Students: Hampus Ahlebrand **Edward Brask** Yuhui Bi

Advisors: Dr. Karinne Ramirez-Amaro Dr. Emmanuel Dean

Master programme: System, Control and Mechatronics

Collaborative-Robot Assistant for Technicians

Introduction

The next generation of Collaborative Robots (Cobots) will help humans with repetitive and high-loaded tasks. This project worked with TIAGo in ROS to develop compliant controllers, and further developed a digital twin made by a bachelor thesis in Unity.

Project scope:

- Design controllers allowing operators to collaborate with TIAGo.
 - ROS1, ROSControl, C++
- 2. Further develop digital twin of TIAGo for training and learning purposes
 - Improve odometry

Methods and Results

Base controller:

- Differential drive
 - Translate linearly forward and backwards
 - Rotate around the vertical axis
- Algorithm
 - Read force input from force-torque sensor
 - Derive desired velocity based on applied force and current velocity
 - Send desired velocity to /cmd_vel

Velocity and position plotted as a result from the base controller, a reference force of 50 N is applied and corresponds to the light blue line. The red line is the position and the dark blue is the velocity.

Digital twin:

- ROSBridge Unity client
- ROS topics accessed from VR
- Improve odometry by subscribing to pose msg
- **Gmapping and Localization**

Arm controller:

- Kinematic open loop controller, 7 dof
- ROS Control
- Task space and joint space
 - Solve for change in joint position

$$\dot{x} = J(q)\dot{q} \Rightarrow \Delta x \approx J(q)\Delta q$$

Algorithm

Norm of the error in joint positions vs time. Every large spike corresponds to a new force reading. Note that there is a steady state error.

Discussion

- Slipping wheels
- **Gmapping and Localization**
 - Large errors, no odometry improvements
 - Configuration errors?
- Further work
 - Enable interaction from the digital twin
 - Hierarchical control

Conclusion

- Compliant controllers produced smooth movement in simulation
- Odometry in the digital twin
 - Perfect estimation from simulation
 - Inaccuracies from real world