

WEST **Generate Collection**

1249

L1: Entry 23 of 49

File: JPAB

Apr 21, 1992

PUB-N0: JP404120249A

DOCUMENT-IDENTIFIER: JP 04120249 A

TITLE: MARTENSITIC STAINLESS STEEL AND ITS PRODUCTION

PUBN-DATE: April 21, 1992

INVENTOR-INFORMATION:

NAME

COUNTRY

KONDO, KUNIO

ASSIGNEE-INFORMATION:

NAME

COUNTRY

SUMITOMO METAL IND LTD

N/A

APPL-NO: JP02239697

APPL-DATE: September 10, 1990

INT-CL (IPC): C22C 38/00; C21D 6/00; C22C 38/40

ABSTRACT:

PURPOSE: To produce a martensitic stainless steel excellent in strength, toughness, and corrosion resistance by subjecting a steel having a specific composition consisting of C, Si, Mn, P, S, Cr, Ni, Al, N, and Fe to hot forming and then to rapid cooling or slow cooling.

CONSTITUTION: A steel having a composition which consists of, by weight, >0.05-0.2% C, ≤2% Si, ≤2% Mn, ≤0.04% P, ≤0.01% S, 8-17% Cr, >2.5-8% Ni, 0.001-0.1% AN, =0.1% N, and the balance Fe with inevitable impurities and further contains, if necessary, ≤3.5% Mo, ≤3% W, one or more kinds from among ≤1.5% each of Ti, Nb, V, and Zr, and further one or more kinds from among 0.001-0.05% each of Ca, Mg, La, and Ce and in which 30Cr+14Si+36Mo-28Ni-790(C+N)≤455% and 21Cr+17Si+25Mo+35Ni+910(C+ N)≤731% is hot-formed and cooled rapidly or slowly preferably at least down to ≤70°C. Then, heat treatment or subzero treatment is performed, if necessary. By this method, the martensitic stainless steel having high strength, high toughness, and high corrosion resistance and suitable for turbine blade, etc., can be obtained.

COPYRIGHT: (C)1992,JPO&Japio

⑪ 公開特許公報 (A) 平4-120249

⑤Int.Cl.⁵C 22 C 38/00
C 21 D 6/00
C 22 C 38/40

識別記号

3 0 2 Z
1 0 2 J

庁内整理番号

7047-4K
7047-4K

④公開 平成4年(1992)4月21日

審査請求 未請求 請求項の数 9 (全9頁)

