CS180: Algorithms and Complexity

Professor: Raghu Meka (raghum@cs)

Plan for Today

Master theorem

Integer multiplication

Exponentiation

Methodology for comparing run-times

Methodology for comparing run-times

Given two functions $f, g : \mathbb{N} \to \mathbb{R}^+$

Methodology for comparing run-times Given two functions $f, g: \mathbb{N} \to \mathbb{R}^+$

```
f(n) = O(g(n)): iff there is a constant c>0 so that f(n) is eventually-always at most c g(n)
```

Methodology for comparing run-times Given two functions $f,g:\mathbb{N} \to \mathbb{R}^+$

f(n) = O(g(n)): iff there is a constant c>0 so that f(n) is eventually-always at most c g(n)

 $f(n) = \Omega(g(n))$: iff there is a constant c>0 so that f(n) is eventually-always at least c g(n)

Methodology for comparing run-times Given two functions $f,g:\mathbb{N}\to\mathbb{R}^+$

$$f(n) = O(g(n))$$
: iff there is a constant c>0 so that $f(n)$ is eventually-always at most c $g(n)$

 $f(n) = \Omega(g(n))$: iff there is a constant c>0 so that f(n) is eventually-always at least c g(n)

 $f(n) = \Theta(g(n))$: iff both hold - there are constants c_1 , $c_2 > 0$ so that eventually always $c_1g(n) < f(n) < c_2g(n)$

Methodology for comparing run-times

Methodology for comparing run-times

Given two functions $f, g: \mathbb{N} \to \mathbb{R}^+$

Methodology for comparing run-times Given two functions $f,g:\mathbb{N}\to\mathbb{R}^+$

f(n) = o(g(n)): f(n)/g(n) tends to 0 as n goes to infinity.

Methodology for comparing run-times Given two functions $f,g:\mathbb{N}\to\mathbb{R}^+$

f(n) = o(g(n)): f(n)/g(n) tends to 0 as n goes to infinity.

Methodology for comparing run-times Given two functions $f,g:\mathbb{N} \to \mathbb{R}^+$

f(n) = o(g(n)): f(n)/g(n) tends to 0 as n goes to infinity.

$$Ex : f(n) = n, g(n) = n^2.$$

Methodology for comparing run-times Given two functions $f,g:\mathbb{N}\to\mathbb{R}^+$

f(n) = o(g(n)): f(n)/g(n) tends to 0 as n goes to infinity.

$$Ex : f(n) = n, g(n) = n^2.$$
 $f = o(g).$

Methodology for comparing run-times Given two functions $f,g:\mathbb{N}\to\mathbb{R}^+$

f(n) = o(g(n)): f(n)/g(n) tends to 0 as n goes to infinity.

$$Ex : f(n) = n, g(n) = n^2.$$
 $f = o(g).$

$$Ex: f(n) = n^3, g(n) = n^{2.9}.$$

Methodology for comparing run-times Given two functions $f,g:\mathbb{N} \to \mathbb{R}^+$

f(n) = o(g(n)): f(n)/g(n) tends to 0 as n goes to infinity.

$$Ex : f(n) = n, g(n) = n^2.$$
 $f = o(g).$

$$Ex: f(n) = n^3, g(n) = n^{2.9}.$$
 $f = \omega(g).$

Divide-and-conquer paradigm

Divide-and-conquer.

- Divide problem into several subproblems.
- Solve each subproblem recursively.
- Combine solutions to subproblems into overall solution.

Last class:

- Example for Mergesort
- Recursion analysis for mergesort

Complexity of mergesort

Defn:T(n) = # Comparisons made by mergesort in worst-case on array with n elements.

Mergesort recurrence: T(1) = 1

Complexity of mergesort

Defn:T(n) = # Comparisons made by mergesort in worst-case on array with n elements.

Mergesort recurrence: T(1) = 1

$$T(n) = \underbrace{T(\lceil n/2 \rceil)}_{\text{solve left-half}} + \underbrace{T(\lfloor n/2 \rfloor)}_{\text{solve right-half}} + \underbrace{n}_{\text{merging}}$$

Complexity of mergesort

Defn:T(n) = # Comparisons made by mergesort in worst-case on array with n elements.

Mergesort recurrence: T(1) = 1

$$T(n) = \underbrace{T(\lceil n/2 \rceil)}_{\text{solve left-half}} + \underbrace{T(\lfloor n/2 \rfloor)}_{\text{solve right-half}} + \underbrace{n}_{\text{merging}}$$

Solution: O(n log n)

$$T(n) = \underbrace{T(\lceil n/2 \rceil)}_{\text{solve left-half}} + \underbrace{T(\lfloor n/2 \rfloor)}_{\text{solve right-half}} + \underbrace{n}_{\text{merging}}$$

$$T(n) = \underbrace{T(\lceil n/2 \rceil)}_{\text{solve left-half}} + \underbrace{T(\lfloor n/2 \rfloor)}_{\text{solve right-half}} + \underbrace{n}_{\text{merging}}$$

$$T(n) = \underbrace{T(\lceil n/2 \rceil)}_{\text{solve left-half}} + \underbrace{T(\lfloor n/2 \rfloor)}_{\text{solve right-half}} + \underbrace{n}_{\text{merging}}$$

$$T(n) = \underbrace{T(\lceil n/2 \rceil)}_{\text{solve left-half}} + \underbrace{T(\lfloor n/2 \rfloor)}_{\text{solve right-half}} + \underbrace{n}_{\text{merging}}$$

$$T(n) = \underbrace{T(\lceil n/2 \rceil)}_{\text{solve left-half}} + \underbrace{T(\lfloor n/2 \rfloor)}_{\text{solve right-half}} + \underbrace{n}_{\text{merging}}$$

$$T(n) = \underbrace{T(\lceil n/2 \rceil)}_{\text{solve left-half}} + \underbrace{T(\lfloor n/2 \rfloor)}_{\text{solve right-half}} + \underbrace{n}_{\text{merging}}$$

$$T(n) = \underbrace{T(\lceil n/2 \rceil)}_{\text{solve left-half}} + \underbrace{T(\lfloor n/2 \rfloor)}_{\text{solve right-half}} + \underbrace{n}_{\text{merging}}$$

$$T(n) = \underbrace{T(\lceil n/2 \rceil)}_{\text{solve left-half}} + \underbrace{T(\lfloor n/2 \rfloor)}_{\text{solve right-half}} + \underbrace{n}_{\text{merging}}$$

Goal: Solve common divide-and-conquer recurrences:

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

Goal: Solve common divide-and-conquer recurrences:

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

Terms.

Goal: Solve common divide-and-conquer recurrences:

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

Terms.

• $a \ge 1$ is the number of subproblems.

Goal: Solve common divide-and-conquer recurrences:

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

Terms.

- $a \ge 1$ is the number of subproblems.
- b > 0 is the factor by which subproblem size decreases.

Goal: Solve common divide-and-conquer recurrences:

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

Terms.

- $a \ge 1$ is the number of subproblems.
- b > 0 is the factor by which subproblem size decreases.
- f(n) = work to divide/merge subproblems.

Goal: Solve common divide-and-conquer recurrences:

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

Terms.

