

BM327 Workshop 2

Identifying UTI Adhesion Factors

Dr Leighton Pritchard and Dr Morgan Feeney

Structure

- Introduction to ggplot2 (R)
- Description of the experiment
- Data analysis (R)

- WebR in your web browser (see MyPlace link)
- https://sipbs-compbiol.github.io/BM327-Workshop-2/

Introduction to ggplot2

Why ggplot2 and R?

- R is a free (as in beer/chips), widely-used, and robust statistical programming language
- R is excellent for analysis and reproducibility (in science and elsewhere)
 - Separates data from analysis, easy to share/reapply analyses
- R has many useful and advanced statistical tools for

experimental/data analysis

 ggplot2 is a powerful, flexible data visualization package in R

- Data visualisation tells a scientific story
- You need to choose the visualisation that tells the story of the work
 - Being constrained by "available plot types" is limiting
 - ggplot2 allows you to build up the visualisation you need

- Separates data from its representation
 - We can make many different possible plots from the same dataset
 - Start by defining the data, and then layer on representations of the data
- Build plots from combinations of simple elements
 - Like making a sentence out of adding words together
 - Plots/sentences can be simple or complex, but they should express what you mean
- Data; aesthetics; geoms; layers

- Your data is usually a table
- One row per observation
- One column per variable
- Each cell is the value of a variable for a particular observation

	country	year	pop	continent	lifeExp	gdpPercap
	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<dbl></dbl>	<dbl></dbl>
1	Afghanistan	1952	8425333	Asia	28.8	779.
2	Afghanistan	1957	9240934	Asia	30.3	821.
3	Afghanistan	1962	10267083	Asia	32.0	853.
4	Afghanistan	1967	11537966	Asia	34.0	836.
5	Afghanistan	1972	13079460	Asia	36.1	740.
6	Afghanistan	1977	14880372	Asia	38.4	786.

What is a plot (aesthetics)

- Each value in the table can potentially be rendered in a plot
- The aesthetics of the value determine how it is rendered
 - Shape
 - Size
 - Colour
 - Co-ordinates on the image
- Changing aesthetics changes the plot but not the data
- Many different plots can be made by changing aesthetics alone

What is a plot? (geoms)

- geoms ("geometries") are a jargon term in ggplot2
- geoms define the "type" of representation and can be combined
 - Draw as points: scatterplot
 - Draw as lines: line graph
 - Draw as bars: bar chart
 - Draw as box and whisker: boxplot
 - Draw as density plot: KDE/distribution
 - Draw as geographical coordinates: map
 - Draw as vertical density plot: violin plots
 - Draw variability as ribbon: ribbon plots
- The same data/aesthetics can be shown using different geoms

What is a plot? (layers)

geoms can be combined in layers

Interactive demo

Let's work through "The grammar of graphics" on the workshop pages

The Experiment

Investigating UTI adhesion

A high-throughput genomic screen

High-throughput results

- (Falkow's) Koch's postulates
 - 1.The wild-type/control pathogen containing *etpD* must be able to adhere to human tissue/catheter material
 - 2. The mutant organism lacking only *etpD* must not adhere to human tissue/catheter material
 - 3.A *complemented* mutant, with *etpD* restored, must be able to adhere to human tissue/catheter material
- We test (catheter material, human tissue sample):
 - Wild-type/control (expected to adhere)
 - etpD knockout (expected not to adhere)
 - etpD knockout with empty plasmid (expected not to adhere)
 - etpD knockout complemented with plasmid carrying etpD (expected to adhere)

Knockout experiment

- We introduce to either human tissue or catheter material...
 - Wild-type/control UPEC (expected to adhere)
 - etpD knockout (expected not to adhere)
 - etpD knockout with empty plasmid (expected not to adhere)
 - etpD knockout complemented with plasmid carrying etpD (expected to adhere)
- We thoroughly wash/rinse the material and use serial dilutions to obtain bacterial counts (logCFU)
- High counts imply that bacteria adhered
- Low counts imply that bacteria did not adhere well
- THIS IS AN INDIRECT TEST OF ADHERENCE

The Workshop

What you'll be doing

- Use ggplot2 to visualise the experimental results
- Use geom_boxplot() and geom_jitter() geometries
- Colour datapoints by batch
- Obtain plots for catheter and human tissue
- What do you notice?

Statistical modelling

- This may well be new to you
- A different philosophy to null hypothesis significance testing (NHST)
 - (things like t-tests, ANOVA, etc.)
- We'll use linear modelling (simple to do in R)
- We explicitly, simultaneously, and quantitatively estimate the effect of each intervention, relative to the wild-type/control:
 - etpD knockout
 - addition of empty plasmid
 - complementation
 - any interference effects (e.g. batches of experiments run at different times/with different media/by different people)

- We are measuring some kind of outcome
 - Here, we measure logCFU bacterial recovery
- We assume that the measured value depends ("~") on some influence
- The measured logCFU for the wild-type UPEC depends on us using the wild type

logCFU ~ wildtype

- In reality, there is some variation in measurement
 - e.g. wind on the balance, slight differences in growth time
- We assume these variations are random, and represent them as ε
- Linear modelling lets us "subtract" these random effects and estimate the actual influence of "wildtype"

logCFU ~ wildtype + &

- We can account for multiple influences by adding further terms into the equation
- When considering the knockout strain for example, there are two influences
 - Recovery appropriate for the wildtype
 - A change in recovery due to the ΔetpD knockout (expected to be negative)
- We assume that we can add these
- Linear modelling estimates the influences of both wildtype and ΔetpD simultaneously

logCFU ~ wildtype + ΔetpD + ε

- We can extend this to all of the experimental factors.
- There are two influences
 - Recovery appropriate for the wildtype
 - A change in recovery due to the ΔetpD knockout (expected to be negative)
 - A change in recovery due to presence of the plasmid vector (expected to be 0)
 - A change in recovery due to presence of the complement (expected to be positive)
- Linear modelling estimates the influences of all of these simultaneously

logCFU ~ wildtype + ΔetpD + vector + complement + ε

- This experiment is subject to batch effects
- These become an extra term in the equation for linear modelling
- If there are four batches we write this as batch_i to mean the appropriate one of {batch₁, batch₂, batch₃, batch₄} and add it to the equation
- This is a "linear mixed effects model", and subtracts out the influence due to each individual batch to give better estimates of experimental factors

 $logCFU \sim wildtype + \Delta etpD + vector + complement + batch_i + <math>\epsilon$

Linear modelling in R

- Linear model
 - tissue_model <- lm(logCFU ~ KO + empty + complement, data=tissue)
- Mixed effects model
 - tissue_mixed_model <- Imer(logCFU ~ KO + empty + complement + (1 | batch), data=tissue)

Interactive Demo

Let's work through the workshop pages