Optimization-Based Control

Richard M. Murray Control and Dynamical Systems California Institute of Technology

Version v2.3h (20 Feb 2023)

© California Institute of Technology All rights reserved.

This manuscript is for personal use only and may not be reproduced, in whole or in part, without written consent from the author.

Bibliography

- [AF06] M. Athans and P. L. Falb. Optimal Control: An Introduction to the Theory and Its Applications. Dover, 2006. Originally published in 1963.
- [AM90] B. D. O. Anderson and J. B. Moore. Optimal Control Linear Quadratic Methods. Prentice Hall, Englewood Cliffs, NJ, 1990. Republished by Dover Publications, 2007.
- [ÅM08] K. J. Åström and R. M. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2008. Available at http://fbsbook.org.
- [ÅM21] K. J. Åström and R. M. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, second edition, 2021. Available at http://fbsbook.org.
- [Åst06a] K. J. Åström. Introduction to Stochastic Control Theory. Dover, New York, 2006. Originally published by Academic Press, New York, 1970.
- [Åst06b] K. J. Åström. Introduction to Stochastic Control Theory. Dover, New York, 2006. Originally published by Academic Press, New York, 1970.
- [BBM17] F. Borrelli, A. Bemporad, and M. Morari. Predictive Control for Linear and Hybrid Systems. Cambridge University Press, 2017.
- [BBvB+01] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mallor, Ken Shwaber, and Jeff Sutherland. The Agile Manifesto. Technical report, The Agile Alliance, 2001. Available at http://agilemanifesto.org.
- [BdTH+07] J. W. Burdick, N. du Toit, A. Howard, C. Looman, J. Ma, R. M. Murray, and T. Wongpiromsarn. Sensing, navigation and reasoning technologies for the darpa urban challenge. Technical report, California Institute of Technology, 2007. Available from https://apps.dtic.mil/sti/citations/ADA475619.
- [BH75] A. E. Bryson, Jr. and Y.-C. Ho. Applied Optimal Control: Optimization, Estimation, and Control. Wiley, New York, 1975.
- [Bro81] R. W. Brockett. Control theory and singular Riemannian geometry. In New Directions in Applied Mathematics, pages 11–27. Springer-Verlag, New York, 1981.
- [CHHR22] N. Correll, B. Hayes, C. Heckman, and A. Roncone. Introduction to Autonomous Robots: Mechanisms, Sensors, Actuators, and Algorithms. MIT Press, Cambridge, MA, 1st edition, 2022.
- [dB78] C. de Boor. A Practical Guide to Splines. Springer-Verlag, 1978.

B-2 BIBLIOGRAPHY

[Dra55] C. S. Draper. Flight control. Journal Royal Aeronautical Society, 59(July):451–477, 1955. 45th Wilber Wright Memorial Lecture.

- [FGM⁺21] S. Fuller, B. Greiner, J. Moore, R. Murray, R. van Paassen, and R. Yorke. The python control systems library (python-control). In *Proc. IEEE Control and Decision Conference*, 2021.
- [FLMR92] M. Fliess, J. Levine, P. Martin, and P. Rouchon. On differentially flat non-linear systems. Comptes Rendus des Séances de l'Académie des Sciences, 315:619–624, 1992. Serie I.
- [FLMR95] M. Fliess, J. Levine, P. Martin, and P. Rouchon. Flatness and defect of non-linear systems: Introductory theory and examples. *International Journal of Control*, 61(6):1327–1361, 1995.
- [Fri04] B. Friedland. Control System Design: An Introduction to State Space Methods. Dover, New York, 2004.
- [GMSW] P. E. Gill, W. Murray, M. A. Saunders, and M. Wright. User's Guide for NPSOL 5.0: A Fortran Package for Nonlinear Programming. Systems Optimization Laboratory, Stanford University, Stanford, CA 94305.
- [GS01] G. R. Grimmett and D. R. Stirzaker. Probability and Random Processes. Oxford University Press, third edition, 2001.
- [HO01] J. Hauser and H. Osinga. On the geometry of optimal control: The inverted pendulum example. In *American Control Conference*, 2001.
- [Isi89] A. Isidori. Nonlinear Control Systems. Springer-Verlag, 2nd edition, 1989.
- [Jad01] A. Jadbabaie. Nonlinear Receding Horizon Control: A Control Lyapunov Function Approach. PhD thesis, California Institute of Technology, Control and Dynamical Systems, 2001.
- [JSK99] M. Jankovic, R. Sepulchre, and P. V. Kokotović. CLF based designs with robustness to dynamic input uncertainties. Systems Control Letters, 37:45– 54, 1999.
- [JYH01] A. Jadbabaie, J. Yu, and J. Hauser. Unconstrained receding horizon control of nonlinear systems. IEEE Transactions on Automatic Control, 46(5):776–783, 2001.
- [Kal64] R. E. Kalman. When is a linear control system optimal? J. Basic Engrg. Trans. ASME Ser. D, 86:51–60, 1964.
- [Kel17] M. Kelly. An introduction to trajectory optimization: How to do your own direct collocation. SIAM Review, 59(4):849–904, 2017.
- [KKK95] M. Krstić, I. Kanellakopoulos, and P. Kokotović. Nonlinear and Adaptive Control Design. Wiley, 1995.
- [KKM91] I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse. Systematic design of adaptive controllers for feedback linearizable systems. *IEEE Transactions on Automatic Control*, 36(11):1241–1253, 1991.
- [KV86] P. R. Kumar and P. Varaiya. Stochastic Systems: Estimation, Identification, and Adaptive Control. Prentice Hall, Inc., 1986.
- [LAMK17] Sikang Liu, Nikolay Atanasov, Kartik Mohta, and Vijay Kumar. Search-based motion planning for quadrotors using linear quadratic minimum time control. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2872–2879, 2017.

