INSTRUÇÕES BÁSICAS ASSEMBLY - ATMEGA

Lógica e aritmética

ADD	Rd, Rr	Soma dois registradores	Rd ← Rd + Rr	Z, C, N, V, H	1
ADC	Rd, Rr	Soma dois registradores com Carry	Rd ← Rd + Rr + C	Z, C, N, V, H	1
SUB	Rd, Rr	Subtrai dois registradores	Rd ← Rd - Rr	Z, C, N, V, H	1
CLR	Rd	Limpa registrador	Rd ← Rd ⊗ Rd	Z, N, V	1
INC	Rd	Incrementa registrador	Rd ← Rd + 1	Z, N, V	1
DEC	Rd	Decrementa registrador	Rd ← Rd - 1	Z, N, V	1
AND	Rd, Rr	Lógica E entre registradores	Rd ← Rd • Rr	Z, N, V	1
ANDI	Rd, K	Lógica E entre registrador e constante	$Rd \leftarrow Rd \bullet K$	Z, N, V	1
OR	Rd, Rr	Lógica OU entre registradores	Rd ← Rd v Rr	Z, N, V	1
ORI	Rd, K	Lógica OU entre registrador e constante	Rd ← Rd v K	Z, N, V	1

Desvios e chamadas

2	Nenhum	PC ← PC + k + 1	Desvio relativo	k	RJMP
3	Nenhum	PC ← PC + k + 1	Chama de sub-rotina	k	RCALL
4	Nenhum	PC ← STACK	Retorno de sub-rotina	İ	RET
4	1	PC ← STACK	Retorno de interrupção		RETI
_	Nenhum I		1		

Movimentação de dados

MOV	Rd, Rr	Movimento entre registradores	Rd ← Rr	Nenhum	1
LDI	Rd, K	Carrega valor imediato	Rd ← K	Nenhum	1
IN	Rd, P	Leitura de registrador de I/O	Rd ← P	Nenhum	1
OUT	P, Rr	Escrita de registrador de I/O	P ← Rr	Nenhum	1
LDS	Rd, k	Carrega diretamente da SRAM	Rd ← (k)	Nenhum	2
STS	k, Rr	Carrega diretamente para SRAM	(k) ← Rd	Nenhum	2

Manipulação de bits

SBI	P, b	Ativa o bit no registrador de I/O	I/O(P,b) ← 1	Nenhum	2
CBI	P, b	Limpa o bit do registrador de I/O	I/O(P,b) ← 0	Nenhum	2
		-			$\overline{}$

Teste de bit

k	Desvia se igual	if(Z=1) PC ← PC + k + 1	Nenhum	1/2
k	Desvia se diferente	if(Z=0) PC ← PC + k + 1	Nenhum	1/2
P, b	Pula se o bit do registrador de I/O estiver limpo (0)	if(P(b)=0) PC ← PC + 2 ou 3	Nenhum	1/2/3
P, b	Pula se o bit do registrador de I/O estiver ativo (1)	if(P(b)=1) PC ← PC + 2 ou 3	Nenhum	1/2/3
	k P, b	k Desvia se diferente P, b Pula se o bit do registrador de I/O estiver limpo (0) Pula se o bit do registrador de	k Desvia se diferente if(Z=0) PC \leftarrow PC + k + 1 P, b Pula se o bit do registrador de I/O estiver limpo (0) if(P(b)=0) PC \leftarrow PC + 2 ou 3 Pula se o bit do registrador de if(P(b)=1) PC \leftarrow PC + 2 ou 3	k Desvia se diferente if(Z=0) PC \leftarrow PC + k + 1 Nenhum P, b Pula se o bit do registrador de I/O estiver limpo (0) if(P(b)=0) PC \leftarrow PC + 2 ou 3 Nenhum P b Pula se o bit do registrador de if(P(b)=1) PC \leftarrow PC + 2 ou 3 Nenhum

Comparando Valores

Verifica se a última operação resultou em valor zero no registrador. Se não ocorreu pula para o label indicado.

MOVIMENTAÇÃO DE REGISTROS

Trabalhando com bits

Altera estados de bits dos registradores de I/O (DDRx, PORTx e PINx)

SBIC P, b Pula se o bit do registrador de I/O estiver limpo (0)

Consulta o estado de um bit de um registrador de I/O (DDRx, PORTx e PINx). Pula a próxima linha se 0.