Отчет по лабораторной работе №7

Дисциплина: архитектура компьютера

Ермакова Анастасия Алексеевна

Содержание

6	Список литературы	24
5	Выводы	23
	4.1 Реализация переходов в NASM	8 13 16
4	Выполнение лабораторной работы	8
3	Теоретическое введение	7
2	Задание	6
1	Цель работы	5

Список иллюстраций

4 . 1	Создание директории и фаила	8
4.2	Текст программы файла lab7-1.asm	9
	Результат работы программы	9
	Измененный текст файла	10
	Результат работы программы	10
	Измененный текст программы	11
4.7	Результат работы программы	11
4.8	Создание файла lab7-2.asm	11
4.9	Текст программы	12
4.10	Результат работы программы	13
4.11	Создание файла листинга	13
4.12	Текст файла листинга	14
4.13	Удаление одного операнда	15
4.14	Выполнение трансляции	15
4.15	Ошибка в файле листинга	16
4.16	Текст программы файла lab7-3.asm	17
4.17	Результат работы программы	18
4.18	Текст программы файла lab7-4.asm	20
4.19	Результат работы программы	21

Список таблиц

1 Цель работы

Цель данной лабораторной работы - изучение команды условного и безусловного переходов, преобретение навыков написания программ с использованием переходов, знакомство с назначением и структурой файла листинга.

2 Задание

- 1. Реализация переходов в NASM
- 2. Изучение структуры файла листинга
- 3. Выполнение заданий для самостоятельной работы

3 Теоретическое введение

Для реализации ветвлений в ассемблере используются так называемые команды передачи управления или команды перехода. Можно выделить 2 типа переходов:

- условный переход выполнение или не выполнение перехода в определенную точку программы в зависимости от проверки условия.
- безусловный переход выполнение передачи управления в определенную точку про- граммы без каких-либо условий.

4 Выполнение лабораторной работы

4.1 Реализация переходов в NASM

Создаю каталог для программ лабораторной работы №7, перехожу в него, создаю там файл lab7-1.asm и открываю его для редактирования с помощью mousepad. (рис. 4.1).

```
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc$ mkdir lab07
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc$ cd lab07
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ touch lab7-1.asm
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ mousepad lab7-1.asm
```

Рис. 4.1: Создание директории и файла

Ввожу в файл текст листинга 7.1. (рис. 4.2).

```
*~/work/study/2023-2024/Архитектура компьютера/arch-р...
                                                          ×
Файл Правка Поиск Просмотр Документ Помощь
%include 'in_out.asm' ; подключение внешнего файла
msg1: DB 'Сообщение № 1',0
msg2: DB 'Сообщение № 2',0
msg3: DB 'Сообщение № 3',0
GLOBAL _start
_start:
jmp _label2
_label1:
mov eax, msgl ; Вывод на экран строки
call sprintLF ; 'Сообщение № 1'
_label2:
mov eax, msg2 ; Вывод на экран строки
call sprintLF ; 'Сообщение № 2'
_label3:
mov eax, msg3 ; Вывод на экран строки
call sprintLF ; 'Сообщение № 3'
call quit ; вызов подпрограммы завершения
```

Рис. 4.2: Текст программы файла lab7-1.asm

Создаю исполняемый файл и запускаю его. Результат работы данной программы совпадаем с результатом в файле на ТУИС. (рис. 4.3).

```
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ nasm -f elf lab7-1.asm
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ ./lab7-1
Сообщение № 2
Cooбщение № 3
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$
```

Рис. 4.3: Результат работы программы

Изменяю текст программы в соответствии с листингом 7.2. (рис. 4.4).

```
*~/work/study/2023-2024/Архитектура компьютера/arch-р...
                                                              ×
Файл Правка Поиск Просмотр Документ Помощь
msgl: DB 'Сообщение № 1',0
msg2: DB 'Сообщение № 2',0
msg3: DB 'Сообщение № 3',0
_start:
jmp _label2
_label1:
mov eax, msgl ; Вывод на экран строки
call sprintLF ; 'Сообщение № 1'
jmp _end
_label2:
mov eax, msg2 ; Вывод на экран строки
jmp _label1
mov eax, msg3 ; Вывод на экран строки
call quit ; вызов подпрограммы завершения
```

Рис. 4.4: Измененный текст файла

Создаю исполняемый файл и запускаю его. Программа выводит сначала Сообщение \mathbb{N}^2 2, а затем Сообщение \mathbb{N}^2 1, что соответствует заданию. (рис. 4.5).

```
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ nasm -f elf lab7-1.asm
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ ./lab7-1
Cooбщение № 1
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$
```

