

3D Vision and Machine Perception

Prof. Kyungdon Joo

3D Vision & Robotics Lab.

Al Graduate School (AIGS) & Computer Science and Engineering (CSE)

Some materials, figures, and slides (used for this course) are from textbooks, published papers, and other open lectures

Depth (3D) sensing

• Depth is a crucial cue for many computer vision applications

Robotic (NASA)

Drones (DJI)

Autonomous driving (Google)

Gaming (Microsoft)

Biometric (Apple)

Augmented Reality (Microsoft)

"3D photo" in a mobile industry

Cinema4D image generation

Mobile AR

Out-focusing with swirly blur filter

Mobile application

AR development kit Google vs Apple

GOOGLE ARCORE

Autonomous driving application

BOSCH STEREO CAMERA ENTERS PRODUCTION AS SINGLE-PIECE SOLUTION FOR EMERGENCY BRAKING

Active depth sensing

- Depth is perceived by perturbing the sensed environment:
 - LiDAR (e.g., Velodyne)
 - Structured light (e.g., Kinect 1)
 - Active stereo (e.g., Intel RealSense)

Passive depth sensing

Slide credit: CVPR 2019 Tutorial: Learning-based depth estimation from stereo and monocular images: successes, limitations and future challenges

Landmarks of Stereo Matching

Traditional Stereo Matching

Stereo matching

- Given two (or more) images of the same scene, aims at inferring depth
- The **disparity** is the difference between x coordinates of corresponding points

Overall procedure of stereo matching

• Procedure

Rectified stereo images

Depth map

Stereo rectification

- Stereo Rectification:
 - 1. Compute E to get R
 - 2. Rotate right image by R
 - 3. Rotate both images by Rrect
 - 4. Scale both images by H

- Stereo Rectification:
 - 1. Compute E to get R
 - 2. Rotate right image by R
 - 3. Rotate both images by Rrect
 - 4. Scale both images by H

- Stereo Rectification:
 - 1. Compute E to get R
 - 2. Rotate right image by R
 - 3. Rotate both images by Rrect
 - 4. Scale both images by H

- Stereo Rectification:
 - 1. Compute **E** to get **R**
 - 2. Rotate right image by R
 - 3. Rotate both images by Rrect
 - 4. Scale both images by H

- Stereo Rectification:
 - 1. Compute E to get R
 - 2. Rotate right image by R
 - 3. Rotate both images by Rrect
 - 4. Scale both images by H

• Stereo Rectification:

- 1. Compute E to get R
- 2. Rotate right image by R
- 3. Rotate both images by Rrect
- 4. Scale both images by **H**

- Stereo Rectification:
 - 1. Compute E to get R
 - 2. Rotate right image by R
 - 3. Rotate both images by Rrect
 - 4. Scale both images by H

Overview of disparity (depth) estimation in stereo setup

- Rectify images (make epipolar lines horizontal)
- For each pixel
 - Find epipolar line

 - Scan line for best match ("correspondence problem") Compute depth from disparity ($Z=\frac{bf}{l}$)

Correspondence problem

- Finding homologous points is crucial (and challenging)
- Stereo pairs are typically rectified (homologous points into the same scanline)
- Once found corresponding points, depth is inferred by a simple triangulation

Slide credit: CVPR 2019 Tutorial: Learning-based depth estimation from stereo and monocular images: successes, limitations and future challenges

How to find homologous points?

- Looking for similar points/patches along scanlines
- Corresponding points are sought within a prefixed (disparity) range [dmin,dmax]

Slide credit: CVPR 2019 Tutorial: Learning-based depth estimation from stereo and monocular images: successes, limitations and future challenges

How to evaluate similarity between two points?

- Given a point p_R in the reference image, at each potential correspondence p_T in $[d_{min},d_{max}]$ in the target image is associated a *score*
- Such score is referred to as *matching cost* $C(p_R, p_T, d)$, with d in $[d_{min}, d_{max}]$
- Pointwise matching cost (e.g., $|I(p_R)-I(p_T)|$)
- Patch based matching cost (e.g., average $|I(p_R)-I(p_T)|$ on a patch)

- Each p_R is assumed as uncorrelated to its neighbors
- Often, disparity selection consists in selecting the minimum score (WTA)

Cost volume or DSI (Disparity Space Image)

• The data structure containing all matching costs $C(p_R, p_T, d)$, with d in $[d_{min}, d_{max}]$

Slide credit: CVPR 2019 Tutorial: Learning-based depth estimation from stereo and monocular images: successes, limitations and future challenges

Summary: Traditional Stereo Matching

• Procedure of stereo matching [2]

Parametric – AD, SAD, BT, mean filter,
Laplacian of Gaussian,
Bilateral filtering, ZSAD,
NCC, ZNCC

Nonparametric – Rank filter, Softrank filter,
Census filter, Ordinal

Mutual Information – Hierarchical MI

Cost computation

Cost aggregation

Graph-cuts

Iterative refinement

^[1] Scharstein, Daniel, and Richard Szeliski. "A taxonomy and evaluation of dense two-frame stereo correspondence algorithms." International journal of computer vision 47.1-3 (2002): 7-42.

