

### **Arrival Prediction**

## We can now frame our arrival prediction problem

We want to predict the number of arrivals in the next interval

- We will focus on predicting the total number of arrivals
- The same models can be applied to any of the individual counts

### Technically, this is a regression problem

- ...Which does not mean that an MSE is the best choice
- It makes more sense to check the target distribution first

## Main issue: our regressor will learn a conditional probability distribution

- ...So, that's the kind of distribution that we should check, in principle
- It is a difficult task, since we do not know yet which input we are goig to use

However, we already know that some features are likely to be useful

# **Analyzing the Conditional Arrival Distribution**

## ...In particuar, we know that the hour of the day is a good predictor

Let's check the (conditional) distribution for 6am:

```
In [37]: tmp = codes b[codes_b.index.hour == 6]['total']
          tmpv = tmp.value counts(sort=False, normalize=True).sort index()
          er.plot bars(tmpv, figsize=figsize)
                                                  Figure
           0.25
           0.20
           0.15
           0.10
           0.05
           0.00
```

■ This is not a normal distribution

#### **Poisson Distribution**

#### When we need to count occurrencies over time...

It's almost always worth checking the Poisson distribution, which models:

- The number of occurrences of a certain event in a given interval
- ...Assuming that these events are independent
- ...And they occur at a constant rate

#### In our case:

- The independence assumption is reasonable (arrivals do not affect each other)
- The constant rate is true for the conditional probability
- ...Assuming that our predictor is good enough

Intuitively: the predictor will estimate the constant rate

### **Poisson Distribution**

## The Poisson distribution is defined by a single parameter $\lambda$

 $\lambda$  is the rate of occurrence of the events

- The distribution has a discrete support
- The Probability Mass Function is:

$$p(k,\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$

- Both the mean and the standard deviation have the same value (i.e.  $\lambda$ )
- The distribution skewness is  $\lambda^{-\frac{1}{2}}$ 
  - lacksquare For low  $\lambda$  values, there is a significant positive skew (to the left)
  - lacksquare The distribution becomes less skewed for large  $\lambda$

#### **Fitted Poisson Distribution**

## Let's try to fit a Poisson distribution over our target



It's a very good match!

#### **Fitted Poisson Distribution**

## Let's try for 8AM (closer to the peak)

```
In [41]: tmp = codes_b[codes_b.index.hour == 8]['total']
  tmpv = tmp.value_counts(sort=False, normalize=True).sort_index()
  mu = tmp.mean()
  dist = stats.poisson(mu)
  x = np.arange(tmp.min(), tmp.max()+1)
  er.plot_bars(tmpv, figsize=figsize, series=pd.Series(index=x, data=dist.pmf(x)))
```

Figure



#### **Fitted Poisson Distribution**

## ...And finally for the peak itself

```
In [47]: tmp = codes_b[codes_b.index.hour == 11]['total']
    tmpv = tmp.value_counts(sort=False, normalize=True).sort_index()
    mu = tmp.mean()
    dist = stats.poisson(mu)
    x = np.arange(tmp.min(), tmp.max()+1)
    er.plot_bars(tmpv, figsize=figsize, series=pd.Series(index=x, data=dist.pmf(x)))
```

Figure





#### Rate Table

#### We know that:

- A Poisson distribution is a good fit for our target...
- ...But the rate depends (at least) on the hour of the day

## The simplest way to take this into account is using a lookup table

- The table will contain average arrival values for each hour of the day
- ...But first, we need to separate the training and test data

```
In [49]: sep = '2019-01-01'
tr_data = codes_b[codes_b.index < sep]
ts_data = codes_b[codes_b.index >= sep]
```

#### Rate Table

#### We can then build our "rate table"

```
In [51]: rate_table = tr_data.groupby(tr_data.index.hour).mean()
          rate table.head()
Out[51]:
                                           yellow
                             red
                                    white
                   green
                                                     total
           Triage
                 1.054795 3.906849
                 1.915068 0.213699 0.331507
                                         0.860274 3.320548
                 1.734247 0.202740 0.287671 0.780822 3.005479
                 1.515068 0.153425 0.232877
                                         0.687671 2.589041
                 1.334247 0.134247 0.197260 0.717808 2.383562
```

- We are computing (average) rates for all the codes
- This will enable changing focus to a different target, if we so wish

#### **Predictions**

## We can not obtain the predictions

- We need to associate each example withe correct rates
- The rates themselves are then the predictions

```
In [52]: def preds_from_rate_table(data, rate_table):
    tmp = data.copy()
    tmp['hour'] = data.index.hour
    tmp = tmp.join(rate_table, on='hour', lsuffix='_orig')
    return tmp[rate_table.columns]

tr_preds = preds_from_rate_table(tr_data, rate_table)
ts_preds = preds_from_rate_table(ts_data, rate_table)
```

