LATE BHAUSAHEB HIRAY S.S. TRUST'S INSTITUTE OF COMPUTER APPLICATION

<u>ISO 9001-2008 CERTIFIED</u>

S.N. 341, Next to New English School, Govt. Colony, Bandra (East), Mumbai – 400051, Tel: 91-22-26570892/3181

Date:17/04/2021

CERTIFICATE

This is to certify that Mr./Ms.	
Harshal Jaywant Chavan	Roll No. <u>202124</u>
is a student of MCA of 1st year Semeste successfully full-semester practical/assignment ML for the academic year 2020 – 21.	•
Subject In-Charge	Director

External Examiner

LBHSS's Hiray Institute of Computer Application

AI &ML PRACTICAL – JOURNAL F.Y.MCA

Index

Practicals	Date	Sign
Study of Logical Programming with Prolog.		
Study of Python Libraries: A) NumPy B) Pandas		
Study of Python Libraries: A) Matplotlib B) Scikit Learn		
Study of Supervised Learning:		
A) Linear RegressionB) Logistic RegressionC) K Nearest Neighbor Algorithm		
Study of Dimension Reduction: A) Feature Scaling B) Normalization (Feature Selection)		
Study of Principal of Component Analysis		
Study of K-mean Clustering.		
Study of Support Vector Machine.		
	Study of Logical Programming with Prolog. Study of Python Libraries: A) NumPy B) Pandas Study of Python Libraries: A) Matplotlib B) Scikit Learn Study of Supervised Learning: A) Linear Regression B) Logistic Regression C) K Nearest Neighbor Algorithm Study of Dimension Reduction: A) Feature Scaling B) Normalization (Feature Selection) Study of Principal of Component Analysis Study of K-mean Clustering.	Study of Python Libraries: A) NumPy B) Pandas Study of Python Libraries: A) Matplotlib B) Scikit Learn Study of Supervised Learning: A) Linear Regression B) Logistic Regression C) K Nearest Neighbor Algorithm Study of Dimension Reduction: A) Feature Scaling B) Normalization (Feature Selection) Study of Principal of Component Analysis Study of K-mean Clustering.

9	Study of Bagging Algorithms:
	A) Bagging algorithm
	B) Decision Tree Classifier
	C) Random Forest
10	Study of Boosting Algorithms:
	A) Ada Boost
	B) Stochastic Gradient Boosting
	C) Voting Ensemble
11	Study of Python Flask Library
	☐ Any algorithm with Flask and Pickle Library

Practical 1: Study of Logical Programming with Prolog.

Step: - 1. Create one file in notepad with .pl extension and file type =All type.

```
🔐 D:\Documents\Sem-2\AI & ML\Iab\p1.pI - Notepad++
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?
] 🚽 🖶 🖺 🥫 🥫 🚵 | & 🐚 🖒 | D C | ## 🗽 | 🤏 🥞 | 🚟 🙃 1 | 🗜 🗷 💹 🐔 🐿 | 🗨 🗉 🗩 🗩
🔚 p1.pl 🔀 📙 p2.pl 🗵
   1
        studnet (neeta).
   2
        loves to eat (noodles).
   3
        loves to eat (vijeta, noodles).
   4
       intelligent (suchita).
   5
        cat (tom) .
        freinds(jack,jill).
   6
```

Go to GNU \rightarrow File \rightarrow Change dir \rightarrow Select the folder where notepad file is saved.

```
| Self-Prolog Console | Self-Prolog Console
```

Code:-

- **→**[p1].
- → Student(X).
 Intelligent(Y).

```
File Edit Terminal Prolog Help

GNU Prolog 1.4.5 (64 bits)
Compiled Jul 14 2018, 12:58:46 with cl
By Daniel Diaz
Copyright (C) 1999-2018 Daniel Diaz
| ?- change_directory('D:/AI & ML').

yes
| ?- [p1].
compiling D:/AI & ML/p1.pl for byte code...
D:/AI & ML/p1.pl:1: warning: singleton variables [Sameer] for student/1
D:/AI & ML/p1.pl:3: warning: singleton variables [Krishna] for loves_to_eat/2
D:/AI & ML/p1.pl:4: warning: singleton variables [Ritvik] for intelligent/1
D:/AI & ML/p1.pl:4: warning: singleton variables [Ritvik] sor intelligent/1
D:/AI & ML/p1.pl compiled, 5 lines read - 826 bytes written, 390 ms

yes
| ?- student(X).

yes
| ?- intelligent(Y)
.

yes
| ?- intelligent(Y)
```

2. AND (;) & OR (,) Function

Create new notepad file.

→ likes(pooja, geeta). likes(geeta,pooja). likes(neha,aliya).

freindship(X,Y) :- likes(X,Y);likes(Y,X).

```
| ?- [p2].
compiling D:/AI & ML/p2.pl for byte code...
D:/AI & ML/p2.pl compiled, 5 lines read - 884 bytes written, 17 ms
?- freindship(X,Y).
X = pooja
Y = geeta ? ;
X = geeta
Y = pooja ? ;
X = neha
Y = aliya ? ;
X = geeta
Y = pooja ? ;
X = pooja
Y = geeta ? ;
X = aliya
Y = neha
(46 ms) yes
```

```
→ likes(pooja,geeta).
likes(geeta,pooja).
likes(neha,aliya).
freindship(X,Y) :- likes(X,Y),likes(Y,X).
```

```
?- [p2].
compiling D:/AI & ML/p2.pl for byte code...
D:/AI & ML/p2.pl compiled, 5 lines read - 763 bytes written, 16 ms
| ?- freindship(X,Y).
X = pooja
Y = geeta ? ;
X = geeta
Y = pooja ? ;
no
  ?-
→ next to(mumbai,pune).
 next_to(pune,satara).
 next_to(mumbai,nashik).
 travel(A,C):- next_to(A,B),next_to(B,C).
[ ?- [þ2].
compiling D:/AI & ML/p2.pl for byte code...
D:/AI & ML/p2.pl compiled, 5 lines read - 738 bytes written, 16 ms
yes
?- freindship(X,Y).
X = pooja
```

Y = geeta ? ;

X = geeta Y = pooja ? ;

(31 ms) no

3. Relationship in prolog: - specify relationship between object and properties of objects. Relationship can also be a rule.

Create new notepad file.

```
→ p3.pl
female(scarlet).
female(alice).
female(katherine).
female(fiona).
male(bob).
male(sean).
male(chris).
male(dravis).
parent(bob, alice).
parent(bob, sean).
parent(scarlet, alice).
parent(scarlet, sean).
parent(alice, katherine).
parent(sean, chris).
parent(katherine,fiona).
parent(chris,dravis).
granparent(X,Y) :- parent(X,Z),parent(Z,Y).
sister(X,Y) :- parent(Z,X), parent(Z,Y), female(X), X = Y.
brother(X,Y) := parent(Z,X), parent(Z,Y), male(X), female(Y).
uncle(X,Y) := parent(Z,Y), brother(X,Z).
aunt(X,Y) :- parent(Z,Y),sister(X,Z).
daughter(X,Y) := parent(Y,X), female(X).
son(X,Y):-parent(Y,X), male(X).
mother(X,Y) :- parent(X,Y), female(X).
father(X,Y):-parent(X,Y), male(X).
```

```
GNU Prolog console
File Edit Terminal Prolog Help
GNU Prolog 1.4.5 (64 bits)
Compiled Jul 14 2018, 12:58:46 with cl
By Daniel Diaz
Copyright (C) 1999-2018 Daniel Diaz
| ?- change_directory('D:/AI & ML').
| ?- [p3].
compiling D:/AI & ML/p3.pl for byte code...
D:/AI & ML/p3.pl compiled, 38 lines read - 4475 bytes written, 354 ms
(31 ms) yes
| ?- parent(X,Y)
X = bob
Y = alice ? ;
X = bob
Y = sean ? ;
X = scarlet
Y = alice ? ;
X = scarlet
Y = sean ? ;
X = alice
Y = katherine ? ;
X = sean
Y = chris ? ;
X = katherine
Y = fiona ? ;
X = chris
Y = dravis
```

```
| ?- brother(X,Y).
X = sean
Y = alice ? ;
X = sean
Y = alice ? ;
| ?- sister(X,Y).
X = alice
Y = sean ? ;
X = alice
Y = sean ? ;
(16 ms) no
| ?- grandparent(X,Y).
X = bob
Y = katherine ? ;
X = bob
Y = chris ? ;
X = scarlet
Y = katherine ? ;
X = scarlet
Y = chris ? ;
X = alice
Y = fiona ? ;
X = sean
Y = dravis ? ;
```

```
| ?- uncle(X,Y).
X = sean
Y = katherine ? ;
X = sean
Y = katherine ? ;
(15 ms) no
| ?- aunt(X,Y).
X = alice
Y = chris ? ;
X = alice
Y = chris ? ;
(31 ms) no
| ?- mother(X,Y).
X = scarlet
Y = alice ? ;
X = scarlet
Y = sean ? ;
X = alice
Y = katherine ? ;
X = katherine
Y = fiona ? ;
(47 ms) no
```

```
?- father(X,Y).
X = bob
Y = alice ? ;
X = bob
Y = sean ? ;
X = sean
Y = chris ? ;
X = chris
Y = dravis
yes
\mid ?- son(X,Y).
X = sean
Y = bob ? ;
X = sean
Y = scarlet ? ;
X = chris
Y = sean ? ;
X = dravis
Y = chris
| ?- daughter(X,Y).
X = alice
Y = bob ? ;
X = alice
Y = scarlet ? ;
X = katherine
Y = alice ? ;
X = fiona
```

Y = katherine ? ;

(31 ms) no

Practical 2: Study of Python Libraries:

a) NumPy

b) Pandas

NumPy

```
import numpy as np
l = ['dog', 'cat', 'horse']
1
Output: ['dog', 'cat', 'horse']
type(l)
Output: list
l.sort()
1
Output: ['cat', 'dog', 'horse']
li = list(range(6))
li
Output: [0, 1, 2, 3, 4, 5]
while li:
  p=li.pop()
  print('p:', p)
  print('li:', li)
Output:
p: 5
li: [0, 1, 2, 3, 4]
```

```
<mark>р: 4</mark>
li: [0, 1, 2, 3]
p: 3
li: [0, 1, 2]
p: 2
li: [0, 1]
p: 1
li: [0]
p: 0
li: []
a = ('Ryan', 33, True)
b = 'Takaya', 25, False
type(b)
Output: tuple
type(a)
type(b)
Output: tuple
print(a[1])
Output: 33
print(b[0])
Output: Takaya
```

a = np.array([2,4,6,8])

```
a
```

```
Output: array([2, 4, 6, 8])
a.dtype
Output: dtype('int32')
a = np.array([2,4,6,8], np.int64)
a
Output: array([2, 4, 6, 8], dtype=int64)
a = np.array([[2,4,6,8]])
a
Output: array([[2, 4, 6, 8]])
a[0][3]
Output: 8
a.shape
Output: (1, 4)
listarr = np.array([[1,1,1],[2,2,2],[3,3,3]])
listarr
Output:
array([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])
```

listarr.shape

Output: (3, 3) listarr.size Output: 9 z = np.zeros((2,4))Z Output: array([[0., 0., 0., 0.], [0., 0., 0., 0.]]z.shape **Output:** (2, 4) y = np.ones((3,4))y Output: array([[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]]) y = np.ones((2,3,4))y Output:

array([[[1., 1., 1., 1.],

[1., 1., 1., 1.],

[1., 1., 1., 1.]],

```
[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
x = np.arange(10)
X
Output: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
m = np.linspace(1,5,4)
m
Output: array([1. , 2.33333333, 3.66666667, 5. ])
m = np.linspace(1,7,3)
Output: Type Markdown and LaTeX: α2
m
Output: array([1., 4., 7.])
y
Output:
array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],
[[1., 1., 1., 1.],
[1., 1., 1., 1.],
```

$$c = np.ones_like(y)$$

C

Output:

$$g = np.ones((2,3,4))$$

g

Output:

g.reshape

Output: <function ndarray.reshape>

Output:

array([[[1., 1., 1., 1.],

[1., 1., 1., 1.],

[1., 1., 1., 1.]],

[[1., 1., 1., 1.],

[1., 1., 1., 1.],

[1., 1., 1., 1.]])

h = np.arange(50)

h

Output:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49])

h.reshape(2,25)

Output:

array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24],

[25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46, 47, 48, 49]])

h.ravel()

Output:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

```
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49])

b = np.arange(3,10,2, dtype=np.int32)
```

b.itemsize

b

Output: 4

```
b = np.arange(3.4,10,2)
```

b.itemsize

Output: 8

b.shape

Output: (4,)

b.itemsize

Output: 8

```
t = np.linspace(3,10,3, dtype=np.int32)
```

t

Output: array([3. , 4.75, 6.5 , 8.25, 10.])

```
t = np.linspace(3,10,5, dtype=np.int32)
```

t

Output: array([3, 4, 6, 8, 10])

$$m = np.arange(6)$$

Output: array([0, 1, 2, 3, 4, 5])

m.reshape(2,3)

Output:

array([[0, 1, 2],

[3, 4, 5]])

m.reshape(3,2)

Output:

array([[0, 1],

[2, 3],

[4, 5]])

Pandas

```
import numpy as np
import pandas as pd
dict = {"name":['aa', 'bb', 'cc'],
    "class":['fy','sy','ty'],
   "roll":[11, 22, 33]}
dict
Output: {'name': ['aa', 'bb', 'cc'], 'class': ['fy', 'sy', 'ty'], 'roll': [11, 22, 33]}
df = pd.DataFrame(dict)
df
Output:
name class roll
0 aa fy 11
1 bb sy 22
2 cc ty 33
df.to_csv('student.csv')
df.to_csv('index_false_student.csv', index=False)
df.head()
Output:
name class roll
0 aa fy 11
1 bb sy 22
2 cc ty 33
```

df.tail()

Output:

name	class	roll	
0	aa	fy	11
1	bb	sy	22
2	сс	ty	33

df.describe()

Output:

<mark>roll</mark>

count 3.0

mean 22.0

std 11.0

min 11.0

25% 16.5

50% 22.0

75% 27.5

max 33.0

df.head(3)

	name	class	roll
0	aa	fy	11
1	bb	sy	22
2.	cc	tv	33

df.to_csv('index.csv', index=False)

df

Output:

	name	class	rol
0	aa	fy	11
1	bb	sy	22
2	cc	ty	33

df.to_csv('index1.csv', index=False)

demo = pd.read_csv('index2.csv')

demo

Output:

	prod_i	id	name	area
0	2200	apple	andher	i
1	3300	mango	parle	
2	4400	orange	santacr	<mark>uz</mark>

demo['name']

Output:

0 apple

1 mango

2 orange

Name: name, dtype: object

demo['name'][1]

Output: 'mango'

```
demo['prod_id']
Output:
0 2200
1 3300
2 4400
Name: prod_id, dtype: int64
demo['prod_id'][2]
Output: 4400
demo['prod\_id'][2] = 4004
Output: warning
<ipython-input-64-0c3a9eb8bc8c>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
demo['prod_id'][2] = 4004
demo['prod_id']
Output:
0 2200
1 3300
2 4004
Name: prod_id, dtype: int64
demo.to_csv('new.csv')
demo
```

Output:

prod_id name area

0 2200 apple andheri

1 3300 mango parle

2 4004 orange santacruz

demo.index = ['one', 'two', 'three']

Output:

demo

prod_id name area

one 2200 apple andheri

two 3300 mango parle

three 4004 orange Santacruz

s = pd.Series([2,3,4,5,6,7,8,9,10])

S

Output:

0 2

1 3

2 4

3 5

4 6

5 7

6 8

7 9

8 10

dtype: int64

s1 = pd.Series(np.random.rand(20))

s1

Output:

- 0 0.476242
- 1 0.332118
- 2 0.265113
- 3 0.722535
- 4 0.210917
- 5 0.204344
- 6 0.557794
- 7 0.585600
- 8 0.775989
- 9 0.555856
- 10 0.669544
- 11 0.874442
- 12 0.534156
- 13 0.260446
- 14 0.519634
- 15 0.776713
- 16 0.660476
- 17 0.748030
- 18 0.814161
- 19 0.366974

dtype: float64

df1 = pd.DataFrame(np.random.rand(20,10))

	0 1	2 3	4 5	6 7	8 9	
0	0.889829	0.217723	0.950464	0.114454	0.175260	0.171785
	0.502882	0.431306	0.585802	0.824907		
1	0.815695	0.961605	0.734357	0.617062	0.778672	0.737305
	0.224034	0.792681	0.043488	0.755798		
2	0.300321	0.297326	0.667170	0.810632	0.954124	0.527148
	0.697780	0.679426	0.251948	0.124489		
2	0.640760	0.550652	0.254000	0.005045	0.110265	0.602600
3	0.648760	0.770672	0.254008	0.025945	0.110265	0.602699
	0.498752	0.413338	0.312994	0.293970		
4	0.538527	0.630472	0.851454	0.061778	0.659211	0.565140
	0.876626	0.598274	0.997209	0.087594		
5	0.541544	0.934696	0.424254	0.602228	0.491561	0.614428
<i>3</i>	0.341344	0.491124	0.424234	0.973860	0.491301	0.014420
	0.120/11	0.471124	0.204723	0.773000		
6	0.628961	0.302158	0.846598	0.068880	0.285089	0.233620
	0.408571	0.277139	0.119807	0.524263		
7	0.120473	0.407693	0.207758	0.042455	0.203260	0.605364
	0.230598	0.450066	0.450713	0.003687		
8	0.558722	0.927035	0.777533	0.483478	0.847846	0.096667
	0.910407	0.327488	0.254891	0.337679		
9	0.427066	0.629416	0.845941	0.008152	0.927802	0.945599
	0.783255	0.626967	0.922936	0.155402		
10	0.748707	0.909395	0.492470	0.046778	0.203244	0.102267
10	0.748707	0.909393	0.492470	0.046778	0.203244	0.102367
	U.2 4 2721	0.370299	0.323937	0.410044		
11	0.190404	0.602494	0.196155	0.650595	0.986109	0.680599
	0.886406	0.262964	0.956797	0.719145		
12	0.240944	0.520401	0.174845	0.756972	0.198388	0.355310
1 2	0.419668	0.514867	0.761939	0.560055	0.170300	0.333310
	0.117000	0.311007	0.701737	0.500055		
13	0.627101	0.535762	0.842373	0.963862	0.816623	0.052924
	0.211294	0.368572	0.167157	0.388588		
14	0.978139	0.237486	0.077492	0.209904	0.650783	0.663827
	0.352613	0.130673	0.536371	0.074908	0.300700	0.000021

15	0.488940	0.336477	0.495782	0.341456	0.425742	0.461244
	0.142852	0.294217	0.499867	0.226806		
16	0.024142	0.726993	0.602587	0.815984	0.753234	0.515214
	0.982483	0.124366	0.452646	0.757576		
17	0.428680	0.481441	0.671396	0.437300	0.565147	0.387528
	0.174145	0.295377	0.683534	0.326617		
18	0.529209	0.236979	0.605650	0.002481	0.898732	0.043005
	0.464004	0.849748	0.056447	0.424221		
19	0.884170	0.725553	0.001559	0.273916	0.643806	0.102261
	0.280440	0.360105	0.760108	0.674790		

type(df1)

df1.describe()

	0	1	2	3	4	5	6	7	8	9	
count	20.000	0000	20.0	00000	20.0	00000	20.0	00000	20.0	000000	20.000000
	20.000	0000	20.0	00000	20.0	00000	20.0	00000			
mean	0.5305			9589		5992		66716	0.57	8745	0.423202
	0.4705	512	0.43	2950	0.47	7266	0.43	3 <mark>2250</mark>			
std	0.2633	312	0.25	2397	0.29	4265	0.32	23563	0.29	6716	0.265350
	0.2861	197	0.19	7626	0.30	0232	0.28	3 <mark>1850</mark>			
min	0.0241			7723		1559		2481	0.11	0265	0.043005
	0.1207	711	0.12	4366	0.04	3488	0.00	<mark>3687</mark>			
25%	0.3953	380	0.32	7897	0.24	2445		8028	0.26	54632	0.154430
	0.2289	957	0.29	5087	0.24	0142	0.20	<mark>)8955</mark>			
50%	0.5400	035	0.56	9128	0.60	4118	0.30	7686	0.64	7295	0.488229
	0.4141	119	0.39	1818	0.47	6257	0.39	<mark>9616</mark>			
<mark>75%</mark>	0.6737	747	0.73	7913	0.79	3743	0.62	25445	0.82	24429	0.607630
	0.7191	149	0.53	5718	0.70	2677	0.68	8 <mark>5879</mark>			
max	0.9781	139	0.96	1605	0.95	0464	0.96	53862	0.98	86109	0.945599
	0.9824	183	0.84	9748	0.99	7209	0.97	<mark>′3860</mark>			

df1 [0][1] = "abc"

df1.head(10)

Output:

0	1	2	3	4	5	6	7	8	9		
0	0.889	829	0.21	7723	0.95	0464	0.114	4454	0.175	5260	0.171785
	0.502	882	0.43	1306	0.58	5802	0.82	<mark>4907</mark>			
1	abc	0.961	605	0.73	34357	0.61	7062	0.7	<mark>78672</mark>	0.73	<mark>37305</mark>
	0.224	034	0.79	2681	0.04	3488	0.75	<mark>5798</mark>			
2	0.300	321	0.29	7326	0.66	7170	0.81	0632	0.954	1124	0.527148
_	0.697			9426		1948	0.12		0.75	121	0.327110
2	0.648	77.	0.77	0.70	0.25	4008	0.00	5045	0.110	2005	0.602600
3	0.648			0672 3338		4008 2994	0.02:		0.110	1205	0.602699
4	0.538			0472		1454	0.06		0.659	211	0.565140
	0.876	626	0.59	8274	0.99	7209	0.08	<mark>7594</mark>			
5	0.541	544	0.93	4696	0.42	4254	0.602	2228	0.491	561	0.614428
	0.120	711	0.49	1124	0.20	4725	0.97	<mark>3860</mark>			
6	0.628	961	0.30	2158	0.84	6598	0.06	8880	0.285	5089	0.233620
	0.408	571	0.27	7139	0.11	9807	0.52	<mark>4263</mark>			
7	0.120	M73	0.40	7693	0.20	7758	0.042	2455	0.203	3260 ·	0.605364
,	0.120			0066		0713	0.003		0.20.	1200	0.002304
8	0.558			7035		7533	0.483		0.847	¹⁸⁴⁶	0.096667
	0.910	40/	0.32	7488	0.25	4891	0.33	76/9			
9	0.427	066	0.62	9416	0.84	5941	0.00	8152	0.927	7802	0.945599
	0.783	255	0.62	6967	0.92	2936	0.15	<mark>5402</mark>			

df1.head(4)

0	1	2	3	4	5	6	7	8	9	
0	0.889	829	efg	0.95	0464	0.114	4454	0.17	5260	0.171785
	0.502	882	0.431	306	0.58	5802	0.82	<mark>4907</mark>		

1	abc 0	.961605	0.734357	0.617	7062	0.778672	0.737	<mark>'305</mark>
	0.224034	4 0.792	2681 0.0)43488	0.7557	<mark>98</mark>		
2	pqr 0	.297326	0.667170	0.810)632	0.954124	0.527	<mark>'148</mark>
	0.697780	0.679	9426 0.2	251948	0.1244	<mark>89</mark>		
3	0.64876	0.770	0672 0.2	254008	0.0259	45 0.	110265	0.602699
	0.498752	0.413	3338 0.3	312994	0.2939	<mark>70</mark>		

df1[2][1]="aaa"

Output:

<ipython-input-95-93449a955d64>:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

self._setitem_single_block(indexer, value, name)

df1

0	1 2	3	4 5	6	7	8	9		
0	0.889829	efg	0.950464	0.11	4454	0.17	5260	0.1717	<mark>785</mark>
	0.502882	0.43130	0.58	5802	0.824	<mark>-907</mark>			
1	abc 0.9	61605	aaa 0.61	7062	0.778	672	0.737	305	0.224034
	0.792681	0.04348	8 0.75	<mark>5798</mark>					

2	pqr 0.29	7326 0.66	717 0.81	0632 0.95	34124 0.52	0.527148	
	0.697780	0.679426	0.251948	0.124489			
3	0.64876	0.770672	0.254008	0.025945	0.110265	0.602699	
	0.498752	0.413338	0.312994	0.293970			
4	0.538527	0.630472	0.851454	0.061778	0.659211	0.565140	
	0.876626	0.598274	0.997209	0.087594			
5	0.541544	0.934696	0.424254	0.602228	0.491561	0.614428	
	0.120711	0.491124	0.204725	0.973860			
6	0.628961	0.302158	0.846598	0.068880	0.285089	0.233620	
	0.408571	0.277139	0.119807	0.524263	0120000	5.25552	
7	0.100470	0.407.602	0.007750	0.042455	0.202260	0.605264	
7	0.120473 0.230598	0.407693 0.450066	0.207758	0.042455 0.003687	0.203260	0.605364	
	0.230370	0.430000	0.430/13	0.003007			
8	0.558722	0.927035	0.777533	0.483478	0.847846	0.096667	
	0.910407	0.327488	0.254891	0.337679			
9	0.427066	0.629416	0.845941	0.008152	0.927802	0.945599	
	0.783255	0.626967	0.922936	0.155402			
10	0.748707	0.909395	0.49247	0.046778	0.203244	0.102367	
	0.242721	0.370299	0.525937	0.410644			
11	0.190404	0.602494	0.196155	0.650595	0.986109	0.680599	
	0.886406	0.262964	0.956797	0.719145			
12	0.240944	0.520401	0.174845	0.756972	0.198388	0.355310	
	0.419668	0.514867	0.761939	0.560055			
13	0.627101	0.535762	0.842373	0.963862	0.816623	0.052924	
	0.211294	0.368572	0.167157	0.388588			
14	0.978139	0.237486	0.077492	0.209904	0.650783	0.663827	
	0.352613	0.130673	0.536371	0.074908			
15	0.48894	0.336477	0.495782	0.341456	0.425742	0.461244	
	0.142852	0.294217	0.499867	0.226806	V 1	31.13.2	
16	0.024142	0.726002	0.600507	0.015004	0.752024	0.515014	
16	0.024142 0.982483	0.726993 0.124366	0.602587 0.452646	0.815984 0.757576	0.753234	0.515214	
17	0.42868	0.481441	0.671396	0.437300	0.565147	0.387528	
	0.174145	0.295377	0.683534	0.326617			
18	0.529209	0.236979	0.60565	0.002481	0.898732	0.043005	
	0.464004	0.849748	0.056447	0.424221			

19	0.88417	0.725553	0.001559	0.273916	0.643806	0.102261
	0.280440	0.360105	0.760108	0.674790		

demo

Output:

prod_id name area

one 2200 apple andheri

two 3300 mango parle

three 4004 grapes santacruz

 $demo['prod_id'][1] = 5005$

<ipython-input-98-547956110199>:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

 $demo['prod_id'][1] = 5005$

demo

Output:

prod_id name area

one 2200 apple andheri

two 5005 mango parle

three 4004 grapes santacruz

demo.dtypes

prod_id int64

name object

area object

dtype: object

df1.dtypes

Output:

- 0 object
- 1 object
- 2 object
- 3 float64
- 4 float64
- 5 float64
- 6 float64
- 7 float64
- 8 float64
- 9 float64

dtype: object

df1

0	1	2	3	4	5	6	7	8	9		
0	0.8898	329	efg	0.950)464	0.11	4454	0.17	5260	0.17	<mark>1785</mark>
	0.5028	382	0.431	306	0.585	5802	0.82	<mark>4907</mark>			
1	abc	0.961	605	aaa	0.617	7062	0.77	8672	0.73	7305	0.224034
	0.792ϵ	581	0.043	488	0.755	<mark>5798</mark>					

2	pqr 0.29	7326 0.66	717 0.81	0632 0.95	34124 0.52	<mark>27148</mark>
	0.697780	0.679426	0.251948	0.124489		
3	0.64876	0.770672	0.254008	0.025945	0.110265	0.602699
	0.498752	0.413338	0.312994	0.293970		
4	0.538527	0.630472	0.851454	0.061778	0.659211	0.565140
	0.876626	0.598274	0.997209	0.087594		
5	0.541544	0.934696	0.424254	0.602228	0.491561	0.614428
	0.120711	0.491124	0.204725	0.973860		
6	0.628961	0.302158	0.846598	0.068880	0.285089	0.233620
	0.408571	0.277139	0.119807	0.524263	0.20000	0.200020
7	0.100470	0.407.602	0.007750	0.042455	0.202260	0.605264
7	0.120473 0.230598	0.407693	0.207758	0.042455 0.003687	0.203260	0.605364
	0.230370	0.430000	0.430/13	0.003007		
8	0.558722	0.927035	0.777533	0.483478	0.847846	0.096667
	0.910407	0.327488	0.254891	0.337679		
9	0.427066	0.629416	0.845941	0.008152	0.927802	0.945599
	0.783255	0.626967	0.922936	0.155402		
10	0.748707	0.909395	0.49247	0.046778	0.203244	0.102367
	0.242721	0.370299	0.525937	0.410644		
11	0.190404	0.602494	0.196155	0.650595	0.986109	0.680599
	0.886406	0.262964	0.956797	0.719145		
12	0.240944	0.520401	0.174845	0.756972	0.198388	0.355310
	0.419668	0.514867	0.761939	0.560055		
13	0.627101	0.535762	0.842373	0.963862	0.816623	0.052924
	0.211294	0.368572	0.167157	0.388588		
14	0.978139	0.237486	0.077492	0.209904	0.650783	0.663827
	0.352613	0.130673	0.536371	0.074908		
15	0.48894	0.336477	0.495782	0.341456	0.425742	0.461244
	0.142852	0.294217	0.499867	0.226806		31.13.2
1.6	0.024142	0.736002	0.602597	0.015004	0.752024	0.515014
16	0.024142 0.982483	0.726993 0.124366	0.602587 0.452646	0.815984 0.757576	0.753234	0.515214
17	0.42868	0.481441	0.671396	0.437300	0.565147	0.387528
	0.174145	0.295377	0.683534	0.326617		
18	0.529209	0.236979	0.60565	0.002481	0.898732	0.043005
	0.464004	0.849748	0.056447	0.424221		

19	0.88417	0.725553	0.001559	0.273916	0.643806	0.102261
	0.280440	0.360105	0.760108	0.674790		

df1.to_numpy()

Output: array([[0.8898290587574625, 'efg', 0.9504637009415536, 0.11445350753707939, 0.1752600347199531, 0.17178486545231497, 0.5028824898103187, 0.431305684264646, 0.5858017094187148, 0.8249071762869403], ['abc', 0.9616049518794304, 'aaa', 0.6170616309044902, 0.7786715778059061, 0.7373050333549065, 0.22403425159455848, 0.7926807836787797, 0.04348811153552434, 0.7557984441046045], ['pqr', 0.29732601721264285, 0.6671699248305508, 0.8106324766594586, 0.9541240643323579, 0.5271480185664397, 0.6977800757136665, 0.6794261624792959, 0.25194753570017625, 0.124489324344280841. [0.6487599631982358, 0.7706715150467816, 0.2540076701928634, 0.02594477872312806, 0.11026541677027257, 0.6026986958103315, 0.4987517228774331, 0.4133382664044277, 0.31299444322854375, 0.2939702728123903], [0.5385269288296717, 0.6304722606997493, 0.8514542001716628, 0.06177752739395137, 0.6592108981215252, 0.5651400220152262, 0.8766258842206889, 0.5982735952347097, 0.9972089870133152, 0.08759388187127126], [0.5415438818693964, 0.9346959871836261, 0.4242535605595833,0.6022280894199854, 0.49156096274871275, 0.6144283361246711, 0.1207113831461939, 0.49112392727947407, 0.20472539299943238,

```
0.9738604915353611],
[0.6289611558850483, 0.3021577039431248, 0.846597984603601,
   0.06887979170151126, 0.2850892718126471, 0.23362048790526357,
 0.4085709972198358, 0.27713931102605127, 0.11980742869681049,
   0.52426255162367671.
  [0.12047323514029218, 0.4076931276538779, 0.20775814224756806,
   0.04245494922213655, 0.20325987717441063, 0.6053639969934034,
   0.23059818844544866, 0.4500660481280979, 0.4507134591810671,
   0.003687096791495703],
[0.558721730405733, 0.9270350875298212, 0.7775332056913566,
 0.48347777029749706, 0.8478464104949196, 0.09666694338157167,
   0.9104070401598463, 0.32748771998561244, 0.2548911720594357,
   0.3376787878401263],
  [0.42706601825584, 0.6294157375842707, 0.8459413328009987,
   0.008151933416917778, 0.9278019823366778, 0.9455985340636448,
   0.7832549150376663, 0.6269671160495615, 0.9229361644222673,
 0.15540235785663703],
[0.7487069527367622, 0.9093947236386258, 0.49246977663430314,
   0.04677816297810866, 0.20324374999174266, 0.1023672526008913,
 0.24272067170750022, 0.3702986708319129, 0.5259374157967004,
   0.41064368110825533],
  [0.19040400501064036, 0.6024937826358194, 0.19615487722677982,
 0.6505953528159473, 0.9861090888652927, 0.6805992380978194,
 0.8864063677267591, 0.26296403260958523, 0.9567974966351677,
 0.7191453275424041],
  [0.24094430235912145, 0.5204007187411817, 0.1748447311932637,
 0.7569724353480395, 0.19838767252402834, 0.3553101063124129,
```

```
0.4196679434769559, 0.5148666686957333, 0.7619392858693081,
0.560054898230945],
  [0.6271005616304949, 0.5357621588665652, 0.8423727130622828,
 0.9638621473539152, 0.8166226983755571, 0.05292449501022456,
   0.21129437931396955, 0.36857150469345834, 0.1671565144741678,
   0.38858763486196646],
  [0.9781386628079035, 0.23748583454810612, 0.0774922086014398,
 0.20990350008401104, 0.650783131011194, 0.6638271605151387,
   0.35261309636887295, 0.1306729819085617, 0.5363706849354714,
 0.07490764205042],
[0.48894020892946477, 0.33647710082718496, 0.4957819333797754,
   0.3414556185184121, 0.4257420648833655, 0.46124407258671696,
   0.1428515761588003, 0.294216975284216, 0.49986677703088356,
  0.2268061817643775],
  [0.02414249471968255, 0.7269933849502771, 0.6025866134022627,
   0.8159838725163027, 0.7532337808624099, 0.5152143189684777,
   0.9824832756390718, 0.12436628539572403, 0.4526464668408925,
0.75757587319059091,
   [0.4286800832564034, 0.48144143422024277, 0.6713958370200016,
  0.43730039897594153, 0.5651468661339273, 0.38752775998992894,
   0.1741454366748063, 0.2953770888681998, 0.6835335205019395,
   0.326616883973589231,
[0.5292085630387563, 0.23697946207749765, 0.6056501407655644,
  0.0024813922441588865, 0.8987318909075309, 0.04300455769905975,
   0.46400399742872456, 0.8497477915770419, 0.05644742404326131,
   0.4242205865280846],
  [0.8841697571458046, 0.7255526457480526, 0.0015591409819755153,
```

0.2739157678767543, 0.6438064650372433, 0.10226113788566826,

0.2804404425187115, 0.36010547725733033, 0.7601084640428719,

0.6747895650580462]], dtype=object)

df1

	0	1	2	3	4	5	6	7	8	9	
0	0.889	829	efg	0.9504	64	0.1144	54	0.1752	60	0.1717	<mark>85</mark>
	0.502		0.4313		0.5858		0.8249				
1	abc	0.9616	505	aaa	0.6170		0.7786	572	0.7373	05	0.224034
	0.792	681	0.0434	1 88	0.7557	<mark>798</mark>					
2	pqr	0.2973	326	0.6671	7	0.8106	32	0.9541	24	0.5271	48
	0.697		0.6794		0.2519		0.1244	<mark>.89</mark>			
3	0.648		0.7706		0.2540		0.0259		0.1102	265	0.602699
	0.498	752	0.4133	338	0.3129	994	0.2939	<mark>70</mark>			
1	0.538	527	0.6304	172	0.8514	154	0.0617	78	0.6592	11	0.565140
•	0.876		0.5982		0.9972		0.0875		0.0572	/ I I	0.303110
	0.070	020	0.5702	<i>- 1</i> 	0.7712	207	0.0073	У Т			
5	0.541	544	0.9346	596	0.4242	254	0.6022	28	0.4915	61	0.614428
	0.120	711	0.491	124	0.2047	725	0.9738	<mark>60</mark>			
<u></u>	0.600	0.61	0.2021	1.50	0.046	700	0.000	100	0.2050	100	0.00000
6	0.628		0.3021		0.8465		0.0688		0.2850	189	0.233620
	0.408	5/1	0.277	139	0.1198	807	0.5242	. <mark>03</mark>			
7	0.120	473	0.4076	593	0.2077	758	0.0424	.55	0.2032	260	0.605364
	0.230	598	0.4500)66	0.4507	713	0.0036	<mark>87</mark>			
_										_	
8	0.558		0.9270		0.7775		0.4834		0.8478	346	0.096667
	0.910	407	0.3274	188	0.2548	391	0.3376	<mark>79</mark>			
9	0.427	066	0.6294	116	0.8459	941	0.0081	52	0.9278	802	0.945599
	0.783		0.6269		0.9229		0.1554			-	
10	0.748		0.9093		0.4924		0.0467		0.2032	244	0.102367
	0.242	721	0.3702	299	0.5259	937	0.4106	4 4			
11	0.190	404	0.6024	19/1	0.1961	155	0.6505	05	0.9861	09	0.680599
11	0.190		0.0022	-	0.1901		0.0303		0.7001	U7	0.000333
	0.000	+00	0.2025	704	0.930		0.7171	1 J			

12	0.240944	0.520401	0.174845	0.756972	0.198388	0.355310
	0.419668	0.514867	0.761939	0.560055		
13	0.627101	0.535762	0.842373	0.963862	0.816623	0.052924
	0.211294	0.368572	0.167157	0.388588		
14	0.978139	0.237486	0.077492	0.209904	0.650783	0.663827
	0.352613	0.130673	0.536371	0.074908		
15	0.48894	0.336477	0.495782	0.341456	0.425742	0.461244
	0.142852	0.294217	0.499867	0.226806		
16	0.024142	0.726993	0.602587	0.815984	0.753234	0.515214
	0.982483	0.124366	0.452646	0.757576		
	0.140.40	0.101.111	0.474004	0.42=200	0 = -= 1 !=	0.00==00
17	0.42868	0.481441	0.671396	0.437300	0.565147	0.387528
	0.174145	0.295377	0.683534	0.326617		
1.0	0.500000	0.00.0070	0.60565	0.002401	0.000722	0.042005
18	0.529209	0.236979	0.60565	0.002481	0.898732	0.043005
	0.464004	0.849748	0.056447	0.424221		
10	0.00417	0.705552	0.001550	0.072016	0.642006	0.100061
19	0.88417	0.725553	0.001559	0.273916	0.643806	0.102261
	0.280440	0.360105	0.760108	0.674790		

demo

Output:

prod_i	id	name	area
one	2200	apple	andheri
two	5005	mango	parle
three	4004	grapes	santacruz

demo.T

	one	two	three	
nmod :	٦	2200	5005	4004
prod_i	u	2200	5005	4004
name	apple	mango	grapes	
area	andhei	riparle	santacı	<mark>uz</mark>

df2 = pd.DataFrame(np.random.rand(10,5))

df2

Output:

0	1 2	3 4			
0	0.988782	0.155982	0.163659	0.216378	0.338656
1	0.922171	0.810851	0.249822	0.283435	0.181059
2	0.069235	0.844811	0.165427	0.086819	0.301486
3	0.789741	0.358560	0.738854	0.373372	0.934196
4	0.405396	0.146483	0.516349	0.259770	0.846987
5	0.929204	0.212274	0.604740	0.422453	0.722843
6	0.247970	0.452907	0.853457	0.639186	0.590882
7	0.672903	0.397623	0.773096	0.071042	0.135975
8	0.139015	0.843306	0.936715	0.941274	0.551718
9	0.052673	0.486642	0.234463	0.257344	0.981282

df2.sort_index(axis=1, ascending=False)

4 3 2 1 0	
0 0.338656 0.216378 0.163659 0	0.155982
1 0.181059 0.283435 0.249822 0	0.810851
2 0.301486 0.086819 0.165427 0	0.844811
3 0.934196 0.373372 0.738854 0	0.358560
4 0.846987 0.259770 0.516349 0	0.146483
5 0.722843 0.422453 0.604740 0	0.212274
6 0.590882 0.639186 0.853457 0	0.452907
7 0.135975 0.071042 0.773096 0	0.397623

8	0.551718	0.941274	0.936715	0.843306	0.139015
9	0.981282	0.257344	0.234463	0.486642	0.052673

demo

Output:

prod_id name area

one 2200 apple andheri

two 5005 mango parle

three 4004 grapes santacruz

p = demo.sort_values('name')

p

Output:

prod_id name area

one 2200 apple andheri

three 4004 grapes santacruz

two 5005 mango parle

q = demo.groupby('prod_id')

q

Output:

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x000001EE05FE2A30>

import numpy as np

from matplotlib import pyplot as plt

demo.hist('prod_id', bins=20)

```
ax = plt.gca()
```

ax.set_yscale('log')

Output: (graph)

demo.info()

Output:

<class 'pandas.core.frame.DataFrame'>

Index: 3 entries, one to three

Data columns (total 3 columns):

Column Non-Null Count Dtype

--- ----- ------

0 prod_id 3 non-null int64

1 name 3 non-null object

2 area 3 non-null object

dtypes: int64(1), object(2)

memory usage: 204.0+ bytes

df1

0	1	2	3	4	5	6	7	8	9		
0	0.889	9829	efg	0.95	0464	0.11	4454	0.17	5260	0.17	<mark>1785</mark>
	0.502	2882	0.431	1306	0.583	5802	0.824	<mark>4907</mark>			
1	abc	0.96	1605	aaa	0.61	7062	0.778	3672	0.737	7305	0.224034
	0.792	2681	0.043	3488	0.75	<mark>5798</mark>					
2	pqr	0.29	7326	0.66	717	0.81	0632	0.95	4124	0.52°	<mark>7148</mark>
	0.697	7780	0.679	9426	0.25	1948	0.124	<mark>1489</mark>			
3	0.648	376	0.770)672	0.25	4008	0.025	5945	0.110	0265	0.602699
	0.498	3752	0.413	3338	0.312	2994	0.293	<mark>3970</mark>			

4	0.538527	0.630472	0.851454	0.061778	0.659211	0.565140
	0.876626	0.598274	0.997209	0.087594		
5	0.541544	0.934696	0.424254	0.602228	0.491561	0.614428
	0.120711	0.491124	0.204725	0.973860		
_	0.620061	0.202150	0.046500	0.00000	0.005000	0.222620
6	0.628961	0.302158	0.846598	0.068880	0.285089	0.233620
	0.408571	0.277139	0.119807	0.524263		
7	0.120473	0.407693	0.207758	0.042455	0.203260	0.605364
	0.230598	0.450066	0.450713	0.003687	0.1100	313355
	0.20000	01.20000	37.1637.16	0.00000		
8	0.558722	0.927035	0.777533	0.483478	0.847846	0.096667
	0.910407	0.327488	0.254891	0.337679		
_						
9	0.427066	0.629416	0.845941	0.008152	0.927802	0.945599
	0.783255	0.626967	0.922936	0.155402		
10	0.748707	0.909395	0.49247	0.046778	0.203244	0.102367
10	0.746707	0.370299	0.525937	0.410644	0.203244	0.102307
	0.242721	0.370277	0.525751	0.410044		
11	0.190404	0.602494	0.196155	0.650595	0.986109	0.680599
	0.886406	0.262964	0.956797	0.719145		
12	0.240944	0.520401	0.174845	0.756972	0.198388	0.355310
	0.419668	0.514867	0.761939	0.560055		
13	0.627101	0.535762	0.842373	0.963862	0.816623	0.052924
13	0.027101	0.368572	0.842373	0.388588	0.810023	0.032924
	0.211294	0.306372	0.10/13/	0.300300		
14	0.978139	0.237486	0.077492	0.209904	0.650783	0.663827
	0.352613	0.130673	0.536371	0.074908		
15	0.48894	0.336477	0.495782	0.341456	0.425742	0.461244
	0.142852	0.294217	0.499867	0.226806		
16	0.024142	0.726993	0.602587	0.815984	0.753234	0.515214
10	0.024142				0.733234	0.313214
	0.982483	0.124366	0.452646	0.757576		
17	0.42868	0.481441	0.671396	0.437300	0.565147	0.387528
	0.174145	0.295377	0.683534	0.326617		
18	0.529209	0.236979	0.60565	0.002481	0.898732	0.043005
	0.464004	0.849748	0.056447	0.424221		
10	0.00417	0.705552	0.001550	0.072016	0.642006	0.100061
19	0.88417	0.725553	0.001559	0.273916	0.643806	0.102261
	0.280440	0.360105	0.760108	0.674790		

df1

\sim						
	ш	1	n	11	t	•
O	u	u	μ	u	ι	•

0	1	2	3	4	5	6	7	8	9		
0	990	efg	0.95	0464	0.11	4454	0.17	⁷ 5260	0.171	785	0.502882
U	0.431		0.58			4907	0.17	3200	0.171	103	0.302002
1	abc	0.961		aaa		7062	0.77	8672	0.737	⁷ 305	0.224034
	0.792	2681	0.043	3488	0.75	<mark>5798</mark>					
2	pqr	0.297	7326	0.667	717	0.81	0632	0.95	4124	0.52	27148
	0.697	7780	0.67	9426	0.25	1948	0.12	<mark>.4489</mark>			
3	0.648	876	0.77	0672	0.25	4008	0.02	25945	0.110	265	0.602699
<i>J</i>	0.498		0.41			2994		3970	0.110	1203	0.002077
	0.170	7152	0.11.	0000	0.51		0.27	3710			
4	0.538	3527	0.63	0472	0.85	1454	0.06	51778	0.659	211	0.565140
	0.876	6626	0.59	8274	0.99	7209	0.08	<mark>7594</mark>			
5	0.541	544	0.93	4696	0.42	4254	0.60)2228	0.491	561	0.614428
<i></i>	0.120		0.49			4725		3860	0.171	301	0.011120
			0.17	112.	0.20	1720	0.77	2000			
6	0.628		0.30			6598		8880	0.285	5089	0.233620
	0.408	3571	0.27	7139	0.11	9807	0.52	2 <mark>4263</mark>			
7	0.120)473	0.40	7693	0.20	7758	0.04	2455	0.203	3260	0.605364
	0.230)598	0.45	0066	0.45	0713	0.00	3687			
8	0.558		0.92			7533		3478	0.847	⁷ 846	0.096667
	0.910)407	0.32	/488	0.25	4891	0.33	<mark>37679</mark>			
9	0.427	7066	0.629	9416	0.84	5941	0.00	8152	0.927	7802	0.945599
	0.783	3255	0.62	6967	0.92	2936	0.15	5402			
1.0	0.740	207	0.00	0205	0.40	0.47	0.04	1.6 77 0	0.200	00.4.4	0.100067
10	0.748			9395	0.49			6778	0.203	<u>5244</u>	0.102367
	0.242	2/21	0.57	0299	0.52	5937	0.41	. <mark>0644</mark>			
11	0.190)404	0.602	2494	0.19	6155	0.65	0595	0.986	5109	0.680599
	0.886	5406	0.26	2964	0.95	6797	0.71	9145			
12	0.240	0011	0.520	0401	0.17	4845	0.75	6972	0.198	2288	0.355310
12	0.240		0.52			1939		$\frac{60972}{60055}$	0.190	300	0.555510
	0.415	7000	0.51	T007	0.70	1737	0.30	0033			
13	0.627	7101	0.53	5762	0.84	2373	0.96	3862	0.816	6623	0.052924
	0.211	294	0.36	8572	0.16	7157	0.38	<mark>88588</mark>			

14	0.978139	0.237486	0.077492	0.209904	0.650783	0.663827
	0.352613	0.130673	0.536371	0.074908		
15	0.48894	0.336477	0.495782	0.341456	0.425742	0.461244
	0.142852	0.294217	0.499867	0.226806		
<mark>16</mark>	0.024142	0.726993	0.602587	0.815984	0.753234	0.515214
	0.982483	0.124366	0.452646	0.757576		
17	0.42868	0.481441	0.671396	0.437300	0.565147	0.387528
	0.174145	0.295377	0.683534	0.326617		
18	0.529209	0.236979	0.60565	0.002481	0.898732	0.043005
	0.464004	0.849748	0.056447	0.424221		
19	0.88417	0.725553	0.001559	0.273916	0.643806	0.102261
	0.280440	0.360105	0.760108	0.674790		

df2

Output:

0	1 2	3 4			
0	0.988782	0.155982	0.163659	0.216378	0.338656
1	0.922171	0.810851	0.249822	0.283435	0.181059
2	0.069235	0.844811	0.165427	0.086819	0.301486
3	0.789741	0.358560	0.738854	0.373372	0.934196
4	0.405396	0.146483	0.516349	0.259770	0.846987
5	0.929204	0.212274	0.604740	0.422453	0.722843
6	0.247970	0.452907	0.853457	0.639186	0.590882
7	0.672903	0.397623	0.773096	0.071042	0.135975
8	0.139015	0.843306	0.936715	0.941274	0.551718
9	0.052673	0.486642	0.234463	0.257344	0.981282

df2.loc[0,0]=990

0	1 2	3 4			
0	990.000000	0.155982	0.163659	0.216378	0.338656
1	0.922171	0.810851	0.249822	0.283435	0.181059
2	0.069235	0.844811	0.165427	0.086819	0.301486
3	0.789741	0.358560	0.738854	0.373372	0.934196
4	0.405396	0.146483	0.516349	0.259770	0.846987
5	0.929204	0.212274	0.604740	0.422453	0.722843
6	0.247970	0.452907	0.853457	0.639186	0.590882
7	0.672903	0.397623	0.773096	0.071042	0.135975
8	0.139015	0.843306	0.936715	0.941274	0.551718
9	0.052673	0.486642	0.234463	0.257344	0.981282

df2.columns = list("ABCDE")

df2

A	B C	D E		
0	990.000000	0.155982	0.163659	0.216378
1	0.922171	0.810851	0.249822	0.283435
2	0.069235	0.844811	0.165427	0.086819
3	0.789741	0.358560	0.738854	0.373372
4	0.405396	0.146483	0.516349	0.259770
5	0.929204	0.212274	0.604740	0.422453
J	0.929204	0.212274	0.004740	0.422433
6	0.247970	0.452907	0.853457	0.639186
7	0.672903	0.397623	0.773096	0.071042
8	0.139015	0.843306	0.936715	0.941274
0		0.406640		
9	0.052673	0.486642	0.234463	0.257344

df2.loc[0,'A']=89

df2

Output:

A	В	C	D	E					
0	89.000	000	899.0	000000	0.1636	5 9	0.21637	0.33865	<mark>56</mark>
1	0.9221	71	0.810	0851	0.2498	22	0.28343	5 0.18103	<mark>59</mark>
2	0.0692	35	0.844	1811	0.1654	27	0.08681	9 0.30148	<mark>86</mark>
3	0.7897	41	0.358	8560	0.7388	54	0.37337	2 0.93419	<mark>96</mark>
4	0.4053	96	0.146	5483	0.5163	49	0.25977	0.84698	<mark>87</mark>
5	0.9292	04	0.212	2274	0.6047	40	0.42245	3 0.72284	<mark>43</mark>
6	0.2479	70	0.452	2907	0.8534	57	0.63918	6 0.59088	<mark>82</mark>
7	0.6729	03	0.397	7623	0.7730	96	0.07104	2 0.1359	<mark>75</mark>
8	0.1390	15	0.843	3306	0.9367	15	0.94127	4 0.5517	<mark>18</mark>
9	0.0526	73	0.486	5642	0.2344	63	0.25734	4 0.98128	82

dt = pd.DataFrame(np.random.rand(10,5))

dt

0	1 2	3 4			
0	0.514973	0.132473	0.662300	0.870011	0.099254
1	0.505812	0.655760	0.709748	0.459002	0.258930
2	0.446541	0.850593	0.959236	0.653753	0.742279
3	0.364539	0.001264	0.233297	0.904143	0.396865
4	0.214473	0.344468	0.010521	0.403364	0.834405
5	0.543493	0.511075	0.517688	0.971037	0.386030
6	0.757976	0.310684	0.385691	0.767525	0.537692

7	0.532578	0.294248	0.438818	0.581528	0.483544
8	0.383618	0.366597	0.258645	0.600649	0.044865
9	0.649240	0.894046	0.534226	0.551215	0.025614

dt[0][0]=88

dt

Output:

0	1 2	3 4			
0	88.000000	0.132473	0.662300	0.870011	0.099254
1	0.505812	0.655760	0.709748	0.459002	0.258930
2	0.446541	0.850593	0.959236	0.653753	0.742279
3	0.364539	0.001264	0.233297	0.904143	0.396865
4	0.214473	0.344468	0.010521	0.403364	0.834405
5	0.543493	0.511075	0.517688	0.971037	0.386030
6	0.757976	0.310684	0.385691	0.767525	0.537692
7	0.532578	0.294248	0.438818	0.581528	0.483544
8	0.383618	0.366597	0.258645	0.600649	0.044865
9	0.649240	0.894046	0.534226	0.551215	0.025614

dt.sort_index(axis=1, ascending=False)

4	3 2	1 0			
0	0.099254	0.870011	0.662300	0.132473	88.000000
1	0.258930	0.459002	0.709748	0.655760	0.505812
2	0.742279	0.653753	0.959236	0.850593	0.446541
3	0.396865	0.904143	0.233297	0.001264	0.364539
4	0.834405	0.403364	0.010521	0.344468	0.214473

5	0.386030	0.971037	0.517688	0.511075	0.543493
6	0.537692	0.767525	0.385691	0.310684	0.757976
7	0.483544	0.581528	0.438818	0.294248	0.532578
8	0.044865	0.600649	0.258645	0.366597	0.383618
9	0.025614	0.551215	0.534226	0.894046	0.649240

dt[0][0]=0.9

dt

Output:

0	1 2	3 4			
0	0.900000	0.132473	0.662300	0.870011	0.099254
1	0.505812	0.655760	0.709748	0.459002	0.258930
2	0.446541	0.850593	0.959236	0.653753	0.742279
3	0.364539	0.001264	0.233297	0.904143	0.396865
4	0.214473	0.344468	0.010521	0.403364	0.834405
5	0.543493	0.511075	0.517688	0.971037	0.386030
6	0.757976	0.310684	0.385691	0.767525	0.537692
7	0.532578	0.294248	0.438818	0.581528	0.483544
8	0.383618	0.366597	0.258645	0.600649	0.044865
9	0.649240	0.894046	0.534226	0.551215	0.025614

dt.columns = list("abcde")

dt

a	b c	d e			
0	0.900000	0.132473	0.662300	0.870011	0.099
1	0.505812	0.655760	0.709748	0.459002	0.258

2	0.446541	0.850593	0.959236	0.653753	0.742279
_					
3	0.364539	0.001264	0.233297	0.904143	0.396865
	0.04.4.50	0.044460	0.040704	0.402254	0.004405
4	0.214473	0.344468	0.010521	0.403364	0.834405
_	0.542402	0.511075	0.517600	0.071027	0.206020
5	0.543493	0.511075	0.517688	0.971037	0.386030
6	0.757976	0.310684	0.385691	0.767525	0.537692
U	0.131710	0.310004	0.303071	0.707323	0.331072
7	0.532578	0.294248	0.438818	0.581528	0.483544
8	0.383618	0.366597	0.258645	0.600649	0.044865
9	0.649240	0.894046	0.534226	0.551215	0.025

dt.loc[0,'b']=68

dt

Output:

a	b c	d e			
0	0.900000	68.000000	0.662300	0.870011	0.099254
1	0.505812	0.655760	0.709748	0.459002	0.258930
2	0.446541	0.850593	0.959236	0.653753	0.742279
3	0.364539	0.001264	0.233297	0.904143	0.396865
4	0.214473	0.344468	0.010521	0.403364	0.834405
5	0.543493	0.511075	0.517688	0.971037	0.386030
6	0.757976	0.310684	0.385691	0.767525	0.537692
7	0.532578	0.294248	0.438818	0.581528	0.483544
8	0.383618	0.366597	0.258645	0.600649	0.044865
9	0.649240	0.894046	0.534226	0.551215	0.025614

dt.loc[0,0]=98

dt

a	b c	d e	0			
0	0.900000	68.000000	0.662300	0.870011	0.099254	98.0
1	0.505812	0.655760	0.709748	0.459002	0.258930	NaN
2	0.446541	0.850593	0.959236	0.653753	0.742279	NaN
3	0.364539	0.001264	0.233297	0.904143	0.396865	NaN
4	0.214473	0.344468	0.010521	0.403364	0.834405	NaN
5	0.543493	0.511075	0.517688	0.971037	0.386030	NaN
_	0 ===0= 4	0.010.01	0.007.404	0 = 1= = = =	0.707.404	
6	0.757976	0.310684	0.385691	0.767525	0.537692	NaN
_	0.500550	0.00.40.40	0.400040	0.504.500	0.400744	37.37
7	0.532578	0.294248	0.438818	0.581528	0.483544	NaN
0	0.202610	0.266507	0.050645	0.600640	0.044065	NT NT
8	0.383618	0.366597	0.258645	0.600649	0.044865	NaN
0	0.640040	0.004046	0.524226	0.551015	0.005614	NT NT
9	0.649240	0.894046	0.534226	0.551215	0.025614	NaN

dt.drop(0,axis=1)

Output:

<mark>a a</mark>	b c	d e		
0	0.900000	68.000000	0.662300	0.870
1	0.505812	0.655760	0.709748	0.459
2	0.446541	0.850593	0.959236	0.6537
3	0.364539	0.001264	0.233297	0.9041
4	0.214473	0.344468	0.010521	0.40336
5	0.543493	0.511075	0.517688	0.971037
6	0.757976	0.310684	0.385691	0.767525
7	0.532578	0.294248	0.438818	0.581528
8	0.383618	0.366597	0.258645	0.600649
9	0.649240	0.894046	0.534226	0.551215

newdt = dt.drop(0,axis=1)

newdt

a	b o	e d	e		
0	0.90000	0 68	.000000	0.662300	0.870
1	0.50581	2 0.6	55760	0.709748	3 0.4590
2	0.44654	-1 0.8	3 <mark>50593</mark>	0.959236	0.6537
3	0.36453	9 0.0	001264	0.233297	7 0.90414
4	0.21447	3 0.3	344468	0.010521	0.40336
5	0.54349	0.5	511075	0.517688	3 0.97103
6	0.75797	6 0.3	310684	0.385691	0.76752
7	0.53257	'8 0.2	294248	0.438818	0.581528
8	0.38361	8 0.3	366 5 97	0.258645	0.600649
9	0.64924	0.0	394046	0.534226	5 0.551215

Practical 3: Study of Python Libraries: a) Matplotlibb) Scikit Learn

import matplotlib.pyplot as pl

```
x = [1, 2, 3, 4]
y = [9, 8, 7, 6]
pl.xlabel("X-axis")
pl.ylabel("Y-axis")
pl.plot(x,y,'r',linewidth = 3, linestyle = 'dashdot')
pl.show()
```



```
pl.xlabel("X-axis")
pl.ylabel("Y-axis")
pl.plot(x,y,'r',linewidth = 3, linestyle = 'dashed')
pl.show()
```



```
pl.xlabel("X-axis")
pl.ylabel("Y-axis")
pl.plot(x,y,'r',marker='d')
pl.show()
```



```
pl.xlabel("X-axis")
pl.ylabel("Y-axis")
pl.plot(x,y,'r',marker='D')
pl.show()
```


pl.xlabel("X-axis")

```
pl.ylabel("Y-axis")
pl.plot(x,y,'r',marker='s')
pl.show()
```


pl.xlabel("X-axis")
pl.ylabel("Y-axis")
pl.plot(x,y,'r',marker=")
pl.show()


```
pl.xlabel("X-axis")
pl.ylabel("Y-axis")
pl.plot(x,y,marker='s', markeredgecolor='red')
pl.show()
```



```
pl.xlabel("X-axis")
pl.ylabel("Y-axis")
pl.plot(x,y,marker='+', markeredgecolor='red')
pl.show()
```



```
pl.xlabel("X-axis")
pl.ylabel("Y-axis")
pl.title("Student")
pl.plot(x,y,marker='+', markeredgecolor='red')
pl.show()
```



```
pl.xlabel("X-axis")
pl.ylabel("Y-axis")
pl.plot(x,y,linewidth=3, label="sub1")
```

```
pl.legend()
```

pl.show()

Output:


```
x2 = [6, 9, 11]

y = [5, 8, 10]

x = [12, 6, 6]

y2 = [6, 14, 8]
```

```
pl.xlabel("X-axis")
pl.ylabel("Y-axis")
pl.plot(x,y,linewidth=3, label="sub1")
pl.plot(x2,y2,linewidth=3, label="sub2")
pl.legend()
pl.show()
```


from matplotlib import style

```
style.use('ggplot')
pl.xlabel("X-axis")
pl.ylabel("Y-axis")
pl.plot(x,y,linewidth=3, label="sub1")
pl.plot(x2,y2,linewidth=3, label="sub2")
pl.legend()
pl.grid(True, color = 'k')
pl.show()
```


x = [1,2,3,4]

y = [9,8,7,6]

pl.xlabel("X-axis")

pl.ylabel("Y-axis")

pl.bar(x,y, width=[0.1,0.2,0.3,0.4], color = 'b')

pl.show()

$$x = [1,2,3,4]$$

```
\begin{split} y &= [9,8,7,6] \\ pl.xlabel("X-axis") \\ pl.ylabel("Y-axis") \\ pl.bar(x,y, width=[0.1,0.2,0.3,0.4], color = ['r','g','b','k']) \\ pl.show() \end{split}
```



```
population_age =
[50,30,60,76,34,29,90,100,9,8,5,23,65,34,21,54,87,98,43,56,45,99,12,10,44,35,101]
bins = [0,10,20,30,40,50,60,70,80,90,101]
pl.hist(population_age,bins,histtype = 'bar', rwidth=0.5)
pl.xlabel("X-axis")
pl.ylabel("Y-axis")
pl.title("Hostogram")
pl.show()
```


x = [1,2,3,4,5,6]

y = [4,6,7,6,1,4]

pl.scatter(x,y)

pl.xlabel("X-axis")

pl.ylabel("Y-axis")

pl.show()

Output:

slices = [8,3,3,12]

```
subjects = ['Math','Science','German','Hindi']
cols = ['g','m','r','b']
pl.pie(slices, labels = subjects, colors = cols, startangle = 120)
pl.show()
```


slices = [8,3,3,12]
subjects = ['Math','Science','German','Hindi']
cols = ['g','m','r','b']
pl.pie(slices, labels = subjects, colors = cols, startangle = 12)
pl.show()

Output:

slices = [8,3,3,12]

pl.show()

Output:

from numpy import poly1d

$$p = poly1d([9,8,7])$$

p

Output: 2

print(p)

Output: 9 x + 8 x + 7

print(p*p)

Output:

print(2*p)

```
18 x + 16 x + 14
p.r
Output: array([-0.44444444+0.7617394j, -0.44444444-0.7617394j])
import scipy.special as spl
import numpy as np
a = 8
spl.cbrt(a)
Output: 2.0
x = spl.sindg(90)
X
Output:1.0
y = spl.cosdg(0)
y
Output: 1.0
z = spl.tandg(45)
Z
Output: 1.0
r = \text{spl.perm}(6,2)
r
Output: 30.0
x = 4
spl.exp10(x)
Output: 10000.0
```

2

```
spl.exp2(2)
Output: 4.0
f = lambda x : x**3
f(3)
Output: 27
u = lambda \ x,y : x^{**}2 + y^{**}2 + 2^*x^*y
u(4,5)
Output: 81
from scipy import integrate
f = lambda x: x**3
i = integrate.quad(f,1,2)
Output: (3.750000000000004, 4.1633363423443377e-14)
from tkinter import *
import time as t
dc = Tk()
dc.title("Hiray College")
dc.geometry("800x300")
def time():
  d = t.strftime("%d/%m/%Y, %H:%M:%S %p")
  l.config(text = d)
  1.after(1000,time)
```

```
l = Label(dc, font=('Georgia',30), bg = "yellow", fg = "black")
l.pack()
```

time()

mainloop()

Output:

import math
print(math.radians(180))

Output: 3.141592653589793

Practical 4: Study of Supervised Learning:

- a) Linear Regression
- b) Logistic Regression
- c) K Nearest Neighbour Algorithm

a) Linear Regression

import numpy as np

import pandas as pd

import matplotlib.pyplot as pl

from sklearn import linear_model

df = pd.read_csv("dataset1.csv")

df

Output:

	area	price
0	2600	550000
1	3000	565000
2	3200	610000
3	3600	680000
4	4000	725000

df.shape

Output: (5, 2)

% matplotlib inline

pl.xlabel('Area in square feet')

pl.ylabel('Price in Rupees')

pl.scatter(df.area,df.price, color='b', marker='s')

Output:

[24]: <matplotlib.collections.PathCollection at 0x13360421a90>

reg = linear_model.LinearRegression()

reg.fit(df[['area']],df.price)

Output: LinearRegression()

reg.coef_ #coef is m (slope)

Output: array([135.78767123])

reg.predict([[3300]])

Output: array([628715.75342466])

reg.intercept_ #intercept is b

Output: 180616.43835616432

y = m * x + b

135.78767123 * 3300 + 180616.43835616432

Output: 628715.7534151643

b) Logistic Regression

import numpy as np

import pandas as pd

from matplotlib import pyplot as pl

df1 = pd.read_csv("loan.csv")

df1.head()

Output:

	age	bought_loan
0	23	0
1	18	0
2	55	1
3	43	0
4	36	1

pl.scatter(df1.age,df1.bought_loan, marker='d', color='b')

Output:

<matplotlib.collections.PathCollection at 0x25b5e99d160>

from sklearn.model_selection import train_test_split

 $x_{train}, x_{test}, y_{train}, y_{test} = train_{test_split}(df1[['age']], df1.bought_loan, train_{size}=0.9, shuffle=False)$

x_test

Output:

age

18 33

19 60

20 52

from sklearn.linear_model import LogisticRegression

logreg = LogisticRegression()

logreg.fit(x_train,y_train)

Output: LogisticRegression()

logreg.predict(x_test)

Output: array([0, 1, 1], dtype=int64)

c) K Nearest Neighbour Algorithm

import numpy as np

import pandas as pd

ds = pd.read_csv("iris.csv")

ds

Output:

	ld	SepalLengthCm	${\sf SepalWidthCm}$	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
		***	***		***	
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

ds.iloc[: ,1:5]

Output:

	SepalLengthCm	${\sf SepalWidthCm}$	PetalLengthCm
0	5.1	3.5	1.4
1	4.9	3.0	1.4
2	4.7	3.2	1.3
3	4.6	3.1	1.5
4	5.0	3.6	1.4

145	6.7	3.0	5.2
146	6.3	2.5	5.0
147	6.5	3.0	5.2
148	6.2	3.4	5.4
149	5.9	3.0	5.1

150 rows × 3 columns

```
x = ds.iloc[:, 1:5].values
y = ds.iloc[:, 5].values
from sklearn.preprocessing import LabelEncoder #0 and nclass-1
lblenc_y = LabelEncoder()
y = lblenc_y.fit_transform(y)
y
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
     from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.2)
from sklearn.neighbors import KNeighborsClassifier
knn_model = KNeighborsClassifier(n_neighbors=5)
knn_model.fit(x_train, y_train)
Output: KNeighborsClassifier()
y_predict = knn_model.predict(x_test)
from sklearn.metrics import confusion_matrix, classification_report
print(confusion_matrix(y_test,y_predict))
Output:
[[13 \ 0 \ 0]]
[072]
[0\ 0\ 8]]
```

#accuracy

print(28/30)

Output: 0.933333333333333333

print(classification_report(y_test, y_predict))

	precision	recall	f1-score	support
0	1.00	1.00	1.00	9
1	0.91	0.91	0.91	11
2	0.90	0.90	0.90	10
accuracy			0.93	30
macro avg	0.94	0.94	0.94	30
weighted avg	0.93	0.93	0.93	30

Practical 5: Study of Dimension Reduction:

- a) Feature Scaling
- **b) Normalization (Feature Selection)**

a) Feature Selection

import numpy as np

import pandas as pd

from sklearn.feature_selection import SelectKBest

from sklearn.feature_selection import chi2

df = pd.read_csv("FeatureSelection.csv")

df.head()

	age	weight	height	cholestrol	sugar	Target
0	35	70	150	233	250	1
1	56	75	100	250	300	0
2	67	68	180	204	260	0
3	72	60	170	236	450	1
4	39	77	190	354	220	1

X = df.iloc[:,0:5]

X.head()

	age	weight	height	cholestrol	sugar
0	35	70	150	233	250
1	56	75	100	250	300
2	67	68	180	204	260
3	72	60	170	236	450
4	39	77	190	354	220

y = df.iloc[:,-1]

y.head()

```
0
       1
 1
       0
 2
       0
 3
       1
       1
 Name: Target, dtype: int64
bestfeat = SelectKBest(score_func=chi2, k=4)
fit = bestfeat.fit(X,y)
datascore = pd.DataFrame(fit.scores_)
datacol = pd.DataFrame(X.columns)
fscore = pd.concat([datacol, datascore], axis = 1)
fscore.columns = ["best", "score"]
fscore
```

	best	score
0	age	5.807560
1	weight	0.036697
2	height	1.763191
3	cholestrol	5.039769
4	sugar	0.024155

from sklearn.ensemble import ExtraTreesClassifier import matplotlib.pyplot as pl model= ExtraTreesClassifier()

ExtraTreesClassifier()

model.fit(X,y)

model.feature_importances_

array([0.29935847, 0.15434854, 0.14141038, 0.21183862, 0.19304398])

featimport = pd.Series(model.feature_importances_, index=X.columns)
featimport.nlargest(5).plot(kind='bar')

pl.show()

Seaborn ----> Heatmap ---->

import seaborn as sns

corrmat = df.corr()

corrfeat = corrmat.index

pl.figure(figsize=(20,20))

<Figure size 1440x1440 with 0 Axes>

<Figure size 1440x1440 with 0 Axes>

a= sns.heatmap(df[corrfeat].corr(), annot=True, cmap="Blues")

b) Normalization

import numpy as np

import pandas as pd

 $ds = pd.read_csv("FeatureSelection.csv")$

ds.head()

	age	weight	height	cholestrol	sugar	Target
0	35	70	150	233	250	1
1	56	75	100	250	300	D
2	67	68	180	204	260	0
3	72	60	170	236	450	1
4	39	77	190	354	220	1

Simple feature scaling

for column in ds.columns:

ds[column]=ds[column]/ds[column].abs().max()

ds.head()

	age	weight	height	cholestrol	sugar	Target
0	0.486111	0.909091	0.75	0.658192	0.555556	1.0
1	0.777778	0.974026	0.50	0.706215	0.666667	0.0
2	0.930556	0.883117	0.90	0.576271	0.577778	0.0
3	1,000000	0.779221	0.85	0.666667	1,000000	1.0
4	0.541667	1.000000	0.95	1,000000	0.488889	1.0

import matplotlib.pyplot as pl

ds.plot(kind='bar')

<AxesSubplot:>

Min Max method xold=(xold-xmin)/(xmax-xmin)

ds1 = ds.copy()

for column in ds1.columns:

ds1[column] = (ds1[column] - ds1[column].min()) / (ds1[column].max() - ds1[column].min())

ds1.head()

	age	weight	height	cholestrol	sugar	Target
0	0.119048	0.65	0.5	0.349462	0.428571	1.0
1	0.619048	0.90	0.0	0.440860	0.571429	0.0
2	0.880952	0.55	0.8	0.193548	0.457143	0.0
3	1.000000	0.15	0.7	0.365591	1.000000	1.0
4	0.214286	1.00	0.9	1.000000	0.342857	1.0

ds1.plot(kind='bar')

<AxesSubplot:>

Standardization (Z score method or 0 mean)

ds2=ds.copy()

for column in ds2.columns:

ds2[column]=(ds2[column] - ds2[column].mean()) / ds2[column].std() ds2.head()

	age	weight	height	cholestrol	sugar	Target
0	-0.980397	0.637633	-0.182525	-0.114881	-0.266226	0.774597
1	0.544665	1.330712	-1.432694	0.195116	0.245747	-1.161895
2	1.343507	0.360401	0.567577	-0.643699	-0.163831	-1.161895
3	1.706617	-0.748525	0.317543	-0.060176	1.781663	0.774597
4	-0.689909	1.607944	0.817611	2.091567	-0.573409	0.774597

ds2.plot(kind='bar')

<AxesSubplot:>

Practical 6: Study of Principal Components Analysis

import numpy as np

import pandas as pd

import matplotlib.pyplot as pl

ds = pd.read_csv("wine.csv")

ds.head()

	Alcohol	Malic.acid	Ash	AcI	Mg	Phenols	Flavanoids	Nonflavanoid.phenols	Proanth	Color.int	Hue	OD	Proline	Wine
0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065	1
1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050	1
2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185	1
3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480	1
4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735	1

X = ds.iloc[:,0:13]

X.head()

	Alcohol	Malic.acid	Ash	AcI	Mg	Phenols	Flavanoids	Nonflavanoid.phenols	Proanth	Color.int	Hue	OD	Proline
0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065
1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735

y = ds.iloc[:,-1]

y.head()

- 0 1
- 1 1
- 2 1
- 3 1
- 4 1

Name: Wine, dtype: int64

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.2)

We will extract any two columns as Principal Component

With the help of EigenValue

First we will standardize the data

```
from sklearn.preprocessing import StandardScaler
st = StandardScaler()
# fit and transform
X train = st.fit transform(X train)
X train
array([[ 0.86085012, -0.83342199, 0.47848374, ..., -0.21754034,
         0.38175836, 1.84584136],
       [-0.73835419, 1.70964634, 1.29881334, ..., -0.08954008,
         0.73014966, -1.20811907],
       [-0.22168818, 0.46354285, 0.87081528, ..., -0.21754034,
         -0.62160859, -0.46122657],
       [-1.47644849, -0.58759206, -1.73283953, ..., -0.00420658,
         -0.21747468, -1.04214296],
       [-1.15660763, -1.08772883,
                                    0.51415024, ..., 1.57446322,
         0.17272357, -0.32844568],
       [ 1.27910356, -0.66388411, -0.30617936, ..., 0.63579469,
         1.55235313, 0.16948265]])
X \text{ test} = \text{st.transform}(X \text{ test})
# Applying PCA
from sklearn.decomposition import PCA
# Check Eigenvalue of components
pca = PCA(n\_components = 2)
X_train = pca.fit_transform(X_train)
X_{\text{test}} = \text{pca.transform}(X_{\text{test}})
pca.explained_variance_ratio_
array([0.36138769, 0.1937306])
# Sorted ..... Descending order
# Now classification
from sklearn.linear model import LogisticRegression
logreg = LogisticRegression()
```

logreg.fit(X_train, y_train)

LogisticRegression()

y_test

```
29
        1
149
        3
63
158
        3
22
        1
Name: Wine, dtype: int64
y_predict = logreg.predict(X_test)
y_predict
array([1, 3, 2, 3, 1, 1, 2, 2, 2, 1, 1, 3, 2, 3, 2, 1, 3, 3, 1, 1, 3, 2,
1, 1, 2, 1, 1, 2, 2, 3, 3, 1, 2, 3, 1, 2], dtype=int64)
# check with Confusion Metrix for Actual vs Predict
from sklearn.metrics import confusion_matrix
c = confusion_matrix(y_test, y_predict)
array([[13, 1, 0],
   [1, 11, 1],
   [0, 0, 9]], dtype=int64)
#3 category
# Visualize 2 components (0th and 1st)
X_disp, y_disp = X_train, y_train
pl.scatter(X_disp[ y_disp == 1,0], X_disp[ y_disp == 1,1], label = 'one')
pl.scatter(X_disp[ y_disp == 2,0], X_disp[ y_disp == 2,1], label = 'two')
pl.scatter(X_disp[ y_disp == 3,0], X_disp[ y_disp == 3,1], label = 'three')
pl.legend()
pl.show()
```


Practical 7: Implementation of K-Means Clustering

Find the exact / proper K

Elbow method

import pandas as pd

import numpy as np

ds = pd.read_csv("Iris.csv")

ds.head()

	PetalLength	PetalWidth	Species
0	1.4	0.2	lris-setosa
1	1.4	0.2	Iris-setosa
2	1.3	0.2	Iris-setosa
3	1.5	0.2	Iris-setosa
4	1.4	0.2	Iris-setosa

from matplotlib import pyplot as pl

pl.scatter(ds['PetalLength'],ds['PetalWidth'])

<matplotlib.collections.PathCollection at 0x25124fdc3d0>

from sklearn.cluster import KMeans

kmean = KMeans(n_clusters = 3)

kmean

KMeans(n_clusters=3)

```
y_predict = kmean.fit_predict(ds[['PetalLength','PetalWidth']])
```

y_predict

ds['cluster'] = y_predict

ds

	PetalLength	PetalWidth	Species	cluster
0	1.4	0.2	Iris-setosa	1
1	1.4	0.2	Iris-setosa	1
2	1.3	0.2	Iris-setosa	1
3	1.5	0.2	Iris-setosa	1
4	1.4	0.2	Iris-setosa	1

145	5.2	2.3	Iris-virginica	2
146	5.0	1.9	Iris-virginica	2
147	5.2	2.0	Iris-virginica	2
148	5.4	2.3	Iris-virginica	2
149	5.1	1.8	Iris-virginica	2

150 rows × 4 columns

kmean.cluster_centers_

```
array([[4.26923077, 1.34230769],
[1.464 , 0.244 ],
[5.59583333, 2.0375 ]])
```

ds1 = ds[ds.cluster == 0]

ds2 = ds[ds.cluster == 1]

ds3 = ds[ds.cluster == 2]

pl.scatter(ds1.PetalLength,ds1.PetalWidth, color = 'blue')

```
pl.scatter(ds2.PetalLength,ds2.PetalWidth, color = 'red')
pl.scatter(ds3.PetalLength,ds3.PetalWidth, color = 'green')
pl.scatter(kmean.cluster_centers_[:,0], kmean.cluster_centers_[:,1], color = 'black', marker='D')
pl.xlabel('Petal Length')
pl.ylabel('Petal Width')
pl.legend()
pl.show()
```


since values of x and y are mismatch

so we need to scale the values

 $kmean = KMeans(n_clusters = 3)$

```
from sklearn.preprocessing import MinMaxScaler
scl = MinMaxScaler()
scl.fit(ds[['PetalLength']])
ds['PetalLength'] = scl.transform(ds[['PetalLength']])
scl.fit(ds[['PetalWidth']])
ds['PetalWidth'] = scl.transform(ds[['PetalWidth']])
# Applying KMean once again
```

y_predict = kmean.fit_predict(ds[['PetalLength', 'PetalWidth']]) y_predict

ds['cluster'] = y_predict

ds

	PetalLength	PetalWidth	Species	cluster
0	0.067797	0.041667	Iris-setosa	1
1	0.067797	0.041667	Iris-setosa	1
2	0.050847	0.041667	Iris-setosa	1
3	0.084746	0.041667	Iris-setosa	1
4	0.067797	0.041667	Iris-setosa	1

145	0.711864	0.916667	Iris-virginica	2
146	0.677966	0.750000	Iris-virginica	2
147	0.711864	0.791667	Iris-virginica	2
148	0.745763	0.916667	Iris-virginica	2
149	0.694915	0.708333	Iris-virginica	2

150 rows × 4 columns

```
ds1 = ds[ds.cluster == 0]
```

$$ds2 = ds[ds.cluster == 1]$$

$$ds3 = ds[ds.cluster == 2]$$

```
pl.scatter(ds1.PetalLength,ds1.PetalWidth, color = 'blue')
pl.scatter(ds2.PetalLength,ds2.PetalWidth, color = 'red')
pl.scatter(ds3.PetalLength,ds3.PetalWidth, color = 'green')
pl.xlabel('Petal Length')
pl.ylabel('Petal Width')
```

pl.show()


```
k_range = range(1,10)
sse = []
for k in k_range:
  kmean = KMeans(n_clusters = k)
  kmean.fit(ds[['PetalLength','PetalWidth']])
  sse.append(kmean.inertia_)
sse
[28.391514358368717,
5.179687509974783,
1.7050986081225123,
1.1621031930971286,
0.8570856553216398,
0.6833274904190353,
0.5683512655008139,
0.48911635449076774,
0.4155388630360096]
pl.xlabel('K')
pl.ylabel('SSE')
```

pl.plot(k_range, sse)

[<matplotlib.lines.Line2D at 0x1c46ba07d90>]

Practical 8: Study of Support Vector Machines (SVMs).

import pandas as pd

from sklearn.datasets import load_iris

iris = load_iris()

iris.feature_names

```
['sepal length (cm)',
  'sepal width (cm)',
  'petal length (cm)',
  'petal width (cm)']
```

ds = pd.DataFrame(iris.data, columns=iris.feature_names)
ds.head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

Appending one column as target column

ds['target'] = iris.target

ds.head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

0 ----> Setosa 1--> Versicolor 2---> Virginica

iris.target_names

array(['setosa', 'versicolor', 'virginica'], dtype='<U10')</pre>

#Want to see the number of rows for each flower type

ds[ds.target==2]

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
100	6.3	3.3	6.0	2.5	2
101	5.8	2.7	5.1	1.9	2
102	7.1	3.0	5.9	2.1	2
103	6.3	2.9	5.6	1.8	2
104	6.5	3.0	5.8	2.2	2
105	7.6	3.0	6.6	2.1	2
106	4,9	2.5	4.5	1.7	2

. . .

. . .

. . .

• • •

. . .

146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

Want to append flower name column ---> based on index (0, 1, 2) i.e Setosa and all

ds['fname'] = ds.target.apply(lambda x: iris.target_names[x])
ds.head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	fname
0	5.1	3.5	1.4	0.2	0	setosa
1	4.9	3.0	1.4	0.2	0	setosa
2	4.7	3.2	1.3	0.2	0	setosa
3	4.6	3.1	1.5	0.2	0	setosa
4	5.0	3.6	1.4	0.2	0	setosa

from matplotlib import pyplot as pl

Create 3 DF for three flowers

```
ds1 = ds[ds.target==0]
ds2 = ds[ds.target==1]
ds3 = ds[ds.target==2]
```

pl.scatter(ds1['sepal length (cm)'], ds1['sepal width (cm)'], color = 'red', marker = 'o')
pl.scatter(ds2['sepal length (cm)'], ds2['sepal width (cm)'], color = 'blue', marker = 'o')
pl.xlabel('Sepal Length')
pl.ylabel('Sepal Width')

pl.scatter(ds1['petal length (cm)'], ds1['petal width (cm)'], color = 'red', marker = 'o')
pl.scatter(ds2['petal length (cm)'], ds2['petal width (cm)'], color = 'blue', marker = 'o')
pl.xlabel('Petal Length')
pl.ylabel('Petal Width')

Text(0, 0.5, 'Petal Width')

from sklearn.model_selection import train_test_split

Remove fname column

X = ds.drop(['target','fname'], axis = 'columns')

X.head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

y = ds['target']

y.head()

Name: target, dtype: int32

 $\label{eq:continuous_continuous_continuous} X_{train}, \ x_{test}, \ y_{train}, \ y_{test} = train_{test_split}(X, \ y, \ test_size=0.2, \ shuffle=False)$ from sklearn.svm import SVC

svmodel = SVC(kernel='linear')
svmodel.fit(X_train, y_train)
SVC(kernel='linear')

Accuracy of model

svmodel.score(X_train, y_train)

0.9916666666666667

Practical 9. Study of Bagging Algorithm:

- a) Random Forest
- b) Decision Tree Classifier
- c) Bagging Classifier

a) Random Forest

```
import pandas as pd
import numpy as np
from sklearn.datasets import load_digits
dig = load_digits()
import matplotlib.pyplot as pl
pl.gray()
for i in range(4):
    pl.matshow(dig.images[i])
```


dig.data[:3]

ds = pd.DataFrame(dig.data)

ds.head()

```
        0
        1
        2
        3
        4
        5
        6
        7
        8
        9
        ...
        54
        55
        56
        57
        58
        59
        60
        61
        62
        63

        0
        0.0
        0.0
        13.0
        9.0
        1.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        <t
```

5 rows × 64 columns

ds['target'] = dig.target

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(ds.drop(['target'], axis = 'columns'), dig.target, test_size=0.2)

y_test

```
array([9, 9, 4, 6, 0, 0, 3, 6, 3, 8, 9, 7, 3, 9, 5, 4, 1, 6, 7, 6, 7, 1,
       5, 0, 6, 1, 5, 6, 0, 2, 6, 3, 2, 9, 6, 7, 2, 4, 1, 5, 4, 5, 3, 4,
       7, 2, 8, 6, 1, 9, 5, 9, 6, 7, 5, 8, 5, 5, 2, 3, 7, 1, 3, 5, 5, 6,
       5, 1, 6, 1, 4, 0, 5, 6, 3, 3, 1, 7, 3, 3, 3, 3, 2, 4, 4, 4, 4, 8,
       3, 5, 3, 0, 3, 7, 9, 0, 3, 8, 5, 2, 4, 9, 7, 6, 6, 5, 4, 6, 3, 2,
       5, 8, 4, 6, 9, 3, 5, 2, 3, 1, 4, 6, 3, 3, 4, 4, 1, 6, 1, 5, 4, 7,
       8, 1, 1, 3, 5, 1, 6, 7, 9, 4, 3, 7, 9, 0, 8, 8, 8, 3, 6, 2, 4, 2,
       8, 6, 8, 3, 2, 7, 0, 0, 4, 5, 3, 6, 8, 4, 5, 0, 5, 4, 5, 8, 0, 2,
       6, 8, 8, 9, 9, 5, 2, 4, 8, 4, 7, 8, 6, 9, 3, 4, 9, 1, 9, 0, 7, 4,
       6, 7, 2, 9, 9, 1, 3, 7, 5, 8, 2, 2, 2, 2, 6, 8, 4, 7, 1, 1, 1, 6,
       4, 9, 2, 8, 4, 4, 8, 5, 8, 7, 2, 9, 6, 6, 3, 2, 5, 6, 7, 0, 1, 7,
       4, 7, 7, 7, 4, 6, 2, 0, 2, 3, 5, 5, 1, 2, 9, 5, 4, 4, 4, 4, 8, 8,
       8, 0, 1, 0, 2, 7, 8, 3, 9, 6, 8, 5, 2, 8, 0, 4, 0, 8, 9, 3, 2, 6,
       6, 3, 2, 9, 1, 0, 1, 6, 9, 1, 4, 8, 3, 8, 5, 9, 0, 5, 1, 8, 0, 3,
       6, 9, 6, 7, 5, 4, 4, 5, 1, 1, 9, 1, 0, 3, 4, 4, 7, 7, 5, 0, 9, 5,
       5, 1, 7, 5, 0, 8, 7, 9, 9, 6, 1, 3, 5, 1, 2, 9, 4, 3, 0, 5, 8, 3,
       1, 4, 0, 0, 5, 3, 0, 6])
```

from sklearn.ensemble import RandomForestClassifier

```
rfmodel = RandomForestClassifier(n_estimators = 30)
rfmodel.fit(X_train, y_train)
RandomForestClassifier(n_estimators=30)
rfmodel.score(X_test, y_test)
0.963888888888888
# Draw heatmap and confusion metrix
y_pred = rfmodel.predict(X_test)
y_pred
array([9, 9, 4, 6, 0, 0, 3, 6, 3, 8, 9, 7, 3, 9, 5, 4, 1, 6, 7, 6, 7, 1,
       5, 0, 6, 1, 5, 6, 0, 2, 6, 3, 2, 9, 6, 7, 2, 4, 1, 5, 4, 5, 3, 4,
       7, 2, 8, 6, 1, 9, 5, 9, 6, 7, 5, 8, 5, 5, 2, 3, 7, 1, 3, 5, 5,
       5, 1, 6, 1, 4, 0, 5, 6, 3, 3, 1, 7, 7, 3, 3, 3, 2, 9, 4, 9, 4, 8,
       3, 5, 3, 0, 3, 7, 9, 0, 3, 8, 5, 2, 4, 9, 7, 6, 6, 5, 4, 6, 3,
       5, 8, 4, 6, 9, 3, 5, 2, 3, 1, 4, 6, 3, 3, 4, 4, 1, 6, 1, 5, 4, 7,
       8, 1, 1, 3, 5, 1, 6, 7, 9, 4, 3, 7, 9, 0, 8, 8, 8, 3, 6, 2, 4, 2,
       8, 6, 8, 9, 2, 7, 0, 0, 4, 5, 3, 6, 8, 4, 5, 0, 5, 4, 5, 8, 0, 2,
       6, 8, 8, 9, 9, 5, 2, 4, 8, 5, 7, 8, 6, 9, 3, 4, 9, 1, 9, 0, 7, 4,
       6, 7, 2, 9, 9, 1, 3, 7, 5, 1, 2, 2, 2, 2, 6, 3, 4, 7, 1, 1, 1, 6,
       4, 9, 2, 8, 4, 4, 2, 5, 8, 7, 2, 9, 6, 6, 3, 2, 5, 6, 7, 0, 1, 7,
      4, 7, 7, 7, 4, 6, 2, 0, 2, 8, 5, 5, 1, 2, 9, 5, 4, 4, 4, 4, 8, 8,
       7, 0, 1, 0, 2, 7, 8, 3, 9, 6, 8, 5, 2, 8, 0, 4, 0, 8, 5, 3, 2, 6,
       6, 3, 2, 9, 1, 0, 1, 6, 9, 1, 4, 8, 3, 8, 5, 9, 0, 5, 1, 8, 0, 3,
       6, 9, 6, 7, 6, 4, 4, 5, 1, 1, 9, 1, 0, 3, 4, 4, 7, 7, 5, 0, 9, 5,
      5, 1, 7, 5, 0, 8, 7, 3, 9, 6, 1, 3, 5, 1, 2, 9, 4, 3, 0, 5, 8, 3,
      1, 4, 0, 0, 5, 3, 0, 6])
from sklearn.metrics import confusion_matrix
cf_matrix = confusion_matrix(y_test, y_pred)
cf matrix
 array([[29, 0, 0, 0, 0, 0, 0, 0, 0],
       [ 0, 34, 0, 0, 0, 0, 0, 0, 0,
       [0, 0, 30, 0, 0, 0, 0, 0, 0],
       [ 0, 0, 0, 38, 0, 0, 0, 1, 1, 1],
       [0,0,0,0,41,1,0,0,0,2],
       [0, 0, 0, 0, 0, 42, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 40, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 31, 0, 0],
       [ 0, 1, 1, 1, 0, 0, 0, 1, 31, 0],
       [ 0, 0, 0, 1, 0, 1, 0, 0, 0, 31]], dtype=int64)
import seaborn as sns
sns.heatmap(cf matrix, annot = True)
```

<AxesSubplot:>

sns.heatmap(cf_matrix, annot = True, cmap = 'Blues', linewidths = 1)

