Package 'CELLector'

December 15, 2022

Type Package

Title Genomics guided selection of cancer cell lines

Version 2.0.0
Author Hanna Najgebauer, Lucia Trastulla and Francesco Iorio
Maintainer Francesco Iorio <francesco.iorio@fht.org></francesco.iorio@fht.org>
Description Functions to select the most relevant cancer cell lines to be included in a new invitro study, in a genomic-guided fashion. CELLector combines methods from graph theory and market basket analysis; it leverages tumour genomics data to explore, rank, and select optimal cell line models in a user-friendly way, enabling scientists to make appropriate and informed choices about model inclusion/exclusion in retrospective analyses and future studies. Additionally, it allows the selection of models within user-defined contexts, for example, by focusing on genomic alterations occurring in biological pathways of interest or considering only predetermined sub-cohorts of cancer patients. Finally, CELLector identifies combinations of molecular alterations underlying disease subtypes currently lacking representative cell lines, providing guidance for the future development of new cancer models.
License GNU GPLv3
Encoding UTF-8
LazyData true
Depends arules, dplyr, stringr, data.tree, sunburstR, igraph, collapsibleTree, methods, RCurl, readr
Suggests knitr, rmarkdown
VignetteBuilder knitr
R topics documented:
CELLector.buildModelMatrix CELLector.buildModelMatrix_Partitioned CELLector.Build_Search_Space CELLector.Build_Search_Space_Partitioned CELLector.CellLine.BEMs CELLector.CellLine.BEMs_v2 CELLector.CellLinesVarCatalog CELLector.CELLline_buildBEM CELLector.CELLline_buildBEM CELLector.CFEs CELLector.CFEs CELLector.CFEs.CNAid_decode CELLector.CFEs.CNAid_mapping

	CELLector.CFEs.HMSid_decode	26
	CELLector.CFEsV2	27
	CELLector.changeSScolors	28
	CELLector.CMPs_getDriverGenes	29
	CELLector.CMPs_getModelAnnotation	30
	CELLector.CMPs_getVariants	31
	CELLector.cna_look_up	31
	CELLector.createAllSignatures	32
	CELLector.createAllSignatures_Partitioned	34
	CELLector.from_Hierarchical_to_Partition	36
	CELLector.HCCancerDrivers	37
	CELLector.hms_look_up	37
	CELLector.makeSelection	38
	CELLector.mostSupported_CFEs	40
	CELLector.MSIstatus	42
	CELLector.Pathway_CFEs	42
	CELLector.PrimTum.BEMs	43
	CELLector.PrimTum.BEMs_v2	44
	CELLector.PrimTumVarCatalog	45
	CELLector.RecfiltVariants	46
	CELLector.Score	47
	CELLector.selectionVisit	49
	CELLector.solveFormula	50
	CELLector.Summary_Projection	52
	CELLector.Tumours_buildBEM	54
	CELLector.unicizeSamples	55
	CELLector.visualiseSearchingSpace	57
	CELLector.visualiseSearchingSpace_sunBurst	
Index		60

CELLector.buildModelMatrix

Mapping cell lines on the CELLector searching space

Description

This function maps cell line on the subtypes identified and assembled in the CELLector searching space, based on the collective presence/absence of the signatures of cancer functional events underlying these subtypes. The subtypes lacking representative cell lines are not considered and, in the output, the subtypes (indicated by their numerical id, which matches that in the CELLector searching space) are ranked based on the greedy algorithm described in [1] based on their covered genomic heterogeneity.

Usage

CELLector.buildModelMatrix(Sigs, dataset, searchSpace)

Arguments

Sigs A vector of string, in which each element represents a signature of cancer func-

tional events (CFEs, defined in [2]) corresponding to a node in the CELLector searching space. This is expressed as a logic formula (rule), which a cancer patient's genome must satisfy in order to be included in the sub-population represented by the node under consideration. This vector is outputted by the CELLector.createAllSignatures function starting from a CELLector search-

ing space (created by the CELLector.Build_Search_Space) function

dataset A data frame in which the first two columns contain the COSMIC [3] identiefiers

and names of cell lines (one per row), respectively, and then binary entries indicating the status of each CFEs (one per column) across cell lines. The format is the same of the entries of the list in the built-in CELLector.CellLine.BEMs

object.

searchSpace A CELLector searching space encoded as binary tree in a navigable table, as

returned by the CELLector.Build_Search_Space function

Value

A named binary matrix with suptypes numerical identifiers on the rows, cell line names on the column and entries specifying whether the cell line in the column is representative of the subtype on the row (based on the collective presence/absence of the corresponding signature of CFEs)

Author(s)

Hanna Najgebauer and Francesco Iorio

References

[1] Najgebauer, H. et al. Genomics Guided Selection of Cancer in vitro Models.

https://doi.org/10.1101/275032

[2] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

[3] Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–11 (2015).

See Also

```
CELLector.CreateAllSignatures,
CELLector.Build_Search_Space,
CELLector.CellLine.BEMs,
CELLector.Build_Search_Space
```

```
data(CELLector.PrimTum.BEMs)
data(CELLector.Pathway_CFEs)
data(CELLector.CFEs.CNAid_mapping)
data(CELLector.CFEs.CNAid_decode)
data(CELLector.HCCancerDrivers)
data(CELLector.CellLine.BEMs)
```

```
### Change the following two lines to work with a different cancer type
tumours_BEM<-CELLector.PrimTum.BEMs$COREAD
CELLlineData<-CELLector.CellLine.BEMs$COREAD
### unicize the sample identifiers for the tumour data
tumours_BEM<-CELLector.unicizeSamples(tumours_BEM)</pre>
### building a CELLector searching space focusing on three pathways
### and TP53 wild-type patients only
CSS<-CELLector.Build_Search_Space(ctumours = t(tumours_BEM),</pre>
                                   verbose = FALSE,
                                   minGlobSupp = 0.05,
                                   cancerType = 'COREAD',
                                   pathwayFocused = c("RAS-RAF-MEK-ERK / JNK signaling",
                                                       "PI3K-AKT-MTOR signaling",
                                                       "WNT signaling"),
                                   pathway_CFEs = CELLector.Pathway_CFEs,
                                   cnaIdMap = CELLector.CFEs.CNAid_mapping,
                                   cnaIdDecode = CELLector.CFEs.CNAid_decode,
                                   cdg = CELLector.HCCancerDrivers,
                                   subCohortDefinition='TP53',
                                   NegativeDefinition=TRUE)
### take all the signatures from the searching space
Signatures <- CELLector.createAllSignatures(CSS$navTable)</pre>
### mapping colorectal cancer cell lines onto the CELLector searching space
ModelMat<-CELLector.buildModelMatrix(Signatures$ES,CELLlineData,CSS$navTable)</pre>
head(ModelMat)
```

CELLector.buildModelMatrix_Partitioned

Mapping cell lines on the partitioned CELLector searching space

Description

This function maps cell line on the groups identified by the partitioned CELLector searching space, based on the collective presence/absence of the signatures of cancer functional events underlying these groups. Groups lacking representative cell lines are not considered and the rownames in the output matches the numerical id (Idx) in partitioned CELLector table.

Usage

CELLector.buildModelMatrix_Partitioned(Sigs, dataset, searchSpace)

Arguments

Sigs

A vector of string, in which each element represents a signature of cancer functional events (CFEs, defined in [1]) corresponding to a group in the partitioned CELLector searching space. This is expressed as a logic formula (rule), which a cancer patient's genome must satisfy in order to be included in the sub-population

represented by the group under consideration. This vector is outputted by the CELLector.createAllSignatures_Partitioned function starting from a par-

 $titioned\ CELL ector\ searching\ space\ (created\ by\ the\ CELL ector\ . Build_Search_Space_Partitioned\ colors and the colors are also become an experimental colors are also become an experimental colors and the colors are also become an experimental colors and the colors are also become an experimental colors and the colors are also become an experimental colors and the colors are also become an experimental colors and$

function

dataset A data frame in which the first two columns contain the COSMIC [2] identiefiers

and names of cell lines (one per row), respectively, and then binary entries indicating the status of each CFEs (one per column) across cell lines. The format is the same of the entries of the list in the built-in CELLector.CellLine.BEMs

object.

searchSpace Partitioned output of CELLector searching space encoded as table and returned

by the CELLector.Build_Search_Space_Partitioned function

Value

A named binary matrix with groups numerical identifiers on the rows, cell line names on the column and entries specifying whether the cell line in the column is representative of the subtype on the row (based on the collective presence/absence of the corresponding signature of CFEs)

Author(s)

Lucia Trastulla and Francesco Iorio

References

[1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

[2] Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–11 (2015).

See Also

```
CELLector.createAllSignatures_Partitioned,
CELLector.Build_Search_Space_Partitioned,
CELLector.CellLine.BEMs
```

```
data(CELLector.PrimTum.BEMs)
data(CELLector.Pathway_CFEs)
data(CELLector.CFEs.CNAid_mapping)
data(CELLector.CFEs.CNAid_decode)
data(CELLector.HCCancerDrivers)
data(CELLector.CellLine.BEMs)

### Change the following two lines to work with a different cancer type
tumours_BEM<-CELLector.PrimTum.BEMs$COREAD
CELLlineData<-CELLector.CellLine.BEMs$COREAD

### unicize the sample identifiers for the tumour data
tumours_BEM<-CELLector.unicizeSamples(tumours_BEM)

### building a CELLector searching space focusing on three pathways</pre>
```

```
### and TP53 wild-type patients only
CSS_p <- CELLector.Build_Search_Space_Partitioned(ctumours = t(tumours_BEM),</pre>
                                                   verbose = FALSE,
                                                   minGlobSupp = 0.05,
                                                   cancerType = 'COREAD',
                                     pathwayFocused = c("RAS-RAF-MEK-ERK / JNK signaling",
                                                                "PI3K-AKT-MTOR signaling",
                                                                       "WNT signaling"),
                                                   pathway_CFEs = CELLector.Pathway_CFEs,
                                                 cnaIdMap = CELLector.CFEs.CNAid_mapping,
                                               cnaIdDecode = CELLector.CFEs.CNAid_decode,
                                                   cdg = CELLector.HCCancerDrivers,
                                                   subCohortDefinition='TP53',
                                                   NegativeDefinition=TRUE)
### take all the signatures from the searching space
Signatures <- CELLector.createAllSignatures_Partitioned(CSS_p$partitioned)</pre>
### mapping colorectal cancer cell lines onto the CELLector searching space
ModelMat <- CELLector.buildModelMatrix_Partitioned(Signatures$ES,CELLlineData,CSS_p$partitioned)
head(ModelMat)
```

 ${\tt CELLector.Build_Search_Space}$

CELLector search space construction

Description

This function assembles a user defined CELLector search space analysing genomic data from a larg cohort of cancer patients (specified in input). It identifies recurrent subtypes with matched genomic signatures (as combination of cancer functional events (CFEs), defined in [1]), linking them into a hierarchical structure shaped as a a binary three with a corresponding navigable table, as detailed in [2].

Usage

```
CELLector.Build_Search_Space<-function(ctumours,</pre>
                                         cancerType,
                                         minlen=1,
                                         verbose=TRUE,
                                         mutOnly=FALSE,
                                         cnaOnly=FALSE,
                                         includeHMS=FALSE,
                                         minGlobSupp=0.01,
                                         FeatureToExclude=NULL,
                                         pathway_CFEs = NULL,
                                         pathwayFocused=NULL,
                                         subCohortDefinition=NULL,
                                         NegativeDefinition=FALSE,
                                         cnaIdMap=NULL,
                                         cnaIdDecode=NULL,
                                         hmsIdDecode=NULL,
                                         cdg=NULL,
                                         UD_genomics=FALSE)
```

Arguments

ctumours A binary event matrix (BEM) modeling a cohort of cancer patients. With cancer

functional events (CFEs) on the columns and sample identifiers on the rows. See

CELLector.PrimTum.BEMs for further details

cancerType The cancer type under consideration (specified via a TCGA label): currently

available types = BLCA, BRCA, COREAD, GBM, HNSC, KIRC, LAML, LGG,

LUAD, LUSC, OV, PRAD, SKCM, STAD, THCA, UCEC

minlen The minimal length of the genomic signatures (how many indivudal CFEs it is

made of) in order to be considered in the analysis (1 by default)

verbose A boolean argument specifying whether step-by-step information on the algo-

rithm progression should be displayed run-time

mut0nly A boolean argument specifying whether only CFEs involving somatic mutations

should be considered in the analysis. If the cnaOnly argument is equal to TRUE

then this must be FALSE (default value)

cnaOnly A boolean argument specifying whether only CFEs involving copy number alter-

ations (CNAs) of chromosomal segments that are recurrently CN altered should be considered in the analysis. If the mutOnly argument is equal to TRUE then this

must be FALSE (default value)

includeHMS A boolean argument specitying whether methylation data should be considered

while building the searching space (FALSE by default).

minGlobSupp Minimal size of the outpputted subtypes, as ratio of the number patients included

in the whole cohort (1% by default).

