Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/001863

International filing date: 23 February 2005 (23.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: DE

Number: 10 2004 009 457.8

Filing date: 27 February 2004 (27.02.2004)

Date of receipt at the International Bureau: 08 June 2005 (08.06.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

PCT/EP2005/001863

BUNDESREPUBLIK DEUTSCHLAND

0 3. 06. 2005

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 009 457.8

Anmeldetag:

27. Februar 2004

Anmelder/Inhaber:

BASF Plant Science GmbH, 67065 Ludwigshafen/DE

Bezeichnung:

Verfahren zur Herstellung mehrfach ungesättigter

Fettsäuren in transgenen Organismen

IPC:

C 12 N, C 12 P

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 11. Mai 2005 Deutsches Patent- und Markenamt

Deutsches Patent- und Markenamt
Der Präsident

Im Auftrag

Brosig

Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen

Beschreibung

5

10

20

25

30

35

40

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in einem Organismus, indem Nukleinsäuren in den Organismus eingebracht werden, die für Polypeptide mit Δ -5-Elongaseaktivität codieren. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit weiteren Nukleinsäuresequenzen, die für Polypeptide der Biosynthese des Fettsäure- oder Lipidstoffwechels codieren, in dem Organismus exprimiert werden. Besonders vorteilhaft sind Nukleinsäuresequenzen, die für eine Δ -6-Elongaseaktivität codieren. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung von Ölen und/oder Triacylglyceriden mit einem erhöhten Gehalt an langkettigen mehrfach ungesättigten Fettsäuren.

Die vorliegende Erfindung betrifft außerdem in einer bevorzugten Ausführungsform ein Verfahren zur Herstellung von ungesättigten ω -3 Fettsäuren sowie ein Verfahren zur Herstellung von Triglyceriden mit einem erhöhten Gehalt an ungesättigten Fettsäuren, besonders von ω -3 Fettsäuren mit mehr als drei Doppelbindungen. Die Erfindung betrifft die Herstellung eines transgenen Organismus bevorzugt einer transgenen Pflanze oder eines transgenen Mikroorganismus mit erhöhtem Gehalt an ungesättigten ω -3-Fettsäuren, Ölen oder Lipiden mit ω -3-Doppelbindungen aufgrund der Expression einer ω -3-Desaturase aus Pilzen der Familie Pythiaceae wie der Gattung Phytophtora beispielsweise der Gattung und Art Phytophtora infestans.

Die Erfindung betrifft weiterhin die Nukleinsäuresequenzen, Nukleinsäurekonstrukte, Vektoren und Organismen enthaltend die erfindungsgemäßen Nukleinsäuresequenzen, Vektoren enthaltend die Nukleinsäuresequenzen und/oder die Nukleinsäurekonstrukte sowie transgene Organismen enthalten die vorgenannten Nukleinsäuresequenzen, Nukleinsäurekonstrukte und/oder Vektoren.

Ein weiterer Teil der Erfindung betrifft Öle, Lipide und/oder Fettsäuren hergestellt nach dem erfindungsgemäßen Verfahren und deren Verwendung. Außerdem betrifft die Erfindung ungesättigte Fettsäuren sowie Triglyceride mit einem erhöhten Gehalt an ungesättigten Fettsäuren und deren Verwendung.

Fettsäuren und Triacylglyceride haben eine Vielzahl von Anwendungen in der Lebensmittelindustrie, der Tierernährung, der Kosmetik und im Pharmabereich. Je nachdem, ob es sich um freie gesättigte und ungesättigte Fettsäuren oder um Triacylglyceride mit einem erhöhten Gehalt an gesättigten oder ungesättigten Fettsäuren handelt, sind sie für die unterschiedlichsten Anwendungen geeignet. Mehrfachungesättigte Fettsäuren wie Linol- und Linolensäure sind für Säugetiere essentiell, da sie nicht von diesen selbst hergestellt werden können. Deshalb stellen mehrfach ungesättigte ω -3-Fettsäuren und ω -6-Fettsäuren einen wichtigen Bestandteil der tierischen und menschlichen Nahrung dar.

20

25

30

35

40

2

Mehrfach ungesättigte langkettige ω -3-Fettsäuren wie Eicosapentaensäure (= EPA, C20:5 $^{\Delta5,8,11,14,17}$) oder Docosahexaensäure (= DHA, C22:6 $^{\Delta4,7,10,13,16,19}$) sind wichtige Komponenten der menschlichen Ernährung aufgrund ihrer verschiedenen Rollen in der Gesundheit, die Aspekte wie die Entwicklung des kindlichen Gehirns, der Funktionalität des Auges, der Synthese von Hormonen und anderer Signalstoffe, sowie die Vorbeugung von Herz-Kreislauf-Beschwerden, Krebs und Diabetes umfassen (Poulos, A Lipids 30:1-14, 1995; Horrocks, LA und Yeo YK Pharmacol Res 40:211-225, 1999). Es besteht aus diesem Grund ein Bedarf an der Produktion mehrfach ungesättiger langkettiger Fettsäuren.

Aufgrund der heute üblichen Zusammensetzung der menschlichen Nahrung ist ein Zusatz von mehrfach ungesättigten ω-3-Fettsäuren, die bevorzugt in Fischölen vorkommen, zur Nahrung besonders wichtig. So werden beispielsweise mehrfach ungesättigte Fettsäuren wie Docosahexaensäure (= DHA, C22:6^{Δ4,7,10,13,16,19}) oder Eicosapentaensäure (= EPA, C20:5^{Δ5,8,11,14,17}) Babynahrung zur Erhöhung des Nährwertes zugesetzt. Der ungesättigten Fettsäure DHA wird dabei ein positiver Effekt auf die Entwicklung und Aufrechterhaltung von Gehirnfunktionen zugeschrieben.

Im folgenden werden mehrfach ungesättigte Fettsäuren als PUFA, PUFAs, LCPUFA oder LCPUFAs bezeichnet (**p**oly **u**nsaturated **f**atty **a**cids, **PUFA**, mehrfach ungesättigte Fettsäuren; **l**ong **c**hain **p**oly **u**nsaturated **f**atty **a**cids, **LCPUFA**, langkettige mehrfach ungesättigte Fettsäuren).

Hauptsächlich werden die verschiedenen Fettsäuren und Triglyceride aus Mikroorganismen wie Mortierella oder Schizochytrium oder aus Öl–produzierenden Pflanzen wie Soja, Raps, Algen wie Crypthecodinium oder Phaeodactylum und weiteren gewonnen, wobei sie in der Regel in Form ihrer Triacylglyceride (= Triglyceride = Triglycerole) anfallen. Sie können aber auch aus Tieren wie z.B. Fischen gewonnen werden. Die freien Fettsäuren werden vorteilhaft durch Verseifung hergestellt. Sehr langkettige mehrfach ungesättigte Fettsäuren wie DHA, EPA, Arachidonsäure (= ARA, C20:4^{Δ5,8,11,14}), Dihomo-γ-linolensäure (C20:3^{Δ8,11,14}) oder Docosapentaensäure (DPA, C22:5^{Δ7,10,13,16,19}) werden in Ölfruchtpflanzen wie Raps, Soja, Sonnenblume, Färbersaflor nicht synthetisiert. Übliche natürliche Quellen für diese Fettsäuren sind Fische wie Hering, Lachs, Sardine, Goldbarsch, Aal, Karpfen, Forelle, Heilbutt, Makrele, Zander oder Thunfisch oder Algen.

Je nach Anwendungszweck werden Öle mit gesättigten oder ungesättigten Fettsäuren bevorzugt. So werden z.B. in der humanen Ernährung Lipide mit ungesättigten Fettsäuren speziell mehrfach ungesättigten Fettsäuren bevorzugt. Den mehrfach ungesättigten ω -3-Fettsäuren wird dabei ein positiver Effekt auf den Cholesterinspiegel im Blut und damit auf die Möglichkeit der Prävention einer Herzerkrankung zugeschrieben. Durch Zugabe dieser ω -3-Fettsäuren zur Nahrung kann das Risiko einer Herzerkrankung, eines Schlaganfalls oder von Bluthochdruck deutlich verringert werden. Auch entzündliche speziell chronisch entzündliche Prozesse im Rahmen immunologischer Erkrankungen wie rheumatroider Arthritis lassen sich durch ω -3-

10

20

25

30

35

3

Fettsäuren positiv beeinflussen. Sie werden deshalb Lebensmitteln speziell diätischen Lebensmitteln zugegeben oder finden in Medikamenten Anwendung. ω-6-Fettsäuren wie Arachidonsäure haben bei diesen rheumatischen Erkrankungen aufgrund unserer üblichen Nahrungsmittelzusammensetzung eher einen negativen Effekt auf diese Krankheiten.

ω-3- und ω-6-Fettsäuren sind Vorläufer von Gewebshormonen, den sogenannten Eicosanoiden wie den Prostaglandinen, die sich von der Dihomo-γ-linolensäure, der Arachidonsäure und der Eicosapentaensäure ableiten, den Thromoxanen und Leukotrienen, die sich von der Arachidonsäure und der Eicosapentaensäure ableiten. Eicosanoide (sog. PG₂-Serie), die aus ω-6-Fettsäuren gebildet werden fördern in der Regel Entzündungsreaktionen, während Eicosanoide (sog. PG₃-Serie) aus ω-3-Fettsäuren geringe oder keine entzündungsfördernde Wirkung haben.

Aufgrund ihrer positiven Eigenschaften hat es in der Vergangenheit nicht an Ansätzen gefehlt, Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Organismen mit geändertem Gehalt an ungesättigten Fettsäuren verfügbar zu machen. So wird in WO 91/13972 und seinem US-Äquivalent eine Δ -9-Desaturase beschrieben. In WO 93/11245 wird eine Δ -15-Desaturase in WO 94/11516 wird eine Δ-12-Desaturase beansprucht. Weitere Desaturasen werden beispielsweise in EP-A-0 550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP-A-0 794 250, Stukey et al., J. Biol. Chem., 265, 1990: 20144-20149, Wada et al., Nature 347, 1990: 200-203 oder Huang et al., Lipids 34, 1999: 649-659 beschrieben. Die biochemische Charakterisierung der verschiedenen Desaturasen ist jedoch bisher nur unzureichend erfolgt, da die Enzyme als membrangebundene Proteine nur sehr schwer zu isolieren und zu charakterisieren sind (McKeon et al., Methods in Enzymol. 71, 1981: 12141-12147, Wang et al., Plant Physiol. Biochem., 26, 1988: 777-792). In der Regel erfolgt die Charakterisierung membrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Enzymaktivität mittels Edukt- und Produktanalyse untersucht wird. Δ-6-Desaturasen werden in WO 93/06712, US 5,614,393, US5614393, WO 96/21022, WO00/21557 und WO 99/27111 beschrieben und auch die Anwendung zur Produktion in transgenen Organismen beschrieben wie in WO98/46763 WO98/46764, WO9846765. Dabei wird auch die Expression verschiedener Desaturasen wie in WO99/64616 oder WO98/46776 und Bildung polyungesättigter Fettsäuren beschrieben und beansprucht. Bzgl. der Effektivität der Expression von Desaturasen und ihren Einfluss auf die Bildung polyungesättigter Fettsäuren ist anzumerken, dass durch Expression einer einzelnen Desaturase wie bisher beschrieben lediglich geringe Gehalte an ungesättigten Fettsäuren/Lipiden wie z.B. γ-Linolensäure und Stearidonsäure erreicht wurden. Weiterhin wurde in der Regel ein Gemisch aus ω -3- und ω -6-Fettsäuren erhalten.

40 Besonders geeignete Mikroorganismen zur Herstellung von PUFAs sind Mikroorganismen wie Mikroalgen wie Phaeodactylum tricornutum, Porphiridium-Arten, Thraustochytrien-Arten, Schizochytrien-Arten oder Crypthecodinium-Arten, Ciliaten,

40

4

wie Stylonychia oder Colpidium, Pilze, wie Mortierella, Entomophthora oder Mucor und/oder Moosen wie Physcomitrella, Ceratodon und Marchantia (R. Vazhappilly & F. Chen (1998) Botanica Marina 41: 553-558; K. Totani & K. Oba (1987) Lipids 22: 1060-1062; M. Akimoto et al. (1998) Appl. Biochemistry and Biotechnology 73: 269-278). Durch Stammselektion ist eine Anzahl von Mutantenstämmen der entsprechenden 5 Mikroorganismen entwickelt worden, die eine Reihe wünschenswerter Verbindungen, einschließlich PUFAs, produzieren. Die Mutation und Selektion von Stämmen mit verbesserter Produktion eines bestimmten Moleküls wie den mehrfach ungesättigten Fettsäuren ist jedoch ein zeitraubendes und schwieriges Verfahren. Deshalb werden, wenn immer möglich wie oben beschrieben gentechnologische Verfahren bevorzugt. 10 Mit Hilfe der vorgenannten Mikroorganismen lassen sich jedoch nur begrenzte Mengen der gewünschten mehrfach ungesättigten Fettsäuren wie DPA, EPA oder ARA herstellen. Wobei diese in der Regel je nach verwendeten Mikroorganismus als Fettsäuregemische aus beispielsweise EPA, DPA und ARA anfallen.

- Für die Synthese von Arachidonsäure, Eicosapentaensäure (EPA) und Docosahexaensäure (DHA) werden verschiedene Synthesewege diskutiert (Figur. 1). So erfolgt die Produktion von EPA bzw. DHA in marinen Bakterien wie Vibrio sp. oder Shewanella sp. nach dem Polyketid-Weg (Yu, R. et al. Lipids 35:1061-1064, 2000; Takeyama, H. et al. Microbiology 143:2725-2731, 1997).
- Ein alternative Strategie verläuft über die wechselnde Aktivität von Desaturasen und Elongasen (Zank, T.K. et al. Plant Journal 31:255-268, 2002; Sakuradani, E. et al. Gene 238:445-453, 1999). Eine Modifikation des beschriebenen Weges über Δ6-Desaturase, Δ6-Elongase, Δ5-Desaturase, Δ5-Elongase, Δ4-Desaturase ist der Sprecher-Syntheseweg (Sprecher 2000, Biochim. Biophys. Acta 1486:219-231) in Säugetieren. Anstelle der Δ4-Desaturierung erfolgt hier ein weiterer Elongationsschritt auf C24, eine weitere Δ6-Desaturierung und abschliessend eine β-Oxidation auf die C22-Kettenlänge. Für die Herstellung in Pflanzen und Mikroorganismen ist der sogenannte Sprecher-Syntheseweg (siehe Figur 1) allerdings nicht geeignet, da die Regulationsmechanismen nicht bekannt sind.
 - Die polyungesättigten Fettsäuren können entsprechend ihrem Desaturierungsmuster in zwei große Klassen, in ω -6- oder ω -3-Fettsäuren eingeteilt werden, die metabolisch und funktionell unterschiedlich Aktivitäten haben (Fig. 1).
 - Als Ausgangsprodukt für den ω -6-Stoffwechselweg fungiert die Fettsäure Linolsäure (18:2^{$\Delta 9,12$}), während der ω -3-Weg über Linolensäure (18:3^{$\Delta 9,12,15$}) abläuft. Linolensäure wird dabei durch Aktivität einer ω -3-Desaturase gebildet (Tocher et al. 1998, Prog. Lipid Res. 37, 73-117; Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113).
 - Säugetiere und damit auch der Mensch verfügen über keine entsprechende Desaturaseaktivität (Δ -12- und ω -3-Desaturase) und müssen diese Fettsäuren (essentielle Fettsäuren) über die Nahrung aufnehmen. Über die Abfolge von Desaturase- und Elongase-Reaktionen werden dann aus diesen Vorstufen die physiologisch wichtigen polyungesättigten Fettsäuren Arachidonsäure (= ARA, 20:4 $^{\Delta5,8,11,14}$), eine ω -6-Fettsäure

10

20

25

30

5

und die beiden ω -3-Fettsäuren Eicosapentaen- (= EPA, $20:5^{\Delta 5,8,11,14,17}$) und Docosahexaensäure (DHA, $22:6^{\Delta 4,7,10,13,17,19}$) synthetisiert. Die Applikation von ω -3-Fettsäuren zeigt dabei die wie oben beschrieben therapeutische Wirkung bei der Behandlung von Herz-Kreislaufkrankheiten (Shimikawa 2001, World Rev. Nutr. Diet. 88, 100-108), Entzündungen (Calder 2002, Proc. Nutr. Soc. 61, 345-358) und Arthridis (Cleland und James 2000, J. Rheumatol. 27, 2305-2307).

Aus ernährungsphysiologischer Sicht ist es deshalb wichtig bei der Synthese mehrfach ungesättigter Fettsäuren eine Verschiebung zwischen dem ω -6-Syntheseweg und dem ω -3-Syntheseweg (siehe Figur 1) zu erreichen, so dass mehr ω -3-Fettsäuren hergestellt werden. In der Literatur wurden die enzymatischen Aktivitäten verschiedener ω -3-Desaturasen beschrieben, die C_{18:2}-, C_{22:4}- oder C_{22:5}-Fettsäuren desaturieren (siehe Figur 1). Keine der biochemisch beschriebenen Desaturasen setzt jedoch ein breites Substratspektrum des ω -6-Synthesewegs zu den entsprechenden Fettsäuren des ω -3-Syntheseweg um.

Es besteht daher weiterhin ein großer Bedarf an einer ω -3-Desaturase, die zur Herstellung von ω -3-polyungesättigte Fettsäuren geeignet ist. Alle bekannten pflanzlichen und cyanobakteriellen ω -3-Desaturasen desaturieren C_{18} -Fettsäuren mit Linolsäure als Substrat, können aber keine C_{20} - oder C_{22} -Fettsäuren desaturieren.

Von dem Pilz Saprolegnia dicilina ist eine ω-3-Desaturase bekannt (Pereira et al. 2003, Biochem. J. 2003 Dez, Manuskript BJ20031319), die C₂₀-mehrfach ungesättigte Fettsäuren desaturieren kann. Von Nachteil ist jedoch, dass diese ω-3-Desaturase keine C₁₈- oder C₂₂-PUFAs, wie den wichtigen Fettsäuren C_{18:2}-, C_{22:4}- oder C_{22:5}-Fettsäuren des ω-6-Syntheseweg desaturieren kann. Ein weiterer Nachteil dieses Enzyms ist, dass es keine Fettsäuren desaturieren kann, die an Phospholipide gebunden sind. Es werden nur die CoA-Fettsäureester umgesetzt.

Die Verlängerung von Fettsäuren durch Elongasen um 2 bzw. 4°C-Atome ist für die Produktion von C20- bzw. C22-PUFAs von entscheidender Bedeutung. Dieser Prozess verläuft über 4 Stufen. Der erste Schritt stellt die Kondensation von Malonyl-CoA an das Fettsäure-Acyl-CoA durch die Ketoacyl-CoA-Synthase (KCS, im weiteren Text als Elongase bezeichnet). Es folgt dann ein Reduktionschritt (Ketoacyl-CoA-Reduktase, KCR), ein Dehydratationsschritt (Dehydratase) und ein abschliessender Reduktionsschritt (enoyl-CoA-Reduktase). Es wurde postuliert, dass die Aktivität der Elongase die Spezifität und Geschwindigkeit des gesamten Prozesses beeinflussen (Millar and Kunst, 1997 Plant Journal 12:121-131).

In der Vergangenheit wurden zahlreiche Versuche unternommen, Elongase Gene zu erhalten. Millar and Kunst, 1997 (Plant Journal 12:121-131) und Millar et al. 1999, (Plant Cell 11:825-838) beschreiben die Charakterisierung von pflanzlichen Elongasen zur Synthese von einfachungesättigten langkettigen Fettsäuren (C22:1) bzw. zur Synthese von sehr langkettigen Fettsäuren für die Wachsbildung in Pflanzen (C28-C32). Beschreibungen zur Synthese von Arachidonsäure und EPA finden sich beispielsweise in WO0159128, WO0012720, WO02077213 und WO0208401. Die

20

25

30

35

40

6

Synthese von mehrfachungesättigter C24 Fettsäuren ist beispielsweise in Tvrdik et al 2000, JCB 149:707-717 oder WO0244320 beschrieben.

Zur Herstellung von DHA (C22:6 n-3) in Organismen, die diese Fettsäure natürlicherweise nicht produzieren, wurde bisher keine spezifische Elongase beschrieben. Bisher wurden nur Elongasen beschrieben, die C20- bzw. C24-Fettsäuren bereitstellen. Eine Δ-5-Elongase-Aktivität wurde bisher noch nicht beschrieben.

Höhere Pflanzen enthalten mehrfach ungesättigte Fettsäuren wie Linolsäure (C18:2) und Linolensäure (C18:3). ARA, EPA und DHA kommen im Samenöl höherer Pflanzen gar nicht oder nur in Spuren vor (E. Ucciani: Nouveau Dictionnaire des Huiles Végétales. Technique & Documentation – Lavoisier, 1995. ISBN: 2-7430-0009-0). Es wäre jedoch vorteilhaft, in höheren Pflanzen, bevorzugt in Ölsaaten wie Raps, Lein, Sonnenblume und Soja, LCPUFAs herzustellen, da auf diese Weise große Mengen qualitativ hochwertiger LCPUFAs für die Lebensmittelindustrie, die Tierernährung und für pharmazeutische Zwecke kostengünstig gewonnen werden können. Hierzu müssen vorteilhaft über gentechnische Methoden Gene kodierend für Enzyme der Biosynthese von LCPUFAs in Ölsaaten eingeführt und exprimiert werden. Dies sind Gene, die beispielsweise für Δ-6-Desaturase, Δ-6-Elongase, Δ-5-Desaturase oder Δ-4-Desaturasen codieren. Diese Gene können vorteilhaft aus Mikroorganismen und niederen Pflanzen isoliert werden, die LCPUFAs herstellen und in den Membranen oder Triacylglyceriden einbauen. So konnten bereits Δ-6-Desaturase-Gene aus dem Moos Physcomitrella patens und Δ-6-Elongase-Gene aus P. patens und dem Nematoden C. elegans isoliert.

Erste transgene Pflanzen, die Gene kodierend für Enzyme der LCPUFA-Biosynthese enthalten und exprimieren und LCPUFAs produzieren wurden beispielsweise in DE 102 19 203 (Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen) erstmals beschrieben. Diese Pflanzen produzieren allerdings LCPUFAs in Mengen, die für eine Aufarbeitung der in den Pflanzen enthaltenen Öle noch weiter optimiert werden müssen.

Um eine Anreicherung der Nahrung und des Futters mit diesen mehrfach ungesättigten Fettsäuren zu ermöglichen, besteht daher ein großer Bedarf an einem einfachen, kostengünstigen Verfahren zur Herstellung dieser mehrfach ungesättigten Fettsäuren speziell in eukaryontischen Systemen.

Es bestand daher die Aufgabe weitere Gene bzw. Enzyme, die für die Synthese von LCPUFAs geeignet sind, speziell Gene, die eine Δ -5-Elongaseaktivität aufweisen, für die Herstellung von mehrfach ungesättigten Fettsäuren zur Verfügung zu stellen. Eine weitere Aufgabe dieser Erfindung war die Bereitstellung von Genen bzw. Enzymen, die eine Verschiebung von den ω -6-Fettsäuren zu den ω -3-Fettsäuren hin ermöglichen. Weiterhin bestand die Aufgabe ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in einem Organismus vorteilhaft in einem eukaryontischen Organismus bevorzugt in einer Pflanze oder einem Mikroorganismus zu entwickeln. Diese Aufgabe wurde durch das erfindungsgemäße Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I

$$\begin{array}{c|c}
O & CH_2 & CH_2 & CH_3 \\
\hline
CH = CH & CH_2 & CH_2 \\
\hline
CH_2 & CH_3
\end{array}$$
(I)

in transgenen Organismen mit einem Gehalt von mindestens 1 Gew.-% dieser Verbindungen bezogen auf den Gesamtlipidgehalt des transgenen Organismus, dadurch gekennzeichnet, dass es folgende Verfahrensschritte umfasst:

- 5 a) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-9-Elongase- und/oder eine Δ-6-Desaturase-Aktivität codiert, und
 - b) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-8-Desaturase- und/oder eine Δ-6-Elongase-Aktivität codiert, und
 - Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-5-Desaturase-Aktivität codiert, und
 - d) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-5-Elongase-Aktivität codiert, und
 - e) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-4-Desaturase-Aktivität codiert, und
- wobei die Variablen und Substituenten in der Formel I die folgende Bedeutung haben:
 - R¹ = Hydroxyl-, CoenzymA-(Thioester), Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol-, Sphingobase-, oder einen Rest der allgemeinen Formel II

$$H_{2}C-O-R^{2}$$
 $H_{C}-O-R^{3}$ (II)
 $H_{2}C-O-f$

20

25

- R² = Wasserstoff-, Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol- oder gesättigtes oder ungesättigtes C₂-C₂₄-Alkyl-carbonyl-,
- R³ = Wasserstoff-, gesättigtes oder ungesättigtes C₂-C₂₄-Alkylcarbonyl-, oder R² oder R³ unabhängig voneinander einen Rest der allgemeinen Formel Ia:

15

20

25

30

8

$$\begin{array}{c|c} O & CH_2 \\ \hline \end{array} \begin{array}{c} CH_3 \\ \hline \end{array} \begin{array}{c$$

n = 2, 3, 4, 5, 6, 7 oder 9, m = 2, 3, 4, 5 oder 6 und p = 0 oder 3, gelöst.

R¹ bedeutet in der allgemeinen Formel I Hydroxyl-, CoenzymA-(Thioester), Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol-, Sphingobase-, oder einen Rest der allgemeinen Formel II

$$H_{2}C-O-R^{2}$$
 $HC-O-R^{3}$ (II)

Die oben genannten Reste von R¹ sind immer in Form ihrer Thioester an die Verbindungen der allgemeinen Formel I gebunden.

10 R² bedeutet in der allgemeinen Formel II Wasserstoff-, Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol- oder gesättigtes oder ungesättigtes C₂-C₂₄-Alkylcarbonyl-,

Als Alkylreste seien substituiert oder unsubstituiert, gesättigt oder ungesättigte C2-C24-Alkylcarbonyl-Ketten wie Ethylcarbonyl-, n-Propylcarbonyl-, n-Butylcarbonyl-, n-Pentylcarbonyl-, n-Hexylcarbonyl-,n-Heptylcarbonyl-, n-Octylcarbonyl-, n-Nonylcarbonyl-, n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- or n-Tetracosanylcarbonyl- genannt, die ein oder mehrere Doppelbindungen enthalten. Gesättigte oder ungesättigte C₁₀-C₂₂-Alkylcarbonylreste wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-., die ein oder mehrere Doppelbindungen enthalten, sind bevorzugt. Besonders bevorzugt sind gesättigte und/oder ungesättigte C₁₀-C₂₂-Alkylcarbonylreste wie C₁₀-Alkylcarbonyl-, C₁₁-Alkylcarbonyl-, C₁₂—Alkylcarbonyl-, C₁₃—Alkylcarbonyl-, C₁₄—Alkylcarbonyl-, C₁₆—Alkylcarbonyl-, C₁₈— Alkylcarbonyl-, C_{20} -Alkylcarbonyl- oder C_{22} -Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder ungesättigte C₁₆-C₂₂-Alkylcarbonylreste wie C₁₆-Alkylcarbonyl-, C₁₈-Alkylcarbonyl-, C₂₀-Alkylcarbonyl- oder C22-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen

10

20

25

30

35

40

9

enthalten. Diese vorteilhaften Reste können zwei, drei, vier, fünf oder sechs Doppelbindungen enthalten. Die besonders vorteilhaften Reste mit 20 oder 22 Kohlenstoffatomen in der Fettsäurekette enthalten bis zu sechs Doppelbindungen, vorteilhaft drei, vier, fünf oder sechs Doppelbindungen, besonders bevorzugt fünf oder sechs Doppelbindungen. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.

 R^3 bedeutet in der allgemeinen Formel II Wasserstoff-, gesättigtes oder ungesättigtes C_2 - C_{24} -Alkylcarbonyl.

Als Alkylreste seien substituiert oder unsubstituiert, gesättigt oder ungesättigte C2-C24-Alkylcarbonyl-Ketten wie Ethylcarbonyl-, n-Propylcarbonyl-, n-Butylcarbonyl-, n-Pentylcarbonyl-, n-Hexylcarbonyl-,n-Heptylcarbonyl-, n-Octylcarbonyl-, n-Nonylcarbonyl-, n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- or n-Tetracosanylcarbonyl- genannt, die ein oder mehrere Doppelbindungen enthalten. Gesättigte oder ungesättigte C10-C22-Alkylcarbonylreste wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten, sind bevorzugt. Besonders bevorzugt sind gesättigte und/oder ungesättigte C_{10} – C_{22} –Alkylcarbonylreste wie C_{10} –Alkylcarbonyl-, C_{11} –Alkylcarbonyl-, C_{12} —Alkylcarbonyl-, C_{13} —Alkylcarbonyl-, C_{14} —Alkylcarbonyl-, C_{16} —Alkylcarbonyl-, C_{18} — Alkylcarbonyl-, C₂₀-Alkylcarbonyl- oder C₂₂-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder unge sättigte C₁₆-C₂₂-Alkylcarbonylreste wie C₁₆-Alkylcarbonyl-, C₁₈-Alkylcarbonyl-, C₂₀-Alkylcarbonyl- oder C22-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Diese vorteilhaften Reste können zwei, drei, vier, fünf oder sechs Doppelbindungen enthalten. Die besonders vorteilhaften Reste mit 20 oder 22 Kohlenstoffatomen in der Fettsäurekette enthalten bis zu sechs Doppelbindungen, vorteilhaft drei, vier, fünf oder sechs Doppelbindungen, besonders bevorzugt fünf oder sechs Doppelbindungen. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.

Die oben genannten Reste von R¹, R² and R³ können mit Hydroxyl- und/oder Epoxygruppen substituierte sein und/oder können Dreifachbindungen enthalten.

Vorteilhaft enthalten die im erfindungsgemäßen Verfahren hergestellten mehrfach ungesättigten Fettsäuren mindestens zwei vorteilhaft drei, vier, fünf oder sechs Doppelbindungen. Besonders vorteilhaft enthalten die Fettsäuren vier fünf oder sechs Doppelbindungen. Im Verfahren hergestellte Fettsäuren haben vorteilhaft 18-, 20- oder 22-C-Atome in der Fettsäurekette, bevorzugt enthalten die Fettsäuren 20 oder 22 Kohlenstoffatome in der Fettsäurekette. Vorteilhaft werden gesättigte Fettsäuren mit den im Verfahren verwendeten Nukleinsäuren wenig oder gar nicht umgesetzt. Unter wenig ist zu verstehen, das im Vergleich zu mehrfach ungesättigten Fettsäuren die gesättigten

25

30

10

Fettsäuren mit weniger als 5 % der Aktivität, vorteilhaft weniger als 3 %, besonders vorteilhaft mit weniger als 2 %, ganz besonders bevorzugt mit weniger als 1; 0,5; 0,25 oder 0,125 % umgesetzt werden. Diese hergestellten Fettsäuren können als einziges Produkt im Verfahren hergestellt werden oder in einem Fettsäuregemisch vorliegen.

- Bei den im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen handelt es sich um isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- und/oder Δ-4-Desaturaseaktivität codieren.
- Vorteilhaft werden im erfindungsgemäßen Verfahren Nukleinsäuresequenzen, die für Polypeptide mit Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturaseaktivität codieren, verwendet ausgewählt aus der Gruppe bestehend aus:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83 oder SEQ ID NO: 85 dargestellten Sequenz, oder
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von den in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84 oder SEQ ID NO: 86 dargestellten Aminosäuresequenzen ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83 oder SEQ ID NO: 85 dargestellten Nukleinsäuresequenz, die für

25

30

11

Polypeptide mit mindestens 40 % Identität auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84 oder SEQ ID NO: 86 codieren und eine Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturaseaktivität aufweisen.

Vorteilhaft bedeuten die Substituenten R^2 oder R^3 in den allgemeinen Formeln I und II unabhängig voneinander gesättigtes oder ungesättigtes C_{18} - C_{22} -Alkylcarbonyl-, besonders vorteilhaft bedeuten sie unabhängig voneinander ungesättigtes C_{18} -, C_{20} - oder C_{22} -Alkylcarbonyl- mit mindestens zwei Doppelbindungen.

Eine bevorzugte Ausführungsform des Verfahrens ist dadurch gekennzeichnet, dass eine Nukleinsäuresequenz zusätzlich in den Organismus eingebracht wird, die für Polypeptide mit ω -3-Desaturase-Aktivität codiert, ausgewählt aus der Gruppe bestehend aus:

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 dargestellten
 Sequenz, oder
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 87 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 codieren und eine ω3-Desaturasaktivität aufweisen.

Tabelle 1 gibt die Nukleinsäuresequenzen, den Herkunftsorganismus und die Sequenz-ID-Nummer wieder.

Nr.	Organismus	Aktivität	Sequenznummer		
1.	Euglena gracilis	Δ-8-Desaturase	SEQ ID NO: 1		
	Isochrysis galbana	Δ-9-Elongase	SEQ ID NO: 3		
2.		Δ-5-Desaturase	SEQ ID NO: 5		
3.	Phaeodactylum tricornutum	Δ-5-Desaturase	SEQ ID NO: 7		
4.	Ceratodon purpureus	Δ-5-Desaturase	SEQ ID NO: 9		
5.	Physcomitrella patens	Δ-5-Desaturase			

	<u>, , , , , , , , , , , , , , , , , , , </u>		
Nr.	Organismus	Aktivität	Sequenznummer
6.	Thraustrochytrium sp.	Δ-5-Desaturase	SEQ ID NO: 11
7.	Mortierella alpina	Δ-5-Desaturase	SEQ ID NO: 13
8.	Caenorhabditis elegans	Δ-5-Desaturase	SEQ ID NO: 15
9.	Borago officinalis	Δ-6-Desaturase	SEQ ID NO: 17
10.	Ceratodon purpureus	Δ-6-Desaturase	SEQ ID NO: 19
11.	Phaeodactylum tricornutum	Δ-6-Desaturase	SEQ ID NO: 21
12.	Physcomitrella patens	Δ-6-Desaturase	SEQ ID NO: 23
13.	Caenorhabditis elegans	Δ-6-Desaturase	SEQ ID NO: 25
14.	Physcomitrella patens	Δ-6-Elongase	SEQ ID NO: 27
15.	Thraustrochytrium sp.	Δ-6-Elongase	SEQ ID NO: 29
16.	Phytophtora infestans	Δ-6-Elongase	SEQ ID NO: 31
17.	Mortierella alpina	Δ-6-Elongase	SEQ ID NO: 33
18.	Mortierella alpina	Δ-6-Elongase	SEQ ID NO: 35
19.	Caenorhabditis elegans	Δ-6-Elongase	SEQ ID NO: 37
20.	Euglena gracilis	Δ-4-Desaturase	SEQ ID NO: 39
21.	Thraustrochytrium sp.	Δ-4-Desaturase	SEQ ID NO: 41
22.	Thallasiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 43
23.	Thallasiosira pseudonana	Δ-6-Elongase	SEQ ID NO: 45
24.	Crypthecodinium cohnii	Δ-5-Elongase	SEQ ID NO: 47
25.	Crypthecodinium cohnii	Δ-5-Elongase	SEQ ID NO: 49
26.	Oncorhynchus mykiss	Δ-5-Elongase	SEQ ID NO: 51
27.	Oncorhynchus mykiss	Δ-5-Elongase	SEQ ID NO: 53
28.	Thallasiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 59
29.	Thallasiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 61
30.	Thallasiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 63
31.	Thraustrochytrium aureum	Δ-5-Elongase	SEQ ID NO: 65
32.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 67
33.	Ostreococcus tauri	Δ-6-Elongase	SEQ ID NO: 69
34.	Prímula farinosa	Δ-6-Desaturase	SEQ ID NO: 71
35.	Primula vialii	Δ-6-Desaturase	SEQ ID NO: 73

15

20

25

30

13

Nr.	Organismus	Aktivität	Sequenznummer
36.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 75
37.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 77
38.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 79
39.	Ostreococcus tauri	Δ-6-Elongase	SEQ ID NO: 81
40.	Thraustrochytrium sp.	Δ-5-Elongase	SEQ ID NO: 83
41.	Thallasiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 85
42.	Phytophtora infestans	ω-3-Desaturase	SEQ ID NO: 87

Die im Verfahren hergestellten mehrfach ungesättigten Fettsäuren sind vorteilhaft in Membranlipiden und/oder Triacylglyceriden gebunden, können aber auch als freie Fettsäuren oder aber gebunden in Form anderer Fettsäureester in den Organismen vorkommen. Dabei können sie als "Reinprodukte" oder aber vorteilhaft in Form von Mischungen verschiedener Fettsäuren oder Mischungen unterschiedlicher Glyceride vorliegen. Die in den Triacylglyceriden gebundenen verschieden Fettsäuren lassen sich dabei von kurzkettigen Fettsäuren mit 4 bis 6 C-Atomen, mittelkettigen Fettsäuren mit 8 bis 12 C-Atomen oder langkettigen Fettsäuren mit 14 bis 24 C-Atomen ableiten, bevorzugt sind die langkettigen Fettsäuren besonders bevorzugt sind die langkettigen Fettsäuren LCPUFAs von C₁₈-, C₂₀- und/oder C₂₂-Fettsäuren.

Im erfindungsgemäßen Verfahren werden vorteilhaft Fettsäureester mit mehrfach ungesättigten C_{18} –, C_{20} - und/oder C_{22} -Fettsäuremolekülen mit mindestens zwei Doppelbindungen im Fettsäureester, vorteilhaft mit mindestens drei, vier, fünf oder sechs Doppelbindungen im Fettsäureester, besonders vorteilhaft von mindestens fünf oder sechs Doppelbindungen im Fettsäureester hergestellt und führen vorteilhaft zur Synthese von Linolsäure (=LA, C18:2 $^{\Delta 9,12}$), y-Linolensäure (= GLA, C18:3 $^{\Delta 6,9,12}$), Stearidonsäure (= SDA, C18:4 $^{\Delta 6,9,12,15}$), Dihomo-y-Linolensäure (= DGLA, 20:3 $^{\Delta 8,11,14}$), ω -3-Eicosatetraensäure (= ETA, C20:4 $^{\Delta 5,8,11,14}$), Arachidonsäure (ARA, C20:4 $^{\Delta 5,8,11,14}$), Eicosapentaensäure (EPA, C20:5 $^{\Delta 5,8,11,14,17}$), ω -6-Docosapentaensäure (C22:5 $^{\Delta 4,7,10,13,16}$), ω -6-Docosatetraensäure (C22:4 $^{\Delta,7,10,13,16}$), ω -3-Docosapentaensäure (= DPA, C22:5 $^{\Delta 7,10,13,16,19}$), Docosahexaensäure (= DHA, C22:6 $^{\Delta 4,7,10,13,16,19}$) oder deren Mischungen, bevorzugt ARA, EPA und/oder DHA. Ganz besonders bevorzugt werden, ω -3-Fettsäuren wie EPA und/oder DHA hergestellt.

Die Fettsäureester mit mehrfach ungesättigten C₁₈–, C₂₀- und/oder C₂₂-Fettsäuremolekülen können aus den Organismen, die für die Herstellung der Fettsäureester verwendet wurden, in Form eines Öls oder Lipids beispielsweise in Form von Verbindungen wie Sphingolipide, Phosphoglyceride, Lipide, Glycolipide wie Glycosphingolipide, Phospholipide wie Phosphatidylethanolamin, Phosphatidylcholin, Phosphatidylserin, Phosphatidylglycerol, Phosphatidylinositol oder Diphosphatidylglycerol, Monoacylglyceride, Diacylglyceride, Triacylglyceride oder sonstige Fettsäureester wie die AcetylCoenzymA-Ester, die die mehrfach ungesättigten Fettsäuren mit mindestens

10

20

25

30

35

14

zwei, drei, vier, fünf oder sechs bevorzugt fünf oder sechs Doppelbindungen enthalten, isoliert werden, vorteilhaft werden sie in der Form ihrer Diacylglyceride, Triacylglyceride und/oder in Form des Phosphatidylcholin isoliert, besonders bevorzugt in der Form der Triacylglyceride. Neben diesen Estern sind die mehrfach ungesättigten Fettsäuren auch als freie Fettsäuren oder gebunden in anderen Verbindungen in den Organismen vorteilhaft den Pflanzen enthalten. In der Regel liegen die verschiedenen vorgenannten Verbindungen (Fettsäureester und frei Fettsäuren) in den Organismen in einer ungefähren Verteilung von 80 bis 90 Gew.-% Triglyceride, 2 bis 5 Gew.-% Diglyceride, 5 bis 10 Gew.-% Monoglyceride, 1 bis 5 Gew.-% freie Fettsäuren, 2 bis 8 Gew.-% Phospholipide vor, wobei sich die Summe der verschiedenen Verbindungen zu 100 Gew.-% ergänzt.

Im erfindungsgemäßen Verfahren werden die hergestellten LCPUFAs mit einem Gehalt von mindestens 3 Gew.-%, vorteilhaft von mindestens 5 Gew.-%, bevorzugt von mindestens 8 Gew.-%, besonders bevorzugt von mindestens 10 Gew.-%, ganz besonders bevorzugt von mindestens 15 Gew.-% bezogen auf die gesamten Fettsäuren in den transgenen Organismen vorteilhaft in einer transgenen Pflanze hergestellt. Dabei werden vorteilhaft C18- und/oder C20-Fettsäuren, die in den Wirtsorganismen vorhanden sind, zu mindestens 10 %, vorteilhaft zu mindestens 20 %, besonders vorteilhaft zu mindestens 30 %, ganz besonders vorteilhaft zu mindestens 40 % in die entsprechenden Produkte wie DPA oder DHA, um nur zwei beispielhaft zu nennen, umgesetzt. Vorteilhaft werden die Fettsäuren in gebundener Form hergestellt. Mit Hilfe der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren lassen sich diese ungesättigten Fettsäuren an sn1-, sn2- und/oder sn3-Position der vorteilhaft hergestellten Triglyceride bringen. Da im erfindungsgemäßen Verfahren von den Ausgangsverbindungen Linolsäure (C18:2) bzw. Linolensäure (C18:3) mehrere Reaktionsschritte durchlaufen werden, fallen die Endprodukte des Verfahrens wie beispielsweise Arachidonsäure (ARA), Eicosapentaensäure (EPA), ω-6-Docosapentaensäure oder DHA nicht als absolute Reinprodukte an, es sind immer auch geringe Spuren der Vorstufen im Endprodukt enthalten. Sind in dem Ausgangsorganismus bzw. in der Ausgangspflanze beispielsweise sowohl Linolsäure als auch Linolensäure vorhanden, so liegen die Endprodukte wie ARA, EPA oder DHA als Mischungen vor. Die Vorstufen sollten vorteilhaft nicht mehr als 20 Gew.-%, bevorzugt nicht mehr als 15 Gew.-%, besonders bevorzugt nicht als 10 Gew.-%, ganz besonders bevorzugt nicht mehr als 5 Gew.-% bezogen auf die Menge des jeweilige Endprodukts betragen. Vorteilhaft werden in einer transgenen Pflanze als Endprodukte nur ARA, EPA oder nur DHA im erfindungsgemäßen Verfahren gebunden oder als freie Säuren hergestellt. Werden die Verbindungen ARA, EPA und DHA gleichzeitig hergestellt, werden sie vorteilhaft in einem Verhältnis von mindesten 1:1:2 (EPA:ARA:DHA), vorteilhaft von mindestens 1:1:3, bevorzugt von 1:1:4, besonders bevorzugt von 1:1:5 hergestellt.

Fettsäureester bzw. Fettsäuregemische, die nach dem erfindungsgemäßen Verfahren hergestellt wurden, enthalten vorteilhaft 6 bis 15 % Palmitinsäure, 1 bis 6 % Stearinsäure; 7 – 85 % Ölsäure; 0,5 bis 8 % Vaccensäure, 0,1 bis 1 % Arachinsäure, 7 bis 25 % gesättigte Fettsäuren, 8 bis 85 % einfach ungesättigte Fettsäuren und 60 bis

10

15

20

25

30

35

40

15

85 % mehrfach ungesättigte Fettsäuren jeweils bezogen auf 100 % und auf den Gesamtfettsäuregehalt der Organismen. Als vorteilhafte mehrfach ungesättigte Fettsäure sind in den Fettsäureester bzw. Fettsäuregemische bevorzugt mindestens 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9 oder 1 % bezogen auf den Gesamtfettsäuregehalt an Arachidonsäure enthalten. Weiterhin enthalten die Fettsäureester bzw. Fettsäuregemische, die nach dem erfindungsgemäßen Verfahren hergestellt wurden, vorteilhaft Fettsäuren ausgewählt aus der Gruppe der Fettsäuren Erucasäure (13-Docosaensäure), Sterculinsäure (9,10-Methylene octadec-9-enonsäure), Malvalinsäure (8,9-Methylen Heptadec-8-enonsäure), Chaulmoogrinsäure (Cyclopenten-dodecansäure), Furan-Fettsäure (9,12-Epoxy-octadeca-9,11-dienonsäure), Vernonsäure (9,10-Epoxyoctadec-12-enonsäure), Tarinsäure (6-Octadecynonsäure), 6-Nonadecynonsäure, Santalbinsäure (t11-Octadecen-9-ynoic acid), 6,9-Octadecenynonsäure, Pyrulinsäure (t10-Heptadecen-8-ynonsäure), Crepenyninsäure (9-Octadecen-12-ynonsäure), 13,14-Dihydrooropheinsäure, Octadecen-13-ene-9,11-diynonsäure. Petroselensäure (cis-6-Octadecenonsäure), 9c,12t-Octadecadiensäure, Calendulasäure (8t10t12c-Octadecatriensäure), Catalpinsäure (9t11t13c-Octadecatriensäure), Eleosterinsäure (9c11t13t-Octadecatriensäure), Jacarinsäure (8c10t12c-Octadecatriensäure), Punicinsäure (9c11t13c-Octadecatriensäure), Parinarinsäure (9c11t13t15c-Octadecatetraensäure), Pinolensäure (all-cis-5,9,12-Octadecatriensäure), Laballensäure (5,6-Octadecadienallensäure), Ricinolsäure (12-Hydroxyölsäure) und/oder Coriolinsäure (13-Hydroxy-9c,11t-Octadecadienonsäure). Vorteilhaft enthalten die nach dem erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemische weniger als 0,1 % bezogen auf die Gesamtfettsäuren oder keine Buttersäure, kein Cholesterin, keine Clupanodonsäure (= Docosapentaensäure, C22:5^{Δ4,8,12,15,21}) sowie keine Nisinsäure (Tetracosahexaensäure, C23:6^{Δ3,8,12,15,18,21}).

Durch die erfindungsgemäßen Nukleinsäuresequenzen bzw. im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen kann eine Steigerung der Ausbeute an mehrfach ungesättigten Fettsäuren von mindestens 50 %, vorteilhaft von mindestens 80 %, besonders vorteilhaft von mindestens 100 %, ganz besonders vorteilhaft von mindestens 150 % gegenüber den nicht transgenen Ausgangsorganismus beispielsweise einer Hefe, einer Alge, einem Pilz oder einer Pflanze wie Arabidopsis oder Lein beim Vergleich in der GC-Analyse siehe Beispiele erreicht werden.

Auch chemisch reine mehrfach ungesättigte Fettsäuren oder Fettsäurezusammensetzungen sind nach den vorbeschriebenen Verfahren darstellbar. Dazu werden die Fettsäuren oder die Fettsäurezusammensetzungen aus dem Organismus wie den Mikroorganismen oder den Pflanzen oder dem Kulturmedium, in dem oder auf dem die Organismen angezogen wurden, oder aus dem Organismus und dem Kulturmedium in bekannter Weise beispielsweise über Extraktion, Destillation, Kristallisation, Chromatographie oder Kombinationen dieser Methoden isoliert. Diese chemisch reinen Fettsäuren oder Fettsäurezusammensetzungen sind für Anwendungen im Bereich der Lebensmittelindustrie, der Kosmetikindustrie und besonders der Pharmaindustrie voreilhaft.

10

20

25

30

35

40

16

Als Organismus für die Herstellung im erfindungsgemäßen Verfahren kommen prinzipiell alle Organismen wie Mikroorganismen, nicht-humane Tiere oder Pflanzen in Frage.

Als Pflanzen kommen prinzipiell alle Pflanzen in Frage, die in der Lage sind Fettsäuren zu synthetisieren wie alle dicotylen oder monokotylen Pflanzen, Algen oder Moose. Vorteilhaft Pflanzen sind ausgewählt aus der Gruppe der Pflanzenfamilien Adelotheciaceae, Anacardiaceae, Asteraceae, Apiaceae, Betulaceae, Boraginaceae, Brassicaceae, Bromeliaceae, Caricaceae, Cannabaceae, Convolvulaceae, Chenopodiaceae, Crypthecodiniaceae, Cucurbitaceae, Ditrichaceae, Elaeagnaceae, Ericaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Gramineae, Juglandaceae, Lauraceae, Leguminosae, Linaceae, Prasinophyceae oder Gemüsepflanzen oder Zierpflanzen wie Tagetes in Betracht.

Beispielhaft seien die folgenden Pflanzen genannt ausgewählt aus der Gruppe: Adelotheciaceae wie die Gattungen Physcomitrella z.B. die Gattung und Arten Physcomitrella patens, Anacardiaceae wie die Gattungen Pistacia, Mangifera, Anacardium z.B. die Gattung und Arten Pistacia vera [Pistazie], Mangifer indica [Mango] oder Anacardium occidentale [Cashew], Asteraceae wie die Gattungen Calendula, Carthamus, Centaurea, Cichorium, Cynara, Helianthus, Lactuca, Locusta, Tagetes, Valeriana z.B. die Gattung und Arten Calendula officinalis [Garten-Ringelblume], Carthamus tinctorius [Färberdistel, safflower], Centaurea cyanus [Kornblume], Cichorium intybus [Wegwarte], Cynara scolymus [Artichoke], Helianthus annus [Sonnenblume], Lactuca sativa, Lactuca crispa, Lactuca esculenta, Lactuca scariola L. ssp. sativa, Lactuca scariola L. var. integrata, Lactuca scariola L. var. integrifolia, Lactuca sativa subsp. romana, Locusta communis, Valeriana locusta [Salat], Tagetes lucida, Tagetes erecta oder Tagetes tenuifolia [Studentenblume], Apiaceae wie die Gattung Daucus z.B. die Gattung und Art Daucus carota [Karotte], Betulaceae wie die Gattung Corylus z.B. die Gattungen und Arten Corylus avellana oder Corylus colurna [Haselnuss], Boraginaceae wie die Gattung Borago z.B. die Gattung und Art Borago officinalis [Borretsch], Brassicaceae wie die Gattungen Brassica, Melanosinapis, Sinapis, Arabadopsis z.B. die Gattungen und Arten Brassica napus, Brassica rapa ssp. [Raps], Sinapis arvensis Brassica juncea, Brassica juncea var. juncea, Brassica juncea var. crispifolia, Brassica juncea var. foliosa, Brassica nigra, Brassica sinapioides, Melanosinapis communis [Senf], Brassica oleracea [Futterrübe] oder Arabidopsis thaliana, Bromeliaceae wie die Gattungen Anana, Bromelia (Ananas) z.B. die Gattungen und Arten Anana comosus, Ananas ananas oder Bromelia comosa [Ananas], Caricaceae wie die Gattung Carica wie die Gattung und Art Carica papaya [Papaya], Cannabaceae wie die Gattung Cannabis wie die Gattung und Art Cannabis sative [Hanf], Convolvulaceae wie die Gattungen Ipomea, Convolvulus z.B. die Gattungen und Arten Ipomoea batatus, Ipomoea pandurata, Convolvulus batatas, Convolvulus tiliaceus, Ipomoea fastigiata, Ipomoea tiliacea, Ipomoea triloba oder Convolvulus panduratus [Süßkartoffel, Batate], Chenopodiaceae wie die Gattung Beta wie die Gattungen und Arten Beta vulgaris, Beta vulgaris var. altissima, Beta vulgaris var. Vulgaris, Beta maritima, Beta vulgaris var. perennis, Beta vulgaris var. conditiva oder Beta vulgaris var. esculenta [Zucker-

10

15

20

25

30

35

40

45

17

rübel, Crypthecodiniaceae wie die Gattung Crypthecodinium z.B. die Gattung und Art Cryptecodinium cohnii, Cucurbitaceae wie die Gattung Cucubita z.B. die Gattungen und Arten Cucurbita maxima, Cucurbita mixta, Cucurbita pepo oder Cucurbita moschata [Kürbis], Cymbellaceae wie die Gattungen Amphora, Cymbella, Okedenia, Phaeodactylum, Reimeria z.B. die Gattung und Art Phaeodactylum tricornutum, Ditrichaceae wie die Gattungen Ditrichaceae, Astomiopsis, Ceratodon, Chrysoblastella, Ditrichum, Distichium, Eccremidium, Lophidion, Philibertiella, Pleuridium, Saelania, Trichodon, Skottsbergia z.B. die Gattungen und Arten Ceratodon antarcticus, Ceratodon columbiae, Ceratodon heterophyllus, Ceratodon purpurascens, Ceratodon purpureus, Ceratodon purpureus ssp. convolutus, Ceratodon purpureus ssp. stenocarpus, Ceratodon purpureus var. rotundifolius, Ceratodon ratodon, Ceratodon stenocarpus. Chrysoblastella chilensis, Ditrichum ambiguum, Ditrichum brevisetum, Ditrichum crispatissimum, Ditrichum difficile, Ditrichum falcifolium, Ditrichum flexicaule, Ditrichum giganteum, Ditrichum heteromallum, Ditrichum lineare, Ditrichum lineare, Ditrichum montanum, Ditrichum montanum, Ditrichum pallidum, Ditrichum punctulatum, Ditrichum pusillum, Ditrichum pusillum var. tortile, Ditrichum rhynchostegium, Ditrichum schimperi, Ditrichum tortile, Distichium capillaceum, Distichium hagenii, Distichium inclinatum, Distichium macounii, Eccremidium floridanum, Eccremidium whiteleggei, Lophidion strictus, Pleuridium acuminatum, Pleuridium alternifolium, Pleuridium holdridgei, Pleuridium mexicanum, Pleuridium ravenelii, Pleuridium subulatum, Saelania glaucescens, Trichodon borealis, Trichodon cylindricus oder Trichodon cylindricus var. oblongus, Elaeagnaceae wie die Gattung Elaeagnus z.B. die Gattung und Art Olea europaea [Olive], Ericaceae wie die Gattung Kalmia z.B. die Gattungen und Arten Kalmia latifolia, Kalmia angustifolia, Kalmia microphylla, Kalmia polifolia, Kalmia occidentalis, Cistus chamaerhodendros oder Kalmia lucida [Berglorbeer], Euphorbiaceae wie die Gattungen Manihot, Janipha, Jatropha, Ricinus z.B. die Gattungen und Arten Manihot utilissima, Janipha manihot,, Jatropha manihot., Manihot aipii, Manihot dulcis, Manihot manihot, Manihot melanobasis, Manihot esculenta [Manihot] oder Ricinus communis [Rizinus], Fabaceae wie die Gattungen Pisum, Albizia, Cathormion, Feuillea, Inga, Pithecolobium, Acacia, Mimosa, Medicajo, Glycine, Dolichos, Phaseolus, Soja z.B. die Gattungen und Arten Pisum sativum, Pisum arvense, Pisum humile [Erbse], Albizia berteriana, Albizia julibrissin, Albizia lebbeck, Acacia berteriana, Acacia littoralis, Albizia berteriana, Albizzia berteriana, Cathormion berteriana, Feuillea berteriana, Inga fragrans, Pithecellobium berterianum, Pithecellobium fragrans, Pithecolobium berterianum, Pseudalbizzia berteriana, Acacia julibrissin, Acacia nemu, Albizia nemu, Feuilleea julibrissin, Mimosa julibrissin, Mimosa speciosa, Sericanrda julibrissin, Acacia lebbeck, Acacia macrophylla, Albizia lebbek, Feuilleea lebbeck, Mimosa lebbeck, Mimosa speciosa [Seidenbaum], Medicago sativa, Medicago falcata, Medicago varia [Alfalfa] Glycine max Dolichos soja, Glycine gracilis, Glycine hispida, Phaseolus max, Soja hispida oder Soja max [Sojabohne], Funariaceae wie die Gattungen Aphanorrhegma, Entosthodon, Funaria, Physcomitrella, Physcomitrium z.B. die Gattungen und Arten Aphanorrhegma serratum, Entosthodon attenuatus, Entosthodon bolanderi, Entosthodon bonplandii, Entosthodon californicus, Entosthodon drummondii, Entosthodon jamesonii, Entosthodon leibergii, Entosthodon neoscoticus, Entosthodon rubrisetus, Entosthodon spathulifolius, Entosthodon tucsoni, Funaria

10

15

20

25

30

35

40

45

18

americana, Funaria bolanderi, Funaria calcarea, Funaria californica, Funaria calvescens, Funaria convoluta, Funaria flavicans, Funaria groutiana, Funaria hygrometrica, Funaria hygrometrica var. arctica, Funaria hygrometrica var. calvescens, Funaria hygrometrica var. convoluta, Funaria hygrometrica var. muralis, Funaria hygrometrica var. utahensis, Funaria microstoma, Funaria microstoma var. obtusifolia, Funaria muhlenbergii, Funaria orcuttii, Funaria plano-convexa, Funaria polaris, Funaria ravenelii, Funaria rubriseta, Funaria serrata, Funaria sonorae, Funaria sublimbatus, Funaria tucsoni, Physcomitrella californica, Physcomitrella patens, Physcomitrella readeri, Physcomitrium australe, Physcomitrium californicum, Physcomitrium collenchymatum, Physcomitrium coloradense, Physcomitrium cupuliferum, Physcomitrium drummondii, Physcomitrium eurystomum, Physcomitrium flexifolium, Physcomitrium hookeri, Physcomitrium hookeri var. serratum, Physcomitrium immersum, Physcomitrium kellermanii, Physcomitrium megalocarpum, Physcomitrium pyriforme, Physcomitrium pyriforme var. serratum, Physcomitrium rufipes, Physcomitrium sandbergii, Physcomitrium subsphaericum, Physcomitrium washingtoniense, Geraniaceae wie die Gattungen Pelargonium, Cocos, Oleum z.B. die Gattungen und Arten Cocos nucifera, Pelargonium grossularioides oder Oleum cocois [Kokusnuss], Gramineae wie die Gattung Saccharum z.B. die Gattung und Art Saccharum officinarum, Juglandaceae wie die Gattungen Juglans, Wallia z.B. die Gattungen und Arten Juglans regia, Juglans ailanthifolia, Juglans sieboldiana, Juglans cinerea, Wallia cinerea, Juglans bixbyi, Juglans californica, Juglans hindsii, Juglans intermedia, Juglans jamaicensis, Juglans major, Juglans microcarpa, Juglans nigra oder Wallia nigra [Walnuss], Lauraceae Wie die Gattungen Persea, Laurus z.B. die Gattungen und Arten Laurus nobilis [Lorbeer], Persea americana, Persea gratissima oder Persea persea [Avocado], Leguminosae wie die Gattung Arachis z.B. die Gattung und Art Arachis hypogaea [Erdnuss], Linaceae wie die Gattungen Linum, Adenolinum z.B. die Gattungen und Arten Linum usitatissimum, Linum humile, Linum austriacum, Linum bienne, Linum angustifolium, Linum catharticum, Linum flavum, Linum grandiflorum, Adenolinum grandiflorum, Linum lewisii, Linum narbonense, Linum perenne, Linum perenne var. lewisii, Linum pratense oder Linum trigynum [Lein], Lythrarieae wie die Gattung Punica z.B. die Gattung und Art Punica granatum [Granatapfel], Malvaceae wie die Gattung Gossypium z.B. die Gattungen und Arten Gossypium hirsutum, Gossypium arboreum, Gossypium barbadense, Gossypium herbaceum oder Gossypium thurberi [Baumwolle], Marchantiaceae wie die Gattung Marchantia z.B. die Gattungen und Arten Marchantia berteroana, Marchantia foliacea, Marchantia macropora, Musaceae wie die Gattung Musa z.B. die Gattungen und Arten Musa nana, Musa acuminata, Musa paradisiaca, Musa spp. [Banane], Onagraceae wie die Gattungen Camissonia, Oenothera z.B. die Gattungen und Arten Oenothera biennis oder Camissonia brevipes [Nachtkerze], Palmae wie die Gattung Elacis z.B. die Gattung und Art Elaeis guineensis [Olpalme], Papaveraceae wie die Gattung Papaver z.B. die Gattungen und Arten Papaver orientale, Papaver rhoeas, Papaver dubium [Mohn], Pedaliaceae wie die Gattung Sesamum z.B. die Gattung und Art Sesamum indicum [Sesam], Piperaceae wie die Gattungen Piper, Artanthe, Peperomia, Steffensia z.B. die Gattungen und Arten Piper aduncum, Piper amalago, Piper angustifolium, Piper auritum, Piper betel, Piper cubeba, Piper longum, Piper nigrum, Piper retrofractum, Artanthe adunca, Artanthe

10

15

20

25

30

35

ve ii

19

elongata, Peperomia elongata, Piper elongatum, Steffensia elongata. [Cayennepfeffer], Poaceae wie die Gattungen Hordeum, Secale, Avena, Sorghum, Andropogon, Holcus, Panicum, Oryza, Zea (Mais), Triticum z.B. die Gattungen und Arten Hordeum vulgare, Hordeum jubatum, Hordeum murinum, Hordeum secalinum, Hordeum distichon Hordeum aegiceras. Hordeum hexastichon.. Hordeum hexastichum, Hordeum irregulare, Hordeum sativum, Hordeum secalinum [Gerste], Secale cereale [Roggen], Avena sativa, Avena fatua, Avena byzantina, Avena fatua var. sativa, Avena hybrida [Hafer], Sorghum bicolor, Sorghum halepense, Sorghum saccharatum, Sorghum vulgare, Andropogon drummondii, Holcus bicolor, Holcus sorghum, Sorghum aethiopicum, Sorghum arundinaceum, Sorghum caffrorum, Sorghum cernuum, Sorghum dochna, Sorghum drummondii, Sorghum durra, Sorghum guineense, Sorghum lanceolatum, Sorghum nervosum, Sorghum saccharatum, Sorghum subglabrescens, Sorghum verticilliflorum, Sorghum vulgare, Holcus halepensis, Sorghum miliaceum, Panicum militaceum [Hirse], Oryza sativa, Oryza latifolia [Reis], Zea mays [Mais] Triticum aestivum, Triticum durum, Triticum turgidum, Triticum hybernum, Triticum macha, Triticum sativum oder Triticum vulgare [Weizen], Porphyridiaceae wie die Gattungen Chroothece, Flintiella, Petrovanella, Porphyridium, Rhodella, Rhodosorus, Vanhoeffenia z.B. die Gattung und Art Porphyridium cruentum, Proteaceae wie die Gattung Macadamia z.B. die Gattung und Art Macadamia intergrifolia [Macadamia], Prasinophyceae wie die Gattungen Nephroselmis, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus z.B. die Gattungen und Arten Nephroselmis olivacea, Prasinococcus capsulatus, Scherffelia dubia, Tetraselmis chui, Tetraselmis suecica, Mantoniella squamata, Ostreococcus tauri, Rubiaceae wie die Gattung Coffea z.B. die Gattungen und Arten Cofea spp., Coffea arabica, Coffea canephora oder Coffea liberica [Kaffee], Scrophulariaceae wie die Gattung Verbascum z.B. die Gattungen und Arten Verbascum blattaria, Verbascum chaixii, Verbascum densiflorum, Verbascum lagurus, Verbascum longifolium, Verbascum lychnitis, Verbascum nigrum, Verbascum olympicum, Verbascum phlomoides, Verbascum phoenicum, Verbascum pulverulentum oder Verbascum thapsus [Königskerze], Solanaceae wie die Gattungen Capsicum, Nicotiana, Solanum, Lycopersicon z.B. die Gattungen und Arten Capsicum annuum, Capsicum annuum var. glabriusculum, Capsicum frutescens [Pfeffer], Capsicum annuum [Paprika], Nicotiana tabacum, Nicotiana alata, Nicotiana attenuata, Nicotiana glauca, Nicotiana langsdorffii, Nicotiana obtusifolia, Nicotiana quadrivalvis, Nicotiana repanda, Nicotiana rustica, Nicotiana sylvestris [Tabak], Solanum tuberosum [Kartoffel], Solanum melongena [Aubergine] Lycopersicon esculentum, Lycopersicon lycopersicum., Lycopersicon pyriforme, Solanum integrifolium oder Solanum lycopersicum [Tomate], Sterculiaceae wie die Gattung Theobroma z.B. die Gattung und Art Theobroma cacao [Kakao] oder Theaceae wie die Gattung Camellia z.B. die Gattung und Art Camellia sinensis [Tee].

Vorteilhafte Mikroorganismen sind beispielweise Pilze ausgewählt aus der Gruppe der Familien Chaetomiaceae, Choanephoraceae, Cryptococcaceae, Cunninghamellaceae, Demetiaceae, Moniliaceae, Mortierellaceae, Mucoraceae, Pythiaceae, Sacharomycetaceae, Saprolegniaceae, Schizosacharomycetaceae, Sodariaceae oder Tuberculariaceae.

10

15

20

25

30

45

Beispielhaft seien die folgenden Mikroorganismen genannt ausgewählt aus der Gruppe: Choanephoraceae wie den Gattungen Blakeslea, Choanephora z.B. die Gattungen und Arten Blakeslea trispora, Choanephora cucurbitarum, Choanephora infundibulifera var. cucurbitarum, Mortierellaceae wie der Gattung Mortierella z.B. die Gattungen und Arten Mortierella isabellina, Mortierella polycephala, Mortierella ramanniana, Mortierella vinacea, Mortierella zonata, Pythiaceae wie den Gattungen Phytium, Phytophthora z.B. die Gattungen und Arten Pythium debaryanum, Pythium intermedium, Pythium irregulare, Pythium megalacanthum, Pythium paroecandrum, Pythium sylvaticum, Pythium ultimum, Phytophthora cactorum, Phytophthora cinnamomi, Phytophthora citricola, Phytophthora citrophthora, Phytophthora cryptogea, Phytophthora drechsleri, Phytophthora erythroseptica, Phytophthora lateralis, Phytophthora megasperma, Phytophthora nicotianae, Phytophthora nicotianae var. parasitica, Phytophthora palmivora, Phytophthora parasitica, Phytophthora syringae, Saccharomycetaceae wie den Gattungen Hansenula, Pichia, Saccharomyces, Saccharomycodes, Yarrowia z.B. die Gattungen und Arten Hansenula anomala, Hansenula californica, Hansenula canadensis, Hansenula capsulata, Hansenula ciferrii, Hansenula glucozyma, Hansenula henricii, Hansenula holstii, Hansenula minuta, Hansenula nonfermentans, Hansenula philodendri, Hansenula polymorpha, Hansenula saturnus, Hansenula subpelliculosa, Hansenula wickerhamii, Hansenula wingei, Pichia alcoholophila, Pichia angusta, Pichia anomala, Pichia bispora, Pichia burtonii, Pichia canadensis, Pichia capsulata, Pichia carsonii, Pichia cellobiosa, Pichia ciferrii, Pichia farinosa, Pichia fermentans, Pichia finlandica, Pichia glucozyma, Pichia guilliermondii, Pichia haplophila, Pichia henricii, Pichia holstii, Pichia jadinii, Pichia lindnerii, Pichia membranaefaciens, Pichia methanolica, Pichia minuta var. minuta, Pichia minuta var. nonfermentans, Pichia norvegensis, Pichia ohmeri, Pichia pastoris, Pichia philodendri, Pichia pini, Pichia polymorpha, Pichia quercuum, Pichia rhodanensis, Pichia sargentensis, Pichia stipitis, Pichia strasburgensis, Pichia subpelliculosa, Pichia toletana, Pichia trehalophila, Pichia vini, Pichia xylosa, Saccharomyces aceti, Saccharomyces bailii, Saccharomyces bayanus, Saccharomyces bisporus, Saccharomyces capensis, Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces cerevisiae var. ellipsoideus, Saccharomyces chevalieri, Saccharomyces delbrueckii, Saccharomyces diastaticus, Saccharomyces drosophilarum, Saccharomyces elegans, Saccharomyces ellipsoideus, Saccharomyces fermentati, Saccharomyces florentinus, Saccharomyces fragilis, Saccharomyces heterogenicus, Saccharomyces hienipiensis, Saccharomyces inusitatus, Saccharomyces italicus, 35 Saccharomyces kluyveri, Saccharomyces krusei, Saccharomyces lactis, Saccharomyces marxianus, Saccharomyces microellipsoides, Saccharomyces montanus, Saccharomyces norbensis, Saccharomyces oleaceus, Saccharomyces paradoxus, Saccharomyces pastorianus, Saccharomyces pretoriensis, Saccharomyces rosei, Saccharomyces rouxii, Saccharomyces uvarum, Saccharomycodes ludwigii, Yarrowia 40 lipolytica, Schizosacharomycetaceae such as the genera Schizosaccharomyces e.g. the species Schizosaccharomyces japonicus var. japonicus, Schizosaccharomyces japonicus var. versatilis, Schizosaccharomyces malidevorans, Schizosaccharomyces octosporus, Schizosaccharomyces pombe var. malidevorans, Schizosaccharomyces pombe var. pombe, Thraustochytriaceae such as the genera Althornia, Aplanochy-

10

20

25

30

35

40

trium, Japonochytrium, Schizochytrium, Thraustochytrium e.g. the species *Schizochytrium aggregatum*, *Schizochytrium limacinum*, *Schizochytrium mangrovei*, *Schizochytrium minutum*, *Schizochytrium octosporum*, *Thraustochytrium aggregatum*, *Thraustochytrium amoeboideum*, *Thraustochytrium antacticum*, *Thraustochytrium arudimentale*, *Thraustochytrium aureum*, *Thraustochytrium benthicola*, *Thraustochytrium globosum*, *Thraustochytrium indicum*, *Thraustochytrium kerguelense*, *Thraustochytrium kinnei*, *Thraustochytrium motivum*, *Thraustochytrium multirudimentale*, *Thraustochytrium pachydermum*, *Thraustochytrium proliferum*, *Thraustochytrium roseum*, *Thraustochytrium rosein*, *Thraustochytrium striatum oder Thraustochytrium visurgense*.

Weitere vorteilhafte Mikroorganismen sind beispielweise Bakterien ausgewählt aus der Gruppe der Familien Bacillaceae, Enterobacteriacae oder Rhizobiaceae.

Beispielhaft seien die folgenden Mikroorganismen genannt ausgewählt aus der Gruppe: Bacillaceae wie die Gattung Bacillus z.B die Gattungen und Arten Bacillus acidocaldarius, Bacillus acidoterrestris, Bacillus alcalophilus, Bacillus amyloliquefaciens, Bacillus amylolyticus, Bacillus brevis, Bacillus cereus, Bacillus circulans, Bacillus coagulans, Bacillus sphaericus subsp. fusiformis, Bacillus galactophilus, Bacillus globisporus, Bacillus globisporus subsp. marinus, Bacillus halophilus, Bacillus lentimorbus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus polymyxa, Bacillus psychrosaccharolyticus, Bacillus pumilus, Bacillus sphaericus, Bacillus subtilis subsp. spizizenii, Bacillus subtilis subsp. subtilis oder Bacillus thuringiensis; Enterobacteriacae wie die Gattungen Citrobacter, Edwardsiella, Enterobacter, Erwinia, Escherichia, Klebsiella, Salmonella oder Serratia z.B die Gattungen und Arten Citrobacter amalonaticus, Citrobacter diversus, Citrobacter freundii, Citrobacter genomospecies, Citrobacter gillenii, Citrobacter intermedium, Citrobacter koseri, Citrobacter murliniae, Citrobacter sp., Edwardsiella hoshinae, Edwardsiella ictaluri, Edwardsiella tarda, Erwinia alni, Erwinia amylovora, Erwinia ananatis, Erwinia aphidicola, Erwinia billingiae, Erwinia cacticida, Erwinia cancerogena, Erwinia carnegieana, Erwinia carotovora subsp. atroseptica, Erwinia carotovora subsp. betavasculorum, Erwinia carotovora subsp. odorifera, Erwinia carotovora subsp. wasabiae, Erwinia chrysanthemi, Erwinia cypripedii, Erwinia dissolvens, Erwinia herbicola, Erwinia mallotivora, Erwinia milletiae, Erwinia nigrifluens, Erwinia nimipressuralis, Erwinia persicina, Erwinia psidii, Erwinia pyrifoliae, Erwinia quercina, Erwinia rhapontici, Erwinia rubrifaciens, Erwinia salicis, Erwinia stewartii, Erwinia tracheiphila, Erwinia uredovora, Escherichia adecarboxylata, Escherichia anindolica, Escherichia aurescens, Escherichia blattae, Escherichia coli, Escherichia coli var. communior, Escherichia coli-mutabile, Escherichia fergusonii, Escherichia hermannii, Escherichia sp., Escherichia vulneris, Klebsiella aerogenes, Klebsiella edwardsii subsp. atlantae, Klebsiella ornithinolytica, Klebsiella oxytoca, Klebsiella planticola, Klebsiella pneumoniae, Klebsiella pneumoniae subsp. pneumoniae, Klebsiella sp., Klebsiella terrigena, Klebsiella trevisanii, Salmonella abony, Salmonella arizonae, Salmonella bongori, Salmonella choleraesuis subsp. arizonae, Salmonella choleraesuis subsp. bongori, Salmonella choleraesuis subsp. cholereasuis, Salmonella choleraesuis subsp.

10

15

20

25

30

35

40

diarizonae, Salmonella choleraesuis subsp. houtenae, Salmonella choleraesuis subsp. indica, Salmonella choleraesuis subsp. salamae, Salmonella daressalaam, Salmonella enterica subsp. houtenae, Salmonella enterica subsp. salamae, Salmonella enteritidis, Salmonella gallinarum, Salmonella heidelberg, Salmonella panama, Salmonella senftenberg, Salmonella typhimurium, Serratia entomophila, Serratia ficaria, Serratia fonticola, Serratia grimesii, Serratia liquefaciens, Serratia marcescens, Serratia marcescens subsp. marcescens, Serratia marinorubra, Serratia odorifera, Serratia plymouthensis, Serratia plymuthica, Serratia proteamaculans, Serratia proteamaculans subsp. quinovora, Serratia quinivorans oder Serratia rubidaea; Rhizobiaceae wie die Gattungen Agrobacterium, Carbophilus, Chelatobacter, Ensifer, Rhizobium, Sinorhizobium z.B. die Gattungen und Arten Agrobacterium atlanticum, Agrobacterium ferrugineum, Agrobacterium gelatinovorum, Agrobacterium larrymoorei, Agrobacterium meteori, Agrobacterium radiobacter, Agrobacterium rhizogenes, Agrobacterium rubi, Agrobacterium stellulatum, Agrobacterium tumefaciens, Agrobacterium vitis, Carbophilus carboxidus, Chelatobacter heintzii, Ensifer adhaerens, Ensifer arboris, Ensifer fredii, Ensifer kostiensis, Ensifer kummerowiae, Ensifer medicae, Ensifer meliloti, Ensifer saheli, Ensifer terangae, Ensifer xinjiangensis, Rhizobium ciceri Rhizobium etli, Rhizobium fredii, Rhizobium galegae, Rhizobium gallicum, Rhizobium giardinii, Rhizobium hainanense, Rhizobium huakuii, Rhizobium huautlense, Rhizobium indigoferae, Rhizobium japonicum, Rhizobium leguminosarum, Rhizobium loessense, Rhizobium loti, Rhizobium lupini, Rhizobium mediterraneum, Rhizobium meliloti, Rhizobium mongolense, Rhizobium phaseoli, Rhizobium radiobacter, Rhizobium rhizogenes, Rhizobium rubi, Rhizobium sullae, Rhizobium tianshanense, Rhizobium trifolii, Rhizobium tropici, Rhizobium undicola, Rhizobium vitis, Sinorhizobium adhaerens, Sinorhizobium arboris, Sinorhizobium fredii, Sinorhizobium kostiense, Sinorhizobium kummerowiae, Sinorhizobium medicae, Sinorhizobium meliloti, Sinorhizobium morelense, Sinorhizobium saheli oder Sinorhizobium xinjiangense.

Weitere vorteilhafte Mikroorganismen für das erfindungsgemäße Verfahren sind beispielweise Protisten oder Diatomeen ausgewählt aus der Gruppe der Familien Dinophyceae, Turaniellidae oder Oxytrichidae wie die Gattungen und Arten: *Crypthe-codinium cohnii, Phaeodactylum tricornutum, Stylonychia mytilus, Stylonychia pustulata, Stylonychia putrina, Stylonychia notophora, Stylonychia sp.,* Colpidium campylum oder Colpidium sp.

Vorteilhaft werden im erfindungsgemäßen Verfahren transgene Organismen wie Pilze wie Mortierella oder Traustochytrium, Hefen wie Saccharomyces oder Schizosaccharomyces, Moose wie Physcomitrella oder Ceratodon, nicht-humane Tiere wie Caenorhabditis, Algen wie Nephroselmis, Pseudoscourfielda, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus, Crypthecodinium oder Phaeodactylum oder Pflanzen wie zweikeimblättrige oder einkeimblättrige Pflanzen verwendet. Besonders vorteilhaft werden Organismen im erfindungsgemäßen Verfahren verwendet, die zu den Öl-produzierenden Organismen gehören, das heißt die für die Herstellung von Ölen verwendet werden, wie Pilze wie Mortierella oder Thraustochytrium, Algen wie Nephroselmis, Pseudoscourfielda, Prasinococcus, Scherffelia,

10

15

20

25

30

35

1. 1. 20

23

Tetraselmis, Mantoniella, Ostreococcus, Crypthecodinium, Phaeodactylum oder Pflanzen, insbesondere Pflanzen bevorzugt Olfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Erdnuss, Raps, Canola, Sonnenblume, Saflor (Carthamus tinctoria), Mohn, Senf, Hanf, Rizinus, Olive, Sesam, Calendula, Punica, Nachtkerze, Königskerze, Distel, Wildrosen, Haselnuss, Mandel, Macadamia, Avocado, Lorbeer, Kürbis, Lein, Soja, Pistazien, Borretsch, Bäume (Ölpalme, Kokosnuss oder Walnuss) oder Feldfrüchte, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa oder Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten sowie ausdauernde Gräser und Futterfeldfrüchte. Bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Erdnuss, Raps, Canola, Sonnenblume, Saflor, Mohn, Senf, Hanf, Rhizinus, Olive, Calendula, Punica, Nachtkerze, Kürbis, Lein, Soja, Borretsch, Bäume (Ölpalme, Kokosnuss). Besonders bevorzugt sind C18:2- und/oder C18:3-Fettsäure reiche Pflanzen wie Sonnenblume, Färberdistel, Tabak, Königskerze, Sesam, Baumwolle, Kürbis, Mohn, Nachtkerze, Walnuss, Lein, Hanf, Distel oder Färberdistel. Ganz besonders bevorzugt sind Pflanzen wie Färberdistel, Sonnenblume, Mohn, Nachtkerze, Walnuss, Lein oder Hanf.

Für das erfindungsgemäße beschriebene Verfahren ist es vorteilhaft in den Organismus zusätzlich zu den unter Verfahrensschritt (a) bis (e) eingebrachten Nukleinsäuren sowie den ggf. eingebrachten Nukleinsäuresequenzen, die für die ω-3-Desaturase codieren, zusätzlich weitere Nukleinsäuren einzubringen, die für Enzyme des Fettsäure- oder Lipidstoffwechsels codieren.

Im Prinzip können alle Gene des Fettsäure- oder Lipidstoffwechsels vorteilhaft in Kombination mit der(den) erfinderischen Δ-5-Elongase(n), Δ-6-Elongase(n) und/oder ω-3-Desaturase(n) [im Sinne dieser Anmeldung soll der Plural den Singular und umgekehrt beinhalten] im Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren verwendet werden vorteilhaft werden Gene des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferasen, Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n) in Kombination mit der Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase verwendet. Besonders bevorzugt werden Gene ausgewählt aus der Gruppe der Δ-4-Desaturasen, Δ -5-Desaturasen, Δ -6-Desaturasen, Δ -8-Desatuasen, Δ -9-Desaturasen, Δ -12-Desaturasen, Δ-6-Elongasen oder Δ-9-Elongasen in Kombination mit den vorgenannten Genen für die Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase verwendet, wobei einzelne Gene oder mehrere Gene in Kombination verwendet werden können.

40 Die erfindungsgemäßen Δ-5-Elongasen haben gegenüber den humanen Elongasen die vorteilhafte Eigenschaft, dass sie C22-Fettsäuren nicht zu den entsprechenden C24-Fettsäuren elongieren. Besonders vorteilhafte Δ-5-Elongasen setzen bevorzugt

10

15

20

25

30

35

nur ungesättigte C20-Fettsäuren um. Vorteilhaft werden nur C20-Fettsäuren mit einer Doppelbindung in Δ-5-Position umgesetzt, wobei ω3C20 Fettsäuren bevorzugt werden (EPA). Weiterhin haben sie in einer bevorzugten Ausführungsform der Erfindung die Eigenschaft, dass sie neben der Δ-5-Elongaseaktivität keine oder nur eine relativ geringe Δ-6-Elongaseaktivität aufweisen. Vorteilhaft setzen sie in einem Hefefütterungstext, in dem als Substrat EPA den Hefen zugesetzt wurde, mindestens 15 Gew.-% des zugesetzten EPAs zu Docosapentaensäure (DPA, C22:5^{Δ7,10,13,16,19}). vorteilhaft mindestens 20 Gew.-%, besonders vorteilhaft mindestens 25 Gew.-% um. Wird als Substrat y-Linolensäure (= GLA, C18:3^{Δ6,9,12}) gegeben, so wird diese vorteilhaft gar nicht elongiert. Ebenfalls wird auch C18:3^{a5,9,12} nicht elongiert. In einer anderen vorteilhaften Ausführungsform werden weniger als 60 Gew.-% des zugesetzten GLA zu Dihomo-y-linolensäure (= C20:3^{Δ8,11,14}) umgesetzt, vorteilhaft weniger als 55 Gew.-%, bevorzugt weniger als 50 Gew.-%, besonders vorteilhaft weniger als 45 Gew.-%, ganz besonders vorteilhaft weniger als 40 Gew.-%. In einer weiteren ganz bevorzugten Ausführungsform der erfindungsgemäßen Δ-5-Elongaseaktivität wird GLA nicht umgesetzt.

