Open Quantum System

Lectures:

Last time:

- Daniel Manzano, A short introduction to the Lindblad master equation (all
- ▶ Breuer and Petruccione, The Theory of Open Quantum Systems (ch. 3 4.3)
- Daniel A. Lidar, Notes on the Theory of Open Quantum Systems (up to ch. 12) Today:
- Buča, B., Tindall, J. & Jaksch, D. Non-stationary coherent quantum many-body dynamics through dissipation
- Victor V. Albert & Liang Jiang, Symmetries and conserved quantities in Lindblad master equations
- Cameron Booker, Berislav Buča, Dieter Jaksch, Non-stationarity and Dissipative Time
 Crystals: Spectral Properties and Finite-Size Effects
- Victor V. Albert. Lindbladians with multiple steady states: theory and applications. A
 Dissertation Presented to the Faculty of the Graduate School of Yale University

Diagonal Lindblad

$$\mathscr{L}
ho = -i[H_{\mathsf{S}} + H_{\mathsf{LS}},
ho] + \sum_{\mu} \left(2\mathsf{L}_{\mu}
ho \mathsf{L}_{\mu}^{\dagger} - \left\{ \mathsf{L}_{\mu}^{\dagger} \mathsf{L}_{\mu},
ho \right\} \right) \quad \text{with } \mathsf{L}_{\mu} \equiv \mathsf{L}_{\nu}(\omega)$$

Diagonal Lindblad

$$\mathscr{L}
ho = -i[H_{\mathsf{S}} + H_{\mathsf{LS}},
ho] + \sum_{\mu} \left(2\mathsf{L}_{\mu}
ho\mathsf{L}_{\mu}^{\dagger} - \left\{ \mathsf{L}_{\mu}^{\dagger}\mathsf{L}_{\mu},
ho
ight\}
ight) \quad ext{with } \mathsf{L}_{\mu} \equiv \mathsf{L}_{
u}(\omega)$$

Dynamical symmetry

$$orall \ \mu \equiv (
u,\omega) \,, \quad \left[\underbrace{L_{\mu}}_{L_{
u}(\omega)},A
ight] = 0 \qquad ext{with} \ \ L_{
u}(\omega) \coloneqq \sum_{\omega = \epsilon' - \epsilon} |\epsilon
angle \! \epsilon |L_{
u} \, |\epsilon'
angle \! \epsilon' |$$

Diagonal Lindblad

$$\mathscr{L}
ho = -i[H_{\mathcal{S}} + H_{\mathcal{LS}},
ho] + \sum_{\mu} \left(2L_{\mu}
ho L_{\mu}^{\dagger} - \left\{L_{\mu}^{\dagger}L_{\mu},
ho\right\}\right) \quad ext{with } L_{\mu} \equiv L_{
u}(\omega)$$

Dynamical symmetry

$$orall \ \mu \equiv (
u,\omega) \,, \quad \left[\underbrace{L_{\mu}}_{L_{
u}(\omega)},A\right] = 0 \qquad ext{with} \ \ L_{
u}(\omega) \coloneqq \sum_{\omega = \epsilon' - \epsilon} |\epsilon \hspace{-0.05cm} \hspace{-0.05cm} \langle \epsilon \hspace{-0.05cm} \hspace{-0.05cm} L_{
u} \hspace{-0.05cm} |\epsilon' \hspace{-0.05cm} \hspace{-0.05cm} \langle \epsilon' \hspace{-0.05cm} \hspace{-0.05cm} |$$

Remembering

$$H_{\mathrm{int}} \equiv \sum_{\alpha} \mathsf{S}_{\alpha} \otimes \mathsf{B}_{\alpha} \quad \text{ and } \quad \mathsf{L}_{
u} = \sum_{i} \mathsf{u}_{i,
u} \mathsf{S}_{i}$$