⑥発明の名称 マルテンサイト系ステンレス鋼とその製造法

⑦特 願 平2-239697

⑧出 願 平2(1990)9月10日

⑨発明者 近藤 邦夫 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内

⑩出願人 住友金属工業株式会社 大阪府大阪市中央区北浜4丁目5番33号

⑪代理人 弁理士 広瀬 章一 外1名

明細書

1. 発明の名称

マルテンサイト系ステンレス鋼とその製造法

Ti: 1.5 %以下、Nb: 1.5 %以下、

V: 1.5 %以下、Zr: 1.5 %以下、

からなる群から選ばれた1種又は2種以上を有し、

さらに、

2. 特許請求の範囲

(1) 重量%で、

 $30CrMo + 14SiMo + 36MoMo - 28NiMo - 790(CMo + NiMo) \leq 455.00$

C: 0.05%超0.2%以下、Si: 2%以下、

 $21CrMo + 17SiMo + 25MoMo + 35NiMo + 910(CMo + NiMo) \leq 731.00$

Mn: 2%以下、

P: 0.04%以下、

を満足する鋼組成を有することを特徴とする請求

S: 0.01%以下、

Cr: 8%以上17%以下、

項1記載のマルテンサイト系ステンレス鋼。

Ni: 2.5%超8%以下、

(3) さらに、重量%で、

Al: 0.001%以上0.1%以下、

Ca: 0.001%以上0.05%以下、

N: 0.1%以下、

Mg: 0.001%以上0.05%以下、

ただし、

La: 0.001%以上0.05%以下、

 $30CrMo + 14SiMo - 28NiMo - 790(CMo + NiMo) \leq 455.00$

Ce: 0.001%以上0.05%以下

 $21CrMo + 17SiMo + 35NiMo + 910(CMo + NiMo) \leq 731.00$

からなる群から選ばれた1種又は2種以上の元素

残部Feおよび不可避的不純物

を含有する鋼組成を有することを特徴とする請求

からなる鋼組成を有することを特徴とする強度、

項1または請求項2記載のマルテンサイト系ステ

韧性、耐食性に優れたマルテンサイト系ステンレ

ンレス鋼。

ス鋼。

(2) さらに、重量%で、

(4) 請求項1ないし請求項3のいずれかに記載の

Mo: 3.5%以下、W: 3%以下、

鋼組成を有するマルテンサイト系ステンレス鋼を

熱間成形後、急冷または徐冷を行うことを特徴と

する強度、韌性、耐食性に優れたマルテンサイト系ステンレス鋼の製造法。

(5) 請求項1ないし請求項3のいずれかに記載の鋼組成を有するマルテンサイト系ステンレス鋼を熱間成形後、少なくとも70°C以下にまで急冷または徐冷を行った後に、さらに450°C以下で焼戻すことを特徴とする強度、韌性、耐食性に優れたマルテンサイト系ステンレス鋼の製造法。

(6) 請求項1ないし請求項3のいずれかに記載の鋼組成を有するマルテンサイト系ステンレス鋼を熱間成形後、少なくとも70°C以下にまで急冷または徐冷を行ってから、Ac₁点以上に再加熱した後、急冷または徐冷を行うことを特徴とする強度、韌性、耐食性に優れたマルテンサイト系ステンレス鋼の製造法。

(7) 請求項1ないし請求項3のいずれかに記載の鋼組成を有するマルテンサイト系ステンレス鋼を熱間成形後、少なくとも70°C以下にまで急冷または徐冷を行ってから、Ac₁点以上に再加熱した後、少なくとも70°C以下にまで急冷または徐冷を行っ

る。

(従来の技術)

高強度であって、かつ優れた耐食性を備えたステンレス鋼として、Cr量およびC量を増加し、主として刃物用として用いられるSUS420、2重量%程度のNiの添加により韌性および耐食性の若干の改良を狙ったSUS431、さらには硬度、耐食性とともに優れたSUS440等のマルテンサイト系ステンレス鋼が知られている。

これらのマルテンサイト系ステンレス鋼は、焼入れ、焼戻し熱処理を施すことにより高強度が得られるために、耐食ばね、シャフト、ボルト等の各種機械の構造用材料に用いられている。

また、金属間化合物または金属相の析出強化を利用することにより、高強度、高耐食性が得られるステンレス鋼としては、SUS630、SUS631等が知られており、同様に高耐食性・高強度材料として使用されている。

(発明が解決しようとする課題)

ところで、前述の焼入れ・焼戻し型のマルテン

た後、450°C以下で焼戻すことを特徴とする強度、韌性、耐食性に優れたマルテンサイト系ステンレス鋼の製造法。

(8) 前記急冷または徐冷を行った後に、サブゼロ処理を行うことを特徴とする請求項4または請求項5記載のマルテンサイト系ステンレス鋼の製造法。

(9) 前記Ac₁点以上に再加熱した後の急冷または徐冷後に、サブゼロ処理を行うことを特徴とする請求項6または請求項7記載のマルテンサイト系ステンレス鋼の製造法。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、耐食性が要求される環境で使用される、高強度・高韌性のマルテンサイト系ステンレス鋼に関し、例えばターピングブレード、ポンプシャフト、ボルト、航空機などの構造材、ならびにその他の強度、韌性および耐食性が要求される各種機械の構造用鋼として使用されるのに好適なマルテンサイト系ステンレス鋼とその製造法に関する

サイト系ステンレス鋼は、高強度で耐食性を有することから種々の用途で使用されているが、韌性の点で劣るため、実用上は高温の焼戻しを行うことによって、強度をある程度犠牲にしなければ実用上必要とされる最低限の韌性の確保が困難であり、実用上の強度の上限は、現実には、100 kgf/mm²程度であった。

一方、高強度の割には韌性が比較的良好であるといわれる析出強化ステンレス鋼でも、韌性が充分でなく、また特定の析出強化元素、例えばCu、Al、Ti等を大量に添加するために、熱間加工性が著しく低下したり、さらには二重時効処理などの複雑な熱処理が必要となるという問題があった。

