

PRÁCTICA Nº 4

CÓDIGO SAGA

A25984-5

Calificación

CARRERA:

ASIGNATURA:

INGENIERÍA DE SISTEMAS

MÉTODOS NUMÉRICOS

FECHA DE ENTREGA: 23/04/2023

Apellidos y Nombres: GUTIÉRREZ CASTRO HUÁSCAR AARÓN

C.I: 9951591 LP

CURSO: 4 TO "A"

DOCENTE: M. Sc. Ing. Ariel Villca Paye

Problema 1

Calcular la siguiente integral

$$f_{(x)} = 2e^{-3x} + sen(0.5x) + \frac{1}{2x+3} + 2$$

Desde 2 hasta 8

a) De forma exacta

b) De forma aproximada, con regla del trapecio 11 segmentos Calcular los errores de b)


```
🗋 🐸 📓 | å 🖦 🛍 🤊 (° | 🍇 🗃 + | 👫 🖛 🖈 🎋 | 🗹 + 🖹 🛣 🗐 💟
                                                                            » □ ∨ ₹ ×
                                                                                                    Método del trapecio
+ ÷ 1.1 × | 💥 💉 | 0.
                                                                                               El valor de a es:
                                                                                               El valor de b es:
El valor de n es:
       fprintf('\tMétodo del trapecio\n')
a=2; %limite inferior
                                                                                               La integral aproximada es:
                                                                                                                                           I_aprox=14.8752 u^2
                                                                                               Con un error porcentual verdadero: e_t=0.09%
       h=(b-a)/n;
       I_exacta=14.8888;
      fprintf('El valor de a es:\ta=\s3.0f\n',a)
fprintf('El valor de b es:\tb=\s3.0f\n',b)
       fprintf('__
       x=linspace(a,b,100);
      plot(x,f(x),'-b');
       area(x,f(x));
      xlabel('eje de las abscisas');
ylabel('eje de las ordenadas');
title('gráfica de la función x');
       legend('f(x)');
       s=0;
      s=s+f(a);
    □ for i=1:1:n-1
```

Método del Trapecio

Datos $2e^{-3x} + \sin(0.5x) + \frac{1}{2x+3} + 2$ f(x) =f(x) =2*EXP(-3*x)+SENO(0.5*x)+1/(2*x+3)+2 C.S. 4 а b 8 11 n h 0.54545455 14.8888 l_{exacta}

i	x _i	f _(xi)	P.P.	P.P.f _(xi)	
0	2.0000	2.9893	1.000	2.9893	
1	2.5455	3.0805	2.000	6.1609	
2	3.0909	3.1088	2.000	6.2176	
3	3.6364	3.0669	2.000	6.1339	
4	4.1818	2.9558	2.000	5.9115	
5	4.7273	2.7821	2.000	5.5642	
6	5.2727	2.5578	2.000	5.1157	
7	5.8182	2.2987	2.000	4.5975	
8	6.3636	2.0234	2.000	4.0467	
9	6.9091	1.7516	2.000	3.5032	
10	7.4545	1.5031	2.000	3.0061	
11	8.0000	1.2958	1.000	1.2958	
			suma=	54.5425	
			I _{aprox} =	14.8752	u ²
			ϵ_{t}	0.09%	

```
Método del trapecio

El valor de a es: a= 2
El valor de b es: b= 8
El valor de n es: n= 11

La integral aproximada es: I_aprox=14.8752 u^2
Con un error porcentual verdadero: e_t=0.09%
>>
```

- c) De forma aproximada, con regla del trapecio 24 segmentos
- d) Calcular los errores de c)

	Método del Trapecio						
Datos f(x) =	$2e^{-3x} + \sin(0.5x) + \frac{1}{2x+3} + 2$						
f(x) =	2x + 3 2*EXP(-3*x)+SENO(0.5*x)+1/(3	2*x+3)+2					
а	2	C.S.	4				
b	8						
n	24						
h	0.25						
l _{exacta}	14.8888						

i	x _i	f _(xi)	P.P.	P.P.f _(xi)	
0	2.0000	2.9893	1.000	2.9893	
1	2.2500	3.0379	2.000	6.0759	
2	2.5000	3.0751	2.000	6.1502	
3	2.7500	3.0991	2.000	6.1981	
4	3.0000	3.1089	2.000	6.2177	
5	3.2500	3.1039	2.000	6.2078	
6	3.5000	3.0840	2.000	6.1681	
7	3.7500	3.0493	2.000	6.0987	
8	4.0000	3.0002	2.000	6.0004	
9	4.2500	2.9373	2.000	5.8746	
10	4.5000	2.8614	2.000	5.7228	
11	4.7500	2.7737	2.000	5.5474	
12	5.0000	2.6754	2.000	5.3508	
13	5.2500	2.5680	2.000	5.1360	
14	5.5000	2.4531	2.000	4.9062	
15	5.7500	2.3324	2.000	4.6648	
16	6.0000	2.2078	2.000	4.4156	
17	6.2500	2.0811	2.000	4.1622	
18	6.5000	1.9543	2.000	3.9086	
19	6.7500	1.8293	2.000	3.6586	
20	7.0000	1.7080	2.000	3.4161	
21	7.2500	1.5923	2.000	3.1847	
22	7.5000	1.4840	2.000	2.9680	
23	7.7500	1.3846	2.000	2.7693	
24	8.0000	1.2958	1.000	1.2958	
			suma=	119.0877	u ²
			I _{aprox} =	14.8860	
			ϵ_{t}	0.02%	

```
Método del trapecio

El valor de a es: a= 2
El valor de b es: b= 8
El valor de n es: n= 24

La integral aproximada es: I_aprox=14.8860 u^2
Con un error porcentual verdadero: e_t=0.02%
>>
```

