STAT 408 Applied Regression Analysis

Nan Miles Xi

Department of Mathematics and Statistics
Loyola University Chicago

Fall 2022

Transformation

Transformation

- In linear regression, the "linear" refers to parameter
- The predictors themselves do not have to be linear

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 \log X_2 + \beta_3 X_1 X_2 + \varepsilon$$

$$Y = \beta_0 + \beta_1 X_1^{\beta_2} + \varepsilon$$

- Therefore, we can transform both response Y and predictors and model is still linear
- Let's first look at transforming response Y

Transforming the Response

- Reasons we may consider transforming response Y in linear model
 - 1. Reduce the impact of outliers and increase the normality of error distribution
 - 2. Improve the model fit
 - 3. Some real questions require us to transform the response Y
- We already see log and square root transformation for 1 and 2
- Let's see one example for 3

Transforming the Response

Production function in microeconomics shows

$$Y = AL^{\beta}K^{\alpha}$$

where Y = total production, L = labor input, K = capital input, A = productivity α and β are "elasticity" of labor and capital, which are our interests

• Log-transformation gives us a linear model to estimate α and β :

$$\log(Y) = \log(A) + \beta \log(L) + \alpha \log(K)$$

Transforming the Response

 When we use log-transformation, the regression parameters have a particular interpretation

$$\hat{y} = e^{\hat{\beta}_0} e^{\hat{\beta}_1 x_1} \cdots e^{\hat{\beta}_p x_p}$$

$$\log \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \cdots + \hat{\beta}_p x_p$$

- If $\hat{\beta}_1 = 0.01$, then one unit increase of X_1 will increase $\log(\hat{y})$ by 0.01
- Because $\log(1+\hat{y}-1)=0.01$ and $\log(1+x)\approx x$ for small $x,\hat{y}-1\approx 0.01$
 - \hat{y} will increase from 1 to 1.01, that is, 1%
- After log-transformation, small $\hat{\beta}$ is the percentage increase of Y if X increases by one unit

- Now let's focus on the transformation of predictors segmented regression
- The saving dataset contains five variables for 50 countries
 - sr: saveing rate
 - pop15: percent population under age of 15
 - pop75: percent population over age of 75
 - dpi: per-capita disposable income in dollars
 - ddpi: percent growth rate of dpi
- The data is over the period 1960-1970

*	sr [‡]	pop15 [‡]	pop75 [‡]	dpi [‡]	ddpi [‡]
Australia	11.43	29.35	2.87	2329.68	2.87
Austria	12.07	23.32	4.41	1507.99	3.93
Belgium	13.17	23.80	4.43	2108.47	3.82
Bolivia	5.75	41.89	1.67	189.13	0.22
Brazil	12.88	42.19	0.83	728.47	4.56
Canada	8.79	31.72	2.85	2982.88	2.43

- The motivation of segmented regression is that different linear regression models may apply in different regions of the data
- In the saving dataset, we suspect the relations between saving rate and population age are different in younger countries and older countries
- We use pop15=35 as the cutoff

```
saving <- read.csv("saving.csv")
plot(sr ~ pop15, data = saving, xlab='population under 15', ylab='saving rate')
abline(v=35, lty=5)</pre>
```

• We need to fit two separate models to capture the two relationships

Fit two models in two regions

```
lm1 <- lm(sr~pop15, data = saving, subset = (pop15<35))
lm2 <- lm(sr~pop15, data = saving, subset = (pop15>35))
```

Draw two models in two regions

```
segments(x0 = 20, y0 = lm1$coefficients[1]+lm1$coefficients[2]*20,
 x1 = 35, y1 = lm1$coefficients[1]+lm1$coefficients[2]*30)
 segments(x0 = 35, y0 = lm1$coefficients[1]+lm1$coefficients[2]*35,
 x1 = 48, y1 = lm1$coefficients[1]+lm1$coefficients[2]*48)
```

- One issue is that the two models are disconnected at x=35
- X=35 is a break point, which seems unrealistic
- Segmented regression solves this issue by smoothing the break points