Die erfindungsgemäße ω-3-Desaturase hat gegenüber den bekannten ω-3-Desaturase die vorteilhafte Eigenschaft, dass sie ein breites Spektrum an ω-6-Fettsäuren desaturieren kann, bevorzugt werden C₂₀- und C₂₂-Fettsäuren wie C_{20:2}-, C_{20:3}-, C_{20:4}-, C_{22:4}oder C_{22:5}-Fettsäuren desaturiert. Aber auch die kürzeren C₁₈-Fettsäuren wie C_{18:2}oder C_{18:3}-Fettsäuren werden vorteilhaft desaturiert. Durch diese Eigenschaften der ω-3-Desaturase ist es vorteilhaft möglich das Fettsäurespektrum innerhalb eines Organismus vorteilhaft innerhalb einer Pflanze oder einem Pilz von den ω-6-Fettsäuren zu den ω-3-Fettsäuren hin zu verschieben. Bevorzugt werden von der erfindungsgemäßen ω-3-Desaturase C₂₀-Fettsäuren desaturiert. Innerhalb des Organismus werden diese Fettsäuren aus dem vorhandenen Fettsäurepool zu mindestens 10 %, 15 %, 20 %, 25 % oder 30 % zu den entsprechenden ω-3-Fettsäuren umgesetzt. Gegenüber den C₁₈-Fettsäuren weist die ω-3-Desaturase eine um den Faktor 10 geringere Aktivität auf, das heißt es werden nur ca. 1,5 bis 3% der im Fettsäurepool vorhandenen Fettsäuren zu den entsprechenden ω -3-Fettsäuren umgesetzt. Bevorzugtes Substrat der erfindungsgemäßen ω -3-Desaturase sind die in Phospholipiden gebundenen ω -6-Fettsäuren. Figur 19 zeigt deutlich am Beispiel der Desaturierung von Arachidonsäure [C_{20:4}^{Δ5,8,11,14}], dass die ω-3-Desaturase bei der Desaturierung vorteilhaft nicht zwischen an sn1- oder sn2-Position gebundenen Fettsäuren unterscheidet. Sowohl an sn1- oder sn2-Position in den Phospholipide gebundene Fettsäuren werden desaturiert. Weiterhin ist vorteilhaft, dass die ω-3-Desaturase eine breite Palette von hospholipiden wie Phosphatidylcholin (= PC), Phosphatidylinositol (= PIS) oder Phosphatidylethanolamin (= PE) umsetzt. Schließlich lassen sich auch Desaturierungsprodukte in den Neutrallipiden (= NL), das heißt in den Triglyceriden finden.

Durch die enzymatische Aktivität der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit Δ-5-Elongase-, Δ-6-Elongase- und/oder ω-3-Desaturaseaktivität codieren, vorteilhaft in Kombination mit Nukleinsäuresequenzen, die für Polypeptide des Fettsäure- oder Lipidstoffwechsels wie weiteren Polypeptiden

10

15

20

25 .

30

35

40

25

mit Δ -4-, Δ -5-, Δ -6-, Δ -8-Desaturase- oder Δ -5-, Δ -6-oder Δ -9-Elongaseaktivität codieren, können unterschiedlichste mehrfach ungesättigte Fettsäuren im erfindungsgemäßen Verfahren hergestellt werden. Je nach Auswahl der für das erfindungsgemäße Verfahren verwendeten Organismen wie den vorteilhaften Pflanze lassen sich Mischungen der verschiedenen mehrfach ungesättigten Fettsäuren oder einzelne mehrfach ungesättigte Fettsäuren wie EPA oder ARA in freier oder gebundener Form herstellen. Je nachdem welche Fettsäurezusammensetzung in der Ausgangspflanze vorherrscht (C18:2- oder C18:3-Fettsäuren) entstehen so Fettsäuren, die sich von C18:2-Fettsäuren ableiten, wie GLA, DGLA oder ARA oder, die sich von C18:3-Fettsäuren ableiten, wie SDA, ETA oder EPA. Liegt in der für das Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur Linolsäure (= LA, C18:2^{Δ9,12}) vor, so können als Produkte des Verfahrens nur GLA, DGLA und ARA entstehen, die als freie Fettsäuren oder gebunden vorliegen können. Ist in der im Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur α-Linolensäure (= ALA, C18:3^{Δ9,12,15}) beispielsweise wie in Lein, so können als Produkte des Verfahrens nur SDA, ETA, EPA und/oder DHA entstehen, die wie oben beschrieben als freie Fettsäuren oder gebunden vorliegen können. Durch Modifikation der Aktivität des an der Synthese beteiligten Enzyms Δ-5-Elongase vorteilhaft in Kombination mit der Δ-4-, Δ-5-, Δ-6-Desaturase und/oder Δ -6-Elongase, oder der Δ -4-, Δ -5-, Δ -8-Desaturase, und/oder Δ -9-Elongase lassen sich gezielt in den vorgenannten Organismen vorteilhaft in den vorgenannten Pflanzen nur einzelne Produkte herstellten. Durch die Aktivität der Δ-6-Desaturase und Δ-6-Elongase entstehen beispielsweise GLA und DGLA bzw. SDA und ETA, je nach Ausgangspflanze und ungesättigter Fettsäure. Bevorzugt entstehen DGLA bzw. ETA oder deren Mischungen. Werden die Δ -5-Desaturase, die Δ -5-Elongase und die Δ--4-Desaturase zusätzlich in die Organismen vorteilhaft in die Pflanze eingebracht, so entstehen zusätzlich ARA, EPA und/oder DHA. Dies gilt auch für Organismen in die vorher die Δ-8-Desaturase und Δ-9-Elongase eingebracht wurde. Vorteilhaft werden nur ARA, EPA oder DHA oder deren Mischungen synthetisiert, abhängig von der in im Organismus bzw. in der Pflanze vorliegenden Fettsäure, die als Ausgangssubstanz für die Synthese dient. Da es sich um Biosyntheseketten handelt, liegen die jeweiligen Endprodukte nicht als Reinsubstanzen in den Organismen vor. Es sind immer auch geringe Mengen der Vorläuferverbindungen im Endprodukt enthalten. Diese geringen-Mengen betragen weniger als 20 Gew.-%, vorteilhaft weniger als 15 Gew.-%, besonders vorteilhaft weniger als 10 Gew.-%, ganz besonders vorteilhaft weniger als 5, 4, 3, 2 oder 1 Gew.-% bezogen auf das Endprodukt DGLA, ETA oder deren Mischungen bzw. ARA, EPA, DHA oder deren Mischungen vorteilhaft EPA oder DHA oder deren Mischungen.

Das von der erfindungsgemäßen Nukleinsäure kodierte Protein zeigt ein hohe Spezifität für die beiden Vorstufen C18: $4^{\Delta6,9,12,15}$ - und C20: $5^{\Delta5,8,11,14,17}$ -Fettsäuren zur Synthese von DHA (Vorstufen und Synthese von DHA siehe Figur 1). Das von SEQ ID NO: 53 kodierte Protein hat damit eine Spezifität für $\Delta6$ - und $\Delta5$ -Fettsäuren mit zusätzlich einer $\omega3$ -Doppelbindung (Figur 2). Die Δ -5-Elongase hat eine keto-Acyl-CoA-Synthase-Aktivität, die vorteilhaft Fettsäurereste von Acyl-CoA-Estern um 2 Kohlenstoffatome verlängert.

10

20

25

30

35

40

Mittels der Δ -5-Elongase-Gene, der Δ -5-Desaturase aus Phaeodacylum sowie der Δ -4-Desaturase aus Euglena konnte die Synthese von DHA in Hefe (Saccharomyces cerevisiae) nachgewiesen werden (Figur 3).

Neben der Produktion der Ausgangsfettsäuren für die erfindungsgemäße Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase direkt im Organismus können die Fettsäuren auch von außen gefüttert werden. Aus Kostengründen ist die Produktion im Organismus bevorzugt. Bevorzugt Substrate der ω -3-Desaturase sind die Linolsäure (C18:2 $^{\Delta 9,12}$), die γ-Linolensäure (C18:3 $^{\Delta 6,9,12}$), die Eicosadiensäure (C20:2 $^{\Delta 11,14}$), die Dihomo-γ-linolensäure (C20:3 $^{\Delta 8,11,14}$), die Arachidonsäure (C20:4 $^{\Delta 5,8,11,14}$), die Docosatetraensäure (C22:4 $^{\Delta 7,10,13,16}$) und die Docosapentaensäure (C22:5 $^{\Delta 4,7,10,13,15}$).

Zur Steigerung der Ausbeute im beschriebenen Verfahren zur Herstellung von Ölen und/oder Triglyceriden mit einem vorteilhaft erhöhten Gehalt an mehrfach ungesättigten Fettsäuren ist es vorteilhaft die Menge an Ausgangsprodukt für die Fettsäuresynthese zu steigern, dies kann beispielsweise durch das Einbringen einer Nukleinsäure in den Organismus, die für ein Polypeptid mit Δ -12-Desaturase codiert, erreicht werden. Dies ist besonders vorteilhaft in Öl-produzierenden Organismen wie Raps, die einen hohen Ölsäuregehalt aufweisen. Da diese Organismen nur einen geringen Gehalt an Linolsäure aufweisen (Mikoklajczak et al., Journal of the American Oil Chemical Society, 38, 1961, 678 - 681) ist die Verwendung der genannten Δ -12-Desaturasen zur Herstellung des Ausgangsprodukts Linolsäure vorteilhaft.

Im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren stammen vorteilhaft aus Pflanzen wie Algen beispielsweise Algen der Familie der Prasinophyceae wie aus den Gattungen Heteromastix, Mammella, Mantoniella, Micromonas, Nephroselmis, Ostreococcus, Prasinocladus, Prasinococcus, Pseudoscourfielda, Pycnococcus, Pyramimonas, Scherffelia oder Tetraselmis wie den Gattungen und Arten Heteromastix longifillis, Mamiella gilva, Mantoniella squamata, Micromonas pusilla, Nephroselmis olivacea, Nephroselmis pyriformis, Nephroselmis rotunda, Ostreococcus tauri, Ostreococcus sp. Prasinocladus ascus, Prasinocladus lubricus, Pycnococcus provasolii, Pyramimonas amylifera, Pyramimonas disomata, Pyramimonas obovata, Pyramimonas orientalis, Pyramimonas parkeae, Pyramimonas spinifera, Pyramimonas sp., Tetraselmis apiculata, Tetraselmis carteriaformis, Tetraselmis chui, Tetraselmis convolutae, Tetraselmis desikacharyi, Tetraselmis gracilis, Tetraselmis hazeni, Tetraselmis impellucida, Tetraselmis inconspicua, Tetraselmis levis, Tetraselmis maculata, Tetraselmis marina, Tetraselmis striata, Tetraselmis subcordiformis, Tetraselmis suecica, Tetraselmis tetrabrachia, Tetraselmis tetrathele, Tetraselmis verrucosa, Tetraselmis verrucosa fo. Rubens oder Tetraselmis sp. Vorteilhaft stammen die verwendeten Nukleinsäuren aus Algen der Gattungen Mantonielle oder Ostreococcus.

Weitere vorteilhafte Pflanzen sind Algen wie Isochrysis oder Crypthecodinium, Algen/ Diatomeen wie Phaeodactylum oder Thraustochytrium, Moose wie Physcomitrella oder Ceratodon oder höheren Pflanzen wie den Primulaceae wie Aleuritia, Calendula

10

15

20

25

30

35

40

27

stellata, Osteospermum spinescens oder Osteospermum hyoseroides, Mikroorganismen wie Pilzen wie Aspergillus, Thraustochytrium, Phytophthora, Entomophthora, Mucor oder Mortierella, Bakterien wie Shewanella, Hefen oder Tieren wie Nematoden wie Caenorhabditis, Insekten oder Fischen. Vorteilhaft stammen die erfindungsgemäßen isolierten Nukleinsäuresequenzen aus einem Tier aus der Ordnung der Vertebraten. Bevorzugt stammen die Nukleinsäuresequenzen aus der Klasse der Vertebrata; Euteleostomi, Actinopterygii; Neopterygii; Teleostei; Euteleostei, Protacanthopterygii, Salmoniformes; Salmonidae bzw. Oncorhynchus. Besonders vorteilhaft stammen die Nukleinsäuren aus Pilzen, Tieren oder aus Pflanzen wie Algen oder Moosen, bevorzugt aus der Ordnung der Salmoniformes wie der Familie der Salmonidae wie der Gattung Salmo beispielsweise aus den Gattungen und Arten Oncorhynchus mykiss, Trutta trutta oder Salmo trutta fario, aus Algen wie den Gattungen Mantonielle oder Ostreococcus oder aus den Diatomeen wie den Gattungen Thallasiosira oder Crypthecodinium.

Vorteilhaft werden im erfindungsgemäßen Verfahren die vorgenannten Nukleinsäuresequenzen oder deren Derivat oder Homologe, die für Polypeptide codieren, die noch die enzymatische Aktivität der durch Nukleinsäuresequenzen codierten Proteine besitzen. Diese Sequenzen werden einzeln oder in Kombination mit den für die Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase codierenden Nukleinsäuresquenzen in Expressionskonstrukte cloniert und zum Einbringen und zur Expression in Organismen verwendet. Diese Expressionskonstrukte ermöglichen durch ihre Konstruktion eine vorteilhafte optimale Synthese der im erfindungsgemäßen Verfahren produzierten mehrfach ungesättigten Fettsäuren.

Bei einer bevorzugten Ausführungsform umfasst das Verfahren ferner den Schritt des Gewinnens einer Zelle oder eines ganzen Organismus, der die im Verfahren verwendeten Nukleinsäuresequenzen enthält, wobei die Zelle und/oder der Organismus mit einer erfindungsgemäßen Nukleinsäuresequenz, die für die Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase codiert, einem Genkonstrukt oder einem Vektor wie nachfolgend beschrieben, allein oder in Kombination mit weiteren Nukleinsäuresequenzen, die für Proteine des Fettsäure- oder Lipidsstoffwechsels codieren, transformiert wird. Bei einer weiteren bevorzugten Ausführungsform umfasst dieses Verfahren ferner den Schritt des Gewinnens der Öle, Lipide oder freien Fettsäuren aus dem Organismus oder aus der Kultur. Bei der Kultur kann es sich beispielsweise um eine Fermentationskultur beispielsweise im Falle der Kultivierung von Mikroorganismen wie z.B. Mortierella, Thallasiosira, Mantoniella, Ostreococcus, Saccharomyces oder Thraustochytrium oder um eine Treibhaus oder Feldkultur einer Pflanze handeln. Die so hergestellte Zelle oder der so hergestellte Organismus ist vorteilhaft eine Zelle eines Öl-produzierenden Organismus wie einer Ölfruchtpflanze wie beispielsweise Erdnuss, Raps, Canola, Lein, Hanf, Erdnuss, Soja, Safflower, Hanf, Sonnenblumen oder Borretsch.

Unter Anzucht ist beispielsweise die Kultivierung im Falle von Pflanzenzellen, -gewebe oder -organe auf oder in einem Nährmedium oder der ganzen Pflanze auf bzw. in einem Substrat beispielsweise in Hydrokultur, Blumentopferde oder auf einem Ackerboden zu verstehen.

- "Transgen" bzw. "Rekombinant" im Sinne der Erfindung bedeutet bezüglich zum
 Beispiel einer Nukleinsäuresequenz, einer Expressionskassette (= Genkonstrukt)
 oder einem Vektor enthaltend die erfindungsgemäße Nukleinsäuresequenz oder
 einem Organismus transformiert mit den erfindungsgemäßen Nukleinsäuresequenzen,
 Expressionskassette oder Vektor alle solche durch gentechnische Methoden zustandegekommenen Konstruktionen, in denen sich entweder
 - a) die erfindungsgemäße Nukleinsäuresequenz, oder
 - eine mit der erfindungsgemäßen Nukleinsäuresequenz funktionell verknüpfte genetische Kontrollsequenz, zum Beispiel ein Promotor, oder
 - c) (a) und (b)

35

40

sich nicht in ihrer natürlichen, genetischen Umgebung befinden oder durch gen-15 technische Methoden modifiziert wurden, wobei die Modifikation beispielhaft eine Substitution, Addition, Deletion, Inversion oder Insertion eines oder mehrerer Nukleotidreste sein kann. Natürliche genetische Umgebung meint den natürlichen genomischen bzw. chromosomalen Locus in dem Herkunftsorganismus oder das Vorliegen in einer genomischen Bibliothek. Im Fall einer genomischen Bibliothek ist die natürliche, 20 genetische Umgebung der Nukleinsäuresequenz bevorzugt zumindest noch teilweise erhalten. Die Umgebung flankiert die Nukleinsäuresequenz zumindest an einer Seite und hat eine Sequenzlänge von mindestens 50 bp, bevorzugt mindestens 500 bp, besonders bevorzugt mindestens 1000 bp, ganz besonders bevorzugt mindestens 5000 bp. Eine natürlich vorkommende Expressionskassette - beispielsweise die 25 natürlich vorkommende Kombination des natürlichen Promotors der erfindungsgemäßen Nukleinsäuresequenzen mit den entsprechenden Δ-5-Elongasegenen – wird zu einer transgenen Expressionskassette, wenn diese durch nicht-natürliche, synthetische ("künstliche") Verfahren wie beispielsweise einer Mutagenisierung geändert wird. Entsprechende Verfahren sind beispielsweise beschrieben in 30 US 5,565,350 oder WO 00/15815.

Unter transgenen Organismus bzw. transgener Pflanze im Sinne der Erfindung ist wie vorgenannt zu verstehen, dass die im Verfahren verwendeten Nukleinsäuren nicht an ihrer natürlichen Stelle im Genom eines Organismus sind, dabei können die Nukleinsäuren homolog oder heterolog exprimiert werden. Transgen bedeutet aber auch wie genannt, dass die erfindungsgemäßen Nukleinsäuren an ihrem natürlichen Platz im Genom eines Organismus sind, dass jedoch die Sequenz gegenüber der natürlichen Sequenz verändert wurde und/oder das die Regulationssequenzen, der natürlichen Sequenzen verändert wurden. Bevorzugt ist unter transgen die Expression der erfindungsgemäßen Nukleinsäuren an nicht natürlicher Stelle im Genom zu verstehen,

29

das heißt eine homologe oder bevorzugt heterologe Expression der Nukleinsäuren liegt vor. Bevorzugte transgene Organismen sind Pilze wie Mortierella oder Phytophtora, Moose wie Physcomitrella, Algen wie Mantoniella oder Ostreococcus, Diatomeen wie Thallasiosira oder Crypthecodinium oder Pflanzen wie die Ölfruchtpflanzen.

- Als Organismen bzw. Wirtsorganismen für die im erfindungsgemäßen Verfahren 5 verwendeten Nukleinsäuren, die Expressionskassette oder den Vektor eignen sich prinzipiell vorteilhaft alle Organismen, die in der Lage sind Fettsäuren speziell ungesättigte Fettsäuren zu synthetisieren bzw. für die Expression rekombinanter Gene geeignet sind. Beispielhaft seien Pflanzen wie Arabidopsis, Asteraceae wie Calendula oder Kulturpflanzen wie Soja, Erdnuss, Rizinus, Sonnenblume, Mais, Baumwolle, 10 Flachs, Raps, Kokosnuss, Ölpalme, FärberSaflor (Carthamus tinctorius) oder Kakaobohne, Mikroorganismen wie Pilze beispielsweise die Gattung Mortierella, Thraustochytrium, Saprolegnia, Phytophtora oder Pythium, Bakterien wie die Gattung Escherichia oder Shewanella, Hefen wie die Gattung Saccharomyces, Cyanobakterien, Ciliaten, Algen wie Mantoniella oder Ostreococcus oder Protozoen wie Dinoflagellaten 15 wie Thallasiosira oder Crypthecodinium genannt. Bevorzugt werden Organismen, die natürlicherweise Öle in größeren Mengen synthetisieren können wie Pilze wie Mortierella alpina, Pythium insidiosum, Phytophtora infestans oder Pflanzen wie Soja, Raps, Kokosnuss, Ölpalme, FärberSaflor, Flachs, Hanf, Rizinus, Calendula, Erdnuss, Kakaobohne oder Sonnenblume oder Hefen wie Saccharomyces cerevisiae, besonders 20 bevorzugt werden Soja, Flachs, Raps, FärberSaflor, Sonnenblume, Calendula, Mortierella oder Saccharomyces cerevisiae. Prinzipiell sind als Wirtsorganismen neben den vorgenannten transgenen Organismen auch transgene Tiere vorteilhaft nicht-humane Tiere geeignet beispielsweise C. elegans.
- Nutzbare Wirtszellen sind weiterhin genannt in: Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).
 - Verwendbare Expressionsstämme z.B. solche, die eine geringere Proteaseaktivität aufweisen sind beschrieben in: Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128.
- Hierzu gehören Pflanzenzellen und bestimmte Gewebe, Organe und Teile von Pflanzen in all ihren Erscheinungsformen, wie Antheren, Fasern, Wurzelhaare, Stängel, Embryos, Kalli, Kotelydonen, Petiolen, Erntematerial, pflanzliches Gewebe, reproduktives Gewebe und Zellkulturen, das von der eigentlichen transgenen Pflanze abgeleitet ist und/oder dazu verwendet werden kann, die transgene Pflanze hervorzubringen.
 - Transgene Pflanzen, die die im erfindungsgemäßen Verfahren synthetisierten mehrfach ungesättigten Fettsäuren enthalten, können vorteilhaft direkt vermarktet werden ohne dass die synthetisierten Öle, Lipide oder Fettsäuren isoliert werden müssen. Unter Pflanzen im erfindungsgemäßen Verfahren sind ganze Pflanzen sowie alle Pflanzenteile, Pflanzenorgane oder Pflanzenteile wie Blatt, Stiel, Samen, Wurzel, Knollen, Antheren, Fasern, Wurzelhaare, Stängel, Embryos, Kalli, Kotelydonen,

10

15

20

25

30

35

40

30

Petiolen, Erntematerial, pflanzliches Gewebe, reproduktives Gewebe, Zellkulturen, die sich von der transgenen Pflanze abgeleiten und/oder dazu verwendet werden können, die transgene Pflanze hervorzubringen. Der Samen umfasst dabei alle Samenteile wie die Samenhüllen, Epidermis- und Samenzellen, Endosperm oder Embyrogewebe. Die im erfindungsgemäßen Verfahren hergestellten Verbindungen können aber auch aus den Organismen vorteilhaft Pflanzen in Form ihrer Öle, Fett, Lipide und/oder freien Fettsäuren isoliert werden. Durch dieses Verfahren hergestellte mehrfach ungesättigten Fettsäuren lassen sich durch Ernten der Organismen entweder aus der Kultur, in der sie wachsen, oder vom Feld ernten. Dies kann über Pressen oder Extraktion der Pflanzenteile bevorzugt der Pflanzensamen erfolgen. Dabei können die Öle. Fette, Lipide und/oder freien Fettsäuren durch sogenanntes kalt schlagen oder kalt pressen ohne Zuführung von Wärme durch Pressen gewonnen werden. Damit sich die Pflanzenteile speziell die Samen leichter aufschließen lassen, werden sie vorher zerkleinert, gedämpft oder geröstet. Die so vorbehandelten Samen können anschließend gepresst werden oder mit Lösungsmittel wie warmen Hexan extrahiert werden. Anschließend wird das Lösungsmittel wieder entfernt. Im Falle von Mikroorganismen werden diese nach Ernte beispielsweise direkt ohne weitere Arbeitsschritte extrahiert oder aber nach Aufschluss über verschiedene dem Fachmann bekannte Methoden extrahiert. Auf diese Weise können mehr als 96 % der im Verfahren hergestellten Verbindungen isoliert werden. Anschließend werden die so erhaltenen Produkte weiter bearbeitet, das heißt raffiniert. Dabei werden zunächst beispielsweise die Pflanzenschleime und Trübstoffe entfernt. Die sogenannte Entschleimung kann enzymatisch oder beispielsweise chemisch/physikalisch durch Zugabe von Säure wie Phosphorsäure erfolgen. Anschließend werden die freien Fettsäuren durch Behandlung mit einer Base beispielsweise Natronlauge entfernt. Das erhaltene Produkt wird zur Entfernung der im Produkt verbliebenen Lauge mit Wasser gründlich gewaschen und getrocknet. Um die noch im Produkt enthaltenen Farbstoffe zu entfernen werden die Produkte einer Bleichung mit beispielsweise Bleicherde oder Aktivkohle unterzogen. Zum Schluss wird das Produkt noch beispielsweise mit Wasserdampf noch desodoriert.

Vorzugsweise sind die durch dieses Verfahren produzierten PUFAs bzw. LCPUFAs C₁₈-, C₂₀- oder C₂₂-Fettsäuremoleküle vorteilhaft C₂₀- oder C₂₂-Fettsäuremoleküle mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise drei, vier, fünf oder sechs Doppelbindungen. Diese C₁₈-, C₂₀- oder C₂₂-Fettsäuremoleküle lassen sich aus dem Organismus in Form eines Öls, Lipids oder einer freien Fettsäure isolieren. Geeignete Organismen sind beispielsweise die vorstehend erwähnten. Bevorzugte Organismen sind transgene Pflanzen.

Eine Ausführungsform der Erfindung sind deshalb Öle, Lipide oder Fettsäuren oder Fraktionen davon, die durch das oben beschriebene Verfahren hergestellt worden sind, besonders bevorzugt Öl, Lipid oder eine Fettsäurezusammensetzung, die PUFAs umfassen und von transgenen Pflanzen herrühren.

10

15

20

25

30

35

40

31

Diese Öle, Lipide oder Fettsäuren enthalten wie oben beschrieben vorteilhaft 6 bis 15 % Palmitinsäure, 1 bis 6 % Stearinsäure; 7 – 85 % Ölsäure; 0,5 bis 8 % Vaccensäure, 0.1 bis 1 % Arachinsäure, 7 bis 25 % gesättigte Fettsäuren, 8 bis 85 % einfach ungesättigte Fettsäuren und 60 bis 85 % mehrfach ungesättigte Fettsäuren jeweils bezogen auf 100 % und auf den Gesamtfettsäuregehalt der Organismen. Als vorteilhafte mehrfach ungesättigte Fettsäure sind in den Fettsäureester bzw. Fettsäuregemische bevorzugt mindestens 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9 oder 1 % bezogen auf den Gesamtfettsäuregehalt an Arachidonsäure enthalten. Weiterhin enthalten die Fettsäureester bzw. Fettsäuregemische, die nach dem erfindungsgemäßen Verfahren hergestellt wurden, vorteilhaft Fettsäuren ausgewählt aus der Gruppe der Fettsäuren Erucasäure (13-Docosaensäure), Sterculinsäure (9,10-Methylene octadec-9-enonsäure), Malvalinsäure (8,9-Methylen Heptadec-8-enonsäure), Chaulmoogrinsäure (Cyclopenten-dodecansäure), Furan-Fettsäure (9,12-Epoxy-octadeca-9,11-dienonsäure), Vernonsäure (9,10-Epoxyoctadec-12-enonsäure), Tarinsäure (6-Octadecynonsäure), 6-Nonadecynonsäure, Santalbinsäure (t11-Octadecen-9-ynoic acid), 6,9-Octadecenynonsäure, Pyrulinsäure (t10-Heptadecen-8-ynonsäure), Crepenyninsäure (9-Octadecen-12-ynonsäure), 13,14-Dihydrooropheinsäure, Octadecen-13-ene-9,11diynonsäure, Petroselensäure (cis-6-Octadecenonsäure), 9c,12t-Octadecadiensäure, Calendulasäure (8t10t12c-Octadecatriensäure), Catalpinsäure (9t11t13c-Octadecatriensäure), Eleosterinsäure (9c11t13t-Octadecatriensäure), Jacarinsäure (8c10t12c-Octadecatriensäure), Punicinsäure (9c11t13c-Octadecatriensäure), Parinarinsäure (9c11t13t15c-Octadecatetraensäure), Pinolensäure (all-cis-5,9,12-Octadecatriensäure), Laballensäure (5,6-Octadecadienallensäure), Ricinolsäure (12-Hydroxyölsäure) und/oder Coriolinsäure (13-Hydroxy-9c,11t-Octadecadienonsäure). Vorteilhaft enthalten die nach dem erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemische weniger als 0,1 % bezogen auf die Gesamtfettsäuren oder keine Butterbuttersäure, kein Cholesterin, keine Clupanodonsäure (= Docosapentaensäure, C22:5^{A4,8,12,15,21}) sowie keine Nisinsäure (Tetracosahexaensäure, C23:6^{A3,8,12,15,18,21}).

Vorteilhaft enthalten die erfindungsgemäßen Öle, Lipide oder Fettsäuren mindestens 0,5 %, 1 %, 2 %, 3 %, 4 % oder 5 %, vorteilhaft mindestens 6 %, 7 %, 8 %, 9 % oder 10 %, besonders vorteilhaft mindestens 11 %, 12 %, 13 %, 14 % oder 15 % ARA oder mindestens 0,5 %, 1 %, 2 %, 3 %, 4 % oder 5 %, vorteilhaft mindestens 6 %, oder 7 %, besonders vorteilhaft mindestens 8 %, 9 % oder 10 % EPA und/oder DHA bezogen auf den Gesamtfettsäuregehalt des Produktionsorganismus vorteilhaft einer Pflanze, besonders vorteilhaft einer Ölfruchtpflanze wie Soja, Raps, Kokosnuss, Ölpalme, Färbersafflor, Flachs, Hanf, Rizinus, Calendula, Erdnuss, Kakaobohne, Sonnenblume oder den oben genannten weiteren ein- oder zweikeimblättrigen Ölfruchtpflanzen.

Eine weitere erfindungsgemäße Ausführungsform ist die Verwendung des Öls, Lipids, der Fettsäuren und/oder der Fettsäurezusammensetzung in Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika. Die erfindungsgemäßen Öle, Lipide, Fettsäuren oder Fettsäuregemische können in der dem Fachmann bekannten Weise zur Abmischung mit anderen Ölen, Lipiden, Fettsäuren oder Fettsäuregemischen tierischen Ursprungs wie z.B. Fischölen verwendet werden. Auch diese Öle, Lipide,

10

15

20

25

30

35

40

32

Fettsäuren oder Fettsäuregemische, die aus pflanzlichen und tierischen Bestandteilen bestehen, können zur Herstellung von Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika verwendet werden.

Unter dem Begriff "Öl", "Lipid" oder "Fett" wird ein Fettsäuregemisch verstanden, das ungesättigte, gesättigte, vorzugsweise veresterte Fettsäure(n) enthält. Bevorzugt ist, dass das Öl, Lipid oder Fett einen hohen Anteil an mehrfach ungesättigten freien oder vorteilhaft veresterten Fettsäure(n), insbesondere Linolsäure, γ-Linolensäure, Dihomoγ-linolensäure, Arachidonsäure, α-Linolensäure, Stearidonsäure, Eicosatetraensäure, Eicosapentaensäure, Docosapentaensäure oder Docosahexaensäure hat. Vorzugsweise ist der Anteil an ungesättigten veresterten Fettsäuren ungefähr 30 %, mehr bevorzugt ist ein Anteil von 50 %, noch mehr bevorzugt ist ein Anteil von 60 %, 70 %, 80 % oder mehr. Zur Bestimmung kann z.B. der Anteil an Fettsäure nach Überführung der Fettsäuren in die Methylestern durch Umesterung gaschromatographisch bestimmt werden. Das Öl, Lipid oder Fett kann verschiedene andere gesättigte oder ungesättigte Fettsäuren, z.B. Calendulasäure, Palmitin-, Palmitolein-, Stearin-, Ölsäure etc., enthalten. Insbesondere kann je nach Ausgangsorganismus der Anteil der verschiedenen Fettsäuren in dem Öl oder Fett schwanken.

Bei den im Verfahren hergestellten mehrfach ungesättigte Fettsäuren mit vorteilhaft mindestens zwei Doppelbindungen enthalten, handelt es sich wie oben beschrieben beispielsweise um Sphingolipide, Phosphoglyceride, Lipide, Glycolipide, Phospholipide, Monoacylglycerin, Diacylglycerin, Triacylglycerin oder sonstige Fettsäureester.

Aus den so im erfindungsgemäßen Verfahren hergestellten mehrfach ungesättigte Fettsäuren mit vorteilhaft mindestens fünf oder sechs Doppelbindungen lassen sich die enthaltenden mehrfach ungesättigten Fettsäuren beispielsweise über eine Alkalibehandlung beispielsweise wäßrige KOH oder NaOH oder saure Hydrolyse vorteilhaft in Gegenwart eines Alkohols wie Methanol oder Ethanol oder über eine enzymatische Abspaltung freisetzen und isolieren über beispielsweise Phasentrennung und anschließender Ansäuerung über z.B. H₂SO₄. Die Freisetzung der Fettsäuren kann auch direkt ohne die vorhergehend beschriebene Aufarbeitung erfolgen.

Die im Verfahren verwendeten Nukleinsäuren können nach Einbringung in einem Organismus vorteilhaft einer Pflanzenzelle bzw. Pflanze entweder auf einem separaten Plasmid liegen oder vorteilhaft in das Genom der Wirtszelle integriert sein. Bei Integration in das Genom kann die Integration zufallsgemäß sein oder durch derartige Rekombination erfolgen, dass das native Gen durch die eingebrachte Kopie ersetzt wird, wodurch die Produktion der gewünschten Verbindung durch die Zelle moduliert wird, oder durch Verwendung eines Gens in trans, so dass das Gen mit einer funktionellen Expressionseinheit, welche mindestens eine die Expression eines Gens gewährleistende Sequenz und mindestens eine die Polyadenylierung eines funktionell transkribierten Gens gewährleistende Sequenz enthält, funktionell verbunden ist. Vorteilhaft werden die Nukleinsäuren über Multiexpressionskassetten oder Konstrukte zur multi-

10

15

20

25

30

35

40

33

parallelen Expression in die Organismen vorteilhaft zur multiparallelen samenspezifischen Expression von Genen in die Pflanzen gebracht.

Moose und Algen sind die einzigen bekannten Pflanzensysteme, die erhebliche Mengen an mehrfach ungesättigten Fettsäuren, wie Arachidonsäure (ARA) und/oder Eicosapentaensäure (EPA) und/oder Docosahexaensäure (DHA) herstellen. Moose enthalten PUFAs in Membranlipiden während Algen, algenverwandte Organismen und einige Pilze auch nennenswerte Mengen an PUFAs in der Triacylglycerolfraktion akkumulieren. Daher eignen sich Nukleinsäuremoleküle, die aus solchen Stämmen isoliert werden, die PUFAs auch in der Triacylglycerolfraktion akkumulieren, besonders vorteilhaft für das erfindungsgemäße Verfahren und damit zur Modifikation des Lipidund PUFA-Produktionssystems in einem Wirt, insbesondere Pflanzen, wie Ölfruchtpflanzen, beispielsweise Raps, Canola, Lein, Hanf, Soja, Sonnenblumen, Borretsch. Sie sind deshalb vorteilhaft im erfindungsgemäßen Verfahren verwendbar.

Als Substrate der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit Δ-5-Elongase-, Δ-6-Elongase- und/oder ω-3-Desaturase-Aktivität codieren, und/oder den weiteren verwendeten Nukleinsäuren wie den Nukleinsäuren, die für Polypeptide des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]--Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenase(n), Lipoxygenase(n), Triacylglycerol-Lipase(n), Allenoxid-Synthase(n), Hydroperoxid-Lyase(n) oder Fettsäure-Elongase(n) codieren eignen sich vorteilhaft C₁₆-, C₁₈- oder C₂₀-Fettsäuren. Bevorzugt werden die im Verfahren als Substrate umgesetzten Fettsäuren in Form ihrer Acyl-CoA-Ester und/oder ihrer Phospholipid-Ester umgesetzt.

Zur Herstellung der erfindungsgemäßen langkettigen PUFAs müssen die mehrfach ungesättigten C₁₈-Fettsäuren zunächst durch die enzymatische Aktivität einer Desaturase zunächst desaturiert und anschließend über eine Elongase um mindestens zwei Kohlenstoffatome verlängert werden. Nach einer Elongationsrunde führt diese Enzymaktivität zu C20-Fettsäuren, und nach zwei Elongationsrunden zu C22-Fettsäuren. Die Aktivität der erfindungsgemäßen Verfahren verwendeten Desaturasen und Elongasen führt vorzugsweise zu C₁₈-, C₂₀- und/oder C₂₂-Fettsäuren vorteilhaft mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier, fünf oder sechs Doppelbindungen, besonders bevorzugt zu C20- und/oder C22-Fettsäuren mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier, fünf oder sechs Doppelbindungen, ganz besonders bevorzugt mit fünf oder sechs Doppelbindungen im Molekül. Nachdem eine erste Desaturierung und die Verlängerung stattgefunden hat, können weitere Desaturierungs- und Elongierungsschritte wie z.B. eine solche Desaturierung in Δ -5- und Δ -4-Position in erfolgen. Besonders bevorzugt als Produkte des erfindungsgemäßen Verfahrens sind Dihomo-γ-linolensäure, Arachidonsäure, Eicosapentaensäure, Docosapetaensäure und/oder Docosa-

10

5

20

25

30

35

40

34

hesaensäure. Die C₂₀-Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure können durch die erfindungsgemäße enzymatische Aktivität in Form der freien Fettsäure oder in Form der Ester, wie Phospholipide, Glycolipide, Sphingolipide, Phosphoglyceride, Monoacylglycerin, Diacylglycerin oder Triacylglycerin, verlängert werden.

Der bevorzugte Biosyntheseort von Fettsäuren, Ölen, Lipiden oder Fette in den vorteilhaft verwendeten Pflanzen ist beispielsweise im allgemeinen der Samen oder Zellschichten des Samens, so dass eine samenspezifische Expression der im Verfahren verwendeten Nukleinsäuren sinnvoll ist. Es ist jedoch naheliegend, dass die Biosynthese von Fettsäuren, Ölen oder Lipiden nicht auf das Samengewebe beschränkt sein muss, sondern auch in allen übrigen Teilen der Pflanze – beispielsweise in Epidermiszellen oder in den Knollen – gewebespezifisch erfolgen kann.

Werden im erfindungsgemäßen Verfahren als Organismen Mikroorganismus wie Hefen wie Saccharomyces oder Schizosaccharomyces, Pilze wie Mortierella, Aspergillus, Phytophtora, Entomophthora, Mucor oder Thraustochytrium Algen wie Isochrysis, Mantoniella, Ostreococcus, Phaeodactylum oder Crypthecodinium verwendet, so werden diese Organismen vorteilhaft fermentativ angezogen.

Durch die Verwendung der erfindungsgemäßen Nukleinsäuren, die für eine Δ -5-Elongase codieren, können im Verfahren die hergestellten mehrfach ungesättigten Fettsäuren mindestens um 5 %, bevorzugt mindestens um 10 %, besonders bevorzugt mindestens um 20 %, ganz besonders bevorzugt um mindestens 50 % gegenüber dem Wildtyp der Organismen, die die Nukleinsäuren nicht rekombinant enthalten, erhöht werden.

Durch das erfindungsgemäße Verfahren können die hergestellten mehrfach ungesättigten Fettsäuren in den im Verfahren verwendeten Organismen prinzipiell auf zwei Arten erhöht werden. Es kann vorteilhaft der Pool an freien mehrfach ungesättigten Fettsäuren und/oder der Anteil der über das Verfahren hergestellten veresterten mehrfach ungesättigten Fettsäuren erhöht werden. Vorteilhaft wird durch das erfindungsgemäße Verfahren der Pool an veresterten mehrfach ungesättigten Fettsäuren in den transgenen Organismen erhöht.

Werden im erfindungsgemäßen Verfahren als Organismen Mikroorganismen verwendet, so werden sie je nach Wirtsorganismus in dem Fachmann bekannter Weise angezogen bzw. gezüchtet. Mikroorganismen werden in der Regel in einem flüssigen Medium, das eine Kohlenstoffquelle meist in Form von Zuckern, eine Stickstoffquelle meist in Form von organischen Stickstoffquellen wie Hefeextrakt oder Salzen wie Ammoniumsulfat, Spurenelemente wie Eisen-, Mangan-, Magnesiumsalze und gegebenenfalls Vitamine enthält, bei Temperaturen zwischen 0°C und 100°C, bevorzugt zwischen 10°C bis 60°C unter Sauerstoffbegasung angezogen. Dabei kann der pH der Nährflüssigkeit auf einen festen Wert gehalten werden, das heißt während der Anzucht reguliert werden oder nicht. Die Anzucht kann batch weise, semi batch weise oder kontinuierlich erfolgen. Nährstoffe können zu Beginn der Fermentation vorgelegt

20

25

30

35

35

oder semikontinuierlich oder kontinuierlich nachgefüttert werden. Die hergestellten mehrfach ungesättigten Fettsäuren können nach dem Fachmann bekannten Verfahren wie oben beschrieben aus den Organismen isoliert werden. Beispielsweise über Extraktion, Destillation, Kristallisation, ggf. Salzfällung und/oder Chromatographie. Die Organismen können dazu vorher noch vorteilhaft aufgeschlossen werden.

Das erfindungsgemäße Verfahren wird, wenn es sich bei den Wirtsorganismen um Mikroorganismen handelt, vorteilhaft bei einer Temperatur zwischen 0°C bis 95°, bevorzugt zwischen 10°C bis 85°C, besonders bevorzugt zwischen 15°C bis 75°C, ganz besonders bevorzugt zwischen 15°C bis 45°C durchgeführt.

10 Der pH–Wert wird dabei vorteilhaft zwischen pH 4 und pH12, bevorzugt zwischen pH 6 und pH9, besonders bevorzugt zwischen pH 7 und pH8 gehalten.

Das erfindungsgemäße Verfahren kann batchweise, semi-batchweise oder kontinuierlich betrieben werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Eischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) zu finden.

Das zu verwendende Kulturmedium hat in geeigneter Weise den Ansprüchen der jeweiligen Stämme zu genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods für General Bacteriology" der merican Society für Bacteriology (Washington D. C., USA, 1981) enthalten.

Diese erfindungsgemäß einsetzbaren Medien umfassen wie oben beschrieben gewöhnlich eine oder mehrere Kohlenstoffquellen, Stickstoffquellen, anorganische Salze, Vitamine und/oder Spurenelemente.

Bevorzugte Kohlenstoffquellen sind Zucker, wie Mono-, Di- oder Polysaccharide. Sehr gute Kohlenstoffquellen sind beispielsweise Glucose, Fructose, Mannose, Galactose, Ribose, Sorbose, Ribulose, Lactose, Maltose, Saccharose, Raffinose, Stärke oder Cellulose. Man kann Zucker auch über komplexe Verbindungen, wie Melassen, oder andere Nebenprodukte der Zucker-Raffinierung zu den Medien geben. Es kann auch vorteilhaft sein, Gemische verschiedener Kohlenstoffquellen zuzugeben. Andere mögliche Kohlenstoffquellen sind Öle und Fette wie z.B. Sojaöl, Sonnenblumenöl, Erdnussöl und/oder Kokosfett, Fettsäuren wie z.B. Palmitinsäure, Stearinsäure und/oder Linolsäure, Alkohole und/oder Polyalkohole wie z. B. Glycerin, Methanol und/oder Ethanol und/oder organische Säuren wie z.B. Essigsäure und/oder Milchsäure.

Stickstoffquellen sind gewöhnlich organische oder anorganische Stickstoffverbindungen oder Materialien, die diese Verbindungen enthalten. Beispielhafte Stickstoffquellen umfassen Ammoniak in flüssiger- oder gasform oder Ammoniumsalze, wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat oder

15

20

25

36

Ammoniumnitrat, Nitrate, Harnstoff, Aminosäuren oder komplexe Stickstoffquellen, wie Maisquellwasser, Sojamehl, Sojaprotein, Hefeextrakt, Fleischextrakt und andere. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.

Anorganische Salzverbindungen, die in den Medien enthalten sein können, umfassen die Chlorid-, Phosphor- oder Sulfatsalze von Calcium, Magnesium, Natrium, Kobalt, Molybdän, Kalium, Mangan, Zink, Kupfer und Eisen.

Als Schwefelquelle für die Herstellung von schwefelhaltigen Feinchemikalien, insbesondere von Methionin, können anorganische schwefelhaltige Verbindungen wie beispielsweise Sulfate, Sulfite, Dithionite, Tetrathionate, Thiosulfate, Sulfide aber auch organische Schwefelverbindungen, wie Mercaptane und Thiole, verwendet werden.

Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden.

Chelatbildner können zum Medium gegeben werden, um die Metallionen in Lösung zu halten. Besonders geeignete Chelatbildner umfassen Dihydroxyphenole, wie Catechol oder Protocatechuat, oder organische Säuren, wie Citronensäure.

1.112

Die erfindungsgemäß zur Kultivierung von Mikroorganismen eingesetzten Fermentationsmedien enthalten üblicherweise auch andere Wachstumsfaktoren, wie Vitamine oder Wachstumsförderer, zu denen beispielsweise Biotin, Riboflavin, Thiamin, Folsäure, Nikotinsäure, Penthothenat und Pyridoxin gehören. Wachstumsfaktoren und Salze stammen häufig von komplexen Medienkomponenten, wie Hefeextrakt, Melassen, Maisquellwasser und dergleichen. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genaue Zusammensetzung der Medienverbindungen hängt stark vom jeweiligen Experiment ab und wird für jeden spezifischen Fall individuell entschieden. Information über die Medienoptimierung ist erhältlich aus dem Lehrbuch "Applied Microbiol. Physiology, A Practical Approach" (Hrsg. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) S. 53-73, ISBN 0 19 963577 3). Wachstumsmedien lassen sich auch von kommerziellen Anbietern beziehen, wie Standard 1 (Merck) oder BHI (Brain heart infusion, DIFCO) und dergleichen.

30 Sämtliche Medienkomponenten werden, entweder durch Hitze (20 min bei 1,5 bar und 121°C) oder durch Sterilfiltration, sterilisiert. Die Komponenten können entweder zusammen oder nötigenfalls getrennt sterilisiert werden. Sämtliche Medienkomponenten können zu Beginn der Anzucht zugegen sein oder wahlfrei kontinuierlich oder chargenweise hinzugegeben werden.

Die Temperatur der Kultur liegt normalerweise zwischen 15°C und 45°C, vorzugsweise bei 25°C bis 40°C und kann während des Experimentes konstant gehalten oder verändert werden. Der pH-Wert des Mediums sollte im Bereich von 5 bis 8,5, vorzugsweise um 7,0 liegen. Der pH-Wert für die Anzucht lässt sich während der Anzucht durch Zugabe von basischen Verbindungen wie Natriumhydroxid, Kaliumhydroxid,

10

5

20

25

30

37

Ammoniak bzw. Ammoniakwasser oder sauren Verbindungen wie Phosphorsäure oder Schwefelsäure kontrollieren. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z. B. Fettsäurepolyglykolester, eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe, wie z. B. Antibiotika, hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff haltige Gasmischungen, wie z.B. Umgebungsluft, in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

Die so erhaltenen, insbesondere mehrfach ungesättigte Fettsäuren enthaltenden, Fermentationsbrühen haben üblicherweise eine Trockenmasse von 7,5 bis 25 Gew.-%.

Die Fermentationsbrühe kann anschließend weiterverarbeitet werden. Je nach Anforderung kann die Biomasse ganz oder teilweise durch Separationsmethoden, wie z.B. Zentrifugation, Filtration, Dekantieren oder einer Kombination dieser Methoden aus der Fermentationsbrühe entfernt oder vollständig in ihr belassen werden. Vorteilhaft wird die Biomasse nach Abtrennung aufgearbeitet.

Die Fermentationsbrühe kann aber auch ohne Zellabtrennung mit bekannten Methoden, wie z.B. mit Hilfe eines Rotationsverdampfers, Dünnschichtverdampfers, Fallfilmverdampfers, durch Umkehrosmose, oder durch Nanofiltration, eingedickt beziehungsweise aufkonzentriert werden. Diese aufkonzentrierte Fermentationsbrühe kann schließlich zur Gewirnung der darin enthaltenen Fettsäuren aufgearbeitet werden.

Die im Verfahren gewonnenen Fettsäuren eignen sich auch als Ausgangsmaterial für die chemische Synthese von weiteren Wertprodukten. Sie können beispielsweise in Kombination miteinander oder allein zur Herstellung von Pharmaka, Nahrungsmittel, Tierfutter oder Kosmetika verwendet werden.

Ein weiterer erfindungsgemäßer Gegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -5-Elongase codieren, wobei die durch die Nukleinsäuresequenzen codierten Δ -5-Elongasen C_{20} -Fettsäuren mit mindestens vier Doppelbindungen im Fettsäuremolekül umsetzen; die vorteilhaft letztlich in Diacylglyceride und/oder Triacylglyceride eingebaut werden.

Vorteilhafte isolierte Nukleinsäuresequenzen sind Sequenzen ausgewählt aus der Gruppe:

a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63; SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83 oder SEQ ID NO: 85 dargestellten Sequenz,

10

25

35

38

- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84 oder SEQ ID NO: 86 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63; SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83 oder SEQ ID NO: 85 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84 oder SEQ ID NO: 86 codieren und eine Δ-5-Elongaseaktivität aufweisen.
 - Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -6-Elongaseaktivität codieren, ausgewählt aus der Gruppe:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 69 oder in SEQ ID NO: 81 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen
 Codes von der in SEQ ID NO: 70 oder SEQ ID NO: 82 dargestellten Aminosäuresequenz ableiten sequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 69 oder SEQ ID NO: 81 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 70 oder SEQ ID NO: 82 codieren und eine Δ-6-Elongaseaktivität aufweisen.

Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit ω -3-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 dargestellten Sequenz,
- 30 b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 87 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 aufweisen und eine ω -3-Desaturaseaktivität aufweisen.

Ein weiterer Erfindungsgegenstand sind Genkonstrukte, die die erfindungsgemäßen Nukleinsäuresequenzen SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID

25

30

35

40

39

NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63; SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 enthalten, wobei die Nukleinsäure funktionsfähig mit einem oder mehreren Regulationssignalen verbunden ist. Zusätzlich können weitere Biosynthesegene des Fettsäure- oder Lipidstoff-5 wechsels enthält ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxy-10 genasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n) im Genkonstrukt enthalten sein. Vorteilhaft sind zusätzlich Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe der Δ -4-Desaturase, Δ -5-Desaturase, Δ -6-Desaturase, Δ -8-Desatuase, Δ -9-Desaturase, Δ -12-Desaturase, Δ -6-Elongase, Δ -9-Elongase oder ω -3-Desaturase 15 enthalten. Carlotte Age

Vorteilhaft stammen alle die im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen aus einem eukaryontischen Organismus wie einer Pflanze, einem Mikroorganismus oder einem Tier. Bevorzugt stammen die Nukleinsäuresequenzen aus der Ordnung Salmoniformes, Algen wie Mantoniella oder Ostreococcus, Pilzen wie der Gattung Phytophtora oder von Diatomeen wie den Gattungen Thallasiosira oder Crythecodinium.

Die im Verfahren verwendeten Nukleinsäuresequenzen, die für Proteine mit ω -3-Desaturase-, Δ -4-Desaturase-, Δ -5-Desaturase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -9-Desaturase-, Δ -12-Desaturase-, Δ -5-Elongase-, Δ -6-Elongase- oder Δ -9-Elongase-Aktivität codieren, werden vorteilhaft allein oder bevorzugt in Kombination in einer Expressionskassette (= Nukleinsäurekonstrukt), die die Expression der Nukleinsäuren in einem Organismus vorteilhaft einer Pflanze oder einem Mikroorganismus ermöglicht, eingebracht. Es kann im Nukleinsäurekonstrukt mehr als eine Nukleinsäuresequenz einer enzymatischen Aktivität wie z.B. einer Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase enthalten sein.

Zum Einbringen werden die im Verfahren verwendeten Nukleinsäuren vorteilhaft einer Amplifikation und Ligation in bekannter Weise unterworfen. Vorzugsweise geht man in Anlehnung an das Protokoll der Pfu-DNA-Polymerase oder eines Pfu/Taq-DNA-Polymerasegemisches vor. Die Primer werden in Anlehnung an die zu amplifizierende Sequenz gewählt. Zweckmäßigerweise sollten die Primer so gewählt werden, dass das Amplifikat die gesamte kodogene Sequenz vom Start- bis zum Stop-Kodon umfasst. Im Anschluss an die Amplifikation wird das Amplifikat zweckmäßigerweise analysiert. Beispielsweise kann die Analyse nach gelelektrophoretischer Auftrennung hinsichtlich Qualität und Quantität erfolgen. Im Anschluss kann das Amplifikat nach einem Standardprotokoll gereinigt werden (z.B. Qiagen). Ein Aliquot des gereinigten Amplifikats steht dann für die nachfolgende Klonierung zur Verfügung. Geeignete Klonie-

10

- 15

20

25

30

35

40

40

rungsvektoren sind dem Fachmann allgemein bekannt. Hierzu gehören insbesondere Vektoren, die in mikrobiellen Systemen replizierbar sind, also vor allem Vektoren, die eine effiziente Klonierung in Hefen oder Pilze gewährleisten, und die stabile Transformation von Pflanzen ermöglichen. Zu nennen sind insbesondere verschiedene für die T-DNA-vermittelte Transformation geeignete, binäre und co-integrierte Vektorsysteme. Derartige Vektorsysteme sind in der Regel dadurch gekennzeichnet, dass sie zumindest die für die Agrobakterium-vermittelte Transformation benötigten vir-Gene sowie die T-DNA begrenzenden Sequenzen (T-DNA-Border) beinhalten. Vorzugsweise umfassen diese Vektorsysteme auch weitere cis-regulatorische Regionen wie Promotoren und Terminatoren und/oder Selektionsmarker, mit denen entsprechend transformierte Organismen identifiziert werden können. Während bei co-integrierten Vektorsystemen vir-Gene und T-DNA-Sequenzen auf demselben Vektor angeordnet sind, basieren binäre Systeme auf wenigstens zwei Vektoren, von denen einer vir-Gene, aber keine T-DNA und ein zweiter T-DNA, jedoch kein vir-Gen trägt. Dadurch sind letztere Vektoren relativ klein, leicht zu manipulieren und sowohl in E.-coli als auch in Agrobacterium zu replizieren. Zu diesen binären Vektoren gehören Vektoren der Serien pBIB-HYG, pPZP, pBecks, pGreen. Erfindungsgemäß bevorzugt verwendet werden Bin19, pBI101, pBinAR, pGPTV und pCAMBIA. Eine Übersicht über binäre Vektoren und ihre Verwendung gibt Hellens et al, Trends in Plant Science (2000) 5, 446-451. Für die Vektorpräparation können die Vektoren zunächst mit Restriktionsendonuklease(n) linearisiert und dann in geeigneter Weise enzymatisch modifiziert werden. Im Anschluss wird der Vektor gereinigt und ein Aliquot für die Klonierung eingesetzt. Bei der Klonierung wird das enzymatisch geschnittenen und erforderlichenfalls gereinigten Amplifikat mit ähnlich präparierten Vektorfragmenten mit Einsatz von Ligase kloniert. Dabei kann ein bestimmtes Nukleinsäurekonstrukt bzw. Vektor- oder Plasmidkonstrukt einen oder auch mehrere kodogene Genabschnitte aufweisen. Vorzugsweise sind die kodogenen Genabschnitte in diesen Konstrukten mit regulatorischen Sequenzen funktional verknüpft. Zu den regulatorischen Sequenzen gehören insbesondere pflanzliche Sequenzen wie die oben beschriebenen Promotoren und Terminatoren. Die Konstrukte lassen sich vorteilhafterweise in Mikroorganismen, insbesondere Escherichia coli und Agrobacterium tumefaciens, unter selektiven Bedingungen stabil propagieren und ermöglichen einen Transfer von heterologer DNA in Pflanzen oder Mikroorganismen.

Unter der vorteilhaften Verwendung von Klonierungsvektoren können die im Verfahren verwendeten Nukleinsäuren, die erfinderischen Nukleinsäuren und Nukleinsäurekonstrukte in Organismen wie Mikroorganismen oder vorteilhaft Pflanzen eingebracht werden und damit bei der Pflanzentransformation verwendet werden, wie denjenigen, die veröffentlicht sind in und dort zitiert sind: Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Florida), Kapitel 6/7, S. 71-119 (1993); F.F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-143; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225)). Die im Verfahren ver-

10

15

20

25

30

35

40

41

wendeten Nukleinsäuren, die erfinderischen Nukleinsäuren und Nukleinsäurekonstrukte und/oder Vektoren lassen sich damit zur gentechnologischen Veränderung eines breiten Spektrums an Organismen vorteilhaft an Pflanzen verwenden, so dass diese bessere und/oder effizientere Produzenten von PUFAs werden.

Es gibt eine Reihe von Mechanismen, durch die eine Veränderung des erfindungsgemäßen Δ-5-Elongase-, Δ-6-Elongase und/oder ω-3-Desaturase-Proteins sowie der weiteren im Verfahren verwendeten Proteine wie die Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase- oder Δ-4-Desaturase-Proteine möglich ist, so dass die Ausbeute, Produktion und/oder Effizienz der Produktion der vorteilhaft mehrfach ungesättigten Fettsäuren in einer Pflanze bevorzugt in einer Ölfruchtpflanze oder einem Mikroorganismus aufgrund dieses veränderten Proteins direkt beeinflusst werden kann. Die Anzahl oder Aktivität der ω-3-Desaturase-, Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturase-Proteine oder -Gene kann erhöht werden, so dass größere Mengen der Genprodukte und damit letztlich größere Mengen der Verbindungen der allgemeinen Formel I hergestellt werden. Auch eine de novo Synthese in einem Organismus, dem die Aktivität und Fähigkeit zur Biosynthese der Verbindungen vor dem Einbringen des/der entsprechenden Gens/Gene fehlte, ist möglich. Entsprechendes gilt für die Kombination mit weiteren Desaturasen oder Elongasen oder weiteren Enzymen aus dem Fettsäure- und Lipidstoffwechsel. Auch die Verwendung verschiedener divergenter, d.h. auf DNA-Sequenzebene unterschiedlicher Sequenzen kann dabei vorteilhaft sein bzw. die Verwendung von Promotoren zur Genexpression, die eine andere zeitliche Genexpression z.B. abhängig vom Reifegrad eines Samens oder Öl-speichernden Gewebes ermöglicht.

Durch das Einbringen eines ω-3-Desaturase-, Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- und/oder Δ-4-Desaturase-Genes in einen Organismus allein oder in Kombination mit anderen Genen in eine Zelle kann nicht nur den Biosynthesefluss zum Endprodukt erhöht, sondern auch die entsprechende Triacylglycerin-Zusammensetzung erhöht oder de novo geschaffen werden. Ebenso kann die Anzahl oder Aktivität anderer Gene, die am Import von Nährstoffen, die zur Biosynthese einer oder mehrerer Fettsäuren, Ölen, polaren und/oder neutralen Lipiden nötig sind, erhöht sein, so dass die Konzentration dieser Vorläufer, Cofaktoren oder Zwischenverbindungen innerhalb der Zellen oder innerhalb des Speicherkompartiments erhöht ist, wodurch die Fähigkeit der Zellen zur Produktion von PUFAs, wie im folgenden beschrieben, weiter gesteigert wird. Durch Optimierung der Aktivität oder Erhöhung der Anzahl einer oder mehrerer ω-3-Desaturase-, Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturase-Gene, die an der Biosynthese dieser Verbindungen beteiligt sind, oder durch Zerstören der Aktivität einer oder mehrerer Gene, die am Abbau dieser Verbindungen beteiligt sind, kann es möglich sein, die Ausbeute, Produktion und/oder Effizienz der Produktion von Fettsäure- und Lipidmolekülen aus Organismen und vorteilhaft aus Pflanzen zu steigern.

Die im erfindungsgemäßen Verfahren verwendeten isolierten Nukleinsäuremoleküle codieren für Proteine oder Teile von diesen, wobei die Proteine oder das einzelne Protein oder Teile davon eine Aminosäuresequenz enthält, die ausreichend homolog zu einer Aminosäuresequenz ist, die in den Sequenzen SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, 10 SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86 oder SEQ ID NO: 88 dargestellt ist, so dass die Proteine oder Teile davon noch eine ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturase-Aktivität aufweisen. Vorzugsweise haben die 15 Proteine oder Teile davon, die von dem Nukleinsäuremolekül/den Nukleinsäuremolekülen kodiert wird/werden, noch seine wesentliche enzymatische Aktivität und die Fähigkeit, am Stoffwechsel von zum Aufbau von Zellmembranen oder Lipidkörperchen in Organismen vorteilhaft in Pflanzen notwendigen Verbindungen oder am Transport von Molekülen über diese Membranen teilzunehmen. Vorteilhaft sind die von den 20 Nukleinsäuremolekülen kodierten Proteine zu mindestens etwa 50 %, vorzugsweise mindestens etwa 60 % und stärker bevorzugt mindestens etwa 70 %, 80 % oder 90 % und am stärksten bevorzugt mindestens etwa 85 %, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, 99 % oder mehr identisch zu den in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, 25 SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, 30 SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86 oder SEQ ID NO: 88 dargestellten Aminosäuresequenzen. Im Sinne der Erfindung ist unter Homologie oder homolog, Identität oder identisch zu verstehen.

Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für das Vergleichen verschiedener Sequenzen stehen dem Fachmann eine Reihe von Programmen, die auf verschiedenen Algorithmen beruhen zur Verfügung. Dabei liefern die Algorithmen von Needleman und Wunsch oder Smith und Waterman besonders zuverlässige Ergebnisse. Für die Sequenzvergleiche wurde das Programm PileUp verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151–153) oder die Programme Gap und BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im GCG Software-Packet [Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in

30

35

43

Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm GAP über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 und Average Mismatch: 0.000. Diese Einstellungen wurden, falls nicht anders angegeben, immer als Standardeinstellungen für Sequenzvergleiche verwendet wurden.

Unter wesentlicher enzymatischer Aktivität der im erfindungsgemäßen Verfahren verwendeten ω -3-Desaturase-, Δ -9-Elongase, Δ -6-Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ -5-Elongase oder Δ -4-Desaturase ist zu verstehen, dass sie gegenüber den durch die Sequenz mit SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, 10 SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, 15 SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 und deren Derivate codierten Proteinen/Enzymen im Vergleich noch mindestens eine enzymatische Aktivität von mindestens 10 %, bevorzugt 20 %, besonders bevorzugt 30 % und ganz besonders 40 % aufweisen und damit am Stoffwechsel von zum Auf-20. bau von Fettsäuren, Fettsäureester wie Diacylglyceride und/oder Triacylglyceride in einem Organismus vorteilhaft einer Pflanze oder Pflanzenzelle notwendigen Verbindungen oder am Transport von Molekülen über Membranen teilnehmen können, wobei C₁₈-, C₂₀- oder C₂₂-Kohlenstoffketten im Fettsäuremolekül mit Doppelbindungen an mindestens zwei, vorteilhaft drei, vier, fünf oder sechs Stellen gemeint sind. 25

Vorteilhaft im Verfahren verwendbare Nukleinsäuren stammen aus Bakterien, Pilzen, Diatomeen, Tieren wie Caenorhabditis oder Oncorhynchus oder Pflanzen wie Algen oder Moosen wie den Gattungen Shewanella, Physcomitrella, Thraustochytrium, Fusarium, Phytophthora, Ceratodon, Mantoniella, Ostreococcus, Isochrysis, Aleurita, Muscarioides, Mortierella, Borago, Phaeodactylum, Crypthecodinium, speziell aus den Gattungen und Arten Oncorhynchus mykiss, Thallasiosira pseudonona, Mantoniella squamata, Ostreococcus sp., Ostreococcus tauri, Euglena gracilis, Physcomitrella patens, Phytophtora infestans, Fusarium graminaeum, Cryptocodinium cohnii, Ceratodon purpureus, Isochrysis galbana, Aleurita farinosa, Thraustochytrium sp., Muscarioides viallii, Mortierella alpina, Borago officinalis, Phaeodactylum tricornutum, Caenorhabditis elegans oder besonders vorteilhaft aus Oncorhynchus mykiss, Thallasiosira pseudonona oder Cryptocodinium cohnii.

Alternativ können im erfindungsgemäßen Verfahren Nukleotidsequenzen verwendet werden, die für ω-3-Desaturase-, Δ-9-Elongase, Δ-6-Desaturase, Δ-8-Desaturase, Δ-6-Elongase, Δ-5-Desaturase, Δ-5-Elongase oder Δ-4-Desaturase codieren und die an eine Nukleotidsequenz, wie in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15,

5

20

25

30

35

40

44

SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 dargestellt, vorteilhaft unter stringenten Bedingungen hybridisieren.

Die im Verfahren verwendeten Nukleinsäuresequenzen werden vorteilhaft in einer Expressionskassette, die die Expression der Nukleinsäuren in Organismen wie Mikroorganismen oder Pflanzen ermöglicht, eingebracht.

Dabei werden die Nukleinsäuresequenzen, die für die ω -3-Desaturase-, Δ -9-Elongase, Δ -6-Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ -5-Elongase oder Δ -4-Desaturase codieren, mit einem oder mehreren Regulationssignalen vorteilhafterweise zur Erhöhung der Genexpression funktionell verknüpft. Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert und/oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird. Beispielsweise handelt es sich bei diesen regulatorischen Sequenzen um Sequenzen an die Induktoren oder Repressoren binden und so die Expression der Nukleinsäure regulieren. Zusätzlich zu diesen neuen Regulationssequenzen oder anstelle dieser Sequenzen kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Die Expressionskassette (= Expressionskonstrukt = Genkonstrukt) kann aber auch einfacher aufgebaut sein, das heißt es wurden keine zusätzlichen Regulationssignale vor die Nukleinsäuresequenz oder dessen Derivate inseriert und der natürliche Promotor mit seiner Regulation wurde nicht entfernt. Stattdessen wurde die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und/oder die Genexpression gesteigert wird. Diese veränderten Promotoren können in Form von Teilsequenzen (= Promotor mit Teilen der erfindungsgemäßen Nukleinsäuresequenzen) auch allein vor das natürliche Gen zur Steigerung der Aktivität gebracht werden. Das Genkonstrukt kann außerdem vorteilhafterweise auch eine oder mehrere sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promotor enthalten, die eine erhöhte Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der DNA-Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden wie weitere regulatorische Elemente oder Terminatoren. Die $\,\omega$ -3-Desaturase-, $\,\Delta$ -4-Desaturase-, $\,\Delta$ 5-Desaturase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -5-Elongase-, Δ -6-Elongase- und/oder Δ -9-Elongase-Gene können in einer oder mehreren Kopien in der Expressionskassette (= Genkonstrukt) enthalten sein. Vorteilhaft liegt nur jeweils eine Kopie der Gene in der Expressionskassette vor. Dieses Genkonstrukt oder die Genkonstrukte können zusammen im Wirtsorganismus exprimiert werden. Dabei kann das Genkonstrukt oder die Genkonstrukte in einem oder mehreren Vektoren inseriert sein und frei in der Zelle vorliegen oder aber im Genom inseriert sein. Es ist vorteilhaft für die Insertion weiterer Gene im Wirtsgenom, wenn die zu exprimierenden Gene zusammen in einem Genkonstrukt vorliegen.

Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.

Eine weitere Ausführungsform der Erfindung sind ein oder mehrere Genkonstrukte, die eine oder mehrere Sequenzen enthalten, die durch SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, *: SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, 20 SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 oder dessen Derivate definiert sind und für Polypeptide gemäß SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, at Lating SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, 25 SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86 30 oder SEQ ID NO: 88 kodieren. Die genannten ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongaseoder Δ-4-Desaturase-Proteine führen dabei vorteilhaft zu einer Desaturierung oder Elongierung von Fettsäuren, wobei das Substrat vorteilhaft ein, zwei, drei, vier, fünf oder sechs Doppelbindungen aufweist und vorteilhaft 18, 20 oder 22 Kohlenstoffatome 35 im Fettsäuremolekül aufweist. Gleiches gilt für ihre Homologen, Derivate oder Analoga, die funktionsfähig mit einem oder mehreren Regulationssignalen, vorteilhafterweise zur Steigerung der Genexpression, verbunden sind.

Vorteilhafte Regulationssequenzen für das neue Verfahren liegen beispielsweise in Promotoren vor, wie dem cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, laclq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, λ-PR- oder λ-PL-Promotor und werden vorteilhafterweise in Gram-negativen Bakterien angewendet. Weitere vorteilhafte Regu-

10

15

20

30

35

40

46

lationssequenzen liegen beispielsweise in den Gram-positiven Promotoren amy und SPO2, in den Hefe- oder Pilzpromotoren ADC1, MFα, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH oder in den Pflanzenpromotoren CaMV/35S [Franck et al., Cell 21 (1980) 285-294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, lib4, usp, STLS1, B33, nos oder im Ubiquitin- oder Phaseolin-Promotor vor. In diesem Zusammenhang vorteilhaft sind ebenfalls induzierbare Promotoren, wie die in EP-A-0 388 186 (Benzylsulfonamid-induzierbar), Plant J. 2, 1992:397-404 (Gatz et al., Tetracyclin-induzierbar), EP-A-0 335 528 (Abzisinsäure-induzierbar) oder WO 93/21334 (Ethanol- oder Cyclohexenol-induzierbar) beschriebenen Promotoren. Weitere geeignete Pflanzenpromotoren sind der Promotor von cytosolischer FBPase oder der ST-LSI-Promotor der Kartoffel (Stockhaus et al., EMBO J. 8, 1989, 2445), der Phosphoribosylpyrophosphatamidotransferase-Promotor aus Glycine max (Genbank-Zugangsnr. U87999) oder der in EP-A-0 249 676 beschriebene nodienspezifische Promotor. Besonders vorteilhafte Promotoren sind Promotoren, welche die Expression in Geweben ermöglichen, die an der Fettsäurebiosynthese beteiligt sind. Ganz besonders vorteilhaft sind samenspezifische Promotoren, wie der ausführungsgemäße USP Promotor aber auch andere Promotoren wie der LeB4-, DC3, Phaseolin- oder Napin-Promotor. Weitere besonders vorteilhafte Promotoren sind samenspezifische Promotoren, die für monokotyle oder dikotyle Pflanzen verwendet werden können und in US 5,608,152 (Napin-Promotor aus Raps), WO 98/45461 (Oleosin-Promotor aus Arobidopsis), US 5,504,200 (Phaseolin-Promotor aus Phaseolus vulgaris), WO 91/13980 (Bce4-Promotor aus Brassica), von Baeumlein et al., Plant J., 2, 2, 1992:233-239 (LeB4-Promotor aus einer Leguminose) beschrieben sind, wobei sich diese Promotoren für Dikotyledonen eignen. Die folgenden Promotoren eignen sich beispielsweise für Monokotyledonen lpt-2- oder lpt-1-Promotor aus Gerste (WO 95/15389 und 25 WO 95/23230), Hordein-Promotor aus Gerste und andere, in WO 99/16890 beschriebene geeignete Promotoren.

Es ist im Prinzip möglich, alle natürlichen Promotoren mit ihren Regulationssequenzen, wie die oben genannten, für das neue Verfahren zu verwenden. Es ist ebenfalls möglich und vorteilhaft, zusätzlich oder alleine synthetische Promotoren zu verwenden, besonders wenn sie eine Samen-spezifische Expression vermitteln, wie z.B. beschrieben in WO 99/16890.

Um einen besonders hohen Gehalt an PUFAs vor allem in transgenen Pflanzen zu erzielen, sollten die PUFA-Biosynthesegene vorteilhaft samenspezifisch in Ölsaaten exprimiert werden. Hierzu können Samen-spezifische Promotoren verwendet werden, bzw. solche Promotoren die im Embryo und/oder im Endosperm aktiv sind. Samenspezifische Promotoren können prinzipiell sowohl aus dikotolydonen als auch aus monokotolydonen Pflanzen isoliert werden. Im folgenden sind vorteilhafte bevorzugte Promotoren aufgeführt: USP (= unknown seed protein) und Vicilin (Vicia faba) [Bäumlein et al., Mol. Gen Genet., 1991, 225(3)], Napin (Raps) [US 5,608,152], Acyl-Carrier Protein (Raps) [US 5,315,001 und WO 92/18634], Oleosin (Arabidopsis thaliana) [WO 98/45461 und WO 93/20216], Phaseolin (Phaseolus vulgaris) [US 5,504,200], Bce4 [WO 91/13980], Leguminosen B4 (LegB4-Promotor) [Bäumlein et al., Plant J.,

10

15

20

25

30

35

40

47

2,2, 1992], Lpt2 und lpt1(Gerste) [WO 95/15389 u. WO95/23230], Samen-spezifische Promotoren aus Reis, Mais u. Weizen [WO 99/16890], Amy32b, Amy 6-6 und Aleurain [US 5,677,474], Bce4 (Raps) [US 5,530,149], Glycinin (Soja) [EP 571 741], Phosphoenol-Pyruvatcarboxylase (Soja) [JP 06/62870], ADR12-2 (Soja) [WO 98/08962], Isocitratlyase (Raps) [US 5,689,040] oder α -Amylase (Gerste) [EP 781 849].

Die Pflanzengenexpression lässt sich auch über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor.

Um eine stabile Integration der Biosynthesegene in die transgene Pflanze über mehrere Generation sicherzustellen, sollte jede der im Verfahren verwendeten Nukleinsäuren, die für die ω -3-Desaturase, Δ -9-Elongase, Δ -6-Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ -5-Elongase und/oder Δ -4-Desaturase codieren, unter der Kontrolle eines eigenen bevorzugt eines unterschiedlichen Promotors exprimiert werden, da sich wiederholende Sequenzmotive zu Instabilität der T-DNA bzw. zu Rekombinationsereignissen führen können. Die Expressionskassette ist dabei vorteilhaft so aufgebaut, dass einem Promotor eine geeignete Schnittstelle zur Insertion der zu exprimierenden Nukleinsäure folgt vorteilhaft in einem Polylinker anschließend gegebenenfalls ein Terminator hinter dem Polylinker liegt. Diese Abfolge wiederholt sich mehrfach bevorzugt drei-, vier- oder fünfmal, so dass bis zu fünf Gene in einem Konstrukt zusammengeführt werden und so zur Expression in die transgene Pflanze eingebracht werden können. Vorteilhaft wiederholt sich die Abfolge bis zu dreimal. Die Nukleinsäuresequenzen werden zur Expression über die geeignete Schnittstelle beispielsweise im Polylinker hinter den Promotor inseriert. Vorteilhaft hat jede Nukleinsäuresequenz ihren eigenen Promotor und gegebenenfalls ihren eigenen Terminator. Derartige vorteilhafte Konstrukte werden beispielsweise in DE 10102337 oder DE 10102338 offenbart (siehe beispielsweise in den angehängten Sequenzprotokollen). Es ist aber auch möglich mehrere Nukleinsäuresequenzen hinter einem Promotor und ggf. vor einem Terminator zu inserieren. Dabei ist die Insertionsstelle bzw. die Abfolge der inserierten Nukleinsäuren in der Expressionskassette nicht von entscheidender Bedeutung, das heißt eine Nukleinsäuresequenz kann an erster oder letzter Stelle in der Kassette inseriert sein, ohne dass dadurch die Expression wesentlich beeinflusst wird. Es können in der Expressionskassette vorteilhaft unterschiedliche Promotoren wie beispielsweise der USP-, LegB4 oder DC3-Promotor und unterschiedliche Terminatoren verwendet werden. Es ist aber auch möglich nur einen Promotortyp in der Kassette zu verwenden. Dies kann jedoch zu unerwünschten Rekombinationsereignissen führen.

Wie oben beschrieben sollte die Transkription der eingebrachten Gene vorteilhaft durch geeignete Terminatoren am 3'-Ende der eingebrachten Biosynthesegene (hinter

10

15

30

35

40

48

dem Stoppcodon) abgebrochen werden. Verwendet werden kann hier z.B. der OCS1 Terminator. Wie auch für die Promotoren, so sollten hier für jedes Gen unterschiedliche Terminatorsequenzen verwendet werden.

Das Genkonstrukt kann, wie oben beschrieben, auch weitere Gene umfassen, die in die Organismen eingebracht werden sollen. Es ist möglich und vorteilhaft, in die Wirtsorganismen Regulationsgene, wie Gene für Induktoren, Repressoren oder Enzyme, welche durch ihre Enzymaktivität in die Regulation eines oder mehrerer Gene eines Biosynthesewegs eingreifen, einzubringen und darin zu exprimieren. Diese Gene können heterologen oder homologen Ursprungs sein. Weiterhin können vorteilhaft im Nukleinsäurekonstrukt bzw. Genkonstrukt weitere Biosynthesegene des Fettsäureoder Lipidstoffwechsels enthalten sein oder aber diese Gene können auf einem weiteren oder mehreren weiteren Nukleinsäurekonstrukten liegen. Vorteilhaft werden als Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ein Gen ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenase(n), Lipoxygenase(n), Triacylglycerol-Lipase(n), Allenoxid-Synthase(n), Hydroperoxid-Lyase(n) oder Fettsäure-Elongase(n) oder deren Kombinationen verwendet. Besonders vorteilhafte Nukleinsäuresequenzen 20 sind Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe der Acyl-CoA:Lysophospholipid-Acyltransferase, ω -3-Desaturase, Δ -4-Desaturase-, Δ -5-Desaturase-, Δ -6-Desaturase-, Δ -8-Desatuase-, Δ -9-Desaturase-, Δ -12-Desaturase-, Δ -5-Elongase-, Δ -6-Elongase- und/oder Δ -9-Elongase.

Dabei können die vorgenannten Nukleinsäuren bzw. Gene in Kombination mit anderen 25 Elongasen und Desaturasen in Expressionskassetten, wie den vorgenannten, kloniert werden und zur Transformation von Pflanzen Mithilfe von Agrobakterium eingesetzt werden.

Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird. Die Expressionskassetten können prinzipiell direkt zum Einbringen in die Pflanze verwendet werden oder aber in einen Vektoren eingebracht werden.

Diese vorteilhaften Vektoren, vorzugsweise Expressionsvektoren, enthalten die im Verfahren verwendeten Nukleinsäuren, die für ω -3-Desaturasen, Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen, Δ -5-Elongasen oder Δ -4-Desaturasen codieren, oder ein Nukleinsäurekonstrukt, die die verwendeten Nukleinsäure allein oder in Kombination mit weiteren Biosynthesegenen des Fettsäure-

10

15

20

25

30

35

40

49

oder Lipidstoffwechsels wie den Acyl-CoA:Lysophospholipid-Acyltransferasen, ω -3-Desaturasen, Δ -4-Desaturasen, Δ -5-Desaturasen, Δ -6-Desaturasen, Δ -8-Desatuasen, Δ -9-Desaturasen, Δ -12-Desaturasen, ω 3-Desaturasen, Δ -5-Elongasen, Δ -6-Elongasen und/oder Δ-9-Elongasen. Wie hier verwendet, betrifft der Begriff "Vektor" ein Nukleinsäuremolekül, das eine andere Nukleinsäure transportieren kann, an welche es gebunden ist. Ein Vektortyp ist ein "Plasmid", was für eine zirkuläre doppelsträngige DNA-Schleife steht, in die zusätzlichen DNA-Segmente ligiert werden können. Ein weiterer Vektortyp ist ein viraler Vektor, wobei zusätzliche DNA-Segmente in das virale Genom ligiert werden können. Bestimmte Vektoren können in einer Wirtszelle, in die sie eingebracht worden sind, autonom replizieren (z.B. Bakterienvektoren mit bakteriellem Replikationsursprung). Andere Vektoren werden vorteilhaft beim Einbringen in die Wirtszelle in das Genom einer Wirtszelle integriert und dadurch zusammen mit dem Wirtsgenom repliziert. Zudem können bestimmte Vektoren die Expression von Genen, mit denen sie funktionsfähig verbunden sind, steuern. Diese Vektoren werden hier als "Expressionsvektoren" bezeichnet. Gewöhnlich haben Expressionsvektoren, die für DNA-Rekombinationstechniken geeignet sind, die Form von Plasmiden. In der vorliegenden Beschreibung können "Plasmid" und "Vektor" austauschbar verwendet werden, da das Plasmid die am häufigsten verwendete Vektorform ist. Die Erfindung soll jedoch diese anderen Expressionsvektorformen, wie virale Vektoren, die ähnliche Funktionen ausüben, umfassen. Ferner soll der Begriff Vektor auch andere Vektoren, die dem Fachmann bekannt sind, wie Phagen, Viren, wie SV40, CMV, TMV, Transposons, IS-Elemente, Phasmide, Phagemide, Cosmide, lineare oder zirkuläre DNA, umfassen.

Die im Verfahren vorteilhaft verwendeten rekombinanten Expressionsvektoren umfassen die die unten beschriebenen Nukleinsäuren oder das oben beschriebene Genkonstrukt in einer Form, die sich zur Expression der verwendeten Nukleinsäuren in einer Wirtszelle eignen, was bedeutet, dass die rekombinanten Expressionsvektoren eine oder mehrere Regulationssequenzen, ausgewählt auf der Basis der zur Expression zu verwendenden Wirtszellen, die mit der zu exprimierenden Nukleinsäuresequenz funktionsfähig verbunden ist, umfasst. In einem rekombinanten Expressionsvektor bedeutet "funktionsfähig verbunden", dass die Nukleotidsequenz von Interesse derart an die Regulationssequenz(en) gebunden ist, dass die Expression der Nukleotidsequenz möglich ist und sie aneinander gebunden sind, so dass beide Sequenzen die vorhergesagte, der Sequenz zugeschriebene Funktion erfüllen (z.B. in einem Invitro-Transkriptions-/Translationssystem oder in einer Wirtszelle, wenn der Vektor in die Wirtszelle eingebracht wird). Der Begriff "Regulationssequenz" soll Promotoren, Enhancer und andere Expressionskontrollelemente (z.B. Polyadenylierungssignale) umfassen. Diese Regulationssequenzen sind z.B. beschrieben in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990), oder siehe: Gruber und Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton, Florida, Hrsgb.: Glick und Thompson, Kapitel 7, 89-108, einschließlich der Literaturstellen darin. Regulationssequenzen umfassen solche, welche die konstitutive Expression einer Nukleotidsequenz in vielen Wirtszelltypen steuern, und solche, welche die direkte Expression der Nukleotidsequenz nur in

40

und translatiert werden.