BIBLIOGRAPHY B-3

[Lév10] Jean Lévine. On necessary and sufficient conditions for differential flatness. Applicable Algebra in Engineering, Communication and Computing, 22(1):47–90, 2010.

- [Lib10] D. Liberzon. Calculus of variations and optimal control theory: A concise introduction. Online notes, 2010. Retrieved, 16 Jan 2022.
- [LM67] E. B. Lee and L. Markus. Foundations of Optimal Control Theory. Robert E. Krieger Publishing Company, 1967.
- [LP15] A. Lindquist and G. Picci. Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification. Springer, Berlin, Heidelberg, 2015.
- [LS95] F. L. Lewis and V. L. Syrmos. Optimal Control. Wiley, second edition, 1995.
- [Lue97] D. G. Luenberger. Optimization by Vector Space Methods. Wiley, New York, 1997.
- [LVS12] F. L. Lewis, D. L. Vrabie, and V. L. Syrmos. Optimal Control. John Wiley & Sons, Ltd, 2012.
- [MA73] P. J. Moylan and B. D. O. Anderson. Nonlinear regulator theory and an inverse optimal control problem. *IEEE Trans. on Automatic Control*, 18(5):460–454, 1973.
- [MDP94] P. Martin, S. Devasia, and B. Paden. A different look at output tracking— Control of a VTOL aircraft. Automatica, 32(1):101–107, 1994.
- [MFHM05] M. B. Milam, R. Franz, J. E. Hauser, and R. M. Murray. Receding horizon control of a vectored thrust flight experiment. *IEE Proceedings on Control Theory and Applications*, 152(3):340–348, 2005.
- [MHJ⁺03] R. M. Murray, J. Hauser, A. Jadbabaie, M. B. Milam, N. Petit, W. B. Dunbar, and R. Franz. Online control customization via optimization-based control.
 In T. Samad and G. Balas, editors, Software-Enabled Control: Information Technology for Dynamical Systems. IEEE Press, 2003.
- [Mil03] M. B. Milam. Real-Time Optimal Trajectory Generation for Constrained Dynamical Systems. PhD thesis, California Institute of Technology, 2003.
- [MM99] M. B. Milam and R. M. Murray. A testbed for nonlinear flight control techniques: The Caltech ducted fan. In Proc. IEEE International Conference on Control and Applications, 1999.
- [MM02] M. Milam and R. M. Murray et al. NTG: Nonlinear Trajectory Generation library. http://github.com/murrayrm/ntg, 2002. Retrieved, 28 Jan 2023.
- [MRRS00] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Constrained model predictive control: Stability and optimality. *Automatica*, 36(6):789– 814, 2000.
- [Mur96] R. M. Murray. Trajectory generation for a towed cable flight control system. In Proc. IFAC World Congress, 1996.
- [Mur97] R. M. Murray. Nonlinear control of mechanical systems: A Lagrangian perspective. *Annual Reviews in Control*, 21:31–45, 1997.
- [PBGM62] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. The Mathematical Theory of Optimal Processes. Wiley-Interscience, 1962. (translated from Russian).
- [PND99] J. A. Primbs, V. Nevistić, and J. C. Doyle. Nonlinear optimal control: A control Lyapunov function and receding horizon perspective. Asian Journal of Control, 1(1):1–11, 1999.

