THIS PAPER IS NOT TO BE REMOVED FROM THE EXAMINATION HALLS

UNIVERSITY OF LONDON

CO3311 ZA

BSc Examination

COMPUTING AND INFORMATION SYSTEMS, CREATIVE COMPUTING and COMBINED DEGREE SCHEME

Neural Networks

Thursday 18 May 2017: 10.00 – 12.15

Duration:

2 hours 15 minutes

There are SIX questions on this paper. Candidates should answer **FOUR** questions. All questions carry equal marks and full marks can be obtained for complete answers to **FOUR** questions. The marks for each part of a question are indicated at the end of the part in [.] brackets.

Only your first **FOUR** answers, in the order that they appear in your answer book, will be marked.

There are 100 marks available on this paper.

A handheld calculator may be used when answering questions on this paper but it must not be pre-programmed or able to display graphics, text or algebraic equations. The make and type of machine must be stated clearly on the front cover of the answer book.

© University of London 2017

UL17/0487

a) Explain how problems using artificial neural networks can be thought of as search problems. Illustrate your answer with reference to finding a perceptron that forms an AND gate and one that forms an XOR gate.

[5]

b) Define the terms: **extended truth table**, **threshold** and **recurrent** in the context of artificial neural networks.

[3]

c) The diagram below (taken from the Guide) shows an *N*-input unit:

Inputs	Weights	Parameters	Form	Value
1	bias	Learning rate	η	0.15
?a	?	Net	Σ	27
?b	?	Activation	T(<0,0,1)	22
!	•••	***		***
?N	?			

Write down the formula for **Net** and **Activation** and state what type of unit this is.

[4]

d) Draw a diagram of a 3-unit backpropagation network with 2 inputs, showing all of the parameters that one needs to train it against a set of inputs and desired outputs.

[5]

e) Explain how such a network is trained, giving formulae and defining each term in the formulae.

[8]

a) Explain the difficulties of having a single unit feeding back its output to its input, giving an example of what might go wrong.

[5]

b) The concept of *architecture* has a specific meaning when referring to artificial neural networks. Define this concept, listing five key aspects.

[5]

c) Compare and contrast the architecture of **perceptron**, **backpropagation**, **Kohonen-Grossberg**, **Boltzmann** and **Hopfield** networks.

[5x3]

Question 3

a) Explain how, given any truth table, it is possible to design a *multilayer perceptron* which produces the specified output for all of the inputs in the table.

[7]

b) Illustrate your answer in a) above by designing a two input, *multilayer perceptron* that implements the following truth table.

?1	?2	outpu	
0	0	1	
0	1	0	
1	0	0	
1	_ 1	1	
	-dec		

[7]

c) In the light of (or despite) your answer to part a) above, explain why it is often necessary to train the many varieties of artificial neural network.

[5]

- d) Enhancements to backpropagation include the use of:
 - i. momentum terms
 - ii. adaptive learning rates
 - iii. different learning rates for each weight.

Explain each of these and the problems that they are attempting to overcome.

[6]

a) Sketch a diagram showing the layers of a *Kohonen-Grossberg* network and its essential parameters.

[3]

b) What are the typical **net** and **activation** functions of each layer of such a network?

[2]

c) What role does the Grossberg layer play?

[2]

d) Write down the algorithm for training the *Kohonen* layer of a *Kohonen-Grossberg* network.

[7]

e) The Kohonen layer of a Kohonen-Grossberg network has units:

(-0.3268, 0.0148, 0.0479, 0.4915)

(-0.0936, -0.4467, -0.4671, 0.4760)

(0.0554, 0.2213, -0.2292, -0.3458)

Train the network with one iteration using the example:

$$(-0.0730, -0.3181, -0.0065, 0.2995)$$

[8]

f) Explain the strategies that might be used to choose the initial classes in a *Kohonen* layer.

[3]

UL17/0487

a) Describe the process of implementing a 4 unit *Hopfield* network using a tool of your choice.

[5]

b) Some of the **weights** of a three unit **Hopfield** network are given in Table Q5. Complete the table giving an explanation of how you obtained the missing **weights**.

Weights	Bias	1	2	3
Bias		3.15	1.59	2.65
1			2.70	0.00
2				-3.00
3				

Table Q5

[4]

c) Produce a **state transition table** and a **state transition diagram** for this network, explaining how you obtained your results.

[16]

Question 6

There are many tools for implementing artificial neural networks.

a) Give the names of two tools with which you are familiar.

[2]

b) Describe the process of implementing a simple network using each of the tools named in a) above.

[2x5]

c) Compare the two tools, giving two advantages and two disadvantages for each, indicating where each tool is preferred.

[4x2]

d) Give example applications of where each tool might best be used and why.

[5]

END OF PAPER

UL17/0487