4.2.1,3,5,6,7,8,9,10,12,15

Exercise 4.2.1: Finish the proof of Proposition 4.2.7.

Proposition 4.2.7. *Let* I *be an interval and let* $f: I \to \mathbb{R}$ *be a differentiable function.*

- (i) f is increasing if and only if $f'(x) \ge 0$ for all $x \in I$.
- (ii) f is decreasing if and only if $f'(x) \leq 0$ for all $x \in I$.

(ii)
$$\Rightarrow$$
 Assume $f(x) \leq 0 \ \forall x \in \mathbb{I}$. WLOG, take $x, y \in \mathbb{I}$
S.t. $X \leq y$. Since $(x_1 y) \leq (x_1 y)$

Exercise **4.2.3**: Suppose $f: \mathbb{R} \to \mathbb{R}$ is a differentiable function such that f' is a bounded function. Prove that f is a Lipschitz continuous function.

f' is bounded, so JMER s.t. VXER

If (x) [EM. Take any [a, b] = R,

f is continuous on [a,b] and

differentiable on (a,b), by MVT,

I CE (a,b) s.t. f(b)-f(a) = f'(c) (b-a)

If (b)-f(a) | < M (b-a) V a, b < R

So f is Cipschitz continuous

Exercise 4.2.5: Suppose $f: \mathbb{R} \to \mathbb{R}$ is a function such that $|f(x) - f(y)| \le |x - y|^2$ for all x and y. Show that f(x) = C for some constant C. Hint: Show that f is differentiable at all points and compute the derivative.

Exercise **4.2.6**: Finish the proof of Proposition 4.2.8. That is, suppose I is an interval and $f: I \to \mathbb{R}$ is a differentiable function such that f'(x) > 0 for all $x \in I$. Show that f is strictly increasing.

Exercise 4.2.7: Suppose $f:(a,b) \to \mathbb{R}$ is a differentiable function such that $f'(x) \neq 0$ for all $x \in (a,b)$. Suppose there exists a point $c \in (a,b)$ such that f'(c) > 0. Prove f'(x) > 0 for all $x \in (a,b)$.

Exercise 4.2.8: Suppose $f:(a,b) \to \mathbb{R}$ and $g:(a,b) \to \mathbb{R}$ are differentiable functions such that f'(x) = g'(x) for all $x \in (a,b)$, then show that there exists a constant C such that f(x) = g(x) + C.

Exercise 4.2.9: Prove the following version of L'Hôpital's rule. Suppose $f:(a,b) \to \mathbb{R}$ and $g:(a,b) \to \mathbb{R}$ are differentiable functions and $c \in (a,b)$. Suppose that f(c) = 0, g(c) = 0, $g'(x) \neq 0$ when $x \neq c$, and that the limit of f'(x)/g'(x) as x goes to c exists. Show that

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

Compare to Exercise 4.1.15. Note: Before you do anything else, prove that $g(x) \neq 0$ when $x \neq c$.

Exercise 4.2.10: Let $f:(a,b) \to \mathbb{R}$ be an unbounded differentiable function. Show $f':(a,b) \to \mathbb{R}$ is unbounded.

4.2.5.
$$|f(x)-f(y)| \le |x-y|^2$$

$$-|x-y| \le \frac{f(x)-f(y)}{x-y} \le |x-y|$$
Since $\lim_{x\to y} -|x-y| = \lim_{x\to y} |x-y| = 0$,

$$-0 \le \lim_{x\to y} \frac{f(x)-f(y)}{x-y} \le 0$$
Therefore, $f'(x) = 0 \quad \forall x$, which means
$$f(x) = 0 \quad \forall x \text{ for some costant } C \in \mathbb{R}$$

4.2.6 Assume $f'(x) > 0 \forall x \in I$, $w \log$, take $x, y \in I$ s.t. $x \in y$. Since $(x, y) \in I$, by MVT, $\exists C \in (x, y)$ s.t. $f(y) - f(x) = f'(c) \cdot (y - x)$ Since f'(c) > 0, y - x > 0, f(y) - f(x) > 0 $f(y) > f(x) \forall (x, y) \in I$, $x \in y$ So $f(y) > f(x) \forall (x, y) \in I$, $x \in y$

4.2.7 Since f(x) to Y x E (a,b), Either f'(x) < 0 or f'(x) > 0 $\forall x \in (a,b)$ Assume Ide (a,b) s.f. f(d) < 0. Given that 2c E(a,b) s.t. f(c)>0. Since f: (a/b) -> R is differentiable, f': (a,b) > R is continuous f': (d,c) -> R is continuous. By IVT, $\exists x \in (d, c)$ s.t. f'(x) = 0Contradiction. Therefore, &x G(q,b), neither f'(x) < 0 or f'(x) = 0

which means f((x) >0 & x \in (a,b).

