

NUC970 SAR ADC Application Note

Nuvoton Technology Corp.

NUC970 SAR ADC Features

- Resolution: 12-bit resolution
- **DNL**: +/-1.5 LSB, **INL**: +/-3 LSB
- Dual Data Rates: 1MSPS/ 200KSPS (ADC1 only)
- Power Supply (AVDD) range: 2.7-3.6V
- ADC0 (VBT), for Direct Battery Measurement
- ADC1 (VHS), could support 1MS/S
- ADC2 (INT_KP), could support 200KS/S or Keypad signal input
- ADC3 (VSENSE), ADC analog input or for 5-wire touch detection
- ADC4 (YM), ADC analog input or touch negative end of Y axis
- ADC5 (YP), ADC analog input or touch positive end of Y axis
- ADC6 (XM), ADC analog input or touch negative end of X axis
- ADC7 (XP), ADC analog input or touch positive end of X axis
- NUC972, supports 4-wire or 5-Wires resistive touch screen.
- NUC973 & NUC976, just supported 4-Wires resistive touch screen
- NUC977, doesn't support touch function
- Touch Pressure Measurement, it just for 4-wire touch screen application

ADC Transfer Function

➤ The ADC output coding is offset in binary, 1LSB=VREF/4096, the transfer characteristic is shown in the following graph:

Typical Connection

ADC0 & ADC[1:7] Application for **Voltage Detection**

For avoiding leakage occurred by ADC pad when AVDD not powered yet, that recommend voltage detection application should use the following connection as the figure illustrated

 $ADC0 (R_DIV=2M/2M)$

ADC0 (direct connect)

1.77V

3.6V

0uA

3.6V

2.48V

0.1uA

5V

5V

leakage

voltage

leakage

voltage

leakage

voltage

AVDD=0V & RTC BAT input to ADC[1..7]

ADC[17] (R_DIV=2M/2M)	3.6V	5V				
Leakage	1.7uA	2.4V				
Voltage	302mV	332mV				
ADC[17] (R_DIV=200K/200K)	3.6V	5V				
leakage	15.4uA	22uA				
Voltage	505mV	645mV				
ADC[17] (direct connect)	3.6V	5V				
leakge	117.4mA	illegal				
voltage	3.6V	illegal				

ADC0 (VBT) for Direct Battery Measurement

➤ Take VBT as input, and select internal buffer's output as the reference For ADC configure register VBAT_EN (ADC_CONF[8]) should be set to 1.

ADC Battery Voltage Detection Diagram

VBT in(v)	ADC0 output code/ V	Power Consumption (uA) /per time		
0.5	196/ 0.119V	44		
1	404/0.245V	90		
2	820/0.5V	183		
3	1236/0.754V	276		
4	1648/1.006V	368		
5	2062/1.258V	460		
5.5	2265/1.382V	505		

ADC1 (VHS)

- ADC high speed input, could support 1MS/S or 200KS/S.
- When HSPEED is set to high, it supports1MS/S
 - ADC Configure (ADC_CONF[22]=1)
- When HSPEED is set to low, it supports 200KS/S
 - ADC Configure (ADC_CONF[22]=0)

ADC2 (INT_KP)

Key Pad Detection Diagram

- > For ADC configure register KPC_EN (ADC_CONF[9]) should be set to 1.
 - Take ADC2 as input, and select AVDD33 and AGND33 as the reference.
 - Res1 ≤ 20K ohm and Res2 < 5.6 * Res1.</p>
 - A 0.01uF cap is at ADC2 on board.
 - If doesn't need the interrupt, please ignore the requirement for Res1 and Res2.
 - This kind of series R scheme can not support multi-key function

Interface for 4-wire

- ➤ For ADC configure register T_EN (ADC_CONF[0]) should be set to 1.
- ➤ ADC control register WMSWCH (ADC_CTL[16]=0) (Wire Mode Switch) for 4-wire configuration.
- ➤ The following figures show the interface for 4-wire touch screen.

4-wire Touch Screen Connection Diagram

Note that 4 switches to bias XP, XM, YP, YM have conduction resistance under 5 ohm. And the pull up PMOS have 200K ohm typically.

4-W TP Connection

	L	I	
23	XL	I	Touch panel interface
24	YD	I	Touch panel interface
25	XR	I	Touch panel interface
26	YU	I	Touch panel interface

Interface for 5-wire

- ➤ For ADC configure register T_EN (ADC_CONF[0]) should be set to 1.
- ➤ ADC control register WMSWCH (ADC_CTL[16]=1) (Wire Mode Switch) for 5-wire configuration.
- > The following figures show the interface for 5-wire touch screen.

5-wire Touch Screen Connection Diagram

Note that 4 switches to bias XP, XM, YP, YM have conduction resistance under 5 ohm. And the pull up PMOS have 200K ohm typically.

5-W Touch Connection

Advantage: Reliability & life time are good than 4W

5-W TP Reference Data

Analog Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
-	Resolution		12	-	Bit	
DNL	Differential Nonlinearity Error	-	±1	-	LSB	V _{REF} is external AVREF pin
INL	Integral Nonlinearity Error	-	-1.2	-	LSB	V _{REF} is external AVREF pin
Eo	Offset Error	1	+3.7	-	LSB	V _{REF} is external AVREF pin
E _G	Gain Error (Transfer Gain)	-	-6.6	-	LSB	V _{REF} is external AVREF pin
EA	Absolute Error	-	4.2	-	LSB	V _{REF} is external AVREF pin
-	Monotonic		Guaranteed			
F _{ADC}	ADC Clock Frequency	-	-	16	MHz	
T _{CAL}	Calibration Time	-	3	_	Clock	
Ts	Sample Time	-	17	-	Clock	
T _{ADC}	Conversion Time	-	20		Clock	
Fs	Sample Rate	-	-	800 ^[1]	k SPS	
V _{AVDD}	Supply Voltage	2.7	3.3	3.6	V	
I _{DDA1}	Supply Current (Avg.)		1.2		mA	ADC1 channel high speed mode
I _{DDA2}	Supply Current (Avg.)	-	1.0		mA	ADC1 channel low speed mode
I _{DDA3}	Supply Current (Avg.)	-	0.4		mA	
I _{LK}	Leakage Current	-	0.1	-	uA	
V _{REF}	Reference Voltage	2	-	V _{AVDD}	٧	
V _{IN}	Analog Input Voltage	0	-	V _{REF}	٧	
R _{IN}	Analog Input Impedance	-	-	2	МΩ	
C _{IN}	Capacitance	-	25.6		pF	

Note. ADC1 channel supports sample rate higher than 200 kSPS. Other ADC channels support sampel rate up to 200 kSPS.