SYDNEY TECHNICAL HIGH SCHOOL

Year 12 Mathematics Extension 1

HSC Course

Assessment 2

TERM 1 2017

Time allowed: 90 minutes

General Instruction

- Marks for each question are indicated on the question.
- · Approved calculators may be used
- All necessary working should be shown
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- Write using black or blue pen
- All answers are to be in the writing booklet provided
- BOSTES reference sheet is located at the end of the exam.

Section 1 Multiple Choice Questions 1-5 5 Marks

Allow approximately 10 minutes for this section

Section II Questions 6 - 11 60 Marks

Allow approximately 80 minutes for this section

Section 1

5 marks

Attempt Questions 1-5

Allow about 10 minutes for this section

Use the Multiple Choice answer sheet for questions 1-5

- 1. How many turning points does the curve $y = x^4 4x^3$ have?
 - A. 0
 - B. 1
 - C. 2
 - D. 3
- 2. Which of the following integrals is always equal to zero?

A.
$$\int_{1}^{1} f(x) dx$$

$$B. \int_{0}^{1} f(x) dx$$

C.
$$\int_{0}^{1} f(x) dx - \int_{-1}^{0} f(x) dx$$

D.
$$\int_{0}^{1} f(x) dx$$

3. Using the graph of y = f(x) below,

- determine the value of a which satisfies the condition $\int_{-6}^{a} f(x) dx = 8$
- A. 8
- B. 10
- C. 12
- D. 14

4. At which point on the graph of y = f(x) shown below, is f''(x) < 0 and f'(x) = 0?

- A. A
- B. B
- C. C
- D. D
- 5. The graph of y = f''(x) is shown below.

Which of the following is true for the graph of y = f(x)?

- A. At x=1 there is a maximum turning point.
- B. At x=1 there is a minimum turning point.
- C. At x=2 there is a maximum turning point.
- D. At x=2 there is a minimum turning point.

Section II

Attempt Questions 6-11

Allow about 1 hour and 20 minutes for this section.

Answer each question in your answer booklet STARTING EACH QUESTION ON A NEW PAGE.

In Questions 6-11 your responses should include all relevant mathematical reasoning and / or calculations.

Question 6 - 10 marks

a. Differentiate,

i.
$$\frac{2x+1}{2x-1}$$

ii.
$$\frac{4}{3x} + \frac{3x}{4}$$

b. Find,

i.
$$\int (4t+3)^{-3} dt$$

ii.
$$\int \frac{5}{\sqrt{x}} dx$$

c. Evaluate
$$\int_{1}^{2} \left(x + \frac{1}{x}\right)^{2} dx$$

Question 7 - 10 marks

Begin this question on a NEW PAGE in your answer booklet.

a. Evaluate
$$\int_{-1}^{2} |2x-1| dx$$

b. Find the primitive function of
$$\frac{x+1}{\sqrt[3]{x}}$$

c. Find the value of k if,
$$k > 1$$
 and $\int_{1}^{k} (3x^2 - 25) dx = 24$

d. The region bounded by the curve
$$y = \sqrt{4-2x}$$
 and the coordinate axes, (in the first quadrant), is rotated about the y-axis. Find the volume of the solid formed.

3

Question 8 - 10 marks

Begin this question on a NEW PAGE in your answer booklet.

a. Prove by mathematical induction that:

$$\frac{1}{1(4)} + \frac{1}{4(7)} + \frac{1}{7(10)} + \dots + \frac{1}{1(3n-2)(3n+1)} = \frac{n}{3n+1} \quad \text{for } n \ge 1$$

- b. Given $\frac{dy}{dx} = x^3 (2x-1)^2 (3x+1)$, determine the nature of the stationary point at $x = \frac{1}{2}$
- c. The gradient function of the curve y = f(x) is given by $f'(x) = 3x^2 4$.

i. Find
$$y = f''(x)$$

- ii. Find the values for x, for which the curve y = f(x) is both increasing and concave down.
- iii. If the curve passes through the point (1, -2), find the equation of the curve.

