Algorithms and Data Structures Runtime Complexity, Associative Arrays

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science Algorithms and Data Structures, November 2018

Associative Arrays

Introduction
Practical Example
Sorting
Associative Array

Associative Arrays

Introduction
Practical Example
Sorting
Associative Array

- The runtime does not entirely depend on the size of the problem, but also on the type of input
- This results in:
 - Best runtime: Lowest possible runtime complexity for an input of size n
 - Worst runtime:
 Highest possible runtime complexity for an input of size *n*
 - Average / Expected runtime:
 The average of all runtime complexities for an input of size n

- Input: Array a with n elements $a[i] \in \mathbb{N}, 1 \le a[i] \le n, 0 \le i < n$
- Output: Updated a with n elements where $a[0] \neq 1$

$$\begin{array}{c} \text{if } a[0] == 1: \\ a[0] = 2 \end{array} \qquad \begin{array}{c} \underline{\mathscr{O}(1)} \\ \overline{\mathscr{O}(1)} \end{array} \right\} \qquad \mathscr{O}(1) \\ \text{else:} \\ \text{for i in range}(0, n): \\ a[i] = 2 \qquad \begin{array}{c} \underline{\mathscr{O}(n)} \\ \overline{\mathscr{O}(1)} \end{array} \right\} \qquad \mathscr{O}(n) \cdot \mathscr{O}(1) \\ = \mathscr{O}(n) \end{array}$$

- Input: Array a with n elements $a[i] \in \mathbb{N}, 1 \le a[i] \le n, 0 \le i < n$
- Output: Updated a with n elements where $a[0] \neq 1$

- Best runtime: $\mathcal{O}(1) + \mathcal{O}(1) = \mathcal{O}(1)$
- Worst runtime: $\mathcal{O}(1) + \mathcal{O}(n) = \mathcal{O}(n)$

Example 1 - Average Runtime

■ The average runtime is determined by the average runtime for all input instances of size *n*

- The average runtime is determined by the average runtime for all input instances of size n
- Every element of a can have n different values $\Rightarrow n \cdot ... \cdot n = n^n$ different input instances of size n

- Example 1 Average Runtime
 - The average runtime is determined by the average runtime for all input instances of size n
 - Every element of a can have n different values
 - $\Rightarrow n \cdot ... \cdot n = n^n$ different input instances of size n
 - \blacksquare a[0] == 1 in n^{n-1} instances

- The average runtime is determined by the average runtime for all input instances of size n
- Every element of *a* can have *n* different values

$$\Rightarrow n \cdot ... \cdot n = n^n$$
 different input instances of size n

- \blacksquare a[0] == 1 in n^{n-1} instances
- **a**[0] != 1 in $n^n n^{n-1} = n^{n-1} \cdot (n-1)$ instances

Example 1 - Average Runtime

- The average runtime is determined by the average runtime for all input instances of size *n*
- Every element of *a* can have *n* different values

$$\Rightarrow n \cdot \dots \cdot n = n^n$$
 different input instances of size n

- \blacksquare a[0] == 1 in n^{n-1} instances
- **a**[0] != 1 in $n^n n^{n-1} = n^{n-1} \cdot (n-1)$ instances
- Sum of all runtime complexities:

$$\underbrace{n^{n-1} \cdot \mathcal{O}(1)}_{a[0] == 1} + \underbrace{n^{n-1} \cdot (n-1) \cdot \mathcal{O}(n)}_{a[0] != 1}$$

- The average runtime is determined by the average runtime for all input instances of size *n*
- Every element of *a* can have *n* different values

$$\Rightarrow n \cdot ... \cdot n = n^n$$
 different input instances of size n

$$\blacksquare$$
 a[0] == 1 in n^{n-1} instances

a[0] != 1 in
$$n^n - n^{n-1} = n^{n-1} \cdot (n-1)$$
 instances

Sum of all runtime complexities:

$$\underbrace{n^{n-1} \cdot \mathcal{O}(1)}_{a[0] == 1} + \underbrace{n^{n-1} \cdot (n-1) \cdot \mathcal{O}(n)}_{a[0] != 1}$$

Average runtime: (normalize by number of instances)

$$\frac{n^{n-1}+n^{n-1}\cdot(n-1)\cdot n}{n^n}=\frac{1}{n}+n-1\in\mathscr{O}(n)$$

