Калибриране на МЕМЅ Акселерометри

Курсов проект на:

Никола Тотев

ПО

Приложение на Математиката за Моделиране на Реални Процеси

Съдържание

Резюме	1
Въведение	4
Запознаване с акселерометри	2
MEMS акселерометри	2
Видове грешки	2
Constant Bias	3
Scaling Errors	3
Errors due to the non-orthogonality of the axes	••••
Математически модел	4
Входни данни	2
Очакван резултат	
Детайли калибрация	2
Използвани методи за калибрация	2
Метод на НМК	3
Метод на Нютон	3
Резултати	2
Практически приложения	4
- Приложения в индустрията	
Приложения в роботиката	
Пример проект по "Практическа роботика и умни неща"	
Заключения	4

Резюме

В рамките на този проект се разглежда задачата за калибриране на MEMS акселерометри. За целта е използвана линейна връзка между калибрираните данни и некалибрираните данни. Претроена е функция на грешките, която се минимизира, като се реши една система от 12 равнения.

В секция 1, се запознава с разлите видове акселерометри, по-подробно се разглежда начина на работа на MEMS акселерометрите, както и грешките, които се наблюдават при такъв вид сензори.

В секция 4 се дава повече информация за практическите приложение на МЕМС акселерометрите.

В секция 3 е представен алгоритъм за калибриране на MEMS акселерометри. В секцията е предоставено сравнение между резултатите, получени с вградените функции в С Маthematica и тези получени имплементирания от нас алгоритъм.

Въведение

• Акселерометри. MEMS акселерометри. Видове акселерометри.

Акселерометрите са сензори, който измерват ускорение, но основните видове са следните:

- о Пиезоелектричени (piezoelectric)
- о Пиезорезистивени (piezoresistive)
- Капацитивни акселерометри (capacitive accelerometers)
- о MEMS Акселерометри (MEMS Accelerometers)

Сега ще разгледаме по-подробно MEMS акселерометрите.

МЕМЅ е съкращение за *Microelectromechanical systems* и такъв вид акселерометри се изработва от силиций (фигура 1 показва начина на работа). Но от предимствата са им, че имат малки размери и лесно могат да бъдат използвани в проекти, където има ограничено място.

- Акселерометрите намират много приложения в индустрията, както и в хоби роботиката и електрониката. Тук ще посоча 3 основни приложения:
 - Използват се за диагностика на машини, като се следи за появата на вибрации.
 - Служат за да се измерва ускорението на роботи, например мобилни роботи.
 - Намират приложение в дронове и самолети.

Фигура 1 – Показва и начина на работа на MEMS акселерометър. При ускорение, сините части се движат и се отдалечават/приближават до фиксираните електроди.

• Видове грешки

Като всяко измервателно устройство и при акселерометрите има различни видове грешки, които се наблюдават. Основните видове, които се получават при производствот а

• Постоянно отклонение

Това е постоянно отклонение, което възниква при производство. В такъв случай в положение на покой сензора може да показва ускорение, различно от (X, Y, Z) (0, 0, 9.8)

- Отклонения в мерните единици Тази грешка означава, че данните, които идват от сензора са в неизвестна за нас мерна единица, вместо m/s например.
- Грешки, които идват от неортогоналността на осите

Тази грешка е отново грешка, която се появява при производството на сензора и както се показва в името означава, че осите X, Y, Z не са ортогонални една на друга. При производството на триосеви акселерометри, очакваме осите да са ортогонални, но тъй като технологията за производство не е съвършена, между осите се наблюдават ъгли между 86° \sim 94° . Тези отклонения водят го нежелани грешки.

Освен тези грешки възникват други грешки. Например грешки, които се появяват заради условията, при които работи акселерометърът или електромагнитен шум.

■Калибриране на MEMS акселерометри

 Постановка на математическата задача

Като входни данни използвам dataset от статията на MM Solutions AD за лабораторно калибриране на MEMS акселерометри от ESGI-95. Първоначални план беше да се използват данни от събствен сензор, но това не се реализира, защото при по-задълбочено проучване на сензорите, които са достъпни мога да се калибрират от производителя.

