Project

DSK

3/10/2022

Packages

```
library(dplyr)
```

Data

```
library(magrittr)
## Warning: package 'magrittr' was built under R version 4.1.3
library(tidyverse)
## -- Attaching packages ----- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.3 v stringr 1.4.0
## v tidyr 1.1.3 v forcats 0.5.1
## v readr 1.4.0
## Warning: package 'ggplot2' was built under R version 4.1.1
## -- Conflicts ----- tidyverse_conflicts() --
## x tidyr::extract() masks magrittr::extract()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x purrr::set_names() masks magrittr::set_names()
data <- read.csv("C:/Users/14193/Downloads/Life Expectancy Data.csv") %>%
        filter(Year==2014)
dat=data[,-c(1,2)]
dat$Status=as.factor(dat$Status)
levels(dat$Status)=c("no","yes")
```

Partitioning The Data

```
RNGkind(sample.kind = "Rounding")
## Warning in RNGkind(sample.kind = "Rounding"): non-uniform 'Rounding' sampler
## used
set.seed(0)
partition.2 <- function(data, prop.train){</pre>
  # select a random sample of size = prop.train % of total records
  selected <- sample(1:nrow(data), round(nrow(data)*prop.train), replace = FALSE)</pre>
  # create training data which has prop.train % of total records
 data.train <- data[selected,]</pre>
  # create validation data
 rest <- setdiff(1:nrow(data), selected)</pre>
  data.test <- data[rest,]</pre>
  return(list(data.train=data.train, data.test=data.test))
}
partitioned=partition.2(dat,0.7)
training.data=partitioned$data.train
test.data=partitioned$data.test
```

Imputation on training data and using the attributes of training data on test data

```
sapply(training.data, anyNA)
```

```
##
                             Status
                                                      Life.expectancy
##
                              FALSE
                                                                FALSE
                    Adult.Mortality
                                                        infant.deaths
##
##
                              FALSE
                                                                FALSE
##
                            Alcohol
                                              percentage.expenditure
                              FALSE
                                                                FALSE
##
##
                        Hepatitis.B
                                                              Measles
##
                               TRUE
                                                                FALSE
##
                                BMI
                                                    under.five.deaths
                               TRUE
##
                                                                FALSE
##
                              Polio
                                                    Total.expenditure
##
                              FALSE
                                                                  TRUE
                         Diphtheria
                                                             HIV.AIDS
##
##
                              FALSE
                                                                FALSE
                                GDP
##
                                                           Population
                                TRUE
##
                                                                  TRUE
##
              thinness..1.19.years
                                                   thinness.5.9.years
                                                                  TRUE
##
                                TRUE
## Income.composition.of.resources
                                                            Schooling
                                                                  TRUE
##
                                TRUE
```

