Design and Analysis of Sample Surveys

Andrew Gelman

Department of Statistics and Department of Political Science

Columbia University

Class 4b: Ratio and regression estimation

Using auxiliary information to improve a survey

- Example: QMSS enrollment
 - Number accepted and planning to attend, 16 June 1999: 7
 - Number of entering students, Fall 1999: 11
 - ▶ Number accepted and planning to attend, 20 June 2000: 14
 - ▶ Number of entering students, Fall 2000: ?
- Ratio estimate:
 - ▶ $11 \cdot \frac{14}{7}$
- Regression estimate:
 - Get more data, fit model y = a + bx + error
 - Estimate is 11 + b(14 7)

Using auxiliary information to improve a survey

- Example: what percentage of people volunteer for political campaigns?
 - Direct approach: estimate the percentage of people who volunteer
 - Ratio: estimate the percentage who volunteer, divided by the percentage who vote
 - Regression: get lots of data, estimate regression of percentage who attend estimate the percentage who volunteer, divided by the percentage who vote
- Formulas:
 - ▶ Direct approach: \bar{y}
 - Ratio: $\bar{y}\frac{\bar{X}}{\bar{x}}$
 - ▶ Regression: $\bar{y} + b(\bar{X} \bar{x})$ (estimating b using data from many surveys)
 - $\bar{x} =$ proportion of people in survey who vote
 - \bar{X} = proportion of population who vote

Ratio estimation in R

Direct calculations:

```
is_old_white_male <- ifelse (pew$age==4 & pew$eth==1 &
    pew$male==1, 1, 0)
  r.w <- mean(pew$pop.weight*pew$rvote*is_old_white_male)/
    mean(pew$pop.weight*is_old_white_male)
  s2.w \leftarrow (1/(n-1))*sum((pew$pop.weight*pew$rvote*
    is_old_white_male -
    r.w*pew$pop.weight*is_old_white_male)^2)
  se.w \leftarrow (1/sqrt(n))*sqrt(s2.w)/
    mean(pew$pop.weight*is_old_white_male)
Using the "survey" package:
  weighted_design <- update (weighted_design,</pre>
    is_old_white_male = (age==4 & eth==1 & male==1))
  svyratio (~I(rvote*is_old_white_male),
    ~is_old_white_male, weighted_design)
```

Ratio estimation of a population ratio

- Example: volunteering and voter turnout
 - $y_i = 1$ if person *i* volunteered for a campaign
 - $x_i = 1$ if person i voted
 - Assume that all volunteers are voters
 - Suppose $\overline{X} = 0.6$, $\overline{x} = 0.75$, $\overline{y} = 0.15$
 - In this example, sample is more politically active than population
- Estimating $\overline{Y}/\overline{X}$ in population
 - Estimate is $\overline{y}/\overline{x} = 0.2$ in sample
 - ▶ 20% of voters in sample are volunteers

Ratio estimation of a population average or total

- Example
 - $y_i = 1$ if person i volunteered for a campaign
 - $x_i = 1$ if person i voted
 - ▶ Suppose $\overline{X} = 0.6$, $\overline{x} = 0.75$, $\overline{y} = 0.15$
- \triangleright Simple estimate of \overline{Y} (proportion of voters who volunteered)
 - Estimate is $\overline{y} = 0.15$
- Ratio estimate of \overline{Y}
 - Estimate is $\overline{y} \frac{\overline{X}}{\overline{x}} = 0.15 \frac{0.6}{0.75} = 0.12$
- ▶ Estimating $N\overline{Y}$ (total number of people of volunteered)
 - Estimate is $N\overline{y}\frac{\overline{X}}{\overline{x}} = 0.12N$

Example of ratio estimation

- ▶ You have a population of insurance claims
- ▶ What is the average liability?
- ▶ Audit a random sample of claims, i = 1, ..., n
- Direct approach:
 - y_i = liability of claim i
 - Estimated avg liability is \overline{y} , std err is $\sqrt{1-f}\frac{1}{\sqrt{n}}s_y$
- Ratio estimation . . . ?

