操作系统宏内核内存管理模块的设 计与实现

(申请清华大学工学博士学位论文)

培养单位: 计算机科学与技术系

学 科: 计算机科学与技术

研究生:陈羿华

指导教师: 陈 渝 副教授

二〇二五年五月

Design and Implementation of the Macro Kernel Memory Management Module in Operating System

Thesis submitted to

Tsinghua University

in partial fulfillment of the requirement

for the degree of

Doctor of Philosophy

in

Computer Science and Technology

by

Chen Yihua

Thesis Supervisor: Associate Professor Chen Yu

May, 2025

学位论文指导小组、公开评阅人和答辩委员会名单

指导小组名单

李 XX	教授	清华大学
\pm XX	副教授	清华大学
张 XX	助理教授	清华大学

公开评阅人名单

刘XX	教授	清华大学
陈 XX	副教授	XXXX 大学
杨 XX	研究员	中国 XXXX 科学院 XXXXXXX 研究所

答辩委员会名单

主席	赵 XX	教授	清华大学
委员	刘XX	教授	清华大学
	杨 XX	研究员	中国 XXXX 科学院
物。	12J AA	7月74.火	XXXXXXX 研究所
	黄 XX	教授	XXXX 大学
	周 XX	副教授	XXXX 大学
秘书	吴 XX	助理研究员	清华大学

关于学位论文使用授权的说明

本人完全了解清华大学有关保留、使用学位论文的规定,即:

清华大学拥有在著作权法规定范围内学位论文的使用权,其中包括: (1)已获学位的研究生必须按学校规定提交学位论文,学校可以采用影印、缩印或其他复制手段保存研究生上交的学位论文; (2)为教学和科研目的,学校可以将公开的学位论文作为资料在图书馆、资料室等场所供校内师生阅读,或在校园网上供校内师生浏览部分内容; (3)按照上级教育主管部门督导、抽查等要求,报送相应的学位论文。本人保证遵守上述规定。

作者签名:	 导师签名:	
日 期:	日 期 :	

摘要

论文的摘要是对论文研究内容和成果的高度概括。摘要应对论文所研究的问题及其研究目的进行描述,对研究方法和过程进行简单介绍,对研究成果和所得结论进行概括。摘要应具有独立性和自明性,其内容应包含与论文全文同等量的主要信息。使读者即使不阅读全文,通过摘要就能了解论文的总体内容和主要成果。

论文摘要的书写应力求精确、简明。切忌写成对论文书写内容进行提要的形式,尤其要避免"第1章·······;第2章·······"这种或类似的陈述方式。

关键词是为了文献标引工作、用以表示全文主要内容信息的单词或术语。关键词不超过5个,每个关键词中间用分号分隔。

关键词: 关键词 1; 关键词 2; 关键词 3; 关键词 4; 关键词 5

Abstract

An abstract of a dissertation is a summary and extraction of research work and contributions. Included in an abstract should be description of research topic and research objective, brief introduction to methodology and research process, and summary of conclusion and contributions of the research. An abstract should be characterized by independence and clarity and carry identical information with the dissertation. It should be such that the general idea and major contributions of the dissertation are conveyed without reading the dissertation.

An abstract should be concise and to the point. It is a misunderstanding to make an abstract an outline of the dissertation and words "the first chapter", "the second chapter" and the like should be avoided in the abstract.

Keywords are terms used in a dissertation for indexing, reflecting core information of the dissertation. An abstract may contain a maximum of 5 keywords, with semi-colons used in between to separate one another.

Keywords: keyword 1; keyword 2; keyword 3; keyword 4; keyword 5

目 录

摘 要	I
Abstract	II
目 录	III
插图清单	V
附表清单	VI
符号和缩略语说明	VII
第 1 章 引言	1
1.1 课题背景	1
1.1.1 操作系统宏内核	1
1.1.2 操作系统的组件化	1
1.1.3 操作系统的内存管理	1
1.2 相关研究工作	2
1.2.1 DragonOS	2
1.2.2 星绽	4
1.2.3 ByteOS	4
1.3 课题内容和意义	5
1.3.1 课题内容	5
1.3.2 课题意义	5
1.4 论文结构	6
第 2 章 图表示例	7
2.1 插图	7
2.2 表格	8
2.3 算法	9
第3章 数学符号和公式	10
3.1 数学符号	10
3.2 数学公式	11
3.3 数学定理	11
第 4 章 引用文献的标注	12
4.1 顺序编码制	12
4.2 著者-出版年制	12

