

GC/MS Application Note

Analysis of volatile organic compounds at low level in water using ITEX combined with a single quadrupole GC-MS

Katell Monteleone, Brechbühler AG, Schlieren, Switzerland

System Configuration

TriPlus RSH

ITEX-Tool with Tenax GR Trap

Trace 1310 Gaschromatograph

ISQ (Single Quadrupole MS)

PTV injector with Tenax Liner

MEGA column 624 MS 60 m x 0.32 mm 1.8 μm

Chromeleon 7.3.1 Chromatography Data System

Goal

Demonstration of a routine analytical method for the quantitation of volatile organic compounds in drinking water, using the TriPlus RSH ITEX system along with a Thermo Scientific™ ISQ™ 7000 MS system coupled with a Thermo Scientific™ TRACE™ 1310 Gas Chromatograph (GC) and Thermo Scientific™ Chromeleon™ Chromatography Data System (CDS). Method linearity and detection limits were assessed to evaluate method performance.

Sample Preparation

Three working standards (0.1 μ g/ml, 1 μ g/ml and 10 μ g/ml) were prepared in methanol. The calibration curve was prepared from 0.01 μ g/l to 5 μ g/l (parts per billion or ppb) for all compounds by adding 1 to 5 μ l working standard in 10 ml pure water. Internal standards (Toluene D8 and 1,2-Dichloroethane D4) were prepared in methanol at concentration of 1 μ g/ml, after which 5 μ l was then mixed with each 10 ml sample.

Instrument Method

The injection was performed as a Large Volume Injection with solvent split to prevent air and moisture entering the system. The components are trapped on the Tenax liner and can be desorbed in splitless mode for good sensitivity.

TriPlus RSH ITEX Conditions			
Incubation			
Agitator temperature	70°C		
Incubation time	20 min		
Extraction			
Extraction volume	1000 µl		
Aspiration flow	100 μl/s		
Dispensation flow	100 μl/s		
Pull-up delay	1 s		
Number of strokes	50		
Prefill ratio	10%		
Syringe			
Syringe temperature	75°C		
Trap pre cleaning temperatue	250°C		
Trap pre cleaning time	120 s		
Trap extraction temperatue	35°C		
Trap purge time	0 s		
Trap post cleaning temperatue	250°C		
Trap post cleaning time	200 s		
Injection			
Injection depth	30 mm		
Injection speed	40 μl/s		
Injection temperature 280°C			
Penetration speed	50 mm/s		
Injection aspiration flow rate	50 μl/s		
Injection aspiration delay	1 s		

GC Conditions	
Column	MEGA 624 MS 60 m x 0.32 mm x 1.8 μm
Carrier gas	Helium, 1.5 ml/min
Oven profile	35°C, 1.5 min
	2.5°C/min 50°C
	5°C/min 200°C
	20°C/min 240°C, 1 min
Inlet PTV	Injection: 30°C, solvent split 0.67 min 6ml,
	Transfer: 14.5°C/min 280°C 20 min
	Cleaning; 14.5°C/min 300°C 5 min Split 50 ml
Inlet PTV Liner	Tenax Liner

