

Filtrace v prostorové a frekvenční oblasti

Filtrace v prostorové a frekvenční oblasti

Filtrace

- soubor lokálních transformací obrazu
- úrovně jasu se převádí na jiné
- cílem je potlačit nežádoucí jasové složky

Original

Filtrace

- v prostorové (obrazové) nebo časové oblasti využití konvoluce
- ve frekvenční oblasti využití Fourierovy transformace

- Filtry
 - Pracují s více pixely v obraze (nejsou zaměřeny na jeden pixel), tj. počítají novou hodnotu pixelu na základě hodnot více pixelů v obraze.
 - Díky tomu umožňují takové operace, jako je např. zaostření nebo rozmazání obrazu
 - Filtry potlačují část neužitečné informace a ponechávají (zdůrazňují) tu užitečnou.
 - Filtrace nebývá vratnou operací, tj. dochází díky ní ke ztrátě informace.

Příklad průměrovacího filtru (rozmazání)

$$I'(u,v) \leftarrow \frac{p_0 + p_1 + p_2 + p_3 + p_4 + p_5 + p_6 + p_7 + p_8}{9}$$

• Kde p_i jsou sousední pixely středového pixelu p_0 .

• Jiný zápis téhož, ale pomocí relativních odkazů na sousední pixely

$$I'(u,v) \leftarrow \frac{1}{9} \cdot \begin{bmatrix} I(u-1,v-1) + I(u,v-1) + I(u+1,v-1) + I(u-1,v) + I(u,v) + I(u+1,v) + I(u-1,v+1) + I(u,v+1) + I(u+1,v+1) \end{bmatrix}$$

resp. v kompaktní formě:

$$I'(u,v) \leftarrow \frac{1}{9} \cdot \sum_{j=-1}^{1} \sum_{i=-1}^{1} I(u+i,v+j)$$

- (Obrazový) filtr je charakterizován zejména
 - množinou pixelů, které zohledňuje ve výpočtu
 - velikostí této množiny
 - tvarem oblasti, kterou tyto pixely vymezují (nemusí být spojitá)
 - vahami (mírou vlivu) jednotlivých pixelů

- Lineární filtry
 - Lineární filtry jsou postaveny na váženém součtu hodnot uvažovaných pixelů
 - Velikost, tvar a váhy jsou určeny tzv. filtrační maticí, resp. filtrační maskou H(i, j)
 - Např. zmíněný průměrovací filtr velikosti 3x3 má masku:

$$H(i,j) = \begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- Filtr sám je dvourozměrnou diskrétní funkcí $H: Z \times Z \rightarrow R$
- Filtr bývá zvykem indexovat od jeho středu.
- Pro matematické operace se uvažuje automatické doplnění nulami okolo filtru.

- Pro výpočty je výhodné mít v matici celá čísla.
- Lineární filtry mají svá omezení při vyhlazování a odstraňování šumu (rozmazání).

- Aplikace filtru
 - Maska filtru (dále jen filtr) je umístěna na uvažovanou pozici v obrázku.
 - Všechny hodnoty filtru H(i, j) jsou pronásobeny s odpovídající hodnotami v obraze I(u+i, v+j) a následně sečteny.
 - Výsledná hodnota je uložena do nového obrázku (nejsou přepisovány hodnoty ve stávajícím obrazu) a celý proces se opakuje pro další pixely v obrazu

Proces aplikace filtru lze vyjádřit vztahem (tzv. lin. konvolucí)

$$I'(u,v) \leftarrow \sum_{(i,j)\in R_H} I(u+i,v+j) \cdot H(i,j)$$

$$I'(u,v) \leftarrow \sum_{i=-1}^{i=1} \sum_{j=-1}^{j=1} I(u+i,v+j) \cdot H(i,j)$$

- (Lineární) konvoluce
 - Kombinace (pronásobení) dvou diskrétních nebo spojitých funkcí mezi sebou při různém vzájemném překryvu a následné sečtení

H – konvoluční matice (konvoluční jádro)

