Category Theory

Rohan Jain

August 25, 2025

Table of Contents

1.	What is Category Theory?	1
	1.1. Motivating example	1
	1.2. Categories	

1. What is Category Theory?

Category theory is a language for talking about structuralist mathematics.

- materialism: an object is understood in terms of what it consists of
- structuralism: an object is understood in terms of its relationships to other objects

1.1. Motivating example

Let
$$D^2 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$$
. Then let $S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} \subseteq D^2$.

Theorem 1.1 (Brouwer's fixed point theorem): If $f: D^2 \to D^2$ is continuous, then f has a fixed point. That is, there is some $x \in D^2$ such that f(x) = x.

The proof uses a trick and facts about homology. Effectively, there is a machine that takes a topological space (subsets of \mathbb{R}^2) and spits out a vector space (over \mathbb{R}).

- 1) For every topological space X, there is a vector space H(X) (omitting actual definition).
- 2) For every continuous function $f: X \to Y$, there is an "induced" linear map given by $H(f): H(X) \to H(Y)$.
- 3) If $X \to Y \to Z$ are continuous maps, $H(f): H(X) \to H(Y), H(g): H(Y) \to H(Z)$ and $H(g \circ f): H(X) \to H(Z)$, then $H(g \circ f) = H(g) \circ H(f)$.
- 4) For any X, $H(\mathrm{id}_X)=\mathrm{id}_{H(X)}:H(X)\to H(X).$

Computations:

- 5) $H(D^2) \cong 0$.
- 6) $H(S^1) \cong \mathbb{R}$.

PROOF: Assume $f:D^2\to D^2$ is continuous and f(x)=x for all $x\in D^2$. Define a new function $r:D^2\to S^1$ such that r(x)= intersection of the ray from f(x) to x with $S^1\subseteq D^2$.

Key fact: If $x \in S^1$, then r(x) = x. Check that r is also continuous.

The diagram above commutes. Now we can apply homology to it.

We can check that

$$H(r) \circ H(\iota) = H(r \circ \iota)$$

$$= H(\mathrm{id}_{S^1})$$

$$= \mathrm{id}_{H(S^1)}.$$
(1)

Therefore, the new diagram also commutes. So, if $w \in H(S^1)$, then

$$w = id_{H(S^1)}(w) = H(r)(H(\iota)(w)) = 0.$$
(2)

This is a contradiction as $H(S^1) \neq 0$.

1.2. Categories

Definition 1.2 (Category): A category \mathcal{C} consists of:

- a collection of objects, $\mathrm{Ob}(\mathcal{C})$. For any $A \in \mathrm{Ob}(\mathcal{C})$, we usually write $A \in \mathcal{C}$.
- for any pair of objects $A,B\in\mathcal{C}$, there is a collection of morphisms $\mathrm{Hom}_{\mathcal{C}}(A,B)$, or $\mathrm{Hom}(A,B)$, or $\mathcal{C}(A,B)$. Instead of $f\in\mathcal{C}(A,B)$, we write $f:A\to B$ or $A\to B$.
- for any objects $A, B, C \in \mathcal{C}$ and morphisms $f: A \to B$ and $g: B \to C$, there is a specified composition $g \circ f: A \to C$.
- for any object $A \in \mathcal{C}$, there is a given $\mathrm{id}_A : A \to A$
- compositions are associative: $(g\circ f)\circ h=g\circ (f\circ h)$
- for any $A \stackrel{f}{\rightarrow} B$, $f \circ \mathrm{id}_A = f = \mathrm{id}_B \circ f$

Example 1.3:

• Set, the category of sets (& functions).