Superconductivity and magnetism in $Y_{1-x}Pr_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$

H. D. Yang

Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan 804, Republic of China

H. L. Tsay and C. R. Shih

Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan 804, Republic of China and Institute of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan 804, Republic of China

Y. C. Chen

Institute of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan 804, Republic of China (Received 20 September 1994)

Polycrystalline samples of $Y_{1-x}Pr_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ ($0 \le x \le 1$) with tetragonal perovskite-like structure were synthesized and investigated by powder x-ray-diffraction, electrical-resistivity, magnetic-susceptibility, and specific-heat measurements. It is found that the T_c decreases monotonically with Pr concentration x from $T_c \sim 33$ K for x = 0 to $T_c \sim 12$ K for x = 0.7. The critical concentration x_{cr} required to suppress the T_c to zero is estimated to be around 0.85. Even though the $PrSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ exhibits a semiconducting behavior, the normal-state resistivity at $T \ge 100$ K remains nearly the same order of magnitude as that of superconducting $YSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$. An effective magnetic moment $\mu_{eff} \sim 3\mu_B$ is obtained from the simple Curie-Weiss law and a huge linear term coefficient of specific heat $\gamma \sim 440$ mJ/mol K^2 is determined for $PrSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$. No magnetic transition is observed for $PrSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ down to 0.6 K. However, a superconducting transition with $T_c \sim 17$ K is seen by partially substituting Ca for Pr in $Pr_{1-x}Ca_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$. The similarities and differences in superconductivity and magnetism between $Y_{1-x}Pr_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ and $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ are compared and discussed.

I. INTRODUCTION

It is widely known that all but three rare-earth ions, Ce, Pm, and Tb, can substitute Y forming an $R \, \mathrm{Ba_2Cu_3O_{7-\delta}}$ (1237) structure with T_c near 90 K (Ref. 1) except for PrBa₂Cu₃O₇₋₈, which is a semiconductor.² Meanwhile, an antiferromagnetic order in PrBa₂Cu₃O_{7-δ} was observed below $T_N = 17$ K by magnetic-susceptibility and heat-capacity measurements.^{3,4} This magneticordering temperature 17 K of $PrBa_2Cu_3O_{7-\delta}$ is about 2 orders of magnitude higher than expected if one scales the T_N for GdBa₂Cu₃O_{7- δ} (T_N =2.2 K) assuming either purely dipolar interactions or Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange. The absence of superconductivity and the unusual magnetic order for PrBa₂Cu₃O₇₋₈ have been a puzzle since this compound was first synthesized. In order to shed light on the basic mechanisms of oxide high- T_c superconductivity, therefore, the $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ system has become one of the most studied subtopics in the field of high- T_c superconductivity. Plenty of experiments and interpretations focused on the depression of T_c with increasing x in Y_{1-x}Pr_xBa₂Cu₃O_{7-δ} and the magnetic coupling interactions for high T_N in $PrBa_2Cu_3O_{7-\delta}$ have been conducted and proposed.⁵⁻⁷ Nevertheless, to date there are still many unsolved questions to be further clarified.

On the other hand, despite the chemical similarity between Sr and Ba, however, the tetragonal Sr-based 1237 structure can be stabilized only by substituting Mo-O, Fe-O, or Ga-O partially or completely for the Cu-O

chain.⁸ This is because the shortening of the Sr-O bond will ensure a greater tolerance to the length of other planar Sr-O bonds, and thus will enhance the lattice match among constituent elements and the affinity of the deplacement O(1) atoms to their surroundings.⁹ Recently, single-phase $R\text{Sr}_2\text{Cu}_{2.7}\text{Mo}_{0.3}\text{O}_{7-\delta}$ has been successfully synthesized, in which R represents all rare-earth elements except Ce and Lu.¹⁰ These compounds were reported to have a T_c centering around 30 K, except for La, Pr, and Nd which are not superconducting.⁹ Thus, this provides another chance to examine the effect of Pr on T_c and the unusual magnetic ordering in the YPr-1237 system. In this paper, we present structural, electrical, magnetic, and specific-heat results for $Y_{1-x}\text{Pr}_x\text{Sr}_2\text{Cu}_{2.7}\text{Mo}_{0.3}\text{O}_{7-\delta}$, and compare with those for $Y_{1-x}\text{Pr}_x\text{Ba}_2\text{Cu}_3\text{O}_{7-\delta}$.

