

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа №9

Дисциплина _	Компьютерные сети				
Тема _	Изучение виртуальных сетей				
Студент	_ Куприй А.А				
Группа	ИУ7-73Б				
Вариант	12				
Оценка (баллы)					
Преподаватель	Рогозин Н.О.				

1 Условие

1.1 Задание 1

Назначить адреса подсетей:

- 1. Подсеть 1: 192.168.12.0 /24
- 2. Подсеть 2: 192.168.13.0 /24
- 3. Подсеть 3: 192.168.14.0 /24

1.2 Задание 2

Настроить поддержку трех виртуальных локальных сетей (VLan 10, 20, 30) на коммутаторе.

1.3 Задание 3

Настроить маршрутизацию между виртуальными локальными сетями на маршрутизаторе.

1.4 Задание 4

Выделить и озаглавить на схеме каждую виртуальную локальную сеть.

2 Практическая часть

2.1 Задача 1

В рамках первого задания были назначены адреса подсетей в соответствии с условием.

2.2 Задача 2

Во время выполнения второго задания была настроена поддержка трёх виртуальных сетей на коммутаторе. На рисунках ниже представлены команды, которые выполнялись на коммутаторе.

```
Switch (config-if) #exit
Switch (config) #int vlan 10
Switch (config-if) #exit
Switch (config) #int vlan 20
Switch (config-if) #int vlan 30
Switch (config-if) #exit
Switch (config-if) #exit
Switch (config) #int vlan 30
Switch (config-if) #exit
```

Рис. 2.1 – Настройка коммутатора. Часть 1

```
Switch (config)#interface range fa 0/1 - 2
Switch (config)#interface plane plane access Switch (config-if-range) #switchport mode access Vlan 10
% Access VLAN does not exist. Creating vlan 10
Switch (config-if-range) #
%LINEFROTO-5-UPDOWN: Line protocol on Interface Vlan10, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan10, changed state to up
Switch (config)#interface range fa 0/5 - iswiswitchport mode accessswitchport mode accessiswitchport access vlan 10switchport access vlan 20
% Access VLAN does not exist. Creating vlan 20
Switch (config-if-range)#
%LINEFS-GHANGED: Interface Vlan20, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan20, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan20, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan20, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan20, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan30
% Access VLAN does not exist. Creating vlan 30
Switch (config-if-range) #switchport access vlan 30
% Access VLAN does not exist. Creating vlan 30
Switch (config-if-range) #switchport mode access
Switch (config-if-range) #switchport mode trunk
% Invalid input detected at '^' marker.

Switch (config-if-pif)*switchport mode trunk
% Invalid input detected at '^' marker.

Switch (config-if)*switchport mode trunk
% Invalid input detected at '^' marker.
```

Рис. 2.2 – Настройка коммутатора. Часть 2

После выполнения вышеприведенных команд были добавлены vlan10, vlan20 и vlan30, что видно на рисунке ниже.

VLAN No		VLAN Name
1	default	
10	VLAN0010	
20	VLAN0020	
30	VLAN0030	

Рис. 2.3 – Список виртуальных сетей на коммутаторе

На рисунке ниже видно, что также в результате выполнения этих команд для физических интерфейсов было указано, для какой виртуальной сети передавать данные.