Calcular la siguiente integral

$$f_{(x)} = \frac{5}{2x - 3} + e^{-\pi x} + \ln\left(x^{\frac{1}{3}}\right)$$

Desde 3 hasta 8

a) De forma exacta

b) De forma aproximada, con regla del trapecio 4 segmentos

i	x _i	$f_{(xi)}$	P.P.	P.P.f _(xi)	
0	3.0000	2.0330	1.000	2.0330	
1	4.2500	1.3914	2.000	2.7828	
2	5.5000	1.1932	2.000	2.3865	
3	6.7500	1.1127	2.000	2.2254	
4	8.0000	1.0778	1.000	1.0778	
			suma=	10.5054	u^2
			I _{aprox} =	6.5659	u ²
			ϵ_{t}	1.86%	

```
Método del trapecio

El valor de a es: a= 3

El valor de b es: b= 8

El valor de n es: n= 4

La integral aproximada es: I_aprox=6.5659 u^2

Con un error porcentual verdadero: e_t=1.86%

>>
```

c) De forma aproximada, con regla del trapecio 7 segmentos

	Método del	Trapecio	
Datos			
f(x) =	2*EXP(-3*x)+SENO(0.5*x)+1/(2*x+3)+2		
а	3	C.S.	4
b	8		
n	7		
h	0.71428571		
l _{exacta}	6.4458 u^2		

i	Xi	f _(xi)	P.P.	P.P.f _(xi)	
0	3.0000	2.0330	1.000	2.0330	
1	3.7143	1.5664	2.000	3.1329	
2	4.4286	1.3497	2.000	2.6994	
3	5.1429	1.2321	2.000	2.4643	
4	5.8571	1.1630	2.000	2.3260	
5	6.5714	1.1205	2.000	2.2411	
6	7.2857	1.0941	2.000	2.1881	
7	8.0000	1.0778	1.000	1.0778	
			suma=	18.1624	u^2
			I _{aprox} =	6.4866	u ²
			ϵ_{t}	0.63%	

```
Método del trapecio

El valor de a es: a= 3

El valor de b es: b= 8

El valor de n es: n= 7

La integral aproximada es: I_aprox=6.4866 u^2

Con un error porcentual verdadero: e_t=0.63%

>>
```

Calcular numéricamente la siguiente integral:

$$I = \int_0^4 (1 - e^{-2x}) \ dx$$

a) Mediante regla de trapecio con 7 segmentos. Realizar la gráfica.

b) Calcular la integral exacta y calcular el error absoluto verdadero y el error relativo porcentual verdadero.

 $e_t = 0.0000$

$$\varepsilon_t = 0.00\%$$

c) Mediante regla de trapecio, con Excel, con 10 segmentos.

	Méto	do del Trapecio	
Datos			
f(x) =	1-EXP(-2*x)		
а	0	C.S.	4
b	4		
n	10		
h	0.4		
I _{exacta}	3.5002 u^2		

i	Xi	f _(xi)	P.P.	P.P.f _(xi)	
0	0.0000	0.0000	1.000	0.0000	
1	0.4000	0.5507	2.000	1.1013	
2	0.8000	0.7981	2.000	1.5962	
3	1.2000	0.9093	2.000	1.8186	
4	1.6000	0.9592	2.000	1.9185	
5	2.0000	0.9817	2.000	1.9634	
6	2.4000	0.9918	2.000	1.9835	
7	2.8000	0.9963	2.000	1.9926	
8	3.2000	0.9983	2.000	1.9967	
9	3.6000	0.9993	2.000	1.9985	
10	4.0000	0.9997	1.000	0.9997	
			suma=	17.3690	u ²
			I _{aprox} =	3.4738	u ²
			ϵ_{t}	0.75%	

d) Mediante regla de trapecio, con MatLab, con 50 segmentos.

```
Método del trapecio

El valor de a es: a= 0
El valor de b es: b= 4
El valor de n es: n= 50

La integral aproximada es: I_aprox=3.4991 u^2
Con un error porcentual verdadero: e_t=0.03%
>>>
```

Calcular numéricamente la siguiente imposible

$$I = \int_{-3}^{3} e^{-x^2} dx$$

a) Mediante regla de trapecio, con 7 segmentos. Realizar la gráfica.