FeatureToExclude

A string (or a vector of strings) with identifiers of CFEs that should be ignored

pathway_CFEs A named list of string vectors, whose elements are CFEs involving genes in a

biological pathway (specified by the name of the corresponding entry). A list for 14 key cancer pathways is contained in the CELLector.Pathway_CFEs data

object (see corresponding help page for further deatails)

pathwayFocused If different from NULL (default value), it should be a vector of strings. In this

case the analysis will consider only CFEs involving genes in a set of pathways, whose names are contained in this argument and must be present as names of

the pathway_CFEs argument

subCohortDefinition

If different from NULL (default value), it should be a string containing the identifier of a CFE. In this case the analysis will consider only the primary tumour samples harbouring (or not harbouring, depending on the NegativeDefinition

argument) the specified CFE

NegativeDefinition

If the subCohortDefinition argument is not NULL then this parameter determines whether to consider primary tumour samples that harbour (if equal to

FALSE, default value) or not (if equal to TRUE) the specified CFE

cnaIdMap A data frame mapping chromosomal regions of recurrent copy number amplifi-

cations/deletions in cancer (RACSs, as defined in [1]) identified via ADMIRE [3] in the context of specific cancer types to PanCancer RACSs. The built-in object CELLector.CFEs.CNAid_mapping (or an alternative data frame with the

same format) should be used.

cnaIdDecode A table with identifiers of cancer functional events (CFEs) involving chromo-

somal regions of recurrent copy number alterations (RACSs, as defined by [1],

i.e. identified throgh ADMIRE [3]) and their annotation. The built-in object CELLector. CFEs. CNAid decode (or an alternative data frame with the same format) should be used.

Data frame containing annotation for the hypermethylated gene promoters CFEs. hmsIdDecode

The format should be the same of the CELLector.CFEs.HMSid_decode object.

UD_genomics A boolean argument specifying whether the analysis is performed on user de-

fined genomic data (TRUE) or CELLector buit-in genomic data (FALSE, default

value).

A list of genes that are used when decoding the identifiers of cancer funccdg

tional events (CFEs) involving chromosomal regions of recurrent copy number alterations (RACSs, as defined by [1]). These will be visualised in the signatures containing the RACSs including them. A predefined list of high confidence cancer driver genes (from [1]) is provided as built-in data object

(CELLector. HCCancerDrivers)

Details

Starting from an initial cohort of patients affected by a given cancer type and modeled by the inputted binary event matrix (BEM), the most frequent alteration or set of molecular alterations (depending on the minlen argument) with the largest support (the subpopulation of patients in which these alterations occur simultaneously) is identified using the eclat function of the arules R package.

Based on this, the cohort of patients is split into two subpopulations depending on the collective presence or absence of the identified alterations. This process is then executed recursively on the two resulting subpopulations and it continues until all the alteration sets (with a support of minimal size, as specified in the minGlobSupp argument) are identified.

Each of the alterations sets identified through this recursive process is stored in a tree node. Linking nodes identified in adjacent recursions yields a binary tree: the CELLector search space. Each individual path (from the root to a node) of this tree defines a rule (signature), represented as a logic AND of multiple terms (or their negation), one per each node in the path. If the genome of a given patient in the analysed cohort satisfies the rule then it is contained in the subpopulation represented by the terminal node of that path. Collectively, all the paths in the search space provide a representation of the spectrum of combinations of molecular alterations observed in a given cancer type, and their clinical prevalence in the analysed patient population.

Value

A named list with the CELLector search space stored as a data, tree object in the TreeRoot field and as a navigable table: a data frame with a row for each node of the tree and the following columns

Idx A numerical index for the node

Item The most supported CFE (or a combination of CFE), identified at the iteration in which the node has been added to the three, (i) in the whole cohort of patients (for the Root), (ii) in the sub population that satisfies the parent node rule (for Left.Child nodes) or (iii) its complement (for Right.Child nodes)

ItemsDecoded Same as Item but with identifiers of RACSs decoded, i.e. with loci and included driver genes (inputted in the cdg argument), indicated among brackets

Type The node type: Root (first node added), Right.Child (a node resulting from the analyses of the complementar population of patients with respect to that satisfifying the Parent node rule), Left.Child (a node resulting from refining the population of patients satisfifying the Parent node rule)

Parent.Idx The numerical index of the parent node (0 for the Root)

AbsSupport The number of patients satisfying the node rule

CurrentTotal The number of patients included in the population under consideration at the iteration time of the node inclusion in the tree, this is the same of the parent's AbsSupport for Left.Child nodes

PercSupport The ratio of patients collectively harbouring the combination of CFEs specified in Items within the subpopulation under consideration at the iteration time of the node inclusion in the tree (whose size is specified in CurrentTotal)

GlobalSupport The ratio of patients satisfying the node rule with respect to the total number of patients in the whole cohort

Left.Child.Index Numerical index of the left child node (0 indicates absence of a left child node)

Right.Child.Index Numerical index of the right child node (0 indicates absence of a right child node)

currentPoints The identifiers of the patients in the sub-population under consideration at the iteration time of the node inclusion in the tree

 $\hbox{currentFeatures} \ \ \hbox{The CFEs considered at the at the iteration time of the node inclusion in the tree}$

positivePoints The identifiers of the patients satisfying the node rule

COLORS A vector of strings containing hexadecimal color identifiers: one for each node. These are used by the visualisation functions (CELLector.visualiseSearchingSpace, and CELLector.visualiseSearchingSpace, and

Author(s)

Hanna Najgebauer and Francesco Iorio

References

[1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

[2] Najgebauer, H. et al. Genomics Guided Selection of Cancer in vitro Models.

https://doi.org/10.1101/275032

[3] van Dyk, E., Reinders, M. J. T. & Wessels, L. F. A. A scale-space method for detecting recurrent DNA copy number changes with analytical false discovery rate control. Nucleic Acids Res. 41, e100 (2013).

See Also

```
CELLector.PrimTum.BEMs,
CELLector.Pathway_CFEs,
CELLector.CFEs.CNAid_mapping,
CELLector.CFEs.CNAid_decode,
CELLector.HCCancerDrivers,
CELLector.visualiseSearchingSpace,
CELLector.visualiseSearchingSpace_sunBurst,
CELLector.changeSScolors
```

```
data(CELLector.PrimTum.BEMs)
data(CELLector.Pathway_CFEs)
data(CELLector.CFEs.CNAid_mapping)
data(CELLector.CFEs.CNAid_decode)
data(CELLector.HCCancerDrivers)
### Change the following two lines to work with a different cancer type
tumours_BEM<-CELLector.PrimTum.BEMs$COREAD</pre>
### unicize the sample identifiers for the tumour data
tumours_BEM<-CELLector.unicizeSamples(tumours_BEM)</pre>
### building a CELLector searching space focusing on three pathways
### and TP53 wild-type patients only
CSS<-CELLector.Build_Search_Space(ctumours = t(tumours_BEM),</pre>
                                 verbose = FALSE,
                                 minGlobSupp = 0.05,
                                 cancerType = 'COREAD',
                                 pathwayFocused = c("RAS-RAF-MEK-ERK / JNK signaling",
                                                     "PI3K-AKT-MTOR signaling",
                                                    "WNT signaling"),
                                 pathway_CFEs = CELLector.Pathway_CFEs,
                                 cnaIdMap = CELLector.CFEs.CNAid_mapping,
                                 cnaIdDecode = CELLector.CFEs.CNAid_decode,
                                 cdg = CELLector.HCCancerDrivers,
                                 subCohortDefinition='TP53',
                                 NegativeDefinition=TRUE)
### visualising the CELLector searching space as a binary tree
CSS$TreeRoot
### visualising the first attributes of the tree nodes
CSS$navTable[,1:11]
### visualising the sub-cohort of patients whose genome satisfies the rule of the 4th node
str_split(CSS$navTable$positivePoints[4],',')
### Rebuilding the search space but considering also methylation data
### important!!!: second version of primary tumours' genomic dataset
### (including methylation data should be loaded)
data(CELLector.PrimTum.BEMs_v2)
### Change the following two lines to work with a different cancer type
tumours_BEM<-CELLector.PrimTum.BEMs_v2$COREAD</pre>
### unicize the sample identifiers for the tumour data
tumours_BEM<-CELLector.unicizeSamples(tumours_BEM)</pre>
### loading decoding table for hypermethylation CFE identifiers
data(CELLector.CFEs.HMSid_decode)
### building a CELLector searching space
```

```
CSS<-CELLector.Build_Search_Space(ctumours = t(tumours_BEM),</pre>
                                   verbose = FALSE,
                                   minGlobSupp = 0.05,
                                   cancerType = 'COREAD',
                                   pathway_CFEs = CELLector.Pathway_CFEs,
                                   cnaIdMap = CELLector.CFEs.CNAid_mapping,
                                   cnaIdDecode = CELLector.CFEs.CNAid_decode,
                                   hmsIdDecode = CELLector.CFEs.HMSid_decode,
                                   cdg = CELLector.HCCancerDrivers,
                                   subCohortDefinition='TP53',
                                   NegativeDefinition=TRUE,
                                   includeHMS = TRUE)
### visualising the CELLector searching space as a binary tree
CSS$TreeRoot
### visualising the first attributes of the tree nodes
CSS$navTable[,1:11]
### visualising the sub-cohort of patients whose genome satisfies the rule of the 4th node
str_split(CSS$navTable$positivePoints[4],',')
```

${\it CELLector.Build_Search_Space_Partitioned} \\ {\it CELLector partitioned}$

CELLector partitioned search space derivation

Description

This function assembles a user defined CELLector search space analysing genomic data from a larg cohort of cancer patients (specified in input). It identifies recurrent subtypes with matched genomic signatures (as combination of cancer functional events (CFEs), defined in [1]), linking them into a hierarchical structure shaped as a a binary three with a corresponding navigable table, as detailed in [2] and converting it into K non-overlapping groups defined as partitioned version (see details).

Usage

```
CELLector.Build_Search_Space_Partitioned(ctumours,
                                          cancerType,
                                          minlen=1,
                                          verbose=TRUE,
                                          mutOnly=FALSE,
                                          cnaOnly=FALSE,
                                          includeHMS=FALSE,
                                          minGlobSupp=0.01,
                                          FeatureToExclude=NULL,
                                          pathway_CFEs = NULL,
                                          pathwayFocused=NULL,
                                          subCohortDefinition=NULL,
                                          NegativeDefinition=FALSE,
                                          cnaIdMap=NULL,
                                          cnaIdDecode=NULL,
                                          hmsIdDecode=NULL,
```

cdg=NULL,
UD_genomics=FALSE)

Arguments

ctumours A binary event matrix (BEM) modeling a cohort of cancer patients. With cancer

functional events (CFEs) on the columns and sample identifers on the rows. See

CELLector.PrimTum.BEMs for further details

cancerType The cancer type under consideration (specified via a TCGA label): currently

available types = BLCA, BRCA, COREAD, GBM, HNSC, KIRC, LAML, LGG,

LUAD, LUSC, OV, PRAD, SKCM, STAD, THCA, UCEC

minlen The minimal length of the genomic signatures (how many indivudal CFEs it is

made of) in order to be considered in the analysis (1 by default)

verbose A boolean argument specifying whether step-by-step information on the algo-

rithm progression should be displayed run-time

mutOnly A boolean argument specifying whether only CFEs involving somatic mutations

should be considered in the analysis. If the cnaOnly argument is equal to TRUE

then this must be FALSE (default value)

cnaOnly A boolean argument specifying whether only CFEs involving copy number alter-

ations (CNAs) of chromosomal segments that are recurrently CN altered should be considered in the analysis. If the mutOnly argument is equal to TRUE then this

must be FALSE (default value)

includeHMS A boolean argument specitying whether methylation data should be considered

while building the searching space (FALSE by default).

minGlobSupp Minimal size of the outpputted subtypes, as ratio of the number patients included

in the whole cohort (1% by default).

FeatureToExclude

A string (or a vector of strings) with identifiers of CFEs that should be ignored

pathway_CFEs A named list of string vectors, whose elements are CFEs involving genes in a

biological pathway (specified by the name of the corresponding entry). A list for 14 key cancer pathways is contained in the CELLector.Pathway_CFEs data

object (see corresponding help page for further deatails)

pathwayFocused If different from NULL (default value), it should be a vector of strings. In this

case the analysis will consider only CFEs involving genes in a set of pathways, whose names are contained in this argument and must be present as names of

the $pathway_CFEs$ argument

subCohortDefinition

If different from NULL (default value), it should be a string containing the identifier of a CFE. In this case the analysis will consider only the primary tumour samples harbouring (or not harbouring, depending on the NegativeDefinition

argument) the specified CFE

NegativeDefinition

If the subCohortDefinition argument is not NULL then this paramenter determines whether to consider primary tumour samples that harbour (if equal to

FALSE, default value) or not (if equal to TRUE) the specified CFE

cnaIdMap A data frame mapping chromosomal regions of recurrent copy number amplifi-

cations/deletions in cancer (RACSs, as defined in [1]) identified via ADMIRE [3] in the context of specific cancer types to PanCancer RACSs. The built-in object CELLector.CFEs.CNAid_mapping (or an alternative data frame with the

same format) should be used.

cnaIdDecode A table with identifiers of cancer functional events (CFEs) involving chromo-

somal regions of recurrent copy number alterations (RACSs, as defined by [1], i.e. identified through ADMIRE [3]) and their annotation. The built-in object CELLector.CFEs.CNAid_decode (or an alternative data frame with the same

format) should be used.

hmsIdDecode Data frame containing annotation for the hypermethylated gene promoters CFEs.

The format should be the same of the CELLector.CFEs.HMSid_decode object.

UD_genomics A boolean argument specifying whether the analysis is performed on user de-

fined genomic data (TRUE) or CELLector buit-in genomic data (FALSE, default

value).

cdg A list of genes that are used when decoding the identifiers of cancer func-

tional events (CFEs) involving chromosomal regions of recurrent copy number alterations (RACSs, as defined by [1]). These will be visualised in the signatures containing the RACSs including them. A predefined list of high confidence cancer driver genes (from [1]) is provided as built-in data object

(CELLector.HCCancerDrivers)

Details

The function builds cancer patient partition, creating K non-overlapping groups from the hierarchical division. It first constructs the CELLector space space (CSS) in the form of binary tree and navigable table for a assigned value of minGlobSupp. Each node of the binary tree starting from the root can include a **left child**, i.e. the subset of samples that have the feature described in the parent node AND the feature described in the left child node and a **right child**, i.e. the subset of samples that DO NOT have the feature described in the parent node AND have the feature described in the right child node (considered as complementary).