50

bestimmten Wirtszellen unter bestimmten Bedingungen steuern. Der Fachmann weiß, dass die Gestaltung des Expressionsvektors von Faktoren, wie der Auswahl der zu transformierenden Wirtszelle, dem Ausmaß der Expression des gewünschten Proteins usw., abhängen kann.

Die verwendeten rekombinanten Expressionsvektoren können zur Expression von 5 ω-3-Desaturasen, Δ-9-Elongasen, Δ-6-Desaturasen, Δ-8-Desaturasen, Δ-6-Elongasen, Δ -5-Desaturasen, Δ -5-Elongasen und/oder Δ -4-Desaturasen in prokaryotischen oder eukaryotischen Zellen gestaltet sein. Dies ist vorteilhaft, da häufig Zwischenschritte der Vektorkonstruktion der Einfachheithalber in Mikroorganismen durchgeführt werden. Beispielsweise können die ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, 10 Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- und/oder Δ -4-Desaturase-Gene in bakteriellen Zellen, Insektenzellen (unter Verwendung von Baculovirus-Expressionsvektoren), Hefe- und anderen Pilzzellen (siehe Romanos, M.A., et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8:423-488; van den Hondel, C.A.M.J.J., et al. (1991) "Heterologous gene expression in filamentous 15 fungi", in: More Gene Manipulations in Fungi, J.W. Bennet & L.L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego; und van den Hondel, C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J.F., et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge), Algen (Falciatore et al., 1999, Marine Biotechnology.1, 20 3:239-251), Ciliaten der Typen: Holotrichia, Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya, Potomacus, Desaturaseudocohnilembus, Euplotes, Engelmaniella und Stylonychia, insbesondere der Gattung Stylonychia lemnae, mit Vektoren nach einem Transformationsverfahren, wie beschrieben in WO 98/01572, sowie bevorzugt in Zellen vielzelliger Pflanzen (siehe 25 Schmidt, R. und Willmitzer, L. (1988) "High efficiency Agrobacterium tumefaciensmediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.:583-586; Plant Molecular Biology and Biotechnology, C Press, Boca Raton, Florida, Kapitel 6/7, S.71-119 (1993); F.F. White, B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung 30 und R. Wu, Academic Press (1993), 128-43; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225 (und darin zitierte Literaturstellen)) exprimiert werden. Geeignete Wirtszellen werden ferner erörtert in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Der rekombinante Expressionsvektor kann alternativ, zum Beispiel unter Verwendung

Die Expression von Proteinen in Prokaryoten erfolgt meist mit Vektoren, die konstitutive oder induzierbare Promotoren enthalten, welche die Expression von Fusionsoder nicht-Fusionsproteinen steuern. Typische Fusions-Expressionsvektoren sind u.a. pGEX (Pharmacia Biotech Inc; Smith, D.B., und Johnson, K.S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) und pRIT5 (Pharmacia, Piscataway,

von T7-Promotor-Regulationssequenzen und T7-Polymerase, in vitro transkribiert

10

35

51

NJ), bei denen Glutathion-S-Transferase (GST), Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird.

Beispiele für geeignete induzierbare nicht-Fusions-E. coli-Expressionsvektoren sind u.a. pTrc (Amann et al. (1988) Gene 69:301-315) und pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60-89). Die Zielgenexpression vom pTrc-Vektor beruht auf der Transkription durch Wirts-RNA-Polymerase von einem Hybrid-trp-lac-Fusionspromotor. Die Zielgenexpression aus dem pET 11d-Vektor beruht auf der Transkription von einem T7-gn10-lac-Fusions-Promotor, die von einer coexprimierten viralen RNA-Polymerase (T7 gn1) vermittelt wird. Diese virale Polymerase wird von den Wirtsstämmen BL21 (DE3) oder HMS174 (DE3) von einem residenten λ-Prophagen bereitgestellt, der ein T7 gn1-Gen unter der Transkriptionskontrolle des lacUV 5-Promotors birgt.

Andere in prokaryotischen Organismen geeignete Vektoren sind dem Fachmann bekannt, diese Vektoren sind beispielsweise in E. coli pLG338, pACYC184, die pBR-Reihe, wie pBR322, die pUC-Reihe, wie pUC18 oder pUC19, die M113mp-Reihe, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III113-B1, \(\lambda\text{gt11}\) or pBdCI, in Streptomyces pIJ101, pIJ364, pIJ702 oder pIJ361, in Bacillus pUB110, pC194 oder pBD214, in Corynebacterium pSA77 oder pAJ667.

Bei einer weiteren Ausführungsform ist der Expressionsvektor ein Hefe-Expressionsvektor. Beispiele für Vektoren zur Expression in der Hefe S. cerevisiae umfassen pYeDesaturasec1 (Baldari et al. (1987) Embo J. 6:229-234), pMFa (Kurjan und Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) sowie pYES2 (Invitrogen Corporation, San Diego, CA). Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie den filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: van den Hondel, C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, J.F. Peberdy et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge, oder in: More Gene Manipulations in Fungi [J.W. Bennet & L.L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego]. Weitere geeignete Hefevektoren sind beispielsweise pAG-1, YEp6, YEp13 oder pEMBLYe23.

Alternativ können die ω -3-Desaturasen, Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen, Δ -5-Elongasen und/oder Δ -4-Desaturasen in Insektenzellen unter Verwendung von Baculovirus-Expressionsvektoren exprimiert werden. Baculovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insektenzellen (z.B. Sf9-Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al. (1983) Mol. Cell Biol.. 3:2156-2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170:31-39).

40 Die oben genannten Vektoren bieten nur einen kleinen Überblick über mögliche geeignete Vektoren. Weitere Plasmide sind dem Fachmann bekannt und sind zum Beispiel

10

15

20

25

35

52

beschrieben in: Cloning Vectors (Hrsgb. Pouwels, P.H., et al., Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018). Weitere geeignete Expressionssysteme für prokaryotische und eukaryotische Zellen siehe in den Kapiteln 16 und 17 von Sambrook, J., Fritsch, E.F., und Maniatis, T., Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

Bei einer weiteren Ausführungsform des Verfahrens können die ω-3-Desaturasen, Δ-9-Elongasen, Δ-6-Desaturasen, Δ-8-Desaturasen, Δ-6-Elongasen, Δ-5-Desaturasen, Δ-5-Elongasen und/oder Δ-4-Desaturasen in einzelligen Pflanzenzellen (wie Algen), siehe Falciatore et al., 1999, Marine Biotechnology 1 (3):239-251 und darin zitierte Literaturangaben, und Pflanzenzellen aus höheren Pflanzen (z.B. Spermatophyten, wie Feldfrüchten) exprimiert werden. Beispiele für Pflanzen-Expressionsvektoren umfassen solche, die eingehend beschrieben sind in: Becker, D., Kemper, E., Schell, J., und Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20:1195-1197; und Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12:8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, S. 15-38.

Eine Pflanzen-Expressionskassette enthält vorzugsweise Regulationssequenzen, welche die Genexpression in Pflanzenzellen steuern können und funktionsfähig verbunden sind, so dass jede Sequenz ihre Funktion, wie Termination der Transkription, erfüllen kann, beispielsweise Polyadenylierungssignale. Bevorzugte Polyadenylierungssignale sind diejenigen, die aus Agrobacterium tumefaciens-T-DNA stammen, wie das als Octopinsynthase bekannte Gen 3 des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984) 835ff.) oder funktionelle Äquivalente davon, aber auch alle anderen in Pflanzen funktionell aktiven Terminatoren sind geeignet.

Da die Pflanzengenexpression sehr oft nicht auf Transkriptionsebenen beschränkt ist, enthält eine Pflanzen-Expressionskassette vorzugsweise andere funktionsfähig verbunden Sequenzen, wie Translationsenhancer, beispielsweise die Overdrive-Sequenz, welche die 5'-untranslatierte Leader-Sequenz aus Tabakmosaikvirus, die das Protein/RNA-Verhältnis erhöht, enthält (Gallie et al., 1987, Nucl. Acids Research 15:8693-8711).

Die Pflanzengenexpression muss wie oben beschrieben funktionsfähig mit einem geeigneten Promotor verbunden sein, der die Genexpression auf rechtzeitige, zelloder gewebespezifische Weise durchführt. Nutzbare Promotoren sind konstitutive Promotoren (Benfey et al., EMBO J. 8 (1989) 2195-2202), wie diejenigen, die von Pflanzenviren stammen, wie 35S CAMV (Franck et al., Cell 21 (1980) 285-294), 19S CaMV (siehe auch US 5352605 und WO 84/02913) oder Pflanzenpromotoren, wie der in US 4,962,028 beschriebene der kleinen Untereinheit der Rubisco.

40 Andere bevorzugte Sequenzen für die Verwendung zur funktionsfähigen Verbindung in Pflanzengenexpressions-Kassetten sind Targeting-Sequenzen, die zur Steuerung des

10

5

20

25

30

40

53

Genproduktes in sein entsprechendes Zellkompartiment notwendig sind (siehe eine Übersicht in Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 und darin zitierte Literaturstellen), beispielsweise in die Vakuole, den Zellkern, alle Arten von Plastiden, wie Amyloplasten, Chloroplasten, Chromoplasten, den extrazellulären Raum, die Mitochondrien, das Endoplasmatische Retikulum, Ölkörper, Peroxisomen und andere Kompartimente von Pflanzenzellen.

Die Pflanzengenexpression lässt sich auch wie oben beschrieben über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor.

Auch Promotoren, die auf biotische oder abiotische Stressbedingungen reagieren, sind geeignete Promotoren, beispielsweise der pathogeninduzierte PRP1-Gen-Promotor (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), der hitzeinduzierbare hsp80-Promotor aus Tomate (US 5,187,267), der kälteinduzierbare Alpha-Amylase-Promotor aus Kartoffel (WO 96/12814) oder der durch Wunden induzierbare pinll-Promotor (EP-A-0 375 091).

Es sind insbesondere solche Promotoren bevorzugt, welche die Genexpression in Geweben und Organen herbeiführen, in denen die Fettsäure-, Lipid- und Ölbiosynthese stattfindet, in Samenzellen, wie den Zellen des Endosperms und des sich entwickelnden Embryos. Geeignete Promotoren sind der Napingen-Promotor aus Raps (US 5,608,152), der USP-Promotor aus Vicia faba (Baeumlein et al., Mol Gen Genet, 1991, 225 (3):459-67), der Oleosin-Promotor aus Arabidopsis (WO 98/45461), der Phaseolin-Promotor aus Phaseolus vulgaris (US 5,504,200), der Bce4-Promotor aus Brassica (WO 91/13980) oder der Legumin-B4-Promotor (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2):233-9) sowie Promotoren, welche die samenspezifische Expression in Monokotyledonen-Pflanzen, wie Mais, Gerste, Weizen, Roggen, Reis usw. herbeiführen. Geeignete beachtenswerte Promotoren sind der lpt2- oder lpt1-Gen-Promotor aus Gerste (WO 95/15389 und WO 95/23230) oder die in WO 99/16890 beschriebenen (Promotoren aus dem Gersten-Hordein-Gen, dem Reis-Glutelin-Gen, dem Reis-Oryzin-Gen, dem Reis-Prolamin-Gen, dem Weizen-Gliadin-Gen, Weizen-Glutelin-Gen, dem Mais-Zein-Gen, dem Hafer-Glutelin-Gen, dem Sorghum-Kasirin-Gen, dem Roggen-Secalin-Gen). 35

Insbesondere kann die multiparallele Expression der im Verfahren verwendeten ω-3-Desaturasen, Δ-9-Elongasen, Δ-6-Desaturasen, Δ-8-Desaturasen, Δ-6-Elongasen, Δ -5-Desaturasen, Δ -5-Elongasen und/oder Δ -4-Desaturasen gewünscht sein. Die Einführung solcher Expressionskassetten kann über eine simultane Transformation mehrerer einzelner Expressionskonstrukte erfolgen oder bevorzugt durch Kombination mehrerer Expressionskassetten auf einem Konstrukt. Auch können mehrere Vektoren

10

5

20

25

35

40

54

mit jeweils mehreren Expressionskassetten transformiert und auf die Wirtszelle übertragen werden.

Ebenfalls besonders geeignet sind Promotoren, welche die plastidenspezifische Expression herbeiführen, da Plastiden das Kompartiment sind, in dem die Vorläufer sowie einige Endprodukte der Lipidbiosynthese synthetisiert werden. Geeignete Promotoren, wie der virale RNA-Polymerase-Promotor, sind beschrieben in WO 95/16783 und WO 97/06250, und der clpP-Promotor aus Arabidopsis, beschrieben in WO 99/46394.

Vektor-DNA lässt sich in prokaryotische oder eukaryotische Zellen über herkömmliche Transformations- oder Transfektionstechniken einbringen. Die Begriffe "Transformation" und "Transfektion", Konjugation und Transduktion, wie hier verwendet, sollen eine Vielzahl von im Stand der Technik bekannten Verfahren zum Einbringen fremder Nukleinsäure (z.B. DNA) in eine Wirtszelle, einschließlich Calciumphosphatoder Calciumchlorid-Copräzipitation, DEAE-Dextran-vermittelte Transfektion, Lipofektion, natürliche Kompetenz, chemisch vermittelter Transfer, Elektroporation oder Teilchenbeschuss, umfassen. Geeignete Verfahren zur Transformation oder Transfektion von Wirtszellen, einschließlich Pflanzenzellen, lassen sich finden in Sambrook et al. (Molecular Cloning: A Laboratory Manual., 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) und anderen Labor-Handbüchern, wie Methods in Molecular Biology, 1995, Bd. 44, Agrobacterium protocols, Hrsgb: Gartland und Davey, Humana Press, Totowa, New Jersey.

Wirtszellen, die im Prinzip zum Aufnehmen der erfindungsgemäßen Nukleinsäure, des erfindungsgemäßen Genproduktes oder des erfindungsgemäßen Vektors geeignet sind, sind alle prokaryotischen oder eukaryotischen Organismen. Die vorteilhafterweise verwendeten Wirtsorganismen sind Mikroorganismen, wie Pilze oder Hefen oder Pflanzenzellen vorzugsweise Pflanzen oder Teile davon. Pilze, Hefen oder Pflanzen werden vorzugsweise verwendet, besonders bevorzugt Pflanzen, ganz besonders bevorzugt Pflanzen, wie Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Raps, Nachtkerze, Hanf, Diestel, Erdnuss, Canola, Lein, Soja, Saflor, Sonnenblume, Borretsch, oder Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölplame, Kokosnuss) sowie ausdauernde Gräser und Futterfeldfrüchte. Besonders bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Soja, Erdnuss, Raps, Canola, Lein, Hanf, Nachtkerze, Sonnenblume, Saflor, Bäume (Ölpalme, Kokosnuss).

Ein weiterer erfindungsgemäßer Gegenstand sind wie oben beschrieben isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ-5-Elongase-Aktivität codieren, wobei die durch die Nukleinsäuresequenzen codierten Elongase C₁₆- und C₁₈- Fettsäuren mit einer Doppelbindung und vorteilhaft mehrfach ungesättigte C₁₈-Fettsäuren mit einer

55

 $\Delta 6$ -Doppelbindung und mehrfach ungesättigte C_{20} -Fettsäuren mit einer $\Delta 5$ -Doppelbindung umsetzt. C_{22} -Fettsäuren werden nicht elongiert.

Vorteilhafte isolierte Nukleinsäuresequenzen sind Sequenzen ausgewählt aus der Gruppe:

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 43, SEQ ID NO: 45,
 SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63,
 SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79,
 SEQ ID NO: 83 oder SEQ ID NO: 85 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen
 Codes von der in SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48,
 SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66,
 SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84
 oder SEQ ID NO: 86 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83 oder SEQ ID NO: 85 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84 oder SEQ ID NO: 86 aufweisen und eine Δ-5-Elongaseaktivität aufweisen.

Weitere vorteilhafte isolierte Nukleinsäuresequenzen sind Sequenzen ausgewählt aus der Gruppe:

- 25 a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 69 oder in SEQ ID NO: 81 dargestellten Sequenz,
 - Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 70 oder SEQ ID NO: 82 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 69 oder in SEQ ID NO: 81 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 70 oder SEQ ID NO: 82 codieren und eine Δ-6-Elongaseaktivität aufweisen.
- 35 Isolierte Nukleinsäuresequenzen, die für Polypeptide mit ω-3-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:
 - a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 dargestellten Sequenz,

15

40

56

- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 87 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 aufweisen und eine ω-3-Desaturaseaktivität aufweisen.

Die oben genannte erfindungsgemäßen Nukleinsäuren stammen von Organismen, wie nicht-humanen Tieren, Ciliaten, Pilzen, Pflanzen wie Algen oder Dinoflagellaten, die PUFAs synthetisieren können.

- Vorteilhaft stammen die isolierten oben genannten Nukleinsäuresequenzen aus der Ordnung Salmoniformes, den Diatomeengattungen Thallasiosira oder Crythecodinium oder aus der Familie der Prasinophyceae oder Pythiaceae stammt.
 - Ein weiterer erfindungsgemäßer Gegenstand sind wie oben beschrieben isolierte Nukleinsäuresequenz, die für Polypeptide mit ω -3-Desaturase-Aktivität codieren, wobei die durch die Nukleinsäuresequenzen codierten ω -3-Desaturasen C_{18} -, C_{20} und C_{22} -Fettsäuren mit zwei, drei, vier oder fünf Doppelbindungen und vorteilhaft mehrfach ungesättigte C_{18} -Fettsäuren mit zwei oder drei Doppelbindungen und mehrfach ungesättigte C_{20} -Fettsäuren mit zwei, drei oder vier Doppelbindungen umsetzt. Auch C_{22} -Fettsäuren mit vier oder fünf Doppelbindungen werden desaturiert.
- Der Begriff "Nukleinsäure(molekül)", wie hier verwendet, umfasst in einer vorteilhaften 20 Ausführungsform zudem die am 3'- und am 5'-Ende des kodierenden Genbereichs gelegene untranslatierte Sequenz: mindestens 500, bevorzugt 200, besonders bevorzugt 100 Nukleotide der Sequenz stromaufwärts des 5'-Endes des kodierenden Bereichs und mindestens 100, bevorzugt 50, besonders bevorzugt 20 Nukleotide der Sequenz stromabwärts des 3'-Endes des kodierenden Genbereichs. Ein "isoliertes" 25 Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure vorliegen. Eine "isolierte" Nukleinsäure hat vorzugsweise keine Sequenzen, welche die Nukleinsäure in der genomischen DNA des Organismus, aus dem die Nukleinsäure stammt, natürlicherweise flankieren (z.B. Sequenzen, die sich an den 5'- und 3'-Enden der Nukleinsäure befinden). Bei ver-30 schiedenen Ausführungsformen kann das isolierte ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongaseoder Δ-4-Desaturasemolekül zum Beispiel weniger als etwa 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0,5 kb oder 0,1 kb an Nukleotidsequenzen enthalten, die natürlicherweise das Nukleinsäuremolekül in der genomischen DNA der Zelle, aus der die Nukleinsäure stammt 35 flankieren.
 - Die im Verfahren verwendeten Nukleinsäuremoleküle, z.B. ein Nukleinsäuremolekül mit einer Nukleotidsequenz der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25,

10

15

20

25

30

35

40

45

57

SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 oder eines Teils davon, kann unter Verwendung molekularbiologischer Standardtechniken und der hier bereitgestellten Sequenzinformation isoliert werden. Auch kann Mithilfe von Vergleichsalgorithmen beispielsweise eine homologe Sequenz oder homologe, konservierte Sequenzbereiche auf DNA oder Aminosäureebene identifiziert werden. Diese können als Hybridisierungssonde sowie Standard-Hybridisierungstechniken (wie z.B. beschrieben in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) zur Isolierung weiterer im Verfahren nützlicher Nukleinsäuresequenzen verwendet werden. Überdies lässt sich ein Nukleinsäuremolekül, umfassend eine vollständige Sequenz der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 oder einen Teil davon, durch Polymerasekettenreaktion isolieren, wobei Oligonukleotidprimer, die auf der Basis dieser Sequenz oder von Teilen davon, verwendet werden (z.B. kann ein Nukleinsäuremolekül, umfassend die vollständigen Sequenz oder einen Teil davon, durch Polymerasekettenreaktion unter Verwendung von Oligonukleotidprimern isoliert werden, die auf der Basis dieser gleichen Sequenz erstellt worden sind). Zum Beispiel lässt sich mRNA aus Zellen isolieren (z.B. durch das Guanidiniumthiocyanat-Extraktionsverfahren von Chirgwin et al. (1979) Biochemistry 18:5294-5299) und cDNA mittels Reverser Transkriptase (z.B. Moloney-MLV-Reverse-Transkriptase, erhältlich von Gibco/BRL, Bethesda, MD, oder AMV-Reverse-Transkriptase, erhältlich von Seikagaku America, Inc., St.Petersburg, FL) herstellen. Synthetische Oligonukleotidprimer zur Amplifizierung mittels Polymerasekettenreaktion lassen sich auf der Basis einer der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 gezeigten Sequenzen oder Mithilfe der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8,

SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, 5 SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86 oder SEQ ID NO: 88 dargestellten Aminosäuresequenzen erstellen. Eine erfindungsgemäße Nukleinsäure kann unter Verwendung von cDNA oder alternativ von genomischer DNA als Matrize und geeigneten Oligo-10 nukleotidprimern gemäß Standard-PCR-Amplifikationstechniken amplifiziert werden. Die so amplifizierte Nukleinsäure kann in einen geeigneten Vektor kloniert werden und mittels DNA-Sequenzanalyse charakterisiert werden. Oligonukleotide, die einer Desaturase-Nukleotidsequenz entsprechen, können durch Standard-Syntheseverfahren, beispielsweise mit einem automatischen DNA-Synthesegerät, hergestellt 15 werden.

Homologe der verwendeten ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturase-Nukleinsäuresequenzen mit der Sequenz SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, 20 SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, 25 SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 bedeutet beispielsweise allelische Varianten mit mindestens etwa 50 oder 60 %, vorzugsweise mindestens etwa 60 oder 70 %, stärker bevorzugt mindestens etwa 70 oder 80 %, 90 % oder 95 % und noch stärker bevorzugt mindestens etwa 85 %, 86 %, 30 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, 99 % oder mehr Identität bzw. Homologie zu einer in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, 35 SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 gezeigten 40 Nukleotidsequenzen oder ihren Homologen, Derivaten oder Analoga oder Teilen davon. Weiterhin sind isolierte Nukleinsäuremoleküle einer Nukleotidsequenz, die an eine der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19,

SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, 5 SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 gezeigten Nukleotidsequenzen oder einen Teil davon hybridisieren, z.B. unter stringenten Bedingungen hybridisiert. Allelische Varianten umfassen insbesondere funktionelle Varianten, die sich durch Deletion, Insertion oder Substitution von Nukleotiden aus/in der in SEQ ID NO: 1, SEQ ID NO: 3, 10 SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, 15 SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 dargestellten Sequenz erhalten lassen, wobei aber die Absicht ist, dass die Enzymaktivität der davon herrührenden synthetisierten Proteine für die Insertion eines oder 20 mehrerer Gene vorteilhafterweise beibehalten wird. Proteine, die noch die enzymatische Aktivität der ω -3-Desaturase, Δ -9-Elongase, Δ -6-Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ -5-Elongase oder Δ -4-Desaturase besitzen, das heißt deren Aktivität im wesentlichen nicht reduziert ist, bedeutet Proteine mit mindestens 10 %, vorzugsweise 20 %, besonders bevorzugt 30 %, ganz besonders bevorzugt 25 40 % der ursprünglichen Enzymaktivität, verglichen mit dem durch SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, 30 SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 kodierten Protein. Die Homologie wurde über den gesamten 35 Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für das Vergleichen verschiedener Sequenzen stehen dem Fachmann eine Reihe von Programmen, die auf verschiedenen Algorithmen beruhen zur Verfügung. Dabei liefern die Algorithmen von Needleman und Wunsch oder Smith und Waterman besonders zuverlässige Ergebnisse. Für die Sequenzvergleiche wurde das Programm PileUp verwendet 40 (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) oder die Programme Gap und BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im GCG Software-Packet [Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomo-45

25

30

35

40

60

logiewerte wurden mit dem Programm GAP über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 und Average Mismatch: 0.000. Die falls nicht anders angegeben als Standardeinstellungen immer für Sequenzvergleiche verwendet wurden.

Homologen der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 bedeuten beispielsweise auch bakterielle, Pilz- und Pflanzenhomologen, verkürzte Sequenzen, einzelsträngige DNA oder RNA der kodierenden und nicht-kodierenden DNA-Sequenz.

Homologen der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 bedeutet auch Derivate, wie beispielsweise Promotorvarianten. Die Promotoren stromaufwärts der angegebenen Nukleotidsequenzen können durch einen oder mehrere Nukleotidaustausche, durch Insertion(en) und/oder Deletion(en) modifiziert werden, ohne dass jedoch die Funktionalität oder Aktivität der Promotoren gestört wird. Es ist weiterhin möglich, dass die Aktivität der Promotoren durch Modifikation ihrer Sequenz erhöht ist oder dass sie vollständig durch aktivere Promotoren, sogar aus heterologen Organismen, ersetzt werden.

Die vorgenannten Nukleinsäuren und Proteinmoleküle mit ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- und/oder Δ -4-Desaturase-Aktivität, die am Stoffwechsel von Lipiden und Fettsäuren, PUFA-Cofaktoren und Enzymen oder am Transport lipophiler Verbindungen über Membranen beteiligt sind, werden im erfindungsgemäßen Verfahren zur Modulation der Produktion von PUFAs in transgenen Organismen vorteilhaft in Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Sojabohne, Erdnuss, Baumwolle, Linum Arten wie Öl- oder Faserlein, Brassica-Arten, wie Raps, Canola und Rübsen, Pfeffer, Sonnenblume, Borretsch, Nachtkerze und Tagetes, Solanacaen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Maniok, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölpalme, Kokos-

10

20

25

35

40

61

nuss) und ausdauernden Gräsern und Futterfeldfrüchten, entweder direkt (z.B. wenn die Überexpression oder Optimierung eines Fettsäurebiosynthese-Proteins einen direkten Einfluss auf die Ausbeute, Produktion und/oder Effizienz der Produktion der Fettsäure aus modifizierten Organismen hat) verwendet und/oder können eine indirekt Auswirkung haben, die dennoch zu einer Steigerung der Ausbeute, Produktion und/oder Effizienz der Produktion der PUFAs oder einer Abnahme unerwünschter Verbindungen führt (z.B. wenn die Modulation des Stoffwechsels von Lipiden und Fettsäuren, Cofaktoren und Enzymen zu Veränderungen der Ausbeute, Produktion und/oder Effizienz der Produktion oder der Zusammensetzung der gewünschten Verbindungen innerhalb der Zellen führt, was wiederum die Produktion einer oder mehrerer Fettsäuren beeinflussen kann).

Die Kombination verschiedener Vorläufermoleküle und Biosyntheseenzyme führt zur Herstellung verschiedener Fettsäuremoleküle, was eine entscheidende Auswirkung auf die Zusammensetzung der Lipide hat. Da mehrfach ungesättigte Fettsäuren (= PUFAs) nicht nur einfach in Triacylglycerin sondern auch in Membranlipide eingebaut werden.

Besonders zur Herstellung von PUFAs, beispielsweise Stearidonsäure, Eicosapentaensäure und Docosahexaensäure eignen sich Boraginaceen, Primulaceen, oder Linaceen. Besonders vorteilhaft eignet sich Lein (Linum usitatissimum) zur Herstellung von PUFAS mit dem erfindungsgemäßen Nukleinsäuresequenzen vorteilhaft, wie beschrieben, in Kombination mit weiteren Desaturasen und Elongasen.

Die Lipidsynthese lässt sich in zwei Abschnitte unterteilen: die Synthese von Fettsäuren und ihre Bindung an sn-Glycerin-3-Phosphat sowie die Addition oder Modifikation einer polaren Kopfgruppe. Übliche Lipide, die in Membranen verwendet werden, umfassen Phospholipide, Glycolipide, Sphingolipide und Phosphoglyceride. Die Fettsäuresynthese beginnt mit der Umwandlung von Acetyl-CoA in Malonyl-CoA durch die Acetyl-CoA-Carboxylase oder in Acetyl-ACP durch die Acetyltransacylase. Nach einer Kondensationsreaktion bilden diese beiden Produktmoleküle zusammen Acetoacetyl-ACP, das über eine Reihe von Kondensations-, Reduktions- und Dehydratisierungsreaktionen umgewandelt wird, so dass ein gesättigtes Fettsäuremolekül mit der gewünschten Kettenlänge erhalten wird. Die Produktion der ungesättigten Fettsäuren aus diesen Molekülen wird durch spezifische Desaturasen katalysiert, und zwar entweder aerob mittels molekularem Sauerstoff oder anaerob (bezüglich der Fettsäuresynthese in Mikroorganismen siehe F.C. Neidhardt et al. (1996) E. coli und Salmonella. ASM Press: Washington, D.C., S. 612-636 und darin enthaltene Literaturstellen; Lengeler et al. (Hrsgb.) (1999) Biology of Procaryotes. Thieme: Stuttgart, New York, und die enthaltene Literaturstellen, sowie Magnuson, K., et al. (1993) Microbiological Reviews 57:522-542 und die enthaltenen Literaturstellen). Die so hergestellten an Phospholipide gebundenen Fettsäuren müssen anschließend wieder für die weitere Elongationen aus den Phospholipiden in den FettsäureCoA-Ester-Pool überführt werden. Dies ermöglichen Acyl-CoA:Lysophospholipid-Acyltransferasen. Weiterhin können diese Enzyme die elongierten Fettsäuren wieder von den CoA-Estern auf die

10

15

20

25

35

62

Phospholipide übertragen. Diese Reaktionsabfolge kann gegebenenfalls mehrfach durchlaufen werden.

Vorläufer für die PUFA-Biosynthese sind beispielsweise Ölsäure, Linol- und Linolensäure. Diese C₁₈-Kohlenstoff-Fettsäuren müssen auf C₂₀ und C₂₂ verlängert werden, damit Fettsäuren vom Eicosa- und Docosa-Kettentyp erhalten werden. Mithilfe der im Verfahren verwendeten Desaturasen wie der $\omega 3$ -, Δ -4-, Δ -5-, Δ -6- und Δ -8-Desaturasen und/oder der Δ-5-, Δ-6-, Δ-9-Elongasen können Arachidonsäure, Eicosapentaensäure, Docosapentaensäure oder Docosahexaensäure vorteilhaft Eicosapentaensäure und/oder Docosahexaensäure hergestellt werden und anschließend für verschiedene Zwecke bei Nahrungsmittel-, Futter-, Kosmetik- oder pharmazeutischen Anwendungen verwendet werden. Mit den genannten Enzymen können C20- und/oder C22-Fettsäuren mit mindestens zwei vorteilhaft mindestens drei, vier, fünf oder sechs Doppelbindungen im Fettsäuremolekül, vorzugsweise C20- oder C22-Fettsäuren mit vorteilhaft vier, fünf oder sechs Doppelbindungen im Fettsäuremolekül hergestellt werden. Die Desaturierung kann vor oder nach Elongation der entsprechenden Fettsäure erfolgen. Daher führen die Produkte der Desaturaseaktivitäten und der möglichen weiteren Desaturierung und Elongation zu bevorzugten PUFAs mit höherem Desaturierungsgrad, einschließlich einer weiteren Elongation von C20 zu C22-Fettsäuren,zu Fettsäuren wie γ-Linolensäure, Dihomo-γ-linolensäure, Arachidonsäure, Stearidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Substrate der verwendeten Desaturasen und Elongasen im erfindungsgemäßen Verfahren sind C_{16} -, C_{18} - oder C_{20} -Fettsäuren wie zum Beispiel Linolsäure, γ -Linolensäure, α -Linolensäure, Dihomo-y-linolensäure, Eicosatetraensäure oder Stearidonsäure. Bevorzugte Substrate sind Linolsäure, γ-Linolensäure und/oder α-Linolensäure, Dihomo-γ-linolensäure bzw. Arachidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Die synthetisierten C₂₀- oder C₂₂-Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure fallen im erfindungsgemäßen Verfahren in Form der freien Fettsäure oder in Form ihrer Ester beispielsweise in Form ihrer Glyceride an.

Unter dem Begriff "Glycerid" wird ein mit ein, zwei oder drei Carbonsäureresten verestertes Glycerin verstanden (Mono-, Di- oder Triglycerid). Unter "Glycerid" wird auch ein Gemisch an verschiedenen Glyceriden verstanden. Das Glycerid oder das Glyceridgemisch kann weitere Zusätze, z.B. freie Fettsäuren, Antioxidantien, Proteine, Kohlenhydrate, Vitamine und/oder andere Substanzen enthalten.

Unter einem "Glycerid" im Sinne des erfindungsgemäßen Verfahrens werden ferner vom Glycerin abgeleitete Derivate verstanden. Dazu zählen neben den oben beschriebenen Fettsäureglyceriden auch Glycerophospholipide und Glyceroglycolipide. Bevorzugt seien hier die Glycerophospholipide wie Lecithin (Phosphatidylcholin), Cardiolipin, Phosphatidylglycerin, Phosphatidylserin und Alkylacylglycerophospholipide beispielhaft genannt.

40 Ferner müssen Fettsäuren anschließend an verschiedene Modifikationsorte transportiert und in das Triacylglycerin-Speicherlipid eingebaut werden. Ein weiterer wichtiger

25

30

35

40

63

Schritt bei der Lipidsynthese ist der Transfer von Fettsäuren auf die polaren Kopfgruppen, beispielsweise durch Glycerin-Fettsäure-Acyltransferase (siehe Frentzen, 1998, Lipid, 100(4-5):161-166).

Veröffentlichungen über die Pflanzen-Fettsäurebiosynthese, Desaturierung, den Lipidstoffwechsel und Membrantransport von fetthaltigen Verbindungen, die Betaoxi-5 dation, Fettsäuremodifikation und Cofaktoren, Triacylglycerin-Speicherung und -Assemblierung einschließlich der Literaturstellen darin siehe in den folgenden Artikeln: Kinney, 1997, Genetic Engeneering, Hrsgb.: JK Setlow, 19:149-166; Ohlrogge und Browse, 1995, Plant Cell 7:957-970; Shanklin und Cahoon, 1998, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:611-641; Voelker, 1996, Genetic Engeneering, Hrsgb.: JK 10 Setlow, 18:111-13; Gerhardt, 1992, Prog. Lipid R. 31:397-417; Gühnemann-Schäfer & Kindl, 1995, Biochim. Biophys Acta 1256:181-186; Kunau et al., 1995, Prog. Lipid Res. 34:267-342; Stymne et al., 1993, in: Biochemistry and Molecular Biology of Membrane and Storage Lipids of Plants, Hrsgb.: Murata und Somerville, Rockville, American Society of Plant Physiologists, 150-158, Murphy & Ross 1998, Plant Journal. 13(1):1-15 16.

Die im Verfahren hergestellten PUFAs, umfassen eine Gruppe von Molekülen, die höhere Tiere nicht mehr synthetisieren können und somit aufnehmen müssen oder die höhere Tiere nicht mehr ausreichend selbst herstellen können und somit zusätzlich aufnehmen müssen, obwohl sie leicht von anderen Organismen, wie Bakterien, synthetisiert werden, beispielsweise können Katzen Arachidonsäure nicht mehr synthetisieren.

Unter Phospholipiden im Sinne der Erfindung sind zu verstehen Phosphatidylcholin, Phosphatidylethanolamin, Phosphatidylserin, Phosphatidylglycerin und/oder Phosphatidylinositol vorteilhafterweise Phosphatidylcholin. Die Begriffe Produktion oder Produktivität sind im Fachgebiet bekannt und beinhalten die Konzentration des Fermentationsproduktes (Verbindungen der Formel I), das in einer bestimmten Zeitspanne und einem bestimmten Fermentationsvolumen gebildet wird (z.B. kg Produkt pro Stunde pro Liter). Der Begriff Effizienz der Produktion umfasst die Zeit, die zur Erzielung einer bestimmten Produktionsmenge nötig ist (z.B. wie lange die Zelle zur Aufrichtung einer bestimmten Durchsatzrate einer Feinchemikalie benötigt). Der Begriff Ausbeute oder Produkt/Kohlenstoff-Ausbeute ist im Fachgebiet bekannt und umfasst die Effizienz der Umwandlung der Kohlenstoffquelle in das Produkt (d.h. die Feinchemikalie). Dies wird gewöhnlich beispielsweise ausgedrückt als kg Produkt pro kg Kohlenstoffquelle. Durch Erhöhen der Ausbeute oder Produktion der Verbindung wird die Menge der gewonnenen Moleküle oder der geeigneten gewonnenen Moleküle dieser Verbindung in einer bestimmten Kulturmenge über einen festgelegten Zeitraum erhöht. Die Begriffe Biosynthese oder Biosyntheseweg sind im Fachgebiet bekannt und umfassen die Synthese einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle aus Zwischenverbindungen, beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Die Begriffe Abbau oder Abbauweg sind im Fachgebiet bekannt und umfassen die Spaltung einer Verbindung, vorzugsweise einer

10

15

20

25

30

35

40

64

organischen Verbindung, durch eine Zelle in Abbauprodukte (allgemeiner gesagt, kleinere oder weniger komplexe Moleküle) beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Der Begriff Stoffwechsel ist im Fachgebiet bekannt und umfasst die Gesamtheit der biochemischen Reaktionen, die in einem Organismus stattfinden. Der Stoffwechsel einer bestimmten Verbindung (z.B. der Stoffwechsel einer Fettsäure) umfasst dann die Gesamtheit der Biosynthese-, Modifikations- und Abbauwege dieser Verbindung in der Zelle, die diese Verbindung betreffen.

Bei einer weiteren Ausführungsform kodieren Derivate des erfindungsgemäßen Nukleinsäuremoleküls wieder gegeben in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 Proteine mit mindestens 40 %, vorteilhaft etwa 50 oder 60 %, vorzugsweise mindestens etwa 60 oder 70 % und stärker bevorzugt mindestens etwa 70 oder 80 %, 80 bis 90 %, 90 bis 95 % und am stärksten bevorzugt mindestens etwa 96 %, 97 %, 98 %, 99 % oder mehr Homologie (= Identität) zu einer vollständigen Aminosäuresequenz der SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86 oder SEQ ID NO: 88. Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für die Sequenzvergleiche wurde das Programm PileUp verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) oder die Programme Gap und BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im GCG Software-Packet [Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm BestFit über den gesamten Sequenzbereich mit folgenden Eintellungen ermittelt: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 und Average Mismatch: 0.000. Die falls nicht anders angegeben als Standardeinstellungen immer für Sequenzvergleiche verwendet wurden.

Die Erfindung umfasst zudem Nukleinsäuremoleküle, die sich von einer der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 gezeigten Nukleotidsequenzen (und Teilen davon) aufgrund des degenerierten genetischen Codes unterscheiden und somit die gleiche ω -3-Desaturase oder Δ -5-Elongase codieren wie diejenige, die von den in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO:85 oder SEQ ID NO: 87 gezeigten Nukleotidsequenzen kodiert wird.

10

15

20

25

30

35

40

65

Zusätzlich zu den in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 gezeigten ω -3-Desaturase, Δ-5-Elongasen oder Δ-6-Elongasen erkennt der Fachmann, dass DNA-Sequenzpolymorphismen, die zu Änderungen in den Aminosäuresequenzen der ω-3-Desaturase, Δ -5-Elongase und/oder Δ -6-Elongase führen, innerhalb einer Population existieren können. Diese genetischen Polymorphismen im ω -3-Desaturase-, Δ -5-Elongase- und/oder Δ-6-Elongase-Gen können zwischen Individuen innerhalb einer Population aufgrund von natürlicher Variation existieren. Diese natürlichen Varianten bewirken üblicherweise eine Varianz von 1 bis 5 % in der Nukleotidsequenz des ω-3-Desaturase-, Δ -5-Elongase- und/oder Δ -6-Elongase-Gens. Sämtliche und alle dieser Nukleotidvariationen und daraus resultierende Aminosäurepolymorphismen in der ω-3-Desaturase, Δ-5-Elongase und/oder Δ-6-Elongase, die das Ergebnis natürlicher Variation sind und die funktionelle Aktivität von nicht verändern, sollen im Umfang der Erfindung enthalten sein.

Für das erfindungsgemäße Verfahren vorteilhafte Nukleinsäuremoleküle können auf der Grundlage ihrer Homologie zu den hier offenbarten ω -3-Desaturase-, Δ -5-Elongase- und/oder Δ-6-Elongase-Nukleinsäuren unter Verwendung der Sequenzen oder eines Teils davon als Hybridisierungssonde gemäß Standard-Hybridisierungstechniken unter stringenten Hybridisierungsbedingungen isoliert werden. Dabei können beispielsweise isolierte Nukleinsäuremoleküle verwendet werden, die mindestens 15 Nukleotide lang sind und unter stringenten Bedingungen mit dem Nukleinsäuremolekülen, die eine Nukleotidsequenz der SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 umfassen, hybridisieren. Es können auch Nukleinsäuren mindestens 25, 50, 100, 250 oder mehr Nukleotide verwendet werden. Der Begriff "hybridisiert unter stringenten Bedingungen", wie hier verwendet, soll Hybridisierungs- und Waschbedingungen beschreiben, unter denen Nukleotidsequenzen, die mindestens 60 % homolog zueinander sind, gewöhnlich aneinander hybridisiert bleiben. Die Bedingungen sind vorzugsweise derart, dass Sequenzen, die mindestens etwa 65 %, stärker bevorzugt mindestens etwa 70 % und noch stärker bevorzugt mindestens etwa 75 % oder stärker zueinander homolog sind, gewöhnlich aneinander hybridisiert bleiben. Diese stringenten Bedingungen sind dem Fachmann bekannt und lassen sich in Current Protocols in Molecular Biology, John Wiley & Sons, N. Y. (1989), 6.3.1-6.3.6., finden. Ein bevorzugtes, nicht einschränkendes Beispiel für stringente Hybridisierungsbedingungen sind Hybridisierungen in 6 x Natriumchlorid/Natriumcitrat (sodium chloride/sodiumcitrate = SSC) bei etwa 45°C, gefolgt von einem oder mehreren Waschschritten in 0,2 x SSC, 0,1 % SDS bei 50 bis 65°C. Dem Fachmann ist bekannt, dass diese Hybridisierungsbedingungen sich je nach dem Typ der Nukleinsäure und, wenn beispielsweise organische Lösungsmittel vorliegen, hinsichtlich der Temperatur und der Konzentration des Puffers unterscheiden. Die Temperatur unterscheidet sich beispielsweise unter "Standard-Hybridi-

10

20

25

30

35

40

sierungsbedingungen" je nach dem Typ der Nukleinsäure zwischen 42°C und 58°C in wässrigem Puffer mit einer Konzentration von 0,1 bis 5 x SSC (pH 7,2). Falls organisches Lösungsmittel im obengenannten Puffer vorliegt, zum Beispiel 50 % Formamid, ist die Temperatur unter Standardbedingungen etwa 42°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:DNA-Hybride zum Beispiel 0,1 x SSC und 20°C bis 45°C, vorzugsweise zwischen 30°C und 45°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:RNA-Hybride zum Beispiel 0,1 x SSC und 30°C bis 55°C, vorzugsweise zwischen 45°C und 55°C. Die vorstehend genannten Hybridisierungstemperaturen sind beispielsweise für eine Nukleinsäure mit etwa 100 bp (= Basenpaare) Länge und einem G + C-Gehalt von 50 % in Abwesenheit von Formamid bestimmt. Der Fachmann weiß, wie die erforderlichen Hybridisierungsbedingungen anhand von Lehrbüchern, wie dem vorstehend erwähnten oder aus den folgenden Lehrbüchern Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989; Hames und Higgins (Hrsgb.) 1985, "Nucleic Acids Hybridization: A Practical Approach", IRL Press at Oxford University Press, Oxford; Brown (Hrsgb.) 1991, 15 "Essential Molecular Biology: A Practical Approach", IRL Press at Oxford University Press, Oxford, bestimmt werden können.

Zur Bestimmung der prozentualen Homologie (= Identität) von zwei Aminosäuresequenzen (z.B. einer der Sequenzen der SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86 oder SEQ ID NO: 88) oder von zwei Nukleinsäuren (z.B. SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87) werden die Sequenzen zum Zweck des optimalen Vergleichs untereinander geschrieben (z.B. können Lücken in die Sequenz eines Proteins oder einer Nukleinsäure eingefügt werden, um ein optimales Alignment mit dem anderen Protein oder der anderen Nukleinsäure zu erzeugen). Die Aminosäurereste oder Nukleotide an den entsprechenden Aminosäurepositionen oder Nukleotidpositionen werden dann verglichen. Wenn eine Position in einer Sequenz durch den gleichen Aminosäurerest oder das gleiche Nukleotid wie die entsprechende Stelle in der anderen Sequenz belegt wird, dann sind die Moleküle an dieser Position homolog (d.h. Aminosäure- oder Nukleinsäure-"Homologie", wie hier verwendet, entspricht Aminosäure- oder Nukleinsäure-"Identität"). Die prozentuale Homologie zwischen den beiden Sequenzen ist eine Funktion der Anzahl an identischen Positionen, die den Sequenzen gemeinsam sind (d.h. % Homologie = Anzahl der identischen Positionen/Gesamtanzahl der Positionen x 100). Die Begriffe Homologie und Identität sind damit als Synonym anzusehen. Die verwendeten Programme bzw. Algorithmen sind oben beschrieben.

Ein isoliertes Nukleinsäuremolekül, das für eine ω -3-Desaturase, Δ -5-Elongase und/oder Δ -6-Elongase kodiert, die zu einer Proteinsequenz der SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62,

10

15

20

25

30

35

40

67

SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86 oder SEQ ID NO: 88 homolog ist, kann durch Einbringen einer oder mehrerer Nukleotidsubstitutionen, -additionen oder -deletionen in eine Nukleotidsequenz der SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 erzeugt werden, so dass eine oder mehrere Aminosäuresubstitutionen, -additionen oder -deletionen in das kodierte Protein eingebracht werden. Mutationen können in eine der Sequenzen der SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 durch Standardtechniken, wie stellenspezifische Mutagenese und PCR-vermittelte Mutagenese, eingebracht werden. Vorzugsweise werden konservative Aminosäuresubstitutionen an einer oder mehreren der vorhergesagten nichtessentiellen Aminosäureresten hergestellt. Bei einer "konservativen Aminosäuresubstitution" wird der Aminosäurerest gegen einen Aminosäurerest mit einer ähnlichen Seitenkette ausgetauscht. Im Fachgebiet sind Familien von Aminosäureresten mit ähnlichen Seitenketten definiert worden. Diese Familien umfassen Aminosäuren mit basischen Seitenketten (z.B. Lysin, Arginin, Histidin), sauren Seitenketten (z.B. Asparaginsäure, Glutaminsäure), ungeladenen polaren Seitenketten (z.B. Glycin, Asparagin, Glutamin, Serin, Threonin, Tyrosin, Cystein), unpolaren Seitenketten, (z.B. Alanin, Valin, Leucin, Isoleucin, Prolin, Phenylalanin, Methionin, Tryptophan), beta-verzweigten Seitenketten (z.B. Threonin, Valin, Isoleucin) und aromatischen Seitenketten (z.B. Tyrosin, Phenylalanin, Tryptophan, Histidin). Ein vorhergesagter nicht-essentieller Aminosäurerest in einer Lysophosphatidsäure Acyltransferase, Glycerin-3-phosphat Acyltransferase, Diacylglycerin Acyltransferase oder Lecithin Cholesterin Acyltransferase wird somit vorzugsweise durch einen anderen Aminosäurerest aus der gleichen Seitenkettenfamilie ausgetauscht. Alternativ können bei einer anderen Ausführungsform die Mutationen zufallsgemäß über die gesamte oder einen Teil der Lysophosphatidsäure Acyltransferase, Glycerin-3-phosphat Acyltransferase, Diacylglycerin Acyltransferase oder Lecithin Cholesterin Acyltransferase kodierenden Sequenz eingebracht werden, z.B. durch Sättigungsmutagenese, und die resultierenden Mutanten können nach der hier beschriebenen Lysophosphatidsäure Acyltransferase-, Glycerin-3-phosphat Acyltransferase-, Diacylglycerin Acyltransferaseoder Lecithin Cholesterin Acyltransferase-Aktivität durchmustert werden, um Mutanten zu identifizieren, die die Lysophosphatidsäure Acyltransferase-, Glycerin-3-phosphat Acyltransferase-, Diacylglycerin Acyltransferase- oder Lecithin Cholesterin Acyltransferase-Aktivität beibehalten haben. Nach der Mutagenese einer der Sequenzen SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 kann das kodierte Protein rekombinant exprimiert

werden, und die Aktivität des Proteins kann z.B. unter Verwendung der hier beschriebenen Tests bestimmt werden.

Weitere Erfindungsgegenstände sind transgene nicht-humane Organismen, die die erfindungsgemäßen Nukleinsäuren SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85 oder SEQ ID NO: 87 enthalten oder ein Genkonstrukt oder einen Vektor, die diese erfindungsgemäßen Nukleinsäuresequenzen enthalten. Vorteilhaft handelt es sich bei dem nicht-humanen Organismus um einen Mikroorganismus, ein nicht-humanes Tier oder eine Pflanze, besonders bevorzugt um eine Pflanze.

Diese Erfindung wird durch die nachstehenden Beispiele weiter veranschaulicht, die nicht als beschränkend aufgefasst werden sollten. Der Inhalt sämtlicher in dieser Patentanmeldung zitierten Literaturstellen, Patentanmeldungen, Patente und veröffentlichten Patentanmeldungen ist hier durch Bezugnahme aufgenommen.

Beispiele

5

10

25

Beispiel 1: Allgemeine Klonierungsverfahren:

Die Klonierungsverfahren wie z.B. Restriktionsspaltungen, Agarose-Gelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylon Membranen, Verknüpfen von DNA-Fragmenten, Transformation von Escherichia coli Zellen, Anzucht von Bakterien und die Sequenzanalyse rekombinanter DNA wurden wie bei Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) beschrieben durchgeführt.

Beispiel 2: Sequenzanalyse rekombinanter DNA:

Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA74, 5463-5467). Fragmente resultierend aus einer Polymerase Kettenreaktion wurden zur Vermeidung von Polymerasefehlern in zu exprimierenden Konstrukten sequenziert und überprüft.

30 Beispiel 3: Klonierung von Genen aus Oncorhynchus mykiss

Durch Suche nach konservierten Bereichen in den Proteinsequenzen entsprechend der in der Anmeldung aufgeführten Elongase-Gene wurden zwei Sequenzen mit entsprechenden Motiven in der Sequenzdatenbank von Genbank identifiziert.

Gen-Name	Genbank No	Aminosäuren
OmELO2	CA385234, CA364848, CA366480	264
OmELO3	CA360014, CA350786	295

Gesamt-RNA von Oncoryhnchus mykiss wurde mit Hilfe des RNAeasy Kits der Firma Qiagen (Valencia, CA, US) isoliert. Aus der Gesamt-RNA wurde mit Hilfe von oligodT-Cellulose poly-A+ RNA (mRNA) isoliert (Sambrook et al., 1989). Die RNA wurde mit dem Reverse Transcription System Kit von Promega revers transcribiert und die synthetisierte cDNA in den lambda ZAP Vektor (lambda ZAP Gold, Stratagene) kloniert. Entsprechend Herstellerangaben wurde die cDNA zur Plasmid-DNA entpackt. Die cDNA-Plasmid-Bank wurde dann für die PCR zur Klonierung von Expressionsplasmiden verwendet.

Beispiel 4: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen

Für die Klonierung der zwei Sequenzen zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Primer	Nukleotidsequenz	**	
5' f* OmELO2	5' aagcttacataatggcttcaacatggcaa	\$ w	
3' r* OmELO2	5' ggatcettatgtettettgetetteetgtt		
5' f OmELO3 3' r OmELO3	5' aagcttacataatggagacttttaat 5' ggatccttcagtccccctcactttcc		•
* f: forward, r: reverse			

Zusammensetzung des PCR-Ansatzes (50 µL): 15

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase) + 25 mM MgCl2

5,00 µL 2 mM dNTP

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase 20 Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur:

1 min 55ºC

Denaturierungstemperatur: 1 min 94ºC 25

Elongationstemperatur:

2 min 72ºC

Anzahl der Zyklen:

35

Das PCR Produkt wurde für 2 h bei 37°C mit den Restriktionsenzymen HindIII und BamHI inkubiert. Der Hefe-Expressionsvektor pYES3 (Invitrogen) wurde in gleicherweise inkubiert. Anschliessend wurde das 812 bp bzw. 905 bp große PCR Produkt sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel purification Kit gemäss Herstellerangaben. Anschließend wurden Vektor und Elongase cDNA ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pYES3-OmELO2 und pYES3-OmELO3 wurden durch Sequenzierung verifiziert und in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde pYES3 parallel transformiert. Anschliessend wurden die Hefen auf Komplett-Minimalmedium ohne Tryptophan mit 2 % Glucose ausplattiert. Zellen, die auf ohne Tryptophan im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES3, pYES3-OmELO2 (SEQ NO: 5) und pYES3-OmELO3 (SEQ NO:6). Nach der Selektion wurden je zwei 15 Transformaten zur weiteren funktionellen Expression ausgewählt.

Klonierung von Expressionsplasmiden zur Samen-spezifischen Beispiel 5: Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurde mit folgendem Primerpaar Notl-Schnitt-20 stellen am 5' und 3'-Ende des kodierenden Sequenz eingefügt:

PSUN-OmELO2

Forward: 5'-GCGGCCGCATAATGGCTTCAACATGGCAA

Reverse: 3'-GCGGCCGCTTATGTCTTCTTGCTCTTCCTGTT

PSUN-OMELO3 25

5

10

Forward: 5'-GCGCCCGCataatggagacttttaat Reverse: 3'-GCGGCCGCtcagtccccctcactttcc

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase) + 25 mM MgCl2

5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt. 35

Reaktionsbedingungen der PCR:

1 min 55°C Anlagerungstemperatur:

Denaturierungstemperatur: 1 min 94ºC

2 min 72ºC Elongationstemperatur:

35 Anzahl der Zyklen: 40

10

15

20

25

35

40

71

Die PCR Produkte wurden für 16 h bei 37°C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschließend wurde die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel purification Kit gemäss Herstellerangaben. Anschliessend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-OmELO2 und pSUN-OmELO3 wurde durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz, P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982) Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3'). Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP. Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

Beispiel 6: Lipidextraktion aus Hefen und Samen:

Die Auswirkung der genetischen Modifikation in Pflanzen, Pilzen, Algen, Ciliaten oder auf die Produktion einer gewünschten Verbindung (wie einer Fettsäure) kann bestimmt werden, indem die modifizierten Mikroorganismen oder die modifizierte Pflanze unter geeigneten Bedingungen (wie den vorstehend beschriebenen) gezüchtet werden und das Medium und/oder die zellulären Komponenten auf die erhöhte Produktion des gewünschten Produktes (d.h. von Lipiden oder einer Fettsäure) untersucht wird. Diese Analysetechniken sind dem Fachmann bekannt und umfassen Spektroskopie, Dünnschichtchromatographie, Färbeverfahren verschiedener Art, enzymatische und mikrobiologische Verfahren sowie analytische Chromatographie, wie Hochleistungs-Flüssigkeitschromatographie (siehe beispielsweise Ullman, Encyclopedia of Industrial Chemistry, Bd. A2, S. 89-90 und S. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17; Rehm et al. (1993) Biotechnology, Bd. 3,

10

15

20

25

35

40

72

Kapitel III: "Product recovery and purification", S. 469-714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F., und Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., und Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Bd. B3; Kapitel 11, S. 1-27, VCH: Weinheim; und Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications).

Neben den oben erwähnten Verfahren werden Pflanzenlipide aus Pflanzenmaterial wie von Cahoon et al. (1999) Proc. Natl. Acad. Sci. USA 96 (22):12935-12940, und Browse et al. (1986) Analytic Biochemistry 152:141-145, beschrieben extrahiert. Die qualitative und quantitative Lipid- oder Fettsäureanalyse ist beschrieben bei Christie, William W., Advances in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide - Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 S. (Oily Press Lipid Library; 1); "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952) - 16 (1977) u.d.T.: Progress in the Chemistry of Fats and Other Lipids CODEN.

Zusätzlich zur Messung des Endproduktes der Fermentation ist es auch möglich, andere Komponenten der Stoffwechselwege zu analysieren, die zur Produktion der gewünschten Verbindung verwendet werden, wie Zwischen- und Nebenprodukte, um die Gesamteffizienz der Produktion der Verbindung zu bestimmen. Die Analyseverfahren umfassen Messungen der Nährstoffmengen im Medium (z.B. Zucker, Kohlenwasserstoffe, Stickstoffquellen, Phosphat und andere Ionen), Messungen der Biomassezusammensetzung und des Wachstums, Analyse der Produktion üblicher Metabolite von Biosynthesewegen und Messungen von Gasen, die während der Fermentation erzeugt werden. Standardverfahren für diese Messungen sind in Applied Microbial Physiology; A Practical Approach, P.M. Rhodes und P.F. Stanbury, Hrsgb., IRL Press, S. 103-129; 131-163 und 165-192 (ISBN: 0199635773) und darin angegebenen Literaturstellen beschrieben.

Ein Beispiel ist die Analyse von Fettsäuren (Abkürzungen: FAME, Fettsäuremethylester; GC-MS, Gas-Flüssigkeitschromatographie-Massenspektrometrie; TAG, Triacylglycerin; TLC, Dünnschichtchromatographie).

Der unzweideutige Nachweis für das Vorliegen von Fettsäureprodukten kann mittels Analyse rekombinanter Organismen nach Standard-Analyseverfahren erhalten werden: GC, GC-MS oder TLC, wie verschiedentlich beschrieben von Christie und den Literaturstellen darin (1997, in: Advances on Lipid Methodology, Vierte Aufl.: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren, Lipide 33:343-353).

Das zu analysierende Material kann durch Ultraschallbehandlung, Mahlen in der Glasmühle, flüssigen Stickstoff und Mahlen oder über andere anwendbare Verfahren aufgebrochen werden. Das Material muss nach dem Aufbrechen zentrifugiert werden. Das Sediment wird in Aqua dest. resuspendiert, 10 min bei 100°C erhitzt, auf Eis

20

25

30

35

40

73

abgekühlt und erneut zentrifugiert, gefolgt von Extraktion in 0,5 M Schwefelsäure in Methanol mit 2 % Dimethoxypropan für 1 Std. bei 90°C, was zu hydrolysierten Öl- und Lipidverbindungen führt, die transmethylierte Lipide ergeben. Diese Fettsäuremethylester werden in Petrolether extrahiert und schließlich einer GC-Analyse unter Verwendung einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0,32 mm) bei einem Temperaturgradienten zwischen 170°C und 240°C für 20 min und 5 min bei 240°C unterworfen. Die Identität der erhaltenen Fettsäuremethylester muss unter Verwendung von Standards, die aus kommerziellen Quellen erhältlich sind (d.h. Sigma), definiert werden.

10 Pflanzenmaterial wird zunächst mechanisch durch Mörsern homogenisiert, um es einer Extraktion zugänglicher zu machen.

Dann wird 10 min auf 100°C erhitzt und nach dem Abkühlen auf Eis erneut sedimentiert. Das Zellsediment wird mit 1 M methanolischer Schwefelsäure und 2 % Dimethoxypropan 1h bei 90°C hydrolysiert und die Lipide transmethyliert. Die resultierenden Fettsäuremethylester (FAME) werden in Petrolether extrahiert. Die extrahierten FAME werden durch Gasflüssigkeitschromatographie mit einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 m, 0,32 mm) und einem Temperaturgradienten von 170°C auf 240°C in 20 min und 5 min bei 240°C analysiert. Die Identität der Fettsäuremethylester wird durch Vergleich mit entsprechenden FAME-Standards (Sigma) bestätigt. Die Identität und die Position der Doppelbindung kann durch geeignete chemische Derivatisierung der FAME-Gemische z.B. zu 4,4-Dimethoxyoxazolin-Derivaten (Christie, 1998) mittels GC-MS weiter analysiert werden.

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES3, pYES3-OmELO2 und pYES3-OmELO3 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 10 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1N methonolischer Schwefelsäure und 2 % (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50 bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma).

20

25

30

35

 $(x_i)_i$

74

Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001, Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

5 Beispiel 7: Funktionelle Charakterisierung von OmELO2 und OmELO3:

OmELO2 zeigt keine Elongase-Aktivität, während für OmELO3 eine deutliche Aktivität mit verschiedenen Substraten nachgewiesen werden konnte. Die Substratspezifität der OmElo3 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Figur 2). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Alle transgene Hefen zeigen die Synthese neuer Fettsäuren, den Produkten der OmElo3-Reaktion. Dies bedeutet, dass das Gen OmElo3 funktional exprimiert werden konnte.

Figur 2 zeigt, dass die OmElo3 eine Substratspezifität aufweist, die mit hoher Spezifität zur Verlängerung von $\Delta 5$ - und $\Delta 6$ -Fettsäuren mit einer $\omega 3$ -Doppelbindung führt. Es konnte in geringerer Spezifität des weiteren auch $\omega 6$ -Fettsäuren (C18 und C20) elongiert werden. Stearidonsäure (C18:4 $\omega 3$) und Eicosapentaensäure (C20:5 $\omega 3$) stellen die besten Substrate für die OmElo3 dar (bis zu 66 % Elongation).

Beispiel 8: Rekonstitution der Synthese von DHA in Hefe

Die Rekonstitution der Biosynthese von DHA (22:6 ω 3) wurde ausgehend von EPA (20:5 ω 3) bzw. Stearidonsäure (18:4 ω 3) durch die Coexpression der OmElo3 mit der Δ -4-Desaturase aus *Euglena gracilis* bzw. der Δ -5-Desaturase aus *Phaeodactylum tricornutum* und der Δ -4-Desaturase aus *Euglena gracilis* durchgeführt. Dazu wurden weiterhin die Expressionsvektoren pYes2-EgD4 und pESCLeu-PtD5 konstruiert. Der o.g. Hefestamm, der bereits mit dem pYes3-OmElo3 (SEQ ID NO: 55) transformiert ist, wurde weiter mit dem pYes2-EgD4 bzw. gleichzeitig mit pYes2-EgD4 und pESCLeu-PtD5 transformiert. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium-Agarplatten mit 2% Glucose, aber ohne Tryptophan und Uracil im Falle des pYes3-OmELO/pYes2-EgD4-Stammes und ohne Tryptophan, Uracil und Leucin im Falle des pYes3-OmELO/pYes2-EgD4+pESCLeu-PtD5-Stammes. Die Expression wurde wie oben angegeben durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 120 h bei 15°C inkubiert.

Figur 3 zeigt die Fettsäureprofile von transgenen Hefen, die mit 20:5 ω 3 gefüttert wurden. In der Kontroll-Hefe (A), die mit dem pYes3-OmElo3-Vektor und dem leeren Vektor pYes2 transformiert wurden, wurde 20:5 ω 3 sehr effizient zu 22:5 ω 3 elongiert (65% Elongation). Die zusätzliche Einführung der Eg Δ -4-Desaturase führte zu der Umsetzung von 22:5 ω 3 zu 22:6 ω 3 (DHA). Die Fettsäure-Zusammensetzung der transgenen Hefen ist in Figure 5 wiedergegeben. Nach die Co-Expression von OmElo3 und EgD4 konnte bis zu 3% DHA in Hefen nachgewiesen werden.

20

25

35

75

In einem weiteren Co-Expressionsexperiment wurden OmElo3, EgD4 und eine $\Delta 5$ -Desaturase aus P. tricornutum (PtD5) zusammen exprimiert. Die transgenen Hefen wurden mit Stearidonsäure (18:4 $\omega 3$) gefüttert und analysiert (Figur 4). Die Fettsäure-Zusammensetzung dieser Hefen ist in Figur 5 aufgeführt. Durch OmElo3 wurde die gefütterte 18:4 $\omega 3$ zu 20:4 $\omega 3$ elongiert (60% Elongation). Letztere wurde durch die PtD5 zu 20:5 $\omega 3$ desaturiert. Die Aktivität der PtD5 betrug 15%. 20:5 $\omega 3$ konnte weiterhin durch die OmElo3 zu 22:5 $\omega 3$ elongiert werden. Im Anschluß wurde die neu synthetisierte 22:5 $\omega 3$ zu 22:6 $\omega 3$ (DHA) desaturiert. In diesen Experimenten konnte bis zu 0,7% DHA erzielt werden.

Aus diesen Experimenten geht hervor, dass die in dieser Erfindung verwendeten Sequenzen OmElo3, EgD4 und PtD5 für die Produktion von DHA in eukaryotischen Zellen geeignet sind.

Beispiel 9: Erzeugung von transgenen Pflanzen

Erzeugung transgener Rapspflanzen (verändert nach Moloney et al., 1992, Plant Cell Reports, 8:238-242)

Zur Erzeugung transgener Rapspflanzen wurden binäre Vektoren in Agrobacterium tumefaciens C58C1:pGV2260 oder Escherichia coli genutzt (Deblaere et al, 1984, Nucl. Acids. Res. 13, 4777-4788). Zur Transformation von Rapspflanzen (Var. Drakkar, NPZ Nordeutsche Pflanzenzucht, Hohenlieth, Deutschland), wurde eine 1:50 Verdünnung einer Übernachtkultur einer positiv transformierten Agrobakterienkolonie in Murashige-Skoog Medium (Murashige und Skoog 1962 Physiol. Plant. 15, 473) mit 3 % Saccharose (3MS-Medium) benutzt: Petiolen oder Hypokotyledonen frisch gekeimter steriler Rapspflanzen (zu je ca. 1 cm²) wurden in einer Petrischale mit einer 1:50 Agrobakterienverdünnung für 5-10 Minuten inkubiert. Es folgt eine 3-tägige Colnkubation in Dunkelheit bei 25°C auf 3MS-Medium mit 0,8 % Bacto-Agar. Die Kultivierung wurde nach 3 Tagen mit 16 Stunden Licht / 8 Stunden Dunkelheit weitergeführt und in wöchentlichem Rhythmus auf MS-Medium mit 500 mg/l Claforan (Cefotaxime-Natrium), 50 mg/l Kanamycin, 20 mikroM Benzylaminopurin (BAP) und 1,6 g/l Glukose weitergeführt. Wachsende Sprosse wurden auf MS-Medium mit 2 % Saccharose, 250 mg/l Claforan und 0,8 % Bacto-Agar überführt. Bildeten sich nach drei Wochen keine Wurzeln, so wurde als Wachstumshormon 2-Indolbuttersäure zum Bewurzeln zum Medium gegeben.

Regenerierte Sprosse wurden auf 2MS-Medium mit Kanamycin und Claforan erhalten, nach Bewurzelung in Erde überführt und nach Kultivierung für zwei Wochen in einer Klimakammer oder im Gewächshaus angezogen, zur Blüte gebracht, reife Samen geerntet und auf Elongase-Expression wie Δ -5-Elongase- oder Δ -6-Elongaseaktivität oder ω -3-Desaturaseaktivität mittels Lipidanalysen untersucht. Linien mit erhöhten Gehalten an C20- und C22 mehrfachungesättigten Fettsäuren wurden so identifiziert.

76

b) Herstellung von transgenen Leinpflanzen

Die Herstellung von transgenen Leinpflanzen können zum Beispiel nach der Methode von Bell et al., 1999, In Vitro Cell. Dev. Biol.-Plant. 35(6):456-465 mittels particle bombartment erzeugt werden. Agrobakterien-vermittelte Transformationen können zum Beispiel nach Mlynarova et al. (1994), Plant Cell Report 13: 282-285 hergestellt werden.

Beispiel 10: Klonierung von Δ5-Elongase-Genen aus Thraustochytrium aureum ATCC34304 und Thraustochytrium ssp.

Durch Vergleiche der verschiedenen in dieser Anmeldung gefundenen ElongaseProteinsequenzen konnten konservierte Nukleinsäurebereiche definiert werden (Histidin-Box: His-Val-X-His-His, Tyrosin-Box: Met-Tyr-X-Tyr-Tyr). Mit Hilfe dieser Sequenzen wurde eine EST-Datenbank von T. aureum ATCC34304 und Thraustochytrium ssp. nach weiteren Δ-5-Elongasen durchsucht. Folgende neue Sequenzen konnten gefunden werden:

Gen-Name	Nukleotide	Aminosäuren	
BioTaurELO1	828 bp	275	
TL16y2	831	276	

Gesamt-RNA von T. aureum ATCC34304 und Thraustochytrium ssp. wurde mit Hilfe des RNAeasy Kits der Firma Qiagen (Valencia, CA, US) isoliert. Aus der Gesamt-RNA wurde mit Hilfe des PolyATract Isolierungssystems (Promega) mRNA isoliert. Die mRNA wurde mit dem Marathon cDNA Amplification-Kit (BD Biosciences) reverse transkribiert und entsprechend der Herstellerangaben Adaptoren ligiert. Die cDNA-Bank wurde dann für die PCR zur Klonierung von Expressionsplasmiden mittels 5'-und 3'-RACE (rapid amplification of cDNA ends) verwendet.

Beispiel 11: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen

Für die Klonierung der Sequenz zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

5

Primer	Nukleotidsequenz
5' f* BioTaurELO1	5' gacataatgacgagcaacatgag
3' r* BioTaurELO1	5' cggcttaggccgacttggccttggg
5'f*TL16y2	5' agacataatggacgtcgtcgagcagcaatg
3'r*TL16y2	5' ttagatggtcttctgcttcttgggcgcc
* f: forward, r: reverse	

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

10 5,00 µL 10x Puffer (Advantage-Polymerase) + 25 mM MgCl2

5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

0,50 µL pfu-Polymerase

Die Advantage-Polymerase von Clontech wurde eingesetzt.

15

25

30

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55ºC Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72ºC

20

Anzahl der Zyklen:

35

Die PCR Produkte BioTaurELO1 (siehe SEQ ID NO: 65) und TL16y2 (siehe SEQ ID NO: 83) wurde für 30 min bei 21 °C mit dem Hefe-Expressionsvektor pYES2.1-TOPO (Invitrogen) inkubiert gemäss Herstellerangaben. Das PCR-Produkt wird dabei durch einen T-Überhang und Aktivität einer Topoisomerase (Invitrogen) in den Vektor ligiert. Nach der Inkubation erfolgte dann die Transformation von E. coli DH5α Zellen. Entsprechende Klone wurden durch PCR identifiziert, die Plasmid-DNA mittels Qiagen DNAeasy-Kit isoliert und durch Sequenzierung verifiziert. Die korrekte Sequenz wurde dann in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde der leere Vektor pYES2.1 parallel transformiert. Anschließend wurden die Hefen auf Komplett-Minimalmedium ohne Uracil mit 2 % Glucose ausplattiert. Zellen, die ohne Uracil im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES2.1, pYES2.1-BioTaurELO1 und

pYES2.1-TL16y2. Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.

Beispiel 12: Klonierung von Expressionsplasmiden zur Samen-spezifischen

Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurde mit folgendem Primerpaar Notl-Schnittstellen am 5' und 3'-Ende des kodierenden Sequenz eingefügt:

10

5

PSUN-BioTaurELO1

Forward: 5'-GCGGCCGCATAATGACGAGCAACATGAGC Reverse: 3'-GCGGCCGCTTAGGCCGACTTGGC

PSUN-TL16y2

Forward: 5'-GCGGCCGCACCATGGACGTCGTCGAGCAGCAATG Reverse: 5'-GCGGCCGCTTAGATGGTCTTCTGCTTCTTGGGCGCC

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

20 5,00 µL 10x Puffer (Advantage-Polymerase) + 25 mM MgCl2

5,00 µL 2mM dNTP

1,25 µL je Primer (10 prnol/µL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

25

30

35

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C

Denaturierungstemperatur: 1 min 94ºC

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Die PCR Produkte wurden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschliessend wurde die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschließend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-BioTaurELO1 und pSUN-TL16y2 wurden durch Sequenzierung verifiziert.

35

40

79

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz, P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens 5 Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982) Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil 10 der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC 15 GGATCTGCTGGCTATGAA-3'). Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP. Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

20 Die Lipidextraktion aus Hefen und Samen erfolgte identisch zu Beispiel 6.

Beispiel 13: Funktionelle Charakterisierung von BioTaurELO1 und TL16y2::

Die Substratspezifität der BioTaurELO1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Figur 6). Figur 6 zeigt die Fütterungsexperimente zur Bestimmung der Funktionalität und Substratspezifität mit Hefestämmen, die entweder den Vektor pYes2.1 (Kontrolle = Control) oder den Vektor pYes2.1-BioTaurELO1 (= BioTaur) mit der Δ -5-Elongase enthalten. In beiden Ansätzen wurde 200 uM γ -Linolensäure und Eicosapentaensäure dem Hefeinkubationsmedium zugesetzt und 24 h inkubiert. Nach Extraktion der Fettsäuren aus den Hefen wurden diese transmethyliert und gaschromatographisch aufgetrennt. Die aus den beiden gefütterten Fettsäuren entstandenen Elongationsprodukte sind durch Pfeile markiert.

Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Alle transgene Hefen zeigen die Synthese neuer Fettsäuren, den Produkten der BioTaurELO1-Reaktion. Dies bedeutet, dass das Gen BioTaurELO1 funktional exprimiert werden konnte.

Figur 6 zeigt, dass die BioTaurELO1 eine Substratspezifität aufweist, die mit hoher Spezifität zur Verlängerung von $\Delta 5$ - und $\Delta 6$ -Fettsäuren mit einer $\omega 3$ -Doppelbindung führt. Des weiteren konnten auch $\omega 6$ -Fettsäuren (C18 und C20) elongiert werden. Es werden γ -Linolensäure (C18:3 $\omega 6$) mit 65,28 %, Stearidonsäure (C18:4 $\omega 3$) mit 65.66 % und Eicosapentaensäure (C20:5 $\omega 3$) mit 22,01 % Konversion umgesetzt.

80

Die Substratspezifitäten der verschiedenen Fütterungsexperimente sind in Tabelle 2 dargestellt (siehe am Ende der Beschreibung).

Die Konversionsrate von GLA bei Fütterung von GLA und EPA betrug 65,28 %. Die Konversionsrate von EPA bei gleicher Fütterung von GLA und EPA betrug 9,99 %.

5 Wurde nur EPA gefüttert, so betrug die Konversionsrate von EPA 22,01 %. Auch Arachidonsäure (= ARA) wurde bei Fütterung umgesetzt. Die Konversionsrate betrug 14,47 %. Auch Stearidonsäure (= SDA) wurde umgesetzt. In diesem Fall betrug die Konversionsrate 65,66 %.

Die Funktionalität und Substratspezifität von TL16y2 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden. Tabelle 3 zeigt die Fütterungsexperimente. Die Fütterungsversuche wurden in gleicherweise durchgeführt wie für BioTaurELO1 beschrieben. Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der TL16y2-Reaktion (Fig. 11). Dies bedeutet, dass das Gen TL16y2 funktional exprimiert werden konnte.

Tabelle 3: Expression von TL16y2 in Hefe.

Plasmid	Fettsäure	C18:3	C18:4	C20:3	C20:4	C20:4	C20:5	C22:4	C22:5
		(n-6)	(n-3)	(n-6)	(n-6)	(n-3)	(n-3)	(n-6)	(n-3)
pYES	250 uM EPA						13,79	·	
TL16y2	250 uM EPA						25,81		2,25
pYES	50 uM EPA						5,07		
TL16y2	50 uM EPA						2,48		1,73
pYES	250 uMGLA	8,31							
TL16y2	250 uM GLA	3,59		10,71					
pYES	250 uM ARA				16,03				
TL16y2	250 uM ARA				15,2		3,87		
pYES	250 uM SDA		26,79			0,35			
TL16y2	250 uM SDA	-	7,74			29,17			

20040177

Die in Tabelle 3 wiedergegebenen Ergebnisse zeigen mit TL16y2 gegenüber der Kontrolle folgende prozentuale Umsätze: a) % Umsatz EPA (250 uM): 8 %, b) % Umsatz EPA (50 uM): 41 %, c) % Umsatz ARA: 20,3 %, d) % Umsatz SDA: 79, 4% und e) % Umsatz GLA: 74,9 %.

TL16y2 zeigt damit $\Delta 5$ -, $\Delta 6$ - und $\Delta 8$ -Elongaseaktivität. Dabei ist die Aktivität für C18-Fettsäuren mit $\Delta 6$ -Doppelbindung am höchsten. Abhängig von der Konzentration an gefütterten Fettsäuren werden dann C20-Fettsäuren mit einer Δ5- bzw. Δ8-Doppelbindung verlängert.

Klonierung von Genen aus Ostreococcus tauri Beispiel 14:

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe der 10 in der Anmeldung aufgeführten Elongase-Gene mit Δ-5-Elongaseaktivität oder Δ-6-Elongaseaktivität konnten zwei Sequenzen mit entsprechenden Motiven in einer Ostreococcus tauri Sequenzdatenbank (genomische Sequenzen) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	SEQ ID	Aminosäuren
OtELO1, (Δ-5-Elongase)	SEQ ID NO: 67	300
OtELO2, (Δ-6-Elongase)	SEQ ID NO: 69	292

OtElo1 weist die höchste Ähnlichkeit zu einer Elongase aus Danio rerio auf (GenBank 15 AAN77156; ca. 26 % Identität), während OtElo2 die größte Ähnlichkeit zur Physcomitrella Elo (PSE) [ca. 36 % Identität] aufweist (Alignments wurden mit dem tBLASTn-Aalgorithmus (Altschul et al., J. Mol. Biol. 1990, 215: 403 – 410) durchgeführt.

Die Klonierung wurde wie folgt durchgeführt:

40 ml einer Ostreococcus tauri Kultur in der stationären Phase wurden abzentrifugiert 20 und in 100 µl Aqua bidest resuspendiert und bei -20°C gelagert. Auf der Basis des PCR-Verfahren wurden die zugehörigen genomischen DNAs amplifiziert. Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der OtElo-DNAs wurde jeweils mit 1 µl auf-25 getauten Zellen, 200 µM dNTPs, 2,5 U Taq-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 µl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten. 30

10

25

82

Beispiel 15: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:

Zur Charakterisierung der Funktion der Elongasen aus *Ostreococcus tauri* wurden die offenen Leserahmen der jeweiligen DNAs stromabwärts des Galactose-induzierbaren GAL1-Promotors von pYES2.1/V5-His-TOPO (Invitrogen) kloniert, wobei pOTE1 und pOTE2 erhalten wurden.

Der Saccharomyces cerevisiae-Stamm 334 wurde durch Elektroporation (1500 V) mit dem Vektor pOTE1 bzw. pOTE2 transformiert. Als Kontrolle wurde eine Hefe verwendet, die mit dem leeren Vektor pYES2 transformiert wurde. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2 % Glucose, aber ohne Uracil. Nach der Selektion wurden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.

Für die Expresssion der Ot-Elongasen wurden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2 % (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200 rpm inkubiert. 5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren wurden dann mit den Vorkulturen auf eine OD₆₀₀ von 0,05 angeimpft. Die Expression wurde durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 96 h bei 20°C inkubiert.

20 Beispiel 16: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurden mittels PCR Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenzen eingefügt. Die entsprechenden Primersequenzen wurden von den 5'- und 3-Bereich von OtElo1 und OtElo2 abgeleitet.

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase) + 25 mM MgCl₂

5,00 µL 2mM dNTP

30 1,25 μL je Primer (10 pmol/μL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

35 Anlagerungstemperatur: 1 min 55°C

Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

Elongationstemperatur: 2 n Anzahl der Zyklen: 35

10

15

20

35

40

83

Die PCR Produkte wurden für 16 h bei 37°C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschliessend wurde die PCR Produkte sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschliessend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-OtELO1 und pSUN-OtELO2 wurde durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Ostreococcus-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Moi. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1 bis 684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3').

Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

Beispiel 17: Expression von OtELO1 und OtELO2 in Hefen

Hefen, die wie unter Beispiel 15 mit den Plasmiden pYES3, pYES3-OtELO1 und pYES3-OtELO2 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 µl PE aufgenommen. Die Proben wurden auf einer DB-23-

Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50 bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel 18: Funktionelle Charakterisierung von OtELO1 und OtELO2:

Die Substratspezifität der OtElo1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab.4). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtElo1-Reaktion. Dies bedeutet, dass das Gen OtElo1 funktional exprimiert werden konnte.

Tabelle 4 zeigt, dass die OtElo1 eine enge Substratspezifität aufweist. Die OtElo1 konnte nur die C20-Fettsäuren Eicosapentaensäure (Figur 7) und Arachidonsäure (Figur 8) elongieren, bevorzugte aber die ω-3-desaturierte Eicosapentaensäure.

20 Tabelle 4:

Fettsäuresubstrat	Umsatz (in %)		
16:0	-		
16:1 ^{∆9}	-		
18:0	-		
18:1 ^{Δ9}	-		
18:1 ^{Δ11}			
18:2 ^{∆9,12}	-		
18:3 ^{Δ6,9,12}	-		
18:3 ^{Δ5,9,12}	-		
20:3 ^{Δ8,11,14}	-		

Fettsäuresubstrat	Umsatz (in %)
20:4 ^{A5,8,11,14}	10,8 ± 0,6
20:5 ^{Δ5,8,11,14,17}	46,8 ± 3,6
22:4 ^{Δ7,10,13,16}	-
22:6 ^{Δ4,7,10,13,16,19}	-

Tabelle 4 zeigt die Substratspezifität der Elongase OtElo1 für C20 polyungesättigte Fettsäuren mit einer Doppelbindung in $\Delta 5$ Position gegenüber verschiedenen Fettsäuren.

- Die Hefen, die mit dem Vektor pOTE1 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt den Mittelwert (n=3) ± Standardabweichung wieder.
- Die Substratspezifität der OtElo2 (SEQ ID NO: 81) konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab. 5). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtElo2-Reaktion. Dies bedeutet, dass das Gen OtElo2 funktional exprimiert werden konnte.

15 Tabelle 5:

Fettsäuresubstrat	Umsatz (in %)		
16:0	-		
16:1 ^{Δ9}			
16:3 ^{Δ7,10,13}	-		
18:0	**		
18:1 ^{∆6}	-		
18:1 ^{∆9}	•		
18:1 ^{∆11}	-		
18:2 ^{∆9,12}	•		
18:3 ^{∆6,9,12}	15,3±		
18:3 ^{Δ5,9,12}	=		

86

Fettsäuresubstrat	Umsatz (in %)
18:4 ^{∆6,9,12,15}	21,1±
20:2 ^{Δ11,14}	-
20:3 ^{Δ8,11,14}	•
20:4 ^{Δ5,8,11,14}	-
20:5 ^{Δ5,8,11,14,17}	
22:4 ^{Δ7,10,13,16}	-
22:5 ^{Δ7,10,13,16,19}	-
22:6 ^{Δ4,7,10,13,16,19}	

Tabelle 5 zeigt die Substratspezifität der Elongase OtElo2 gegenüber verschiedenen Fettsäuren.