Рис. 4.5: Результат работы программы

Изменяю текст программы так, чтобы все три сообщения вывелись в обратном порядке. (рис. 4.6).

```
*~/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07/la... ×
Файл Правка Поиск Просмотр Документ Помощь
%include 'in_out.asm'; подключение внешнего файла
SECTION .data
msg1: DB 'Cообщение № 1',0
msg2: DB 'Сообщение № 2',0
msg3: DB 'Сообщение № 3',0

SECTION .text
GLOBAL _start
_start:
jmp _label3
_label1:
mov eax, msg1; Вывод на экран строки
call sprintLF; 'Сообщение № 1'
jmp _end
_label2:
mov eax, msg2; Вывод на экран строки
call sprintLF; 'Сообщение № 2'
jmp _label1
_label3:
mov eax, msg3; Вывод на экран строки
call sprintLF; 'Сообщение № 2'
jmp _label1
_label3:
mov eax, msg3; Вывод на экран строки
call sprintLF; 'Сообщение № 3'
jmp _label2
_end:
call quit; вызов подпрограммы завершения
```

Рис. 4.6: Измененный текст программы

Создаю исполняемый файл и запускаю его. Программа работает верно. (рис. 4.7).

```
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ nasm -f elf lab7-1.asm
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ ld -m elf_1386 -o lab7-1 lab7-1.o
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ ./lab7-1
Сообщение № 3
Сообщение № 2
Сообщение № 1
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$
```

Рис. 4.7: Результат работы программы

Создаю файл lab7-2.asm в текущем каталоге и открываю его для редактирования с помощью mousepad. (рис. 4.8).

```
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ touch lab7-2.asm anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ mousepad lab7-2.asm anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$
```

Рис. 4.8: Создание файла lab7-2.asm

Ввожу в него текст программы из листинга 7.3. (рис. 4.9).

```
~/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07/lab7-2.asm - Mousepad х
 Файл Правка Поиск Просмотр Документ Помощь
section .data
msg1 db 'Введите В: ',0h
msg2 db "Наибольшее число: ",0h
A dd '20'
C dd '50'
B resb 10
section .text
 ----- Вывод сообщения 'Введите В: '
call sprint
mov [B],eax ; запись преобразованного числа в 'B'
; ---- Записываем 'A' в переменную 'max'
mov ecx,[A] ; 'ecx = A'
mov [max],ecx ; 'max = A'
; ----- Сравниваем 'A' и 'C' (как символы)
сmp ecx,[C] ; Сравниваем 'A' и 'C'
ig check_B; ecли 'A>c', то переход на метку 'check_B', mov ecx,[C]; иначе 'ecx = C' mov [max],ecx; 'max = C'
check B:
mov [max],eax ; запись преобразованного числа в `max
; ------ Сравниваем 'max(A,C)' и 'В' (как числа)
cmp ecx,[B]; Сравниваем 'max(A,C)' и 'B' jg fin ; если 'max(A,C)>B', то переход на 'fin', mov ecx,[B] ; иначе 'ecx = B'
mov [max],ecx
; ------ Вывод результата
fin:
call sprint ; Вывод сообщения 'Наибольшее число: '
mov eax,[max]
call iprintLF ; Вывод 'max(A,B,C)'
call quit ; Выход
```

Рис. 4.9: Текст программы

Создаю исполняемый файл и запускаю его. Проверяю его работу для разных значений В (15, 35, 65). Программа работает исправно. (рис. 4.10).

```
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ nasm -f elf lab7-2.asm
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ ld -m elf_i386 -o lab7-2 lab7-2.o
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ ./lab7-2
Введите В: 15
Наибольшее число: 50
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ ./lab7-2
Введите В: 35
Наибольшее число: 55
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ ./lab7-2
Введите В: 65
Наибольшее число: 65
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$

Введите В: 65
Наибольшее число: 65
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$
```

Рис. 4.10: Результат работы программы

4.2 Изучение структуры файла листинга

Создаю файл листинга для программы из файла lab7-2.asm и открваю его с помощью mcedit. (рис. 4.11).

```
anastasiagfedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ nasm -f elf -l lab7-2.lst lab7-2.asm anastasiagfedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ meedit lab7-2.lst
```

Рис. 4.11: Создание файла листинга

Внимательно ознакамливаюсь с его форматом и содержимым. (рис. 4.12). Объясню следующие три строки листинга (строки 8, 9 и 10):

- cmp byte [eax], 0 (строка 8): Эта команда сравнивает байт, на который указывает регистр eax, с нулем. Если байт равен 0, флаг нуля (ZF) устанавливается в 1.
- jz finished (строка 9): Эта команда выполняет переход к метке finished, если флаг нуля установлен (то есть если байт, на который указывает еах, равен 0). Это условный переход, и если стр не установит флаг, выполнение продолжится.
- inc eax (строка 10): Если предыдущая команда не привела к переходу, эта команда увеличивает значение в регистре eax на 1.