^[2] Jeon, Hae-Gon, et al. "Accurate depth map estimation from a lenslet light field camera." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

Deep Learning-based Stereo Matching

1st Generation of Learning-based Matching

• The role of CNN: (1) Matching

2nd Generation of Learning-based Matching

• The role of CNN: (1) Matching, (2) Refinement

3rd Generation of Learning-based Matching

• The role of CNN: (1) Geometry-inspired Matching, (2) Cost aggregation, (3) Disparity Computation, (4) Refinement

End-to-End Structure!!

CVPR18, DeepMVS, Huang et al. ECCV18, MVSNet, Yao et al. ICLR19, DPSNet, Im et al.

1st Generation of Learning-based Matching

- Computing the Stereo Matching Cost with a Convolutional Neural Network
- The role of CNN: (1) Matching cost computation

R

Dataset generation

R

Dataset generation

reference

Positive

Negative

- ReLU follow each layer
- 600 thousand parameters

67 seconds

KITTI 2015 Benchmark

• Sensor setup: GPS/IMU, LiDAR, grayscale/color cameras

• Various tasks for autonomous vehicles: stereo, optical flow, scene flow, depth, odometry, object, tracking, semantics, etc.

• KITTI 2015 Benchmark

2019.03.25

Method	Setting Code D1-bg D1	1-fg <u>D1-all</u> Density Rur	ntime	Environment	Compare
111 <u>MC-CNN-acrt</u>	<u>code</u> 2.89 % 8.	88 % 3.89 % 100.00 % 6	57 s	Nvidia GTX Titan X (CUDA, Lua/Torch7)	
J. Zbontar and Y. LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. Submitted to JMLR.					

• Results comparison

2nd Generation of Learning-based Matching

- A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation (CVPR16)
- The role of CNN: (1) Matching, (2) Refinement

CVPR16, DispNet, Mayer et al. CVPR17, DeMoN, Ummenhofer et al.

• New dataset "FlyingThings3D", "Monkaa", "Driving"

Name	Kernel	Str.	Ch I/O	InpRes	OutRes	Input
conv1	7×7	2	6/64	768×384	384×192	Images
conv2	5×5	2	64/128	384×192	192×96	conv1
conv3a	5×5	2	128/256	192×96	96×48	conv2
conv3b	3×3	1	256/256	96×48	96×48	conv3a
conv4a	3×3	2	256/512	96×48	48×24	conv3b
conv4b	3×3	1	512/512	48×24	48×24	conv4a
conv5a	3×3	2	512/512	48×24	24×12	conv4b
conv5b	3×3	1	512/512	24×12	24×12	conv5a
conv6a	3×3	2	512/1024	24×12	12×6	conv5b
conv6b	3×3	1	1024/1024	12×6	12×6	conv6a
pr6+loss6	3×3	1	1024/1	12×6	12×6	conv6b
upconv5	4×4	2	1024/512	12×6	24×12	conv6b
iconv5	3×3	1	1025/512	24×12	24×12	upconv5+pr6+conv5b
pr5+loss5	3×3	1	512/1	24×12	24×12	iconv5
upconv4	4×4	2	512/256	24×12	48×24	iconv5
iconv4	3×3	1	769/256	48×24	48×24	upconv4+pr5+conv4b
pr4+loss4	3×3	1	256/1	48×24	48×24	iconv4
upconv3	4×4	2	256/128	48×24	96×48	iconv4
iconv3	3×3	1	385/128	96×48	96×48	upconv3+pr4+conv3b
pr3+loss3	3×3	1	128/1	96×48	96×48	iconv3
upconv2	4×4	2	128/64	96×48	192×96	iconv3
iconv2	3×3	1	193/64	192×96	192×96	upconv2+pr3+conv2
pr2+loss2	3×3	1	64/1	192×96	192×96	iconv2
upconv1	4×4	2	64/32	192×96	$384\!\times\!192$	iconv2
iconv1	3×3	1	97/32	384×192	$384\!\times\!192$	upconv1+pr2+conv1
pr1+loss1	3×3	1	32/1	384×192	$384\!\times\!192$	iconv1