Question 9 - 10 marks

Begin this question on a NEW PAGE in your answer booklet.

Find the value of k, so that, 2y-y'-x(y'-12)+k=0

- a. Prove by mathematical induction that $2^{3n} 3^n$ is divisible by 5, if n is a positive integer. 3
- b.
 i. Find $\frac{d}{dx}(2x\sqrt{x-3})$ in its simplest form.
 - ii. Hence, evaluate $\int_{4}^{7} \frac{x-2}{\sqrt{x-3}} dx$

3 .

c. Given that $y = (3x+1)^2$

Question 10 - 10 marks

Begin this question on a NEW PAGE in your answer booklet.

a. The graphs of $y = 4 - x^2$ and $y = x^2 (4 - x)$ are shown below.

- i. Show that the co-ordinates of A are (1, 3)
- ii. Calculate the shaded area OAB.
- b. An isosceles trapezium ABCD is drawn with its vertices lying on the circumference of a semicircle centre O and diameter 10cm.

- i. If $EO = OF = \frac{x}{2}$ show that $BE = \frac{1}{2}\sqrt{100 x^2}$
- ii. Show that the area of the trapezium ABCD is given by:

$$A = \frac{1}{4} (x+10) \sqrt{100 - x^2}$$

iii. Hence, find the length of BC so that the area of the trapezium is a maximum.

2

1

1

3

Question 11 - 10 marks

Begin this question on a NEW PAGE in your answer booklet.

A curve is defined by,

$$y = \frac{2x^2 - x + 2}{x}$$

i. For what value/s of x is the curve undefined?
 ii. Find the co-ordinates of any turning points and determine their nature.
 iii. Explain why the curve has no points of inflexion.
 iv. Sketch the curve, on one third of a page, showing all turning points and the equations of all asymptotes.
 v. Hence, solve the equation
 ^{2x^2-x+2}/_x -3 = 0
 1

END OF TASK

REFERENCE SHEET

- Mathematics –
- Mathematics Extension 1 -
- Mathematics Extension 2 –

Mathematics

Factorisation $a^2 - b^2 = (a+b)(a-b)$

 $a^{2}-b^{2} = (a+b)(a-b)$ $a^{3}+b^{3} = (a+b)(a^{2}-ab+b^{2})$

 $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

Angle sum of a polygon $S = (n-2) \times 180^{\circ}$

Equation of a circle $(x-h)^2 + (y-k)^2 = r^2$

Trigonometric ratios and identitles

 $\sin \theta = \frac{\text{opposite side}}{\text{hypotenuse}}$ $\cos \cos \theta = \frac{1}{\sin \theta}$

 $\cos \theta = \frac{\text{adjacent side}}{\text{hypotenuse}}$ $\sec \theta = \frac{1}{\cos \theta}$ $\tan \theta = \frac{\text{opposite side}}{\text{adjacent side}}$ $\tan \theta = \frac{\sin \theta}{\cos \theta}$

 $\cos\theta = \frac{\cos\theta}{\sin\theta}$

 $\sin^2\theta + \cos^2\theta = 1$

Exact ratios

2 300

Sine rule

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Cosine rule $c^2 = a^2 + b^2 - 2ab\cos C$

Area = $\frac{1}{2}ab\sin C$

Area of a triangle

Distance between two points $d = \sqrt{\left(x_2 - x_1\right)^2 + \left(y_2 - y_1\right)^2}$

Perpendicular distance of a point from a line $d = \frac{|ax_1 + by_3 + c|}{\sqrt{a^2 + b^2}}$

Slope (gradient) of a line

 $m = \frac{y_2 - y_1}{x_2 - x_1}$

Point-gradient form of the equation of a line $y-y_1=m\big(x-x_1\big)$

nth term of an arithmetic series

 $T_n = a + (n-1)d$

Sum to n terms of an arithmetic series

 $S_n = \frac{h}{2} \left[2a + (n-1)d \right] \text{ or } S_n = \frac{n}{2} (a+l)$ with term of a geometric series $T_n = ar^{n-1}$

