

FACULTY OF ELECTRICAL ENGINEERING

DEPARTMENT OF TELECOMMUNICATION ENGINEERING

B(E)2M32BTS - Wireless Technologies

LPWAN protocols for IoT

Long-range communication for IoT

Zdeněk Bečvář

Czech Technical University in Prague Faculty of Electrical Engineering Department of Telecommunication Engineering

Outline

Overview of protocols for Internet of Things (IoT)

Overview and applications, trends

LoRa (Long Range) protocol

- Overview
- Architecture and device connection
- Communication
- Data rates
- Device types

Overview of IoT protocols

Protocols designed to specific needs of IoT devices

- ► Low cost and complexity
 - Many (dozens per household) simple devices
- ► Low bit-rates
 - From bps to hundreds of kbps (few Mbps?)
- Delay tolerant
 - Not continuous transmission, occasional transmission
- ► Low energy consumption
 - ➤ Often powered from batteries → long battery life-time (years)

Classification of protocols

- ▶ Short-range
 - Coverage radius ~ in (few, dozens, hundreds) meters

> Technologies and protocols: Bluetooth, 6LoWPAN, ZigBee,...

- ▶ Long-range
 - Coverage radius ~ in (few to dozen) kilometers
 - ➤ Wide area networks & low power consumption → Low-Power Wide Area Networks (LPWAN)
 - Technologies and protocols: Cellular IoT, LoRa, SigFox, Weightless,...

Communication range

- ► Maximum loss in conducted power level that system can tolerate and still operate
- ▶ Coupling Loss
 - > Difference between conducted power levels measured at transmitting and receiving antenna ports
 - Defined by a minimum acceptable received power level
 - ➤ Antenna ports/connectors = reference points for MCL → antennas gains not considered

Applications and use-cases for LPWAN

Cheap devices, rare low bit-rate communication, long battery life-time

- ► Long operation on single battery charge
- ▶ Often for devices with limited mobility that lack power source for recharging
 - Mobile devices still possible (Cellular IoT next lecture)

Technologies and market

Long-Range technologies: Overview

Celluar IoT (next lecture)

	Sigfox	LoRa	EC-GSM	Cat-1	Cat-0	eMTC	NB-loT
Standardization	Private	Open	3GPP	3GPP	3GPP	3GPP	3GPP
Spectrum	Unlicensed	Unlicensed	Licensed	Licensed	Licensed	Licensed	Licensed
Channel BW	100Hz	7.8~500kHz	200kHz	1.4~20MHz	1.4~20MHz	1.4MHz	180KHz
System BW	100KHz	125kHz	1.4MHz	1.4~20MHz	1.4~20MHz	1.4MHz	180KHz
Peak Data Rate	UL:100bps DL:600bps	up to 21.9 kbps	DL: 74kbps UL:74kbps	DL:10Mbps UL:5Mbps	DL:2Mbps UL:1Mbps	DL:800kbps UL:1Mbps	DL:234.7kbp UL:204.8kbp
Max. number of Message per day	140(Device) 50000(BTS)	unlimited	unlimited	unlimited	unlimited	unlimited	unlimited
Device Peak Tx Power	14dBm	16 dBm	33dBm	23dBm	23dBm	23dBm	23dBm
MCL(Maximum Coupling Loss)	UL:156dB DL: 147dB	157/165 dB	164dB	144dB	144dB	156dB	164dB
Device Power Consumption	Low	Low-Medium	Low	Medium	Medium	Low-Medium	Low

⁹⁰ Indoor 30 dB Indoor 20 dB In

LoRa/LoRaWAN technology

History

- ➤ 2009 development by Cycleo (start-up)
- ► 2012 Cycleo acquired by Semtech Corporation
- ► 2015 First specification released (v1.0)
 - > 150+ public network operators worldwide in 2020
 - Release v1.0.4 in October 2020

LoRa Alliance

- ► Founded in 2015
- Develops and promote LoRaWAN® technology
- ▶ IBM, Cisco, HP, Foxconn, Semtech, Sagemcom, Schneider, Bosch,...

LoRa (Long-Range) radiofrequency modulation technology for LPWAN

Physical layer

LoRaWAN protocol

▶ Medium Access Control (MAC) layer

Version 1.0.1

Clarifications,

Version 1.0.2

MAC Layer (MAC)

Physical Layer (PHY)

LoRAWAN overview

Objectives

- ~ years long operation (consumption in micro/milliwatts)
- ► Low device cost (even gateways rather cheap)
- ► Extended coverage (157/165 dB max coupling loss)
- Low bit rates
 - ~hundreds of to several thousands bps (depends on physical layer, spreading factor and bandwidth)

Main features

- ▶ Public and private networks
- ► Narrowband channels (typically 125 kHz)
- ► Chirp Spread Spectrum (CSS)
 - ➤ Adaptive spreading factor → data rate vs coverage
- ► Open standard (except physical layer)

Network architecture

Network architecture

LoRaWAN gateway

- Receives messages from devices and forwards to LNS and vice versa
 - > IP protocol (any technology, e.g., Wi-Fi, Ethernet, mobile networks,...)
- Operate at physical layer
 - Only message + metadata (received RSSI and an optional timestamp) forwarded

