Hyperplane separation theorem and intro to convex analysis

Hedi Xia

June 27, 2017

Theorem

Definition: If $C_1, C_2 \subseteq \mathbb{R}^n$ are nonempty, convex and disjoint $(C_1 \cap C_2 = \emptyset)$, then there exists a hyperplane $H \subset \mathbb{R}^n$ such that H separate C_1 and C_2 .

- Convex
- Hyperplane
- Separate

Convexity

A set S is convex in \mathbb{R}^n iff $\forall x, y \in S$, $l(x, y) \in S$. Where $l(x, y) = {\lambda x + (1 - \lambda)y : \lambda \in [0, 1]}$.

Theorems about convexity: Given C_1 and C_2 convex,

- $C_1 \cap C_2$ is convex
- $C_1 + C_2$ is convex
- $C_1 + v$ is convex
- AC_1 is convex, where A is a matrix

Hyperplane

Definition: A hyperplane is a flat in \mathbb{R}^n with dimension n-1.

Definition for flat and its dimension:

F is a flat of dimension k iff F = W + v for some $v \in \mathbb{R}^n$ and $W \leq \mathbb{R}^n$ such that dim(W) = k.

Theorems about Hyperplanes and flats:

• Every flat is convex, and so is hyperplanes and subspaces.

- A hyperplane can be represented by a perpendicular vector and a arbitrary point on the hyperplane. In this case, $H(v, a) = \{x \in \mathbb{R}^n : \langle v, x a \rangle = 0\}$
- A hyperplane can also be represented by a linear functional and a scalar where: $H(f,t)=\{x\in\mathbb{R}^n:f(x)=t\}$

Separation

Example in \mathbb{R}^2 , we know that:

- $v \cdot (x_1 a) > 0$
- $\bullet \ v \cdot (x_2 a) = 0$
- $v \cdot (x_3 a) < 0$

In general, hyperplane H = (v, a) can separate the whole space into:

- $\{x \in \mathbb{R}^n : \langle v, x a \rangle > 0\}$
- $\{x \in \mathbb{R}^n : \langle v, x a \rangle = 0\} = H$
- $\{x \in \mathbb{R}^n : \langle v, x a \rangle < 0\}$

We say that H separates two half spaces defined as:

$$C_{\geq} = \{ x \in \mathbb{R}^n : \langle v, x - a \rangle \geqslant 0 \}$$

$$C_{\leq} = \{ x \in \mathbb{R}^n : \langle v, x - a \rangle \leq 0 \}$$

Notice that the second notation of hyperplane H(f,t) is closely related with the first one with the following correspondence: $t = \lambda \langle v, a \rangle$ and $f(x) = \lambda \langle v, x \rangle$ where λ is a nonzero real number. So we can also define:

$$C_{\geqslant} = \{ x \in \mathbb{R}^n : f(x) \geqslant t \}$$

$$C_{\leq} = \{ x \in \mathbb{R}^n : f(x) \leq t \}$$

We say that a hyperplane H support a set S if and only if either $S \subseteq C_{\geqslant}$ or $S \subseteq C_{\leq}$. Otherwise we say that H cut S.

- If H cut S, then $S \cap H \neq \emptyset$
- If a hyperplane H supports a flat F, then $F \subseteq H$
- If C is convex and $x \notin C$, then there exists a hyperplane H such that $x \in H$ and H support C. In addition, if C is either closed or open, we can find one that is also disjoint with C. (Proof by induction on dimension)

Proof

Because $C_1 \cap C_2 = \emptyset$, then $0_v \notin C_1 - C_2$. Notice that $C_1 - C_2$ is convex and $0_v \notin C_1 - C_2$, so there is a hyperplane H such that $0_v \in H$ and H support $C_1 - C_2$. So we can denote H = (f,0) in our second notion. So, either $f(C_1 - C_2) \leq 0$ or $f(C_1 - C_2) \geq 0$. Without loss of generality, suppose that $f(C_1 - C_2) \leq 0$. Then, $f(C_1) \leq f(C_2)$, so there is a lower bound for $f(C_2)$ because $f(C_1)$ is not empty. Let m be the greatest lower bound, so $f(C_1) \leq m \leq f(C_2)$. This means that hyperplane (f, m) separates C_1 and C_2 .

Usage

- Farkas' lemma: Let $A \in M_{m*n}(\mathbb{R})$ and $b \in \mathbb{R}^m$, then exactly one of the following two sets of equalities/inequalities has a solution,
 - 1. Ax = b and $x \geqslant 0$
 - 2. $A^T y \geqslant 0$ and $b^T y < 0$
- \bullet Strong duality theorem in linear programming: If P is a linear programming with an optimal value, then its dual has the same optimal value.

Notation

- Let A,B be set, then $A+B=\{a+b:a\in A,b\in B\}$ Let v be a vector, then $A+v=A+\{v\}=\{a+v:a\in A\}$
- Let v be a vector, then we say that $v \ge 0$ if and only if every component of v is nonnegative. We say that $v \le 0$ if and only if every component of v is nonpositive. We say that a vector $v_1 \le v_2$ iff $v_1 v_2 \le 0$ and $v_1 \ge v_2$ iff $v_1 v_2 \ge 0$