II. EXPERIMENTAL METHODS

All polycrystalline samples $Y_{1-x}Pr_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ $(0 \le x \le 1)$ and $Pr_{1-x}Ca_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ $(0 \le x \le 0.15)$ were prepared by the solid-state-reaction method under identical conditions. High-purity powders of Y_2O_3 , Pr_6O_{11} , $SrCO_3$, $CaCO_3$, CuO_3 , and MoO_3 were mixed in appropriate proportions. The mixed powder was compacted and fired for 3 h at $1020\,^{\circ}C$ in an oxygen atmosphere. It was then slowly cooled to room temperature at flowing oxygen. The above process was repeated twice. The oxygen content is considered to be in the range 6.9-7.0 using this heat treatment for samples. The structural analysis was

carried out by powder x-ray diffraction using Cu $K\alpha$ radiation. Lattice parameters were calculated from the diffraction peak positions by the method of least squares. Electrical resistivity $\rho(T)$ measurements were performed on rectangular specimens cut from sintered pellets employing the standard four-probe method with silver paint contacts attached to electrical leads. The magnetic susceptibility was measured using a superconducting quantum interference device (SQUID) magnetometer (Quantum Design) over the temperature range 5-300 K at a field of 5 kOe. The specific heat of pieces (~2 mg) cut from the samples was measured in the range 0.6-40 K with a ³He relaxation calorimeter using the heat pulse technique.11 The samples were attached to a sappire chip, which has two separated silicon films deposited on it to serve as the heater and the thermometer. The Si-film thermometer was calibrated against a calibrated germanium thermometer. For each point of the specific-heat measurements, a small heat power was introduced to the chip and the thermal relaxation was measured and analyzed to obtain the specific heat of the samples.

III. RESULTS AND DISCUSSION

X-ray-diffraction patterns (not shown) reveal that all samples $Y_{1-x}Pr_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ $(0 \le x \le 1)$ display a tetragonal symmetry, instead of the orthothombic structure of Ba-based 1237. This suggests that Mo is doped into Cu(1) sites. Calculated results listed in Table I and plotted in Fig. 1 show that lattice parameters increase linearly with the Pr concentration. This indicates that the Pr substitutes for Y readily. Temperature dependence of normalized resistivity for $Y_{1-x}Pr_xSr_2Cu_{2,7}Mo_{0,3}O_{7-\delta}$ with various x is shown in Fig. 2. At x = 0, the ρ -T curve and T_c (midpoint) ~ 33 K are consistent with those reported previously. For low x $(x \le 0.2)$, the resistivity shows a metalliclike behavior; however, it begins to develop a broad maximum just above T_c for $x \ge 0.3$. The upturn of resistivity observed at higher x ($x \ge 0.3$) in this system is similar to that observed in $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$. It is found that the T_c

decreases monotonically with Pr concentration x from $T_c \sim 33$ K for x=0 to $T_c \sim 12$ K for x=0.7. The critical concentration $x_{\rm cr}$ required to suppress the T_c to zero is estimated to be around 0.85. These digital values of T_c versus x are also listed in Table I. The Abrikosov and Gor'kov¹² (AG) pair-breaking theory predicts that the reduced transition temperature $T_c(x)/T_c(0)$ is a universal function of reduced concentration $x/x_{\rm cr}$:

$$\ln[T_c(x)/T_c(0)] = \psi(1.2) - \psi[\frac{1}{2} + 0.14xT_c(0)/x_{cr}T_c(x)],$$

where ψ is the digamma function. Curve (1) of Fig. 3 shows the AG fit of $T_c(x)/T_c(0)$ versus x for $Y_{1-x}Pr_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ using $x_{cr} = 0.85$. Obviously, curve (1) is far below the data points. A plausible conclusion for the failure of curve (1) to fit the data is that the AG pair-breaking theory simply does not agree with the data. It is noted that the disagreement can be improved just by assuming $T'_c(0) \sim 1.2T_c(0)$ as seen in curve (2). The physical meaning of $T'_c(0)$ here is similar to that of $T_{c0}(0)$, the maximum obtainable value of $T_{c}(0)$ described in Ref. 13 or that of $T'_c(0)$, the linearly extrapolated $T_c(x)$ as $x \rightarrow 0$ described in Ref. 14. This suggests that our sample YSr₂Cu_{2.7}Mo_{0.3}O₇₋₈ may be in the over-hole-doping state as same as $YBa_2Cu_3O_{7-\delta}$. This also reveals complicated mechanisms on the depression of T_c at the low Pr doping level $x \le 0.2$. On the other hand, the AG pair-breaking theory does not predict that a metal-insulator (MI) transition will accompany the suppression of superconductivity with the introduction of magnetic impurities. The fact that a MI transition is observed in this and other 1237 systems indicates a reduction in the mobile hole carrier density with Pr substitution. Therefore, a mechanism other than AG theory on the suppression of T_c in $Y_{1-x}Pr_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ should be considered and taken into account. For comparison, the T_c versus x (curve 3) for $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ (reproduced from Fig. 55 of Ref. 5) is also included in Fig. 3. It is clear that the suppression

TABLE I. Lattice parameters a and c, superconducting transition temperature T_c (midpoint), and electrical resistivity at 100 K ($\rho_{100~\rm K}$) for $Y_{1-x} Pr_x Sr_2 Cu_{2.7} Mo_{0.3} O_7$ with $x=0,\,0.1,\,0.2,\,0.3,\,0.4,\,0.5,\,0.6,\,0.7,\,0.8,\,0.9$, and 1.

