EE240: Power Engineering LAB Induction Motor

Instructor

Prof. B. G. Fernandes

9/3/2021, Tuesday

Classification of Machines:

AC machine

<u>Asynchronous machine:</u>

consider 3 coils of 'N' turns, displaced in space by 120°,

let
$$i_a = I_m \sin(\omega_s t)$$

$$i_b = I_m \sin\left(\omega_s t - \frac{2\pi}{3}\right)$$

$$i_c = I_m \sin\left(\omega_s t + \frac{2\pi}{3}\right)$$
 where $\omega_s = 2\pi f_1$

where
$$\omega_s = 2\pi f_1$$

- ⇒ current in each coil produces a pulsating magnetic field.
- ⇒ amplitude & direction depend on the instantaneous value of 'I' flowing through it.
- \Rightarrow each phase winding produces a similar magnetic field displaced by 120° in <u>space</u> from each other.

- ⇒ magnitude and position of the resultant field can be determined as follows
- resolve the field produced by individual coil along x & y axes
- determine $\sum x \& \sum y$ components

• resultant 'R'=
$$\sqrt{\sum x^2 + \sum y^2}$$

and $\theta = \tan^{-1} \frac{y}{x}$ w.r.t. axis of coil 'A'

$$\sum x = Ni_a + Ni_b \cos(120) + Ni_c \cos(240) = Ni_a - \frac{1}{2} Ni_b - \frac{1}{2} Ni_c$$

$$i_a + i_b + i_c = 0 \qquad \sum x = \frac{3}{2} Ni_a$$

$$\Sigma y = 0 + Ni_b sin(-120) + Ni_c sin(-240) = \frac{\sqrt{3}}{2} N[i_c - i_b]$$

 \Rightarrow i_a, i_b & i_c are sinusoidal varying quantities

			-	•			
$\omega_s t$	i_a	i_b	i_c	$\sum x$	$\sum y$	R	θ
0°	0	$-\frac{\sqrt{3}}{2}I_m$	$\frac{\sqrt{3}}{2}I_m$	0	$\frac{3}{2}NI_m$	$\frac{3}{2}NI_m$	$\frac{\pi}{2}$
30°	$\frac{I_m}{2}$	$-I_m$	$\frac{I_m}{2}$	$\frac{3}{4}NI_m$	$\left \frac{3\sqrt{3}}{4} N I_m \right $	$\frac{3}{2}NI_m$	$\frac{\pi}{3}$
90°	I_m	$-\frac{I_m}{2}$	$-\frac{I_m}{2}$	$\frac{3}{2}NI_m$	0	$\frac{3}{2}NI_m$	0
180°	0	$\frac{\sqrt{3}}{2}I_m$	$-\frac{\sqrt{3}}{2}I_m$	0	$\frac{3}{2}NI_m$	$\frac{3}{2}NI_m$	$\frac{-\pi}{2}$

Observations:

- magnitude of 'R' is constant, | → peak value
- Input 'l' completes $\frac{1}{4}$ cycle
 - \Rightarrow 'R' rotates by 90°
- Input 'l' completes $\frac{1}{2}$ cycle
 - \Rightarrow 'R' rotates by 180°

Conclusion:

- \Rightarrow the result of displacing 3 windings by 120° in space and displacing the winding 'I' by 120° in time phase is a single <u>revolving</u> field of constant magnitude.
- \Rightarrow for a given winding arrangements speed of rotation is determined by frequency of input 'V' or 'I' alone.

 $\omega_{\rm m} = \omega_{\rm s} \frac{2}{\rm p} \, {\rm rad/sec(mech)}$: the speed of rotating magnetic field is

If 'N_s' is speed in rpm,
$$\frac{2\pi N_s}{60} = \left(\frac{2}{P}\right) 2\pi f_1$$

In practice stator winding of IM is distributed in large number of slots.

∴
$$N_s = \frac{120f_1}{P}$$
 rpm $P \rightarrow \text{no. of poles}$

$$P \rightarrow no. of poles$$

The winding is distributed and number of poles depend on winding arrangement.

Rotor: Two types of constructions

Squirrel cage: aluminum/ cu bars are embedded in the rotor slots and permanently shorted at both ends by al/cu end rings

- ⇒ electrically closed circuit
- \Rightarrow no additional 'R' can be connected.

