Lista de exercícios para desenvolvimento de lógica de programação.

v 13 de set. de 2022

Fontes de consulta para a montagem da lista

fonte https://wiki.python.org.br/EstruturaDeRepeticao acessada em 1 de mar. de 2023

Adicione títulos (Formatar > Estilos de parágrafo) e eles serão exibidos no seu sumário.

Prof. Flávio Sousa Silva

Adicione títulos (Formatar > Estilos de parágrafo) e eles serão exibidos no seu sumário.

Programação sequencial

- Desenvolver um programa que escreva a seguinte frase na tela "Hello world!"
- 2. Escreva um programa que escreva seu nome na tela
- 3. Receber o nome de uma pessoa e imprimir na tela diretamente.
- Receber o nome de uma pessoa e imprimir na tela da seguinte maneira

"Seu nome é Flávio Sousa"

Receber dois valores (val1 e val2) mostra as soma dos dois com a seguinte mensagem

"A soma de 5 + 6 = 11 "

- 6. Escreva um programa que exiba o resultado de 2a x 3b, em que a vale 3 e b vale 5, sendo os valores de a e b fixos..
- 7. Escreva um programa que calcule a soma de três variáveis (num1, num2, num3) e imprima o resultado na tela. O texto de saida dever estar neste formato. A soma de num1 + num2 + num 3 = soma
- 8. Escreva o programa que receba o valor do salário atual, do aumento percentual (%) e calcule o valor do novo salário, ao final apresentar o novo salário com seguinte mensagem:

Exemplo de saída na tela

"Seu salário atual é de R\$ 1.000,00, após o aumento de 15% seu salário será de R\$ 1.150,00"

OBS: os valores vem das variáveis

Para lembrar porcentagem acesse:

https://www.pravaler.com.br/porcentagem-o-que-e-e-como-calcular-percentual-de-um-valor/

- 9. Faça um programa que peça dois números inteiros. Imprima a soma desses dois números na tela.
- Escreva um programa que leia um valor em metros e o exiba convertido em milímetros. 1 metro é igual a 100 cm que é igual a 1000 mm.
- 11. Escreva um programa que leia a quantidade de dias, horas, minutos e segundos do usuário. Calcule o total em segundos.
- 12. Aqui está uma pequena história:

Era uma vez em Appleland, John tinha três maçãs, Mary tinha cinco maçãs e Adam tinha seis maçãs. Todos eram muito felizes e viveram por muito tempo. Fim da história. Sua tarefa é:

- crie as variáveis: john, mary e adam;
- atribuir valores às variáveis. Os valores devem ser iguais ao número de frutas possuídas por João, Maria e Adão, respectivamente;
 - Tendo armazenado os números nas variáveis, imprima as variáveis em uma linha e separe cada uma delas com uma vírgula;

- agora crie uma nova variável chamada totalApples igual à adição das três variáveis anteriores.
- imprima o valor armazenado em totalApples no console;
- Faça um programa solicite o preço de uma mercadoria e o percentual de desconto. Exiba o valor do desconto e o preço a pagar.
- 14. Escreva um programa que calcule o tempo de uma viagem de carro. Pergunte a distância a percorrer e a velocidade média esperada para a viagem.

15. Escreva um programa que converta uma temperatura digitada em °C em °F. A formula para a conversão é:

$$F = (C \times \frac{9}{5}) + 32$$

- 16. Escreva um programa que pergunte a quantidade de km percorridos por um carro alugado pelo usuário, assim como a quantidade de dias pelos quais o carro foi alugado. Calcule o preço a pagar, sabendo que o carro custa R\$ 60 por dia e R\$ 0,15 por km rodado.
- 17. Escreva um programa para calcular a redução do tempo de vida de um fumante. Pergunte a quantidade de cigarros fumados por dia e quantos anos ela já fumou. Considere que um fumante perde 10 minutos de vida a cada cigarro e calcule quantos dias de vida um fumante perderá. Exiba o total em dias.

18. Milhas e quilômetros são unidades de comprimento ou distância.

Tendo em conta que 1 milha equivale a aproximadamente 1,61 quilómetros, escreva um programa para converter milhas em km e vice-versa.

19. Faça um programa que dado x encontre $f(x)=3x^3-2x^2+3x-1$. A saída deve emitir a seguinte mensagem: "Para x=0 y=-1"

GIGA DE TESTES PAR	RA EX19	
x		SAÍDA
0		Para x = 0 y=-1
1		Para x = 1 y=3
3		Para x = 3 y=71

Programação com decisão simples

- 20. Elaborar um programa de computador que leia dois valores numéricos reais conhecidos. Em seguida o programa deve efetuar a adição dos dois valores lidos e apresentar o resultado caso seja maior que 10.
- 21. Escreva um programa no qual leia dois valores numéricos e imprima o maior deles. Caso ambos os números forem iguais, imprima na tela "números iguais".

GIGA DE TESTES PARA EX21		
NUM1	NUM2	SAÍDA
1	1	números iguais
1	2	2
2	1	2

22. Desenvolver um programa que receba dois valores reais (armazenar em real1 e real2). Somar este dois valores.

Caso a soma seja maior que 10, mostrar na tela: "Maior que 10". Caso contrário mostra: " menor que 10".

Caso seja igual a 10, não executa nenhuma operação.

No final deve imprimir a seguinte frase: "Obrigado por usar nosso programa"

GIGA DE TESTES PARA EX22		
REAL1	REAL2	SAÍDA

10,5	20,5	Maior que 10. Obrigado por usar nosso programa.
8,3	1,7	Obrigado por usar nosso programa.
5,4	3,6	Menor que 10. Obrigado por usar nosso programa.

23. Escreva um programa que pergunte a velocidade do carro de um usuário. Caso ultrapasse 80 km/h, exiba uma mensagem dizendo que o usuário foi multado. Neste caso, exiba o valor da multa, cobrando R\$ 5,00 por km/h acima de 80 km/h. Exemplo da mensagem

Você foi multado em R\$25,00.

GIGA DE TESTES PARA EX23		
entrada km/h		SAÍDA
80		
85		Você foi multado em R\$25,00
105		Você foi multado em R\$125,00

- 24. Escreva um programa que leia três números e que imprima o maior e o menor.
- 25. Escreva um programa que pergunte o salário do funcionário e calcule o valor do aumento. Para salários superiores a R\$ 1250,00, calcule um aumento de 10%. Para os inferiores ou iguais, de 15%.
- 26. Faça um algoritmo para ler:
 - a descrição do produto (produto),
 - a quantidade adquirida (qtde) e
 - o preço unitário (preco_unit).

Calcular e escrever o total, o desconto e o total a pagar.

total = quantidade adquirida * preço unitário

total a pagar = total - desconto),

sabendo-se que:

- Se quantidade <= 5 o desconto será de 2%
- Se quantidade > 5 e quantidade <=10 o desconto será de 3%
- Se quantidade > 10 o desconto será de 5%

Programação com decisão composta

- 27. Elaborar um programa de computador que leia dois valores numéricos reais desconhecidos. Em seguida o programa deve efetuar a adição dos dois valores lidos e caso seja o resultado maior ou igual a 10, deve ser somado a 5. Caso contrário, o valor do resultado deve ser subtraido de 7. Após a obtenção de um dos novos resultados o novo resultado deve ser apresentado.
- 28. Elaborar um programa que efetue a entrada de um valor numérico real não negativo.

Em caso do valor ser 5, o programa deve calcular e exibir o resultado da raiz quadrada do valor fornecido,

Caso contrário, o programa deve apresentar o resultado da raiz cúbica do valor fornecido.

Se o valor fornecido for negativo, o programa não deve executar nenhuma ação, apenas ser encerrado.

- 29. Execute o programa no qual o usuário entre com a idade do carro e caso o valor seja menor ou igual a 3 anos imprima "Seu carro é novo", caso contrario "Seu carro é velho".
- 30. Escreva um programa que pergunte a distância que um passageiro deseja percorrer em km. Calcule o preço da passagem, cobrando R\$ 0,50 por km para viagens de até 200 km, e R\$ 0,45 para viagens mais longas.

Programação com decisão encadeada

- 31. Receber o salário de um colaborador de uma empresa. Considere que o colaborador deve receber um reajuste de 15% caso seu salário seja menor que 500. Se o salário for maior ou igual a 500 mas menor ou igual a 1000, seu reajuste será de 10%, e caso seja ainda maior que 1000, o reajuste deverá ser de 5%.
- 32. Elaborar um programa que efetue a entrada dos valores de medida de três pesos aferidos de forma aleatória. O programa deve mostrar o maior peso fornecido.

Todos tem saída 3

33. Elaborar um programa que efetue a entrada dos valores de medida de três pesos aferidos de forma aleatória. Colocar os valores em ordem crescente.

Todos tem saída 123

Programação com seleção

- 34. Escreva um programa que calcular a categoria de um produto e determine o preço pela tabela: Categoria 1 valor de R\$ 10,00; Categoria 2 valor de R\$ 15,00; Categoria 3 valor de R\$ 19,00; Categoria 4 valor de R\$ 23,00 e Categoria 5 valor de R\$ 27,00.
- 35. Escreva um programa que leia dois números e que pergunte qual operação você deseja realizar. Você deve poder calcular soma (+), subtração (-), multiplicação (*) e divisão (/). Exiba o resultado da operação solicitada.
- 36. Escreva um programa para aprovar o empréstimo bancário para compra de uma casa. O programa deve perguntar o valor da casa a comprar, o salário e a quantidade de anos a pagar. O valor da prestação mensal não pode ser superior a 30% do salário. Calcule o valor da prestação como sendo o valor da casa a comprar dividido pelo numero de meses a pagar.
- 37. Escreva um programa que calcule o preço a pagar pelo fornecimento de energia elétrica. Pergunte a quantidade de kWh consumida e o tipo de instalação: R para residencial, I para industrial e C para comércios. Calcule o preço a pagar de acordo com a tabela a seguir:
 - a. Residencial: Até 500 kWh R\$ 0,40 e acima de 500 kWh R\$ 0.65.

- b. Comercial: Até 1000 kWh R\$ 0,55 e acima de 1000 kWh R\$ 0,60.
- c. Industrial: Até 5000 kWh R\$ 0,55 e acima de 5000 kWh R\$ 0,60.

Programação com uso de operadores lógicos

- 38. Elaborar um programa que efetue a entrada dos valores de medida de três pesos aferidos de forma aleatória. O programa deve mostrar o maior peso fornecido. (com operadores lógicos (not and or)
- 39. Elaborar um programa que leia leia um valor inteiro qualquer e apresente este valor somente se for divisivel por 2 ou somente se for divisivel por 3. Caso contrario não faca nada. Em hipotese alguma este valor deve ser exibido
- 40. Ler cinco valores numéricos inteiros (variaveis A,B,C, D e E) localizar e apresentar o maior e o menor valor.
- 41. Fazer um programa que peça as 2 notas do aluno (P1 e P1) se o aluno obtiver média ponderada maior ou igual a 7,5 será aprovado. Caso contrário o programa deve pedir a terceira nota (P3) e recalcular a média ponderada. Caso a media seja maior que 6 o aluna será aprovado senão ficará de dp. O professor dever entrar com o peso de cada nota para calculo da media ponderada.
- 42. Um posto está vendendo combustíveis com a seguinte tabela de descontos: até 20 litros, desconto de 3% por litro Álcool acima de 20 litros, desconto de 5% por litro até 20 litros, desconto de 4% por litro Gasolina acima de 20 litros, desconto de 6% por litro Escreva um algoritmo que leia o número de litros vendidos e o tipo de combustível (codificado da seguinte forma: A-álcool, G-gasolina), calcule e imprima o valor a ser pago pelo cliente sabendo-se que o preço do litro da gasolina é R\$ 3,30 e o preço do litro do álcool é R\$ 2,90.

- 43. Ler o nome de 2 times e o número de gols marcados na partida (para cada time). Escrever o nome do vencedor. Caso não haja vencedor deverá ser impressa a palavra EMPATE.
- 44. Uma empresa quer verificar se um empregado está qualificado para a aposentadoria ou não. Para estar em condições, um dos seguintes requisitos deve ser satisfeito:
 - Ter no mínimo 65 anos de idade.
 - Ter trabalhado no mínimo 35 anos.
 - Ter no mínimo 60 anos e ter trabalhado no mínimo 25 anos. Com base nas informações acima, faça um algoritmo que leia: o número do empregado (código), o ano de seu nascimento e o ano de seu ingresso na empresa. O programa deverá escrever a idade e o tempo de trabalho do empregado e a mensagem 'Requerer aposentadoria' ou 'Não requerer'.
- 45. Elaborar um programa que leia três valores para os lados de um triângulo, considerando lados com A, B e C. Verificar se os lados fornecidos formam um triângulo, e se for esta condição verdadeira, deve ser indicado o tipo de triângulo formado: isósceles, escaleno ou equilátero.

Dicas: A<B+C e B<A+C e C<A+B

Programação com estrutura de repetição enquanto (while or for)

- 46. Faça um programa que peça uma nota, entre zero e dez. Mostre uma mensagem caso o valor seja inválido e continue pedindo até que o usuário informe um valor válido.
- 47. Faça um programa que leia um nome de usuário e a sua senha e não aceite a senha igual ao nome do usuário, mostrando uma mensagem de erro e voltando a pedir as informações.
- 48. Faça um programa que leia e valide as seguintes informações:
 - a. Nome: maior que 3 caracteres;
 - b. Idade: entre 0 e 150;
 - c. Salário: maior que zero;
 - d. Sexo: 'f' ou 'm';
 - e. Estado Civil: 's', 'c', 'v', 'd';
 - f. Orientação sexual L,G,B,T,Q,I,A,+
- 49. Supondo que a população de um país A seja da ordem de 80000 habitantes com uma taxa anual de crescimento de 3% e que a população de B seja 200000 habitantes com uma taxa de crescimento de 1.5%. Faça um programa que calcule e escreva o número de anos necessários para que a população do país A ultrapasse ou iguale a população do país B, mantidas as taxas de crescimento.
- 50. Altere o programa anterior permitindo ao usuário informar as populações e as taxas de crescimento iniciais. Valide a entrada e permita repetir a operação.

- 51. Faça um programa que imprima na tela os números de 1 a 20, um abaixo do outro. Depois modifique o programa para que ele mostre os números um ao lado do outro.
- 52. Faça um programa que leia 5 números e informe o maior número.
- 53. Faça um programa que leia 5 números e informe a soma e a média dos números.
- 54. Faça um programa que imprima na tela apenas os números ímpares entre 1 e 50.
- 55. Faça um programa que receba dois números inteiros e gere os números inteiros que estão no intervalo compreendido por eles.
- 56. Altere o programa anterior para mostrar no final a soma dos números.
- 57. Desenvolva um gerador de tabuada, capaz de gerar a tabuada de qualquer número inteiro entre 1 a 10. O usuário deve informar de qual numero ele deseja ver a tabuada. A saída deve ser conforme o exemplo abaixo:

Tabuada de 5:

 $5 \times 1 = 5$

 $5 \times 2 = 10$

a. $5 \times 10 = 50$

- 58. Faça um programa que peça dois números, base e expoente, calcule e mostre o primeiro número elevado ao segundo número. Não utilize a função de potência da linguagem.
- 59. Faça um programa que peça 10 números inteiros, calcule e mostre a quantidade de números pares e a quantidade de números impares.
- 60. A série de Fibonacci é formada pela sequência 1,1,2,3,5,8,13,21,34,55,... Faça um programa capaz de gerar a série até o n-ésimo termo.
- 61. A série de Fibonacci é formada pela seqüência 0,1,1,2,3,5,8,13,21,34,55,... Faça um programa que gere a série até que o valor seja maior que 500.
- 62. Faça um programa que calcule o fatorial de um número inteiro fornecido pelo usuário. Ex.: 5!=5.4.3.2.1=120
- 63. Faça um programa que, dado um conjunto de N números, determine o menor valor, o maior valor e a soma dos valores.