The partitioned structure is obtained from the hierarchical binary tree as follows. For each node express as a row in the *navigable table*, let U be the set of samples in the considered node and S its signature. If the node has a left child U_l (that includes feature F_l), the function first defines the set of samples U_rm to be removed from U as $U_rm < U_l$. If U_l has a right child U_r (with feature F_r), then U_rm is updated as the union of U_rm and U_r . If U_r has in turn another right child, this procedure is repeated and U_rm is updated as descrived above until the considered node does not have a right child. Finally, the new set of samples is defined as $U_new = U U_rm$ and the associated feature is $S_new = S$, F_l , F_r , Instead, if the node U does not have a left child, the iterative procedure move to the next node and U together with the associated signature S are kept as they are. Finally, a last node is creating as the remaining samples that are described by any CELLector signature detected in the hierarchical version. The corresponding signature of this group is created from the negation of the root node and all the right children (recursively as before). Note that the newly created groups can be composed of a fraction of samples lower than the predefined minGlobSupp value.

In this way, K non-overlapping groups are created with K equals to the number of signatures defined from the hierarchical version +1.

Value

A named list with the CELLector search space output for both hierarchical and partitioned output. The first is stored in hierarchical field and is the output of CELLector.Build_Search_Space function. The second is stored in partitioned and is *navigable table* in the form of a data frame, output of CELLector.from_Hierarchical_to_Partition function. Each row represent a group of patients, with the columns indicating

Idx A numerical index for the group

Signature The combination of presence or absence of CFE, identified from the hierarchical strucutre as described in details

SignatureDecoded Same as Signature but with identifiers of RACSs decoded, i.e. with loci and included driver genes (inputted in the cdg argument), indicated among brackets

Points The identifiers of the patients in the group satisfying the signature rule

Total Number of patients satisfying the signature rule

Support Fraction of patients satisfying the signature rule compared to the total cohort

COLORS A vector of strings containing hexadecimal color identifiers: one for each node. These are used by the visualisation functions (CELLector.visualiseSearchingSpace, and CELLector.visualiseSearchingSpace, and

Author(s)

Lucia Trastulla and Francesco Iorio

References

- [1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).
- [2] Najgebauer, H. et al. Genomics Guided Selection of Cancer in vitro Models. https://doi.org/10.1016/j.cels.2020.04.007

See Also

CELLector.Build_Search_Space CELLector.from_Hierarchical_to_Partition

```
data(CELLector.PrimTum.BEMs_v2)
### Change the following two lines to work with a different cancer type
tumours_BEM<-CELLector.PrimTum.BEMs_v2$COREAD</pre>
### unicize the sample identifiers for the tumour data
tumours_BEM<-CELLector.unicizeSamples(tumours_BEM)</pre>
### loading decoding table for hypermethylation CFE identifiers
data(CELLector.CFEs.HMSid_decode)
### building a CELLector searching space
CSS_p <- CELLector.Build_Search_Space_Partitioned(ctumours = t(tumours_BEM),</pre>
                                   verbose = FALSE,
                                   minGlobSupp = 0.05,
                                   cancerType = 'COREAD',
                                   pathway_CFEs = CELLector.Pathway_CFEs,
                                   cnaIdMap = CELLector.CFEs.CNAid_mapping,
                                   cnaIdDecode = CELLector.CFEs.CNAid_decode,
                                   hmsIdDecode = CELLector.CFEs.HMSid_decode,
                                   cdg = CELLector.HCCancerDrivers,
                                   subCohortDefinition='TP53',
                                   NegativeDefinition=TRUE,
                                   includeHMS = TRUE)
```

visualising partitioned patients and group-specific feature CSS_p\$partitioned

CELLector.CellLine.BEMs

Cell Lines' Binary Genomic Event Matrices

Description

A list containing 16 data frames (one for cancer type), identified through TCGA labels. Each of these data frames contains cell lines' *binary event matrices* (BEMs) with the status (presence/absence) of *cancer functional events* (CFEs, somatic mutations in high-confidence cancer driver genes and copy number altered genomic segments) as defined in [1].

Usage

data(CELLector.CellLine.BEMs)

Format

A named list of data frames (with TCGA cancer type labels as names). Each of these data frames contains two columns with COSMIC [2] identiefiers and names of cell lines (one per row), respectively, and then binary entries indicating the status of each CFEs (one per column) across cell lines.

Details

BEMs for cell lines from the Genomics of Drug Sensitivity in Cancer (GDSC1000, [1]) panel. Data is available for cell lines matching one among 16 different TCGA cancer types: *BLCA, BRCA, COREAD, GBM, HNSC, KIRC, LAML, LGG, LUAD, LUSC, OV, PRAD, SKCM, STAD, THCA, UCEC.*

A decoding table for these labels is available at

https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Data_Summary.html.

Each data frame contains cell lines on the rows (with COSMIC identifiers and names, respectively on first and second column) and then a binary matrix with a CFE per column and entries indicating the presence/absence of a given CFE in a given cell line.

Gene symbols as column names indicate high confidence cancer driver genes and the entries in the corresponding columns indicate the presence/absence of somatic mutations. Column names with *cna* as prefix indicate chromosomal segments that are recurrently copy number altered in cancer (RACSs, defined in [1]). A list with all the considered CFEs is available in the CELLector.CFEs data object. A decoding table for the RACSs is available in the CELLector.CFEs.CNAid_decode, with the mapping realised by the values in the CNA_identifier column.

Please note that the same RACS identifier across multiple cancer types might indicate different chromosomal regions, therefore in order to be decode it should be considered jointly with the TCGA label of the data frame it has been extracted from.

Author(s)

Francesco Iorio (fi9232@gmail.com)

References

- [1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).
- [2] Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–11 (2015).

See Also

```
CELLector.PrimTum.BEMs, CELLector.CFEs, CELLector.CFEs.CNAid_decode
```

Examples

CELLector.CellLine.BEMs_v2

Cell Lines' Binary Genomic/Epigenomic Event Matrices

Description

A list containing 16 data frames (one for cancer type), identified through TCGA labels. Each of these data frames contains cell lines' *binary event matrices* (BEMs) with the status (presence/absence) of *cancer functional events* (CFEs, somatic mutations in high-confidence cancer driver genes, copy number altered genomic segments and hypermethylated gene promoters) as defined in [1].

Usage

```
data("CELLector.CellLine.BEMs_v2")
```

Format

A named list of data frames (with TCGA cancer type labels as names). Each of these data frames contains two columns with COSMIC [2] identiefiers and names of cell lines (one per row), respectively, and then binary entries indicating the status of each CFEs (one per column) across cell lines.

Details

BEMs for cell lines from the Genomics of Drug Sensitivity in Cancer (GDSC1000, [1]) panel. Data is available for cell lines matching one among 16 different TCGA cancer types: *BLCA, BRCA, COREAD, GBM, HNSC, KIRC, LAML, LGG, LUAD, LUSC, OV, PRAD, SKCM, STAD, THCA, UCEC.*

A decoding table for these labels is available at

https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Data_Summary.html.

Each data frame contains cell lines on the rows (with COSMIC identifiers and names, respectively on first and second column) and then a binary matrix with a CFE per column and entries indicating the presence/absence of a given CFE in a given cell line.

Gene symbols as row names indicate high confidence cancer driver genes and the entries in the corresponding rows indicate the presence/absence of somatic mutations. Row names with *cna* as prefix indicates chromosomal segments that are recurrently copy number altered in cancer (RACSs, defined in [1]), *hms* as a prefix indicates hypermethylated gene promoters (HMS, defined in [1]). A list with all the considered CFEs is available in the CELLector.CFEsV2 data object. A decoding table for the RACSs is available in the CELLector.CFEs.CNAid_decode object, with the mapping realised by the values in the CNA_identifier column. A decoding table for the HMS is available in the CELLector.CFEs.HMSid_decode object, with the mapping realised by the values in the hms_id

Please note that the same RACS identifier across multiple cancer types might indicate different chromosomal regions, therefore in order to be decode it should be considered jointly with the TCGA label of the data frame it has been extracted from.

Author(s)

Francesco Iorio (fi9232@gmail.com)

References

- [1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).
- [2] Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–11 (2015).

See Also

```
{\tt CELLector.CFEs.CNAid\_decode}, {\tt CELLector.CFEs.CNAid\_decode}, {\tt CELLector.CFEs.HMSid\_decode}
```

Examples

```
CELLector.CellLinesVarCatalog
```

Built-in Cell Line variants' catalogue

Description

List of somatic variants found in cell-lines, from Iorio et al, Cell 2016 [1]

Usage

```
data("CELLector.CellLinesVarCatalog")
```

Format

A data frame with 486243 observations (one for each somatic variants) on the following 13 variables.

SAMPLE a character vector specifying the name of the cell line in which the variant has been found

COSMIC_ID a numeric vector specifying COSMIC [2] identifier of the cell line in which the variant has been found

Cancer. Type a character vector specifying the TCGA [3] classification of the tissue of origin of the cell line in which the variant has been found

Gene a character vector specifying the HUGO [4] symbol of the gene hosting the variant under consideration (from Ensemble v56)

Transcript a character vector specifying the identifier of the transcript affected by the variant under consideration (from Ensemble v56)

cDNA a character vector specifying variant position and nucleotide change relating to the cDNA

AA a character vector specifying aminoacid positon and alteration related to the variant under consideration

Classification a character vector specifying a summary of the variant type (e.g. missense, frameshift, nonsense, etc)

Gene_list a character vector: when non empty then the variant is within a high-confidence cancer driver gene (according to [1]), thus resulting in a cancer functional event (CFE) summarised in the Cell line Binary Event Matrices (BEMs)

Recurrence.Filter a character vector: if 'Yes' then the variant under consideration is observed in COSMIC [2] (v68) at a minimal threshold frequency (specified in [1])

Subs a numeric vector: Missense/substitution variants occurring in codons mutated in the systematic screen data in COSMIC [2] (v68) (select >=3

Truncating a numeric vector: Truncating variant count from the systematic screen data in COS-MIC [2] (v68) (select >10)

inframe a numeric vector: Inframe indel alterations occurring in codons mutated in the systematic screen data in COSMIC [2] (v68) (select >=3)

Author(s)

Francesco Iorio (fi9323@gmail.com)

References

- [1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).
- [2] Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–11 (2015).
- [3] Hutter C and Zenklusen JC. The Cancer Genome Atlas: Creating Lasting Value beyond Its Data. Cell. 2018;173(2):283–285. doi:10.1016/j.cell.2018.03.042
- [4] Braschi, B. et al. Genenames.org: the HGNC and VGNC resources in 2019. Nucleic Acids Res. Epub 2018 Oct 10. PMID: 30304474 DOI: 10.1093/nar/gky930

See Also

CELLector.CellLine.BEMs, CELLector.CellLine.BEMs_v2, CELLector.CFEs

Examples

```
data(CELLector.CellLinesVarCatalog)
head(CELLector.CellLinesVarCatalog)
```

CELLector.CELLline_buildBEM

Building a Genomic Binary Event Matrix (BEM) for in-vitro models

Description

This function takes in input a catalogue of somatic genomic variants observed in cancer cell lines (or it uses the most recent catalogue of somatic genomic variants from the Cell Model Passports [1]) and it converts it into a presence/absence (binary) matrix, which can be processed by the CELLector package and CELLector shiny app for mapping cell lines onto cancer-patient derived genomic subtypes.

Usage

Arguments

varCat

A data frame containing a catalogue of somatic genomic variants observed in cancer cell lines with one row per variant. At least the following column/headers should be included: model_id (the Cell Model Passport identifier [1] of the cell line in which the variant is observed), gene_symbol (HUGO [2] symbol of the gene hosting the variant), cdna_mutation (variant specification based on the longest transcript of the gene), aa_mutation (aminoacid substitution). See format of the CELLector.RecfiltVariants object for details on the syntax of the variant and aminoacid substitution specifications. When this parameter is different from NULL all the others parameters are ignored by this function, with the exception of GenesToConsider and VariantsToConsider. By default, this parameter is set to NULL and the most up-to-date variant catalogue from the Cell Model Passports [1] is used insted. In this case the other parameters define which samples to include in the final genomic binary event matrix.

Tissue

String specifying the tissue of origin of the cell lines that should be considering while assembling the final genomic binary event matrix. Possible values are those specified in the tissue column of the Cell Model Passport [1] annotation object, downloadable through the CELLector. CMPs_getModelAnnotation function. This parameter is used only when varCat is not set to its default NULL value, therefore the most-up-to-date variant catalogue from the Cell Model Passports [1] is used instead of a variant catalogue provided in input.

Cancer_Type

String (or vector of strings) specifying the cancer type(s) of origin of the cell lines that should be considering while assembling the final genomic binary event matrix. Possible values are those specified in the cancer_type column of the Cell Model Passport [1] annotation object, downloadable through the CELLector.CMPs_getModelAnn function. This parameter is used only when varCat is not set to its default NULL value, therefore the most-up-to-date variant catalogue from the Cell Model Passports [1] is used instead of a variant catalogue provided in input.

