Chapter 9

입출력 시스템 & 디스크 관리

I/O system and Disk Management

Overview

I/O Mechanisms

How to send data between processor and I/O device

I/O Services of OS

OS Supports for better I/O performance

Disk Scheduling

Improve throughput of a disk

RAID Architecture

Improve the performance and reliability of disk system

I/O System (HW)

<출처: 운영체제, 한빛미디어>

I/O Mechanisms

- Processor controlled memory access
 - Polling (Programmed I/O)
 - Interrupt

<출처: 운영체제, 한빛미디어>

Direct Memory Access (DMA)

Polling (Programmed I/O)

- Processor가 주기적으로 I/O 장치의 상태 확인
 - 모든 I/O 장치를 순환하면 확인
 - 전송 준비 및 전송 상태 등

• 장점

- Simple
- I/O 장치가 빠르고, 데이터 전송이 잦은 경우 효율적

• 단점

- Processor의 부담이 큼
 - Pooling overhead (I/O device가 느린 경우)

Interrupt

- I/O 장치가 작업을 완료한 후, 자신의 상태를 Processor에게 전달
 - Interrupt 발생 시, Processor는 데이터 전송 수행

• 장점

- Pooling 대비 low overhead
- 불규칙적인 요청 처리에 적합

• 단점

Interrupt handling overhead

Interrupt

Direct Memory Access (DMA)

- Processor controlled memory access 방법
 - Processor가 모든 데이터 전송을 처리해야 함
 - High overhead for the processor
- Direct Memory Access

• I/O 장치와 Memory 사이의 데이터 전송을 Processor 개입

없이 수행

Direct Memory Access (DMA)

• Processor는 데이터 전송의 시작/종료 만 관여

- 프로세서가 전송 방향, 전송 바이트 수, 데이터 블록의 메모리 주소 등을 DMA 제어기에 보낸다.
- ② DMA 제어기는 디스크 제어기에 데이터를 메인 메모리로 전송하라고 요청한다.
- ③ 디스크 제어기가 메인 메모리에 데이터를 전송한다.
- ❹ 데이터 전송을 완료하면 디스크 제어기는 DMA 제어기에 완료 메시지를 전달한다.
- **⑤** DMA 제어기가 프로세서에 인터럽트 신호를 보낸다.

Overview

- I/O Mechanisms
 - How to send data between processor and I/O device
- I/O Services of OS
 - OS Supports for better I/O performance
- Disk Scheduling
 - Improve throughput of a disk
- RAID Architecture
 - Improve the performance and reliability of disk system

- I/O Scheduling
 - 입출력 요청에 대한 처리 순서 결정
 - 시스템의 전반적 성능 향상
 - Process의 요구에 대한 공평한 처리
 - E.g., Disk I/O scheduling
- Error handling
 - 입출력 중 발생하는 오류 처리
 - E.g., disk access fail, network communication error 등
- I/O device information managements

Buffering

- I/O 장치와 Program 사이에 전송되는 데이터를 Buffer에 임시 저장
- 전송 속도 (or 처리 단위) 차이 문제 해결

Caching

- 자주 사용하는 데이터를 미리 복사해 둠
- Cache hit시 I/O를 생략 할 수 있음

Spooling

- 한 I/O 장치에 여러 Program이 요청을 보낼 시, 출력이 섞이지 않도록 하는 기법
 - 각 Program에 대응하는 disk file에 기록 (spooling)
 - Spooling이 완료 되면, spool을 한번에 하나씩 I/O 장치로 전송

Overview

- I/O Mechanisms
 - How to send data between processor and I/O device
- I/O Services of OS
 - OS Supports for better I/O performance
- Disk Scheduling
 - Improve throughput of a disk
- RAID Architecture
 - Improve the performance and reliability of disk system

Disk Scheduling

- Disk access 요청들의 처리 순서를 결정
- Disk system의 성능을 향상

- 평가 기준
 - Throughput
 - 단위 시간당 처리량
 - Mean response time
 - 평균 응답 시간
 - Predictability
 - 응답 시간의 예측성
 - 요청이 무기한 연기(starvation)되지 않도록 방지

Disk Scheduling

1) Seek time

• 디스크 head를 필요한 cylinder로 이동하는 시간

2) Rotational delay

- 1) 이후에서 부터,
- 필요한 sector가 head 위치로 도착하는 시간

3) Data transmission time

- 2) 이후에서 부터,
- 해당 sector를 읽어서 전송 (or 기록)하는 시간

Disk Scheduling

Optimizing seek time

- FCFS (First Come First Service)
- SSTF (Shortest Seek Time First)
- Scan
- C-Scan (Circular Scan)
- Look

Optimizing <u>rotational delay</u>

- Sector queueing (SLTF, Shortest Latency Time Frist)
- SPTF (Shortest Positioning Time First)

First Come First Service (FCFS)

• 요청이 도착한 순서에 따라 처리

- 장점
 - Simple
 - Low scheduling overhead
 - 공평한 처리 기법 (무한 대기 방지)
- 단점
 - 최적 성능 달성에 대한 고려가 없음
- Disk access 부하가 적은 경우에 적합

First Come First Service (FCFS)

Example

- 총 256개의 cylinder으로 구성
- Head의 시작 위치 : 100번 cylinder
- Access request queue

← 160 200 90 170 20 190 120 130 ←
--

First Come First Service (FCFS)

Total seek distance =

Shortest Seek Time First (SSTF)

