

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
11 December 2003 (11.12.2003)

PCT

(10) International Publication Number
WO 03/101978 A1

(51) International Patent Classification⁷: C07D 333/38, 333/16, 333/18, 333/22, 409/12, 409/06, 333/34, 413/04, 409/04, A61K 31/381, 31/401, 31/41, 31/4245, A61P 19/10

(21) International Application Number: PCT/US03/14539

(22) International Filing Date: 22 May 2003 (22.05.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/384,151 29 May 2002 (29.05.2002) US

(71) Applicant (for all designated States except US): ELI LILLY AND COMPANY [US/US]; Lilly Corporate Center, Indianapolis, IN 46285 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DAHNKE, Karl, Robert [US/US]; 5160 Rocky Cay Court, Carmel, IN 46033 (US). GAJEWSKI, Robert, Peter [US/US]; 1501 Friendship Drive, Indianapolis, IN 46217 (US). JONES, Charles, David [US/US]; 223 East Brunswick Avenue, Indianapolis, IN 46227 (US). LINEBARGER, Jared, Harris [US/US]; 5723 Kingsley Drive, Indianapolis, IN 46220 (US). LU, Jianliang [CN/US]; 11921 Castlestone Drive, Fishers, IN 46038 (US). MA, Tianwei [CN/US]; 5676 Sapphire Drive, Carmel, IN 46033 (US). NAGPAL, Sunil [US/US]; 5258 Comanche Trail, Carmel, IN 46033 (US). SIMARD, Todd, Parker [US/US]; 14375 Leland Muse, Fishers, IN 46038 (US). YEE, Ying, Kwong [US/US]; 5127 Briarstone Trace, Carmel, IN 46033 (US). BUNEL, Emilio, Enrique [CL/US]; 2991 Topaz Lane, Carmel, IN 46032 (US). STITES, Ryan, Edward [US/US]; 3406 H Admar Court, Indianapolis, IN 46205 (US).

(74) Agents: BENJAMIN, Roger, S et al.; Eli Lilly and Company, P. O. Box 6288, Indianapolis, IN 46206-6288 (US).

(81) Designated States (national): AE, AG, AL, AM, AT (utility model), AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ (utility model), CZ, DE (utility model), DE, DK (utility model), DK, DM, DZ, EC, EE (utility model), EE, ES, FI (utility model), FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SK (utility model), SK, SI, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SI, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(i)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SI, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SI, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

— of inventorship (Rule 4.17(iv)) for US only

Published:

- with international search report
- with amended claims

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 03/101978 A1

(54) Title: PHENYL-THIOPHENE TYPE VITAMIN D RECEPTOR MODULATORS

(57) Abstract: The present invention relates to novel, non-secosteroidal, phenyl-thiophene compounds with vitamin D receptor (VDR) modulating activity that are less hypercalcemic than 1 α ,25 dihydroxy vitamin D3. These compounds are useful for treating bone disease and psoriasis.

PHENYL-THIOPHENE TYPE VITAMIN D RECEPTOR MODULATORS

5

CROSS REFERENCE TO RELATED APPLICATIONS

This patent application claims the benefit of priority under Title 35 United States Code, section 119(e), of Provisional Patent Application No. 60/384,151 filed May 29, 2002; the disclosure of which is incorporated herein by reference.

10

BACKGROUND OF THE INVENTION

Vitamin D₃ Receptor (VDR) is a ligand dependent transcription factor that belongs to the superfamily of nuclear hormone receptors. The VDR protein is 427 amino acids, with a molecular weight of ~50 kDa. The VDR ligand, 1 α ,25-dihydroxyvitamin D₃ (the hormonally active form of Vitamin D) has its action mediated by its interaction with the nuclear receptor known as Vitamin D receptor ("VDR"). The VDR ligand, 1 α ,25-dihydroxyvitamin D₃ (1 α ,25(OH)₂D₃) acts upon a wide variety of tissues and cells both related to and unrelated to calcium and phosphate homeostasis.

The activity of 1 α ,25-dihydroxyvitamin D₃ (1 α ,25(OH)₂D₃) in various systems suggests wide clinical applications. However, use of conventional VDR ligands is hampered by their associated toxicity, namely hypercalcemia (elevated serum calcium). Currently, 1 α ,25(OH)₂D₃, marketed as Rocaltrol® pharmaceutical agent (product of Hoffmann-La Roche), is administered to kidney failure patients undergoing chronic kidney dialysis to treat hypocalcemia and the resultant metabolic bone disease. Other therapeutic agents, such as Calcipotriol® (synthetic analog of 1 α ,25(OH)₂D₃) show increased separation of binding affinity on VDR from hypercalcemic activity.

Recently, chemical modifications of 1 α ,25(OH)₂D₃ have yielded analogs with attenuated calcium mobilization effects (R. Bouillon et. al., Endocrine Rev. 1995, 16, 200-257). One such analog, Dovonex ® pharmaceutical agent (product of Bristol-Meyers Squibb Co.), is currently used in Europe and the United States as a topical treatment for mild to moderate psoriasis (K. Kragballe et. al., Br. J. Dermatol. 1988, 119, 223-230).

Other vitamin D₃ mimics have been described in the publication, Vitamin D Analogs: Mechanism of Action of Therapeutic Applications, by Nagpal, S.; Lu, J.; Boehm, M. F., Curr. Med. Chem. 2001, 8, 1661-1679.

Although some degree of separation between the beneficial action and calcium raising (calcemic) effects has been achieved with these VDR ligands, to date the separation has been insufficient to allow for oral administration to treat conditions such as osteoporosis, cancers, leukemias, and severe psoriasis.

One example of a major class of disorder that could benefit from VDR mediated biological efficacy in the absence of hypercalcemia is osteoporosis. Osteoporosis is a systemic disorder characterized by decreased bone mass and microarchitectural deterioration of bone tissue leading to bone fragility and increased susceptibility to fractures of the hip, spine, and wrist (World Health Organization WHO 1994). Osteoporosis affects an estimated 75 million people in the United States, Europe, and Japan.

Within the past few years, several antiresorptive therapies have been introduced. These include bisphosphonates, hormone replacement therapy (HRT), a selective estrogen receptor modulator (SERM), and calcitonins. These treatments reduce bone resorption, bone formation, and increase bone density. However, none of these treatments increase true bone volume nor can they restore lost bone architecture.

Synthetic vitamin D receptor (VDR) ligands with reduced calcemic potential have been synthesized. For example, a class of bis-phenyl compounds stated to mimic 1 α , 25-dihydroxyvitamin D₃ is described in US Patent No. 6,218,430 and the article; "Novel nonsecosteroidal vitamin D mimics exert VDR-modulating activities with less calcium mobilization than 1 α , 25-Dihydroxyvitamin D₃" by Marcus F. Boehm, et. al., Chemistry & Biology 1999, Vol 6, No. 5, pgs. 265-275.

There remains a need for improved treatments using alternative or improved pharmaceutical agents that mimic 1 α , 25-dihydroxyvitamin D₃ to stimulate bone formation, restore bone quality, and treat other diseases without the attendant disadvantage of hypercalcemia.

SUMMARY OF THE INVENTION

Novel compounds having a nucleus of formula "(A)" have been found effective as Vitamin D Receptor (VDR) modulators:

5

where one of the pair of ring atoms (Q_1, Q_2) is sulfur and the other is carbon and each asterisk mark ("*") is a point of substitution. Compounds of the present invention with VDR modulating activities are represented by formula (I)

10 formula I:

wherein the variables $R, R', Q_1, Q_2, R_P, R_T, L_T, L_P, Z_T$, and Z_P are as hereinafter defined. The inventors have discovered that compounds described herein display the desirable cell differentiation and antiproliferative effects of $1,25(OH)_2D_3$ with reduced calcium mobilization (calcemic) effects.

15

In another aspect, the present invention is directed towards pharmaceutical compositions containing pharmaceutically effective amounts of compounds of formulae I or a pharmaceutically acceptable salt or prodrug thereof, either singly or in combination, together with pharmaceutically acceptable carriers and/or auxiliary agents.

20

Another aspect of the invention are novel chemical intermediates suitable for preparing the compounds of Formula I.

Another aspect of the invention is to use the compounds of the invention to treat

or prevent disease states responsive to Vitamin D receptor ligands.

Another aspect of the invention is the prevention and treatment of abscess, acne, adhesion, actinic keratosis, alopecia, Alzheimer's disease, autoimmune induced diabetes, bone fracture healing, breast cancer, Crohn's disease, colon cancer, Type I diabetes, host-graft rejection, hypercalcemia, Type II diabetes, leukemia, multiple sclerosis, insufficient sebum secretion, osteomalacia, osteoporosis, insufficient dermal firmness, insufficient dermal hydration, myelodysplastic syndrome, psoriatic arthritis, prostate cancer, psoriasis, renal osteodystrophy, rheumatoid arthritis, scleroderma, seborrheic dermatitis, skin cancer, systemic lupus erythematosus, ulcerative colitis and wrinkles; by administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Formula I.

Another aspect of the invention is the use of the compounds of Formula I for treating or preventing disease states mediated by the Vitamin D receptor.

15

DETAILED DESCRIPTION OF THE INVENTION

I. Definitions:

In accordance with the present invention and as used herein, the following terms are defined to have the following meanings, unless explicitly stated otherwise:

20 The structural formula:

is a substructure of Formula I and represents alternative thiophene substructures, namely;

dependent on whether Q1 is sulfur when Q2 is carbon (A1) or Q1 is carbon when Q2 is sulfur (A2).

The term "alkenyl" refers to aliphatic groups wherein the point of attachment is a carbon-carbon double bond, for example vinyl, 1-propenyl, and 1-cyclohexenyl. Alkenyl groups may be straight-chain, branched-chain, cyclic, or combinations thereof, and may be optionally substituted. Suitable alkenyl groups have from 2 to about 20 carbon atoms.

The term "alkoxy" refers to -OR wherein R is an aliphatic or aromatic group which may be optionally substituted. Methoxy, ethoxy, propoxy, butoxy, and phenoxy are examples of alkoxy groups.

The term "alkyl" refers to saturated aliphatic groups including straight-chain, branched-chain, cyclic and any combinations thereof. Alkyl groups may further be divided into "primary", "secondary", and "tertiary" alkyl groups. In primary alkyl groups, the carbon atom of attachment is substituted with zero (methyl) or one organic radical. In secondary alkyl groups, the carbon atom of attachment is substituted with two organic radicals. In tertiary alkyl groups, the carbon atom of attachment is substituted with three organic radicals.

The term "cycloalkyl" includes organic radicals such as cyclopropanyl, cyclobutanyl, and cyclopentyl.

20 The term, "cycloalkenyl" includes organic radicals such as cyclopropenyl, cyclobutenyl, cyclopentenyl, and cyclohexenyl.

The term, "terminal hydroxyalkyl" is a group selected from 3-methyl-3-hydroxypentyl; 3-ethyl-3-hydroxypentyl; 3-ethyl-3-hydroxy-4-methylpentyl; 3-ethyl-3-hydroxy-4,4-dimethylpentyl; 3-methyl-3-hydroxy-4,4-dimethylpentyl; 1-hydroxycycloalkenyl; and 1-hydroxycycloalkyl.

The term, "C₁-C₅ fluoroalkyl" is an alkyl group containing fluorine and includes organic radicals such as -CF₃, -CHF₂, -CH₂F, -CF₂CF₃, -CHFCF₃, -CH₂CF₃,

-CH₂CHF₂, and -CH₂CH₂F, with -CF₃ being preferred.

The term, "Active Ingredient" refers to a compound of the invention represented by any of (i) formulae I, II, III, IV, (ii) the product of any example set out herein, or (iii) a compound identified in any row of Tables 1, 2, 3, or 4; or a salt or prodrug derivative of
5 the preceding compound.

The abbreviation, "Me" means methyl.

The abbreviation, "Et" means ethyl.

The abbreviation, "iPr" means 1-methylethyl.

The abbreviation, "tBu" means 1,1-dimethylethyl.

10 The symbol "-(CH₂)₂- is equivalent to -CH₂-CH₂-.

The symbol, "*" in a structural formula identifies a chiral center (except in formula "A" where it symbolizes substitution).

The univalent symbol "-O" in any structural formula is a hydroxyl group (-OH).

15 The term, "3-methyl-3-hydroxypentyl" refers to the radical having the structural formula:

The term, "3-methyl-3-hydroxypentenyl" refers to the radical having the structural formula:

20 The term, "3-methyl-3-hydroxypentynyl" refers to the radical having the structural formula:

25 The term, "3-ethyl-3-hydroxypentyl" refers to the radical having the structural formula:

-7-

The term, "3-ethyl-3-hydroxypentenyl" refers to the radical having the structural formula:

5 The term, "3-ethyl-3-hydroxypentynyl" refers to the radical having the structural formula:

10 The term, "3-ethyl-3-hydroxy-4,4-dimethylpentyl" refers to the radical having the structural formula:

The term, "3-ethyl-3-hydroxy-4,4-dimethylpentyl" refers to the radical having the structural formula:

15 The term, "3-methyl-3-hydroxy-4,4-dimethylpentyl" refers to the radical having the structural formula:

The term, "1-hydroxycycloalkenyl" refers to a radical selected from
 1-hydroxycyclopentenyl, 1-hydroxycyclohexenyl,
 5 1-hydroxycycloheptenyl, or 1-hydroxycyclooctenyl.

The term "hydroxycycloalkyl" refers to a radical having the general structural formula:

10 where w is an integer from 1 to 6 and the hydroxyl radical is substituted on any ring carbon atom.

The term "1-hydroxycycloalkyl" refers to a radical having the general structural formula:

15

Examples of 1-hydroxycycloalkyl radicals are

1-hydroxycyclopropyl, 1-hydroxycyclobutyl, 1-hydroxycyclopentyl,
 1-hydroxycyclohexyl, 1-hydroxycycloheptyl, and 1-hydroxycyclooctyl.

The abbreviation, "Me" means methyl.

20

The abbreviation, "Et" means ethyl.

The abbreviation, "iPr" means 1-methylethyl.

The abbreviation, "tBu" means 1,1-dimethylethyl.

The abbreviation, "3Me3OH-Pentyl" means 3-methyl-3-hydroxpentyl.

The abbreviation, "3Me3OH-Pentenyl" means 3-methyl-3-hydroxypentenyl

25

The abbreviation, "3Me3OH-Pentynyl" means 3-methyl-3-hydroxypentynyl

The abbreviation, "3Et3OH-Pentyl" means 3-ethyl-3-hydroxpentyl.

The abbreviation, "3Et3OH-Pentenyl" means 3-ethyl-3-hydroxypentenyl
 The abbreviation, "3Et3OH-Pentylyn" means 3-ethyl-3-hydroxypentylyn
 The abbreviation, "3Et3OH4Me-Pentyl" means 3-ethyl-3-hydroxy-4-methylpentyl.
 The abbreviation, "3Et3OH44DiMe-Pentyl" means 3-ethyl-3-hydroxy-4,4-

5 dimethylpentyl.

The abbreviation, "3Me3OH44DiMe-Pentyl" means 3-methyl-3-hydroxy-4,4-dimethylpentyl.

The term "C₁-C₅ alkyl" is an alkyl substituent selected from the group consisting of: methyl; ethyl; propyl; 1-methylethyl; 1-methylpropyl; 2-methylpropyl; 1,1-dimethylethyl; 1,1-dimethylpropyl; 1,2-dimethylpropyl; and 2,2-dimethylpropyl. The preferred groups are 2-methylpropyl and 1,1-dimethylethyl, with the 1,1-dimethylethyl group being most preferred.

The symbol "-(C₁-C₅ alkyl)2" when included as part of a substituent group means two independently selected C₁-C₅ alkyl groups, for example, the generic formula:

15 -(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl)₂

would be descriptive of species including;

-(C₁-C₅ alkyl)-NH-(CH₃)₂ or -(C₁-C₅ alkyl)-NH-(CH₃)(C₂H₅)

The term "amide" refers to derivatives of acids wherein one or more hydroxyl groups is replaced with a amino groups. The amino groups are optionally substituted with one or two organic radicals which may be aliphatic or aromatic. Amides may be cyclic. The term "carboxamide" refers to an amide of a carboxylic acid. The term "aminocarbonyl" refers to carboxamide radicals wherein the point of attachment is the carbonyl carbon. The term "acylamido" refers to carboxamide radicals wherein the point of attachment is the nitrogen atom.

25 The term, "amine", includes primary, secondary and tertiary amines having respectively one, two, or three organic groups that are attached to the nitrogen atom.

The symbol, "-C(O)-N-pyrrolidine" refers to the radical represented by the formula:

-10-

The symbol, “-C(O)-N-pyrrolidin-2-one” refers to the radical represented by the formula:

5 The symbol, “-C(O)-C(O)-N-pyrrolidine” refers to the radical represented by the formula:

The symbol, “-C(O)-C(O)-N-pyrrolidin-2-one” refers to the radical represented by the formula:

10 The symbol, “-CH₂-C(O)-N-pyrrolidin-2-one is the organic radical represented by the structural formula:

The dotted line symbol crossing a solid line representing a bond

15 means that the bond so marked is the bond attached to the nucleus of formula “(A)” of the parent molecule or to a divalent linking group that is attached to the nucleus of the parent molecule. For example, the group;

-11-

is attached to a parent aryl-thiophene nucleus to provide a compound of the invention as shown;

- 5 The term, "(Acidic Group)" means an organic group that acts as a proton donor capable of hydrogen bonding. Illustrative of an (Acidic Group) is a group selected from the following:

-C(O)OH,

-5-tetrazolyl,

10

-12-

or corresponding salts of the above acids (e.g., Na, K, Ca, or Mg).

The term, "mammal" includes humans.

- 5 The term, "combined group" refers to the pendent binary groups of linkers, -(L)-, and Z substituents represented in formula I by either of:

- The term "ester" refers to compounds wherein a hydroxy group of an acid is replaced with an alkoxide group. For example, a carboxylic ester is one in which the
- 5 hydroxy group of a carboxylic acid is replaced with an alkoxide. Esters may derive from any acid comprising one or more hydroxy groups: for example, carbonic acid, carbamic acids, phosphonic acids, sulfonic acids, and boronic acids. The terms "alkoxycarbonyl" and "carboalkoxy" refer to carboxylic ester radicals wherein the point of attachment is the carbonyl carbon.
- 10 The term "halo" refer to fluorine, chlorine, bromine, and iodine.
- The term "substituted" indicate that the group in question is substituted with from one or a plurality of independently selected conventional organic substituents such as acyl, acyloxy, alkenyl, alkoxy, alkyl, amino, aminocarbonyl, aryl, , carboxy, halo, hydroxy, oxa, oxo, perhaloalkyl, perhaloaryl, phosphino, phosphinyl, phosphoryl, sulfinyl, sulfonyl, thia, thio, and combinations and protected derivatives thereof.
- 15 The term "pharmaceutically acceptable salt" includes salts of the compounds of the present invention derived from the combination of the compound and an organic or inorganic acid or base. In practice, acidic members of the compounds of formulae I and II would be combined with a base or bases, basic members of the
- 20 compounds of formulae I and II would be combined with an acid or acids, and members of the compounds of formulae I and II with both acid and base functionalities would be combined with one or more acids, bases or any combination thereof. Both the neutral and salt forms fall within the scope of the present invention. Examples of cationic salts are sodium, aluminum, zinc, potassium, calcium, magnesium and ammonium.
- 25 The word "abscess" is a complication often associated with surgery, trama, or diseases that predispose the host to abscess formation from encapsulated bacteria lymphocytes, macrophages, and etc.

The word "adhesion" refers to the abnormal union of surfaces normally separate by the formulation of new fibrous tissue resulting from an inflammatory

process.

The term, "combined groups" refers to the groups in Formula I represented by either of the groups

5

The term, "urethane" refers to the radical:

10

wherein each R_U is independently hydrogen or C₁-C₈ alkyl, for example, methyl, ethyl, n-propyl, and isopropyl.

The term, "thiourethane" refers to the radical:

15

wherein R_U is hydrogen or C₁-C₈ alkyl., for example, methyl, ethyl, n-propyl, and isopropyl.

Some of the structural formulae used herein omit depiction of hydrogen atoms.

For example, the formula:

20

is understood to be the equivalent of the formula:

The term, "urethane-type radical" refers to either urethane or thiourethane radicals.

5

Definitions IA: Rule of Polarity and Lipophilicity for Substituents pendant on the compounds of the invention:

The substituents L_P, L_T, Z_P, and Z_T pendant on the compounds of the invention are constrained both by (i) the identity of each substituent, and (ii) the polar or lipophilic nature of each substituent. The occurrence of "polar" and "lipophilic" is to be done in accord with the following Rule:

RULE: The combined groups in formula I, II, III, IV and V represented by

15 may all be lipophilic, or one may be lipophilic and the other one polar; but both combined groups may not be polar. If any part of a combined group is polar, then the "combined group" itself is deemed polar. For example, in the group

if the divalent linking group -(L_P)- is the polar group, -C(O)-NH- and Z_P is the lipophilic group, -CH₂-CH₂-(t-butyl); then the combined group is defined as "polar."

Definitions IB: Definition of "Polar" and "Lipophilic"

The term "lipophilic group" refers to any linking group

5 or any of the Z substituents

that is hydrophobic, preferring or attracted to a hydrocarbon loving, non-aqueous environment. Lipophilic linking groups in the practice of the invention are

a bond

or

10

where m is 0, 1, or 2, and each R40 is independently hydrogen, -CH₃, -F, -CH₂F, -CHF₂, and -CF₃. All other exemplified linking groups are polar.

Generally all linking groups containing only hydrocarbon subunit groups or hydrocarbon subunit groups in combination with ether or thioether groups are lipophilic.

15 Moreover, fluorinated derivatives of such groups are considered lipophilic.

Lipophilic Z_T or Z_P groups in the practice of the invention are partially

exemplified by

- O-CH₂-C(O)-C₁-C₅alkyl,
- O-CH₂-CH(OH)-C₁-C₅alkyl,
- O-CH₂-C(CH₃)(OH)-C₁-C₅alkyl,
- 5 -O-CH₂-CH(OCH₃)-C₁-C₅alkyl,
- O-CH(CH₃)-C(O)-C₁-C₅alkyl
- O-CH(CH₃)-CH(OH)-C₁-C₅alkyl,
- O-CH₂-C(O)-C(CH₃)₂-C₁-C₅alkyl,
- O-CH₂-CH(OH)-C(CH₃)₂-C₁-C₅alkyl,
- 10 -O-CH₂-C(O)-C₁-C₅alkyl,
- O-CH₂-CH(OH)-C₁-C₅alkyl,
- O-CH₂-CH(OCH₃)-C₁-C₅alkyl,
- CH₂-CH₂-C(O)-C₁-C₅alkyl,
- CH₂-CH₂-CH(OH)-C₁-C₅alkyl,
- 15 -CH₂-CH₂-CH(OCH₃)-C₁-C₅alkyl,
- CH₂-C(O)-C₁-C₅alkyl,
- CH₂-CH(OH)-C₁-C₅alkyl,
- CH₂-C(CH₃)(OH)-C₁-C₅alkyl,
- CH(CH₃)-C(O)-C₁-C₅alkyl,
- 20 -CH(CH₃)-CH(OH)-C₁-C₅alkyl,
- CH(CH₃)-C(CH₃)(OH)-C₁-C₅alkyl,

-19-

5 1-hydroxycyclopentenyl,

10 1-hydroxycyclohexenyl,

 1-hydroxycycloheptenyl,

 1-hydroxycyclooctenyl,

 1-hydroxycyclopropyl,

 1-hydroxycyclobutyl,

 1-hydroxycyclopentyl,

 1-hydroxycyclohexyl,

 1-hydroxycycloheptyl,

and

 1-hydroxycyclooctyl.

10

15

-20-

Conversely, the term "polar group" refers to any linking group

that is not a lipophilic group. The term "polar group" also refers to any Z substituent

- 5 that is not a lipophilic group. The term, "polar" as used herein generally refers to chemical substituents that are hydrophilic, preferring or attracted to an aqueous environment. An example of a polar linking group is a linking group selected from the following:

-21-

or

where m is 0, 1, or 2 and R40 is as previously defined.

Exemplary polar Z_T or Z_P groups in the practice of the invention are depicted by the following formulae:

5

-22-

5

II. Compounds of the Invention:

The compounds of the invention are Vitamin D Receptor Modulators represented by formula I or a pharmaceutically acceptable salt or prodrug derivative thereof:

wherein;

R and R' are independently C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, or together R and R' form a substituted or unsubstituted, saturated or unsaturated carbocyclic ring having from 5 3 to 8 carbon atoms;

Ring atoms Q₁ and Q₂ are independently selected from carbon or sulfur, with the proviso that one atom is sulfur and the other atom is carbon;

R_P and R_T are independently selected from the group consisting of hydrogen, halo, C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, -O-C₁-C₅ alkyl, -S-C₁-C₅ alkyl, -O-C₁-C₅ fluoroalkyl, -CN, -NO₂, acetyl, -S-C₁-C₅ fluoroalkyl, C₂-C₅ alkenyl, C₃-C₅ cycloalkyl, and C₃-C₅ cycloalkenyl;

(L_P) and (L_T) are divalent linking groups independently selected from the group consisting of

a bond

5

where m is 0, 1 or 2, X_1 is oxygen or sulfur, and each R40 is independently hydrogen or $C_1\text{-}C_5$ alkyl or $C_1\text{-}C_5$ fluoroalkyl;

Z_P and Z_T are independently selected from

- hydrogen,
- 10 -phenyl,
- benzyl,
- fluorophenyl,
- $-(C_1\text{-}C_5\text{ alkyl})$,
- $-(C_2\text{-}C_5\text{ alkenyl})$,
- 15 $-(C_3\text{-}C_5\text{ cycloalkyl})$,
- $-(C_3\text{-}C_5\text{ cycloalkenyl})$,
- $-(C_1\text{-}C_5\text{ hydroxyalkyl})$,
- $-(C_1\text{-}C_5\text{ fluoroalkyl})$,
- $-(C_1\text{-}C_5\text{ alkyl})\text{-phenyl}$,

- $(C_1\text{-}C_5 \text{ alkyl})\text{-}O\text{-}(C_1\text{-}C_5) \text{ alkyl}$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}NH_2$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}NH\text{-}(C_1\text{-}C_5 \text{ alkyl})$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}N\text{-}(C_1\text{-}C_5 \text{ alkyl})_2$,
- 5 - $(C_1\text{-}C_5 \text{ alkyl})\text{-}C(O)\text{-}NH_2$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}C(O)\text{-}NH\text{-}(C_1\text{-}C_5 \text{ alkyl})$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}C(O)\text{-}N\text{-}(C_1\text{-}C_5 \text{ alkyl})_2$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}C(O)\text{-}(C_1\text{-}C_5 \text{ alkyl})$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}NH\text{-}SO_2\text{-}(C_1\text{-}C_5 \text{ alkyl})$,
- 10 - $(C_1\text{-}C_5 \text{ alkyl})\text{-}N\text{-}pyrrolidin-2-one$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}N\text{-}pyrrolidine$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}(1\text{-methyl}pyrrolidin-2-one-3-yl)$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}C(O)\text{-}(O\text{-}C_1\text{-}C_5 \text{ alkyl})$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}C(O)\text{-}OH$,
- 15 - $(C_1\text{-}C_5 \text{ alkyl})\text{-}5\text{-tetrazolyl}$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}P(O)\text{-}(O\text{-}C_1\text{-}C_5 \text{ alkyl})_2$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}SO_2\text{-}(C_1\text{-}C_5 \text{ alkyl})$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}SO_2\text{-}NH_2$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}SO_2\text{-}NH\text{-}(C_1\text{-}C_5 \text{ alkyl})$,
- 20 - $(C_1\text{-}C_5 \text{ alkyl})\text{-}SO_2\text{-}N\text{-}(C_1\text{-}C_5 \text{ alkyl})_2$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}SO_2\text{-}(C_1\text{-}C_5 \text{ alkyl})$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}S(O)\text{-}(C_1\text{-}C_5 \text{ alkyl})$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}S(O)\text{-}NH_2$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}S(O)\text{-}NH\text{-}(C_1\text{-}C_5 \text{ alkyl})$,
- 25 - $(C_1\text{-}C_5 \text{ alkyl})\text{-}S(O)\text{-}N\text{-}(C_1\text{-}C_5 \text{ alkyl})_2$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}S(O)\text{-}(C_1\text{-}C_5 \text{ alkyl})$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}N(C(O)(C_1\text{-}C_5 \text{ alkyl})CH_2C(O)OH$,
- $(C_1\text{-}C_5 \text{ alkyl})\text{-}N(C(O)(C_1\text{-}C_5 \text{ alkyl})CH_2C(O) -(C_1\text{-}C_5 \text{ alkyl})$,
- 30 - $CH(OH)\text{-}(C_1\text{-}C_5 \text{ alkyl})$
- $CH(OH)\text{-}(C_2\text{-}C_5 \text{ alkenyl})$,

- CH(OH)-(C₃-C₅ cycloalkyl),
- CH(OH)-(C₃-C₅ cycloalkenyl),
- CH(OH)-(C₁-C₅ hydroxyalkyl),
- CH(OH)-(C₁-C₅ fluoroalkyl),
- 5 -CH(OH)-phenyl
- CH(OH)-5-tetrazolyl,
- CH(OH)-(1-methylpyrrolidin-2-one-3-yl),

- C(O)-(C₁-C₅ alkyl),
- 10 -C(O)-(C₁-C₅ alkyl)-C(O)OH,
- C(O)-(C₁-C₅ alkyl)-C(O)(O-C₁-C₅ alkyl),
- C(O)-(C₂-C₅ alkenyl),
- C(O)-(C₃-C₅ cycloalkyl),
- C(O)-(C₃-C₅ cycloalkenyl),
- 15 -C(O)-(C₁-C₅ hydroxyalkyl),
- C(O)-(C₁-C₅ fluoroalkyl),
- C(O)-(C₁-C₅ alkyl)-phenyl
- C(O)-O-(C₁-C₅ alkyl),
- C(O)-O-(C₂-C₅ alkenyl),
- 20 -C(O)-O-(C₃-C₅ cycloalkyl),
- C(O)-O-(C₃-C₅ cycloalkenyl),
- C(O)-O-(C₁-C₅ hydroxyalkyl),
- C(O)-O-(C₁-C₅ fluoroalkyl),
- C(O)-O-(C₁-C₅ alkyl)-phenyl,

- 25 -C(O)-NH₂,
- C(O)-NH(OH),
- C(O)-NH-(C₁-C₅ alkyl),
- C(O)-N-(C₁-C₅ alkyl)₂,
- C(O)-NH-(C₂-C₅ alkenyl),

- 30 -C(O)-NH-(C₃-C₅ cycloalkyl),
- C(O)-NH-(C₃-C₅ cycloalkenyl),
- C(O)-NH-(C₁-C₅ fluoroalkyl),

- C(O)-NH-(C₁-C₅ alkyl)-phenyl,
- C(O)-NH-SO₂-(C₁-C₅ alkyl),
- C(O)-NH-SO₂-(C₂-C₅ alkenyl),
- C(O)-NH-SO₂-(C₃-C₅ cycloalkyl),
- 5 -C(O)-NH-SO₂-(C₃-C₅ cycloalkenyl),
- C(O)-NH-S(O)-(C₁-C₅ alkyl),
- C(O)-NH-S(O)-(C₂-C₅ alkenyl),
- C(O)-NH-S(O)-(C₃-C₅ cycloalkyl),
- C(O)-NH-S(O)-(C₃-C₅ cycloalkenyl),
- 10 -C(O)-NH-(C₁-C₅ fluoroalkyl),
- C(O)-NH-(C₁-C₅ alkyl)-phenyl
- C(O)-NH-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- C(O)-NH-(C₁-C₅ alkyl)-S(O)-(C₁-C₅ alkyl),
- C(O)-NH-CH₂-C(O)OH
- 15 -C(O)-NH-CH₂-C(O)-(O-C₁-C₅ alkyl),
- C(O)-N-(C₁-C₅ alkyl)(C(O)OH),
- C(O)-N-(C₁-C₅ alkyl)(C(O)-(O-C₁-C₅ alkyl)),
- C(O)-NH-CH((CH₂)(CO₂H))(CO₂H),
- C(O)-NH-CH((CH₂)(C(O)-(C₁-C₅ alkyl)))(C(O)-(O-C₁-C₅ alkyl)),
- 20 -C(O)-NH-CH((CH₂OH)(CO₂H)),
- C(O)-NH-CH((CH₂OH)(C(O)(O-C₁-C₅ alkyl))),
- C(O)-NH-C((C₁-C₅ alkyl)(C₁-C₅ alkyl))(CO₂H),
- C(O)-NH-C((C₁-C₅ alkyl)(C₁-C₅ alkyl))(C(O)-(O-C₁-C₅ alkyl)),
- 25 -C(O)-NH-5-tetrazolyl,
- C(O)-N-pyrrolidin-2-one,
- C(O)-N-pyrrolidine,
- C(O)-(1-methylpyrrolidin-2-one-3-yl),
- C(O)-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- C(O)-(C₁-C₅ alkyl)-N-pyrrolidine,
- 30 -C(O)-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),

-C(O)-N-pyrrolidin-2-(CO₂H),
-C(O)-N-pyrrolidin-2-(C(O)-(O-C₁-C₅ alkyl)),
-C(O)-N-(C(O)-(C₁-C₅ alkyl))CH₂(CO₂H),
-C(O)-N-(C(O)-(C₁-C₅ alkyl))CH₂(C(O)-(O-C₁-C₅ alkyl)),
5
-C(O)-N-(C₁-C₅ alkyl))CH₂(CO₂H),
-C(O)-C(O)-OH,
-C(O)-C(O)-(C₁-C₅ alkyl),
-C(O)-C(O)-(C₂-C₅ alkenyl),
10
-C(O)-C(O)-(C₃-C₅ cycloalkyl),
-C(O)-C(O)-(C₃-C₅ cycloalkenyl),
-C(O)-C(O)-(C₁-C₅ hydroxyalkyl),
-C(O)-C(O)-(C₁-C₅ fluoroalkyl);
-C(O)-C(O)-(C₁-C₅ alkyl)-phenyl,
15
-C(O)-C(O)-NH₂,
-C(O)-C(O)- NH-(C₁-C₅ alkyl),
-C(O)-C(O)- N-(C₁-C₅ alkyl)₂,
-C(O)-C(O)-5-tetrazolyl,
-C(O)-C(O)-N-pyrrolidin-2-one,
20
-C(O)-C(O)-N-pyrrolidine,
-C(O)-C(O)-(1-methylpyrrolidin-2-one-3-yl),

-O-(C₁-C₅ alkyl),
-O-(C₂-C₅ alkenyl),
25
-O-(C₃-C₅ cycloalkyl),
-O-(C₃-C₅ cycloalkenyl),
-O-(C₁-C₅ hydroxyalkyl),
-O-(C₁-C₅ fluoroalkyl),
-O-(C₁-C₅ alkyl)-phenyl,
30
-O-(C₁-C₅ alkyl)-(O)-(C₁-C₅ alkyl),
-O-(C₁-C₅ alkyl) NH₂,
-O-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl)₂,

- O-(C₁-C₅ alkyl)-C(O)-NH₂,
- O-(C₁-C₅ alkyl)-C(O)-NH-(C₁-C₅ alkyl),
- O-(C₁-C₅ alkyl)-C(O)-N-(C₁-C₅ alkyl)₂,
- O-(C₁-C₅ alkyl)-C(O)-OH,
- 5 -O-(C₁-C₅ alkyl)-C(O)-NH-5-tetrazolyl,
- O-(C₁-C₅ alkyl)-C(O)-(C₁-C₅ alkyl),
- O-(C₁-C₅ alkyl)-C(O)-(O-C₁-C₅ alkyl),
- O-(C₁-C₅ alkyl)-NH₂,
- O-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
- 10 -O-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂,
- O-(C₁-C₅ alkyl)-NH-SO₂-(C₁-C₅ alkyl),
- O-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- O-(C₁-C₅ alkyl)-N-pyrolidine,
- O-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- 15 -O-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl)
- O-(C₁-C₅ alkyl)-SO₂-NH₂,
- O-(C₁-C₅ alkyl)-SO₂-NH-(C₁-C₅ alkyl),
- O-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂,
- O-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- 20 -O-(C₁-C₅ alkyl)-S(O)-(C₁-C₅ alkyl),
- O-(C₁-C₅ alkyl)-S(O)-NH₂,
- O-(C₁-C₅ alkyl)-S(O)-NH-(C₁-C₅ alkyl),
- O-(C₁-C₅ alkyl)-S(O)-N-(C₁-C₅ alkyl)₂,
- O-(C₁-C₅ alkyl)-S(O)-(C₁-C₅ alkyl),
- 25 -O-(C₁-C₅ alkyl)-P(O)-(O-C₁-C₅ alkyl)₂,
- O-(C₁-C₅ alkyl)-5-tetrazolyl,
- O-CH₂-CO₂H,
- O-CH₂-5-tetrazolyl,
- O-(C₁-C₅ alkyl),
- 30 -O-C(O)-NH₂,
- O-C(O)-N-(CH₃)₂,
- O-C(S)-N-(CH₃)₂,

- O-C(O)-O-(C₁-C₅ alkyl),
- O-(5-tetrazolyl),
- O-SO₂-(C₁-C₅ alkyl),
- O-SO₂-NH₂,
- 5 -O-SO₂-NH-(C₁-C₅ alkyl),
- O-SO₂-N-(C₁-C₅ alkyl)₂,
- O-S(O)-(C₁-C₅ alkyl),
- O-S(O)-NH₂,
- O-S(O)-NH-(C₁-C₅ alkyl),
- 10 -O-S(O)-N-(C₁-C₅ alkyl)₂,

- S-(C₁-C₅ alkyl),
- S-(C₂-C₅ alkenyl),
- S-(C₃-C₅ cycloalkyl),
- 15 -S-(C₃-C₅ cycloalkenyl),
- S-(C₁-C₅ fluoroalkyl),
- S-(C₁-C₅ hydroxyalkyl),
- S-(C₁-C₅ alkyl)-phenyl,
- S-(C₁-C₅ alkyl)-O-(C₁-C₅ alkyl),
- 20 -S-(C₁-C₅ alkyl)-C(O)-OH,
- S-(C₁-C₅ alkyl)-C(O)-(C₁-C₅ alkyl),
- S-(C₁-C₅ alkyl)-C(O)-O-(C₁-C₅ alkyl),
- S-(C₁-C₅ alkyl)-C(O)-NH₂,
- S-(C₁-C₅ alkyl)-C(O)-NH-(C₁-C₅ alkyl),
- 25 -S-(C₁-C₅ alkyl)-C(O)-N-(C₁-C₅ alkyl)₂,
- S-(C₁-C₅ alkyl) NH₂,
- S-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
- S-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂,
- S-(C₁-C₅ alkyl)-NH-SO₂-(C₁-C₅ alkyl),
- 30 -S-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- S-(C₁-C₅ alkyl)-N-pyrrolidine,
- S-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),

- S-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- S-(C₁-C₅ alkyl)-SO₂-NH₂,
- S-(C₁-C₅ alkyl)-SO₂-NH-(C₁-C₅ alkyl),
- S-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂,
- 5 -S-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- S-(C₁-C₅ alkyl)-P(O)-(O-C₁-C₅ alkyl)₂,
- S-(C₁-C₅ alkyl)-5-tetrazolyl,
- S-(C₁-C₅ alkyl)-S(O)-(C₁-C₅ alkyl),
- S-(C₁-C₅ alkyl)-S(O)-NH₂,
- 10 -S-(C₁-C₅ alkyl)-S(O)-NH-(C₁-C₅ alkyl),
- S-(C₁-C₅ alkyl)-S(O)-N-(C₁-C₅ alkyl)₂,
- S-(C₁-C₅ alkyl)-S(O)-(C₁-C₅ alkyl),
- 15 -SO₂-(C₁-C₅ alkyl),
- SO₂-(C₂-C₅ alkenyl),
- SO₂-(C₃-C₅ cycloalkyl),
- SO₂-(C₃-C₅ cycloalkenyl),
- SO₂-(C₁-C₅ hydroxyalkyl),
- SO₂-(C₁-C₅ fluoroalkyl),
- 20 -SO₂-(C₁-C₅)phenyl,
- SO₂-NH₂,
- SO₂-NH-(C₁-C₅ alkyl),
- SO₂-NH-CH₂-C(O)OH,
- 25 -SO₂-NH-CH₂-C(O)(O-C₁-C₅ alkyl),
- SO₂-NH-(C₁-C₅ alkyl)-C(O)OH,
- SO₂-NH-(C₁-C₅ alkyl)-C(O)(O-C₁-C₅ alkyl),
- SO₂-NHC(O)-(C₃-C₆ cycloalkyl),
- 30 -SO₂-NH-C(O)-(C₁-C₅ alkyl),
- SO₂-N-(C₁-C₅ alkyl)₂,
- SO₂-(C₁-C₅ alkyl)-O-(C₁-C₅ alkyl),

- SO₂-(C₁-C₅ alkyl)-C(O)-(C₁-C₅ alkyl),
- SO₂-(C₁-C₅ alkyl) NH₂,
- SO₂-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
- SO₂-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂,
- 5 -SO₂-(C₁-C₅ alkyl)-C(O)-NH₂,
- SO₂-(C₁-C₅ alkyl)-C(O)-NH-(C₁-C₅ alkyl),
- SO₂-(C₁-C₅ alkyl)-C(O)-N-(C₁-C₅ alkyl)₂,
- SO₂-(C₁-C₅ alkyl)-NH-SO₂-(C₁-C₅ alkyl),
- SO₂-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- 10 -SO₂-(C₁-C₅ alkyl)-N-pyrrolidine,
- SO₂-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- SO₂-(C₁-C₅ alkyl)-C(O)-O-(C₁-C₅ alkyl),
- SO₂-(C₁-C₅ alkyl)-C(O)-OH,
- SO₂-(C₁-C₅ alkyl)-5-tetrazolyl,
- 15 -SO₂-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- SO₂-(C₁-C₅ alkyl)-SO₂-NH₂,
- SO₂-(C₁-C₅ alkyl)-SO₂-NH-(C₁-C₅ alkyl),
- SO₂-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂,
- SO₂-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- 20 -SO₂-(C₁-C₅ alkyl)-P(O)-(O-C₁-C₅ alkyl)₂,
- SO₂-(C₁-C₅ alkyl),
- SO₂-(C₂-C₅ alkenyl),
- SO₂-(C₃-C₅ cycloalkyl),
- SO₂-(C₃-C₅ cycloalkenyl),
- 25 -SO₂-(C₁-C₅ hydroxyalkyl),
- SO₂-(C₁-C₅ fluoroalkyl),
- SO₂-(C₁-C₅)-phenyl,
- SO₂-N=CHN(C₁-C₅ alkyl)₂,

- 30 -S(O)-NH₂,
- S(O)-NH-(C₁-C₅ alkyl),
- S(O)-NH-CH₂-C(O)OH

5 -S(O)-NH-(C₁-C₅ alkyl)-C(O)OH,
 -S(O)-NH-CH₂-C(O)(O-C₁-C₅ alkyl),
 -S(O)-NH-(C₁-C₅ alkyl)-C(O)(O-C₁-C₅ alkyl),
 -S(O)HC(O)-(C₃-C₆ cycloalkyl),
 -S(O)-NH-C(O)-(C₁-C₅ alkyl),
 -S(O)-N-(C₁-C₅ alkyl)₂,
 -S(O)-(C₁-C₅ alkyl)-O-(C₁-C₅ alkyl),
 -S(O)-(C₁-C₅ alkyl)-C(O)-(C₁-C₅ alkyl),
 -S(O)-(C₁-C₅ alkyl)-C(O)-(O-C₁-C₅ alkyl),
 -S(O)-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
 -S(O)-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂,
 -S(O)-(C₁-C₅ alkyl)-C(O)-NH₂,
 -S(O)-(C₁-C₅ alkyl)-C(O)-NH-(C₁-C₅ alkyl),
 -S(O)-(C₁-C₅ alkyl)-C(O)-N-(C₁-C₅ alkyl)₂,
 -S(O)-(C₁-C₅ alkyl)-NH-SO₂-(C₁-C₅ alkyl),
 -S(O)-(C₁-C₅ alkyl)-NH-S(O)-(C₁-C₅ alkyl),
 -S(O)-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
 -S(O)-(C₁-C₅ alkyl)-N-pyrrolidine,
 -S(O)-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
 -S(O)-(C₁-C₅ alkyl)-C(O)-(O-C₁-C₅ alkyl),
 -S(O)-(C₁-C₅ alkyl)-C(O)-OH,
 -S(O)-(C₁-C₅ alkyl)-5-tetrazolyl,
 -S(O)-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
 -S(O)-(C₁-C₅ alkyl)-S(O)-(C₁-C₅ alkyl),
 -S(O)-(C₁-C₅ alkyl)-SO₂-NH₂,
 -S(O)-(C₁-C₅ alkyl)-S(O)-NH₂,
 -S(O)-(C₁-C₅ alkyl)-SO₂-NH-(C₁-C₅ alkyl),
 -S(O)-(C₁-C₅ alkyl)-S(O)-NH-(C₁-C₅ alkyl),
 -S(O)-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂,
 -S(O)-(C₁-C₅ alkyl)-S(O)-N-(C₁-C₅ alkyl)₂,
 -S(O)-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
 -S(O)-(C₁-C₅ alkyl)-S(O)-(C₁-C₅ alkyl),
 -S(O)-(C₁-C₅ alkyl)-S(O)-(C₁-C₅ alkyl),

- S(O)-(C₁-C₅ alkyl)-P(O)-(O-C₁-C₅ alkyl)₂ ,
-S(O)-N=CHN(C₁-C₅ alkyl) ₂,
- NHC(S)NH₂,
- 5 -NHC(S)NH-(C₁-C₅ alkyl),
-NHC(S)N-(C₁-C₅ alkyl)₂,
-NHC(S)NH-(C₂-C₅ alkenyl),
-NHC(S)NH-(C₃-C₅ cycloalkyl),
-NHC(S)NH-(C₃-C₅ cycloalkenyl),
- 10 -NHC(S)NH-(C₁-C₅ fluoroalkyl),
-NHC(S)NH-C₁-C₅ hydroxyalkyl,
-NHC(S)NH-(C₁-C₅ fluoroalkyl)
-NHC(S)NH-phenyl,
-NHC(S)NH-(C₁-C₅ alkyl)-C(O)-OH,
- 15 -NHC(S)NH-(C₁-C₅ alkyl)-O-(C₁-C₅ alkyl),
-NHC(S)NH-(C₁-C₅ alkyl)-C(O)-(C₁-C₅ alkyl),
-NHC(S)NH-(C₁-C₅ alkyl)-C(O)-(O-C₁-C₅ alkyl),
-NHC(S)NH-(C₁-C₅ alkyl)-NH₂,
- 20 -NHC(S)NH-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
-NHC(S)NH-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂,
-NHC(S)NH-(C₁-C₅ alkyl)-C(O)-NH₂,
-NHC(S)NH-(C₁-C₅ alkyl)-C(O)-NH-(C₁-C₅ alkyl),
- 25 -NHC(S)NH-(C₁-C₅ alkyl)-C(O)-N-(C₁-C₅ alkyl)₂,
-NHC(S)NH-(C₁-C₅ alkyl)-NH-SO₂-(C₁-C₅ alkyl),
-NHC(S)NH-(C₁-C₅ alkyl)-NH-S(O)-(C₁-C₅ alkyl),
-NHC(S)NH-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- 30 -NHC(S)NH-(C₁-C₅ alkyl)-N-pyrrolidine,
-NHC(S)NH-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-
3-yl),
-NHC(S)NH-(C₁-C₅ alkyl)-5-tetrazolyl,
-NHC(S)NH-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
-NHC(S)NH-(C₁-C₅ alkyl)-SO₂-NH₂,

- 5
- NHC(S)NH-(C₁-C₅ alkyl)-SO₂-NH-(C₁-C₅ alkyl),
 - NHC(S)NH-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂,
 - NHC(S)NH-(C₁-C₅ alkyl)-S(O)-(C₁-C₅ alkyl),
 - NHC(S)NH-(C₁-C₅ alkyl)-S(O)-NH₂,
 - NHC(S)NH-(C₁-C₅ alkyl)-S(O)-NH-(C₁-C₅ alkyl),
 - NHC(S)NH-(C₁-C₅ alkyl)-S(O)-N-(C₁-C₅ alkyl)₂,
 - NHC(S)NH-(C₁-C₅ alkyl)-P(O)-(O-C₁-C₅ alkyl)₂,
- 10
- NHC(O)NH₂,
 - NHC(O)NH-(C₁-C₅ alkyl),
 - NHC(O)N-(C₁-C₅ alkyl)₂,
 - NHC(O)NH-(C₂-C₅ alkenyl),
 - NHC(O)NH-(C₃-C₅ cycloalkyl),
 - NHC(O)NH-(C₃-C₅ cycloalkenyl),
 - NHC(O)NH-(C₁-C₅ hydroxyalkyl),
 - NHC(O)NH-(C₁-C₅ fluoroalkyl),
 - NHC(O)NH-phenyl,
 - NHC(O)NH-(C₁-C₅ alkyl)-NH₂,
 - NHC(O)NH-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
- 15
- NHC(O)NH-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂,
 - NHC(O)NH-(C₁-C₅ alkyl)-O-(C₁-C₅ alkyl),
 - NHC(O)NH-(C₁-C₅ alkyl)-NH₂,
 - NHC(O)NH-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
 - NHC(O)NH-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂,
- 20
- NHC(O)NH-(C₁-C₅ alkyl)-C(O)-NH₂,
 - NHC(O)NH-(C₁-C₅ alkyl)-C(O)-NH-(C₁-C₅ alkyl),
 - NHC(O)NH-(C₁-C₅ alkyl)-C(O)-N-(C₁-C₅ alkyl)₂,
 - NHC(O)NH-(C₁-C₅ alkyl)-C(O)-(C₁-C₅ alkyl),
 - NHC(O)NH-(C₁-C₅ alkyl)-NH-SO₂-(C₁-C₅ alkyl),
- 25
- NHC(O)NH-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
 - NHC(O)NH-(C₁-C₅ alkyl)-N-pyrrolidine,
 - NHC(O)NH-(C₁-C₅ alkyl)-
- 30

-37-

- (1-methylpyrrolidin-2-one-3-yl),
- NHC(O)NH-(C₁-C₅ alkyl)-C(O)-OH,
- NHC(O)NH-(C₁-C₅ alkyl)-C(O)-O-(C₁-C₅ alkyl),
- NHC(O)NH-(C₁-C₅ alkyl)-5-tetrazolyl,
- 5 -NHC(O)NH-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- NHC(O)NH-(C₁-C₅ alkyl)-SO₂-NH₂,
- NHC(O)NH-(C₁-C₅ alkyl)-SO₂-NH-(C₁-C₅ alkyl),
- NHC(O)NH-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂,
- NHC(O)NH-(C₁-C₅ alkyl)-P(O)-O-(C₁-C₅ alkyl)₂,
- 10 -NH₂,
- NH-(C₁-C₅ alkyl),
- NH-CH₂-C(O)OH,
- N-(C₁-C₅ alkyl)₂,
- NH-C(O)-NH₂,
- 15 -NH-C(O)-NH-(C₁-C₅ alkyl),
- NH-C(O)-N-(C₁-C₅ alkyl)₂,
- NH-C(O)-(C₁-C₅ alkyl),
- NH-SO₂-(C₁-C₅ alkyl),
- NH-S(O)-(C₁-C₅ alkyl),
- 20 -N(CH₃)(OCH₃),
- N(OH)(CH₃),
- N-pyrrolidin-2-one,
- N-pyrrolidine,
- (1-methylpyrrolidin-2-one-3-yl),

25

-38-

-39-

5

10

1-hydroxycyclopentenyl,
1-hydroxycyclohexenyl,

-40-

- 1-hydroxycycloheptenyl,
- 1-hydroxycyclooctenyl,
- 1-hydroxycyclopropyl,
- 1-hydroxycyclobutyl,
- 5 1-hydroxycyclopentyl,
- 1-hydroxycyclohexyl,
- 1-hydroxycycloheptyl,
- 1-hydroxycyclooctyl,
- 5-tetrazolyl,
- 10 -carboxyl,
- OH,
- I,
- Br
- Cl
- 15 -F,
- CHO,
- NO₂,
- CN,
- sulfonamide,
- 20 sulfonamide,
- urethane-type radical, and
- (Acidic Group);

provided that the combined groups of formula I represented by

25

may both be lipophilic, or either one may be lipophilic and the other one polar; but both combined groups may not be polar.

Preferred compounds of the invention are represented by formula (II) or a pharmaceutically acceptable salt or prodrug derivative thereof:

5 wherein;

R and R' are independently methyl, ethyl, propyl, 1-methylethyl, 1-methylpropyl, 2-methylpropyl, or 1,1-dimethylethyl;

RP and RT are independently selected from the group consisting of hydrogen, fluoro, -CF₃, -CH₂F, -CHF₂, -CH₂Cl, methoxy, ethoxy, vinyl, methyl, ethyl, propyl, 10 cyclopropyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, or 1,1-dimethylethyl;

LT and LP are independently selected from one the following divalent linking group;

-42-

a bond

or

Zp is selected from

-44-

5

1-hydroxycyclopentenyl,

1-hydroxycyclohexenyl,

1-hydroxycycloheptenyl,

1-hydroxycyclooctenyl,

1-hydroxycyclopropyl,

1-hydroxycyclobutyl,

1-hydroxycyclopentyl,

1-hydroxycyclohexyl,

1-hydroxycycloheptyl,

10

and

1-hydroxycyclooctyl.

15

 Z_T is a group represented by one of the structural formulae:

-45-

-46-

5

-47-

-50-

-52-

5

-53-

5

-54-

provided that the combined groups of formula I represented by

- 5 may both be lipophilic, or either one may be lipophilic and the other one polar; but both groups may not be polar.

Preferred compounds of the invention are also those represented by the formula III or a pharmaceutically acceptable salt or prodrug derivative thereof:

10

wherein the substituents R, R', R_P, R_T, L_P, L_T, Z_P, and Z_T are the same as defined for formula II, supra., provided that the combined groups of formula I represented by

may both be lipophilic, or either one may be lipophilic and the other one polar; but both groups may not be polar.

Preferred compounds of the invention are also those represented by the formula IV
5 or a pharmaceutically acceptable salt or prodrug derivative thereof:

wherein the substituents R, R', R_P, R_T, L_P, L_T, Z_P, and Z_T are the same as defined for
10 formula II, supra., provided that the combined groups of formula I represented by

may both be lipophilic, or either one may be lipophilic and the other one polar; but both groups may not be polar.

Preferred compounds of the invention are also those represented by the formula V
15 or a pharmaceutically acceptable salt or prodrug derivative thereof:

wherein the substituents R, R', R_P, R_T, L_P, L_T, Z_P, and Z_T are the same as defined for formula II, supra., provided that the combined groups of formula I represented by

- 5 may both be lipophilic, or either one may be lipophilic and the other one polar; but both groups may not be polar.

Preferred Substituents of Compounds Represented by Formulae I, II, III, IV, and V:

Particularly preferred compounds of Formulae I thru V are those wherein the divalent linking group, -(L_T)- is a bond, -O-, or -CH₂-.

- 10 Particularly preferred compounds of Formulae I thru V are those wherein both R and R' are ethyl.

Particularly preferred compounds of Formulae I thru V are those wherein both R_P and R_T are methyl.

- 15 Particularly preferred salt forms of Formulae I thru V are the potassium or sodium salts.

A particularly preferred C₁-C₅ alkyl group where Z_P and/or Z_T contain such group is 1,1-dimethylethyl.

- 20 Preferred compounds useful in practicing the therapeutic methods of the invention as shown in the structural formulae X1 to X188, as follows:

X1)

-60-

X2)

X3)

5

X4)

X5)

10

-61-

X9)

X10)

5

10 X13)

X14)

15

-62-

X17)

X19)

5

X20)

X21)

10 X22)

X24)

-63-

X26)

X28)

5

X29)

X31)

10

-64-

X32)

X34)

5

X38)

X41)

10

X42)

-65-

X45)

5 X46)

X47)

10 X50)

-66-

X51)

X52)

5 X53)

X54)

10

X56)

X58)

5 X60)

X62)

X64)

X65)

X66)

5

X69)

X70)

-69-

X71)

X72)

5

X75)

-70-

X78)

X81)

5

X83)

10 X86)

-71-

X88)

X91)

5

X92)

10 X93)

X96)

-72-

X99)

X102)

5

-73-

X103)

5 X106)

X107)

X110)

10

X111)

-74-

X114)

X118)

5

X119)

X122)

10

-75-

X124)

X125)

5

X128)

X130)

10

X131)

-76-

X134)

5

X137)

X139)

10

X140)

15

-77-

X141)

X144)

5

X145)

10 X146)

X147)

15 X148)

-78-

X149)

5 X150)

X152)

10 X153)

X154)

-79-

X155)

5

X156)

X157)

10

X158)

-80-

X159)

X160)

5

X161)

X162)

10 X163)

X164)

-81-

X165)

X166)

5

X169)

X171)

10 X172)

X174)

X175)

5 X176)

X177)

X178)

10

X179)

X183)

-83-

X184)

X185)

5

X187)

X188)

10

Other specific compounds that are preferred embodiments of this invention and are preferred for practicing the method of treatment of the invention are set out in the following four Tables. All numbers in the Tables cells reciting chemical species are subscripts, for example, in row, Code 11, Column, W_T, the symbol, "CO₂H" is to be understood as the conventional chemical nomenclature, - CO₂H -. Each row of Tables

15

1, 2, 3, and 4 is a single compound having an identifying "Code" (e.g., "206", "318A") defining the specific substituents in the structural formula displayed above the Tables, as follows:

5

Table 1

Code	L_1	Y	W_T
1	C(O)	CH ₂	-CO ₂ Me
2	CHOH	CH ₂	-CO ₂ Me
3	C(Me)OH	CH ₂	-CO ₂ Me
4	C(O)	CH(Me)	-CO ₂ Me
5	CHOH	CH(Me)	-CO ₂ Me
6	C(Me)OH	CH(Me)	-CO ₂ Me
7	C(O)	CH ₂	-CO ₂ H
8	CHOH	CH ₂	-CO ₂ H
9	C(Me)OH	CH ₂	-CO ₂ H
10	C(O)	CH(Me)	-CO ₂ H
11	CHOH	CH(Me)	-CO ₂ H
12	C(Me)OH	CH(Me)	-CO ₂ H
13	C(O)	CH ₂	-C(O)NH ₂
14	CHOH	CH ₂	-C(O)NH ₂
15	C(Me)OH	CH ₂	-C(O)NH ₂
16	C(O)	CH(Me)	-C(O)NH ₂
17	CHOH	CH(Me)	-C(O)NH ₂

-85-

18	C(Me)OH	CH(Me)	-C(O)NH2
19	C(O)	CH2	-C(O)NMe2
20	CHOH	CH2	-C(O)NMe2
21	C(Me)OH	CH2	-C(O)NMe2
22	C(O)	CH(Me)	-C(O)NMe2
23	CHOH	CH(Me)	-C(O)NMe2
24	C(Me)OH	CH(Me)	-C(O)NMe2
25	C(O)	CH2	5-tetrazolyl
26	CHOH	CH2	5-tetrazolyl
27	C(Me)OH	CH2	5-tetrazolyl
28	C(O)	CH(Me)	5-tetrazolyl
29	CHOH	CH(Me)	5-tetrazolyl
30	C(Me)OH	CH(Me)	5-tetrazolyl
31	C(O)	CH2	-C(O)-NH-5-tetrazolyl
32	CHOH	CH2	-C(O)-NH-5-tetrazolyl
33	C(Me)OH	CH2	-C(O)-NH-5-tetrazolyl
34	C(O)	CH(Me)	-C(O)-NH-5-tetrazolyl
35	CHOH	CH(Me)	-C(O)-NH-5-tetrazolyl
36	C(Me)OH	CH(Me)	-C(O)-NH-5-tetrazolyl
37	C(O)	CH2	-C(O)NHCH2SO2Me
38	CHOH	CH2	-C(O)NHCH2SO2Me
39	C(Me)OH	CH2	-C(O)NHCH2SO2Me
40	C(O)	CH(Me)	-C(O)NHCH2SO2Me
41	CHOH	CH(Me)	-C(O)NHCH2SO2Me
42	C(Me)OH	CH(Me)	-C(O)NHCH2SO2Me
43	C(O)	CH2	-C(O)NHCH2CH2SO2Me
44	CHOH	CH2	-C(O)NHCH2CH2SO2Me
45	C(Me)OH	CH2	-C(O)NHCH2CH2SO2Me
46	C(O)	CH(Me)	-C(O)NHCH2CH2SO2Me
47	CHOH	CH(Me)	-C(O)NHCH2CH2SO2Me
48	C(Me)OH	CH(Me)	-C(O)NHCH2CH2SO2Me

49	C(O)	CH2	-C(O)NHSO2Me
50	CHOH	CH2	-C(O)NHSO2Me
51	C(Me)OH	CH2	-C(O)NHSO2Me
52	C(O)	CH(Me)	-C(O)NHSO2Me
53	CHOH	CH(Me)	-C(O)NHSO2Me
54	C(Me)OH	CH(Me)	-C(O)NHSO2Me
55	C(O)	CH2	-CH2-C(O)NHSO2Et
56	CHOH	CH2	-CH2-C(O)NHSO2Et
57	C(Me)OH	CH2	-CH2-C(O)NHSO2Et
58	C(O)	CH(Me)	-CH2-C(O)NHSO2Et
59	CHOH	CH(Me)	-CH2-C(O)NHSO2Et
60	C(Me)OH	CH(Me)	-CH2-C(O)NHSO2Et
61	C(O)	CH2	-CH2-C(O)NHSO2iPr
62	CHOH	CH2	-CH2-C(O)NHSO2iPr
63	C(Me)OH	CH2	-CH2-C(O)NHSO2iPr
64	C(O)	CH(Me)	-CH2-C(O)NHSO2iPr
65	CHOH	CH(Me)	-CH2-C(O)NHSO2iPr
66	C(Me)OH	CH(Me)	-CH2-C(O)NHSO2iPr
67	C(O)	CH2	-CH2-C(O)NHSO2tBu
68	CHOH	CH2	-CH2-C(O)NHSO2tBu
69	C(Me)OH	CH2	-CH2-C(O)NHSO2tBu
70	C(O)	CH(Me)	-CH2-C(O)NHSO2tBu
71	CHOH	CH(Me)	-CH2-C(O)NHSO2tBu
72	C(Me)OH	CH(Me)	-CH2-C(O)NHSO2tBu
73	C(O)	CH2	-CH2NHSO2Me
74	CHOH	CH2	-CH2NHSO2Me
75	C(Me)OH	CH2	-CH2NHSO2Me
76	C(O)	CH(Me)	-CH2NHSO2Me
77	CHOH	CH(Me)	-CH2NHSO2Me
78	C(Me)OH	CH(Me)	-CH2NHSO2Me
79	C(O)	CH2	-CH2NHSO2Et

80	CHOH	CH2	-CH2NHSO2Et
81	C(Me)OH	CH2	-CH2NHSO2Et
82	C(O)	CH(Me)	-CH2NHSO2Et
83	CHOH	CH(Me)	-CH2NHSO2Et
84	C(Me)OH	CH(Me)	-CH2NHSO2Et
85	C(O)	CH2	-CH2NHSO2iPr
86	CHOH	CH2	-CH2NHSO2iPr
87	C(Me)OH	CH2	-CH2NHSO2iPr
88	C(O)	CH(Me)	-CH2NHSO2iPr
89	CHOH	CH(Me)	-CH2NHSO2iPr
90	C(Me)OH	CH(Me)	-CH2NHSO2iPr
91	C(O)	CH2	-CH2NHSO2tBu
92	CHOH	CH2	-CH2NHSO2tBu
93	C(Me)OH	CH2	-CH2NHSO2tBu
94	C(O)	CH(Me)	-CH2NHSO2tBu
95	CHOH	CH(Me)	-CH2NHSO2tBu
96	C(Me)OH	CH(Me)	-CH2NHSO2tBu
97	C(O)	CH2	-CH2-N-pyrrolidin-2-one
98	CHOH	CH2	-CH2-N-pyrrolidin-2-one
99	C(Me)OH	CH2	-CH2-N-pyrrolidin-2-one
100	C(O)	CH(Me)	-CH2-N-pyrrolidin-2-one
101	CHOH	CH(Me)	-CH2-N-pyrrolidin-2-one
102	C(Me)OH	CH(Me)	-CH2-N-pyrrolidin-2-one
103	C(O)	CH2	-CH2-(1-methylpyrrolidin-2-one-3-yl)
104	CHOH	CH2	-CH2-(1-methylpyrrolidin-2-one-3-yl)
105	C(Me)OH	CH2	-CH2-(1-methylpyrrolidin-2-one-3-yl)
106	C(O)	CH(Me)	-CH2-(1-methylpyrrolidin-2-one-3-yl)
107	CHOH	CH(Me)	-CH2-(1-methylpyrrolidin-2-one-3-yl)
108	C(Me)OH	CH(Me)	-CH2-(1-methylpyrrolidin-2-one-3-yl)
109	C(O)	CH2	-CH2CO2Me
110	CHOH	CH2	-CH2CO2Me

111	C(Me)OH	CH2	-CH2CO2Me
112	C(O)	CH(Me)	-CH2CO2Me
113	CHOH	CH(Me)	-CH2CO2Me
114	C(Me)OH	CH(Me)	-CH2CO2Me
115	C(O)	CH2	-CH2CO2H
116	CHOH	CH2	-CH2CO2H
117	C(Me)OH	CH2	-CH2CO2H
118	C(O)	CH(Me)	-CH2CO2H
119	CHOH	CH(Me)	-CH2CO2H
120	C(Me)OH	CH(Me)	-CH2CO2H
121	C(O)	CH2	-CH2C(O)NH2
122	CHOH	CH2	-CH2C(O)NH2
123	C(Me)OH	CH2	-CH2C(O)NH2
124	C(O)	CH(Me)	-CH2C(O)NH2
125	CHOH	CH(Me)	-CH2C(O)NH2
126	C(Me)OH	CH(Me)	-CH2C(O)NH2
127	C(O)	CH2	-CH2C(O)NMe2
128	CHOH	CH2	-CH2C(O)NMe2
129	C(Me)OH	CH2	-CH2C(O)NMe2
130	C(O)	CH(Me)	-CH2C(O)NMe2
131	CHOH	CH(Me)	-CH2C(O)NMe2
132	C(Me)OH	CH(Me)	-CH2C(O)NMe2
133	C(O)	CH2	-CH2C(O)-N-pyrrolidine
134	CHOH	CH2	-CH2C(O)-N-pyrrolidine
135	C(Me)OH	CH2	-CH2C(O)-N-pyrrolidine
136	C(O)	CH(Me)	-CH2C(O)-N-pyrrolidine
137	CHOH	CH(Me)	-CH2C(O)-N-pyrrolidine
138	C(Me)OH	CH(Me)	-CH2C(O)-N-pyrrolidine
139	C(O)	CH2	-CH2-5-tetrazolyl
140	CHOH	CH2	-CH2-5-tetrazolyl
141	C(Me)OH	CH2	-CH2-5-tetrazolyl

-89-

142	C(O)	CH(Me)	-CH2-5-tetrazolyl
143	CHOH	CH(Me)	-CH2-5-tetrazolyl
144	C(Me)OH	CH(Me)	-CH2-5-tetrazolyl
145	C(O)	CH2	-C(O)C(O)OH
146	CHOH	CH2	-C(O)C(O)OH
147	C(Me)OH	CH2	-C(O)C(O)OH
148	C(O)	CH(Me)	-C(O)C(O)OH
149	CHOH	CH(Me)	-C(O)C(O)OH
150	C(Me)OH	CH(Me)	-C(O)C(O)OH
151	C(O)	CH2	-CH(OH)C(O)OH
152	CHOH	CH2	-CH(OH)C(O)OH
153	C(Me)OH	CH2	-CH(OH)C(O)OH
154	C(O)	CH(Me)	-CH(OH)C(O)OH
155	CHOH	CH(Me)	-CH(OH)C(O)OH
156	C(Me)OH	CH(Me)	-CH(OH)C(O)OH
157	C(O)	CH2	-C(O)C(O)NH2
158	CHOH	CH2	-C(O)C(O)NH2
159	C(Me)OH	CH2	-C(O)C(O)NH2
160	C(O)	CH(Me)	-C(O)C(O)NH2
161	CHOH	CH(Me)	-C(O)C(O)NH2
162	C(Me)OH	CH(Me)	-C(O)C(O)NH2
163	C(O)	CH2	-CH(OH)C(O)NH2
164	CHOH	CH2	-CH(OH)C(O)NH2
165	C(Me)OH	CH2	-CH(OH)C(O)NH2
166	C(O)	CH(Me)	-CH(OH)C(O)NH2
167	CHOH	CH(Me)	-CH(OH)C(O)NH2
168	C(Me)OH	CH(Me)	-CH(OH)C(O)NH2
169	C(O)	CH2	-C(O)C(O)NMe2
170	CHOH	CH2	-C(O)C(O)NMe2
171	C(Me)OH	CH2	-C(O)C(O)NMe2
172	C(O)	CH(Me)	-C(O)C(O)NMe2

173	CHOH	CH(Me)	-C(O)C(O)NMe2
174	C(Me)OH	CH(Me)	-C(O)C(O)NMe2
175	C(O)	CH2	-CH(OH)C(O)NMe2
176	CHOH	CH2	-CH(OH)C(O)NMe2
177	C(Me)OH	CH2	-CH(OH)C(O)NMe2
178	C(O)	CH(Me)	-CH(OH)C(O)NMe2
179	CHOH	CH(Me)	-CH(OH)C(O)NMe2
180	C(Me)OH	CH(Me)	-CH(OH)C(O)NMe2
181	C(O)	CH2	-CH2CH2CO2H
182	CHOH	CH2	-CH2CH2CO2H
183	C(Me)OH	CH2	-CH2CH2CO2H
184	C(O)	CH(Me)	-CH2CH2CO2H
185	CHOH	CH(Me)	-CH2CH2CO2H
186	C(Me)OH	CH(Me)	-CH2CH2CO2H
187	C(O)	CH2	-CH2CH2C(O)NH2
188	CHOH	CH2	-CH2CH2C(O)NH2
189	C(Me)OH	CH2	-CH2CH2C(O)NH2
190	C(O)	CH(Me)	-CH2CH2C(O)NH2
191	CHOH	CH(Me)	-CH2CH2C(O)NH2
192	C(Me)OH	CH(Me)	-CH2CH2C(O)NH2
193	C(O)	CH2	-CH2CH2C(O)NMe2
194	CHOH	CH2	-CH2CH2C(O)NMe2
195	C(Me)OH	CH2	-CH2CH2C(O)NMe2
196	C(O)	CH(Me)	-CH2CH2C(O)NMe2
197	CHOH	CH(Me)	-CH2CH2C(O)NMe2
198	C(Me)OH	CH(Me)	-CH2CH2C(O)NMe2
199	C(O)	CH2	-CH2CH2-5-tetrazolyl
200	CHOH	CH2	-CH2CH2-5-tetrazolyl
201	C(Me)OH	CH2	-CH2CH2-5-tetrazolyl
202	C(O)	CH(Me)	-CH2CH2-5-tetrazolyl
203	CHOH	CH(Me)	-CH2CH2-5-tetrazolyl

204	C(Me)OH	CH(Me)	-CH2CH2-5-tetrazolyl
205	C(O)	CH2	-CH2S(O)2Me
206	CHOH	CH2	-CH2S(O)2Me
207	C(Me)OH	CH2	-CH2S(O)2Me
208	C(O)	CH(Me)	-CH2S(O)2Me
209	CHOH	CH(Me)	-CH2S(O)2Me
210	C(Me)OH	CH(Me)	-CH2S(O)2Me
211	C(O)	CH2	-CH2CH2S(O)2Me
212	CHOH	CH2	-CH2CH2S(O)2Me
213	C(Me)OH	CH2	-CH2CH2S(O)2Me
214	C(O)	CH(Me)	-CH2CH2S(O)2Me
215	CHOH	CH(Me)	-CH2CH2S(O)2Me
216	C(Me)OH	CH(Me)	-CH2CH2S(O)2Me
217	C(O)	CH2	-CH2CH2CH2S(O)2Me
218	CHOH	CH2	-CH2CH2CH2S(O)2Me
219	C(Me)OH	CH2	-CH2CH2CH2S(O)2Me
220	C(O)	CH(Me)	-CH2CH2CH2S(O)2Me
221	CHOH	CH(Me)	-CH2CH2CH2S(O)2Me
222	C(Me)OH	CH(Me)	-CH2CH2CH2S(O)2Me
223	C(O)	CH2	-CH2S(O)2Et
224	CHOH	CH2	-CH2S(O)2Et
225	C(Me)OH	CH2	-CH2S(O)2Et
226	C(O)	CH(Me)	-CH2S(O)2Et
227	CHOH	CH(Me)	-CH2S(O)2Et
228	C(Me)OH	CH(Me)	-CH2S(O)2Et
229	C(O)	CH2	-CH2CH2S(O)2Et
230	CHOH	CH2	-CH2CH2S(O)2Et
231	C(Me)OH	CH2	-CH2CH2S(O)2Et
232	C(O)	CH(Me)	-CH2CH2S(O)2Et
233	CHOH	CH(Me)	-CH2CH2S(O)2Et
234	C(Me)OH	CH(Me)	-CH2CH2S(O)2Et

235	C(O)	CH2	-CH2CH2CH2S(O)2Et
236	CHOH	CH2	-CH2CH2CH2S(O)2Et
237	C(Me)OH	CH2	-CH2CH2CH2S(O)2Et
238	C(O)	CH(Me)	-CH2CH2CH2S(O)2Et
239	CHOH	CH(Me)	-CH2CH2CH2S(O)2Et
240	C(Me)OH	CH(Me)	-CH2CH2CH2S(O)2Et
241	C(O)	CH2	-CH2S(O)2iPr
242	CHOH	CH2	-CH2S(O)2iPr
243	C(Me)OH	CH2	-CH2S(O)2iPr
244	C(O)	CH(Me)	-CH2S(O)2iPr
245	CHOH	CH(Me)	-CH2S(O)2iPr
246	C(Me)OH	CH(Me)	-CH2S(O)2iPr
247	C(O)	CH2	-CH2CH2S(O)2iPr
248	CHOH	CH2	-CH2CH2S(O)2iPr
249	C(Me)OH	CH2	-CH2CH2S(O)2iPr
250	C(O)	CH(Me)	-CH2CH2S(O)2iPr
251	CHOH	CH(Me)	-CH2CH2S(O)2iPr
252	C(Me)OH	CH(Me)	-CH2CH2S(O)2iPr
253	C(O)	CH2	-CH2S(O)2tBu
254	CHOH	CH2	-CH2S(O)2tBu
255	C(Me)OH	CH2	-CH2S(O)2tBu
256	C(O)	CH(Me)	-CH2S(O)2tBu
257	CHOH	CH(Me)	-CH2S(O)2tBu
258	C(Me)OH	CH(Me)	-CH2S(O)2tBu
259	C(O)	CH2	-CH2CH2S(O)2tBu
260	CHOH	CH2	-CH2CH2S(O)2tBu
261	C(Me)OH	CH2	-CH2CH2S(O)2tBu
262	C(O)	CH(Me)	-CH2CH2S(O)2tBu
263	CHOH	CH(Me)	-CH2CH2S(O)2tBu
264	C(Me)OH	CH(Me)	-CH2CH2S(O)2tBu
265	C(O)	CH2	-CH2CH2S(O)2NH2

266	CHOH	CH2	-CH2CH2S(O)2NH2
267	C(Me)OH	CH2	-CH2CH2S(O)2NH2
268	C(O)	CH(Me)	-CH2CH2S(O)2NH2
269	CHOH	CH(Me)	-CH2CH2S(O)2NH2
270	C(Me)OH	CH(Me)	-CH2CH2S(O)2NH2
271	C(O)	CH2	-CH2CH2S(O)2NMe2
272	CHOH	CH2	-CH2CH2S(O)2NMe2
273	C(Me)OH	CH2	-CH2CH2S(O)2NMe2
274	C(O)	CH(Me)	-CH2CH2S(O)2NMe2
275	CHOH	CH(Me)	-CH2CH2S(O)2NMe2
276	C(Me)OH	CH(Me)	-CH2CH2S(O)2NMe2
277	C(O)	CH2	-C(O)CH2S(O)2Me
278	CHOH	CH2	-C(O)CH2S(O)2Me
279	C(Me)OH	CH2	-C(O)CH2S(O)2Me
280	C(O)	CH(Me)	-C(O)CH2S(O)2Me
281	CHOH	CH(Me)	-C(O)CH2S(O)2Me
282	C(Me)OH	CH(Me)	-C(O)CH2S(O)2Me
283	C(O)	CH2	-C(O)CH2CH2S(O)2Me
284	CHOH	CH2	-C(O)CH2CH2S(O)2Me
285	C(Me)OH	CH2	-C(O)CH2CH2S(O)2Me
286	C(O)	CH(Me)	-C(O)CH2CH2S(O)2Me
287	CHOH	CH(Me)	-C(O)CH2CH2S(O)2Me
288	C(Me)OH	CH(Me)	-C(O)CH2CH2S(O)2Me
289	C(O)	CH2	-CH2CH2CH2S(O)2NH2
290	CHOH	CH2	-CH2CH2CH2S(O)2NH2
291	C(Me)OH	CH2	-CH2CH2CH2S(O)2NH2
292	C(O)	CH(Me)	-CH2CH2CH2S(O)2NH2
293	CHOH	CH(Me)	-CH2CH2CH2S(O)2NH2
294	C(Me)OH	CH(Me)	-CH2CH2CH2S(O)2NH2
295	C(O)	CH2	-S(O)2Me
296	CHOH	CH2	-S(O)2Me

297	C(Me)OH	CH2	-S(O)2Me
298	C(O)	CH(Me)	-S(O)2Me
299	CHOH	CH(Me)	-S(O)2Me
300	C(Me)OH	CH(Me)	-S(O)2Me
301	C(O)	CH2	-S(O)2Et
302	CHOH	CH2	-S(O)2Et
303	C(Me)OH	CH2	-S(O)2Et
304	C(O)	CH(Me)	-S(O)2Et
305	CHOH	CH(Me)	-S(O)2Et
306	C(Me)OH	CH(Me)	-S(O)2Et
307	C(O)	CH2	-S(O)2iPr
308	CHOH	CH2	-S(O)2iPr
309	C(Me)OH	CH2	-S(O)2iPr
310	C(O)	CH(Me)	-S(O)2iPr
311	CHOH	CH(Me)	-S(O)2iPr
312	C(Me)OH	CH(Me)	-S(O)2iPr
313	C(O)	CH2	-S(O)2tBu
314	CHOH	CH2	-S(O)2tBu
315	C(Me)OH	CH2	-S(O)2tBu
316	C(O)	CH(Me)	-S(O)2tBu
317	CHOH	CH(Me)	-S(O)2tBu
318	C(Me)OH	CH(Me)	-S(O)2tBu
319	C(O)	CH2	-S(O)2NH2
320	CHOH	CH2	-S(O)2NH2
321	C(Me)OH	CH2	-S(O)2NH2
322	C(O)	CH(Me)	-S(O)2NH2
323	CHOH	CH(Me)	-S(O)2NH2
324	C(Me)OH	CH(Me)	-S(O)2NH2
325	C(O)	CH2	-S(O)2NMe2
326	CHOH	CH2	-S(O)2NMe2
327	C(Me)OH	CH2	-S(O)2NMe2

-95-

328	C(O)	CH(Me)	-S(O)2NMe2
329	CHOH	CH(Me)	-S(O)2NMe2
330	C(Me)OH	CH(Me)	-S(O)2NMe2
331	C(O)	CH2	-S(O)2CH2S(O)2Me
332	CHOH	CH2	-S(O)2CH2S(O)2Me
333	C(Me)OH	CH2	-S(O)2CH2S(O)2Me
334	C(O)	CH(Me)	-S(O)2CH2S(O)2Me
335	CHOH	CH(Me)	-S(O)2CH2S(O)2Me
336	C(Me)OH	CH(Me)	-S(O)2CH2S(O)2Me
337	C(O)	CH2	-S(O)2CH2S(O)2Et
338	CHOH	CH2	-S(O)2CH2S(O)2Et
339	C(Me)OH	CH2	-S(O)2CH2S(O)2Et
340	C(O)	CH(Me)	-S(O)2CH2S(O)2Et
341	CHOH	CH(Me)	-S(O)2CH2S(O)2Et
342	C(Me)OH	CH(Me)	-S(O)2CH2S(O)2Et
343	C(O)	CH2	-S(O)2CH2S(O)2iPr
344	CHOH	CH2	-S(O)2CH2S(O)2iPr
345	C(Me)OH	CH2	-S(O)2CH2S(O)2iPr
346	C(O)	CH(Me)	-S(O)2CH2S(O)2iPr
347	CHOH	CH(Me)	-S(O)2CH2S(O)2iPr
348	C(Me)OH	CH(Me)	-S(O)2CH2S(O)2iPr
349	C(O)	CH2	-S(O)2CH2S(O)2tBu
350	CHOH	CH2	-S(O)2CH2S(O)2tBu
351	C(Me)OH	CH2	-S(O)2CH2S(O)2tBu
352	C(O)	CH(Me)	-S(O)2CH2S(O)2tBu
353	CHOH	CH(Me)	-S(O)2CH2S(O)2tBu
354	C(Me)OH	CH(Me)	-S(O)2CH2S(O)2tBu
355	C(O)	CH2	-C(O)NHCH2CO2H
356	CHOH	CH2	-C(O)NHCH2CO2H
357	C(Me)OH	CH2	-C(O)NHCH2CO2H
358	C(O)	CH(Me)	-C(O)NHCH2CO2H

359	CHOH	CH(Me)	-C(O)NHCH ₂ CO ₂ H
360	C(Me)OH	CH(Me)	-C(O)NHCH ₂ CO ₂ H
361	C(O)	CH ₂	-SO ₂ NHCH ₂ CO ₂ H
362	CHOH	CH ₂	-SO ₂ NHCH ₂ CO ₂ H
363	C(Me)OH	CH ₂	-SO ₂ NHCH ₂ CO ₂ H
364	C(O)	CH(Me)	-SO ₂ NHCH ₂ CO ₂ H
365	CHOH	CH(Me)	-SO ₂ NHCH ₂ CO ₂ H
366	C(Me)OH	CH(Me)	-SO ₂ NHCH ₂ CO ₂ H
367	C(O)	CH ₂	-CH ₂ -S-Me
368	CHOH	CH ₂	-CH ₂ -S-Me
369	C(Me)OH	CH ₂	-CH ₂ -S-Me
370	C(O)	CH(Me)	-CH ₂ -S-Me
371	CHOH	CH(Me)	-CH ₂ -S-Me
372	C(Me)OH	CH(Me)	-CH ₂ -S-Me

Table 2

Code	L_1	Y	W_p
1A	C(O)	CH ₂	-CO ₂ Me
2A	CHOH	CH ₂	-CO ₂ Me
3A	C(Me)OH	CH ₂	-CO ₂ Me
4A	C(O)	CH(Me)	-CO ₂ Me
5A	CHOH	CH(Me)	-CO ₂ Me
6A	C(Me)OH	CH(Me)	-CO ₂ Me
7A	C(O)	CH ₂	-CO ₂ H

8A	CHOH	CH2	-CO2H
9A	C(Me)OH	CH2	-CO2H
10A	C(O)	CH(Me)	-CO2H
11A	CHOH	CH(Me)	-CO2H
12A	C(Me)OH	CH(Me)	-CO2H
13A	C(O)	CH2	-C(O)NH2
14A	CHOH	CH2	-C(O)NH2
15A	C(Me)OH	CH2	-C(O)NH2
16A	C(O)	CH(Me)	-C(O)NH2
17A	CHOH	CH(Me)	-C(O)NH2
18A	C(Me)OH	CH(Me)	-C(O)NH2
19A	C(O)	CH2	-C(O)NMe2
20A	CHOH	CH2	-C(O)NMe2
21A	C(Me)OH	CH2	-C(O)NMe2
22A	C(O)	CH(Me)	-C(O)NMe2
23A	CHOH	CH(Me)	-C(O)NMe2
24A	C(Me)OH	CH(Me)	-C(O)NMe2
25A	C(O)	CH2	5-tetrazolyl
26A	CHOH	CH2	5-tetrazolyl
27A	C(Me)OH	CH2	5-tetrazolyl
28A	C(O)	CH(Me)	5-tetrazolyl
29A	CHOH	CH(Me)	5-tetrazolyl
30A	C(Me)OH	CH(Me)	5-tetrazolyl
31A	C(O)	CH2	-C(O)-NH-5-tetrazolyl
32A	CHOH	CH2	-C(O)-NH-5-tetrazolyl
33A	C(Me)OH	CH2	-C(O)-NH-5-tetrazolyl
34A	C(O)	CH(Me)	-C(O)-NH-5-tetrazolyl
35A	CHOH	CH(Me)	-C(O)-NH-5-tetrazolyl
36A	C(Me)OH	CH(Me)	-C(O)-NH-5-tetrazolyl
37A	C(O)	CH2	-C(O)NHCH2SO2Me
38A	CHOH	CH2	-C(O)NHCH2SO2Me

39A	C(Me)OH	CH2	-C(O)NHCH2SO2Me
40A	C(O)	CH(Me)	-C(O)NHCH2SO2Me
41A	CHOH	CH(Me)	-C(O)NHCH2SO2Me
42A	C(Me)OH	CH(Me)	-C(O)NHCH2SO2Me
43A	C(O)	CH2	-C(O)NHCH2CH2SO2Me
44A	CHOH	CH2	-C(O)NHCH2CH2SO2Me
45A	C(Me)OH	CH2	-C(O)NHCH2CH2SO2Me
46A	C(O)	CH(Me)	-C(O)NHCH2CH2SO2Me
47A	CHOH	CH(Me)	-C(O)NHCH2CH2SO2Me
48A	C(Me)OH	CH(Me)	-C(O)NHCH2CH2SO2Me
49A	C(O)	CH2	-C(O)NHSO2Me
50A	CHOH	CH2	-C(O)NHSO2Me
51A	C(Me)OH	CH2	-C(O)NHSO2Me
52A	C(O)	CH(Me)	-C(O)NHSO2Me
53A	CHOH	CH(Me)	-C(O)NHSO2Me
54A	C(Me)OH	CH(Me)	-C(O)NHSO2Me
55A	C(O)	CH2	-CH2-C(O)NHSO2Et
56A	CHOH	CH2	-CH2-C(O)NHSO2Et
57A	C(Me)OH	CH2	-CH2-C(O)NHSO2Et
58A	C(O)	CH(Me)	-CH2-C(O)NHSO2Et
59A	CHOH	CH(Me)	-CH2-C(O)NHSO2Et
60A	C(Me)OH	CH(Me)	-CH2-C(O)NHSO2Et
61A	C(O)	CH2	-CH2-C(O)NHSO2iPr
62A	CHOH	CH2	-CH2-C(O)NHSO2iPr
63A	C(Me)OH	CH2	-CH2-C(O)NHSO2iPr
64A	C(O)	CH(Me)	-CH2-C(O)NHSO2iPr
65A	CHOH	CH(Me)	-CH2-C(O)NHSO2iPr
66A	C(Me)OH	CH(Me)	-CH2-C(O)NHSO2iPr
67A	C(O)	CH2	-CH2-C(O)NHSO2tBu
68A	CHOH	CH2	-CH2-C(O)NHSO2tBu
69A	C(Me)OH	CH2	-CH2-C(O)NHSO2tBu

