HAUTS-DE-FRANCE

L3 Informatique et L3 Mathématiques 2018-2019

Analyse numérique Niveau 1

TP3 – Résolution numérique des équations non linéaires

Exercice I. Méthode de dichotomie. On se propose ici de programmer la méthode de dichotomie. Nous rappelons brièvement l'algorithme pour une fonction continue f sur un intervalle [a,b] tel que f(a)f(b) < 0.

On pose $m = \frac{a+b}{2}$,

- si f(a)f(m) > 0, on cherche le zéro de f sur l' intervalle]m, b[; autrement dit, a prend la valeur de m.
- sinon, on cherche le zéro de f sur l'intervalle]a,m[; autrement dit, b prend la valeur de m. L'algorithme s'arrête quand $|f(m)| \leq \varepsilon$, où ε désigne un nombre réel positif.
- 1/ Programmer la méthode de dichotomie dans une fonction Python

qui renvoie [m, niter].

Les variables d'entrée sont une fonction f, les bornes de l'intervalle a et b dans lequel on cherche le zéro, la précision (ε) eps (associée au critère d'arrêt) et un nombre maximal d'itérations nitermax. Les variables de sortie sont m, la valeur approchée du zéro, et niter le nombre d'itérations réalisées pour obtenir m.

2/ À l'aide d'un tracé de courbes, donner un encadrement des trois premières solutions positives $\alpha_1, \alpha_2, \alpha_3$ de l'équation

$$\tan(x) = \frac{1}{x}.\tag{1}$$

3/ On pose

$$f_1(x) = x \tan(x) - 1. \tag{2}$$

Pourquoi les zéros de cette fonction sont-ils solutions de l'équation (1)?

- 4/ Écrire une fonction Python f1 calculant la fonction f_1 définie par (2).
- 5/ Appliquer la méthode de dichotomie à la résolution de l'équation (1) pour obtenir les valeurs approchées de $\alpha_1, \alpha_2, \alpha_3$ avec une précision choisie eps de 10^{-8} .
- 6/ Faire varier la précision choisie eps de 10^{-2} à 10^{-10} et étudier le nombre d'itérations nécessaire pour atteindre la précision fixée.

Exercice II. Méthode de Newton. On se propose ici de programmer la méthode de Newton. Nous rappelons brièvement l'algorithme pour une fonction f de classe C^1 sur un intervalle $I \subset \mathbb{R}$ supposée s'annuler en un point de I.

On fixe une valeur $x_0 \in I$ « assez proche » de la solution cherchée, on calcule les termes de la suite $(x_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence suivante :

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)},$$

jusqu'au premier terme x_k de la suite vérifiant $|f(x_k)| \leq \varepsilon$, où ε désigne un nombre réel positif.

1/ Programmez la méthode de Newton dans une fonction Python

qui renvoie [xk,k].

2/ Soit $f_2: \mathbb{R} \to \mathbb{R}$ donnée par $f_2(x) = x^3 - 4x + 1$, tracer la fonction f_2 pour vérifier que l'équation $f_2(x) = 0$ admet trois racines réelles notées $\beta_1, \beta_2, \beta_3$ avec

$$-\frac{5}{2} < \beta_1 < -2 \qquad 0 < \beta_2 < \frac{1}{2} \qquad \frac{3}{2} < \beta_3 < 2.$$

3/ Tester l'algorithme avec différentes données initiales x_0 pour obtenir les valeurs approchées de β_1 , β_2 et β_3 avec une précision choisie eps de 10^{-8} .

Exercice III. Méthode de la sécante. On se propose ici de programmer la méthode de la sécante. Nous rappelons brièvement l'algorithme pour une fonction continue f sur un intervalle I supposée s'annuler en un point de I.

On part de deux réels donnés x_0, x_1 appartenant à l'intervalle I et on calcule les termes de la suite $(x_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence suivante :

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$$

jusqu'au premier terme x_k de la suite vérifiant $|f(x_k)| \le \varepsilon$, où ε désigne un nombre réel positif.

1/ Programmez la méthode de la sécante dans une fonction Python

qui renvoie [xk,k].

2/ Tester l'algorithme pour obtenir les valeurs approchées de β_1, β_2 et β_3 définies à la deuxième question de l'exercice II, avec une précision choisie eps de 10^{-8} .

Exercice IV. Comparaison des méthodes. Quels sont les nombres d'itérations requis par les trois méthodes pour obtenir une valeur approchée de β_3 avec une précision choisie eps de 10^{-8} ? Conclure.