Wendel Melo

Faculdade de Computação Universidade Federal de Uberlândia

Recuperação da Informação

• Ciclo de realimentação onde uma consulta q recebida do usuário é transformada em uma consulta modificada q_m :

- Ciclo de realimentação onde uma consulta q recebida do usuário é transformada em uma consulta modificada q_m :
 - A expectativa é que q_m possa atender melhor a necessidade de informação do usuário;

- Ciclo de realimentação onde uma consulta q recebida do usuário é transformada em uma consulta modificada q_m :
 - A expectativa é que q_m possa atender melhor a necessidade de informação do usuário;
 - Essa transformação pode ser feita, por exemplo, através de informações obtidas por meio de avaliação do resultado por parte do usuário, ou análise automática do topo do ranking.

- Ciclo de realimentação onde uma consulta q recebida do usuário é transformada em uma consulta modificada q_m :
 - A expectativa é que q_m possa atender melhor a necessidade de informação do usuário;
 - Essa transformação pode ser feita, por exemplo, através de informações obtidas por meio de avaliação do resultado por parte do usuário, ou análise automática do topo do ranking.
- Essa filosofia jé é incorporada, de certo modo, pelo modelo probabilístico. Todavia, ela também pode ser usada de modo mais genérico em qualquer modelo, incluindo o próprio modelo probabilístico.

Tipos de Realimentação

Podemos identificar dois tipos de abordagem:

Tipos de Realimentação

Podemos identificar dois tipos de abordagem:

- Realimentação explícita: o usuário fornece diretamente as informações para a reformulação da consulta, por exemplo, classificando os docs no topo do ranking da consulta original.
 - Tende a ser dispendioso para o usuário.

Tipos de Realimentação

Podemos identificar dois tipos de abordagem:

- Realimentação explícita: o usuário fornece diretamente as informações para a reformulação da consulta, por exemplo, classificando os docs no topo do ranking da consulta original.
 - Tende a ser dispendioso para o usuário.
- Realimentação implícita: o próprio sistema de RI produz as informações para a reformulação da consulta, por exemplo, analisando características em comum presentes nos docs no topo do ranking da consulta original, ou analisando fontes de informação externas.

- O processo de formulação de uma consulta modificada que incorpore novos termos em relação à consulta original é denominado expansão de consulta.
- A expansão da consulta pode ser realizada tanto através de métodos de realimentação explícita quanto implícita.

A modelagem de um ciclo de realimentação se constitui em duas etapas:

- Determinar as informações de realimentação que estariam relacionadas à consulta q. Essas informações poderiam ser obtidas de modo explícito do usuário, ou implícito a partir de informações do sistema;
- 2) Determinar como usar as informações da etapa 1 para transformar a consulta original na expectativa de melhorá-la (fornecer resultados mais satisfatórios ao usuário).

- Um exemplo clássico de realimentação de relevância explícita para o modelo vetorial é o método de Rocchio:
- O método de Rocchio parte dos pressupostos:
 - 1) Os documentos relevantes terão vetores de representação com certas semelhanças entre si.
 - 2) Os documentos não relevantes terão vetores de representação diferentes dos relevantes.
- A ideia básica é reformular a consulta, a partir da classificação do usuário, de modo que seu vetor de representação se aproxime dos docs relevantes e se afaste dos não relevantes.

Método de Rocchio

Sejam:

- D_r : conjunto de docs relevantes recuperados (avaliação do usuário);
- D_n : conjunto de docs não relevantes recuperados (avaliação do usuário);
- α , β , γ : constantes de ajuste (não negativas)
- O método de Rocchio calcula o vetor da consulta modificada q_m , a partir do vetor da consulta original q, segundo a expressão:

$$\overrightarrow{q}_{m} = \alpha \overrightarrow{q} + \frac{\beta}{|D_{r}|} \sum_{d_{j} \in D_{r}} \overrightarrow{d}_{j} - \frac{\gamma}{|D_{n}|} \sum_{d_{j} \in D_{n}} \overrightarrow{d}_{j}$$

Método de Rocchio

• Note que o termo $\frac{\sum\limits_{d_j\in D_r}\overrightarrow{d}_j}{|D_r|}$ representa o vetor médio dos docs relevantes