70A	C(O)	CH(Me)	-CH2-C(O)NHSO ₂ tBu
71A	CHOH	CH(Me)	-CH2-C(O)NHSO ₂ tBu
72A	C(Me)OH	CH(Me)	-CH2-C(O)NHSO ₂ tBu
73A	C(O)	CH ₂	-CH ₂ NHSO ₂ Me
74A	CHOH	CH ₂	-CH ₂ NHSO ₂ Me
75A	C(Me)OH	CH ₂	-CH ₂ NHSO ₂ Me
76A	C(O)	CH(Me)	-CH ₂ NHSO ₂ Me
77A	CHOH	CH(Me)	-CH ₂ NHSO ₂ Me
78A	C(Me)OH	CH(Me)	-CH ₂ NHSO ₂ Me
79A	C(O)	CH ₂	-CH ₂ NHSO ₂ Et
80A	CHOH	CH ₂	-CH ₂ NHSO ₂ Et
81A	C(Me)OH	CH ₂	-CH ₂ NHSO ₂ Et
82A	C(O)	CH(Me)	-CH ₂ NHSO ₂ Et
83A	CHOH	CH(Me)	-CH ₂ NHSO ₂ Et
84A	C(Me)OH	CH(Me)	-CH ₂ NHSO ₂ Et
85A	C(O)	CH ₂	-CH ₂ NHSO ₂ iPr
86A	CHOH	CH ₂	-CH ₂ NHSO ₂ iPr
87A	C(Me)OH	CH ₂	-CH ₂ NHSO ₂ iPr
88A	C(O)	CH(Me)	-CH ₂ NHSO ₂ iPr
89A	CHOH	CH(Me)	-CH ₂ NHSO ₂ iPr
90A	C(Me)OH	CH(Me)	-CH ₂ NHSO ₂ iPr
91A	C(O)	CH ₂	-CH ₂ NHSO ₂ tBu
92A	CHOH	CH ₂	-CH ₂ NHSO ₂ tBu
93A	C(Me)OH	CH ₂	-CH ₂ NHSO ₂ tBu
94A	C(O)	CH(Me)	-CH ₂ NHSO ₂ tBu
95A	CHOH	CH(Me)	-CH ₂ NHSO ₂ tBu
96A	C(Me)OH	CH(Me)	-CH ₂ NHSO ₂ tBu
97A	C(O)	CH ₂	-CH ₂ -N-pyrrolidin-2-one
98A	CHOH	CH ₂	-CH ₂ -N-pyrrolidin-2-one
99A	C(Me)OH	CH ₂	-CH ₂ -N-pyrrolidin-2-one
100A	C(O)	CH(Me)	-CH ₂ -N-pyrrolidin-2-one

-100-

101A	CHOH	CH(Me)	-CH2-N-pyrrolidin-2-one
102A	C(Me)OH	CH(Me)	-CH2-N-pyrrolidin-2-one
103A	C(O)	CH2	-CH2-(1-methylpyrrolidin-2-one-3-yl)
104A	CHOH	CH2	-CH2-(1-methylpyrrolidin-2-one-3-yl)
105A	C(Me)OH	CH2	-CH2-(1-methylpyrrolidin-2-one-3-yl)
106A	C(O)	CH(Me)	-CH2-(1-methylpyrrolidin-2-one-3-yl)
107A	CHOH	CH(Me)	-CH2-(1-methylpyrrolidin-2-one-3-yl)
108A	C(Me)OH	CH(Me)	-CH2-(1-methylpyrrolidin-2-one-3-yl)
109A	C(O)	CH2	-CH2CO2Me
110A	CHOH	CH2	-CH2CO2Me
111A	C(Me)OH	CH2	-CH2CO2Me
112A	C(O)	CH(Me)	-CH2CO2Me
113A	CHOH	CH(Me)	-CH2CO2Me
114A	C(Me)OH	CH(Me)	-CH2CO2Me
115A	C(O)	CH2	-CH2CO2H
116A	CHOH	CH2	-CH2CO2H
117A	C(Me)OH	CH2	-CH2CO2H
118A	C(O)	CH(Me)	-CH2CO2H
119A	CHOH	CH(Me)	-CH2CO2H
120A	C(Me)OH	CH(Me)	-CH2CO2H
121A	C(O)	CH2	-CH2C(O)NH2
122A	CHOH	CH2	-CH2C(O)NH2
123A	C(Me)OH	CH2	-CH2C(O)NH2
124A	C(O)	CH(Me)	-CH2C(O)NH2
125A	CHOH	CH(Me)	-CH2C(O)NH2
126A	C(Me)OH	CH(Me)	-CH2C(O)NH2
127A	C(O)	CH2	-CH2C(O)NMe2
128A	CHOH	CH2	-CH2C(O)NMe2
129A	C(Me)OH	CH2	-CH2C(O)NMe2
130A	C(O)	CH(Me)	-CH2C(O)NMe2
131A	CHOH	CH(Me)	-CH2C(O)NMe2

132A	C(Me)OH	CH(Me)	-CH2C(O)NMe2
133A	C(O)	CH2	-CH2C(O)-N-pyrrolidine
134A	CHOH	CH2	-CH2C(O)-N-pyrrolidine
135A	C(Me)OH	CH2	-CH2C(O)-N-pyrrolidine
136A	C(O)	CH(Me)	-CH2C(O)-N-pyrrolidine
137A	CHOH	CH(Me)	-CH2C(O)-N-pyrrolidine
138A	C(Me)OH	CH(Me)	-CH2C(O)-N-pyrrolidine
139A	C(O)	CH2	-CH2-5-tetrazolyl
140A	CHOH	CH2	-CH2-5-tetrazolyl
141A	C(Me)OH	CH2	-CH2-5-tetrazolyl
142A	C(O)	CH(Me)	-CH2-5-tetrazolyl
143A	CHOH	CH(Me)	-CH2-5-tetrazolyl
144A	C(Me)OH	CH(Me)	-CH2-5-tetrazolyl
145A	C(O)	CH2	-C(O)C(O)OH
146A	CHOH	CH2	-C(O)C(O)OH
147A	C(Me)OH	CH2	-C(O)C(O)OH
148A	C(O)	CH(Me)	-C(O)C(O)OH
149A	CHOH	CH(Me)	-C(O)C(O)OH
150A	C(Me)OH	CH(Me)	-C(O)C(O)OH
151A	C(O)	CH2	-CH(OH)C(O)OH
152A	CHOH	CH2	-CH(OH)C(O)OH
153A	C(Me)OH	CH2	-CH(OH)C(O)OH
154A	C(O)	CH(Me)	-CH(OH)C(O)OH
155A	CHOH	CH(Me)	-CH(OH)C(O)OH
156A	C(Me)OH	CH(Me)	-CH(OH)C(O)OH
157A	C(O)	CH2	-C(O)C(O)NH2
158A	CHOH	CH2	-C(O)C(O)NH2
159A	C(Me)OH	CH2	-C(O)C(O)NH2
160A	C(O)	CH(Me)	-C(O)C(O)NH2
161A	CHOH	CH(Me)	-C(O)C(O)NH2
162A	C(Me)OH	CH(Me)	-C(O)C(O)NH2

163A	C(O)	CH2	-CH(OH)C(O)NH2
164A	CHOH	CH2	-CH(OH)C(O)NH2
165A	C(Me)OH	CH2	-CH(OH)C(O)NH2
166A	C(O)	CH(Me)	-CH(OH)C(O)NH2
167A	CHOH	CH(Me)	-CH(OH)C(O)NH2
168A	C(Me)OH	CH(Me)	-CH(OH)C(O)NH2
169A	C(O)	CH2	-C(O)C(O)NMe2
170A	CHOH	CH2	-C(O)C(O)NMe2
171A	C(Me)OH	CH2	-C(O)C(O)NMe2
172A	C(O)	CH(Me)	-C(O)C(O)NMe2
173A	CHOH	CH(Me)	-C(O)C(O)NMe2
174A	C(Me)OH	CH(Me)	-C(O)C(O)NMe2
175A	C(O)	CH2	-CH(OH)C(O)NMe2
176A	CHOH	CH2	-CH(OH)C(O)NMe2
177A	C(Me)OH	CH2	-CH(OH)C(O)NMe2
178A	C(O)	CH(Me)	-CH(OH)C(O)NMe2
179A	CHOH	CH(Me)	-CH(OH)C(O)NMe2
180A	C(Me)OH	CH(Me)	-CH(OH)C(O)NMe2
181A	C(O)	CH2	-CH2CH2CO2H
182A	CHOH	CH2	-CH2CH2CO2H
183A	C(Me)OH	CH2	-CH2CH2CO2H
184A	C(O)	CH(Me)	-CH2CH2CO2H
185A	CHOH	CH(Me)	-CH2CH2CO2H
186A	C(Me)OH	CH(Me)	-CH2CH2CO2H
187A	C(O)	CH2	-CH2CH2C(O)NH2
188A	CHOH	CH2	-CH2CH2C(O)NH2
189A	C(Me)OH	CH2	-CH2CH2C(O)NH2
190A	C(O)	CH(Me)	-CH2CH2C(O)NH2
191A	CHOH	CH(Me)	-CH2CH2C(O)NH2
192A	C(Me)OH	CH(Me)	-CH2CH2C(O)NH2
193A	C(O)	CH2	-CH2CH2C(O)NMe2

194A	CHOH	CH2	-CH2CH2C(O)NMe2
195A	C(Me)OH	CH2	-CH2CH2C(O)NMe2
196A	C(O)	CH(Me)	-CH2CH2C(O)NMe2
197A	CHOH	CH(Me)	-CH2CH2C(O)NMe2
198A	C(Me)OH	CH(Me)	-CH2CH2C(O)NMe2
199A	C(O)	CH2	-CH2CH2-5-tetrazolyl
200A	CHOH	CH2	-CH2CH2-5-tetrazolyl
201A	C(Me)OH	CH2	-CH2CH2-5-tetrazolyl
202A	C(O)	CH(Me)	-CH2CH2-5-tetrazolyl
203A	CHOH	CH(Me)	-CH2CH2-5-tetrazolyl
204A	C(Me)OH	CH(Me)	-CH2CH2-5-tetrazolyl
205A	C(O)	CH2	-OCH2S(O)2Me
206A	CHOH	CH2	-OCH2S(O)2Me
207A	C(Me)OH	CH2	-OCH2S(O)2Me
208A	C(O)	CH(Me)	-OCH2S(O)2Me
209A	CHOH	CH(Me)	-OCH2S(O)2Me
210A	C(Me)OH	CH(Me)	-OCH2S(O)2Me
211A	C(O)	CH2	-OCH2CH2S(O)2Me
212A	CHOH	CH2	-OCH2CH2S(O)2Me
213A	C(Me)OH	CH2	-OCH2CH2S(O)2Me
214A	C(O)	CH(Me)	-OCH2CH2S(O)2Me
215A	CHOH	CH(Me)	-OCH2CH2S(O)2Me
216A	C(Me)OH	CH(Me)	-OCH2CH2S(O)2Me
217A	C(O)	CH2	-CH2S(O)2Me
218A	CHOH	CH2	-CH2S(O)2Me
219A	C(Me)OH	CH2	-CH2S(O)2Me
220A	C(O)	CH(Me)	-CH2S(O)2Me
221A	CHOH	CH(Me)	-CH2S(O)2Me
222A	C(Me)OH	CH(Me)	-CH2S(O)2Me
223A	C(O)	CH2	-CH2CH2S(O)2Me
224A	CHOH	CH2	-CH2CH2S(O)2Me

225A	C(Me)OH	CH2	-CH2CH2S(O)2Me
226A	C(O)	CH(Me)	-CH2CH2S(O)2Me
227A	CHOH	CH(Me)	-CH2CH2S(O)2Me
228A	C(Me)OH	CH(Me)	-CH2CH2S(O)2Me
229A	C(O)	CH2	-CH2CH2CH2S(O)2Me
230A	CHOH	CH2	-CH2CH2CH2S(O)2Me
231A	C(Me)OH	CH2	-CH2CH2CH2S(O)2Me
232A	C(O)	CH(Me)	-CH2CH2CH2S(O)2Me
233A	CHOH	CH(Me)	-CH2CH2CH2S(O)2Me
234A	C(Me)OH	CH(Me)	-CH2CH2CH2S(O)2Me
235A	C(O)	CH2	-OCH2S(O)2Et
236A	CHOH	CH2	-OCH2S(O)2Et
237A	C(Me)OH	CH2	-OCH2S(O)2Et
238A	C(O)	CH(Me)	-OCH2S(O)2Et
239A	CHOH	CH(Me)	-OCH2S(O)2Et
240A	C(Me)OH	CH(Me)	-OCH2S(O)2Et
241A	C(O)	CH2	-OCH2CH2S(O)2Et
242A	CHOH	CH2	-OCH2CH2S(O)2Et
243A	C(Me)OH	CH2	-OCH2CH2S(O)2Et
244A	C(O)	CH(Me)	-OCH2CH2S(O)2Et
245A	CHOH	CH(Me)	-OCH2CH2S(O)2Et
246A	C(Me)OH	CH(Me)	-OCH2CH2S(O)2Et
247A	C(O)	CH2	-CH2S(O)2Et
248A	CHOH	CH2	-CH2S(O)2Et
249A	C(Me)OH	CH2	-CH2S(O)2Et
250A	C(O)	CH(Me)	-CH2S(O)2Et
251A	CHOH	CH(Me)	-CH2S(O)2Et
252A	C(Me)OH	CH(Me)	-CH2S(O)2Et
253A	C(O)	CH2	-CH2CH2S(O)2Et
254A	CHOH	CH2	-CH2CH2S(O)2Et
255A	C(Me)OH	CH2	-CH2CH2S(O)2Et

-105-

256A	C(O)	CH(Me)	-CH2CH2S(O)2Et
257A	CHOH	CH(Me)	-CH2CH2S(O)2Et
258A	C(Me)OH	CH(Me)	-CH2CH2S(O)2Et
259A	C(O)	CH2	-CH2CH2CH2S(O)2Et
260A	CHOH	CH2	-CH2CH2CH2S(O)2Et
261A	C(Me)OH	CH2	-CH2CH2CH2S(O)2Et
262A	C(O)	CH(Me)	-CH2CH2CH2S(O)2Et
263A	CHOH	CH(Me)	-CH2CH2CH2S(O)2Et
264A	C(Me)OH	CH(Me)	-CH2CH2CH2S(O)2Et
265A	C(O)	CH2	-OCH2S(O)2iPr
266A	CHOH	CH2	-OCH2S(O)2iPr
267A	C(Me)OH	CH2	-OCH2S(O)2iPr
268A	C(O)	CH(Me)	-OCH2S(O)2iPr
269A	CHOH	CH(Me)	-OCH2S(O)2iPr
270A	C(Me)OH	CH(Me)	-OCH2S(O)2iPr
271A	C(O)	CH2	-CH2S(O)2iPr
272A	CHOH	CH2	-CH2S(O)2iPr
273A	C(Me)OH	CH2	-CH2S(O)2iPr
274A	C(O)	CH(Me)	-CH2S(O)2iPr
275A	CHOH	CH(Me)	-CH2S(O)2iPr
276A	C(Me)OH	CH(Me)	-CH2S(O)2iPr
277A	C(O)	CH2	-CH2CH2S(O)2iPr
278A	CHOH	CH2	-CH2CH2S(O)2iPr
279A	C(Me)OH	CH2	-CH2CH2S(O)2iPr
280A	C(O)	CH(Me)	-CH2CH2S(O)2iPr
281A	CHOH	CH(Me)	-CH2CH2S(O)2iPr
282A	C(Me)OH	CH(Me)	-CH2CH2S(O)2iPr
283A	C(O)	CH2	-OCH2S(O)2tBu
284A	CHOH	CH2	-OCH2S(O)2tBu
285A	C(Me)OH	CH2	-OCH2S(O)2tBu
286A	C(O)	CH(Me)	-OCH2S(O)2tBu

287A	CHOH	CH(Me)	-OCH2S(O)2tBu
288A	C(Me)OH	CH(Me)	-OCH2S(O)2tBu
289A	C(O)	CH2	-CH2S(O)2tBu
290A	CHOH	CH2	-CH2S(O)2tBu
291A	C(Me)OH	CH2	-CH2S(O)2tBu
292A	C(O)	CH(Me)	-CH2S(O)2tBu
293A	CHOH	CH(Me)	-CH2S(O)2tBu
294A	C(Me)OH	CH(Me)	-CH2S(O)2tBu
295A	C(O)	CH2	-CH2CH2S(O)2tBu
296A	CHOH	CH2	-CH2CH2S(O)2tBu
297A	C(Me)OH	CH2	-CH2CH2S(O)2tBu
298A	C(O)	CH(Me)	-CH2CH2S(O)2tBu
299A	CHOH	CH(Me)	-CH2CH2S(O)2tBu
300A	C(Me)OH	CH(Me)	-CH2CH2S(O)2tBu
301A	C(O)	CH2	-OCH2S(O)2NH2
302A	CHOH	CH2	-OCH2S(O)2NH2
303A	C(Me)OH	CH2	-OCH2S(O)2NH2
304A	C(O)	CH(Me)	-OCH2S(O)2NH2
305A	CHOH	CH(Me)	-OCH2S(O)2NH2
306A	C(Me)OH	CH(Me)	-OCH2S(O)2NH2
307A	C(O)	CH2	-OCH2S(O)2NMe2
308A	CHOH	CH2	-OCH2S(O)2NMe2
309A	C(Me)OH	CH2	-OCH2S(O)2NMe2
310A	C(O)	CH(Me)	-OCH2S(O)2NMe2
311A	CHOH	CH(Me)	-OCH2S(O)2NMe2
312A	C(Me)OH	CH(Me)	-OCH2S(O)2NMe2
313A	C(O)	CH2	-CH2CH2S(O)2NH2
314A	CHOH	CH2	-CH2CH2S(O)2NH2
315A	C(Me)OH	CH2	-CH2CH2S(O)2NH2
316A	C(O)	CH(Me)	-CH2CH2S(O)2NH2
317A	CHOH	CH(Me)	-CH2CH2S(O)2NH2

-107-

318A	C(Me)OH	CH(Me)	-CH2CH2S(O)2NH2
319A	C(O)	CH2	-CH2CH2S(O)2NMe2
320A	CHOH	CH2	-CH2CH2S(O)2NMe2
321A	C(Me)OH	CH2	-CH2CH2S(O)2NMe2
322A	C(O)	CH(Me)	-CH2CH2S(O)2NMe2
323A	CHOH	CH(Me)	-CH2CH2S(O)2NMe2
324A	C(Me)OH	CH(Me)	-CH2CH2S(O)2NMe2
325A	C(O)	CH2	-C(O)CH2S(O)2Me
326A	CHOH	CH2	-C(O)CH2S(O)2Me
327A	C(Me)OH	CH2	-C(O)CH2S(O)2Me
328A	C(O)	CH(Me)	-C(O)CH2S(O)2Me
329A	CHOH	CH(Me)	-C(O)CH2S(O)2Me
330A	C(Me)OH	CH(Me)	-C(O)CH2S(O)2Me
331A	C(O)	CH2	-C(O)CH2CH2S(O)2Me
332A	CHOH	CH2	-C(O)CH2CH2S(O)2Me
333A	C(Me)OH	CH2	-C(O)CH2CH2S(O)2Me
334A	C(O)	CH(Me)	-C(O)CH2CH2S(O)2Me
335A	CHOH	CH(Me)	-C(O)CH2CH2S(O)2Me
336A	C(Me)OH	CH(Me)	-C(O)CH2CH2S(O)2Me
337A	C(O)	CH2	-OCH2CH2S(O)2NH2
338A	CHOH	CH2	-OCH2CH2S(O)2NH2
339A	C(Me)OH	CH2	-OCH2CH2S(O)2NH2
340A	C(O)	CH(Me)	-OCH2CH2S(O)2NH2
341A	CHOH	CH(Me)	-OCH2CH2S(O)2NH2
342A	C(Me)OH	CH(Me)	-OCH2CH2S(O)2NH2
343A	C(O)	CH2	-OCH2CH2S(O)2NMe2
344A	CHOH	CH2	-OCH2CH2S(O)2NMe2
345A	C(Me)OH	CH2	-OCH2CH2S(O)2NMe2
346A	C(O)	CH(Me)	-OCH2CH2S(O)2NMe2
347A	CHOH	CH(Me)	-OCH2CH2S(O)2NMe2
348A	C(Me)OH	CH(Me)	-OCH2CH2S(O)2NMe2

-108-

349A	C(O)	CH2	-CH2CH2CH2S(O)2NH2
350A	CHOH	CH2	-CH2CH2CH2S(O)2NH2
351A	C(Me)OH	CH2	-CH2CH2CH2S(O)2NH2
352A	C(O)	CH(Me)	-CH2CH2CH2S(O)2NH2
353A	CHOH	CH(Me)	-CH2CH2CH2S(O)2NH2
354A	C(Me)OH	CH(Me)	-CH2CH2CH2S(O)2NH2
355A	C(O)	CH2	-S(O)2Me
356A	CHOH	CH2	-S(O)2Me
357A	C(Me)OH	CH2	-S(O)2Me
358A	C(O)	CH(Me)	-S(O)2Me
359A	CHOH	CH(Me)	-S(O)2Me
360A	C(Me)OH	CH(Me)	-S(O)2Me
361A	C(O)	CH2	-S(O)2Et
362A	CHOH	CH2	-S(O)2Et
363A	C(Me)OH	CH2	-S(O)2Et
364A	C(O)	CH(Me)	-S(O)2Et
365A	CHOH	CH(Me)	-S(O)2Et
366A	C(Me)OH	CH(Me)	-S(O)2Et
367A	C(O)	CH2	-S(O)2iPr
368A	CHOH	CH2	-S(O)2iPr
369A	C(Me)OH	CH2	-S(O)2iPr
370A	C(O)	CH(Me)	-S(O)2iPr
371A	CHOH	CH(Me)	-S(O)2iPr
372A	C(Me)OH	CH(Me)	-S(O)2iPr
373A	C(O)	CH2	-S(O)2tBu
374A	CHOH	CH2	-S(O)2tBu
375A	C(Me)OH	CH2	-S(O)2tBu
376A	C(O)	CH(Me)	-S(O)2tBu
377A	CHOH	CH(Me)	-S(O)2tBu
378A	C(Me)OH	CH(Me)	-S(O)2tBu
379A	C(O)	CH2	-OCH2CO2H

380A	CHOH	CH2	-OCH2CO2H
381A	C(Me)OH	CH2	-OCH2CO2H
382A	C(O)	CH(Me)	-OCH2CO2H
383A	CHOH	CH(Me)	-OCH2CO2H
384A	C(Me)OH	CH(Me)	-OCH2CO2H
385A	C(O)	CH2	-OCH2-5-tetrazolyl
386A	CHOH	CH2	-OCH2-5-tetrazolyl
387A	C(Me)OH	CH2	-OCH2-5-tetrazolyl
388A	C(O)	CH(Me)	-OCH2-5-tetrazolyl
389A	CHOH	CH(Me)	-OCH2-5-tetrazolyl
390A	C(Me)OH	CH(Me)	-OCH2-5-tetrazolyl
391A	C(O)	CH2	-S(O)2NH2
392A	CHOH	CH2	-S(O)2NH2
393A	C(Me)OH	CH2	-S(O)2NH2
394A	C(O)	CH(Me)	-S(O)2NH2
395A	CHOH	CH(Me)	-S(O)2NH2
396A	C(Me)OH	CH(Me)	-S(O)2NH2
397A	C(O)	CH2	-S(O)2NMe2
398A	CHOH	CH2	-S(O)2NMe2
399A	C(Me)OH	CH2	-S(O)2NMe2
400A	C(O)	CH(Me)	-S(O)2NMe2
401A	CHOH	CH(Me)	-S(O)2NMe2
402A	C(Me)OH	CH(Me)	-S(O)2NMe2
403A	C(O)	CH2	-S(O)2CH2S(O)2Me
404A	CHOH	CH2	-S(O)2CH2S(O)2Me
405A	C(Me)OH	CH2	-S(O)2CH2S(O)2Me
406A	C(O)	CH(Me)	-S(O)2CH2S(O)2Me
407A	CHOH	CH(Me)	-S(O)2CH2S(O)2Me
408A	C(Me)OH	CH(Me)	-S(O)2CH2S(O)2Me
409A	C(O)	CH2	-S(O)2CH2S(O)2Et
410A	CHOH	CH2	-S(O)2CH2S(O)2Et

411A	C(Me)OH	CH2	-S(O)2CH2S(O)2Et
412A	C(O)	CH(Me)	-S(O)2CH2S(O)2Et
413A	CHOH	CH(Me)	-S(O)2CH2S(O)2Et
414A	C(Me)OH	CH(Me)	-S(O)2CH2S(O)2Et
415A	C(O)	CH2	-S(O)2CH2S(O)2iPr
416A	CHOH	CH2	-S(O)2CH2S(O)2iPr
417A	C(Me)OH	CH2	-S(O)2CH2S(O)2iPr
418A	C(O)	CH(Me)	-S(O)2CH2S(O)2iPr
419A	CHOH	CH(Me)	-S(O)2CH2S(O)2iPr
420A	C(Me)OH	CH(Me)	-S(O)2CH2S(O)2iPr
421A	C(O)	CH2	-S(O)2CH2S(O)2tBu
422A	CHOH	CH2	-S(O)2CH2S(O)2tBu
423A	C(Me)OH	CH2	-S(O)2CH2S(O)2tBu
424A	C(O)	CH(Me)	-S(O)2CH2S(O)2tBu
425A	CHOH	CH(Me)	-S(O)2CH2S(O)2tBu
426A	C(Me)OH	CH(Me)	-S(O)2CH2S(O)2tBu
427A	C(O)	CH2	-NHS(O)2Me
428A	CHOH	CH2	-NHS(O)2Me
429A	C(Me)OH	CH2	-NHS(O)2Me
430A	C(O)	CH(Me)	-NHS(O)2Me
431A	CHOH	CH(Me)	-NHS(O)2Me
432A	C(Me)OH	CH(Me)	-NHS(O)2Me
433A	C(O)	CH2	-NHS(O)2Et
434A	CHOH	CH2	-NHS(O)2Et
435A	C(Me)OH	CH2	-NHS(O)2Et
436A	C(O)	CH(Me)	-NHS(O)2Et
437A	CHOH	CH(Me)	-NHS(O)2Et
438A	C(Me)OH	CH(Me)	-NHS(O)2Et
439A	C(O)	CH2	-NHS(O)2iPr
440A	CHOH	CH2	-NHS(O)2iPr
441A	C(Me)OH	CH2	-NHS(O)2iPr

-111-

442A	C(O)	CH(Me)	-NHS(O)2iPr
443A	CHOH	CH(Me)	-NHS(O)2iPr
444A	C(Me)OH	CH(Me)	-NHS(O)2iPr
445A	C(O)	CH2	-NHS(O)2tBu
446A	CHOH	CH2	-NHS(O)2tBu
447A	C(Me)OH	CH2	-NHS(O)2tBu
448A	C(O)	CH(Me)	-NHS(O)2tBu
449A	CHOH	CH(Me)	-NHS(O)2tBu
450A	C(Me)OH	CH(Me)	-NHS(O)2tBu
451A	C(O)	CH2	-OS(O)2Me
452A	CHOH	CH2	-OS(O)2Me
453A	C(Me)OH	CH2	-OS(O)2Me
454A	C(O)	CH(Me)	-OS(O)2Me
455A	CHOH	CH(Me)	-OS(O)2Me
456A	C(Me)OH	CH(Me)	-OS(O)2Me
457A	C(O)	CH2	-OS(O)2Et
458A	CHOH	CH2	-OS(O)2Et
459A	C(Me)OH	CH2	-OS(O)2Et
460A	C(O)	CH(Me)	-OS(O)2Et
461A	CHOH	CH(Me)	-OS(O)2Et
462A	C(Me)OH	CH(Me)	-OS(O)2Et
463A	C(O)	CH2	-OS(O)2iPr
464A	CHOH	CH2	-OS(O)2iPr
465A	C(Me)OH	CH2	-OS(O)2iPr
466A	C(O)	CH(Me)	-OS(O)2iPr
467A	CHOH	CH(Me)	-OS(O)2iPr
468A	C(Me)OH	CH(Me)	-OS(O)2iPr
469A	C(O)	CH2	-OS(O)2tBu
470A	CHOH	CH2	-OS(O)2tBu
471A	C(Me)OH	CH2	-OS(O)2tBu
472A	C(O)	CH(Me)	-OS(O)2tBu

473A	CHOH	CH(Me)	-OS(O)2tBu
474A	C(Me)OH	CH(Me)	-OS(O)2tBu
475A	C(O)	CH2	-NHC(O)NMe2
476A	CHOH	CH2	-NHC(O)NMe2
477A	C(Me)OH	CH2	-NHC(O)NMe2
478A	C(O)	CH(Me)	-NHC(O)NMe2
479A	CHOH	CH(Me)	-NHC(O)NMe2
480A	C(Me)OH	CH(Me)	-NHC(O)NMe2
481A	C(O)	CH2	-NHC(S)NMe2
482A	CHOH	CH2	-NHC(S)NMe2
483A	C(Me)OH	CH2	-NHC(S)NMe2
484A	C(O)	CH(Me)	-NHC(S)NMe2
485A	CHOH	CH(Me)	-NHC(S)NMe2
486A	C(Me)OH	CH(Me)	-NHC(S)NMe2
487A	C(O)	CH2	-OC(O)NMe2
488A	CHOH	CH2	-OC(O)NMe2
489A	C(Me)OH	CH2	-OC(O)NMe2
490A	C(O)	CH(Me)	-OC(O)NMe2
491A	CHOH	CH(Me)	-OC(O)NMe2
492A	C(Me)OH	CH(Me)	-OC(O)NMe2
493A	C(O)	CH2	-OC(S)NMe2
494A	CHOH	CH2	-OC(S)NMe2
495A	C(Me)OH	CH2	-OC(S)NMe2
496A	C(O)	CH(Me)	-OC(S)NMe2
497A	CHOH	CH(Me)	-OC(S)NMe2
498A	C(Me)OH	CH(Me)	-OC(S)NMe2
499A	C(O)	CH2	-NHS(O)2NMe2
500A	CHOH	CH2	-NHS(O)2NMe2
501A	C(Me)OH	CH2	-NHS(O)2NMe2
502A	C(O)	CH(Me)	-NHS(O)2NMe2
503A	CHOH	CH(Me)	-NHS(O)2NMe2

-113-

504A	C(Me)OH	CH(Me)	-NHS(O)2NMe ₂
505A	C(O)	CH ₂	-C(O)NHCH ₂ CO ₂ H
506A	CHOH	CH ₂	-C(O)NHCH ₂ CO ₂ H
507A	C(Me)OH	CH ₂	-C(O)NHCH ₂ CO ₂ H
508A	C(O)	CH(Me)	-C(O)NHCH ₂ CO ₂ H
509A	CHOH	CH(Me)	-C(O)NHCH ₂ CO ₂ H
510A	C(Me)OH	CH(Me)	-C(O)NHCH ₂ CO ₂ H
511A	C(O)	CH ₂	-SO ₂ NHCH ₂ CO ₂ H
512A	CHOH	CH ₂	-SO ₂ NHCH ₂ CO ₂ H
513A	C(Me)OH	CH ₂	-SO ₂ NHCH ₂ CO ₂ H
514A	C(O)	CH(Me)	-SO ₂ NHCH ₂ CO ₂ H
515A	CHOH	CH(Me)	-SO ₂ NHCH ₂ CO ₂ H
516A	C(Me)OH	CH(Me)	-SO ₂ NHCH ₂ CO ₂ H
517A	C(O)	CH ₂	-CH ₂ -S-Me
518A	CHOH	CH ₂	-CH ₂ -S-Me
519A	C(Me)OH	CH ₂	-CH ₂ -S-Me
520A	C(O)	CH(Me)	-CH ₂ -S-Me
521A	CHOH	CH(Me)	-CH ₂ -S-Me
522A	C(Me)OH	CH(Me)	-CH ₂ -S-Me

Table 3

Code	R3	W _T
1B	3Me3OH-Pentyl	-CO ₂ Me
2B	3Me3OH-Pentenyl	-CO ₂ Me
3B	3Me3OH-Pentylyn	-CO ₂ Me
4B	3Et3OH-Pentyl	-CO ₂ Me
5B	3Et3OH-Pentenyl	-CO ₂ Me
6B	3Et3OH-Pentylyn	-CO ₂ Me
7B	3Me3OH-Pentyl	-CO ₂ H
8B	3Me3OH-Pentenyl	-CO ₂ H
9B	3Me3OH-Pentylyn	-CO ₂ H
10B	3Et3OH-Pentyl	-CO ₂ H
11B	3Et3OH-Pentenyl	-CO ₂ H
12B	3Et3OH-Pentylyn	-CO ₂ H
13B	3Me3OH-Pentyl	-C(O)NH ₂
14B	3Me3OH-Pentenyl	-C(O)NH ₂
15B	3Me3OH-Pentylyn	-C(O)NH ₂
16B	3Et3OH-Pentyl	-C(O)NH ₂
17B	3Et3OH-Pentenyl	-C(O)NH ₂
18B	3Et3OH-Pentylyn	-C(O)NH ₂
19B	3Me3OH-Pentyl	-C(O)NMe ₂
20B	3Me3OH-Pentenyl	-C(O)NMe ₂
21B	3Me3OH-Pentylyn	-C(O)NMe ₂

22B	3Et3OH-Pentyl	-C(O)NMe2
23B	3Et3OH-Pentenyl	-C(O)NMe2
24B	3Et3OH-Pentynyl	-C(O)NMe2
25B	3Me3OH-Pentyl	5-tetrazolyl
26B	3Me3OH-Pentenyl	5-tetrazolyl
27B	3Me3OH-Pentynyl	5-tetrazolyl
28B	3Et3OH-Pentyl	5-tetrazolyl
29B	3Et3OH-Pentenyl	5-tetrazolyl
30B	3Et3OH-Pentynyl	5-tetrazolyl
31B	3Me3OH-Pentyl	-C(O)-NH-5-tetrazolyl
32B	3Me3OH-Pentenyl	-C(O)-NH-5-tetrazolyl
33B	3Me3OH-Pentynyl	-C(O)-NH-5-tetrazolyl
34B	3Et3OH-Pentyl	-C(O)-NH-5-tetrazolyl
35B	3Et3OH-Pentenyl	-C(O)-NH-5-tetrazolyl
36B	3Et3OH-Pentynyl	-C(O)-NH-5-tetrazolyl
37B	3Me3OH-Pentyl	-C(O)NHCH2SO2Me
38B	3Me3OH-Pentenyl	-C(O)NHCH2SO2Me
39B	3Me3OH-Pentynyl	-C(O)NHCH2SO2Me
40B	3Et3OH-Pentyl	-C(O)NHCH2SO2Me
41B	3Et3OH-Pentenyl	-C(O)NHCH2SO2Me
42B	3Et3OH-Pentynyl	-C(O)NHCH2SO2Me
43B	3Me3OH-Pentyl	-C(O)NHCH2CH2SO2Me
44B	3Me3OH-Pentenyl	-C(O)NHCH2CH2SO2Me
45B	3Me3OH-Pentynyl	-C(O)NHCH2CH2SO2Me
46B	3Et3OH-Pentyl	-C(O)NHCH2CH2SO2Me
47B	3Et3OH-Pentenyl	-C(O)NHCH2CH2SO2Me
48B	3Et3OH-Pentynyl	-C(O)NHCH2CH2SO2Me
49B	3Me3OH-Pentyl	-C(O)NHSO2Me
50B	3Me3OH-Pentenyl	-C(O)NHSO2Me
51B	3Me3OH-Pentynyl	-C(O)NHSO2Me
52B	3Et3OH-Pentyl	-C(O)NHSO2Me

53B	3Et3OH-Pentenyl	-C(O)NHSO2Me
54B	3Et3OH-Pentynyl	-C(O)NHSO2Me
55B	3Me3OH-Pentyl	-CH2-C(O)NHSO2Et
56B	3Me3OH-Pentenyl	-CH2-C(O)NHSO2Et
57B	3Me3OH-Pentynyl	-CH2-C(O)NHSO2Et
58B	3Et3OH-Pentyl	-CH2-C(O)NHSO2Et
59B	3Et3OH-Pentenyl	-CH2-C(O)NHSO2Et
60B	3Et3OH-Pentynyl	-CH2-C(O)NHSO2Et
61B	3Me3OH-Pentyl	-CH2-C(O)NHSO2iPr
62B	3Me3OH-Pentenyl	-CH2-C(O)NHSO2iPr
63B	3Me3OH-Pentynyl	-CH2-C(O)NHSO2iPr
64B	3Et3OH-Pentyl	-CH2-C(O)NHSO2iPr
65B	3Et3OH-Pentenyl	-CH2-C(O)NHSO2iPr
66B	3Et3OH-Pentynyl	-CH2-C(O)NHSO2iPr
67B	3Me3OH-Pentyl	-CH2-C(O)NHSO2tBu
68B	3Me3OH-Pentenyl	-CH2-C(O)NHSO2tBu
69B	3Me3OH-Pentynyl	-CH2-C(O)NHSO2tBu
70B	3Et3OH-Pentyl	-CH2-C(O)NHSO2tBu
71B	3Et3OH-Pentenyl	-CH2-C(O)NHSO2tBu
72B	3Et3OH-Pentynyl	-CH2-C(O)NHSO2tBu
73B	3Me3OH-Pentyl	-CH2NHSO2Me
74B	3Me3OH-Pentenyl	-CH2NHSO2Me
75B	3Me3OH-Pentynyl	-CH2NHSO2Me
76B	3Et3OH-Pentyl	-CH2NHSO2Me
77B	3Et3OH-Pentenyl	-CH2NHSO2Me
78B	3Et3OH-Pentynyl	-CH2NHSO2Me
79B	3Me3OH-Pentyl	-CH2NHSO2Et
80B	3Me3OH-Pentenyl	-CH2NHSO2Et
81B	3Me3OH-Pentynyl	-CH2NHSO2Et
82B	3Et3OH-Pentyl	-CH2NHSO2Et
83B	3Et3OH-Pentenyl	-CH2NHSO2Et

84B	3Et3OH-Pentynyl	-CH2NHSO2Et
85B	3Me3OH-Pentyl	-CH2NHSO2iPr
86B	3Me3OH-Pentenyl	-CH2NHSO2iPr
87B	3Me3OH-Pentynyl	-CH2NHSO2iPr
88B	3Et3OH-Pentyl	-CH2NHSO2iPr
89B	3Et3OH-Pentenyl	-CH2NHSO2iPr
90B	3Et3OH-Pentynyl	-CH2NHSO2iPr
91B	3Me3OH-Pentyl	-CH2NHSO2tBu
92B	3Me3OH-Pentenyl	-CH2NHSO2tBu
93B	3Me3OH-Pentynyl	-CH2NHSO2tBu
94B	3Et3OH-Pentyl	-CH2NHSO2tBu
95B	3Et3OH-Pentenyl	-CH2NHSO2tBu
96B	3Et3OH-Pentynyl	-CH2NHSO2tBu
97B	3Me3OH-Pentyl	-CH2-N-pyrrolidin-2-one
98B	3Me3OH-Pentenyl	-CH2-N-pyrrolidin-2-one
99B	3Me3OH-Pentynyl	-CH2-N-pyrrolidin-2-one
100B	3Et3OH-Pentyl	-CH2-N-pyrrolidin-2-one
101B	3Et3OH-Pentenyl	-CH2-N-pyrrolidin-2-one
102B	3Et3OH-Pentynyl	-CH2-N-pyrrolidin-2-one
103B	3Me3OH-Pentyl	-CH2-(1-methylpyrrolidin-2-one-3-yl)
104B	3Me3OH-Pentenyl	-CH2-(1-methylpyrrolidin-2-one-3-yl)
105B	3Me3OH-Pentynyl	-CH2-(1-methylpyrrolidin-2-one-3-yl)
106B	3Et3OH-Pentyl	-CH2-(1-methylpyrrolidin-2-one-3-yl)
107B	3Et3OH-Pentenyl	-CH2-(1-methylpyrrolidin-2-one-3-yl)
108B	3Et3OH-Pentynyl	-CH2-(1-methylpyrrolidin-2-one-3-yl)
109B	3Me3OH-Pentyl	-CH2CO2Me

110B	3Me3OH-Pentenyl	-CH2CO2Me
111B	3Me3OH-Pentyanyl	-CH2CO2Me
112B	3Et3OH-Pentyl	-CH2CO2Me
113B	3Et3OH-Pentenyl	-CH2CO2Me
114B	3Et3OH-Pentyanyl	-CH2CO2Me
115B	3Me3OH-Pentyl	-CH2CO2H
116B	3Me3OH-Pentenyl	-CH2CO2H
117B	3Me3OH-Pentyanyl	-CH2CO2H
118B	3Et3OH-Pentyl	-CH2CO2H
119B	3Et3OH-Pentenyl	-CH2CO2H
120B	3Et3OH-Pentyanyl	-CH2CO2H
121B	3Me3OH-Pentyl	-CH2C(O)NH2
122B	3Me3OH-Pentenyl	-CH2C(O)NH2
123B	3Me3OH-Pentyanyl	-CH2C(O)NH2
124B	3Et3OH-Pentyl	-CH2C(O)NH2
125B	3Et3OH-Pentenyl	-CH2C(O)NH2
126B	3Et3OH-Pentyanyl	-CH2C(O)NH2
127B	3Me3OH-Pentyl	-CH2C(O)NMe2
128B	3Me3OH-Pentenyl	-CH2C(O)NMe2
129B	3Me3OH-Pentyanyl	-CH2C(O)NMe2
130B	3Et3OH-Pentyl	-CH2C(O)NMe2
131B	3Et3OH-Pentenyl	-CH2C(O)NMe2
132B	3Et3OH-Pentyanyl	-CH2C(O)NMe2
133B	3Me3OH-Pentyl	-CH2C(O)-N-pyrrolidine
134B	3Me3OH-Pentenyl	-CH2C(O)-N-pyrrolidine
135B	3Me3OH-Pentyanyl	-CH2C(O)-N-pyrrolidine
136B	3Et3OH-Pentyl	-CH2C(O)-N-pyrrolidine
137B	3Et3OH-Pentenyl	-CH2C(O)-N-pyrrolidine
138B	3Et3OH-Pentyanyl	-CH2C(O)-N-pyrrolidine
139B	3Me3OH-Pentyl	-CH2-5-tetrazolyl
140B	3Me3OH-Pentenyl	-CH2-5-tetrazolyl

141B	3Me3OH-Pentynyl	-CH2-5-tetrazolyl
142B	3Et3OH-Pentyl	-CH2-5-tetrazolyl
143B	3Et3OH-Pentenyl	-CH2-5-tetrazolyl
144B	3Et3OH-Pentynyl	-CH2-5-tetrazolyl
145B	3Me3OH-Pentyl	-C(O)C(O)OH
146B	3Me3OH-Pentenyl	-C(O)C(O)OH
147B	3Me3OH-Pentynyl	-C(O)C(O)OH
148B	3Et3OH-Pentyl	-C(O)C(O)OH
149B	3Et3OH-Pentenyl	-C(O)C(O)OH
150B	3Et3OH-Pentynyl	-C(O)C(O)OH
151B	3Me3OH-Pentyl	-CH(OH)C(O)OH
152B	3Me3OH-Pentenyl	-CH(OH)C(O)OH
153B	3Me3OH-Pentynyl	-CH(OH)C(O)OH
154B	3Et3OH-Pentyl	-CH(OH)C(O)OH
155B	3Et3OH-Pentenyl	-CH(OH)C(O)OH
156B	3Et3OH-Pentynyl	-CH(OH)C(O)OH
157B	3Me3OH-Pentyl	-C(O)C(O)NH2
158B	3Me3OH-Pentenyl	-C(O)C(O)NH2
159B	3Me3OH-Pentynyl	-C(O)C(O)NH2
160B	3Et3OH-Pentyl	-C(O)C(O)NH2
161B	3Et3OH-Pentenyl	-C(O)C(O)NH2
162B	3Et3OH-Pentynyl	-C(O)C(O)NH2
163B	3Me3OH-Pentyl	-CH(OH)C(O)NH2
164B	3Me3OH-Pentenyl	-CH(OH)C(O)NH2
165B	3Me3OH-Pentynyl	-CH(OH)C(O)NH2
166B	3Et3OH-Pentyl	-CH(OH)C(O)NH2
167B	3Et3OH-Pentenyl	-CH(OH)C(O)NH2
168B	3Et3OH-Pentynyl	-CH(OH)C(O)NH2
169B	3Me3OH-Pentyl	-C(O)C(O)NMe2
170B	3Me3OH-Pentenyl	-C(O)C(O)NMe2
171B	3Me3OH-Pentynyl	-C(O)C(O)NMe2

-120-

172B	3Et3OH-Pentyl	-C(O)C(O)NMe2
173B	3Et3OH-Pentenyl	-C(O)C(O)NMe2
174B	3Et3OH-Pentynyl	-C(O)C(O)NMe2
175B	3Me3OH-Pentyl	-CH(OH)C(O)NMe2
176B	3Me3OH-Pentenyl	-CH(OH)C(O)NMe2
177B	3Me3OH-Pentynyl	-CH(OH)C(O)NMe2
178B	3Et3OH-Pentyl	-CH(OH)C(O)NMe2
179B	3Et3OH-Pentenyl	-CH(OH)C(O)NMe2
180B	3Et3OH-Pentynyl	-CH(OH)C(O)NMe2
181B	3Me3OH-Pentyl	-CH2CH2CO2H
182B	3Me3OH-Pentenyl	-CH2CH2CO2H
183B	3Me3OH-Pentynyl	-CH2CH2CO2H
184B	3Et3OH-Pentyl	-CH2CH2CO2H
185B	3Et3OH-Pentenyl	-CH2CH2CO2H
186B	3Et3OH-Pentynyl	-CH2CH2CO2H
187B	3Me3OH-Pentyl	-CH2CH2C(O)NH2
188B	3Me3OH-Pentenyl	-CH2CH2C(O)NH2
189B	3Me3OH-Pentynyl	-CH2CH2C(O)NH2
190B	3Et3OH-Pentyl	-CH2CH2C(O)NH2
191B	3Et3OH-Pentenyl	-CH2CH2C(O)NH2
192B	3Et3OH-Pentynyl	-CH2CH2C(O)NH2
193B	3Me3OH-Pentyl	-CH2CH2C(O)NMe2
194B	3Me3OH-Pentenyl	-CH2CH2C(O)NMe2
195B	3Me3OH-Pentynyl	-CH2CH2C(O)NMe2
196B	3Et3OH-Pentyl	-CH2CH2C(O)NMe2
197B	3Et3OH-Pentenyl	-CH2CH2C(O)NMe2
198B	3Et3OH-Pentynyl	-CH2CH2C(O)NMe2
199B	3Me3OH-Pentyl	-CH2CH2-5-tetrazolyl
200B	3Me3OH-Pentenyl	-CH2CH2-5-tetrazolyl
201B	3Me3OH-Pentynyl	-CH2CH2-5-tetrazolyl
202B	3Et3OH-Pentyl	-CH2CH2-5-tetrazolyl

-121-

203B	3Et3OH-Pentenyl	-CH2CH2-5-tetrazolyl
204B	3Et3OH-Pentylyn	-CH2CH2-5-tetrazolyl
205B	3Me3OH-Pentenyl	-CH2S(O)2Me
206B	3Me3OH-Pentenyl	-CH2S(O)2Me
207B	3Me3OH-Pentylyn	-CH2S(O)2Me
208B	3Et3OH-Pentenyl	-CH2S(O)2Me
209B	3Et3OH-Pentylyn	-CH2S(O)2Me
210B	3Et3OH-Pentylyn	-CH2S(O)2Me
211B	3Me3OH-Pentenyl	-CH2CH2S(O)2Me
212B	3Me3OH-Pentenyl	-CH2CH2S(O)2Me
213B	3Me3OH-Pentylyn	-CH2CH2S(O)2Me
214B	3Et3OH-Pentenyl	-CH2CH2S(O)2Me
215B	3Et3OH-Pentylyn	-CH2CH2S(O)2Me
216B	3Et3OH-Pentylyn	-CH2CH2S(O)2Me
217B	3Me3OH-Pentenyl	-CH2CH2CH2S(O)2Me
218B	3Me3OH-Pentenyl	-CH2CH2CH2S(O)2Me
219B	3Me3OH-Pentylyn	-CH2CH2CH2S(O)2Me
220B	3Et3OH-Pentenyl	-CH2CH2CH2S(O)2Me
221B	3Et3OH-Pentylyn	-CH2CH2CH2S(O)2Me
222B	3Et3OH-Petylyn	-CH2CH2CH2S(O)2Me
223B	3Me3OH-Pentenyl	-CH2S(O)2Et
224B	3Me3OH-Pentenyl	-CH2S(O)2Et
225B	3Me3OH-Pentylyn	-CH2S(O)2Et
226B	3Et3OH-Pentenyl	-CH2S(O)2Et
227B	3Et3OH-Pentylyn	-CH2S(O)2Et
228B	3Et3OH-Pentylyn	-CH2S(O)2Et
229B	3Me3OH-Pentenyl	-CH2CH2S(O)2Et
230B	3Me3OH-Pentylyn	-CH2CH2S(O)2Et
231B	3Me3OH-Petylyn	-CH2CH2S(O)2Et
232B	3Et3OH-Pentenyl	-CH2CH2S(O)2Et
233B	3Et3OH-Pentenyl	-CH2CH2S(O)2Et

234B	3Et3OH-Pentynyl	-CH ₂ CH ₂ S(O)2Et
235B	3Me3OH-Pentyl	-CH ₂ CH ₂ CH ₂ S(O)2Et
236B	3Me3OH-Pentenyl	-CH ₂ CH ₂ CH ₂ S(O)2Et
237B	3Me3OH-Pentynyl	-CH ₂ CH ₂ CH ₂ S(O)2Et
238B	3Et3OH-Pentyl	-CH ₂ CH ₂ CH ₂ S(O)2Et
239B	3Et3OH-Pentenyl	-CH ₂ CH ₂ CH ₂ S(O)2Et
240B	3Et3OH-Pentynyl	-CH ₂ CH ₂ CH ₂ S(O)2Et
241B	3Me3OH-Pentyl	-CH ₂ S(O)2iPr
242B	3Me3OH-Pentenyl	-CH ₂ S(O)2iPr
243B	3Me3OH-Pentynyl	-CH ₂ S(O)2iPr
244B	3Et3OH-Pentyl	-CH ₂ S(O)2iPr
245B	3Et3OH-Pentenyl	-CH ₂ S(O)2iPr
246B	3Et3OH-Pentynyl	-CH ₂ S(O)2iPr
247B	3Me3OH-Pentyl	-CH ₂ CH ₂ S(O)2iPr
248B	3Me3OH-Pentenyl	-CH ₂ CH ₂ S(O)2iPr
249B	3Me3OH-Pentynyl	-CH ₂ CH ₂ S(O)2iPr
250B	3Et3OH-Pentyl	-CH ₂ CH ₂ S(O)2iPr
251B	3Et3OH-Pentenyl	-CH ₂ CH ₂ S(O)2iPr
252B	3Et3OH-Pentynyl	-CH ₂ CH ₂ S(O)2iPr
253B	3Me3OH-Pentyl	-CH ₂ S(O)2tBu
254B	3Me3OH-Pentenyl	-CH ₂ S(O)2tBu
255B	3Me3OH-Pentynyl	-CH ₂ S(O)2tBu
256B	3Et3OH-Pentyl	-CH ₂ S(O)2tBu
257B	3Et3OH-Pentenyl	-CH ₂ S(O)2tBu
258B	3Et3OH-Pentynyl	-CH ₂ S(O)2tBu
259B	3Me3OH-Pentyl	-CH ₂ CH ₂ S(O)2tBu
260B	3Me3OH-Pentenyl	-CH ₂ CH ₂ S(O)2tBu
261B	3Me3OH-Pentynyl	-CH ₂ CH ₂ S(O)2tBu
262B	3Et3OH-Pentyl	-CH ₂ CH ₂ S(O)2tBu
263B	3Et3OH-Pentenyl	-CH ₂ CH ₂ S(O)2tBu
264B	3Et3OH-Pentynyl	-CH ₂ CH ₂ S(O)2tBu

265B	3Me3OH-Pentyl	-CH2CH2S(O)2NH2
266B	3Me3OH-Pentenyl	-CH2CH2S(O)2NH2
267B	3Me3OH-Pentyanyl	-CH2CH2S(O)2NH2
268B	3Et3OH-Pentyl	-CH2CH2S(O)2NH2
269B	3Et3OH-Pentenyl	-CH2CH2S(O)2NH2
270B	3Et3OH-Pentyanyl	-CH2CH2S(O)2NH2
271B	3Me3OH-Pentyl	-CH2CH2S(O)2NMe2
272B	3Me3OH-Pentenyl	-CH2CH2S(O)2NMe2
273B	3Me3OH-Pentyanyl	-CH2CH2S(O)2NMe2
274B	3Et3OH-Pentyl	-CH2CH2S(O)2NMe2
275B	3Et3OH-Pentenyl	-CH2CH2S(O)2NMe2
276B	3Et3OH-Pentyanyl	-CH2CH2S(O)2NMe2
277B	3Me3OH-Pentyl	-C(O)CH2S(O)2Me
278B	3Me3OH-Pentenyl	-C(O)CH2S(O)2Me
279B	3Me3OH-Pentyanyl	-C(O)CH2S(O)2Me
280B	3Et3OH-Pentyl	-C(O)CH2S(O)2Me
281B	3Et3OH-Pentenyl	-C(O)CH2S(O)2Me
282B	3Et3OH-Pentyanyl	-C(O)CH2S(O)2Me
283B	3Me3OH-Pentyl	-C(O)CH2CH2S(O)2Me
284B	3Me3OH-Pentenyl	-C(O)CH2CH2S(O)2Me
285B	3Me3OH-Pentyanyl	-C(O)CH2CH2S(O)2Me
286B	3Et3OH-Pentyl	-C(O)CH2CH2S(O)2Me
287B	3Et3OH-Pentenyl	-C(O)CH2CH2S(O)2Me
288B	3Et3OH-Pentyanyl	-C(O)CH2CH2S(O)2Me
289B	3Me3OH-Pentyl	-CH2CH2CH2S(O)2NH2
290B	3Me3OH-Pentenyl	-CH2CH2CH2S(O)2NH2
291B	3Me3OH-Petyanyl	-CH2CH2CH2S(O)2NH2
292B	3Et3OH-Pentyl	-CH2CH2CH2S(O)2NH2
293B	3Et3OH-Pentenyl	-CH2CH2CH2S(O)2NH2
294B	3Et3OH-Petyanyl	-CH2CH2CH2S(O)2NH2
295B	3Me3OH-Pentyl	-S(O)2Me

-124-

296B	3Me3OH-Pentenyl	-S(O)2Me
297B	3Me3OH-Pentylyn	-S(O)2Me
298B	3Et3OH-Pentyl	-S(O)2Me
299B	3Et3OH-Pentenyl	-S(O)2Me
300B	3Et3OH-Pentylyn	-S(O)2Me
301B	3Me3OH-Pentyl	-S(O)2Et
302B	3Me3OH-Pentenyl	-S(O)2Et
303B	3Me3OH-Pentylyn	-S(O)2Et
304B	3Et3OH-Pentyl	-S(O)2Et
305B	3Et3OH-Pentenyl	-S(O)2Et
306B	3Et3OH-Pentylyn	-S(O)2Et
307B	3Me3OH-Pentyl	-S(O)2iPr
308B	3Me3OH-Pentenyl	-S(O)2iPr
309B	3Me3OH-Pentylyn	-S(O)2iPr
310B	3Et3OH-Pentyl	-S(O)2iPr
311B	3Et3OH-Pentenyl	-S(O)2iPr
312B	3Et3OH-Pentylyn	-S(O)2iPr
313B	3Me3OH-Pentyl	-S(O)2tBu
314B	3Me3OH-Pentenyl	-S(O)2tBu
315B	3Me3OH-Pentylyn	-S(O)2tBu
316B	3Et3OH-Pentyl	-S(O)2tBu
317B	3Et3OH-Pentenyl	-S(O)2tBu
318B	3Et3OH-Pentylyn	-S(O)2tBu
319B	3Me3OH-Pentyl	-S(O)2NH2
320B	3Me3OH-Pentenyl	-S(O)2NH2
321B	3Me3OH-Pentylyn	-S(O)2NH2
322B	3Et3OH-Pentyl	-S(O)2NH2
323B	3Et3OH-Pentenyl	-S(O)2NH2
324B	3Et3OH-Pentylyn	-S(O)2NH2
325B	3Me3OH-Pentyl	-S(O)2NMe2
326B	3Me3OH-Pentenyl	-S(O)2NMe2

-125-

327B	3Me3OH-Pentynyl	-S(O)2NMe2
328B	3Et3OH-Pentyl	-S(O)2NMe2
329B	3Et3OH-Pentenyl	-S(O)2NMe2
330B	3Et3OH-Pentynyl	-S(O)2NMe2
331B	3Me3OH-Pentyl	-S(O)2CH2S(O)2Me
332B	3Me3OH-Pentenyl	-S(O)2CH2S(O)2Me
333B	3Me3OH-Pentynyl	-S(O)2CH2S(O)2Me
334B	3Et3OH-Pentyl	-S(O)2CH2S(O)2Me
335B	3Et3OH-Pentenyl	-S(O)2CH2S(O)2Me
336B	3Et3OH-Pentynyl	-S(O)2CH2S(O)2Me
337B	3Me3OH-Pentyl	-S(O)2CH2S(O)2Et
338B	3Me3OH-Pentenyl	-S(O)2CH2S(O)2Et
339B	3Me3OH-Pentynyl	-S(O)2CH2S(O)2Et
340B	3Et3OH-Pentyl	-S(O)2CH2S(O)2Et
341B	3Et3OH-Pentenyl	-S(O)2CH2S(O)2Et
342B	3Et3OH-Pentynyl	-S(O)2CH2S(O)2Et
343B	3Me3OH-Pentyl	-S(O)2CH2S(O)2iPr
344B	3Me3OH-Pentenyl	-S(O)2CH2S(O)2iPr
345B	3Me3OH-Pentynyl	-S(O)2CH2S(O)2iPr
346B	3Et3OH-Pentyl	-S(O)2CH2S(O)2iPr
347B	3Et3OH-Pentenyl	-S(O)2CH2S(O)2iPr
348B	3Et3OH-Pentynyl	-S(O)2CH2S(O)2iPr
349B	3Me3OH-Pentyl	-S(O)2CH2S(O)2tBu
350B	3Me3OH-Pentenyl	-S(O)2CH2S(O)2tBu
351B	3Me3OH-Pentynyl	-S(O)2CH2S(O)2tBu
352B	3Et3OH-Pentyl	-S(O)2CH2S(O)2tBu
353B	3Et3OH-Pentenyl	-S(O)2CH2S(O)2tBu
354B	3Et3OH-Pentynyl	-S(O)2CH2S(O)2tBu
355B	3Me3OH-Pentyl	-C(O)NHCH2CO2H
356B	3Me3OH-Pentenyl	-C(O)NHCH2CO2H
357B	3Me3OH-Pentynyl	-C(O)NHCH2CO2H

358B	3Et3OH-Pentyl	-C(O)NHCH ₂ CO ₂ H
359B	3Et3OH-Pentenyl	-C(O)NHCH ₂ CO ₂ H
360B	3Et3OH-Pentylyn	-C(O)NHCH ₂ CO ₂ H
361B	3Me3OH-Pentyl	-SO ₂ NHCH ₂ CO ₂ H
362B	3Me3OH-Pentenyl	-SO ₂ NHCH ₂ CO ₂ H
363B	3Me3OH-Pentylyn	-SO ₂ NHCH ₂ CO ₂ H
364B	3Et3OH-Pentyl	-SO ₂ NHCH ₂ CO ₂ H
365B	3Et3OH-Pentenyl	-SO ₂ NHCH ₂ CO ₂ H
366B	3Et3OH-Pentylyn	-SO ₂ NHCH ₂ CO ₂ H
367B	3Me3OH-Pentyl	-CH ₂ -S-Me
368B	3Me3OH-Pentenyl	-CH ₂ -S-Me
369B	3Me3OH-Petylyn	-CH ₂ -S-Me
370B	3Et3OH-Pentyl	-CH ₂ -S-Me
371B	3Et3OH-Pentenyl	-CH ₂ -S-Me
372B	3Et3OH-Petylyn	-CH ₂ -S-Me

5

Table 4

Code	R4	L ₁	W _T
1C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CO ₂ Me
2C	1-hydroxycyclopentyl	-C≡C-	-CO ₂ Me
3C	1-hydroxycyclopentyl	-C=C-	-CO ₂ Me
4C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-CO ₂ Me

5C	1-hydroxycyclohexyl	-C≡C-	-CO2Me
6C	1-hydroxycyclohexyl	-C=C-	-CO2Me
7C	1-hydroxycyclopentyl	-(CH2)2-	-CO2H
8C	1-hydroxycyclopentyl	-C≡C-	-CO2H
9C	1-hydroxycyclopentyl	-C=C-	-CO2H
10C	1-hydroxycyclohexyl	-(CH2)2-	-CO2H
11C	1-hydroxycyclohexyl	-C≡C-	-CO2H
12C	1-hydroxycyclohexyl	-C=C-	-CO2H
13C	1-hydroxycyclopentyl	-(CH2)2-	-C(O)NH2
14C	1-hydroxycyclopentyl	-C≡C-	-C(O)NH2
15C	1-hydroxycyclopentyl	-C=C-	-C(O)NH2
16C	1-hydroxycyclohexyl	-(CH2)2-	-C(O)NH2
17C	1-hydroxycyclohexyl	-C≡C-	-C(O)NH2
18C	1-hydroxycyclohexyl	-C=C-	-C(O)NH2
19C	1-hydroxycyclopentyl	-(CH2)2-	-C(O)NMe2
20C	1-hydroxycyclopentyl	-C≡C-	-C(O)NMe2
21C	1-hydroxycyclopentyl	-C=C-	-C(O)NMe2
22C	1-hydroxycyclohexyl	-(CH2)2-	-C(O)NMe2
23C	1-hydroxycyclohexyl	-C≡C-	-C(O)NMe2
24C	1-hydroxycyclohexyl	-C=C-	-C(O)NMe2
25C	1-hydroxycyclopentyl	-(CH2)2-	5-tetrazolyl
26C	1-hydroxycyclopentyl	-C≡C-	5-tetrazolyl
27C	1-hydroxycyclopentyl	-C=C-	5-tetrazolyl
28C	1-hydroxycyclohexyl	-(CH2)2-	5-tetrazolyl
29C	1-hydroxycyclohexyl	-C≡C-	5-tetrazolyl
30C	1-hydroxycyclohexyl	-C=C-	5-tetrazolyl
31C	1-hydroxycyclopentyl	-(CH2)2-	-C(O)-NH-5-tetrazolyl
32C	1-hydroxycyclopentyl	-C≡C-	-C(O)-NH-5-tetrazolyl
33C	1-hydroxycyclopentyl	-C=C-	-C(O)-NH-5-tetrazolyl
34C	1-hydroxycyclohexyl	-(CH2)2-	-C(O)-NH-5-tetrazolyl
35C	1-hydroxycyclohexyl	-C≡C-	-C(O)-NH-5-tetrazolyl

36C	1-hydroxycyclohexyl	-C=C-	-C(O)-NH-5-tetrazolyl
37C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-C(O)NHCH ₂ SO ₂ Me
38C	1-hydroxycyclopentyl	-C≡C-	-C(O)NHCH ₂ SO ₂ Me
39C	1-hydroxycyclopentyl	-C=C-	-C(O)NHCH ₂ SO ₂ Me
40C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-C(O)NHCH ₂ SO ₂ Me
41C	1-hydroxycyclohexyl	-C≡C-	-C(O)NHCH ₂ SO ₂ Me
42C	1-hydroxycyclohexyl	-C=C-	-C(O)NHCH ₂ SO ₂ Me
43C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-C(O)NHCH ₂ CH ₂ SO ₂ Me
44C	1-hydroxycyclopentyl	-C≡C-	-C(O)NHCH ₂ CH ₂ SO ₂ Me
45C	1-hydroxycyclopentyl	-C=C-	-C(O)NHCH ₂ CH ₂ SO ₂ Me
46C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-C(O)NHCH ₂ CH ₂ SO ₂ Me
47C	1-hydroxycyclohexyl	-C≡C-	-C(O)NHCH ₂ CH ₂ SO ₂ Me
48C	1-hydroxycyclohexyl	-C=C-	-C(O)NHCH ₂ CH ₂ SO ₂ Me
49C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-C(O)NHSO ₂ Me
50C	1-hydroxycyclopentyl	-C≡C-	-C(O)NHSO ₂ Me
51C	1-hydroxycyclopentyl	-C=C-	-C(O)NHSO ₂ Me
52C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-C(O)NHSO ₂ Me
53C	1-hydroxycyclohexyl	-C≡C-	-C(O)NHSO ₂ Me
54C	1-hydroxycyclohexyl	-C=C-	-C(O)NHSO ₂ Me
55C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CH ₂ -C(O)NHSO ₂ Et
56C	1-hydroxycyclopentyl	-C≡C-	-CH ₂ -C(O)NHSO ₂ Et
57C	1-hydroxycyclopentyl	-C=C-	-CH ₂ -C(O)NHSO ₂ Et
58C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-CH ₂ -C(O)NHSO ₂ Et
59C	1-hydroxycyclohexyl	-C≡C-	-CH ₂ -C(O)NHSO ₂ Et
60C	1-hydroxycyclohexyl	-C=C-	-CH ₂ -C(O)NHSO ₂ Et
61C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CH ₂ -C(O)NHSO ₂ iPr
62C	1-hydroxycyclopentyl	-C≡C-	-CH ₂ -C(O)NHSO ₂ iPr
63C	1-hydroxycyclopentyl	-C=C-	-CH ₂ -C(O)NHSO ₂ iPr
64C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-CH ₂ -C(O)NHSO ₂ iPr
65C	1-hydroxycyclohexyl	-C≡C-	-CH ₂ -C(O)NHSO ₂ iPr
66C	1-hydroxycyclohexyl	-C=C-	-CH ₂ -C(O)NHSO ₂ iPr

67C	1-hydroxycyclopentyl	$-(CH_2)_2-$	$-CH_2-C(O)NHSO_2tBu$
68C	1-hydroxycyclopentyl	$-C\equiv C-$	$-CH_2-C(O)NHSO_2tBu$
69C	1-hydroxycyclopentyl	$-C=C-$	$-CH_2-C(O)NHSO_2tBu$
70C	1-hydroxycyclohexyl	$-(CH_2)_2-$	$-CH_2-C(O)NHSO_2tBu$
71C	1-hydroxycyclohexyl	$-C\equiv C-$	$-CH_2-C(O)NHSO_2tBu$
72C	1-hydroxycyclohexyl	$-C=C-$	$-CH_2-C(O)NHSO_2tBu$
73C	1-hydroxycyclopentyl	$-(CH_2)_2-$	$-CH_2NHSO_2Me$
74C	1-hydroxycyclopentyl	$-C\equiv C-$	$-CH_2NHSO_2Me$
75C	1-hydroxycyclopentyl	$-C=C-$	$-CH_2NHSO_2Me$
76C	1-hydroxycyclohexyl	$-(CH_2)_2-$	$-CH_2NHSO_2Me$
77C	1-hydroxycyclohexyl	$-C\equiv C-$	$-CH_2NHSO_2Me$
78C	1-hydroxycyclohexyl	$-C=C-$	$-CH_2NHSO_2Me$
79C	1-hydroxycyclopentyl	$-(CH_2)_2-$	$-CH_2NHSO_2Et$
80C	1-hydroxycyclopentyl	$-C\equiv C-$	$-CH_2NHSO_2Et$
81C	1-hydroxycyclopentyl	$-C=C-$	$-CH_2NHSO_2Et$
82C	1-hydroxycyclohexyl	$-(CH_2)_2-$	$-CH_2NHSO_2Et$
83C	1-hydroxycyclohexyl	$-C\equiv C-$	$-CH_2NHSO_2Et$
84C	1-hydroxycyclohexyl	$-C=C-$	$-CH_2NHSO_2Et$
85C	1-hydroxycyclopentyl	$-(CH_2)_2-$	$-CH_2NHSO_2iPr$
86C	1-hydroxycyclopentyl	$-C\equiv C-$	$-CH_2NHSO_2iPr$
87C	1-hydroxycyclopentyl	$-C=C-$	$-CH_2NHSO_2iPr$
88C	1-hydroxycyclohexyl	$-(CH_2)_2-$	$-CH_2NHSO_2iPr$
89C	1-hydroxycyclohexyl	$-C\equiv C-$	$-CH_2NHSO_2iPr$
90C	1-hydroxycyclohexyl	$-C=C-$	$-CH_2NHSO_2iPr$
91C	1-hydroxycyclopentyl	$-(CH_2)_2-$	$-CH_2NHSO_2tBu$
92C	1-hydroxycyclopentyl	$-C\equiv C-$	$-CH_2NHSO_2tBu$
93C	1-hydroxycyclopentyl	$-C=C-$	$-CH_2NHSO_2tBu$
94C	1-hydroxycyclohexyl	$-(CH_2)_2-$	$-CH_2NHSO_2tBu$
95C	1-hydroxycyclohexyl	$-C\equiv C-$	$-CH_2NHSO_2tBu$
96C	1-hydroxycyclohexyl	$-C=C-$	$-CH_2NHSO_2tBu$
97C	1-hydroxycyclopentyl	$-(CH_2)_2-$	$-CH_2-N-pyrrolidin-2-one$

98C	1-hydroxycyclopentyl	-C≡C-	-CH2-N-pyrrolidin-2-one
99C	1-hydroxycyclopentyl	-C=C-	-CH2-N-pyrrolidin-2-one
100C	1-hydroxycyclohexyl	-(CH2)2-	-CH2-N-pyrrolidin-2-one
101C	1-hydroxycyclohexyl	-C≡C-	-CH2-N-pyrrolidin-2-one
102C	1-hydroxycyclohexyl	-C=C-	-CH2-N-pyrrolidin-2-one
103C	1-hydroxycyclopentyl	-(CH2)2-	-CH2-(1-methylpyrrolidin-2-one-3-yl)
104C	1-hydroxycyclopentyl	-C≡C-	-CH2-(1-methylpyrrolidin-2-one-3-yl)
105C	1-hydroxycyclopentyl	-C=C-	-CH2-(1-methylpyrrolidin-2-one-3-yl)
106C	1-hydroxycyclohexyl	-(CH2)2-	-CH2-(1-methylpyrrolidin-2-one-3-yl)
107C	1-hydroxycyclohexyl	-C≡C-	-CH2-(1-methylpyrrolidin-2-one-3-yl)
108C	1-hydroxycyclohexyl	-C=C-	-CH2-(1-methylpyrrolidin-2-one-3-yl)
109C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CO2Me
110C	1-hydroxycyclopentyl	-C≡C-	-CH2CO2Me
111C	1-hydroxycyclopentyl	-C=C-	-CH2CO2Me
112C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CO2Me
113C	1-hydroxycyclohexyl	-C≡C-	-CH2CO2Me
114C	1-hydroxycyclohexyl	-C=C-	-CH2CO2Me
115C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CO2H
116C	1-hydroxycyclopentyl	-C≡C-	-CH2CO2H
117C	1-hydroxycyclopentyl	-C=C-	-CH2CO2H
118C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CO2H
119C	1-hydroxycyclohexyl	-C≡C-	-CH2CO2H
120C	1-hydroxycyclohexyl	-C=C-	-CH2CO2H
121C	1-hydroxycyclopentyl	-(CH2)2-	-CH2C(O)NH2
122C	1-hydroxycyclopentyl	-C≡C-	-CH2C(O)NH2
123C	1-hydroxycyclopentyl	-C=C-	-CH2C(O)NH2
124C	1-hydroxycyclohexyl	-(CH2)2-	-CH2C(O)NH2
125C	1-hydroxycyclohexyl	-C≡C-	-CH2C(O)NH2
126C	1-hydroxycyclohexyl	-C=C-	-CH2C(O)NH2
127C	1-hydroxycyclopentyl	-(CH2)2-	-CH2C(O)NMe2
128C	1-hydroxycyclopentyl	-C≡C-	-CH2C(O)NMe2

129C	1-hydroxycyclopentyl	-C=C-	-CH2C(O)NMe2
130C	1-hydroxycyclohexyl	-(CH2)2-	-CH2C(O)NMe2
131C	1-hydroxycyclohexyl	-C≡C-	-CH2C(O)NMe2
132C	1-hydroxycyclohexyl	-C=C-	-CH2C(O)NMe2
133C	1-hydroxycyclopentyl	-(CH2)2-	-CH2C(O)-N-pyrrolidine
134C	1-hydroxycyclopentyl	-C≡C-	-CH2C(O)-N-pyrrolidine
135C	1-hydroxycyclopentyl	-C=C-	-CH2C(O)-N-pyrrolidine
136C	1-hydroxycyclohexyl	-(CH2)2-	-CH2C(O)-N-pyrrolidine
137C	1-hydroxycyclohexyl	-C≡C-	-CH2C(O)-N-pyrrolidine
138C	1-hydroxycyclohexyl	-C=C-	-CH2C(O)-N-pyrrolidine
139C	1-hydroxycyclopentyl	-(CH2)2-	-CH2-5-tetrazolyl
140C	1-hydroxycyclopentyl	-C≡C-	-CH2-5-tetrazolyl
141C	1-hydroxycyclopentyl	-C=C-	-CH2-5-tetrazolyl
142C	1-hydroxycyclohexyl	-(CH2)2-	-CH2-5-tetrazolyl
143C	1-hydroxycyclohexyl	-C≡C-	-CH2-5-tetrazolyl
144C	1-hydroxycyclohexyl	-C=C-	-CH2-5-tetrazolyl
145C	1-hydroxycyclopentyl	-(CH2)2-	-C(O)C(O)OH
146C	1-hydroxycyclopentyl	-C≡C-	-C(O)C(O)OH
147C	1-hydroxycyclopentyl	-C=C-	-C(O)C(O)OH
148C	1-hydroxycyclohexyl	-(CH2)2-	-C(O)C(O)OH
149C	1-hydroxycyclohexyl	-C≡C-	-C(O)C(O)OH
150C	1-hydroxycyclohexyl	-C=C-	-C(O)C(O)OH
151C	1-hydroxycyclopentyl	-(CH2)2-	-CH(OH)C(O)OH
152C	1-hydroxycyclopentyl	-C≡C-	-CH(OH)C(O)OH
153C	1-hydroxycyclopentyl	-C=C-	-CH(OH)C(O)OH
154C	1-hydroxycyclohexyl	-(CH2)2-	-CH(OH)C(O)OH
155C	1-hydroxycyclohexyl	-C≡C-	-CH(OH)C(O)OH
156C	1-hydroxycyclohexyl	-C=C-	-CH(OH)C(O)OH
157C	1-hydroxycyclopentyl	-(CH2)2-	-C(O)C(O)NH2
158C	1-hydroxycyclopentyl	-C≡C-	-C(O)C(O)NH2
159C	1-hydroxycyclopentyl	-C=C-	-C(O)C(O)NH2

160C	1-hydroxycyclohexyl	$-(CH_2)_2-$	$-C(O)C(O)NH_2$
161C	1-hydroxycyclohexyl	$-C\equiv C-$	$-C(O)C(O)NH_2$
162C	1-hydroxycyclohexyl	$-C=C-$	$-C(O)C(O)NH_2$
163C	1-hydroxycyclopentyl	$-(CH_2)_2-$	$-CH(OH)C(O)NH_2$
164C	1-hydroxycyclopentyl	$-C\equiv C-$	$-CH(OH)C(O)NH_2$
165C	1-hydroxycyclopentyl	$-C=C-$	$-CH(OH)C(O)NH_2$
166C	1-hydroxycyclohexyl	$-(CH_2)_2-$	$-CH(OH)C(O)NH_2$
167C	1-hydroxycyclohexyl	$-C\equiv C-$	$-CH(OH)C(O)NH_2$
168C	1-hydroxycyclohexyl	$-C=C-$	$-CH(OH)C(O)NH_2$
169C	1-hydroxycyclopentyl	$-(CH_2)_2-$	$-C(O)C(O)NMe_2$
170C	1-hydroxycyclopentyl	$-C\equiv C-$	$-C(O)C(O)NMe_2$
171C	1-hydroxycyclopentyl	$-C=C-$	$-C(O)C(O)NMe_2$
172C	1-hydroxycyclohexyl	$-(CH_2)_2-$	$-C(O)C(O)NMe_2$
173C	1-hydroxycyclohexyl	$-C\equiv C-$	$-C(O)C(O)NMe_2$
174C	1-hydroxycyclohexyl	$-C=C-$	$-C(O)C(O)NMe_2$
175C	1-hydroxycyclopentyl	$-(CH_2)_2-$	$-CH(OH)C(O)NMe_2$
176C	1-hydroxycyclopentyl	$-C\equiv C-$	$-CH(OH)C(O)NMe_2$
177C	1-hydroxycyclopentyl	$-C=C-$	$-CH(OH)C(O)NMe_2$
178C	1-hydroxycyclohexyl	$-(CH_2)_2-$	$-CH(OH)C(O)NMe_2$
179C	1-hydroxycyclohexyl	$-C\equiv C-$	$-CH(OH)C(O)NMe_2$
180C	1-hydroxycyclohexyl	$-C=C-$	$-CH(OH)C(O)NMe_2$
181C	1-hydroxycyclopentyl	$-(CH_2)_2-$	$-CH_2CH_2CO_2H$
182C	1-hydroxycyclopentyl	$-C\equiv C-$	$-CH_2CH_2CO_2H$
183C	1-hydroxycyclopentyl	$-C=C-$	$-CH_2CH_2CO_2H$
184C	1-hydroxycyclohexyl	$-(CH_2)_2-$	$-CH_2CH_2CO_2H$
185C	1-hydroxycyclohexyl	$-C\equiv C-$	$-CH_2CH_2CO_2H$
186C	1-hydroxycyclohexyl	$-C=C-$	$-CH_2CH_2CO_2H$
187C	1-hydroxycyclopentyl	$-(CH_2)_2-$	$-CH_2CH_2C(O)NH_2$
188C	1-hydroxycyclopentyl	$-C\equiv C-$	$-CH_2CH_2C(O)NH_2$
189C	1-hydroxycyclopentyl	$-C=C-$	$-CH_2CH_2C(O)NH_2$
190C	1-hydroxycyclohexyl	$-(CH_2)_2-$	$-CH_2CH_2C(O)NH_2$

191C	1-hydroxycyclohexyl	-C≡C-	-CH2CH2C(O)NH2
192C	1-hydroxycyclohexyl	-C=C-	-CH2CH2C(O)NH2
193C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CH2C(O)NMe2
194C	1-hydroxycyclopentyl	-C≡C-	-CH2CH2C(O)NMe2
195C	1-hydroxycyclopentyl	-C=C-	-CH2CH2C(O)NMe2
196C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CH2C(O)NMe2
197C	1-hydroxycyclohexyl	-C≡C-	-CH2CH2C(O)NMe2
198C	1-hydroxycyclohexyl	-C=C-	-CH2CH2C(O)NMe2
199C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CH2-5-tetrazolyl
200C	1-hydroxycyclopentyl	-C≡C-	-CH2CH2-5-tetrazolyl
201C	1-hydroxycyclopentyl	-C=C-	-CH2CH2-5-tetrazolyl
202C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CH2-5-tetrazolyl
203C	1-hydroxycyclohexyl	-C≡C-	-CH2CH2-5-tetrazolyl
204C	1-hydroxycyclohexyl	-C=C-	-CH2CH2-5-tetrazolyl
205C	1-hydroxycyclopentyl	-(CH2)2-	-CH2S(O)2Me
206C	1-hydroxycyclopentyl	-C≡C-	-CH2S(O)2Me
207C	1-hydroxycyclopentyl	-C=C-	-CH2S(O)2Me
208C	1-hydroxycyclohexyl	-(CH2)2-	-CH2S(O)2Me
209C	1-hydroxycyclohexyl	-C≡C-	-CH2S(O)2Me
210C	1-hydroxycyclohexyl	-C=C-	-CH2S(O)2Me
211C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CH2S(O)2Me
212C	1-hydroxycyclopentyl	-C≡C-	-CH2CH2S(O)2Me
213C	1-hydroxycyclopentyl	-C=C-	-CH2CH2S(O)2Me
214C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CH2S(O)2Me
215C	1-hydroxycyclohexyl	-C≡C-	-CH2CH2S(O)2Me
216C	1-hydroxycyclohexyl	-C=C-	-CH2CH2S(O)2Me
217C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CH2CH2S(O)2Me
218C	1-hydroxycyclopentyl	-C≡C-	-CH2CH2CH2S(O)2Me
219C	1-hydroxycyclopentyl	-C=C-	-CH2CH2CH2S(O)2Me
220C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CH2CH2S(O)2Me
221C	1-hydroxycyclohexyl	-C≡C-	-CH2CH2CH2S(O)2Me

222C	1-hydroxycyclohexyl	-C=C-	-CH2CH2CH2S(O)2Me
223C	1-hydroxycyclopentyl	-(CH2)2-	-CH2S(O)2Et
224C	1-hydroxycyclopentyl	-C≡C-	-CH2S(O)2Et
225C	1-hydroxycyclopentyl	-C=C-	-CH2S(O)2Et
226C	1-hydroxycyclohexyl	-(CH2)2-	-CH2S(O)2Et
227C	1-hydroxycyclohexyl	-C≡C-	-CH2S(O)2Et
228C	1-hydroxycyclohexyl	-C=C-	-CH2S(O)2Et
229C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CH2S(O)2Et
230C	1-hydroxycyclopentyl	-C≡C-	-CH2CH2S(O)2Et
231C	1-hydroxycyclopentyl	-C=C-	-CH2CH2S(O)2Et
232C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CH2S(O)2Et
233C	1-hydroxycyclohexyl	-C≡C-	-CH2CH2S(O)2Et
234C	1-hydroxycyclohexyl	-C=C-	-CH2CH2S(O)2Et
235C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CH2CH2S(O)2Et
236C	1-hydroxycyclopentyl	-C≡C-	-CH2CH2CH2S(O)2Et
237C	1-hydroxycyclopentyl	-C=C-	-CH2CH2CH2S(O)2Et
238C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CH2CH2S(O)2Et
239C	1-hydroxycyclohexyl	-C≡C-	-CH2CH2CH2S(O)2Et
240C	1-hydroxycyclohexyl	-C=C-	-CH2CH2CH2S(O)2Et
241C	1-hydroxycyclopentyl	-(CH2)2-	-CH2S(O)2iPr
242C	1-hydroxycyclopentyl	-C≡C-	-CH2S(O)2iPr
243C	1-hydroxycyclopentyl	-C=C-	-CH2S(O)2iPr
244C	1-hydroxycyclohexyl	-(CH2)2-	-CH2S(O)2iPr
245C	1-hydroxycyclohexyl	-C≡C-	-CH2S(O)2iPr
246C	1-hydroxycyclohexyl	-C=C-	-CH2S(O)2iPr
247C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CH2S(O)2iPr
248C	1-hydroxycyclopentyl	-C≡C-	-CH2CH2S(O)2iPr
249C	1-hydroxycyclopentyl	-C=C-	-CH2CH2S(O)2iPr
250C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CH2S(O)2iPr
251C	1-hydroxycyclohexyl	-C≡C-	-CH2CH2S(O)2iPr
252C	1-hydroxycyclohexyl	-C=C-	-CH2CH2S(O)2iPr

253C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CH ₂ S(O)2tBu
254C	1-hydroxycyclopentyl	-C≡C-	-CH ₂ S(O)2tBu
255C	1-hydroxycyclopentyl	-C=C-	-CH ₂ S(O)2tBu
256C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-CH ₂ S(O)2tBu
257C	1-hydroxycyclohexyl	-C≡C-	-CH ₂ S(O)2tBu
258C	1-hydroxycyclohexyl	-C=C-	-CH ₂ S(O)2tBu
259C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CH ₂ CH ₂ S(O)2tBu
260C	1-hydroxycyclopentyl	-C≡C-	-CH ₂ CH ₂ S(O)2tBu
261C	1-hydroxycyclopentyl	-C=C-	-CH ₂ CH ₂ S(O)2tBu
262C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-CH ₂ CH ₂ S(O)2tBu
263C	1-hydroxycyclohexyl	-C≡C-	-CH ₂ CH ₂ S(O)2tBu
264C	1-hydroxycyclohexyl	-C=C-	-CH ₂ CH ₂ S(O)2tBu
265C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CH ₂ CH ₂ S(O)2NH ₂
266C	1-hydroxycyclopentyl	-C≡C-	-CH ₂ CH ₂ S(O)2NH ₂
267C	1-hydroxycyclopentyl	-C=C-	-CH ₂ CH ₂ S(O)2NH ₂
268C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-CH ₂ CH ₂ S(O)2NH ₂
269C	1-hydroxycyclohexyl	-C≡C-	-CH ₂ CH ₂ S(O)2NH ₂
270C	1-hydroxycyclohexyl	-C=C-	-CH ₂ CH ₂ S(O)2NH ₂
271C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CH ₂ CH ₂ S(O)2NMe ₂
272C	1-hydroxycyclopentyl	-C≡C-	-CH ₂ CH ₂ S(O)2NMe ₂
273C	1-hydroxycyclopentyl	-C=C-	-CH ₂ CH ₂ S(O)2NMe ₂
274C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-CH ₂ CH ₂ S(O)2NMe ₂
275C	1-hydroxycyclohexyl	-C≡C-	-CH ₂ CH ₂ S(O)2NMe ₂
276C	1-hydroxycyclohexyl	-C=C-	-CH ₂ CH ₂ S(O)2NMe ₂
277C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-C(O)CH ₂ S(O)2Me
278C	1-hydroxycyclopentyl	-C≡C-	-C(O)CH ₂ S(O)2Me
279C	1-hydroxycyclopentyl	-C=C-	-C(O)CH ₂ S(O)2Me
280C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-C(O)CH ₂ S(O)2Me
281C	1-hydroxycyclohexyl	-C≡C-	-C(O)CH ₂ S(O)2Me
282C	1-hydroxycyclohexyl	-C=C-	-C(O)CH ₂ S(O)2Me
283C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-C(O)CH ₂ CH ₂ S(O)2Me

284C	1-hydroxycyclopentyl	-C≡C-	-C(O)CH2CH2S(O)2Me
285C	1-hydroxycyclopentyl	-C=C-	-C(O)CH2CH2S(O)2Me
286C	1-hydroxycyclohexyl	-(CH2)2-	-C(O)CH2CH2S(O)2Me
287C	1-hydroxycyclohexyl	-C≡C-	-C(O)CH2CH2S(O)2Me
288C	1-hydroxycyclohexyl	-C=C-	-C(O)CH2CH2S(O)2Me
289C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CH2CH2S(O)2NH2
290C	1-hydroxycyclopentyl	-C≡C-	-CH2CH2CH2S(O)2NH2
291C	1-hydroxycyclopentyl	-C=C-	-CH2CH2CH2S(O)2NH2
292C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CH2CH2S(O)2NH2
293C	1-hydroxycyclohexyl	-C≡C-	-CH2CH2CH2S(O)2NH2
294C	1-hydroxycyclohexyl	-C=C-	-CH2CH2CH2S(O)2NH2
295C	1-hydroxycyclopentyl	-(CH2)2-	-S(O)2Me
296C	1-hydroxycyclopentyl	-C≡C-	-S(O)2Me
297C	1-hydroxycyclopentyl	-C=C-	-S(O)2Me
298C	1-hydroxycyclohexyl	-(CH2)2-	-S(O)2Me
299C	1-hydroxycyclohexyl	-C≡C-	-S(O)2Me
300C	1-hydroxycyclohexyl	-C=C-	-S(O)2Me
301C	1-hydroxycyclopentyl	-(CH2)2-	-S(O)2Et
302C	1-hydroxycyclopentyl	-C≡C-	-S(O)2Et
303C	1-hydroxycyclopentyl	-C=C-	-S(O)2Et
304C	1-hydroxycyclohexyl	-(CH2)2-	-S(O)2Et
305C	1-hydroxycyclohexyl	-C≡C-	-S(O)2Et
306C	1-hydroxycyclohexyl	-C=C-	-S(O)2Et
307C	1-hydroxycyclopentyl	-(CH2)2-	-S(O)2iPr
308C	1-hydroxycyclopentyl	-C≡C-	-S(O)2iPr
309C	1-hydroxycyclopentyl	-C=C-	-S(O)2iPr
310C	1-hydroxycyclohexyl	-(CH2)2-	-S(O)2iPr
311C	1-hydroxycyclohexyl	-C≡C-	-S(O)2iPr
312C	1-hydroxycyclohexyl	-C=C-	-S(O)2iPr
313C	1-hydroxycyclopentyl	-(CH2)2-	-S(O)2tBu
314C	1-hydroxycyclopentyl	-C≡C-	-S(O)2tBu

315C	1-hydroxycyclopentyl	-C=C-	-S(O)2tBu
316C	1-hydroxycyclohexyl	-(CH2)2-	-S(O)2tBu
317C	1-hydroxycyclohexyl	-C≡C-	-S(O)2tBu
318C	1-hydroxycyclohexyl	-C=C-	-S(O)2tBu
319C	1-hydroxycyclopentyl	-(CH2)2-	-S(O)2NH2
320C	1-hydroxycyclopentyl	-C≡C-	-S(O)2NH2
321C	1-hydroxycyclopentyl	-C=C-	-S(O)2NH2
322C	1-hydroxycyclohexyl	-(CH2)2-	-S(O)2NH2
323C	1-hydroxycyclohexyl	-C≡C-	-S(O)2NH2
324C	1-hydroxycyclohexyl	-C=C-	-S(O)2NH2
325C	1-hydroxycyclopentyl	-(CH2)2-	-S(O)2NMe2
326C	1-hydroxycyclopentyl	-C≡C-	-S(O)2NMe2
327C	1-hydroxycyclopentyl	-C=C-	-S(O)2NMe2
328C	1-hydroxycyclohexyl	-(CH2)2-	-S(O)2NMe2
329C	1-hydroxycyclohexyl	-C≡C-	-S(O)2NMe2
330C	1-hydroxycyclohexyl	-C=C-	-S(O)2NMe2
331C	1-hydroxycyclopentyl	-(CH2)2-	-S(O)2CH2S(O)2Me
332C	1-hydroxycyclopentyl	-C≡C-	-S(O)2CH2S(O)2Me
333C	1-hydroxycyclopentyl	-C=C-	-S(O)2CH2S(O)2Me
334C	1-hydroxycyclohexyl	-(CH2)2-	-S(O)2CH2S(O)2Me
335C	1-hydroxycyclohexyl	-C≡C-	-S(O)2CH2S(O)2Me
336C	1-hydroxycyclohexyl	-C=C-	-S(O)2CH2S(O)2Me
337C	1-hydroxycyclopentyl	-(CH2)2-	-S(O)2CH2S(O)2Et
338C	1-hydroxycyclopentyl	-C≡C-	-S(O)2CH2S(O)2Et
339C	1-hydroxycyclopentyl	-C=C-	-S(O)2CH2S(O)2Et
340C	1-hydroxycyclohexyl	-(CH2)2-	-S(O)2CH2S(O)2Et
341C	1-hydroxycyclohexyl	-C≡C-	-S(O)2CH2S(O)2Et
342C	1-hydroxycyclohexyl	-C=C-	-S(O)2CH2S(O)2Et
343C	1-hydroxycyclopentyl	-(CH2)2-	-S(O)2CH2S(O)2iPr
344C	1-hydroxycyclopentyl	-C≡C-	-S(O)2CH2S(O)2iPr
345C	1-hydroxycyclopentyl	-C=C-	-S(O)2CH2S(O)2iPr

346C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-S(O)2CH ₂ S(O)2iPr
347C	1-hydroxycyclohexyl	-C≡C-	-S(O)2CH ₂ S(O)2iPr
348C	1-hydroxycyclohexyl	-C=C-	-S(O)2CH ₂ S(O)2iPr
349C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-S(O)2CH ₂ S(O)2tBu
350C	1-hydroxycyclopentyl	-C≡C-	-S(O)2CH ₂ S(O)2tBu
351C	1-hydroxycyclopentyl	-C=C-	-S(O)2CH ₂ S(O)2tBu
352C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-S(O)2CH ₂ S(O)2tBu
353C	1-hydroxycyclohexyl	-C≡C-	-S(O)2CH ₂ S(O)2tBu
354C	1-hydroxycyclohexyl	-C=C-	-S(O)2CH ₂ S(O)2tBu
355C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-C(O)NHCH ₂ CO ₂ H
356C	1-hydroxycyclopentyl	-C≡C-	-C(O)NHCH ₂ CO ₂ H
357C	1-hydroxycyclopentyl	-C=C-	-C(O)NHCH ₂ CO ₂ H
358C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-C(O)NHCH ₂ CO ₂ H
359C	1-hydroxycyclohexyl	-C≡C-	-C(O)NHCH ₂ CO ₂ H
360C	1-hydroxycyclohexyl	-C=C-	-C(O)NHCH ₂ CO ₂ H
361C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-SO ₂ NHCH ₂ CO ₂ H
362C	1-hydroxycyclopentyl	-C≡C-	-SO ₂ NHCH ₂ CO ₂ H
363C	1-hydroxycyclopentyl	-C=C-	-SO ₂ NHCH ₂ CO ₂ H
364C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-SO ₂ NHCH ₂ CO ₂ H
365C	1-hydroxycyclohexyl	-C≡C-	-SO ₂ NHCH ₂ CO ₂ H
366C	1-hydroxycyclohexyl	-C=C-	-SO ₂ NHCH ₂ CO ₂ H
367C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CH ₂ -S-Me
368C	1-hydroxycyclopentyl	-C≡C-	-CH ₂ -S-Me
369C	1-hydroxycyclopentyl	-C=C-	-CH ₂ -S-Me
370C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-CH ₂ -S-Me
371C	1-hydroxycyclohexyl	-C≡C-	-CH ₂ -S-Me
372C	1-hydroxycyclohexyl	-C=C-	-CH ₂ -S-Me

Particularly preferred chemical species of the invention are represented by structural formulae P101 to P106 and P200 to P206 a pharmaceutically acceptable salt solvate or prodrug derivative thereof:

For treatment of psoriasis, preferred compounds are those defined by structural formulae P100 to P106 as follows:

P100

5

P101

P102

10

P103

15

-140-

P104

P105

5 P106

For treatment of osteoporosis, preferred compounds are those defined by structural formulae P101 and P200 to P206, as follows:

10 P101

P200

-141-

P201

P202

5 P203

P204

P205

10

P206

The salts of the Active Ingredients are an additional aspect of the invention. The skilled artisan will also appreciate that the family of compounds include acidic and basic members and that the present invention includes pharmaceutically acceptable salts thereof.