目 录

参考文献	13
附录 A 补充内容	15
致 谢	
声 明	18
个人简历、在学期间完成的相关学术成果	
指导教师评语	20
答辩委员会决议书	21

插图清单

图 2.1	示例图片标题	. 7
图 2.2	多个分图的示例	. 7

附表清单

表 2.1	三线表示例	8
表 2.2	带附注的表格示例	8
表 2.3	跨页长表格的表题	8

符号和缩略语说明

PI 聚酰亚胺

MPI 聚酰亚胺模型化合物,N-苯基邻苯酰亚胺

PBI 聚苯并咪唑

MPBI 聚苯并咪唑模型化合物, N-苯基苯并咪唑

PY 聚吡咙

PMDA-BDA 均苯四酸二酐与联苯四胺合成的聚吡咙薄膜

MPY聚吡咙模型化合物As-PPT聚苯基不对称三嗪

MAsPPT 聚苯基不对称三嗪单模型化合物, 3,5,6-三苯基-1,2,4-三嗪 DMAsPPT 聚苯基不对称三嗪双模型化合物(水解实验模型化合物)

S-PPT 聚苯基对称三嗪

MSPPT 聚苯基对称三嗪模型化合物, 2,4,6-三苯基-1,3,5-三嗪

PPO 聚苯基喹噁啉

MPPQ 聚苯基喹噁啉模型化合物,3,4-二苯基苯并二嗪

HMPI 聚酰亚胺模型化合物的质子化产物 HMPY 聚吡咙模型化合物的质子化产物

HMPBI聚苯并咪唑模型化合物的质子化产物

HMAsPPT 聚苯基不对称三嗪模型化合物的质子化产物 HMSPPT 聚苯基对称三嗪模型化合物的质子化产物 HMPPQ 聚苯基喹噁啉模型化合物的质子化产物

PDT 热分解温度

HPLC 高效液相色谱(High Performance Liquid Chromatography)

HPCE 高效毛细管电泳色谱 (High Performance Capillary lectrophoresis)

LC-MS 液相色谱-质谱联用(Liquid chromatography-Mass Spectrum)

TIC 总离子浓度(Total Ion Content)

ab initio 基于第一原理的量子化学计算方法,常称从头算法

DFT 密度泛函理论(Density Functional Theory) E_a 化学反应的活化能(Activation Energy)

 ZPE
 零点振动能(Zero Vibration Energy)

 PES
 势能面(Potential Energy Surface)

符号和缩略语说明

TS 过渡态(Transition State)

TST 过渡态理论(Transition State Theory) ΔG^{\neq} 活化自由能(Activation Free Energy) 传输系数(Transmission Coefficient)

IRC 内禀反应坐标(Intrinsic Reaction Coordinates)

v_i 虚频(Imaginary Frequency)

ONIOM 分层算法 (Our own N-layered Integrated molecular Orbital and

molecular Mechanics)

SCF 自洽场 (Self-Consistent Field)

SCRF 自洽反应场(Self-Consistent Reaction Field)

第1章 引言

1.1 课题背景

1.1.1 操作系统宏内核

操作系统是计算机硬件和用户之间的接口。它负责管理和调度计算机的硬件资源(如 CPU、内存、输入输出设备等),同时为用户提供一个易于使用的操作界面,使得用户可以通过简单的命令或图形界面来操作计算机。操作系统内核是计算机系统的核心组件,它负责管理计算机硬件资源(如处理器、内存、输入输出设备等)和提供用户程序运行的环境。随着计算机技术的不断发展,操作系统内核也在不断演化和改进,以适应不同的使用场景和需求。而根据操作系统内核的设计模式,又可以将操作系统内核划分为不同的类型,如微内核、宏内核等。

宏内核是一种操作系统内核的设计模式,它将操作系统的所有功能(如进程管理、内存管理、文件系统、设备驱动等)集成在一个单一的地址空间中。整个内核运行在内核态,具有较高的执行效率。宏内核的优点是可以提供更好的性能和更灵活的功能,但是也存在一些缺点,如内核的复杂性和可拓展行问题——当需要添加或修改功能时,可能会涉及到多个模块的修改;内核的稳定性问题——当出现故障时,可能会导致整个系统崩溃。

1.1.2 操作系统的组件化

为了增强操作系统的可拓展性和稳定性,操作系统通常采用组件化设计。组件化设计是一种将操作系统的功能划分为多个模块的设计模式,每个组件负责特定的功能,组件之间通过明确定义的接口进行通信。这样做的好处是可以提高系统的可拓展性和稳定性,因为每个组件都可以独立开发、测试和维护。

1.1.3 操作系统的内存管理

内存管理是操作系统的核心功能之一,它负责管理和分配计算机系统的内存 资源。内存管理的主要目标是确保系统能够高效地利用有限的物理内存,同时为 用户提供透明的、虚拟的内存空间。内存管理模块的主要功能包括:

- 内存分配:当用户程序请求内存时,内存管理模块需要从可用的内存池中分配一块合适的内存空间给程序。分配策略可以是多种多样的,如首次适应、最佳适应、最坏适应等。
- 内存回收: 当用户程序释放内存时, 内存管理模块需要将这块内存回收到可