• Note que o termo $\frac{\sum\limits_{d_j\in D_n}\overrightarrow{d}_j}{|D_n|}$ representa o vetor médio dos docs não relevantes

$$\overrightarrow{q}_{m} = \alpha \overrightarrow{q} + \frac{\beta}{|D_{r}|} \sum_{d_{i} \in D_{r}} \overrightarrow{d}_{j} - \frac{\gamma}{|D_{n}|} \sum_{d_{i} \in D_{n}} \overrightarrow{d}_{j}$$

Método de Rocchio

- Observe que a expressão que calcula a consulta modificada pode incorporar pesos não nulos referentes a termos que não estavam na consulta original;
- Assim, na prática, é como se a consulta modificada pudesse incorporar novos termos.
- Através do ajuste dos parâmetros α , β , γ , pode-se ponderar a importância do vetor da consulta original e dos vetores dos docs em D_r e D_n no vetor da consulta modificada.

$$\overrightarrow{q}_{m} = \alpha \overrightarrow{q} + \frac{\beta}{|D_{r}|} \sum_{d_{i} \in D_{r}} \overrightarrow{d}_{j} - \frac{\gamma}{|D_{n}|} \sum_{d_{i} \in D_{n}} \overrightarrow{d}_{j}$$

 Os métodos de realimentação de relevância explícita possuem a vantagem de serem mais sensíveis à captação da subjetividade de cada usuário para melhorar a resposta, pois os próprios usuários avaliam diretamente os resultados.

- Os métodos de realimentação de relevância explícita possuem a vantagem de serem mais sensíveis à captação da subjetividade de cada usuário para melhorar a resposta, pois os próprios usuários avaliam diretamente os resultados.
- A avaliação da resposta por parte de um determinado usuário trará uma carga de sua subjetividade que pode ajudar o sistema a chegar a resultados que lhe sejam mais satisfatórios.

- Os métodos de realimentação de relevância explícita possuem a vantagem de serem mais sensíveis à captação da subjetividade de cada usuário para melhorar a resposta, pois os próprios usuários avaliam diretamente os resultados.
- A avaliação da resposta por parte de um determinado usuário trará uma carga de sua subjetividade que pode ajudar o sistema a chegar a resultados que lhe sejam mais satisfatórios.
- Por outro lado, o processo de avaliar as respostas pode ser muito dispendioso; Usuários podem não estar dispostos a avaliar resultados, especialmente em sistemas WEB.

 Por serem menos incômodos aos usuários, há uma concentração maior de pesquisa e aplicação dos métodos de realimentação implícita, que podem ser subdivididos em:

- Por serem menos incômodos aos usuários, há uma concentração maior de pesquisa e aplicação dos métodos de realimentação implícita, que podem ser subdivididos em:
- Métodos de análise local: usam informações referentes a resposta gerada para a consulta inicial, por exemplo, analisando o topo do ranqueamento.

- Por serem menos incômodos aos usuários, há uma concentração maior de pesquisa e aplicação dos métodos de realimentação implícita, que podem ser subdivididos em:
- Métodos de análise local: usam informações referentes a resposta gerada para a consulta inicial, por exemplo, analisando o topo do ranqueamento.
- Métodos de análise global: usam fontes externas de informação, como tesauros (documento que relaciona termos de significado semelhante) e relações entre termos extraídas da coleção de documentos.

- Pode ser realizada através de técnicas de agrupamento (clustering) local:
 - A ideia principal consiste em gerar agrupamentos (clusters) de termos supostamente relacionados.
 - Esses agrupamentos podem então ser utilizados para expandir a consulta com novos termos presentes nos mesmos agrupamentos dos termos da consulta original.

• Por exemplo, suponha que, para uma consulta q, recupera-se uma lista inicial de documentos.

- Por exemplo, suponha que, para uma consulta q, recupera-se uma lista inicial de documentos.
- Suponha que a consulta q engloba o termo A, e que, ao analisar os documentos no topo do ranqueamento, foi detectado que, frequentemente, A aparece com os termos B e C, embora B e C não estejam na consulta original.

- Por exemplo, suponha que, para uma consulta q, recupera-se uma lista inicial de documentos.
- Suponha que a consulta q engloba o termo A, e que, ao analisar os documentos no topo do ranqueamento, foi detectado que, frequentemente, A aparece com os termos B e C, embora B e C não estejam na consulta original.
- Nesse caso, temos um agrupamento local envolvendo os termos A, B e C, pois os mesmos aparecem juntos com frequência no contexto local da consulta q.