In those instances where the compounds of the invention possess acidic or basic functional groups various salts may be formed which are more water soluble and physiologically suitable than the parent compound. Representative pharmaceutically acceptable salts, include but are not limited to, the alkali and alkaline earth salts such as lithium, sodium, potassium, ammonium, calcium, magnesium, aluminum, zinc, and the like. Sodium and potassium salts are particularly preferred. Salts are conveniently prepared from the free acid by treating the acid in solution with a base or by exposing the acid to an ion exchange resin. For example, a carboxylic acid substituent on the compound of Formula I may be selected as $\text{-CO}_2\text{H}$ and salts may be formed by reaction with appropriate bases (e.g., NaOH, KOH) to yield the corresponding sodium and potassium salt.

Included within the definition of pharmaceutically acceptable salts are the relatively non-toxic, inorganic and organic base addition salts of compounds of the present invention, for example, ammonium, quaternary ammonium, and amine cations, derived from nitrogenous bases of sufficient basicity to form salts with the compounds of this invention (see, for example, S. M. Berge, *et al.*, "Pharmaceutical Salts," *J. Phar. Sci.*, 66: 1-19 (1977)). Moreover, the basic group(s) of the compound of the invention may be reacted with suitable organic or inorganic acids to form salts such as acetate, benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, bromide, camsylate, carbonate, chloride, choline, clavulanate, citrate, chloride, chloroprocaine, choline, diethanolamine, dihydrochloride, diphosphate, edetate, edisylate, estolate, esylate, ethylenediamine, fluoride, fumarate, gluceptate, gluconate, glutamate, glycolylarsanilate, hexylresorcinate, hydrabamine, bromide, chloride, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isothionate, lactate, lactobionate, laurate, malate, maleate,

malseate, mandelate, meglumine, mesylate, mesviate, methylbromide, methylnitrate, methylsulfate, mucate, napsylate, nitrate, oleate, oxalate, palmitate, pamoate, pantothenate, phosphate, polygalacturonate, procane, salicylate, stearate, subacetate, succinate, sulfate, tannate, tartrate, teoclolate, tosylate, trifluoroacetate, trifluoromethane
5 sulfonate, and valerate.

Certain compounds of the invention may possess one or more chiral centers and may thus exist in optically active forms. Likewise, when the compounds contain an alkenyl or alkenylene group there exists the possibility of cis- and trans- isomeric forms of the compounds. The R- and S- isomers and mixtures thereof, including racemic mixtures
10 as well as mixtures of cis- and trans- isomers, and all tautomers are contemplated by this invention. Additional asymmetric carbon atoms can be present in a substituent group such as an alkyl group. All such isomers as well as the mixtures thereof are intended to be included in the invention. If a particular stereoisomer is desired, it can be prepared by methods well known in the art by using stereospecific reactions with starting materials
15 which contain the asymmetric centers and are already resolved or, alternatively by methods which lead to mixtures of the stereoisomers and subsequent resolution by known methods. For example, a chiral column may be used such as those sold by Daicel Chemical Industries identified by the trademarks:

CHIRALPAK AD, CHIRALPAK AS, CHIRALPAK OD, CHIRALPAK OJ,
20 CHIRALPAK OA, CHIRALPAK OB, CHIRALPAK OC, CHIRALPAK OF,
CHIRALPAK OG, CHIRALPAK OK, and
CHIRALPAK CA-1.

By another conventional method, a racemic mixture may be reacted with a single enantiomer of some other compound. This changes the racemic form into a mixture of
25 diastereomers. These diastereomers, because they have different melting points, different boiling points, and different solubilities can be separated by conventional means, such as crystallization.

The present invention is also embodied in mixtures of Active Ingredients.

Prodrugs are derivatives of the compounds of the invention which have chemically
30 or metabolically cleavable groups and become by solvolysis or under physiological conditions the compounds of the invention which are pharmaceutically active in vivo. Derivatives of the compounds of this invention have activity in both their acid and base

derivative forms, but the acid derivative form often offers advantages of solubility, tissue compatibility, or delayed release in a mammalian organism (see, Bundgard, H., Design of Prodrugs, pp. 7-9, 21-24, Elsevier, Amsterdam 1985). Prodrugs include acid derivatives well known to practitioners of the art, such as, for example, esters prepared by reaction of the parent acidic compound with a suitable alcohol, or amides prepared by reaction of the parent acid compound with a suitable amine. Simple aliphatic or aromatic esters derived from acidic groups pendent on the compounds of this invention are preferred prodrugs. In some cases it is desirable to prepare double ester type prodrugs such as (acyloxy) alkyl esters or ((alkoxycarbonyl)oxy)alkyl esters. Particularly preferred esters as prodrugs are methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, morpholinoethyl, and N,N-diethylglycolamido.

Prodrugs may be prepared by methods as follows

Prodrug of formula I is prepared by the following: treatment of with

15 1-(tert-butoxycarbonyl)piperazine to give . Reaction of the sodium salt of I with and NaI; treatment with TFA; and methylation with MeI and K₂CO₃. for example, to provide a combined group

in Formula I typified by;

Pharmaceutical Formulations containing the Novel Compounds of the Invention:

Pharmaceutical formulations of the invention are prepared by combining a therapeutically effective amount of Active Ingredient together with a pharmaceutically acceptable carrier or diluent. The present pharmaceutical formulations are prepared by known procedures using well-known and readily available ingredients.

In making the compositions of the present invention, the Active Ingredient will usually be admixed with a carrier, or diluted by a carrier, or enclosed within a carrier which may be in the form of a capsule, sachet, paper or other container. When the carrier serves as a diluent, it may be a solid, semi-solid or liquid material which acts as a vehicle, or can be in the form of tablets, pills, powders, lozenges, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), or ointment, containing, for example, up to 10% by weight of the compound. The Active Ingredient is preferably formulated prior to administration.

The Active Ingredient may also be delivered by suitable formulations contained in a transderm patch. Alternatively, the Active Ingredient may be delivered to a patient by sublingual administration.

For the pharmaceutical formulations any suitable carrier known in the art can be used. In such a formulation, the carrier may be a solid, liquid, or mixture of a solid and a liquid. Solid form formulations include powders, tablets and capsules. A solid carrier can be one or more substances which may also act as flavoring agents, lubricants, solubilisers, suspending agents, binders, tablet disintegrating agents and encapsulating material.

Tablets for oral administration may contain suitable excipients such as calcium carbonate, sodium carbonate, lactose, calcium phosphate, together with disintegrating agents, such as maize, starch, or alginic acid, and/or binding agents, for example, gelatin or acacia, and lubricating agents such as magnesium stearate, stearic acid, or talc.

In powders the carrier is a finely divided solid which is in admixture with finely divided Active ingredient. In tablets the Active Ingredient is mixed with a carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably contain from about 1 to about 99 weight percent of Active Ingredient. Suitable solid carriers are magnesium carbonate, magnesium stearate, talc, sugar lactose, pectin, dextrin, starch, gelatin, tragacanth, methyl cellulose, sodium carboxymethyl cellulose, low melting waxes, and cocoa butter.

Sterile liquid form formulations include suspensions, emulsions, syrups and elixirs.

The Active Ingredient may be dissolved or suspended in a pharmaceutically acceptable carrier, such as sterile water, sterile organic solvent or a mixture of both. The Active Ingredient may often be dissolved in a suitable organic solvent, for instance aqueous propylene glycol. Other compositions can be made by dispersing the finely divided Active Ingredient in aqueous starch or sodium carboxymethyl cellulose solution. or in a suitable oil.

Ointment Formulation for Treatment of Psoriasis:

Treatment of psoriasis is preferably done with topical application by a formulation in the form of a cream, oil, emulsion, paste or ointment containing a therapeutically effective amount of Active Ingredient. The formulation for topical treatment contains from 0.5 to 0.00005 weight percent, preferably from .05 to 0.0005 weight percent, and most preferably from 0.025 to 0.001 of Active Ingredient.

For example, two semisolid topical preparations useful as vehicles for VDR modulators in treatment and prevention of psoriasis are as follows:

Polyethylene Glycol Ointment USP (p. 2495)

Prepare Polyethylene Glycol Ointment as follows:

Polyethylene Glycol 3350 400 g.

Polyethylene Glycol 400 600 g.

To make 1000 g.

Heat the two ingredients on a water bath to 65C. Allow to cool, and stir until congealed. If a firmer preparation is desired, replace up to 100 g of the polyethylene glycol 400 with an equal amount of polyethylene glycol 3350.

Hydrophilic Ointment USP (p. 1216)

Prepare Hydrophilic Ointment as follows:

	Methylparaben	0.25 g.
	Propylparaben	0.15 g.
5	Sodium Lauryl Sulfate	10 g.
	Propylene Glycol	120 g.
	Stearyl Alcohol	250 g.
	White Petrolatum	250 g.
	Purified Water	<u>370 g.</u>
10	To make about	1000 g.

The Stearyl Alcohol and White Petrolatum are melted on a steam bath, and warmed to about 75C. The other ingredients, previously dissolved in the water are added, warmed to 75C, and the mixture stirred until it congeals.

For each of the above formulations Active Ingredient is added during the heating step in an amount that is from 0.5 to 0.00005 weight percent, preferably from .05 to 0.0005 weight percent, and most preferably from 0.025 to 0.001 weight percent of the total ointment weight. (Source: - United States Pharmacopoeia 24, United States Pharmacopeial Convention, 1999)

Combination Therapy for Osteoporosis:

- 20 Conventional therapy for osteoporosis includes; (i) estrogens, (ii) androgens, (iii) calcium supplements, (iv) vitamin D metabolites, (v) thiazide diuretics, (vi) calcitonin, (vii) bisphosphonates, (viii) SERMS, and (ix) fluorides (see, Harrison's Principles of Internal Medicine, 13th edition, 1994, published by McGraw Hill Publ., ISBN 0-07-032370-4, pgs.2172-77; the disclosure of which is incorporated herein by reference.).
- 25 Any one or combination of these conventional therapies may be used in combination with the method of treatment using Active Ingredient as taught herein. For example, in a method of treating osteoporosis, the vitamin D receptor modulator compounds of the invention may be administered separately or simultaneously with a conventional therapy. Alternatively, the Active Ingredient may be combined with conventional therapeutic agents in a formulation for treatment of osteoporosis such as set out below:
- 30

A formulation for treating osteoporosis comprising:

Ingredient (A1):

Active Ingredient,

Ingredient (B1):

one or more co-agents that are conventional for treatment
osteoporosis selected from the group consisting of:

- 5 a. estrogens,
- b. androgens,
- c. calcium supplements,
- d. vitamin D metabolites,
- e. thiazide diuretics,
- 10 f. calcitonin,
- g. bisphosphonates,
- h. SERMS, and
- i. fluorides.

Ingredient (C1):

- 15 optionally, a carrier or diluent.

Typically useful formulations are those wherein the weight ratio of (A1) to (B1) is from 10:1 to 1:1000 and preferably from 1:1 to 1:100.

Combination Therapy for Psoriasis:

20 Conventional therapy for psoriasis includes topical glucocorticoids, salicylic acid, crude coal tar, ultraviolet light, and methotrexate (see, Harrison's Principles of Internal Medicine, 13th edition, 1994, published by McGraw Hill Publ., ISBN 0-07-032370-4, pgs.2172-77). Any one or combination of these conventional therapies may be used in combination with the method of treatment using Active Ingredient as taught herein. For 25 example, in a method of treating osteoporosis, the vitamin D receptor modulator compounds of the invention may be topically administered separately or simultaneously with a conventional therapy. Alternatively, the Active Ingredient may be combined with conventional therapeutic agents in a topically applied formulation for treatment of osteoporosis such as set out below:

- 30 A formulation for treating osteoporosis comprising:

Ingredient (A2):

Active Ingredient;

Ingredient (B2):

one or more co-agents that are conventional for treatment psoriasis selected from the group consisting of:

- 5 a. topical glucocorticoids ,
- b. salicylic acid, or
- c. crude coal tar.

Ingredient (C2):

optionally, a carrier or diluent.

Typically useful formulations are those wherein the weight ratio of (A2) to (B2) is from
10 1:10 to 1:100000 and preferably from 1:100 to 1:10000.

Methods of Using the Compounds of the Invention:

Generic disease states benefited by treatment with Active Ingredient include, but are not limited to:

- 15 disease states characterized by abnormal calcium regulation
- disease states characterized by abnormal cell proliferation
- disease states characterized by abnormal immune response
- disease states characterized by abnormal dermatological conditions
- disease states characterized by neurodegenerative condition
- 20 disease states characterized by inflammation
- disease states characterized by vitamin D sensitivity
- disease states characterized by hyperproliferative disorders

Specific disease states benefited by treatment with Active Ingredient include, but are not limited to:

- 25 **Abscess**
- Acne**
- Adhesion**
- Actinic keratosis**
- Alopecia**
- 30 **Alzheimer's disease**
- Bone maintenance in zero gravity**
- Bone fracture healing**

-150-

- Breast cancer
- Skin cancer
- Crohn's disease
- Colon cancer
- 5 Type I diabetes
- Host-graft rejection
- Hypercalcemia
- Type II diabetes
- Leukemia
- 10 Multiple sclerosis
- Myelodysplastic syndrome
- Insufficient sebum secretion
- Osteomalacia
- Osteoporosis
- 15 Insufficient dermal firmness
- Insufficient dermal hydration
- Psoriatic arthritis
- Prostate cancer
- Psoriasis
- 20 Renal osteodystrophy
- Rheumatoid arthritis
- Scleroderma
- Systemic lupus erythematosus
- Ulcerative colitis
- 25 Wrinkles

Particularly preferred is the treatment of psoriasis and osteoporosis by administration to a mammal (including a human) of a therapeutically effective amount of Active Ingredient. By "therapeutically effective amount" it is meant that quantity of a compound of the invention prevents, removes or significantly reduces the deleterious effects of a disease state in mammals, including humans.

The specific dose of Active Ingredient administered according to this invention to obtain therapeutic or prophylactic effects will, of course, be determined by the particular

circumstances surrounding the case, including, for example, the compound administered, the route of administration and the condition being treated. Typical daily doses will contain a pharmaceutically effective amount typically in the range of from about 0.0001 mg/kg/day to about 50 mg/kg/day of body weight of an active compound of this invention. Preferably the dose of compounds of the invention will be from 0.0001 to 5 mg/kg/day of body weight.

- 5 Preferably the Active Ingredient or pharmaceutical formulations containing Active Ingredient are in unit dosage form for administration to a mammal. The unit dosage form can be a capsule or tablet itself, or the appropriate number of any of these.
- 10 10 The quantity of Active Ingredient in a unit dose of composition may be varied or adjusted from about 0.0001 to about 1000 milligrams or more according to the particular treatment involved. It may be appreciated that it is necessary to make routine variations to the dosage depending on the age and condition of the patient. The compounds of the invention may be administered by a variety of routes including oral,
- 15 15 aerosol, rectal, transdermal, sublingual, subcutaneous, intravenous, intramuscular, and intranasal. The dosage will also depend on the route of administration.

Examples

General Experimental Conditions:

- 20 20 The starting material/intermediate is the compound from the immediate preceding experimental unless otherwise indicated.

All reactions are performed under nitrogen/argon atmosphere, in a stirred reaction vessel, and at room temperature unless indicated otherwise.

- 25 25 Unless otherwise indicated, the organic layer is MgSO₄/Na₂SO₄ dried is defined as stirring the solution with a dessicant for 5-15 m and filtering off the dessicant to give an anhydrous filtrate.

For analogous multi-step reaction procedures, the yield is given either for the ultimate step or overall multi-steps as indicated.

Solutions are "concentrated" at a range of 25-75 °C with reduced pressure.

- 30 30 in-vacuo – 25-75 °C; 0.05 to 1 mm

Unless otherwise indicated, "the residue is chromatographed" is defined as silica gel chromatography of residue with moderate nitrogen pressure (flash chromatography) or

a medium pressure chromatography systems using a silica gel to crude product ratio of ~10-100.

Thin layer chromatography is performed with silica gel plates with UV and/or appropriate staining solution.

5 NMR spectra are obtained with either 300 or 400 mHz spectrometer.

NMR – denotes NMR spectrum is consistent with assigned structure.

HRMS – high resolution mass spectrum

ES-MS – electrospray mass spectrum

10

Abbreviations:

Aq - aqueous

d – day

15 eq - equivalent

h – hour

m – minute

satd – saturated

disp – dispersion

20 quant – quantitative

rt for retention time (both small caps to minimize confusion with RT)

RT – room temperature

25 Chemical Definitions:

BBr₃ – boron tribromide

BF₃-OEt₂ – boron trifluoride etherate

BnBr – benzyl bromide

CH₂Cl₂-dichloromethane

30 CH₃CN – acetonitrile

CO-carbon monoxide

- Dess-Martin reagent – 1,1,1-tris(acetyloxy)-1,1-dihydro-1,2-benziodoxol-3-(1H)-one
- DIBALH - Diisobutyl Aluminum Hydride
- DMAP - 4-(dimethylamino)pyridine
- 5 DMF – N,N-dimethylformamide
- DMSO – dimethylsulfoxide
- DPPB – 1,4-bis(diphenylphosphino)butane
- DPPF – dichloro[1,1'-bis(diphenylphosphino)ferrocene
- EDCI – 3-Ethyl-1-[3-(dimethylamino)propyl]carbodiimide hydrochloride
- 10 Et₃N – triethylamine
- EtMgBr- ethyl magnesium bromide
- EtOAc – ethyl acetate
- EtOH – ethanol
- H₂NCH₂CO₂Me – methyl glycinate
- 15 Hept – heptane
- Hex - hexanes
- HN(OMe)Me – N-methyl-O-methyl hydroxylamine
- HNMe₂ – dimethyl amine
- HATU – O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium
- 20 hexafluorophosphate
- HOAT – 7-aza-1-hydroxybenzotriazole
- HOBT – 1-hydroxybenzotriazole
- K₂CO₃ – potassium carbonate
- KOH – potassium hydroxide
- 25 LAH – lithium aluminum hydride
- LiHMDS – lithium hexamethyldisilazide
- mCPBA – meta-chloroperbenzoic acid
- MeI – methyl iodide
- MeOH – methanol
- 30 NaBH₄ – sodium borohydride
- MgSO₄- magnesium sulfate
- NaH – sodium hydride

- NaHCO₃-sodium bicarbonate
NaI – sodium iodide
Na₂SO₄- sodium sulfate
NH₄Cl- ammonium chloride
5 NMO – 4-methylmorpholine N-oxide
NMP - N-methylpyrrolidin-2-one
Na-S-R₃ – sodium alkylmercaptide
PBr₃ – phosphorus tribromide
Pd(DPPF) - palladium dichloro[1,1'-bis(diphenylphosphino)ferrocene]
10 Pd(OAc)₂ – palladium (II) acetate
Pd(TPP)₄ – palladium tetrakis(triphenylphosphine)
Pd-C – palladium on carbon
(PhO)₂P(O)N₃ – diphenyl phosphorus azide
pTSA – para-toluenesulfonic acid
15 Pyr – pyridine
Red-Al – sodium bis(2-methoxyethoxy)aluminum hydride
R₂MgBr – alkyl magnesium bromide
R₃MgBr – alkyl magnesium bromide
R₅MgBr – alkyl magnesium bromide
20 R₂S(O)NH₂ – alkylsulfonamide
TBAF- tetrabutylammonium fluoride
TBSCl- *tert*-butyldimethylsilyl chloride
tBuC(O)CH₂Br – 1-bromopinacolone
Tf₂O – triflic anhydride
25 TFA – trifluoroacetic acid
THF – tetrahydrofuran
TPAP – tetrapropylammonium perruthenate
Zn(OTf)₂ – zinc trifluoromethane sulfonate.

-155-

Example 1

Preparation of 3'-(4-(2-Oxo-3,3-dimethylbutoxy-3-methylphenyl)-3-methylphenyl]-3'-(5-methoxycarbonyl-4-methylthiophen-2-yl)pentane.

5 A. 2-(t-Butyldimethylsilyloxy)-5-bromotoluene.

To a 0 °C mixture of 2-hydroxy-5-bromotoluene (48.63 g, 260 mmol), DMF (260 ml), imidazole (18.58 g, 273 mmol) is added t-butyldimethylsilyl chloride (41.15 g, 273 mol) in portions. After stirring for 30 m, the reaction is warmed to RT and stirred for 16 h. The reaction mixture is poured into ice/water (1.25 l) and extracted with Et₂O. The organic layer is washed with water (2X100 ml), 1N NaOH (2X5 ml), water, brine, MgSO₄ dried, concentrated, chromatographed (hex), and azeotroped with toluene to give the title compound as an oil (75.7 g, 97%)

10 ¹H NMR (400MHz, DMSO-d₆) δ ppm: 0.21 (s, 6H), 0.99 (s, 9H), 2.15 (s, 3H), 6.77 (d, J = 8.3 Hz, 1H), 7.25 (dd, J = 6.8, 8.3 Hz, 1H), 7.37 (s, 1H).
EI-MS: 300, 302

B. 3'-(4-(t-Butyldimethylsilyloxy)-3-methylphenyl]pentan-3-ol.

15 20 Magnesium turnings (6 g, 248 mmol) is vigorously stirred under nitrogen for 18 h. To the magnesium turnings is added THF (600 ml) and I₂ (100 mg, 0.39 mmol). This is followed by dropwise addition of 2-(t-butyldimethylsilyloxy)-5-bromotoluene (60 g, 200 mmol) in THF (500 ml) and at the same time the reaction is gradually heated by setting the oil bath to 70 °C. After half of the addition of the 2-(t-

- butyldimethylsilyloxy)-5-bromotoluene/THF is complete, the mixture is heated to 90 °C for 2.5 h. The mixture is allowed to cool to RT and then cooled to 0 °C. To this mixture is added 3-pentanone (21.2 ml, 200 mmol), warmed to RT, and then heated to 50 °C for 3 h. After cooling, the reaction is diluted with Et₂O and water, and
- 5 quenched with 1N HCl to pH 7. The mixture is partitioned and the organic layer is washed with water, Na₂SO₄ dried, concentrated, chromatographed (1.25 kg silica gel, 40% CH₂Cl₂/Hex to 70% CH₂Cl₂/Hex; rf: 0.3) to give the title compound as an oil (44.3 g, 72%).
- 10 ¹H NMR (400MHz, DMSO-d₆) δ ppm: 0.20 (s, 6H), 0.64 (t, J = 7.8 Hz, 6H), 1.00 (s, 9H), 1.67 (m, 4H), 2.15 (s, 3H), 4.38 (s, 1H), 6.70 (d, J = 8.8 Hz, 1H), 7.04 (dd, J = 8.3, 2.0 Hz, 1H), 7.14 (d, J = 2.0 Hz, 1H).
- EI-MS: 308.37

C. 3'-(4-(Hydroxy)-3-methylphenyl)-3'-(4-methylthiophen-2-yl)pentane.

15

- To a -78 °C mixture of 3'-(4-(t-butyldimethylsilyloxy)-3-methylphenyl)pentan-3-ol (44 g, 142 mmol) and 3-methylthiophene (83 ml, 854 mmol) is added BF₃-Et₂O (180 ml, 1.42 mol). After stirring for 45 m, the reaction is placed in a 0 °C bath, allowed to warm to RT and stirred for 6 h. The reaction is
- 20 poured into Et₂O/water and washed with 5N HCl. The organic layer is washed with water, Na₂SO₄ dried, concentrated, and chromatographed (1.5 kg SiO₂, 70% CHCl₃/hex) to give the title compound (37 g, 95%).
- 25 ¹H NMR (400MHz, DMSO-d₆) δ ppm: 0.63 (t, J = 7.3 Hz, 3H), 2.01 (m, 4H), 2.08 (s, 3H), 2.16 (s, 3H), 6.67 (m, 2H), 6.88 (m, 2H), 6.93 (d, J = 1.9 Hz, 1H), 9.10 (s, 1H).
- High Res. EI-MS: 274.1389; calc. for C₁₇H₂₂OS: 274.1391

D. 3'-(4-(Benzylxy)-3-methylphenyl)-3'-(4-methylthiophen-2-yl)pentane.

-157-

To a 0 °C mixture of 3'-(4-(hydroxy)-3-methylphenyl)-3'-(4-methylthiophen-2-yl)pentane (7.1 g, 25.9 mmol) and DMF (60 ml) is added 60% NaH disp (1.1 g, 28.5 mmol) and stirred for 15 m. The reaction is added benzyl bromide (3.4 ml, 28.5 mmol), warmed to RT and stirred overnight. The reaction is concentrated in-vacuo and partitioned between Et₂O/1N HCl. The organic layer is washed with water, dried with Na₂SO₄, concentrated, and chromatographed (20% CHCl₃/hex to 30% CHCl₃/hex) to give the title compound (8.7 g, 92%).

¹H NMR (400MHz, DMSO-d₆) δ ppm: 0.61 (t, J = 7.3 Hz, 6H), 1.95-2.07 (m, 4H), 2.13 (s, 6H), 5.05 (s, 2H), 6.65 (d, J = 1.5 Hz, 1H), 6.86 (m, 2H), 7.01 (m, 2H), 7.31 (d, J = 7.3 Hz, 1H), 7.38 (m, 2H), 7.44 (d, J = 6.8 Hz, 2H).

High Res. EI-MS: 364.1878; calc. for C₂₄H₂₈OS: 364.1861

E. 3'-(4-(Benzylxy)-3-methylphenyl)-3'-(5-methoxycarbonyl)-4-methylthiophen-2-yl]pentane.

concentrated, and chromatographed (10% EtOAc/hex) to give the title To a -78 °C mixture of 3'-(4-(benzylxy)-3-methylphenyl)-3'-(4-methylthiophen-2-yl)pentane (7.7 g, 21 mmol) and THF (50 ml) is added 1.6 M n-BuLi/hex (1.6 ml, 25.3 mmol) and warmed to 0 °C for 2 m. The reaction is cooled to -78 °C, added methyl chloroformate (1.7 ml, 25 mmol) and warmed to RT over 2 h. The reaction is added Et₂O, quenched with 1N HCl, and partitioned. The organic layer is washed with brine, Na₂SO₄ dried, compound (4.8 g, 54%).

-158-

¹NMR (400MHz, DMSO-d₆) δ ppm: 0.62 (t, J = 7.3 Hz, 6H), 2.02-2.07 (m, 4H), 2.14 (s, 3H), 2.40 (s, 3H), 3.69 (s, 3H), 5.06 (s, 2H), 6.82 (s, 1H), 6.92 (d, J = 8.8 Hz, 1H), 7.03 (m, 2H), 7.31 (d, J = 7.3 Hz, 1H), 7.38 (t, J = 7.3 Hz, 2H), 7.44 (t, J = 7.3 Hz, 2H).

5 High Res. ES-MS: 423.2011; calc. for C₂₆H₃₀O₃S+H: 423.1994

F. 3'-[4-(Hydroxy)-3-methylphenyl]-3'-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane.

10 A mixture of 3'-(4-(benzyloxy)-3-methylphenyl)-3'-(5-methoxycarbonyl-4-methylthiophen-2-yl)pentane (290 mg, 0.686 mmol), 10% Pd/C (1.6 g, 1.5 mmol), EtOH (3 ml), and EtOAc (3 ml) is hydrogenated overnight at atmospheric pressure. The reaction is filtered through diatomaceous earth with EtOH/EtOAc wash, concentrated, and chromatographed (CH₂Cl₂ to 10% EtOAc/CH₂Cl₂) to give the title compound (220 mg, quant).

15 ¹NMR (400MHz, DMSO-d₆) δ ppm: 0.61 (t, J = 7.3 Hz, 6H), 1.98-2.07 (m, 4H), 2.05 (s, 3H), 2.39 (s, 3H), 3.69 (s, 3H), 6.66 (d, J = 8.3 Hz, 1H), 6.79 (s, 1H), 6.86 (dd, J = 8.3, 2.4 Hz, 1H), 6.91 (d, J = 2.0 Hz, 1H), 9.15 (s, 1H).

High Res. ES-MS: 333.1528; calc. for C₁₉H₂₄O₃S+H: 333.1524

20

G. 3'-(4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(5-methoxycarbonyl-4-methylthiophen-2-yl)pentane.

To a mixture of 3'-(4-(hydroxy)-3-methylphenyl)-3'-(5-methoxycarbonyl-4-methylthiophen-2-yl)pentane (210 mg, 0.63 mmol) and DMF (2 ml) is added 60%

NaH disp (25 mg, 0.63 mmol) and warmed to RT. The reaction is cooled to 0 °C, added 3,3-dimethyl-1-bromo-2-butanone (85 ul, 0.63 mmol), warmed to RT, and stirred overnight. The mixture is concentrated and partitioned between Et₂O/1N HCl. The organic layer is washed with water, dried with Na₂SO₄, and chromatographed (10% EtOAc/hex to 20% EtOAc/hex) to give the title compound (230 mg, 85%).

5 ¹NMR (400MHz, DMSO-d₆) δ ppm: 0.61 (t, J = 7.3 Hz, 6H), 1.15 (s, 9H), 2.01-2.08 (m, 4H), 2.14 (s, 3H), 2.40 (s, 3H), 3.69 (s, 3H), 5.08 (s, 2H), 6.60 (d, J = 8.3 Hz, 1H), 6.82 (s, 1H), 6.97 (d, J = 8.8 Hz, 1H), 7.00 (s, 1H).

High Res. ES-MS: 453.2072; calc. for C₂₅H₃₄O₄S+Na: 453.2076

10

Example 2

Preparation of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(5-methoxycarbonyl-4-methylthiophen-2-yl]pentane.

15 To a 0 °C mixture of 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(5-methoxycarbonyl-4-methylthiophen-2-yl]pentane (215 mg, 0.5 mmol) and MeOH (2 mL) is added NaBH₄ (28 mg, 0.75 mmol) and warmed to RT. The reaction is concentrated and partitioned between Et₂O/1N HCl. The organic layer is washed with water, dried with Na₂SO₄, and concentrated to give the title compound (220 mg, quant).

20 ¹NMR (400MHz, DMSO-d₆) δ ppm: 0.62 (t, J = 7.3 Hz, 6H), 0.90 (s, 9H), 1.99-2.08 (m, 4H), 2.11 (s, 3H), 2.40 (s, 3H), 3.44 (m, 1H), 3.69 (s, 3H), 3.75 (dd, J = 7.3, 10.2 Hz, 1H), 4.03 (dd, J = 3.4, 10.2 Hz, 1H), 4.79 (d, J = 5.4 Hz, 1H), 6.81 (s, 1H), 6.83 (d, J = 8.8 Hz, 1H), 6.98 (s, 1H), 7.01 (d, J = 8.8 Hz, 1H).

25 High Res. ES-MS: 450.2674; calc. for C₂₅H₃₆O₄S+NH₄: 450.2678

-160-

Example 3

Preparation of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[5-carboxyl-4-methylthiophen-2-yl]pentane.

5 To a mixture of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(5-methoxycarbonyl-4-methylthiophen-2-yl)pentane (200 mg, 0.46 mmol), EtOH (1.5 ml), and water (0.5 ml) is added KOH (200 mg, 3.56 mmol). The reaction is heated to 70 °C for 4 h. The mixture is concentrated, partitioned between 1:1 Et₂O:EtOAc and 1N HCl. The organic layer is washed with 1N HCl, Na₂SO₄, dried, and concentrated to give the title compound (200 mg, quant).

10 ¹H NMR (400MHz, DMSO-d₆) δ ppm: 0.62 (t, J = 7.3 Hz, 6H), 0.90 (s, 9H), 1.97-2.09 (m, 4H), 2.11 (s, 3H), 2.37 (s, 3H), 3.44 (m, 1H), 3.74 (dd, J = 7.3, 10.2 Hz, 1H), 4.01 (dd, J = 3.4, 10.2 Hz, 1H), 4.78 (d, J = 5.4 Hz, 1H), 6.76 (s, 1H), 6.82 (d, J = 8.3 Hz, 1H), 6.98 (s, 1H), 7.01 (d, J = 8.8 Hz, 1H), 12.58 (br s, 1H).

15 High Res. ES-MS: 436.2518; calc. for C₂₅H₃₆O₄S+NH₄: 436.2521

Example 4

Preparation of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(5-(dimethylaminocarbonyl)-4-methylthiophen-2-yl)pentane.

20 To a 0 °C mixture of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(5-carboxyl-4-methylthiophen-2-yl)pentane (175 mg, 0.42 mmol) and Et₃N (61 μ l, 0.44 mmol) is added (PhO)₂P(O)N₃ (92 μ l, 0.43 mmol). The reaction is warmed to RT and stirred for 30 m. After cooling to 0 °C, the reaction is added DMAP (56 mg, 0.46 mmol) and 2M HNMe₂/THF (0.46 ml, 0.92 mmol). The mixture is warmed to

-161-

RT and stirred for 2 h. The reaction is concentrated and partitioned between Et₂O/1N HCl. The organic layer is washed with 1N HCl, Na₂SO₄ dried, and chromatographed (CH₂Cl₂ to 15% EtOAc/CH₂Cl₂) to give the title compound (110 mg, 59%).

5 ¹H NMR (400MHz, DMSO-d₆) δ ppm: 0.62 (t, J = 7.3 Hz, 6H), 1.96-2.06 (m, 4H), 2.09 (s, 3H), 2.11 (s, 3H), 2.90 (s, 6H), 3.44 (m, 1H), 3.73 (dd, J = 7.3, 10.2 Hz, 1H), 4.01 (dd, J = 3.4, 10.2 Hz, 1H), 4.79 (br s, 1H), 6.65 (s, 1H), 6.82 (d, J = 8.8 Hz, 1H), 7.02 (m, 2H).

High Res. ES-MS: 446.2738; calc. for C₂₆H₃₉NO₃S+H: 446.2729

10

15

Example 5:

Preparation of 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[5-methoxycarbonyl-thiophen-2-yl] pentane.

20

A. 2-(3-Hydroxy-3-pentyl)thiophene.

To a stirred 0 °C mixture of ethyl thiophene-2-carboxylate (3.12 g, 20.0 mmol) in diethyl ether (100 ml) is added 1M ethylmagnesium bromide (60 ml, 60 mmol). The 25 reaction is allowed to warm to RT and stirred for 3 d. The reaction is partitioned between

-162-

Et_2O and 1N NaHCO_3 . The organic layer was Na_2SO_4 dried and concentrated to give the title compound (3.4 g, 99%).

H-NMR (ppm, CDCl_3): 7.98 (1H, d, 4.2 Hz), 6.95 (1H, m), 6.85 (1H, d, 3.0 Hz), 1.86 (4H, q, 7.5 Hz), 0.86 (6H, t, 7.5 Hz).

5

B. 5-(3-Hydroxy-3-pentyl)thiophene-2-carboxylic acid.

- To a -78°C mixture of 2-(3-hydroxy-3-pentyl)thiophene (0.34 g, 2.0 mmol) in
10 THF (2 ml) is added of 1.6 M n-butyllithium in Hex (2.75 ml, 4.4 mmol). The mixture is allowed to warm to RT and powdered dry ice (CO_2) is added. After one h, the mixture is partitioned between diethyl ether and 1N NaHCO_3 . The aqueous layer is washed with ether, acidified with conc. HCl and extracted with ether. The organic layer is Na_2SO_4 dried, filtered, and concentrated to give the title compound (0.236 g, 53%).
15 H-NMR (ppm, CDCl_3): 7.75 (1H, d, 3.0 Hz), 6.87 (1H, d, 3.0 Hz), 1.86 (4H, q, 5.7 Hz), 0.86 (6H, t, 5.7 Hz).

C. Methyl, 5-(E/Z-2-penten-3-yl)thiophene-2-carboxylate

- 20 To a mixture of 5-(3-hydroxy-3-pentyl)thiophene-2-carboxylic acid 0.236 g (1.05 mmol) and methanol (15 ml) is bubbled HCl gas for a few minutes. The mixture is heated at reflux for 2 h and then concentrated under vacuum. The residue is partitioned between Et_2O and 1N NaHCO_3 . The organic layer is Na_2SO_4 dried and concentrated to give the title compound (0.106 g, 62%).

25

D. 3'-(4-(Hydroxy)-3-methylphenyl]-3'-(5-methoxycarbonyl-4-methylthiophen-2-yl]pentane.

- To a mixture of methyl 5-(E/Z-2-penten-3-yl)thiophene-2-carboxylate (0.106 g, 0.65 mmol) and o-cresol (0.282 g, 2.61 mmol) in a few drops of methylene chloride is added of BF_3 etherate (37 mg, 0.26 mmol). The mixture is stirred overnight and partitioned between Et_2O and 1N NaHCO_3 . The organic layer is Na_2SO_4 dried, concentrated, and excess o-cresol is distilled off (73 °C/0.10 mm). The residue is chromatographed (7.5% to 10% EtOAc/hex) to give the title compound (0.104 g, 50%).
- H-NMR (ppm, CDCl_3): 7.62 (1H, d, 3.0 Hz), 6.96 (1H, s), 6.94 (1H, d, 6.0 Hz), 6.78 (1H, d, 3.0 Hz), 6.65 (1H, d, 6.0 Hz), 4.60 (1H, s), 3.82 (3H, s), 2.19 (3H, s), 2.10 (4H, q, 5.7 Hz), 0.69 (6H, t, 5.7 Hz).
- LC/MS: 319.2 (M+1).
- E. 3'-(4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(5-methoxycarbonyl-thiophen-2-yl]pentane.

- To a stirred 0 °C mixture of 60% disp NaH (15.7 mg, 0.39 mmol, hex washed) is added 3'-(4-(hydroxy)-3-methylphenyl]-3'-(5-methoxycarbonyl-4-methylthiophen-2-yl]pentane (100 mg, 0.31 mmol) in DMF (2.0 ml). The resulting mixture is added 1-chloropinacolone (46 mg, 0.34 mmol) with a crystal of KI. The reaction is allowed to warm to RT and stirred overnight. The mixture is partitioned between Et_2O and 1N NaHCO_3 . The organic layer is Na_2SO_4 dried, filtered, concentrated, and chromatographed (on 4g of silica gel with 5% EtOAc/hex) to give the title compound (0.114 g, 87%).

-164-

H-NMR (ppm, CDCl₃): 7.62 (1H, d, 3.0 Hz), 6.99 (1H, s), 6.97 (1H, d, 6.0 Hz), 6.77 (1H, d, 3.0 Hz), 6.50 (1H, d, 6.0 Hz), 4.83 (2H, s), 3.82 (3H, s), 2.24 (3H, s), 2.10 (4H, q, 5.7 Hz), 1.24 (9H, s), 0.68 (6H, t, 5.7 Hz).

LC/MS: 417.3 (M+1).

5

F. 3'-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[5-methoxycarbonyl-thiophen-2-yl]pentane.

To a mixture of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(5-methoxycarbonyl-thiophen-2-yl)pentane (28 mg, 0.067 mmol) and 95% EtOH (1 ml) is added NaBH₄ (3.8 mg, 0.1 mmol). After stirring overnight, the reaction is added acetone (several drops) and partitioned between CH₂Cl₂ and 1N NaHCO₃. The organic layer is washed with water, Na₂SO₄ dried, and concentrated to give the title compound (23 mg, 82%).

15 H-NMR (ppm, CDCl₃): 7.62 (1H, d, 2.7 Hz), 7.02 (1H, d, 6.0 Hz), 6.98 (1H, s), 6.78 (1H, d, 2.6 Hz), 6.71 (1H, d, 6.0 Hz), 4.06 (1H, d, 8.2 Hz), 3.86 (1H, d, 8.4 Hz), 3.82 (3H, s), 3.70 (1H, d, 8.2 Hz), 2.18 (3H, s), 2.10 (4H, q, 6.0 Hz), 1.00 (9H, s), 0.69 (6H, t, 5.8 Hz).

LC/MS: 418.2 (M+).

20

Example 6A and Example 6B:

Preparation of enantiomers of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(5-methoxycarbonyl-4-methylthiophen-2-yl)pentane.

A mixture of racemic 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane (1.4 g, 3.25 mmol) is chromatographed with a ChiralPak AD column to give enantiomer 1, Example 6A (666 mg, 48%) and enantiomer 2, Example 6B (686 mg, 49%).

5 Enantiomer 1, Example 6A

HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/85% heptane; 1 ml/m (flow rate);
rt = 5.8 m

¹NMR (300MHz, DMSO-d₆) equivalent to Example 2.

High Res. ES-MS: 455.2231; calc. for C₂₅H₃₆O₄S+Na: 455.2232

10 Enantiomer 2, Example 6B

HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/85% heptane; 1 ml/m (flow rate); rt = 9.8 m

¹NMR (300MHz, DMSO-d₆) equivalent to Example 2.

High Res. ES-MS: 433.2427; calc. for C₂₅H₃₆O₄S+H: 433.2413

15

Example 7:

Preparation of enantiomer 1 of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[5-carboxy-4-methylthiophen-2-yl]pentane.

20 Using a procedure analogous to Example 3, enantiomer 1 of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane (Example 6A) gives the title compound as a white foamy solid (440 mg, quant.).

¹NMR (300MHz, DMSO-d₆) equivalent to Example 3.

High Res. ES-MS: 441.2073; calc. for C₂₄H₃₄O₄S+Na: 441.2076

25

Example 8:

Preparation of enantiomer 2 of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[5-carboxy-4-methylthiophen-2-yl]pentane.

Using a procedure analogous to Example 3, enantiomer 2 (Example 6B) of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(5-methoxycarbonyl-4-methylthiophen-2-yl)pentane gives the title compound as a white foamy solid (440 mg, 5 quant.).

¹NMR (300MHz, DMSO-d₆) equivalent to Example 3.

High Res. ES-MS: 441.2074; calc. for C₂₄H₃₄O₄S+Na: 441.2076

Example 9:

10 Preparation of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(5-methylsulfonylmethyl-4-methylthiophen-2-yl)pentane.

A. 3'-(4-(Benzylxy)-3-methylphenyl)-3'-(4-methyl-5-(hydroxymethyl)thiophen-2-yl)pentane.

15

To a 0 °C mixture of 3'-(4-(benzylxy)-3-methylphenyl)-3'-(5-methoxycarbonyl-4-methylthiophen-2-yl)pentane (1.55 g, 3.66 mmol) and THF (15 ml) is added LAH (417 mg, 11 mmol) and warmed to RT. The reaction is heated to 20 45 °C overnight and then cooled to 0 °C. The mixture is quenched with sat'd Na₂SO₄,

diluted with Et₂O, dried with Na₂SO₄ and filtered. After concentration, the residue is chromatographed (CHCl₃) to give the title compound (1.1 g, 76%).

¹NMR (400MHz, DMSO-d₆) δ ppm: 0.64 (t, J = 7.3 Hz, 6H), 1.96-2.05 (m, 4H), 2.06 (s, 3H), 2.15 (s, 3H), 4.43 (s, 2H), 5.06 (m, 3H), 6.55 (s, 1H), 6.89 (d, J = 9.3 Hz, 1H),
5 7.26 (br s, 2H), 7.31 (m, 1H), 7.37 (m, 2H), 7.44 (d, J = 7.8 Hz, 2H).
High Res. ES-MS: 377.1950; calc. for C₂₅H₃₀O₂S+H-H₂O: 377.1939

B. 3'-[4-(Benzylxy)-3-methylphenyl]-3'-(4-methyl-5-(methylmercaptymethyl)thiophen-2-yl]pentane.

10

To a 0 °C mixture of 3'-(4-(benzylxy)-3-methylphenyl)-3'-(4-methyl-5-(hydroxymethyl)thiophen-2-yl]pentane (450 mg, 1.1 mmol) and Et₂O (3 ml) is added PBr₃ (113 ul, 1.2 mmol) and stirred for 1 h. The reaction is diluted with Et₂O, washed
15 with water (1 X 5 ml), brine (1 X 5 ml), Na₂SO₄ dried, and concentrated. The resulting solid is dissolved in DMF, cooled to 0 °C, added NaSMe (330 mg, 4.8 mmol), and allowed to warmed RT. After stirring for 2 h, the reaction is concentrated and chromatographed (5% EtOAc/hex) to give the title compound (280 mg, 60%).

¹NMR (400MHz, DMSO-d₆) δ ppm: 0.63 (t, J = 7.3 Hz, 6H), 1.94-2.05 (m, 4H), 1.97 (s, 3H), 2.07 (s, 3H), 2.15 (s, 3H), 3.75 (s, 2H), 5.06 (s, 2H), 6.56 (s, 1H), 6.90 (d, J= 9.3 Hz, 1H), 7.01 (m, 2H), 7.31 (m, 1H), 7.38 (m, 2H), 7.44 (d, J = 6.8 Hz, 2H).
20 High Res. ES-MS: 425.1964; calc. for C₂₆H₃₂OS₂+H: 425.1973

C. 3'-(4-(Benzylxy)-3-methylphenyl)-3'-(4-methyl-5-(methylsulfonylmethyl)thiophen-2-yl]pentane.

To a 0 °C mixture of 3'-(4-(benzyloxy)-3-methylphenyl)-3'-(4-methyl-5-(methylmercaptymethyl)thiophen-2-yl)pentane (260 mg, 0.611 mmol) and CHCl₃ (3 ml) is added 50% m-CPBA (465 mg, 1.35 mmol) and stirred for 1.5 h. The reaction is 5 diluted with CHCl₃, washed with satd Na₂CO₃, Na₂SO₄ dried, concentrated, and chromatographed (CHCl₃ to 5% EtOAc/CHCl₃) to give the title compound as a white foamy solid (250 mg, 90%).

¹NMR (400MHz, DMSO-d₆) δ ppm: 0.64 (t, J = 7.3 Hz, 6H), 1.99-2.07 (m, 4H), 2.14 (s, 3H), 2.15 (s, 3H), 2.90 (s, 3H), 4.53 (s, 2H), 5.06 (s, 2H), 6.67 (s, 1H), 6.91 (d, J = 9.3 Hz, 1H), 7.03 (m, 2H), 7.31 (m, 1H), 7.38 (m, 2H), 7.44 (d, J = 7.3 Hz, 2H).
10 High Res. ES-MS: 474.2126; calc. for C₂₆H₃₂O₃S₂+NH₄: 474.2137

D. 3'-(4-(Hydroxy)-3-methylphenyl)-3'-(4-methyl-5-(methylsulfonylmethyl)thiophen-2-yl)pentane.

15

Using a procedure analogous to Example 1F, 3'-(4-(benzyloxy)-3-methylphenyl)-3'-(4-methyl-5-(methylsulfonylmethyl)thiophen-2-yl)pentane gives the title compound as a white foamy solid (160 mg, 81%).

¹NMR (400MHz, DMSO-d₆) δ ppm: 0.63 (t, J = 7.3 Hz, 6H), 1.94-2.03 (m, 4H), 2.06 (s, 3H), 2.14 (s, 3H), 2.89 (s, 3H), 4.52 (s, 2H), 6.65 (m, 2H), 6.85 (dd, J = 2.4, 8.3 Hz, 1H), 6.92 (d, J = 2.0 Hz, 1H), 9.09 (s, 1H).
20 High Res. ES-MS: 384.1648; calc. for C₁₉H₂₆O₃S₂+NH₄: 384.1667

E. 3'-(4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(5-methylsulfonylmethyl-4-methylthiophen-2-yl)pentane.
25

-169-

Using a procedure analogous to Example 1G, 3'-(4-(hydroxy)-3-methylphenyl)-3'-(4-methyl-5-(methylsulfonylmethyl)thiophen-2-yl)pentane gives the title compound (160 mg, 84%).

¹NMR (400MHz, DMSO-d₆) δ ppm: 0.63 (t, J = 7.3 Hz, 6H), 1.16 (s, 9H), 2.00-2.08 (m, 4H), 2.14 (s, 3H), 2.15 (s, 3H), 2.90 (s, 3H), 4.53 (s, 2H), 5.07 (s, 2H), 6.60 (d, J = 8.3 Hz, 1H), 6.67 (s, 1H), 6.97 (d, J = 8.3 Hz, 1H), 7.01 (s, 1H).

High Res. ES-MS: 482.2397; calc. for C₂₅H₂₆O₄S₂+NH₄: 482.2399

10

Example 10:

Preparation of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(5-methylsulfonylmethyl-4-methylthiophen-2-yl)pentane.

15

Using a procedure analogous to Example 2, 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(5-methylsulfonylmethyl-4-methylthiophen-2-yl)pentane gives the title compound as a white foamy solid (440 mg, quant.).

¹NMR (400MHz, DMSO-d₆) δ ppm: 0.62 (t, J = 7.3 Hz, 6H), 0.92 (s, 9H), 1.97-2.08 (m, 4H), 2.12 (s, 3H), 2.14 (s, 3H), 2.89 (s, 3H), 3.45 (m, 1H), 3.76 (dd, J = 7.3, 9.8 Hz, 1H), 4.02 (dd, J = 2.9, 9.8 Hz, 1H), 4.52 (s, 2H), 4.78 (d, J = 5.4 Hz, 1H), 6.66 (s, 1H), 6.82 (d, J = 8.3 Hz, 1H), 7.01 (m, 2H).

High Res. ES-MS: 484.2553; calc. for C₂₅H₃₈O₄S₂+NH₄: 484.2555

-170-

Example 11A and 11B

Preparation of enantiomers of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[5-methylsulfonylmethyl-4-methylthiophen-2-yl]pentane.

5

A racemic mixture of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[5-methylsulfonylmethyl-4-methylthiophen-2-yl]pentane is chromatographed with a Chiralcel AD column to give enantiomer 1, Example 11A (205 mg, ~50%) and enantiomer 2, Example 11B (150 mg, 38%).

10 Enantiomer 1, Example 11A

HPLC: Chiralcel AD (4.6X250 mm); 40% IPA/60% hept; 1 ml/m (flow rate); rt = 9.86 m; 260 nm.

¹NMR equivalent to Example 10.

High Res. ES-MS: 489.2127; calc. for C₂₅H₃₈O₄S₂+Na: 489.2109.

15 Enantiomer 2, Example 11B

HPLC: Chiralcel AD (4.6X250 mm); 40% IPA/60% hept; 1 ml/m (flow rate); rt = 12.64 m; 260 nm.

¹NMR equivalent to Example 10.

High Res. ES-MS: 489.2132; calc. for C₂₅H₃₈O₄S₂+Na: 489.2109.

20

Example 12

Alternative preparation of 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-methylphenyl]-3'-(5-methoxycarbonyl-4-methylthiophen-2-yl)pentane (Example 1).

25 A. 4-Hydroxy-3-methylbenzoic acid methyl ester.

-171-

To a mixture of 3-methyl-4-hydroxybenzoic acid (342 g, 2.24 mol) in MeOH (3.5 l) is bubbled HCl (g) for 5 m. The mixture is stirred for 12 h at RT. The reaction is concentrated to give the title compound (372 g, quant).

- 5 H-NMR (ppm, CDCl₃): 7.82 (1H, s), 7.78 (1H, dd,), 6.80 (1H, d), 3.86 (3H, s), 2.22 (3H, s).

B. 3'-[4-hydroxy-3-methylphenyl]pentan-3-ol].

- 10 To a 0 °C mixture of 4-hydroxy-3-methylbenzoic acid methyl ester (373 g, 2.24 mol) in THF (6 l) is added 3.0 M EtMgBr/Et₂O (2.3 l, 6.93 mol) over 3 h. The mixture is warmed to 40 °C for 2 h and cooled to 0 °C. Saturated NaHCO₃ is added slowly until gas evolution ceases and the reaction is partitioned between EtOAc/water. The organic layer is washed with brine, water, MgSO₄ dried and concentrated. The residue is dissolved in
15 CH₂Cl₂, dried with Na₂SO₄ and concentrated to give the title compound (440 g, quant).
H- NMR (ppm, CDCl₃): 7.06 (1H, s), 7.02 (1H, dd), 6.78 (1H, d), 4.60 (1H, s), 2.24 (3H, s), 1.80 (4H, m), 0.77 (6H, t).

C. 3'-[4-(Hydroxy)-3-methylphenyl]-3'-[4-methylthiophen-2-yl]pentane.

- 20 To a -78 °C mixture of 3'-[4-hydroxy-3-methylphenyl]pentan-3-ol] (415 g, 2.13 mol), 3-methylthiophene (627 g, 6.39 mol) and CH₂Cl₂ (6 l) is added BF₃- Et₂O (1.81 kg,

-172-

12.8 mol), maintaining the temperature below -75 °C. The reaction is warmed to RT for 3 h and cooled to 0 °C. Saturated NaHCO₃ is added until the gas evolution ceases and the mixture is partitioned with water. The organic layer is dried with Na₂SO₄, concentrated and chromatographed (EtOAc/hex) to give the title compound (425 g, 5 73%).

¹NMR (400MHz, DMSO-d₆) δ ppm: 0.63 (t, J = 7.3 Hz, 3H), 2.01 (m, 4H), 2.08 (s, 3H), 2.16 (s, 3H), 6.67 (m, 2H), 6.88 (m, 2H), 6.93 (d, J = 1.9 Hz, 1H), 9.10 (s, 1H).

High Res. EI-MS: 274.1389; calc. for C₁₇H₂₂OS: 274.1391

10

D. 3'-[4-(t-Butyldimethylsilyloxy)-3-methylphenyl]-3'-[4-methylthiophen-2-yl]pentane.

To a mixture of 3'-(4-(hydroxy)-3-methylphenyl)-3'-(4-methylthiophen-2-yl)pentane (5.00g, 18.2 mmol) and t-butyldimethylsilyl chloride (2.75g, 18.2 mmol) in CH₂Cl₂ (100 ml) is added imidazole (1.24g, 18.2 mmol). The reaction is stirred for 24 h at RT. The mixture is diluted with Hex (100 ml), filtered and concentrated. The concentrate is suspended in Hex (100 ml), filtered and concentrated to give the title compound as an oil (6.91 g, 98%).

H-NMR (ppm, CDCl₃): 7.05 (1H, d, 2.0 Hz), 6.97 (1H, d, 9.0 Hz), 6.72 (1H, d, 1.1 Hz), 6.68 (1H, d, 8.3 Hz), 6.62 (1H, d, 1.3 Hz), 2.23 (3H, s), 2.20 (3H, s), 2.10 (4H, m), 1.03 (9H, s), 0.72 (6H, t, 7.3 Hz), 0.23 (6H, s).

E. 3'-(4-(t-Butyldimethylsilyloxy)-3-methylphenyl)-3'-(5-methoxycarbonyl-4-methylthiophen-2-yl)pentane.

25

To a -78 °C mixture of 3'-[4-(t-butyldimethylsilyloxy)-3-methylphenyl]-3'-[4-methylthiophen-2-yl]pentane (6.75 g, 17.4 mmol) and THF (100 ml) is added 2.5 M n-BuLi/hex (7.64 ml, 19.1 mmol). The mixture is stirred for 25 m and warmed to 0 °C over 15 m. The reaction is cooled to -78 °C, added methyl chloroformate (1.48 ml, 19.1 mmol) and warmed to RT overnight. To the reaction is added water (25 ml). The mixture is concentrated and partitioned with CH₂Cl₂/ water. The organic layer is concentrated to yield the title compound (7.8g, quant.).

H-NMR (ppm, CDCl₃): 6.99 (1H, d, 2.0 Hz), 6.94 (1H, dd, 2.3, 8.5 Hz), 6.67 (1H, d, 8.5 Hz), 6.62 (1H, s), 3.77 (3H, s), 2.49 (3H, s), 2.17 (3H, s), 2.09 (4H, m), 1.01 (9H, s), 0.70 (6H, t, 7.3 Hz), 0.22 (6H, s).

F. 3'-[4-Hydroxy-3-methylphenyl]-3'-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane.

To a 0 °C mixture of 3'-[4-(t-butyldimethylsilyloxy)-3-methylphenyl]-3'-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane (130 g, 292 mmol) and THF (1 L) is added 1.0 M TBAF/THF (292 ml, 292 mmol) over 20 m. The reaction is warmed to RT and stirred for 1 d. The mixture is concentrated and partitioned with CH₂Cl₂/water. The organic layer is concentrated and chromatographed (EtOAc/hex) to give the title compound (40.2 g, 41%).

H-NMR (ppm, CDCl₃): 6.97 (1H, s), 6.95 (1H, d, 7.5 Hz), 6.69 (1H, d, 8.2 Hz), 6.61 (1H, s), 4.95 (1H, br s), 3.80 (3H, s), 2.47 (3H, s), 2.21 (3H, s), 2.08 (4H, m), 0.91 (3H, s), 0.70 (6H, t, 7.3 Hz).

G. 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane.

-174-

To a mixture of 3'-(4-hydroxy-3-methylphenyl)-3'-(5-methoxycarbonyl-4-methylthiophen-2-yl)pentane (14.5 g, 43.6 mmol), acetone (200 ml) and K_2CO_3 (12.1 g, 87.2 mmol) is added 3,3-dimethyl-1-chloro-2-butanone (5.73 ml, 43.6 mmol). The 5 mixture is stirred overnight, refluxed for 9 h and cooled to RT overnight. The reaction is filtered and concentrated to give the title compound (18.8 g, quant.).
 H -NMR (ppm, $CDCl_3$): 6.99 (2H, m), 6.60 (1H, s), 6.51 (1H, d, 8.5 Hz), 4.84 (2H, s), 3.79 (3H, s), 2.47 (3H, s), 2.25 (3H, s), 2.08 (4H, m), 1.25 (9H, s), 0.70 (6H, t, 7 Hz).

10 Example 13

Preparation of 3'-(5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(methylsulfonylmethoxy)-3-methylphenyl)pentane.

15 H. 3'-(5-(3-Oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-benzyloxy-3-methylphenyl)pentane.

To a 0 °C mixture of 3'-(4-benzyloxy-3-methylphenyl)-3'-(4-methyl-5-(hydroxymethyl)thiophen-2-yl)pentane (900 mg, 2.3 mmol) and Et_2O (7 ml) is added 20 PBr_3 (240 ul, 2.5 mmol) and stirred for 1.5 h. The reaction is diluted with Et_2O , washed with water (10 ml), brine (10 ml), Na_2SO_4 dried, and concentrated. The

-175-

resulting residue is dissolved in THF (4 ml) and cooled to -78 °C to afford the bromide/THF solution. In a separate flask is charged with 1M LiHMDS (4.6 ml, 4.6 mmol), cooled to -78 °C, and added pinacolone (570 ul, 4.6 mmol). The reaction is stirred for 1.5 h, warmed to -50 °C and transferred (via syringe) to the -78 °C solution of bromide/THF. The reaction is warmed to RT with a cold water bath. After stirring for 15 m, the reaction is diluted with Et₂O and washed with 1N HCl. The organic layer is Na₂SO₄ dried and chromatographed (30% CHCl₃/hex to 80% CHCl₃/hex) to give the title compound (900 mg, 82%).

¹H NMR (400MHz, DMSO-d₆) δ ppm: 0.62 (t, J = 7.3 Hz, 6H), 1.00 (s, 9H), 1.93-2.04 (m, 4H), 2.15 (s, 3H), 2.71 (m, 2H), 2.80 (m, 2H), 5.08 (s, 2H), 6.55 (s, 1H), 6.90 (d, J = 8.3 Hz, 1H), 7.01 (m, 2H), 7.34 (d, J = 7.3 Hz, 1H), 7.41 (m, 2H), 7.46 (d, J = 7.8 Hz, 2H).

High Res. ES-MS: 477.2830; calc. for C₃₁H₄₀O₂S+H: 477.2827.

I. 3'-[5-(3-Oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-hydroxy-3-methylphenyl]pentane.

Using a procedure analogous to Example 1F, 3'-[5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-benzyloxy-3-methylphenyl]pentane gives the title compound (600 mg, 97%).

¹H NMR (400MHz, DMSO-d₆) δ ppm: 0.59 (t, J = 7.3 Hz, 6H), 0.99 (s, 9H), 1.91-1.98 (m, 4H), 2.03 (s, 3H), 2.04 (s, 3H), 2.71 (m, 2H), 2.75 (m, 2H), 6.49 (s, 1H), 6.62 (d, J = 8.3 Hz, 1H), 6.82 (d, J = 8.3 Hz, 1H), 6.86 (s, 1H), 9.04 (s, 1H).

High Res. ES-MS: 409.2167; calc. for C₂₄H₃₄O₂S+Na: 409.2177.

25

J. 3'-[5-(3-Oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-(methylmercaptymethoxy)-3-methylphenyl]pentane.

-176-

Using a procedure analogous to Example 1D, 3'-(5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-hydroxy-3-methylphenyl)pentane and methylmercaptymethyl chloride give the title compound (440 mg, 73%).

5 ^1H NMR (400MHz, DMSO-d₆) δ ppm: 0.61 (t, J = 7.3 Hz, 6H), 0.98 (s, 9H), 1.93-2.01 (m, 4H), 2.04 (s, 3H), 2.11 (s, 3H), 2.17 (s, 3H), 2.71 (m, 2H), 2.76 (m, 2H), 5.23 (s, 2H), 6.86 (d, J = 8.3 Hz, 1H), 6.98 (m, 2H).

High Res. ES-MS: 469.2230; calc. for C₂₆H₃₈O₂S₂+Na: 469.2211.

10 K. 3'-(5-(3-Oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(methylsulfonylmethoxy)-3-methylphenyl)pentane.

Using a procedure analogous to Example 9C, 3'-(5-(3-Oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(methylmercaptymethoxy)-3-methylphenyl)pentane gives the title compound (140 mg, 33%).

15 ^1H NMR (400MHz, DMSO-d₆) δ ppm: 0.61 (t, J = 7.3 Hz, 6H), 0.99 (s, 9H), 1.95-2.02 (m, 4H), 2.04 (s, 3H), 2.17 (s, 3H), 2.71 (m, 2H), 2.76 (m, 2H), 3.04 (s, 3H), 5.24 (s, 2H), 6.53 (s, 1H), 7.01 (m, 3H).

High Res. ES-MS: 501.2129; calc. for C₂₆H₃₈O₄S₂+Na: 501.2109.

20

Example 14

Preparation of 3'-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-(methylsulfonylmethoxy)-3-methylphenyl]pentane.

5

Using a procedure analogous to Example 2, 3'-[5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-(methylsulfonylmethoxy)-3-methylphenyl]pentane gives the title compound (100 mg, quant.).

¹H NMR (400MHz, DMSO-d₆) δ ppm: 0.62 (t, J = 7.3 Hz, 6H), 0.77 (s, 9H), 1.11-1.38
 10 (m, 1H), 1.56-1.63 (m, 1H), 1.94-2.01 (m, 4H), 2.04 (s, 3H), 2.18 (s, 3H), 2.52-2.60
 (m, 1H), 2.77-2.83 (m, 1H), 2.94-2.97 (m, 1H), 3.04 (s, 3H), 4.38 (d, J = 5.9, 1H),
 5.25 (s, 2H), 6.53 (s, 1H), 7.01 (m, 3H).

High Res. ES-MS: 503.2268; calc. for C₂₆H₄₀O₄S₂+Na: 503.2266.

15 Example 15A and 15B

Preparation of enantiomers of 3'-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-(methylsulfonylmethoxy)-3-methylphenyl]pentane.

20

A mixture of racemic 3'-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-(methylsulfonylmethoxy)-3-methylphenyl]pentane is chromatographed with a Chiralcel OD column to give enantiomer 1
 Example 3A (54 mg, 43%) and enantiomer 2, Example 3B (55 mg, 44%).
 Enantiomer 1, Example 3A]

HPLC: Chiralcel OD (4.6X250 mm); 40% IPA/60% heptane; 1 ml/m (flow rate); rt = 8.9 m; 225 nm.

¹NMR equivalent to Example Yee-2.

High Res. ES-MS: 503.2269; calc. for C₂₆H₄₀O₄S₂+Na: 503.2266.

5 Enantiomer 2, Example 3B

HPLC: Chiralcel OD (4.6X250 mm);); 40% IPA/60% heptane; 1 ml/m (flow rate); rt = 11.3 m; 225 nm.

¹NMR equivalent to Example 2.

High Res. ES-MS: 503.2280; calc. for C₂₆H₄₀O₄S₂+Na: 503.2266.

10

Example 16

Preparation of 3'-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3'-[4-(methylsulfinylmethoxy)-3-methylphenyl]pentane.

15

To a 0 °C mixture of 3'-(5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(methylmercaptylmethoxy)-3-methylphenyl)pentane (725 mg, 1.67 mmol) and CHCl₃ (7 ml) is added 50% m-CPBA (1.3 g, 3.77 mmol). The stirred reaction is allowed to warm to RT over 1 h. The resulting suspension is added more CHCl₃ (7 ml) and stirred for 1 h. The mixture is diluted with CHCl₃ and washed with satd Na₂CO₃. The organic layer is concentrated and chromatographed (CHCl₃ to 50% EtOAc/ CHCl₃, TLC R_f: 0.05) to give the title compound (175 mg, 23%).

20

25

¹NMR (300MHz, DMSO-d₆) δ ppm: 0.62 (t, J = 7.3 Hz, 6H), 0.77 (s, 9H), 1.95-2.01 (m, 4H), 2.04 (s, 3H), 2.15 (s, 3H), 2.58 (m, 1H), 2.61 (s, 3H), 2.79 (m, 1H), 3.04 (m, 1H), 4.38 (m, 1H), 5.02 (d, J = 10.2 Hz, 1H), 5.20 (d, J = 10.7 Hz, 1H), 6.53 (s, 1H), 7.02 (m, 3H).

High Res. ES-MS: 465.2483; calc. for C₂₆H₄₀O₃S₂+H: 465.2497.

Example 17

Preparation of 3'-(5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(methylsulfonyloxy)-3-methylphenyl]pentane.

5

Using a procedure analogous to Example 1D, 3'-(5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(hydroxy)-3-methylphenyl]pentane gives the title compound (425 mg, 65%).

TLC: CHCl_3 ; $R_f = 0.4$.

¹NMR (400MHz, DMSO-d₆) δ ppm: 0.62 (t, $J = 7.3$ Hz, 6H), 0.98 (s, 9H), 1.93-2.15 (m, 4H), 2.05 (s, 3H), 2.24 (s, 3H), 2.72 (m, 2H), 2.77 (m, 2H), 3.40 (s, 3H), 6.57 (s, 1H), 7.11 (d, $J = 2.5$ Hz, 1H), 7.19 (m, 2H).

High Res. ES-MS: 487.1940; calc. for C₂₅H₃₆O₄S₂+Na: 487.1940.

15 Example 18

Preparation of 3'-(5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(methylsulfonyloxy)-3-methylphenyl]pentane.

Using a procedure analogous to Example 2, 3'-(5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(methylsulfonyloxy)-3-methylphenyl]pentane gives the title compound (300 mg, 96%).

TLC: 5% EtOAc/CHCl₃; $R_f = 0.35$.

¹NMR (300MHz, DMSO-d₆) δ ppm: 0.62 (t, $J = 7.3$ Hz, 6H), 0.77 (s, 9H), 1.35 (m, 1H), 1.62 (m, 1H), 1.95-2.12 (m, 4H), 2.04 (s, 3H), 2.25 (s, 3H), 2.60 (m, 1H), 2.81

-180-

(m, 1H), 2.98 (m, 1H), 3.42 (s, 3H), 4.37 (d, $J = 6.2$ Hz, 1H), 6.59 (s, 1H), 7.13 (dd, $J = 2.2, 8.8$ Hz, 1H), 7.22 (m, 2H).

High Res. ES-MS: 484.2539; calc. for $C_{25}H_{38}O_4S_2 + NH_4$: 484.2555.

5

Example 19A and 19B

Preparation of enantiomers of 3'-(5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(methylsulfonyloxy)-3-methylphenyl)pentane.

10

A mixture of racemic 3'-(5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(methylsulfonyloxy)-3-methylphenyl)pentane is chromatographed with a Chiralcel AD column to give enantiomer 1, Example 19A (108 mg, 43%) and enantiomer 2, Example 19B (109 mg, 44%).

15 Enantiomer 1, Example 19A

HPLC: Chiralcel AD (4.6X250 mm); 10% IPA/heptane; 1 ml/m (flow rate); $rt = 6.85$ m; 250 nm.

1 NMR equivalent to Example 18.

High Res. ES-MS: 489.2106; calc. for $C_{25}H_{38}O_4S_2 + Na$: 489.2109.

20 Enantiomer 2, Example 19B.

HPLC: Chiralcel AD (4.6X250 mm); 10% IPA/heptane; 1 ml/m (flow rate); $rt = 8.00$ m; 250 nm.

1 NMR equivalent to Example 18..

High Res. ES-MS: 489.2112; calc. for $C_{25}H_{38}O_4S_2 + Na$: 489.2109.

25

Example 20

Preparation of 3'-(5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-methoxycarbonyl-3-methylphenyl)pentane.

-181-

A. 3'-(5-(3-Oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(trifluoromethylsulfonyloxy)-3-methylphenyl)pentane.

5 To a 0 °C mixture of 3'-(5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-hydroxy-3-methylphenyl)pentane (2.7 g, 7.0 mmol) and pyridine (8 ml) is added Tf₂O (1.3 ml, 7.7 mmol). The reaction is warmed to RT and stirred overnight. The reaction is diluted with Et₂O, washed with 1N HCl and brine, Na₂SO₄ dried, and concentrated. The residue is chromatographed (30 /hex) to give the title compound

10 (2.9 g, 80%).

¹H NMR (400MHz, DMSO-d₆) δ ppm: 0.61 (t, J = 7.3 Hz, 6H), 0.97 (s, 9H), 1.95-2.11 (m, 4H), 2.04 (s, 3H), 2.28 (s, 3H), 2.70 (m, 2H), 2.77 (m, 2H), 6.59 (s, 1H), 7.19 (dd, J = 2.4, 8.8 Hz, 1H), 7.24 (d, J = 8.8 Hz, 1H), 7.30 (d, J = 2.0 Hz, 1H).

High Res. ES-MS: 519.1838; calc. for C₂₅H₃₃F₃O₄S₂+H: 519.1851.

15

B. 3'-(5-(3-Oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-methoxycarbonyl-3-methylphenyl)pentane.

20 A mixture of 3'-(5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(trifluoromethylsulfonyloxy)-3-methylphenyl)pentane (2.65 g, 5.1 mmol), DPPF (554 mg, 1.0 mmol), Pd(OAc)₂ (120 mg, 0.51 mmol), DMF (10 ml), MeOH (2.1 ml) and Et₃N (2.1 ml, 15.3 mmol) is heated in an autoclave at 110 C under CO pressure (1000 psi). After 48 h, the reaction is cooled to RT and diluted with Et₂O. The mixture is washed with 5N HCl, water, and Na₂SO₄ dried and concentrated. The residue is chromatographed (10% EtOAc/hex) to give the title compound (1.86 g, 85%).

-182-

¹NMR (400MHz, DMSO-d₆) δ ppm: 0.61 (t, J = 7.3 Hz, 6H), 0.98 (s, 9H), 1.96-2.12 (m, 4H), 2.04 (s, 3H), 2.47 (s, 3H), 2.71 (m, 2H), 2.78 (m, 2H), 3.79 (s, 3H), 6.56 (s, 1H), 7.15 (m, 2H), 7.71 (d, J = 7.8 Hz, 1H).

High Res. ES-MS: 446.2741; calc. for C₂₆H₃₆O₃S+NH₄: 446.2729.

5

Example 21

Preparation of 3'-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-methoxycarbonyl-3-methylphenyl]pentane.

10

Using a procedure analogous to Example 2, 3'-[5-(3-Oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-methoxycarbonyl-3-methylphenyl]pentane gives the title compound (785 mg, 98%).

15 ¹NMR (400MHz, DMSO-d₆) δ ppm: 0.63 (t, J = 7.3 Hz, 6H), 0.77 (s, 9H), 1.35 (m, 1H), 1.54 (m, 1H), 1.98-2.13 (m, 4H), 2.04 (s, 3H), 2.48 (s, 3H), 2.56 (m, 1H), 2.79 (m, 1H), 2.95 (m, 1H), 3.79 (s, 3H), 4.37 (br s, d, 1H), 6.57 (s, 1H), 7.17 (m, 2H), 7.72 (d, J = 7.8 Hz, 1H).

High Res. ES-MS: 431.2630; calc. for C₂₆H₃₈O₃S+H: 431.2620.

20 Example 22

Preparation of 3'-[5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-carboxyl-3-methylphenyl]pentane.

Using a procedure analogous to Example 3, 3'-[5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-methoxycarbonyl-3-methylphenyl]pentane gives the title compound (800 mg, 92%).

5 ^1H NMR (400MHz, DMSO-d₆) δ ppm: 0.62 (t, J = 7.3 Hz, 6H), 0.98 (s, 9H), 1.96-2.11 (m, 4H), 2.04 (s, 3H), 2.47 (s, 3H), 2.71 (m, 2H), 2.77 (m, 2H), 6.56 (s, 1H), 7.11 (m, 2H), 7.71 (d, J = 8.3 Hz, 1H), 12.64 (s, 1H).
 High Res. ES-MS: 415.2297; calc. for C₂₅H₃₄O₃S+H: 415.2307.

10 Example 23

Preparation of 3'-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-carboxyl-3-methylphenyl]pentane.

15 Using a procedure analogous to Example 3, 3'-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-methoxycarbonyl-3-methylphenyl]pentane gives the title compound (700 mg, 99%).

1 ^1H NMR (400MHz, DMSO-d₆) δ ppm: 0.62 (t, J = 7.3 Hz, 6H), 0.77 (s, 9H), 1.36 (m, 1H), 1.58 (m, 1H), 1.96-2.11 (m, 4H), 2.04 (s, 3H), 2.48 (s, 3H), 2.55 (m, 1H), 2.60 (m, 1H), 4.37 (d, J = 6.2 Hz, 1H), 6.58 (s, 1H), 7.17 (m, 2H), 7.73 (d, J = 8.1 Hz, 1H), 12.65 (br s, 1H).
 High Res. ES-MS: 439.2322; calc. for C₂₅H₃₆O₃S+Na: 439.2283.

Example 24

25 Preparation of 3'-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-(methoxycarbonylmethylaminocarbonyl)-3-methylphenyl]pentane.

To a mixture of DMAP (256 mg, 2.1 mmol), methyl glycinate hydrochloride (123 mg, 1.01 mmol), EDCI (193 mg, 1.01 mmol) and CH_2Cl_2 (4 ml) is added 3'-(5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-carboxy-3-methylphenyl)pentane (350 mg, 0.84 mmol). The reaction is added CH_2Cl_2 (2 ml) and DMF (1 ml). The mixture is stirred for 16 h and concentrated. The residue is diluted with Et_2O , 1N HCl (3X), brine and Na_2SO_4 dried. The organic solution is concentrated and chromatographed (20% $\text{EtOAc}/\text{CHCl}_3$ to 50% $\text{EtOAc}/\text{CHCl}_3$) to give the title compound (320 mg, 78%).

¹NMR (400MHz, DMSO-d_6) δ ppm: 0.64 (t, $J = 7.3$ Hz, 6H), 0.77 (s, 9H), 1.35 (m, 1H), 1.57 (m, 1H), 1.98-2.12 (m, 4H), 2.32 (s, 3H), 2.53-2.61 (m, 1H), 2.77-2.84 (m, 1H), 2.95 (m, 1H), 3.65 (s, 3H), 3.94 (d, $J = 5.9$ Hz, 2H), 4.39 (br s, 1H), 6.56 (s, 1H), 7.11 (m, 2H), 7.26 (d, $J = 8.3$ Hz, 1H), 8.62 (t, $J = 5.9$ Hz, 1H).

ES-MS: 488.2 ($M+\text{H}$).

Example 25A and 25B

Preparation of enantiomers of 3'-(5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(methoxycarbonylmethylaminocarbonyl)-3-methylphenyl)pentane.

20

A racemic mixture of 3'-(5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(methoxycarbonylmethylaminocarbonyl)-3-methylphenyl)pentane is

chromatographed with a Chiralcel AD column to give enantiomer 1, Example 25A (110 mg, 37%) and enantiomer 2, Example 25B (102 mg, 34%).

Enantiomer 1, Example 25A

HPLC: Chiralcel AD (4.6X250 mm); 10% IPA/heptane; 1 ml/m (flow rate); rt = 16.90 m; 240 nm.

¹NMR equivalent to Example 24.

High Res. ES-MS: 488.2812; calc. for C₂₈H₄₁NO₄S+H: 488.2835.

Enantiomer 2, Example 25B.

HPLC: Chiralcel AD (4.6X250 mm); 10% IPA/heptane; 1 ml/m (flow rate); rt = 20.00 m; 240 nm.

¹NMR equivalent to Example 24.

High Res. ES-MS: 488.2831; calc. for C₂₈H₄₁NO₄S+H: 488.2835.

Example 26

Preparation of isomer 1 of 3'-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-(carboxymethylaminocarbonyl)-3-methylphenyl]pentane.

Using a procedure analogous to Example 3 but reacted at 50 °C, isomer 1 of 3'-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-(4-methoxycarbonylmethylaminocarbonyl)-3-methylphenyl]pentane (Example 13A) gives the title compound (95 mg, 98%).

¹NMR (400MHz, DMSO-d₆) δ ppm: 0.64 (t, J = 7.3 Hz, 6H), 0.77 (s, 9H), 1.34 (m, 1H), 1.58 (m, 1H), 1.97-2.12 (m, 4H), 2.04 (s, 3H), 2.32 (s, 3H), 2.57 (m, 1H), 2.80 (m, 1H), 2.95 (m, 1H), 3.84 (d, J = 6.3 Hz, 1H), 4.38 (br s, 1H), 6.56 (s, 1H), 7.10 (m, 2H), 7.26 (d, J = 8.8 Hz, 1H), 8.48 (t, J = 6.3 Hz, 1H), 12.47 (br s, 1H).

High Res. ES-MS: 474.2689; calc. for C₂₇H₃₉NO₄S+H: 474.2678.

Example 27

Preparation of isomer 2 of 3'-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-(carboxymethylaminocarbonyl)-3-methylphenyl]pentane.

5

Using a procedure analogous to Example 3 except using LiOH at 60 °C, isomer 2 of 3'-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-(methoxycarbonylmethylaminocarbonyl)-3-methylphenyl]pentane gives the title compound (79 mg, 94%).

10 ^1H NMR equivalent to Example 26.

High Res. ES-MS: 474.2672; calc. for $\text{C}_{27}\text{H}_{39}\text{NO}_4\text{S}+\text{H}$: 474.2678.

Example 28

Preparation of 3'-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-

15 (ethoxycarbonylethyl)-3-methylphenyl]pentane.

3'-[5-(3-Hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-(trifluoromethylsulfonyloxy)-3-methylphenyl]pentane.

Using a procedure analogous to Example 8A, isomer 1 of 3'-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-hydroxy-3-methylphenyl]pentane gives the title compound (1.1 g, 64%).

¹H NMR (400MHz, DMSO-d₆) δ ppm: 0.63 (t, J = 7.3 Hz, 6H), 0.77 (s, 9H), 1.35 (m, 1H), 1.59 (m, 1H), 1.97-2.12 (m, 4H), 2.04 (s, 3H), 2.29 (s, 3H), 2.58 (m, 1H), 2.80 (m, 1H), 2.94 (m, 1H); 4.38 (br s, 1H); 6.59 (s, 1H); 7.21 (dd, J = 2.4, 8.8 Hz, 1H), 10 7.26 (m, 2H), 7.33 (d, J = 2.0 Hz, 1H).

High Res. EI-MS: 520.1927; calc. for C₂₅H₃₅F₃O₄S₂: 520.1929.

A. 3'-[5-(3-Hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-(ethoxycarbonylethyl)-3-methylphenyl]pentane.

To a 0 °C mixture of 3'-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-(trifluoromethylsulfonyloxy)-3-methylphenyl]pentane (1.08 g, 2.07 mmol), Pd(Dppf)Cl₂ (170 mg, 0.207 mmol), LiCl (350 mg, 8.3 mmol) and THF (1 ml) is added 0.5M of 2-(ethoxycarbonyl)ethylzinc bromide/THF (12.4 ml, 6.21 mmol). The reaction is heated to 60 °C for 1 h and concentrated (to ~8 ml of volume) with a stream of nitrogen. The reaction is heated under nitrogen for another 15 h. After cooling, the reaction is diluted with Et₂O, quenched with 2.5N HCl, washed with water, Na₂SO₄ dried, and concentrated. The residue is chromatographed (70% CHCl₃/hex to 100% CHCl₃) to give the title compound (550 mg, 56%).