Vlastnosti konvoluce

- Komutativita I * H = H * I
- Linearita $(s \cdot I) * H = I * (s \cdot H) = s \cdot (I * H)$
- Distributivita $(I_1 + I_2) * H = (I_1 * H) + (I_2 * H)$
- Asociativita A*(B*C) = (A*B)*C
- Separabilita $H = H_1 * H_2 * ... * H_n$

$$H_x = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \qquad H_y = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$I' \leftarrow (I * H_x) * H_y = I * \underbrace{(H_x * H_y)}_{H_{xy}}$$

Ušetření počtu operací, než u výpočtu s maticí

- Ne každý filtr (reprezentovaný maticí) lze rozložit na dva dílčí filtry reprezentované vektory.
- Pokud má filtr (matice) hodnost 1, potom ho lze rozložit na součin dvou vektorů (pomocí SVD) a příslušný filtr je tak separovatelný.
- Separabilita sníží výpočetní složitost z O(MNmn) na O(MN(m+n)), kde M, N jsou rozměry obrázku a m, n jsou rozměry filtru.

```
\begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix} = \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} \begin{bmatrix} h_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 6 \\ 4 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \end{bmatrix}
```

```
[u,s,v] = svd(H);
s = diag(s); % prevod matice na vektor diagonalnich hodnot
hodnost = sum(s > 0); % nebo primo prikazem rank(H)
if (hodnost == 1)
  hcol = u(:,1) * sqrt(s(1));
  hrow = conj(v(:,1)) * sqrt(s(1));
else
  % filtr neni separabilni
end
```

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	
0	101	98	104	102	100	
0	99	101	106	104	99	
0	104	104	104	100	98	
						9

		_		
Kρ	rn	N/	lat	rix
		ıv	ıaı	

0	-1	0
-1	5	-1
0	-1	0

320				25
				4000
		5		
	B1-1 1 - 1 - 1			2000
			%	

Image Matrix

$$0*0+0*-1+0*0$$

+0*-1+105*5+102*-1
+0*0+103*-1+99*0 = 320

Output Matrix

Tvary/typy filtrů (konvolučních jader)

- Vyhlazovací filtry
 - Krabicový (průměrovací) filtr (Mean/Box filter)
 - Jednoduchá implementace
 - Nevýhodou jsou ostré přechody -> zvlnění obrazu
 - Neizotropní (nechová se stejně ve všech směrech)

$$\frac{1}{9} \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}$$

$$\frac{1}{10} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad \frac{1}{10} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

- Gaussův filtr (Gaussian filter)
 - Izotropní
 - "měkké" okraje, bez zvlnění obrazu

$$G_{\sigma}(x,y) = e^{-\frac{r^2}{2\sigma^2}} = e^{-\frac{x^2+y^2}{2\sigma^2}}$$

box filter

gaussian

https://docs.opencv.org/2.4/doc/tutorials/imgproc/gausian median blur bilateral filter/gausian median blur bilateral filter.html

- Diferenční filtry
 - · Některé koeficienty filtrační matice mohou být záporné
 - Výpočet lze interpretovat jako rozdíl dvou součtů: součet hodnot pro kladné hodnoty filtru mínus součet hodnot pro záporné hodnoty filtru

$$I'(u,v) = \sum_{(i,j)\in R_H^+} I(u+i,v+j) \cdot |H(i,j)|$$
$$-\sum_{(i,j)\in R_H^-} I(u+i,v+j) \cdot |H(i,j)|$$

- Příkladem je např. Laplaceův filtr
- Zatímco vyhlazovací filtry potlačují výrazné osamělé hodnoty, diferenční filtry je naopak zvýrazňují -> zaostřování obrázku, detekce hran

- Nelineární filtry
 - Hodnoty pixelů jsou kombinovány pomocí nelineární funkce.
- Minimální a maximální filtr

$$I'(u,v) \leftarrow \min \left\{ I(u+i,v+j) \mid (i,j) \in R \right\}$$
$$I'(u,v) \leftarrow \max \left\{ I(u+i,v+j) \mid (i,j) \in R \right\}$$

Min. filtr (potlačení bílé, zvýraznění černé)

Max. filtr (potlačení černé, zvýraznění bílé)

- Mediánový filtr
 - Nahrazuje hodnotu daného pixlu mediánem hodnot sousedních pixelů

$$I'(u,v) \leftarrow \text{ median } \{I(u+i,v+j) \mid (i,j) \in R\}$$

- Pro výpočet mediánu je potřeba provést seřazení hodnot → časově náročné.
- Robustní nerozhodí ho extrémní hodnoty.
- Zachovává hrany, bohužel je někdy i vytváří.