• We transform the predictor X into two predictors by two <u>basis functions</u>

$$B_l(x) = \begin{cases} c - x & \text{if } x < c \\ 0 & \text{otherwise} \end{cases}$$

$$B_r(x) = \begin{cases} x - c & \text{if } x > c \\ 0 & \text{otherwise} \end{cases}$$

where c is the cutoff between the two groups and c = 35 in this model

Under this transformation, the linear model is

$$y = \beta_0 + \beta_1 B_l(x) + \beta_2 B_r(x) + \varepsilon$$

We can use regular linear regression to fit this model (coding 6.r)

- The segmented model will have different slopes in the two groups but connects at X = 35
- Segmented model also reduces the four parameters in the two linear models to three
- Since we change the X value in both groups, the two slopes are different from the two separate regressions

Polynomial Regression

Polynomial regression includes the higher order of predictors into a linear model

$$y = \beta_0 + \beta_1 x + \dots + \beta_d x^d + \varepsilon$$

 It introduces non-linearity into the model and provides more flexibility and complexity

- ullet There are three ways to determine the higher order d
 - 1. Forward: adding terms until the added term is not statistically significant
 - 2. Backward: starting with a large d and eliminate non-statistically significant terms
 - 3. Choose d based on prior knowledge

Polynomial Regression

1.746017

-0.090967

-0.000085

1.380455

0.225598

0.009374

ddpi

I(ddpi^2)

I(ddpi^3)

 We use <u>forward</u> method to examine the relation between saving and the increase of disposable income

```
> summary(lm(sr ~ ddpi,savings))
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                                                                                                    Linear
(Intercept)
                7.883
                           1.011
                                     7.80
                                            4.5e - 10
                0.476
                            0.215
                                     2.22
                                             0.031
ddpi
                                                                                   10
                                                                                          15
> summary(lm(sr ~ ddpi+I(ddpi^2), savings))|
Coefficients:
                                                                 15
             Estimate Std. Error t value Pr(>|t|)
                                                                                                  Quadratic
                          1.4347
(Intercept)
               5.1304
                                     3.58
                                            0.00082
                                           0.00203
ddpi
              1.7575
                          0.5377
                                  3.27
I(ddpi^2)
              -0.0930
                          0.0361
                                    -2.57
                                           0.01326
                                                                                   10
> summary(lm(sr ~ ddpi+I(ddpi^2)+I(ddpi^3), savings))
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                                                                                                    Cubic
(Intercept)
              5.145360
                         2.198606
                                      2.34
                                               0.024
```

0.212

0.689

0.993

15

15

10

1.26

-0.40

-0.01

Polynomial Regression

- Any term higher than the second order is insignificant, so the final model is quadratic of dppi
- It is a bad idea to eliminate lower order terms from the model before the higher order terms, even if they are not significant
- We can also define polynomials in more than one variable, also called <u>response</u> <u>surface model</u>

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2$$

$$\text{lmod} \leftarrow \text{lm(sr} \sim \text{pop15} + \text{ddpi} + \text{I(pop15^2)} + \text{I(ddpi^2)} + \text{I(pop15*ddpi),savings)}$$

$$\text{summary(lmod)}$$

Nonlinearity in Linear Regression

The visualization for polynomial models with different orders

Collinearity

Collinearity

Recall that we estimate linear model by

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

- If X is singular (perfect linear relation of predictors), then X^TX is not inversible, $\hat{\beta}$ does not have unique solution
- In this case, we need to drop certain predictors to break prefect linear relation
- This is called <u>exact collinearity</u>

Collinearity

- A more challenging problem is X close to singular but not exactly (collinearity)
- Recall $\hat{\beta}$ is a random variable with a normal distribution:

$$\hat{\boldsymbol{\beta}} \sim N(\boldsymbol{\beta}, (X^T X)^{-1} \boldsymbol{\sigma}^2)$$

