



# COMP5850 COMP8260

**Module Overview** 

## **AGENDA**

- Team
- What is this module about (2)
- Assessments (3)
- Structure (2)
- Facilities (2)
- Project (4)
  - Groups
  - Ideas
  - Example of Projects
  - Presentations

#### TEACHING TEAM

- Dr. Matteo Migliavacca (module convenor)
  - Distributed systems, Genetic Algorithms
- George Ramzi
  - signal processing for hearing loss, emotional modelling, text generation

#### **Teaching Assistants:**

- Md Rezwan Hasan
  - biometric security and privacy, face recognition and intelligent video surveillance
- Zhao Liu
  - virtual reality technologies to screen people with dementia









#### COURSE MOTIVATION

- Practical module on designing and implementing an Al System
  - · you chance to get your hands dirty on using, understanding and building Al
  - you are in this module because either
    - You are doing an Al-focused university program
    - You picked this module as option (Postgraduate)
- Focus on implementation and evaluation
  - need to be able to program an AI system and test how it is working
  - but theory is important to undestand alternatives, fixing problems etc...
  - need to be able to at least understand what is inside the black box
- Relationship with other modules
  - Introduction to AI (Intro to many AI techniques including searching, GAs)
  - Programming for AI (Python + libraries, Numpy, Pandas, Matplotlib, Keras)
  - Deep Learning, Cognitive Neural Networks (more on theory of NN models)
  - Data Mining (more on classification, Decision Trees etc..)

#### ASSESSMENTS

- In-Class tests (1.5 hours each)
  - Assess individual capabilities to apply AI techniques to a simple problem
  - Week 17: Classification (20%)
  - Week 20: Neural Networks (20%)
- Group project (60%)
  - Assess skills to implement an Al System of medium complexity
  - Week 24: Deadline and Group presentation

#### COURSE STRUCTURE

#### Lectures

- Presents main techniques used in implementing AI Systems
- An eye on theory (how they work) and an eye on implementation in SkLearn (how to use them)
- Thursdays 12-2pm in Jennison Lecture Theater
- Only in the first half of term but 2 hours instead of 1 hour
- Allows to cover more ground in the first weeks to help you see more techniques for your project
- Leaves more time in the second half to concentrate on project

#### Classes

- Two hours classes each week
- COMP5850 Fridays 2-4pm Multimedia Lab 1
- COMP8260 Mondays 4-6pm in Elliot Computer Terminal room 1
- in the first half of term focus on familiarisation with the practical AI techniques discussed in lectures
- second half of term put in practice the aspects of developing an AI system

# SCHEDULE

| Teaching Week | Lecture                                         | Lecture                                        | Class                                                                            | Class                                                              | Coursework                                |
|---------------|-------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|
|               | Thursdays<br>12-1pm<br>Jennison Lecture Theatre | Thursdays<br>1-2pm<br>Jennison Lecture Theatre | 8260 Mondays<br>4-5pm<br>Elliot Computer Terminal Room 1                         | 5850 Fridays<br>2-4pm<br>Multimedia Lab 1                          |                                           |
| TW13          | Module Overview /<br>Project                    | Features                                       | /                                                                                | Features and Group formation                                       | Project Set                               |
| TW14          | Classification 1                                | Classification 2                               | Features and Group formation                                                     | Class on Classification                                            | Email Groups<br>(Thursday)                |
| TW15          | CNN 1                                           | CNN 2                                          | Class on Classification                                                          | Class on CNNs                                                      |                                           |
| TW16          | RL                                              | GAs and Neuroevolution                         | Class on CNNs                                                                    | Project Meetings                                                   | Project Brief<br>Submission<br>(Thursday) |
| TW17          | Hyperparameters and Scalability                 | What's Next                                    | In Class Test: Classification<br>Monday 4-5pm<br>Elliot Computer Terminal Room 1 | In Class Test: Classification<br>Monday 4-5pm<br>Kennedy PC Room 3 |                                           |
| TW18          |                                                 |                                                | Project Meetings                                                                 | Project Meetings                                                   |                                           |
| TW19          | project week                                    | project week                                   | project week                                                                     | project week                                                       |                                           |
| TW20          |                                                 |                                                | In Class Test: CNNs<br>Monday 4-5pm<br>Elliot Computer Terminal Room 1           | In Class Test: CNNs<br>Monday 4-5pm<br>Kennedy PC Room 3           |                                           |
| TW21          |                                                 |                                                | Project Meetings                                                                 | Project Meetings                                                   |                                           |
| TW22          |                                                 |                                                | Project Meetings                                                                 | Project Meetings                                                   |                                           |
| TW23          |                                                 |                                                | Project Meetings                                                                 | Project Meetings                                                   | Project due<br>(Friday)                   |
| TW24          |                                                 |                                                | Group Presentations                                                              | Group Presentations                                                | Oniversity or a Gr                        |