Commutator

Re-writing commutator - $[L_{\nu}(\omega), A] = 0 \quad \forall (\nu, \omega)$

Commutator

Re-writing commutator - $[L_{\nu}(\omega), A] = 0 \quad \forall (\nu, \omega)$

Giving for a specific ω and ν

$$\left[\sum_{\omega=\epsilon'-\epsilon} |\epsilon\rangle\!\langle\epsilon| L_{\nu} |\epsilon'\rangle\!\langle\epsilon'|, A\right] = 0 \qquad \forall (\nu, \omega)$$
 (1)

$$\left[\sum_{\omega=\epsilon'-\epsilon}\left|\epsilon'\right\rangle\!\left\langle\epsilon'\right|L_{\nu}^{\dagger}\left|\epsilon\right\rangle\!\left\langle\epsilon\right|,A\right]=0\qquad\forall\left(\nu,\omega\right)$$

Commutator

Re-writing commutator - $[L_{\nu}(\omega), A] = 0 \quad \forall (\nu, \omega)$

Giving for a specific ω and ν

$$\left[\sum_{\omega=\epsilon'-\epsilon}\left|\epsilon
ight|\!\langle\epsilon|\,L_{
u}\left|\epsilon'
ight|\!\langle\epsilon'|\,,A
ight]=0\qquadorall\left(
u,\omega
ight)$$
 (1)

$$\left[\sum_{\alpha'} |\epsilon'\rangle\langle\epsilon'| L_{\nu}^{\dagger} |\epsilon\rangle\langle\epsilon|, A \right] = 0 \qquad \forall (\nu, \omega)$$
 (2)

Question: what can one say on A and/or L_{ν} ?

Assumption $\widehat{\mathfrak{a}}$ - for every ω , a unique pair (ϵ,ϵ') exists. Note - assuption **not** the same as non-degeneracy

Assumption (\mathfrak{a}) - for every ω , a unique pair (ϵ, ϵ') exists. Note - assuption **not** the same as non-degeneracy Then, for a chosen (ν, ϵ) , one writes

$$\left[\left|\epsilon\right\rangle\!\left\langle\epsilon\right|L_{\nu}\left|\epsilon'\right\rangle\!\left\langle\epsilon'\right|,A\right]=0\qquad\forall\left(\nu,\left(\epsilon',\epsilon\right)\right)$$
 (3)

$$\left[\left|\epsilon'\right\rangle\!\!\left\langle\epsilon'\right|L_{\nu}^{\dagger}\left|\epsilon\right\rangle\!\!\left\langle\epsilon\right|,A\right]=0\qquad\forall\left(\nu,\left(\epsilon',\epsilon\right)\right)$$

Assumption (\mathfrak{a}) - for every ω , a unique pair (ϵ, ϵ') exists. Note - assuption **not** the same as non-degeneracy Then, for a chosen (ν, ϵ) , one writes

$$\left[\left|\epsilon\right\rangle\!\!\left\langle\epsilon\right|L_{\nu}\left|\epsilon'\right\rangle\!\!\left\langle\epsilon'\right|,A\right]=0\qquad\forall\left(\nu,\left(\epsilon',\epsilon\right)\right)\qquad\text{(3)}$$

$$\left[|\epsilon'\rangle\!\langle\epsilon'|\,L_{\nu}^{\dagger}\,|\epsilon\rangle\!\langle\epsilon|\,,A\right] = 0 \qquad \forall\,(\nu,(\epsilon',\epsilon)) \tag{4}$$

The states $\{|\epsilon\rangle\}$ - the chosen orthonormal eigenkets of the Hamiltonian $H_{\rm S}$. Clearly, the ket-bra's span the Liouville space -

$$\mathfrak{D}(\mathscr{H}) = \mathsf{span}(\{|\epsilon\rangle\!\langle\epsilon'|\}) \quad \forall \, (\nu, (\epsilon', \epsilon))$$

Using the completeness relation,

$$L_{
u} = \sum_{arepsilon, arepsilon'} |arepsilon raket arepsilon | L_{
u} |arepsilon' raket arepsilon | arepsilon' arepsilon arepsilon' |$$

For all $(\nu, (\epsilon, \epsilon'))$, one writes

Using the completeness relation,

$$L_{\nu} = \sum_{\varepsilon, \varepsilon'} |\varepsilon\rangle\!\langle \varepsilon| \, L_{\nu} \, |\varepsilon'\rangle\!\langle \varepsilon'|$$

