

NOÇÕES DE PROBABILIDADE

INTRODUÇÃO

Em suas origens, a estatística teve por função principal a organização e a apresentação de dados coletados empiricamente.

O desenvolvimento da teoria das probabilidades permitiu à estatística, a criação de técnicas mais adequadas de amostragem e formas de relacionar as amostras e as populações de onde provieram essas amostras.

Nas aulas anteriores, foi visto que a distribuição das frequências das observações de um fenômeno é recurso poderoso para entender a variabilidade do mesmo. Com a teoria da probabilidade podese criar um modelo teórico que reproduza muito bem a distribuição das frequências quando o fenômeno é observado diretamente. Tais modelos são chamados modelos de probabilidades ou distribuições de probabilidade e são consideradas a espinha dorsal da teoria estatística, pois todos os processos inferenciais são aplicações de tais modelos ou distribuições.

- ➤ Um experimento é um processo de observar um determinado fenômeno;
- Encontramos na natureza dois tipos de fenômenos:
- Determinísticos
- Aleatórios
- Se tomarmos um determinado sólido, sabemos que uma certa temperatura haverá a passagem para o estado líquido. Este exemplo caracteriza um fenômeno determinístico;
- Nos fenômenos aleatórios, os resultados não são previsíveis, mesmo que haja um grande número de repetições do mesmo fenômeno. Por exemplo: se considerarmos um pomar com centenas de laranjas, as produções de cada planta serão diferentes e não previsíveis, mesmo que as condições de temperatura, pressão, umidade solo, etc., sejam as mesmas para todas as árvores.
- ➤ Probabilidade é o estudo de experimentos aleatórios.

Experimentos aleatórios: Podemos considerar os **experimentos aleatórios** como fenômenos produzidos pelo homem.

Nos experimentos aleatórios, mesmo que as condições iniciais sejam sempre as mesmas, os resultados finais de cada tentativa do experimento serão diferentes e não previsíveis.

Exemplo 1

- a)Lançamento de uma moeda honesta;
- b)Lançamento de um dado;
- c)Lançamento de duas moedas;
- d)Retirada de uma carta de um baralho completo de 52 cartas.
- A cada experimento aleatório está associado o resultado obtido, que não é previsível chamado evento aleatório.

No exemplo (a) os eventos associados são cara (k) e coroa (c);

No exemplo (b) poderá ocorrer uma das faces 1, 2, 3, 4, 5 ou 6.

Espaço Amostral

Espaço amostral de um experimento aleatório é o conjunto dos resultados do experimento.

- ➤ Obs: Os elementos do espaço amostral serão chamados também de pontos amostrais;
- \triangleright Representaremos o espaço amostral por Ω .
- ➤ No Exemplo 1 quais são os espaços amostrais?
- ➤ Ao lado temos o espaço amostral do experimento retirada de

uma carta de um baralho de 52 cartas.

	Bar	alho	
Cartas vermelhas		Cartas pretas	
Ouro	Copas	Paus	Espadas
*	*	*	•
A	A	A	A
2	2	2	2
2 3 4 5	3	3	3
4	4	4	3 4
5	5	5	5
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9
10	10	10	10
J	J	J	J
Q	Q	Q	Q
K	K	K	K

- >O evento aleatório pode ser um único ponto amostral ou uma reunião deles, como veremos no exemplo a seguir.
- \triangleright O próprio Ω , espaço amostral, é um evento chamado evento certo, o conjunto vazio também é um evento, chamado evento impossível. Eventos com apenas um elemento do espaço amostral é chamado evento simples.

Exemplo 2: Lançam-se dois dados. Enumerar os seguintes eventos:

- •A: saída de faces iguais;
- B: saída de faces cuja soma seja igual a 10;
- •C: saída de faces cuja soma seja menos que 2;
- D: saída de faces cuja soma seja menos que 15;
- E: saída de faces onde uma face é o dobro da outra.

Classe dos Eventos Aleatórios

A classe dos eventos aleatórios de um espaço amostral Ω , que denotaremos por $F(\Omega)$, é o conjunto de todos os eventos (isto é, de todos os subconjuntos) do espaço amostral.

Exemplo 3: Considere o espaço amostral $\Omega = \{e_1, e_2, e_3, e_4\}$ descrever $F(\Omega)$.

OBS: Se o número de pontos amostrais de um espaço amostral finito é n, então o número de eventos de $F \notin 2^n$.

OPERAÇÕES COM EVENTOS ALEATÓRIOS

Consideremos um espaço amostral finito $\Omega = \{e_1, e_2, e_3, ..., e_n\}$. Sejam $A \in B$ dois eventos de $F(\Omega)$. As seguintes operações são definidas:

União

Definição: $A \cup B = \{e_i \in \Omega \mid e_i \in A \text{ ou } e_i \in B\}$. O evento união é formado pelos pontos amostrais que pertencem a pelo menos um dos eventos.

Interseção

Definição: $A \cap B = \{e_i \in A \mid e_i \in A \mid e_i \in B\}$. O evento interseção é formado pelos pontos que pertencem simultaneamente aos eventos $A \in B$. Se $A \cap B = \emptyset$, $A \in B$ são eventos mutuamente exclusivos.

Complementação

Definição: $\Omega - A = \overline{A} = \{e_i \in \Omega \mid e_i \notin A\}$

OPERAÇÕES COM EVENTOS ALEATÓRIOS

Exemplo 4

Lançam-se duas moedas. Sejam A: saída de faces iguais e B: saídas de cara na primeira moeda. Determinar os eventos:

- a) $A \cup B$ b) $A \cap B$
- c) \overline{A} d) \overline{B}
- e) $(\overline{A \cup B})$ f) $(\overline{A \cap B})$
- g) $\overline{A} \cap \overline{B}$ h) $\overline{A} \cup \overline{B}$
- i) B-A j) A-B
- k) $\overline{A} \cap B$ I) $\overline{B} \cap A$

PROPRIEDADES DAS **OPERAÇÕES**

Idempotentes

- A ∪ A = A
- $\bullet A \cap A = A$

Comutativas

- \bullet $A \cup B = B \cup A$
- $A \cap B = B \cap A$

Associativas

- $A \cap (B \cap C) = (A \cap B) \cap C$
- $\bullet \ A \cup (B \cup C) = (A \cup B) \cup C$

Distributivas

- $\bullet \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $\bullet \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Absorções

- $A \cup (A \cap B) = A$
- A ∩ (A ∪ B) = A

- - A ∪ Ω = Ω
 - A ∩ Ø = Ø
 - A ∪ Ø = A

PROPRIEDADES DAS OPERAÇÕES

Complementares

•
$$\overline{\emptyset} = \Omega$$

•
$$A \cup \overline{A} = \Omega$$

Leis das dualidades ou Leis de Morgan

•
$$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$$

•
$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$$

PARTIÇÃO DE UM ESPAÇO AMOSTRAL

Definição: Dizemos que os eventos A_1, A_2, \dots, A_n formam uma partição do espaço amostral Ω se:

- a) $A_i \neq \emptyset$, i = 1, ..., n (não há eventos vazios);
- b) $A_i \cap A_j = \emptyset$, para $i \neq j$ (não há interseção entre os eventos);
- c) $\bigcup_{i=1}^{n} A_i = \Omega$ (a união de todos os eventos é o espaço amostral).

FUNÇÃO PROBABILIDADE

Seja Ω um espaço amostral, F a classe de eventos e P uma função de valor real definida em F. Então P é chamada de *função de probabilidade* e P(A), de *probabilidade do evento A*, se os seguintes axiomas valem:

- 1. Para todo evento A, $0 \le P(A) \le 1$.
- $2. \quad P(\Omega) = 1.$
- 3. Se A e B são eventos mutuamente exclusivos, então $P(A \cup B) = P(A) + P(B)$.
- 4. O $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$, se $A_1, A_2, ..., A_n$ forem, dois a dois, eventos mutuamente exclusivos.

TEOREMAS DE PROBABILIDADE

Teorema 1: Se os eventos $A_1, A_2, ..., A_n$ formam uma partição do espaço amostral, então:

$$\sum_{i=1}^{n} P(A_i) = 1$$

Teorema 2: Se \emptyset é o evento impossível, então $P(\emptyset) = 0$.

Teorema 3 (**Teorema do evento complementar**): Para todo evento $A \subset \Omega$,

$$P(A) + P(\bar{A}) = 1$$

Teorema 4 (Teorema da soma): Sejam $A \subset \Omega$ e B $\subset \Omega$. Então

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

TEOREMAS DE PROBABILIDADE

Teorema 5: Para $A \subset \Omega$ e B $\subset \Omega$ temos: $P(A \cup B) \leq P(A) + P(B)$.

Exemplo 5

Consideremos um experimento aleatório e os eventos A e B associados, tais que P(A)=1/2, P(B)=1/3 e $P(A \cap B)=1/4$. Calcular:

- a) $P(\bar{A}) \in P(\bar{B})$
- (b) $P(A \cup B)$
- c) $P(\bar{A} \cap \bar{B})$
- d) $P(\bar{A} \cup \bar{B})$
- e) $P(\bar{A} \cap B)$

EVENTOS EQUIPROVÁVEIS

Os eventos e_i , i=1,...,n, são equiprováveis quando $P(e_1)=P(e_2)=\cdots=P(e_n)=p$, isto é, quando todos têm a mesma a probabilidade de ocorrer, onde p=1/n.

Logo, se os n pontos amostrais (eventos) são equiprováveis, a probabilidade de cada um dos pontos amostrais é 1/n.

EXERCÍCIOS

- 1) Uma urna contém duas bolas brancas (B) e três bolas vermelhas (V). Retira-se uma bola ao acaso da urna. Se for branca, lança-se uma moeda; se for vermelha, ela é devolvida à urna e retira-se outra. Dê um espaço amostral para o experimento.
- 2) Uma carta é retirada de um baralho comum, de 52 cartas, e, sem saber qual é a carta, é misturada com as cartas de um outro baralho idêntico ao primeiro. Retirando, em seguida, uma carta do segundo baralho, qual a probabilidade de se obter uma dama?

EXERCÍCIOS

- 3) Sejam A e B eventos com $P(A \cup B) = \frac{7}{8}$, $P(A \cap B) = \frac{1}{4}$ e $P(\bar{A}) = \frac{5}{8}$. Encontre P(A), P(B) e $P(A \cap \bar{B})$.
- 4) Em certo colégio, 25% dos estudantes foram reprovados em matemática, 15% em química e 10% em matemática e química ao mesmo tempo. Um estudante é selecionado aleatoriamente.
- a) Se ele foi reprovado em química, qual é a probabilidade de ele ter sido reprovado em matemática?

- b) Se foi reprovado em matemática, qual é a probabilidade de ter sido reprovado em química?
- c) Qual é a probabilidade de ele ter sido reprovado em matemática ou química?