$\overline{\mathbf{Y}_{1-x}\mathbf{Pr}_{x}\mathbf{Sr}_{2}\mathbf{Cu}_{2.7}\mathbf{Mo}_{0.3}\mathbf{O}_{7}}$	a (Å)	c (Å)	T_c (K)	$\rho_{100 \text{ K}} \text{ (m}\Omega \text{ cm)}$	
x = 0	3.810(2)	11.538(5)	33.2	4	
x = 0.1	3.814(1)	11.534(4)	33.1		
x = 0.2	3.818(1)	11.545(4)	31.6	9	
x = 0.3	3.826(1)	11.547(5)	29.7		
x = 0.4	3.830(1)	11.555(5)	25.9	11	
x = 0.5	3.835(1)	11.575(4)	22.2		
x = 0.6	3.840(1)	11.580(4)	17.3	11	
x = 0.7	3.844(1)	11.591(5)	12.2		
x = 0.8	3.850(1)	11.606(4)	< 10	6	
x = 0.9	3.853(1)	11.613(4)			
x = 1	3.858(2)	11.616(10)		15	

FIG. 1. Lattice parameters a and c as a function of Pr concentration x $(0 \le x \le 1)$ for $Y_{1-x}Pr_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$. Dashed lines are guides to the eye.

FIG. 2. Normalized electrical resistivity as a function of temperature for $Y_{1-x}Pr_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ with x=0, 0.2, 0.4, 0.6, 0.8, and 1.

FIG. 3. $T_c(x)/T_c(0)$ as a function of x for $Y_{1-x}Pr_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$. Curves (1) and (2) are fit to the AG theory with different $T'_c(0)$. Curve (3) is the T_c vs x for $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ reproduced from the Fig. 55 of Ref. 5. See text for more detail.

FIG. 4. The resistivity at 100 K ($\rho_{100~K}$) as a function of x for $Y_{1-x}Pr_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$. The $\rho_{100~K}$ for $PrBa_2Cu_3O_{7-\delta}$ is marked by \diamondsuit for comparison.

of T_c with x is much weaker in the former than that in the latter. Figure 4 shows the normal-state resistivity at 100 K ($\rho_{100~\rm K}$) as a function of x for $Y_{1-x} Pr_x Sr_2 Cu_{2.7} Mo_{0.3} O_{7-\delta}$. The $\rho_{100~\rm K}$ keeps nearly the same order of magnitude through the whole range of x. In addition, the value of $\rho_{100~\rm K}$ for $PrSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ is about 4 orders of magnitude smaller than that for $PrBa_2Cu_3O_{7-\delta}$. From these results, it is clear that Pr substitution has less effect on both T_c and resistivity in the $Y_{1-x}Pr_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ system than in $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$. This correlation of T_c and resistivity is consistent with the hole-filling-localization model.

The normal paramagnetic behavior of magnetic susceptibility and the inverse magnetic susceptibility as a function of temperature for $PrSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ is shown in Fig. 5. A best fit to Curie-Weiss law

FIG. 5. Magnetic susceptibility and inverse magnetic susceptibility for $PrSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ in the temperature range 5–300 K. The inset shows the low-temperature (5–40 K) magnetic susceptibility.

 $\chi = \chi_0 + C/(T \sim \Theta)$ in the range $20 \le T \le 300$ K yields the sum of temperature-independent terms $\chi_0 = 2.03 \times 10^{-5}$ emu/g, the paramagnetic Curie-Weiss temperature $\Theta = -11$ K, and the effective magnetic moment $\mu_{\text{eff}} = 3.05 \mu_{B}$. The derived value of μ_{eff} is close to that for PrBa₂Cu₃O_{7- δ} and falls between the free-ion values expected for Pr³⁺(3.58 μ_B) and Pr⁴⁺(2.54 μ_B). However, it is well known that Curie-Weiss moments can be reduced from expected free-ion values by the presence of crystalfield effects. Soderholm and Goodman¹⁷ also argued that this type of analysis for the determination of a valence state is too simple for these complicated materials. Besides, Soderholm et al. 18 and Hilscher et al. 19 have shown that the experimental magnetic-susceptibility^{18,19} and specific-heat 19 data for PrBa₂Cu₃O₇₋₈ can be interpreted consistently in terms of standard crystal-field (CF) theory of Pr^{3+} based on the CF parameters extracted from the neutron-diffraction data.20 magnetic susceptibility The low-temperature $PrSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ shown in the inset of Fig. 5 shows no indication of magnetic anomaly down to 5 K in contrast to a slope change observed at 17 K in magnetic susceptibility of $PrBa_2Cu_3O_{7-\delta}$. In our previous studies, 21,22 the antiferromagnetic transition temperature T_N in PrBa₂Cu₃O₇₋₈ is depressed as the transition metal and Ca substitute partially for Cu(1) and Ba, respectively, in the $PrBa_2(Cu_{1-x}Ga_x)_3O_{7-\delta}$ $Pr(Ba_{1-x}Ca_x)_2Cu_3O_{7-\delta}$ systems. Thus no observation of magnetic ordering transition for PrSr₂Cu_{2.7}Mo_{0.3}O_{7-δ} in this temperature region is expected.