用内存池中。回收时需要考虑内存碎片问题,如合并相邻的空闲内存块等。

- 内存保护:内存管理模块需要确保每个进程只能访问自己被分配的内存区域,防止一个进程非法访问其他进程的内存空间。还可以设置不同的访问权限,例如只读、可读写等。
- 虚拟内存管理:虚拟内存是一种计算机系统内存管理技术,它使得应用程序 认为自身拥有一块连续的、足够大的内存空间,实际上这些内存可能被分隔 成多个物理内存碎片,并且部分数据可能暂时存储在外部磁盘上。当程序运 行时,需要的数据会从磁盘交换到物理内存中。虚拟内存通常以页面为单位 进行管理。内存管理模块负责将虚拟内存地址映射到物理内存地址,并且当 物理内存不足,需要从磁盘上读取页面时,内存管理模块需要决定将哪个页 面从物理内存中置换到磁盘上。常见的页面置换算法包括先进先出(FIFO)、 最近最少使用(LRU)等。
- 内存映射:内存映射是一种将磁盘上的文件映射到内存中的技术,使得应用程序可以像访问内存一样访问文件,这种方式可以提高文件访问的效率,因为它减少了文件 I/O 操作的开销。内存管理模块负责将磁盘上的文件映射到内存中,并提供相应的接口供应用程序访问。
- 共享內存:共享內存是一种允许多个进程共享同一块內存区域的技术,这种 技术可以提高进程间的通信效率,因为它避免了数据的复制。內存管理模块 负责管理共享內存区域,并提供相应的接口供应用程序访问。

1.2 相关研究工作

除了 Linux 内核,还有许多其他较为完善的操作系统内核,如 DragonOS、星 绽、ByteOS 等。这些操作系统内核都提供了自己的内存管理模块,并且在内存管 理的设计和实现上有所不同。

1.2.1 DragonOS

DragonOS 是一个面向云计算轻量化场景的,完全自主内核的,提供 Linux 二进制兼容性的 64 位操作系统,它具有优秀完善的架构设计,支持虚拟化,在设备模型、调度子系统等方面具有一定优势。DragonOS 的内存管理模块主要由以下类型的组件组成:

- 硬件抽象层(MemoryManagementArch)- 提供对具体处理器架构的抽象,使 得内存管理模块可以在不同的处理器架构上运行
- 页面映射器 (PageMapper) 提供对虚拟地址和物理地址的映射,以及页表

的创建、填写、销毁、权限管理等操作。分为两种类型:内核页表映射器 (KernelMapper)和用户页表映射器 (位于具体的用户地址空间结构中)

- 页面刷新器(PageFlusher)- 提供对页表的刷新操作(整表刷新、单页刷新、 跨核心刷新)
- 页帧分配器(FrameAllocator)- 提供对页帧的分配、释放、管理等操作。具体来说,包括 BumpAllocator、BuddyAllocator
- 小对象分配器 提供对小内存对象的分配、释放、管理等操作。指的是内核 里面的 SlabAllocator (SlabAllocator 的实现目前还没有完成)
- MMIO 空间管理器 提供对 MMIO 地址空间的分配、管理操作。(目前这个模块待进一步重构)
- 用户地址空间管理机制 提供对用户地址空间的管理。
- VMA 机制 提供对用户地址空间的管理,包括 VMA 的创建、销毁、权限管理等操作
- 用户映射管理 与 VMA 机制共同作用,管理用户地址空间的映射
- 系统调用层 提供对用户空间的内存管理系统调用,包括 mmap、munmap、mprotect、mremap 等
- C接口兼容层-提供对原有的 C代码的接口,使得 C代码能够正常运行。

DragonOS 使用 AddressSpace 结构体来管理用户地址空间,这个结构体包含了诸多成员,如 mappings(VMA 列表)、mmap_min(最小映射地址)、brk(堆的当前顶部地址)等,这些成员用于管理用户地址空间的不同区域。其中 UserMappings(mappings) 代表了用户虚拟内存空间,并且提供了查找、插入、删除用户虚拟内存区域 VMA 的接口,VMA 中包含了虚拟内存区域的起始地址、结束地址、权限等信息,一个 VMA 可能包含多个虚拟页,每个虚拟页都对应一个物理页帧。虚拟地址和物理地址的映射由页表管理器 PageMapper 来管理,PageMapper 包含页表类型等属性,指定了物理页帧分配器的类型,提供管理页表、虚拟地址与物理地址相互映射的接口,并连接到物理内存管理器,提供物理页帧的分配和回收等功能。

DragonOS 的物理内存由物理页管理器 (PageManager) 管理,它是一个以物理地址和物理页对象为键值对的哈希表,使用页帧分配器进行物理页的分配,使用页面回收线程和页面回收器来回收空闲的物理页。