¹H NMR (400MHz, DMSO-d₆) δ ppm: 0.61 (t, J = 7.3 Hz, 6H), 0.77 (s, 9H), 1.14 (t, J = 6.8 Hz, 3H), 1.33 (m, 1H), 1.58 (m, 1H), 1.93-2.19 (m, 4H), 2.04 (s, 3H), 2.22 (s, 3H),

-188-

2.51-2.59 (m, 3H), 2.75-2.83 (m, 3H), 2.95 (m, 1H), 4.02 (q, $J = 7.3$ Hz, 2H), 4.38 (br s, 1H), 6.53 (s, 1H), 6.98 (m, 3H).

High Res. ES-MS: 495.2926; calc. for $C_{29}H_{44}O_3S+Na$: 495.2909.

5 Example 29

Preparation of 3'-(5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(2-carboxylethyl)-3-methylphenyl]pentane.

- Using a procedure analogous to Example 3 but reacted at RT for 45 m, 3'-(5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(2-carboxylethyl)-3-methylphenyl]pentane gives the title compound (450 mg, 95%).
- ¹H NMR (400MHz, DMSO-d₆) δ ppm: 0.62 (t, $J = 7.3$ Hz, 6H), 0.77 (s, 9H), 1.34 (m, 1H), 1.59 (m, 1H), 1.97-2.19 (m, 4H), 2.04 (s, 3H), 2.21 (s, 3H), 2.45 (t, $J = 7.3$ Hz, 2H), 2.54 (m, 1H), 2.74 (t, $J = 8.3$ Hz, 2H), 2.79 (m, 1H), 2.96 (m, 1H), 4.38 (br s, 1H), 6.53 (s, 1H), 6.99 (m, 3H), 12.09 (br s, 1H).
- ES-MS: 445.3 (M+H).

Example 30A and 30B

- 20 Preparation of enantiomers of 3'-(5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(2-carboxylethyl)-3-methylphenyl]pentane.

A racemic mixture of 3'-(5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(2-carboxylethyl)-3-methylphenyl]pentane is chromatographed with a Chiralcel

-189-

AD column to give enantiomer 1, Example 30A (108 mg, 43%) and enantiomer 2, Example 30B (109 mg, 44%).

Enantiomer 1, Example 30A

HPLC: Chiralcel AD (4.6X250 mm); 0.1% TFA in 5% EtOH/hept; 1 ml/m (flow rate); rt = 8.20 m; 210 nm.

¹NMR (300MHz, DMSO-d₆) δ ppm: 0.62 (t, J = 7.3 Hz, 6H), 0.77 (s, 9H), 1.35 (m, 1H), 1.61 (m, 1H), 1.97-2.10 (m, 4H), 2.04 (s, 3H), 2.22 (s, 3H), 2.47 (m, 2H), 2.56 (m, 1H), 2.77 (m, 3H), 2.95 (m, 1H), 4.37 (d, J = 6.2 Hz, 1H), 6.54 (s, 1H), 7.02 (m, 3H), 12.12 (br s, 1H).

10 High Res. ES-MS: 462.3054; calc. for C₂₇H₄₀NO₃S+NH₄: 462.3042.

Enantiomer 2, Example 30B.

HPLC: Chiralcel AD (4.6X250 mm); 0.1% TFA in 5% EtOH/hept; 1 ml/m (flow rate); rt = 10.09 m; 210 nm.

¹NMR equivalent to Example 29.

15 High Res. ES-MS: 462.3057; calc. for C₂₇H₄₀NO₃S+NH₄: 462.3042.

Example 31

Preparation of 3'-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-(methoxycarbonylmethoxy)-3-methylphenyl]pentane.

20

A. 3'-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-hydroxy-3-methylphenyl]pentane.

25

-190-

Using a procedure analogous to Example 2, 3'-[5-(3-oxo-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-hydroxy-3-methylphenyl]pentane gives the title compound (4.6 g, 98%).

15 ^1H NMR (300MHz, DMSO-d₆) δ ppm: 0.61 (t, J = 7.3 Hz, 6H), 0.78 (s, 9H), 1.35 (m, 1H), 1.57 (m, 1H), 1.87-2.11 (m, 4H), 2.04 (s, 3H), 2.06 (s, 3H), 2.58 (m, 1H), 2.96 (dd, J = 6.2, 9.1 Hz, 1H), 4.36 (d, J = 6.2 Hz, 1H), 6.51 (s, 1H), 6.65 (d, J = 8.1 Hz, 1H), 6.85 (dd, J = 2.2, 8.4 Hz, 1H), 6.90 (s, 1H), 9.03 (s, 1H).

High Res. ES-MS: 389.2502; calc. for C₂₄H₃₆O₂S+H: 389.2514.

- 10 B. 3'-[5-(3-Hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-(methoxycarbonylmethoxy)-3-methylphenyl]pentane.

- 15 Using a procedure analogous to Example 1D, 3'-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-hydroxy-3-methylphenyl]pentane is reacted with NaH and methyl chloroacetate to give the title compound (1.85 g, 92%).

1 ^1H NMR (400MHz, DMSO-d₆) δ ppm: 0.62 (t, J = 7.3 Hz, 6H), 0.78 (s, 9H), 1.35 (m, 1H), 1.58 (m, 1H), 1.92-2.02 (m, 4H), 2.04 (s, 3H), 2.14 (s, 3H), 2.55 (m, 1H), 2.78 (m, 1H), 2.95 (m, 1H), 3.69 (s, 3H), 4.38 (br s, 1H), 4.78 (s, 2H), 6.53 (s, 1H), 6.69 (d, J = 8.3 Hz, 1H), 6.98 (m, 2H).

20 High Res. ES-MS: 461.2738; calc. for C₂₇H₄₀O₄S+H: 461.2726.

Example 32

Preparation of 3'-[5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]- 3'-[4-(carboxymethoxy)-3-methylphenyl]pentane.

Using a procedure analogous to Example 3, 3'-(5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(methoxycarbonylmethoxy)-3-methylphenyl]pentane gives the title compound (1.4 g, 80%).

5 ^1H NMR (300MHz, DMSO- d_6) δ ppm: 0.62 (t, J = 7.3 Hz, 6H), 0.78 (s, 9H), 1.59 (m, 1H), 1.61 (m, 1H), 1.90-2.07 (m, 4H), 2.04 (s, 3H), 2.14 (s, 3H), 2.58 (m, 1H), 2.78 (m, 1H), 2.96 (m, 1H), 4.37 (d, J = 6.2 Hz, 1H), 4.64 (s, 2H), 6.53 (s, 1H), 6.68 (d, J = 9.1 Hz, 1H), 7.00 (m, 2H), 12.92 (br s, 1H).

High Res. ES-MS: 469.2392; calc. for $C_{26}H_{38}O_4S+Na$: 469.2389.

10

Example 33A & 33B

Preparation of enantiomers of 3'-(5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(carboxymethoxy)-3-methylphenyl]pentane.

15

A racemic mixture of 3'-(5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl)-3'-(4-(carboxymethoxy)-3-methylphenyl]pentane is chromatographed with a Chiralcel OJ column to give enantiomer 1, Example 33A (600 mg, 46%) and enantiomer 2, Example 33B (600 mg, 46%).

20 Enantiomer 1, Example 33A

HPLC: Chiralcel OJ (4.6X250 mm); 0.1% TFA in (2% MeOH and 5% EtOH in hept); 0.6 ml/m (flow rate); rt = 7.10 m; 240 nm.

^1H NMR equivalent to Example 32.

High Res. ES-MS: 469.2393; calc. for $C_{26}H_{38}O_4S+Na$: 469.2389.

25 Enantiomer 2, Example 33B.

HPLC: Chiralcel OJ (4.6X250 mm); 0.1% TFA in (2% MeOH and 5% EtOH in hept); 0.6 ml/m (flow rate); rt = 10.50 m; 240 nm.

^1H NMR equivalent to Example 32.

-192-

High Res. ES-MS: 469.2385; calc. for C₂₆H₃₈O₄S+Na: 469.2389.

Example 34

Preparation of isomer 1 of 3'-(5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3'-(4-(tetrazol-5-yl-aminocarbonylmethoxy)-3-methylphenyl]pentane.

Using a procedure analogous to Example 24 and crystallization from Et₂O/hex, enantiomer 1 of 3'-(5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3'-(4-(carboxymethoxy)-3-methylphenyl]pentane (Example 33A) and 5-aminotetrazole give the title compound as a white solid (45 mg, 20%).

10 ¹H NMR (400MHz, DMSO-d₆) δ ppm: 0.62 (t, J = 7.3 Hz, 6H), 0.77 (s, 9H), 1.33 (m, 1H), 1.57 (m, 1H), 1.92-2.00 (m, 4H), 2.04 (s, 3H), 2.19 (s, 3H), 2.56 (m, 1H), 2.78 (m, 1H), 2.95 (m, 1H), 4.38 (d, J = 6.3 Hz, 1H), 4.86 (s, 2H), 6.52 (s, 1H), 6.72 (d, J = 8.8 Hz, 1H), 6.99 (m, 2H), 12.21 (br s, 1H), 15.97 (br s, 1H).

15 High Res. ES-MS: 536.2677; calc. for C₂₇H₃₉O₃N₅S+Na: 536.2671.

Example 35

Preparation of isomer 2 of 3'-(5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3'-(4-(tetrazol-5-yl-aminocarbonylmethoxy)-3-methylphenyl]pentane.

20

Using a procedure analogous to Example 24 with crystallization from Et₂O/hex, enantiomer 2 of 3'-(5-(3-hydroxy-4,4-dimethylpentyl)-4-methylthiophen-2-yl]-3'-(4-(carboxymethoxy)-3-methylphenyl]pentane (Example 33B) and 5-aminotetrazole give the title compound as a white solid (70 mg, 32%).

¹NMR equivalent to Example 34.

High Res. ES-MS: 536.2690; calc. for C₂₇H₃₉O₃N₅S+Na: 536.2671.

- Add Preparation of racemic 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-
5 3'-[5-(tetrazol-5-yl-aminocarbonyl)- 4-methylthiophen-2-yl]pentane.

Example 36

Preparation of isomer 1 of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-
3'-[5-(tetrazol-5-yl-aminocarbonyl)- 4-methylthiophen-2-yl]pentane.

10

Using a procedure analogous to Example 24 and crystallization from CH₂Cl₂, enantiomer 1 of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(5-carboxyl-4-methylthiophen-2-yl]pentane (Example 7) and 5-aminotetrazole give the title compound as a white solid (335 mg, 77%).

15 ¹NMR (300MHz, DMSO-d₆) δ ppm: 0.67 (t, J = 7.3 Hz, 6H), 0.93 (s, 9H), 2.00-2.15 (m, 4H), 2.13 (s, 3H), 2.46 (s, 3H), 3.46 (m, 1H), 3.77 (dd, J = 7.3, 9.9 Hz, 1H), 4.04 (dd, J = 2.9, 10.2 Hz, 1H), 4.80 (d, J = 5.5 Hz, 1H), 6.87 (m, 2H), 7.04 (m, 2H), 11.80 (s, 1H), 15.92 (br s, 1H).

High Res. ES-MS: 486.2556; calc. for C₂₅H₃₅O₃N₅S+H: 486.2539.

20

Example 37

Preparation of isomer 2 of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(5-(tetrazol-5-yl-aminocarbonyl)- 4-methylthiophen-2-yl]pentane.

Using a procedure analogous to Example 24 and crystallization from CH₂Cl₂, enantiomer 2 of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[5-carboxyl-4-methylthiophen-2-yl]pentane (Example 8) and 5-aminotetrazole give the title compound as a white solid (335 mg, 77%).

5 ¹H NMR (300MHz, DMSO-d₆) δ ppm: 0.67 (t, J = 7.3 Hz, 6H), 0.93 (s, 9H), 2.00-2.15 (m, 4H), 2.13 (s, 3H), 2.46 (s, 3H), 3.46 (m, 1H), 3.77 (dd, J = 7.3, 9.9 Hz, 1H), 4.04 (dd, J = 2.9, 10.2 Hz, 1H), 4.80 (d, J = 5.1 Hz, 1H), 6.87 (m, 2H), 7.04 (m, 2H), 11.80 (s, 1H), 15.92 (br s, 1H).

High Res. ES-MS: 486.2545; calc. for C₂₅H₃₅O₃N₅S+H: 486.2539.

10

Example 38

Preparation of 5-[1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methylphenyl]propyl]-3-methylthiophene-2-carboxylic acid (2-methylsulfonyl-ethyl) amide.

15

To a mixture of 5-[1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl]-3-methyl-thiophene-2-carboxylic acid (0.6344 g, 1.52 mmol) and CH₂Cl₂ (10 mL) is added Et₃N (0.85 mL, 6.07 mmol), followed by hydrochloride salt of 2-aminoethylmethylsulfone (0.2416 g, 1.52 mmol), EDCI (0.320 g, 1.67 mmol), and HOBT (0.226 g, 1.67 mmol). The resulting solution is stirred at RT overnight, diluted with CH₂Cl₂ (30 mL), washed with 1.0 M HCl (3 x 20 mL), brine (20 mL), dried over MgSO₄, and concentrated. The resulting residue is purified by chromatography (50% EtOAc/Hex) to give the titled compound (0.4042 g, 0.77 mmol, 51%). ¹H NMR (CDCl₃), δ 0.71 (t, J = 7.3 Hz, 6H), 1.03 (s, 9H), 2.09 (q, J = 7.3 Hz, 4H), 2.21 (s, 3H), 2.42 (d, J = 3.0 Hz, 1H), 2.46 (s, 3H), 2.98 (s, 3H), 3.32 (t, J = 6.4 Hz, 2H), 3.71 (dt, J = 8.9, 2.9 Hz, 1H), 3.84-3.94 (m, 3H), 4.10 (dd, J = 9.3, 2.5 Hz, 1H), 6.44 (t, J = 5.8 Hz, 1H), 6.59 (s, 1H), 6.73 (d, J = 8.4 Hz, 1H), 6.99 (d, J = 1.7

Hz, 1H), 7.03 (dd, $J = 8.7, 2.5$ Hz, 1H). LC/MS (m/z): calcd for $C_{27}H_{42}NO_5S_2$ ($M+H$) $^+$: 524.8; found: 524.2.

Example 39 and Example 40

- 5 Preparation of enantiomers of 5-[1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methylphenyl]propyl]-3-methylthiophene-2-carboxylic acid (2-methylsulfonyl-ethyl) amide.

Enantiomer 1

Enantiomer 2

- 10 A racemic mixture of 5-[1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methylphenyl]propyl]-3-methylthiophene-2-carboxylic acid (2-methylsulfonyl-ethyl) amide (247mg) is chromatographed (CHIRALPAK AD column, 40% *i*-PrOH/Hept) to give enantiomer 1, Example 39 (100 mg, 40 %) and enantiomer 2, Example 40 (80 mg, 32%).

Example 39, Enantiomer 1 :

rt = 6.0 m

- 20 NMR & LC/MS: Identical to the racemic material, Example 38.

Example 40, Enantiomer 2 :

rt = 10.2 m

NMR & LC/MS: Identical to the racemic material, Example 38.

Example 41

Preparation of 5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-carboxylic acid (2-methanesulfonyl-ethyl)-amide.

To a solution of 5-[1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methylphenyl]propyl]-3-methylthiophene-2-carboxylic acid (2-methanesulfonyl-ethyl) amide, Example 38 (0.1096 g, 0.21 mmol) in CH_2Cl_2 (10 mL) is added NMO (37 mg, 0.31 mmol), and TPAP (3.7 mg, 0.01 mmol). The resulting solution is stirred at RT for 5 m, then it is filtered through a silica gel column, and washed with excess amount of EtOAc. Concentration of the solvent resulted in the title compound (62 mg, 0.12 mmol, 57%).

^1H NMR (CDCl_3), δ 0.70 (t, $J = 8.0$ Hz, 6H), 1.27 (s, 9H), 1.99 (m, 4H), 2.18 (s, 3H), 2.38 (s, 3H), 2.90 (s, 3H), 3.24 (t, $J = 6.0$ Hz, 2H), 3.82 (m, 2H), 6.36 (t, $J = 5.8$ Hz, 1H), 6.42 (d, $J = 8.4$ Hz, 1H), 6.50 (s, 1H), 6.85-6.95 (m, 2H).

LC/MS (m/z): 522.1 ($\text{M}+\text{H}$)⁺.

Example 42

Preparation of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3methyl-thiophene-2-carboxylic acid methoxy-methyl-amide.

-197-

Using the procedure analogous to Example 38, from 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethylbutyloxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (0.34 g, 0.81 mmol) and *N*-methoxy-*N*-methylamine hydrochloride salt (0.087 g, 0.89 mmol) furnished the titled compound (0.2083 g, 0.45 mmol, 56%).

¹H NMR (CD₃OD), δ 0.65 (t, J = 7.4 Hz, 6H), 0.95 (s, 9H), 2.07 (q, J = 7.4 Hz, 4H), 2.14 (s, 3H), 2.35 (s, 3H), 3.25 (s, 3H), 3.57 (dd, J = 7.8, 2.9 Hz, 1H), 3.58 (s, 3H), 3.82 (dd, J = 9.7, 7.8 Hz, 1H), 4.07 (dd, J = 9.7, 2.9 Hz, 1H), 6.62 (s, 1H), 6.73 (d, J = 8.9 Hz, 1H), 6.94 (d, J = 2.4 Hz, 1H), 7.01 (dd, J = 8.9, 2.4 Hz, 1H). LC/MS (m/z): calcd for C₂₆H₄₀NO₄S (M+H)⁺: 462.2; found: 462.2.

Example 43 and Example 44

Preparation of enantiomers of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethylbutyloxy)-3-methyl-phenyl]-propyl}-3methyl-thiophene-2-carboxylic acid methoxy-methyl-amide.

15

Enantiomer 1

Enantiomer 2

A racemic mixture of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butyloxy)-3-methyl-phenyl]-propyl}-3methyl-thiophene-2-carboxylic acid methoxy-methyl-amide (92 mg) is chromatographed (CHIRALPAK AD column, 40% *i*-PrOH/Hept) to give enantiomer 1, Example 43 (42 mg, 46 %) and enantiomer 2, Example 44 (34.5 mg, 38 %).

5

Example 43, Enantiomer 1 :

rt = 4.4 m

NMR & LC/MS: Identical to the racemic material, Example 42.

Example 44, Enantiomer 2 :

10 rt = 7.3 m

NMR & LC/MS: Identical to the racemic material, Example 42.

Example 45

Preparation of 5-{1-[4-(3,3-dimethyl-2-oxo-butyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3methyl-thiophene-2-carboxylic acid methoxy-methyl-amide.

Using a procedure analogous to Example 41, from 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butyloxy)-3-methyl-phenyl]-propyl}-3methyl-thiophene-2-carboxylic acid methoxy-methyl-amide (Example 42) (110 mg, 0.245 mmol) yielded the titled compound (107.9 mg, 98%). ¹H NMR (CDCl₃), δ 0.71 (t, *J* = 6.4 Hz, 6H), 1.27 (s, 9H), 2.09 (q, *J* = 6.4 Hz, 4H), 2.27 (s, 3H), 2.48 (s, 3H), 3.30 (s, 3H), 3.67 (s, 3H), 4.85 (s, 2H), 6.52 (d, *J* = 8.6 Hz, 1H), 6.57 (s, 1H), 7.00 (d, *J* = 8.6 Hz, 1H), 7.02 (s, 1H). LC/MS (m/z): calcd for C₂₆H₃₈NO₄S (M+H)⁺: 460.2; found: 460.2.

25

Example 46

Preparation of 2-[5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butyloxy)-3-methyl-phenyl-propyl]-3methyl-thiophene-2-carbonyl}-amino]-acetic acid methyl ester.

5 Using the procedure analogous to Example 38, from 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethylbutyloxy)-3-methylphenyl]propyl}-3-methylthiophene-2-carboxylic acid (0.4307 g, 1.03 mmol) and glycine methyl ester hydrochloride (0.129 g, 1.03 mmol) furnished the titled compound (0.2535 g, 50%). ¹H NMR (CDCl₃), δ 0.71 (t, *J* = 6.8 Hz, 6H), 1.03 (s, 9H), 2.09 (q, *J* = 6.8 Hz, 4H), 2.21 (s, 3H), 2.44 (d, *J* = 2.5 Hz, 1H), 2.48 (s, 3H), 3.72 (dt, *J* = 8.3, 2.5 Hz, 1H), 3.78 (s, 3H), 3.87 (t, *J* = 8.8 Hz, 1H), 4.11 (dd, *J* = 9.2, 2.5 Hz, 1H), 4.17 (d, *J* = 5.4 Hz, 2H), 6.20 (s, 1H), 6.61 (s, 1H), 6.73 (d, *J* = 8.8 Hz, 1H), 6.99-7.01 (m, 1H), 7.04 (dd, *J* = 8.8, 2.4 Hz, 1H). LC/MS (m/z): 490.2 (M+H)⁺.

10 15 Example 47

Preparation of 2-[5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethylbutyloxy)-3-methylphenyl]propyl}-3-methylthiophene-2-carbonyl]-amino]-acetic acid.

20 2-[5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethylbutyloxy)-3-methylphenyl]propyl}-3-methylthiophene-2-carbonyl]-amino]-acetic acid methyl ester (Example 46) (0.24 g, 0.49 mmol) is dissolved in THF (5 mL), treated with H₂O (1 mL) and LiOH (59 mg, 2.46 mmol) and the resulting mixture is stirred at RT overnight. The

-200-

solution is diluted with H₂O (10 mL), the pH value is adjusted to *ca.* 3–4 using 1 M HCl, it is extracted with EtOAc (2 × 40 mL), dried with MgSO₄, filtered and concentrated to yield the titled compound (0.233 g, 0.49 mmol, 99%). ¹H NMR (CD₃OD), δ 0.75 (t, *J* = 7.4 Hz, 6H), 1.05 (s, 9H), 2.17 (q, *J* = 7.4 Hz, 4H), 2.23 (s, 5 3H), 2.48 (s, 3H), 3.66 (dd, *J* = 7.8 2.9 Hz, 1H), 3.91 (dd, *J* = 9.6, 7.8 Hz, 1H), 4.01 (s, 2H), 4.16 (dd, *J* = 9.6, 2.9 Hz, 1H), 6.74 (s, 1H), 6.84 (d, *J* = 8.8 Hz, 1H), 7.03–7.06 (m, 1H), 7.11 (dd, *J* = 8.2, 2.5 Hz, 1H). LC/MS (m/z): calcd for C₂₆H₃₈NO₅S (M+H)⁺: 476.2; found: 476.2.

10 Example 48 and Example 49

Preparation of enantiomers of 2-[5-{1-Ethyl-1-{4-(2-hydroxy-3,3-dimethyl-butyoxy)-3-methyl-phenyl-propyl}-3-methyl-thiophene-2-carbonyl}-amino]-acetic acid.

15 Enantiomer 1

Enantiomer 2

A racemic mixture of 2-[5-{1-Ethyl-1-{4-(2-hydroxy-3,3-dimethyl-butyoxy)-3-methyl-phenyl-propyl}-3-methyl-thiophene-2-carbonyl}-amino]-acetic acid, Example 47 (130 mg) is chromatographed (CHIRALPAK AD column, 20% *i*-PrOH/Hept, 0.2%TFA) to give enantiomer 1, Example 48 (47.9 mg, 37%) and enantiomer 2, Example 49 (39 mg, 30%).

-201-

Example 48, Enantiomer 1 :

rt = 6.5 m

NMR & LC/MS: Identical to the racemic material, Example 47.

Example 49, Enantiomer 2 :

5 rt = 15.2 m

NMR & LC/MS: Identical to the racemic material, Example 47.

Example 50

Preparation of 2-[5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-carbonyl]-amino]-acetic acid.

2-[5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl-propyl}-3-methyl-thiophene-2-carbonyl]-amino]-acetic acid (Example 47) (99 mg, 0.21 mmol) is dissolved in CH₂Cl₂ (4 mL), treated with Dess-Martin reagent (97 mg, 0.23 mmol). The resulting mixture is stirred at RT 2h. It is diluted with EtOAc (25 mL), washed with 10% Na₂SO₃ (2 x 20 mL) along with 0.1 M HCl (20 mL); dried with MgSO₄, filtered and concentrated. Purification of the resulting crude product by flash chromatography, eluted with 15% CH₃OH/EtOAc with 0.5%HOAc yielded the titled compound (56.2 mg, 0.11mmol, 53%). ¹H NMR (CD₃OD), δ 0.75 (t, J = 7.2 Hz, 6H), 1.29 (s, 9H), 2.19 (q, J = 7.2 Hz, 4H), 2.25 (s, 3H), 2.47 (s, 3H), 4.02 (s, 2H), 5.05 (s, 2H), 6.66 (d, J = 7.6 Hz, 1H), 6.74 (s, 1H), 7.00-7.11 (m, 2H), 7.96 (bs, 1H). LC/MS (m/z): calcd for C₂₆H₃₆NO₅S (M+H)⁺: 474.2; found: 474.2.

25 Example 51

Preparation of (5-{1-ethyl-1-[4-(2-ethyl-2-hydroxy-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid.

-202-

A. 2-{4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-acetic acid methyl ester.

5

4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenol (10.66g, 38.9 mmol) is reacted with methyl bromoacetate (4.4 ml, 46.7 mmol) and K_2CO_3 (10.70 g, 10 77.81 mmol) in acetone (100 m) at refluxing temperature overnight. The reaction is cooled to RT, filtered and washed with Et_2O and concentrated. The crude product is purified by chromatography to give the titled compound (12.15 g, 35.1 mmol, 90%).
 1H NMR (CD_3Cl_3), δ 0.70 (t, $J = 7.2$ Hz, 6H), 2.04-2.12 (m, 4H), 2.21 (s, 3H), 2.26 (s, 3H), 3.81 (s, 3H), 4.63 (s, 2H), 6.57-6.61 (m, 2H), 6.69-6.71 (m, 1H), 7.02-7.06 (m, 2H). LC/MS (m/z): calcd for $C_{20}H_{27}O_3S$ ($M+H$) $^+$: 347.5; found: 347.1.

B. 3-{4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-pentan-3-ol.

{4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}acetic acid methyl ester (5.52 g, 15.95 mmol) is dissolved in THF (50 mL). The solution is cooled to 0 °C, and treated with Ethyl magnesiumbromide (3.0 M, 13.3 mL) in a dropwise fashion. The reaction is stirred at 0 °C for 10 m, and refluxed for 3 h. It is cooled to 0 °C, quenched with sat. NH₄Cl (50 mL), then 1.0 M HCl (30 mL) is added. It is extracted with EtOAc (2 x 100 mL), dried and concentrated. The crude product is purified by chromatography to give the titled compound (5.22 g, 13.96 mmol, 87%).

¹H NMR (CD₃Cl₃), δ 0.71 (t, J = 7.4 Hz, 6H), 0.95 (t, J = 7.1 Hz, 6H), 1.62-1.73 (m, 4H), 2.04-2.14 (m, 4H), 2.21 (s, 6H), 3.81 (s, 2H), 6.59-6.61 (m, 1H), 6.69-6.74 (m, 2H), 7.02-7.08 (m, 2H). LC/MS (m/z): calcd for C₂₃H₃₅O₂S (M+H)⁺: 375.6; found: 375.3.

C. 5-{1-Ethyl-1-[4-(2-ethyl-2-hydroxy-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid methyl ester.

3-{4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}methyl-pentan-3-ol, Example 51B (0.50g, 1.34 mmol) is dissolved in THF (10 mL). The solution is cooled to 0 °C, treated with nBuLi (1.6 M, 1.8 mL, 2.95 mmol). It is stirred at 0 °C for 20 min, and methyl chloroformate (113 μL, 1.47 mmol) is added. The reaction is stirred at 0 °C for 10 min and RT for 20 m before it is quenched with satd NH₄Cl (5 mL). It is diluted with H₂O (10 mL), treated with 0.1 M HCl (10 mL) and extracted with EtOAc (3 x 15 mL), dried and concentrated. The crude product is purified by chromatography to give the titled compound (0.24 g, 0.56 mmol, 41%).

¹H NMR (CD₃Cl₃), δ 0.71 (t, J = 7.1 Hz, 6H), 0.95 (t, J = 7.9 Hz, 6H), 1.64-1.72 (m, 4H), 2.11 (q, J = 7.1 Hz, 4H), 2.21 (s, 3H), 2.49 (s, 3H), 3.81 (s, 3H), 6.61 (s, 1H),

6.72 (d, $J = 8.4$ Hz, 1H), 6.85-7.01 (m, 2H). LC/MS (m/z): calcd for $C_{25}H_{40}NO_4S$ ($M+NH_4$) $^+$: 450.3; found: 450.3.

- D. 5-{1-Ethyl-1-[4-(2-ethyl-2-hydroxy-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid.

- Using a procedure analogous to Example 47, 5-{1-Ethyl-1-[4-(2-ethyl-2-hydroxy-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid methyl ester (0.23 g, 0.53 mmol) gives the title compound (0.20 g, 0.48 mmol, 91%).
 1H NMR (CD_3Cl_3), δ 0.72 (t, $J = 7.6$ Hz, 6H), 0.95 (t, $J = 7.1$ Hz, 6H), 1.64-1.72 (m, 4H), 2.11 (q, $J = 7.6$ Hz, 4H), 2.22 (s, 3H), 2.49 (s, 3H), 3.82 (s, 3H), 6.62 (s, 1H), 6.73 (d, $J = 8.3$ Hz, 1H), 6.99-7.06 (m, 2H). LC/MS (m/z): calcd for $C_{24}H_{33}O_4S$ ($M-H$) $^+$: 417.6; found: 417.2.

Example 52

- Preparation of 2-[(5-{1-Ethyl-1-[4-(2-ethyl-2-hydroxy-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid methyl ester.

Using a procedure analogous to Example 38, 5-{1-Ethyl-1-[4-(2-ethyl-2-hydroxy-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 51) (0.3 g, 0.72 mmol), glycine methyl ester hydrochloride, and DMF (2 mL) as reaction solvent to give the title compound (0.34 g, 0.69 mmol, 97%). ^1H NMR (CDCl_3), δ 0.71 (t, $J = 7.1$ Hz, 6H), 0.95 (t, $J = 7.1$ Hz, 6H), 1.63-1.72 (m, 4H), 2.04-2.14 (m, 4H), 2.21 (s, 3H), 2.48 (s, 3H), 3.78 (s, 3H), 3.81 (s, 3H), 4.15 (d, $J = 5.2$ Hz, 2H), 6.20 (t, $J = 5.2$ Hz, 1H), 6.63 (s, 1H), 6.72 (d, $J = 8.4$ Hz, 1H), 6.98-7.01 (m, 1H), 7.01-7.06 (m, 1H). LC/MS (m/z): calcd. for $\text{C}_{27}\text{H}_{38}\text{NO}_5\text{S}$ (M-H): 488.7; found: 488.5.

10 Example 53

Preparation of 2-[(5-{1-Ethyl-1-[4-(2-ethyl-2-hydroxy-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid.

15 2-[(5-{1-Ethyl-1-[4-(2-ethyl-2-hydroxy-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid methyl ester (Example 52) (0.34 g, 0.69 mmol) is dissolved in MeOH (2 mL), treated with H_2O (0.5 mL) and NaOH (0.14 g, 3.47 mmol) and the resulting mixture is heated at a reflux for two hours cooled to at ambient temperature and stirred overnight. The solution is diluted with 20 H_2O (10 mL), the pH value is adjusted to about 3-4 using 1 M HCl, it is extracted with EtOAc (40 mL). The EtOAc layer is washed with brine (20 mL), dried with MgSO_4 , filtered and concentrated to yield the titled compound (0.244 g, 0.51 mmol, 74%). ^1H NMR (CD_3OD), δ 0.72 (t, $J = 7.4$ Hz, 6H), 0.94 (t, $J = 7.4$ Hz, 6H), 1.64-1.74 (m, 4H), 2.03-2.20 (m, 4H), 2.18 (s, 3H), 2.44 (s, 3H), 3.79 (s, 2H), 3.97-3.99 (m, 2H), 6.71 (s, 1H), 6.79 (d, $J = 8.2$ Hz, 1H), 6.99-7.02 (m, 1H), 7.06-7.10 (m, 1 H), 7.88-7.94 (t, $J = 5.7$ Hz, 1H). LC/MS (m/z): calcd. for $\text{C}_{26}\text{H}_{36}\text{NO}_5\text{S}$ (M-H): 475.6; found: 474.3

-206-

Example 54

Preparation of epimer 2 of *L*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)amino]propionic acid methyl ester.

5

L-Epimer-2

- Using a procedure analogous to Example 52, enantiomer 2 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 8) (0.50 g, 1.2 mmol) and *L*-alanine methyl ester hydrochloride salt (0.18 g, 1.3 mmol) to give the titled compound (0.44 g, 0.87 mmol, 73%). ^1H NMR (CDCl_3), δ 0.71 (t, $J = 7.2$ Hz, 6H), 1.02 (s, 9H), 1.47 (d, $J = 7.2$ Hz, 3H), 2.04-2.14 (m, 4H), 2.21 (s, 3H), 2.47 (s, 3H), 3.71 (dd, $J = 8.6, 2.5$ Hz, 1H), 3.77 (s, 3H), 3.88 (t, $J = 8.6$ Hz, 1H), 4.10 (dd, $J = 9.2, 2.5$ Hz, 1H), 4.67-4.75 (m, 1H), 6.26 (d, $J = 7.1$ Hz, 1H), 6.60 (s, 1H), 6.73 (d, $J = 7.6$ Hz, 1H), 6.97-7.06 (m, 2H).
- LC/MS (m/z): calcd. for $\text{C}_{28}\text{H}_{42}\text{NO}_5\text{S} (\text{M}+\text{H})^+$: 504.7; found: 504.4.

Example 55

Preparation of epimer 2 of *L*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]propionic acid.

20

L-Epimer 2

Using a procedure analogous to Example 53, epimer 2 of *L*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid methyl ester (0.42g, 1.0mmol) gives the title compound (0.37 g, 0.76 mmol, 73%). ^1H NMR (CDCl_3), δ 0.71 (t, $J = 7.4$ Hz, 6H), 1.02 (s, 9H), 1.51 (d, $J = 7.7$ Hz, 3H), 2.04-2.14 (m, 4H), 2.20 (s, 3H), 2.47 (s, 3H), 3.72 (dd, $J = 8.7$, 2.5 Hz, 1H), 3.87 (t, $J = 8.7$, 1H), 4.10 (dd, $J = 9.3$, 2.8 Hz, 1H), 4.64-4.72 (m, 1H), 6.22 (d, $J = 7.4$, 1H), 6.62 (s, 1H), 6.73 (d, $J = 8.4$ Hz, 1H), 6.97-7.06 (m, 2H). LC/MS (m/z): calcd. for $\text{C}_{27}\text{H}_{40}\text{NO}_5\text{S} (\text{M}+\text{H})^+$: 490.7; found: 490.4.

10 Example 56

Preparation of epimer 2 of *D*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid methyl ester.

15 *D*-Epimer 2

Using a procedure analogous to Example 52, enantiomer 2 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 8) (0.40 g, 0.96 mmol) and *D*-alanine methyl ester hydrochloride salt (0.15 g, 1.05 mmol) to give the title compound (0.48 g, 0.95 mmol, 71%). ^1H NMR (CDCl_3), δ 0.71 (t, $J = 7.5$ Hz, 6H), 1.02 (s, 9H), 1.47 (d, $J = 7.0$ Hz, 3H), 2.04-2.15 (m, 4H), 2.21 (s, 3H), 2.47 (s, 3H), 3.71 (d, $J = 8.6$ Hz, 1H), 3.77 (s, 3H), 3.87 (t, $J = 9.2$, 1H) 4.10 (dd, $J = 9.1$, 2.7 Hz, 1H), 4.66-4.76 (m, 1H), 6.26 (d, $J = 7.6$, 1H), 6.60 (s, 1H), 6.73 (d, $J = 8.6$ Hz, 1H), 6.98-7.07 (m, 2H). LC/MS (m/z): calcd. for $\text{C}_{28}\text{H}_{42}\text{NO}_5\text{S} (\text{M}+\text{H})^+$: 504.7; found: 504.4.

-208-

Example 57

Preparation of epimer 2 of *D*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid.

D-Epimer 2

5

Using a procedure analogous to Example 53, epimer 2 of *D*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid methyl ester (0.34g, 0.68 mmol) gives the title compound (0.33 g, 0.66 mmol, 79%). ^1H NMR (CDCl_3), δ 0.71 (t, $J = 7.5$ Hz, 6H), 1.02 (s, 9H), 1.52 (d, $J = 7.1$ Hz, 3H), 2.04-2.14 (m, 4H), 2.21 (s, 3H), 2.47 (s, 3H), 3.71 (dd, $J = 8.8, 2.7$ Hz, 1H), 3.88 (t, $J = 8.8$, 1H), 4.10 (dd, $J = 9.2, 2.7$ Hz, 1H), 4.64-4.73 (m, 1H), 6.21 (d, $J = 6.9$, 1H), 6.62 (s, 1H), 6.73 (d, $J = 8.6$ Hz, 1H), 6.98-7.06 (m, 2H). LC/MS (m/z): calcd. for $\text{C}_{27}\text{H}_{40}\text{NO}_5\text{S}$ ($\text{M}+\text{H}$) $^+$: 490.7; found: 490.2.

15 Example 58

Preparation of *L*-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-succinic acid dimethyl ester.

L-Epimer 2

20

Using a procedure analogous to Example 52, enantiomer 2 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-

carboxylic acid (Example 8) (0.4 g, 0.96 mmol) and *L*-aspartic acid dimethyl ester hydrochloride salt (0.21 g, 1.05 mmol) to give the title compound (0.42 g, 0.758 mmol, 78%). ^1H NMR (CDCl_3), δ 0.71 (t, J = 7.7 Hz, 6H), 1.02 (s, 9H), 2.04-2.14 (m, 4H), 2.20 (s, 3H), 2.47 (s, 3H), 2.93 (dd, J = 17.2, 4.5 Hz, 1H), 3.10 (dd, J = 17.2, 4.3 Hz, 1H), 5 3.69-3.73 (m, 4H), 3.78 (s, 3H), 3.87 (t, J = 9.1, 1H), 4.10 (dd, J = 9.1, 2.6, 1H), 4.96-5.01 (m, 1H), 6.58 (s, 1H), 6.72 (d, J = 7.7, 1H), 6.78 (d, J = 7.8, 1H), 7.00 (d, J = 1.7, 1H), 7.04 (dd, J = 2.7, 8.5, 1H). LC/MS (m/z): calcd. for $\text{C}_{30}\text{H}_{44}\text{NO}_7\text{S} (\text{M}+\text{H})^+$: 562.7; found: 562.4.

10 Example 59

Preparation of epimer 2 of *L*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-succinic acid.

L-Epimer 2

15

Using a procedure analogous to Example 53, *L*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-succinic acid dimethyl ester, gives to the title compound (0.29 g, 0.54 mmol, 78%). ^1H NMR (CDCl_3), δ 0.70 (t, J = 7.4 Hz, 6H), 1.01 (s, 9H), 2.04-2.14 (m, 4H), 2.19 (s, 3H), 2.45 (s, 3H), 2.89-3.01 (m, 1H), 3.09-3.19 (m, 1H), 3.72 (d, J = 8.0 Hz, 1H), 3.87 (t, J = 8.8 Hz, 1H), 4.09 (d, J = 8.2 Hz, 1H), 4.98-5.05 (m, 1H), 6.60 (s, 1H), 6.71 (d, J = 8.8 Hz, 1H), 6.78 (d, J = 7.9 Hz, 1H), 6.98-7.05 (m, 2H), 7.30-7.60 (bs, 2H). LC/MS (m/z): calcd. for $\text{C}_{28}\text{H}_{40}\text{NO}_7\text{S} (\text{M}+\text{H})^+$: 534.7; found: 534.4.

Example 60

Preparation of epimer 2 of *D*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-succinic acid dimethyl ester.

5

D-Epimer 2

Using a procedure analogous to Example 52, enantiomer 2 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 8) (0.4 g, 0.96 mmol) and *D*-aspartic acid dimethyl ester hydrochloride salt (0.21 g, 1.05 mmol) to give the title compound (0.42 g, 0.75 mmol, 78%). ^1H NMR (CDCl_3), δ 0.71 (t, $J = 7.4$ Hz, 6H), 1.02 (s, 9H), 2.04-2.14 (m, 4H), 2.21 (s, 3H), 2.47 (s, 3H), 2.94 (dd, $J = 17.0, 4.6$ Hz, 1H), 3.10 (dd, $J = 17.0, 4.6$ Hz, 1H), 3.69-3.74 (m, 4H), 3.78 (s, 3H), 3.87 (t, $J = 9.1$ Hz, 1H), 4.10 (dd, $J = 9.1, 3.0$ Hz, 1H), 4.96-5.02 (m, 1H), 6.59 (s, 1H), 6.73 (d, $J = 8.4$ Hz, 1H), 6.78 (d, $J = 7.2$ Hz, 1H), 7.00 (d, $J = 2.3$ Hz, 1H), 7.04 (dd, $J = 2.7, 8.4$ Hz, 1H). LC/MS (m/z): calcd. for $\text{C}_{30}\text{H}_{44}\text{NO}_7\text{S}$ ($\text{M}+\text{H})^+$: 562.7; found: 562.4.

Example 61:

20 Preparation of epimer 2 of *D*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-succinic acid.

D-Epimer 2

Using the procedure analogous to Example 53, epimer 2 of *D*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-succinic acid dimethyl ester (0.40g, 0.71 mmol) gives the titled compound (0.30 g, 0.56 mmol, 79%). ^1H NMR (CDCl_3), δ 0.70 (t, $J = 7.4$ Hz, 6H), 1.01 (s, 9H), 2.04-2.14 (m, 4H), 2.19 (s, 3H), 2.45 (s, 3H), 2.89-3.01 (m, 1H), 3.09-3.19 (m, 1H), 3.72 (d, $J = 8.0$ Hz, 1H), 3.87 (t, $J = 8.8$ Hz, 1H), 4.09 (d, $J = 8.2$ Hz, 1H), 4.98-5.05 (m, 1H), 6.60 (s, 1H), 6.71 (d, $J = 8.8$ Hz, 1H), 6.78 (d, $J = 7.9$ Hz, 1H), 6.98-7.05 (m, 2H), 7.30-7.60 (bs, 2H). LC/MS (m/z): calcd. for $\text{C}_{28}\text{H}_{40}\text{NO}_7\text{S} (\text{M}+\text{H})^+$: 534.7; found:

10 534.4.

Example 62:

Preparation of epimer 2 of *L*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-hydroxy-propionic acid methyl ester.

L-Epimer 2

Using a procedure analogous to Example 52, enantiomer 2 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 8) (0.4 g, 0.96 mmol) and *L*-serine methyl ester hydrochloride salt (0.16 g, 1.05 mmol) to give the title compound (0.41 g, 0.79 mmol, 82%). ^1H NMR (CDCl_3), δ 0.71 (t, $J = 7.7$ Hz, 6H), 1.02 (s, 9H), 2.04-2.14 (m, 4H), 2.21 (s, 3H), 2.49 (s, 3H), 3.71 (dd, $J = 8.6, 2.6$ Hz, 2H), 3.81 (s, 3H), 3.87 (t, $J = 8.7$ Hz, 1H), 4.01 (d, $J = 3.5$ Hz, 2H), 4.09 (dd, $J = 5.0, 2.7$ Hz, 1H), 4.77-4.81 (m, 1H), 6.61 (s, 1H), 6.65 (d, $J = 6.6$ Hz, 1H), 6.73 (d, $J = 8.9$ Hz, 1H), 6.99 (d, $J = 1.8$ Hz, 1H), 7.04 (dd, $J = 8.9, 2.6$ Hz, 1H). LC/MS (m/z): calcd. for $\text{C}_{28}\text{H}_{42}\text{NO}_6\text{S} (\text{M}+\text{H})^+$: 520.7; found: 520.2.

Example 63:

Preparation of epimer 2 of *L*-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-hydroxy-propionic acid.

L-Epimer 2

Using a procedure analogous to Example 53, epimer 2 of *L*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-hydroxy-propionic acid methyl ester (0.40g, 0.77 mmol) gives the titled compound (0.33 g, 0.66 mmol, 85%). ^1H NMR (CDCl_3) δ 0.69 (t, $J = 7.2$ Hz, 6H), 1.01 (s, 9H), 2.00-2.14 (m, 4H), 2.18 (s, 3H), 2.44 (s, 3H), 3.50 (dd, $J = 13.9, 6.8$ Hz, 1H), 3.71 (d, $J = 8.0$ Hz, 1H), 3.88 (t, $J = 8.6$ Hz, 1H), 4.02 (d, $J = 9.2$ Hz, 1H), 4.06-4.12 (m, 1H), 4.62-4.71 (m, 1H), 5.53 (bs, 2H), 6.60 (s, 1H), 6.70 (d, $J = 8.7$ Hz, 1H), 6.79 (d, $J = 6.6$ Hz, 1H), 6.95-7.05 (m, 2H). LC/MS (m/z): calcd. for $\text{C}_{27}\text{H}_{40}\text{NO}_6\text{S} (\text{M}+\text{H})^+$: 506.7; found: 506.2.

Example 64:

Preparation of epimer 1 of *L*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid methyl ester.

L-Epimer 1

Using a procedure analogous to Example 52, enantiomer 1 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 1) (0.50 g, 1.19 mmol) and *L*-alanine methyl ester hydrochloride salt (0.18 g, 1.31 mmol) to give the title compound (0.3 g, 0.60 mmol, 50%). ^1H NMR and LC/MS: identical to (*D*-epimer-2), Example 56.

Example 65:

Preparation of epimer 1 of *L*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid.

L-Epimer 1

Using a procedure analogous to 53, epimer 1 of *L*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid methyl ester (0.3g, 0.60 mmol) gives the title compound (0.27 g, 0.55 mmol, 93%). ^1H NMR and LC/MS: identical to (*D*-epimer-2), Example 57.

Example 66

Preparation of epimer 1 of *D*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid methyl ester.

5

D-Epimer 1

Using a procedure analogous to Example 52, enantiomer 1 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 7) (0.5 g, 1.19 mmol) and *D*-alanine methyl ester hydrochloride salt (0.18 g, 1.31 mmol) to give the title compound (0.4 g, 0.79 mmol, 66%). ¹H NMR and LC/MS: identical to 2133006 (*L*-Epimer-2), Example 54.

Example 67

15 Preparation of epimer 1 of *D*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-propionic acid.

D-Epimer 1

20 Using a procedure analogous to Example 53, epimer 1 of *D*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-

carbonyl)-amino]-propionic acid methyl ester (0.4g, 0.79 mmol) gives the title compound (0.33 g, 0.67 mmol, 85%). ^1H NMR and LC/MS: identical to (*L*-epimer-2), Example 55.

Example 68:

- 5 Preparation of epimer 1 of *L*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-methyl-pentanoic acid methyl ester.

L-Epimer 1

10

- Using a procedure analogous to Example 52, enantiomer 1 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 7) (0.20 g, 0.48 mmol) and *L*-isoleucine methyl ester hydrochloride salt (0.095 g, 0.53 mmol) to give the title compound (0.20 g, 0.37 mmol, 76%). ^1H NMR (CDCl_3), δ 0.71 (t, J = 7.4 Hz, 6H), 0.91-0.98 (m, 6H), 1.02 (s, 9H), 1.16-1.29 (m, 1H), 1.43-1.55 (m, 1H), 1.90-2.00 (m, 1H), 2.02-2.16 (m, 4H), 2.21 (s, 3H), 2.49 (s, 3H), 3.71 (dd, J = 8.7, 2.6 Hz, 1H), 3.74 (s, 3H), 3.87 (t, J = 8.7 Hz, 1H), 4.10 (dd, J = 9.2, 2.6 Hz, 1H), 4.74 (dd, J = 8.4, 4.9 Hz, 1H), 6.21 (d, J = 8.4, 1H), 6.59 (s, 1H), 6.73 (d, J = 8.8 Hz, 1H), 7.00 (d, J = 2.3 Hz, 1H), 7.04 (dd, J = 8.6, 2.3 Hz, 1H).
- 15 LC/MS (m/z): calcd. for $\text{C}_{31}\text{H}_{48}\text{NO}_5\text{S} (\text{M}+\text{H})^+$: 546.8; found: 546.2.
- 20

Example 69

Preparation of epimer 1 of *L*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-methyl-pentanoic acid.

-216-

L-Epimer 1

Using a procedure analogous to Example 53, epimer 1 of *L*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-methyl-pentanoic acid methyl ester (0.2 g, 0.37 mmol) gives the title compound (0.16 g, 0.30 mmol, 84%). ^1H NMR (CDCl_3), δ 0.71 (t, $J = 7.5$ Hz, 6H), 0.94-1.02 (m, 6H), 1.03 (s, 9H), 1.21-1.32 (m, 1H), 1.48-1.62 (m, 1H), 1.98-2.16 (m, 5H), 2.21 (s, 3H), 2.47 (s, 3H), 3.72 (dd, $J = 8.5, 2.6$ Hz, 1H), 3.88 (t, $J = 8.5$ Hz, 1H), 4.10 (dd, $J = 9.3, 2.7$ Hz, 1H), 4.73 (dd, $J = 7.8, 4.8$ Hz, 1H), 6.18 (d, $J = 8.7$, 1H), 6.60 (s, 1H), 6.73 (d, $J = 8.4$ Hz, 1H), 7.00 (d, $J = 2.2$ Hz, 1H), 7.04 (dd, $J = 8.4, 2.2$ Hz, 1H). LC/MS (m/z): calcd. for $\text{C}_{30}\text{H}_{46}\text{NO}_5\text{S} (\text{M}+\text{H})^+$: 531.8; found: 532.1.

Example 70

Preparation of enantiomer 1 of 2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid methyl ester.

Enantiomer 1

20

Using the procedure analogous to Example 52, enantiomer 1 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 7) (0.2 g, 0.48 mmol) and 2-amino-2-methyl-propionic acid

methyl ester hydrochloride salt (0.018 g, 0.53 mmol) to give the title compound (0.20 g, 0.39 mmol, 71%). ^1H NMR (CDCl_3), δ 0.69 (t, $J = 7.0$ Hz, 6H), 1.01 (s, 9H), 1.60 (s, 6H), 2.02-2.13 (m, 4H), 2.19 (s, 3H), 2.44 (s, 3H), 3.70 (dd, $J = 8.9, 2.6$ Hz, 1H), 3.76 (s, 3H), 3.86 (t, $J = 8.7$, 1H), 4.09 (dd, $J = 9.4, 2.6$ Hz, 1H), 6.28 (s, 1H), 6.59 (s, 1H), 6.73 (d, $J = 8.4$ Hz, 1H), 6.99 (d, $J = 2.2$ Hz, 1H), 7.04 (dd, $J = 8.4, 2.2$ Hz, 1H). LC/MS (m/z): calcd. for $\text{C}_{29}\text{H}_{44}\text{NO}_5\text{S} (\text{M}+\text{H})^+$: 518.7; found: 518.2.

Example 71

Preparation of enantiomer 1 of 2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid.

Enantiomer 1

Using a procedure analogous to Example 53, enantiomer 1 of 2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid methyl ester (0.20 g, 0.39 mmol) gives the title compound (0.17 g, 0.34 mmol, 84%). ^1H NMR (CDCl_3), δ 0.71 (t, $J = 7.5$ Hz, 6H), 1.02 (s, 9H), 1.65 (s, 6H), 2.03-2.14 (m, 4H), 2.21 (s, 3H), 2.47 (s, 3H), 3.71 (dd, $J = 8.6, 2.5$ Hz, 1H), 3.87 (t, $J = 8.6$, 1H), 4.09 (dd, $J = 9.2, 2.5$ Hz, 1H), 6.11 (s, 1H), 6.63 (s, 1H), 6.73 (d, $J = 8.3$ Hz, 1H), 6.73 (d, $J = 8.4$ Hz, 1H), 6.98 (d, $J = 2.2$ Hz, 1H), 7.04 (dd, $J = 8.4, 2.2$ Hz, 1H). LC/MS (m/z): calcd. for $\text{C}_{28}\text{H}_{42}\text{NO}_5\text{S} (\text{M}+\text{H})^+$: 504.7; found: 504.2.

Example 72

Preparation of epimer 1 of L-1-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)pyrrolidine-2-carboxylic acid methyl ester.

L-Epimer 1

Using a procedure analogous to Example 52, enantiomer 1 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 7) (0.20 g, 0.4778 mmol) and *L*-proline methyl ester hydrochloride salt (0.09 g, 0.53 mmol) to give the title compound (0.14 g, 0.26 mmol, 56%). ^1H NMR (CDCl_3), δ 0.69 (t, $J = 7.4$ Hz, 3H), 0.70 (t, $J = 7.1$ Hz, 3H), 1.00 (s, 9H), 1.85-2.14 (m, 7H), 2.19 (s, 3H), 2.21-2.36 (m, 4H), 3.60-3.78 (m, 6H), 3.86 (t, $J = 9.3$, 1H), 4.09 (dd, $J = 9.3$, 2.8 Hz, 1H), , 4.53-4.65 (m, 1 H), 6.53 (s, 1H), 6.71 (d, $J = 8.9$ Hz, 1H), 6.96-7.06 (m, 2H). LC/MS (m/z): calcd. for $\text{C}_{30}\text{H}_{44}\text{NO}_5\text{S}$ ($\text{M}+\text{H}$) $^+$: 530.8; found: 530.2.

Example 73

Preparation of epimer 1 of *L*-1-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)pyrrolidine-2-carboxylic acid.

L-Enantiomer 1

Using a procedure analogous to Example 53, epimer 1 of *L*-1-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)pyrrolidine-2-carboxylic acid methyl ester (0.20g, 0.39 mmol) gives the title compound (0.17 g, 0.34 mmol, 84%). ^1H NMR (CDCl_3), δ 0.71 (t, $J = 7.5$ Hz, 6H),

1.02 (s, 9H), 1.91-2.15 (m, 8H), 2.20 (s, 3H), 2.36 (s, 3H), 2.42 (bs, 1H), 3.63-3.76 (m, 3H), 3.87 (t, $J = 9.2$, 1H), 4.09 (dd, $J = 9.2, 2.6$ Hz, 1H), 4.68-4.75 (m, 1H), 6.60 (s, 1H), 6.72 (d, $J = 8.3$ Hz, 1H), 6.99 (d, $J = 2.2$ Hz, 1H), 7.03 (dd, $J = 8.3, 2.2$ Hz, 1H). LC/MS (m/z): calcd. for $C_{29}H_{42}NO_5S$ ($M+H$)⁺: 516.7; found: 516.2.

5

Example 74

Preparation of epimer 2 of *L*-1-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-pyrrolidine-2-carboxylic acid methyl ester.

10

L-Epimer 2

Using the procedure analogous to Example 52, enantiomer 2 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 8) (0.50 g, 1.19 mmol) and *L*-proline methyl ester hydrochloride salt (0.22 g, 1.3 mmol) to give the title compound (0.31 g, 0.59 mmol, 49%). ¹H NMR ($CDCl_3$), δ 0.70 (t, $J = 7.1$ Hz, 3H), 0.71 (t, $J = 7.5$ Hz, 1H), 1.02 (s, 9H), 1.87-2.15 (m, 7H), 2.20 (s, 3H), 2.22-2.38 (m, 4H), 3.60-3.78 (m, 6H), 3.87 (t, $J = 9.3$, 1H), 4.09 (dd, $J = 9.3, 2.7$ Hz, 1H), 4.53-4.65 (m, 1 H), 6.54 (s, 1H), 6.71 (d, $J = 8.9$ Hz, 1H), 6.96-7.06 (m, 2H). LC/MS (m/z): calcd. for $C_{30}H_{44}NO_5S$ ($M+H$)⁺: 530.8; found: 530.2.

Example 75

Preparation of epimer 2 of *L*-1-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-pyrrolidine-2-carboxylic acid.

-220-

L-Epimer 2

Using the procedure analogous to Example 53, epimer 2 of 2-[{(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid methyl ester, (0.31g, 0.59 mmol) gives the title compound (0.29 g, 0.56 mmol, 97%). ^1H NMR (CDCl_3), δ 0.71 (t, $J = 7.5$ Hz, 6H), 1.02 (s, 9H), 1.92-2.15 (m, 8H), 2.20 (s, 3H), 2.36 (s, 3H), 2.41 (bs, 1H), 3.63-3.76 (m, 3H), 3.90 (t, $J = 8.9$, 1H), 4.10 (dd, $J = 8.9, 2.5$ Hz, 1H), 4.68-4.75 (m, 1H), 6.60 (s, 1H), 6.72 (d, $J = 8.5$ Hz, 1H), 6.99 (d, $J = 2.3$ Hz, 1H), 7.03 (dd, $J = 8.5, 2.3$ Hz, 1H). LC/MS (m/z): calcd. for $\text{C}_{29}\text{H}_{42}\text{NO}_5\text{S} (\text{M}+\text{H})^+$: 516.7; found: 516.3.

Example 76

Preparation of enantiomer 2 of 2-[{(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid methyl ester.

Enantiomer 2

Using the procedure analogous to Example 52, enantiomer 2 of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 8) (0.5 g, 1.19 mmol) and 2-amino-2-methyl-propionic acid

-221-

methyl ester hydrochloride salt (0.2 g, 1.31 mmol) to give the title compound (0.44 g, 0.85 mmol, 71%). ^1H NMR and LC/MS: identical to (enantiomer-1), Example 70.

Example 77

- 5 Preparation of enantiomer of 2-[{(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid.

Enantiomer 2

- 10 Using the procedure analogous to Example 53, enantiomer 2 of 2-[{(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid methyl ester (0.44g, 0.85 mmol) gives the title compound (0.35 g, 0.69 mmol, 81%). ^1H NMR and LC/MS: identical to (enantiomer-1), Example 71.

15

Example 78

- Preparation of *D*-1-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-pyrrolidine-2-carboxylic acid methyl ester

20

D-Racemic

Using a procedure analogous to Example 52, a racemic mixture of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (0.6 g, 1.39 mmol) and *D*-proline methyl ester hydrochloride salt (0.28 g, 1.53 mmol) give the title compound (0.54 g, 1.02 mmol, 73%). ^1H NMR (CDCl_3), δ 0.70 (t, $J = 7.1$ Hz, 3H), 0.71 (t, $J = 7.5$ Hz, 3H) 1.02 (s, 9H), 1.88-2.16 (m, 7H), 2.20 (s, 3H), 2.22-2.38 (m, 4H), 3.61-3.79 (m, 6H), 3.87 (t, $J = 8.8$, 1H), 4.09 (dd, $J = 9.1, 2.6$ Hz, 1H), 4.56-4.65 (m, 1 H), 6.54 (s, 1H), 6.71 (d, $J = 8.4$ Hz, 1H), 6.98-7.06 (m, 2H). LC/MS (m/z): calcd. for $\text{C}_{30}\text{H}_{44}\text{NO}_5\text{S} (\text{M}+\text{H})^+$: 530.8; found: 530.2.

10 Example 79 and 80

Preparation of epimers of *D*-1-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-pyrrolidine-2-carboxylic acid methyl ester.

15

D-Epimer 1

D-Epimer 2

20 A racemic mixture of *D*-1-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-pyrrolidine-2-carboxylic acid

-223-

methyl ester (0.54 g) is chromatographed (CHIRALPAK AD column, 40% *i*-PrOH/Hept) to give epimer1, Example 79 (0.244 g, 45 %) and epimer 2, Example 80 (0.283 g, 52%).

Example 79, Epimer1 rt = 10.2 m

5 NMR & LC/MS: identical to 2158904 (*L*-epimer-2), Example 78.

Example 80, Epimer 2 rt = 18.1 m

NMR & LC/MS: identical to (*L*-epimer-1), Example 78.

10 Example 81

Preparation of epimer 1 of *D*-1-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-pyrrolidine-2-carboxylic acid.

15 *D*-Epimer 1

Using the procedure analogous to Example 53, epimer 1 of *D*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid methyl ester (Example 79) (0.24g, 0.46 mmol) gives the title compound (0.15 g, 0.29 mmol, 63%). ¹H NMR and LC/MS:

20 identical to (*L*-enantiomer-2), Example 75.

Example 82

Preparation of epimer 2 of *D*-1-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-pyrrolidine-2-carboxylic acid.

-224-

D-Enantiomer 2

- Using a procedure analogous to Example 53, epimer-2 of *D*-1-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-pyrrolidine-2-carboxylic acid methyl ester (Example 80) (0.28 g, 0.53 mmol) gives the title compound (0.22 g, 0.43 mmol, 79%). ^1H NMR and LC/MS: identical to (*L*-epimer-1), Example 73.

Example 83

- 10 Preparation of *D*-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-methyl-butyric acid methyl ester

D-Racemic

- 15 Using a procedure analogous to Example 52, a racemic mixture of 5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (Example 3) (0.60 g, 1.39 mmol) and *D*-valine methyl ester hydrochloride salt (0.29 g, 1.53 mmol) to give the title compound (0.54 g, 1.02 mmol, 73%). LC/MS (m/z): calcd. for $\text{C}_{30}\text{H}_{46}\text{NO}_5\text{S} (\text{M}+\text{H})^+$: 532.8; found: 532.2.

-225-

Example 84 and 85

Preparation of epimers of *D*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-methyl-butyric acid methyl ester.

5

D-Epimer 1*D*-Epimer 2

A racemic mixture of *D*-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-methyl-butyric acid methyl ester (Example 83) (0.54 g) is chromatographed (CHIRALPAK AD column, 40% *i*-PrOH/Hept) to give epimer 1, Example 84 (0.36 g, 48 %) and epimer 2, Example 85 (0.33 g, 45%).

15

Example 84, Epimer 1

rt = 6.8 m

¹H NMR (CDCl₃), δ 0.71 (t, J = 7.2 Hz, 6H), 0.96 (d, J = 6.6 Hz, 3H), 0.99 (d, J = 7.1 H, 3H), 1.02 (s, 9H), 2.04-2.15 (m, 4H), 2.18 (s, 3H), 2.20-2.21 (m, 2H), 2.47 (s, 3H), 3.71 (dd, J = 8.8, 2.6 Hz, 1H), 3.76 (s, 3H), 3.88 (t, J = 8.8 Hz, 1H), 4.11 (dd, J = 9.2,

-226-

2.6 Hz, 1H), 4.69 (dd, J = 8.4, 4.9 Hz, 1H), 6.19 (d, J = 8.4 Hz, 1H), 6.60 (s, 1H), 6.73 (d, J = 8.3 Hz, 1H), 6.90-7.06 (m, 2H). LC/MS (m/z): calcd. for $C_{30}H_{46}NO_5S$ ($M+H$)⁺: 532.8; found: 532.2.

5 Example 85, Epimer 2

$rt = 10.6$ m

¹H NMR and LC/MS: identical to (*D*-enantiomer-1), example 33.

Example 86:

10 Preparation of epimer 1 of *D*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-methyl-butrylic acid

D-Epimer 1

15 Using the procedure analogous to Example 53, epimer 1 of *D*-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid methyl ester (Example 84) (0.28g, 0.53 mmol) gives the title compound (0.22 g, 0.43 mmol, 79%). ¹H NMR ($CDCl_3$), δ 0.71 (t, J = 7.4 Hz, 6H), 1.00 (d, J = 6.6 Hz, 3H), 1.03 (s, 9H), 1.04 (d, J = 6.6 Hz, 3H), 2.04-2.14 (m, 4H), 2.21 (s, 3H), 2.25-2.35 (m, 1H), 2.47 (s, 3H), 3.72 (dd, J = 8.4, 2.6 Hz, 1H), 3.88 (t, J = 9.2 Hz, 1H), 4.10 (dd, J = 9.2, 2.6 Hz, 1H), 4.69 (dd, J = 8.0, 4.4 Hz, 1H), 6.19 (d, J = 8.0 Hz), 6.60 (s, 1H), 6.73 (d, J = 8.4 Hz, 1H), 7.00 (dd, J = 2.2 Hz, 1H), 7.04 (dd, J = 8.4, 2.6 Hz, 1H). LC/MS (m/z): calcd. for $C_{29}H_{44}NO_5S$ ($M+H$)⁺: 518.7; found: 518.2.

Example 87

Preparation of epimer 2 of *D*-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-3-methyl-butrylic acid.

5

D-Epimer 2

Using a procedure analogous to Example 53, epimer 2 of *D*-2-[(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-2-methyl-propionic acid methyl ester (Example 85) (0.33g, 0.62 mmol) gives the title compound (0.23 g, 0.44 mmol, 79%). ^1H NMR and LC/MS: equivalent to (*D*-epimer-1), Example 86.

15

Example 88

Preparation of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[5-carboxy-thiophen-2-yl]pentane.

20

Using a procedure analogous to Example 3, 3'-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[5-methoxycarbonyl-thiophen-2-yl]pentane (0.23 g,

-228-

0.55 mmol) and 5N sodium hydroxide (220 ul, 1.1 mmol) give the title compound (0.18 g, 81%).

H-NMR (ppm, CDCl₃): 7.68 (1H, d, 4.0 Hz), 7.03 (1H, d, 8.2 Hz), 6.98 (1H, s), 6.79 (1H, d, 4.0 Hz), 6.72 (1H, d, 8.2 Hz), 4.09 (1H, d, 9.3 Hz), 3.85 (1H, t, 9.3 Hz), 3.73 (1H, d, 9.3 Hz), 2.19 (3H, s), 2.13 (4H, q, 7.0 Hz), 1.02 (9H, s), 0.71 (6H, t, 7.0 Hz).
 5 ES/MS: 403.2 (M+1) 422.2 (M + NH₄).

Example 89 and 90

Preparation of enantiomers of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-
 10 [5-carboxy-thiophen-2-yl]pentane.

A mixture of racemic 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-
 [5-carboxy-thiophen-2-yl]pentane (166 mg) is chromatographed with a ChiralPak AD
 column (10% IPA/hept to 15% IPA/hept) to give enantiomer 1 (63 mg), Example 89 and
 15 enantiomer 2 (67 mg), Example 90.

Enantiomer 1, Example 89

HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/85% heptane; 1 ml/m (flow rate); rt =
 4.9 m; 225 nm.

20 Enantiomer 2, Example 90

HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/85% heptane; 1 ml/m (flow rate); rt =
 6.9 m; 225 nm.

Example 91

25 Preparation of 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-(1-methylethyl)phenyl]-3'-[5-methoxycarbonyl-thiophen-2-yl]pentane.

-229-

A. 3'-(4-(Hydroxy)-3-(1-methylethyl)phenyl)-3'-(5-methoxycarbonyl-4-methylthiophen-2-yl)pentane.

5

Methyl, 5-(E/Z-2-penten-3-yl)thiophene-2-carboxylate (Example 5C) (0.21 g, 1.0 mmol), o-isopropylphenol (1.09 g, 4.0 mmol), and BF₃-etherate (58 mg, 0.2 mmol) are reacted and purified as described in Example 5D to give the title compound (0.28 g, 81%).

10 H-NMR (ppm, CDCl₃): 7.62 (1H, d, 4.0 Hz), 7.05 (1H, s), 6.90 (1H, d, 8.8 Hz), 6.78 (1H, d, 4.0 Hz), 6.63 (1H, d, 8.8 Hz), 4.58 (1H, s), 3.83 (3H, s), 3.15 (1H, m), 2.11 (4H, q, 7.2 Hz), 1.21 (6H, d, 6.8 Hz), 0.71 (6H, t, 7.4 Hz).
ES/MS: 347.2 (M+1).

15 B. 3'-(4-(2-Oxo-3,3-dimethylbutoxy)-3-(1-methylethyl)phenyl)-3'-(5-methoxycarbonyl-thiophen-2-yl)pentane.

20 3'-(4-(Hydroxy)-3-(1-methylethyl)phenyl)-3'-(5-methoxycarbonyl-4-methylthiophen-2-yl)pentane (0.18 g, 0.52 mmol), sodium hydride 60% (23 mg, 0.56 mmol), and 1-chloropinacolone (71 mg, 0.52 mmol) with a catalytic amount of

-230-

- potassium iodide (7 mg, 0.04 mmol) are reacted and purified as described in Example 5E to give the title compound (0.13 g, 56%).
 H-NMR (ppm, CDCl₃): 7.61 (1H, d, 4.0 Hz), 7.08 (1H, s), 6.93 (1H, d, 6.0 Hz), 6.77 (1H, d, 4.0 Hz), 6.52 (1H, d, 6.0 Hz), 4.84 (2H, s), 3.83 (3H, s), 3.38 (1H, m), 2.11 (4H, q, 7.2 Hz), 1.26 (9H, s), 1.19 (6H, d, 7.2 Hz), 0.71 (6H, t, 7.4 Hz).
 ES/MS: 445.2 (M+H) 462.2 (M + NH₄).

Example 92

- 3'-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-(1-methylethyl)phenyl]-3'-[5-carboxy-thiophen-2-yl]pentane.

- A. 3'-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-(1-methylethyl)phenyl]-3'-[5-methoxycarbonyl-thiophen-2-yl]pentane.

- 15 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-(1-methylethyl)phenyl]-3'-[5-methoxycarbonyl-thiophen-2-yl]pentane 1(16 mg 0.26mmol) and sodium borohydride (9.8 mg, 0.26 mmol) are reacted in methanol and purified as described in Example 5F to give the title compound (93 mg, 80%).

- H-NMR (ppm, CDCl₃): 7.63 (1H, d, 4.0 Hz), 7.08 (1H, s), 6.99 (1H, d, 9.0 Hz), 6.78 (1H, d, 4.0 Hz), 6.74 (1H, d, 9.0 Hz), 4.09 (1H, d, 8.2 Hz), 3.85 (1H, t, 8.2 Hz), 3.83 (3H, s), 3.72 (1H, d, 8.2 Hz), 3.25 (1H, m), 2.40 (1H, s), 2.12 (4H, q, 7.2 Hz), 1.17 (6H, d, 6.8 Hz), 1.02 (9H, s), 0.71 (6H, t, 7.2 Hz).
 ES/MS: 447.2 (M+1).

B. 3'-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-(1-methylethyl)phenyl]-3'-[5-carboxy-thiophen-2-yl]pentane.

Using a procedure analogous to Example 3, 3'-(4-(2-Hydroxy-3,3-dimethylbutoxy)-3-(1-methylethyl)phenyl)-3'-(5-methoxycarbonyl-thiophen-2-yl)pentane (93 mg, 0.21 mmol) and 5N sodium hydroxide (1 ml, 5 mmol) are reacted and purified to give the title compound (66 mg, 73%).

H-NMR (ppm, CDCl₃): 7.69 (1H, d, 4.0 Hz), 7.08 (1H, s), 6.99 (1H, d, 6.0 Hz), 6.80 (1H, d, 4.0 Hz), 6.74 (1H, d, 6.0 Hz), 4.08 (1H, d, 8.0 Hz), 3.84 (1H, t, 8.0 Hz), 3.73 (1H, d, 8.0 Hz), 3.25 (1H, m), 2.13 (4H, q, 6.8 Hz), 1.17 (6H, d, 6.0 Hz), 1.02 (9H, s), 0.72 (6H, t, 7.0 Hz).

ES/MS: 431.2 (M-1) 450.2 (M + NH₄).

Example 93

Preparation of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-n-propylphenyl)-3'-(5-carboxy-thiophen-2-yl)pentane.

A. 3'-(4-hydroxy-3-n-propylphenyl)-3'-(5-methoxycarbonyl-thiophen-2-yl)pentane.

-232-

To a mixture of o-propylphenol (1.09 g, 8.0 mol) and methyl, 5-(z/e-2-penten-3-yl)thiophene-2-carboxylate (0.21 g, 1.0 mmol) in methylene chloride (1 ml) is added BF₃-etherate (56 mg, 0.2 mmol) under nitrogen and stirred for 16 h. The mixture is partitioned between satd NaHCO₃ and diethylether. The organic layer is washed with water, Na₂SO₄ dried, and concentrated. The excess phenol is removed from the residue by vacuum distillation at 70 °C/0.04 mm. The residue is chromatographed (4% EtOAc/hex) to give the title compound as an oil (0.27 g, 78%).

5 NMR (CDCl₃): 7.62 (d, 1H, J = 3.6 Hz); 6.96 (s, 1H); 6.94 (d, 1H, J = 7.3 Hz); 6.77 (d, 1H, J = 3.6 Hz); 6.66 (d, 1H, J = 8.0 Hz); 4.61 (s, 1H); 3.83 (s, 3H); 2.55 (t, 2H, J = 7.3 Hz); 2.11 (q, 4H, J = 7.2 Hz); 1.60 (m, 2H); 0.93 (t, 3H, J = 7.3 Hz); 0.71 (t, 6H, J = 7.2 Hz). FAB/MS: 347 M⁺.

10 B. 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-n-propylphenyl]-3'-[5-methoxycarbonyl-thiophen-2-yl]pentane.

15 Using a procedure analogous to Example 91B, 3'-(4-hydroxy-3-n-propylphenyl)-3'-(5-methoxycarbonyl-thiophen-2-yl)pentane (0.27 g, 0.78 mmol) give the title compound as an oil (0.21 g, 60%).

NMR (CDCl₃): 7.61 (d, 1H, J = 4.4 Hz); 6.97 (s, 1H); 6.95 (d, 1H, J = 7.3 Hz); 6.77 (d, 1H, J = 4.4 Hz); 6.50 (d, 1H, J = 7.3 Hz); 4.83 (s, 2H); 3.83, (s, 3H); 2.61 (t, 2H, J = 7.3 Hz); 2.10 (q, 4H, J = 7.3 Hz); 1.59 (m, 2H); 1.26 (s, 9H); 0.90 (t, 3H, 7.3 Hz); 0.70 (t, 6H, 7.3 Hz).

20 FAB-MS: 444.3 molecular ion.

C. 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-n-propylphenyl]-3'-[5-methoxycarbonyl-

thiophen-2-yl]pentane.

To a mixture of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-n-propylphenyl)-3'-(5-

- 5 methoxycarbonyl-thiophen-2-yl)pentane (0.199 g, 0.45 mmol) and MeOH (5 ml) is added NaBH₄ (17 mg, 0.45 mmol) in portions. After stirring for 4.5 h at room temperature, the reaction is concentrated and partitioned between satd NaHCO₃ and diethylether. The organic layer is washed with water, Na₂SO₄ dried, and concentrated to give the title compound as an oil (0.18 g, 90%).
- 10 NMR(CDCl₃): 7.62 (d, 1H, J = 3.6 Hz); 7.02 (1H, d, J = 7.5 Hz); 6.98 (s, 1H); 6.78 (d, 1H, 3.6 Hz); 6.73 (d, 1H, 7.5 Hz); 4.08 (1H, d, J = 9.0); 3.85 (t, 1H, J = 9.0); 3.83 (s, 3H); 3.71 (d, 1H, J = 9.0 Hz); 2.55 (t, 2H, 7.5 Hz); 2.40 (s, 1H); 2.12 (q, 4H, J = 7.6 Hz); 1.55 (m, 2H); 1.02 (s, 9H); 0.90 (t, 3H, J = 7.6 Hz); 0.71 (t, 6H, J = 7.2 Hz).
LC/MS: 447.2 M+1.

15

D. 3'-(4-(2-Hydroxy-3,3-dimethylbutoxy)-3-n-propylphenyl)-3'-(5-carboxy-thiophen-2-yl)pentane.

- A mixture of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-n-propylphenyl)-3'-(5-methoxycarbonyl-thiophen-2-yl)pentane (0.18 g, 0.4 mmol), methanol (3 ml) and 5N NaOH (161 uL, 0.8 mmol) is heated to 50°C for 16 h. The reaction mixture is concentrated and the residue dissolved in water (4 mL). The solution is added conc. HCl, filtered with water wash, and air dried to give the title compound (0.16 g, 92%).

- NMR(CDCl₃): 7.69 (d, 1H, J = 4.0 Hz); 7.02 (d, 1H, J = 7.5 Hz); 6.98 (s, 1H); 6.79 (d, 1H, J = 4.0 Hz); 6.75 (d, 1H, J = 7.5 Hz); 5.29 (s, 1H); 4.08 (d, 1H, J = 9.0); 3.85 (t, 1H, J = 9.0 Hz); 3.70 (d, 1H, J = 9.0 Hz); 2.55 (t, 2H, J = 7.5 Hz); 2.13 (q, 4H, J = 7.2 Hz); 1.55 (m, 1H); 1.02 (s, 9H); 0.90 (t, 3H, J = 7.4 Hz); 0.72 (t, 6H, J = 7.4 Hz).

LC/MS: 413.2 M-1.

Example 94 and 95

Preparation of enantiomers of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-n-propylphenyl]-3'-(5-carboxy-thiophen-2-yl)pentane.

5

A mixture of racemic 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-n-propylphenyl]-3'-(5-carboxy-thiophen-2-yl)pentane (200 mg) is chromatographed on a ChiralPak AD column with IPA/heptane. Enantiomer 1 is further chromatographed on 4g of Silica Gel from 0% EtOAc/Hex to 50% EtOAc/Hex over 38 min at 12 ml/min to give pure enantiomer 1 (66 mg), Example 94. Enantiomer 2 from ChiralPak is further chromatographed on 4g of Silica Gel from 0% EtOAc/Hex to 50% EtOAc/Hex over 38 min at 12 ml/min. to give pure enantiomer 2 (66 mg), Example 95.

10 Enantiomer 1, Example 94

HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/85% heptane; 1 ml/m (flow rate);
15 $r_t = 6.22 \text{ m}; 225 \text{ nm}.$

Enantiomer 2, Example 95

HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/85% heptane; 1 ml/m (flow rate); $r_t = 9.0 \text{ m}; 225 \text{ nm}.$

20 Example 96

Preparation of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-i-propylphenyl]-3'-(5-carboxy-thiophen-2-yl)pentane.

-235-

A. 3'-(4-hydroxy-3-i-propylphenyl)-3'-[5-methoxycarbonyl-thiophen-2-yl]pentane.

Using a procedure analogous to Example 93A, o-isopropylphenol (1.09 g, 8 mol) and methyl, 5-(E/Z-2-penten-3-yl)thiophene-2-carboxylate (0.21 g, 1.0 mol) give the title compound as an oil (0.28 g, 81%).

NMR (CDCl₃): 7.62 (d, 1H, J = 4.0 Hz); 7.05 (s, 1H); 6.90 (d, 1H, J = 8.4 Hz); 6.78 (d, 1H, J = 4.0 Hz); 6.63 (d, 1H, J = 8.8 Hz); 4.58 (s, 1H); 3.83 (s, 3H); 3.15 (m, 1H); 2.11 (q, 4H, J = 7.2 Hz); 1.21 (d, 6H, J = 6.1 Hz); 0.71 (t, 6H, J = 7.4 Hz).

LC/MS: 347.2 M+1.

B. 3'-(4-Oxo-3,3-dimethylbutoxy)-3-i-propylphenyl]-3'-[5-methoxycarbonyl-thiophen-2-yl]pentane.

Using a procedure analogous to Example 91B, 3'-(4-hydroxy-3-i-propylphenyl)-3'-[5-methoxycarbonyl-thiophen-2-yl]pentane (0.28 g, 0.81 mmol) gives the title compound as an oil (0.13 g, 56%).

NMR (CDCl₃): 7.61 (d, 1H, J = 4.4 Hz); 7.09 (s, 1H); 6.94 (d, 1H, J = 8.4 Hz); 6.77 (d, 1H, J = 4.4 Hz); 6.53 (d, 1H, J = 8.4 Hz); 4.84 (s, 2H); 3.83, (s, 3H); 3.38 (m, 2H); 2.11 (q, 4H, J = 7.2 Hz); 1.26 (s, 9H); 1.19 (d, 6H, J = 7.2 Hz); 0.70 (t, 6H, 7.2 Hz).

FAB-MS: 444.3 molecular ion.

LC/MS: 445.2 M+1 and 462.2 M+NH₄.

- C. 3'-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-i-propylphenyl]-3'-[5-methoxycarbonyl-thiophen-2-yl]pentane.

Using a procedure analogous to Example 2, 3'-(4-(2-Oxo-3,3-dimethylbutoxy)-3-i-propylphenyl)-3'-(5-methoxycarbonyl-thiophen-2-yl)pentane gives the title compound as an oil (0.09 g, 80%).

- NMR(CDCl₃): 7.62 (d, 1H, J = 3.6 Hz); 7.08 (s, 1H); 6.99 (1H, d, J = 8.8 Hz); 6.78 (d, 1H, 3.6 Hz); 6.73 (d, 1H, 8.8 Hz); 4.08 (1H, d, J = 8.8); 3.85 (t, 1H, J = 8.8); 3.83 (s, 3H); 3.71 (d, 1H, J = 8.8 Hz); 3.28 (m, 1H); 2.12 (q, 4H, J = 7.2 Hz); 1.17 (d, 6H, J = 6.8 Hz); 1.02 (s, 9H); 0.71 (t, 6H, J = 7.2 Hz).

LC/MS: 447.2 M+1.

15

- D. 3'-(4-(2-Hydroxy-3,3-dimethylbutoxy)-3-i-propylphenyl)-3'-[5-carboxyl-thiophen-2-yl]pentane.

Using a procedure analogous to Example 3, 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-i-propylphenyl)-3'-(5-methoxycarbonyl-thiophen-2-yl)pentane (0.93 g, 0.21 mmol) and 5N NaOH aq (1 mL, 5 mmol) give the title compound as an oil (66 mg, 73%).

- NMR(CDCl₃): 7.69 (d, 1H, J = 3.6 Hz); 7.08 (s, 1H); 6.98 (d, 1H, J = 8.1 Hz); 6.79 (d, 1H, J = 3.6 Hz); 6.74 (d, 1H, J = 8.1 Hz); 4.08 (d, 1H, J = 7.4); 3.85 (t, 1H, J = 7.4 Hz); 3.72 (d, 1H, J = 7.4 Hz); 3.25 (m, 1H); 2.13 (q, 4H, J = 6.8 Hz); 1.17 (d, 6H, J = 6.0 Hz); 1.02 (s, 9H); 0.72 (t, 6H, J = 6.8 Hz).

LC/MS: 450.2 M+NH₄.

Example 97 and Example 98

- 5 Preparation of enantiomers of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-i-propylphenyl)-3'-(5-carboxy-thiophen-2-yl)pentane.

- A mixture of racemic 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-i-propylphenyl)-3'-(5-carboxy-thiophen-2-yl)pentane (22 mg) is chromatographed on a ChiralPak AD column with IPA/heptane) to give enantiomer 1 (8 mg), Example 97 and enantiomer 2 (7 mg), Example 98.

Enantiomer 1, Example 97

HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/85% heptane; 1 ml/m (flow rate); rt =

15 Enantiomer 2, Example 98

HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/85% heptane; 1 ml/m (flow rate); rt = 6.53 m; 225 nm.

Example 99

- 20 Preparation of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-ethylphenyl)-3'-(5-carboxy-thiophen-2-yl)pentane.

A. 3'-(4-hydroxy-3-ethylphenyl)-3'-[5-methoxycarbonyl-thiophen-2-yl]pentane.

Using a procedure analogous to Example 93A, o-ethylphenol (0.98 g, 8.0 mol) and methyl, 5-(E/Z-2-penten-3-yl)thiophene-2-carboxylate (0.21 g, 1.0 mol) give the
5 title compound as an oil (0.26 g, 78%).

NMR (CDCl₃): 7.62 (d, 1H, J = 4.0 Hz); 6.98 (s, 1H); 6.94 (d, 1H, J = 7.2 Hz); 6.78 (d, 1H, J = 4.0 Hz); 6.66 (d, 1H, J = 7.2 Hz); 4.60 (s, 1H); 3.83 (s, 3H); 2.59 (q, 2H, J = 7.7 Hz); 2.11 (q, 4H, J = 7.2 Hz); 1.19 (t, 3H, J = 7.6 Hz); 0.71 (t, 6H, J = 7.2 Hz).
FAB/MS: 333 M+1.

10

B. 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-ethylphenyl]-3'-[5-methoxycarbonyl-

thiophen-2-yl]pentane.

Using a procedure analogous to Example 91B, 3'-(4-hydroxy-3-ethylphenyl)-3'-[5-methoxycarbonyl-thiophen-2-yl]pentane (0.26 g, 0.78 mmol) gives the title
15 compound as an oil (0.24 g, 71%).

NMR (CDCl₃): 7.61 (d, 1H, J = 3.6 Hz); 7.02 (s, 1H); 6.96 (d, 1H, J = 7.3 Hz); 6.77 (d, 1H, J = 3.6 Hz); 6.52 (d, 1H, J = 7.3 Hz); 4.83 (s, 2H); 3.83, (s, 3H); 2.66 (q, 2H, J = 7.3 Hz); 2.12 (q, 4H, J = 7.6 Hz); 1.21 (s, 9H); 1.18 (t, 3H, 7.3 Hz); 0.70 (t, 6H, 7.6 Hz).

20 LC/MS: 431.2 M+1.

C. 3'-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-ethylphenyl]-3'-[5-methoxycarbonyl-

5 Using a procedure analogous to Example 2, 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-ethylphenyl]-3'-[5-methoxycarbonyl-thiophen-2-yl]pentane (0.22 g, 0.5 mmol) gives the title compound as an oil (0.16 g, 75%).

NMR(CDCl₃): 7.62 (d, 1H, J = 3.2 Hz); 7.01 (1H, d, J = 7.4 Hz); 7.00 (s, 1H); 6.78
 (d, 1H, 3.2 Hz); 6.73 (d, 1H, 7.4 Hz); 4.08 (1H, d, J = 8.1); 3.85 (t, 1H, J = 8.1); 3.83
 10 (s, 3H); 3.70 (d, 1H, J = 8.1 Hz); 2.60 (t, 2H, 7.6 Hz); 2.40 (s, 1H); 2.12 (q, 4H, J =
 7.2 Hz); 1.49 (t, 3H, J = 7.2 Hz); 1.02 (s, 9H); 0.71 (t, 6H, J = 7.2 Hz).

LC/MS showed a 433.2 M+1.

15 D. 3'-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-ethylphenyl]-3'-[5-carboxyl-thiophen-2-yl]pentane.

Using a procedure analogous to Example 3, 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-ethylphenyl]-3'-[5-methoxycarbonyl-thiophen-2-yl]pentane, methanol, and 5N NaOH at 50 °C for 16 h to give the title compound (0.15 g, 94%).

20 NMR(DMSO-D₆): 7.53 (d, 1H, J = 3.6 Hz); 7.01 (d, 1H, J = 8.8 Hz); 7.00 (s, 1H); 6.90
 (d, 1H, J = 3.6 Hz); 6.85 (d, 1H, J = 8.8 Hz); 4.04 (d, 1H, J = 9.4); 3.86 (t, 1H, J = 9.4
 Hz); 3.44 (d, 1H, J = 9.4 Hz); 2.56 (m, 2H); 2.09 (m, 4H); 1.08 (t, 3H, J = 8.0 Hz); 0.93
 (s, 9H); 0.65 (t, 6H, J = 7.4 Hz).

LC/MS: 417.2 M-1.

-240-

Example 100 and Example 101

Preparation of enantiomers of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-ethylphenyl]-3'-[5-carboxy-thiophen-2-yl]pentane.

5 A mixture of racemic 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-ethylphenyl]-3'-[5-carboxy-thiophen-2-yl]pentane (140 mg) is chromatographed on a ChiralPak AD column with IPA/heptane to give enantiomer 1 (59 mg), Example 100 and enantiomer 2 (51 mg), Example 101.