В *таблици 1* е показан пример за некалибрирани данни, а в таблица 2 са пресметнати нормите на тези данни.

Uncalibrated		
X	Υ	Z
0.686143985	9.693013241	0.146230973
0.307313184	-9.555131822	0.121707371
10.20588166	0.146627372	0.293913142
-9.235730337	0.149835656	-0.153514714

Таблица 1 – Не калибрирани данни по осите X, Y и Z

Norms Before Calibration
9.71837
9.56085
10.2112
9.23822
9.72837

Таблица 2 – Нормите получени от данните в таблица 1.

• Постановка на задачата

Когато сензорът се намира в покой и е успореден на земната повърхност, трябва да показва (X, Y, Z)=(0, 0, 9.8) или нормата на вектора да бъде 9.8. От таблиците 1 и 2 се вижда, че при сурови данни – данни директно от сензора, това условие не е изпълнено. Целта на този проект е да използва математически модел, който обработва данните по такъв начин, че да се стигне до норма на калибрираните вектори 9.8 или д алибрираданните.

• Математически модел

Както беше обяснено в предишната точка, ако един акселерометър е калибриран, то нормата на вектора v(X, Y,Z) е 9.8 или

$$|v| - 9.8 \approx 0.$$

Ако това дава нула, означава, че данните са калибрирани. Това ще го означа като Err(M, B).

Това може да се разглежда, като грешката от калибрацията. Важно е да съобразим, че в реалния живот, при наличието на много данни е невъзможно да се получи резултат точно равен на нула. Поради тази причина се стремим да е възможно най-близко до нула.

За да се калибрират данните използваме линейна връзка между калибрираните и суровите данни:

$$\begin{pmatrix}
X \\
Y \\
Z
\end{pmatrix} = \underbrace{\begin{pmatrix}
M_{xx} & M_{xy} & M_{xz} \\
M_{yx} & M_{yy} & M_{yz} \\
M_{zx} & M_{zy} & M_{zz}
\end{pmatrix}}_{M} \cdot \begin{pmatrix}
\hat{X} \\
\hat{Y} \\
\hat{Z}
\end{pmatrix} + \begin{pmatrix}
B_{x} \\
B_{y} \\
B_{z}
\end{pmatrix} \tag{1}$$

където

- векторът $\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$ е векторът от калибрираните данни.
- Матрицата М тази матрица се грижи за ортогоналнос на осите Х, Y, дакто и за мащаба. По диагонала са коефициентите за мащаба, а останалите са за ортогоналноста
- векторът $\begin{pmatrix} \hat{X} \\ \hat{Y} \end{pmatrix}$ представлява суровите данни от сензора.
- векторът В този вектор се грижи за коригирането на постоянното отместване.

След извършване на действията отдясно стигаме до следните уравнения:

$$X = M_{xx}x + M_{xy}x + M_{xz}x + B_{x}$$

$$Y = M_{yx}y + M_{yy}y + M_{yz}y + B_{y}$$
 (2)
$$Z = M_{zx}z + M_{zy}z + M_{xz}z + B_{z}$$

За да калибрираме един акселерометър е необходимо да намерим матрицата М и вектора b, което означава, че имаме 12 неизвестни коефициенти. За да америм неизвестните коефициенти, тъй като знаем вида на X, Y и Z както и първоначалните \hat{X} , \hat{Y} и \hat{Z} може да ги заместим в уравнение (1), и получаваме функцията

$$Err(M,B) = \sum_{i=1}^{n} (M_{xx}x_i + M_{xy}y_i + M_{xz}z_i + B_x)^2 + (M_{yx}x_i + M_{yy}y_i + M_{yz}z_i + B_y)^2 + (M_{zx}x_i + M_{zy}y_i + M_{xz}z_i + B_z)^2 - g^2$$
(3)

която трябва да минимизираме. Така задачата добива вида min Err(M,B).

Използвани методи за минимизиране на (3)

За да може да намерим минимума на (3) трябва да намерим частните производни спрямо 12-те неизвестни коефициенти. След като сме получили всичките производни ги приравняваме на нула, което означава, че трябва да решим нелинейна система с 12 уравнения и 12 неизвестни. За бързо решаването на тази система използваме метода на Нютон.