Sum to n terms of a geometric series

 $S_n = \frac{a(r^n - 1)}{r - 1}$ or $S_n = \frac{a(1 - r^n)}{1 - r}$

Limiting sum of a geometric series

 $=\frac{1}{1-r}$

Compound Interest

 $A_n = P \left(1 + \frac{r}{100} \right)^n$

-2-

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivatives

If
$$y = x^n$$
, then $\frac{dy}{dx} = nx^{n-1}$

If
$$y = uv$$
, then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

If
$$y = \frac{u}{y}$$
, then $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

If
$$y = F(u)$$
, then $\frac{dy}{dx} = F'(u)\frac{du}{dx}$

If
$$y = e^{f(x)}$$
, then $\frac{dy}{dx} = f'(x)e^{f(x)}$

If
$$y = \log_e f(x) = \ln f(x)$$
, then $\frac{dy}{dx} = \frac{f'(x)}{f(x)}$

If
$$y = \sin f(x)$$
, then $\frac{dy}{dx} = f'(x)\cos f(x)$

If
$$y = \cos f(x)$$
, then $\frac{dy}{dx} = -f'(x) \sin f(x)$

If
$$y = \tan f(x)$$
, then $\frac{dy}{dx} = f'(x) \sec^2 f(x)$

Solution of a quadratic equation $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{}$ Sum and product of roots of a quadratic equation

 $\alpha + \beta = -\frac{b}{a}$

Equation of a parabola $(x-h)^2 = \pm 4a(y-k)$

$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C$$
$$\int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + C$$

$$\int_{f(x)}^{f'(x)} dx = \ln|f(x)| + C$$

$$\sin(ax+b)dx = -\frac{1}{a}\cos(ax+b) + C$$

$$\int \cos(ax+b) dx = \frac{1}{a} \sin(ax+b) + C$$

$$\int \sec^2(ax+b)dx = \frac{1}{a}\tan(ax+b) + C$$

Trapezoidal rule (one application) f^{b}

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \Big[f(a) + f(b) \Big]$$

Simpson's rule (one application)

$$\int_{a}^{b} f(x)dx = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

Logarithms - change of base

$$\log_a x = \frac{\log_b x}{\log_b a}$$

 $180^{\circ} = \pi$ radians Angle measure

Length of an arc

Area of a sector

Area = $\frac{1}{2}r^2\theta$

Mathematics Extension 1

 $\sin(\theta + \phi) = \sin\theta \cos\phi + \cos\theta \sin\phi$

 $\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi$

 $\tan(\theta + \phi) = \frac{\tan\theta + \tan\phi}{1 - \tan\theta \tan\phi}$

formulae

If $t = \tan \frac{\theta}{2}$, then

$$= \tan \frac{x}{2}, \text{ then}$$

$$\sin \theta = \frac{2t}{1+t^2}$$

$$\cos \theta = \frac{1-t^2}{1+t^2}$$

$$\tan \theta = \frac{2t}{1-t^2}$$

seneral solution of trigonometrio equations

 $\theta = n\pi + (-1)^n \sin^{-1} a$ $\theta = n\pi + \tan^{-1}a$

 $an\theta = \alpha$,

Nyleion of an interval in a given ratio

$$\frac{nx_2 + nx_1}{m+n} \cdot \frac{my_2 + ny_1}{m+n}$$

Parametrio representation of a parabola

 $x=2at, y=at^2$ $\operatorname{For} x^2 = 4ay,$

angent: $y = tx - at^2$ At $(2at, at^2)$,

 $10 \text{mal: } x + ty = at^3 + 2at$ At (x_1, y_1) ,

tormal: $y - y_1 = -\frac{2a}{x_1}(x - x_1)$ angent: $xx_1 = 2a(y+y_1)$

Chord of contact from (x_0, y_0) : $xx_0 = 2a(y + y_0)$

Acceleration

$$\frac{d^2x}{dt^2} = \frac{dy}{dt} = y\frac{dy}{dx} = \frac{d}{dx} \left(\frac{1}{2}y^2\right)$$