Рис. 4.12: Текст файла листинга

Открываю файл с программой lab7-2.asm и в инструкции с двумя операндами удаляю один из них. (рис. 4.13).

```
*~/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07/lab7-2.asm - Mousepad
Файл Правка Поиск Просмотр Документ Помощь
section .data
msg1 db 'Введите В: ',0h
msg2 db "Наибольшее число: ",0h
A dd '20'
C dd '50'
max resb 10
global _start
_start:
mov eax,msgl
mov ecx,B
mov edx,10
                 --- Преобразование 'B' из символа в число
mov [B],еах ; запись преобразованного числа в 'B'
; ----- Записываем 'A' в переменную 'max'
; ------- Sainucusaem 'A' в переменную 'max'
mov ecx,[A]; 'ecx = A'
mov [max],ecx; 'max = A'
; ------ Сравниваем 'A' и 'C' (как символы)
cmp ecx,[C]; Сравниваем 'A' и 'C'
jg check_B; если 'A>C', то переход на метку 'check_B',
mov ecx,[C]; иначе 'ecx = C'
mov [max],ecx; 'max = C'
; ------ Преобразование 'max(A,C)' из символа в число
call atoi ; Вызов подпрограммы перевода символа в число mov [max],eax ; запись преобразованного числа в `max` ; ------ Сравниваем 'max(A,C)' и 'B' (как числа)
mov ecx,[max]
cmp ecx,[B]; Сравниваем 'max(A,C)' и 'B'
jg fin; если 'max(A,C)>B', то переход на 'fin',
mov ecx,[B]; иначе 'ecx = B'
mov [max],ecx
  ----- Вывод результата
mov eax, msg2
call sprint; Вывод сообщения 'Наибольшее число: '
mov eax,[max]
call iprintLF; Вывод 'max(A,B,C)'
```

Рис. 4.13: Удаление одного операнда

Выполняю трансляцию с получением файла листинга. (рис. 4.14). Команда выводит ошибку.

```
anastasia@fedora:-/work/study/2023-2024/Apxutekrypa komnsorepa/arch-pc/lab07$ nasm -f elf -l lab7-2.lst lab7-2.asm lab7-2.asm:34: error: invalid combination of opcode and operands anastasia@fedora:-/work/study/2023-2024/Apxutekrypa kompstrena/arch-pc/lab07$
```

Рис. 4.14: Выполнение трансляции

В новом файле листинга показвает ошибку, возникшуу в результате трансляции файла. Никакие выходные данные при этом не создаются. (рис. 4.15).

Рис. 4.15: Ошибка в файле листинга

4.3 Выполнение заданий для самостоятельной работы

Создаю файл lab7-3.asm для выолнения первого задания самостоятельной работы и пишу программу нахождения наименьшей из трех целочисленных переменных a, b и c. (рис. 4.16).

```
%include 'in_out.asm'
section .data
msg1 db 'Введите В: ',0h
msg2 db "Наименьшее число: ",0h
A dd '46'
min resb 10
global _start
start:
; ----- Вывод сообщения 'Введите В: '
call sprint
; ----- Ввод 'В'
mov ecx,B
call sread
; ----- Преобразование 'В' из символа в число
mov eax,B
call atoi ; Вызов подпрограммы перевода символа в число
mov [B],eax ; запись преобразованного числа в 'B' ; ----- Записываем 'A' в переменную 'min'
mov ecx, [A] ; 'ecx = A'
mov [min], ecx; 'min = A'
; ----- Сравниваем 'А' и 'С' (как символы)
стр есх,[С] ; Сравниваем 'А' и 'С'
jg check_B; если 'A<C', то переход на метку 'check_B',
mov ecx,[C] ; иначе 'ecx = C'
; ----- Преобразование 'min(A,C)' из символа в число
check_B:
mov eax, min
call atoi ; Вызов подпрограммы перевода символа в число
mov [min],eax ; запись преобразованного числа в `min
; ----- Сравниваем 'min(A,C)' и 'В' (как числа)
cmp ecx,[B] ; Сравниваем 'min(A,C)' и 'B'
jb fin ; если 'min(A,C)<B', то переход на 'fin',
; ----- Вывод результата
mov eax, msq2
call sprint ; Вывод сообщения 'Наименьшее число: '
mov eax, [min]
call iprintLF ; Вывод 'min(A,B,C)'
```

Рис. 4.16: Текст программы файла lab7-3.asm

Создаю исполняемый файл и запускаю его. Проверяю его работу, введя переменные из таблицы в соответствии со своим вариантом, полученным в результате выполнения предыдущей лабораторной работы (вариант 19). Ввожу значение 32, программа выводит результат, наименьшую переменную. Программа работает

