МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа информационных технологий и робототехники Направление подготовки <u>09.04.01 Информатика и вычислительная техника</u> Отделение <u>Информационных технологий</u>

Отчет по курсовому проекту по дисциплине «Параллельные и высокопроизводительные вычисления»

Тема работы		
Реализация алгоритма классификации посуды с использованием архитектуры ResNet		
и применением параллельных вычислений на графическом процессоре		

Стулент

erygeni				
Группа	ФИО	Подпись	Дата	
8BM22	Ямкин Н.Н.			

Руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент ОИТ	Аксёнов С.В.	к.т.н., доцент		

Оглавление

Ход работы	
Получаем выборку данных для валидации	4
Подготавливаем данные для обучения	6
Обучаем модель ResNet18	10
Сравнение быстродействия	17
Заключение	19
Список источников	20

Цель работы: реализовать алгоритм классификации посуды по двум классам (чистая или грязная) с применением параллельных вычислений на GPU.

Задачи:

- 1. Разбить обучающую выборку на обучающую и валидационную. Каждому изображению присвоить метку класса, к которому оно относится.
- 2. Подготовить данные для обучения: преобразовать исходные изображения в тензор, сделать их аугментацию.
 - 3. Разбить обучающую выборку на батчи.
- 4. Обучить модель ResNet на подготовленных данных и применить её к тестовой выборке.
 - 5. Сравнить время обучения модели на CPU и на GPU.

Ход работы

Начнем с набора данных. Датасет взят Kaggle, это соревнование, где предлагается отклассифицировать тарелки — либо они грязные, либо они уже помытые. Соревнование интересно тем, что в нем очень мало обучающих данных. В датасете всего 40 примеров тарелок с разметкой (то есть, 20 будет примеров с грязной посудой, 20 примеров с чистой), а огромная часть тарелок находится в отложенной выборке, и их метки необходимо предсказать.

Хорошо: у нас есть данные, теперь напишем некоторый код, который будет предсказывать правильный класс.

Суть предлагаемого решения в следующем: берем некоторую архитектуру (в данном случае возьмем ResNet), дообучаем её на новых изображениях и классифицируем весь тестовый датасет. Таким образом, для решения исходной задачи классификации изображений будет применен метод Transfer Learning.

Получаем выборку данных для валидации

Для начала разделим train dataset на две части — на обучающую часть и на валидационную. На трейне будем обучать нейронную сеть, а на валидации будем смотреть, насколько она хорошо работает, какую точность показывает на тех данных, которые она не видела.

Для этого создадим две новые папки: train и val, и каждую шестую фотографию из train переложим в папку с валидацией. Код ниже выполняет ровно эту задачу: здесь берётся каждая шестая фотография и кладется в валидацию. И теперь фотографии лежат в корневой директории, в папках train и val.

Рисунок 1 – Результат разбиения датасета

```
import numpy as np
import pandas as pd
from tqdm import tqdm
import time
import os
import shutil
from google.colab import drive
drive.mount('/content/gdrive')
data root = '/content/gdrive/MyDrive/platesv2/plates/plates'
print(os.listdir(data root))
train dir = 'train'
val dir = 'val'
class names = ['cleaned','dirty']
for dir name in [train dir, val dir]:
  for class name in class names:
   os.makedirs(os.path.join(dir name, class name), exist ok = True) # Создаем папки для трейна и валидации в
корневой папке
for class name in class names:
  source dir = os.path.join(data root, 'train', class name)
  for i, file name in enumerate(os.listdir(source_dir)):
    if i % 6 != 0:
                                                        # каждую шестую фотку копируем в валидационную выборку,
остальные копируем в трейн
      dest dir = os.path.join(train dir, class name)
                                                        # создаем директорию для трейна
    else:
      dest dir = os.path.join(val dir,class name)
                                                        # создаем директорию для валидации
    shutil.copy(os.path.join(source dir,file name),os.path.join(dest dir,file name)) # копируем файлы из корневой
папки в новую в с помощью shutil.copy
```

Подготавливаем данные для обучения

Теперь нужно создать некоторые итераторы по этим директориям, чтобы они получали картинки, формировали из этих картинок тензоры (батчи с изображениями) и их можно было бы уже передавать в нейронную сеть. К счастью, в PyTorch уже есть функциональность ImageFolder, которая выполняет такую задачу.

