USTC 2021

Examen du?? 2021

Les résultats du cours ou des exercices vus en travaux dirigés peuvent être utilisés en donnant des références précises. Les parties sont indépendantes.

Exercice I

On rappelle qu'un \mathbb{Z} -module M est dit de torsion si pour tout $m \in M$, il existe $a \in \mathbb{Z}$ non nul tel que $a \cdot m = 0$.

- 1. Montrer que si M est un \mathbb{Z} -module de torsion, alors $M \otimes_{\mathbb{Z}} \mathbb{Q} = \{0\}$.
- 2. On suppose que M est un \mathbb{Z} -module de type fini tel que $M \otimes_{\mathbb{Z}} \mathbb{Q} = \{0\}$. Montrer que M est de torsion.

Exercice II

On rappelle que par définition un module simple est non nul.

- 1. Quels sont les \mathbb{Z} -modules simples?
- 2. Montrer que le \mathbb{Z} -module \mathbb{Z} n'admet aucun sous-module simple.
- 3. Montrer que le \mathbb{Z} -module \mathbb{Q} n'admet aucun sous-module simple ni aucun quotient simple.

Exercice III

Soit k un corps et soit k[T] l'anneau des polynômes à une indéterminée à coefficient dans k.

- 1. Montrer que l'ensemble $\mathcal{A} = \{P \in k[T] \mid P'(0) = 0\}$ est une sous-k-algèbre de k[T].
- 2. Montrer que le morphisme de k-algèbres

$$\psi: k[X,Y] \to k[T], \quad X \mapsto T^2, Y \mapsto T^3$$

a pour image A. En déduire que A est noethérien.

- 3. Montrer que $X^3 Y^2$ est irréductible dans k[X, Y].
- 4. Montrer que le noyau de ψ est l'idéal $I=(X^3-Y^2)$. (Pour montrer que ker $\psi\subset I$, on pourra se placer dans k(X)[Y], où k(X) est le corps des fractions rationnelles en X et utiliser les propriétés de cet anneau de polynômes). En déduire qu'on a un isomorphisme canonique de k-algèbres :

$$k[X,Y]/(X^3-Y^2) \simeq \mathcal{A}.$$

- 5. Montrer que T^2 et T^3 sont irréductibles dans \mathcal{A} .
- 6. Donner deux factorisations en irréductibles de T^6 dans \mathcal{A} . En déduire que A n'est pas factoriel.
 - 7. Exhiber un idéal non principal de A.

Exercice IV

Soient A un anneau et M un A-module. Posons $\mathscr{E} = \operatorname{End}_{\mathbb{Z}}(M)$, l'algèbre des endomorphismes de groupes abéliens de M, et $\Omega = \operatorname{End}_A(M)$ l'algèbre des endomorphismes de A-modules de M (on a donc $\Omega \subset \mathscr{E}$).

1. Soit $p \in \Omega$ vérifiant $p^2 = p \circ p = p$. Montrer que $M = \ker p \oplus \operatorname{Im}(p)$. Réciproquement, montrer que si M est somme directe de deux sous-modules M' et M'', $M = M' \oplus M''$, alors la projection q de M sur M' parallèlement à M'' est un élément de Ω vérifiant $q^2 = q$.

- 2. On pose $\mathscr{E}'' = \{v \in \mathscr{E} | u \circ v = v \circ u, \ (\forall u \in \Omega)\}$. Supposons que $M = M' \oplus M''$, somme directe de sous-modules. Montrer que M' est stable par tout élément $v \in \mathcal{E}''$.
- 3. On suppose dans la suite M semi-simple. Montrer que pour tout $m \in M$ et pour tout $v \in \mathcal{E}''$, il existe $a \in A$ tel que $v(m) = a \cdot m$.

On note ι_i l'injection de M dans le i-ème facteur de M^n et p_i la projection sur ce facteur. On a donc $\sum_i \iota_i \circ p_i = \mathrm{Id}_{M^n}$. On note aussi : $\Omega^{(n)} = \operatorname{End}_{A}(M^{n}), \quad \mathscr{E}^{(n)} = \operatorname{End}_{\mathbb{Z}}(M^{n}), \quad \mathscr{E}^{(n)''} = \{v \in \mathscr{E}^{(n)} | u \circ v = v \circ u, \ (\forall u \in \Omega^{(n)})\}$ Si $u \in \operatorname{End}_{\mathbb{Z}}(M)$ on pote $v^{(n)}$ $v \in \mathbb{Z}$ Si $u \in \operatorname{End}_{\mathbb{Z}}(M)$, on note $u^{(n)}$ l'endomorphisme de M^n défini par $u^{(n)} \circ \iota_i = \iota_i \circ u$, $i=1,\ldots,n$.

- 4. Montrer que si $u \in \mathcal{E}''$, alors $u^{(n)} \in \mathcal{E}^{(n)''}$.

 M \longrightarrow M \longrightarrow
- $v \in \mathcal{E}''$, il existe $a \in A$ tel que $v(m_i) = a \cdot m_i$, $i = 1, \ldots, n$.
 - 6. On suppose que M est de type fini en tant que Ω -module. Montrer que

$$\mathcal{E}'' = \{\ell_a : M \to M, m \mapsto a \cdot m\}.$$
Exercise V

Soit K un corps (commutatif). On dit qu'un sous-anneau A de K est un anneau de valuation de K si pour tout $x \in K$, soit $x \in A$, soit $x \neq 0$ et $x^{-1} \in A$.

- 1. Soit A un anneau de valuation de K. Montrer que K est le corps des fractions de A.
- 2. Soit A un anneau factoriel de corps des fractions K et soit \mathcal{P} un système de représentants des éléments irréductibles de A modulo A^{\times} . On écrit tout élément $x \in K$ non nul sous la forme

avec $u \in A^{\times}$ et les $v_p(x) \in \mathbb{Z}$ nuls sauf un nombre fini d'entre eux.

Pour tout $q \in \mathcal{P}$, on pose $A_q = v_q^{-1}(\mathbb{N}) \subset K$. Montrer que A_q est un anneau de valuation de K.

- 3. Soit A un anneau de valuation de K. Montrer que l'ensemble des idéaux de A est totalement ordonné pour l'inclusion, c'est-à-dire que si I et J sont deux idéaux de A, alors soit $I \subset J$, soit $J \subset I$. En déduire que A est un anneau local, c'est-à-dire qu'il existe un unique idéal maximal de A que l'on note \mathfrak{M}_A .
- 4. Soit $A \subset B$ des sous-anneaux de K. Montrer que si A est un anneau de valuation de K, alors B aussi et que les idéaux \mathfrak{M}_A et \mathfrak{M}_B introduits dans la question précédente vérifient $\mathfrak{M}_B \subset \mathfrak{M}_A$ avec égalité si et seulement si A = B.

Question subsidiaire difficile (seulement si vous avez fini tout le reste) : on reprend la question 2 de l'exercice I, sans supposer M de type fini : montrer que si $M \otimes_{\mathbb{Z}} \mathbb{Q} = \{0\}$ alors M est de torsion.

$$A < B = M_{B} < M_{A}$$

$$M_{B} < A$$

$$M_{B} < A$$

$$M_{B} < A$$