Cancer_Type_details

String (or vector of strings) specifying the cancer type detail(s) of the cell lines that should be considering while assembling the final genomic binary event matrix. Possible values are those specified in the cancer_type_detail column of the Cell Model Passport [1] annotation object, downloadable through the CELLector.CMPs_getModelAnnotation function. This parameter is used only when varCat is not set to its default NULL value, therefore the most-up-to-date variant catalogue from the Cell Model Passports [1] is used instead of a variant catalogue provided in input.

sample_site

String (or vector of strings) specifying the sample site(s) of the cell lines that should be considering while assembling the final genomic binary event matrix. Possible values are those specified in the sample_site column of the Cell Model Passport [1] annotation object, downloadable through the CELLector. CMPs_getModelAnnota function. This parameter is used only when varCat is not set to its default NULL value, therefore the most-up-to-date variant catalogue from the Cell Model Passports [1] is used instead of a variant catalogue provided in input.

excludeOrganoids

Boolean parameter specifying whether organoid models should not be considered while assembling the final genomic binary event matrix. This parameter is used only when varCat is not set to its default NULL value, therefore the mostup-to-date variant catalogue from the Cell Model Passports [1] is used instead of a variant catalogue provided in input.

humanonly

Boolean parameter specifying whether human cell lines only should not be considered while assembling the final genomic binary event matrix. This parameter is used only when varCat is not set to its default NULL value, therefore the mostup-to-date variant catalogue from the Cell Model Passports [1] is used instead of a variant catalogue provided in input.

msi_status_select

String parameter specifying whether microsatellite stable or instable cell lines only should not be considered while assembling the final genomic binary event matrix. Possible values for this parameters are "MSI" (for instable cell lines) and "MSS" (for stable cell lines). This parameter is used only when varCat is not set its default NULL value, therefore the most-up-to-date variant catalogue from the Cell Model Passports [1] is used instead of a variant catalogue provided in input.

gender_select

String (or vector of strings) specifying the gendre of the patients the cell lines that should be considering while assembling the final genomic binary event ma-

trix were resected from. Possible values are those specified in the gender column of the Cell Model Passport [1] annotation object, downloadable through the CELLector.CMPs_getModelAnnotation function. This parameter is used only when varCat is not set to its default NULL value, therefore the most-up-to-date variant catalogue from the Cell Model Passports [1] is used instead of a variant catalogue provided in input.

mutational_burden_th

A vector of two real numbers specifying an interval of number of mutations per million base pairs the mutational burden of the cell lines that should be considering while assembling the final genomic binary event matrix should fall in. This parameter is used only when varCat is not set to its default NULL value, therefore the most-up-to-date variant catalogue from the Cell Model Passports [1] is used instead of a variant catalogue provided in input.

age_at_sampling

A vector of two real numbers specifying an age at sampling interval the cell lines that should be considering while assembling the final genomic binary event matrix should fall in. This parameter is used only when varCat is not set to its default NULL value, therefore the most-up-to-date variant catalogue from the Cell Model Passports [1] is used instead of a variant catalogue provided in input.

ploidy_th

A vector of two real numbers specifying an interval the ploidy of the cell lines that should be considering while assembling the final genomic binary event matrix should fall in. This parameter is used only when varCat is not set to its default NULL value, therefore the most-up-to-date variant catalogue from the Cell Model Passports [1] is used instead of a variant catalogue provided in input.

ethnicity_to_exclude

String (or vector of strings) specifying the ethnic groups of the patients the cell lines that should not be considering while assembling the final genomic binary event matrix were resected from. Possible values are those specified in the ethnicity column of the Cell Model Passport [1] annotation object, downloadable through the CELLector.CMPs_getModelAnnotation function. This parameter is used only when varCat is not set to its default NULL value, therefore the most-up-to-date variant catalogue from the Cell Model Passports [1] is used instead of a variant catalogue provided in input.

GenesToConsider

A list of strings with HGNC symbols [2] for genes hosting the variants to be extracted from the catalogue and assembled into the final matrix. When set to its default NULL value, all genes hosting at least one variants are considered.

VariantsToConsider

A list of individual somatic variants to be extracted from the catalogue and assembled into the final matrix. The format should be the same of the CELLector.RecfiltVariants.

Value

A data frame with one row per cell lines, Cell model passport identifiers and cell line names in the first two columns followed by a presence/absence (binary) matrix with gene symbols on the columns, specifying in the i, j-entry the status of the jth gene in the ith cell line, i.e. 0 = wild-type, 1 = mutated.

Author(s)

Francesco Iorio (fi9323@gmail.com)

22 CELLector.CFEs

References

[1] van der Meer D, Barthorpe S, Yang W, et al. Cell Model Passports-a hub for clinical, genetic and functional datasets of preclinical cancer models. Nucleic Acids Res. 2019;47(D1):D923–D929. doi:10.1093/nar/gky872

- [2] Braschi, B. et al. Genenames.org: the HGNC and VGNC resources in 2019. Nucleic Acids Res. Epub 2018 Oct 10. PMID: 30304474 DOI: 10.1093/nar/gky930
- [3] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

See Also

```
CELLector.CMPs_getModelAnnotation, CELLector.Tumours_buildBEM
```

Examples

```
## loading high-confidence cancer driver genes from [1]
data(CELLector.HCCancerDrivers)
## loading COSMIC [3] variants observed it at least two patients from [3]
data(CELLector.RecfiltVariants)
## Assembling a genomic binary event matrix (BEM) for human derived microsatellite stable diploid colorectal ca
COREAD_cl_BEM <- CELLector.CELLline_buildBEM(</pre>
                  Tissue='Large Intestine',
                  Cancer_Type = 'Colorectal Carcinoma',
                  msi_status_select = 'MSI',
                  ploidy_th = c(2,2),
                  GenesToConsider = CELLector.HCCancerDrivers,
                  VariantsToConsider = CELLector.RecfiltVariants)
## showing first entries of the BEM
head(COREAD_cl_BEM)
## showing a bar diagram with mutation frequencies in the BEM
barplot(sort(colSums(COREAD_cl_BEM[,3:ncol(COREAD_cl_BEM)]),decreasing=TRUE)[1:20],
        las=2,ylab='n. mutated cell lines')
```

CELLector.CFEs

Cancer Functional Events

Description

Identifiers of cancer functional events (CFEs, i.e. somatic mutations in high confidence cancer driver genes or chromosomal regions of recurrent copy number amplification/deletion) from [1], which are also present in the binary event matrices of the cell lines and the primary tumours considered in this version of CELLector.

Usage

```
data("CELLector.CFEs")
```

Format

A vector of strings with one entry per identifier.

Details

Gene symbols indicate somatic mutations in high confidence cancer driver genes and entries with *cna* prefix indicate chromosomal segments that are recurrently copy number altered in cancer (RACSs), both defined in [1].

A decoding table for the RACSs is available in the CELLector. CFEs. CNAid_decode, with the mapping realised by the values in the CNA_identifier column.

Please note that the same RACS identifier across multiple cancer types might indicate different chromosomal regions, therefore in order to be decode it should be considered jointly with the TCGA label of the data frame it has been extracted from.

Author(s)

Francesco Iorio (fi9232@gmail.com)

References

[1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

See Also

CELLector.PrimTum.BEMs, CELLector.CellLine.BEMs, CELLector.CFEs, CELLector.CFEs.CNAid_decode

Examples

```
data(CELLector.CFEs)
head(CELLector.CFEs)
```

CELLector.CFEs.CNAid_decode

Decoding table for copy number alteration cancer functional events

Description

A table with identifiers of cancer functional events (CFEs) involving chromosomal regions of recurrent copy number alterations (RACSs, as defined by [1], i.e. identified through ADMIRE [2]) and their annotation.

Usage

```
data("CELLector.CFEs.CNAid_decode")
```

Format

A data frame with 731 observations (one for each CNA CFE) on the following 15 variables.

Identifier The RACS identifer, as defined in [1]

CancerType A TCGA label indicating the cancer type where the RACS has been identified (via ADMIRE [2])

Recurrent A string specifying whether the RACS under consideration is frequently amplified (value = Amplification) or deleted) (value = deleted)

chr Chromosome number of the RACS

start Starting position of the RACS

stop Ending position of the RACS

nGenes Number of protein coding genes included in the RACS

locus Genomic locus of the RACS

ContainedGenes A string with comma separated symbols of the genes included in the RACS

CNA_Identifier A string containing the identifier of the RACS as it appears in the Binary Event Matrix (BEM) of the cancer type specified in the CancerType field included in the CELLector.CellLine.BEMs and the CELLector.PrimTum.BEMs data objects

Details

This data frame contains a comprehensive annotation of the CFEs involving RACSs appearing in the BEMs of cell lines and primary tumours, contained in the CELLector.CellLine.BEMs and the CELLector.PrimTum.BEMs data objects. Please note that the same RACS identifier across multiple cancer types might indicate different chromosomal regions, therefore in order to be decode it should be considered jointly with the TCGA label of the data frame it has been extracted from.

This table is used by the CELLector.cna_look_up function to decode the identifier of CFE involving a RACS.

Author(s)

Francesco Iorio (fi9232@gmail.com)

References

[1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

[2] van Dyk, E., Reinders, M. J. T. & Wessels, L. F. A. A scale-space method for detecting recurrent DNA copy number changes with analytical false discovery rate control. Nucleic Acids Res. 41, e100 (2013).

See Also

CELLector.CellLine.BEMs, CELLector.PrimTum.BEMs, CELLector.cna_look_up

Examples

```
CELLector.CFEs.CNAid_mapping
```

Pan-Cancer/Cancer-Specific RACSs map.

Description

A data frame mapping chromosomal regions of recurrent copy number amplifications/deletions in cancer (RACSs, as defined in [1]) identified via ADMIRE [2] in the context of specific cancer types to PanCancer RACSs.

Usage

```
data("CELLector.CFEs.CNAid_mapping")
```

Format

A data frame with 425 observations (one for each PanCancer RACS) and a column for each of 27 different cancer types (specified by TCGA labels). The entry in position *i,j* contains the identifier of the *i*th PanCancer RACS in the context of the *j*th cancer type (where available).

Author(s)

Francesco Iorio (fi9232@gmail.com)

References

[1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

[2] van Dyk, E., Reinders, M. J. T. & Wessels, L. F. A. A scale-space method for detecting recurrent DNA copy number changes with analytical false discovery rate control. Nucleic Acids Res. 41, e100 (2013).

```
data(CELLector.CFEs.CNAid_mapping)
head(CELLector.CFEs.CNAid_mapping)
```

CELLector.CFEs.HMSid_decode

Decoding table for hypermethylated gene promoter cancer functional events

Description

A table with identifiers of cancer functional events (CFEs) involving informative hypermehtylated gene promoters (hms) defined by [1].

Usage

```
data("CELLector.CFEs.HMSid_decode")
```

Format

A data frame with 731 observations (one for each hms CFE) on the following 7 variables.

- Cancer. Types A TCGA label indicating the cancer type where the hms has been identified as informative (as explained in [1])
- Genomic.Coordinates The genomic coordinates of the CgP island whose methylation signal was considered in [1] for this hms
- Discretization. threshold Threshold used to determine the status of this CgP island (hypermethylated or non hypermethylated) defined as the best separative ones between distributions of hypermethylated and non hypermethylated samples when looking at the methylation (beta) signal of the CgP island under consideration in cancer patients, whole procedure described in [1]
- dip.statistic Dip statistic resulting from testing the bimodality of the methylation (beta) signal of the CgP island under consideration in cancer patients. Whole procedure described in [1]
- dip.pval Dip p-value from testing the bimodality of the methylation (beta) signal of the CgP island under consideration in cancer patients. Whole procedure described in [1]
- GN Gene whose promoter is considered by the hms
- hms_id Alphanumerical identifiers of the hms

Details

This data frame contains the annotation of the CFEs involving the hms appearing in the BEMs of cell lines and primary tumours, contained in the CELLector.CellLine.BEMs_v2 and the CELLector.PrimTum.BEMs_v2 data objects (version 2).

This table is used by the CELLector.hms_look_up function to decode the identifier of CFE involving an hms.

Author(s)

Francesco Iorio (fi9232@gmail.com)

References

[1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

CELLector.CFEsV2 27

See Also

```
CELLector.CellLine.BEMs_v2, CELLector.PrimTum.BEMs_v2, CELLector.hms_look_up
```

Examples

CELLector.CFEsV2

Cancer Functional Events (version 2)

Description

Identifiers of cancer functional events (CFEs, i.e. somatic mutations in high confidence cancer driver genes, chromosomal regions of recurrent copy number amplification/deletion, and informative hypermethylated gene promoters) from [1], which are also present in the binary event matrices (version 2) of the cell lines and the primary tumours considered in this version of CELLector.

Usage

```
data("CELLector.CFEsV2")
```

Format

A vector of strings with one entry per identifier.

Details

Gene symbols indicate somatic mutations in high confidence cancer driver genes, entries with *cna* prefix indicate chromosomal segments that are recurrently copy number altered in cancer (RACSs), entries with *hms* prefix indicate hypermehylated gene promoters, all defined in [1].

A decoding table for the HMS is available in the CELLector.CFEs.HMSid_decode object, with the mapping realised by the values in the hms_id column.

Please note that the same RACS identifier across multiple cancer types might indicate different chromosomal regions, therefore in order to be decode it should be considered jointly with the TCGA label of the data frame it has been extracted from.