Network details

Manage	1/1	Ct	Cl. I/O	ID	O-+P	I
Name	Kernel	Str.	Ch I/O	InpRes	OutRes	Input
conv1	7×7	2	6/64	768×384	384×192	Images
conv2	5×5	2	64/128	384×192	192×96	conv1
conv3a	5×5	2	128/256	192×96	96×48	conv2
conv3b	3×3	1	256/256	96×48	96×48	conv3a
conv4a	3×3	2	256/512	96×48	48×24	conv3b
conv4b	3×3	1	512/512	48×24	48×24	conv4a
conv5a	3×3	2	512/512	48×24	24×12	conv4b
conv5b	3×3	1	512/512	24×12	24×12	conv5a
conv6a	3×3	2	512/1024	24×12	12×6	conv5b
conv6b	3×3	1	1024/1024	12×6	12×6	conv6a
pr6+loss6	3×3	1	1024/1	12×6	12×6	conv6b
upconv5	4×4	2	1024/512	12×6	24×12	conv6b
iconv5	3×3	1	1025/512	24×12	24×12	upconv5+pr6+conv5b
pr5+loss5	3×3	1	512/1	24×12	24×12	iconv5
upconv4	4×4	2	512/256	24×12	48×24	iconv5
iconv4	3×3	1	769/256	48×24	48×24	upconv4+pr5+conv4b
pr4+loss4	3×3	1	256/1	48×24	48×24	iconv4
upconv3	4×4	2	256/128	48×24	96×48	iconv4
iconv3	3×3	1	385/128	96×48	96×48	upconv3+pr4+conv3b
pr3+loss3	3×3	1	128/1	96×48	96×48	iconv3
upconv2	4×4	2	128/64	96×48	192×96	iconv3
iconv2	3×3	1	193/64	192×96	192×96	upconv2+pr3+conv2
pr2+loss2	3×3	1	64/1	192×96	192×96	iconv2
upconv1	4×4	2	64/32	192×96	$384\!\times\!192$	iconv2
iconv1	3×3	1	97/32	384×192	384×192	upconv1+pr2+conv1
pr1+loss1	3×3	1	32/1	384×192	$384\!\times\!192$	iconv1

Network details

Name	Kernel	Str.	Ch I/O	InpRes	OutRes	Input
conv1	7×7	2	6/64	768×384	384×192	Images
conv2	5×5	2	64/128	384×192	192×96	conv1
conv3a	5×5	2	128/256	192×96	96×48	conv2
conv3b	3×3	1	256/256	96×48	96×48	conv3a
conv4a	3×3	2	256/512	96×48	48×24	conv3b
conv4b	3×3	1	512/512	48×24	48×24	conv4a
conv5a	3×3	2	512/512	48×24	24×12	conv4b
conv5b	3×3	1	512/512	24×12	24×12	conv5a
conv6a	3×3	2	512/1024	24×12	12×6	conv5b
conv6b	3×3	1	1024/1024	12×6	12×6	conv6a
pr6+loss6	3×3	1	1024/1	12×6	12×6	conv6b
upconv5	4×4	2	1024/512	12×6	24×12	conv6b
iconv5	3×3	1	1025/512	24×12	24×12	upconv5+pr6+conv5b
pr5+loss5	3×3	1	512/1	24×12	24×12	iconv5
upconv4	4×4	2	512/256	24×12	48×24	iconv5
iconv4	3×3	1	769/256	48×24	48×24	upconv4+pr5+conv4b
pr4+loss4	3×3	1	256/1	48×24	48×24	iconv4
upconv3	4×4	2	256/128	48×24	96×48	iconv4
iconv3	3×3	1	385/128	96×48	96×48	upconv3+pr4+conv3b
pr3+loss3	3×3	1	128/1	96×48	96×48	iconv3
upconv2	4×4	2	128/64	96×48	192×96	iconv3
iconv2	3×3	1	193/64	192×96	192×96	upconv2+pr3+conv2
pr2+loss2	3×3	1	64/1	192×96	192×96	iconv2
upconv1	4×4	2	64/32	192×96	$384\!\times\!192$	iconv2
iconv1	3×3	1	97/32	384×192	$384\!\times\!192$	upconv1+pr2+conv1
pr1+loss1	3×3	1	32/1	384×192	$384\!\times\!192$	iconv1

