ME 305 Fall 2014 Lab 1: Tension Grading Rubric

Introduction (10 points)

- What is a tensile test? (4 points)
- What does a tensile test allow you to find? (4points)
- Why is a tensile test important? How is it relevant for engineer/scientists? (2 points)

Theory (15 points)

- $\sigma = \frac{F}{A}$; $\varepsilon = \frac{\Delta L}{L}$; $\sigma = E\varepsilon$ with explanations (5 points)
- Engineering vs. true stress/strain which one are we using? (2 points)
- Instron provides load and displacement data, but we need stress and strain data for stress vs. strain curve (5 points)
- What does a stress vs. strain curve do? What can you get from it? (3 points)

Measurements (15 points)

- Equipment (3 points)
 - Dogbone samples 4 materials
 - Instron
 - o Strain gauge
 - o Caliper/ruler
 - o Computer/data acquisition software
- Procedure (12 points)
 - o Measure sample with calipers width, thickness, and gauge length (2 points)
 - o Zero position and align bottom grip (2 points)
 - o Load sample in the grips (2 points)
 - Place strain gauge on the sample (2 points)
 - o Calibrate load and strain (2 points)
 - Start test, end test after fracture, remove strain gauge and broken pieces, observe fracture edge, compare (2 points)

Results and Analysis (25 points)

- Table with all measurements of the samples (2 points)
- Stress vs. strain graph for each material (4 points each)
 - o Full stress strain curve (1point)
 - o Line fitting for elastic region, display slope (Young's modulus, E) (1point)
 - o Show 0.2% offset line (1 point)
 - o Label young's modulus and yield stress (1 point)
- Plot with all four stress vs. strain curves (4 points)
- Table with E, σ_y , and ultimate stress (σ_{ult}) for all materials along with percent errors (3 points)

Discussion and Conclusion

- Discussion (20 points)
 - O Question 1: Sources of error (8 points)
 - Strain gauge size
 - Alignment of grips/strain gauge
 - Deformations/cracks on sample
 - Measurements of dimensions
 - Sampling size/location for linear fit to find E

How to improve lab?

- O Question 2: Comparison between experimental and theoretical/accepted (4 points)
- O Question 3: Comparison between materials/fracture surfaces (8 points)
 - Ductility of each material
 - How can you tell if material is brittle/ductile?
 - Fracture surface
 - Sound made at fracture
 - Stress vs. strain curve plastic region
 - What material(s) would be best for aerospace/mechanical applications?
- Conclusion (5 points)
 - o Did the lab achieve its purpose?
 - o What did you learn?
 - o Key results of the lab?
 - o Why is this experiment useful?