det;
          H.dy2 = tmp / det;
          H.dxdy = -H.dxdy / det;
          H.dydx = H.dxdy;
   }
}
double H(method nw, int &countf)
{
   double h = 1., delta = e / 2, f1, f2, f3, fres;
   coords p1, p2, p3, res, mn;
   mn.x = nw.H.dx2 * nw.grad.x + nw.H.dxdy * nw.grad.y; //Произведение матрицы Гессе на
градиент
```

```
mn.y = nw.H.dxdy * nw.grad.x + nw.H.dy2 * nw.grad.y;
p1.x = nw.point.x - h * mn.x;
p1.y = nw.point.y - h * mn.y;
f1 = Function(p1, countf);
p2.x = nw.point.x - (h + delta) * mn.x;
p2.y = nw.point.y - (h + delta) * mn.y;
f2 = Function(p2, countf);
p3.x = nw.point.x - (h - delta) * mn.x;
p3.y = nw.point.y - (h - delta) * mn.y;
f3 = Function(p3, countf);
if (f2 > f1 && f3 > f1)
       return h;
else
{
       if (f2 > f3)
             delta *= -1;
       res = p1;
       fres = Function(res, countf);
}
h += delta;
p1.x = nw.point.x - h * mn.x;
p1.y = nw.point.y - h * mn.y;
f1 = Function(p1, countf);
while (f1 < fres)</pre>
       h += delta;
       res = p1;
       fres = f1;
       p1.x = nw.point.x - h * mn.x;
       p1.y = nw.point.y - h * mn.y;
      f1 = Function(p1, countf);
}
```

```
return h;
}
//Метод Ньютона
void Newton(double _x, double _y)
   int count = 0, countf = 0; //Количество итераций
   double fpred, fnext;
   method nw;
   nw.point.x = _x, nw.point.y = _y; //Начальное приближение (x, y)
   coords pointpred = nw.point;
   fout << scientific << setprecision(7) << "Iter\t(x, y)\tf(x, y)\t(s1,
s2\tlambda\t|x(i) - x(i-1)|\t|y(i) - y(i-1)|\t|f(i) - f(i-1)|\tgrad(x, y)\tHesse(dx2,
dxdy, dydx, dy2)" << endl;</pre>
   fnext = Function(nw.point, countf); //Считаем значение функции
   fpred = fnext;
   double fend = abs(fnext - fpred), xend = abs(nw.point.x - pointpred.x), yend =
abs(nw.point.y - pointpred.y);
   do
   {
          fpred = fnext;
          GradFunction(nw.point, nw.grad); //Считаем частные производные
          if (Norm(nw.grad) != 0)
          {
                 InverseHesse(nw.point, nw.H); //Получаем обратную матрицу Гессе
                 nw.lambda = H(nw, countf); //Находим шаг
                 nw.point.x -= nw.lambda * (nw.H.dx2 * nw.grad.x + nw.H.dxdy *
nw.grad.y); //Находим координаты новой точки (- минимум, + максимум)
                 nw.point.y -= nw.lambda * (nw.H.dxdy * nw.grad.x + nw.H.dy2 *
nw.grad.y);
                 fnext = Function(nw.point, countf); //Считаем значение функции в новой
точке
                 count++;
                 nw.a = nw.point.x - pointpred.x; //Направление
                 nw.b = nw.point.y - pointpred.y;
                 fend = abs(fnext - fpred);
                 xend = abs(nw.point.x - pointpred.x);
                 yend = abs(nw.point.y - pointpred.y);
```

```
fout << count << "\t(" << nw.point.x << ", " << nw.point.y << ")\t" <<
fnext << "\t(" << nw.a << ", " << nw.b << ")\t" << nw.lambda;</pre>
                 fout << "\t" << xend << "\t" << yend << "\t" << fend << "\t(" <<
nw.grad.x << ", " << nw.grad.y << ") " << "\t(" << nw.H.dx2 << ", " << nw.H.dxdy << ", "</pre>
<< nw.H.dydx << ", " << nw.H.dy2 << ")" << endl;</pre>
          }
          else
          {
                 fnext = fpred;
                 fend = abs(fnext - fpred);
   } while (fend > nw.ef && (xend > nw.epoint || yend > nw.epoint) && count < nw.max-
iter);
   fout << "\nStart point \t(" << _x << ", " << _y << ")\t" << "Eps f: \t" << nw.ef <<
"\tEps point:\t" << nw.epoint << "\tIter:\t" << count << "\tFunction iter: \t" << countf
<< endl;
   fout << "Minimum of function in \t(" << nw.point.x << "," << nw.point.y << ")\tValue</pre>
= \t" << fnext << endl;
}
int main()
{
   fout.open("Out.txt");
   SteepestDescent(1.26, 1.33); //Начальное приближение
   //Newton(1.5, 0);
   return 0;
}
File - Function.h
#pragma once
#include<stdio.h>
#include<math.h>
struct coords { double x, y; };
struct hesse { double dx2, dxdy, dydx, dy2; };
int num = 2;
double e = 1e-07; //Точность для поиска лямбды
struct method
   coords point; //Точка
```