Método del Trapecio

	111010010		
Datos			
f(x) =	EXP(-POTENCIA(x;2))		
а	-3	C.S.	4
b	3		
n	7		
h	0.85714286		
l _{exacta}	1.7724 u^2		

i	\mathbf{x}_{i}	f _(xi)	P.P.	$P.P.f_{(xi)}$	
0	-3.0000	0.0001	1.000	0.0001	
1	-2.1429	0.0101	2.000	0.0203	
2	-1.2857	0.1915	2.000	0.3829	
3	-0.4286	0.8322	2.000	1.6644	
4	0.4286	0.8322	2.000	1.6644	
5	1.2857	0.1915	2.000	0.3829	
6	2.1429	0.0101	2.000	0.0203	
7	3.0000	0.0001	1.000	0.0001	
			suma=	4.1355	u^2
			I _{aprox} =	1.7723	u ²
			ϵ_{t}	0.00%	

```
Método del trapecio

El valor de a es: a= -3

El valor de b es: b= 3

El valor de n es: n= 7

La integral aproximada es: I_aprox=1.7723 u^2

Con un error porcentual verdadero: e_t=0.00%

>>
```

b) Mediante regla de trapecio, con Excel, con 10 segmentos. Realizar la gráfica.

Método del Trapecio					
Datos					
f(x) =	EXP(-POTENCIA(x;2))				
а	-3	C.S.	4		
b	3				
n	10				
h	0.6				
l _{exacta}	1.7724 u^2				

i	x _i	f _(xi)	P.P.	P.P.f _(xi)	
0	-3.0000	0.0001	1.000	0.0001	
1	-2.4000	0.0032	2.000	0.0063	
2	-1.8000	0.0392	2.000	0.0783	
3	-1.2000	0.2369	2.000	0.4739	
4	-0.6000	0.6977	2.000	1.3954	
5	0.0000	1.0000	2.000	2.0000	
6	0.6000	0.6977	2.000	1.3954	
7	1.2000	0.2369	2.000	0.4739	
8	1.8000	0.0392	2.000	0.0783	
9	2.4000	0.0032	2.000	0.0063	
10	3.0000	0.0001	1.000	0.0001	
			suma=	5.9079	u^2
			I _{aprox} =	1.7724	u ²
			ϵ_{t}	0.00%	

c) Mediante regla de trapecio, con MatLab, con 50 segmentos. Realizar la gráfica.

```
Método del trapecio

El valor de a es: a= -3

El valor de b es: b= 3

El valor de n es: n= 50

La integral aproximada es: I_aprox=1.7724 u^2

Con un error porcentual verdadero: e_t=0.00%

>>
```

Problema 5

Calcular numéricamente la siguiente integral:

$$I = \int_{-1}^{1} (1 - x - 4x^3 + 2x^5) \, dx$$

	Método de la bisección								
Datos									
f(x) =	1-x-4*x^3+2x^5								
ε _{std} C.S.	0.1%								
C.S.	4		Teorema de Bolzano	$f_{(xa)} * f_{(xb)} < 0$					
x _a	0	f _(xa) =	1.000	-2.000 existe al menos una raíz					
x_b	1	$f_{(xb)}=$	-2.000						

iter	Xa	x _b	x _r	f _(xa)	f _(xb)	f _(xr)	$f_{(xb)}*f_{(xr)}$	ε _a	$\varepsilon_a < \varepsilon_{std}$
	1 0.0000	1.0000	0.3333	1.0000	-2.0000	0.5267	0.5267	/	/
	2 0.3333	1.0000	0.4723	0.5267	-2.0000	0.1532	0.0807	29.4%	siga iterando
	3 0.4723	1.0000	0.5099	0.1532	-2.0000	0.0289	0.0044	7.4%	siga iterando
	4 0.5099	1.0000	0.5168	0.0289	-2.0000	0.0047	0.0001	1.3%	siga iterando
	5 0.5168	1.0000	0.5180	0.0047	-2.0000	0.0007	0.0000	0.2%	siga iterando
	6 0.5180	1.0000	0.5182	0.0007	-2.0000	-0.0001	0.0000	0.0%	Valor verdadero
	7 0.5180	0.5182	0.5182	0.0007	-0.0001	0.0000	0.0000	0.0%	Valor verdadero
	8 0.5182	0.5182	0.5182	0.0000	-0.0001	0.0000	0.0000	0.0%	Valor verdadero
	9 0.5182	0.5182	0.5182	0.0000	-0.0001	0.0000	0.0000	0.0%	Valor verdadero
	10 0.5182	0.5182	0.5182	0.0000	0.0000	0.0000	0.0000	0.0%	Valor verdadero
	11 0.5182	0.5182	0.5182	0.0000	0.0000	0.0000	0.0000	0.0%	Valor verdadero
	12 0.5182	0.5182	0.5182	0.0000	0.0000	0.0000	0.0000	0.0%	Valor verdadero
	13 0.5182	0.5182	0.5182	0.0000	0.0000	0.0000	0.0000	0.0%	Valor verdadero
	14 0.5182	0.5182	0.5182	0.0000	0.0000	0.0000	0.0000	0.0%	Valor verdadero
	15 0.5182	0.5182	0.5182	0.0000	0.0000	0.0000	0.0000	0.0%	Valor verdadero
	16 0.5182	0.5182	0.5182	0.0000	0.0000	0.0000	0.0000	0.0%	Valor verdadero

a) Mediante regla de trapecio, con 7 segmentos. Realizar la gráfica.