• KITTI 2015 Benchmark

$ \gamma$	7	\mathbf{n}	Λ^{-}	חרו
		9	() •	3.25
	•	· / ·	\sim	,. <u>_</u>

Met	hod Setting	Code	D1-bg	D1-fg	<u>D1-all</u>	Density	Runtime	Environment	Compare
111 <u>MC-CN</u>	N-acrt	<u>code</u>	2.89 %	8.88 %	3.89 %	100.00 %	67 s	Nvidia GTX Titan X (CUDA, Lua/Torch7)	
J. Zbontar and Y. L	Cun: Stereo Matching by	<u>Training a</u>	Convolutio	onal Neural	l Network t	to Compare In	<u>age Patches</u> . Su	ubmitted to JMLR .	
116 <u>Disp</u>	<u>NetC</u>	<u>code</u>	4.32 %	4.41 %	4.34 %	100.00 %	0.06 s	Nvidia GTX Titan X (Caffe)	
N. Mayer, E. Ilg, P.	Häusser, P. Fischer, D. Cre	emers, A. D)osovitskiy	and T. Brox	x: <u>A Large l</u>	Dataset to Tra	in Convolutiona	l Networks for Disparity, Optical Flow, and Scene Flow Estimation. CVPR	2016.
121 Conte	nt-CNN		3.73 %	8.58 %	4.54 %	100.00 %	1 s	Nvidia GTX Titan X (Torch)	

• Results comparison

CRL (Pang et al. ICCVW17)

• <u>Cascaded Residual Learning</u>: A Two-stage Convolutional Neural Network for

Stereo Matching

• Idea: Design two network:

- Network 1: Initial depth estimation network (Dispnet with extra up-convolution modules)
- Network 2: Refinement network (DispResNet)

Layer	K	S	Channels	I	0	Input Channels
conv1	5	1	13/64	1	1	left+right+left_s+err+pr_s1
conv2	5	2	64/128	1	2	conv1
conv2_1	3	1	128/128	2	2	conv2
conv3	3	2	128/256	2	4	conv_3_1
conv3_1	3	1	256/256	4	4	conv3
conv4	3	2	256/512	4	8	conv3_1
conv4_1	3	1	512/512	8	8	conv4
conv5	3	2	512/1024	8	16	conv4_1
conv5_1	3	1	1024/1024	16	16	conv5
res_16	3	1	1024/1	16	16	conv5_1
pr_s1_16	-	-	1/1	1	16	pr_s1
pr_s2_16	2	2	1/1	16	16	pr_s1_16+res_16
upconv4	4	2	1024/512	16	8	conv5_1
iconv4	3	1	1025/512	8	8	upconv4+conv4_1+pr_s2_16
res_8	3	1	512/1	8	8	iconv4
pr_s1_8	=	5	1/1	1	8	pr_s1
pr_s2_8	8	=	1/1	8	8	pr_s1_8+res_8
upconv3	4	2	512/256	8	4	iconv4
iconv3	3	1	513/256	4	4	upconv3+conv3_1+pr_s2_8
res_4	3	1	256/1	4	4	iconv3
pr_s1_4	9	-	1/1	1	4	pr_s1
pr_s2_4		2	1/1	4	4	pr_s1_4+res_4
upconv2	4	2	256/128	4	2	iconv3
iconv2	3	1	257/128	2	2	upconv2+conv2_1+pr_s2_4
res_2	3	1	128/1	2	2	iconv2
pr_s1_2	- 2	2	1/1	1	2	pr_s1
pr_s2_2	2	2	1/1	2	2	pr_s1_2+res_2
upconv1	4	2	128/64	2	1	iconv2
res_1	5	1	129/1	1	1	upconv1+conv1+pr_s2_2
pr_s2		2	1/1	1	1	pr_s1+res_1

The detailed architecture

CRL (Pang et al. ICCVW17)

1. DispFulNet

- (1) Input: Stereo images I_L , I_R
- (2) Outputs: Initial Disparity d_1 + Warped Right image \tilde{I}_L , error e_L $e_L = |I_L \tilde{I}_L(x,y)|$

$$\tilde{I}_L(x,y) = I_L(x + d_1(x,y), y)$$

$$e_L = |I_L - \tilde{I}_L(x,y)|$$

2. DispResNet

- (1) Input: Stereo images I_L , I_R , Initial Disparity d_1 + Warped Right image $ilde{I}_L$, error e_L
- (2) Outputs: Residual Disparity d_2

CRL (Pang et al. ICCVW17)