ImageFolder предоставляет возможность итерироваться по изображением и получает некоторые пары (изображение и его метка). Откуда же он берёт метки? Метки копируются из названий тех папок, в которых лежат изображения.

Для того, чтобы перевести изображения в тензоры нужно сделать их некоторую трансформацию.

Для начала уменьшим изображение до размера 224 на 224. В принципе, ResNet инвариантен к размерам, но, конечно же, обучать его нужно на объектах одинакового размера. Заданный размер выбран не случайно — он совпадает с размером изображений из датасета ImageNet, на котором предобучен ResNet.

После этого нужно превратить модифицируемое изображение в тензор.

И есть ещё третья трансформация, которая уже не такая тривиальная – этот нормировка.

Данные трансформации нужны, чтобы привести все изображения к одному виду.

Кроме того, мы можем увеличивать train dataset за счёт аугментации. Аугментация — это процесс изменения или расширения данных путем добавления искусственно созданных или измененных элементов. В контексте решаемой задачи, создадим новые обучающие примеры из существующих данных путем применения масштабирования и зеркального отражения. Это позволит увеличить размер обучающего набора данных, улучшить общую обобщающую способность модели и уменьшить риск переобучения.

```
# Функция transforms.Compose() используется для создания последовательности преобразований. Переданные в эту
функцию преобразования будут применяться последовательно к образцам обучающих данных.
train transforms = transforms.Compose([
    transforms.RandomResizedCrop(224),
                                            # Обрезаем изображение в случайном месте, а затем изменяем размер
обрезки до заданного размера (224 х 224).
    transforms.RandomHorizontalFlip(p = 0.5), # Выполняет зеркальный переворот изображения по горизонтали с
заданной вероятностью.
    transforms.ToTensor(),
                                             # Преобразует изображение в тензор PyTorch.
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # Нормализует значения пикселей
изображения.
                                                                      # Значения пикселей нормализуются с
использованием заданных средних значений и стандартных отклонений для каждого цветового канала RGB.
   # Нормализация помогает в обучении модели, облегчая оптимизацию и уменьшая влияние различных масштабов значений
пикселей на результаты.
1)
val transforms = transforms.Compose([
    transforms.Resize((224, 224)), # просто изменяем размер изображения до заданных размеров (224x224
пикселей)
    transforms. To Tensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
1)
# С помощью класса torchvision.datasets.ImageFolder загружаем данные изображений, представленных в папке
train dir,
# и применяем указанные преобразования train transforms к каждому образцу данных во время загрузки
train dataset = torchvision.datasets.ImageFolder(train dir, train transforms)
val dataset = torchvision.datasets.ImageFolder(val dir, val transforms)
```

- # Создадим итератор train_dataloader, который предоставляет доступ к обучающему набору данных в партиях (batch) для использования в процессе обучения модели.
- # train dataset набор данных, который будет использоваться для создания итератора
- # batch size размер партии данных (количество образцов в каждой партии)
- # shuffle=True гарантирует, что данные будут перемешиваться перед каждой эпохой обучения. Это помогает предотвратить запоминания порядка обучения моделью и сделать процесс обучения более стохастическим.
- # num_workers=batch_size определяет количество фоновых рабочих процессов, которые будут использоваться для загрузки данных параллельно.
- # Это может ускорить загрузку данных, позволяя параллельно выполнять операции загрузки и предварительной обработки данных.

batch_size = 8
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True,
num_workers=batch_size)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False,
num_workers=batch_size)

Далее напишем функцию, которая бы выводила изображения из батча.

```
def show_input(input_tensor, title=''):
    image = input_tensor.permute(1, 2, 0).numpy()
    image = std * image + mean
    plt.imshow(image.clip(0, 1))
    plt.title(title)
    plt.show()
    plt.pause(0.001)

X_batch, y_batch = next(iter(train_dataloader))

for x_item, y_item in zip(X_batch, y_batch):
    show input(x item, title=class names[y item])
```


Рисунок 2 – Результат работы функции

Обучаем модель ResNet18

Теперь, когда все данные подготовлены, следует написать некоторую функцию train_model, которая будет на вход получать саму модель, лоссфункцию, оптимизатор, планировщик (scheduler), а также количество эпох обучения.

Функция train_model итерируется по эпохам, в каждой из которых она итерируется по батчам. Если активна фаза обучения, то функция считает backward, а optimizer делает шаги градиентного спуска, если же активна фаза валидации, то функция считает точность на валидационных данных.

Итак, каждую эпоху будем делать следующее: сперва попадаем в фазу «train», и тогда нам нужен train DataLoader, который формирует батчи из обучающего датасета, из папки «train». Затем планировщик делает шаг, который будет говорить о том, что произошла одна эпоха. Каждые 7 эпох scheduler должен уменьшать градиентный спуск. Таким образом, один степ, для него — это одна эпоха. В конце нужно перевести модель в режим «train», чтобы веса нейросети могли обновляться.

Далее итерируемся по DataLoader, который отдает батч с изображениями одним тензором (один батч – один тензор), и с лейблами. Затем переводим полученные данные на GPU. Кроме того, следует обнулить градиент, чтобы он не накапливался (в PyTorch, по умолчанию, он накапливается). После этого мы считаем предсказание, ошибку и определяем класс, с помощью функции argmax(). Если у нас фаза «train», то вычисляем градиент и обновляем веса нейросети.

```
def train model (model, loss, optimizer, scheduler, num epochs):
    for epoch in range (num epochs):
        print('Epoch {}/{}:'.format(epoch, num epochs - 1), flush=True)
        # Каждая эпоха имеет обучающий и валидационный (оценочный) режим работы
        for phase in ['train', 'val']:
            if phase == 'train':
                dataloader = train dataloader # обучающие данные (как он видит train dataloader внутри функции и
не возникает ошибки???? )
                                      # обновляем скорость обучения в соответствии с заданным расписанием
                scheduler.step()
               model.train() # переключаем модель в режим обучения, в котором веса могут обновляться во время
обратного распространения ошибки
            else:
                dataloader = val_dataloader # валидационные данные (как он видит train dataloader внутри функции и
не возникает ошибки????)
                model.eval()
                               # переключаем модель в режим оценки, в котором веса НЕ могут обновляться во время
обратного распространения ошибки. В этом режиме модкль используется только для оценки, а не для обучения
            running loss = 0
            running acc = 0
            # Итерируемся по данным
            for inputs, labels in tqdm(dataloader):
                inputs = inputs.to(device)
                                               # перемещаем изображения на GPU
                labels = labels.to(device)
                                               # перемещаем метки на GPU
                optimizer.zero grad() # Обгуляем градиенты оптимизатора
                # forward и backward
                with torch.set grad enabled(phase == 'train'):
                    preds = model(inputs)
                                                      # Прямой проход. Модель получает данные и выполняет
предсказания по ним
```

Теперь зададим параметры функции train_model: модель, loss-функция, метод градиентного спуска и планировщик того, как будет уменьшаться шаг градиентного спуска.

Итак, сперва нам нужна модель. В данной работе будем использовать ResNet. В РуТогсh есть много разных ResNet, например есть ResNet-18, самая маленькая модель из тех, которые доступны в библиотеке. Число «18» говорит о том, что в архитектуре модели 18 слоёв. Выбранная модель нужна в формате pre-trained, то есть нам нужны веса, которые получились вследствие обучения этого ResNet, на датасете ImageNet.

Так как используем предобученную модель, то необходимо обучить один полносвязанный слой, который находится на последнем слое. В этом случае следует «заморозить» все остальные веса нейросети, чтобы они не использовались в обучении. После этого поменяем последний полносвязанный слой, потому что по умолчанию он классифицирует тысячу классов, а у нас класса всего два.