4.2.8 Define $h:(a,b) \rightarrow \mathbb{R}$ by h(x):=f(x)-g(x), so h'(x)=f'(x)-g'(x)Since f'(x)=g'(x) $\forall x \in (a,b)$, h'(x)=0 $\forall x \in (a,b)$. Therefore, $\exists C \ s.t. \ h(x)=C \ \forall x \in (a,b)$ Which means there exists a constant $C \ s.t. \ f(x)=g(x)+C, \forall x \in (a,b)$ 4.2.9. $g'(x) \neq 0$ $\forall x \neq C$, and $g:(g,b) \Rightarrow R$ is continuous since $g:(a,b) \Rightarrow R$ is differentiable So $\forall x \geq C$, g'(x) can't have jump discontinuity from $g'(x) \geq 0$ to $g'(x) \geq 0$ or from g'(x) < 0 to $g'(x) \geq 0$. So either $g'(x) \geq 0$ or $g'(x) \leq 0$ $\forall x \geq C$. So $g(x) \neq 0$ $\forall x \geq C$. Similarly, $g(x) \neq 0$ $\forall x \leq C$. So $g(x) \neq 0$ $\forall x \neq C$.

 $\forall x \supset C$, since f and g are continuous on (C, X) and differentiable on (C, X), by mut, $\exists k \in (C, X)$ s.f. $\frac{f'(E)}{g'(k)} = \frac{f(x) - f(c)}{g(x) - g(c)} = \frac{f(x)}{g(x)}$ So $\lim_{x \to c} \frac{f'(x)}{g'(x)} = \lim_{x \to c} \frac{f(x)}{g(x)} \quad \forall x \supset C$. Similarly, $\lim_{x \to c} \frac{f'(x)}{g'(x)} = \lim_{x \to c} \frac{f(x)}{g(x)} \quad \forall x < C$

4.2.10 fis unbounded UMER 2XCR s.t. |f(x)|>M(ake any [a, b] CR, by MVT, $\exists c \in (a,b) \text{ s.t. } f(b) - f(a) = f'(c) (b-a)$ Assume f' is bounded, |f'(c)| < N $|f(b)-f(a)| \leq W(b-a)$, Howeven this is impossible because tack, 7 b ∈ R s,t. |f(b)-f(a) | > N (b-a) Contradiction. Therefore, f is unbounded.

4.2.12. f(x) = ax+b $f'(x) = a \quad \forall x \in \mathbb{R}$ So $f(x_1) - f(x_2) = a(x_1 - x_2) \quad \forall x_1, x_2 \in \mathbb{R}$ It always holds when $x_1 = x_2$, so when $x_2 = 0$, $f(x_1) - b = a \cdot x_1$ $f(x_1) = ax_1 + b \quad \forall x \in \mathbb{R}$ So $f(x) = ax + b \quad \forall x \in \mathbb{R}$

Exercise 4.2.15: Prove Theorem 4.2.5.

Theorem 4.2.5 (Cauchy's mean value theorem). Let $f:[a,b] \to \mathbb{R}$ and $\varphi:[a,b] \to \mathbb{R}$ be continuous functions differentiable on (a,b). Then there exists a point $c \in (a,b)$ such that

$$(f(b) - f(a))\varphi'(c) = f'(c)(\varphi(b) - \varphi(a)).$$

4.2.15. Define
$$g: (a,b) \to \mathbb{R}$$
 by $g(x) := f(x) - f(b) - \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} (\varphi(x) - \varphi(b))$
 $g: differentiable on (a,b), continuous on [a,b], and $g(a) = 0$, $g(b) = 0$. By Polle's theorem, $\exists (e(a,b)) s.f. g'(c) = 0$, which gives $g'(c) = f'(c) - \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} \varphi'(c) = 0$
 $f'(c) = \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} \varphi'(c)$
 $(f Cb) - f(a)) \varphi'(c) = f'(c) (\varphi(b) - \varphi(a))$$