-- Basics of 2D Graph -

Sine function

$$f(x) := \sin(x)$$

Graph of Sine Function

f(x)

Cosine function

$$g(x) := \cos(x)$$

Graph of Cosine Function

g(x)

Tangent Function

$$h(x) := tan(x)$$

Graph of Tangent Function

☐—Merging of various graphs -

Graph of Sine, Cosine, Tangent Function

- (f(x)
- g(x)
- h(x)

☐—Basic of 3D graphs -

Sine function

$$f(x) := \sin(x)$$

3D Graph of Sine Function

Cosine function

$$g(x) := cos(x)$$

3D Graph of Cosine Function

Tangent Function

$$h(x) := tan(x)$$

3D Graph of Tangent Function

h(x)

⊡—Merging of 3D Graphs -

3D Graph of Sine, Cosine and Tangent function

- f(x)
- g(x)
- h(x)

-Graph of Data Set Points -

Using Matrix to consolidate data

Creating a list of values

0

Vectorize First Function

$$f(x) := \overrightarrow{\sin(x)}$$

Augment for x, y values of f(x)

$$FF := augment(x, f(x))$$

0.5 0.6 0.7

0.8

0.9

1.1

1.2

1.3 1.4

1.6 1.7 1.8

0.4

VectorizeSecond Function

$$g(x) := \overline{\cos(x)^2}$$

Augment for
$$x,y$$
 values of $g(x)$

$$GG := augment(x, g(x))$$

$$x := [0, 0.1..10] =$$

VectorizeThird Function

$$h(x) := x$$

Augement for x, y values of h(x)

$$HH := augment(x, h(x))$$

Graph of merged data points

FF

GG

HH

Legends

-Properties -

Component Name

Name of the most volatile component

Name of the least volatile component

 $Component_1 := "Benzene"$

Component; := "Toluene"

Ш.

Antoine Constants

Enter Antoine's constants for each of the components that make up the binary mixture. In mm Hg and K

Constant "A" of the most volatile component

 $A_{EMV} := 15.9007$

Constant "B" of the most volatile component

 $B_{EMV} := 2788.51$

Constant "C" of the most volatile component

 $C_{EMV} := -52.36$

Constant "A" of the least volatile component

 $A_{emv} := 16.0137$

Constant "B" of the least volatile component

 $B_{emv} := 3096.52$

Constant "C" of the least volatile component

 $C_{emv} := -53.67$

$$CA := \begin{bmatrix} \text{"Data"} & \text{"A"} & \text{"B"} & \text{"C"} \\ Component_1 & A_{EMV} & B_{EMV} & C_{EMV} \\ Component_2 & A_{emv} & B_{emv} & C_{emv} \end{bmatrix}$$

Generan Table to display output

Antoine Constants						
Data	A	В	С			
Benzene	15.9007	2788.5100	-52.3600			
Toluene	16.0137	3096.5200	-53.6700			
NOTE: Units in mmHg and K						

