Outline

- The Planning Problem
- Planning with State-Based Search
- Partial-Order Planning
- Planning with Propositional Logic

Applications of Planning

Example: Single-Player "Game"

Legality

```
legal(you,rightShoe) <= true(rightSockOn)
legal(you,rightSock)
legal(you,leftShoe) <= true(leftSockOn)
legal(you,leftSock)</pre>
```

Update

```
next(rightShoeOn) <= does(you,rightShoe)
next(rightSockOn) <= does(you,rightSock)
next(leftShoeOn) <= does(you,leftShoe)
next(leftSockOn) <= does(you,leftSock)</pre>
```

Termination and Goal

```
terminal <= true(rightShoeOn) ∧ true(leftShoeOn)
goal(you,100) <= true(rightShoeOn) ∧ true(leftShoeOn)
```

A Simpler Description Language for Planning Problems

- Initial state: conjunction of variable-free atoms
- Actions: <Name, Precondition, Effect>
 - Name: Action name + parameter list
 - Precond: Conjunction of literals
 - Effect: Conjunction of literals
- Goal: logical sentence

A solution to a planning problem is an action sequence that, when executed in the initial state, results in a state that satisfies the goal.

Example

Initial state

()

Actions

rightShoe Precond: rightSockOn

Effect: rightShoeOn

rightSock Effect: rightSockOn

leftShoe Precond: leftSockOn

Effect: leftShoeOn

leftSock **Effect**: leftSockOn

Goal

rightShoeOn ∧ leftShoeOn

Another Example: Blocks World Planning

A robot arm can pick up a block and move it to another position. The arm can only pick up one block at a time.

... Formalised in the Planning Description Language

Initial state

 $on(a,table) \land on(b,table) \land on(c,a) \land clear(b) \land clear(c)$

Actions

Name: move(X,Y,Z)

Precond: on(X,Y) \land clear(X) \land clear(Z) \land X \neq Z \land Y \neq Z

Effect: on(X,Z) \land clear(Y) \land ¬on(X,Y) \land ¬clear(Z)

Name: moveToTable(X,Y)

Precond: $on(X,Y) \land clear(X)$

Effect: on(X,table) \land clear(Y) \land ¬on(X,Y)

Goal

 $on(a,b) \land on(b,c)$

Planning by State-Based Search

Recap: State Machines

State Machine for the Example Game

Forward Search

Backward Search

Bidirectional Search

Partial-Order Planning

Partial-Order Plan (POP): Example

Plan-Space Search with POPs

Partial-Order Planning as Search Problem

- Search nodes are (mostly unfinished) partial-order plans
 The initial plan contains only Start and Finish action
- Plans have 4 components:
 - A set of actions (steps of the plan)
 - A set of ordering constraints A<B (A before B)
 - A set of causal links A $\stackrel{p}{\rightarrow}$ B (read: "A achieves p for B")
 - A set of open preconditions
- A plan is consistent if there are no cycles in the ordering constraints and no conflicts with the causal links.
- An action C conflicts with a causal link A ^p→ B if C has the effect ¬p and C could come after A and before B
- A consistent plan with no open preconditions is a solution.

Algorithm for Solving POPs

- Define effect of Start := initial state of the planning problem (no percond)
- Define precond of Finish := goal of the planning problem (no effect)
- The initial plan contains *Start* and *Finish*, the ordering constraint *Start*<*Finish*, no causal links. All preconditions of *Finish* are open.
- Repeat
 - Pick an open precondition p (of an action B in the plan)
 - Pick an action A with effect p
 - Add the causal link A ^p→ B and the ordering constraint A<B (if A is new to the plan, add Start<A and A<Finish)
 - If a conflict arises between a causal link A ^p→ B and an action C: add either B<C or C<A</p>
- Retry (with different choices) if plan is inconsistent, stop if solution is found

Example: Flat Tire Problem

Initial state at(flat,axle) \(\text{at}(\text{spare}, \text{trunk}) \)

Actions

Name: remove(spare, trunk)

Precond: at(spare,trunk)

Effect: ¬at(spare,trunk)∧at(spare,ground)

Name: remove(flat,axle)

Precond: at(flat,axle)

Effect: ¬at(flat,axle)∧at(flat,ground)

Name: putOn(spare,axle)

Precond: at(spare,ground) ∧¬at(flat,axle)

Effect: ¬at(spare,ground)∧at(spare,axle)