Simple harmonic motion $x = b + a\cos(nt + \alpha)$

 $\ddot{x} = -n^2 \left(x - b \right)$

further integrals

$$\frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a} + C$$

$$\frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$$

Sum and product of roots of a cubic equation $\alpha + \beta + \gamma = -\frac{b}{a}$

$$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$$

 $\alpha\beta\gamma = -\frac{d}{a}$

Estimation of roots of a polynomial equation

Newton's method
$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

Binomial theorem

$$(a+b)^n = \sum_{k=0}^n {n \choose k} a^k b^{n-k} = \sum_{k=0}^n {n \choose k} a^{n-k} b^k$$

© 2015 Board of Studies, Teaching and Binestional Standards MSW

Socies		9 00:15011	
(a) (a) (b)	by $\frac{dy}{dx} = \frac{1}{2} \left(\frac{2x-1}{3x+i} \right)$	a)	b) $d \left(2x \int x - 3 \right)$
	6	Test n=1	ا <u>ر</u> ابر
(+)-		23x1-31	product rule
T= T=	test 21 = 1/2	6 0 0	to detail the management of the second designation of the second
	x 1/4 1/2 1	= 5 which is divisible by 5	=212-3 +22
:. true for n=1	dy 1/4 * 4 0 1x1x4	√	2/12-3
Assume true for n=K	0< 1/2, Xp	Assume true for n=K	= 2/2-3 + 3
	96		2- حل
K-2)(3K+t)		2 3 = 5 = 5 M where Mis	= 2(x-3)+x
Prove tive for n= K+1	of horizontal point of	a positive	22-3
Dum to prose:	inflexion at x=1	0	= 3x - 36
+			(x-3
(+x) (31(-1)) (1-1)(1) (+1)	1+1 c) Increasing y >0	3(K+1) (K+1)	esta impromete deste a incluse en mane, man un increstion amenda en estadolarista.
(1)		۱ د	Now
LHS= K + 1 Assumpt.	g_{pt} 1) $f''(x) = 6x$	1 3,	Í
3141 (34+3)(34+3+		= 8 5m + 3k - 3.3k	Vx-3 3 dx ()
	1) Increasing 4170	,	. The second continues are the second and the secon
314+1		assumption	00 (72-2 dx = (1 d 2x /x-3 d)
∠ K(3K+t) + 1	3(x-2/3)(x+2/3)>0	= 40M + 8,36 -3.34	~ ∂
(3k+i)(3k+4)	24-2 2>2	40M+5,3K	$\frac{2}{\pi}$
= 3K2+K+($= -5(8m.\pm 3k)$	3 [] 4
(3K+1)(3K+4)	concave down y"40		
= (3K+1)(K+1)		של מומוכומום כ	2
(3K+1)(3K+4+)	ントくの	ᆁ	= 2 14 - 4
	Both Increasing AND ()	スド	
3(K+1)+1	7 7 7	1= N=K+1, As it is true for n=1	
z RHS	\ /- 0:	£.1	
If the statement is true for	4	Mothe) = <u>-</u>
N=K it is also true for n=K+1.	f(x) = x3-4x+C	Induction true for out	7
As it is true for n=1 it is	2	positive integer n.	2(32+1) - 6(32+1) - 2(182+6-12)+1
also true for n=2,3,4 etc.	- 2 = 1		
Hence by Mathematical induction			1871 +124 + 4 - 6 - 4 - 12 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6
True ad n>1.	001(x)= 1-+x+1.		