- Por exemplo, suponha que, para uma consulta q, recupera-se uma lista inicial de documentos.
- Suponha que a consulta q engloba o termo A, e que, ao analisar os documentos no topo do ranqueamento, foi detectado que, frequentemente, A aparece com os termos B e C, embora B e C não estejam na consulta original.
- Nesse caso, temos um agrupamento local envolvendo os termos A, B e C, pois os mesmos aparecem juntos com frequência no contexto local da consulta q.
- Desse modo, podemos expandir a consulta adicionando à esta os termos B e/ou C.

- No exemplo anterior, o agrupamento envolvendo A, B e C é dito local porque foi construído apenas no contexto da consulta q.
- Uma outra consulta q', tal que q' ≠ q, que também envolva o termos A poderia gerar um agrupamento local diferente, com outros termos no lugar de B e C;
- Por sua vez, uma técnica de análise global produz agrupamentos observando a base de documentos como um todo, sem a consideração de nenhuma consulta em particular.

- Assim, técnicas de análise global podem ser aplicadas antes do sistema entrar em operação, já na etapa de indexação;
- Em contrapartida, as técnicas de análise local dependem da consulta recebida. Por isso, são aplicadas no processamento da resposta ao usuário;
- Por essa razão, a análise global pode utilizar técnicas computacionalmente mais pesadas, pois é realizada antes do usuário utilizar o sistema;
- A análise local, por sua vez, possui uma preocupação maior com o tempo de execução das técnicas adotadas, pois o usuário está esperando uma resposta;

• As técnicas de agrupamento se baseiam, em geral, em uma matriz de correlação de termos C de T linhas e T colunas, onde T é o número de termos do vocabulário.

• A matriz $C \ge 0$ é quadrada e simétrica. Valores altos para c_{ij} indicam que k_i e k_j estão fortemente relacionados no contexto em questão. Valores próximos a zero indicam baixa correlação.

- Seja C' a matriz de correlação local (isto é, construída no contexto de uma consulta q), e c'_{uv} o coeficiente em C' relativo aos termos k_u e k_v (isto é, o valor da correlação local entre k_u e k_v).
- **Exemplo**: Suponha a seguinte matriz de correlação com vocabulário de 7 termos e a consulta $q = k_2$ AND k_4 :

- Seja C' a matriz de correlação local (isto é, construída no contexto de uma consulta q), e c'_{uv} o coeficiente em C' relativo aos termos k_u e k_v (isto é, o valor da correlação local entre k_u e k_v).
- **Exemplo**: Suponha a seguinte matriz de correlação com vocabulário de 7 termos e a consulta $q = k_2$ AND k_4 :

$$C^{l} = \begin{bmatrix} k_{1} & k_{2} & k_{3} & k_{4} & k_{5} & k_{6} & k_{7} \\ 0 & 25 & 30 & 28 & 0 & 38 & 10 \\ 40 & 28 & 10 & 61 & 0 & 150 & 6 \\ k_{5} & k_{6} & k_{7} & k_{8} & k_{8} \end{bmatrix}$$

Só é preciso calcular as linhas da matriz referentes aos termos da consulta.

- Seja C' a matriz de correlação local (isto é, construída no contexto de uma consulta q), e c'_{uv} o coeficiente em C' relativo aos termos k_u e k_v (isto é, o valor da correlação local entre k_u e k_v).
- **Exemplo**: Suponha a seguinte matriz de correlação com vocabulário de 7 termos e a consulta $q = k_2$ AND k_4 :

$$C^l = \begin{bmatrix} k_1 & k_2 & k_3 & k_4 & k_5 & k_6 & k_7 \\ 0 & 25 & 30 & 28 & 0 & 38 & 10 \\ 40 & 28 & 10 & 61 & 0 & 150 & 6 \\ \end{bmatrix} \begin{bmatrix} k_1 & \text{nhas da matriz referentes} \\ k_2 & \text{aos termos da consulta.} \\ k_3 & \text{dos observando os termos} \\ k_6 & \text{com maior correlação com os} \\ k_7 & \text{termos da consulta.} \end{bmatrix}$$

• **Exemplo**: Suponha a seguinte matriz de correlação com vocabulário de 7 termos e a consulta $q = k_2 AND k_4$:

$$C^l = egin{bmatrix} k_1 & k_2 & k_3 & k_4 & k_5 & k_6 & k_7 \ 0 & 25 & 30 & 28 & 0 & 38 & 10 \ 40 & 28 & 10 & 61 & 0 & 150 & 6 \ & & & & & & & & \\ \end{bmatrix} egin{matrix} k_1 & k_2 & k_3 & k_2 & k_3 & k_4 & k_5 & k_6 & k_7 & k_6 & k_7 & k_6 & k_7 & k_6 & k_7 & k_7 & k_7 & k_8 & k_$$

Só é preciso calcular as linhas da matriz referentes aos termos da consulta.

