Министерство образования Республики Беларусь Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого»

Кафедра «Технология машиностроения»

Лабораторная работа №7

По дисциплине: «Оптимизация последовательности горячей обработки»

Выполнил студент группы АП-31 Сальников С.Д. Принял преподаватель Мурашко В.С.

Цель работы: Овладение навыками использования метода ветвей и границ, метода «ближайшего соседа», метода перебора с возвратом для решения технологических задач.

Практическая часть

На линии горячей обработки, состоящей из 4 станков, нужно обработать 5 различных деталей. Все детали должны проходить вдоль линии в одном направлении через каждый станок. Заданы длительности $p_{i,j}$ обработки детали i на j-м станке $i=\overline{1,5},\ j=\overline{1,4}$. Требуется составить последовательность горячей обработки деталей, позволяющую закончить ее за минимальное время.

Горячая обработка давлением отличается тем свойством, что каждая деталь может ожидать обработку только перед первым станком линии, а перед остальными ожидание недопустимо. В данной работе рассматриваются только компактные расписания горячей обработки, которые отличаются тем, что при выбранной последовательности сократить время обработки невозможно.

Задача о горячей обработке сводится к известной задаче о коммивояжере. С этой целью вводится в рассмотрение фиктивная (h+1)-я деталь, с нулевыми временами обработки $p_{h+1,1},\,p_{h+1,2},...,\,p_{h+1,m}=0$, где h – количество деталей; m – станков. В качестве городов выступают детали, в качестве расстояний между ними - величины $w_{i,j}$, равные временам между моментами начала обработки i-й и j-й деталей, при условии, что j-ая деталь обрабатывается сразу за i-й. Эти величины вычисляются по формуле:

$$w_{i,j} = \max_{1 \le k \le m} \left\{ \sum_{s=1}^{k} p_{i,s} - \sum_{s=1}^{k-1} p_{j,s} \right\}.$$

Очевидно, $w_{i,h+1} = p_{i,1} + p_{i,2} + ... + p_{i,m}$, т.е. обработка фиктивной детали начинается только после окончания всей предыдущей обработки [2].

Поставленную задачу требуется решить:

- с помощью алгоритма Литтла;
- с помощью методом «ближайшего соседа»;
- с помощью функции метода перебора с возвратом в MathCAD;
- с помощью «Поиска решения» в MS Excel;

	Вариант20							
i/j	1	2	3	4				
1	9	7	9	3				
2	4	8	10	8				
3	8	3	11	6				
4	9	8	8	7				
5	4	7	5	5				

Находим матрицу времени в MS Excel

	ст1	ст2	ст3	ст4					
д1	9	7	9	3					
д2	4	8	10	8					
д3	8	3	11	6					
д4	9	8	8	7					
д5	4	7	5	5					
М	 атрица дубль	видж-вр	емя между	у началами	1 обработк	и итой и д	житой де	тали на	1 станке
M	атрица дубль	видж-вр	емя между	у началами	1 обработк	и итой и д	житой де	гали на	1 станке
М	атрица дубль д1	в и дж- вр д2	емя между д3	у началами д4	1 обработк д5	и итой и д д6	житой де	тали на	1 станке
		д2	д3	д4			житой де	тали на	1 станке
д1	д1	д2	д3 14	д4	д5	д6	житой де	гали на	1 станке
д1 д2	д1 1,00E+10	д2 13	д3 14 11	д4 9 5	д5 14	д6 28	житой де	тали на	1 станке
д1 д2 д3	д1 1,00E+10 6	д2 13 1E+10	д3 14 11	д4 9 5	д5 14 14 12	д6 28 30	житой де	гали на	1 станке
д1 д2	д1 1,00E+10 6 8	д2 13 1E+10 10	д3 14 11 1E+10	д4 9 5	д5 14 14 12 16	д6 28 30 28 32	житой де	тали на	1 станке

Решим задачу с помощью функции метода перебора с возвратом в MathCAD:

$$U := \begin{pmatrix} 0 & 13 & 14 & 9 & 14 & 28 \\ 6 & 0 & 11 & 5 & 14 & 30 \\ 8 & 10 & 0 & 8 & 12 & 28 \\ 9 & 13 & 14 & 0 & 16 & 32 \\ 4 & 7 & 5 & 4 & 0 & 21 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$commit2(n,ne,po,ot,j) := \begin{cases} for & i \in 0..n-1 \\ if & po_i = 0 \end{cases}$$

$$s \leftarrow n+1$$

$$po_i \leftarrow 1$$

$$ne_j \leftarrow i$$

$$ne_s \leftarrow ne_s + U_{(ne_{j-1},i)}$$

$$if & ne_s < ot_{s,0}$$

$$ot \leftarrow commit2(n,ne,po,ot,j+1) & if & j < n-1$$

$$otherwise$$

$$ne_s \leftarrow ne_s + U_{(ne_{j-1},i)}$$

$$ot \leftarrow ne & if & ne_s < ot_{s,0}$$

$$ot \leftarrow augment(ot,ne) & if & ne_s = ot_{s,0} & otherwise$$

$$po_i \leftarrow 0$$

$$ne_s \leftarrow ne_s - U_{(ne_{j-1},i)}$$

$$macom2(n,k) := \begin{cases} ne_{n+1} \leftarrow (po_{n-1} \leftarrow 0) \\ ne_0 \leftarrow (ne_m \leftarrow k) \end{cases}$$

$$po_k \leftarrow 1$$

$$ot_{n+1,0} \leftarrow \infty$$

$$commi2(n,ne,po,ot,1)$$

$$macom2(6,0)^{T} = (0 5 4 2 1 3 0 57)$$

Решим задачу с помощью «Поиска решения» в MS Excel

		J			r				
								ограниче	
9		д1	д2	д3	д4	д5	д6	ния	
)	д1	0	0	0	0	0	1	1	
1	д2	0	0	0	1	0	0	1	
2	д3	0	1	0	0	0	0	1	
3	д4	1	0	0	0	0	0	1	
1	д5	0	0	1	0	0	0	1	
5	д6	0	0	0	0	1	0	1	
	ограниче								
5	ния	1	1	1	1	1	1		
7	minf(x)	57							
3									
9			u2	u3	u4	u5	u6		
)			3	2	4	1	0		
1									
2									
3			u2	u3	u4	u5	u6		
1		u2	0	1	4	2	3		
5		u3	4	0	-2	1	2		
5		u4	1	2	0	3	4		
7		u5	-2	4	-3	0	1		
3		u6	-3	-2	-4	4	0		
9									
)			контур	1-6-5-3-2-	4-1				
1			путь	5-3-2-4-1					
2									
3									
-									

Вывод: Овладел навыками использования метода ветвей и границ, метода динамического программирования, метода возврата с перебором для решения технологических задач.