	Project – Credit Card Fraud Detection
	Problem Statement: 1. A credit card is a small thin plastic or fiber card that incorporates information about the person such as a picture or signature and the person's name on it to charge purchases and services to his linked account. Charges are debited regularly. Nowadays, card data is read by
	ATMs, swiping machines, store readers, banks and online transactions. 2. Each card has a unique card number which is very important. Its security mainly relies on the physical security of the card and also the privacy of the credit card number. There is a rapid growth in credit card transactions which has led to substantial growth in scam cases. 3. Credit card fraud is expanding heavily because fraud financial loss is increasing drastically. Multiple data mining and statistical techniques are used to catch fraud. Therefore the detection of fraud using efficient and secured methods are very important.
	Tasks To Be Performed: 1. Load the dataset using the pandas module.
In [195	<pre>import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns</pre>
	<pre>from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.metrics import * from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier</pre>
In [196 Out[196]:	
	0 0 -1.359807 -0.072781 2.536347 1.378155 -0.338321 0.462388 0.239599 0.098698 0.3637870.018307 0.277838 -0.110474 0.066928 0.128539 -0.189115 0.133558 -0.021053 149.62 0.0 1 0 1.191857 0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803 0.085102 -0.2554250.225775 -0.638672 0.101288 -0.339846 0.167170 0.125895 -0.008983 0.014724 2.69 0.0 2 1 -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499 0.791461 0.247676 -1.514654 0.247998 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752 378.66 0.0 3 1 -0.966272 -0.185226 1.792993 -0.863291 -0.010309 1.247203 0.237609 0.377436 -1.3870240.108300 0.005274 -0.190321 -1.175575 0.647376 -0.221929 0.062723 0.061458 123.50 0.0
	4 2 -1.158233 0.877737 1.548718 0.403034 -0.407193 0.095921 0.592941 -0.270533 0.8177390.009431 0.798278 -0.137458 0.141267 -0.206010 0.502292 0.219422 0.215153 69.99 0.0 11660 19915 1.294875 -0.645847 0.689549 -0.351634 -1.026884 -1.026884 -0.129811 -0.928101 0.114172 0.8047170.097462 -0.020893 0.040297 0.159282 0.350705 -0.278351 -0.010354 -0.008003 10.00 0.0
	11661 19915 1.404683 -0.554883 0.612239 -0.234956 -1.190992 -0.816824 -0.775771 -0.142637 1.121638 -0.196110 -0.303562 0.005661 0.313352 0.473813 -0.276618 -0.024026 0.002106 5.00 0.0 11662 19915 -0.945541 0.479754 1.521916 -1.298658 -0.852548 -0.604029 -0.354686 0.498106 0.407159 -0.050745 0.055584 0.312195 0.026299 -0.413466 0.189152 0.086360 10.00 0.0 11663 19915 -0.087909 0.184093 1.683910 -0.837378 -0.682605 -0.669907 -0.056222 -0.120669 0.409636 -0.109428 -0.054760 -0.139329 0.333267 0.072695 -0.320292 0.006423 0.010148 10.00 0.0
	11664 19915 1.504229 -0.499337 0.052377 -0.576345 -0.393971 0.015149 -0.718603 -0.125852 1.023281 NaN NaN NaN NaN NaN NaN NaN NaN NaN
	2. Perform missing value analysis on the dataset. df.isna().sum() Time 0
	V1 0 V2 0 V3 0 V4 0 V5 0 V6 0
	V7 0 V8 0 V9 0 V10 0 V11 0
	V12 1 V13 1 V14 1 V15 1 V16 1
	V17 1 V18 1 V19 1 V20 1 V21 1 V22 1
	V23 1 V24 1 V25 1 V26 1 V27 1
In [108	V28 1 Amount 1 Class 1 dtype: int64 df[df['Amount'].isnull()].T
In [198 Out[198]:	
