Calcolo Numerico A, A.A. 2005/06 Appello 7 luglio 2006

Esercizio 1. Si vuole calcolare numericamente la soluzione \mathbf{x} del sistema lineare $A\mathbf{x} = \mathbf{b}$, dove $A \in \mathbb{R}^{n \times n}$ e $b \in \mathbb{R}^{n \times 1}$ sono

$$A = \frac{1}{n} \begin{bmatrix} n & 0 & 0 & 0 & \dots & 0 & 0 \\ -0.1 & 0.8 & -0.1 & 0 & \dots & 0 & 0 \\ 0 & -0.1 & 0.8 & -0.1 & 0 & \dots & 0 \\ 0 & 0 & \ddots & \ddots & \ddots & 0 & 0 \\ 0 & \dots & 0 & -0.1 & 0.8 & -0.1 & 0 \\ 0 & 0 & \dots & 0 & -0.1 & 0.8 & -0.1 \\ 0 & 0 & \dots & 0 & 0 & 0 & n \end{bmatrix}, \quad \mathbf{b} = \frac{1}{n} \begin{bmatrix} n \\ 0.6 \\ 0.6 \\ \vdots \\ 0.6 \\ 0.6 \\ n \end{bmatrix}. \tag{1}$$

- 1) Dato $\hat{\mathbf{b}} = \mathbf{b} + \varepsilon [1, 1, ..., 1]^t$ e, denotate con \mathbf{x} e $\hat{\mathbf{x}}$ rispettivamente le soluzioni dei sistemi $A\mathbf{x} = \mathbf{b}$ (originario) e $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$ (perturbato), stimare in norma 2 l'errore relativo commesso qualora si risolva il sistema perturbato invece di quello originario.
- 2) Verificare sperimentalmente la validità della stima trovata al punto 2) prendendo $\varepsilon = 10^{-3}$ e risolvendo il sistema lineare con un metodo opportuno.
- 3) MEG con pivotazione apporta vantaggi rispetto a MEG senza pivotazione, per la risoluzione del sistema $A\mathbf{x} = \mathbf{b}$? Perchè?
- 4) Calcolare la soluzione numerica di $A\mathbf{x} = \mathbf{b}$ con un metodo iterativo opportuno con una tolleranza pari a 10^{-6} . È piú accurata la soluzione ottenuta con il metodo iterativo e tolleranza 10^{-6} o la soluzione ottenuta con un metodo diretto? Verificare e giustificare il risultato.

Esercizio 2 Si vuole risolvere il sistema non lineare

$$\begin{cases} 4(x^2 + y^2) - 3xy = 1\\ x^2 \cos(y) = 2y \cos(y) - 3x \end{cases}$$

con il metodo di Newton.

- 1) Localizzare per via grafica le radici del sistema non lineare.
- 2) Scegliere dei dati iniziali opportuni per calcolare con Newton (newtons.m) le soluzioni del sistema dato.
- 3) C'è una restrizione sulla scelta del dato iniziale per Newton? Perchè?

Esercizio 3 Si consideri la figura sottostante, che mostra un corpo di massa m che, a partire da una posizione $x_0 = 0$ all'istante t0 = 0, viene spinto su un tavolo di lunghezza L = 6.25 metri con una certa velocità iniziale v_0 .

L'equazione che regola il moto del corpo è

$$\begin{cases}
 m \frac{d^2 x(t)}{dt^2} = F_a(t, x(t)), & t \in (0, T] \\
 x(0) = x_0 \\
 \frac{dx}{dt}(0) = v_0
\end{cases}$$
(2)

dove t rappresenta il tempo (in secondi), x lo spostamento (in metri) e F_a è la forza d'attrito (in Newton).

1) Si consideri la forza d'attrito seguente:

$$F_{a} = \begin{cases} -\gamma & \text{se } \frac{dx}{dt} > 0\\ \gamma & \text{se } \frac{dx}{dt} < 0\\ 0 & \text{se } \frac{dx}{dt} = 0. \end{cases}$$
 (3)

Si utilizzi il metodo Runge Kutta del terzo ordine esplicito ($rk3_h.m$) per risolvere l'equazione (2), con i seguenti dati: m = 1Kg, $\gamma = 2N$, su un intervallo temporale (0, 3]. Si scelga il passo di discretizzazione h in maniera opportuna (in modo da garantire stabiltà e accuratezza) e si determini la massima velocità iniziale v_0 in modo tale che il corpo non cada dal tavolo. Qual è il valore di t in cui si ferma il corpo?

2) Si consideri la forza d'attrito seguente:

$$F_{a} = \begin{cases} -\gamma - c\frac{dx}{dt} & \text{se } \frac{dx}{dt} > 0\\ \gamma - c\frac{dx}{dt} & \text{se } \frac{dx}{dt} < 0\\ 0 & \text{se } \frac{dx}{dt} = 0. \end{cases}$$

$$(4)$$

dove $c = 5Kg \cdot s^{-1}$.

Determinare anche in questo caso la massima velocità iniziale affinché il corpo non cada dal tavolo e l'istante in cui si ferma il corpo. Si può scegliere lo stesso valori di h scelto per il punto 1?