CS202: COMPUTER ORGANIZATION

Lecture 7

Floating Point Arithmetic

Recap

- Operations on integers
 - Addition and subtraction
 - Multiplication and division

Outline

- Floating point representation
- Floating point addition
- Floating point multiplication
- RISC-V floating point instructions
- Subword parallellism

Floating Point

- Recap: Fixed Point vs. Floating Point
- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

- In binary
 - $\pm 1.xxxxxxx_2 \times 2^y$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

$$\pm 1.xxxxxxx_2 \times 2^y$$

single: 8 bits

single: 23 bits

double: 11 bits

double: 52 bits

S Exponent (y+Bias)

Fraction (xxxx)

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand
 - 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden one)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent (y) + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

Bias Notation

- Why not use 2's complement for Exponent?
 - Biased exponent is always positive
 - Allows for a more efficient representation of small and large exponents
 - Simplifies the comparison of exponents.

Example 1: Decimal to FP

- Represent –0.75
 - $-0.75_{\text{ten}} = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - \bullet S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: -1 + 1023 = 1022 = 011111111110₂
- Single: 1_01111110_1000...00
- Double: 1 01111111110 1000...00

Exercise: Represent 24.5_{ten} in single-precision FP

- Sign bit = ?
- Fraction = ?
- Exponent = ?_{ten}

Example 2: FP to Decimal

What number is represented by the single-precision float

11000000101000...00

- \bullet S = 1
- Fraction = $01000...00_{2}$
- Exponent = $10000001_2 = 129$
- $x = (-1)^{1} \times (1.01_{2}) \times 2^{(129-127)}$ $= (-1) \times 1.25_{ten} \times 2^{2}$ $= -5.0_{ten}$

Exercise: Represent single-precision FP to decimal 0_10000011_1100...00

Single-Precision Range

- Exponents 00000000 and 11111111 are reserved
- Smallest value
 - Exponent: $0000001 \Rightarrow$ actual exponent = 1 127 = -126
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-126} \ (\approx \pm 1.2 \times 10^{-38})$
- Largest value
 - exponent: $111111110 \Rightarrow \text{actual exponent} = 254 127 = +127$
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \ (\approx \pm 3.4 \times 10^{+38})$
- Range: $(-2.0 \times 2^{127}, -1.0 \times 2^{-126}], [1.0 \times 2^{-126}, 2.0 \times 2^{127})$

Double-Precision Range

- Exponents 0000...00 and 1111...11 are reserved
- Smallest value
 - Exponent: $0000000001 \Rightarrow \text{actual exponent} = 1 1023 = -1022$
 - Fraction: $000...00 \Rightarrow significand = 1.0$
 - $\pm 1.0 \times 2^{-1022}$ (* $\pm 2.2 \times 10^{-308}$)
- Largest value

 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023}$ (* $\pm 1.8 \times 10^{+308}$)
- Range: $(-2.0 \times 2^{1023}, -1.0 \times 2^{-1022}], [1.0 \times 2^{-1022}, 2.0 \times 2^{1023})$

Overflow and Underflow

- Range of float: $(-2.0 \times 2^{127}, -1.0 \times 2^{-126}], [1.0 \times 2^{-126}, 2.0 \times 2^{127})$
- Range of double: $(-2.0 \times 2^{1023}, -1.0 \times 2^{-1022}], [1.0 \times 2^{-1022}, 2.0 \times 2^{1023})$

- Overflow: when the exponent is too large to be represented
- **Underflow**: when is negative exponent is too large to be represented(when it's exponent is too small to be represented)
- Examples:
 - For float number, 8-bit exponent, range: -126~127
 - ◆ 1×2¹²⁸, -1.1×2¹²⁹

