

TAREA #3: Deep Learning

Deep AutoEncoder + Algoritmo mAdam

OBJETIVO

Implementar y evaluar el rendimiento de un modelo de Deep-AutoEncode-Softmax con aprendizaje mAdam para un problema de clasificación de datos obtenidos desde un conjunto de sensores.

Etapas del Modelo:

Pre-proceso: ppr.py

Formato File: cl	ass.csv:	
□ N-filas.□ d-columnas.		
■ Donde: □filas : ■ Números de □columnas: ■ Número de v		

Pre-proceso: ppr.py

■ Para cada archivo de Clases Haga:

- □ Segmentar cada Columna (variable):
 - Usar 'N' Frame de tamaño 'L' muestras (valores).
 - □ Calcular la Amplitud de Fourier para cada Frame.
 - Seleccionar las primeras (L/2) muestras de la Amplitud Fourier.
 - □Crear nueva data de entrada para el Modelo:
 - Formato Matriz : (N-Frame, L/2)
 - Apilar la matriz previa para cada columna
 - Crear matriz de etiqueta binaria para cada clase.
 - Apilar la matriz de etiquetas binarias para cada clase.

10

Pre-proceso: ppr.py

■ Normalizar la Data de entrada :

$$x = \frac{(x - x_{\min})}{(x_{\max} - x_{\min})} \times (b - a) + a, \ a = 0.01 \quad b = 0.99$$

- Re-ordenar aleatoriamente las posiciones de la data de entrada y la data etiquetas binarias.
- Dividir la data re-ordenada previa:
 - □ Data Training : p %
 - \square Data Testing : (1-p)%

Pre-proceso: ppr.py

- Crear archivo de training: **train.csv**
 - ☐ Xe: data de entrada
 - ☐ Ye: data de etiquetas binarias

- Crear archivo de testing: **test.csv**
 - □ Xv: data de entrada
 - ☐ Yv: data de etiquetas binarias.

trn.py

- Cargar datos de configuración.
- Carga datos de Training.
- Ajustar el Modelo Deep Learning usando:
 - Deep-AutoEncoder con algoritmo mAdam
 - Softmax con algoritmo mAdam.
- Crear archivos de pesos:
 - □ wdae.npz
- Crear archivo de costo Softmax: **costo.csv**.
 - ☐ M-filas por una columna (número de iteraciones)

M

Función de Activación : DAE

• 1. ReLu:

$$f(x) = \begin{cases} x, & x > 0 \\ 0, & x \le 0 \end{cases}, x \in \Re^d$$

• 2. L-ReLu:

$$f(x) = \begin{cases} 0.01 x, & x < 0 \\ x, & x \ge 0 \end{cases}, x \in \Re^d$$

• 3. ELU:

$$f(x) = \begin{cases} a(e^x - 1), & x \le 0 \\ x, & x > 0 \end{cases}, x \in \Re^d$$

• 4. SELU:

$$f(x) = \lambda \times \begin{cases} a(e^x - 1), & x \le 0 \\ x, & x > 0 \end{cases}$$
$$x \in \Re^d, \ \lambda = 1.0507, \ a = 1.6732$$

• 5. Sigmoidal:

$$f(x) = \frac{1}{1 + e^{-z}}, \ x \in \Re^d$$

tst.py

- Cargar data de test.
- Cargas peso entrenados.
- Realizar proceso forward del Deep Learning.
 - □ Crear archivo de Matriz de Confusión:
 - **cmatriz.csv**.
 - □ Crear archivo F-scores:
 - **fscores.csv**
 - \blacksquare (*m*+1)-filas por 1-columa
 - \Box Fila (m+1) representa el F-scores promedio de las m-clases.

Configuración: cnf_sae.csv

■ Línea 1: Número de Clases	: 5	
■ Línea 2: Número de Frame	: 100	
■ Línea 3: Tamaño de Frame	: 1024	
■ Línea 4: Porcentaje Training	: 0.8	
■ Línea 5: Func. Activación Encoder: 1		
■ Línea 6: Max. Iteraciones	: 60	
■ Línea 7: Tamaño miniBatch	: 32	
■ Línea 8: Tasa Aprendizaje	: 0.001	
■ Línea 9: Nodos Encoder ₁ .	: 192	
■ Línea 10: Nodos Encoder ₂ .	: 128	
■ Línea 11: Nodos Encoder ₃ .	: 64	

Configuración: cnf_softmax.csv

■ *Parámetros* :

■ Línea 1: Max. Iteraciones : 300

■ Línea 2: Tasa Aprendizaje : 0.01

■ Línea 3: Tamaño miniBatch : 32

OBSERVACIÓN #1:

■ El tiempo máximo ejecución de Preproceso y entrenamiento del DAE es:

□3 Minutos

OBSERVACIÓN #2:

Si un Grupo no Cumple con los requerimientos funcionales y no-funcionales, entonces la nota máxima será igual a 1,0 (uno coma cero).

ENTREGA

■ Sábado: 24/Junio/2023

☐ Hora: 23 horas

□ Lugar: Aula Virtual del curso

■ Lenguaje Programación:

- □ Python version: 3.7.6 window (anaconda)
 - Numpy/Panda.