- 书面作业讲解
 - TJ第2章练习13、14、15、16、19、22、28、29、30、31
 - -TJ第2章编程练习1、3
 - CS第2.2节问题2、4、6、8、15、16、17、19

TJ第2章练习13

- 第一数学归纳法
 - 如果P(1)是true,且P(n)是true → P(n+1)是true
 - 那么P(n)对所有n都是true
- 第二数学归纳法
 - 如果Q(1)是true,且Q(1).....Q(n)都是true → Q(n+1)是true
 - 那么Q(n)对所有n都是true
- 第一 → 第二(UD第17章问题14,去年此时的一道作业题)
 - 令P(n)为 "Q(1).....Q(n)都是true": 欲证Q(n)对所有n都是true,即证P(n)对所有n都是true
 - Base case: Q(1)是true → P(1)是true
 - Induction: P(k)是true → Q(1).....Q(k)都是true → Q(k+1)是true → Q(1).....Q(k+1)都是true → P(n)对所有n都是true
- 第二 **>** 第一
 - 令Q(n)为 "P(n)是true": 欲证P(n)对所有n都是true,即证Q(n)对所有n都是true
 - Base case: P(1)是true → Q(1)是true
 - Induction: Q(1).....Q(k)是true → Q(k)是true → P(k)是true → P(k+1)是true → Q(k+1)是true → Q(n) 对所有n都是true

TJ第2章练习29

- 反证法: 假设有限个, 即p₁、.....p_k
- 令 $N=p_1.....p_k$,设p为 N^2-N+1 的一个质因子(显然不同于 p_1 、..... p_k),则p也能整除(N^2-N+1)(N+1)= N^3+1 ,即 $N^3=_p-1$,因此 $N^6=_p1$
- 所以, N在群Z_p*中, 且N的阶可能是1、2、3、6
 - 由于 $N^3=_p-1$,所以阶不为3,显然也不能为1
 - 如果阶为2: 即N²=p1,而N³=p-1,因此N=p-1,于是p能整除N+1和N²-N+1,即gcd(N+1,N²-N+1)≥p,而由N²-N+1=(N+1)(N-2)+3可知gcd(N+1,N²-N+1)=gcd(N+1,3)≤3,所以p≤3,即p为2或3,但是,由N形如6n+1可知N²-N+1也形如6n+1,作为其因子的p不可能是2或3,矛盾
 - 所以阶只能为6
- 因此,6能整除|Z_p*|=p-1,于是p也形如6n+1,与假设矛盾

TJ第2章练习30

- 反证法: 假设有限个, 即p₁、.....p_k
- \Leftrightarrow N=(p₁.....p_k)²+2, \iiint N=₄3
- 而N是奇数且不含任何形如4n-1的因子,因此N的质因子都形如4n+1,则 $N=_41$,矛盾

- 教材讨论
 - TJ第7章
 - -TC第31章第7、9节

问题1: 对称密钥加密和公开密钥加密

- 太公曰: "主与将,有阴符,凡八等。有大胜克敌之符, 长一尺。破军擒将之符,长九寸。降城得邑之符,长八寸。 却敌报远之符,长七寸。警众坚守之符,长六寸。请粮益 兵之符,长五寸。败军亡将之符,长四寸。失利亡士之符, 长三寸。诸奉使行符,稽留,若符事闻,泄告者,皆诛之。 八符者,主将秘闻,所以阴通言语,不泄中外相知之术。 敌虽圣智,莫之能识。"
- 你理解这种加密方法了吗?

- 斯巴达司令派人给前线送一条这样的腰带: KGDEINPKLRIJLFGOKLMNISOJNTVWG
- 你能猜到使用的加密方法吗?
- KGDEINPKLRIJLFGOKLMNISOJNTVWG

- 一条战场快讯: WECRLTEERDSOEEFEAOCAIVDEN
- 你能猜到使用的加密方法吗?

```
W . . . E . . . C . . . R . . . L . . . T . . . E . E . R . D . S . O . E . E . F . E . A . O . C . . . A . . . I . . . V . . . D . . . E . . . N . .
```

- 对称密钥加密(private/symmetric key cryptography)
- 公开密钥加密(public/asymmetric key cryptography)
- 它们分别是什么意思?
- 各有什么优缺点?
 - 便利性
 - 性能
- 如何结合两者的优点?
 - Because symmetric key algorithms are nearly always much less computationally intensive than asymmetric ones, it is common to exchange a key using a key-exchange algorithm, then transmit data using that key and a symmetric key algorithm.

- 四个人之间采用对称密钥加密两两间的通讯, 你认为需要几个密钥?
- 如果采用公开密钥加密呢?

• 你能简述如何生成RSA的公钥和私钥吗?

- 1. Select at random two large prime numbers p and q such that $p \neq q$. The primes p and q might be, say, 1024 bits each.
- 2. Compute n = pq.
- 3. Select a small odd integer e that is relatively prime to $\phi(n)$, which, by equation (31.20), equals (p-1)(q-1).
- 4. Compute d as the multiplicative inverse of e, modulo $\phi(n)$. (Corollary 31.26 guarantees that d exists and is uniquely defined. We can use the technique of Section 31.4 to compute d, given e and $\phi(n)$.)
- 5. Publish the pair P = (e, n) as the participant's RSA public key.
- 6. Keep secret the pair S = (d, n) as the participant's RSA secret key.

• 如何加密、解密?

$$P(M) = M^e \mod n$$
$$S(C) = C^d \mod n$$

- 如果先解密、再加密,会怎么样?
- 破解RSA的关键是什么? 为什么?

问题2: 数字签名

- 数字签名有什么用?
 - 验证: 身份、完整性、不可否认性
- 如何基于公开密钥加密实现数字签名?和之前的加密/解密过程最大的区别是什么?

• 能不能基于对称密钥加密实现数字签名?

问题2: 数字签名(续)

• 这种身份验证的过程靠谱吗?

作为一个坏人,你能想出什么办法来冒充A? 从A获取 "S_A(我是A)",向B重放 怎么改进?

问题2: 数字签名(续)

• 改进

作为一个坏人,你又能想出什么办法来冒充A? 换掉B保存的P_A 怎么改进?

问题2:数字签名(续)

• 继续改进

问题2: 数字签名(续)

- 验证数据在通讯中有无损坏,除了RSA以外,你能想到更简单的办法吗?
 - 奇偶校验、MD5......
- 与RSA相比,这些方法的优缺点是什么?
 - 安全性
 - 数据量
- 如何结合两者的优点?