$\iiint\!\!\int\!\!\!\int\!\!\!\int\!\!\!\int\!\!\!\left[\frac{1}{6}\left(2\,t_{1}^{\cdot}\,\mathcal{A}^{\alpha\,\prime}_{\alpha}\,\mathcal{A}_{\beta}^{\beta}+6\,\mathcal{A}^{\alpha\beta\chi}\,\,\sigma_{\alpha\beta\chi}+6\,f^{\alpha\beta}\,\,\tau\left(\Delta+\mathcal{K}\right)_{\alpha\beta}-4\,t_{1}^{\cdot}\,\mathcal{A}_{\alpha\beta}^{\beta}\,\partial_{}f^{\alpha\,\prime}+4\,t_{1}^{\cdot}\,\mathcal{A}_{\beta}^{\beta}\,\partial_{}f^{\alpha}_{\alpha}-2\,t_{1}^{\cdot}\,\partial_{\beta}f^{\alpha}_{\beta}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\beta}+6\,\mathcal{A}^{\alpha\beta\chi}\,\,\sigma_{\alpha\beta\chi}+6\,f^{\alpha\beta}_{\alpha}+2\,t_{1}^{\prime}\,\mathcal{A}_{\alpha\beta}^{\beta}+4\,t_{1}^{\prime}\,\mathcal{A}_{\beta}^{\beta}\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha}-2\,t_{1}^{\prime}\,\partial_{\beta}f^{\alpha}_{\alpha} \partial_{i}f^{\alpha\,i}\,\partial_{\theta}f_{\alpha}^{\ \theta}+4\,t\,.\,\,\partial^{i}f_{\alpha}^{\alpha}\,\partial_{\theta}f_{i}^{\ \theta}+8\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\,i\,\theta}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}+4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{i\,\theta\alpha}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}+4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{i\,\theta\alpha}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}+4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}+4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}+4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}+4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}+4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}+4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}+4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}+4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}-4\,r\,.\,\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}$ $2\,r_{2}\,\partial_{i}\mathcal{A}_{\alpha\beta\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,i}\,+\,2\,r_{2}\,\partial_{\theta}\mathcal{A}_{\alpha\beta\,i}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,i}\,-\,4\,r_{2}\,\partial_{\theta}\mathcal{A}_{\alpha\,i\,\beta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,i}\,-\,6\,t_{1}\,\partial_{\alpha}f_{i\,\theta}\,\partial^{\theta}f^{\alpha\,i}\,-\,3\,t_{1}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{2}\,\partial_{\theta}\mathcal{A}_{\alpha\beta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f_{\theta\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,+\,3\,t_{3}\,\partial_{\alpha}f^{\alpha\,i}\,\partial^{\theta}f^{\alpha\,i}\,\partial^{\theta}f$ $t. \frac{\partial_{i} f_{\alpha \theta}}{\partial \theta} \frac{\partial^{\theta} f^{\alpha i}}{\partial \theta} + 3 t. \frac{\partial_{\theta} f_{\alpha i}}{\partial \theta} \frac{\partial^{\theta} f^{\alpha i}}{\partial \theta} + 3 t. \frac{\partial_{\theta} f_{\alpha \alpha}}{\partial \theta} \frac{\partial^{\theta} f^{\alpha i}}{\partial \theta} + 6 t. \mathcal{A}_{\alpha \theta i} \left(\mathcal{A}^{\alpha i \theta} + 2 \partial^{\theta} f^{\alpha i} \right) \right) [t, x, y, z] dz dy dx dt$ **Wave operator** ${\stackrel{0^{\scriptscriptstyle +}}{\cdot}}\mathcal{H}^{\parallel} \stackrel{0^{\scriptscriptstyle +}}{\cdot} f^{\parallel} \stackrel{0^{\scriptscriptstyle +}}{\cdot} f^{\perp}$ ^{0⁺}Æ[∥]† 0

${\stackrel{\mathrm{O}^{+}}{\cdot}}f^{\parallel}$ † 0 0 0 ${\stackrel{0^+}{{}_{\scriptstyle\bullet}}} f^\perp \dagger$ 0 0 0 $k^{2} \stackrel{r}{\overset{-}t} \stackrel{1}{\overset{\cdot}{}}_{\mathcal{A}} \parallel_{\alpha\beta} \stackrel{1^{\star}}{\overset{\cdot}{}}_{\mathcal{A}} \parallel_{\alpha\beta} \stackrel{1^{\star}}{\overset{\cdot}{}}_{\mathcal{A}} \parallel_{\alpha} \qquad \stackrel{1^{-}}{\overset{\cdot}{}}_{\mathcal{A}} \parallel_{\alpha} \qquad \stackrel{1^{-}}{\overset{\cdot}{}}$