End devices

- ► **Sensor** or **actuator** wirelessly connected to LoRaWAN network
 - Connection only via LoRaWAN gateway
 - Autonomous
 - Typically battery-operated

Networks architecture

LoRa Network server (LNS)

- ► Network management & control of network parameters
 - > Ack of messages, frame counting, adapting data rate, handle MAC requests from devices
- ► Establishes secure 128-bit AES connections
- Ensures authenticity of End devices and integrity of message
 - Do not see or access application data

Application Servers

- Securely handling, managing and interpreting sensor application data
- Generate application-layer downlink payloads for devices

Join Server

- Manages activation of end devices
 - Adding devices to network Join procedure
- Security handling
 - Contains/manages security-related information
 - Keys, service profiles of End devices,...
- ► Matches Application servers to end devices
 - via LNS

Join procedure

Join accept

Size (bytes)

Join-accept

Join Server

(16) Optional

CFList

JoinNonce provided by Join server to derive keys Network ID

Securely-stored ROOT KEYs

End device address (32-bits address in network)

Downlink configuration (offset between DL and UL rates, DL data rate)

DLSettings

Delay between transmission and reception

JoinNonce Home_NetID DevAddr

Channel frequency list (optional, region dependent)

Over the air activation

▶ Join procedure

Activation by Personalization

- End device directly coupled to specific Network
 - Device address and security keys stored in device → same keys all the time → less secure

Message transmission

Uplink

- ► Message broadcasted to and received by gateways within reach
 - > Reduces packet error rate and battery consumption and enables localization
- Gateway forwards message to LNS
- ► LNS performs data de-duplication and deletes all copies
 - Select message with highest RSSI
- ► LNS forwards message to targeted Application server

Downlink

- Application server sends message to LNS
- ► LSN selects Gateway that should send message to End device
 - Gateway selected by LNS based on maximum RSSI of messages received in uplink

Physical (PHY) layer overview

ISM bands

- ► EU: 433, **868** MHz, US: 902-928 MHz
- Unlincesed

Chanel Bandwidth of 125 kHz (250, 500,... kHz)

- ► Regional parameters at https://lora-alliance.org/resource_hub/rp2-1-0-3-lorawan-regional-parameters/
- ► EU: channels @ 868 MHz typically for 125 kHz bandwidth

Proprietary spread-spectrum modulation

- ► Based on Chirp Spread Spectrum (CSS)
 - Resilience to interference, multipath, (and doppler effect)
 - Low power
 - > Signal spread in frequency domain
 - Orthogonal spreading factors
 - Chirp sweep tone/signal
 - Frequency increases/decreases in time (up-chirp/down-chirp)

G. Huang,, et al, "COOK: Chirp-OOK Communication with Self-reliant Bitrate Adaptation in Backscatter Networks", https://arxiv.org/pdf/1911.11417.pdf, November 2019.

Frequency hopping (Uplink, different PHY - 3.9 kHz hopping channels, bandwidth of 137 kHz, very low bit rates of 162 - 325 bps)

Robustness to interference

Spreading factor and Data rate

Modulation

- Data encoded via frequency changes at the beginning of symbol
 - Starting frequency of chirp
 - \triangleright Bandwidth = $f_{high} f_{low}$

Spreading Factor (SF) = Number of bits per symbol

▶ 2^{SF} values (steps, chips) per symbol

Robert Lie, "LoRa/LoRaWAN tutorial 13: Symbol, Spreading Factor and Chip," https://www.youtube.com/watch?v=0FCrN-u-Vpw

▶ Bandwidth increases → Symbol duration decreases

Symbol rate:
$$R_S = \frac{1}{T_S} = \frac{BW}{2^{SF}}$$

Data rate:
$$R_d = SF \times \frac{BW}{2^{SF}} \times CR$$

Examples

BW=125 kHz, SF=7, CR=4/5 \rightarrow R_d = 5460 bps, T_s = 1.02 ms BW=125 kHz, SF=12, CR=4/5 \rightarrow R_d = 290 bps , T_s = 33.77 ms

- ▶ Number of bits/symbol *times* Symbol rate *times* code rate (CR)
 - Code rate 4/5, 4/6, 4/7, 4/8 (Code rate index 1, 2, 3, 4, resp)

Impact of Spreading Factor

Increasing SF

- Symbol duration increases
 - ➤ Time on Air (ToA) increases (longer time of transmission) → increase energy consumption
 - Symbol duration doubles if SF increased by 1
 - loratools.nl/#/airtime
- Extending coverage
 - ➤ End device further from Gateway → Longer transmission time
 - SNR required for decoding is lowered
 - -2.5 dB for SF increased by 1
- Data rate is decreased
 - Bit rate reduced by a half if SF increased by 1

BW=125 kHz CR=4/5 Payload 10 bytes -7.5 -10

-12.5 -15

-17.5 -20

Packets

- ► Preamble + Sync word (EU: 8 + 4.25 symbols)
- ► Physical layer **Header** (PHDR) + **CRC** (PHDR_CRC)
 - Payload length in bytes
 - Forward error correction rate (CR)
 - Presence of CRC for payload
- Physical layer Payload (data + headers of upper layers)
- ► Payload CRC (optional)