Author(s)

Francesco Iorio (fi9232@gmail.com)

References

[1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

See Also

CELLector.PrimTum.BEMs_v2, CELLector.CellLine.BEMs_v2, CELLector.CFEs, CELLector.CFEs.CNAid_decode, CELLector.CFEs.HMSid_decode

Examples

```
data(CELLector.CFEsV2)
head(CELLector.CFEsV2)
```

CELLector.changeSScolors

Changing CELLector searching space color scheme

Description

This function reassigns a set of distinc random colors to the cancer patients' subtypes identified and stored in the CELLector searching space (compute by the CELLector.Build_Search_Space function). These colors are used by the visualisation functions CELLector.visualiseSearchingSpace and CELLector.visualiseSearchingSpace_sunBurst

Usage

```
CELLector.changeSScolors(searchSpace)
```

Arguments

searchSpace

A CELLector searching space as returned by the CELLector.Build_Search_Space function

Value

A CELLector searching space as returned by the CELLector.Build_Search_Space function, with new colors

Author(s)

Hanna Najgebauer and Francesco Iorio

See Also

```
CELLector.Build_Search_Space,
CELLector.Build_Search_Space,
CELLector.visualiseSearchingSpace_sunBurst
```

Examples

```
data(CELLector.PrimTum.BEMs)
data(CELLector.Pathway_CFEs)
data(CELLector.CFEs.CNAid_mapping)
data(CELLector.CFEs.CNAid_decode)
data(CELLector.HCCancerDrivers)
data(CELLector.CellLine.BEMs)
tumours_BEM<-CELLector.PrimTum.BEMs$COREAD
CELLlineData<-CELLector.CellLine.BEMs$COREAD
### unicize the sample identifiers for the tumour data
tumours_BEM<-CELLector.unicizeSamples(tumours_BEM)</pre>
### building the CELLector searching space
CSS<-CELLector.Build_Search_Space(ctumours = t(tumours_BEM),</pre>
                                  verbose = FALSE,
                                  minGlobSupp = 0.05,
                                  cancerType = 'COREAD',
                                  pathway_CFEs = CELLector.Pathway_CFEs,
                                  cnaIdMap = CELLector.CFEs.CNAid_mapping,
                                  mutOnly = FALSE,
                                  cnaIdDecode = CELLector.CFEs.CNAid_decode,
                                  cdg = CELLector.HCCancerDrivers)
### visualising the Searching space as collapsible tree
CELLector.visualiseSearchingSpace(searchSpace = CSS,CLdata = CELLlineData)
### visualising the Searching space as sunburst
CELLector.visualiseSearchingSpace_sunBurst(searchSpace = CSS)
### changing the searching space colors
CSS<-CELLector.changeSScolors(CSS)
### visualising the Searching space as collapsible tree
CELLector.visualiseSearchingSpace(searchSpace = CSS,CLdata = CELLlineData)
### visualising the Searching space as sunburst
CELLector.visualiseSearchingSpace_sunBurst(searchSpace = CSS)
```

```
{\tt CELLector.CMPs\_getDriverGenes}
```

List of high-confidence cancer driver genes from the Cell Model Passports

Usage

```
CELLector.CMPs_getDriverGenes
(URL = "https://cog.sanger.ac.uk/cmp/download/cancer_genes_latest.csv.gz")
```

Arguments

URL

The URL specifying the online location of the file containing the high-confidence cancer driver genes. Default value points to the most up-to-date version of this file (which is keptupdated).

Value

A vector of strings (containing HGNC symbols) with one entry per high-confidence cancer driver genes.

Author(s)

Francesco Iorio (fi9323@gmail.com)

References

van der Meer D, Barthorpe S, Yang W, et al. Cell Model Passports-a hub for clinical, genetic and functional datasets of preclinical cancer models. Nucleic Acids Res. 2019;47(D1):D923–D929. doi:10.1093/nar/gky872

Examples

```
CMP_cdgenes<-CELLector.CMPs_getDriverGenes()
head(CMP_cdgenes)</pre>
```

CELLector.CMPs_getModelAnnotation

In-vitro models' annotation from the Cell Model Passports

Usage

```
CELLector.CMPs_getModelAnnotation
(URL = "https://cog.sanger.ac.uk/cmp/download/model_list_latest.csv.gz")
```

Arguments

URL

The URL specifying the online location of the annotation file. Default value points to the most up-to-date version of this file (which is keptupdated).

Value

A data frame with one row per model and one colum per annotation entry.

Author(s)

Francesco Iorio (fi9323@gmail.com)

References

van der Meer D, Barthorpe S, Yang W, et al. Cell Model Passports-a hub for clinical, genetic and functional datasets of preclinical cancer models. Nucleic Acids Res. 2019;47(D1):D923–D929. doi:10.1093/nar/gky872

```
CMP_annotation<-CELLector.CMPs_getModelAnnotation()
head(CMP_annotation)</pre>
```

CELLector.CMPs_getVariants

Somatic variants of in-visto models from the Cell Model Passports

Usage

```
CELLector.CMPs_getVariants
(URL = "https://cog.sanger.ac.uk/cmp/download/mutations_2018-08-01_1640.csv.gz")
```

Arguments

URL

The URL specifying the online location of the file containing the somatic variants. Default value points to the most up-to-date version of this file (which is keptupdated).

Value

A data frame with one entry per variant and columns specifying different annotation entries.

Author(s)

Francesco Iorio (fi9323@gmail.com)

References

van der Meer D, Barthorpe S, Yang W, et al. Cell Model Passports-a hub for clinical, genetic and functional datasets of preclinical cancer models. Nucleic Acids Res. 2019;47(D1):D923–D929. doi:10.1093/nar/gky872

Examples

```
CMP_variants<-CELLector.CMPs_getVariants()
head(CMP_variants)</pre>
```

Description

This functions shows the annotation for a chromosomal region of recurrent copy number alterations (RACS) as defined in [1].

Usage

```
CELLector.cna_look_up(cna_ID, cnaId_decode, TCGALabel)
```

Arguments

cna_ID A string containin the RACS identifier. Full list available in the CELLector. CFEs

object.

cnaId_decode A data frame containing the RACSs' annotation, available in the

CELLector.CFEs.CNAid_decode object

TCGALabel A TCGA label indicating the cancer type under consideration: BLCA, BRCA,

COREAD, GBM, HNSC, KIRC, LAML, LGG, LUAD, LUSC, OV, PRAD, SKCM,

STAD, THCA, UCEC available in this version.

Value

A data frame with a single line containing the annotation of the RACS indicated in input.

Author(s)

Hanna Najgebauer and Francesco Iorio

References

[1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

See Also

```
CELLector.CFEs,
CELLector.CFEs.CNAid_decode
```

Examples

CELLector.createAllSignatures

Derive signatures underlying the cancer patients' subtypes in the CELLector search space

Description

This function takes in input the CELLector search space encoded as a binary tree in a *navigable table*. Then, for each individual path (from the root to a node) of this tree it derives a rule (signature), represented as a logic AND of multiple terms (or their negation), one per each node in the path. Negations are added when right branches are encountered.

Usage

```
CELLector.createAllSignatures(NavTab)
```

Arguments

NavTab

A CELLector searching space encoded as binary tree in a navigable table, as returned by the CELLector.Build_Search_Space function.

Value

A list with two vectors of strings and a numerical vector. Each element of the first two vectors represent a signature of cancer functional events (CFEs, defined in [1]) corresponding to a node in the CELLector searching space. This is expressed as a logic formula (rule), which a cancer patient's genome must satisfy in order to be included in the sub-population represented by the node under consideration. The first vector (S) contains decoded signatures, i.e. where the CFEs involving copy number alterations are represented by a genomic loci and contained cancer driver genes. The second vector (ES) contains signatures of CFEs as they are represented in the binary event matrix containing the patients genomic data used to build the CELLector searching space. Further deatils are provided in [2]. The third vector (STS) contains the percentage of cancer patients belonging to the subtype represented by the signatures.

Author(s)

Hanna Najgebauer and Francesco Iorio

References

```
[1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).
```

[2] Najgebauer, H. et al. Genomics Guided Selection of Cancer in vitro Models. https://doi.org/10.1101/275032

See Also

```
CELLector.Build_Search_Space
```

```
data(CELLector.PrimTum.BEMs)
data(CELLector.Pathway_CFEs)
data(CELLector.CFEs.CNAid_mapping)
data(CELLector.CFEs.CNAid_decode)
data(CELLector.HCCancerDrivers)
data(CELLector.CellLine.BEMs)
### Change the following two lines to work with a different cancer type
tumours_BEM<-CELLector.PrimTum.BEMs$COREAD
CELLlineData<-CELLector.CellLine.BEMs$COREAD
### unicize the sample identifiers for the tumour data
tumours_BEM<-CELLector.unicizeSamples(tumours_BEM)</pre>
### building a CELLector searching space focusing on three pathways
### and TP53 wild-type patients only
CSS<-CELLector.Build_Search_Space(ctumours = t(tumours_BEM),</pre>
                                   verbose = FALSE,
                                   minGlobSupp = 0.05,
```

```
### derive signatures from searching space
Signatures <- CELLector.createAllSignatures(CSS$navTable)

data.frame(Signatures = Signatures$$,'SubType Size'=Signatures$$T$)</pre>
```

CELLector.createAllSignatures_Partitioned

Extract signatures underlying the cancer patients' subtypes in the partitioned CELLector search space

Description

This function takes in input the partitioned CELLector search space encoded as a *navigable table* in a data frame. The signature rule is already derived to defined the paritioned space and extracted here in the same format of CELLector.createAllSignatures

Usage

CELLector.createAllSignatures_Partitioned(NavTab)

Arguments

NavTab

A CELLector searching space partitioned encoded as a navigable table in data frame format, as returned by the CELLector.Build_Search_Space_Partitioned function.

Value

A list with two vectors of strings and two numerical vector. Each element of the first two vectors represent a signature of cancer functional events (CFEs, defined in [1]) corresponding to a group in the CELLector searching space partitioned. This is expressed as a logic formula (rule), which a cancer patient's genome must satisfy in order to be included in the group under consideration. The first vector (S) contains decoded signatures, i.e. where the CFEs involving copy number alterations are represented by a genomic loci and contained cancer driver genes. The second vector (ES) contains signatures of CFEs as they are represented in the binary event matrix containing the patients genomic data used to build the CELLector searching space. Further deatils are provided in [2]. The third vector (STS) contains the percentage of cancer patients belonging to the group represented by the signatures. The fourth vector (SC) contains the number of cancer patients from the cohort belonging to the group.

Author(s)

Lucia Trastulla and Francesco Iorio

References

- [1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).
- [2] Najgebauer, H. et al. Genomics Guided Selection of Cancer in vitro Models.

https://doi.org/10.1016/j.cels.2020.04.007

See Also

CELLector.Build_Search_Space_Partitioned CELLector.createAllSignatures

```
data(CELLector.PrimTum.BEMs)
data(CELLector.Pathway_CFEs)
data(CELLector.CFEs.CNAid_mapping)
data(CELLector.CFEs.CNAid_decode)
data(CELLector.HCCancerDrivers)
data(CELLector.CellLine.BEMs)
### Change the following two lines to work with a different cancer type
tumours_BEM<-CELLector.PrimTum.BEMs$COREAD
CELLlineData<-CELLector.CellLine.BEMs$COREAD
### unicize the sample identifiers for the tumour data
tumours_BEM<-CELLector.unicizeSamples(tumours_BEM)</pre>
### building a CELLector searching space focusing on three pathways
### and TP53 wild-type patients only
CSS_p <- CELLector.Build_Search_Space_Partitioned(ctumours = t(tumours_BEM),</pre>
                                   verbose = FALSE,
                                   minGlobSupp = 0.05,
                                   cancerType = 'COREAD',
                                   pathwayFocused = c("RAS-RAF-MEK-ERK / JNK signaling",
                                                      "PI3K-AKT-MTOR signaling",
                                                      "WNT signaling"),
                                   pathway_CFEs = CELLector.Pathway_CFEs,
                                   cnaIdMap = CELLector.CFEs.CNAid_mapping,
                                   cnaIdDecode = CELLector.CFEs.CNAid_decode,
                                   cdg = CELLector.HCCancerDrivers,
                                   subCohortDefinition='TP53',
                                   NegativeDefinition=TRUE)
### derive signatures from searching space
Signatures <- CELLector.createAllSignatures_Partitioned(CSS_p$partitioned)</pre>
data.frame(Signatures = Signatures$$, 'SubType Size'=Signatures$STS, 'SubType Count'=Signatures$$C)
```

CELLector.from_Hierarchical_to_Partition

Convert CELLector output to partioned format

Description

This function goes through binary tree output of CELLector search space in the form of navigable table [1] and convert hierarchical configuration to partitioned.

Usage

```
CELLector.from_Hierarchical_to_Partition(navTable, samples_id, verbose=TRUE)
```

Arguments

navTable navTable entry of output from CELLector.Build_Search_Space

samples_id Sample names of the cancer patient cohort as input of CELLector.Build_Search_Space,

i.e. rownames(ctumours)

verbose A boolean argument specifying whether step-by-step information on the algo-

rithm progression should be displayed run-time

Details

This is an auxiliary function used in CELLector.Build_Search_Space_Partitioned (for details check documentation).

Value

Navigable table: a data frame with a row for each patient group and columns as described in CELLector.Build_Search_Space_Partitioned

Author(s)

Lucia Trastulla and Francesco Iorio

References

[1] Najgebauer, H. et al. Genomics Guided Selection of Cancer in vitro Models. https://doi.org/10.1016/j.cels.2020.04.007

See Also

 ${\tt CELLector.Build_Search_Space_CELLector.Build_Search_Space_Partitioned}$

Examples

 ${\tt\#\ see\ example\ for\ CELLector.Build_Search_Space_Partitioned}$

CELLector.HCCancerDrivers

High Confidence Cancer Driver genes

Description

A list of high confidence cancer driver genes from [1]

Usage

```
data("CELLector.HCCancerDrivers")
```

Format

A vector of strings with one entry per cancer gene.