当用户程序需要对内存进行操作,例如分配内存时,它会调用相应的 mmap 系统调用,系统调用 AddressSpace 结构体的接口在用户地址空间中创建一个新的虚拟内存区域,并通过页表管理器分配物理页,将其映射到物理内存中;当用户程序需要释放内存时,它会调用 munmap 系统调用,munmap 系统调用会将用户地址空

间中的虚拟内存区域与物理内存中的物理页断开映射关系,释放物理页,并将虚拟内存区域从用户地址空间中删除,在需要写回的情况下,会唤醒页面回收线程,将物理页标记为可回收状态,由页面回收器进行回收。

1.2.2 星绽

星绽 (asterinas) 是一个用 Rust 编写的安全、快速且通用的操作系统内核,且与Linux 兼容。在物理内存管理方面,星绽定义了多种内存区域类型,如 BadMemory、Unknown、NonVolatileSleep、Reserved、Kernel、Module、Framebuffer、Reclaimable和 Usable,以帮助内核识别不同用途的内存区域。使用 MemoryRegion 结构体表示一个内存区域,包含基地址、长度和类型信息;使用 MemoryRegionArray 无堆集合管理多个内存区域,它提供了 push 方法用于添加区域,into_non_overlapping 方法用于将区域排序并合并为非重叠的区域集合。

在虚拟内存管理方面,星绽用 Vmo 结构体来表示虚拟内存实例,提供了读写内存页的接口。进程的虚拟内存空间则由 ProcessVm 结构体表示,它包含一个根Vmar(虚拟内存地址区域),而 Vmar 则关联着用户模式任务的虚拟内存空间管理器 VmSpace 和内存映射实例 VmMapping 的集合。VmSpace 结包含页表等信息,并提供了内存映射的相关接口。当为进程分配虚拟内存时,ProcessVm 会借助 Vmar来创建和管理内存映射,而这些映射最终会反映在关联的 VmSpace 中。

在更上层的系统调用接口方面,星绽提供了与 Linux 兼容的系统调用接口,如 mmap、munmap、mprotect、mremap 等,这些接口可以被用户程序调用,用于管理 用户模式任务的虚拟内存空间。

1.2.3 ByteOS

ByteOS 是一个基于 Rust 语言开发的组件化操作系统宏内核,由进程管理、内存管理、文件系统、网络协议栈等多个模块组成。ByteOS 的内存管理模块主要包括以下几个部分:

- 堆内存空间定义:使用 #[link_section = ".bss.heap"] 定义了一个静态的堆内存数组 HEAP, 其大小由 HEAP SIZE 常量指定。
- 全局堆内存分配器: 使用 buddy_system_allocator::LockedHeap 实现了一个全局的堆内存分配器 HEAP ALLOCATOR。
- 物理页帧管理: Frame Tracker 用于表示一个已经被分配的页帧,并且利用 Drop 机制保证页帧能够顺利被回收。当 Frame Tracker 实例被销毁时,会自动调用 drop 方法,将对应的页帧标记为未使用状态。Frame Region Map 是页帧分布 图,用于保存页帧分配器中的空闲内存,并且利用 BitArray 记录页帧使用情

况。每个 FrameRegionMap 表示一段连续的物理内存区域。FrameAllocator 是一个总的页帧分配器,包含多个 FrameRegionMap,负责管理整个系统的物理页帧分配与释放。

- 内存映射: 使用 MapTrack 结构体表示一个内存映射,包含虚拟地址和对应 的物理页帧 FrameTracker。
- 页帧分配函数:在 UserTask 结构体包含进程页表、进程控制块、虚拟内存空间等信息,并提供了 frame_alloc 和 map_frames 方法用于页帧分配和映射。
- 进程内存空间管理: MemArea 结构体表示一个内存区域,包含内存类型、页帧映射、文件关联等信息,多个 MemArea 组成一个 MemSet。进程控制块中记录了进程使用的内存区域,并通过页表机制实现虚拟内存到物理内存的映射。
- 系统调用接口:提供了 mmap、munmap、mprotect、mremap 等系统调用接口,用于进程内存管理。

当用户程序当用户进程申请一块内存时,ByteOS 会根据不同的系统调用(如 sys_mmap 或 sbrk),进而调用用户进程(UserTask)的 frame_alloc 接口,通过物理页帧分配器申请物理页帧,创建新的虚拟内存区域,并将其映射到物理内存中,最后将虚拟内存区域加入到进程的内存空间中进行管理。

1.3 课题内容和意义

1.3.1 课题内容

基于 starry-next 组件化的宏内核,实现内存管理模块的接口设计与实现,包括实现内存管理模块的直接或间接相关的系统调用,并对内存管理模块的接口设计与实现进行测试。

1.3.2 课题意义

通过研究并设计实现宏内核内存管理组件的系统调用接口,可以帮助内存管理功能作为一个独立的组件进行设计和实现。实现系统调用也有助于发现和解决当前内存管理组件可能存在的问题。

