

SÍLABO DISEÑO INDUSTRIAL POR COMPUTADOR

ÁREA CURRICULAR: DISEÑO E INNOVACIÓN TECNOLÓGICA

CURSO DE VERANO 2017

CICLO: III (Escuela Ing. Industrial)

CICLO: IV (Escuela Ing. Ind. Alimentarias)

I. CÓDIGO DEL CURSO : 090177

II. CRÉDITOS : 03

III.REQUISITOS : 090661 Dibujo y Diseño Gráfico

: 090032 Introducción a la Computación

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso forma parte de la formación especializada; tiene carácter teórico – práctico. Le permite al estudiante desarrollar la capacidad de interpretar y representar objetos, planos de ensamble y de despiece, catálogos de repuestos de uso industrial en planos físicos y digitales (2D y 3D). Asimismo, aporta teoría y práctica para abordar el dibujo y diseño gráfico.

El curso se desarrolla mediante las unidades de aprendizaje siguientes:

I. Naturaleza y alcances del diseño industrial. II. Croquizado, vistas especiales y auxiliares. III. Cortes y secciones. IV. Tolerancias dimensionales y geométricas. V. Elementos normalizados. VI. Conjuntos y despiece.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Jensen, C., Jay H. & Short, D. (2004). Dibujo y Diseño de Ingeniería. México, D, F. McGraw-Hill.
- Shih R. (2012). Learning Autodesk Inventor 2013. SDC Publications-USA
- Giesecke F., Mitchell A., Spencer H. & Hill I. (2006). Dibujo y Comunicación Gráfica. México. Pearson Educación.
- Huapaya, O. (2012). "Dibujo Técnico y de Ingeniería Asistido por Computador". USMP-Perú **Electrónicas**
- Huapaya, O., Cieza de León, E. (2012). Separata digital del curso Diseño Industrial por Computador. Facultad de Ingeniería y Arquitectura. Universidad de San Martín de Porres, Perú.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: EL DISEÑO INDUSTRIAL, ALCANCES

OBJETIVOS DE APRENDIZAJE:

- Utilizar la normativa y terminología de la Ingeniería Gráfica
- Emplear la formulación de documentos de trabajos gráficos

PRIMERA SEMANA

Primera sesión:

Prueba de entrada. El dibujo Industrial. Formas de ejecución.

Segunda sesión:

Los dibujos de conjunto. Características.

UNIDAD II: CROQUIZADO, VISTAS ESPECIALES Y AUXILIARES

OBJETIVOS DE APRENDIZAJE:

- Dibujar a mano alzada sin instrumentos de dibujo
- Realizar mediciones con vernier y micrómetro

- Representar piezas en vistas convencionales y especiales
- Construir digitalmente objetos con software CAD avanzado.

SEGUNDA SEMANA

Primera sesión:

Mediciones. Uso del vernier y micrómetro. Acotación según montaje.

Segunda sesión:

Construcciones 3D.

TERCERA SEMANA

Primera sesión:

Vistas especiales, interrumpidas, de detalle, locales, simétricas, parciales, giradas.

Segunda sesión:

Vistas auxiliares simples y dobles. Elementos roscados. Representación convencional y acotación.

UNIDAD III: CORTES Y SECCIONES

OBJETIVOS DE APRENDIZAJE:

- Dibujar piezas con elementos internos
- Utilizar las reglas de representación de cortes y secciones

CUARTA SEMANA

Primera sesión:

Cortes y secciones. El plano de corte. Tipos, representaciones especiales.

Segunda sesión:

Tipos de secciones. Abatidas, giradas.

QUINTA SEMANA

Primera sesión:

Ejercicios de aplicación de cortes y secciones

Segunda sesión:

Práctica de secciones, cortes y vistas auxiliares.

SEXTA SEMANA

Primera sesión:

Comandos avanzados 3D. Edición avanzada de sólidos.

Segunda sesión:

Representación de croquis en software CAD.

SÉPTIMA SEMANA

Primera sesión:

Construcción de ensambles en CAD

Segunda sesión:

Práctica dirigida sobre el uso del CAD para creación de planos digitales.

