

0.2 0.25 0.3 0.35 0.4 0.45 0.5

■ Introducción

La **respuesta en frecuencia** $H(\omega)$ de un filtro IIR es una *función* racional, es decir, la razón entre dos polinomios de grado finito en $e^{j\omega}$ de la forma,

-15-

Butterworth Chebyshev Inv Chebyshev

0.15

$$H(\omega) = e^{-j\omega N_0} \frac{\sum_{k=0}^{M} b_k e^{-j\omega k}}{\sum_{k=0}^{N} a_k e^{-j\omega k}}$$

■ donde:

 N_0 unidades de desplazamiento de h(n) a_k y b_k coeficientes del filtro

N es el orden del filtro y generalmente $N \ge M$.

$$h(n) \neq 0$$
 para $N_0 \leq n \leq \infty$.

Normalized Frequency

Percepción y Sistemas Inteligentes

- Introducción...
 - La función de transferencia H(z) de un filtro IIR es racional y está dada por:

$$H(z) = H(w)|_{e^{jw}=z} = z^{-N_0} \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

■ Los filtros IIR, a diferencia de los FIR, pueden ser inestables por la existencia de polos.

■ Introducción...

- El diseño de un filtro IIR busca determinar la función h(n), H(z), H(w) o la **ecuación de diferencia** que mejor se aproxime a las especificaciones de diseño.
 - Se logra calculando los coeficientes a_k y b_k óptimos según un criterio establecido.
 - El orden del filtro *N* generalmente se fija desde un principio, pero también puede considerarse como un parámetro.

Características de Filtros IIR

- No puede utilizarse la convolución para implementar filtros IIR
 - Se recurre a las ecuaciones de diferencia.
- Los filtros IIR emplean realimentación
 - Necesitan almacenar muestras de la salida para calcular un nuevo valor.

$$y(n) = \sum_{k=0}^{N-1} a(k)x(n-k) + \sum_{k=1}^{M} b(k)y(n-k)$$

- Características de Filtros IIR ...
 - No es posible diseñar filtros IIR causales de fase lineal.
 - Para aproximar una fase lineal se puede utilizar la técnica de filtrado *forward-backward*, para compensar la fase.

- Características de Filtros IIR ...
 - El **ruido de la cuantización** en los coeficientes puede afectar severamente la respuesta y estabilidad del filtro.

■ Puede *distorsionar la posición* de los polos y desplazarlos cerca o sobre el círculo unitario del plano z.

Características de Filtros IIR...

- Los filtros IIR pueden alcanzar las especificaciones de diseño con ordenes relativamente bajos (4 a 6 polos)
- Los filtros IIR se obtienen comúnmente a partir de fórmulas de diseño en forma cerrada correspondientes a filtros clásicos.

■ Características de Filtros IIR...

- Las características de ruido de un filtro IIR deben tenerse muy presentes durante la implementación, especialmente en aritmética de punto fijo.
 - La cuantización de los coeficientes degrada la respuesta del filtro (se aleja de la calculada con software de alta precisión).
 - La sensibilidad al ruido de redondeo puede ser amplificada por las mallas de realimentación en el filtro.

■ Introducción

■ Técnica basada en convertir un filtro analógico H(s) en un filtro digital H(z).

■ Introducción

■ Ventajas:

- Amplia literatura sobre diseño filtros analógicos con fórmulas cerradas.
- Disponibilidad de tablas de transformaciones entre dominios analógicos y digital y tipos de filtros.
 - $T\{s \Rightarrow z\}$
 - $T\{s \Rightarrow s\}$
 - $T\{z \Rightarrow z\}$

PSI Percepción y Sistemas Inteligentes

- **■** Introducción ...
 - Modalidades de diseño

■ Introducción ...

- Técnica adecuada para obtener respuesta en frecuencia de amplitud casi constante en las bandas de paso y de rechazo.
- Técnica no-adecuada para respuestas en frecuencia de formas arbitrarias.
 - Las técnicas de optimización numérica si son adecuadas.
- Diseño con especificaciones de magnitud y fase arbitrarias es muy difícil.
 - No produce soluciones que cumplan todos los requerimientos de diseño.

■ Introducción ...

- Cada una de las representaciones de un filtro analógico conducen a métodos para convertirlo al dominio digital.
 - Respuesta Impulsional h(t)
 - Ecuación diferencial y(t)
 - Función de Transferencia H(s)
 - Respuesta en Frecuencia $H(\Omega)$

- **■** Representación de filtros analógicos
 - Mediante la función de transferencia $H_a(s)$

$$H_a(s) = \int_{-\infty}^{\infty} h(t) e^{-st} dt$$

■ ó

$$H_a(s) = \frac{\sum_{k=0}^{M} \beta_k \, s^k}{\sum_{k=0}^{N} \alpha_k \, s^k}$$

• donde α_k y β_k son los coeficientes del filtro.

