Programación lineal entera mixta: caso planifiación agregada

Rodrigo Maranzana

Enunciado

Se busca optimizar el plan de producción para el año siguiente. Desde el sector comercial se proveen las proyecciones de demanda mensual.

Por otro lado, el departamento de Ingeniería de planta nos provee todos los parámetros correspondientes a la capacidad instalada. Nos informan, además, que en Diciembre se realiza el mantenimiento preventivo y no podrá producirse.

Ingeniería de procesos cuenta con información sobre la cadencia media de los empleados.

Por último, desde el sector de RRHH nos envían información sobre el personal, suspensiones, costos asociados y nuevas reglamentaciones como la imposibilidad de despedir empleados.

Variables y parámetros

Variables:

- PN_t , PE_t son la producción normal y extra del mes t;
- I_t es el nivel de inventario del mes t;
- DN_t , DS_t y DC_t es la dotación normal, suspendida y contratada en el mes t;
- Q_t es la cantidad tercerizada en el mes t.

84 variables

Parámetros:

- $lacksquare d_t$ es la cantidad demandada en el mes t
- cpn y cpe, son el costo de producir una unidad en horas normales y extra;
- ci el costo de mantener inventario;
- cdn, dcs y cdc, son el costo por personal trabajando, suspendido y contratado;
- cq, es el costo por tercerizar;
- wnMax y weMax, son la cantidad maxima de horas normales y extra que puede trabajar una persona, por mes;
- iMax, es la cantidad máxima de inventario;
- dMin y dMax, son la dotación trabajando máxima y mínima;

Modelo de optimización

$$Min \ Z = \sum_{t} \left[cpn * PN_{t} + cpe * PE_{t} + ci * I_{t} + cdn * DN_{t} + cds * DS_{t} + cdc * DC_{t} + cq * Q_{t} \right]$$

s.t.
$$PN_t + PE_t + I_{t-1} + Q_t = d_t + I_t$$
; $\forall t$ Balance de producción $PN_{12}, PE_{12} = 0$ Mantenimiento preventivo $\alpha * PN_t \leq wnMax * DN_t$ Límite de horas productivas $\alpha * PE_t \leq weMax * DN_t$ D $N_t + DS_t = DN_{t-1} + DS_{t-1} + DC_t$; $\forall t$ Balance de personal $I_t \leq iMax$; $\forall t$ Inventario máximo $dMin \leq DN_t \leq dMax$; $\forall t$ Personal máximo y mínimo $PN_t, PE_t, I_t, DN_t, DS_t, DC_t, Q_t \geq 0$ Positividad $DN_t, DS_t, DC_t \in Z$ Enteros

Modelo de optimización

Puedo usar SIMPLEX?

Es un caso de: Mixed Integer Linear Programming