Srovnání lineárního krabicového (průměrovacího) filtru
 3x3 a mediánového filtru

Průměrovací lin. filtr 3x3

Př. Impulzní šum ("pepř a sůl")

- Vážený mediánový filtr
 - Jednotlivým pozicím ve filtru jsou přiřazeny váhy, tj. důležitosti jednotlivých hodnot
 - Většinou váhy blízko uvažovaného pixelu jsou větší, než vzdálenější pixely
 - Váhová matice $W(i, j) \in \mathbb{N}$
 - Výpočet probíhá tak, že každá hodnota obrazu je nakopírována do pomocného vektoru tolikrát, jaké je číslo na odpovídající pozici ve váhové matici.
 - Teprve poté je vypočten medián vektoru.

- Hraniční oblasti
 - Problém: Jak počítat hodnoty na okrajích obrázku
 - Několik způsobů řešení:
 - Okrajové hodnoty doplnit nějakou konstantou, např. 0 = černá
 - Okrajové hodnoty doplnit hodnotami nejbližšího pixelu obrázku
 - Použít zrcadlově obrácený obraz
 - Periodicky rozšířit obraz (výhodné, pokud pracujeme ve frekvenční oblasti)

- (Hluboká) neuronová síť představuje univerzální transformaci mezi vstupy a výstupy
- Máme-li odpovídající dvojice: [rozmazaný obrázek, ostrý obrázek], můžeme NS naučit transformaci mezi těmito dvojicemi (nastavujeme parametry sítě – váhy = koeficienty transformačních rovnic)

- Např. Photo Enhancer od MyHeritage (https://www.myheritage.cz/photo-enhancer)
- Natrénován na desítkách tisíc párových fotografií

Výška obrázku zmenšena na 75 px a pak zvětšena opět na 1400 px původního obrázku

- Např. Photo Enhancer od MyHeritage (https://www.myheritage.cz/photo-enhancer)
- Natrénován na desítkách tisíc párových fotografií

Výška obrázku zmenšena na 30 px a pak zvětšena opět na 1400 px původního obrázku

Filtrace ve frekvenční oblasti

- Filtrace v prostorové oblasti
 - Snazší představivost, ale ne vždy výhodné, nemusí být vidět skryté závislosti

- Filtrace ve frekvenční oblasti
 - Převod obrazu do jiného prostoru, následná filtrace v tomto prostoru a převod zpět
 - Obraz je nejprve dekomponován na složky a filtrace se provádí nad těmito složkami
 - Existuje více způsobů, jak obraz (dvourozměrnou funkci) rozložit na složky, např.
 - na jednotlivé barevné kanály,
 - pomocí Taylorova rozvoje,
 - pomocí Ptolemaiových kružnic,
 - na harmonické složky pomocí Fourierovy transformace apod.

Ptolemaiovy kružnice

https://www.youtube.com/watch?v=8Q0NxFt-s7Y

https://www.youtube.com/watch?v=LznjC4Lo7IE

- Fourierova analýza slouží ke zjištění, z jakých harmonických funkcí se daná funkce skládá.
- Harmonická funkce: $y(x) = A.\sin(\omega x + \varphi)$, kde
 - A je amplituda
 - ω je kruhová **frekvence**, $\omega = \frac{2\pi}{T}$, T je perioda
 - φ je **fázový posun** (fáze)
- Výsledkem Fourierovy analýzy je seznam (tabulka) amplitud a fázových posunů pro jednotlivé frekvence.
- Grafu závislosti amplitudy na frekvenci se říká amplitudové spektrum.
- Grafu závislosti fázového posunu na frekvenci se říká fázové spektrum.