Overflow

• 1×2⁻¹²⁷, -1.1×2⁻¹²⁸

Underflow

- For double number, 11-bit exponent, range: -1022~1023
- ◆ 1×2¹⁰²⁴.-1.1×2¹⁰²⁶

Overflow

• 1×2⁻¹⁰²³. -1.1×2⁻¹⁰²⁵

Underflow

IEEE 754 Encoding of FPN

■ $\pm 0, \pm \infty$ (infinity), NaN

Single precision		Double precision		Object represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	± denormalized number
1–254	Anything	1–2046	Anything	± floating-point number
255	0	2047	0	± infinity
255	Nonzero	2047	Nonzero	NaN (Not a Number)

■ $\pm \infty$: divided by 0

NaN: 0/0, subtracting infinity from infinity

Gradual Underflow

- Represent denormalized numbers
 - Exponent : all zeros
 - Significand: non-zeros (but no hidden one)
 - Allow a number to degrade in significance until it become 0 (gradual underflow)

- The smallest normalized number (significand has hidden one)
- The smallest de-normalized number (significand has no hidden one any more)
 - \bullet 0.0000 0000 0000 0000 0000 001 \times 2⁻¹²⁶

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Floating-Point Precision

single: 8 bits

double: 11 bits

single: 23 bits

double: 52 bits

S | Exponent (=y+Bias)

Fraction (xxxx)

Relative precision

all fraction bits are significant

$$\Delta A/|A| = 2^{-23} \times 2^{y}/|1.xxx \times 2^{y}|$$

$$\leq 2^{-23} \times 2^{y}/|1 \times 2^{y}|$$

$$= 2^{-23}$$

- ◆ Single: approx 2⁻²³
 - Equivalent to 23 \times log₁₀2 \approx 23 \times 0.3 \approx 6 decimal digits of precision
- Double: approx 2⁻⁵²
 - Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Addition Example 1: decimal

- Consider a 4-digit decimal example
 - $9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - $9.999 \times 10^1 + 0.016 \times 10^1$
- 2. Add significands
 - $9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1$
- 3. Normalize result & check for over/underflow
 - 1.0015×10^2
- 4. Round and renormalize if necessary
 - 1.002×10^2

Addition Example 2: FP

Now consider a 4-digit binary example

•
$$1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$$

- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625_{10}

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

0.5 - 0.4375 preserve 4 digit

$$0.5 = 1.000_2 \times 2^{-1}$$

$$S = 0$$

$$Exp. = -1 + 127 = 126$$

Frac. =
$$0000...00_2$$

$$-0.4375 = -1.110_2 \times 2^{-2}$$

$$S = 1$$

$$Exp. = -2 + 127 = 125$$

Frac. = $1100...00_2$

steps:

- $-1.110_2 \times 2^2 = -0.111_2 \times 2^{-1}$
- $1.000_2 \times 2^{-1} 0.111_2 \times 2^{-1}$ = $0.001_2 \times 2^{-1}$
- $0.001_2 \times 2^{-1} = 1.000_2 \times 2^{-4}$
- $1.000_2 \times 2^{-4} = 00111101100000...00_2$

FP Multiplication

- Similar steps
 - Compute exponent (careful!)
 - Multiply significands (set the binary point correctly)
 - Normalize
 - Round (potentially re-normalize)
 - Assign sign

Multiplication Example 1: decimal

- Consider a 4-digit decimal example
 - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \implies 10.212 \times 10^5$
- 3. Normalize result & check for over/underflow
 - 1.0212 × 10⁶
- 4. Round and renormalize if necessary
 - 1.021×10^6
- 5. Determine sign of result from signs of operands
 - ◆ +1.021 × 10⁶

Multiplication Example 1: FP

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) 127 = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve \times -ve \Rightarrow -ve
 - \bullet -1.110₂ × 2⁻³ = -0.21875

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - ◆ FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - 1st bit: Guard bit (5), 2nd bit: Round bit (6), 3rd bit: Sticky bit
 - 2.56+234, 237 vs. 236 (assume that we have three significant digits)

