

Tipos de Dado Abstrato: Listas, Filas e Pilhas

Estruturas de Dados

Prof. Vilson Heck Junior

Introdução

Tradicionalmente conhecidos como Tipos de Dado Abstrato, são algumas Estruturas de Dados básicas e importantes para a construção de algoritmos mais bem elaborados;

Nas próximas aulas, aprenderemos o que são listas, filas e pilhas, bem como aprenderemos utilizá-las para resolver alguns problemas computacionais.

Listas, Filas e Pilhas

LISTAS - INTRODUÇÃO

Listas são conjuntos de elementos, objetos, variáveis, tarefas, ou qualquer coisa que se possa enumerar e formar um conjunto;

As listas estão presentes em nossa vida, desde o nosso nascimento, por exemplo, com a lista de compras que nossos pais tiveram que fazer para nós.

- Exemplo de Lista de Compras:
 - 5Kg de farinha;
 - 2Kg de açucar;
 - 500g de carne moída;
 - 2Kg de arroz;
 - 4L de leite;
 - 1Kg de feijão;
 - Etc..

Exemplo de Lista Telefônica:

- Asdf de Zxcv: (44) 4444-4444
- Beutrano Cruz: (33) 3333-3333
- Ciclano da Silva: (22) 2222-2222
- Fulano de Tal: (11) 1111-1111

Listas, Filas e Pilhas

COMPORTAMENTO DE UMA LISTA

Lista:

Lista:

Lista:

Lista:

Lista:

Lista:

Lista:

Listas, Filas e Pilhas

LISTAS - IMPLEMENTAÇÃO

Implementando as listas:

– As listas podem ser implementadas de várias formas, mas num aspecto mais geral podemos separar em duas principais:

Em Arrays; ou

Encadeadas.

Listas em Arrays

Em Arrays:

- Imagine que a lista anterior tinha posições fixas e prédeterminadas:
 - Um array é uma estrutura com posições fixas, cada elemento da lista deve ser colocado em uma posição no array;
 - Ao inserir ou excluir um elemento, talvez seja necessário realocar todos os demais elementos.

Listas em Arrays

Prós:

- Criar um array de qualquer tamanho é muito simples;
- Não há necessidade de compreender ponteiros ou referências;

Contras:

- Limitações quanto ao tamanho de memória;
- Custo computacional maior;
- Alocação de memória exagerada.

Encadeado, Dicionário Houaiss:

- adjetivo
- 1. disposto ou ligado por ou como por cadeias; ordenado, junto;
- 2. preso, submetido;

Prós:

- Extremamente eficiente no custo de memória e de processamento;
- Nunca acarreta em movimentar todos os elementos;

Contras:

- Envolve conceitos mais avançados de programação:
 - Ponteiros ou Referências.

Para criarmos uma lista encadeada, precisamos primeiro definir o que será armazenado nela;

 Por exemplo, para criarmos uma lista de contatos, gostaríamos de armazenar os nomes, telefones e e-mails de diversas pessoas:

Exemplo da Idéia de Encadeamento:

Mas como fazer isto?

Conforme vamos criando elementos na memória do computador, estes elementos vão ficando espalhados e desconexos;

Para criar listas encadeadas precisamos criar elementos que façam **referência** a outro elemento, ou seja, indiquem onde podemos encontrar um outro elemento.

Contato

string Nome;
long Telefone;
string Email;
Contato Proximo;

Exemplo com Elemento Encadeado:

Contato

string Nome = "abc"
long Telefone = 123
string Email = "a@b"
Contato Proximo =

Contato

string Nome = "zxy"
long Telefone = 987
string Email = "c@d"
Contato Proximo =

Contato

string Nome = "qwe"
long Telefone = 546
string Email = "r@f"
Contato Proximo =

Exemplo **Duplamente** Encadeado:

Contato

string Nome = "abc"

long Telefone = 123

string Email = "a@b"

Contato Proximo =

Contato Anterior =

Contato

string Nome = "zxy"

long Telefone = 987

string Email = "c@d"

Contato Proximo =

|Contato Anterior =

Contato

string Nome = "qwe"

long Telefone = 546

string Email = "r@f"

Contato Proximo =

Contato Anterior =

- Iniciando uma lista vazia:
 - Contato Inicio_Lista = null;
 - Contato Fim_Lista = null;
 - O "valor" de referência null é usado para quando ainda não existe um objeto na memória para qual a variável irá fazer referência;
 - O último elemento da lista aponta para null.

- Iniciando uma lista com 1 elemento:
 - Contato Inicio_Lista = new Contato();

Criando a Lista:

- Contato Inicio_Lista = new Contato();
- Contato Fim_Lista = Inicio_Lista;
- Inicio_Lista.Nome = "abc";
- Inicio_Lista.Telefone = 123;
- Inicio_Lista.Email = "a@b";
- Inicio_Lista.Proximo = null;

Contato

string Nome = "abc"
long Telefone = 123
string Email = "a@b"
Contato Proximo =

- Contato novo = new Contato();
- novo.Nome = "zxy";
- novo.Telefone = 987;
- novo.Email = "c@d";
- novo.Proximo = null;
- Fim_Lista.Proximo = novo;
- Fim_Lista = novo;

Contato

string Nome = "abc"
long Telefone = 123
string Email = "a@b"
Contato Proximo =

Contato

string Nome = "zxy"
long Telefone = 987
string Email = "c@d"
Contato Proximo =

Percorrendo a lista:

```
Contato aux = Inicio_Lista;
while (aux != null) {
    //Faz alguma tarefa com o elemento aux
    aux = aux.Proximo;
}
```


– Inicio_Lista.Proximo = null;

Contato

string Nome = "abc"
long Telefone = 123
string Email = "a@b"
Contato Proximo =

Contato

string Nome = "zxy"
long Telefone = 987
string Email = "c@d"
Contato Proximo =

Listas, Filas e Pilhas

LISTAS EM JAVA

Collection - ArrayList

- Java disponibiliza diversas classes que implementam diversas funcionalidades de diferentes estruturas de dados:
 - Conjunto chamado de Collections;
- Para a estrutura de dados Lista, iremos utilizar a classe disponível em:
 - java.util.ArrayList

Lista:

- Localizada no pacote java.util
- Nome da classe: ArrayList
- Construção do objeto lista:

ArrayList<ClasseArmazenada> lista = new ArrayList();

- Onde iremos criar uma lista dinâmica que armazena objetos da "ClasseArmazenada".
- Exemplo para lista de int:

ArrayList<Integer> lista = new ArrayList();

- Com o objeto criado, utilizamos os seus métodos para executar ações:
 - Adicionar um elemento:
 lista.add(99); //99 é o valor armazenado
 - Recuperar um elemento: int valor = lista.get(0); //0 é o índice
 - Verificar a quantidade de elementos: int qdade = lista.size(); //Neste caso será 1
 - Esvaziar a lista:
 lista.clear();

- Com o objeto criado, utilizamos os seus métodos para executar ações:
 - Pesquisar por um elemento:

```
int pos = lista.indexOf(99); //retorna a
  posição do elemento. Se não for
  encontrado, retorna -1
```

- Ordenar a Lista:Collections.sort(lista);
- Remover um elemento:

lista.remove(0); //0 é o indice do elemento

- ArrayList:
 - Mais informações na documentação da classe, no site do Java:
 - Link para Java API ArrayList

Collections - Exemplo


```
Scanner entrada = new Scanner(System.in);
ArrayList<Integer> lista = new ArrayList();
int numero;
//Inserir elementos na lista
do {
  System.out.print("Digite um número: ");
  numero = Integer.parseInt(entrada.nextLine());
  if (numero != 0) {
    lista.add(numero);
} while (numero != 0);
//Exibir todos os elementos da lista
System.out.println("=== Os números inseridos foram ===");
for (int i = 0; i < lista.size(); i++) {
  System.out.println(lista.get(i));
```


Collection ArrayList (lista)

Exercício:

- Construa um programa que utiliza um ArrayList para cadastrar alunos. Cada aluno será identificado pelos atributos:
 - Nome;
 - Matrícula;
 - Data de Nascimento.
- O programa deverá apresentar um menu para o usuário com as opções:
 - Cadastrar;
 - Listar todos;
 - Pesquisar;
 - Remover.

Listas, Filas e Pilhas

FILAS

- O que é uma fila em nosso cotidiano?
- As filas são diferentes das listas?
 - Em quais sentidos?
- Onde usamos filas em nosso cotidiano?
- Detalhe o funcionamento de uma fila.

- Existem muitos exemplos de fila no mundo real:
 - Uma fila de banco;
 - No ponto de ônibus;
 - Um grupo de carros aguardando sua vez no pedágio;
 - Entre outros.

– Uma fila é um conjunto de itens a partir do qual podem-se eliminar itens numa extremidade (chamada início da fila) e no qual podem-se inserir itens na outra extremidade (chamada final da fila).

- Na primeira posição;
- Na última posição; ou
- Em qualquer parte no meio da lista.

- Numa <u>fila</u> existe uma regra básica a ser seguida:
 - Primeiro a Chegar é o Primeiro a Sair;
 - Do inglês: FIFO First In, First Out;
- Um novo elemento da fila somente pode ser inserido na última posição(fim da fila);
- Um elemento só pode ser removido da primeira posição (inicio da fila).

- Tem um sentido de chegada:
 - Fila vazia.

Inserir o elemento "G"

O elemento entra na última posição.

G

E avança até a primeira posição disponível.

Inserir o elemento "B"

G

Fim da Fila

Inicio da Fila

• Inserindo Elementos:

O elemento entra na última posição

E avança até a primeira posição disponível.