For all $(\nu, (\epsilon, \epsilon'))$, one writes

$$L_{\nu}A - AL_{\nu} = \sum_{\varepsilon,\varepsilon'} |\varepsilon\rangle\langle\varepsilon| L_{\nu} |\varepsilon'\rangle\langle\varepsilon'| A - \sum_{\varepsilon,\varepsilon'} A |\varepsilon\rangle\langle\varepsilon| L_{\nu} |\varepsilon'\rangle\langle\varepsilon'|$$

$$= \sum_{\varepsilon} \sum_{\varepsilon'} \underbrace{\left(|\varepsilon\rangle\langle\varepsilon| L_{\nu} |\varepsilon'\rangle\langle\varepsilon'| A - A |\varepsilon\rangle\langle\varepsilon| L_{\nu} |\varepsilon'\rangle\langle\varepsilon'|\right)}_{0 \text{ for all } (\nu,(\varepsilon,\varepsilon'))} = 0$$
(5)

Using the completeness relation,

$$\mathit{L}_{\nu} = \sum_{\varepsilon,\varepsilon'} |\varepsilon\rangle\!\langle\varepsilon|\,\mathit{L}_{\nu}\,|\varepsilon'\rangle\!\langle\varepsilon'|$$

For all $(\nu, (\epsilon, \epsilon'))$, one writes

$$L_{\nu}A - AL_{\nu} = \sum_{\varepsilon,\varepsilon'} |\varepsilon\rangle\langle\varepsilon| L_{\nu} |\varepsilon'\rangle\langle\varepsilon'| A - \sum_{\varepsilon,\varepsilon'} A |\varepsilon\rangle\langle\varepsilon| L_{\nu} |\varepsilon'\rangle\langle\varepsilon'|$$

$$= \sum_{\varepsilon} \sum_{\varepsilon'} \underbrace{\left(|\varepsilon\rangle\langle\varepsilon| L_{\nu} |\varepsilon'\rangle\langle\varepsilon'| A - A |\varepsilon\rangle\langle\varepsilon| L_{\nu} |\varepsilon'\rangle\langle\varepsilon'|\right)}_{0 \text{ for all } (\nu, (\varepsilon,\varepsilon'))} = 0$$
(5)

The same process can be repeated for L^{\dagger}_{ν} . Meaning that if such dynamical symmetry exists,

$$[L_{\nu},A]=[L_{\nu}^{\dagger},A]=0$$

Can one show that $A = \lambda \mathbb{I}$?

Can one show that $A = \lambda \mathbb{I}$?

Let the most general form of A:

$$A = \sum_{kl} a_{kl} |k\rangle\langle l|$$

Assumption \mathfrak{a}

Can one show that $A = \lambda \mathbb{I}$?

Let the most general form of A:

$$A = \sum_{kl} a_{kl} |k\rangle\langle l|$$

One wants to show that $a_{kl}=0$ for $k\neq l$. Suppose the contrary - there exists $a_{kl}\neq 0$ for $k\neq l$

Can one show that $A = \lambda \mathbb{I}$?

Let the most general form of A:

$$A = \sum_{kl} a_{kl} |k\rangle\langle l|$$

One wants to show that $a_{kl}=0$ for $k\neq l$. Suppose the contrary - there exists $a_{kl}\neq 0$ for $k\neq l$

Then, the commutator relation will be given by

$$\left[|m\rangle\langle m| L_{\nu} |n\rangle\langle n|, \sum_{kl} a_{kl} |k\rangle\langle l| \right] = 0$$
 (6)

$$\sum_{k,l} a_{kl} |m\rangle\langle m| L_{\nu} |n\rangle\langle n| |k\rangle\langle l| - \sum_{kl} a_{kl} |k\rangle\langle l| |m\rangle\langle m| L_{\nu} |n\rangle\langle n|$$
 (7)

$$\sum_{kl} a_{kl} |m\rangle\langle m| L_{\nu} |n\rangle\langle n| |k\rangle\langle l| - \sum_{kl} a_{kl} |k\rangle\langle l| |m\rangle\langle m| L_{\nu} |n\rangle\langle n| =$$