- 64. Altere o programa anterior para que ele aceite apenas números entre 0 e 1000.
- 65. Altere o programa de cálculo do fatorial, permitindo ao usuário calcular o fatorial várias vezes e limitando o fatorial a números inteiros positivos e menores que 16.
- 66. Faça um programa que peça um número inteiro e determine se ele é ou não um número primo. Um número primo é aquele que é divisível somente por ele mesmo e por 1.
- 67. Altere o programa de cálculo dos números primos, informando, caso o número não seja primo, por quais número ele é divisível.
- 68. Faça um programa que mostre todos os primos entre 1 e N sendo N um número inteiro fornecido pelo usuário. O programa deverá mostrar também o número de divisões que ele executou para encontrar os números primos. Serão avaliados o funcionamento, o estilo e o número de testes (divisões) executados.
- 69. Faça um programa que calcule o mostre a média aritmética de N notas.
- 70. Faça um programa que peça para n pessoas a sua idade, ao final o programa devera verificar se a média de idade da turma varia entre 0 e 25,26 e 60 e maior que 60; e então, dizer se a turma é jovem, adulta ou idosa, conforme a média calculada.
- 71. Numa eleição existem três candidatos. Faça um programa que peça o número total de eleitores. Peça para cada eleitor votar e ao final mostrar o número de votos de cada candidato.
- 72. Faça um programa que calcule o número médio de alunos por turma. Para isto, peça a quantidade de turmas e a quantidade de alunos para cada turma. As turmas não podem ter mais de 40 alunos.
- 73. Faça um programa que calcule o valor total investido por um colecionador em sua coleção de CDs e o valor médio gasto em cada um deles. O usuário deverá informar a quantidade de CDs e o valor para em cada um.
- 74. O Sr. Manoel Joaquim possui uma grande loja de artigos de R\$ 1,99, com cerca de 10 caixas. Para agilizar o cálculo de quanto cada cliente deve pagar ele desenvolveu um tabela que contém o número de itens que o cliente comprou e ao lado o valor da conta. Desta forma a atendente do caixa precisa apenas contar quantos itens o cliente está levando e olhar na tabela de preços. Você foi contratado para desenvolver o programa que monta esta tabela de preços, que conterá os preços de 1 até 50 produtos, conforme o exemplo abaixo:

Lojas Quase Dois - Tabela de preços

1 - R\$ 1.99

2 - R\$ 3.98

...

a. 50 - R\$ 99.50

75. O Sr. Manoel Joaquim acaba de adquirir uma panificadora e pretende implantar a metodologia da tabelinha, que já é um sucesso na sua loja de 1,99. Você foi contratado para desenvolver o programa que monta a tabela de preços de pães, de 1 até 50 pães, a partir do preço do pão informado pelo usuário, conforme o exemplo abaixo:

Preço do pão: R\$ 0.18

Panificadora Pão de Ontem - Tabela de preços

1 - R\$ 0.18

2 - R\$ 0.36

. . .

a. 50 - R\$ 9.00

76. O Sr. Manoel Joaquim expandiu seus negócios para além dos negócios de 1,99 e agora possui uma loja de conveniências. Faça um programa que implemente uma caixa registradora rudimentar. O programa deverá receber um número desconhecido de valores referentes aos preços das mercadorias. Um valor zero deve ser informado pelo operador para indicar o final da compra. O programa deve então mostrar o total da compra e perguntar o valor em dinheiro que o cliente forneceu, para então calcular e mostrar o valor do troco. Após esta operação, o programa deverá voltar ao ponto inicial, para registrar a próxima compra. A saída deve ser conforme o exemplo abaixo:

Lojas Tabajara

Produto 1: R\$ 2.20

Produto 2: R\$ 5.80

Produto 3: R\$ 0

Total: R\$ 9.00

Dinheiro: R\$ 20.00

Troco: R\$ 11.00

a. ...

77. Faça um programa que calcule o fatorial de um número inteiro fornecido pelo usuário. Ex.: 5!=5.4.3.2.1=120. A saída deve ser conforme o exemplo abaixo:

Fatorial de: 5

a. 5! = 5 . 4 . 3 . 2 . 1 = 120

- 78. O Departamento Estadual de Meteorologia lhe contratou para desenvolver um programa que leia as um conjunto indeterminado de temperaturas, e informe ao final a menor e a maior temperaturas informadas, bem como a média das temperaturas.
- 79. Os números primos possuem várias aplicações dentro da Computação, por exemplo na Criptografia. Um número primo é aquele que é divisível apenas por um e por ele mesmo. Faça um programa que peça um número inteiro e determine se ele é ou não um número primo.
- 80. Encontrar números primos é uma tarefa difícil. Faça um programa que gera uma lista dos números primos existentes entre 1 e um número inteiro informado pelo usuário.
- 81. Desenvolva um programa que faça a tabuada de um número qualquer inteiro que será digitado pelo usuário, mas a tabuada não deve necessariamente iniciar em 1 e terminar em 10, o valor inicial e final devem ser informados também pelo usuário, conforme exemplo abaixo:

Montar a tabuada de: 5

Começar por: 4 Terminar em: 7

Vou montar a tabuada de 5 começando em 4 e terminando em 7:

5 X 4 = 20

5 X 5 = 25

 $5 \times 6 = 30$

a. $5 \times 7 = 35$

Obs: Você deve verificar se o usuário não digitou o final menor que o inicial.

82. Uma academia deseja fazer um senso entre seus clientes para descobrir o mais alto, o mais baixo, a mais gordo e o mais magro, para isto você deve fazer um programa que pergunte a cada um dos clientes da academia seu código, sua altura e seu peso. O

final da digitação de dados deve ser dada quando o usuário digitar 0 (zero) no campo código. Ao encerrar o programa também deve ser informados os códigos e valores do clente mais alto, do mais baixo, do mais gordo e do mais magro, além da média das alturas e dos pesos dos clientes

- 83. Um funcionário de uma empresa recebe aumento salarial anualmente: Sabe-se que:
 - a. Esse funcionário foi contratado em 1995, com salário inicial de R\$ 1.000.00;
 - b. Em 1996 recebeu aumento de 1,5% sobre seu salário inicial;
 - c. A partir de 1997 (inclusive), os aumentos salariais sempre correspondem ao dobro do percentual do ano anterior. Faça um programa que determine o salário atual desse funcionário. Após concluir isto, altere o programa permitindo que o usuário digite o salário inicial do funcionário.
- 84. Faça um programa que leia dez conjuntos de dois valores, o primeiro representando o número do aluno e o segundo representando a sua altura em centímetros. Encontre o aluno mais alto e o mais baixo. Mostre o número do aluno mais alto e o número do aluno mais baixo, junto com suas alturas.
- 85. Foi feita uma estatística em cinco cidades brasileiras para coletar dados sobre acidentes de trânsito. Foram obtidos os seguintes dados:
 - a. Código da cidade;
 - b. Número de veículos de passeio (em 1999);
 - c. Número de acidentes de trânsito com vítimas (em 1999). Deseja-se saber:
 - d. Qual o maior e menor índice de acidentes de transito e a que cidade pertence;
 - e. Qual a média de veículos nas cinco cidades juntas;
 - f. Qual a média de acidentes de trânsito nas cidades com menos de 2.000 veículos de passeio.
- 86. Faça um programa que receba o valor de uma dívida e mostre uma tabela com os seguintes dados: valor da dívida, valor dos juros, quantidade de parcelas e valor da parcela.

Os juros e a quantidade	de parcelas seguem a tabela abaixo:
Quantidade de Parcelas	% de Juros sobre o valor inicial da dívida

1	0
3	10
6	15
9	20

12 25

Exemplo de saída do programa:

Valor da Dívida Valor dos Juros Quantidade de Parcelas Valor da Parcela

R\$ 1.000,00	0	1	R\$ 1.000,00
R\$ 1.100,00	100	3	R\$ 366,00

a. R\$ 1.150,00 150 6 R\$ 191,67

- 87. Faça um programa que leia uma quantidade indeterminada de números positivos e conte quantos deles estão nos seguintes intervalos: [0-25], [26-50], [51-75] e [76-100]. A entrada de dados deverá terminar quando for lido um número negativo.
- 88. O cardápio de uma lanchonete é o seguinte:

Especificação Código Preço
Cachorro Quente 100 R\$ 1,20
Bauru Simples 101 R\$ 1,30
Bauru com ovo 102 R\$ 1,50
Hambúrguer 103 R\$ 1,20
Cheeseburguer 104 R\$ 1,30

- a. Refrigerante 105 R\$ 1,00 Faça um programa que leia o código dos itens pedidos e as quantidades desejadas. Calcule e mostre o valor a ser pago por item (preço * quantidade) e o total geral do pedido. Considere que o cliente deve informar quando o pedido deve ser encerrado.
- 89. Em uma eleição presidencial existem quatro candidatos. Os votos são informados por meio de código. Os códigos utilizados são:
 - 1, 2, 3, 4 Votos para os respectivos candidatos

(você deve montar a tabela ex: 1 - Jose/ 2- João/etc)

- 5 Voto Nulo
 - a. 6 Voto em BrancoFaça um programa que calcule e mostre:
 - b. O total de votos para cada candidato;
 - c. O total de votos nulos;
 - d. O total de votos em branco;
 - e. A percentagem de votos nulos sobre o total de votos;
 - f. A percentagem de votos em branco sobre o total de votos.

Para finalizar o conjunto de votos tem-se o valor zero.

- 90. Desenvolver um programa para verificar a nota do aluno em uma prova com 10 questões, o programa deve perguntar ao aluno a resposta de cada questão e ao final comparar com o gabarito da prova e assim calcular o total de acertos e a nota (atribuir 1 ponto por resposta certa). Após cada aluno utilizar o sistema deve ser feita uma pergunta se outro aluno vai utilizar o sistema. Após todos os alunos terem respondido informar:
 - a. Maior e Menor Acerto;
 - b. Total de Alunos que utilizaram o sistema;

A Média das Notas da Turma. Gabarito da Prova:

- 01 A
- 02 B
- 03 C
- 04 D
- 05 E
- 06 E
- 07 D
- 08 C
- 09 B
 - c. 10 A

Após concluir isto você poderia incrementar o programa permitindo que o professor digite o gabarito da prova antes dos alunos usarem o programa.

Em uma competição de salto em distância cada atleta tem direito a cinco saltos. No final da série de saltos de cada atleta, o melhor e o pior resultados são eliminados. O seu resultado fica sendo a média dos três valores restantes. Você deve fazer um programa que receba o nome e as cinco distâncias alcançadas pelo atleta em seus saltos e depois informe a média dos saltos conforme a descrição acima informada (retirar o melhor e o pior salto e depois calcular a média). Faça uso de uma lista para armazenar os saltos. Os saltos são informados na ordem da execução, portanto não são ordenados. O programa deve ser encerrado quando não for informado o nome do atleta. A saída do programa deve ser

conforme o exemplo abaixo: Atleta: Rodrigo Curvêllo

Primeiro Salto: 6.5 m

Segundo Salto: 6.1 m

Terceiro Salto: 6.2 m

Quarto Salto: 5.4 m

Quinto Salto: 5.3 m

Melhor salto: 6.5 m

Pior salto: 5.3 m

Média dos demais saltos: 5.9 m

Resultado final:

91. Rodrigo Curvêllo: 5.9 m

Em uma competição de ginástica, cada atleta recebe votos de sete jurados. A melhor e a pior nota são eliminadas. A sua nota fica sendo a média dos votos restantes. Você deve fazer um programa que receba o nome do ginasta e as notas dos sete jurados alcançadas pelo atleta em sua apresentação e depois informe a sua média, conforme a descrição acima informada (retirar o melhor e o pior salto e depois calcular a média com as notas restantes). As notas não são informados ordenadas. Um exemplo de saída do programa deve ser conforme o exemplo abaixo:

Atleta: Aparecido Parente

Nota: 9.9

Nota: 7.5

Nota: 9.5

Nota: 8.5

Nota: 9.0

Nota: 8.5

Nota: 9.7

Resultado final:

Atleta: Aparecido Parente

Melhor nota: 9.9

Pior nota: 7.5

92. Média: 9,04

93. Faça um programa que peça um numero inteiro positivo e em seguida mostre este numero invertido.

Exemplo: 12376489

a. => 98467321

94. Faça um programa que mostre os n termos da Série a seguir:

a. S = 1/1 + 2/3 + 3/5 + 4/7 + 5/9 + ... + n/m. Imprima no final a soma da série.

95. Sendo H= 1 + 1/2 + 1/3 + 1/4 + ... + 1/N, Faça um programa que calcule o valor de H com N termos.

96. Faça um programa que mostre os n termos da Série a seguir:

a. S = 1/1 + 2/3 + 3/5 + 4/7 + 5/9 + ... + n/m. Imprima no final a soma da série.

- 97. Fazer um programa que escreva de 1 a 100 na tela.
- 98. Fazer um programa que escreva uma faixa de números dados por um usuário.
- 99. Faça o mesmo programa anterior na ordem inversa
- 100. Escrever um programa que acumule valores entrados por um usuário até ele pedir para parar. A cada valor o usuário deve ser perguntado se quer continuar.
- 101. 5. Fazer um programa que execute a tabuado de um número dados pelo usuário.

- 102. Fazer um programa que de a tabuada do 1 até um número apresentado pelo usuário
- 103. Fazer um programa que dado o saldo inicial e a taxa de juros de uma aplicação e mostre a evolução dos valores para os próximos 12 meses. Juros compostos
- 104. 8. Repita o programa anterior com aportes mensais de valores. O programa deve primeiro calcular o juros e, depois, acrescentar o aporte.
- 105. Fazer um programa que calcule a sequência de fibonacci até o 15 termo

0-1-2-3-5-8-13-...

106. Fazer um programa que escreva os numero primos de 1 a 1000. (dica: use uma variável booleana dentro do while para registrar a não primaridade)

Programação com Listas

- 107. Faça um Programa que leia um vetor de 5 números inteiros e mostre-os.
- 108. Faça um Programa que leia um vetor de 10 números reais e mostre-os na ordem inversa.
- 109. Faça um Programa que leia 4 notas, mostre as notas e a média na tela.
- 110. Faça um Programa que leia um vetor de 10 caracteres, e diga quantas consoantes foram lidas. Imprima as consoantes.

