74HC1G125; 74HCT1G125

Bus buffer/line driver; 3-state

Rev. 05 — 23 December 2005

Product data sheet

The 74HC1G125; 74HCT1G125 is a high-speed, Si-gate CMOS device.

The 74HC1G125; 74HCT1G125 provides one non-inverting buffer/line driver with 3-state output. The 3-state output is controlled by the output enable input (pin $\overline{\text{OE}}$). A HIGH level at pin $\overline{\text{OE}}$ causes the output to assume a high-impedance OFF-state.

The bus driver output currents are equal compared to the 74HC125 and 74HCT125.

2. Features

- Wide supply voltage range from 2.0 V to 6.0 V
- Symmetrical output impedance
- High noise immunity
- Low power consumption
- Balanced propagation delays
- ESD protection:
 - ◆ HBM EIA/JESD22-A114-C exceeds 2000 V
 - MM EIA/JESD22-A115-A exceeds 200 V
- Very small 5 pins packages
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

3. Quick reference data

Table 1: Quick reference data $GND = 0 \ V; \ T_{amb} = 25 \ ^{\circ}C; \ t_r = t_f \le 6.0 \ ns.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
74HC1G	74HC1G125								
t _{PHL} , t _{PLH}	propagation delay A to Y	$V_{CC} = 5 \text{ V}; C_L = 15 \text{ pF}$	-	9	-	ns			
C _i	input capacitance		-	1.5	-	pF			
C_{PD}	power dissipation capacitance	$V_I = GND \text{ to } V_{CC}$	<u>[1]</u> -	30	-	pF			

Table 1: Quick reference data ...continued $GND = 0 \ V$; $T_{amb} = 25 \ ^{\circ}C$; $t_r = t_f \le 6.0 \ ns$.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
74HCT10	3125					
t _{PHL} , t _{PLH}	propagation delay A to Y	$V_{CC} = 5 \text{ V}; C_L = 15 \text{ pF}$	-	10	-	ns
C_{i}	input capacitance		-	1.5	-	pF
C _{PD}	power dissipation capacitance	$V_I = GND$ to $V_{CC} - 1.5 V$	[1] -	27	-	pF

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

 f_o = output frequency in MHz;

 C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

4. Ordering information

Table 2: Ordering information

Type number	Package						
	Temperature range	Name	Description	Version			
74HC1G125				'			
74HC1G125GW	–40 °C to +125 °C	TSSOP5	plastic thin shrink small outline package; 5 leads; body width 1.25 mm	SOT353-1			
74HC1G125GV	–40 °C to +125 °C	SC-74A	plastic surface mounted package; 5 leads	SOT753			
74HCT1G125							
74HCT1G125GW	–40 °C to +125 °C	TSSOP5	plastic thin shrink small outline package; 5 leads; body width 1.25 mm	SOT353-1			
74HCT1G125GV	–40 °C to +125 °C	SC-74A	plastic surface mounted package; 5 leads	SOT753			

5. Marking

Table 3: Marking

Type number	Marking code
74HC1G125GW	НМ
74HC1G125GV	H25
74HCT1G125GW	ТМ
74HCT1G125GV	T25

6. Functional diagram

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 4: Pin description

Symbol	Pin	Description
ŌĒ	1	output enable input (active LOW)
A	2	data input
GND	3	ground (0 V)
Υ	4	data output
V_{CC}	5	supply voltage

8. Functional description

8.1 Function table

Table 5: Function table [1]

Control	Input	Output
OE	A	Υ
L	L	L
L	Н	Н
Н	X	Z

^[1] H = HIGH voltage level;

L = LOW voltage level;

X = don't care;

Z = high-impedance OFF-state.

9. Limiting values

Table 6: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
I _{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$	[1] -	±20	mA
I _{OK}	output clamping current	$V_O < -0.5 \text{ V or}$ $V_O > V_{CC} + 0.5 \text{ V}$	[1] -	±20	mA
Io	output current	$V_O = -0.5 \text{ V to } (V_{CC} + 0.5 \text{ V})$	<u>[1]</u> _	±35	mA
I _{CC}	quiescent supply current		-	70	mA
I _{GND}	ground current		-	-70	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[2] _	200	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^[2] Above 55 $^{\circ}$ C the value of P_{tot} derates linearly with 2.5 mW/K.