- $a \ge 1$ is the number of subproblems.
- b > 0 is the factor by which subproblem size decreases.
- f(n) = work to divide/merge subproblems.

Recursion tree.

Goal: Solve common divide-and-conquer recurrences:

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

Terms.

- $a \ge 1$ is the number of subproblems.
- b > 0 is the factor by which subproblem size decreases.
- f(n) = work to divide/merge subproblems.

Recursion tree.

• $t = \log_b n$ levels.

Goal: Solve common divide-and-conquer recurrences:

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

Terms.

- $a \ge 1$ is the number of subproblems.
- b > 0 is the factor by which subproblem size decreases.
- f(n) = work to divide/merge subproblems.

Recursion tree.

- $t = \log_b n$ levels.
- a^i = number of subproblems at level i.

Goal: Solve common divide-and-conquer recurrences:

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

Terms.

- $a \ge 1$ is the number of subproblems.
- b > 0 is the factor by which subproblem size decreases.
- f(n) = work to divide/merge subproblems.

Recursion tree.

- $t = \log_b n$ levels.
- a^i = number of subproblems at level i.
- n / b^i = size of subproblem at level i.

Example:
$$T(1) = 1$$
. $T(n) = 3$ $T(n/2) + n$. Then, $T(n) = \Theta(n^{\lg 3})$.

Example: T(1) = 1. T(n) = 3 T(n/2) + n. Then, $T(n) = \Theta(n^{\lg 3})$.

r = 3/2 > 1

$$r = 3/2 > 1$$
 $T(n) = (1 + r + r^2 + r^3 + \dots + r^{\log_2 n}) n$

$$r = 3/2 > 1$$
 $T(n) = (1 + r + r^2 + r^3 + \dots + r^{\log_2 n}) n = \frac{r^{1 + \log_2 n} - 1}{r - 1} n = 3n^{\log_2 3} - 2n$

Ex 2.
$$T(1) = 1$$
. $T(n) = 2 T(n/2) + n$. Then $T(n) = \Theta(n \log n)$.

Ex 2.
$$T(1) = 1$$
. $T(n) = 2 T(n/2) + n$. Then $T(n) = \Theta(n \log n)$.

Ex 2. T(1) = 1. T(n) = 2 T(n/2) + n. Then $T(n) = \Theta(n \log n)$.

r = 1

$$T(n) = (1 + r + r^{2} + r^{3} + ... + r^{\log_{2} n}) n$$

$$T(n/2) = (n/2)$$

$$2 (n/2)$$

$$1 (n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8)$$

$$2 (n/2)$$

$$1 (n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8)$$

$$2 (n/2)$$

$$1 (n/2)$$

$$2 (n/2)$$

$$2 (n/2)$$

$$2 (n/2)$$

$$2 (n/2)$$

$$2 (n/2)$$

$$1 (n/2)$$

$$2 (n/2)$$

$$1 (n/2)$$

$$2 (n/2)$$

$$2 (n/2)$$

$$1 (n/2)$$

$$2 (n/2)$$

$$1 (n/2)$$

$$2 (n/2)$$

$$1 (n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8)$$

$$1 (n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8)$$

$$1 (n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8)$$

$$1 (n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8)$$

$$1 (n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8)$$

$$1 (n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8)$$

$$1 (n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8)$$

$$1 (n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8)$$

$$1 (n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8)$$

$$1 (n/8) T(n/8) T$$

Case 3: Total cost dominated by cost at root

Ex 2.
$$T(1) = 1$$
. $T(n) = 3 T(n/4) + n^5$. Then $T(n) = \Theta(n^5)$.

Case 3: Total cost dominated by cost at root

Ex 2.
$$T(1) = 1$$
. $T(n) = 3$ $T(n/4) + n^5$. Then $T(n) = \Theta(n^5)$.

Case 3: Total cost dominated by cost at root

Ex 2. T(1) = 1. T(n) = 3 $T(n/4) + n^5$. Then $T(n) = \Theta(n^5)$.

Ex 2.
$$T(1) = 1$$
. $T(n) = 3$ $T(n/4) + n^5$. Then $T(n) = \Theta(n^5)$.

$$r = 3 / 4^5 < 1$$

Ex 2.
$$T(1) = 1$$
. $T(n) = 3$ $T(n/4) + n^5$. Then $T(n) = \Theta(n^5)$.

$$r = 3 / 4^5 < 1$$
 $n^5 \le T(n) = (1 + r + r^2 + r^3 + \dots) n^5 \le 1$

Ex 2.
$$T(1) = 1$$
. $T(n) = 3$ $T(n/4) + n^5$. Then $T(n) = \Theta(n^5)$.

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 (n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$). Let $k = \log_b a$.

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 (n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$). Let $k = \log_b a$.

If
$$f(n) = O(n^{k-\varepsilon})$$
 for some constant $\varepsilon > 0$,
then $T(n) = \Theta(n^k)$

Master theorem. Suppose that T(n) is a function on the nonnegative integers satisfying the recurrence

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 (n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$). Let $k = \log_b a$.

CASE 1: Master theorem

If
$$f(n) = O(n^{k-\varepsilon})$$
 for some constant $\varepsilon > 0$,
then $T(n) = \Theta(n^k)$

Example:
$$T(n) = 3 T(n/2) + n$$
.

Master theorem. Suppose that T(n) is a function on the nonnegative integers satisfying the recurrence

$$T(n) = a \ T\left(\frac{n}{b}\right) + f(n)$$
 (n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$). Let $k = \log_b a$.

CASE 1: Master theorem

If
$$f(n) = O(n^{k-\varepsilon})$$
 for some constant $\varepsilon > 0$,
then $T(n) = \Theta(n^k)$

Example:
$$T(n) = 3 T(n/2) + n$$
.

•
$$a = 3$$
, $b = 2$, $f(n) = n$, $k = \log_2 3$.

Master theorem. Suppose that T(n) is a function on the nonnegative integers satisfying the recurrence

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 (n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$). Let $k = \log_b a$.

CASE 1: Master theorem

If
$$f(n) = O(n^{k-\varepsilon})$$
 for some constant $\varepsilon > 0$,
then $T(n) = \Theta(n^k)$

Example:
$$T(n) = 3 T(n/2) + n$$
.

- a = 3, b = 2, f(n) = n, $k = \log_2 3$.
- $T(n) = \Theta(n^{\lg 3})$.

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 (n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$). Let $k = \log_b a$.

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 (n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$). Let $k = \log_b a$.

CASE 2: Master theorem

If
$$f(n) = O(n^k \log^p n)$$
, then
$$T(n) = \Theta(n^k \log^{p+1} n).$$

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 (n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$). Let $k = \log_b a$.

If
$$f(n) = O(n^k \log^p n)$$
, then
$$T(n) = \Theta(n^k \log^{p+1} n).$$

Example:
$$T(n) = 2T(n/2) + \Theta(n \log n)$$
.

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 (n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$). Let $k = \log_b a$.

If
$$f(n) = O(n^k \log^p n)$$
, then
$$T(n) = \Theta(n^k \log^{p+1} n).$$

Example:
$$T(n) = 2T(n/2) + \Theta(n \log n)$$
.
• $a = 2$, $b = 2$, $k = \log_2 2 = 1$, $p = 1$.

