

ゆかたゆ

例題

- ■Aさん,Bさん,Cさんが居ます。
- ■3人の平均体重を知りたいです。
- ■お互いに体重を知られたくないです。

問. どうすれば良いでしょうか?

注意点

■理論の厳密な解説ではありません

■説明が不十分な点があります

お品書き

■秘密分散とは

■Shamirの秘密分散法

■準同型と秘密計算

秘密分散とは

Ę

秘密分散とは?

<u>秘密</u>の情報を<u>分散</u>して保存する方法

=

秘密分散とは?

<u>秘密</u>の情報を<u>分散</u>して保存する方法

三

秘密分散とは?

秘密の情報を分散して保存する方法

Ħ

秘密分散の閾値

n個中 k個 が集まれば戻せる $\rightarrow (k,n)$ 閾値法

たとえば 3個中 2人 が居れば戻せる → (2,3)閾値法

秘密分散の良くない例

3つだけでも大きなヒント

Shamirの秘密分散法

前提知識

n次方程式のグラフ(n+1)つの点を通る 一意に定まる

たとえば $ax^2 + bx + c = 0 \leftarrow 3 点あれば定まる$

=

分散方法(1/2)

1. 秘密を s と する

- 2. (k-1)次関数 f を作る
 - 定数項は s
 - 係数は乱数

たとえば

$$f(x) = 12x^2 + 5x + s$$

分散方法(2/2)

3. n人それぞれに f(1), f(2), ..., f(n) を渡す

4. k個の f(x) から f を復元できる

5. f(0) が元の秘密

$$f(x) = 12x^2 + 5x + s$$
$$f(0) = s$$

たとえば

ラグランジュ補完

 $f(x_1), f(x_2), ..., f(x_n)$ から多項式fを求める公式

$$f(x) = \sum_{i=1}^{n+1} f(x_i) \frac{f_i(x)}{f_i(x_i)}$$
where $f_i(x) = \prod_{k \neq i} (x - x_k)$

証明は略。

準同型と秘密計算

秘密計算とは

■内容を秘密にしたまま計算する方法

■準同型性のある写像を上手く用いる

■比較演算に弱い

準同型とは

$$f(x \cdot y) = f(x) \cdot f(y)$$
 が成り立つこと

言い換えると 写像が構造を保つこと。

秘密計算で非常に重要な性質

Shamirの方法の準同型

sの破片とtの破片を用意する 足し合わせると、(s+t)の破片になる

たとえば

$$f_S(x) = 12x^2 + 5x + s$$

$$f_t(x) = 35x^2 + 2x + t$$

$$f_S(x) + f_t(x) = 47x^2 + 7x + (s + t)$$

例題 (再掲)

- ■Aさん,Bさん,Cさんが居ます。
- ■3人の平均体重を知りたいです。
- ■お互いに体重を知られたくないです。

問. どうすれば良いでしょうか?

例題の解答例(1/3)

 A_2 B_2 C_2

体重B

 B_3 C_3

体重C

三

例題の解答例(2/3)

$$(A + B + C)_1$$
 A_1
 B_1
 C_1

例題の解答例(3/3)

$$(A+B+C)_1$$

$$A+B+C$$
の体重 $\div 3$

$$(A + B + C)_2$$

$$(A + B + C)_3$$

やってみよう

プログラムを書きました(言語はC++) URLは概要欄にあります。

余談ですが 全員の体重が100以下と仮定して GF(307)の上で計算しています。

その他の秘密計算

- ■準同型暗号を用いたもの
 - BFV
 - CKKS形式
 - TEHE形式

など。

eq

まとめ

伝えたいこと

- ■秘密分散
 - → 冗長化と内容の分散を同時に行える

- ■秘密計算
 - →内容を秘密にしたまま計算ができる

終わり