ここに、本発明の目的は、前述の従来の技術の有する問題を解消し、複雑な熱処理は必要でなく、例えば焼入れ・焼戻し処理、もしくは焼入れ・サブゼロ処理・焼戻し処理を行うだけで高強度が得られ、さらに十分な韌性を有し、かつ耐食性に優れたマルテンサイト系ステンレス鋼を提供することにある。

(課題を解決するための手段)

本発明者は、高強度マルテンサイト系ステンレス鋼の韌性向上を目的として、各種の実験、検討を重ねた結果、以下に列記する知見を得た。

①韌性向上させるには、C量の規制と、Niの十分な量の添加とが最も有効なこと、

②強度および韌性のバランスに優れる組織としては、 δ フェライトを含まないマルテンサイト単相が望ましいこと、および

③高強度を得るためにには、残留オーステナイトが大量に生成しないことである。

このような知見に基づいて、本発明者は、さらに検討を重ねた結果、

(i) Niを2.5重量%超添加するとともに、C量を0.2重量%以下としたCr-Ni系ステンレス鋼を用いること、

(ii) 耐食性を向上させるという観点から、Mo、W等を必要に応じて適量添加すること、さらに

(iii) マルテンサイト単相となり、かつ残留オーステナイトが最も少ないこと、

また、上記の本発明にあっては、前記マルテンサイト系ステンレス鋼が、重量%で、さらに

Mo: 3.5%以下、W: 3%以下、

Ti: 1.5%以下、Nb: 1.5%以下、

V: 1.5%以下、Zr: 1.5%以下、

からなる群から選ばれた1種又は2種以上を有し、さらに、

$30CrMo + 14SiMo + 36MoMo - 28NiMo - 790(CMo + NiMo) \leq 45500$
 $21CrMo + 17SiMo + 25MoMo + 35NiMo + 910(CMo + NiMo) \leq 73100$

を有することが好適であり、これらの本発明において、前記マルテンサイト系ステンレス鋼が、重量%で、さらに

Ca: 0.001%以上0.05%以下、

Mg: 0.001%以上0.05%以下、

La: 0.001%以上0.05%以下、

Ce: 0.001%以上0.05%以下

からなる群から選ばれた1種又は2種以上の元素を有することがより好適である。

さらに、前記の鋼組成を有するマルテンサイト系ステンレス鋼を熱間成形後、急冷または徐冷を

ステナイトが多くならない指針となる各元素間ににおける添加量の関係を用いて、さらに組成を限定すること

により、前記課題を解決することができるることを知見して、本発明を完成した。

ここに、本発明の要旨とするところは、重量%で、

C: 0.05%超0.2%以下、Si: 2%以下、

Mo: 2%以下、P: 0.04%以下、

S: 0.01%以下、Cr: 8%以上17%以下、

Ni: 2.5%超8%以下、

Al: 0.001%以上0.1%以下、

N: 0.1%以下、

ただし、

$30CrMo + 14SiMo - 28NiMo - 790(CMo + NiMo) \leq 45500$

$21CrMo + 17SiMo + 35NiMo + 910(CMo + NiMo) \leq 73100$

残部Feおよび不可避的不純物

からなる鋼組成を有することを特徴とする強度、韌性、耐食性に優れたマルテンサイト系ステンレス鋼である。

行うことにより、強度、韌性、耐食性に優れたマルテンサイト系ステンレス鋼を製造することができる。

また、前記の鋼組成を有するマルテンサイト系ステンレス鋼を熱間成形後、少なくとも70°C以下にまで急冷または徐冷を行った後に、さらに450°C以下で焼戻すことにより、強度、韌性、耐食性に優れたマルテンサイト系ステンレス鋼を製造することができる。

また、これらのマルテンサイト系ステンレス鋼の製造に際して、前記急冷または徐冷を行った後に、サブゼロ処理を行うことが好適である。

さらに、前述の鋼組成を有するマルテンサイト系ステンレス鋼を熱間成形後、少なくとも70°C以下にまで急冷または徐冷してから、 Ac_1 点以上に再加熱した後、少なくとも70°C以下にまで急冷または徐冷を行い、さらに必要に応じて、450°C以下で焼戻すことにより、強度、韌性、耐食性に優れたマルテンサイト系ステンレス鋼を製造することができる。