 ${\tt\#BMI,Total.expenditure,GDP,thinness.5.9,Hepatities,Population,Income\ composition,thinnes.1.19,school in the {\tt MII}, {\tt MII}$

```
sapply(test.data, anyNA)
##
                             Status
                                                     Life.expectancy
##
                              FALSE
                                                                FALSE
                                                        infant.deaths
##
                    Adult.Mortality
##
                              FALSE
                                                                FALSE
##
                            Alcohol
                                              percentage.expenditure
##
                               TRUF.
                                                                FALSE
##
                        Hepatitis.B
                                                              Measles
##
                               TRUE
                                                                FALSE
##
                                BMI
                                                   under.five.deaths
                               TRUE
##
                                                                FALSE
##
                              Polio
                                                   Total.expenditure
##
                              FALSE
                                                                 TRUE
                         Diphtheria
                                                             HIV.AIDS
##
##
                              FALSE
                                                                FALSE
                                GDP
                                                           Population
##
##
                               TRUE
                                                                 TRUE
##
              thinness..1.19.years
                                                  thinness.5.9.years
##
                               TRUE
                                                                 TRUE
##
   Income.composition.of.resources
                                                            Schooling
                                                                 TRUE
                               TRUE
# HepatitisB, BMI, TOTAL EXPENDITURE, GDP, thinness. 5.9, Population, Income composition, Alcohol, thinnnes. 1.1
# We will first replace the missing values with the median values of the respective columns.
med.BMI.train <- median(training.data$BMI, na.rm = TRUE)</pre>
training.data$BMI[is.na(training.data$BMI)] <- med.BMI.train</pre>
test.data$BMI[is.na(test.data$BMI)] <- med.BMI.train</pre>
med.Hepatitis.train <- median(training.data$Hepatitis.B, na.rm = TRUE)</pre>
training.data$Hepatitis.B[is.na(training.data$Hepatitis.B)] <- med.Hepatitis.train
test.data$Hepatitis.B[is.na(test.data$Hepatitis.B)] <- med.Hepatitis.train
med.total_expenditure.train <- median(training.data$Total.expenditure, na.rm = TRUE)
training.data$Total.expenditure[is.na(training.data$Total.expenditure)] <- med.total_expenditure.train
test.data$Total.expenditure[is.na(test.data$Total.expenditure)] <- med.total_expenditure.train
med.GDP.train <- median(training.data$GDP, na.rm = TRUE)</pre>
training.data$GDP[is.na(training.data$GDP)] <- med.GDP.train</pre>
test.data$GDP[is.na(test.data$GDP)] <- med.GDP.train</pre>
med.thinnes1_19.train <- median(training.data$thinness..1.19.years, na.rm = TRUE)
training.data$thinness..1.19.years[is.na(training.data$thinness..1.19.years)] <- med.thinnes1 19.train
test.data$thinness..1.19.years[is.na(test.data$thinness..1.19.years)] <- med.thinnes1_19.train
```

```
med.population.train <- median(training.data$Population, na.rm = TRUE)</pre>
training.data$Population[is.na(training.data$Population)] <- med.population.train
test.data$Population[is.na(test.data$Population)] <- med.population.train</pre>
med.income.train <- median(training.data$Income.composition.of.resources, na.rm = TRUE)
training.data$Income.composition.of.resources[is.na(training.data$Income.composition.of.resources)] <- !
test.data$Income.composition.of.resources[is.na(test.data$Income.composition.of.resources)] <- med.income.composition.of.resources
med.under5_deaths.train <- median(training.data$under.five.deaths, na.rm = TRUE)
training.data\under.five.deaths[is.na(training.data\under.five.deaths)] <- med.under5_deaths.train
test.data\under.five.deaths[is.na(test.data\under.five.deaths)] <- med.under5_deaths.train
med.alcohol.train <- median(training.data$Alcohol, na.rm = TRUE)</pre>
training.data$Alcohol[is.na(training.data$Alcohol)] <- med.alcohol.train
test.data$Alcohol[is.na(test.data$Alcohol)] <- med.alcohol.train</pre>
med.thinnes5_9.train <- median(training.data$thinness.5.9.years, na.rm = TRUE)
training.data$thinness.5.9.years[is.na(training.data$thinness.5.9.years)] <- med.thinnes5_9.train
test.data$thinness.5.9.years[is.na(test.data$thinness.5.9.years)] <- med.thinnes5_9.train
med.schooling.train <- median(training.data$Schooling, na.rm = TRUE)</pre>
training.data$Schooling[is.na(training.data$Schooling)] <- med.schooling.train</pre>
test.data$Schooling[is.na(test.data$Schooling)] <- med.schooling.train</pre>
```

Fitting a model on the training data

```
full_lm <- lm(Life.expectancy~., data=training.data)</pre>
```

Residual analysis

Check for linearity Residuals vs. Status

Check for linearity Residuals vs. adult mortality

Check for linearity Residuals vs. infant deaths

Check for linearity Residuals vs. alcohol

Check for linearity Residuals vs. percent expenditure


```
plot(training.data$Hepatitis.B, full_lm$residuals,
    main = "Check for linearity \n Residuals vs. hepatitis B")
abline(h=0)
```

Check for linearity Residuals vs. hepatitis B


```
plot(training.data$Measles, full_lm$residuals,
    main = "Check for linearity \n Residuals vs. Measles")
abline(h=0)
```

Check for linearity Residuals vs. Measles


```
plot(training.data$BMI, full_lm$residuals,
    main = "Check for linearity \n Residuals vs. BMI")
abline(h=0)
```