Далее переложим объявленную ранее модель на GPU.

Следующий шаг – определяем лосс-функцию. В данном случае это бинарная кросс-энтропия, так как имеем всего два класса.

Теперь нужно определить метод градиентного спуска. В данном случае будем использовать Adam — самый лучший алгоритм, который хорошо работает «из коробки» и в нем практически ничего не нужно изменять.

Также объявим планировщик, который позволяет изменять скорость обучения.

```
model = models.resnet18(pretrained=True)
# "Замораживаем" уже обученые на датасете ImageNet веса НС, так, чтобы они не изменялись при обучении для нашей
задачи
for param in model.parameters():
    param.requires grad = False
# Заменим последний полносвязный слой в ResNet18, который по умолчанию классифицирует 1000 классов, на свой,
который классифицирет изображение по 2 классам (грязная/чистая посуда)
# Будем обучать только последний слой ResNet18
# Создадим слой torch.nn.Linear, это полносвязный слой, на вход он принимает model fc in features.
# Давайте посмотрим, сколько там будет фичей (это вот, как раз, признаковое описание объекта). Ну вот, 512 фичей.
То есть 512, нейронов на вход приходит, и на выход нам нужно два нейрона, то есть два класса.
model.fc = torch.nn.Linear(model.fc.in features, 2)
# Таким образом, сначала мы запретили модели обучаться, отключив все градиенты, потом создали последний слой
заново, а у него веса по-умолчанию не заморожены, то есть обучаемы.
device = torch.device("cuda:0" if torch.cuda.is available() else "cpu") # проверяем, доступно ли устройство с
поддержкой CUDA (GPU). Если устройство CUDA доступно, то переменная device устанавливается на "cuda:0", указывая
использовать GPU с индексом 0
model = model.to(device) # модель model перемещается на указанное устройство
loss = torch.nn.CrossEntropyLoss() # Функция потерь (Кросс-энтропия)
optimizer = torch.optim.Adam (model.parameters(), lr=1.0e-3) # Обучающий алгоритм. Оптимизатор Адам
# scheduler реализует так называемый "шаговый" (step) планировщик, который позволяет изменять скорость обучения с
определенным шагом во время обучения
scheduler = torch.optim.lr scheduler.StepLR(optimizer, step size=7, gamma=0.1)
#Параметры конструктора torch.optim.lr scheduler.StepLR:
#- optimizer: Это объект оптимизатора, для которого будет применяться планировщик.
#- step size: Через сколько эпох нужно снижать скорость обучения.
#- gamma: Множитель, на который будет умножаться скорость обучения при снижении.
```

На данный момент создана нейросеть и определено всё, что требуется. Запустим функцию train_model на 100 эпох и зафиксируем время обучения.

```
start_time = time.time()
train_model(model, loss, optimizer, scheduler, num_epochs=100)
elapsed_time = time.time() - start_time
print('Время обучения:', elapsed_time)
```

Подготовим тестовую выборку и получим предсказания на ней.

```
test dataset = ImageFolderWithPaths('/content/test', val transforms)
test dataloader = torch.utils.data.DataLoader(
    test dataset, batch size=batch size, shuffle=False, num workers=0)
model.eval() # переводим модель в режим оценки. Модель используется только для предсказаний и не обновляет веса
test predictions = []
test img paths = []
start time = time.time()
# В этом цикле проходятся данные тестового набора данных (test dataloader). В каждой итерации цикла извлекаются
входы (inputs), метки (labels) и пути к изображениям (paths).
for inputs, labels, paths in tqdm(test dataloader):
    inputs = inputs.to(device)
                                # Входные данные перемещаются на GPU
   labels = labels.to(device)
   with torch.set grad enabled(False):
       preds = model(inputs)
                                  # Предсказываем
    test predictions.append(
                                # Полученные предсказания подвергаются обработке и сохраняются в список.
 # В данном случае, предсказания подвергаются softmax-преобразованию и выбирается вероятность, соответствующая
классу с индексом 1 (в случае, если у вас два класса). Затем значения переводятся на СРИ и сохраняются в виде
массива питру.
        torch.nn.functional.softmax(preds, dim=1)[:,1].data.cpu().numpy())
                                               # Осуществляется сохранение путей к изображениям в список
    test img paths.extend(paths)
test predictions = np.concatenate(test predictions)
                                                         # Накопленные предсказания объединяются в единый массив
elapsed time = time.time() - start time
print ('Время работы нейросети на тестовой выборке:', elapsed time)
```