			Méto	do de	l Trap	ecio	
Datos							
f(x) =	E	EXP(-POTEN	CIA(x;2))				
а		-1				C.S.	4
b		0.5182					
n		7					
h		0.21688571					
i	>	(_i	f _(xi)	P.P.	P.P.f _(xi)		
	0	-1.0000	4.0000	1.000	4.0000		
	1	-0.7831	3.1151	2.000	6.2302		
	2	-0.5662	2.1760	2.000	4.3520		
	3	-0.3493	1.5095	2.000	3.0189		
	4	-0.1325	1.1417	2.000	2.2833		
	5	0.0844	0.9132	2.000	1.8263		
	6	0.3013	0.5942	2.000	1.1885		
	7	0.5182	-0.0001	1.000	-0.0001		
				suma=	22.8992	u ²	
				I _{aprox} =	2.4833	u ²	

Método del Trapecio

Datos							
f(x) =	Е	XP(-POTENC	CIA(x;2))				
а		0.5182				C.S.	4
b		1					
n		7					
h	(0.068828571					
i	х	i	f _(xi)	P.P.	P.P.f _(xi)		
	0	0.5182	-0.0001	1.000	0.0001		
	1	0.5870	-0.2568	2.000	0.5135		
	2	0.6559	-0.5416	2.000	1.0832		
	3	0.7247	-0.8473	2.000	1.6946		
	4	0.7935	-1.1629	2.000	2.3258		
	5	0.8623	-1.4737	2.000	2.9474		
	6	0.9312	-1.7606	2.000	3.5212		
	7	1.0000	-2.0000	1.000	2.0000		
				suma=	14.0858	u ²	
				I _{aprox} =	0.4848	u ²	

I _{aprox} =	2.9680 u ²	
I _{verdadera} =	2.9698 u ²	
ϵ_{t}	0.06%	

- b) Calcular la integral exacta y calcular el error relativo verdadero
- c) Mediante regla de trapecio, con Excel, con 10 segmentos. Realizar la gráfica.

		Méto	odo de	el Trap	ecio
Datos f(x) = a b n	·	TENCIA(x;2)) -1 :182 10			C.S.
i	x _i	f _(xi)	P.P.	P.P.f _(xi)	
(2 3.4110	1.000 2.000 2.000	4.0000 6.8220 5.4392	
2	-0.392	7 1.6163	2.000 2.000 2.000	4.1893 3.2326 2.5904	
	-0.089 0.062	1 1.0919 7 0.9363	2.000 2.000 2.000	2.1838 1.8725 1.4937	
10	0.366	0.4501	2.000	0.9002	
			suma= I _{aprox} =	32.7236 2.4840	

			Método	o del 1	raped	cio	
Datos f(x) = a b n h		EXP(-POTENC 0.5182 1 10 0.04818	CIA(x;2))			C.S.	4
i	:	x _i	f _(xi)	P.P.	P.P.f _(xi)		
	0	0.5182	-0.0001	1.000	0.0001		
	1	0.5664	-0.1766	2.000	0.3531		
	2	0.6146	-0.3677	2.000	0.7353		
	3	0.6627	-0.5714	2.000	1.1428		
	4	0.7109	-0.7849	2.000	1.5699		
	5	0.7591	-1.0047	2.000	2.0093		
	6	0.8073	-1.2260	2.000	2.4519		
	7	0.8555	-1.4433	2.000	2.8866		
	8	0.9036	-1.6501	2.000	3.3002		
	9	0.9518	-1.8386	2.000	3.6773		
	10	1.0000	-2.0000	1.000	2.0000		
				suma=	20.1266	u ²	
				I _{aprox} =	0.4849	u ²	

 I_{aprox} = 2.9689 u^2 $I_{verdadera}$ = 2.9698 u^2 ϵ_t 0.03%

e) Mediante regla de trapecio, con MatLab, con 50 segmentos. Realizar la gráfica.

```
Método del trapecio

El valor de a es: a= -1

El valor de b es: b= 1

El valor de n es: n= 50

El valor de la integral exacta es: n=2.9699

La integral aproximada es: I_aprox=2.9699 u^2

Con un error porcentual verdadero: e_t=0.00%

>>
```

Calcular numéricamente la siguiente integral

$$I = \int_0^1 3 \cdot senx \cdot \cos(2x) dx$$

a) Mediante regla de trapecio, con 10 segmentos. Realizar la gráfica.

