Thermische Strahlung

Übersicht – alle Kapitel

Einleitung

- 1. Elektromagnetische Wellen
- 2. Grundgesetze der Optik
- 3. Natürliche Oberflächen
- 4. Thermische Strahlung
- 5. Strahlungstransfergleichung
- 6. Streuung
- 7. Inversion
- 8. Sensoren

Prüfungsvorbereitung

Prüfung (14. Juli 2016)

Das waren die Kapitel letztes Jahr. Änderungen vorbehalten!

Quellen

- Petty (A first Course in Atmospheric Radiation)
- ► Rees (Physical Principles of Remote Sensing)

Übersicht

- Wärme und Strahlung
- Die Planck Funktion
- Exkurs: Photonen, Einstein, Boltzmann, Planck
- ► Implikationen für das Klima
- Implikationen für die Fernerkundung
- Zusammenfassung

WÄRME UND STRAHLUNG

Wärme und Strahlung, zwei Energieformen

Strahlung = elektromagnetische Welle

Wärme = ungeordneteBewegung der Moleküle

Bild: http://www.chemistry.wustl.edu/~edudev/LabTutorials/Airbags/images/molecules.jpg

Wärme und Strahlung

- Strahlung kann in Wärme umgewandelt werden
- Vor einem Kamin oder Kachelofen kann man die Wärmestrahlung als Wärme spüren

Bild: http://www.forst-hamburg.de/images/Kaminfeuer.JPG

Je wärmer desto heller

- Umgekehrt kann Wärme auch in Strahlung umgewandelt werden
- Jeder Gegenstand oder jedes Gas strahlt entsprechend seiner Temperatur

Je heisser desto mehr Energie wird abgestrahlt (Strahlungsgesetz von Stefan und Boltzmann)

Infrarotbild, weiss-rot bedeutet heiss, grün-blau kühl.

Je wärmer desto blauer

- ▶ Die Wellenlänge der Strahlung wird immer kürzer mit steigender Temperatur (Wiensches Verschiebungsgesetz)
- Herdplatte wird rotglühend, Schweissgerät gibt bläuliches Licht

DIE PLANCK FUNKTION

Motivation

Wir wollen das Gleichgewicht zwischen Strahlung

und Temperatur studieren.

Mehr einfallende Strahlung

höhere Temperatur

- ▶ Höhere Temperatur
 - mehr ausgesendete Wärmestrahlung

- ▶ Um das Grundprinzip zu verstehen, möchten wir den Fall ohne Reflektion studieren (Reflektivität = 0).
- Wie können wir eine solche Oberfläche praktisch realisieren?

Hohlraum als nicht reflektierender Körper

Im Hohlraum kann die Strahlung zwar zunächst reflektiert werden, aber nicht entkommen.

Insgesamt hat der Hohlraum daher Reflektivität 0.

Hohlraumstrahlung

 Die Strahlung in einem geschlossenen Hohlraum bei konstanter Temperatur

- Thermodynamisches Gleichgewicht zwischen den Wänden und der Strahlung im Innenraum
- ▶ Gleichgewichtswert hängt nur von der Temperatur ab, alles andere führt zu logischen Widersprüchen oder Verletzung der Thermodynamischen Gesetze

Hohlraumstrahlung

- Beispiel
- Was wäre wenn das Gleichgewicht von den Eigenschaften der Wand abhinge?
- → Perpetuum Mobile 2. Art

Planck's Lösung

$$I_{v} = B_{v}(T) = \frac{2hv^{3}}{c^{2}(e^{\frac{hv}{kT}} - 1)}$$

I_x: Spektrale Radianz [W/m²/sr/Hz]

B: Planck Funktion

T: Temperatur

h: Planck Konstante

 ν : Frequenz

c: Lichtgeschwindigkeit

k: Boltzmann Konstante

$$B_{\lambda}(T) = \frac{2hc^2}{\lambda^5 (e^{\frac{hc}{\lambda kT}} - 1)}$$

 λ : Wellenlänge

Rayleigh-Jeans Näherung

► Für niedrige Frequenz:

$$I_{v} \approx B_{v,RJ}(T) = \frac{2kT}{c^{2}}v^{2}$$
Die Planck Funktion
Infrarct
Sichtbar