MS Conditions SIM Mode							
nperature Transferline 220°C, Source 280°C							
Component	RT (min) Masses						
dichlorodifluoromethane	4.6	85, 87					
chloromethane	5.0	50, 52					
vinyl chloride	5.2	61, 62, 64					
promomethane	5.8	94, 96					
chloroethane	6.0	64, 66					
richlorofluoromethane	6.6	101, 103					
ethene, 1,1-dichloro-	7.5	61, 96, 98					
methylene chloride	8.4	49, 84, 86					
ethylene, 1,2-dichloro-, (E)-trans	9.0	61, 96, 98					
MTBE	9.0	73, 74					
1,1-dichloroethane	9.9	63, 65, 83					
ethylenes, 1,2-dichloro-, (Z)-cis	11.0	96, 98					
2,2-dichloropropane	11.1	77, 79					
promochloromethane	11.5	49, 95, 130					
chloroform	11.6	47, 83, 85					
ethanes, 1,1,1-trichloro-	12.1	97, 99					
1-propene, 1,1-dichloro-	12.6	75, 77, 110					
carbon tetrachloride	12.6	67, 102					
1,2DCE D4	12.6	117, 119					
1,2-dichloroethane	12.8	62, 98 52, 77, 70					
benzene trichloroethylene	12.9	52, 77, 78					
nchloroethylene 1,2-dichloropropane	14.4 14.8	95, 130, 132 63, 76					
dibromomethane	15.0	93, 95, 173.8					
promodichloromethane	15.3	83, 85, 129					
1-propene, 1,3-dichloro-, CIS	16.5	75, 110					
colueneD8	17.2	98, 100					
coluene	17.4	65, 91, 92					
1-propene, 1,3-dichloro-, trans	17.8	110, 112					
1,1,2-trichloroethanes	18.2	83, 97, 132					
propane1,3-dichloro	18.7	76, 78					
tetrachloroethylene	18.9	129, 131, 166					
dibromochloromethane	19.2	79, 127, 129					
dibromoethane	19.5 107, 109						
chlorobenzene	20.9	51, 77, 112					
1,1,1,2-tetrachloroethanes	21.1	117, 131, 133					
ethylbenzene	21.3	77, 91, 106					
m/p-xylenes	21.7	77, 91, 106					
o-xylene	22.8	78, 103, 104					
styrenes	22.8	91, 106					
promoform	23.1	91, 172.8, 251.8					
sopropylbenzene	24.0	77, 105, 120					
1,1,2,2-tetrachloroethanes	24.6	83, 85, 168					
1,2,3-trichloropropane benzene, bromo-	24.7 24.8	110, 112 156, 157					
penzene, propyl-	24.8 25.3	91, 92, 120					
2-chlorotoluene	25.5 25.5	91, 126, 128					
4-chlorotoluene	25.8	91, 126, 128					
penzene, 1,3,5 -trimethyl-	25.9	105, 119, 120					
benzene, tert-butyl	26.9	91, 119, 134					
benzene, 1,2,4-trimethyl-	27.0	105, 119, 120					
benzene, (1-methylpropyl)-	27.5	91, 105, 134					
benzene, 1,4-dichloro-	27.6	111, 146, 148					
p-cymene	27.8	91, 119, 134					
benzene, 1,3-dichloro-	27.9	111, 146, 148					
penzene, 1,4-dichloro- D4	28.8	150, 152					
benzene, 1,2-dichloro-	28.8	111, 146, 148					
benzene, n-butyl	28.9	91, 92, 134					
propanes, 1,2-dibromo-3-chloro	30.8	75, 155, 157					
benzene, 1,2,4-trichloro	33.3	180, 182, 184					
naphthalenes	34.0	102, 128, 129					
1,3-butadiene, 1,1,2,3,4,4-hexachloro	34.0	189.9, 224.8, 261.9					
bezene, 1,2,3-trichloro	34.7	180, 182					

2 | IngeniousNews 01/2023 | 3

Linearity and Sensitivity

The calibration range of 0.01 μ g/l to 5 μ g/l was assessed for all compounds. The figures below demonstrate the quantitation of some tricky components at 0.01 μ g/L in a VOC standard and the calibration curve. More details shown in the table below.

3 - vynil chlorid

3 - 1,1,1,2-tetrachloroethanes

2 - dibromoethane

3 - bromoform

3 - 1,3-butadiene, 1,1,2,3,4,4-hexachloro

Discussion

The quantitation limit strongly depends on the ambient contamination in the lab and the chemicals used. The quantification limit of 0.01 μ g/l is reachable for nearly all measured components. The limit of 0.05 μ g/l is reachable for all components. MTBE and dichloromethane could not be measured due to a very significant contamination in the lab, but the detection of 0.02 μ g/l is realistic.