<AxesSubplot:>

b) Decision Tree classifier

import pandas as pd

ds = pd.read_csv("IrisNew.csv")

ds.head()

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	lris-setosa
1	2	4,9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	lris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

X = ds.iloc[:,1:5]

y = ds.iloc[:,5]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # 70% training and 30% test

from sklearn.tree import DecisionTreeClassifier

dt_classifier = DecisionTreeClassifier()

dt_classifier.fit(X_train, y_train)

DecisionTreeClassifier()

y_pred = dt_classifier.predict(X_test)

from sklearn.metrics import confusion_matrix, accuracy_score

cf = confusion_matrix(y_test, y_pred)

cf

ac = accuracy_score(y_test, y_pred)

ac

0.91111111111111111

c) **Bagging classifier**

import pandas as pd

ds = pd.read_csv("IrisNew.csv")

ds.head()

	ld	${\sf SepalLengthCm}$	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

X = ds.iloc[:,1:5]

y = ds.iloc[:,5]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # 70% training and 30% test

from sklearn.ensemble import BaggingClassifier

bagclassifier = BaggingClassifier()

bagclassifier.fit(X_train, y_train)

BaggingClassifier()

y_pred = bagclassifier.predict(X_test)

from sklearn.metrics import confusion_matrix, accuracy_score

bag_cs = confusion_matrix(y_test, y_pred)

bag_cs

bag_ac = accuracy_score(y_test, y_pred)

0.93333333333333333

```
import pickle
with open('bagModelIris.pkl','wb') as file:
  pickle.dump(bagclassifier, file)
import flask
from flask import Flask, request
model_bagging = pickle.load(open('bagModelIris.pkl','rb'))
app = Flask(__name___)
# Two parts (base address + route address)
@app.route('/', methods = ['GET', 'POST'])
def main():
  return "Begging Flask API Development"
@app.route('/classify', methods = ['GET'])
def classify():
  if flask.request.method == 'GET':
     SepalLengthCm = request.args.get('sl')
     SepalWidthCm = request.args.get('sw')
     PetalLengthCm = request.args.get('pl')
     PetalWidthCm = request.args.get('pw')
     prediction = model_bagging.predict([[SepalLengthCm, SepalWidthCm, PetalLengthCm,
PetalWidthCm]])
     return 'Class of species is '+str(prediction)
if __name__ == '__main__':
```

```
* Serving Flask app "__main__" (lazy loading)

* Environment: production

WARNING: This is a development server. Do not use it in a production deployment.

Use a production WSGI server instead.

* Debug mode: off

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

127.0.0.1 - - [15/Aug/2021 22:55:00] "GET / HTTP/1.1" 200 -

127.0.0.1 - - [15/Aug/2021 22:56:36] "GET /classify?sl=1.2&sw=3.1&pl=2.4&pw=5.6 HTTP/1.1" 200 -
```

Testing using Postman

Practical 10: Study of Boosting Algorithms:

- a) AdaBoost
- b) Stochastic Gradient Boosting
- c) Voting Ensemble

a) AdaBoost

```
import pandas as pd

ds = pd.read_csv(r'addsdataset.csv')
# X is for input, y for output
```

```
X = ds.iloc[:,[2,3]].values
y = ds.iloc[:, 4].values
```

from sklearn.model_selection import train_test_split

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0, shuffle = False)
```

Features scaling

```
from sklearn.preprocessing import StandardScaler
```

```
sd = StandardScaler()
```

X_train = sd.fit_transform(X_train)

 $X_{\text{test}} = \text{sd.transform}(X_{\text{test}})$

from sklearn.ensemble import AdaBoostClassifier

classifier = AdaBoostClassifier()

classifier.fit(X_train, y_train)

AdaBoostClassifier()

```
y_pred = classifier.predict(X_test)
y_test
array([1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1,
        0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1,
        1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1,
        1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0,
        1, 1, 1, 1, 1, 0, 1, 1, 0, 1], dtype=int64)
y_pred
array([1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1,
        0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0,
        1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1,
        0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0,
        1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1], dtype=int64)
from sklearn.metrics import confusion_matrix, accuracy_score
ac = accuracy_score(y_test, y_pred)
ac
0.82
# Improvement with Random Forest Algorithm
from sklearn.ensemble import RandomForestClassifier
RF = RandomForestClassifier(max_depth = 2, random_state = 0)
classifierNew = AdaBoostClassifier(base_estimator = RF, n_estimators = 100, learning_rate
= 0.01, random_state = 0)
classifierNew.fit(X_train, y_train)
AdaBoostClassifier(base_estimator=RandomForestClassifier(max_depth=2,
                                                          random_state=0),
                    learning rate=0.01, n_estimators=100, random_state=0)
y_pred = classifierNew.predict(X_test)
ac = accuracy_score(y_test, y_pred)
ac
```

Deployment # In ANACONDA PROMT type below command # conda install -c anaconda flask # FROM GOOGLE INSTALL POSTMAN # Creating pkl file

```
with open('model.pkl','wb') as file:
  pickle.dump(classifier, file)
with open('modelNew.pkl','wb') as file:
  pickle.dump(classifierNew, file)
import flask
from flask import Flask, request
import pickle
model_adaboost = pickle.load(open('modelNew.pkl', 'rb'))
app = Flask(__name__)
#Get method -> Read / Retrieve
@app.route('/', methods = ['GET', 'POST'])
def main():
  return "Ada boost with flask"
```

```
@app.route('/classify', methods = ['GET'])
def classify():
  if flask.request.method == 'GET':
     Age = request.args.get('age') # we will call the data from API using Postman
     EstimatedSalary = request.args.get('salary')
     prediction = model_adaboost.predict([[Age, EstimatedSalary]])
     print(prediction)
     if prediction == 1:
       return "there is a chance to purchase things"
     else:
       return "sorry, no chance"
  else:
     return "Select GET method"
if __name__ == '__main__':
  app.run()
  * Serving Flask app "__main__" (lazy loading)
  * Environment: production
    WARNING: This is a development server. Do not use it in a production deployment.
    Use a production WSGI server instead.
  * Debug mode: off
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
 127.0.0.1 - - [22/Jul/2021 21:45:11] "GET / HTTP/1.1" 200 -
 127.0.0.1 - - [22/Jul/2021 21:45:43] "GET /classify?age=32&salary=30000 HTTP/1.1" 200 -
 [1]
```

Testing the service using Postman

b) Stochastic Gradient Boosting

import pandas as pd

ds = pd.read_csv("IrisNew.csv")

ds.head()

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

X = ds.iloc[:,1:5]

y = ds.iloc[:,5]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

from sklearn.linear_model import SGDClassifier

sgd = SGDClassifier(loss = 'hinge',penalty='l2',max_iter=1000, random_state=None,learning_rate= 'optimal')

sgd.fit(X_train, y_train)

SGDClassifier()

y_pred = sgd.predict(X_test)

from sklearn.metrics import confusion_matrix, accuracy_score

sgd = confusion_matrix(y_test, y_pred)

sgd

ac_sgd = accuracy_score(y_test, y_pred)

ac_sgd

0.93333333333333333

c) Voting Ensemble.

import pandas as pd

import numpy as np

ds = pd.read_csv('diabetes.csv')

ds.head()'

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	${\bf Diabetes Pedigree Function}$	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

X = ds.iloc[:,0:8]

y = ds.iloc[:, 8]

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

 $X = \text{sc.fit_transform}(X)$

from sklearn.model_selection import train_test_split

 X_{train} , X_{test} , y_{train} , y_{test} = train_test_split(X, y, test_size = 0.2, random_state = 0)

Applying 5 different algrithm on single dataset

Applying Logistic Regression [82%]

from sklearn.linear_model import LogisticRegression

logreg = LogisticRegression()

logreg.fit(X_train, y_train)

y_pred_log = logreg.predict(X_test)

from sklearn.metrics import accuracy_score

```
ac = accuracy_score(y_test, y_pred_log)
ac
```

0.8246753246753247

Applying Decision Tree [79%]

```
from sklearn.tree import DecisionTreeClassifier

dt = DecisionTreeClassifier()

dt.fit(X_train, y_train)

y_pred_dt = dt.predict(X_test)

from sklearn.metrics import accuracy_score

ac = accuracy_score(y_test, y_pred_dt)

ac
```

0.7922077922077922

Applying KNN [80%]

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
y_pred_knn = knn.predict(X_test)

from sklearn.metrics import accuracy_score
ac = accuracy_score(y_test, y_pred_knn)
```

0.8051948051948052

ac

```
# Applying Random Forest [81%]
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n_estimators=1000, random_state=0)
rf.fit(X_train, y_train)
y_pred_rf = rf.predict(X_test)
from sklearn.metrics import accuracy_score
ac = accuracy_score(y_test, y_pred_rf)
ac
0.8181818181818182
# Applying Adaboost [74%]
from sklearn.ensemble import AdaBoostClassifier
adb = AdaBoostClassifier(n_estimators=1000, random_state=0)
```

```
adb.fit(X_train, y_train)
y_pred_adb = adb.predict(X_test)
```

from sklearn.metrics import accuracy_score ac = accuracy_score(y_test, y_pred_adb) ac

0.7467532467532467

Voting

Soft Voting without weight

```
from sklearn.ensemble import VotingClassifier
vc = VotingClassifier(estimators = [('LogisticReg', logreg),
                      ('DecisionTree',dt),
```

```
('RandomForest',rf),
                    ('AdaBoost',adb),
                    ('Kneighbor',knn)], voting = 'soft')
vc.fit(X_train, y_train)
 VotingClassifier(estimators=[('LogisticReg', LogisticRegression()),
                                   ('DecisionTree', DecisionTreeClassifier()),
                                   ('RandomForest',
                                    RandomForestClassifier(n_estimators=1000,
                                                              random state=0)),
                                   ('AdaBoost',
                                    AdaBoostClassifier(n_estimators=1000,
                                                          random state=0)),
                                   ('Kneighbor', KNeighborsClassifier())],
                     voting='soft')
y_pred_vc = vc.predict(X_test)
from sklearn.metrics import accuracy_score
ac = accuracy_score(y_test, y_pred_vc)
ac
0.8311688311688312
# Soft Voting with weight (Scores ---- 0%) name, model
def get_model():
  models = list()
  models.append(('lr', LogisticRegression()))
  models.append(('dt', DecisionTreeClassifier()))
  models.append(('knn', KNeighborsClassifier()))
  models.append(('rf', RandomForestClassifier()))
  models.append(('adb', AdaBoostClassifier()))
```

return models

```
def evaluate_model(models, X_train, X_test, y_train, y_test):
  scores = list()
  for name, model in models:
     model.fit(X_train, y_train)
    yhat = model.predict(X_test)
     acc = accuracy_score(y_test, yhat)
     scores.append(acc)
  return scores
models = get_model() # create a base model
scores = evaluate_model(models, X_train, X_test, y_train, y_test)
vc1 = VotingClassifier(estimators = models, voting = 'soft', weights = scores)
vc1.fit(X_train, y_train)
y_pred_vc1 = vc1.predict(X_test)
0.8181818181818182
# Hard voting with weights
vc2 = VotingClassifier(estimators = models, voting = 'hard', weights = scores)
vc2.fit(X_train, y_train)
y_pred_vc2 = vc2.predict(X_test)
acc_hd = accuracy_score(y_test, y_pred_vc2)
acc_hd
```

0.8441558441558441

Practical 11: Study of Python Flask Library

AdaBoostIrisModel

import pandas as pd

import pickle

ds = pd.read_csv('IrisNew.csv')

ds.head()

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

X = ds.iloc[:,1:5]

y = ds.iloc[:,5]

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3)

from sklearn.ensemble import AdaBoostClassifier

classifier = AdaBoostClassifier()

classifier.fit(X_train, y_train)

AdaBoostClassifier()

y_pred = classifier.predict(X_test)

from sklearn.metrics import accuracy_score, confusion_matrix

cf_matrix = confusion_matrix(y_test,y_pred)

cf_matrix

```
array([[16, 0, 0],
          [ 0, 11, 0],
          [ 0, 2, 16]], dtype=int64)
ac = accuracy_score(y_test,y_pred)
ac
0.95555555555556
with open('modelIris.pkl','wb') as file:
  pickle.dump(classifier, file)
Client App (Testing the Model)
import flask
from flask import Flask, request
import pickle
model_adaboost = pickle.load(open('modelIris.pkl','rb'))
app = Flask(__name__)
# Two parts (base address + route address)
@app.route('/', methods = ['GET', 'POST'])
def main():
  return "Ada Boost Flask API Development"
@app.route('/classify', methods = ['GET'])
def classify():
  if flask.request.method == 'GET':
    SepalLengthCm = request.args.get('sl')
    SepalWidthCm = request.args.get('sw')
```

```
PetalLengthCm = request.args.get('pl')

PetalWidthCm = request.args.get('pw')

prediction = model_adaboost.predict([[SepalLengthCm, SepalWidthCm,
PetalLengthCm, PetalWidthCm]])

return 'Class of species is '+str(prediction)

if __name__ == '__main__':

app.run()

* Serving Flask app "__main__" (lazy loading)

* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.

* Debug mode: off

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
127.0.0.1 - - [23/Jul/2021 10:17:10] "GET /classify?sl=5&sw=5&pl=5&pw=5 HTTP/1.1" 200 -
```

Testing using Postman