BIBLIOGRAPHY I-1

[QB97] S. J. Qin and T. A. Badgwell. An overview of industrial model predictive control technology. In J.C. Kantor, C.E. Garcia, and B. Carnahan, editors, Fifth International Conference on Chemical Process Control, pages 232–256, 1997.

- [RM98] M. Rathinam and R. Murray. Configuration flatness of Lagrangian systems underactuated by one control. SIAM Journal of Control and Optimization, 36(1):164–179, 1998.
- [RMD17] J.B. Rawlings, D.Q. Mayne, and M. Diehl. Model Predictive Control: Theory, Computation, and Design. Nob Hill Publishing, 2017.
- [Rug90] W. J. Rugh. Analytical framework for gain scheduling. In Proc. American Control Conference, pages 1688–1694, 1990.
- [SC92] R. Shishko and R. G. Chamberlain. NASA systems engineering handbook. Technical report, National Aeronautics and Space Administration, 1992.
- [Sha90] J. S. Shamma. Analysis of gain scheduled control for nonlinear plants. *IEEE Transactions on Automatic Control*, 35(12):898–907, 1990.
- [SJK97] R. Sepulchre, M. Jankovic, and P. V. Kokotović. *Constructive Nonlinear Control.* Springer, London, 1997.
- [Son83] E. D. Sontag. A Lyapunov-like characterization of asymptotic controllability. SIAM Journal of Control and Optimization, 21:462–471, 1983.
- [vNM98] M. J. van Nieuwstadt and R. M. Murray. Rapid hover to forward flight transitions for a thrust vectored aircraft. *Journal of Guidance, Control, and Dynamics*, 21(1):93–100, 1998.
- [vNRM98] M. van Nieuwstadt, M. Rathinam, and R. M. Murray. Differential flatness and absolute equivalence. SIAM Journal of Control and Optimization, 36(4):1225–1239, 1998.

Index

actuator innovations process, 6-4 saturation, 1-3 integral cost, 3-5 algebraic Riccati equation, 3-13 Kalman filter recursive form, 6-2 bang-bang control, 3-10 binomial distribution, 5-3 Lagrange multipliers, 3-3 control Lyapunov function, 4-5 linear quadratic, 3-5 cost function, 3-1 linear quadratic Gaussian control problem, costate variables, 3-6 6-6 linearization, 2-3 decision-making layer, 1-9 locally positive definite, 4-5 defect, for a differentially flat system, 2-15 design V, 1-2 matrix differential equation, 3-12 differential flatness, 2-8 mean, 5-4, 5-7 defect, 2-15 mechanical systems, 2-15 dynamic programming, 3-18 motion primitive, 2-18 error system, 2-3 noise intensity, 5-14 normal distribution, 5-4 events, 5-1expectation, 5-7 exponential distribution, 5-4 operating envelope, 1-8 optimal control problem, 3-4 extended Kalman filter, 6-5 extremum, 3-4 optimal value, 3-1 optimization, 3-1 Ornstein-Uhlenbeck process, 5-13 feasible trajectory, 3-5 feedback regulation layer, 1-8 feedforward, 2-4 Poisson distribution, 5-3 positive definite function, 4-5 final cost, 3-5 probability distribution, 5-1 finite horizon, 3-5 probability mass function, 5-2 flat flag, 2-8 probability measure, 5-2 gain scheduling, 2-4 Gaussian distribution, 5-4 random process, 5-8 random variable, 5-2 Hamilton-Jacobi-Bellman equation, 3-18 receding horizon control, 2-3, 4-2 Hamiltonian, 3-6 regression analysis, 1-3 hardware-in-the-loop simulation (HIL), 1-3 residual random process, 6-3 Harrier AV-8B aircraft, 3-16 Riccati ODE, 3-12 sample space, 5-1 infinite horizon, 3-5 information filter, 7-7 smoothness, 1-3 information matrix, 7-7 stabilizable, 4-6

INDEX I-3

standard deviation, 5-4

terminal cost, 3-5 trajectory generation layer, 1-8 two point boundary value problem, 3-12

uniform distribution, 5--4

I-4 INDEX