Feuille 4

Exercice 1. Soit B_t un Mouvement Brownien. Pour quelles valeurs de a et $b \in \mathbb{R}$ le processus

$$Z_t = \int\limits_0^t s^a e^{bB_s} dB_s$$

est bien définie?

Pour quelles valeurs a et $b \in \mathbb{R}$ le processus Z est une martingale de carré intégrable.

Exercice 2. Montrer que

(1)
$$\int_{0}^{t} B_{s} dBs = \frac{1}{2} B_{t}^{2} - \frac{1}{2} t$$

$$(2) \int_{0}^{t} s dB s = t B_t - \int_{0}^{t} dB s$$

$$(1) \int_{0}^{t} B_{s}dBs = \frac{1}{2}B_{t}^{2} - \frac{1}{2}t$$

$$(2) \int_{0}^{t} sdBs = tB_{t} - \int_{0}^{t} dBs$$

$$(3) \int_{0}^{t} B_{s}^{2}dBs = \frac{1}{3}B_{t}^{3} - \int_{0}^{t} dBs$$

Exercice 3. Soit B_t un Mouvement Brownien standard. calculer l'équation différentielle stochastique i.e. dZ_t , des processus suivants:

- (1) $Z_t = (X_t)^2$ où $dX_t = \mu X_t dt + \sigma X_t dB_t$. (2) $Z_t = 3 + t + e^{B_t}$ (3) $Z_t = e^{\alpha t}$

- (4) $Z_t = \int_0^t g(s)dBs$ (5) $Z_t = e^{\alpha B_t}$ (6) $Z_t = e^{\alpha X_t}$ où $dX_t = \mu dt + \sigma dB_t$

Exercice 4. Pour $\lambda > 0$, soit

$$X_t = \int\limits_0^t e^{-\lambda s} dBs$$

Montrer que $X_t = e^{-\lambda t} B_t + \lambda \int_{0}^{t} e^{-\lambda s} Bs ds$

Exercice 5. Montrer que $X_t = \int_0^t \sin s dBs$ est bien définie

- i) Montrer que X_t est un processus Gaussien et calculer $E\left(X_t\right)$ et $E\left(X_sX_t\right)$
- ii) Calculer $E(X_t/\mathcal{F}_s)$
- iii) Montrer que $X_t = \sin t B_t \int_{\hat{s}}^{t} \cos s B_s ds$

Exercice 6. 1) En utlisant la formule d'Itô, montrer que $M_t = B_t^3 - 3 \int_0^t B_s ds$ est une martingale

- 2) Utliser la formule d'Itô pour montrer que $tB_t = \int\limits_0^t B_s ds + \int\limits_0^t s dB_s$
- 3) Vérifier si le processus $X_t = B_t^3 3tB_t$ est une martingale

Exercice 7. Utiliser la formule d'Itô pour calculer $E\left(B_t^6\right)$.

1