

Job Fair 2023 DSA Data Structures Algorithms Array Strings Linked List Stack Queue Tree

Problem Reduction in Transform and Conquer Technique

Read

Discuss

Courses

Practice

Video

What is Problem Reduction?

Problem reduction is an algorithm design technique that takes a complex problem and reduces it to a simpler one. The simpler problem is then solved and the solution of the simpler problem is then transformed to the solution of the original problem.

Problem reduction is a powerful technique that can be used to simplify complex problems and make them easier to solve. It can also be used to reduce the time and space complexity of algorithms.

Example:

Let's understand the technique with the help of the following problem:

Calculate the LCM (Least Common Multiple) of two numbers X and Y.

Approach 1:

To solve the problem one can iterate through the multiples of the bigger element (say X) until that is also a multiple of the other element. This can be written as follows:

- Select the bigger element (say X here).
- Iterate through the multiples of X:
 - If this is also a multiple of Y, return this as the answer.
 - Otherwise, continue the traversal.

Algorithm:

```
Algorithm LCM(X, Y):

if Y > X:

swap X and Y

end if

for i = 1 to Y:

if X*i is divisible by Y

return X*i

end if

end for
```

C++

```
#include<bits/stdc++.h>
using namespace std;

// Function to find the LCM of two numbers
int LCM(int x,int y) {
   if (y > x) {
      swap(x, y); // swapping the values of x and y using destructuring assignment
   }

   for (int i = 1; i <= y; i++) {
      if ((x*i) % y == 0) {
         return i*x;
      }
   }
}</pre>
```

```
int main()
{
    int x=10, y=15;
    cout<<LCM(10, 15); // Output: 30
}</pre>
```

Python3

```
# code
def LCM(x, y):
    if y > x:
        x, y = y, x

for i in range(1, y+1):
    if (x*i) % y == 0:
        return i*x

return x*y
print(LCM(10, 15))
#Code is contributed by Siddharth Aher
```

Javascript

```
// Function to find the LCM of two numbers
function LCM(x, y) {
    if (y > x) {
        [x, y] = [y, x]; // swapping the values of x and y using destructuring assignm
    }
    for (let i = 1; i <= y; i++) {
        if ((x*i) % y === 0) {
            return i*x;
        }
    }
    return x*y;
}

console.log(LCM(10, 15)); // Output: 30</pre>
```

Output

30

Time Complexity: O(Y) as the loop can iterate for maximum Y times [because X*Y is

Approach 2 (Problem Reduction): The above method required a linear amount of time and if the value of Y is very big it may not be a feasible solution. This problem can be reduced to another problem which is to "calculate GCD of X and Y" and the solution of that can be transformed to get the answer to the given problem as shown below:

- Calculate the GCD of X and Y using Euclid's algorithm.
- Now we know that GCD * LCM = X*Y. So the LCM can be calculated as (X*Y/GCD).

Algorithm:

```
GCD(X, Y):

if X = 0:

return Y

end if

return GCD(Y%X, X)

Algorithm LCM(X, Y):

G = GCD(X, Y)

LCM = X * Y / G
```

Python3

```
def gcd(x, y):
    if x == 0:
        return y
    return gcd(y % x, x)

def lcm(x, y):
    g = gcd(x, y)
    lcm = (x*y)//g
    return lcm

x = 10
y = 15
print(lcm(x, y))
#Code is contributed by Siddharth Aher
```

Javascript

```
function gcd(x, y) {
  if (x === 0) {
    return y;
  }
```

```
function lcm(x, y) {
   const g = gcd(x, y);
   const lcm = (x * y) / g;
   return lcm;
}

const x = 10;
const y = 15;
console.log(lcm(x, y));
Output
```

Time Complexity: O(log(min(X, Y)))

Auxiliary Space: O(1)

Must Remember points about Problem Reduction:

- Reducing a problem to another one is only practical when the total time taken for transforming and solving the reduced problem is lower than solving the original problem.
- If problem A is reduced to problem B, then the lower bound of B can be higher than the lower bound of A, but it can never be lower than the lower bound of A.

Related Articles:

- Transform and Conquer Technique
- Instance Simplification method in Transform and Conquer Technique
- Representation Change in Transform and Conquer Technique

Last Updated: 26 Apr, 2023

2

Similar Reads

- 1. Representation Change in Transform and Conquer Technique
- 2. Instance Simplification Method in Transform and Conquer Technique
- 3. Transform and Conquer Technique
- 4. Swiss Roll Reduction with LLE in Scikit Learn

- **6.** Comparison among Greedy, Divide and Conquer and Dynamic Programming algorithm
- 7. Code Optimization Technique (logical AND and logical OR)
- **8.** Merge K sorted arrays | Set 3 (Using Divide and Conquer Approach)
- **9.** Merge K sorted arrays of different sizes | (Divide and Conquer Approach)
- 10. Difference between Backtracking and Branch-N-Bound technique

Related Tutorials

- 1. Learn Data Structures with Javascript | DSA Tutorial
- 2. Introduction to Max-Heap Data Structure and Algorithm Tutorials
- 3. Introduction to Set Data Structure and Algorithm Tutorials
- 4. Introduction to Map Data Structure and Algorithm Tutorials
- 5. What is Dijkstra's Algorithm? | Introduction to Dijkstra's Shortest Path Algorithm

Previous

Article Contributed By:

ojasvigupta ojasvigupta

Vote for difficulty

Improved By: poojaagrawal2, rkbhola5, mallelagowtalm, vutv1kcaj, ahersiddhba7n

Article Tags: Picked, Technical Scripter 2022, Algorithms, DSA, Technical Scripter

Improve Article

Report Issue

A-143, 9th Floor, Sovereign Corporate Tower, Sector-136, Noida, Uttar Pradesh -201305

feedback@geeks for geeks.org

Company Explore

About Us Job Fair For Students

Careers POTD: Revamped

In Media Python Backend LIVE

Contact Us Android App Development

Terms and Conditions DevOps LIVE

Privacy Policy DSA in JavaScript

Copyright Policy

Third-Party Copyright Notices

Advertise with us

Languages Data Structures

Python Array

Java String

C++ Linked List

GoLang Stack

SQL Queue

R Language Tree

Android Tutorial Graph

Algorithms Web Development

Sorting

Searching CSS

Greedy JavaScript

Recursion AngularJS

Backtracking NodeJS

Data Science & ML

Data Science With Python

Data Science For Beginner

Machine Learning Tutorial

Maths For Machine Learning

Pandas Tutorial

NumPy Tutorial

NLP Tutorial

Python

Python Tutorial

Python Programming Examples

Django Tutorial

Python Projects

Python Tkinter

OpenCV Python Tutorial

UPSC/SSC/BANKING

SSC CGL Syllabus

SBI PO Syllabus

IBPS PO Syllabus

UPSC Ethics Notes

UPSC Economics Notes

UPSC History Notes

Interview Corner

Company Preparation

Preparation for SDE

Company Interview Corner

Experienced Interview

Internship Interview

Competitive Programming

Aptitude

GfG School

CBSE Notes for Class 8

CBSE Notes for Class 9

CBSE Notes for Class 10

CBSE Notes for Class 11

CBSE Notes for Class 12

English Grammar

Write & Earn

Write an Article

Improve an Article

Pick Topics to Write

Write Interview Experience

Internships

Video Internship

@geeksforgeeks, Some rights reserved