Worksheet 7.2	
pH calculations	

NAME: CLASS:

INTRODUCTION

- The pH scale is used as a measure of the acidity or basicity of a solution. The scale is usually applied over the range 0 to 14 (but does extend beyond these values).
- $pH = -log_{10}[H_3O^+]$
- pH is a logarithmic scale, so a difference of one unit on the pH scale means a ten-fold difference in the hydrogen ion concentration.
- For dilute solutions at 25°C, $K_W = [H_3O^+] \times [OH^-] = 1 \times 10^{-14}$
- In acidic solutions $[H_3O^+] > [OH^-]$ hence $[H_3O^+] > 1 \times 10^{-7}$ hence pH < 7 (at 25°C) In neutral solutions $[H_3O^+] = [OH^-]$ hence $[H_3O^+] = 1 \times 10^{-7}$ hence pH = 7 (at 25°C) In basic solutions $[H_3O^+] < [OH^-]$ hence $[H_3O^+] < 1 \times 10^{-7}$ hence pH > 7 (at 25°C)

(Assume all the calculations below are for solutions at 25°C)

No.	Question	Answer
1	Calculate the hydronium ion concentration and the pH of a: a 0.10 mol L ⁻¹ HCl solution b 0.050 mol L ⁻¹ HNO ₃ solution.	
2	Calculate the hydroxide ion concentration and the pH of a: a 0.10 mol L ⁻¹ NaOH solution b 0.50 mol L ⁻¹ Ba(OH) ₂ solution.	
3	Calculate the hydronium ion and hydroxide ion concentrations in: a an ammonia cleaner with a pH of 11.0 b lemon juice with a pH of 2.3.	

Worksheet 7.2	
pH calculations	

4	Sulfuric acid is a strong diprotic acid. One student calculated the expected pH of a 0.10 mol L ⁻¹ H ₂ SO ₄ solution to be 0.7, while another calculated it to be 1.0. The actual pH was found to be between these two values. a Show how a pH of 0.7 was calculated. b Show how a pH of 1.0 was calculated. c Explain why the actual pH was between the two calculated values.	
5	20.0 mL of a solution of pH 3.0 is diluted to produce a total volume of 200.0 mL. What is the pH of the resulting solution?	
6	What volume of water must be added to 50.0 mL of a hydrochloric acid solution of pH 2.0 to increase the pH to 2.5?	
7	List the following 1.0 mol L ⁻¹ solutions in order of decreasing pH. Give reasons for your order. NaOH, H ₂ O, NH ₃ , CH ₃ COOH, H ₂ SO ₄ , HNO ₃	
8	25.0 mL of a solution of pH 5.0 is added to 25.0 mL of a solution of pH 6.0. What is the pH of the resultant solution?	