	Método de la bisección									
Datos										
f(x) =		x*seno(x)*c	os(2*x)							
ϵ_{std}	std 0.1%									
C.S.		4	ļ		Teorema de	Bolzano	$f_{(xa)} * f_{(xb)} < 0$			
X _a		0.1		f _(xa) =	0.010			existe al me	nos una raíz	
X _b		1		$f_{(xb)}=$	-0.350					
				(1.0)						
iter		X _a	x _b	x _r	f _(xa)	f _(xb)	f _(xr)	$f_{(xb)} * f_{(xr)}$	ϵ_{a}	$\varepsilon_a < \varepsilon_{std}$
	1	0.1000	1.0000	0.1245	0.0098	-0.3502	0.0150	0.0001	/	/
	2	0.1245	1.0000	0.1604	0.0150	-0.3502	0.0243	0.0004	22.4%	siga iterando
	3	0.1604	1.0000	0.2149	0.0243	-0.3502	0.0416	0.0010	25.4%	siga iterando
	4	0.2149	1.0000	0.2983	0.0416	-0.3502	0.0725	0.0030	28.0%	siga iterando
	5	0.2983	1.0000	0.4187	0.0725	-0.3502	0.1140	0.0083	28.8%	siga iterando
	6	0.4187	1.0000	0.5614	0.1140	-0.3502	0.1295	0.0148	25.4%	siga iterando
	7	0.5614	1.0000	0.6798	0.1295	-0.3502	0.0896	0.0116	17.4%	siga iterando
	8	0.6798	1.0000	0.7450	0.0896	-0.3502	0.0407	0.0036	8.8%	siga iterando
	9	0.7450	1.0000	0.7716	0.0407	-0.3502	0.0148	0.0006	3.4%	siga iterando
	10	0.7716	1.0000	0.7809	0.0148	-0.3502	0.0050	0.0001	1.2%	siga iterando
	11	0.7809	1.0000	0.7839	0.0050	-0.3502	0.0016	0.0000	0.4%	siga iterando
	12	0.7839	1.0000	0.7849	0.0016	-0.3502	0.0005	0.0000		siga iterando
	13	0.7849	1.0000	0.7852	0.0005	-0.3502	0.0002	0.0000	0.0%	Valor verdadero
	14	0.7852	1.0000	0.7854	0.0002	-0.3502	0.0001	0.0000		Valor verdadero
	15	0.7854	1.0000	0.7854	0.0001	-0.3502	0.0000	0.0000	0.0%	Valor verdadero


```
SHORICULS ET HOW TO ADD ET WHAT SINEW
Editor - C:\Users\huasc\Desktop\trapecio_2partes.m
                                                                                » 🗆 ∨ ₹ ×
: 🔼 😅 🔙 | & 🖦 🛍 🤊 🥲 | 🎒 🖅 | 👫 🖛 🖈 🎋 | 🗩 🕫 🛣 🗐 💟
                                                                                                        Método del trapecio
El valor de a es:
                                                                                                   El valor de b es: b= 1
El valor de n es: n= 10
         %f=inline('1-exp(-2*x)');
%f=inline('exp(-x.^2)');
%f=inline('1-x-4*x.^3+2*x.^5');
f=inline('3*sin(x).*cos(2*x)');
 4
 5
                                                                                                   El valor de la integral exacta es: n=0.5230
 6
 7 -
                                                                                                                                                I_aprox=0.5193 u^2
                                                                                                   La integral aproximada es:
         %metodo del trapecio
fprintf('\tMétodo del trapecio\n')
a_1=0; %limite inferior
8
                                                                                                    Con un error porcentual verdadero: e_t=0.70%
9 -
10 -
11 -
                                                                                                fx >>
         b_1=0.7852; %limite superior
12 -
         n=10; %nro de segmentos
13
         a_2=0.7852;
14 -
         b_2=1;
15 -
16
17 -
         h_l=(b_l-a_l)/n;
18 -
         h_2=(b_2-a_2)/n;
19
         fun = @(x) 3*sin(x).*cos(2*x);
20 -
21
         I_exacta=integral(fun,a_1,b_1)+abs(integral(fun,a_2,b_2));
22 -
23
24 -
25 -
         fprintf('
         fprintf('
fprintf('El valor de a es:\ta=%3.0f\n',a_1)
fprintf('El valor de b es:\tb=%3.0f\n',b_2)
fprintf('El valor de n es:\tn=%3.0f\n',n)
26 -
27 -
28 -
29 -
         fprintf('El valor de la integral exacta es:\tn=%3.4f\n',I_exacta
29
         fprintf('
4mpson1 3.m × Simpson3 8.m × eiercicio 1.m × derivadas TT.m × trapecio 2partes.m
```

		—	_	•
Métod			ran	ACIO
IVICTOR	IO G		тар	CCIO

Datos					
f(x) =	3seno(x)cos	eno(2x)			
a	0				C.S.
b	0.7852				
n	10				
h	0.07852				
i	Xi	f _(xi)	P.P.	P.P.f _(xi)	
0	0.0000	1.0000	1.000	1.0000	
1	0.0785	0.9195	2.000	1.8391	
2	0.1570	0.8277	2.000	1.6553	
3	0.2356	0.7136	2.000	1.4272	
4	0.3141	0.5681	2.000	1.1362	
5	0.3926	0.3840	2.000	0.7680	
6	0.4711	0.1570	2.000	0.3141	
7	0.5496	-0.1135	2.000	-0.2270	
8	0.6282	-0.4240	2.000	-0.8480	
9	0.7067	-0.7658	2.000	-1.5317	
10	0.7852	-1.1247	1.000	-1.1247	
			suma=	4.4085	u ²
			I _{aprox} =	0.1731	u ²