- 111. Faça um Programa que leia 20 números inteiros e armazene-os num vetor. Armazene os números pares no vetor PAR e os números IMPARES no vetor impar. Imprima os três vetores.
- 112. Faça um Programa que peça as quatro notas de 10 alunos, calcule e armazene num vetor a média de cada aluno, imprima o número de alunos com média maior ou igual a 7.0.
- 113. Faça um Programa que leia um vetor de 5 números inteiros, mostre a soma, a multiplicação e os números.
- 114. Faça um Programa que peça a idade e a altura de 5 pessoas, armazene cada informação no seu respectivo vetor. Imprima a idade e a altura na ordem inversa a ordem lida.
- 115. Faça um Programa que leia um vetor A com 10 números inteiros, calcule e mostre a soma dos quadrados dos elementos do vetor.
- 116. Faça um Programa que leia dois vetores com 10 elementos cada. Gere um terceiro vetor de 20 elementos, cujos valores deverão ser compostos pelos elementos intercalados dos dois outros vetores.
- 117. Altere o programa anterior, intercalando 3 vetores de 10 elementos cada.
- 118. Foram anotadas as idades e alturas de 30 alunos. Faça um Programa que determine quantos alunos com mais de 13 anos possuem altura inferior à média de altura desses alunos.
- 119. Faça um programa que receba a temperatura média de cada mês do ano e armazene-as em uma lista. Após isto, calcule a média anual das temperaturas e mostre todas as temperaturas acima da média anual, e em que mês elas

- ocorreram (mostrar o mês por extenso: 1 Janeiro, 2 Fevereiro, . . .).
- 120. Utilizando listas faça um programa que faça 5 perguntas para uma pessoa sobre um crime. As perguntas são:
 - a. "Telefonou para a vítima?"
 - b. "Esteve no local do crime?"
 - c. "Mora perto da vítima?"
 - d. "Devia para a vítima?"
 - e. "Já trabalhou com a vítima?" O programa deve no final emitir uma classificação sobre a participação da pessoa no crime. Se a pessoa responder positivamente a 2 questões ela deve ser classificada como "Suspeita", entre 3 e 4 como "Cúmplice" e 5 como "Assassino". Caso contrário, ele será classificado como "Inocente".
- 121. Faça um programa que leia um número indeterminado de valores, correspondentes a notas, encerrando a entrada de dados quando for informado um valor igual a -1 (que não deve ser armazenado). Após esta entrada de dados, faça:
 - a. Mostre a quantidade de valores que foram lidos;
 - b. Exiba todos os valores na ordem em que foram informados, um ao lado do outro;
 - c. Exiba todos os valores na ordem inversa à que foram informados, um abaixo do outro;
 - d. Calcule e mostre a soma dos valores;
 - e. Calcule e mostre a média dos valores;
 - f. Calcule e mostre a quantidade de valores acima da média calculada;
 - g. Calcule e mostre a quantidade de valores abaixo de sete;
 - h. Encerre o programa com uma mensagem;
- 122. Utilize uma lista para resolver o problema a seguir. Uma empresa paga seus vendedores com base em

comissões. O vendedor recebe \$200 por semana mais 9 por cento de suas vendas brutas daquela semana. Por exemplo, um vendedor que teve vendas brutas de \$3000 em uma semana recebe \$200 mais 9 por cento de \$3000, ou seja, um total de \$470. Escreva um programa (usando um array de contadores) que determine quantos vendedores receberam salários nos seguintes intervalos de valores:

- a. \$200 \$299
- b. \$300 \$399
- c. \$400 \$499
- d. \$500 \$599
- e. \$600 \$699
- f. \$700 \$799
- g. \$800 \$899
- h. \$900 \$999
- i. \$1000 em diante

123. Desafio: Crie ma fórmula para chegar na posição da lista a partir do salário, sem fazer vários *ifs* aninhados.

Em uma competição de salto em distância cada atleta tem direito a cinco saltos. O resultado do atleta será determinado pela média dos cinco valores restantes. Você deve fazer um programa que receba o nome e as cinco distâncias alcançadas pelo atleta em seus saltos e depois informe o nome, os saltos e a média dos saltos. O programa deve ser encerrado quando não for informado o nome do atleta. A saída do programa deve ser conforme o exemplo abaixo:

Atleta: Rodrigo Curvêllo

Primeiro Salto: 6.5 m Segundo Salto: 6.1 m Terceiro Salto: 6.2 m Quarto Salto: 5.4 m Quinto Salto: 5.3 m

Resultado final:

Atleta: Rodrigo Curvêllo

Saltos: 6.5 - 6.1 - 6.2 - 5.4 - 5.3

124. Média dos saltos: 5.9 m

- 125. Uma grande emissora de televisão quer fazer uma enquete entre os seus telespectadores para saber qual o melhor jogador após cada jogo. Para isto, faz-se necessário o desenvolvimento de um programa, que será utilizado pelas telefonistas, para a computação dos votos. Sua equipe foi contratada para desenvolver este programa, utilizando a linguagem de programação C++. Para computar cada voto, a telefonista digitará um número, entre 1 e 23, correspondente ao número da camisa do jogador. Um número de jogador igual zero, indica que a votação foi encerrada. Se um número inválido for digitado, o programa deve ignorá-lo, mostrando uma breve mensagem de aviso, e voltando a pedir outro número. Após o final da votação, o programa deverá exibir:
 - a. O total de votos computados;
 - b. Os númeos e respectivos votos de todos os jogadores que receberam votos;
 - c. O percentual de votos de cada um destes jogadores;
 - d. O número do jogador escolhido como o melhor jogador da partida, juntamente com o número de votos e o percentual de votos dados a ele.
 - i. Observe que os votos inválidos e o zero final não devem ser computados como votos. O resultado aparece ordenado pelo número do jogador. O programa deve fazer uso de arrays. O programa deverá executar o cálculo do percentual de cada jogador através de uma

função. Esta função receberá dois parâmetros: o número de votos de um jogador e o total de votos. A função calculará o percentual e retornará o valor calculado. Abaixo segue uma tela de exemplo. O disposição das informações deve ser o mais próxima possível ao exemplo. Os dados são fictícios e podem mudar a cada execução do programa. Ao final, o programa deve ainda gravar os dados referentes ao resultado da votação em um arquivo texto no disco, obedecendo a mesma disposição apresentada na tela.

Enquete: Quem foi o melhor jogador?

Número do jogador (0=fim): 9

Número do jogador (0=fim): 10

Número do jogador (0=fim): 9

Número do jogador (0=fim): 10

Número do jogador (0=fim): 11

Número do jogador (0=fim): 10

Número do jogador (0=fim): 50

Informe um valor entre 1 e 23 ou 0 para sair!

Número do jogador (0=fim): 9

Número do jogador (0=fim): 9

Número do jogador (0=fim): 0

Resultado da votação:

Foram computados 8 votos.

Jogad	or Votos	%
9	4	50,0%
10	3	37,5%
11	1	12,5%

126. O melhor jogador foi o número 9, com 4 votos, correspondendo a 50% do total de votos.

Uma empresa de pesquisas precisa tabular os resultados da seguinte enquete feita a um grande quantidade de organizações:

"Qual o melhor Sistema Operacional para uso em servidores?"