Os agrupamentos são montados observando os termos com maior correlação com os termos da consulta.

- Assim, em relação a k_2 , monta-se o agrupamento com k_2 , k_3 e k_6
- Em relação a k_4 , monta-se o agrupamento com k_4 , k_1 e k_6 .

$$C^{l} = \begin{bmatrix} k_{1} & k_{2} & k_{3} & k_{4} & k_{5} & k_{6} & k_{7} \\ 0 & 25 & 30 & 28 & 0 & 38 & 10 \\ 40 & 28 & 10 & 61 & 0 & 150 & 6 \end{bmatrix} \begin{bmatrix} k_{1} \\ k_{2} \\ k_{3} \\ k_{4} \\ k_{5} \\ k_{6} \\ k_{7} \end{bmatrix}$$

Só é preciso calcular as linhas da matriz referentes aos termos da consulta.

Os agrupamentos são montados observando os termos com maior correlação com os termos da consulta.

- Assim, em relação a k_2 , monta-se o agrupamento com k_2 , k_3 e k_6
- Em relação a k_4 , monta-se o agrupamento com k_4 , k_1 e k_6 .
- A quantidade de termos nos agrupamentos é arbitrária, mas, em geral, deseja-se manter os agrupamentos pequenos.

Assim, a consulta modificada gerada será:

$$q_m = k_2$$
 AND k_4 AND k_1 AND k_3 AND k_6

 A quantidade de termos nos agrupamentos é arbitrária, mas, em geral, deseja-se manter os agrupamentos pequenos.

Para a determinação de agrupamentos locais, três técnicas são comumente utilizadas:

- Agrupamentos de associação;
- Agrupamentos métricos;
- Agrupamentos escalares.

Cada uma dessas técnicas calculará a matriz de correlação C' de uma forma diferente. A partir da matriz de correlação, determina-se os agrupamentos observando os termos de maior correlação entre si.

Agrupamentos de Associação

• **Não normalizado**: define cada elemento $c'_{\mu\nu}$ de C' da seguinte forma:

$$c_{uv}^l = \sum_{d_j \in D_l} (f_{uj} \times f_{vj})$$

Onde:

- f_{ij} : frequência do termo k_i no documento d_j ;
- D_i: conjunto de docs recuperados pela consulta q, denominado conjunto de documentos locais (lembre-se de que o resultado da consulta está sendo usado para melhorá-la).

Agrupamentos de Associação

• **Normalizado**: Seja \hat{C}^I a matriz de correlação normalizada. Calculase cada elemento $\hat{C}^I_{\mu\nu}$ como:

$$\hat{c}_{uv}^{l} = \frac{c_{uv}^{l}}{c_{uu}^{l} + c_{vv}^{l} - c_{uv}^{l}}$$

Onde:

$$c_{uv}^l = \sum_{d_j \in D_l} (f_{uj} \times f_{vj})$$

Agrupamentos de Associação

- O método de agrupamento de associação possui a vantagem de calcular a matriz de correlação de modo simples e intuitivo;
- No entanto, a matriz de correlação acaba não levando em conta a distância em que os termos aparecem no documento, o que pode ser um fator importante;

- O método de agrupamento métrico, por sua vez, parte da ideia de que dois termos que estejam próximos em um documento tendem a ter maior correlação do que dois termos que estejam distantes.
 - Dois termos que estejam na mesma frase tendem a ter maior correlação do que dois termos em parágrafos distantes.
- Assim, a correlação c'_{uv} entre os termos k_u e k_v é calculada em função das suas distâncias nos documentos.