- Fourierova řada se používá pro vyjádření periodického signálu.
- Fourierova transformace (Fourierův integrál) se používá pro vyjádření neperiodického signálu.

• Dále se rozlišuje, zda pracujeme se **spojitou** nebo **diskrétní funkcí** (posloupností čísel).

Příklad Fourierovy řady periodického signálu

$$f(x) = \sin x + \frac{1}{3}\sin 3x + \frac{1}{5}\sin 5x + \frac{1}{7}\sin 7x + \frac{1}{9}\sin 9x + \cdots$$

Příklad Fourierovy řady periodického signálu

$$f(x) = \sin x + \frac{1}{3}\sin 3x + \frac{1}{5}\sin 5x + \frac{1}{7}\sin 7x + \frac{1}{9}\sin 9x + \cdots$$

Příklad Fourierovy řady periodického signálu

$$f(x) = \sin x + \frac{1}{3}\sin 3x + \frac{1}{5}\sin 5x + \frac{1}{7}\sin 7x + \frac{1}{9}\sin 9x + \cdots$$

Rozklad 1D funkce na jednotlivé harmonické složky

http://www.tomasboril.cz/fourierseries3d/cz/

 Rozvoj Fourierovy řady (periodické funkce) může zapsat i v komplexní podobě

$$f(x) = \sum_{n=-\infty}^{\infty} c_n \exp\left(\frac{in\pi x}{T}\right) dx$$
 kde $c_n = \frac{1}{2T} \int_{-T}^{T} f(x) \exp\left(\frac{-in\pi x}{T}\right) dx$

Ukázka odvození komplexního tvaru jednoduché harmonické funkce

$$f(x) = \cos x = \cos \omega x = \frac{1}{2} \cos \omega x + i \frac{1}{2} \sin \omega x + \frac{1}{2} \cos \omega x - i \frac{1}{2} \sin \omega x = \frac{1}{2} e^{i\omega x}$$

$$= \sum_{n=2}^{\infty} \cos n + i \sin \varphi$$

$$= \sum_{n=2}^{\infty} \cos n + i \cos n + i \cos \varphi$$

$$= \sum_{n=2}^{\infty} \cos n + i \cos n + i \cos \varphi$$

$$= \sum_{n=2}^{\infty} \cos n + i \cos n + i \cos \varphi$$

$$= \sum_{n=2$$

Pokud jsou využita komplexní čísla pro vyjádření Fourierovy řady/transformace, vyskytují se ve vzorcích automaticky i komplexně sdružená čísla, což vede k tomu, že se amplitudy vyskytují 2x (pro danou frekvenci a pro symetrickou zápornou frekvenci). Proto také původně jedna amplituda je nyní reprezentována dvěma amplitudami poloviční velikosti.

 Fourierova transformace pro neperiodickou funkci lze také vyjádřit v komplexní podobě:

$$f(x) = \int_{-\infty}^{\infty} F(\omega)e^{i\omega x}d\omega,$$

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{i\omega x}dx.$$

 Využití komplexních čísel je výhodné z důvodu kompaktnějšího zápisu a snazších matematických operací.

- Protože nás zajímá využití FT při zpracování obrazu, který je reprezentován maticí a je tedy diskrétní, omezíme se na diskrétní Fourierovu transformaci (DFT)
- Pro diskrétní funkce jedné proměnné (např. časové řady) je DFT dána těmito vztahy:

$$F_{u} = \frac{1}{N} \sum_{x=0}^{N-1} \exp\left[-2\pi i \frac{xu}{N}\right] f_{x} \qquad \mathsf{DFT}$$

$$x_u = \sum_{x=0}^{N-1} \exp\left[2\pi i \frac{xu}{N}\right] F_u$$

inverzní DFT (IDFT)

FT 2D obrázku (spektrum obrázku)

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \exp\left[-2\pi i \left(\frac{xu}{M} + \frac{yv}{N}\right)\right]$$

Zpětná FT 2D obrázku (rekonstrukce obrázku ze spektra)

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) \exp\left[2\pi i \left(\frac{xu}{M} + \frac{yv}{N}\right)\right]$$