As possíveis respostas são:

- 1- Windows Server
- 2- Unix
- 3- Linux
- 4- Netware
- 5- Mac OS
- 6- Outro

Você foi contratado para desenvolver um programa que leia o resultado da enquete e informe ao final o resultado da mesma. O programa deverá ler os valores até ser informado o valor 0, que encerra a entrada dos dados. Não deverão ser aceitos valores além dos válidos para o programa (0 a 6). Os valores referentes a cada uma das opções devem ser armazenados num vetor. Após os dados terem sido completamente informados, o programa deverá calcular a percentual de cada um dos concorrentes e informar o vencedor da enquete. O formato da saída foi dado pela empresa, e é o seguinte:

Sistema Operaci	ional	Voto	s %
			-
Windows Server	•	1500	17%
Unix	3500	40%	
Linux	3000	34%	
Netware	500	5%	
Mac OS	150	2%	

Outro	150	2%
Total	8800	

- 127. O Sistema Operacional mais votado foi o Unix, com 3500 votos, correspondendo a 40% dos votos.
- 128. As Organizações Tabajara resolveram dar um abono aos seus colaboradores em reconhecimento ao bom resultado alcançado durante o ano que passou. Para isto contratou você para desenvolver a aplicação que servirá como uma projeção de quanto será gasto com o pagamento deste abono.
 - a. Após reuniões envolvendo a diretoria executiva, a diretoria financeira e os representantes do sindicato laboral, chegou-se a seguinte forma de cálculo:
 - b. a.Cada funcionário receberá o equivalente a 20% do seu salário bruto de dezembro; a.O piso do abono será de 100 reais, isto é, aqueles funcionários cujo salário for muito baixo, recebem este valor mínimo; Neste momento, não se deve ter nenhuma preocupação com colaboradores com tempo menor de casa, descontos, impostos ou outras particularidades. Seu programa deverá permitir a digitação do salário de um número indefinido (desconhecido) de salários. Um valor de salário igual a 0 (zero) encerra a digitação. Após a entrada de todos os dados o programa deverá calcular o valor do abono concedido a cada colaborador, de acordo com a regra definida acima. Ao final, o programa deverá apresentar:
 - c. O salário de cada funcionário, juntamente com o valor do abono;
 - d. O número total de funcionário processados;
 - e. O valor total a ser gasto com o pagamento do abono;

- f. O número de funcionário que receberá o valor mínimo de 100 reais;
- g. O maior valor pago como abono; A tela abaixo é um exemplo de execução do programa, apenas para fins ilustrativos. Os valores podem mudar a cada execução do programa.

Projeção de Gastos com Abono

Salário: 1000

Salário: 300

Salário: 500

Salário: 100

Salário: 4500

Salário: 0

Salário - Abono

R\$ 1000.00 - R\$ 200.00

R\$ 300.00 - R\$ 100.00

R\$ 500.00 - R\$ 100.00

R\$ 100.00 - R\$ 100.00

R\$ 4500.00 - R\$ 900.00

Foram processados 5 colaboradores

Total gasto com abonos: R\$ 1400.00

Valor mínimo pago a 3 colaboradores

- 129. Maior valor de abono pago: R\$ 900.00
- 130. Faça um programa que carregue uma lista com os modelos de cinco carros (exemplo de modelos: FUSCA, GOL, VECTRA etc). Carregue uma outra lista com o consumo desses carros, isto é, quantos quilômetros cada um desses carros faz com um litro de combustível. Calcule e mostre:
 - a. O modelo do carro mais econômico;

b. Quantos litros de combustível cada um dos carros cadastrados consome para percorrer uma distância de 1000 quilômetros e quanto isto custará, considerando um que a gasolina custe R\$ 2,25 o litro. Abaixo segue uma tela de exemplo. O disposição das informações deve ser o mais próxima possível ao exemplo. Os dados são fictícios e podem mudar a cada execução do programa.

Comparativo de Consumo de Combustível

Veículo 1

Nome: fusca

Km por litro: 7

Veículo 2

Nome: gol

Km por litro: 10

Veículo 3

Nome: uno

Km por litro: 12.5

Veículo 4

Nome: Vectra Km por litro: 9

Veículo 5

Nome: Peugeout Km por litro: 14.5

Relatório Final

```
1 - fusca - 7.0 - 142.9 litros - R$ 321.43
2 - gol - 10.0 - 100.0 litros - R$ 225.00
3 - uno - 12.5 - 80.0 litros - R$ 180.00
4 - vectra - 9.0 - 111.1 litros - R$ 250.00
5 - peugeout - 14.5 - 69.0 litros - R$ 155.17
```

131. O menor consumo é do peugeout.

- 132. Sua organização acaba de contratar um estagiário para trabalhar no Suporte de Informática, com a intenção de fazer um levantamento nas sucatas encontradas nesta área. A primeira tarefa dele é testar todos os cerca de 200 mouses que se encontram lá, testando e anotando o estado de cada um deles, para verificar o que se pode aproveitar deles.
 - a. Foi requisitado que você desenvolva um programa para registrar este levantamento. O programa deverá receber um número indeterminado de entradas, cada uma contendo: um número de identificação do mouse o tipo de defeito:
 - b. necessita da esfera;
 - c. necessita de limpeza; a.necessita troca do cabo ou conector; a.quebrado ou inutilizado Uma identificação igual a zero encerra o programa. Ao final o programa deverá emitir o seguinte relatório:

Quantidade de mouses: 100

Situação	Quantidade	Percentual
1- necessita da es:	fera 40	40%
2- necessita de lin	mpeza 30	30%
3- necessita troca	do cabo ou conect	or 15 15%
133. 4- quebrado o	u inutilizado	15 15%

A ACME Inc., uma empresa de 500 funcionários, está tendo problemas de espaço em disco no seu servidor de arquivos. Para tentar resolver este problema, o Administrador de Rede precisa saber qual o espaço ocupado pelos usuários, e identificar os usuários com maior espaço ocupado. Através de um programa, baixado da Internet, ele conseguiu gerar o seguinte arquivo, chamado "usuarios.txt":

alexandre 456123789

anderson 1245698456 antonio 123456456 carlos 91257581 cesar 987458 rosemary 789456125

Neste arquivo, o nome do usuário possui 15 caracteres. A partir deste arquivo, você deve criar um programa que gere um relatório, chamado "relatório.txt", no seguinte formato:

ACME Inc.	Uso do espaço em disco pelos usuários

N_1	r. Usuário	Espaço utiliza	.do % do uso
1	alexandre	434,99 MB	16,85%
2	anderson	1187,99 MB	$46{,}02\%$
3	antonio	117,73 MB	4,56%
4	carlos	87,03 MB	3,37%
5	cesar	0,94 MB	$0,\!04\%$
6	rosemary	752,88 MB	29,16%

Espaço total ocupado: 2581,57 MB

134. Espaço médio ocupado: 430,26 MB

O arquivo de entrada deve ser lido uma única vez, e os dados armazenados em memória, caso sejam necessários, de forma a agilizar a execução do programa. A conversão da espaço ocupado em disco, de bytes para megabytes deverá ser feita através de uma função separada, que será chamada pelo programa principal. O cálculo do percentual de uso também deverá ser feito através de uma função, que será chamada pelo programa principal.

135. Faça um programa que simule um lançamento de dados. Lance o dado 100 vezes e armazene os resultados em um vetor . Depois, mostre quantas vezes cada valor foi conseguido. Dica: use um vetor de contadores(1-6) e uma função para gerar numeros aleatórios, simulando os lançamentos dos dados

Programação funcional (modular)

136. Faça um programa para imprimir:

```
1
2 2
3 3 3
.....
n n n n n n ... n
```

para um **n** informado pelo usuário. Use uma função que receba um valor **n** inteiro e imprima até a n-ésima linha.

137. Faça um programa para imprimir:

```
1
1 2
1 2 3
.....
```

para um **n** informado pelo usuário. Use uma função que receba um valor **n** inteiro imprima até a n-ésima linha.

