Performance-complexity Trade-off in Large Dimensional Spectral Clustering

Statistics Seminar, RSFAS, Australian National University

Zhenyu Liao

with Romain Couillet@Grenoble-Alpes and Michael Mahoney@UC Berkeley

ICSI and Department of Statistics University of California, Berkeley, USA

March 4, 2021

Outline

Introduction

- Main Results
 - Model and problem setting
 - Uniform sparsification
 - Non-uniform sparsification, quantization, and binarization

Conclusion

Outline

- Introduction
- Main Results
 - Model and problem setting
 - Uniform sparsification
 - Non-uniform sparsification, quantization, and binarization

3 Conclusion

Big Data: number of data n and dimension p both large, thousands or millions

- **Big Data**: number of data n and dimension p both large, thousands or millions
- ▶ ImageNet dataset (http://www.image-net.org/): in average p=0.2 million pixels of in total n=14 million high-resolution images

- **Big Data**: number of data n and dimension p both large, thousands or millions
- ▶ ImageNet dataset (http://www.image-net.org/): in average p = 0.2 million pixels of in total n = 14 million high-resolution images
- ► Computational challenge: time and/or space complexity at least $O(n^2)$, unaffordable for Internet of Things (IoT) low-power devices

- **Big Data**: number of data n and dimension p both large, thousands or millions
- ▶ ImageNet dataset (http://www.image-net.org/): in average p=0.2 million pixels of in total n=14 million high-resolution images
- ► Computational challenge: time and/or space complexity at least $O(n^2)$, unaffordable for Internet of Things (IoT) low-power devices
- ▶ <u>Idea</u>: compress machine learning models (e.g., sketching, quantized or binarized neural networks), with non-trivial performance-complexity trade-off

- **Big Data**: number of data n and dimension p both large, thousands or millions
- ▶ ImageNet dataset (http://www.image-net.org/): in average p=0.2 million pixels of in total n=14 million high-resolution images
- ► Computational challenge: time and/or space complexity at least $O(n^2)$, unaffordable for Internet of Things (IoT) low-power devices
- ► <u>Idea</u>: compress machine learning models (e.g., sketching, quantized or binarized neural networks), with non-trivial performance-complexity trade-off
- Objective: theoretical understanding of performance-complexity trade-off, optimal design, how they depend on the data

- **Big Data**: number of data n and dimension p both large, thousands or millions
- ▶ ImageNet dataset (http://www.image-net.org/): in average p=0.2 million pixels of in total n=14 million high-resolution images
- ► Computational challenge: time and/or space complexity at least $O(n^2)$, unaffordable for Internet of Things (IoT) low-power devices
- ► <u>Idea</u>: compress machine learning models (e.g., sketching, quantized or binarized neural networks), with non-trivial performance-complexity trade-off
- Objective: theoretical understanding of performance-complexity trade-off, optimal design, how they depend on the data
- **Example**: unsupervised (kernel) spectral clustering

Remainder on clustering

► **Clustering**: unsurprised learning method to find possible groups/clusters from the data, with no pre-existing labels

Remainder on clustering

- ▶ Clustering: unsurprised learning method to find possible groups/clusters from the data, with no pre-existing labels
- ▶ 2D example:

Remainder on clustering

- Clustering: unsurprised learning method to find possible groups/clusters from the data, with no pre-existing labels
- ▶ 2D example:

Two-step clustering of n data points based on kernel matrix $\mathbf{K} = \{f(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j=1}^n$:

Two-step clustering of n data points based on kernel matrix $\mathbf{K} = \{f(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j=1}^n$:

Two-step clustering of n data points based on kernel matrix $\mathbf{K} = \{f(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j=1}^n$:

▶ kernel/similarity matrix $\mathbf{K} = \{f(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j=1}^n$: pairwise comparison of n data points

- ▶ kernel/similarity matrix $\mathbf{K} = \{f(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j=1}^n$: pairwise comparison of n data points
- retrieve the top eigenvectors of $\mathbf{K} \in \mathbb{R}^{n \times n}$ with e.g., power method: suffer from an $O(n^2)$ complexity

- ▶ kernel/similarity matrix $\mathbf{K} = \{f(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j=1}^n$: pairwise comparison of n data points
- retrieve the top eigenvectors of $\mathbf{K} \in \mathbb{R}^{n \times n}$ with e.g., power method: suffer from an $O(n^2)$ complexity
- ▶ <u>Idea</u>: sparsifying, quantizing, and even binarizing: gain in both time and space!

- ▶ kernel/similarity matrix $\mathbf{K} = \{f(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j=1}^n$: pairwise comparison of n data points
- retrieve the top eigenvectors of $\mathbf{K} \in \mathbb{R}^{n \times n}$ with e.g., power method: suffer from an $O(n^2)$ complexity
- <u>Idea</u>: sparsifying, quantizing, and even binarizing: gain in both time and space!
- ► **Key object**: eigenspectrum of the "compressed" kernel matrix, in particular, statistics of top eigenvectors!

Outline

- Introduction
- Main Results
 - Model and problem setting
 - Uniform sparsification
 - Non-uniform sparsification, quantization, and binarization

Conclusion

Outline

- Introduction
- Main Results
 - Model and problem setting
 - Uniform sparsification
 - Non-uniform sparsification, quantization, and binarization

3 Conclusion

System model

Data: two-class signal-plus-noise mixture

Let $x_1, ..., x_n \in \mathbb{R}^p$ be independently drawn (non-necessarily uniformly) from:

$$C_1: \mathbf{x}_i \sim \mathcal{N}(-\mu, \mathbf{I}_p), \quad C_2: \mathbf{x}_i \sim \mathcal{N}(+\mu, \mathbf{I}_p).$$
 (1)

11/28

We have $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] = \mathbf{Z} + \mu \mathbf{v}^\mathsf{T}$ for Gaussian $\mathbf{Z} \in \mathbb{R}^{p \times n}$, $\mu \in \mathbb{R}^p$ and $\mathbf{v} \in \{\pm 1\}^n$.

Z. Liao (UC Berkeley) RMT4ML March 4, 2021

¹Vladimir A Marčenko and Leonid Andreevich Pastur. "Distribution of eigenvalues for some sets of random matrices". In: Mathematics of the USSR-Shornik 1.4 (1967), p. 457

²Jinho Baik, Gérard Ben Arous, and Sandrine Péché. "Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices". In: *The Annals of Probability* 33.5 (2005), pp. 1643–1697

System model

Data: two-class signal-plus-noise mixture

Let $x_1, ..., x_n \in \mathbb{R}^p$ be independently drawn (non-necessarily uniformly) from:

$$C_1: \mathbf{x}_i \sim \mathcal{N}(-\mu, \mathbf{I}_p), \quad C_2: \mathbf{x}_i \sim \mathcal{N}(+\mu, \mathbf{I}_p).$$
 (1)

11/28

We have $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] = \mathbf{Z} + \mu \mathbf{v}^\mathsf{T}$ for Gaussian $\mathbf{Z} \in \mathbb{R}^{p \times n}$, $\mu \in \mathbb{R}^p$ and $\mathbf{v} \in \{\pm 1\}^n$.

