Linear Algebra

Sartaj Ul Hasan

Department of Mathematics Indian Institute of Technology Jammu Jammu, India - 181221

Email: sartaj.hasan@iitjammu.ac.in

Lecture 20 (Sept 11, 2019)

Fundamental Results (Conti . . .)

Proposition 13: If V is a finite-dimensional vector space, then any two bases of V have the same number of elements.

Proof: Suppose B_1 and B_2 are two distinct bases of V such that $|B_1|=m$ and $|B_2|=n$. Then by Proposition 12(a), $|B_1|\leq |B_2|$ i.e. $m\leq n$, since B_1 is L. I. and B_2 is spanning set. In a similar way, $B_2\leq B_1$ i. e. $n\leq m$. Hence we get: m=n.

- **Definition:** The dimension of a finite-dimensional space is the number of elements in a basis for *V*. This is written dim *V*.
- Remark: Proposition 13 ensures that this is a proper definition.
- Special Case: The zero subspace {0} is defined to have dimension 0. However, it does not have a basis. So our insistence that dim{0} = 0 amounts to saying that the empty set of vectors is a basis of {0}. Thus the statement that "the dimension of a vector space is the number of vectors in any basis" holds even for zero space.

Examples

- dim $\mathbb{R}^n_{\mathbb{R}=n}$
- dim $\mathbb{R}_{\mathbb{R}} = 1$ and any non-zero real number will act as a basis, e.g., $\{1\}, \{-8\}, \{\sqrt{5}\}, etc.$
- dim $\mathbb{C}_{\mathbb{C}} = 1$ and any non-zero complex number will act as a basis, e.g., $\{1\}, \{i\}, \{1+i\}, \{5-7i\}$ etc.
- dim $\mathbb{Q}_{\mathbb{Q}} = 1$ and any non-zero rational number will act as a basis, e.g., $\{1\}, \{a: a \neq 0 \text{ and } a \in \mathbb{Q}\}.$
- dim $\mathbb{F}_{\mathbb{F}}=1$ and any non-zero element in \mathbb{F} will act as a basis, e.g., $\{1\}, \{a: a \neq 0 \text{ and } a \in \mathbb{F}\}.$
- dim $\mathbb{C}_{\mathbb{R}} = 2$ and the set $\{1, i\}$ is one of its basis.
- dim $\mathbb{R}_{\mathbb{R}}^{m \times n} = mn$, and one basis consists of all $m \times n$ matrices with exactly one entry equal to 1 and all other entries equal to 0. We call this **standard basis** for $\mathbb{R}^{m \times n}$
- dim $\mathbb{R}_n[t]_{\mathbb{R}} = n+1$, and the set $\{1, t, t^2, \dots, t^n\}$ is one of its bases generally known as standard basis for $\mathbb{R}_n[t]$.