Hands-on exercise November 29, 2019

<u>Contacts:</u> Ann-Cecilie Larsen (a.c.larsen@fys.uio.no) Magne Guttormsen (m.s.guttormsen@fys.uio.no)

Exercise with formula $\Gamma = f_{E1} E \gamma^3 D_0$

The ¹⁹⁶Pt nucleus has captured an s-wave neutron. The average spacing at S_n = 5.840 MeV is D_0 = 153 eV, and the γ SF for E1 transitions have been measured (see table below). In addition, the total average gamma-width is assumed to be $<\Gamma\gamma>$ = 120 meV.

- a) What is the excitation energy, spin and parity of the initial state of 197Pt?
- b) Draw the possible E1 transitions to the states shown in the table.
- c) Calculate the summed partial E1 widths into the states shown in the table.
- d) If we assume all other transitions go to the quasi-continuum, what is the partial gamma-width into the quasi-continuum region?

Table

Ex(MeV)	$J\pi$	Eγ (MeV)	f _{E1} (MeV ⁻³)10 ⁻⁷	Γ (meV)
0.000	1/2-	5.840	5.650	?
0.053	5/2-	5.787	6.013	?
0.072	3/2-	5.768	5.830	?
0.099	3/2-	5.741	5.830	?
0.131	1/2-	5.700	5.830	?
0.269	1/2-	5.500	5.350	?

TOTAL =