ANALYSIS CREDIT RISK ASSESSMENT

Business Understanding

- 1. Credit risk is known as the risk of borrower's failure to repay a loan
- Assessing borrower's risk to repay the loan is a crucial thing in credit risk assessment
- 3. We can use machine learning to automate the process

Tools

- 1. Descriptive analysis
- 2. Graph analysis
- 3. Predictive modelling (classification)

Analytical Approach

- I required a dataset of customer loan from financial company
- The dataset is collected from a company

- This dataset has 74 columns / features
- Consists of 52 numerical & 22 non-numerical features
- Many features have missing values
- 2. There are 17 null features

Data Understanding

ANALYSIS CREDIT RISK ASSESSMENT

- Missing Value: Removing and Imputing
- Feature Engineering: Categorical Encoding, Log Transform, Standardization
- Selection **Feature** Correlation using **Analysis**
- Removing outliers using IQR Method

Target Variable

- Good Loan (1): Fully Paid, Does not meet the credit policy. Status: Fully Paid
- Bad Loan (0): Charged Off, Does not meet the credit policy. Status: Charged Off, Default, Late (31-120 days)

Exploratory Data

Analysis

What are the employee titles of our borrowers?

How about classifying grade towards our borrower and the loan status?

ANALYSIS CREDIT RISK ASSESSMENT

- . 70% Training & 30% Testing
- 2. I used SMOTE for handling imbalanced class •
- All steps are handled by Pipeline

Evaluation Metrics: •

- Main: False Negative (FN) & Recall from "0" (I minimized wrong predicted bad loan)
- Additional: ROC-AUC & KolmogorovSmirnov (KS)

	Model	FN	Recall	ROC-AUC	KS
	Random Forest	608	96%	99.41%	94.40%
	Gradient Boosting Trees	386	97%	99.48%	94.28%
	XGBoost	447	97%	99.43%	93.83%
	Voting Classifier	420	97%	99.48%	94.34%