Cvičení 2: Funkce

Skládání fcí

Určete $f \circ f \circ f \circ f$ pro

(a)
$$f(x) = 2x + 1$$
,

Pokuste se napsat vzorec pro $i \in \mathbb{N}$ složených fcí f.

(a)

$$f \circ f = 2(2x+1) + 1 = 4x + 3,$$

$$f \circ f \circ f = 4(2x+1) + 3 = 8x + 7,$$

$$f \circ f \circ f \circ f = 16x + 15,$$

(b) $f(x) = \frac{1}{1-x}$.

neboli obecné složení dá

$$\underbrace{f \circ f \circ \dots \circ f \circ f}_{i-\text{krát}} = 2^{i}x + \sum_{k=0}^{i-1} 2^{i}.$$

(b)

$$f\circ f=\frac{1}{1-\frac{1}{1-x}}=\frac{x-1}{x},$$

$$f\circ f\circ f=\frac{\frac{1}{1-x}-1}{\frac{1}{1-x}}=x,$$

$$f\circ f\circ f\circ f=\frac{1}{1-x}.$$

Takže je vidět, že po složení 4 f dostaneme opět f. Skládání je tedy 4-periodické.

Spočetnost množin

Pomocí konstrukce bijektivního zobrazení z/do N ukažte, že následující množiny jsou spočetné

- $(a) \mathbb{Z},$
- (b) $\mathbb{N} \times \mathbb{N}$,
- $(c) \mathbb{Q}$
- (d) $\underbrace{\mathbb{N} \times \cdots \times \mathbb{N}}_{n\text{-krát}}$.

Budeme konstruovat zobrazení $f: \mathbb{N} \to M$, kde M jsou zadané množiny

(a) Stačí přiřadit f(1) = 0 a pak pro každou dvojici vzít spodní celou část z poloviny daného čísla a jednu zobrazit na kladné čáslo a druhou na záporné, tedy např.

$$f(n) = \begin{cases} 0 & n = 0, \\ \left\lfloor \frac{n}{2} \right\rfloor & n \text{ sudé}, \\ -\left\lfloor \frac{n}{2} \right\rfloor & n \text{ liché}. \end{cases}$$

(b) Když si nakreslíme $\mathbb{N} \times \mathbb{N}$, tak dostaneme vlastně uzly čtverečkové sítě ve 2D. Chceme najít pravidlo, jakým projít všechny body. Jeden nápad může být fixovat jednu souřadnici a postupovat v druhé, ale to bychom se nikdy z oné zafixované souřadnice nedostali a měli bychom zobrazení $\mathbb{N} \to \mathbb{N} \times \{1\}$. Co ale funguje, je udělat "hada", který se bude postupně "po diagonálách" pohybovat na ty souřadnice, jejichž součet je vyšší.

- (c) Podobně jako v předchozím případě, opět se budeme snažit udělat "hada", ale tentokrát je třeba chytře navrhnout síť. Přirozené je udělat síť tak, že v uzlech budou čísla $\frac{m}{n}$, přičemž podél jedné osy poroste m a podél druhé n. Taková síť obsahuje všechna racionální čísla.
- (d) Zobrazení jde buď konstruovat iterativně s n, nebo jde udělat had vícedimenzionální.

Obrázek 1: Konstrukce pro důkaz spočetnosti racionálních čísel.

Monotonie

Rozhodněte o monotonii následujících posloupností

- (a) $\left\{n^2 + (-1)^n\right\}_{n=1}^{\infty}$, (b) $\left\{\frac{1}{1+n}\right\}_{n=1}^{\infty}$, (c) $\left\{\frac{n+2}{n+1}\right\}_{n=1}^{\infty}$, (d) $\left\{\frac{n+1}{\sqrt{n^2+2n-2}}\right\}_{n=1}^{\infty}$, (e) $\left\{\sin(n)\right\}_{n=1}^{\infty}$.
- (a) První člen je striktně rostoucí, druhý osciluje mezi ± 1 . Jako součet by tak mohli oscilovat, nicméně druhý člen je omezený jedničkou. Stačí se tak soustředit na ty n, pro která by rozdíl 1 mohl způsobit narušení monotonie. Když si vypíšeme první tři členy dostáváme $a_1 = 0, a_2 = 5, a_3 = 8$. Je vidět, že dál nemůže druhý člen narušit monotonii prvního a posloupnost je tedy monotónní.
- (b) Odečtením dvou po sobě následujících členů dostáváme

$$\frac{1}{1+n}-\frac{1}{2+n}=\frac{-1}{n^2+3n+2}<0,$$

tedy jde o klesající posloupnost.

