Graphes et Langages

Chapitre 4
Arbres

Leo Donati Noëlle Stolfi

Université de Nice Sophia Antipolis IUT Nice Côte d'Azur DUT Informatique

Chapitre 4 : Arbres

- ARBRES
 - Définition
 - Vocabulaire
 - Arbre de recouvrement
- 2 Arbres enracinés
 - Défintion
 - Vocabulaire
 - Taille

- 3 Arbres binaires
 - Définition
 - Notation binaire des sommets
 - Codage de Huffman

Définition Vocabulaire Arbre de recouvrement

Arbres

3/33

DÉFINTION

Un arbre est un graphe non orienté connexe et sans cycle.

M2201-4

PROPRIÉTÉS

SI $G = (V, E, \gamma)$ EST UN ARBRE ALORS

- G est simple
- le degré de G est égal à l'ordre de G moins un.
- chaque arête est un pont, c'est à dire qu'en le supprimant le graphe n'est plus connexe.
- étant donnés deux sommets s et t, il existe une et une seule chaîne allant de s à t.

THÉORÈME

SI G est un graphe non orienté, simple et connexe, d'ordre n avec n-1 arêtes, alors G est un arbre.

Vocabulaire

Soit G un arbre, alors

- les arêtes s'appellent des branches.
- les sommets de degré 1 s'appellent des feuilles.
- les autres sommets s'appellent des nœuds.

EXEMPLE

SUR L'EXEMPLE

- Les feuilles sont 4, 5, 6, 7, 8, 9, 10
- Les nœuds sont 1, 2, 3
- Le diamètre de l'arbre est 4

Arbre Couvrant

DÉFINTION

Soit $G = (V, E, \gamma)$ un graphe simple non orienté. Un arbre couvrant de G est un sous-graphe de G qui est un arbre contenant chaque sommet de G.

REMARQUE

- Il faut évidemment que *G* soit connexe pour que l'arbre de recouvrement existe.
 - Mais si c'est le cas son existence est assurée mais pas son unicité.
- Si le graphe est hamiltonien, alors le cycle hamiltonien (sans la dernière arête fermante) est un exemple d'arbre de recouvrement.

ALGORITHME DE CONSTRUCTION

CONSTRUCTION D'UN ARBRE COUVRANT

- On choisit arbitrairement un sommet s de G
- à partir de s on construit une chaîne simple en ajoutant des arêtes de G
- si la chaîne ainsi construite contient toutes les arêtes de *G* alors on a un arbre de recouvrement.
- sinon on revient à l'avant dernier sommet et on part de ce sommet pour construire une nouvelle chaîne simple sans repasser par aucun sommet déjà utilisé, si ce n'est pas possible on revient au sommet précédent...
- chaque fois qu'on se bloque on réitère ce processus.

EXEMPLE

Arbre couvrant pour le graphe du cube

Le diamètre est passé de 3 à 6. Est-ce qu'on peut avoir le même diamètre ?

Arbre Couvrant de Poids Minimal

DÉFINITION

Si $G = (E, V, \gamma, \omega)$ est un graphe non orienté simple et valué, un arbre couvrant de poids minimal (minimum spanning tree) est un arbre couvrant de G dont la somme des poids des arêtes est minimal.

Algorithme de Prim

PRINCIPE DE L'ALGORITHME (1957)

- Initialisation : avec un sommet quelconque
- Récursivement : si on a déjà un arbre minimal avec n sommets, on fait la liste de toutes les arêtes reliant un sommet non sélectionné à un sommet sélectionné et on choisit l'arête de poids minimal que l'on ajoute à l'arbre minimal.
- L'algorithme termine quand tous les sommets sont sélectionnés.

Chapitre 4 : Arbres

- ARBRES
 - Définition
 - Vocabulaire
 - Arbre de recouvrement
- 2 Arbres enracinés
 - Défintion
 - Vocabulaire
 - Taille

- 3 Arbres binaires
 - Définition
 - Notation binaire des sommets
 - Codage de Huffman

Arbres enracinés

DÉFINITION

Un arbre enraciné est un arbre dans lequel on sélectionne un sommet que l'on nomme racine de l'arbre.

REMARQUE

Le même arbre peut être enraciné de plusieurs façons non isomorphes.

EXEMPLES

NIVEAU ET HAUTEUR

DÉFINITIONS

Un arbre enraciné possède une orientation naturelle par rapport à sa racine R:

- le niveau d'un sommet s est la distance entre s et la racine R;
- la hauteur d'un arbre enraciné est le niveau le plus élevé atteint par un sommet. Notation : h(G)

REMARQUE

- La racine est le seul sommet de niveau 0
- La hauteur d'un arbre enraciné est toujours inférieure ou égale à son diamètre.

Vocabulaire

SI (G,R) EST UN ARBRE ENRACINÉ, ALORS

- Soient s et t deux sommets adjacents; le père est le sommet plus proche de la racine, et le fils est celui qui est le plus éloigné.
- Les ancêtres d'un sommet s sont tous les nœuds par lesquels on passe en suivant le chemin allant de s vers la racine.
- Les descendants d'un sommet t sont tous les nœuds dont t est un ancêtre

EXEMPLE

EXEMPLE

- hauteur de l'arbre = 3
- 1 est le père de 2
- 3 et 5 sont les fils de 2
- les ascendants de 4 sont 1, 2, 3
- les descendants de 2 sont 3, 4 et 5