• KITTI 2015 Benchmark

\sim	100	$\sim \sim 10$
70	191)3.25

	Method	Setting	Code	D1-bg	D1-fg	<u>D1-all</u>	Density	Runtime	Environment	Compare
71	CRL		<u>code</u>	2.48 %	3.59 %	2.67 %	100.00 %	0.47 s	Nvidia GTX 1080	
J. Pang, \	W. Sun, J. Ren, C. Yang	and Q. Yan: <u>C</u>	ascade n	esidual lea	rning: A tw	<u>/o-stage co</u>	nvolutional ne	eural network for	r stereo matching. ICCV Workshop on Geometry Meets Deep Learning 20	17.
111	MC-CNN-acrt		<u>code</u>	2.89 %	8.88 %	3.89 %	100.00 %	67 s	Nvidia GTX Titan X (CUDA, Lua/Torch7)	
J. Zbonta	ar and Y. LeCun: <u>Stereo /</u>	Matching by T	raining a	Convolution	onal Neura	l Network t	o Compare Im	nage Patches. Sul	bmitted to JMLR .	
116	<u>DispNetC</u>		<u>code</u>	4.32 %	4.41 %	4.34 %	100.00 %	0.06 s	Nvidia GTX Titan X (Caffe)	
N. Mayer,	, E. Ilg, P. Häusser, P. Fis	cher, D. Crem	ners, A. D	osovitskiy	and T. Bro	x: <u>A Large</u>	Dataset to Tra	in Convolutional	Networks for Disparity, Optical Flow, and Scene Flow Estimation. CVPR	2016.
121	Content-CNN			3.73 %	8.58 %	4.54 %	100.00 %	1 s	Nvidia GTX Titan X (Torch)	
W. Luo, A	A. Schwing and R. Urtası	un: <u>Efficient D</u>	eep Lea	rning for St	tereo Matc	hing. CVPR	2016.			

Results comparison

3rd Generation of Learning-based Matching

GCNet (Kendall et al. ICCV17)

- End-to-End Learning of Geometry and Context for Deep Stereo Regression
- First learning-based approach
 - Cost volume generation
 - WTA strategy using softmax

PSMNet (Chang et al. CVPR 18)

- (1) SPP module
- (2) Cost volume (Concatenate left-right features across each disparity level)
- (3) 3D CNN (Basic vs Stacked hourglass)
- (4) Regression (SoftMax & weighted sum)

PSMNet (Chang et al. CVPR 18)

• KITTI 2015 Benchmark

201	9	U3	25
ZU	· 7.	LU.	.ZJ

		Setting	code	D1-Dg	D1-tg	<u>D1-all</u>	Density	Runtime	Environment	Compare
11	PSMNet R			1.62 %	3.79 %	1.98 %	100.00 %	0.5 s	GPU @ 2.5 Ghz (Python)	
	<u>iResNet-i2e2</u>			2.10 %	3.64 %	2.36 %	100.00 %	0.25 s	Nvidia Titan X (Pascal)	
J. Pang Z.	Liang, Y. Feng, Y. Guo a	and H. Liu: <u>Lea</u>	arning De	ep Corresp	ondence th	rough Prior	and Posterior	Feature Constancy. a	rXiv preprint arXiv:1712.01039 2017.	
71	<u>CRL</u>		<u>code</u>	2.48 %	3.59 %	2.67 %	100.00 %	0.47 s	Nvidia GTX 1080	
J. Pang, W	. Sun, J. Ren, C. Yang	and Q. Yan: C	ascade re	esidual lea	rning: A tw	vo-stage co	nvolutional ne	eural network for ste	reo matching. ICCV Workshop on Geometry Meets Deep Learnin	ng 2017.
111	MC-CNN-acrt		<u>code</u>	2.89 %	8.88 %	3.89 %	100.00 %	67 s	Nvidia GTX Titan X (CUDA, Lua/Torch7)	
J. Zbontar	and Y. LeCun: Stereo I	Matching by Ti	raining a	Convolutio	onal Neura	l Network	to Compare Im	nage Patches. Submit	ted to JMLR .	······································
116	<u>DispNetC</u>		<u>code</u>	4.32 %	4.41 %	4.34 %	100.00 %	0.06 s	Nvidia GTX Titan X (Caffe)	
N. Mayer, B	E. Ilg, P. Häusser, P. Fis	cher, D. Crem	ers, A. D	osovitskiy	and T. Bro	x: <u>A Large</u>	Dataset to Tra	in Convolutional Net	works for Disparity, Optical Flow, and Scene Flow Estimation. C	VPR 2016.
121	Content-CNN			3.73 %	8.58 %	4.54 %	100.00 %	1 s	Nvidia GTX Titan X (Torch)	

• Results comparison