Master theorem. Suppose that T(n) is a function on the nonnegative integers satisfying the recurrence

$$T(n) = a \ T\left(\frac{n}{b}\right) + f(n)$$
 (n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$). Let $k = \log_b a$.

CASE 2: Master theorem

If
$$f(n) = O(n^k \log^p n)$$
, then
$$T(n) = \Theta(n^k \log^{p+1} n).$$

Example:
$$T(n) = 2T(n/2) + \Theta(n \log n)$$
.

- a = 2, b = 2, $k = \log_2 2 = 1$, p = 1.
- $T(n) = \Theta(n \log^2 n)$.

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 (n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$). Let $k = \log_b a$.

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 (n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$). Let $k = \log_b a$.

If
$$f(n) = O(n^{k+\varepsilon})$$
 for some constant $\varepsilon > 0$,
then $T(n) = \Theta(f(n))$

Master theorem. Suppose that T(n) is a function on the nonnegative integers satisfying the recurrence

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 (n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$). Let $k = \log_b a$.

CASE 3: Master theorem

If
$$f(n) = O(n^{k+\varepsilon})$$
 for some constant $\varepsilon > 0$,
then $T(n) = \Theta(f(n))$

Example:
$$T(n) = 3 T(n/4) + n^5$$
.

Master theorem. Suppose that T(n) is a function on the nonnegative integers satisfying the recurrence

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 (n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$). Let $k = \log_b a$.

CASE 3: Master theorem

If
$$f(n) = O(n^{k+\varepsilon})$$
 for some constant $\varepsilon > 0$,
then $T(n) = \Theta(f(n))$

Example:
$$T(n) = 3 T(n/4) + n^5$$
.
• $a = 3$, $b = 4$, $f(n) = n^5$, $k = \log_4 3$.

Master theorem. Suppose that T(n) is a function on the nonnegative integers satisfying the recurrence

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 (n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$). Let $k = \log_b a$.

CASE 3: Master theorem

If
$$f(n) = O(n^{k+\varepsilon})$$
 for some constant $\varepsilon > 0$,
then $T(n) = \Theta(f(n))$

Example:
$$T(n) = 3 T(n/4) + n^5$$
.

- a = 3, b = 4, $f(n) = n^5$, $k = \log_4 3$.
- $T(n) = \Theta(n^5)$.

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 (n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$). Let $k = \log_b a$.

Master theorem. Suppose that T(n) is a function on the nonnegative integers satisfying the recurrence

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$
 (n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$). Let $k = \log_b a$.

Case 1: If $f(n) = O(n^{k-\epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^k)$.

Case 2: If $f(n) = \Theta(n^k \log^p n)$, then $T(n) = \Theta(n^k \log^{p+1} n)$.

Case 3: If $f(n) = \Omega(n^{k+\varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(f(n))$.

Master theorem. Suppose that T(n) is a function on the nonnegative integers satisfying the recurrence

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

$$(n/b \text{ means either } \lfloor n/b \rfloor \text{ or } \lceil n/b \rceil). \text{ Let } k = \log_b a.$$

Case 1: If $f(n) = O(n^{k-\epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^k)$.

Case 2: If $f(n) = \Theta(n^k \log^p n)$, then $T(n) = \Theta(n^k \log^{p+1} n)$.

Case 3: If $f(n) = \Omega(n^{k+\epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(f(n))$.

Proof sketch: Recursion tree, case analysis.

Plan for Today

Master theorem

Integer multiplication

Exponentiation

Addition

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a + b) in binary format.

Addition

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a + b) in binary format.

Addition

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a + b) in binary format.

Addition

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a + b) in binary format.

Addition

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a + b) in binary format.

Addition

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a + b) in binary format.

Addition

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a + b) in binary format.

Addition

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a + b) in binary format.

Addition

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a + b) in binary format.

Addition

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a + b) in binary format.

Addition

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a + b) in binary format.

Addition

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a + b) in binary format.

Addition

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a + b) in binary format.

Addition

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a + b) in binary format.

Grade-school algorithm: O(n) operations.

Subtraction

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a - b) in binary format.

Subtraction

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a - b) in binary format.

Subtraction

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a - b) in binary format.

Subtraction

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a - b) in binary format.

Subtraction

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a - b) in binary format.

Subtraction

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a - b) in binary format.

Subtraction

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a - b) in binary format.

Subtraction

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a - b) in binary format.

Subtraction

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a - b) in binary format.

Subtraction

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a - b) in binary format.

Subtraction

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a - b) in binary format.

Subtraction

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a - b) in binary format.

Subtraction

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a - b) in binary format.

Subtraction

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a - b) in binary format.

Grade-school algorithm: O(n) operations.

Addition

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a + b) in binary format.

Subtraction

INPUT: Two n-bit numbers a, b in binary

OUTPUT: (a - b) in binary format.

Grade-school algorithms: $\Theta(n)$ operations. Asymptotically optimal.

Multiplication

INPUT: Two n-bit numbers a, b in binary

OUTPUT: $(a \times b)$ in binary format.

Multiplication

INPUT: Two n-bit numbers a, b in binary

OUTPUT: $(a \times b)$ in binary format.

Grade-school algorithm: $O(n^2)$ operations.

Multiplication

INPUT: Two n-bit numbers a, b in binary

OUTPUT: $(a \times b)$ in binary format.

Grade-school algorithm: $O(n^2)$ operations.

Conjecture [Kolmogorov 1952]: This is optimal!

Multiplication

INPUT: Two n-bit numbers a, b in binary

OUTPUT: $(a \times b)$ in binary format.

Grade-school algorithm: $O(n^2)$ operations.

Multiplication

INPUT: Two n-bit numbers a, b in binary

OUTPUT: $(a \times b)$ in binary format.

Grade-school algorithm: $O(n^2)$ operations.

Theorem [Karatsuba 1960]: Conjecture false!

- 1. Divide **x** and **y** into high and low-order bits
- 2. Multiply four (n/2)-bit integers recursively.

- 1. Divide **x** and **y** into high and low-order bits
- 2. Multiply four (n/2)-bit integers recursively.
- 3. Shift and add to obtain x*y.