Método del Trapecio **Datos** f(x) =3seno(x)coseno(2x) 0.7852 C.S. b 1 10 0.02148 $P.P.f_{(xi)}$ f_(xi) P.P. 0.7852 -1.1247 1.000 1.1247 2.4465 0.8067 -1.2232 2.000 2 2.000 0.8282 -1.3210 2.6420 3 0.8496 -1.4175 2.000 2.8350 0.8711 -1.5120 2.000 3.0241 5 2.000 0.8926 -1.6040 3.2081 6 0.9141 -1.6928 2.000 3.3856 7 0.9356 -1.7776 2.000 3.5551 8 0.9570 -1.8576 2.000 3.7152 9 0.9785 -1.9320 2.000 3.8641 10 1.0000 -2.0000 1.000 2.0000 31.8003 u² suma= 0.3415 u² I_{aprox}=

```
I_{aprox} = 0.5146 u^2
I_{verdadera} = 0.5230 u^2
\epsilon_t 1.60%
```

```
Método del trapecio

El valor de a es: a= 0

El valor de b es: b= 1

El valor de n es: n= 10

El valor de la integral exacta es: n=0.5230

La integral aproximada es: I_aprox=0.5193 u^2

Con un error porcentual verdadero: e_t=0.70%

>>
```

c) Mediante regla de trapecio, con Excel, con 50 segmentos. Realizar la gráfica.

			Méto	do de	l Trap	ecio	
Datos f(x) = a b n	,	kseno(x)cos(0 0.7852 50 0.015704	(2x)			C.S.	4
11		0.013704					
i)	κ _i	f _(xi)	P.P.	P.P.f _(xi)		
	0	0.0000	0.0000	1.000	0.0000		
	1	0.0157	0.0471	2.000	0.0942		
	2	0.0314	0.0940	2.000	0.1880		
	3	0.0471	0.1407	2.000	0.2813		
	5	0.0628 0.0785	0.1868 0.2324	2.000	0.3737 0.4648		
	6	0.0942	0.2773	2.000	0.5545		
	7	0.1099	0.3212	2.000	0.6424		
	8	0.1256	0.3641	2.000	0.7282		
	9	0.1413	0.4058	2.000	0.8117		
	10	0.1570	0.4462	2.000	0.8925		
	11	0.1727	0.4852	2.000	0.9704		
	12	0.1884	0.5226	2.000	1.0451		
	13	0.2042	0.5582	2.000	1.1164		
	14	0.2199	0.5920	2.000	1.1841		
	15	0.2356	0.6239	2.000	1.2478		
	16	0.2513	0.6537	2.000	1.3073		
	17	0.2670	0.6813	2.000	1.3625		
	18	0.2827	0.7066	2.000	1.4131		
	19	0.2984	0.7295	2.000	1.4590		
	20	0.3141	0.7499	2.000	1.4998		
	21	0.3298	0.7677	2.000	1.5355		
	22	0.3455 0.3612	0.7829 0.7954	2.000 2.000	1.5659 1.5907		
	24	0.3769	0.8050	2.000	1.6100		
	25	0.3926	0.8118	2.000	1.6235		
	26	0.4083	0.8156	2.000	1.6312		
	27	0.4240	0.8164	2.000	1.6328		
	28	0.4397	0.8142	2.000	1.6285		
	29	0.4554	0.8090	2.000	1.6180		
	30	0.4711	0.8006	2.000	1.6012		
	31	0.4868 0.5025	0.7891 0.7745	2.000	1.5783 1.5491		
	33	0.5025	0.7743	2.000	1.5136		
	34	0.5339	0.7359	2.000	1.4718		
	35	0.5496	0.7119	2.000	1.4237		
	36	0.5653	0.6847	2.000	1.3694		
	37	0.5810	0.6544	2.000	1.3089		
	38	0.5968	0.6211	2.000	1.2422		
	39	0.6125	0.5847	2.000	1.1694		
	40	0.6282 0.6439	0.5453 0.5030	2.000 2.000	1.0906 1.0060		
	42	0.6596	0.3030	2.000	0.9155		
	43	0.6753	0.4097	2.000	0.8194		
	44	0.6910	0.3589	2.000	0.7178		
	45	0.7067	0.3054	2.000	0.6108		
	46	0.7224	0.2493	2.000	0.4986		
	47	0.7381	0.1907	2.000	0.3814		
	48	0.7538	0.1297	2.000	0.2594		
	49 50	0.7695 0.7852	0.0664	2.000 1.000	0.1327 0.0008		
	30	0.7852	0.0008	1.000	0.0008		
				suma=	52.7337	u ²	
					0.4141		
				I _{aprox} =	0.4141		