Low-temperature $(0.6 \le T \le 40 \text{ K})$ specific heat C and C/T for $YSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ and $PrSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ are shown in Fig. 6. The superconducting transition at $T_c \sim 33 \text{ K}$ for polycrystalline $YSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ cannot be discerned within our calorimeter resolution. No anomaly is observed in $PrSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ indicating no magnetic-ordering transition down to 0.6 K in con-

FIG. 6. Low-temperature ($T \le 40$ K) specific-heat C and C/T for $YSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ and $PrSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$.

trast to a clear anomaly at $T_N \sim 17$ K for $PrBa_2Cu_3O_{7-\delta}$. This is consistent with the magnetic susceptibility result as mentioned above. The Pr-related magnetic contributions to specific heat ΔC in $PrSr_2Cu_2$ $_7Mo_0$ $_3O_{7-\delta}$ is calculated by

$$\Delta C = C(PrSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta})$$

$$-C(YSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}),$$

where the lattice contribution to specific heat for these two compounds is assumed to be identical. Figure 7 shows the ΔC and the $\Delta C/T$ as functions of temperature for $PrSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ in the range $0.6 \le T \le 20$ K. The features of these two curves are quite similar to those observed in $Y_{0.4}Pr_{0.6}Ba_2Cu_3O_{7-\delta}$. Ghamaty et al. ²³ gave a good description for those data with a combination of nuclear Schottky anomaly, linear term, and Kondo anomaly contributions. This suggests that the magnetic coupling strength in PrSr₂Cu_{2,7}Mo_{0,3}O₇₋₈ is much weaker than that in $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ at x=1 and may be about the same level as that at x = 0.4-0.6. This also means that $PrSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ may be just in the ambiguous region for the superconductivity in competition with magnetic order. The analysis for a linear term coefficient of specific heat γ in $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ has been discussed by many groups. 3,4,23,24 Generally, the low-temperature specific heat C can be combined with magnetic, electronic, and lattice contributions. In the PrSr₂Cu_{2.7}Mo_{0.3}O₇₋₈ case, the magnetic part may include several terms, such as nuclear Schottky anomaly, linear term, Kondo anomaly, and/or magnetic ordering contributions as described for Y_{0.4}Pr_{0.6}Ba₂Cu₃O₇₋₈. Nevertheless, to limit and simplify the preliminary analysis, the linear term coefficient or specific heat γ was just calculated by the usual procedure of extrapolating

FIG. 7. Pr-related magnetic contributions to specific heat, $\Delta C = C(\text{PrSr}_2\text{Cu}_{2.7}\text{Mo}_{0.3}\text{O}_{7-\delta}) - C(\text{YSr}_2\text{Cu}_{2.7}\text{Mo}_{0.3}\text{O}_{7-\delta})$ and $\Delta C/T$ as a function of temperature in the range of 0.6 $K \leq T \leq 20$ K.

FIG. 8. C/T vs T^2 curves for YSr₂Cu_{2.7}Mo_{0.3}O_{7- δ} and PrSr₂Cu_{2.7}Mo_{0.3}O_{7- δ}. Lines are the best linear fit in the range $6 \le T \le 14$ K.

the nearly linear C/T value to T=0. C/T versus T^2 for $YSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ and $PrSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ in the range $6 \le T \le 14$ K is shown in Fig. 8. Huge values of $\gamma \sim 120$ and 440 mJ/mol K² were obtained for these two compounds, respectively, indicative of a characteristic of heavy-fermion-like behavior. These γ values are larger than those from corresponding $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ system^{3,4,23,24} but are comparable to those when Cu is replaced by Fe.⁴ It has been pointed out that this γ value can be substantially reduced by considering magnetic contributions.²⁴

