北京化工大学 2014——2015 学年第二学期 《有机化学 (72 学时)》期末考试试卷

	课程化	弋码	С	.Н	М	1	3	7	0	0	T
班级:		姓名:		- d	学号:		任	课教》	币:		_分数:
题号	_	=	T	Ξ	<u>pr</u>		五	;	六	七	总分
得分											

		化合物 11—15 的结构(每小题 1分,共	15分	•)
		CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ H ₃ CH ₂ C-2CH ₂ CH ₃	2	H ₃ CH ₂ C 9 1 CH ₂ CH ₃ CH ₃ CH ₃
3-P	艺 3.	-2老-4-石芝-上。乾庚烷	水子	-4-甲基-6-壬KG-2-火夫
	3	OH 3 2 0	4	CH ₃ 7 8 CH ₂ CH ₃
	5.	- 乾楚- 螺〔3.4]-2-辛万间	5- b	8笔-2-2/4.2.0]-6-享烧
	5	CI P COOH	6	NO ₂ 2' 3' Br
	3-	羟基一4-截基甲酚	t-11	苯二二磺苯二十二溴联苯

29		1 1	00000
7	H ₃ C Br	8	COOCH ₃ HO- ₁ CH ₃ HO- ¹ CH ₃ CHO
s-	- 2 - 5. 其完	25,	3尺-2,3-=甲基-2,3-=乾基-
9	H ₃ C H ₃ CH ₃ CH ₃ CH ₂	10	H ₃ CO Br CH ₂ CH ₃ CH ₃ C H CCH ₃ Br H O H 3 2
2R,	3S-2,3-= 苍-3->暮'-4-戎` 炊舞玩艇	38,	45-4-甲氧基-3-漢-2-己酉
11	异丁基仲丁基叔丁基甲烷	12	(Z) -3-己烯-2-醇
(CM)	C(CM3)3 32CH CH2 CH3HCH2 CM3 M3		CH3 CH C = C CH2 CH3
13	N-甲基-N-乙基苯胺	14	1,3-丙二醇二乙醚
	CH2 CH3	CF	13 CH2O CH2 CH2 CH2O CH2 CH3
15	丁酮腙		
C	NOH 43 C CH2 CH3		

72 学时 第 1 页

72 学时 第 2 页

二、选择题(每题只有一个答案,答案选项填在下列表格中,每小题 1 分,共 20

						T	_			
题号	1	2	3	4	5	6	7	8	9	10
选项										
题号	11	12	13	. 14	15	16	17	18	19	20
选项										

1. 下列化合物沸点最高的是 ([↑]A)。

A. 正己烷

B. 异己烷

C. 2,3-二甲基丁烷

2. 下列化合物沸点最低的是(В)。

A. 1-丁醇

B. 正丁醛

C. 正丁酸

3. 下列碳正离子最稳定的是(3)。

A. $\overset{\star}{\mathsf{C}}\mathsf{H}_2\mathsf{C}\mathsf{H}_2\mathsf{C}\mathsf{H}_3$ B. $\mathsf{H}_2\mathsf{C}=\mathsf{H}\mathsf{C}-\overset{\star}{\mathsf{C}}\mathsf{H}\mathsf{C}\mathsf{H}_3$ C. $\mathsf{H}_3\mathsf{C}-\overset{\star}{\mathsf{C}}\mathsf{H}\mathsf{C}\mathsf{H}_3$

