AnonimaData

Scalable Service for Privacy-Preserving Dataset Anonymization

×

Agenda

- 01. Problema e soluzione
- **02.** Obiettivo del progetto
- 03. Panoramica dell'architettura
- **04. Flusso operativo utente**
- 05. Algoritmi di anonimizzazione
- 06. Scelte tecniche ed implementative
- 07. Deployment e scalabilità su GCP
- 08. Conclusioni e prossimi passi

- Condividere i dati è essenziale ma rischioso
- Le persone possono essere ri-identificate da attributi semplici
- I dati sensibili richiedono protezioni migliori

Perchè anonimizzare?

- Rimuovere i nomi non è sufficiente
- 87% dei cittadini USA è identificabile in questo modo
- Le tecniche tradizionali, come la pseudonimizzazione, sono deboli

- AnonimaData: una piattaforma web scalabile
- Algoritmi di anonimizzazione configurabili
- Cloud-based, user-friendly

Obiettivo del Progetto

0

Funzionalità Principali

Sviluppare una piattaforma web scalabile e affidabile per l'anonimizzazione di dataset

- Consentire agli utenti di caricare dataset in modo sicuro (CSV o JSON)
- Offrire una selezione di algoritmi di anonimizzazione configurabili
- Generare versioni anonimizzate dei dati da scaricare e salvare su database e storage cloud
- Fornire un'interfaccia semplice e accessibile per gestire il processo

- Applicazione completamente deployata su **Google Cloud Platform**
- Infrastruttura gestita tramite **Terraform** per garantire scalabilità e riproducibilità
- Supporto per dataset tabellari di qualsiasi schema o tipo di dato

Panoramica dell'architettura

Backend (FastAPI – Python)

Cloud Infrastructure (GCP + Terraform)

- Sviluppata in React, bundleizzata con Vite
- Build statica servita da Nginx in container Docker
- Containerizzata con Docker, deployata su Cloud Run
- Comunicazione diretta con Firebase
 Authentication lato client

- API REST sviluppata con FastAPI
- Autenticazione tramite OAuth 2.0
 (Google) con verifica token Firebase
- Logging centralizzato con Cloud Logging
- Salvataggio metadati e gestione dati persistenti nel DB

- Deploy su Google Cloud Platform (Cloud Run)
- Gestione infrastruttura cloud e risorse tramite Terraform

Flusso operativo utente

01	Login	L'utente si autentica mediante Google Account
02	Upload Dataset	L'utente carica un file CSV o JSON tramite l'interfaccia web
03	Selezione Algoritmo	L'utente sceglie uno dei quattro algoritmi disponibili (k- anonymity, I-diversity, t-closeness, differential privacy) e imposta il parametro
04	Invio al Backend	Il file e il parametro vengono inviati tramite una chiamata POST al server
05	Elaborazione e Anonimizzazione	Il backend classifica automaticamente le colonne, applica l'algoritmo selezionato e salva il risultato in GCS e i metadati in Firestore
06	Visualizzazione Anteprima	Il backend restituisce un'anteprima delle prime righe del dataset anonimizzato
07	Download Dataset	L'utente può scaricare il file anonimizzato direttamente dalla piattaforma

Algoritmi di anonimizzazione

Algoritmo	Descrizione	Pro e contro
k-anonymity	 Ogni individuo è indistinguibile da almeno k-1 persone 	Semplice, scalabile Può esporre dati sensibili
I-diversity	 Garantisce la diversità degli attributi sensibili in ogni gruppo 	 Protezione più forte rispetto a k-anonymity Non protegge sempre la distribuzione degli attributi
• t-closeness	 Limita la differenza tra la distribuzione degli attributi sensibili nei gruppi e quella dell'intero dataset 	Mantiene la distribuzione dei datiPiù complesso da calcolare
differential privacy	 Aggiunge rumore statistico per prevenire l'identificazione, anche con dati esterni 	Garantisce privacy matematica Può ridurre la precisione dei dati

Scelte tecniche ed implementative

Algoritmo	Approccio adottato	Caratteristiche distintive
• k-anonymity	 Generalizzazione progressiva basata su gerarchie modulari per i quasi-identificatori 	 Adattabile a diversi dataset Classificazione automatica delle colonne
I-diversity	 Estensione diretta di k-anonymity con controllo della varietà dei valori sensibili nei gruppi 	 Elevata riusabilità del codice Uniformità nell'applicazione delle generalizzazioni
• t-closeness	 Calcolo della distanza tra distribuzioni per garantire la coerenza statistica tra gruppi e dataset globale 	 Preserva la distribuzione dei dati Ideale per dati sensibili categoriali
differential privacy	 Aggiunta di rumore calibrato a livello di dataset (input perturbation) in base al tipo di colonna (numerico/categoriale) 	 Output realistico e coerente Automazione completa Adattivo e type-aware per ogni colonna

Deploy su Google Cloud Platform

- Frontend e Backend pubblicamente accessibili e protetti tramite Firebase Authentication
- Backend integrato con Cloud Logging per visibilità su errori, performance e tracing delle richieste
- Servizi stateless con autoscaling e load balancing automatico

- Infrastruttura gestita con Terraform, per versionamento, riproducibilità e provisioning automatizzato
 - Risorse principali:

 Cloud Run: esecuzione container scalabili
 Cloud Storage: archiviazione file
 Firestore: salvataggio metadati
 Firebase Auth: gestione autenticazione
 Cloud Logging: visibilità su errori e
 performance

- Firebase Auth: autenticazione sicura via Google
- Cloud Storage (GCS): archiviazione dei file CSV caricati e anonimizzati
- Firestore: salvataggio dei metadati dei dataset anonimizzati
- Cloud Logging: logging centralizzato e monitoraggio delle performance

Conclusioni

- Soluzione semplice, veloce e scalabile per anonimizzare dataset
- Supporto multi-algoritmo configurabile
- Deploy completo su Google Cloud Platform,
 con infrastruttura cloud-native e auto-scalabile

Sviluppi futuri

- Possibilità di migliorare gli algoritmi implementati o aggiungerne di nuovi
- Elaborazione asincrona via Pub/Sub per gestire job pesanti
- Espansione della classificazione automatica, con supporto multilingua
- Valutazione della qualità post-anonimizzazione

Grazie per l'attenzione!

Scalable and Reliable Systems