 \blacksquare Mediante la *Respuesta Impulsional* h(t)

$$h(t) = \frac{1}{2\pi j} \int_{\sigma - i\infty}^{\sigma + j\infty} H_a(s) e^{st} dt$$

■ Mediante una *Ecuación Diferencial* Lineal con Coeficientes Constantes,

$$\sum_{k=0}^{N} \alpha_k \frac{\partial^k y(t)}{\partial t^k} = \sum_{k=0}^{M} \beta_k \frac{\partial^k x(t)}{\partial t^k}$$

donde x(t) y y(t) indican señal de entrada y de salida del filtro.

■ Procedimiento de Conversión Análogo-Digital

Conceptos Claves

- Un sistema analógico H(s) LTI es estable si todos sus polos yacen en la mitad izquierda del plano s.
- Un sistema discreto H(z) LTI es estable si todos sus polos yacen dentro del círculo unitario del plano z.

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

PSI Percepción y Sistemas Inteligentes

- ■Procedimiento de Conversión...
 - La **técnica de conversión es efectiva** si:
 - El eje $j\Omega$ en el plano s se corresponde con la circunferencia unidad en el plano z.

• Garantiza relación directa entre variables de frecuencia !!: $\Omega \Leftrightarrow \omega$.

PSI Percepción y Sistemas Inteligentes

- ■La técnica de conversión es efectiva si:
 - El semiplano **izquierdo** del plano s se corresponde con el **interior** de la circunferencia en el plano z.

Garantiza la estabilidad del filtro digital obtenido!!

- ■La técnica de conversión es efectiva si:
 - El semiplano **derecho** del plano s se corresponde con el **exterior** de la circunferencia en el plano z.

■Procedimiento de Conversión...

Los filtros IIR estables y físicamente realizables, no pueden tener fase lineal, puesto que la condición de fase lineal establece que:

$$H(z) = \pm z^{-N} H(z^{-1})$$

■ Implicación: por cada polo dentro de la circunferencia hay un polo especular por fuera.

■Procedimiento de Conversión...

- ■Omitiendo la restricción de realizabilidad física, computacionalmente es posible, en principio, obtener un filtro IIR de fase lineal.
 - Este método presenta un costo de cómputo alto.
 - No proporciona ventajas sobre los filtros FIR de fase lineal.

Filtros IIR : A partir de Filtros Analógicos

■Observaciones

- En el diseño de filtros IIR se especifican las características del filtro sólo para $H(\omega)$, y se aceptan las características de $\varphi(\omega)$ obtenidas.
 - $H(\omega)$ y $\varphi(\omega)$ en un filtro causal son interdependientes y no se pueden especificar independientemente.
 - Dada $H(\omega)$ (parte real), su $\varphi(\omega)$ (parte imaginaria) se determina a través de la *transformada de Hilbert discreta*.

■ Procedimiento

- Busca aproximar la ecuación diferencial por una ecuación en diferencias equivalente.
- La derivada en el tiempo t = nT, se sustituye por la diferencia hacia atrás:

$$\left. \frac{\partial y(t)}{\partial t} \right|_{t=nT} = \frac{y(nT) - y(nT - T)}{T} = \frac{y(n) - y(n-1)}{T}$$

■ Procedimiento...

■ La parte analógica es un derivador:

$$H(s) = s \qquad \frac{\partial y(t)}{\partial t}$$

■ La parte discreta es un diferenciador:

$$y(n) \longrightarrow H(z) = \frac{1-z^{-1}}{T} \longrightarrow \frac{y(n)-y(n-1)}{T}$$

■ Por lo tanto, la transformación queda determinada por:

$$s = \frac{1 - z^{-1}}{T}$$

■ Procedimiento...

■ Se deduce que para la k − ésima derivada de y(t) resulta la relación:

$$s^k = \left(\frac{1-z^{-1}}{T}\right)^k$$

■ Para el filtro analógico con función de transferencia $H_a(s)$ caracterizado por la ecuación diferencial,

$$\sum_{k=0}^{N} \alpha_k \frac{\partial^k y(t)}{\partial t^k} = \sum_{k=0}^{M} \beta_k \frac{\partial^k x(t)}{\partial t^k}$$

La función H(z) del filtro IIR digital se obtiene al aplicar,

$$H(z) = H_a(s)|_{s=(1-z^{-1})/T}$$

■Correspondencia plano $s \leftrightarrow$ plano z

■ La relación entre s y z obtenida anteriormente puede reescribirse como,

$$z = \frac{1}{1 - sT}$$

con $s = j\Omega$ se obtiene:

$$z = \frac{1}{1 + \Omega^2 T^2} + j \frac{\Omega T}{1 + \Omega^2 T^2}$$

■Correspondencia plano $s \leftrightarrow$ plano $z \dots$

- Cuando Ω varía desde $-\infty$ hasta $+\infty$,
 - z varía dentro de un círculo de radio ½ con centro en ½.

- Correspondencia estable y restringida a filtros paso-bajo y paso-banda con frecuencias resonantes relativamente pequeñas.
 - No es posible convertir un paso-alto analógico en uno paso-alto digital.

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

■Ejemplo

■ Convertir el filtro **paso-banda** analógico con función de transferencia,

$$H_a(s) = \frac{1}{(s+0.1)^2 + 9}$$

a un filtro IIR digital usando la técnica de Aproximación de Derivadas.

Solución

■ Utilizando la sustitución $s^k = \left(\frac{1-z^{-1}}{\tau}\right)^k$ en H(s) se obtiene,

$$H(z) = \frac{1}{\left(\frac{1-z^{-1}}{T} + 0.1\right)^2 + 9} = \frac{T^2/(1 + 0.2T + 9.01T^2)}{1 - \frac{2(1 + 0.1T)}{1 + 0.2T + 9.01T^2}z^{-1} + \frac{1}{1 + 0.2T + 9.01T^2}z^{-2}}$$

- \blacksquare H(z) tiene forma de un **resonador** si T se selecciona suficientemente pequeño $(T \leq 0.1) \rightarrow$ polos estén cerca de la circunferencia unidad.

 - Si T=0.1, los polos son: $z_{p_{1,2}}=0.91\pm j0.27=0.95e^{\pm j16.54^{\circ}}$ Si T=0.01, los polos son: $z_{p_{1,2}}=0.99\pm j0.03=0.99e^{\pm j1.72^{\circ}}$

■ Solución ...

Aproximacion_Derivada_IIR.m

T= 0.01; T2=(T^2); D=(1+0.2*T+9.01*T2); %Polinomio Numerador b0= T2/D; b1=0; b2=0; b= [b0 b1 b2]; %Polinomio Denominador a0=1; a1=-2*(1+0.1*T)/D; a2=1/D; a=[a0 a1 a2]; %Polos
AngPolos=angle(roots(a))*180/pi
MagPolos=abs(roots(a))
%Graficación fytool(b,a)

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

Diseño de Filtros IIR mediante Invarianza Impulsional

■Introducción

Consiste en diseñar un filtro IIR digital con un h(n) que sea la versión muestreada de $h_a(t)$ del filtro analógico.

• Es decir, $h(n) = h_a(t = nT)$ donde T es el periodo de muestreo.

Filtros IIR: Invarianza Impulsional

■Introducción

■ Cuando una señal análoga $h_a(t)$ con espectro $H_a(\Omega)$ se muestrea a $F_s = 1/T$:

El espectro de la señal muestreada $h(n) = h_a(nT)$ es la **repetición** del espectro $H_a(\Omega)$ escalado por F_s y con periodo F_s :

Filtros IIR: Invarianza Impulsional

■Introducción ...

■ El espectro $H(\omega)$ de la señal muestreada h(n) queda determinado por:

$$H(w) = F_s \sum_{k=-\infty}^{\infty} H_a [(w - 2\pi k) F_s] \quad \phi$$

$$H(\Omega T) = \frac{1}{T} \sum_{k=-\infty}^{\infty} H_a \left(\Omega - \frac{2\pi k}{T} \right) \quad con \quad \Omega = \frac{w}{T}$$

Diseño de Filtros IIR mediante Invarianza Impulsional

■ Introducción...

- $H(\omega)$ tendrá las características de respuesta en frecuencia del correspondiente filtro analógico si T es suficientemente pequeño para evitar al máximo el aliasing.
- El aliasing ocurre si F_s es menor que dos veces la frecuencia más alta contenida en $X_a(F)$.
- Método inapropiado para el diseño de filtros paso-bajo, por el traslape de las bandas en alta frecuencia.

Diseño de Filtros IIR mediante Invarianza Impulsional

\blacksquare Correspondencia plano s y plano z

La correspondencia entre los planos s y z que genera el proceso de muestreado se obtiene a partir de la generalización de la relación entre la **T.** z de h(n) y la **T.** s de $h_a(t)$, dada por $z = e^{sT}$

$$H(z)\Big|_{z=e^{sT}} = \frac{1}{T} \sum_{k=-\infty}^{\infty} H_a\left(s-j\frac{2\pi k}{T}\right)$$
 donde:

$$H(z) = \sum_{n=0}^{\infty} h(n)z^{-n}$$
 y $H(z)|_{z=e^{sT}} = \sum_{n=0}^{\infty} h(n)e^{-sTn}$

■Correspondencia plano $s \leftrightarrow$ plano z

■ Al sustituir $s = \sigma + j \Omega$ y $z = re^{jw}$ en $z = e^{sT}$ llega a:

$$re^{jw} = e^{\sigma T}e^{j\Omega T}$$
 donde $r = e^{\sigma T}$ y $w = \Omega T$

- Para σ < 0 se tiene 0 < r < 1
 - Semiplano izquierdo de $s \Rightarrow$ interior de la circunferencia unidad en el plano z.
- Para $\sigma > 0$ se tiene r > 1.
 - Semiplano derecho de $s \Rightarrow$ exterior de la circunferencia unidad en el plano z.
- \blacksquare Cuando $\sigma = 0$ se tiene r = 1.
 - Eje $j \Omega \Rightarrow$ circunferencia unidad en el plano z.

La correspondencia del eje j Ω con el círculo unitario **no es uno a uno**.

- Al intervalo $-\pi \le w \le \pi$ le corresponde $(2k-1)\pi/T \le \Omega \le (2k+1)\pi/T$ cuando k es un entero..
- La correspondencia entre frecuencias Ω y w no es inyectiva, lo que refleja el efecto de aliasing debido al muestreo.