4. 下列负离子最稳定的是(C)。

5. 下列化合物在水中溶解度最大的是(B)。

A.苯甲酸

B. 丙三醇

C. 乙酸乙酯

6.下列化合物酸性最强的是(C)。

B. HO-CH₂CH₃

C. F₃C—COOH

72 学时 第 3 页

7.下列化合物碱性最强的是(C)。

A. 苯胺

B. 乙酰苯胺

C. 对甲氧基苯胺

8.下列亲核试剂亲核性最强的是(Å)。

A. CH₃O Na + B. NaOH

C. CH₃COO⁻Na⁺

9.下列化合物进行催化加氢,氢化热最少的是(C)。 城市已越轻色,到心态越少

A. 1-丁烯

B. (Z)-2-丁烯

C. (E) -2-丁烯

10. 顺-1-甲基-4-叔丁基环己烷最稳定的构象是(C)。

11. 根据休克尔规则,不具有芳香性的是(C)。

12. 下列化合物中,不能进行付-克烷基化反应的是(A)。 A. 对硝基苯甲酸 B. 苯酚 C. 苯胺

13. 下列化合物中,不能进行羟醛缩合反应的是(C)。 C. 苯甲醛

A. 乙醛 B. 丙酮 14. 下列烯烃与 Br₂/CCl₄ 溶液进行亲电加成反应,活性最高的是(/)。

A. CH₃CH=CH₂ B. CH₂=CH₂

C. Cl-CH=CH₂

15. 下列化合物与浓硝酸-浓硫酸进行反应,速率最快的是(B)。 B. 甲苯 C. 硝基苯

16. 下列化合物与 AgNO₃/CH₃CH₂OH 溶液反应,活性最高的是(A)。

-CH₂CI B. O₂N-

72 学时 第 4 页

	1
・ 17. 下列化合物与无水 ZnCl ₂ /HCl 溶液反应,活性最高的是 (C)。	四
A. 丙醇 B. 异丙醇 C. 叔丁醇	
18. 下列化合物与饱和 NaHSO₃水溶液反应,反应最慢的是 (A)。	1.
A. 苯甲醛 B. 苯乙醛 C. 丙酮	
19. 下列化合物进行水解反应,速率最快的是(C)。	
A. 苯甲酸乙酯 B. 苯甲酸酐 C. 苯甲酰氯	2.
20. 下列描述不是 S _N 1 反应特征的是 (A)。	
A. 反应速率与亲核试剂浓度有关;	
B. 产物的构型发生外消旋化;	-
C. 可能会有重排产物生成。	3.
三、以 $CH_3CH_2CH_2OH$ 为例,分析其结构,并用反应方程式来表述其所有可能类型的化学反应(8 分)。	,
の由于移分3中氧的电子与房积较高,可接发质子或专与心的破后, 耐	杨裕华
CH3 CH2 CM2 OH + H250 -> CH3 CM2 CH2 OH H404	4.
回移的放性: 码多3 in 0-H键具有标准,到历法带有部分正电荷.	
CH3 CH2 CH2OH + Na -> CH3 CH2 CH2O Na + H2	
③对流海检发: 码名中新历, 3上有的对地子, 具有多, 整发	
2 (M) CH, CH2 OH (16H25045 CM2 CH2 CH2 CH2 CH2 CH2	5.
CUI CHI CUIZOH + CUIZ E OH WOULDER CHIZ COO CHICHICHI	
图的3中的羟基在络松伯用下羟基对羟基石,可被康乳和代	-
CMZ CH2 CH2 OH + H Cl Incl2, CMZ CH2 CH2 CI	-

72 学时 第 5 页

CUZ CHIZALOH WOHLSON, CHZCH=CUZ

图在海际或循规制(Alxo3)的作用下,对可以进行多的股本型的特性。

四、完成下列反应(每空 0.5 分,共 20 分) $\frac{\text{HOBr}}{\text{CH}_{3}\text{CH}_{2}\text{CH} = \text{CH}} \xrightarrow{\text{HOBr}} \left(\text{CH}_{3}\text{CH}_{2}\text{CH} - \text{CH}_{3}\right)^{\text{NaOH}, \text{H}_{2}\text{O}}}{\text{CH}_{3}\text{CH}_{2}\text{CH} - \text{CH}_{2}} \xrightarrow{\text{H}^{+}} \left(\text{CH}_{3}\text{CH}_{2}\text{CH} - \text{CH}_{2}\right)^{\text{H}^{+}} \xrightarrow{\text{CH}_{3}\text{CH}_{2}\text{CH$ $CH_3CH = CH_2 \xrightarrow{Br_2} \left(B_V CH_2 CH = CH_2 \right) \xrightarrow{H_3CC} = C \cdot Na^+ \left(CH_3 C = C \cdot CH_2 CH = CH_2 \right)$ H₂ Lindlar 催化剂 (CM₂) (CM₂ CH₂ CH₂ CH₂ CH₂ CH₂ 2. ĊI 3. C(CH₃)₃ c(CH3)3 AND YE 403H C(C43), CH₃

CH₃

NaNO₂,HCl

NH₂

NH₂

CH₃

NaNO₂,HCl

NH₂

CH₃

NaNO₂,HCl ÇH₃ 5. (CH3 CH2 C- CH3

CM3) Mg () 干醚 (7. (XCM2 CM2 O.H) $CH_3CH=CH_2$ $\frac{(1)$ 硼氢化 \longrightarrow (CM_2 CM_2 CM_2 OH) $\frac{CrO_3}{\text{rttr}}$ \longrightarrow (CM_3 CM_2 CM_0)称NaOH/H2O (CM2 CHCH CH-CHO) 8. 9. (CM; CM; I-) AgoH (CM; CM; CM; 10. 11. -H₂O ()(1) AICI₃ (Cuscuscost 7n-Hg) 12. P-CH2CH2CHCgoH NaOH
NaCN CM2CH2CHCOOH COOLH2CHCOOH (2) CH3CH2OH (2) CH3CH2OH (2) CH3CH2OH 五、结构推断题 (共6分)。