	V2 -0.499337 V3 0.052377 V4 -0.576345
	V5 -0.393971 V6 0.015149 V7 -0.718603
	V8 -0.125852 V9 1.023281 V10 0.141308 V11 -0.993422
	V12 NaN V13 NaN V14 NaN
	V15 NaN V16 NaN V17 NaN V18 NaN
	V19 NaN V20 NaN V21 NaN
	V22 NaN V23 NaN V24 NaN
	V25 NaN V26 NaN V27 NaN V28 NaN
	Amount NaN Class NaN
In [199 In [200	All null values are in one row. So it's best to just remove that row. df.dropna(inplace=True)
Out[200]:	
	2 1 -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499 0.791461 0.247676 -1.514654 0.247998 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752 378.66 0.0 3 1 -0.966272 -0.185226 1.792993 -0.863291 -0.010309 1.247203 0.237609 0.377436 -1.3870240.108300 0.005274 -0.190321 -1.175575 0.647376 -0.221929 0.062723 0.061458 123.50 0.0 4 2 -1.158233 0.877737 1.548718 0.403034 -0.407193 0.095921 0.592941 -0.270533 0.8177390.009431 0.798278 -0.137458 0.141267 -0.206010 0.502292 0.219422 0.215153 69.99 0.0
	11662 19915 -0.945541 0.479754 1.521916 -1.298658 -0.852548 -0.604029 -0.354686 0.498106 0.4071590.109428 -0.054760 -0.139329 0.333267 0.072695 -0.320292 0.006423 0.010148 10.00 0.0 11664 rows × 31 columns
	3. From the dataset, calculate the number of genuine transactions, number of fraud transactions and the percentage of fraud transactions.
In [201 Out[201]:	df['Class'].value_counts() 0.0 11615 1.0 49 Name: Class, dtype: int64
In [202	<pre>genuine_transactions = df['Class'].value_counts()[0] fraud_transactions = df['Class'].value_counts()[1] percentage_fraud_transactions = fraud_transactions/(genuine_transactions+fraud_transactions) print('Genuine Transactions: ', genuine_transactions) print('Fraud Transactions: ', fraud_transactions)</pre>
	print('Percentage Fraud Transactions: ', percentage_fraud_transactions*100,'%') Genuine Transactions: 11615 Fraud Transactions: 49 Percentage Fraud Transactions: 0.4200960219478738 %
	4. Using the visualization module, visualize the genuine and fraudulent transactions using a bar graph. sns.countplot(data=df, x='Class', hue_order=['A', 'B']) plt.xticks(ticks=[0, 1], labels=['Genuine', 'Fraud'])
	plt.xlabel('Transactions') plt.show() 12000
	10000 -
	6000 -
	2000 -
	Genuine Fraud
	Transactions 5. Using the Standard Scaler module, normalize the amount column and store the new values in the NormalizedAmount column.
In [205	
Out[205]:	Time V1 V2 V3 V4 V5 V6 V7 V8 V9 V2 V23 V24 V25 V26 V27 V28 Amount Class NormalizedAmount 0 0 -1.359807 -0.072781 2.536347 1.378155 -0.338321 0.462388 0.239599 0.098698 0.363787 0.277838 -0.110474 0.066928 0.128539 -0.189115 0.133558 -0.021053 149.62 0.0 0.482873 1 0 1.191857 0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803 0.085102 -0.2554250.638672 0.101288 -0.339846 0.167170 0.125895 -0.008983 0.014724 2.69 0.0 -0.334272 2 1 -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499 0.791461 0.247676 -1.514654 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752 378.66 0.0 1.756668
	3 1 -0.966272 -0.185226 1.792993 -0.863291 -0.010309 1.247203 0.237609 0.377436 -1.387024 0.005274 -0.190321 -1.175575 0.647376 -0.221929 0.062723 0.061458 123.50 0.0 0.337607 4 2 -1.158233 0.877737 1.548718 0.403034 -0.407193 0.095921 0.592941 -0.270533 0.817739 0.798278 -0.137458 0.141267 -0.206010 0.502292 0.219422 0.215153 69.99 0.0 0.040014