さらに、これらのマルテンサイト系ステンレス鋼の製造に際して、前記Ac₁点以上に再加熱後の前記急冷または徐冷を行った後に、サブゼロ処理を行うことが好適である。

本発明における「急冷」および「徐冷」は、ともに一般的な意味において用いており、例えば前者では水冷や油冷を、後者では空冷を包含する。

(作用)

以下、本発明を作用効果とともに詳述する。なお、本明細書においては、特にことわりがない限り、「%」は「重量%」を意味するものとする。

C：強度の確保のために0.05%を超える量が必要であるが、含有量が0.2%を超えると韌性が低下し、耐応力腐食割れ感受性も大きくなる。そこで、C含有量は、0.05%超0.2%以下と限定する。

Si：通常の製鋼過程での脱酸剤として必要である。しかし、韌性の向上のためには少なければ少ないほど好ましい結果が得られる。具体的には、2%を超えると韌性が著しく低下する。そこで、

Si含有量は、2%以下と限定する。

Mn：Mnは、強度を上昇させるが、韌性を低下させる作用を有する。韌性の向上のためには、少ないほうが好ましい。具体的には、強度と韌性とを共に適当なレベルで両立させるためには、2%が添加量の上限である。そこで、Mn含有量は、2%以下と限定する。

P：P含有量は、低ければ低い程、韌性が向上し、P含有量が0.04%を超えると韌性が低下する。

そこで、P含有量は、0.04%以下と限定する。

S：Sは、前述のP同様、含有量が低ければ低い程、韌性および熱間加工性が向上する。高い韌性を得るためにには、S含有量は、0.01%以下であることが必要である。そこで、S含有量は、0.01%以下と限定する。

Cr：耐食性皮膜を形成させるには、8%以上のCrの添加が必要である。しかし、17%を超えるとフェライトが生成しやすくなり、目標とするマルテンサイト系ステンレス鋼が得にくくなる。

そこで、Cr含有量は、8%以上17%以下と限定

する。

Ni：Niは、韌性の向上に著しく寄与する元素である。2.5%以下ではその効果が少なく、一方8%を超えるとコストが高くなりすぎるとともに、残留オーステナイト量が増加して強度を確保できなくなる。そこで、Ni含有量は、2.5%超8%以下と限定する。

Al：Alは、鋼中にあっては、脱酸剤として作用する。Al含有量が0.001%未満ではその効果がなく、一方0.1%を超えると介在物が多くなって耐食性が低下する。そこで、Al含有量は0.001%以上0.1%以下と限定する。

N：Nは、強度上昇に有効な元素であるが、0.1%を超えると鋳造時にプローホールが生じる。

そこで、N含有量は0.1%以下と限定する。

上記以外の残部は、Feと不可避的不純物である。

さらに本発明にあっては、各元素量は、次式を満足する関係にあることが必要である。

すなわち、高強度と高韌性、さらには高耐食性を確保するためには、δフェライトは存在せず、かつ残留オーステナイト量も10%以下であることが望ましい。通常のオーステナイト化温度である800~1200°Cでオーステナイト単相鋼となり、δフェライトを含まない相を得るためにには、式(1)を満足する必要がある。一方、室温まで冷却し、またはサブゼロ処理を行った後に残留オーステナイト量を10%以下に低減するためには、式(2)を満足する必要がある。

そこで、本発明における各元素の含有量は、それぞれ式(1)および式(2)を満足することが必要である。

さらに、本発明によれば、例えばNb、W、Ti、Nb、VおよびCrからなる群から選ばれた1種または2種以上の合金元素を含有することにより、よ

り一層の品質の向上を図ることができる。

Mo、W: 耐食性を更に向上させる元素であり、それぞれ3.5%以下、3%以下まで添加することが有効である。それを超えて添加しても耐食性向上効果が飽和するばかりか、コストが高くなるので、前記範囲内で添加することが望ましい。
Ti、Nb、V、Zr: 強度を更に向上させる元素である。それぞれ、含有量が1.5%を超えると、韌性が低下するので、添加量は、それぞれ1.5%以下と限定することが望ましい。

なお、上記の添加元素のうち、前述のように、通常のオーステナイト化温度である800～1200℃で完全にオーステナイト単相となり、δフェライトを含まない相とすること、および冷却またはサブゼロ処理後に残留オーステナイト量を10%以下とすることには、Moが影響する。すなわち、本発明にかかるマルテンサイト系ステンレス鋼が合金元素としてMoを含む場合には、前記(1)式および(2)式は、それぞ