10. Recommended operating conditions

Table 7: Recommended operating conditions

1001011	recommended operating contained						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
74HC1G1	25						
V_{CC}	supply voltage		2.0	5.0	6.0	V	
V_{I}	input voltage		0	-	V_{CC}	V	
V_{O}	output voltage		0	-	V_{CC}	V	
T_{amb}	ambient temperature		-40	+25	+125	°C	
t_r, t_f	input rise and fall times	$V_{CC} = 2.0 \text{ V}$	-	-	1000	ns	
		$V_{CC} = 4.5 \text{ V}$	-	-	500	ns	
		$V_{CC} = 6.0 \text{ V}$	-	-	400	ns	
74HCT16	3125						
V_{CC}	supply voltage		4.5	5.0	5.5	V	
VI	input voltage		0	-	V_{CC}	V	
Vo	output voltage		0	-	V_{CC}	V	
T _{amb}	ambient temperature		-40	+25	+125	°C	
t _r , t _f	input rise and fall times	$V_{CC} = 4.5 \text{ V}$	-	-	500	ns	

11. Static characteristics

Table 8: Static characteristics 74HC1G125

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -	40 °C to +85 °C <u>[1]</u>					
V _{IH}	HIGH-state input voltage	V _{CC} = 2.0 V	1.5	1.2	-	V
		V _{CC} = 4.5 V	3.15	2.4	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	V
V_{IL}	LOW-state input voltage	V _{CC} = 2.0 V	-	0.8	0.5	V
		V _{CC} = 4.5 V	-	2.1	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	V
V _{OH}	HIGH-state output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_{O} = -20 \mu A; V_{CC} = 2.0 V$	1.9	2.0	-	V
		$I_{O} = -20 \mu A; V_{CC} = 4.5 V$	4.4	4.5	-	V
		$I_{O} = -20 \mu A; V_{CC} = 6.0 V$	5.9	6.0	-	V
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.84	4.32	-	V
		$I_{O} = -7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.34	5.81	-	V
V_{OL}	LOW-state output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = 20 \mu A; V_{CC} = 2.0 V$	-	0	0.1	V
		$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	0	0.1	V
		$I_O = 20 \mu A; V_{CC} = 6.0 V$	-	0	0.1	V
		$I_O = 6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.33	V
		$I_{O} = 7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.33	V

74HC_HCT1G125_5

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Table 8: Static characteristics 74HC1G125 ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{LI}	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	1.0	μΑ
l _{OZ}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	5	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$	-	-	10	μΑ
Ci	input capacitance		-	1.5	-	pF
T _{amb} = -	40 °C to +125 °C					
V_{IH}	HIGH-state input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
V _{IL}	LOW-state input voltage	V _{CC} = 2.0 V	-	-	0.5	V
		V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
V _{OH}	HIGH-state output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = -20 \mu A; V_{CC} = 2.0 V$	1.9	-	-	V
		$I_O = -20 \mu A; V_{CC} = 4.5 V$	4.4	-	-	V
		$I_{O} = -20 \mu A; V_{CC} = 6.0 V$	5.9	-	-	V
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.7	-	-	V
		$I_O = -7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.2	-	-	V
V _{OL}	LOW-state output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = 20 \mu A; V_{CC} = 2.0 V$	-	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 6.0 \text{ V}$	-	-	0.1	V
		$I_O = 6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.4	V
		$I_O = 7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.4	V
ILI	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	1.0	μΑ
l _{OZ}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	10	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$	-	-	20	μΑ

^[1] All typical values are measured at T_{amb} = 25 °C.

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -	40 °C to +85 °C [1]					
V _{IH}	HIGH-state input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	V
V _{IL}	LOW-state input voltage	V _{CC} = 4.5 V to 5.5 V	-	1.2	0.8	V
V _{OH}	HIGH-state output voltage	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$				
		$I_{O} = -20 \mu A$	4.4	4.5	-	V
		$I_{O} = -6.0 \text{ mA}$	3.84	4.32	-	V
V_{OL}	LOW-state output voltage	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$				
		I _O = 20 μA	-	0	0.1	V
		I _O = 6.0 mA	-	0.16	0.33	V
l _{LI}	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	1.0	μΑ
l _{OZ}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	5	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$	-	-	10	μΑ
Δl _{CC}	additional quiescent supply current	$V_I = V_{CC} - 2.1 \text{ V}; I_O = 0 \text{ A};$ $V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	-	-	500	μΑ
Ci	input capacitance		-	1.5	-	pF
T _{amb} = -	40 °C to +125 °C					
V_{IH}	HIGH-state input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	-	-	V
V _{IL}	LOW-state input voltage	V _{CC} = 4.5 V to 5.5 V	-	-	0.8	V
V_{OH}	HIGH-state output voltage	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$				
		I _O = -20 μA	4.4	-	-	V
		$I_{O} = -6.0 \text{ mA}$	3.7	-	-	V
V_{OL}	LOW-state output voltage	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$				
		I _O = 20 μA	-	-	0.1	V
		I _O = 6.0 mA	-	-	0.4	V
ILI	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	1.0	μΑ
l _{OZ}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	10	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$	-	-	20	μΑ
ΔI_{CC}	additional quiescent supply current	$V_1 = V_{CC} - 2.1 \text{ V}; I_O = 0 \text{ A};$ $V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	-	-	850	μΑ

^[1] All typical values are measured at T_{amb} = 25 °C.

12. Dynamic characteristics

Table 10: Dynamic characteristics 74HC1G125

Voltages are referenced to GND (ground = 0 V); CL = 50 pF unless otherwise specified; for test circuit see Figure 8

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -	-40 °C to +85 °C [1]					
t _{PHL} ,	propagation delay A to Y	see Figure 6				
t _{PLH}		$V_{CC} = 2.0 \text{ V}$	-	24	125	ns
		$V_{CC} = 4.5 \text{ V}$	-	10	25	ns
		$V_{CC} = 5 \text{ V};$ $C_L = 15 \text{ pF}$	-	9	-	ns
		$V_{CC} = 6.0 \text{ V}$	-	8	21	ns
t_{PZH} ,	3-state output enable time	see Figure 7				
t _{PZL}	OE to Y	$V_{CC} = 2.0 \text{ V}$	-	19	155	ns
		$V_{CC} = 4.5 \text{ V}$	-	9	31	ns
		$V_{CC} = 6.0 \text{ V}$	-	7	26	ns
t_{PHZ} ,	3-state output disable time OE to Y	see Figure 7				
t _{PLZ}		$V_{CC} = 2.0 \text{ V}$	-	18	155	ns
		$V_{CC} = 4.5 \text{ V}$	-	12	31	ns
		$V_{CC} = 6.0 \text{ V}$	-	11	26	ns
C_{PD}	power dissipation capacitance	$V_I = GND$ to V_{CC}	[2] _	30	-	pF
T _{amb} = -	-40 °C to +125 °C					
t _{PHL} ,	propagation delay A to Y	see Figure 6				
t _{PLH}		V _{CC} = 2.0 V	-	-	150	ns
		$V_{CC} = 4.5 \text{ V}$	-	-	30	ns
		$V_{CC} = 6.0 \text{ V}$	-	-	26	ns
t_{PZH} ,	3-state output enable time	see Figure 7				
t_{PZL}	OE to Y	V _{CC} = 2.0 V	-	-	190	ns
		$V_{CC} = 4.5 \text{ V}$	-	-	38	ns
		$V_{CC} = 6.0 \text{ V}$	-	-	32	ns
t_{PHZ} ,	3-state output disable time	see Figure 7				
t_{PLZ}	OE to Y	$V_{CC} = 2.0 \text{ V}$	-	-	190	ns
		$V_{CC} = 4.5 \text{ V}$	-	-	38	ns
		V _{CC} = 6.0 V	-	-	32	ns

^[1] All typical values are measured at T_{amb} = 25 °C.

 $P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}{}^2 \times f_o) \text{ where:}$

 f_i = input frequency in MHz;

fo = output frequency in MHz;

C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of the outputs.

74HC_HCT1G125_5

^[2] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

Table 11: Dynamic characteristics 74HCT1G125

Voltages are referenced to GND (ground = 0 V); CL = 50 pF unless otherwise specified; for test circuit see Figure 8

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$T_{amb} = -$	40 °C to +85 °C [1]					
t _{PHL} ,	propagation delay A to Y	see Figure 6				
t _{PLH}		V _{CC} = 4.5 V	-	11	30	ns
		$V_{CC} = 5 \text{ V}; C_L = 15 \text{ pF}$	-	10	-	ns
t _{PZH} , t _{PZL}	3-state output enable time OE to Y	V _{CC} = 4.5 V; see <u>Figure 7</u>	-	10	35	ns
t _{PHZ} , t _{PLZ}	3-state output disable time OE to Y	V _{CC} = 4.5 V; see <u>Figure 7</u>	-	11	31	ns
C _{PD}	power dissipation capacitance	$V_I = GND$ to $V_{CC} - 1.5 V$	[2]	27	-	pF
T _{amb} = -	40 °C to +125 °C					
t _{PHL} , t _{PLH}	propagation delay A to Y	V _{CC} = 4.5 V; see <u>Figure 6</u>	-	-	36	ns
t _{PZH} , t _{PZL}	3-state output enable time OE to Y	V _{CC} = 4.5 V; see <u>Figure 7</u>	-	-	42	ns
t _{PHZ} , t _{PLZ}	3-state output disable time OE to Y	V _{CC} = 4.5 V; see <u>Figure 7</u>	-	-	38	ns

^[1] All typical values are measured at $T_{amb} = 25$ °C.