- ◆ IEEE 754 guarantee one-half (0.5) ulp (units in the last place)
- Choice of rounding modes
 - Round up, round down, truncate, round to the nearest even (for X.50)
 - To the nearest even: (binary number $0.10 \rightarrow 0$, $1.10 \rightarrow 10$)
- Allows programmer to fine-tune numerical behavior of a computation
- Trade-off between hardware complexity, performance, and market requirements

FP Instructions in RISC-V

- Separate FP registers: f0, ..., f31
 - double-precision
 - single-precision values stored in the lower 32 bits
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - ◆ flw, fsw
 - fld, fsd

FP Instructions in RISC-V

- Single-precision arithmetic
 - fadd.s, fsub.s, fmul.s, fdiv.s, fsqrt.s
 e.g., fadds.s f2, f4, f6
- Double-precision arithmetic
 - fadd.d, fsub.d, fmul.d, fdiv.d, fsqrt.d
 e.g., fadd.d f2, f4, f6
- Single- and double-precision comparison
 - feq.s, flt.s, fle.s
 - feq.d, flt.d, fle.d
 - Result is 0 or 1 in integer destination register
 - Use beq, bne to branch on comparison result
- Branch on FP condition code true or false
 - B.cond

FP Example: °F to °C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in f10, result in f10, literals in global memory space
- Compiled RISC-V code:

```
f2c:

flw f0,const5(x3) # f0 = 5.0f

flw f1,const9(x3) # f1 = 9.0f

fdiv.s f0, f0, f1 # f0 = 5.0f / 9.0f

flw f1,const32(x3) # f1 = 32.0f

fsub.s f10,f10,f1 # f10 = fahr - 32.0

fmul.s f10,f0,f10 # f10 = (5.0f/9.0f) * (fahr-32.0f)

jalr x0,0(x1) # return
```

FP Example: Array Multiplication

- $X = X + Y \times Z$
 - ◆ All 32 × 32 matrices, 64-bit double precision elements
- C code:

Addresses of C, a, b in x10, x11, x12, and
 i, j, k in x5, x6, x7

```
lί
                x28, 32
                               \# x28 = 32 \text{ (row size/loop end)}
          lί
                x5, 0
                               # i = 0; initialize 1st for loop
RISC-V L1: 1i
                x6, 0
                               # j = 0; initialize 2nd for loop
code:
      L2: li
                x7, 0
                              # k = 0; initialize 3rd for loop
                              \# x30 = i * 2^5  (size of row of c)
          slli
                x30, x5, 5
                x30, x30, x6
          add
                              # x30 = i * size(row) + j
          slli
               x30, x30, 3 # x30 = byte offset of [i][j]
          add
                x30, x10, x30 + x30 = byte address of c[i][j]
          fld
                f0, 0(x30)
                               # f0 = c[i][i]
       L3: slli x29, x7, 5 # x29 = k * 2^5 (size of row of b)
          add
                x29, x29, x6
                              \# x29 = k * size(row) + j
          slli
                               # x29 = byte offset of [k][j]
                x29, x29, 3
          add x29, x12, x29 # x29 = byte address of b[k][j]
          fld
                              # f1 = b[k][j]
               f1, 0(x29)
          s11i x29, x5, 5
                              \# x29 = i * 2^5  (size of row of a)
          add x29, x29, x7 + x29 = i * size(row) + k
          s11i x29, x29, 3
                               # x29 = byte offset of [i][k]
          add
               x29, x11, x29 + x29 = byte address of a[i][k]
          fld f2, 0(x29)
                              # f2 = a[i][k]
          fmul.d f1, f2, f1 # f1 = a[i][k] * b[k][j]
          fadd.d f0, f0, f1
                               # f0 = c[i][j] + a[i][k] * b[k][j]
          addi x7, x7, 1
                              \# k = k + 1
                              # if (k < 32) go to L3
          bltu
               x7, x28, L3
                              \# c[i][j] = f0
          fsd
               f0, 0(x30)
          addi x6, x6, 1
                              \# j = j + 1
          bltu
               x6, x28, L2 # if (j < 32) go to L2
          addi x5, x5, 1
                               \# i = i + 1
                               # if (i < 32) go to L 1
           bltu x5, x28, L1
```