Enantiomer 1, Example 100
10 HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/85% heptane; 1 ml/m (flow rate);
rt = 4.42 m; 225 nm..

Enantiomer 2, Example 101
HPLC: ChiralPak AD (4.6X250 mm); 15% IPA/85% heptane; 1 ml/m (flow rate);
rt = 6.61 m; 225 nm.

15

Example 103

Preparation of 3'-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-3'-[5-carboxy-thiophen-2-yl]pentane.
20

A. 3'-(4-Hydroxy-3-methylphenyl)pentan-3-ol.

To a mixture of methyl, 4-hydroxy-3-methylbenzoate (21.8 g (0.13 mol) and 200 mL of THF is added 1 M ethylmagnesium bromide/THF (432 mL (0.43 mol) under nitrogen. The mixture is stirred for 60 h and quenched with satd NaHCO₃. The mixture is triturated five times with ether and the combined organic layers is washed with satd NaHCO₃ and brine. The organic layer is Na₂SO₄ dried, filtered, and concentrated to give 27 g (99%) of the title compound.

NMR (CDCl₃): 7.12 (s, 1H); 7.03 (d, 1H, 8.0 Hz); 6.72 (d, 1H, J = 8.0 Hz); 4.69 (s, 1H); 2.26 (s, 3H); 1.80 (m, 4H); 0.79 (t, 6H, 7.4 Hz).

ES/MS: 193 (M-1).

B. 3'-[4-Hydroxy-3-methylphenyl]-3'-(thiophen-2-yl)pentane.

To a mixture of thiophene (6 mL) and 3'-[4-hydroxy-3-methylphenyl]pentan-3-ol (0.92 g, 5 mmol) is added boron trifluoride etherate (100 μ L, 0.8 mmol). The mixture is stirred for 96 h and partitioned between diethyl ether and satd NaHCO₃. The organic layer is washed with satd NaHCO₃, brine, Na₂SO₄ dried, and concentrated. The residue is chromatographed (12 g of SiO₂, Hex to 8% EtOAc/Hex) to give the title compound (0.53 g (41%).

[ES/MS 259.1 (M-1)].

C. 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(thiophen-2-yl)pentane.

Using a procedure analogous to Example 91B, 3'-(4-hydroxy-3-methylphenyl)-3'-
5 (thiophen-2-yl)pentane (0.53 g, 2.2 mmol) gives the title compound as an oil (0.47 g,
64%).

- NMR (CDCl_3): 7.14 (d, 1H, $J = 6.3$ Hz); 7.03 (s, 1H); 6.98 (d, 1H, $J = 9.0$ Hz); 6.90
10 (m, 1H), 6.79 (d, 1H, $J = 6.3$ Hz), 6.52 (d, 1H, $J = 9.0$ Hz), 4.83 (s, 2H); 2.26 (s, 3H);
2.09 (m, 4H); 1.24 (s, 9H), 0.68 (t, 6H, 7.0 Hz).
- ES/MS: 359.2 ($M+1$) 376.2 ($M+\text{NH}_4$).

D. 3'-(4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl)-3'-(thiophen-2-yl)pentane.

To a mixture of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-
15 (thiophen-2-yl)pentane (0.47 g (1.3 mmol) and diethyl ether (15 mL) is added 3 M
methylmagnesium iodide/THF (1.3 ml, 3.9 mmol). After stirring for 2 h, the mixture is
quenched with satd NaHCO_3 and triturated five times with diethyl ether. The combined
organic layers is washed with water, brine, Na_2SO_4 dried, and concentrated to give the
title compound (0.6 g, 99%).

- NMR (CDCl_3): 7.13 (d, 1H, $J = 5.0$ Hz); 7.02 (s, 1H); 7.03 (d, 1H, $J = 8.4$ Hz); 6.90
10 (m, 1H), 6.80 (d, 1H, $J = 5.0$ Hz), 6.70 (d, 1H, $J = 8.4$ Hz), 4.00 (d, 1H, $J = 8.8$ Hz);
3.83 (d, 1H, $J = 8.8$ Hz); 2.27 (s, 1H); 2.21 (s, 3H); 2.11 (m, 4H); 1.32 (s, 3H); 1.05
(s, 9H), 0.70 (t, 6H, 7.2 Hz).

ES-MS: 375.2 (M+1) 357.2 (M-H₂O).

E. 3'-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-3'-[5-carboxy-thiophen-2-yl]pentane.

5

To a 0 °C mixture of 3'-[4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-3'-(thiophen-2-yl)pentane (0.6 g, 1.3 mmol) and cycloHex (20 ml) and ether (2 ml) is added 1.4 M sec-butyl lithium/cycloHex (2.85 ml, 3.2 mmol). The mixture is allowed to warm to RT and excess CO₂ gas is bubbled in. After two h, the mixture is partitioned between satd NaHCO₃ and diethyl ether. The aq phase is acidified with conc. perchloric acid and extracted into diethyl ether. The organic phase is washed with water, brine, Na₂SO₄ dried and concentrated. The residue is chromatographed (2% EtOAc/Hex to 50% EtOAc/Hex) to give of the title compound (0.3 g (44%).

15 NMR (CDCl₃): 7.69 (d, 1H, J = 3.6 Hz); 6.99 (s, 1H); 7.03 (d, 1H, J = 8.4 Hz); 6.80 (d, 1H, J = 3.6 Hz), 6.72 (d, 1H, J = 8.4 Hz), 4.00 (d, 1H, J = 8.8 Hz); 3.83 (d, 1H, J = 8.8 Hz); 2.22 (s, 3H); 2.13 (q, 4H, J = 7.2 Hz); 1.33 (s, 3H); 1.04 (s, 9H), 0.72 (t, 6H, 7.2 Hz).

ES-MS: 417.3 (M-1) 436.3 (M+NH₄).

20

Example 104 and Example 105

Preparation of enantiomers of 3'-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-3'-[5-carboxy-thiophen-2-yl]pentane.

25

A mixture of racemic 3'-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-3'-[5-carboxy-thiophen-2-yl]pentane (~290 mg) is chromatographed on a ChiralPak AD column with IPA/heptane to give enantiomer 1 (125 mg, 43), Example 104 and enantiomer 2 (140 mg, 48%), Example 105.

-244-

Enantiomer 1, Example 104

HPLC: ChiralPak AD (4.6X250 mm); 20% IPA/80% heptane; 1 ml/m (flow rate);
 rt = 6.09 m; 225 nm.

Enantiomer 2, Example 105

5 HPLC: ChiralPak AD (4.6X250 mm); 20% IPA/80% heptane; 1 ml/m (flow rate);
 rt = 8.00 m; 225 nm.

Example 106

Preparation of enantiomer 1 of 3'-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-
 10 3'-(5-(carboxymethylamino)carbonyl-thiophen-2-yl]pentane.

A. of 3'-(4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-3'-(5-(methylcarbonyl-methylamino)carbonyl-thiophen-2-yl]pentane.
 To a mixture of enantiomer 1 of 3'-(4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-
 15 methylphenyl]-3'-(5-carboxy-thiophen-2-yl]pentane and DMSO (1 ml) is added EDCI (55
 mg, 0.29 mmol), 0.5 M HOAT (523 uL, 0.26 mmol), methyl, aminoacetic acid
 hydrochloride (33 mg, 0.26 mmol), and triethylamine (136 uL, 1 mmol). The mixture is
 stirred for 72 h at RT, partitioned between diethyl ether and satd NaHCO₃. The organic
 layer is washed with water, 2M HCl, water, satd NaHCO₃, then Na₂SO₄ dried, and
 20 concentrated. The residue is chromatographed (Hex to 30% EtOAc/Hex) to give the title
 compound (60 mg, 51%).

NMR (CDCl₃): 7.40 (d, 1H, J = 3.6 Hz); 7.04 (d, 1H, J = 8.8 Hz); 6.98 (s, 1H); 6.77
 (d, 1H, J = 3.6 Hz), 6.71 (d, 1H, J = 8.8 Hz), 4.00 (d, 1H, J = 8.8 Hz); 6.53 (m, 1H);
 4.18 (d, 1H, J = 4.8 Hz); 4.00 (d, 1H, J = 8.8 Hz); 3.84 (d, 1H, J = 8.8 Hz); 3.78 (s,
 25 3H); 2.21 (s, 3H); 2.11 (q, 4H, J = 7.2 Hz); 1.33 (s, 3H); 1.04 (s, 9H), 0.70 (t, 6H, 7.2
 Hz).

ES-MS: 490.4 (M+1) 488.4 (M-1).

-245-

B. 3'-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-3'-[5-(carboxymethyl-amino)carbonyl-thiophen-2-yl]pentane, enantiomer 1.

To a mixture of enantiomer 1 of 3'-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methylphenyl]-3'-(methylcarbonyl-methylamino)carbonyl-thiophen-2-yl]pentane (60 mg, 0.12 mmol) and 50% methanol/water (0.5 ml) is added lithium hydroxide (6 mg, 0.24 mmol). The mixture is heated to 40 °C for one h and concentrated. The residue is added ice and acidified with conc. HCl (pH~1). The suspension is filtered, washed with water, and air dried to give the title compound as a solid (50 mg, 86%).

NMR (CDCl₃): 7.45 (d, 1H, J = 4.0 Hz); 7.04 (d, 1H, J = 8.4 Hz); 6.97 (s, 1H); 6.79 (d, 1H, J = 4.0 Hz), 6.70 (d, 1H, J = 8.4 Hz), 4.00 (d, 1H, J = 8.8 Hz); 6.59 (m, 1H); 4.17 (s, 1H); 4.00 (d, 1H, J = 8.8 Hz); 3.83 (d, 1H, J = 8.8 Hz); 3.02 (m, 1H); 2.20 (s, 3H); 2.11 (q, 4H, J = 7.2 Hz); 1.33 (s, 3H); 1.01 (s, 9H), 0.70 (t, 6H, 7.2 Hz).

ES/MS: 476.3 (M+1) 474.3 (M-1).

15

Example 107

Preparation of 3'-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl]-3'-(5-carboxy-thiophen-2-yl]pentane.

20

A. 3'-(4-Hydroxy-3-ethylphenyl)pentan-3-ol.

-246-

Using a procedure analogous to Example 103A, methyl, 4-hydroxy-3-ethylbenzoate (7.7g, 43 mmol) gives the title compound as an oil (9.2 g, 99%).

- 5 NMR (CDCl₃): 7.13 (s, 1H); 7.04 (d, 1H, 8.0 Hz); 6.71 (d, 1H, J = 8.0 Hz); 4.65 (s, 1H); 2.64 (q, 2H, J = 7.2 Hz); 1.81 (m, 4H); 1.23 (m, 3H); 0.77 (t, 6H, 7.2 Hz).
ES/MS: 207.1 (M-1).

B. 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-ethylphenyl]pentan-3-ol.

10

- Using a procedure analogous to Example 91B, 3'-[4-hydroxy-3-ethylphenyl]pentan-3-ol (9.2 g, 43 mmol) gives the title compound (11.9 g, 91%).
NMR (CDCl₃): 7.14 (s, 1H); 7.10 (d, 1H, J = 8.0 Hz); 6.58 (d, 1H, J = 8.0 Hz); 4.85 (s, 2H); 2.71 (q, 2H, J = 7.6 Hz); 1.80 (m, 4H); 1.25 (s, 9H); 1.23 (t, 3H, J = 7.6 Hz); 0.76 (t, 6H, 7.2 Hz).
ES/MS: 289.1 (M+H-H₂O).

C. 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-ethylphenyl]-3'-(thiophen-2-yl)pentane.

20

-247-

Using a procedure analogous to Example 103B, 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-ethylphenyl]pentan-3-ol (10.9 g, 36 mmol) gives the title compound (6.1 g, 46%).

NMR (CDCl₃): 7.14 (d, 1H, J = 1.2 Hz); 7.06 (s, 1H); 6.96 (d, 1H, J = 8.4 Hz); 6.90

- 5 (t, 1H, J = 5.2 Hz); 6.80 (d, 1H, J = 1.2 Hz); 6.52 (d, 1H, J = 8.4 Hz); 4.83 (s, 2H); 2.67 (q, 2H, J = 7.2 Hz); 2.10 (q, 4H, J = 7.4); 1.25 (s, 9H); 1.20 (t, 3H, J = 7.2 Hz); 0.70 (t, 6H, 7.4 Hz).

ES/MS: 373.2 (M+1) 390.2 (M+NH₄).

- 10 D. 3'-[4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl]-3'-(thiophen-2-yl)pentane.

Using a procedure analogous to Example 103D, 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-ethylphenyl]-3'-(thiophen-2-yl)pentane (3.7 g, 10 mmol) gives the title compound after silica gel chromatography (1.8 g, 46%).

- 15 NMR (CDCl₃): 7.15 (d, 1H, J = 6.3 Hz); 7.04 (s, 1H); 7.03 (d, 1H, underlying); 6.90 (t, 1H, J = 5.2 Hz); 6.81 (m, 1H); 6.53 (d, 1H, J = 8.4 Hz); 4.00 (d, 1H, J = 8.4 Hz); 3.84 (d, 1H, J = 8.4 Hz); 2.62 (q, 2H, J = 7.6 Hz); 2.11 (q, 4H, J = 7.6); 1.33 (s, 3H); 1.16 (t, 3H, J = 7.6 Hz); 1.04 (s, 9H); 0.71 (t, 6H, 7.6 Hz).

ES/MS: 371.2 (M-H₂O+1) 389.2 (M+1).

E. 3'-[4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl]-3'-[5-carboxy-thiophen-2-yl]pentane.

Using a procedure analogous to Example 103E, 3'-(4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl)-3'-(thiophen-2-yl)pentane (1.45 g, 3.7 mmol) gives the title compound (0.75 g, 46%).
 NMR (CDCl_3): 7.70 (d, 1H, $J = 3.6$ Hz); 7.02 (s, 1H); 7.03 (d, 1H, underlying); 6.80 (d, 1H, $J = 3.6$ Hz); 6.73 (d, 1H, $J = 8.4$ Hz); 4.00 (d, 1H, $J = 8.8$ Hz); 3.85 (d, 1H, $J = 8.8$ Hz); 2.62 (q, 2H, $J = 7.6$ Hz); 2.14 (q, 4H, $J = 7.2$); 1.33 (s, 3H); 1.17 (t, 3H, $J = 7.6$ Hz); 1.04 (s, 9H); 0.72 (t, 6H, 7.2 Hz).
 ES/MS: 431.5 (M-1).

15 Example 108 and Example 109

Preparation of enantiomers of 3'-(4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl)-3'-(5-carboxy-thiophen-2-yl)pentane.

enantiomer 1

enantiomer 2

20 A mixture of racemic 3'-(4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl)-3'-(5-carboxy-thiophen-2-yl)pentane (0.93 g) is chromatographed (ChiralPak AD column; 5% ethyl alcohol/95% Hept to give enantiomer 1 (453 mg), Example 108 and enantiomer 2 (438 mg), Example 109.

25

Enantiomer 1, Example 108

HPLC: ChiralPak AD (4.6X250 mm); 5% IPA/95% heptane; 1 ml/m (flow rate); rt = 10.2 m; 225 nm..

Enantiomer 2, Example 109

HPLC: ChiralPak AD (4.6X250 mm); 5% IPA/95% heptane; 1 ml/m (flow rate); rt = 13.0 m; 225 nm.

5 Example 110

Preparation of enantiomer 1 of d-3'-(4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl)-3'-(5-(carboxy-1-ethylamino)carbonyl-thiophen-2-yl]pentane.,

- A. Enantiomer 1 of d-3'-(4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl)-3'-(5-(methoxycarbonyl-1-ethylamino)carbonyl-thiophen-2-yl]pentane.
10 (methoxycarbonyl-1-ethylamino)carbonyl-thiophen-2-yl]pentane.

- Using a procedure analogous to Example 106A, enantiomer 1 of 3'-(4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl)-3'-(5-carboxy-thiophen-2-yl]pentane (310 mg, 0.71 mmol) and d-alanine methylester HCl give the title compound (173 mg, 47%).
15 NMR (CDCl₃): 7.39 (d, 1H, J = 4.0 Hz); 7.01 (s, 1H); 7.02 (d, 1H, underlying); 6.78 (d, 1H, J = 4.0 Hz); 6.64 (d, 1H, J = 8.0 Hz); 6.38 (d, 1H, J = 6.5 Hz); 4.74 (m, 1H); 4.00 (d, 1H, J = 7.2 Hz); 3.85 (d, 1H, J = 7.2 Hz); 3.77 (s, 3H); 2.62 (q, 2H, J = 7.6 Hz); 2.22 (s, 1H); 2.11 (q, 4H, J = 7.6); 1.48 (d, 3H, J = 7.2 Hz); 1.33 (s, 3H); 1.17 (t, 20 3H, J = 7.6 Hz); 1.04 (s, 9H); 0.71 (t, 6H, 7.2 Hz).

-250-

B. Enantiomer 1 of d-3'-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl]-3'-[5-(carboxy-1-ethylamino)carbonyl-thiophen-2-yl]pentane.

5 Using a procedure analogous to Example 106B, enantiomer 1 of 3'-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-ethylphenyl]-3'-[5-(methoxycarbonyl-1-ethylamino)carbonyl-thiophen-2-yl]pentane (173 mg, 0.33 mmol) gives the title compound as a solid (147 mg, 87%).
 NMR (CDCl_3): 7.43 (d, 1H, $J = 3.6$ Hz); 7.01 (s, 1H); 7.02 (d, 1H, underlying); 6.79
 10 (d, 1H, $J = 3.6$ Hz); 6.73 (d, 1H, $J = 8.0$ Hz); 6.35 (d, 1H, $J = 8.0$ Hz); 4.70 (m, 1H);
 4.00 (d, 1H, $J = 8.8$ Hz); 3.84 (d, 1H, $J = 8.8$ Hz); 2.61 (q, 2H, $J = 7.6$ Hz); 2.10 (q,
 4H, $J = 7.2$); 1.52 (d, 3H, $J = 7.6$ Hz); 1.32 (s, 3H); 1.15 (t, 3H, $J = 7.6$ Hz); 1.03 (s,
 9H); 0.70 (t, 6H, 7.2 Hz).
 ES/MS: 504.2 (M+1), 502.3 (M-1).

15

Example 111

Preparation of 3'-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3'-[5-carboxy-thiophen-2-yl]pentane.

20

A. 3'-[4-Hydroxy-3-n-propylphenyl]pentan-3-ol.

-251-

Using a procedure analogous to Example 103A, ethyl, 4-hydroxy-3-n-propylbenzoate (5.0, 24 mmol) gives the title compound as an oil (5.7 g, 99%).

- 5 NMR (CDCl₃): 7.09 (s, 1H); 7.04 (d, 1H, 8.4 Hz); 6.71 (d, 1H, J = 8.4 Hz); 4.62 (s, 1H); 3.75 (m, 1H); 2.59 (t, 2H, J = 7.4 Hz); 1.80 (m, 4H); 1.64 (m, 2H); 0.94 (t, 3H, J = 7.4 Hz); 0.76 (t, 6H, 7.6 Hz).
 ES/MS: 205.1 (M+H-H₂O).

10 B. 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-n-propylphenyl]pentan-3-ol.

Using a procedure analogous to Example 91B, 3'-[4-hydroxy-3-n-propylphenyl]pentan-3-ol (5.7 g, 24 mmol) gives the title compound (7.1 g, 93%).

- 15 NMR (CDCl₃): 7.11 (s, 1H); 7.09 (d, 1H, J = 8.0 Hz); 6.57 (d, 1H, J = 8.0 Hz); 4.84 (s, 2H); 2.66 (t, 2H, J = 7.6 Hz); 1.80 (m, 4H); 1.65 (m, 2H); 1.26 (s, 9H); 0.95 (t, 3H, J = 7.2 Hz); 0.76 (t, 6H, 7.4 Hz).
 ES/MS: 303.1 (M- H₂O+1).

20 C. 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-n-propylphenyl]-3'-(thiophen-2-yl)pentane.

-252-

Using a procedure analogous to Example 103B, 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-n-propylphenyl]pentan-3-ol (7.1 g, 22 mmol) gives the title compound after silica gel chromatography (4.0 g, 47%).

NMR (CDCl₃): 7.12 (d, 1H, J = 1.2 Hz); 7.03 (s, 1H); 6.97 (d, 1H, J = 8.0 Hz); 6.90 (t, 1H, J = 5.2 Hz); 6.80 (d, 1H, J = 1.2 Hz); 6.51 (d, 1H, J = 8.0 Hz); 4.82 (s, 2H); 2.62 (t, 2H, J = 7.8 Hz); 2.09 (q, 4H, J = 7.6); 1.59 (m, 2H); 1.25 (s, 9H); 0.90 (m, 3H); 0.71 (t, 6H, 7.6 Hz).
 ES/MS: 387.2 (M+1) 404.2 (M+NH₄).

10 D. 3'-[4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3'-(thiophen-2-yl)pentane.

Using a procedure analogous to Example 103D, 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-n-propylphenyl]-3'-(thiophen-2-yl)pentane (1.3 g, 3.4 mmol) gives the title compound (1.2 g, 86 %).
 NMR (CDCl₃): 7.13 (d, 1H, J = 6.0 Hz); 7.03 (s, 1H); 7.04 (d, 1H, underlying); 6.90 (t, 1H, J = 5.2 Hz); 6.8 (d, 1H, J = 6.0 Hz); 6.73 (d, 1H, J = 8.4 Hz); 3.99 (d, 1H, J = 8.4 Hz); 3.84 (d, 1H, J = 8.4 Hz); 2.57 (q, 2H, J = 7.6 Hz); 2.32 (s, 1H); 2.11 (q, 4H, J = 7.6); 1.56 (m, 2H); 1.32 (s, 3H); 1.04 (s, 9H); 0.90 (t, 3H, J = 7.4 Hz); 0.71 (t, 6H, J = 7.6 Hz).
 ES/MS: 403.2 (M+1).

-253-

E. 3'-[4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3'-[5-carboxy-thiophen-2-yl]pentane.

- Using a procedure analogous to Example 103E, 3'-(4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl)-3'-(thiophen-2-yl)pentane (1.2 g, 2.9 mmol) gives the title compound (0.53 g, 41%).
- NMR (CDCl_3): 7.70 (d, 1H, $J = 3.6$ Hz); 7.03 (d, 1H, $J = 8.0$ Hz); 6.98 (s, 1H); 6.80 (d, 1H, $J = 3.6$ Hz); 6.74 (d, 1H, $J = 8.0$ Hz); 4.00 (d, 1H, $J = 8.8$ Hz); 3.84 (d, 1H, $J = 8.8$ Hz); 2.57 (t, 2H, $J = 8.0$ Hz); 2.13 (q, 4H, $J = 7.0$); 1.57 (m, 2H); 1.33 (s, 3H); 1.05 (s, 9H); 0.92 (t, 3H, $J = 7.2$ Hz); 0.72 (t, 6H, 7.0 Hz).
- ES/MS: 445.5 (M-1).

Example 114

- Preparation of enantiomer 1 of d-3'-(4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl)-3'-(5-(carboxy-1-ethylamino)carbonyl-thiophen-2-yl)pentane.

A. Enantiomers of 3'-(4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3'-[5-carboxy-thiophen-2-yl]pentane.

enantiomer 1

enantiomer 2

5

A racemic mixture of 3'-(4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3'-[5-carboxy-thiophen-2-yl]pentane (0.265 g) is chromatographed (ChiralPak AD column; 0.1%TFA in IPA/heptane to give enantiomer 1 (130 mg; TFA occluded, ~49%), Example 112 and enantiomer 2 (105 mg; TFA occluded, ~40%), Example 113.

10

Enantiomer 1, Example 112

HPLC: ChiralPak AD (4.6X250 mm); 20% IPA/80% heptane; 1 ml/m (flow rate); rt = 5.3 m; 225 nm..

Enantiomer 2, Example 113

15 HPLC: ChiralPak AD (4.6X250 mm); 20% IPA/80% heptane; 1 ml/m (flow rate); rt = 6.7 m; 225 nm.

B. Enantiomer 1 of d-3'-(4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3'-[5-(methoxycarbonyl-1-ethylamino)carbonyl-thiophen-2-yl]pentane.

20

Using a procedure analogous to Example 106A, enantiomer 1 of 3'-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3'-[5-carboxy-thiophen-2-yl]pentane (130 mg, 0.3 mmol) and d-alanine methylester HCl give the title compound (49 mg, 32%).

NMR (CDCl₃): 7.39 (d, 1H, J = 3.6 Hz); 6.99 (s, 1H); 7.02 (d, 1H, J = 8.4 Hz); 6.76

5 (d, 1H, J = 3.6 Hz); 6.73 (d, 1H, J = 8.4 Hz); 6.38 (d, 1H, J = 7.0 Hz); 4.73 (m, 1H); 4.00 (d, 1H, J = 7.6 Hz); 3.85 (d, 1H, J = 7.6 Hz); 3.77 (s, 3H); 2.55 (t, 2H, J = 8.0 Hz); 2.21 (s, 1H); 2.11 (q, 4H, J = 7.2); 1.56 (m, 2H); 1.47 (d, 3H, J = 6.8 Hz); 1.33 (s, 3H); 1.03 (s, 9H); 0.91 (t, 3H, J = 7.6 Hz); 0.71 (t, 6H, 7.4 Hz).

ES/MS: 532.2 (M+1) 530.3 (M-1).

10

C. Enantiomer 1 of d-3'-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3'-[5-(carboxy-1-ethylamino)carbonyl-thiophen-2-yl]pentane.

15 Using a procedure analogous to Example 106B, enantiomer 1 of 3'-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-n-propylphenyl]-3'-[5-(methoxycarbonyl-1-ethylamino)carbonyl-thiophen-2-yl]pentane (48 mg, 0.1 mmol) gives the title compound as a solid (38 mg, 81%).

NMR (CDCl₃): 7.43 (d, 1H, J = 4.0 Hz); 6.97 (s, 1H); 7.02 (d, 1H, J = 8.4 Hz); 6.79
20 (d, 1H, J = 4.0 Hz); 6.73 (d, 1H, J = 8.4 Hz); 6.28 (d, 1H, J = 7.0 Hz); 4.70 (m, 1H); 3.99 (d, 1H, J = 8.8 Hz); 3.84 (d, 1H, J = 8.8 Hz); 2.56 (t, 2H, J = 7.8 Hz); 2.11 (q, 4H, J = 8.0); 1.56 (m, 2H); 1.53 (d, 3H, J = 7.6 Hz); 1.33 (s, 3H); 1.04 (s, 9H); 0.91 (t, 3H, J = 7.8 Hz); 0.71 (t, 6H, 8.0 Hz).

ES/MS: 518.2 (M+1) 516.2 (M-1).

25

-256-

Example 115

Preparation of d-3'-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl]-3'-[5-(carboxy-1-ethylamino)carbonyl-thiophen-2-yl]pentane.

5

A. 3'-(4-Hydroxy-3-methoxyphenyl)pentan-3-ol.

- 10 Using a procedure analogous to Example 103A, methyl, 4-hydroxy-3-methoxybenzoate (7.3, 40 mmol) gives the title compound as an oil (7.7g, 91%).
 NMR (CDCl_3): 6.96 (s, 1H); 6.86 (d, 1H, 8.4 Hz); 6.98 (d, 1H, $J = 8.4$ Hz); 5.51 (s, 1H); 3.90 (s, 3H); 1.81 (m, 4H); 0.78 (t, 6H, 7.6 Hz).
 ES/MS: 193.0 ($M+\text{H}-\text{H}_2\text{O}$).

15

B. 3'-(4-(2-Oxo-3,3-dimethylbutoxy)-3-methoxyphenyl)pentan-3-ol.

- Using a procedure analogous to Example 91B, 3'-(4-hydroxy-3-methoxyphenyl)pentan-3-ol (7.7g, 36 mmol) gives the title compound (10 g, 89%).
 20 NMR (CDCl_3): 6.97 (s, 1H); 6.78 (d, 1H, $J = 8.4$ Hz); 6.66 (d, 1H, $J = 8.4$ Hz); 4.93 (s, 2H); 3.88 (s, 3H); 1.80 (m, 4H); 1.23 (s, 9H); 0.76 (t, 6H, 7.2 Hz).
 ES/MS: 291.1 ($M+\text{H}-\text{H}_2\text{O}$).

-257-

C. 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-methoxyphenyl]-3'-(thiophen-2-yl)pentane.

Using a procedure analogous to Example 103B, 3'-(4-(2-oxo-3,3-

- 5 dimethylbutoxy)-3-methoxyphenyl]pentan-3-ol (4.9 g, 16 mmol) gives the title compound (1.5 g, 25%).

NMR (CDCl₃): 7.13 (d, 1H, J = 5.2 Hz); 6.89 (t, 1H, J = 4.2 Hz); 6.80 (d, 1H, J = 4.8 Hz); 6.76 (m, 2H); 6.60 (d, 1H, J = 9.2 Hz); 4.91 (s, 2H); 3.78 (s, 3H); 2.10 (q, 4H, J = 7.2); 1.28 (s, 9H); 0.70 (t, 6H, 7.2 Hz).

10 ES-MS: 375.2 (M+1) 393.2 (M+NH₄).

D. 3'-(4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl)-3'-(thiophen-2-yl)pentane.

- 15 Using a procedure analogous to Example 103D, 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methoxyphenyl)-3'-(thiophen-2-yl)pentane (1.5 g, 4 mmol) gives the title compound (1.4 g, 89 %).

NMR (CDCl₃): 7.13 (d, 1H, J = 5.0 Hz); 6.90 (t, 1H, J = 8.4 Hz) 8.81 (m, 3H); 6.76 (s, 1H); 3.98 (d, 1H, J = 8.8 Hz); 3.90 (d, 1H, J = 8.8 Hz); 3.75 (s, 3H); 2.76 (s, 1H); 2.11 (q, 4H, J = 7.2); 1.85 (m, 1H); 1.31 (s, 3H); 1.02 (s, 9H); 0.70 (t, 6H, 7.2 Hz).
20 ES/MS: 373.2 (M+H-H₂O).

-258-

E. 3'-[4-(2-Hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl]-3'-[5-carboxy-thiophen-2-yl]pentane.

- Using a procedure analogous to Example 103E, 3'-(4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl)-3'-(thiophen-2-yl)pentane (1.4 g, 3.5 mmol) gives the title compound (1.2 g, 77%).
 NMR (CDCl_3): 7.70 (d, 1H, $J = 3.6$ Hz); 6.81 (m, 3H); 6.72 (d, 1H, $J = 3.6$ Hz); 3.99 (d, 1H, $J = 9.2$ Hz); 3.91 (d, 1H, $J = 9.2$ Hz); 3.76 (s, 3H); 2.13 (q, 4H, $J = 7.2$); 1.32 (s, 3H); 1.02 (s, 9H); 0.73 (t, 6H, 7.2 Hz).
 ES/MS: 433.2 (M-1).

F. d-3'-(4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl)-3'-(5-(methoxycarbonyl-1-ethylamino)carbonyl-thiophen-2-yl)pentane.

- Using a procedure analogous to Example 106A, 3'-(4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl)-3'-(5-carboxy-thiophen-2-yl)pentane (600 mg, 1.4 mmol) and d-alanine methylester HCl give the title compound (206 mg, 28%).
 NMR (CDCl_3): 7.39 (d, 1H, $J = 3.6$ Hz); 6.81 (s, 2H); 6.77 (d, 1H, $J = 3.6$ Hz); 6.72 (s, 1H); 6.40 (d, 1H, $J = 7.6$ Hz); 4.75 (m, 1H); 3.99 (d, 1H, $J = 7.6$ Hz); 3.90 (d, 1H, $J = 7.6$ Hz); 3.77 (s, 3H); 3.75 (s, 3H); 2.72 (s, 1H); 2.11 (q, 4H, $J = 7.2$); 1.48 (d, 3H, $J = 7.6$ Hz); 1.31 (s, 3H); 1.02 (s, 9H); 0.71 (t, 6H, 7.2 Hz).
 ES/MS: 520.2 (M+1) 518.2 (M-1).

-259-

G. d-3'-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl]-3'-[5-(carboxy-1-ethylamino)carbonyl-thiophen-2-yl]pentane.

5

Using a procedure analogous to Example 106B, d-3'-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl]-3'-[5-(methoxycarbonyl-1-ethylamino)carbonyl-thiophen-2-yl]pentane (140 mg, 0.3 mmol) gives the title compound as a solid (134 mg, 98 %).

10 NMR (CDCl_3): 7.44 (d, 1H, $J = 4.0$ Hz); 6.80 (m, 3H); 6.71 (s, 1H); 6.38 (d, 1H, $J = 7.0$ Hz); 4.70 (m, 1H); 3.99 (d, 1H, $J = 9.2$ Hz); 3.91 (d, 1H, $J = 9.2$ Hz); 2.11 (q, 4H, $J = 7.4$); 1.54 (d, 3H, $J = 6.8$ Hz); 1.32 (s, 3H); 1.02 (s, 9H); 0.72 (t, 6H, 7.4 Hz).
ES/MS: 504.2 (M-1).

15

20

Example 116 and 117

Preparation of enantiomers of d-3'-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl]-3'-[5-(carboxy-1-ethylamino)carbonyl-thiophen-2-yl]pentane.

25

enantiomer 1

enantiomer 2

A racemic mixture of d-3'-[4-(2-hydroxy-2,3,3-trimethylbutoxy)-3-methoxyphenyl]-3'-[5-(carboxy-1-ethylamino)carbonyl-thiophen-2-yl]pentane (0.133

-260-

g) is chromatographed (ChiralPak AD column; 0.1%TFA in IPA/Hept) to give enantiomer 1 (72 mg, quant), Example 116 and enantiomer 2 (78 mg, quant), Example 117.

Enantiomer 1, Example 116

5 HPLC: ChiralPak AD (4.6X250 mm); 40% IPA/60% heptane; 1 ml/m (flow rate);
 $t_r = 5.1$ m; 225 nm.

Enantiomer 2, Example 117

HPLC: ChiralPak AD (4.6X250 mm); 40% IPA/60% heptane; 1 ml/m (flow rate);
 $t_r = 6.2$ m; 225 nm.

10

Example 118

Preparation of N-methyl- 2-[{5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-carbonyl}-methylamino]-acetic acid.

15

A. 5-[1-Ethyl-1-(4-hydroxy-3-methyl-phenyl)-propyl]-3-methyl-thiophene-2-carboxylic acid.

20 Using a procedure analogous to Example 47, 5-[1-Ethyl-1-(4-hydroxy-3-methyl-phenyl)-propyl]-3-methyl-thiophene-2-carboxylic acid methyl ester, (Example 1F) (6.68 g, 20.12 mmol) gives the title compound (6.30 g, 19.81 mmol, 90%). 1H -NMR ($CDCl_3$), δ 0.71 (t, $J = 6.9$ Hz, 6H), 2.11 (q, $J = 6.9$ Hz, 4H), 2.23 (s, 3H), 2.48

(s, 3H), 6.61 (s, 1H), 6.69 (d, $J = 7.9$ Hz, 1H), 6.94-7.00 (m, 2H). LC/MS (m/z): calcd for $C_{18}H_{22}O_3S$: 318.1; found: 318.1.

B. N-methyl-2-{5-[1-Ethyl-1-(4-hydroxy-3-methyl-phenyl)-propyl]-3-methyl-thiophene-2-carbonyl}-methylamino)-acetic acid methyl ester.
5

Using a procedure analogous to Example 38, from [1-ethyl-1-(4-hydroxy-3-methyl-phenyl)-propyl]-3-methyl-thiophene-2-carboxylic acid (1.90 g, 5.96 mmol)
10 and sarcosine methyl ester hydrochloride (0.89 g, 6.55 mmol) gives the title compound (1.99 g, 4.94 mmol, 83 %). 1H NMR ($CDCl_3$), d 0.70 (t, $J = 7.1$ Hz, 6H), 2.01-2.09 (m, 4H), 2.21 (s, 3H), 2.24 (s, 3H), 3.10 (s, 3H), 3.74 (s, 3H), 4.20 (bs, 2H), 6.52 (s, 1H), 6.63 (d, $J = 8.4$ Hz, 1H), 6.90-7.01 (m, 2H). LC/MS (m/z): calcd for
15 $C_{22}H_{30}NO_4S$ ($M+H$) $^+$: 404.2; found: 404.2.

C. N-methyl-2-[(5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid methyl ester

20 Using a procedure analogous to Example 1G, from 2-({5-[1-Ethyl-1-(4-hydroxy-3-methyl-phenyl)-propyl]-3-methyl-thiophene-2-carbonyl}-methylamino)-acetic acid methyl ester (1.99 g, 4.94 mmol) gives the title compound (1.14 g, 2.28 mmol, 46%). 1H NMR ($CDCl_3$), d 0.70 (t, $J = 7.4$ Hz, 6H), 1.27 (s, 9H), 2.00-2.14 (m, 4H), 2.24 (s, 3H), 2.26 (s, 3H), 3.01 (s, 3H), 3.75 (s, 3H), 4.16-4.24 (bs, 2H), 4.84

-262-

(s, 2H), 6.49-6.53 (m, 2H), 6.90-7.03 (m, 2H). LC/MS (m/z): calcd for C₂₈H₄₀NO₅S (M+H)⁺: 502.7; found: 502.2.

D. N-methyl-2-[(5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid

To a mixture of 2-[(5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid methyl ester (0.16 g, 0.32 mmol) and THF (2 mL) is added and H₂O (2mL) and 1.0 M NaOH (0.35 mL, 0.35 mmol). The reaction is stirred at RT overnight, acidified with 0.1 M HCl to pH 3-4 and extracted with EtOAc (2 x 30 mL). The organic layer is MgSO₄ dried and concentrated to give the title compound (0.14 g, 90%). ¹H NMR (CDCl₃), δ 0.71 (t, J = 7.2 Hz, 6H), 1.27 (s, 9H), 2.02-2.10 (m, 4H), 2.24 (s, 3H), 2.26 (s, 3H), 3.12 (s, 3H), 4.21 (bs, 2H), 4.86 (s, 2H), 6.49-6.55 (m, 2H), 6.96-7.03 (m, 2H). LC/MS (m/z): calcd for C₂₇H₃₈NO₅S (M+H)⁺: 488.7; found: 488.2.

Example 119

Preparation of N-methyl-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid methyl ester.

-263-

Using a procedure analogous to Example 2, N-methyl-2-[{(5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid methyl ester (0.96 g, 1.92 mmol) gives the title compound (0.75 g, 1.49 mmol, 78%). ¹H NMR (CDCl₃), δ 0.71 (t, J = 7.0 Hz, 6H), 1.03 (s, 9H), 2.04-2.14 (m, 4H), 2.21 (s, 3H), 2.24 (s, 3H), 3.09 (s, 3H), 3.71 (dd, J = 8.4, 2.6 Hz, 1H), 3.75 (s, 3H), 3.87 (t, J = 8.9 Hz, 1H), 4.10 (dd, J = 9.2, 2.6 Hz, 1H), 4.20 (bs, 2H), 6.52 (s, 1H), 6.72 (d, J = 8.7 Hz, 1H), 7.00-7.07 (m, 2H). LC/MS (m/z): calcd for C₂₈H₄₂NO₅S (M+H)⁺: 504.7; found: 504.2.

15

Example 120 and 121

Preparation of enantiomers of N-methyl-2-[{(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid methyl ester.

20

Enantiomer 1

-264-

Enantiomer-2

- A racemic mixture of N-methyl-2-[{(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid methyl ester (740 mg) is chromatographed (CHIRALPAK AD column, 40% i-PrOH/Hept) to give enantiomer 1 of the title compound (Example 120) (205 mg, 28%) and enantiomer 2 of the title compound (Example 121) (179 mg, 24%).

10 Enantiomer 1, Example 120 :

rt = 7.1 m

NMR & LC/MS: Identical to the racemic material, Example 119.

Enantiomer 2, Example 121 :

15 rt = 22.8 m

NMR & LC/MS: Identical to the racemic material, Example 119.

Example 122

- Preparation of enantiomer 1 of N-methyl-2-[{(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid.

Enantiomer 1

Using a procedure analogous to Example 47, enantiomer 1 of N-methyl-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid methyl ester (200 mg) yields the title compound (189 mg, 97%). ^1H NMR (CDCl_3), d 0.71 (t, $J = 7.2$ Hz, 6H), 1.02 (s, 9H), 5 2.01-2.13 (m, 4H), 2.20 (s, 3H), 2.24 (s, 3H), 3.12 (s, 3H), 3.72 (dd, $J = 8.8, 2.7$ Hz, 1H), 3.88 (t, $J = 8.9$ Hz, 1H), 4.12 (dd, $J = 9.1, 2.7$ Hz, 1H), 4.21 (s, 2H), 6.53 (s, 1H), 6.72 (d, $J = 8.6$ Hz, 1H), 7.00-7.06 (m, 2H). LC/MS (m/z): calcd for $\text{C}_{27}\text{H}_{40}\text{NO}_5\text{S}$ ($\text{M}+\text{H})^+$: 490.7; found: 490.3.

10 Example 123

Preparation of enantiomer 2 of N-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid.

15

Enantiomer 2

Using a procedure analogous to Example 47, enantiomer 2 of N-methyl-2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-methylamino]-acetic acid methyl ester (172 mg, 0.34 mmol) 20 yields the title compound (168.8mg, 98%). ^1H NMR and LC/MS (m/z): identical to Example 122.

Example 124

25 Preparation of 2-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-yl-methoxy)acetic acid.

A. 5-(1-{4-[2-(tert-Butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-carboxylic acid methyl ester.

5

To a mixture of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid methyl ester (Example 2) (1.15 g, 2.66 mmol), imidazole (0.27 g, 4.00 mmol), and DMF (15 mL) is added TBSCl (0.54 g, 2.80 mmol). The reaction is stirred for 24 h. The reaction is diluted with Et₂O (120 mL) and washed with 0.1 M HCl (3 x 40 ml). The organic layer is MgSO₄ dried and concentrated. The resulting residue is chromatographed to give the title compound (0.94 g, 64%). ¹H NMR (CDCl₃), δ 0.01 (s, 3H), 0.06 (s, 3H), 0.65 (t, J = 7.4 Hz, 6H), 0.85 (s, 9H), 0.91 (s, 9H), 2.00-2.14 (m, 4H), 2.14 (s, 3H), 2.43 (s, 3H), 3.67 (dd, J = 5.8, 3.4 Hz, 1H), 3.74 (s, 3H), 3.85 (dd, J = 9.8, 5.8 Hz, 1H), 3.98 (dd, J = 9.8, 3.4 Hz, 1H), 6.56 (s, 1H), 6.68 (d, J = 8.3 Hz, 1H), 6.96-7.03 (m, 2H). LC/MS (m/z): calcd for C₃₁H₅₁O₄SSi (M+H)⁺: 547.9; found: 547.2.

B. 5-(1-{4-[2-(tert-Butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophen-2-yl-methanol.

20

To a 0°C solution of 5-(1-{4-[2-(tert-Butyl-dimethyl-silyloxy)-3,3-dimethylbutoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-carboxylic acid methyl ester (0.94 g, 1.71 mmol) and THF (50 mL) is added LAH (71 mg, 1.89 mmol).

- 5 The mixture is stirred for 10 m, warmed to RT and stirred for 2 h. The reaction is quenched with H₂O (70 uL), 15% NaOH (70 uL) and H₂O (210 uL) and diluted with EtOAc (50 mL). The mixture is filtered through diatomaceous earth and concentrated to give the title compound (0.89 g, 1.72 mmol, 100%). ¹H NMR (CDCl₃), δ 0.07 (s, 3H), 0.12 (s, 3H), 0.72 (t, J = 7.4 Hz, 6H), 0.91 (s, 9H), 0.98 (s, 9H), 2.01-2.14 (m, 4H), 2.19 (s, 3H), 2.21 (s, 3H), 3.68 (dd, J = 5.3, 3.4 Hz, 1H), 3.86 (dd, J = 9.0, 5.3 Hz, 1H), 3.98 (dd, J = 9.0, 3.4 Hz, 1H), 4.67 (s, 2H), 6.54 (s, 1H), 6.67 (d, J = 8.1 Hz, 1H), 7.00-7.06 (m, 2H). LC/MS (m/z): calcd for C₃₀H₅₀O₃SSi M⁺: 518.9; found: 518.0.
- 15 C. 2-[5-(1-{4-[2-(tert-Butyl-dimethyl-silyloxy)-3,3-dimethylbutoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophen-2-ylmethoxy]-acetic acid methyl ester.

- T a 0 °C solution of 5-(1-{4-[2-(tert-butyl-dimethyl-silyloxy)-3,3-dimethylbutoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophen-2-yl-methanol (0.96 g, 1.85 mmol) in THF (10 mL) is added 60% NaH (81 mg, 2.0 mmol) and stirred for 20

m. The mixture is added methyl bromoacetate (0.21 mL, 2.22 mmol) warmed to RT, and stirred overnight. The reaction is quenched with satd NH₄Cl (10 mL), diluted with H₂O (10 mL), and extracted with EtOAc (2 x 20 mL). The combined organic layers is MgSO₄ dried and concentrated. The resulting residue is chromatographed to give the title compound (0.33 g, 0.57 mmol, 31%). ¹H NMR (CDCl₃), δ 0.06 (s, 3H), 0.12 (s, 3H), 0.70 (t, J = 7.3 Hz, 6H), 0.91 (s, 9H), 0.97 (s, 9H), 2.01-2.10 (m, 4H), 2.19 (s, 3H), 2.20 (s, 3H), 3.67 (dd, J = 5.8, 3.4 Hz, 1H), 3.76 (s, 3H), 3.85 (dd, J = 9.8, 5.8 Hz, 1H), 3.98 (dd, J = 9.8, 3.4 Hz, 1H), 4.09 (s, 2H), 4.64 (s, 2H), 6.53 (s, 1H), 6.67 (d, J = 8.3 Hz, 1H), 7.00-7.06 (m, 2H). LC/MS (m/z): calcd for C₃₃H₅₈NO₅SSI (M+NH₄)⁺: 608.9; found: 608.3.

D. 2-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-yl-methoxy)-acetic acid.

A solution of 2-[5-{1-{4-[2-(tert-butyl-dimethyl-silyloxy)-3,3-dimethylbutoxy]-3-methyl-phenyl}-1-ethyl-propyl}-3-methyl-thiophen-2-ylmethoxy]-acetic acid methyl ester (0.33 g, 0.57 mmol), 1.0 M TBAF/THF (0.62 mL, 0.62 mmol) and THF (4 mL) is refluxed for 3h. The mixture filtered through silica gel, washed with EtOAc and concentrated. The resulting residue is hydrolyzed using a procedure analogous to Example 47 to give the title compound (0.13 g, 0.28 mmol) in an overall yield of 49%. ¹H NMR (CDCl₃), δ 0.71 (t, J = 7.4 Hz, 6H), 1.02 (s, 9H), 2.01-2.10 (m, 4H), 2.19 (s, 3H), 2.20 (s, 3H), 2.21 (bs, 2H), 3.72 (dd, J = 8.8, 2.9 Hz, 1H), 3.87 (t, J = 8.8 Hz, 1H), 4.08-4.12 (m, 2H), 4.16 (s, 1H), 4.66 (s, 1H), 5.24 (s, 1H), 6.54 (d, J = 3.4 Hz, 1H), 6.62 (d, J = 8.3 Hz, 1H), 7.01-7.08 (m, 2H). LC/MS (m/z): calcd for C₂₆H₃₇O₅S (M-H)⁻: 461.7; found: 461.2.

Example 125

Preparation of 1-{4-[1-ethyl-1-(5-hydroxymethyl-4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol.

5

A solution of 1-{4-[1-ethyl-1-(5-hydroxymethyl-4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol, Example B (71.5 mg, 0.14 mmol) in THF (3 mL) is treated with 1.0 M TBAF (0.15 mL, 0.15 mmol). The reaction is refluxed for 14 h, diluted with EtOAc (20 mL), washed with H₂O (10 mL), MgSO₄ dried, and concentrated. The resulting residue is chromatographed to give the title compound (41.1 mg, 0.10 mmol, 71%). %). ¹H NMR (CDCl₃), δ 0.71 (t, J = 6.8 Hz, 6H), 1.02 (s, 9H), 2.02-2.11 (m, 4H), 2.19 (s, 3H), 2.21 (s, 3H), 2.44 (d, J = 2.9 Hz, 1H), 3.71 (dt, J = 8.9, 2.4 Hz, 1H), 3.87 (t, J = 8.9 Hz, 1H), 4.10 (dd, J = 8.9, 2.4 Hz, 1H), 4.66 (d, J = 5.4 Hz, 2H), 6.53 (s, 1H), 6.72 (d, J = 8.3 Hz, 1H), 7.02-7.08 (m, 2H). LC/MS (m/z): calcd for C₂₄H₃₆NaO₃S (M+Na)⁺: 427.6; found: 427.2.

20 Example 126 and 127

Preparation of enantiomers of 1-{4-[1-ethyl-1-(5-hydroxymethyl-4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol.

-270-

Enantiomer 1

Enantiomer 2

A racemic mixture of 1-{4-[1-ethyl-1-(5-hydroxymethyl-4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol (37.5 mg) is chromatographed (CHIRALPAK AD column, 40% *i*-PrOH/Hept) to give enantiomer 1 of the title compound, Example 126 (3.6 mg, 10%) and enantiomer 2 of the title compound, Example 127 (2.8 mg, 7%).

Example 126, Enantiomer 1

10 $r_t = 5.3 \text{ m}$

NMR & LC/MS: Identical to the racemic material, Example 125.

Example 127, Enantiomer 2

rt = 8.5 m

15 NMR & LC/MS: Identical to the racemic material, Example 125.

Example 128

Preparation of sodium salt of enantiomer 1 of 2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid.

Enantiomer 1

-271-

A solution of enantiomer 1 of 2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid, Example 48 (597 mg, 1.26 mmol) in CH₃OH (5 mL) is treated with 0.5 M NaOCH₃ (2.7 mL, 1.4 mmol) and stirred for 5 m. The mixture is concentrated to give the title compound (626 mg. 1.26 mmol, 100%). ¹H NMR (CD₃OD), δ 0.75 (t, J = 7.1 Hz, 6H), 1.05 (s, 9H), 2.10-2.20 (m, 4H), 2.23 (s, 3H), 2.50 (s, 3H), 3.66 (dd, J = 7.9, 3.0 Hz, 1H), 3.89 (s, 2H), 3.90-3.95 (m, 1H), 4.16 (dd, J = 10.1, 3.0 Hz, 1H), 6.72 (s, 1H), 6.83 (d, J = 8.8 Hz, 1H), 7.02-7.12 (m, 2H). LC/MS (m/z): calcd for C₂₆H₃₈NO₅S (M+H)⁺: 476.2; found: 476.2.

10

Example 129

Preparation of sodium salt of enantiomer 2 of [(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid.

Enantiomer 2

20

Using a procedure analogous to Example 128, enantiomer 2 of 2-[(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid (Example 49) (0.69 g, 1.15 mmol) gives the title compound (0.69 g, 1.15 mmol, 100%). ¹H NMR and LC/MS: identical to Example 128.

-272-

Example 130

Preparation of 2-[N-acetyl-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-ylmethyl)-amino]-acetic acid.

5

A. Preparation of 5-(1-{4-[2-(tert-Butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-carbaldehyde.

10

Using a procedure analogous to Example 41, 1-{4-[1-ethyl-1-(5-hydroxymethyl-4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol (Example 124B) (0.88 g, 1.69 mmol) gives the title compound (0.77 g, 1.49 mmol, 88%). ^1H NMR (CDCl_3), δ 0.07 (s, 3H), 0.12 (s, 3H), 0.72 (t, $J = 7.4$ Hz, 6H), 0.91 (s, 9H), 0.98 (s, 9H), 2.12 (q, $J = 7.4$ Hz, 4H), 2.21 (s, 3H), 2.50 (s, 3H), 3.68 (dd, $J = 5.4$, 3.5 Hz, 1H), 3.86 (dd, $J = 9.9$, 5.4 Hz, 1H), 3.98 (dd, $J = 9.9$, 3.5 Hz, 1H), 6.64 (s, 1H), 6.68 (d, $J = 8.7$ Hz, 1H), 6.95-7.03 (m, 2H), 9.92 (s, 1H). LC/MS (m/z): calcd for $\text{C}_{30}\text{H}_{49}\text{O}_3\text{SSi} (\text{M}+\text{H})^+$: 517.9; found: 517.2

- B. 2-{[5-(1-{4-[2-(tert-Butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophen-2-ylmethyl]-amino}-acetic acid methyl ester.

5

A mixture of 5-(1-{4-[2-(tert-butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-carbaldehyde (2.11 g, 4.09 mm) and glycine methyl ester hydrochloride (0.56 g, 4.50 mmol) with Et₃N (0.74 mL, 5.3 mmol) is treated with Ti(O-i-Pr)₄ (1.6 mL, 5.3 mmol) at RT for 1 h. It is diluted with CH₃OH (20 mL), treated with NaB(CN)H₃ (282 mg, 4.5 mmol). The reaction is stirred overnight. It is then quenched with H₂O (3 mL) and stirred at RT for 1h; and filtered through silica gel washed with EtOAC (100 mL) and concentrated. Chromatographic purification gives the title compound (1.54 g, 2.61 mmol, 64%).

¹H NMR (CDCl₃), δ 0.06 (s, 3H), 0.12 (s, 3H), 0.70 (t, J = 6.9 Hz, 6H), 0.91 (s, 9H), 0.97 (s, 9H), 2.02-2.10 (m, 4H), 2.13 (s, 3H), 2.20 (s, 3H), 3.45 (s, 2H), 3.67 (dd, J = 5.4, 3.4 Hz, 1H), 3.73 (s, 3H), 3.82-3.87 (m, 3H), 3.98 (dd, J = 9.6, 3.4 Hz, 1H), 6.49 (s, 1H), 6.67 (d, J = 8.3 Hz, 1H), 7.00-7.05 (m, 2H). LC/MS (m/z): calcd for C₃₃H₅₅NO₄SSi (M)⁺: 589.9; found: 589.0.

- C. 2-{[5-(1-{4-[2-(tert-Butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophen-2-ylmethyl]-amino}-acetic acid methyl ester.

Using a procedure analogous to Example 41, 5-(1-{4-[2-(tert-Butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-carbaldehyde (additional example Lu-13-A) (2.11 g, 4.09 mm) and glycine methyl ester hydrochloride (0.56 g, 4.50 mmol) give the title compound (1.54 g, 2.61 mmol, 64%).
 5 %). ^1H NMR (CDCl_3), δ 0.06 (s, 3H), 0.12 (s, 3H), 0.70 (t, $J = 6.9$ Hz, 6H), 0.91 (s, 9H), 0.97 (s, 9H), 2.02-2.10 (m, 4H), 2.13 (s, 3H), 2.20 (s, 3H), 3.45 (s, 2H), 3.67 (dd, $J = 5.4$, 3.4 Hz, 1H), 3.73 (s, 3H), 3.82-3.87 (m, 3H), 3.98 (dd, $J = 9.6$, 3.4 Hz, 1H), 6.49 (s, 1H), 6.67 (d, $J = 8.3$ Hz, 1H), 7.00-7.05 (m, 2H). LC/MS (m/z): calcd for $\text{C}_{33}\text{H}_{55}\text{NO}_4\text{SSi}$ (M) $^+$: 589.9; found: 589.0.

D. 2-{N-Acetyl-[5-(1-{4-[2-(tert-butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophen-2-ylmethyl]-amino}-acetic acid methyl ester.
 15

To a 0° C solution of 2-{{5-(1-{4-[2-(tert-Butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophen-2-ylmethyl}-

amino}-acetic acid methyl ester (1.54 g, 2.61 mmol) in CH₂Cl₂ (10 mL) is added acetyl chloride (0.20 mL, 2.88 mmol). The reaction is stirred at RT for 1 h, diluted with CH₂Cl₂ (100 mL), washed with 1.0 M HCl (2 x 30 mL), H₂O (25 mL); Na₂SO₄ dried, and concentrated. The resulting residue is chromatographed to give the title compound (1.32 g, 2.09 mmol, 80%). ¹H NMR (CDCl₃), δ 0.06 (s, 3H), 0.12 (s, 3H), 0.69 (t, J = 7.1 Hz, 6H), 0.91 (s, 9H), 0.97 (s, 9H), 2.00-2.05 (m, 4H), 2.06 (s, 3H), 2.07 (s, 1.11 H), 2.10 (s, 1.89 H), 2.21 (s, 1.89 H), 2.24 (s, 1.11 H), 3.66-3.71 (m, 4H), 3.83-3.89 (m, 1H), 3.95 (s, 0.74 H), 3.96-4.01 (m, 1H), 4.04 (1.26 H), 4.60 (1.26H), 4.68 (0.74H), 6.49 (s, 0.37H), 6.51 (s, 0.63H), 6.65-6.69 (m, 1H), 6.97-7.03 (m, 2H). LC/MS (m/z): calcd for C₃₅H₅₈NO₅SSi (M+H)⁺: 632.4; found: 632.3.

E. 2-[N-Acetyl-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-ylmethyl)-amino]-acetic acid.

15

Using a procedure analogous to Example 124D, 2-[N-Acetyl-[5-(1-{4-[2-(tert-butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophen-2-ylmethyl]-amino]-acetic acid methyl ester (1.32 g, 2.09 mmol) gives the title compound (0.95 g, 1.83 mmol, 88%). ¹H NMR (CD₃OD), δ 0.72 (t, J = 7.3 Hz, 3H), 0.73 (t, J = 7.3 Hz, 3H), 1.05 (s, 9H), 2.03 (s, 3H), 2.05-2.14 (m, 4H), 2.16 (s, 1.5H), 2.18 (s, 1.5 H), 2.22 (s, 1.5 H), 2.24 (s, 1.5 H), 3.66 (dd, J = 7.6, 2.7 Hz, 1H), 3.91 (dd, J = 10.1, 7.6 Hz, 1H), 3.98 (s, 1H), 4.03 (s, 1H), 4.16 (dd, J = 10.1, 2.7 Hz, 1H), 4.67 (s, 1H), 4.71 (s, 1H), 6.59 (s, 0.5H), 6.63 (s, 0.5H), 6.80 (d, J = 3.1 Hz, 0.5H), 6.82 (d, J = 2.7 Hz, 0.5H), 7.01-7.10 (m, 2H). LC/MS (m/z): calcd for C₂₈H₄₀NO₅SSi (M-H)⁻: 502.7; found: 502.2.

Example 131 and 132

Preparation of enantiomers of 2-[N-Acetyl-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-

butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-ylmethyl)-amino]-acetic acid.

Enantiomer 1

5

Enantiomer 2

A racemic mixture of 2-[N-acetyl-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-ylmethyl)-amino]-acetic acid (560 mg) is chromatographed (CHIRALPAK AD, 0.1% TFA in *i*-PrOH/MeOH/Hept (20/5/75),) to give fraction-1 (338 mg, *rt* = 6.4 m), and fraction- 2, (343 mg, *rt* = 13.7 m). Fraction-1 is chromatographed to give the low R_f component (TLC: (EtOAc/CH₃OH/HOAc, 85/15/0.5; R_f = 0.5). The low R_f component is dissolved in CH₃OH (5mL), treated with 0.5 M NaOCH₃ (1.2 ml, 0.59 mmol), and stirred at RT for 10 m. The reaction is concentrated and partitioned between 1.0 M HCl (2 ml)/H₂O (10 ml)/EtOAc (3 x 15 ml). The organic layer is MgSO₄ dried and concentrated to give the enantiomer 1 of the title compound (Example 131) (153.7 mg, 27%). Fraction-2 from the chiral resolution is manipulated as described for fraction-1 to give the enantiomer 2 of the title compound (Example 132) (149.9 mg, 27%).

20

Example 131, Enantiomer 1 CHIRALPAK AD, 0.1% TFA in *i*-PrOH/MeOH/Hept (20/5/75); *rt* = 6.4 m.

NMR & LC/MS: identical to the racemic material, Example 130.

25

Example 132, Enantiomer 2 CHIRALPAK AD, 0.1% TFA in *i*-PrOH/MeOH/Hept (20/5/75); *rt* = 13.7 m.

NMR & LC/MS: Identical to the racemic material, Example 130.

-277-

Example 133

Preparation of 2-[N-Acetyl-(5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-yl-methyl)-amino]-acetic acid.

5

Using a procedure analogous to Example 50, from 2-[N-acetyl-(5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-yl-methyl)-amino]acetic acid, Example 130 (0.35 g, 0.70 mmol) and Dess-Martin reagent (0.33 g, 0.77 mmol) give the title compound (0.11 g, 0.22 mmol, 31%). ¹H NMR (CD₃OD), δ 0.72 (t, J = 7.6 Hz, 3H), 0.73 (t, J = 7.0 Hz, 3H), 1.29 (s, 9H), 2.04-2.14 (m, 7H), 2.16 (s, 1.5H), 2.18 (s, 1.5 H), 2.25 (s, 3 H), 3.97 (s, 1H), 4.01 (s, 1H), 4.68 (s, 1H), 4.71 (s, 1H), 5.03 (s, 1H), 5.04 (s, 1H), 6.59 (s, 1H), 6.66-6.67 (m, 1H), 7.00-7.08 (m, 2H). LC/MS (m/z): calcd for C₂₈H₃₈NO₅SSi (M-H)⁻: 500.7; found: 500.3, δ

10

Example 134

Preparation of (5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid methyl ester.

15

20 A. 1-{4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-one.

A mixture of 3'-[4-(hydroxy)-3-methylphenyl]-3'-[4-methylthiophen-2-yl]pentane (4.4 g, 16.4 mmol), 1-chloro-3,3-dimethyl-butan-2-one (2.37 ml, 18.1 mmol) and K₂CO₃ (3.39 g, 24.6 mmol) in acetone (40 ml) is refluxed overnight. After cooling, the reaction is filtered, concentrated and partitioned between EtOAc and 1N HCl. The organic phase is Na₂SO₄ dried and concentrated to give the title compound (6.2 g, quantitative).

5 ¹H NMR (CDCl₃): δ 7.05 (d, 1H, J = 1.2 Hz), 7.02 (dd, 1H, J = 8.8, 2.4 Hz), 6.70 (s, 1H), 6.60 (d, 1H, J = 1.2 Hz), 6.52 (d, 1H, J = 8.8 Hz), 4.84 (s, 2H), 2.27 (s, 3H), 2.21 (s, 3H), 2.09 (q, 4H), 1.27 (s, 9H), 0.70 (t, 6H).

10 B. 1-{4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol

To a stirred solution of 1-{4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-one (5.2 g, 14 mmol) in THF/MeOH (40 ml/10 ml) at 0 °C is added NaBH₄ (528 mg, 14 mmol), warmed to RT, and stirred for 1 h. The reaction is concentrated and the residue is partitioned between EtOAc and 0.2 N HCl. The organic layer is MgSO₄ dried and concentrated to give the title compound (5.4 g, quantitative).

15 ¹H NMR (CDCl₃): δ 7.05 (s, 2H), 6.73 (s, 1H), 6.70 (s, 1H), 6.60 (s, 1H), 4.09 (dd, 1H, J = 8.1, 2.4 Hz), 3.87 (dd, 1H, J = 8.1, 8.9 Hz), 3.70 (dd, 1H, J = 8.9, 2.4 Hz), 2.20 (s, 6H), 2.07 (q, 4H), 1.01 (s, 9H), 0.70 (t, 6H);
ES-MS: 375 (M+1).

20 C. 1-{4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-2-(t-butyldimethylsilyloxy)-3,3-dimethyl-butane.

To a solution of 1-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol (7.5 g, 20 mmol) in dichloromethane (100 ml) at -78 °C is added 2,6-dimethylpyridine (5.8 ml, 50 mmol) followed by tert-butyldimethylsilyl trifluoromethanesulfonate (6.0 ml, 26 mmol). After stirring at RT for 2 h, the reaction 5 diluted with dichloromethane and washed successively with 1N HCl followed by satd NaHCO₃. The organic layer is dried over MgSO₄ and concentrated to give the title product (9.5 g, 97%).

¹H NMR (CDCl₃): δ 7.02, 7.06 (m, 2H), 6.61, 6.71 (m, 3H), 3.98 (dd, 1H, J = 3.5, 9.9 Hz), 3.84 (dd, 1H, J = 5.8, 9.9 Hz), 3.66 (dd, 1H, J = 3.5, 5.8 Hz), 2.20 (s, 3H), 2.19 (s, 3H), 2.08 (q, 4H), 0.96 (s, 9H), 0.90 (s, 9H), 0.70 (t, 6H), 0.10 (s, 3H), 0.05 (s, 3H).

D. 5-(1-{4-[2-(tert-Butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonyl-chloride.

15

Add n-BuLi (6 ml, 9.6 mmol, 1.6 M/Hex) to a solution of 1-{4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-2-(t-butyldimethylsilyloxy)-3,3-dimethyl-butane (3.9 g, 8 mmol) in THF (20 ml) at 0 °C. After 1 h, the mixture is transferred through cannula into a solution of SO₂Cl₂ (0.65 ml, 8 mmol) in pentane (30 ml) at -78 °C. It is stirred at RT for 2 h and concentrated. The residue is dissolved in dichloromethane (20 ml) and used for the next reaction without further purification.

-280-

- E. [5-(1-{4-[2-(tert-Butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonylamine]-acetic acid methyl ester.

5 An aliquot of 5-(1-{4-[2-(tert-butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonyl chloride (step D) (4 ml, 1.5 mmol) is added to a suspension of glycine methyl ester hydrochloride (565 mg, 4.5 mmol) and Et₃N (0.94 ml, 6.75 mmol) in dichloromethane (10 ml) at 0 °C. It is stirred at RT overnight, concentrated, and partitioned between EtOAc and 1N HCl. The organic 10 layer is concentrated and chromatographed (Hex to 20% EtOAc/Hex) to give the title product (380 mg, 40%).

15 ¹H NMR (CDCl₃): δ 7.01 (dd, 1H, J = 2.0, 8.3 Hz), 6.97 (d, 1H, J = 2.0 Hz), 6.68 (d, 1H, J = 8.3 Hz), 6.59 (s, 1H), 5.10 (t, 1H), 3.98 (dd, 1H, J = 3.5, 9.9 Hz), 3.84, 3.88 (m, 3H), 3.65, 3.69 (m, 4H), 2.41 (s, 3H), 2.20 (s, 3H), 2.09 (q, 4H), 0.97 (s, 9H), 0.90 (s, 9H), 0.70 (t, 6H), 0.11 (s, 3H), 0.05 (s, 3H);
ES-MS: 640 (M+1).

- F. (5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid methyl ester.

20

To a solution of [5-(1-{4-[2-(tert-butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonylamine]-acetic acid methyl ester (380 mg, 0.59 mmol) in acetonitrile (10 ml) at 0 °C is added hydrofluoride solution (3 ml, 48% in water). After stirring at RT for 2 h, the reaction is

-281-

concentrated and partitioned between EtOAc and 1N HCl. The organic layer is washed successively with 1N HCl and brine. The organic layer is concentrated and chromatographed (Hex to 25% EtOAc/Hex) to give the title compound (250 mg, 82%).

¹H NMR (CDCl₃): δ 7.02 (dd, 1H, J = 2.5, 8.3 Hz), 6.97 (d, 1H, J = 2.0 Hz), 6.73 (d, 1H, J = 8.3 Hz), 6.58 (s, 1H), 5.12 (t, 1H), 4.10 (dd, 1H, J = 2.5, 8.6 Hz), 3.87 (dd, 1H, J = 8.6, 8.8 Hz), 3.84 (d, 2H, J = 5.3 Hz), 3.71 (dd, 1H, J = 2.5, 8.8 Hz), 3.66 (s, 3H), 2.40 (s, 3H), 2.20 (s, 3H), 2.07 (q, 4H), 1.02 (s, 9H), 0.69 (t, 6H);
 HRMS: Calcd. for C₂₆H₄₃N₂O₆S₂ (M+18), 543.2563, found, 543.2550.

10 Example 135 and Example 136

Preparation of enantiomers of (5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid methyl ester.

A racemic mixture of (5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid methyl ester (750 mg) is chromatographed on Chiralpak AD column to give enantiomer 1, Example 135 (400 mg, 53%) and enantiomer 2, Example 136 (320 mg, 43%).
 HPLC: Chiralpak AD (4.6 x 150 mm); 35% heptane, 65% EtOH; flow rate: 0.6 ml/m;
 UV: 260 nm

20 Enantiomer 1, Example 135: rt = 4.5 m;

¹H NMR (CDCl₃): equivalent to Example 134

Enantiomer 2, equivalent to Example 136: rt = 5.6 m.

¹H NMR (CDCl₃): equivalent to Example 134

25

Example 137

Preparation of (5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid.

-282-

To a solution of (5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonamido)acetic acid methyl ester (210 mg, 0.4 mmol) in dioxane (10 ml) is added 2N LiOH/H₂O solution (10 ml) and stirred at RT overnight. The reaction is concentrated and partitioned between EtOAc/1N HCl. The organic layer is concentrated to give the title compound (180 mg, 88%).

¹H NMR (CDCl₃): δ 7.01 (dd, 1H, J = 2.5, 8.3 Hz), 6.97 (d, 1H, J = 2.0 Hz), 6.73 (d, 1H, J = 8.3 Hz), 6.60 (s, 1H), 5.16 (t, 1H), 4.12 (dd, 1H, J = 2.9, 9.3 Hz), 3.88 (dd, 1H, J = 8.8, 9.3 Hz), 3.86 (d, 2H, J = 5.5 Hz), 3.72 (dd, 1H, J = 2.9, 8.8 Hz), 2.40 (s, 3H), 2.20 (s, 3H), 2.05 (q, 4H), 1.01 (s, 9H), 0.70 (t, 6H);

HRMS: Calcd. for C₂₅H₃₈NO₆S₂ (M+1), 512.2146, found, 512.2141.

Example 138

Preparation of enantiomers of (5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonamido)acetic acid.

Using a procedure analogous to Example 136, enantiomer 1 of (5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonamido)acetic acid methyl ester (390 mg, 0.74 mmol) (Example 135) gives the title compound (250 mg, 66%).

¹H NMR (CDCl₃): equivalent to Example 134;
ES-MS: 512 (M+1).

Example 139

Preparation of (5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonamido)acetic acid.

A. [5-(1-{4-[2-(tert-butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonylamine]-acetic acid tert-butyl ester.

Using a procedure analogous to Example 134E, 5-(1-{4-[2-(tert-butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonyl chloride and 2-amino-acetic acid tert-butyl ester (787 mg, 6 mmol) give the title compound (670 mg, 20%).

¹H NMR (CDCl_3): δ 7.01 (dd, 1H, $J = 2.5, 8.8$ Hz), 6.97 (d, 1H, $J = 2.0$ Hz), 6.68 (d, 1H, $J = 8.8$ Hz), 6.57 (s, 1H), 5.09 (t, 1H), 3.98 (dd, 1H, $J = 3.5, 9.8$ Hz), 3.86 (dd, 1H, $J = 5.9, 9.8$ Hz), 3.71 (d, 2H, $J = 5.4$ Hz), 3.67 (dd, 1H, $J = 3.5, 5.9$ Hz), 2.40 (s, 3H), 2.20 (s, 3H), 2.08 (q, 4H), 1.40 (s, 9H), 0.97 (s, 9H), 0.90 (s, 9H), 0.70 (t, 6H), 0.11 (s, 3H), 0.05 (s, 3H).

B. (5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid tert-butyl ester.

20 A mixture of [5-(1-{4-[2-(tert-butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonylamine]-acetic acid tert-

butyl ester (667 mg, 1mmol) and tetra-n-butylammonium fluoride (6 ml, 1M in THF) is stirred at RT for 3 d. It is diluted with EtOAc and washed with NH₄Cl. The organic layer is concentrated and chromatographed (Hex to 15% EtOAc/Hex) to give the title compound (360 mg, 63%).

5 ES-MS: 568 (M+1).

C. (5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid tert-butyl ester.

10 A mixture of (5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid tert-butyl ester (360 mg, 0.63 mmol), pyridinium dichromate (179 mg, 0.48 mmol) and Ac₂O (66 µL, 0.7 mmol) in dichloromethane (10 ml) is refluxed for 3 h. The reaction is concentrated and chromatographed (Hex to 15% EtOAc/Hex) to give the title compound (330 mg, 92%);
15 ¹H NMR (CDCl₃): δ 6.96, 7.23 (m, 2H), 6.56 (s, 1H), 6.51 (d, 1H, J = 8.3 Hz), 6.57 (s, 1H), 5.08 (t, 1H), 4.85 (s, 2H), 3.71 (d, 2H, J = 5.4 Hz), 2.40 (s, 3H), 2.26 (s, 3H), 2.07 (q, 4H), 1.40 (s, 9H), 1.26 (s, 9H), 0.90 (s, 9H), 0.70 (t, 6H);
HRMS: calcd. for C₂₉H₄₇N₂O₆S₂ (M+18), 583.2876, found, 583.2876.

20 D. (5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid.

A solution of (5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid tert-butyl ester (320 mg, 0.57 mmol) in 4N HCl/dioxane (10 ml) is stirred at RT overnight. The reaction is concentrated

and chromatographed (Hex to 0.5% AcOH in 50% EtOAc/Hex) to give the title compound (250 mg, 87%).

¹H NMR (CDCl₃): δ 7.01 (d, 1H, J = 2.5 Hz), 6.92 (dd, 1H, J = 2.5, 8.8 Hz), 6.62 (s, 1H), 6.45 (d, 1H, J = 8.8 Hz), 5.10 (t, 1H), 4.91 (s, 2H), 3.86 (d, 2H, J = 5.4 Hz), 2.41 (s, 3H), 5 2.25 (s, 3H), 2.04 (q, 4H), 1.25 (s, 9H), 0.71 (t, 6H);
 HRMS: Calcd. for C₂₅H₃₉N₂O₆S₂ (M+18), 527.2250, found, 527.2245.

Example 140

Preparation of 3-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-10 propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid ethyl ester.

Using procedures analogous to Example 134E and Example 134F, an aliquot of 5-(1-{4-[2-(tert-butyl-dimethyl-silanyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonyl chloride (Example 134D) and 3-amino-propionic acid ethyl ester hydrochloride give the title compound (19% overall yield).

¹H NMR (CDCl₃): δ 7.02 (dd, 1H, J = 2.5, 8.8 Hz), 6.98 (d, 1H, J = 2.0 Hz), 6.73 (d, 1H, J = 8.8 Hz), 6.58 (s, 1H), 5.26 (t, 1H), 4.14 (q, 2H), 4.10 (dd, 1H, J = 2.9, 8.9 Hz), 3.87 (dd, 1H, J = 8.8, 8.9 Hz), 3.71 (dd, 1H, J = 2.9, 8.8 Hz), 3.25 (m, 2H), 2.50 (t, 2H), 2.39 (s, 3H), 2.20 (s, 3H), 2.06 (q, 4H), 1.02 (s, 9H), 0.70 (t, 6H);
 20 HRMS: Calcd. for C₂₈H₄₄NO₆S₂ (M+1), 554.2610, found, 554.2590.

Example 141

Preparation of 3-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-1-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid.

The title compound is obtained from 3-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid ethyl ester using an analogous procedure as described for Example 137.

¹H NMR (CDCl₃): δ 7.02 (d, 1H, J = 8.3 Hz), 6.98 (s, 1H), 6.73 (d, 1H, J = 8.3 Hz), 6.60 (s, 1H), 5.50 (t, 1H), 4.13 (d, 1H), 4.12 (dd, 1H, J = 2.0, 8.9 Hz), 3.88 (dd, 1H, J = 8.8, 8.9 Hz), 3.72 (dd, 1H, J = 2.0, 8.8 Hz), 3.26 (m, 2H), 2.55 (t, 2H), 2.39 (s, 3H), 2.20 (s, 3H), 2.06 (q, 4H), 1.02 (s, 9H), 0.70 (t, 6H);
 HRMS: Calcd. for C₂₆H₄₀NO₆S₂ (M+1), 526.2297, found, 526.2275.

10 Example 142 and Example 143

Preparation of enantiomers of 3-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid.

15 A racemic mixture of 3-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid (200 mg) is chromatographed on a Chiralpak AD column to give enantiomer 1, example 142 (79 mg, 40%) and enantiomer 2, Example 143 (79 mg, 40%).

HPLC: Chiralpak AD (4.6 x 250 mm); 0.1% TFA in 15% EtOH/85% Hept; flow rate:
 20 1.0 ml/m; UV: 260 nm
 Enantiomer 1: rt = 12 m;

¹H NMR (CDCl₃): equivalent to Example 141;

ES-MS: 526 (M+1)

25 Enantiomer 2: rt = 21 m;

¹H NMR (CDCl₃): equivalent to Example 141;

ES-MS: 526 (M+1).

Example 144

Preparation of 3-(5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid.

5 The title compound is obtained from 5-(1-{4-[2-(tert-butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonyl chloride and 2-amino-acetic acid tert-butyl ester and 3-amino-propionic acid t-butyl ester hydrochloride using an analogous procedures as described for Example 139A to Example 139D.

10 ¹H NMR (CDCl₃): δ 6.99 (s, 1H), 6.97 (d, 1H, J = 8.4 Hz), 6.59 (s, 1H), 6.50 (d, 1H, J = 8.4 Hz), 5.61 (t, 1H), 4.87 (s, 2H), 3.26 (m, 2H), 2.55 (t, 2H), 2.39 (s, 3H), 2.25 (s, 3H), 2.06 (q, 4H), 1.26 (s, 9H), 0.69 (t, 6H);
ES-MS: 524 (M+1).

15

Example 145

Preparation of 3-[(5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonyl)-methyl-amine]-propionic acid.

20 A. 3-[(5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonyl)-methyl-amine]-propionic acid tert-butyl ester.

To a mixture of 3-(5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid tert-butyl ester (Example 143C) (400 mg, 0.69 mmol) and THF (15 ml) is added PPh₃ (272 mg, 1.04 mmol), diethyl azodicarboxylate (163 µL, 1.04 mmol) and methanol (42 µL, 1.04 mmol).
 5 The reaction is stirred at RT overnight, concentrated and chromatographed (Hex to 20% EtOAc/Hex) to give the title compound (240 mg, 59%).
 10 ¹H NMR (CDCl₃): δ 6.99 (s, 1H), 6.97 (d, 1H, J = 8.4 Hz), 6.57 (s, 1H), 6.52 (d, 1H, J = 8.4 Hz), 4.85 (s, 2H), 3.37 (t, 2H), 2.81 (s, 3H), 2.51 (t, 2H), 2.41 (s, 3H), 2.26 (s, 3H), 2.06 (q, 4H), 1.44 (s, 9H), 1.26 (s, 9H), 0.69 (t, 6H).

B. 3-[{5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonyl]-methyl-amine]-propionic acid.

15 The title compound is prepared from 3-[{5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonyl]-methyl-amine]-propionic acid tert-butyl ester using a procedure analogous to Example 139D.
 20 ¹H NMR (CDCl₃): δ 6.99 (s, 1H), 6.97 (d, 1H, J = 8.4 Hz), 6.60 (s, 1H), 6.50 (d, 1H, J = 8.4 Hz), 4.87 (s, 2H), 3.41 (t, 2H), 2.84 (s, 3H), 2.63 (t, 2H), 2.41 (s, 3H), 2.26 (s, 3H), 2.06 (q, 4H), 1.26 (s, 9H), 0.69 (t, 6H).

HRMS: calcd. for C₂₇H₄₀NO₆S₂, 538.2297, found, 538.2296.

Example 146

2-(R)-(5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid.
 25

The title compound is prepared from 2-(R)-amino-propionic acid tert-butyl ester hydrochloride following an analogous procedure as described for Example 139.

- ¹H NMR (CDCl₃): δ 6.96 (d, 1H, J = 2.5 Hz), 6.97 (dd, 1H, J = 2.0, 8.8 Hz), 6.61 (s, 1H), 5.44 (d, 1H, J = 8.5 Hz), 5.26 (d, 1H, J = 8.3 Hz), 4.92 (s, 2H), 4.11 (m, 1H), 2.40 (s, 3H), 2.25 (s, 3H), 2.06 (q, 4H), 1.42 (d, 3H, J = 7.4 Hz), 1.25 (s, 9H), 0.69 (t, 6H); ES-MS: 524 (M+1).

Example 147

- 10 2-(R)-(5-{1-[4-(3,3-Dimethyl-2-thioxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid.

- A mixture of 2-(R)-(5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid (125 mg, 0.2 mmol) and Lawesson's reagent (236 mg, 0.5 mmol) in dichloroethane (7 ml) is refluxed for 3 d. The solvent is concentrated and chromatographed (0.1% AcOH in 50% EtOAc/Hex) to give the title compound (67 mg, 52%).

- ¹H NMR (CDCl₃): δ 6.97 (s, 1H), 6.96 (d, 1H, J = 8.4 Hz), 6.60 (s, 1H), 6.50 (d, 1H, J = 8.4 Hz), 5.19 (d, 1H, J = 8.8 Hz), 4.86 (s, 2H), 4.14 (m, 1H), 2.40 (s, 3H), 2.25 (s, 3H), 2.06 (m, 4H), 1.38 (d, 3H), 1.26 (s, 9H), 0.69 (t, 6H); HRMS: calcd. for C₂₆H₃₈NO₅S₃, 540.1912, found, 540.1908.

Example 148

- 25 Preparation of 2-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-2-methyl-propionic acid methyl ester.

-290-

Using analogous procedures as described for Example 134D to Example 134F, 2-amino-2-methyl-propionic acid methyl ester hydrochloride gives the title compound (20% overall yield).

- 5 ^1H NMR (CDCl_3): δ 7.03 (dd, 1H, $J = 2.4, 8.4$ Hz), 6.96 (d, 1H, $J = 2.3$ Hz), 6.72 (d, 1H, $J = 8.8$ Hz), 6.53 (s, 1H), 5.42 (s, 1H), 4.10 (dd, 1H, $J = 2.6, 9.2$ Hz), 3.87 (dd, 1H, $J = 8.8, 9.2$ Hz), 3.69 (dd, 1H, $J = 2.6, 8.8$ Hz), 3.67 (s, 3H), 2.38 (s, 3H), 2.19 (s, 3H), 2.06 (q, 4H), 1.48 (s, 6H), 1.02 (s, 9H), 0.69 (t, 6H);
 HRMS: Calcd. for $\text{C}_{28}\text{H}_{44}\text{NO}_6\text{S}_2$ ($\text{M}+1$), 554.2610, found, 554.2610.

10

Example 149

Preparation of 2-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-benzoic acid.

- 15 Using analogous procedures as described for Example 134D to Example 134F and Example 137, 2-amino-benzoic acid methyl ester gives the title compound (8% overall yield).

- 16 ^1H NMR (400MHz, CDCl_3) δ 10.54 (s, 1H), 8.03 (d, 1H, $J=7.9$ Hz), 7.71 (d, 1H, $J=8.4$ Hz), 7.48 (t, 1H, $=7.9$ Hz), 7.09 (t, 1H, $J=7.7$ Hz), 6.93 (dd, 1H, $J=8.6, 2.4$ Hz), 6.86 (s, 1H), 6.70 (d, 1H, $J=8.4$ Hz), 6.48 (s, 1H), 4.14-4.07 (m, 1H), 3.89 (t, 1H, $J=9.0$ Hz), 3.72 (dd, 1H, $J=8.6, 2.4$ Hz), 2.30 (s, 3H), 2.16 (s, 3H), 2.04-1.93 (m, 4H), 1.02 (s, 9H), 0.60 (t, 6H, $J=7.3$ Hz).

High Res. EI-MS: 574.2305; calc. for $\text{C}_{30}\text{H}_{39}\text{NO}_6\text{S}_2+\text{H}$: 574.2297

25

Example 150

Preparation of epimer 1 of 2-(R)-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid methyl ester.

5

A. Enantiomer 1 of 1-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol.

To a mixture of (R)-2-methyl-CBS-oxazaborolidine (0.1 ml, 0.1 mmol, 1M in toluene), borane-N, N-dimethyl aniline complex (0.18 ml, 1 mmol) in THF (5 ml) is added a solution of 1-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-one (372 mg, 1 mmol) in THF (5 ml) over a period of 40 m. The reaction is stirred at RT for 2 h and MeOH (2 ml) is added followed by 1N hydrochloric acid. The mixture is extracted with EtOAc and the organic phase is concentrated and chromatographed (Hex to 25% EtOAc/Hex) to give the title compound (305 mg, 82%).

HPLC: Chiraldak AD (0.46 x 25 cm); 20% 2-propanol, 80% heptane; flow rate: 1.0 ml/m; UV: 225 nm;

Enantiomer 1: 91% ee; rt: 4.03 m.

20 ¹H NMR (CDCl₃) equivalent to Example 134B

B. Epimer 1 of 2-(R)-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid methyl ester

Using analogous procedures described in Example 134C to Example 134F, enantiomer 1 of 1-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol and 2-(R)-amino-propionic acid methyl ester hydrochloride give 5 the title compound (27% overall yield).

- ¹NMR (400MHz, CDCl₃) δ 7.01 (d, 1H, J=8.4 Hz), 6.96 (s, 1H), 6.72 (d, 1H, J=8.4 Hz), 6.56 (s, 1H), 5.26 (d, 1H, J=8.8 Hz), 4.10-4.03 (m, 2H), 3.86 (t, 1H, J=9.0 Hz), 3.71 (dd, 1H, J=8.8, 2.2 Hz), 3.59 (s, 3H), 2.38 (s, 3H), 2.19 (s, 3H), 2.11-2.03 (m, 4H), 1.38 (d, 3H, J=7.0 Hz), 1.01 (s, 9H), 0.68 (t, 6H, J=7.3 Hz).
10 High Res. EI-MS: 540.24556; calc. for C₂₇H₄₁NO₆S₂+H: 540.2454

Example 151

Preparation of epimer 1 of 2-(R)-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid.

15

- Using an analogous procedure to Example 137, epimer 1 of 2-(R)-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-propionic acid methyl ester (Example 150) gives the title compound (98%).

¹NMR (400MHz, CDCl₃) δ 7.04-6.98 (m, 1H), 6.96 (s, 1H), 6.73 (d, 1H, J=8.8 Hz), 6.59 (s, 1H), 5.29 (d, 1H, J=8.8 Hz), 4.14-4.07 (m, 2H), 3.88 (t, 1H, J=9.0 Hz), 3.74-3.69 (m, 1H), 2.38 (s, 3H), 2.19 (s, 3H), 2.12-2.01 (m, 4H), 1.41 (d, 3H, J=7.0 Hz), 1.01 (s, 9H), 0.69 (t, 6H, J=7.3 Hz).

High Res. EI-MS: 526.2284; calc. for C₂₆H₃₉NO₆S₂+H: 526.2297

25

Example 152

Preparation of enantiomer 1 of (5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-thiophene-2-sulfonylamine)-acetic acid methyl ester.

- 5 Using a procedure analogous to Example 150A, 1-[4-(1-ethyl-1-thiophen-2-yl-propyl)-2-methoxy]-3,3-dimethyl-butan-2-one gives the title compound (18%).
¹H NMR (CDCl₃) δ 7.43 (d, 1H, J = 4.0 Hz), 7.02 (dd, 1H, J = 2.0, 8.5 Hz), 6.98 (s, 1H), 6.74 (s, 1H), 6.73 (d, 1H, J = 8.8 Hz), 5.11 (t, 1H), 4.10 (dd, 1H, J = 2.6, 9.2 Hz), 3.88 (dd, 1H, J = 8.8, 9.2 Hz), 3.85 (d, 2H, J = 4.8 Hz), 3.71 (dd, 1H, J = 2.6, 8.8 Hz), 3.66 (s, 10 3H), 2.19 (s, 3H), 2.07 (m, 4H), 1.01 (s, 9H), 0.70 (t, 6H);
HRMS: Calcd. for C₂₅H₄₁N₂O₆S₂ (M+18), 529.2406, found, 529.2413.