Large dimensional asymptotics

As $n, p \to \infty$ with $p/n \to c \in (0, \infty)$ and signal-to-noise ratio (SNR) $\|\mu\|^2 \to \rho \ge 0$.

Z.Liao (UC Berkeley) RMT4ML March 4, 2021

¹Vladimir A Marčenko and Leonid Andreevich Pastur. "Distribution of eigenvalues for some sets of random matrices". In: Mathematics of the USSR-Shornik 1.4 (1967), p. 457

²Jinho Baik, Gérard Ben Arous, and Sandrine Péché. "Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices". In: *The Annals of Probability* 33.5 (2005), pp. 1643–1697

System model

Data: two-class signal-plus-noise mixture

Let $x_1, ..., x_n \in \mathbb{R}^p$ be independently drawn (non-necessarily uniformly) from:

$$C_1: \mathbf{x}_i \sim \mathcal{N}(-\mu, \mathbf{I}_p), \quad C_2: \mathbf{x}_i \sim \mathcal{N}(+\mu, \mathbf{I}_p).$$
 (1)

11/28

We have $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] = \mathbf{Z} + \mu \mathbf{v}^\mathsf{T}$ for Gaussian $\mathbf{Z} \in \mathbb{R}^{p \times n}$, $\mu \in \mathbb{R}^p$ and $\mathbf{v} \in \{\pm 1\}^n$.

Large dimensional asymptotics

As $n, p \to \infty$ with $p/n \to c \in (0, \infty)$ and signal-to-noise ratio (SNR) $\|\mu\|^2 \to \rho \ge 0$.

Previous work:

ightharpoonup Gram (kernel) matrix X^TX , extensively studied in random matrix theory

Z. Liao (UC Berkeley) RMT4ML March 4, 2021

¹Vladimir A Marčenko and Leonid Andreevich Pastur. "Distribution of eigenvalues for some sets of random matrices". In: Mathematics of the USSR-Shornik 1.4 (1967), p. 457

²Jinho Baik, Gérard Ben Arous, and Sandrine Péché. "Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices". In: *The Annals of Probability* 33.5 (2005), pp. 1643–1697

Data: two-class signal-plus-noise mixture

Let $x_1, ..., x_n \in \mathbb{R}^p$ be independently drawn (non-necessarily uniformly) from:

$$C_1: \mathbf{x}_i \sim \mathcal{N}(-\mu, \mathbf{I}_p), \quad C_2: \mathbf{x}_i \sim \mathcal{N}(+\mu, \mathbf{I}_p).$$
 (1)

11/28

We have $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] = \mathbf{Z} + \mu \mathbf{v}^\mathsf{T}$ for Gaussian $\mathbf{Z} \in \mathbb{R}^{p \times n}$, $\mu \in \mathbb{R}^p$ and $\mathbf{v} \in \{\pm 1\}^n$.

Large dimensional asymptotics

As $n, p \to \infty$ with $p/n \to c \in (0, \infty)$ and signal-to-noise ratio (SNR) $\|\mu\|^2 \to \rho \ge 0$.

Previous work:

- ightharpoonup Gram (kernel) matrix X^TX , extensively studied in random matrix theory
- (limiting) eigenvalue distribution: the Marčenko-Pastur law [MP67]

¹Vladimir A Marčenko and Leonid Andreevich Pastur. "Distribution of eigenvalues for some sets of random matrices". In: *Mathematics of the USSR-Sbornik* 1.4 (1967), p. 457

²Jinho Baik, Gérard Ben Arous, and Sandrine Péché. "Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices". In: *The Annals of Probability* 33.5 (2005), pp. 1643–1697

Data: two-class signal-plus-noise mixture

covariance matrices". In: The Annals of Probability 33.5 (2005), pp. 1643-1697

Let $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^p$ be independently drawn (non-necessarily uniformly) from:

$$C_1: \mathbf{x}_i \sim \mathcal{N}(-\mu, \mathbf{I}_p), \quad C_2: \mathbf{x}_i \sim \mathcal{N}(+\mu, \mathbf{I}_p).$$
 (1)

11/28

We have $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] = \mathbf{Z} + \mu \mathbf{v}^\mathsf{T}$ for Gaussian $\mathbf{Z} \in \mathbb{R}^{p \times n}$, $\mu \in \mathbb{R}^p$ and $\mathbf{v} \in \{\pm 1\}^n$.

Large dimensional asymptotics

As $n, p \to \infty$ with $p/n \to c \in (0, \infty)$ and signal-to-noise ratio (SNR) $\|\mu\|^2 \to \rho \ge 0$.

Previous work:

- ightharpoonup Gram (kernel) matrix X^TX , extensively studied in random matrix theory
- (limiting) eigenvalue distribution: the Marčenko-Pastur law [MP67]
- spiked model and phase transition of top eigenvalue-eigenvector [BBP05]

¹Vladimir A Marčenko and Leonid Andreevich Pastur. "Distribution of eigenvalues for some sets of random matrices". In: *Mathematics of the USSR-Sbornik* 1.4 (1967), p. 457

athematics of the USSR-Sbornik 1.4 (1967), p. 457

Linho Baik, Gérard Ben Arous, and Sandrine Péché. "Phase transition of the largest eigenvalue for nonnull complex sample

Previous work

▶ for $\|\mu\| = 0$, as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, eigenvalue distribution of $\mathbf{X}^\mathsf{T}\mathbf{X}/p$ converges to the Marčenko–Pastur law

$$\mu(dx) = (1 - c)^{+} \delta(x) + \frac{1}{2\pi x} \sqrt{(x - E_{-})^{+} (E_{+} - x)^{+}} dx$$

where $E_{-} = (1 - 1/\sqrt{c})^2$, $E_{+} = (1 + 1/\sqrt{c})^2$ and $(x)^{+} \equiv \max(x, 0)$.

