Relation Between Degree and Radian

Degree and Radian are two units to measure angles.

1 full circle = 360 degrees

1 full circle = 2π radians

Circumference of circle (C) = $2\pi r$

Matlab agar aap poora circle ka arc length means circumference.

length $I = 2\pi r$

$$\theta = \frac{l}{r}$$

$$\theta = \frac{2\pi r}{r}$$

 $\theta = 2\pi$ radians

Formula

 θ (in radians) = $\frac{l}{r}$

Where:

 θ = angle in radians

I = arc length

r = radius

360 degrees = 2π radians

$$\frac{360}{2}$$
 = π radians

 π radians = 180°

 $\pi \neq 180^{\circ} X$

Because π is just a number (approximately 3.14159) – not an angle.

The correct relation is:

 π radians = 180 degrees

So, degree and radian are just two ways to say the same thing.

 π radians = 180°

To convert:

From degree to radian

Angle in radian =
$$(\frac{\pi}{180})$$
 × angle in degree

From radian to degree

Angle in degree =
$$(\frac{180}{\pi})$$
 × angle in radian

Examples:

1. 90° = ? radians

$$= (\frac{\pi}{180}) \times 90 = \frac{\pi}{2} \text{ radians}$$

2. 180° = ? radians

$$= (\frac{\pi}{180}) \times 180 = \pi \text{ radians}$$

3. 1 radian = ? degrees

$$=(\frac{180}{\pi})\approx 57.3^{\circ}$$

4.
$$\frac{\pi}{3}$$
 radians = ? degrees

$$= (\frac{180}{\pi}) \times \frac{\pi}{3} = 60 \text{ degrees}$$

Degree	30°	45°	60°	90°	180°	270°	360°
Radian	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π

O Applications in Real Life

1. Circular Motion in Physics

When an object moves in a circle, angles are mostly measured in radians.

2. Trigonometry in Engineering

Most machines and robot arms calculate angles in radians for precision.

3. Mathematics Formulas

Trigonometric identities like $sin\theta$, $cos\theta$, etc., are easiest when angle is in radians.

	O°	30°	45°	60°	90°	
SIN	0	1/2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	1/2	0	
TAN	0	<u>1</u> √3	1	√3	Not Defined	

4. Computer Programming

Languages like Python, C++ use radian input in math functions.