						•
	= 11 &	$= \frac{1}{2} \left(\frac{1}{3} - \frac{1}{3} \right)^{2}$ $= \frac{8}{3} - \frac{8}{3} - \left(\frac{1}{3} - \frac{1}{3} \right)^{2}$ $= \frac{5}{3}$ So Area = 13 + 5	$= \frac{4/3}{13} - \frac{1}{4} - (0)$ $= \frac{13}{12}$ $\frac{A_2}{\sqrt{1}} = \frac{12}{4 - \chi^2} dx$	(1) Shaded Area $A_1 = \begin{cases} 1 & 4x^2 - x^3 & dx \\ 0 & 4x^3 - x^4 \end{cases}$	y=4- =3 .:(1,3)	Question 10 a) $y=4-x^2$ and $y=x^2(4-x)$ i) Sub in $x=1$
$\frac{dA}{dA} = \frac{(x+10)(x-6)=0}{(x+10)(x-6)=0}$	1 1 1 1	$\int \frac{dH}{dx} = \int \frac{100-x^2}{4} - x(x+10)$ $\int \frac{dH}{dx} = \frac{4 \int \frac{100-x^2}{4}}{4 \int \frac{100-x^2}{4}}$ $\int \frac{dH}{dx} = \frac{4 \int \frac{100-x^2}{4}}{4 \int \frac{100-x^2}{4}}$	III. Finding $\frac{dA}{dx}$ $4 = 5 \cdot (100 - x^2)$ $4 = 1 \cdot (100 - x^2)$		4,862 100 1 100 1 2 100	b) $\frac{1}{12}$ radius = 5 E $\frac{\pi}{2}$ •• $5^2 = 8E^2 + (\frac{\pi}{2})^2$ 25 = $8E^2 + \frac{\pi}{2}$
		$\frac{dx^{2}}{x^{3}} = \frac{1}{4} = \frac{4}{11} = \frac{4}{11} = \frac{4}{11} = \frac{4}{11} = \frac{1}{11} = \frac{4}{11} = \frac{1}{11} = $	11	11. $\frac{dy}{dx} = \frac{\partial}{\partial x} - \frac{2}{x^2}$ Stat points $\frac{dy}{dx} = 0$ $\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = 0$ $\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = 0$ $\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = 0$	$y = 2x^2 - x + 2$ $= 2x - 1 + 2$ $x - x + 2$ 1. undefined when $x = 0$	Wuestion 11 y = 2x2-x+2
\therefore at $\infty = 1$	(this is where graph crosses horizontal line y=3)	$\frac{x}{2x^2-x+2} = 3$	$y. 2x^2 - x + 2 - 3 = 0$	(-1, -5)	ketch y	111. $y''' = \frac{4}{3} \neq 0$ with $x \neq 0$. No points of inflexion.

1e. Choice14 = 6α - α ² 2 4cst A8 x β 10 x c 12 x D 14 V (D)	(4) $f^{11}(x) < 0$ concase down $f^{1}(x) = 0$ stat point	$\frac{1}{2} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^$	$\frac{\lambda^{-1}}{\lambda^{-1}} = \frac{\lambda^{-1}}{\lambda^{-1}} = \frac{\lambda^{-1}}{\lambda^{-1}}$ $\frac{\beta^{-1}(\lambda)}{\lambda^{-1}} = \frac{\lambda^{-1}}{\lambda^{-1}} = \frac{\lambda^{-1}}{\lambda^{-1}}$	f(2c) f(2c) min T.P at x=2
Solutions to multiple 1) $y = 4x^3 - 12x^2 = 0$ $x = 0$ $x = 0$ test HPT Turning pt: 08 only only Turning pt:	- can't decide	B- only if f(x) is odd C- only sometimes D-zero as zero width rule (a f(x) dx = 0	(3) (4) $(2,4)$ (4) (4) (4) (4)	Trap = 40 equation Line $3 = 6 - x$ $6 - x = 32$ $6 - x = 32$ $32 = 6x - x^2$ $32 = 60 - x^2 - 36 + 18$

 \bigcirc