descriptive statistics 1

Adam Okulicz-Kozaryn adam.okulicz.kozaryn@gmail.com

this version: Tuesday 13th February, 2018 09:55

outline

basic concepts

summarizing one variable (Wheelan, 2013, ch2): central tendency and dispersion

summarizing more than one variable: crosstabs and correlation, (Wheelan, 2013, ch3,4)

application: income

Doddle

https:
//beta.doodle.com/poll/agf7b9eg4476iexy#table

interested in working with local non-profit?

- Michael D'Italia: mjd429@camden.rutgers.edu
- again, extra credit for civic engagement!
- · again, see syllabus for elaboration

edu data (edu is most common interest this year)

US educ data:

```
https://nces.ed.gov/
https://www2.ed.gov/rschstat/landing.jhtml?src=pn
```

compare test scores across countries:

```
http://www.oecd.org/pisa/
```

diversity and disparities:

https://s4.ad.brown.edu/Projects/Diversity/Researcher/LTBDDload/DataList.aspx

what is college worth:

http://www.payscale.com/college-education-value-2013

misc

- looking ahead: a lot of material today
- practicing next week
- then one tough class on probability
- and we will relax in second half of the course
- Ohean And Trochim?
- as we discuss topics, let's discuss examples from
 Wheelan!!

<u>outline</u>

basic concepts

summarizing one variable (Wheelan, 2013, ch2): central tendency and dispersion

summarizing more than one variable: crosstabs and correlation, (Wheelan, 2013, ch3,4)

application: income

basic concepts 7/3

basic definitions ⋄ observation (U/A) v variable

- (property, attribute of U/A; eg age, price)
- extra credit: say I study your grades, what's U/A? variable (varies) v constant (constant)
- central tendency v dispersion
- \cdot eg [1,3] v [0,4]: same μ , different σ representativness/external validity: population (students)
- v sample (this class) data: observational (hard (eg gdp) v

survey (eg happiness)) v experimental (eg drug trial) [elaborate later in res_des.pdf]

correlation \neq causality is important!

 Perhaps, the most fundamental piece of knowledge here is the understanding that correlation is not causation. It is both important at policy drafting stage-it is easy to mistake correlation for causation and draft unnesessary or wrong policies; and it is important at evaluation stage-it is easy to see positive effect of policy, while there is none. In addition to typical research design/statistical discussion, I do caution students from evolutionary/behavioral perspective: humans tend to see more causes than there actually are.

basic concepts 9/3

level of measurement

- ⋄ real continuous: interval/ratio (price, weight, temperature)
- continous/categorical: ordinal (rank of faculty, grades)
- real categorical: nominal (many) or binary (two)
 (eg mode of transportation, gender)
- extra credit: education variable?

basic concepts 10/39

howto describe data?

- numbers
- \diamond graphs (always better unless very few data, say <5) humans recognizes patterns in graphs better and faster
- break it up into subsets/subsamples! dig deeper!
- · say see hist/tab for males and females separately
- say corr or crosstab for low and hi val separately that's a quick way to see nonlinear relationship!
 eg it may first rise and then fall

basic concepts 11/39

outline

basic concepts

summarizing one variable (Wheelan, 2013, ch2): central tendency and dispersion

summarizing more than one variable: crosstabs and correlation, (Wheelan, 2013, ch3,4)

application: income

definitions of basic summary stats

- start with central tendency, not dispersion:
- · mean $\frac{1+2+2+3+12}{5}$ =4 (affected by extremes)
- median: middle value: 2 (if even take the mean of the middle two)
- · mode: most frequent value: 2

- → 1, 2, 2, 3, 12 is right skewed (dispersion, draw)
- · Wheelan had example with few middle class guys at a bar
- · then comes Bill Gates and skewes income distribution

dispersion or distributions

- draw both freq tab or tabulations and histograms:
- grades in this class (bimodal)
- · incomes of Hilary, Donald, Bernie, Ted (right skewed)

- can also have class interval or bin:

- http://www.socialresearchmethods.net/kb/statdesc.php: tab1, fig1
 - also (Wheelan, 2013, p20-21)

distribution types

- uniform
- normal symmetrical unimodal
- left skewed
- right skewed (income)
- bimodal

skew (y-axis: density or freq)

$\mu > M$: right skew (y-axis: density or freq)

$\mu < M$: left skew (y-axis: density or freq)

variability

- \diamond range = max min
- ⋄ p-th percentile: p % are below it; eg 75th percentile of income distribution : 75% of people are poorer than me
- ♦ quartile =25 %
- \diamond decile = 10%
- ⋄ median = 2nd quartile = 5th decile = 50th percentile

http://en.wikipedia.org/wiki/Household_income_in_the_United_States

normal distribution (Wheelan, 2013, fig on p26)

asymptotically, any variable is normally distributed

outline

basic concepts

summarizing one variable (Wheelan, 2013, ch2): central tendency and dispersion

summarizing more than one variable: crosstabs and correlation, (Wheelan, 2013, ch3,4)

application: income

few categories / categorical

- use contingency table / cross-tabs(because you cross-tabulate data)
- use percents, not counts: then usually it's clear
 - : so what's the relationship: age and being a student?