Taille d'un arbre

PROPOSITION

- Si le sommet s est de niveau d alors il a d ancêtres
- Si dans l'arbre enraciné, n est le nombre maximum de fils que peut avoir un nœud et h est la hauteur de l'arbre, alors l'ordre du graphe est au maximum

$$o(G) \le 1 + n + n^2 + n^3 + \dots + n^h < n^{h+1}$$

Chapitre 4 : Arbres

- ARBRES
 - Définition
 - Vocabulaire
 - Arbre de recouvrement
- 2 Arbres enracinés
 - Défintion
 - Vocabulaire
 - Taille

- 3 Arbres binaires
 - Définition
 - Notation binaire des sommets
 - Codage de Huffman

Arbres binaires

DÉFINITION

Un arbre binaire est un arbre enraciné dans lequel chaque nœud a au maximum deux fils. De plus ces deux fils sont ordonnés :

- à gauche on place le premier fils : le fils ainé
- à droite on place le second fils : le fils cadet

UTILISATION

EXEMPLE D'APPLICATIONS DES ARBRES BINAIRES

- arbre de recherche
- arbre d'une formule

FORMULE
$$(x+y)(z+t)$$

PROPRIÉTÉS

Propriétés des arbres binaires

- Le degré de chaque nœud est au maximum 3 (un père et deux fils)
- Si h est la hauteur de l'arbre, le nombre de sommets est au maximum 2^{h+1}

NOTATION BINAIRE DES SOMMETS

Principe

Dans un arbre binaire on peut attacher à chaque noeud ou feuille une étiquette binaire qui décrit précisément la position du sommet dans l'arborescence :

- la racine est dénotée par le mot vide
- les nœuds de niveau d on une étiquette binaire avec d bits
- l'étiquette binaire d'un fils s'obtient à partir de l'étiquette du père en ajoutant à droite soit un 0 pour le fils ainé soit un 1 pour le fils cadet

EXEMPLE DE NOTATION BINAIRE

EXEMPLE

Chaque nœud ou feuille est identifié de façon unique par son étiquette binaire qui est aussi un codage du chemin à suivre pour y arriver à partir de la racine.

EXEMPLE DE NOTATION BINAIRE

EXEMPLE DE NOTATION BINAIRE

EXEMPLE

Chaque nœud ou feuille est identifié de façon unique par son étiquette binaire qui est aussi un codage du chemin à suivre pour y arriver à partir de la racine.

Arbre binaire d'une formule

EXEMPLE

Si l'on a une formule mathématique, on peut ainsi coder les opérateurs et les opérandes par leur étiquette binaire :

NOTATION POLONAISE

DÉFINITION

La notation polonaise d'une formula mathématique, consiste à écrire ses éléments dans l'ordre lexicographique de l'étiquette binaire des sommets.

M2201-4

NOTATION POLONAISE

DÉFINITION

La notation polonaise d'une formula mathématique, consiste à écrire ses éléments dans l'ordre lexicographique de l'étiquette binaire des sommets.

En écriture polonaise donne : x + x y + t z ce qui correspond à une écriture préfixée car on met l'opérateur avant les opérandes, et cela récursivement.

Traversée d'un arbre binaire

COMMENT S'Y DÉPLACER?

Il y a essentiellement 3 façons classiques de traverser un arbre binaire, c'est à dire de passer par tous les sommets :

- parcours préfixe : c'est celui donné par l'ordre léxicographique sur les étiquettes binaires ; d'abord la racine puis récursivement le sous arbre gauche puis récursivement le sous-arbre droit
- parcours postfixe : d'abord récursivement le sous-arbre gauche, puis le sous-arbre droit et enfin la racine
- parcours infixe : d'abord récursivement le sous-arbre gauche, puis la racine, puis récursivement le sous-arbre droit.

EXEMPLE

• Parcours préfixe : 3 - 4 - 2 - 5 - 1

EXEMPLE

- Parcours préfixe : 3 4 2 5 1
- Parcours postfixe : 4 5 1 2 3

M2201-4

EXEMPLE

- Parcours préfixe : 3 4 2 5 1
- Parcours postfixe: 4 5 1 2 3
- Parcours infixe: 4 3 5 2 1

M2201-4

SUR UNE FORMULE MATHÉMATIQUE

EXEMPLE

• Parcours préfixe : $\times + x y + t z$: écriture polonaise

SUR UNE FORMULE MATHÉMATIQUE

EXEMPLE

29/33

- Parcours préfixe : $\times + x y + t z$: écriture polonaise
- Parcours postfixe : x y + t z + x : écriture polonaise inversée (appelée aussi RPN pour Reverse Polish Notation)

M2201-4

SUR UNE FORMULE MATHÉMATIQUE

EXEMPLE

- Parcours préfixe : $\times + x y + t z$: écriture polonaise
- Parcours postfixe : x y + t z + x : écriture polonaise inversée (appelée aussi RPN pour Reverse Polish Notation)
- Parcours infixe : $x + y \times t + z$: écriture classique des formules qui nécessite obligatoirement d'utiliser des parenthèses : $(x+y)\times(t+z)$

Codage de Huffman

David Huffman (1952)

Le codage de Huffman est un algorithme de compression sans perte qui utilise un codage à longueur variable d'un symbole selon sa fréquence dans le texte à compresser.

PRINCIPE

- On parcourt le texte pour connaître le nombre d'occurrence de chaque symbole
- On construit l'arbre des fréquences qui est binaire
- La notation binaire des feuilles est utilisée pour coder le texte

Arbre des fréquences

Arbre binaire

- les feuilles sont les symboles dont le poids est donné par leur nombre d'occurrence
- l'arbre binaire est construit en prenant les deux arbres binaires de poids le plus faible et en construisant un nouvel arbre en donnant au père la somme des poids des fils
- on place à gauche le fils qui a le poids le plus faible (ou à égalité celui qui arrive avant dans l'ordre lexicographique)

Exemple d'arbre des fréquences

EXEMPLE DE CODAGE

