Recall the identity $\cosh^2 x - \sinh^2 x = 1$. Here the substitution

might work.

= y + c

Set $x = \sinh y$ $dx = \cosh y dy$ E.g. $\int \frac{dx}{\sqrt{1+x^2}} =$

 $=\int \frac{\cosh y}{\sqrt{1+\sinh^2 y}} = \int \frac{\cosh y}{\sqrt{\cosh^2 y}} dy$

in view of the identity $1 + \tan^2 x = \frac{1}{\cos^2 x}$

 $\int \frac{dx}{\sqrt{1+x^2}} = Set x = tan\theta$ $dx = d\theta$ $cos^2\theta$

the substitution x = atano might work.

 $=\int_{\sqrt{1+\tan^2\theta}} \frac{1}{\cos^2\theta} d\theta = \int_{\sqrt{\frac{1}{\cos^2\theta}}} \frac{1}{\cos^2\theta} d\theta$

= arsinhx + C= $ln(x+\sqrt{x^2+1}) + C$.

$$= \int \frac{d\theta}{\cos \theta} = \int \frac{\cos \theta \, d\theta}{\cos^2 \theta} = \int \frac{\cos \theta \, d\theta}{1 - \sin^2 \theta}$$

$$Set \quad u = \sin \theta$$

$$du = \cos \theta \, d\theta$$

Jet
$$u = \sin \theta$$

$$du = \cos \theta d\theta$$

$$= \int \frac{du}{1 - u^2} = \int \frac{du}{(1 - u)(1 + u)}$$
 (we need to use partial fraction decomp.)

$$= \frac{1}{2} \int \frac{du}{1+le} + \frac{1}{2} \int \frac{du}{1-le}$$

 $\int_{1+X^2}^{1} dx = arctonx + C$

$$= \frac{1}{2} \ln |1 + u| - \frac{1}{2} \ln |1 - u| + C$$

 $-\frac{1}{2}\ln\left(\frac{\sqrt{1+x^2+x}}{\sqrt{1+x^2-x}}\right)+C$

= ln(x+V1+X2)+c.

$$= \frac{1}{2} \ln \left| \frac{1+u}{1-u} \right| + C$$

$$ln|1+sin\theta|+c$$

$$\frac{1}{1-\sin\theta}$$
 + $\frac{1}{1-\sin\theta}$

$$11 - \sin\theta$$

$$1 - \sin\theta$$

$$1 - \sin\theta$$

$$1 - \sin\theta$$

$$=\frac{1}{2}\ln\left|\frac{1+\sin\theta}{1-\sin\theta}\right|+C$$

$$= \frac{1}{2} \left(N \left| \frac{\frac{1}{\cos \theta} + \tan \theta}{\frac{1}{\cos \theta} - \tan \theta} \right| + C \qquad \frac{\frac{1}{\cos^2 \theta} = 1 + x^2}{\frac{1}{\cos \theta}} \right)$$

$$\frac{1}{1-\sin\theta} + \frac{1}{\cos^2\theta} = 1 + \tan^2\theta = \frac{1}{\cos^2\theta} = 1 + x^2 \Rightarrow \frac{1}{\cos$$

$$\frac{1}{1-\sin\theta} + C \qquad \frac{1}{\cos^2\theta} = 1 + C$$

$$\frac{1 - u}{1 - u}$$

$$\frac{1}{1 - u$$

In view of the identity $\cosh^2 x - \sinh^2 x = 1$ the substitution x = a coshy might be useful.

$$\int \sqrt{x^2 - 1} \, dx$$
Set $x = \cosh u$

$$dx = \sinh u \, du$$

$$= \int \sqrt{\cosh^2 u - 1} \cdot \sinh u \, du$$

$$= \int \sqrt{\sinh^2 u - 1} \cdot \sinh u \, du$$

$$= \int \sqrt{\cosh^2 u - 1 \cdot \sinh u} \, du$$

$$= \int \sin h^2 u \, du = 1 \int \int (\cosh 2u - 1) \, du$$

= 1 (0) h 2 m du _ 1 1 du

= 1 sinhu coshu - u + C

 $= \frac{x}{2} \sqrt{x^2 - 1} - \frac{1}{9} \operatorname{arcosh} x + C$

 $= \frac{\times}{2} \sqrt{X^2 - 1} - \frac{1}{9} \ln(X + \sqrt{X^2 - 1}) + C.$

 $= \frac{1}{4} \sinh 2u - \frac{u}{2} + C$

➤ INTEGRALS OF THE FORM (Q(SinB, cos0) d0 WHERE Q(X1y) IS A RATIONAL FUNCTION.

