ACT MATH FORMULA REVIEW

Roots, Powers and Exponents

$$A^{0} = 1$$

$$A^{1} = A$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$

$$A^{m}A^{n} = A^{m+n}$$

$$(A^{m})^{n} = A^{mn}$$

$$\frac{A^{m}}{A^{n}} = A^{m-n}$$

$$A^{-m} = \frac{1}{A^{m}}$$

$$A^{\frac{m}{n}} = \sqrt[n]{A^{m}}$$

$$\log_{a} a^{x} = x (\log_{2} 8 = \log_{2} 2^{3} = 3)$$
$$\log_{a} (xy) = \log_{a} x + \log_{a} y$$
$$\log_{a} \left(\frac{x}{y}\right) = \log_{a} x - \log_{a} y$$

Quadratic Formula

$$Ax^{2} + bx + c = 0$$

$$\Rightarrow x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Distance Time Formula

Speed (v) =
$$\frac{Distance(d)}{Time(t)}$$
 $V = \frac{d}{dt}$

Linear Equations

Triangles

$$y = mx + b$$

y intercept is b (x=0)

X intercept is mx + b = 0 (y=0)

The slope is $m = \frac{y_2 - y_1}{x_2 - x_1}$

The line with a perpendicular slope has an opposite reciprocal of m: $-\frac{1}{m}$

2x

Distance Formula $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Midpoint Formula $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

Prime numbers

Can be divided only by 1 and themselves. First ten primes: 2,3,5,7,11,13,17,19,23,29 (O and 1 are not primes)

Perfect squares

Commonly used on the ACT:

 11^2 =**121**; 12^2 =**144**; 13^2 =**169**;

 14^2 =**196**; 15^2 =**225**; 16^2 =**256**; 25^2 =**625**

Irrational numbers

Cannot be written as a ratio of two integers: Examples π , $\sqrt{2}$, $\sqrt{3}$, etc. $\pi^*\pi = \pi^2$ (irrational); $\sqrt{2}\sqrt{2} = 2$ (rational!)

Imaginary Numbers

When squared, gives a negative result

$$i * i = -1$$
 $i = \sqrt{-1}$ $\sqrt{(-x)} = i\sqrt{x}$
 $i^1 = i; i^2 = -1; i^3 = -i; i^4 = 1; i^5 = i^1$

Mean: Average | Median: Middle number

Mode: Most frequent number

Weighted average: Add

the values for each occurrence; divide

by total occurrences.

 $y = 90^{\circ} ==> x = 180^{\circ} = d$

riangles are similar

Equilateral triangle:

Area=

 $\frac{1}{2}b*h$

Pythagorean Theory:

5

13

10

25

17

 $a^2 + b^2 = c^2$

4,

12.

8,

24,

15.

7,

8.

¦h

Area of a trapezoid:

Half-point line: (A+B)/2 * h

CIRCLE

Area = πr^2 $y = inscribed angle = \frac{1}{2}x$

Formula: $x^2 + y^2 = r^2$

$$(x-a)^2 + (y-b)^2 = r^2$$

 \rightarrow Midpoint = (a,b); radius = r

Perimeter = $2\pi r$

TRIGONOMETRY: SOH-CAH-TOA

Sin
$$\Theta = \frac{\partial pp}{Hyp}$$

$$\cos \Theta = \frac{Adj}{Hyp}$$

Tan
$$\Theta = \frac{Opp}{Adj}$$

Tan
$$\Theta = \frac{Opp}{Adj}$$
 Cot $\Theta = \frac{Adj}{Opp} = \frac{1}{Tan}$

CYLINDER:

Area: $\pi r^2 + \pi r^2 + h^* 2\pi r$

Volume: $\pi r^2 * h$

Volume: Cube: $V = s^3$ Cone: $V = 1/3 \pi r^2 h$ Pyramid: V = 1/3 lwh Sphere: $V = 4/3 \pi r^3$

For interactive formulas visit www.myclass101.com

ACT MATH FORMULA REVIEW

Roots, Powers and Exponents

$A^0 =$	
$A^1 =$	
$\sqrt{\frac{a}{b}} =$	
•	
$\sqrt{ab} =$	
$A^m A^n =$	
$(A^m)^n =$	
$\frac{Am}{An} =$	
$A^{-m} =$	
$A^{\frac{m}{n}} =$	

Quadratic Formula

Distance-Time Formula

Linear Equations

y = mx + b

y intercept is X intercept is

The slope $m = \frac{?}{2}$

The line with a perpendicular slope

has a slope of

Distance Formula d =

Midpoint Formula

Prime numbers

Definition: First ten primes:

Perfect squares

Commonly used on the ACT:

$$11^2 =$$
; $12^2 =$; $13^2 =$; $14^2 =$; $15^2 =$; $16^2 =$; $25^2 =$

Irrational numbers

Definition:

Examples:

Imaginary Number,

Definition:

$$i^1 =$$
__; $i^2 =$ __; $i^3 =$ __; $i^4 =$ ___

Mean:

Median:

Mode:

Weighted average:

 $T = \frac{?}{2}$ —

Pythagorean Theory:

Formula: Examples:

3, ____, ___

5, ____, ____

7, ____, ____

Area

Perimeter

Formula:

CYLINDER:

Area: Volume:

Sum of angles in a regular polygon with n sides:

Volume: Cube: V = Pyramid: V =

Cone: V = Sphere: V=

For interactive formulas visit www.myclass101.com

TRIGONOMETRY:

Sin 0 = Sec O= Cos 0= ____ Cot 0= Csc 0= ____ Tan O =