

Présentation du projet 5A:

TinyML pour l'IA embarquée

Réalisé par :

NAIT HAMMOU Mehdi BEN BRAHIM Abdelkarim

Encadré par:

Pr. HASSAN Kais

+ Sommaire

Présentation du projet

Etapes de réalisation

Outils de développement

Conclusion et perspectives

+ Introduction

TinyML, c'est quoi?

Plusieurs problèmes, une solution

TinyML représente une solution pour diverses problèmes :

+

O1Présentation du projet

+

ı

+ Présentation du projet -

+ Présentation du projet

Le but de l'application est la reconnaissance des signes effectués par le policier.

+ Objectifs du projet

Implémentation

Implémentation et optimisation du modèle de classification

Déploiement

Déploiement du modèle et exploitation des résultats sur les cartes cibles

Documentation

Réalisation d'une documentation détaillée du projet

Outils de développement

+ Outils de développement

Environnement Hardware:

Arduino Nano BLE 33 Sense

ARM Cortex-M4 64MHz 1MB de mémoire Flash 256KB de RAM Floating point unit

STM SensorTile

ARM Cortex-M4 80 MHz 1MB de mémoire Flash 256KB de RAM Floating point unit

+ Outils de développement

Environnement Logiciel:

03 Étapes de réalisation

+

12

+ Etapes de réalisation

+ Capture des données

Signe d'accélération

Signe d'arrêt

Signe de ralentissement

+ Capture des données

Construction de la dataset

600*6 signal par mouvement 50 échantillon par signal, soit 0.5s de durée de signal

+ Architectures des réseaux de neurones

Réseau convolutif 1D

+ Architectures des réseaux de neurones

Long Short Term Memory (LSTM)

+ Architectures des réseaux de neurones

Baseline: Réseau de neurones dense standard

+ Résultats des entraînements

Réseau convolutif 1D

+ Validation des résultats

Réalité :

-> Grand problème de généralisation (Précision ~30%)

+ Validation des résultats

Solution : Revoir la stratégie de préparation de données

+ Validation des résultats

Ré-entraînement et optimisation des hyper-paramètres

Optimisation du modèle

(a)	W	eight	ts
af	ter j	orun	ing

			9000
-1.01	1.00	0.00	0.88
0.00	0.17	0.00	-0.02
0.56	0.00	0.38	0.00
0.00	-0.49	-0.95	0.00

(b) Weights in quantization levels

(c) Weights stored in hardware

-2	2	0	2
0	1	0	-1
1	0	1	0
0	-1	-2	0

Pruning

Weight Quantization

```
print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file)))
print("Size of gzipped pruned Keras model: %.2f bytes" % (get_gzipped_model_size(pruned_keras_file)))
print("Size of gzipped pruned TFlite model: %.2f bytes" % (get_gzipped_model_size(pruned_tflite_file)))
```

Size of gzipped baseline Keras model: 61148.00 bytes Size of gzipped pruned Keras model: 21098.00 bytes Size of gzipped pruned TFlite model: 19437.00 bytes INFO:tensorflow:Assets written to: /tmp/tmp8f26o3p6/assets
INFO:tensorflow:Assets written to: /tmp/tmp8f26o3p6/assets
WARNING:absl:Buffer deduplication procedure will be skipped when flatbuffer library is not properly loaded
Saved quantized and pruned TFLite model to: /tmp/tmpr2oyhhlr.tflite
Size of gzipped baseline Keras model: 61148.00 bytes
Size of gzipped pruned and quantized TFlite model: 6632.00 bytes

+ Optimisation du modèle

Pruning

```
print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file)))
print("Size of gzipped pruned Keras model: %.2f bytes" % (get_gzipped_model_size(pruned_keras_file)))
print("Size of gzipped pruned TFlite model: %.2f bytes" % (get_gzipped_model_size(pruned_tflite_file)))

Size of gzipped baseline Keras model: 61148.00 bytes
Size of gzipped pruned Keras model: 21098.00 bytes
Size of gzipped pruned TFlite model: 19437.00 bytes
```

De 61Ko à 19Ko, soit 60% de compression

Weight Quantization

```
INFO:tensorflow:Assets written to: /tmp/tmp8f2603p6/assets
INFO:tensorflow:Assets written to: /tmp/tmp8f2603p6/assets
WARNING:absl:Buffer deduplication procedure will be skipped when flatbuffer library is not properly loaded
Saved quantized and pruned TFLite model to: /tmp/tmpr2oyhhlr.tflite
Size of gzipped baseline Keras model: 61148.00 bytes
Size of gzipped pruned and quantized TFlite model: 6632.00 bytes
```

De 19Ko à 6Ko, soit 70% de compression

Le modèle est exporté en fichier.h pour être utilisable sur la carte cible

+ Déploiement du modèle

+ Résultats

-> Prédominance de la prédiction du signal d'accélération par rapport aux autres, signifiant une mauvaise précision lorsque le modèle est déployé.

Causes possibles:

- Différence entre les signaux utilisés pendant l'entraînement et le test (Hypothèse testée, ce n'est pas la raison).
- Dégradation du modèle après la quantization?

+ Résultats

+ Résultats

Spectre du signal d'entraîenement

Spectre du signal de test de la même personne

Mesure de similarité entre les deux signaux

+ Démonstration

+ Conclusion

Merci pour votre attention

Avez vous des questions?

Présentation du projet 5A:

TinyML pour l'IA embarquée

Réalisé par :

NAIT HAMMOU Mehdi BEN BRAHIM Abdelkarim

Encadré par:

Pr. HASSAN Kais