(c) Opět by šlo odčítat, nicméně elegantnější způsob je upravit

$$a_n = \frac{n+2}{n+1} = 1 + \frac{1}{n+1}.$$

Jak jsme určili býše je druhý člen klesající a tedy i celá posloupnost je klesající.

Obrázek 2: Fce řešící úlohu 5 c).

(d) Upravme

$$a_n = \frac{n+1}{\sqrt{n^2+2n-2}} = \sqrt{\frac{n^2+2n+1}{n^2+2n-2}} = \sqrt{1+\frac{3}{n^2+2n-2}}.$$

Výraz pod odmocninou je tedy klesající (dalo by se ukázat obdobně jako výše) a protože $\sqrt{\cdot}$ je monotónní, je i zkoumaná posloupnost klesající.

(e) Tato posloupnost není monotónní, jelikož je to jen diskrétní verze $\sin(x)$.

Konstrukce funkce

Zkonstruujte funkce $f:\mathbb{N}\to\mathbb{N}$ s následujícími vlastnostmi

- (a) f je prostá, ale není na,
- (b) f je na, ale není prostá,
- (c) f je na a každý prvek v obrazu má nekonečně mnoho vzorů.
- (a) Uvažujme např. f(n) = 2n. Ta je prostá, protože pro žádnou různou dvojici přirozených čísel nedostaneme stejný obraz. Nicméně není na, protože např. 3 není obraz žádného přirozeného čísla.
- (b) Např. $f(n) = \lfloor \frac{n}{2} \rfloor$ má tyto vlastnosti¹, protože např. pro 2 a 3 dostaneme f(2) = f(3) = 1, ale je na, protože libovolné $m \in \mathbb{N}$ dostaneme jako obraz n = 2m.
- (c) Tady si člověk asi může nejvíc vyhrát, ale jedna možnost je uvažovat "nekonečně se zvětšující zuby" (viz Obrázek 1)

$$f(n) = 1 + n - 2^{\lfloor \log_2(n) \rfloor},$$

které zařídí, že pro každou mocninu 2 dostaneme f(n) = 1. Je vidět, že je funkce na a každý obraz má nekonečně mnoho vzorů.

 $^{^1\}lfloor \cdot \rfloor$ značí spodní celou část.

Min/Max/Sup/Inf fcí

Pro následující funkce najděte jejich minima, maxima, suprema a infima následujících množin

(a) $\{1|n\in\mathbb{N}\},$

(d) $\{\cos(x)|x \in \mathbb{R}_0^+ = [0,\infty)\},\$

(b) $\{\sin(\frac{\pi}{2}n)|n\in\mathbb{N}\},\$

(e) $\left\{ \frac{x}{1+x} | x \in \mathbb{R}_0^+ = [0, \infty) \right\}$,

(c) $\{\sin(n)|n\in\mathbb{N}\},\$

- (f) $\left\{ \frac{1}{x-1} | x \in \mathbb{R}_0^+ = [0, \infty) \right\}$.
- (a) Pro $M = \{1 | n \in \mathbb{N}\}$ je jasné, že $\min(M) = \max(M) = 1$. Protože tyto existují, jsou rovny supremu a infimu.
- (b) Zde díky periodičnosti platí $\{\sin(\pi n)|n\in\mathbb{N}\}=\{0,1,-1\}$. Odtud už jasně vidíme maximum i minimum, které jsou rovné supremu a infimu.
- (c) Jak víme, π není racionální číslo, tedy nejde napsat jako $n=k\pi$. Naproti tomu jde ale udělat libovolně dobrá aproximace π pomocí takového racionálního čísla².

Zaměřme se na horní odhady, spodní uděláme stejně.

