Práctica 12: Red neuronal

Fabiola Vázquez

9 de diciembre de 2020

1. Introducción

En esta práctica [3] se trabaja con el aprendizaje de máquina. la cuál va a reconocer dígitos que provienen de imágenes pequeñas en blanco y negro. El objetivo es estudiar el desempeño de la red neuronal en términos de su puntaje F en función de las probabilidades asignadas para la generación de los dígitos. El experimento se lleva a cabo en el software R [2] en un cuaderno de Jupyter [1].

2. Experimento

A la máquina se le provee de imágenes que contiene la representación en blanco y negro de algún dígito, la máquina retorna que dígito es. Se lleva el registro de las veces que la máquina acertó en un data.frame y se calculan los totales. El cuadro 1 muestra un ejemplo de dicho data.frame. Se varía la probabilidad del color negro en $\{0.9925, 0.995, 0.9975\}$, la del color gris en $\{0.9, 0.925, 0.95\}$ y la probabilidad del blanco en $\{0.001, 0.002, 0.003\}$. Para cada combinación de las probabilidades se realizan 50 repeticiones.

Se calcula el puntaje F [4] como

$$F = 2 \cdot \frac{\text{precisión} \cdot \text{exhaustividad}}{\text{precisión} + \text{exhaustividad}},$$
(1)

para cada uno de los dígitos con los que se trabaja y al final se calcula la media de los puntajes F. Los resultados se almacenan en un data.frame, el cuadro 2 muestra un fragmento de los datos recopilados.

En la figura 1 se tienen gráficos de caja de las 27 combinaciones, donde el color de la caja representa la probabilidad del color gris, el color del borde representa la probabilidad del color negro y en el eje horizontal está representada la probabilidad del color blanco.

Se realizan pruebas de correlación para cada una de las probabilidades, obteniendo valores p menores que 0.05, por lo que se concluye que las tres probabilidades afectan al puntaje F. Cuando las probabilidades de los colores negro y gris aumenta, el puntaje F también. Cuando la probabilidad de blanco aumenta, el puntaje F disminuye.

Referencias

[1] Thomas Kluyver, Benjamin Ragan-Kelley, Pérez, et al. Jupyter notebooks—a publishing format for reproducible computational workflows. In *Positioning and Power in Academic Publishing: Players*,

Cuadro 1: Ejemplo del data.frame recopilado en una corrida

	0	1	2	3	4	5	6	7	8	9	NA	Total
0	20	0	0	0	0	0	0	0	2	0	0	22
1	0	28	0	0	0	0	0	0	0	0	0	28
2	0	0	21	0	0	0	0	0	1	0	2	24
3	0	0	0	33	0	0	0	0	0	2	1	36
4	0	0	0	0	27	2	0	0	0	0	0	29
5	0	2	0	1	0	35	0	2	0	0	1	41
6	0	0	0	0	5	0	24	0	0	0	1	30
7	0	0	0	0	0	0	0	20	0	0	0	20
8	1	0	0	0	0	0	1	0	30	0	0	32
9	0	1	0	1	0	1	0	0	1	34	0	38
Total	21	31	21	35	32	38	25	22	34	36	5	300

Figura 1: Gráficos de caja del puntaje F de las diferentes combinaciones.

Cuadro 2: Fragmento de los datos.

Negro	Gris	Blanco	Puntaje F
0.9925	0.900	0.001	0.8345
0.9925	0.925	0.002	0.7735
0.9950	0.950	0.002	0.9191
0.9950	0.950	0.003	0.9657
0.9975	0.900	0.002	0.9476
0.9975	0.950	0.002	0.9282

- Agents and Agendas: Proceedings of the 20th International Conference on Electronic Publishing, page 87. IOS Press, 2016.
- [2] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2020.
- [3] Elisa Schaeffer. Práctica 12: red Neuronal. https://elisa.dyndns-web.com/teaching/comp/par/p12.html.
- [4] Boaz Shmueli. Multi-Class Metrics Made Simple, Part II: the F1-score. https://towardsdatascience.com/multi-class-metrics-made-simple-part-ii-the-f1-score-ebe8b2c2ca1.