138. Faça um programa, com uma função que necessite de três argumentos, e que forneça a soma desses três argumentos.

- 139. Faça um programa, com uma função que necessite de um argumento. A função retorna o valor de caractere 'P', se seu argumento for positivo, e 'N', se seu argumento for zero ou negativo.
- 140. Faça um programa com uma função chamada soma imposto(). A função possui dois parâmetros formais: taxa do Imposto, que é a porcentagem do imposto sobre as vendas, e custo, que é o custo de um item antes do imposto. A função retorna o valor de venda mínimo, que é o custo mais o imposto a pagar.

exemplo: imposto 10% e custo 250 reais.

imposto(10,250) retorna R\$277,77 (250/0.9)

Observação 0.9 é 1-taxa (no caso 1-0.1)

- 141. Faça um programa que converta da notação de 24 horas para a notação de 12 horas. Por exemplo, o programa deve converter 14:25 em 2:25 P.M. A entrada é dada em dois inteiros. Deve haver pelo menos duas funções: uma para fazer a conversão e uma para a saída. Registre a informação A.M./P.M. como um valor 'A' para A.M. e 'P' para P.M. Assim, a função para efetuar as conversões terá um parâmetro formal para registrar se é A.M. ou P.M. Inclua um loop que permita que o usuário repita esse cálculo para novos valores de entrada todas as vezes que desejar.
- 142. Faça um programa que use a função valorPagamento para determinar o valor a ser pago por uma prestação de uma conta. O programa deverá solicitar ao usuário o valor da prestação e o número de dias em atraso e passar estes valores para a função valorPagamento, que calculará o valor a ser pago e devolverá este valor ao programa que a chamou. O programa deverá então exibir o valor a ser pago na tela. Após a execução o programa deverá voltar a pedir outro valor de prestação e assim continuar até que seja informado um valor igual a zero para a prestação. Neste momento o programa deverá ser encerrado, exibindo o relatório do dia, que conterá a quantidade e o valor total de prestações pagas no dia. O cálculo do valor a ser pago é feito da

- seguinte forma. Para pagamentos sem atraso, cobrar o valor da prestação. Quando houver atraso, cobrar 3% de multa, mais 0,1% de juros por dia de atraso.
- 143. Faça uma função que informe a quantidade de dígitos de um determinado número inteiro informado.
- 144. **Reverso do número.** Faça uma função que retorne o reverso de um número inteiro informado. Por exemplo: 127 -> 721.
- 145. **Jogo de Craps.** Faça um programa de implemente um jogo de Craps. O jogador lança um par de dados, obtendo um valor entre 2 e 12. Se, na primeira jogada, você tirar 7 ou 11, você um "natural" e ganhou. Se você tirar 2, 3 ou 12 na primeira jogada, isto é chamado de "craps" e você perdeu. Se, na primeira jogada, você fez um 4, 5, 6, 8, 9 ou 10,este é seu "Ponto". Seu objetivo agora é continuar jogando os dados até tirar este número novamente. Você perde, no entanto, se tirar um 7 antes de tirar este Ponto novamente.
- 146. Data com mês por extenso. Construa uma função que receba uma data no formato DD/MM/AAAA e devolva uma string no formato D de mesPorExtenso de AAAA. Opcionalmente, valide a data e retorne NULL caso a data seja inválida.
- 147. **Embaralha palavra**. Construa uma função que receba uma string como parâmetro e devolva outra string com os carateres embaralhados. Por exemplo: se função receber a palavra *python*, pode retornar *npthyo*, *ophtyn* ou qualquer outra combinação possível, de forma aleatória. Padronize em sua função que todos os caracteres serão devolvidos em caixa alta ou caixa baixa, independentemente de como foram digitados.
- 148. **Desenha moldura**. Construa uma função que desenhe um retângulo usando os caracteres '+', '-' e '| '. Esta função deve receber dois parâmetros, *linhas* e *colunas*, sendo que o valor por omissão é o valor mínimo igual a 1 e o valor máximo é 20. Se valores fora da faixa forem informados, eles devem ser modificados para valores dentro da faixa de forma elegante.
- 149. Quadrado mágico. Um quadrado mágico é aquele dividido em linhas e colunas, com um número em cada posição e no qual a soma das linhas, colunas e diagonais é a mesma. Por exemplo, veja um quadrado mágico de lado 3, com números de 1 a 9:

```
8 3 41 5 96 7 2
```

Elabore uma função que identifica e mostra na tela todos os quadrados mágicos com as características acima. Dica: produza todas as combinações possíveis e verifique a soma quando completar cada quadrado. Usar um vetor de 1 a 9 parece ser mais simples que usar uma matriz 3x3.

a.

Programação Orientada a objetos

- 150. Classe Bola: Crie uma classe que modele uma bola:
 - a. Atributos: Cor, circunferência, material
 - b. Métodos: trocaCor e mostraCor
- 151. Classe Quadrado: Crie uma classe que modele um quadrado:
 - a. Atributos: Tamanho do lado
 - b. Métodos: Mudar valor do Lado, Retornar valor do Lado e calcular Área:
- 152. Classe Retangulo: Crie uma classe que modele um retangulo:
 - a. Atributos: LadoA, LadoB (ou Comprimento e Largura, ou Base e Altura, a escolher)
 - b. Métodos: Mudar valor dos lados, Retornar valor dos lados, calcular Área e calcular Perímetro;
 - c. Crie um programa que utilize esta classe. Ele deve pedir ao usuário que informe as medidades de um local. Depois, deve criar um objeto com as medidas e calcular a quantidade de pisos e de rodapés necessárias para o local.

- 153. Classe Pessoa: Crie uma classe que modele uma pessoa:
 - a. Atributos: nome, idade, peso e altura
 - b. Métodos: Envelhercer, engordar, emagrecer, crescer. Obs: Por padrão, a cada ano que nossa pessoa envelhece, sendo a idade dela menor que 21 anos, ela deve crescer 0,5 cm.
- 154. Classe Conta Corrente: Crie uma classe para implementar uma conta corrente. A classe deve possuir os seguintes atributos: número da conta, nome do correntista e saldo. Os métodos são os seguintes: alterarNome, depósito e saque; No construtor, saldo é opcional, com valor default zero e os demais atributos são obrigatórios.
- 155. Classe TV: Faça um programa que simule um televisor criando-o como um objeto. O usuário deve ser capaz de informar o número do canal e aumentar ou diminuir o volume. Certifique-se de que o número do canal e o nível do volume permanecem dentro de faixas válidas.
- 156. **Classe Bichinho Virtual:**Crie uma classe que modele um Tamagushi (Bichinho Eletrônico):
 - a. Atributos: Nome, Fome, Saúde e Idade b. Métodos: Alterar Nome, Fome, Saúde e Idade; Retornar Nome, Fome, Saúde e Idade Obs: Existe mais uma informação que devemos levar em consideração, o Humor do nosso tamagushi, este humor é uma combinação entre os atributos Fome e Saúde, ou seja, um campo calculado, então não devemos criar um atributo para armazenar esta informação por que ela pode ser calculada a qualquer momento.
- 157. Classe Macaco: Desenvolva uma classe Macaco, que possua os atributos nome e bucho (estomago) e pelo menos os métodos comer(), verBucho() e digerir(). Faça um programa ou teste

interativamente, criando pelo menos dois macacos, alimentando-os com pelo menos 3 alimentos diferentes e verificando o conteúdo do estomago a cada refeição. Experimente fazer com que um macaco coma o outro. É possível criar um macaco canibal?