Slip Ring Rotor: three phase winding is placed in rotor slots

- ⇒ three terminals of the windings are connected to three rings fixed to rotor shaft
- \Rightarrow external 'R'/'Z'/'V source' can be connected to these rings.

In both cases, when the rotor is at rest, synchronously rotating stator field induces voltage of stator frequency in rotor.

- \because rotor is at rest, relative speed between stator field & rotor is N_s 0 = N_s \rightarrow is maximum
- ∵ relative speed between field and conductor(rotor) is maximum, induced emf
- ∴rotor 'l' is maximum.
- \Rightarrow similar to transformer, for any current in secondary (rotor) there is an equivalent 'l' in primary(stator)
- :. if an IM is started at rated V & f, a high 'I' will be drawn from the source
- \Rightarrow this 'l' could be \cong (6 7) times I_{Fl}
- ⇒ current carrying conductor placed in magnetic field experience a force

- ⇒ conductor (rotor) starts rotating
- \Rightarrow as the speed \uparrow , relative speed between stator field & rotor \downarrow . As a result:
- \rightarrow induced 'V' in the rotor and hence the current \downarrow
- → Frequency of induced 'V' & 'I' in the rotor ↓

- \Rightarrow rotor eventually reach a steady state speed N_r, N_r<N_s
- \Rightarrow N_r can not be = N_s because at N_r = N_s, relative speed between rotor (conductor) and stator field is zero.
- ⇒ no emf & ∴ no 'l' & no force or torque

$$slip s = \frac{N_S - N_R}{N_S} :: N_R = (1 - s)N_S$$

- $\Rightarrow N_s N_r \rightarrow \text{slip speed & }$ slip in terms of frequency, $s = \frac{f_1 f_3}{f_1} = \frac{\omega_s \omega_r}{\omega_s} = \frac{f_2}{f_1}$
 - \sqcup slip frequency \Rightarrow frequency of rotor 'V' / 'I' $f_3 \rightarrow$ frequency corresponding to rotor speed
 - assume that if no load (external torque) is applied to the rotor shaft
 - \Rightarrow developed torque by the motor \Rightarrow overcome friction
 - \Rightarrow should be very small (if neglected N_r = N_s)
 - ... required rotor 'I' should also be small

- \Rightarrow (N_s- N_r) is small (how small is this small?)
- \Rightarrow apply external torque(T₁) to the motor shaft
- \Rightarrow motor should develop torque > T₁
- ⇒ 'I' flowing in the conductor(rotor) should
- \Rightarrow (N_s N_r) should \uparrow
- \Rightarrow There would be corresponding \uparrow in I_s (stator'l')
- ∴ In IM, N_r is function of load
- As TL \uparrow Nr \downarrow & \therefore s \uparrow
- N_r can never be equal to N_s
- \Rightarrow for steady torque, stator field (F_s)
 - & rotor field(F_r) should be stationary w.r.t. each other

EE240: Power Engineering LAB

- \Rightarrow speed of F_s = N_s
- \Rightarrow direction of F_r is the same as that of F_s
- \Rightarrow Frequency of rotor 'l' is sf₁
- ⇒ these currents produce a field which rotates at sN_s rpm

w.r.t. rotor in same direction as that of Fs

- \Rightarrow rotor rotates at N_r w.r.t. stator
- \therefore speed of F_r w.r.t. stator

$$= N_r + sN_s = (1 - s)N_s + sN_s = N_s$$

⇒ thus both fields are stationary w.r.t. each other

- \Rightarrow rotor of IM has no electrically conducting connection with the stator supply (similar to that of a transformer secondary)
- \Rightarrow Input power is converted to mechanical output is transferred inductively by transformer action from stator to rotor by means of mutual flux
- ⇒ electrical behavior of IM is similar to that of a transformer.

EE240: Power Engineering LAB

 \Rightarrow additional feature is frequency transformation (Frequency of rotor current =sf₁)

Equivalent circuit:

$$\mathbf{x}_{\mathsf{rl}} = 2\pi \mathbf{f}_2 \mathbf{I}_{\mathsf{rl}},$$

 $I_{rl} \rightarrow leakage inductance in rotor$

$$E_2 = 4.44f_2 \phi_M N_2 k_w$$

 $k_w \rightarrow$ depends on winding, < 1

$$= \frac{E_2}{R_r + jx_{rl}} = \frac{s(4.44f_1\phi_1N_2k_w)}{R_r + js(2\pi f_1l_{rl})} = \frac{E_2}{\frac{R_r}{S} + jx_{rl}}$$
 frequency of E_2 , $f_2 = sf_1$

