Econ 8825 May 28, 2021

Summer 2021

1. (30) Consider a variation of the standard *censored* selection model, where we get to observe both hours worked and wages of individuals. Hours worked are censored at 0 and we only observe wages for those who are working, and hence their hours worked is positive.

$$y_{1i} = \max(w_i'\delta_0 + \eta_i, 0)$$

$$d_i = I[y_{1i} > 0]$$

$$y_i = d_i(x_i'\beta_0 + \epsilon_i)$$

Observed variables: $(y_{1i}, d_i, w_i, y_i, x_i)$ and we assume $(\eta_i, \epsilon_i) \sim N(\mathbf{0}, \Sigma)$, where the (1,1) element of Σ is σ_1^2 , the other diagonal element is σ_2^2 , and the off diagonal terms are γ_0 . We wish to estimate $(\delta_0, \beta_0, \gamma_0, \sigma_1^2, \sigma_2^2)$.

- (a) Write the likelihood function for this model.
- (b) Propose a NLLS estimator for the parameters in this model.
- (c) Propose a computationally friendly Heckman type two-step estimator where the first step involves a convex optimization procedure and the second step is closed form.
- 2. (30) Consider the censored regression model in the generic form:

$$y^* = x'\beta + \sigma\epsilon$$

$$E[\epsilon] = 0$$

$$y = \max(0, y^*)$$

$$\epsilon \perp x \ P(\epsilon \le a) = F(a)$$

$$f(\epsilon) = F'(\epsilon)$$

(a) Assume $F(\cdot)$, $f(\cdot)$ are known to the econometrician- e.g. standard normal. Evaluate δ , the conditional marginal effect:

$$\delta = \partial E[y|x]/\partial x$$

(b) Evaluate the Average Marginal Effect:

$$\bar{\delta} = E_x[\delta]$$

- (c) Propose an estimator for $\bar{\delta}$ as a function of an estimator for β_0 . Establish the asymptotic properties of your estimator.
- (d) Informally answer the above questions if $F(\cdot), f(\cdot)$ are unknown.