Changing plot style and color

INTRODUCTION TO SEABORN

Erin CaseData Scientist

Why customize?

Reasons to change style:

- Personal preference
- Improve readability
- Guide interpretation

Changing the figure style

- Figure "style" includes background and axes
- Preset options: "white", "dark", "whitegrid", "darkgrid", "ticks"
- sns.set_style()

Default figure style ("white")

Figure style: "whitegrid"

Other styles

Other styles

Other styles

Changing the palette

- Figure "palette" changes the color of the main elements of the plot
- sns.set_palette()
- Use preset palettes or create a custom palette

Diverging palettes

Example (default palette)

```
category_order = ["No answer",
                  "Not at all",
                  "Not very",
                  "Somewhat",
                  "Very"]
sns.catplot(x="how_masculine",
            data=masculinity_data,
            kind="count",
            order=category_order)
plt.show()
```


Example (diverging palette)

```
sns.set_palette("RdBu")
category_order = ["No answer",
                  "Not at all",
                  "Not very",
                  "Somewhat",
                  "Very"]
sns.catplot(x="how_masculine",
            data=masculinity_data,
            kind="count",
            order=category_order)
plt.show()
```


Sequential palettes

Sequential palette example

Custom palettes

Custom palettes

Changing the scale

- Figure "context" changes the scale of the plot elements and labels
- sns.set_context()
- Smallest to largest: "paper", "notebook", "talk", "poster"

Default context: "paper"

Larger context: "talk"

Let's practice!

INTRODUCTION TO SEABORN

Adding titles and labels: Part 1

INTRODUCTION TO SEABORN

Erin CaseData Scientist

Creating informative visualizations

FacetGrid vs. AxesSubplot objects

Seaborn plots create two different types of objects: FacetGrid and AxesSubplot

```
g = sns.scatterplot(x="height", y="weight", data=df)
type(g)
```

> matplotlib.axes._subplots.AxesSubplot

An Empty FacetGrid

FacetGrid vs. AxesSubplot objects

Object Type	Plot Types	Characteristics
FacetGrid	relplot() , catplot()	Can create subplots
AxesSubplot	<pre>scatterplot() , countplot() ,etc.</pre>	Only creates a single plot

Adding a title to FacetGrid

Adjusting height of title in FacetGrid

```
sns.catplot(x="Region",
                y="Birthrate",
                data=gdp_data,
                kind="box")
g.fig.suptitle("New Title",
               y=1.03)
plt.show()
```


Let's practice!

INTRODUCTION TO SEABORN

Adding titles and labels: Part 2

INTRODUCTION TO SEABORN

Erin CaseData Scientist

Adding a title to AxesSubplot

FacetGrid

AxesSubplot

Titles for subplots

Titles for subplots

```
= sns.catplot(x="Region",
                y="Birthrate",
                data=gdp_data,
                kind="box",
                col="Group")
g.fig.suptitle("New Title",
               y=1.03)
```


Titles for subplots

```
= sns.catplot(x="Region",
                y="Birthrate",
                data=gdp_data,
                kind="box",
                col="Group")
g.fig.suptitle("New Title",
               y=1.03)
g.set_titles("This is {col_name}")
```


Adding axis labels

```
= sns.catplot(x="Region",
                y="Birthrate",
                data=gdp_data,
                kind="box")
g.set(xlabel="New X Label",
      ylabel="New Y Label")
plt.show()
```


Rotating x-axis tick labels

Let's practice!

INTRODUCTION TO SEABORN

Putting it all together

INTRODUCTION TO SEABORN

Erin CaseData Scientist

Getting started

To import Seaborn:

import seaborn as sns

To import Matplotlib:

import matplotlib.pyplot as plt

To show a plot:

plt.show()

Relational plots

- Show the relationship between two quantitative variables
- Examples: scatter plots, line plots

```
sns.relplot(x="x_variable_name",
    y="y_variable_name",
    data=pandas_df,
    kind="scatter")
```

Categorical plots

- Show the distribution of a quantitative variable within categories defined by a categorical variable
- Examples: bar plots, count plots, box plots, point plots

```
sns.catplot(x="x_variable_name",
    y="y_variable_name",
    data=pandas_df,
    kind="bar")
```

Adding a third variable (hue)

Setting hue will create subgroups that are displayed as different colors on a single plot.

Adding a third variable (row/col)

Setting row and/or col in relplot() or catplot() will create subgroups that are displayed on separate subplots.

Customization

- Change the background: sns.set_style()
- Change the main element colors: sns.set_palette()
- Change the scale: sns.set_context()

Adding a title

Object Type	Plot Types	How to Add Title
FacetGrid	relplot() , catplot()	<pre>g.fig.suptitle()</pre>
AxesSubplot	<pre>scatterplot() , countplot() ,etc.</pre>	g.set_title()

Final touches

Add x- and y-axis labels:

```
g.set(xlabel="new x-axis label",
ylabel="new y-axis label")
```

Rotate x-tick labels:

```
plt.xticks(rotation=90)
```

Let's practice!

INTRODUCTION TO SEABORN

Well done! What's next?

INTRODUCTION TO SEABORN

Erin CaseData Scientist

Where does Seaborn fit in?

Where does Seaborn fit in?

Next Steps: Explore and communicate results

- Seaborn advanced visualizations
- Matplotlib advanced customizations

Next steps: Gather data

- Python
- SQL

Next steps: Transform and clean

- Getting data into Pandas DataFrames
- Cleaning data
- Transforming into tidy format

Next steps: Analyze and build models

- Statistical analysis
- Calculating and interpreting confidence intervals

Congratulations!

INTRODUCTION TO SEABORN