Port	Link	VLAN	IP Address	MAC Address	
FastEthernet0/1	Up	10		0030.A3B2.0501	
FastEthernet0/2	Up	10	} -	0030.A3B2.0502	
FastEthernet0/3	Up	30	/	0030.A3B2.0503	
FastEthernet0/4	Up	30	/	0030.A3B2.0504	
FastEthernet0/5	Up	20		0030.A3B2.0505	
FastEthernet0/6	Up	20		0030.A3B2.0506	
FastEthernet0/7	Up	20		0030.A3B2.0507	
FastEthernet0/8	Down	1		0030.A3B2.0508	
FastEthernet0/9	Down	1		0030.A3B2.0509	
FastEthernet0/10	Down	1		0030.A3B2.050A	
FastEthernet0/11	Down	1		0030.A3B2.050B	
FastEthernet0/12	Down	1		0030.A3B2.050C	
FastEthernet0/13	Down	1		0030.A3B2.050D	
FastEthernet0/14	Down	1		0030.A3B2.050E	
FastEthernet0/15	Down	1		0030.A3B2.050F	
FastEthernet0/16	Down	1		0030.A3B2.0510	
FastEthernet0/17	Down	1		0030.A3B2.0511	
FastEthernet0/18	Down	1		0030.A3B2.0512	
FastEthernet0/19	Down	1		0030.A3B2.0513	
FastEthernet0/20	Down	1		0030.A3B2.0514	
FastEthernet0/21	Down	1		0030.A3B2.0515	
FastEthernet0/22	Down	1		0030.A3B2.0516	
FastEthernet0/23	Down	1		0030.A3B2.0517	
FastEthernet0/24	Down	1		0030.A3B2.0518	
GigabitEthernet0/1	Up			0030.A3B2.0519	
GigabitEthernet0/2	Down	1		0030.A3B2.051A	
Vlan1	Down	1 2011	<not set=""></not>	0001.969E.2048	
Vlan10	Up	10	<not set=""></not>	0001.969E.2001	
Vlan20	Ūρ	20	<not set=""></not>	0001.969E.2002	
Vlan30	Up	30	<not set=""></not>	0001.969E.2003	
Hostname: Switch	•				

Physical Location: Intercity, Home City, Corporate Office, Main Wiring Closet

Рис. 2.4 – Список физических интерфейсов коммутатора

2.3 Задача 3

Во время настройки маршрутизации между виртуальными локальными сетями на маршрутизаторе выполнялись команды, представленные на рисунках ниже.

```
Router(config)#int gig0/0/0.1
Router(config-subif)#
%LINK-5-CHANGED: Interface GigabitEthernet0/0/0.1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0/0.1, changed state to up
Router(config-subif) #encapsulation dot1q 10
Router(config-subif) #ip address 192.168.12.254 255.255.255.0
Router(config-subif) #exit
Router(config)#int gig0/0/0.2
Router(config-subif)#
%LINK-5-CHANGED: Interface GigabitEthernet0/0/0.2, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0/0.2, changed state to up
Router(config-subif) #encapsulation dot1q 20
Router(config-subif) #ip address 192.168.13.254 255.255.255.0
Router (config-subif) #exit
Router(config)#int gig0/0/0.3
Router(config-subif)#
%LINK-5-CHANGED: Interface GigabitEthernet0/0/0.3, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0/0.3, changed state to up
Router(config-subif) #encapsulation dot1q 30
Router(config-subif) #ip address 192.168.14.254 255.255.255.0
Router (config-subif) #exit
Router(config) #ip routing
```

Рис. 2.5 – Команды для настройки маршрутизатора

После выполнения этих команд были созданы три подинтерфейса, что показано на рисунке ниже.

Port	Link	VLAN	IP Address	IPv6 Address	MAC Address
GigabitEthernet0/0/0	Up		<not set=""></not>	<not set=""></not>	0007.ECBA.4801
GigabitEthernet0/0/0.1	Up		192.168.12.254/24	<not set=""></not>	0007.ECBA.4801
GigabitEthernet0/0/0.2	Up		192.168.13.254/24	<not set=""></not>	0007.ECBA.4801
GigabitEthernet0/0/0.3	Up	\ 	192.168.14.254/24	<not set=""></not>	0007.ECBA.4801
GigabitEthernet0/0/1	Down	\	<not set=""></not>	<not set=""></not>	0007.ECBA.4802
GigabitEthernet0/0/2	Down		<not set=""></not>	<not set=""></not>	0007.ECBA.4803
Vlan1	Down	1	<not set=""></not>	<not set=""></not>	0007.EC99.3C07
Hostname: Router					

Physical Location: Intercity, Home City, Corporate Office, Main Wiring Closet

Рис. 2.6 – Список интерфейсов маршрутизатора

2.4 Задача 4

На рисунке ниже изображены выделенные виртуальные сети.

Рис. 2.7 – Выделенные виртуальные сети

На рисунке ниже представлен результат команды ping, сделанной из PC4 в Server1.

Рис. 2.8 – Результат проверки соединения