

IN THE CLAIMS

1. Cancelled.
2. (Previously presented) A method according to claim 8 wherein administration is on as needed basis.
3. (Currently amended) A method according to claim 8 where the alpha-2-delta ligand is selected from:

(XXXII) ; or a pharmaceutically acceptable derivative

thereof, wherein R^1 and R^2 are each independently selected from H, straight or branched alkyl of 1-6 carbon atoms, cycloalkyl of from 3-6 carbon atoms, phenyl and benzyl, subject to the proviso that, except in the case of a tricyclooctane compound of formula (XVIII), R^1 and R^2 are not simultaneously hydrogen;

compounds of formula (XXXVIII);

wherein X is a carboxylic acid or carboxylic acid bioisostere;

n is 0, 1 or 2; and

~~R¹, R^{1a}, R², R^{2a}, R³, R^{3a}, R⁴ and R^{4a} are independently selected from H and C₁-C₆ alkyl, or~~

~~R¹ and R² or R² and R³ are taken together to form a C₃-C₇ cycloalkyl ring, which is optionally substituted with one or two substituents selected from C₁-C₆ alkyl, or a pharmaceutically acceptable salt thereof.~~

Compounds of formula (XXXIX):

wherein:

~~n is 0 or 1, R⁴ is hydrogen or (C₁-C₆)alkyl; R² is hydrogen or (C₁-C₆)alkyl; R³ is hydrogen or (C₁-C₆)alkyl; R⁴ is hydrogen or (C₁-C₆)alkyl; R⁵ is hydrogen or (C₁-C₆)alkyl and R² is hydrogen or (C₁-C₆)alkyl, or a pharmaceutically acceptable salt thereof.~~

4. (Currently Amended) A method according to claim 8 where the alpha-2-delta ligand is selected from:

(II)

Patent Application
Attorney Docket No. PC26098A
Confirmation No. 5420

(XXXII) (XXXIII) ; or a pharmaceutically acceptable derivative thereof, wherein R¹ and R² are each independently selected from H, straight or branched alkyl of 1-6 carbon atoms, cycloalkyl of from 3-6 carbon atoms, phenyl and benzyl, subject to the proviso that, except in the case of a tricyclooctane compound of formula (XVIII), R¹ and R² are not simultaneously hydrogen; and

compounds of formula (XXXVIII):

wherein X is a carboxylic acid or carboxylic acid bioisostere;

n is 0, 1 or 2; and

R¹, R^{1a}, R^{2a}, R^{3a}, R⁴ and R^{4a} are H and R² and R³ are independently selected from H and methyl, or R^{1a}, R^{2a}, R^{3a} and R^{4a} are H and R¹ and R² or R² and R³ are taken together to form a C₄-C₅-cycloalkyl ring, or pharmaceutically acceptable salt thereof;

Compounds of formula (XXXIX):

wherein:

~~R¹ is methyl, ethyl, n-propyl or n-butyl, R² is methyl, R³—R⁶ are hydrogen and n is 0 or 1, or a pharmaceutically acceptable salt thereof, wherein compounds are in the 3S,5R configuration.~~

5. (Currently Amended) A method according to claim 8 where the alpha-2-delta ligand is selected from:

~~pregabalin (II), (1 α ,3 α ,5 α)(3-amino-methyl-bicyclo[3.2.0]hept-3-yl)-acetic acid (III'),~~

(III')

~~[(1R,5R,6S)-6-(Aminomethyl)bicyclo[3.2.0]hept-6-yl]acetic acid (XI); and~~

(XI)

~~(2S,4S)-4-(3-Chlorophenoxy)-pyrrolidine-2-carboxylic acid (XXXIV)~~

(XXXIV)

6. (Previously Amended) A method according to claim 8 where the alpha-2-delta ligand is [(1R,5R,6S)-6-(Aminomethyl)bicyclo[3.2.0]hept-6-yl]acetic acid or (2S, 4S)-4-(3-Chloro-phenoxy)-pyrrolidine-2-carboxylic acid.

7. (Previously Amended) A method according to claim 8 where the alpha-2-delta ligand is [(1R,5R,6S)-6-(Aminomethyl)bicyclo[3.2.0]hept-6-yl]acetic acid

8. (Previously presented) A method of treating premature ejaculation comprising administering a therapeutically effective amount of an alpha-2-delta ligand, or a pharmaceutically acceptable derivative thereof, to a patient in need of such treatment.

9. (Previously amended) A method as claimed in claims 3-8, where administration is on an as needed basis.

10. (Cancel)

11. (Previously Amended) A pharmaceutical product comprising a therapeutically effective amount of an alpha-2-delta ligand and a therapeutically effective amount of apomorphine, a dopamine receptor antagonist, a serotonin receptor antagonist or modulator, an alpha-adrenergic receptor antagonist, an oxytocin receptor antagonist or a

vasopressin receptor antagonist as a combined preparation for simultaneous, separate or sequential use in the treatment of premature ejaculation.

12. (Previously Amended) A pharmaceutical product comprising a therapeutically effective amount of an alpha-2-delta ligand and a therapeutically effective amount of apomorphine, a dopamine receptor antagonist, a serotonin receptor antagonist or modulator, an alpha-adrenergic receptor antagonist, an oxytocin receptor antagonist or a vasopressin receptor antagonist as a combined preparation for simultaneous, separate or sequential use in the treatment of premature ejaculation where the alpha-2-delta ligand is as defined in any of claims 3-7.

13. (Previously presented) A method as recited in claim 8 wherein the alpha -2-ligand has a binding affinity of less than 100nM.

14. (Previously presented) A method as recited in claim 9 wherein the alpha -2-ligand has a binding affinity of less than 100nM.

15. (Previously presented) A method as recited in claim 8 wherein the alpha -2-ligand has a binding affinity of less than 50nM.

16. (Previously presented) A method as recited in claim 9 wherein the alpha -2-ligand has a binding affinity of less than 50nM.