Die Hefen, die mit dem Vektor pOTE2 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt den Mittelwert (n=3) ± Standardabweichung wieder.

Die enzymatische Aktivität, die in Tabelle 5 wiedergegeben wird, zeigt klar, dass 10 OTEL2 eine Δ-6-Elongase ist.

Beispiel 19: Klonierung von Genen aus Thallasiosira pseudonana

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe der in der Anmeldung aufgeführten Elongase-Gene mit Δ -5-Elongaseaktivität oder Δ -6-Elongaseaktivität konnten zwei Sequenzen mit entsprechenden Motiven in einer Thallasiosira pseudonana Sequenzdatenbank (genomische Sequenzen) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	SEQ ID	Aminosäuren
TpELO1 (Δ5-Elongase)	43	358
TpELO2 (Δ5-Elongase)	59	358
TpELO3 (∆6-Elongase)	45	272

Eine 2 L Kultur von T. pseudonana wurde in f/2 Medium (Guillard, R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. In *Culture of*

10

20

25

87

Marine Invertebrate Animals (Eds. Smith, W.L. and Chanley, M.H.), Plenum Press, New York, pp 29–60.) für 14 d (= Tage) bei einer Lichtstärke von 80 E/cm² angezogen. Nach Zentrifugation der Zellen wurde RNA mit Hilfe des RNAeasy Kits der Firma Quiagen (Valencia, CA, US) nach Herstellerangaben isoliert. Die mRNA wurde mit dem Marathon cDNA Amplification-Kit (BD Biosciences) reverse transkribiert und entsprechend den Herstellerangaben Adaptoren ligiert. Die cDNA-Bank wurde dann für die PCR zur Klonierung von Expressionsplasmiden mittels 5'- und 3'-RACE (rapid amplification of cDNA ends) verwendet.

Beispiel 20: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen

Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der TpElo-DNAs wurde jeweils mit 1 μL cDNA, 200 μM dNTPs, 2,5 U *Advantage*-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Für die Klonierung der Sequenz zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Gen-Name und SEQ ID NO:	Primersequenz	
TpELO1 (Δ5-Elongase), SEQ ID NO: 59	F:5'-accatgtgctcaccaccgccgtc	
	R:5'- ctacatggcaccagtaac	
TpELO2 (Δ5-Elongase), SEQ ID NO: 85	F:5'-accatgtgctcatcaccgccgtc	
	R:5'-ctacatggcaccagtaac	
TpELO3 (Δ6-Elongase), SEQ ID NO:45	F:5'-accatggacgcctacaacgctgc	
	R:5'- ctaagcactettettettt	

^{*}F=forward primer, R=reverse primer

Die PCR Produkte wurde für 30 min bei 21 °C mit dem Hefe-Expressionsvektor - pYES2.1-TOPO (Invitrogen) gemäß Herstellerangaben inkubiert. Das PCR-Produkt wird dabei durch einen T-Überhang und Aktivität einer Topoisomerase (Invitrogen) in den Vektor ligiert. Nach der Inkubation erfolgte dann die Transformation von E. coli DH5α Zellen. Entsprechende Klone wurden durch PCR identifiziert, die Plasmid-DNA mittels Qiagen DNAeasy-Kit isoliert und durch Sequenzierung verifiziert. Die korrekte Sequenz wurde dann in den Saccharomyces Stamm INVSc1 (Invitrogen) durch

Elektroporation (1500 V) transformiert. Zur Kontrolle wurde der leere Vektor pYES2.1 parallel transformiert. Anschließend wurden die Hefen auf Komplett-Minimalmedium ohne Uracil mit 2 % Glucose ausplattiert. Zellen, die ohne Uracil im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES2.1, pYES2.1-TpELO1, pYES2.1-TpELO2 und pYES2.1-TpELO3. Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.

Klonierung von Expressionsplasmiden zur Samen-spezifischen Beispiel 21: Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurde mit folgendem Primerpaar Notl-10 Schnittstellen am 5' und 3'-Ende der kodierenden Sequenz eingefügt:.

PSUN-TPELO1

Forward: 5'-GCGGCCGCACCATGTGCTCACCACCGCCGTC

Reverse: 3'-GCGGCCGCCTACATGGCACCAGTAAC

PSUN-TPELO2

15

20

Forward: 5'-GCGGCCGCACCATGTGCTCATCACCGCCGTC

Reverse: 3'-GCGGCCGCCTACATGGCACCAGTAAC

PSUN-TPELO3

Forward: 5'-GCGGCCGCaccatggacgcctacaacgctgc Reverse: 3'-GCGGCCGCCTAAGCACTCTTCTTT

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase) + 25 mM MgCl2

5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL) 25

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 30

1 min 55°C

Denaturierungstemperatur: 1 min 94ºC

Elongationstemperatur:

2 min 72ºC

Anzahl der Zyklen:

35

Die PCR Produkte wurden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. 35 Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschließend wurde die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente

10

20

25

30

35

89

ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschließend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-TPELO1, pSUN-TPELO2 und pSUN-TPELO3 wurde durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRl- Fragment inseriert wurde. Das Polyadeny-lierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve,H., Dhaese,P., Seurinck,J., Lemmers,M., Van Montagu,M. and Schell,J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982) Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7–Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR–Reaktion nach Standardmethoden amplifiziert.

(Primersequenz: 5'— GTCGACCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3').

Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

Die Lipidextraktion aus Hefen und Samen erfolgte identisch zu Beispiel 6.

Beispiel 22: Expression von TpELO1, TpELO2 und TpELO3 in Hefen

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES2, pYES2-TpELO1, pYES2-TpELO2 und pYES2-TpELO3 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2 % (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon

. 5

10

20

25

90

eingedampft und in 100 μ l PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μ m, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50 bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001, Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel 23: Funktionelle Charakterisierung von TpELO1 und TpELO3:

Die Substratspezifität der TpELO1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Fig. 9). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der TpELO1-Reaktion. Dies bedeutet, dass das Gen TpELO1 funktional exprimiert werden konnte.

Tabelle 6 zeigt, dass die TpELO1 eine enge Substratspezifität aufweist. Die TpELO1 konnte nur die C20-Fettsäuren Eicosapentaensäure und Arachidonsäure elongieren, bevorzugte aber die ω -3-desaturierte Eicosapentaensäure.

Die Hefen, die mit dem Vektor pYES2-TpELO1 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.

Tabelle 6: Expression von TpELO1 in Hefe. In den Spalten 1 und 3 sind die Kontrollreaktionen für die Spalten 2 (gefüttert 250 μ M 20:4 Δ 5,8,11,14) und 4 (gefüttert 250 μ M 20:5 Δ 5,8,11,14,17) wiedergegeben.

	Expression	Expression	Expression	Expression
Fettsäuren	1	2	3	4
16:0	18.8	17.8	25.4	25.2
16:1 ^{Δ9}	28.0	29.8	36.6	36.6
18:0	5.2	5.0	6.8	6.9
18:1 ^{∆9}	25.5	23.6	24.6	23.9
20:4 ^{Δ5,8,11,14}	22.5	23.4	-	-
22:4 ^{Δ7,10,13,16}	_	0.4	- .	-

91

	Expression	Expression	Expression	Expression
Fettsäuren	1	2	3	4
20:5 ^{\Delta 5,8,11,14,17}	-	-	6.6	6.5
22:5 ^{Δ7,10,13,16,19}	-	-	-	0.9
% Umsatz	0	1.7	0	12.2

Für TpELO2 konnte keine Umsetzung von C_{18} - und C_{20} -Fettäsuren nachgewiesen werden.

Die Substratspezifität der TpELO3 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Fig. 10). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der TpELO3-Reaktion. Dies bedeutet, dass das Gen TpELO3 funktional exprimiert werden konnte.

Tabelle 7 zeigt, dass die TpELO3 eine enge Substratspezifität aufweist. Die TpELO3 konnte nur die C_{18} -Fettsäuren γ -Linolensäure und Stearidonsäure elongieren, bevorzugte aber die ω -3-desaturierte Stearidonsäure.

Die Hefen, die mit dem Vektor pYES2-TpELO3 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.

Tabelle 7: Expression von TpELO3 in Hefe. Spalte 1 zeigt das Fettsäureprofil von Hefe ohne Fütterung. Spalte 2 zeigt die Kontrollreaktion. In den Spalten 3 bis 6 wurden γ -Linolensäure, Stearidonsäure, Arachidonsäure und Eicosapentaensäure gefüttert (250 μ M jeder Fettsäure).

Falleäuron	1	2	3	4	5	6
Fettsäuren 16:0	17.9	20.6	17.8	16.7	18.8	18.8
16:0 Δ9	41.7	18.7	27.0	33.2	24.0	31.3
18:0	7.0	7.7	6.4	6.6	5.2	6,0
18:1 ^{∆9}	33.3	16.8	24.2	31.8	25.5	26.4
18:2 ^{∆9,12}	-	36.1	-	-	-	-
18:3 ^{Δ6,9,12}	-	-	6.1	-	-	

Fettsäuren	1	2	3	4	5	6
18:4 ^{Δ6,9,12,15}	-	-	-	1.7	-	
20:2 ^{Δ11,14}	-	0	-	-	-	
20:3 ^{A8,11,14}	-	-	18.5	-	-	
20:4 ^{\Delta 8,11,14,17}	-	-	-	10.0	-	
20:4 ^{\Delta 5,8,11,14}	-	-	-	-	22.5	
22:4 ^{Δ7,10,13,16}	-	-	-	-	0	
20:5 ^{\Delta 5,8,11,14,17}	-	 -	-	-	-	17.4
22:5 ^{Δ7,10,13,16,19}	-	-	-	-	-	0
% Umsatz	0	0.	75	85	0	0

Beispiel 24:

Klonierung eines Expressionsplasmides zur heterologen Expression

der Pi-omega3Des in Hefen

Der Pi-omega3Des Klon wurde für die heterologe Expression in Hefen über PCR mit entsprechenden Pi-omega3Des spezifischen Primern in den Hefe-Expressionsvektor pYES3 kloniert. Dabei wurde ausschließlich der für das Pi-omega3Des Protein kodierende offene Leseraster des Gens amplifiziert und mit zwei Schnittstellen für die Klonierung in den pYES3 Expressionsvektor versehen:

10 Forward Primer: 5'-TAAGCTTACATGGCGACGAAGGAGG
Reverse Primer: 5'-TGGATCCACTTACGTGGACTTGGT

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase) + 25 mM MgCl₂

5,00 µL 2 mM dNTP

1,25 µL je Primer (10 pmol/µL des 5'-ATG sowie des 3'-Stopp Primers)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

20

5

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C

Denaturierungstemperatur: 1 min 94ºC

Elongationstemperatur:

2 min 72ºC

25 Anzahl der Zyklen:

Das PCR Produkt wurde für 2 h bei 37°C mit den Restriktionsenzymen HindIII und BamHI inkubiert. Der Hefe-Expressionsvektor pYES3 (Invitrogen) wurde in gleicherweise inkubiert. Anschließend wurde das 1104 bp große PCR Produkt sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel 5 purification Kit gemäss Herstellerangaben. Anschließend wurden Vektor und Desaturase-cDNA ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pYES3-Pi-omega3Des wurde durch Sequenzierung überprüftt und in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde pYES3 parallel transformiert. Anschliessend wurden 10 die Hefen auf Komplett-Minimalmedium ohne Tryptophan mit 2 % Glucose ausplattiert. Zellen, die auf ohne Tryptophan im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES3, pYES3-Pi-omega3Des. Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.

Beispiel 25: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurde mit folgendem Primerpaar Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenz eingefügt:.

20 PSUN-Pi-omega3Des

Reverse: 3'-GCGGCCGCTTACGTGGACTTGGTC Forward: 5'-GCGGCCGCatGGCGACGAAGGAGG

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase) + 25 mM MgCl₂

5,00 µL 2 mM dNTP

25

30

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C

Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72ºC

35 Anzahl der Zyklen: 35

Die PCR Produkte wurden für 4 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert.

10

20

25

35

94

Anschließend wurde die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel purification Kit gemäss Herstellerangaben. Anschliessend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pSUN-Piomega3Des wurde durch Sequenzierung verifiziert.

Beispiel 26: Expression von Pi-omega3Des in Hefen

Hefen, die wie unter Beispiel 24 mit dem Plasmid pYES3 oder pYES3- Pi-omega3Des transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO3, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 µl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 µm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert. Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001, Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

30 Beispiel 27: Funktionelle Charakterisierung von Pi-omega3Des:

Die Substratspezifität der konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Figur 2 bis 8). Die gefütterten Substrate liegen in großen Mengen in allen transgenen Hefen vor, wodurch die Aufnahme dieser Fettsäuren in die Hefen bewiesen ist. Die transgenen Hefen zeigen die Synthese neuer Fettsäuren, den Produkten der Pi-omega3Des-Reaktion. Dies bedeutet, dass das Gen Pi-omega3Des funktional exprimiert werden konnte.

20

25

35

40

95

Figur 12 gibt die Desaturierung von Linolsäure (18:2 ω-6-Fettsäure) zu α-Linolensäure (18:3 ω-3-Fettsäure) durch die Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 12 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 12 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C18:2 $^{\Delta 9,12}$ -Fettsäure (300 μM) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

In Figur 13 ist die Desaturierung von γ-Linolensäure (18:3 ω-6-Fettsäure) zu Stearidonsäure (18:4 ω-3-Fettsäure) durch Pi-omega3Des wiedergegeben.

10 Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 13 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 13 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von γ-C18:3^{Δ6,9,12}-Fettsäure (300 μM) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

Figur 14 gibt die Desaturierung von C20:2- ω -6-Fettsäure zu C20:3- ω -3-Fettsäure durch Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 14 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 14 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C20:2 $^{\Delta 11,14}$ -Fettsäure (300 μ M) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

Figur 15 gibt die Desaturierung von C20:3- ω -6-Fettsäure zu C20:4- ω -3-Fettsäure durch Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 15 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 15 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C20:3 $^{\Delta8,11,14}$ -Fettsäure (300 μ M) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

In Figur 16 wird die Desaturierung von Arachidonsäure (C20:4-ω-6-Fettsäure) zu Eicosapentaensäure (C20:5-ω-3-Fettsäure) durch die Pi-omega3Des gezeigt. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 16 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 16 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C20:4^{Δ5,8,11,14}-Fettsäure (300 μM) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

Figur 17 gibt die Desaturierung von Docosatetraensäure (C22:4- ω -6-Fettsäure) zu Docosapentaensäure (C22:5- ω -3-Fettsäure) durch Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen,

die mit dem Leervektor pYES2 (Figur 17 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 17 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C22: $4^{\Delta7,10,13,16}$ -Fettsäure (300 μ M) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

5

10

Die Substratspezifität der Pi-omega3Des gegenüber verschiedenen Fettsäuren ist Figur 18 zu entnehmen. Die Hefen, die mit dem Vektor pYes3-Pi-omega3Des transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt einen Mittelwert aus drei Messungen wieder. Die Umsetzungsraten (% Desaturation) wurden mit der Formel: [Produkt]/[Produkt]+[Substrat]*100 errechnet.

5

20

Wie unter Beispiel 9 beschrieben kann auch die Pi-omega3Des zur Erzeugung transgener Pflanzen verwendet werden. Aus den Samen dieser Pflanzen kann dann die Lipidextraktion wie unter Beispiel 6 beschrieben erfolgen.

Äquivalente:

Der Fachmann erkennt oder kann viele Äquivalente der hier beschriebenen erfindungsgemäßen spezifischen Ausführungsformen feststellen, indem er lediglich Routine-experimente verwendet. Diese Äquivalente sollen von den Patentansprüchen umfasst sein.

Umsetzungsraten der gefütterten Fettsäuren. Die Konversionsraten wurden berechnet nach der Formel: [Konversionsrate]= [Produkt]/[[Substrat]+[Produkt]*100. Tabelle 2:

BioTaur-Klone Fläche in % der GC-Anal	lone Fläc	he in % d	ler GC-An	alyse										
			-		7070	6.050	7.8.7	5.06.3	C20:4	C20:4	C20:5	C22:4	C22:4	C22:5
Clone	Fett- säure	C16:0	C16:1 (n-7)	C18:0	(n-9)	(n-6)	(S-n)	(p-u)		(n-3)		(n-6)	(n-3)	(n-3)
Vector	keine	21.261	41.576	4.670	25.330		·							
BioTaur	Keine	20.831	37.374	4.215	26.475		* .			·				
Vector	GLA +	22.053	23.632	5.487	17.289	11.574					13.792			
	7										077			1 127
BioTaur	GLA +	20.439	25.554	6.129	19.587	3.521		6.620			10.149			
	E A			,							300 91			
Vector	EPA	20.669	28.985	6.292	21.712		*			٠	10.463			
BioTaur	EPA	20.472	26.913	6.570	23.131						11.519			3.251
]	9		6 E87	19 735				27.069					
Vector	AHA	23.109	23.332	0000								669		
BioTaur	ARA	20.969	31.281	5.367	21.351				9.648			1.032		
Vector	SDA	18,519	12.626	6.642	6.344		47.911							
				7 246	8 403		13.569			25.946			0.876	
BioTaur	SDA	19.683	15.870		2									

Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen

Zusammenfassung

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in einem Organismus, indem Nukleinsäuren in den Organismus eingebracht werden, die für Polypeptide mit Δ-5-Elongaseaktivität codieren. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit weiteren Nukleinsäuresequenzen, die für Polypeptide der Biosynthese des Fettsäure- oder Lipidstoffwechels codieren, in dem Organismus exprimiert werden. Besonders vorteilhaft sind Nukleinsäuresequenzen, die für eine Δ-6-Elongaseaktivität codieren. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung von Ölen und/oder Triacylglyceriden mit einem erhöhten Gehalt an langkettigen mehrfach ungesättigten Fettsäuren.

Die vorliegende Erfindung betrifft außerdem in einer bevorzugten Ausführungsform ein Verfahren zur Herstellung von ungesättigten ω -3 Fettsäuren sowie ein Verfahren zur Herstellung von Triglyceriden mit einem erhöhten Gehalt an ungesättigten Fettsäuren, besonders von ω -3 Fettsäuren mit mehr als drei Doppelbindungen. Die Erfindung betrifft die Herstellung eines transgenen Organismus bevorzugt einer transgenen Pflanze oder eines transgenen Mikroorganismus mit erhöhtem Gehalt an ungesättigten ω -3-Fettsäuren, Ölen oder Lipiden mit ω -3-Doppelbindungen aufgrund der Expression einer ω -3-Desaturase aus Pilzen der Familie Pythiaceae wie der Gattung Phytophtora beispielsweise der Gattung und Art Phytophtora infestans.

Die Erfindung betrifft weiterhin die Nukleinsäuresequenzen, Nukleinsäurekonstrukte, Vektoren und Organismen enthaltend die erfindungsgemäßen Nukleinsäuresequenzen, Vektoren enthaltend die Nukleinsäuresequenzen und/oder die Nukleinsäurekonstrukte sowie transgene Organismen enthalten die vorgenannten Nukleinsäuresequenzen, Nukleinsäurekonstrukte und/oder Vektoren.

Ein weiterer Teil der Erfindung betrifft Öle, Lipide und/oder Fettsäuren hergestellt nach dem erfindungsgemäßen Verfahren und deren Verwendung.

20

Patentansprüche

5

15

The same

1. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I

$$R^{1} = CH_{2} + CH_{2} + CH_{3}$$
 (I)

in transgenen Organismen mit einem Gehalt von mindestens 1 Gew.-% dieser Verbindungen bezogen auf den Gesamtlipidgehalt des transgenen Organismus, dadurch gekennzeichnet, dass es folgende Verfahrensschritte umfasst:

- a) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -9-Elongase- oder eine Δ -6-Desaturase-Aktivität codiert, und
- b) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -8-Desaturase- oder eine Δ -6-Elongase-Aktivität codiert, und
- Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-5-Desaturase-Aktivität codiert, und
- d) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-5-Elongase-Aktivität codiert, und
- e) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -4-Desaturase-Aktivität codiert, und

wobei die Variablen und Substituenten in der Formel I die folgende Bedeutung haben:

R¹ = Hydroxyl-, CoenzymA-(Thioester), Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol-, Sphingobase-, oder einen Rest der allgemeinen Formel II

$$H_{2}C-O-R^{2}$$
 $HC-O-R^{3}$
 $H_{2}C-O-$
(II)

2.

15

20

30

35

2

 $R^2=$ Wasserstoff-, Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol- oder gesättigtes oder ungesättigtes C_2 - C_2 4-Alkylcarbonyl-,

5 R³ = Wasserstoff-, gesättigtes oder ungesättigtes C₂-C₂₄-Alkylcarbonyl-, oder R² oder R³ unabhängig voneinander einen Rest der allgemeinen Formel la:

$$\begin{array}{c|c} O & CH_2 & CH_2 & CH_3 \\ \hline \end{array} \qquad \qquad \text{(Ia)}$$

n = 2, 3, 4, 5, 6, 7 oder 9, m = 2, 3, 4, 5 oder 6 und p = 0 oder 3.

Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Nukleinsäuresequenzen, die für Polypeptide mit Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturaseaktivität codieren, ausgewählt sind aus der Gruppe bestehend aus:

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83 oder SEQ ID NO: 85 dargestellten Sequenz, oder
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von den in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82,

SEQ ID NO: 84 oder SEQ ID NO: 86 dargestellten Aminosäuresequenzen ableiten lassen, oder

Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, C) SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83 oder SEQ ID NO: 85 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Identität auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66,

20

5

10

15

25

35

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zusätzlich in den Organismus eine Nukleinsäuresequenz eingebracht wird, die für Polypeptide mit ω3-Desaturasaktivität codiert, ausgewählt aus der Gruppe bestehend aus:

Δ-5-Elongase- oder Δ-4-Desaturaseaktivität aufweisen.

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 dargestellten Sequenz, oder
- Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 dargestellten Aminosäuresequenz ableiten lassen, oder

SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84 oder SEQ ID NO: 86 codieren und eine Δ -9-Elongase-,

 Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-,

c) Derivate der in SEQ ID NO: 87 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 codieren und eine ω3-Desaturasaktivität aufweisen.

20

25

4

- Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die Substituenten R² oder R³ unabhängig voneinander gesättigtes oder ungesättigtes C₁₈-C₂₂-Alkylcarbonyl- bedeuten.
- Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die
 Substituenten R² oder R³ unabhängig voneinander ungesättigtes C₁₈-, C₂₀- oder C₂₂-Alkylcarbonyl- mit mindestens zwei Doppelbindungen bedeuten.
 - Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass der transgene Organismus ein transgener Mikroorganismus oder eine transgene Pflanze ist.
- Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass der transgene Organismus eine Öl-produzierende Pflanze, eine Gemüsepflanze oder Zierpflanze ist.
 - 8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass die transgene Organismus eine transgene Pflanze ausgewählt aus der Gruppe der Pflanzenfamilien: Adelotheciaceae, Anacardiaceae, Asteraceae, Apiaceae, Betulaceae, Boraginaceae, Brassicaceae, Bromeliaceae, Caricaceae, Cannabaceae, Convolvulaceae, Chenopodiaceae, Crypthecodiniaceae, Cucurbitaceae, Ditrichaceae, Elaeagnaceae, Ericaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Gramineae, Juglandaceae, Lauraceae, Leguminosae, Linaceae oder Prasinophyceae ist.
 - Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel I aus dem Organismus in Form ihrer Öle, Lipide oder freien Fettsäuren isoliert werden.
 - 10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel I in einer Konzentration von mindestens 5 Gew.-% bezogenen auf den gesamten Lipidgehalt des transgenen Organismus isoliert werden.
 - Öl, Lipide oder Fettsäuren oder eine Fraktion davon, hergestellt durch das Verfahren nach einem der Ansprüche 1 bis 10.
 - 30 12. Öl-, Lipid- oder Fettsäurezusammensetzung, die PUFAs hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 10 umfasst und von transgenen Pflanzen stammt.
 - Verfahren zur Herstellung von Ölen, Lipiden oder Fettsäurezusammensetzungen durch Mischen von Öl, Lipide oder Fettsäuren gemäß Anspruch 11 oder Öl-, Lipid- oder Fettsäurezusammensetzung gemäß Anspruch 12 mit tierischen Ölen, Lipiden oder Fettsäuren.

20

25

30

35

- 14. Verwendung von Öl, Lipide oder Fettsäuren gemäß Anspruch 11 oder Öl-, Lipid- oder Fettsäurezusammensetzung gemäß Anspruch 12 oder Ölen, Lipiden oder Fettsäurezusammensetzungen hergestellt gemäß Anspruch 13 in Futter, Nahrungsmitteln, Kosmetika oder Pharmazeutika.
- 5 15. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-Elongaseaktivität codieren, ausgewählt aus der Gruppe:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83 oder SEQ ID NO: 85 dargestellten Sequenz,
 - Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84 oder SEQ ID NO: 86 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83 oder SEQ ID NO: 85 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 44, SEQ ID NO: 46, SEQ D NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84 oder SEQ ID NO: 86 codieren und eine Δ-5-Elongaseaktivität aufweisen.
 - 16. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-6-Elongaseaktivität codieren, ausgewählt aus der Gruppe:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 69 oder in SEQ ID NO: 81 dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 70 oder SEQ ID NO: 82 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 69 oder SEQ ID NO: 81 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 70 oder SEQ ID NO: 82 codieren und eine Δ-6-Elongaseaktivität aufweisen.

10

15

25

30

35

- 17. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit ω -3-Desaturase-aktivität codieren, ausgewählt aus der Gruppe:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 87 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 aufweisen und eine ω-3-Desaturaseaktivität aufweisen.
- 18. Isolierte Nukleinsäuresequenz nach Anspruch 15, 16 oder 17, wobei die Sequenz von einer Alge, einem Pilz, einem Mikroorganismus, einer Pflanze oder einem nicht-humanen Tier stammt.
- 19. Isolierte Nukleinsäuresequenz nach den Ansprüchen 15 bis 18, wobei die Sequenz aus der Ordnung Salmoniformes, den Diatomeengattungen Thallasiosira oder Crythecodinium oder aus der Familie der Prasinophyceae oder Pythiaceae stammt.
- 20. Aminosäuresequenz, die von einer isolierten Nukleinsäuresequenz nach einem der Ansprüche 15 bis 19 codiert wird.
- 20 21. Genkonstrukt, enthaltend eine isolierte Nukleinsäure nach einem der Ansprüche 15 bis 19, wobei die Nukleinsäure funktionsfähig mit einem oder mehreren Regulationssignalen verbunden ist.
 - 22. Genkonstrukt nach Anspruch 21, dadurch gekennzeichnet, dass das Nukleinsäurekonstrukt zusätzliche Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n).
 - 23. Genkonstrukt nach Anspruch 21 oder 22, dadurch gekennzeichnet, dass das Nukleinsäurekonstrukt zusätzliche Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe der Δ-4-Desaturase-, Δ-5-Desaturase-, Δ-6-Desaturase-, Δ-8-Desatuase-, Δ-9-Desaturase-, Δ-12-Desaturase-, Δ-6-Elongase- oder Δ-9-Elongase.

- 24. Vektor, enthaltend eine Nukleinsäure nach den Ansprüchen 15 bis 19 oder ein Genkonstrukt nach Anspruch 22.
- 25. Transgener nicht-humaner Organismus, enthaltend mindestens eine Nukleinsäure nach den Ansprüchen 15 bis 19, ein Genkonstrukt nach Anspruch 22 oder einen Vektor nach Anspruch 24.
- 26. Transgener nicht-humaner Organismus nach Anspruch 25, wobei der Organismus ein Mikroorganismus, ein nicht-humanes Tier oder eine Pflanze ist.
- 27. Transgener nicht-humaner Organismus nach Anspruch 25 oder 26, wobei der
 10 Organismus eine Pflanze ist.

SEQUENCE LISTING

<110>	BASF 1	Plant	Scie	ence	GmbI	I					-				
<120>	Verfal	nren : genen	zur E Orga	Herst anisr	ellu nen	ıng v	on r	nehri	ach	ungs	ätti	.gter	n Fei	itsäuren	in
<130>	PF553	72													
<140>	20040	177													
<141>	2004-	02-26													
<160>	88														
<170>	Paten	tIn v	rersi	on 3	.1										
<210>	1														
<211>	1266								. • .						
<212>	DNA			. 11			7								
<213>	Eugle	ena gi	racil	lis											
<220>		,													
<221>	CDS						,								
<222>	(1).	. (126	6)						• .	ř					
<223>	Delt	a-8-D	esati	uras	е										
<400>							2		ĺ						
atg a Met L 1	ag tca ys Ser	aag Lys	cgc Arg 5	caa Gln	gcg Ala	ctt Leu	Pro	ctt Leu 10	aca Thr	att : Ile :	gat Asp	GTĀ	aca Thr 15	aca Thr	48
tat ç Tyr <i>P</i>	gat gto Asp Val	tct Ser 20	gcc Ala	tgg Trp	gtc Val	aat Asn	ttc Phe 25	cac His	cct Pro	ggt Gly	ggt Gly	gcg Ala 30	gaa Glu	att Ile	96
ata (gag aat Glu Asi 35	tac 1 Tyr	caa Gln	gga Gly	agg Arg	gat Asp 40	gcc Ala	act Thr	gat Asp	gcc Ala	ttc Phe 45	atg Met	gtt Val	atg Met	144
His	tct ca Ser Gl: 50	a gaa n Glu	gcc Ala	ttc Phe	gac Asp 55	aag Lys	ctc Leu	aag Lys	cgc Arg	atg Met 60	ccc Pro	aaa Lys	atc Ile	aat Asn	192
ccc Pro 65	agt tc Ser Se	t gag r Glu	ttg Leu	cca Pro 70	ccc Pro	cag Gln	gct Ala	gca Ala	gtg Val 75	aat Asn	gaa Glu	gct Ala	caa Gln	gag Glu 80	240
gat Asp	ttc co	g aag	r ctc Leu 85	cga Arg	. gaa g Glu	gag Glu	ttg Lev	ato Ile 90	gca Ala	act Thr	ggc	atg Met	ttt Phe 95	gat Asp	288

gcc Ala	tcc Ser	ccc Pro	ctc Leu 100	tgg Trp	tac Tyr	tca Ser	tac Tyr	aaa Lys 105	atc Ile	agc Ser	acc Thr	aca Thr	ctg Leu 110	ggc Gly	ct Le	et eu	336
gga Gly	gtg Val	ctg Leu 115	ggt Gly	tat Tyr	ttc Phe	ctg Leu	atg Met 120	gtt Val	cag Gln	tat Tyr	cag Gln	atg Met 125	tat Tyr	ttc Phe	at II	t le	384
GJA aaa	gca Ala 130	gtg Val	ttg Leu	ctt Leu	Gly ggg	atg Met 135	cac His	tat Tyr	caa Gln	cag Gln	atg Met 140	ggc	tgg Trp	ctt Leu	to Se	ct er	432
cat His 145	gac Asp	att Ile	tgc Cys	cac His	cac His 150	cag Gln	act Thr	ttc Phe	aag Lys	aac Asn 155	cgg Arg	aac Asn	tgg Trp	aac Asn		ac sn 60	480
ctc Leu	gtg Val	gga Gly	ctg Leu	gta Val 165	ttt Phe	ggc	aat Asn	ggt Gly	ctg Leu 170	caa Gln	ggt Gly	ttt Phe	tcc Ser	gtg Val 175		.ca hr	528
tgc Cys	tgg Trp	aag Lys	gac Asp 180	Arg	cac His	aat Asn	gca Ala	cat His 185	His	tcg Ser	gca Ala	aco Thr	aat Asn 190	r var	. 0	aa In	576
Gly	cac	gac Asp 195	Pro	gat Asp	att Ile	gac Asp	aac Asn 200	Leu	ccc Pro	cto Leu	tta Leu	gco Ala 205	tgg Trp	tct Ser	: <u>9</u>	gag Glu	624
gat Asp	gac Asp 210	Val	aca L Thr	cgg Arg	gcg Ala	tca Ser 215	Pro	att Ile	tcc Ser	cgc Arg	aaq Lys 220	s ne	c att	caq e Gli	g t	ttc Phe	672
cag Glr 225	Gli	tai Ty:	t tat	tto Phe	ttg Leu 230	. Val	ato	c tgt e Cys	t ato	tto Lev 23	т ге	g cg u Ar	g tto g Pho	c at	=	tgg Trp 240	720
tgt Cys	tto Pho	c ca e Gl:	g age n Se:	c gtq r Val	L Lev	g aco	gtç Va	g cg	c ag g Se: 25	r Le	g aa u Ly	g ga s As	c ag p Ar	a ga g As 25	ַט	aac Asn	768
caa Gl:	a tt n Ph	c ta e Ty	t cg r Ar 26	g Se	t cag r Gli	g tai	t aa r Ly	g aa s Ly 26	s GT	g gc u Al	c at a Il	t gg e Gl	c ct y Le 27	u Aı	c .a	ctg Leu	816
ca Hi	t tg s Tr	g ac p Th 27	r Le	g aa u Ly	g gc	c ct a Le	g tt u Ph 28	e Hi	c tt .s L∈	a tt	c tt e Ph	ie Me	g co et Pr 35	c ag	jc ∍r	atc Ile	864
ct Le	c ac u Th	r Se	eg ct er Le	g tt eu Le	g gt u Va	a tt 1 Ph 29	e Pr	c gt e Va	t to	g ga	u ь	eu Va	tt gg al G	rà e: ac a:	gc ly	ttc Phe	912
30 G1 gg	y I	t go	cg at la II	c gt Le Va	g gt il Va 31	l Pi	c at ne Me	eg aa	ac ca sn H:	is T	ac co yr P: 15	ca c ro L	tg ga	ag a lu L	ag ys	atc Ile 320	960

Gly ggg	gac Asp	tcg Ser	gtc Val	tgg Trp 325	gat Asp	ggc Gly	cat His	gga Gly	ttc Phe 330	tcg Ser	gtt Val	ggc Gly	cag Gln	atc Ile 335	cat His	1008
gag Glu	acc Thr	atg Met	aac Asn 340	att Ile	cgg Arg	cga Arg	GJA āāā	att Ile 345	atc Ile	aca Thr	gat Asp	tgg Trp	ttt Phe 350	ttc Phe	gga Gly	1056
ggc	ttg Leu	aac Asn 355	tac Tyr	cag Gln	atc Ile	gag Glu	cac His 360	cat His	ttg Leu	tgg Trp	ccg Pro	acc Thr 365	ctc Leu	cct Pro	cgc Arg	1104
cac His	aac Asn 370	ctg Leu	aca Thr	gcg Ala	gtt Val	agc Ser 375	tac Tyr	cag Gln	gtg Val	gaa Glu	cag Gln 380	ctg Leu	tgc Cys	cag Gln	aag Lys	1152
cac His 385	Asn	ctg Leu	ccg Pro	tat Tyr	cgg Arg 390	aac ·Asn	ccg Pro	ctg Leu	ccc Pro	cat His 395	gaa Glu	Gly	ttg Leu	gtc Val	atc Ile 400	1200
ctg Leu	ctg Leu	cgc Arg	tat Tyr	ctg Leu 405	gcg Ala	gtg Val	ttc Phe	gcc Ala	cgg Arg 410	atg Met	gcg Ala	gag Glu	aag Lys	caa Gln 415	ccc Pro	1248
			gct Ala 420	Leu	taa											1266
<23	L0>	2														
<23	L1>	421														
<23	12>	PRT								- (
<2	13>	Eug.	Lena	grad	cilis	;										
	<00	2														
Me 1	t Ly:	s Se:	r Ly:	s Arg	g Glr	n Ala	. Lev	ı Pro	Lev 10	ı Thi	: Il	e Ası	Gly	7 Th: 15	r Thr	
ТУ	r As	p Va	1 Se: 20	r Ala	a Tri	o Val	L Ası	n Pho 25	e His	s Pro	Gl;	y Gl	y Ala 30	a Gl	u Ile	
Il	e Gl	u As 35		r Gl	n Gly	y Ar	g As 40	p Al	a Thi	r Ası	o Al	a Ph 45	e Me	t Va	l Met	
					- 77	- 7) c	o Ly	s Le	u Ly	s Ar	g Me	t Pr	o Ly	s Il	e Asn	
Hi	.s Se 50		n Gl	u Al	a Pn	55 55	-				60					
	50 50 Se					55 o Pr					60 1 As				n Glu 80	

Ala Ser Pro Leu Trp Tyr Ser Tyr Lys Ile Ser Thr Thr Leu Gly Leu 105

Gly Val Leu Gly Tyr Phe Leu Met Val Gln Tyr Gln Met Tyr Phe Ile 120

Gly Ala Val Leu Leu Gly Met His Tyr Gln Gln Met Gly Trp Leu Ser 135

His Asp Ile Cys His His Gln Thr Phe Lys Asn Arg Asn Trp Asn Asn 155 150

Leu Val Gly Leu Val Phe Gly Asn Gly Leu Gln Gly Phe Ser Val Thr 170

Cys Trp Lys Asp Arg His Asn Ala His His Ser Ala Thr Asn Val Gln 185

Gly His Asp Pro Asp Ile Asp Asn Leu Pro Leu Leu Ala Trp Ser Glu 200

Asp Asp Val Thr Arg Ala Ser Pro Ile Ser Arg Lys Leu Ile Gln Phe 215 210

Gln Gln Tyr Tyr Phe Leu Val Ile Cys Ile Leu Leu Arg Phe Ile Trp 235 230 225

Cys Phe Gln Ser Val Leu Thr Val Arg Ser Leu Lys Asp Arg Asp Asn 250 245

Gln Phe Tyr Arg Ser Gln Tyr Lys Lys Glu Ala Ile Gly Leu Ala Leu 260

His Trp Thr Leu Lys Ala Leu Phe His Leu Phe Phe Met Pro Ser Ile 280 275

Leu Thr Ser Leu Leu Val Phe Phe Val Ser Glu Leu Val Gly Phe 295

Gly Ile Ala Ile Val Val Phe Met Asn His Tyr Pro Leu Glu Lys Ile 315 310 305

Gly Asp Ser Val Trp Asp Gly His Gly Phe Ser Val Gly Gln Ile His 330

Glu Thr Met Asn Ile Arg Arg Gly Ile Ile Thr Asp Trp Phe Phe Gly 345

Gly Leu Asn Tyr Gln Ile Glu His His Leu Trp Pro Thr Leu Pro Arg

His Asn Leu Thr Ala Val Ser Tyr Gln Val Glu Gln Leu Cys Gln Lys 380 375 370

5	
His Asn Leu Pro Tyr Arg Asn Pro Leu Pro His Glu Gly Leu Val Ile 385 390 395 400	
Leu Leu Arg Tyr Leu Ala Val Phe Ala Arg Met Ala Glu Lys Gln Pro 405 410 415	
Ala Gly Lys Ala Leu 420	
<210> 3	
<211> 777	
<212> DNA	
<213> Isochrysis galbana	
<220>	
<221> CDS 1:	
<222> (1)(777)	
<223> Delta-9-Elongase	
<400> 3	
atg gcc ctc gca aac gac gcg gga gag cgc atc tgg gcg gct gtg acc Met Ala Leu Ala Asn Asp Ala Gly Glu Arg Ile Trp Ala Ala Val Thr 1 5 10 15	48
gac ccg gaa atc ctc att ggc acc ttc tcg tac ttg cta ctc aaa ccg Asp Pro Glu Ile Leu Ile Gly Thr Phe Ser Tyr Leu Leu Leu Lys Pro 20 25 30	96
ctg ctc cgc aat tcc ggg ctg gtg gat gag aag aag ggc gca tac agg Leu Leu Arg Asn Ser Gly Leu Val Asp Glu Lys Lys Gly Ala Tyr Arg 35 40 45	144
acg tcc atg atc tgg tac aac gtt ctg ctg gcg ctc ttc tct gcg ctg Thr Ser Met Ile Trp Tyr Asn Val Leu Leu Ala Leu Phe Ser Ala Leu 50 55 60	192
age tte tac gtg acg gcg ace gce ete gge tgg gae tat ggt acg gge Ser Phe Tyr Val Thr Ala Thr Ala Leu Gly Trp Asp Tyr Gly Thr Gly 65 70 75 80	240
gcg tgg ctg cgc agg caa acc ggc gac aca ccg cag ccg ctc ttc cag Ala Trp Leu Arg Arg Gln Thr Gly Asp Thr Pro Gln Pro Leu Phe Gln 85 90 95	288
tgc ccg tcc ccg gtt tgg gac tcg aag ctc ttc aca tgg acc gcc aag Cys Pro Ser Pro Val Trp Asp Ser Lys Leu Phe Thr Trp Thr Ala Lys	336

									6							
gca Ala	ttc Phe	tat Tyr 115	tac Tyr	tcc Ser	aag Lys	tac Tyr	gtg Val 120	gag Glu	tac Tyr	ctc Leu	gac Asp	acg Thr 125	gcc Ala	tgg Trp	ctg Leu	384
agg Arg	gtc Val 130	tcc Ser	ttt Phe	ctc Leu	cag Gln	gcc Ala 135	ttc Phe	cac His	cac His	ttt Phe	ggc Gly 140	gcg Ala	ccg Pro	tgg Trp	gat Asp	432
gtg Val 145	tac Tyr	ctc Leu	ggc Gly	att Ile	cgg Arg 150	ctg Leu	cac His	aac Asn	gag Glu	ggc Gly 155	gta Val	tgg Trp	atc Ile	ttc Phe	atg Met 160	480
ttt Phe	ttc Phe	aac Asn	tcg Ser	ttc Phe 165	att Ile	cac His	acc Thr	atc Ile	atg Met 170	tac Tyr	acc Thr	tac Tyr	tac Tyr	ggc Gly 175	ctc Leu	528
acc Thr	gcc Ala	gcc Ala	ggg Gly 180	Tyr	aag Lys	ttc Phe	aag Lys	gcc Ala 185	Lys	ccg Pro	ctc Leu	atc Ile	acc Thr 190	ATU	atg Met	576
cag Gln	atc Ile	tgc Cys	Glr	ttc Phe	gtg Val	Gly	ggc Gly 200	Pne	ctg Leu	ttg Lev	gto Val	tgg Trp 205	, ASE	tac Tyr	atc : Ile	624
aac Asr	gto Val 210	. Pro	tgo Cys	tto Phe	aac Asr	tcg Ser 215	Ası	aaa Lys	. Gl7	aag Lys	ttg Let 220	1 Pite	e ser	tgg Tr	gct Ala	672
tto Phe 22!	e Ası	tai n Ty:	t gca r Ala	a tao	gto r Val	L Gl	tc Sei	g gto c Val	tto L Phe	tto Let 23!	т те	c tto u Pho	c tgo	cac Hi	ttt Phe 240	720
tt. Ph	c ta e Ty	c ca r Gi	g ga n As	c aa p As: 24	n Lei	ggc JAla	a ac	g aaq r Ly:	g aaa s Ly: 25	s se	g gc r Al	c aa a Ly	g gc	g gg a G1; 25	c aag y Lys 5	768
	g ct n Le	c ta u	g		٠											. 777
<2	10>	4											•			•
<2	11>	258	3				1									
<2	212>	PRT	ŗ													
<2	213>	Iso	chry	ysis	galk	ana										
	100>	4														
Me 1	et A	la L	eu A	la A 5	sn As	A qa	la G	ly G	lu Ai	rg I O	le T	rp A	la A	la V	al Thr 5	
A	sp P	ro G		le L O	eu I	le G	ly T	hr P	he S 5	er T	yr I	eu L	eu L 3	eu L O	ys Pro	

Leu Leu Arg Asn Ser Gly Leu Val Asp Glu Lys Lys Gly Ala Tyr Arg 40

Thr Ser Met Ile Trp Tyr Asn Val Leu Leu Ala Leu Phe Ser Ala Leu

Ser Phe Tyr Val Thr Ala Thr Ala Leu Gly Trp Asp Tyr Gly Thr Gly 75 70

Ala Trp Leu Arg Arg Gln Thr Gly Asp Thr Pro Gln Pro Leu Phe Gln

Cys Pro Ser Pro Val Trp Asp Ser Lys Leu Phe Thr Trp Thr Ala Lys

Ala Phe Tyr Tyr Ser Lys Tyr Val Glu Tyr Leu Asp Thr Ala Trp Leu 120

Arg Val Ser Phe Leu Gln Ala Phe His His Phe Gly Ala Pro Trp Asp 135 130

Val Tyr Leu Gly Ile Arg Leu His Asn Glu Gly Val Trp Ile Phe Met 155 150

Phe Phe Asn Ser Phe Ile His Thr Ile Met Tyr Thr Tyr Gly Leu 175 170 165

Thr Ala Ala Gly Tyr Lys Phe Lys Ala Lys Pro Leu Ile Thr Ala Met . 1.80

Gln Ile Cys Gln Phe Val Gly Gly Phe Leu Leu Val Trp Asp Tyr Ile 200

Asn Val Pro Cys Phe Asn Ser Asp Lys Gly Lys Leu Phe Ser Trp Ala 220 · 215

Phe Asn Tyr Ala Tyr Val Gly Ser Val Phe Leu Leu Phe Cys His Phe 225

Phe Tyr Gln Asp Asn Leu Ala Thr Lys Lys Ser Ala Lys Ala Gly Lys 250 245

Gln Leu

<210> 5

<211> 1410

<212> DNA

<213> Phaeodactylum tricornutum

<220>

<221> CDS			
<222> (1)(1410))		
<223> Delta-5-Des	saturase		
<400> 5			
atg gct ccg gat gc Met Ala Pro Asp A 1	cg gat aag ctt cg la Asp Lys Leu Ar	ga caa cgc cag acg act g gg Gln Arg Gln Thr Thr i 10	gcg gta 48 Ala Val L5
gcg aag cac aat go Ala Lys His Asn A 20	ct gct acc ata to la Ala Thr Ile Se 25	eg acg cag gaa cgc ctt : er Thr Gln Glu Arg Leu (30	tgc agt 96 Cys Ser
ctg tct tcg ctc a Leu Ser Ser Leu L 35	ys Gly Glu Glu Va	to tgo ato gao gga ato al Cys Ile Asp Gly Ile 45	atc tat 144 Ile Tyr
gac ctc caa tca t Asp Leu Gln Ser P 50	tc gat cat ccc gg Phe Asp His Pro G 55	gg ggt gaa acg atc aaa ly Gly Glu Thr Ile Lys 60	atg ttt 192 Met Phe
ggt ggc aac gat g Gly Gly Asn Asp V 65	gtc act gta cag to Val Thr Val Gln T 70	ac aag atg att cac ccg yr Lys Met Ile His Pro 75	tac cat 240 Tyr His 80
Thr Glu Lys His I	ttg gaa aag atg a Leu Glu Lys Met L 85	ag cgt gtc ggc aag gtg ys Arg Val Gly Lys Val 90	acg gat 288 Thr Asp 95
ttc gtc tgc gag t Phe Val Cys Glu 1	Tyr Lys Phe Asp T	ncc gaa ttt gaa cgc gaa Thr Glu Phe Glu Arg Glu .05 110	atc aaa 336 Ile Lys
cga gaa gtc ttc a Arg Glu Val Phe 1 115	aag att gtg cga c Lys Ile Val Arg A 120	ega ggc aag gat ttc ggt Arg Gly Lys Asp Phe Gly 125	act ttg 384 Thr Leu
gga tgg ttc ttc Gly Trp Phe Phe 130	cgt gcg ttt tgc t Arg Ala Phe Cys 7 135	tac att gcc att ttc ttc Tyr Ile Ala Ile Phe Phe 140	tac ctg 432 Tyr Leu
cag tac cat tgg Gln Tyr His Trp 145	gtc acc acg gga a Val Thr Thr Gly 5	acc tct tgg ctg ctg gcc Thr Ser Trp Leu Leu Ala 155	gtg gcc 480 Val Ala 160
tac gga atc tcc Tyr Gly Ile Ser	caa gcg atg att g Gln Ala Met Ile 9 165	ggc atg aat gtc cag cac Gly Met Asn Val Gln His 170	gat gcc 528 Asp Ala 175
aac cac ggg gcc Asn His Gly Ala 180	Thr Ser Lys Arg	ccc tgg gtc aac gac atg Pro Trp Val Asn Asp Met 185	Lieu Giy

									9							
ctc Leu	ggt Gly	gcg Ala 195	gat Asp	ttt Phe	att Ile	Gly	ggt Gly 200	tcc : Ser :	aag Lys	tgg Trp	ctc Leu	tgg Trp 205	cag Gln	gaa Glu	caa Gln	624
cac His	tgg Trp 210	acc Thr	cac His	cac His	gct Ala	tac Tyr 215	acc Thr	aat Asn	cac His	gcc Ala	gag Glu 220	atg Met	gat Asp	ccc Pro	gat Asp	672
agc Ser 225	ttt Phe	ggt Gly	gcc Ala	gaa Glu	cca Pro 230	atg Met	ctc Leu	cta Leu	ttc Phe	aac Asn 235	gac Asp	tat Tyr	ccc Pro	ttg Leu	gat Asp 240	720
cat His	ccc Pro	gct Ala	cgt Arg	acc Thr 245	tgg Trp	cta Leu	cat His	cgc Arg	ttt Phe 250	caa Gln	gca Ala	ttc Phe	ttt Phe	tac Tyr 255	atg Met	768
ccc Pro	gtc Val	ttg Leu	gct Ala 260	gga Gly	tac Tyr	tgg Trp	ttg Leu	tcc Ser 265	gct Ala	gtc Val	ttc Phe	aat Asn	cca Pro 270	GIII	att Ile	816
ctt Leu	gac Asp	ctc Leu 275	Gln	caa Gln	cgc Arg	ggc	gca Ala 280	ctt Leu	tcc Ser	gtc Val	ggt Gly	atc Ile 285	Arg	ctc Leu	gac Asp	864
aac Asn	gct Ala 290	Phe	att Ile	cac His	tcg Ser	cga Arg 295	cgc Arg	aag Lys	tat Tyr	gcg Ala	gtt Val 300	Pne	tgg Trp	r cgg	gct	912
gtg Val 305	Тух	att	gcg Ala	gtg Val	aac Asn 310	Val	att Ile	gct Ala	ccg Pro	ttt Phe 315	.rAr	aca Thr	aac Asi	tcc Ser	ggc Gly 320	960
ctc Leu	gaa Glu	tgg Trj	tco Sei	tgg Trp	Arg	gtc Val	ttt Phe	gga Gly	aac Asn 330	Ile	ato Met	g cto : Lev	ato 1 Mei	g ggt : Gl ₃ :33:	gtg Val	1008
gcg Ala	gaa Glu	a to: 1 Se:	g cto r Lei 34	ı Ala	g ctg a Lev	gcg Ala	gto Val	ctg Leu 345	Phe	tcg Sei	tto Le	j tc: 1 Se:	g cae r Hi: 35	S ASI	ttc n Phe	1056
gaa Gli	tc Se:	c gc r Al 35	a As	t cg	c gat g As <u>r</u>	cco Pro	aco Thi	: Ala	cca Pro	a cto	g aa 1 Ly:	a aa s Ly 36	s in	g gg r Gl	a gaa y Glu	1104
cca Pro	a gt o Va 37	l As	c tg p Tr	g tt p Ph	c aaq e Ly:	g aca s Thi 37!	c Gl	g gto n Val	gaa L Gli	a ac ı Th	t tc r Se 38	r Cy	c ac	t ta r Ty	c ggt r Gly	1152
gg: G1:	y Ph	c ct e Le	t to u Se	c gg r Gl	t tg y Cy 39	s Ph	c ac	g gga	a gg y Gl	t ct y Le 39	u As	c tt n Ph	t ca le Gl	ıg gt .n Va	t gaa 1 Glu 400	
ca Hi	c ca s Hi	c tt .s Le	g tt eu Pf	c cc ne Pr 40	o Ar	c at g Me	g ag t Se	c ag r Se	c gc r Al 41	a Tr	g ta p Ty	t co	o ta	ac at yr I] 41	t gcc e Ala .5	1248

								,	10							
ccc a	aag Lys	gtc Val	cgc Arg 420	gaa Glu	att ' Ile '	tgc (Cys :	Ala l	aaa d Lys I 425	cac (His (gly ;	gtc (Val :	His '	ac q Tyr 1 130	gcc f Ala f	tac Tyr	1296
tac (ccg Pro	tgg Trp 435	atc Ile	cac His	caa Gln	Asn	ttt (Phe : 440	ctc i Leu i	tcc (Ser '	acc Thr	Val .	cgc t Arg ' 445	tac (Tyr)	atg Met :	cac His	1344
gcg Ala	gcc Ala 450	Gly aaa	acc Thr	ggt Gly	gcc Ala	aac Asn 455	tgg Trp	cgc Arg	cag Gln	Met	gcc Ala 460	aga (Arg (gaa Glu	aat Asn	ccc Pro	1392
ttg Leu 465					taa											1410
<210	>	6.									•					
<211	>	469										•				
<212	2>	PRT									•					
<213	3>	Phae	odac	tylu	n tri	Lcori	nutun	n.								
<400)>	6			٠											
Met 1	Ala	Pro) Asp	Ala 5	Asp	Lys	Leu	Arg	Gln 10	Arg	Gln	Thr	Thr	Ala 15	Val	
Ala	Lys	His	Asn 20	Ala	Ala	Thr	Ile	Ser 25	Thr	Gln	Glu	Arg	Leu 30	Cys	Ser	
Leu	Ser	Se: 35	. Leu	. Lys	Gly	Glu	Glu 40	Val	Cys	Ile	Asp	Gly 45	Ile	Ile	Tyr	
Asp	Let 50	ı Glı	n Ser	. Phe	Asp	His 55	Pro	Gly	Gly	Glu	Thr 60	Ile	Lys	Met	Phe	
Gly 65	· Gl	y Asi	n Ası	val	. Thr 70	· Val	Gln	. Tyr	Lys	Met 75	Ile	His	Pro	Tyr	His 80	
Thr	Gl	u Ly	s His	s Lev 85	ı Glu	Lys	. Met	. Lys	Arg 90	val	. Gly	· Lys	Val	. Thr 95	Asp	
Phe	va	1 Су	s Gl	_	. Lys	s Phe	e Asp	Thr 105		ı Phe	e Glu	ı Arg	Glu 110	ı Ile	. Lys	
Arc	g Gl	u Va 11		e Ly:	s Ile	e Vai	120		Gl3	/ Lys	s Ası) Phe 125	G1 <u>y</u>	7 Thi	: Leu	
G17	7 Tr 13		e Ph	e Ar	g Ala	a Pho 13		з Туг	: Ile	e Ala	a Ile 140	e Phe	Phe	e Tyi	r Leu	
Gl: 14!		r Hi	s Tr	p Va	1 Th: 15		r Gl	y Thi	c Se:	r Tr	p Lei 5	u Lev	ı Ala	a Vai	1 Ala 160	

Tyr Gly Ile Ser Gln Ala Met Ile Gly Met Asn Val Gln His Asp Ala 170 165

Asn His Gly Ala Thr Ser Lys Arg Pro Trp Val Asn Asp Met Leu Gly 185

Leu Gly Ala Asp Phe Ile Gly Gly Ser Lys Trp Leu Trp Gln Glu Gln 200

His Trp Thr His His Ala Tyr Thr Asn His Ala Glu Met Asp Pro Asp 220

Ser Phe Gly Ala Glu Pro Met Leu Leu Phe Asn Asp Tyr Pro Leu Asp 235 230

His Pro Ala Arg Thr Trp Leu His Arg Phe Gln Ala Phe Phe Tyr Met 250

Pro Val Leu Ala Gly Tyr Trp Leu Ser Ala Val Phe Asn Pro Gln Ile 265

Leu Asp Leu Gln Gln Arg Gly Ala Leu Ser Val Gly Ile Arg Leu Asp 280

Asn Ala Phe Ile His Ser Arg Arg Lys Tyr Ala Val Phe Trp Arg Ala 295 290

Val Tyr Ile Ala Val Asn Val Ile Ala Pro Phe Tyr Thr Asn Ser Gly 315 310

Leu Glu Trp Ser Trp Arg Val Phe Gly Asn Ile Met Leu Met Gly Val 330 325

Ala Glu Ser Leu Ala Leu Ala Val Leu Phe Ser Leu Ser His Asn Phe 340

Glu Ser Ala Asp Arg Asp Pro Thr Ala Pro Leu Lys Lys Thr Gly Glu 360

Pro Val Asp Trp Phe Lys Thr Gln Val Glu Thr Ser Cys Thr Tyr Gly 375

Gly Phe Leu Ser Gly Cys Phe Thr Gly Gly Leu Asn Phe Gln Val Glu 385

His His Leu Phe Pro Arg Met Ser Ser Ala Trp Tyr Pro Tyr Ile Ala 410

Pro Lys Val Arg Glu Ile Cys Ala Lys His Gly Val His Tyr Ala Tyr 430 425

Tyr Pro Trp Ile His Gln Asn Phe Leu Ser Thr Val Arg Tyr Met His 435

Ala Ala Gly Thr Gly Ala Asn Trp Arg Gln Met Ala Arg Glu Asn Pro 460 455 450

Leu Thi	r Gly	, Arg	Ala												
<210>	7														
<211>	134	1													
<212>	DNA														
<213>	Cer	atodo	n pu	rpur	eus										
<220>															
<221>	CDS					-									
<222>	(1)	(1	344)			•									
<223>	Del	ta-5	-Desa	tura	se			•	•			•			•.
<400>	7														
atg gt Met Va 1	ia tt al Le	a cg u Ar	a ga g Gl [.] 5	g caa 1 Gln	gag Glu	cat His	gag Glu	cca Pro 10	ttc Phe	ttc Phe	att Ile	aaa Lys	att Ile 15	gat Asp	48
gga aa	aa to ys Tr	g tg p Cy 20	s Gl	a att n Ile	gac Asp	gat Asp	gct Ala 25	gtc Val	ctg Leu	aga Arg	tca Ser	cat His 30	cca Pro	ggt Gly	96
ggt ag Gly Se	gt go er Al	La Il	t ac e Th	t acc r Thi	tat Tyr	aaa Lys 40	aat Asn	atg Met	gat Asp	gcc Ala	act Thr 45	acc Thr	gta Val	ttc Phe	144
cac a His T	hr P	tc ca he Hi	t ac	t ggt r Gly	tct Ser 55	aaa Lys	gaa Glu	gcg Ala	tat Tyr	caa Gln 60	tgg Trp	ctg Leu	aca Thr	gaa Glu	192
ttg a Leu L 65	aa a ys L	aa ga ys Gi	ig to Lu Cy	rs Pr 70	aca Thr	caa Gln	gaa Glu	cca Pro	gag Glu 75	atc Ile	cca Pro	gat Asp	att Ile	aag Lys 80	. 240
gat g Asp A	ac c Asp P	ca a ro I	c as le Ly 8!	s Gl	a att y Ile	gat Asp	gat Asp	gtg Val 90	aac Asn	atg Met	gga Gly	act Thr	ttc Phe 95	aat Asn	288
att t Ile S	ect g Ser G	lu L	aa c ys A 00	ga to rg Se	t gcd r Ala	caa Glr	ata 11e	Asn	aaa Lys	agt Ser	tto Phe	act Thr	ASL	cta Leu	336
cgt a Arg 1	Met 1	ga g Arg V L15	tt c al A	gt go rg Al	a gaa a Gli	a gga ı Gly 120	z Let	ato 1 Met	gat : As <u>r</u>	gga Gly	tct Ser 125	r Pro	tto Lev	ttc Phe	384

									13								
tac Tyr	att Ile 130	aga Arg	aaa Lys	att Ile	ctt Leu	gaa Glu 135	aca Thr	atc Ile	ttc Phe	aca Thr	att Ile 140	ctt Leu	ttt Phe	gca Ala	ttc Phe		432
tac Tyr 145	ctt Leu	caa Gln	tac Tyr	cac His	aca Thr 150	tat Tyr	tat Tyr	ctt Leu	cca Pro	tca Ser 155	gct Ala	att Ile	cta Leu	atg Met	gga Gly 160		480
gtt Val	gcg Ala	tgg Trp	caa Gln	caa Gln 165	ttg Leu	gga Gly	tgg Trp	tta Leu	atc Ile 170	cat His	gaa Glu	ttc Phe	gca Ala	cat His 175	cat His		528
cag Gln	ttg Leu	ttc Phe	aaa Lys 180	aac Asn	aga Arg	tac Tyr	tac Tyr	aat Asn 185	gat Asp	ttg Leu	gcc Ala	agc Ser	tat Tyr 190	ttc Phe	gtt Val		576
gga Gly	aac Asn	ttt Phe 195	Leu	caa Gln	gga Gly	ttc Phe	tca Ser 200	tct Ser	ggt Gly	ggt Gly	tgg Trp	aaa Lys 205	gag Glu	cag Gln	cac His		624
aat Asn	gtg Val 210	His	cac His	gca Ala	gcc Ala	aca Thr 215	aat Asn	gtt Val	gtt Val	gga Gly	cga Arg 220	Asp	gga Gly	gat Asp	ctt Leu		672
gat Asp 225	Leu	gtc Val	cca Pro	ttc Phe	tat Tyr 230	Ala	aca Thr	gtg Val	gca Ala	gaa Glu 235	His	cto Leu	aac Asr	: aat 1 Asr	tat Tyr 240	•	720 .
tct Ser	cag Glr	gat Asp	tca Ser	tgg Trp 245	gtt Val	atg Met	act	cta Leu	ttc Phe 250	Arg	tgg Trr	g caa Glr	cat His	gtt Val 25!	L HIS	; 5	768
tgg Trp	aca Thi	a tto c Phe	ato Met	: Lev	cca Pro	ttc Phe	cto Lev	cgt Arg 265	, Leu	tcg Ser	tgg Tr	g ctt o Lev	cti Let 270	1 GI	g tca n Sei	a r	816
ato Ile	ati	t tti e Phe 27	e Val	agt L Sei	c cag	ato Met	280	Thi	cat His	tat Tyi	tai	t gad r Asj 28	э т.Х.	t ta r Ty	c aga	a g	864
aat Ası	ac n Th	r Al	g at	t tai	t gaa r Gli	a cag 1 Gl: 29!	ı Va	t ggi l Gl	t cto y Le	tci Se:	t tt r Le 30	u nı	c tg s Tr	g gc p Al	t tg a Tr	g g	912
tc: Se: 30	r Le	n GJ a aa	t ca y Gl	a tt n Le	g ta u Ty: 31	r Ph	c ct e Le	a cc u Pr	c gat o As)	t tg p Tr 31	p Se	a ac r Th	t ag r Ar	a at g Il	a at e Me		960
tt Ph	c tt e Ph	c ct le Le	t gt u Va	t to 1 Se 32	t ca r Hi	t ct s Le	t gt u Va	t gg 1 Gl	a gg y Gl 33	y Pn	c ct e Le	g ct u Le	c to u Se	er m	it gt is Va 35	a 1	1008
gt Va	t ac	t tt ir Ph	c aa ne As 34	n Hi	it ta .s Ty	t to r Se	a gt r Va	g ga 1 G1 34	u Ly	g tt s Ph	t go ne Al	ca tt La Le	g ag eu Se 3:	er s	eg aa er As	ac sn	1056

									14									
atc Ile	atg Met	tca Ser 355	aat Asn	tac Tyr	gct Ala	tgt Cys	ctt Leu 360	caa Gln	atc Ile	ate Me	g ad t Tl	UI.	aca Thr 365	aga Arg	aat	at n Me	tg et	1104
aga Arg	cct Pro 370	Gly	aga Arg	ttc Phe	att Ile	gac Asp 375	tgg Trp	ctt Leu	tgg	g gg	.у G	gt ly 80	ctt Leu	aac Asn	tat Ty:	c G	ag ln	1152
att Ile 385	Glu	cac His	cat His	ctt Leu	ttc Phe 390	cca Pro	acg Thr	atg Met	Pro	a cg o Ar 39	g H	ac is	aac Asn	ttg Leu	aac Asi	1 1	ct hr 00	1200
gtt Val	atg Met	cca Pro	. ctt	gtt Val 405	aag Lys	gag Glu	ttt Phe	gca Ala	gc Ala 41	a Al	ca a la A	at	ggt Gly	tta Leu	cc. Pr	· ·	ac Yr	1248
atg Met	gto Val	gac Asp	gat Asr 420	Tyr	ttc Phe	aca Thr	gga Gly	Phe 425	Tr	p Le	tt g eu G	gaa Slu	att Ile	gag Glu 430	G L	a t n E	tc he	1296
cga Arc	aat , Asi	att n Ile 435	a Ala	a aat a Asr	gtt Val	gct Ala	gct Ala 440	Lys	a tt s Le	ga u T	ct a hr I	aaa Lys	aag Lys 445	TT6	gc Al	c t	ag	1344
<27	L0>	8																
		=																
<2:	L1>	447																
<2	12>	PRT	٠.							-								
<2	13>	Cer	atod	on p	urpu	ceus												
<4	00>	8																
Me 1	t Va	.1 Le	u Ar	g Gl 5	u Gl:	n Gli	u Hi	s Gl	u P: 1	ro I O	Phe	Phe	ı Il	e Ly	s I	le 5	Asp	
			20)	n Il	•		25	•					50				
		35	5		ır Th		40						42					•
	5	0			nr Gl	55	5					60						
6	5				ys Pi 70)					75						00	
*				8	5				:	90					•	,,	Asn	
I	le S	er G		A ay. .00	rg S	er A	la G	ln I 1	1e 2 .05	Asn	Lys	; S∈	er Pl	he T	hr : 10	Asp	Leu	

Arg Met Arg Val Arg Ala Glu Gly Leu Met Asp Gly Ser Pro Leu Phe 120 Tyr Ile Arg Lys Ile Leu Glu Thr Ile Phe Thr Ile Leu Phe Ala Phe

135

Tyr Leu Gln Tyr His Thr Tyr Tyr Leu Pro Ser Ala Ile Leu Met Gly 155 150

Val Ala Trp Gln Gln Leu Gly Trp Leu Ile His Glu Phe Ala His His 165 170

Gln Leu Phe Lys Asn Arg Tyr Tyr Asn Asp Leu Ala Ser Tyr Phe Val

Gly Asn Phe Leu Gln Gly Phe Ser Ser Gly Gly Trp Lys Glu Gln His . - 200

Asn Val His His Ala Ala Thr Asn Val Val Gly Arg Asp Gly Asp Leu 210 215

Asp Leu Val Pro Phe Tyr Ala Thr Val Ala Glu His Leu Asn Asn Tyr 235 230

Ser Gln Asp Ser Trp Val Met Thr Leu Phe Arg Trp Gln His Val His 250

Trp Thr Phe Met Leu Pro Phe Leu Arg Leu Ser Trp Leu Leu Gln Ser 265 260

Ile Ile Phe Val Ser Gln Met Pro Thr His Tyr Tyr Asp Tyr Tyr Arg 280

Asn Thr Ala Ile Tyr Glu Gln Val Gly Leu Ser Leu His Trp Ala Trp 295 290

Ser Leu Gly Gln Leu Tyr Phe Leu Pro Asp Trp Ser Thr Arg Ile Met 310

Phe Phe Leu Val Ser His Leu Val Gly Phe Leu Leu Ser His Val 330

Val Thr Phe Asn His Tyr Ser Val Glu Lys Phe Ala Leu Ser Ser Asn 345

Ile Met Ser Asn Tyr Ala Cys Leu Gln Ile Met Thr Thr Arg Asn Met

Arg Pro Gly Arg Phe Ile Asp Trp Leu Trp Gly Gly Leu Asn Tyr Gln 375

Ile Glu His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Thr 390

Val Met Pro Leu Val Lys Glu Phe Ala Ala Ala Asn Gly Leu Pro Tyr 410 405

Met Va	l Asp	Asp :	fyr I	?he ?	Thr (31y	Phe 425	Trp	Leu	Glu	Ile	Glu (430	3ln 1	Phe	
Arg As	n Ile 435	Ala i	Asn V	√al I		Ala 440	Lys	Leu	Thr	Lys	Lys 445	Ile A	Ala		
<210>	9														
<211>	1443														
<212>	DNA														
<213>	Phys	comit	rell	a pa	tens										
<220>												4			
<221>	CDS										٠.				
<222>	(1).	. (144	3)												•
<223>	Delt	a-5-D	esat	uras	e				•	•					
<400>															48
atg go Met A	cg ccc la Pro	cac His	tct Ser 5	gcg Ala	gat Asp	act Thr	gct Ala	ggg Gly 10	ctc Leu	gtg Val	Pro	Ser	gac Asp 15	gaa Glu	40
ttg a Leu A	gg cta rg Lei	cga Arg 20	acg Thr	tcg Ser	aat Asn	tca Ser	aag Lys 25	ggt Gly	ccc Pro	gaa Glu	caa Gln	gag Glu 30	caa Gln	act Thr	96
ttg a Leu L	ag aaq ys Lys 35	g tac 3 Tyr	acc Thr	ctt Leu	gaa Glu	gat Asp 40	gtc Val	agc Ser	cgc Arg	cac His	aac Asn 45	acc Thr	cca Pro	gca Ala	144
Asp C	gt tg ys Tr	g ttg o Leu	gtg Val	ata Ile	tgg Trp 55	ggc	aaa Lys	gto Val	tac Tyr	gat Asp 60	gtc Val	aca Thr	agc Ser	tgg Trp	192
att c Ile F 65	cc aa Pro As	t cat n His	ccg Pro	ggg Gly 70	ggc	agt Ser	cto Lev	ato Ile	cac His	gta Val	aaa Lys	gca Ala	Gly	cag Gln 80	240
gat t Asp S	cc ac Ser Th	t cag r Gln	ctt Leu 85	ttc Phe	gat Asp	Sei	tat	c dis	c ccc s Pro	c cti	tat ı Tyr	gtc Val	agg Arg 95	aaa Lys	288
atg (Met 1	ctc go Leu Al	g aag a Lys 100	Tyr	tgt Cys	att Ile	gg:	g gaa y Gl	u Xa	a gta	a cc	g tct o Sei	gct Ala 110	GTA	gat Asp	336
gac a	aag tt Lys Pl 11	e Lys	aaa Lys	gca Ala	act Thr	cte Le	u Xa	g ta a Ty	t gc	a ga a As	t gcd p Ala 12	a GIU	ı aat ı Asr	gaa Glu	384

gat Asp	ttc Phe 130	tat Tyr	ttg Leu	gtt Val	Val	aag Lys 135	caa Gln	cga Arg	gtt Val	Glu	tct Ser 140	tat Tyr	ttc Phe	aag Lys	agt Ser	432	
aac Asn 145	aag Lys	ata Ile	aac Asn	ccc Pro	caa Gln 150	att Ile	cat His	cca Pro	cat His	atg Met 155	atc Ile	ctg Leu	aag Lys	tca Ser	ttg Leu 160	480	
ttc Phe	att Ile	ctt Leu	Gly ggg	gga Gly 165	tat Tyr	ttc Phe	gcc Ala	agt Ser	tac Tyr 170	tat Tyr	tta Leu	gcg Ala	ttc Phe	ttc Phe 175	tgg Trp	528	
tct Ser	tca Ser	agt Ser	gtc Val 180	ctt Leu	gtt Val	tct Ser	ttg Leu	ttt Phe 185	ttc Phe	gca Ala	ttg Leu	tgg Trp	atg Met 190	Gly ggg	ttc Phe	576	
ttc Phe	gca Ala	gcg Ala 195	gaa Glu	gtc Val	Gly	gtg Val	tcg Ser 200	att Ile	caa Gln	cat His	gat Asp	gga Gly 205	aat Asn	cat His	ggt Gly	624	
tca Ser	tac Tyr 210	act Thr	aaa Lys	tgg Trp	cgt Arg	ggc Gly 215	ttt Phe	gga Gly	tat Tyr	atc Ile	atg Met 220	gga Gly	gcc Ala	tcc Ser	cta Leu	672	
gat Asp 225	cta Leu	gtc Val	gga Gly	gcc Ala	agt Ser 230	agc Ser	ttc Phe	atg Met	tgg Trp	aga Arg 235	cag Gln	caa Gln	cac His	gtt Val	gtg Val 240	720	
gga Gly	cat His	cac His	tcg Ser	ttt Phe 245	aca Thr	aat Asn	gtg Val	gac Asp	aac Asn 250	tac Tyr	gat Asp	cct	gat Asp	att Ile 255	cgt Arg	768	
gtg Val	aaa Lys	gat Asp	cca Pro 260	Asp	gtc Val	agg Arg	agg Arg	gtt Val 265	Ala	acc Thr	aca Thr	caa Gln	cca Pro 270	aga Arg	caa Gln	816	;
tgg Trp	tat Tyr	cat His	gcg Ala	tat Tyr	cag Gln	cat His	atc Ile 280	Tyr	ctg Leu	gca Ala	gta Val	tta Leu 285	Tyr	gga Gly	act Thr	864	Ĺ
cta Lev	gct Ala 290	Lev	aag Lys	g agt Ser	att	Phe 295	Leu	gat Asp	gat Asp	ttc Phe	Leu 300	ı Ala	tac Tyr	tto Phe	aca Thr	912	2
30: Gl ⁷ gg:	, Ser	att Tle	: ggc	c cct / Pro	gto Val	. Lys	gtg Val	Ala Ala	g aaa	atg Met 315	Thi	c ccc	: ctg Lev	gag Glu	ttc Phe 320	960)
aac Ası	ato n Ile	e tto	c ttt e Phe	c cag e Glr 325	ı Gly	aag Lys	r cto Lev	g cta 1 Le	a tat ı Tyı 330	: Ala	tto Phe	c tac	ato Met	tto Phe 335	gtg Val	100	8
tt: Le	g cca	a tc: o Se:	t gtg r Val	l Ty	c ggt	gtt Val	cac L His	s Se 34	r Gly	y Gly	a act	t tto	ttg Lei 350	ı Ala	a cta a Leu	105	6

tat Tyr	Val	Ala 355	Ser	Gln	Leu	Ile	Thr 360	GTĀ	Trp	мес	nea	365	1110	Dou		1104
caa Gln	gta Val 370	gca Ala	cat His	gtc Val	gtg Val	gat Asp 375	gat Asp	gtt Val	gca Ala	ttt Phe	cct Pro 380	aca Thr	cca Pro	gaa Glu	ggt Gly	1152
ggg Gly 385	aag Lys	gtg Val	aag Lys	gga Gly	gga Gly 390	tgg Trp	gct Ala	gca Ala	.atg Met	cag Gln 395	gtt Val	gca Ala	aca Thr	act Thr	acg Thr 400	1200
gat Asp	ttc Phe	agt Ser	cca Pro	cgc Arg 405	tca Ser	tgg Trp	ttc Phe	tgg Trp	ggt Gly 410	HIS	gtc Val	tct Ser	gga Gly	gga Gly 415	tta Leu	1248
aac Asn	aac Asn	caa Gln	att 11e	Glu	cat	cat His	ctg Leu	ttt Phe 425	Pro	. gga . Gly	gtg Val	tgc .Cys	cat His 430	V CL.	cat His	1296
tat Tyr	cca Pro	. gcc Ala 435	ı Ile	cag Glr	cct Pro	att	gto Val	GIU	aag Lys	aco Thi	tgo Cys	aag Lys 445		tto Phe	gat Asp	1344
gtg Val	cct Pro 450	Ty:	t gta	a gco l Ala	tac Tyr	c cca c Pro 45	Thi	ttt Phe	tgg	g act	gcg r Ala 460	a ne	g aga ı Arc	gco g Ala	cac His	1392
ttt Phe	a Ala	g ca	t tt s Le	g aaa u Lys	a aaq s Ly:	s Va	t gga l Gl	a tto	g ac	a ga r Gl 47	u Pii	t cgg	g cto	gat 1 Asj	ggc Gly 480	1440
tga	a															1443
<2	10>	10	•	-												
<2	11>	480														
<2	12>	PRI	3													
<2	13>	Phy	SCOI	nitre	ella	pate	ens									
<2	20>															
<2	21>	mis	sc_f	eatu	ce											
				. (10											_	
<2	223>	Th	e'X	aa'	at 1	ocat	ion	106	stan	ds f	or a	sto	p co	don,	or Leu.	•
<2	220>						•									
<:	221>	mi	sc_f	eatu	re											

<222> (121)..(121)

<223> The 'Xaa' at location 121 stands for Glu, or Lys.

