单臂电桥

Aozhe Zhang 2313447

2024年5月31日

目录

T	头验	注目的	2				
2	实验	:原理: 直流单臂电桥	2				
	2.1	适用范围	2				
	2.2	实验电路图	2				
	2.3	推导测量公式	2				
	2.4	选取适当的比例倍率	3				
	2.5	电桥灵敏度以及影响因素	3				
	2.6	换臂法	3				
3	实验数据分析						
	3.1	测量未知电阻 R_1 (约 1200Ω) 的阻值 \ldots	3				
	3.2	电桥灵敏度与电源电压的关系	4				
	3.3	测量未知电阻 R_2 (约 50Ω)的阻值 \dots	5				
4	分析与讨论						
	4.1	实验回顾	5				
	4.2	如果电桥能保证测量范围在 $20\sim 99999\Omega$ 这时测一个 $1\times 10^6\Omega$ 左右的电阻,能否用					
		一只 1000Ω 的准确电阻与之并联测量?	5				
	4.3	替代法测 R_x , 即电桥平衡后若以电阻箱某值 R_n 替下 R_x 时桥仍平衡, 则 $R_x = R_n$ 。					
		注意替代时需断开电源。这种测法要求 R_a 、 R_b 、 R_0 准确吗?要求电源稳定吗?	5				

1 实验目的

- 1. 掌握电桥测量电阻的原理和方法。
- 2. 了解点桥的测量精确度所依赖的条件。
- 3. 学会使用箱式电桥。

2 实验原理:直流单臂电桥

2.1 适用范围

直流单臂电桥适用于测量中等阻值($10 \ge 10^5 \Omega$)的电阻。

2.2 实验电路图

图 1: 电路图

2.3 推导测量公式

图中的四个电阻称为电桥的四个"臂",接入电流计的支路称为"桥"。电阻 R_a 与 R_b 称为比例臂,其比值 $C=\frac{R_a}{R_b}$ 称为比例臂的倍率,与 R_x 并联的电阻 R_0 称为比较臂, R_x 称为待测臂。当灵敏电流计的电流值为 0 时,说明 C、D 两点电位相同,则达到电桥平衡。通过电桥平衡可推导出测量电阻公式为

$$R_x = \frac{R_a}{R_b} R_0 = CR_0$$

2.4 选取适当的比例倍率

在选取比例臂倍率 C 时,应尽量利用到变阻器尽可能多的旋钮,从而增大测量精度,减小实验误差。

2.5 电桥灵敏度以及影响因素

电桥灵敏度

$$S = \frac{\Delta I}{\Delta R_x / R_x}$$

其表达式为

$$S = \frac{E}{K \left[(R_a + R_b + R_0 + R_x) + (2 + \frac{R_b}{R_0} + \frac{R_x}{R_a})R_g \right]}$$

其中 K、 R_g 分别为电流计的电流常量和内阻。由此可见,适当提高电源电压 E、选择电流常量 E 和内阻 E0 适当小的灵敏电流计、适当减小桥臂电阻、尽量把桥臂配置成均压状态,都对提高灵敏度有作用。

2.6 换臂法

在选取 C=1 时,通过交换两比例臂,分别计算出换臂前与换臂后的两个测量值 R_x 和 R'_x ,将二者相乘再开根号,可消除由于 C 可能实际上不等于 1 的误差,这种方法被称作换臂法。

3 实验数据分析

3.1 测量未知电阻 R_1 (约 1200 Ω) 的阻值

根据情况, 选取 $R_a = 100\Omega$, $R_b = 100\Omega$, 比例臂的倍率 C=1, 实验数据如下

电桥状态	R_0/Ω	R_1/Ω	$\Delta R_0/\Omega$	ΔI/nA	S_1/nA
换臂前	1182.7	1182.7	1	12.2	14428.94
换臂后	1181.8	1181.8	1	11.9	14063.42

图 2: R₁ 测量

换臂之前有

$$\rho_x = \sqrt{\rho_0^2 + \rho_c^2 + \left(\frac{\delta}{S}\right)^2}$$

计算得

$$\rho_x = \sqrt{0.001^2 + 0.001^2 + \left(\frac{0.1}{11428.94}\right)^2} \approx 0.001414$$

从而算出

$$\Delta R_x = \rho_x \cdot R_x' \approx 1.6\Omega$$

$$R_x = R_x' \pm \Delta R_x = (1182.7 \pm 1.6)\Omega$$

利用换臂前后的数据计算

$$R_x \approx \sqrt{R_0' + R_0''} = 1182.2499\Omega$$

$$\rho_x = \sqrt{\rho_0^2 + \left(\frac{\delta}{S}\right)^2} = \sqrt{0.001^2 + \left(\frac{0.1}{14063.42}\right)^2} \approx 0.0010$$

$$\Delta R_x = \rho_x \cdot R_x' \approx 1.18\Omega$$

得到

$$R_x = R_x' \pm \Delta R_x = (1182.25 \pm 1.18)\Omega$$

3.2 电桥灵敏度与电源电压的关系

根据情况,选取 $R_a=R_b=100\Omega, R_x=1200\Omega,$ 改变电源电压 E,测量不同电压下电桥灵敏度,并做 S-E 关系图。

电源电压 E	0.5V	1. 0V	1.5V	2. 0V	2.5V	3. 0V	3.5V
R_0/Ω	1182. 2	1182. 1	1182. 0	1182. 0	1181. 9	1181. 9	1181.8
$\Delta R_0 / \Omega$	1	1	1	1	1	1	1
$\Delta I/\text{nA}$	3. 0	6. 0	8.8	12. 3	14. 9	17. 9	20. 7
S/nA	3546.6	7092.6	10401.6	14538.6	17610.31	21156.01	24463. 26

图 3: 改变电压后 S 的变化

根据数据, 画出图像, 可得

图 4: S-E 图像

观察图像,可以发现电桥灵敏度与电压基本呈现线性关系(正相关)。

电桥状态	R_0/Ω	R_2/Ω	$\Delta R_0/\Omega$	ΔI/nA	S_1/nA
数据记录	4997.2	49.972	1	1.5	7495.8

图 5: R₂ 的测量

3.3 测量未知电阻 R_2 (约 50 Ω) 的阻值

根据情况, 选取 $R_a = 10\Omega, R_b = 1000\Omega$, 比例臂的倍率 C=0.01。

$$\rho_2 = \sqrt{0.002^2 + 0.001^2 + \left(\frac{0.1}{7495.8}\right)^2} \approx 0.002236$$

$$\Delta R_2 = \rho_2 \cdot R_2' \approx 0.11\Omega$$

可得

$$R_2 = R_2' \pm \Delta R_2 = (49.97 \pm 0.11)\Omega$$

4 分析与讨论

4.1 实验回顾

本实验正确连接实验电路是成功的关键,电路某一个导线连接有问题是不容易看出来的,所以 在整体规划电路连接时需要非常仔细谨慎。

4.2 如果电桥能保证测量范围在 $20\sim99999\Omega$ 这时测一个 $1\times10^6\Omega$ 左右的电阻,能 否用一只 1000Ω 的准确电阻与之并联测量?

并联后 R 约为 999Ω , 可以测准。

4.3 替代法测 R_x ,即电桥平衡后若以电阻箱某值 R_n 替下 R_x 时桥仍平衡,则 $R_x = R_n$ 。注意替代时需断开电源。这种测法要求 R_a 、 R_b 、 R_0 准确吗?要求电源稳定吗?

这种测法不要求 R_a 、 R_b 与 R_0 准确, 但是要求电源稳定,这样才能达到"替代"效果。