1. Mengder

- a. False
- b. True
- c. False
- d. False
- e. True
- f. **U**sann
- g. Usann
- h. False
- i. False
- j. **F**alse
- k. True
- l. False
- m. True
- n. False
- o. True

2. Oversetting

- a. R ^ (G V B).
- b. $\neg (T \land \neg G)$
- c. S ^ (K V T)
- d. $(K ^ S) \rightarrow M$
- e. $R \rightarrow S$.
- f. $(S \rightarrow \neg B)$
- g. $(H \rightarrow G)$
- h. $(G \rightarrow N \land T)) \rightarrow E$.
- i. $(E ^ J) \rightarrow F$.

3. FORMLER OG SANNHETSVERDIER.

a. Usann
$$(\neg A \rightarrow B)$$
 F T

c. Sann
$$(\neg A \lor (\neg B \land \neg B))$$
 T F F

d. Usann
$$\begin{array}{ccc} (A \land (B \lor \neg C)) \\ T & T & F \end{array}$$

e. Sann
$$((A \land B) \rightarrow \neg C)$$
 F F T

f. Sann
$$\begin{array}{ccc} (A \lor (B \to \neg C)) \\ F & F & T \end{array}$$

g. Usann
$$(\neg AV \neg (\neg B \rightarrow C))$$
 F F T

h. Sann
$$\begin{array}{ccc} (A \leftrightarrow (B \rightarrow C)) \\ T & T & T \end{array}$$

4. Sannhetsverdi tabeller

4.A:

4. a)	٦(7 A V	(8)	
A	B	74	(avar)	17(7AVB)
1	1	0	1	0
i	0	0	0	1
0	1	1		0
0	0	1 1		

4.B:

4.C:

4.D:

A	18	10	1 7 B	6B->C)1	(A-7(73-76))	17 (4 -> 178-78
1	1	1	0		, 7	0
i	1	0	0	i i		0
i	0	1	1		1	6
i	0	0	1	0	0	1
0	i	1	0			0
6	1	0	0	0	1	C
6	0	1	1			1 0
U	0	0	1	0	1	1 0

LOGISK EKVIVALENS:

To formler F og G er logisk ekvivalente, hvis de har samme sannhetsverdi for enhver tilordning av sannhetsverdier til utsagnsvariablene. Sagt på en annen måte: alle valuasjoner som gjør F sann, må gjøre G sann. Og vice versa.

Logisk konsekvens:

La M være en mengde av utsagnslogiske formler, og la F være en utsagnslogisk formel. Hvis F er sann for alle valuasjoner som gjør alle formlene i M saanne samtidig, er F en **logisk konsekvens** av formlene i M. Vi skriver M |= F når F er en logisk konsekvens av M.

5.A:
$$((P \land Q) \lor R) \Leftrightarrow (P \land (Q \lor R))$$

- Formelen «((P \land Q) V R) \Leftrightarrow (P \land (Q V R))» er ikke ekvivalente, ettersom de ikke alltid har samme sannhetsverdi som man kan se på rad 7 og rad 9, og er derfor **USANN**.

	Α	В	С	D	E
1	P	Q	R	((P ∧ Q) V R)	(P ∧ (Q ∨ R))
2					
3	1	1	1	1	1
4	1	1	0	1	1
5	1	0	1	1	1
6	1	0	0	0	0
7	0	1	1	1	0
8	0	1	0	0	0
9	0	0	1	1	0
10	0	0	0	0	0

5.B:
$$(P \rightarrow (Q \rightarrow R)) \Leftrightarrow (Q \rightarrow (P \rightarrow R))$$

- Formelen $(P \to (Q \to R)) \Leftrightarrow (Q \to (P \to R))$ » er ekvivalent, ettersom de alltid har samme sannhetsverdi, og er derfor <u>SANN</u>.

1	Α	В	С	D	Е
1	P	Q	R	$(P \rightarrow (Q \rightarrow R))$	$(Q \rightarrow (P \rightarrow R))$
2					
3	1	1	1	1	1
4	1	1	0	0	0
5	1	0	1	1	1
6	1	0	0	1	1
7	0	1	1	1	1
8	0	1	0	1	1
9	0	0	1	1	1
10	0	0	0	1	1

5.C:
$$(P \rightarrow (Q \rightarrow R)) \Leftrightarrow (\neg R \rightarrow (\neg P \lor \neg Q))$$

- Formelen « $(P \to (Q \to R)) \Leftrightarrow (\neg R \to (\neg P \lor \neg Q))$ » er ekvivalent ettersom begge formlene alltid har samme sannhetsverdi, og er derfor **SANN**.

	Α	В	С	D	Е	F	G	Н
1	Р	Q	R	¬P	¬Q	¬R	$(P \rightarrow (Q \rightarrow R))$	$(\neg R \rightarrow (\neg P \lor \neg Q))$
2	1	1	1	0	0	0	1	1
3	1	1	0	0	0	1	0	0
4	1	0	1	0	1	0	1	1
5	1	0	0	0	1	1	1	1
6	0	1	1	1	0	0	1	1
7	0	1	0	1	0	1	1	1
8	0	0	1	1	1	0	1	1
9	0	0	0	1	1	1	1	1

5.D: $((P \lor Q) \rightarrow R) \Leftrightarrow ((\neg P \lor \neg Q) \lor R)$

- Formelen $((P \lor Q) \to R) \Leftrightarrow ((\neg P \lor \neg Q) \lor R)$ » er ikke ekvivalent, ettersom de ikke alltid har samme sannhetsverdi som man kan se på rad 5 og 7, og er derfor **USANN**.