Author(s)

Francesco Iorio (fi9232@gmail.com)

References

[1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

Examples

```
data(CELLector.HCCancerDrivers)
## maybe str(CELLector.HCCancerDrivers); plot(CELLector.HCCancerDrivers) ...
```

Description

This functions shows the annotation for coded hypermethylated gene promoters as defined in [1].

Usage

```
CELLector.hms_look_up(hms_ID, hmsId_decode, TCGALabel)
```

Arguments

hms_ID A string containin the identifier of the hypermethylated gene promoters. Full list

available in the CELLector. CFEsV2 object.

hmsId_decode A data frame containing the hypermethylated gene promoter annotations, avail-

able in the CELLector.CFEs.HMSid_decode object

TCGALabel A TCGA label indicating the cancer type under consideration: BLCA, BRCA,

COREAD, GBM, HNSC, KIRC, LAML, LGG, LUAD, LUSC, OV, PRAD, SKCM,

STAD, THCA, UCEC available in this version.

Value

A data frame with a single line containing the hypermethylated gene promoter indicated in input.

Author(s)

Francesco Iorio (fi9323@gmail.com)

References

[1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

See Also

```
CELLector.CFEsV2
```

Examples

CELLector.makeSelection

Genomics guided selection of Cancer Cell lines

Description

Given a CELLector searching space

(outputted by the CELLector.Build_Search_Space function) with tumour genomic subtypes and matched underlying signatures of cancer functional events (CFEs, as defined in [1]), and a map of human cancer cell lines on it (outputted by the CELLector.buildModelMatrix function), this function selects n most representative cell lines by applying a greedy strategy described in [2] in order to maximise the covered genomic heterogeneity of primary tumours.

Usage

```
CELLector.makeSelection(modelMat, n, searchSpace)
```

Arguments

modelMat

A named binary matrix with tumour suptypes numerical identifiers on the rows, cell line names on the column and entries specifiyng whether the cell line in the column is representative of the subtype on the row (based on the collective presence/absence of the corresponding signature of CFEs). This is outputted by the CELLector.buildModelMatrix function starting from a CELLector search space (outputted by the CELLector.Build_Search_Space) and a cell line binary event matrix (BEM): a data frame in which the first two columns contain the COSMIC [3] identiefiers and names of cell lines (one per row), respectively, and then binary entries indicating the status of each CFEs (one per column) across cell lines. The format is the same of the entries of the list in the built-in CELLector.CellLine.BEMs object

CELLector.makeSelection 39

n An integer specifying the number of cell lines to select

searchSpace A CELLector searching space, outputted by the CELLector.Build_Search_Space

from a BEM modeling a cohort of cancer patients. With cancer functional events (CFEs) on the columns and sample identifers on the rows. See CEL-

Lector.PrimTum.BEMs for further details

Value

A data frame with one row per selected cell line and the following columns:

Tumour.SubType.Index

The numerical index of the represented tumour subtype (this is the same index

that the subtype has in the inputted CELLector searching space)

Representative.Cell.Line

The name of the selected cell line

Signature The signature of CFEs underlying the subtype under consideration and collec-

tively present in the selected cell line

percentage.patients

The size of the considered represented subtype with respect the whole cohort of

cancer patients

Author(s)

Hanna Najgebauer and Francesco Iorio

References

- [1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).
- [2] Najgebauer, H. et al. Genomics Guided Selection of Cancer in vitro Models.

https://doi.org/10.1101/275032

[3] Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–11 (2015).

See Also

```
CELLector.Build_Search_Space,
CELLector.buildModelMatrix,
CELLector.CellLine.BEMs,
CELLector.PrimTum.BEMs
```

Examples

```
data(CELLector.PrimTum.BEMs)
data(CELLector.Pathway_CFEs)
data(CELLector.CFEs.CNAid_mapping)
data(CELLector.CFEs.CNAid_decode)
data(CELLector.HCCancerDrivers)
data(CELLector.CellLine.BEMs)
```

Change the following two lines to work with a different cancer type

```
tumours_BEM<-CELLector.PrimTum.BEMs$COREAD
CELLlineData<-CELLector.CellLine.BEMs$COREAD
### unicize the sample identifiers for the tumour data
tumours_BEM<-CELLector.unicizeSamples(tumours_BEM)</pre>
### building a CELLector searching space focusing on three pathways
### and TP53 wild-type patients only
CSS<-CELLector.Build_Search_Space(ctumours = t(tumours_BEM),</pre>
                                   verbose = FALSE,
                                   minGlobSupp = 0.05,
                                   cancerType = 'COREAD',
                                   pathwayFocused = c("RAS-RAF-MEK-ERK / JNK signaling",
                                                       "PI3K-AKT-MTOR signaling",
                                                       "WNT signaling"),
                                   pathway_CFEs = CELLector.Pathway_CFEs,
                                   cnaIdMap = CELLector.CFEs.CNAid_mapping,
                                   cnaIdDecode = CELLector.CFEs.CNAid_decode,
                                   cdg = CELLector.HCCancerDrivers,
                                   subCohortDefinition='TP53',
                                   NegativeDefinition=TRUE)
### take all the signatures from the searching space
Signatures <- CELLector.createAllSignatures(CSS$navTable)</pre>
### mapping the cell lines on the CELLector searching space
ModelMat<-CELLector.buildModelMatrix(Signatures$ES,CELLlineData,CSS$navTable)</pre>
### selecting 10 cell lines
selectedCellLines<-CELLector.makeSelection(modelMat = ModelMat,</pre>
                                             searchSpace = CSS$navTable)
selectedCellLines
```

```
CELLector.mostSupported_CFEs
```

Most recurrent combinations of Cancer Functional Events

Description

This function identifies the most frequent combination of cancer functional events (CFEs) in a large cohort of cancer patients.

Usage

Arguments

transactions A named binary matrix with CFEs on the rows, samples on the columns and

entries specifying the presence/absence of a given CFE in a given sample: the

transactions object.

minSupport The minimal support that a combination of CFEs must have, i.e. the minimal

ratio of samples in which the CFEs must be observed simoultanously, in order

to be considered in the analysis.

minlen The minimal length of a combination of CFEs (of how many indivudal CFE it

needs to be composed) in order to be considered in the analysis (1 by default).

maxLen The maximal length of a combination of CFEs (the maximal number of indivu-

dal CFEs) in order to be considered in the analysis (10 by default).

Details

This function uses the *eclat* function from the R package *arules*.

Value

A list with the following fields:

MSIS A string or a vector of strings (depending on the argument minlen) specifying

the CFE (or the combination of individual CFEs) that is the most frequently

observed (simultaneously across the samples in input)

SUPPORT The ratio of samples where the combination of CFEs in MSIS is obaserved on the

total number of samples, i.e. number of columns in the transactions argument

absSUPPORT The number of samples where the combination of CFEs in MSIS is obaserved

supportingSamples

The identifiers of the samples supporting MSIS, i.e. the names of the columns of *transactions*, in which the entries corresponding to MSIS rows are equal to 1.

Author(s)

Hanna Najgebauer and Francesco Iorio

References

Najgebauer et al., CELLector: Genomics Guided Selection of Cancer in vitro Models.

doi:10.1101/275032

CELLector.MSIstatus Cell lines' Microsatellite status

Description

The microsatellite status of the cell lines in the CELLector collection, which can be stable (MSI-S), lowly instable (MSI-L), or highly instable (MSI-H) from [1]

Usage

```
data("CELLector.MSIstatus")
```

Format

A named vector of string with one entry per cell lines (with COSMIC [2] identifiers as names) specigying the MSI status of each cell line as detailed in the description above.

Author(s)

Francesco Iorio (fi9232@gmail.com)

References

- [1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).
- [2] Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–11 (2015

Examples

```
data(CELLector.MSIstatus)
head(CELLector.MSIstatus)
```

CELLector.Pathway_CFEs

Cancer functional events in biological pathways

Description

Lists of cancer functional events (CFEs) from [1] involving genes in 14 key cancer biological pathways

Usage

```
data("CELLector.Pathway_CFEs")
```

Format

Named list of string vectors, whose elements are CFEs involving genes in a fixed biological pathway.

Author(s)

Francesco Iorio (fi9232@gmail.com)

References

[1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

Examples

```
data(CELLector.Pathway_CFEs)
CELLector.Pathway_CFEs$`RAS-RAF-MEK-ERK / JNK signaling`
```

CELLector.PrimTum.BEMs

Primary Tumours' Binary Genomic Event Matrices

Description

A list containing 16 data frames (one for cancer type), identified through TCGA labels. Each of these data frames contains primary tumours' *binary event matrices* (BEMs) with the status (presence/absence) of *cancer functional events* (CFEs, somatic mutations in high-confidence cancer driver genes and copy number altered genomic segments) as defined in [1].

Usage

```
data("CELLector.PrimTum.BEMs")
```

Format

A named list of binary matrices (with TCGA cancer type labels as names). The entries of each of these matrices indicate the status (Present/Absent) of each CFE (one per row) across primary tumors samples (one per column).

Details

BEMs of primary tumours from the Genomics of Drug Sensitivity in Cancer (GDSC1000, [1]) study. Data is available for 16 different TCGA cancer types: *BLCA*, *BRCA*, *COREAD*, *GBM*, *HNSC*, *KIRC*, *LAML*, *LGG*, *LUAD*, *LUSC*, *OV*, *PRAD*, *SKCM*, *STAD*, *THCA*, *UCEC*.

A decoding table for these labels is available at

https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Data_Summary.html

Each data frame contains primary tumour samples on the columns and CFEs on the rows, with entries indicating the presence/absence of a given CFE in a given primary tumour sample.

Gene symbols as row names indicate high confidence cancer driver genes and the entries in the corresponding rows indicate the presence/absence of somatic mutations. Row names with *cna* as prefix indicate chromosomal segments that are recurrently copy number altered in cancer (RACSs, defined in [1]). A list with all the considered CFEs is available in the CELLector.CFEs data object. A decoding table for the RACSs is available in the CELLector.CFEs.CNAid_decode, with the mapping realised by the values in the CNA_identifier column.

Please note that the same RACS identifier across multiple cancer types might indicate different chromosomal regions, therefore in order to be decode it should be considered jointly with the TCGA label of the data frame it has been extracted from.

Author(s)

Francesco Iorio (fi9232@gmail.com)

References

[1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

See Also

CELLector.PrimTum.BEMs_v2,CELLector.CellLine.BEMs,CELLector.CFEs,CELLector.CFEs.CNAid_decode

Examples

```
data(CELLector.PrimTum.BEMs)
CELLector.PrimTum.BEMs$COREAD[c('BRAF','KRAS','cna27'),1:10]
```

CELLector.PrimTum.BEMs_v2

Primary Tumours' Binary Genomic/Epigenomic Event Matrices

Description

A list containing 16 data frames (one for cancer type), identified through TCGA labels. Each of these data frames contains primary tumours' *binary event matrices* (BEMs) with the status (presence/absence) of *cancer functional events* (CFEs, somatic mutations in high-confidence cancer driver genes, copy number altered genomic segments and hypermethylated gene promoters) as defined in [1].

Usage

```
data("CELLector.PrimTum.BEMs_v2")
```

Format

A named list of binary matrices (with TCGA cancer type labels as names). The entries of each of these matrices indicate the status (Present/Absent) of each CFE (one per row) across primary tumors samples (one per column).

Details

BEMs of primary tumours from the Genomics of Drug Sensitivity in Cancer (GDSC1000, [1]) study. Data is available for 16 different TCGA cancer types: *BLCA, BRCA, COREAD, GBM, HNSC, KIRC, LAML, LGG, LUAD, LUSC, OV, PRAD, SKCM, STAD, THCA, UCEC*.

A decoding table for these labels is available at

https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Data_Summary.html

Each data frame contains primary tumour samples on the columns and CFEs on the rows, with entries indicating the presence/absence of a given CFE in a given primary tumour sample.

Gene symbols as row names indicate high confidence cancer driver genes and the entries in the corresponding rows indicate the presence/absence of somatic mutations. Row names with *cna* as

prefix indicates chromosomal segments that are recurrently copy number altered in cancer (RACSs, defined in [1]), *hms* as a prefix indicates hypermethylated gene promoters (HMS, defined in [1]). A list with all the considered CFEs is available in the CELLector.CFEsV2 data object. A decoding table for the RACSs is available in the CELLector.CFEs.CNAid_decode object, with the mapping realised by the values in the CNA_identifier column. A decoding table for the HMS is available in the CELLector.CFEs.HMSid_decode object, with the mapping realised by the values in the hms_id column.

Please note that the same RACS identifier across multiple cancer types might indicate different chromosomal regions, therefore in order to be decode it should be considered jointly with the TCGA label of the data frame it has been extracted from.

References

[1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

See Also

```
{\tt CELLector.PrimTum.BEMs, CELLector.CellLine.BEMs\_v2, CELLector.CFEs.CNAid\_decode, CELLector.CFEs.HMSid\_decode} \\
```

Examples

```
data(CELLector.PrimTum.BEMs_v2)
CELLector.PrimTum.BEMs_v2$COREAD[c('BRAF','KRAS','hms67','hms70'),]
```

CELLector.PrimTumVarCatalog

Built-in Primary Tumour variants' catalogue

Description

List of somatic variants found in primary tumours, from Iorio et al, Cell 2016 [1]

Usage

```
data("CELLector.PrimTumVarCatalog")
```

Format

A data frame with 727228 observations (one for each somatic variants) on the following 12 variables.