• 현재 head 위치에서 가장 가까운 요청 먼저 처리

- 장점
 - Throughput 个
 - 평균 응답 시간 ↓
- 단점
 - Predictability ↓
 - Starvation 현상 발생 가능
- 일괄처리 시스템에 적합

Shortest Seek Time First (SSTF)

Total seek distance =

Scan Scheduling

- 현재 head의 진행 방향에서, head와 가장 가까운 요청 먼저 처리
- (진행방향 기준) 마지막 cylinder 도착 후, 반대 방향으로 진행

• 장점

- SSTF의 starvation 문제 해결
- Throughput 및 평균 응답시간 우수

• 단점

진행 방향 반대쪽 끝의 요청들의 응답시간 ↑

Scan Scheduling

Total seek distance =

C-Scan Scheduling

- SCAN과 유사
- Head가 미리 정해진 방향으로만 이동
 - 마지막 cylinder 도착 후, 시작 cylinder로 이동 후 재시작
- 장점
 - Scan대비 균등한 기회 제공

C-Scan Scheduling

Total seek distance =

Look Scheduling

- Elevator algorithm
- Scan (C-Scan)에서 현재 진행 방향에 요청이 없으면 방향 전환
 - 마지막 cylinder까지 이동하지 않음
 - Scan (C-Scan)의 실제 구현 방법

• 장점

• Scan의 불필요한 head 이동 제거

Look Scheduling

Total seek distance =

Shortest Latency Time First (SLTF)

• Fixed head disk 시스템에 사용

- 각 track마다 head를 가진 disk
 - e.g., drum disk
- Head의 이동이 없음

Sector queuing algorithm

- 각 sector별 queue 유지
- Head 아래 도착한 sector의 queue에 있는 요청을 먼저 처리 함

Drum memory of a Polish ZAM-41 computer

Shortest Latency Time First (SLTF)

Shortest Latency Time First (SLTF)

- Moving head disk의 경우
- 같은 cylinder에 여러 개의 요청 처리를 위해 사용 가능
 - Head가 특정 cylinder에 도착하면, 고정 후
 - 해당 cylinder의 요청을 모두 처리

Shortest Positioning Time First (SPTF)

- Positioning time = Seek time + rotational delay
- Positioning time이 가장 작은 요청 먼저 처리

• 장점

• Throughput ↑, 평균 응답 시간 ↓

• 단점

• 가장 안쪽과 바깥쪽 cylinder의 요청에 대해 starvation 현상 발생 가능

Shortest Positioning Time First (SPTF)

Eschenbach scheduling

- Positioning time 최적화 시도
- Disk가 1회전 하는 동안 요청을 처리할 수 있도록 요청을 정렬
 - 한 cylinder내 track, sector들에 대한 다수의 요청이 있는 경우, 다음 회전에 처리 됨

Overview

- I/O Mechanisms
 - How to send data between processor and I/O device
- I/O Services of OS
 - OS Supports for better I/O performance
- Disk Scheduling
 - Improve throughput of a disk
- RAID Architecture
 - Improve the performance and reliability of disk system

RAID Architecture

- Redundant Array of Inexpensive Disks (RAID)
- 여러 개의 물리 disk를 하나의 논리 disk로 사용
 - OS support, RAID controller

- Disk system의 성능 향상을 위해 사용
 - Performance (access speed)
 - Reliability

- Disk striping
 - 논리전인 한 block을 일정한 크기로 나누어 각 disk에 나누어 저장
- 모든 disk에 입출력 부하 균등 분배
 - Parallel access
 - Performance 향상
- 한 Disk에서 장애 시, 데이터 손실 발생
 - Low reliability

- Disk mirroring
 - 동일한 데이터를 mirroring disk에 중복 저장
- 최소 2개의 disk로 구성
 - 입출력은 둘 중 어느 disk에서도 가능
- 한 disk에 장애가 생겨도 데이터 손실 X
 - High reliability
- 가용 disk 용량 = (전체 disk 용량/2)

- RAID 0 + parity disk
 - Byte 단위 분할 저장
 - 모든 disk에 입출력 부하 균등 분배
 - Parallel access, Performance 향상
- 한 disk에 장애 발생 시, parity 정보를 이용하여 복구
- Write 시 parity 계산 필요
 - Overhead
 - Write가 몰릴 시, 병목현상 발생 가능

• RAID 3과 유사, 단 Block 단위로 분산 저장

- 독립된 access 방법
- Disk간 균등 분배가 안될 수도 있음
- 한 disk에 장애 발생 시, parity 정보를 이용하여 복구
- Write 시 parity 계산 필요
 - Overhead / Write가 몰릴 시 병목현상 발생 가능

• 병목 현상으로 성능 저하 가능

• 한 disk에 입출력이 몰릴 때

- RAID 4와 유사
 - 독립된 access 방법
- Parity 정보를 각 disk들에 분산 저장
 - Parity disk의 병목현상 문제 해소
- 현재 가장 널리 사용 되는 RAID level 중 하나
 - High performance and reliability

RAID Architecture

- Other RAID levels are available
 - RAID 6, 0+1, Etc.

- Error Correction with Parity
 - https://en.wikipedia.org/wiki/Parity_bit
 - Redundant array of independent disks section 참조

Conclusion

I/O Mechanisms

- Processor controlled memory access (Pooling, Interrupt)
- Direct Memory Access (DMA)

I/O Services of OS

- I/O scheduling, Error handling, I/O device management
- Buffering, Caching, Spooling

Disk Scheduling

- Optimizing seek time
- Optimizing rotational delay
- Minimizing positioning time

RAID Architecture

• RAID 0, 1, 3, 4, 5

