

WizFi210 Datasheet

(Version 1.20)

WizFi220 follows all of information described in this documents

©2013 WIZnet Co., Ltd. All Rights Reserved.

For more information, visit our website at http://www.wiznet.co.kr

Certification Information

CE for Class B ITE

INFORMATION TO THE USER

Hereby, WIZnet. Declares that these WizFi210 and WizFi220 are in compliance with the essential requirements

and other relevant provisions of directive 1999/5/EC.

WARNING: These are the class B products. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

FCC for Class B ITE

INFORMATION TO THE USER

These equipments have been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no Guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

WARNING: These equipments may generate or use radio frequency energy. Changes or modifications to this equipment may cause harmful interference unless the modifications are expressly approved in the instruction manual. The user could lose the authority to operate this equipment if an unauthorized change or modification is made.

TELEC

Equipment: Wireless Module

Model: WizFi210 UFL antenna type, WizFi210 Chip antenna type

Made in Korea

KCC for Class B ITE

INFORMATION TO THE USER

이 기기는 가정용(B급) 으로 전자파 적합등록을 한 기기로서 주거지역에서는 물론 모든 지역에서 사용할 수 있습니다.

- Trade Name or Applicant : WIZnet Co., Ltd.
- Equipment Name : Wireless LAN Module
- Model Number : WizFi210 / WizFi220
- Manufacturer / Country of Origin : WIZnet, Co., Ltd. / KOREA
- Certification Number: KCC-CRM-WWW-WIZFI210 / KCC-CRM-WWW-WIZFI220

WARNING: 해당 무선설비는 운용 중 전파혼신의 가능성이 있으므로 인명안전과 관련된 서비스는 할 수 없습니다.

Document Revision History

Date	Revision	Changes	
2011-03-24	V1.0	Official Release	
2011-05-24	V1.01	Changed Power Consumption and RF Output Power Added Auto Reconnect AT Command(AT+XAR) Added Certification Information	
2011-09-05	V1.10	Changed Evaluation Board Changed GPIO number(HW Trigger, Button) Changed AT+XEHT Command Added Limited AP Feature Added WizFi220 Specs	
2012-01-11	V1.11	Added UART baud rate(460800, 921600bps) Added EXT_nRESET description Added FAQ Added AT+DHCPSRVR Command Added Product contents	
2012-10-24	V1.12	Added AT+WAUTO Option(2 for Limited AP mode) Added FAQ(Reducing the disassociation event) Removed unused AT Commands Removed some features for customizing f/w	
2013-03-08	V1.13	Added AT+XRESET Command Added max/min power value of AT+WP command	
2013-03-12	V1.14	Added explanation of AT+XRESET Command Added FAQ	
2013-05-06	V1.2	Divided two documents, Datasheet for Hardware Engineer and Programmers' guide for Software Engineer. More detail information included in datasheet.	

Information in this document is belived to be accurate and reliable. However, WIZnet does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

WIZnet reserves the right to make changes to information published in this document, including without limitation specifictions and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

<Contents>

1. Overvie	ew	-1
2. Brief Sp	pecifications	-2
3. Block D	Diagram3-	-3
4. Pin Des	scription4-	-4
4.1.	Pin Map4-	-4
4.2.	Pin Description4-	-4
4.3.	Factory Reset Timing Diagram4-	-7
5. EXT_nF	RESET guide5-	-8
6. RF Spe	ecification6-	-9
7. Power 0	Consumption7-1	LΟ
7.1.	WizFi210 Mode 1(VDDRTC=VDD=3.3V, VDDIO=1.8V, Temp=25°C)	LΟ
7.2.	WizFi210 Mode 2(VDDRTC=VDD=3.3V, VDDIO=3.3V, Temp=25°C)	lΟ
7.3.	WizFi220 Mode 1(VDDRTC=VDD=3.3V, VDDIO=1.8V, Temp=25°C)	l 1
7.4.	WizFi220 Mode 2(VDDRTC=VDD=3.3V, VDDIO=3.3V, Temp=25°C)	l 1
8. Dimens	sion	12
8.1.	Module Dimension8-1	12
8.2.	Recommended Footprint Dimension8-1	13
9. Electric	al characteristics9-1	l 4
9.1.	Operating Condition9-1	l 4
9.2.	Digital Input characteristics9-1	l 4
9.3.	Digital Output characteristics 9-1	14
9.4.	Tri-State I/O characteristics9-1	15
9.5.	RTC Input characteristics9-1	15
9.6.	RTC Output characteristics9-1	16
9.7.	Internal 1.8V regulator characteristics9-1	16
9.8.	Communication Interface9-1	16
9	9.8.1. UART Interface characteristics9-1	16
9	9.8.2. SPI Interface characteristics	16
10.Reflow	/ Condition	18
11.Circuit	guide for On-board FW upload	19
12 Refere	once Schematic 12–9	20