となる。

さらに、本発明にかかるマルテンサイト系ステンレス鋼の他の合金元素について説明する。

Ca、Mg、La、Ce: これらの元素も所望により少なくとも1種類以上添加することにより、いずれも熱間加工性の改善を図ることができる元素である。それぞれ0.001%未満では効果がなく、一方0.05%を超えると耐食性が低下する。そこで、これらの各元素の含有量は、0.001%以上0.05%以下と限定することが望ましい。

以上の組成を有するマルテンサイト系ステンレス鋼は、通常の熱間加工で成形した後、特に急冷を必要とせず、Ms点以下の温度に冷却した状態（すなわち、急冷または徐冷を行った状態）でマルテンサイト主体の組織となり、高強度と高韌性とを兼ね備える。

さらに、前記冷却後にサブゼロ処理を行って残留オーステナイト量をさらに減少させることにより、より一層の高強度が得られる。

前記サブゼロ処理としては、本発明においては、室温以下の温度に数時間保持する手段によればよく、特に0℃以下に冷却する手段に限定されるものではない。例えば、液体窒素中やエチルアルコールとドライアイスとの混合物中で、4～8時間保持する処理を行う手段が例示される。

さらに、本発明にかかるマルテンサイト系ステンレス鋼の熱処理法としては、以下のいずれかの方法が望ましい。

(I) 熱間成形後、少なくとも70℃以下に急冷または徐冷を行った後、必要に応じてサブゼロ処理を行い、450℃以下で焼戻す。

(II) 热間成形後、少なくとも70℃以下に、急冷または徐冷したものをAc₁点以上で加熱し、一部もしくは全部を再オーステナイト化した後、急冷または徐冷して焼入れ、さらにサブゼロ処理を必要に応じて行う。

(III) 前記(II)のサブゼロ処理後に、さらに450℃以下で焼戻す。

(I) の場合は直接焼入れー焼戻し工程となり、韌性の向上のために450℃以下で焼戻すことが望ましい。熱間成形後の冷却は、徐冷でもマルテンサイト組織が得られるが、韌性の向上のためには急冷を行うことが望ましい。焼戻し後の冷却も特に規定しないが、焼戻し脆性の回避のためには徐冷は好ましくない。なお、冷却温度を少なくとも70℃以下と限定する理由は、Ms点以下の温度に確実に冷却して、マルテンサイト化を促進するためである。

(II) の場合は、焼入れまでの熱処理となる。Ac₁点以上に加熱して、一部あるいは全部をオーステナイト化した後冷却する。冷却は、徐冷でもマルテンサイト変態して高強度が得られるが、韌性の面からは急冷が望ましい。また、再オーステナイト化は均質化の意味があるので、Ac₁点より高くAc₃点以上の温度とすることが望ましい。

(III) の場合は、(II)で焼入れした材料を焼戻

すことにより韌性の向上を得ることを目的とする。

強度があまり低下せず韌性の向上が得られる450°C以下で焼戻すことが好ましい。

このような熱処理を施すことにより、本発明にかかるマルテンサイト系ステンレス鋼を容易に、かつ確実に得ることができる。

さらに、本発明を実施例を参照しながら、詳述する。

実施例

第1表に示す組成のA～a鋼をそれぞれ溶製し、熱間圧延を行い、その後放置することにより空冷して、室温まで冷却し、12mm厚の板材とした。本発明鋼であるA～S鋼、従来鋼のT～V鋼、比較例のW～a鋼について、第2表に示す内容の熱処理を行った後、引張強度、韌性および応力腐食割れについて試験した。