• Maximum množiny neexistuje. Pro spor předpokládejme, že $a \in M$ je takové maximum. Pro příslušný úhel $\varphi \in \mathbb{Q}, a = \sin(\varphi)$ definujme jeho vzdálenost od π , tedy $\delta = |\pi - \varphi| > 0$. Uvažujme nyní okolí π velikosti $\frac{\delta}{2}$. V něm bude existovat nějaké racionální číslo ψ , které nutně leží blíž k π než φ a tedy

$$\sin(\psi) > \sin(\varphi) = a,$$

což je spor s tím, že a je maximum množiny.

• Supremum je nejmenší horní odhad množiny. Protože hodnity $\sin(n) \leq 1$, tak je jasné, že $\sup(M) \leq 1$, protože je to nejmenší z horních odhadů. Zkusme uvažovat $\sup(M) = 1 - \epsilon$ pro nějaké $\epsilon > 0$. Potom okamžitě narazíme na spor, protože tím vlastně tvrdíme, že

$$\forall a \in M : a = \sin(\phi) < 1 - \epsilon.$$

Zaměřme se na hraniční ϕ , tedy³

$$\sin(\phi) = 1 - \epsilon.$$

Tedy v M nejsou členy příslušející úhlům z $|\phi - \pi|$ -okolí π . To je ale spor, protože racionální aproximace může být libovolně přesná (viz footnote).

(d) Jde vlastně o obor hodnot, který je pro $\cos(x)$ roven H = [-1, 1]. Protože se krajních hodnot nabývá, jsou si maximum, resp. minimum a supremum, resp. infimum rovny.

$$\sup(M) = \max(M) = 1,$$

$$\inf(M) = \min(M) = -1.$$

(e) Fce $f(x) = \frac{x}{1+x}$ je na \mathbb{R}^+_0 rostoucí, což je vidět z $f(x) = 1 - \frac{1}{1+x}$. Odtud tedy plyne, že extrémy budou na okrajích intervalu. Pro minimum máme f(0) = 0 a protože se nabývá, je to i infimum. S maximem je situace složitější. Z druhého zápisu je vidět, že f(x) < 1, $\forall x \in \mathbb{R}^+_0$. Čísla v intervalu $[1, \infty)$ tak jsou horní závory. Nejmenší z nich je $\sup(f(x)) = 1$. Maximum tato funkce nemá. Ukážeme to tak, že budeme předpokládat, že existuje maximum $m \leq \sup(f(x)) = 1$. Je jasné, že $m \neq 1$, protože f nenabývá hodnoty 1 pro žádné x. Máme tedy m < 1, což nastane pro

$$m = \frac{x_m}{x_m + 1} \Leftrightarrow x_m = -1 + \frac{1}{1 - m}.$$

²To plyne z faktu, že racionální čísla jsou tkz. hustá v reálných. Tedy v libovolně malém okolí libovolného reálného čísla jde najít číslo racionální.

³To nemusí být nutně ani racionální číslo.

Nicméně pro $x_m + 1$ dostáváme

$$f(x_m+1) = \frac{x_m+1}{x_m+2} = \frac{\frac{1}{1-m}}{\frac{1}{1-m}+1} = \frac{1}{2-m} > m,$$

protože poslední nerovnost říká (pro $m \lesssim 1$, kde nás to zajímá) $m^2 - 2m + 1 = (m-1)^2 > 0$, což je pravda. To je ale spor s tím, že m je maximum. Maximum tedy neexistuje.

(f) Tato funkce je hyperbola posunutá do x=1, která diverguje. Nemá tak ani maximum, ani minimum (důkaz by probíhal podobně jako v (b)). Nemá ani supremum/infimum, protože v $\mathbb R$ nemáme číslo, které by bylo větší než všechna ostatní čísla. Skutečně, pokud by m mělo být takové číslo, tak okamžitě dostaneme spor, protože 2m>m (podobně infimum). Proto se zavádí tkz. rozšířená reálná čísla $\overline{\mathbb R}=\mathbb R\cup\{\pm\infty\}$, ve kterých už jde supremum a infimum najít a jsou to právě nekonečna. V rozšířených reálných číslech supremum, resp. infimum existuje vždy.