исправно, 32 и правда наименьшая из трех переменных. (рис. 4.17).

```
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ nasm -f elf lab7-3.asm anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ ld -m elf_i386 -o lab7-3 lab7-3.o anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ ./lab7-3
Введите В: 32
Наименьшее число: 32
unastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$
```

Рис. 4.17: Результат работы программы

Код программы:

```
%include 'in_out.asm'
SECTION .data
msg_x: DB 'Введите значение переменной х: ', 0
msg_a: DB 'Введите значение переменной a: ', 0
res: DB 'Результат: ', 0
SECTION .bss
x: RESB 80
a: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax, msg_x
call sprint
mov ecx, x
mov edx, 80
call sread
mov eax, x
call atoi
mov edi, eax ; edi = x
mov eax, msg_a
call sprint
mov ecx, a
```

```
mov edx, 80
call sread
mov eax, a
call atoi
mov esi, eax ; esi = a
{\sf cmp} edi,esi ; сравниваю x и а
jg add_values ; если x > a, перехожу в add_values
{\sf mov} eax, edi ; если x <= \alpha, вывожу x
jmp print_result
add_values: ; x > a, вывожу a + x
mov eax, edi
add eax,esi ; eax = a + x
print_result:
mov edi, eax
mov eax, res
call sprint
mov eax, edi
call iprintLF
call quit
```

Для второго задания самостоятельной работы создаю файл lab7-4.asm и пишу программу, которая для веденных с клавиатуры значений х и а вычисляет значение заданной функции f(x) и выводит результат вычислений. Выбираю вид функции f(x) в соответствии с моим вариантом 19. (рис. 4.18).

```
SECTION .data
rem: DB 'Результат: ',0
SECTION .bss
x: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax, msg
call sprint
mov ecx,x
mov edx, 80
call sread
mov eax, x
call atoi
xor edx,edx
mov ebx,3
add eax,5
mov ebx,7
mul ebx
mov edi,eax
mov eax, rem
call sprint
mov eax,edi
call quit
```

Рис. 4.18: Текст программы файла lab7-4.asm

Создаю исполняемый файл и запускаю его. Проверяю его работу, введя значения переменных из таблицы 7.6. Сначала ввожу первую пару переменных (4 и 5), затем вторую (3 и 2). Программа работает исправно. (рис. 4.19).

```
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ nasm -f elf lab7-4.asm anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ nasm -f elf lab7-4 lab7-4.o anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ ./lab7-4
Введите значение переменной х: 4
Введите значение переменной а: 5
Peзультат: 4
апаstasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$ ./lab7-4
Введите значение переменной х: 3
Введите значение переменной а: 2
Peзультат: 5
anastasia@fedora:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab07$
```

Рис. 4.19: Результат работы программы

Код программы:

```
%include 'in_out.asm'
section .data
msg1 db 'Введите В: ',0h
msg2 db "Наименьшее число: ",0h
A dd '46'
C dd '74'
section .bss
min resb 10
B resb 10
section .text
global _start
_start:
; ----- Вывод сообщения 'Введите В: '
mov eax, msg1
call sprint
; ----- Ввод 'В'
mov ecx, B
mov edx, 10
call sread
; ----- Преобразование 'В' из символа в число
mov eax,B
call atoi ; Вызов подпрограммы перевода символа в число
mov [B],eax ; запись преобразованного числа в 'В'
```

```
; ----- Записываем 'A' в переменную 'min'
mov ecx, [A] ; 'ecx = A'
mov [min],ecx ; 'min = A'
; ----- Сравниваем 'А' и 'С' (как символы)
стр есх,[С] ; Сравниваем 'A' и 'C'
jg check_B; если 'A<C', то переход на метку 'check_B',
mov ecx, [C] ; UHAYE 'ecx = C'
mov [min],ecx ; 'min = C'
; ----- Преобразование 'min(A,C)' из символа в число
check_B:
mov eax, min
call atoi ; Вызов подпрограммы перевода символа в число
mov [min], eax ; запись преобразованного числа в `min`
; ----- Сравниваем 'min(A,C)' и 'В' (как числа)
mov ecx,[min]
стр есх,[В] ; Сравниваем 'min(A,C)' и 'В'
jb fin ; если 'min(A,C)<B', то переход на 'fin',
mov ecx, [B]; uhaye 'ecx = B'
mov [min],ecx
; ----- Вывод результата
fin:
mov eax, msg2
call sprint ; Вывод сообщения 'Наименьшее число: '
mov eax,[min]
call iprintLF ; Вывод 'min(A,B,C)'
call quit ; Выход
```

5 Выводы

6 Список литературы