Hossein Kargar, Maryam Fazeli

# 1 Short Questions

### 1.1

You're training a neural network and notice that the validation error is significantly lower than the training error. Name two possible reasons for this to happen and suggest two possible solutions.

### 1.2

Why do the layers in a deep architecture need to be non-linear?

### 1.3

You are searching for the best learning rate  $(\alpha)$  for your model. You decide to test the following values between 0.01 and 1:

$$\alpha \in \{0.01, 0.16, 0.21, 0.84, 0.94\}$$

Is that a good method? Explain why.

### 1.4

Your colleague trained a neural network using standard stochastic gradient descent and L2 weight regularization with four different learning rates ( $\alpha$ ) and plotted the corresponding loss curves. Unfortunately, he forgot which curve belongs to which learning rate. Please assign each of the learning rate values below to the curve (A/B/C/D) it probably belongs to and explain your thoughts.  $\alpha = [3e4, 4e1, 2e5, 8e3]$ 



### 1.5

Which of the following is true about the vanishing gradient problem?

- (i) Tanh is usually preferred over sigmoid because it doesn't suffer from vanishing gradients.
- (ii) Vanishing gradient causes deeper layers to learn more slowly than earlier layers.
- (iii) Leaky ReLU is less likely to suffer from vanishing gradients than sigmoid.
- (iv) None of the above.

### 1.6

Describe one advantage of using:

- (i) mini-batch gradient descent instead of full-batch gradient descent.
- (ii) mini-batch gradient descent instead of stochastic gradient descent with batch size 1.
- (iii) Adam optimizer instead of vanilla gradient descent.

# 2 Backpropagation

The softmax function has the desirable property that it outputs a probability distribution, and is often used as an activation function in many classification neural networks. Consider a 2-layer neural network for K-class classification using softmax activation and cross-entropy loss, as defined below:

$$\begin{split} z^{[1]} &= W^{[1]}x + b^{[1]} \\ a^{[1]} &= LeakyReLU(z^{[1]}, \alpha = 0.01) \\ z^{[2]} &= W^{[2]}x + b^{[2]} \\ \widehat{y} &= softmax(z^{[2]}) \\ L &= -\sum_{i=1}^{K} y_i log(\widehat{y_i}) \end{split}$$

where the model is given input x of shape  $D_x \times 1$ , and one-hot encoded label  $y \in \{0,1\}^K$ . Assume that the hidden layer has  $D_a$  nodes, i.e.  $z^{[1]}$  is a vector of size  $D_a \times 1$ . Recall, the softmax function is computed as follows:

$$\widehat{y} = [\frac{exp(z_1^{[2]})}{Z}, ..., \frac{exp(z_K^{[2]})}{Z}]^T$$

where 
$$Z = \sum_{j=1}^{K} exp(z_{j}^{[2]})$$

### 2.1

What are the shapes of  $w^{[2]}, b^{[2]}$ ? If we were vectorizing across m examples, i.e. using a batch of samples  $X \in \mathbb{R}^{D_x \times m}$  as input, what would be the shape of the output of the hidden layer?

#### 22

What is  $\frac{\partial \widehat{y}_k}{\partial z_k^{[2]}}$ ? Simplify your answer in terms of element(s) of  $\widehat{y}$ .

### 2.3

What is  $\frac{\partial \widehat{y}_k}{\partial z_i^{[2]}}$ , for  $i \neq k$ ? Simplify your answer in terms of element(s) of  $\widehat{y}$ .

## 2.4

Assume that the label y has 1 at its  $k^{th}$  entry, and 0 elsewhere. What is  $\frac{\partial L}{\partial z_i^{[2]}}$ ? Simplify your answer in terms of  $\hat{y}$ . (Consider both cases where i=k and  $i\neq k$ ).

### 2.5

What is  $\frac{\partial z^{[2]}}{\partial \alpha^{[1]}}$ ? Refer to this result as  $\delta_1$ .

### 2.6

What is  $\frac{\partial \alpha^{[1]}}{\partial z^{[1]}}$ ? Refer to this result as  $\delta_2$ .

### 2.7

Denote  $\frac{\partial L}{\partial z^{[2]}}$  with  $\delta_0$ . What is  $\frac{\partial L}{\partial W^{[1]}}$  and  $\frac{\partial L}{\partial b^{[1]}}$ ? You can reuse notations from previous parts.

### 2.8

To avoid running into issues with numerical stability, one trick may be used when implementing the softmax function. Let  $m = \max_{i=1}^{K} z_i$  be the max of  $z_i$ , then

$$\widehat{y_i} = \frac{exp(z_i^{[2]} - m)}{\sum_{j=1}^{K} exp(z_j^{[2]} - m)}$$

What is the numerical problem with the initial softmax computation? Why the modified formula would help to resolve that problem?

## 3 Two Layer Neural Network

Given the following neural network with fully connected layers and ReLU activations, including two input units  $(i_1, i_2)$ , four hidden units  $(h_1, h_2)$  and  $(h_3, h_4)$ . The output units are indicated as  $(o_1, o_2)$  and their targets are indicated as  $(t_1, t_2)$ . The weights and biases of the fully connected layer are called w and b with specific sub-descriptors.



The values of the variables are given in the following table:

| Variable | $i_1$ | $i_2$ | $w_{11}$ | $w_{12}$ | $w_{21}$ | $w_{22}$ | $w_{31}$ | $w_{32}$ | $w_{41}$ | $w_{42}$ | $b_1$ | $b_2$ | $b_3$ | $b_4$ | $t_1$ | $t_2$ |
|----------|-------|-------|----------|----------|----------|----------|----------|----------|----------|----------|-------|-------|-------|-------|-------|-------|
| Value    | 2.0   | -1.0  | 1.0      | -0.5     | 0.5      | -1.0     | 0.5      | -1.0     | -0.5     | 1.0      | 0.5   | -0.5  | -1.0  | 0.5   | 1.0   | 0.5   |

### 3.1

Compute the output  $(o_1, o_2)$  with the input  $(i_1, i_2)$  and network parameters as specified above. Write down all calculations, including intermediate layer results.

### 3.2

Compute the mean squared error of the output  $(o_1, o_2)$  calculated above and the target  $(t_1, t_2)$ .

# 3.3

Update the weight  $w_{21}$  using gradient descent with a learning rate of 0.1 as well as the loss computed previously. (Please write down all your computations.)