<Table>

TABLE 1 BRIEF SPECIFICATION	2-2
TABLE 2 WIZFI210 PIN DESCRIPTION	4-7
TABLE 3 FACTORY RESET TIMING VALUE	4-7
TABLE 4 RF SPECIFICATION	6-9
TABLE 5 WIZFI210 MODE 1(VDDIO = 1.8V)	7-10
TABLE 6 WIZFI210 MODE 2(VDDIO = 3.3V)	7-10
TABLE 7 WIZFI220 MODE 1(VDDIO = 1.8V)	7-11
TABLE 8 WIZFI220 MODE 2(VDDIO = 3.3V)	7-11
TABLE 9 OPERATING CONDITION	9-14
TABLE 10 DIGITAL INPUT CHARACTERISTICS	9-14
TABLE 11 DIGITAL OUTPUT CHARACTERISTICS	9-14
TABLE 12 TRI-STATE I/O CHARACTERISTICS	9-15
TABLE 13 RTC INPUT CHRACTERISTICS	9-15
TABLE 14 RTC OUTPUT CHARACTERISTICS	9-16
TABLE 15 INTERNAL 1.8V REGULATOR CHARACTERISTICS	9-16
TABLE 16 SPI INTERFACE TIMING VALUE	9-17
TABLE 17 REFLOW CONDITION	10-18

<Figure>

FIGURE 1 WIZFI210 BLOCK DIAGRAM	3-3
FIGURE 2 WIZFI220 BLOCK DIAGRAM	3-3
FIGURE 3 WIZFI210 PIN MAP	4-4
FIGURE 4 FACTORY RESET TIMING DIAGRAM	4-7
FIGURE 5 REFERENCE SCHEMATIC FOR EXT_NRESET	5-8
FIGURE 6 MODULE DIMENSION	8-12
FIGURE 7 RECOMMENDED FOOTPRINT DIMENSION	8-13
FIGURE 8 SPI INTERFACE TIMING DIAGRAM	9-16
FIGURE 10 REFLOW CHART	10-18
FIGURE 11 REFERENCE SCHEMATIC FOR ON-BOARD FW UPLOAD	11-19
FIGURE 12 V _{IN} = BATTERY, STANDBY MODE SUPPORT	12-20
FIGURE 13 V _{IN} = DC ADAPTOR, ALWAYS ACTIVE	12-20

1. Overview

WizFi210/220(hereinafter WizFi210) is a Wi-Fi module that provides the robust and stale Wi-Fi connectivity with low power consumption. WizFi210 performs all functions for Wi-Fi connectivity and TCP/IP processing. All you have to do is just sending commands to the module via serial interface.

- Support 802.11b only
- Serial interface
 - ◆ UART(up to 921Kbps baud rate)
 - ◆ SPI(up to 2.25MHz clock)
- Support AT commands
- Support to multi sockets up to 16 concurrently
- Plenty of TCP/IP functions
 - ◆ TCP, UDP, IP, ICMP,
- Ultra low power
 - Support to Sleep mode and Alarm input for waking up WizFi210 in sleep mode
- Plenty of Security mode
 - ♦ WEP, WPA, WPA2PSK, Enterprise mode(example EAP-TLS and so on)
- Support GPIOs
- Hardware accelerator for AES and RC4 encryption/decryption
- Plenty of Operation mode
 - ◆ Station mode(infrastructure)
 - ◆ Ad-hoc mode
 - ◆ Limited AP(Soft AP) mode without ethernet or Wifi interface for uplink