What is your	Are you a student?						
age?	Yes - Full Time	Yes - Part Time	No	Total			
15 and under	88%	12%	-	8			
16 - 18	95%	-	5%	42			
19 - 23	68%	12%	20%	205			
24 - 29	16%	10%	74%	353			
30 - 35	5%	9%	86%	192			
36 - 45	4%	8%	88%	165			
over 45	1%	7%	92%	129			

crosstabs: row percents v col percents

Sort:	Cols ▼	Rows▼	(Count All	%	Row %	Col 9	%					
			Nu	mber of Em	nplo	yees at Co	mpaı	ny					
lob Satisfaction				1-25		26-100	10	1-999	1,000	0-3,000	> 30	000	Total
Hate my job				24.4%		14.1%		26.9%		12.8%		21.8%	100%
I'm not happy in my job				31.6%		21.3%		19.2%		6.3%		21.5%	100%
It's a paycheck		×	27.6%		20.4%		22.6%		7.7%	^	21.8%	100%	
I enjoy going to work		×	32.3%	^	21.8%		21.3%		7.0%		17.6%	100%	
Love my job			^	47.8%	×	17.2%	×	17.0%	>	5.0%	×	13.0%	100%
Sort:	Cols ▼	Rows▼		Count	All	% Row	%	Col %					
Number of Employees at Company													
Job Satisfaction			1-25		26-100	26-100 101-9		99	1,000-3,000		> 3000		
Hate my job			0.8%		0.8%		1.5%		2.2%			1.5%	
I'm not happy in my job			6.6%		7	7.9%		7.1%	7.2%			9.3%	
It's a paycheck			¥ 12.6%		16.4%		1	18.1%		18.9%	^	20.4%	
I enjoy going to work		П	¥ 43.	. 3%	^ 51	.6%	5	0.3%		50.8%		48.4%	
Love my job			36.	.7%	~ 23	. 2%	× 2	23.0%	~	20.9%	×	20.5%	
					00/		000/		4.0.00/		4.0.00%		4.000/

percentage change v percentage point change

say good school's dropout rate increases from 2% to 4%
 percentage point increase is 4 - 2 = 2

♦ say bad school's dropout rate increases from 50% to 75%

- percentage increase is $(\frac{4-2}{2})*100 = 100$
- \cdot percentage point increase is 75-50=25
- \cdot percentage increase is $(\frac{75-50}{50})*100=50$
- if you start from low base (eg 2), then small percentage point increase is huge percent increase!

many categories / continuous data

- use correlation and scatterplots
- just plot them in scatterplot; identify outliers!
- blackboard: examples with outliers
- · correlation ranges between -1 and 1
- \cdot < |4| low
- $\cdot |.4 .6|$ moderate
- $\cdot > |.7|$ strong
- again, keep in mind causation v correlation

TODO: just insert here one of these corr coef graphs showng strength of relationship based on look

scatterplot

also see http://www.socialresearchmethods.net/kb/statcorr.php

♦ next slide: https://danley.camden.rutgers.edu/2017/04/13/ who-suspends-the-highest-percentage-of-camden-students-freedom-prep/

red: charter/renaissance; black: Camden schools remaining more than one variable: crosstabs and correlation, (Wheelan, 2013, ch3,4)

\$ummarizing more than one variable: crosstabs and correlation, (Wheelan, 2013, ch3,4)

do scatterplots

- it is useful to produce a scatterplot
 - · you'd see outliers-
 - · and whether the relationship is due to them
 - · blackboard: relationships biased due to outliers
- · say marriage rate and divorce rate and Nevada

Wheelan in ch11 mentions Whitehall studies

- fascinating stuff!
- high status causes better health!
 - · great book 'Status Syndrome' http://a.co/jaUuwT7
- say nobel prize or oscar boosts one's health and longevity
- · these successful folks live longer and in better health
- than exact same people (income, lifestyle, etc) but without status

closer look at status syndrome

- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2566175/
- see Table 2A for correlations
 - · especially 'Decision latitude'
 - conclusions? extra credit

correlations for different scenarios

outline

basic concepts

summarizing one variable (Wheelan, 2013, ch2): central tendency and dispersion

summarizing more than one variable: crosstabs and correlation, (Wheelan, 2013, ch3,4)

application: income

application: income 32/39

where are you on income distribution?

idea for a project: what you can do

- it would be interesting to break income down by sociodemographics,
 by geography, and by both
- get data and do it yourself, eg:
 http://visualizingeconomics.com/cool-data/
- ♦ and lots of nice visualizations here http://www.gapminder.org/
 - · also see Wheelan (2013, ch2) and http: //en.wikipedia.org/wiki/Household_income_in_the_United_States#Household_income

and now let's plot income over time (also see (Wheelan, 2013, p16))...

application: income 34/39

but median income has not been growing much

application: income 36/39

how about income distribution over time?

- another interesting thing is to look over time at income distribution
- today's bottom decile has better quality of life than 9th decile 100 years ago (Derek Bok)
 - · can you translate this to plain English? extra credit

application: income 37/

next week

• we will always end the class by having a quick look at the next class

application: income 38/39

bibliography I

 $\label{eq:okulicz-Kozaryn} O\textsc{Kulicz-Kozaryn}, \ A. \ \text{And} \ J. \ M. \ Mazelis \ \mbox{(2016): "More Unequal In Income, More Unequal in Wellbeing," Social Indicators Research.$

WHEELAN, C. (2013): Naked statistics: stripping the dread from the data, WW Norton & Company.

application: income 39/39