Correction du DST 1

Exercice 1

Certains ont été perturbés, à juste titre, par le fait que la suite commence à u_0 alors que l'énoncé prétend qu'elle commence au rang 1... Vous trouverez donc ci-dessous la correction pour les deux interprétations de l'énoncé!

— Soit la suite u telle que $u_0 = 2$ et $u_{n+1} = 5u_n + 4$ pour tout entier $n \ge 0$, et soit v la suite définie par $v_n = u_n + 1$ pour tout entier $n \ge 0$.

Montrer que la suite v est une suite géométrique dont on donnera la raison et le premier terme puis donner une formule pour v_n puis pour u_n en fonction de l'entier naturel n.

— On a, pour tout entier naturel n:

$$\begin{array}{ll} v_{n+1} &= u_{n+1} + 1 \\ &= 5u_n + 4 + 1 \\ &= 5u_n + 5 \\ &= 5 \left(u_n + 1 \right) \\ &5v_n \end{array}$$

Ce qui montre que la suite v est géométrique de raison 5. Son premier terme étant $v_0 = u_0 + 1 = 2 + 1 = 3$, on a que, pour tout entier $n \in \mathbb{N}$:

$$v_n = 3 \times 5^n$$

On en déduit que, pour tout entier $n \in \mathbb{N}$:

$$u_n = v_n - 1 = 3 \times 5^n - 1$$

— Soit la suite u telle que $u_1 = 2$ et $u_{n+1} = 5u_n + 4$ pour tout entier $n \ge 1$, et soit v la suite définie par $v_n = u_n + 1$ pour tout entier $n \ge 1$.

Montrer que la suite v est une suite géométrique dont on donnera la raison et le premier terme puis donner une formule pour v_n puis pour u_n en fonction de l'entier naturel non nul n.

— On a, pour tout entier naturel non nul n:

$$\begin{array}{ll} v_{n+1} &= u_{n+1} + 1 \\ &= 5u_n + 4 + 1 \\ &= 5u_n + 5 \\ &= 5 \left(u_n + 1 \right) \\ &5v_n \end{array}$$

Ce qui montre que la suite v est géométrique de raison 5. Son premier terme étant $v_1 = u_1 + 1 = 2 + 1 = 3$,

1

on a que, pour tout entier $n \in \mathbb{N}$:

$$v_n = 3 \times 5^{n-1}$$

On en déduit que, pour tout entier $n \in \mathbb{N}$:

$$u_n = v_n - 1 = 3 \times 5^{n-1} - 1$$

Exercice 2

Établir, en faisant apparaître les calculs, le tableau de signe sur \mathbb{R} de la fonction $f: x \mapsto 3x^2 + 4x - 7$ et en déduire les solutions sur \mathbb{R} de l'inéquation $3x^2 + 4x + 8 \le 15$.

(Si vous ne parvenez pas à le faire par le calcul, une résolution graphique du problème rapportera une partie des points)

— f est une fonction polynôme du second degré, son déterminant est $\Delta = 4^2 - 4 \times 3 \times (-7) = 16 + 84 = 100 > 0$, elle admet donc deux racines :

$$x_1 = \frac{-4 - \sqrt{100}}{2 \times 3} = -\frac{7}{3}$$
 et $x_2 = \frac{-4 + \sqrt{100}}{2 \times 3} = 1$

Son coefficient dominant étant a=3>0, on en déduit le tableau de signe suivant :

x	$-\infty$		$-\frac{7}{3}$		1		$+\infty$
$3x^2 + 4x - 7$		+	0	_	0	+	

Ainsi, on a, pour tout réel x, les équivalences suivantes :

$$3x^{2} + 4x + 8 \leqslant 15 \iff 3x^{2} + 4x + 8 - 15 \leqslant 0$$

$$\iff 3x^{2} + 4x - 7 \leqslant 0$$

$$\iff 3x^{2} + 4x - 7 \leqslant 0$$

$$\iff -\frac{7}{3} \leqslant x \leqslant 1$$

Les solutions réelles de l'inéquation $3x^2 + 4x + 8 \le 15$ sont donc les réels compris, au sens large, entre $-\frac{7}{3}$ et 1, autrement dit, les réels appartenant à l'intervalle $\left[-\frac{7}{3};1\right]$.