Example of ratio estimation

- Direct approach:
 - $y_i = \text{liability of claim } i$
 - ▶ Estimated avg liability is \overline{y} , std err is $\sqrt{1-f}\frac{1}{\sqrt{n}}s_y$
- Ratio estimation:
 - $x_i =$ something that's fully observed in the population
 - ▶ Estimate of \overline{Y} is $\overline{y} \frac{\overline{X}}{\overline{y}}$
 - What's a good "x" here?

Standard error of ratio estimation

- ▶ Estimate \overline{Y} from data $(x_i, y_i), i = 1, ..., n$
- ▶ Simple estimate, \overline{y}
 - Std err is $\sqrt{1-f}\frac{1}{\sqrt{n}}s_y$
- ▶ Ratio estimate, $\overline{y} \frac{\overline{X}}{\overline{x}}$
 - ▶ Define $r = \overline{y}/\overline{x}$
 - ▶ Define $z_i = y_i rx_i$
 - Std err of ratio estimate is $\sqrt{1-f}\frac{1}{\sqrt{n}}s_z$
- Design effect of ratio estimation

 - ▶ This should be less than 1

Standard error of other ratio estimates

- ▶ Simple estimate, \overline{y}
 - Std err is $\sqrt{1-f}\frac{1}{\sqrt{n}}s_y$
- ▶ Ratio estimate, $\overline{y} \frac{\overline{X}}{\overline{x}}$
 - ▶ Define $r = \overline{y}/\overline{x}$
 - ▶ Define $z_i = y_i rx_i$
 - ▶ Std err of ratio estimate is $\sqrt{1-f}\frac{1}{\sqrt{n}}s_z$
- ▶ Ratio estimate of total, $N\overline{y}\frac{\overline{X}}{\overline{x}}$
 - Std err is $N\sqrt{1-f}\frac{1}{\sqrt{n}}s_z$
- ▶ Ratio estimate of ratio, $\overline{y}/\overline{x}$
 - Std err is $\frac{1}{|\overline{X}|}\sqrt{1-f}\frac{1}{\sqrt{n}}s_z$

Regression estimation

- Example
 - $\mathbf{y}_i = \text{liability of insurance claim } i$
 - $x_i = (cheap)$ estimate of claim i
- \triangleright Estimating \overline{Y} (avg liability of claims)
- ▶ Fit a regression, $y_i = a + bx_i + \text{error}$
- ▶ Regression estimate of \overline{Y} is $\overline{y} + b(\overline{X} \overline{x})$
- Corrects for known difference between sample and population

Regression estimation: std err

- ▶ Fit a regression, $y_i = a + bx_i + \text{error}$
- ▶ Regression estimate of \overline{Y} is $\overline{y} + b(\overline{X} \overline{x})$
- Standard error
 - ▶ Compute residuals $z_i = y_i a bx_i$
 - Std err is $\sqrt{1-f}\frac{1}{\sqrt{n}}s_z$
- Design effect

 - ▶ This is $1 R^2$
 - Optimal (that is, lowest) for least-squares regression

Regression estimation as a general framework

- ▶ Fit a regression, $y_i = a + bx_i + \text{error}$
- ▶ Regression estimate of \overline{Y} is $\overline{y} + b(\overline{X} \overline{x})$
- Special cases:
 - b = 0: unadjusted sample average
 - $b = \frac{\overline{y}}{\overline{z}}$: ratio estimation
 - b = 1: simple adjustment
- Regression estimation is valid for any b
 - ▶ Optimal for b = least-squares estimate

More on regression estimation

- Poststratification as a special case of regression estimation (indicator for each stratum)
- Use of auxiliary information

"Double robustness" of regression estimation

- Two possible assumptions
 - Data are a simple random sample
 - Linear regression model is true
- ▶ Regression estimate $\overline{y} + b(\overline{X} \overline{x})$ is unbiased if *either* assumption is true
- Can include multiple x's:
 - ▶ Fit a regression, $y_i = b_0 + b_1x_{1i} + b_2x_{2i} + \cdots + \text{error}$
 - Regression estimate of \overline{Y} is $\overline{y} + b_1(\overline{X}_1 \overline{x}_1) + b_2(\overline{X}_2 \overline{x}_2) + \dots$
- Connection to poststratification and missing-data imputation