Die Planck Funktion
Sichtbar

Die Planck Funktion
Infrarct
Sichtbar

Die Planck Funktion
Infrarct
Sichtbar

Frequenz [Hz]

Wiensches Verschiebungsgesetz

Frequenz des Maximums der Planck Funktion ist proportional zur Temperatur

Schwarzkörperstrahlung = Hohlraumstrahlung

- Strahlung in einem Hohlraum klingt nicht besonders interessant. Aber:
- Wir können das Emissionsspektrum einer beliebigen Oberfläche vergleichen mit dem eines schwarzen Körpers, der das gleiche Spektrum hat wie die Hohlraumstrahlung.
- Eine kleine Öffnung im Hohlraum erscheint vollkommen schwarz, nichts wird reflektiert, nur Wärmestrahlung kommt heraus.
 - → Ein schwarzer Körper hat Absorptivität 1.

Wechselwirkung Strahlung Oberfläche

Einfallende Strahlung wird absorbiert oder reflektiert. Absorptivität α zwischen 0 und 1.

- Thermische Strahlung wird emittiert. Emissivität ε zwischen 0 und 1. 0 bedeutet, dass nichts emittiert wird. Was bedeutet 1?
- 1 Bedeutet, dass so viel emittiert wird, wie vom schwarzen Körper (oder Öffnung im Hohlraum) bei gleicher Temperatur, also

$$I_{v} = \varepsilon(v) B_{v}(T)$$

Kirchhoffsches Strahlungsgesetz

- ► Ein guter Absorber ist auch ein guter Emitter.
- ▶ Die beiden müssen exakt balanciert sein, ansonsten könnte ich Anordnungen konstruieren, die den 2. Hauptsatz verletzen.
- ▶ Die Balance gilt für alle Frequenzen und Winkel, also:

$$\varepsilon(\vartheta,\varphi,\nu) = \alpha(\vartheta,\varphi,\nu)$$

Absorptivität kann nicht größer als 1 sein, also kann auch Emissivität nicht größer als 1 sein, also kann kein realer Körper stärker strahlen als der idealisierte schwarze Körper.

Gedankenexperiment zu Kirchhoff

$$I_{\text{Absorbiert}} = \alpha_1 I_0 = \alpha_1 B(T_0)$$

$$I_{\text{Emittiert}} = \varepsilon_1 B(T_1)$$

Im Gleichgewicht:

$$I_{\text{Absorbiert}} = I_{\text{Emittiert}} \quad \text{und} \quad T_1 = T_0$$

 $\Rightarrow \alpha_1 = \varepsilon_1$

- ► Kugel im Hohlraum.
- Im Gleichgewicht gleiche Temperatur wie Umgebung.
- Emissivität ε kann geringer als 1 sein.
- Dann muss aber auch die Absorptivität α entsprechend geringer sein, damit sich die Kugel nicht "magisch" aufheizt.
- Experiment lässt sich verfeinern, um zu zeigen, dass das bei jeder Wellenlänge einzeln gelten muss.

Lokales Thermodynamisches Gleichgewicht

- Sowohl Planck-Gesetz, als auch Kirchhoffsches Strahlungsgesetz setzen Gleichgewicht voraus
- Im Hohlraum: T zeitlich und räumlich konstant
 - globales Gleichgewicht

- Generell reicht aber lokales Gleichgewicht, damit die Formeln gelten
 - → Local Thermodynamic Equilibrium, LTE

