Άσκηση 1

• Ψευδής

Έστω x τέτοιο ώστε M_x να είναι μια TM η οποία δεν τερματίζει για καμία είσοδο. Τότε έχουμε $\mathrm{Dom}(\phi_x)=\emptyset$ το οποίο είναι αναδρομικό σύνολο (το αποφασίζει η μηχανή Turing που απορρίπτει κάθε είσοδο), δηλαδή $x\in R$. Όμως από τον ορισμό της M_x έχουμε $M_x(x)\uparrow$, δηλαδή $x\notin K$.

• Ψευδής

Έστω x τέτοιο ώστε M_x να είναι μια TM η οποία τερματίζει και αποδέχεται κάθε είσοδο. Τότε έχουμε $\mathrm{Dom}(\phi_x)=\mathbb{N}$ το οποίο είναι αναδρομικό σύνολο (το αποφασίζει η μηχανή Turing που αποδέχεται κάθε είσοδο), δηλαδή $x\in R$. Όμως από τον ορισμό της M_x έχουμε $M_x(x)\downarrow$, δηλαδή $x\in K$ συνεπώς $x\in R\cap K$.

• Ψευδής

Στα παρακάτω θα χρησιμοποιήσουμε το εξής πρόβλημα:

$$HALT = \{ \langle M, w \rangle \mid M(w) \downarrow \}$$

για το οποίο γνωρίζουμε ότι HALT \in ER και HALT \notin REC επομένως $\overline{\text{HALT}} \notin$ ER και θα κάνουμε την αναγωγή $\overline{\text{HALT}} \leq_{\text{m}} R$ από την οποία προκύπτει ότι $R \notin$ ER. Συνεπώς και $R \cup K \notin$ ER.

Λήμμα 1. $\overline{HALT} \leq_m R$.

Aπόδειξη. Θα πρέπει να βρούμε μια συνάρτηση $f: \mathbb{N} \to \mathbb{N}$ η οποία να είναι υπολογίσιμη και για την οποία να ισχύει: $\langle M, w \rangle \in \overline{\text{HALT}} \Leftrightarrow f(\langle M, w \rangle) \in R$.

Αυτή η f θα είναι η συνάρτηση που υπολογίζει η παρακάτω μηχανή Turing:

- F =" Για είσοδο $\langle M, w \rangle$:
 - 1. Δημιούργησε την περιγραφή και βρες τον αριθμό Gödel g της μηχανής Turing T: T= 'Για είσοδο $\langle T_1,x\rangle$:
 - (α΄) Προσομοίωσε παράλληλα την M με είσοδο w και την T_1 με είσοδο x.
 - (β') Αν τερματίσουν και οι δύο, τότε επέστρεψε το $T_1(x)$.
 - 2. Γράψε g στην ταινία εξόδου."

Έστω ότι $\langle M, w \rangle \in \overline{\text{HALT}}$, δηλαδή $M(w) \uparrow$, τότε η μηχανή T δεν τερματίζει για καμία είσοδο άρα $f(\langle M, w \rangle) = g$ όπου g τέτοιο ώστε $\text{Dom}(\phi_g) = \emptyset \in \text{REC}$, συνεπώς $g \in R$.

Αντίστροφα, αν $\langle M,w\rangle\in \mathrm{HALT}$ τότε η συνάρτηση f επιστρέφει ένα g για το οποίο $\mathrm{Dom}(\phi_g)=\mathrm{HALT}\notin\mathrm{REC},$ άρα $g\in\overline{R}.$