

Titel der Abschlussarbeit

Bachelorarbeit von Marius Wodtke

an der Fakultät für Informatik

In dem Studiengang Informatik (B.Sc.)

eingereicht am 01.01.01 beim Institut für Angewandte Informatik und Formale Beschreibungsverfahren des Karlsruher Instituts für Technologie

Referent: Prof. Dr. Hartmut Schmeck

Betreuer: Kaibin Bao

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Eidesstattliche Erklärung

Ich versichere hiermit wahrheitsgemäß, die Arbeit und alle Teile daraus selbständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderung entnommen wurde.

Karlsruhe, den DATUM

NAME

Inhaltsverzeichnis

1	Einleitung					
	1.1	Motivation	1			
	1.2	Fragestellung	1			
	1.3	Weiterer Aufbau	1			
2		verarbeitung	2			
	2.1	State-of-the-Art	2			
3	Fazit					
\mathbf{A}	Anh	ang	4			

Abkürzungsverzeichnis

NILM Non-intrusive load monitoring

Abbildungsverzeichnis

Tabellenverzeichnis

EINLEITUNG 1

1 Einleitung

1.1 Motivation

Energie zu sparen ist seit Langem ein Ziel der Umweltpolitik, dennoch steigt der Energieverbrauch in Industrieländern kontinuierlich und es werden nach nach wie vor Wege gesucht, diesen zu senken. In den USA verursachen private Haushalte 40% des CO2-Ausstoßes [VBG08] und stehen deshalb im Fokus vieler Programmen zum Energie Sparen.

Je nach Studie besteht für die Haushalte ein Einsparungspotential von bis zu 20% [AGSA13], Fischer [Fis08] untersucht mehrere dieser Studien und beschreibt ein durchschnittliches Einsparungspotential von 5-12%. Um dieses Einsparungspotential auszunutzen, muss der Nutzer regelmäßig und möglichst genau über seinen Verbrauch aufgeklärt werden. Er kann sich oft nicht mit seinem Verbrauch identifizieren, weil dieser unsichtbar und durch die langen Rechnungsintervalle nicht präsent ist.

Damit der Nutzer anfängt sich selbst zu kontrollieren, muss er begreifen, dass sich sein Verhalten auf seinen Verbrauch auswirkt und er ihn auch durch die gezielte Veränderungen seines Handelns senken kann [Fis08].

Non-intrusive load monitoring (NILM) bietet nun die Chance dem Nutzer eine regelmäßige, detaillierte Rückmeldung zu seinem Energiekonsum zu geben, denn Kolter [KJ11] beschreibt NILM als die Aufgabe aus einem, für den gesamten Haushalt messenden Stromzähler, Rückschlüsse über die elektrische Last einzelner Geräte zu ziehen. Ein solches System könnte dem Konsumenten helfen, verschwenderische Verhaltensweisen und Geräte zu identifizieren ohne den Haushalt mit vielen digitalen Zählern für die individuellen Geräte ausrüsten zu müssen, wie es derzeit z.B. mit sogenannten Energiekostenmessgeräten auf Steckerbasis praktiziert wird.

1.2 Fragestellung

1.3 Weiterer Aufbau

Im folgenden Kapitel 2 werden die verwendeten, disaggregierten Energiedatensätze beschrieben. Insbesondere werden die gemessenen Werte und die daraus berechenbaren Werte untersucht. Kapitel 3 gibt zunächst einen Überblick über die aktuelle Forschung im Bereich Vorverarbeitung der Daten und Feature-Auswahl, anschließend werden die für diese Arbeit verwendeten Vorverarbeitungsschritte und Features erläutert. In Kapitel 4 soll schließlich die eigentliche Klassifizierung beschrieben werden, hier werden insbesondere das verwendete Netz und die Trainingsmethoden besprochen. Auch hier wird es einen kurzen Überblick über die aktuelle Forschung geben. Die Evaluierung der Klassifikation findet in Kapitel 5 statt. Hier werden verschiedene Klassifizierungsaufgaben ausgeführt und ausgewertet. Am Schluss steht ein Fazit, in dem die Ergebnisse zusammengefasst und Rückbezug auf die ursprüngliche Fragestellung genommen wird.

2 Vorverarbeitung

2.1 State-of-the-Art

Die Wirkleistung ist das ursprünglichste Merkmal um die Zustände von Geräten zu unterscheiden. Sie gibt die elektrische Leistung an, die von einem Gerät in andere Leistungen (z.B. Wärme oder Bewegung) umgewandelt werden kann. Oft wird die Wirkleistung durch gröbere Quantisierung oder Normalisierung geglättet, [Har92] verwendet hierzu folgende Formel:

$$P_{norm}(t) = (\frac{Nennspannung}{V(t)})^2 * P(t)$$

mit P := Wirkleistung in Watt und V := Spannung in Volt, die Nennspannung beträgt in Europa 230 Volt.

