Assignment 1

Ilaria Ronconi Student number: 942344 ilaria.ronconi@mail.polimi.it

July 21, 2021

Exercise 1

Given the problem (2), the request is to write the weak formulation. The problem is a 1D Helmholtz equation and it represent a steady equation with u(x) amplitude of the wave. In this problem we have non-null Dirichlet boundary conditions, so we introduce a new function $R_D \in H^1(0,L)$ s.t. $R_D(0) = \alpha$ and $R_D(L) = \beta$. The new variable are:

$$w = u - R_D$$
$$w(0) = w(L) = 0$$

with $w \in H_0^1(0, L)$ and $H^1(0, L) = \{v : (0, L) \to \mathbb{R} \text{ such that } v, v' \in L^2(0, L)\}.$ Substituting in the original problem:

$$\begin{cases} (w + R_D)'' + n^2 \omega^2 (w + R_D) = f \\ w(0) = w(L) = 0 \end{cases}$$

Now we can take a test function $v \in C_0^1(0, L)$ multiple both side of the equation and integrate over the domain:

$$\int_{0}^{L} (w + R_D)'' v dx + \int_{0}^{L} n^2 \omega^2 (w + R_D) v dx = \int_{0}^{L} f v dx$$
 (1)

$$-\int_{0}^{L} w'v'dx - \int_{0}^{L} R_{D}v'dx + \int_{0}^{L} n^{2}\omega^{2}wvdx + \int_{0}^{L} n^{2}\omega^{2}R_{D}vdx = \int_{0}^{L} fvdx$$
 (2)

If we assume the problem to be well posed, it becomes:

Find $w \in H_0^1(0, L)$ s.t.

$$-\int_{0}^{L}w'v'dx + n^{2}\omega^{2}\int_{0}^{L}wvdx = \int_{0}^{L}fvdx + \int_{0}^{L}R_{D}v'dx - \int_{0}^{L}n^{2}\omega^{2}R_{D}vdxv \in H_{0}^{1}(0,L)$$

$$(3)$$

$$\forall v \in H_{0}^{1}(0,L)$$

where:

$$\begin{array}{l} H^1(0,L) = \{v: (0,L) \to \mathbb{R} \text{ s.t. } v,v' \in L^2(0,L)\} \\ H^1_0(0,L) = \{v \in H^1(0,L) \text{ s.t. } v(0) = v(L) = 0\} \end{array}$$

If we introduce some bilinear forms the problem can be reformulated using a different notation. Let's introduce some bilinear as:

$$a: H_0^1(0,L) \times H_0^1(0,L) \to \mathbb{R}$$
 (4)

Numerical Acoustics Politecnico di Milano

$$a(w,v) = \int_0^L w'(x)v'(x)dx \quad \forall w, v \in H'_0(0,L)$$
 (5)

and

$$m: H_0^1(0,L) \times H_0^1(0,L) \to \mathbb{R}$$
 (6)

$$m(w,v) = \int_0^L w(x)v(x)dx \quad \forall w, v \in H_0'(0,L)$$
 (7)

In the same way, we introduce F:

$$F: H_0^1(0, L) \to \mathbb{R} \tag{8}$$

$$F(v) = \int_0^L f(x)v(x)dx \qquad \forall v \in H_0'(0, L)$$

$$\tag{9}$$

which is a linear form. In this way we can reformulate the problem:

Find $w \in H_0^1(0, L)$ s.t.

$$-a(w,v) + n^2 w^2 m(w,v) = F(v) + a(R_D,v) - n^2 w^2 m(R_D,v)$$

$$\forall v \in H_0^1(0,L)$$

Exercise 2

In order to write the Galerkin formulation of the problem, we have to discretize the domain in finite dimensional space V_h subset of V.

