

TechNeo 技术沙龙第21期—运维新挑战

大型企业智能运维探索与实践

中油瑞飞 孙杰

目录

构建新IT运维 管理体系

全景业务 服务管理

日志米集 监控告警

知识库 故障自治

构建新IT运维管理体系

510TO (

传统运维软件逐渐不适应运维需求

零散

一种软件监控一类设备,无法 提供整体的运维监控解决方案

单一

针对不同的用户提供的是 相同的界面和视图,不能 满足用户不同岗位、不同 业务的运维要求

无用

由于无法发挥实质性的作用 ,且运行时间长之后性能影 响显著,最终被弃用。

所有的运维软件大多是事后报 警,此时损失已经造成,晚了

智能化程度差,以监控和报表为主,不具备大数据关联分析和深度数据挖掘功能

传统运维存在的突出问题

数据分散,不利于故障分析和问题跟踪

- 不同的数据存储在不同的运维系统中,无法关联
- 数据格式、时间戳等各不相同,不利于问题排查

要的功能没有,没用的数据重复采集,影响正常业务

- 每个运维软件都有特长部分,同时也采集其他数据,造成重复影响
- 有些甚至相互影响,干扰正常业务运行

投资浪费,增加运维压力

- 采购多种运维软件,在功能上、设备上存在投资浪费
- 没有减轻运维压力,还增加了多种软件的维护工作

微信扫码收听演讲音频

运维技术在持续升级

以设备为中心的维护

以数据为中心的运营

升级的3个原因: 技术进步 运维事故

运维压力

	ΛI	工具	自动化	智能
现状	目前大量的用户采用 人工运维方式,包括 自行运维、外包运维、 原厂维保等	一些用户开始尝试自 主开发工具、外购工 具或者利用其他软件 的附带工具进行运维	大部分互联网用户 使用自动化运维; 仅少量传统用户尝 试自动化运维	很多客户开始探索使用大数据进行智能运维管理, 并获得惊人收获
前景	人艰不拆	"弱智" "无用"	实施不易	未来趋势

运维的理想

运维应业金

无论云上云下,保障业务系统稳定运行都是最重要的工作。

- 通过部署智能运维系统,能够显著提升运维效率,大大增强运维团队的能力和价值;
- 通过部署智能运维系统,能够显著增加运维透明度,使管理和运维人员增加主动权和掌控力;
- * 通过部署智能运维系统,能够显著降低故障频率,使运维更省心。

维护 ->运营

帮助用户将以设备为中心的维护升级为以数据为中心的运营。

"活着" -> 健康

将运维质量的标准,从保证系统"活着",升级为确保系统始终运行在<mark>最佳状态</mark>。

合规 -> 敏捷

将用户的运维管理,从满足流程要求的合规管理,升级为以事件响应为特点的<mark>敏捷管理</mark>。

AIOps解析

AlOps:即Algorithmic IT Operations,是由Gartner定义的新类别,基于算法的IT运维。通俗来说,就是将人工智能数据科学和算法用于传统运维领域,基于已有的运维数据(日志、监控信息、应用信息等),通过机器学习的方式来进一步解决自动化运维所未能解决的问题,提高系统的智能化、稳定性、降低IT成本,并提高企业的竞争力。

科学规划、分阶段实现

NHTSA	LO	L1	L2	L3	L4	
	LO	L1	L2	L3	L4	L5
SAE	无自动化	驾驶支持	部分自动化	有条件自动 化	高度自动化	完全自动 化
功能	夜视 行人检测 交通标志识别 盲点检测 并线辅助 后排路口交通警报 车道偏离警告	自适应巡航驾驶系统 自动紧急制动 停车辅助系统 前向碰撞预警系统 车身电子稳定系统	车道保持辅助系统	拥挤辅助驾驶	停车场自动泊车	
特征	传感探测和决策警 报	单一功能(以上之一)	组合功能 (L1/L2组合)	特定条件 部分任务	特定条件 全部任务	全部条件 全部任务

• 尝试应用: 开始尝试应用AI能力, 还无较成熟单点应用

• 单点应用: 具备单场景AI运维能力, 初步形成供内部使用的学件

• 串联应用:有由多个单场景AI运维模块串联起来的流程化AI运维能力

能力完备:主要运维场景均已实现流程化免干预AI运维能力

终极AIOPS:有中枢AI,可以在成本、质量、效率间从容证不同生命周期对三个方面不同的指标要求,实现多目标下的

全景业务服务管理

IT业务服务管理—特点

业务视角管理资源的视图

• 从业务的视角进行 IT 基础资源的管理与维护,一旦某个资源发生故障或者问题,都可以从业务视图中直观地了解到这个资源的故障将影响什么业务,影响哪些服务,进而了解到影响哪些用户。

业务视角的全方位分析

业务应用性能监控---发现瓶颈和故障

- 数据采集:
- 1、客户端:主动式探测和被动式监测
- 2、服务端:旁路监听和应用探针

几种技术的对比

位置	対	技术	侵入式	竞品对标	网络问题 定位	全样本	代码级定位	后端服务 监控
客户端	主动	基于自动化测试的拨测		0	0			
	被动	浏览器嵌码	0			0		
		App嵌码	0		0	0	o	
服务端	被动	旁路监听			0	0		0
		应用探针	0			0	0	0

