INTELIGÊNCIA ARTIFICIAL

Aprendizado Preditivo Classificação

Everton Dias

etgdb@cesar.school

Material produzido por JP Magalhaes

jp@cesar.school

Aprendizado Supervisionado (Preditivo)

No aprendizado supervisionado, a base de treinamento é fornecida ao algoritmo de Machine Learning contendo tanto a entrada **X** quanto a saída esperada **y.**

Na classificação, a saída gerada pelo modelo é um valor pertencente a um conjunto discreto, sendo chamada de categoria e, os valores, labels

Aprendizado Supervisionado Classificação

- Dados $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n), \mathbf{y} \in \mathbf{C}$ um conjunto discreto
 - o y é uma categoria (classe) → classificação
- Aprende uma função f(x) capaz de predizer y dado X

Comumente, estaremos interessados em estimar as probabilidades de X pertencer a categoria C

k-NN k - Vizinhos mais Próximos

É razoável assumir que pessoas "próximas" pertencem ao mesmo grupo?

É razoável assumir que pessoas "próximas" pertencem ao mesmo grupo?

- Para cada nova amostra, ordena todos os exemplos conhecidos de acordo com uma medida de similaridade - Função Distância
- Porém, a saída é determinada em função apenas dos K vizinhos mais próximos
 - Classificação votação
 - Regressão média

Euclidean

$$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$

В

 (x_2, y_2)

Exemplo

Cliente	Idade	Salário	# cartões	Classe
George	35	35	3	0
Paulo	22	50	2	1
Raquel	63	200	1	0
Pedro	59	170	1	1
Ana	25	40	4	0
Joao	37	50	2	?

 No kNN, características (diferentes dimensões) são colocadas na mesma equação

Logo, terão impacto proporcional a sua magnitude

Para sanar este problema, deve-se 'normalizar' os dados

- Todas as características devem ter mesma magnitude
- Utilizamos sklearn.preprocessing -> StandardScaler

Desvio-Padrão	19,11	79,40	1,30
Média	40,8	99	2,2

^{*} Não considera o exemplo de teste (João)

Cliente	Idade	Salário	# cartões	Classe
George	35	35	3	0
Paulo	22	50	2	1
Raquel	63	200	1	0
Pedro	59	170	1	1
Ana	25	40	4	0
Joao	37	50	2	?

Cliente	Idade	Salário	# cartões	Classe
George	-0,30	-0,81	0,61	0
Paulo	-0,98	-0,62	-0,15	1
Raquel	1,16	1,27	-0,92	0
Pedro	0,95	0,89	-0,92	1
Ana	-0,83	-0,74	1,38	0
Joao	-0,20	-0,62	-0,15	?

$$z = (x - u) / s$$

- o u média
- o s desvio-padrão

Exemplo: Cálculo das Distâncias

Cliente	Idade	Salário	# cartões	Classe
George	-0,30	-0,81	0,61	0
Paulo	-0,98	-0,62	-0,15	1
Raquel	1,16	1,27	-0,92	0
Pedro	0,95	0,89	-0,92	1
Ana	-0,83	-0,74	1,38	0
Joao	-0,20	-0,62	-0,15	?

$$z = (x - u) / s$$

- o u média
- o s desvio-padrão

Distance

d (Joao-George) =
$$[(-0.3 + 0.2)^2 + (-0.81 + 0.62)^2 + (0.61 + 0.15)^2]^{1/2} = 0.80$$

d (Joao-Paulo) =
$$[(-0.98 + 0.2)^2 + (-0.62 + 0.62)^2 + (-0.15 + 0.15)^2]^{1/2} = 0.78$$

Cliente	Idade	Salário	# cartões	Classe
George	0,30	0,81	0,61	0
Paulo	0,98	0,62	0,15	1
Raquel	1,16	1,27	0,92	0
Pedro	0,95	0,89	0,92	1
Ana	0,83	0,74	1,38	0
Joao	0,20	0,62	0,15	?

Distance	Classe
0,80	0
0,78	1
2,45	0
2,05	1
1,66	0

Cliente	Idade	Salário	# cartões	Classe
George	0,30	0,81	0,61	0
Paulo	0,98	0,62	0,15	1
Raquel	1,16	1,27	0,92	0
Pedro	0,95	0,89	0,92	1
Ana	0,83	0,74	1,38	0
Joao	0,20	0,62	0,15	1

Distance	Classe
0,80	0
0,78	1
2,45	0
2,05	1
1,66	0

Cliente	Idade	Salário	# cartões	Classe
George	0,30	0,81	0,61	0
Paulo	0,98	0,62	0,15	1
Raquel	1,16	1,27	0,92	0
Pedro	0,95	0,89	0,92	1
Ana	0,83	0,74	1,38	0
Joao	0,20	0,62	0,15	0

Distance	Classe
0,80	0
0,78	1
2,45	0
2,05	1
1,66	0

Como escolher o valor de K?

A forma mais básica é rodar o algoritmo várias vezes com diferentes valores de K e escolher o K que minimiza os erros

- K muito baixo torna as predições menos estáveis
- K muito alto torna o algoritmo muito rígido

k-NN - Impacto do valor de k na 'superfície de decisão'

k-NN - Impacto do valor de k na 'superfície de decisão'

Prós

- Algoritmo preguiçoso treinamento rápido
- Simples, fácil de entender e implementar
- Aplicável a problemas complexos
- Não é necessário treinamento prévio ou configurar muitos parâmetros
- Pode continuar aprendendo durante o uso
- Muito versátil: Classificação, Regressão, busca, aprendizado por reforço, etc

Contras

- Algoritmo preguiçoso predição custosa
- Processamento e armazenamento cresce linearmente com o número de exemplos e características da base
- Não constrói um modelo explícito, não obtendo uma representação compacta dos dados
- Leva em consideração todas as características igualmente, sendo afetado por atributos redundantes e/ou irrelevantes

Prática

Pessoas impulsionando inovação. Inovação impulsionando negócios.

NOSSO CONTATO cesar.org.br cesar.school