不同的应用场景对内存管理有着不同的要求。统一的系统调用接口的实现有助于内存管理组件根据具体的应用场景,提供相应的内存管理策略和优化措施,满足多样化的应用需求。

1.4 论文结构

本文分为 6 个章节。其中,第一章节主要介绍课题背景、相关研究和与课题内容,第二章节将介绍基座微内核 arceos 的组件与其内存管理,第三章节将介绍 starry-next 宏内核的架构和内存管理模块的设计,第四章节将介绍 starry-next 内存管理模块接口的设计和实现,第五章节将介绍接口的测试。第六章节是对工作的总结与展望。

第2章 图表示例

2.1 插图

图片通常在 figure 环境中使用 \includegraphics 插入,如图 2.1 的源代码。建议矢量图片使用 PDF 格式,比如数据可视化的绘图;照片应使用 JPG 格式;其他的栅格图应使用无损的 PNG 格式。注意,LaTeX 不支持 TIFF 格式; EPS 格式已经过时。

国外的期刊习惯将图表的标题和说明文字写成一段,需要改写为标题只含图表的名称,其他说明文字以注释方式写在图表下方,或者写在正文中。

图 2.1 示例图片标题

若图或表中有附注,采用英文小写字母顺序编号,附注写在图或表的下方。国外的期刊习惯将图表的标题和说明文字写成一段,需要改写为标题只含图表的名称,其他说明文字以注释方式写在图表下方,或者写在正文中。

如果一个图由两个或两个以上分图组成时,各分图分别以(a)、(b)、(c)......作为图序,并须有分图题。推荐使用 subcaption 宏包来处理,比如图 2.2(a) 和图 2.2(b)。

图 2.2 多个分图的示例

2.2 表格

表应具有自明性。表中参数应标明量和单位的符号。为使表格简洁易读,均采用三线表(例如表 2.1)。必要时可加辅助线,三线表无法清晰表达时可采用其他格式。

表序与表题置于表的上方。表单元格中的文字一般应居中书写(上下居中,左 右居中),不宜左右居中书写的,可采取两端对齐的方式书写。

表 2.1 三线表示例

文件名	描述		
thuthesis.dtx	模板的源文件,包括文档和注释		
thuthesis.cls	模板文件		
thuthesis-*.bst	BibTeX 参考文献表样式文件		

若表中有附注,采用英文小写字母顺序编号,附注写在表的下方。推荐使用 threeparttable 宏包。

表 2.2 带附注的表格示例

文件名	描述		
thuthesis.dtx ^a	模板的源文件,包括文档和注释		
thuthesis.cls ^b	模板文件		
thuthesis-*.bst	BibTeX 参考文献表样式文件		

- ^a 可以通过 xelatex 编译生成模板的使用说明文档; 使用 xetex 编译 thuthesis.ins 时则会从 .dtx 中去除 掉文档和注释,得到精简的 .cls 文件。
- b 更新模板时,一定要记得编译生成.cls 文件,否则 编译论文时载入的依然是旧版的模板。

如某个表需要转页接排,可以"续表"的形式另页打印,格式同前,只需在每页表序前加"续"字即可。续表均应重复表头。推荐使用 longtable 宏包。

表 2.3 跨页长表格的表题

表头 1	表头 2	表头 3	表头 4
Row 1			
Row 2			
Row 3			

续表 2.3 跨页长表格的表题

表头 1	表头 2	表头 3	表头 4
Row 4			
Row 5			
Row 6			
Row 7			
Row 8			
Row 9			
Row 10			

2.3 算法

算法环境可以使用 algorithms 或者 algorithm2e 宏包。

算法 **2.1** Calculate $y = x^n$

```
输入: n \ge 0
输出: y = x^n

y \leftarrow 1

X \leftarrow x

N \leftarrow n

while N \ne 0 do

if N is even then

X \leftarrow X \times X

N \leftarrow N/2

else \{N \text{ is odd}\}

y \leftarrow y \times X

N \leftarrow N - 1

end if

end while
```

第3章 数学符号和公式

3.1 数学符号

中文论文的数学符号默认遵循 GB/T 3102.11—1993《物理科学和技术中使用的数学符号》^①。该标准参照采纳 ISO 31-11:1992 ^②,但是与 T_EX 默认的美国数学学会(AMS)的符号习惯有所区别。具体地来说主要有以下差异:

1. 大写希腊字母默认为斜体,如

ΓΔΘΛΞΠΣΥΦΨΩ.

注意有限增量符号 Δ 固定使用正体,模板提供了 \increment 命令。

- 2. 小于等于号和大于等于号使用倾斜的字形 ≤、≥。
- 3. 积分号使用正体,比如 ∫、∮。
- 4. 偏微分符号 0 使用正体。
- 5. 省略号 \dots 按照中文的习惯固定居中, 比如

$$1, 2, \dots, n$$
 $1 + 2 + \dots + n$.