Filtros IIR :Invarianza Impulsional

■Método de Diseño

- De la expresión $z = e^{ST}$ se obtiene s = (Ln z)/T la cual no es muy conveniente para obtener la función H(z)
- Considerando el caso en que todos los polos son **distintos**, por expansión en facciones parciales:

$$H_a(s) = \sum_{k=1}^{N} \frac{c_k}{s - p_k}$$

■ Al aplicar la transformar inversa de Laplace, se llega a:

$$h_a(t) = \sum_{k=1}^{N} c_k e^{p_k t} , \qquad t \ge 0$$

Filtros IIR :Invarianza Impulsional

■Método de Diseño...

■ Al muestrear $h_a(t)$ periódicamente en t = nT, se llega a:

$$h(n) = h_a(t) = \sum_{k=1}^{N} c_k e^{p_k nT}, \qquad n \ge 0$$

Aplicando Transformada z,

$$H(z) = \sum_{n=0}^{\infty} h(n)z^{-n} = \sum_{k=1}^{N} c_k \sum_{n=0}^{\infty} \left(e^{p_k T} z^{-1}\right)^n$$

■ Si $p_k < 0$, la sumatoria interna converge a,

$$\sum_{n=0}^{\infty} \left(e^{p_k T} z^{-1} \right)^n = \frac{1}{1 - e^{p_k T} z^{-1}}$$

■Método de diseño...

■ Por lo tanto, el filtro digital es:

$$H(z) = \sum_{k=1}^{N} \frac{c_k}{1 - e^{p_k T} z^{-1}}$$

■ Observaciones:

- Los polos del filtro digital se localizan en $\mathbf{z}_k = e^{pkT}$, k = 1,2,...,N y se corresponden con los polos del plano s.
- Los ceros del filtro no satisfacen esta relación.
- El método **no se define** mediante la simple correspondencia de puntos dado por $z = e^{sT}$.

Ejemplo. Convierta el filtro analógico dado, en un filtro IIR digital por el método de Invarianza Impulsional.

$$H_a(s) = \frac{s + 0.1}{(s + 0.1)^2 + 9}$$

- **■**Solución
 - El filtro $H_a(s)$ tiene :
 - Un cero real en s = -0.1
 - Dos polos complejos conjugados en $p_k = -0.1 \pm j3$.

■Solución...

■ H(z) se determina directamente a partir de la expansión en fracciones parciales de $H_a(s)$:

$$H_a(s) = \frac{1/2}{s + 0.1 - j3} + \frac{1/2}{s + 0.1 + j3}$$

Sustituyendo polos:

$$H(z) = \frac{1/2}{1 - e^{-0.1T} e^{j3T} z^{-1}} + \frac{1/2}{1 - e^{-0.1T} e^{-j3T} z^{-1}} = \frac{1 - \left(e^{-0.1T} \cos 3T\right) z^{-1}}{1 - \left(2e^{-0.1T} \cos 3T\right) z^{-1} + e^{-0.2T} z^{-1}}$$

Pall Percepción y Sistemas Inteligentes

■Solución...

invarianza_Impulso_IRR.m

T= 0.01; D= exp(-0.1*T)* cos(3*T); %Polinomio Numerador

b0=1; b1=-D; b2=0;

b= [b0 b1 b2];

%Polinomio Denominador

a0=1; a1=-2*D; $a2=\exp(-0.2*T)$;

 $a=[a0 \ a1 \ a2];$

%Polos

polos=roots(a)

AngPolos=angle(polos)*180/pi

MagPolos=abs(polos)

%freqz(b,a)

fvtool(b,a)

■Solución...

- H(z) tiene forma de un *resonador* si T se selecciona suficientemente pequeño $(T \le 0.1) \rightarrow$ polos estén cerca de la circunferencia unidad.
 - Si T = 0.1, los polos son: $z_{p_{1,2}} = 0.95 \pm j0.29 = 0.99e^{\pm j17.19^{\circ}}$
 - Si T = 0.01, los polos son: $z_{p_{1,2}} = 0.99 \pm j0.03 = 0.99e^{\pm j1.72^{\circ}}$

■Observaciones

- Valores pequeños de *T* minimizan el efecto de aliasing.
- Debido al aliasing, el método de invarianza impulsional es apropiado para el diseño de filtros paso-bajo y paso-banda.

Diseño de Filtros IIR: Transformación z Adaptada

■ Introducción

- Método que hace corresponder los polos y los ceros de $H_a(s)$ directamente con polos y ceros de H(z)
- La transformación hace corresponder a cada factor (s a) el factor $(1 e^{aT} z^{-1})$, es decir,

$$(s-a) = (1 - e^{aT} z^{-1})$$

Diseño de Filtros IIR: Transformación z Adaptada

■ Introducción ...

■ Por consiguiente, para un filtro analógico con función de transferencia expresada en factores,

$$H_a(s) = \frac{\prod_{k=1}^{M} [s - c_k]}{\prod_{k=1}^{N} [s - p_k]}$$

■ la función de transferencia del filtro digital se obtiene como,

$$H(z) = \frac{\prod_{k=1}^{M} [1 - e^{c_k T} z^{-1}]}{\prod_{k=1}^{N} [1 - e^{p_k T} z^{-1}]}$$

Diseño de Filtros IIR: Transformación z Adaptada

■Observaciones

- Los **polos** obtenidos son **idénticos** a los **polos** obtenidos con el método de **invarianza impulsional**.
- Los **ceros** son **diferentes**
- T debe escogerse bastante **pequeño** para producir polos y ceros en posiciones equivalentes en el plano z (y evitar el aliasing).

■ Ejemplo

■ Convierta el filtro analógico dado, en un filtro IIR digital por el método de **Transformación z adaptada**.

$$H_a(s) = \frac{s + 0.1}{(s + 0.1)^2 + 9}$$

■ Solución

- El filtro $H_a(s)$ tiene :
 - Un cero real en s = -0.1
 - Dos polos complejos conjugados en $p_k = -0.1 \pm j3$.

■ Solución ...

■ Reescribiendo $H_a(s)$ en factores

$$H_a(s) = \frac{s + 0.1}{(s + 0.1 - j3)(s + 0.1 + j3)}$$

 \blacksquare H(z) se obtiene al reemplazar cada factor por

$$(s-a) = (1 - e^{aT} z^{-1})$$

Por lo tanto,

$$H(z) = \frac{(1 - e^{-0.1 T} z^{-1})}{(1 - e^{(-0.1+3j)T} z^{-1})(1 - e^{(-0.1-3j)T} z^{-1})}$$

■ Solución

Transformacion_zAdaptada.m

T = 0.01; $D = \exp(-0.1 *T) * \cos(3 *T)$;

%Polinomio Numerador

b0=1; b1=-D; b2=0;

 $b = [b0 \ b1 \ b2];$

%Polinomio Denominador

a0=1; a1=-2*D*cos(3*T); a2=exp(-0.2*T);

 $a=[a0 \ a1 \ a2];$

%Polos

polos=roots(a)

AngPolos=angle(polos)*180/pi

MagPolos=abs(polos)

fvtool(b,a)

■ Introducción

- Transforma el eje $j\Omega$ en la circunferencia unidad sin solapamientos de frecuencias.
- Semiplano **izquierdo** → **interior** de la circunferencia unidad.
- Semiplano **derecho** → **exterior** de la circunferencia unidad.
- La transformación bilineal permite diseñar todo tipo de filtros.

■ Deducción

- La transformación bilineal se puede ligar a la fórmula trapezoidal.
- Al integrar una derivada

$$y(t) = \int_{t_0}^t y'(\tau)d\tau + y(t_0)$$

• y aproximarla por la fórmula trapezoidal en t = nT y $t_0 = nT - T$, se obtiene,

■Deducción...

■ La función de transferencia del filtro lineal analógico de orden 1, está dada por:

$$H(s) = \frac{b}{s+a}$$

Tiene una ecuación diferencial

$$y'(t) + a y(t) = b x(t)$$

• Al evaluarla en t = nT, se obtiene:

$$y'(nT) = -a y(nT) + b x(nT)$$

■Deducción...

■ Sustituyendo y'(nT) en la **expresión de la derivada** se llega a:

$$\left(1 + \frac{aT}{2}\right)y(n) - \left(1 - \frac{aT}{2}\right)y(n-1) = \frac{bT}{2}[x(n) + x(n-1)]$$

cuya transformada z es:,

$$\left(1 + \frac{aT}{2}\right)Y(z) - \left(1 - \frac{aT}{2}\right)z^{-1}Y(z) = \frac{bT}{2}X(z)[1 + z^{-1}]$$

■Deducción...

Y su función de transferencia discreta es,

$$H(z) = \frac{b}{\frac{2}{T} \left(\frac{1 - z^{-1}}{1 + z^{-1}}\right) + a}$$

■Si se compara con la del filtro analógico,

$$H(s) = \frac{b}{s+a}$$

■ Se deduce la correspondencia denominada transformación bilineal:

$$s = \frac{2}{T} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$$

■Correspondencia plano s ↔ plano z

■ Con $z = r e^{jw}$ y $s = \sigma + j\Omega$, la transformación bilineal puede escribirse como:

$$s = \frac{2}{T} \left(\frac{z - 1}{z + 1} \right) = \frac{2}{T} \left(\frac{r^2 - 1}{1 + r^2 + 2 r \cos w} + j \frac{2 r \sin w}{1 + r^2 + 2 r \cos w} \right)$$

■ De donde :

$$\sigma = \frac{2}{T} \left(\frac{r^2 - 1}{1 + r^2 + 2 r \cos w} \right)$$

$$\Omega = \frac{2}{T} \left(\frac{2 r \operatorname{sen} w}{1 + r^2 + 2 r \cos w} \right)$$

■ Correspondencia planos $s \leftrightarrow z \dots$

$$r < 1 \Rightarrow \sigma < 0$$

$$\sigma = \frac{2}{T} \left(\frac{r^2 - 1}{1 + r^2 + 2 r \cos w} \right)$$

 semiplano izquierdo en s se corresponde con el interior de la circunferencia unitaria en z.

■Correspondencia plano s \leftrightarrow plano z...

Percepción y Sistemas Inteligentes

$$r > 1 \Rightarrow \sigma > 0$$

$$\sigma = \frac{2}{T} \left(\frac{r^2 - 1}{1 + r^2 + 2 r \cos w} \right)$$

• semiplano **derecho** en s se corresponde con el **exterior** de la circunferencia unitaria en z.

PSI Percepción y Sistemas Inteligentes

\blacksquare Correspondencia plano s \leftrightarrow z...

$$r = 1 \Rightarrow \sigma = 0$$
:

$$\sigma = \frac{2}{T} \left(\frac{r^2 - 1}{1 + r^2 + 2 r \cos \omega} \right)$$

Se tiene,

•
$$\Omega = \frac{2}{T} \tan \left(\frac{\omega}{2} \right)$$

•
$$\omega = 2 \tan^{-1} \left(\frac{\Omega T}{2} \right)$$

• Relación entre frecuencia análoga Ω y digital ω .

- \blacksquare Correspondencia plano s \leftrightarrow plano z...
 - El rango de $-\infty \le \Omega \le \infty$ se corresponde unívocamente con el rango $-\pi \le \omega \le \pi$
 - Correspondencia no lineal ⇒ compresión o deformación de frecuencia.
 - El punto $s = \infty$ corresponde con el punto z = -1
 - Un filtro analógico con un cero en $s = \infty$ resulta en un filtro digital con un cero en z = -1

- ■**Ejemplo 1.** Convertir el filtro analógico dado en un filtro IIR digital por medio de la transformación **bilineal**.
 - El filtro digital debe presentar una frecuencia resonante $\omega_r = \pi/2$, que coincida con $\Omega_r = 4$.

$$H_a(s) = \frac{s + 0.1}{(s + 0.1)^2 + 16}$$

- **■** Solución
 - De la relación entre frecuencias, se obtiene T.

$$\Omega_r = \frac{2}{T} \tan \frac{w_r}{2} \implies T = \frac{1}{2}$$

■Solución...

■ Reemplazando el valor de T en la transformación bilineal se obtiene la correspondencia deseada,

$$s = \frac{2}{T} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) \implies s = 4 \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$$

■ El filtro digital resultante tiene la función de transferencia,

$$H(z) = \frac{0.128 + 0.006z^{-1} - 0.122z^{-2}}{1 + 0.0006z^{-1} + 0.975z^{-2}}$$

Los polos son: $z_{p_{1,2}} = 0.0003 \pm j0.87 = 0.987e^{\pm j90.02^{\circ}}$

■Solución...

Transf_Bilineal_IIR.m

clc;clear all; close all;

%Polinomio Numerador

b0= 0.128; b1=0.006; b2=-0.122;

 $b = [b0 \ b1 \ b2];$

%Polinomio Denominador

a0=1; a1=0.0006; a2=0.975;

 $a=[a0 \ a1 \ a2];$

%Polos

polos=roots(a)

AngPolos=angle(polos)*180/pi

MagPolos=abs(polos)

%freqz(b,a)

fvtool(b,a)

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

■Ejemplo 2.

• Usando la transformación bilineal, diseñe un filtro digital paso bajo de un polo simple con ancho de banda de 3 dB en $w_c = 0.2 \pi$.

$$H_a(s) = \frac{\Omega_c}{s + \Omega_c}$$

donde Ω_c es el ancho de banda de 3 dB del filtro analógico.

■ Solución

■ En el dominio frecuencial, $w_c = 0.2 \pi$ se corresponde con,

$$\Omega_c = \frac{2}{T} \tan(0.1\pi) = \frac{0.65}{T}$$

■Solución...

■ Por lo que el filtro tiene la función de transferencia,

$$H(s) = \frac{0.65/T}{s + 0.65/T}$$

Aplicando la transformación bilineal, se obtiene el filtro digital,

$$H(z) = \frac{0.245(1+z^{-1})}{1-0.509z^{-1}}$$

■ Verificando, la respuesta en frecuencia:

$$H(w) = \frac{0.245(1 + e^{-jw})}{1 - 0.509e^{-jw}} \implies H(w = 0) = 1, H(w = 0.2\pi) = 0.707$$

■Solución...

■ Verificando, la respuesta en frecuencia:

$$H(w) = \frac{0.245(1 + e^{-jw})}{1 - 0.509e^{-jw}} \implies H(w = 0) = 1, H(w = 0.2\pi) = 0.707$$

Observaciones Generales

- En las transformaciones de filtros el parámetro *T* puede asignársele cualquier valor ...
 - Si las especificaciones del filtro analógico se calculan a partir de las especificaciones en el dominio digital.
 - En este caso, *T* se cancela en la conversión del filtro analógico a digital.
- La fase de los filtros analógicos generalmente se distorsionan al transformarse al dominio discreto.
 - Ej: Los filtros Bessel analógicos tienen fase lineal pero el filtro discreto transformado no conserva esta linealidad en la fase.