Because the $\rho_{100 \text{ K}}$ for $Y_{1-x}Pr_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ keeps nearly the same order of magnitude through the whole range of x and the $\rho_{100 \text{ K}}$ of $PrSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ is much smaller than that of PrBa₂Cu₃O₇₋₈, it suggests that the PrSr₂Cu_{2,7}Mo_{0,3}O₇₋₈ may be in the vicinity of the borderline of metal-insulator transition. Also, the magnetic coupling strength in PrSr₂Cu_{2,7}Mo_{0,3}O₇₋₈ is about the same as in $Y_{0.4}Pr_{0.6}Ba_2Cu_3O_{7-\delta}$ suggesting that the ground state of PrSr₂Cu_{2.7}Mo_{0.3}O_{7-\delta} is close to a competitive region of superconductivity and magnetic order. In order to elucidate these points, the $Pr_{1-x}Ca_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ system was synthesized and studied. X-ray-diffraction patterns $Pr_{1-x}Ca_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ (0 \le x \le 0.15) is shown in Fig. 9. It is found that the Sr-based-1237 structure basically persists but with visible impurity peaks indicated by arrows. Clearly, the solid-solution $Pr_{1-x}Ca_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ is smaller than that in $Pr_{1-x}Ca_xBa_2Cu_3O_{7-\delta}$, in which x can exceed 0.3. This indicates that the Sr-based 1237 fits better the larger cation in the rare-earth sites than the Ba-based 1237 does. This is consistent with the fact that LaSr₂Cu_{2.7}Mo_{0.3}O₇₋₈ and $LuBa_2Cu_3O_{7-\delta}$ are stable, but $LuSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ and $LaBa_2Cu_3O_{7-\delta}$ are difficult to synthesize. The resistivity as a function of temperature for $Pr_{1-x}Ca_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ with various x is shown in Fig. 10. A superconducting transition is observed as $x \ge 0.05$ and reach a maximum T_c at $x \sim 0.1$. The resistivity and magnetic shielding effect with an expanded temperature scale for $Pr_{0.9}Ca_{0.1}Sr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ is

FIG. 9. Room-temperature powder x-ray-diffraction patterns for $Pr_{1-x}Ca_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ with x=0, 0.05, 0.1, and 0.15. Impurity peaks are indicated by arrows.

shown in the inset of Fig. 10. The onset of superconductivity occurs at $\sim\!22$ K and reaches the zero resistance at 14 K. This demonstrates a bulk nature of superconductivity in the bulk Ca-doped Pr-1237 samples. Norton et al. 26,27 have reported superconductivity with $T_c\sim\!40$ K in $\rm Pr_{0.5}Ca_{0.5}Ba_2Cu_3O_{7-\delta}$ thin film but not in the bulk target. In fact, why the superconductivity only seen in the $\rm Pr_{0.5}Ca_{0.5}Ba_2Cu_3O_{7-\delta}$ thin film but not in the bulk sample is not yet clear. Norton et al. 26,27 also concluded that their result is consistent with the view that the hole

FIG. 10. Electrical resistivity as a function of temperature for $Pr_{1-x}Ca_xSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ with x=0.0.05, 0.1, and 0.15. The inset shows the low-temperature ($T \le 30$ K) resistivity and magnetic shielding effect for $Pr_{0.9}Ca_{0.1}Sr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$.

localization, due to hybridization of Pr 4f electronic levels with the O 2p orbitals, contributes substantially to the of superconductivity by $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ and this suppression can be partially compensated by appropriate hole doping with Ca. It is believed that the similar argument would be applicable to the $Pr_{1-x}Ca_{x}Sr_{2}Cu_{2.7}Mo_{0.3}O_{7-\delta}$ system. The occurrence of superconductivity in the $Pr_{0.9}Ca_{0.1}Sr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ bulk sample can be attributed to a much weaker hybridization in $PrSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ than in $PrBa_2Cu_3O_{7-\delta}$. It emphasized that the for is $Pr_{0.9}Ca_{0.1}Sr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ $(T_c \sim 17)$ $\mathrm{Pr}_{0.5}\mathrm{Ca}_{0.5}\mathrm{Ba}_{2}\mathrm{Cu}_{3}\mathrm{O}_{7-\delta}$ $(T_{c}\!\sim\!40~\mathrm{K})$ are much higher than that for $Pr_{0.9}Y_{0.1}Sr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$ $(T_c \sim 0 \text{ K})$ and $Pr_{0.5}Y_{0.5}Ba_2Cu_3O_{7-\delta}$ ($T_c \sim 0$ K), respectively. This illustrates that the divalent Ca must do something different from the trivalent Y in the occurrence of superconductivity. Even though the hybridization of Pr 4f electrons with the CuO2 valence band could lead to a magnetic pair-breaking effect, 16,28 the hole localization or filling mechanism should play a more important role in the suppression of superconductivity in the Pr-doped 1237 systems.