			Método	o del 1	Traped	cio	
Datos f(x) = a b n		xseno(x)cos(0.7852 1 50	2x)			C.S.	4
n h		0.004296					
		0.00 .250					
i		x _i	f _(xi)	P.P.	P.P.f _(xi)		
	0	0.7852	0.0008	1.000	0.0008		
	1	0.7895	-0.0175	2.000	0.0349		
	3	0.7938	-0.0359	2.000	0.0718		
	4	0.7981 0.8024	-0.0545 -0.0733	2.000	0.1090 0.1465		
	5	0.8067	-0.0922	2.000	0.1843		
	6	0.8110	-0.1112	2.000	0.2224		
	7	0.8153	-0.1304	2.000	0.2608		
	8	0.8196	-0.1497	2.000	0.2994		
	9	0.8239	-0.1692	2.000	0.3384		
	10	0.8282	-0.1888	2.000	0.3776		
	11	0.8325	-0.2085	2.000	0.4170		
	12	0.8368	-0.2284	2.000	0.4567		
	13	0.8410	-0.2484	2.000	0.4967		
	14	0.8453	-0.2685	2.000	0.5369		
	15	0.8496	-0.2887	2.000	0.5774		
	16	0.8539	-0.3090	2.000	0.6181		
	17	0.8582	-0.3295	2.000	0.6590		
	18	0.8625	-0.3501	2.000	0.7002		
	19 20	0.8668 0.8711	-0.3708 -0.3916	2.000	0.7415 0.7831		
	21	0.8711	-0.4125	2.000	0.7831		
	22	0.8797	-0.4335	2.000	0.8669		
	23	0.8840	-0.4546	2.000	0.9091		
	24	0.8883	-0.4758	2.000	0.9515		
	25	0.8926	-0.4970	2.000	0.9941		
	26	0.8969	-0.5184	2.000	1.0368		
	27 28	0.9012 0.9055	-0.5399 -0.5614	2.000	1.0798 1.1229		
	29	0.9055	-0.5831	2.000	1.1229		
	30	0.9141	-0.6048	2.000	1.2095		
	31	0.9184	-0.6266	2.000	1.2531		
	32	0.9227	-0.6484	2.000	1.2968		
	33	0.9270	-0.6703	2.000	1.3407		
	34	0.9313	-0.6923	2.000	1.3846		
	35 36	0.9356	-0.7144	2.000	1.4287		
	36	0.9399 0.9442	-0.7365 -0.7586	2.000	1.4730 1.5173		
	38	0.9484	-0.7809	2.000	1.5617		
	39	0.9527	-0.8031	2.000	1.6063		
	40	0.9570	-0.8255	2.000	1.6509		
	41	0.9613	-0.8478	2.000	1.6956		
	42	0.9656	-0.8702	2.000	1.7404		
	43	0.9699	-0.8927	2.000	1.7853		
	44 45	0.9742 0.9785	-0.9151 -0.9376	2.000	1.8303 1.8753		
	46	0.9828	-0.9602	2.000	1.9203		
	47	0.9871	-0.9827	2.000	1.9655		
	48	0.9914	-1.0053	2.000	2.0106		
	49	0.9957	-1.0279	2.000	2.0558		
	50	1.0000	-1.0505	1.000	1.0505		
						2	
				suma=	50.6373		
				I _{aprox} =	0.1088	u ·	

```
I_{aprox} = 0.5228 u^{2}
I_{verdadera} = 0.5230 u^{2}
\epsilon_{t} = 0.03\%
```

e) Mediante regla de trapecio, con MatLab, con 500 segmentos. Realizar la gráfica.

```
Método del trapecio

El valor de a es: a= 0
El valor de b es: b= 1
El valor de n es: n=500
El valor de la integral exacta es: n=0.5230

La integral aproximada es: I_aprox=0.5230 u^2
Con un error porcentual verdadero: e_t=0.00%
>>
```

Problema 7

Calcular numéricamente la siguiente integral imposible:

$$I = \int_{-2}^{2} \frac{senx}{x} \ dx$$

Si se conoce que el calor exacto es: 3.21083

c) Mediante del Simpson 1/3, mediante Excel, Hallar una integral aproximada hasta un error del 0.1%

	Metodo del Simpson 1/3								
Datos									
f(x) =	seno(x)/x								
а	-2	C.S.	4						
b	2								
n	10								
h	0.4								
l _{exacta}	3.2108	(esto se calcula con métodos de integración)							

i	x _i	f _(xi)	P.P.	P.P.f _(xi)	
0	-2.0000	0.4546	1.000	0.4546	
1	-1.6000	0.6247	4.000	2.4989	
2	-1.2000	0.7767	2.000	1.5534	
3	-0.8000	0.8967	4.000	3.5868	
4	-0.4000	0.9735	2.000	1.9471	
5	0.0000	1.0000	4.000	4.0000	
6	0.4000	0.9735	2.000	1.9471	
7	0.8000	0.8967	4.000	3.5868	
8	1.2000	0.7767	2.000	1.5534	
9	1.6000	0.6247	4.000	2.4989	
10	2.0000	0.4546	1.000	0.4546	
			suma=	24.0817	u2
			I _{aprox} =	3.2109	u2
			ε _t =	0.00%	

d) Mediante del Simpson 1/3, mediante MatLab, Hallar una integral aproximada hasta un error del 0.1%


```
Metodo de Simpson 1/3

El valor de a es: a= 0
El valor de b es: b= 2
El valor de n es: n= 10

La integral aproximada es: I_aprox=3.2108 u^2

La integral exacta es: I_exacta=3.2108 u^2

Con un error porcentual verdadero: e_t= 0.0%
>>
```

Calcular numéricamente la siguiente integral:

$$I = \int_0^{0.8} (0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5) dx$$

c) Mediante regla Simpson, con Excel, con 12 segmentos. Realizar la gráfica.