$$\sum_{l} a_{nl} |m\rangle\langle m| L_{\nu} |n\rangle\langle l| - \sum_{k} a_{km} |k\rangle\langle m| L_{\nu} |n\rangle\langle n|$$

$$\sum_{kl} a_{kl} |m\rangle\langle m| L_{\nu} |n\rangle\langle n| |k\rangle\langle l| - \sum_{kl} a_{kl} |k\rangle\langle l| |m\rangle\langle m| L_{\nu} |n\rangle\langle n| =$$

$$\sum_{l} a_{nl} |m\rangle\langle m| L_{\nu} |n\rangle\langle l| - \sum_{k} a_{km} |k\rangle\langle m| L_{\nu} |n\rangle\langle n|$$

$$\xrightarrow{|m\rangle} a_{nm} |m\rangle\langle m| L_{\nu} |n\rangle = 0 \tag{8}$$

$$\xrightarrow{\langle n|} a_{nm} \langle m| L_{\nu} |n\rangle\langle n| = 0$$
 (9)

$$\sum_{kl} a_{kl} |m\rangle\langle m| L_{\nu} |n\rangle\langle n| |k\rangle\langle l| - \sum_{kl} a_{kl} |k\rangle\langle l| |m\rangle\langle m| L_{\nu} |n\rangle\langle n| =$$

$$\sum_{l} a_{nl} |m\rangle\langle m| L_{\nu} |n\rangle\langle l| - \sum_{k} a_{km} |k\rangle\langle m| L_{\nu} |n\rangle\langle n|$$

$$\xrightarrow{|m\rangle} a_{nm} |m\rangle\langle m| L_{\nu} |n\rangle = 0 \tag{8}$$

$$\xrightarrow{\langle n|} a_{nm} \langle m| L_{\nu} |n\rangle\langle n| = 0$$
 (9)

Must hold for all ν

$$\sum_{kl} a_{kl} |m\rangle\langle m| L_{\nu} |n\rangle\langle n| |k\rangle\langle l| - \sum_{kl} a_{kl} |k\rangle\langle l| |m\rangle\langle m| L_{\nu} |n\rangle\langle n| =$$

$$\sum_{l} a_{nl} |m\rangle\langle m| L_{\nu} |n\rangle\langle l| - \sum_{k} a_{km} |k\rangle\langle m| L_{\nu} |n\rangle\langle n|$$

$$\xrightarrow{|m\rangle} a_{nm} |m\rangle\langle m| L_{\nu} |n\rangle = 0 \tag{8}$$

$$\xrightarrow{\langle n|} a_{nm} \langle m| L_{\nu} |n\rangle\langle n| = 0 \tag{9}$$

- ightharpoonup Must hold for all ν
- lacksquare $L_
 u$ was defined to be $H_{\mathsf{int}}\simeq \sum_\chi L_\chi\otimes B_\chi$, meaning that $L_
 u\in\mathsf{span}ig(|\epsilon
 angle\!\langle\epsilon'|ig)$

$$\sum_{kl} a_{kl} |m\rangle\langle m| L_{\nu} |n\rangle\langle n| |k\rangle\langle l| - \sum_{kl} a_{kl} |k\rangle\langle l| |m\rangle\langle m| L_{\nu} |n\rangle\langle n| =$$

$$\sum_{l} a_{nl} |m\rangle\langle m| L_{\nu} |n\rangle\langle l| - \sum_{k} a_{km} |k\rangle\langle m| L_{\nu} |n\rangle\langle n|$$

$$\xrightarrow{|m\rangle} a_{nm} |m\rangle\langle m| L_{\nu} |n\rangle = 0 \tag{8}$$

$$\xrightarrow{\langle n|} a_{nm} \langle m| L_{\nu} |n\rangle\langle n| = 0 \tag{9}$$

- ightharpoonup Must hold for all ν
- lacksquare $L_
 u$ was defined to be $H_{ ext{int}}\simeq\sum_\chi L_\chi\otimes B_\chi$, meaning that $L_
 u\in ext{span}ig(|\epsilon
 angle\!\langle\epsilon'|ig)$
- ▶ Meaning that $a_{nm} = 0 \implies$ contradiction

One can show that $A = \lambda \mathbb{I}$, by showing that $a_{jj} = a_{kk} \equiv d_k$.