6. 实部 Re 和虚部 Im 的字体使用罗马体。

以上数学符号样式的差异可以在模板中统一设置。另外国标还有一些与 AMS 不同的符号使用习惯,需要用户在写作时进行处理:

1. 数学常数和特殊函数名用正体,如

$$\pi = 3.14 \dots$$
; $i^2 = -1$; $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$.

- 2. 微分号使用正体, 比如 dv/dx。
- 3. 向量、矩阵和张量用粗斜体 (\symbf), 如 x、 Σ 、T。
- 4. 自然对数用 $\ln x$ 不用 $\log x$ 。

英文论文的数学符号使用 TEX 默认的样式。如果有必要,也可以通过设置 math-style 选择数学符号样式。

关于量和单位推荐使用 siunitx 宏包,可以方便地处理希腊字母以及数字与单位之间的空白,比如: 6.4×10^6 m, $9\,\mu$ m, $kg\,m\,s^{-1}$, $10\,^{\circ}C\sim20\,^{\circ}C$ 。

① 原 GB 3102.11—1993, 自 2017 年 3 月 23 日起,该标准转为推荐性标准。

② 目前已更新为 ISO 80000-2:2019。

3.2 数学公式

数学公式可以使用 equation 和 equation* 环境。注意数学公式的引用应前后带括号,通常使用 \eqref 命令,比如式 (3.1)。

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \mathcal{R}(f; a_k). \tag{3.1}$$

多行公式尽可能在"="处对齐,推荐使用 align 环境。

$$a = b + c + d + e \tag{3.2}$$

$$= f + g \tag{3.3}$$

3.3 数学定理

定理环境的格式可以使用 amsthm 或者 ntheorem 宏包配置。用户在导言区载 入这两者之一后,模板会自动配置 theorem、proof 等环境。

定理 3.1 (Lindeberg–Lévy 中心极限定理): 设随机变量 X_1, X_2, \cdots, X_n 独立同分布,且具有期望 μ 和有限的方差 $\sigma^2 \neq 0$,记 $\bar{X}_n = \frac{1}{n} \sum_{i+1}^n X_i$,则

$$\lim_{n \to \infty} P\left(\frac{\sqrt{n}\left(\bar{X}_n - \mu\right)}{\sigma} \leqslant z\right) = \Phi(z),\tag{3.4}$$

其中 $\Phi(z)$ 是标准正态分布的分布函数。

同时模板还提供了 assumption、definition、proposition、lemma、theorem、axiom、corollary、exercise、example、remar、problem、conjecture 这些相关的环境。

第4章 引用文献的标注

模板支持 BibTeX 和 BibLaTeX 两种方式处理参考文献。下文主要介绍 BibTeX 配合 natbib 宏包的主要使用方法。

4.1 顺序编码制

在顺序编码制下,默认的 \cite 命令同 \citep 一样,序号置于方括号中, 引文页码会放在括号外。统一处引用的连续序号会自动用短横线连接。

\cite{zhangkun1994}

\citet{zhangkun1994}

→ 张昆等[1]

\citep{zhangkun1994}

 \Rightarrow [1]

\cite[42]{zhangkun1994}

⇒ [1]42

\cite{zhangkun1994,zhukezhen1973} \Rightarrow [1-2]

也可以取消上标格式,将数字序号作为文字的一部分。建议全文统一使用相 同的格式。

\cite{zhangkun1994}

 \Rightarrow [1]

\citet{zhangkun1994}

⇒ 张昆等[1]

\citep{zhangkun1994}

⇒ [1]

\cite[42] {zhangkun1994}

 \Rightarrow $[1]^{42}$

\cite{zhangkun1994,zhukezhen1973} \Rightarrow [1-2]

4.2 著者-出版年制

著者-出版年制下的 \cite 跟 \citet 一样。

\cite{zhangkun1994}

⇒张昆等 (1994)

\citet{zhangkun1994}

⇒张昆等 (1994)

\citep{zhangkun1994}

⇒(张昆等, 1994)

\cite[42]{zhangkun1994}

⇒(张昆等, 1994)⁴²

\citep{zhangkun1994,zhukezhen1973} ⇒(张昆等,1994; 竺可桢,1973)

