# Projeto 1 Inteligência Artificial

Matheus Henrique de Arruda

## Sumário

- 1. Contextualização/Problemática
- 2. Considerações sobre os dados
- 3. Objetivo Geral
- 4. Limpeza dos dados
- 5. Metodologia
- 6. Análises
- 7. Conclusões

#### 1. Contextualização/Problemática

Atualmente, uma empresa do setor calçadista possui um alto índice de ruptura e excesso de estoque, ou seja, em alguns momentos há falta do produto no momento da venda e também há excesso de produção em períodos ou produtos de baixa demanda.

A empresa utiliza uma média móvel de 3 meses para a previsão. Esse método, por exemplo, não leva em conta à sazonalidade das vendas de dos tipos de calçados, tornando esse método puramente quantitativo e não qualitativo

#### 2. Consideração Sobre os Dados

• Foi realizada uma Análise Exploratória de Dados com a finalidade de identificar possíveis erros na database e qual a melhor solução para cada caso.





#### 2.1 Produtos



#### 2.2 Vendas anuais



#### 2.3 Tendência de vendas



#### 2.4 Sazonalidade



#### 2.5 Anual



#### 3. Objetivo Geral

O principal objetivo da abordagem é encontrar uma solução melhor que a média móvel implementada atualmente na empresa.

> Como solução, propõe-se a implementação de Redes Neurais Recorrentes (RNN), utilizando a arquitetura LSTM

#### 4. Limpeza dos Dados

#### • Dos casos identificados:

- A seção de "Sneaker" e "Sneakers" aparentavam ser um erro de nomenclatura para a mesma classificação de produto, assim, ambas foram agrupadas em somente uma: Sneakers. Os dados de Novembro de 2021 apresentavam valores repetidos, porém com uma pequena diferença entre os valores para cada caso, foi utilizada a média entre ambos os valores;
- A tabela foi simplificada, agrupando cada um dos modelos em sua classificação com o valor total das vendas estando dividido somente entre as categoria(Boot, Shoes, Sandals, Sneakers) e o conjunto mês e ano de cada dado(Fizemos uma análise a nível de categorias)

#### 5. Metodologia

As redes neurais tradicionais não armazenam informações no tempo (previsões independentes), já as redes recorrentes são diferenciadas das redes feedforward pelo loop de feedback conectado às suas decisões anteriores, ingerindo suas próprias saídas momento após momento como entrada.



#### 5. Arquitetura LSTM (Long-Short Term Memory)

A LSTM é uma arquitetura de rede neural recorrente (RNN) que "lembra" valores em intervalos arbitrários.

- A forget gate (Liberar memória): Decide quais partes do cell state continuam importantes, ou seja, descobre quais detalhes devem ser descartados do bloco; ele examina o estado anterior ( ht-1 ) e a entrada de conteúdo ( Xt ) e gera um número entre 0 ( apague isso ) e 1 ( mantenha isso ) para cada número no estado da célula Ct-1 .
- A Input gate (Adicionar na memória): Decide quais informações da memória de curto prazo devem ser adicionadas ao cell state (armazenadas); e
- A output gate(Ler da memória): Decide quais partes do cell state são importantes no instante atual para gerar o output.



### 5. Implementação da RNN

```
#Função que aplica a rede neural
def RNN(previsores, qt real):
   #Arquitetura da rede neural
   regressor = Sequential()
   regressor.add(LSTM(units=100, return_sequences=True, input_shape=(previsores.shape[1], 1)))
   regressor.add(Dropout(0.3)) #Irá zerar 30% das entradas (Ajuda a previnir overfitting)
   regressor.add(LSTM(units=40, return sequences=True))
   regressor.add(Dropout(0.3))
   regressor.add(LSTM(units=50, return_sequences=True))
   regressor.add(Dropout(0.3))
   regressor.add(LSTM(units=60, return sequences=False))
   regressor.add(Dropout(0.2))
   #Camada de saída
   regressor.add(Dense(units= 1, activation='linear'))
   regressor.compile(optimizer='rmsprop', loss='mean_squared_error', metrics = ['mean_absolute_error'])
   #mc = ModelCheckpoint('Best_weights.h5', save_best_only=True, monitor='loss', verbose=1) #Salva os melhores pesos da RN
   regressor.fit(previsores, qt_real, epochs=200, batch_size=12)
   return regressor
```



#### 5. Redes Neurais - Análises dez/2022 - mar/2023

| ds_product_line | qt_sale  | Previsão_M1   | Previsão_M2   | Previsão_M3   |
|-----------------|----------|---------------|---------------|---------------|
| Boot            | 263267.0 | 248657.171875 | 248788.359375 | 249192.734375 |
| Boot            | 223118.0 | 208973.375000 | 209040.140625 | 209413.937500 |
| Boot            | 215163.0 | 210810.312500 | 210842.906250 | 210949.656250 |
| Boot            | 184398.0 | 217290.125000 | 217290.781250 | 217308.687500 |

| ds_product_line | qt_sale  | Previsão_M1  | Previsão_M2 | Previsão_M3 |
|-----------------|----------|--------------|-------------|-------------|
| Sandals         | 661730.0 | 523233.40625 | 525512.5625 | 527561.0625 |
| Sandals         | 576581.0 | 520166.56250 | 522499.4375 | 528004.3750 |
| Sandals         | 573049.0 | 528174.12500 | 528735.8750 | 533431.0000 |
| Sandals         | 481353.0 | 541623.00000 | 541583.3125 | 542520.0000 |

