TOPOLOGY HOMEWORK 9

- 1. Prove that the following conditions are equivalent for a topological space X:
 - (i) X is connected.
 - (ii) The only subsets of X that are closed and open at the same time (such sets are called clopen) are \emptyset and X.
 - (iii) X does not map surjectively onto two point discrete space $\{0,1\}$.
- 2. We say that a function $f: \mathbb{R} \to \mathbb{R}$ has $Darboux\ property$ if for any pair of real numbers s < t and any r lying between f(s) and f(t), there is $u \in [s,t]$ with f(u) = r. Show that if the graph $\{(x, f(x)) : x \in \mathbb{R}\}$ of a function $f: \mathbb{R} \to \mathbb{R}$ is a connected subset of the plane \mathbb{R}^2 , then f has Darboux property.
- 3. Prove that a continuous function $f:[0,1] \to [0,1]$ has a fixed point, i.e. there is $x \in [0,1]$ such that f(x) = x.
- 4. Show that every connected normal space that has more than one point has cardinality $\geq |\mathbb{R}|$. Hint: Use Urysohn's lemma.
- 5. Is the space obtained by removing countably many points from the Euclidean plane \mathbb{R}^2 arcwise connected?
- 6. Consider the following subspace of the Euclidean plane: $A = \{(x,y) \in \mathbb{R}^2 : x,y \in \mathbb{R} \setminus \mathbb{Q}\}$. Is A connected?
- 7. Which of the following subspaces of the Eclidean plane \mathbb{R}^2 are/are not homeomorphic?
 - (a) $X_1 = \{(x, y) : y = \sin \frac{1}{x} : x \neq 0\}$
 - (b) $X_2 = X_1 \cup \{(0, y) : y \in [-1, 1]\}$
 - (c) $X_3 = \{(x,y) : y = \sin \frac{1}{x} : x > 0\} \cup \{(0,y) : y \in [-1,1]\}$
 - (d) $X_4 = \{(x,y) : y = \sin\frac{1}{x} : x < 0\}$
 - (e) $X_5 = X_4 \cup \{(0, -1), (0, 1)\}$
 - (f) $X_6 = X_4 \cup \{(0,0)\}$
 - (g) X_7 = The union of all lines through (0,0) with a rational slope
 - (h) X_8 = The union of all lines through (0,0) with a irrational slope
- 8. Let C be the Cantor set. We know that there is a continuous map from C onto [0,1]. Is there a continuous map from [0,1] onto C?
- 9. Prove that every zero-dimensional space is Tychonoff.
- 10. Show that a Cartesian product $\prod_{t \in T} X_t$ of zero-dimensional spaces, is zero-dimensional.
- 11. Prove that if X is second-countable then every base \mathcal{B} for X (\mathcal{B} may not be countable) contains a countable family $\mathcal{B}_0 \subseteq \mathcal{B}$ which is a base for X. Conclude that if X is a second-countable, zero-dimensional space, then there is a countable base for X consisting of clopen sets.
- 12. Let X be a second countable zero-dimensional space. Prove that X can be embedded into the Cantor set $\{0,1\}^{\mathbb{N}}$. *Hint:* Use the previous problem.