We have already seen $\int \frac{d\theta}{\cos \theta} = \int \frac{\cos \theta}{1 - \sin 2\theta} = \dots = \frac{1}{2} \ln \left(\frac{1 + \sin \theta}{1 - \sin \theta} \right) + C$

Generally for SQ(sint), cost) do we apply the substitution

 $X = tol_{\frac{0}{2}}$.

Then $0 = 2 \operatorname{arctan} x \Rightarrow d0 = \frac{2 dx}{1 + x^2}$ Δ Iso

 $\cos \theta = 2\cos^2 \frac{\theta}{2} - 1 = \frac{2}{1 + \tan^2 \frac{\theta}{2}} - 1 \Rightarrow$ $\cos \theta = \frac{2}{1+x^2} - 1 = \frac{1-x^2}{1+x^2}$

 $\sin \theta = \sqrt{1 - \cos^2 \theta} = \frac{2 \times}{1 + \times^2}$

E.g. $\int \frac{d\theta}{2 + \sin\theta} = \int \frac{1}{2 + \frac{2x}{1+x^2}} \cdot \frac{2}{1+x^2} \cdot dx =$

(we set $X = tan(\frac{\theta}{2})$)

$$D = 1^{2} - 4 \cdot 1 = -3.$$

$$= \int \frac{dx}{x^2 + x + 1} = \int \frac{dx}{\left(x + \frac{1}{2}\right)^2 + \left(\frac{3}{2}\right)^2}$$

Set
$$X + \frac{1}{2} = \frac{3}{2}u = \frac{3}{2}$$

$$dX = \frac{3}{2}du$$

$$\frac{dx}{(u^2+1)}$$

$$= \int \frac{\sqrt{3}}{2} \frac{du}{\left(\frac{\sqrt{3}}{2}\right)^2 \cdot \left(u^2 + 1\right)}$$

$$=\frac{2\sqrt{3}}{3}$$
 arctonu + C

$$tan(2\sqrt{3} \times 1)$$

$$\cot \left(\frac{2\sqrt{3}\times}{3}+\right)$$

$$= \frac{2\sqrt{3}}{3} \arctan\left(\frac{2\sqrt{3}\times}{3} + \frac{\sqrt{3}}{3}\right) + C.$$

$$\frac{2\sqrt{3}\times}{3}$$

$$=\frac{2\sqrt{3}}{3}\arctan\left(\frac{2\sqrt{3}\tan\frac{\theta}{2}}{3}+\frac{\sqrt{3}}{3}\right)+C.$$

INTEGRALS OF THE FORM

$$\int e^{ax} \sinh x \, dx \, , \quad \int e^{ax} \cosh x \, dx$$

$$\int e^{ax} \sin bx \, dx , \int e^{ax} \cos bx \, dx$$

$$I = \int e^{x} \cos x \, dx$$

$$= \int e^{x} (\sin x)^{x} \, dx$$

$$= e^{x} \cdot \sin x - \int (e^{-x}) \cdot \sin x \, dx$$

$$= e^{-x} \sin x + \int e^{-x} \sin x \, dx$$

$$= e^{-x} \sin x + \int e^{-x} (-\cos x)' dx$$

$$= e^{-x} \sin x - e^{-x} \cos x - \int (e^{-x})(-\omega sx) dx$$
$$= e^{-x} (\sin x - \cos x) - \int e^{-x} \cos x dx$$

$$= e^{x} (\sin x - \cos x) - \int e^{-x} \cos x \, dx$$

$$= e^{-x}(sinx - cosx) - I \Rightarrow$$

$$= e^{-x}(sinx - cosx) + c \Rightarrow$$

 $I = \frac{1}{2} e^{x} (sinx - \omega x) + c$

$$= e^{x} \sin x + \int e^{x} \sin x \, dx$$

$$= e^{x} \sin x + \int e^{x} (-\cos x)^{2} dx$$

· When one of k,m is odd we use it to create a new differential.

$$\int \sin^{8} x \cdot \cos^{7} x \, dx = \int \sin^{8} x \cdot \cos^{6} x \cdot \cos x \cdot \cos x \, dx$$

$$= \int \sin^{8} x \cdot (1 - \sin^{8} x)^{3} \cos x \, dx$$

 $= \int \sin^2 x \cdot (\int -\sin^2 x)^3 \cos x \, dx$ Set $u = s \ln x$ du = cos x dx

$$= \int u^8 (1 - u^2)^3 du$$

$$=\frac{1}{9}u^9-\frac{3}{11}u^{11}+\frac{3}{13}u^{13}-\frac{1}{15}u^{15}+C$$

$$= \frac{1}{9} \sin^{9} x - \frac{3}{11} \sin^{10} x + \frac{3}{13} \sin^{10} x - \frac{1}{15} \sin^{15} x + c.$$

· When both kim are even, we may use the "desquaring formulas":

$$\cos^2 x = \frac{1 + \cos^2 x}{2}$$
, $\sin^2 x = \frac{1 - \cos^2 x}{2}$.

$$\sin 2\theta = 2 \sin \theta \cos \theta$$

$$\int \sin^2 x \cos^2 x \, dx = \frac{1}{4} \int \sin^2 2x \, dx$$

$$=\frac{1}{4}\int \frac{1-\cos 4x}{2} dx$$

$$= \frac{1}{8} \int dx - \frac{1}{8} \int \cos 4x \, dx$$
$$= \frac{x}{8} - \frac{\sin 4x}{32} + c.$$

-Since f is cont. at
$$x=1$$
, $\exists \delta_1 > 0$ s.t. $|x-1| < \delta_1 \Rightarrow |f(x)-f(1)| < \epsilon$.

- Since
$$f$$
 is cont. at $x = \frac{3}{2}$, $= \frac{3}{2} > 0$ s.t. $|x - \frac{3}{2}| < \frac{3}{2} > 0$ s.t. $|x - \frac{3}{2}| < \frac{3}{2} > 0$ s.t. $|x + \sqrt{2}| < \frac{5}{2} > 0$

We say f is uniformly continuous on a set $A \subseteq D_p$ if:

For all E > 0, there exists $\delta = \delta(E) > 0$ Such that for all $X, y \in A$: $|X-y| < \delta \implies |f(x)-f(y)| < \epsilon$.

REMARKS: (i) Continuity of f is defined on a given point to while uniform continuity is defined on a set A.

(ii) If f is uniformly continuous on $A \subseteq \mathbb{R}$ and $B \subseteq A$, then f is also uniformly continuous on B.

THEOREM 5.2: Let f: [a,b] -> IR

If f is continuous on [a,b], then
it is also uniformly continuous on [a,b].

This is the second instance of a special property of continuous functions on closed intervals [0,6]. The first was that they always have maximum and minimum.

PROPOSITION J.3: Suppose f: I = IR (I is an interval) is differentiable and there exists M>D such that $|f'(x)| \leq M$ for all $x \in I$. Then f is uniformly continuous on I PROOF

By the Mean Value Theorem, for all x,y \(\) I

with x \(\) \(\) there exists \(\) \($f(x) - f(y) = f'(\xi) \cdot (x - y).$ Let $\varepsilon > 0$. If we set $\delta = \frac{\varepsilon}{10} > 0$, then for all LyEI, $|x-y| < \delta$ implies $|f(x)-f(y)| = |f'(\xi)| \cdot |x-y|$ $< M \cdot \frac{\varepsilon}{M} - \varepsilon$.

So f is unif. cont. on I.

Exercise: Show that $f(0,1) \rightarrow \mathbb{R}$, $f(x) = \frac{1}{x}$ is not unif. continuous on (0,1). (Here the idea is that I is not bounded) Assume for contradiction f is uniformly continuous on (0,1). Take $\varepsilon=1$. Because f is unif. cont., there exists $\delta > 0$ such that $|x-y| < \delta \implies |\frac{1}{x} - \frac{1}{y}| < 1$. Let N > 1 be such $\frac{1}{N} < \delta$. Then for any 0 < x < y < 1 such that $\frac{1}{2N} < y - x < \frac{1}{N}$ We have $\frac{1}{x} - \frac{1}{y} < 1$. Then = |f'(F)|. |y-x|

$$\frac{1}{x} - \frac{1}{y} = |f'(\xi)| \cdot |y-x|$$

$$= \frac{1}{\xi^2} (y-x)$$

 $> \frac{1}{y^2} \cdot \frac{1}{2N}$ Now if we choose $y = \frac{1}{N}$, ve get $1 > \frac{N}{2}$; contradiction.