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$$
 where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

^[2] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

13. Waveforms

Table 12: Measurement points

Туре	Input	Output				
	V _M	V _M	V _X	V _Y		
74HC1G125	0.5V _{CC}	0.5V _{CC}	V _{OL} + 0.3 V	V _{OH} – 0.3 V		
74HCT1G125	1.3 V	1.3 V	V _{OL} + 0.3 V	V _{OH} – 0.3 V		

Table 13: Test data

Туре	Input		Load		S1 position		
	VI	t _r , t _f	CL	R _L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
74HC1G125	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}
74HCT1G125	3 V	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}

14. Package outline

TSSOP5: plastic thin shrink small outline package; 5 leads; body width 1.25 mm

SOT353-1

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE	REFERENCES				EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT353-1		MO-203	SC-88A			00-09-01 03-02-19	

Fig 9. Package outline SOT353-1 (TSSOP5)

74HC_HCT1G125_5

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Plastic surface mounted package; 5 leads

SOT753

Fig 10. Package outline SOT753 (SC-74A)

Table 14: Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
ESD	ElectroStatic Discharge
НВМ	Human Body Model
TTL	Transistor-Transistor Logic
MM	Machine Model

16. Revision history

Table 15: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
74HC_HCT1G125_5	20051223	Product data sheet	ECN05_085	-	74HC_HCT1G125_4

Modifications:

- The format of this data sheet has been redesigned to comply with the new presentation and information standard of Philips Semiconductors.
- In Table 6 "Limiting values"
 - I_O: changed max value ±12.5 into ±35
 - I_{CC}: changed max value 25 into 70
 - I_{GND}: changed max value -25 into -70
- In <u>Table 8 "Static characteristics 74HC1G125"</u>; T_{amb} = −40 °C to +85 °C
 - V_{OH}: changed condition I_O = -2.0 mA into I_O = -6.0 mA and min value from 4.13 into 3.84
 - V_{OH} : changed condition $I_O = -2.6$ mA into $I_O = -7.8$ mA and min value from 5.63 into 5.34
 - V_{OI} : changed condition $I_{O} = 2.0$ mA into $I_{O} = 6.0$ mA
 - V_{OL}: changed condition I_O = 2.6 mA into I_O = 7.8 mA
- In Table 8 "Static characteristics 74HC1G125"; T_{amb} = −40 °C to +125 °C
 - V_{OH} : changed condition $I_O = -2.0$ mA into $I_O = -6.0$ mA
 - V_{OI} : changed condition $I_{O} = 2.0$ mA into $I_{O} = 6.0$ mA
- In Table 9 "Static characteristics 74HCT1G125"; T_{amb} = −40 °C to +85 °C
 - V_{OH} : changed condition $I_O = -2.0$ mA into $I_O = -6.0$ mA and min value from 4.13 into 3.84
 - V_{Ol} : changed condition I_{O} = 2.0 mA into I_{O} = 6.0 mA and typ value from 0.15 into 0.16
- In Table 9 "Static characteristics 74HCT1G125"; T_{amb} = −40 °C to +125 °C
 - V_{OH} : changed condition $I_O = -2.0$ mA into $I_O = -6.0$ mA
 - V_{OL}: changed condition I_O = 2.0 mA into I_O = 6.0 mA

74HC_HCT1G125_4 20040727	Product specification -	9397 750 13725 74HC_HCT1G125_3
74HC_HCT1G125_3 20020517	Product specification -	9397 750 09718 74HC_HCT1G125_2
74HC_HCT1G125_2 20010302	Product specification -	9397 750 07966 74HC_HCT1G125_1
74HC_HCT1G125_1 19981110	Product specification -	9397 750 03693 -

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

- [1] Please consult the most recently issued data sheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

18. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

19. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors

customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

20. Trademarks

Notice — All referenced brands, product names, service names and trademarks are the property of their respective owners.

21. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

74HC1G125; 74HCT1G125

Bus buffer/line driver; 3-state

22. Contents

1	General description 1
2	Features
3	Quick reference data
4	Ordering information
5	Marking 2
6	Functional diagram
7	Pinning information 3
7.1	Pinning
7.2	Pin description
8	Functional description 4
8.1	Function table 4
9	Limiting values 4
10	Recommended operating conditions 5
11	Static characteristics 5
12	Dynamic characteristics 8
13	Waveforms
14	Package outline
15	Abbreviations14
16	Revision history
17	Data sheet status
18	Definitions
19	Disclaimers
20	Trademarks
21	Contact information

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