	Α	В	C	D	E	F	G	Н
1	P	Q	R	¬P	¬Q	¬R	$((P \lor Q) \rightarrow R)$	((¬P ∨ ¬Q) ∨ R)
2	1	1	1	0	0	0	1	1
3	1	1	0	0	0	1	0	0
4	1	0	1	0	1	0	1	1
5	1	0	0	0	1	1	0	1
6	0	1	1	1	0	0	1	1
7	0	1	0	1	0	1	0	1
8	0	0	1	1	1	0	1	1
9	0	0	0	1	1	1	1	1

5.E: $((P \land Q) \rightarrow P) \Leftrightarrow (R \lor \neg R)$

- Formelen «((P \land Q) \rightarrow P) \Leftrightarrow (R \lor ¬R)» er ekvivalent, ettersom den alltid har samme sannhetsverdi og er derfor **SANN**.

	Α	В	С	D	E	F
1	Р	Q	R	¬R	$((P \land Q) \rightarrow P)$	(R ∨ ¬R)
2	1	1	1	0	1	1
3	1	1	0	1	1	1
4	1	0	1	0	1	1
5	1	0	0	1	1	1
6	0	1	1	0	1	1
7	0	1	0	1	1	1
8	0	0	1	0	1	1
9	0	0	0	1	1	1

5.F: $\{\neg(\neg P \lor Q)\} \mid = P$

- Formelen $(\neg(\neg P \lor Q))$ |= P» er en logisk konsekvens ettersom P er sann for alle valuasjonene som gjør alle formlene i $(\neg(\neg P \lor Q))$ sanne samtidig. **SANN**. Man kan se dette på rad 1 og 2.

1	Р	Q	¬P	¬Q	¬(¬P V Q)
2	1	1	0	0	1
3	1	0	0	1	1
4	0	1	1	0	0
5	0	0	1	1	1

5.G: $\{((P \land Q) \rightarrow R), \neg R\} \mid = (\neg P \land \neg Q)$

- Formelen $\langle \{((P \land Q) \rightarrow R), \neg R\} | = (\neg P \land \neg Q) \rangle$ er ikke logisk konsekvente ettesom det ikke er noen valuasjoner som gjør både $\langle \{((P \land Q) \rightarrow R), \neg R\} \rangle$ og $(\neg P \land \neg Q)$ sanne og derfor er den **USANN**.

(a)	1 6	R	177	19	178	(TP/ha)	(CP Na) -> R), TR
1	1	1		100			. III . o
	1	1	0	0	0	10	
-	1	0	0	0		0	1 10 1 0
1	0	1	0	1	0	0	0 11 0 1
-	0	0	1 0	1 3	1	0	0 111 1 0
1	0	-	1	0	0	0	0 11100
8	-	·		0	1	0	0 1111 0
0	1	-	1	1	0	1717	l o lill o
0	6	1	1	1	1		0 411
0	0 1	0	1	1	1	1	

5.H: $\{(P \rightarrow (Q \lor R)), \neg Q, \neg R\} \mid = \neg P$

- Formelen « $\{(P \rightarrow (Q \lor R)), \neg Q, \neg R\} \mid = \neg P \text{ } \text{ } \text{er logisk ekvivalente, dette kan vi se i den nederste raden når alle tre funksjonene inne i settet er sanne, er også <math>\neg P$ sann. Derfor er funksjonen <u>SANN</u>.

5.I: $\{(P \rightarrow Q), (\neg P \rightarrow R), (\neg Q \rightarrow \neg R)\} \mid = \neg Q$

- Formelen $(\{(P \to Q), (\neg P \to R), (\neg Q \to \neg R)\} \mid = \neg Q)$ er <u>USANN</u>, fordi i de tilfellene hvor $(P \to Q), (\neg P \to R), (\neg Q \to \neg R)$ er sann (1) er $\neg Q$ usann (0), dette kan vi se på radene: 1, 2 og 5..

	5.1)	{ (f	->	9),	(7	P > R)	1670 ->	7R)3 F	70
P	l a	R	177	19	7 8	(p<4)	(7P->R)(797787	79
1	111	1	0	6	0	1	1	1	0
1	11	6	0	0	1	1	1	1	0
ī	0	1	0	1	0	0	1	0	- 1
1	0	0	0	1	11	0		1	1
0			1	0	6	1		1	0
0		0	1	0 /	1	1	0	1	0
6	6	1	11	1	0			0	1
0	0	0 1	1	1			0	1	1

5. Egenskaper ved Formler

- a. Falsifiable + Satisfiable.
- b. Falsifiable + Satisfiable.
- c. Satisfiable + Valid
- d. Falsifiable + Contradictory.

UTREGNING:

