

planetmath.org

Math for the people, by the people.

tangent map

Canonical name TangentMap

Date of creation 2013-03-22 14:06:19 Last modified on 2013-03-22 14:06:19

Owner matte (1858) Last modified by matte (1858)

Numerical id 7

Author matte (1858) Entry type Definition Classification msc 53-00

Synonym push forward map

Synonym pushforward map Synonym pushforward map Related topic PullbackOfAKForm Related topic FlowBoxTheorem **Definition 1.** Suppose X and Y are smooth manifolds with tangent bundles TX and TY, and suppose $f: X \to Y$ is a smooth mapping. Then the **tangent map** of f is the map $Df: TX \to TY$ defined as follows: If $v \in T_x(X)$ for some $x \in X$, then we can represent v by some curve $c: I \to X$ with c(0) = x and I = (-1,1). Now (Df)(v) is defined as the tangent vector in T(Y) represented by the curve $f \circ c: I \to Y$. Thus, since $(f \circ c)(0) = f(x)$, it follows that $(Df)(v) \in T_{f(x)}(Y)$.

Properties

Suppose X and Y are a smooth manifolds.

- If id_X is the identity mapping on X, then Did_X is the identity mapping on TX.
- Suppose X, Y, Z are smooth manifolds, and f, g are mappings $f: X \to Y, g: Y \to Z$. Then

$$D(f \circ g) = (Df) \circ (Dg).$$

• If $f: X \to Y$ is a diffeomorphism, then the inverse of Df is a diffeomorphism, and

$$(Df)^{-1} = D(f^{-1}).$$

Notes

Note that if $f: X \to Y$ is a mapping as in the definition, then the tangent map is a mapping

$$Df: TX \to TY$$

whereas the http://planetmath.org/PullbackOfAKFormpullback of f is a mapping

$$f^* \colon \Omega^k(Y) \to \Omega^k(X).$$

For this reason, the tangent map is also sometimes called the pushforward map. That is, a pullback takes objects from Y to X, and a pushforward takes objects from X to Y.

Sometimes, the tangent map of f is also denoted by f_* . However, the motivation for denoting the tangent map by Df is that if X and Y are open subsets in \mathbb{R}^n and \mathbb{R}^m , then Df is simply the Jacobian of f.