One can show that $A = \lambda \mathbb{I}$, by showing that $a_{jj} = a_{kk} \equiv d_k$. Since $A \sim \text{diag.}$,

$$A = \sum_{k} d_{k} |k\rangle\langle k|$$

One can show that $A = \lambda \mathbb{I}$, by showing that $a_{jj} = a_{kk} \equiv d_k$. Since $A \sim \text{diag.}$,

$$A = \sum_{k} d_{k} |k\rangle\langle k|$$

Using the same expansion, and commutator relations -

$$d_{\epsilon} |\epsilon\rangle\!\langle\epsilon| L_{\nu} |\epsilon'\rangle\!\langle\epsilon'| - d_{\epsilon'} |\epsilon\rangle\!\langle\epsilon| L_{\nu} |\epsilon'\rangle\!\langle\epsilon'| = 0$$

Meaning that diagonal elements are the same \implies

$$A = \lambda \mathbb{I}$$

One can show that $A=\lambda \mathbb{I}$, by showing that $a_{jj}=a_{kk}\equiv d_k$. Since $A\sim \operatorname{diag.}$,

$$A = \sum_{k} d_{k} |k\rangle\langle k|$$

Using the same expansion, and commutator relations -

$$d_{\epsilon} |\epsilon\rangle\langle\epsilon| L_{\nu} |\epsilon'\rangle\langle\epsilon'| - d_{\epsilon'} |\epsilon\rangle\langle\epsilon| L_{\nu} |\epsilon'\rangle\langle\epsilon'| = 0$$

Meaning that diagonal elements are the same \implies

$$A = \lambda \mathbb{I}$$

The newly introduced $\rho_{mn}:=A^n\rho_\infty(A^\dagger)^m$ thus do not give any additional imformation. The condition $\mathcal{L}\rho_{mn}=-i(m-n)\lambda\rho_{mn}$ therefore is redundant.

Assumption: continuity

► The discrete spectrum:

$$S_{lpha}(\omega) := \sum_{\epsilon'} |\epsilon\rangle\!\langle\epsilon| S_{lpha} |\epsilon'\rangle\!\langle\epsilon'|$$

Assumption: continuity

The discrete spectrum:

$$\mathsf{S}_{lpha}(\omega)\coloneqq\sum_{\omega=\epsilon'=\epsilon}|\epsilon
angle\!\langle\epsilon|\,\mathsf{S}_{lpha}\,|\epsilon'
angle\!\langle\epsilon'|$$

Continious spectrum:

$$S_{\alpha}(\omega) = \iint_{\epsilon, \epsilon' \in \sigma(H_{\delta})} |\epsilon\rangle \langle \epsilon| \, S_{\alpha} \, |\epsilon'\rangle \langle \epsilon'| \, \delta(\omega - (\epsilon - \epsilon')) d\epsilon \, d\epsilon' \tag{10}$$

In addition to the assumption $\widehat{\mathfrak{a}}$, one can add degeneracies to the ground level $|d_1\rangle$, $|d_2\rangle$.

- In addition to the assumption $\widehat{\mathfrak{a}}$, one can add degeneracies to the ground level $|d_1\rangle$, $|d_2\rangle$.
- ▶ What does this mean for the commutators?
- lacktriangle Additional terms at $\omega=\epsilon'-\epsilon$ for $0=\omega=d_1-d_2$

- In addition to the assumption $\widehat{\mathfrak{a}}$, one can add degeneracies to the ground level $|d_1\rangle$, $|d_2\rangle$.
- ▶ What does this mean for the commutators?
- lacksquare Additional terms at $\omega=\epsilon'-\epsilon$ for 0 $=\omega=d_1-d_2$

$$\left[\left| d_1
angle \! \left\langle d_1
ight| \mathit{L}_
u \left| d_2
angle \! \left\langle d_2
ight| + \left| d_2
angle \! \left\langle d_2
ight| \mathit{L}_
u \left| d_1
ight
angle \! \left\langle d_1
ight|, \underbrace{\mathcal{A}}_{=a_{ii}}
ight] = 0
ight.$$

$$|\epsilon_3\rangle$$

$$|\epsilon_2\rangle$$

$$|d_{i}\rangle$$

- In addition to the assumption $\widehat{\mathfrak{a}}$, one can add degeneracies to the ground level $|d_1\rangle$, $|d_2\rangle$.
- ▶ What does this mean for the commutators?
- lacksquare Additional terms at $\omega=\epsilon'-\epsilon$ for 0 $=\omega=d_1-d_2$

