Exercice 1 (Question de cours.)

Donner l'énoncé ainsi que la démonstration du résultat de cours concernant les intégrales de Riemann.

EXERCICE 2 (Question de cours.)

Donner l'énoncé ainsi que la démonstration du résultat de cours concernant les règles de comparaison pour des fonctions positives.

EXERCICE 3 (Exercice préparé.)

Préciser la nature de l'intégrale

$$\int_0^{+\infty} \frac{\ln(1+t)}{t^{3/2}} dt.$$

EXERCICE 4 (Exercice préparé.) On pose, pour tout $(n, p) \in \mathbb{N}^2$,

$$I_{n,p} = \int_0^1 t^n (\ln(t))^p dt.$$

- 1. Justifier que pour tout $(n, p) \in \mathbb{N}^2$, l'intégrale $I_{n,p}$ est convergente.
- 2. Calculer $I_{n,0}$ pour tout $n \in \mathbb{N}$.
- 3. Établir une relation de récurrence entre $I_{n,p}$ et $I_{n,p+1}$.
- 4. En déduire la valeur de $I_{n,p}$.

Exercice 5

Soit $f:[1,+\infty[\to\mathbb{R}$ une fonction continue telle que l'intégrale $\int_1^{+\infty} f(t)dt$ converge. Montrer que pour tout nombre réel a>0, l'intégrale

$$\int_{1}^{+\infty} \frac{f(t)}{t^{a}} dt$$

converge.

Exercice 6

Étudier la nature des intégrales suivantes :

1)
$$\int_0^1 \frac{\cosh(t) - \cos(t)}{t^{5/2}} dt$$
 2) $\int_{\frac{2}{\pi}}^{+\infty} \ln\left(\cos\frac{1}{t}\right) dt$ 3) $\int_0^{+\infty} \frac{\sqrt{t}\sin(1/t^2)}{\ln(1+t)} dt$

Exercice 7

Soit $f:]0,1[\to \mathbb{R}$ une fonction continue, croissante, telle que l'intégrale $\int_0^1 f(t)dt$ converge.

1. Montrer que

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right) = \int_0^1 f(t)dt.$$

2. (Application.) Montrer que pour tout nombre réel $\alpha > 0$, on a

$$\sum_{k=1}^{n} k^{\alpha-1} \sim \frac{n^{\alpha}}{\alpha} \text{ lorsque } n \to +\infty.$$

Exercice 8

Pour tout $n \in \mathbb{N}$, on pose

$$I_n = \int_0^1 (\ln x)^n dx.$$

Justifier l'existence de I_n , puis calculer sa valeur par récurrence.

Exercice 9

Étudier la nature des intégrales suivantes :

1)
$$\int_0^{+\infty} e^{-t^2} dt$$
 2) $\int_0^{+\infty} x \sin(x) e^{-x} dx$ 3) $\int_0^1 \frac{dt}{(1-t)\sqrt{t}}$

Exercice 10

Soit $f: [0, +\infty[\to \mathbb{R} \text{ une fonction continue. On suppose que } \int_0^{+\infty} f(t)dt$ converge, et soit (x_n) et (y_n) deux suites tendant vers $+\infty$.

- 1. Démontrer que $\int_{x_n}^{y_n} f(t)dt$ vers 0.
- 2. En déduire que l'intégrale $\int_0^{+\infty} e^{-t \sin t} dt$ diverge.

Exercice 11

Soit $f: [0, +\infty[\to \mathbb{R} \text{ continue par morceaux et intégrable.}]$

- 1. Démontrer que, pour tout A>0 et tout $\varepsilon>0$, il existe $x\geq A$ tel que $|xf(x)|\leq \varepsilon$.
- 2. En déduire l'existence d'une suite (x_n) tendant vers $+\infty$ telle que $(x_nf(x_n))$ tend vers 0.

Exercice 12

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 telle que f et f' soient intégrables sur \mathbb{R}_+ . Démontrer que f tend vers 0 en $+\infty$.