Изогональное сопряжение 2

Изогональное сопряжение в четырёхугольнике:

- $\boxed{1}$ Точка P лежит внутри выпуклого четырёхугольника ABCD и проекции точки P на прямые, содержащие стороны, попадают на стороны. Докажите, что для точки P существует изогонально сопряжённая относительно четырёхугольника ABCD тогда и только тогда, когда
 - а) основания перпендикуляров из точки P на стороны являются вершинами вписанного четырёхугольника;
 - b) верно соотношение $\angle APB + \angle CPD = 180^{\circ}$.
- $\boxed{2}$ В выпуклом четырёхугольнике ABCD биссектрисы углов $\angle BAC$ и $\angle BDC$ пересекаются в точке P. Кроме того, $\angle APB = \angle CPD$. Докажите, что AB + BD = AC + CD.
- [3] Дан выпуклый четырёхугольник ABCD. Обозначим через I_A , I_B , I_C и I_D центры вписанных окружностей ω_A , ω_B , ω_C и ω_D треугольников DAB, ABC, BCD и CDA соответственно. Оказалось, что $\angle BI_AA + \angle I_CI_AI_D = 180^\circ$. Докажите, что $\angle BI_BA + \angle I_CI_BI_D = 180^\circ$.
- [4] В выпуклом четырёхугольнике ABCD диагональ BD не является биссектрисой ни угла ABC, ни угла CDA. Точка P внутри четырехугольника ABCD такова, что $\angle PBC = \angle DBA$ и $\angle PDC = \angle BDA$. Докажите, что ABCD вписан тогда и только тогда, когда AP = CP.

Изогональное сопряжение окружности относительно треугольника:

- [5] На окружности, проходящей через вершины B и C треугольника ABC и через центр его вписанной окружности, выбраны такие точки P и Q, лежащие внутри треугольника, что $\angle BAP = \angle CAQ$. Докажите, что точки P и Q изогонально сопряжены.
- [6] Окружность пересекает сторону BC треугольника ABC в точках A_1 и A_2 , сторону CA в точках B_1 и B_2 , а сторону AB в точках C_1 и C_2 . Окружности, описанные около треугольников AB_1C_1 и BC_1A_1 , пересекаются в точке P_1 . Окружности, описанные около треугольников AB_2C_2 и BC_2A_2 , пересекаются в точке P_2 . Докажите, что точки P_1 и P_2 изогонально сопряжены относительно треугольника ABC.

Изогональное сопряжение в подобных треугольниках:

[7] Дан неравнобедренный треугольник ABC. Пусть N — середина дуги BAC его описанной окружности, а M — середина стороны BC. Обозначим через I_1 и I_2 центры вписанных окружностей треугольников ABM и ACM соответственно. Докажите, что точки I_1 , I_2 , A и N лежат на одной окружности.

- 8 Четырёхугольник ABCD вписан в окружность ω . Окружность ω_1 касается прямых AB и CD в точках X и Y и пересекает дугу AD окружности ω в точках K и L. Прямая XY пересекает прямые AC и BD в точках Z и T. Докажите, что K, L, Z и T лежат на одной окружности, касающейся прямых AC и BD.
- [9] Точка X вне треугольника ABC такова, что A лежит внутри треугольника BXC. При этом $2\angle BAX = \angle CBA$, $2\angle CAX = \angle BCA$. Докажите, что центры описанной и вневписанной со стороны BC окружностей треугольника ABC и точка X лежат на одной прямой.
- Точки M и N соответственно середины сторон AB и AC треугольника ABC. На касательной в точке A к описанной окружности треугольника ABC выбрана точка X. Окружность ω_B , проходящая через точки M и B, касается прямой MX, а окружность ω_C , проходящая через точки N и C, касается прямой NX. Докажите, что ω_B и ω_C пересекаются на прямой BC.

Задачи посложнее:

- ПП Вписанная окружность треугольника ABC касается стороны BC в точке A_1 , точка I центр этой окружности. Прямая, проходящая через точку A_1 перпендикулярно AA_1 , пересекает прямые BI и CI в точках X и Y соответственно. Докажите, что AX = AY.
- Пусть пары точек X и X', Y и Y' изогонально сопряжены относительно треугольника ABC. Докажите, что точки пересечения пар прямых XY и X'Y', XY' и X'Y изогонально сопряжены относительно треугольника ABC.
- 13 Докажите, что проекция ортоцентра треугольника ABC на медиану, выходящую из вершины A, и проекция центра описанной окружности на симедиану, выходящую из вершины A, изогонально сопряжены.
- Чевианы AA_1 , BB_1 и CC_1 треугольника ABC пересекаются в точке P, лежащей внутри треугольника. Известно, что $PA_1 = PB_1 = PC_1$. Докажите, что перпендикуляры, восставленные в точках A_1 , B_1 и C_1 к сторонам треугольника ABC, пересекаются в одной точке.