Семинар 14

1 Бодлого, Дасгал

1-6. Өгөгдсөн гадаргуунуудын гадаргуугийн талбайг ол.

- 1. z=4 хавтгайгаас доош $z=\sqrt{x^2+y^2}$ конусын хэсэг
- 2. z = 4 хавтгайгаас доош $z = x^2 + y^2$ параболойдын хэсэг
- 3. $x^2 + y^2 = 4$ цилиндрийн дотор, 3x + y + z = 6 хавтгайн хэсэг
- 4. $y=x^2$ ба y=1 хязгаарлагдсан мужаас дээш x+2y+z=4 хавтгайн хэсэг
- 5. $x^2 + y^2 = 4$ цилиндрийн дотор, $z = x^2 + y^2$ параболойдын хэсэг
- 6. z=1 хавтгайгаас дээш $z=\sqrt{4-x^2-y^2}$ тал бөмбөрцгийн хэсэг
- 7-12. $\int_{S} \int g(x,y,z) dS$ хэлбэрийн гадаргуугийн интегралыг бод.
 - 7. $\int_S \int xz dS$, S: $1 \le x \le 2, 1 \le y \le 3$ тэгш өнцөгтөөс дээш z = 2x + 3y хавтгайн хэсэг
 - 8. $\int_S \int (z-y^2) dS,\, S \colon z=4$ хавтгайгаас дээш $z=x^2+y^2$ параболойдын хэсэг
 - 9. $\int_S \int (x^2+y^2+z^2)^{\frac{3}{2}} dS, S: z=\sqrt{9-x^2-y^2}$ доод тал бөмбөрцөг
- 10. $\int_S \int \sqrt{x^2 + y^2 + z^2} dS$, S: $x^2 + y^2 + z^2 = 9$ хавтгайн хэсэг
- 11. $\int_S \int (x^2+y^2-z) dS,$ S: z=1 ба z=2 хооронд орших $z=4-x^2-y^2$ параболойдын хэсэг
- 12. $\int_S \int z dS,\, S \colon z = -\sqrt{9-x^2-y^2}$ тал бөмбөрцөг

13-16. $\int_S \int \mathbf{F} \cdot \mathbf{n} dS$ урсгалыг ол.

- 13. $\mathbf{F} = \langle x, y, z \rangle$, S: xy- хавтгайгаас дээш $z = 4 x^2 y^2$ параболойдын хэсэг (\mathbf{n} дээш чиглэлтэй)
- 14. $\mathbf{F} = \langle y, -x, 1 \rangle$, S: z = 4- хавтгайгаас дээш $z = x^2 + y^2$ параболойдын хэсэг (\mathbf{n} доош чиглэлтэй)
- 15. $\mathbf{F}=\langle y,-x,z\rangle,\,S$: z=3- хавтгайгаас дээш $z=\sqrt{x^2+y^2}$ конусы хэсэг (\mathbf{n} доош чиглэлтэй)
- 16. $\mathbf{F} = \langle 0, 1, y \rangle$, $S: x^2 + y^2 = 4$ дотор $z = -\sqrt{x^2 + y^2}$ конусы хэсэг (**n** дээш чиглэлтэй)

17-20. Гаргуугийн интегралыг бод.

- 17. $\int_S \int z dS,\, S\colon z$ нь z=1 ба
 z=2хоорнд $x\ge 0$ бүхий $x^2+y^2=1$ -ийн хэсэг
- 18. $\int_S \int yz dS,\, S:\, z$ нь z=1 ба z=4-y хоорнд $x\geq 0$ бүхий $x^2+y^2=1$ -ийн хэсэг
- 19. $\int_{S} \int y^{2} + z^{2} dS$, S: z нь yz хавтгайн урд хэсэг дэх $x = 9 y^{2} z^{2}$ параболойдын хэсэг
- 20. $\int_{S} \int y^2 + z^2 dS$, $S: x = \sqrt{4 y^2 z^2}$ тал бөмбөрцөг