Spectral learning for structured partially observable environments

Lucas Langer

Supervisors: Borja Balle, Doina Precup

August 26, 2015

Structured Partially Observable Environments

Structured Environments

Goal: Predictions

Plan: Exploit structure

Example: Pacman

PSR: The Timing Case

- Model environment with a Predictive state representation
- For timing we have one observation symbol: σ Notation: σ : one time unit, σ^k : k time units
- PSR defined by: $\langle \alpha_0, \{A_\sigma\}, \alpha_\infty \rangle$
 - α_0 : Initial weighting on states 1xn
 - A_{σ} : Transition matrix nxn
 - α_{∞} : Normalizer nx1
- PSRs compute probabilities of observations

$$f(\sigma^k) = \alpha_0 \cdot A_\sigma^k \cdot \alpha_\infty$$

Spectral Learning of PSRs

Step 1: Represent data as a matrix

Step 2: Singular value decomposition

Step 3: Pick number of states for PSR

Step 4: Learn $\langle \alpha_0, \{A_\sigma\}, \alpha_\infty \rangle$ with matrix computations

The Base System

- Idea: Add $\{A_{\sigma}, A_{\sigma^2}, A_{\sigma^4}, A_{\sigma^8}, ... A_{\sigma^N}\}$ as extra transition operators
- Timing queries: $f(\sigma^{11}) = \alpha_0 \cdot A_{\sigma^8} \cdot A_{\sigma^2} \cdot A_{\sigma^1} \cdot \alpha_{\infty}$
- Motivation:
 - 1) Express transitions directly
 - 2) Faster queries

Timing with the Base

Agent goes through loops until leaving through an exit state. Loop lengths are 64 and 16 time units (not to scale).

Base System Performance for Loops

No noise in durations

Double Loop Timing of Color Curves -> Richer Base System of Color Curves -> Richer Base System

Noise in durations

- Base System dominates for smaller models
- Noise allows for smaller models

$$||f - \hat{f}|| = \sqrt{\sum_{x \in observations} (f(x) - f(x))^2}$$

Pacman Labyrinth

Timing Predictions

•
$$||f - \hat{f}|| = \sqrt{\sum_{x \in observations} (f(x) - f(x))^2}$$

Wall Color Predictions

We paint the first loop green and the second loop blue

$$||f - \hat{f}|| = \sqrt{\sum_{x \in observations} (f(x) - f(x))^2}$$

Picking the Base System

- Observations: $\{"a^{30}":10, "a^{60}":5, "b^{18}":15\}$ Desired Base System: $A_{a^{30}}, A_{b^{18}}, A_a, A_b$
- Solution: iterative greedy heuristic
- Substring properties: long, frequent, diverse
- Entropy view of structure

Computing with the Base System

• How should we execute queries?

Goal: minimize number of matrices

Query string: "abcacb", Base System = $\{A_{ab}, A_{bca}, A_{cb}, A_a, A_b\}$

Desired partition: "a—bca—cb"

Computation: $f(abcacb) = \alpha_0 \cdot A_a \cdot A_{bca} \cdot A_{cb} \cdot \alpha_{\infty}$

• Solution: dynamic programming

Conclusion and Future Work

- What's left for the Base System?
 - 1) Theoretical analysis
 - 2) Test heuristics on labyrinths
 - 3) Further optimize heuristics

Questions? Comments?

