3.2 Le discriminant

Définition 3.1 Pour tout fonction quadratique définie sur \mathbb{R} par $f(x)=ax^2+bx+c.$ On appelle discrimant le réel : $\Delta=b^2-4ac$

$$\Delta = b^2 - 4ac$$

Démonstration. Questionner les élèves sur la prochaine étape.

$$f(x) = ax^{2} + bx + c$$

$$= a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right)$$

$$= a\left(x\left(x + \frac{b}{a}\right) + \frac{c}{a}\right)$$

$$= a\left(\left(x + \frac{b}{2a} - \frac{b}{2a}\right)\left(x + \frac{b}{2a} + \frac{b}{2a}\right) + \frac{c}{a}\right)$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2} + \frac{c}{a}\right)$$

$$= a\left(\left(x - \left(-\frac{b}{2a}\right)\right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a}\right)$$

$$= a\left[\left(x - \left(-\frac{b}{2a}\right)\right)^{2} - \frac{\Delta}{4a^{2}}\right]$$

Théorème 3.1 — forme factorisée. Pour tout fonction quadratique définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$.

- Si Δ < 0, f n'a pas de racines. Son signe est celui de a.
 Si Δ = 0, f admet une racine double r = -b/2a. f s'annule mais reste du même signe que a.

• Si
$$\Delta > 0$$
. f admet deux racines distinctes :
$$r_1 = \frac{-b - \sqrt{\Delta}}{2a} \qquad r_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

3.2 Le discriminant 5

3.2.1 Exercices : résolution par complétion au carré ou formule quadratique

Pour une équation quadratique sous forme standard $ax^2 + bx + c = 0$, $a \neq 0$. Si $\Delta = b^2 - 4ac \geqslant 0$, alors le(s) solution(s) de l'équations quadratique sont données par l'expression :

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Exercice 9 — Formule quadratique. Complétez le tableau à l'aide de la formule quadratique.

Exercice 9 — Formule quadratique. Complétez le tableau à l'aide de la formule quadratique.			
Equation	Formule quadratique	simplification	Solutions
$x^2 + 4x + 2 = 0$	$\frac{-() \pm \sqrt{()^2 - 4()()}}{2()}$	$\frac{-4 \pm \sqrt{8}}{2}$	$\begin{vmatrix} r_1 = -2 + \sqrt{2} \\ r_2 = -2 - \sqrt{2} \end{vmatrix}$
$x^2 - 5x + 3 = 0$	$\frac{-() \pm \sqrt{()^2 - 4()()}}{2()}$	$5\pm\sqrt{\phantom{00000000000000000000000000000000000$	$egin{array}{c} r_1 = \ r_2 = \end{array}$
$x^2 + x - 2 = 0$	$\frac{-() \pm \sqrt{()^2 - 4()()}}{2()}$	±√	$egin{aligned} r_1 = \ r_2 = \end{aligned}$
$3x^2 + 4 = 12x$	$\frac{-() \pm \sqrt{()^2 - 4()()}}{2()}$	±√	$r_1 = r_2 =$
$3x^2 + 2\sqrt{3}x = 2$	$\frac{-() \pm \sqrt{()^2 - 4()()}}{2()}$	±√	$r_1 = r_2 =$
$x^2 + x + = 0$	$\frac{-() \pm \sqrt{()^2 - 4()(-3)}}{2()}$	±√	$r_1 = r_2 =$
$2x^2 x = 0$	$\frac{-(7) \pm \sqrt{(7)^2 - 4(2)(1)}}{2()}$	±√	$r_1 = r_2 =$
$x^2 x = 0$	$\frac{-(-5) \pm \sqrt{(-5)^2 - 4(3)(-4)}}{2(3)}$	±√	$r_1 = r_2 =$
$x^2 x = 0$	$\frac{-() \pm \sqrt{()^2 - 4()()}}{2()}$	$\frac{-3 \pm \sqrt{5}}{2}$	$egin{aligned} r_1 = \ r_2 = \ \end{aligned}$
$x^2 x = 0$	$\frac{-() \pm \sqrt{()^2 - 4()()}}{2()}$	$\frac{2\pm\sqrt{24}}{2}$	$r_1 = r_2 =$
$x^2 x = 0$	$\frac{-() \pm \sqrt{()^2 - 4()()}}{2()}$	$\frac{6\pm\sqrt{28}}{4}$	$egin{array}{c} r_1 = \ r_2 = \ \end{array}$