51CTO TECH NED

业务问题整体诊断分析

大数据日志采集与监控告警

基于大数据平台的日志采集分析

基于大数据平台,提供日志采集和聚合处理

日志关联分析帮助准确全面定位,提升效能和满意度

智能预测与预警,为精细管理,科学决策提供量化依据

各种日志的采集分析

跨层采集与监控

T1 设备层

对机房内的各种设备进行监控,如:交换机、路由器、安全设备、服务器、UPS、精密空调等,实现物理层的实时监控和数据采集。

T2 系统层

以系统作为单位,对数据中心的主机(Linux主机和X86服务器)、操作系统(LINUX/Winwdos)、数据库(Oracle、Mysql等主流)、中间件、存储系统、应用软件API、HTTP端口、备份系统、容灾系统、数据同步系统,虚拟化系统,云平台进行实时监控、预警分析和故障定位。

T3 业务层

在条件许可的情况下,采集一定的业务数据,如用户数、连接数、业务并发量、日志量等等,通过多维关联和分析,对未来的业务运行进行分析和预测。

整个数据中心范围内的配置变更跟踪

基础架构

- 操作系统和硬件
- DNS 和路由
- 文件级详细信息
- ■物理网络
- 资源池
- ■虚拟网络
- 快照详细信息
- 存储(SAN、NFS、分布 式…)
- ■高级功能(资源自动平 衡…)
- ■高级设置
- ■安全配置文件
- ■日志

运营

- 操作系统数据
- 硬件数据 ■ Cron 作业
- ■设备驱动程序
- 存储(配额、空间、文件 系统)
- ■事件日志设置
- 文件系统
- ■网络连接
- ■流程
- ■注册表
- ■服务/导出服务
- ■软件清单
- ■系统启动
- ■用户服务
- WMI

Active Directory 和安全性

- 帐户
- 组
- ■帐户策略
- ■审核策略
- ■目录权限
- ■目录审核设置
- 事件日志和 (ng) Syslog 配置与事件
- ■补丁程序
- ■注册表项权限
- ■服务帐户
- ■共享和权限
- ■用户权限

应用

- Active Directory
- IIS
- SQL Server
- Exchange
- Oracle
- Apache
- Tomcat
- Redis
- Mysql
- mongodb

资产配置管理-CMDB的数据管理

关键动作:整合、调和、同步、映射和可视化

数据大集中--PMDB

数据统一分析引擎和智能阈值

日志处理的几个问题

- ◆ 日志没有集中处理
 - 登陆每一台服务器,使用脚本命令或程序查看
- → 日志被删除
 - 磁盘满了删日志
 - 黑客删除日志,抹除入侵痕迹
- ◆ 日志只做事后追查
 - 没有实时监控、分析
- ★ 使用数据库存储日志
 - 无法适应TB级海量日志
 - 数据库的schema无法适应干变万化的日志格式
 - 无法提供全文检索

事件和时序关联分析

事件诊断一直是运维领域一个很重要的工作,事件和时序数据的相关性不仅可以为事件诊断提供很好的启发,而且在帮助进行根因分析等都能提供很好的线索。

数据汇聚处理:高性能事件分析引擎 51CTO

- ◆ 高性能规则引擎
- ◆ 3600条事件/分
- ◆ 数据导入通道
- ◆ 全量HDFS
- ◆ 增量Kafka
- ◆ 数据分析的应用
- ◆ 开源算法的选择
- ◆ DataIDE
- ◆ 阿里云数加 (MaxCompute)
- **♦** StreamCompute

AIOps数据平台能力体系

数据开发服务 数据分析服务 AI建模服务 数据分析 AI建模 数据管理 交互式分析 数据可视化 交互式建模 场景模型 元数据管理 数据接入 数据计算 数据存储 数据集市 数据采集 实时计算 异构数据库 数据安全 数据订阅 数据清洗 离线计算 数据质量 数据分发 复杂事件处理 统一查询

知识库与故障自治管理

告警海洋

短信告警8000条/天

单人最高750条/天

邮件最多900封/天

如何从错综复杂的运维数据中形成知识库

要实现的目标

IT运维管理化繁为简

确保业务和SLA服务级别

优化效益和成本

监控

规划

修复

隔离

自动执行

优化

被动

主动

机器学习 — 智

◆ 数据

◆ 标注

◆ 工具

◆ 应用

策略知识库的构建 — 深

基于架构 基于经验 基于概率

收敛告警事件

基于规范 基于分工

产生告警事件

基于数据 基于模型

提高事件处理能力

企业内部知识库构建

AlOps的应用场景分析

效率提升方向

智能变更

智能问答

智能决策

容量预测

质量保障方向

异常检测

故障诊断

故障预测

故障自愈

成本管理方向

成本优化

资源优化

容量规划

性能优化

减少对人的依赖,信任机器,实现自判自断自决

智能运维的终极可行目标: 1. 日常工作都能自动完成 2.运维人员能够独立进行数据分析

感谢观看

Thank you for watching