Example 2 - Binary Addition

■ Input: binary number *b* with *n* digits

Output: binary number b + 1 with n digits

UNI FREIBL

Table: Binary addition

Digits (n)	Input	Output	Steps
10	1011100100	1011100101	1
4	1011	1100	3
8	11111111	00000000	8

- Input: binary number b with n digits
- Output: binary number b + 1 with n digits
- Runtime of the algorithm is determined by the number of bits getting changed (steps)

Table: Binary addition

Digits (n)	Input	Output	Steps
10	1011100100	1011100101	1
4	1011	1100	3
8	11111111	00000000	8

- Input: binary number b with n digits
- Output: binary number b + 1 with n digits
- Runtime of the algorithm is determined by the number of bits getting changed (steps)

- Best runtime: 1 step = $\mathcal{O}(1)$
- Worst runtime: n steps = $\mathcal{O}(n)$

Table: Binary addition

Digits (n)	Input	Output	Steps
10	1011100100	1011100101	1
4	1011	1100	3
8	11111111	00000000	8

Example 2 - Average Steps

Table: Binary addition with n = 1

Input	Output	Steps
0	1	1
1	0	1

$$\overline{\text{steps}} = \frac{1+1}{2} = 1$$

Input	Output	Steps
0	1	1
1	0	1

$$\overline{\text{steps}} = \frac{1+1}{2} = 1$$

Table: Binary addition with n = 2

Input	Output	Steps
00	01	1
01	10	2
10	11	1
11	00	2

$$\overline{\text{steps}} = \frac{1+2+1+2}{4} = \frac{3}{2}$$

Example 2 - Average Steps

Table: Binary addition with n = 3

Input	Output	Steps
000	001	1
001	010	2
010	011	1
011	100	3
100	101	1
101	110	2
110	111	1
111	000	3

$$\overline{\text{steps}} = \frac{1+2+1+3+1+2+1+3}{8} = \frac{7}{4}$$

Input	Output	Steps
000	001	1
001	010	2
010	011	1
011	100	3
100	101	1
101	110	2
110	111	1
111	000	3

$$\overline{\text{steps}} = \frac{1+2+1+3+1+2+1+3}{8} = \frac{7}{4}$$

$$= 2 - \frac{1}{4} = 2 - \frac{1}{2^{n-1}}$$

$$\Rightarrow \text{Average runtime:}$$

$$2 - \frac{1}{2^{n-1}} \in \mathscr{O}(1)$$

Example 2 - Average Steps

Table: Case analysis for instances of size n			ze n
Input	Output	Instances	Steps
0	1	2 ⁿ⁻¹	1
01	10	2^{n-2}	2
011	100	2^{n-3}	3
i i	:	•	÷
_011111	_100000	2 ¹	n-1
0111111	1000000	2^{0}	n
1111111	0000000	1	n

Table: Case analysis for instances of size n			ze n
Input	Output	Instances	Steps
0	1	2 ⁿ⁻¹	1
01	10	2^{n-2}	2
011	100	2^{n-3}	3
÷	÷	•	:
_011111	_100000	2 ¹	n-1
0111111	1000000	2 ⁰	n
1111111	0000000	1	n

Average steps:

$$\frac{1 \cdot 2^{n-1} + 2 \cdot 2^{n-2} + \dots + (n-1) \cdot 2^1 + n \cdot 2^0 + n \cdot 1}{2^{n-1} + 2^{n-2} + \dots + 2^1 + 2^0 + 1} =$$

Table: Case analysis for instances of size <i>n</i>			ze n
Input	Output	Instances	Steps
0	1	2 ⁿ⁻¹	1
01	10	2^{n-2}	2
011	100	2^{n-3}	3
÷	:	:	÷
_011111	_100000	2 ¹	n-1
0111111	1000000	2^{0}	n
1111111	0000000	1	n

Average steps:

$$\frac{1 \cdot 2^{n-1} + 2 \cdot 2^{n-2} + \dots + (n-1) \cdot 2^{1} + n \cdot 2^{0} + n \cdot 1}{2^{n-1} + 2^{n-2} + \dots + 2^{1} + 2^{0} + 1} = \frac{\binom{\sum\limits_{i=1}^{n} i \cdot 2^{n-i}}{\sum\limits_{i=0}^{n-1} 2^{i}} + n}{\binom{n-1}{\sum\limits_{i=0}^{n} 2^{i}} + 1}$$

$$\left(\sum_{i=0}^{n-1} 2^i\right) + 1$$
 series $= (2^n - 1) + 1 = 2^n$

Denominator:

geometric
$$\left(\sum_{i=0}^{n-1} 2^i\right) + 1 \qquad = \qquad (2^n - 1) + 1 = 2^n$$

$$\left(\sum_{i=1}^n i \cdot 2^{n-i}\right) + n$$

Denominator:

geometric
$$\left(\sum_{i=0}^{n-1} 2^i\right) + 1 = 2^n$$

$$= (2^n - 1) + 1 = 2^n$$

$$\left(\sum_{i=1}^{n} i \cdot 2^{n-i}\right) + n^{\left[x = 2x - x\right]} \left(2\sum_{i=1}^{n} i \cdot 2^{n-i}\right) - \left(\sum_{i=1}^{n} i \cdot 2^{n-i}\right) + n$$

Denominator:

geometric
$$\left(\sum_{i=0}^{n-1} 2^i\right) + 1 = 2^n$$

$$= (2^n - 1) + 1 = 2^n$$

$$\begin{split} \left(\sum_{i=1}^{n} i \cdot 2^{n-i}\right) + n^{\left[x=2x-x\right]} \left(2\sum_{i=1}^{n} i \cdot 2^{n-i}\right) - \left(\sum_{i=1}^{n} i \cdot 2^{n-i}\right) + n \\ &= 1 \cdot 2^{n} + 2 \cdot 2^{n-1} + 3 \cdot n^{n-2} + \dots + (n-1) \cdot 2^{2} + n \cdot 2^{1} \\ &- 1 \cdot 2^{n-1} - 2 \cdot 2^{n-2} - \dots - (n-2) \cdot 2^{2} - (n-1) \cdot 2^{1} - n \cdot 2^{0} + n \end{split}$$

geometric
$$\left(\sum_{i=0}^{n-1} 2^i\right) + 1 = 2^n$$

$$= (2^n - 1) + 1 = 2^n$$

$$\left(\sum_{i=1}^{n} i \cdot 2^{n-i}\right) + n^{\left[x=2x-x\right]} \left(2\sum_{i=1}^{n} i \cdot 2^{n-i}\right) - \left(\sum_{i=1}^{n} i \cdot 2^{n-i}\right) + n$$

$$= 1 \cdot 2^{n} + 2 \cdot 2^{n-1} + 3 \cdot n^{n-2} + \dots + (n-1) \cdot 2^{2} + n \cdot 2^{1}$$

$$-1 \cdot 2^{n-1} - 2 \cdot 2^{n-2} - \dots - (n-2) \cdot 2^{2} - (n-1) \cdot 2^{1} - n \cdot 2^{0} + n$$

$$= \underbrace{2^{n} + 2^{n-1} + \dots + 2^{1} + 2^{0}}_{2^{n+1} - 1} - 2^{0} = 2^{n+1} - 2$$

Average steps:

$$\overline{steps} = \frac{\left(\sum_{i=1}^{n} i \cdot 2^{n-i}\right) + n}{\left(\sum_{i=0}^{n-1} 2^{i}\right) + 1} = \frac{2^{n+1} - 2}{2^{n}} = 2 - \frac{1}{2^{n-1}}$$

$$\lim_{n \to \infty} \left(2 - \frac{1}{2^{n-1}}\right) = 2 \in \mathcal{O}(1)$$

Associative Arrays
Introduction
Practical Example
Sorting
Associative Array

Normal array:

Introduction

$$A = [0 \Rightarrow A_0, 1 \Rightarrow A_1, 2 \Rightarrow A_2, 3 \Rightarrow A_3, \ldots]$$

- Searching elements by index
- Lookup of element with index "3":

$$\Rightarrow A[3] = A_3$$

- In practice: all major programming project require associative arrays
- In our lecture: example of countries with associated information

Associative array:

$$A = \left[egin{array}{ll} "Europa" \Rightarrow A_0, "Amerika" \Rightarrow A_1, \\ "Asien" \Rightarrow A_2, "Afrika" \Rightarrow A_3, \\ \dots \end{array}
ight]$$

- Searching elements by key
- The keys can be of any type with unique elements
- Lookup of element with key "Afrika":

$$\Rightarrow$$
 A["Afrika"] = A_3

Associative Arrays

Introduction

Practical Example

Sorting
Associative Array

Associative Arrays

Practical Example

Table: Country data query from http://geonames.org

ISO	ISO3	Country	Continent	
AD	AND	Andorra	EU	
ΑE	ARE	United Arab Emirates	AS	
AF	AFG	Afghanistan	AS	
AG	ATG	Antigua and Barbuda	NA	
ΑI	AIA	Anguilla	NA	
AL	ALB	Albania	EU	
AM	ARM	Armenia	AS	
AO	AGO	Angola	AF	
AQ	ATA	Antarctica	AN	
:	:	<u>:</u>	:	٠.