```
coords grad; //Градиент в точке
   hesse H; //Матрица Гессе для метода Ньютона
   double lambda;
   double a, b; //Интервал для минимизации лямбды
   double ef = 1e-07, epoint = 1e-07; //Точность по функции, точность по переменным
   int maxiter = 1000;
};
double Function(coords point, int &countf)
{
   countf++;
   if (num == 0) //Квадратичная функция
          return 100 * pow(point.y - point.x, 2) + pow(1 - point.x, 2);
   if (num == 1) //Функция Розенброка
          return 100 * pow(point.y - point.x * point.x, 2) + pow(1 - point.x, 2);
   if (num == 2) //Функция по варианту
   {
          double a = -pow((point.x - 1) / 2, 2) - pow(point.y - 1, 2);
          double b = -pow((point.x - 2) / 3, 2) - pow((point.y - 3) / 2, 2);
          return -(2 * exp(a) + 3 * exp(b));
   }
}
void GradFunction(coords point, coords &grad)
{
   if (num == 0) //Квадратичная функция
   {
          grad.x = -200 * (point.y - point.x) - 2 * (1 - point.x);
          grad.y = 200 * (point.y - point.x);
   if (num == 1) //Функция Розенброка
   {
          grad.x = -400 * point.x * (point.y - pow(point.x, 2)) - 2 * (1 - point.x);
          grad.y = 200 * (point.y - pow(point.x, 2));
   }
   if (num == 2) //Функция по варианту
```

```
{
          double a = -pow((point.x - 1) / 2, 2) - pow(point.y - 1, 2);
          double b = -pow((point.x - 2) / 3, 2) - pow((point.y - 3) / 2, 2);
          grad.x = -((point.x - 1) * exp(a) + 2 / 3 * (point.x - 2) * exp(b));
          grad.y = -(4 * (point.y - 1) * exp(a) + 3 / 2 * (point.y - 3) * exp(b));
   }
}
//Норма функции
double Norm(coords p)
   return sqrt(pow(p.x, 2) + pow(p.y, 2));
}
double LambdaFunction(coords point, coords grad, double lambda, int &countf)
{
   coords 1;
   1.x = point.x - lambda * grad.x / Norm(grad);
   1.y = point.y - lambda * grad.y / Norm(grad);
   return Function(1, countf);
}
void Hessian(coords point, hesse &matrix)
{
   if (!num) //Квадратичная функция
   {
          matrix.dx2 = 202;
          matrix.dxdy = -200;
          matrix.dydx = matrix.dxdy;
          matrix.dy2 = 200;
   }
   if (num) //Функция Розенброка
   {
          matrix.dx2 = -400 * (point.y - 3 * pow(point.x, 2)) + 2;
          matrix.dxdy = -400 * point.x;
          matrix.dydx = matrix.dxdy;
```

```
matrix.dy2 = 200;

}

if (num == 2) //Функция по варианту
{

    double a = -pow((point.x - 1) / 2, 2) - pow(point.y - 1, 2);

    double b = -pow((point.x - 2) / 3, 2) - pow((point.y - 3) / 2, 2);

    matrix.dx2 = (1 - pow(point.x - 1, 2) / 2) * exp(a) + 2 / 3 * (1 - 2 / 9 * pow(point.x - 2, 2)) * exp(b);

    matrix.dxdy = -2 * (point.x - 1) * (point.y - 1) * exp(a) - 1 / 3 * (point.x - 2) * (point.y - 3) * exp(b);

    matrix.dydx = matrix.dxdy;

    matrix.dy2 = 4 * (1 - 2 * pow(point.y - 1, 2)) * exp(a) + 3 / 2 * (1 - pow(point.y - 3, 2) / 2) * exp(b);

}
```