 $|d_1
angle$

$$\left[\left|d_{1}
angle\langle d_{1}
ight|L_{
u}\left|d_{2}
angle\langle d_{2}
ight|+\left|d_{2}
angle\langle d_{2}
ight|L_{
u}\left|d_{1}
angle\langle d_{1}
ight|, \underbrace{\mathcal{A}}_{=a_{i:}}
ight]=0$$

Using same procedures as before, one can obtain some relations as for example

$$egin{aligned} a_{d_1,d_2} ra{d_2} L_
u \ket{d_1} - a_{d_2,d_1} ra{d_1} L_
u \ket{d_2} &= 0 \ a_{d_1,d_1} ra{d_2} L_
u \ket{d_1} - a_{d_2,d_2} ra{d_2} L_
u \ket{d_1} &= 0 \end{aligned}$$

This suggest the form of A

▶ In fact, the conditions $[J, H] = 0, \dot{J} = 0$ and $U^{\dagger}HU = H$ are **all** equivalent.

- ▶ In fact, the conditions $[J, H] = 0, \dot{J} = 0$ and $U^{\dagger}HU = H$ are **all** equivalent.
- ▶ For systems under \mathcal{L} , one introduces super-operators \mathcal{U} and \mathcal{J} , associated to U and J resp.

- ▶ In fact, the conditions $[J, H] = 0, \dot{J} = 0$ and $U^{\dagger}HU = H$ are **all** equivalent.
- ▶ For systems under \mathcal{L} , one introduces super-operators \mathcal{U} and \mathcal{J} , associated to U and J resp.
- ► The relations are weaker and given by

$$\dot{J} \equiv \mathscr{L}(J) \iff [J,H] = [J,L_{\nu}] = 0 \implies [\mathscr{L},\mathscr{U}] = 0$$

- ▶ In fact, the conditions $[J, H] = 0, \dot{J} = 0$ and $U^{\dagger}HU = H$ are **all** equivalent.
- ▶ For systems under \mathcal{L} , one introduces super-operators \mathcal{U} and \mathcal{J} , associated to U and J resp.
- ► The relations are weaker and given by

$$\dot{J} \equiv \mathscr{L}(J) \iff [J,H] = [J,L_{\nu}] = 0 \implies [\mathscr{L},\mathscr{U}] = 0$$

In fact, if \mathscr{L} does **not** have purely imaginary eigenvalues (no oscillating coherences), then for $\rho_{ss} \in \mathsf{L}_{ss}$ of dim = D

$$\rho_{\rm ss} = \lim_{t \to \infty} e^{\mathscr{L}t} \rho_{\it in} = \sum_{\mu}^{D} \langle J_{\mu} | \rho_{\it in} \rangle M_{\mu} \tag{11}$$

Steady-states vs Oscillating coherences

ightharpoonup Conserved quantities for ρ_{ss} are not conserved anymore for ρ_{∞} .

Steady-states vs Oscillating coherences

- lacktriangle Conserved quantities for ho_{ss} are not conserved anymore for ho_{∞} .
- It is possible to re-write similar explicit relations by considering other "pseudo-conserved quantities" $J \mapsto S$ together with H_{∞} , that is implicitly included in the H in the master equation.

Steady-states vs Oscillating coherences

- lacktriangle Conserved quantities for ho_{ss} are not conserved anymore for ho_{∞} .
- It is possible to re-write similar explicit relations by considering other "pseudo-conserved quantities" $J \mapsto S$ together with H_{∞} , that is implicitly included in the H in the master equation.

Q

How are those oscillating coherence quantities related to each other and to the steady-state quantities?