Previous work

▶ for $\|\mu\| = 0$, as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, eigenvalue distribution of $\mathbf{X}^\mathsf{T}\mathbf{X}/p$ converges to the Marčenko–Pastur law

$$\mu(dx) = (1 - c)^{+} \delta(x) + \frac{1}{2\pi x} \sqrt{(x - \mathbf{E}_{-})^{+} (\mathbf{E}_{+} - x)^{+}} dx$$

- where $E_{-} = (1 1/\sqrt{c})^2$, $E_{+} = (1 + 1/\sqrt{c})^2$ and $(x)^{+} \equiv \max(x, 0)$.
- for $\|\mu\| > 0$, depending on SNR $\rho = \lim \|\mu\|^2$, one *isolated* eigenvalue may "jump" out of the Marčenko–Pastur bulk, with associated eigenvector aligned to \mathbf{v} !

Figure: Eigenvalues of $\mathbf{X}^T\mathbf{X}/p$ versus the Marčenko-Pastur law, p=512, $n=1\,024$, with $\rho=0$ (left) and $\rho=2$ (right).

Previous work

▶ for $\|\mu\| = 0$, as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, eigenvalue distribution of $\mathbf{X}^\mathsf{T}\mathbf{X}/p$ converges to the Marčenko–Pastur law

$$\mu(dx) = (1-c)^+ \delta(x) + \frac{1}{2\pi x} \sqrt{(x-E_-)^+ (E_+ - x)^+} dx$$

- where $E_{-} = (1 1/\sqrt{c})^2$, $E_{+} = (1 + 1/\sqrt{c})^2$ and $(x)^{+} \equiv \max(x, 0)$.
- for $\|\mu\| > 0$, depending on SNR $\rho = \lim \|\mu\|^2$, one *isolated* eigenvalue may "jump" out of the Marčenko–Pastur bulk, with associated eigenvector aligned to \mathbf{v} !

Figure: Eigenvalues of $\mathbf{X}^T\mathbf{X}/p$ versus the Marčenko-Pastur law, p=512, $n=1\,024$, with $\rho=0$ (left) and $\rho=2$ (right).

Outline

Introduction

- Main Results
 - Model and problem setting
 - Uniform sparsification
 - Non-uniform sparsification, quantization, and binarization

3 Conclusion

Uniform sparsification: method

Objective: "compress" linear Gram matrix $\mathbf{X}^T\mathbf{X} \in \mathbb{R}^{n \times n}$.

Uniform sparsification

Setting uniformly a proportion $1-\varepsilon$ entries to zero with a symmetric Bernoulli mask $\mathbf{B} \in \{0,1\}^{n \times n}$

$$\mathbf{K} = \frac{1}{p} \mathbf{X}^\mathsf{T} \mathbf{X} \odot \mathbf{B}, \quad \mathbf{B}_{ij} \sim \mathrm{Bern}(\boldsymbol{\varepsilon}) \text{ for } 1 \le i < j \le n$$
 (2)

with \odot the (entry-wise) Hadamard product, $[\mathbf{B}]_{ii} = [\mathbf{B}]_{ij}$ and $[\mathbf{B}]_{ii} = 0$.

Uniform sparsification: method

Objective: "compress" linear Gram matrix $X^TX \in \mathbb{R}^{n \times n}$.

Uniform sparsification

Setting uniformly a proportion $1 - \varepsilon$ entries to zero with a symmetric Bernoulli mask $\mathbf{B} \in \{0,1\}^{n \times n}$

$$\mathbf{K} = \frac{1}{p} \mathbf{X}^\mathsf{T} \mathbf{X} \odot \mathbf{B}, \quad \mathbf{B}_{ij} \sim \mathrm{Bern}(\boldsymbol{\varepsilon}) \text{ for } 1 \le i < j \le n$$
 (2)

with \odot the (entry-wise) Hadamard product, $[\mathbf{B}]_{ii} = [\mathbf{B}]_{ij}$ and $[\mathbf{B}]_{ii} = 0$.

 \Rightarrow Clustering performance of **K** via eigenspectrum study: limiting eigenvalue distribution, statistics of the top eigenvalue-eigenvector pair.

Z. Liao (UC Berkeley) RMT4ML March 4, 2021 14 / 28

Uniform sparsification: method

Objective: "compress" linear Gram matrix $\mathbf{X}^T\mathbf{X} \in \mathbb{R}^{n \times n}$.

Uniform sparsification

Setting uniformly a proportion $1 - \varepsilon$ entries to zero with a symmetric Bernoulli mask $\mathbf{B} \in \{0,1\}^{n \times n}$

$$\mathbf{K} = \frac{1}{p} \mathbf{X}^{\mathsf{T}} \mathbf{X} \odot \mathbf{B}, \quad \mathbf{B}_{ij} \sim \mathrm{Bern}(\boldsymbol{\varepsilon}) \text{ for } 1 \le i < j \le n$$
 (2)

with \odot the (entry-wise) Hadamard product, $[\mathbf{B}]_{ii} = [\mathbf{B}]_{ij}$ and $[\mathbf{B}]_{ii} = 0$.

 \Rightarrow Clustering performance of **K** via eigenspectrum study: limiting eigenvalue distribution, statistics of the top eigenvalue-eigenvector pair.

Key object: resolvent matrix $\mathbf{Q}(z) = (\mathbf{K} - z\mathbf{I}_n)^{-1}$ for $z \in \mathbb{C}$ not an eigenvalue of \mathbf{K} .

Uniform sparsification: method

Objective: "compress" linear Gram matrix $X^TX \in \mathbb{R}^{n \times n}$.

Uniform sparsification

Setting uniformly a proportion $1 - \varepsilon$ entries to zero with a symmetric Bernoulli mask $\mathbf{B} \in \{0,1\}^{n \times n}$

$$\mathbf{K} = \frac{1}{p} \mathbf{X}^\mathsf{T} \mathbf{X} \odot \mathbf{B}, \quad \mathbf{B}_{ij} \sim \mathrm{Bern}(\boldsymbol{\varepsilon}) \text{ for } 1 \le i < j \le n$$
 (2)

with \odot the (entry-wise) Hadamard product, $[\mathbf{B}]_{ji} = [\mathbf{B}]_{ij}$ and $[\mathbf{B}]_{ii} = 0$.

 \Rightarrow Clustering performance of **K** via eigenspectrum study: limiting eigenvalue distribution, statistics of the top eigenvalue-eigenvector pair.

<u>Key object</u>: resolvent matrix $\mathbf{Q}(z) = (\mathbf{K} - z\mathbf{I}_n)^{-1}$ for $z \in \mathbb{C}$ not an eigenvalue of \mathbf{K} .

