< Lecture 7>

Recently we covered

- the definition of a NFA
- the equivalence between NFAs and DFAs

Let's remind where we were before:

Thm: The set of regular languages is closed under regular operations.

Let's come back to
(1) Thm 1.25. For any regular languages A and B,
AVB is regular

Given NFA M. that recognizes A and NFA Ms that recognizes B,

Construct NFA M that recognizes AUB.

MEA

Formally: Let $M_1 = (Q_1, \Sigma, \delta_1, g_1, F_1)$ and

 $NA M_{\lambda} = (Q_2, \Sigma, \delta_2, q_2, F_2).$

The following $M = (Q, \Sigma, \sigma, go, F)$ recognizes AUB.

- 1. Q= Q, UQ, U3got
- 2. 80 is the new start state & Q, &Q_
- 3. $F = F_1 \cup F_2$
- 4. $\delta(q, \alpha) = \begin{cases} \delta_1(q, \alpha) & q \in Q_1 \\ \delta_2(q, \alpha) & g \in Q_2 \end{cases}$ $\epsilon = 30, \alpha = 20$ $\epsilon = 30, \alpha = 20$

Thm 1.47. For any regular languages A and B, A o B is regular.

Given NFA M. that recognizes A and NFA M. that recognizes B, Construct NFA M that recognizes A OB.

Formally: Let $M_1 = (Q_1, \Sigma, \delta_1, g_1)$, F_1) and $M_2 = (Q_2, \Sigma, \delta_2, g_2, F_2)$.

The following $M = (Q, \Sigma, \sigma, g_1, F_2)$ recognizes $A \circ B$.

1. $Q = Q_1 \cup Q_2$ 2. g_1 is the start state

3. F_2 is the set of accept states

4. For every $g \in Q$ and every $a \in \Sigma \cup 3 \in Y$ $S(q, a) = \begin{cases} S_1(q, a) & g \in F_1, a \neq E \\ S_2(g, a) & g \in F_1, a \neq E \end{cases}$ $S(q, a) = \begin{cases} S_1(g, a) & g \in F_1, a \neq E \\ S_2(g, a) & g \in F_1, a \neq E \end{cases}$

Why not work? (E1.15)