2. Brief Specifications

Specifications	Description			
Radio Protocol	IEEE 802.11b/g/n Compatible			
Supported Data Rates	11, 5.5, 2, 1 Mbps (IEEE 802.11b)			
Modulation	DSSS and CCK			
RF Operating Frequency	2.4 - 2.497 GHz			
Antenna Options	Chip antenna and U.FL connector for external antenna			
Networking Protocols	UDP, TCP/IP (IPv4), DHCP, ARP, DNS, HTTP/HTTPS Client			
	and Server ¹			
Power Consumption	Standby = 34.0 μA(WizFi210), 35.0 μA(WizFi220)			
(Typical)	Receive = 125.0 mA(WizFi210), 125.0 mA(WizFi220)			
	Transmit = 135.0 mA(WizFi210), 250.0 mA(WizFi220)			
RF Output Power (Typical)	8 ± 1 dBm (WizFi210)			
	17 ± 1.5 dBm (WizFi220)			
Security Protocols	WEP, WPA/WPA2-PSK, Enterprise(EAP-FAST, EAP-TLS,			
	EAP-TTLS, PEAP) ¹			
I/O Interface	UART, SPI ¹ , WAKE, ALARM, GPIOs			
Power Source	3.3V			
Dimensions	32 x 23.5 x 3 mm			

Table 1 Brief Specification

 $^{^{\}mbox{\tiny 1}}$ A dedicated SW is for support to this function

3. Block Diagram

WizFi210 and WizFi220 have the same functions and capabilities except their RF Transmission Power.

WizFi220 has extra PA inside for improving its RF Transmission Power.

Figure 1 WizFi210 block diagram

Figure 2 WizFi220 block diagram

4. Pin Description

4.1. Pin Map

Figure 3 WizFi210 Pin map

4.2. Pin Description

PIN	NAME	I/O	IN BIAS	DESCRIPTION
1	GND	Р	NA	Ground
2	NA	I	Pull-up	
3	NA	0	NA	
4	NA	I	NA	
5	NA	I	Pull-up	
6	NA	I	Pull-up	

	T		ı			
7	ALARM1	I	NA	Embedded Real Time Clock Wake Up Input 1		
8	NA	0	NA			
9	VBAT	Р	NA	Embedded Real Time Clock Power Supply		
10	DC_DC_CNTL	0	NA	VIN_3V3 Regulator Control Output		
11	ALARM2 (*)	I	NA	Embedded Real Time Clock Wake Up Input 2		
12	ADC1 (*)	I	NA	General Analog to Digital Converter 1		
13	ADC2 (*)	I	NA	General Analog to Digital Converter 2		
14	NA	I/O	Pull-down			
15	NA	I/O	Pull-down			
16	NA	I/O	Pull-down			
17	VOUT_1V8 (*)	Р	NA	Internal 1.8V Vout		
18	GND	Р	NA	Ground		
19	NA	I/O	Pull-down			
20	NA	I/O	Pull-down			
21	NA	I/O	Pull-down			
22	GPIO10	I/O	Pull-down	General Purpose Input Out-put		
23	GPIO19 (*)	I/O	Pull-down	General Purpose Input Output Data Received Indicator to Host while using SPI This is OUTPUT, means HOST_WAKEUP from WizFi210		
24	GPIO20	I	Pull-down	General Purpose Input Output		
25	GPIO21	I	Pull-down	Factory Reset(Normal High) Factory mode 1 : Limited AP & Web Server for configuration Factory mode 2 : Ad-hoc mode		
26	NA	0	Pull-down			
27	SPI_MISO (*)	0	Pull-up	SPI Slave Transmit Data Output to the HOST		
28	SPI_CLK (*)	I	Pull-up	SPI Slave Clock Input from the HOST		

