Answer the questions below. Submit answers to 4 and 5 to Udacity, the others to T-square.

1a) Show that the following linear program is infeasible.

min
$$3x_1 - 2x_2$$

s.t. $x_1 + x_2 \le 2$
 $-x_1 + -2x_2 \le -6$
 $x_1, x_2 \ge 0$.

1b) Show that the following linear program is unbounded.

$$\begin{array}{ll} \max & 2x_1 + 5x_2 \\ \text{s.t.} & -2x_1 + x_2 \leq -1 \\ & -x_1 - 2x_2 \leq 2 \\ & x_1, x_2 \geq 0 \ . \end{array}$$

- 2a) Give an example of a linear program for which the feasible region is not bound but the optimal value is finite.
- 2b) Construct an example of a primal problem that has no feasible solutions and whose dual problem also has no feasible solutions.
- 3. Consider the following optimization problem

min
$$|u| + |v| + |w|$$

s.t. $u + v \le 1$
 $2u + w = 3$.

and convert it into a linear program of the form

min
$$c^T x$$

s.t. $Ax = b$
 $x \ge 0$.

(Hint: you will want to introduce two new non-negative variables for each of u, v, w.)

4. Express the following problem as a linear program. Given an $m \times n$ matrix A and a vector b of length m, find a vector x such that $||Ax-b||_1$ is minimized. In other words, find $x_1 \dots x_n$ such that $\sum_{i=1}^m |b_i - \sum_{j=1}^n a_{ij}x_j|$ is minimized. Implement your solution here.m

https://www.udacity.com/course/viewer#!/c-ud557/l-1209378918/m-2871868559

5. Let $A = (a_{ij})$ for $1 \le i \le m$ and $1 \le j \le n$ be a matrix with m rows and n columns. Such a matrix defines a two-person game as follows. Two players, Row and Column play a game where Row selects a row i and Column selects a column j. If $a_{ij} > 0$ Row receives a payoff amount of a_{ij} from Column. If $a_{ij} < 0$, Row pays an amount of $-a_{ij}$ to Column. The payoff matrix A is known to both players.

Suppose Row picks the i-th row with probability p_i and announces this vector p. Knowing this vector, Column will choose column j that minimizes Row's expected payout. Thus, the expected payout is $z=\min_{j}\sum_{i=1}^{m}p_ia_{ij}$. Naturally, Row then will want to choose the vector (p_1,\ldots,p_m) so as to maximize this quantity. Express Row's problem as a linear program. (Of course $p_1,\ldots p_m \geq 0$ and $\sum_{i=1}^{m}p_i=1$.)

Implement your procedure here

https://www.udacity.com/course/viewer#!/c-ud557/l-1209378918/m-3379798710

- 6. Prove that for any $m \times n$ matrix A and vector b of length m, exactly one of the following holds.
 - a. There is a vector $x \ge 0$ such that Ax = b.
 - b. There is a vector y such that $y^T A \ge 0$ and $y^T b < 0$.

Hint: Use substitution to show both statements cannot be true for the same matrix A. To show that at least one must be true, consider the following linear program.

$$\begin{array}{ll}
\min & b^T y \\
\text{s.t.} & A^T y \ge 0
\end{array}$$

and find its dual. Use the Duality Theorem to complete the result.