Binary Bouncy Particle Sampler

Ari Pakman

Columbia University

Bouncy Particle Sampler [Bouchard-Côté et.al., 2015]

- ▶ The space is augmented with a velocity variable $\mathbf{v} \in S^{d-1}$.
- ▶ Velocity reflection events given by Poisson process with rate $\lambda(t) = [\mathbf{v} \cdot \nabla U(\mathbf{w}_0 + \mathbf{v}_t)]_+$.
- Output is a piecewise linear trajectory
- The kernel is non-reversible.

Binary Bouncy Particle Sampling

- ▶ Map $\mathbf{y} \in \mathbb{R}^d$ into binary vector $s_{\mathbf{y}} = sign(\mathbf{y})$, componentwise.
- Define piecewise continuous potentials:

$$U_E(\mathbf{y}) = |\mathbf{y}| - \log p(\mathbf{s_y})$$

$$U_G(\mathbf{y}) = \frac{1}{2}\mathbf{y}^2 - \log p(\mathbf{s_y})$$

- ▶ When a particle hits a discontinuity, cross with probability $min(1, e^{-U(0^-)+U(0^+)})$
- ▶ Poisson process sampling is exact using inverse CDF method.

