Hackathon Report for Diabetic Retinopathy Classification

TEAM EHF (ERAJ TANWEER, HUNAIZA KHAN, FAISAL SHAHID)

Introduction

This report describes the implementation of a deep learning model for **Diabetic Retinopathy Classification** using TensorFlow and Keras. The project follows a structured pipeline, including data acquisition, preprocessing, augmentation, model design, training, and evaluation. The goal is to create a robust model capable of accurately classifying retinal images.

1. Data Acquisition

The dataset used for this project is the **Diabetic Retinopathy Balanced** dataset, downloaded from Kaggle using the kagglehub library.

```
# Create directory.
!mkdir -p ~/.kaggle

# Copy kaggle json to directory.
!cp kaggle.json ~/.kaggle/
```

Details:

- The kaggle.json file contains API credentials required to access Kaggle datasets.
- The kagglehub.dataset_download function downloads the dataset from Kaggle.
- The dataset path is printed to verify successful download.

2. Data Preprocessing

Data preprocessing involves organizing the dataset into training, validation, and test sets.

```
path = kagglehub.dataset_download("kushagratandon12/diabetic-retinopathy-balanced")
print("Path to dataset files:", path)
print(os.listdir(path))

# Define paths
dataset_dir = path  # Replace with your dataset directory
train_dir = '/content/train'
test_dir = '/content/test'
val_dir = '/content/val'
```

Details:

- The dataset is split into training, validation, and test sets.
- A helper function GetDatasetSize counts the number of images in each folder to verify dataset integrity.

3. Data Augmentation

Data augmentation improves the model's generalization ability by introducing variability in the input data.

```
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Define batch size
BATCH_SIZE = 32
IMG_SIZE = (224, 224)

# Create an ImageDataGenerator for real-time loading and augmentation
train_datagen = ImageDataGenerator(
    rescale=1.0/255.0, # Normalize images
    rotation_range=10,
    width_shift_range=0.1,
    height_shift_range=0.1,
    horizontal_flip=True,
    validation_split=0.1 # 10% for validation
)
```

Details:

- Rescaling: Normalizes pixel values between 0 and 1.
- Rotation, Shifting, Shearing, and Zooming: Introduces slight variations to improve model robustness.
- Horizontal Flip: Adds variation by flipping images horizontally.
- Flow from Directory: Loads images from the dataset directory for training.\

4. Model Architecture

The model is based on a Convolutional Neural Network (CNN) with multiple layers to extract spatial features from images.

```
model = tf.keras.models.Sequential([
    tf.keras.layers.Conv2D(64, kernel_size=3, activation='relu', input_shape=(224, 224, 3)),
    tf.keras.layers.BatchNormalization(),
    tf.keras.layers.MaxPool2D(pool_size=(2,2)),

tf.keras.layers.Conv2D(64, kernel_size=3, activation='relu'),
    tf.keras.layers.BatchNormalization(),
    tf.keras.layers.MaxPool2D(pool_size=(2,2)),

tf.keras.layers.Conv2D(256, kernel_size=3, activation='relu', padding='same'),
    tf.keras.layers.BatchNormalization(),
    tf.keras.layers.Conv2D(512, kernel_size=3, activation='relu', padding='same'),
    tf.keras.layers.BatchNormalization(),
    tf.keras.layers.BatchNormalization(),
    tf.keras.layers.BatchNormalization(),
    tf.keras.layers.Platten(),

tf.keras.layers.Flatten(),
```

Layer Details:

Layer Type	Parameters	Purpose
Conv2D	(32, 64, 128 filters)	Extracts spatial features
MaxPooling2D	Pool size = 2x2	Reduces dimensionality
Flatten	_	Converts to 1D array
Dense	512 neurons	Fully connected layer
Dropout	50%	Prevents overfitting
Dense	5 neurons	Output layer for classification

5. Compilation and Training:

The model is compiled and trained using categorical cross-entropy and Adam optimizer.

```
model.compile(
    optimizer='Adam',
    loss="categorical_crossentropy",
    metrics=METRICS
)

history=model.fit(
    train_generator,
    steps_per_epoch=9,
    epochs=20,
    validation_data=val_generator,
    validation_steps=1,
    verbose=1,
)
```

Details:

- Optimizer: Adam optimizer for fast convergence.
- Loss: Categorical cross-entropy for multi-class classification.
- **Metrics:** Accuracy is used to evaluate model performance.

6. Evaluation

The trained model is evaluated on the test set to measure performance.

```
train_score = model.evaluate(train_generator, verbose= 1)
valid_score = model.evaluate(val_generator, verbose= 1)
test_score = model.evaluate(test_generator, verbose= 1)

print("Train Loss: ", train_score[0])
print("Train Accuracy: ", train_score[1])
print('-' * 20)
print("Validation Loss: ", valid_score[0])
print("Validation Accuracy: ", valid_score[1])
print('-' * 20)
print('-' * 20)
print("Test Loss: ", test_score[0])
print("Test Accuracy: ", test_score[1])
```

Details:

- The model's accuracy and loss are reported.
- The results reflect the model's ability to generalize to unseen data.

7.RESULTS:

8. Challenges and Solutions

- Class Imbalance: The dataset was balanced to prevent bias toward any specific class.
- **Overfitting:** Dropout and data augmentation techniques were used to reduce overfitting.
- ▼ Training Time: GPU acceleration was used to speed up training.

9. Conclusion

The model successfully classifies diabetic retinopathy with high accuracy using CNN-based architecture. The balanced dataset, effective data augmentation, and deep learning model architecture contributed to robust performance. Further improvements could involve fine-tuning the model and increasing data diversity.