注意,引文参考文献的每条都要在正文中标注[1-34]。

参考文献

- [1] 张昆, 冯立群, 余昌钰, 等. 机器人柔性手腕的球面齿轮设计研究[J]. 清华大学学报: 自然 科学版, 1994, 34(2): 1-7.
- [2] 竺可桢. 物理学论[M]. 北京: 科学出版社, 1973: 56-60.
- [3] Dupont B. Bone marrow transplantation in severe combined immunodeficiency with an unrelated mlc compatible donor[C]//White H J, Smith R. Proceedings of the third annual meeting of the International Society for Experimental Hematology. Houston: International Society for Experimental Hematology, 1974: 44-46.
- [4] 郑开青. 通讯系统模拟及软件[D]. 北京: 清华大学无线电系, 1987.
- [5] 姜锡洲. 一种温热外敷药制备方案: 中国, 88105607.3[P]. 1980-07-26.
- [6] 中华人民共和国国家技术监督局. GB3100-3102. 中华人民共和国国家标准-量与单位[S]. 北京: 中国标准出版社, 1994.
- [7] Merkt F, Mackenzie S R, Softley T P. Rotational autoionization dynamics in high rydberg states of nitrogen[J]. J Chem Phys, 1995, 103: 4509-4518.
- [8] Mellinger A, Vidal C R, Jungen C. Laser reduced fluorescence study of the carbon monoxide nd triplet rydberg series experimental results and multichannel quantum defect analysis[J]. J Chem Phys, 1996, 104: 8913-8921.
- [9] Bixon M, Jortner J. The dynamics of predissociating high Rydberg states of NO[J]. J Chem Phys, 1996, 105: 1363-1382.
- [10] 马辉, 李俭, 刘耀明, 等. 利用 REMPI 方法测量 BaF 高里德堡系列光谱[J]. 化学物理学报, 1995, 8: 308-311.
- [11] Carlson N W, Taylor A J, Jones K M, et al. Two-step polarization-labeling spectroscopy of excited states of Na2[J]. Phys Rev A, 1981, 24: 822-834.
- [12] Taylor A J, Jones K M, Schawlow A L. Scanning pulsed-polarization spectrometer applied to Na2[J]. J Opt Soc Am, 1983, 73: 994-998.
- [13] Taylor A J, Jones K M, Schawlow A L. A study of the excited $1\Sigma g^+$ states in Na2[J]. Opt Commun, 1981, 39: 47-50.
- [14] Shimizu K, Shimizu F. Laser induced fluorescence spectra of the a $3\Pi u$ –X $1\Sigma g$ + band of Na2 by molecular beam[J]. J Chem Phys, 1983, 78: 1126-1131.
- [15] Atkinson J B, Becker J, Demtröder W. Experimental observation of the a 3 Π u state of Na2[J]. Chem Phys Lett, 1982, 87: 92-97.
- [16] Kusch P, Hessel M M. Perturbations in the a $1\Sigma u^+$ state of Na2[J]. J Chem Phys, 1975, 63: 4087-4088.
- [17] 广西壮族自治区林业厅. 广西自然保护区[M]. 北京: 中国林业出版社, 1993.
- [18] 霍斯尼. 谷物科学与工艺学原理[M]. 李庆龙, 译. 2 版. 北京: 中国食品出版社, 1989: 15-20.
- [19] 王夫之. 宋论[M]. 刻本. 金陵: 曾氏, 1865 (清同治四年).

- [20] 赵耀东. 新时代的工业工程师[M/OL]. 台北: 天下文化出版社, 1998[1998-09-26]. http://www.ie.nthu.edu.tw/info/ie.newie.htm.
- [21] 全国信息与文献工作标准化技术委员会出版物格式分委员会. GB/T 12450-2001 图书书 名页[S]. 北京: 中国标准出版社, 2002: 1.
- [22] 全国出版专业职业资格考试办公室. 全国出版专业职业资格考试辅导教材: 出版专业理论与实务•中级[M]. 2014 版. 上海: 上海辞书出版社, 2004: 299-307.
- [23] World Health Organization. Factors regulating the immune response: Report of WHO Scientific Group[R]. Geneva: WHO, 1970.
- [24] Peebles P Z, Jr. Probability, random variables, and random signal principles[M]. 4th ed. New York: McGraw Hill, 2001.
- [25] 白书农. 植物开花研究[M]//李承森. 植物科学进展. 北京: 高等教育出版社, 1998: 146-163.
- [26] Weinstein L, Swertz M N. Pathogenic properties of invading microorganism[M]//Sodeman W A, Jr, Sodeman W A. Pathologic physiology: mechanisms of disease. Philadelphia: Saunders, 1974: 745-772.
- [27] 韩吉人. 论职工教育的特点[C]//中国职工教育研究会. 职工教育研究论文集. 北京: 人民教育出版社, 1985: 90-99.
- [28] 中国地质学会. 地质评论[J]. 1936, 1(1)-. 北京: 地质出版社, 1936-.
- [29] 中国图书馆学会. 图书馆学通讯[J]. 1957(1)-1990(4). 北京: 北京图书馆, 1957-1990.
- [30] American Association for the Advancement of Science. Science[J]. 1883, 1(1)—. Washington, D.C.: American Association for the Advancement of Science, 1883—.
- [31] 傅刚, 赵承, 李佳路. 大风沙过后的思考[N/OL]. 北京青年报, 2000-04-12(14)[2002-03-06]. http://www.bjyouth.com.cn/Bqb/20000412/B/4216%5ED0412B1401.htm.
- [32] 萧钰. 出版业信息化迈入快车道[EB/OL]. (2001-12-19)[2002-04-15]. http://www.creader.com/news/20011219/200112190019.htm.
- [33] Online Computer Library Center, Inc. About OCLC: History of cooperation[EB/OL]. 2000 [2000-01-08]. http://www.oclc.org/about/cooperation.en.htm.
- [34] Scitor Corporation. Project scheduler[CP/DK]. Sunnyvale, Calif.: Scitor Corporation, 1983.

