

Ministério da Educação Universidade Tecnológica Federal do Paraná Câmpus Pato Branco

Alunos:

Tony Evaristo Magalhaes Melo
 Vinicius Soares do Rosario
 Isabela Santana
 Lucas Biavati
 Laura Gabrielli Rech
 RA: 2479974
 RA: 2247305
 RA: 2417219
 RA: 2080362
 RA: 2516292

Respostas do Questionário do Exp. 6, Atrito

Questão 1. (2 pontos) Preencha as colunas de dados das tabelas com o número adequado de algarismos significativos e unidades.

Blocos:

Superficie 1: Atrito
Superficie 2: Liso

Pranchas:

Superficie 1: Lisa (Tabua)
Superficie 2: MDF

-

Dados Experimentais (bloco 1 + superfície 1):

L (cm)	h (cm)	θ = arcsen(h/L)
120,00	68,00	34,51°
120,00	75,00	38,68°
120,00	73,00	37,46°

Dados Experimentais (bloco 1 + superfície 2):

•			_
L (cm)	h (cm)	θ = arcsen(h/L)	
120,00	73,00	37,46°	
120,00	68,00	34,51°	
120,00	73,00	37,46°	

Dados Experimentais (bloco 2 + superfície 1):

L (cm)	h (cm)	θ = arcsen(h/L)
120,00	49,00	24,10°
120,00	48,00	23,57°
120,00	45,00	22,02°

Dados Experimentais (bloco 2 + superfície 2):

L (cm)	h (cm)	θ = arcsen(h/L)
120,00	50,00	24,62°
120,00	49,00	24,10°
120,00	50,00	24,62°

Massas (g)		Superficíes	
Mblocos: 197		Bloco:	Liso
^M ganchos anilhas:	206,7	Prancha:	MDF

Dados Experimentais

x0 (cm)	xf (cm)	t1 (s)	t2 (s)	t3(s)
0,00	15,00	0,165	0,157	0,160
0,00	30,00	0,277	0,270	0,273
0,00	45,00	0,356	0,357	0,357
0,00	60,00	0,435	0,429	0,427

Dados Calculados			
Δx (cm) <t>(s)</t>			
15,00	0,161		
30,00	0,273		
45,00	0,357		
60,00	0,430		

Questão 2. (2 pontos) Determine os valores médios do coeficiente de atrito estático para cada par de superfícies.

BL = Bloco S = Superfície

BL1 + S1

1 – 0,687 μς

2 – 0,800 μc

3 – 0, 766 μc

Media = 0,751 μc

BL1 + S2

1 – 0,766 μς

2 – 0,687 μc

3 – 0,766 μς

Media = 0,740 μc

BL2 + S1

 $1 - 0,447 \mu c$

2 – 0,436 μς

 $3 - 0,404 \mu c$

Media = 0,429 μc

BL2 + S2

1 – 0,458 μς

 $2 - 0,447 \mu c$

3 – 0,458 μς

Media = 0,454 μc

Questão 3. (2 pontos) Faça um gráfico $x \times \langle t \rangle$ para os dados obtidos para o movimento do bloco sujeito ao atrito cinético.

Questão 4. (4 pontos)

 i. Faça uma regressão quadrática dos dados obtidos para o movimento do bloco sujeito ao atrito cinético.

$$y = 82,218x^2 + 107,15x - 4,5893$$

 $R^2 = 0,9987$

ii. Compare a equação com a equação quadrática e determine o valor da aceleração do bloco e sua velocidade inicial, isto é, sua velocidade ao passar pelo primeiro sensor.

 iii. Utilize o valor obtido para a aceleração para determinar através da Equação 11.32 o valor do coeficiente de atrito cinético.

$$\mu c = M2/M1 - M1+M2/M1 * a/g$$

 $\mu c = 201(g)/197(g) - 197(g)+201(g)/197(g) * 1,64436m/s^2/9,8m/s^2$
 $\mu c = 0,68$.