

面向领域的并行数值方法线性系统

陶钧

taoj23@mail.sysu.edu.cn

中山大学 计算机学院 国家超级计算广州中心

课程目标

- 求解给定边界的二维泊松方程: $\Delta \phi = f$
 - 完成非规则网格划分、组装线性系统、线性系统求解
 - 将并行尽可能应用于各任务
 - 17周提交中期报告; 18周中期现场报告; 20周最终代码及报告
 - 作业仅做最低限度要求,可进行扩展
 - 三维网格/大规模网格/NS问题

作业说明

● Wavefront .obj文件格式

- 顶点 (vertices)
 - 以字符 v 开头
 - x, y, z坐标
- 面(faces)
 - 以字符 f 开头
 - 对应顶点在文件中的index

• 法向量, 物理场在离散点上的取值, 等

v 1.0 0.0 0.0

v 0.0 1.0 0.0

v 0.0 0.0 1.0

v 0.0 0.0 -1.0

f 123

f 1 3 4

f 1 4 2

f 2 4 3

作业说明

○二维网格上的泊松方程 $\Delta \phi = f$

- 二维网格以修改的obj格式给出
 - 作业材料中包含读取该文件的mesh.h/cpp源文件
 - 网格格点上有4个值 x, y, f, ϕ
 - -非边界格点上的 ϕ 值使用-1e30标记(需要求解)
 - models文件夹中给出了需求解的数据样例
 - WebGL文件夹的index.html可用于可视化本作业中的obj文件

Questions?

