4.3.1 Изучение дифракции света

Александр Романов Б01-107

1 Введение

1.1 Цель работы

Исследовать явления дифракции Френеля и Фраунгофера на щели, изучить влияние дифракции на разрешающую способность оптических инструментов.

1.2 В работе используются

оптическая скамья, ртутная лампа, монохроматор, щели с регулируемой шириной, рамка с вертикальной нитью, двойная щель, микроскоп на поперечных салазках с микрометрическим винтом, зрительная труба.

2 Работа

2.1 Дифракция Френеля на щели

2.1.1 Полготовка

Определим нуль микрометрического винта S_2 . Глядя сквозь щель на лампу определим момент открытия щели:

$$l_0 = 0.014 \ mm$$

Запишем параметры установки:

$$f_1 = 12.5 \ cm$$

$$f_2 = 12.5 \ cm$$

$$\lambda = 5461 \text{ Å}$$

Рис. 1: Схема установки для наблюдения дифракции Френеля

Соберём схему с Рис.1.

Откроем щель пошире и с помощью листа бумаги убедимся что свет идёт вдоль оптической скамьи.

Установим линзу O_1 на расстоянии от S_1 близком к фокусному $F_2=12.5\ cm$. Точно настроим пучок на параллельность с помощью зрительной трубы.

Установим ширину щели S_2 в $b=0.33\ mm$ и поставим за линзой O_1 .

Сфокусируем микроском на щели S_2 . Перемещая его вдоль оптической скамби получим резкое изображение щели. Видно также что при небольшом удалении микроскопа от щели на ярком фоне изображения щели появляются узкие тёмные полосы.

2.1.2 Измерения

Снова получим резкое изображение щеи в микроскопе $(x_0 = 45.3 \ cm)$. Получим в микроскопе 1 тёмную полосу $x_1 = 46.6 \ cm \Rightarrow z = 1.3 \ cm$

Снимем зависимость координаты микроскопа отчисла n наблюдаемых тёмных полос.

n	1	2	3	4	5
x_n, cm	46.6	46.2	45.9	45.7	45.6
z_n, cm	1.3	0.9	0.6	0.4	0.3

Открыв щель S_2 шире и сдвинув микроскоп наблюдаем дифракцию на краю экрана.

Заменив щель на нить наблюдаем дифракцию на препядствии.

2.1.3 Обработка результатов

Расчитаем зоны Френеля по формуле:

$$\xi_n = \sqrt{z_n n \lambda}$$

	n	1	2	3	4	5
Ì	$2\xi_n, \mu m$	168	198	198	186	181

Построим график:

2.2 Дифракция Фраунгофера на щели

Рис. 2: Схема установки для наблюдения дифракции Фраунгофера Соберём схему с Рис.2.

Настроим микроскоп на фокальную плоскость линзы и поставим между ними щель S_2 . Изменением её ширины добьёмся появления дифракционной картины.

Измерим с помощью шкалы микроскопа координаты x_m нескольких дифракционных минимумов:

	n	1	2	3	4	5
ĺ	x_n, mm	0.120	0.088	0.056	0.024	0.000

Построим график:

Полученная зависимость вида $x_n = kn + b$:

$$k = (-0.030 \pm 0.001) \ mm$$

$$b = (0.149 \pm 0.001) \ mm$$

Итого среднее расстояние Δx между соседними минимумами:

$$\Delta x = (0.030 \pm 0.001) \ mm$$

При этом из формулы:

$$x_m = m\frac{\lambda}{b}f_2$$

вычислим значение b:

$$b = \frac{\lambda f_2}{k} = (2.2 \pm 0.0) \ mm$$

Это значение на порядок отличается от реального $b=0.34 \ mm$

2.3 Дифракция Фраунгофера на двух щелях

Не перемещая линз и микроскопа заменим щель S_1 на щель S_2 и найдём резкое изображение. На бывшее место S_2 поставим поставим экран с двойной щелью. Итого как на Рис. 3:

Рис. 3: Схема установки для наблюдения дифракции Фраунгофера на 2 щелях

2.3.1

Определим с помощью шкалы микроскопа растояние между самыми удалёнными друг от друга тёмными полосами внутри центрального максимума:

$$l = (0.14 \pm 0.02) \ mm$$

Число светлых промежутков между ними:

$$N = 8 \pm 0$$

Определим расстояние δx между соседними минимумами:

$$\delta x = \frac{l}{N} = (0.018 \pm 0.003) \ mm$$

Определим расстояние между щелями d по формуле:

$$\delta x = f_2 \frac{\lambda}{d}$$

$$d = f_2 \frac{\lambda}{\delta x} = (3.8 \pm 0.6) \ mm$$

Измерив то же расстояние с помощью микроскопа:

$$d = (0.84 \pm 0.02) \ mm$$

Значения снова разошлись на 1 порядок.

2.3.2

Расширяя входную щель определим её размер при котором наступает первое исчезновение интерференционных полос:

$$b_0 = (0.08 \pm 0.01) \ mm$$

Теперь получим значение b_0 из формулы:

$$\frac{b_0}{f_1} = \frac{\lambda}{d} \Rightarrow b_0 = f_1 \frac{\lambda}{d} = (0.008 \pm 0.002 \ mm)$$

Значения и сейчас разошлись на порядок.

3 Выводы

В ходе выполнения работы:

- 1. Были изучены различные виды дифракции: Френеля, и Фраунгофера на щели и на двух щелях.
- 2. Были измерены различные параметры установки:

$$b = (2.2 \pm 0.0) \ mm$$

$$b_0 = (0.08 \pm 0.01) \ mm$$

$$d = (3.8 \pm 0.6) \ mm$$

Все эти величины оказались на 1 порядок больше измеренных напрямую. Это может говорить как о неточности измерений (В ходе выполнения работы часто тяжело было понять сколько именно интерференционных полос видно и когда они начинают исчезать), так и об ошибках в последующих вычислениях, которых мне обнаружить не удалось.