Семинар 2

Алексеев Василий 8 сентября 2020

Содержание

1	Вектора (-ы?)			
2	Дополнение	3		
	2.1 Про центр масс	3		

1. Вектора (-ы?)

Вектор — направленный отрезок (1). Вектор можно обозначать одной строчной буквой, например \overrightarrow{AB} .

Рис. 1: Вектор характеризуется направлением и величиной.

Определение 1.1 (Коллинеарность). Два ненулевых вектора a и b называются коллинеарными, если существует прямая, которой они параллельны. Коллинеарность обозначается $a \parallel b$. Если при этом a и b направлены в одну сторону, то можно писать $a \uparrow b$, если в разные стороны — $a \uparrow b$. Нулевой вектор коллинеарен любому вектору.

Определение 1.2 (Компланарность). Три ненулевых вектора a, b и c называются компланарными, если существует плоскость, которой они параллельны. Три вектора, два из которых ненулевые, а третий нулевой, всегда компланарны.

Определение 1.3 (Равенство векторов). Будем считать два вектора a и b равными, если они

- равны по длине |a| = |b|
- коллинеарны $a \parallel b$
- одинаково направлены $a \uparrow \uparrow b$

Точка приложения при равенстве не учитывается 1 .

На множестве векторов определены следующие операции:

• Сложение векторов:

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

• Умножение вектора a на число $\alpha \in \mathbb{R}$. Результирующий вектор обозначается как αa и определяется свойствами:

$$\begin{cases} |\alpha \mathbf{a}| = |\alpha| \cdot |\mathbf{a}| \\ \alpha \mathbf{a} \parallel \mathbf{a} \end{cases}$$
$$\begin{cases} \alpha \mathbf{a} \uparrow \mathbf{a}, \alpha > 0 \\ \alpha \mathbf{a} \uparrow \mathbf{a}, \alpha < 0 \end{cases}$$

¹То есть получается, что можно нарисовать несколько несовпадающих, но равных векторов. Хотя в зависимости от конкретной задачи может быть важным различать векторы с разной точкой приложения. Например, в физике, при действии сил на тело.

Множество векторов в \mathbb{R}^3 с введёнными операциями сложения и умножения на число из \mathbb{R} образуют линейное пространство. Но рассмотрим векторы на одной прямой: сложение и умножение на число не выводят с прямой. То же самое с векторами на плоскости: сложение и умножение на число даёт вектор, также лежащий в той же плоскости. Таким образом, не только векторы из всего \mathbb{R}^3 образуют линейное пространство, но и векторы, параллельные одной плоскости. Множество векторов из одного нулевого вектора также образуют линейное пространство. Таким образом,

- нульмерное векторное пространство нулевой вектор
- одномерное векторное пространство

$$\{ \boldsymbol{v} \in \mathbb{R}^3 \mid \boldsymbol{v} \parallel l \}, \quad l -$$
прямая

• двумерное векторное пространство

$$\{ \boldsymbol{v} \in \mathbb{R}^3 \mid \boldsymbol{v} \parallel \alpha \}, \quad \alpha -$$
плоскость

• трёхмерное векторное пространство — \mathbb{R}^3

Определение 1.4. Линейная комбинация векторов a_1, \dots, a_n :

$$\alpha_1 \mathbf{a}_1 + \ldots + \alpha_n \mathbf{a}_n, \quad \alpha_i \in \mathbb{R}, 1 \le i \le n$$

Нетривиальная линейная комбинация — когда хотя бы один их коэффициентов α_i отличен от нуля: $\sum_{i=1}^n \alpha_i^2 > 0$.

Определение 1.5 (Линейно зависимая система векторов). Система векторов a_1, \ldots, a_n называется линейно зависимой, если существует их нетривиальная линейная комбинация, равная нулевому вектору:

$$\begin{cases} \alpha_1 \mathbf{a}_1 + \dots + \alpha_n \mathbf{a}_n = \mathbf{0} \\ \alpha_1^2 + \dots + \alpha_n^2 > 0 \end{cases}$$

Пример. Система из одного нулевого вектора линейно зависима.

Теорема 1.1. Система из k > 1 вектора линейно зависима тогда и только тогда, когда один из векторов системы представим как линейная комбинация остальных.

Доказательство. Пусть a_1, \dots, a_n — линейно зависимы. Это значит, что

$$\alpha_1 \mathbf{a}_1 + \ldots + \alpha_n \mathbf{a}_n = \mathbf{0}$$

и некоторый $\alpha_{i} \neq 0$. Поэтому

$$\alpha_j = \sum_{\substack{1 \le i \le n \\ i \ne j}} -\frac{\alpha_i}{\alpha_j} a_i$$

И наоборот, пусть некоторый a_j представим как линейная комбинация остальных векторов из набора с коэффициентами α_i' :

$$a_j = \sum_{\substack{1 \le i \le n \\ i \ne j}} \alpha_i' a_i$$

Т	'ი	г	π	ล
	v	1	ч	а

$$\alpha_1' \boldsymbol{a}_1 + \ldots + (-1) \cdot \boldsymbol{a}_i + \ldots + \alpha_n' \boldsymbol{a}_n = \boldsymbol{0}$$

и по крайней мере один коэффициент -1 в линейной комбинации векторов $\{a_i\}_{i=1}^n$ не равен нулю.

Теорема 1.2. • Один вектор линейно зависим ⇔ это нулевой вектор.

- Два вектора линейно зависимы ⇔ эти векоры коллинеарны.
- Три ветора линейно зависимы 👄 эти векторы компланарны.
- Любые четыре вектора линейно зависимы 2

Определение 1.6 (Базис). Базисом в пространстве называется

- упорядоченная
- линейно независимая
- полная³

система векторов.

Задача (1.6).

Решение.

Задача (1.11(1)).

Решение.

Задача (1.24(1)).

Решение.

Задача (1.51).

Решение.

Задача (1.39).

Решение.

Задача (1.37).

Решение.

Задача (1.36).

Решение.

2. Дополнение

2.1. Про центр масс

²Мы в \mathbb{R}^3 .

³Любой вектор пространства модет быть разложен по системе.