第1表

鋼種	C	Si	Mn	P	S	Cr	Ni	A ₁	N	Mo	その他の	F	H	A _{c1}	A _{c2}	値
A	0.062	0.12	0.41	0.01	0.001	8.2	2.8	0.008	0.008	3.0	Ti=0.09, Ce=0.0031	222.0	410.9	696	790	
B	0.052	0.01	0.43	0.01	0.001	10.1	4.5	0.012	0.008	1.9	Nb=0.18	198.1	471.9	655	759	
C	0.082	0.23	0.29	0.01	0.001	11.9	5.4	0.003	0.012	—	Ti=0.15, V=0.18, Mg=0.0031	134.8	528.4	586	696	
D	0.150	0.24	0.68	0.01	0.002	11.3	6.2	0.018	0.051	2.1	Zr=0.15	85.6	693.8	560	717	
E	0.065	0.20	1.53	0.01	0.001	11.0	5.1	0.021	0.033	—		112.6	502.1	604	696	
F	0.102	0.32	0.05	0.02	0.002	12.2	5.9	0.015	0.007	2.1	Ti=0.01	194.8	619.8	598	751	
G	0.088	1.58	0.40	0.01	0.001	13.0	4.1	0.010	0.006	3.5	La=0.0037, Ce=0.0022	349.1	616.4	660	835	
H	0.062	0.49	0.38	0.01	0.001	14.5	7.3	0.009	0.031	—		164.0	653.0	566	709	
I	0.083	0.37	0.40	0.01	0.001	16.5	4.8	0.093	0.081	—		236.2	670.0	591	758	
J	0.076	0.23	0.29	0.01	0.001	12.8	5.0	0.022	0.013	1.1		216.5	556.2	614	749	
K	0.060	0.26	0.33	0.02	0.001	11.9	5.2	0.013	0.024	—	W=0.85	148.7	512.8	605	708	
L	0.059	0.08	0.35	0.02	0.001	12.3	5.5	0.005	0.010	—	W=2.63	161.6	515.0	600	709	
M	0.074	0.13	0.68	0.01	0.001	11.8	6.0	0.009	0.008	—	Ti=1.31	123.0	534.6	582	690	
N	0.059	0.21	0.24	0.02	0.001	11.7	5.9	0.028	0.005	—	Nb=1.39	138.2	514.0	594	696	
O	0.094	0.18	0.35	0.02	0.001	11.6	6.5	0.016	0.009	—	V=1.42	87.1	567.9	560	673	
P	0.088	0.20	0.38	0.01	0.001	11.7	5.7	0.014	0.006	—	Zr=1.38	119.9	534.1	577	687	
Q	0.067	0.41	0.39	0.01	0.001	11.9	6.7	0.017	0.011	0.9	W=0.5, Ti=0.31, Nb=0.12, V=0.25, Zr=0.11	145.9	584.9	590	713	
R	0.070	0.39	0.37	0.01	0.002	12.1	5.4	0.013	0.012	—	Ce=0.0031, Mg=0.0022	152.5	524.4	595	703	
S	0.081	0.27	0.39	0.01	0.001	11.0	5.0	0.014	0.007	2.1	Ce=0.0016, La=0.0037, Ce=0.0022	199.9	543.2	629	758	

(次頁につづく)

本
發
明
例

(第1表つづき)

鋼種	C	Si	Mn	P	S	Cr	Ni	A ₂	N	Nb	その他の	F	M	A _{c1}	A _{c2}	備考
T	0.200	0.42	0.66	0.02	0.002	13.2	—*	0.005	0.019	—		228.9	483.6	825	937	従来例
U	0.122	0.23	0.42	0.02	0.001	15.4	2.2*	0.006	0.008	—		300.9	522.6	790	916	
V	0.040*	0.50	0.41	0.02	0.002	16.2	4.3	0.008	0.004		Ca=3.8, Nb=0.31	337.8	539.2	583	749	
W	0.283*	0.52	0.57	0.02	0.001	12.2	2.6	0.009	0.067	0.9		56.4	697.0	506	685	
X	0.190	0.51	0.85	0.02	0.001	12.1	2.7	0.011	0.151*	—	Ti=0.20, Ca=0.0041	25.1	667.6	535	691	比較例
Y	0.043*	0.52	0.62	0.01	0.001	16.2	2.6	0.013	0.006	3.2		497.0*	564.6	709	850	
Z	0.183	0.46	0.60	0.02	0.001	13.5	7.6	0.007	0.010	3.4	Ca=0.0031	168.6	817.9*	532	752	
a	0.081	0.48	0.60	0.01	0.001	5.6*	2.7	0.005	0.005	—		31.2	298.5	638	748	

注1) *は本発明の範囲外

注2) F = 30C+69 + 36Nb+94 + 14Si+69 - 28Ni+69 - 790(C+Mg)

