• Build a Table for $GF(2^6)$

Table 1. $GF(2^6)$ with primitive polynomial $p(X) = 1 + X + X^6$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GF		Binary Representation					Decimal
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	α 0	0					0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	0	0	0	0	1	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	α^2	0	0	0	0	1	0	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	α^3	0	0	0	1	0	0	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	α^4	0	0	1	0	0	0	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	α^{5}	0	1	0	0	0	0	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α^{6}	1	0	0	0	0	0	32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α^7	0	0	0	0	1	1	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α 8	0	0	0	1	1	0	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α^9	0	0	1	1	0	0	12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α^{10}	0	1	1	0	0	0	24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α^{11}	1	1	0	0	0	0	48
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α 12	1	0	0	0	1	1	35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α^{13}	0	0	0	1	0	1	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α^{14}	0	0	1	0	1	0	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α 15	0	1	0	1	0	0	20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α^{16}	1	0	1	0	0	0	40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α 17	0	1	0	0	1	1	19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α 18	1	0	0	1	1	0	38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	1	1	1	1	15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α^{20}	0	1	1	1	1	0	30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α^{21}	1	1	1	1	0	0	60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α^{22}	1	1	1	0	1	1	59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α^{23}	1	1	0	1	0	1	53
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α^{24}	1	0	1	0	0	1	41
α^{27} 0 0 0 1 1 7	α^{25}	0	1	0	0	0	1	17
	α^{26}	1	0	0	0	1	0	34
α^{28} 0 0 1 1 1 0 14	α^{27}	0	0	0	1	1	1	7
	α^{28}	0	0	1	1	1	0	14

20	l .	4	4		0	.	•
α 29	0	1	1	1	0	0	28
α ³⁰	1	1	1	0	0	0	56
α^{31}	1	1	0	0	1	1	51
α^{32}	1	0	0	1	0	1	37
α^{33}	0	0	1	0	0	1	9
α^{34}	0	1	0	0	1	0	18
α^{35}	1	0	0	1	0	0	36
α^{36}	0	0	1	0	1	1	11
α^{37}	0	1	0	1	1	0	22
α^{38}	1	0	1	1	0	0	44
α^{39}	0	1	1	0	1	1	27
α^{40}	1	1	0	1	1	0	54
α^{41}	1	0	1	1	1	1	47
$\alpha^{\ 42}$	0	1	1	1	0	1	29
α^{43}	1	1	1	0	1	0	58
α^{44}	1	1	0	1	1	1	55
$\alpha^{\ 45}$	1	0	1	1	0	1	45
α^{46}	0	1	1	0	0	1	25
α^{47}	1	1	0	0	1	0	50
$\alpha^{\ 48}$	1	0	0	1	1	1	39
α^{49}	0	0	1	1	0	1	13
α 50	0	1	1	0	1	0	26
$\alpha^{\ 51}$	1	1	0	1	0	0	52
$\alpha^{\ 52}$	1	0	1	0	1	1	43
$\alpha^{\ 53}$	0	1	0	1	0	1	21
$\alpha^{\ 54}$	1	0	1	0	1	0	42
$\alpha^{\ 55}$	0	1	0	1	1	1	23
$\alpha^{\ 56}$	1	0	1	1	1	0	46
$\alpha^{\ 57}$	0	1	1	1	1	1	31
$\alpha^{\ 58}$	1	1	1	1	1	0	62
α 59	1	1	1	1	1	1	63
α 60	1	1	1	1	0	1	61
α 61	1	1	1	0	0	1	57
α^{62}	1	1	0	0	0	1	49
	I					ļ	