 $ightharpoonup rac{1}{n}$ tr $\mathbf{Q}(z)$ the *Stieltjes transform* of the eigenvalue distribution of **K**

Uniform sparsification: method

Objective: "compress" linear Gram matrix $\mathbf{X}^T\mathbf{X} \in \mathbb{R}^{n \times n}$.

Uniform sparsification

Setting uniformly a proportion $1 - \varepsilon$ entries to zero with a symmetric Bernoulli mask $\mathbf{B} \in \{0,1\}^{n \times n}$

$$\mathbf{K} = \frac{1}{p} \mathbf{X}^\mathsf{T} \mathbf{X} \odot \mathbf{B}, \quad \mathbf{B}_{ij} \sim \mathrm{Bern}(\boldsymbol{\varepsilon}) \text{ for } 1 \le i < j \le n$$
 (2)

with \odot the (entry-wise) Hadamard product, $[\mathbf{B}]_{ji} = [\mathbf{B}]_{ij}$ and $[\mathbf{B}]_{ii} = 0$.

 \Rightarrow Clustering performance of **K** via eigenspectrum study: limiting eigenvalue distribution, statistics of the top eigenvalue-eigenvector pair.

Key object: resolvent matrix $\mathbf{Q}(z) = (\mathbf{K} - z\mathbf{I}_n)^{-1}$ for $z \in \mathbb{C}$ not an eigenvalue of \mathbf{K} .

- $ightharpoonup rac{1}{n}$ tr $\mathbf{Q}(z)$ the *Stieltjes transform* of the eigenvalue distribution of \mathbf{K}
- characterize the phase transition (of isolated eigenvalue-eigenvector) beyond which spectral clustering becomes theoretically possible

Z. Liao (UC Berkeley) RMT4ML March 4, 2021 14 / 28

Uniform sparsification: method

Objective: "compress" linear Gram matrix $\mathbf{X}^T\mathbf{X} \in \mathbb{R}^{n \times n}$.

Uniform sparsification

Setting uniformly a proportion $1 - \varepsilon$ entries to zero with a symmetric Bernoulli mask $\mathbf{B} \in \{0,1\}^{n \times n}$

$$\mathbf{K} = \frac{1}{p} \mathbf{X}^\mathsf{T} \mathbf{X} \odot \mathbf{B}, \quad \mathbf{B}_{ij} \sim \mathrm{Bern}(\boldsymbol{\varepsilon}) \text{ for } 1 \le i < j \le n$$
 (2)

with \odot the (entry-wise) Hadamard product, $[\mathbf{B}]_{ji} = [\mathbf{B}]_{ij}$ and $[\mathbf{B}]_{ii} = 0$.

 \Rightarrow Clustering performance of **K** via eigenspectrum study: limiting eigenvalue distribution, statistics of the top eigenvalue-eigenvector pair.

Key object: resolvent matrix $\mathbf{Q}(z) = (\mathbf{K} - z\mathbf{I}_n)^{-1}$ for $z \in \mathbb{C}$ not an eigenvalue of \mathbf{K} .

- $ightharpoonup rac{1}{n}$ tr $\mathbf{Q}(z)$ the *Stieltjes transform* of the eigenvalue distribution of **K**
- characterize the phase transition (of isolated eigenvalue-eigenvector) beyond which spectral clustering becomes theoretically possible
- ▶ for $(\hat{\lambda}, \hat{\mathbf{v}})$ an eigenpair of **K** and label vector $\mathbf{v} \in \mathbb{R}^n$, by Cauchy's integral formula, the "angle": $|\hat{\mathbf{v}}^\mathsf{T}\mathbf{v}|^2 = -\frac{1}{2\pi i}\oint_{\Gamma(\hat{\lambda})}\mathbf{v}^\mathsf{T}\mathbf{Q}(z)\mathbf{v}\,dz$, for $\Gamma(\hat{\lambda})$ positively circling $\hat{\lambda}$

Uniform sparsification: performance analysis

Theorem (Limiting spectral measure)

As $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, the empirical spectral measure $\omega_{\mathbf{K}} = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(\mathbf{K})}$ of \mathbf{K} converges to a deterministic limit ω , uniquely defined through its Stieltjes transform $m(z) = \int (t-z)^{-1} \omega(dt)$ solution to

$$z = -\frac{1}{m(z)} - \frac{\varepsilon}{c} m(z) + \frac{\varepsilon^3 m^2(z)}{c(c + \varepsilon m(z))}.$$
 (3)

Uniform sparsification: performance analysis

Theorem (Limiting spectral measure)

As $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, the empirical spectral measure $\omega_{\mathbf{K}} = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(\mathbf{K})}$ of \mathbf{K} converges to a deterministic limit ω , uniquely defined through its Stieltjes transform $m(z) = \int (t-z)^{-1} \omega(dt)$ solution to

$$z = -\frac{1}{m(z)} - \frac{\varepsilon}{c} m(z) + \frac{\varepsilon^3 m^2(z)}{c(c + \varepsilon m(z))}.$$
 (3)

Theorem (Isolated eigenpair and a phase transition)

Define $F(x) = x^4 + 2x^3 + \left(1 - \frac{c}{\epsilon}\right)x^2 - 2cx - c$, $G(x) = \frac{\epsilon}{c}(1+x) + \frac{1}{1+x} + \frac{\epsilon}{x(1+x)}$ and let γ be the largest real solution to $F(\gamma) = 0$. Then, the largest eigenpair $(\hat{\lambda}, \hat{\mathbf{v}})$ of \mathbf{K} satisfies

$$\hat{\lambda} \to \lambda = \begin{cases} G(\rho), & \rho > \gamma \\ G(\gamma), & \rho \le \gamma \end{cases}, \quad \frac{1}{n} |\hat{\mathbf{v}}^{\mathsf{T}} \mathbf{v}|^2 \to \alpha = \begin{cases} \frac{F(\rho)}{\rho(1+\rho)^3}, & \rho > \gamma \\ 0, & \rho \le \gamma \end{cases}$$
(4)

as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, for SNR $\rho = \lim \|\mu\|^2$.

Uniform sparsification: implications

Uniform sparsification: implications

Remark: becomes the Marčenko–Pastur law (of X^TX/p) as $\varepsilon \to 1$ and semicircle law as $\varepsilon \to 0$, a "mixed" of behavior in the sense of *free additive convolution* [Voi86].

Z. Liao (UC Berkeley) RMT4ML March 4, 2021

16 / 28

¹Dan Voiculescu. "Addition of certain non-commuting random variables". In: *Journal of Functional Analysis* 66.3 (1986), pp. 323–346

Uniform sparsification: implications

Remark: becomes the Marčenko–Pastur law (of X^TX/p) as $\varepsilon \to 1$ and semicircle law as $\varepsilon \to 0$, a "mixed" of behavior in the sense of *free additive convolution* [Voi86].