■ Introducción

- Algunas técnicas para el diseño de filtros IIR implican la **conversión** de un filtro **analógico** en **digital** mediante **correspondencias** del plano **s** al plano **z**.
- Los métodos de **mínimos cuadrados** permiten **diseñar** los filtros digitales directamente en los dominios **temporal y frecuencial**.

■ Aproximación de Padé

■ El filtro que se va a diseñar presenta la función de transferencia,

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}} = \sum_{n=0}^{\infty} h(n) z^{-n}$$

- notar que:
 - $a_0 = 1$
 - \blacksquare h(n) es la respuesta impulsional del filtro.

■ Aproximación de Padé...

Criterio de error:

• Minimizar la suma ε de los errores al cuadrado entre h(n) del filtro resultante y la respuesta deseada $h_d(n)$.

$$\varepsilon = \sum_{n=0}^{U} [h_d(n) - h(n)]^2$$

- El filtro presenta L = M + N + 1 parámetros: $\{a_k\} y \{b_k\}$
- Los coeficientes se seleccionan para satisfacer el criterio de optimización del error.

■ Aproximación de Padé...

- En general h(n) es una función *no lineal* de los parámetros del filtro.
 - La solución involucra ecuaciones no lineales para minimizar ε.
- Si se selecciona el límite superior como U = L 1, es posible ajustar h(n) perfectamente a $h_d(n)$ para $0 \le n \le M + N$.
- La ecuación en diferencias para el filtro deseado es,

$$y(n) = -a_1 y(n-1) - a_2 y(n-2) - ... - a_N y(n-N) + b_0 x(n) + b_1 x(n-1) + b_2 x(n-2) + ... + b_M x(n-M)$$

■ Aproximación de Padé...

■ Con $x(n) = \delta(n)$, la respuesta del filtro es y(n) = h(n), por lo que:

$$h(n) = -a_1 h(n-1) - a_2 h(n-2) - \dots - a_N h(n-N) + b_0 \delta(n) + b_1 \delta(n-1) + \dots + b_M \delta(n-M)$$

Recordardando que $\delta(n-k) = 0$ excepto para k = n,

■ se tiene para $0 \le n \le M$

$$h(n) = -a_1 h(n-1) - a_2 h(n-2) - \dots - a_N h(n-N) + b_n [ec. 1]$$

y para n > M se obtiene:

$$h(n) = -a_1 h(n-1) - a_2 h(n-2) - \dots - a_N h(n-N)$$
 [ec. 2]

■ Aproximación de Padé...

Procedimiento

Usando el conjunto de ecuaciones lineales [ec.1] y [ec.2] se puede hacer que $h(n) = h_d(n)$ para $0 \le n \le M + N$.

- Paso 1: Encontrar $\{a_k\}$ haciendo $h(n) = h_d(n)$ en [ec. 2] $(M < n \le M + N)$
- Paso 2: Con los $\{a_k\}$ encontrados, determinar $\{b_k\}$ a partir de [ec. 1] $(0 \le n \le M)$

■ Aproximación de Padé...

Observaciones

El grado con que la técnica de Padé produce filtros aceptables depende del número de coeficientes del filtro seleccionado.

- $h_d(n)$ sólo se ajusta hasta el número de parámetros del filtro.
- Cuanto más complejo el filtro, mejor será la aproximación.
- Para mejorar la aproximación, el filtro debe poseer un gran número de polos y ceros.
- La técnica requiere ensayar varios valores de *M* y *N* para obtener un filtro que converja a la respuesta deseada.

■ Ejemplo

■ Use el método de aproximación de Padé para diseñar un filtro si se sabe que la respuesta impulsional deseada es:

$$h_d(n) = \{2, 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128,...\}$$

■ Solución

Suponiendo N = 1 y M = 1, la función de Transferencia es:

$$H(z) = \frac{b_0 + b_1 z^{-1}}{1 + a_1 z^{-1}}$$
 , $a_0 = 1$

■ Con $\delta(n)$ como entrada a H(z), se obtiene la salida y(n) = h(n)

$$h(n) = -a_1h(n-1) + b_0\delta(n) + b_1\delta(n-1)$$

■ Solución...

Paso 1: Para n > M,

$$n = 2 \implies h(2) = -a_1 h(1)$$

con $h_d(2) = 1/2$, $h_d(1) = 1 \implies a_1 = -1/2$

■ Paso 2: Para $0 \le n \le M$

$$n = 0 \implies h(0) = (1/2)h(-1) + b_0$$

 $con \quad h_d(0) = 2, \quad h_d(-1) = 0 \implies b_0 = 2$
 $n = 1 \implies h(1) = (1/2) \quad h(0) + b_1$
 $con \quad h_d(0) = 2, \quad h_d(1) = 1 \implies b_1 = 0$

■ Solución...

