Science Decision | CM: 4

Par Lorenzo

26 septembre 2024

0.1 Opérations sur les relations

Puisque une relation R sur X est un sous ensemble de $X \times X$, on peut facilement utiliser des opérations ensemblistes.

Définition 0.1. Étant donné deux relation R_1 et R_2 sur un ensemble X.

- la relation complémentaire de R_1 , la relation binaire R_1^c sur X telle que $\forall x, y \in X$, xR_1^cy si $\neg(xR_1y)$
- la **réunion** de R_1 et R_2 est la relation binaire $R_1 \cup R_2$ sur X telle que $\forall x, y \in X$, $xR_1 \cup R_2y$ si $xR_1y \vee xR_2y$
- l'intersection de R_1 et R_2 est la relation binaire $R_1 \cap R_2$ telle que $\forall x, y \in X, \ xR_1 \cap R_2y \ si \ xR_1y \wedge xR_2y$
- la relation R_1 est **compatible** avec R_2 si $\forall x, y \in X$, $xR_1y \implies xR_2y$ ou de manière équivalente $R_1 \subset R_2$
- la relation **réciproque** (ou duale, inverse) de R_1 , la relation binaire R_1^{-1} sur X telle que

 $\forall x, y \in X, \ yR_1^{-1}x \ si \ xR_1y$

• la composée de R_1 et R_2 , la relation binaire $R_1 \circ R_2$ sur X telle que $\forall x, y \in X$, $xR_1 \circ R_2 y$ si $\exists z \in X, xR_2 z \wedge zR_1 y$

0.2 Relations d'équivalence

Proposition 0.1.

L'intersection $R_1 \cap R_2$ de deux relations d'équivalences R_1 et R_2 sur un ensemble X est une relation d'équivalence.

Démonstration 0.1.

- Réflexive car $\forall x \in X$, $xR_1x \wedge xR_2x$, ainsi $xR_1 \cap R_2x$ pour tout $x \in X$.
- Symétrie $car \forall x, y \in X$, $(xR_1y \land yR_1x) \land (xR_2y \land yR_2x)$, $ainsi \forall x, y \in X$, $xR_1y \land xR_2y$ ce qui implique que $yR_1x \land yR_2x$ soit $\forall x, y \in X$, $(xR_1y \land yR_2x) \land (xR_2y \land yR_1x)$.
- Transitive $car \forall x, y \in X, xR_1y \land xR_2y \land yR_1z \land yR_2z \implies xR_1z \land xR_2z \implies xR_1 \cap R_2z$

 $R_1 \cap R_2$ est Réflexive, Symétrique, Transitive donc c'est une relation d'équivalence.