Considering the domain, we subdivided it in intervarls K_i and in N+1 equispaced gridpoints x_i with i=0,...,N

Now we can reformulate the problem into V_h :

Find $w_h \in V_h \subset H_0^1(0,L)$ s.t.

$$-a(w_h, v_h) + n^2 w^2 m(w_h, v_h) = F(v_h) + a(R_{Dh}, v_h) - n^2 w^2 m(R_{Dh}, v_h)$$

$$\forall v_h \in V_h \subset H_0^1(0,L)$$

Exercise 3

We know that:

$$V_h = X_h^1 = \{v \in C^0(0,L) : v|_{k_i(h)} \in \mathbb{P}^1(k_i) \forall i=1,..,N\}$$

The basis function for V_h based on the grid is defined by:

$$\psi_i(x_j) = \delta_{ij} = \begin{cases} 1 & if \ i = j \\ 0 & otherwise \end{cases}$$
 (10)

Politecnico di Milano Numerical Acoustics

These functions are piece wise linear, and Lagrangian basis.

Exploiting the reference element technique we can obtain the element of the system, as

$$w_h(x) = \sum_{j=0}^{N} w_j \phi_j(x) \tag{11}$$

Substituting into the Galerkin formulation and considering $v_h(x) = \phi_i(x)$, we obtain:

$$-\sum_{j=0}^{N} w_{j} \int_{0}^{L} \phi_{j}' \phi_{i}' dx + n^{2} w^{2} \sum_{j=0}^{N} w_{j} \int_{0}^{L} \phi_{j} \phi_{i} dx = \int_{0}^{L} f_{h} \phi_{i} dx + \sum_{j=0}^{N} \int_{0}^{L} R_{D_{h}} \phi_{i}' dx - n^{2} \omega^{2} \int_{0}^{L} R_{D_{h}} \phi_{i} dx$$

$$(12)$$

We call the two integral on the left a_{ij} and m_{ij} and they are the entries of the matrix \mathbf{A} and \mathbf{M} , and the one right F_i which are the entries of the vector \mathbf{F} .

$$-\sum_{j=0}^{N} w_j a(\phi_j, \phi_i) + n^2 w^2 \sum_{j=0}^{N} w_j m(\phi_j, \phi_i) = F(\phi_i) + a(R_D, \phi_i) - n^2 \omega^2 m(R_D, \phi_i)$$
(13)

that leads to the algebraic formulation:

$$\begin{array}{ll} \operatorname{Find} \underline{w} = (w_1,...,w_{N+1})^T \in R^N \text{ s.t. } -\mathbf{A}\underline{w} + n^2\omega^2\mathbf{M}\underline{w} = \mathbf{F} + \mathbf{A}\underline{R}_D - n^2\omega^2\mathbf{M}\underline{R}_D \\ R^{N\times N}, \qquad \mathbf{K} \in (f1,f2,...;f_{N+1})^T \in R^N \forall i=1,...,N+1 \end{array} \qquad \mathbf{A} \in \mathbb{R}^N$$

Now we substitute \underline{u} as $\underline{u} = \underline{w} + R_D$, and we find :

$$-\mathbf{A}\underline{u} + n^2 \omega^2 \mathbf{M}\underline{u} = \mathbf{F} \tag{14}$$

Exercise 4

The implementation of the finite solution of the Exercise 3, starts from the Matlab code analyzed during the lessons. We need to complete the struct DATI, inserting the following:

domain	[0,1]
μ	1
ω	1
n	1
$u_{ex}(x,t)$	$sin(2\pi x)$
f	$sin(2\pi x) - 4\pi^2 sin(2\pi x)$
fem	P1

Then we have solve the linear system by running the simulation with nRef = 5, obtaining:

Numerical Acoustics Politecnico di Milano

Figure 1: Solution for nRef = 5

Figure 2: Convergence plot

The convergence test compute the solution in a sequence of mesh and then compute H^1 error and the L^2 error.

$$||u - u_h||_{H^1(0,1)} = \left[\int_0^1 (u - u_h)^2 dx + \int_0^1 (u' - u_h')^2 dx \right]^{1/2}$$
$$||u - u_h||_{L^2(0,1)} = \left[\int_0^1 (u - u_h)^2 dx \right]^{1/2}$$

The representation (2) is the behavior of the errors with respect to the mesh size. Theoretically, H^1 have to go to 0 like h, while L^2 as h^2 , we can see as the numerical error computed respect the theoretical one.

Exercise 5

The problem we are considering now is the (1) of the homework. It can be rewritten as:

$$M\underline{\ddot{U}}(t) + A\underline{\dot{U}}(t) = \underline{F}(t) \tag{15}$$

where $M, A \in \mathbb{R}^{N-1,N-1}, \underline{U}$ is a vector containing the unknown coefficients $\underline{U}(t) = (u_1(t), ..., u_{N-1}(t))^T$ and \underline{F} is the vector of the right hand side $\underline{F}(t) = (\int_0^L f\psi_1, ..., \int_0^L f\psi_{N-1})^T$. It is a second order ordinary differential equation and considering the all problem it is:

$$\begin{cases}
M \underline{\ddot{U}}(t) + A \underline{U}(t) = F(t) & t \in (0, T] \\
\underline{U}(0) = u_0(x) \\
\underline{\dot{U}}(0) = v_0(x)
\end{cases}$$
(16)

The system can be transformed in a first order ODE:

$$\begin{cases}
\frac{\dot{U}}{M} = \underline{v} \\
M \dot{\underline{v}} + A \underline{U} = \underline{F} \\
\underline{U}(0) = u_0(x) \\
\underline{v(0)} = v_0(x)
\end{cases}$$
(17)

Politecnico di Milano Numerical Acoustics

We have now to integrate in time the ODE system, using the Leap-Frog scheme: considering the time line, we discretize it, with equi-spaced intervals Δt and we approximate the derivative with a central finite difference:

$$\ddot{u}(t_k) \approx \frac{u(t_{k+1}) - 2u(t_k) + u(t_{k-1})}{\Delta t^2}$$
(18)

In order to compute u_{k+1} we need to know u_k and u_{k-1} , exploiting the leap-frog scheme we compute a first step to calculate, with the initial condition u_0 , u at t_1 :

$$M\underline{U}_1 = (M - \frac{\Delta t^2}{2}A)\underline{u}_0(x) + \Delta t M\underline{u}_1(x) + \frac{\Delta t^2}{2}\underline{F}_0$$
 (19)

and then we go on following this rule,

$$M\underline{U}_{k+1} = (2M - \Delta t^2 A)\underline{U}_k - M\underline{U}_{k-1} + \Delta t^2 \underline{F}_k$$
(20)

This scheme is second order accurate and it is explicit, and consequently conditionally stable which means that the scheme is stable if $\Delta t \leq costant \frac{h}{c}$. To implement it in Matlab we exploit the code CG_FEM_1D_WAVE_start, which compute the discretization in time with the leap-frog scheme and in space with the FEM. We have to modify the entry data as asked from the problem and the results are:

Figure 3: Solution with linear finite element discretization coupled with the leap-frog scheme

In particular report the errors obtained at the final observation time T=4 are:

Error_{L2}	0.0031
$Error_{SEMIH1}$	0.2861
Error_{H1}	0.2861
Error_{∞}	0.0043

Numerical Acoustics Politecnico di Milano

Exercise 6a

To solve the problem (2) of the homework with linear finite elements we exploit the same code of the exercise 4, considering the following set of data:

- $\Omega = (0, 1)$ and n = 1, $w = 2\pi$ and $u_{ex}(x, t) = sin(2\pi x)$
- $\Omega = (0, 1)$ and $n = 1, w = 1000\pi$ and $u_{ex}(x, t) = \sin(2\pi x)$

The forcing term of the first set of data is: f(x,t) = 0. We also add the dependency on time to the solution, and the obtained results are:

Figure 4: Plot for $w=2\pi$

$$\begin{vmatrix} e_{L2} & 0.7071 \\ e_{SH1} & 4.4429 \\ e_{H1} & 4.4988 \\ e_{\infty} & 1.0000 \end{vmatrix}$$

Table 1: Errors for $\omega = 2\pi$

Exercise 6b

With the second set of input data we can compute again the forcing term that this time is different from zero. The results:

Politecnico di Milano Numerical Acoustics

Figure 5: Plot for $w=1000\pi$

e_{L2}	9.0754×10^{-9}
e_{SH1}	0.4357
e_{H1}	0.4357
e_{∞}	1.2835×10^{-8}

Table 2: Errors for $\omega = 2\pi$