<400> 10

Met Ala Pro His Ser Ala Asp Thr Ala Gly Leu Val Pro Ser Asp Glu 1 5 10 15

Leu Arg Leu Arg Thr Ser Asn Ser Lys Gly Pro Glu Gln Glu Gln Thr 20 25 30

Leu Lys Lys Tyr Thr Leu Glu Asp Val Ser Arg His Asn Thr Pro Ala 35 40 45

Asp Cys Trp Leu Val Ile Trp Gly Lys Val Tyr Asp Val Thr Ser Trp 50 55 60

Ile Pro Asn His Pro Gly Gly Ser Leu Ile His Val Lys Ala Gly Gln 65 70 75 80

Asp Ser Thr Gln Leu Phe Asp Ser Tyr His Pro Leu Tyr Val Arg Lys 85 90 95

Met Leu Ala Lys Tyr Cys Ile Gly Glu Xaa Val Pro Ser Ala Gly Asp 100 105 110

Asp Lys Phe Lys Lys Ala Thr Leu Xaa Tyr Ala Asp Ala Glu Asn Glu
115 120 125

Asp Phe Tyr Leu Val Val Lys Gln Arg Val Glu Ser Tyr Phe Lys Ser

Asn Lys Ile Asn Pro Gln Ile His Pro His Met Ile Leu Lys Ser Leu 145 150 155 160

Phe Ile Leu Gly Gly Tyr Phe Ala Ser Tyr Tyr Leu Ala Phe Phe Trp 165 170 175

Ser Ser Ser Val Leu Val Ser Leu Phe Phe Ala Leu Trp Met Gly Phe 180 185 190

Phe Ala Ala Glu Val Gly Val Ser Ile Gln His Asp Gly Asn His Gly 195 200 205

Ser Tyr Thr Lys Trp Arg Gly Phe Gly Tyr Ile Met Gly Ala Ser Leu 210 215 220

Asp Leu Val Gly Ala Ser Ser Phe Met Trp Arg Gln Gln His Val Val 225 230 235 240

Gly His His Ser Phe Thr Asn Val Asp Asn Tyr Asp Pro Asp Ile Arg

Val Lys Asp Pro Asp Val Arg Arg Val Ala Thr Thr Gln Pro Arg Gln 260 265 270

Trp Tyr His Ala Tyr Gln His Ile Tyr Leu Ala Val Leu Tyr Gly Thr 280

Leu Ala Leu Lys Ser Ile Phe Leu Asp Asp Phe Leu Ala Tyr Phe Thr 295

Gly Ser Ile Gly Pro Val Lys Val Ala Lys Met Thr Pro Leu Glu Phe 315

Asn Ile Phe Phe Gln Gly Lys Leu Leu Tyr Ala Phe Tyr Met Phe Val 330

Leu Pro Ser Val Tyr Gly Val His Ser Gly Gly Thr Phe Leu Ala Leu

Tyr Val Ala Ser Gln Leu Ile Thr Gly Trp Met Leu Ala Phe Leu Phe 360

Gln Val Ala His Val Val Asp Asp Val Ala Phe Pro Thr Pro Glu Gly 380 375

Gly Lys Val Lys Gly Gly Trp Ala Ala Met Gln Val Ala Thr Thr Thr 390 395

Asp Phe Ser Pro Arg Ser Trp Phe Trp Gly His Val Ser Gly Gly Leu 410 405

Asn Asn Gln Ile Glu His His Leu Phe Pro Gly Val Cys His Val His 425

Tyr Pro Ala Ile Gln Pro Ile Val Glu Lys Thr Cys Lys Glu Phe Asp 435 440

Val Pro Tyr Val Ala Tyr Pro Thr Phe Trp Thr Ala Leu Arg Ala His 455

Phe Ala His Leu Lys Lys Val Gly Leu Thr Glu Phe Arg Leu Asp Gly 470

<210> 11

<211> 1320

<212> DNA

<213> Thraustrochytrium

<220>

<221> CDS

<222> (1)..(1320)

<223>

<400> 11

atg Met 1	ggc Gly	aag Lys	ggc Gly	agc Ser 5	gag Glu	ggc	cgc Arg	agc Ser	gcg Ala 10	gcg Ala	cgc Arg	gag Glu	atg Met	acg Thr 15	gcc Ala		48	
gag Glu	gcg Ala	aac Asn	ggc Gly 20	gac Asp	aag Lys	cgg Arg	aaa Lys	acg Thr 25	att Ile	ctg Leu	atc Ile	gag Glu	ggc 30	gtc Val	ctg Leu		96	
tac	gac Asp	gcg Ala 35	acg Thr	aac Asn	ttt Phe	aag Lys	cac His 40	ccg Pro	Gly	ggt Gly	tcg Ser	atc Ile 45	atc Ile	aac Asn	ttc Phe	1	L44	
tto	acc Thr	gag Glu	ggc	gag Glu	Ala	ggc Gly 55	gtg Val	gac Asp	gcg Ala	acg Thr	cag Gln 60	gcg Ala	tac Tyr	cgc Arg	gag Glu	:	192	
ttt Phe 65	cat His	cag Gln	cgg Arg	tcc Ser	ggc Gly 70	aag Lys	gcc Ala	gac Asp	aag Lys	tac Tyr 75	ctc Leu	aag Lys	tcg Ser	ctg Leu	ccg Pro 80	:	240	
aag Lys	g ctg s Leu	gat Asp	gcg Ala	tcc Ser 85	aag Lys	gtg Val	gag Glu	tcg Ser	cgg Arg 90	ttc Phe	tcg Ser	gcc Ala	aaa Lys	gag Glu 95	cag Gln	:	288	
gc	g cgg a Arg	cgc Arg	gac Asp 100	Ala	atg Met	acg Thr	cgc	gac Asp 105	tac Tyr	gcg Ala	gcc Ala	ttt Phe	cgc Arg 110	Glu	gag Glu		336	
ct: Le	c gtc ı Val	gcc Ala 115	Glu	Gly	tac Tyr	ttt Phe	gac Asp 120	Pro	tcg Ser	atc Ile	ccg	cac His 125	Met	att Ile	tac Tyr		384	
cg Ar	c gtc g Val 130	. Val	gag Glu	atc Ile	gtg "Val	gcg Ala 135	Leu	ttc Phe	gcg Ala	ctc Leu	tcg Ser 140	Phe	tgg Trp	ctc Leu	atg Met		432	
tc Se 14		gcc Ala	tcg Ser	Pro	acc Thr	Ser	cto Lev	gtg Val	ctg Leu	ggc Gly 155	val	gtg L Val	atg Met	aac Asn	ggc Gly 160		480	
at Il	t gcg e Ala	g cag a Gli	g ggc 1 Gly	cgc Arg 165	Cys	ggc Gly	tgg Tr	g gto Val	ato Met	: His	gag Glu	g at <u>c</u> 1 Met	: GJ7	cac His	g Gly aga		528	
to Se	g tto r Phe	ace Th:	g gg c Gl ₃ 180	y Val	ato L Ile	tgg Tr	cto Le	gad 1 Asy 189	a Ası	c cgg	g ato	g tgo t Cys	c gag s Glu 190	ı Phe	ttc Phe		576	
ta T <u>y</u>	c ggo r Gl	gto Y Vai	l Gl	c tgo y Cys	c ggd s Gly	ato / Met	g age 20	r Gl	y cao	tac	c tg r Tr	g aaq p Ly: 20!	s Ası	c caq n Gli	g cac n His		624	:

										22							
2	igc Ser	aag Lys 210	cac His	cac His	gcc Ala	gcg Ala	ccc Pro 215	aac Asn	cgc Arg	ctc Leu	gag Glu	cac His 220	gat Asp	gtc Val	gat Asp	ctc Leu	672
7	aac Asn 225	acg Thr	ctg Leu	ccc Pro	ctg Leu	gtc Val 230	gcc Ala	ttt Phe	aac Asn	gag Glu	cgc Arg 235	gtc Val	gtg Val	cgc Arg	aag Lys	gtc Val 240	720
I	aag Lys	ccg Pro	gga Gly	tcg Ser	ctg Leu 245	ctg Leu	gcg Ala	ctc Leu	tgg Trp	ctg Leu 250	cgc Arg	gtg Val	cag Gln	gcg Ala	tac Tyr 255	ctc Leu	768
1	tt Phe	gcg Ala	ccc Pro	gtc Val 260	tcg Ser	tgc Cys	ctg Leu	ctc Leu	atc Ile 265	ggc Gly	ctt Leu	ggc Gly	tgg Trp	acg Thr 270	ctc Leu	tac Tyr	816
]	ctg Leu	cac His	ccg Pro 275	cgc Arg	Tyr	atg Met	ctg Leu	cgc Arg 280	acc Thr	aag Lys	cgg Arg	cac His	atg Met 285	gag Glu	ttc Phe	gtc Val	864
1	tgg Irp	atc Ile 290	ttc Phe	gcg Ala	cgc Arg	tac Tyr	att Ile 295	ggc Gly	tgg Trp	ttc Phe	tcg Ser	ctc Leu 300	atg Met	Gly	gct Ala	ctc Leu	912
	ggc Gly 305	tac Tyr	tcg Ser	ccg Pro	Gly	acc Thr 310	tcg Ser	gtc Val	ggg	atg Met	tac Tyr 315	ctg Leu	tgc Cys	tcg Ser	ttc Phe	ggc Gly 320	960
	ctc Leu	ggc	tgc Cys	att Ile	tac Tyr 325	Ile	ttc Phe	ctg Leu	cag Gln	ttc Phe 330	gcc Ala	gtc Val	agc Ser	cac	acg Thr 335	cac His	1008
	ctg Leu	ccg Pro	Val	acc Thr 340	aac Asn	ccg Pro	gag Glu	gac Asp	cag Gln 345	Leu	cac	tgg Trp	ctc Leu	gag Glu 350	Tyr	gcg Ala	1056
	gcc Ala	gac Asp	cac His 355	Thr	gtg Val	aac Asn	att Ile	agc Ser 360	Thr	aag Lys	tcc Ser	tgg Trp	ctc Leu 365	Val	acg Thr	tgg Trp	1104
	tgg Trp	Met 370	Ser	aac Asn	ctg Leu	aac Asn	ttt Phe 375	Glr	atc Ile	gag Glu	cac His	His 380	Leu	ttc Phe	ccc Pro	acg Thr	·1152
	gcg Ala 385	Pro	cag Glr	ttc Phe	cgc Arg	ttc Phe 390	Lys	gaa Glu	ato Ile	agt Ser	ect Pro 395	Arc	gto Val	gag Glu	gcc Ala	teu 400	1200
	tto	aag Lys	g cgc	cac His	aac Asr 405	ı Lev	ccg Pro	tao Tyi	tac Tyr	gac Asr 410) Lev	r cco	tac Tyr	acg Thr	g ago Ser 415	gcg Ala	1248
	gto Val	tcg Ser	g aco	acc Thr	: Phe	gcc Ala	: aat a Asr	cti Lei	tat Tyr 425	: Sei	gto Val	C Gly	c cac	tcg Ser 430	. Val	ggc Gly	1296

gcc gac acc aag aag cag gac tga Ala Asp Thr Lys Lys Gln Asp 435

<210> 12

<211> 439

<212> PRT

<213> Thraustrochytrium

<400> 12

Met Gly Lys Gly Ser Glu Gly Arg Ser Ala Ala Arg Glu Met Thr Ala · 10

Glu Ala Asn Gly Asp Lys Arg Lys Thr Ile Leu Ile Glu Gly Val Leu

Tyr Asp Ala Thr Asn Phe Lys His Pro Gly Gly Ser Ile Ile Asn Phe 40

Leu Thr Glu Gly Glu Ala Gly Val Asp Ala Thr Gln Ala Tyr Arg Glu 55

Phe His Gln Arg Ser Gly Lys Ala Asp Lys Tyr Leu Lys Ser Leu Pro 70 75

Lys Leu Asp Ala Ser Lys Val Glu Ser Arg Phe Ser Ala Lys Glu Gln 90 . 85

Ala Arg Arg Asp Ala Met Thr Arg Asp Tyr Ala Ala Phe Arg Glu Glu 105

Leu Val Ala Glu Gly Tyr Phe Asp Pro Ser Ile Pro His Met Ile Tyr 120

Arg Val Val Glu Ile Val Ala Leu Phe Ala Leu Ser Phe Trp Leu Met 135 130

Ser Lys Ala Ser Pro Thr Ser Leu Val Leu Gly Val Val Met Asn Gly 155 150

Ile Ala Gln Gly Arg Cys Gly Trp Val Met His Glu Met Gly His Gly 165

Ser Phe Thr Gly Val Ile Trp Leu Asp Asp Arg Met Cys Glu Phe Phe 180

Tyr Gly Val Gly Cys Gly Met Ser Gly His Tyr Trp Lys Asn Gln His 200

Ser Lys His His Ala Ala Pro Asn Arg Leu Glu His Asp Val Asp Leu 215 210

Asn Thr Leu Pro Leu Val Ala Phe Asn Glu Arg Val Val Arg Lys Val 230

Lys Pro Gly Ser Leu Leu Ala Leu Trp Leu Arg Val Gln Ala Tyr Leu 250 245

Phe Ala Pro Val Ser Cys Leu Leu Ile Gly Leu Gly Trp Thr Leu Tyr 265

Leu His Pro Arg Tyr Met Leu Arg Thr Lys Arg His Met Glu Phe Val 280

Trp Ile Phe Ala Arg Tyr Ile Gly Trp Phe Ser Leu Met Gly Ala Leu 295 300

Gly Tyr Ser Pro Gly Thr Ser Val Gly Met Tyr Leu Cys Ser Phe Gly 310

Leu Gly Cys Ile Tyr Ile Phe Leu Gln Phe Ala Val Ser His Thr His 330 325

Leu Pro Val Thr Asn Pro Glu Asp Gln Leu His Trp Leu Glu Tyr Ala 345

Ala Asp His Thr Val Asn Ile Ser Thr Lys Ser Trp Leu Val Thr Trp 360

Trp Met Ser Asn Leu Asn Phe Gln Ile Glu His His Leu Phe Pro Thr 380

Ala Pro Gln Phe Arg Phe Lys Glu Ile Ser Pro Arg Val Glu Ala Leu 390 395

Phe Lys Arg His Asn Leu Pro Tyr Tyr Asp Leu Pro Tyr Thr Ser Ala 405

Val Ser Thr Thr Phe Ala Asn Leu Tyr Ser Val Gly His Ser Val Gly 425

Ala Asp Thr Lys Lys Gln Asp 435

<210> 13

<211> 1341

<212> DNA

<213> Mortierella alpina

<220>

<221> CDS

<222> (1)..(1341)

<223> Delta-5-Desaturase

<400	> 1	.3														
atg Met 1	gga Gly	acg Thr	gac Asp	caa Gln 5	gga Gly	aaa Lys	acc Thr	ttc Phe	acc Thr 10	tgg Trp	gaa Glu	gag Glu	ctg Leu	gcg Ala 15	gcc Ala	48
cat His	aac Asn	acc Thr	aag Lys 20	gac Asp	gac Asp	cta Leu	ctc Leu	ttg Leu 25	gcc Ala	atc Ile	cgc Arg	ggc	agg Arg 30	gtg Val	tac Tyr	96
gat Asp	gtc Val	aca Thr 35	aag Lys	ttc Phe	ttg Leu	agc Ser	cgc Arg 40	cat His	cct Pro	ggt Gly	gga Gly ,	gtg Val 45	gac Asp	act Thr	ctc Leu	144
ctg Leu	ctc Leu 50	gga Gly	gct Ala	ggc Gly	cga Arg	gat Asp 55	gtt Val	act Thr	ccg Pro	gtc Val	ttt Phe 60	gag Glu	atg Met	tat Tyr	cac His	192
gcg Ala 65	ttt Phe	Gly	gct Ala	gca Ala	gat Asp 70	gcc Ala	att Ile	atg Met	aag Lys	aag Lys 75	tac Tyr	tat Tyr	gtc Val	ggt Gly	aca Thr 80	240
ctg Leu	gtc Val	tcg Ser	aat Asn	gag Glu 85	ctg Leu	ccc Pro	atc Ile	ttc Phe	ccg Pro 90	gag Glu	cca Pro	acg Thr	gtg Val	ttc Phe 95	cac His	288
aaa Lys	acc Thr	atc Ile	aag Lys 100	acg Thr	aga Arg	gtc Val	gag Glu	ggc Gly 105	tac Tyr	ttt Phe	acg Thr	gat Asp	cgg Arg 110	aac Asn	att Ile	336
						gag Glu										384
gga Gly	tcc Ser 130	ttg Leu	atc Ile	gct Ala	tcc Ser	tac Tyr 135	tac Tyr	gcg Ala	cag Gln	ctc Leu	ttt Phe 140	gtg Val	cct Pro	ttc Phe	gtt Val	432
gtc Val 145	gaa Glu	cgc Arg	aca Thr	tgg Trp	ctt Leu 150	cag Gln	gtg Val	gtg Val	ttt Phe	gca Ala 155	Ile	atc Ile	atg Met	gga	ttt Phe 160	480
gcg Ala	tgc Cys	gca Ala	caa Gln	gtc Val 165	Gly	ctc Leu	aac Asn	cct Pro	ctt Leu 170	His	gat Asp	gcg Ala	tct Ser	cac His 175	Phe	528
tca Ser	gtg Val	acc Thr	cac His 180	Asn	ccc Pro	act Thr	gtc Val	tgg Trp 185	Lys	att	ctg Leu	gga Gly	gcc Ala 190	Thr	cac His	576
gac Asp	ttt Phe	tto Phe	. Asn	gga Gly	gca Ala	. tcg . Ser	tac Tyr 200	Leu	gtg Val	tgg Trp	atg Met	tac Tyr 205	Gln	. cat . His	atg Met	624

								gac Asp		672
								aag Lys		720
								tac Tyr 255		768
								tac Tyr		816
								tgg Trp		864
								cgc Arg		912
								ttg Leu		960
								ttc Phe 335		1008
								gag Glu		1056
								acg Thr		1104
								agc Ser		1152
								cac His		1200
						Thr		tac Tyr 415		1248
		Val			Trp			Ser	cat His	1296

ttg gag cac ttg cgt gtt ctt gga ctc cgt ccc aag gaa gag tag Leu Glu His Leu Arg Val Leu Gly Leu Arg Pro Lys Glu Glu 440 435

1341

<210> 14

<211> 446

<212> PRT

<213> Mortierella alpina

<400> 14

Met Gly Thr Asp Gln Gly Lys Thr Phe Thr Trp Glu Glu Leu Ala Ala 10

His Asn Thr Lys Asp Asp Leu Leu Leu Ala Ile Arg Gly Arg Val Tyr 25

Asp Val Thr Lys Phe Leu Ser Arg His Pro Gly Gly Val Asp Thr Leu

Leu Leu Gly Ala Gly Arg Asp Val Thr Pro Val Phe Glu Met Tyr His . 55

Ala Phe Gly Ala Ala Asp Ala Ile Met Lys Lys Tyr Tyr Val Gly Thr 75 70

Leu Val Ser Asn Glu Leu Pro Ile Phe Pro Glu Pro Thr Val Phe His

Lys Thr Ile Lys Thr Arg Val Glu Gly Tyr Phe Thr Asp Arg Asn Ile 105

Asp Pro Lys Asn Arg Pro Glu Ile Trp Gly Arg Tyr Ala Leu Ile Phe 120

Gly Ser Leu Ile Ala Ser Tyr Tyr Ala Gln Leu Phe Val Pro Phe Val 135 130

Val Glu Arg Thr Trp Leu Gln Val Val Phe Ala Ile Ile Met Gly Phe 155 150 145

Ala Cys Ala Gln Val Gly Leu Asn Pro Leu His Asp Ala Ser His Phe 170

Ser Val Thr His Asn Pro Thr Val Trp Lys Ile Leu Gly Ala Thr His 185 180

Asp Phe Phe Asn Gly Ala Ser Tyr Leu Val Trp Met Tyr Gln His Met 200

Leu Gly His His Pro Tyr Thr Asn Ile Ala Gly Ala Asp Pro Asp Val 220 215

Ser Thr Ser Glu Pro Asp Val Arg Ile Lys Pro Asn Gln Lys Trp 225 230

Phe Val Asn His Ile Asn Gln His Met Phe Val Pro Phe Leu Tyr Gly 250

Leu Leu Ala Phe Lys Val Arg Ile Gln Asp Ile Asn Ile Leu Tyr Phe 265

Val Lys Thr Asn Asp Ala Ile Arg Val Asn Pro Ile Ser Thr Trp His 275

Thr Val Met Phe Trp Gly Gly Lys Ala Phe Phe Val Trp Tyr Arg Leu 300 295

Ile Val Pro Leu Gln Tyr Leu Pro Leu Gly Lys Val Leu Leu Leu Phe 310

Thr Val Ala Asp Met Val Ser Ser Tyr Trp Leu Ala Leu Thr Phe Gln 330 325

Ala Asn His Val Val Glu Val Gln Trp Pro Leu Pro Asp Glu Asn 345

Gly Ile Ile Gln Lys Asp Trp Ala Ala Met Gln Val Glu Thr Thr Gln 360

Asp Tyr Ala His Asp Ser His Leu Trp Thr Ser Ile Thr Gly Ser Leu 370

Asn Tyr Gln Ala Val His His Leu Phe Pro Asn Val Ser Gln His His 395 390

Tyr Pro Asp Ile Leu Ala Ile Ile Lys Asn Thr Cys Ser Glu Tyr Lys

Val Pro Tyr Leu Val Lys Asp Thr Phe Trp Gln Ala Phe Ala Ser His 420

Leu Glu His Leu Arg Val Leu Gly Leu Arg Pro Lys Glu Glu 440

<210> 15

<211> 1344

<212> DNA

<213> Caenorhabditis elegans

<220>

<221> CDS

<222> (1)..(1344)

<223>	Delta-5-Desaturase
-------	--------------------

<400																
atg Met 1	gta Val	tta Leu	cga Arg	gag Glu 5	caa Gln	gag Glu	cat His	gag Glu	cca Pro 10	ttc Phe	ttc Phe	att Ile	aaa Lys	att Ile 15	gat Asp	48
gga Gly	aaa Lys	tgg Trp	tgt Cys 20	caa Gln	att Ile	gac Asp	gat Asp	gct Ala 25	gtc Val	ctg Leu	aga Arg	tca Ser	cat His 30	cca Pro	ggt Gly	96
ggt Gly	agt Ser	gca Ala 35	att Ile	act Thr	acc Thr	tat Tyr	aaa Lys 40	aat Asn	atg Met	gat Asp	gcc Ala	act Thr 45	acc Thr	gta Val	ttc Phe	144
cac His	aca Thr 50	ttc Phe	cat His	act Thr	ggt Gly	tct Ser 55	aaa Lys	gaa Glu	gcg Ala	tat Tyr	caa Gln 60	Trp	ctg Leu	aca Thr	gaa Glu	192
ttg Leu 65	aaa Lys	aaa Lys	gag Glu	tgc Cys	cct Pro 70	aca Thr	caa Gln	gaa Glu	cca Pro	gag Glu 75	atc Ile	cca Pro	gat Asp	att Ile	aag Lys 80	240
gat Asp	gac Asp	cca Pro	atc Ile	aaa Lys 85	gga Gly	att Ile	gat Asp	gat Asp	gtg Val 90	aac Asn	atg Met	gga Gly	act Thr	ttc Phe 95	aat Asn	288
att Ile	tct Ser	gag Glu	aaa Lys 100	cga Arg	tct Ser	gcc Ala	caa Gln	ata Ile 105	aat Asn	aaa Lys	agt Ser	ttc Phe	act Thr 110	ASD	cta Leu	336
cgt Arg	atg Met	cga Arg	y Val	. cgt . Arg	gca Ala	gaa Glu	gga Gly 120	Leu	atg Met	gat Asp	gga Gly	tct Ser 125	Pro	ttg Leu	ttc Phe	384
tac Tyr	att	Arc	a aaa g Lys	att Ile	ctt Leu	gaa Glu 135	Thr	atc : Ile	ttc Phe	aca Thr	att : Ile 140	Let	: ttt ı Phe	gca Ala	ttc Phe	432
tac Tyr 145	Lev	caa Gli	a tao	c cad	aca Thr	Tyr	tat Tyr	ctt Lev	cca Pro	tca Ser 15!	: Ala	att	cta e Leu	a ato 1 Met	g gga E Gly 160	. 480
gtt Val	gcg L Ala	g tg a Trj	p Gl:	a caa n Gli 16	a Lev	ı Gly	tgg	g tta p Lei	a ato 1 Ile 170	e His	gaa Glu	a tto	c gca e Ala	a cat a Hi: 17	t cat s His 5	528
cas Gli	g tt: n Le:	g tt u Ph	c aa e Ly 18	s As	c aga n Arg	a tao	tae r Ty	c aat r Asi 18	n Ası	t tt: p Le	g gc	c ag a Se	c ta r Ty 19	r Pn	c gtt e Val	576
gg:	a aa y As:	c tt n Ph 19	e Le	a ca u Gl	a gga n Gl	a tto y Pho	c tc e Se 20	r Se	t gg r Gl	t gg y Gl	t tg y Tr	g aa p Ly 20	S GT	g ca u Gl	g cac n His	624

									30							
aat Asn	gtg Val 210	cat His	cac His	gca Ala	Ala	aca Thr 215	aat Asn	gtt (Val	gtt Val	gga Gly	cga Arg 220	gac Asp	gga Gly	gat Asp	ctt Leu	672
gat Asp 225	tta Leu	gtc Val	cca Pro	ttc Phe	tat Tyr 230	gct Ala	aca Thr	gtg Val	Ala	gaa Glu 235	cat His	ctc Leu	aac Asn	aat Asn	tat Tyr 240	720
tct Ser	cag Gln	gat Asp	tca Ser	tgg Trp 245	gtt Val	atg Met	act Thr	cta Leu	ttc Phe 250	aga Arg	tgg Trp	caa Gln	cat His	gtt Val 255	cat His	768
tgg Trp	aca Thr	ttc Phe	atg Met 260	tta Leu	cca Pro	ttc Phe	ctc Leu	cgt Arg 265	ctc Leu	tcg Ser	tgg Trp	ctt Leu	ctt Leu 270	cag Gln	tca Ser	816
atc Ile	att Ile	ttt Phe 275	Val	agt Ser	cag Gln	atg Met	cca Pro 280	act Thr	cat His	tat Tyr	tat Tyr	gac Asp 285	tat Tyr	tac Tyr	aga Arg	864
aat Asn	act Thr 290	Ala	att Ile	tat Tyr	gaa Glu	cag Gln 295	gtt Val	ggt Gly	ctc Leu	tct Ser	ttg Leu 300	. Hls	tgg Trp	gct Ala	tgg Trp	912
tca Ser 305	ttg Leu	ggt Gly	caa Gln	ttg Leu	tat Tyr 310	ttc Phe	cta Leu	ccc. Pro	gat Asp	tgg Trp 315	Ser	act Thr	aga Arg	ata Ile	atg Met 320	960
ttc Phe	ttc Phe	ctt Lev	gtt Val	tct Ser 325	His	ctt Leu	gtt Val	gga Gly	ggt Gly 330	Phe	ctg Leu	rcto Leu	tct Ser	cat His	gta Val	1008
gtt Val	act Thr	tto Phe	aat Asr 340	His	tat Tyr	tca Ser	gtg Val	gag Glu 345	Lys	ttt Phe	gea Ala	a tto a Lev	g ago 1. Ser 350	: Se:	g aac c Asn	1056
ato Ile	: ato	g toa : Se: 35!	r Ası	tac Tyr	gct Ala	tgt Cys	ctt Leu 360	Gln	ato Ile	atç Met	Thi	c acar r Thi	r Arg	a aa g As:	t atg n Met	1104
aga Arg	a cci g Pro 370	o G1:	a aga y Arg	a tto	att	gac Ası 375	Tr	g ctt o Leu	tgg Tr	o Gly	a gg 7 Gl: 38	y Le	t aad u Asi	c ta n Ty	t cag r Gln	1152
at: 110 38	e Gl	g ca u Hi	c ca s Hi	t cti s Lei	t tto a Pho 390	e Pro	a acq	g ato r Met	g cca	a cga o Ara 39	g Hi	c aa s As	c tt n Le	g aa u As	c act n Thr 400	
gt Va	t at l Me	g cc t Pr	a ct o Le	t gt u Va 40	l Ly	g gag s Gl	g tt u Ph	t gca e Ala	a gca a Ala 41	a Al	a aa a As	t gg n Gl	t tt y Le	a co u Pr 41	a tac o Tyr .5	1248
at Me	g gt t Va	c ga .1 As	ic ga sp As 42	р Ту	t tt r Ph	c ac e Th	a gg r Gl	a tto y Pho 42	e Tr	g ct p Le	t ga u Gl	ia at Lu Il	t ga .e Gl 43	u G	a tto n Phe	1296

cga aat att gca aat gtt gct gct aaa ttg act aaa aag att gcc tag

Arg Asn Ile Ala Asn Val Ala Ala Lys Leu Thr Lys Lys Ile Ala

435

440

445

<210> 16

<211> 447

<212> PRT

<213> Caenorhabditis elegans

<400> 16

Met Val Leu Arg Glu Gln Glu His Glu Pro Phe Phe Ile Lys Ile Asp 1 5 10 15

Gly Lys Trp Cys Gln Ile Asp Asp Ala Val Leu Arg Ser His Pro Gly 20 25 30

Gly Ser Ala Ile Thr Thr Tyr Lys Asn Met Asp Ala Thr Thr Val Phe 35 40 45

His Thr Phe His Thr Gly Ser Lys Glu Ala Tyr Gln Trp Leu Thr Glu 50 55 60

Leu Lys Lys Glu Cys Pro Thr Gln Glu Pro Glu Ile Pro Asp Ile Lys 65 70 75 80

Asp Asp Pro Ile Lys Gly Ile Asp Asp Val Asn Met Gly Thr Phe Asn 85 90 95

Ile Ser Glu Lys Arg Ser Ala Gln Ile Asn Lys Ser Phe Thr Asp Leu 100 105 110

Arg Met Arg Val Arg Ala Glu Gly Leu Met Asp Gly Ser Pro Leu Phe 115 120 125

Tyr Ile Arg Lys Ile Leu Glu Thr Ile Phe Thr Ile Leu Phe Ala Phe 130 135 140

Tyr Leu Gln Tyr His Thr Tyr Tyr Leu Pro Ser Ala Ile Leu Met Gly 145 150 155 160

Val Ala Trp Gln Gln Leu Gly Trp Leu Ile His Glu Phe Ala His His 165 170 175

Gln Leu Phe Lys Asn Arg Tyr Tyr Asn Asp Leu Ala Ser Tyr Phe Val 180 185 190 .

Gly Asn Phe Leu Gln Gly Phe Ser Ser Gly Gly Trp Lys Glu Gln His

Asn Val His His Ala Ala Thr Asn Val Val Gly Arg Asp Gly Asp Leu 210 215 220

Asp Leu Val Pro Phe Tyr Ala Thr Val Ala Glu His Leu Asn Asn Tyr 230 225

Ser Gln Asp Ser Trp Val Met Thr Leu Phe Arg Trp Gln His Val His 250 245

Trp Thr Phe Met Leu Pro Phe Leu Arg Leu Ser Trp Leu Leu Gln Ser 265

Ile Ile Phe Val Ser Gln Met Pro Thr His Tyr Tyr Asp Tyr Tyr Arg 275 280

Asn Thr Ala Ile Tyr Glu Gln Val Gly Leu Ser Leu His Trp Ala Trp 295

Ser Leu Gly Gln Leu Tyr Phe Leu Pro Asp Trp Ser Thr Arg Ile Met 315 310

Phe Phe Leu Val Ser His Leu Val Gly Gly Phe Leu Leu Ser His Val 330 325

Val Thr Phe Asn His Tyr Ser Val Glu Lys Phe Ala Leu Ser Ser Asn 345

Ile Met Ser Asn Tyr Ala Cys Leu Gln Ile Met Thr Thr Arg Asn Met 360

Arg Pro Gly Arg Phe Ile Asp Trp Leu Trp Gly Gly Leu Asn Tyr Gln 375 370

Ile Glu His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Thr 390 395

Val Met Pro Leu Val Lys Glu Phe Ala Ala Ala Asn Gly Leu Pro Tyr 405

Met Val Asp Asp Tyr Phe Thr Gly Phe Trp Leu Glu Ile Glu Gln Phe 425 420

Arg Asn Ile Ala Asn Val Ala Ala Lys Leu Thr Lys Lys Ile Ala 440

<210> 17

<211> 1683

<212> DNA

<213> Borago officinalis

<220>

<221> CDS

<222> (42)..(1388)

<223> Delta-6-Desaturase

<400> 17	
tatctgccta ccctcccaaa gagagtagtc atttttcatc a atg gct gct caa atc . Met Ala Ala Gln Ile 1 5	56
aag aaa tac att acc tca gat gaa ctc aag aac cac gat aaa ccc gga Lys Lys Tyr Ile Thr Ser Asp Glu Leu Lys Asn His Asp Lys Pro Gly 10 15 20	104
gat cta tgg atc tcg att caa ggg aaa gcc tat gat gtt tcg gat tgg Asp Leu Trp Ile Ser Ile Gln Gly Lys Ala Tyr Asp Val Ser Asp Trp 25 30 35	152
gtg aaa gac cat cca ggt ggc agc ttt ccc ttg aag agt ctt gct ggt Val Lys Asp His Pro Gly Gly Ser Phe Pro Leu Lys Ser Leu Ala Gly 40 45 50	200
caa gag gta act gat gca ttt gtt gca ttc cat cct gcc tct aca tgg Gln Glu Val Thr Asp Ala Phe Val Ala Phe His Pro Ala Ser Thr Trp 55 60 65	248
aag aat ctt gat aag ttt ttc act ggg tat tat ctt aaa gat tac tct Lys Asn Leu Asp Lys Phe Phe Thr Gly Tyr Tyr Leu Lys Asp Tyr Ser 70 75 80 85	296
gtt tct gag gtt tct aaa gat tat agg aag ctt gtg ttt gag ttt tct Val Ser Glu Val Ser Lys Asp Tyr Arg Lys Leu Val Phe Glu Phe Ser 90 95 100	344
aaa atg ggt ttg tat gac aaa aaa ggt cat att atg ttt gca act ttg Lys Met Gly Leu Tyr Asp Lys Lys Gly His Ile Met Phe Ala Thr Leu 105 110 115	392
tgc ttt ata gca atg ctg ttt gct atg agt gtt tat ggg gtt ttg ttt Cys Phe Ile Ala Met Leu Phe Ala Met Ser Val Tyr Gly Val Leu Phe 120 125 130	440
tgt gag ggt gtt ttg gta cat ttg ttt tct ggg tgt ttg atg ggg ttt Cys Glu Gly Val Leu Val His Leu Phe Ser Gly Cys Leu Met Gly Phe 135 140 145	488
ctt tgg att cag agt ggt tgg att gga cat gat gct ggg cat tat atg Leu Trp Ile Gln Ser Gly Trp Ile Gly His Asp Ala Gly His Tyr Met 150 . 155 160 165	536
gta gtg tct gat tca agg ctt aat aag ttt atg ggt att ttt gct gca Val Val Ser Asp Ser Arg Leu Asn Lys Phe Met Gly Ile Phe Ala Ala 170 175 180	584
aat tgt ctt tca gga ata agt att ggt tgg tgg aaa tgg aac cat aat Asn Cys Leu Ser Gly Ile Ser Ile Gly Trp Trp Lys Trp Asn His Asn 185 190 195	632

									34							
gca Ala	cat His	cac His 200	att Ile	gcc Ala	tgt Cys	aat Asn	agc Ser 205	ctt Leu	gaa Glu	tat Tyr	gac Asp	cct Pro 210	gat Asp	tta Leu	caa Gln	680
tat Tyr	ata Ile 215	cca Pro	ttc Phe	ctt Leu	gtt Val	gtg Val 220	tct Ser	tcc Ser	aag Lys	ttt Phe	ttt Phe 225	ggt Gly	tca Ser	ctc Leu	acc Thr	728
tct Ser 230	cat His	ttc Phe	tat Tyr	gag Glu	aaa Lys 235	agg Arg	ttg Leu	act Thr	ttt Phe	gac Asp 240	tct Ser	tta Leu	tca Ser	aga Arg	ttc Phe 245	776
								ttt Phe								824
		Asn						ctc Leu 270								872
								ctc Leu								920
								tgt Cys								968
att Ile 310	atg Met	ttt Phe	gtt Val	att Ile	gca Ala 315	agt Ser	tta Leu	tca Ser	Val	act Thr 320	gga Gly	atg Met	caa Gln	caa Gln	gtt Val 325	1016
								tca Ser								1064
aaa Lys	ejy gaa	aat Asn	aat Asn 345	Trp	ttt Phe	gag Glu	aaa Lys	caa Gln 350	acg Thr	gat Asp	GJÀ aaa	aca Thr	ctt Leu 355	gac Asp	att Ile	1112
tct Ser	tgt Cys	cct Pro 360	Pro	tgg Trp	atg Met	gat Asp	tgg Trp 365	Phe	cat His	ggt Gly	gga Gly	ttg Leu 370	Gln	ttc Phe	caa Gln	1160
		His					Lys	atg Met				Asn			aaa Lys	1208
atc Ile 390	Ser	ccc Pro	tac Tyr	gtg Val	rato Ile 395	Glu	tta Leu	tgc Cys	aag Lys	Lys 400	His	aat Asn	ttg Leu	cct Pro	tac Tyr 405	1256
aat Asn	tat Tyr	gca Ala	tct Ser	tto Phe	e Ser	aag Lys	gcc Ala	aat Asn	gaa Glu 415	. Met	g aca Thr	cto Lev	aga Arg	aca Thr 420	ttg Leu	1304

agg aac aca gca ttg cag gct agg gat ata acc aag ccg ctc ccg aag	
Arg Asn Thr Ala Leu Gln Ala Arg Asp Ile Thr Lys Pro Leu Pro Lys 425 430 435	1352
aat ttg gta tgg gaa gct ctt cac act cat ggt taa aattaccctt Asn Leu Val Trp Glu Ala Leu His Thr His Gly 440 445	1398
agttcatgta ataatttgag attatgtatc tcctatgttt gtgtcttgtc ttggttctac	1458
ttgttggagt cattgcaact tgtcttttat ggtttattag atgtttttta atatatttta	1518
gaggttttgc tttcatctcc attattgatg aataaggagt tgcatattgt caattgttgt	1578
gctcaatatc tgatattttg gaatgtactt tgtaccactg tgttttcagt tgaagctcat	1638
gtgtacttct atagactttg tttaaatggt tatgtcatgt tattt	1683
<210> 18	
<211> 448	
<212> PRT	
<213> Borago officinalis	
<400> 18	
Met Ala Ala Gln Ile Lys Lys Tyr Ile Thr Ser Asp Glu Leu Lys Asn 1 5 10 15	
10	
1 5 10 15 His Asp Lys Pro Gly Asp Leu Trp Ile Ser Ile Gln Gly Lys Ala Tyr	
1 5 10 15 His Asp Lys Pro Gly Asp Leu Trp Ile Ser Ile Gln Gly Lys Ala Tyr 20 25 30 Asp Val Ser Asp Trp Val Lys Asp His Pro Gly Gly Ser Phe Pro Leu	
His Asp Lys Pro Gly Asp Leu Trp Ile Ser Ile Gln Gly Lys Ala Tyr 20 25 30 Asp Val Ser Asp Trp Val Lys Asp His Pro Gly Gly Ser Phe Pro Leu 45 Lys Ser Leu Ala Gly Gln Glu Val Thr Asp Ala Phe Val Ala Phe His	
His Asp Lys Pro Gly Asp Leu Trp Ile Ser Ile Gln Gly Lys Ala Tyr 20 Asp Val Ser Asp Trp Val Lys Asp His Pro Gly Gly Ser Phe Pro Leu 45 Lys Ser Leu Ala Gly Gln Glu Val Thr Asp Ala Phe Val Ala Phe His 50 Pro Ala Ser Thr Trp Lys Asn Leu Asp Lys Phe Phe Thr Gly Tyr Tyr 80	
His Asp Lys Pro Gly Asp Leu Trp Ile Ser Ile Gln Gly Lys Ala Tyr 25	
His Asp Lys Pro Gly Asp Leu Trp Ile Ser Ile Gln Gly Lys Ala Tyr 20 Asp Val Ser Asp Trp Val Lys Asp His Pro Gly Gly Ser Phe Pro Leu 45 Lys Ser Leu Ala Gly Gln Glu Val Thr Asp Ala Phe Val Ala Phe His 50 Pro Ala Ser Thr Trp Lys Asn Leu Asp Lys Phe Phe Thr Gly Tyr Tyr 65 Leu Lys Asp Tyr Ser Val Ser Glu Val Ser Lys Asp Tyr Arg Lys Leu 90 Val Phe Glu Phe Ser Lys Met Gly Leu Tyr Asp Lys Lys Gly His Ile	

Cys Leu Met Gly Phe Leu Trp Ile Gln Ser Gly Trp Ile Gly His Asp 145 Ala Gly His Tyr Met Val Val Ser Asp Ser Arg Leu Asn Lys Phe Met 170 165 Gly Ile Phe Ala Ala Asn Cys Leu Ser Gly Ile Ser Ile Gly Trp Trp Lys Trp Asn His Asn Ala His His Ile Ala Cys Asn Ser Leu Glu Tyr 200 195 Asp Pro Asp Leu Gln Tyr Ile Pro Phe Leu Val Val Ser Ser Lys Phe 215 Phe Gly Ser Leu Thr Ser His Phe Tyr Glu Lys Arg Leu Thr Phe Asp 230 Ser Leu Ser Arg Phe Phe Val Ser Tyr Gln His Trp Thr Phe Tyr Pro 250 245 Ile Met Cys Ala Ala Arg Leu Asn Met Tyr Val Gln Ser Leu Ile Met 265 Leu Leu Thr Lys Arg Asn Val Ser Tyr Arg Ala Gln Glu Leu Leu Gly Cys Leu Val Phe Ser Ile Trp Tyr Pro Leu Leu Val Ser Cys Leu Pro 295 290 Asn Trp Gly Glu Arg Ile Met Phe Val Ile Ala Ser Leu Ser Val Thr 315 310 Gly Met Gln Gln Val Gln Phe Ser Leu Asn His Phe Ser Ser Val 330 325 Tyr Val Gly Lys Pro Lys Gly Asn Asn Trp Phe Glu Lys Gln Thr Asp 345 340 Gly Thr Leu Asp Ile Ser Cys Pro Pro Trp Met Asp Trp Phe His Gly 360 Gly Leu Gln Phe Gln Ile Glu His His Leu Phe Pro Lys Met Pro Arg 370 Cys Asn Leu Arg Lys Ile Ser Pro Tyr Val Ile Glu Leu Cys Lys 395 390 His Asn Leu Pro Tyr Asn Tyr Ala Ser Phe Ser Lys Ala Asn Glu Met 410 405 Thr Leu Arg Thr Leu Arg Asn Thr Ala Leu Gln Ala Arg Asp Ile Thr 425

Lys Pro Leu Pro Lys Asn Leu Val Trp Glu Ala Leu His Thr His Gly 440

<210> 19	
<211> 1563	
<212> DNA	
<213> Ceratodon purpureus	
<220>	
<221> CDS	
<222> (1)(1563)	
<223> Delta-6-Desaturase	
<400> 19	
atg gtg tcc cag ggc ggc ggt ctc tcg cag ggt tcc att gaa gaa aac 48 Met Val Ser Gln Gly Gly Leu Ser Gln Gly Ser Ile Glu Glu Asn 1 5 10 15	
att gac gtt gag cac ttg gca acg atg ccc ctc gtc agt gac ttc cta 11e Asp Val Glu His Leu Ala Thr Met Pro Leu Val Ser Asp Phe Leu 20 25 30	;
aat gtc ctg gga acg act ttg ggc cag tgg agt ctt tcc act aca ttc 144 Asn Val Leu Gly Thr Thr Leu Gly Gln Trp Ser Leu Ser Thr Thr Phe 35 40 45	Ļ
gct ttc aag agg ctc acg act aag aaa cac agt tcg gac atc tcg gtg Ala Phe Lys Arg Leu Thr Thr Lys Lys His Ser Ser Asp Ile Ser Val 50 55 60	2
gag gca caa aaa gaa tcg gtt gcg cgg ggg cca gtt gag aat att tct Glu Ala Gln Lys Glu Ser Val Ala Arg Gly Pro Val Glu Asn Ile Ser 70 75 80	0
caa tcg gtt gcg cag ccc atc agg cgg agg tgg gtg cag gat aaa aag Gln Ser Val Ala Gln Pro Ile Arg Arg Arg Trp Val Gln Asp Lys Lys 85 90 95	8
ccg gtt act tac agc ctg aag gat gta gct tcg cac gat atg ccc cag Pro Val Thr Tyr Ser Leu Lys Asp Val Ala Ser His Asp Met Pro Gln 100 105 110	6
gac tgc tgg att ata atc aaa gag aag gtg tat gat gtg agc acc ttc 38 Asp Cys Trp Ile Ile Ile Lys Glu Lys Val Tyr Asp Val Ser Thr Phe 115 120 125	4
gct gag cag cac cct gga ggc acg gtt atc aac acc tac ttc gga cga 43 Ala Glu Gln His Pro Gly Gly Thr Val Ile Asn Thr Tyr Phe Gly Arg 130 135 140	32

									30							
gac Asp 145	gcc Ala	aca Thr	gat Asp	gtt Val	ttc Phe 150	tct Ser	act Thr	ttc Phe	cac His	gca Ala 155	tcc Ser	acc Thr	tca Ser	tgg Trp	aag Lys 160	480
att Ile	ctt Leu	cag Gln	aat Asn	ttc Phe 165	tac Tyr	atc Ile	Gl ^A aaa	aac Asn	ctt Leu 170	gtt Val	agg Arg	gag Glu	gag Glu	ccg Pro 175	act Thr	528
ttg Leu	gag Glu	ctg Leu	ctg Leu 180	aag Lys	gag Glu	tac Tyr	aga Arg	gag Glu 185	ttg Leu	aga Arg	gcc Ala	ctt Leu	ttc Phe 190	ttg Leu	aga Arg	576
gaa Glu	cag Gln	ctt Leu 195	ttc Phe	aag Lys	agt Ser	tcc Ser	aaa Lys 200	tcc Ser	tac Tyr	tac Tyr	ctt Leu	ttc Phe 205	aag Lys	act Thr	ctc Leu	624
ata Ile	aat Asn 210	gtt Val	tcc Ser	att Ile	gtt Val	gcc Ala 215	aca Thr	agc Ser	att Ile	gcg Ala	ata Ile 220	atc Ile	agt Ser	ctg Leu	tac Tyr	672
aag Lys 225	tct Ser	tac Tyr	cgg Arg	gcg Ala	gtt Val 230	ctg Leu	tta Leu	tca Ser	gcc Ala	agt Ser 235	ttg Leu	atg Met	ggc	ttg Leu	ttt Phe 240	720
att Ile	caa Gln	cag Gln	tgc Cys	gga Gly 245	tgg Trp	ttg Leu	tct Ser	cac His	gat Asp 250	ttt Phe	cta Leu ,	cac His	cat His	cag Gln 255	gta Val	768
ttt Phe	gag Glu	aca Thr	cgc Arg 260	tgg Trp	ctc Leu	aat Asn	gac Asp	gtt Val 265	gtt Val	ggc	tat Tyr	gtg Val	gtc Val 270	ggc	aac Asn	816
gtt Val	gtt Val	ctg Leu 275	gga Gly	ttc Phe	agt Ser	gtc Val	tcg Ser 280	tgg Trp	tgg Trp	aag Lys	acc Thr	aag Lys 285	cac His	aac Asn	ctg Leu	864
										aag Lys						912
gag Glu 305	Asp	att Ile	gat Asp	act Thr	ctc Leu 310	ccc Pro	atc Ile	att Ile	gct Ala	tgg Trp 315	agt Ser	aaa Lys	gat Asp	ctc Leu	ttg Leu 320	960
gcc Ala	act Thr	gtt Val	gag Glu	agc Ser 325	Lys	acc Thr	atg Met	ttg Leu	cga Arg 330	gtt Val	ctt Leu	cag Gln	tac Tyr	cag Gln 335	His	1008
cta Leu	ttc Phe	ttt Phe	ttg Leu 340	. Val	ctt Leu	ttg Leu	acg Thr	ttt Phe 345	. Ala	cgg Arg	gcg Ala	agt Ser	tgg Trp 350	Leu	ttt Phe	1056
tgg Trp	ago Ser	gcg Ala 355	a Ala	tto Phe	act Thr	cto Leu	agg Arg 360	Pro	gaç Glu	, ttg . Leu	acc Thr	ctt Leu 365	ı Gly	gag Glu	aag Lys	1104

									39							
ctt Leu	ttg Leu 370	gag Glu	agg Arg	gga Gly	acg Thr	atg Met 375	gct Ala	ttg Leu	cac His	tac Tyr	att Ile 380	tgg Trp	ttt Phe	aat Asn	agt Ser	1152
gtt Val 385	gcg Ala	ttt Phe	tat Tyr	ctg Leu	ctc Leu 390	ccc Pro	gga Gly	tgg Trp	aaa Lys	cca Pro 395	gtt Val	gta Val	tgg Trp	atg Met	gtg Val 400	1200
gtc Val	agc Ser	gag Glu	Leu	atg Met 405	tct Ser	ggt Gly	ttc Phe	ctg Leu	ctg Leu 410	gga Gly	tac Tyr	gta Val	ttt Phe	gta Val 415	ctc Leu	1248
agt Ser	cac His	aat Asn	gga Gly 420	atg Met	gag Glu	gtg Val	tac Tyr	aat Asn 425	acg Thr	tca Ser	aag Lys	gac Asp	ttc Phe 430	gtg Val	aat Asn	1296
gcc Ala	cag Gln	att Ile 435	gca Ala	tcg Ser	act Thr	cgc Arg	gac Asp 440	atc Ile	aaa Lys	gca Ala	GJĀ āāā	gtg Val 445	ttt Phe	aat Asn	gat Asp	1344
tgg Trp	ttc Phe 450	acc Thr	gga Gly	ggt Gly	ctc Leu	aac Asn 455	aga Arg	cag Gln	att Ile	gag Glu	cat His 460	cat His	cta Leu	ttt Phe	cca Pro	1392
acg Thr 465	atg Met	ccc Pro	agg Arg	cac His	aac Asn 470	ctt Leu	aat Asn	aaa Lys	att Ile	tct Ser 475	cct Pro	cac His	gtg Val	gag Glu	act Thr 480	1440
ttg Leu	tgc Cys	aag Lys	aag Lys	cat His 485	gga Gly	ctg Leu	gtc Val	tac Tyr	gaa Glu 490	gac	gtg Val	agc Ser	.atg Met	gct Ala 495	tcg Ser	1488
ggc Gly	act	tac Tyr	cgg Arg 500	Val	ttg Leu	aaa Lys	aca Thr	ctt Leu 505	Lys	gac Asp	gtt Val	gcc Ala	gat Asp 510	Ala	gct Ala	1536
tca Ser	cac	cag Gln 515	Gln	ctt Leu	gct Ala	gcg Ala	agt Ser 520									1563
<21	.0>	20														
<21	.1>	520														
<21	.2>	PRT														
<21	.3>	Cera	atodo	n pu	ırpur	eus										
<40	00>	20														
Met 1	: Va	l Sei	c Glı	1 Gly 5	y Gly	/ Gl3	, Le	ı Sei	Glr 10	n Gly	y Sei	r Ile	e Glı	1 Gli 15	ı Asn	
Ile	e Asj	o Vai	1 Gl: 20	ı His	s Lei	ı Ala	a Thi	r Met 25	t Pro	Le	ı Va	l Se:	r Ası 30	o Phe	e Leu	

Asn Val Leu Gly Thr Thr Leu Gly Gln Trp Ser Leu Ser Thr Thr Phe 35

Ala Phe Lys Arg Leu Thr Thr Lys Lys His Ser Ser Asp Ile Ser Val 50

Glu Ala Gln Lys Glu Ser Val Ala Arg. Gly Pro Val Glu Asn Ile Ser 65 70 75 80

Gln Ser Val Ala Gln Pro Ile Arg Arg Trp Val Gln Asp Lys Lys 85 90 95

Pro Val Thr Tyr Ser Leu Lys Asp Val Ala Ser His Asp Met Pro Gln 100 105 110

Asp Cys Trp Ile Ile Ile Lys Glu Lys Val Tyr Asp Val Ser Thr Phe 115 120 125

Ala Glu Gln His Pro Gly Gly Thr Val Ile Asn Thr Tyr Phe Gly Arg 130 135 140

Asp Ala Thr Asp Val Phe Ser Thr Phe His Ala Ser Thr Ser Trp Lys 145 150 155 160

Ile Leu Gln Asn Phe Tyr Ile Gly Asn Leu Val Arg Glu Glu Pro Thr 165 170 175

Leu Glu Leu Leu Lys Glu Tyr Arg Glu Leu Arg Ala Leu Phe Leu Arg 180 185 190

Glu Gln Leu Phe Lys Ser Ser Lys Ser Tyr Tyr Leu Phe Lys Thr Leu 195 200 205

Ile Asn Val Ser Ile Val Ala Thr Ser Ile Ala Ile Ile Ser Leu Tyr 210 215 220

Lys Ser Tyr Arg Ala Val Leu Leu Ser Ala Ser Leu Met Gly Leu Phe 225 230 235 240

Ile Gln Gln Cys Gly Trp Leu Ser His Asp Phe Leu His His Gln Val 245 250 255

Phe Glu Thr Arg Trp Leu Asn Asp Val Val Gly Tyr Val Val Gly Asn 260 265 270

Val Val Leu Gly Phe Ser Val Ser Trp Trp Lys Thr Lys His Asn Leu 275 280 285

His His Ala Ala Pro Asn Glu Cys Asp Gln Lys Tyr Thr Pro Ile Asp 290 295 300

Glu Asp Ile Asp Thr Leu Pro Ile Ile Ala Trp Ser Lys Asp Leu Leu 305 310 315 320

Ala Thr Val Glu Ser Lys Thr Met Leu Arg Val Leu Gln Tyr Gln His 325 330 335

Leu Phe Phe Leu Val Leu Leu Thr Phe Ala Arg Ala Ser Trp Leu Phe 345

Trp Ser Ala Ala Phe Thr Leu Arg Pro Glu Leu Thr Leu Gly Glu Lys

Leu Leu Glu Arg Gly Thr Met Ala Leu His Tyr Ile Trp Phe Asn Ser 375

Val Ala Phe Tyr Leu Leu Pro Gly Trp Lys Pro Val Val Trp Met Val 390

Val Ser Glu Leu Met Ser Gly Phe Leu Leu Gly Tyr Val Phe Val Leu 410

Ser His Asn Gly Met Glu Val Tyr Asn Thr Ser Lys Asp Phe Val Asn 420 425

Ala Gln Ile Ala Ser Thr Arg Asp Ile Lys Ala Gly Val Phe Asn Asp 435

Trp Phe Thr Gly Gly Leu Asn Arg Gln Ile Glu His His Leu Phe Pro

Thr Met Pro Arg His Asn Leu Asn Lys Ile Ser Pro His Val Glu Thr 470 465

Leu Cys Lys Lys His Gly Leu Val Tyr Glu Asp Val Ser Met Ala Ser 490 485

Gly Thr Tyr Arg Val Leu Lys Thr Leu Lys Asp Val Ala Asp Ala Ala 500 505

Ser His Gln Gln Leu Ala Ala Ser 515

<210> 21

<211> 1434

<212> DNA

<213> Phaeodactylum tricornutum

<220>

<221> CDS

<222> (1)..(1434)

<223> Delta-6-Desaturase

<400> 21

									42							
atg Met 1	ggc	aaa Lys	gga Gly	ggg 5	gac Asp	gct Ala	cgg Arg	gcc Ala	tcg Ser 10	aag Lys	Gly	tca Ser	acg Thr	gcg Ala 15	gct Ala	48
cgc Arg	aag Lys	atc Ile	agt Ser 20	tgg Trp	cag Gln	gaa Glu	gtc Val	aag Lys 25	acc Thr	cac His	gcg Ala	tct Ser	ccg Pro 30	gag Glu	gac Asp	96
gcc Ala	tgg Trp	atc Ile 35	att Ile	cac His	tcc Ser	aat Asn	aag Lys 40	gtc Val	tac Tyr	gac Asp	gtg Val	tcc Ser 45	aac Asn	tgg Trp	cac His	144
gaa Glu	cat His 50	ccc Pro	gga Gly	ggc Gly	gcc Ala	gtc Val 55	att Ile	ttc Phe	acg Thr	cac His	gcc Ala 60	ggt Gly	gac Asp	gac Asp	atg Met	192
acg Thr 65	gac Asp	att	ttc Phe	gct Ala	gcc Ala 70	ttt Phe	cac His	gca Ala	ccc Pro	gga Gly 75	tcg Ser	cag Gln	tcg Ser	ctc Leu	atg Met 80	240
aag Lys	aag Lys	ttc Phe	tac Tyr	att Ile 85	ggc	gaa Glu	ttg Leu	ctc Leu	ccg Pro 90	gaa Glu	acc Thr	acc Thr	ggc Gly	aag Lys 95	gag Glu	288
ccg Pro	cag Gln	caa Gln	atc Ile 100	gcc Ala	ttt Phe	gaa Glu	aag Lys	ggc Gly 105	tac Tyr	cgc Arg	gat Asp	ctg Leu	cgc Arg 110	tcc Ser	aaa Lys	336
ctc Leu	atc Ile	atg Met 115	Met	ggc	atg Met	ttc Phe	aag Lys 120	Ser	aac Asn	aag Lys	tgg Trp	ttc Phe 125	tac Tyr	gtc Val	tac Tyr	384
aag Lys	tgc Cys 130	Leu	agc Ser	aac Asn	atg Met	gcc Ala 135	att Ile	tgg Trp	gcc Ala	gcc Ala	gcc Ala 140	Cys	gct Ala	ctc Leu	gtc Val	432
ttt Phe 145	Tyr	tcg Ser	gac Asp	cgc Arg	ttc Phe 150	Trp	gta Val	cac His	ctg Leu	gcc Ala 155	Ser	gcc Ala	gtc Val	atg Met	ctg Leu 160	480
gga Gly	aca Thr	tto Phe	ttt Phe	cag Glr 165	Gln	tcg Ser	gga Gly	tgg Trp	ttg Leu 170	Ala	cac His	gac Asp	ttt Phe	ctg Leu 175	r cac His	528
cac	cag Glr	gto Vai	tto L Phe 180	Thi	aag Lys	cgc Arg	aag Lys	cac His	Gly	gat Asp	cto Lev	gga Gly	gga Gly	Leu	ttt Phe	576
tgg Trg	Gl7 aaa	g aad 7 Asi 19	ı Lev	c ato 1 Mei	g cag E Glr	ggt Gly	tac Ty:	s Sei	gta Val	a cag L Glr	g tgg n Trj	tgg Trg 205) Lys	a aad s Asi	c aag n Lys	624
cac His	21	n Gl	a cad	c cad	c gcd s Alá	gto a Val	L Pro	c aad o Asi	c cto n Le	c cad	tge S Cys 22	s Se	c tco	c gca r Ala	a gtc a Val	672

									43							
gcg Ala 225	caa Gln	gat Asp	Gly ggg	gac Asp	ccg Pro 230	gac Asp	atc Ile	gat Asp	acc Thr	atg Met 235	ccc Pro	ctt Leu	ctc Leu	gcc Ala	tgg Trp 240	720
tcc Ser	gtc Val	cag Gln	caa Gln	gcc Ala 245	cag Gln	tct Ser	tac Tyr	cgg Arg	gaa Glu 250	ctc Leu	caa Gln	gcc Ala	gac Asp	gga Gly 255	aàg Lys	768
gat Asp	tcg Ser	ggt Gly	ttg Leu 260	gtc Val	aag Lys	ttc Phe	atg Met	atc Ile 265	cgt Arg	aac Asn	caa Gln	tcc Ser	tac Tyr 270	ttt Phe	tac Tyr	816
			ttg Leu													864
			ttt Phe													912
			aag Lys													960
			tac Tyr													1008
			gcg Ala 340												tcc Ser	1 ,056
tgt Cys	gga Gly	ttc Phe 355	ttg Leu	ctc Leu	gcc Ala	att Ile	gtc Val 360	ttt Phe	ggc	ctc Leu	Gly	cac His 365	aac Asn	Gly	atg Met	1104
															gtc Val	. 1152
acc Thr 385	acg Thr	act Thr	cgc Arg	aac Asn	gtc Val 390	acg Thr	ggc	gga Gly	cac His	ggt Gly 395	ttc Phe	ccc Pro	caa Gln	gcc Ala	ttt Phe 400	1200
gtc Val	gac Asp	tgg Trp	ttc Phe	tgt Cys 405	Gly	ggc	ctc Leu	cag Gln	tac Tyr 410	caa Gln	gtc Val	gac Asp	cac His	cac His 415	tta Leu	1248
ttc Phe	ccc Pro	agc Ser	ctg Leu 420	Pro	cga Arg	cac His	aat Asn	ctg Leu 425	Ala	aag Lys	aca Thr	cac His	gca Ala 430	. Leu	gtc Val	1296
gaa Glu	tcg Ser	ttc Phe 435	Cys	aag Lys	gag Glu	tgg Trp	ggt Gly 440	Val	cag Gln	tac Tyr	cac His	gaa Glu 445	Ala	gac Asp	ctt Leu	1344

gtg gac ggg acc atg gaa gtc ttg cac cat ttg ggc agc gtg gcc ggc 1392 Val Asp Gly Thr Met Glu Val Leu His His Leu Gly Ser Val Ala Gly 455

gaa ttc gtc gtg gat ttt gta cgc gat gga ccc gcc atg taa 1434 Glu Phe Val Val Asp Phe Val Arg Asp Gly Pro Ala Met 470 465

<210> 22

<211> 477

<212> PRT

<213> Phaeodactylum tricornutum

<400> 22

Met Gly Lys Gly Gly Asp Ala Arg Ala Ser Lys Gly Ser Thr Ala Ala 10

Arg Lys Ile Ser Trp Gln Glu Val Lys Thr His Ala Ser Pro Glu Asp 25

Ala Trp Ile Ile His Ser Asn Lys Val Tyr Asp Val Ser Asn Trp His 45

Glu His Pro Gly Gly Ala Val Ile Phe Thr His Ala Gly Asp Asp Met 55

Thr Asp Ile Phe Ala Ala Phe His Ala Pro Gly Ser Gln Ser Leu Met 75 70

Lys Lys Phe Tyr Ile Gly Glu Leu Leu Pro Glu Thr Thr Gly Lys Glu 85

Pro Gln Gln Ile Ala Phe Glu Lys Gly Tyr Arg Asp Leu Arg Ser Lys 105

Leu Ile Met Met Gly Met Phe Lys Ser Asn Lys Trp Phe Tyr Val Tyr 120

Lys Cys Leu Ser Asn Met Ala Ile Trp Ala Ala Ala Cys Ala Leu Val 130

Phe Tyr Ser Asp Arg Phe Trp Val His Leu Ala Ser Ala Val Met Leu 155 150

Gly Thr Phe Phe Gln Gln Ser Gly Trp Leu Ala His Asp Phe Leu His 170 165

His Gln Val Phe Thr Lys Arg Lys His Gly Asp Leu Gly Gly Leu Phe

Trp Gly Asn Leu Met Gln Gly Tyr Ser Val Gln Trp Trp Lys Asn Lys 205 200 195

His Asn Gly His His Ala Val Pro Asn Leu His Cys Ser Ser Ala Val 210 215 220

Ala Gln Asp Gly Asp Pro Asp Ile Asp Thr Met Pro Leu Leu Ala Trp 225 230 230

Ser Val Gln Gln Ala Gln Ser Tyr Arg Glu Leu Gln Ala Asp Gly Lys 245 250 255

Asp Ser Gly Leu Val Lys Phe Met Ile Arg Asn Gln Ser Tyr Phe Tyr 260 265 270

Phe Pro Ile Leu Leu Leu Ala Arg Leu Ser Trp Leu Asn Glu Ser Phe 275 280 285

Lys Cys Ala Phe Gly Leu Gly Ala Ala Ser Glu Asn Ala Ala Leu Glu 290 295 300

Leu Lys Ala Lys Gly Leu Gln Tyr Pro Leu Leu Glu Lys Ala Gly Ile 305 310 315 320

Leu Leu His Tyr Ala Trp Met Leu Thr Val Ser Ser Gly Phe Gly Arg 325 330 335

Phe Ser Phe Ala Tyr Thr Ala Phe Tyr Phe Leu Thr Ala Thr Ala Ser 340 345 350

Cys Gly Phe Leu Leu Ala Ile Val Phe Gly Leu Gly His Asn Gly Met 355 360 365

Ala Thr Tyr Asn Ala Asp Ala Arg Pro Asp Phe Trp Lys Leu Gln Val 370 375 380

Thr Thr Thr Arg Asn Val Thr Gly Gly His Gly Phe Pro Gln Ala Phe 385 390 395 400

Val Asp Trp Phe Cys Gly Gly Leu Gln Tyr Gln Val Asp His His Leu 405 410 415

Phe Pro Ser Leu Pro Arg His Asn Leu Ala Lys Thr His Ala Leu Val 420 425 430

Glu Ser Phe Cys Lys Glu Trp Gly Val Gln Tyr His Glu Ala Asp Leu 435 440 445

Val Asp Gly Thr Met Glu Val Leu His His Leu Gly Ser Val Ala Gly 450 455 460

Glu Phe Val Val Asp Phe Val Arg Asp Gly Pro Ala Met 465 470 475

<210> 23

<211> 1578

								•	40								
<212>	DI	AV															
<213>	· P]	hysc	omit:	rella	a pat	tens											
<220>	•																
<221>	- C:	DS															
<222>	- (1)	(157	8)													
<223	> D	elta	-6-D	esat	uras	e										-	
<400	> 2	3															
atg 9 Met 7	gta Val	ttc Phe	Ala	ggc Gly 5	ggt Gly	gga Gly	ctt Leu	cag Gln	cag Gln 10	Gly	tct Ser	ctc Leu	Glu	gaa Glu 15	aac Asn	•	48
atc (gac Asp	Val	gag Glu 20	cac His	att Ilë	gcc Ala	agt Ser	atg Met 25	tct Ser	ctc Leu	ttc Phe	Ser	gac Asp 30	ttc Phe	ttc Phe		96
agt Ser	tat Tyr	gtg Val 35	tct Ser	tca Ser	act Thr	Val	ggt Gly 40	tcg Ser	tgg Trp	agc Ser	gta Val	cac His 45	agt Ser	ata Ile	caa Gln	1	44
cct Pro	ttg Leu 50	aag Lys	Arg	ctg Leu	Thr	Ser	aag Lys	aag Lys	cgt Arg	gtt Val	tcg Ser 60	gaa Glu	agc Ser	gct Ala	gcc Ala	1	92
gtg Val 65	caa Gln	tgt Cys	ata Ile	tca Ser	gct Ala 70	gaa Glu	gtt Val	cag Gln	aga Arg	aat Asn 75	tcg Ser	agt Ser	acc Thr	cag Gln	gga Gly 80	2	40
act Thr	gcg Ala	gag Glu	gca Ala	ctc Leu 85	gca Ala	gaa Glu	tca Ser	gtc Val	gtg Val 90	aag Lys	ccc Pro	acg Thr	aga Arg	cga Arg 95	agg Arg	2	88
tca Ser	tct Ser	cag Gln	tgg Trp 100	aag Lys	aag Lys	tcg Ser	aca Thr	cac His 105	ccc	cta Leu	tca Ser	gaa Glu	gta Val 110	gca Ala	gta Val		36
cac His	aac Asn	aag Lys 115	cca Pro	agc Ser	gat Asp	tgc Cys	tgg Trp 120	Ile	gtt Val	gta Val	aaa Lys	aac Asn 125	aag Lys	gtg Val	tat Tyr	3	384
gat Asp	gtt Val 130	Ser	aat Asn	ttt Phe	gcg Ala	gac Asp 135	gag Glu	cat His	Pro	gga Gly	gga Gly 140	Ser	gtt Val	att Ile	agt Ser	,	432
act Thr 145	tat Tyr	ttt Phe	gga Gly	cga Arg	gac Asp 150	Gly	aca Thr	gat Asp	gtt Val	tto L Phe 155	Ser	agt Ser	ttt Phe	cat His	gca Ala 160	1	480

									47							
gct Ala	tct Ser	aca Thr	tgg Trp	aaa Lys 165	att (ctt (Leu (caa Gln	gac Asp	ttt Phe 170	tac Tyr	att Ile	ggt Gly	gac Asp	gtg Val 175	gag Glu	528
agg Arg	gtg Val	gag Glu	ccg Pro 180	act Thr	cca Pro	gag Glu	ctg Leu	ctg Leu 185	aaa Lys	gat Asp	ttc Phe	cga Arg	gaa Glu 190	atg Met	aga Arg	576
gct Ala	ctt Leu	ttc Phe 195	ctg Leu	agg Arg	gag Glu	Gln	ctt Leu 200	ttc Phe	aaa Lys	agt Ser	tcg Ser	aaa Lys 205	ttg Leu	tac Tyr	tat Tyr	624
gtt Val	atg Met 210	aag Lys	ctg Leu	ctc Leu	acg Thr	aat Asn 215	gtt Val	gct Ala	att Ile	ttt Phe	gct Ala 220	gcg Ala	agc Ser	att Ile	gca Ala	672
ata Ile 225	ata Ile	tgt Cys	tgg Trp	Ser	aag Lys 230	act Thr	att Ile	tca Ser	gcg Ala	gtt Val 235	ttg Leu	gct Ala	tca Ser	gct Ala	tgt Cys 240	720
atg Met	atg Met	gct Ala	ctg Leu	tgt Cys 245	ttc Phe	caa Gln	cag Gln	tgc Cys	gga Gly 250	tgg Trp	cta Leu	tcc Ser	cat His	gat Asp 255	ttt Phe	768
ctc Leu	cac His	aat Asn	cag Gln 260	gtg Val	ttt Phe	gag Glu	aca Thr	cgc Arg 265	tgg Trp	ctt Leu	aat Asn	gaa Glu	gtt Val 270	gtc Val	Gly	816
tat Tyr	gtg Val	atc Ile 275	Gly	aac Asn	gcc Ala	gtt Val	ctg Leu 280	GJA	ttt Phe	agt Ser	aca Thr	ggg Gly 285	tgg Trp	tgg Trp	aag Lys	864
gag Glu	aag Lys 290	His	aac Asn	ctt Leu	cat His	cat His 295	gct Ala	gct Ala	cca Pro	aat Asn	gaa Glu 300	Cys	gat Asp	cag Gln	act Thr	912
tac Tyr 305	Glr	cca Pro	att Ile	gat Asp	gaa Glu 310	gat Asp	att	gat Asp	act Thr	ctc Leu 315	. Pro	ctc Leu	att Ile	gcc Ala	tgg Trp 320	960
ago Ser	aag Lys	gac Asp	ata Ile	ctg Leu 325	Ala	aca Thr	gtt Val	gag Glu	aat Asr 330	Lys	aca Thr	ttc Phe	ttg Leu	cga Arg 335	atc Ile	1008
cto	caa u Glr	a tao n Tyn	c cag c Glr 340	ı His	ctg Leu	ttc Phe	tto Phe	ato Met	: Gl	ctg Leu	g tta 1 Lei	a ttt 1 Phe	tto Phe 350	Ala	cgt Arg	1056
Gl7 ggt	agt Se:	t tgg r Trj 35	, Ler	e ttt 1 Phe	tgg Trp	ago Ser	tgg Tri) Ar	a tat	aco Thi	tct Sei	t acar Thi	: Ala	a gtg a Val	g ctc L Leu	1104
tca Se:	a cc r Pr	o Va	c gad l Asj	c ago o Aro	g ttg g Lev	tto Leu 375	ı Gl	g aaq u Lys	g gga	a act	t gt r Va 38	1 Let	g tti ı Pho	t cad	c tac s Tyr	1152

48	
ttt tgg ttc gtc ggg aca gcg tgc tat ctt ctc cct ggt tgg aag cca Phe Trp Phe Val Gly Thr Ala Cys Tyr Leu Leu Pro Gly Trp Lys Pro 385 390 395 400	1200
tta gta tgg atg gcg gtg act gag ctc atg tcc ggc atg ctg ctg ggc Leu Val Trp Met Ala Val Thr Glu Leu Met Ser Gly Met Leu Leu Gly 405 410 415	1248
ttt gta ttt gta ctt agc cac aat ggg atg gag gtt tat aat tcg tct Phe Val Phe Val Leu Ser His Asn Gly Met Glu Val Tyr Asn Ser Ser 420 425 430	1296
aaa gaa ttc gtg agt gca cag atc gta tcc aca cgg gat atc aaa gga Lys Glu Phe Val Ser Ala Gln Ile Val Ser Thr Arg Asp Ile Lys Gly 435 440 445	1344
aac ata ttc aac gac tgg ttc act ggt ggc ctt aac agg caa ata gag Asn Ile Phe Asn Asp Trp Phe Thr Gly Gly Leu Asn Arg Gln Ile Glu 450 455 460	1392
cat cat ctt ttc cca aca atg ccc agg cat aat tta aac aaa ata gca His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Lys Ile Ala 465 470 475 480	1440
cct aga gtg gag gtg ttc tgt aag aaa cac ggt ctg gtg tac gaa gac Pro Arg Val Glu Val Phe Cys Lys Lys His Gly Leu Val Tyr Glu Asp 485 490 495	1488
gta tot att got acc ggc act tgc aag gtt ttg aaa gca ttg aag gaa Val Ser Ile Ala Thr Gly Thr Cys Lys Val Leu Lys Ala Leu Lys Glu 500 505 510	1536
gtc gcg gag gct gcg gca gag cag cat gct acc acc agt taa Val Ala Glu Ala Ala Ala Glu Gln His Ala Thr Thr Ser 515 520 · 525	1578
<210> 24	
<211> 525	
<212> PRT	
<213> Physcomitrella patens	
<400> 24	
Met Val Phe Ala Gly Gly Gly Leu Gln Gln Gly Ser Leu Glu Glu Asn 1 5 10 15	
Ile Asp Val Glu His Ile Ala Ser Met Ser Leu Phe Ser Asp Phe Phe 20 25 30	
Ser Tyr Val Ser Ser Thr Val Gly Ser Trp Ser Val His Ser Ile Gln 35 40 45	

Pro Leu Lys Arg Leu Thr Ser Lys Lys Arg Val Ser Glu Ser Ala Ala 55 50 Val Gln Cys Ile Ser Ala Glu Val Gln Arg Asn Ser Ser Thr Gln Gly 75 70 Thr Ala Glu Ala Leu Ala Glu Ser Val Val Lys Pro Thr Arg Arg Arg 90 Ser Ser Gln Trp Lys Lys Ser Thr His Pro Leu Ser Glu Val Ala Val 100 His Asn Lys Pro Ser Asp Cys Trp Ile Val Val Lys Asn Lys Val Tyr 120 Asp Val Ser Asn Phe Ala Asp Glu His Pro Gly Gly Ser Val Ile Ser . . 135 Thr Tyr Phe Gly Arg Asp Gly Thr Asp Val Phe Ser Ser Phe His Ala 150 155 Ala Ser Thr Trp Lys Ile Leu Gln Asp Phe Tyr Ile Gly Asp Val Glu 170 165 Arg Val Glu Pro Thr Pro Glu Leu Leu Lys Asp Phe Arg Glu Met Arg 185 Ala Leu Phe Leu Arg Glu Gln Leu Phe Lys Ser Ser Lys Leu Tyr Tyr 200 195 Val Met Lys Leu Leu Thr Asn Val Ala Ile Phe Ala Ala Ser Ile Ala Ile Ile Cys Trp Ser Lys Thr Ile Ser Ala Val Leu Ala Ser Ala Cys 235 230 Met Met Ala Leu Cys Phe Gln Gln Cys Gly Trp Leu Ser His Asp Phe 250 245 Leu His Asn Gln Val Phe Glu Thr Arg Trp Leu Asn Glu Val Val Gly 265 Tyr Val Ile Gly Asn Ala Val Leu Gly Phe Ser Thr Gly Trp Trp Lys 275 Glu Lys His Asn Leu His His Ala Ala Pro Asn Glu Cys Asp Gln Thr 300 295 Tyr Gln Pro Ile Asp Glu Asp Ile Asp Thr Leu Pro Leu Ile Ala Trp 315 310 Ser Lys Asp Ile Leu Ala Thr Val Glu Asn Lys Thr Phe Leu Arg Ile 325 Leu Gln Tyr Gln His Leu Phe Phe Met Gly Leu Leu Phe Phe Ala Arg

345

Gly Ser Trp Leu Phe Trp Ser Trp Arg Tyr Thr Ser Thr Ala Val Leu 360

Ser Pro Val Asp Arg Leu Leu Glu Lys Gly Thr Val Leu Phe His Tyr 375

Phe Trp Phe Val Gly Thr Ala Cys Tyr Leu Leu Pro Gly Trp Lys Pro 395 390 385

Leu Val Trp Met Ala Val Thr Glu Leu Met Ser Gly Met Leu Leu Gly 410

Phe Val Phe Val Leu Ser His Asn Gly Met Glu Val Tyr Asn Ser Ser

Lys Glu Phe Val Ser Ala Gln Ile Val Ser Thr Arg Asp Ile Lys Gly 440 435

Asn Ile Phe Asn Asp Trp Phe Thr Gly Gly Leu Asn Arg Gln Ile Glu 455

His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Lys Ile Ala 470 465

Pro Arg Val Glu Val Phe Cys Lys Lys His Gly Leu Val Tyr Glu Asp 490

Val Ser Ile Ala Thr Gly Thr Cys Lys Val Leu Lys Ala Leu Lys Glu 505

Val Ala Glu Ala Ala Glu Gln His Ala Thr Thr Ser 525 520

<210> 25

<211> 1332

<212> DNA

<213> Caenorhabditis elegans

<220>

<221> CDS

<222> (1)..(1332)

<223> Delta-6-Desaturase

<400> 25

atg gtc gtc gac aag aat gcc tcc ggg ctt cga atg aag gtc gat ggc Met Val Val Asp Lys Asn Ala Ser Gly Leu Arg Met Lys Val Asp Gly 5

									51							
aaa Lys	tgg Trp	ctc Leu	tac Tyr 20	ctt Leu	agc Ser	gag Glu	gaa Glu	ttg Leu 25	gtg Val	aag Lys	aaa Lys	cat His	cca Pro 30	gga Gly	gga Gly	96
gct Ala	gtt Val	att Ile 35	gaa Glu	caa Gln	tat Tyr	aga Arg	aat Asn 40	tcg Ser	gat Asp	gct Ala	act Thr	cat His 45	att Ile	ttc Phe	cac His	144
gct Ala	ttc Phe 50	cac His	gaa Glu	gga Gly	tct Ser	tct Ser 55	cag Gln	gct Ala	tat Tyr	aag Lys	caa Gln 60	ctt Leu	gac Asp	ctt Leu	ctg Leu	192
aaa Lys 65	aag Lys	cac His	gga Gly	gag Glu	cac His 70	gat Asp	gaa Glu	ttc Phe	ctt Leu	gag Glu 75	aaa Lys	caa Gln	ttg Leu	gaa Glu	aag Lys 80	240
aga Arg	ctt Leu	gac Asp	aaa Lys	gtt Val 85	gat Asp	atc Ile	aat Asn	gta Val	tca Ser 90	gca Ala	tat Tyr	gat Asp	gtc Val	agt Ser 95	gtt Val	288
gca Ala	caa Gln	gaa Glu	aag Lys 100	aaa Lys	atg Met	gtt Val	gaa Glu	tca Ser 105	ttc Phe	gaa Glu	aaa Lys	cta Leu	cga Arg 110	cag Gln	aag Lys	336
ctt Leu	cat His	gat Asp 115	gat Asp	gga Gly	tta Leu	atg Met	aaa Lys 120	gca Ala	aat Asn	gaa Glu	aca Thr	tat Tyr 125	ttc Phe	ctg Leu	ttt Phe	384
aaa Lys	gcg Ala 130	Ile	.tca Ser	aca Thr	ctt Leu	tca Ser 135	att Ile	atg Met	gca Ala	ttt Phe	gca Ala 140	Phe	tat Tyr	ctt Leu	cag Gln	432
tat Tyr 145	Leu	gga Gly	tgg Trp	tat Tyr	att Ile 150	Thr	tct Ser	gca Ala	tgt Cys	tta Leu 155	Leu	gca Ala	ctt Leu	gca Ala	tgg Trp 160	480
caa Gln	caa Glr	tto Phe	gga Gly	tgg Trp 165	Leu	aca Thr	cat His	gag Glu	Phe 170	суя	cat His	caa Glr	cag Gln	r cca Pro 175	aca Thr	528
aag Lys	aac Asr	aga Arg	e cct g Pro 180	Lev	g aat 1 Asr	gat Asp	act Thr	att Ile 185	e Ser	ttg Lev	g tto 1 Phe	ttt Phe	ggt Gly 190	Asr	ttc Phe	576
tta Lei	a caa ı Glr	a gg a Gl; 19	y Phe	tca e Sei	a aga c Arg	a gat g Asp	tgg Tri 200	o Trr	g aag Lys	g gad s Asi	c aaq	g cat s His 20	S ASI	e act	cat His	624
cac Hi:	c gct s Ala 21	a Al	c aca	a aat	t gta n Val	a att	e As	t cat p His	t gad s Asj	gg Gl	t ga y As 22	b II	c gad e Asj	c tto o Lem	g gca ı Ala	672
ec Pr	o Le	t tt u Ph	c gc e Al	a tt a Ph	t at e Il 23	e Pr	a gg o Gl	a ga Y As	t tt p Le	g tg u Cy 23	s Ly	g ta s Ty	t aa r Ly	g gc	c agc a Ser 240	720

									5 2							
ttt Phe	gaa Glu	aaa Lys	gca Ala	att Ile 245	ctc Leu	aag Lys	att Ile	Val	cca Pro 250	tat Tyr	caa Gln	cat His	ctc Leu	tat Tyr 255	ttc Phe	768
acc	gca Ala	atg Met	ctt Leu 260	cca Pro	atg Met	ctc Leu	cgt Arg	ttc Phe 265	tca Ser	tgg Trp	act Thr	ggt Gly	cag Gln 270	tca Ser	gtt Val	816
caa Glr	tgg Trp	gta Val 275	ttc Phe	aaa Lys	gag Glu	aat Asn	caa Gln 280	atg Met	gag Glu	tac Tyr	aag Lys	gtc Val 285	tat Tyr	caa Gln	aga Arg	864
aat Ası	gca Ala 290	ttc Phe	tgg Trp	gag Glu	caa Gln	gca Ala 295	aca Thr	att Ile	gtt Val	gga Gly	cat His 300	tgg Trp	gct Ala	tgg Trp	gta Val	912
Phe 30	tat Tyr	caa Gln	ttg Leu	ttc Phe	tta Leu 310	tta Leu	cca Pro	aca Thr	tgg Trp	cca Pro 315	ctt Leu	cgg Arg	gtt Val	gct Ala	tat Tyr 320	960
tto Pho	att E Ile	att Ile	tca Ser	caa Gln 325	atg Met	gga Gly	gga Gly	ggc Gly	ctt Leu 330	ttg Leu	att Ile	gct Ala	cac His	gta Val 335	gtc Val	1008
ac Th	t ttc r Phe	aac Asn	cat His 340	Asn	tct Ser	gtt Val	gat Asp	aag Lys 345	tat Tyr	cca Pro	gcc Ala	aat Asn	tct Ser 350	cga Arg	att Ile	1056
tt. Le	a aac u Asn	aac Asn 355	Phe	gcc Ala	gct Ala	ctt Leu	caa Gln 360	Ile	ttg Leu	acc Thr	aca Thr	cgc Arg 365	Asn	atg Met	act Thr	1104
cc Pr	a tct o Ser 370	Pro	ttc Phe	att Ile	gat Asp	tgg Trp 375	ctt Leu	tgg Trp	ggt Gly	gga Gly	ctc Leu 380	. Asn	tat Tyr	cag Gln	atc . Ile	1152
ga Gl 38	g cac u His 5	cac His	ttg Leu	ttc Phe	cca Pro	Thr	atg Met	cca Pro	cgt Arg	tgc Cys 395	Asn	ctg Leu	aat Asn	gct Ala	tgc Cys 400	1200
gt Va	g aaa l Lys	tat Tyr	gtg Val	aaa Lys 405	Glu	tgg Trp	tgc Cys	aaa Lys	gag Glu 410	Asn	aat Asr	ctt Leu	cct Pro	tac Tyr 415	Leu	1248
gt Va	c gat	gad Asi	tac Tyr 420	Phe	gac Asp	gga Gly	tat Tyr	gca Ala 425	Met	, aat Asr	ttg Lei	g caa 1 Glr	a caa n Glr 430	ı Let	aaa 1 Lys	1296
a <i>a</i> As	it ato n Mei	g gci t Ala 43!	a Glu	g cad 1 His	c att	caa Glr	gct Ala 440	a Lys	gct Ala	gco a Ala	c taa	a				1332
<2	210>	26														

<211> 443

<212> PRT

<213> Caenorhabditis elegans

<400> 26

Met Val Val Asp Lys Asn Ala Ser Gly Leu Arg Met Lys Val Asp Gly
1 5 10 15

Lys Trp Leu Tyr Leu Ser Glu Glu Leu Val Lys Lys His Pro Gly Gly 20 25 30

Ala Val Ile Glu Gln Tyr Arg Asn Ser Asp Ala Thr His Ile Phe His 35 40 45

Ala Phe His Glu Gly Ser Ser Gln Ala Tyr Lys Gln Leu Asp Leu Leu 50 55 60

Lys Lys His Gly Glu His Asp Glu Phe Leu Glu Lys Gln Leu Glu Lys 65 70 75 80

Arg Leu Asp Lys Val Asp Ile Asn Val Ser Ala Tyr Asp Val Ser Val 85 90 95

Ala Gln Glu Lys Lys Met Val Glu Ser Phe Glu Lys Leu Arg Gln Lys
100 105 110

Leu His Asp Asp Gly Leu Met Lys Ala Asn Glu Thr Tyr Phe Leu Phe 115 120 125

Lys Ala Ile Ser Thr Leu Ser Ile Met Ala Phe Ala Phe Tyr Leu Gln 130 135 140

Tyr Leu Gly Trp Tyr Ile Thr Ser Ala Cys Leu Leu Ala Leu Ala Trp 145 150 150 160

Gln Gln Phe Gly Trp Leu Thr His Glu Phe Cys His Gln Gln Pro Thr 165 170 175

Lys Asn Arg Pro Leu Asn Asp Thr Ile Ser Leu Phe Phe Gly Asn Phe 180 185 190

Leu Gln Gly Phe Ser Arg Asp Trp Trp Lys Asp Lys His Asn Thr His
195 200 205

His Ala Ala Thr Asn Val Ile Asp His Asp Gly Asp Ile Asp Leu Ala 210 215 220

Pro Leu Phe Ala Phe Ile Pro Gly Asp Leu Cys Lys Tyr Lys Ala Ser 225 230 235 240

Phe Glu Lys Ala Ile Leu Lys Ile Val Pro Tyr Gln His Leu Tyr Phe 245 250 255

Thr Ala Met Leu Pro Met Leu Arg Phe Ser Trp Thr Gly Gln Ser Val 260 265 270

Gln Trp Val Phe Lys Glu Asn Gln Met Glu Tyr Lys Val Tyr Gln Arg 280

Asn Ala Phe Trp Glu Gln Ala Thr Ile Val Gly His Trp Ala Trp Val 295

Phe Tyr Gln Leu Phe Leu Leu Pro Thr Trp Pro Leu Arg Val Ala Tyr 310

Phe Ile Ile Ser Gln Met Gly Gly Gly Leu Leu Ile Ala His Val Val 330 325

Thr Phe Asn His Asn Ser Val Asp Lys Tyr Pro Ala Asn Ser Arg Ile 345

Leu Asn Asn Phe Ala Ala Leu Gln Ile Leu Thr Thr Arg Asn Met Thr 360 355

Pro Ser Pro Phe Ile Asp Trp Leu Trp Gly Gly Leu Asn Tyr Gln Ile 375

Glu His His Leu Phe Pro Thr Met Pro Arg Cys Asn Leu Asn Ala Cys 395 390 385

Val Lys Tyr Val Lys Glu Trp Cys Lys Glu Asn Asn Leu Pro Tyr Leu 405

Val Asp Asp Tyr Phe Asp Gly Tyr Ala Met Asn Leu Gln Gln Leu Lys 425 430

Asn Met Ala Glu His Ile Gln Ala Lys Ala Ala 440

<210> 27

<211> 873

<212> DNA

<213> Physcomitrella patens

<220>

<221> CDS

<222> (1)..(873)