OCTAVA SEMANA

Examen Parcial

UNIDAD IV: TOLERANCIAS DIMENSIONALES Y GEOMÉTRICAS

OBJETIVOS DE APRENDIZAJE:

- Reconocer los errores en piezas fabricadas
- Construir un esquema de tolerancias para un sistema de agujero o eje único
- Seleccionar las medidas adecuadas de piezas por fabricar

NOVENA SEMANA

Primera sesión:

Tolerancias dimensionales, construcción del esquema de tolerancias. Ejercicios de selección de tolerancias de medidas.

Segunda sesión:

Ajustes. Tipos. Holgura, Apriete, Indeterminado (transición), elección de ajustes, ajustes normados

DÉCIMA SEMANA

Primera sesión:

Tolerancias geométricas. Forma, posición y movimiento, designación y simbología.

Segunda sesión:

Acabado superficial. Rugosidad, parámetros, designación y simbología, uso de tablas

UNIDAD V. ELEMENTOS NORMALIZADOS

OBJETIVOS DE APRENDIZAJE

- · Reconocer los diversos elementos normalizados
- Utilizar la técnica para unir elementos o transmitir potencia
- Emplear la simbología en las uniones por soldadura, remaches y otros
- Interpretar los manuales de productos normalizados

UNDÉCIMA SEMANA

Primera sesión:

Uniones roscadas y elementos accesorios. Características y tipos, designación y normas **Segunda sesión:**

Soldadura. Clasificación, simbología y designación.

DUODÉCIMA SEMANA

Primera sesión:

Muelles. Resortes de compresión, tracción, torsión.

Ejes y árboles.- Chavetas: Tipos, representación y acotación.

Segunda sesión:

Cojinetes. Fricción y rodadura.

Rodamientos. Tipos, representación, características y usos

DECIMOTERCERA SEMANA

Primera sesión:

Dibujos de sistemas de transmisión de potencia con uso de fajas y levas

Segunda sesión:

Engranajes. Tipos: rectos, helicoidales.

Tornillos. Sin fin y corona. Piñón y cremallera. Representación

UNIDAD VI: CONJUNTOS Y DESPIECE

OBJETIVOS DE APRENDIZAJE

- Interpretar planos de conjuntos
- Construir planos de montaje
- Exponer un proyecto de diseño industrial

DECIMOCUARTA SEMANA

Primera sesión:

Dibujos de ensamble y de despiece (detalle). Normas de representación

Segunda sesión

Planos de disposición general de una planta industrial.

DECIMOQUINTA SEMANA

Primera sesión:

Exposiciones. Presentación del trabajo de curso.

Segunda sesión:

Exposiciones. Presentación del trabajo de curso

DECIMOSEXTA SEMANA

Examen final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

- . Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- . Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- . Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor y una computadora personal para cada estudiante del curso, ecran, proyector de multimedia y una impresora.

Materiales: Manual universitario, Programa de dibujo asistido por computadora (AutoCAD 2010), aplicaciones multimedia.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF= (3*PE+EP+EF) / 5

PE =Promedio de evaluaciones

PE= (3*PP+PT) / 4

PP=Promedio de prácticas, que consisten en las notas de avances del proyecto durante el ciclo PP = (P1 + P2)/2

P1 =Notas de avance del proyecto hasta el Examen Parcial (oral y trabajo escrito)

P2 = Notas de avance del proyecto hasta el Examen Final (oral y trabajo escrito)

PT= (W1+W2+W3)/3

W1=Nota de trabajo 1 Sobre Secciones, Cortes y vistas auxiliares. (Trabajo escrito) W2=Nota de trabajo2 Sobre Tolerancias, Ajustes y Rugosidad. (Trabajo escrito)

W3=Nota de trabajo 3 Proyecto de curso. (Trabajo Escrito)

EP=Examen parcial **EF=**Examen Final

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para las Escuelas Profesionales de Ingeniería Industrial e Ingeniería en Industrias Alimentarias se establece en la tabla siguiente:

K = clave R = relacionado Recuadro vacío = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	K
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	K
(f)	Comprensión de lo que es la responsabilidad ética y profesional	

(g)	Habilidad para comunicarse con efectividad	
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	R
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio
1	0	4

b) Sesiones por semana: Dos sesiones.c) Duración: 5 horas académicas de 45 minutos

XIV. DOCENTE DEL CURSO

Ing. Alejandro Huapaya Bautista.

XV. FECHA

La Molina, enero de 2017