- Close to singular will cause X^TX "small" and $(X^TX)^{-1}$ "large", then the variance of $\hat{\beta}$ will be large
 - 1. The model estimation is unstable, small measurement errors leads to large changes in $\hat{\beta}$
 - 2. t statistic is small, t-test may fail to find significant predictors
 - 3. The signs of the coefficients could be the opposite of the truth

- 1. Examine the correlation matrix of the predictors
 - Matrix entry close to −1 or +1 indicates large pairwise collinearities
- 2. Regress predictor X_i on all other predictors, then check R-square of this regression
 - large R-square (close to one) indicates collinearity

- Let's see one real-data example of dealing with collinearity
- Dataset seatpos contains 8 predictors of 38 driver's body size, weight, age and response variable hipcenter (seating position)

^	Age [‡]	Weight [‡]	HtShoes [‡]	Ht [‡]	Seated [‡]	Arm [‡]	Thigh [‡]	Leg [‡]	hipcenter
1	46	180	187.2	184.9	95.2	36.1	45.3	41.3	-206.300
2	31	175	167.5	165.5	83.8	32.9	36.5	35.9	-178.210
3	23	100	153.6	152.2	82.9	26.0	36.6	31.0	-71.673
4	19	185	190.3	187.4	97.3	37.4	44.1	41.0	-257.720
5	23	159	178.0	174.1	93.9	29.5	40.1	36.9	-173.230
6	47	170	178.7	177.0	92.4	36.0	43.2	37.4	-185.150
7	30	137	165.7	164.6	87.7	32.5	35.6	36.2	-164.750
8	28	192	185.3	182.7	96.9	35.8	39.9	43.1	-270.920

```
> lmod <- lm(hipcenter ~ ., seatpos)</pre>
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 436.43213 166.57162
                                   2.620
                                           0.0138 *
              0.77572
                         0.57033
                                   1.360
Age
                                           0.1843
                                   0.080
Weight
              0.02631
                         0.33097
                                           0.9372
             -2.69241
                         9.75304
                                  -0.276
                                           0.7845
HtShoes
              0.60134
                        10.12987
                                   0.059
                                           0.9531
Нt
                         3.76189
                                   0.142
Seated
             0.53375
                                           0.8882
                                 -0.341
             -1.32807
                         3.90020
                                           0.7359
Arm
Thigh
             -1.14312
                         2.66002
                                  -0.430
                                           0.6706
             -6.43905
                         4.71386 -1.366
                                           0.1824
Leg
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 37.72 on 29 degrees of freedom Multiple R-squared: 0.6866, Adjusted R-squared: 0.6001 F-statistic: 7.94 on 8 and 29 DF, p-value: 1.306e-05

Issue of this full model

- No single predictor is significant (t-test), but they are jointly significant (F-test)
- Standard deviations of estimated parameters are large
- The R-square is reasonable
- Multiple predictors measure driver's body size
- Those are evidence of collinearity: highly correlated predictors

• Let's check the predictor correlation matrix

```
> round(cor(seatpos[,-9]),2)
         Age Weight HtShoes
                               Ht Seated Arm Thigh
                                                      Lea
                       -0.08 -0.09
        1.00
                0.08
                                   -0.17 0.36
Age
Weight
        0.08
               1.00
                       0.83
                             0.83
                                    0.78 0.70
                                               0.57
               0.83
                       1.00
HtShoes -0.08
                             1.00
                                    0.93 0.75
               0.83
Нt
        -0.09
                       1.00
                             1.00
                                    0.93 0.75
                                               0.73
Seated
       -0.17
               0.78
                       0.93
                             0.93
                                    1.00 0.63
                                               0.61
                                                     0.81
                                               0.67
Arm
        0.36
               0.70
                                    0.63 1.00
Thigh
        0.09
               0.57
                                    0.61 0.67
                                               1.00
                                                     0.65
                       0.91 0.91
                                    0.81 0.75
Leg
        -0.04
               0.78
                                               0.65
                                                     1.00
```

 There are some large pairwise correlations between predictors, mainly those predictors that measure height/length

• Let's regress each predictor on others and check their R squares