Example 153

- Preparation of enantiomer 1 of (5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-thiophene-2-sulfonylamine)-acetic acid.
15

- Using an analogous procedure to Example 137, enantiomer 1 of (5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-thiophene-2-sulfonylamine)-acetic acid methyl ester give the title compound (quant).
20 ¹H NMR (CDCl₃) δ 7.44 (d, 1H, J = 4.0 Hz), 7.0 (d, 1H, J = 8.4 Hz), 6.98 (s, 1H), 6.78 (d, 1H, J = 4.0 Hz), 6.74 (d, 1H, J = 8.4 Hz), 5.11 (t, 1H), 4.10 (dd, 1H, J = 2.5, 9.2 Hz), 3.88 (dd, 1H, J = 8.8, 9.2 Hz), 3.85 (d, 2H, J = 4.4 Hz), 3.71 (dd, 1H, J = 2.5, 8.8 Hz), 2.19 (s, 3H), 2.07 (m, 4H), 1.01 (s, 9H), 0.70 (t, 6H);
HRMS: Calcd. for C₂₄H₃₉N₂O₆S₂ (M+18), 515.2249, found, 515.2267.

-294-

Example 154

Preparation of enantiomer 1 of (5-{1-ethyl-1-[3-ethyl-4-(2-hydroxy-3,3-dimethyl-butoxy)-phenyl]-propyl}-thiophene-2-sulfonylamine)-acetic acid methyl ester.

5 Using a procedure analogous to Example 150A, 1-[2-ethyl-4-(1-ethyl-1-thiophen-2-yl-propyl)-phenoxy]-3,3-dimethyl-butan-2-one gives the title compound (34%).

¹H NMR (CDCl₃) δ 7.43 (d, 1H, J = 3.5 Hz), 7.02 (d, 1H, J = 8.3 Hz), 7.00 (s, 1H), 6.76 (d, 1H, J = 3.5 Hz), 6.75 (d, 1H, J = 8.3 Hz), 5.06 (t, 1H), 4.10 (dd, 1H, J = 2.6, 9.3 Hz), 3.88 (dd, 1H, J = 8.8, 9.3 Hz), 3.85 (d, 2H, J = 5.8 Hz), 3.71 (dd, 1H, J = 2.6, 8.8 Hz), 10 3.67 (s, 3H), 2.60 (q, 2H), 2.06 (q, 4H), 1.14 (t, 3H), 1.01 (s, 9H), 0.70 (t, 6H); HRMS: Calcd. for C₂₆H₄₀NO₆S₂ (M+1), 526.2297, found, 526.2285.

Example 155

Preparation of enantiomer 1 of (5-{1-Ethyl-1-[3-ethyl-4-(2-hydroxy-3,3-dimethyl-butoxy)-phenyl]-propyl}-thiophene-2-sulfonylamine)-acetic acid.

Using a procedure analogous to Example 137, enantiomer 1 of (5-{1-ethyl-1-[3-ethyl-4-(2-hydroxy-3,3-dimethyl-butoxy)-phenyl]-propyl}-thiophene-2-sulfonylamine)-acetic acid methyl ester gives the title compound (quant).

20 ¹H NMR (CDCl₃) δ 7.44 (d, 1H, J = 4.0 Hz), 6.98, 7.01 (m, 2H), 6.74, 6.79 (m, 2H), 5.11 (t, 1H), 4.13 (dd, 1H, J = 3.0, 9.4 Hz), 3.90 (dd, 1H, J = 8.9, 9.4 Hz), 3.86 (d, 2H, J = 5.3 Hz), 3.73 (dd, 1H, J = 3.0, 8.9 Hz), 2.60 (q, 2H), 2.09 (m, 4H), 1.16 (t, 3H), 1.03 (s, 9H), 0.72 (t, 6H); HRMS: Calcd. for C₂₅H₄₁N₂O₆S₂ (M+18), 529.2406, found, 529.2397.

Example 156

Preparation of enantiomer 1 of (5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-propyl-phenyl]-propyl}-thiophene-2-sulfonylamine)-acetic acid methyl ester.

- 5 Using a procedure analogous to Example 150, 1-[4-(1-ethyl-1-thiophen-2-yl-propyl)-2-propyl-phenoxy]-3,3-dimethyl-butan-2-one gives the title compound (25%).
¹H NMR (CDCl_3) δ 7.43 (d, 1H, J = 4.0 Hz), 7.02 (dd, 1H, J = 1.8, 8.8 Hz), 7.00 (d, 1H, J = 1.8 Hz), 6.77 (d, 1H, J = 4.0 Hz), 6.75 (d, 1H, J = 8.8 Hz), 5.05 (t, 1H), 4.10 (dd, 1H, J = 2.4, 8.8 Hz), 3.88 (dd, 1H, J = 8.8, 9.2 Hz), 3.85 (d, 2H, J = 5.2 Hz), 3.71 (dd, 1H, J = 2.4, 8.8 Hz), 3.67 (s, 3H), 2.55 (t, 2H), 2.06 (q, 4H), 1.56 (m, 2H), 1.02 (s, 9H), 0.89 (t, 3H), 0.70 (t, 6H);
HRMS: Calcd. for $\text{C}_{27}\text{H}_{45}\text{N}_2\text{O}_6\text{S}_2$ ($M+18$), 557.2719, found, 557.2698.

15

Example 157

- Preparation of (5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-propyl-phenyl]-propyl}-thiophene-2-sulfonylamine)-acetic acid.

Using a procedure analogous to Example 137, (5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-propyl-phenyl]-propyl}-thiophene-2-sulfonylamine)-acetic acid methyl ester gives the title compound (quant).

¹H NMR (CDCl₃) δ 7.43 (d, 1H, J = 4.0 Hz), 6.99 (d, 1H, J = 8.4 Hz), 6.98 (s, 1H), 6.78 (d, 1H, J = 4.0 Hz), 6.75 (d, 1H, J = 8.4 Hz), 5.09 (t, 1H), 4.10 (dd, 1H, J = 2.4, 9.4 Hz), 3.88 (dd, 1H, J = 8.8, 9.4 Hz), 3.86 (d, 2H, J = 5.3 Hz), 3.72 (dd, 1H, J = 2.4, 8.8 Hz), 2.55 (t, 2H), 2.07 (m, 4H), 1.56 (m, 2H), 1.01 (s, 9H), 0.89 (t, 3H), 0.71 (t, 6H); HRMS: Calcd. for C₂₆H₄₃N₂O₆S₂ (M+18), 543.2563, found, 543.2541.

10 Example 158

Preparation of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonic acid acetyl-amide

A. 15 5-(1-{4-[2-(tert-Butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonic acid amide

Using a procedure analogous to Example 134E, 5-(1-{4-[2-(tert-butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonyl chloride and NH₄OH give the title compound (39%).

20 ¹H NMR (CDCl₃) δ 7.02 (dd, 1H, J = 2.9, 8.6 Hz), 6.96 (d, 1H, J = 2.2 Hz), 6.68 (d, 1H, J = 8.6 Hz), 6.60 (s, 1H), 4.83 (s, 2H), 3.98 (dd, 1H, J = 3.3, 9.9 Hz), 3.85 (dd, 1H, J = 5.5, 9.9 Hz), 3.67 (dd, 1H, J = 3.3, 5.5 Hz), 2.43 (s, 3H), 2.20 (s, 3H), 2.06 (q, 4H), 0.96 (s, 9H), 0.89 (s, 9H), 0.70 (t, 6H), 0.11 (s, 3H), 0.05 (s, 3H).

B. 5-(1-{4-[2-(tert-Butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonic acid acetyl-amide.

A mixture of 5-(1-{4-[2-(tert-Butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonic acid amide (227 mg, 0.4 mmol), EDCI (92 mg, 0.48 mmol), acetic acid (27 µL, 0.48 mmol) and DMAP (50 mg) in dichloromethane (10 ml) is stirred at RT overnight. The reaction is diluted with dichloromethane and washed with 1N HCl. The organic phase is concentrated and chromatographed (Hex to 20% EtOAc/Hex) to give the title compound (240 mg, 98%).

10 ¹H NMR (CDCl₃) δ 7.99 (s, 1H), 7.02 (d 1H, J = 8.8 Hz), 6.96 (s, 1H), 6.69 (d, 1H, J = 8.8 Hz), 6.59 (s, 1H), 3.98 (dd, 1H, J = 3.4, 9.8 Hz), 3.85 (dd, 1H, J = 5.8, 9.8 Hz), 3.67 (dd, 1H, J = 3.4, 5.8 Hz), 2.43 (s, 3H), 2.20 (s, 3H), 2.13 (s, 3H), 2.06 (q, 4H), 0.96 (s, 9H), 0.89 (s, 9H), 0.70 (t, 6H), 0.11 (s, 3H), 0.05 (s, 3H);
ES-MS: 610 (M+1).

15

C. 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonic acid acetyl-amide.

Using a procedure analogous to example-TWM-1F, 5-(1-{4-[2-(tert-butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonic acid acetyl-amide gives the title compound (240 mg, 62%).

20 ¹H NMR (CDCl₃) δ 7.97 (s, 1H), 7.02 (dd, 1H, J = 2.4, 8.3 Hz), 6.99 (s, 1H), 6.74 (d, 1H, J = 8.3 Hz), 6.58 (s, 1H), 4.10 (dd, 1H, J = 2.4, 9.3 Hz), 3.88 (dd, 1H, J = 8.8, 9.3 Hz),

-298-

3.72 (dd, 1H, $J = 2.4, 8.8$ Hz), 2.46 (s, 3H), 2.21 (s, 3H), 2.13 (s, 3H), 2.07 (m, 4H), 1.02 (s, 9H), 0.70 (t, 6H).

HRMS: calcd. for C₂₅H₃₈NO₅S₂ (M+1), 496.2191, found, 496.2188.

5 Example 159

Preparation of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonic acid propionyl-amide.

10

Using procedures analogous to Example 158B and Example 158C, 5-(1-{4-[2-(tert-butyl-dimethyl-silyloxy)-3,3-dimethyl-butoxy]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-sulfonic acid amide and propionic acid give the title compound (66%).

- 15 ¹H NMR (CDCl₃) δ 8.56 (s, 1H), 7.02 (dd, 1H, $J = 2.4, 8.3$ Hz), 6.98 (d, 1H, $J = 2.4$ Hz), 6.73 (d, 1H, $J = 8.3$ Hz), 6.56 (s, 1H), 4.10 (dd, 1H, $J = 3.0, 9.3$ Hz), 3.88 (dd, 1H, $J = 8.8, 9.3$ Hz), 3.71 (dd, 1H, $J = 3.0, 8.8$ Hz), 2.47 (s, 3H), 2.33 (q, 2H), 2.19 (s, 3H), 2.07 (m, 4H), 1.08 (t, 3H), 1.02 (s, 9H), 0.68 (t, 6H);
 HRMS: calcd. for C₂₆H₄₀NO₅S₂ (M+1), 510.2348, found, 510.2359.

20

Example 160

Preparation of 5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid acetyl-amide.

Using a procedure analogous to Example 138C, 5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonic acid acetyl-amide gives the title compound (84%).

5 ^1H NMR (CDCl_3) δ 8.05 (s, 1H), 6.91, 6.99 (m, 2H), 6.57 (s, 1H), 6.51 (d, 1H, $J = 8.5$ Hz), 4.86 (s, 2H), 2.46 (s, 3H), 2.26 (s, 3H), 2.13 (s, 3H), 2.07 (m, 4H), 1.26 (s, 9H), 0.69 (t, 6H).

HRMS: calcd. for $\text{C}_{25}\text{H}_{36}\text{NO}_5\text{S}_2$ ($M+1$), 494.2035, found, 494.2040.

Example 161

10 Preparation of 5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid dimethylaminemethyleneamide.

A. 5-{1-[4-(tert-Butyl-dimethyl-silyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid amide.

15

To a 0 °C solution of tert-butyl-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-dimethyl-silane (28.37 g, 72.99 mmol) in THF (360 ml) is added dropwise n-butyllithium (47.90 ml, 76.64 mmol, 1.6M in Hex) and stirred at 0 °C for 30 min. The reaction mixture is cannulated into a -78 °C solution of sulfonyl chloride (11.73 ml, 145.98 mmol) in pentane (360 ml) and the reaction warms to RT for 2 h. The reaction mixture is concentrated and the residue is dissolved in acetone (100 ml) and added to a 0 °C mixture of acetone (1 L) and concentrated NH₄OH (150 ml) and stirs at 0 °C for 2 h. The reaction mixture is concentrated and the residue is partitioned between EtOAc (700 ml) and satd aqueous NH₄Cl (200 ml). The organic layer is MgSO₄ dried, concentrated

-300-

and chromatographed (330 g SiO₂, 50% EtOAc/Hex) to yield the title compound (5.34 g, 16%).

¹NMR (400MHz, CDCl₃) δ 6.97 (d, 1H, J=2.2 Hz), 6.91 (dd, 1H, J=8.6, 2.4 Hz), 6.66 (d, 1H, J=8.4 Hz), 6.58 (s, 1H), 4.90 (s, 2H), 2.42 (s, 3H), 2.17 (s, 3H), 2.09-2.04 (m, 4H), 5 1.00 (s, 9H), 0.69 (t, 6H, J=7.3 Hz), 0.21 (s, 6H).

B. 5-{1-[4-(tert-Butyl-dimethyl-silanyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid dimethylaminemethyleneamide.

10

To a solution of 5-{1-[4-(tert-butyl-dimethyl-silanyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid amide (5.34 g, 11.42 mmol) in THF (200 ml) is added dimethyl formamide dimethyl acetamide (1.52 ml, 11.42 mmol) and stirred overnight. The reaction mixture is diluted with EtOAc (500 ml) and washed with 0.2N HCl (100 ml). The organic layer is MgSO₄ dried, concentrated and chromatographed (120 g SiO₂, 50% EtOAc/Hex) to yield the title compound (6.0 g, quant.).

¹NMR (400MHz, CDCl₃) δ 8.10 (s, 1H), 6.98 (d, 1H, J=2.2 Hz), 6.92 (dd, 1H, J=8.4, 2.6 Hz), 6.65 (d, 1H, J=8.4 Hz), 6.52 (s, 1H), 3.12 (s, 3H), 3.05 (s, 3H), 2.41 (s, 3H), 2.16 (s, 3H), 2.09-1.99 (m, 4H), 1.00 (s, 9H), 0.68 (t, 6H, J=7.3 Hz), 0.20 (s, 6H).

C. 5-[1-Ethyl-1-(4-hydroxy-3-methyl-phenyl)-propyl]-3-methyl-thiophene-2-sulfonic acid dimethylaminemethyleneamide

25

-301-

To a 0 °C solution of 5-{1-[4-(tert-butyl-dimethyl-silanyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid dimethylaminemethyleneamide (6.1 g, 11.68 mmol) in THF (150 ml) is added dropwise tetrabutylammonium fluoride (15.62 ml, 15.62 mmol, 1.0M in THF) and is warmed to RT for 1 h. The reaction is quenched with 5 satd aqueous NH₄Cl (100 ml) and extracted with Et₂O (2 x 200 ml). The combined organic layers are dried MgSO₄ dried, concentrated and chromatographed (120 g SiO₂, 50% EtOAc/Hex) to yield the title compound (4.63 g, 97%).

10 ¹NMR (400MHz, CDCl₃) δ 8.09 (s, 1H), 6.97 (s, 1H), 6.95 (d, 1H, J=8.4 Hz), 6.68 (d, 1H, J=8.4 Hz), 6.52 (s, 1H), 4.84 (s, 1H), 3.12 (s, 3H), 3.04 (s, 3H), 2.40 (s, 3H), 2.21 (s, 3H), 2.08-2.01 (m, 4H), 0.68 (t, 6H, J=7.3 Hz).

D. 5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid dimethylaminemethyleneamide.

15 To a solution of 5-[1-ethyl-1-(4-hydroxy-3-methyl-phenyl)-propyl]-3-methyl-thiophene-2-sulfonic acid dimethylaminemethyleneamide (5.1 g, 12.48 mmol) in 2-butanone (50 ml) is added potassium carbonate (2.59 g, 18.72 mmol), and chloropinacolone (3.28 ml, 24.91 mmol). The reaction is refluxed overnight, filtered, and concentrated. The residue is partitioned between EtOAc (400 ml) and 0.2N HCl (100 ml). The organic layer is washed with brine (100 ml), MgSO₄ dried, concentrated, and chromatographed (120 g SiO₂, 50% EtOAc/Hex) to yield the title compound (6.11 g, 97%).

20 ¹NMR (400MHz, CDCl₃) δ 8.10 (s, 1H), 7.01 (s, 1H), 6.98 (d, 1H, J=9.2 Hz), 6.52 (s, 1H), 6.50 (d, 1H, J=8.4 Hz), 4.85 (s, 2H), 3.13 (s, 3H), 3.05 (s, 3H), 2.41 (s, 3H), 2.26 (s, 3H), 2.09-2.01 (m, 4H), 1.26 (s, 9H), 0.68 (t, 6H, J=7.3 Hz).

25 HRMS: calcd. for C₂₆H₃₉N₂O₄S₂ (M+1), 507.2351, found, 507.2349.

-302-

Example 162

Preparation of 5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid amide.

- 5 A solution of 5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid dimethylaminemethyleneamide (6.11 g, 12.06 mmol) in 5N HCl/MeOH (180/200 ml) is refluxed overnight. The reaction mixture is concentrated and the residue redissolved in EtOAc (500 ml) and is washed with water (100 ml), brine (100 ml), dried (MgSO_4), concentrated and chromatographed (120 g SiO_2 , 10 60% EtOAc/Hex) to yield the title compound (5.50 g, quant.).
 ^1H NMR (400MHz, CDCl_3) δ 7.01-6.95 (m, 2H), 6.57 (s, 1H), 6.51 (d, 1H, $J=7.9$ Hz), 4.92 (s, 2H), 4.85 (s, 2H), 2.41 (s, 3H), 2.26 (s, 3H), 2.09-2.03 (m, 4H), 1.25 (s, 9H), 0.69 (t, 6H, $J=7.3$ Hz).
EI-MS: 507.3 (M+1)

15

Example 163

Preparation of 5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid propionyl-amide.

- 20 A mixture of 5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid amide (330 mg, 0.73 mmol), EDCI (210 mg, 1.1 mmol), propionic acid (82 μL , 1.1 mmol) and DMAP (50 mg) in dichloromethane (10 ml) is stirred overnight. The reaction is diluted with dichloromethane and washed with 1N HCl. The organic phase is concentrated and chromatographed (Hex to 30% EtOAc/Hex) to give the title compound (92%).

-303-

¹H NMR (CDCl₃) δ 8.10 (s, 1H), 6.98 (s, 1H), 6.97 (d, 1H, J = 8.3 Hz), 6.56 (s, 1H), 6.51 (d, 1H, J = 8.3 Hz), 4.86 (s, 2H), 2.48 (s, 3H), 2.34 (q, 2H), 2.26 (s, 3H), 2.06 (m, 4H), 1.26 (s, 9H), 1.10 (t, 3H), 0.69 (t, 6H);
HRMS: calcd. for C₂₆H₄₁N₂O₅S₂ (M+18), 525.2457, found, 525.2433.

5

Example 164

Preparation of 5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid isobutyryl-amide.

10

Using a procedure analogous to Example 163, 5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid amide and 2-methylpropionic acid give the title compound (56%).

15 ¹H NMR (400MHz, CDCl₃) δ 8.00 (s, 1H), 6.99-6.94 (m, 2H), 6.55 (s, 1H), 6.50 (d, 1H, J=8.4 Hz), 4.85 (s, 2H), 2.49 (s, 3H), 2.44 (sept, 1H, J=7.0 Hz), 2.25 (s, 3H), 2.11-2.02 (m, 4H), 1.25 (s, 9H), 1.11 (d, 6H, J=7.0 Hz), 0.68 (t, 6H, J=7.3 Hz).
ES-MS: 522 (M+1)

20

Example 165

Preparation of 5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid cyclopropanecarbonyl-amide.

25

-304-

Using a procedure analogous to Example 163, 5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid amide and cyclopropanecarboxylic acid give the title compound (60%).

5 ^1H NMR (400MHz, CDCl_3) δ 8.43 (s, 1H), 6.99-6.94 (m, 2H), 6.56 (s, 1H), 6.51 (d, 1H, $J=8.4$ Hz), 4.86 (s, 2H), 2.46 (s, 3H), 2.25 (s, 3H), 2.12-2.01 (m, 4H), 1.68-1.58 (m, 1H), 1.26 (s, 9H), 1.05-0.99 (m, 2H), 0.89-0.82 (m, 2H), 0.68 (t, 6H, $J=7.3$ Hz).
 EI-MS: 520.2 (M+H), 518.4 (M-H)

Example 166

10 Preparation of 5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid (2-methoxy-acetyl)-amide.

15 Using a procedure analogous to Example 163, 5-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonic acid amide and methoxy-acetic acid give the title compound (84%).
 ^1H NMR (CDCl_3) δ 8.91 (s, 1H), 7.00 (s, 1H), 6.97 (dd, 1H, $J = 2.6, 8.3$ Hz), 6.54 (s, 1H), 6.51 (d, 1H, $J = 8.3$ Hz), 4.86 (s, 2H), 3.90 (s, 2H), 3.43 (s, 3H), 2.48 (s, 3H), 2.26 (s, 3H), 2.06 (m, 4H), 1.26 (s, 9H), 0.69 (t, 6H);
 20 HRMS: calcd. for $\text{C}_{26}\text{H}_{41}\text{N}_2\text{O}_6\text{S}_2$ (M+18), 541.2406, found, 541.2400.

Example 169

Preparation of 5-(5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-yl)-3H-[1,3,4]oxadiazol-2-one.

25

A mixture of 5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid hydrazide (432 mg, 1mmol), 1,1'-carbonyldiimidazole (405 mg, 2.5 mmol) and triethylamine (0.28 ml, 2 mmol) in THF (10 ml) is stirred at reflux overnight. It is diluted with EtOAc, washed with 1N HCl solution.

- 5 The organic phase is concentrated and chromatographed (Hex to 20% EtOAc/Hex to give the title compound (290 mg, 63%).

¹H NMR (CDCl₃) δ 8.51 (s, 1H), 7.05 (dd, 1H, J = 2.4, 8.8 Hz), 7.01 (s, 1H), 6.73 (d, 1H, J = 8.8 Hz), 6.62 (s, 1H), 4.09 (dd, 1H, J = 2.6, 9.2 Hz), 3.87 (dd, 1H, J = 8.8, 9.2 Hz), 3.70 (dd, J = 2.6, 8.8 Hz), 2.42 (s, 3H), 2.20 (s, 3H), 2.08 (m, 4H), 1.01 (s, 9H), 0.69 (t, 6H);

10 HRMS: calcd. for C₂₅H₃₅N₂O₄S (M+1), 459.2318, found, 459.2325.

Example 170

- Preparation of enantiomer 1 of 5-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-yl)-3H-[1,3,4]oxadiazol-2-one.

Using an analogous procedure as Example 169, enantiomer 1 of 5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid hydrazide (Example 168) gives the title compound (65%).

- 20 Enantiomer 1: ¹H NMR (CDCl₃) equivalent to Example 169;
HRMS: calcd. for C₂₅H₃₅N₂O₄S (M+1), 459.2318, found, 459.2321.

Example 171

- Preparation of enantiomer 2 of 5-(5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-yl)-3H-[1,3,4]oxadiazol-2-one

-306-

Using analogous procedures as in Example 168 and Example 169, enantiomer 2 of 1-{4-[1-ethyl-1-(5-methoxycarbonyl-4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-ol (Example 6B) gives the title compound (83%).

- 5 Enantiomer 2: ^1H NMR (CDCl_3) equivalent to Example 169;
HRMS: calcd. for $\text{C}_{25}\text{H}_{35}\text{N}_2\text{O}_4\text{S}$ ($M+1$), 459.2318, found, 459.2320.

Example 172

- Preparation of 5-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-yl)-3H-[1,3,4]oxadiazole-2-thione.

- A mixture of 5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid hydrazide (432 mg, 1 mmol), carbon disulfide (0.15 ml, 2.5 mmol) and KOH (62 mg, 1.1 mmol) in methanol (15 ml) is refluxed overnight. The reaction is concentrated and partitioned between EtOAc and 1N HCl. The organic phase is concentrated and chromatographed to give the title compound (320 mg, 68%).

- 15 ^1H NMR (CDCl_3) δ 7.05 (d, 1H, $J = 8.3$ Hz), 7.00 (s, 1H), 6.74 (d, 1H, $J = 8.3$ Hz), 6.66 (s, 1H), 4.10 (dd, 1H, $J = 2.6, 9.2$ Hz), 3.87 (dd, 1H, $J = 8.8, 9.2$ Hz), 3.71 (dd, $J = 2.6, 8.8$ Hz), 2.46 (s, 3H), 2.20 (s, 3H), 2.08 (m, 4H), 1.01 (s, 9H), 0.71 (t, 6H);
20 HRMS: calcd. for $\text{C}_{25}\text{H}_{35}\text{N}_2\text{O}_3\text{S}_2$ ($M+1$), 475.2089, found, 475.2094.

Example 173

- Preparation of enantiomer 1 of 5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophen-2-yl)-3H-[1,3,4]oxadiazole-2-thione.

Using an analogous procedure as in Example 172, enantiomer 1 of 5-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid hydrazide (Example 168) gives the title compound (72%).

- 5 ¹H NMR (CDCl₃): equivalent to Example 172;
HRMS: calcd. for C₂₅H₃₅N₂O₃S₂ (M+1), 475.2089, found, 475.2084.

Example 174

- Preparation of 5-{1-Ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid methyl ester.

- A. Trifluoromethanesulfonic acid 4-[1-ethyl-1-(4-methyl-thiophen-2-yl) propyl]-2-methyl-phenyl ester.

- 15 To a mixture of 3'-[4-(hydroxy)-3-methylphenyl]-3'-(4-methylthiophen-2-yl]pentane (8.8 g, 32.2 mmol) and triethylamine (6.8 ml, 48.3 mmol) in dichloromethane (200 ml) at -78 °C is added trifluoromethanesulfonic anhydride (6.5 ml, 38.6 mmol) dropwise and warmed to RT. The reaction is stirred for 1 h, diluted with dichloromethane and washed with 0.2 N HCl followed by brine. The organic layer is concentrated to give
20 the title compound (12 g, 92%).

B. 4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-benzoic acid methyl ester.

A mixture of trifluoromethanesulfonic acid 4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenyl ester (12 g, 29.62 mmol), Pd(OAc)₂ (699 mg, 3 mmol), dppf (3.3 g, 6 mmol), triethylamine (12.5 ml, 90 mmol), methanol (12 ml, 300 mmol), and N,N-dimethylformamide (40 ml) is treated with carbon monoxide (1000 psi) at 110 °C in a Parr-reactor for 48 h. The reaction is concentrated, dissolved in is evaporated in EtOAc and filtered through a silica gel pad. The filtrate is concentrated and chromatographed (Hex to 10% EtOAc/Hex) to give the title compound (6.9 g, 73%).

¹H NMR (CDCl₃) δ 7.83 (d, 1H, J = 8.8 Hz), 7.16 (m, 2H), 6.73 (s, 1H), 6.60 (s, 1H), 3.87 (s, 3H), 2.58 (s, 3H), 2.21 (s, 3H), 2.13 (m, 4H), 0.71 (t, 6H).

C. {4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenyl}-methanol.

15

To a 0 °C solution of 4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-benzoic acid methyl ester (6.7 g, 21.2 mmol) in THF (100 ml) is added 1M LiAlH₄/THF (32 ml, 32 mmol). After stirring at RT for 2 h, the reaction is quenched with water (1 ml) followed by 5N NaOH solution (1 ml) and water (3 ml). The mixture is filtered and the filtrate is concentrated to give the title compound as a clear oil (6 g, 98%).

D. 1-{4-[1-Ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenyl}-4,4-dimethyl-pentan-3-one.

-309-

- To a 0 °C solution of {4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenyl}-methanol (6 g.) in THF (50 ml) is treated with PBr₃ (2.2 ml, 23.3 mmol) and warmed to RT. After stirring for 2 h, the mixture is partitioned between EtOAc and brine.
- 5 The organic layer is MgSO₄ dried, concentrated, and dissolved in anhydrous THF (30 ml) to give a solution of {4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenyl}-methane bromide. Separately, a solution of 3,3-dimethyl-butan-2-one (5.3 ml, 42.4 mmol) in THF (15 ml) is treated with LiHMDS (42.4 ml, 42.4 mmol, 1M in THF) at - 70 °C for 1 h. This solution is transferred (via cannula) into a - 70 °C solution of {4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenyl}-methane bromide/THF. The
- 10 mixture is warmed to RT and stirred for 1 h. The reaction is diluted with EtOAc and washed with 0.2 N HCl until the aq layer is pH 2. The organic layer is concentrated to give the title compound (6.2 g, 79%).
- 15 E. 1-(4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenyl)-4,4-dimethyl-pentan-3-ol.

- Using a procedure analogous to Example 134B, 1-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenyl}-4,4-dimethyl-pentan-3-one and NaBH₄ give the
- 20 title compound (quant).

¹H NMR (CDCl₃) δ 7.02, 7.07 (m, 3H), 6.71 (s, 1H), 6.61 (s, 1H), 3.26 (dd, 1H, J = 2.0, 10.3 Hz), 2.88 (m, 1H), 2.56 (m, 1H), 2.28 (s, 3H), 2.20 (s, 3H), 2.08 (m, 4H), 1.78 (m, 1H), 1.58 (m, 1H), 0.90 (s, 9H), 0.70 (t, 6H).

-310-

F. tert-Butyl-[1-(2-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2 methyl-phenyl}-ethyl)-2,2-dimethyl-propoxy]-dimethyl-silane.

Using a procedure analogous to Example 134C, 1-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenyl}-4,4-dimethyl-pentan-3-ol gives the title compound (quant).

G. 5-(1-{4-[3-(tert-butyl-dimethyl-silyloxy)-4,4-dimethyl-pentyl]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-carboxylic acid methyl ester.

10

To a 0 °C solution of tert-butyl-[1-(2-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2 methyl-phenyl}-ethyl)-2,2-dimethyl-propoxy]-dimethyl-silane (1.46 g, 3 mmol) in THF (15 ml) is added 1.6 M n-BuLi/Hex (2 ml, 3.3 mmol). After 45 m, the mixture is transferred (via cannula) into a -70 °C solution of methyl chloroformate (0.26 ml, 3.3 mmol) in pentane (10 ml). The mixture is warmed to RT and stirred for 3 h. The reaction is diluted with EtOAc, washed with 0.2 N HCl until the aq layer is pH 2, and followed by washing with satd sodium bicarbonate. The organic layer is concentrated and chromatographed (Hex to 5% EtOAc/Hex) to give the title compound (1.05 g, 64%).

15 ¹H NMR (CDCl₃) δ 6.99, 7.04 (m, 3H), 6.62 (s, 1H), 3.80 (s, 3H), 3.35 (dd, 1H, J = 2.9, 7.3 Hz), 2.76 (m, 1H), 2.48 (s, 3H), 2.41 (m, 1H), 2.26 (s, 3H), 2.08 (m, 4H), 1.78 (m, 1H), 1.59 (m, 1H), 0.93 (s, 9H), 0.88 (s, 9H), 0.70 (t, 6H), 0.10 (s, 3H), 0.07 (s, 3H).

20

-311-

H. 5-{1-Ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid methyl ester.

Using a procedure analogous to Example 134F, 5-(1-{4-[3-(tert-butyl-dimethyl-silyloxy)-4,4-dimethyl-pentyl]-3-methyl-phenyl}-1-ethyl-propyl)-3-methyl-thiophene-2-carboxylic acid methyl ester gives the title compound (94%).

¹H NMR (CDCl₃) δ 7.00, 7.07 (m, 3H), 6.62 (s, 1H), 3.80 (s, 3H), 3.25 (dd, 1H, J = 1.8, 10.5 Hz), 2.88 (m, 1H), 2.55 (m, 1H), 2.48 (s, 3H), 2.28 (s, 3H), 2.08 (m, 4H), 1.79 (m, 1H), 1.58 (m, 1H), 0.90 (s, 9H), 0.70 (t, 6H);
HRMS: calcd. for C₂₆H₃₈O₃NaS (M+23), 453.2439, found 453.2465.

Example 175

Preparation of 5-{1-Ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid.

15

Using LiOH hydrolysis as described in Example 137, 5-{1-ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid methyl ester gives the title compound (94%).

20 ¹H NMR (CDCl₃) δ 7.00, 7.07 (m, 3H), 6.62 (s, 1H), 3.25 (dd, 1H, J = 1.8, 10.5 Hz), 2.88 (m, 1H), 2.55 (m, 1H), 2.48 (s, 3H), 2.28 (s, 3H), 2.08 (m, 4H), 1.79 (m, 1H), 1.58 (m, 1H), 0.90 (s, 9H), 0.70 (t, 6H);
HRMS: calcd. for C₂₅H₃₆O₃NaS (M+23), 439.2283, found 439.2283.

25

Example 176

Preparation of [(5-{1-Ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amine]-acetic acid methyl ester.

5

A mixture of 5-{1-ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carboxylic acid (160 mg, 0.38 mmol), 2-amino-acetic acid methyl ester hydrochloride (53 mg, 0.42 mmol), EDCI (89 mg, 0.46 mmol) and triethylamine (0.134 ml, 0.96 mmol) in dichloromethane (5 ml) is stirred at RT overnight.

10 The reaction is concentrated, partitioned between 1N HCl and EtOAc. The organic layer is concentrated and chromatographed (Hex to 30% EtOAc/Hex) to give the title compound (75 mg, 40%).

15 ^1H NMR (CDCl_3) δ 7.07 (d, 1H, $J = 8.7$ Hz), 7.00 (d, 1H, $J = 8.7$ Hz), 6.99 (s, 1H), 6.63 (s, 1H), 6.20 (t, 1H), 4.16 (d, 2H, $J = 5.3$ Hz), 3.78 (s, 3H), 3.26 (bd, 1H, $J = 9.3$ Hz), 2.88 (m, 1H), 2.56 (m, 1H), 2.47 (s, 3H), 2.28 (s, 3H), 2.08 (m, 4H), 1.78 (m, 1H), 1.58 (m, 1H), 0.90 (s, 9H), 0.70 (t, 6H).

ES-MS: 488 (M+1).

Example 177

20 Preparation of [(5-{1-Ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid.

25 Using LiOH hydrolysis as described in Example 136, [(5-{1-ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-carbonyl)-amino]-acetic acid methyl ester gives the title compound (quant).

-313-

¹H NMR (CDCl₃) δ 7.07 (d, 1H, J = 8.7 Hz), 7.00 (d, 1H, J = 8.7 Hz), 6.99 (s, 1H), 6.63 (s, 1H), 6.21 (t, 1H), 4.20 (d, 2H, J = 5.3 Hz), 3.26 (bd, 1H, J = 9.3 Hz), 2.88 (m, 1H), 2.56 (m, 1H), 2.47 (s, 3H), 2.28 (s, 3H), 2.08 (m, 4H), 1.78 (m, 1H), 1.58 (m, 1H), 0.90 (s, 9H), 0.70 (t, 6H);

5 HRMS: calcd. for C₂₇H₄₀NO₄S (M+1), 474.2678, found 474.2687.

Example 178

Preparation of (5-{1-Ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid methyl ester.

10

Using procedures analogous to Example 134D to Example 134F, from tert-butyl-[1-(2-{4-[1-ethyl-1-(4-methyl-thiophen-2-yl)-propyl]-2-methyl-phenyl}-ethyl)-2,2-dimethyl-propoxy]-dimethyl-silane and 2-amino-acetic acid methyl ester hydrochloride gives the title compound (24%).

15

¹H NMR (CDCl₃) δ 7.07 (d, 1H, J = 7.9 Hz), 7.02 (s, 1H), 6.97 (d, 1H, J = 7.9 Hz), 6.64 (s, 1H), 5.12 (t, 1H), 3.82 (d, 2H, J = 5.3 Hz), 3.65 (s, 3H), 3.32 (d, 1H, J = 9.3 Hz), 2.88 (m, 1H), 2.56 (m, 1H), 2.42 (s, 3H), 2.30 (s, 3H), 2.08 (m, 4H), 1.88 (m, 1H), 1.54 (m, 1H), 0.87 (s, 9H), 0.72 (t, 6H).

ES-MS: 524 (M+1).

20

Example 179

(5-{1-Ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamino)-acetic acid.

25

Using LiOH hydrolysis as described in Example 136, (5-{1-ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid methyl ester gives the title compound (quant).

¹H NMR (CDCl₃) δ 7.08 (d, 1H, J = 7.9 Hz), 7.03 (s, 1H), 6.98 (d, 1H, J = 7.9 Hz), 6.65 (s, 1H), 5.12 (t, 1H), 3.82 (d, 2H, J = 5.3 Hz), 3.32 (d, 1H, J = 9.3 Hz), 2.88 (m, 1H), 2.56 (m, 1H), 2.42 (s, 3H), 2.30 (s, 3H), 2.08 (m, 4H), 1.88 (m, 1H), 1.54 (m, 1H), 0.87 (s, 9H), 0.72 (t, 6H).

HRMS: calcd. for C₂₆H₄₃N₂O₅S₂ (M+18), 527.2613, found 527.2639.

10 Example 180 and Example 181

Preparation of enantiomers of (5-{1-ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylaminoo)-acetic acid.

A racemic mixture of (5-{1-ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid (180 mg) is chromatographed on a Chiralpak AD column (0.46 x 25 cm) to give the title compounds.
HPLC condition: 0.1% trifluoroacetic acid in 30% isopropanol/hept; flow rate: 1.0 ml/m;
UV: 225 nm.
Enantiomer 1, Example 179: 70 mg (39%); rt: 6.63 m;

20 ¹H NMR (CDCl₃) equivalent to Example 179

HRMS: calcd. for C₂₆H₄₀NO₅S₂ (M+1), 510.2348, found 510.2333.

Enantiomer 2, Example 180: 60 mg (33%); rt: 8.60 m.
¹H NMR (CDCl₃) equivalent to Example 179;
25 HRMS: calcd. for C₂₆H₄₀NO₅S₂ (M+1), 510.2348, found 510.2359.

Example 182

Preparation of (5-{1-[4-(4,4-Dimethyl-3-oxo-pentyl)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid.

-315-

A. (5-{1-[4-(4,4-Dimethyl-3-oxo-pentyl)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid methyl ester

5 Using the pyridinium dichromate oxidation analogous to Example 139C, (5-{1-ethyl-1-[4-(3-hydroxy-4,4-dimethyl-pentyl)-3-methyl-phenyl]-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid methyl ester gives the title compound (96%).
¹H NMR (CDCl₃) δ 6.96, 7.02 (m, 3H), 6.59 (s, 1H), 5.22 (t, 1H), 3.83 (d, 1H, J = 5.7 Hz), 3.65 (s, 3H), 2.82 (t, 2H), 2.72 (t, 2H), 2.40 (s, 3H), 2.27 (s, 3H), 2.07 (m, 4H), 1.10 (s, 9H), 0.68 (t, 6H);
ES-MS: 522 (M+1).

B. (5-{1-[4-(4,4-Dimethyl-3-oxo-pentyl)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid

15 Using LiOH hydrolysis as described in Example 137, (5-{1-[4-(4,4-dimethyl-3-oxo-pentyl)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-sulfonylamine)-acetic acid methyl ester gives the title compound (quant).

¹H NMR (CDCl₃) δ 6.94, 7.01 (m, 3H), 6.60 (s, 1H), 5.30 (t, 1H), 3.86 (d, 1H, J = 4.8 Hz), 2.82 (t, 2H), 2.74 (t, 2H), 2.39 (s, 3H), 2.27 (s, 3H), 2.07 (m, 4H), 1.10 (s, 9H), 0.68 (t, 6H);
ES-MS: 508 (M+1).

Example 183

Preparation of (5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-ylmethylsulfanyl)-acetic acid ethyl ester.

5

A. (5-{1-[4-(tert-Butyl-dimethyl-silyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-yl)-methanol.

10

To a 0 °C solution of 5-{1-[4-(tert-butyl-dimethyl-silyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophene-2-carboxylic acid methyl ester (10.0 g, 22.39 mmol) in THF (200 ml) is added portionwise lithium aluminum hydride (1.70 g, 44.78 mmol) and the reaction mixture is warmed to RT for 1 h. The reaction is quenched with water (1.7 ml), 5N NaOH (1.7 ml), and water (5.1 ml). The reaction mixture is filtered, concentrated and chromatographed (120 g SiO₂, 10% EtOAc/Hex) to yield the title compound (7.0 g, 75%).

15 ¹H NMR (400MHz, CDCl₃) δ 7.01 (d, 1H, J=2.2 Hz), 6.94 (dd, 1H, J=8.4, 2.2 Hz), 6.65 (d, 1H, J=8.4 Hz), 6.52 (s, 1H), 4.65 (d, 2H, J=4.8 Hz), 2.17 (s, 6H), 2.09-1.99 (m, 4H), 1.54 (t, 1H, J=5.5 Hz), 1.00 (s, 9H), 0.69 (t, 6H, J=7.3 Hz), 0.20 (s, 6H).

20 B. Toluene-4-sulfonic acid 5-{1-[4-(tert-butyl-dimethyl-silyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-ylmethyl ester.

To a solution of (5-{1-[4-(tert-butyl-dimethyl-silyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-yl)-methanol (1.0 g, 2.39 mmol) in Et₂O (5 ml) is added triethyl amine (666 µl, 4.78 mmol). The mixture is added to a solution of p-toluenesulfonyl chloride (501 mg, 2.62 mmol) in Et₂O (5 ml) and stirred overnight. The reaction is filtered, concentrated and chromatographed (12 g SiO₂, 5% EtOAc/Hex) to yield the title compound (740 mg, 55%).

¹NMR (400MHz, CDCl₃) δ 7.93 (d, 2H, J=8.4 Hz), 7.41 (d, 2H, J=8.8 Hz), 7.00 (s, 1H), 6.93 (dd, 1H, J=8.4, 2.2 Hz), 6.63 (d, 1H, J=8.4 Hz), 6.48 (s, 1H), 4.49 (s, 2H), 2.49 (s, 3H), 2.15 (s, 3H), 2.09 (s, 3H), 2.05-2.00 (m, 4H), 0.99 (s, 9H), 0.67 (t, 6H, J=7.3 Hz), 0.19 (s, 6H).

EI-MS: 401.2

C. (5-{1-[4-(tert-Butyl-dimethyl-silyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-ylmethylsulfanyl)-acetic acid ethyl ester.

To a solution of 2.68 M sodium ethoxide (507 µl, 1.36 mmol) in EtOH (2 ml) is added ethyl 2-mercaptoproacetate (149 µl, 1.36 mmol) and stirred at RT for 30 m. The mixture is added a solution of toluene-4-sulfonic acid 5-{1-[4-(tert-butyl-dimethyl-silyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-ylmethyl ester (740 mg, 1.29 mmol) in EtOH (2 ml) is added and refluxed for 15 m. The reaction is concentrated and partitioned between EtOAc (100 ml) and 0.2N HCl (50 ml). The

-318-

organic layer is washed with water (50 ml), dried (MgSO_4), concentrated, and chromatographed (12 g SiO_2 , 5% EtOAc/Hex) to yield the title compound (180 mg, 27%).
 ^1H NMR (400MHz, CDCl_3) δ 7.00 (d, 1H, $J=2.2$ Hz), 6.92 (dd, 1H, $J=8.4, 2.2$ Hz), 6.64 (d, 1H, $J=8.4$ Hz), 6.46 (s, 1H), 4.17 (q, 2H, $J=7.2$ Hz), 3.92 (s, 2H), 3.14 (s, 2H), 2.16 (s, 5 3H), 2.12 (s, 3H), 2.07-1.98 (m, 4H), 1.28 (t, 3H, $J=7.0$ Hz), 1.00 (s, 9H), 0.68 (t, 6H, $J=7.3$ Hz), 0.20 (s, 6H).
EI-MS: 538.2 ($M+\text{NH}_4$)

D. {5-[1-Ethyl-1-(4-hydroxy-3-methyl-phenyl)-propyl]-3-methyl-thiophen-2-ylmethylsulfanyl}-acetic acid ethyl ester.

Using an analogous procedure to Example 12F, (5-{1-[4-(tert-Butyl-dimethyl-silyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-ylmethylsulfanyl)-acetic acid ethyl ester (180 mg, 0.346 mmol) gives the title compound (147 mg, quant.).
 ^1H NMR (400MHz, CDCl_3) δ 7.00 (s, 1H), 6.97 (d, 1H, $J=7.9$ Hz), 6.67 (d, 1H, $J=8.4$ Hz), 6.47 (s, 1H), 4.58 (s, 1H), 4.17 (q, 2H, $J=7.2$ Hz), 3.92 (s, 2H), 3.14 (s, 2H), 2.21 (s, 3H), 2.12 (s, 3H), 2.06-1.99 (m, 4H), 1.28 (t, 3H, $J=7.0$ Hz), 0.68 (t, 6H, $J=7.3$ Hz).

E. {5-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-3-methyl-thiophen-2-ylmethylsulfanyl}-acetic acid ethyl ester.

Using an analogous procedure to Example 134A, {5-[1-Ethyl-1-(4-hydroxy-3-methyl-phenyl)-propyl]-3-methyl-thiophen-2-ylmethylsulfanyl}-acetic acid ethyl ester (141 mg, 0.347 mmol) gives the title compound (145 mg, 83%).

¹NMR (400MHz, CDCl₃) δ 7.02 (s, 1H), 7.00 (d, 1H, J=8.4 Hz), 6.51 (d, 1H, J=8.4 Hz), 6.46 (s, 1H), 4.83 (s, 2H), 4.17 (q, 2H, J=7.2 Hz), 3.92 (s, 2H), 3.14 (s, 2H), 2.25 (s, 3H), 2.12 (s, 3H), 2.08-1.97 (m, 4H), 1.30-1.19 (m, 12H), 0.67 (t, 6H, J=7.3 Hz).
EI-MS: 522.2 (M+NH₄).

5

Example 184

Preparation of 3'-[4-(2-Oxo-3,3-dimethylbutoxy-3-methylphenyl)]-3'-[5-(methylmercaptymethyl)thiophen-2-yl]pentane.

10

L. 2-(Methylmercaptymethyl)-thiophene.

To a 25 °C solution of 2-hydroxymethyl thiophene (2.28 g, 20 mmol), and S-methyl-N,N'tetramethylisothiouronium iodide [(5.48 g, 20 mmol); [S. Fujisaki et al, Bull. Chem. Soc. Jpn., 58, 2429-30 (1985)] in anhydrous DMF (10 ml) under a N₂ atmosphere, is added NaH (1.44 g, 60 mmol, 2.40 g of 60% mineral oil dispersion) in small portions. After the resulting vigorous liberation of hydrogen ceases, hexane (10 ml) is added. After stirring for 1 h, the reaction is cooled to 0 °C and water (10 ml) is added dropwise. The mixture is extracted with hexane (3 X 50 ml). The combined extract is K₂CO₃, concentrated, and chromatographed with (Hex to 20% CHCl₃/Hex) to give the title compound as a colorless liquid (2.4 g, 83%).

¹NMR (300MHz, CDCl₃) δ ppm: 2.10 (s, 3H), 3.92 (s, 2H), 6.95 (m, 2H), 7.23 (1H).

25 M. 3'-[4-(Hydroxy)-3-methylphenyl]-3'-[5-(methylmercaptymethyl)thiophen-2-yl]pentane.

-320-

To a 0 °C mixture of 3'-(4-hydroxy-3-methylphenyl)pentan-3-ol (582 mg, 3.0 mmol) and 2-(methylmercaptoplylmethyl)-thiophene (2.16 g, 15.0 mmol) is added BF₃-Et₂O (171 mg, 0.15 ml, 1.20 mmol). After stirring for 30 m at 0 to 5 °C, the reaction is quenched with satd aq NaHCO₃ and is extracted with EtOAc (2X). The combined extract is washed with brine, Na₂SO₄ dried, concentrated, and chromatographed by radial chromatography (4 mm plate, 25% to 80% CHCl₃/Hex to give the title compound as a pale brown oil (695 mg, 72%).

¹H NMR (300MHz, CDCl₃) δ ppm: 0.071 (t, J = 7.3 Hz, 6H), 2.06 (s, 3H), 2.07 (m, 4H), 2.23 (s, 3H), 3.82 (s, 3H), 4.52 (s, 1H), 6.60 to 6.75 (m, 3H), 6.96-7.05 (m, 2H).
TOF(+) MS m/z: 320.2; calc. for C₁₈H₂₄OS₂: 320.20.
ES (-) MS m/z 319.1, [M-H]; calc. for C₁₈H₂₃OS₂: 319.24.

C. 3'-(4-(2-Oxo-3,3-dimethylbutoxy-3-methylphenyl))-3'-(5-(methylmercaptoplyl-methyl)-thiophen-2-yl)pentane.

To a mixture of 3'-(4-hydroxy-3-methylphenyl)-3'-(5-(methylmercaptoplyl-methyl)-thiophen-2-yl)pentane (586 mg, 1.83 mmol), KI (122 mg, 0.73 mmol), 3,3-dimethyl-1-chloro-2-butanone (370 mg, 2.75 mmol) and DMF (10 ml) at 25 °C is added 60% NaH dispersion (92 mg, 2.29 mmol) in small portions. The reaction is stirred for 15 m and quenched with satd NaHCO₃ solution (50 ml). The mixture is extracted with EtOAc (2 X 50 ml) and the combined organic layer is washed with brine, Na₂SO₄ dried, and concentrated. The resulting oil is radial chromatographed (50% to 75% CHCl₃/Hex) to give the title product as a pale yellow oil (516 mg, 67%).

-321-

¹NMR (400MHz, DMSO-d₆) δ ppm: 0.64 (t, J = 7.3 Hz, 6H), 1.18 (s, 9H), 1.97 (s, 3H), 2.02 (m, 4H), 2.15 (s, 3H), 3.84 (s, 2H), 5.07 (s, 2H), 6.55 to 6.76 (m, 3H), 6.93 to 7.04 (m, 2H).

FAB(+) MS m/z [M-H]: 417.3; calc. for C₂₄H₃₄O₂S₂(-H): 417.20

5 IR (CHCl₃): 1724.08 cm⁻¹.

Example 185

Preparation of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(5-(methylmercaptymethyl)-thiophen-2-yl]pentane.

10

To a 25 °C solution of 3'-[4-(2-Oxo-3,3-dimethylbutoxy-3-methylphenyl)]-3'-(5-(methylmercaptymethyl)thiophen-2-yl]pentane (90 mg, 0.22 mmol) in MeOH (10 ml) is added NaBH₄ (8.1 mg, 0.22 mmol). The reaction mixture is stirred overnight at ambient temperature. Then 1 ml of acetone is added, the reaction is concentrated and the residue is distributed between H₂O and CH₂Cl₂. The organic layer is washed with water, dried with anhydrous Na₂SO₄, and concentrated to give the title compound as a colorless oil (90 mg, quant).

15 ¹NMR (300MHz, CDCl₃) δ ppm: 0.63 (t, J = 7.3 Hz, 6H), 0.94 (s, 9H), 1.95-2.08 (m, 4H), 1.97 (s, 3H), 2.12 (s, 3H), 3.63 (m, 1H), 3.73 (s, 2H), 3.79 (dd, J = 7.3, 10.2 Hz, 1H), 4.02 (dd, J = 3.4, 10.2 Hz, 1H), 6.54 (m, 1H), 6.64 (m, 2H), 6.97 (m, 2H).

20 FAB(+) MS m/z [M-H]: 419.3; calc. for C₂₄H₃₆O₂S₂(-H): 419.22.

ES (+) MS m/z 438.2, [MNH₄]⁺; calc. for C₂₄H₄₀NO₂S₂: 438.24.

Example 186A and Example 186B

Preparation of enantiomers of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy-3-methylphenyl)]-3'-[5-(methylmercaptymethyl)-thiophen-2-yl]pentane.

5 A racemic mixture of 3'-[4-(2-oxo-3,3-dimethylbutoxy-3-methylphenyl)]-3'-(5-(methylmercaptymethyl)thiophen-2-yl)pentane (76 mg) is chromatographed with a Chiralcel AD column to give enantiomer 1, Example 186A (28 mg, 37%) and enantiomer 2, Example 186B (22 mg, 29%).

Enantiomer 1, Example 186A
10 HPLC: Chiralcel AD (4.6X250 mm); 40% IPA/60% heptane; 1 ml/m (flow rate); rt = 4.21 m; 225 nm; ee 100% by HPLC.

FAB(+) MS m/z [M-H]: 419.3; calc. for C₂₄H₃₆O₂S₂ (-H): 419.22.

Enantiomer 2, Example 186B
15 HPLC: Chiralcel AD (4.6X250 mm); 40% IPA/60% heptane; 1 ml/m (flow rate); rt = 5.67 m; 225 nm; ee 100% by HPLC.
FAB(+) MS m/z [M-H]: 419.3; calc. for C₂₄H₃₆O₂S₂ (-H): 419.22.

Example 187

Preparation of 3'-[4-(2-oxo-3,3-dimethylbutoxy-3-methylphenyl)]-3'-(5-(methylsulphonylmethyl)-thiophen-2-yl)pentane.

-323-

Using a procedure analogous to Example 9C, 3'-[4-(2-oxo-3,3-dimethylbutoxy-3-methylphenyl)]-3'-[5-(methylmercaptymethyl)-thiophen-2-yl]pentane gives the title compound as a pale yellow oil (287 mg, 85%).

- ¹NMR (300MHz, CDCl₃) δ ppm: 0.71 (t, J = 7.3 Hz, 6H), 1.28 (s, 9H), 2.04-2.25 (m, 4H), 2.27 (s, 3H), 2.79 (s, 3H), 4.37 (s, 2H), 4.86 (s, 2H), 6.53 (d, J = 8.3 Hz, 1H), 6.76 (d, J = 3.6 Hz, 1H), 6.99 to 7.02 (m, 3H).
- FAB(+) MS m/z: 452.3; calc. for C₂₄H₃₄O₄S₂: 450.19.
- ES (+) MS m/z 468.2, [MNH₄⁺]; calc. for C₂₄H₃₈NO₄S₂: 468.22.
- IR (CHCl₃): 1725.04 cm⁻¹.
- UV (EtOH): 227 nm (e = 17500), 255 nm (shoulder, e = 10,000).

Example 188

Preparation of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[5-(methylsulfonylmethyl)-thiophen-2-yl]pentane.

15

Using a procedure analogous to Example 2, 3'-[4-(2-oxo-3,3-dimethylbutoxy-3-methylphenyl)]-3'-[5-(methylsulfonylmethyl)-thiophen-2-yl]pentane gives the title compound as a colorless oil (188 mg, 94%).

- ¹NMR (400MHz, CDCl₃) δ ppm: 0.67 (t, J = 7.3 Hz, 6H), 1.04 (s, 9H), 2.12 (m, 4H), 2.22 (s, 3H), 2.14 (s, 3H), 2.80 (s, 3H), 3.72 (m, 1H), 3.99 (m, 1H), 4.12 (dd, J = 2.9, 9.8 Hz, 1H), 4.36 (s, 2H), 6.74 (d, J = 8.3 Hz, 1H), 6.78 (d, J = 3.6 Hz, 1H), 6.96 to 7.08 (m, 3H).
- FAB(+) MS m/z: 452.3; calc. for C₂₄H₃₆O₄S₂: 452.21.

Example 189A and Example 189B:

Preparation of enantiomers of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[5-(methylsulfonylmethyl)-thiophen-2-yl]pentane.

5 A racemic mixture of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[5-(methylsulfonylmethyl)-thiophen-2-yl]pentane (174 mg) is chromatographed (Chiralcel AD column) to give enantiomer 1, Example 189A (78 mg, 43%) and enantiomer 2, Example 189B (86 mg, 49%).

Enantiomer 1, Example 189A.

10 HPLC: Chiralcel AD (4.6X250 mm); 40% IPA/60% heptane; 1 ml/m (flow rate); rt = 5.75 m; 240 nm; ee = 99.8%.

FAB(+) MS m/z: 452.3; calc. for C₂₄H₃₆O₄S₂: 452.21.

ES (+) MS m/z 470.1, [MNH₄⁺]; calc. for C₂₄H₄₀NO₄S₂: 470.24.

15 Enantiomer 2, Example 189B

HPLC: Chiralcel AD (4.6X250 mm); 40% IPA/60% heptane; 1 ml/m (flow rate); rt = 7.75 m; 260 nm; ee = 99.6%.

FAB(+) MS m/z: 452.3; calc. for C₂₄H₃₆O₄S₂: 452.21.

ES (+) MS m/z 470.1, [MNH₄⁺]; calc. for C₂₄H₄₀NO₄S₂: 470.24.

20

Methods of Using the Compounds of the Invention:

When administration of the Active Ingredient is to be parenteral, such as intravenous on a daily basis, injectable pharmaceuticals may be prepared in conventional forms, either as liquid Solutions or suspensions; solid forms suitable for solution or suspension in liquid prior to injection; or as emulsions. Suitable excipients are, for example, water, saline, dextrose, mannitol, lactose, lecithin, albumin, sodium glutamate, cysteine hydrochloride, or the like. In addition, if desired, the injectable pharmaceutical compositions may contain minor amounts of nontoxic auxiliary substances, such as wetting agents, pH buffering agents, and the like. If desired, absorption enhancing

preparations (e.g. liposomes) may be utilized.

Method of Making the Compounds of the Invention

5 Scheme 1: synthesis of Phenyl-thiophene acids.

Bromophenol 1 is O-silylated with TBSCl and treated with Mg/THF at reflux to form the corresponding Grignard reagent. Condensation of the Grignard reagent with the 3-pentanone provides tertiary alcohol 2. Tertiary alcohol 2 is condensed with 3-methylthiophene and boron trifluoride etherate to yield scaffold 3. Scaffold 3 is O-benzylated with NaH/benzyl bromide to give benzyl ether 4. Benzyl ether 4 is reacted with nBuLi and chloromethyl formate to give methyl ester 5. Methyl ester 5 is debenzylated with palladium on carbon/hydrogen to yield phenol 6. Phenol 6 is alkylated with sodium hydride and bromopinacolone to give ketone 7. Ketone 7 is reduced with sodium borohydride/MeOH to yield alcohol 8. Alcohol 8 is treated with potassium hydroxide/EtOH at 70 °C to give acid 9. Acid 9 is resolved with a ChiralPak AD column to give enantiomer 1 (9A) and enantiomer 2 (9B). Alternatively, alcohol 8 is resolved with a ChiralPak AD column to give enantiomer 1 (8A) and enantiomer 2 (8B). Enantiomer 1 (8A) and enantiomer 2 (8B) are converted to enantiomer 1 (9A) and enantiomer 2 (9B) with KOH/EtOH, respectively.

Scheme 2: synthesis of phenyl-thiophene amides.

25 Acid 9 is converted to amide 10 by treatment with 1) diphenylphosphoryl azide/triethylamine, DMAP and 2) appropriate amine HNR1R2.

Scheme 3: synthesis of phenyl-thiophene amide-acids.

Acid 9 is reacted with EDCl/(N-methylmorpholine or Et₃N)/(HOBT or HOAT)/a substituted glycine ester to give amide-ester 11. Amide-ester 11 is hydrolyzed with LiOH/H₂O/THF to yield amide-acid 12.

Scheme 4: synthesis of phenyl-3-unsubstituted thiophene.

Ester 13 is reacted with EtMgBr/Et₂O to give tertiary alcohol 14. Tertiary alcohol 14 is
5 treated with nBuLi (2 eq) and CO₂ (g) to yield acid 15. Acid 15 is dehydrated and
esterified with MeOH/HCl (g) to give a mixture of olefinic ester 16. Olefinic ester 16 is
reacted with o-cresol and BF₃-Et₂O to yield phenol 17. Phenol 17 is treated with
NaH/DMF and 1-chloropinacolone/KI to give ketone 18. Ketone 18 is reacted with
NaBH₄/MeOH and KOH/EtOH to yield acid 19.

10 Alternatively, Phenol 17 (step 5 of scheme 4) is treated with K₂CO₃/ACN/KI catalyst to
give ketone 18.

Scheme 5: synthesis of phenyl-thiophene sulfones.

15 Methyl ester 5 is reacted with LAH/THF/45 °C to give alcohol 20. Alcohol 20 is treated
with PBr₃ and then sodium alkyl thiolate to afford sulfide 21. Sulfide 21 is oxidized with
mCBPA to yield sulfone 22. Sulfone 22 is hydrogenolyzed with Pd-C/H₂ to give phenol
23. Phenol 23 is reacted with NaH/DMF and 1-bromopinacolone to afford ketone 24.
Ketone 24 is reduced with NaBH₄/MeOH to yield alcohol 25.

20

Scheme 6: synthesis of pentan-3-ol phenyl-thiophene amide-acids.

Phenol 3 is reacted with Tf₂O and pyridine to give triflate 26. Triflate 26 is methoxy
25 carbonylated with Pd(OAc)₂(DPPF or DPPB)/CO (g)/MeOH/Et₃N/(DMF or DMSO) at
80-100 °C to yield ester 27. Ester 27 is treated with LAH/THF to afford alcohol 28.
Alcohol 28 is reacted with PBr₃ to give bromide 29. Bromide 29 is reacted with the
lithium enolate of pinacolone to yield ketone 30. Ketone 30 is treated with
NaBH₄/MeOH and TBSOTf/2,6-methylpyridine to give silyl ether 31. Silyl ether 31 is
30 reacted with nBuLi/THF and methyl chloroformate to afford ester 32. Ester 32 is
desilylated with aq HF to yield alcohol 32A. Alcohol 32A is hydrolyzed with aq
KOH/EtOH/70 °C to afford acid 32B. Acid 32B is coupled with EDCl/(N-

methylmorpholine or Et₃N)/(HOBT or HOAT)/a substituted glycine ester to give amide-ester 32C. Amide-ester 32C is hydrolyzed with LiOH/H₂O/THF to yield amide-acid 32D.

5

Scheme 7: synthesis of pentan-3-ol thiophene phenyl sulfonates.

Alcohol 20 is reacted with PBr₃ to give bromide 33. Bromide 33 is reacted with the lithium enolate of pinacolone to afford ketone 34. Ketone 34 is hydrogenolyzed with Pd-
10 C/H₂ to yield phenol 35. Phenol 35 is sulfonated with a substituted alkyl sulfonyl chloride to give sulfonate 36. Sulfonate 36 is reduced with NaBH₄/MeOH to yield alcohol 37. Alcohol 37 is treated with dilute aq LiOH/MeOH/dioxane to give sulfonate-acids 38.

15

Scheme 8: synthesis of pentan-3-ol thiophenyl phenyl sulfonamides.

Phenol 20 is treated with Tf₂O/pyridine and Pd(OAc)₂(DPPF or DPPB)/CO (g)/MeOH/Et₃N/(DMF or DMSO) at 80-100 °C to give ester 39. Ester 39 is reacted with
20 NaBH₄/MeOH and NaH/BnBr to afford benzyl ether 40. Benzyl ether 40 is hydrolyzed with KOH/EtOH/80 °C to yield acid 41. Acid 41 is reacted diphenyl phosphoryl azide/Et₃N and tBuOH/90 °C to afford Boc-amino 42. Boc-amino 42 is treated with TFA/anisole to give aniline 43. Aniline 43 is subjected to R₃SO₂Cl/pyridine and Pd-C/H₂ to afford sulfonamide 44. Sulfonamide 44 is hydrolyzed with aq LiOH/MeOH to
25 yield sulfonamide-acid 45.

Scheme 9: synthesis of α-methylated pinacolol phenyl-thiophene acids and amide acids.

30 Ester 7 is treated with LiHMDS; MeI and NaBH₄/MeOH to give alcohol 46. Alcohol 46 is reacted with KOH/EtOH/heat to afford acid 47. Acid 47 is coupled with EDCl/(N-

methylmorpholine or Et₃N)/(HOBT or HOAT)/a substituted glycine ester to give amide-ester 48. Amide-ester 48 is hydrolyzed with LiOH/H₂O/THF to yield amide-acid 49.

5 Scheme 10: synthesis of tertiary alcohol phenyl-thiophene acids and amide-acids.

Phenol 3 is reacted with NaH/DMF and 1-bromopinacolone to give ketone 50. Ketone 50 is treated with MeMgBr/Et₂O to afford tertiary alcohol 51. Tertiary alcohol 51 reacted with s-BuLi (2.5 eq) and CO₂ (g) to give acid 52. Acid 52 is coupled with EDCI/(N-methylmorpholine or Et₃N)/(HOBT or HOAT)/a substituted glycine ester to give amide-ester 53. Amide-ester 53 is hydrolyzed with LiOH/H₂O/dioxane to yield amide-acid 54. Alternatively, Phenol 3 may be reacted with K₂CO₃ and KI catalyst in place of NaH/DMF to give ketone 50.

15 Scheme 11: synthesis of cis-pentynol phenyl-thiophene acids and amide-acids.

Phenol 3 is reacted with TBSCl/imidazole. To give silyl ether 55. Silyl ether 55 is treated with n-BuLi/THF and methyl chloroformate to afford ester 56. Ester 56 is reacted with TBAF/THF and Tf₂O/pyridine to yield triflate 57. Triflate 57 is coupled with TMS-acetylene/Et₃N/DMF/Pd(PPh₃)₂Cl₂ and desilylated with TBAF/THF to give acetylene 58. Acetylene 58 is treated with Zn(OTf)₂Et₃N//t-butyl aldehyde/chiral auxiliary (with or without) to give alcohol 60. Alternatively, Acetylene 58 is reacted with LiHMDS/ketone 59 to give alcohol 60. Alcohol 60 is hydrolyzed with KOH/EtOH to afford acid 61.

25 Optionally, the acetylenic bond may be hydrogenated by conventional methods.

Scheme 12: synthesis of cis-pentenol phenyl-thiophene acids and amide-acids.

Alcohol 60 is treated with Lindlar's catalyst/H₂ and KOH/EtOH to yield acid 62.

30

Scheme 13: synthesis of trans-pentenol phenyl-thiophene acids and amide-acids.

Phenol 3 is reacted with Tf₂O/pyridine to give triflate 63. Triflate 63 is coupled with TMS-acetylene/Et₃N/DMF/Pd(PPh₃)₂Cl₂ and desilylated with TBAF/THF to give acetylene 64. Acetylene 64 is treated with Zn(OTf)₂/t-butyl aldehyde/chiral auxiliary (with or without) to give alcohol 65. For tertiary alcohols, acetylene 64 is reacted with LiHMDS/ketone 59 to give alcohol 65. Alcohol 65 is reduced with LAH or DiBAH to afford trans-pentenol 66. Trans-pentenol 66 is treated with s-BuLi (2.5 eq) and CO₂ (g) to give acid 67.

10

Scheme 14: synthesis of pentynol thiophenyl-pheny acids.

Phenol 3 is reacted with DPTBSCl/imidazole to give silyl ether 68. Silyl ether 68 is reacted with n-BuLi/THF and iodine to afford iodide 69. Iodide 69 is coupled with TMS-acetylene/Et₃N/DMF/Pd(PPh₃)₂Cl₂ and desilylated with TBAF/THF to give acetylene 70. Acetylene 70 is treated with Zn(OTf)₂/t-butyl aldehyde/chiral auxiliary (with or without) to give alcohol 71. For tertiary alcohols, acetylene 70 is reacted with LiHMDS/ketone 59 to give alcohol 71. Alcohol 71 is subjected to TBAF/THF and Tf₂O/pyridine to yield triflate 72. Triflate 72 is methoxycarbonylated with Pd(OAc)₂(DPPF or DPPB)/CO (g)/MeOH/Et₃N/(DMF or DMSO) at 80-100 °C to give ester 73. Ester 73 is hydrolyzed with KOH/EtOH to afford acid 74. Optionally, the acetylenic bond may be hydrogenated by conventional methods.

Scheme 15: synthesis of cis-pentenol thiophenyl-phenyl acids.

25

Acid 74 is reduced with Lindlar's catalyst/H₂ to give acid 75.

30

Acetylene 71 is reduced with LAH or DiBALH to give trans-pentenol 76. Trans-pentenol 76 is treated with TBAF/THF and Tf₂O/pyridine to afford triflate 77. Triflate 77 is

Scheme 16: synthesis of trans-pentenol thiophenyl-phenyl acids.

-330-

methoxycarbonylated with Pd(OAc)₂/DPPF or DPPB)/CO (g)/MeOH/Et₃N/(DMF or DMSO) at 80-100 °C to give an ester which is hydrolyzed with KOH/EtOH to afford acid 78.

5

Scheme 17: synthesis of phenyl-thiophenyl acid mimics.

Acid 9 is coupled with EDCI/H₂NSO₂R₃/DMAP to give acyl-sulfonamide 79.

Acid 9 is coupled with EDCI/5-aminotetrazole/DMAP to give acyl-aminotetrazole 80.

10 For tetrazole 83, acid 9 is reacted with formamide/NaOMe at 100 °C to afford amide 81. Amide 81 is treated with trifluoroacetic acid and methylene chloride followed by 2-chloro-1,3-dimethyl-2-imidazolinium hexafluorophosphate to give nitrile 82. Nitrile 82 is reacted with sodium azide and triethylammonium hydrochloride in N-methylpyrrolidin-2-one to afford tetrazole 83.

15

Scheme 18: synthesis of phenyl-thiophenyl acid analogs.

Alcohol 20 is reacted with Pd-C/H₂ to give phenol 84. Phenol 84 is treated with NaH/DMF (1.0 eq) and 1-bromopinacolone to afford ketone 85. Ketone 85 is reacted with PBr₃ to afford bromide 86. Bromide 86 is couple with KCN/DMF to give nitrile 87. Nitrile 87 is reduced with NaBH₄/MeOH to yield alcohol 88. Alcohol 88 is reacted with KOH/H₂O/dioxane/heat to give acid 89. Acid 89 is coupled with EDCI/5-aminotetrazole/DMAP to give acyl-aminotetrazole 90.

25 Scheme 19: synthesis of additional phenyl-thiophene acid analogs.

Alcohol 88 is reacted with NaN₃/Et₃N-HCl/NMP at 150 C to afford tetrazole 91. Bromide 86 is treated with the sodium enolate of dimethyl malonate and KOH/EtOH/heat to give propionic acid 93. Acid 93 is reduced with NaBH₄/MeOH to give 93A.

30 Scheme 20: synthesis of pentan-3-ol thiophenyl phenyl oxyacetic acid.

Phenol 35 is reacted with K₂CO₃/BrCH₂CO₂Me to give oxyacetate 94. Oxyacetate is hydrolyzed with aq LiOH/MeOH/dioxane to yield oxyacetic acid 95. Oxyacetic acid 95 is reduced with NaBH₄/MeOH to afford alcohol-oxyacetic acid 96.

Scheme 21: synthesis of pentan-3-ol phenyl thiophene propionic acid.

Silyl ether 31 is reacted with n-BuLi/THF and bromine to give bromide 97. Bromide 97 is coupled with BrZnCH₂CH₂CO₂Et/Pd(DPPF)Cl₂/THF/heat to afford ester 98. Ester 98 is reacted with aq LiOH/MeOH and TBAF/THF to yield propionic acid 99.

Scheme 22: synthesis of pentan-3-ol thiophenyl phenyl propionic acid.

Phenol 35 is reacted with Tf₂O/pyridine to give triflate 100. Triflate 100 is coupled with BrZnCH₂CH₂CO₂Et/Pd(DPPF)Cl₂/THF/heat to afford ester 101. Ester 101 is reacted with aq LiOH/MeOH/dioxane and NaBH₄/MeOH to yield propionic acid 102.

Scheme 23: Improved synthesis of phenyl thiophene derivatives.

Acid 103 is esterified with MeOH/HCl (g) and reacted with EtMgBr (6 eq) to give alcohol 104. Alcohol 104 is coupled with 3-methylthiophene and BF₃-OEt₂ to afford phenol 3.

15 Phenol 3 is treated with TBSCl/imidazole to yield silyl ether 55. Silyl ether 55 is reacted with nBuLi and methyl chloroformate to give ester 56. Ester 56 is sequentially reacted with 6) TBAF; 7) 1-bromopinacolone/K₂CO₃; 8) NaBH₄; and 9) KOH to afford acid 9.

Scheme 24: Synthesis of phenyl-3-unsubstituted-thiophene sulfones and sulfides.

20 Commercially available 2-hydroxymethyl thiophene is reacted with NaH (3 eq) and S-methyl-N,N'-tetramethylisothiuronium iodide to give 2-(methylmercaptymethyl)-thiophene (105). Compound (105) is coupled with alcohol (104) and BF₃-OEt₂ to afford phenol 106. Phenol 106 is reacted with NaH/DMF and 1-chloropinacolone/KI to provide ketone 107. The sulfide moiety of 107 is oxidized with mCPBA to yield sulfone 108.
 25 Compound 108 is reacted with NaBH₄/MeOH to yield sulfone-alcohol 109. In addition, ketone 107 is reduced by NaBH₄/MeOH to yield the sulfide-alcohol 110.

Scheme 25: Preparation of sulfonyl aminoalkylcarboxylic acids.

Silyl ether 55 is reacted with nBuLi/THF followed by sulfonyl chloride to give sulfonyl chloride 111. Sulfonyl chloride 111 is reacted with allyl amine to yield a sulfonamide 112. Sulfonamide 112 is alkylated with K₂CO₃/BrCH₂CO₂Me to afford ester 113. Ester 113 is reacted sequentially with 1) HF/H₂O/acetonitrile; 2) K₂CO₃/1-chloropinacolone to

-332-

give ketone-ester 114. Ketone-ester 114 is treated with 1) Pd(PPh₃)₄/N,N-dimethyl barbituric acid; 2) NaBH₄/MeOH; aq LiOH/dioxane to yield sulfonamide-acid 115.

-333-

Scheme 1: Synthesis of Phenyl-Thiophene Acids

-334-

Scheme 2: Synthesis of Phenyl-Thiophene Amides-AcidsScheme 3: Synthesis of Phenyl-Thiophene Amide-Acids

-335-

Scheme 4: Synthesis of Phenyl-3-Unsubstituted Thiophene

Scheme 5: Synthesis of Phenyl-Thiophene Sulfones

-337-

Scheme 6: Synthesis of Pentan-3-ol Phenyl-Thiophene Amide-Acids

-338-

Scheme 7: Synthesis of Petan-3-ol Thiophenyl Phenyl Sulfonates

-339-

Scheme 8: Synthesis of Pentan-3-ol Thiophenyl Phenyl Sulfonamides

-340-

Scheme 9: Synthesis of α -Methylated Pinacol
Phenyl-Thiophene Acids & Amide-Acids

-341-

**Scheme 10: Synthesis of Tertiary Alcohol
Phenyl-Thiophene Acids & Amide-Acids**

Scheme 11: Synthesis of Pentynol Phenyl-Thiophene Acids

Scheme 12: Synthesis of Cis-Pentenol Phenyl-Thiophene Acids

Scheme 13: Synthesis of Trans-Pentenol Phenyl-Thiophene Acids

-344-

Scheme 14: Synthesis of Pentyal
Thiophenyl Phenyl Acids

-345-

Scheme 15: Synthesis of Cis-Pentenol Thiophenyl Phenyl Acids

Scheme 16: Synthesis of Trans-Pentenol Thiophenyl Phenyl Acids

Scheme 17: Synthesis of Phenyl-Thiophene Acid Mimics

-347-

Scheme 18: Synthesis of Phenyl-Thiophene Acid Analogs

Scheme 19: Synthesis of Additional Phenyl-Thiophene Acid Analogs

-349-

Scheme 20: Synthesis of Pentan-3-ol Thiophenyl Phenyl Oxyacetic Acid

-350-

Scheme 21: Synthesis of Pentan-3-ol Phenyl Thiophene Propionic AcidScheme 22: Synthesis of Pentan-3-ol Thiophenyl Phenyl Propionic Acid

-351-

Scheme 23: Improved Synthesis of Phenyl Thiophene Derivatives

-352-

Scheme 24: Synthesis of Phenyl-3-Unsubstituted
Thiophene Sulfones and Sulfides

-353-

Scheme 25: Synthesis of Phenyl Thiophene Sulfonamide and Sulfonamide-Acids

Experimental Results:

Table 5

5

Summary of Experimental Results

Test Cmpd. ¹	RXR-VDR (SaOS-2 cells) ² EC_{50} (nM)	VDR CTF (Caco-2 cells) ³ EC_{50} (nM)	OCN Promoter ⁴ EC_{50} (nM)	Mouse Hypercal ⁵ $\mu\text{g/Kg/d}$

-354-

Ex. 1		3696	140.5	
Ex. 2		1112	30.65	>1000
Ex. 3			72.675	3000
Ex. 4		374	147.2	1000
Ex. 5		1027	146.1	>3000
Ex. 6A	81.54	599.84	63.8	1000
Ex. 6B	323.06	1056.5	325.57	>6000
Ex. 7	397.36	274.50	112.35	6000
Ex. 8	956.98		367.2	>3000
Ex. 9	295.3	1091.1	46.65	6000
Ex. 10	58.89	80.71	51.31	
Ex. 11A	18.12	206.61	42.75	1500
Ex. 11B	96.14	365.96	150.15	
Ex. 13	-	-	312.7	-
Ex. 14	85.30	264.11	46.65	
Ex. 15A	40.57	361.28	46.82	>1000

-355-

Ex. 15B	211.66	244.69	19.72	9000
Ex. 16	96.84	866.39	31	>3000
Ex. 18	9.00	551.78	11.16	
Ex. 19A	14.24	310.59	26.2	>3000
Ex. 19B	186.18	450.04	10.2	>1000
Ex. 20			862	
Ex. 21			139.7	
Ex. 24	560.73		4.7	
Ex. 25A	96.27	699.28	9.9	
Ex. 26	74.54	589.16	7.95	1000
Ex. 27			49.1	>3000
Ex. 28		535.75	0.76	
Ex. 29	269.60	790.90	8.65	
Ex. 30A	24.88	573.73	11.22	1000
Ex. 30B	150.40	1046.08	14.1	2000

-356-

Ex. 31	513.63	1919.23	7.8	
Ex. 32	2025.58		9.35	
Ex. 33A	136.16	1697.32	43.55	>9000
Ex. 33B	94.61	778.39	7.55	1000
Ex. 34	735.72	1228.95	96.8	3000
Ex. 35	311.89	1166.83	21.13	3000
Ex. 36	185.38	702.55	67.87	2000
Ex. 37	441.60		239.87	
Ex. 38			379.5	
Ex. 39	189.14		299.66	
Ex. 40	450.82		612.8	
Ex. 41			300.5	
Ex. 42	10.74	1154.56	33.5	
Ex. 43	80.55	598.43	19.7	1000
Ex. 44	584.10	910.97	30.4	1000
Ex. 45	23.76	1671.30	40.95	>1500

-357-

Ex. 46	2.495	855.72	43.6	
Ex. 47	10.047		27.7	
Ex. 48	176.42	949.33	12.3	3000
Ex. 49	526.80	798.80	62.34	>3000
Ex. 50	186.85	1480.00	21.63	>3000
Ex. 51			781	
Ex. 53	821.55		267.2	
Ex. 54	465.43	1436.67	27.5	
Ex. 55	170.75	779.46	29.63	1000
Ex. 56			164.1	
Ex. 57			114.95	
Ex. 58			276.7	
Ex. 59	503	888.71	319	
Ex. 64	173.87	411.13	4.1	
Ex. 65	23.39	497.97	3.4	300

-358-

Ex. 66	313.33	1457.87	28.45	
Ex. 67	202.57	796.53	19.45	3000
Ex. 68	505		56	
Ex. 69	558.83		487.1	
Ex. 70	149.36	1377.99	25.8	
Ex. 71	137.79	497.41	3.5	<300
Ex. 72	498.39	1026.70	218.55	
Ex. 73	670.15		265.8	
Ex. 74	319.27		478.6	
Ex. 75	722.03		423.17	
Ex. 76	552.77		57.8	
Ex. 77	53.70	534.56	2	300
Ex. 81	381.62		200	
Ex. 82	1284			
Ex. 86	321.74		204.6	
Ex. 87	744		>1000	

-359-

Ex. 88	469.50		168.83	
Ex. 89	286.16	360.27	313.67	
Ex. 90	656	1312		
Ex. 91			212	
Ex. 92			75.35	1000
Ex. 93		598.50	38.5	3000
Ex. 94	51.08	599.40	4.05	1000
Ex. 95	420.73	1176.73	21.45	>6000
Ex. 97	16.67	858.15	22.45	3000
Ex. 98	65.30	1019.59	15.85	4000
Ex. 99			38.1	>1000
Ex. 100	53.13	615.07	5.63	3000
Ex. 101	379.25		29.35	12000
Ex. 103	548.21	1284.03	102.35	3000
Ex. 104	286.18	801.07	90.93	1000

-360-

Ex. 105	633.62		735.55	
Ex. 106	83.75	899.38	8.05	>=1000
Ex. 107	372.20	1031.12	42.3	
Ex. 108	159.89	352.20	5.25	300
Ex. 110	18.81	113.37	0.225	<300
Ex. 111	188.97	319.84	34.45	
Ex. 112	485	658	5	
Ex. 113	542		118	
Ex. 114	8.13	85.02	0.28	<300
Ex. 115	859.39	1109.87	19.95	
Ex. 116	571.99	860.61	16.85	>3000
Ex. 117	2212.29		101.3	
Ex. 118	384.82		32.25	
Ex. 122	526.60		67.45	
Ex. 123	667.80		474.65	
Ex. 124	453.07		101	

-361-

Ex. 125			144.2	
Ex. 126	2.754	358.01	111.4	
Ex. 127	38.19	1503.75	956	
Ex. 128	433.89	2522.75	12.6	
Ex. 129	390.64		68.4	
Ex. 130	336.51	1105.33	49.7	
Ex. 131	461.51	693.30	59.35	3000
Ex. 132	355.90	969.29	51.25	1000
Ex. 133	603.09	957.74	49.25	>9000
Ex. 134	4.05	1302.99	30.6	
Ex. 135	318.10	620.06	29.9	
Ex. 136	430.68	901.03	145.8	
Ex. 137	409.00		24.2	>3000
Ex. 138	476.09	1060.24	27.13	2000
Ex. 139	479.30		30.97	>3000

-362-

Ex. 140	436.81		72.45	
Ex. 141	196.86		43.7	
Ex. 142 2123818	604.77	783.08	113.7	3000
Ex. 143	735.29		687.93	
Ex. 144	687.94	1513.74	29.2	3000
Ex. 145	284.27		221.8	
Ex. 146	676.02		27.7	>3000
Ex. 147	351.94		128.27	
Ex. 148	848.32	1146.189	236.2	
Ex. 149	371.94	1206.25	98.35	
Ex. 150	103.99	1128.4	55.2	
Ex. 151	257.44	714.98	48.2	>3000
Ex. 152	473.97		110	
Ex. 153	376.02		187	
Ex. 154	171.33	470.46	20.5	
Ex. 155	270.66	799.30	18.4	6000

-363-

Ex. 157	235.83	484.31	7.65	>1000
Ex. 158	732.37	2414.37	84.97	
Ex. 159	400.62	1336.75	89.67	
Ex. 160	900.63		40.3	3000
Ex. 161			77	
Ex. 162			131	
Ex. 163	649.14		105.9	
Ex. 164	1054.86		150.4	
Ex. 165	1783.20		137.7	
Ex. 166	1072.82		151	
Ex. 169	80.70	370.91	17.65	<1000
Ex. 170	96.53	589.04	8.4	1000
Ex. 171	229.78	930.62	92.6	
Ex. 172	417.83	781.88	17.2	
Ex. 173	80.93	645.18	25.4	3000

-364-

Ex. 174	58.90	1100.63	172	
Ex. 175	687.78		126.9	
Ex. 176	135.98	288.78	174.2	
Ex. 177	362.21		45.97	
Ex. 178			25.5	
Ex. 179	142.50	279.42	27.85	
Ex. 180	394.35	603.53	40.52	>3000
Ex. 181	403.35	645.03	83.57	>3000
Ex. 182			231.3	
Ex. 183	134.13	781.17	38.6	
AA	5.02	16	5	0.06
BB	10.32	169.81	8.24	>=20
CC	2427.7		>1000	
DD	109.44		31.1	1000
EE	429.99	891.16	341.25	1000
FF	3	57		

Table 6
Summary of Experimental Results

Test Cmpd. ¹	Kera. Prolif. IC ₅₀ (nM)	IL-10 IC ₅₀ (nM)
Ex. 1		
Ex. 2		
Ex. 3		
Ex. 4	122.5	
Ex. 5		
Ex. 6A	439.0	
Ex. 9	129	98
Ex. 10	25.0	
Ex. 11A		
Ex. 11B	216.0	
Ex. 15A	76	26
Ex. 15B	84.0	66
Ex. 16	257.0	
Ex. 18	24.5	
Ex. 19A	18	60
Ex. 19B	20	48
Ex. 29	4.6	
Ex. 30A	13.0	
Ex. 30B	40	120
Ex. 33B	22.5	

-366-

Ex. 35	474.0	
Ex. 39	367.0	
Ex. 48	71.5	
Ex. 49	430.0	
Ex. 55	0.1	
Ex. 65	56	41
Ex. 66	277.0	
Ex. 67	197.0	
Ex. 71	29.0	
Ex. 77	194.0	
Ex. 89	105.0	
Ex. 93	178.0	
Ex. 100	215.0	
Ex. 106	13.0	
Ex. 108	66.0	597
Ex. 110	9.5	288
Ex. 124	216.3	
Ex. 138	102.0	110
Ex. 142	300.0	
Ex. 145	702.0	
Ex. 155	788.0	
Ex. 158	500.0	
Ex. 159	234.3	
Ex. 160	1095.0	
Ex. 169	522.0	
Ex. 170	36	100
Ex. 173	478.0	
Ex. 176	114.0	

Ex. 177	81.3	
Ex. 179	221.0	
AA	120	1.2
BB	10	28
CC	-	-
DD	1060	
EE		
FF	103	0.5

Explanation of Table 5 and 6 column numerical superscripts:

1. Test Compound numbers refer to the products of the corresponding Example Nos. that is, compounds within the scope of the invention. For example, the number "Ex. 2" refers to the compound, 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[5-methoxycarbonyl-4-methylthiophen-2-yl]pentane, prepared in Example 2. The control experiments are done with the double letter coded compounds identified as follows:

"AA" = 1 α ,25-dihydroxyvitamin D₃

"BB" = 3-(4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-phenoxy)-propane-1,2-diol "CC" = 1-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-cyclohexyl}-2-methyl-phenoxy)-3,3-dimethyl-butan-2-one

"DD" = compound represented by the formula:

"EE" = compound represented by the formula:

calcipotriol (structural formula below):

5

- 2. The RXR-VDR heterodimerization (SaOS-2 cells) test is described in the "Assay" section of the Description, infra.
- 3. The VDR CTF (Caco-2 cells) test is described in the "Assay" section of the Description, infra.
- 10 4. The OCN Promoter test is described in the "Assay" section of the Description, infra.
- 5. The Mouse Hypercalcemia test is described in the "Assay" section of the Description, infra.
- 15 6. The keratinocyte proliferation assay is described in the "Assay" section of the Description, infra.
- 7. The IL-10 induction assay is described in the "Assay" section of the Description, infra.