• 2D harmonická složka

$$z = a\sin(bx + cy)$$

• Pozice ve spektru

- Vlastnosti Fourierovy transformace
 - Linearita: F(f+g) = F(f) + F(g) výhodné pro odstranění známého šumu
 - Konvoluce: $F(M*S) = F(M) \cdot F(S)$ výhodné pro filtraci
 - Posun: Spektrum se posune do středu, pokud pronásobíme obraz maticí {(-1)x+y}
- Vizualizace spektra
 - Snížení vlivu stejnosměrné složky, např. log(1+|F(u,v)|)
- FFT (Fast Fourier Transform)
 - Efektivní implementace DFT (2²ⁿ -> n2ⁿ operací násobení)
 - Postavena na rekurzivním dělení dat -> výhodné pro matice o rozměrech 2^k

- Posun spektra
 - Po FT je standardně stejnosměrná složka v levém horním rohu matice spektra
 - Okolí stejnosměrné složky odpovídá složkám s nižší frekvencí, která se zvyšuje jak se od levého horního roku vzdalujeme
 - Pro snazší interpretaci je výhodné provést posun spektra tak, aby stejnosměrná složka byla uprostřed a okolní hodnoty FT odpovídající složkám o nižších frekvencích.
 Větší vzdálenosti od středu odpovídají složkám o vyšších frekvencích.
 - Posun spektra využívá skutečnosti, že pokud obrázek pronásobíme stejně velkou maticí ve tvaru šachovnice s hodnotami +1 a -1, dojde k žádanému posunu.

- Jednoduché příklady DFT
 - Příklad 1: Mějme obrázek o rozměru 8x8 pixelů, který obsahuje samé jedničky (jednolitá plocha)

- Pokud dosadíme do vztahu pro F(u,v) za u=0 a v=0, vypadne exponenciální člen (e⁰=1) a zůstane součet prvků matice, tj. hodnota 64.
- Pokud dosadíme do vztahu pro F(u,v) např. za u=0 a v=1, výpočtem zjistíme, že se vyruší a bude platit, že F(0,1)=0.
- F(u,v)=0 dostaneme pro všechny hodnoty u a v vyjma prvního případu, kdy u=0 a v=0.

- Jednoduché příklady DFT
 - Příklad 1: Mějme obrázek o rozměru 8x8 pixelů, který obsahuje samé jedničky (jednolitá plocha)

- Pokud dosadíme do vztahu pro F(u,v) za u=0 a v=0, vypadne exponenciální člen (e⁰=1) a zůstane součet prvků matice, tj. hodnota 64.
- Pokud dosadíme do vztahu pro F(u,v) např. za u=0 a v=1, výpočtem zjistíme, že se vyruší a bude platit, že F(0,1)=0.
- F(u,v)=0 dostaneme pro všechny hodnoty u a v vyjma prvního případu, kdy u=0 a v=0.

- Jednoduché příklady DFT
 - Příklad 2: Mějme obrázek o rozměru 8x8 pixelů, který obsahuje následující hodnoty:

obrázek jako matice

spektrum obrázku (neposunuté)

- Pokud dosadíme do vztahu pro F(u,v) za u=0 a v=0, vypadne exponenciální člen (e⁰=1) a zůstane dvojnásobný součet prvků matice, tj. hodnota 9600.
- Pokud dosadíme do vztahu pro F(u,v) např. za u=4 a v=0, výpočtem zjistíme, že F(0,1)=-3200.
- Pro ostatní hodnoty u a v dostaneme F(u,v)=0.
- Matice F(u,v) obsahuje v tomto případě reálná čísla. To však nemusí být vždy pravda. V tom případě je F(u,v) matice komplexních čísel a vyjadřujeme ji dvěma maticemi: maticí amplitud a maticí fází.