M = 21Cr+69 + 25Nb+69 + 17Si+69 + 35Ni+69 + 910(C+Mg)

引張試験は、直径4mm、平行部34mmの引張試験

片を前記板材より切り出して行った。

韌性は、寸法が10×10×55mmである2mmVノッチのシャルピー試験片を切り出し、衝撃値で評価した。

応力腐食割れ試験は、直径2.54mm、平行部2.5mmの定荷重型試験片を切り出して、耐力の90%の荷重を負荷し3.5%NaCl、50℃の環境下で、96hr後の割れの有無で評価した。

これらの試験の結果を第2表にまとめて示す。

第 2 表

試料 No.	鋼種	熱 处 理 内 容	降伏強度 (kgf/mm ²)	引張強度 (kgf/mm ²)	衝撲値 (kgf-m/cm ²)	応力腐食割れ 試験結果	備考
1	A	再加熱(900°C × 15分)、油冷→焼戻し(200°C × 30分、空冷)	102.7	128.3	24.6	○○	本発明例
2	B	再加熱(920°C × 15分)、水冷	105.8	128.3	22.4	○○	
3	C	再加熱(900°C × 30分)、油冷→焼戻し(200°C × 30分、空冷)	110.0	135.1	23.0	○○	
4	D	熱間圧延後(仕上温度: 1000°C)、油冷→サブゼロ処理	124.9	153.5	20.4	○○	
5	D	サブゼロ処理→焼戻し(230°C × 30分、油冷)	120.2	152.8	19.9	○○	
6	D	再加熱(730°C × 15分)、空冷→サブゼロ処理	116.6	140.4	22.6	○○	
7	D	再加熱(900°C × 15分)、空冷→サブゼロ処理	125.7	154.9	20.8	○○	
8	D	再加熱(950°C × 15分)、油冷→サブゼロ処理→焼戻し(180°C × 30分、空冷)	122.6	154.2	23.7	○○	
9	E	再加熱(880°C × 30分)、水冷→焼戻し(180°C × 30分、空冷)	101.2	118.7	24.0	○○	
10	F	再加熱(920°C × 15分)、水冷	114.4	140.8	21.8	○○	
11	G	熱間圧延後(仕上温度: 1050°C)、油冷→サブゼロ処理	109.6	129.0	20.5	○○	
12	G	サブゼロ処理→焼戻し(280°C × 30分、油冷)	110.3	132.7	21.2	○○	
13	G	再加熱(750°C × 15分)、空冷→サブゼロ処理	108.5	126.4	19.2	○○	
14	G	再加熱(950°C × 15分)、空冷→サブゼロ処理	111.9	133.1	20.5	○○	
15	G	再加熱(900°C × 15分)、油冷→サブゼロ処理→焼戻し(200°C × 30分、空冷)	107.6	131.8	20.3	○○	
16	H	熱間圧延後(仕上温度: 1030°C)、油冷	105.3	125.8	21.7	○○	
17	H	焼戻し(250°C × 30分)、油冷	104.8	123.0	22.6	○○	
18	H	再加熱(680°C × 30分)、空冷	101.9	120.7	20.5	○○	
19	H	再加熱(880°C × 15分)、空冷	108.5	128.3	22.9	○○	

(次頁につづく)

(第2表つづき)