	Γ	1	1			
29	SPI_CS (*)	I	Pull-up	SPI Slave Chip Select Input from the HOST		
30	SPI_MOSI (*)	I	Pull-down	SPI Slave Receive Data Input from the HOST		
31	GND	Р	NA	Ground		
32	VIN_3V3	Р	NA	Single Supply Port		
33	EN_1V8	I	NA	Internal 1.8V regulator enable port Active High		
34	VDDIO(**)	Р	NA	All I/O voltage domain (can be tied to VIN_3V3 or tied to HOST I/O supply)		
35	EXT_nRESET	I	Pull-up	Module Hardware Reset Input ²		
36	NA	I/O	Pull-down			
37	GPIO27 (*)	0	Pull-down	Firmware Program Enable WizFi210/220 operate as firmware download mode, if this is HIGH at booting On normal mode, this should be LOW		
38	NA	1	Pull-down			
39	NA	0	Pull-down			
40	UART0_TX	0	Pull-down	Universal Asynchronous Receiver Transmitter Output		
41	UARTO_RTS	0	Pull-down	Universal Asynchronous Receiver Transmitter Request to Send Output		
42	UART0_RX	ı	Pull-down	Universal Asynchronous Receiver Transmitter Input		
43	UARTO_CTS	I	Pull-down	Universal Asynchronous Receiver Transmitter Clear to Send Input		
44	GPIO31 (S_MODE)	0	Pull-down	Data mode / command mode status Indicator You can monitor this pin to know which mode is now. LOW: Data mode HIGH: Command mode		
45	GPIO30 (S_RX)	0	Pull-down	Serial Data Received		
46	GPIO29 (C_MODE)	I	Pull-down	Switch of Command mode or Data mode You can control this pin to switch some mode		

_

In case of WizFi220, after HW reset on EXT_nRESET, user should command, AT+XRESET inorder to initialize all memory and configuration inside WizFi220.
 WizFi210 DataSheet (WIZnet Co., Ltd.)

				LOW : Data mode
				HIGH : Command mode
GPIO28				AP Association status
47	(S_ASSOCIAT	0	Pull-down	LOW : associated
	E)			HIGH : disassociated
48	GND	Р	NA	Ground
49	EXT-ANT	Ю	NA	External Antenna pad

Table 2 WizFi210 Pin Description

4.3. Factory Reset Timing Diagram

Figure 4 Factory Reset Timing Diagram

Variable	Min	Тур	Max	
t1	200ms	300ms	500ms	
t2	200ms	300ms	500ms	

Table 3 Factory Reset Timing Value

5. EXT_nRESET guide

EXT nRESET pin is bidirectional.

EXT_nRESET pin is an output right at power-on, and kept it asserted while the 32KHz crystal is stabilizing. Once crystal is stabilized, RESET is de-assert and it becomes an input.

MCU does need to assert the signal if there is not any problem such as hang-up.

Note: Minimum pulse width for reset is two 32KHz clock.

Figure 5 Reference Schematic for EXT_nRESET

EXT_nRESET signal is active low signal .

It's an output during power up, and it notifies to host processor that WizFi210 device is out of power-on-reset. After power-on-reset, this pin becomes an input. To assert EXT_nRESET is required to initialize WizFi210 without Power-on-reset.

But there are some difference between Power-on-reset and asserting EXT_nRESET.

Power-on-reset clear and initialize all configuration information which is set in WizFi210, but asserting EXT-nRESET doesn't clear and initialize some configuration information. So, if user assert EXT_nRESET for initialization of WizFi210, user should place a command, "AT+XRESET" to WizFi210 for initialization of all configuration information successfully.

6. RF Specification

Specification	Description		
· · · · - · · ·	DSSS for 1, 2Mbps		
Modulation Technique	CCK for 5.5, 11Mbps		
Data Rate	IEEE 802.11b: 1, 2, 5.5 and 11Mbps		
Data Nate			
	-84dBm ± 1dB @ 11Mbps		
Receive Sensitivity	-88dBm ± 1dB @ 5.5Mbps		
(U.FL Connector version)	-90dBm ± 1dB @ 2Mbps		
	-94dBm ± 1dB @ 1Mbps		
Transmit power	WizFi 210 : 8dBm ± 1dB @ 11Mbps		
(U.FL Connector version)	WizFi 220 : 17dBm ± 1.5dB @ 11Mbps		
	USA: 2.400 ~ 2.483GHz		
Frequency Range	Europe: 2.400 ~ 2.483GHz		
Frequency Range	Japan: 2.400 ~ 2.497GHz		
	China: 2.400 ~ 2.483GHz		
	USA/Canada: 11 (1~11)		
	Major Europe Countries: 13 (1~13)		
Operating Channels	France: 4 (10~13)		
Operating Channels	Japan: 14 for IEEE 802.11b (1~13 or 14th),		
	13 for IEEE 802.11g (1~13)		
	Korea/China: 13 (1~13)		
	U.FL External Antenna Support(CON)		
Antenna	External Antenna Pad Support(EX)		
	Chip Antenna (Optional) (CA)		

