Dr. Andrey Soldatenkov

Probeklausur zur Einführung in die komplexe Analysis

Aufgabe 1. Man beweise, unter Verwendung des Hauptzweiges des Logarithmus, für alle positive $\alpha \in \mathbb{R}$ und alle $z \in \mathbb{C}$ die Gleichung

$$\alpha^{\bar{z}} = \overline{\alpha^z}$$

Was passiert bei Wahl eines anderen Zweiges des Logarithmus?

Aufgabe 2. Man zeige, dass für jedes $\lambda \in \mathbb{R}_{>1}$ die Gleichung $z + e^{-z} = \lambda$ eine Lösung z mit $\operatorname{Re}(z) > 0$ besitzt.

Aufgabe 3. Man berechne die Umlaufzahl der Kurve

$$\gamma \colon [0,1] \to \mathbb{C}, \ \gamma(t) = \begin{cases} t + i\sin(4\pi t) & 0 \le t \le 1/2\\ (1-t) - i\sin(2\pi - 4\pi t) & 1/2 \le t \le 1 \end{cases}$$

um die Punkte $z_0 = 1/8$ und $z_0 = 3/8$.

Aufgabe 4. Man bestimme die Pol- und Nullstellen der Funktion $f(z) = \frac{e^z - 1}{\sin(z)}$ und berechne die Residuen in den Polstellen.

Aufgabe 5. Man beschreibe eine holomorphe Funktion $f: \mathbb{C} \setminus \{1\} \to \mathbb{C}$ deren Laurentreihenentwicklungen in $D_1(0)$ und $D_{1,2}(0)$ verschieden sind.

Aufgabe 6. Sei $f: V \to \mathbb{C}$ eine holomorphe Funktion auf einer Umgebung des Abschlusses \overline{U} eines beschränkten Gebietes $U \subset \mathbb{C}$. Sei $z_0 \in U$, so dass $|f(z_0)| < \min\{|f(z)| \mid z \in \partial U\}$. Man zeige, dass f dann eine Nullstelle in U besitzt.

Aufgabe 7. Man benutze die Verdopplungsformel für $\sin(z)$ und die Produktdarstellung von $\sin(z)$ und zeige

$$\cos(\pi z) = \prod_{n=1}^{\infty} \left(1 - \frac{4z^2}{(2n-1)^2} \right) = \prod_{n=-\infty}^{\infty} \left(1 - \frac{2z}{2n-1} \right) e^{\frac{2z}{2n-1}}.$$