Implicit header mode

- ▶ No header
- ► Used for beacon transmission (Device B, see later)

Message starts with number of up-chirps followed by 2.25 down-chirps, then data/header

Size	8 Symbols	4.25 Symbols	8 Symbols		L bytes (from PHDR)	2 Bytes
Packet Structure	Preamble	Synchronization Word	PHDR	PHDR_CRC	PHYPayload	CRC (uplink only)

1	7 <i>M</i>	4
MHDR	MACPayload	MIC

Adaptive data rate

Uplink transmission parameters control (SF, bandwidth, Tx power)

- Controlled by LNS
 - Only for not (or slow) moving nodes
- ► Controlled by End device
 - Mobile device

Default setting

- ► Tx power maximum allowed Tx power
 - > Regional limits, EU868 band: max 16 dBm, 2dBm step
- ▶ Data rate minimum allowed rate for device
 - > Device specific and regional limits, EU868 band: 250 bps (SF12, 125 kHz bandwidth)

Data rate adaptation

- ► Measured SNR_{meas} above SNR_{limit} (minimum SNR for demodulation) → LNS recommends to reduce SF and, if required, also Tx power
 - \triangleright margin = $SNR_{meas} SNR_{limit}$

<u>Example</u>
BW=125 kHz, SF=12, SNR_{meas} =7dB, SNR_{limit} =-20dB \rightarrow margin = 27 dB
Change of SF to SF=7 \rightarrow SNR _{limit} =-7.5dB \rightarrow margin = 14.5 dB \rightarrow reduce Tx power
► Some margin (several dB) is usually kept to compensate changes in channel

Spreading Factor	SNR limit (dB)
7	-7.5
8	-10
9	-12.5
10	-15
11	-17.5
12	-20

LoRaWAN Device classes

Classes define devices' communication and management

Class can be switched

Class A - All end-device

- ► Mandatory for all devices all the time
- ► Energy efficient bi-directional communication
- Access to medium based on ALOHA
- ► Device reachable only after transmission

Class B - Beacon

- ▶ Optional
- ► Periodic scheduled opportunity to reach device
 - Scheduling based on beacons from gateways

Class C - **C**ontinuously listening (end-device)

- ► (Almost) continuously reachable end device
 - ➤ Not reachable during own transmission
- ▶ High energy consumption with respect to Classes A and B
- **▶** Low latency

Classes B and C not concurrently, but Class A is always available

Downlink Network Communication Latency

Device Class A

Bi-directional transmission

▶ Uplink

- ➤ End devices transmits at **arbitrary time** (ALOHA)
 - Retransmission after random backoff
- > Next uplink transmission not before downlink transmission windows/slots expire

▶ Downlink

- > End device reachable **only after** its own **transmission**
 - Opens one or two receive windows (RX1 and RX2) after each own transmission
 - If no packet received by End device in RX1, End device opens RX2, otherwise RX2 not open
 - Receive windows timing defined using end of transmission as a reference
 - RX1 starts 1-15 seconds after end of transmission (1 second step) (RXTimingSetupReq/Ans msgs)
 - RX2 always 1 second after RX1
 - Default delays between end of transmission on RX1 and RX2: 1 and 2 seconds, respectively

Robert Lie, "LoRa/LoRaWAN tutorial 4: LoRaWAN Device Classes," https://www.youtube.com/watch?v=ShJ5RERof5I

Device Class B

Encompasses Class A communication, but...

Gateway regularly (but optionally) transmits Beacons

Beacon

- ► Unmodulated 10 symbols + Beacon payload (dozens of bytes, gateway ID, GPS,...)
- Period of 128 sec between beacons
 - > Starting on January 6, 1980, 00:00:00 UTC (GPS epoch start)
- ▶ Ping slots for data reception
 - **Beacon** period divided into $2^{12} = 4096$ ping slots (30 ms each)
 - > Regular duration, but **starting randomly** after beacon to avoid collisions
 - > End device opens periodically ping slots when it is reachable
- ▶ If beacon not received at expected time, reception window enlarged
 - Beaconless operation max 120 minutes with progressively expanding beacon reception window

Network should be informed about device's position

► End device sends regular uplinks to inform about best way to reach End device

Device Class C

Encompasses Class A communication, but...

End-device listens on continuous RX window (RXC) except:

- ▶ Own transmission or
- Receiving data on RX1 or
- Receiving data on RX2.

End device opens RXC:

- ▶ between end of uplink transmission and beginning of RX1 reception window, and
- between end of RX1 window and beginning of RX2 window, and
- as soon as RX2 reception window is closed
 - Keeps open until End-device sends another packet

Network should be informed about device's position

► End device sends regular uplinks to inform about best way to reach End device

FACULTY OF ELECTRICAL ENGINEERING

DEPARTMENT OF TELECOMMUNICATION ENGINEERING

Questions?

zdenek.becvar@fel.cvut.cz

