

Distributed control in water distribution network

Water distribution network

Introduction

Model Predictive Controller

Separable Controller

Method of Multipliers

Simulation of syste

Compariso

Conclusion

Figure: Layout of a water distribution network with an elevated reservoirs supplied from two pumping stations. The measured variables are the level of water in the elevated reservoir h, the outlet pressures and flows of the pumping stations p_i and q_i , respectively, and the water consumption in the zone, also denoted the demand d.

Model Predictive Control of the pumps

Introduction

Model Predictive Controller

Separable Controller

Method of Multiplie

Simulation of syster

Comparison

Conclusion

$$\min_{u_1, \dots, u_N} \sum_{i=1}^{N} \sum_{k=0}^{M-1} \left(c(t_k) E_i(u_i(t_k), \bar{p}_i(t_k)) + K_i u_i(t_k) \right) \\
+ \kappa ||V(t_0) - V(t_M)||^2, \tag{1}$$

s.t
$$\sum u_i(t_k) \leq \overline{U}_i$$
 (2)

$$0 \le u_i(t_k) \le \overline{u}_i \tag{3}$$

$$V(t_{k+1}) = V(t_k) + \sum_{i=1}^{N} u_i(t_k) - g(t_k), V(t_0) = f(h(t_0))$$
(4)

 $V \le V(t_k) \le \overline{V} \tag{5}$

 Global problem that require coordination between the pumps.

Model Predictive Controller

Separable Controller Method of Multipliers Simulation of system

Comparison

Model Predictive Control of the pumps

Matrix formulation

Introduction

Model Predictive Controller

Coparable Controlle

Method of Multipliers

Simulation of systen

comparison

Conclusion

Define

$$\mathbf{u}_i = [u_i(t_0), \dots, u_i(t_M)]^\top, \tag{6}$$

$$\boldsymbol{U} = [\boldsymbol{u}_1, \dots, \boldsymbol{u}_N] \tag{7}$$

$$\mathbf{V} = [V(t_0), \dots, V(t_M)]^{\top}$$
 (8)

$$\boldsymbol{g} = [g(t_0), \dots, g(t_M)]^{\top}$$
 (9)

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 1 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{bmatrix}$$
 (10)

(**A** is the lower uni-triangular matrix with all ones below the diagonal.)

Model Predictive Control of the pumps

Matrix formulation

Introduction

Model Predictive Controller

Separable Controller

Method of Multiplier

Simulation of systen

Comparison

Conclusion

$$\min_{\boldsymbol{U}} \sum_{i=1}^{N} y_i(\boldsymbol{U}[:,i]) + \kappa \|\mathbb{1}_{M}^{\top} (\boldsymbol{U}\mathbb{1}_{N} - \boldsymbol{g})\|^2$$
 (11)

$$s.t.$$
 (12)

$$\underline{\boldsymbol{V}} \leq \mathbb{1}_{M} f(h(t_0)) + \boldsymbol{A}(\boldsymbol{U} \mathbb{1}_{N} - \boldsymbol{g}) \leq \overline{\boldsymbol{V}}$$
 (13)

$$\mathbb{1}_{M}^{\top}U[:,i] \leq \overline{U}_{i} \tag{14}$$

$$0 \le U[k,i] \le \overline{u}_i \quad \forall k \tag{15}$$

(16)

- Still not separable due to **U**.

Separable formulation of Controller

Introduction

Model Predictive Controller

Separable Controller

Method of Multipliers

Simulation of system

Comparison

Conclusion

$$\min_{\widehat{\boldsymbol{U}}_i} \sum_{i=1}^N y_i(\widehat{\boldsymbol{U}}_i[:,i]) + \kappa \|\mathbb{1}_M^\top (\widehat{\boldsymbol{U}}_i \mathbb{1}_N - \boldsymbol{g})\|^2$$

s.t.

$$egin{aligned} & \underline{V} \leq \mathbb{1}_M f(h(t_0)) + m{A}(\widehat{m{U}}_i \mathbb{1}_N - m{g}) \leq \overline{V} \ & \mathbb{1}_M^{ op} \widehat{m{U}}[:,i] \leq \overline{U}_i \ & 0 \leq \widehat{m{U}}[k,i] \leq \overline{u}_i \quad orall k \ & \widehat{m{U}}_i = m{U} \quad orall i, \end{aligned}
ight.$$
 Local

Method of Multipliers

Introduction

Model Pre Controller

Separable Contro

Method of Multipliers

Simulation of system

Comparisor

Conclusion

1. Minimization with respect to local variables.

$$\widehat{\boldsymbol{U}}_{i}^{j+1} = \underset{\widehat{\boldsymbol{U}}_{i}}{\operatorname{argmin}} \sum_{i}^{N} y_{i}(\widehat{\boldsymbol{U}}_{i}[:,i]) + \kappa \|\mathbb{1}_{M}^{\top}(\widehat{\boldsymbol{U}}_{i}\mathbb{1}_{N} - \boldsymbol{g})\|^{2} + \lambda_{i}^{\top}(\widehat{\boldsymbol{U}}_{i} - \boldsymbol{U}^{j}) + \frac{\rho}{2}(\|\widehat{\boldsymbol{U}}_{i} - \boldsymbol{U}^{j}\|_{2}^{2})$$
s.t. local constraints.

2. Minimization with respect to consensus variable.

$$\boldsymbol{U}^{j+1} = \frac{1}{N} \sum_{i=1}^{N} \left(\widehat{\boldsymbol{U}}_{i}^{j+1} + \frac{1}{\rho} \lambda_{i}^{j} \right)$$

3. Update Lagrange multipliers

$$\boldsymbol{\lambda}_{i}^{j+1} = \boldsymbol{\lambda}^{j} + \rho(\widehat{\boldsymbol{U}}_{i}^{j+1} - \boldsymbol{U}^{j+1})$$

Model Predictive Controller

Separable Controller

Method of Multipliers

Simulation of system

Comparison

Comparison with global solution

On average 175 iterations of M of M.

ntroduction

Model Predictive Controller

Separable Controller

Method of Multipliers

Other Bullion of Committee

Simulation of system

Comparison

Comparison with global solution

ntroduction

Model Predictive

Separable Controller

Method of Multipliers

Simulation of systen

Comparison

Conclusion

On average 20 iterations of M of M.

Comparison with global solution

Introduction

Model Predictive

Separable Controller

Method of Multipliers

Comparison

Conclusion

On average 10 iterations of M of M.

Model Predictive Controller

Separable Controller

Method of Multipliers

Simulation of syste

Comparisor

- Still some work to be done on implementing the encrypted part.
- ► Figuring out the trade-off between accuracy of the solution (iterations of MofM) and the time to compute the solution.
 - ► How many iterations are enough? How to best quantify when to stop iterations?
- ► Implementation in lab :-)

Model Predictive Controller

Separable Controller

Method of Multipliers

Simulation of system

Comparison

