The KdV equation

The entirety of this talk will concern the KdV equation

$$q_t + 6qq_x + q_{xxx} = 0$$
, $q(x,0) = q_0(x)$, $(x,t) \in \mathbb{R} \times (0,\infty)$.

We will initially assume that q_0 decays rapidly but that will be relaxed later.

The IST for the KdV equation is derived by considering the Lax pair

$$\mathcal{L}(t)\psi = -\psi_{xx} - q(x,t)\psi = \lambda\psi, \quad \psi_t = M(\lambda,q)\psi.$$

The specific form of $M(\lambda, q)$ is not important for this talk.

The existence of the Lax pair is really the statement that if q(x,t) solves the KdV equation then one can find simultaneous solutions $\psi_{\pm}(x,t,\lambda)$ of these two equations.

The KdV equation

The evolution of the KdV flow represents an isospectral deformation of the Schrödinger operator

$$\mathcal{L}(t)\psi = -\psi_{xx} - q(x,t)\psi.$$

The "spectrum" of $\mathcal L$ is constant in time.

The forward scattering transform amounts to determining linearly independent solutions $\psi_{\pm}(x,t,\lambda)$ of the Lax pair, $\mathcal{L}(t)\psi_{\pm}=\lambda\psi_{\pm}$, that are:

- 1. analytic on the complement of the spectrum of \mathcal{L} ,
- 2. are uniquely determined by jump/residue conditions on the spectrum, and

3. satisfy
$$\psi_{\pm}(x,t,\lambda) = e^{\pm i\sqrt{\lambda}x \pm 4i\sqrt{\lambda}^3 t} (1+o(1)), \lambda \to \infty$$
.

