

HyTech Racing BMS: Presentation 1

Team Buzz: Stefan Abi-Karam, Evan Burke, Abigail Ivemeyer, Leonid Pozdneev, Mayur Singh, & Ethan Taylor

Order of Presentation

- 1. Introduction/Background (Abi)
- 2. Categories of Prior Art (Ethan)
- 3. Existing Products/Prior Art/Applicable Patents (Ethan)
- 4. Prior Art/HyTech BMS Design (Leo)
- 5. Customer Requirements/Design Specifications (Leo)
- 6. Design Concept Ideation: General System Diagram (Stefan)
- 7. Design Concept Ideation: Morphological Chart (Evan+Mayur)
- 8. Design Concept Ideation: Electrical System Diagram (Stefan)

Introduction / Background

- HyTech racing is interested in a custom battery management system, a data recording system, and a user interface for charging Lithium Cobalt Oxide pouch battery cells
- The end goal is efficient battery charging and health estimation

 Lithium Cobalt Oxide batteries are used because of their high specific energy but are limited by short lifespans

Categories of Prior Art

Existing Products / Prior Art / Applicable Patents

HyTech Racing:

- Already have a pre-existing BMS design utilizes LTC6804 Multicell Battery Monitors with voltage logging using a Tensey 3.2 microcontoller
- This design has already been thoroughly tested
- More functionality is still to desired (logging storage, temperature monitoring, mechanical design)

Orion BMS

- Was used previously by HyTech
- Has many great features and is field programmable
- Orion BMS in the end was not a desirable solution for HyTech
- Large size and weight
- A lot of features that were not needed

Patents

Prior Art: HyTech BMS Design

isoSPI transformer

BMS chip (LTC6811) connections

Thermistor connections

Prior Art: HyTech BMS Design

Customer Requirements / Design Specifications

Function

- Charge 9 LiCoO2 Battery Cells with nominal capacity of 18Ah
- Record and store current and voltage data for every cell
- Must be compatible with Melasta SLPBA580183 battery cells

Electrical Characteristics

- Charging current of 9A (0.5C)
- Must have a cell balancing algorithm
- Powered from a regular electrical wall outlet

Safety

Must be easy and safe to use

Design Concept Ideation: General System Diagram

Design Concept Ideation

Morphological Chart:

Design Concept Ideation: Electrical System Diagram