20

Assay Methods

Use of the Assay Methods:

The evaluation of the novel compounds of the invention for osteoporosis and other related diseases is done using a plurality of test results. The use of multiple assays is necessary since the combined properties of (i) high activity for the vitamin D receptor, and (ii) prevention of hypercalcemia must be achieved to have utility for the methods of treating diseases, which are also, aspects of this invention. Some of the tests described

below are believed related to other tests and measure related properties of compounds. Consequently, a compound may be considered to have utility in the practice of the invention if it meets most, if not all, of the acceptance criteria for the above described tests.

5 The evaluation of the novel compounds of the invention for psoriasis is done using the Keratinocyte Proliferation Assay in combination with other assays that measure inhibition of IL-2 production and stimulation of IL-10 production in peripheral blood mononuclear cells (PBMCs).

Brief Description, Utility and Acceptance Criteria for the Assay Methods:

10

1. The RXR-VDR heterodimer Assay:

This assay provides the VDR activity of a test compound. It is desirable to have low EC₅₀ values for a compound in this assay. The lower the EC₅₀ value, the more active the compound will be as a VDR agonist. Desired assay results are EC₅₀ values less than or equal to 600 nM. Preferred assay results are less than 250 nM, and most preferably less than 150 nM.

2. The Caco-2 cell Co-transfection Assay:

The Caco-2 cell assay is an indicator for the undesirable condition of hypercalcemia. This co-transfection assay is a surrogate assay for in vivo calcemic activity of VDR ligands. It is desirable to have high EC₅₀ values for a test compound in this assay. The higher the EC₅₀ values for a compound the less calcemic it will be in vivo. Desired assay results are EC₅₀ greater than or equal to 300 nM. Preferred assay results are greater than 1000 nM.

25

3. The OCN (osteocalcin) Promoter Assay

The OCN Promoter Assay is an indicator and marker for osteoporosis. Desired assay results are EC₅₀ less than or equal to 325 nM. Preferred assay results are less than 50 nM.

30

4. The Mouse Hypercalcemia Assay

-370-

The Mouse Hypercalcemia Assay is a six day hypercalcemia test for toxicity and selectivity. Acceptable test results are levels greater than 300 µg/kg/day. Preferred assay results are levels greater than 1000 µg/kg/day.

5 5. The Keratinocyte Proliferation Assay

This Assay is indicative for the treatment of psoriasis. An acceptable test result is IC50 value of less than or equal to 300 nM. Preferred assay results are IC50 values of less than 100 nM.

10 6. The IL-10 induction Assay

This is an in vitro efficacy assay for psoriasis, abscess and adhesion. Psoriasis involves both keratinocytes and immune cells. IL-10 is a unique cytokine because it is anti-inflammatory and immunosuppressive. This assay tells us whether a VDRM is able to function as an agonist in PBMCs (primary blood mononuclear cells) or not. A lower EC50 value is desirable in this assay since a compound with a lower EC50 value will be a better agonist in PBMCs. An acceptable test result is an EC50 value of less than 200 nM. Preferred assay results are EC50 values of less than 100 nM.

Details of the Assay Methods:

20 (1) Materials and Method for RXR-VDR Heterodimerization Assay:

Transfection Method:

- FuGENE 6 Transfection Reagent (Roche Cat # 1 814 443)

Growth Media:

- D-MEM High Glucose (Gibco BRL Cat # 11054-020), 10% FBS, 1% antibiotic-antimycotic (Ab-Am)

25 FBS heat inactivated (Gibco BRL Cat # 10092-147)

Ab-Am (Gibco BRL Cat # 15240-062)

Cells:

- Grow SaOs-2 cells in T-152 cm² culture flasks in *growth media*.
- 30 • Keep the density at 5-6 x 10⁵ cells/ml
- Passage cells 1:3 twice a week
- Add Trypsin EDTA (Gibco BRL Cat # 25300-020) and incubate

-371-

- Resuspend cells in plating media and transfer into growth media.

Wash Media:

- HBSS Low Glucose Without Phenol Red (Gibco BRL Cat # 14175-095), 1% Ab-Am

Plating Media:

- 5
 - D-MEM Low Glucose Without Phenol Red (Gibco BRL Cat # 11054-020), 1% Ab-Am

D-MEM

Stripped FBS (Hyclone Cat# SH30068.03 Lot # AHM9371)

Ab-Am

Transfection / Treatment Media:

- 10
 - D-MEM Low Glucose Without Phenol Red only

T-152 cm² culture flask:

- Use Corning Coastar T-152 cm² culture flask (Cat # 430825) to grow the cells

Flat well Plates:

- Use well plate to plate cells

- 15
 - Use Deep well plate sterile to make up treatment media.

Luciferase Assay Reagent:

- Use Steady-Glo Luciferase Reagent from Promega (Cat # E2550) Consists of:

a. E2533 Assay Substrate, lyophilized product and

- 20 b. E2543 Assay Buffer.

- Thaw at room temperature

- Store

DAY 1: Cell Plating:

Cell Harvesting

- 25 Aspirate media from culture flask, rinse cells with HBSS and aspirate.

Add trypsin and incubate.

When cells appear detached, resuspend cells in *growth media*.

Transfer into a new flask with fresh *growth media* for passaging the cells.

Plate well plates and two extra plates

- 30 B. **Cell Count**

Mix the cell suspension using pipette

Use *Hematocytometer* to count the cells

-372-

Load cell suspension onto the hemocytometer chamber

Count cells.

Plate seeding:

Use plating media 10 % Stripped FBS in D-MEM Low Glucose, Without Phenol Red, 1%

5 Ab-Am

Plate 14 plates @ 165 µl / well.

In sterile flask add cell suspension

to *plating media*.

Mix .

10 Add cells / well.

Place the cells in the incubator.

Cells should be about 75 % confluent prior to transfection.

DAY 2: Transfection

15 Step 1: DNA and Media

Add plain DMEM media to tubes for mixing the DNA

Add the Reporter gene pFR-LUC

Add the Gal4-RXR-DEF and VP16-VDR-LBD

20 Step 2: FuGENE and Media

Prepare plain DMEM media in a tubes for mixing FuGENE

Add *FuGENE 6 Transfection Reagent*

Incubate

25 Step 3: FuGENE , DNA and Media Complex

Add FuGENE Media complex from step 2 to DNA Media complex from step 1

Incubate

Step 4: FuGENE , DNA and Media Complex to-well plate

30 Add FuGENE-DNA-Media complex from step 3 to each plate

Incubate.

DAY 3: Dosing*Treatment preparation*

Allow for transfection time

- 5 Make a stock solution of the compounds in DMSO
Vortex until all the compounds has been dissolved.
Further dilute in D-MEM (Low Glucose – With out Phenol Red)
Add compounds in quadruplicate to give final volume
Incubate.
- 10 Day 4: Luciferase Assay
Read the plates after drug treatment
Remove part of media from all the wells and leave remainder
Add Steady-Glo Luciferase Reagent mixture / wells
Incubate
- 15 Count each well using a Luminescence counter, Top Count NXT by Packard
Set a delay between plates to reduce the background.

(2) Materials and Method for The Caco-2 Cell Assay:

- Caco-2 cells, grown in phenol red free, DMEM (Invitrogen, Carlsbad, CA) containing 10 % charcoal-stripped FCS (Hyclone, Logan, UT), were transfected with Fugene 6 reagent (Roche Diagnostics, Indianapolis, IN). Cells (5000/well) were plated 18 h before transfection in a 96 well plate. The Cells were transfected with Gal4-responsive reporter pFRLuc (150 ng, Stratagene, La Jolla CA) and the receptor expression vector pGal4-VDR-LBD (10 ng), along with Fugene 6 reagent (0.2 μ l/well). The DNA-Fugene complex was formed by incubating the mixture for 30 min at room temperature. The cells were transfected in triplicate for 5 h, and treated with various concentrations of VDR ligands (form 0.01 nM to 10,000 nM concentration range) 18h post-transfection. The luciferase activity was quantified using Steady-Glo reagent kit (Promega, Madison, WI) as per manufacturer's specifications.

(3) Materials and Method for The OCN Promoter Assay:

The activation of osteocalcin by VDR ligands was evaluated in a rat
osteoblast-like cell line RG-15 (ROS 17/2.8) stably expressing rat osteocalcin
promoter fused with luciferase reporter gene. The stable cell lines were
established as reported before (Activation of Osteocalcin Transcription involves
5 interaction of protein kinase A- and Protein kinase C-dependent pathways.
Boguslawski, G., Hale, L. V., Yu, X.-P., Miles, R. R., Onyia, J. E., Santerre R.
F., Chandrasekhar, S. J Biol. Chem. 275, 999-1006, 2000). Confluent RG-15
cells maintained in DMEM/F-12 medium (3:1) containing 5% FBS, 300 µg/ml
G418 and at 37°C under 5% CO₂/95% air atmosphere were trypsinized (0.25%
10 trypsin) and plated into white opaque 96-well cell culture plates (25000
cells/well). After 24 hr, cells (in DMEM/F-12 medium + 2% FBS) were treated
with various concentrations of compounds, dissolved in DMSO. The final
DMSO concentration remained at 0.01% (v/v). After 48 hr treatment, the
medium was removed, cells were lysed with 50 µl of lysis buffer (From
15 Luciferase reporter assay system, Roche Diagnostics, Indianapolis, IN) and
assayed for luciferase activity using the Luciferase Reporter Gene Assay kit from
Boehringer Mannheim as per manufacturer's specifications.

(4) Materials and Method for The Mouse Hypercalcemia Assay:

20 Weanling, virus -antibody-free, five to six weeks old female DBF mice (Harlan,
Indianapolis, IN) are used for all the studies. Animals are allowed to acclimate to local
vivarium conditions for 2 days. Mice are maintained on a 12 hr light/dark cycle at 22°C
with ad lib access to food (TD 5001 with 1.2% Ca and 0.9%P, Teklad, Madison, WI) and
water. The animals then are divided into groups with 4-5 mice per group. Different doses
25 of test compounds prepared in 10% Ethanol and 90% sesame oil are administered to mice
orally via gavage for 6 days. 1α-25(OH)₂D₃ 0.5µg/kg/d was also given to one group of
mice as the positive control. Serum ionized calcium is evaluated at 6 hours after the last
dosing under isoflurane anesthesia by Ciba-Corning Ca++/PH Analyzer, (Model 634,
Chiron Diagnostics Corp., East Walpole, MA). Raw data of group differences is assessed
30 by analysis of variance (ANOVA) using Fisher's protected least significant difference
(PLSD) where the significance level was P< 0.05.

(5) The Keratinocyte Proliferation Assay:

KERtr cells (Human skin keratinocyte transformed with a retrovirus vector, obtained from ATCC) were plated in 96-well flat-bottomed plates (3000 cells/well) in 100 μ l keratinocyte serum free medium supplemented with bovine pituitary extract in the absence of EGF (Life Technologies, Rockville, MD) and incubated at 37°C for two days. The cells were treated with various concentrations of VDR ligands (ten-fold serial dilution from 10,000 nM to 0.1 nM in triplicate), dissolved in 100 μ l keratinocyte serum free medium supplemented with bovine pituitary extract in the absence of EGF and incubated at 37°C for 72hr. BrdU (5-bromo-2'-deoxyuridine) incorporation was analyzed as a measure of DNA replication (Cell proliferation ELISA kit, Roche Diagnostics, Indianapolis, IN) and absorbance was measured at 405 nm. Potency values (IC₅₀) values were determined as the concentration (nM) of compound that elicited a half-maximal response.

15 (6) Materials and Method for human IL-10 Induction Assay:

Isolation of peripheral blood mononuclear cells (PBMCs):

- A. Collect 50 ml of human blood and dilute with media, RPMI-1640.
- B. Prepare sterile tubes with ficol.
- C. Add diluted blood to tubes.
- 20 D. Centrifuge.
- E. Discard the top layer and collect the cells from middle layer.
- F. Divide all cells into four tubes and add media.
- G. Centrifuge.
- H. Aspirate off media and resuspend.
- I. Collect all cells
- 25 J. Centrifuge. at 1200 rpm for 10 minutes.
- K. Resuspend in RPMI-1640 with 2% FBS and count cells

Stimulation of PBMC:

- L. Prepare TPA in DMSO.
- 30 M. Dissolve PHA in water .
- N. Plate TPA/PHA treated PBMCs in well plates.
- O. Incubate.

-376-

Treatment:

P. Prepare all compound dilutions in plain RPMI- 1640 media.

Q. Add diluted compound.

R. Incubate.

5 Sample Collection and assay:

S. Remove all the cells by centrifugation and assay the supernatant for IL-10 by immunoassay.

1) T. Perform IL-10 assay using anti-human IL-10 antibody coated beads, as described by the manufacturer (Linco Research Inc., St. Charles, MO).

10

WE CLAIM:

- 5 1. A compound represented by formula I or a pharmaceutically acceptable salt or a prodrug derivative thereof:

wherein;

10 R and R' are independently C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, or together R and R' form a substituted or unsubstituted, saturated or unsaturated carbocyclic ring having from 3 to 8 carbon atoms;

 Ring atoms Q₁ and Q₂ are independently selected from carbon or sulfur, with the proviso that one atom is sulfur and the other atom is carbon;

15 R_P and R_T are independently selected from the group consisting of hydrogen, halo, C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, -O-C₁-C₅ alkyl, -S-C₁-C₅ alkyl, -O-C₁-C₅ fluoroalkyl, -CN, -NO₂, acetyl, -S-C₁-C₅ fluoroalkyl, C₂-C₅ alkenyl, C₃-C₅ cycloalkyl, and C₃-C₅ cycloalkenyl;

 (L_P) and (L_T) are divalent linking groups independently selected from the group consisting of

-378-

a bond

-379-

5

where m is 0, 1 or 2, X_1 is oxygen or sulfur, and each R40 is independently hydrogen or $C_1\text{-}C_5$ alkyl or $C_1\text{-}C_5$ fluoroalkyl;

Z_P and Z_T are independently selected from

-hydrogen,

10

-phenyl,

-benzyl,

-fluorophenyl,

$-(C_1\text{-}C_5\text{ alkyl})$,

$-(C_2\text{-}C_5\text{ alkenyl})$,

$-(C_3\text{-}C_5\text{ cycloalkyl})$,

$-(C_3\text{-}C_5\text{ cycloalkenyl})$,

$-(C_1\text{-}C_5\text{ hydroxyalkyl})$,

$-(C_1\text{-}C_5\text{ fluoroalkyl})$,

15

$-(C_1\text{-}C_5\text{ alkyl})\text{-phenyl}$,

	-(C ₁ -C ₅ alkyl)-O-(C ₁ -C ₅) alkyl,
5	-(C ₁ -C ₅ alkyl)-NH ₂ ,
	-(C ₁ -C ₅ alkyl)-NH-(C ₁ -C ₅ alkyl),
	-(C ₁ -C ₅ alkyl)-N-(C ₁ -C ₅ alkyl) ₂ ,
	-(C ₁ -C ₅ alkyl)-C(O)-NH ₂ ,
	-(C ₁ -C ₅ alkyl)-C(O)-NH-(C ₁ -C ₅ alkyl),
	-(C ₁ -C ₅ alkyl)-C(O)-N-(C ₁ -C ₅ alkyl) ₂ ,
	-(C ₁ -C ₅ alkyl)-C(O)-(C ₁ -C ₅ alkyl),
10	-(C ₁ -C ₅ alkyl)-NH-SO ₂ -(C ₁ -C ₅ alkyl),
	-(C ₁ -C ₅ alkyl)-N-pyrrolidin-2-one,
	-(C ₁ -C ₅ alkyl)-N-pyrrolidine,
	-(C ₁ -C ₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
	-(C ₁ -C ₅ alkyl)-C(O)-(O-C ₁ -C ₅ alkyl),
15	-(C ₁ -C ₅ alkyl)-C(O)-OH,
	-(C ₁ -C ₅ alkyl)-5-tetrazolyl,
	-(C ₁ -C ₅ alkyl)-P(O)-(O-C ₁ -C ₅ alkyl) ₂ ,
	-(C ₁ -C ₅ alkyl)-SO ₂ -(C ₁ -C ₅ alkyl),
	-(C ₁ -C ₅ alkyl)-SO ₂ -NH ₂ ,
	-(C ₁ -C ₅ alkyl)-SO ₂ -NH-(C ₁ -C ₅ alkyl),
20	-(C ₁ -C ₅ alkyl)-SO ₂ -N-(C ₁ -C ₅ alkyl) ₂ ,
	-(C ₁ -C ₅ alkyl)-SO ₂ -(C ₁ -C ₅ alkyl),
	-(C ₁ -C ₅ alkyl)-S(O)-(C ₁ -C ₅ alkyl),
	-(C ₁ -C ₅ alkyl)-S(O)-NH ₂ ,
	-(C ₁ -C ₅ alkyl)-S(O)-NH-(C ₁ -C ₅ alkyl),
25	-(C ₁ -C ₅ alkyl)-S(O)-N-(C ₁ -C ₅ alkyl) ₂ ,
	-(C ₁ -C ₅ alkyl)-S(O)-(C ₁ -C ₅ alkyl),
	-(C ₁ -C ₅ alkyl)-N(C(O)(C ₁ -C ₅ alkyl)CH ₂ C(O)OH,
	-(C ₁ -C ₅ alkyl)-N(C(O)(C ₁ -C ₅ alkyl)CH ₂ C(O) -(C ₁ -C ₅ alkyl),
30	-CH(OH)-(C ₁ -C ₅ alkyl)
	-CH(OH)-(C ₂ -C ₅ alkenyl),

- CH(OH)-(C₃-C₅ cycloalkyl),
- CH(OH)-(C₃-C₅ cycloalkenyl),
- CH(OH)-(C₁-C₅ hydroxyalkyl),
- CH(OH)-(C₁-C₅ fluoroalkyl),
- 5 -CH(OH)-phenyl
- CH(OH)-5-tetrazolyl,
- CH(OH)-(1-methylpyrrolidin-2-one-3-yl),

- 10 -C(O)-(C₁-C₅ alkyl),
- C(O)-(C₁-C₅ alkyl)-C(O)OH,
- C(O)-(C₁-C₅ alkyl)-C(O)(O-C₁-C₅ alkyl),
- C(O)-(C₂-C₅ alkenyl),
- C(O)-(C₃-C₅ cycloalkyl),
- C(O)-(C₃-C₅ cycloalkenyl),
- 15 -C(O)-(C₁-C₅ hydroxyalkyl),
- C(O)-(C₁-C₅ fluoroalkyl),
- C(O)-(C₁-C₅ alkyl)-phenyl
- C(O)-O-(C₁-C₅ alkyl),
- C(O)-O-(C₂-C₅ alkenyl),
- 20 -C(O)-O-(C₃-C₅ cycloalkyl),
- C(O)-O-(C₃-C₅ cycloalkenyl),
- C(O)-O-(C₁-C₅ hydroxyalkyl),
- C(O)-O-(C₁-C₅ fluoroalkyl),
- C(O)-O-(C₁-C₅ alkyl)-phenyl,

- 25 -C(O)-NH₂,
- C(O)-NH(OH),
- C(O)-NH-(C₁-C₅ alkyl),
- C(O)-N-(C₁-C₅ alkyl)₂,
- C(O)-NH-(C₂-C₅ alkenyl),

- 30 -C(O)-NH-(C₃-C₅ cycloalkyl),
- C(O)-NH-(C₃-C₅ cycloalkenyl),
- C(O)-NH-(C₁-C₅ fluoroalkyl),

5

-C(O)-NH-(C₁-C₅ alkyl)-phenyl,
-C(O)-NH-SO₂-(C₁-C₅ alkyl),
-C(O)-NH-SO₂-(C₂-C₅ alkenyl),
-C(O)-NH-SO₂-(C₃-C₅ cycloalkyl),
-C(O)-NH-SO₂-(C₃-C₅ cycloalkenyl),
-C(O)-NH-S(O)-(C₁-C₅ alkyl),
-C(O)-NH-S(O)-(C₂-C₅ alkenyl),
-C(O)-NH-S(O)-(C₃-C₅ cycloalkyl),
-C(O)-NH-S(O)-(C₃-C₅ cycloalkenyl),
-C(O)-NH-(C₁-C₅ fluoroalkyl),
10 -C(O)-NH-(C₁-C₅ alkyl)-phenyl
-C(O)-NH-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
-C(O)-NH-(C₁-C₅ alkyl)-S(O)-(C₁-C₅ alkyl),
-C(O)-NH-CH₂-C(O)OH
15 -C(O)-NH-CH₂-C(O)-(O-C₁-C₅ alkyl),
-C(O)-N-(C₁-C₅ alkyl)(C(O)OH),
-C(O)-N-(C₁-C₅ alkyl)(C(O)-(O-C₁-C₅ alkyl)),
-C(O)-NH-CH((CH₂)(CO₂H))(CO₂H),
-C(O)-NH-CH((CH₂)(C(O)-(C₁-C₅ alkyl)))(C(O)-(O-C₁-
20 C₅ alkyl)),
-C(O)-NH-CH((CH₂OH)(CO₂H)),
-C(O)-NH-CH((CH₂OH)(C(O)(O-C₁-C₅ alkyl))),
-C(O)-NH-C((C₁-C₅ alkyl)(C₁-C₅ alkyl))(CO₂H),
-C(O)-NH-C((C₁-C₅ alkyl)(C₁-C₅ alkyl))(C(O)-(O-C₁-C₅
25 alkyl)),
-C(O)-NH-5-tetrazolyl,
-C(O)-N-pyrrolidin-2-one,
-C(O)-N-pyrrolidine,
-C(O)-(1-methylpyrrolidin-2-one-3-yl),
30 -C(O)-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
-C(O)-(C₁-C₅ alkyl)-N-pyrrolidine,
-C(O)-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),

5 -C(O)-N-pyrrolidin-2-(CO₂H),
 -C(O)-N-pyrrolidin-2-(C(O)-(O-C₁-C₅ alkyl)),
 -C(O)-N-(C(O)-(C₁-C₅ alkyl))CH₂(CO₂H),
 -C(O)-N-(C(O)-(C₁-C₅ alkyl))CH₂(C(O)-(O-C₁-C₅ alkyl)),
 -C(O)-N-(C₁-C₅ alkyl))CH₂(CO₂H),
 -C(O)-C(O)-OH,
 -C(O)-C(O)-(C₁-C₅ alkyl),
 -C(O)-C(O)-(C₂-C₅ alkenyl),
 10 -C(O)-C(O)-(C₃-C₅ cycloalkyl),
 -C(O)-C(O)-(C₃-C₅ cycloalkenyl),
 -C(O)-C(O)-(C₁-C₅ hydroxyalkyl),
 -C(O)-C(O)-(C₁-C₅ fluoroalkyl),
 -C(O)-C(O)-(C₁-C₅ alkyl)-phenyl,
 15 -C(O)-C(O)-NH₂,
 -C(O)-C(O)- NH-(C₁-C₅ alkyl),
 -C(O)-C(O)- N-(C₁-C₅ alkyl)₂,
 -C(O)-C(O)-5-tetrazolyl,
 -C(O)-C(O)-N-pyrrolidin-2-one,
 20 -C(O)-C(O)-N-pyrrolidine,
 -C(O)-C(O)-(1-methylpyrrolidin-2-one-3-yl),

 -O-(C₁-C₅ alkyl),
 -O-(C₂-C₅ alkenyl),
 25 -O-(C₃-C₅ cycloalkyl),
 -O-(C₃-C₅ cycloalkenyl),
 -O-(C₁-C₅ hydroxyalkyl),
 -O-(C₁-C₅ fluoroalkyl),
 -O-(C₁-C₅ alkyl)-phenyl,
 30 -O-(C₁-C₅ alkyl)-(O)-(C₁-C₅ alkyl),
 -O-(C₁-C₅ alkyl) NH₂,
 -O-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl)₂,

- O-(C₁-C₅ alkyl)-C(O)-NH₂,
- O-(C₁-C₅ alkyl)-C(O)-NH-(C₁-C₅ alkyl),
- O-(C₁-C₅ alkyl)-C(O)-N-(C₁-C₅ alkyl)₂,
- O-(C₁-C₅ alkyl)-C(O)-OH,
- 5 -O-(C₁-C₅ alkyl)-C(O)-NH-5-tetrazolyl,
- O-(C₁-C₅ alkyl)-C(O)-(C₁-C₅ alkyl),
- O-(C₁-C₅ alkyl)-C(O)-(O-C₁-C₅ alkyl),
- O-(C₁-C₅ alkyl)-NH₂,
- O-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
- 10 -O-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂,
- O-(C₁-C₅ alkyl)-NH-SO₂-(C₁-C₅ alkyl),
- O-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- O-(C₁-C₅ alkyl)-N-pyrrolidine,
- O-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- 15 -O-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl)
- O-(C₁-C₅ alkyl)-SO₂-NH₂,
- O-(C₁-C₅ alkyl)-SO₂-NH-(C₁-C₅ alkyl),
- O-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂,
- O-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- 20 -O-(C₁-C₅ alkyl)-S(O)-(C₁-C₅ alkyl)
- O-(C₁-C₅ alkyl)-S(O)-NH₂,
- O-(C₁-C₅ alkyl)-S(O)-NH-(C₁-C₅ alkyl),
- O-(C₁-C₅ alkyl)-S(O)-N-(C₁-C₅ alkyl)₂,
- O-(C₁-C₅ alkyl)-S(O)-(C₁-C₅ alkyl),
- 25 -O-(C₁-C₅ alkyl)-P(O)-(O-C₁-C₅ alkyl)₂,
- O-(C₁-C₅ alkyl)-5-tetrazolyl,
- O-CH₂-CO₂H,
- O-CH₂-5-tetrazolyl,
- O-(C₁-C₅ alkyl),
- 30 -O-C(O)-NH₂,
- O-C(O)-N-(CH₃)₂,
- O-C(S)-N-(CH₃)₂,

- O-C(O)-O-(C₁-C₅ alkyl),
- O-(5-tetrazolyl),
- O-SO₂-(C₁-C₅ alkyl),
- O-SO₂-NH₂,
- 5 -O-SO₂-NH-(C₁-C₅ alkyl),
- O-SO₂-N-(C₁-C₅ alkyl)₂,
- O-S(O)-(C₁-C₅ alkyl),
- O-S(O)-NH₂,
- O-S(O)-NH-(C₁-C₅ alkyl),
- 10 -O-S(O)-N-(C₁-C₅ alkyl)₂,

- S-(C₁-C₅ alkyl),
- S-(C₂-C₅ alkenyl),
- S-(C₃-C₅ cycloalkyl),
- 15 -S-(C₃-C₅ cycloalkenyl),
- S-(C₁-C₅ fluoroalkyl),
- S-(C₁-C₅ hydroxyalkyl),
- S-(C₁-C₅ alkyl)-phenyl,
- S-(C₁-C₅ alkyl)-O-(C₁-C₅ alkyl),
- 20 -S-(C₁-C₅ alkyl)-C(O)-OH,
- S-(C₁-C₅ alkyl)-C(O)-(C₁-C₅ alkyl),
- S-(C₁-C₅ alkyl)-C(O)-O-(C₁-C₅ alkyl),
- S-(C₁-C₅ alkyl)-C(O)-NH₂,
- S-(C₁-C₅ alkyl)-C(O)-NH-(C₁-C₅ alkyl),
- 25 -S-(C₁-C₅ alkyl)-C(O)-N-(C₁-C₅ alkyl)₂,
- S-(C₁-C₅ alkyl) NH₂,
- S-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
- S-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂,
- S-(C₁-C₅ alkyl)-NH-SO₂-(C₁-C₅ alkyl),
- 30 -S-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- S-(C₁-C₅ alkyl)-N-pyrrolidine,
- S-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),

- S-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- S-(C₁-C₅ alkyl)-SO₂-NH₂,
- S-(C₁-C₅ alkyl)-SO₂-NH-(C₁-C₅ alkyl),
- S-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂,
- 5 -S-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- S-(C₁-C₅ alkyl)-P(O)-(O-C₁-C₅ alkyl)₂,
- S-(C₁-C₅ alkyl)-5-tetrazolyl,
- S-(C₁-C₅ alkyl)-S(O)-(C₁-C₅ alkyl),
- S-(C₁-C₅ alkyl)-S(O)-NH₂,
- 10 -S-(C₁-C₅ alkyl)-S(O)-NH-(C₁-C₅ alkyl),
- S-(C₁-C₅ alkyl)-S(O)-N-(C₁-C₅ alkyl)₂,
- S-(C₁-C₅ alkyl)-S(O)-(C₁-C₅ alkyl),

- SO₂-(C₁-C₅ alkyl),
- 15 -SO₂-(C₂-C₅ alkenyl),
- SO₂-(C₃-C₅ cycloalkyl),
- SO₂-(C₃-C₅ cycloalkenyl),
- SO₂-(C₁-C₅ hydroxyalkyl),
- SO₂-(C₁-C₅ fluoroalkyl),
- 20 -SO₂-(C₁-C₅)-phenyl,

- SO₂-NH₂,
- SO₂-NH-(C₁-C₅ alkyl),
- SO₂-NH-CH₂-C(O)OH,
- 25 -SO₂-NH-CH₂-C(O)(O-C₁-C₅ alkyl),
- SO₂-NH-(C₁-C₅ alkyl)-C(O)OH,
- SO₂-NH-(C₁-C₅ alkyl)-C(O)(O-C₁-C₅ alkyl),
- SO₂-NHC(O)-(C₃-C₆ cycloalkyl),

- 30 -SO₂-NH-C(O)-(C₁-C₅ alkyl),
- SO₂-N-(C₁-C₅ alkyl)₂,
- SO₂-(C₁-C₅ alkyl)-O-(C₁-C₅ alkyl),

- SO₂-(C₁-C₅ alkyl)-C(O)-(C₁-C₅ alkyl),
- SO₂-(C₁-C₅ alkyl) NH₂,
- SO₂-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
- SO₂-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂,
- 5 -SO₂-(C₁-C₅ alkyl)-C(O)-NH₂,
- SO₂-(C₁-C₅ alkyl)-C(O)-NH-(C₁-C₅ alkyl),
- SO₂-(C₁-C₅ alkyl)-C(O)-N-(C₁-C₅ alkyl)₂,
- SO₂-(C₁-C₅ alkyl)-NH-SO₂-(C₁-C₅ alkyl),
- SO₂-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- 10 -SO₂-(C₁-C₅ alkyl)-N-pyrrolidine,
- SO₂-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- SO₂-(C₁-C₅ alkyl)-C(O)-O-(C₁-C₅ alkyl),
- SO₂-(C₁-C₅ alkyl)-C(O)-OH,
- 15 -SO₂-(C₁-C₅ alkyl)-5-tetrazolyl,
- SO₂-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- SO₂-(C₁-C₅ alkyl)-SO₂-NH₂,
- SO₂-(C₁-C₅ alkyl)-SO₂-NH-(C₁-C₅ alkyl),
- SO₂-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂,
- SO₂-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- 20 -SO₂-(C₁-C₅ alkyl)-P(O)-(O-C₁-C₅ alkyl)₂,
- SO₂-(C₁-C₅ alkyl),
- SO₂-(C₂-C₅ alkenyl),
- SO₂-(C₃-C₅ cycloalkyl),
- SO₂-(C₃-C₅ cycloalkenyl),
- 25 -SO₂-(C₁-C₅ hydroxyalkyl),
- SO₂-(C₁-C₅ fluoroalkyl),
- SO₂-(C₁-C₅)-phenyl,
- SO₂-N=CHN(C₁-C₅ alkyl) ₂,

- 30 -S(O)-NH₂,
- S(O)-NH-(C₁-C₅ alkyl),
- S(O)-NH-CH₂-C(O)OH

- S(O)-NH-(C₁-C₅ alkyl)-C(O)OH,
- S(O)-NH-CH₂-C(O)(O-C₁-C₅ alkyl),
- S(O)-NH-(C₁-C₅ alkyl)-C(O)(O-C₁-C₅ alkyl),
- S(O)HC(O)-(C₃-C₆ cycloalkyl),
- 5 -S(O)-NH-C(O)-(C₁-C₅ alkyl),
- S(O)-N-(C₁-C₅ alkyl)₂,
- S(O)-(C₁-C₅ alkyl)-O-(C₁-C₅ alkyl),
- S(O)-(C₁-C₅ alkyl)-C(O)-(C₁-C₅ alkyl),
- S(O)-(C₁-C₅ alkyl)-C(O)-(O-C₁-C₅ alkyl),
- 10 -S(O)-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
- S(O)-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂,
- S(O)-(C₁-C₅ alkyl)-C(O)-NH₂,
- S(O)-(C₁-C₅ alkyl)-C(O)-NH-(C₁-C₅ alkyl),
- S(O)-(C₁-C₅ alkyl)-C(O)-N-(C₁-C₅ alkyl)₂,
- 15 -S(O)-(C₁-C₅ alkyl)-NH-SO₂-(C₁-C₅ alkyl),
- S(O)-(C₁-C₅ alkyl)-NH-S(O)-(C₁-C₅ alkyl),
- S(O)-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- S(O)-(C₁-C₅ alkyl)-N-pyrrolidine,
- S(O)-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- 20 -S(O)-(C₁-C₅ alkyl)-C(O)-(O-C₁-C₅ alkyl),
- S(O)-(C₁-C₅ alkyl)-C(O)-OH,
- S(O)-(C₁-C₅ alkyl)-5-tetrazolyl,
- S(O)-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- S(O)-(C₁-C₅ alkyl)-S(O)-(C₁-C₅ alkyl),
- 25 -S(O)-(C₁-C₅ alkyl)-SO₂-NH₂,
- S(O)-(C₁-C₅ alkyl)-S(O)-NH₂,
- S(O)-(C₁-C₅ alkyl)-SO₂-NH-(C₁-C₅ alkyl),
- S(O)-(C₁-C₅ alkyl)-S(O)-NH-(C₁-C₅ alkyl),
- S(O)-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂,
- 30 -S(O)-(C₁-C₅ alkyl)-S(O)-N-(C₁-C₅ alkyl)₂,
- S(O)-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- S(O)-(C₁-C₅ alkyl)-S(O)-(C₁-C₅ alkyl),

- S(O)-(C₁-C₅ alkyl)-P(O)-(O-C₁-C₅ alkyl)₂ ,
-S(O)-N=CHN(C₁-C₅ alkyl) ₂,

-NHC(S)NH₂,
5 -NHC(S)NH-(C₁-C₅ alkyl),
-NHC(S)N-(C₁-C₅ alkyl)₂,
-NHC(S)NH-(C₂-C₅ alkenyl),
-NHC(S)NH-(C₃-C₅ cycloalkyl),
-NHC(S)NH-(C₃-C₅ cycloalkenyl),
10 -NHC(S)NH-(C₁-C₅ fluoroalkyl),
-NHC(S)NH-C₁-C₅ hydroxyalkyl,
-NHC(S)NH-(C₁-C₅ fluoroalkyl)
-NHC(S)NH-phenyl,
-NHC(S)NH-(C₁-C₅ alkyl)-C(O)-OH,
15 -NHC(S)NH-(C₁-C₅ alkyl)-O-(C₁-C₅ alkyl),
-NHC(S)NH-(C₁-C₅ alkyl)-C(O)-(C₁-C₅ alkyl),
-NHC(S)NH-(C₁-C₅ alkyl)-C(O)-(O-C₁-C₅ alkyl),
-NHC(S)NH-(C₁-C₅ alkyl)-NH₂,
-NHC(S)NH-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
20 -NHC(S)NH-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂,
-NHC(S)NH-(C₁-C₅ alkyl)-C(O)-NH₂,
-NHC(S)NH-(C₁-C₅ alkyl)-C(O)-NH-(C₁-C₅ alkyl),
-NHC(S)NH-(C₁-C₅ alkyl)-C(O)-N-(C₁-C₅ alkyl)₂,
-NHC(S)NH-(C₁-C₅ alkyl)-NH-SO₂-(C₁-C₅ alkyl),
25 -NHC(S)NH-(C₁-C₅ alkyl)-NH-S(O)-(C₁-C₅ alkyl),
-NHC(S)NH-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
-NHC(S)NH-(C₁-C₅ alkyl)-N-pyrrolidine,
-NHC(S)NH-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-
3-yl),
30 -NHC(S)NH-(C₁-C₅ alkyl)-5-tetrazolyl,
-NHC(S)NH-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
-NHC(S)NH-(C₁-C₅ alkyl)-SO₂-NH₂,

- 5
- NHC(S)NH-(C₁-C₅ alkyl)-SO₂-NH-(C₁-C₅ alkyl),
 - NHC(S)NH-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂,
 - NHC(S)NH-(C₁-C₅ alkyl)-S(O)-(C₁-C₅ alkyl),
 - NHC(S)NH-(C₁-C₅ alkyl)-S(O)-NH₂,
 - NHC(S)NH-(C₁-C₅ alkyl)-S(O)-NH-(C₁-C₅ alkyl),
 - NHC(S)NH-(C₁-C₅ alkyl)-S(O)-N-(C₁-C₅ alkyl)₂,
 - NHC(S)NH-(C₁-C₅ alkyl)-P(O)-(O-C₁-C₅ alkyl)₂,
- 10
- NHC(O)NH₂,
 - NHC(O)NH-(C₁-C₅ alkyl),
 - NHC(O)N-(C₁-C₅ alkyl)₂,
 - NHC(O)NH-(C₂-C₅ alkenyl),
 - NHC(O)NH-(C₃-C₅ cycloalkyl),
 - NHC(O)NH-(C₃-C₅ cycloalkenyl),
- 15
- NHC(O)NH-(C₁-C₅ hydroxyalkyl),
 - NHC(O)NH-(C₁-C₅ fluoroalkyl),
 - NHC(O)NH-phenyl,
 - NHC(O)NH-(C₁-C₅ alkyl)-NH₂,
 - NHC(O)NH-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
- 20
- NHC(O)NH-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂,
 - NHC(O)NH-(C₁-C₅ alkyl)-O-(C₁-C₅ alkyl),
 - NHC(O)NH-(C₁-C₅ alkyl)-NH₂,
 - NHC(O)NH-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
 - NHC(O)NH-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂,
- 25
- NHC(O)NH-(C₁-C₅ alkyl)-C(O)-NH₂,
 - NHC(O)NH-(C₁-C₅ alkyl)-C(O)-NH-(C₁-C₅ alkyl),
 - NHC(O)NH-(C₁-C₅ alkyl)-C(O)-N-(C₁-C₅ alkyl)₂,
 - NHC(O)NH-(C₁-C₅ alkyl)-C(O)-(C₁-C₅ alkyl),
 - NHC(O)NH-(C₁-C₅ alkyl)-NH-SO₂-(C₁-C₅ alkyl),
- 30
- NHC(O)NH-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
 - NHC(O)NH-(C₁-C₅ alkyl)-N-pyrrolidine,
 - NHC(O)NH-(C₁-C₅ alkyl)-

-391-

- (1-methylpyrrolidin-2-one-3-yl),
- NHC(O)NH-(C₁-C₅ alkyl)-C(O)-OH,
- NHC(O)NH-(C₁-C₅ alkyl)-C(O)-O-(C₁-C₅ alkyl),
- NHC(O)NH-(C₁-C₅ alkyl)-5-tetrazolyl,
- 5 -NHC(O)NH-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),
- NHC(O)NH-(C₁-C₅ alkyl)-SO₂-NH₂,
- NHC(O)NH-(C₁-C₅ alkyl)-SO₂-NH-(C₁-C₅ alkyl),
- NHC(O)NH-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂,
- NHC(O)NH-(C₁-C₅ alkyl)-P(O)-O-(C₁-C₅ alkyl)₂,
- 10 -NH₂,
- NH-(C₁-C₅ alkyl),
- NH-CH₂-C(O)OH,
- N-(C₁-C₅ alkyl)₂,
- NH-C(O)-NH₂,
- 15 -NH-C(O)-NH-(C₁-C₅ alkyl),
- NH-C(O)-N-(C₁-C₅ alkyl)₂,
- NH-C(O)-(C₁-C₅ alkyl),
- NH-SO₂-(C₁-C₅ alkyl),
- NH-S(O)-(C₁-C₅ alkyl),
- 20 -N(CH₃)(OCH₃),
- N(OH)(CH₃),
- N-pyrrolidin-2-one,
- N-pyrrolidine,
- (1-methylpyrrolidin-2-one-3-yl),

25

-392-

-393-

5

10

1-hydroxycyclopentenyl,
1-hydroxycyclohexenyl,

1-hydroxycycloheptenyl,
 1-hydroxycyclooctenyl,
 1-hydroxycyclopropyl,
 1-hydroxycyclobutyl,
 5 1-hydroxycyclopentyl,
 1-hydroxycyclohexyl,
 1-hydroxycycloheptyl,
 1-hydroxycyclooctyl,
 -5-tetrazolyl,
 10 -carboxyl,
 -OH,
 -I,
 -Br
 -Cl
 15 -F,
 -CHO,
 -NO₂,
 -CN,
 sulfonamide,
 sulfonamide,
 20 urethane-type radical, or
 (Acidic Group);

provided that the combined groups of formula I represented by

25 may both be lipophilic, or either one may be lipophilic and the other one polar; but both combined groups may not be polar.

2. A compound represented by formula II or III or IV or V or a pharmaceutically acceptable salt or prodrug derivative thereof:

-395-

or

-395-

5.

or

-396-

wherein;

R and R' are independently methyl, ethyl, propyl, 1-methylethyl, 1-methylpropyl, 2-methylpropyl, or 1,1-dimethylethyl;

5 Rp and R_T are independently selected from the group consisting of hydrogen, fluoro, -CF₃, -CH₂F, -CHF₂, -CH₂Cl, methoxy, ethoxy, vinyl, methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, or 1,1-dimethylethyl;

L_T and L_P are independently selected from one the following divalent linking group;

a bond

10

Z_P is selected from

-397-

-398-

-399-

1-hydroxycyclopentenyl,

5 1-hydroxycyclohexenyl,

1-hydroxycycloheptenyl,

1-hydroxycyclooctenyl,

1-hydroxycyclopropyl,

1-hydroxycyclobutyl,

10 1-hydroxycyclopentyl,

1-hydroxycyclohexyl,

1-hydroxycycloheptyl, and

1-hydroxycyclooctyl;

Z_T is a group represented by one of the structural formulae:

15

-400-

-401-

5

-402-

-403-

-404-

-405-

-406-

-407-

5

-408-

5

-409-

-410-

-411-

-412-

provided that the combined groups of formula II or III, or IV or V represented by

- 5 may all be lipophilic, or one may be lipophilic and the other one polar; but both combined groups may not be polar.

3. A compound of claim 1 or 2

wherein;

- 10 linking group -(L_T)- is a bond, -O-, or -CH₂-;
 R and R' are both ethyl;
 R_P and R_T are both methyl;
 and provided that if Z_P or Z_T contain a C₁-C₅ alkyl group, then said group is 1,1-dimethylethyl;
- 15 and provided that if the compound is a salt, then said salt is potassium or sodium.

4. A compound represented by any one of formula (X1) thru (X188) a pharmaceutically acceptable salt, solvate, or prodrug derivative thereof:

-413-

X1)

X2)

5

X3)

10

X4)

X5)

-414-

X9)

X10)

5

X13)

X14)

10

X17)

X19)

-415-

X20)

X21)

5

X22)

X24)

-416-

X26)

X28)

5

X29)

X31)

10

X32)

-417-

X34)

X36)

X38)

5

X41)

X42)

10

-418-

X45)

X46)

5

X47)

X50)

10

15

-419-

X51)

X52)

5

X53)

X54)

-420-

X56)

X58)

5

X60)

X62)

X64)

5

X65)

X66)

10

X69)

X70)

-422-

X71)

5

X72)

X75)

X78)

-423-

X81)

5

X83)

X86)

-424-

X88)

X91)

5

X92)

X93)

10

X96)

X99)

-425-

X102)

-426-

X103)

X105)

5

X106)

X107)

10

-427-

X110)

X111)

5

X114)

X118)

X119)

10

-428-

X122)

X124)

5

X125)

X128)

10

-429-

X130)

X131)

5

X134)

X137)

10

X139)

-430-

X140)

X141)

5

X144)

X145)

10

X146)

-431-

X147)

5

X148)

X149)

10

X150)

X152)

15

-432-

X153)

X154)

5

X155)

X156)

10

X157)

-433-

X158)

X159)

5

X160)

X161)

10

X162)

-434-

5

X163)

X164)

X165)

10

X166)

X169)

15

-435-

X171)

X172)

5

X174)

X175)

10

X176)

-436-

X177)

X178)

X179)

X183)

X184)

-437-

X185)

X187)

, or

X188)

5. A compound selected from the group consisting of compounds represented by

10 the formula:

P100

15

-438-

P101

P102

5

P103

P104

10

P105

and

-439-

P106

or a pharmaceutically suitable salt, solvate, or prodrug derivative thereof.

- 5 6. A compound selected from the group consisting of compounds represented by
the formula:

P101

P200

10

P201

15

-440-

P202

,

P203

,

5

P204

,

P205

or

10

P206

,

or a pharmaceutically suitable salt, solvate, or prodrug derivative thereof.

7. A compound represented by the formula:

wherein said compound is selected from a compound code numbered 1 thru 516, with
5 each compound having the specific selection of groups L_1 , Y , and W_T shown in the row
following the code number, as set out in the following Table 1:

Table 1

Code	L_1	Y	W_T
1	C(O)	CH ₂	-CO ₂ Me
2	CHOH	CH ₂	-CO ₂ Me
3	C(Me)OH	CH ₂	-CO ₂ Me
4	C(O)	CH(Me)	-CO ₂ Me
5	CHOH	CH(Me)	-CO ₂ Me
6	C(Me)OH	CH(Me)	-CO ₂ Me
7	C(O)	CH ₂	-CO ₂ H
8	CHOH	CH ₂	-CO ₂ H
9	C(Me)OH	CH ₂	-CO ₂ H
10	C(O)	CH(Me)	-CO ₂ H
11	CHOH	CH(Me)	-CO ₂ H
12	C(Me)OH	CH(Me)	-CO ₂ H
13	C(O)	CH ₂	-C(O)NH ₂
14	CHOH	CH ₂	-C(O)NH ₂
15	C(Me)OH	CH ₂	-C(O)NH ₂
16	C(O)	CH(Me)	-C(O)NH ₂

17	CHOH	CH(Me)	-C(O)NH2
18	C(Me)OH	CH(Me)	-C(O)NH2
19	C(O)	CH2	-C(O)NMe2
20	CHOH	CH2	-C(O)NMe2
21	C(Me)OH	CH2	-C(O)NMe2
22	C(O)	CH(Me)	-C(O)NMe2
23	CHOH	CH(Me)	-C(O)NMe2
24	C(Me)OH	CH(Me)	-C(O)NMe2
25	C(O)	CH2	5-tetrazolyl
26	CHOH	CH2	5-tetrazolyl
27	C(Me)OH	CH2	5-tetrazolyl
28	C(O)	CH(Me)	5-tetrazolyl
29	CHOH	CH(Me)	5-tetrazolyl
30	C(Me)OH	CH(Me)	5-tetrazolyl
31	C(O)	CH2	-C(O)-NH-5-tetrazolyl
32	CHOH	CH2	-C(O)-NH-5-tetrazolyl
33	C(Me)OH	CH2	-C(O)-NH-5-tetrazolyl
34	C(O)	CH(Me)	-C(O)-NH-5-tetrazolyl
35	CHOH	CH(Me)	-C(O)-NH-5-tetrazolyl
36	C(Me)OH	CH(Me)	-C(O)-NH-5-tetrazolyl
37	C(O)	CH2	-C(O)NHCH2SO2Me
38	CHOH	CH2	-C(O)NHCH2SO2Me
39	C(Me)OH	CH2	-C(O)NHCH2SO2Me
40	C(O)	CH(Me)	-C(O)NHCH2SO2Me
41	CHOH	CH(Me)	-C(O)NHCH2SO2Me
42	C(Me)OH	CH(Me)	-C(O)NHCH2SO2Me
43	C(O)	CH2	-C(O)NHCH2CH2SO2Me
44	CHOH	CH2	-C(O)NHCH2CH2SO2Me
45	C(Me)OH	CH2	-C(O)NHCH2CH2SO2Me
46	C(O)	CH(Me)	-C(O)NHCH2CH2SO2Me
47	CHOH	CH(Me)	-C(O)NHCH2CH2SO2Me

-443-

48	C(Me)OH	CH(Me)	-C(O)NHCH2CH2SO2Me
49	C(O)	CH2	-C(O)NHSO2Me
50	CHOH	CH2	-C(O)NHSO2Me
51	C(Me)OH	CH2	-C(O)NHSO2Me
52	C(O)	CH(Me)	-C(O)NHSO2Me
53	CHOH	CH(Me)	-C(O)NHSO2Me
54	C(Me)OH	CH(Me)	-C(O)NHSO2Me
55	C(O)	CH2	-CH2-C(O)NHSO2Et
56	CHOH	CH2	-CH2-C(O)NHSO2Et
57	C(Me)OH	CH2	-CH2-C(O)NHSO2Et
58	C(O)	CH(Me)	-CH2-C(O)NHSO2Et
59	CHOH	CH(Me)	-CH2-C(O)NHSO2Et
60	C(Me)OH	CH(Me)	-CH2-C(O)NHSO2Et
61	C(O)	CH2	-CH2-C(O)NHSO2iPr
62	CHOH	CH2	-CH2-C(O)NHSO2iPr
63	C(Me)OH	CH2	-CH2-C(O)NHSO2iPr
64	C(O)	CH(Me)	-CH2-C(O)NHSO2iPr
65	CHOH	CH(Me)	-CH2-C(O)NHSO2iPr
66	C(Me)OH	CH(Me)	-CH2-C(O)NHSO2iPr
67	C(O)	CH2	-CH2-C(O)NHSO2tBu
68	CHOH	CH2	-CH2-C(O)NHSO2tBu
69	C(Me)OH	CH2	-CH2-C(O)NHSO2tBu
70	C(O)	CH(Me)	-CH2-C(O)NHSO2tBu
71	CHOH	CH(Me)	-CH2-C(O)NHSO2tBu
72	C(Me)OH	CH(Me)	-CH2-C(O)NHSO2tBu
73	C(O)	CH2	-CH2NHSO2Me
74	CHOH	CH2	-CH2NHSO2Me
75	C(Me)OH	CH2	-CH2NHSO2Me
76	C(O)	CH(Me)	-CH2NHSO2Me
77	CHOH	CH(Me)	-CH2NHSO2Me
78	C(Me)OH	CH(Me)	-CH2NHSO2Me

79	C(O)	CH2	-CH2NHSO2Et
80	CHOH	CH2	-CH2NHSO2Et
81	C(Me)OH	CH2	-CH2NHSO2Et
82	C(O)	CH(Me)	-CH2NHSO2Et
83	CHOH	CH(Me)	-CH2NHSO2Et
84	C(Me)OH	CH(Me)	-CH2NHSO2Et
85	C(O)	CH2	-CH2NHSO2iPr
86	CHOH	CH2	-CH2NHSO2iPr
87	C(Me)OH	CH2	-CH2NHSO2iPr
88	C(O)	CH(Me)	-CH2NHSO2iPr
89	CHOH	CH(Me)	-CH2NHSO2iPr
90	C(Me)OH	CH(Me)	-CH2NHSO2iPr
91	C(O)	CH2	-CH2NHSO2tBu
92	CHOH	CH2	-CH2NHSO2tBu
93	C(Me)OH	CH2	-CH2NHSO2tBu
94	C(O)	CH(Me)	-CH2NHSO2tBu
95	CHOH	CH(Me)	-CH2NHSO2tBu
96	C(Me)OH	CH(Me)	-CH2NHSO2tBu
97	C(O)	CH2	-CH2-N-pyrrolidin-2-one
98	CHOH	CH2	-CH2-N-pyrrolidin-2-one
99	C(Me)OH	CH2	-CH2-N-pyrrolidin-2-one
100	C(O)	CH(Me)	-CH2-N-pyrrolidin-2-one
101	CHOH	CH(Me)	-CH2-N-pyrrolidin-2-one
102	C(Me)OH	CH(Me)	-CH2-N-pyrrolidin-2-one
103	C(O)	CH2	-CH2-(1-methylpyrrolidin-2-one-3-yl)
104	CHOH	CH2	-CH2-(1-methylpyrrolidin-2-one-3-yl)
105	C(Me)OH	CH2	-CH2-(1-methylpyrrolidin-2-one-3-yl)
106	C(O)	CH(Me)	-CH2-(1-methylpyrrolidin-2-one-3-yl)
107	CHOH	CH(Me)	-CH2-(1-methylpyrrolidin-2-one-3-yl)
108	C(Me)OH	CH(Me)	-CH2-(1-methylpyrrolidin-2-one-3-yl)
109	C(O)	CH2	-CH2CO2Me

110	CHOH	CH2	-CH2CO2Me
111	C(Me)OH	CH2	-CH2CO2Me
112	C(O)	CH(Me)	-CH2CO2Me
113	CHOH	CH(Me)	-CH2CO2Me
114	C(Me)OH	CH(Me)	-CH2CO2Me
115	C(O)	CH2	-CH2CO2H
116	CHOH	CH2	-CH2CO2H
117	C(Me)OH	CH2	-CH2CO2H
118	C(O)	CH(Me)	-CH2CO2H
119	CHOH	CH(Me)	-CH2CO2H
120	C(Me)OH	CH(Me)	-CH2CO2H
121	C(O)	CH2	-CH2C(O)NH2
122	CHOH	CH2	-CH2C(O)NH2
123	C(Me)OH	CH2	-CH2C(O)NH2
124	C(O)	CH(Me)	-CH2C(O)NH2
125	CHOH	CH(Me)	-CH2C(O)NH2
126	C(Me)OH	CH(Me)	-CH2C(O)NH2
127	C(O)	CH2	-CH2C(O)NMe2
128	CHOH	CH2	-CH2C(O)NMe2
129	C(Me)OH	CH2	-CH2C(O)NMe2
130	C(O)	CH(Me)	-CH2C(O)NMe2
131	CHOH	CH(Me)	-CH2C(O)NMe2
132	C(Me)OH	CH(Me)	-CH2C(O)NMe2
133	C(O)	CH2	-CH2C(O)-N-pyrrolidine
134	CHOH	CH2	-CH2C(O)-N-pyrrolidine
135	C(Me)OH	CH2	-CH2C(O)-N-pyrrolidine
136	C(O)	CH(Me)	-CH2C(O)-N-pyrrolidine
137	CHOH	CH(Me)	-CH2C(O)-N-pyrrolidine
138	C(Me)OH	CH(Me)	-CH2C(O)-N-pyrrolidine
139	C(O)	CH2	-CH2-5-tetrazolyl
140	CHOH	CH2	-CH2-5-tetrazolyl

141	C(Me)OH	CH2	-CH2-5-tetrazolyl
142	C(O)	CH(Me)	-CH2-5-tetrazolyl
143	CHOH	CH(Me)	-CH2-5-tetrazolyl
144	C(Me)OH	CH(Me)	-CH2-5-tetrazolyl
145	C(O)	CH2	-C(O)C(O)OH
146	CHOH	CH2	-C(O)C(O)OH
147	C(Me)OH	CH2	-C(O)C(O)OH
148	C(O)	CH(Me)	-C(O)C(O)OH
149	CHOH	CH(Me)	-C(O)C(O)OH
150	C(Me)OH	CH(Me)	-C(O)C(O)OH
151	C(O)	CH2	-CH(OH)C(O)OH
152	CHOH	CH2	-CH(OH)C(O)OH
153	C(Me)OH	CH2	-CH(OH)C(O)OH
154	C(O)	CH(Me)	-CH(OH)C(O)OH
155	CHOH	CH(Me)	-CH(OH)C(O)OH
156	C(Me)OH	CH(Me)	-CH(OH)C(O)OH
157	C(O)	CH2	-C(O)C(O)NH2
158	CHOH	CH2	-C(O)C(O)NH2
159	C(Me)OH	CH2	-C(O)C(O)NH2
160	C(O)	CH(Me)	-C(O)C(O)NH2
161	CHOH	CH(Me)	-C(O)C(O)NH2
162	C(Me)OH	CH(Me)	-C(O)C(O)NH2
163	C(O)	CH2	-CH(OH)C(O)NH2
164	CHOH	CH2	-CH(OH)C(O)NH2
165	C(Me)OH	CH2	-CH(OH)C(O)NH2
166	C(O)	CH(Me)	-CH(OH)C(O)NH2
167	CHOH	CH(Me)	-CH(OH)C(O)NH2
168	C(Me)OH	CH(Me)	-CH(OH)C(O)NH2
169	C(O)	CH2	-C(O)C(O)NMe2
170	CHOH	CH2	-C(O)C(O)NMe2
171	C(Me)OH	CH2	-C(O)C(O)NMe2

172	C(O)	CH(Me)	-C(O)C(O)NMe2
173	CHOH	CH(Me)	-C(O)C(O)NMe2
174	C(Me)OH	CH(Me)	-C(O)C(O)NMe2
175	C(O)	CH2	-CH(OH)C(O)NMe2
176	CHOH	CH2	-CH(OH)C(O)NMe2
177	C(Me)OH	CH2	-CH(OH)C(O)NMe2
178	C(O)	CH(Me)	-CH(OH)C(O)NMe2
179	CHOH	CH(Me)	-CH(OH)C(O)NMe2
180	C(Me)OH	CH(Me)	-CH(OH)C(O)NMe2
181	C(O)	CH2	-CH2CH2CO2H
182	CHOH	CH2	-CH2CH2CO2H
183	C(Me)OH	CH2	-CH2CH2CO2H
184	C(O)	CH(Me)	-CH2CH2CO2H
185	CHOH	CH(Me)	-CH2CH2CO2H
186	C(Me)OH	CH(Me)	-CH2CH2CO2H
187	C(O)	CH2	-CH2CH2C(O)NH2
188	CHOH	CH2	-CH2CH2C(O)NH2
189	C(Me)OH	CH2	-CH2CH2C(O)NH2
190	C(O)	CH(Me)	-CH2CH2C(O)NH2
191	CHOH	CH(Me)	-CH2CH2C(O)NH2
192	C(Me)OH	CH(Me)	-CH2CH2C(O)NH2
193	C(O)	CH2	-CH2CH2C(O)NMe2
194	CHOH	CH2	-CH2CH2C(O)NMe2
195	C(Me)OH	CH2	-CH2CH2C(O)NMe2
196	C(O)	CH(Me)	-CH2CH2C(O)NMe2
197	CHOH	CH(Me)	-CH2CH2C(O)NMe2
198	C(Me)OH	CH(Me)	-CH2CH2C(O)NMe2
199	C(O)	CH2	-CH2CH2-5-tetrazolyl
200	CHOH	CH2	-CH2CH2-5-tetrazolyl
201	C(Me)OH	CH2	-CH2CH2-5-tetrazolyl
202	C(O)	CH(Me)	-CH2CH2-5-tetrazolyl

203	CHOH	CH(Me)	-CH ₂ CH ₂ -5-tetrazolyl
204	C(Me)OH	CH(Me)	-CH ₂ CH ₂ -5-tetrazolyl
205	C(O)	CH ₂	-CH ₂ S(O)2Me
206	CHOH	CH ₂	-CH ₂ S(O)2Me
207	C(Me)OH	CH ₂	-CH ₂ S(O)2Me
208	C(O)	CH(Me)	-CH ₂ S(O)2Me
209	CHOH	CH(Me)	-CH ₂ S(O)2Me
210	C(Me)OH	CH(Me)	-CH ₂ S(O)2Me
211	C(O)	CH ₂	-CH ₂ CH ₂ S(O)2Me
212	CHOH	CH ₂	-CH ₂ CH ₂ S(O)2Me
213	C(Me)OH	CH ₂	-CH ₂ CH ₂ S(O)2Me
214	C(O)	CH(Me)	-CH ₂ CH ₂ S(O)2Me
215	CHOH	CH(Me)	-CH ₂ CH ₂ S(O)2Me
216	C(Me)OH	CH(Me)	-CH ₂ CH ₂ S(O)2Me
217	C(O)	CH ₂	-CH ₂ CH ₂ CH ₂ S(O)2Me
218	CHOH	CH ₂	-CH ₂ CH ₂ CH ₂ S(O)2Me
219	C(Me)OH	CH ₂	-CH ₂ CH ₂ CH ₂ S(O)2Me
220	C(O)	CH(Me)	-CH ₂ CH ₂ CH ₂ S(O)2Me
221	CHOH	CH(Me)	-CH ₂ CH ₂ CH ₂ S(O)2Me
222	C(Me)OH	CH(Me)	-CH ₂ CH ₂ CH ₂ S(O)2Me
223	C(O)	CH ₂	-CH ₂ S(O)2Et
224	CHOH	CH ₂	-CH ₂ S(O)2Et
225	C(Me)OH	CH ₂	-CH ₂ S(O)2Et
226	C(O)	CH(Me)	-CH ₂ S(O)2Et
227	CHOH	CH(Me)	-CH ₂ S(O)2Et
228	C(Me)OH	CH(Me)	-CH ₂ S(O)2Et
229	C(O)	CH ₂	-CH ₂ CH ₂ S(O)2Et
230	CHOH	CH ₂	-CH ₂ CH ₂ S(O)2Et
231	C(Me)OH	CH ₂	-CH ₂ CH ₂ S(O)2Et
232	C(O)	CH(Me)	-CH ₂ CH ₂ S(O)2Et
233	CHOH	CH(Me)	-CH ₂ CH ₂ S(O)2Et

234	C(Me)OH	CH(Me)	-CH2CH2S(O)2Et
235	C(O)	CH2	-CH2CH2CH2S(O)2Et
236	CHOH	CH2	-CH2CH2CH2S(O)2Et
237	C(Me)OH	CH2	-CH2CH2CH2S(O)2Et
238	C(O)	CH(Me)	-CH2CH2CH2S(O)2Et
239	CHOH	CH(Me)	-CH2CH2CH2S(O)2Et
240	C(Me)OH	CH(Me)	-CH2CH2CH2S(O)2Et
241	C(O)	CH2	-CH2S(O)2iPr
242	CHOH	CH2	-CH2S(O)2iPr
243	C(Me)OH	CH2	-CH2S(O)2iPr
244	C(O)	CH(Me)	-CH2S(O)2iPr
245	CHOH	CH(Me)	-CH2S(O)2iPr
246	C(Me)OH	CH(Me)	-CH2S(O)2iPr
247	C(O)	CH2	-CH2CH2S(O)2iPr
248	CHOH	CH2	-CH2CH2S(O)2iPr
249	C(Me)OH	CH2	-CH2CH2S(O)2iPr
250	C(O)	CH(Me)	-CH2CH2S(O)2iPr
251	CHOH	CH(Me)	-CH2CH2S(O)2iPr
252	C(Me)OH	CH(Me)	-CH2CH2S(O)2iPr
253	C(O)	CH2	-CH2S(O)2tBu
254	CHOH	CH2	-CH2S(O)2tBu
255	C(Me)OH	CH2	-CH2S(O)2tBu
256	C(O)	CH(Me)	-CH2S(O)2tBu
257	CHOH	CH(Me)	-CH2S(O)2tBu
258	C(Me)OH	CH(Me)	-CH2S(O)2tBu
259	C(O)	CH2	-CH2CH2S(O)2tBu
260	CHOH	CH2	-CH2CH2S(O)2tBu
261	C(Me)OH	CH2	-CH2CH2S(O)2tBu
262	C(O)	CH(Me)	-CH2CH2S(O)2tBu
263	CHOH	CH(Me)	-CH2CH2S(O)2tBu
264	C(Me)OH	CH(Me)	-CH2CH2S(O)2tBu

-450-

265	C(O)	CH2	-CH2CH2S(O)2NH2
266	CHOH	CH2	-CH2CH2S(O)2NH2
267	C(Me)OH	CH2	-CH2CH2S(O)2NH2
268	C(O)	CH(Me)	-CH2CH2S(O)2NH2
269	CHOH	CH(Me)	-CH2CH2S(O)2NH2
270	C(Me)OH	CH(Me)	-CH2CH2S(O)2NH2
271	C(O)	CH2	-CH2CH2S(O)2NMe2
272	CHOH	CH2	-CH2CH2S(O)2NMe2
273	C(Me)OH	CH2	-CH2CH2S(O)2NMe2
274	C(O)	CH(Me)	-CH2CH2S(O)2NMe2
275	CHOH	CH(Me)	-CH2CH2S(O)2NMe2
276	C(Me)OH	CH(Me)	-CH2CH2S(O)2NMe2
277	C(O)	CH2	-C(O)CH2S(O)2Me
278	CHOH	CH2	-C(O)CH2S(O)2Me
279	C(Me)OH	CH2	-C(O)CH2S(O)2Me
280	C(O)	CH(Me)	-C(O)CH2S(O)2Me
281	CHOH	CH(Me)	-C(O)CH2S(O)2Me
282	C(Me)OH	CH(Me)	-C(O)CH2S(O)2Me
283	C(O)	CH2	-C(O)CH2CH2S(O)2Me
284	CHOH	CH2	-C(O)CH2CH2S(O)2Me
285	C(Me)OH	CH2	-C(O)CH2CH2S(O)2Me
286	C(O)	CH(Me)	-C(O)CH2CH2S(O)2Me
287	CHOH	CH(Me)	-C(O)CH2CH2S(O)2Me
288	C(Me)OH	CH(Me)	-C(O)CH2CH2S(O)2Me
289	C(O)	CH2	-CH2CH2CH2S(O)2NH2
290	CHOH	CH2	-CH2CH2CH2S(O)2NH2
291	C(Me)OH	CH2	-CH2CH2CH2S(O)2NH2
292	C(O)	CH(Me)	-CH2CH2CH2S(O)2NH2
293	CHOH	CH(Me)	-CH2CH2CH2S(O)2NH2
294	C(Me)OH	CH(Me)	-CH2CH2CH2S(O)2NH2
295	C(O)	CH2	-S(O)2Me

-451-

296	CHOH	CH2	-S(O)2Me
297	C(Me)OH	CH2	-S(O)2Me
298	C(O)	CH(Me)	-S(O)2Me
299	CHOH	CH(Me)	-S(O)2Me
300	C(Me)OH	CH(Me)	-S(O)2Me
301	C(O)	CH2	-S(O)2Et
302	CHOH	CH2	-S(O)2Et
303	C(Me)OH	CH2	-S(O)2Et
304	C(O)	CH(Me)	-S(O)2Et
305	CHOH	CH(Me)	-S(O)2Et
306	C(Me)OH	CH(Me)	-S(O)2Et
307	C(O)	CH2	-S(O)2iPr
308	CHOH	CH2	-S(O)2iPr
309	C(Me)OH	CH2	-S(O)2iPr
310	C(O)	CH(Me)	-S(O)2iPr
311	CHOH	CH(Me)	-S(O)2iPr
312	C(Me)OH	CH(Me)	-S(O)2iPr
313	C(O)	CH2	-S(O)2tBu
314	CHOH	CH2	-S(O)2tBu
315	C(Me)OH	CH2	-S(O)2tBu
316	C(O)	CH(Me)	-S(O)2tBu
317	CHOH	CH(Me)	-S(O)2tBu
318	C(Me)OH	CH(Me)	-S(O)2tBu
319	C(O)	CH2	-S(O)2NH2
320	CHOH	CH2	-S(O)2NH2
321	C(Me)OH	CH2	-S(O)2NH2
322	C(O)	CH(Me)	-S(O)2NH2
323	CHOH	CH(Me)	-S(O)2NH2
324	C(Me)OH	CH(Me)	-S(O)2NH2
325	C(O)	CH2	-S(O)2NMe2
326	CHOH	CH2	-S(O)2NMe2

-452-

327	C(Me)OH	CH2	-S(O)2NMe2
328	C(O)	CH(Me)	-S(O)2NMe2
329	CHOH	CH(Me)	-S(O)2NMe2
330	C(Me)OH	CH(Me)	-S(O)2NMe2
331	C(O)	CH2	-S(O)2CH2S(O)2Me
332	CHOH	CH2	-S(O)2CH2S(O)2Me
333	C(Me)OH	CH2	-S(O)2CH2S(O)2Me
334	C(O)	CH(Me)	-S(O)2CH2S(O)2Me
335	CHOH	CH(Me)	-S(O)2CH2S(O)2Me
336	C(Me)OH	CH(Me)	-S(O)2CH2S(O)2Me
337	C(O)	CH2	-S(O)2CH2S(O)2Et
338	CHOH	CH2	-S(O)2CH2S(O)2Et
339	C(Me)OH	CH2	-S(O)2CH2S(O)2Et
340	C(O)	CH(Me)	-S(O)2CH2S(O)2Et
341	CHOH	CH(Me)	-S(O)2CH2S(O)2Et
342	C(Me)OH	CH(Me)	-S(O)2CH2S(O)2Et
343	C(O)	CH2	-S(O)2CH2S(O)2iPr
344	CHOH	CH2	-S(O)2CH2S(O)2iPr
345	C(Me)OH	CH2	-S(O)2CH2S(O)2iPr
346	C(O)	CH(Me)	-S(O)2CH2S(O)2iPr
347	CHOH	CH(Me)	-S(O)2CH2S(O)2iPr
348	C(Me)OH	CH(Me)	-S(O)2CH2S(O)2iPr
349	C(O)	CH2	-S(O)2CH2S(O)2tBu
350	CHOH	CH2	-S(O)2CH2S(O)2tBu
351	C(Me)OH	CH2	-S(O)2CH2S(O)2tBu
352	C(O)	CH(Me)	-S(O)2CH2S(O)2tBu
353	CHOH	CH(Me)	-S(O)2CH2S(O)2tBu
354	C(Me)OH	CH(Me)	-S(O)2CH2S(O)2tBu
355	C(O)	CH2	-C(O)NHCH2CO2H
356	CHOH	CH2	-C(O)NHCH2CO2H
357	C(Me)OH	CH2	-C(O)NHCH2CO2H

-453-

358	C(O)	CH(Me)	-C(O)NHCH ₂ CO ₂ H
359	CHOH	CH(Me)	-C(O)NHCH ₂ CO ₂ H
360	C(Me)OH	CH(Me)	-C(O)NHCH ₂ CO ₂ H
361	C(O)	CH ₂	-SO ₂ NHCH ₂ CO ₂ H
362	CHOH	CH ₂	-SO ₂ NHCH ₂ CO ₂ H
363	C(Me)OH	CH ₂	-SO ₂ NHCH ₂ CO ₂ H
364	C(O)	CH(Me)	-SO ₂ NHCH ₂ CO ₂ H
365	CHOH	CH(Me)	-SO ₂ NHCH ₂ CO ₂ H
366	C(Me)OH	CH(Me)	-SO ₂ NHCH ₂ CO ₂ H
366	C(Me)OH	CH(Me)	-SO ₂ NHCH ₂ CO ₂ H
367	C(O)	CH ₂	-CH ₂ -S-Me
368	CHOH	CH ₂	-CH ₂ -S-Me
369	C(Me)OH	CH ₂	-CH ₂ -S-Me
370	C(O)	CH(Me)	-CH ₂ -S-Me
371	CHOH	CH(Me)	-CH ₂ -S-Me
372	C(Me)OH	CH(Me)	-CH ₂ -S-Me

8. A compound represented by the formula:

- 5 wherein said compound is selected from a compound code numbered 1A thru 516A, with each compound having the specific selection of groups L₁, Y, and W_p shown in the row following the code number, as set out in the following Table 2:

-454-

Table 2

Code	L ₁	Y	W _p
1A	C(O)	CH ₂	-CO ₂ Me
2A	CHOH	CH ₂	-CO ₂ Me
3A	C(Me)OH	CH ₂	-CO ₂ Me
4A	C(O)	CH(Me)	-CO ₂ Me
5A	CHOH	CH(Me)	-CO ₂ Me
6A	C(Me)OH	CH(Me)	-CO ₂ Me
7A	C(O)	CH ₂	-CO ₂ H
8A	CHOH	CH ₂	-CO ₂ H
9A	C(Me)OH	CH ₂	-CO ₂ H
10A	C(O)	CH(Me)	-CO ₂ H
11A	CHOH	CH(Me)	-CO ₂ H
12A	C(Me)OH	CH(Me)	-CO ₂ H
13A	C(O)	CH ₂	-C(O)NH ₂
14A	CHOH	CH ₂	-C(O)NH ₂
15A	C(Me)OH	CH ₂	-C(O)NH ₂
16A	C(O)	CH(Me)	-C(O)NH ₂
17A	CHOH	CH(Me)	-C(O)NH ₂
18A	C(Me)OH	CH(Me)	-C(O)NH ₂
19A	C(O)	CH ₂	-C(O)NMe ₂
20A	CHOH	CH ₂	-C(O)NMe ₂
21A	C(Me)OH	CH ₂	-C(O)NMe ₂
22A	C(O)	CH(Me)	-C(O)NMe ₂
23A	CHOH	CH(Me)	-C(O)NMe ₂
24A	C(Me)OH	CH(Me)	-C(O)NMe ₂
25A	C(O)	CH ₂	5-tetrazolyl
26A	CHOH	CH ₂	5-tetrazolyl
27A	C(Me)OH	CH ₂	5-tetrazolyl
28A	C(O)	CH(Me)	5-tetrazolyl
29A	CHOH	CH(Me)	5-tetrazolyl

30A	C(Me)OH	CH(Me)	5-tetrazolyl
31A	C(O)	CH2	-C(O)-NH-5-tetrazolyl
32A	CHOH	CH2	-C(O)-NH-5-tetrazolyl
33A	C(Me)OH	CH2	-C(O)-NH-5-tetrazolyl
34A	C(O)	CH(Me)	-C(O)-NH-5-tetrazolyl
35A	CHOH	CH(Me)	-C(O)-NH-5-tetrazolyl
36A	C(Me)OH	CH(Me)	-C(O)-NH-5-tetrazolyl
37A	C(O)	CH2	-C(O)NHCH2SO2Me
38A	CHOH	CH2	-C(O)NHCH2SO2Me
39A	C(Me)OH	CH2	-C(O)NHCH2SO2Me
40A	C(O)	CH(Me)	-C(O)NHCH2SO2Me
41A	CHOH	CH(Me)	-C(O)NHCH2SO2Me
42A	C(Me)OH	CH(Me)	-C(O)NHCH2SO2Me
43A	C(O)	CH2	-C(O)NHCH2CH2SO2Me
44A	CHOH	CH2	-C(O)NHCH2CH2SO2Me
45A	C(Me)OH	CH2	-C(O)NHCH2CH2SO2Me
46A	C(O)	CH(Me)	-C(O)NHCH2CH2SO2Me
47A	CHOH	CH(Me)	-C(O)NHCH2CH2SO2Me
48A	C(Me)OH	CH(Me)	-C(O)NHCH2CH2SO2Me
49A	C(O)	CH2	-C(O)NHSO2Me
50A	CHOH	CH2	-C(O)NHSO2Me
51A	C(Me)OH	CH2	-C(O)NHSO2Me
52A	C(O)	CH(Me)	-C(O)NHSO2Me
53A	CHOH	CH(Me)	-C(O)NHSO2Me
54A	C(Me)OH	CH(Me)	-C(O)NHSO2Me
55A	C(O)	CH2	-CH2-C(O)NHSO2Et
56A	CHOH	CH2	-CH2-C(O)NHSO2Et
57A	C(Me)OH	CH2	-CH2-C(O)NHSO2Et
58A	C(O)	CH(Me)	-CH2-C(O)NHSO2Et
59A	CHOH	CH(Me)	-CH2-C(O)NHSO2Et
60A	C(Me)OH	CH(Me)	-CH2-C(O)NHSO2Et

-456-

61A	C(O)	CH2	-CH2-C(O)NHSO2iPr
62A	CHOH	CH2	-CH2-C(O)NHSO2iPr
63A	C(Me)OH	CH2	-CH2-C(O)NHSO2iPr
64A	C(O)	CH(Me)	-CH2-C(O)NHSO2iPr
65A	CHOH	CH(Me)	-CH2-C(O)NHSO2iPr
66A	C(Me)OH	CH(Me)	-CH2-C(O)NHSO2iPr
67A	C(O)	CH2	-CH2-C(O)NHSO2tBu
68A	CHOH	CH2	-CH2-C(O)NHSO2tBu
69A	C(Me)OH	CH2	-CH2-C(O)NHSO2tBu
70A	C(O)	CH(Me)	-CH2-C(O)NHSO2tBu
71A	CHOH	CH(Me)	-CH2-C(O)NHSO2tBu
72A	C(Me)OH	CH(Me)	-CH2-C(O)NHSO2tBu
73A	C(O)	CH2	-CH2NHSO2Me
74A	CHOH	CH2	-CH2NHSO2Me
75A	C(Me)OH	CH2	-CH2NHSO2Me
76A	C(O)	CH(Me)	-CH2NHSO2Me
77A	CHOH	CH(Me)	-CH2NHSO2Me
78A	C(Me)OH	CH(Me)	-CH2NHSO2Me
79A	C(O)	CH2	-CH2NHSO2Et
80A	CHOH	CH2	-CH2NHSO2Et
81A	C(Me)OH	CH2	-CH2NHSO2Et
82A	C(O)	CH(Me)	-CH2NHSO2Et
83A	CHOH	CH(Me)	-CH2NHSO2Et
84A	C(Me)OH	CH(Me)	-CH2NHSO2Et
85A	C(O)	CH2	-CH2NHSO2iPr
86A	CHOH	CH2	-CH2NHSO2iPr
87A	C(Me)OH	CH2	-CH2NHSO2iPr
88A	C(O)	CH(Me)	-CH2NHSO2iPr
89A	CHOH	CH(Me)	-CH2NHSO2iPr
90A	C(Me)OH	CH(Me)	-CH2NHSO2iPr
91A	C(O)	CH2	-CH2NHSO2tBu

92A	CHOH	CH2	-CH2NHSO2tBu
93A	C(Me)OH	CH2	-CH2NHSO2tBu
94A	C(O)	CH(Me)	-CH2NHSO2tBu
95A	CHOH	CH(Me)	-CH2NHSO2tBu
96A	C(Me)OH	CH(Me)	-CH2NHSO2tBu
97A	C(O)	CH2	-CH2-N-pyrrolidin-2-one
98A	CHOH	CH2	-CH2-N-pyrrolidin-2-one
99A	C(Me)OH	CH2	-CH2-N-pyrrolidin-2-one
100A	C(O)	CH(Me)	-CH2-N-pyrrolidin-2-one
101A	CHOH	CH(Me)	-CH2-N-pyrrolidin-2-one
102A	C(Me)OH	CH(Me)	-CH2-N-pyrrolidin-2-one
103A	C(O)	CH2	-CH2-(1-methylpyrrolidin-2-one-3-yl)
104A	CHOH	CH2	-CH2-(1-methylpyrrolidin-2-one-3-yl)
105A	C(Me)OH	CH2	-CH2-(1-methylpyrrolidin-2-one-3-yl)
106A	C(O)	CH(Me)	-CH2-(1-methylpyrrolidin-2-one-3-yl)
107A	CHOH	CH(Me)	-CH2-(1-methylpyrrolidin-2-one-3-yl)
108A	C(Me)OH	CH(Me)	-CH2-(1-methylpyrrolidin-2-one-3-yl)
109A	C(O)	CH2	-CH2CO2Me
110A	CHOH	CH2	-CH2CO2Me
111A	C(Me)OH	CH2	-CH2CO2Me
112A	C(O)	CH(Me)	-CH2CO2Me
113A	CHOH	CH(Me)	-CH2CO2Me
114A	C(Me)OH	CH(Me)	-CH2CO2Me
115A	C(O)	CH2	-CH2CO2H
116A	CHOH	CH2	-CH2CO2H
117A	C(Me)OH	CH2	-CH2CO2H
118A	C(O)	CH(Me)	-CH2CO2H
119A	CHOH	CH(Me)	-CH2CO2H
120A	C(Me)OH	CH(Me)	-CH2CO2H
121A	C(O)	CH2	-CH2C(O)NH2
122A	CHOH	CH2	-CH2C(O)NH2

123A	C(Me)OH	CH2	-CH2C(O)NH2
124A	C(O)	CH(Me)	-CH2C(O)NH2
125A	CHOH	CH(Me)	-CH2C(O)NH2
126A	C(Me)OH	CH(Me)	-CH2C(O)NH2
127A	C(O)	CH2	-CH2C(O)NMe2
128A	CHOH	CH2	-CH2C(O)NMe2
129A	C(Me)OH	CH2	-CH2C(O)NMe2
130A	C(O)	CH(Me)	-CH2C(O)NMe2
131A	CHOH	CH(Me)	-CH2C(O)NMe2
132A	C(Me)OH	CH(Me)	-CH2C(O)NMe2
133A	C(O)	CH2	-CH2C(O)-N-pyrrolidine
134A	CHOH	CH2	-CH2C(O)-N-pyrrolidine
135A	C(Me)OH	CH2	-CH2C(O)-N-pyrrolidine
136A	C(O)	CH(Me)	-CH2C(O)-N-pyrrolidine
137A	CHOH	CH(Me)	-CH2C(O)-N-pyrrolidine
138A	C(Me)OH	CH(Me)	-CH2C(O)-N-pyrrolidine
139A	C(O)	CH2	-CH2-5-tetrazolyl
140A	CHOH	CH2	-CH2-5-tetrazolyl
141A	C(Me)OH	CH2	-CH2-5-tetrazolyl
142A	C(O)	CH(Me)	-CH2-5-tetrazolyl
143A	CHOH	CH(Me)	-CH2-5-tetrazolyl
144A	C(Me)OH	CH(Me)	-CH2-5-tetrazolyl
145A	C(O)	CH2	-C(O)C(O)OH
146A	CHOH	CH2	-C(O)C(O)OH
147A	C(Me)OH	CH2	-C(O)C(O)OH
148A	C(O)	CH(Me)	-C(O)C(O)OH
149A	CHOH	CH(Me)	-C(O)C(O)OH
150A	C(Me)OH	CH(Me)	-C(O)C(O)OH
151A	C(O)	CH2	-CH(OH)C(O)OH
152A	CHOH	CH2	-CH(OH)C(O)OH
153A	C(Me)OH	CH2	-CH(OH)C(O)OH

-459-

154A	C(O)	CH(Me)	-CH(OH)C(O)OH
155A	CHOH	CH(Me)	-CH(OH)C(O)OH
156A	C(Me)OH	CH(Me)	-CH(OH)C(O)OH
157A	C(O)	CH2	-C(O)C(O)NH2
158A	CHOH	CH2	-C(O)C(O)NH2
159A	C(Me)OH	CH2	-C(O)C(O)NH2
160A	C(O)	CH(Me)	-C(O)C(O)NH2
161A	CHOH	CH(Me)	-C(O)C(O)NH2
162A	C(Me)OH	CH(Me)	-C(O)C(O)NH2
163A	C(O)	CH2	-CH(OH)C(O)NH2
164A	CHOH	CH2	-CH(OH)C(O)NH2
165A	C(Me)OH	CH2	-CH(OH)C(O)NH2
166A	C(O)	CH(Me)	-CH(OH)C(O)NH2
167A	CHOH	CH(Me)	-CH(OH)C(O)NH2
168A	C(Me)OH	CH(Me)	-CH(OH)C(O)NH2
169A	C(O)	CH2	-C(O)C(O)NMe2
170A	CHOH	CH2	-C(O)C(O)NMe2
171A	C(Me)OH	CH2	-C(O)C(O)NMe2
172A	C(O)	CH(Me)	-C(O)C(O)NMe2
173A	CHOH	CH(Me)	-C(O)C(O)NMe2
174A	C(Me)OH	CH(Me)	-C(O)C(O)NMe2
175A	C(O)	CH2	-CH(OH)C(O)NMe2
176A	CHOH	CH2	-CH(OH)C(O)NMe2
177A	C(Me)OH	CH2	-CH(OH)C(O)NMe2
178A	C(O)	CH(Me)	-CH(OH)C(O)NMe2
179A	CHOH	CH(Me)	-CH(OH)C(O)NMe2
180A	C(Me)OH	CH(Me)	-CH(OH)C(O)NMe2
181A	C(O)	CH2	-CH2CH2CO2H
182A	CHOH	CH2	-CH2CH2CO2H
183A	C(Me)OH	CH2	-CH2CH2CO2H
184A	C(O)	CH(Me)	-CH2CH2CO2H

185A	CHOH	CH(Me)	-CH2CH2CO2H
186A	C(Me)OH	CH(Me)	-CH2CH2CO2H
187A	C(O)	CH2	-CH2CH2C(O)NH2
188A	CHOH	CH2	-CH2CH2C(O)NH2
189A	C(Me)OH	CH2	-CH2CH2C(O)NH2
190A	C(O)	CH(Me)	-CH2CH2C(O)NH2
191A	CHOH	CH(Me)	-CH2CH2C(O)NH2
192A	C(Me)OH	CH(Me)	-CH2CH2C(O)NH2
193A	C(O)	CH2	-CH2CH2C(O)NMe2
194A	CHOH	CH2	-CH2CH2C(O)NMe2
195A	C(Me)OH	CH2	-CH2CH2C(O)NMe2
196A	C(O)	CH(Me)	-CH2CH2C(O)NMe2
197A	CHOH	CH(Me)	-CH2CH2C(O)NMe2
198A	C(Me)OH	CH(Me)	-CH2CH2C(O)NMe2
199A	C(O)	CH2	-CH2CH2-5-tetrazolyl
200A	CHOH	CH2	-CH2CH2-5-tetrazolyl
201A	C(Me)OH	CH2	-CH2CH2-5-tetrazolyl
202A	C(O)	CH(Me)	-CH2CH2-5-tetrazolyl
203A	CHOH	CH(Me)	-CH2CH2-5-tetrazolyl
204A	C(Me)OH	CH(Me)	-CH2CH2-5-tetrazolyl
205A	C(O)	CH2	-OCH2S(O)2Me
206A	CHOH	CH2	-OCH2S(O)2Me
207A	C(Me)OH	CH2	-OCH2S(O)2Me
208A	C(O)	CH(Me)	-OCH2S(O)2Me
209A	CHOH	CH(Me)	-OCH2S(O)2Me
210A	C(Me)OH	CH(Me)	-OCH2S(O)2Me
211A	C(O)	CH2	-OCH2CH2S(O)2Me
212A	CHOH	CH2	-OCH2CH2S(O)2Me
213A	C(Me)OH	CH2	-OCH2CH2S(O)2Me
214A	C(O)	CH(Me)	-OCH2CH2S(O)2Me
215A	CHOH	CH(Me)	-OCH2CH2S(O)2Me

216A	C(Me)OH	CH(Me)	-OCH ₂ CH ₂ S(O)2Me
217A	C(O)	CH ₂	-CH ₂ S(O)2Me
218A	CHOH	CH ₂	-CH ₂ S(O)2Me
219A	C(Me)OH	CH ₂	-CH ₂ S(O)2Me
220A	C(O)	CH(Me)	-CH ₂ S(O)2Me
221A	CHOH	CH(Me)	-CH ₂ S(O)2Me
222A	C(Me)OH	CH(Me)	-CH ₂ S(O)2Me
223A	C(O)	CH ₂	-CH ₂ CH ₂ S(O)2Me
224A	CHOH	CH ₂	-CH ₂ CH ₂ S(O)2Me
225A	C(Me)OH	CH ₂	-CH ₂ CH ₂ S(O)2Me
226A	C(O)	CH(Me)	-CH ₂ CH ₂ S(O)2Me
227A	CHOH	CH(Me)	-CH ₂ CH ₂ S(O)2Me
228A	C(Me)OH	CH(Me)	-CH ₂ CH ₂ S(O)2Me
229A	C(O)	CH ₂	-CH ₂ CH ₂ CH ₂ S(O)2Me
230A	CHOH	CH ₂	-CH ₂ CH ₂ CH ₂ S(O)2Me
231A	C(Me)OH	CH ₂	-CH ₂ CH ₂ CH ₂ S(O)2Me
232A	C(O)	CH(Me)	-CH ₂ CH ₂ CH ₂ S(O)2Me
233A	CHOH	CH(Me)	-CH ₂ CH ₂ CH ₂ S(O)2Me
234A	C(Me)OH	CH(Me)	-CH ₂ CH ₂ CH ₂ S(O)2Me
235A	C(O)	CH ₂	-OCH ₂ S(O)2Et
236A	CHOH	CH ₂	-OCH ₂ S(O)2Et
237A	C(Me)OH	CH ₂	-OCH ₂ S(O)2Et
238A	C(O)	CH(Me)	-OCH ₂ S(O)2Et
239A	CHOH	CH(Me)	-OCH ₂ S(O)2Et
240A	C(Me)OH	CH(Me)	-OCH ₂ S(O)2Et
241A	C(O)	CH ₂	-OCH ₂ CH ₂ S(O)2Et
242A	CHOH	CH ₂	-OCH ₂ CH ₂ S(O)2Et
243A	C(Me)OH	CH ₂	-OCH ₂ CH ₂ S(O)2Et
244A	C(O)	CH(Me)	-OCH ₂ CH ₂ S(O)2Et
245A	CHOH	CH(Me)	-OCH ₂ CH ₂ S(O)2Et
246A	C(Me)OH	CH(Me)	-OCH ₂ CH ₂ S(O)2Et