Task: How many countries belong to each continent?

- We are interested in column 3 (Country) and 4 (Continent)
- There are two typical ways to solve this:
 - Using sorting
 - Using an associative array

Associative Arrays

Introduction

Practical Example Sorting

Associative Array

Idea using sorting:

- We sort the table by Continent, so that all countries from the same continent are grouped in one block
- We count the size of the blocks

Disadvantage:

- Runtime of $\Theta(n \log n)$
- We have to iterate the array twice (sort and then count)

Advantage:

Easy to implement (even with simple linux / unix commands)

Input:

- The data is saved as tab seperated text (countryInfo.txt)
- Comments begin with a hash sign #

Commands:

```
■ grep: Selects a specific set of lines (filter by ...)
grep -v '^#' countryInfo.txt
```

−v: not

^#: # at start of line

cut: Selects specific columns of each line (tab separated)

cut -f5,9

-f5,9: columns 5 and 9 (= columns 3+4 of shown

Table 17)

Commands:

sort: Sorts lines by a key

```
sort -t ' '-k2,2
```

-t ': Separator: Tab (Insert with CTRL-V TAB)

-k2,2: Key from column 2 to 2

uniq: Finds or counts unique keys

uniq -c

-c: count occurences of keys

head: Displays a provided number of lines

head -n30

-n30: Displays the first 30 lines

less: Displays the file page wise

Sort countries by continent:

Table: Resulting data

Figure: Data pipeline

Count countries per continent:

58 AF 54 EU

52 AS

42 NA 27 OC

14 SA

5 AN grep cut sort uniq

sort

Runtime Complexity

Associative Arrays

Introduction

Practical Example

Sorting

Associative Array

Idea using associative arrays:

- Take the continent as key
- Use a counter (occurences) or a list with all countries associated with this continent as value

Advantage:

■ Runtime $\mathcal{O}(n)$, implied we can find an element in $\mathcal{O}(1)$ as in normal arrays

Python:

```
# creates a new map (called dictionary)
countries = {"DE" : "Deutschland", \
    "EN" : "England"}
# check if element exists
if "EN" in countries:
    print("Found %s!" % countries["EN"])
# map key "DE" to value "Germany"
countries["DE"] = "Germany"
# delete key "DE"
del countries["DE"]
```

Efficiency:

- Depends on implementation
- Two typical implementations:
 - **Hashing:** Calculates a checksum of the key used as key of a normal array

search: $\mathcal{O}(1) \dots \mathcal{O}(n)$ insert: $\mathcal{O}(1) \dots \mathcal{O}(n)$ delete: $\mathcal{O}(1) \dots \mathcal{O}(n)$

■ (Binary-)Tree: Creates a sorted (binary) tree

search: $\mathcal{O}(\log n) \dots \mathcal{O}(n)$ insert: $\mathcal{O}(\log n) \dots \mathcal{O}(n)$ delete: $\mathcal{O}(\log n) \dots \mathcal{O}(n)$

Table: Map implementions of programming languages

shing	(Binary-)Tree
tionaries	
1.HashMap	java.util.TreeMap
rdered_map	std::map
::hash_map	std::map
	shing tionaries il.HashMap rdered_map c::hash_map

■ General

- [CRL01] Thomas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algorithms. MIT Press, Cambridge, Mass, 2001.
- [MS08] Kurt Mehlhorn and Peter Sanders.
 Algorithms and data structures, 2008.
 https://people.mpi-inf.mpg.de/~mehlhorn/
 ftp/Mehlhorn-Sanders-Toolbox.pdf.

■ Map - Implementations / API

- [Java] Java HashMap
 - https://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html
- [Javb] Java TreeMap
 - https://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html
- [Pyt] Python Dictionaries (Hash table)
 https://docs.python.org/3/tutorial/
 datastructures.html#dictionaries

■ Map - Implementations / API

```
[Cppa] C++ - hash_map
        http://www.sgi.com/tech/stl/hash_map.html
[Cppb] C++ - map
        http://www.sgi.com/tech/stl/Map.html
```