Partial Outer Convexification for Compressor Cost Optimization in a Gas-to-Power Network Final presentation of Master Thesis

Katharina Enin

Chair of Scientific Computing University of Mannheim

02.12.2021

Table of Contents:

- 1. Introduction
- 2. Partial Outer Convexification and the Three-Step Approach
- 3. Physical Characterististics of Gas-to-Power Network
- 4. Optimization Model
- 5. Numerical Analysis
- 6. Conclusion

Introduction

Goal of the Thesis

Goal: Optimize compressor costs in a Gas-to-Power network.

Methods: We will compare the three-step approach based on Partial Outer Convexification (POC) Reformulation and the direct solver Bonmin working with an NLP-based Branch-and-Bound Algorithm.

Three-Step Approach

Figure 1: Gas Network

In this gas-network we have two compressors and four compressor combinations

- compressor 0 is off and compressor 1 is off: (0,0)
- compressor 0 is off and compressor 1 is on: (0,1)
- compressor 0 is on and compressor 1 is off: (1,0)
- compressor 0 is on and compressor 1 is on: (1,1)

If n_{com} denotes the number of compressors, we have $n_{oc} = 2^{n_{com}}$ number of combinations.

We introduce convex multiplier controls $w^t \in \{0,1\}^{n_{oc}}$ that tell which combination holds in t: e.g. if combination (0,1) in t holds, then $w_t^t = 1$ and $w_t^t = 0$ for $k \neq 1$.

Three-Step Approach

1. Formulate Problem into the form (POC formulation):

$$\min_{u^t} \quad f(x^t, u^t) \tag{1}$$

subject to:
$$x^{t+1} = x^t + \Delta t \Phi(x^t, u^t) \mathbf{w}^t$$
 (PDE)

$$\sum_{s}^{n_{oc}} w_s^t = 1 \text{ with } w^t \in \{0, 1\}^{n_{oc}}$$
 (SOS1)

$$(+ \text{ some additional constraints for } x, u \text{ and } w)$$
 (4)

2. Apply the following Algorithm:

Algorithm: Three-Step Approach

Discretize problem 1 - 4 with appropriate step sizes Δt and Δx fulfilling the CFL-condition. **Step 1**: Relax the integrality conditions

$$w_s^t \in \{0,1\} \to \tilde{w}_s^t \in [0,1], \forall t \in \{0,...,n_T\}, \ \forall s \in \{0,...,n_{oc}\}$$
 (5)

and solve the arising continuous NLP. This yields the optimal vector \tilde{w} .

Step 2: Compute a feasible binary solution \vec{w} out of \tilde{w} by solving CIAP (Combinatorial Integral Approximation Problem).

Step 3: Simulate the dynamics again with w to obtain a feasible trajectory and a corresponding objective value.

Theorem

Let $\mathcal{I}=\{0,...,n_T-1\}$, $\mathcal{D}\subseteq\mathbb{R}^N$ and $\Phi:\mathcal{I}\times\mathcal{D}\to\mathbb{R}^{n\times n_{oc}}$ be a matrix-valued function that is continuous with respect to the second argument and satisfies

$$\|\Phi(t,\mu)\nu\|_{X} \leq M_{oc}\|\nu\|_{\Omega}, \qquad \forall t \in \mathcal{I}, \mu \in \mathcal{D}, \nu \in \mathbb{R}^{n_{oc}}$$
 (6)

$$\|(\Phi(t,\mu) - \Phi(t,\eta))\alpha\|_{X} \le L_{oc}\|\mu - \eta\|_{X}, \quad \forall t \in \mathcal{I}, \mu, \eta \in \mathcal{D}, \alpha \in H$$
 (7)

for constants M_{oc} , $L_{oc} < \infty$. Furthermore, for each $t \in \mathcal{I}$ let $h_t > 0$, α^t , $\beta^t \in H$ such that $T = \sum_{t=0}^{n_T-1} h_t$ and for each $t \in \mathcal{I} \cup \{n_T\}$ let μ^t , $\eta^t \in \mathcal{D}$ be given such that for all $t \in \mathcal{I}$

$$\mu^{t+1} = \mu^t + h_t \Phi(t, \mu^t) \alpha^t$$
 and $\eta^{t+1} = \eta^t + h_t \Phi(t, \eta^t) \beta^t$. (8)