```
for(i in 1:8){
    r2 <- summary(]m(x[,i] ~ x[,-i]))$r.squared
    cat(colnames(x)[i], '\t', r2, '\n')
}</pre>
```

Age Weight	0.4994823 0.7258043
HtShoes	0.9967472
Ht	0.9969982
Seated	0.8882813
Arm	0.7775983
Thiah	0.6380596
Leg	0.850619

There are some large R-squares indicating collinearity

Instable estimation

 We simulate a new dataset by adding random noise (std = 10) to response variable hipcenter

```
lm.model <- lm(hipcenter+rnorm(n=38,mean=0,sd=10)\sim., data = seatpos)
summary(lm.model)
           Estimate Std. Error t value Pr(>|t|)
                                                                                     Estimate Std. Error t value Pr(>|t|)
(Intercept) 420.9929
                      172.4276
                                                                        (Intercept) 436.43213 166.57162
                                                                                                           2.620
                                                                                                                   0.0138 *
                                 2.442
                                          0.021 *
                        0.5904
                                                                                      0.77572
                                                                                                  0.57033
                                                                                                                   0.1843
             0.7916
                                 1.341
                                          0.190
                                                                        Age
                                                                                                           1.360
Age
                        0.3426 -0.329
                                          0.744
                                                                                      0.02631
                                                                                                 0.33097
                                                                                                                   0.9372
Weight
            -0.1128
                                                                        Weight
                                                                                                           0.080
HtShoes
                       10.0959
            -6.2007
                                -0.614
                                          0.544
                                                                        HtShoes
                                                                                     -2.69241
                                                                                                 9.75304
                                                                                                          -0.276
                                                                                                                   0.7845
                       10.4860
                                          0.692
                                                                                      0.60134
                                                                                                10.12987
                                                                                                                   0.9531
             4.1962
                                 0.400
                                                                                                           0.059
Нt
                                                                        Нt
             0.3776
                        3.8941
                                 0.097
                                          0.923
                                                                                      0.53375
                                                                                                 3.76189
                                                                                                                   0.8882
Seated
                                                                        Seated
                                                                                                           0.142
            -0.6793
                        4.0373 -0.168
                                          0.868
                                                                                     -1.32807
                                                                                                 3.90020
                                                                                                          -0.341
                                                                                                                   0.7359
Arm
                                                                        Arm
            -1.1333
                        2.7535
                                          0.684
                                                                        Thigh
                                                                                     -1.14312
                                                                                                 2.66002
Thigh
                                -0.412
                                                                                                          -0.430
                                                                                                                   0.6706
            -5.8780
                        4.8796 -1.205
                                                                                                 4.71386 -1.366
Leg
                                          0.238
                                                                                      -6.43905
                                                                                                                   0.1824
                                                                        Leg
```

 Many "length-related" predictors have very different parameter estimations, some even change signs

Mitigation of Collinearity

- Too many variables try do the same job of explaining the response and there is redundant information in predictors
- When we have a new dataset from the same population, the model "randomly" reassign importance to similar predictors and causes instable parameter estimation
- The high degree of instability inflates the variance of estimation and hides the significance
- The solution is simple: remove highly correlated predictors, leave remain only one of them

Mitigation of Collinearity

• Let's remove all "length-related" predictors except driver's height

```
lm.model <- lm(hipcenter~Age+Weight+Ht, data = seatpos)
summary(lm.model)</pre>
```

```
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 528.297729 135.312947
                                  3.904 0.000426 ***
                       0.408039 1.273 0.211593
Age
             0.519504
                       0.311720 0.014 0.989149
Weiaht
       0.004271
                       0.999056 -4.216 0.000174 ***
            -4.211905
Нt
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 36.49 on 34 degrees of freedom
Multiple R-squared: 0.6562, Adjusted R-squared: 0.6258
F-statistic: 21.63 on 3 and 34 DF, p-value: 5.125e-08
```

- In the new model, the standard deviations of estimated parameters is much smaller
- The height predictor now is significant
- Adjusted R^2 is improved