<223> Delta-6-Elongase

<400> 27

atg gag gtc gtg gag aga ttc tac ggt gag ttg gat ggg aag gtc tcg Met Glu Val Val Glu Arg Phe Tyr Gly Glu Leu Asp Gly Lys Val Ser 10

									55								
											gtg Val						96
											agt Ser						144
											att Ile 60						192
											tcg Ser						240
											tgt Cys						288
											att Ile						336
			Gly								aaa Lys				att Ile	dis orti	384
											gaa Glu 140				acc Thr	, 9400 g	432
											ata Ile				cac His 160	S.	480
											tgg Trp						528
															gga Gly		· 576
			Leu												cga Arg		624
															ttg Leu		672
aca Thr 225	caa Gln	ttc Phe	caa Gln	atg Met	ttc Phe 230	Gln	ttt Phe	atg Met	ctg Leu	aac Asn 235	Leu	gtg Val	cag Gln	gct Ala	tac Tyr 240		720

									56								
tac Tyr	gac Asp	atg Met	Lys	acg Thr 245	aat Asn	gcg Ala	cca Pro	tat Tyr	cca Pro 250	caa Gln	tgg Trp	ctg Leu	atc Ile	aag Lys 255	att Ile	768	,
ttg Leu	ttc Phe	tac Tyr	tac Tyr 260	atg Met	atc Ile	tcg Ser	ttg Leu	ctg Leu 265	ttt Phe	ctt Leu	ttc Phe	ggc	aat Asn 270	ttt Phe	tác Tyr	816	į
gta Val																864	:
act Thr		tga								,						873	į
<210	> 2	88															
<211	.> 2	290										,					
<212	:> I	PRT			•	•											
<213	> I	Physo	comit	rell	la pa	tens	5										
<400	> 2	28															
Met 1	Glu	Val	Val	Glu 5	Arg	Phe	Tyr	Gly	Glu 10	Leu	Asp	Gly	Lys	Val 15	Ser		
Gln	Gly	Val	Asn 20	Ala	Leu	Leu	Gly	Ser 25	Phe	Gly	Val	Glu	Leu 30	Thr	Asp		
Thr	Pro	Thr 35	Thr	Lys	Gly	Leu	Pro 40	Leu	Val	Asp	Ser	Pro 45	Thr	Pro	Ile		
Val	Leu 50	Gly	Val	Ser	Val	Tyr 55	Leu	Thr	Ile	Val	Ile 60	Gly	Gly	Leu	Leu		
Trp 65	Ile	Lys	Ala	Arg	Asp 70	Leu	Lys	Pro	Arg	Ala 75	Ser	Glu	Pro	Phe	Leu 80		
Leu	Gln	Ala	Leu	Val 85	Leu	Val	His	Asn	Leu 90	Phe	Cys	Phe	Ala	Leu 95	Ser		
		Met	100					105					110				
		115					120					125			Ile		
	130					135					140				Thr		
Val 145		Met	Ile	Leu	Lys 150		Ser	Thr	Arg	Gln 155		: Ser	. Phe	. Leu	160		

57 Val Tyr His His Ser Ser Ile Ser Leu Ile Trp Trp Ala Ile Ala His 165 His Ala Pro Gly Gly Glu Ala Tyr Trp Ser Ala Ala Leu Asn Ser Gly 185 Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu Arg 200 Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr Leu Thr Gln Phe Gln Met Phe Gln Phe Met Leu Asn Leu Val Gln Ala Tyr 235 Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile 245 250 Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr 260 Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys 280 275 Thr Glu 290 <210> 29 1049 <211> <212> DNA <213> Thraustochytrium <220> <221> CDS <222> (43)..(858) <223> Delta-6-Elongase <400> 29 gaattcggca cgagagcgcg cggagcggag acctcggccg cg atg atg gag ccg 54 Met Met Glu Pro 102 ctc gac agg tac agg gcg ctg gcg gag ctc gcc gcg agg tac gcc agc Leu Asp Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala Arg Tyr Ala Ser tcg gcg gcc ttc aag tgg caa gtc acg tac gac gcc aag gac agc ttc 150 Ser Ala Ala Phe Lys Trp Gln Val Thr Tyr Asp Ala Lys Asp Ser Phe 30 25

					_											100	
gtc Val	GJĀ	Pro	ctg Leu 40	gga Gly	atc Ile	cgg Arg	gag Glu	eeg Pro 45	Leu	Gly	Leu	Leu	Val 50	ggc	Ser	198	
														cgg Arg		246	
														Gly ggg		294	
tgc Cys 85	ctc Leu	ttc Phe	tcg Ser	GJÀ āāc	gcc Ala 90	gtg Val	Trp	atc Ile	tac Tyr	acg Thr 95	agc Ser	tac Tyr	ctc Leu	atg Met	atc Ile 100	342	
cag	gat Asp	Gly	cac His	ttt Phe 105	cgc Arg	agc Ser	ctc Leu	gag Glu	gcg Ala 110	gca Ala	acg Thr	tgc Cys . :	gag Glu	ccg Pro 115	ctc Leu	390	
														tcc Ser		438	
atc Ile	tgg Trp	gag Glu 135	tgg Trp	ttc Phe	gac Asp	acg Thr	gtg Val 140	ctc Leu	ctc Leu	atc Ile	gtc Val	aag Lys 145	ggc	aac Asn	aag Lys	486	
														ctc Leu		534	
														gcg Ala		582	
		Phe												cca Pro 195		630	
														cag Gln		678	
			Ile					Ala					Tyr	gac Asp		726	
gag Glu	ccg Pro 230	Leu	gtg Val	cat	acc Thr	cac His 235	Phe	tgg Trp	gaa Glu	tac Tyr	gtc Val 240	Thr	ccc Pro	tac Tyr	ctt Leu	774	
ttc Phe 245	Val	gtg Val	ccc Pro	ttc Phe	ctc Leu 250	Ile	cto Lev	ttt Phe	ttc Phe	aat Asn 255	Phe	tac Tyr	: ctg : Leu	cag Gln	cag Gln 260	822	ļ

tac gtc ctc gcg ccc gca aaa acc aag aag gca tag ccacgtaaca Tyr Val Leu Ala Pro Ala Lys Thr Lys Lys Ala 265 270	868
gtagaccagc agcgccgagg acgcgtgccg cgttatcgcg aagcacgaaa taaagaagat	928
catttgattc aacgaggcta cttgcggcca cgagaaaaaa aaaaaaaaaa	988
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa	1048
c	1049
<210> 30	
<211> 271	
<212> PRT	
<213> Thraustochytrium	
<400> 30	
Met Met Glu Pro Leu Asp Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala 1 5 10 15	
Arg Tyr Ala Ser Ser Ala Ala Phe Lys Trp Gln Val Thr Tyr Asp Ala 20 25 30	
Lys Asp Ser Phe Val Gly Pro Leu Gly Ile Arg Glu Pro Leu Gly Leu 35 40 45	.f2 e
Leu Val Gly Ser Val Val Leu Tyr Leu Ser Leu Leu Ala Val Val Tyr 50 55 60	· 4
Ala Leu Arg Asn Tyr Leu Gly Gly Leu Met Ala Leu Arg Ser Val His 65 70 75 80	
Asn Leu Gly Leu Cys Leu Phe Ser Gly Ala Val Trp Ile Tyr Thr Ser 85 90 95	
Tyr Leu Met Ile Gln Asp Gly His Phe Arg Ser Leu Glu Ala Ala Thr 100 105 110	
Cys Glu Pro Leu Lys His Pro His Phe Gln Leu Ile Ser Leu Leu Phe 115 120 125	
Ala Leu Ser Lys Ile Trp Glu Trp Phe Asp Thr Val Leu Leu Ile Val 130 135 140	
Lys Gly Asn Lys Leu Arg Phe Leu His Val Leu His His Ala Thr Thr 145 150 155 160	
Phe Trp Leu Tyr Ala Ile Asp His Ile Phe Leu Ser Ser Ile Lys Tyr 165 170 175	

Gly Val Ala Val Asn Ala Phe Ile His Thr Val Met Tyr Ala His Tyr 185 180 Phe Arg Pro Phe Pro Lys Gly Leu Arg Pro Leu Ile Thr Gln Leu Gln 200 Ile Val Gln Phe Ile Phe Ser Ile Gly Ile His Thr Ala Ile Tyr Trp 215 His Tyr Asp Cys Glu Pro Leu Val His Thr His Phe Trp Glu Tyr Val 235 225 Thr Pro Tyr Leu Phe Val Val Pro Phe Leu Ile Leu Phe Phe Asn Phe 250 245 Tyr Leu Gln Gln Tyr Val Leu Ala Pro Ala Lys Thr Lys Lys Ala 265 <210> 31 <211> 837 <212> DNA <213> Phytophthora infestans <220> <221> CDS <222> (1)..(837) <223> Delta-6-Elongase <400> 31 atg tcg act gag cta ctg cag agc tac tac gcg tgg gcc aac gcc acg 48 Met Ser Thr Glu Leu Leu Gln Ser Tyr Tyr Ala Trp Ala Asn Ala Thr 10 . 5 96 gag gcc aag ctg ctg gac tgg gtc gac cct gag ggc ggc tgg aag gtg Glu Ala Lys Leu Leu Asp Trp Val Asp Pro Glu Gly Gly Trp Lys Val 20 cat cct atg gca gac tac ccc cta gcc aac ttc tcc agc gtc tac gcc 144 His Pro Met Ala Asp Tyr Pro Leu Ala Asn Phe Ser Ser Val Tyr Ala 40 35 atc tgc gtc gga tac ttg ctc ttc gta atc ttc ggc acg gcc ctg atg 192 Ile Cys Val Gly Tyr Leu Leu Phe Val Ile Phe Gly Thr Ala Leu Met 60 55 50 aaa atg gga gtc ccc gcc atc aag acc agt cca tta cag ttt gtg tac 240 Lys Met Gly Val Pro Ala Ile Lys Thr Ser Pro Leu Gln Phe Val Tyr 75 70

									O I								
aac Asn	ccc Pro	atc Ile	caa Gln	gtc Val 85	att Ile	gcc Ala	tgc Cys	tct Ser	tat Tyr 90	atg Met	tgc Cys	gtg Val	gag Glu	gcc Ala 95	gcc Ala	:	288
atc Ile	cag Gln	gcc Ala	tac Tyr 100	cgc Arg	aac Asn	ggc Gly	tac Tyr	acc Thr 105	gcc Ala	gcc Ala	ccg Pro	tgc Cys	aac Asn 110	gcc Ala	ttt Phe	;	336
aag Lys	tcc Ser	gac Asp 115	gac Asp	ccc Pro	gtc Val	atg Met	ggc Gly 120	aac Asn	gtt Val	ctg Leu	tac Tyr	ctc Leu 125	ttc Phe	tat Tyr	ctc Leu		384
tcc	aag Lys 130	atg Met	ctc Leu	gac Asp	ctg Leu	tgc Cys 135	gac Asp	aca Thr	gtc Val	ttc Phe	att Ile 140	atc Ile	cta Leu	gga Gly	aag Lys		432
aag Lys 145	tgg Trp	aaa Lys	cag Gln	ctt Leu	tcc Ser 150	atc Ile	ttg Leu	cac His	gtg Val	tac Tyr 155	cac His	cac His	ctt Leu	acc Thr	gtg Val 160		480
ctt	ttc Phe	gtc Val	tac Tyr	tat Tyr 165	gtg Val	acg Thr	ttc Phe	cgc Arg	gcc Ala 170	gct Ala	cag Gln	gac Asp	Gly ggg	gac Asp 175	tca Ser		528
tat Tyr	gct Ala	acc Thr	.atc Ile 180	gtg Val	ctc Leu	aac Asn	Gly	ttc Phe 185	gtg Val	cac His	acc Thr	atc Ile	atg Met 190	tac Tyr	act Thr		576
tac Ty:	tac Tyr	ttc Phe 195	gtc Val	agc Ser	gcc Ala	cac His	acg Thr 200	Arg	aac Asn	att Ile	tgg Trp	tgg Trp 205	aag Lys	aag Lys	tac Tyr		624
cto Let	c acg 1 Thr 210	Arg	att Ile	cag Gln	ctt Leu	atc Ile 215	cag Gln	ttc Phe	gtg Val	acc Thr	atg Met 220	Asn	gtg Val	cag Gln	Gly		672
tа Ту: 22:	c ctg r Leu 5	acc Thr	tac Tyr	tct Ser	cga Arg 230	Gln	tgc Cys	cca Pro	ggc	atg Met 235	Pro	cct Pro	aag Lys	gtg Val	ccg Pro 240		720
ct.	c atg u Met	tac Tyr	ctt Leu	gtg Val 245	Tyr	.gtg Val	cag Gln	tca Ser	ctc Leu 250	Phe	tgg Trp	cto Leu	tto Phe	atg Met 255	Asn	•	768
tt Ph	c tac e Tyr	att	cgc Arg 260	r Ala	tac Tyr	gtg Val	tto Phe	ggc Gly 265	Pro	aag Lys	aaa Lys	ccg Pro	gcc Ala 270	. Val	gag Glu		816
_	a tcg u Sei		Lys				ı										837
<2	10>	32															
<2	11>	278															

<211> 278

<212> PRT

<213> Phytophthora infestans

<400> 32

Met Ser Thr Glu Leu Leu Gln Ser Tyr Tyr Ala Trp Ala Asn Ala Thr 1 5 10 15

Glu Ala Lys Leu Leu Asp Trp Val Asp Pro Glu Gly Gly Trp Lys Val 20 25 30

His Pro Met Ala Asp Tyr Pro Leu Ala Asn Phe Ser Ser Val Tyr Ala 35 40 45

Ile Cys Val Gly Tyr Leu Leu Phe Val Ile Phe Gly Thr Ala Leu Met 50 55 60

Lys Met Gly Val Pro Ala Ile Lys Thr Ser Pro Leu Gln Phe Val Tyr 65 70 75 80

Asn Pro Ile Gln Val Ile Ala Cys Ser Tyr Met Cys Val Glu Ala Ala 85 90 95

Ile Gln Ala Tyr Arg Asn Gly Tyr Thr Ala Ala Pro Cys Asn Ala Phe 100 105 110

Lys Ser Asp Asp Pro Val Met Gly Asn Val Leu Tyr Leu Phe Tyr Leu 115 120 125

Ser Lys Met Leu Asp Leu Cys Asp Thr Val Phe Ile Ile Leu Gly Lys 130 135 140

Lys Trp Lys Gln Leu Ser Ile Leu His Val Tyr His His Leu Thr Val 145 150 155 160

Leu Phe Val Tyr Tyr Val Thr Phe Arg Ala Ala Gln Asp Gly Asp Ser 165 170 175

Tyr Ala Thr Ile Val Leu Asn Gly Phe Val His Thr Ile Met Tyr Thr 180 185 190

Tyr Tyr Phe Val Ser Ala His Thr Arg Asn Ile Trp Trp Lys Lys Tyr 195 200 205

Leu Thr Arg Ile Gln Leu Ile Gln Phe Val Thr Met Asn Val Gln Gly 210 215 220

Tyr Leu Thr Tyr Ser Arg Gln Cys Pro Gly Met Pro Pro Lys Val Pro 225 230 235 240

Leu Met Tyr Leu Val Tyr Val Gln Ser Leu Phe Trp Leu Phe Met Asn 245 250 255

Phe Tyr Ile Arg Ala Tyr Val Phe Gly Pro Lys Lys Pro Ala Val Glu 260 265 270

Glu :	Ser	Lys 275	Lys	Lys	Leu	•										
<210	> 3	3													•	
<211	> 9	54														
<212	> I	NA														
<213	> M	Iorti	erel	la a	lpin	.a										
<220	>															
<221	> 0	DS			,											
<222	> ((1)	(954													
<223	> I	Delta	-6-E	Elong	jase											
<400	> 3	33		•				,								
atg Met 1	gcc Ala		gca Ala	Ile	ttg Leu	gac Asp	Lys	Val	aac Asn 10	ttc Phe	ggc	att Ile	gat Asp	cag Gln 15	ccc Pro	48
ttc Phe	gga Gly	atc Ile	aag Lys 20	ctc Leu	gac Asp	acc Thr	tac Tyr :	ttt Phe 25	gct Ala	cag Gln	gcc Ala	tat Tyr	gaa Glu 30	ctc Leu	gtc Val	√ 96 ,
acc Thr	gga Gly	aag Lys 35	tcc Ser	atc Ile	gac Asp	tcc Ser	rtc Phe 40	gtc Val	ttc Phe	cag Gln	gag Glu	ggc Gly 45	gtc Val	acg Thr	cct Pro	144
ctc Leu	tcg Ser 50	acc Thr	cag Gln	aga Arg	gag Glu	gtc Val 55	gcc Ala	atg Met	tgg Trp	act Thr	atc Ile 60	act Thr	tac Tyr	ttc Phe	gtc Val	- 192
gtc Val 65	atc Ile	ttt Phe	ggt Gly	ggt Gly	cgc Arg 70	cag Gln	atc Ile	atg Met	aag Lys	agc Ser 75	cag Gln	gac Asp	gcc Ala	ttc Phe	aag Lys 80	240
ctc Leu	aag Lys	ccc Pro	ctc Leu	ttc Phe 85	atc Ile	ctc Leu	cac His	aac Asn	·ttc Phe 90	ctc Leu	ctg Leu	acg Thr	atc Ile	gcg Ala 95	tcc Ser	288
gga Gly	tcg Ser	ctg Leu	ttg Leu 100	Leu	ctg Leu	ttc Phe	atc Ile	gag Glu 105	aac Asn	ctg Leu	gtc Val	ccc	atc Ile 110	ctc Leu	gcc	336
aga Arg	aac	gga Gly 115	Leu	ttc Phe	tac Tyr	gcc Ala	atc Ile 120	Cys	gac Asp	gac Asp	ggt	gcc Ala 125	Trp	acc Thr	cag Gln	384

								64								
cgc ct Arg Le	u Glu															432
ttg gc Leu Al 145																480
ctg ca Leu Hi					_	-		_	_		_		_	_		528
ctt gg Leu Gl								_								576
act gt		_		_					_	_		-				624
gtt cg Val Ar	g Ile			_			-								1	672
ttc gt Phe Va 225																720
gcc tto Ala Pho				Pro		Ala										768
acc ga		_	gct				_					_				816
ttg cta	u Phe		Asn	Phe	Tyr	Arg	Ile		Tyr			Lys	-			864
gca gc Ala Al 29	a Lys															912
ggc gg Gly Gl	_		_	_			_	_	_			taa				954
<210>	34															
<211>	317															
<212>	PRT															
<213>	Mort	iere:	lla a	alpi	na											

<400> 34

BASF Aktiengesellschaft

Met Ala Ala Ile Leu Asp Lys Val Asn Phe Gly Ile Asp Gln Pro

Phe Gly Ile Lys Leu Asp Thr Tyr Phe Ala Gln Ala Tyr Glu Leu Val

Thr Gly Lys Ser Ile Asp Ser Phe Val Phe Gln Glu Gly Val Thr Pro 40

Leu Ser Thr Gln Arg Glu Val Ala Met Trp Thr Ile Thr Tyr Phe Val 50

Val Ile Phe Gly Gly Arg Gln Ile Met Lys Ser Gln Asp Ala Phe Lys

Leu Lys Pro Leu Phe Ile Leu His Asn Phe Leu Leu Thr Ile Ala Ser · . - 90 85

Gly Ser Leu Leu Leu Phe Ile Glu Asn Leu Val Pro Ile Leu Ala 100 . 105

Arg Asn Gly Leu Phe Tyr Ala Ile Cys Asp Asp Gly Ala Trp Thr Gln 120

Arg Leu Glu Leu Leu Tyr Tyr Leu Asn Tyr Leu Val Lys Tyr Trp Glu 135

Leu Ala Asp Thr Val Phe Leu Val Leu Lys Lys Pro Leu Glu Phe 150 155

Leu His Tyr Phe His His Ser Met Thr Met Val Leu Cys Phe Val Gln 170 165

Leu Gly Gly Tyr Thr Ser Val Ser Trp Val Pro Ile Thr Leu Asn Leu 185

Thr Val His Val Phe Met Tyr Tyr Tyr Met Arg Ser Ala Ala Gly 200

Val Arg Ile Trp Trp Lys Gln Tyr Leu Thr Thr Leu Gln Ile Val Gln 215

Phe Val Leu Asp Leu Gly Phe Ile Tyr Phe Cys Ala Tyr Thr Tyr Phe 230 225

Ala Phe Thr Tyr Phe Pro Trp Ala Pro Asn Val Gly Lys Cys Ala Gly

Thr Glu Gly Ala Ala Leu Phe Gly Cys Gly Leu Leu Ser Ser Tyr Leu 265

Leu Leu Phe Ile Asn Phe Tyr Arg Ile Thr Tyr Asn Ala Lys Ala Lys 275 280

66	
Ala Ala Lys Glu Arg Gly Ser Asn Phe Thr Pro Lys Thr Val Lys Ser 290 295 300	c
Gly Gly Ser Pro Lys Lys Pro Ser Lys Ser Lys His Ile 305 310 315	
<210> 35	
<211> 957	
<212> DNA	
<213> Mortierella alpina	
<220>	
<221> CDS	
<222> (1)(957)	
<223> Delta-6-Elongase	
<400> 35	
ato gag tog att gog coa tto cto coa toa aag atg cog caa gat ct	g 48
Met Glu Ser Ile Ala Pro Phe Leu Pro Ser Lys Met Pro Gln Asp Le 1 5 10	ni.
ttt atg gac ctt gcc acc gct atc ggt gtc cgg gcc gcg ccc tat gt Phe Met Asp Leu Ala Thr Ala Ile Gly Val Arg Ala Ala Pro Tyr Va	ec .96
20 25 30	
gat cet ete gag gee geg etg gtg gee eag gee gag aag tae ate ee	144
Asp Pro Leu Glu Ala Ala Leu Val Ala Gln Ala Glu Lys Tyr Ile Pr 35 40	.0 .
acg att gtc cat cac acg cgt ggg ttc ctg gtc gcg gtg gag tcg cc	et 192
Thr Ile Val His His Thr Arg Gly Phe Leu Val Ala Val Glu Ser Pr 50 55 60	.0
ttg gcc cgt gag ctg ccg ttg atg aac ccg ttc cac gtg ctg ttg at	tc 240
Leu Ala Arg Glu Leu Pro Leu Met Asn Pro Phe His Val Leu Leu I 65 70 75 80	0
gtg ctc gct tat ttg gtc acg gtc ttt gtg ggc atg cag atc atg a	ag 288
Val Leu Ala Tyr Leu Val Thr Val Phe Val Gly Met Gln Ile Met Ly 85 90 95	уs
aac ttt gag cgg ttc gag gtc aag acg ttt tcg ctc ctg cac aac t	tt 336
Asn Phe Glu Arg Phe Glu Val Lys Thr Phe Ser Leu Leu His Asn Pi 100 105 110	ne
tgt ctg gtc tcg atc agc gcc tac atg tgc ggt ggg atc ctg tac g	rag 384
Cys Leu Val Ser Ile Ser Ala Tyr Met Cys Gly Gly Ile Leu Tyr G 115 120 125	lu

									67						•	
gct Ala	tat Tyr 130	cag Gln	gcc Ala	aac Asn	tat Tyr	gga Gly 135	ctg Leu	ttt Phe	gag Glu	aac Asn	gct Ala 140	gct Ala	gat Asp	cat His	acc Thr	432
ttc Phe 145	aag Lys	ggt Gly	ctt Leu	cct Pro	atg Met 150	gcc Ala	aag Lys	atg Met	atc Ile	tgg Trp 155	ctc Leu	ttc Phe	tac Tyr	ttc Phe	tcc Ser 160	480
aag Lys	atc Ile	atg Met	gag Glu	ttt Phe 165	gtc Val	gac Asp	acc Thr	atg Met	atc Ile 170	atg Met	gtc Val	ctc Leu	aag Lys	aag Lys 175	aac Asn	528
aac Asn	cgc Arg	cag Gln	atc Ile 180	tcc Ser	ttc Phe	ttg Leu	cac His	gtt Val 185	tac Tyr	cac His	cac His	agc Ser	tcc Ser 190	atc Ile	ttc Phe	576
acc Thr	atc Ile	tgg Trp 195	tgg Trp	ttg Leu	gtc Val	acc Thr	ttt Phe 200	gtt Val	gca Ala	ccc Pro	aac Asn	ggt Gly 205	gaa Glu	gcc Ala	tac Tyr	624
ttc Phe	Ser	gct Ala	gcg Ala	ttg Leu	aac Asn	tcg Ser 215	ttc Phe	atc Ile	cat His	gtg Val	atc Ile 220	atg Met	tac Tyr	ggc	tac Tyr	672
tac Tyr 225	ttc Phe	ttg Leu	tcg Ser	gcc Ala	ttg Leu 230	Gly	ttc Phe	aag Lys	cag Gln	gtg Val 235	Ser	ttc Phe	atc Ile	aag Lys	ttc Phe 240	720
tac Tyr	at.c Ile	acg Thr	cgc Arg	tcg Ser 245	cag Gln	atg Met	aca Thr	cag Gln	ttc Phe 250	tgc: Cys	atg Met	atg Met	tcg Ser	gtc Val 255	cag Gln	768
tct Ser	tcc Ser	tgg Trp	gac Asp 260	atg Met	tac Tyr	gcc Ala	atg Met	aag Lys 265	gtc Val	ctt Leu	ggc Gly	cgc Arg	ccc Pro 270	Gly	tac Tyr	816
ccc Pro	ttc Phe	ttc Phe 275	Ile	acg Thr	gct Ala	ctg Leu	ctt Leu 280	Trp	ttc Phe	tac Tyr	atg Met	tgg Trp 285	Thr	atg Met	ctc	864
ggt Gly	ctc Leu 290	. Phe	tac Tyr	aac Asn	ttt Phe	tac Tyr 295	Arg	aag Lys	aac Asn	gcc Ala	aag Lys 300	Leu	gcc Ala	aag Lys	cag Gln	912
gcc Ala 305	Lys	gcc Ala	gac Asp	gct Ala	gcc Ala 310	Lys	gag Glu	aag Lys	gca Ala	agg Arg 315	Lys	ttg Leu	cag Gln	r taa	L	957
<21	.0>	36														
<21	.1>	318														
<21	.2>	PRT														
<21	L3>	Mort	iere	ella	alpi	na										

<400> 36

Met Glu Ser Ile Ala Pro Phe Leu Pro Ser Lys Met Pro Gln Asp Leu 1 5 10 15

Phe Met Asp Leu Ala Thr Ala Ile Gly Val Arg Ala Ala Pro Tyr Val 20 25 30

Asp Pro Leu Glu Ala Ala Leu Val Ala Gln Ala Glu Lys Tyr Ile Pro 35 40 45

Thr Ile Val His His Thr Arg Gly Phe Leu Val Ala Val Glu Ser Pro 50 60

Leu Ala Arg Glu Leu Pro Leu Met Asn Pro Phe His Val Leu Leu Ile 65 70 75 80

Val Leu Ala Tyr Leu Val Thr Val Phe Val Gly Met Gln Ile Met Lys 85 90 95

Asn Phe Glu Arg Phe Glu Val Lys Thr Phe Ser Leu Leu His Asn Phe 100 105 110

Cys Leu Val Ser Ile Ser Ala Tyr Met Cys Gly Gly Ile Leu Tyr Glu 115 120 125

Ala Tyr Gln Ala Asn Tyr Gly Leu Phe Glu Asn Ala Ala Asp His Thr 130 135 140

Phe Lys Gly Leu Pro Met Ala Lys Met Ile Trp Leu Phe Tyr Phe Ser 145 150 155 160

Lys Ile Met Glu Phe Val Asp Thr Met Ile Met Val Leu Lys Lys Asn 165 170 175

Asn Arg Gln Ile Ser Phe Leu His Val Tyr His His Ser Ser Ile Phe 180 185 190

Thr Ile Trp Trp Leu Val Thr Phe Val Ala Pro Asn Gly Glu Ala Tyr 195 200 205

Phe Ser Ala Ala Leu Asn Ser Phe Ile His Val Ile Met Tyr Gly Tyr 210 215 220

Tyr Phe Leu Ser Ala Leu Gly Phe Lys Gln Val Ser Phe Ile Lys Phe 225 230 235 240

Tyr Ile Thr Arg Ser Gln Met Thr Gln Phe Cys Met Met Ser Val Gln 245 250 255

Ser Ser Trp Asp Met Tyr Ala Met Lys Val Leu Gly Arg Pro Gly Tyr 260 265 270

Pro Phe Phe Ile Thr Ala Leu Leu Trp Phe Tyr Met Trp Thr Met Leu 275 280 285

Gly Leu Phe Tyr Asn Phe Tyr Arg Lys Asn Ala Lys Leu Ala Lys Gln 295 290 Ala Lys Ala Asp Ala Ala Lys Glu Lys Ala Arg Lys Leu Gln 310 <210> 37 <211> 867 <212> DNA <213> Caenorhabditis elegans <220> <221> CDS <222> (1)..(867) <223> Delta-6-Elongase <400> 37 48 atg gct cag cat ccg ctc gtt caa cgg ctt ctc gat gtc aaa ttc gac Met Ala Gln His Pro Leu Val Gln Arg Leu Leu Asp Val Lys Phe Asp · 10 acg aaa cga ttt gtg gct att gct act cat ggg cca aag aat ttc cct - , . 96 Thr Lys Arg Phe Val Ala Ile Ala Thr His Gly Pro Lys Asn Phe Pro 25 20 gac gca gaa ggt cgc aag ttc ttt gct gat cac ttt gat gtt act att 144 Asp Ala Glu Gly Arg Lys Phe Phe Ala Asp His Phe Asp Val Thr Ile 35 cag gct tca atc ctg tac atg gtc gtt gtg ttc gga aca aaa tgg ttc 192 Gln Ala Ser Ile Leu Tyr Met Val Val Val Phe Gly Thr Lys Trp Phe . 55 atg cgt aat cgt caa cca ttc caa ttg act att cca ctc aac atc tgg . 240 Met Arg Asn Arg Gln Pro Phe Gln Leu Thr Ile Pro Leu Asn Ile Trp 75 288 aat ttc atc ctc gcc gca ttt tcc atc gca gga gct gtc aaa atg acc Asn Phe Ile Leu Ala Ala Phe Ser Ile Ala Gly Ala Val Lys Met Thr 90 . 85 cca gag ttc ttt gga acc att gcc aac aaa gga att gtc gca tcc tac 336 Pro Glu Phe Phe Gly Thr Ile Ala Asn Lys Gly Ile Val Ala Ser Tyr 100 384 tgc aaa gtg ttt gat ttc acg aaa gga gag aat gga tac tgg gtg tgg Cys Lys Val Phe Asp Phe Thr Lys Gly Glu Asn Gly Tyr Trp Val Trp 125 120

						10				
		atg Met								432
		cgt Arg								480
		atg Met								528
		tac Tyr								576
		tac Tyr 195								624
		gct Ala								672
		ctt Leu								720
		ttc Phe								768
		ttg Leu								816
	Gly	gga Gly 275								864
taa										867
<210	O> . :	38								
<21	L> :	288								

<212> PRT

<213> Caenorhabditis elegans

<400> 38

Met Ala Gln His Pro Leu Val Gln Arg Leu Leu Asp Val Lys Phe Asp 1 5 10 15

Thr Lys Arg Phe Val Ala Ile Ala Thr His Gly Pro Lys Asn Phe Pro 25

Asp Ala Glu Gly Arg Lys Phe Phe Ala Asp His Phe Asp Val Thr Ile 40

Gln Ala Ser Ile Leu Tyr Met Val Val Val Phe Gly Thr Lys Trp Phe

Met Arg Asn Arg Gln Pro Phe Gln Leu Thr Ile Pro Leu Asn Ile Trp

Asn Phe Ile Leu Ala Ala Phe Ser Ile Ala Gly Ala Val Lys Met Thr 90

Pro Glu Phe Phe Gly Thr Ile Ala Asn Lys Gly Ile Val Ala Ser Tyr 105

Cys Lys Val Phe Asp Phe Thr Lys Gly Glu Asn Gly Tyr Trp Val Trp 115

Leu Phe Met Ala Ser Lys Leu Phe Glu Leu Val Asp Thr Ile Phe Leu 135

Val Leu Arg Lys Arg. Pro Leu Met Phe Leu His Trp Tyr His His Ile 150 155

Leu Thr Met Ile Tyr Ala Trp Tyr Ser His Pro Leu Thr Pro Gly Phe 170 α**165** ·

Asn Arg Tyr Gly Ile Tyr Leu Asn Phe Val Val His Ala Phe Met Tyr 185

Ser Tyr Tyr Phe Leu Arg Ser Met Lys Ile Arg Val Pro Gly Phe Ile

Ala Gln Ala Ile Thr Ser Leu Gln Ile Val Gln Phe Ile Ile Ser Cys 215

Ala Val Leu Ala His Leu Gly Tyr Leu Met His Phe Thr Asn Ala Asn 230

Cys Asp Phe Glu Pro Ser Val Phe Lys Leu Ala Val Phe Met Asp Thr 245

Thr Tyr Leu Ala Leu Phe Val Asn Phe Phe Leu Gln Ser Tyr Val Leu 265 260

Arg Gly Gly Lys Asp Lys Tyr Lys Ala Val Pro Lys Lys Lys Asn Asn 280

<210> 39

<211> 1626

<212> DY	IA.											
<213> Et	ıglena g	racilis										
<220>												
<221> CI	DS											
<222> (1)(162	6)										
<223> De	elta-4-D	esaturas	e									
<400> 3												
atg ttg Met Leu 1	gtg ctg Val Leu	ttt ggc Phe Gly 5	aat ttc Asn Phe	Tyr	gtc Val: 10	aag (Lys (caa ' Gln '	tac ' Tyr '	Ser	caa Gln 15	aag Lys	48
aac ggc Asn Gly	aag ccg Lys Pro 20	gag aac Glu Asn	gga gcc Gly Ala	acc Thr 25	cct Pro	gag Glu	aac Asn	GTA .	gcg Ala 30	aag Lys	ccg Pro	96
caa cct Gln Pro	tgc gag Cys Glu 35	aac ggc Asn Gly	acg gtg Thr Val 40	gaa Glu	aag Lys	cga Arg	gag Glu	aat Asn 45	gac Asp	acc Thr	gcc Ala	144
aac gtt Asn Val 50	cgg ccc Arg Pro	acc cgt Thr Arg	cca gct Pro Ala 55	gga Gly	ccc Pro	ccg Pro	ccg Pro 60	gcc Ala	acg Thr	tac Tyr	tac Tyr	192
gac tcc Asp Ser 65	ctg gca Leu Ala	gtg tcg Val Ser 70	ggg cag	g ggc	aag Lys	gag Glu 75	cgg Arg	ctg Leu	ttc Phe	acc Thr	acc Thr 80	240
gat gag Asp Glu	gtg agg Val Arg	cgg cac Arg His 85	atc cto	c ccc 1 Pro	acc Thr 90	gat Asp	ggc	tgg Trp	ctg Leu	acg Thr 95	tgc Cys	288
cac gaa His Glu	gga gtc Gly Val 100	tac gat Tyr Asp	gtc ac Val Th	t gat r Asp 105	Phe	ctt Leu	gcc Ala	aag Lys	cac His 110	cct Pro	ggt Gly	336
ggc ggt Gly Gly	gtc atc Val Ile 115	acg cto Thr Lev	ggc ct Gly Le 12	u Gly	agg Arg	gac Asp	tgc Cys	aca Thr 125	atc Ile	ctc Leu	atc Ile	384
gag tca Glu Ser 130	Tyr His	c cct gct s Pro Ala	ggg cg Gly Ar 135	c ccg	gac Asp	aag Lys	gtg Val 140	Met	gag Glu	aag Lys	tac Tyr	432
cgc att Arg Ile 145	ggt acq	g ctg cag r Leu Gl: 15	n Asp Pi	c aag	g acg	ttc Phe 155	Tyr	gct Ala	tgg Trp	o Gl ^y 1 aas	gag Glu 160	·480

									13							
	gat Asp															528
	gct Ala															576
	ctc Leu															624
	ttc Phe 210															672
	agc Ser															720
	gtg Val															768
tcc Ser	acg Thr	gtg Val	tgg Trp 260	gag Glu	tac Tyr	cag Gln	cac His	gtc Val 265	atc. Ile	ggc	cac His	cac His	cag Gln 270	tac Tyr	acc Thr	816
	ctc Leu															864
	ttc Phe 290															912
	ccg Pro															960
	atg Met															1008
	atg Met															1056
	ggg							gcc Ala								1104
	GTĀ	355		Lou		-	360					365				

									74							
					cac His 390											1200
					atc Ile	_			-						-	1248
			-	-	cgg Arg			-								1296
					aag Lys											1344
_	_				caa Gln											1392
					tct Ser 470											1440
					tcg Ser											1488
					gag Glu											1536
_			_	_	gtc Val	_		_	-							1584
					cca Pro								taa			1626
<210)> 4	40														
<211	L> !	541											•			
<212	2> 1	PRT														
<213	3>]	Eugle	ena 🤉	grac	ilis											
<400)> 4	40														
Met 1	Leu	Val	Leu	Phe 5	Gly	Asn	Phe	Tyr	Val 10	Lys	Gln	Tyr	Ser	Gln 15	Lys	
Asn	Gly	Lys	Pro 20	Glu	Asn	Gly	Ala	Thr 25	Pro	Glu	Asn	Gly	Ala 30	Lys	Pro	

Gln Pro Cys Glu Asn Gly Thr Val Glu Lys Arg Glu Asn Asp Thr Ala 35

Asn Val Arg Pro Thr Arg Pro Ala Gly Pro Pro Pro Ala Thr Tyr Tyr

Asp Ser Leu Ala Val Ser Gly Gln Gly Lys Glu Arg Leu Phe Thr Thr

Asp Glu Val Arg Arg His Ile Leu Pro Thr Asp Gly Trp Leu Thr Cys

His Glu Gly Val Tyr Asp Val Thr Asp Phe Leu Ala Lys His Pro Gly 105

Gly Gly Val Ile Thr Leu Gly Leu Gly Arg Asp Cys Thr Ile Leu Ile 120

Glu Ser Tyr His Pro Ala Gly Arg Pro Asp Lys Val Met Glu Lys Tyr 135

Arg Ile Gly Thr Leu Gln Asp Pro Lys Thr Phe Tyr Ala Trp Gly Glu 150

Ser Asp Phe Tyr Pro Glu Leu Lys Arg Arg Ala Leu Ala Arg Leu Lys 170 165

Glu Ala Gly Gln Ala Arg Arg Gly Gly Leu Gly Val Lys Ala Leu Leu 185 180

Val Leu Thr Leu Phe Phe Val Ser Trp Tyr Met Trp Val Ala His Lys 200

Ser Phe Leu Trp Ala Ala Val Trp Gly Phe Ala Gly Ser His Val Gly

Leu Ser Ile Gln His Asp Gly Asn His Gly Ala Phe Ser Arg Asn Thr 235 230

Leu Val Asn Arg Leu Ala Gly Trp Gly Met Asp Leu Ile Gly Ala Ser 250

Ser Thr Val Trp Glu Tyr Gln His Val Ile Gly His His Gln Tyr Thr 260

Asn Leu Val Ser Asp Thr Leu Phe Ser Leu Pro Glu Asn Asp Pro Asp 280 275

Val Phe Ser Ser Tyr Pro Leu Met Arg Met His Pro Asp Thr Ala Trp 300 295

Gln Pro His His Arg Phe Gln His Leu Phe Ala Phe Pro Leu Phe Ala 305

Leu Met Thr Ile Ser Lys Val Leu Thr Ser Asp Phe Ala Val Cys Leu 330 325

Ser Met Lys Lys Gly Ser Ile Asp Cys Ser Ser Arg Leu Val Pro Leu 345 340

Glu Gly Gln Leu Leu Phe Trp Gly Ala Lys Leu Ala Asn Phe Leu Leu

Gln Ile Val Leu Pro Cys Tyr Leu His Gly Thr Ala Met Gly Leu Ala 375

Leu Phe Ser Val Ala His Leu Val Ser Gly Glu Tyr Leu Ala Ile Cys 390 395

Phe Ile Ile Asn His Ile Ser Glu Ser Cys Glu Phe Met Asn Thr Ser 405 410

Phe Gln Thr Ala Ala Arg Arg Thr Glu Met Leu Gln Ala Ala His Gln · 425 420

Ala Ala Glu Ala Lys Lys Val Lys Pro Thr Pro Pro Pro Asn Asp Trp 440

Ala Val Thr Gln Val Gln Cys Cys Val Asn Trp Arg Ser Gly Gly Val 455 460 450

Leu Ala Asn His Leu Ser Gly Gly Leu Asn His Gln Ile Glu His His 475 470

Leu Phe Pro Ser Ile Ser His Ala Asn Tyr Pro Thr Ile Ala Pro Val 485 490

Val Lys Glu Val Cys Glu Glu Tyr Gly Leu Pro Tyr Lys Asn Tyr Val 505

Thr Phe Trp Asp Ala Val Cys Gly Met Val Gln His Leu Arg Leu Met 520

Gly Ala Pro Pro Val Pro Thr Asn Gly Asp Lys Lys Ser 535

<210> 41

<211> 1548

<212> DNA

<213> Thraustochytrium

<220>

<221> CDS

<222> (1)..(1548)

<223> Delta-4-Desaturase

<400> 41

atg Met 1	acg Thr	gtc Val	Gly ggg	ttt Phe 5	gac Asp	gaa Glu	acg Thr	gtg Val	act Thr 10	atg Met	gac Asp	acg Thr	gtc Val	cgc Arg 15	aac Asn	48
cac	aac Asn	atg Met	ccg Pro 20	gac Asp	gac Asp	gcc Ala	tgg Trp	tgc Cys 25	gcg Ala	atc Ile	cac His	Gly	acc Thr 30	gtg Val	tac Tyr	96
gac Asp	atc Ile	acc Thr 35	aag Lys	ttc Phe	agc Ser	aag Lys	gtg Val 40	cac His	ccc Pro	ggc Gly	GJA aaa	gac Asp 45	atc Ile	atc Ile	atg Met	144
ctg Leu	gcc Ala 50	gct Ala	ggc	Lys	gag Glu	gcc Ala 55	acc Thr	atc Ile	ctg Leu	ttc Phe	gag Glu 60	acc Thr	tac Tyr	cac His	atc Ile	192
aag Lys 65	ggc	gtc Val	ccg Pro	gac Asp	gcg Ala 70	gtg Val	ctg Leu	ege Arg	aag Lys	tac Tyr 75	aag Lys	gcc Val	ggc Gly	aag Lys	ctc Leu 80	240
ccc Pro	cag Gln	ggc	aag Lys	aag Lys 85	ggc	gaa Glu	acg Thr	agc Ser	cac His 90	atg Met	ccc Pro	acc Thr	Gly ggg	ctc Leu 95	gac Asp	288
tcg Ser	gcc Ala	tcc Ser	tac Tyr 100	tac Tyr	tcg Ser	tgg Trp	gac Asp	agc Ser 105	gag Glu	Phe	tac Tyr	agg Arg	gtg Val 110	ctc Leu	cgc Arg	336
gāg Glu	cgc Arg	gtc Val 115	gcc Ala	aag Lys	aag Lys	ctg Leu	gdc Ala 120	gag Glu	ccc Pro	Gly	ctc Leu	atg Met 125	cag Gln	cgc Arg	gcg Ala	384
cgc Arg	atg Met 130	Glu	ctc Leu	tgg Trp	gcc Ala	aag Lys 135	gcg Ala	atc Ile	ttc Phe	ctc	ctg Leu 140	gca Ala	ggt Gly	ttc Phe	tgg Trp	432
ggc Gly 145	Ser	ctt Leu	tac Tyr	gcc Ala	atg Met 150	Суз	gtg Val	cta Leu	gac Asp	ccg Pro 155	His	ggc	ggt	gcc Ala	atg Met 160	480
gta Val	gcc Ala	gcc Ala	gtt Val	acg Thr 165	ctc Leu	ggc	gtg Val	ttc Phe	gct Ala 170	Ala	ttt Phe	gtc Val	gga Gly	act Thr 175	tgc Cys	528
atc Ile	cag Gln	cac His	gac Asp 180	Gly	agc Ser	cac His	Gly	gcc Ala 185	Phe	tcc Ser	aag Lys	tcg Ser	cga Arg 190	Phe	atg Met	576
aac Asn	aag Lys	gcg Ala 195	Ala	d Gly	tgg Trp	acc Thr	cto Lev 200	. Ası	ato Met	rato : Ile	: Gl ⁷	gcg Ala 205	Ser	gcg Ala	atg Met	624

									78							
acc Thr	tgg Trp 210	gag Glu	atg Met	cag Gln	His	gtt (Val : 215	ctt Leu	ggc (Gly i	cac His	cac His	ecg Pro 220	tac Tyr	acc Thr	aac Asn	ctc Leu	672
atc Ile 225	gag Glu	atg Met	gag Glu	aac Asn	ggt Gly 230	ttg (Leu .	gcc Ala	aag Lys	gtc Val	aag Lys 235	ggc	gcc Ala	gac Asp	gtc Val	gac Asp 240	720
ccg Pro	aag Lys	aag Lys	gtc Val	gac Asp 245	cag Gln	gag Glu	agc Ser	Asp	ccg Pro 250	gac Asp	gtc Val	ttc Phe	agt Ser	acg Thr 255	tac Tyr	768
ccg Pro	atg Met	ctt Leu	cgc Arg 260	ctg Leu	cac His	ccg Pro	tgg Trp	cac His 265	cgc Arg	cag Gln	cgg Arg	ttt Phe	tac Tyr 270	cac His	aag Lys	816
ttc Phe	cag Gln	cac His 275	ctg Leu	tac Tyr	gcc Ala	ccg Pro	Phe 280	atc Ile	ttt Phe	Gly	tct Ser	atg Met 285	acg Thr	att Ile	aac Asn	864
aag Lys	gtg Val 290	Ile	tcc Ser	cag	gat Asp	gtc Val 295	ggg	gtt	gtg	ctg	cgc Arg 300	aag Lys	cgc Arg	ctg Leu	ttc Phe	912
cag Gln 305	atc Ile	gac Asp	gcc Ala	aac Asn	tgc Cys 310	cgg Arg	tat Tyr	ggc Gly	agc Ser	ccc Pro 315	tgg Trp	tac Tyr	gtg Val	gcc Ala	cgc Arg 320	960
ttc Phe	tgg Trp	atc Ile	atg Met	aag Lys 325	ctc Leu	ctc Leu	acc Thr	Thr	ctc Leu 330	tac Tyr	atg Met	gtg Val	gcg Ala	ctt Leu 335	ccc Pro	1008
atg Met	tac Tyr	ato Met	cag Gln 340	Gly	cct Pro	gct Ala	cag Gln	ggc Gl.y 345	ttg Leu	aag Lys	ctt	ttc Phe	ttc Phe 350	atg Met	gcc Ala	1056
cac His	tto Phe	acc Thr	Cys	gga Gly	gag Glu	gtc Val	ctc Leu 360	Ala	acc	atg Met	ttt Phe	e Ile	gtc Val	Asn	cac His	1104
ato Ile	ato 110 370	e Glı	g ggc	gto Val	agc Ser	tac Tyr 375	gct Ala	tcc Ser	aag Lys	gac Asp	gcc Ala 380	a Val	aag Lys	ggc Gly	gtc Val	1152
ato Met 38	: Ala	t cco	g ccg	g cgc	act Thr	. Val	cac His	ggt Gly	gto Val	aco Thr	Pro	g atg o Met	cag Glr	gtg Val	acg Thr 400	1200
ca: Gl:	a aa n Ly	g gc s Al	g cto	agt 1 Set 40!	r Ala	g gcc A Ala	gaç Glı	g tcg 1 Ser	gco Ala 410	a Lys	g tog s Se:	g gad r Ası	gco Ala	gad Asr 415	aag Lys	1248
ac Th	g ac r Th	c at r Me	g ato t I1 42	e Pr	c cto o Lei	c aac ı Asr	gao Ası	c tgg p Try 425	Ala c	c gc	t gt a Va	g cag 1 Gl:	tgo n Cy:	s Gli	g acc n Thr	1296

									19							
tct g Ser V																1344
ggc c Gly I															_	1392
acg g Thr V 465																1440
tac g																1488
aag a Lys N																1536
tgg t		_	tga					•								1548
<210>	> 4	2 .						,								
										-						
<211>	_	15														
<2113		PRT								*.*						
	> I	PRT	ısto	chyti	cium	:	* * * * * * * * * * * * * * * * * * *			v.*						
<212	> I	PRT	ısto	chyti	cium		***			•.•					· ·	
<2123 <2133	> I > 1 > 4	PRT Thrau		_	•	Glu		Val			Asp	Thr	Val	Arg 15	Asn	
<212: <213: <400: Met 5	> I > 1 > 4 Thr	PRT Thrau 12 Val	Gly	Phe 5	Asp		Thr		Thr 10	Met				15		
<2123 <2133 <4003 Met 5	> I > 1 > 4 Thr Asn	PRT Thrau 12 Val Met	Gly Pro 20	Phe 5 Asp	Asp	Ala	Thr	Cys 25	Thr 10 Ala	Met	His	Gly	Thr 30	15 Val	Tyr	
<212: <213: <400: Met ! His ! Asp : Leu :	> I > 1 Thr Asn	PRT Thrau Val Met Thr 35	Cly Pro 20 Lys	Phe 5 Asp	Asp Asp Ser	Ala Lys	Thr Trp Val 40	Cys 25 His	Thr 10 Ala Pro	Met Ile Gly	His	Gly Asp 45	Thr 30 Ile	15 Val Ile	Tyr Met	
<212: <213: <400: Met ! His ! Asp : Leu :	> I > 1 Thr Asn Ile Ala 50	PRT Thrau 12 Val Met Thr 35 Ala	Gly Pro 20 Lys	Phe 5 Asp Phe	Asp Asp Ser	Ala Lys Ala 55	Thr Trp Val 40	Cys 25 His	Thr 10 Ala Pro	Met Ile Gly Phe	His Gly Glu 60	Gly Asp 45 Thr	Thr 30 Ile Tyr	Val Ile His	Tyr Met Ile	
<2123 <2133 <4000 Met 1 1 His 2 Lys 0	> I > I Thr Asn Ile Ala 50 Gly	PRT Thrau 12 Val Met Thr 35 Ala Val	Pro 20 Lys Gly	Phe 5 Asp Phe Lys	Asp Asp Ser Glu Ala 70	Ala Lys Ala 55 Val	Thr Trp Val 40 Thr	Cys 25 His Ile	Thr 10 Ala Pro Leu	Met Ile Gly Phe Tyr 75	His Gly Glu 60 Lys	Gly Asp 45 Thr	Thr 30 Ile Tyr	15 Val Ile His	Tyr Met Ile Leu 80	

Glu Arg Val Ala Lys Lys Leu Ala Glu Pro Gly Leu Met Gln Arg Ala 120 115 Arg Met Glu Leu Trp Ala Lys Ala Ile Phe Leu Leu Ala Gly Phe Trp Gly Ser Leu Tyr Ala Met Cys Val Leu Asp Pro His Gly Gly Ala Met 150 Val Ala Ala Val Thr Leu Gly Val Phe Ala Ala Phe Val Gly Thr Cys 170 Ile Gln His Asp Gly Ser His Gly Ala Phe Ser Lys Ser Arg Phe Met 185 Asn Lys Ala Ala Gly Trp Thr Leu Asp Met Ile Gly Ala Ser Ala Met 200 205 Thr Trp Glu Met Gln His Val Leu Gly His His Pro Tyr Thr Asn Leu 215 210 Ile Glu Met Glu Asn Gly Leu Ala Lys Val Lys Gly Ala Asp Val Asp 235 230 Pro Lys Lys Val Asp Gln Glu Ser Asp Pro Asp Val Phe Ser Thr Tyr 250 245 Pro Met Leu Arg Leu His Pro Trp His Arg Gln Arg Phe Tyr His Lys 260 265 Phe Gln His Leu Tyr Ala Pro Phe Ile Phe Gly Ser Met Thr Ile Asn 280 Lys Val Ile Ser Gln Asp Val Gly Val Val Leu Arg Lys Arg Leu Phe 295 . 300 Gln Ile Asp Ala Asn Cys Arg Tyr Gly Ser Pro Trp Tyr Val Ala Arg 315 310 305 Phe Trp Ile Met Lys Leu Leu Thr Thr Leu Tyr Met Val Ala Leu Pro . 330 Met Tyr Met Gln Gly Pro Ala Gln Gly Leu Lys Leu Phe Phe Met Ala 340 His Phe Thr Cys Gly Glu Val Leu Ala Thr Met Phe Ile Val Asn His 355 360 Ile Ile Glu Gly Val Ser Tyr Ala Ser Lys Asp Ala Val Lys Gly Val 375 Met Ala Pro Pro Arg Thr Val His Gly Val Thr Pro Met Gln Val Thr 395 385 Gln Lys Ala Leu Ser Ala Ala Glu Ser Ala Lys Ser Asp Ala Asp Lys

410

Thr Thr Met Ile Pro Leu Asn Asp Trp Ala Ala Val Gln Cys Gln Thr 420 425 430	
Ser Val Asn Trp Ala Val Gly Ser Trp Phe Trp Asn His Phe Ser Gly 435 440 445	
Gly Leu Asn His Gln Ile Glu His His Cys Phe Pro Gln Asn Pro His 450 455 460	*
Thr Val Asn Val Tyr Ile Ser Gly Ile Val Lys Glu Thr Cys Glu Glu 465 470 475 480	
Tyr Gly Val Pro Tyr Gln Ala Glu Ile Ser Leu Phe Ser Ala Tyr Phe 485 490 495	
Lys Met Leu Ser His Leu Arg Thr Leu Gly Asn Glu Asp Leu Thr Ala 500 505 510	
Trp Ser Thr 515	
<210> 43	
<211> 960	
<212> DNA	
<213> Thalassiosira pseudonana	
<220>	
<220>	
<220> <221> CDS	
<220> <221> CDS <222> (1)(960)	
<221> CDS <222> (1)(960) <223> Delta-5-Elongase	· 48
<pre><220> <221> CDS <222> (1)(960) <223> Delta-5-Elongase <400> 43 atg gtg ttg tac aat gtg gcg caa gtg ctg ctc aat ggg tgg acg gtg Met Val Leu Tyr Asn Val Ala Gln Val Leu Asn Gly Trp Thr Val 15</pre>	48 96
<pre><220> <221> CDS <222> (1)(960) <223> Delta-5-Elongase <400> 43 atg gtg ttg tac aat gtg gcg caa gtg ctg ctc aat ggg tgg acg gtg Met Val Leu Tyr Asn Val Ala Gln Val Leu Asn Gly Trp Thr Val 1</pre>	

ttt Phe 65	atg Met	gtg Val	ttg Leu	agg Arg	ggg Gly 70	aaa Lys	atg Met	gac Asp	cag Gln	atg Met 75	gta Val	ctt Leu	ggt Gly	gaa Glu	gtt Val 80	240
ggt Gly	ggc Gly	agt Ser	gtg Val	tgg Trp 85	tgt Cys	ggc	gtt Val	gga Gly	tat Tyr 90	atg Met	gat Asp	atg Met	gag Glu	aag Lys 95	atg Met	288
ata Ile	cta Leu	ctc Leu	agc Ser 100	ttt Phe	gga Gly	gtg Val	cat His	cgg Arg 105	tct Ser	gct Ala	cag Gln	gga Gly	acg Thr 110	GJÀ ààà	aag Lys	336
gct Ala	ttc Phe	acc Thr 115	aac Asn	aac Asn	gtt Val	acc Thr	aat Asn 120	cca Pro	cat His	ctc Leu	acg Thr	ctt Leu 125	cca Pro	cct Pro	cat His	384
tct Ser	aca Thr 130	aaa Lys	aca Thr	aaa Lys	aaa Lys	cag Gln 135	gtc Val	tcc Ser	ttc Phe	.ctc Leu	cac His 140	atc Ile	tac Tyr	cac His	cac His	432
acg Thr 145	acc Thr	ata Ile	gcg Ala	tgg Trp	gca Ala 150	t:gg Trp	tgg Trp	atc Ile	gcc Ala	ctc Leu 155	cgc Arg	ttc Phe	tcc Ser	ccc Pro	ggt Gly 160	480
gga Gly	gac Asp	att Ile	tac Tyr	ttc Phe 165	Gly	gca Ala	ctc Leu	ctc Leu	aac Asn 170	tcc Ser	atc Ile	atc Ile	cac His	gtc Val 175	ctc Leu	528
atg Met	tat Tyr	tcc Ser	tac Tyr 180	tac Tyr	gcc Ala	ctt Leu	gcc Ala	cta Leu 185	ctc Leu	aag Lys	gtc Val	agt Ser	tgt Cys 190	cca Pro	tgg Trp	576
Lys	Arg	Tyr 195	Leu	Thr	Gln	. Ala	Gln 200	Leu	Leu	Gln	Phe	205	Ser	Val		624
Va1	Tyr 210	Thr	Gly	Cys	Thr	Gly 215	Tyr	Thr	His	Tyr	Tyr 220	His	Thr	· Lys	cat His	672
Gly 225	Ala	. Asr	Glu	Thr	230	Pro	Ser	Leu	. Gly	235	Tyr	Tyr	Phe	e Cys	tgt Cys 240	720
gga	gto Val	caç Glr	g gtg n Val	ttt Phe 245	e Glu	g ato 1 Met	gtt Val	agt Ser	tto Lev 250	ı Phe	gta Val	a cto L Lev	ttt i Phe	t tco Ser 25!	atc Ile	768
ttt Phe	tat Tyr	aaa Lys	a cga s Arg 260	s Se	r tat	t tog	g aag £ Lys	aag Lys 265	: Ası	c aaq n Lys	g tca s Sei	a gga	a gga 7 Gly 270	y Ly:	g gat s Asp	816
ago Sei	c aag	aaq 5 Ly: 27	s Ası	gai n Asj	t gat p Asj	t ggg	g aat y Asr 280	a Asr	gaq n Gli	g gat u Asj	ca p Gl:	a tgt n Cys 28!	s Hi	c aa s Ly	g gct s Ala	864

atg aag gat ata tog gag ggt gcg aag gag gtt gtg ggg cat gca gcg 912 Met Lys Asp Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala 290 aag gat gct gga aag ttg gtg gct acg aga gta agg tgt aag gtg taa 960 Lys Asp Ala Gly Lys Leu Val Ala Thr Arg Val Arg Cys Lys Val 315 305 310 <210> 44 <211> 319 <212> PRT <213> Thalassiosira pseudonana <400> 44 Met Val Leu Tyr Asn Val Ala Gln Val Leu Leu Asn Gly Trp Thr Val 5 10 Tyr Ala Ile Val Asp Ala Val Met Asn Arg Asp His Pro Phe Ile Gly 25 Ser Arg Ser Leu Val Gly Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr 55 Phe Met Val Leu Arg Gly Lys Met Asp Gln Met Val Leu Gly Glu Val Gly Gly Ser Val Trp Cys Gly Val Gly Tyr Met Asp Met Glu Lys Met 85 Ile Leu Leu Ser Phe Gly Val His Arg Ser Ala Gln Gly Thr Gly Lys 105 Ala Phe Thr Asn Asn Val Thr Asn Pro His Leu Thr Leu Pro Pro His 120 Ser Thr Lys Thr Lys Lys Gln Val Ser Phe Leu His Ile Tyr His His 130 Thr Thr Ile Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly 155 150 145 Gly Asp Ile Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu 170 165 Met Tyr Ser Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp 190 180

Lys Arg Tyr Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val

200

195

Val	Tyr 210	Thr	Gly	Cys	Thr	Gly 215	Tyr	Thr	His	Tyr	Туr 220	His	Thr	Lys	His	,	
Gly 225	Ala	Asp	Glu	Thr	Gln 230	Pro	Ser	Leu	Gly	Thr 235	Tyr	Tyr	Phe	Cys	Cys 240		
Gly	Val	Gln	Val	Phe 245	Glu	Met	Val	Ser	Leu 250	Phe	Val	Leu	Phe	Ser 255	Ile		
Phe	Tyr	Lys	Arg 260	Ser	Tyr	Ser	Lys	Lys 265	Asn	Lys	Ser	Gly	Gly 270	Lys	Asp		
Ser	Lys	Lys 275	Asn	Asp	Asp	Gly	Asn 280	Asn	Glu	Asp	Gln	Cys 285	His	Lys	Ala		
Met	Lys 290	Asp	Ile	Ser	Glu	G1y 295	Ala	Lys	Glu	Val	Val 300	Gly	His	Ala	Ala		
Lys 305	Asp	Ala	Gly	Lys	Leu 310	Val	Ala	Thr	Arg	Val 315	Arg	Cys	Lys ,	Va.l.		•	e.
<21	0>	45					-										
<21	1>	819															
<21	2>	DNA										•					
				-													
<21	3>	Thal	assi	osir	a ps	eudo	nana										
<21 <22		Thal	assi	osir	a ps	eudoi	nana										
	0>	Thal	assi	osir	a ps	eudo:	nana										
<22	0> 1>	CDS	assi	<i>:</i>	a ps	eudo	nana		٠.								
<22 <22 <22	0> 1> 2>	CDS (1).	.(81	<i>:</i>		٠	nana		٠.								
<22 <22 <22 <22	0> 1> 2> 3>	CDS (1). Delt	.(81	9)		٠	nana		٠.								
<22 <22 <22 <40	0> 1> 2> 3>	CDS (1). Delt	.(81 a-5-	9) Elon	gase	. gca	atg	r gat	aag Lys 10	rato	: ggt	gcc Ala	gcc Ala	ato	atc Ile		48
<22 <22 <22 <40 ate Met 1	0> 1> 2> 3> 0> 1	CDS (1). Delt 45 c gcc Ala	.(81 a-5- tac Tyr	9) Elon aac Asn 5	gase gct Ala	gca Ala	atg Met	gat : Asp	Lys 10 cgt	: Ile	: Gly	, Ala : aga	Ala a gag	Ile 15 gac	atc lle tgg		48
<222 <222 <222 <400 atcg Met 1 gat Asg	0> 1> 2> 3> 0> r gao: Asr	CDS (1). Delt 45 c gcc Ala	.(81 a-5- tac Tyr gat Asr	9) Elon Asn 5	gase gct Ala gat Asr	gca Ala gga Gly	atg Met aag Lys	gat Asp tto Phe 25	Lys 10 cgt Arg	gcc Ala	: Gl)	aga Arg	gag Glu 30	Ile 15 gao Asp	: Ile		
<222 <222 <222 <400 ate Met 1 gat Asr	0> 1> 2> 3> 0> Figare to the content of the content	CDS (1). Delt 45 c gcc Ala c tct C Ser c tgc 35	.(81 a-5- tac Tyr Asr 20 gat	9) Elon Asn 5 CCO Pro	gase gct Ala Asp Asp	gca Ala gga Gly ago Ser	atg Met . aag . Lys . gcc . Ala . 40	gat Asp tto 25 25 a Ile	Lys 10 cgt Arg	gcog Ala	gat gat Asp e gco	Ala aga Arg c cto 45	a gag g Glu 30 c ato	gac Asr tac Tyr	tgg Trp		96

									85							
gat Asp 65	ccc Pro	tac Tyr	ccc Pro	atc Ile	aaa Lys 70	ttc Phe	ctc Leu	tac Tyr	aac Asn	gtc Val 75	tcc Ser	caa Gln	atc Ile	ttc Phe	ctt Leu 80	240
tgt Cys	gcc Ala	tac Tyr	atg Met	act Thr 85	gtc Val	gag Glu	gcg Ala	gga Gly	ttt Phe 90	ttg Leu	gcc Ala	tac Tyr	cgc Arg	aat Asn 95	gga Gly	288
tat Tyr	acc Thr	gtc Val	atg Met 100	cct Pro	tgc Cys	aat Asn	cat His	ttc Phe 105	aat Asn	gtg Val	aat Asn	gat Asp	cct Pro 110	ccc Pro	gtg Val	336
					ttg Leu											384
gat Asp	acc Thr 130	att Ile	ttc Phe	att Ile	gtg Val	ttg Leu 135	GJÀ aaa	aag Lys	aag Lys	tgg Trp	cgt Arg 140	caa Gln	tta Leu	tct Ser	ttc Phe	432
ttg Leu 145	cat His	gta	tac	cat His	cac His 150	acc Thr	acc Thr	atc Ile	ttt Phe	cta Leu 155	ttc Phe	tat Tyr	tgg Trp	ctg Leu	aat Asn 160	480
gcc Ala	aat Asn	gtc Val	ttg Leu	tac Tyr 165	gat Asp	ggt Gly	gac Asp	atc Ile	ttc Phe 170	ctt Leu	acc Thr	atc Ile	ttg Leu	ctc Leu 175	aat Asn	528
gga Gly	ttc Phe	Ile	cac His 180	acg Thr	gtg Val	atg Met	tac Tyr	acg Thr 185	tat Tyr	tac Tyr	ttc Phe	atc Ile	tgt Cys 190	atg Met	cat His	576
acc Thr	aaa Lys	gat Asp 195	Ser	aag Lys	acg Thr	ggc	aag Lys 200	agt Ser	ctt Leu	cct Pro	ata Ile	tgg Trp 205	tgg Trp	aag Lys	tcg Ser	624
							Leu					Met			cag Gln	672
gct Ala 225	Thr	tac Tyr	ctt Leu	gtc Val	ttc Phe 230	His	Gly	tgt Cys	gat Asp	aag Lys 235	Val	tcg Ser	ctt Leu	. cgt . Arg	atc Ile 240	720
acg Thr	att Ile	gtg Val	tac Tyr	ttt Phe 245	. Val	tcc Ser	ctt Leu	ttg Leu	agt Ser 250	Leu	tto Phe	ttc Phe	ctt Leu	ttt Phe 255	gct Ala	768
Glr	ttc Phe	ttt Phe	gtg Val	. Glr	tca Ser	tac Tyr	atg Met	gca : Ala 265	Pro	aaa Lys	aag Lys	g aag E Lys	r aag Lys 270	s Ser	gct Ala	816
tag	0 >	16														819

<211> 272

<212> PRT

<213> Thalassiosira pseudonana

<400> 46

Met Asp Ala Tyr Asn Ala Ala Met Asp Lys Ile Gly Ala Ala Ile Ile

Asp Trp Ser Asp Pro Asp Gly Lys Phe Arg Ala Asp Arg Glu Asp Trp

Trp Leu Cys Asp Phe Arg Ser Ala Ile Thr Ile Ala Leu Ile Tyr Ile 40

Ala Phe Val Ile Leu Gly Ser Ala Val Met Gln Ser Leu Pro Ala Met

Asp Pro Tyr Pro Ile Lys Phe Leu Tyr Asn Val Ser Gln Ile Phe Leu 75

Cys Ala Tyr Met Thr Val Glu Ala Gly Phe Leu Ala Tyr Arg Asn Gly 90

Tyr Thr Val Met Pro Cys Asn His Phe Asn Val Asn Asp Pro Pro Val 105 110

Ala Asn Leu Leu Trp Leu Phe Tyr Ile Ser Lys Val Trp Asp Phe Trp 1.15 120

Asp Thr Ile Phe Ile Val Leu Gly Lys Lys Trp Arg Gln Leu Ser Phe 140 135

Leu His Val Tyr His His Thr Thr Ile Phe Leu Phe Tyr Trp Leu Asn 150 155

Ala Asn Val Leu Tyr Asp Gly Asp Ile Phe Leu Thr Ile Leu Leu Asn 170 165

Gly Phe Ile His Thr Val Met Tyr Thr Tyr Tyr Phe Ile Cys Met His 185

Thr Lys Asp Ser Lys Thr Gly Lys Ser Leu Pro Ile Trp Trp Lys Ser 200 195

Ser Leu Thr Ala Phe Gln Leu Leu Gln Phe Thr Ile Met Met Ser Gln 215

Ala Thr Tyr Leu Val Phe His Gly Cys Asp Lys Val Ser Leu Arg Ile 230 235

Thr Ile Val Tyr Phe Val Ser Leu Leu Ser Leu Phe Phe Leu Phe Ala 250 245

								87							
Gln Phe	Phe	Val 260	Gln s	Ser 1	Cyr N		Ala 1 265	Pro I	iys 1	Lys 1		Lys : 270	Ser	Ala	
<210>	47									•					
<211>	936														
<212>	DNA														
<213>	Cryp	theco	dini	um c	ohni:	i.									
<220>															
<221>	CDS														
<222>	(1).	. (936	;)												
<223>	Delt	a-5-E	long	ase											
<400>	47														
atg tc Met Se 1	t gcc r Ala	ttc Phe	atg Met 5	act Thr	ctc Leu	cca Pro	cag Gln	gct Ala 10	ctc Leu	tcc Ser	gat Asp	gtg Val	acc Thr 15	tcg Ser	48
gcc tt Ala Le	g gtc u Val	acg Thr 20	ctg Leu	gga Gly	aag Lys	gat Asp	gtc Val 25	tcc Ser	agc Ser	cct Pro	tca Ser	gct Ala 30	ttt Phe	caa Gln	96
gct gt Ala Va	c act 1 Thr 35	ggc	ttc Phe	tgc Cys	agg Arg	gag Glu 40	cag Gln	tgg Trp	GJÀ aàa	att Ile	ccg Pro 45	aca Thr	gta Val	ttc Phe	144
tgc ct Cys Le 50	u Gly	tac Tyr	ttg Leu	gcc Ala	atg Met 55	gtc Val	tac Tyr	gcg Ala	gcc Ala	aga Arg 60	aga Arg	ccc Pro	ctc Leu	ccg Pro	192
cag ca Gln Hi 65	re GJ7	tac Tyr	atg Met	gtt Val 70	gcg Ala	gtg Val	gac Asp	cgt Arg	tgc Cys 75	ttc Phe	gct Ala	gct Ala	tgg Trp	aac Asn 80	240
ttg go Leu A	et cto la Leu	e tct 1 Ser	gtc Val 85	ttc Phe	agc Ser	act Thr	tgg Trp	ggc 90	ttc Phe	tac Tyr	cac His	atg Met	gct Ala 95	gtc Val	288
Gly Le	tc tac	c aac r Asn 100	Met	aca Thr	gag Glu	acg Thr	agg Arg 105	Gly	ttg Leu	caa Gln	ttc Phe	acc Thr 110	Ile	tgc Cys	336
ggt to Gly S	cg ac er Th 11	r Gly	gag Glu	ctc Leu	gtg Val	cag Gln 120	aac Asn	ctt Leu	cag Gln	act Thr	ggc Gly 125	Pro	acc Thr	gct Ala	384
ctg g Leu A 1	cg ct la Le 30	c tgo u Cys	ctc Leu	ttc Phe	tgc Cys 135	Phe	agc Ser	aag Lys	atc Ile	ccc Pro	Glu	ttg Lev	ato Met	gac Asp	432

acg Thr 145	gtg Val	ttt Phe	ctc Leu	atc Ile	ctg Leu 150	aag Lys	gcc Ala	aag Lys	aag Lys	gtc Val 155	cgc Arg	ttc Phe	ttg Leu	cag Gln	tgg Trp 160	480
tac Tyr	cac His	cat His	gcc Ala	aca Thr 165	gtc Val	atg Met	ctc Leu	ttc Phe	tgt Cys 170	tgg Trp	ctc Leu	gcc Ala	ctc Leu	gcg Ala 175	acg Thr	528
gag Glu	tac Tyr	act Thr	cct Pro 180	ggc Gly	ttg Leu	tgg Trp	ttt Phe	gcg Ala 185	gcg Ala	acg Thr	aac Asn	tac Tyr	ttc Phe 190	gtg Val	cac His	576
tcc Ser	atc Ile	atg Met 195	tac Tyr	atg Met	tac Tyr	ttc Phe	ttc Phe 200	ctc Leu	atg Met	acc Thr	ttc Phe	aag Lys 205	tcg Ser	gcc Ala	gcg Ala	624
aag Lys	gtg Val 210	gtg Val	aag Lys	ccc Pro	atc Ile	gcc Ala 215	cct Pro	ctc Leu	atc Ile	aca Thr	gtt Val 220	atc [.] Ile	cag Gln	att Ile	gct Ala	672
cag Gln 225	atg Met	gtc Val	tgg Trp	ggc	ctc Leu 230	atc Ile	gtc Val	aac Asn	Gly	atc Ile 235	gcc Ala	atc Ile	acc Thr	acc Thr	ttc Phe 240	720
ttc Phe	acg Thr	act Thr	ggt	gcc Ala 245	tgc Cys	cag Gln	atc Ile	cag Gln	tct Ser 250	gtg Val	act Thr	gtg Val	tat Tyr	tcg Ser 255	gcc Ala	768
atc Ile	atc Ile	atg Met	tac Tyr 260	Ala	tcg Ser	tac Tyr	ttc Phe	tac Tyr 265	Leu	ttc Phe	tcc Ser	Gln	ctc Leu 270	Phe	ttc Phe	816
gag Glu	gcc Ala	cat His 275	Gly	gcc Ala	gct Ala	ggc	aag Lys 280	Asn	aag Lys	aag Lys	aag Lys	ttg Leu 285	Thr	cgc Arg	gag Glu	864
cto Lev	tct Ser 290	Arg	aaa Lys	atc : Ile	tcg Ser	gag Glu 295	Ala	cto Lev	: ctg Leu	aac Asr	acc Thr	Gly	gac Asp	gag Glu	gtt Val	912
	Lys			aag Lys		. Asr							,			936
<23	L0>	48														
<2	L1>	311	•													
<2	12>	PRT														
<2	13>	Cry	othe	codi	nium	cohi	nii									
<4	00>	48														

Met Ser Ala Phe Met Thr Leu Pro Gln Ala Leu Ser Asp Val Thr Ser 10 Ala Leu Val Thr Leu Gly Lys Asp Val Ser Ser Pro Ser Ala Phe Gln 25 Ala Val Thr Gly Phe Cys Arg Glu Gln Trp Gly Ile Pro Thr Val Phe Cys Leu Gly Tyr Leu Ala Met Val Tyr Ala Ala Arg Arg Pro Leu Pro 55 Gln His Gly Tyr Met Val Ala Val Asp Arg Cys Phe Ala Ala Trp Asn Leu Ala Leu Ser Val Phe Ser Thr Trp Gly Phe Tyr His Met Ala Val 90 85 Gly Leu Tyr Asn Met Thr Glu Thr Arg Gly Leu Gln Phe Thr Ile Cys 105 100 Gly Ser Thr Gly Glu Leu Val Gln Asn Leu Gln Thr Gly Pro Thr Ala 115 120 125 Leu Ala Leu Cys Leu Phe Cys Phe Ser Lys Ile Pro Glu Leu Met Asp 135 140 130 Thr Val Phe Leu Ile Leu Lys Ala Lys Lys Val Arg Phe Leu Gln Trp 155 150 Tyr His His Ala Thr Val Met Leu Phe Cys Trp Leu Ala Leu Ala Thr 170 165 . Glu Tyr Thr Pro Gly Leu Trp Phe Ala Ala Thr Asn Tyr Phe Val His 180 185 Ser Ile Met Tyr Met Tyr Phe Phe Leu Met Thr Phe Lys Ser Ala Ala 200 195 Lys Val Val Lys Pro Ile Ala Pro Leu Ile Thr Val Ile Gln Ile Ala 220 215 Gln Met Val Trp Gly Leu Ile Val Asn Gly Ile Ala Ile Thr Thr Phe 235 225 230 Phe Thr Thr Gly Ala Cys Gln Ile Gln Ser Val Thr Val Tyr Ser Ala 250 Ile Ile Met Tyr Ala Ser Tyr Phe Tyr Leu Phe Ser Gln Leu Phe Phe 260 Glu Ala His Gly Ala Ala Gly Lys Asn Lys Lys Leu Thr Arg Glu 280 275 Leu Ser Arg Lys Ile Ser Glu Ala Leu Leu Asn Thr Gly Asp Glu Val 295 300

Ser Lys	His:	Leu 1		Val 1 310	Asn						, e				
<210>	49														
<211>	927														
<212>	DNA													144	
<213>	Crypt	heco	dini	um c	ohni	i									
<220>															
<221>	CDS								,						
<222>	(1)	(927)												
<223>	Delta	-5-E	long	ase											
<400>	49														
atg gct Met Ala 1	t tcc a Ser	tac Tyr	caa Gln 5	caa Gln	gca Ala	ttc Phe	tcc Ser	gaa Glu 10	ttg Leu	gct Ala	aga Arg	gct Ala	ttg Leu 15	tcc Ser	48
act tt	g aac u Asn	cac His 20	gac Asp	ttc Phe	tcc Ser	agc Ser	gtc Val 25	gag Glu	cca Pro	ttc Phe	aaa Lys	gtc Val 30	gtg Val	acg Thr	96
cag tt Gln Ph	c tgc e Cys 35	agg Arg	gac Asp	cag Gln	tgg Trp	gcg Ala 40	atc Ile	ccg Pro	aca Thr	gtc Val	ttt Phe 45	tğc Cys	atc Ile	ggt	144
tac tt Tyr Le 50	u Ala	atg Met	gtc Val	tac Tyr	gcc Ala 55	acg Thr	cga Arg	aga Arg	cct Pro	atc Ile 60	gcg Ala	aag Lys	cac His	ccc Pro	192
tac at Tyr Me 65	g tct t Ser	ctc Leu	gtg Val	gat Asp 70	cgc Arg	tgc Cys	ttt Phe	gcg Ala	gcc Ala 75	tgģ Trp	aac Asn	ttg Leu	ggc	ctc Leu 80	240
tcg ct Ser Le	c ttc u Phe	agt Ser	tgc Cys 85	tgg Trp	ggc Gly	ttc Phe	tac Tyr	cac His 90	atg Met	gca Ala	gtg Val	gga Gly	ctc Leu 95	tcc Ser	288
cac ac	c act r Thr	tgg Trp 100	Asn	ttc Phe	Gly	ctc Leu	cag Gln 105	Phe	acc Thr	atc Ile	tgc Cys	ggc Gly 110	agc Ser	acc Thr	336
acg ga	ag ctt lu Leu 115	Val	aat Asn	ggc Gly	ttc Phe	cag Gln 120	Lys	ggc	ccg Pro	gcg Ala	gcc Ala 125	Leu	gcc Ala	ctc Leu	384

									91								
atc Ile	ctg Leu 130	ttc Phe	tgc Cys	ttc Phe	tcc Ser	aag Lys 135	atc Ile	ccg Pro	gag Glu	ttg Leu	ggc Gly 140	gac Asp	acc Thr	gtc Val	ttc Phe	4:	32
ttg Leu 145	atc Ile	ttg Leu	aag Lys	gga Gly	aag Lys 150	aag Lys	gtc Val	cgc Arg	ttc Phe	ttg Leu 155	cag Gln	tgg Trp	tac Tyr	cac His	cac His 160	4	80
acg Thr	acc Thr	gtg Val	atg Met	ctc Leu 165	ttc Phe	tgt Cys	tgg Trp	atg Met	gcc Ala 170	ttg Leu	gcg Ala	act Thr	gag Glu	tac Tyr 175	act Thr	5	28
cct Pro	gga Gly	ttg Leu	tgg Trp 180	ttc Phe	gcg Ala	gcc Ala	acg Thr	aac Asn 185	tac Tyr	ttc Phe	gtg Val	cac His	tcc Ser 190	atc Ile	atg Met	5	76
tac Tyr	atg Met	tac Tyr 195	ttc Phe	ttc Phe	ctc Leu	atg Met	acc Thr 200	ttc Phe	aag Lys	acg Thr	gcc Ala	gcc Ala 205	Gly	atc Ile	atc Ile	6	24
aag Lys	ccc Pro 210	atc Ile	gcg Ala	cct Pro	ctc Leu	atc Ile 215	acc Thr	atc Ile	atc Ile	cag Gln	atc Ile 220	Ser	cag Gln	atg Met	gtc Val	6	
tgg Trp 225	ggc	ttg Leu	gtc Val	gtg Val	aac Asn 230	gcc Ala	atc	gcc Ala	gtc Val	ggc Gly 235	Thr	Phe	ttc Phe	acc Thr	aca Thr 240	7	720
ggc	aac Asn	tgc Cys	cag Gln	atc Ile 245	cag Gln	gca Ala	gtg Val	Thr	gtc Val 250	Tyr	Ser	Ala	atc Ile	gtg Val 255	Met		768
tac Tyr	gcc Ala	tcc Ser	tac Tyr 260	Phe	tac Tyr	ctc Leu	ttc Phe	ggc Gly 265	Gln	cto Leu	tto Phe	tto Phe	gag Glu 270	Ala	cag Gln	8	316
ggt Gly	tcg Sei	gct Ala 275	a Gly	aag Lys	gac Asp	aag Lys	aag Lys 280	Lys	ttg Lev	gco Ala	cga Arg	g gag g Glu 285	Let	g ago	cga Arg	;	864
aag Lys	gto Val 290	L Ser	g cgg	g gct	t cto a Lev	aca Thr 295	: Ala	acc Thr	Gl Gg	gaa Glu	a gaq 1 Gli 30	ı Val	g tog L Sei	g aag C Lys	g cac s His		912
	Ly:		g aat 1 Ası		a .												927
<23	L0>	50															
<2:	11>	308															
<2:	12>	PRT															
<2	13>	Cry	pthe	codi	nium	coh	nii										

<400> 50

Met Ala Ser Tyr Gln Gln Ala Phe Ser Glu Leu Ala Arg Ala Leu Ser 1 5 10 15

Thr Leu Asn His Asp Phe Ser Ser Val Glu Pro Phe Lys Val Val Thr

Gln Phe Cys Arg Asp Gln Trp Ala Ile Pro Thr Val Phe Cys Ile Gly 35 40 45

Tyr Leu Ala Met Val Tyr Ala Thr Arg Arg Pro Ile Ala Lys His Pro 50 55 60

Tyr Met Ser Leu Val Asp Arg Cys Phe Ala Ala Trp Asn Leu Gly Leu 65 70 75 80

Ser Leu Phe Ser Cys Trp Gly Phe Tyr His Met Ala Val Gly Leu Ser 85 90 95

His Thr Thr Trp Asn Phe Gly Leu Gln Phe Thr Ile Cys Gly Ser Thr 100 105 110

Thr Glu Leu Val Asn Gly Phe Gln Lys Gly Pro Ala Ala Leu Ala Leu 115 120 125

Ile Leu Phe Cys Phe Ser Lys Ile Pro Glu Leu Gly Asp Thr Val Phe 130 135 140

Leu Ile Leu Lys Gly Lys Lys Val Arg Phe Leu Gln Trp Tyr His His 145 150 155 160

Thr Thr Val Met Leu Phe Cys Trp Met Ala Leu Ala Thr Glu Tyr Thr 165 170 175

Pro Gly Leu Trp Phe Ala Ala Thr Asn Tyr Phe Val His Ser Ile Met 180 185 190

Tyr Met Tyr Phe Phe Leu Met Thr Phe Lys Thr Ala Ala Gly Ile Ile 195 200 205

Lys Pro Ile Ala Pro Leu Ile Thr Ile Ile Gln Ile Ser Gln Met Val 210 215 220

Trp Gly Leu Val Val Asn Ala Ile Ala Val Gly Thr Phe Phe Thr Thr 225 230 235 240

Gly Asn Cys Gln Ile Gln Ala Val Thr Val Tyr Ser Ala Ile Val Met

Tyr Ala Ser Tyr Phe Tyr Leu Phe Gly Gln Leu Phe Phe Glu Ala Gln
260 265 270

Gly Ser Ala Gly Lys Asp Lys Lys Lys Leu Ala Arg Glu Leu Ser Arg 275 280 285

Lys Val Ser Arg Ala Leu Thr Ala Thr Gly Glu Glu Val Ser Lys His 300 295 290 Met Lys Val Asn 305 <210> 51 <211> 795 <212> DNA <213> Oncorhynchus mykiss <220> <221> CDS <222> (1)..(795) <223> Delta-5-Elongase <400> 51 atg gct tca aca tgg caa agc gtt cag tcc atg cgc cag tgg att tta 48 Met Ala Ser Thr Trp Gln Ser Val Gln Ser Met Arg Gln Trp Ile Leu 10. 5 gag aat gga gat aaa agg aca gac cca tgg cta ctg gtc tac tcc cct 96 Glu Asn Gly Asp Lys Arg Thr Asp Pro Trp Leu Leu Val Tyr Ser Pro 30 . 25 . 20 atg cca gtg gcc att ata ttc ctc ctc tat ctt ggt gtg gtc tgg gct Met Pro Val Ala Ile Ile Phe Leu Leu Tyr Leu Gly Val Val Trp Ala 40 35. ggg ccc aag ctg atg aaa cgc agg gaa cca gtt gat ctc aag gct gta 192 Gly Pro Lys Leu Met Lys Arg Arg Glu Pro Val Asp Leu Lys Ala Val 55 . 50 ctc att gtc tac aac ttc gcc atg gtc tgc ctg tct gtc tac atg ttc . 240 Leu Ile Val Tyr Asn Phe Ala Met Val Cys Leu Ser Val Tyr Met Phe 288 cat gag ttc ttg gtc acg tcc ttg ctg tct aac tac agt tac ctg tgt His Glu Phe Leu Val Thr Ser Leu Leu Ser Asn Tyr Ser Tyr Leu Cys . 85 336 caa cct gtg gat tac agc act agt cca ctg gcg atg agg atg gcc aaa Gln Pro Val Asp Tyr Ser Thr Ser Pro Leu Ala Met Arg Met Ala Lys 110 100 105 gta tgc tgg tgg ttt ttc ttc tcc aag gtc ata gaa ttg gct gac acg 384 Val Cys Trp Trp Phe Phe Phe Ser Lys Val Ile Glu Leu Ala Asp Thr 120 115

									94							
gtg Val	ttc Phe 130	ttc Phe	atc Ile	ctg Leu	agg Arg	aag Lys 135	aag Lys	aac Asn	agt Ser	cag Gln	ctg Leu 140	act Thr	ttc Phe	ctg Leu	cat His	432
gtc Val 145	tat Tyr	cac His	cat His	ggc ggc	acc Thr 150	atg Met	atc Ile	ttc Phe	aac Asn	tgg Trp 155	tgg Trp	gca Ala	Gly ggg	gtc Val	aag Lys 160	480
tat Tyr	ctg Leu	gct Ala	gga Gly	ggc Gly 165	caa Gln	tcg Ser	ttc Phe	ttc Phe	atc Ile 170	ggc	ctg Leu	ctc Leu	aat Asn	acc Thr 175	ttt Phe	528
gtg Val	cac His	atc Ile	gtg Val 180	atg Met	tac Tyr	tct Ser	tac Tyr	tac Tyr 185	gga Gly	ctg Leu	gct Ala	gcc Ala	ctg Leu 190	GJÀ âãā	cct Pro	576
cac His	acg Thr	cag Gln 195	aag Lys	tac Tyr	tta Leu	tgg Trp	tgg Trp 200	aag Lys	cgc Arg	tat Tyr	ctg Leu	acc Thr 205	tca Ser	ctg Leu	cag Gln	624
ctg Leu	ctc Leu 210	Gln	ttt Phe	gtc Val	ctg Leu	ttg Leu 215	Thr	act Thr	cac His	act Thr	ggc Gly 220	tac Tyr	aac Asn	ctc Leu	ttc Phe	672
act Thr 225	Glu	tgt Cys	gac Asp	ttc Phe	ccg Pro 230	Asp	tcc Ser	atg Met	aac Asn	gct Ala 235	. Val	gtg Val	ttt Phe	gcc Ala	tac Tyr 240	720
tgt Cys	gtc Val	agt Ser	ctc Leu	att Ile 245	Ala	ctc Leu	tto Phe	agc Ser	aac Asn 250	. Phe	tac Tyr	tat Tyr	cag Gln	agc Ser 255	tac Tyr	768
			raag Lys 260	Ser				taa								795
<21	.0>	52														
<21	1>	264			•											
<21	L2>	PRT	_			•										
	13>		orhyi	ichus	s myi	ciss										
	00>	52			- 01-			1 (1)	. Se	r Ma	- Δ~	ന ദി	ייריים ח	n T16	e Leu	
Met	t Ala	a Se	r in	r Trj 5	ò GTI	n Se	r va.	T GT	10	L Me	C AL	9 01.		15	e Leu	
G1	u As	n Gl	y As 20	p Ly	s Ar	g Th	r As	p Pro 25	o Tr	p Le	u Le	u Va	1 Ty 30	r Se:	r Pro	
Me	t Pr	o Va 35		a Il	e Il	e Ph	e Le 40		u Ty	r Le	u Gl	y Va 45	l Va	l Tr	p Ala	

Gly Pro Lys Leu Met Lys Arg Arg Glu Pro Val Asp Leu Lys Ala Val 50 55 60

Leu Ile Val Tyr Asn Phe Ala Met Val Cys Leu Ser Val Tyr Met Phe 65 70 75 80

His Glu Phe Leu Val Thr Ser Leu Leu Ser Asn Tyr Ser Tyr Leu Cys 85 90 95

Gln Pro Val Asp Tyr Ser Thr Ser Pro Leu Ala Met Arg Met Ala Lys
100 105 110

Val Cys Trp Trp Phe Phe Phe Ser Lys Val Ile Glu Leu Ala Asp Thr 115 120 125

Val Phe Phe Ile Leu Arg Lys Lys Asn Ser Gln Leu Thr Phe Leu His 130 135 140

Val Tyr His His Gly Thr Met Ile Phe Asn Trp Trp Ala Gly Val Lys 145 150 155 160

Tyr Leu Ala Gly Gly Gln Ser Phe Phe Ile Gly Leu Leu Asn Thr Phe 165 170. 175

Val His Ile Val Met Tyr Ser Tyr Tyr Gly Leu Ala Ala Leu Gly Pro 180 185 190

His Thr Gln Lys Tyr Leu Trp Trp Lys Arg Tyr Leu Thr Ser Leu Gln 195.

