1 Introduction to Function Notation

Function notation is a way of representing functions in a mathematical form. A function, in general, is a relation that assigns a single output for each input. It is usually written as f(x), where:

- \bullet f denotes the function's name.
- \bullet x denotes the input, also called the independent variable.
- f(x) denotes the output, also called the dependent variable.

Example 1: If f(x) = 2x + 3, this means for each input value of x, the function f gives an output by multiplying x by 2 and then adding 3.

Example 2: Let $g(x) = x^2 - 4x + 7$. Here, for each input x, the function g outputs the square of x minus four times x plus 7.

Practice Problems

1. Let
$$f(x) = 3x - 5$$
. Find $f(2)$.

2. Let
$$g(x) = x^2 + 1$$
. Find $g(-3)$.

3. Let
$$h(x) = \frac{x}{x-1}$$
. Find $h(3)$.

4. If
$$j(x) = 4x^2 - 2x + 1$$
, find $j(0)$.

5. Let
$$k(x) = \sqrt{x+4}$$
. Find $k(5)$.

6. If
$$f(x) = x^3$$
, what is $f(1)$?

7. Let
$$p(x) = 2 - x^2$$
. Find $p(-2)$.

8. If
$$q(x) = 5x + 4$$
, calculate $q(0)$.

9. Let
$$r(x) = 7 - 2x$$
. What is $r(4)$?

10. If
$$s(x) = \frac{1}{x}$$
, what is $s(2)$?

2 Function Operations

Function operations include adding, subtracting, multiplying, and dividing functions. If f(x) and g(x) are two functions, the operations can be performed as follows:

2.1 Addition and Subtraction

- (f+g)(x) = f(x) + g(x)
- (f-g)(x) = f(x) g(x)

Example: Let f(x) = 2x + 3 and $g(x) = x^2$.

$$(f+g)(x) =$$

$$(f - g)(x) =$$

2.2 Multiplication

• $(f \cdot g)(x) = f(x) \cdot g(x)$

Example: With f(x) = 2x + 3 and $g(x) = x^2$.

$$(f \cdot g)(x) =$$

Practice Problems

1. Let
$$f(x) = x + 2$$
 and $g(x) = 3x - 1$. Find $(f + g)(x)$.

2. Let
$$f(x) = x^2$$
 and $g(x) = x + 4$. Find $(f - g)(x)$.

3. If
$$f(x) = 2x$$
 and $g(x) = x^2 + 1$, what is $(f \cdot g)(x)$?

4. Let
$$f(x) = x - 1$$
 and $g(x) = 4x$. Find $(f \cdot g)(x)$.

5. Let
$$f(x) = 5$$
 and $g(x) = x^2 - x$. Find $(f + g)(x)$.

6. If
$$f(x) = 3x + 7$$
 and $g(x) = 2x^2$, calculate $(f - g)(x)$.

7. Let
$$f(x) = x^3$$
 and $g(x) = 3$. Find $(f + g)(x)$.

8. If
$$f(x) = 4x$$
 and $g(x) = \frac{x}{2}$, what is $(f \cdot g)(x)$?

9. Let
$$f(x) = x^2 - 1$$
 and $g(x) = 2x + 3$. Find $(f + g)(x)$.

10. If
$$f(x) = x$$
 and $g(x) = x^2 - x + 1$, calculate $(f - g)(x)$.

3 Composite Functions

A composite function is a function formed by combining two functions. If f and g are functions, then the composite function $f \circ g$ is defined as:

$$(f \circ g)(x) = f(g(x))$$

Example: Let f(x) = 2x + 1 and $g(x) = x^2$.

$$(f \circ g)(x) =$$

Practice Problems

- 1. Let f(x) = 3x + 2 and g(x) = x 1. Find $(f \circ g)(x)$.
- 2. If $f(x) = x^2$ and g(x) = 4x + 3, what is $(f \circ g)(x)$?
- 3. Let $f(x) = \sqrt{x}$ and $g(x) = x^2 + 1$. Find $(f \circ g)(x)$.
- 4. If f(x) = x 3 and g(x) = 2x, calculate $(g \circ f)(x)$.
- 5. Let $f(x) = x^3$ and g(x) = x + 1. Find $(g \circ f)(x)$.
- 6. If f(x) = 2x + 5 and $g(x) = \frac{x}{2}$, what is $(f \circ g)(x)$?

7. Let
$$f(x) = x^2 - 4$$
 and $g(x) = 3x$. Find $(g \circ f)(x)$.

8. If
$$f(x) = x + 1$$
 and $g(x) = x^2$, calculate $(f \circ g)(x)$.

9. Let
$$f(x) = 2x$$
 and $g(x) = \sqrt{x}$. What is $(g \circ f)(x)$?

10. If
$$f(x) = 4x + 1$$
 and $g(x) = x^2 - 3$, find $(f \circ g)(x)$.

Real-World Applications of Linear Functions

Linear functions are useful tools for modeling and solving real-world problems. This section provides examples of such applications and practice problems for students to solve.

1. Solving Problems with Linear Functions

Linear functions model situations with a constant rate of change. Here are some examples:
Example: A ride-sharing service charges a flat fee of \$3 plus \$0.75 per mile driven. If a customer travels 10 miles, what is the total cost of the ride?
Practice Problems
For each of the following Write a function for the scenario provided and then solve.
1. A painter charges a flat fee of \$50 for supplies plus \$25 per hour of labor. If a job takes 6 hours, what is the total cost?
2. A moving company charges \$100 for the truck rental and \$0.50 per mile driven. If the total cost for a move was \$175, how many miles were driven?
3. A company manufactures widgets. The cost to produce x widgets is given by the linear function $C(x) = 10x + 200$. If the company produces 50 widgets, what is the total cost?
4. A car rental company charges \$30 per day and \$0.20 per mile. If a customer rents the car for 3 days and drives 150 miles, what is the total cost?

Mobile Data Usage and Billing

Imagine you have a mobile data plan with a company. The company charges based on how much data you use in a month, and there is a limit beyond which they apply extra charges.

1. Data Usage Function:

Let f(x) represent your data usage in gigabytes (GB) over a given period based on the number of hours x you spend on different apps. For example, f(x) = 0.2x

2. Billing Function:

Let g(x) represent the cost of your data usage in dollars based on the number of gigabytes x you consume. The company charges \$30 plus \$5 per GB. g(x) =

3. Composite Function:

Using the expressions for f(x) and g(x), write the composite function g(f(x)) which calculates your total bill in terms of the number of hours x spent streaming.

4. Example:

Suppose you stream videos for 10 hours. Calculate f(10), the total data used. Then, calculate the total bill using g(f(10)).

Example: Streaming for 10 hours