¹Dan Voiculescu. "Addition of certain non-commuting random variables". In: Journal of Functional Analysis 66.3 (1986), pp. 323–346

Outline

- Introduction
- 2 Main Results
 - Model and problem setting
 - Uniform sparsification
 - Non-uniform sparsification, quantization, and binarization
- 3 Conclusion

Intuition: can we do better by treating the entries in a non-uniform manner?

Intuition: can we do better by treating the entries in a non-uniform manner?

Non-uniform compression

Entry-wise *nonlinear* transformation of X^TX :

$$\mathbf{K} = \left\{ f(\mathbf{x}_i^\mathsf{T} \mathbf{x}_j / \sqrt{p}) / \sqrt{p} \right\}_{i,j=1}^n \tag{5}$$

with

Intuition: can we do better by treating the entries in a non-uniform manner?

Non-uniform compression

Entry-wise *nonlinear* transformation of X^TX :

$$\mathbf{K} = \left\{ f(\mathbf{x}_i^\mathsf{T} \mathbf{x}_j / \sqrt{p}) / \sqrt{p} \right\}_{i,j=1}^n \tag{5}$$

with

Sparsification:
$$f_1(t) = t \cdot 1_{|t| > \sqrt{2}s}$$

Intuition: can we do better by treating the entries in a non-uniform manner?

Non-uniform compression

Entry-wise *nonlinear* transformation of X^TX :

$$\mathbf{K} = \left\{ f(\mathbf{x}_i^\mathsf{T} \mathbf{x}_j / \sqrt{p}) / \sqrt{p} \right\}_{i,j=1}^n$$
 (5)

with

Sparsification: $f_1(t) = t \cdot 1_{|t| > \sqrt{2}s}$

 $f_2(t) = 2^{2-M} (|t \cdot 2^{M-2}/\sqrt{2}s| + 1/2) \cdot 1_{|t| < \sqrt{2}s} + \text{sign}(t) \cdot 1_{|t| > \sqrt{2}s}$ Quantization:

RMT4MI.

18 / 28

Intuition: can we do better by treating the entries in a non-uniform manner?

Non-uniform compression

Entry-wise *nonlinear* transformation of X^TX :

$$\mathbf{K} = \left\{ f(\mathbf{x}_i^\mathsf{T} \mathbf{x}_j / \sqrt{p}) / \sqrt{p} \right\}_{i,j=1}^n \tag{5}$$

with

Sparsification:
$$f_1(t) = t \cdot 1_{|t| > \sqrt{2}s}$$

Quantization:
$$f_2(t) = 2^{2-M} (\lfloor t \cdot 2^{M-2} / \sqrt{2}s \rfloor + 1/2) \cdot 1_{|t| \le \sqrt{2}s} + \text{sign}(t) \cdot 1_{|t| > \sqrt{2}s}$$

Binarization:
$$f_3(t) = \operatorname{sign}(t) \cdot 1_{|t| > \sqrt{2}s}$$

RMT4MI.

Intuition: can we do better by treating the entries in a non-uniform manner?

Non-uniform compression

Entry-wise *nonlinear* transformation of X^TX :

$$\mathbf{K} = \left\{ f(\mathbf{x}_i^\mathsf{T} \mathbf{x}_j / \sqrt{p}) / \sqrt{p} \right\}_{i,j=1}^n \tag{5}$$

with

Sparsification:
$$f_1(t) = t \cdot 1_{|t| > \sqrt{2}s}$$

Quantization:
$$f_2(t) = 2^{2-M} (\lfloor t \cdot 2^{M-2} / \sqrt{2}s \rfloor + 1/2) \cdot 1_{|t| \le \sqrt{2}s} + \text{sign}(t) \cdot 1_{|t| > \sqrt{2}s}$$

Binarization:
$$f_3(t) = \operatorname{sign}(t) \cdot 1_{|t| > \sqrt{2}s}$$

Tuning parameters:

RMT4ML March 4, 2021

18 / 28

Intuition: can we do better by treating the entries in a non-uniform manner?

Non-uniform compression

Entry-wise *nonlinear* transformation of X^TX :

$$\mathbf{K} = \left\{ f(\mathbf{x}_i^\mathsf{T} \mathbf{x}_j / \sqrt{p}) / \sqrt{p} \right\}_{i,j=1}^n \tag{5}$$

with

Sparsification:
$$f_1(t) = t \cdot 1_{|t| > \sqrt{2}s}$$

Quantization:
$$f_2(t) = 2^{2-M} (\lfloor t \cdot 2^{M-2} / \sqrt{2}s \rfloor + 1/2) \cdot 1_{|t| \le \sqrt{2}s} + \text{sign}(t) \cdot 1_{|t| > \sqrt{2}s}$$

Binarization:
$$f_3(t) = \operatorname{sign}(t) \cdot 1_{|t| > \sqrt{2}s}$$

Tuning parameters:

truncation threshold s > 0

Z. Liao (UC Berkeley)

RMT4ML

March 4, 2021

Intuition: can we do better by treating the entries in a non-uniform manner?

Non-uniform compression

Entry-wise *nonlinear* transformation of X^TX :

$$\mathbf{K} = \left\{ f(\mathbf{x}_i^\mathsf{T} \mathbf{x}_j / \sqrt{p}) / \sqrt{p} \right\}_{i,j=1}^n \tag{5}$$

with

Sparsification:
$$f_1(t) = t \cdot 1_{|t| > \sqrt{2}s}$$

Quantization:
$$f_2(t) = 2^{2-M} (\lfloor t \cdot 2^{M-2} / \sqrt{2}s \rfloor + 1/2) \cdot 1_{|t| \le \sqrt{2}s} + \text{sign}(t) \cdot 1_{|t| > \sqrt{2}s}$$

Binarization:
$$f_3(t) = \operatorname{sign}(t) \cdot 1_{|t| > \sqrt{2}s}$$

Tuning parameters:

- ightharpoonup truncation threshold s > 0
- number of information bits M

18 / 28

March 4, 2021

Z. Liao (UC Berkeley) RMT4ML

Object of interest

Entry-wise *nonlinear* transformation of X^TX :

$$\mathbf{K} = \left\{ f(\mathbf{x}_i^\mathsf{T} \mathbf{x}_j / \sqrt{p}) / \sqrt{p} \right\}_{i,j=1}^n \tag{6}$$

Object of interest

Entry-wise *nonlinear* transformation of X^TX :

$$\mathbf{K} = \left\{ f(\mathbf{x}_i^\mathsf{T} \mathbf{x}_j / \sqrt{p}) / \sqrt{p} \right\}_{i,j=1}^n \tag{6}$$

Recall $\mathbf{x}_i \sim \mathcal{N}(\pm \boldsymbol{\mu}, \mathbf{I}_p)$ with $\|\boldsymbol{\mu}\| = O(1)$, so $\mathbf{x}_i^\mathsf{T} \mathbf{x}_i / \sqrt{p} \to \mathcal{N}(0, 1)$ in law as $p \to \infty$.