Check for linearity Residuals vs. BMI

Check for linearity Residuals vs. under five deaths


```
plot(training.data$Polio, full_lm$residuals,
    main = "Check for linearity \n Residuals vs. Polio")
abline(h=0)
```

Check for linearity Residuals vs. Polio

Check for linearity Residuals vs. total expenditure

training.data\$Total.expenditure

Check for linearity Residuals vs. Diphtheria

Check for linearity Residuals vs. HIV/AIDS

Check for linearity Residuals vs. GDP

Check for linearity Residuals vs. population

Check for linearity Residuals vs. thiness.1.19 years

Check for linearity Residuals vs. thiness.5.19 years

Check for linearity Residuals vs. Income composition of resources

training.data\$Income.composition.of.resources

```
plot(training.data$Schooling, full_lm$residuals,
    main = "Check for linearity \n Residuals vs. Schooling")
abline(h=0)
```

Check for linearity Residuals vs. Schooling

Check for 0 mean and constant var Residual vs. fitted value


```
## Check for normality of random error
qqnorm(full_lm$residuals)
qqline(full_lm$residuals)
```

Normal Q-Q Plot

Definitely needs a transformation as only some of the linearity plots are satisfactory. We are okay with constant variance.

Applying the transformations

```
##### lets log transformation on response variable ####

new.training.data <- training.data
new.training.data$infant.deaths <- new.training.data$infant.deaths^(0.5)

new.training.data$Alcohol <- new.training.data$Alcohol^(0.5)
new.training.data$percentage.expenditure <- new.training.data$percentage.expenditure^(0.5)
new.training.data$Hepatitis.B <- new.training.data$Hepatitis.B^(0.5)

new.training.data$Measles <- new.training.data$Measles^(0.5)

new.training.data$under.five.deaths <- new.training.data$under.five.deaths^(0.5)

new.training.data$Polio <- new.training.data$Polio^(0.5)

new.training.data$Diphtheria<- new.training.data$Diphtheria^(0.5)

new.training.data$HIV.AIDS <- new.training.data$HIV.AIDS^(0.5)</pre>
```

```
new.training.data$GDP <- new.training.data$GDP^(0.5)</pre>
new.training.data$Population <- new.training.data$Population^(0.5)</pre>
new.training.data$Measles <- new.training.data$Measles^(0.5)</pre>
new.training.data$thinness..1.19.years <- new.training.data$thinness..1.19.years^(0.5)
new.training.data$thinness.5.9.years <- new.training.data$thinness.5.9.years^(0.5)
new_full_lm <- lm(Life.expectancy ~. , data = new.training.data)</pre>
summary(new_full_lm )
##
## Call:
## lm(formula = Life.expectancy ~ ., data = new.training.data)
## Residuals:
       Min
                1Q
                   Median
                                3Q
                                        Max
## -14.7063 -1.8244 -0.0269 1.9422
                                     8.2850
## Coefficients:
##
                                 Estimate Std. Error t value Pr(>|t|)
                              64.3986943 4.9449310 13.023 < 2e-16 ***
## (Intercept)
                               -1.6957714 1.1237354 -1.509 0.134206
## Statusyes
## Adult.Mortality
                              ## infant.deaths
                               1.4079174 1.3622143 1.034 0.303655
                               0.2239293 0.3393691 0.660 0.510761
## Alcohol
## percentage.expenditure
                               0.0449840 0.0372694 1.207 0.230071
## Hepatitis.B
                               -0.0484411 0.3703135 -0.131 0.896168
## Measles
                               0.1774388 0.1521522 1.166 0.246105
## BMI
                               -0.0068524 0.0205970 -0.333 0.740012
## under.five.deaths
                               -1.4182176 1.1554574 -1.227 0.222338
## Polio
                              ## Total.expenditure
                               0.0591599 0.1448075 0.409 0.683685
                               0.3366212 0.3806582 0.884 0.378491
## Diphtheria
## HIV.AIDS
                               ## GDP
                               -0.0028250 0.0136520 -0.207 0.836455
                               0.0001081 0.0001338 0.808 0.420705
## Population
## thinness..1.19.years
                               -0.1676508 1.0140479 -0.165 0.868995
## thinness.5.9.years
                               -1.1891533 1.0657718 -1.116 0.266998
## Income.composition.of.resources 20.4447935 7.7396298 2.642 0.009477 **
                               ## Schooling
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.608 on 108 degrees of freedom
## Multiple R-squared: 0.8423, Adjusted R-squared: 0.8146
## F-statistic: 30.37 on 19 and 108 DF, p-value: < 2.2e-16
```