	11659 19914 1.348167 -0.531813 0.737667 -0.312410 -1.147767 -0.585711 -0.810412 -0.062116 0.7052080.076450 0.006995 0.489243 0.448523 -0.309831 -0.021411 -0.003987 5.00 0.0 -0.321425 11660 19915 1.294875 -0.645847 0.689549 -0.351634 -1.026884 -0.129811 -0.928101 0.114172 0.8047170.020893 0.040297 0.159282 0.350705 -0.278351 -0.010354 -0.008003 10.00 0.0 -0.293618 11661 19915 1.404683 -0.554883 0.612239 -0.234956 -1.190992 -0.816824 -0.775771 -0.142637 1.1216380.303562 0.005661 0.313352 0.473813 -0.276618 -0.024026 0.002106 5.00 0.0 -0.321425 11662 19915 -0.945541 0.479754 1.521916 -1.298658 -0.852548 -0.604029 -0.354686 0.498106 0.407159 0.056031 -0.055584 0.312195 0.026299 -0.413466 0.189152 0.086360 10.00 0.0 -0.293618
	11663 19915 -0.087909 0.184093 1.683910 -0.837378 -0.682605 -0.669907 -0.056222 -0.120669 0.4096360.054760 -0.139329 0.333267 0.072695 -0.320292 0.006423 0.010148 10.00 0.0 -0.293618 11664 rows × 32 columns
	6. Split the dataset in train and test set and have a 70:30 split ratio for the model. X = df.drop(columns=['Class'])
	X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.30, random_state=42) 7. Now use a decision tree and random forest model for training on top of the train set.
In [207	<pre>Decision Tree dt = DecisionTreeClassifier() dt.fit(X_train,y_train)</pre>
Out[207]:	DecisionTreeClassifier()
In [209	<pre>dt_y_pred = dt.predict(X_test) dt_cf = confusion_matrix(y_test, dt_y_pred) dt_cf array([[3482, 2],</pre>
	<pre>dt_score = dt.score(X_test,y_test) dt_score</pre>
Out[210]:	Random Forest
In [211 Out[211]:	<pre>rf = RandomForestClassifier() rf.fit(X_train, y_train) v RandomForestClassifier RandomForestClassifier()</pre>
_	<pre>RandomForestClassifier() rf_y_pred = rf.predict(X_test) rf_cf = confusion_matrix(y_test, rf_y_pred)</pre>
Out[213]:	rf_cf array([[3483, 1],
Out[214]:	
≟ [∠15	print('Decision Tree score: ', dt_score) print ('Random Forest score: ', rf_score) Decision Tree score: 0.9988571428571429 Random Forest score: 0.9991428571428571 Observation: Random Forest model is slightly better
	Observation: Random Forest model is slightly better 10. Check the performance matrix of both models and compare which model is having the highest performance. Desirien Tree
In [216 Out[216]:	array([[3482, 2],
	<pre>[2, 14]], dtype=int64) print(classification_report(y_test, dt_y_pred)) precision recall f1-score support</pre>
	0.0 1.00 1.00 1.00 3484 1.0 0.88 0.88 0.88 16 accuracy 1.00 3500 macro avg 0.94 0.94 0.94 3500 weighted avg 1.00 1.00 1.00 3500
In [218	<pre>print('Accuracy: ', accuracy_score(y_test, dt_y_pred)) print('Precision: ', precision_score(y_test, dt_y_pred)) print('Recall: ', recall_score(y_test, dt_y_pred))</pre>
	<pre>print('Recall: ', recall_score(y_test, dt_y_pred)) print('F1 score: ', f1_score(y_test, dt_y_pred)) Accuracy: 0.9988571428571429 Precision: 0.875 Recall: 0.875 F1 score: 0.875</pre>
In [219	Random Forest
Out[219]:	array([[3483, 1],
	precision recall f1-score support 0.0
In [221	macro avg 0.97 0.94 0.95 3500 weighted avg 1.00 1.00 1.00 3500 print('Accuracy: ', accuracy_score(y_test, rf_y_pred))
	<pre>print('Precision: ', precision_score(y_test, rf_y_pred)) print('Recall: ', recall_score(y_test, rf_y_pred)) print('F1 score: ', f1_score(y_test, rf_y_pred)) Accuracy: 0.9991428571428571 Precision: 0.9333333333333333333333333333333333333</pre>
	Recall: 0.9333333333333333333333333333333333333
In []:	