

Exercise 10: Adaptive Quadrature & Gauss Quadrature

MAD

bacdavid@student.ethz.ch

Outline

- 1. Information
- 2. Goals
- 3. Theory (55')
- 4. Exercises (5')

Information

General

- Slides by LAB are on the website (look at them before proceeding!)
- These slides: https://polybox.ethz.ch/index.php/s/9NFCvtriBbRBDnS

Goals

Goals of Today

- Understand the motivation behind adaptive quadrature
- Understand how adaptive quadrature (AQ) works
- Understand how recursion works and how it can be applied to AQ
- Understand derivation of Gauss Quadrature
- Understand how to use Gauss Quadrature with tables

Theory

Adaptive Quadrature

- Use adaptive stepsize
- Decrease stepsize in specific region until desired accuracy is achieved

https://www.cs.uic.edu/~hogand/cs107/notes-numerical.html

Reminder: Error Estimate with Richardson's Extrapolation

We can write a Taylor Series expansion of a numerical method:

$$G(h) = G(0) + c_1 h + c_2 h^2 + \cdots$$

Hence the error generated by the stepsize h/2:

$$\epsilon(h/2) = |G(0) - G(h/2)| = \left| -\frac{c_1}{2}h - \frac{c_2}{4}h^2 + \cdots \right|$$

On the other hand:

$$G(h/2) - G(h) = -\frac{c_1}{2} h - \frac{3c_2}{4} h^2 + \cdots$$

Hence:

$$\epsilon(h/2) \approx |G(h/2) - G(h)|$$

Example 1

• Approximate the error $\epsilon\left(\frac{h}{2}\right)$ of the Euler Forward method and compare it to the true error:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

- Given:
 - x = 0
 - h = 0.2
 - $f(x) = x^2$
- Remember:
 - $\epsilon(h/2) \approx |G(h/2) G(h)|$

Reminder: Recursion

The function calls itself

```
function f(x)
    if base case then
        Return base value
    else
        Return recursive value
    end if
end function
```


https://stackoverflow.com/questions/8183426/factorial-using-recursion-in-java

Example 2

Write pseudo-code for a function that finds the greatest common divisor, using Euclid's algorithm:

$$\gcd(x,y) = \begin{cases} x & \text{if } y = 0\\ \gcd(y, x \bmod y) & \text{if } y > 0 \end{cases}$$

Calculate the gcd of 8 and 12 with the algorithms, draw a diagram emphasizing the calls to the functions and the return values

Solution 2

```
function gcd(x, y)
     if y is 0 then
          Return x
     else
          Return gcd(y, x mod y)
     end if
end function
```

Adaptive Quadrature Algorithm

```
function ADAPTIVESIMPSON(a, b)
     Apply Simpson's rule in [a, b]
     Split interval into [a, m] \& [m, b]; with m = (a + b)/2
     Apply Simpson's rule on [a, m] & [m, b]
     Estimate Error with Richardson's extrapolation
     if error > \epsilon then
          Return ADAPTIVESIMPSON(a, m) + ADAPTIVESIMPSON(m, b)
     else
          Return value of Simpson's rule (accurate one)
     end if
end function
```

Gauss Quadrature

• Decompose the function f(x):

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} \Phi(x)w(x)dx$$

• Approximate the integral by a sum over the function $\Phi(x)$ at specified supporting points x_i multiplied with weights α_i :

$$\int_{a}^{b} \Phi(x) \underbrace{w(x)}_{=1} dx \approx \sum_{i=1}^{n} \Phi(x_{i}) \alpha_{i}$$

Note

Transform integral to be in the interval [-1, 1] in order to use lookup-tables:

$$z = \frac{2x - (a+b)}{b - a}$$

We then have:

$$\int_{-1}^{1} f(z)dz \approx \sum_{i=1}^{n} f(z_i)\alpha_i$$

- You can now look up z_i and α_i in tables
- Method is exact for polynomials of degree 2n-1

Example 3

Find – by Gauss Quadrature - the exact integral value:

$$I = \int_0^2 x^3 dx$$

- Tipps:
 - Exact for order 2n-1

$$z = \frac{2x - (a+b)}{b-a}$$

n=1 x_i	$lpha_i$
1 0	2
n=2 x_i	$lpha_i$
1 $-\sqrt{\frac{1}{3}} pprox -0.57735026919$	1
2 $\sqrt{\frac{1}{3}} pprox 0,57735026919$	1
n=3 x_i	$lpha_i$
1 $-\sqrt{\frac{3}{5}} \approx -0.774596669241$	$\frac{5}{9} pprox 0,555555555556$
2 0	$\frac{8}{9} pprox 0,88888888889$
3 $\sqrt{rac{3}{5}}pprox 0,774596669241$	$\frac{5}{9} pprox 0,555555555556$
n=4 x_i	$lpha_i$
1 $-\sqrt{\frac{3}{7} + \frac{2}{7}\sqrt{\frac{6}{5}}} \approx -0.861136311594053$	$rac{18-\sqrt{30}}{36}pprox0,347854845137454$
$2 -\sqrt{\frac{3}{7} - \frac{2}{7}\sqrt{\frac{6}{5}}} \approx -0.339981043584856$	$rac{18+\sqrt{30}}{36}pprox0,\!652145154862546$
$\sqrt{\frac{3}{7} - \frac{2}{7}\sqrt{\frac{6}{5}}} \approx 0,339981043584856$	$rac{18+\sqrt{30}}{36}pprox0,\!652145154862546$
$\sqrt{rac{3}{7}+rac{2}{7}\sqrt{rac{6}{5}}}pprox 0,861136311594053$	$rac{18-\sqrt{30}}{36}pprox0,347854845137454$

Exercises

Exercises (see lab slides for more information)

- Integrate the "batman function" (see lab slides for equations) with AQ
- 2. Perform quadrature Trapezoidal Rule, Newton-Cotes, and Gauss Quadrature. Compare the methods. Think about why some work better than others and what conditions have to be met that some work better than others.

Questions?