4 | IngeniousNews 01/2023 | 5

Peak Name	Retention Time	Quantitation	R-Squared	Cal.Type	Stand.Meth.
	min	lon	%	,,	
dichlorodifluoromethane	4.6	85	99.941	Quad	Internal 1,2DCE D4
chloromethane	4.93	50	99.993	Quad	Internal 1,2DCE D4
vinyl chloride	5.2	62	99.996	Quad	Internal 1,2DCE D4
bromomethane	5.8	94	99.955	Quad, WithOffset	Internal 1,2DCE D4
chloroethane	5.99	64	99.821	Quad	Internal 1,2DCE D4
trichlorofluoromethane	6.52	101	99.998	Quad	Internal 1,2DCE D4
ethene, 1,1-dichloro-	7.51	61	99.891	Quad	Internal TolueneD8
ethylene, 1,2-dichloro-, (E)-trans	9.04	98	99.999	Quad	Internal 1,2DCE D4
1,1-dichloroethane	9.85	83	99.989	Quad	Internal 1,2DCE D4
ethylenes, 1,2-dichloro-, (Z)-cis	11.03	96	100.000	Quad	Internal 1,2DCE D4
2,2-dichloropropane	11.03	79	99.988	Quad, WithOffset	Internal 1,2DCE D4
bromochloromethane	11.44	130	100.000	Quad	Internal 1,2DCE D4
chloroform	11.59	83	99.961	Quad, WithOffset	Internal 1,2DCE D4
ethanes, 1,1,1-trichloro-	12.17	99	99.998	Quad	Internal 1,2DCE D4
1-propene, 1,1-dichloro-	12.54	110	99.998	Quad	Internal 1,2DCE D4
carbon tetrachloride	12.58	117	99.993	Quad, WithOffset	Internal 1,2DCE D4
1,2-dichloroethane	12.81	62	99.977	Quad	Internal 1,2DCE D4
trichloroethylene	14.34	95	99.986	Quad	Internal 1,2DCE D4
1,2-dichloropropane	14.74	63	99.999	Quad	Internal 1,2DCE D4
dibromomethane	14.93	173.8	99.999	Quad	Internal 1,2DCE D4
bromodichloromethane	15.27	83	99.999	Quad	Internal 1,2DCE D4
1-propene, 1,3-dichloro-, CIS	16.45	75	99.989	Quad	Internal 1,2DCE D4
toluene	17.36	65	99.985	Quad, WithOffset	Internal TolueneD8
1-propene, 1,3-dichloro-, trans	17.74	110	99.974	Quad	Internal 1,2DCE D4
1,1,2-trichloroethanes	18.14	97	99.997	Quad	Internal 1,2DCE D4
propane1,3-dichloro	18.63	76	99.998	Quad	Internal 1,2DCE D4
tetrachloroethylene	18.82	129	99.999	Quad	Internal 1,2DCE D4
dibromochloromethane	19.11	127	99.996	Quad	Internal 1,2DCE D4
dibromoethane	19.45	107	99.998	Quad	Internal 1,2DCE D4
chlorobenzene	20.91	112	99.992	Quad	Internal 1,2DCE D4
1,1,1,2-tetrachloroethanes	21.08	131	99.990	Quad	Internal 1,2DCE D4
ethylbenzene	21.28	106	99.992	Quad, WithOffset	Internal TolueneD8
m/p-xylenes	21.61	77	99.991	Quad, WithOffset	Internal TolueneD8
styrenes	22.79	104	99.997	Quad, WithOffset	Internal TolueneD8
o-xylene	22.8	106	99.999	Quad, WithOffset	Internal TolueneD8
bromoform	23.07	172.8	99.999	Quad	Internal 1,2DCE D4
isopropylbenzene	24.01	105	99.998	Quad, WithOffset	Internal TolueneD8
1,1,2,2-tetrachloroethanes	24.56	83	99.949	Quad	Internal 1,2DCE D4
1,2,3-trichloropropane	24.74	112	99.999	Quad	Internal 1,2DCE D4
benzene, bromo-	24.78	156	99.999	Quad, WithOffset	Internal 1,2DCE D4
benzene, propyl-	25.28	91	99.997	Quad, WithOffset	Internal TolueneD8
2-chlorotoluene	25.47	128	99.998	Quad, WithOffset	Internal TolueneD8
4-chlorotoluene	25.79	128	99.999	Quad, WithOffset	Internal TolueneD8
benzene, 1,3,5 -trimethyl-	25.86	120	99.998	Quad, WithOffset	Internal TolueneD8
benzene, tert-butyl	26.81	134	99.996	Quad, WithOffset	Internal TolueneD8
benzene, 1,2,4-trimethyl-	26.93	105	99.993	Quad, WithOffset	Internal TolueneD8
benzene, (1-methylpropyl)-	27.42	105	99.992	Quad, WithOffset	Internal TolueneD8
benzene, 1,4-dichloro-	27.59	146	99.993	Quad, WithOffset	Internal TolueneD8
benzene, 1,3-dichloro-	27.82	146	99.994	Quad, WithOffset	Internal TolueneD8
p-cymene	27.83	134	99.992	Quad, WithOffset	Internal TolueneD8
benzene, 1,2-dichloro-	28.79	146	99.995	Quad, WithOffset	Internal TolueneD8
benzene, n-butyl	28.92	91.1	99.992	Quad	Internal TolueneD8
propanes, 1,2-dibromo-3-chloro	30.74	156.9	99.993	Quad	Internal 1,2DCE D4
benzene, 1,2,4-trichloro	33.31	180	99.992	Quad, WithOffset	Internal TolueneD8
naphthalenes	33.91	128	99.993	Quad, WithOffset	Internal TolueneD8
1,3-butadiene, 1,1,2,3,4,4-hexachloro	33.99	189.9	99.984	Quad, WithOffset	Internal 1,2DCE D4
bezene, 1,2,3-trichloro	34.66	180	99.990	Quad, WithOffset	Internal TolueneD8
, , ,			, ,,,,,,,		

https://www.brechbuehler.ch/CH-Scientific-analytical-solutions.41.0.html

Legal Statements

CTC Analytics AG reserves the right to make improvements and/or changes to the product(s) described in this document at any time without prior notice.

CTC Analytics AG makes no warranty of any kind pertaining to this product, including but not limited to implied warranties of merchantability and suitability for a particular

Under no circumstances shall CTC Analytics AG be held liable for any coincidental damage or damages arising as a consequence of or from the use of this document.

© 2023 CTC Analytics AG. All rights reserved. Neither this publication nor any part hereof may be copied, photocopied, reproduced, translated, distributed or reduced to electronic medium or machine readable form without the prior written permission from CTC Analytics AG, except as permitted under copyright laws.

CTC Analytics AG acknowledges all trade names and trademarks used as the property of their respective owners.

PAL is a registered trademark of CTC Analytics AG | Switzerland

Imprint

Date of print: 03.2023

CTC Analytics AG Industriestrasse 20 CH-4222 Zwingen Switzerland T +41 61 765 81 00 Contact: info@ctc.ch

www.palsystem.com

Visit our homepage for more information.