If for some set $\mathcal{I}'\subseteq\mathcal{I}$, constants C_{oc} , $\epsilon<\infty$ and some vector $\delta^0\in\mathbb{R}^{n_{oc}}$ it holds that

$$\|(\Phi(t+1,\mu^{t+1}) - \Phi(t,\mu^{t}))\nu\|_{X} \le h_{t}C_{oc}\|\nu\|_{\Omega}, \quad \forall t \in \mathcal{I}', \nu \in \mathbb{R}^{n_{oc}}$$
(9)

$$\|\delta^{0} + \sum_{t=0}^{k-1} h_{t}(\alpha^{t} - \beta^{t})\|_{\Omega} \le \epsilon, \qquad \forall k \in \mathcal{I} \cup \{n_{T}\}$$
 (10)

then it follows with $T_k'=k\max\{h_t|t=0,...,k-1\}$ and $n_{jump}=|\mathcal{I}\setminus(\mathcal{I}'\cup\{n_T-1\})|$ that for all $k\in\mathcal{I}\cup\{n_T\}$

$$\sum_{t=0}^{k} h_{t} \| \mu^{t} - \eta^{t} \|_{X} \le \frac{\exp(T'_{k} L_{oc}) - 1}{L_{oc}} (\| \mu^{0} - \eta^{0} \|_{X} + (2M_{oc}(1 + n_{jump}) + TC_{oc})\epsilon). \tag{11}$$

Step 2: CIAP (General)

CIAP is denoted as follows:

$$\min_{\substack{t \in H \cap \{0,1\}^{n_{oc}}, \\ t = 0, \dots, n_{T} - 1, \\ \delta^{0} \in \mathbb{R}^{n_{oc}}, \epsilon \in \mathbb{R}_{\geq 0}}} \epsilon \\
\text{subject to:} \qquad \left\| \delta^{0} + \sum_{t=0}^{k-1} \Delta t (\alpha^{t} - \beta^{t}) \right\|_{\Omega} \leq \epsilon \quad \text{for all } k = 0, \dots, n_{T}$$

Without additional constraints: Solve with Sum Up Rounding (SUR) SUR can be solved in polynomial time and its objective value ϵ is proportional to Δt

With additional constraints that couple over time:

Solve MILP: (12) + additional constraints ϵ cannot be driven to zero by decreasing Δt

Power Network (1)

Figure 2: Power Network with one slack bus, two generator buses and six load buses

Power Flow Equations:

$$P_{k} = \sum_{j=1}^{N} |V_{k}| |V_{j}| (G_{kj}cos(\phi_{k,j}) + B_{kj}sin(\phi_{k,j}))$$

$$Q_{k} = \sum_{j=1}^{N} |V_{k}| |V_{j}| (G_{kj}sin(\phi_{k,j}) - B_{kj}cos(\phi_{k,j}))$$
(13)

with P: real power, Q: reactive power, V: voltage amplitude, ϕ : phase, G_{kj}/B_{kj} : conductance / susceptance between bus k and j.

At each bus: two variables of P, Q, V, ϕ are known \rightarrow 18 known and unknown variables. \rightarrow Solve Power-Flow Equations with Levenberg-Marquard Algorithm.

Power Network (2)

Convert gas to power: Take P at slack bus N1 and convert gas to power with the following rule

$$\epsilon(P) = a_0 + a_1 P + a_2 P^2 \tag{14}$$

with $a_0 = 2$, $a_1 = 5$ and $a_2 = 5$.