- Jednoduché příklady DFT
 - Příklad 2: Mějme obrázek o rozměru 8x8 pixelů, který obsahuje následující hodnoty:

- Pokud dosadíme do vztahu pro F(u,v) za u=0 a v=0, vypadne exponenciální člen (e⁰=1) a zůstane dvojnásobný součet prvků matice, tj. hodnota 9600.
- Pokud dosadíme do vztahu pro F(u,v) např. za u=4 a v=0, výpočtem zjistíme, že F(0,1)=-3200.
- Pro ostatní hodnoty u a v dostaneme
 F(u,v)=0.
- Matice F(u,v) obsahuje v tomto případě reálná čísla. To však nemusí být vždy pravda. V tom případě je F(u,v) matice komplexních čísel a vyjadřujeme ji dvěma maticemi: maticí amplitud a maticí fází.

- Jednoduché příklady DFT
 - Příklad 3: Mějme obrázek jednotkového skoku, tj. matici:

spektrum obrázku (tentokrát už obsahuje komplexní čísla a je posunuté)

```
0.0000 + 0.0000i
                   0.0000 + 0.0000i
                                       0.0000 + 0.0000i
                                                          0.0000 + 0.0000i
                                                                              0.0000 + 0.0000i
                                                                                                  0.0000 + 0.0000i
                                                                                                                     0.0000 + 0.0000i
                                                                                                                                         0.0000 + 0.0000i
0.0000 + 0.0000i
                   0.0000 + 0.0000i
                                      0.0000 + 0.0000i
                                                          0.0000 + 0.0000i
                                                                              0.0000 + 0.0000i
                                                                                                  0.0000 + 0.0000i
                                                                                                                     0.0000 + 0.0000i
                                                                                                                                         0.0000 + 0.0000i
0.0000 + 0.0000i
                   0.0000 + 0.0000i
                                      0.0000 + 0.0000i
                                                          0.0000 + 0.0000i
                                                                              0.0000 + 0.0000i
                                                                                                  0.0000 + 0.0000i
                                                                                                                     0.0000 + 0.0000i
                                                                                                                                         0.0000 + 0.0000i
0.0000 + 0.0000i
                   0.0000 + 0.0000i
                                      0.0000 + 0.0000i
                                                          0.0000 + 0.0000i
                                                                              0.0000 + 0.0000i
                                                                                                  0.0000 + 0.0000i
                                                                                                                                         0.0000 + 0.0000i
                                                                                                                     0.0000 + 0.0000i
0.0000 + 0.0000i
                  -8.0000 - 3.3137i
                                      0.0000 + 0.0000i
                                                         -8.0000 -19.3137i
                                                                             32.0000 + 0.0000i
                                                                                                 -8.0000 +19.3137i
                                                                                                                     0.0000 + 0.0000i
                                                                                                                                        -8.0000 + 3.3137i
0.0000 + 0.0000i
                   0.0000 + 0.0000i
                                      0.0000 + 0.0000i
                                                          0.0000 + 0.0000i
                                                                              0.0000 + 0.0000i
                                                                                                  0.0000 + 0.0000i
                                                                                                                     0.0000 + 0.0000i
                                                                                                                                        0.0000 + 0.0000i
0.0000 + 0.0000i
                   0.0000 + 0.0000i
                                      0.0000 + 0.0000i
                                                          0.0000 + 0.00001
                                                                              0.0000 + 0.0000i
                                                                                                  0.0000 + 0.0000i
                                                                                                                     0.0000 + 0.0000i
                                                                                                                                         0.0000 + 0.0000i
0.0000 + 0.0000i
                   0.0000 + 0.0000i
                                      0.0000 + 0.0000i
                                                          0.0000 + 0.0000i
                                                                              0.0000 + 0.0000i
                                                                                                                                         0.0000 + 0.0000i
                                                                                                  0.0000 + 0.0000i
                                                                                                                     0.0000 + 0.0000i
```

af3 =

- Jednoduché příklady DFT
 - Příklad 3: FT obrázku s posunem stejnosměrné složky na střed (shift):

- Jednoduché příklady DFT
 - Příklady umělých obrázků (všechna spektra jsou již po posunu)

- Ideální filtr
 - Low-pass filter (dolnofrekvenční propusť)

High-pass filter (hornofrekvenční propusť)

- Ideální filtr
 - Low-pass filter (dolnofrekvenční propusť)

High-pass filter (hornofrekvenční propusť)

• Ideální filtr – Low-pass filter (dolnofrekvenční propusť)