化合物 A (C_{10} H₁₂) 经臭氧解生成化合物 B (C_{3} H₆O) 和 C (C_{7} H₆O), B 不与 $AgNO_{3}$ 化合物 A (C_{10} H₁₂) 经臭氧解生成化合物 B (C_{3} H₆O) 和 C (C_{7} H₆O), B 不与 $AgNO_{3}$ 的氨溶液反应,C 则反应有银镜生成,酸化后生成化合物 D (C_{7} H₆O₂),D 与 PCl_{3} 反应生成 E, E 与氨作用生成 F (C_{7} H₇NO)。F 在 NaOH 水溶液中与 Br_{2} 发生 Hofmann 酰胺降级反应,生成苯胺。根据以上实验结果推断化合物 $A\sim F$ 的构造式。请将化合物 A、B、C、D、E、F 的构造式写入下列表格中(不必写反应式,每个化合物 1 分,全对 6 分)。

A. CH = CH < CH ₃ CH ₃	B. CHz CHz	C.
D.	E.	F.

六、写出下列反应的反应机理 (每小题 4 分, 共 8 分)。

Ed氧化物。CH3CHCH3

H3CHC=CH2+HBr—ROOR—CH3CH2CH2Br

Fr

This who, CM, CM=CM2—H++> CM3 CH CM3 Br> CM3 CH CM3

This who, CM3 CH CM3 CH CM3

This who, CM3 CH CM3

This who, CM3 CH CM3

This who, CM3 CH CM2 Br

进步之: Br. + CH3 CH= CH2 -> CM3 CH CH2Br CM3 CHCH2Br + HBr -> CM3 CH2 CM2 Br + Br.

改数企: Br·+Br· → Br2 Br Br·+CH3 ch CH2Br → CM3 cH CM2Br

七、用简单的化学方法鉴别下列各组化合物 (每小题 4 分, 共 8 分)。

1. A. 正己烷 B.1-己烯 C.1-己炔 D. 正丙基环丙烷 E. 甲苯

八、以 C2~C4 的烯烃、乙炔、苯、甲苯和乙酰乙酸乙酯以及必要的无机试剂为原料,合成下列化合物 (每小题 3 分,共 15 分)。

72 学时 第 10 页

CH₃CH₂CH₂CH₂COOCH₂CH₂CH₃

CM₃CM = CH₂ $\frac{0 \frac{B_3 M_6}{O \frac{B_3 M_$

《有机化学》期末考试试卷

课程代码

C

Ξ ×

0

0

是是	班级:
1	
[1	姓名:
111	
111	华
Ħ	
⅓	在渠
4	在课教师:
总分	
	一 川 四 田 六 七

一、用系统命名法命名下列结构的化合物,必要时标明构型(R/S,顺/反或 Z/E);或将相应的 名称画出相应的结构, 每题 1 分, 共 15 分。

E-3-异历花-2-海水第一4一次多 2月35-2,3-二甲基3-3美大阪 2-甲基-4-勃基-(1)-苯甲酚 1.6-=甲基-2-副末月1.4]李次 н₃с - сн-сн₃ 4.7-29第一7-21卷=环[4,1.0]-3-原的 2-6年-4-海、藤、苯甲酸 R-2-JTX 35,4R-4-20-3-74,2088AB H362 - CH2CH2CH3 H3CV 40 Y CH₂CONH₂ H-4-Br H-4-CI た²2H3 7 CH₃ CH₂CH₃

> 选项 是國

选项 題号

=

12

13

14

15

16

17

18

19

20

6

5

11	
25.3 R-2- (甲基-2.3-2) R: 工商法 6-2 左-2- 茶	OHC CH ₃ Br
11 12 クージャル・インののののでは、 12 内閣所 6 - 21 生 - 2 - 法	10 1° 8 0 2 сооснз

1. 下列化合物沸点最高的是(A)
A. 正戊烷
B. 异戊烷

C. 新戊烷

下列碳正离子最稳定的是() A. $H_3C-CH_2-CH_2^{\oplus}$ $_{\rm B.}$ н₂с=сн−сн $_{\rm 2}^{\oplus}$

⊕ С. н₃С—Сн—Сн₃

第2

页

第1页

16. 下列化合物发生硝化反应活性最大的是 (C) 15. 下列化合物发生亲核加成反应时反应活性最大是 (A 14. 下列化合物能发生歧化反应的是(B. 基甲醛 A. 丙醛 13. 下列二烯烃中不能与丙烯酸发生 Diels-Alder 反应的是(B) 12. 反-1-甲基-3-异丙基环己烷的优势构象是(🛔) 9. 下列化合物既能发生碘仿反应,又能发生银镜反应的是(C)A. 苯乙酮 B. 苯甲醛 C. 乙醛 11. 具有旋光性的化合物是(C) 10. 下列化合物水解反应速率最快的是(B) 8. 结构组成为 CH₃CHBrCH₂CH=CHCH₃的化合物立体异构体的数目是(C) 7. 下列化合物能够进行付克酰基化反应的是(}) 6. 下列化合物碱性最强的是(B) A. 2,2-二甲基-1-溴丙烷 B. 3-溴丙烯 下列化合物酸性最大的是 (A)
A. 对硝基苯甲酸;
B. 对甲基苯甲酸; 下列化合物在水中溶解度最大的是(B) В. B. 丙酮 B. 甲基环己烷 B. 8 → c. [___ C. 苯甲醛 C. L-乳酸 C. 2-溴丁烷 C.4个 C C. 对氯苯甲酸 Ċ 領仿