Object of interest

Entry-wise *nonlinear* transformation of X^TX :

$$\mathbf{K} = \left\{ f(\mathbf{x}_i^\mathsf{T} \mathbf{x}_j / \sqrt{p}) / \sqrt{p} \right\}_{i,j=1}^n \tag{6}$$

Recall $\mathbf{x}_i \sim \mathcal{N}(\pm \boldsymbol{\mu}, \mathbf{I}_p)$ with $\|\boldsymbol{\mu}\| = O(1)$, so $\mathbf{x}_i^\mathsf{T} \mathbf{x}_i / \sqrt{p} \to \mathcal{N}(0, 1)$ in law as $p \to \infty$.

$$\sqrt{p}[\mathbf{K}]_{ij} \simeq f(\mathcal{N}(0,1)).$$

Object of interest

Entry-wise *nonlinear* transformation of X^TX :

$$\mathbf{K} = \left\{ f(\mathbf{x}_i^\mathsf{T} \mathbf{x}_j / \sqrt{p}) / \sqrt{p} \right\}_{i,j=1}^n \tag{6}$$

Recall $\mathbf{x}_i \sim \mathcal{N}(\pm \mu, \mathbf{I}_p)$ with $\|\mu\| = O(1)$, so $\mathbf{x}_i^\mathsf{T} \mathbf{x}_j / \sqrt{p} \to \mathcal{N}(0, 1)$ in law as $p \to \infty$.

$$\sqrt{p}[\mathbf{K}]_{ij} \simeq f(\mathcal{N}(0,1)).$$

Notations

For each f and $\xi \sim \mathcal{N}(0,1)$, define the (generalized) moments

$$a_0 = \mathbb{E}[f(\xi)] = 0, \quad a_1 = \mathbb{E}[\xi f(\xi)], \quad \sqrt{2}a_2 = \mathbb{E}[\xi^2 f(\xi)], \quad \nu = \mathbb{E}[f^2(\xi)] \geq a_1^2 + a_2^2. \quad (7)$$

Z. Liao (UC Berkeley) RMT4ML March 4, 2021 19 / 28

"Compressed" spectral clustering: performance analysis

For each f and $\xi \sim \mathcal{N}(0,1)$, define the (generalized) moments

$$a_0 = \mathbb{E}[f(\xi)] = 0$$
, $a_1 = \mathbb{E}[\xi f(\xi)]$, $\sqrt{2}a_2 = \mathbb{E}[\xi^2 f(\xi)]$, $\nu = \mathbb{E}[f^2(\xi)] \ge a_1^2 + a_2^2$. (8)

"Compressed" spectral clustering: performance analysis

For each f and $\xi \sim \mathcal{N}(0,1)$, define the (generalized) moments

$$a_0 = \mathbb{E}[f(\xi)] = 0, \quad a_1 = \mathbb{E}[\xi f(\xi)], \quad \sqrt{2}a_2 = \mathbb{E}[\xi^2 f(\xi)], \quad \nu = \mathbb{E}[f^2(\xi)] \ge a_1^2 + a_2^2.$$
 (8)

f	a_1	ν
f_1	$\operatorname{erfc}(s) + 2se^{-s^2}/\sqrt{\pi}$	$\operatorname{erfc}(s) + 2se^{-s^2}/\sqrt{\pi}$
f_2	$\sqrt{\frac{2}{\pi}} \cdot 2^{1-M} (1 + e^{-s^2} + \sum_{k=1}^{2^{M-2}-1} 2e^{-\frac{k^2 s^2}{4^{M-2}}})$	$1 - \frac{2^{M} - 1}{4^{M-1}}\operatorname{erf}(s) - \sum_{k=1}^{2^{M-2} - 1} \frac{k\operatorname{erf}(ks \cdot 2^{2-M})}{2^{2M-5}}$
f_3	$e^{-s^2}\sqrt{2/\pi}$	$\operatorname{erfc}(s)$

with $\mathbf{a_2} = \mathbf{0}$, $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$, $\operatorname{erfc}(x) = 1 - \operatorname{erf}(x)$ error/comple. error function.

Z. Liao (UC Berkeley) RMT4ML March 4, 2021 20 / 28

"Compressed" spectral clustering: performance analysis

For each f and $\xi \sim \mathcal{N}(0,1)$, define the (generalized) moments

$$a_0 = \mathbb{E}[f(\xi)] = 0$$
, $a_1 = \mathbb{E}[\xi f(\xi)]$, $\sqrt{2}a_2 = \mathbb{E}[\xi^2 f(\xi)]$, $\nu = \mathbb{E}[f^2(\xi)] \ge a_1^2 + a_2^2$. (8)

with $\mathbf{a_2} = \mathbf{0}$, $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$, $\operatorname{erfc}(x) = 1 - \operatorname{erf}(x)$ error/comple. error function.

Theorem (Limiting spectral measure)

As $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, the empirical spectral measure $\omega_{\mathbf{K}} = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i(\mathbf{K})}$ of \mathbf{K} converges to a deterministic limit ω , uniquely defined through its Stieltjes transform $m(z) = \int (t-z)^{-1} \omega(dt)$ solution to

$$z = -\frac{1}{m(z)} - \frac{v - a_1^2}{c} m(z) - \frac{a_1^2 m(z)}{c + a_1 m(z)}.$$
 (9)

20 / 28

Z. Liao (UC Berkeley) RMT4ML March 4, 2021

"Compressed" spectral clustering: attention!

Theorem (Informative spike and a phase transition)

For
$$a_1 > 0$$
 and $a_2 = 0$, similarly define $F(x) = x^4 + 2x^3 + \left(1 - \frac{cv}{a_1^2}\right)x^2 - 2cx - c$ and $G(x) = \frac{a_1}{c}(1+x) + \frac{a_1}{x} + \frac{v-a_1^2}{a_1}\frac{1}{1+x}$ and let γ be the largest real solution to $F(\gamma) = 0$. Then,

$$\hat{\lambda} \to \lambda = \begin{cases} G(\rho), & \rho > \gamma \\ G(\gamma), & \rho \le \gamma \end{cases}, \quad \frac{1}{n} |\hat{\mathbf{v}}^\mathsf{T} \mathbf{v}|^2 \to \alpha = \begin{cases} \frac{F(\rho)}{\rho(1+\rho)^3}, & \rho > \gamma \\ 0, & \rho \le \gamma \end{cases}$$
(10)

as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, for SNR $\rho = \lim \|\mu\|^2$.