Subword Parallellism

- Graphics and audio applications can take advantage of performing simultaneous operations on short vectors
 - Example: 128-bit adder:
 - Sixteen 8-bit adds
 - Eight 16-bit adds
 - Four 32-bit adds
- Also called data-level parallelism, vector parallelism, or Single Instruction, Multiple Data (SIMD)

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - ◆ 2 × 64-bit double precision
 - 4 × 32-bit double precision
 - Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data

Unoptimized code:

```
1. void dgemm (int n, double* A, double* B, double* C)
2. {
3. for (int i = 0; i < n; ++i)
   for (int j = 0; j < n; ++j)
4.
5.
6.
      double cij = C[i+j*n]; /* cij = C[i][j] */
7.
      for (int k = 0; k < n; k++)
8.
      cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
9.
      C[i+j*n] = cij; /* C[i][j] = cij */
10.
11. }
```

x86 assembly code:

```
1. vmovsd (%r10), %xmm0 # Load 1 element of C into %xmm0
2. mov %rsi, %rcx # register %rcx = %rsi
3. xor %eax, %eax # register %eax = 0
4. vmovsd (%rcx), %xmm1 # Load 1 element of B into %xmm1
5. add r9, rcx # register rcx = rcx + rcx
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1, element
of A
7. add \$0x1,\$rax # register \$rax = \$rax + 1
8. cmp %eax, %edi # compare %eax to %edi
9. vaddsd %xmm1, %xmm0, %xmm0 # Add %xmm1, %xmm0
10. jg 30 <dgemm+0x30> # jump if %eax > %edi
11. add 0x1, %r11d # register r11 = r11 + 1
12. vmovsd %xmm0, (%r10) # Store %xmm0 into C element
```

Optimized C code:

```
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
    for ( int i = 0; i < n; i+=4 )
5.
     for ( int j = 0; j < n; j++ ) {
6.
     m256d c0 = mm256 load pd(C+i+j*n); /* c0 = C[i][j] */
7.
    for ( int k = 0; k < n; k++ )
8.
    c0 = mm256 \text{ add pd}(c0, /* c0 += A[i][k]*B[k][j] */
9.
                mm256 \text{ mul pd} (mm256 \text{ load pd} (A+i+k*n),
10.
                mm256 broadcast sd(B+k+j*n)));
    _mm256_store pd(C+i+j*n, c0); /* C[i][j] = c0 */
11.
12. }
13. }
```

Optimized x86 assembly code:

```
1. vmovapd (%r11),%ymm0
                            # Load 4 elements of C into %ymm0
2. mov %rbx,%rcx
                            # register %rcx = %rbx
                         # register %eax = 0
3. xor %eax, %eax
4. vbroadcastsd (%rax, %r8,1), %ymm1 # Make 4 copies of B element
5. add $0x8, %rax
                          # register %rax = %rax + 8
6. vmulpd (%rcx), %ymm1, %ymm1 # Parallel mul %ymm1, 4 A elements
7. add %r9,%rcx
                             # register %rcx = %rcx + %r9
                            # compare %r10 to %rax
8. cmp %r10,%rax
9. vaddpd %ymm1,%ymm0,%ymm0 # Parallel add %ymm1, %ymm0
10. jne 50 < dgemm + 0x50 >
                             # jump if not %r10 != %rax
11. add $0x1, %esi
                             # register % esi = % esi + 1
12. vmovapd %ymm0, (%r11) # Store %ymm0 into 4 C elements
                                                             37
```

Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs
- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow