



# **Model Optimization and Tuning Phase Template**

| Date          | 15 July 2024                           |  |
|---------------|----------------------------------------|--|
| Team ID       | SWTID1720108643                        |  |
| Project Title | Garment Worker Predictivity Prediction |  |
| Maximum Marks | 10 Marks                               |  |

## **Model Optimization and Tuning Phase**

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

### **Hyperparameter Tuning Documentation (6 Marks):**

| Model                      | Tuned Hyperparameters                                                                                      | Optimal Values                                                                                                                                     |
|----------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Linear                     |                                                                                                            |                                                                                                                                                    |
| Regressor                  | -                                                                                                          | -                                                                                                                                                  |
| Decision Tree<br>Regressor | <pre>dt = DecisionTreeRegressor()  param_grid = (     'criterion': ['squared_error', 'friedman_mse',</pre> | Sect telementers (Josianian) "Highbouries", "telement") Wo. Jose, herero gl. N.S. "Weinessign, best to d. "Weinessign, pality a., "welland "heeft" |





| Random Forest<br>Regressor  | <pre>rfr = RandomForestRegressor()  param_grid = {     'n_estimators': [100, 200, 300],     'max_features': [ 'sqrt', 'log2', None],     'max_depth': [None, 10, 20, 30],     'min_samples_split': [2, 5, 10],     'min_samples_leaf': [1, 2, 4],     'bootstrap': [True, False] }</pre>              | Their considering filled; "I bookstoke"; Trilley, "book, but \$1,000, "book, features.";  [logi], "book, complex, love": A, "bok, complex, public "bid, "A, and housers."; 188] |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gradient Boosting Regressor | <pre>gb = GradientBoostingRegressor()  param_grid = {     'n_estimators': [100, 200, 300],     'learning_rate': [0.001, 0.01, 0.05],     'max_depth': [3, 4, 5, 6],     'min_samples_split': [2, 5, 10],     'min_samples_leaf': [1, 2, 4],     'max_features': [ 'sqrt', 'log2'] }</pre>             | Such derivatives from the "Thursday, pair", \$.5%, "ask papels", \$, "ask fasteste at "imps", "win, weeken last"; a, "ask, seed on, pair" \$, "a, partnarers" \$6.5%            |
| XGB Regressor               | <pre>xg = XGBRegressor(objective='reg:squarederror')  param_grid = {     'n_estimators': [100, 200, 300],     'learning_rate': [0.001, 0.0, 0.1],     'max_depth': [3, 4, 5, 6],     'min_child_weight': [1, 3, 5],     'subsample': [0.6, 0.8, 1.0],     'colsample_bytree': [0.6, 0.8, 1.0] }</pre> | First necessaries from ( ['Indianale_Appless': N.A., 'Derecting_penc': N.A., 'nec_d sett': 4. 'wis calld width': 1. 'o streaments': 190. 'minocalle': 8.00                      |
| AdaBoost<br>Regressor       | <pre>ada_boost = AdaBoostRegressor(random_state=42)  param_grid = {     'n_estimators': [10 ,50, 100, 200, 300],     'learning_rate': [0.001,0.01, 0.1, 1.0] }</pre>                                                                                                                                  | Seat Fromters: ['Seming.rule': U.L. 's_nat(seton';': 30]                                                                                                                        |





# **Performance Metrics Comparison Report (2 Marks):**

| Model                       | Optimized Metric                                                                                                                     |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Linear Regressor            | Linear Regression - Root Mean Squared Error: 0.14607218107119907<br>Linear Regression - R^2 Score: 0.1964180779997876                |
| Decision Tree<br>Regressor  | DecisionTreeRegressor - Root Mean Squared Error: 0.12765849855752864<br>DecisionTreeRegressor - R^2 Score: 0.38624563411216717       |
| Random Forest<br>Regressor  | RandomForestRegressor - Root Mean Squared Error: 0.11211841717670257<br>RandomForestRegressor - R^2 Score: 0.5265773347637333        |
| Gradient Boosting Regressor | GradientBoostingRegressor - Root Mean Squared Error: 0.11485062899977652<br>GradientBoostingRegressor - R^2 Score: 0.503222536034073 |
| XGB Regressor               | XGBRegressor - Root Mean Squared Error: 0.11716056848197681<br>XGBRegressor - R^2 Score: 0.4830386550037017                          |
| AdaBoost<br>Regressor       | AdaBoostRegressor - Root Mean Squared Error: 0.12741167428022274<br>AdaBoostRegressor - R^2 Score: 0.3886166948577655                |





# **Final Model Selection Justification (2 Marks):**

| Final Model                | Reasoning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Random Forest<br>Regressor | The Random Forest Regressor achieved the lowest Root Mean Squared Error (RMSE) among all the models I tested. RMSE measures the differences between the predicted and actual values, so a lower RMSE indicates that the model's predictions are closer to the actual values, suggesting higher accuracy. Additionally, the Random Forest Regressor had the highest R-squared (R²) score. The R² score shows how well the model explains the variance in the target variable. A higher R² score means the model is better at capturing the underlying patterns in the data, which is crucial for accurate predictions |