## **TOPICS**

- Features
- Classification
- Metrics
- Classification Trees
- Ensembles, Random Forests
- Convolutional Neural Networks
- Reinforcement Learning
- Genetic Algorithms
- Neuroevolution
- Hyperparameters Training
- Distributed / Parallel ML

#### **FACILITIES**

- Jupiter Server
  - accessible at https://jupyter.kent.ac.uk/
  - You should have an account already set up (usual student username and password)
- The server will be used for the classes
- The server will be used also for the in-class tests so get familiar with using it
  - a tip for the in-class tests: Save soon and save often!
  - at the end of the test you have to upload your Jupiter file on Moodle
- The server can also be used for the project, but you don't need to. (You can use a different development environment if you wish
- (NEW!) From this year you should be able to install local packages on the server which would make development easier for the projects

#### **PROJECT**

- It is one of the key outcome of the module, worth 60% of the final mark
- It should tackle a problem of reasonable complexity
  - You can propose a project idea
  - Project brief has to be submitted and approved by the Team to ensure appropriate size and complexity
  - Not to easy not unreasonable, try for something reasonably challenging
  - Consider basic version + extension approach
- The focus is on implementation and evaluation
  - You need to report results in depth and compare different approaches



#### PROJECT - TOPICS

- Typical examples
  - classification using tree-based approaches or neural networks
  - Al for games using RL and Neuroevolution
  - other possible (e.g. regression etc..)
- Project should involve some of the techniques covered in lecture / classes
  - frontloading lectures should help to learn the techniques before applying them to the projects
  - the project can involve techniques beyond the one presented but comparison with the presented techniques is usually required
- It is important to decide early not only which problem and techniques will be used but also to identify a suitable available dataset

#### PROJECT EXAMPLES - I

#### **Face recognition**

 Classification of low-resolution face images to determine age, gender, and ethnicity of individuals

#### **Face keypoint detection**

• predict keypoint positions on face images





University of **Kent** 

#### PROJECT EXAMPLES - II

- Al systems to play games
- Car Racing
  - Using evolutionary approaches from top-down view and using imitation learning
- Pong
  - Playing games of pong with different environments (obstacles)
- Other games
  - Breakout, Tetris, etc...



## PROJECT EXAMPLES - III

- Variety of classification and prediction problems from discrete datasets
- Predict flight or hotels cancellations



• Predict used car sale prices



# PROJECT – GROUP FORMATION AND MANAGEMENT

- Groups of 4 or 5 students
  - COMP5850 27 Students: 3 groups of 5, 3 groups of 4
  - COMP8260 58 Students: 10 groups of 5, 2 groups of 4
- Group formation is proposed by you
  - First come first served
  - If are not in a group by end of the week we will put you in a group
  - We might need to ask some groups of 4 to take additional members to even out the groups
- Work should be split between group members fairly
- Early warning system (Yellow/Red card) for when things are not working well...

#### YELLOW/RED CARD SYSTEM

- A Student missing attendance to a "Project meeting" class is put on Yellow Card for the group project. A Yellow card can also be issued by other members of the group in cases of loss of communication or non-contribution.
- A Student on Yellow card has a 25% penalty on project mark. A yellow card can be lifted at the next Project Meeting class if the student demonstrates to the Teaching Team an improvement in their performance.
- A Student on Yellow card missing a Project meeting class is put on Red Card, removed from the group and receives a mark of 0 for the project component.

#### PROJECT TIMELINE AND DEADLINES

- TW13: Form groups, discuss application domain and overall project ideas. **Email group** members login at mm53@kent.ac.uk and G.Ramzi@kent.ac.uk by Thursday 23<sup>rd</sup> January
- TW16: Research existing approaches, high level design, techniques and technology exploration, feasibility study.
  - **Submission by Thursday 6<sup>th</sup> February 23:55** Submit a 1-page overview to instructors on Moodle for project approval. It should include: PM, members, and a project brief composed of project goals, requirement list, feasibility analysis, project plan.
- TW16-19: (First sprint) Fully working pipeline draft for proof-of-concept.
- TW20-23: (Second sprint) Refinement of PoC, comparison with baseline, report writing and presentation.
- TW24: **Final submission on Friday 28<sup>th</sup> March 2025 23:59** Submission of report, presentation, and source code. Look on Moodle for submission instructions.
  - Presentation/Demo on Monday 31st March / Friday 4th April 2024 (class hours)