Die Normalisierung bietet den Vorteil, dass sie nicht verlustbehaftet ist und wird deshalb häufig verwendet, wenn die Spannung gemessen wurde.

Mit der Wirkleistung allein ist man jedoch nicht in der Lage Geräte mit sehr ähnlichem Verbrauch zu unterscheiden, ein Beispiel wären hier ein 2kW Motor und ein 2kW Heizelement. Diese lassen sich mit Hilfe der Blindleistung, welche nicht in andere Leistungen umgewandelt wird, unterscheiden, weil der Motor als induktiver Verbraucher mehr Blindleistung als das Heizelement aus dem Stromnetz zieht. Nachteil hier ist jedoch, dass die Blindleistung (und auch die Spannung) extra gemessen werden muss, die Berücksichtigung dieses Features kostet also Geld [ZR11].

Vergleicht man jedoch eine 60W Glühbirne und einen Laptop mit einem 60W Netzteil, dann stellt man fest, dass diese sich auch unter Hinzunahme der Blindleistung kaum unterscheiden lassen [LLC+03]. Hier hilft die Betrachtung von micro level Features. Dabei werden die Wellenformen und die harmonischen Komponenten des Frequenzspektrums verwendet, um Verbraucher zu unterscheiden. Laughman [LLC+03] zeigt z.B., dass sich Glühbirne und Netzteil in der 3. harmonischen Komponente deutlich unterscheiden. Zusätzlich verändern viele Geräte die Wellenform des Stroms, so dass in diesem Bereich weiteres Potential für die Unterscheidung verschiedener Geräte vorliegt [LNKC10].

Micro level Features bieten sehr gute Unterscheidungsmöglichkeiten, benötigen aber auch ein sehr hochfrequent aufgelöstes Signal, üblich sind mehrere kHz. Anderson [AOB⁺12] bietet einen Datensatz mit 12kHz Auflösung.

Messgeräte für eine solche Auflösung sind wesentlich teurer als die häufig für Wirk- und Blindleistung verwendeten Geräte mit einer Auflösung von 1Hz und sind im Gegensatz zu Letzteren oft nicht in normalen Haushalten mit Smartmeter vorhanden [ZR11].

Daher wäre es wünschenswert mit den macro level Features mit einer Auflösung von 1Hz auszukommen.

3 FAZIT 3

3 Fazit

A ANHANG 4

A Anhang

LITERATUR 5

Literatur

[AGSA13] ARMEL, K CARRIE, ABHAY GUPTA, GIREESH SHRIMALI und ADRIAN AL-BERT: Is disaggregation the holy grail of energy efficiency? The case of electricity. Energy Policy, 52:213–234, 2013.

- [AOB+12] Anderson, Kyle, Adrian Ocneanu, Diego Benitez, Derrick Carlson, Anthony Rowe und Mario Berges: BLUED: A fully labeled public dataset for event-based non-intrusive load monitoring research. In: Proceedings of the 2nd KDD workshop on data mining applications in sustainability (SustKDD), Seiten 1–5, 2012.
- [Fis08] FISCHER, CORINNA: Feedback on household electricity consumption: a tool for saving energy? Energy efficiency, 1(1):79–104, 2008.
- [Har92] HART, GEORGE WILLIAM: Nonintrusive appliance load monitoring. Proceedings of the IEEE, 80(12):1870–1891, 1992.
- [KJ11] KOLTER, J ZICO und MATTHEW J JOHNSON: REDD: A public data set for energy disaggregation research. In: Workshop on Data Mining Applications in Sustainability (SIGKDD), San Diego, CA, Band 25, Seiten 59–62. Citeseer, 2011.
- [LLC⁺03] Laughman, Christopher, Kwangduk Lee, Robert Cox, Steven Shaw, Steven Leeb, Les Norford und Peter Armstrong: *Power signature analysis*. Power and Energy Magazine, IEEE, 1(2):56–63, 2003.
- [LNKC10] LIANG, JIAN, SIMON KK NG, GAIL KENDALL und JOHN WM CHENG: Load signature study Part I: Basic concept, structure, and methodology. Power Delivery, IEEE Transactions on, 25(2):551–560, 2010.
- [VBG08] VANDENBERGH, MICHAEL P, JACK BARKENBUS und JONATHAN M GILLI-GAN: Individual carbon emissions: The low-hanging fruit. UCLA Law Review, 55:08–36, 2008.
- [ZR11] ZEIFMAN, MICHAEL und KURT ROTH: Nonintrusive appliance load monitoring: Review and outlook. IEEE Transactions on Consumer Electronics, Seiten 76–84, 2011.