■ We use a join operation to associate examples and rates

## We can now evaluate the predictions. First for the training set:

```
In [53]: slabel = 'total'
        er.plot_pred_scatter(tr_preds[slabel], tr_data[slabel], figsize=figsize)
        print(f'R2: {metrics.r2_score(tr_data[slabel], tr_preds[slabel])}')
        print(f'MAE: {metrics.mean_absolute_error(tr_data[slabel], tr_preds[slabel])}')
        R2: 0.5940116186135868
        MAE: 1.945866016138112
                                           Figure
                                         30
          target
02
           10
                                       15
                                                       25
                                               20
                                                               30
                                                                       35
                                            prediction
```

#### ...And then for the test set:



These results will be our baseline



#### **Probabilistic Neural Model**

### We will now try to learn a hybrid probabilistic-neural model

Using a neural network makes adding inputs easier

- We know that there is a slight decreasing trend along week days
- ...So let's try adding the week day as a numerical input

```
In [65]: tr_data_in = keras.utils.to_categorical(tr_data.index.hour)
    tr_data_in = np.hstack((tr_data_in, (tr_data.index.weekday/7).values.reshape(-1,1)))

ts_data_in = keras.utils.to_categorical(ts_data.index.hour.values)
    ts_data_in = np.hstack((ts_data_in, (ts_data.index.weekday/7).values.reshape(-1,1)))
```

- We use a categorical encoding for the day hour, due to its non-linear effect
- ...But it is (mostly) fine to use the week day as number, due to its linear effect

## The Architecture

#### First we define our architecture

```
In [66]: def build_probabilistic_regressor(input_shape, hidden):
    model_in = keras.Input(shape=input_shape, dtype='float32')
    x = model_in
    for h in hidden:
        x = layers.Dense(h, activation='relu')(x)
    log_rate = layers.Dense(1, activation='linear')(x)
    lf = lambda t: tfp.distributions.Poisson(log_rate=t, force_probs_to_zero_outside_support=Falmodel_out = tfp.layers.DistributionLambda(lf)(log_rate)
    model = keras.Model(model_in, model_out)
    return model

nn2 = build_probabilistic_regressor(tr_data_in.shape[1], hidden=[32])
```

- We use an MLP, plus a DistributionLambda layer for the Poisson distribution
- We will try with a shallow network

## The Architecture

## We can also plot the architecture

```
In [67]: nn2.summary()
         Model: "model 3"
                                        Output Shape
         Layer (type)
                                                                   Param #
                                        [(None, 25)]
         input 4 (InputLayer)
         dense 6 (Dense)
                                        (None, 32)
                                                                   832
         dense 7 (Dense)
                                        (None, 1)
                                                                   33
         distribution lambda 3 (Distr multiple
         Total params: 865
         Trainable params: 865
         Non-trainable params: 0
```

More parameters than the table (and initially it will work worse)

# **Training**

#### We train the model for maximum likelihood, as usual

```
In [68]: negloglikelihood = lambda y true, dist: -dist.log_prob(y_true)
   nn2.compile(optimizer='Adam', loss=negloglikelihood)
   cb = [callbacks.EarlyStopping(patience=10, restore best weights=True)]
   history2 = nn2.fit(tr data in, tr data['total'].values.astype(np.float32),
         validation split=0.2, callbacks=cb, batch size=32, epochs=50, verbose=1)
   Epoch 1/50
   Epoch 2/50
   Epoch 3/50
   Epoch 4/50
   Epoch 5/50
   Epoch 6/50
   Epoch 7/50
   Epoch 8/50
   Epoch 9/50
   Epoch 10/50
```

# **Training**

#### We check the loss behavior over time

```
In [69]: er.plot_training_history(history2, figsize=figsize)
         tr2, vl2 = history2.history["loss"][-1], np.min(history2.history["val loss"])
         print(f'Loss: {tr2:.4f} (training, final), {vl2:.4f} (validation, best)')
          Loss: 2.2576 (training, final), 2.2632 (validation, best)
                                                 Figure
           4.5
                                                                                    loss

    val. loss

           4.0
           3.5
           3.0
           2.5
                                             10
                                                            15
                                                                          20
```

## We can now obtain and evaluate the predictions. On the training set:

15

```
In [70]: | tr_preds2 = nn2(tr_data_in).mean()
        slabel = 'total'
        er.plot pred scatter(tr preds2, tr data[slabel], figsize=figsize)
        print(f'R2: {metrics.r2_score(tr_data[slabel], tr_preds2)}')
        print(f'MAE: {metrics.mean_absolute_error(tr_data[slabel], tr_preds2)}')
        R2: 0.6059787926961983
        MAE: 1.9191851117839551
                                          Figure
                                           30
          target
02
           10
```

20

prediction

25

35

30

## And we get similar results for the test set

```
In [71]: | ts_preds2 = nn2(ts_data_in).mean()
         er.plot pred scatter(ts preds2, ts data['total'], figsize=figsize)
         print(f'R2: {metrics.r2_score(ts_data[slabel], ts_preds2)}')
         print(f'MAE: {metrics.mean_absolute_error(ts_data[slabel], ts_preds2)}')
         R2: 0.6006004538247001
         MAE: 1.9296061691681021
                                                 Figure 1
                20
                                                                          ·**********
                15 -
                10
                  5
```