- 1. Divide **x** and **y** into high and low-order bits
- 2. Multiply four (n/2)-bit integers recursively.
- 3. Shift and add to obtain x * y.

$$x = 2^{n/2}x_1 + x_0$$

- 1. Divide **x** and **y** into high and low-order bits
- 2. Multiply four (n/2)-bit integers recursively.
- 3. Shift and add to obtain x * y.

$$x = 2^{n/2}x_1 + x_0$$
$$y = 2^{n/2}y_1 + y_0$$

- 1. Divide **x** and **y** into high and low-order bits
- 2. Multiply four (n/2)-bit integers recursively.
- 3. Shift and add to obtain x * y.

$$x = 2^{n/2}x_1 + x_0$$

$$y = 2^{n/2}y_1 + y_0$$

$$x \cdot y = (2^{n/2}x_1 + x_0) \cdot (2^{n/2}y_1 + y_0)$$

- 1. Divide **x** and **y** into high and low-order bits
- 2. Multiply four (n/2)-bit integers recursively.
- 3. Shift and add to obtain x * y.

$$x = 2^{n/2}x_1 + x_0$$

$$y = 2^{n/2}y_1 + y_0$$

$$x \cdot y = (2^{n/2}x_1 + x_0) \cdot (2^{n/2}y_1 + y_0)$$

$$= 2^n(x_1 \cdot y_1) + 2^{n/2}((x_0 \cdot y_1) + (x_1 \cdot y_0)) + (x_0 \cdot y_0)$$

- 1. Divide **x** and **y** into high and low-order bits
- 2. Multiply four (n/2)-bit integers recursively.
- 3. Shift and add to obtain x * y.

$$x = 2^{n/2}x_1 + x_0$$

$$y = 2^{n/2}y_1 + y_0$$

$$x \cdot y = (2^{n/2}x_1 + x_0) \cdot (2^{n/2}y_1 + y_0)$$

$$= 2^n(x_1 \cdot y_1) + 2^{n/2}((x_0 \cdot y_1) + (x_1 \cdot y_0)) + (x_0 \cdot y_0)$$

Ex.
$$x = \underbrace{10001101}_{x1}$$
 $y = \underbrace{11100001}_{y1}$

Proposition. The divide-and-conquer multiplication algorithm requires $\Theta(n^2)$ bit operations to multiply two n-bit integers.

Proposition. The divide-and-conquer multiplication algorithm requires $\Theta(n^2)$ bit operations to multiply two n-bit integers.

$$T(n) = \underbrace{4T(\lceil n/2 \rceil)}_{\text{four recursive calls}} + \underbrace{O(n)}_{\text{three additions}}$$

Proposition. The divide-and-conquer multiplication algorithm requires $\Theta(n^2)$ bit operations to multiply two n-bit integers.

$$T(n) = \underbrace{4T(\lceil n/2 \rceil)}_{\text{four recursive calls}} + \underbrace{O(n)}_{\text{three additions}}$$

Pf. Apply first-case of the master theorem to the recurrence: a = 4, b = 2, f(n) = O(n).

Proposition. The divide-and-conquer multiplication algorithm requires $\Theta(n^2)$ bit operations to multiply two n-bit integers.

$$T(n) = \underbrace{4T(\lceil n/2 \rceil)}_{\text{four recursive calls}} + \underbrace{O(n)}_{\text{three additions}}$$

Pf. Apply first-case of the master theorem to the recurrence: a = 4, b = 2, f(n) = O(n).

Much ado about nothing??

- 1. Divide **x** and **y** into high and low-order bits
- 2. Multiply four (n/2)-bit integers recursively.
- 3. Shift and add to obtain x * y.

$$x = 2^{n/2}x_1 + x_0$$

$$y = 2^{n/2}y_1 + y_0$$

$$x \cdot y = (2^{n/2}x_1 + x_0) \cdot (2^{n/2}y_1 + y_0)$$

$$= 2^n(x_1 \cdot y_1) + 2^{n/2}((x_0 \cdot y_1) + (x_1 \cdot y_0)) + (x_0 \cdot y_0)$$

$$x = 2^{n/2}x_1 + x_0$$

$$y = 2^{n/2}y_1 + y_0$$

$$x \cdot y = (2^{n/2}x_1 + x_0) \cdot (2^{n/2}y_1 + y_0)$$

$$= 2^n(x_1 \cdot y_1) + 2^{n/2}((x_0 \cdot y_1) + (x_1 \cdot y_0)) + (x_0 \cdot y_0)$$

$$x = 2^{n/2}x_1 + x_0$$

$$y = 2^{n/2}y_1 + y_0$$

$$x \cdot y = (2^{n/2}x_1 + x_0) \cdot (2^{n/2}y_1 + y_0)$$

$$= 2^n(x_1 \cdot y_1) + 2^{n/2}((x_0 \cdot y_1) + (x_1 \cdot y_0)) + (x_0 \cdot y_0)$$

$$x = 2^{n/2}x_1 + x_0$$

$$y = 2^{n/2}y_1 + y_0$$

$$x \cdot y = (2^{n/2}x_1 + x_0) \cdot (2^{n/2}y_1 + y_0)$$

$$= 2^n(x_1 \cdot y_1) + 2^{n/2}((x_0 \cdot y_1) + (x_1 \cdot y_0)) + (x_0 \cdot y_0)$$

$$t_1 = x_1 y_1, \quad t_0 = x_0 y_0, \quad t_{10} = (x_1 + x_0) \cdot (y_1 + y_0)$$

$$x = 2^{n/2}x_1 + x_0$$

$$y = 2^{n/2}y_1 + y_0$$

$$x \cdot y = (2^{n/2}x_1 + x_0) \cdot (2^{n/2}y_1 + y_0)$$

$$= 2^n(x_1 \cdot y_1) + 2^{n/2}((x_0 \cdot y_1) + (x_1 \cdot y_0)) + (x_0 \cdot y_0)$$

$$t_1 = x_1 y_1, \quad t_0 = x_0 y_0, \quad t_{10} = (x_1 + x_0) \cdot (y_1 + y_0)$$

 $x_0 y_1 + x_1 y_0 = (x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0$

$$x = 2^{n/2}x_1 + x_0$$

$$y = 2^{n/2}y_1 + y_0$$

$$x \cdot y = (2^{n/2}x_1 + x_0) \cdot (2^{n/2}y_1 + y_0)$$

$$= 2^n(x_1 \cdot y_1) + 2^{n/2}((x_0 \cdot y_1) + (x_1 \cdot y_0)) + (x_0 \cdot y_0)$$

$$t_1 = x_1 y_1, t_0 = x_0 y_0, t_{10} = (x_1 + x_0) \cdot (y_1 + y_0)$$

 $x_0 y_1 + x_1 y_0 = (x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0$
 $= t_{10} - t_1 - t_0$

$$x = 2^{n/2}x_1 + x_0$$

$$y = 2^{n/2}y_1 + y_0$$

$$x \cdot y = (2^{n/2}x_1 + x_0) \cdot (2^{n/2}y_1 + y_0)$$

$$= 2^n(x_1 \cdot y_1) + 2^{n/2}((x_0 \cdot y_1) + (x_1 \cdot y_0)) + (x_0 \cdot y_0)$$

$$t_1 = x_1 y_1, \quad t_0 = x_0 y_0, \quad t_{10} = (x_1 + x_0) \cdot (y_1 + y_0)$$

 $x_0 y_1 + x_1 y_0 = (x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0$
 $= t_{10} - t_1 - t_0$

All four multiplications, for only three multiplications!

- 1. If(n=1): Return $x \times y$.
- 2. Else:
 - (a) $m = \lceil n/2 \rceil$. Set $x = 2^m x_1 + x_0$.
 - (b) Set $y = 2^m y_1 + y_0$.

KARATSUBA-MULTIPLY(x, y, n)

1. If(n=1): Return $x \times y$.

number of bits

- 2. Else:
 - (a) $m = \lceil n/2 \rceil$. Set $x = 2^m x_1 + x_0$.
 - (b) Set $y = 2^m y_1 + y_0$.