1D Euler Equation

The dynamics in a single can be described by the Isothermal Euler Equation:

$$\frac{\partial}{\partial t}\rho + \frac{\partial}{\partial x}q = 0 \tag{15}$$

$$\frac{\partial}{\partial t}q + \frac{\partial}{\partial x}p + \frac{\partial}{\partial x}\frac{q^2}{\rho} = -g\rho s - \frac{\lambda(q)|q|q}{2D\rho}$$
(16)

 ρ : density (kg/m^3) , q: mass flow (kg/s), p: pressure (bar) with relation $p=c^2\rho$, c=340m/s, g: gravitational constant, s: inclination angle of pipe, λ : friction factor, D: diameter of pipe

The Weymouth Equation is a simplification of Isothermal Euler Equation for high-pressure (approx. 70 bar and $q/\rho \approx 10 m/s$) in gas pipes:

$$\frac{\partial}{\partial t}\rho + \frac{\partial}{\partial x}q = 0 \tag{17}$$

$$\frac{\partial}{\partial t}q + \frac{\partial}{\partial x}p = -g\rho s - \frac{\lambda(q)|q|q}{2D\rho}.$$
 (18)

Note: $\frac{\partial}{\partial x} \frac{q^2}{\rho}$ is omitted.

Euler Equation vs. Weymouth Equation

Discretized with Simple Upwind Scheme

Weymouth Equation: $\rho(t,x)$ Weymouth Equation: q(t,x)

Note: No difference can be spotted!

Notation for Gas-Node Conditions

V: set of all gas nodes

 V_q : set of all source nodes V_p : set of all sink nodes

 V_c : set of all *compressor nodes*

 $\delta^+(v)$: set of outgoing edges at node $v \in V$ $\delta^-(v)$: set of ingoing edges at node $v \in V$

 $^{e}q(x^{n},t)$: flow in pipe e in point (x^{n},t)

Note: Similiar for ${}^{e}p(x^{n}, t)$.

Conditions at Gas Nodes (1)

Gas Coupling Conditions

Sum of ingoing flows is equal to sum of outgoing flows:

$$\sum_{e \in \delta^-(v)} {}^e q(x^n, t) = \sum_{h \in \delta^+(v)} {}^h q(x^0, t), \quad \forall v \in V \setminus (V_q \cup V_p), \ t = 0, ..., T.$$
 (19)

No pressure loss near the node:

For a fix but arbitrary node in the innodes $v \in V \setminus (V_q \cup V_c \cup V_p)$ and a pressure p(v,t) at node v in time t we state

$${}^{e}p(x^{n}, t) = p(v, t), \quad \forall e \in \delta^{-}(v), \ t = 0, ..., T$$

$${}^{h}p(x^{0}, t) = p(v, t), \quad \forall h \in \delta^{+}(v), \ t = 0, ..., T.$$
(20)

Gas-Power Coupling at Slack Node s

s is the gas node connected to slack bus via edge h_{slack} , ϵ^t is flow taken out of the gas network. At slack node s it holds:

$$\sum_{e \in \delta^-(s)} {}^e q(x^n, t) = \sum_{h \in \delta^+(s) \setminus h_{slark}} {}^h q(x^0, t) + \epsilon^t, \quad t = 0, ..., T.$$
 (21)

Conditions at Gas-Nodes (2)

Compressor Conditions

Conditions at Compressor Node:

$${}^{e}p(x^{n},t) = {}^{h}p(x^{0},t) + u^{t}_{v}, \quad \forall v \in V_{c}, \ e \in \delta^{-}(v), \ h \in \delta^{+}(v), \ t = 0,...,T$$
 (22)

where u_v^t denotes pressure increase (bar) at compressor node v.