#### 5. Análises - Redes Neurais

| ds_product_line | qt_sale   | Previsão_M1  | Previsão_M2  | Previsão_M3  |
|-----------------|-----------|--------------|--------------|--------------|
| Shoes           | 1227099.0 | 1.117608e+06 | 1.117715e+06 | 1.118068e+06 |
| Shoes           | 1052338.0 | 9.492761e+05 | 9.527423e+05 | 9.765859e+05 |
| Shoes           | 944811.0  | 7.522096e+05 | 7.529458e+05 | 7.562139e+05 |
| Shoes           | 812154.0  | 7.584313e+05 | 7.598244e+05 | 7.631146e+05 |

Quais os produtos com as melhores e piores previsões?

| ds_product_line | qt_sale  | Previsão_M1  | Previsão_M2  | Previsão_M3  |
|-----------------|----------|--------------|--------------|--------------|
| Sneakers        | 564820.0 | 521174.87500 | 521799.40625 | 523489.40625 |
| Sneakers        | 521048.0 | 441946.81250 | 441819.96875 | 442342.62500 |
| Sneakers        | 511301.0 | 427787.03125 | 427110.71875 | 426933.37500 |
| Sneakers        | 441090.0 | 426019.87500 | 424914.21875 | 423597.50000 |

#### 5. Redes Neurais - Erro Percentual Absoluto Médio

|    | Product  | Month       | MAPE      |
|----|----------|-------------|-----------|
| 0  | Boot     | Previsão_M1 | 8.494402  |
| 1  | Boot     | Previsão_M2 | 8.493809  |
| 2  | Boot     | Previsão_M3 | 8.495773  |
| 3  | Sandals  | Previsão_M1 | 13.298595 |
| 4  | Sandals  | Previsão_M2 | 13.178319 |
| 5  | Sandals  | Previsão_M3 | 12.933757 |
| 6  | Shoes    | Previsão_M1 | 5.370404  |
| 7  | Shoes    | Previsão_M2 | 5.364929  |
| 8  | Shoes    | Previsão_M3 | 5.198539  |
| 9  | Sneakers | Previsão_M1 | 6.853611  |
| 10 | Sneakers | Previsão_M2 | 6.893269  |
| 11 | Sneakers | Previsão_M3 | 6.901882  |

A nova previsão de demanda é melhor que o modelo atual de média móvel?

| Produtos | Médias móveis |
|----------|---------------|
| Boot     | 17.74         |
| Sandals  | 24.93         |
| Shoes    | 18.10         |
| Sneaker  | 24.00         |

#### 5. Redes Neurais - Erro Quadrático Médio

|    | Product  | Month       | MSE          |
|----|----------|-------------|--------------|
| 0  | Boot     | Previsão_M1 | 5.757877e+08 |
| 1  | Boot     | Previsão_M2 | 5.750483e+08 |
| 2  | Boot     | Previsão_M3 | 5.744876e+08 |
| 3  | Sandals  | Previsão_M1 | 7.339539e+09 |
| 4  | Sandals  | Previsão_M2 | 7.219079e+09 |
| 5  | Sandals  | Previsão_M3 | 6.994375e+09 |
| 6  | Shoes    | Previsão_M1 | 6.496122e+09 |
| 7  | Shoes    | Previsão_M2 | 6.486692e+09 |
| 8  | Shoes    | Previsão_M3 | 6.270475e+09 |
| 9  | Sneakers | Previsão_M1 | 2.321209e+09 |
| 10 | Sneakers | Previsão_M2 | 2.332473e+09 |
| 11 | Sneakers | Previsão_M3 | 2.335223e+09 |

o MSE calcula a média dos quadrados das diferenças entre os valores previstos e os valores reais.

#### 5. Redes Neurais - MAE (Mean Absolute Error)

|    | Product    | Month       | MAE          |
|----|------------|-------------|--------------|
| 0  | Boot       | Previsão_M1 | 17040.578125 |
| 1  | Boot       | Previsão_M2 | 17044.074219 |
| 2  | . Boot     | Previsão_M3 | 17042.578125 |
| 3  | Sandals    | Previsão_M1 | 78767.328125 |
| 4  | Sandals    | Previsão_M2 | 78057.492188 |
| 5  | Sandals    | Previsão_M3 | 76623.757812 |
| 6  | Shoes      | Previsão_M1 | 53559.187500 |
| 7  | Shoes      | Previsão_M2 | 53472.453125 |
| 8  | Shoes      | Previsão_M3 | 51801.000000 |
| 9  | Sneakers   | Previsão_M1 | 35416.914062 |
| 10 | O Sneakers | Previsão_M2 | 35602.210938 |
| 1' | 1 Sneakers | Previsão_M3 | 35640.421875 |

MAE a média dos valores absolutos das diferenças entre os valores previstos e os reais

### 5 - Comparativos e Conclusões

Em um primeiro momento, utilizar os valores obtidos com redes neurais, pois mostram um erro menor que os obtidos com a média móvel atualmente utilizada.



#### 6. Sugestão de Ação

Para a Companhia: As análises de machine learning podem melhorar conforme mais dados são coletados e adicionados aos modelos, podendo deixá-los mais precisos.

Na análise: Ainda há análises mais elaboradas que podem ser feitas, como por exemplo, separando as análises em cada item ao invés de cada categoria, que acaba por agrupar vários itens diferentes.