• Cada elemento $c'_{\mu\nu}$ de C' é calculado como:

$$c_{uv}^{l} = \sum_{d_{j} \in \bar{D}_{l}(k_{u}, k_{v})} \sum_{p=1}^{f_{uj}} \sum_{q=1}^{f_{vj}} \frac{1}{r(\bar{k}_{u}(p, j), \bar{k}_{v}(q, j))}$$

Onde:

- f_{ij}: frequência do termo k_i no documento d_j;
- $\overline{k}_u(p, j)$: função que retorna a posição da p-ésima aparição do termo k_u no doc d_i (ex: posição referente aos bytes);
- $r(\overline{k}_u(p, j), \overline{k}_v(q, j))$: função que calcula a distância entre a p-ésima aparição de k_u e a q-ésima aparição de k_v no doc d_i (ex: n^o de palavras);
- $\overline{\mathbf{D}}_{i}$: docs locais (retornados pela consulta) que contém ambos k_{u} e k_{v} .

• Cada elemento $c'_{\mu\nu}$ de C' é calculado como:

$$c_{uv}^{l} = \sum_{d_{j} \in \bar{D}_{l}(k_{u}, k_{v})} \sum_{p=1}^{J_{uj}} \sum_{q=1}^{J_{vj}} \frac{1}{r(\bar{k}_{u}(p, j), \bar{k}_{v}(q, j))}$$

Onde:

- f_{ii}: frequência do termo k_i no documento d_i;
- $\overline{k}_u(p, j)$: função que retorna a posição da p-ésima aparição do termo k_u no doc d_i (ex: posição referente aos bytes);
- $r(\overline{k}_u(p, j), \overline{k}_v(q, j))$: função que calcula a distância entre a p-ésima aparição de k_u e a q-ésima aparição de k_v no doc d_i (ex: n^0 de palavras);
- $\overline{\mathbf{D}}_{l}$: docs locais (retornados pela consulta) que contém ambos k_{u} e k_{v} .

A fórmula considera a distância entre cada aparição de k_u e todas as aparições de k_v .

• Cada elemento $c'_{\mu\nu}$ de C' é calculado como:

$$c_{uv}^l = \sum_{d_j \in \bar{D}_l(k_u,k_v)} \sum_{p=1}^{f_{uj}} \sum_{q=1}^{f_{vj}} \frac{1}{r(\bar{k}_u(p,j),\bar{k}_v(q,j))} \quad \begin{array}{l} \text{sidera a distân-cia entre cada} \\ \text{aparição de } k_u \text{ e} \end{array}$$

A fórmula contodas as aparições de k,.

Considerar cada par de aparição entre k_{μ} e k_{ν} é uma forma de se lidar com o fato de que o nº de aparições de k_{ij} e k_{ij} pode ser diferente.

Agrupamentos Escalares

- Método adicional para encontrar agrupamentos que usa o conceito da similaridade entre vizinhanças de termos;
- Parte-se da ideia de que termos com vizinhanças semelhantes possuem alguma relação de sinonímia;
- Assim, a relação entre os termos é dita indireta ou induzida pela vizinhança;

Agrupamentos Escalares

- Primeiramente, calcula-se uma matriz C^I inicial com os coeficientes de correlação de alguma forma;
- Seja c_u^l a linha (vetor) de C^l referente ao termo k_u e c_v^l a linha (vetor) referente a k_u ;
- Calcula-se então uma nova matriz de correlação local \overline{C}^l onde cada coeficiente \overline{c}^l_{uv} quantifica uma similaridade entre os vetores c^l_u e c^l_v obtidos com as correlações iniciais;
- É comum quantificar essa similaridade através do cosseno entre c_u^l e c_{vv}^l .

Agrupamentos Escalares

Assim:

$$\bar{c}_{uv}^{l} = \cos(c_{u}^{l}, c_{v}^{l}) = \frac{\sum_{i=1}^{N} c_{ui}^{l} \times c_{vi}^{l}}{\sqrt{\sum_{i=1}^{N} (c_{ui}^{l})^{2}} \times \sqrt{\sum_{i=1}^{N} (c_{vi}^{l})^{2}}}$$

• Desse modo, analisando a linha \overline{c}_u^l , obtemos os termos com maior correlação a k_u para fazer a expansão da consulta.

Expansão de consultas

- A expansão de consultas é um procedimento importante, pois tende a melhorar a revocação;
- Todavia, se não houver cuidado, a precisão pode cair. São necessários testes para que a expansão fique bem ajustada.