附录 A 补充内容

附录是与论文内容密切相关、但编入正文又影响整篇论文编排的条理和逻辑 性的资料,例如某些重要的数据表格、计算程序、统计表等,是论文主体的补充内 容,可根据需要设置。

附录中的图、表、数学表达式、参考文献等另行编序号,与正文分开,一律用阿拉伯数字编码,但在数码前冠以附录的序号,例如"图 A.1","表 A.1","式 (A.1)"等。

A.1 插图

图 A.1 附录中的图片示例

A.2 表格

表 A.1 附录中的表格示例

文件名	描述	
thuthesis.dtx	模板的源文件,包括文档和注释	
thuthesis.cls	模板文件	
thuthesis-*.bst	BibTeX 参考文献表样式文件	
thuthesis-*.bbx	BibLaTeX 参考文献表样式文件	
thuthesis-*.cbx	BibLaTeX 引用样式文件	

A.3 数学表达式

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \mathcal{R}(f; a_k)$$
(A.1)

A.4 文献引用

附录^[A.1]中的参考文献引用^[A.2]示例^[A.1-A.2]。

参考文献

- [A.1] Dupont B. Bone marrow transplantation in severe combined immunodeficiency with an unrelated mlc compatible donor[C]//White H J, Smith R. Proceedings of the third annual meeting of the International Society for Experimental Hematology. Houston: International Society for Experimental Hematology, 1974: 44-46.
- [A.2] 郑开青. 通讯系统模拟及软件[D]. 北京: 清华大学无线电系, 1987.

致 谢

衷心感谢导师 ××× 教授和物理系 ×× 副教授对本人的精心指导。他们的言传身教将使我终生受益。

在美国麻省理工学院化学系进行九个月的合作研究期间,承蒙 Robert Field 教授热心指导与帮助,不胜感激。

感谢××××× 实验室主任××× 教授,以及实验室全体老师和同窗们学的热情帮助和支持!

本课题承蒙国家自然科学基金资助,特此致谢。

声明

本人郑重声明: 所呈交的学位论文,是本人在导师指导下,独立进行研究工作 所取得的成果,不包含涉及国家秘密的内容。尽我所知,除文中已经注明引用的 内容外,本学位论文的研究成果不包含任何他人享有著作权的内容。对本论文所 涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确方式标明。

签	名:	日	期:	

个人简历、在学期间完成的相关学术成果

个人简历

197×年××月××日出生于四川××县。

1992年9月考入××大学化学系××化学专业,1996年7月本科毕业并获得理学学士学位。

1996年9月免试进入清华大学化学系攻读 ×× 化学博士至今。

在学期间完成的相关学术成果

学术论文:

- [1] Yang Y, Ren T L, Zhang L T, et al. Miniature microphone with silicon-based ferroelectric thin films[J]. Integrated Ferroelectrics, 2003, 52:229-235.
- [2] 杨轶, 张宁欣, 任天令, 等. 硅基铁电微声学器件中薄膜残余应力的研究 [J]. 中国机械工程, 2005, 16(14):1289-1291.
- [3] 杨轶, 张宁欣, 任天令, 等. 集成铁电器件中的关键工艺研究 [J]. 仪器仪表学报, 2003, 24(S4):192-193.
- [4] Yang Y, Ren T L, Zhu Y P, et al. PMUTs for handwriting recognition. In press[J]. (己被 Integrated Ferroelectrics 录用)

专利:

- [5] 任天令, 杨轶, 朱一平, 等. 硅基铁电微声学传感器畴极化区域控制和电极连接的方法: 中国, CN1602118A[P]. 2005-03-30.
- [6] Ren T L, Yang Y, Zhu Y P, et al. Piezoelectric micro acoustic sensor based on ferroelectric materials: USA, No.11/215, 102[P]. (美国发明专利申请号.)

指导教师评语

论文提出了……

答辩委员会决议书

论文提出了 ……

论文取得的主要创新性成果包括:

- 1. •••••
- 2.
- 3.

论文工作表明作者在 ××××× 具有 ××××× 知识,具有 ×××× 能力,论文 ××××,答辩 ×××。

答辩委员会表决,(×票/一致)同意通过论文答辩,并建议授予×××(姓名)×××(门类)学博士/硕士学位。