Simulación practica del movimiento Browniano y examinación de los efectos de las dimenciones en los tiempos de regreso al origen de una partícula

Isaac Estrada García

21 de septiembre de 2020

1. Introducción

El movimiento Browniano es un modelo matemático de una partícula que describe la "danza" aleatoria de las partículas que se debe [1] a la agitación molecular en la que se hayan inmersas.

En este trabajo los objetivos principales son modelar sistemáticamente el movimiento browniano de una partícula de una a ocho dimensiones del espacio, así como también examinar el tiempo de regreso al origen de la partícula analizando su caminata pseudoaleatoria.

2. Hipótesis

Es posible que la probabilidad sea nula conforme las dimensiones vayan aumentando, y de la misma manera los regresos al origen.

3. Objetivos

Simular el movimiento Browniano Schaeffer [2] de una partícula examinando los efectos de la dimensión en el tiempo de regreso al origen para dimensiones de 1 a 8 en incrementos lineales de uno, variando el número de pasos de la caminata como potencias de dos con exponentes de 5 a 10 en incrementos lineales de uno, con 50 repeticiones del experimento para cada combinación y graficar los resultados en una sola figura con diagramas de caja-bigote.

4. Simulación y Resultados

La simulación del movimiento Browniano se realizo con lenguaje de programación python. La codificacion que se encuentra en el repositorio de "simulacion" da como resultado una grafica caja-bijote que describe los pasos que toma

Figura 1: Regresos al origen de una partícula simulado sistematicamente por modelo del movimiento Browniano.

la particula al llegar al origen en ocho dimenciones, se realizan 50 experimentos para en 6 distintas caminatas y en 8 dimenciones.

En la figura 1 se muestran los resultados obtenidos donde se puede observar una tendencia decreciente de regresos al origen conforme aumentan las dimenciones.

5. Conclusiones

Mientas más dimenciones existan en el movimiento de pseudoaliatorio de una partícula menor será las veces que pase por su origen.

Referencias

- [1] E. Puga Cital. Difución efectiva en sistemas de materia activa diluida, June 2017.
- [2] E. Schaeffer. Práctica 1: Movimiento Browniano, September 2020. URL https://elisa.dyndns-web.com/teaching/comp/par/p1.html.