Check for linearity Residuals vs.Percent expenditure

new.training.data\$percentage.expenditure

new.training.data\$Hepatitis.B

new_full_lm\$residuals

```
plot(new.training.data$under.five.deaths, new_full_lm$residuals,
     main = "Check for linearity \n Residuals vs. under 5 deaths")
abline(h=0)
plot(new.training.data$Polio, new_full_lm$residuals,
     main = "Check for linearity \n Residuals vs. Polio")
abline(h=0)
plot(new.training.data$Diphtheria, new_full_lm$residuals,
     main = "Check for linearity \n Residuals vs. Diphtheria")
abline(h=0)
```


5

10

15

new.training.data\$under.five.deaths

20

25

30

35

0

```
plot(new.training.data$HIV.AIDS, new_full_lm$residuals,
     main = "Check for linearity \n Residuals vs. HIV")
abline(h=0)
plot(new.training.data$GDP, new_full_lm$residuals,
     main = "Check for linearity \n Residuals vs. GDP")
abline(h=0)
plot(new.training.data$Population, new_full_lm$residuals,
     main = "Check for linearity \n Residuals vs. Population")
abline(h=0)
```

4

2

6

new.training.data\$Diphtheria

10

8


```
abline(h=0)

## Check for normality of random error
qqnorm(new_full_lm$residuals)
qqline(new_full_lm$residuals)
```

new_full_lm\$residuals

Check for 0 mean and constant var Residual vs. fitted value

Theoretical Quantiles

So, the new training model is

summary(new_full_lm)

```
##
## Call:
## lm(formula = Life.expectancy ~ ., data = new.training.data)
##
##
  Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
                                          8.2850
   -14.7063
            -1.8244
                      -0.0269
                                 1.9422
##
##
  Coefficients:
##
##
                                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                               4.9449310
                                                           13.023 < 2e-16 ***
                                    64.3986943
## Statusyes
                                    -1.6957714
                                                1.1237354
                                                            -1.509 0.134206
## Adult.Mortality
                                    -0.0173878
                                                0.0046392
                                                            -3.748 0.000288 ***
## infant.deaths
                                     1.4079174
                                               1.3622143
                                                             1.034 0.303655
                                     0.2239293 0.3393691
## Alcohol
                                                             0.660 0.510761
```

```
## percentage.expenditure
                             0.0449840 0.0372694 1.207 0.230071
## Hepatitis.B
                             ## Measles
                              0.1774388 0.1521522 1.166 0.246105
## BMI
                             -0.0068524 0.0205970 -0.333 0.740012
## under.five.deaths
                             -1.4182176 1.1554574 -1.227 0.222338
## Polio
                             ## Total.expenditure
                              0.0591599 0.1448075 0.409 0.683685
                              0.3366212 0.3806582 0.884 0.378491
## Diphtheria
                             -3.7587663 0.8945574 -4.202 5.47e-05 ***
## HIV.AIDS
## GDP
                             -0.0028250 0.0136520 -0.207 0.836455
## Population
                              0.0001081 0.0001338 0.808 0.420705
## thinness..1.19.years
                             -0.1676508 1.0140479 -0.165 0.868995
## thinness.5.9.years
                             -1.1891533 1.0657718 -1.116 0.266998
## Income.composition.of.resources 20.4447935 7.7396298 2.642 0.009477 **
## Schooling
                              ## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 3.608 on 108 degrees of freedom
## Multiple R-squared: 0.8423, Adjusted R-squared: 0.8146
## F-statistic: 30.37 on 19 and 108 DF, p-value: < 2.2e-16
```

Adjusted R _squared is pretty high.Residual standard error is also low.

We will work on this model.