Sprawozdanie Algorytmy ewolucyjne

Mateusz Olsztyński

Zakres

W swoich obliczeniach do selekcji wykorzystałem selekcję turniejową o rozmiarze turnieju równym 5. Do tworzenia nowych osobników użyłem operator krzyżowania OX (Ordered Crossover). Natomiast do mutacji wykorzystałem operator inwersji (działający na całym osobniku), który okazał się skuteczniejszy niż mutacja typu swap.

W swoich testach uwzględniłem następujące instancje: berlin11, berlin52, kroA100, kroA150, kroA200, fl417.

Największą różnicą pomiędzy testami na różnych instancjach były rozmiar populacji oraz liczba generacji. Wraz ze wzrostem liczby miast, musiały także wzrosnąć te dwa parametry. W większości przypadków najskuteczniejsze okazały się następujące wartości prawdopodobieństw: Px = 0.7, Pm = 0.3.

Dobór parametrów

Badanie przeprowadziłem na instancji berlin52.

Parametry:

pop_size – wielkość populacji, gen – liczba generacji, Pm – prawdopodobieństwo mutacji, Px – prawdopodobieństwo krzyżowania, tour – rozmiar turnieju

Wpływ Pm na algorytm przy stałym Px, pop_size, gen.

Pm	avg				
0.1	8367				
0.2	8182				
0.3	7949				
0.4	8033				
0.5	8404				
0.6	10677				

Zbyt małe prawdopodobieństwo mutacji nie pozwala algorytmowi wyjść z lokalnego optimum.

Zbyt duże prawdopodobieństwo mutacji zamiast różnicować w niewielkim stopniu dobre rozwiązania, niszy je.

Wpływ Px na algorytm przy stałym Pm, pop_size, gen.

Px	avg					
0.4	8259					
0.5	8453					
0.6	8531					
0.7	8092					
0.8	8177					
0.9	10032					

Zbyt małe prawdopodobieństwo krzyżowania utrudnia eksploatację przestrzeni rozwiązań, natomiast przy zbyt dużym prawdopodobieństwie najlepsze rozwiązania są gubione.

Wpływ pop_size na algorytm przy stałym Px, Pm, gen.

pop_size	avg			
100	8330			
200	8116			
500	8272			
1000	8173			
1500	7921			

Wpływ gen na algorytm przy stałym Px, Pm, pop_size.

gen	avg			
10	14772			
100	8432			
200	8132			
500	8082			
1000	8095			

Im większy rozmiar populacji oraz liczba generacji tym lepiej, jednak wraz ze wzrostem wartości tych parametrów rośnie także znacząco czas działania algorytmu. Duży rozmiar populacji zapewnia różnorodność osobników. Przy odpowiednim doborze prawdopodobieństwa krzyżowania oraz mutacji, duża liczba generacji pozwoli na znalezienie lokalnego optimum lub ewentualnie pozwoli operatorowi mutacji na znalezienie lepszego rozwiązania.

Wpływ rozmiaru turnieju na wynik działania algorytmu

Najlepsze rezultaty wygenerował tour = 5.

Gdy rozmiar turnieju jest zbyt mały, to ciśnienie selekcyjne jest także małe, przez co algorytm albo nie znajdzie lokalnego optimum albo zajmie mu to zbyt dużo czasu.

Zbyt duży rozmiar turnieju powoduje zbyt szybką zbieżność algorytmu przez co w miarę dobre osobniki (których dalsze krzyżowanie bądź mutacja mogłaby spowodować polepszenie rozwiązania) są także kasowane.

Testy algorytmu genetycznego

Osie wykresów:

-oś pionowa: przystosowanie

-oś pozioma: numer generacji

Instancja berlin11

pop_size = 100, gen = 20, Pm = 0.3, Px = 0.7

Instancja berlin52

Instancja kroA100

Instancja kroA150

pop_size = 1300, gen = 600, Pm = 0.3, Px = 0.7

Instancja kroA200

pop_size = 2000, gen = 800, Pm = 0.3, Px = 0.7

Instancja fl417

Porównanie algorytmu ewolucyjnego z innymi nieewolucyjnymi algorytmami

Instancja	Optimum	Zachłanny	Losowy				Ewolucyjny			
			best	avg	worst	std	best	avg	worst	std
berlin11	4038	4543	4874	7110	8448	927	4038	4192	4529	219
berlin52	7542	8980	26826	29574	31653	1375	7542	8079	8321	580
kroA100	21282	26856	160328	174520	186123	7912	21316	22521	23538	733
kroA150	26524	33609	236325	251690	269849	8672	28759	29364	30116	480
kroA200	29368	35798	322112	335688	350069	8533	31687	32393	33063	488
fl417	11861	15191	466271	490201	519944	14566	12823	13490	14251	474

Wnioski

Przy odpowiednim doborze parametrów algorytmu genetycznego, jest on skuteczniejszy od algorytmu zachłannego. Działanie samego algorytmu wymaga jednak większej mocy obliczeniowej oraz dłuższego czasu oczekiwania na wynik (co utrudnia dobór optymalnych parametrów). Odpowiedni dobór operatorów, czy wielkości użytych parametrów takich jak rozmiar populacji, liczba generacji, prawdopodobieństwo krzyżowania oraz mutacji, jest uzależniona od typu oraz wielkości rozpatrywanego problemu.