Z. Liao (UC Berkeley) RMT4ML March 4, 2021 21 / 28

"Compressed" spectral clustering: attention!

Theorem (Informative spike and a phase transition)

For $a_1>0$ and $a_2=0$, similarly define $F(x)=x^4+2x^3+\left(1-\frac{cv}{a_1^2}\right)x^2-2cx-c$ and $G(x)=\frac{a_1}{c}(1+x)+\frac{a_1}{x}+\frac{v-a_1^2}{a_1}\frac{1}{1+x}$ and let γ be the largest real solution to $F(\gamma)=0$. Then,

$$\hat{\lambda} \to \lambda = \begin{cases} G(\rho), & \rho > \gamma \\ G(\gamma), & \rho \le \gamma \end{cases}, \quad \frac{1}{n} |\hat{\mathbf{v}}^{\mathsf{T}} \mathbf{v}|^2 \to \alpha = \begin{cases} \frac{F(\rho)}{\rho(1+\rho)^3}, & \rho > \gamma \\ 0, & \rho \le \gamma \end{cases}$$
(10)

as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, for SNR $\rho = \lim \|\mu\|^2$.

Remark (Spurious non-informative spikes)

If $a_2 \neq 0$, then there may be *up to two* **non-informative** eigenvalues (with eigenvectors containing only random noise) on the *left or right* of the main bulk.

Z. Liao (UC Berkeley) RMT4ML March 4, 2021 21 / 28

"Compressed" spectral clustering: attention!

Theorem (Informative spike and a phase transition)

For $a_1>0$ and $a_2=0$, similarly define $F(x)=x^4+2x^3+\left(1-\frac{cv}{a_1^2}\right)x^2-2cx-c$ and $G(x)=\frac{a_1}{c}(1+x)+\frac{a_1}{x}+\frac{v-a_1^2}{a_1}\frac{1}{1+x}$ and let γ be the largest real solution to $F(\gamma)=0$. Then,

$$\hat{\lambda} \to \lambda = \begin{cases} G(\rho), & \rho > \gamma \\ G(\gamma), & \rho \le \gamma \end{cases}, \quad \frac{1}{n} |\hat{\mathbf{v}}^\mathsf{T} \mathbf{v}|^2 \to \alpha = \begin{cases} \frac{F(\rho)}{\rho(1+\rho)^3}, & \rho > \gamma \\ 0, & \rho \le \gamma \end{cases}$$
(10)

as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, for SNR $\rho = \lim \|\mu\|^2$.

Remark (Spurious non-informative spikes)

If $a_2 \neq 0$, then there may be *up to two* **non-informative** eigenvalues (with eigenvectors containing only random noise) on the *left or right* of the main bulk.

Z. Liao (UC Berkeley) RMT4ML March 4, 2021 21 / 28

"Compressed" spectral clustering: practical implications

Corollary (Performance of spectral clustering)

Let $a_1 > 0$, $a_2 = 0$, and let $\hat{C}_i = \text{sign}([\hat{\mathbf{v}}]_i)$ be the estimate of the underlying class C_i of the datum \mathbf{x}_i , with the convention $\hat{\mathbf{v}}^T\mathbf{v} \geq 0$, for $\hat{\mathbf{v}}$ the top eigenvector of \mathbf{K} . Then, the misclassification rate satisfies $\frac{1}{n}\sum_{i=1}^n \delta_{\hat{C}_i \neq C_i} \to \frac{1}{2}\operatorname{erfc}(\sqrt{\alpha/(2-2\alpha)})$, as $n, p \to \infty$, for α the limit of the eigenvector alignment $\frac{1}{n}|\hat{\mathbf{v}}^T\mathbf{v}|^2$.

"Compressed" spectral clustering: practical implications

Corollary (Performance of spectral clustering)

Let $a_1 > 0$, $a_2 = 0$, and let $\hat{C}_i = sign([\hat{\mathbf{v}}]_i)$ be the estimate of the underlying class C_i of the datum \mathbf{x}_i , with the convention $\hat{\mathbf{v}}^T\mathbf{v} \geq 0$, for $\hat{\mathbf{v}}$ the top eigenvector of \mathbf{K} . Then, the misclassification rate satisfies $\frac{1}{n}\sum_{i=1}^n \delta_{\mathcal{C}_i \neq \mathcal{C}_i} \to \frac{1}{2}\operatorname{erfc}(\sqrt{\alpha/(2-2\alpha)})$, as $n,p \to \infty$, for α the limit of the eigenvector alignment $\frac{1}{n}|\hat{\mathbf{v}}^T\mathbf{v}|^2$.

"Compressed" spectral clustering: practical implications

Corollary (Performance of spectral clustering)

Let $a_1 > 0$, $a_2 = 0$, and let $\hat{C}_i = sign([\hat{\mathbf{v}}]_i)$ be the estimate of the underlying class C_i of the datum \mathbf{x}_i , with the convention $\hat{\mathbf{v}}^T\mathbf{v} \geq 0$, for $\hat{\mathbf{v}}$ the top eigenvector of \mathbf{K} . Then, the misclassification rate satisfies $\frac{1}{n}\sum_{i=1}^n \delta_{\mathcal{C}_i \neq \mathcal{C}_i} \to \frac{1}{2} \operatorname{erfc}(\sqrt{\alpha/(2-2\alpha)})$, as $n, p \to \infty$, for α the limit of the eigenvector alignment $\frac{1}{n}|\hat{\mathbf{v}}^T\mathbf{v}|^2$.

Remark (Optimality of linear f(t) = t)

Both phase transition point γ and misclassification rate grow with ν/a_1^2 , the linear f(t) = t with minimal $\nu/a_1^2 = 1$ is *optimal* in: (i) *smallest* SNR ρ or *largest* ratio p/n to observe a spike, and (ii) upon existence, reaching *lowest* classification error rate.