KARATSUBA-MULTIPLY(x, y, n)

1. If(n=1): Return $x \times y$.

Left-half of x

- 2. Else:
 - (a) $m = \lceil n/2 \rceil$. Set $x = 2^m x_1 + x_0$.
 - (b) Set $y = 2^m y_1 + y_0$.

KARATSUBA-MULTIPLY(x, y, n)

- 1. If(n=1): Return $x \times y$.
- 2. Else:

(a)
$$m = \lceil n/2 \rceil$$
. Set $x = 2^m x_1 + x_0$.

(b) Set
$$y = 2^m y_1 + y_0$$
.

Right-half of x

- 1. If(n=1): Return $x \times y$.
- 2. Else:
 - (a) $m = \lceil n/2 \rceil$. Set $x = 2^m x_1 + x_0$.
 - (b) Set $y = 2^m y_1 + y_0$.
 - (c) $t_1 = \text{KARATSUBA-MULTIPLY}(x_1, y_1, m)$.

- 1. If(n=1): Return $x \times y$.
- 2. Else:
 - (a) $m = \lceil n/2 \rceil$. Set $x = 2^m x_1 + x_0$.
 - (b) Set $y = 2^m y_1 + y_0$.
 - (c) $t_1 = \text{KARATSUBA-MULTIPLY}(x_1, y_1, m)$.
 - (d) $t_0 = \text{KARATSUBA-MULTIPLY}(x_0, y_0, m)$.

- 1. If(n=1): Return $x \times y$.
- 2. Else:
 - (a) $m = \lceil n/2 \rceil$. Set $x = 2^m x_1 + x_0$.
 - (b) Set $y = 2^m y_1 + y_0$.
 - (c) $t_1 = \text{KARATSUBA-MULTIPLY}(x_1, y_1, m)$.
 - (d) $t_0 = \text{KARATSUBA-MULTIPLY}(x_0, y_0, m)$.
 - (e) $t_{10} = \text{KARATSUBA-MULTIPLY}(x_1 + x_0, y_1 + y_0, m).$

- 1. If(n=1): Return $x \times y$.
- 2. Else:
 - (a) $m = \lceil n/2 \rceil$. Set $x = 2^m x_1 + x_0$.
 - (b) Set $y = 2^m y_1 + y_0$.
 - (c) $t_1 = \text{KARATSUBA-MULTIPLY}(x_1, y_1, m)$.
 - (d) $t_0 = \text{KARATSUBA-MULTIPLY}(x_0, y_0, m)$.
 - (e) $t_{10} = \text{KARATSUBA-MULTIPLY}(x_1 + x_0, y_1 + y_0, m).$
 - (f) RETURN $2^{2m}t_1 + 2^m(t_{10} t_1 t_0) + t_0$

Proposition. Karatsuba's algorithm requires $O(n^{1.585})$ bit operations to multiply two n-bit integers.

Proposition. Karatsuba's algorithm requires $O(n^{1.585})$ bit operations to multiply two n-bit integers.

$$T(n) = \underbrace{3T(\lceil n/2 \rceil)}_{\text{four recursive calls}} + \underbrace{O(n)}_{\text{9 adds/substractions}}$$

Proposition. Karatsuba's algorithm requires $O(n^{1.585})$ bit operations to multiply two n-bit integers.

$$T(n) = \underbrace{3T(\lceil n/2 \rceil)}_{\text{four recursive calls}} + \underbrace{O(n)}_{\text{9 adds/substractions}}$$

Pf. Apply first-case of the master theorem to the recurrence: a = 3, b = 2, f(n) = O(n).

Proposition. Karatsuba's algorithm requires $O(n^{1.585})$ bit operations to multiply two n-bit integers.

$$T(n) = \underbrace{3T(\lceil n/2 \rceil)}_{\text{four recursive calls}} + \underbrace{O(n)}_{\text{9 adds/substractions}}$$

Pf. Apply first-case of the master theorem to the recurrence: a = 3, b = 2, f(n) = O(n).

Practice. Faster than grade-school algorithm for about 320-640 bits.

 n^2 grows much quicker than $n^{1.585}$!

year	algorithm	order of growth
?	brute force	$\Theta(n^2)$
1962	Karatsuba-Ofman	$\Theta(n^{1.585})$

year	algorithm	order of growth
?	brute force	$\Theta(n^2)$
1962	Karatsuba-Ofman	$\Theta(n^{1.585})$
1963	Toom-3, Toom-4	$\Theta(n^{1.465}), \ \Theta(n^{1.404})$

year	algorithm	order of growth
?	brute force	$\Theta(n^2)$
1962	Karatsuba-Ofman	$\Theta(n^{1.585})$
1963	Toom-3, Toom-4	$\Theta(n^{1.465}), \ \Theta(n^{1.404})$
1966	Toom-Cook	$\Theta(n^{1+\varepsilon})$

year	algorithm	order of growth
?	brute force	$\Theta(n^2)$
1962	Karatsuba-Ofman	$\Theta(n^{1.585})$
1963	Toom-3, Toom-4	$\Theta(n^{1.465}), \ \Theta(n^{1.404})$
1966	Toom-Cook	$\Theta(n^{1+\varepsilon})$
1971	Schönhage-Strassen	$\Theta(n \log n \log \log n)$

year	algorithm	order of growth
?	brute force	$\Theta(n^2)$
1962	Karatsuba-Ofman	$\Theta(n^{1.585})$
1963	Toom-3, Toom-4	$\Theta(n^{1.465}), \ \Theta(n^{1.404})$
1966	Toom-Cook	$\Theta(n^{1+\varepsilon})$
1971	Schönhage-Strassen	$\Theta(n \log n \log \log n)$
2007	Fürer	$n \log n 2^{O(\log^* n)}$

History of integer multiplication

year	algorithm	order of growth
?	brute force	$\Theta(n^2)$
1962	Karatsuba-Ofman	$\Theta(n^{1.585})$
1963	Toom-3, Toom-4	$\Theta(n^{1.465}), \ \Theta(n^{1.404})$
1966	Toom-Cook	$\Theta(n^{1+\varepsilon})$
1971	Schönhage-Strassen	$\Theta(n \log n \log \log n)$
2007	Fürer	$n \log n 2^{O(\log^* n)}$
?	?	$\Theta(n \log n)$

History of integer multiplication

year	algorithm	order of growth
?	brute force	$\Theta(n^2)$
1962	Karatsuba-Ofman	$\Theta(n^{1.585})$
1963	Toom-3, Toom-4	$\Theta(n^{1.465}), \ \Theta(n^{1.404})$
1966	Toom-Cook	$\Theta(n^{1+\varepsilon})$
1971	Schönhage-Strassen	$\Theta(n \log n \log \log n)$
2007	Fürer	$n \log n 2^{O(\log^* n)}$
?	?	$\Theta(n \log n)$

GNU Multiple Precision Library uses one of five different algorithm depending on size of operands.

