Math 623, Fall 2013: Problem set 2

- 1. Show that a countable union of set of exterior measure 0 has exterior measure 0 using directly the definition of exterior measure. In particular any countable set has measure 0, e.g. the rational numbers in [0,1].
- 2. Let $\{E_n\}_{n=1}^{\infty}$ be a countable collection of measurable subsets of \mathbf{R}^n . We define

$$\limsup_{n \to \infty} E_n = \left\{ x \in \mathbf{R}^d \, ; \, x \in E_n \text{ for infinitely many } n \right\}$$

$$\liminf_{n \to \infty} E_n = \left\{ x \in \mathbf{R}^d \, ; \, x \in E_n \text{ for all but finitely many } n \right\}.$$

(a) Show that

$$\limsup_{n \to \infty} E_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k, \quad \text{and } \liminf_{n \to \infty} E_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} E_k.$$

(b) Show that

$$m\left(\liminf_{n\to\infty} E_n\right) \leq \liminf_{n\to\infty} m\left(E_n\right)$$

 $\limsup_{n\to\infty} m\left(E_n\right) \leq m\left(\limsup_{n\to\infty} E_n\right) \quad \text{provided } m\left(\bigcup_{n=1}^{\infty} E_j\right) < \infty.$ (1)

- (c) Exercise 16, p.42. (Borel-Cantelli Lemma).
- 3. Suppose that A is a measurable set in \mathbf{R}^d with m(A) > 0. Show that for any q < m(A) there exist a measurable set $B \subset A$ with m(B) = q. Hint: Prove it first for the case that $m(A) = p < \infty$. Use then the intermediate value theorem for $A \cap B_R(0)$.
- 4. Exercise 28, p.43
- 5. Exercise 32, p.43
- 6. Exercise 33, p.43