

Agenda

- What is machine learning?
- Who is Data Scientist?
- The three DS core
- ML 101 (Linear regression)
- Theory + Housing data set
- Model Evaluation & Validation

What is Machine Learning?

History

Automation Engineer/ Old school intelligent system

Intelligent System

What is Machine Learning

Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed.

- Arthur Lee Samuel,

Computer Scientist, IBMer, Stanford Professor creator of Samuel <u>Checkers</u>-playing Program in 1959

"A MACHINE LEARNS WITH RESPECT TO A PARTICULAR TASK T,
PERFORMANCE METRIC P, AND TYPE OF EXPERIENCE E, IF THE SYSTEM
RELIABLY IMPROVES ITS PERFORMANCE P AT TASK T, FOLLOWING
EXPERIENCE E."

GO JEK

- TOM MITCHELL, PROFESSOR, CARNEGIE MELLON UNIVERSITY

GO∰JEK

- Automation
- Storage cost
- Compute cost

Today

7 Who is Data Scientist?

Who is a Data Scientist?

"A DATA SCIENTIST IS THAT UNIQUE BLEND OF SKILLS
THAT CAN BOTH UNLOCK THE INSIGHTS OF DATA AND
TELL A FANTASTIC STORY VIA THE DATA,"

- DJ Patil,

The White House former Chief of Data Scientist.

Three DS Cores

The three DS core

Wide variance in terms of skillsets: many job descriptions are more appropriate for a **team** of data scientists!

Data Science Workflow

Keep in mind that data science is an end to end process.

iterate

Understand the Business

Know your data

Apply Machine Learning

Communicate your result

4 ML 101

Machine Learning Problems

Supervised Learning U	Insupervised Learning
-----------------------	-----------------------

Discrete classification or clustering categorization Continuous dimensionality regression reduction

Supervised Learning

Supervised Learning

150				
observations				
(n = 150)				

Fisher's Iris Data

Sepal length ¢	Sepal width ¢	Petal length ¢	Petal width ¢	Species ¢
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

4 predictors
$$(p = 4)$$

4.1

ML 101: LINEAR REGRESSION

Linear regression

Linear regression

• Remember this?

$$Y=mX+C$$
?

GO∰JEK

Linear regression

$$y = \beta_0 + \beta_1 x$$

Linear Equation Example

y = 4 + 2x

What happens is we change the intercept?

$$y = 9 + 2x$$

But the world is not linear!

$$y = 4 + 2x$$

True Values

Simple Linear Regression Model

$$y = \beta_0 + \beta_1 x + \varepsilon$$

- y is the dependent variable
- X is the independent variable
- β_0 is the constant or intercept
- β_1 is x's slope or coefficient
- ε is the error term

But how does the machine learn?

Our Hypothesis given X

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

error = Our hypothesis - real value

$$error = h_{\theta}(x) - y$$

 $error = h_{\theta}(x) - y$

$$error = h_{\theta}(x) - y$$

$$error = h_{\theta}(x) - y$$

Absolute Error

Idea:

Total length of these lines

Squared Error

$$\sum (h_{\theta}(x) - y)^2$$

Idea: Total Area of these squares

Why?

Because we have positive and negative errors. So, the **squared loss error** will:

- summing each other instead of negating each other
- But why not absolute error?
 Sensitive to large errors
- Has mathematical advantages such as derivatives

source:

https://www.sciencedirect.com/science/article/pii/S01654101040008 37?via%3Dihub

Cost Function: Squared Loss Error

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y)^2$$

Our goal is to minimize this function

Gradient Descent

Goal:

• Minimize $J(\theta_0, \theta_1)$

How?

- Start with some (θ₀, θ₁)
 Keep adjusting (θ₀, θ₁) until converge

source: Andrew Ng's Machine Learning

source: Andrew Ng's Machine Learning

source: Andrew Ng's Machine Learning

Mean Absolute Error (MAE) is the mean of the absolute value of the errors:

$$\frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$$

Mean Squared Error (MSE) is the mean of the squared errors:

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Root Mean Squared Error (RMSE) is the square root of the mean of the squared errors:

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$$

Mean Absolute Error (MAE) is the mean of the absolute value of the errors:

$$\frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$$

Mean Squared Error (MSE) is the mean of the squared errors:

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 punishes larger errors

Root Mean Squared Error (RMSE) is the square root of the mean of the squared errors:

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$$

Mean Absolute Error (MAE) is the mean of the absolute value of the errors:

$$\frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$$

Mean Squared Error (MSE) is the mean of the squared errors:

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2$$

Root Mean Squared Error (RMSE) is the square root of the mean of the squared errors:

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
More interpretable in y units

Mean Absolute Error:

$$1/7 * (0.5 + 1 + 1 + 1 + 2 + 1 + 4)$$

- = 10.5 / 7
- = 1.5 (thousand USD)

MSE

= 24.25 / 7

= 3.46 (million USD^2)

RMSE

$$(1/7 * 0.25 + 1 + 1 + 1 + 4 + 1 + 16)^{(0.5)}$$
 = 1.86 (thousand USD)

Model Validation

Using Hold - Out test data

using 80% data as training set, 20% as testing But How do we know the testing set is not randomly the easy part to predict?

Model Validation

Cross Validation (with 5 fold)

Each partition takes turn to be the training & testing data set. Important to know the real performance of the model

Questions? dipta@go-jek.com