Statistic Stuffs

Roberto Antoniello

October 5, 2022

I will drop here some statistic concepts I liked during the course I had at University of Milan.

1 Gini index

There are two types of Gini indexes. One has the purpose of telling how much a sample is heterogeneous. The other one is used for concentration. We will talk about the first one we have mentioned and is defined as follow:

$$I = 1 - \sum_{j=1}^{k} f_j^2$$

This index is always less than 1 and always more than 0.

$$0 \le I \le 1$$

So we are subtracting the squared relative frequencies from one. we know that:

$$\forall j f_j \ge 0 \longrightarrow \sum_{j=1}^k f_j = 1$$

This implies that $\exists \acute{j}: \acute{f_j} > 0 \longrightarrow f_j^2 > 0$.

$$\sum_{j=1}^{k} f_j^2 > 0 \longrightarrow I < 1$$

as said in before.

We can consider also that:

$$\sum_{j=1}^{k} f_j^2 \le \sum_{j=1}^{k} f_j$$

This implies that i

$$1 - \sum_{j=1}^k f_j^2 \ge 0$$

We have just demonstrated what we said a few moments ago. $0 \le I < 1$.

2 Probability calculus

Before we can talk about probability, we have to define a probability function. So we need to define as first Ω as the set of all possibles outcomes. Then we can say what is an event, which is just a subset of Ω . Now let's define what is an Event algebra:

$$\mathcal{A} = E_i \subseteq \Omega$$

 E_i are all the subsets events in Ω . This algebra has to respect three rules:

- 1. $\Omega \in \mathcal{A}$
- 2. $\forall E \subseteq \Omega \longrightarrow E \in \Omega \rightarrow \bar{E} \in \Omega$
- 3. $\forall E, F \subseteq \Omega \longrightarrow E \in \mathcal{A}, F \in \mathcal{A} \rightarrow E \cup F \in \mathcal{A}$

The third rule can be extended to this:

$$\forall i = 1, 2, ..., nE_i \subseteq \Omega, E_i \in \mathcal{A} \to \bigcup_{i=1}^n E_i \in \mathcal{A}$$

Finally we can define the probability function.

$$P: \mathcal{A} \to R$$

2.1 Kolmogorov axioms

Kolmogorov axioms are the fundamental rules of the probability calculus.

- A1. $\forall E \in \mathcal{A} \ 0 \le P(E) \le 1$
- A2. $P(\Omega) = 1$
- A3. $\forall E_1...E_n \ \forall i \ E_i \in \mathcal{A} \text{ mutually exclusive } \rightarrow P(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n P(E_i)$