Matrix Assignment

lakshmi kamakshi

September 2022

Problem Statement -ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.

$\overline{PQ} = \frac{1}{2}\overline{BD}$ (15)

$$\overline{SR} = \overline{SD} + \overline{DR} \tag{16}$$

$$\overline{SR} = \frac{1}{2}\overline{AD} + \frac{1}{2}\overline{DC} \tag{17}$$

$$\overline{SR} = \frac{1}{2}(\overline{AD} + \overline{DC}) \tag{18}$$

$$\overline{SR} = \frac{1}{2}(\overline{AD} + \overline{DC}) \tag{18}$$

$$\overline{SR} = \frac{1}{2}\overline{AC} \tag{19}$$

(20)

(21)

(24)

$\overline{PO} = \overline{PB} + \overline{BO}$

$$\overline{PQ} = \frac{1}{2}\overline{AB} + \frac{1}{2}\overline{BC} \tag{2}$$

$$\overline{PQ} = \frac{1}{2}(\overline{AB + BC}) \tag{3}$$

$$\overline{PQ} = \frac{1}{2}(AB + BC) \tag{3}$$

$$\overline{PQ} = \frac{1}{2}\overline{AC} \tag{4}$$

Similarily, using triangle law of vector addition:

$$\overline{PS} = \overline{PA} + \overline{AS} \tag{5}$$

$$\overline{PS} = \frac{1}{2}\overline{BA} + \frac{1}{2}\overline{AD} \tag{6}$$

$$\overline{PS} = \frac{1}{2}(\overline{BA + AD}) \tag{7}$$

$$\overline{PS} = \frac{1}{2}\overline{BD} \tag{8}$$

parallelogram law of addition

(1)

$$QS = PS - PQ :$$
 (22)

triangle law of addition

from the equations (),():

$$PR = \frac{1}{2}\overline{AC} + \frac{1}{2}\overline{BD} \tag{23}$$

ABCD is a rectangle and has the following properties:

- 1. Opposite sides are equal
- 2. All angles are equal

Solution

Using triangle law of vector addition:

- 3. lengths of diagonals are equal
- 4. Diagonals are perpendicular to each other.

$$AC = BD (9)$$

$$AC \perp BD$$
 (10)

$$PQ = PS \tag{11}$$

For a quadrilateral to be rhombus the diagonals should perpendicularly bisect each other

 $QS = \frac{1}{2}\overline{AC} - \frac{1}{2}\overline{BD}$

SR = QS

 $PR = PS + PQ \cdot \cdot$

Thus, all sides of the quadrilateral PQRS are equal The diagonals of the Quadrilateral PQRS are given by:

$$PR.QS = \frac{1}{4}((\overline{AC} + \overline{BD})(\overline{AC} - \overline{BD})) \tag{25}$$

$$PR.QS = 0 (26)$$

similarly, the vector equations of QR,SR can be derived as:

$$\overline{QR} = \overline{QC} + \overline{CR} \tag{12}$$

$$\overline{QR} = \frac{1}{2}\overline{BC} + \frac{1}{2}\overline{CD} \tag{13}$$

$$\overline{PQ} = \frac{1}{2} (\overline{BC + CD}) \tag{14}$$

Since the dot product of the diagonals is 0, the diagonals are perpendicular

Construction

Since, all sides of the gudarilateral PQRS are equal and the digonals are perpendicular to each other, the Quadrilateral is a Rhombus

Figure 1: Rhombus PQRS formed by midpoints of Rectangle ABCD $\,$

${\bf Construction}$

The dimensions of the rectangle are taken as below

vertex	co-ordinates
A	(0,0)
В	(5,0)
С	(5,7)
D	(0,7)