Fast Alignment Heuristics COMP462/561: Computational Biology Methods *Based on Course Notes by Dr. Mathieu Blanchett

Smith-Waterman? • SW is too slow...would take O(mn + m*hits) \bullet Trace back all entries of a dynamic programming matrix with a score>7 n = 126,000,000,000 m = 1.000 · Too slow, too much memory!

1

Smith-Waterman: Local Alignment (1981)

Problem:

Given two sequences, S and T, of lengths m and n, find the substring s of S and the substring t of T such that the alignment score of s against t is maximized

Algorithm: Dynamic programming algo (very similar to NW)

- Initialization matrix
 Fill matrix with appropriate alignment scores
- 3. Trace back from highest scoring cell(s) to find best alignment(s)

SW Initialization

A FOOGTVOASSTQUENTICES, A and B, a pair-wise matrix, H, is built such that: B = GCTTAC

	-	С	G	т Н	(iø0)	= $a0$,	0 ≰ i	$\leq m$	T	c	Α	т
-	0	0	0	0 F	(0, i)	≘ 0,	$0 \leq i$	≤0n	0	0	0	0
G	0											
С	0											
т	0											
т	0											
Α	0											
С	0											

2

5

Motivation

Problem:

Given a query sequence, q, of length m (small, ~1000 nucleotides) and a large database (target), D, of size n (billions of nucleotides)

Find $\underline{\text{all}}$ local alignments of q within D that have a score above threshold, T

SW Matrix Filling

With a match score of +2 and a mismatch & indel score equal to -1.

7

Basic Local Alignment Search Tool Idea

Give up on (guaranteed) optimality

Heuristic approach
Search only for local-alignments with high-scoring gapless alignments (HSPs)

Pre-process the database, D, so that queries can be answered in constant time with respect to n

BLAST was published in 1990 by Altschul, Lipman, Miller,
cited by more than 10⁵ papers

Index

Index

Index

Index

Index

Index

Index

List of positions in the Database

Encoding: w-mer → 0, ..., 4^w-1

*2-bit per character

8 11

Gapless Alignments

• If q has a good alignment, X, somewhere in D

q

AC-TGAATGATCCA

D

ACTTGAATGATGCA

Then X is likely to contain a HSP

Scanning for Hits in D• Given a query, qFor each w-mer in qFor each matches $c \in q$ in DInvestigate match further...

How many hits do we expect for a w-mer of size 11? $\frac{3 \times 10^9}{4^{11}} = 1000$

9 12

Slide 9

2 Assumption:

Lê Nhật Hưng, 23-Sep-19

"High scoring pair" Lê Nhật Hưng, 23-Sep-19 1

Portion in q 100% identical to portion in D Lê Nhật Hưng, 23-Sep-19 3

Slide 10

Size of portion expect to have perfect match is 4. 4

Usually, it's 11 Lê Nhật Hưng, 23-Sep-19

5 w=4 here

Lê Nhật Hưng, 23-Sep-19

Slide 12

6 TYPO: must be w

Lê Nhật Hưng, 23-Sep-19

13 16

Statistics of Local Alignments

- \bullet Even if D was completely random, we would expect to observe some pretty high scoring HSPs
 - How do we know when we should get excited?
- E-value (score(HSP))
 - The expected number of local alignments with a score greater or equal to HSP's that would be found in a random D

14 17

Gapped Extension

• If the HSP's alignment score is greater than some threshold, T

• Do a more expensive gapped extension

• Using a variant NW

• Perform NW in each direction

• Consider only entries with score greater than "best so far"

Target

15 18

Choosing the size of w

Small (<=11)

- High probability of finding exact w-mer in HSP
- Lots of false positive seeds
- High sensitivity

Large (>12)

- Miss many HSPs
- Few false positives
- · Low sensitivity
- Fast

Optimizations

- Dealing with repeats in q or D
- Two-Hit method
- Lower T to allow more hits, but only extend if two hits fall on the same diagonal
 Within a window of fixed length
 Increases hits and lowers extensions
- Gapped seeds

19 22

Karlin-Altschul (1990)

E(S) = Kmn

- E(S) = K m n e
- ullet S is the score of the $\underline{\text{ungapped}}$ HSP alignment
- \bullet $\it K$ and \it depend on the scoring scheme and background probabilities scales scores scheme
- A low E-value (10^{-1} 10^{-100}) is a good match
 - Low chance of observing HSP given random chance alone

Upcoming Topics

- Wednesday multiple sequence alignment (MSA)
 - Dr. Blanchette will return!
- End of the semester Burrows-Wheeler Transform (BWT)
 - https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform
- $\bullet \ \, \text{In pattern matching:} \ \, \underline{\text{https://www.youtube.com/watch?v=z5EDLODQPtg}}\\$

20

Variants

For proteins: inexact matches are considered

• Based on a point accepted matrix (PAM)

Query	Target	BLAST variant			
DNA	DNA	blastn			
Protein	Protein	blastp			
Protein	DNA	tblastn			
DNA	protein	blastx			

23