SAMPLE a character vector specifying the identifier of the sample in which the variant has been found

Cancer. Type a character vector specifying the TCGA [2] classification of the tissue of origin of the tumour in which the variant has been found

Gene a character vector specifying the HUGO [3] symbol of the gene hosting the variant under consideration

CELLector.RecfiltVariants

- Transcript a character vector specifying the identifier of the transcript affected by the variant under consideration
- cDNA a character vector specifying variant position and nucleotide change relating to the cDNA
- AA a character vector specifying aminoacid positon and alteration related to the variant under consideration
- Classification a character vector specifying a summary of the variant type (e.g. missense, frameshift, nonsense, etc)
- Gene.List a character vector: when non empty then the variant is within a high-confidence cancer driver gene (according to [1]), thus resulting in a cancer functional event (CFE) summarised in the Primary tumours' Binary Event Matrices (BEMs)
- Recurrence.Filter a character vector: if 'Yes' then the variant under consideration is observed in COSMIC [4] (v68) at a minimal threshold frequency (specified in [1])
- Subs a numeric vector: Missense/substitution variants occurring in codons mutated in the systematic screen data in COSMIC [2] (v68) (select >=3
- Truncating a numeric vector: Truncating variant count from the systematic screen data in COS-MIC [2] (v68) (select >10)
- inframe a numeric vector: Inframe indel alterations occurring in codons mutated in the systematic screen data in COSMIC [2] (v68) (select >=3)

References

- [1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).
- [2] Hutter C and Zenklusen JC. The Cancer Genome Atlas: Creating Lasting Value beyond Its Data. Cell. 2018;173(2):283–285. doi:10.1016/j.cell.2018.03.042
- [3] Braschi, B. et al. Genenames.org: the HGNC and VGNC resources in 2019. Nucleic Acids Res. Epub 2018 Oct 10. PMID: 30304474 DOI: 10.1093/nar/gky930
- [4] Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–11 (2015).

Examples

```
data(CELLector.PrimTumVarCatalog)
head(CELLector.PrimTumVarCatalog)
```

CELLector.RecfiltVariants

Somatic mutations recurrently observed in cancer

Description

Somatic variant passing a recurrence based threshold (defined in [1]) in COSMIC [2]

Usage

```
data("CELLector.RecfiltVariants")
```

CELLector.Score 47

Format

A vector of string with one entry per variant. Each string is a space delimited list of three elements: The HUGO symbol of the gene hosting the variant, a string codifying the effect of the variant on cDNA, a string codifying the effect of the variant in terms of aminoacid substitutions.

References

[1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

[2] Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–11 (2015).

Examples

```
data(CELLector.RecfiltVariants)
head(CELLector.RecfiltVariants)
```

CELLector.Score

Cell line quality score

Description

This function computes a quality score of each cell line in terms of its ability to represent an entire cohort of considered disease matching patients. This is quantified as a trade-off between two factors. The first factor is the length of the CELLector signatures (in terms of number of composing individual alterations) that are present in the cell line under consideration. This is proportional to the granularity of the representative ability of the cell line, i.e. the longest the signature the more precisely defined is the represented sub-cohort of patients. The second factor is the size of the patient subpopulation represented by the signatures that can be observed in the cell line under consideration, thus accounting for the prevalence of the sub-cohort modeled by that cell line. An input parameter allows for these two factors to be weighted equally or differently.

Usage

```
CELLector.Score(NavTab, CELLlineData, alpha = 0.75)
```

Arguments

NavTab A CELLector searching space encoded as binary tree in a navigable table, as

returned by the CELLector.Build_Search_Space function.

CELLlineData A data frame in which the first two columns contain the COSMIC [1] identiefiers

(or any other alphanumeric identifier) and names of cell lines (one per row), respectively, and then binary entries indicating the status of cancer functional events (CFEs, as defined in [2], one per column) across cell lines. The format is the same of the entries of the list in the built-in CELLector.CellLine.BEMs. Based on this data the cell lines are mapped onto the CELLector searching space

and their quality assessed.

48 CELLector.Score

alpha

A parameter that weights the contribution of two factors accounted to compute the quality score of a cell line: respectively, the length of a signature that can be observed in a given cell line (weight = alpha) and the ratio of the sub-cohort of patients represented by that signature (1 - alpha). A cell line can be positive for multiple signatures, thus resulting in multiple quality scores. The largest is selected for each cell line.

Value

A data frame with one row per cell line and the following columns:

CellLines containing an alphanumerical identifier of each cell line. These are the same as

in CELLlineData;

Global Support the ratio of patients represented by the signature yielding the best CELLector Score

for the cell line under consideration;

SignatureLength

the length of the signature (in terms of number of individual CFEs [2]) yielding

the best CELLectorScore for the cell line under consideration;

CELLectorScores

the CELLector quality scores;

Signature The signature yielding the best CELLector quality score for the cell line under

consideration.

Author(s)

Francesco Iorio (fi9232@gmail.com)

References

[1] Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–11 (2015).

[2] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

See Also

```
CELLector.Build_Search_Space
```

```
data(CELLector.PrimTum.BEMs)
data(CELLector.Pathway_CFEs)
data(CELLector.CFEs.CNAid_mapping)
data(CELLector.HCCancerDrivers)
data(CELLector.CellLine.BEMs)

### Change the following two lines to work with a different cancer type
tumours_BEM<-CELLector.PrimTum.BEMs$COREAD
CELLlineData<-CELLector.CellLine.BEMs$</pre>
### unicize the sample identifiers for the tumour data
```

CELLector.selectionVisit 49

```
tumours_BEM<-CELLector.unicizeSamples(tumours_BEM)
### building a CELLector searching space focusing on three pathways
### and TP53 wild-type patients only
CSS<-CELLector.Build_Search_Space(ctumours = t(tumours_BEM),</pre>
                                   verbose = FALSE,
                                   minGlobSupp = 0.05,
                                   cancerType = 'COREAD',
                                   pathwayFocused = c("RAS-RAF-MEK-ERK / JNK signaling",
                                                       "PI3K-AKT-MTOR signaling",
                                                       "WNT signaling"),
                                   pathway_CFEs = CELLector.Pathway_CFEs,
                                   cnaIdMap = CELLector.CFEs.CNAid_mapping,
                                   cnaIdDecode = CELLector.CFEs.CNAid_decode,
                                   cdg = CELLector.HCCancerDrivers,
                                   subCohortDefinition='TP53',
                                   NegativeDefinition=TRUE)
### Evaluating cell line quality
CScores<-CELLector.Score(NavTab=CSS$navTable,CELLlineData = CELLlineData)</pre>
### Visualising best cell lines
head(CScores)
```

CELLector.selectionVisit

Visiting the CELLector searching space

Description

This function visits the CELLector searching space using the greedy algorithm described in [1] and it returns the cancer patients subtypes identifiers sorted for cell line selection, maximising the genomic heterogeneity observed in the analysed cohort of cancer patients when considering the first n subtypes.

Usage

```
CELLector.selectionVisit(TAV)
```

Arguments

TAV

A CELLector searching space stored as a *Navigable Table*, outputted by the CELLector.Build_Search_Space function

Value

A numerical vector containing the subtypes identifers sorted as explained above

Author(s)

Hanna Najgebauer and Francesco Iorio

50 CELLector.solveFormula

References

[1] Najgebauer, H. et al. Genomics Guided Selection of Cancer in vitro Models. https://doi.org/10.1101/275032

See Also

```
CELLector.Build_Search_Space
```

Examples

```
data(CELLector.PrimTum.BEMs)
data(CELLector.Pathway_CFEs)
data(CELLector.CFEs.CNAid_mapping)
data(CELLector.CFEs.CNAid_decode)
data(CELLector.HCCancerDrivers)
data(CELLector.CellLine.BEMs)
tumours_BEM<-CELLector.PrimTum.BEMs$COREAD
CELLlineData<-CELLector.CellLine.BEMs$COREAD
### unicize the sample identifiers for the tumour data
tumours_BEM<-CELLector.unicizeSamples(tumours_BEM)</pre>
### building the CELLector searching space
CSS<-CELLector.Build_Search_Space(ctumours = t(tumours_BEM),</pre>
                                   verbose = FALSE,
                                   minGlobSupp = 0.05,
                                   cancerType = 'COREAD',
                                   pathway_CFEs = CELLector.Pathway_CFEs,
                                   cnaIdMap = CELLector.CFEs.CNAid_mapping,
                                   mutOnly = FALSE,
                                   cnaIdDecode = CELLector.CFEs.CNAid_decode,
                                   cdg = CELLector.HCCancerDrivers)
CELLector.selectionVisit(CSS$navTable)
```

CELLector.solveFormula

Identify cell lines harbouring a signature of Cancer Functional Events

Description

This function takes in input a signature of Cancer Functional Events (CFEs, defined in [1]) as outputted by the CELLector.createAllSignatures function, and a binary event matrix (BEM) modeling the presence/absence of all the CFEs across a set of immortalised human cancer cell lines. It returns the set of cell line collectively harbouring the inputted signature.

Usage

```
CELLector.solveFormula(RULE, dataset, To_beExcluded = NULL)
```

CELLector.solveFormula 51

Arguments

RULE A string representing a signature of cancer functional events (CFEs, defined in

[1]), i.e. names of CFEs space separated (and possibly negated ~)

dataset A data frame in which the first two columns contain the COSMIC [2] identiefiers

and names of cell lines (one per row), respectively, and then binary entries indicating the status of each CFEs (one per column) across cell lines. The format is the same of the entries of the list in the built-in CELLector.CellLine.BEMs

object.

To_beExcluded If different from NULL (default value), then this must be a list of strings with

cell line names that should be excluded a priori from the output.

Value

A list with the following entries:

PS Positive samples: names of the cell lines collectively harbouring the signature

of CFEs provided in input

N The number of cell lines in PS

PERC The number of cell lines collectively harbouring the signatures of CFEs provided

in input as ratio of the total number of cell lines in the inputted BEM

Author(s)

Hanna Najgebauer and Francesco Iorio

References

[1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

[2] Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–11 (2015).

See Also

CELLector.createAllSignatures, CELLector.CellLine.BEMs

CELLector.Summary_Projection

Summary of cell lines mapping on the partitioned CELLector search space

Description

This function builds a summary table of the cell lines projection into groups defined from CELLector, both for hierarchical and partitioned versions. It builds from the derived binary matrix of signatures specific of each group obtained from CELLector.buildModelMatrix or CELLector.buildModelMatrix_Partiti The table includes a entry for each detected sub-population and the corresponding mapping cell lines that satisfy the same genomic signature rule, highlithing patient populations that lack in-vitro representations.

Usage

CELLector.Summary_Projection(Signatures, ModelMat)

Arguments

Signatures Output of CELLector.createAllSignatures_Partitioned or CELLector.createAllSignatures

is a list including two vector of strings and one/two numeric verctor. Each entry represents a signature of cancer functional events corresponding to a sub-population in the CELLector searching space. Note that only the partitioned version includes the number of patients in each group that is also added to the

final summary table.

ModelMat A named binary matrix with sub-population/groups numerical identifiers on the

rows, cell line names on the column and entries specifiying whether the cell line in the column is representative of the subtype on the row (based on the collective presence/absence of the corresponding signature of CFEs). It is obtained as an

output of CELLector.buildModelMatrix or CELLector.buildModelMatrix_Partitioned

functions

Value

A table with each row representing a patients sub-population/group defined by a genomic signature, with the columns indicating

Subtype A numerical index for the sub-population/group as in the Idx entry of the navigable table Signature The combination of presence or absence of CFE, identified from the hierarchical strucutre as described in details

SignatureDecoded Same as Signature but with identifiers of RACSs decoded, i.e. with loci and included driver genes (inputted in the cdg argument), indicated among brackets

N_patients Number of patients described by that genomic signature

P_patients Percentage of patients described by that genomic signature over the considered cohort N_CL Number of cell lines mapping to that genomic signature

repr_CL Cell lines names mapping to that genomic signature. "Lack of in vitro models" indicates that no cell lines satisfy that genomic signature

subpop_score Score assigned to each sub-population/group computed as the product of percentage of patients defined by that genomic signature and the number of CFEs that are required to be present to define that signature.

Note

The sub-population score reflects the level of granularity of a group and the coverage defined in terms of percentage of patients. Higher scores indicates a group highly occurring and/or defined from the presence of multiple CFEs.