It is interesting to study the correlation among the absence of superconductivity, anomalously high T_N , reduced effective magnetic moment $\mu_{\rm eff}$, and huge linear term coefficient of specific heat γ in these Pr-based cuprates. These parameters for four selected Pr-based compounds including PrBa₂Cu₃O₇, Pr₂CuO₄, PrBa₂Cu₂NbO₈, and PrSr₂Cr_{2.7}Mo_{0.3}O₇ are listed in Table II for comparisons. Where the Pr₂CuO₄ formed T'-type structure consists of only the square-planar CuO₄ arrangement with no apical oxygen atoms and the PrBa₂Cu₂NbO₈ has a similar structure to PrBa₂Cu₃O₇ but with NbO₂ planes replacing the CuO chains. There are several features which can be pointed out from this table.

(1) All four Pr-based compounds before doping are semiconductors even though some of its isostructural compounds are superconducting at high temperatures. In fact, the Pr_2CuO_4 seems to have very different structural and physical properties from the other three compounds. For example no indication of any magnetic ordering transition, $\mu_{\text{eff}} \sim 3.51 \mu_B$ close to $3.58 \mu_B$ an expected value for a free Pr^{3+} ion, and a metal-like γ value suggest that the ground state of Pr_2CuO_4 is clearly nonmagnetic.²⁹ Whereas the anomalous properties for the

other three compounds may be attributed to the unique magnetic and electronic characteristic of Pr ions.

- (2) Superconductivity is not observed with or without doping if the compound exhibits a high T_N (~ 10 K), such as bulk $PrBa_2Cu_3O_7$ and $PrBa_2Cu_2NbO_8$. However, superconductivity can be achieved by an appropriate doping if the compound exhibits low T_N (~ 0 K), such as Pr_2CuO_4 and $PrSr_2Cu_{2.7}Mo_{0.3}O_7$. Thus the magnetic coupling mechanism between Pr-Pr interactions may be a key factor for the suppression of T_c in these Pr-based cuprates.
- (3) The high T_N and a reduced $\mu_{\rm eff}$ accompanied with a small γ for ${\rm PrBa_2Cu_2NbO_8}$ are interesting. If the reduction of $\mu_{\rm eff}$ for ${\rm Pr}$ ion were ascribed to a large crystal-field effect (CFE) and the strong magnetic correlations (high T_N) of the ${\rm Pr}$ magnetic moments were caused by an enhanced hybridization of ${\rm Pr}$ 4f electrons with holes in the ${\rm CuO_2}$ planes, the large CFE seems to act independently of this strong hybridization in these materials. In other words, the reduction of $\mu_{\rm eff}$ resulted from the large CFE may not be so relevant to the suppression of T_c . This is also evidenced by that a superconductivity was observed in ${\rm Y}_{1-x}{\rm Pr}_x{\rm Ba}_2{\rm Cu}_3{\rm O}_{7-\delta}, {\rm Y}_{1-x}{\rm Pr}_x{\rm Sr}_2{\rm Cu}_{2.7}{\rm Mo}_{0.3}{\rm O}_{7-\delta}, {\rm and} {\rm Pr}_{1-x}{\rm Ca}_x{\rm Sr}_2{\rm Cu}_{2.7}{\rm Mo}_{0.3}{\rm O}_{7-\delta}, {\rm systems}$ with a reduced $\mu_{\rm eff}$ even in superconducting samples.
- (4) It is difficult to relate the huge γ to other parameters from the information listed in Table II. In fact, the origin of the huge γ for some Pr-based compounds is not yet clear. The change in γ value does not depend on whether samples are superconducting or insulating in $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ (Ref. 24). This suggests that the huge γ is not closely responsible for the suppression of T_c . In addition, a high $T_N(\sim 12 \text{ K})$ with a small γ in $PrBa_2Cu_2NbO_8$ and a low T_N ($\sim 0 \text{ K}$) with a huge γ in $PrSr_2Cu_{2.7}Mo_{0.3}O_7$ also suggest that the huge γ is not primarily due to the strong coupling between Pr ions.

The observation for the rare-earth ionic-radius effect on the suppression of T_c (Refs. 14, 15, and 34) and of T_N (Ref. 35) in the $R_{1-x} Pr_x Ba_2 Cu_3 O_{7-\delta}$ system strongly suggests that the hybridization of Pr 4f electrons with the holes in the CuO₂ planes must play an important role in these anomalous physical properties. Moreover, the hybridization of Pr 4f electrons with holes in Cu-O₂ planes has been proposed by Torrance and Metzger³⁶ as a mechanism that causes a localization of the conducting

TABLE II. Antiferromagnetic transition temperature T_N , effective magnetic moment μ_{eff} , linear term coefficient of specific heat γ , and superconducting transition temperature T_c (midpoint) for some selected Pr-based compounds.