Inicio da Fila

G

Fim da Fila

O elemento entra na última posição

E avança até a primeira posição disponível.

D B G

G

- Removendo Elementos:
 - Remover o elemento B?
 - Não podemos remover elementos que não estejam no inicio da fila!
 - Da mesma forma, o elemento D não pode ser removido!

D

G

- Remover o elemento da fila:
 - Retiramos o primeiro elemento da fila;
 - Neste momento o elemento deve ser utilizado.

G

– Remover o elemento da fila:

• E os demais elementos avançam na fila.

D B

Fim da Fila Inicio da Fila

- Exemplos de uso de filas na computação:
 - Filas de impressão:
 - Impressoras tem uma fila, caso vários documentos sejam impressos, por um ou mais usuários, os primeiros documentos impressos serão de quem enviar primeiro;
 - Filas de processos:
 - Vários programas podem estar sendo executados pelo sistema operacional. O mesmo tem uma fila que indica a ordem de qual será executado primeiro;
 - Filas de tarefas:
 - Um programa pode ter um conjunto de dados para processar. Estes dados podem estar dispostos em uma fila, onde o que foi inserido primeiro, será atendido primeiro.

- Variações de Filas:
 - Fila de Prioridades:
 - Cada item tem uma prioridade. Elementos mais prioritários podem ser atendidos antes, mesmo não estando no inicio da fila;
 - Fila Circular:
 - Neste tipo de fila os elementos nem sempre são removidos ao serem atendidos, mas voltam ao fim da fila para serem atendidos novamente mais tarde.

Listas, Filas e Pilhas

IMPLEMENTANDO FILAS

As filas podem ser implementadas em listas encadeadas ou em vetores;

• Vetores:

 Devemos ter duas variáveis indicando a posição do inicio e do fim da fila;

Lista Encadeada:

 Devemos ter duas referências, uma ao elemento de inicio da fila e outra ou elemento do fim da fila.

Collections - Fila

- Fila: (documentação)
 - Construir:
 - Queue<Integer> fila = new LinkedList();
 - Adicionar:
 - fila.add(20);
 - Remover:
 - int x = fila.remove();
 - Examinar:
 - int y = fila. element();
 - Esvaziar:
 - fila.clear();
 - Tamanho:
 - fila.size();

Collection Queue (Fila)

Exercício:

- Implemente um programa que contemple uma fila de contatos para um call center;
- As opções do programa devem ser:
 - Inserir Contato:
 - Deve solicitar ao usuário os dados e incluir o contato na fila;
 - Próximo Contato:
 - Deverá pegar o Contato do Inicio da Fila, removê-lo e mostrar os seus dados na tela para o usuário efetuar o contato com o cliente.
 - Sair.

Listas, Filas e Pilhas

PILHAS

Um dos conceitos mais úteis na ciência da computação é o de pilha;

- Como eram as listas?
 - Insere, remove ou utiliza qualquer elemento inserido;
- Como eram as filas?
 - Insere apenas no fim da fila, utiliza e remove apenas o primeiro elemento inserido;

- Como são as Pilhas?
 - Insere-se elementos no topo da pilha;
 - Remove-se ou utiliza-se apenas o elemento que estiver no topo da pilha!
- LIFO (ou FILO):
 - Last In, First Out;
 - Último a entrar, primeiro a sair;

Pilha Vazia: Topo = null;

Pilha Vazia: Topo = null;

Inserindo elemento Z

7

Pilha Vazia: Topo

Z

Pilha Vazia: Topo

Z

Pilha Vazia: Topo

Pilha Vazia: Topo

Y

Z

REDE FEDERAL
DE EDUCAÇÃO
PROFISSIONAL
E TECNOLÓGICA

Pilha Vazia: Topo

Pilha Vazia: Topo

Retirar o elemento Y?

- Não.

Z

Pilha Vazia: Topo

Aux = Desempilhar(p);

Pilha Vazia: Topo

As pilhas podem ser implementadas em listas encadeadas ou em vetores;

Vetores:

 Ter uma variável indicando a posição do topo da pilha;

Lista Encadeada:

 Devemos ter uma referência ao elemento do topo da pilha.

Collections

- Pilha: (documentação)
 - Construir:
 - Stack<Integer> pilha = new Stack();
 - Adicionar:
 - pilha.push(20);
 - Remover:
 - int x = pilha.pop();
 - Examinar:
 - int y = pilha.peek();
 - Esvaziar:
 - pilha.clear();
 - Tamanho:
 - pilha.size();

Collection Stack (pilhas)

Exercício:

- Crie um programa que gerencie uma PILHA de TAREFAS a serem cumpridas. As tarefas são Strings que descrevem uma ação a ser executada.
- O usuário deverá ter duas opções:
 - Inserir tarefa na pilha; e
 - Obter a próxima tarefa da pilha.