 \rightarrow Frequency of rotor 'I' = f_1

Assuming some turns ratio

- ⇒ IM can be thought of as a generator feeding a fictitious 'R'
 - ⇒ it is fictitious because unlike in a transformer, it is not an external 'R' connected at the load terminals
- \Rightarrow mech. power developed/phase = ohmic loss in fictitious secondary resistance, $\frac{R'_r}{a}(1-s)$

developed power,
$$P_d = {l'}_2^2 \frac{R'_r(1-s)}{s}$$

rotor cu loss = $({l'}_2)^2 R'_r$

∴ i/p air gap power or i/p power to rotor,

$$P_a = (I'_2)^2 \frac{R'_r}{s}$$
 :: $P_a: I'_2R'_r: P_d = 1:s:(1-s)$

: developed torque,

$$T_{d/ph} = \frac{P_d}{\omega_r} = \frac{P_a(1-s)}{2\pi n_s(1-s)} = \frac{P_a}{2\pi n_s} \therefore T_d \alpha P_a, \text{ independent of speed of rotation}$$

 $P_a \rightarrow air gap input power \Rightarrow Input power/phase = P_a + stator cu. Loss/phase + core loss/phase$

$$\sqrt{3}V_LI_L\cos\theta = Input power/phase * 3$$

output power/phase, $P_{out} = P_d - frictional loss/phase$

 $\therefore \% \eta = \frac{\text{output power}}{\text{input power}} \times 100$

T - N characteristics:

$$T_d = \frac{3V_1^2}{2\pi n_s} \frac{R_r'}{s} \frac{1}{\left[\left(R_s + \frac{R_r'}{s} \right)^2 + (X_{sl} + X_{rl}')^2 \right]}$$

at normal speeds close to N_s, 's' is very small

$$\therefore |R_s + R'_r/s| >> (X_{sl} + X'_{rl}) \text{ and } |R_s| << |R'_r/s|$$

$$T_d \alpha s$$

 \therefore T - N_r characteristics is \cong linear

$$T_d = 0$$
 at $N_r = N_s$, corresponding $s = 0$

$$T_d \uparrow as s \uparrow$$

$$T = T_{max}$$
 when $\frac{dTd}{ds} = 0$

$$T = \frac{3V_1^2}{2\pi n_s} \frac{R'_r}{s} \frac{1}{\left[\left(R_s + \frac{R'_r}{s} \right)^2 + X^2 \right]}$$

$$s_{\text{max}} = \frac{R'_r}{\sqrt{R_s^2 + X^2}}$$

$$\therefore T_{max} = \frac{3V_1^2}{2\pi n_s} \frac{R_r'}{\frac{R_r'}{\sqrt{R_s^2 + X^2}}} \frac{1}{\left[\left(R_s + \frac{R_r'}{R_r'} \sqrt{R_s^2 + X^2} \right)^2 + X^2 \right]}$$

$$\therefore T_{max} = \frac{3V_1^2}{4\pi n_s} \frac{\sqrt{R_s^2 + X^2}}{\sqrt{R_s^2 + X^2} \left[R_s + \sqrt{R_s^2 + X^2} \right]} \qquad \left| R_s + \frac{R_r'}{s} \right| \ll |X_{sl} + X_{rl}'| \qquad \therefore T\alpha \frac{1}{s}$$

neglecting R_S

$$\approx \frac{3V_1^2}{4\pi n_s X^2} \implies \text{Independent of R'}$$

$$s_{\text{max}} = \frac{R_r'}{\sqrt{R_s^2 + X^2}}$$
 $X = X_{sl} + X_{rl}'$

If stator parameters are neglected

$$s_{\max} = \frac{R_r'}{X_{rl}'}$$

at low speeds and at starting, $s \rightarrow 1$ \Rightarrow due to air gap, leakage flux is quite Substantial (generally $R_r/x_{rl} \cong 0.2$) ⇒T - N_r characteristic is a rectangular hyperbola

Observations:

From (A - B)

 T^{\uparrow} as $N_r \uparrow \rightarrow$ unstable from (B - C)

 $T \uparrow as N_r \downarrow \rightarrow stable$

$$\Rightarrow$$
T α V²

∴ If V \downarrow by 10%, T_{st} reduces by 19%.

