Engineering Systems Mid

Slide 1

- Definition of System
- An integrated set of interoperable elements, each with explicitly specified and bounded capabilities, working synergistically to perform value-added processing to enable a User to satisfy mission-oriented operational needs in a prescribed operating environment with a specified outcome and probability of success.
- Categories of System
 - Hard: Involving simulation
 - Soft: Hard to quantify
 - Evolutionary : Open, Complex system.
- Systems Thinking: Process of predicating, how something influences other things.
- Systems Engineering: how complex engineering projects should be designed and managed.
- **Engineering Systems :** study dealing with diverse, complex design problems.
- Characteristics of Engineering Systems
 - Tech enabled
 - Large Scale
 - Socio-Technical Aspect
 - Nested Complexity
 - Dynamic
 - Emergent Properties

Slide 2

- Systems Approach
 - Interdependence
 - Goal Seeking
 - Holism
 - Inputs and Outputs
 - Transformation
 - Entropy
 - Regulation

- Hierarchy
- Differentiation
- Equifinality
- Multi-finality
- System vs Product vs Tools
- Product has specific capability.
- Supporting product is tool.
- Systems Attributes
- The term attributes classifies functional or physical features of a system.
- **Properties :** Mass properties.
- Characteristics: Behavioural and Physical.
- System Performance: Objective and Subjective.
- System Conditions
 - Pre-requisites
 - Initial Operating Condition
 - Static vs Dynamic
 - Stabilisation
 - Balance of Power

Slide 3

- Stakeholders.
- Measures of a system
 - Measure of Performance (Mo Effectiveness, Suitability)
 - Operational Effectiveness
 - Operational Suitability
 - Cost Effectiveness
- Acceptability of a System
 - Market
 - User perception
 - User mission- System
 - Return of Investment

Slide 4

- Stages in System's Life Cycle
 - Definition (SWOT)
 - Procurement
 - Development
 - Production

- Operation and Support
- Disposal

System Interface — Objectives

- Link Systems
- Adapt on incompatible systems
- Buffer effects of incompatible systems
- Leverage Human Capabilities
- Restrain system element's usage.

- Types of Interfaces

- Active
- Passive
- Combined
- Logical
- Physical

- Interface Failures

- Disruption
- Intrusion
- Stress Loading
- Physical Destruction

Slide 5

- Diagrams
 - IDEFO
 - FFBD
 - N²
 - Tree
 - FR
 - Context

Slide 6

- Functional Specifications
- Non-Functional Specifications ity
- Physical Architecture Divides in Sub-systems
- System Architecture
- The System Architecture identifies all the products (including enabling products) that are necessary to support the system and, by implication, the processes necessary for development, production/construction, deployment, operations, support,

disposal, training, and verification.

_