\Box

System Pressure

$$A := \left[\begin{array}{c} A_{EMV} \\ A_{emv} \end{array} \right]$$

$$B := \begin{bmatrix} B_{EMV} \\ B_{emv} \end{bmatrix}$$

$$\Big(ext{Matrix of C constant} \Big)$$

$$C := \begin{bmatrix} C_{EMV} \\ C_{emv} \end{bmatrix}$$

$$P := 760$$

Saturation temperatures

Vectorize Temperature Function

$$T_K := \frac{\overrightarrow{B}}{A - \ln(P)} - C$$

Defining Unit

$$Temp := T_{\kappa} K$$

Saturation Temperature 1 in K

Temp = 353.2551 K

Saturation Temperature 1 in C

 $Temp_{1} = 80.1051 \, ^{\circ}C$

Saturation Temperature 2 in K

Temp $_{2} = 383.776 \text{ K}$

Saturation Temperature 1 in C

Temp $_{2} = 110.626$ °C

 $T_{K} = \begin{bmatrix} T_{K} & 2 & \\ T_{K} & -T_{K} & \\ \frac{2}{10} & 1 \end{bmatrix}$ $\begin{bmatrix} T_{K} & -T_{K} \\ 2 & 10 \end{bmatrix}$ $\begin{bmatrix} T_{K} & -T_{K} \\ 2 & 10 \end{bmatrix}$ $\begin{bmatrix} T_{K} & -T_{K} \\ 2 & 10 \end{bmatrix} \cdot 4$ $Temperature := \begin{bmatrix} T_K & -T_K \\ 2 & 1 \\ 10 & 10 \end{bmatrix} = \begin{bmatrix} 371.5676 \\ 368.5156 \\ 365.4635 \\ 365.4635 \end{bmatrix}$ 371.5676 362.4114 $T_{K} = -\left[\frac{T_{K} - T_{K}}{2} \cdot 6\right]$ 359.3593 356.3072 $T_{K} = -\left(\frac{T_{K} - T_{K}}{2} \cdot 7\right)$ $T_{K} = -\left[\frac{T_{K} - T_{K}}{2} \cdot 8 \right]$ $T_{K} = -\left[\frac{T_{K} - T_{K}}{2} \cdot 9\right]$

Generalizing Temperature

T := Temperature

Vectorize P1 Pressure

Vectorize P2 Pressure

$$P_{A} := \mathbf{e}^{\left(A_{EMV} - \frac{B_{EMV}}{Temperature + C_{EMV}}\right)}$$

$$A_{\text{emv}} - \frac{B_{\text{emv}}}{T_{\text{emperature}} + C_{\text{emv}}}$$

$$P_{\text{o}} := \mathbf{e}$$

Vectorize Composition of X

Vectorize Compostion of Y

$$X := \frac{P - P_2}{P_1 - P_2}$$

RSB

$$Y := \frac{\overrightarrow{X \cdot P_1}}{P}$$

Matrix to consolidate data for plotting

rix to consolidate data for plotting									
		"P1 mm Hg"	"P2 mm Hg"	"X"	"Y"				
	<i>T_K</i> 2	P ₁ 1	P ₂ 1	<i>X</i> 1	<i>Y</i> 1				
	$T_{K} = \left(\frac{T_{K} - T_{K}}{2} \cdot 1\right)$	P ₁ 2	P ₂ 2	<i>X</i> 2	У 2				
	$T_{K} = -\left(\frac{T_{K} - T_{K}}{2} \cdot 1\right)$	P ₁ 3	P ₂ 3	<i>X</i> 3	Y З				
	$T_{K} = -\left[\frac{T_{K} - T_{K}}{2} \cdot 3\right]$	P_{1} 4	P ₂ 4	<i>X</i> 4	<i>Y</i> 4				
	$T_{K} = -\left[\frac{T_{K} - T_{K}}{2} \cdot 1 \cdot 4\right]$	P ₁ 5	P ₂ 5	<i>X</i> 5	У 5				
	$T_{K} = -\left[\frac{T_{K} - T_{K}}{2} \cdot 5\right]$	P ₁ 6	P ₂ 6	<i>X</i> 6	У 6				
	$T_{K} = -\left[\frac{T_{K} - T_{K}}{2} \cdot 6\right]$	P ₁ 7	P ₂ 7	<i>X</i> 7	<i>Y</i> 7				
	$T_{K} = -\left[\frac{T_{K} - T_{K}}{2} \cdot 7\right]$	P ₁ 8	P ₂ 8	<i>X</i> 8	Y 8				
	$T_{K} = -\left[\frac{T_{K} - T_{K}}{2} \cdot 8\right]$	P ₁ 9	P ₂ 9	<i>X</i> 9	У 9				
	$T_K = \begin{bmatrix} T_K - T_K \\ \frac{2}{10} \cdot 9 \end{bmatrix}$	P ₁ 10	P ₂						
	T_{K}	P ₁ 11	P ₂ 11	X 11	Y 11.				

RESULTS OF THE BINARY SYSTEM							
Temperature	P1 mm Hg	P2 mm Hg	X	Y			
383.7760	1784.2839	760.0000	0.0000	0.0000			
380.7239	1650.0593	696.2997	0.0668	0.1450			
377.6718	1523.6942	636.8873	0.1388	0.2783			
374.6197	1404.8846	581.5571	0.2167	0.4006			
371.5676	1293.3298	530.1077	0.3012	0.5126			
368.5156	1188.7326	482.3431	0.3931	0.6148			
365.4635	1090.7998	438.0716	0.4932	0.7079			
362.4114	999.2422	397.1069	0.6027	0.7924			
359.3593	913.7754	359.2679	0.7227	0.8689			
356.3072	834.1196	324.3786	0.8546	0.9379			
353.2551	760.0000	292.2685	1.0000	1.0000			

+ − First Graph

+─Third Graph

Saturation pressure 2 in mm Hg vs X-Y