Non-negativity constraints

Pressure and pressure increase cannot be negative:

$$u_{v}^{t} \ge 0, \quad \forall v \in V_{c}, \ t = 0, ..., m$$
 (23)

$$p_i^t \ge 0, \quad j = 0, ..., n, \ t = 0, ..., m, \text{ for all pipes}$$
 (24)

Compessor Cost Optimization Problem (1)

Optimization Problem with POC reformulation:

$$\min_{u} \quad \frac{1}{2} \sum_{t=0}^{m} \sum_{v \in V_{\mathcal{C}}} (u_{v}^{t})^{2}$$

subject to:

- 1. Weymouth Equation discretized with Simple Upwind Scheme
- 2. gas coupling conditions
- 3. compressor conditions

$${}^{e}p_{n}^{t} = {}^{h}p_{0}^{t} + u_{v}^{t}, \quad \forall v \in V_{c}, \ e \in \delta^{-}(v), \ h \in \delta^{+}(v), \ t = 0, ..., m$$

$$u_{v}^{t} = \sum_{s=1}^{n_{OC}} w_{s}^{t} c_{v}^{s} u_{v}^{t}, \quad \forall v \in V_{c}, \ t = 0, ..., m$$
(25)

where $c_{\scriptscriptstyle V}^{\scriptscriptstyle S} \in \{0,1\}$ denotes state of compressor ${\scriptscriptstyle V}$ for configuration ${\scriptscriptstyle S}$

$$\sum_{s=1}^{n_{oc}} w_s^t = 1 \quad (SOS-Type1)$$

- 4. non negativity constraints
- 5. gas power coupling condition

Initial conditions: p_j^0 , q_j^0 , j=0,...,n for each pipe and ϵ^t , t=0,...,m. **Solution:** p_j^t , q_j^t , j=0,...,n, t=0,...,m for each pipe, u_v^t , $\forall v \in V_c$ and configuration w^t t=0,...,m.

Compessor Cost Optimization Problem (2)

Optimization Problem without POC reformulation:

$$\min_{u} \quad \frac{1}{2} \sum_{t=0}^{m} \sum_{v \in V_c} (u_v^t)^2$$

subject to:

- 1. Weymouth Equation discretized with Simple Upwind Scheme
- 2. gas coupling conditions
- 3. compressor conditions

$${}^{e}p_{n}^{t} = {}^{h}p_{0}^{t} + u_{v}^{t}, \quad \forall v \in V_{c}, \ e \in \delta^{-}(v), \ h \in \delta^{+}(v), \ t = 0, ..., m$$
 $u_{v}^{t} = \beta_{v}^{t} \cdot u_{v}^{t}, \quad \forall v \in V_{c}, \ t = 0, ..., m \ \text{and} \ \beta_{v}^{t} \in \{0, 1\}$

- 4. non negativity constraints
- 5. gas power coupling condition

Initial conditions: $p_j^0, q_j^0, j=0,...,n$, for each pipe and $\epsilon^t, t=0,...,m$. **Solution:** $p_j^t, q_j^t, j=0,...,n$, t=0,...,m, for each pipe, u_v^t and configuration β_v^t $v\in V_{\mathcal{C}}$ and t=0,...,m.

(26)

Additional Constraints (1)

Additional Constraints: Type 1 - Compressor has to keep its state for at least a time M_1 , M_2 for every compressor node $v \in V_c$.

$$\sum_{e=k+1}^{k+\left\lfloor\frac{M_1}{\Delta t}\right\rfloor} \sum_{s=1}^{n_{oc}} c_v^s w_s^e \ge \sum_{s=1}^{n_{oc}} c_v^s \left\lfloor \frac{M_1}{\Delta t} \right\rfloor \left(-w_s^k + w_s^{k+1} \right) \quad \forall k \le m - \left\lfloor \frac{M_1}{\Delta t} \right\rfloor$$
 (27)

$$\sum_{e=k+1}^{k+\left\lfloor \frac{M_2}{\Delta t} \right\rfloor} \left(1 - \sum_{s=1}^{n_{oc}} c_v^s w_s^e \right) \ge \sum_{s=1}^{n_{oc}} c_v^s \left\lfloor \frac{M_2}{\Delta t} \right\rfloor \left(w_s^k - w_s^{k+1} \right) \quad \forall k \le m - \left\lfloor \frac{M_2}{\Delta t} \right\rfloor$$
 (28)

Additional Constraints: Type 2 - Compressor can only switch maximum $r \in \mathbb{N}$ times.

$$\sum_{t=1}^{m} \sum_{s=1}^{n_{oc}} |w_s^t c_v^s - w_s^{t-1} c_v^s| \le r, \quad \forall v \in V_c.$$
 (29)

Additional Constraints (2)

Solve CIAP by solving MILP

$$\begin{aligned} & \min_{\beta^t \in H \cap \{0,1\}^{n_{oc}}, \\ & t = 0, \dots, m-1, \\ & \delta^0 \in \mathbb{R}^{n_{oc}}, \epsilon \in \mathbb{R} \end{aligned} \\ & \text{subject to:} \quad \left\| \delta^0 + \sum_{t=0}^{k-1} \Delta t (\alpha^t - w^t) \right\|_{\Omega} \leq \epsilon \quad \text{for all } k = 0, \dots, m \\ & + \textit{additional constraints type 1} \quad \text{OR} \ + \textit{additional constraints type 2} \end{aligned}$$

where α^t are the relaxed binary variables in time t.

Algorithms used

	Method	Solver	Programming Language
Power Model	Levenberg-Marquardt	fsolve	Matlab
	Interior Point Method (+ Sum Up Rounding or MILP)	IPOPT 3.12.3 with ma27 integrated in CasADi	Python 3.7.6
		Gurobi 9.1.2	
Direct Solver	NLP-Based	BONMIN integrated in CasADi	Python 3.7.6
	Branch-and-Bound Algorithm		

PC: MacBook Pro, 16 GB RAM, Intel-Quad Core i5, 2,4 GHz CPU

Numerical Analysis: Simple Gas Network

Figure 3: Simple Model

Constants: $\lambda=0.11,\ D=1\ m$ and $c=340\ m/s$, pipe of length $12\ km$, total execution time of $5\ sec$, spacial step size $\Delta x=2000$, time step size $\Delta t=1/60$

Initial data: $\epsilon^t = 0$, t = 0, ..., m, p(0, x) = 60 bar and q(0, x) = 500 kg/s for each pipe at every pipe section

Numerical Analysis: Simple Model

Additional Constraints: Simple Model

Three-Step Approach with and without Additional Constraints

Numerical Analysis: Advanced Model

Constants: $\lambda=0.11$, D=1~m and c=340~m/s, pipe of length 12~km, total execution time of 5~sec, spacial step size $\Delta x=2000$, time step size $\Delta t=1/60$

Initial data:

	<i>E</i> 0	<i>E</i> 1	E2, E3	E4	<i>E</i> 5	E6, E7
p(x,0) (bar)	60	62	62	62	62	62
q(x,0) (kg/s)	500	500	250	241.847	250	491.847

 $[\]epsilon^t$ (mass taken out of gas network is shown in Figure 8)

Numerical Analysis: Advanced Model

OFV: 2.00000

Runtime: 1259.03 sec ($\approx 21 \text{ min}$)

- solved to 'acceptable level' (tolerance level 10⁻⁶)
- direct solver bonmin could not find any result in 2 hours - freezing behaviour.

Additional Constraints: Advanced Model

Three-Step Approach with and without Additional Constraints

 $(\approx 32.3 \text{ min})$

 $(\approx 32 min)$

Conclusion

- Three Step Approach delivers good optimization results and is up to 14 times faster than direct solver bonmin, which works with the NLP-based Brand-and-Bound algorithm
- With additional constraints we can prevent the compressor from switching too
 often and can achieve even better OFV
- Due to the CFL Condition we had to choose a very small time step $(\Delta t = \frac{1}{60})$ and therefore considered a simulation of 5~sec. For realistic simulations (e.g. 1 day) computation will likely take several hours. Interesting question: How does run time and solutions vary for implicit scheme and explicit scheme (with Three Step approach)?

Thank you for your attention!