эллипсоидов для задач оптимизации Параллельная реализация метода большой размерности

Безбородов В.А.

Научный руководитель, к.ф.-м.н., доцент Голодов В.А.

ФГБОУ ВПО ЮУрГУ

г. Челябинск

10 июня 2015 г.

Безбородов В.А. (ЭММиС, ВМИ-413) Параллельная реализация МЭ Челябинск, 10 июня 2015 г. 1 / 24

Содержание

- 1 Метод эллипсоидов
- Кратко об истории
 - Геометрия метода
 - Алгоритм метода
- 2 Ускорение матричных операций
- Параллельная обработка матриц
 - Достигнутое ускорение
- 3 Параллельная реализация МЭ
- Вычислительный эксперимент

 с = > < € > < € > < € > < € > € € > € € > € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €
 € €

произвольной точности; следующие задачи: обеспечения. операций; Задачи Челябинск, 10 июня 2015 г. 3 / 24 1. разработка параллельной реализации метода эллипсоидов, эллипсоидов для решения задачи оптимизации большой поддерживающей арифметику произвольной точности; использование полученной реализации метода Параллельная реализация МЭ Целями работы являются: Безбородов В.А. (ЭММиС, ВМИ-413) размерности. Цели 2

Метод эллипсоидов Геометрия

Содержание

Метод эллипсоидов

- Кратко об истории
 - Геометрия метода
 - Алгоритм метода
- Ускорение матричных операций
- Параллельная обработка матриц
 - Достигнутое ускорение
- 3 Параллельная реализация МЭ
- Вычислительный эксперимент

Безбородов В.А. (ЭММиС, ВМИ-413) Параллельная реализация МЭ Челябинск, 10 июня 2015 г. 7 / 24

Метод эллипсоидов Геометрия метода

1-ф эллипсоид и его свойства

Эллипсоид ε_n , содержащий полушар в E^n , имеет параметры

$$b=\left(lpha+rac{1}{lpha}
ight)rac{r}{2}, \quad h=\left(1-rac{1}{lpha^2}
ight)rac{r}{2},$$
 где $lpha=rac{b}{a}$ и r – радиус шара S_n .

Если пространство «растянуть» с коэффициентом α в направлении

полуоси a, то ε_n станет шаром в преобразованном пространстве.

Отношение объема эллипсоида ε_n к объему шара S_n равно

$$q(n) = \frac{vol(\varepsilon_n)}{vol(S_n)} = \frac{1}{\alpha} \left(\frac{b}{r}\right)^n = \frac{1}{\alpha} \left(\frac{1}{2} \left(\alpha + \frac{1}{\alpha}\right)\right)^n.$$

Безбородов В.А. (ЭММиС, ВМИ-413) Параллельная реализация МЭ Челябинск, 10 июня 2015 г. 8 / 24

Алгоритм

Выбрать $x_k:=x_0\in E^n$ и радиус R, такие что $||x_0-x^*||\leq R$. Положить $h_k=\frac{R}{n+1},\ B_k:=E$, где E – единичная матрица. Для перехода к (k+1)-й итерации выполнить:

- Шаг 1. Вычислить $g(x_k)$. Если $g(x_k) = 0$, то **ОСТАНОВ** $(x^* = x_k)$.
- Шаг 2. Вычислить очередную точку $x_{k+1} = x_k h_k B_k \xi_k$, где

$$\xi_k = \frac{B_k^T g(x_k)}{||B_k^T g(x_k)||}.$$

Шаг 3. Пересчитать шаг $h_{k+1} = h_k r$ и матрицу B_{k+1}

$$B_{k+1} = B_k + (\beta - 1)(B_k \xi_k) \xi_k^T, \quad \beta = \sqrt{\frac{n-1}{n+1}}.$$

Шаг 4. Перейти к (k+1)-й итерации с x_{k+1} , h_{k+1} и B_{k+1} .

Безбородов В.А. (ЭММиС, ВМИ-413) Параллельная реализация МЭ Челябинск, 10 июня 2015 г. 11 / 24

О сходимости метода эллипсоидов

Теорема (О скорости сходимости)

уменьшения объема эллипсоида, локализующего х*, есть Для всех итераций метода эллипсоидов коэффициент величина постоянная и равная

$$q(n) = \frac{vol(\varepsilon_{k+1})}{vol(\varepsilon_k)} = \frac{1}{\alpha} \left(\frac{1}{2} \left(\alpha + \frac{1}{\alpha} \right) \right)^n < 1, \quad k = 0, 1, 2, \dots$$

Оптимальный коэффициент растяжения пространства

$$\alpha = \sqrt{\frac{n+1}{n-1}} \Rightarrow q(n) = \sqrt{\frac{n-1}{n+1}} \left(\frac{n}{\sqrt{n^2-1}}\right)^n < 1.$$

Параллельная реализация МЭ Вычислительный эксперимент Пример 1

Задача минимизации

$$x_1^2 + (x_2 - 2)^2 \to \min.$$

Ограничения:

907

$$\begin{cases} x_1^2 + x_2^2 - 9; \\ x_1^2 + (x_2 - 4)^2 - 9. \end{cases}$$

$$x^* = \left(\begin{array}{c} 0.0000000011922745523\\ 2.00000000033459867651 \end{array}\right)$$

0 0

 χ^*

Оптимум

Расчет (точность – 9 знаков)

$$= \left(\begin{array}{c} 0.00000000011922745523\\ 2.00000000033459867651 \end{array}\right)$$

Параллельная реализация МЭ Челябинск, 10 июня 2015 г. 21 / 24

Безбородов В.А. (ЭММиС, ВМИ-413)

Пример 2

Параллельная реализация МЭ Вычислительный эксперимент

Задача большой размерности

for a configuration of
$$f_0 = \sum_{i=1}^n x_i^2 o \min$$
 .

Ограничения:

0 towordg

$$f_m = \sum_{i=1, i \neq m}^{n} x_i^2 + (x_m - \alpha/2)^2 - \alpha^2.$$

Ускорение при переходе

Для $n = 100, \ m = \overline{1,n}, \ \alpha =$ Решение найдено за 403

Решение найдено за
$$403$$
 от 1 потока к 2: $k_1 = 1.73$ итерации, точность — 9 знаков. от 1 потока к 8: $k_2 = 2.74$

Безбородов В.А. (ЭММиС, ВМИ-413) Параллельная реализация МЭ Челябинск, 10 июня 2015 г. 22 / 24