History of integer multiplication

year	algorithm	order of growth
?	brute force	$\Theta(n^2)$
1962	Karatsuba-Ofman	$\Theta(n^{1.585})$
1963	Toom-3, Toom-4	$\Theta(n^{1.465}), \ \Theta(n^{1.404})$
1966	Toom-Cook	$\Theta(n^{1+\varepsilon})$
1971	Schönhage-Strassen	$\Theta(n \log n \log \log n)$
2007	Fürer	$n \log n 2^{O(\log^* n)}$
?	?	$\Theta(n \log n)$

GNU Multiple Precision Library uses one of five different algorithm depending on size of operands.

Used in maple, mathematica, matlab, crypto, ...

Plan for Today

Master theorem

Integer multiplication

Exponentiation

Plan for Today

Master theorem

Integer multiplication

Exponentiation: Very useful in number theory, Cryptography

Exponentiation

INPUT: Given two numbers a, n

OUTPUT: an in binary format.

Example: a = 11(3), n = 10. 1110011010101001

Absolutely critical in cryptography.

Exponentiation

INPUT: Given two numbers a, n

OUTPUT: aⁿ in binary format.

NAIVE-EXPONENTIATE(a,n)

Exponentiation

INPUT: Given two numbers a, n

OUTPUT: an in binary format.

NAIVE-EXPONENTIATE(a,n)

- 1. Set A = 1.
- 2. For i = 1 : n, Set $A = a \cdot A$.
- 3. Return A.

Exponentiation

INPUT: Given two numbers a, n

OUTPUT: an in binary format.

NAIVE-EXPONENTIATE(a,n)

- 1. Set A = 1.
- 2. For i = 1 : n, Set $A = a \cdot A$.
- 3. Return A.

Exponentiation

INPUT: Given two numbers a, n

OUTPUT: an in binary format.

NAIVE-EXPONENTIATE(a,n)

- 1. Set A = 1.
- 2. For i = 1 : n, Set $A = a \cdot A$.
- 3. Return A.

Exponentiation

INPUT: Given two numbers a, n

OUTPUT: an in binary format.

NAIVE-EXPONENTIATE(a,n)

- 1. Set A = 1.
- 2. For i = 1 : n, Set $A = a \cdot A$.
- 3. Return A.

What is the running-time? Let us specialize to a = 3.

Exponentiation

INPUT: Given n

OUTPUT: 3ⁿ in binary format.

Exponentiation

INPUT: Given n

OUTPUT: 3ⁿ in binary format.

```
n=1:3^1=11
```

n=2: 3² = 1001

n=3: 3³ = 11011

 $n=4: 3^4 = 1010001$

n=5: 3⁵ = 11110011

n=6: 3⁶ = ...

Exponentiation

INPUT: Given n

OUTPUT: 3ⁿ in binary format.

NAIVE-EXPONENTIATE (3,N)

- 1. Set $A_0 = 1$.
- 2. For i = 1 : n, Set $A_i = 3 \cdot A_{i-1}$.
- 3. Return A_n .

Exponentiation

INPUT: Given n

OUTPUT: 3ⁿ in binary format.

Naive-Exponentiate(3,N)

- 1. Set $A_0 = 1$. O(1)
- 2. For i = 1 : n, Set $A_i = 3 \cdot A_{i-1}$.
- 3. Return A_n .

Exponentiation

INPUT: Given n

OUTPUT: 3ⁿ in binary format.

NAIVE-EXPONENTIATE (3,N)

Time in i'th iteration?

- 1. Set $A_0 = 1$. 2. For i = 1 : n, Set $A_i = 3 \cdot A_{i-1}$.
- 3. Return A_n .

Exponentiation

INPUT: Given n

OUTPUT: 3ⁿ in binary format.

Naive-Exponentiate(3,N)

1. Set $A_0 = 1$.

- $O(\# bits in A_{i-1})$
- 2. For i = 1 : n, SET $A_i = 3 \cdot A_{i-1}$.
- 3. Return A_n .

Exponentiation

INPUT: Given n

OUTPUT: 3ⁿ in binary format.

Naive-Exponentiate(3,N)

1. Set $A_0 = 1$.

- $O(\# bits in A_{i-1})$ = O(i).
- 2. For i = 1 : n, SET $A_i = 3 \cdot A_{i-1}$.
- 3. Return A_n .

Running time =
$$O(1) + O(1 + 2 + \cdots + n)$$

= $O(1) + O(n(n+1)/2)$
= $O(n^2)$.

NAIVE-EXPONENTIATE (3,N)

- $O(\# bits in A_{i-1})$
- 1. SET $A_0 = 1$. 2. FOR i = 1: n, SET $A_i = 3 \cdot A_{i-1}$.
- 3. Return A_n .

Running time =
$$O(1) + O(1 + 2 + \cdots + n)$$

= $O(1) + O(n(n+1)/2)$
= $O(n^2)$.

Proposition: Naive-Exponentiate runs in $O(n^2)$ time.

NAIVE-EXPONENTIATE(3,N)

- 1. Set $A_0 = 1$.
- 2. For i = 1 : n, SET $A_i = 3 \cdot A_{i-1}$.
- 3. Return A_n .

Running time =
$$O(1) + O(1 + 2 + \cdots + n)$$

= $O(1) + O(n(n+1)/2)$
= $O(n^2)$.

Proposition: Naive-Exponentiate runs in $O(n^2)$ time.

Can we do better?

Naive-Exponentiate(3,N)

- 1. Set $A_0 = 1$.
- 2. For i = 1:n,SET $A_i = 3 \cdot A_{i-1}$. 3. RETURN A_n .

Running time =
$$O(1) + O(1 + 2 + \cdots + n)$$

= $O(1) + O(n(n+1)/2)$
= $O(n^2)$.

Proposition: Naive-Exponentiate runs in $O(n^2)$ time.

Can we do better?

YES WE CAN!

Exponentiation

INPUT: Given n

OUTPUT: 3ⁿ in binary format.

Recursive view of algorithm:

NAIVE-EXPONENTIATE(3,N)

- 1. If n = 1, Return 3.
- 2. Else $A_{n-1} = \text{Naive-Exponentiate}(3, \text{N-1})$ Return $3 \cdot A_{n-1}$.

Exponentiation

INPUT: Given n

OUTPUT: 3ⁿ in binary format.

Recursive view of algorithm:

NAIVE-EXPONENTIATE(3,N)

- 1. If n = 1, Return 3. Not dividing enough!
- 2. ELSE $A_{n-1} = \text{NAIVE-EXPONENTIATE}(3, \text{N-1})$ RETURN $3 \cdot A_{n-1}$.

Divide and conquer algorithm:

- 1. If n = 1, Return 3.
- 2. Else

Divide and conquer algorithm:

- 1. If n = 1, Return 3.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponentiate}(3, |n/2|)$.
 - (b) Set $A_r = \text{Exponentiate}(3, \lceil n/2 \rceil)$.

Divide and conquer algorithm:

- 1. If n = 1, Return 3.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponentiate}(3, |n/2|)$.
 - (b) Set $A_r = \text{Exponentiate}(3, \lceil n/2 \rceil)$.
 - (c) Return $A_{\ell} \cdot A_r$.

Divide and conquer algorithm:

- 1. If n = 1, Return 3.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponentiate}(3, \lfloor n/2 \rfloor)$.
 - (b) Set $A_r = \text{Exponen}$ How to multiply?
 - (c) Return $A_{\ell} \cdot A_r$.

