

ÁLGEBRA LINEAL Y GEOMETRÍA

Departamento de Matemáticas J.R. Esteban Doble Grado en CC. Matemáticas e Ingeniería Informática, 2019-2020

Ejercicios 1 a 7

Ejercicios de repaso de Álgebra Lineal

1. Sea E un espacio vectorial y sean

$$\mathcal{B}_1 = \{ \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n \}, \qquad \mathcal{B}_2 = \{ \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \}$$

dos bases de E. Supongamos que cada \mathbf{u}_{i} se escribe

$$\mathbf{u}_{j} = \sum_{i=1}^{n} a_{ij} \mathbf{v}_{i},$$
 es decir, $\begin{bmatrix} \mathbf{u}_{j} \end{bmatrix}_{\mathcal{B}_{2}} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{bmatrix}$.

Consideremos la aplicación lineal $T:E\longrightarrow E$ definida mediante

$$T(\mathbf{v}_j) = \mathbf{u}_j$$
, $j = 1, 2, \dots, n$.

Se pide calcular, razonadamente, cada una de las siguiente matrices:

1.
$$[T]_{\mathcal{B}_2, \mathcal{B}_1}$$

2.
$$[T]_{\mathcal{B}_1, \mathcal{B}_1}$$

3.
$$[T]_{\mathcal{B}_2, \mathcal{B}_2}$$

$$\tilde{\tau}^{4}$$
. $[T]_{\mathcal{B}_{1},\mathcal{B}_{2}}$

2. Sean
$$\mathcal{B}_1 = \{ \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \}$$
 y $\mathcal{B}_2 = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \}$ bases de \mathbb{R}^3 y sea

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

la aplicación lineal definida mediante

(1)
$$\begin{cases} 2T(\mathbf{u}_1) + T(\mathbf{u}_2) & = \mathbf{v}_1 \\ T(\mathbf{u}_1) & -T(\mathbf{u}_3) & = \mathbf{v}_1 - \mathbf{v}_2 \\ T(\mathbf{u}_1) + T(\mathbf{u}_2) - T(\mathbf{u}_3) & = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3. \end{cases}$$

- 1. Escribir bases $\mathcal{B}_1' = \{ \mathbf{u}_1', \mathbf{u}_2', \mathbf{u}_3' \}$ y $\mathcal{B}_2' = \{ \mathbf{v}_1', \mathbf{v}_2', \mathbf{v}_3' \}$ de \mathbb{R}^3 tales que $[T]_{\mathcal{B}_1', \mathcal{B}_2'} = \mathbf{I} \, .$
- 2. Hallar la matriz $\left[T\right]_{\mathcal{B}_1\,,\,\mathcal{B}_2},$ de T respecto de las bases \mathcal{B}_1 en salida y \mathcal{B}_2 en llegada.
- 3. Consideremos los espacios vectoriales $E=\mathcal{P}_n(\mathbb{C})$, de los polinomios de grado $\leq n$ con coeficientes en \mathbb{C} y $F=\mathbb{C}^2$. Sea

$$T: E \longrightarrow F$$

$$\mathbf{p} \rightarrow T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(0) - \mathbf{p}(1) \\ \mathbf{p}'(0) - \mathbf{p}'(1) \end{bmatrix}.$$

Sean $\mathcal{B} = \{1, z, z^2, \dots, z^n\}$, base de $\mathcal{P}_n(\mathbb{C})$ y \mathcal{B}_c la base canónica de \mathbb{C}^2 .

- 1. Calcular la matriz $\mathbf{A} = \begin{bmatrix} T \end{bmatrix}_{\mathcal{B}, \mathcal{B}_c}$, su «forma escalonada reducida» $\mathbf{E_A}$ y, a partir de ésta, una base de nul \mathbf{A} .
- 2. Calcular una base de $\ker T$, subespacio vectorial de E.
- **4.1.** Sea E un espacio vectorial y $T:E\longrightarrow E$ una aplicación lineal. Consideramos la aplicación lineal 1

$$T \circ T \cdot F \hookrightarrow F$$

que a cada vector \mathbf{u} de E asocia el vector $T(T(\mathbf{u}))$.

A. Demostrar que

$$T \circ T = T$$

implica

$$E = \operatorname{Im} T \oplus \ker T$$
.

Calcular $[T]_{\mathcal{B}\,,\,\mathcal{B}}$, cuando \mathcal{B} es una base de Eadaptada a esta descomposición en suma directa.

Las aplicaciones lineales que satisfacen (2) se llaman projectores.

B. Mostrar una aplicación lineal T para la cual se verifican (3) y $T \circ T \neq T$.

$$\begin{array}{ccccc} E & \xrightarrow{T} & E & \xrightarrow{T} & E \\ \mathbf{u} & \longrightarrow & T(\mathbf{u}) & \longrightarrow & T(T(\mathbf{u})) \end{array}$$

 $^{^1} T \circ T$ es la composición de T con sí misma,

2. Sean E un espacio vectorial y $T:E\longrightarrow E$ una aplicación lineal tal que

$$(4) T \circ T = I,$$

donde $I: E \longrightarrow E$ es la aplicación lineal «identidad en E». Consideramos

$$F = \{ \mathbf{u} \in E : T(\mathbf{u}) = \mathbf{u} \},$$

$$G = \{ \mathbf{u} \in E : T(\mathbf{u}) = -\mathbf{u} \}.$$

Demostrar que F y G son subespacios vectoriales de E y que $E=F\oplus G$.