Berlekamp – Massey Algorithm

Table 2. Each steps for finding error-location polynomial

r	B(X)	$\Lambda(X)$	L
α^{48}	α^{15}	$1 + \alpha^{48}X$	1
α^8	$\alpha^{15}X$	$1 + \alpha^{34}X$	1
α^{38}	$\alpha^{25} + \alpha^{59}X$	$1 + \alpha^{34}X + \alpha^{53}X^2$	2
$lpha^{42}$	$\alpha^{25}X + \alpha^{59}X^2$	$1 + \alpha^{50}X + \alpha^{61}X^2$	2
$lpha^{55}$	$\alpha^8 + \alpha^{58}X + \alpha^6X^3$	$1 + \alpha^{50}X + \alpha^{54}X^2 + \alpha^{51}X^3$	3
$lpha^{10}$	$\alpha^8 X + \alpha^{58} X^2 + \alpha^6 X^3$	$1 + \alpha^{21}X + \alpha^{43}X^2 + \alpha^{19}X^3$	3
α^{26}	$\alpha^{37} + \alpha^{58}X + \alpha^{17}X^2 + \alpha^3X^3$	$1 + \alpha^{21}X + \alpha^{16}X^2 + \alpha^6X^3 + \alpha^{32}X^4$	4
$lpha^{50}$	$\alpha^{37}X + \alpha^{58}X^2 + \alpha^{17}X^3 + \alpha^3X^4$	$1 + \alpha^{53}X + \alpha^{13}X^2 + \alpha^{16}X^3 + \alpha^{11}X^4$	4
α^{28}	$\alpha^{35} + \alpha^{25}X + \alpha^{48}X^2 + \alpha^{51}X^3 + \alpha^{46}X^4$	$1 + \alpha^{53}X + \alpha^{27}X^2 + \alpha^{42}X^3 + \alpha^{42}X^4 + \alpha^{31}X^5$	5
α^{30}	$\alpha^{35}X + \alpha^{25}X^2 + \alpha^{48}X^3 + \alpha^{51}X^4 + \alpha^{46}X^5$	$1 + \alpha^{55}X + \alpha^5X^2 + \alpha^{33}X^3 + \alpha^{22}X^4 + \alpha^{40}X^5$	5

The Error-Location Polynomial is

$$\Lambda(X) = 1 + \alpha^{55}X + \alpha^{5}X^{2} + \alpha^{33}X^{3} + \alpha^{22}X^{4} + \alpha^{40}X^{5}$$
$$= (1 + \alpha^{51}X)(1 + \alpha^{35}X)(1 + \alpha^{8}X)(1 + \alpha^{7}X)(1 + \alpha^{2}X)$$

The Error Evaluator Polynomial is

$$\Omega(X) = \alpha^{48} + \alpha^{61}X + \alpha^{29}X^2 + \alpha^{56}X^3 + \alpha^{34}X^4$$

So the Error Pattern is

$$e(X) = \alpha^6 X^2 + \alpha^{20} X^7 + \alpha^3 X^8 + \alpha^{62} X^{35} + \alpha^{15} X^{51}$$

Table 3. Error locations and error magnitudes

Error Location	Error Magnitude		
Y ₅₁	α^{15}		
Y ₃₅	α^{62}		
Y_8	α^3		
Y_7	$lpha^{20}$		
Y_2	α^6		

• Euclidean Algorithm

Table 4. Each steps for finding error-location polynomial and error-value evaluator

i	$Z_0^{(i)}(X)$	$q_i(X)$	$\sigma_{\mathrm{i}}(X)$
-1	X ¹⁰		0
0	$\alpha^{48} + \alpha^{19}X + \alpha^{61}X^2 + \alpha^{51}X^3 + \alpha^3X^4$		1
	$+ \alpha^{42}X^5 + \alpha^{33}X^6 + \alpha^{29}X^7$		
	$+ \alpha^{38}X^8 + \alpha^{53}X^9$		
1	$\alpha^{43} + \alpha^{51}X + \alpha^{47}X^2 + \alpha^{57}X^3 + \alpha^{17}X^5$	$\alpha^{58} + \alpha^{10} X$	$\alpha^{58} + \alpha^{10}X$
	$+ \alpha^{32} X^6 + \alpha^{17} X^7 + \alpha^{34} X^8$		
2	$\alpha^{30} + \alpha^{21}X + \alpha^7X^2 + \alpha^{40}X^3 + \alpha X^4 + \alpha^{56}X^5$	$\alpha^{14} + \alpha^{19}X$	$\alpha^{45} + \alpha^{12}X + \alpha^{29}X^2$
	$+ \alpha^{39} X^6 + \alpha^{39} X^7$		
3	$\alpha^{45} + \alpha^{21}X + \alpha^{59}X^2 + \alpha^{57}X^3 + \alpha^8X^4$	$\alpha^{25} + \alpha^{58}X$	$\alpha^{60} + \alpha^{30}X + \alpha^{24}X^2 + \alpha^{24}X^3$
	$+\alpha^{14}X^5+\alpha^5X^6$		
4	$\alpha + \alpha^2 X + \alpha^{44} X^2 + \alpha^{37} X^3 + \alpha^{18} X^4 + \alpha^{36} X^5$	$\alpha^{16} + \alpha^{34}X$	$\alpha^{16} + \alpha^{33}X + \alpha^{52}X^2 + \alpha^4X^3 + \alpha^{58}X^4$
5	$\alpha^{35} + \alpha^{48}X + \alpha^{16}X^2 + \alpha^{43}X^3 + \alpha^{21}X^4$	$\alpha^{32} + \alpha^{32}X$	$\alpha^{50} + \alpha^{42}X + \alpha^{55}X^2 + \alpha^{20}X^3 + \alpha^9X^4 + \alpha^{27}X^5$

The error pattern is same as the results done by Berlekamp-Massey Algorithm.