Table 4 RF Specification

7. Power Consumption

7.1. WizFi210 Mode 1(VDDRTC=VDD=3.3V, VDDIO=1.8V, Temp=25°C)

WizFi 210	Min	Type	Max	Unit
Standby mode		35	50	110
(Only V _{DDRTC} is active)		3	30	μΑ
Idle mode			10	mA
(CPU running, WLAN disconnected)			10	IIIA
Receive		125	130	mA
(-81dBm RX sensitivity)		125	130	ША
Transmit		135	140	mA
(+8dBm at antenna port)		133	140	IIIA

Table 5 WizFi210 Mode 1(VDDIO = 1.8V)

7.2. WizFi210 Mode 2(VDDRTC=VDD=3.3V, VDDIO=3.3V, Temp=25°C)

WizFi 210	Min	Туре	Max	Unit
Standby mode		35	50	
(Only V _{DDRTC} is active)		35	50	μΑ
Idle mode			11	mA
(CPU running, WLAN disconnected)			11	IIIA
Receive		125	130	mA
(-81dBm RX sensitivity)		125	130	IIIA
Transmit		135	140	mA
(+8dBm at antenna port)		133	140	IIIA

Table 6 WizFi210 Mode 2(VDDIO = 3.3V)

7.3. WizFi220 Mode 1(VDDRTC=VDD=3.3V, VDDIO=1.8V, Temp=25°C)

WizFi 220	Min	Type	Max	Unit
Standby mode		35	50	μA
(Only V _{DDRTC} is active)		33	30	μΛ
Idle mode			12	mA
(CPU running, WLAN disconnected)			12	IIIA
Receive		125	130	mA
(-81dBm RX sensitivity)		125	130	IIIA
Transmit		250	260	mA
(+8dBm at antenna port)		230	200	IIIA

Table 7 WizFi220 Mode 1(VDDIO = 1.8V)

7.4. WizFi220 Mode 2(VDDRTC=VDD=3.3V, VDDIO=3.3V, Temp=25°C)

WizFi 220	Min	Туре	Max	Unit
Standby mode		35	50	μA
(Only V _{DDRTC} is active)		35	50	μΑ
Idle mode			13	mA
(CPU running, WLAN disconnected)			13	IIIA
Receive		125	130	mA
(-81dBm RX sensitivity)		125	130	IIIA
Transmit		250	260	mA
(+8dBm at antenna port)		230	200	IIIA

Table 8 WizFi220 Mode 2(VDDIO = 3.3V)

8. Dimension

8.1. Module Dimension

Figure 6 Module Dimension

8.2. Recommended Footprint Dimension

Figure 7 Recommended Footprint Dimension

9. Electrical characteristics

9.1. Operating Condition

	Min	Тур	Max	Unit
Operating Ambient Range	-40		+85	°C
RTC Supply Voltage	1.2	3.3	3.6	V
Single Supply Voltage	3.0	3.3	3.6	V

Table 9 Operating Condition

9.2. Digital Input characteristics

	Min	Тур	Max	Unit
IO Supply Voltage	1.62	1.8	1.98	V
	3	3.3	3.63	V
Input Low Voltage (V _{IL})	-0.3		0.25V _{DDIO}	V
Input High Voltage (V _{IH})	0.8V _{DDIO}		V_{DDIO}	V
Schmitt trig. Low to High threshold point (V_{T+})	1.5			V
Schmitt trig. High to Low threshold point (V_T)			1	V

Table 10 Digital Input Characteristics

9.3. Digital Output characteristics

	Min	Тур	Max	Unit
IO Supply Voltage	1.62	1.8	1.98	V
	3	3.3	3.63	V
Output Low Voltage (V _{IL})	0		0.4	V
Output High Voltage (V _{IH})	1.3		V_{DDIO}	V
Output rise time (t _{TLH})			7	ns
Output fall time (t _{THL})			7	ns