Z. Liao (UC Berkeley) RMT4ML March 4, 2021 2

Uniform versus non-uniform sparsification

Comparison between uniform (Bernoulli) sparsification and "selective" non-uniform sparsification $f_1(t) = t \cdot 1_{|t| > \sqrt{2}s}$. Same performance with different level of sparsity:

$$\varepsilon_{\text{unif}} = \text{erfc}(s) + 2se^{-s^2} / \sqrt{\pi} > \text{erfc}(s) = \varepsilon_{\text{selec}}$$
 (11)

Uniform versus non-uniform sparsification

Comparison between uniform (Bernoulli) sparsification and "selective" non-uniform sparsification $f_1(t) = t \cdot 1_{|t| > \sqrt{2}s}$. Same performance with different level of sparsity:

$$\varepsilon_{\text{unif}} = \text{erfc}(s) + 2se^{-s^2} / \sqrt{\pi} > \text{erfc}(s) = \varepsilon_{\text{selec}}$$
 (11)

Figure: (Left) Proportion of non-zero entries with uniform versus selective sparsification f_1 and their ratio, as a function of the truncation threshold s. (Right) Comparison of 1%, 10% error and phase transition (i.e., 50% error) curves between subsampling (green), uniform (blue) and selective sparsification f_1 (red), as a function of sparsity level ε and SNR ρ, for c = 2.

Tuning parameters:

- ightharpoonup truncation threshold s > 0
- number of information bits M

Performance depends on f only via v/a_1^2

Tuning parameters:

- ightharpoonup truncation threshold s > 0
- number of information bits M

Tuning parameters:

- ightharpoonup truncation threshold s > 0
- number of information bits M

Performance depends on f only via $\nu/a_1^2 \Rightarrow$ Convex in s for quantized f_2 and binary f_3 !

Tuning parameters:

- ightharpoonup truncation threshold s > 0
- number of information bits M

Performance depends on f only via $v/a_1^2 \Rightarrow$ Convex in s for quantized f_2 and binary f_3 !

Figure: Clustering performance (**left**, a zoom-in in **middle**) and storage size (MB) (**right**) of f_1 (**blue**), f_2 with M = 2 (green), f_3 (**red**), and linear f(t) = t (**black**), versus the truncation threshold s, for SNR $\rho = 2$, c = 1/2 and $n = 10^3$, with 64 bits per entry for non-quantized matrices.

Figure: Clustering performance (**left** and **middle**), proportion of nonzero entries and computational time of the top eigenvector for f_3 (**right**), on the MNIST dataset: digits (0,1) (**left**) and (5,6) (**middle** and **right**) with $n=2\,048$ and performance of the linear function in **black**.

Figure: Clustering performance (**left** and **middle**), proportion of nonzero entries, and computational time of the top eigenvector (**right**, in markers) of sparse f_1 and quantized f_2 with M = 2, on the MNIST dataset.

Figure: Clustering performance of sparse f_1 , quantized f_2 (with M=2) and binary f_3 as a function of the truncation threshold s on GoogLeNet features of the ImageNet datasets: (left) class "pizza" versus "daisy" and (right) class "hamburger" versus "coffee", for $n=1\,024$ and performance of the linear function in black. Results averaged over 10 runs.

Outline

Introduction

- Main Results
 - Model and problem setting
 - Uniform sparsification
 - Non-uniform sparsification, quantization, and binarization

Conclusion

Take-away message:

► theoretical analysis of **performance-complexity trade-offs** in **computationally efficient** machine learning methods

Take-away message:

- theoretical analysis of performance-complexity trade-offs in computationally efficient machine learning methods
- ▶ non-uniform treatment significantly outperforms uniform (sparsification) scheme

Take-away message:

- theoretical analysis of performance-complexity trade-offs in computationally efficient machine learning methods
- ▶ non-uniform treatment significantly outperforms uniform (sparsification) scheme
- > spurious non-informative eigenvectors may appear if not properly done!

Take-away message:

- theoretical analysis of performance-complexity trade-offs in computationally efficient machine learning methods
- ▶ non-uniform treatment significantly outperforms uniform (sparsification) scheme
- > spurious non-informative eigenvectors may appear if not properly done!

Future work:

Take-away message:

- theoretical analysis of performance-complexity trade-offs in computationally efficient machine learning methods
- ▶ non-uniform treatment significantly outperforms uniform (sparsification) scheme
- spurious non-informative eigenvectors may appear if not properly done!

Future work:

▶ more generic model, e.g., K-class $\mathcal{N}(\mu_a, \mathbf{C}_a)$, $a \in \{1, ..., K\}$

Take-away message:

- theoretical analysis of performance-complexity trade-offs in computationally efficient machine learning methods
- ▶ non-uniform treatment significantly outperforms uniform (sparsification) scheme
- spurious non-informative eigenvectors may appear if not properly done!

Future work:

- ▶ more generic model, e.g., K-class $\mathcal{N}(\mu_a, \mathbf{C}_a)$, $a \in \{1, ..., K\}$
- nonlinear transformation in modern ML, e.g., neural nets

Take-away message:

- theoretical analysis of performance-complexity trade-offs in computationally efficient machine learning methods
- non-uniform treatment significantly outperforms uniform (sparsification) scheme
- spurious non-informative eigenvectors may appear if not properly done!

Future work:

- ▶ more generic model, e.g., K-class $\mathcal{N}(\mu_a, \mathbf{C}_a)$, $a \in \{1, ..., K\}$
- nonlinear transformation in modern ML, e.g., neural nets

References:

- ➤ Tayeb Zarrouk et al. "Performance-complexity trade-off in large dimensional statistics". In: 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE. 2020, pp. 1–6
- ▶ Zhenyu Liao, Romain Couillet, and Michael W Mahoney. "Sparse quantized spectral clustering". In: *arXiv preprint arXiv:2010.01376* (2020). Accepted for publication in the 2021 ICLR Conference as a spotlight paper.

and my homepage https://zhenyu-liao.github.io/ for more information!

Take-away message:

- theoretical analysis of performance-complexity trade-offs in computationally efficient machine learning methods
- ▶ non-uniform treatment significantly outperforms uniform (sparsification) scheme
- spurious non-informative eigenvectors may appear if not properly done!

Future work:

- ▶ more generic model, e.g., K-class $\mathcal{N}(\mu_a, \mathbf{C}_a)$, $a \in \{1, ..., K\}$
- nonlinear transformation in modern ML, e.g., neural nets

References:

- ▶ Tayeb Zarrouk et al. "Performance-complexity trade-off in large dimensional statistics". In: 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE. 2020, pp. 1–6
- ▶ Zhenyu Liao, Romain Couillet, and Michael W Mahoney. "Sparse quantized spectral clustering". In: *arXiv preprint arXiv:2010.01376* (2020). Accepted for publication in the 2021 ICLR Conference as a spotlight paper.

and my homepage https://zhenyu-liao.github.io/ for more information!

Thank you!