Divide and conquer algorithm:

- 1. If n = 1, Return 3.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponentiate}(3, \lfloor n/2 \rfloor)$.
 - (b) Set $A_r = \text{Exponentiate}(3, \lceil n/2 \rceil)$.
 - (c) RETURN KARATSUBA-MULTIPLY (A_{ℓ}, A_r) .

Divide and conquer algorithm:

EXPONENTIATE(3,N)

- 1. If n = 1, Return 3.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponentiate}(3, \lfloor n/2 \rfloor)$.
 - (b) Set $A_r = \text{Exponentiate}(3, \lceil n/2 \rceil)$.
 - (c) RETURN KARATSUBA-MULTIPLY (A_{ℓ}, A_r) .

Divide and conquer algorithm:

Exponentiate(3,N)

- 1. If n = 1, Return 3.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponentiate}(3, \lfloor n/2 \rfloor)$.
 - (b) Set $A_r = \text{Exponentiate}(3, \lceil n/2 \rceil)$.
 - (c) RETURN KARATSUBA-MULTIPLY (A_{ℓ}, A_r) .

Is this the best or can we do better?

Divide and conquer algorithm:

EXPONENTIATE(3,N)

- 1. If n = 1, Return 3.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponntiate}(3, \lfloor n/2 \rfloor)$.
 - (b) Set $A_r = \text{Exponentiate}(3, \lceil n/2 \rceil)$.
 - (c) RETURN KARATSUBA-MULTIPLY (A_{ℓ}, A_r) .

Do you really

need two calls?

Is this the best or can we do better?

Divide and conquer algorithm:

EXPONENTIATE(3,N)

- 1. If n = 1, Return 3.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponntiate}(3, \lfloor n/2 \rfloor)$.
 - (b) Set $A_r = \text{Exponentiate}(3, \lceil n/2 \rceil)$.
 - (c) RETURN KARATSUBA-MULTIPLY (A_{ℓ}, A_r) .

Is this the best or can we do better?

Ex: If n even? NO!

Divide and conquer algorithm:

EXPONENTIATE(3,N)

- 1. If n = 1, Return 3.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponntiate}(3, \lfloor n/2 \rfloor)$.
 - (b) Set $A_r = \text{Exponentiate}(3, \lceil n/2 \rceil)$.
 - (c) RETURN KARATSUBA-MULTIPLY (A_{ℓ}, A_r) .

Is this the best or can we do better?

Ex: If n even? NO!

If n odd? No!

Divide and conquer algorithm:

FAST-EXPONENTIATE (3,N)

- 1. If n = 1, Return 3.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponentiate}(3, \lfloor n/2 \rfloor)$.
 - (b) If n Even

(c)

Divide and conquer algorithm:

FAST-EXPONENTIATE (3,N)

- 1. If n = 1, Return 3.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponentiate}(3, \lfloor n/2 \rfloor)$.
 - (b) If n Even Return Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
 - (c) If n Odd

Divide and conquer algorithm:

FAST-EXPONENTIATE (3,N)

- 1. If n = 1, Return 3.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponentiate}(3, \lfloor n/2 \rfloor)$.
 - (b) If n Even Return Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
 - (c) If n Odd Return 3·Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .

T(n) = Time taken on input n.

FAST-EXPONENTIATE (3,N)

- 1. If n = 1, Return 3.
- 2. Else

0(1)

- (a) Set $A_{\ell} = \text{Exponentiate}(3, \lfloor n/2 \rfloor)$.
- (b) If n Even Return Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
- (c) If n Odd Return 3·Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .

$$T(n) = O(1) +$$

FAST-EXPONENTIATE (3,N)

- 1. If n = 1, Return 3.
- 2. Else

T(n/2)

- (a) Set $A_{\ell} = \text{Exponentiate}(3, \lfloor n/2 \rfloor)$.
- (b) If n Even Return Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
- (c) If n Odd Return 3·Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .

$$T(n) = O(1) + T(n/2) +$$

FAST-EXPONENTIATE (3,N)

- 1. If n = 1, Return 3.
- 2. Else

$$O((\# \text{ bits in } A_{\ell})^{(\log_2 3)})$$

- (a) Set $A_{\ell} = \text{Exponentiate} /, \lfloor n/2 \rfloor$).
- (b) If n Even Return Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
- (c) If n Odd Return 3-Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .

$$T(n) = O(1) + T(n/2) +$$

FAST-EXPONENTIATE (3,N)

- 1. If n = 1, Return 3.
- 2. Else

$$O(n^{(\log_2 3)})$$

- (a) Set $A_{\ell} = \text{Exponentiate} /, \lfloor n/2 \rfloor$).
- (b) If n Even Return Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
- (c) If n Odd Return 3-Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .

$$T(n) = O(1) + T(n/2) + O(n^{\log_2 3}) + O(n^{\log_2 3}) + O(n^{\log_2 3})$$

FAST-EXPONENTIATE (3,N)

- 1. If n = 1, Return 3.
- 2. Else

O(n)

- (a) Set $A_{\ell} = \text{Expon} / \text{ATIATE}(3, \lfloor n/2 \rfloor)$.
- (b) If n Even

 RETURN KAPATSUBA-MULTIPLY (A_{ℓ}, A_{ℓ}) .
- (c) If n Odd //
 Return 3·Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .

$$T(n) = O(1) + T(n/2) + O(n^{\log_2 3}) + O(n)$$

FAST-EXPONENTIATE (3,N)

- 1. If n = 1, Return 3.
- 2. Else

- O(n)
- (a) Set $A_{\ell} = \text{Expon} / \text{ATIATE}(3, \lfloor n/2 \rfloor)$.
- (b) If n Even Return Kapatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
- (c) If n Odd //
 Return 3·Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .

$$T(n) = T(n/2) + O(n^{\log_2 3})$$

FAST-EXPONENTIATE (3,N)

- 1. If n = 1, Return 3.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponentiate}(3, \lfloor n/2 \rfloor)$.
 - (b) If n Even Return Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
 - (c) If n Odd Return 3·Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .

$$T(n) = T(n/2) + O(n^{\log_2 3})$$

Proposition: Fast-Exponentiate runs in $O(n^{1.585})$ time.

FAST-EXPONENTIATE(3,N)

- 1. If n = 1, Return 3.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponentiate}(3, |n/2|)$.
 - (b) If n Even Return Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
 - (c) If n Odd Return 3-Karatsuba-Multiply (A_ℓ,A_ℓ) .

$$T(n) = T(n/2) + O(n^{\log_2 3})$$

Proposition: Fast-Exponentiate runs in $O(n^{1.585})$ time.

Proof: Apply Master theorem,

FAST-EXPONENTIATE(3,N)

- 1. If n = 1, Return 3.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponentiate}(3, |n/2|)$.
 - (b) If n Even Return Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
 - (c) If n Odd Return $3 \cdot \text{Karatsuba-Multiply}(A_{\ell}, A_{\ell})$.

$$T(n) = T(n/2) + O(n^{\log_2 3})$$

Proposition: Fast-Exponentiate runs in $O(n^{1.585})$ time.