Leu Leu Gln Phe Val Leu Leu Thr Thr His Thr Gly Tyr Asn Leu Phe 210 215 220

Thr Glu Cys Asp Phe Pro Asp Ser Met Asn Ala Val Val Phe Ala Tyr 225 230 235 240

Cys Val Ser Leu Ile Ala Leu Phe Ser Asn Phe Tyr Tyr Gln Ser Tyr 245 250 255

Leu Asn Arg Lys Ser Lys Lys Thr 260

<210> 53

<211> 885

<212> DNA

<213> Oncorhynchus mykiss

<220>

<221> CDS

<222> (1)..(885)

<223> Delta-5-Elongase

<400)> 5	3														
atg Met 1	gag Glu	act Thr	ttt Phe	aat Asn 5	tat Tyr	aaa Lys	cta Leu	aac Asn	atg Met 10	tac Tyr	ata Ile	gac Asp	tca Ser	tgg Trp 15	atg Met	48
ggt Gly	ccc Pro	aga Arg	gat Asp 20	gag Glu	cgg Arg	gta Val	cag Gln	gga Gly 25	tgg Trp	ctg Leu	ctt Leu	ctg Leu	gac Asp 30	aac Asn	tac Tyr	96
cct Pro	cca Pro	acc Thr 35	ttt Phe	gca Ala	cta Leu	aca Thr	gtc Val 40	atg Met	tac Tyr	ctg Leu	ctg Leu	atc Ile 45	gta Val	tgg Trp	atg Met	144
GJÄ āāā	ccc Pro 50	aag Lys	tac Tyr	atg Met	aga Arg	cac His 55	aga Arg	cag Gln	ccg Pro	gtg Val	tct Ser 60	tgc Cys	cgg Arg	ggt Gly	ctc Leu	192
ctc Leu 65	ttg Leu	gtc Val	tac Tyr	aat Asn	ctg Leu 70	ggc	ctc Leu	acg Thr	atc Ile	ttg Leu 75	tcc Ser	ttc Phe	tat Tyr	atg Met	ttc Phe 80	240
tat Tyr	gag Glu	atg Met	gtg Val	tct Ser 85	gct Ala	gtg Val	tgg Trp	cac His	gly ggg	gat Asp	tat Tyr	aac Asn	ttc Phe	ttt Phe 95	tgc Cys	288
caa Gln	gac Asp	aca Thr	cac His 100	Ser	gca Ala	Gly	gaa Glu	acc Thr 105	gat Asp	acc Thr	aag Lys	atc Ile	ata Ile 110	aat Asn	gtg Val	336
ctg Leu	tgg Trp	tgg Trp 115	tac Tyr	tac Tyr	ttc Phe	tcc Ser	aag Lys 120	Leu	ata Ile	gag Glu	ttt Phe	atg Met 125	gat Asp	acc Thr	ttc Phe	384
ttc Phe	ttc Phe 130	Ile	ctg Leu	cgg Arg	aag Lys	aac Asn 135	Asn	cat His	caa Gln	atc Ile	acg Thr 140	Phe	ctg Leu	cac His	atc Ile	432
tac Tyr 145	His	cat His	gct	agc Ser	atg Met 150	Leu	aac Asn	atc . Ile	tgg Trp	tgg Trp 155	Phe	gtc Val	atg Met	aac Asn	tgg Trp 160	. 480
gtg Val	ccc Pro	tgt Cys	ggt Gly	cac His	Ser	tac Tyr	ttt Phe	ggt Gly	gcc Ala 170	Ser	ctg Leu	aac Asn	agc Ser	Phe 175	atc Ile	528
cat His	gto Val	ct <u>c</u> Lev	r atg Met 180	Тут	tct Ser	tac Tyr	tat Tyr	ggg Gly 185	Leu	tct Ser	gct Ala	gtc Val	e ccc Pro 190	Ala	ttg Leu	576
cgc Arc	g ccc	tat Tyr 195	Lev	tgg Trp	tgg Tr	, aag Lys	g aaa Lys 200	туг	ato	aca Thr	caa Glr	gta Val 205	. Glr	g cto Lei	g att 1 Ile	624

									97							
cag Gln	ttc Phe 210	ttt Phe	ttg Leu	acc Thr	Met	tcc (Ser (215	cag Gln	acg Thr	ata Ile	tgt Cys	gca Ala 220	gtc Val	att Ile	tgg Trp	cca Pro	672
tgt Cys 225	gat Asp	ttc Phe	ccc Pro	aga Arg	ggg Gly 230	tgg (Trp :	ctg Leu	tat Tyr	ttc Phe	cag Gln 235	ata Ile	ttc Phe	tat Tyr	gtc Val	atc Ile 240	720
aca Thr	ctt Leu	att Ile	gcc Ala	ctt Leu 245	ttc Phe	tca . Ser .	aac Asn	ttc Phe	tac Tyr 250	att Ile	cag Gln	act Thr	tac Tyr	aag Lys 255	aaa Lys	768
cac His	ctt Leu	gtt Val	tca Ser 260	caa Gln	aag Lys	aag Lys	gag Glu	tat Tyr 265	cat His	cag Gln	aat Asn	ggc	tct Ser 270	gtt Val	gct Ala	816
tca Ser	ttg Leu	aat Asn 275	ggc Gly	cat His	gtg Val	Asn	280 ggg	gtg Val	aca Thr	ccc Pro	acg Thr	gaa Glu 285	acc Thr	att Ile	aca Thr	864
		aaa Lys														885
<21	0>	54														
<21	1>	295														
<21	2>	PRT									-				-	
<21	.3>	Onco	rhyn	chus	myk:	iss										
<40	0>	54 _.														
Met 1	: Glu	ı Thr	Phe	Asn 5	Tyr	Lys	Leu	Asn	Met 10	Tyr	: Ile	Asp	Ser	Trp	Met	
Gly	r Pro	Arg	Asp 20	Glu	Arg	Val	Gln	Gly 25	Trp	Leu	. Lev	. Leu	Asp 30	Asn	Tyr	
Pro) Pro	Thr 35	: Phe	. Ala	Leu	Thr	Val 40	Met	Tyr	Leu	ı Lev	11e 45	· Val	Trp	Met	·
Gl	7 Pro	o Lys	з Туг	: Met	: Arg	His 55	Arg	Gln	Pro	Val	L Sei 60	Cys	arg	g Gly	r Leu	
Let 65	ı Le	u Vai	l Tyr	. Asn	ı Leu 70	Gly	Leu	. Thr	: Ile	75	ı Se:	r Phe	э Туі	r Met	Phe 80	
Ty:	r Gl	u Me	t Val	L Ser 85	c Ala	Val	Trr	His	90	y Asj	р Ту:	r Ası	n Phe	Phe 95	e Cys	
G1:	n As	p Th	r His		r Ala	Gly	· Glu	1 Thi 109		Th:	r Ly	s Ile	∍ Il:		n Val	

Leu Trp Trp Tyr Tyr Phe Ser Lys Leu Ile Glu Phe Met Asp Thr Phe 120

Phe Phe Ile Leu Arg Lys Asn Asn His Gln Ile Thr Phe Leu His Ile 135

Tyr His His Ala Ser Met Leu Asn Ile Trp Trp Phe Val Met Asn Trp 155

Val Pro Cys Gly His Ser Tyr Phe Gly Ala Ser Leu Asn Ser Phe Ile 170 165

His Val Leu Met Tyr Ser Tyr Tyr Gly Leu Ser Ala Val Pro Ala Leu 185

Arg Pro Tyr Leu Trp Trp Lys Lys Tyr Ile Thr Gln Val Gln Leu Ile 200

Gln Phe Phe Leu Thr Met Ser Gln Thr Ile Cys Ala Val Ile Trp Pro 215

Cys Asp Phe Pro Arg Gly Trp Leu Tyr Phe Gln Ile Phe Tyr Val Ile 230

Thr Leu Ile Ala Leu Phe Ser Asn Phe Tyr Ile Gln Thr Tyr Lys Lys 250 245

His Leu Val Ser Gln Lys Lys Glu Tyr His Gln Asn Gly Ser Val Ala 265 260

Ser Leu Asn Gly His Val Asn Gly Val Thr Pro Thr Glu Thr Ile Thr 280

His Arg Lys Val Arg Gly Asp 295

<210> 55

<211> 6753

<212> DNA

<213> Oncorhynchus mykiss

<220>

<221> CDS .

<222> (513)..(1397)

<223> Delta-5-Elongase

<400> 55

acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt

the standard promotesting standarding actuations	120
cctcgtcctc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga	
acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac	180
ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga	240
ttagtttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat	300
taacagatat ataaatgcaa aaactgcatt aaccacttta actaatactt tcaacatttt	360
cggtttgtat tacttcttat tcaaatgtaa taaaagtatc aacaaaaaat tgttaatata	420
cctctatact ttaacgtcaa ggagaaaaaa ccccggatcg gactactagc agctgtaata	480
cgactcacta tagggaatat taagcttaca ta atg gag act ttt aat tat aaa Met Glu Thr Phe Asn Tyr Lys 1 5	533
cta aac atg tac ata gac tca tgg atg ggt ccc aga gat gag cgg gta Leu Asn Met Tyr Ile Asp Ser Trp Met Gly Pro Arg Asp Glu Arg Val 10 15 20	581
cag gga tgg ctg ctt ctg gac aac tac cct cca acc ttt gca cta aca Gln Gly Trp Leu Leu Leu Asp Asn Tyr Pro Pro Thr Phe Ala Leu Thr 25 30 35	629
gtc atg tac ctg ctg atc gta tgg atg ggg ccc aag tac atg aga cac Val Met Tyr Leu Leu Ile Val Trp Met Gly Pro Lys Tyr Met Arg His 40 45 50 55	677
aga cag ccg gtg tct tgc cgg ggt ctc ctc ttg gtc tac aat ctg ggc Arg Gln Pro Val Ser Cys Arg Gly Leu Leu Leu Val Tyr Asn Leu Gly 60 65 70	725
ctc acg atc ttg tcc ttc tat atg ttc tat gag atg gtg tct gct gtg Leu Thr Ile Leu Ser Phe Tyr Met Phe Tyr Glu Met Val Ser Ala Val 75 80 85	773
tgg cac ggg gat tat aac ttc ttt tgc caa gac aca cac agt gca gga Trp His Gly Asp Tyr Asn Phe Phe Cys Gln Asp Thr His Ser Ala Gly 90 95 100	821
gaa acc gat acc aag atc ata aat gtg ctg tgg tgg tac tac ttc tcc Glu Thr Asp Thr Lys Ile Ile Asn Val Leu Trp Trp Tyr Tyr Phe Ser 105 110 115	869
aag ctc ata gag ttt atg gat acc ttc ttc ttc atc ctg cgg aag aac Lys Leu Ile Glu Phe Met Asp Thr Phe Phe Phe Ile Leu Arg Lys Asn 120 125 130 135	917
aac cat caa atc acg ttt ctg cac atc tac cac cat gct agc atg ctc Asn His Gln Ile Thr Phe Leu His Ile Tyr His His Ala Ser Met Leu 140 145 150	965

aac Asn	atc Ile	tgg Trp	tgg Trp 155	ttc Phe	gtc Val	atg Met	aac Asn	tgg Trp 160	gtg Val	ccc Pro	tgt Cys	ggt Gly	cac His 165	tcc Ser	tac Tyr	1013
ttt Phe	ggt Gly	gcc Ala 170	tcc Ser	ctg Leu	aac Asn	agc Ser	ttc Phe 175	atc Ile	cat His	gtc Val	ctg Leu	atg Met 180	tac Tyr	tct Ser	tac Tyr	1061
tat Tyr	ggg Gly 185	ctc Leu	tct Ser	gct Ala	gtc Val	ccg Pro 190	gcc Ala	ttg Leu	cgg	ccc Pro	tat Tyr 195	cta Leu	tgg Trp	tgg Trp	aag Lys	1109
aaa Lys 200	tac Tyr	atc Ile	aca Thr	caa Gln	gta Val 205	cag Gln	ctg Leu	att Ile	cag Gln	ttc Phe 210	ttt Phe	ttg Leu	acc Thr	atg Met	tcc Ser 215	1157
cag Gln	acg Thr	ata Ile	tgt Cys	gca Ala 220	Val	att Ile	tgg Trp	cca Pro	tgt Cys 225	gat Asp	ttc Phe	ccc Pro	aga Arg	ggg Gly 230	tgg Trp	1205
ctg Leu	tat Tyr	ttc Phe	cag Gln 235	Ile	ttc Phe	tat Tyr	gtc Val	atc Ile 240	Thr	ctt Leu	att Ile	gcc Ala	ctt Leu 245	ttc Phe	tca Ser	1253
aac Asn	ttc Phe	tac Tyr 250	Ile	cag Gln	act Thr	tac Tyr	aag Lys 255	Lys	cac His	ctt Leu	gtt Val	tca Ser 260	GID	aag Lys	aag Lys	1301
gag Glu	tat Tyr 265	His:	cag Gln	aat Asr	ggc Gly	tct Ser 270	· Val	gct Ala	tca Ser	ttg Leu	aat Asn 275	GT?	cat His	gtg Val	aat Asn	1349
280 GJ7 GG2	v Val	g aca L Thi	a ccc	aco Thi	g gaa Glu 28	1 Thi	att	aca Thi	a cac r His	agg Arg 290	l Lys	gto Val	g agg L Arg	l GJÄ	gac Asp 295	1397
															gcacagt	1457
													•		etecteg	1517 1577
															cgctgat	1637
															tttattt	1697
															ttttct	1757
															ttttggg	1817
															acgcgcg	1877
gg	gaga	ıggcg	gtt	tgcc	ıtat	tggg	rcgct	ct t	ccgc	ttec	t cg	rctca	ictga	cto	gctgcgc	1937
to	ggto	gtto	ggc	tgcg	gcg	agcg	gtat	ca q	gctca	ectca	a ag	gcgg	taat	acg	gttatcc	1997

	acagaatcag	gggataacgc	aggaaagaac	atgtgagcaa	aaggccagca	aaagcccagg	2057
	aaccgtaaaa	aggccgcgtt	gctggcgttt	ttccataggc	teegeeeec	tgacgagcat	2117
	cacaaaaatc	gacgctcaag	tcagaggtgg	cgaaacccga	caggactata	aagataccag	2177
	gcgtttcccc	ctggaagctc	cctcgtgcgc	tctcctgttc	cgaccctgcc	gcttaccgga	2237
•	tacctgtccg	cctttctccc	ttcgggaagc	gtggcgcttt	ctcatagctc	acgctgtagg	2297
	tatctcagtt	cggtgtaggt	cgttcgctcc	aagctgggct	gtgtgcacga	accccccgtt	2357
	cagcccgacc	gctgcgcctt	atccggtaac	tatcgtcttg	agtccaaccc	ggtaagacac	2417
	gacttatcgc	cactggcagc	agccactggt	aacaggatta	gcagagcgag	gtatgtaggc	2477
	ggtgctacag	agttcttgaa	gtggtggcct	aactacggct	acactagaag	gacagtattt	2537
	ggtatctgcġ	ctctgctgaa	gccagttacc	ttcggaaaaa	gagttggtag	ctcttgatcc	2597
	ggcaaacaaa	ccaccgctgg	tagcggtggt	ttttttgttt	gcaagcagca	gattacgcgc	2657
	agaaaaaaag	gatctcaaga	agatcctttg	atcttttcta	cggggtctga	cgctcagtgg	2717
	aacgaaaact	cacgttaagg	gattttggtc	atgagattat	caaaaaggat	cttcacctag	2777
	atccttttaa	attaaaaatg	aagttttaaa	tcaatctaaa	gtatatatga	gtaaacttgg	2837
	tctgacagtt	accaatgctt	aatcagtgag	gcacctatct	cagcgatctg	tctatttcgt	2897
	tcatccatag	ttgcctgact	ccccgtcgtg	tagataacta	cgatacggga	gcgcttacca	2957
	tctggcccca	. gtgctgcaat	gataccgcga	gacccacgct	caccggctcc	agatttatca	3017
	gcaataaacc	agccagccgg	aagggccgag	cgcagaagtg	gtcctgcaac	tttatccgcc	3077
	tccatccagt	ctattaattg	ttgccgggaa	gctagagtaa	gtagttcgcc	agttaatagt	3137
	ttgcgcaacg	ttgttgccat	tgctacaggc	atcgtggtgt	cacgctcgtc	gtttggtatg	3197
	gcttcattca	geteeggtte	ccaacgatca	aggcgagtta	catgatecce	catgttgtgc	.3257
	aaaaaagcgg	; ttageteett	cggtcctccg	atcgttgtca	gaagtaagtt	ggccgcagtg	3317
	ttatcactca	ı tggttatggc	agcactgcat	aattctctta	ctgtcatgco	: atccgtaaga	3377
	tgcttttctc	, tgactggtga	gtactcaacc	aagtcattct	gagaatagtg	g tatgcggcga	3437
	ccgagttgct	: cttgcccggc	: gtcaacacgg	gataataccg	g cgccacatag	g cagaacttta	3497
	aaagtgctca	ı tcattggaaa	acgttcttcg	gggcgaaaac	tctcaaggat	cttaccgctg	3557
	ttgagatcca	ı gttcgatgta	acccactcgt	gcacccaact	gatetteage	e atcttttact	3617
	ttcaccagc	g tttctgggtg	g agcaaaaaca	ggaaggcaaa	a atgccgcaa	a aaagggaata	3677

agggcgacac	ggaaatgttg	aatactcata	ctcttccttt	ttcaatatta	ttgaagcatt	3737
tatcagggtt	attgtctcat	gagcggatac	atatttgaat	gtatttagaa	aaataaacaa	3797
ataggggttc	cgcgcacatt	tccccgaaaa	gtgccacctg	acgtctaaga	aaccattatt	3857
atcatgacat	taacctataa	aaataggcgt	atcacgaggc	cctttcgtct	tcaagaaatt	3917
cggtcgaaaa	aagaaaagga	gagggccaag	agggagggca	ttggtgacta	ttgagcacgt	3977
gagtatacgt	gattaagcac	acaaaggcag	cttggagtat	gtctgttatt	aatttcacag	4037
gtagttctgg	tccattggtg	aaagtttgcg	gcttgcagag	cacagaggcc	gcagaatgtg	4097
ctctagattc	cgatgctgac	ttgctgggta	ttatatgtgt	gcccaataga	aagagaacaa	4157
ttgacccggt	tattgcaagg	aaaatttcaa	gtcttgtaaa	agcatataaa	aatagttcag	4217
gcactccgaa	atacttggtt	ggcgtgtttc	gtaatcaacc	taaggaggat	gttttggctc	4277
tggtcaatga	ttacggcatt	gatatcgtcc	aactgcacgg	agatgagtcg	tggcaagaat	4337
accaagagtt	cctcggtttg	ccagttatta	aaagactcgt	atttccaaaa	gactgcaaca	4397
tactactcag	tgcagcttca	cagaaacctc	attcgtttat	tcccttgttt	gattcagaag	4457
caggtgggac	aggtgaactt	ttggattgga	actcgatttc	tgactgggtt	ggaaggcaag	4517
agagccccga	gagcttacat	tttatgttag	ctggtggact	gacgccagaa	aatgttggtg	4577
atgcgcttag	attaaatggc	gttattggtg	ttgatgtaag	cggaggtgtg	gagacaaatg	4637
gtgtaaaaga	ctctaacaaa	atagcaaatt	tcgtcaaaaa	tgctaagaaa	taggttatta	4697
ctgagtagta	·tttatttaag	tattgtttgt	gcacttgccc	tagcttatcg	atgataagct	4757
gtcaaagatg	g agaattaatt	ccacggacta	tagactatac	: tagatactcc	gtctactgta	4817
cgatacactt	ccgctcaggt	ccttgtcctt	taacgaggco	ttaccactct	tttgttactc	487
tattgatcca	gctcagcaaa	ggcagtgtga	tctaagatto	tatcttcgcg	atgtagtaaa	493
actagctaga	a ccgagaaaga	gactagaaat	gcaaaaggca	cttctacaat	ggctgccatc	499
attattatco	gatgtgacgo	tgcagcttct	caatgatatt	: cgaatacgct	ttgaggagat	505
acagcctaat	atccgacaaa	a ctgttttaca	gatttacgat	cgtacttgtt	acccatcatt	511
gaattttgaa	a catccgaacc	tgggagtttt	: ccctgaaaca	a gatagtatat	: ttgaacctgt	517
ataataata	t atagtctago	gctttacgga	agacaatgt	a tgtatttcgg	ttcctggaga	523
aactattgc	a tctattgcat	t aggtaatctt	gcacgtcgc	a teceeggtte	attttctgcg	529
tttccatct	t ocacttcaat	t agcatatcti	tgttaacga	a gcatctgtgc	ttcattttgt	535

			103			
agaacaaaaa	tgcaacgcga	gagcgctaat	ttttcaaaca	aagaatctga	gctgcatttt	5417
tacagaacag	aaatgcaacg	cgaaagcgct	attttaccaa	cgaagaatct	gtgcttcatt	5477
tttgtaaaac	aaaaatgcaa	cgcgacgaga	gcgctaattt	ttcaaacaaa	gaatctgagc	5537
tgcattttta	cagaacagaa	atgcaacgcg	agagcgctat	tttaccaaca	aagaatctat	5597
acttctttt	tgttctacaa	aaatgcatcc	cgagagcgct	atttttctaa	caaagcatct	5657
tagattactt	tttttctcct	ttgtgcgctc	tataatgcag	tctcttgata	actttttgca	5717
ctgtaggtcc	gttaaggtta	gaagaaggct	actttggtgt	ctattttctc	ttccataaaa	5777
aaagcctgac	tccacttccc	gcgtttactg	attactagcg	aagctgcggg	tgcattttt	5837
caagataaag	gcatccccga	ttatattcta	taccgatgtg	gattgcgcat	actttgtgaa	5897
cagaaagtga	tagcgttgat	gattcttcat	tggtcagaaa	attatgaacg	gtttcttcta	5957
ttttgtctct	atatactacg	tataggaaat	gtttacattt	tcgtattgtt	ttcgattcac	6017
tctatgaata	gttcttacta	caatttttt	gtctaaagag	taatactaga	gataaacata	6077
aaaaatgtag	aggtcgagtt	tagatgcaag	ttcaaggagc	gaaaggtgga	tgggtaggtt	6137
atatagggat	atagcacaga	gatatatago	aaagagatac	ttttgagcaa	tgtttgtgga	6197
agcggtattc	gcaatgggaa	getecacece	ggttgátaat	cagaaaagco	ccaaaaacag	6,257
gaagattgta	taagcaaata	tttaaattgt	. aaacgttaat	attttgttaa	. aattcgcgtt	6317
aaatttttgt	taaatcagct	catttttaa	. cgaatagccc	gaaatcggca	aaatccctta	6377
taaatcaaaa	gaatagaccg	g agatagggtt	: gagtgttgtt	ccagtttcca	acaagagtcc	6437
actattaaag	g aacgtggact	: ccaacgtcaa	agggcgaaaa	agggtctato	agggcgatgg	6497
cccactacgt	gaaccatcac	c cctaatcaag	g ttttttgggg	tcgaggtgc	gtaaagcagt	6557
aaatcggaag	g ggtaaacgga	a tgccccati	tagagcttga	cggggaaag	e eggegaaegt	6617
ggcgagaaa	g gaagggaaga	a aagcgaaag	g agegggget	agggcggtgg	g gaagtgtagg	6677
ggtcacgct	g ggcgtaacc	a ccacacccg	c cgcgcttaat	ggggcgcta	c agggcgcgtg	6737
gggatgatc	c actagt					6753

<210> 56

<211> 295

<212> PRT -

<213> Oncorhynchus mykiss

<400> 56

Met Glu Thr Phe Asn Tyr Lys Leu Asn Met Tyr Ile Asp Ser Trp Met

Gly Pro Arg Asp Glu Arg Val Gln Gly Trp Leu Leu Leu Asp Asn Tyr 25

Pro Pro Thr Phe Ala Leu Thr Val Met Tyr Leu Leu Ile Val Trp Met 40

Gly Pro Lys Tyr Met Arg His Arg Gln Pro Val Ser Cys Arg Gly Leu

Leu Leu Val Tyr Asn Leu Gly Leu Thr Ile Leu Ser Phe Tyr Met Phe

Tyr Glu Met Val Ser Ala Val Trp His Gly Asp Tyr Asn Phe Phe Cys 90 . 95

Gln Asp Thr His Ser Ala Gly Glu Thr Asp Thr Lys Ile Ile Asn Val 105

Leu Trp Trp Tyr Tyr Phe Ser Lys Leu Ile Glu Phe Met Asp Thr Phe 120

Phe Phe Ile Leu Arg Lys Asn Asn His Gln Ile Thr Phe Leu His Ile 135

Tyr His His Ala Ser Met Leu Asn Ile Trp Trp Phe Val Met Asn Trp 155 160 150 145

Val Pro Cys Gly His Ser Tyr Phe Gly Ala Ser Leu Asn Ser Phe Ile 165

His Val Leu Met Tyr Ser Tyr Tyr Gly Leu Ser Ala Val Pro Ala Leu 185

Arg Pro Tyr Leu Trp Trp Lys Lys Tyr Ile Thr Gln Val Gln Leu Ile 200 195

Gln Phe Phe Leu Thr Met Ser Gln Thr Ile Cys Ala Val Ile Trp Pro 215

Cys Asp Phe Pro Arg Gly Trp Leu Tyr Phe Gln Ile Phe Tyr Val Ile 230

Thr Leu Ile Ala Leu Phe Ser Asn Phe Tyr Ile Gln Thr Tyr Lys Lys 250 245

His Leu Val Ser Gln Lys Lys Glu Tyr His Gln Asn Gly Ser Val Ala 265

Ser Leu Asn Gly His Val Asn Gly Val Thr Pro Thr Glu Thr Ile Thr 285 280

His Arg Lys Val Arg Gly Asp 290 295	
<210> 57	
<211> 6645	
<212> DNA	
<213> Oncorhynchus mykiss	
<220>	
<221> CDS	
<222> (513)(1304)	
<223> Delta-5-Elongase	
<400> 57	
acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt	60
cetegteete aceggtegeg tteetgaaac geagatgtge etegegeege actgeteega	120
acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac	180
ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga	240
ttagtttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat	300
taacagatat ataaatgcaa aaactgcatt aaccacttta actaatactt tcaacatttt	360
cggtttgtat tacttcttat tcaaatgtaa taaaagtatc aacaaaaaat tgttaatata	420
cctctatact ttaacgtcaa ggagaaaaaa ccccggatcg gactactagc agctgtaata	480
cgactcacta tagggaatat taagcttaca ta atg gct tca aca tgg caa agc Met Ala Ser Thr Trp Gln Ser 1 5	533
gtt cag tcc atg cgc cag tgg att tta gag aat gga gat aaa agg aca Val Gln Ser Met Arg Gln Trp Ile Leu Glu Asn Gly Asp Lys Arg Thr 10 15 20	581
gac cca tgg cta ctg gtc tac tcc cct atg cca gtg gcc att ata ttc Asp Pro Trp Leu Leu Val Tyr Ser Pro Met Pro Val Ala Ile Ile Phe 25 30 35	629
ctc ctc tat ctt ggt gtg gtc tgg gct ggg ccc aag ctg atg aaa cgc Leu Leu Tyr Leu Gly Val Val Trp Ala Gly Pro Lys Leu Met Lys Arg 40 45 50 55	677
agg gaa cca gtt gat ctc aag gct gta ctc att gtc tac aac ttc gcc Arg Glu Pro Val Asp Leu Lys Ala Val Leu Ile Val Tyr Asn Phe Ala 60 65 70	725

atg Met	gtc Val	tgc Cys	ctg Leu 75	tct Ser	gtc Val	tac Tyr	atg Met	ttc Phe 80	cat His	gag Glu	ttc Phe	ttg Leu	gtc Val 85	acg Thr	tcc Ser	773
ttg Leu	ctg Leu	tct Ser 90	aac Asn	tac Tyr	agt Ser	tac Tyr	ctg Leu 95	tgt Cys	caa Gln	cct Pro	gtg Val	gat Asp 100	tac Tyr	agc Ser	act Thr	821
agt Ser	cca Pro 105	ctg Leu	gcg Ala	atg Met	agg Arg	atg Met 110	gcc Ala	aaa Lys	gta Val	tgc Cys	tgg Trp 115	tgg Trp	ttt Phe	ttc Phe	ttc Phe	869
tcc Ser 120	aag Lys	gtc Val	ata Ile	gaa Glu	ttg Leu 125	gct Ala	gac Asp	acg Thr	gtg Val	ttc Phe 130	ttc Phe	atc Ile	ctg Leu	agg Arg	aag Lys 135	917
aag Lys	aac Asn	agt Ser	cag Gln	ctg Leu 140	act Thr	ttc Phe	ctg Leu	cat His	gtc Val 145	tat Tyr	cac His	cat His	ggc Gly	acc Thr 150	atg Met	965
atc Ile	ttc Phe	aac Asn	tgg Trp 155	tgg Trp	gca Ala	Gly	gtc Val	aag Lys 160	Tyr	ctg Leu	gct Ala	gga	ggc Gly 165	caa Gln	tcg Ser	1013
ttc Phe	ttc Phe	atc Ile 170	ggc Gly	ctg Leu	ctc Leu	aat Asn	acc Thr 175	Phe	gtg Val	cac	atc Ile	gtg Val 180	Met	tac Tyr	tct	1061
tac Tyr	tac Tyr 185	Gly	ctg Leu	gct Ala	gcc Ala	ctg Leu 190	Gly	cct Pro	.cac	acg Thr	cag Gln 195	Lys	tac Tyr	tta Leu	tgg Trp	1109
tgg Trp 200	Lys	g cgc	tat Tyr	ctg Leu	acc Thr 205	Ser	cto Lev	g cag n Gln	ctg Lev	cto Leu 210	ı Glr	ttt Phe	gto Val	ctg Lev	ttg Leu 215	1157
acc Thi	act Thi	cac His	c act	220 220	тут	aac Asr	cto Lei	ı Phe	act Thr	c Glu	g tgt 1 Cys	gao S Asi	tto Phe	230	gac Asp	1205
tco	c ato	g aad : Asi	c gct n Ala 235	a Val	g gtç L Val	g tt: L Phe	gce Ala	tac a Tyr 240	Cy:	t gto	z agt l Se:	t cto	c attu Ile 245	e Ala	ctc Leu	1253
tt. Ph	c ago e Se:	c aa r As: 25	n Ph	c tac	c tat	t cag r Gl:	g ag n Se 25	r Ty:	c cto	c aaq u Ası	c ag n Ar	g aa g Ly 26	s Se:	c aag	g aag s Lys	1301
ac Th		agga	tcca	cta	gtaa	cgg	ccgc	cagt	gt g	ctgg	aatt	c tg	caga	tatc		1354
ca	tcac	actg	gcg	gccg	ctc	gagc	atgo	at c	taga	.gggc	c go	atca	tgta.	att	agttatg	1414
to	acgc	ttac	: att	cacg	ccc	taca	ccca	ıca t	ccgc	tcta	a co	gaaa	agga	agg	agttaga	1474

caacctgaag	tctaggtccc	tatttatttt	tttatagtta	tgttagtatt	aagaacgtta	1534
tttatatttc	aaatttttct	tttttttctg	tacagacgcg	tgtacgcatg	taacattata	1594
ctgaaaacct	tgcttgagaa	ggttttggga	cgctcgaagg	ctttaatttg	eggeeetgea	1654
ttaatgaatc	ggccaacgcg	cggggagagg	cggtttgcgt	attgggcgct	cttccgcttc	1714
ctcgctcact	gactcgctgc	gctcggtcgt	teggetgegg	cgagcggtat	cagctcactc	1774
aaaggcggta	atacggttat	ccacagaatc	aggggataac	gcaggaaaga	acatgtgagc	1834
aaaaggccag	caaaagccca	ggaaccgtaa	aaaggccgcg	ttgctggcgt	ttttccatag	1894
geteegeece	cctgacgagc	atcacaaaaa	tcgacgctca	agtcagaggt	ggcgaaaccc	1954
gacaggacta	taaagatacc	aggcgtttcc	ccctggaagc	tecetegtge	gctctcctgt	2014
tccgaccctg	ccgcttaccg	gatacctgtc	cgcctttctc	ccttcgggaa	gcgtggcgct	2074
ttctcatagc	tcacgctgta	ggtatctcag	ttcggtgtag	gtegtteget	ccaagctggg	2134
ctgtgtgcac	gaaccccccg	ttcagcccga	ccgctgcgcc	ttatccggta	actatcgtct	2194
tgagtccaac	ccggtaagac	acgacttatc	gccactggca	gcagccactg	gtaacaggat	2254
tagcagagcg	aggtatgtag	gcggtgctac	agagttcttg	aagtggtggc	ctaactacgg	2314
ctacactaga	aggacagtat	ttggtatctg	cgctctgctg	aagccagtta	ccttcggaaa	2374
aagagttggt	agctcttgat	ccggcaaaca	aaccaccgct	ggtagcggtg	gtttttttgt	243
ttgcaagcag	cagattacgc	gcagaaaaaa	aggatctcaa	gaagatcctt	tgatcttttc	249
tacggggtct	gacgctcagt	ggaacgaaaa	ctcacgttaa	gggattttgg	tcatgagatt	255
atcaaaaagg	atcttcacct	agatcctttt	aaattaaaaa	tgaagtttta	aatcaatcta	261
aagtatatat	gagtaaactt	ggtctgacag	ttaccaatgc	ttaatcagtg	aggcacctat	267
ctcagcgatc	tgtctatttc	gttcatccat	agttgcctga	ctccccgtcg	tgtagataac	273
tacgatacgg	gagcgcttac	catctggccc	cagtgctgca	. atgataccgc	gagacccacg	279
ctcaccggct	ccagatttat	cagcaataaa	ccagccagcc	ggaagggccg	agcgcagaag	285
tggtcctgca	actttatccg	cctccattca	gtctattaat	tgttgccggg	aagctagagt	291
aagtagttcg	ccagttaata	gtttgcgcaa	cgttgttggc	: attgctacag	gcatcgtggt	297
gtcactctcg	tcgtttggta	tggcttcatt	cageteeggt	: tcccaacgat	caaggcgagt	303
tacatgatco	cccatgttgt	gcaaaaaagc	ggttagctco	: tteggteete	cgatcgttgt	309
asasatssa	r ttaaccacaa	tottatcact	catoottato	r gcagcactgo	ataattctct	315

20040177

tactgtcatg ccatccgtaa gatgcttttc tgtgactggt gagtactcaa ccaagtcatt 3214 ctgagaatag tgtatgcggc gaccgagttg ctcttgcccg gcgtcaatac gggataatag 3274 tgtatcacat agcagaactt taaaagtgct catcattgga aaacgttctt cggggcgaaa 3334 actotoaagg atottacogo tgttgagato cagttogatg taaccoacto gtgcaccoaa 3394 3454 ctgatcttca gcatctttta ctttcaccag cgtttctggg tgagcaaaaa caggaaggca aaatgccgca aaaaagggaa taagggcgac acggaaatgt tgaatactca tactcttcct 3514 ttttcaatgg gtaataactg atataattaa attgaagctc taatttgtga gtttagtata 3574 catgcattta cttataatac agttttttag ttttgctggc cgcatcttct caaatatgct 3634 teccageetg ettttetgta aegtteacce tetacettag catecettee etttgeaaat 3694 3754 agtectette caacaataat aatgteagat eetgtagaga eeacateate caeggtteta tactgttgac ccaatgcgtc tcccttgtca tctaaaccca caccgggtgt cataatcaac 3814 caatcgtaac cttcatctct tccacccatg tctctttgag caataaagcc gataacaaaa 3874 tetttgtege tettegeaat gteaacagta ceettagtat attetecagt agatagggag 3934 cccttgcatg acaattctgc taacatcaaa aggcctctag gttcctttgt tacttcttct 3994 geogeotget teaaaceget aacaatacet gggeecacea cacegtgtge attegtaatg 4054 tetgeceatt etgetattet gtatacacce geagagtaet geaatttgae tgtattacea 4114 atgtcagcaa attttctgtc ttcgaagagt aaaaaattgt acttggcgga taatgccttt 4174 4234 ageggettaa etgtgeeete catggaaaaa teagteaaga tateeacatg tgtttttagt aaacaaattt tgggacctaa tgcttcaact aactccagta attccttggt ggtacgaaca 4294 tccaatgaag cacacaagtt tgtttgcttt tcgtgcatga tattaaatag cttggcagca 4354 acaggactag gatgagtagc agcacgttcc ttatatgtag ctttcgacat gatttatctt 4414 cgtttcctgc aggtttttgt tctgtgcagt tgggttaaga atactgggca atttcatgtt 4474 4534 tottcaacac tacatatgcg tatatatacc aatctaagtc tgtgctcctt ccttcgttct 4594 tccttctgtt cggagattac cgaatcaaaa aaatttcaaa gaaaccgaaa tcaaaaaaaa gaataaaaaa aaaatgatga attgaattga aaagctagct tatcgatgat aagctgtcaa 4654 agatgagaat taattccacg gactatagac tatactagat actccgtcta ctgtacgata 4714 cacttccgct caggtccttg tcctttaacg aggccttacc actcttttgt tactctattg 4774 4834 atccagctca gcaaaggcag tgtgatctaa gattctatct tcgcgatgta gtaaaactag

ctagaccgag	aaagagacta	gaaatgcaaa	aggcacttct	acaatggctg	ccatcattat	4894
tatccgatgt	gacgctgcag	cttctcaatg	atattcgaat	acgctttgag	gagatacagc	4954
ctaatatccg	acaaactgtt	ttacagattt	acgatcgtac	ttgttaccca	tcattgaatt	5014
ttgaacatcc	gaacctggga	gttttccctg	aaacagatag	tatatttgaa	cctgtataat	5074
aatatatagt	ctagcgcttt	acggaagaca	atgtatgtat	ttcggttcct	ggagaaacta	5134
ttgcatctat	tgcataggta	atcttgcacg	tegcatecee	ggttcatttt	ctgcgtttcc	5194
atcttgcact	tcaatagcat	atctttgtta	acgaagcatc	tgtgcttcat	tttgtagaac	5254
aaaaatgcaa	cgcgagagcg	ctaattttc	aaacaaagaa	tctgagctgc	atttttacag	5314
aacagaaatg	caacgcgaaa	gcgctatttt	accaacgaag	aatctgtgct	tcatttttgt	5374
aaaacaaaaa	tgcaacgcga	cgagagcgct	aatttttc%a	acaaagaatc	tgagctgcat	5434
ttttacagaa	cagaaatgca	acgcgagagc	gctattttac	caacaaagaa	tctatacttc	5494
ttttttgttc	tacaaaaatg	catcccgaga	gcgctatttt	tctaacaaag	catcttagat	5554
tactttttt	ctcctttgtg	cgctctataa	tgcagtctct	tgataacttt	ttgcactgta	5614
ggtccgttaa	ggttagaaga	aggctacttt	ggtgtctatt	ttctcttcca	taaaaaaagc	5674
ctgactccac	ttcccgcgtt	tactgattac	tagcgaagct	gegggtgeat	tttttcaaga	5734
taaaggcatc	cccgattata	ttctataccg	atgtggattg	.cgcatacttt	gtgaacagaa	5794
agtgatagcg	ttgatgattc	ttcattggtc	agaaaattat	gaacggtttc	ttctattttg	5854
tctctatata	ctacgtatag	gaaatgttta	cattttcgta	ttgttttcga	ttcactctat	5914
gaatagttct	: tactacaatt	tttttgtcta	aagagtaata	a ctagagataa	acataaaaaa	5974
tgtagaggt	gagtttagat	gcaagttcaa	ggagcgaaag	g gtggatgggt	aggttatata	6034
gggatatag	c acagagatat	atagcaaaga	gatactttt	g agcaatgttt	gtggaagcgg	6094
tattcgcaat	gggaagctcc	accccggttg	ataatcagaa	a aagccccaaa	aacaggaaga	615
ttgtataag	c aaatatttaa	attgtaaacg	ttaatattt	t gttaaaatto	gcgttaaatt	621
tttgttaaat	t cagctcattt	: tttaacgaat	agcccgaaa	t cggcaaaatc	ccttataaat	627
caaaagaat	a gaccgagata	gggttgagtg	ttgttccag	t ttccaacaag	agtccactat	633
taaagaacg	t ggactccaad	gtcaaagggc	gaaaaaggg	t ctatcagggd	gatggcccac	639
tacgtgaac	c atcacccta	a tcaagttttt	tggggtcga	g gtgccgtaaa	gcagtaaatc	645
			- attaacaaa	a sasaccaac	r aacotoocoa	651

gaaa	ggaa	gg g	aagaa	aagc	g aaa	aggag	gcgg	ggg	ctag	ggc (ggtgg	gaag	gt gt	agg	ggtca	6574
cgct	gggc	gt a	accao	ccaca	a cco	gccg	gcgc	tta	atgg	ggc	gctad	caggg	gc go	gtg	gggat	6634
gatc	cact	ag t														6645
<210	> 5	8														
<211	> 2	64														
<212	> P	RT														
<213	> C	ncor	hync:	hus :	myki:	ss										
<400	> 5	8							٠.							
Met 1	Ala	Ser		Trp 5	Gln	Ser	Val	Gln	Ser 10	Met	Arg	Gln '	Trp	Ile 15	Leu	
Glu	Asn	Gly	Asp 20	Lys	Arg	Thr	Asp	Pro 25		Leu	Leu	Val	Tyr 30	Ser	Pro	
Met	Pro	Val 35	Ala	Ile	Ile,	Phe	Leu 40	Leu	Tyr	Leu	Gly	Val 45	Val	Trp	Ala	
Gly	Pro 50	Lys	Leu	Met	Lys	Arg 55	Arg	Glu	Pro	Val	Asp 60	Leu	Lys	Ala	Val	
Leu 65	Ile	Val	Tyr	Asn	Phe 70	Ala	Met.	Val	Cys	Leu 75	Ser	Val	Tyr	Met	Phe 80	
His	Glu	Phe	Leu	Val 85	Thr	Ser	Leu	Leu	Ser 90	Asn	Tyr	Ser	Tyr	Leu 95	Cys	
Gln	Pro	Val	Asp 100	Tyr	Ser	Thr	Ser	Pro 105	Leu	Ala	Met	Arg	Met 110	Ala	Lys	
Val	Cys	Trp	Trp	Phe	Phe		Ser 120	Lys	Val	Ile	Glu	Leu 125	Ala	Asp	Thr	
Val	Phe		Ile	Leu	Arg	Lys 135	Lys	Asn	Ser	Gln	Leu 140	Thr	Phe	Leu	His	
Val		His	His	Gly	Thr 150		Ile	Phe	Asn	Trp 155	Trp	Ala	Gly	Val	Lys 160	
Tyr	: Leu	ı Ala	Gly	Gly		. Ser	Phe	Phe	170		r Leu	Leu	Asn	Thr 175	Phe	
Val	. His	s Ile	val 180		: Tyr	Ser	Tyr	Tyr 185		Leu	ı Ala	Ala	Leu 190	Gly	Pro	
His	s Thi	r Glr 195		: Туг	Leu	. Trp	200		ar <u>c</u>	TY1	c Leu	Thr 205	Ser	Leu	Gln	

Leu Leu Gln Phe Val Leu Leu Thr Thr His Thr Gly Tyr Asn Leu Phe 220 215 210 Thr Glu Cys Asp Phe Pro Asp Ser Met Asn Ala Val Val Phe Ala Tyr 235 230 Cys Val Ser Leu Ile Ala Leu Phe Ser Asn Phe Tyr Tyr Gln Ser Tyr 250 245 Leu Asn Arg Lys Ser Lys Lys Thr 260 <210> 59 <211> 1077 <212> DNA <213> Thalassiosira pseudonana <220> <221> CDS (1)..(1077) <222> <223> Delta-5-Elongase <400> 59 atg tgc tca tca ccg ccg tca caa tcc aaa aca aca tcc ctc cta gca 48 Met Cys Ser Ser Pro Pro Ser Gln Ser Lys Thr Thr Ser Leu Leu Ala 1 egg tac acc acc gec gec ctc ctc ctc ctc acc ctc aca aca tgg tgc 96 Arg Tyr Thr Thr Ala Ala Leu Leu Leu Leu Thr Leu Thr Trp Cys 25 20 cac ttc gcc ttc cca gcc gcc acc gcc aca ccc ggc ctc acc gcc gaa 144 His Phe Ala Phe Pro Ala Ala Thr Ala Thr Pro Gly Leu Thr Ala Glu 40 atg cac tcc tac aaa gtc cca ctc ggt ctc acc gta ttc tac ctg ctg 192 Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu 50 agt cta ccg tca cta aag tac gtt acg gac aac tac ctt gcc aaa aag 240 Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys 70 65 tat gat atg aag tca ctc cta acg gaa tca atg gtg ttg tac aat gtg 288 Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val

90

									172							
gcg Ala	caa Gln	gtg Val	ctg Leu 100	ctc Leu	aat Asn	GJA aaa	tgg Trp	acg Thr 105	gtg Val	tat Tyr	gcg Ala	att Ile	gtg Val 110	gat Asp	gcg Ala	336
gtg Val	atg Met	aat Asn 115	aga Arg	gac Asp	cat His	Pro	ttt Phe 120	att Ile	gga Gly	agt Ser	aga Arg	agt Ser 125	ttg Leu	gtt Val	gġg gġg	384
gcg Ala	gcg Ala 130	ttg Leu	cat His	agt Ser	Gly aaa	agc Ser 135	tcg Ser	tat Tyr	gcg Ala	gtg Val	tgg Trp 140	gtt Val	cat His	tat Tyr	tgt Cys	432
gat Asp 145	aag Lys	tat Tyr	ttg Leu	gag Glu	ttc Phe 150	ttt Phe	gat Asp	acg Thr	tat Tyr	ttt Phe 155	atg Met	gtg Val	ttg Leu	agg Arg	ggg Gly 160	480
aaa Lys	atg Met	gac Asp	cag Gln	gtc Val 165	tcc Ser	ttc Phe	ctc Leu	cac His	atc Ile 170	tac Tyr	cac His	cac His	acg Thr	acc Thr 175	ata Ile	528
gcg Ala	tgg Trp	gca Ala	tgg Trp 180	tgg Trp	atc Ile	gcc Ala	ctc Leu	cgc Arg 185	ttc Phe	tcc Ser	ccc Pro	ggt Gly	gga Gly 190	gac Asp	att Ile	576
tac Tyr	ttc Phe	ggg Gly 195	Ala	ctc Leu	ctc Leu	aac Asn	tcc Ser 200	Ile	atc Ile	cac His	gtc Val	ctc Leu 205	Met	tat Tyr	tcc Ser	624
tac Tyr	tac Tyr 210	Ala	ctt Leu	gcc Ala	cta Leu	ctc Leu 215	aag Lys	gtc Val	agt Ser	tgt Cys	cca Pro 220	Trp	aaa Lys	cga Arg	tac Tyr	672
ctg Leu 225	Thr	cas Glr	gct Ala	caa Gln	tta Leu 230	Leu	caa Gln	tto Phe	aca Thr	agt Ser 235	Val	gtg Val	gtt Val	tat Tyr	acg Thr 240	720
Gly ggg	r tgt r Cys	acç Thi	g ggt c Gly	tat Tyr 245	Thr	cat His	tac Tyr	tat Tyr	cat His 250	Thr	aag Lys	cat His	gga Gly	gcg Ala 255	gat Asp	768
gaç	g aca	a caq c Gli	g cct n Pro 260	Ser	tta Lev	ı gga ı Gly	acg Thi	tat Type 265	Tyr	tto Phe	tgt Cys	tgt Gys	gga Gly 270	y va.	g cag L Gln	816
gtç Va:	g tt [.] l Ph	t ga e G1 27	u Me	g gtt t Val	: agt L Sei	tto Lev	tti Pho 28	e Vai	a cto L Leo	tti Phe	t tce e Se:	c ato r Ilo 28	e Phe	t tai	t aaa r Lys	864
cg: Ar	a tc g Se 29	r Ty	t tc r Se	g aaq r Ly:	g aaq s Ly:	g aad s Asi 299	ı Ly	g tc	a gga r Gl	a gg y Gl	a aa y Ly 30	s As	t ag p Se	c aa r Ly	g aag s Lys	912
aa As: 30	n As	t ga p As	t gg p Gl	g aa y As:	t aa n As: 31	n Gl	g ga ı As	t ca p Gl	a tg n Cy	t ca s Hi 31	s Ly	g gc s Al	t at a Me	g aa t Ly	g gat s Asp 320	

1008 ata tcg gag ggt gcg aag gag gtt gtg ggg cat gca gcg aag gat gct Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala 330 gga aag ttg gtg gct acg gcg agt aag gct gta aag agg aag gga act 1056 Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr 345 1077 cgt gtt act ggt gcc atg tag Arg Val Thr Gly Ala Met 355 <210> 60 <211> 358 <212> PRT <213> Thalassiosira pseudonana <400> 60 Met Cys Ser Ser Pro Pro Ser Gln Ser Lys Thr Thr Ser Leu Leu Ala 5 10 1 Arg Tyr Thr Thr Ala Ala Leu Leu Leu Leu Thr Leu Thr Trp Cys His Phe Ala Phe Pro Ala Ala Thr Ala Thr Pro Gly Leu Thr Ala Glu 40 Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu 55 · Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys 70 Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val 90 95 Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala 100 Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly 150 145 Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile

170

Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile 185 180

Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser 200

Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr 215

Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val Val Tyr Thr 235 230

Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp 250

Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 265 260

Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys 280 275

Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys 295

Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp 315 310 305

Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala 325 330

Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr 345

Arg Val Thr Gly Ala Met 355

<210> 61

<211> 933

<212> DNA

<213> Thalassiosira pseudonana

<220>

<221> CDS ·

<222> (1)..(933)

<223> Delta-5-Elongase

<400> 61

								•	115							
atg Met 1	cac His	tcc Ser	tac Tyr	aaa Lys 5	gtc Val	cca Pro	ctc Leu	ggt Gly	ctc Leu 10	acc Thr	gta Val	ttc Phe	tac Tyr	ctg Leu 15	ctg Leu	48
agt Ser	cta Leu	ccg Pro	tca Ser 20	cta Leu	aag Lys	tac Tyr	gtt Val	acg Thr 25	gac Asp	aac Asn	tac Tyr	ctt Leu	gcc Ala 30	aaa Lys	aag Lys	96
tat Tyr	gat Asp	atg Met 35	aag Lys	tca Ser	ctc Leu	cta Leu	acg Thr 40	gaa Glu	tca Ser	atg Met	gtg Val	ttg Leu 45	tac Tyr	aat Asn	gtg Val	144
gcg Ala	caa Gln 50	gtg Val	ctg Leu	ctc Leu	aat Asn	ggg 55	tgg Trp	acg Thr	gtg Val	tat Tyr	gcg Ala 60	att Ile	gtg Val	gat Asp	gcg Ala	192
gtg Val 65	atg Met	aat Asn	aga Arg	gac Asp	cat His 70	ccg Pro	ttt Phe	att Ile	gga Gly	agt Ser 75	aga Arg	agt Ser	ttg Leu	gtt Val	80 GJA āāā	240
gcg Ala	gcg Ala	ttg Leu	cat His	agt Ser 85	GJÀ āāā	agc Ser	tcg Ser	tat Tyr	gcg Ala 90	gtg Val	tgg Trp	gtt Val	cat His	tat Tyr 95	tgt Cys	288
gat Asp	aag Lys	tat Tyr	ttg Leu 100	Glu	ttc Phe	ttt Phe	gat Asp	acg Thr 105	Tyr	ttt Phe	atg Met	gtg Val	ttg Leu 110	Arg	Gly	336
aaa Lys	atg Met	gac Asp 115	Glr	gtc Val	tcc Ser	ttc Phe	ctc Leu 120	His	atc Ile	tac Tyr	cac	cac His	Thr	acc Thr	ata Ile	384
gcg Ala	tgg Trg 130	Ala	tgg Trp	tgg Trp	g atc	gcc Ala 135	Lev	cgc Arg	tto Phe	tcc Ser	Pro) GTA	gga Gly	gac Asp	att Ile	432
tac Tyr 145	Phe	e Gly	g gca / Ala	a cto a Lev	c ctc Leu 150	Asr	tco Ser	ato	ato	cac His	: Val	c cto L Lev	ato Met	tat Tyr	tcc Ser 160	480
tac Ty:	tac Ty:	c gce r Ala	c cti a Lei	t gcd u Ala 16!	a Lev	cto Lev	aaq ı Ly:	g gto s Vai	agt L Sei 170	c Cys	cca Pro	a tgg	g aaa o Ly:	a cga s Arg 175	tac Tyr	.528
ct: Le:	g ac	t ca r Gl	a gc n Al 18	a Gl	a tta n Leu	a ttg 1 Lei	g caa	a tto n Pho 18	e Th	a agt	t gte	g gt:	g gt 1 Va 19	т лА:	acg r Thr	576
G1: gg:	g tg y Cy	t ac s Th 19	r Gl	t ta y Ty	t act	t car	t ta s Ty 20	r Ty	t ca r Hi	t ac	g aa r Ly	g ca s Hi 20	S GT	a gc y Al	g gat a Asp	624
ga Gl	g ac u Th 21	r Gl	g cc n Pr	t ag to Se	t tt r Le	a gg u Gl 21	y Th	g ta r Ty	t ta r Ty	t tt r Ph	c tg e Cy 22	з Су	t gg s Gl	a gt y Va	g cag 1 Gln	672

									116							
gtg Val 225	ttt Phe	gag Glu	atg Met	gtt Val	agt Ser 230	ttg Leu	ttt Phe	gta Val	ctc Leu	ttt Phe 235	tcc Ser	atc Ile	ttt Phe	tat Tyr	aaa Lys 240	720
cga Arg	tcc Ser	tat Tyr	tcg Ser	aag Lys 245	aag Lys	aac Asn	aag Lys	tca Ser	gga Gly 250	gga Gly	aag Lys	gat Asp	agc Ser	aag Lys 255	aag Lys	768
aat Asn	gat Asp	gat Asp	ggg Gly 260	aat Asn	aat Asn	gag Glu	gat Asp	caa Gln 265	tgt Cys	cac His	aag Lys	gct Ala	atg Met 270	aag Lys	gat Asp	816
ata Ile	tcg Ser	gag Glu 275	Gly	gcg Ala	aag Lys	gag Glu	gtt Val 280	gtg Val	GJÀ aaa	cat His	gca Ala	gcg Ala 285	aag Lys	gat Asp	gct Ala	864
gga Gly	aag Lys 290	Leu	gtg Val	gct Ala	acg Thr	gcg Ala 295	agt Ser	aag Lys	gct Ala	gta Val	aag Lys 300	agg Arg	aag Lys	gga	act Thr	912
	Val		. ggt : Gly		atg Met 310	tag			1							933
<21	.0>	62										•				
<21	.1>	310						•								
<21	2>	PRT.														
		•	lassi	iosiı	a ps	eudo	nana	L			. ,			٠		
<40		62														
					7	D			* T.O.	י מיטי	r Wai	l Pha	• ጥህ፣	. Lei	ı Leu	
Met 1	: Hi	s Se:	r Ty:	r Lys 5	s Vai	Pro) Let	I GT7	10	4 1113	L Va.			15	ı Leu	
Se	r Le	u Pr	o Se: 20		ı Lys	: Туг	r Val	L Th: 25	c Asj) Asi	n Ty:	r Le	1 Ala 30	a Ly:	s Lys	
Ty	r As	р Ме 35		s Se	r Lev	ı Leı	Thi	r Gl	u Se:	r Me	t Va	1 Le [.] 45	и Ту:	r As:	n Val	
Al	a Gl 50		l Le	u Le	u Ası	1 Gl 55	y Tr	p Th	r Va	1 Ту	r Al 60	a Il	e Va	l As	p Ala	
Va 65		et As	n Ar	g As	р Ні: 70	s Pr	o Ph	e Il	e Gl	у Se 75	r Ar	g Se	r Le	u Va	1 Gly 80	
Al	a Al	la Le	eu Hi	.s Se 85		y Se	r Se	т Ту	r Al 90	a Va	ıl Tr	no Va	l Hi	s Ty 95	r Cys	
As	sp Ly	ys T <u>i</u>		eu G1 00	u Ph	e Ph	e As	p Th 10	ır Ty)5	r Ph	ne Me	et Va	11 11	eu Ar .0	g Gly	

Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile 120 115

Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile 135

Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser 155

Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr 170

Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val Val Tyr Thr 185 180

Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp 200

Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 215

Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys 235 230

Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys 250

Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp 260

Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala 280

Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr 295 · 290 ·

Arg Val Thr Gly Ala Met 310

<210> 63

<211> 933

<212> DNA

<213> Thalassiosira pseudonana

<220>

<221> CDS

<222> (1)..(933)

<223> Delta-5-Elongase

<400> 63

atg Met 1	cac His	tcc Ser	tac Tyr	aaa Lys 5	gtc Val	cca Pro	ctc Leu	ggt Gly	ctc Leu 10	acc Thr	gta Val	ttc Phe	tac Tyr	ctg Leu 15	ctg Leu	48
agt Ser	cta Leu	ccg Pro	tca Ser 20	cta Leu	aag Lys	tac Tyr	gtt Val	acg Thr 25	gac Asp	aac Asn	tac Tyr	ctt Leu	gcc Ala 30	aaa Lys	aag Lys	96
tat Tyr	gat Asp	atg Met 35	aag Lys	tca Ser	ctc Leu	cta Leu	acg Thr 40	gaa Glu	tca Ser	atg Met	gtg Val	ttg Leu 45	tac Tyr	aat Asn	gtg Val	144
gcg Ala	caa Gln 50	gtg Val	ctg Leu	ctc Leu	aat Asn	ggg 55	tgg Trp	acg Thr	gtg Val	tat Tyr	gcg Ala 60	att Ile	gtg Val	gat Asp	gcg Ala	192
gtg Val 65	atg Met	aat Asn	aga Arg	gac Asp	cat His 70	ccg Pro	ttt Phe	att Ile	gga Gly	agt Ser 75	aga Arg	agt Ser	ttg Leu	gtt Val	80 ggg	240
gcg Ala	gcg Al.a	ttg Leu	cat His	agt Ser 85	Gly	agc Ser	tcg Ser	tat Tyr	gcg Ala 90	gtg Val	tgg Trp	gtt Val	cat His	tat Tyr 95	tgt Cys	288
gat Asp	aag Lys	tat Tyr	ttg Leu 100	gag Glu	ttc Phe	ttt Phe	gat Asp	acg Thr 105	Tyr	ttt Phe	atg Met	gtg Val	ttg Leu 110	agg Arg	Gly	336
aaa Lys	atg Met	gac Asp 115	Gln	gtc Val	tcc Ser	ttc Phe	ctc Leu 120	His	atc Ile	tac Tyr	cac His	cac His 125	Thr	acc Thr	ata Ile	384
gcg Ala	tgg Trp 130	Ala	tgg Trp	tgg Trp	atc	gcc Ala 135	Leu	arg	tto Phe	tcc Ser	Pro	Gly	gga Gly	gac Asp	att Ile	432
tac Tyr 145	Phe	. GJ7	gca Ala	cto Lev	ctc Leu 150	Asn	tco Ser	ato	c ato	c cac His	: Val	cto Lev	: atg . Met	tat Tyr	tcc Ser 160	480
tac Tyr	tac Tyr	gco Ala	c ctt a Lev	gco Ala 165	a Leu	. cto Lev	aag Lys	g gto Vai	agt 1 Sei 170	r Cys	cca Pro	tgg	g aaa D Lys	a cga s Arg 175	tac Tyr	528
cto Lei	g act	c caa	a gct n Ala 180	a Gli	a tta n Lev	ı ttg ı Lei	g caa	a tto n Pho 18	e Th	a agt r Sei	r gtg	g gto l Va:	g gti L Va: 19	r Ty	acg Thr	576
Gl; gg;	g tg y Cy:	t ac s Th 19	r Gly	t tai	t act	cat	tae Ty:	r Ty	t ca r Hi	t ac	g aag r Ly	g ca s Hi: 20	s GT	a gc	g gat a Asp	624
ga; Gl:	g ac u Th 21	r Gl	g cc n Pr	t ag o Se	t tta r Le	a gg ı Gl; 21	y Th	g ta r Ty	t ta r Ty	t tt r Ph	c tg e Cy 22	в Су	t gg s Gl	a gt y Va	g cag l Gln	672

gtg Val	ttt Phe	gag Glu	atg Met	gtt Val	Ser	ttg Leu	ttt Phe	gta Val	Leu	Phe	tcc Ser	atc Ile	ttt Phe	tat Tyr	aaa Lys 240	•	720
225					230					235					240		
cga Arg	tcc Ser	tat Tyr	tcg Ser	aag Lys 245	aag Lys	aac Asn	aag Lys	tca Ser	gga Gly 250	gga Gly	aag Lys	gat Asp	agc Ser	aag Lys 255	aag Lys	•	768
aat Asn	gat Asp	gat Asp	ggg Gly 260	aat Asn	aat Asn	gag Glu	gat Asp	caa Gln 265	tgt Cys	cac His	aag Lys	gct Ala	atg Met 270	aag Lys	gat Asp	:	816
ata Ile	tcg Ser	gag Glu 275	ggt Gly	gcg Ala	aag Lys	gag Glu	gtt Val 280	gtg Val	Gly ggg	cat His	gca Ala	gcg Ala 285	aag Lys	gat Asp	gct Ala	;	864
gga Gly	aag Lys 290	ttg Leu	gtg Val	gct Ala	acg Thr	gcg Ala 295	agt Ser	aag Lys	gct Ala	gta Val	aag Lys 300	agg Arg	aag Lys	gga Gly	act Thr		912
-	gtt Val					tag	-										933
<21	0>	64															
<21	1>	310	•	•		•	•	•		•							
<21	2>	PRT											•				
	_	PRT Thal	assi	osir	a pse	eudo:	nana										
	.3>		assi	osira	a pse	eudo:	nana				·(o						
<21 <40	.3>	Thal	•						Leu 10	Thr	Val	· Phe	Tyr	Leu 15	Leu	·	
<21 <40 Met	3>	Thal 64 Ser	Tyr	Lys 5	Val	Pro	Leu	Gly	10					15			
<21 <40 Met 1	3> 0> : His	Thal 64 Ser	Tyr Ser 20	Lys 5 Leu	Val	Pro Tyr	Leu Val	Gly Thr 25	10 Asp	Asn	Tyr	Leu	Ala 30	15 Lys	Lys		•
<21 <40 Met 1 Sei	3> 00> His Leu	Thal 64 Ser Pro Met 35	Tyr Ser 20 Lys	Lys 5 Leu Ser	Val Lys	Pro Tyr Leu	Leu Val Thr 40	Gly Thr 25 Glu	10 Asp Ser	Asn Met	Tyr Val	Leu Leu 45	Ala 30 Tyr	15 Lys Asn	Lys		•
<21 <40 Met 1 Sei	3> 0> His Leu Asp	Thala 64 Ser Pro Met 35	Tyr Ser 20 Lys	Lys 5 Leu Ser	Val Lys Leu Asn	Pro Tyr Leu Gly	Leu Val Thr 40	Gly Thr 25 Glu	Asp Ser	Asn Met Tyr	Tyr Val Ala	Leu Leu 45	Ala 30 Tyr	15 Lys Asn Asr	Lys . Val		
<21 <40 Met 1 Sell Tyl Ala Val 65	3> 0> His Leu Asp 50 I Met	Thala 64 Ser Pro Met 35 Val	Tyr Ser 20 Lys Leu	Lys 5 Leu Ser Leu	Val Lys Leu Asn His	Pro Tyr Leu Gly 55	Leu Val Thr 40 Trp	Gly Thr 25 Glu Thr	Asp Ser Val	Asn Met Tyr Ser 75	Tyr Val Ala 60	Leu 45 Ile	Ala 30 Tyr Val	Lys Asn Asn Val	Lys Val Ala		•
<21 <40 Met 1 Sei Tyi Ala Va: 65 Ala	3> 0> His Leu Asp 50 I Met	Thala 64 Ser Pro Met 35 Val	Tyr Ser 20 Lys Leu Arg	Lys 5 Leu Ser Leu Asp 85	Val Lys Leu Asn His 70	Pro Tyr Leu 55 Pro	Leu Val Thr 40 Trp	Gly Thr 25 Glu Thr	Asp Ser Val Gly Ala 90	Asn Met Tyr Ser 75	Tyr Val Ala 60 Arg	Leu 45 Ile Ser	Ala 30 Tyr Val	Lys Asn Asp Val	Lys Val Ala Gly 80		

Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile 115 . 120 125

Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile 130 135 140

Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser 145 150 155 160

Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr 165 170 175

Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val Val Tyr Thr
180 185 190

Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp 195 200 205

Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 210 215 220

Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys 225 230 235 240

Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys 245 250 255

Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp 260 265 270

Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala 275 280 285

Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr 290 295 300

Arg Val Thr Gly Ala Met 305 310

<210> 65

<211> 825

<212> DNA

<213> Thraustochytrium aureum

<220>

<221> CDS

<222> (1)..(825)

<223> Delta-5-Elongase

<400> 65

atg Met 1	acg Thr	agc Ser	aac Asn	atg Met 5	agc Ser	gcg Ala	tgg Trp	ggc	gtc Val 10	gcc Ala	gtc Val	gac Asp	cag Gln	acg Thr 15	cag Gln	48
cag Gln	gtc Val	gtc Val	gac Asp 20	cag Gln	atc Ile	atg Met	ggc	ggc Gly 25	gcc Ala	gag Glu	ccg Pro	tac Tyr	aag Lys 30	ctg Leu	aca Thr	96
gaa Glu	Gly aaa	cgc Arg 35	atg Met	acg Thr	aac Asn	gtc Val	gag Glu 40	acg Thr	atg Met	ctg Leu	gcg Ala	atc Ile 45	gag Glu	tgc Cys	Gly	144
tac Tyr	gcc Ala 50	gcc Ala	atg Met	ctg Leu	ctg Leu	ttc Phe 55	ctg Leu	acc Thr	ccg Pro	atc Ile	atg Met 60	aag Lys	cag Gln	gcc Ala	gag Glu	192
aag Lys 65	ccc Pro	ttc Phe	gag Glu	ctc Leu	aag Lys 70	tcc Ser	ttc Phe	aag Lys	ctc Leu	gcc Ala 75	cac His	aac Asn	ctg Leu	ttc Phe	ctg Leu 80	240
ttc Phe	gtc Val	ctg Leu	tcc Ser	gcc Ala 85	tac Tyr	atg Met	tgc Cys	ctc Leu	gag Glu 90	acc Thr	gtc Val	cgc Arg	cag Gln	gcc Ala 95	tac Tyr	288
ctt Leu	gcg Ala	Gly	tac Tyr 100	Ser	gtg Val	ttc Phe	ggc	aac Asn 105	gac Asp	atg Met	gag Glu	aag Lys	ggc Gly 110	agc Ser	gag Glu	336
ccg Pro	cac His	gcg Ala 115	Hi.s	ggc	atg Met	gcc Ala	caa Gln 120	atc Ile	gtg Val	tgg Trp	atc	ttt Phe 125	Tyr	gtg Val	tcc Ser	384
aag Lys	gcg Ala 130	Tyr	gag Glu	ttc Phe	gtg Val	gac Asp 135	Thr	ctg Leu	atc Ile	atg Met	atc Ile 140	e Leu	tgc Cys	aaa Lys	aag Lys	432
tto Phe 145	Asn	cag Glr	g gto 1 Val	tcc Sér	gtc Val	Leu	cac His	gtg Val	r tac . Tyr	cac His	His	gcc Ala	acc Thr	ato	ttt Phe 160	480
gct Ala	ato	tgg Tr	g ttt o Phe	ato Met 165	: Ile	gcc Ala	aag Lys	tac Ty:	gcc Ala 170	Pro	Gly ggq	A GJ7 C AAC	c gad / Asi	gca Ala 175	tac Tyr	528
ttt Phe	ago e Sei	c gto	c ato 1 Ile 18	e Lev	g aac ı Asr	tcg Sei	tto Phe	gtq Va: 18:	l His	c acc	gto Vai	c ato	tac t Ty:	r Ala	g tac a Tyr	576
tac Ty:	c tto	c tt e Ph 19	e Se	g tcg r Se:	g caq r Gli	g ggo n Gly	y Pho	e G l	g tto y Phe	e gto	aa Ly	g cc s Pr 20	O II	c aa e Ly	g ccg s Pro	624
ta Ty:	c ater Ile	e Th	c tc r Se	g cte	g caq u Gli	g atended and market a	t Th	g ca r Gl	g tto n Pho	c at	g gc t Al 22	a Me	g ct t Le	c gt u Va	g cag l Gln	672

tcg Ser 225	ctg Leu	tac Tyr	gac Asp	Tyr	ctt Leu 230	tac Tyr	ccg Pro	tgc Cys	Asp	tac Tyr 235	ccg Pro	cag Gln	GJA aaa	ctc Leu	gtc Val 240	720
aag Lys	ctc Leu	ctc Leu	ggc Gly	gtg Val 245	tac Tyr	atg Met	ctc Leu	acc Thr	ctg Leu 250	ctt Leu	gcg Ala	ctc Leu	ttc Phe	ggc Gly 255	aac Asn	768
ttt Phe	ttc Phe	gtg Val	cag Gln 260	agc Ser	tac Tyr	ctc Leu	aag Lys	aag Lys 265	tcg Ser	aac Asn	aag Lys	ccc Pro	aag Lys 270	gcc Ala	aag Lys	816
tcg Ser		taa														825
<210)>	66	÷.	٠.						• .						
<211	,>	274		•									•			
<212	2>	PRT														
<213	3>	Thra	usto	chyti	cium	aure	eum									
<400)>	66														
Met 1	Thr	Ser	Asn	Met 5	Ser	Ala	Trp	Gly	Val	Ala	Val	Asp	Gln	Thr 15	Gln	
Gln	Val	. Val	Asp 20	Gln	Ile	Met	Gly	Glý 25	Ala	Glu	Pro	Tyr	Lys 30	Leu	Thr	
Glu	Gly	Arg 35	, Met	Thr	Asn		Glu 40	Thr	Met	Leu	Ala	Ile 45	Glu	Cys	Gly	
Tyr	Ala 50	a Ala	a Met	Leu	Leu	Phe 55	Leu	Thr	Pro	Ile	Met 60	Lys	Gln	. Ala	Glu	
Lys 65	Pro) Phe	e Glu	Leu	. Lys 70	Ser	Phe	Lys	: Leu	· Ala 75	. His	Asn	. Leu	Phe	Leu 80	
Phe	Va.	l Le	ı Ser	: Ala 85	Tyr	Met	Cys	Lev	90	. Thr	Val	Arg	Glr	Ala 95	Tyr	
Leu	Ala	a Gl	у Туі 100		. Val	. Phe	: Gly	Asr 105		Met	: Glu	. Lys	Gly 110	y Sei	Glu	
Pro	Hi.	s Al 11		s Gly	y Met	: Ala	120		e Val	. Tr <u>j</u>	o Ile	2 Phe 125		c Val	L Ser	
Lys	3 Al		r Gl	ı Phe	e Val	L Asp 135		r Le	u Ile	e Met	140		ı Cys	s Ly:	s Lys	
Phe 145		n Gl	n Va	l Sei	r Val	_	ı Hi	s Va	1 Ty:	15		s Ala	a Th:	r Il	e Phe 160	

Ala Ile Trp Phe Met Ile Ala Lys Tyr Ala Pro Gly Gly Asp Ala Tyr 165 Phe Ser Val Ile Leu Asn Ser Phe Val His Thr Val Met Tyr Ala Tyr 185 180 Tyr Phe Phe Ser Ser Gln Gly Phe Gly Phe Val Lys Pro Ile Lys Pro 200 Tyr Ile Thr Ser Leu Gln Met Thr Gln Phe Met Ala Met Leu Val Gln 215 Ser Leu Tyr Asp Tyr Leu Tyr Pro Cys Asp Tyr Pro Gln Gly Leu Val 240 230 Lys Leu Leu Gly Val Tyr Met Leu Thr Leu Leu Ala Leu Phe Gly Asn 250 245 Phe Phe Val Gln Ser Tyr Leu Lys Lys Ser Asn Lys Pro Lys Ala Lys 265 260 Ser Ala <210> 67 <211> 903 <212> DNA <213> Ostreococcus tauri <220> <221> CDS <222> (1)..(903) <223> Delta-5-Elongase <400> 67 atg age gee tee ggt geg etg etg eec geg ate geg tte gee geg tae Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr 5 gcg tac gcg acg tac gcc tac gcc ttt gag tgg tcg cac gcg aat ggc 96 Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly 25 atc gac aac gtc gac gcg cgc gag tgg atc ggt gcg ctg tcg ttg agg 144 Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 40 35