N_s remains the same

- \Rightarrow at starting 'f' of 'l' in rotor = f_1
- ⇒ rotor bars are shorted
- ⇒ similar to transformer with shorted secondary

- \Rightarrow If rated 'V' is applied \Rightarrow rotor 'I' and \therefore stator 'I' will be high
- \Rightarrow one of the ways of reducing this 'I' is applying reduced 'V' to stator (f₁ is unaltered)
- \Rightarrow If motor is started with reduced 'V' (rated f_1), $T_{st} \downarrow$ reduces
- \Rightarrow In the linear region $T_d \downarrow$ as $N_r \uparrow$

- \Rightarrow In case of fan: $T_L \alpha N_r^2$
- \Rightarrow speed is varied by varying 'V' ('f' is held constant) it can be observed that as $T_L \uparrow N_r \uparrow$

Observations: Even though slip is high, rotor 'l' and \therefore stator 'l' may not be high because rotor 'l' α (N_s - N_r) ϕ ; applied V is low, ϕ is low.

EE240: Power Engineering LAB

frequency of rotor 'I' ∞ relative speed ∞ sN_s or ∞ sf₁

for normal operation, 's' varies from 0.01 to 0.03 (HP rating up to 10) frequency of rotor 'l' \rightarrow 0.5 to 1.5 Hz very low frequency ac \cong dc rotor P.F. \cong unity or $\frac{R'_r}{s} \gg X'_{rl}$

$$\therefore \frac{\frac{R'}{S}}{\sqrt{\left(\frac{R'_r}{S}\right)^2 + (X'_{rl})^2}} \approx 1$$

 I_o is pre-dominantly inductive due to air gap, $|I_0|$ much higher compared to transformer

 \Rightarrow could be (25-30)% of I_{FL}

- $\therefore \overline{I_1} = \overline{I_o} + \overline{I_2'}$ always lags the input 'V'
- .: In IM source P.F. is always lagging

(In transformer, source P.F. could be leading/lagging/unity)

Speed Control:

The Torque equation can be written as:

$$T_d = \frac{3P}{2} \frac{1}{\omega_s} \frac{\frac{V_1^2 R_r'}{S}}{\left[\left(R_s + \frac{R_r'}{S} \right)^2 + (X_{sl} + X_{rl}')^2 \right]}$$

Neglecting stator parameters

$$T_{d} = \frac{3P}{2} \frac{1}{\omega_{s}} \frac{V_{1}^{2} s R_{r}'}{\left[R_{r}'^{2} + ((s\omega_{s})L_{rl}')^{2}\right]} \approx \frac{3P}{2} \left(\frac{V_{1}}{\omega_{s}}\right)^{2} \frac{\omega_{s}}{R_{r}'}$$

$$I_m = \frac{E_1}{X_m} = \frac{E_1}{2\pi F_1 L_m} \approx \left[\frac{V_S}{2\pi F_1}\right] \frac{1}{L_m}$$

$$L_m I_m = \phi = \text{Air gap flux} = \frac{V_S}{2\pi F_1}$$

$$T_d \cong \left(\frac{3P}{2}\right) \frac{\phi^2 \omega_s}{R_r'}$$

• In IM starting I can be \downarrow by applying reduced V (f₁=f_{rated})

$$\Rightarrow \phi \downarrow \quad \therefore T_d \downarrow$$

• For pump & fan type of load ($T_L \propto N_r^2$), Y - Δ starter could be used

$$T_{st} = \frac{1}{3} T_{st \ at \ V_1 = V_{rated}}$$

• Starting 'I' can be \downarrow by keeping $\phi = \phi_{\text{rated}} \& \downarrow (N_s - N_r) N_s$ can be \downarrow by $\downarrow f_1$

- If $V_1 = V_{rated} \& f_1 \downarrow$, m/c gets saturated ($V_1 = 4.44f_1 \phi_M N_1 k_W$)
- : Keep (V_1/f_1) constant

- ⇒ Variable Voltage Variable Frequency supply
- \because ' ϕ ' is constant, T_d can also be controlled (force experienced by conductor \propto B I)
- ⇒ mmf distribution in space in case of one coil placed in 2 slots is rectangular
- ⇒ If there are large number of slots then it is a stepped waveform
- ⇒ field produced by ac current flowing in a coil is pulsating in nature

EE240: Power Engineering LAB

∴ 1- \phi motor is not self starting