Proof: Apply Master theorem, case 3 to T. $a = 1, b = 2, f(n) = O(n^{1.585}).$ Big improvement over quadratic!

Fast-Exponentiate(3,N)

- 1. If n = 1, Return 3.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponentiate}(3, \lfloor n/2 \rfloor)$.
 - (b) If n Even Return Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
 - (c) If n Odd Return $3 \cdot \text{Karatsuba-Multiply}(A_{\ell}, A_{\ell})$.

Summary for today

Integer multiplication

Fast exponentiation

Summary for today

Integer multiplication

Fast exponentiation

When in doubt, Divide it up!

General case?

Exponentiation

INPUT: Given two numbers a, n

OUTPUT: an in binary format.

Example: a = 101011, n = 10?

Absolutely critical in cryptography.

General case?

Exponentiation

INPUT: Given two numbers a, n

OUTPUT: an in binary format.

Example: a = 101011, n = 10?

Absolutely critical in cryptography.

Same algorithm!

Divide and conquer algorithm:

Fast-Exponentiate(a, n)

- 1. If n = 1, Return a.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponentiate}(a, |n/2|)$.
 - (b) If n Even RETURN KARATSUBA-MULTIPLY (A_{ℓ}, A_{ℓ}) .
 - (c) If n Odd Return $a \cdot \text{Karatsuba-Multiply}(A_{\ell}, A_{\ell})$.

$$T(n) = Run-time on n.$$

 $m = \# bits in a.$

Fast-Exponentiate(a, n)

- 1. If n = 1, Return a.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponentiate}(a, |n/2|)$.
 - (b) If n Even RETURN KARATSUBA-MULTIPLY (A_{ℓ}, A_{ℓ}) .
 - (c) If n Odd Return a·Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .

$$T(n) = Run-time on n.$$

 $m = \# bits in a.$

FAST-EXPONENTIATE(a, n)

- 1. If n = 1, Return a.
- 2. Else

O(1)

- (a) Set $A_{\ell} = \text{Exponentiate}(a, \lfloor n/2 \rfloor)$.
- (b) If n Even RETURN KARATSUBA-MULTIPLY (A_{ℓ}, A_{ℓ}) .
- (c) If n Odd Return $a \cdot \text{Karatsuba-Multiply}(A_{\ell}, A_{\ell})$.

$$T(n) = O(1) +$$

FAST-EXPONENTIATE(a, n)

- 1. If n = 1, Return a.
- 2. Else

T(n/2)

- (a) Set $A_{\ell} = \text{Exponentiate}(a, |n/2|)$.
- (b) If n Even RETURN KARATSUBA-MULTIPLY (A_{ℓ}, A_{ℓ}) .
- (c) If n Odd Return $a \cdot \text{Karatsuba-Multiply}(A_{\ell}, A_{\ell})$.

$$T(n) = O(1) + T(n/2) +$$

Fast-Exponentiate(a, n)

- 1. If n = 1, Return a.
- 2. Else

 $O((\# \text{ bits in } A_{\ell})^{(\log_2 3)})$

- (a) Set $A_{\ell} = \text{Exponentiate} \left[, \lfloor n/2 \rfloor \right]$.
- (b) If n Even Return Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
- (c) If n Odd Return $a \cdot \text{Karatsuba-Multiply}(A_{\ell}, A_{\ell})$.

$$T(n) = O(1) + T(n/2) +$$

Fast-Exponentiate(a, n)

1. If n = 1, Return a.

bits < (# bits in a)·n

 $O((\# \text{ bits in } A_{\ell})^{(\log_2 3)})$

- (a) Set $A_{\ell} = \text{Exponentiate} (n/2)$.
- (b) If n Even Return Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
- (c) If n Odd Return $a \cdot \text{Karatsuba-Multiply}(A_{\ell}, A_{\ell})$.

$$T(n) = O(1) + T(n/2) +$$

Fast-Exponentiate(a, n)

1. If n = 1, Return a.

bits < m*n

 $O((\# \text{ bits in } A_{\ell})^{(\log_2 3)})$

- (a) Set $A_{\ell} = \text{Exponentiate} \langle , \lfloor n/2 \rfloor \rangle$.
- (b) If n Even Return Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
- (c) If n Odd Return $a \cdot \text{Karatsuba-Multiply}(A_{\ell}, A_{\ell})$.

$$T(n) = O(1) + T(n/2) +$$

Fast-Exponentiate(a, n)

- 1. If n = 1, Return a.
- 2. Else

$$O((mn)^{(\log_2 3)})$$

- (a) Set $A_{\ell} = \text{Exponentiate} /, \lfloor n/2 \rfloor$).
- (b) If n Even Return Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
- (c) If n Odd Return $a \cdot \text{Karatsuba-Multiply}(A_{\ell}, A_{\ell})$.

$$T(n) = O(1) + T(n/2) + O((mn)^{\log_2 3})$$

Fast-Exponentiate(a, n)

- 1. If n = 1, Return a.
- 2. Else

$$O((mn)^{(\log_2 3)})$$

- (a) Set $A_{\ell} = \text{Expon}$ Atlate(a, |n/2|).
- (b) If n Even Return Kayatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
- (c) If n Odd /Return $a \cdot \text{Karatsuba-Multiply}(A_{\ell}, A_{\ell})$.

$$T(n) = O(1) + T(n/2) + O((mn)^{\log_2 3})$$

FAST-EXPONENTIATE(a, n)

- 1. If n = 1, Return a.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponentiate}(a, \lfloor n/2 \rfloor)$.
 - (b) If n Even Return Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
 - (c) If n Odd Return $a \cdot \text{Karatsuba-Multiply}(A_{\ell}, A_{\ell})$.

$$T(n) = T(n/2) + O((mn)^{\log_2 3})$$

Proposition: Fast-Exponentiate runs in $O((mn)^{1.585})$ time.

FAST-EXPONENTIATE(a, n)

- 1. If n = 1, Return a.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponentiate}(a, \lfloor n/2 \rfloor)$.
 - (b) If n Even Return Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
 - (c) If n Odd Return a·Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .

$$T(n) = T(n/2) + O((mn)^{\log_2 3})$$

Proposition: Fast-Exponentiate runs in $O((mn)^{1.585})$ time.

Proof: Apply Master theorem,

Fast-Exponentiate(a, n)

- 1. If n = 1, Return a.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponentiate}(a, \lfloor n/2 \rfloor)$.
 - (b) If n Even Return Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
 - (c) If n Odd Return a·Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .

$$T(n) = T(n/2) + O((mn)^{\log_2 3})$$

Proposition: Fast-Exponentiate runs in $O((mn)^{1.585})$ time.

Proof: Apply Master theorem, case 3 to T. $a = 1, b = 2, f(n) = O((mn)^{1.585}).$ Big improvement over quadratic!

Fast-Exponentiate(a, n)

- 1. If n = 1, Return a.
- 2. Else
 - (a) Set $A_{\ell} = \text{Exponentiate}(a, \lfloor n/2 \rfloor)$.
 - (b) If n Even Return Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .
 - (c) If n Odd Return a·Karatsuba-Multiply (A_{ℓ}, A_{ℓ}) .