Compound	T_N (K)	μ_{eff} (μ_B)	$\gamma \pmod{\mathrm{K}^2}$	T_c (K)	Ref.
PrBa ₂ Cu ₃ O ₇	17	2.97	300	Not observed	4
$Pr_{0.9}Ca_{0.1}Ba_2Cu_3O_7$				Not observed	22
Pr ₂ CuO ₄	Not observed	3.51	1.5	Not observed	29
$Pr_{1.85}Ce_{0.15}CuO_4$				17	30
PrBa ₂ Cu ₂ NbO ₈	12	2.86	3.1	Not observed	31
$Pr_{0.9}Ca_{0.1}Ba_2Cu_2NbO_8$				Not observed	32
$PrS_2Cu_{2.7}Mo_{0.3}O_7$	Not observed	3.05	440	Not observed	This wor
$Pr_{0.9}Ca_{0.1}Sr_2Cu_{2.7}Mo_{0.3}O_7$				17	This worl

holes in the Cu-O₂ planes. The enhanced hybridization can yield both the unexpected high magnetic ordering temperature and the suppression of superconductivity.³⁷

IV. CONCLUSION

The suppression of T_c in $Y_{1-x} Pr_x Sr_2 Cu_{2.7} Mo_{0.3} O_{7-\delta}$ has been studied and compared to that in $Y_{1-x} Pr_x Ba_2 Cu_3 O_{7-\delta}$. The x dependence of T_c cannot be simply described by the AG pair-breaking model, though the disagreement can be improved with the use of the optimal $T_c(0)$. The large value of x_{cr} and the low normal-state resistivity indicate that the localization of the conduction holes induced by Pr substitution is rather weaker in $Y_{1-x} Pr_x Sr_2 Cu_{2.7} Mo_{0.3} O_{7-\delta}$ than in $Y_{1-x} Pr_x Ba_2 Cu_3 O_{7-\delta}$. This correlation of T_c and resistivity is consistent with the hole-filling-localization model. The observations of a reduced μ_{eff} and a huge γ are similar in both systems. In contrast to a $T_N \sim 17$ K seen

in $PrBa_2Cu_3O_{7-\delta}$, no indication of any magnetic ordering transition down to 0.6 K is observed in $PrSr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$. In addition, a superconducting transition with $T_c \sim 17$ K is observed resistively and inductively in $Pr_{0.9}Ca_{0.1}Sr_2Cu_{2.7}Mo_{0.3}O_{7-\delta}$. Basically these results are discussed and explained within a framework that a strong magnetic correlation (high T_N) of the Pr magnetic moments is caused or mediated by an enhanced hybridization of Pr 4f electrons with holes in the CuO_2 planes. As a consequence, this is thought to be the primary origin for the suppression of T_c in these Pr-based cuprates.

ACKNOWLEDGMENT

This research was supported by the National Science Council of Republic of China under Contract No. NSC-84-2112-M110-005.

- ¹P. H. Hor, R. L. Meng, Y. Q. Wang, L. Gao, Z. J. Huang, J. Bechtold, K. Forster, and C. W. Chu, Phys. Rev. Lett. 58, 1891 (1987).
- ²L. Soderholm, K. Zhang, D. G. Hinks, M. A. Beno, J. D. Jorgensen, C. U. Segre, and I. K. Schuller, Nature (London) 328, 604 (1987).
- ³A. Kebede, C. S. Jee, J. Schwegler, J. E. Crow, T. Mihalisin, G. H. Myer, R. E. Salomon, P. Schlottmann, M. V. Kuric, S. H. Bloom, and R. P. Guertin, Phys. Rev. B 40, 4453 (1989).
- ⁴I. Felner, U. Yaron, I. Nomik, E. R. Bauminger, Y. Walfus, E. R. Yocoby, G. Hilscher, and N. Pillmayr, Phys. Rev. B 40, 6739 (1989).
- ⁵H. B. Radousky, Mater. Res. Bull. 7, 1917 (1992), and references quoted therein.
- ⁶W. H. Li, J. W. Lynn, S. Skanthakumar, T. W. Clinton, A. Kebede, C. S. Jee, J. E. Crow, and T. Mihalisin, Phys. Rev. B 40, 5300 (1989).
- ⁷H. D. Yang, M. W. Lin, C. K. Chiou, and W. H. Lee, Phys. Rev. B 46, 1176 (1992).
- ⁸T. Den and T. Kobayashi, Physica C **196**, 141 (1992).
- ⁹Q. Xiong, Y. Y. Xue, J. W. Chu, Y. Y. Sun, Y. Q. Wang, P. H. Hor, and C. W. Chu, Phys. Rev. B 47, 11 337, (1993).
- ¹⁰P. H. Hor, J. W. Chu, Y. Wang, H. H. Feng, Y. Y. Sun, K. Matsuishi, Q. Xiong, and C. W. Chu, in *Proceedings of the 1992 TCSUH Workshop on HTS Materials, Bulk Processing, and Bulk Applications*, edited by C. W. Chu, W. K. Chu, P. H. Hor, and K. Salama (World Scientific, Singapore, 1992).
- ¹¹R. Bachmann, F. J. Disalvo, T. H. Geballe, R. L. Greene, R. E. Howard, C. N. King, H. C. Kirsch, K. N. Lee, R. E. Schwall, H. U. Thomasand, and R. B. Zubeck, Rev. Sci. Instrum. 43, 205 (1972).
- ¹²A. A. Abrikosov and L. P. Gor'kov, Zh. Eksp. Teor. Fiz. **39**, 1781 (1960) [Sov. Phys. JETP **12**, 1243 (1961)].
- ¹³J. J. Neumeier, T. Bjornholm, M. B. Maple, and I. K. Schuller, Phys. Rev. Lett. **63**, 2516 (1989).
- ¹⁴Y. Xu and W. Guan, Appl. Phys. Lett. **59**, 2183 (1991).
- ¹⁵H. D. Yang, P. F. Chen, C. R. Hsu, C. W. Lee, C. L. Li, and