	Método del Simpson 1/3							
Datos								
f(x) =	0.2+25*x-200*x^2+6	75*x^3-900*x^4+400*x^5						
a	0	C.S.	4					
b	0.8							
n	12							
h	0.066666667							
l _{exacta}	1.6405	(esto se calcula con métodos de integración)						

i	Xi	f _(xi)	P.P.	P.P.f _(xi)	
0	0.0000	0.2000	1.000	0.2000	
1	0.0667	1.1605	3.000	3.4816	
2	0.1333	1.3102	3.000	3.9306	
3	0.2000	1.2880	2.000	2.5760	
4	0.2667	1.4327	3.000	4.2982	
5	0.3333	1.8461	3.000	5.5383	
6	0.4000	2.4560	2.000	4.9120	
7	0.4667	3.0797	3.000	9.2392	
8	0.5333	3.4872	3.000	10.4615	
9	0.6000	3.4640	2.000	6.9280	
10	0.6667	2.8749	3.000	8.6247	
11	0.7333	1.7268	3.000	5.1803	
12	0.8000	0.2320	1.000	0.2320	
			suma=	65.6024	u2
			I _{aprox} =	1.6401	u2
			ε _t =	0.03%	

e) Mediante regla de trapecio, con MatLab, con 24 segmentos. Realizar la gráfica.

Calcular numéricamente la siguiente integral:

$$I = \int_0^4 e^{-x^2} \, dx$$

c) Mediante regla Simpson, con Excel, con 12 segmentos. Realizar la gráfica.

	Método del Simpson 3/8							
Datos								
f(x) =	e^(-x^2)							
а	0	C.S.	4					
b	4							
n	12							
h	0.33333333							
l _{exacta}	0.8862	(esto se calcula con métodos de integración)						

i	x _i	$f_{(xi)}$	P.P.	P.P.f _(xi)	
0	0.0000	1.0000	1.000	1.0000	
1	0.3333	0.8948	3.000	2.6845	
2	0.6667	0.6412	3.000	1.9235	
3	1.0000	0.3679	2.000	0.7358	
4	1.3333	0.1690	3.000	0.5070	
5	1.6667	0.0622	3.000	0.1865	
6	2.0000	0.0183	2.000	0.0366	
7	2.3333	0.0043	3.000	0.0130	
8	2.6667	0.0008	3.000	0.0024	
9	3.0000	0.0001	2.000	0.0002	
10	3.3333	0.0000	3.000	0.0000	
11	3.6667	0.0000	3.000	0.0000	
12	4.0000	0.0000	1.000	0.0000	
			suma=	7.0897	u2
			I _{aprox} =	0.8862	u2
			ε _t =	0.00%	

d) Mediante regla de trapecio, con MatLab, con 24 segmentos. Realizar la gráfica.


```
Metodo de Simpson 3/8

El valor de a es: a= 0
El valor de b es: b= 4
El valor de n es: n= 24

La integral aproximada es: I_aprox=0.8862 u^2

La integral exacta es: I_exacta=0.8862 u^2

Con un error porcentual verdadero: e_t=0.00%
>>>
```

Calcular numéricamente la siguiente integral encerrada por las curvas f y g. Escoja el mejor método y el número de segmentos adecuado para tener un error al menos del 0.01%

$$f_{(x)} = 2 - \frac{3}{x}$$
$$g_{(x)} = 0.7x^2 - 3x$$

- a) Realizar la gráfica.
- b) Calcular la integral exacta y calcular el error relativo porcentual verdadero

Nota para hallar los puntos de intersección haga verificar f(x) = g(x), condición de intersección, para la integral pedida, utilice.

$$I = \int (f_{(x)} - g_{(x)}) dx$$

•
$$f(x) = 2 - \frac{3}{x}$$


```
Metodo de Simpson 3/8

El valor de a es: a= 1
El valor de b es: b= 5
El valor de n es: n= 24

La integral aproximada es: I_aprox=10.5596 u^2

La integral exacta es: I_exacta=10.5600 u^2

Con un error porcentual verdadero: e_t=0.00%
>>
```

Métod	lo de	l Sim	oson	3/	18
		. •			

Datos f(x) = a b n h l exacta	2-3/x-0.7*x^2+3*x 0.7702 C.S. 4.6996 12 0.32745 10.5600 (esto se calcula con métodos de integración)					4 ación)	
i	х		$f_{(xi)}$	P.P.	P.P.f _(xi)		
	0	0.7702	0.0003	1.000	0.0003		
	1	1.0977	1.7165	3.000	5.1494		
	2	1.4251	2.7485	3.000	8.2456		
	3	1.7526	3.3959	2.000	6.7917		
	4	2.0800	3.7692	3.000	11.3076		
	5	2.4075	3.9191	3.000	11.7574		
	6	2.7349	3.8720	2.000	7.7440		
	7	3.0624	3.6428	3.000	10.9285		
	8	3.3898	3.2409	3.000	9.7226		
	9	3.7173	2.6721	2.000	5.3443		
	10	4.0447	1.9407	3.000	5.8220		
	11	4.3722	1.0493	3.000	3.1479		
	12	4.6996	0.0001	1.000	0.0001		
				suma=	85.9614	u2	
				I _{aprox} =	10.5555	u2	
				ε _t =	0.04%		