• Метод на Нютон

Фигура 3 — Графично представяне на метода на Нютон https://openstax.org/books/calculus-volume-1/pages/4-9-newtons-method

Формулите за метода на Нютон за едно уравнение а следните:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$
 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$. (4)

За да мога да го използвам, направихме наша имплементация на този метод във Wolfram Mathematica.

Този метод се използва за решаване на уравнения, както може да се приложи и за решаване на система от нелинейни уравнения тешаването на система се прави по формула (5)

$${x_1 \choose y_1} = {x_0 \choose y_0} - [J(x, y)]^{-1} {f_1(x_0, y_0) \choose f_2(x_0, y_0)}$$
(5)

при • Числени резултати

Norms After Calibration (LSM)
9.79577
9.7911
9.80487
9.79417
9.7825

Таблица 3 - Показва нормата от калибрираните данн<mark>⊯</mark> олучени при използване на вградените функции.

Norms After Calibration (NM)
9.79577
9.7911
9.80487
9.79417
9.7825

Таблица 4 - Показва нормата от калибрираните данни олучени при използване на имплементирания от нас метод на Нютон

Таблици 3 и 4 показват нормите след калибрацията на векторите. Както се вижда имплементацията на Метода на Нютон (*MH*), която съм направил, извежда еднакви резултати като Метода на Най-Малките Квадрати (*MHMK*), който използва вградени функции за минимизация.

M Matrix Values (LSM)		
1.00432	-0.0247	-0.0738
0.01773	1.01322	-0.0892
0.07967	0.08645	0.99275

Таблица 4 - Показва стойностите на вектора М получени при използване на вградените функции.

M Matrix Values (NM)		
0.22671	0.07337	0.97174
0.60662	0.7872	-0.1967
-0.772	0.64003	0.12634

Таблица 5 - Показва стойностите на вектора М получени при използване на имплементирания от нас метод на Нютон

Таблиците 5 и 6 показват стойностите на матрицата М. Както описах по-горе това са коефициентите, при които грешката (3) е минимална. Тази разлика се дължи на използването на вградените функции в единия случай, а имплементиран от нас метод на Нютон в другия.

B Matrix Values (LSM)
-0.488037
-0.0814727
0.0155627

Таблица 7- Показва стойностите на вектора Гранопучени при използване на вградените функции.

B Matrix Values (NM)
-0.0558736
-0.35741
0.337929

Таблица 8 – Показва стойностите на вектора Е получени при използване на имплементирания от нас метод на Нютон

Таблиците 7 и 8 показват стойностите на вектора В, като отново както при матрицата М и тук има разминаване между стойностите получени с МНМК и МН.

Calibrated (LSM)		
X	Y	Z
-0.0487887	9.73885	1.05333
0.0473013	-9.76837	-0.665145
9.73665	0.22181	1.13312
-9.75604	-0.0796934	-0.859694

Таблица 9 – Показва резултатите за отделните компоненти при използване на вградените функции.

Calibrated (NM)		
X	Y	Z
0.952926	7.66039	6.03053
-0.568964	-7.71673	-5.9995
2.55426	5.89126	-7.40974
-2.28789	-5.81181	7.54415

Таблица 10 – Показва резултатите за отделните компоненти получени при използване на имплементирания от нас метод на Нютон

Таблиците 9 и 10 показват данните след калибрация, съответно с МНКМ и МН. Отново се виждат разлики между двата метода. Тези разлики се дължат на това, че няма имплементирано насочване на осите

Заключения

В рамките на този проект се разглежда задачата за калибриране на MEMS акселерометри. За целта е използвана линейна връзка между калибрираните данни и некалибрираните данни.

От получените резултати се вижда, че този проект успешно приложи математически модел, за да реши задачата за калибриране на MEMS акселерометър. Вижда се, че резултатите от вградените функции и имплементираната в рамките на този проект функция имат сходни резултати, което показва успешното решаване на задачата,