-462-

247A	C(O)	CH2	-CH2S(O)2Et
248A	CHOH	CH2	-CH2S(O)2Et
249A	C(Me)OH	CH2	-CH2S(O)2Et
250A	C(O)	CH(Me)	-CH2S(O)2Et
251A	CHOH	CH(Me)	-CH2S(O)2Et
252A	C(Me)OH	CH(Me)	-CH2S(O)2Et
253A	C(O)	CH2	-CH2CH2S(O)2Et
254A	CHOH	CH2	-CH2CH2S(O)2Et
255A	C(Me)OH	CH2	-CH2CH2S(O)2Et
256A	C(O)	CH(Me)	-CH2CH2S(O)2Et
257A	CHOH	CH(Me)	-CH2CH2S(O)2Et
258A	C(Me)OH	CH(Me)	-CH2CH2S(O)2Et
259A	C(O)	CH2	-CH2CH2CH2S(O)2Et
260A	CHOH	CH2	-CH2CH2CH2S(O)2Et
261A	C(Me)OH	CH2	-CH2CH2CH2S(O)2Et
262A	C(O)	CH(Me)	-CH2CH2CH2S(O)2Et
263A	CHOH	CH(Me)	-CH2CH2CH2S(O)2Et
264A	C(Me)OH	CH(Me)	-CH2CH2CH2S(O)2Et
265A	C(O)	CH2	-OCH2S(O)2iPr
266A	CHOH	CH2	-OCH2S(O)2iPr
267A	C(Me)OH	CH2	-OCH2S(O)2iPr
268A	C(O)	CH(Me)	-OCH2S(O)2iPr
269A	CHOH	CH(Me)	-OCH2S(O)2iPr
270A	C(Me)OH	CH(Me)	-OCH2S(O)2iPr
271A	C(O)	CH2	-CH2S(O)2iPr
272A	CHOH	CH2	-CH2S(O)2iPr
273A	C(Me)OH	CH2	-CH2S(O)2iPr
274A	C(O)	CH(Me)	-CH2S(O)2iPr
275A	CHOH	CH(Me)	-CH2S(O)2iPr
276A	C(Me)OH	CH(Me)	-CH2S(O)2iPr
277A	C(O)	CH2	-CH2CH2S(O)2iPr

-463-

278A	CHOH	CH2	-CH2CH2S(O)2iPr
279A	C(Me)OH	CH2	-CH2CH2S(O)2iPr
280A	C(O)	CH(Me)	-CH2CH2S(O)2iPr
281A	CHOH	CH(Me)	-CH2CH2S(O)2iPr
282A	C(Me)OH	CH(Me)	-CH2CH2S(O)2iPr
283A	C(O)	CH2	-OCH2S(O)2tBu
284A	CHOH	CH2	-OCH2S(O)2tBu
285A	C(Me)OH	CH2	-OCH2S(O)2tBu
286A	C(O)	CH(Me)	-OCH2S(O)2tBu
287A	CHOH	CH(Me)	-OCH2S(O)2tBu
288A	C(Me)OH	CH(Me)	-OCH2S(O)2tBu
289A	C(O)	CH2	-CH2S(O)2tBu
290A	CHOH	CH2	-CH2S(O)2tBu
291A	C(Me)OH	CH2	-CH2S(O)2tBu
292A	C(O)	CH(Me)	-CH2S(O)2tBu
293A	CHOH	CH(Me)	-CH2S(O)2tBu
294A	C(Me)OH	CH(Me)	-CH2S(O)2tBu
295A	C(O)	CH2	-CH2CH2S(O)2tBu
296A	CHOH	CH2	-CH2CH2S(O)2tBu
297A	C(Me)OH	CH2	-CH2CH2S(O)2tBu
298A	C(O)	CH(Me)	-CH2CH2S(O)2tBu
299A	CHOH	CH(Me)	-CH2CH2S(O)2tBu
300A	C(Me)OH	CH(Me)	-CH2CH2S(O)2tBu
301A	C(O)	CH2	-OCH2S(O)2NH2
302A	CHOH	CH2	-OCH2S(O)2NH2
303A	C(Me)OH	CH2	-OCH2S(O)2NH2
304A	C(O)	CH(Me)	-OCH2S(O)2NH2
305A	CHOH	CH(Me)	-OCH2S(O)2NH2
306A	C(Me)OH	CH(Me)	-OCH2S(O)2NH2
307A	C(O)	CH2	-OCH2S(O)2NMe2
308A	CHOH	CH2	-OCH2S(O)2NMe2

-464-

309A	C(Me)OH	CH2	-OCH2S(O)2NMe2
310A	C(O)	CH(Me)	-OCH2S(O)2NMe2
311A	CHOH	CH(Me)	-OCH2S(O)2NMe2
312A	C(Me)OH	CH(Me)	-OCH2S(O)2NMe2
313A	C(O)	CH2	-CH2CH2S(O)2NH2
314A	CHOH	CH2	-CH2CH2S(O)2NH2
315A	C(Me)OH	CH2	-CH2CH2S(O)2NH2
316A	C(O)	CH(Me)	-CH2CH2S(O)2NH2
317A	CHOH	CH(Me)	-CH2CH2S(O)2NH2
318A	C(Me)OH	CH(Me)	-CH2CH2S(O)2NH2
319A	C(O)	CH2	-CH2CH2S(O)2NMe2
320A	CHOH	CH2	-CH2CH2S(O)2NMe2
321A	C(Me)OH	CH2	-CH2CH2S(O)2NMe2
322A	C(O)	CH(Me)	-CH2CH2S(O)2NMe2
323A	CHOH	CH(Me)	-CH2CH2S(O)2NMe2
324A	C(Me)OH	CH(Me)	-CH2CH2S(O)2NMe2
325A	C(O)	CH2	-C(O)CH2S(O)2Me
326A	CHOH	CH2	-C(O)CH2S(O)2Me
327A	C(Me)OH	CH2	-C(O)CH2S(O)2Me
328A	C(O)	CH(Me)	-C(O)CH2S(O)2Me
329A	CHOH	CH(Me)	-C(O)CH2S(O)2Me
330A	C(Me)OH	CH(Me)	-C(O)CH2S(O)2Me
331A	C(O)	CH2	-C(O)CH2CH2S(O)2Me
332A	CHOH	CH2	-C(O)CH2CH2S(O)2Me
333A	C(Me)OH	CH2	-C(O)CH2CH2S(O)2Me
334A	C(O)	CH(Me)	-C(O)CH2CH2S(O)2Me
335A	CHOH	CH(Me)	-C(O)CH2CH2S(O)2Me
336A	C(Me)OH	CH(Me)	-C(O)CH2CH2S(O)2Me
337A	C(O)	CH2	-OCH2CH2S(O)2NH2
338A	CHOH	CH2	-OCH2CH2S(O)2NH2
339A	C(Me)OH	CH2	-OCH2CH2S(O)2NH2

340A	C(O)	CH(Me)	-OCH2CH2S(O)2NH2
341A	CHOH	CH(Me)	-OCH2CH2S(O)2NH2
342A	C(Me)OH	CH(Me)	-OCH2CH2S(O)2NH2
343A	C(O)	CH2	-OCH2CH2S(O)2NMe2
344A	CHOH	CH2	-OCH2CH2S(O)2NMe2
345A	C(Me)OH	CH2	-OCH2CH2S(O)2NMe2
346A	C(O)	CH(Me)	-OCH2CH2S(O)2NMe2
347A	CHOH	CH(Me)	-OCH2CH2S(O)2NMe2
348A	C(Me)OH	CH(Me)	-OCH2CH2S(O)2NMe2
349A	C(O)	CH2	-CH2CH2CH2S(O)2NH2
350A	CHOH	CH2	-CH2CH2CH2S(O)2NH2
351A	C(Me)OH	CH2	-CH2CH2CH2S(O)2NH2
352A	C(O)	CH(Me)	-CH2CH2CH2S(O)2NH2
353A	CHOH	CH(Me)	-CH2CH2CH2S(O)2NH2
354A	C(Me)OH	CH(Me)	-CH2CH2CH2S(O)2NH2
355A	C(O)	CH2	-S(O)2Me
356A	CHOH	CH2	-S(O)2Me
357A	C(Me)OH	CH2	-S(O)2Me
358A	C(O)	CH(Me)	-S(O)2Me
359A	CHOH	CH(Me)	-S(O)2Me
360A	C(Me)OH	CH(Me)	-S(O)2Me
361A	C(O)	CH2	-S(O)2Et
362A	CHOH	CH2	-S(O)2Et
363A	C(Me)OH	CH2	-S(O)2Et
364A	C(O)	CH(Me)	-S(O)2Et
365A	CHOH	CH(Me)	-S(O)2Et
366A	C(Me)OH	CH(Me)	-S(O)2Et
367A	C(O)	CH2	-S(O)2iPr
368A	CHOH	CH2	-S(O)2iPr
369A	C(Me)OH	CH2	-S(O)2iPr
370A	C(O)	CH(Me)	-S(O)2iPr

-466-

371A	CHOH	CH(Me)	-S(O)2iPr
372A	C(Me)OH	CH(Me)	-S(O)2iPr
373A	C(O)	CH2	-S(O)2tBu
374A	CHOH	CH2	-S(O)2tBu
375A	C(Me)OH	CH2	-S(O)2tBu
376A	C(O)	CH(Me)	-S(O)2tBu
377A	CHOH	CH(Me)	-S(O)2tBu
378A	C(Me)OH	CH(Me)	-S(O)2tBu
379A	C(O)	CH2	-OCH2CO2H
380A	CHOH	CH2	-OCH2CO2H
381A	C(Me)OH	CH2	-OCH2CO2H
382A	C(O)	CH(Me)	-OCH2CO2H
383A	CHOH	CH(Me)	-OCH2CO2H
384A	C(Me)OH	CH(Me)	-OCH2CO2H
385A	C(O)	CH2	-OCH2-5-tetrazolyl
386A	CHOH	CH2	-OCH2-5-tetrazolyl
387A	C(Me)OH	CH2	-OCH2-5-tetrazolyl
388A	C(O)	CH(Me)	-OCH2-5-tetrazolyl
389A	CHOH	CH(Me)	-OCH2-5-tetrazolyl
390A	C(Me)OH	CH(Me)	-OCH2-5-tetrazolyl
391A	C(O)	CH2	-S(O)2NH2
392A	CHOH	CH2	-S(O)2NH2
393A	C(Me)OH	CH2	-S(O)2NH2
394A	C(O)	CH(Me)	-S(O)2NH2
395A	CHOH	CH(Me)	-S(O)2NH2
396A	C(Me)OH	CH(Me)	-S(O)2NH2
397A	C(O)	CH2	-S(O)2NMe2
398A	CHOH	CH2	-S(O)2NMe2
399A	C(Me)OH	CH2	-S(O)2NMe2
400A	C(O)	CH(Me)	-S(O)2NMe2
401A	CHOH	CH(Me)	-S(O)2NMe2

402A	C(Me)OH	CH(Me)	-S(O)2NMe2
403A	C(O)	CH2	-S(O)2CH2S(O)2Me
404A	CHOH	CH2	-S(O)2CH2S(O)2Me
405A	C(Me)OH	CH2	-S(O)2CH2S(O)2Me
406A	C(O)	CH(Me)	-S(O)2CH2S(O)2Me
407A	CHOH	CH(Me)	-S(O)2CH2S(O)2Me
408A	C(Me)OH	CH(Me)	-S(O)2CH2S(O)2Me
409A	C(O)	CH2	-S(O)2CH2S(O)2Et
410A	CHOH	CH2	-S(O)2CH2S(O)2Et
411A	C(Me)OH	CH2	-S(O)2CH2S(O)2Et
412A	C(O)	CH(Me)	-S(O)2CH2S(O)2Et
413A	CHOH	CH(Me)	-S(O)2CH2S(O)2Et
414A	C(Me)OH	CH(Me)	-S(O)2CH2S(O)2Et
415A	C(O)	CH2	-S(O)2CH2S(O)2iPr
416A	CHOH	CH2	-S(O)2CH2S(O)2iPr
417A	C(Me)OH	CH2	-S(O)2CH2S(O)2iPr
418A	C(O)	CH(Me)	-S(O)2CH2S(O)2iPr
419A	CHOH	CH(Me)	-S(O)2CH2S(O)2iPr
420A	C(Me)OH	CH(Me)	-S(O)2CH2S(O)2iPr
421A	C(O)	CH2	-S(O)2CH2S(O)2tBu
422A	CHOH	CH2	-S(O)2CH2S(O)2tBu
423A	C(Me)OH	CH2	-S(O)2CH2S(O)2tBu
424A	C(O)	CH(Me)	-S(O)2CH2S(O)2tBu
425A	CHOH	CH(Me)	-S(O)2CH2S(O)2tBu
426A	C(Me)OH	CH(Me)	-S(O)2CH2S(O)2tBu
427A	C(O)	CH2	-NHS(O)2Me
428A	CHOH	CH2	-NHS(O)2Me
429A	C(Me)OH	CH2	-NHS(O)2Me
430A	C(O)	CH(Me)	-NHS(O)2Me
431A	CHOH	CH(Me)	-NHS(O)2Me
432A	C(Me)OH	CH(Me)	-NHS(O)2Me

-468-

433A	C(O)	CH2	-NHS(O)2Et
434A	CHOH	CH2	-NHS(O)2Et
435A	C(Me)OH	CH2	-NHS(O)2Et
436A	C(O)	CH(Me)	-NHS(O)2Et
437A	CHOH	CH(Me)	-NHS(O)2Et
438A	C(Me)OH	CH(Me)	-NHS(O)2Et
439A	C(O)	CH2	-NHS(O)2iPr
440A	CHOH	CH2	-NHS(O)2iPr
441A	C(Me)OH	CH2	-NHS(O)2iPr
442A	C(O)	CH(Me)	-NHS(O)2iPr
443A	CHOH	CH(Me)	-NHS(O)2iPr
444A	C(Me)OH	CH(Me)	-NHS(O)2iPr
445A	C(O)	CH2	-NHS(O)2tBu
446A	CHOH	CH2	-NHS(O)2tBu
447A	C(Me)OH	CH2	-NHS(O)2tBu
448A	C(O)	CH(Me)	-NHS(O)2tBu
449A	CHOH	CH(Me)	-NHS(O)2tBu
450A	C(Me)OH	CH(Me)	-NHS(O)2tBu
451A	C(O)	CH2	-OS(O)2Me
452A	CHOH	CH2	-OS(O)2Me
453A	C(Me)OH	CH2	-OS(O)2Me
454A	C(O)	CH(Me)	-OS(O)2Me
455A	CHOH	CH(Me)	-OS(O)2Me
456A	C(Me)OH	CH(Me)	-OS(O)2Me
457A	C(O)	CH2	-OS(O)2Et
458A	CHOH	CH2	-OS(O)2Et
459A	C(Me)OH	CH2	-OS(O)2Et
460A	C(O)	CH(Me)	-OS(O)2Et
461A	CHOH	CH(Me)	-OS(O)2Et
462A	C(Me)OH	CH(Me)	-OS(O)2Et
463A	C(O)	CH2	-OS(O)2iPr

-469-

464A	CHOH	CH2	-OS(O)2iPr
465A	C(Me)OH	CH2	-OS(O)2iPr
466A	C(O)	CH(Me)	-OS(O)2iPr
467A	CHOH	CH(Me)	-OS(O)2iPr
468A	C(Me)OH	CH(Me)	-OS(O)2iPr
469A	C(O)	CH2	-OS(O)2tBu
470A	CHOH	CH2	-OS(O)2tBu
471A	C(Me)OH	CH2	-OS(O)2tBu
472A	C(O)	CH(Me)	-OS(O)2tBu
473A	CHOH	CH(Me)	-OS(O)2tBu
474A	C(Me)OH	CH(Me)	-OS(O)2tBu
475A	C(O)	CH2	-NHC(O)NMe2
476A	CHOH	CH2	-NHC(O)NMe2
477A	C(Me)OH	CH2	-NHC(O)NMe2
478A	C(O)	CH(Me)	-NHC(O)NMe2
479A	CHOH	CH(Me)	-NHC(O)NMe2
480A	C(Me)OH	CH(Me)	-NHC(O)NMe2
481A	C(O)	CH2	-NHC(S)NMe2
482A	CHOH	CH2	-NHC(S)NMe2
483A	C(Me)OH	CH2	-NHC(S)NMe2
484A	C(O)	CH(Me)	-NHC(S)NMe2
485A	CHOH	CH(Me)	-NHC(S)NMe2
486A	C(Me)OH	CH(Me)	-NHC(S)NMe2
487A	C(O)	CH2	-OC(O)NMe2
488A	CHOH	CH2	-OC(O)NMe2
489A	C(Me)OH	CH2	-OC(O)NMe2
490A	C(O)	CH(Me)	-OC(O)NMe2
491A	CHOH	CH(Me)	-OC(O)NMe2
492A	C(Me)OH	CH(Me)	-OC(O)NMe2
493A	C(O)	CH2	-OC(S)NMe2
494A	CHOH	CH2	-OC(S)NMe2

-470-

495A	C(Me)OH	CH2	-OC(S)NMe2
496A	C(O)	CH(Me)	-OC(S)NMe2
497A	CHOH	CH(Me)	-OC(S)NMe2
498A	C(Me)OH	CH(Me)	-OC(S)NMe2
499A	C(O)	CH2	-NHS(O)2NMe2
500A	CHOH	CH2	-NHS(O)2NMe2
501A	C(Me)OH	CH2	-NHS(O)2NMe2
502A	C(O)	CH(Me)	-NHS(O)2NMe2
503A	CHOH	CH(Me)	-NHS(O)2NMe2
504A	C(Me)OH	CH(Me)	-NHS(O)2NMe2
505A	C(O)	CH2	-C(O)NHCH2CO2H
506A	CHOH	CH2	-C(O)NHCH2CO2H
507A	C(Me)OH	CH2	-C(O)NHCH2CO2H
508A	C(O)	CH(Me)	-C(O)NHCH2CO2H
509A	CHOH	CH(Me)	-C(O)NHCH2CO2H
510A	C(Me)OH	CH(Me)	-C(O)NHCH2CO2H
511A	C(O)	CH2	-SO2NHCH2CO2H
512A	CHOH	CH2	-SO2NHCH2CO2H
513A	C(Me)OH	CH2	-SO2NHCH2CO2H
514A	C(O)	CH(Me)	-SO2NHCH2CO2H
515A	CHOH	CH(Me)	-SO2NHCH2CO2H
516A	C(Me)OH	CH(Me)	-SO2NHCH2CO2H
517A	C(O)	CH2	-CH2-S-Me
518A	CHOH	CH2	-CH2-S-Me
519A	C(Me)OH	CH2	-CH2-S-Me
520A	C(O)	CH(Me)	-CH2-S-Me
521A	CHOH	CH(Me)	-CH2-S-Me
522A	C(Me)OH	CH(Me)	-CH2-S-Me

-471-

9. A compound represented by the formula:

wherein said compound is selected from a compound code numbered 1B thru 516B, with each compound having the specific selection of groups R3, and W_T shown in the row following the code number, as set out in the following Table 3:

Table 3

Code	R3	W _T
1B	3Me3OH-Pentyl	-CO2Me
2B	3Me3OH-Pentenyl	-CO2Me
3B	3Me3OH-Pentynyl	-CO2Me
4B	3Et3OH-Pentyl	-CO2Me
5B	3Et3OH-Pentenyl	-CO2Me
6B	3Et3OH-Pentynyl	-CO2Me
7B	3Me3OH-Pentyl	-CO2H
8B	3Me3OH-Pentenyl	-CO2H
9B	3Me3OH-Pentynyl	-CO2H
10B	3Et3OH-Pentyl	-CO2H
11B	3Et3OH-Pentenyl	-CO2H
12B	3Et3OH-Pentynyl	-CO2H
13B	3Me3OH-Pentyl	-C(O)NH2
14B	3Me3OH-Pentenyl	-C(O)NH2
15B	3Me3OH-Pentynyl	-C(O)NH2
16B	3Et3OH-Pentyl	-C(O)NH2
17B	3Et3OH-Pentenyl	-C(O)NH2

-472-

18B	3Et3OH-Pentynyl	-C(O)NH2
19B	3Me3OH-Pentyl	-C(O)NMe2
20B	3Me3OH-Pentenyl	-C(O)NMe2
21B	3Me3OH-Pentynyl	-C(O)NMe2
22B	3Et3OH-Pentyl	-C(O)NMe2
23B	3Et3OH-Pentenyl	-C(O)NMe2
24B	3Et3OH-Pentynyl	-C(O)NMe2
25B	3Me3OH-Pentyl	5-tetrazolyl
26B	3Me3OH-Pentenyl	5-tetrazolyl
27B	3Me3OH-Pentynyl	5-tetrazolyl
28B	3Et3OH-Pentyl	5-tetrazolyl
29B	3Et3OH-Pentenyl	5-tetrazolyl
30B	3Et3OH-Pentynyl	5-tetrazolyl
31B	3Me3OH-Pentyl	-C(O)-NH-5-tetrazolyl
32B	3Me3OH-Pentenyl	-C(O)-NH-5-tetrazolyl
33B	3Me3OH-Pentynyl	-C(O)-NH-5-tetrazolyl
34B	3Et3OH-Pentyl	-C(O)-NH-5-tetrazolyl
35B	3Et3OH-Pentenyl	-C(O)-NH-5-tetrazolyl
36B	3Et3OH-Pentynyl	-C(O)-NH-5-tetrazolyl
37B	3Me3OH-Pentyl	-C(O)NHCH2SO2Me
38B	3Me3OH-Pentenyl	-C(O)NHCH2SO2Me
39B	3Me3OH-Pentynyl	-C(O)NHCH2SO2Me
40B	3Et3OH-Pentyl	-C(O)NHCH2SO2Me
41B	3Et3OH-Pentenyl	-C(O)NHCH2SO2Me
42B	3Et3OH-Pentynyl	-C(O)NHCH2SO2Me
43B	3Me3OH-Pentyl	-C(O)NHCH2CH2SO2Me
44B	3Me3OH-Pentenyl	-C(O)NHCH2CH2SO2Me
45B	3Me3OH-Pentynyl	-C(O)NHCH2CH2SO2Me
46B	3Et3OH-Pentyl	-C(O)NHCH2CH2SO2Me
47B	3Et3OH-Pentenyl	-C(O)NHCH2CH2SO2Me
48B	3Et3OH-Pentynyl	-C(O)NHCH2CH2SO2Me

-473-

49B	3Me3OH-Pentyl	-C(O)NHSO2Me
50B	3Me3OH-Pentenyl	-C(O)NHSO2Me
51B	3Me3OH-Pentylyn	-C(O)NHSO2Me
52B	3Et3OH-Pentyl	-C(O)NHSO2Me
53B	3Et3OH-Pentenyl	-C(O)NHSO2Me
54B	3Et3OH-Pentylyn	-C(O)NHSO2Me
55B	3Me3OH-Pentyl	-CH2-C(O)NHSO2Et
56B	3Me3OH-Pentenyl	-CH2-C(O)NHSO2Et
57B	3Me3OH-Pentylyn	-CH2-C(O)NHSO2Et
58B	3Et3OH-Pentyl	-CH2-C(O)NHSO2Et
59B	3Et3OH-Pentenyl	-CH2-C(O)NHSO2Et
60B	3Et3OH-Pentylyn	-CH2-C(O)NHSO2Et
61B	3Me3OH-Pentyl	-CH2-C(O)NHSO2iPr
62B	3Me3OH-Pentenyl	-CH2-C(O)NHSO2iPr
63B	3Me3OH-Pentylyn	-CH2-C(O)NHSO2iPr
64B	3Et3OH-Pentyl	-CH2-C(O)NHSO2iPr
65B	3Et3OH-Pentenyl	-CH2-C(O)NHSO2iPr
66B	3Et3OH-Pentylyn	-CH2-C(O)NHSO2iPr
67B	3Me3OH-Pentyl	-CH2-C(O)NHSO2tBu
68B	3Me3OH-Pentenyl	-CH2-C(O)NHSO2tBu
69B	3Me3OH-Pentylyn	-CH2-C(O)NHSO2tBu
70B	3Et3OH-Pentyl	-CH2-C(O)NHSO2tBu
71B	3Et3OH-Pentenyl	-CH2-C(O)NHSO2tBu
72B	3Et3OH-Pentylyn	-CH2-C(O)NHSO2tBu
73B	3Me3OH-Pentyl	-CH2NHSO2Me
74B	3Me3OH-Pentenyl	-CH2NHSO2Me
75B	3Me3OH-Pentylyn	-CH2NHSO2Me
76B	3Et3OH-Pentyl	-CH2NHSO2Me
77B	3Et3OH-Pentenyl	-CH2NHSO2Me
78B	3Et3OH-Pentylyn	-CH2NHSO2Me
79B	3Me3OH-Pentyl	-CH2NHSO2Et

- 474 -

80B	3Me3OH-Pentenyl	-CH2NHSO2Et
81B	3Me3OH-Pentynyl	-CH2NHSO2Et
82B	3Et3OH-Pentyl	-CH2NHSO2Et
83B	3Et3OH-Pentenyl	-CH2NHSO2Et
84B	3Et3OH-Pentynyl	-CH2NHSO2Et
85B	3Me3OH-Pentyl	-CH2NHSO2iPr
86B	3Me3OH-Pentenyl	-CH2NHSO2iPr
87B	3Me3OH-Pentynyl	-CH2NHSO2iPr
88B	3Et3OH-Pentyl	-CH2NHSO2iPr
89B	3Et3OH-Pentenyl	-CH2NHSO2iPr
90B	3Et3OH-Pentynyl	-CH2NHSO2iPr
91B	3Me3OH-Pentyl	-CH2NHSO2tBu
92B	3Me3OH-Pentenyl	-CH2NHSO2tBu
93B	3Me3OH-Pentynyl	-CH2NHSO2tBu
94B	3Et3OH-Pentyl	-CH2NHSO2tBu
95B	3Et3OH-Pentenyl	-CH2NHSO2tBu
96B	3Et3OH-Pentynyl	-CH2NHSO2tBu
97B	3Me3OH-Pentyl	-CH2-N-pyrrolidin-2-one
98B	3Me3OH-Pentenyl	-CH2-N-pyrrolidin-2-one
99B	3Me3OH-Pentynyl	-CH2-N-pyrrolidin-2-one
100B	3Et3OH-Pentyl	-CH2-N-pyrrolidin-2-one
101B	3Et3OH-Pentenyl	-CH2-N-pyrrolidin-2-one
102B	3Et3OH-Pentynyl	-CH2-N-pyrrolidin-2-one
103B	3Me3OH-Pentyl	-CH2-(1-methylpyrrolidin-2-one-3-yl)
104B	3Me3OH-Pentenyl	-CH2-(1-methylpyrrolidin-2-one-3-yl)
105B	3Me3OH-Pentynyl	-CH2-(1-methylpyrrolidin-2-one-3-yl)
106B	3Et3OH-Pentyl	-CH2-(1-methylpyrrolidin-2-one-3-yl)
107B	3Et3OH-Pentenyl	-CH2-(1-methylpyrrolidin-2-one-3-yl)
108B	3Et3OH-Pentynyl	-CH2-(1-methylpyrrolidin-2-one-3-yl)
109B	3Me3OH-Pentyl	-CH2CO2Me
110B	3Me3OH-Pentenyl	-CH2CO2Me

-475-

111B	3Me3OH-Pentynyl	-CH2CO2Me
112B	3Et3OH-Pentyl	-CH2CO2Me
113B	3Et3OH-Pentenyl	-CH2CO2Me
114B	3Et3OH-Pentynyl	-CH2CO2Me
115B	3Me3OH-Pentyl	-CH2CO2H
116B	3Me3OH-Pentenyl	-CH2CO2H
117B	3Me3OH-Pentynyl	-CH2CO2H
118B	3Et3OH-Pentyl	-CH2CO2H
119B	3Et3OH-Pentenyl	-CH2CO2H
120B	3Et3OH-Pentynyl	-CH2CO2H
121B	3Me3OH-Pentyl	-CH2C(O)NH2
122B	3Me3OH-Pentenyl	-CH2C(O)NH2
123B	3Me3OH-Pentynyl	-CH2C(O)NH2
124B	3Et3OH-Pentyl	-CH2C(O)NH2
125B	3Et3OH-Pentenyl	-CH2C(O)NH2
126B	3Et3OH-Pentynyl	-CH2C(O)NH2
127B	3Me3OH-Pentyl	-CH2C(O)NMe2
128B	3Me3OH-Pentenyl	-CH2C(O)NMe2
129B	3Me3OH-Pentynyl	-CH2C(O)NMe2
130B	3Et3OH-Pentyl	-CH2C(O)NMe2
131B	3Et3OH-Pentenyl	-CH2C(O)NMe2
132B	3Et3OH-Pentynyl	-CH2C(O)NMe2
133B	3Me3OH-Pentyl	-CH2C(O)-N-pyrrolidine
134B	3Me3OH-Pentenyl	-CH2C(O)-N-pyrrolidine
135B	3Me3OH-Pentynyl	-CH2C(O)-N-pyrrolidine
136B	3Et3OH-Pentyl	-CH2C(O)-N-pyrrolidine
137B	3Et3OH-Pentenyl	-CH2C(O)-N-pyrrolidine
138B	3Et3OH-Pentynyl	-CH2C(O)-N-pyrrolidine
139B	3Me3OH-Pentyl	-CH2-5-tetrazolyl
140B	3Me3OH-Pentenyl	-CH2-5-tetrazolyl
141B	3Me3OH-Pentynyl	-CH2-5-tetrazolyl

-476-

142B	3Et3OH-Pentyl	-CH2-5-tetrazolyl
143B	3Et3OH-Pentenyl	-CH2-5-tetrazolyl
144B	3Et3OH-Pentylyn	-CH2-5-tetrazolyl
145B	3Me3OH-Pentyl	-C(O)C(O)OH
146B	3Me3OH-Pentenyl	-C(O)C(O)OH
147B	3Me3OH-Pentylyn	-C(O)C(O)OH
148B	3Et3OH-Pentyl	-C(O)C(O)OH
149B	3Et3OH-Pentenyl	-C(O)C(O)OH
150B	3Et3OH-Pentylyn	-C(O)C(O)OH
151B	3Me3OH-Pentyl	-CH(OH)C(O)OH
152B	3Me3OH-Pentenyl	-CH(OH)C(O)OH
153B	3Me3OH-Pentylyn	-CH(OH)C(O)OH
154B	3Et3OH-Pentyl	-CH(OH)C(O)OH
155B	3Et3OH-Pentenyl	-CH(OH)C(O)OH
156B	3Et3OH-Pentylyn	-CH(OH)C(O)OH
157B	3Me3OH-Pentyl	-C(O)C(O)NH2
158B	3Me3OH-Pentenyl	-C(O)C(O)NH2
159B	3Me3OH-Pentylyn	-C(O)C(O)NH2
160B	3Et3OH-Pentyl	-C(O)C(O)NH2
161B	3Et3OH-Pentenyl	-C(O)C(O)NH2
162B	3Et3OH-Pentylyn	-C(O)C(O)NH2
163B	3Me3OH-Pentyl	-CH(OH)C(O)NH2
164B	3Me3OH-Pentenyl	-CH(OH)C(O)NH2
165B	3Me3OH-Pentylyn	-CH(OH)C(O)NH2
166B	3Et3OH-Pentyl	-CH(OH)C(O)NH2
167B	3Et3OH-Pentenyl	-CH(OH)C(O)NH2
168B	3Et3OH-Pentylyn	-CH(OH)C(O)NH2
169B	3Me3OH-Pentyl	-C(O)C(O)NMe2
170B	3Me3OH-Pentenyl	-C(O)C(O)NMe2
171B	3Me3OH-Petylyn	-C(O)C(O)NMe2
172B	3Et3OH-Pentyl	-C(O)C(O)NMe2

-477-

173B	3Et3OH-Pentenyl	-C(O)C(O)NMe2
174B	3Et3OH-Pentylyn	-C(O)C(O)NMe2
175B	3Me3OH-Pentyl	-CH(OH)C(O)NMe2
176B	3Me3OH-Pentenyl	-CH(OH)C(O)NMe2
177B	3Me3OH-Pentylyn	-CH(OH)C(O)NMe2
178B	3Et3OH-Pentyl	-CH(OH)C(O)NMe2
179B	3Et3OH-Pentenyl	-CH(OH)C(O)NMe2
180B	3Et3OH-Pentylyn	-CH(OH)C(O)NMe2
181B	3Me3OH-Pentyl	-CH2CH2CO2H
182B	3Me3OH-Pentenyl	-CH2CH2CO2H
183B	3Me3OH-Petylyn	-CH2CH2CO2H
184B	3Et3OH-Pentyl	-CH2CH2CO2H
185B	3Et3OH-Pentenyl	-CH2CH2CO2H
186B	3Et3OH-Petylyn	-CH2CH2CO2H
187B	3Me3OH-Pentyl	-CH2CH2C(O)NH2
188B	3Me3OH-Pentenyl	-CH2CH2C(O)NH2
189B	3Me3OH-Petylyn	-CH2CH2C(O)NH2
190B	3Et3OH-Pentyl	-CH2CH2C(O)NH2
191B	3Et3OH-Pentenyl	-CH2CH2C(O)NH2
192B	3Et3OH-Petylyn	-CH2CH2C(O)NH2
193B	3Me3OH-Pentyl	-CH2CH2C(O)NMe2
194B	3Me3OH-Pentenyl	-CH2CH2C(O)NMe2
195B	3Me3OH-Petylyn	-CH2CH2C(O)NMe2
196B	3Et3OH-Pentyl	-CH2CH2C(O)NMe2
197B	3Et3OH-Pentenyl	-CH2CH2C(O)NMe2
198B	3Et3OH-Petylyn	-CH2CH2C(O)NMe2
199B	3Me3OH-Pentyl	-CH2CH2-5-tetrazolyl
200B	3Me3OH-Pentenyl	-CH2CH2-5-tetrazolyl
201B	3Me3OH-Petylyn	-CH2CH2-5-tetrazolyl
202B	3Et3OH-Pentyl	-CH2CH2-5-tetrazolyl
203B	3Et3OH-Pentenyl	-CH2CH2-5-tetrazolyl

-478-

204B	3Et3OH-Pentynyl	-CH2CH2-5-tetrazolyl
205B	3Me3OH-Pentyl	-CH2S(O)2Me
206B	3Me3OH-Pentenyl	-CH2S(O)2Me
207B	3Me3OH-Pentynyl	-CH2S(O)2Me
208B	3Et3OH-Pentyl	-CH2S(O)2Me
209B	3Et3OH-Pentenyl	-CH2S(O)2Me
210B	3Et3OH-Pentynyl	-CH2S(O)2Me
211B	3Me3OH-Pentyl	-CH2CH2S(O)2Me
212B	3Me3OH-Pentenyl	-CH2CH2S(O)2Me
213B	3Me3OH-Pentynyl	-CH2CH2S(O)2Me
214B	3Et3OH-Pentyl	-CH2CH2S(O)2Me
215B	3Et3OH-Pentenyl	-CH2CH2S(O)2Me
216B	3Et3OH-Pentynyl	-CH2CH2S(O)2Me
217B	3Me3OH-Pentyl	-CH2CH2CH2S(O)2Me
218B	3Me3OH-Pentenyl	-CH2CH2CH2S(O)2Me
219B	3Me3OH-Pentynyl	-CH2CH2CH2S(O)2Me
220B	3Et3OH-Pentyl	-CH2CH2CH2S(O)2Me
221B	3Et3OH-Pentenyl	-CH2CH2CH2S(O)2Me
222B	3Et3OH-Pentynyl	-CH2CH2CH2S(O)2Me
223B	3Me3OH-Pentyl	-CH2S(O)2Et
224B	3Me3OH-Pentenyl	-CH2S(O)2Et
225B	3Me3OH-Pentynyl	-CH2S(O)2Et
226B	3Et3OH-Pentyl	-CH2S(O)2Et
227B	3Et3OH-Pentenyl	-CH2S(O)2Et
228B	3Et3OH-Pentynyl	-CH2S(O)2Et
229B	3Me3OH-Pentyl	-CH2CH2S(O)2Et
230B	3Me3OH-Pentenyl	-CH2CH2S(O)2Et
231B	3Me3OH-Pentynyl	-CH2CH2S(O)2Et
232B	3Et3OH-Pentyl	-CH2CH2S(O)2Et
233B	3Et3OH-Pentenyl	-CH2CH2S(O)2Et
234B	3Et3OH-Pentynyl	-CH2CH2S(O)2Et

-479-

235B	3Me3OH-Pentyl	-CH2CH2CH2S(O)2Et
236B	3Me3OH-Pentenyl	-CH2CH2CH2S(O)2Et
237B	3Me3OH-Pentylyn	-CH2CH2CH2S(O)2Et
238B	3Et3OH-Pentyl	-CH2CH2CH2S(O)2Et
239B	3Et3OH-Pentenyl	-CH2CH2CH2S(O)2Et
240B	3Et3OH-Pentylyn	-CH2CH2CH2S(O)2Et
241B	3Me3OH-Pentyl	-CH2S(O)2iPr
242B	3Me3OH-Pentenyl	-CH2S(O)2iPr
243B	3Me3OH-Pentylyn	-CH2S(O)2iPr
244B	3Et3OH-Pentyl	-CH2S(O)2iPr
245B	3Et3OH-Pentenyl	-CH2S(O)2iPr
246B	3Et3OH-Pentylyn	-CH2S(O)2iPr
247B	3Me3OH-Pentyl	-CH2CH2S(O)2iPr
248B	3Me3OH-Pentenyl	-CH2CH2S(O)2iPr
249B	3Me3OH-Pentylyn	-CH2CH2S(O)2iPr
250B	3Et3OH-Pentyl	-CH2CH2S(O)2iPr
251B	3Et3OH-Pentenyl	-CH2CH2S(O)2iPr
252B	3Et3OH-Pentylyn	-CH2CH2S(O)2iPr
253B	3Me3OH-Pentyl	-CH2S(O)2tBu
254B	3Me3OH-Pentenyl	-CH2S(O)2tBu
255B	3Me3OH-Pentylyn	-CH2S(O)2tBu
256B	3Et3OH-Pentyl	-CH2S(O)2tBu
257B	3Et3OH-Pentenyl	-CH2S(O)2tBu
258B	3Et3OH-Pentylyn	-CH2S(O)2tBu
259B	3Me3OH-Pentyl	-CH2CH2S(O)2tBu
260B	3Me3OH-Pentenyl	-CH2CH2S(O)2tBu
261B	3Me3OH-Pentylyn	-CH2CH2S(O)2tBu
262B	3Et3OH-Pentyl	-CH2CH2S(O)2tBu
263B	3Et3OH-Pentenyl	-CH2CH2S(O)2tBu
264B	3Et3OH-Pentylyn	-CH2CH2S(O)2tBu
265B	3Me3OH-Pentyl	-CH2CH2S(O)2NH2

- 480 -

266B	3Me3OH-Pentenyl	-CH2CH2S(O)2NH2
267B	3Me3OH-Pentylyn	-CH2CH2S(O)2NH2
268B	3Et3OH-Pentyl	-CH2CH2S(O)2NH2
269B	3Et3OH-Pentenyl	-CH2CH2S(O)2NH2
270B	3Et3OH-Pentylyn	-CH2CH2S(O)2NH2
271B	3Me3OH-Pentyl	-CH2CH2S(O)2NMe2
272B	3Me3OH-Pentenyl	-CH2CH2S(O)2NMe2
273B	3Me3OH-Petylyn	-CH2CH2S(O)2NMe2
274B	3Et3OH-Pentyl	-CH2CH2S(O)2NMe2
275B	3Et3OH-Pentenyl	-CH2CH2S(O)2NMe2
276B	3Et3OH-Petylyn	-CH2CH2S(O)2NMe2
277B	3Me3OH-Pentyl	-C(O)CH2S(O)2Me
278B	3Me3OH-Pentenyl	-C(O)CH2S(O)2Me
279B	3Me3OH-Petylyn	-C(O)CH2S(O)2Me
280B	3Et3OH-Pentyl	-C(O)CH2S(O)2Me
281B	3Et3OH-Pentenyl	-C(O)CH2S(O)2Me
282B	3Et3OH-Petylyn	-C(O)CH2S(O)2Me
283B	3Me3OH-Pentyl	-C(O)CH2CH2S(O)2Me
284B	3Me3OH-Pentenyl	-C(O)CH2CH2S(O)2Me
285B	3Me3OH-Petylyn	-C(O)CH2CH2S(O)2Me
286B	3Et3OH-Pentyl	-C(O)CH2CH2S(O)2Me
287B	3Et3OH-Pentenyl	-C(O)CH2CH2S(O)2Me
288B	3Et3OH-Petylyn	-C(O)CH2CH2S(O)2Me
289B	3Me3OH-Pentyl	-CH2CH2CH2S(O)2NH2
290B	3Me3OH-Pentenyl	-CH2CH2CH2S(O)2NH2
291B	3Me3OH-Petylyn	-CH2CH2CH2S(O)2NH2
292B	3Et3OH-Pentyl	-CH2CH2CH2S(O)2NH2
293B	3Et3OH-Pentenyl	-CH2CH2CH2S(O)2NH2
294B	3Et3OH-Petylyn	-CH2CH2CH2S(O)2NH2
295B	3Me3OH-Pentyl	-S(O)2Me
296B	3Me3OH-Pentenyl	-S(O)2Me

- 481 -

297B	3Me3OH-Pentynyl	-S(O)2Me
298B	3Et3OH-Pentyl	-S(O)2Me
299B	3Et3OH-Pentenyl	-S(O)2Me
300B	3Et3OH-Pentynyl	-S(O)2Me
301B	3Me3OH-Pentyl	-S(O)2Et
302B	3Me3OH-Pentenyl	-S(O)2Et
303B	3Me3OH-Pentynyl	-S(O)2Et
304B	3Et3OH-Pentyl	-S(O)2Et
305B	3Et3OH-Pentenyl	-S(O)2Et
306B	3Et3OH-Pentynyl	-S(O)2Et
307B	3Me3OH-Pentyl	-S(O)2iPr
308B	3Me3OH-Pentenyl	-S(O)2iPr
309B	3Me3OH-Pentynyl	-S(O)2iPr
310B	3Et3OH-Pentyl	-S(O)2iPr
311B	3Et3OH-Pentenyl	-S(O)2iPr
312B	3Et3OH-Pentynyl	-S(O)2iPr
313B	3Me3OH-Pentyl	-S(O)2tBu
314B	3Me3OH-Pentenyl	-S(O)2tBu
315B	3Me3OH-Pentynyl	-S(O)2tBu
316B	3Et3OH-Pentyl	-S(O)2tBu
317B	3Et3OH-Pentenyl	-S(O)2tBu
318B	3Et3OH-Pentynyl	-S(O)2tBu
319B	3Me3OH-Pentyl	-S(O)2NH2
320B	3Me3OH-Pentenyl	-S(O)2NH2
321B	3Me3OH-Pentynyl	-S(O)2NH2
322B	3Et3OH-Pentyl	-S(O)2NH2
323B	3Et3OH-Pentenyl	-S(O)2NH2
324B	3Et3OH-Pentynyl	-S(O)2NH2
325B	3Me3OH-Pentyl	-S(O)2NMe2
326B	3Me3OH-Pentenyl	-S(O)2NMe2
327B	3Me3OH-Pentynyl	-S(O)2NMe2

- 482 -

328B	3Et3OH-Pentyl	-S(O)2NMe2
329B	3Et3OH-Pentenyl	-S(O)2NMe2
330B	3Et3OH-Pentynyl	-S(O)2NMe2
331B	3Me3OH-Pentyl	-S(O)2CH2S(O)2Me
332B	3Me3OH-Pentenyl	-S(O)2CH2S(O)2Me
333B	3Me3OH-Pentynyl	-S(O)2CH2S(O)2Me
334B	3Et3OH-Pentyl	-S(O)2CH2S(O)2Me
335B	3Et3OH-Pentenyl	-S(O)2CH2S(O)2Me
336B	3Et3OH-Pentynyl	-S(O)2CH2S(O)2Me
337B	3Me3OH-Pentyl	-S(O)2CH2S(O)2Et
338B	3Me3OH-Pentenyl	-S(O)2CH2S(O)2Et
339B	3Me3OH-Pentynyl	-S(O)2CH2S(O)2Et
340B	3Et3OH-Pentyl	-S(O)2CH2S(O)2Et
341B	3Et3OH-Pentenyl	-S(O)2CH2S(O)2Et
342B	3Et3OH-Pentynyl	-S(O)2CH2S(O)2Et
343B	3Me3OH-Pentyl	-S(O)2CH2S(O)2iPr
344B	3Me3OH-Pentenyl	-S(O)2CH2S(O)2iPr
345B	3Me3OH-Pentynyl	-S(O)2CH2S(O)2iPr
346B	3Et3OH-Pentyl	-S(O)2CH2S(O)2iPr
347B	3Et3OH-Pentenyl	-S(O)2CH2S(O)2iPr
348B	3Et3OH-Pentynyl	-S(O)2CH2S(O)2iPr
349B	3Me3OH-Pentyl	-S(O)2CH2S(O)2tBu
350B	3Me3OH-Pentenyl	-S(O)2CH2S(O)2tBu
351B	3Me3OH-Pentynyl	-S(O)2CH2S(O)2tBu
352B	3Et3OH-Pentyl	-S(O)2CH2S(O)2tBu
353B	3Et3OH-Pentenyl	-S(O)2CH2S(O)2tBu
354B	3Et3OH-Pentynyl	-S(O)2CH2S(O)2tBu
355B	3Me3OH-Pentyl	-C(O)NHCH2CO2H
356B	3Me3OH-Pentenyl	-C(O)NHCH2CO2H
357B	3Me3OH-Pentynyl	-C(O)NHCH2CO2H
358B	3Et3OH-Pentyl	-C(O)NHCH2CO2H

-483-

359B	3Et3OH-Pentenyl	-C(O)NHCH ₂ CO ₂ H
360B	3Et3OH-Pentyanyl	-C(O)NHCH ₂ CO ₂ H
361B	3Me3OH-Pentyl	-SO ₂ NHCH ₂ CO ₂ H
362B	3Me3OH-Pentenyl	-SO ₂ NHCH ₂ CO ₂ H
363B	3Me3OH-Pentyanyl	-SO ₂ NHCH ₂ CO ₂ H
364B	3Et3OH-Pentyl	-SO ₂ NHCH ₂ CO ₂ H
365B	3Et3OH-Pentenyl	-SO ₂ NHCH ₂ CO ₂ H
366B	3Et3OH-Pentyanyl	-SO ₂ NHCH ₂ CO ₂ H
367B	3Me3OH-Pentyl	-CH ₂ -S-Me
368B	3Me3OH-Pentenyl	-CH ₂ -S-Me
369B	3Me3OH-Pentyanyl	-CH ₂ -S-Me
370B	3Et3OH-Pentyl	-CH ₂ -S-Me
371B	3Et3OH-Pentenyl	-CH ₂ -S-Me
372B	3Et3OH-Pentyanyl	-CH ₂ -S-Me

10. A compound represented by the formula:

5 wherein said compound is selected from a compound code numbered 1C thru 516C, with each compound having the specific selection of groups R4, L₁, and W_T shown in the row following the code number, as set out in the following Table 4:

Table 4

Code	R4	L ₁	W _T
1C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CO ₂ Me
2C	1-hydroxycyclopentyl	-C≡C-	-CO ₂ Me

- 484 -

3C	1-hydroxycyclopentyl	-C=C-	-CO2Me
4C	1-hydroxycyclohexyl	-(CH2)2-	-CO2Me
5C	1-hydroxycyclohexyl	-C≡C-	-CO2Me
6C	1-hydroxycyclohexyl	-C=C-	-CO2Me
7C	1-hydroxycyclopentyl	-(CH2)2-	-CO2H
8C	1-hydroxycyclopentyl	-C≡C-	-CO2H
9C	1-hydroxycyclopentyl	-C=C-	-CO2H
10C	1-hydroxycyclohexyl	-(CH2)2-	-CO2H
11C	1-hydroxycyclohexyl	-C≡C-	-CO2H
12C	1-hydroxycyclohexyl	-C=C-	-CO2H
13C	1-hydroxycyclopentyl	-(CH2)2-	-C(O)NH2
14C	1-hydroxycyclopentyl	-C≡C-	-C(O)NH2
15C	1-hydroxycyclopentyl	-C=C-	-C(O)NH2
16C	1-hydroxycyclohexyl	-(CH2)2-	-C(O)NH2
17C	1-hydroxycyclohexyl	-C≡C-	-C(O)NH2
18C	1-hydroxycyclohexyl	-C=C-	-C(O)NH2
19C	1-hydroxycyclopentyl	-(CH2)2-	-C(O)NMe2
20C	1-hydroxycyclopentyl	-C≡C-	-C(O)NMe2
21C	1-hydroxycyclopentyl	-C=C-	-C(O)NMe2
22C	1-hydroxycyclohexyl	-(CH2)2-	-C(O)NMe2
23C	1-hydroxycyclohexyl	-C≡C-	-C(O)NMe2
24C	1-hydroxycyclohexyl	-C=C-	-C(O)NMe2
25C	1-hydroxycyclopentyl	-(CH2)2-	5-tetrazolyl
26C	1-hydroxycyclopentyl	-C≡C-	5-tetrazolyl
27C	1-hydroxycyclopentyl	-C=C-	5-tetrazolyl
28C	1-hydroxycyclohexyl	-(CH2)2-	5-tetrazolyl
29C	1-hydroxycyclohexyl	-C≡C-	5-tetrazolyl
30C	1-hydroxycyclohexyl	-C=C-	5-tetrazolyl
31C	1-hydroxycyclopentyl	-(CH2)2-	-C(O)-NH-5-tetrazolyl
32C	1-hydroxycyclopentyl	-C≡C-	-C(O)-NH-5-tetrazolyl
33C	1-hydroxycyclopentyl	-C=C-	-C(O)-NH-5-tetrazolyl

-485-

34C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-C(O)-NH-5-tetrazolyl
35C	1-hydroxycyclohexyl	-C≡C-	-C(O)-NH-5-tetrazolyl
36C	1-hydroxycyclohexyl	-C=C-	-C(O)-NH-5-tetrazolyl
37C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-C(O)NHCH ₂ SO ₂ Me
38C	1-hydroxycyclopentyl	-C≡C-	-C(O)NHCH ₂ SO ₂ Me
39C	1-hydroxycyclopentyl	-C=C-	-C(O)NHCH ₂ SO ₂ Me
40C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-C(O)NHCH ₂ SO ₂ Me
41C	1-hydroxycyclohexyl	-C≡C-	-C(O)NHCH ₂ SO ₂ Me
42C	1-hydroxycyclohexyl	-C=C-	-C(O)NHCH ₂ SO ₂ Me
43C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-C(O)NHCH ₂ CH ₂ SO ₂ Me
44C	1-hydroxycyclopentyl	-C≡C-	-C(O)NHCH ₂ CH ₂ SO ₂ Me
45C	1-hydroxycyclopentyl	-C=C-	-C(O)NHCH ₂ CH ₂ SO ₂ Me
46C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-C(O)NHCH ₂ CH ₂ SO ₂ Me
47C	1-hydroxycyclohexyl	-C≡C-	-C(O)NHCH ₂ CH ₂ SO ₂ Me
48C	1-hydroxycyclohexyl	-C=C-	-C(O)NHCH ₂ CH ₂ SO ₂ Me
49C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-C(O)NHSO ₂ Me
50C	1-hydroxycyclopentyl	-C≡C-	-C(O)NHSO ₂ Me
51C	1-hydroxycyclopentyl	-C=C-	-C(O)NHSO ₂ Me
52C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-C(O)NHSO ₂ Me
53C	1-hydroxycyclohexyl	-C≡C-	-C(O)NHSO ₂ Me
54C	1-hydroxycyclohexyl	-C=C-	-C(O)NHSO ₂ Me
55C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CH ₂ -C(O)NHSO ₂ Et
56C	1-hydroxycyclopentyl	-C≡C-	-CH ₂ -C(O)NHSO ₂ Et
57C	1-hydroxycyclopentyl	-C=C-	-CH ₂ -C(O)NHSO ₂ Et
58C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-CH ₂ -C(O)NHSO ₂ Et
59C	1-hydroxycyclohexyl	-C≡C-	-CH ₂ -C(O)NHSO ₂ Et
60C	1-hydroxycyclohexyl	-C=C-	-CH ₂ -C(O)NHSO ₂ Et
61C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CH ₂ -C(O)NHSO ₂ iPr
62C	1-hydroxycyclopentyl	-C≡C-	-CH ₂ -C(O)NHSO ₂ iPr
63C	1-hydroxycyclopentyl	-C=C-	-CH ₂ -C(O)NHSO ₂ iPr
64C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-CH ₂ -C(O)NHSO ₂ iPr

-486-

65C	1-hydroxycyclohexyl	-C≡C-	-CH2-C(O)NHSO2iPr
66C	1-hydroxycyclohexyl	-C=C-	-CH2-C(O)NHSO2iPr
67C	1-hydroxycyclopentyl	-(CH2)2-	-CH2-C(O)NHSO2tBu
68C	1-hydroxycyclopentyl	-C≡C-	-CH2-C(O)NHSO2tBu
69C	1-hydroxycyclopentyl	-C=C-	-CH2-C(O)NHSO2tBu
70C	1-hydroxycyclohexyl	-(CH2)2-	-CH2-C(O)NHSO2tBu
71C	1-hydroxycyclohexyl	-C≡C-	-CH2-C(O)NHSO2tBu
72C	1-hydroxycyclohexyl	-C=C-	-CH2-C(O)NHSO2tBu
73C	1-hydroxycyclopentyl	-(CH2)2-	-CH2NHSO2Me
74C	1-hydroxycyclopentyl	-C≡C-	-CH2NHSO2Me
75C	1-hydroxycyclopentyl	-C=C-	-CH2NHSO2Me
76C	1-hydroxycyclohexyl	-(CH2)2-	-CH2NHSO2Me
77C	1-hydroxycyclohexyl	-C≡C-	-CH2NHSO2Me
78C	1-hydroxycyclohexyl	-C=C-	-CH2NHSO2Me
79C	1-hydroxycyclopentyl	-(CH2)2-	-CH2NHSO2Et
80C	1-hydroxycyclopentyl	-C≡C-	-CH2NHSO2Et
81C	1-hydroxycyclopentyl	-C=C-	-CH2NHSO2Et
82C	1-hydroxycyclohexyl	-(CH2)2-	-CH2NHSO2Et
83C	1-hydroxycyclohexyl	-C≡C-	-CH2NHSO2Et
84C	1-hydroxycyclohexyl	-C=C-	-CH2NHSO2Et
85C	1-hydroxycyclopentyl	-(CH2)2-	-CH2NHSO2iPr
86C	1-hydroxycyclopentyl	-C≡C-	-CH2NHSO2iPr
87C	1-hydroxycyclopentyl	-C=C-	-CH2NHSO2iPr
88C	1-hydroxycyclohexyl	-(CH2)2-	-CH2NHSO2iPr
89C	1-hydroxycyclohexyl	-C≡C-	-CH2NHSO2iPr
90C	1-hydroxycyclohexyl	-C=C-	-CH2NHSO2iPr
91C	1-hydroxycyclopentyl	-(CH2)2-	-CH2NHSO2tBu
92C	1-hydroxycyclopentyl	-C≡C-	-CH2NHSO2tBu
93C	1-hydroxycyclopentyl	-C=C-	-CH2NHSO2tBu
94C	1-hydroxycyclohexyl	-(CH2)2-	-CH2NHSO2tBu
95C	1-hydroxycyclohexyl	-C≡C-	-CH2NHSO2tBu

- 487 -

96C	1-hydroxycyclohexyl	-C=C-	-CH2NHSO2tBu
97C	1-hydroxycyclopentyl	-(CH2)2-	-CH2-N-pyrrolidin-2-one
98C	1-hydroxycyclopentyl	-C≡C-	-CH2-N-pyrrolidin-2-one
99C	1-hydroxycyclopentyl	-C=C-	-CH2-N-pyrrolidin-2-one
100C	1-hydroxycyclohexyl	-(CH2)2-	-CH2-N-pyrrolidin-2-one
101C	1-hydroxycyclohexyl	-C≡C-	-CH2-N-pyrrolidin-2-one
102C	1-hydroxycyclohexyl	-C=C-	-CH2-N-pyrrolidin-2-one
103C	1-hydroxycyclopentyl	-(CH2)2-	-CH2-(1-methylpyrrolidin-2-one-3-yl)
104C	1-hydroxycyclopentyl	-C≡C-	-CH2-(1-methylpyrrolidin-2-one-3-yl)
105C	1-hydroxycyclopentyl	-C=C-	-CH2-(1-methylpyrrolidin-2-one-3-yl)
106C	1-hydroxycyclohexyl	-(CH2)2-	-CH2-(1-methylpyrrolidin-2-one-3-yl)
107C	1-hydroxycyclohexyl	-C≡C-	-CH2-(1-methylpyrrolidin-2-one-3-yl)
108C	1-hydroxycyclohexyl	-C=C-	-CH2-(1-methylpyrrolidin-2-one-3-yl)
109C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CO2Me
110C	1-hydroxycyclopentyl	-C≡C-	-CH2CO2Me
111C	1-hydroxycyclopentyl	-C=C-	-CH2CO2Me
112C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CO2Me
113C	1-hydroxycyclohexyl	-C≡C-	-CH2CO2Me
114C	1-hydroxycyclohexyl	-C=C-	-CH2CO2Me
115C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CO2H
116C	1-hydroxycyclopentyl	-C≡C-	-CH2CO2H
117C	1-hydroxycyclopentyl	-C=C-	-CH2CO2H
118C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CO2H
119C	1-hydroxycyclohexyl	-C≡C-	-CH2CO2H
120C	1-hydroxycyclohexyl	-C=C-	-CH2CO2H
121C	1-hydroxycyclopentyl	-(CH2)2-	-CH2C(O)NH2
122C	1-hydroxycyclopentyl	-C≡C-	-CH2C(O)NH2
123C	1-hydroxycyclopentyl	-C=C-	-CH2C(O)NH2
124C	1-hydroxycyclohexyl	-(CH2)2-	-CH2C(O)NH2
125C	1-hydroxycyclohexyl	-C≡C-	-CH2C(O)NH2
126C	1-hydroxycyclohexyl	-C=C-	-CH2C(O)NH2

- 488 -

127C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CH ₂ C(O)NMe ₂
128C	1-hydroxycyclopentyl	-C≡C-	-CH ₂ C(O)NMe ₂
129C	1-hydroxycyclopentyl	-C=C-	-CH ₂ C(O)NMe ₂
130C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-CH ₂ C(O)NMe ₂
131C	1-hydroxycyclohexyl	-C≡C-	-CH ₂ C(O)NMe ₂
132C	1-hydroxycyclohexyl	-C=C-	-CH ₂ C(O)NMe ₂
133C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CH ₂ C(O)-N-pyrrolidine
134C	1-hydroxycyclopentyl	-C≡C-	-CH ₂ C(O)-N-pyrrolidine
135C	1-hydroxycyclopentyl	-C=C-	-CH ₂ C(O)-N-pyrrolidine
136C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-CH ₂ C(O)-N-pyrrolidine
137C	1-hydroxycyclohexyl	-C≡C-	-CH ₂ C(O)-N-pyrrolidine
138C	1-hydroxycyclohexyl	-C=C-	-CH ₂ C(O)-N-pyrrolidine
139C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CH ₂ -5-tetrazolyl
140C	1-hydroxycyclopentyl	-C≡C-	-CH ₂ -5-tetrazolyl
141C	1-hydroxycyclopentyl	-C=C-	-CH ₂ -5-tetrazolyl
142C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-CH ₂ -5-tetrazolyl
143C	1-hydroxycyclohexyl	-C≡C-	-CH ₂ -5-tetrazolyl
144C	1-hydroxycyclohexyl	-C=C-	-CH ₂ -5-tetrazolyl
145C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-C(O)C(O)OH
146C	1-hydroxycyclopentyl	-C≡C-	-C(O)C(O)OH
147C	1-hydroxycyclopentyl	-C=C-	-C(O)C(O)OH
148C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-C(O)C(O)OH
149C	1-hydroxycyclohexyl	-C≡C-	-C(O)C(O)OH
150C	1-hydroxycyclohexyl	-C=C-	-C(O)C(O)OH
151C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CH(OH)C(O)OH
152C	1-hydroxycyclopentyl	-C≡C-	-CH(OH)C(O)OH
153C	1-hydroxycyclopentyl	-C=C-	-CH(OH)C(O)OH
154C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-CH(OH)C(O)OH
155C	1-hydroxycyclohexyl	-C≡C-	-CH(OH)C(O)OH
156C	1-hydroxycyclohexyl	-C=C-	-CH(OH)C(O)OH
157C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-C(O)C(O)NH ₂

- 489 -

158C	1-hydroxycyclopentyl	-C≡C-	-C(O)C(O)NH2
159C	1-hydroxycyclopentyl	-C=C-	-C(O)C(O)NH2
160C	1-hydroxycyclohexyl	-(CH2)2-	-C(O)C(O)NH2
161C	1-hydroxycyclohexyl	-C≡C-	-C(O)C(O)NH2
162C	1-hydroxycyclohexyl	-C=C-	-C(O)C(O)NH2
163C	1-hydroxycyclopentyl	-(CH2)2-	-CH(OH)C(O)NH2
164C	1-hydroxycyclopentyl	-C≡C-	-CH(OH)C(O)NH2
165C	1-hydroxycyclopentyl	-C=C-	-CH(OH)C(O)NH2
166C	1-hydroxycyclohexyl	-(CH2)2-	-CH(OH)C(O)NH2
167C	1-hydroxycyclohexyl	-C≡C-	-CH(OH)C(O)NH2
168C	1-hydroxycyclohexyl	-C=C-	-CH(OH)C(O)NH2
169C	1-hydroxycyclopentyl	-(CH2)2-	-C(O)C(O)NMe2
170C	1-hydroxycyclopentyl	-C≡C-	-C(O)C(O)NMe2
171C	1-hydroxycyclopentyl	-C=C-	-C(O)C(O)NMe2
172C	1-hydroxycyclohexyl	-(CH2)2-	-C(O)C(O)NMe2
173C	1-hydroxycyclohexyl	-C≡C-	-C(O)C(O)NMe2
174C	1-hydroxycyclohexyl	-C=C-	-C(O)C(O)NMe2
175C	1-hydroxycyclopentyl	-(CH2)2-	-CH(OH)C(O)NMe2
176C	1-hydroxycyclopentyl	-C≡C-	-CH(OH)C(O)NMe2
177C	1-hydroxycyclopentyl	-C=C-	-CH(OH)C(O)NMe2
178C	1-hydroxycyclohexyl	-(CH2)2-	-CH(OH)C(O)NMe2
179C	1-hydroxycyclohexyl	-C≡C-	-CH(OH)C(O)NMe2
180C	1-hydroxycyclohexyl	-C=C-	-CH(OH)C(O)NMe2
181C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CH2CO2H
182C	1-hydroxycyclopentyl	-C≡C-	-CH2CH2CO2H
183C	1-hydroxycyclopentyl	-C=C-	-CH2CH2CO2H
184C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CH2CO2H
185C	1-hydroxycyclohexyl	-C≡C-	-CH2CH2CO2H
186C	1-hydroxycyclohexyl	-C=C-	-CH2CH2CO2H
187C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CH2C(O)NH2
188C	1-hydroxycyclopentyl	-C≡C-	-CH2CH2C(O)NH2

- 490 -

189C	1-hydroxycyclopentyl	-C=C-	-CH ₂ CH ₂ C(O)NH ₂
190C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-CH ₂ CH ₂ C(O)NH ₂
191C	1-hydroxycyclohexyl	-C≡C-	-CH ₂ CH ₂ C(O)NH ₂
192C	1-hydroxycyclohexyl	-C=C-	-CH ₂ CH ₂ C(O)NH ₂
193C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CH ₂ CH ₂ C(O)NMe ₂
194C	1-hydroxycyclopentyl	-C≡C-	-CH ₂ CH ₂ C(O)NMe ₂
195C	1-hydroxycyclopentyl	-C=C-	-CH ₂ CH ₂ C(O)NMe ₂
196C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-CH ₂ CH ₂ C(O)NMe ₂
197C	1-hydroxycyclohexyl	-C≡C-	-CH ₂ CH ₂ C(O)NMe ₂
198C	1-hydroxycyclohexyl	-C=C-	-CH ₂ CH ₂ C(O)NMe ₂
199C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CH ₂ CH ₂ -5-tetrazolyl
200C	1-hydroxycyclopentyl	-C≡C-	-CH ₂ CH ₂ -5-tetrazolyl
201C	1-hydroxycyclopentyl	-C=C-	-CH ₂ CH ₂ -5-tetrazolyl
202C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-CH ₂ CH ₂ -5-tetrazolyl
203C	1-hydroxycyclohexyl	-C≡C-	-CH ₂ CH ₂ -5-tetrazolyl
204C	1-hydroxycyclohexyl	-C=C-	-CH ₂ CH ₂ -5-tetrazolyl
205C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CH ₂ S(O)2Me
206C	1-hydroxycyclopentyl	-C≡C-	-CH ₂ S(O)2Me
207C	1-hydroxycyclopentyl	-C=C-	-CH ₂ S(O)2Me
208C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-CH ₂ S(O)2Me
209C	1-hydroxycyclohexyl	-C≡C-	-CH ₂ S(O)2Me
210C	1-hydroxycyclohexyl	-C=C-	-CH ₂ S(O)2Me
211C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CH ₂ CH ₂ S(O)2Me
212C	1-hydroxycyclopentyl	-C≡C-	-CH ₂ CH ₂ S(O)2Me
213C	1-hydroxycyclopentyl	-C=C-	-CH ₂ CH ₂ S(O)2Me
214C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-CH ₂ CH ₂ S(O)2Me
215C	1-hydroxycyclohexyl	-C≡C-	-CH ₂ CH ₂ S(O)2Me
216C	1-hydroxycyclohexyl	-C=C-	-CH ₂ CH ₂ S(O)2Me
217C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-CH ₂ CH ₂ CH ₂ S(O)2Me
218C	1-hydroxycyclopentyl	-C≡C-	-CH ₂ CH ₂ CH ₂ S(O)2Me
219C	1-hydroxycyclopentyl	-C=C-	-CH ₂ CH ₂ CH ₂ S(O)2Me

- 491 -

220C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CH2CH2S(O)2Me
221C	1-hydroxycyclohexyl	-C≡C-	-CH2CH2CH2S(O)2Me
222C	1-hydroxycyclohexyl	-C=C-	-CH2CH2CH2S(O)2Me
223C	1-hydroxycyclopentyl	-(CH2)2-	-CH2S(O)2Et
224C	1-hydroxycyclopentyl	-C≡C-	-CH2S(O)2Et
225C	1-hydroxycyclopentyl	-C=C-	-CH2S(O)2Et
226C	1-hydroxycyclohexyl	-(CH2)2-	-CH2S(O)2Et
227C	1-hydroxycyclohexyl	-C≡C-	-CH2S(O)2Et
228C	1-hydroxycyclohexyl	-C=C-	-CH2S(O)2Et
229C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CH2S(O)2Et
230C	1-hydroxycyclopentyl	-C≡C-	-CH2CH2S(O)2Et
231C	1-hydroxycyclopentyl	-C=C-	-CH2CH2S(O)2Et
232C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CH2S(O)2Et
233C	1-hydroxycyclohexyl	-C≡C-	-CH2CH2S(O)2Et
234C	1-hydroxycyclohexyl	-C=C-	-CH2CH2S(O)2Et
235C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CH2CH2S(O)2Et
236C	1-hydroxycyclopentyl	-C≡C-	-CH2CH2CH2S(O)2Et
237C	1-hydroxycyclopentyl	-C=C-	-CH2CH2CH2S(O)2Et
238C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CH2CH2S(O)2Et
239C	1-hydroxycyclohexyl	-C≡C-	-CH2CH2CH2S(O)2Et
240C	1-hydroxycyclohexyl	-C=C-	-CH2CH2CH2S(O)2Et
241C	1-hydroxycyclopentyl	-(CH2)2-	-CH2S(O)2iPr
242C	1-hydroxycyclopentyl	-C≡C-	-CH2S(O)2iPr
243C	1-hydroxycyclopentyl	-C=C-	-CH2S(O)2iPr
244C	1-hydroxycyclohexyl	-(CH2)2-	-CH2S(O)2iPr
245C	1-hydroxycyclohexyl	-C≡C-	-CH2S(O)2iPr
246C	1-hydroxycyclohexyl	-C=C-	-CH2S(O)2iPr
247C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CH2S(O)2iPr
248C	1-hydroxycyclopentyl	-C≡C-	-CH2CH2S(O)2iPr
249C	1-hydroxycyclopentyl	-C=C-	-CH2CH2S(O)2iPr
250C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CH2S(O)2iPr

- 492 -

251C	1-hydroxycyclohexyl	-C≡C-	-CH2CH2S(O)2iPr
252C	1-hydroxycyclohexyl	-C=C-	-CH2CH2S(O)2iPr
253C	1-hydroxycyclopentyl	-(CH2)2-	-CH2S(O)2tBu
254C	1-hydroxycyclopentyl	-C≡C-	-CH2S(O)2tBu
255C	1-hydroxycyclopentyl	-C=C-	-CH2S(O)2tBu
256C	1-hydroxycyclohexyl	-(CH2)2-	-CH2S(O)2tBu
257C	1-hydroxycyclohexyl	-C≡C-	-CH2S(O)2tBu
258C	1-hydroxycyclohexyl	-C=C-	-CH2S(O)2tBu
259C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CH2S(O)2tBu
260C	1-hydroxycyclopentyl	-C≡C-	-CH2CH2S(O)2tBu
261C	1-hydroxycyclopentyl	-C=C-	-CH2CH2S(O)2tBu
262C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CH2S(O)2tBu
263C	1-hydroxycyclohexyl	-C≡C-	-CH2CH2S(O)2tBu
264C	1-hydroxycyclohexyl	-C=C-	-CH2CH2S(O)2tBu
265C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CH2S(O)2NH2
266C	1-hydroxycyclopentyl	-C≡C-	-CH2CH2S(O)2NH2
267C	1-hydroxycyclopentyl	-C=C-	-CH2CH2S(O)2NH2
268C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CH2S(O)2NH2
269C	1-hydroxycyclohexyl	-C≡C-	-CH2CH2S(O)2NH2
270C	1-hydroxycyclohexyl	-C=C-	-CH2CH2S(O)2NH2
271C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CH2S(O)2NMe2
272C	1-hydroxycyclopentyl	-C≡C-	-CH2CH2S(O)2NMe2
273C	1-hydroxycyclopentyl	-C=C-	-CH2CH2S(O)2NMe2
274C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CH2S(O)2NMe2
275C	1-hydroxycyclohexyl	-C≡C-	-CH2CH2S(O)2NMe2
276C	1-hydroxycyclohexyl	-C=C-	-CH2CH2S(O)2NMe2
277C	1-hydroxycyclopentyl	-(CH2)2-	-C(O)CH2S(O)2Me
278C	1-hydroxycyclopentyl	-C≡C-	-C(O)CH2S(O)2Me
279C	1-hydroxycyclopentyl	-C=C-	-C(O)CH2S(O)2Me
280C	1-hydroxycyclohexyl	-(CH2)2-	-C(O)CH2S(O)2Me
281C	1-hydroxycyclohexyl	-C≡C-	-C(O)CH2S(O)2Me

- 493 -

282C	1-hydroxycyclohexyl	-C=C-	-C(O)CH2S(O)2Me
283C	1-hydroxycyclopentyl	-(CH2)2-	-C(O)CH2CH2S(O)2Me
284C	1-hydroxycyclopentyl	-C≡C-	-C(O)CH2CH2S(O)2Me
285C	1-hydroxycyclopentyl	-C=C-	-C(O)CH2CH2S(O)2Me
286C	1-hydroxycyclohexyl	-(CH2)2-	-C(O)CH2CH2S(O)2Me
287C	1-hydroxycyclohexyl	-C≡C-	-C(O)CH2CH2S(O)2Me
288C	1-hydroxycyclohexyl	-C=C-	-C(O)CH2CH2S(O)2Me
289C	1-hydroxycyclopentyl	-(CH2)2-	-CH2CH2CH2S(O)2NH2
290C	1-hydroxycyclopentyl	-C≡C-	-CH2CH2CH2S(O)2NH2
291C	1-hydroxycyclopentyl	-C=C-	-CH2CH2CH2S(O)2NH2
292C	1-hydroxycyclohexyl	-(CH2)2-	-CH2CH2CH2S(O)2NH2
293C	1-hydroxycyclohexyl	-C≡C-	-CH2CH2CH2S(O)2NH2
294C	1-hydroxycyclohexyl	-C=C-	-CH2CH2CH2S(O)2NH2
295C	1-hydroxycyclopentyl	-(CH2)2-	-S(O)2Me
296C	1-hydroxycyclopentyl	-C≡C-	-S(O)2Me
297C	1-hydroxycyclopentyl	-C=C-	-S(O)2Me
298C	1-hydroxycyclohexyl	-(CH2)2-	-S(O)2Me
299C	1-hydroxycyclohexyl	-C≡C-	-S(O)2Me
300C	1-hydroxycyclohexyl	-C=C-	-S(O)2Me
301C	1-hydroxycyclopentyl	-(CH2)2-	-S(O)2Et
302C	1-hydroxycyclopentyl	-C≡C-	-S(O)2Et
303C	1-hydroxycyclopentyl	-C=C-	-S(O)2Et
304C	1-hydroxycyclohexyl	-(CH2)2-	-S(O)2Et
305C	1-hydroxycyclohexyl	-C≡C-	-S(O)2Et
306C	1-hydroxycyclohexyl	-C=C-	-S(O)2Et
307C	1-hydroxycyclopentyl	-(CH2)2-	-S(O)2iPr
308C	1-hydroxycyclopentyl	-C≡C-	-S(O)2iPr
309C	1-hydroxycyclopentyl	-C=C-	-S(O)2iPr
310C	1-hydroxycyclohexyl	-(CH2)2-	-S(O)2iPr
311C	1-hydroxycyclohexyl	-C≡C-	-S(O)2iPr
312C	1-hydroxycyclohexyl	-C=C-	-S(O)2iPr

- 494 -

313C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-S(O)2tBu
314C	1-hydroxycyclopentyl	-C≡C-	-S(O)2tBu
315C	1-hydroxycyclopentyl	-C=C-	-S(O)2tBu
316C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-S(O)2tBu
317C	1-hydroxycyclohexyl	-C≡C-	-S(O)2tBu
318C	1-hydroxycyclohexyl	-C=C-	-S(O)2tBu
319C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-S(O)2NH ₂
320C	1-hydroxycyclopentyl	-C≡C-	-S(O)2NH ₂
321C	1-hydroxycyclopentyl	-C=C-	-S(O)2NH ₂
322C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-S(O)2NH ₂
323C	1-hydroxycyclohexyl	-C≡C-	-S(O)2NH ₂
324C	1-hydroxycyclohexyl	-C=C-	-S(O)2NH ₂
325C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-S(O)2NMe ₂
326C	1-hydroxycyclopentyl	-C≡C-	-S(O)2NMe ₂
327C	1-hydroxycyclopentyl	-C=C-	-S(O)2NMe ₂
328C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-S(O)2NMe ₂
329C	1-hydroxycyclohexyl	-C≡C-	-S(O)2NMe ₂
330C	1-hydroxycyclohexyl	-C=C-	-S(O)2NMe ₂
331C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-S(O)2CH ₂ S(O)2Me
332C	1-hydroxycyclopentyl	-C≡C-	-S(O)2CH ₂ S(O)2Me
333C	1-hydroxycyclopentyl	-C=C-	-S(O)2CH ₂ S(O)2Me
334C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-S(O)2CH ₂ S(O)2Me
335C	1-hydroxycyclohexyl	-C≡C-	-S(O)2CH ₂ S(O)2Me
336C	1-hydroxycyclohexyl	-C=C-	-S(O)2CH ₂ S(O)2Me
337C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-S(O)2CH ₂ S(O)2Et
338C	1-hydroxycyclopentyl	-C≡C-	-S(O)2CH ₂ S(O)2Et
339C	1-hydroxycyclopentyl	-C=C-	-S(O)2CH ₂ S(O)2Et
340C	1-hydroxycyclohexyl	-(CH ₂) ₂ -	-S(O)2CH ₂ S(O)2Et
341C	1-hydroxycyclohexyl	-C≡C-	-S(O)2CH ₂ S(O)2Et
342C	1-hydroxycyclohexyl	-C=C-	-S(O)2CH ₂ S(O)2Et
343C	1-hydroxycyclopentyl	-(CH ₂) ₂ -	-S(O)2CH ₂ S(O)2iPr

- 495 -

344C	1-hydroxycyclopentyl	-C≡C-	-S(O)2CH2S(O)2iPr
345C	1-hydroxycyclopentyl	-C=C-	-S(O)2CH2S(O)2iPr
346C	1-hydroxycyclohexyl	-(CH2)2-	-S(O)2CH2S(O)2iPr
347C	1-hydroxycyclohexyl	-C≡C-	-S(O)2CH2S(O)2iPr
348C	1-hydroxycyclohexyl	-C=C-	-S(O)2CH2S(O)2iPr
349C	1-hydroxycyclopentyl	-(CH2)2-	-S(O)2CH2S(O)2tBu
350C	1-hydroxycyclopentyl	-C≡C-	-S(O)2CH2S(O)2tBu
351C	1-hydroxycyclopentyl	-C=C-	-S(O)2CH2S(O)2tBu
352C	1-hydroxycyclohexyl	-(CH2)2-	-S(O)2CH2S(O)2tBu
353C	1-hydroxycyclohexyl	-C≡C-	-S(O)2CH2S(O)2tBu
354C	1-hydroxycyclohexyl	-C=C-	-S(O)2CH2S(O)2tBu
355C	1-hydroxycyclopentyl	-(CH2)2-	-C(O)NHCH2CO2H
356C	1-hydroxycyclopentyl	-C≡C-	-C(O)NHCH2CO2H
357C	1-hydroxycyclopentyl	-C=C-	-C(O)NHCH2CO2H
358C	1-hydroxycyclohexyl	-(CH2)2-	-C(O)NHCH2CO2H
359C	1-hydroxycyclohexyl	-C≡C-	-C(O)NHCH2CO2H
360C	1-hydroxycyclohexyl	-C=C-	-C(O)NHCH2CO2H
361C	1-hydroxycyclopentyl	-(CH2)2-	-SO2NHCH2CO2H
362C	1-hydroxycyclopentyl	-C≡C-	-SO2NHCH2CO2H
363C	1-hydroxycyclopentyl	-C=C-	-SO2NHCH2CO2H
364C	1-hydroxycyclohexyl	-(CH2)2-	-SO2NHCH2CO2H
365C	1-hydroxycyclohexyl	-C≡C-	-SO2NHCH2CO2H
366C	1-hydroxycyclohexyl	-C=C-	-SO2NHCH2CO2H
367C	1-hydroxycyclopentyl	-(CH2)2-	-CH2-S-Me
368C	1-hydroxycyclopentyl	-C≡C-	-CH2-S-Me
369C	1-hydroxycyclopentyl	-C=C-	-CH2-S-Me
370C	1-hydroxycyclohexyl	-(CH2)2-	-CH2-S-Me
371C	1-hydroxycyclohexyl	-C≡C-	-CH2-S-Me
372C	1-hydroxycyclohexyl	-C=C-	-CH2-S-Me

-496-

11. The pharmaceutical formulation comprising a compound of claim 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 together with a pharmaceutically acceptable carrier or diluent therefor.

5 12. A method of treating a mammal to prevent or alleviate the pathological effects of abscess, acne, adhesion, alopecia, Alzheimer's disease, autoimmune induced diabetes, bone fracture healing, breast cancer, cancer, colon cancer, diabetes, Type I, host-graft rejection, humoral hypercalcemia, induced diabetes, leukemia, lupus, multiple sclerosis, insufficient sebum secretion, osteomalacia, osteoporosis, insufficient dermal firmness, insufficient dermal hydration, phoriatic arthritis, prostate cancer, psoriasis, renal failure, renal osteodystrophy, rheumatoid arthritis, scleroderma, systemic lupus erythematosus, and wrinkles; wherein the method comprises administering a pharmaceutically effective amount of at least one compound of claim 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10.

15 13. A method of treating or preventing disease states mediated by the Vitamin D receptor, wherein a mammal in need thereof is administered a pharmaceutically effective amount of a compound of Claim 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10.

20 14. A method of treating or preventing osteoporosis, wherein a mammal in need thereof is administered a pharmaceutically effective amount of a compound of Claim 6.

25 15. A method of treating or preventing psoriasis, wherein a mammal in need thereof is administered a pharmaceutically effective amount of a compound of Claim 5.

16. A method of treating or preventing abscess or adhesion, within a mammal in need thereof is administered a pharmaceutically effective amount of a compound of Claim 5.

30 17. A compound as claimed in any one of Claims 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 for use in treating a mammal to prevent or alleviate the pathological effects

-497-

of abscess, acne, adhesion, alopecia, Alzheimer's disease, autoimmune induced diabetes, bone maintenance in zero gravity, bone fracture healing, breast cancer, cancer, colon cancer, diabetes, Type I, host-graft rejection, humoral hypercalcemia , induced diabetes, leukemia, lupus, multiple sclerosis, insufficient sebum secretion, osteomalacia,
5 osteoporosis, insufficient dermal firmness, insufficient dermal hydration, phoriatic arthritis, prostate cancer, psoriasis, renal failure, renal osteodystrophy, rheumatoid arthritis, scleroderma, systemic lupus erythematosus, and wrinkles.

18. A compound as claimed in any one of Claims 1 or 2 or 3 or 4 or 5 or 6 or 7
10 or 8 or 9 or 10 for use in treating or preventing disease states mediated by the Vitamin D receptor.

19. A compound as claimed in Claim 1 substantially as hereinbefore described
with reference to any of the Examples.

15 20. A process for preparing a compound as claimed in claim 1 substantially as
hereinbefore described with reference to any of the Examples.

21. The use of a compound as claimed in claim 1 substantially as herein
20 described with reference to any of the Assays and Tables for mediating the Vitamin D receptor.

AMENDED CLAIMS

[received by the International Bureau on 09 October 2003 (09.10.03);
original claims 19-21 cancelled; remaining claims unchanged]

of abscess, acne, adhesion, alopecia, Alzheimer's disease, autoimmune induced diabetes, bone maintenance in zero gravity, bone fracture healing, breast cancer, cancer, colon cancer, diabetes, Type 1, host-graft rejection, humoral hypercalcemia , induced diabetes, leukemia, lupus, multiple sclerosis, insufficient sebum secretion, osteomalacia,
5 osteoporosis, insufficient dermal firmness, insufficient dermal hydration, phoriatic arthritis, prostate cancer, psoriasis, renal failure, renal osteodystrophy, rheumatoid arthritis, scleroderma, systemic lupus erythematosus, and wrinkles.

18. A compound as claimed in any one of Claims 1 or 2 or 3 or 4 or 5 or 6 or 7
10 or 8 or 9 or 10 for use in treating or preventing disease states mediated by the Vitamin D receptor.

19. CANCELLED

15

20. CANCELLED

20

21. CANCELLED

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 03/14539

A. CLASSIFICATION OF SUBJECT MATTER				
IPC 7	C07D333/38	C07D333/16	C07D333/18	C07D333/22
	C07D409/06	C07D333/34	C07D413/04	C07D409/04
	A61K31/401	A61K31/41	A61K31/4245	A61P19/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BEILSTEIN Data, CHEN ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>DATABASE CHEMABS 'Online! Chemical Abstracts Service, Columbus, Ohio, US; 1972</p> <p>TORIKOV, D. M. ET AL.: "Condensation of some alkenylthiophenes with phenol and hexachlorocyclopentadiene" XP002252189</p> <p>retrieved from STN Database accession no. 77:164354: abstract and RN 38587-99-4.</p> <p>& DOKL. NEFTEKHIM. SEKTS., BASHKIR. RESPUB. PRAWL., VSES. KHIM. OBSHCHEST., vol. 6, 1971, pages 220-222,</p> <p style="text-align: center;">-/-</p>	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the International search	Date of mailing of the International search report
22 August 2003	11/09/2003
Name and mailing address of the ISA European Patent Office, P.B. 5018 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016	Authorized officer Weisbrod, T

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 03/14539

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 00 10958 A (LIGAND PHARM INC) 2 March 2000 (2000-03-02) Abstract; page 1, lines 4-14; claims 1-26. & US 6 218 430 A 17 April 2001 (2001-04-17) cited in the application	1-18
A	BOEHM M F ET AL: "NOVEL NONSECOSTEROIDAL VITAMIN D MIMICS EXERT VDR-MODULATING ACTIVITIES WITH LESS CALCIUM MOBILIZATION THAN 1,25- DIHYDROXYVITAMIN D3" CHEMISTRY AND BIOLOGY, CURRENT BIOLOGY, LONDON, GB, vol. 6, no. 5, 6 April 1999 (1999-04-06), pages 265-275, XP000852987 ISSN: 1074-5521 cited in the application Page 266, figure 1 and right column "results".	1-18
A	WO 01 38320 A (BERNARDON JEAN MICHEL; GALDERMA RES & DEV S N C (FR)) 31 May 2001 (2001-05-31) Abstract; page 1, lines 4-16; claims 1-10.	1-18

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 03/14539

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claims 12-16 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: 19-21 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this International application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 19-21

The vague phrase "substantially as herein/hereinbefore described" used in the claims 19-21 is so unclear (Article 6 PCT) that a meaningful search is impossible for these claims.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 03/14539

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 0010958	A	02-03-2000	US	6218430 B1		17-04-2001
			AU	756336 B2		09-01-2003
			AU	5485299 A		14-03-2000
			CA	2339775 A1		02-03-2000
			EP	1107940 A1		20-06-2001
			JP	2002523388 T		30-07-2002
			WO	0010958 A1		02-03-2000
WO 0138320	A	31-05-2001	FR	2801307 A1		25-05-2001
			AU	2176501 A		04-06-2001
			BR	0015770 A		06-08-2002
			CA	2392168 A1		31-05-2001
			CN	1423645 T		11-06-2003
			EP	1235824 A1		04-09-2002
			WO	0138320 A1		31-05-2001