EXKURS: PHOTONEN, EINSTEIN, BOLTZMANN, PLANCK

Freiheitsgrade und Energienievaus

- ► Moleküle haben verschiedene Freiheitsgrade: Elektronenübergänge, Translation, Vibration, Rotation. (Mehrere von jeder Sorte.)
- ▶ In jedem Freiheitsgrad gibt es Zustände mit unterschiedlicher Energie. Z.B. kann das Molekül sich schnell oder langsam bewegen.
- In allen Freiheitsgraden außer Translation sind die Energieniveaus diskret (Quantenphysik).
- Strahlung besteht aus Photonen mit Energie $E_p = hv_p$ (h: Planck-Konstante)

Photonen und Einstein-Koeffizienten

► Absorption: Ein Photon wird verschluckt, seine Energie wird vom Molekül aufgenommen (Molekül geht vom niedrigeren Energiezustand 1 in einen höheren Energiezustand 2 über)

$$p = B_{12} N_1 I_v$$

p: Wahrscheinlichkeit

 B_{12} : Einstein-Koeffizient

*N*₁: Anzahl der Moleküle in Zustand 1

 I_{v} : Strahlungsintensität (monochromatische Radianz)

Einstein-Koeffizienten

► Absorption: Ein Photon wird verschluckt, seine Energie wird vom Molekül aufgenommen (Molekül geht vom niedrigeren Energiezustand 1 in einen höheren Energiezustand 2 über)

 $p = B_{12} N_1 I_{v}$

p: Wahrscheinlichkeit

*B*₁₂: Einstein-Koeffizient

N₁: Anzahl der Moleküle in Zustand 1

*I*_v: Strahlungsintensität (monochromatische Radianz)

Spontane Emission: Molekül "fällt" von einem höheren Energiezustand auf einen niedrigeren, die Energiedifferenz wird als Photon ausgesendet

 $p = A_{21} N_2$

A₂₄: Einstein-Koeffizient für stimulierte Emission

N₂: Anzahl der Moleküle in Zustand 2

Stimulierte (oder Induzierte) Emission: Ein Photon löst die

Emission eines weiteren Photons

mit gleicher Energie aus

$$p = B_{21} N_2 I_v$$

 B_{21} : Einstein-Koeffizient für stimulierte Emission

N₂: Anzahl der Moleküle in Zustand 2

 I_{v} : Strahlungsintensität (monochromatische Radianz)

28

Gleichgewicht

- Was muss im Gleichgewichtszustand gelten?
- Pesetzungszahlen der Energieniveaus dürfen sich zeitlich nicht ändern
 - → Im Gleichgewicht muss Absorption genau so wahrscheinlich sein, wie spontane und stimulierte Emission zusammen.
 - Wie kommt den jetzt die Temperatur ins Spiel?
- Pesetzung der einzelnen Energieniveaus hängt von der Temperatur ab.
 - Welche Theorie/Formel regelt das?
- ? Die Boltzmann-Statistik

Die Boltzmann-Verteilung

- Temperatur = Maß der ungeordneten Wärmebewegung der Moleküle
- Energie der Moleküle folgt im Gleichgewicht einer bestimmten Statistik -> Boltzmann-Statistik

$$\rho_{j} = \frac{g_{j}}{Q} \exp\left(\frac{-E_{j}}{k_{B}T}\right)$$

p; : Wahrscheinlichkeit des Energiezustandes j

E_i: Energie des Zustands j

 k_{h} : Boltzmann-Konstante

T: Temperatur

 g_i : Entartungsgrad (wie oft gibt es diesen Zustand)

Einsteins Herleitung der Planck Formel 1/2

Einstein;

$$B_{1z}N_{1}I_{v} = A_{z_{1}}N_{z} + B_{z_{1}}N_{z}I_{v}$$
$$= N_{z}\left(A_{z_{1}} + B_{z_{1}}I_{v}\right)$$

$$\stackrel{=}{=} \frac{N_z}{N_1} = \frac{B_{12} I v}{A_{21} + B_{21} I v}$$

Boltemann:

$$\frac{N_z}{N_1} = \frac{exp(\frac{-tz}{kT})}{exp(\frac{-t_1}{kT})}$$

Gleichseten:

$$\frac{B_{12}I_{v}}{A_{21}+B_{21}I_{v}} = \frac{\exp\left(\frac{-E_{2}}{kT}\right)}{\exp\left(\frac{-E_{1}}{kT}\right)}$$

$$\frac{C}{e^{B}} = e^{A-13}$$

$$\frac{A_{21}}{A_{21}} + \frac{B_{21}}{B_{21}}$$

$$= \exp\left(\frac{E_{21}+E_{1}}{kT}\right) = \exp\left(\frac{h\nu}{kT}\right)$$

$$\frac{\beta_{12}}{\frac{A_{21}}{I_{\nu}} + \beta_{21}} = e^{\frac{-h\nu}{KT}}$$

(2)

Einsteins Herleitung der Planck Formel 2/2

Wie bostimmt man die A+B

Koeffizienten?

1. T>DD => IV >> DD

Also muss dann Nenner >> D

Lim (Bize - Bzi)

=> Biz = Bzi

=> IV - Azi

Biz (eber 2)

7. Creensfull klowle Frequent

hv < kT

Reihendurshillung der exp- Femlehlung

$$\frac{h\nu}{e^{1eT}} = 1 + \frac{h\nu}{kT} + \dots$$

=) $I_v = \frac{A\epsilon_l}{B_{12}} \frac{kT}{h\nu}$ (fin. hv < kT)

Versleiche mit Reykaigh - Jeans Gesete

 $I_v = \frac{7kT}{c^2} \nu^2$ fin. hv < kT

 $\frac{7kT}{c^2} = \frac{4\epsilon_l}{B_{12}} \frac{kT}{h\nu}$
 $\frac{A\epsilon_l}{B_{12}} = \frac{7kT}{c^2} \frac{kT}{h\nu}$

=) $I_v = \frac{7kT}{c^2} \frac{kT}{h\nu}$

(4)

Boltzmann-Verteilung und Planck-Funktion

- Einstein-Koeffizienten + Boltzmann-Verteilung = Planck Funktion
 - (Haken und Wolf, The Physiks of Atoms and Quanta, Springer Verlag)
- Der exp(hv/kT) Term in der Planck Funktion kommt von der Boltzmann-Statistik!
- Moleküle mit sehr hoher Energie sind selten
 - → Photonen mit sehr hoher Frequenz werden selten ausgesendet

Laser

- Beim Laser wird durch optisches "Pumpen" eine künstliche Inversion in der Besetzung der Energieniveaus erzeugt.
- ▶ Die vielen Moleküle im hohen Energiezustand können dann durch stimulierte Emission alle synchron emittieren, und damit das Laserlicht erzeugen.

Was also heißt LTE?

- ► Wenn die Boltzmann-Statistik verletzt ist, gilt auch nicht die Planck Funktion
- ► LTE heißt, dass die Energieniveaus entsprechend der Boltzmann-Statistik besetzt sind, und daher die Planck Funktion gilt.
- Diese Statistik stellt sich ein, wenn man die Moleküle "in Ruhe lässt". Durch welchen Prozess?
- Durch Zusammenstöße, energiereiche Moleküle geben beim Stoß Energie ab, energiearme nehmen Energie auf.
 - LTE bricht also zusammen, wenn
- Viel Strahlung da ist, die hohe Energieniveaus anregt.
 - Die freie Weglänge hoch ist, so dass Moleküle untereinander selten durch Stöße Energie austauschen können.
 - ▶ Abstrakt gesagt: Wenn die Prozesse, die die Boltzmann-Verteilung stören, schneller sind als die, die sie fördern.
 - Dürfen wir als Meteorologen LTE annehmen?
- ? Troposphäre: immer, Stratosphäre: meistens, Thermosphäre: eher nicht

▶ ... Ende des Exkurses in die Physik.

IMPLIKATIONEN FÜR DAS KLIMA

Einfallende Sonnenstrahlung

Temperatur der Erdoberfläche

Abstrahlung (OLR = Outgoing Longwave Radiation)

Strahlungsgleichgewicht

(Wallace und Hobbs, `Atmospheric Science', Academic Press, 1977.)