Goal at(spare,axle)

POP for the Flat Tire Problem (1)

Start at(spare,trunk) at(flat,axle)

at(spare,axle)

Finish

Start at(spare,trunk) at(flat,axle)

at(spare,ground)

PutOn(spare,axle)

→at(spare,axle)

Finish

¬at(flat,axle)

POP for the Flat Tire Problem (2)

Planning with Propositional Logic

Encoding Planning Problems in Propositional Logic

- Planning can be done by testing the satisfiability of a logical sentence:
 initial state ∧ all possible actions ∧ goal
- This sentence contains propositions for every action occurrence
 - A model will assign true to an action A iff A is part of the correct plan
- An assignment that corresponds to an incorrect plan will not be a model because of inconsistency with the assertion that goal is true
- If the planning problem is unsolvable, there will be no model for the sentence
- Planners based on satisfiability can handle large planning problems

Recap: Blocks World Planning

A robot arm can pick up a block and move it to another position. The arm can only pick up one block at a time.

Example: Blocks World Planning as Satisfiability (1)

Encoding of the initial state

```
on(a,table)^0
on(b,table)^0
on(c,a)^0
clear(b)^0
clear(c)^0
```

Encoding of action preconditions

```
\begin{split} & \mathsf{move}(X,Y,Z) \wedge T => & \mathsf{on}(X,Y) \wedge T \wedge \mathsf{clear}(X) \wedge T \wedge \mathsf{clear}(Z) \wedge T \\ & \mathsf{moveToTable}(X,Y) \wedge T => & \mathsf{on}(X,Y) \wedge T \wedge \mathsf{clear}(X) \wedge T \\ & & (\mathsf{for} \ \mathsf{all} \ X,Y,Z \in \{a,b,c,\mathsf{table}\}, \ T \in \{0,1,2,\ldots,\mathsf{max-1}\}, \ X \neq Z, \ Y \neq Z) \end{split}
```

Action exclusion axioms

```
¬(move(X,Y,Z)^T \wedge moveToTable(X',Y')^T)
¬(moveToTable(X,Y)^T \wedge moveToTable(X',Y')^T)
¬(move(X,Y,Z)^T \wedge move(X',Y',Z')^T) (for suitable X,X',...)
```

Example: Blocks World Planning as Satisfiability (2)

Encoding of action effects

```
move(X,Y,Z)^T => on(X,Z)^T+1 \land clear(Y)^T+1
move(X,Y,Z)^T => \neg on(X,Y)^T+1 \land \neg clear(Z)^T+1
moveToTable(X,Y)^T => on(X,table)^T+1 \land clear(Y)^T+1
moveToTable(X,Y)^T => \neg on(X,Y)^T+1
```

Explanation closure axioms

Encoding of the goal

```
on(a,b)^max \land on(b,c)^max
```

Solution (max=3): a model that contains

```
moveTable(c,a)^0, move(b,table,c)^1, move(a,table,b)^2
```

Conditional Planning

Planning Under Incomplete Information: Maze World

Initial State: (ac) (robot in a, gold in c)

Environment Model

Agent Actions

Agent Percepts

Initial State and Goal

Planning

Planning is the process of finding a transition diagram *for our agent* that causes its environment to go from any initial state to a goal state.

Planning can be done offline and the resulting plan/program installed in the agent *or* the planning can be done online followed by execution.

State Space Planning

Incompleteness

Possible sources of incompleteness:

Partial knowledge of

- Initial state
- Transition diagram for environment
- Goal

Complete Planning Techniques under incomplete information

- Coercion (e.g. do the grab action at all locations)
- Conditional plan (e.g. if see the gold grab it; else move)

Postponement Techniques

Delayed planning

Initial State Uncertainty

Sequential State Set Progression

Sequential State Set Plan

Plan Execution

Conditional State Set Progression

Conditional State Set Plan

Background Reading

Planning

Russell & Norvig AIMA (3rd ed): Chapter 10

(2nd edition: Chapter 11)

Comparison

Sequential plan

- possible that no plan exists
- plan may contain redundant moves

Conditional plan

large search space

Delayed planning

irreversibility problematic

As we can see from this analysis, it is sometimes desirable for an agent to do only a portion of its planning up front, secure in the knowledge that it can do more later as necessary.

Planning can be done offline and the resulting plan/program executed during play *or* the planning can be done online and interleaved with execution.