1. $CH_{3}CH_{2}CH=CH_{2} \longrightarrow \left(\begin{array}{c} HBr \\ -(CM_{1}CH_{2}CH_{2}CHCMCH_{3}) \end{array} \right)$ 2. $\left(\begin{array}{c} COOCH \\ -COOCH \end{array} \right) \longrightarrow \left(\begin{array}{c} CM_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3} \end{array} \right)$ 3. $\left(\begin{array}{c} -(COOCH_{2}CH_{3} + CH_{3}CH_{2}COOC_{2}H_{5} + CH_{5}CH_{5}COOC_{2}H_{5} + CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}COOC_{2}H_{5} + CH_{5}CH_{5}CH_{5}COOC_{2}H_{5} + CH_{5}CH_{$

第3页

第4页

甲苯

20. 下列描述不是 S_{N} 2 反应特征的是(β)

A. 反应速率与亲核试剂浓度有关

B. 可能有重排产物产生 C. 空间位阻增大不利于反应进行

完成下列反应 (每空1分, 共25分)

19. 下列化合物发生水解反应最慢的是(A)

A 乙酰胺

C 乙酸酐

18. 下列化合物与硝酸银的乙醇溶液反应最快的是 (A)

5. 烯烃与溴加成反应最快的是(C)
 A. 乙烯
 B. 丙烯

C. E-2-丁烯

17. 根据休克尔规则不具有芳香性的是(C)

第5页

四、回答问题与结构推断(共5分)。

化合物 A. 分子式为 C₆H₁₂O. 能与羟胺反应。而与 Tollen's 试剂或饱和亚硫酸氢钠均不起反应。A 催化加氢积 B. 分子式为 C₆H₁₂O. B 和浓硫酸作用脱水生成 C. 分子式为 C₆H₁₂O. C 经臭氧化还原水解生成 D 和 E. 两者分子式均为 C₆H₁₂O. D 有磷仿反应而无眼镜反应。E 有银 校应却无缺仿反应。请将化合物 A. B. C. D. E 的构造式写入 F列制定表格中。(不必写反应式,每个化合物 1 分. 全对 5 分)。

CH3 > CH - C CH2 CH3	CU3 > CH - CH CH2 CU3	cus >c = ch ch2 ch3
он, ё сн,	CH3 CH2 CHO	J

五、写出下列转化的反应机理(每题4分,共8分:。

第6页

六、鉴别下列各组化合物。 (第一小题 3 分, 第二小题 4 分。共 7 分)

七、以 C2~C4 的烯烃、乙炔、苯、甲苯及必要无机试剂合成下列化合物。若给定起始原料的在设计的合成路线中必须包含该起始原料。 (每小题 4 分。共 20 分)。

1.
$$CH_3$$
 O_2N
 $COOCH_2CH_3$
 E_T
 O_2N
 $COOCH_2CH_3$
 E_T
 O_2N
 O_2N

第7页

第8页

2. CH₂CH₂CH₂CH₃

H

CH₂ = CH₂ HBr CH₃ CH₂Br

CH₃ CH = CH₂ HBr CH₃ CH₂ Br

CH₃ CH = CH₂ HBr CH₃ CH₂ CH₂ Br

CH₃ CH = CH₂ NaNH₂ Na C = CH CH₃ CH₃ Br CH₃ CH₃ C = CH NaNH₂ CH₃ CH₂C = CN₄

CH₃ CH₃ CH₃ CH₃ C = CH₂ CH₃ CH₃ CH₃ CH₃ CH₄

CH₃ CH₃ CH₃ CH₂ C = C CH₂ CH₂ CH₃

CH₃ CH₃ CH₃ CH₄

CH₃ CH₃ CH₂ C = C CH₂ CH₂ CH₃

CH₃ CH₃ CH₃

CH₃ CH₃

CH₃ CH₃ CH₃

CH₃ CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH₃

CH₃ CH

4. PBT

BT

NO2 TE+HUI NH2 NGNO, THUI

NO2 MH2 NGNO, THUI

ONSTEE

ONSTEE

CUBY+HBC FOR

第 9 页

第 10 页