Was ist an dieser Abbildung seltsam/unphysikalisch?

- Planck Kurven schneiden sich nicht!
 Erklärung: Sonnenkurve ist skaliert mit Abstand zur Sonne.
 Dann auch noch ein Faktor 4, warum?
- ? Sonnenstrahlung auf Querschnittsfläche (πR^2), Abstrahlung über Kugeloberfläche ($4\pi R^2$)

Clear-sky OLR Spektrum

- Schattiert ist der natürliche Treibhauseffekt, der die Temperatur auf der Erdoberfläche um ca. 34 K erhöht.
- Vergleich mit Planck Kurven zeigt, bei welcher Temperatur die Strahlung emittiert wird

Buehler, S. A., A. von Engeln, E. Brocard, V. O. John, T. Kuhn and P. Eriksson (2006),

Recent developments in the line-by-line modeling of outgoing longwave radiation,

J. Quant. Spectrosc. Radiat. Transfer, *98*(3), 446–457, doi: <u>10.1016/j.jqsrt.2005.11.001</u>.

Clear-sky OLR Spektrum

Abbildung: Oliver Lemke

IMPLIKATIONEN FÜR DIE FERNERKUNDUNG

Passive Fernerkundung

Zwei verschiedene "schwarze Körper" als Strahlungsquellen:

- Sonne
- Erde / Atmosphäre

Messmethoden

Relative Intensität der beiden Quellen

Helligkeitstemperatur

Anschaulich: Die Temperatur, die ein schwarzer K\u00f6rper haben m\u00fcsste, um die beobachtete spektrale Radianz zu erzeugen:

$$T_b = B_v^{-1}(T)$$
 (Planck-Helligkeitstemperatur)

► Formelmäßig einfacher ist die Rayleigh-Jeans-Helligkeitstemperatur:

$$T_{b,RJ} = B_{v,RJ}^{-1}(T) = \frac{I_v c^2}{2kv^2}$$

Achtung: Man sollte diese normalerweise nicht verwenden (zu ungenau). (Allerdings Vorteil: Lineare Funktion der spektralen Radianz.)

Helligkeitstemperatur am Beispiel OLR

Helligkeitstemperatur am Beispiel OLR

Rechnung und Abbildung: Manfred Brath

Helligkeitstemperatur am Beispiel OLR

Plot: Oliver Lemke

Auch hier kann man wieder direkt mit dem Temperaturprofil vergleichen.

Rechnung und Abbildung: Manfred Brath

Vorteile der Helligkeitstemperatur

- ► Helligkeitstemperatur ist deswegen in der Fernerkundung so beliebt, weil es eine intuitive Einheit für die Intensität ist.
- Wenn ich höre, ein Radiometer hat 300 K gemessen, dann weiß ich, das ist recht viel (viel höhere Temperaturen kommen in der Atmosphäre ja gar nicht vor). Hingegen wäre 200 K recht wenig.
- ► Aber 1.5e-12 W/(m² sr Hz) ist das viel oder wenig?
- ? Das kommt darauf an! (Worauf?)
 - ► Auf die Frequenz, bei der gemessen wird!

Noch einmal zur Helligkeitstemperatur

ZUSAMMENFASSUNG

Zusammenfassung

- Wärme und (thermische) Strahlung sind zwei Energieformen, die viel gemeinsam haben
 - "Ungeordnete" Energieformen
 - Haben mit mikroskopischen Freiheitsgraden des Systems zu tun (die man nur statistisch beschreiben kann)
- Im lokalen thermodynamischen Gleichgewicht (LTE) beschreibt die Planck-Funktion, wie viel Strahlung welcher Temperatur entspricht.
- Planck-Funktion ist zentral für Klima (Strahlungsflüsse) und Fernerkundung.
- Absorptivität = Emissivität (Kirchhoff's Strahlungsgesetz)

Leseempfehlung

Petty, Kapitel 6.