رياضية	علوم	ڡ	بال	2
·				

المعامل: 09

مدة الإنجاز: أربع ساعات

تجريبي دورة ماي 2010 مادة الرياضيات

الأكاديمية الجهوية للتربية و التكوين جهة الرباط سلا زمور زعير نعير نيابة الخميسات

التمرین رقم 01:

: نزوں المجموعة \mathbb{R}^2 بقانون التركيب الداخلي \mathbb{R} المعرف بما يلي

$$orall (x,y) \in \mathbb{R}^2$$
 , $orall (a,b) \in \mathbb{R}^2$: $(x,y) T(a,b) = (xa-yb,xb+ya+2yb)$. $G = \left\{ (x,y) \in \mathbb{R}^2 \, / \, x+y \neq 0 \right\}$: و نعتبر المجموعة :

. بين أG جزء مستقر من G بين أG جزء مستقر من G بين أG بين أG بين أG

.
$$\mathbf{E} = \left\{ M\left(x,y\right) = \begin{pmatrix} x+y & y \\ 0 & x+y \end{pmatrix} / \left(x,y\right) \in G \right\}$$
 نعتبر المجموعة -22

. $\forall (x,y) \in G; f((x,y)) = M(x,y):$ يلمن G نميكن G نميكن G نميكن و ليكن G بين أن G جزء مستقر من G بين أن G جزء مستقر من G

(E, imes) . ثم إستنتج بنية (G,T) . ثم إستنتج بنية (E, imes) . ثم إستنتج بنية

G ج- حدد مقلوب المصفوفة $M\left(x,y
ight)$ تكل من $M\left(x,y
ight)$ من

. $\mathrm{M}_2(\mathbb{R})$. ميث I_2 هي المصفوفة الوحدة في H_2 . ميث A_2

• التمرين رقم 02:

المستوى العقدي (P) منسوب إلى معلم متعامد ممنظم ومباشر (P) .

. z'=iz+(1+i) : بعتبر التحويل R الذي يربط كل نقطة $M\left(z\right)$ بالنقطة $M\left(z\right)$ بالنقطة R بين أت R دورات محددا لحق مركزه و قياسا لزاويته .

. Rب- أعط الكتابة العقدية للدورات العكسى R^{-1} للدورات

2)- نعتبر في المجموعة ٢ ، المعادلة:

$$(E): -iz^3 - 3(1+i)z^2 - 6z - 10 + 2i = 0$$

. 8 بين أن عددا عقديا z يكون حلا ل (E) إذا و فقط إذا كان z' جذر المكعبا للعدد

 (P) ب إستنتج مجموعة حلول المعادنة (E) ، نتكن (E) ، نتكن و (P) صورها في المستوى العقدي

ج- بين أن مجموعة النقط $M\left(z
ight)$ من $M\left(z
ight)$ بحيث : z

بالمثلث ABC ، ثم أنشىء في المستوى العقدي $\operatorname{(P)}$ المثلث ABC و الدائرة المحيطة به .

التمرین رقم 33:

. (E) : 28x-15y=-6 : نعتبر في المجموعة $\mathbb{Z} imes\mathbb{Z}$ ، المعادلة

. (E) عن المعادلة (3,6) عن المعادلة (1)

 $\mathbb{Z} imes \mathbb{Z}$ بـ حن في $\mathbb{Z} imes \mathbb{Z}$ المعادنة

$$z \equiv 8[28]$$
 . (S): $z \equiv 8[28]$: النظمة $z \equiv 2[15]$

3)- تطبيق:

يبعث منار برج إشارة ضوئية صفراء اللون على رأس كل 15 دقيقة و أخرى حمراء اللون على 0h2 min على رأس كل 28 دقيقة ، لوحظ إنبعاث إشارة صفراء اللون عند اللحظة ذات التاريخ : 0h8 min و إنبعاث الإشارة الحمراء عند اللحظة ذات التاريخ : 0h8 min .

