Проектный практикум «Модель прогнозирования времени до землетрясения по данным лабораторных симуляций»

Студенты:

- Токарева Анастасия
- Великоречанин Игорь

Направление подготовки: «Науки о данных», МФТИ

Цель

• Построить модель предсказания времени до землетрясения

Дано

Выборка лабораторных экспериментов.

Пара значений:

- 1. Акустические данные Х
- 2. Время до землетрясения Ү

Преобразование

Проблемы

- Наблюдения не происходят равномерно по времени
- Наблюдения слишком частые

Обработка

- Преобразование данных оконными функциями
- Шаг вычисления 10 мс, ширина окна 20 мс 2.
- 3. Рассматриваемые статистики:

🔍 Пример данных

acoustic_data	time_to_failure		
12	1.4690999832		
6	1.4690999821		
8	1.469099981		
5	1.4690999799		
8	1.4690999777		

mean (acoustic_data)	mean (time_to_failure)	
4.519467573700124	5.678291712978854	

$$F_A(W) = \frac{1}{|W|} \sum_{i \in W} x_i$$

•
$$F_B(W) = \frac{1}{|W|} \sum_{i \in W} (x_i - \frac{1}{|W|} \sum_{i \in W} x_i)^2$$

•
$$F_B(W) = \frac{1}{|W|} \sum_{i \in W} (x_i - \frac{1}{|W|} \sum_{j \in W} x_j)^2$$

• $F_C(W) = \frac{1}{|W|} \sum_{i \in W} \sqrt{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2}$

Данные с лагами

• Обозначим

$$D_{p} = \begin{pmatrix} A_{1} & B_{1} & C_{1} & \dots & A_{1+p} & B_{1+p} & C_{1+p} \\ A_{1} & B_{1} & C_{1} & \dots & A_{1+p} & B_{1+p} & C_{1+p} \\ - & - & - & - & - & - & - \\ A_{m-p} & B_{m-p} & C_{m-p} & \dots & A_{m} & B_{m} & C_{m} \end{pmatrix} \quad Q_{p} = \begin{pmatrix} Y_{1+p} \\ Y_{2+p} \\ - \\ Y_{m} \end{pmatrix}$$

$$Q_p = \begin{pmatrix} Y_{1+p} \\ Y_{2+p} \\ - \\ Y_m \end{pmatrix}$$

lacktriangle Где A_i, B_i, C_i — значения оконных функций в соответствии с моментом времени

Регрессионные модели

• Входные данные:

Значения окон с р лагами

- Рассматриваемые модели:
 - 1. Линейная регрессия
 - 2. LASSO
 - 3. XGBoost
- Оценка точности
 - 1. Коэффициент детерминации R^2
 - 2. MAÈ
 - 3. MSE

График сравнения предсказанных и истинных значений отклика для модели линейной регрессии с количеством лагов 1 и 12. График зависимости R2, MAE и MSE от кол-ва лагов.

График сравнения предсказанных и истинных значений отклика для модели LASSO с количеством лагов 12. График зависимости R2, MAE и MSE от кол-ва лагов.

График сравнения предсказанных и истинных значений отклика для модели XGBoost с количеством лагов 12. График зависимости R2, MAE и MSE от кол-ва лагов.

Результаты

	D_1	D_2	D ₈	D_{12}
Лин. регрес	0.2979	0.3598	0.3904	0.4177
LASSO	0.2947	0.3544	0.3843	0.4048
XGBoost	0.4811	0.6461	0.6915	0.7215
Cross_val_xg	0.4955	0.6656	0.7062	0.7241

Выводы

ullet При использовании модели XGBoost с p = 12 достигается самая высокая точность $R^2=0.7215$

Заключение

- Мы преобразовали начальные данные перед обучением с помощью оконных функций и трех статистик
- Рассмотрели три регрессионные модели с различными лагами
- Применили кросс-валидацию к модели XGBoost и построили графики зависимостей
- ullet Достигли точности $R^2=0$. 7241 при кросс-валидации