Table 11 Digital Output Characteristics

9.4. Tri-State I/O characteristics

	Min	Тур	Max	Unit
IO Supply Voltage	1.62	1.8	1.98	
	3	3.3	3.63	
Input Low Voltage (V _{IL})	-0.3		0.25V _{DDIO}	V
Input High Voltage (V _{IH})	0.8V _{DDIO}		V_{DDIO}	V
Schmitt trig. Low to High threshold point (V_{T+})	1.5			V
Schmitt trig. High to Low threshold point (V_{T-})			1	V
Pull-Up Resistor (R _u)	0.05		1	ΜΩ
Pull-Down Resistor (R _d)	0.05		1	V
Output Low Voltage (V _{OL})	0		0.4	V
Output High Voltage (V _{OH})	1.3		V_{DDIO}	V
Output rise time @ 3.3V (t _{ToLH})			7	ns
Output fall time @ 3.3V (t _{ToHL})			7	ns
Input rise time (t _{TiLH})			7	ns
Input fall time (t _{TiHL})			7	ns

Table 12 Tri-State I/O Characteristics

9.5. RTC Input characteristics

	Min	Тур	Max	Unit
RTC Supply Voltage (V _{DDRTC})	1.2		3.6	V
Input Low Voltage (V _{IL})	-0.3		0.25V _{DDRTC}	V
Input High Voltage (V _{IH})	0.8V _{DDRTC}		V_{DDRTC}	V
Schmitt trig. Low to High threshold point (V_{T+})	0.57V _{DDRTC}		0.68V _{DDRTC}	V
Schmitt trig. High to Low threshold point (V_{T-})	0.27V _{DDRTC}		0.35V _{DDRTC}	V

Table 13 RTC Input Chracteristics

9.6. RTC Output characteristics

	Min	Тур	Max	Unit
RTC Supply Voltage (V _{DDRTC})	1.2		3.6	V
Output Low Voltage (V _{OL})	0		0.4	V
Output High Voltage (V _{OH})	0.8V _{DDRTC}		V_{DDRTC}	V
Output rise time (t _{TLH})	19		142	ns
Output fall time (t _{THL})	21		195	ns

Table 14 RTC Output Characteristics

9.7. Internal 1.8V regulator characteristics

	Min	Тур	Max	Unit
Output Voltage (VOUT_1V8)		1.8		V
Maximum Output Current (IVOUT_1V8)		250	300	mA
1.8V Regulator Enable "H" Voltage (EN_1V8)	1.0		VIN_3V3	V
1.8V Regulator Enable "L" Voltage (EN_1V8)	0		0.25	V

Table 15 Internal 1.8V Regulator Characteristics

9.8. Communication Interface

9.8.1. UART Interface characteristics

9.8.2. SPI Interface characteristics

Figure 8 SPI Interface Timing Diagram

Parameter	Description	Minimum	Maximum	Unit
tSSetup	Minimum time between falling edge of Select line and first rising edge of SPI clock.	4 core SPI clock periods + 68 ns		mixed
tTxdDelay	Delay in Slave asserting TX line after falling edge of SPI clock, or the first bit after falling edge of the Select line.		4 core SPI clock periods + 68 ns	mixed
tRxdSetup	Time before rising edge of SPI clock by which received data must be ready	15		ns
tRxdHold	Time for which received data must be stable after rising edge of SPI clock	3 core SPI clock periods + 14 ns		mixed
tSSHold	Time for which the Select line will be held after the sampling edge for the final bit to be transferred	3 core SPI clock periods + 14 ns		mixed

Table 16 SPI Interface Timing value

10. Reflow Condition

	Condition	Recommend	Range	Unit
Pre-Heat	Temperature Ramp up rate for (A)	3	2~4	°C/s
	Pre-heat time (B)	130	60~180	sec
	Pre-heat ending temperature (C)	200	150~200	°C
Heating	Peak Temperature range (D)	236	230~240	°C
	Melting time that is the time over 218°C (E)	45	30~50	sec

Table 17 Reflow condition

Figure 9 Reflow Chart

11. Circuit guide for On-board FW upload

WizFi210 provides some specific firmware according to its services. Until now, there are four standard firmware and some customized firmware to specific customers.

WizFi210 decides its operating mode according to the input value of GPIO27. WizFi210 operates as programming mode when GPIO27's input value is "HIGH", otherwise running mode. WizFi210 communicate with PC via UART in order to upload another firmware, so you have to connect UART0 Rx and UART0 Tx to the external interface for communicating with PC.

So, we recommend that you make your board be capable to upload another firmware as Figure 7 below.

Figure 10 Reference schematic for On-Board FW Upload

12. Reference Schematic

Figure 11 V_{IN} = Battery, Standby mode support

Figure 12 V_{IN} = DC Adaptor, Always active