(amplitudové) spektrum původního obrázku

dolnofrekvenční ideální propusť, *D* = 15

zpětná transformace z vyfiltrovaného spektra

• Ideální filtr – High-pass filter (hornofrekvenční propusť)

- Butterworthův filtr
 - Ideální filtr snadná SW implementace, artefakty zvlnění obrazu
 - BF postupný přechod -> snížení zvlnění obrazu

dolnofrekvenční propusť

$$f(x) = \frac{1}{1 + (x/D)^{2n}}$$

$$f(x) = \frac{1}{1 + (x/D)^{2n}} \qquad f(x,y) = \frac{1}{1 + \left(\frac{x^2 + y^2}{D^2}\right)}$$

hornofrekvenční propusť

$$f(x) = \frac{1}{1 + (D/x)^{2n}}$$

$$f(x) = \frac{1}{1 + (D/x)^{2n}} \qquad f(x,y) = \frac{1}{1 + \left(\frac{D^2}{x^2 + v^2}\right)}$$

n je řád filtru, D je místo přechodu přes 0,5 (odpovídá hraniční frekvenci)

• Butterworthův filtr

(amplitudové) spektrum původního obrázku

dolnofrekvenční propusť D = 15, n = 2

- Gaussův filtr
 - "Hladký" filtr
 - Tvar Gaussovy funkce (pro 2D tvar "klobouku")

$$f(x,y) = A \exp \left(-\left(rac{(x-x_o)^2}{2\sigma_x^2} + rac{(y-y_o)^2}{2\sigma_y^2}
ight)
ight)$$

 FT obrázku po prvcích pronásobíme hodnotami filtru a na výsledek aplikujeme zpětnou FT

Gaussův filtr – low-pass filtr

Gaussův filtr – high-pass filtr

- Podobná diskrétní Fourierově transformaci (DFT)
- Používá se při kompresi obrázků a dat formát JPEG, MPEG, MP3, ...
- Místo komplexní exponenciály jak je to mu u FT využívá reálnou funkci cos(x).
- Odpadá tak komplexní člen se sin(x) a díky tomu DCT generuje pouze reálné koeficienty.
- Díky separabilitě lze snadno optimalizovat výpočet vícerozměrných dat pomocí série jednorozměrných výpočtů
- Transformace většinou po blocích -> šetří paměť

- Existuje vice variant DCT, nejpoužívanější je:
 - Pro 1D případ

$$X_k = \sum_{n=0}^{N-1} x_n \cos \left[rac{\pi}{N} \left(n + rac{1}{2}
ight) k
ight]$$

 Pro 2D případ (matici/snímek) - může být spočítána jako série jednorozměrných transformací postupně v každém rozměru. Pro 2D například nejprve po řádcích a pak po sloupcích (nebo naopak).

$$X_{k_1,k_2} = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x_{n_1,n_2} \cos \left[rac{\pi}{N_1} \left(n_1 + rac{1}{2}
ight) k_1
ight] \cos \left[rac{\pi}{N_2} \left(n_2 + rac{1}{2}
ight) k_2
ight]$$

DCT koncentruje nejvíce energie (= amplitudy) na nejnižších frekvencích

DCT a standard JPEG

- je prováděna odděleně pro jednotlivé barvové složky barvového modelu YC_bC_r
- rozdělení celého obrázku na pravidelné bloky o velikosti 8×8 hodnot

Literatura

- McAndrew A., Computational Introduction to Digital Image Processing, CRC Press,
 2. vydání, 2016
- Sundararajan D., Digital Image Processing: A Signal Processing and Algorithmic Approach, Springer, 2017
- Birchfield S., Image Processing and Analysis, Cengage Learning, 2016
- Acharya T., Ray A. K., Image Processing: Principles and Applications, Wiley, 2005
- Burger W., Burge M. J., Principles of Digital Image Processing: Fundamental Techniques, Springer-Verlag, 2009
- https://docs.opencv.org/master/de/dbc/tutorial_py_fourier_transform.html
- https://docs.opencv.org/master/d8/d01/tutorial discrete fourier transform.html