Author(s)

Lucia Trastulla and Francessco Iorio

See Also

 ${\tt CELLector.build Model Matrix_Partitioned, CELLector.create All Signatures, CELLector.create All Signatures_Partitioned} \\$

```
data(CELLector.PrimTum.BEMs)
data(CELLector.Pathway_CFEs)
data(CELLector.CFEs.CNAid_mapping)
data(CELLector.CFEs.CNAid_decode)
data(CELLector.HCCancerDrivers)
data(CELLector.CellLine.BEMs)
### Change the following two lines to work with a different cancer type
tumours_BEM<-CELLector.PrimTum.BEMs$COREAD
CELLlineData<-CELLector.CellLine.BEMs$COREAD
### unicize the sample identifiers for the tumour data
tumours_BEM<-CELLector.unicizeSamples(tumours_BEM)</pre>
### building a CELLector searching space focusing on three pathways
### and TP53 wild-type patients only
CSS_p <- CELLector.Build_Search_Space_Partitioned(ctumours = t(tumours_BEM),</pre>
                                                   verbose = FALSE,
                                                   minGlobSupp = 0.05,
                                                   cancerType = 'COREAD',
                                     pathwayFocused = c("RAS-RAF-MEK-ERK / JNK signaling",
                                                               "PI3K-AKT-MTOR signaling",
                                                                       "WNT signaling"),
                                                   pathway_CFEs = CELLector.Pathway_CFEs,
                                                 cnaIdMap = CELLector.CFEs.CNAid_mapping,
                                               cnaIdDecode = CELLector.CFEs.CNAid_decode,
                                                   cdg = CELLector.HCCancerDrivers,
                                                    subCohortDefinition='TP53',
                                                   NegativeDefinition=TRUE)
## hierarchical ##
### take all the signatures from the searching space
Signatures <- CELLector.createAllSignatures(CSS_p$hierarchical$navTable)</pre>
### mapping colorectal cancer cell lines onto the CELLector searching space
ModelMat <- CELLector.buildModelMatrix(Signatures$ES,CELLlineData,CSS_p$hierarchical$navTable)</pre>
CELLector.Summary_Projection(Signatures, ModelMat)
## partitioned ##
```

```
### take all the signatures from the searching space
Signatures_p <- CELLector.createAllSignatures_Partitioned(CSS_p$partitioned)
### mapping colorectal cancer cell lines onto the CELLector searching space
ModelMat_p <- CELLector.buildModelMatrix_Partitioned(Signatures$ES,CELLlineData,CSS_p$partitioned)
CELLector.Summary_Projection(Signatures_p, ModelMat_p)</pre>
```

CELLector.Tumours_buildBEM

Building a Genomic Binary Event Matrix (BEM) for primary tumours

Description

This function takes in input a catalogue of somatic genomic variants observed in primary tumours (or it uses a built in catalogue from TCGA, presented in [1]) and it converts it into a presence/absence (binary) matrix, which can be processed by the CELLector package and CELLector shiny app for identifying patient subtypes, and map in vitro models onto these.

Usage

Arguments

varCat A data frame containing a catalogue of somatic genomic variants observed in

primary tumours, with one row per variant. The format should be the same of the CELLector.PrimTumVarCatalog data object (which is used when this parameter is set to its default NULL value) or at least contain the following column

headers SAMPLE, Cancer. Type, Gene, cDNA, AA, Recurrence. Filter

Cancer_Type A string specifying the cancer type for which individual variants should be ex-

tracted from the catalogue and assembled into the final matrix. It must be a value

included in the Cancer. Type column of the varCat data object

GenesToConsider

A list of strings with HGNC symbols [2] for genes hosting the variants to be extracted from the catalogue and assembled into the final matrix. When set to its default NULL value, all genes hosting at least one variants are considered.

VariantsToConsider

A list of individual somatic variants to be extracted from the catalogue and assembled into the final matrix. The format should be the same of the CELLector.RecfiltVariants (which is used when this parameter is set to its default NULL value)

Value

A presence/absence (binary) matrix with gene symbols on the rows and patient sample ids on the columns, specifying in the i, j-entry the status of the ith gene in the jth patient sample, i.e. 0 = wild-type, 1 = mutated.

Author(s)

Francesco Iorio (fi9323@gmail.com)

References

- [1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).
- [2] Braschi, B. et al. Genenames.org: the HGNC and VGNC resources in 2019. Nucleic Acids Res. Epub 2018 Oct 10. PMID: 30304474 DOI: 10.1093/nar/gky930
- [3] Tate JG, Bamford S, Jubb HC, et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019;47(D1):D941–D947. doi:10.1093/nar/gky1015

See Also

CELLector.PrimTumVarCatalog,CELLector.CELLline_buildBEM

Examples

CELLector.unicizeSamples

Unicize patient samples' identifiers

Description

This function checks if there are multiple samples derived from the same patients in the binary event matrix (BEM) modeling the presence/absence of the cancer functional events (CFEs, defined in [1]), in the cancer patients. These can be mantained (and in this case their identifier will be made unique) or discarded

Usage

Arguments

ctumours A binary matrix with entries indicating the status (Present/Absent) of each CFE

(one per row) across primary tumors samples (one per column).

keepReplicates A boolean value indicating whether the duplicated samples should be kept (and

their identifier made unique, by adding a progressive numerical suffix) or discarded (in this case only one sample per patient will be kept and identifiers

unchanged).

Value

A binary matrix with entries indicating the status (Present/Absent) of each CFE (one per row) across primary tumors samples (one per column), and with unique patients' (column) identifiers

Author(s)

Hanna Najgebauer and Francesco Iorio

References

[1] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

See Also

```
CELLector.PrimTum.BEMs
```

```
data(CELLector.PrimTum.BEMs)

tumours_data<-CELLector.PrimTum.BEMs$COREAD

dim(tumours_data)
length(unique(colnames(tumours_data)))

tumours_data<-CELLector.unicizeSamples(tumours_data)

dim(tumours_data)
length(unique(colnames(tumours_data)))</pre>
```

CELLector.visualiseSearchingSpace

Visualising the CELLector searching space as a collapsibe tree

Description

This function visualise the CELLector searching space as an interactive collapsible tree. Moving the mouse over the nodes of this tree shows patients' subtype details and (optionally) matched cell lines

Usage

CELLector.visualiseSearchingSpace(searchSpace, CLdata = NULL)

Arguments

searchSpace A CELLector searching space as returned by the CELLector.Build_Search_Space

function

CLdata If different from NULL (default) this argument must contain a data frame in

which the first two columns contain the COSMIC [1] identiefiers and names of cell lines (one per row), respectively, and then binary entries indicating the status of cancer functional events (CFEs, as defined in [2], one per column) across cell lines. The format is the same of the entries of the list in the built-in CELLector.CellLine.BEMs. Based on this data the cell lines are mapped onto the CELLector searching space and the number of cell lines mapped in each

subtype showed when moving the mouse on the corresponding node.

Author(s)

Hanna Najgebauer and Francesco Iorio

References

[1] Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–11 (2015).

[2] Iorio, F. et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 166, 740–754 (2016).

See Also

```
CELLector.Build_Search_Space, CELLector.CellLine.BEMs
```

```
data(CELLector.PrimTum.BEMs)
data(CELLector.Pathway_CFEs)
data(CELLector.CFEs.CNAid_mapping)
data(CELLector.CFEs.CNAid_decode)
data(CELLector.HCCancerDrivers)
data(CELLector.CellLine.BEMs)
```

```
tumours_BEM<-CELLector.PrimTum.BEMs$COREAD
CELLlineData<-CELLector.CellLine.BEMs$COREAD
### unicize the sample identifiers for the tumour data
tumours_BEM<-CELLector.unicizeSamples(tumours_BEM)</pre>
### building the CELLector searching space
CSS<-CELLector.Build_Search_Space(ctumours = t(tumours_BEM),</pre>
                                   verbose = FALSE,
                                   minGlobSupp = 0.05,
                                   cancerType = 'COREAD',
                                   pathway_CFEs = CELLector.Pathway_CFEs,
                                   cnaIdMap = CELLector.CFEs.CNAid_mapping,
                                   mutOnly = FALSE,
                                   cnaIdDecode = CELLector.CFEs.CNAid_decode,
                                   cdg = CELLector.HCCancerDrivers)
### visualising the Searching space as collapsible tree
CELLector.visualiseSearchingSpace(searchSpace = CSS,CLdata = CELLlineData)
```

CELLector.visualiseSearchingSpace_sunBurst

Visualising the CELLector searching space as a sunburst

Description

This function visualise the CELLector searching space as an interactive sunburst.

Usage

CELLector.visualiseSearchingSpace_sunBurst(searchSpace)

Arguments

searchSpace A CELLector searching space as returned by the CELLector.Build_Search_Space

function

Author(s)

Hanna Najgebauer and Francesco Iorio

See Also

CELLector.Build_Search_Space,

```
data(CELLector.PrimTum.BEMs)
data(CELLector.Pathway_CFEs)
data(CELLector.CFEs.CNAid_mapping)
data(CELLector.CFEs.CNAid_decode)
data(CELLector.HCCancerDrivers)
```

```
data(CELLector.CellLine.BEMs)
tumours_BEM<-CELLector.PrimTum.BEMs$COREAD</pre>
CELLlineData<-CELLector.CellLine.BEMs$COREAD
### unicize the sample identifiers for the tumour data
tumours_BEM<-CELLector.unicizeSamples(tumours_BEM)</pre>
### building the CELLector searching space
CSS<-CELLector.Build_Search_Space(ctumours = t(tumours_BEM),</pre>
                                   verbose = FALSE,
                                   minGlobSupp = 0.05,
                                   cancerType = 'COREAD',
                                   pathway_CFEs = CELLector.Pathway_CFEs,
                                   cnaIdMap = CELLector.CFEs.CNAid_mapping,
                                   mutOnly = FALSE,
                                   cnaIdDecode = CELLector.CFEs.CNAid_decode,
                                   cdg = CELLector.HCCancerDrivers)
### visualising the Searching space as sunburst
CELLector.visualiseSearchingSpace_sunBurst(searchSpace = CSS)
```

Index

```
* Cell Model Passports Interface
                                                     CELLector.PrimTum.BEMs, 43
                                                     CELLector.PrimTum.BEMs_v2,44
    CELLector.CMPs_getDriverGenes, 29
                                                     CELLector.PrimTumVarCatalog, 45
    CELLector.CMPs_getModelAnnotation,
                                                     CELLector.RecfiltVariants, 46
    CELLector.CMPs_getVariants, 31
                                                 * visualisation
                                                     CELLector.changeSScolors, 28
* analysis
                                                     CELLector.visualiseSearchingSpace,
    CELLector.Build_Search_Space, 6
    CELLector.Build_Search_Space_Partitioned,
                                                     CELLector.visualiseSearchingSpace_sunBurst,
    CELLector.buildModelMatrix, 2
    CELLector.buildModelMatrix_Partitioned,
                                                 CELLector.Build_Search_Space, 3, 6, 13,
                                                         14, 28, 33, 36, 39, 48, 50, 57, 58
    CELLector.CELLline_buildBEM, 19
    {\tt CELLector.from\_Hierarchical\_to\_Partition}, {\tt CELLector.Build\_Search\_Space\_Partitioned},
                                                         5, 11, 35, 36
                                                 CELLector.buildModelMatrix, 2, 39, 52, 53
    CELLector.makeSelection, 38
                                                 CELLector.buildModelMatrix_Partitioned,
    CELLector.mostSupported_CFEs, 40
                                                         4, 52, 53
    CELLector. Score, 47
                                                 CELLector.CellLine.BEMs, 3, 5, 15, 17, 18,
    CELLector.selectionVisit, 49
                                                         23, 39, 44, 51, 57
    CELLector.solveFormula, 50
                                                 CELLector.CellLine.BEMs_v2, 16, 18, 28,
    CELLector.Summary_Projection, 52
    CELLector.Tumours_buildBEM, 54
                                                 CELLector.CELLline_buildBEM, 19, 55
* annotation/decoding
                                                 CELLector.CellLinesVarCatalog, 17
    CELLector.CELLline_buildBEM, 19
                                                 CELLector. CFEs, 15, 16, 18, 22, 23, 28, 32,
    CELLector.cna_look_up, 31
    CELLector.createAllSignatures, 32
                                                 CELLector.CFEs.CNAid_decode, 9, 15-17,
    CELLector.createAllSignatures_Partitioned,
                                                         23, 23, 28, 32, 43–45
        34
                                                 CELLector.CFEs.CNAid_mapping, 9, 25
    CELLector.hms_look_up, 37
                                                 CELLector.CFEs.HMSid_decode, 17, 26, 27,
    CELLector.Tumours_buildBEM, 54
                                                         28, 37, 45
    CELLector.unicizeSamples, 55
                                                 CELLector. CFEsV2, 17, 27, 37, 38, 45
* datasets
                                                 CELLector.changeSScolors, 9, 28
    CELLector.CellLine.BEMs, 15
                                                 CELLector.CMPs_getDriverGenes, 29
    {\tt CELLector.CellLine.BEMs\_v2, 16}
                                                 CELLector.CMPs_getModelAnnotation, 22,
    CELLector.CellLinesVarCatalog, 17
                                                         30
    CELLector.CFEs, 22
                                                 CELLector. CMPs_getVariants, 31
    CELLector.CFEs.CNAid_decode, 23
                                                 CELLector.cna_look_up, 24, 31
    CELLector.CFEs.CNAid_mapping, 25
                                                 CELLector.createAllSignatures, 3, 32, 34,
    CELLector.CFEs.HMSid_decode, 26
                                                         35, 51–53
    CELLector. CFEsV2, 27
                                                 CELLector.createAllSignatures_Partitioned,
    CELLector. HCCancerDrivers, 37
                                                         5, 34, 52, 53
    CELLector.MSIstatus, 42
                                                 CELLector.from_Hierarchical_to_Partition,
                                                         13, 14, 36
    CELLector.Pathway_CFEs, 42
```

INDEX 61

```
CELLector. HCCancerDrivers, 9, 37
CELLector.hms_look_up, 26, 37
CELLector.makeSelection, 38
CELLector.mostSupported_CFEs, 40
CELLector.MSIstatus, 42
CELLector.Pathway_CFEs, 7, 9, 12, 42
CELLector.PrimTum.BEMs, 7, 9, 12, 16, 23,
        39, 43, 45, 56
CELLector.PrimTum.BEMs_v2, 17, 28, 44, 44
CELLector.PrimTumVarCatalog, 45, 55
CELLector.RecfiltVariants, 46
CELLector. Score, 47
CELLector.selectionVisit, 49
CELLector.solveFormula, 50
CELLector.Summary_Projection, 52
CELLector.Tumours_buildBEM, 22, 54
CELLector.unicizeSamples, 55
CELLector.visualiseSearchingSpace, 9,
{\tt CELLector.visualise Searching Space\_sun Burst},
        9, 28, 58
```