- C. C. Peng, Phys. Rev. B 43, 10568 (1991).
- ¹⁶J. L. Peng, P. Klavins, R. N. Shelton, H. B. Radousky, P. A. Hahn, and L. Bernardez, Phys. Rev. B 40, 4517 (1989).
- ¹⁷L. Soderholm and G. L. Goodman, J. Solid State Chem. 81, 121 (1989).
- ¹⁸L. Soderholm, C.-K. Loong, G. L. Goodman, and B. D. Dabrowski, Phys. Rev. B 43, 7923 (1991).
- ¹⁹G. Hilscher, E. Holland-Moritz, T. Holubar, H.-D. Jostarndt, V. Nakvasil, G. Schaudy, U. Walter, and G. Fillion, Phys. Rev. B 49, 535 (1994).
- ²⁰H.-D. Jostarndt, U. Walter, J. Harnischmacher, J. Kalenborn, A. Severing, and E. Holland-Moritz, Phys. Rev. B 46, 14872 (1992).
- ²¹H. D. Yang and M. W. Lin, Phys. Rev. B 44, 5384 (1991).
- ²²H. D. Yang, M. W. Lin, C. H. Luo, H. L. Tsay, and T. F. Young, Physica C 203, 320 (1992).
- ²³S. Ghamaty, B. W. Lee, J. J. Neumeier, G. Nieva, and M. B. Maple, Phys. Rev. B 43, 5430 (1991).
- ²⁴N. E. Phillips, R. A. Fisher, R. Caspary, A. Amato, H. B. Radousky, J. L. Peng, L. Zhang, and R. N. Shelton, Phys. Rev. B 43, 11 488 (1991).
- ²⁵T. Wada, N. Suzuki, A. Maeda, T. Yabe, K. Uchinokura, and S. Uchida, Phys. Rev. B 39, 9126 (1989).
- ²⁶D. P. Norton, D. H. Lowndes, B. C. Sales, J. D. Budai, B. C. Chakoumakos, and H. R. Kerchner, Phys. Rev. Lett. 66, 1537 (1991).
- ²⁷D. P. Norton, D. H. Lowndes, B. C. Sales, J. D. Budai, E. C. Jones, and B. C. Chakoumakos, Phys. Rev. B 49, 4182 (1994).
- ²⁸G. Y. Guo and W. M. Temmerman, Phys. Rev. B 41, 6372 (1990).
- ²⁹Hundley, J. D. Thompson, S. W. Cheong, Z. Fisk, and S. B. Oseroff, Physica C 158, 102 (1989).
- ³⁰H. Takagi, S. Uchida, and Y. Tokura, Phys. Rev. Lett. 62, 1199 (1989).
- ³¹I. Felner, U. Asaf, D. Hechel, and T. Kroner, Physica C 214, 169 (1993).
- ³²H. L. Tsay and H. D. Yang (unpublished).

- ³³Y. Dalichaouch, M. S. Torikachvili, E. A. Early, B. W. Lee, C. L. Seaman, K. N. Yang, H. Zhou, and M. B. Maple, Solid State Commun. 65, 1001 (1988).
- ³⁴S. K. Malik, C. V. Tomy, and P. Bhargava, Phys. Rev. B 44, 7042 (1991).
- ³⁵W. Guan, Y. Xu, S. R. Sheen, Y. C. Chen, J. Y. T. Wei, H. F.
- Lai, and M. K. Wu, Phys. Rev. B 49, 15 993 (1994).
- ³⁶J. B. Torrance and R. M. Metzger, Phys. Rev. Lett. **63**, 1515 (1989).
- ³⁷J. Fink, N. Nucker, H. Rombery, M. Alexander, M. B. Maple, J. J. Neumeier, and J. W. Allen, Phys. Rev. B 42, 4823 (1990).