■ El filtro resultante es:

$$H(z) = \frac{2}{1 - \frac{1}{2}z^{-1}}$$

Su respuesta impulsional es:

$$h(n) = 2\left(\frac{1}{2}\right)^n u(n)$$
 $h(n) = \frac{1}{2}h(n-1) + 2 \delta(n)$

■ **Observación**: La secuencia deseada

$$h_d(n) = \{\underline{2}, 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, \dots \}$$

coincide exactamente con: $h_d(n) = 2(1/2)^n u(n)$,

■ Ejemplo 2

- Desarrolle un **programa** en Matlab para implementar el método de Padé para el diseño de filtros Digitales.
 - El programa debe calcular los coeficientes del filtro y la respuesta en frecuencia
- Pruébelo para la siguiente respuesta impulsional protótipo:

$$h_d(n) = \{ \underline{0.2} \ 0.32 \ 0.192 \ 0.1152 \ 0.0691 \ 0.0415 \ 0.0249 \ 0.0149 \ 0.009 \ 0.0054 \ 0.0032 \}$$

■ Indique qué tipo de filtro se obtuvo y la frecuencia de corte.

■ Solución

```
Pade general.m
```

```
clc; close all; clear all;
% Respuesta h(n): Se supone que el primer valor corresponde a h(0).
% num H(z) = b0 + b1 z^{(-1)} + ... + bM z^{(-M)}
% den H(z) = 1 + a1 z^{(-1)} + ... + aN z^{(-N)}
h=[0.2 0.32 0.192 0.1152 0.0691 0.0415 0.0249 0.0149 0.009 0.0054 0.0032 ];
M=3; N=3;
%PASO 1: Evaluar n>M para encontrar los coeficientes ai i=0-->N; a0=1
for x=1:1:N
    for y=1:1:N
        A(x, y) = -h(N-y+x+1);
        %El uno es para hacer coincidir la notación según índices en matlab.
    end
    b(x) = h(N+x+1);
end
```


■ Solución ...

```
%Coeficientes ai (i=0,2,..N)
%Calculo de coeficientes desde i=1-->N; siempre a0=1
% Determinar si la matriz A es singular
prueba= inv(A);
if (prueba==Inf | prueba==NaN )
        coef_a=pinv(A)*b'; % si es singular, forma alterna de calcular solución
else
        coef_a=A\b';
end
disp(['Coeficientes ai, i=0-->' num2str(N)])
aa=[1 coef_a']
```


■ Solución ...

■ Solución

```
% Respuesta en frecuencia
[H,w]=freqz (bb, aa );

% Frecuencia de corte
ind_wc1=find(abs(H)>(1/sqrt(2)),1,'last');
ind_wc2=find(abs(H)<(1/sqrt(2)),1,'first');
if abs(abs(H(ind_wc1))-1/sqrt(2))< abs(abs(H(ind_wc1))-1/sqrt(2))
    ind_wc=ind_wc1;
else
    ind_wc=ind_wc2;
end
wc=w(ind_wc)</pre>
```


■ Solución

```
% Graficación
subplot(2,1,1); plot(w,abs(H)); grid on;
title ( ['Respuesta en Frecuencia- Aprox. Padé. M= ' num2str(M) ' N= '
num2str(N)] )
xlabel('w'); ylabel('|H(w)|');
text(w(ind_wc), abs(H(ind_wc)),'\leftarrow wc','HorizontalAlignment','left')
subplot(2,1,2); plot(w,angle(H)); grid on;
title ( ['Frecuencia de corte wc=' num2str(wc)]);
xlabel('w'); ylabel('Fase(w)');
% Respuesta impulsional deseada
figure
stem(0:1:length(h)-1,h); grid on;
xlabel('n'); ylabel('h(n)');
```


Percepción y Sistemas Inteligentes

■ Solución ...

$$M = N = 3$$

 $a_i = 1.0 \quad 2.0 \quad 4.0 \quad -3.3359$
 $b_i = 0.20 \quad 0.72 \quad 1.632 \quad 1.112$
Paso bajo
 $\omega_c = 0.4909 \, rad/m$

Respuesta en Frecuencia- Aprox. Padé. M= 3 N= 3

Frecuencia de corte wc=0.49087

Solución

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

■ Observación

- La aproximación de Padé resulta en un **ajuste perfecto** a $H_d(z)$ cuando la función de transferencia deseada es *racional* y se **conocen** *a priori* el número de polos y ceros del sistema.
- Generalmente lo anterior no es el caso, ya que $h_d(n)$ se determina a partir de algunas especificaciones de $H_d(w)$.
 - En estos casos, la aproximación de Padé puede *NO* resultar en un buen diseño del filtro.

- Efecto de la selección de los valores de *M* y *N*
 - Considerar el filtro Butterworth de cuarto orden dado por,

$$H_d(z) = \frac{4.8334x10^{-3}(z+1)^4}{(z^2 - 1.3205z + 0.6326)(z^2 - 1.0482z + 0.2959)}$$

Con respuesta impulsional:

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

- Efecto de la selección de los valores de M y N...
 - Aproximación de Padé para diferentes valores de de polos (N) y ceros (M).

- $\{M, N\}$ < 4, la aproximación es pobre.
- $M \ge 4$ se obtiene una muy buena aproximación.
- M > 4 se puede obtener un buen resultado, incluso para N < 4.