									124							
ctc Leu	ccg Pro 50	gcg Ala	atc Ile	gcg Ala	acg Thr	acg Thr 55	atg Met	tac Tyr	ctg Leu	ttg Leu	ttc Phe 60	tgc Cys	ctg Leu	gtc Val	gga Gly	192
ccg Pro 65	agg Arg	ttg Leu	atg Met	gcg Ala	aag Lys 70	cgc Arg	gag Glu	gcg Ala	ttc Phe	gac Asp 75	ccg Pro	aag Lys	Gly aaa	ttc Phe	atg Met 80	240
ctg Leu	gcg Ala	tac Tyr	aat Asn	gcg Ala 85	tat Tyr	cag Gln	acg Thr	gcg Ala	ttc Phe 90	aac Asn	gtc Val	gtc Val	gtg Val	ctc Leu 95	Gl ⁷ aaa	288
atg Met	ttc Phe	gcg Ala	cga Arg 100	gag Glu	atc Ile	tcg Ser	GJÀ ààà	ctg Leu 105	ggg ggg	cag Gln	ccc Pro	gtg Val	tgg Trp 110	GJA āāā	tca Ser	336
acc Thr	atg Met	ccg Pro 115	tgg Trp	agc Ser	gat Asp	aga Arg	aaa Lys 120	tcg Ser	ttt Phe	aag Lys	Ile	ctc Leu 125	ctc Leu	GJA aaa	gtg Val	384
tgg Trp	ttg Leu 130	cac His	tac Tyr	aac Asn	aac Asn	caa Gln 135	Tyr	ttg Leu	gag Glu	cta Leu	ttg	gac	act Thr	gtg Val	ttc Phe	432
atg Met 145	gtt Val	gcg Ala	cgc Arg	aag Lys	aag Lys 150	acg Thr	aag Lys	cag Gln	ttg Leu	agc Ser 155	ttc Phe	ttg Leu	cac His	gtt Val	tat Tyr 160	480
cat His	cac His	gcc Ala	ctg Leu	ttg Leu 165	atc	tgg Trp	gcg Ala	tgg Trp	tgg Trp 170	Leu	gtg Val	tgt Cys	cac His	ttg Leu 175	atg Met	528
gcc Ala	acg Thr	aac Asn	gat Asp 180	Cys	atc Ile	gat Asp	gcc Ala	tac Tyr 185	Phe	Gly	gcg	gcg Ala	tgc Cys 190	aac Asn	tcg Ser	576
ttc Phe	att Ile	cac His 195	Ile	gtg Val	atg Met	tac Tyr	tcg Ser 200	Tyr	tat Tyr	ctc	atg Met	tcg Ser 205	Ala	ctc Leu	Gly	624
att Ile	cga Arg 210	Cys	ccg Pro	tgg Trp	aag Lys	cga Arg 215	Tyr	atc : Ile	acc Thr	cag Gln	gct Ala 220	Gln	atg Met	ctc Leu	caa Gln	672
tto Phe 225	val	att Ile	gto Val	tto Phe	gcg Ala 230	. His	gcc Ala	gtg Val	tto Phe	gtg Val 235	. Let	g cgt 1 Arg	cag Glr	aag Lys	cac His 240	720
tgo Cys	ccç Pro	g gto Val	acc L Thr	ctt Let 249	ı Pro	tgg	gcg Ala	g caa a Glr	a ato 1 Met 250	: Phe	gto Vai	c ato l Met	g acc	aac Asr 255	atg Met	768
cto Lev	gtç ı Val	g cto L Le	260	e Gl	g aad y Asi	c tto n Phe	tao	c cto Let 26!	ı Lys	g gcg s Ala	g tao	c tcg r Se	g aad c Asi 270	ı Lys	g tcg s Ser	816

125 864 cgc ggc gac ggc gcg agt tcc gtg aaa cca gcc gag acc acg cgc gcg Arg Gly Asp Gly Ala Ser Ser Val Lys Pro Ala Glu Thr Thr Arg Ala 280 903 ccc age gtg cga cgc acg cga tct cga aaa att gac taa Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp 295 <210> 68 <211> 300 <212> PRT <213> Ostreococcus tauri <400> 68 Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr 10 5 Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly 25 Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 40 35 Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly 55 Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met 75 70 Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Val Leu Gly 90 Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser 100 105 Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val 120 Trp Leu His Tyr Asn Asn Gln Tyr Leu Glu Leu Leu Asp Thr Val Phe 135 130 Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 155 150 His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met 170 Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser 180 Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly

200

Ile Arg		Pro	Trp	Lys	Arg 215	Tyr	Ile	Thr	Gln	Ala 220	Gln	Met	Leu	Gln	
Phe Val	l Ile	Val	Phe	Ala 230	His	Ala	Val	Phe	Val 235	Leu	Arg	Gln	Lys	His 240	
Cys Pr	o Val	Thr	Leu 245	Pro	Trp	Ala	Gln	Met 250	Phe	Val	Met	Thr	Asn 255	Met	
Leu Va	l Leu	Phe 260	Gly	Asn	Phe	Tyr	Leu 265	Lys	Ala	Tyr	Ser	Asn 270	Lys	Ser	
Arg Gl	y Asp 275		Ala	Ser	Ser	Val 280	Lys	Pro	Ala	Glu	Thr 285	Thr	Arg	Ala	
Pro Se 29		Arg	Arg	Thr	Arg 295	Ser	Arg	Lys ··	Ile	Asp 300					
<210>	69														
<211>	879														
<212>	DNA														
<213>	Ostr	eoco	ccus	tau	ri	٠.						•			
<220>								*							
<221>	CDS							-			•				
<222>	(1).	. (87	9)		•		2								
<223>	Delt	:a-6-	Elon	gase											
<400>	69						•								
atg ag			aat	ac a	ccc	220	+++	tta	cac	aga	ttc	taa	aca	aaq	48
Met Se	er Gly	Leu	Arg 5	Ala	Pro	Asn	Phe	Leu 10	His	Arg	Phe	Trp	Thr 15	Lys	
tgg ga	ac tao	gcg Ala 20	att Ile	tcc Ser	aaa Lys	gtc Val	gto Val 25	ttc Phe	acg Thr	tgt Cys	gcc Ala	gac Asp 30	agt Ser	ttt Phe	96
cag to	gg ga rp Asj 35	e ato o Ile	: Gly	g cca g Pro	gtg Val	agt Ser 40	tcg Ser	g agt	acg Thr	gcg Ala	g cat A His 45	: tta : Leu	. ccc . Pro	gcc Ala	144
att g Ile G 5	lu Se	c cct r Pro	acc Thr	c cca	ctg Leu 55	gtg Val	s act . Thr	ago Sei	cto Lev	tto Lev 60	g tto 1 Phe	e tac • Tyr	tta Leu	gtc Val	192
aca g Thr V 65	tt tt al Ph	c tto e Lev	g tgg ı Tr <u>p</u>	tat Tyi	ggt Gly	cgt Arg	tta Lei	a aco	c agg c Arg 75	g agt g Se:	t toa r Sei	a gad r As <u>r</u>	aaç Lys	aaa Lys 80	240

att Ile	aga Arg	gag Glu	cct Pro	acg Thr 85	tgg Trp	tta Leu	aga Arg	aga Arg	ttc Phe 90	ata Ile	ata Ile	tgt Cys	cat His	aat Asn 95	gcg Ala	288
ttc Phe	ttg Leu	ata Ile	gtc Val 100	ctc Leu	agt Ser	ctt Leu	tac Tyr	atg Met 105	tgc Cys	ctt Leu	ggt Gly	tgt Cys	gtg Val 110	gcc Ala	caa Gln	336
gcg Ala	tat Tyr	cag Gln 115	aat Asn	gga Gly	tat Tyr	act Thr	tta Leu 120	tgg Trp	ggt Gly	aat Asn	gaa Glu	ttc Phe 125	aag Lys	gcc Ala	acg Thr	384
gaa Glu	act Thr 130	cag Gln	ctt Leu	gct Ala	ctc Leu	tac Tyr 135	att Ile	tac Tyr	att Ile	ttt Phe	tac Tyr 140	gta Val	agt Ser	aaa Lys	ata Ile	432
tac Tyr 145	gag Glu	ttt Phe	gta Val	gat Asp	act Thr 150	tac Tyr	att Ile	atg Met	ctt Leu	ctc Leu 155	aag Lys	aat Asn	aac Asn	ttg Leu	cgg Arg 160	480
caa Gln	gta Val	agt Ser	ttc Phe	cta Leu 165	cac His	att Ile	tat Tyr	cac His	cac His 170	agc Ser	acg Thr	att Ile	tcc Ser	ttt Phe 175	att Ile	528
tgg Trp	tgg Trp	atc Ile	att Ile 180	gct Ala	cgg Arg	agg Arg	gct Ala	ccg Pro 185	ggt Gly	ggt Gly	gat Asp	gct Ala	tac Tyr 190	ttc Phe	agc Ser	576
gcg Ala	gcc Ala	ttg Leu 195	aac Asn	tca Ser	tgg Trp	gta Val	cac His 200	Val	tgc Cys	atg Met	tac Tyr	acc Thr 205	tat Tyr	tat Tyr	cta Leu	624
tta Leu	tca Ser 210	acc Thr	ctt Leu	att Ile	gga Gly	aaa Lys 215	gaa Glu	gat Asp	cct Pro	aag Lys	cgt Arg 220	tcc Ser	aac Asn	tac Tyr	ctt Leu	672
tgg Trp 225	tgg Trp	ggt Gly	cgc Arg	cac His	cta Leu 230	Thr	caa Gln	. atg . Met	cag Gln	atg Met 235	Leu	cag Gln	ttt Phe	ttc Phe	ttc Phe 240	720
aac Asn	gta Val	ctt Leu	caa Gln	gcg Ala 245	Leu	tac Tyr	tgc Cys	gct Ala	tcg Ser 250	Phe	tct Ser	acg Thr	tat Tyr	ccc Pro 255		768
ttt Phe	ttg Leu	tcc Ser	aaa Lys 260	Ile	ctg Lev	cto Leu	gto Val	tat Tyr 265	Met	atg Met	agc Ser	ctt Leu	cto Leu 270	Gly	ttg Leu	816
ttt Phe	ggg Gly	cat His	Phe	tac Tyr	tat Tyr	tcc Ser	aag Lys 280	His	ata : Ile	gca Ala	gca Ala	gct Ala 285	Lys	f cto Lev	cag Gln	864
		Glr	g cag n Glr		L											879

<210> 70

<211> 292

<212> PRT

<213> Ostreococcus tauri

<400> 70

Met Ser Gly Leu Arg Ala Pro Asn Phe Leu His Arg Phe Trp Thr Lys

1 10 15

Trp Asp Tyr Ala Ile Ser Lys Val Val Phe Thr Cys Ala Asp Ser Phe 20 25 30

Gln Trp Asp Ile Gly Pro Val Ser Ser Ser Thr Ala His Leu Pro Ala 35 40 45

Ile Glu Ser Pro Thr Pro Leu Val Thr Ser Leu Leu Phe Tyr Leu Val 50 55 60

Thr Val Phe Leu Trp Tyr Gly Arg Leu Thr Arg Ser Ser Asp Lys Lys 65 70 75 80

Ile Arg Glu Pro Thr Trp Leu Arg Arg Phe Ile Ile Cys His Asn Ala 85 90 95

Phe Leu Ile Val Leu Ser Leu Tyr Met Cys Leu Gly Cys Val Ala Gln
100 105 110

Ala Tyr Gln Asn Gly Tyr Thr Leu Trp Gly Asn Glu Phe Lys Ala Thr 115 120 125

Glu Thr Gln Leu Ala Leu Tyr Ile Tyr Ile Phe Tyr Val Ser Lys Ile 130 135 140

Tyr Glu Phe Val Asp Thr Tyr Ile Met Leu Leu Lys Asn Asn Leu Arg 145 150 155 160

Gln Val Ser Phe Leu His Ile Tyr His His Ser Thr Ile Ser Phe Ile 165 170 175

Trp Trp Ile Ile Ala Arg Arg Ala Pro Gly Gly Asp Ala Tyr Phe Ser 180 185 190

Ala Ala Leu Asn Ser Trp Val His Val Cys Met Tyr Thr Tyr Tyr Leu
195 200 205

Leu Ser Thr Leu Ile Gly Lys Glu Asp Pro Lys Arg Ser Asn Tyr Leu 210 215 220

Trp Trp Gly Arg His Leu Thr Gln Met Gln Met Leu Gln Phe Phe 225 230 235 240

Asn Val Leu Gln Ala Leu Tyr Cys Ala Ser Phe Ser Thr Tyr Pro Lys 250 245 Phe Leu Ser Lys Ile Leu Leu Val Tyr Met Met Ser Leu Leu Gly Leu 270 265 260 Phe Gly His Phe Tyr Tyr Ser Lys His Ile Ala Ala Ala Lys Leu Gln 280 Lys Lys Gln Gln 290 <210> 71 <211> 1362 <212> DNA <213> Primula farinosa <220> <221> CDS <222> (1)..(1362) <223> Delta-6-Desaturase <400> 71 9 atg gct aac aaa tct cca cca aac ccc aaa aca ggt tac ata acc agc Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Ser tca gac ctg aaa tcc cac aac aag gca ggt gac cta tgg ata tca atc 96 Ser Asp Leu Lys Ser His Asn Lys Ala Gly Asp Leu Trp Ile Ser Ile 20 cac ggc caa gtc tac gac gtg tcc tct tgg gcc gcc ctt cat ccg ggg 144 His Gly Gln Val Tyr Asp Val Ser Ser Trp Ala Ala Leu His Pro Gly 40 ggc act gcc cct ctc atg gcc ctt gca gga cac gac gtg acc gat gct 192 Gly Thr Ala Pro Leu Met Ala Leu Ala Gly His Asp Val Thr Asp Ala 55 50 ttc ctc gcg tac cat ccc cct tcc act gcc cgt ctc ctc cct cct ctc 240 Phe Leu Ala Tyr His Pro Pro Ser Thr Ala Arg Leu Leu Pro Pro Leu 75 70 65 tot acc aac ctc ctt ctt caa aac cac tcc gtc tcc ccc acc tcc tca 288 Ser Thr Asn Leu Leu Gln Asn His Ser Val Ser Pro Thr Ser Ser 90 85

									130							
gac Asp	tac Tyr	cgc Arg	aaa Lys 100	ctc Leu	ctc Leu	gac Asp	aac Asn	ttc Phe 105	cat His	aaa Lys	cat His	Gly	ctt Leu 110	ttc Phe	cgc Arg	336
gcc Ala	agg Arg	ggc Gly 115	cac His	act Thr	gct Ala	tac Tyr	gcc Ala 120	acc Thr	ttc Phe	gtc Val	ttc Phe	atg Met 125	ata Ile	gcg Ala	atg Met	384
ttt Phe	cta Leu 130	atg Met	agc Ser	gtg Val	act Thr	gga Gly 135	gtc Val	ctt Leu	tgc Cys	agc Ser	gac Asp 140	agt Ser	gcg Ala	tgg Trp	gtc Val	432
cat His 145	ttg Leu	gct Ala	agc Ser	ggc Gly	gga Gly 150	gca Ala	atg Met	GJÀ aaa	ttc Phe	gcc Ala 155	tgg Trp	atc Ile	caa Gln	tgc Cys	gga Gly 160	480
tgg Trp	ata Ile	ggt Gly	cac His	gac Asp 165	tct Ser	Gly ggg	cat His	tac Tyr	cgg Arg 170	att Ile	atg Met	tct Ser	gac Asp	agg Arg 175	aaa Lys	528
tgg Trp	aac Asn	tgg Trp	ttc Phe 180	gcg Ala	caa Gln	atc Ile	cta Leu	agc Ser 185	aca Thr	aac Asn	tgc Cys	ctc Leu	cag Gln 190	Gly	att Ile	576
agt Ser	atc Ile	Gly	tgg Trp	Trp	aag Lys	tgg Trp	aac Asn 200	cat His	aat Asn	gcg Ala	cac	cac His 205	atc Ile	gct Ala	tgc Cys	624
aat Asn	agc Ser 210	Leu	gat Asp	tac Tyr	gac Asp	ccc Pro 215	gac Asp	ctc Leu	cag Gln	tat Tyr	ato Ile 220	Pro	ttg Leu	ctc Leu	gtc Val	672
gtc Val 225	Ser	ccc	aag Lys	ttc Phe	ttc Phe 230	Asn	tcc Ser	ctt Leu	act Thr	tct Ser 235	Arc	tto Phe	tac Tyr	gac Asp	aag Lys 240	720
aag Lys	cto	aac Asi	ttc Phe	gac Asp 245	Gly	gtg Val	. Ser	Arc	ttt Phe 250	e Leu	. Val	t tgo L Cys	туг	cag Glr 255	cac His	768
tgg Trp	aco Thr	tti Phe	tate Tyr	Pro	g gtc Val	ato Met	tgt Cys	gto Val 265	L Ala	agg Arg	g cto	g aad 1 Asi	ato 1 Met 270	: Let	gcg Ala	. 816
cag Glr	r tca Sei	tti Pho	e Ile	a acg	g ctt c Leu	tto 1 Phe	tcg Se: 28	s Sei	z agg	g gag g Glu	g gte	g tgo 1 Cy: 28	s His	agg Arg	g gcg g Ala	864
caa Glr	a gaq a Gli 29	u Va	t tto 1 Pho	c gga e Gl	a cti y Lei	29!	a Va	g tt: 1 Ph	t tgg	g gti p Vai	t tg 1 Tr 30	p Ph	t cco	g ct [.]	t tta u Leu	912
ctt Let 30	ı Se	t tg r Cy	t tta	a cc u Pr	t aat o Asi 31	n Tr	b el	c ga y Gl	g ag u Ar	g at g Il 31	e Me	g tt t Ph	t tt e Le	g ct u Le	t gcg u Ala 320	960

									131							
agc Ser	tat Tyr	tcc Ser	gtt Val	acg Thr 325	GJĀ āāā	ata Ile	caa Gln	cac His	gtg Val 330	cag Gln	ttc Phe	agc Ser	ttg Leu	aac Asn 335	cat His	1008
ttt Phe	tct Ser	tcg Ser	gac Asp 340	gtc Val	tat Tyr	gtg Val	ggc	ccg Pro 345	cca Pro	gta Val	ggt Gly	aat Asn	gac Asp 350	tgg Trp	ttc Phe	1056
						aca Thr										1104
gat Asp	tgg Trp 370	ttc Phe	cat His	ggc Gly	Gly ggg	tta Leu 375	cag Gln	ttt Phe	cag Gln	gtc Val	gag Glu 380	cac His	cac His	ttg Leu	ttt Phe	1152
ccg Pro 385	cgg Arg	atg Met	cct Pro	agg Arg	ggt Gly 390	cag Gln	ttt Phe	agg Arg	aag Lys	att Ile 395	tct Ser	cct Pro	ttt Phe	gtg Val	agg Arg 400	1200
gat Asp	ttg Leu	tgt Cys	aag Lys	aaa Lys 405	cac His	aac Asn	ttg Leu	cct Pro	tac Tyr 410	aat Asn	atc Ile	gcg Ala	tct Ser	ttt Phe 415	act Thr	1248
aaa Lys	gcg Ala	aat Asn	gtg Val 420	ttt Phe	acg Thr	ctt Leu	aag Lys	acg Thr 425	ctg Leu	aga Arg	aat Asn	acg Thr	gcc Ala 430	att Ile	gag Glu	1296
gct Ala	cgg Arg	gac Asp 435	ctc	tct Ser	aat Asn	ccg Pro	ctc Leu 440	cca Pro	aag Lys	aat Asn	atg Met	gtg Val 445	tgg Trp	gaa Glu	gct Ala	1344
			ctc Leu							ů.						1362
<21	0>	72 .														
<21	1>	453														
<21	2>	PRT										•				
<21	3>	Prin	ula	fari	nosa											
<40	0>	72													,	
Met 1	. Ala	. Asr	Lys	Ser 5	Pro) Pro	Asn	n Pro	Lys 10	Thr	: Gly	туг	: Ile	Thr 15	Ser	
Ser	As <u>r</u>	Lev	Lys 20	Ser	His	: Asn	. Lys	Ala 25	Gly	Asp	Leu	Tr	30	Ser	: Ile	
His	: Gly	7 Glr 35	ı Val	. Туг	. Asr	Val	. Ser 40	s Ser	Tr) Ala	a Ala	Let 45	ı His	Pro	Gly	

Gly Thr Ala Pro Leu Met Ala Leu Ala Gly His Asp Val Thr Asp Ala 55 Phe Leu Ala Tyr His Pro Pro Ser Thr Ala Arg Leu Leu Pro Pro Leu 75 70 Ser Thr Asn Leu Leu Gln Asn His Ser Val Ser Pro Thr Ser Ser 90 Asp Tyr Arg Lys Leu Leu Asp Asn Phe His Lys His Gly Leu Phe Arg 105 100 Ala Arg Gly His Thr Ala Tyr Ala Thr Phe Val Phe Met Ile Ala Met 120 115 Phe Leu Met Ser Val Thr Gly Val Leu Cys Ser Asp Ser Ala Trp Val 135 His Leu Ala Ser Gly Gly Ala Met Gly Phe Ala Trp Ile Gln Cys Gly 155 150 Trp Ile Gly His Asp Ser Gly His Tyr Arg Ile Met Ser Asp Arg Lys 165 170 Trp Asn Trp Phe Ala Gln Ile Leu Ser Thr Asn Cys Leu Gln Gly Ile 185 180 Ser Ile Gly Trp Trp Lys Trp Asn His Asn Ala His His Ile Ala Cys 200 Asn Ser Leu Asp Tyr Asp Pro Asp Leu Gln Tyr Ile Pro Leu Leu Val 215 210 Val Ser Pro Lys Phe Phe Asn Ser Leu Thr Ser Arg Phe Tyr Asp Lys 235 Lys Leu Asn Phe Asp Gly Val Ser Arg Phe Leu Val Cys Tyr Gln His 250 245 Trp Thr Phe Tyr Pro Val Met Cys Val Ala Arg Leu Asn Met Leu Ala 260 Gln Ser Phe Ile Thr Leu Phe Ser Ser Arg Glu Val Cys His Arg Ala 280 Gln Glu Val Phe Gly Leu Ala Val Phe Trp Val Trp Phe Pro Leu Leu 295 Leu Ser Cys Leu Pro Asn Trp Gly Glu Arg Ile Met Phe Leu Leu Ala 310 305 Ser Tyr Ser Val Thr Gly Ile Gln His Val Gln Phe Ser Leu Asn His 330 Phe Ser Ser Asp Val Tyr Val Gly Pro Pro Val Gly Asn Asp Trp Phe

133 Lys Lys Gln Thr Ala Gly Thr Leu Asn Ile Ser Cys Pro Ala Trp Met 360 355 Asp Trp Phe His Gly Gly Leu Gln Phe Gln Val Glu His His Leu Phe 380 Pro Arg Met Pro Arg Gly Gln Phe Arg Lys Ile Ser Pro Phe Val Arg 395 390 Asp Leu Cys Lys Lys His Asn Leu Pro Tyr Asn Ile Ala Ser Phe Thr 410 405 Lys Ala Asn Val Phe Thr Leu Lys Thr Leu Arg Asn Thr Ala Ile Glu 425 Ala Arg Asp Leu Ser Asn Pro Leu Pro Lys Asn Met Val Trp Glu Ala 440 Leu Lys Thr Leu Gly 450 <210> 73 <211> 1362 <212> DNA <213> Primula vialii <220> <221> CDS <222> (1)..(1362) <223> Delta-6-Desaturase <400> 73 atg gct aac aaa tct cca cca aac ccc aaa aca ggt tac att acc agc 48 Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Ser 1 tca gac ctg aaa ggg cac aac aaa gca gga gac cta tgg ata tca atc Ser Asp Leu Lys Gly His Asn Lys Ala Gly Asp Leu Trp Ile Ser Ile cac ggg gag gta tac gac gtg tcc tcg tgg gcc ggc ctt cac ccg ggg 144 His Gly Glu Val Tyr Asp Val Ser Ser Trp Ala Gly Leu His Pro Gly 40 . ggc agt gcc ccc ctc atg gcc ctc gca gga cac gac gta acc gac gct 192

Gly Ser Ala Pro Leu Met Ala Leu Ala Gly His Asp Val Thr Asp Ala

55

50

								•	134							
ttt Phe 65	cta Leu	gcg Ala	tat Tyr	cat His	cct Pro 70	cct Pro	tct Ser	acc Thr	gcc Ala	cgc Arg 75	ctc Leu	ctc Leu	cct Pro	ccc Pro	ctc Leu 80	240
tcc Ser	acc Thr	aac Asn	ctc Leu	ctc Leu 85	ctt Leu	caa Gln	aac Asn	cac His	tcc Ser 90	gtc Val	tcc Ser	ccc Pro	acc Thr	tcc Ser 95	tơt Ser	288
gac Asp	tac Tyr	cgc Arg	aaa Lys 100	ctc Leu	ctc Leu	cac His	aac Asn	ttc Phe 105	cat His	aaa Lys	att Ile	ggt Gly	atg Met 110	ttc Phe	cgc Arg	336
gcc Ala	agg Arg	ggc Gly 115	cac His	act Thr	gct Ala	tac Tyr	gcc Ala 120	acc Thr	ttc Phe	gtc Val	atc Ile	atg Met 125	ata Ile	gtg Val	atg Met	384
ttt Phe	cta Leu 130	acg Thr	agc Ser	gtg Val	acc Thr	gga Gly 135	gtc Val	ctt Leu	tgc Cys	agc Ser	gac Asp 140	agt Ser	gcg Ala	tgg Trp	gtc Val	432
cat His 145	ctg Leu	gct Ala	agc Ser	ggc Gly	gca Ala 150	gca Ala	atg Met	Gly aaa	ttc Phe	gcc Ala 155	tgg Trp	atc Ile	cag Gln	tgc Cys	gga Gly 160	480
tgg Trp	ata	ggt Gly	cac His	gac Asp 165	tct Ser	Gly	cat His	tac Tyr	cgg Arg 170	att Ile	atg Met	tct Ser	gac Asp	agg Arg 175	aaa Lys	528
tgg Trp	aac Asn	tgg Trp	ttc Phe 180	gcg Ala	cag Gln	gtc Val	ctg Leu	agc Ser 185	aca Thr	aac Asn	tgc Cys	ctc Leu	cag Gln 190	GJĀ āāā	atc Ile	576
agt Ser	atc Ile	ggg Gly 195	Trp	tgg Trp	aag Lys	tgg Trp	aac Asn 200	His	aac Asn	gcc Ala	cac His	cac His 205	Ile	gct Ala	tgc Cys	624
aat Asn	agc Ser 210	Leu	gac Asp	tac Tyr	gac Asp	ccc Pro 215	gac Asp	ctc Leu	cag Gln	tat Tyr	atc Ile 220	Pro	ttg Leu	ctc Leu	gtg Val	672
gtc Val 225	Ser	ccc Pro	aag Lys	ttc Phe	ttc Phe 230	Asn	tcc Ser	ctt Leu	act Thr	tct Ser 235	Arg	ttc Phe	tac Tyr	gac Asp	aag Lys 240	. 720
aag Lys	cto Leu	aat Asr	tto Phe	gac Asp 245	Gly	gtg Val	tca Ser	agg Arg	ttt Phe 250	. Lev	gtt 1 Val	tgo . Cys	tac Tyr	cag Glr 255	cac His	768
tgg Trp	acg Thr	r ttt	tat Tyr 260	Pro	gto Val	atg Met	tgt Cys	gto Val 265	. Ala	agg Arg	g cta g Lev	aac 1 Asr	ato Met 270	: Ile	gca Ala	816
cag Glr	tcg Sei	ttt Phe 27	e Ile	a aco	g ctt c Leu	tto 1 Phe	tcg Ser 280	s Ser	ago Aro	g gag g Glu	g gtg ı Val	28! 28!	y His	agg Arg	g gcg g Ala	864

										135							
(caa Gln	gag Glu 290	att Ile	ttc Phe	gga Gly	ctt Leu	gct Ala 295	gtg Val	ttt Phe	tgg Trp	gtt Val	tgg Trp 300	ttt Phe	ccg Pro	ctc Leu	ctg Leu	912
]	ctc Leu 305	tct Ser	tgc Cys	tta Leu	cct Pro	aat Asn 310	tgg Trp	agc Ser	gag Glu	agg Arg	att Ile 315	atg Met	ttt Phe	ctg Leu	cta Leu	gcg Ala 320	960
	agc Ser	tat Tyr	tcc Ser	gtt Val	acg Thr 325	Gly aaa	ata Ile	cag Gln	cac His	gtg Val 330	cag Gln	ttc Phe	agc Ser	ttg Leu	aac Asn 335	cat His	1008
	ttt Phe	tct Ser	tcg Ser	gac Asp 340	gtc Val	tac Tyr	gtg Val	ggc Gly	ccg Pro 345	cca Pro	gta Val	gct Ala	aac Asn	gac Asp 350	tgg Trp	ttc Phe	1056
	aag Lys	aaa Lys	cag Gln 355	act Thr	gct Ala	GJÀ aàa	aca Thr	ctt Leu 360	aac Asn	ata Ile	tcg Ser	tgc Cys	ccg Pro 365	gcg Ala	tgg Trp	atg Met	1104
	gac Asp	tgg Trp 370	ttc Phe	cat His	ggc	ggg	ttg Leu 375	cag Gln	ttt Phe	cag Gln	gtc Val	gag Glu 380	cac His	cac His	ttg Leu	ttt Phe	1152 .
	ccg Pro 385	cgg Arg	atg Met	cct	agg Arg	ggt Gly 390	cag Gln	ttt Phe	agg Arg	aag Lys	att Ile 395	tct Ser	cct Pro	ttt	gtg Val	agg Arg 400	1200
	gat Asp	ttg Leu	tgt Cys	aag Lys	aaa Lys 405	cac His	aac Asn	ttg Leu	cct Pro	tac Tyr 410	aat Asn	atc ·Ile	gcg Ala	tct Ser	ttt Phe 415	act Thr	1248
	aaa Lys	gca Ala	. aac . Asn	gtg Val 420	Leu	acg Thr	ctt Leu	aag Lys	acg Thr 425	Leu	aga Arg	aat Asn	acg Thr	gcc Ala 430	Ile	gag Glu	1296
	gct Ala	cgg Arg	gac Asp 435	Leu	tct Ser	aat Asn	. ccg . Pro	acc Thr 440	Pro	aag Lys	aat Asn	atg Met	gtg Val	Trp	gaa Glu	gcc Ala	1344
			s Thr	cac His		tag	r										1362
	<21	.0>	74														
	<21	L1>	453														
	<21	L2>	PRT														
	<23	L3>	Pri	mula	via:	lii											
	<40	00>	74														
	Mei 1	t Ala	a As:	n Ly:	s Se: 5	r Pro	o Pro	o As:	n Pro	5 Ly:	s Th	r Gl	у Ту	r Il	e Th:	r Ser	

Ser Asp Leu Lys Gly His Asn Lys Ala Gly Asp Leu Trp Ile Ser Ile

His Gly Glu Val Tyr Asp Val Ser Ser Trp Ala Gly Leu His Pro Gly

Gly Ser Ala Pro Leu Met Ala Leu Ala Gly His Asp Val Thr Asp Ala

Phe Leu Ala Tyr His Pro Pro Ser Thr Ala Arg Leu Leu Pro Pro Leu 75

Ser Thr Asn Leu Leu Gln Asn His Ser Val Ser Pro Thr Ser Ser 90

Asp Tyr Arg Lys Leu Leu His Asn Phe His Lys Ile Gly Met Phe Arg 100

Ala Arg Gly His Thr Ala Tyr Ala Thr Phe Val Ile Met Ile Val Met 120

Phe Leu Thr Ser Val Thr Gly Val Leu Cys Ser Asp Ser Ala Trp Val 135 130

His Leu Ala Ser Gly Ala Ala Met Gly Phe Ala Trp Ile Gln Cys Gly 145

Trp Ile Gly His Asp Ser Gly His Tyr Arg Ile Met Ser Asp Arg Lys 170 . 175

Trp Asn Trp Phe Ala Gln Val Leu Ser Thr Asn Cys Leu Gln Gly Ile 180 185

Ser Ile Gly Trp Trp Lys Trp Asn His Asn Ala His His Ile Ala Cys 200

Asn Ser Leu Asp Tyr Asp Pro Asp Leu Gln Tyr Ile Pro Leu Leu Val 215

Val Ser Pro Lys Phe Phe Asn Ser Leu Thr Ser Arg Phe Tyr Asp Lys 230 225

Lys Leu Asn Phe Asp Gly Val Ser Arg Phe Leu Val Cys Tyr Gln His 250 245

Trp Thr Phe Tyr Pro Val Met Cys Val Ala Arg Leu Asn Met Ile Ala 265

Gln Ser Phe Ile Thr Leu Phe Ser Ser Arg Glu Val Gly His Arg Ala 280 275

Gln Glu Ile Phe Gly Leu Ala Val Phe Trp Val Trp Phe Pro Leu Leu 300 295 290

Leu Ser Cys Leu Pro Asn Trp Ser Glu Arg Ile Met Phe Leu Leu Ala 315 305 Ser Tyr Ser Val Thr Gly Ile Gln His Val Gln Phe Ser Leu Asn His 330 Phe Ser Ser Asp Val Tyr Val Gly Pro Pro Val Ala Asn Asp Trp Phe Lys Lys Gln Thr Ala Gly Thr Leu Asn Ile Ser Cys Pro Ala Trp Met 360 Asp Trp Phe His Gly Gly Leu Gln Phe Gln Val Glu His His Leu Phe 375 Pro Arg Met Pro Arg Gly Gln Phe Arg Lys Ile Ser Pro Phe Val Arg 390 395 Asp Leu Cys Lys Lys His Asn Leu Pro Tyr Asn Ile Ala Ser Phe Thr 410 415 405 Lys Ala Asn Val Leu Thr Leu Lys Thr Leu Arg Asn Thr Ala Ile Glu 425 420.. Ala Arg Asp Leu Ser Asn Pro Thr Pro Lys Asn Met Val Trp Glu Ala 440 445 Val His Thr His Gly 450 <210> 75 <211> 903 <212> DNA <213> Ostreococcus tauri <220> <221> CDS <222> (1)..(903) <223> Delta-5-Elongase <400> 75 atg agc gcc tcc ggt gcg ctg ctg ccc gcg atc gcg tcc gcc gcg tac 48 Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Ser Ala Ala Tyr 10 5 gcg tac gcg acg tac gcc tac gcc ttt gag tgg tcg cac gcg aat ggc 96 Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly

									138								
atc Ile	gac Asp	aac Asn 35	gtc Val	gac Asp	gcg Ala	cgc Arg	gag Glu 40	tgg Trp	atc Ile	ggt Gly	gcg Ala	ctg Leu 45	tcg Ser	ttg Leu	agg Arg	:	144
													ctg Leu			:	192
													Gly ggg			:	240
													gtg Val			:	288
													tgg Trp 110			;	336
											Ile		ctc Leu			:	384
													act Thr				432
													cac His				480
													cac His				528
													tgc Cys 190				576
													gcg Ala				624
													atg Met				672
	Val					His					Leu		cag Gln				720
					Pro					Phe			acg Thr		Met		768

									139							
ctc Leu	gtg Val	ctc Leu	ttc Phe 260	Gly .	aac Asn	ttc † Phe †	<u> Fyr</u>	ctc Leu 265	aag Lys	gcg Ala	tac Tyr	Ser .	aac Asn 270	aag Lys	tcg Ser	816
cgc Arg	Gly Ggc	gac Asp 275	ggc Gly	gcg Ala	agt Ser	Ser	gtg Val 280	aaa Lys	cca Pro	gcc Ala	gag Glu	acc Thr 285	acg Thr	cgc Arg	gcg Ala	864
ccc Pro	agc Ser 290	gtg Val	cga Arg	cgc Arg	Thr	cga Arg 295	tct Ser	cga Arg	aaa Lys	att Ile	gac Asp 300	taa				903
<210)>	76														
<211	L>	300														
<212	2>	PRT														
<213	3>	Ostr	eoco	cus	taur	i									•	
<400	0>	76 .														
Met 1	Ser	Ala	Ser	Gly 5	Ala	Leu	Leu	Pro	Ala 10	Ile	Ala	Ser	Ala	Ala 15	Tyr	
Ala	Tyr	Ala	Thr 20	Tyr	Ala	Tyr	Ala	Phe 25	Glu	Trp	Ser	His	Ala 30	Asn	Gly	
Ile	Asp	Asn 35	Val	Asp	Ala	Arg	Glu 40	Trp	Ile	Gly	Ala	Leu 45	Ser	Leu	Arg	
Leu	Pro	Ala	Ile	Ala	Thr	Thr 55	Met	Tyr	Leu	Leu	Phe 60	Cys ·	Leu	Val	Gly	
Pro 65	Arg	g Lev	. Met	Ala	Lys 70	Arg	Glu	Ala	Phe	Asp 75	Pro	Lys	Gly	Phe	Met 80	
Leu	Ala	а Туз	: Asn	Ala 85	Tyr	Gln	Thr	Ala	Phe 90	Asn	. Val	Val	Val	. Leu 95	Gly	
Met	: Pho	e Ala	a Arg		Ile	Ser	Gly	Leu 105		Gln	Pro	Val	Trp 110	Gly	Ser	. •
Thr	Me	t Pro		ser	: Asp	Arg	Lys 120		. Phe	Lys	: Ile	Leu 125	Lev	ı Gly	val	
Tr	Le 13		s Туг	: Asi	a Asr	Lys 135		: Lev	ı Glu	. Lev	140	ı Asr	Thi	c Val	. Phe	
Met		l Al	a Arg	J Lys	150		Lys	5 Glr	ı Lev	155	r Phe	e Lev	ı His	s Val	160	
His	s Hi	s Al	a Le	1 Let 16		e Trr	Ala	a Try	7rg		ı Val	L Cys	s Hi:	s Let 17!	ı Met	

Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser 185 180 Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly 200 Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln 215 Phe Val Ile Val Phe Ala His Ala Val Phe Val Leu Arg Gln Lys His 235 230 225 Cys Pro Val Thr Leu Pro Trp Ala Gln Met Phe Val Met Thr Asn Met 250 Leu Val Leu Phe Gly Asn Phe Tyr Leu Lys Ala Tyr Ser Asn Lys Ser 265 Arg Gly Asp Gly Ala Ser Ser Val Lys Pro Ala Glu Thr Thr Arg Ala 280 275 Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp 300 295 290 <210> 77 <211> 903 <212> DNA <213> Ostreococcus tauri <220> <221> CDS <222> (1)..(903) <223> Delta-5-Elongase <400> 77 atg age gee tee ggt geg etg etg eec geg ate geg tte gee geg tae 48 Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr gcg tac gcg acg tac gcc tac gcc ttt gag tgg tcg cac gcg aat ggc 96 Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly 20 atc gac aac gtc gac gcg cgc gag tgg atc ggt gcg ctg tcg ttg agg 144 Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 40 35

ctc	ccg	gcg	atc	gcg	acg	acg Thr	atg Met	tac Tvr	ctg Leu	ttg Leu	ttc Phe	tgc Cys	ctg Leu	gtc Val	gga Gly	19	92
	50					55					60	•					
ccg Pro 65	agg Arg	ttg Leu	atg Met	gcg Ala	aag Lys 70	cgc Arg	gag Glu	gcg Ala	ttc Phe	gac Asp 75	ccg Pro	aag Lys	Gly	ttc Phe	atg Met 80	. 24	40
ctg Leu	gcg Ala	tac Tyr	aat Asn	gcg Ala 85	tat Tyr	cag Gln	acg Thr	gcg Ala	ttc Phe 90	aac Asn	gtc Val	gtc Val	gtg Val	ctc Leu 95	GJĀ āāā	2	88
atg Met	ttc Phe	gcg Ala	cga Arg 100	gag Glu	atc Ile	tcg Ser	ggg ggg	ctg Leu 105	Gly ggg	cag Gln	ccc Pro	gtg Val	tgg Trp 110	GJA aaa	tca Ser	3:	36
acc Thr	atg Met	ccg Pro 115	tgg Trp	agc Ser	gat Asp	aga Arg	aaa Lys 120	tcg Ser	ttt Phe	aag Lys	atc Ile	ctc Leu 125	Leu	GJA āāā	gtg Val	3	84
tgg Trp	ttg Leu 130	cac His	tac Tyr	aac Asn	aac Asn	aaa Lys 135	tat Tyr	ttg Leu	gag Glu	cta Leu	ttg Leu 140	gac Asp	act Thr	gtg Val	ttc Phe	4	32
atg Met 145	gtt Val	gcg Alà	cgc Arg	aag Lys	aag Lys 150	acg Thr	aag Lys	cag Gln	ttg Leu	agc Ser 155	ttc Phe	ttg Leu	cac His	gtt Val	tat Tyr 160	4	80
cat His	cac His	gcc Ala	ctg Leu	ttg Leu 165	atc Ile	tgg Trp	gcg Ala	tgg Trp	tgg Trp 170	ttg Leu	gtg Val	tgt Cys	cac His	ttg Leu 175	atg Met	5	528
gcc Ala	acg Thr	aac Asn	gat Asp 180	tgt Cys	atc Ile	gat Asp	gcc Ala	tac Tyr 185	Phe	ggc	gcg Ala	gcg Ala	tgc Cys 190	aac Asn	tcg Ser	5	576
ttc Phe	att	cac His 195	Ile	gtg Val	atg Met	tac	tcg Ser 200	Tyr	tat Tyr	ctc Leu	atg Met	tcg Ser 205	Ala	ctc Leu	ggc	€	524
att Ile	cga Arg 210	Cys	ccg Pro	tgg Trp	aag Lys	arg 215	гут	ato	acc Thr	cag Gln	gct Ala 220	Gln	atg Met	ctc Leu	caa Gln	. (672
tto Phe 225	val	att Ile	gto Val	tto Phe	gcg Ala 230	His	gcc Ala	gtg Val	tto L Phe	gtg Val	. Lev	g cgt ı Arg	cag Glr	aag Lys	cac His 240	•	720
tgo Cys	ccc Pro	g gto Val	acc Thr	ctt Let 245	ı Pro	tgg	g gcg o Ala	g caa a Gli	a ato 1 Met 250	: Phe	gto Val	c ato l Met	g acc	aac Asi 255	atg n Met		768
cto Let	gtç ı Val	g cto L Leo	tto Phe 260	e Gly	g aad y Asi	tto Pho	tade Ty:	c cto r Le 26	ı Ly:	g gcq s Ala	tao Ty:	c tcg r Sei	g aad Asi 270	ı Lys	g tcg s Ser		816

864 cgc ggc gac ggc gcg agt tcc gtg aaa cca gcc gag acc acg cgc gcg Arg Gly Asp Gly Ala Ser Ser Val Lys Pro Ala Glu Thr Thr Arg Ala 280 903 ccc agc gtg cga cgc acg cga tct cga aaa att gac taa Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp 295

<210> 78

<211> 300

<212> PRT

<213> Ostreococcus tauri

<400> 78 . ..

Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr 10 5

Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly 25

Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 35 40

Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly

Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met

Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Leu Gly 85

Met. Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser 105

Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val 120

Trp Leu His Tyr Asn Asn Lys Tyr Leu Glu Leu Leu Asp Thr Val Phe 135 130

Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 150 155

His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met 170

Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser 180

Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly 200 195

Ile Ar 21		Pro	Trp	Lys	Arg 215	Tyr	Ile	Thr	Gln	Ala 220	Gln	Met	Leu	Gln	
Phe Va 225	l Ile	Val	Phe	Ala 230	His	Ala	Val	Phe	Val 235	Leu	Arg	Gln	Lys	His 240	
Cys Pr	o Val	Thr	Leu 245	Pro	Trp	Ala	Gln	Met 250	Phe	Val	Met	Thr	Asn 255	Met	
Leu Va	l Leu	Phe 260	Gly	Asn	Phe	Tyr	Leu 265	Lys	Ala	Tyr	Ser	Asn 270	Lys	Ser	
Arg Gl	y Asp 275	Gly	Ala	Ser	Ser	Val 280	Lys	Pro	Ala	Glu	Thr 285	Thr	Arg	Ala	
Pro Se		Arg	Arg	Thr	Arg 295	Ser	Arg	Lys	Ile	Asp 300					
<210>	79											*			
<211>	903			,	•										
<212>	DNA														
<213>	Ostr	9000	cus	tau	ri										
<220>															
<221>	CDS					• •									
<222>	(1).	. (903	3)												
<223>	Delt	a-5-1	Elon	gase				,							
<400>	79														
atg ag Met Se 1	gc gcc er Ala	tcc Ser	ggt Gly 5	gcg	ctg Leu	ctg Leu	Pro	gcg Ala 10	atc Ile	gcg Ala	tcc Ser	gcc Ala	gcg Ala 15	tac Tyr	48
gcg to	ac gcg yr Ala	acg Thr 20	tac Tyr	gcc Ala	tac Tyr	gcc Ala	ttt Phe 25	gag Glu	tgg Trp	tcg Ser	cac His	gcg Ala 30	aat Asn	ggc Gly	96
atc g	ac aac sp Asr 35	gtc Val	gac Asp	gcg Ala	cgc Arg	gag Glu 40	tgg Trp	atc Ile	ggt Gly	gcg Ala	ctg Leu 45	tcg Ser	ttg Leu	agg Arg	144
										. ++		ata	· ~+~		192
Leu P	cg gcg ro Ala 0	g atc	gcg Ala	acg Thr	acg Thr	ato Met	tac Tyr	: ctg : Leu	ttg Leu	Phe 60	: cgc	Leu	. Val	. Gly	1,72

							200	~~~	++-	220	at a	ata	ata	ctc	aaa	288
ctg Leu	gcg Ala	tac Tyr	Asn	gcg Ala 85	tat Tyr	Gln	Thr	Ala	Phe 90	Asn	Val	Val	Val	Leu 95	Gly	200
atg Met	ttc Phe	gcg Ala	cga Arg 100	gag Glu	atc Ile	tcg Ser	G1A aaa	ctg Leu 105	Gly	cag Gln	ccc Pro	gtg Val	tgg Trp 110	G1 ⁷ aaa	tca Ser	336
acc Thr	atg Met	ccg Pro 115	tgg Trp	agc Ser	gat Asp	aga Arg	aaa Lys 120	tcg Ser	ttt Phe	aag Lys	atc Ile	ctc Leu 125	ctc Leu	GJÀ aaa	gtg Val	384
tgg Trp	ttg Leu 130	cac His	tac Tyr	aac Asn	aac Asn	caa Gln 135	tat Tyr	ttg Leu	gag Glu	cta Leu	ttg Leu 140	gac Asp	act Thr	gtg Val	ttc Phe	432
atg Met 145	gtt Val	gcg Ala	cgc Arg	aag Lys	aag Lys 150	acg Thr	aag Lys	cag Gln	ttg Leu	agc Ser 155	ttc Phe	ttg Leu	cac His	gtt Val	tat Tyr 160	480
					atc Ile											528
gcc Ala	acg Thr	aac Asn	gat Asp 180	tgt Cys	atc Ile	gat Asp	gcc Ala	tac Tyr 185	ttc Phe	ggc Gly	gcg Ala	gcg Ala	tgc Cys 190	aac Asn	tcg Ser	576
					atg Met											624
att Ile	cga Arg 210	tgc Cys	ccg Pro	tgg Trp	aag Lys	cga Arg 215	tac Tyr	atc Ile	acc Thr	cag Gln	gct Ala 220	Gln	atg Met	ctc Leu	caa Gln	672
ttc Phe 225	gtc Val	att Ile	gtc Val	ttc Phe	gcg Ala 230	cac His	gcc Ala	gtg Val	ttc Phe	gtg Val 235	Leu	cgt Arg	cag Gln	aag Lys	cac His 240	720
					Pro					Phe					atg Met	768
				Gly					Lys					Lys	tcg Ser	816
cgc Arg	ggc Gly	gac Asp 275	Gly	gcg Ala	agt Ser	Ser	gtg Val 280	. Lys	cca	gco Ala	gag Glu	acc Thr 285	Thr	cgc Arg	gcg Ala	864
		Val			acg		Ser)	L			903

<210> 80

<211> 300

<212> PRT

<213> Ostreococcus tauri

<400> 80

Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Ser Ala Ala Tyr 1 5 10 15

Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly
20 25 . 30

Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 35 40 45

Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly 50 55 60

Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met 65 70 75 80

Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Val Leu Gly 85 90 95

Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser 100 105 110

Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val 115 120 125

Trp Leu His Tyr Asn Asn Gln Tyr Leu Glu Leu Leu Asp Thr Val Phe 130 135 140

Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 145 150 150 155

His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met 165 170 175

Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser 180 185 190

Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly
195 200 205

Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln 210 215 220

Phe Val Ile Val Phe Ala His Ala Val Phe Val Leu Arg Gln Lys His 225 230 235 240

Cys Pro Val Thr Leu Pro Trp Ala Gln Met Phe Val Met Thr Asn Met 250 245 Leu Val Leu Phe Gly Asn Phe Tyr Leu Lys Ala Tyr Ser Asn Lys Ser 270 265 Arg Gly Asp Gly Ala Ser Ser Val Lys Pro Ala Glu Thr Thr Arg Ala 280 Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp 295 290 <210> 81 <211> 879 <212> DNA <213> Ostreococcus tauri <220> <221> CDS (1)..(879) <222> <223> Delta-6-Elongase <400> 81 atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag 48 Met Ser Gly Leu Arg Ala Pro Asn Phe Leu His Arg Phe Trp Thr Lys 5 tgg gac tac gcg att tcc aaa gtc gtc ttc acg tgt gcc gac agt ttt 96 Trp Asp Tyr Ala Ile Ser Lys Val Val Phe Thr Cys Ala Asp Ser Phe 30 20 cag tgg gac atc ggg cca gtg agt tcg agt acg gcg cat tta ccc gcc 144 Gln Trp Asp Ile Gly Pro Val Ser Ser Ser Thr Ala His Leu Pro Ala 40 att gaa tcc cct acc cca ctg gtg act agc ctc ttg ttc tac tta gtc 192 Ile Glu Ser Pro Thr Pro Leu Val Thr Ser Leu Leu Phe Tyr Leu Val 55 aca gtt ttc ttg tgg tat ggt cgt tta acc agg agt tca gac aag aaa 240 Thr Val Phe Leu Trp Tyr Gly Arg Leu Thr Arg Ser Ser Asp Lys Lys 75 70 att aga gag cct acg tgg tta aga aga ttc ata ata tgt cat aat gcg 288 Ile Arg Glu Pro Thr Trp Leu Arg Arg Phe Ile Ile Cys His Asn Ala 90

<211> 292

										147							
1	ttc Phe	ttg Leu	ata Ile	gtc Val 100	ctc Leu	agt Ser	ctt Leu	tac Tyr	atg Met 105	tgc Cys	ctt Leu	ggt Gly	tgt Cys	gtg Val 110	gcc Ala	caa Gln	336
(gcg Ala	tat Tyr	cag Gln 115	aat Asn	gga Gly	tat Tyr	act Thr	tta Leu 120	tgg Trp	ggt Gly	aat Asn	gaa Glu	ttc Phe 125	aag Lys	gcc Ala	acg Thr	384
	gaa Glu	act Thr 130	cag Gln	ctt Leu	gct Ala	ctc Leu	tac Tyr 135	att Ile	tac Tyr	att Ile	ttt Phe	tac Tyr 140	gta Val	agt Ser	aaa Lys	ata Ile	432
	tac Tyr 145	gag Glu	ttt Phe	gta Val	gat Asp	act Thr 150	tac Tyr	att Ile	atg Met	ctt Leu	ctc Leu 155	aag Lys	aat Asn	aac Asn	ttg Leu	cgg Arg 160	480
	caa Gln	gta Val	aga Arg	ttc Phe	cta Leu 165	cac His	act Thr	tat Tyr	cac His	cac His 170	agc Ser	acg Thr	att Ile	tcc Ser	ttt Phe 175	att Ile	528
	t.gg Trp	tgg Trp	atc Ile	att Ile 180	gct Ala	cgg Arg	agg Arg	gct Ala	ccg Pro 185	ggt Gly	ggt	gat Asp	gct Ala	tac Tyr 190	ttc Phe	agc Ser	576
	gcg Ala	gcc Ala	ttg Leu 195	. Asn	tca Ser	tgg Trp	gta Val	cac His	Val	tgc Cys	atg Met	tac Tyr	acc Thr 205	. JAI	tat	cta Leu	624
	tta Leu	tca Ser 210	Thr	: ctt : Leu	att Ile	gga Gly	aaa Lys 215	Glu	gat Asp	Pro	aag Lys	r cgt Arc 220	ser,	aac Asn	tac Tyr	ctt Leu	672
	tgg Trp 225	Trp	ggt Gly	cgc Arg	cac His	cta Leu 230	Thr	caa Gli	atg Met	cac Glr	ato Met 235	: Le	caç ı Glı	y ttt n Phe	tto Phe	ttc Phe 240	720
	aac	gta Val	ctt Lei	caa ıGlı	a gcg n Ala 245	ı Lev	g tac	tgo Cy:	gct Ala	tcg Sei 250	r Phe	c tci e Sei	t ace	g tat r Tyj	25!	c aag c Lys	768
	tt! Ph	ttg E Le	g tco 1 Se:	c aaa r Lys 26	s Ile	c cto	g cto 1 Lem	gte 1 Va	c tat l Ty: 265	. Me	g ato	g age	c ct r Le	t cto u Lem 27	I GT	c ttg y Leu	· 816
	tt! Ph	t ggg e Gl	g ca y Hi 27	s Ph	c ta e Ty:	c tai	t tc r Se	c aa r Ly 28	s Hi	c at	a gc	a gc a Al	a gc a Al 28	а Ly	g ct s Le	c cag u Gln	864
			s Gl	g ca n Gl		a											879
	<2	10>	82														

20040177

<212> PRT

<213> Ostreococcus tauri

<400> 82

Met Ser Gly Leu Arg Ala Pro Asn Phe Leu His Arg Phe Trp Thr Lys 1 5 10 15

Trp Asp Tyr Ala Ile Ser Lys Val Val Phe Thr Cys Ala Asp Ser Phe 20 25 30

Gln Trp Asp Ile Gly Pro Val Ser Ser Ser Thr Ala His Leu Pro Ala 35 40 45

Ile Glu Ser Pro Thr Pro Leu Val Thr Ser Leu Leu Phe Tyr Leu Val 50 55 60

Thr Val Phe Leu Trp Tyr Gly Arg Leu Thr Arg Ser Ser Asp Lys Lys 65 70 75 80

. •

Ile Arg Glu Pro Thr Trp Leu Arg Arg Phe Ile Ile Cys His Asn Ala 85 90 95

Phe Leu Ile Val Leu Ser Leu Tyr Met Cys Leu Gly Cys Val Ala Gln
100 105 110

Ala Tyr Gln Asn Gly Tyr Thr Leu Trp Gly Asn Glu Phe Lys Ala Thr 115 120 125

Glu Thr Gln Leu Ala Leu Tyr Ile Tyr Ile Phe Tyr Val Ser Lys Ile 130 135 140

Tyr Glu Phe Val Asp Thr Tyr Ile Met Leu Leu Lys Asn Asn Leu Arg 145 150 155 160

Gln Val Arg Phe Leu His Thr Tyr His His Ser Thr Ile Ser Phe Ile 165 170 175

Trp Trp Ile Ile Ala Arg Arg Ala Pro Gly Gly Asp Ala Tyr Phe Ser 180 185 190

Ala Ala Leu Asn Ser Trp Val His Val Cys Met Tyr Thr Tyr Tyr Leu 195 200 205

Leu Ser Thr Leu Ile Gly Lys Glu Asp Pro Lys Arg Ser Asn Tyr Leu 210 215 220

Trp Trp Gly Arg His Leu Thr Gln Met Gln Met Leu Gln Phe Phe 225 230 235 240

Asn Val Leu Gln Ala Leu Tyr Cys Ala Ser Phe Ser Thr Tyr Pro Lys 245 250 250

Phe Leu Ser Lys Ile Leu Leu Val Tyr Met Met Ser Leu Leu Gly Leu 260 265 270

Phe Gly His 275	Phe Tyr Tyr S	Ser Lys His 280		Ala Lys Leu 285	Gln
Lys Lys Gln (Gln				*
<210> 83					
<211> 831					
<212> DNA					
<213> Thrau	stochytrium	sp.			
<220>	3				
<221> CDS			•	4-	
<222> (1)	(831)		•		
<223> Delta	-5-Elongase			· ·	•
<400> 83		•			
atg gac gtc Met Asp Val 1	gtc gag cag Val Glu Gln 5	caa tgg cgc Gln Trp Arg	cgc ttc gtg Arg Phe Val 10	gac gcc gtg Asp Ala Val 15	gac 48 Asp
aac gga atc Asn Gly Ile	gtg gag ttc Val Glu Phe 20	atg gag cat Met Glu His 25	gag aag ccc Glu Lys Pro	aac aag ctg Asn Lys Leu 30	aac 96 Asn
gag ggc aag Glu Gly Lys 35	ctc ttc acc Leu Phe Thr	tcg acc gag Ser Thr Glu 40	gag atg atg Glu Met Met	gcg ctt atc Ala Leu Ile 45	gtc 144 Val
ggc tac ctg Gly Tyr Leu 50	Ala Phe Val	gtc ctc ggg Val Leu Gly 55	tcc gcc ttc Ser Ala Phe 60	atg aag gco Met Lys Ala	ttt 192 Phe
gtc gat aag Val Asp Lys 65	cct ttc gag Pro Phe Glu 70	ctc aag ttc Leu Lys Phe	ctc aag ctc Leu Lys Leu 75	gtg cac aac Val His Ası	e atc 240 n Ile 80
ttc ctc acc Phe Leu Thr	ggt ctg tcc Gly Leu Ser 85	atg tac atg Met Tyr Met	gcc acc gag Ala Thr Glu 90	tgc gcg cgc Cys Ala Arg 95	c cag 288 g Gln
gca tac ctc Ala Tyr Leu	ggc ggc tac Gly Gly Tyr 100	aag ctc ttt Lys Leu Phe 105	ggc aac ccg Gly Asn Pro	atg gag aag Met Glu Lys 110	g ggc 336

									IOU							
acc Thr	gag Glu	tcg Ser 115	cac His	gcc Ala	ccg Pro	ggc Gly	atg Met 120	gcc Ala	aac Asn	atc Ile	atc Ile	tac Tyr 125	atc Ile	ttc Phe	tac Tyr	384
gtg Val	agc Ser 130	aag Lys	ttc Phe	ctc Leu	gaa Glu	ttc Phe 135	ctc Leu	gac Asp	acc Thr	gtc Val	ttc Phe 140	atg Met	atc Ile	ctc Leu	ggc	432
aag Lys 145	aag Lys	tgg Trp	aag Lys	cag Gln	ctc Leu 150	agc Ser	ttt Phe	ctc Leu	cac His	gtc Val 155	tac Tyr	cac His	cac His	gcg Ala	agc Ser 160	480
atc Ile	agc Ser	ttc Phe	atc Ile	tgg Trp 165	ggc Gly	atc Ile	atc Ile	gcc Ala	cgc Arg 170	ttc Phe	gcg Ala	ccc Pro	ggt Gly	ggc Gly 175	gac Asp	528
gcc Ala	tac Tyr	ttc Phe	tct Ser 180	acc Thr	atc Ile	ctc Leu	aac Asn	agc Ser 185	agc Ser	gtg Val	cat His	gtc Val	gtg Val 190	ctc Leu	tac Tyr	576
ggc	tac Tyr	tac Tyr 195	Ala	tcg Ser	acc Thr	acc Thr	ctc Leu 200	Gly	tac Tyr	acc Thr	ttc Phe	atg Met 205	cgc Arg	ccg Pro	ctg Leu	624
cgc Arc	ccg Pro 210	Tyr	att Ile	acc Thr	acc Thr	att Ile 215	cag Gln	ctc Leu	acg Thr	cag Gln	ttc Phe 220	atg Met	gcc Ala	atg Met	gtc Val	672
gto Val 22	cag Gln	tcc Ser	gtc Val	tat Tyr	gac Asp 230	Tyr	tac Tyr	aac Asn	ccc Pro	tgc Cys 235	gac Asp	tac Tyr	ccg Pro	cag Gln	ccc Pro 240	720
ct: Le:	gto 1 Val	aag Lys	rctg Leu	cto Leu 245	Phe	tgg Trp	tac Tyr	atg Met	cto Leu 250	Thr	atg Met	ctc Leu	ggc Gly	ctc Leu 255	Phe	768
gg Gl	c aac y Asr	tto Phe	tto Phe 260	val	cag Gln	cag Glr	tac Tyr	cto Lev 265	ı Lys	r ccc	aag Lys	gcg Ala	270	Lys	aag Lys	816
_	g aag n Lys	•	: Ile		L											· 831
<2	10>	84														
<2	11>	276														
<2	12>	PRT														
<2	13>	Thr	austo	ochy	triu	n sp	•									
<4	00>	84														
M∈ 1	t As	p Va	l Va	1 Gl	u Gl	n Gl	n Tr	p Ar	g Ar 10		e Va	l As	p Al	a Va 15	l Asp	

Asn Gly Ile Val Glu Phe Met Glu His Glu Lys Pro Asn Lys Leu Asn 25

Glu Gly Lys Leu Phe Thr Ser Thr Glu Glu Met Met Ala Leu Ile Val 40

Gly Tyr Leu Ala Phe Val Val Leu Gly Ser Ala Phe Met Lys Ala Phe

Val Asp Lys Pro Phe Glu Leu Lys Phe Leu Lys Leu Val His Asn Ile 70

Phe Leu Thr Gly Leu Ser Met Tyr Met Ala Thr Glu Cys Ala Arg Gln

Ala Tyr Leu Gly Gly Tyr Lys Leu Phe Gly Asn Pro Met Glu Lys Gly 105

Thr Glu Ser His Ala Pro Gly Met Ala Asn Ile Ile Tyr Ile Phe Tyr 120

Val Ser Lys Phe Leu Glu Phe Leu Asp Thr Val Phe Met Ile Leu Gly 130

Lys Lys Trp Lys Gln Leu Ser Phe Leu His Val Tyr His His Ala Ser 155

Ile Ser Phe Ile Trp Gly Ile Ile Ala Arg Phe Ala Pro Gly Gly Asp **170** . 165 ·

Ala Tyr Phe Ser Thr Ile Leu Asn Ser Ser Val His Val Val Leu Tyr 180

Gly Tyr Tyr Ala Ser Thr Thr Leu Gly Tyr Thr Phe Met Arg Pro Leu 200

Arg Pro Tyr Ile Thr Thr Ile Gln Leu Thr Gln Phe Met Ala Met Val 215

Val Gln Ser Val Tyr Asp Tyr Tyr Asn Pro Cys Asp Tyr Pro Gln Pro 230 225

Leu Val Lys Leu Leu Phe Trp Tyr Met Leu Thr Met Leu Gly Leu Phe 250

Gly Asn Phe Phe Val Gln Gln Tyr Leu Lys Pro Lys Ala Pro Lys Lys 265

Gln Lys Thr Ile 275

<210> 85

<211> 1077

							•	-								
<212>	DNA															
<213>	Thalas	ssios	sira	pset	ıdona	ana										
<220>																
<221>	CDS															
<222>	(1)	(107	7)													
<223>	Delta	-5 <i>-</i> EÌ	long	ase												
	85															
atg tg Met Cy 1	gc tca ys Ser	Pro :	ccg Pro 5	ccg Pro	tca Ser	caa Gln	Ser	aaa Lys 10	aca Thr	aca Thr	tcc Ser	Leu	cta Leu 15	gca Ala		48
cgg ta Arg T <u>y</u>	ac acc	acc Thr 20	gcc Ala	gcc Ala	ctc Leu	ctc Leu	ctc Leu 25	ctc Leu	acc Thr	ctc Leu	Thr	acg Thr 30	tgg Trp	tgc Cys		96
cac tt His Ph	tc gcc ne Ala 35	ttc Phe	cca Pro	gcc Ala	gcc Ala	acc Thr 40	ġcc Ala	aca Thr	ccc Pro	Gly	ctc Leu 45	acc Thr	gcc Ala	gaa Glu	1	44
atg ca Met H: 50	ac tcc is Ser 0	tac Tyr	aaa Lys	gtc Val	cca Pro 55	ctc Leu	ggt Gly	ctc Leu	acc Thr	gta Val 60	ttc Phe	tac Tyr	ctg Leu	ctg Leu	1	.92
agt c Ser L 65	ta ccg eu Pro	tca Ser	cta Leu	aag Lys 70	tac Tyr	gtt Val	acg Thr	gac Asp	aac Asn 75	tac Tyr	ctt Leu	gcc Ala	aaa Lys	aag Lys 80	2	240
tat g Tyr A	at atg sp Met	aag Lys	tca Ser 85	ctc Leu	ctg Leu	acg Thr	gaa Glu	tca Ser 90	atg Met	gtg Val	ttg Leu	tac Tyr	aat Asn 95	gtg Val	2	888
gcg c	aa gtg In Val	ctg Leu 100	ctc Leu	aat Asn	GJĀ	tgg Trp	acg Thr 105	gtg Val	tat Tyr	gcg Ala	att Ile	gtg Val 110	gat Asp	gcg Ala		336
gtg a Val M	itg aat Met Asn 115	Arg	gac Asp	cat His	cct Pro	ttt Phe 120	Ile	gga Gly	. agt · Ser	aga Arg	agt Ser 125	Leu	gtt Val	GJÀ aaa	:	384
Ala A	gcg ttg Ala Leu 130	cat His	agt Ser	Gly	agc Ser 135	Ser	tat Tyr	gcg Ala	gtg Val	tgg Trp	Val	cat His	tat Tyr	tgt Cys		432
gat a Asp 1 145	aag tat Lys Tyr	ttg Leu	gag Glu	tto Phe 150	Phe	gat Asr	acg Thr	tat Tyr	ttt Phe 155	e Met	gtg : Val	ttg Leu	ago Aro	160 160		480

<211> 358

									153							
aaa Lys	atg Met	gac Asp	cag Gln	gtc Val 165	tcc Ser	ttc Phe	ctc Leu	cac His	atc Ile 170	tac Tyr	cac His	cac His	acg Thr	acç Thr 175	ata Ile	528
gcg Ala	tgg Trp	gca Ala	tgg Trp 180	tgg Trp	atc Ile	gcc Ala	ctc Leu	cgc Arg 185	ttc Phe	tcc Ser	ccc Pro	ggc	gga Gly 190	gac Asp	att Ile	576
tac Tyr	ttc Phe	ggg Gly 195	gca Ala	ctc Leu	ctc Leu	aac Asn	tcc Ser 200	atc Ile	atc Ile	cac His	gtc Val	ctc Leu 205	atg Met	tat Tyr	tcc Ser	624
tac Tyr	tac Tyr 210	gcc Ala	ctt Leu	gcc Ala	cta Leu	ctc Leu 215	aag Lys	gtc Val	agt Ser	tgt Cys	cca Pro 220	tgg Trp	aaa Lys	cga Arg	tac Tyr	672
ttg Leu 225	act Thr	caà Gln	gct Ala	caa Gln	tta Leu 230	ttg Leu	caa Gln	ttc Phe	aca Thr	agt Ser 235	gtg Val	gtg Val	gtt Val	tat Tyr	acg Thr 240	720
Gly	tgt Cys	acg Thr	ggt Gly	tat Tyr 245	act Thr	cat His	tac Tyr	tat Tyr	cat His 250	acg Thr	aag Lys	cat His	gga Gly	gcg Ala 255	Asp	768
gag Glu	aca Thr	cag Gln	cct Pro 260	Ser	tta Leu	gga Gly	acg Thr	tat Tyr 265	tat Tyr	ttc Phe	tgt Cys	tgt Cys	gga Gly 270	gtg Val	cag Gln	816
gtg Val	ttt Phe	gag Glu 275	Met	gtt Val	agt Ser	ttg Leu	ttt Phe 280	Val	ctc Leu	ttt Phe	tcc Ser	atc Ile 285	Phe	tat Tyr	aaa Lys	864
cga Arg	tcc Ser 290	Тут	tcc Ser	aag Lys	aag Lys	aac Asn .295	Lys	tca Ser	gga	gga	aag Lys 300	Asp	ago Ser	aag Lys	aag Lys	912
aat Asr 305	As <u>r</u>	gat Ası	Gly Gg	/ Asr	aat Asr 310	ı Glu	gat Asp	caa Gln	tgt Cys	cac His	s Lys	get Ala	ato Met	g aag Lys	g gat s Asp 320	960
ata Ile	tco Sei	g gaq r Gli	g ggt u Gl	t gcg y Ala 325	a Lys	g gag s Glu	gtt Val	gtg L Val	330 Gl7 aaa	/ His	t gca s Ala	a gcg a Ala	g aaq a Ly:	g gai s Asj 33	t gct p Ala 5	.1008
gg:	a aag	g tt: s Le	g gt u Va 34	l Ala	t acq	g gcg	g agt a Se:	t aaq r Lys 345	s Ala	z gta	a aag 1 Ly:	g agg	g aa g Ly: 35	s GT	a act y Thr	1056
_	_		r Gl	t gc y Al			¥									1077
<2	10>	86														

<212> PRT

<213> Thalassiosira pseudonana

<400> 86

Met Cys Ser Pro Pro Pro Ser Gln Ser Lys Thr Thr Ser Leu Leu Ala 1 5 10 15

Arg Tyr Thr Thr Ala Ala Leu Leu Leu Leu Thr Leu Thr Thr Trp Cys 20 25 30

His Phe Ala Phe Pro Ala Ala Thr Ala Thr Pro Gly Leu Thr Ala Glu 35 40 45

Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu 50 55 60

Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys 65 70 75 80

Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val 85 90 95

Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala 100 105 110

Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly
115 120 125

Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys
130 135 140

Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly 145 150 150

Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile 165 170 175

Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile 180 185 190

Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser 195 200 205

Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr 210 215 220

Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val Val Tyr Thr 225 230 235 240

Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp 245 250 255

Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 260 265 270

Val	Phe	Glu	Met	Val	Ser	Leu	Phe 280	Val	Leu	Phe	Ser	Ile 285	Phe	Tyr	Lys	
Arg	Ser	275 Tyr	Ser	Lys	Lys	Asn		Ser	Gly				Ser	Lys	Lys	
	290					295					300					
Asn 305	Asp	Asp	Gly	Asn	Asn 310	Glu	Asp	Gln	Cys	His 315	Lys	Ala	Met	Lys	Asp 320	
Ile	Ser	Glu	Gly	Ala 325	Lys	Glu	Val	Val	Gly 330	His	Ala	Ala	Lys	Asp 335	Ala	
Gly	Lys	Leu	Val 340	Ala	Thr	Ala	Ser	Lys 345	Ala	Val	Lys	Arg	Lys 350	Gly	Thr	
Arg	Val	Thr 355	Gly	Ala	Met			•								
<210	0>	87											•			
<213	1>	1086														
<212	2>	DNA														
<213	3>	Phyt	ophtl	nora	inf	esta	ns									
<220	0>												ŧ			
<22	1>	CDS								•						
-22																
~42.	2>	(1).	.(10	86)		•	•		•	. ``	•	<i>.</i> **	, , ,			
		(1). Omeg			tura	se .	•					<i>2</i> 1				
<22		Omeg			tura	se .	•			. ``						
<22:	3> 0>	Omeg 87 g acg	a-3-:	Desa gag	gcg	tat	gtg	ttc	ccc	act	ctg	acg	gag	atc Tle	aag Lvs	48
<22:	3> 0>	Omeg 87	a-3-:	Desa gag	gcg	tat	gtg	ttc Phe	ccc Pro 10	act Thr	ctg Leu	acg	gag	atc Ile 15	aag Lys	48
<223 <40 atg Met 1	3> 0> gcg Ala	Omeg 87 g acg	a-3- aag Lys	Desa gag Glu 5	gcg Ala	tat Tyr	gtg Val	Phe gag	Pro 10 gct	Thr	Leu	acg Thr	gag Glu ctg	Ile 15 tcg	Lys	48
<222 <40 atg Met 1 cgg Arg	3> 0> gcg Ala tcg	Omeg 87 g acg a Thr	a-3- aag Lys cct Pro 20	gag Glu 5 aaa Lys	gcg Ala gac Asp	tat Tyr tgt Cys	gtg Val ttc	Phe gag Glu 25	Pro 10 gct Ala	tcg Ser	gtg Val	acg Thr cct Pro	gag Glu ctg Leu 30	tcg Ser	ctc Leu ggt	
<223 <400 atg Met 1 cgg Arg tac Tyr	3> 0> gcg Ala tcg Sei	Omeg 87 g acg Thr g cta c Leu c acc c Thr 35	a-3- aag Lys Cct Pro 20 gtg	gag Glu 5 aaa Lys cgt	gcg Ala gac Asp tgt Cys	tat Tyr tgt Cys	gtg Val ttc Phe ytg Val 40	gag Glu 25 ato	Pro 10 gct Ala gcg Ala	tcg Ser gtg Val	gtg Val gct Ala	acg Thr cct Pro	gag Glu ctg Leu 30 . acc	tcg ser ttc Phe	ctc Leu ggt	96

tgg Trp	ggc	ttc Phe	ttc Phe	acg Thr 85	gtg Val	ggc	cac His	gat Asp	gcc Ala 90	ggc	cac His	Gly	gcc Ala	ttc Phe 95	tcg Ser	28	38
cgc Arg	tac Tyr	cac His	ctg Leu 100	ctt Leu	aac Asn	ttc Phe	gtg Val	gtg Val 105	Gly	act Thr	ttc Phe	atg Met	cac His 110	tcg Ser	ctc Leu	33	36
			ccc Pro													38	34
			Gly													43	32
Lys 145	Ala	Asp	gac Asp	His	Pro 150	Leu	Ser	Arg	Asn	Leu 155	Ile	Leu	Ala	Leu	Gly 160	48	
Ala	Ala	Trp	ctc Leu	Ala 165	Tyr	Leu	Val	Glu	Gly 170	Phe	Pro	Pro	Arg	Lys 175	Val		28
Asn	His	Phe	aac Asn 180	Pro	Phe	Glu	Pro	Leu 185	Phe	Val	Arg	Gln	Val 190	Ser	Ala		76
Val	Val	Ile 195	tct Ser	Leu	Leu	Ala	His 200	Phe	Phe	Val	Ala	Gly 205	Leu	Ser	Ile		24
Tyr	Leu 210	Ser	ctc Leu	Gln	Leu	Gly 215	Leu	Lys	Thr	Met	Ala 220	Ile	Tyr	Tyr	Tyr		72
Gly 225	Pro	Val	ttt Phe	Val	Phe 230	· Gly	. Ser	Met	Leu	Val 235	Ile	Thr	Thr	Phe	Leu 240		20
His	His	Asn	gat Asp	Glu 245	Glu	Thr	Pro	Trp	Tyr 250	Ala	Asp	Ser	Glu	Trp 255	Thr		68
Tyr	Val	Lys	260	Asn	Leu	Ser	Ser	Val 265	Asp	Arg	Ser	Tyr	Gly 270	Ala	Leu		16
Ile	Asp	Asn 275		Ser	His	Asn	. Ile 280	Gly	Thr	His	Gln	285	His	His	Leu		64
		Ile					Lys					Thr			ttc Phe	9	12

cac His 305	cag Gln	gct Ala	ttc Phe	cct Pro	gag Glu 310	ctc Leu	gtg Val	cgc Arg	aag Lys	agc Ser 315	gac Asp	gag Glu	cca Pro	att Ile	atc Ile 320	960
aag Lys	gct Ala	ttc Phe	ttc Phe	cgg Arg 325	gtt Val	gga Gly	cgt Arg	ctc Leu	tac Tyr 330	gca Ala	aac Asn	tac Tyr	ggc Gly	gtt Val 335	gtg Val	1008
									aag Lys							1056
		gcg Ala 355							taa							1086
<210)> 8	88														
<211	.> :	361					·									
<212	2>]	PRT														
<213	3> 3	Phyto	phth	ora	infe	star	ıs							·		
<400)>	88														
Met 1	Ala	Thr	Lys	Glu 5	Ala	Tyr	Val	Phe	Pro 10	Thr	Leu	Thr	Glu	Ile 15	Lys	
Arg	Ser	Leu	Pro 20	Lys	Asp	Cys	Phe	Glu 25	Ala	Ser	Wal	Pro	Leu 30	Ser	Leu	•
Tyr	Tyr	Thr 35	Val	Arg	Cys	Leu	Val 40	Ile	Ala	Val	Ala	Leu 45	Thr	Phe	Gly	• •
Leu	Asn 50	Tyr	Ala	Arg	Ala	Leu 55	Pro	Glu	Val	Glu	Ser 60	Phe	Trp	Ala	Leu	
Asp 65	Ala	Ala	Leu	Cys	Thr 70	Gly	Tyr	Ile	Leu	Leu 75	Gln	Gly	Ile	Val	Phe 80	**
Trp	Gly	Phe	Phe	Thr 85	Val	Gly	His	Asp	Ala 90	Gly	His	Gly	Ala	Phe 95	Ser	
Arg	Tyr	His	Leu 100	Leu	Asn	Phe	Val	Val 105	Gly	Thr	Phe	Met	His 110		Leu	
Ile	Leu	115		Phe	Glu	Ser	Trp 120		Leu	Thr	His	Arg 125	His	His	His	
Lys	Asr 130		Gly	Asn	. Ile	Asp 135		Asp	Glu	Val	Phe 140		Pro	Gln	Arg	
Lys 145		a Asp	Asp	His	Pro 150		. Ser	: Arg	Asn	Leu 155		Leu	. Ala	. Leu	160	

Ala Ala Trp Leu Ala Tyr Leu Val Glu Gly Phe Pro Pro Arg Lys Val Asn His Phe Asn Pro Phe Glu Pro Leu Phe Val Arg Gln Val Ser Ala 185 180 Val Val Ile Ser Leu Leu Ala His Phe Phe Val Ala Gly Leu Ser Ile 200 Tyr Leu Ser Leu Gln Leu Gly Leu Lys Thr Met Ala Ile Tyr Tyr Tyr 215 Gly Pro Val Phe Val Phe Gly Ser Met Leu Val Ile Thr Thr Phe Leu 230 His His Asn Asp Glu Glu Thr Pro Trp Tyr Ala Asp Ser Glu Trp Thr 250 245 Tyr Val Lys Gly Asn Leu Ser Ser Val Asp Arg Ser Tyr Gly Ala Leu 265 Ile Asp Asn Leu Ser His Asn Ile Gly Thr His Gln Ile His His Leu 280 275 Phe Pro Ile Ile Pro His Tyr Lys Leu Lys Lys Ala Thr Ala Ala Phe 300 295 His Gln Ala Phe Pro Glu Leu Val Arg Lys Ser Asp Glu Pro Ile Ile 315 310 Lys Ala Phe Phe Arg Val Gly Arg Leu Tyr Ala Asn Tyr Gly Val Val 330 325

Asp Gln Glu Ala Lys Leu Phe Thr Leu Lys Glu Ala Lys Ala Ala Thr 340

Glu Ala Ala Ala Lys Thr Lys Ser Thr

Figur 1: Verschiedene Synthese-Wege zur Biosynthese von DHA (Docosahexaensäure)

Figur 2: Substratspezifität der Δ-5-Elongase (SEQ ID NO: 53) gegenüber verschiedenen Fettsäuren

Figur 3: Rekonstitution der DHA-Biosynthese in Hefe ausgehend von 20:5ω3.

Figur 4: Rekonstitution der DHA-Biosynthese in Hefe ausgehend von 18:4ω3.

pYes3-OmELO/pYes2-EgD4

5/19

Fettsäure-Zusammensetzung (in Mol %) transgener Hefen, die mit den Vektoren pYes3-OmELO3/pYes2-EgD4 oder pYes3-OmELO3/pYes2-EgD4+pESCLeu-PtD5 transformiert worden waren. Die Hefezellen wurden in Minimalmedium ohne Tryptophan und Uracil / und Leucin in Gegenwart von 250 μM 20:5^{Δ5,8,11,14,17} bzw. 18:4^{Δ6,9,12,15} kultiviert. Die Fettsäuremethylester wurden durch saure Methanolyse aus Zellsedimenten gewonnen und über GLC analysiert. Jeder Wert gibt den Mittelwert (n=4) ± Standardabweichung wieder.

pYes3-OmELO/pYes2-EgD4

,		EgD4 + pESCLeu-PtD5
- Fettsäuren	Fütterung mit 20:5 ^{25,8,11,14,17}	Fütterung mit 18:4 ^{Δ6,9,12,15}
16:0	9,35 ± 1,61	7,35 ± 1,37
16:1 ^{Δ9}	14,70 ± 2,72	10,02 ± 1,81
18:0	5,11 ± 1,09	4,27 ± 1,21
18:1 ^{Δ9}	19,49 ± 3,01	$10,81 \pm 1,95$
18:1 ^{∆11}	18,93 ± 2,71	$11,61 \pm 1,48$
18:4 ^{△6,9,12,15}	-	7,79 \pm 1,29
20:1 ^{Δ11}	$3,24 \pm 0,41$	$1,56 \pm 0,23$
20:1 ^{Δ13}	11,13± 2,07	$\textbf{4,40} \pm \textbf{0,78}$
20:4 ^{Δ8,11,14,17}		$30,05 \pm 3,16$
20:5 ^{Δ5,8,11,14,17}	6,91± 1,10	$3,72 \pm 0,59$
22:4 ^{Δ10,13,16,17}	-	5,71 ± 1,30
22:5 ^{Δ7,10,13,16,19}	8,77 ± 1,32	$1,10 \pm 0,27$
22:6 ^{Δ4,7,10,13,16,19}	$2,73 \pm 0,39$	$\textbf{0,58} \pm \textbf{0,10}$

8/19

Figur 8: Elongation von Arachidonsäure durch OtElo1

Figur 9: Expression von TpELO1 in Hefe

Figur 10: Expression von TpELO3 in Hefe.

11/19

Gefüttert mit 18:4n-3 (Stearidonsäure) Gefüttert mit 20:5n-3 (EPA) 20 22:4n-3 22:5n-3 15 10 Ŋ

Figur 11: Expression von Thraustochytrium ∆5-Elongase TL16/pYES2.1 in Hefe.

Figur 12: Desaturierung von Linolsäure (18:2 ω -6-Fettsäure) zu α -Linolensäure (18:3 ω -3-Fettsäure) durch Pi-omega3Des.

Figur 13: Desaturierung von γ -Linolensäure (18:3 ω -6-Fettsäure) zu Stearidonsäure (18:4 ω -3-Fettsäure) durch Pi-omega3Des.

Figur 14: Desaturierung von C20:2 ω -6-Fettsäure zu C20:3 ω -3-Fettsäure durch Pi-omega3Des.

Figur 15: Desaturierung von C20:3- ω -6-Fettsäure zu C20:4- ω -3-Fettsäure durch Pi-omega3Des.

Figur 16: Desaturierung von Arachidonsäure (C20:4-ω-6-Fettsäure) zu Eicosapentaensäure (C20:5-ω-3-Fettsäure) durch die Pi-omega3Des.

Figur 17: Desaturierung von Docosatetraensäure (C22:4-ω-6-Fettsäure) zu Docosapentaensäure (C22:5-ω-3-Fettsäure) durch Pi-omega3Des.

18/19

% Desaturierung

Figur 18: Substratspezifität der Pi-omega3Des gegenüber verschiedenen Fettsäuren

20:2 18:3 18:2 25 20 30 'n

Figur 19: Desaturierung von Phospholipid gebundener Arachidonsäure zu EPA durch die Pi-Omega3Des