Выведем результат работы нейросети на тестовой выборке.

```
inputs, labels, paths = next(iter(test_dataloader))

for img, pred in zip(inputs, test_predictions):
    show_input(img, title=pred)
```


Рисунок 2 – Результат работы нейросети на тестовой выборке

Сравнение быстродействия

В указанном выше коде параллельная обработка данных на GPU осуществляется следующим образом:

1. Переменная device определяется наличием графического процессора (GPU) с поддержкой CUDA, с помощью команды torch.cuda.is_available(). Если GPU доступно, переменная device устанавливается в «cuda:0», указывая использовать GPU с индексом 0. Если GPU недоступно, переменная device устанавливается на «сри», указывая на то, что используется центральный процессор (CPU).

- 2. Затем модель перемещается на указанное устройство с помощью команды .to(device). Это позволяет выполнить операции обучения и предсказания на указанном устройстве.
- 3. Во время обработки данных (в прямом и обратном проходах) данные inputs и labels также перемещаются на устройство с помощью .to(device). Это позволяет выполнить вычисления и операции обратного распространения на GPU.

Общий процесс обработки данных на каждом потоке GPU включает операции, связанные с вычислением предсказаний модели, вычислением потери, расчетом градиентов и обновлением весов модели во время обратного прохода. Каждый поток будет независимо выполнять данные операции на своей части данных, чтобы максимально использовать параллелизм и вычислительную мощность, доступную на GPU.

Количество тензоров изображений, которые обрабатывает каждый поток на GPU, определяется размером пакета данных (batch size), который передается модели.

Работа была выполнена в облачной среде Google Colaboratory. Расчеты выполнялись на CPU Intel(R) Xeon(R) с тактовой частотой 2.20 ГГц и на GPU Nvidia Tesla T4, который содержит 2560 CUDA-ядер для параллельных вычислений.

Исследуем быстродействие программы на CPU и на GPU. Зафиксируем время обучения нейросети на 100 эпохах на каждом из устройств.

Таблица 1 – Оценка быстродействия

	CPU Intel(R) Xeon(R) @ 2.20GHz	GPU Nvidia Tesla T4
Время обучения, с	454.933	141.777

Из таблицы 1 видно, что вычисления на GPU произвелись примерно в 3 раза быстрее, чем на CPU.

Заключение

В ходе выполнения курсового проекта были получены навыки работы с модулем РуТогсh для реализации параллельной обработки набора данных с изображениями на языке Python.

Исходный датасет был разбит на обучающую и валидационную выборку изображений, которые впоследствии были трансформированы и преобразованы в тензоры. Затем, предобученная на датасете ImageNet нейронная сеть ResNet18 была дообучена на подготовленных данных на CPU и на GPU соответственно. В результате оценки быстродействия, убедились в том, что на GPU нейросеть обучилась быстрее, чем на CPU.

Исходный код доступен по ссылке на GitHub: https://github.com/yamichnikita/Parallel-computing-Course-project .

Список источников

- 1. Community Prediction Competition. Cleaned vs Dirty V2// Kaggle.URL: https://www.kaggle.com/competitions/platesv2/data (дата обращения: 16.07.2023).
- 2. Курс: «Нейронные сети и компьютерное зрение»// Stepik.URL: https://stepik.org/course/50352/info (дата обращения: 20.07.2023).
- 3. PYTORCH DOCUMENTATION // pytorch.org. URL: https://pytorch.org/docs/stable/index.html (дата обращения: 22.07.2023).