Very Busy Expressions

- Un'espressione è very busy in un punto p se, indipendentemente dal percorso preso da p, l'espressione viene usata prima che uno dei suoi operandi venga definito.
- Un'espressione a+b è very busy in un punto p se a+b è valutata in tutti i percorsi da p a EXIT e non c'è una definizione di a o b lungo tali percorsi
 - Ci interessa l'insieme di espressioni disponibili (available) all'inizio del blocco B
 - L'insieme dipende dai percorsi che cominciano al punto p prima di B

Framework			
Domain Insieme delle espressioni: {b-a,a-b}			
Direction	Backward: $In[b] = f_b [Out[b]]$ $Out[b] = \cap In [Suc[b]]$		
Transfer function	$f_b(x) = Gen_b \cup (Out_b - Kill_b)$		
Meet Operator	n		
Boundary Condition	In[exit] = ∅		
Initial interior points	In[B] = <i>u</i>		

ВВ	ITERAZIONE 1			
	IN [B]	OUT [B]		
BB1	b-a	b-a		
BB2	b-a	(b-a,a-b) ∩ b-a = b-a		
ввз	b-a ∪ (a-b \ ∅)= (b-a,a-b)	a-b		
BB4	a-b ∪ (∅ \ ∅) = a-b	Ø		
BB5	b-a ∪ (∅ \ ∅) = b-a	Ø		
вв6	∅ U ((a-b) \ (a-b,b-a)) = ∅	a-b		
ВВ7	a-b	Ø		
BB8	Ø	Ø		

Dominator Analysis

- In un CFG diciamo che un nodo X domina un altro nodo Y se il nodo X appare in ogni percorso del grafo che porta dal blocco ENTRY al blocco Y
- Annotiamo ogni basic block Bi con un insieme DOM[Bi]
 - Bi ∈ DOM[Bj] se e solo se Bi domina Bj
- Per definizione un nodo domina sé stesso
 - $Bi \in DOM[Bi]$

DOM	[4]	= 1	Δ	C	, F	ļ
DOM			Δ	,	, E	5

Framework				
Domain	Insieme dei Basic Blocs: {A,B,C,D,E,F,G}			
Direction	Forward: $ln[b] = \cap Out [Pred[b]]$ $Out[b] = f_b [ln[b]]$			
Transfer function	f _b = Gen _b ∪ In _b			
Meet Operator	Λ			
Boundary Condition	Out[A] = A			
Initial interior points	Out[b] = u			

ВВ	ITERAZIONE 1			
	IN [B]	OUT [B]		
Α	Ø	A		
В	A	B ∪ In[B] = B,A		
С	A	C ∪ In[C] = C,A		
D	C,A	D ∪ In[D] = D,C,A		
E	C,A	E ∪ In[E] = E,C,A		
F	$Out[D] \cap Out[E] = C,A$	F ∪ In[F] = F,C,A		
G	$Out[B] \cap Out[F] = A$	G ∪ In[G] = G,A		

Constant Propagation

- L'obiettivo della constant propagation è quello di determinare in quali punti del programma le variabili hanno un valore costante.
- L'informazione da calcolare per ogni nodo *n* del CFG è un insieme di *coppie* del tipo *<variabile*, *valore costante>*.
- Se abbiamo la coppia <x, c> al nodo n, significa che x è garantito avere il valore c ogni volta che n viene raggiunto durante l'esecuzione del programma.

Framework				
Domain coppie del tipo <variabile, costa<="" th="" valore=""></variabile,>				
Direction	Forward: In[b] = ∩ Out [Pred[b]] Out[b] = f _b [In[b]]			
Transfer function	$f_b = Gen_b \cup (In_b - Kill_b)$			
Meet Operator	n			
Boundary Condition	Out[entry] = ∅			
Initial interior points	Out[b] = <i>u</i>			

ВВ	ITERAZIONE 1		ITERAZIONE 2	
	IN [B]	OUT [B]	IN [B]	OUT [B]
entry	Ø	Ø	Ø	Ø
k=2	Ø	<k,2></k,2>	Ø	<k,2></k,2>
if	<k,2></k,2>	<k,2></k,2>	<k,2></k,2>	<k,2></k,2>
a=k+2	<k,2></k,2>	<k,2>,<a,4></a,4></k,2>	<k,2></k,2>	<k,2>,<a,4></a,4></k,2>
x=5	<k,2>,<a,4></a,4></k,2>	<k,2>,<a,4>,<x, 5></x, </a,4></k,2>	<k,2>,<a,4></a,4></k,2>	<k,2>,<a,4>,<x, 5></x, </a,4></k,2>
a=k*2	<k,2></k,2>	<k,2>,<a,4></a,4></k,2>	<k,2></k,2>	<k,2>,<a,4></a,4></k,2>

x=8	<k,2>,<a,4></a,4></k,2>	<k,2>,<a,4>,<x, 8></x, </a,4></k,2>	<k,2>,<a,4></a,4></k,2>	<k,2>,<a,4>,<x, 8></x, </a,4></k,2>
k=a	<pre><k,2>,<a,4>,<x, 8=""> \(\) <k,2>,<a,4>,<x, 5=""> = <k,2>,<a,4></a,4></k,2></x,></a,4></k,2></x,></a,4></k,2></pre>	<a,4></a,4>	<pre><k,2>,<a,4>,<x, 8=""> \(\) <k,2>,<a,4>,<x, 5=""> = <k,2>,<a,4></a,4></k,2></x,></a,4></k,2></x,></a,4></k,2></pre>	<a,4></a,4>
while	<a,4></a,4>	<a,4></a,4>	<a,4>,<b,2>,<y, 8> ∩ <a,4> = <a,4></a,4></a,4></y, </b,2></a,4>	<a,4></a,4>
b=2	<a,4></a,4>	<a,4>,<b,2></b,2></a,4>	<a,4></a,4>	<a,4>,<b,2></b,2></a,4>
x=a+k	<a,4>,<b,2></b,2></a,4>	<a,4>,<b,2></b,2></a,4>	<a,4>,<b,2></b,2></a,4>	<a,4>,<b,2></b,2></a,4>
y=a*b	<a,4>,<b,2></b,2></a,4>	<a,4>,<b,2>,<y, 8></y, </b,2></a,4>	<a,4>,<b,2></b,2></a,4>	<a,4>,<b,2>,<y, 8></y, </b,2></a,4>
k++	<a,4>,<b,2>,<y, 8></y, </b,2></a,4>	<a,4>,<b,2>,<y, 8></y, </b,2></a,4>	<a,4>,<b,2>,<y, 8></y, </b,2></a,4>	<a,4>,<b,2>,<y, 8></y, </b,2></a,4>
print(a+x)	<a,4></a,4>	<a,4></a,4>	<a,4></a,4>	<a,4></a,4>
exit	<a,4></a,4>	<a,4></a,4>	<a,4></a,4>	<a,4></a,4>