Respecto de una base $\mathcal B$ de E adaptada a esta descomposición en suma directa, calcular la matriz $[T]_{\mathcal B \to \mathcal B}$.

De una aplicación lineal que satisface (4) se dice que es una involución.

- 3. Dada una aplicación lineal $T:E\longrightarrow E$ sea $L=I-2\,T$. Demostrar que $T\circ T=T$ si y solamente si $L\circ L=I$.
 - 5.1. A. Sea A la matriz

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 3 & 0 & 4 & 1 \\ 4 & 2 & 4 & 4 & 1 & 5 & 5 \\ 2 & 1 & 3 & 1 & 0 & 4 & 3 \\ 6 & 3 & 4 & 8 & 1 & 9 & 5 \\ 0 & 0 & 3 & -3 & 0 & 0 & 3 \\ 8 & 4 & 2 & 14 & 1 & 13 & 3 \end{bmatrix}$$

Utilizar SageMath para comprobar que ${\bf A}$ es el producto de la matriz formada con sus columnas fundamentales por la matriz formada con las filas no-nulas de ${\bf E}_{{\bf A}}$.

- B. Sea ${\bf A}$ uma matriz $m \times n$ de rango r. Sea ${\bf B}$ la matriz formada con las columnas fundamentales de ${\bf A}$ y sea ${\bf C}$ la matriz formada con las filas no nulas de ${\bf E}_{\bf A}$.
 - 1. Si la k-ésima columna de \mathbf{A} es la j-ésima de las columnas fundamentales de \mathbf{A} , ¿cómo es la k-ésima columna de \mathbf{C} ?
 - 2. Si la k-ésima columna de ${\bf A}$ es redundante y tiene a su izquierda j columnas fundamentales de ${\bf A}$ ¿cómo es la k-ésima columna de ${\bf C}$?
 - 3. Demostrar que \mathbf{B} y \mathbf{C} son ambas de rango r y satisfacen $\mathbf{A} = \mathbf{BC}$.
- 2. Demostrar que una matriz $\bf A$ tiene rango 1 si y sólo si existen columnas no nulas $\bf u$ y $\bf v$ tales que $\bf A = \bf u \, \bf v^{\scriptscriptstyle T}$. Comprobar que en esta situación se verifica

$$\mathbf{A}^2 = \tau \mathbf{A}$$
, siendo $\tau = \text{traza } \mathbf{A}$.

 ${f 6.}$ Sabemos que la forma canónica de JORDAN de la matriz ${f A}$ es

Se pide calcular los autovalores de A y para cada uno de ellos:

- 1. La multiplicidad algebraica de λ .
- 2. La multiplicidad geométrica de λ .
- 3. El índice k de $\mathbf{A} \lambda \mathbf{I}$.
- 4. El rango de cada $(\mathbf{A} \lambda \, \mathbf{I})^j$, donde $j \in \{1, 2, \dots, k\}$
- 5. La dimensión de cada uno de los espacios

$$E_j = \text{nul}(\mathbf{A} - \lambda \mathbf{I}) \cap \text{col}(\mathbf{A} - \lambda \mathbf{I})^j$$
 $j = 1, 2, \dots, k - 1$

Razonar las respuestas.

7. Dada $\mathbf{A} \in \mathbb{R}^{m \times n}$ con rango $\mathbf{A} = r$, consideramos la factorización

$$A = BC$$

estudiada en el ejercicio 5.1.B.

La matriz

$$\mathbf{A}^{\dagger} = \mathbf{C}^{\mathrm{\scriptscriptstyle T}} \left(\mathbf{B}^{\mathrm{\scriptscriptstyle T}} \mathbf{A} \mathbf{C}^{\mathrm{\scriptscriptstyle T}} \right)^{-1} \mathbf{B}^{\mathrm{\scriptscriptstyle T}}$$

se llama pseudoinversa de Moore-Penrose de la matriz ${f A}$.

- $\tilde{\mathbf{J}}$. Demostrar que las matrices $\mathbf{B}^{\mathsf{T}}\mathbf{B}$, $\mathbf{C}^{\mathsf{T}}\mathbf{C}$ y $\mathbf{B}^{\mathsf{T}}\mathbf{A}\mathbf{C}^{\mathsf{T}}$ son invertibles.

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$

y también $\mathbf{A}\mathbf{x} = \mathbf{b}$, cuando este sistema es compatible.

3. Demostrar que $\mathbf{A}\mathbf{A}^{\dagger}\mathbf{A} = \mathbf{A}$ y

(6)
$$\operatorname{nul} \mathbf{A} = \operatorname{col} (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}).$$

4. Demostrar que la solución general de (5), al igual que la del sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ cuando es compatible, viene dada por

$$\mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{h}, \qquad \mathbf{h} \in \mathbb{R}^{n}.$$

- 6. Comprobar que $\mathbf{X} = \mathbf{A}^{\dagger}$ satisface las cuatro ecuaciones siguientes :

$$\mathbf{AXA} = \mathbf{A}, \qquad (\mathbf{AX})^{\mathrm{T}} = \mathbf{AX},$$

$$\mathbf{X}\mathbf{A}\mathbf{X} = \mathbf{X}$$
, $(\mathbf{X}\mathbf{A})^{\mathrm{T}} = \mathbf{X}\mathbf{A}$.