- 158. Classe Ponto e Retangulo: Faça um programa completo utilizando funções e classes que:
 - a. Possua uma classe chamada Ponto, com os atributos x e y.
 - b. Possua uma classe chamada Retangulo, com os atributos largura e altura.
 - c. Possua uma função para imprimir os valores da classe Ponto
 - d. Possua uma função para encontrar o centro de um Retângulo.
 - e. Você deve criar alguns objetos da classe Retangulo.
 - f. Cada objeto deve ter um vértice de partida, por exemplo, o vértice inferior esquerdo do retângulo, que deve ser um objeto da classe Ponto.
 - g. A função para encontrar o centro do retângulo deve retornar o valor para um objeto do tipo ponto que indique os valores de x e y para o centro do objeto.
 - h. O valor do centro do objeto deve ser mostrado na tela
 - Crie um menu para alterar os valores do retângulo e imprimir o centro deste retângulo.
- 159. Classe Bomba de Combustível: Faça um programa completo utilizando classes e métodos que:
 - a. Possua uma classe chamada bombaCombustível, com no mínimo esses atributos:
 - i. tipoCombustivel.
 - ii. valorLitro
 - iii. quantidadeCombustivel
 - b. Possua no mínimo esses métodos:

- i. abastecerPorValor() método onde é informado o valor a ser abastecido e mostra a quantidade de litros que foi colocada no veículo
- ii. abastecerPorLitro() método onde é informado a quantidade em litros de combustível e mostra o valor a ser pago pelo cliente.
- iii. alterarValor() altera o valor do litro do combustível.
- iv. alterarCombustivel() altera o tipo do combustível.
- v. alterarQuantidadeCombustivel() altera a quantidade de combustível restante na bomba.
- c. OBS: Sempre que acontecer um abastecimento é necessário atualizar a quantidade de combustível total na bomba.
- 160. **Classe carro:** Implemente uma classe chamada Carro com as seguintes propriedades:
 - a. Um veículo tem um certo consumo de combustível (medidos em km / litro) e uma certa quantidade de combustível no tanque.
 - b. O consumo é especificado no construtor e o nível de combustível inicial é 0.
 - c. Forneça um método andar() que simule o ato de dirigir o veículo por uma certa distância, reduzindo o nível de combustível no tanque de gasolina.
 - d. Forneça um método obterGasolina(), que retorna o nível atual de combustível.

Forneça um método adicionarGasolina(), para abastecer o tanque. Exemplo de uso:

```
meuFusca = Carro(15);  # 15 quilômetros por
litro de combustível.
meuFusca.adicionarGasolina(20); # abastece com 20
litros de combustível.
meuFusca.andar(100);  # anda 100
quilômetros.
```

- 161. Classe Conta de Investimento: Faça uma classe contalnvestimento que seja semelhante a classe contaBancaria, com a diferença de que se adicione um atributo taxaJuros. Forneça um construtor que configure tanto o saldo inicial como a taxa de juros. Forneça um método adicioneJuros (sem parâmetro explícito) que adicione juros à conta. Escreva um programa que construa uma poupança com um saldo inicial de R\$1000,00 e uma taxa de juros de 10%. Depois aplique o método adicioneJuros() cinco vezes e imprime o saldo resultante.
- 162. Classe Funcionário: Implemente a classe Funcionário. Um empregado tem um nome (um string) e um salário(um double). Escreva um construtor com dois parâmetros (nome e salário) e métodos para devolver nome e salário. Escreva um pequeno programa que teste sua classe.
- 163. Aprimore a classe do exercício anterior para adicionar o método aumentarSalario (porcentualDeAumento) que aumente o salário do funcionário em uma certa porcentagem.

Exemplo de uso:

harry=funcionário("Harry",25000)

- a. harry.aumentarSalario(10)
- 164. Classe Bichinho Virtual++: Melhore o programa do bichinho virtual, permitindo que o usuário especifique quanto de comida ele fornece ao bichinho e por quanto tempo ele brinca com o bichinho. Faça com que estes valores afetem quão rapidamente os níveis de fome e tédio caem.

- 165. Crie uma "porta escondida" no programa do programa do bichinho virtual que mostre os valores exatos dos atributos do objeto. Consiga isto mostrando o objeto quando uma opção secreta, não listada no menu, for informada na escolha do usuário. Dica: acrescente um método especial str() à classe Bichinho.
- 166. Crie uma Fazenda de Bichinhos instanciando vários objetos bichinho e mantendo o controle deles através de uma lista. Imite o funcionamento do programa básico, mas ao invés de exigis que o usuário tome conta de um único bichinho, exija que ele tome conta da fazenda inteira. Cada opção do menu deveria permitir que o usuário executasse uma ação para todos os bichinhos (alimentar todos os bichinhos, brincar com todos os bichinhos, ou ouvir a todos os bichinhos). Para tornar o programa mais interessante, dê para cada bichinho um nivel inicial aleatório de fome e tédio.

Projetos

1. Controle de cotas de disco. A ACME Inc., uma organização com mais de 1500 funcionários, está tendo problemas de espaço em disco no seu servidor de arquivos. Para tentar resolver este problema, o Administrador de Rede precisa saber qual o espaço em disco ocupado pelas contas dos usuários, e identificar os usuários com maior espaço ocupado. Através de um aplicativo baixado da Internet, ele conseguiu gerar o seguinte arquivo, chamado "usuarios.txt":

alexandre	456123789
anderson	1245698456
antonio	123456456
carlos	91257581
cesar	987458
rosemary	789456125

Neste arquivo, o primeiro campo corresponde ao login do usuário e o segundo ao espaço em disco ocupado pelo seu diretório

home. A partir deste arquivo, você deve criar um programa que gere um relatório, chamado "relatório.txt", no seguinte formato:

ACME	Inc.	Uso	do	espaço	em	disco	pelos
usuái	rios						
			-				
NT	TI 4 1 -	П			1 -	0	a] a
	Usuário	Espa	aço	utiliza	ado	6	do
uso							
1	alexandre	434	4,99) MB		-	16,85%
2	anderson	1187	7,99) MB		4	46,02%
			•				
3	antonio	11'	/, /3	B MB			4,56%
4	carlos	8	7,03	B MB			3,37%
5	cesar	() _ 94	MB			0,04%
	00001						
6	rosemary	752	2,88	B MB		/	29,16%

Espaço total ocupado: 2581,57 MB

Espaço médio ocupado: 430,26 MB

O arquivo de entrada deve ser lido uma única vez, e os dados armazenados em memória, caso sejam necessários, de forma a agilizar a execução do programa. A conversão da espaço ocupado em disco, de bytes para megabytes deverá ser feita através de uma função separada, que será chamada pelo programa principal. O cálculo do percentual de uso também deverá ser feito através de uma função, que será chamada pelo programa principal. Recursos adicionais: opcionalmente, desenvolva as seguintes funcionalidades:

Ordenar os usuários pelo percentual de espaço ocupado; Mostrar apenas os *n* primeiros em uso, definido pelo usuário; Gerar a saída numa página html;

Criar o programa que lê as pastas e gera o arquivo inicial;

- 2. **Analisador de logs do Apache.** Desenvolva um analisador de log do Apache que mostre quais as strings de pesquisa do google que mais levam internautas para o site da sua organização.
- 3. **Analisador de logs do Squid: sites bloqueados.** Desenvolva um analisador de log do Squid que mostre quais os sites mais bloqueados em uma organização.

Desafios

Nível de dificuldade

Médio

DM1 - Desafio nível médio 1

Desafio de nível médio 1

Objetivos

Familiarizar o aluno com:

usando o loop while;

encontrar a implementação adequada de regras definidas verbalmente; refletindo situações da vida real em código de computador.

Cenário

Ouça esta história: um menino e seu pai, um programador de computador, estão brincando com blocos de madeira. Eles estão construindo uma pirâmide.

A pirâmide deles é um pouco estranha, pois na verdade é uma parede em forma de pirâmide - é plana. A pirâmide é empilhada de acordo com

um princípio simples: cada camada inferior contém um bloco a mais do que a camada acima.

A figura ilustra a regra usada pelos construtores:

Sua tarefa é escrever um programa que leia o número de blocos que os construtores possuem e produza a altura da pirâmide que pode ser construída usando esses blocos.

Nota: a altura é medida pelo número de camadas totalmente concluídas - se os construtores não têm um número suficiente de blocos e não podem concluir a próxima camada, eles terminam seu trabalho imediatamente.

Teste seu código usando os dados que fornecemos.

Dados de teste:

Entrada de amostra:	Resultado esperado: Altura da pirâmide
6	3
20	5
1000	44
2	1
4	2