- → حدد تاريخ اللحظة التي ستتطابق فيها إنبعاث الإشارتين الضوئيتين لأول مرة .
 - التمري<u>ن رقم 04</u>:
 - ◄ الجزء الأول:

. $\mathbf{g}(x) = xe^{-x}$: يلي بالدالة العدادية \mathbf{g} المعرفة على المعرفة على يلي

. \mathbb{R} على على الدالة g على الدالة g على الدالة g

. $(\forall x \in \mathbb{R}); g(x) \leq \frac{1}{e}$: استنتج أن -2

◄ الجزء الثاني:

. $f(x) = \frac{e^x}{e^x - x}$: يلي الدالة العددية f المعرفة بما يلي

. $\left(O, \overrightarrow{i}, \overrightarrow{j}
ight)$ المنحنى الممثل للدالة f في معلم متعامد و ممنظم المثل الدالة $\left(C_{\mathrm{f}}
ight)$

 \mathbb{R} معرفة على f معرفة على . f

ب- أحسب النهايتين : $\lim_{x \to -\infty} f\left(x\right)$ و $\lim_{x \to +\infty} f\left(x\right)$ ، ثم أول هندسيا النتيجتين .

 $(orall x\in\mathbb{R}); f^{'}(x)=rac{(1-x)e^{x}}{\left(e^{x}-x
ight)^{2}}:$ و أن \mathbb{R} و أن \mathbb{R} و أن $f^{'}$

- استنتج منحى تغيرات f ، ثم ضع جدول تغيراتها .

ه - أنشىء المنحنى $\left(C_{
m f}
ight)$ و للمنحنى المنحنى المنحنى (للمنحنى المنحنى المنحنى) .

.
$$f\left([1;+\infty[
ight)$$
 و $f\left([0;1]
ight)$. أ-حدد

.
$$f\left(\left[1; \frac{e}{e-1}\right]\right) \subset \left[1; \frac{e}{e-1}\right]$$
: نب استنتج أن $\left(\forall x \in \mathbb{R}^+\right); 1 \leq f\left(x\right) \leq \frac{e}{e-1}$ نب استنتج أن الم

$$a$$
 ج- بين أن المعادلة : a تقبل حلا وحيدا a في المجال a تقبل حلا وحيدا a تقبل حلا وحيدا a

.
$$(\forall x \in \mathbb{R})$$
; $\mathbf{f}'(x) = \frac{-1}{e} [\mathbf{f}(x)]^2 \mathbf{g}(x-1)$: أ- تحقق من أن أن أمن أن

.
$$(\forall x \in [1; +\infty[); |f'(x)| \leq \frac{1}{(e-1)^2} :$$
ب- بين أن $= \frac{1}{(e-1)^2}$

.
$$\forall (x,y) \in ([1;+\infty[)^2;|f(x)-f(y)| \leq \frac{1}{(e-1)^2}|x-y|:$$
 واستنتج أن $= -\frac{1}{e}$

الجزء الثالث:

.
$$(\forall n\in\mathbb{N}); u_{n+1}=\mathrm{f}\left(u_{n}\right)$$
 و تتكن $u_{0}=1:$ ينكن المتنائية المعرفة بما يلي $u_{0}=1:$

.
$$(\forall n \in \mathbb{N}); 1 \le u_n \le \frac{e}{e-1}:$$
يين أن -(1

.
$$(\forall n \in \mathbb{N}); |u_{n+1} - \alpha| \leq \frac{1}{(e-1)^2} |u_n - \alpha| : نام المال ا$$

$$\lim_{n \to +\infty} u_n = lpha :$$
 ب- إستنتج أن المتتالية $\left(u_n
ight)_{n \in \mathbb{N}}$ متقاربة و أن

الجزء الرابع:

.
$$\mathbf{F}(x) = \int_0^{x^2} \mathbf{f}(t) dt$$
 : يلي \mathbb{R} بما يلي $\mathbf{F}(t)$ الدالة المعرفة على $\mathbf{F}(t)$

.
$$(\forall x \in [1; +\infty[); \int_{1}^{x^{2}} f(t) dt \ge (x^{2}-1): نام بين أن -1$$

$$\lim_{x o +\infty} rac{\mathrm{F}(x)}{x}$$
 و $\lim_{x o +\infty} \mathrm{F}(x)$ و استنتج کل نهایة من النهایتین و النهایتین و

.
$$(\forall x \in \mathbb{R}); F'(x) = 2x.f(x^2):$$
 و أن \mathbb{R} و أن على \mathbb{R} قابلة للإشتقاق على \mathbb{R} على \mathbb{R}

ب- إستنتج منحى تغيرات
$${f F}$$
 ، ثم ضع جدول تغيراتها .