試料 No.	鋼種	熱 处 理 内 容	降伏強度 (kgf/mm ²)	引張強度 (kgf/mm ²)	衝撲値 (kgf-m/cm ²)	応力腐食割れ 試験結果	備考
20	H	再加熱(950°C × 15分)、油冷→焼戻し(250°C × 30分、空冷)	109.2	130.6	23.0	○○	本発明例
21	I	再加熱(930°C × 15分)、油冷→焼戻し(300°C × 30分、油冷)	115.1	138.5	22.4	○○	
22	J	再加熱(900°C × 15分)、油冷→焼戻し(150°C × 30分、油冷)	111.2	129.7	21.8	○○	
23	K	再加熱(950°C × 15分)、油冷→焼戻し(200°C × 30分、油冷)	105.7	125.3	20.7	○○	
24	L	再加熱(850°C × 15分)、油冷→焼戻し(300°C × 30分、空冷)	102.4	121.7	20.7	○○	
25	M	再加熱(880°C × 15分)、油冷→焼戻し(200°C × 30分、油冷)	109.3	130.2	20.6	○○	
26	N	再加熱(890°C × 15分)、油冷→焼戻し(200°C × 30分、油冷)	103.0	122.9	21.4	○○	
27	O	再加熱(850°C × 15分)、油冷→焼戻し(300°C × 30分、油冷)	113.4	137.5	20.6	○○	
28	P	再加熱(850°C × 15分)、油冷→焼戻し(250°C × 30分、空冷)	110.8	128.8	22.3	○○	
29	Q	再加熱(880°C × 15分)、油冷→焼戻し(250°C × 30分、油冷)	108.1	127.4	21.7	○○	
30	R	再加熱(900°C × 15分)、油冷→焼戻し(150°C × 30分、油冷)	109.9	128.7	20.4	○○	
31	S	再加熱(870°C × 15分)、油冷→焼戻し(150°C × 30分、油冷)	114.1	136.6	20.9	○○	
32	T *	再加熱(1000°C × 15分)、油冷→焼戻し(730°C × 30分、空冷)	59.8	80.7	8.9	××	
33	U *	再加熱(1000°C × 15分)、油冷→焼戻し(650°C × 30分、空冷)	68.7	87.1	14.2	××	
34	V *	再加熱(880°C × 15分)、水冷→焼戻し(450°C × 60分、空冷)	126.5	135.0	4.6	○○	
35	W *	再加熱(1000°C × 15分)、空冷→焼戻し(300°C × 30分、空冷)	143.9	176.5	2.8	××	
36	X *	再加熱(1000°C × 15分)、空冷→焼戻し(300°C × 30分、空冷)	138.7	165.1	1.7	××	
37	Y *	再加熱(800°C × 15分)、空冷→焼戻し(250°C × 30分、空冷)	90.6	103.7	4.9	○○	
38	Z *	再加熱(950°C × 15分)、空冷→焼戻し(300°C × 30分、空冷)	46.9	152.2	16.8	○○	
39	a *	再加熱(1000°C × 15分)、油冷	104.2	128.8	15.3	××	

(注1): サブゼロ処理: -73°C × 6時間

(注2): * は本発明の範囲外

なお、第2表中、応力腐食割れの欄において「○○」とあるのは、試験片2個ともに割れが発生しなかったもの、「××」とあるのは試験片2個ともに割れが発生したことを示す。

従来例である試料No.32および試料No.33は、従来のSUS420、SUS431鋼の結果である。韌性を確保するために強度を低く押さえているが、それでも衝撃値は 15kgf-mm/cm^2 にはとどかず、レベルが低い。さらに、耐食性も良好でなく応力腐食割れを生じている。

また、従来例である試料No.34は、17-4phステンレス(SUS631鋼)である。強度はかなりのものが得られるが、Cuを多量添加するため、韌性が大きく劣っている。

さらに、比較例である試料No.35および試料No.36は、それぞれC、N量が本発明にかかるマルテンサイト系ステンレス鋼に比べ多くなっており、韌性が低く、応力腐食割れもみられ好ましくない。

また、比較例である試料No.37および試料No.38は、本発明にかかるマルテンサイト系ステンレス鋼で

規定する式を満たさない成分系である。試料No.37は、δフェライトが析出して韌性が低下し、試料No.38は、残留オーステナイトが多量に析出するために降伏強度が著しく低下してしまう。

さらに、比較例である試料No.39は、Crが8%に満たず、応力腐食割れを生じている。

これに対して、本発明例である試料No.1ないし試料No.31に示すように、本発明にかかる鋼種は、熱間圧延のままでも、あるいは高温焼戻しを伴わない種々の熱処理を施しても、必要な強度と韌性と耐食性とを兼ね備えており、各種の機械構造用鋼として好適である。

(発明の効果)

以上詳述したように、本発明にかかるマルテンサイト系ステンレス鋼は、十分な耐食性を備え、更に高強度、高韌性を有することが明らかである。

したがって、高強度と高韌性と耐食性とが同時に要求される構造用部材として使用するのに好適であり、その工業的な利用価値は大きい。

かかる効果を有する本発明の意義は、極めて著

しい。

出願人 住友金属工業株式会社
代理人 弁理士 広瀬 章一 (外1名)