0 0

^{0⁻}Æ[∥]†

^{0⁺} σ^{||} †

 $^{0^+}\tau^{\parallel}$ † 0 0 0

 $^{0^{+}}\tau^{\perp}$ †

^{0⁻}σ^{||}†

0 0 0

PSALTer results panel

$^{1^{+}}_{\bullet}\mathcal{A}^{\parallel}$ † lphaeta	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	0	0	0	0				
${}^{1^{+}}_{\bullet}\mathcal{A}^{\perp} \dagger^{lphaeta}$	$-\frac{t_{\frac{1}{1}}}{\sqrt{2}}$	0	Θ	0	Θ	0	0				
$\overset{1^{+}}{\cdot}f^{\parallel} + \overset{\alpha\beta}{\cdot}$		0	Θ	0	0	0	0				
¹⁻-⁄⁄⁄⁄⁄⁄⁄⁄/////////////////////////////	0	0	0	t. -1 6	$ \begin{array}{c} t_{1} \\ \hline 3\sqrt{2} \\ t_{1} \\ \hline 3 \\ 0 \end{array} $	0	$\frac{ikt}{\frac{1}{3}}$				
$^{1^{-}}_{\bullet}\mathcal{A}^{\perp}$ † lpha	Θ	0	0	$\frac{t_{\frac{1}{1}}}{3\sqrt{2}}$	$\frac{t}{\frac{1}{3}}$	0	$\frac{1}{3} i \sqrt{2} kt.$				
${}^{1^{-}}f^{\parallel}\uparrow^{lpha}$	Θ	Θ	Θ	0	Θ	0	0				
¹⁻ f [⊥] † ^α	Θ	0	Θ	$-\frac{1}{3} ikt.$	$-\frac{1}{3} i \sqrt{2} kt$	0	2 K L.	${}^{2^{+}}_{\bullet}\mathcal{F}^{\parallel}_{\alpha\beta}$	$2^+f^{\parallel}_{\alpha\beta}$	$^{2^{-}}_{\bullet}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$	
							$\overset{2^{+}}{\cdot}\mathcal{A}^{\parallel} \uparrow^{\alpha\beta}$ $\overset{2^{+}}{\cdot}f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{t}{2}$	$-\frac{i k t}{\sqrt{2}}$	0	
							$^{2^{+}}_{\bullet}f^{\parallel}\uparrow^{\alpha\beta}$	$\frac{i k t_{\frac{1}{1}}}{\sqrt{2}}$	$k^2 t$	0	
							$\mathcal{A}^{\mathbb{Z}^{-}}\mathcal{A}^{\parallel}$ † $^{\alpha\beta\chi}$	0	0	$\frac{t}{\frac{1}{2}}$	
Saturated propagator											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											

0

6

 $(3+4 k^2)^2 t$

 $(3+4 k^2)^2 t$

6 √2

 $(3+4 k^2)^2 t$

 $(3+4 k^2)^2 t$

0

 $12i\sqrt{2}k$

 $(3+4 k^2)^2 t_1 = (3+4 k^2)^2 t_1$

0

12 i k

 $(3+4 k^2)^2 t$ $12i\sqrt{2}k$

 $(3+4 k^2)^2 t_1$

0

 $24 k^2$

 $(3+4 k^2)^2 t$

 $^{2^{+}}_{\bullet}\tau^{\parallel}\uparrow^{lphaeta}$

 $^{2^{+}}\sigma^{\parallel}_{\alpha\beta}$

 $\frac{2}{\left(1+2\,k^2\right)^2\,t_{\,\underline{1}}} - \frac{2\,i\,\sqrt{2}\,k}{\left(1+2\,k^2\right)^2\,t_{\,\underline{1}}}$

 $^{2^{-}}\sigma^{\parallel}_{\alpha\underline{\beta}\underline{\chi}}$

0

 $2^{+}_{\bullet} \tau^{\parallel}_{\alpha\beta}$

20

$1^{+}_{-7} \parallel +^{\alpha\beta} \mid \frac{i\sqrt{2}\ k}{t_{.}^{+}+k^{2}t_{.}^{+}} - \frac{i\,k}{(1+k^{2})^{2}\,t_{.}^{+}} \, \frac{k^{2}}{(1+k^{2})^{2}\,t_{.}^{+}}$

0

0

 $^{1^{-}}\sigma^{\parallel}\uparrow^{\alpha}$

 $^{1^{-}}\sigma^{\perp}$ $^{\alpha}$

 $\mathbf{1}^{-}_{\bullet} \mathbf{1}^{\parallel} \mathbf{1}^{\alpha}$

 $^{1^{-}}\tau^{\perp}\uparrow^{\alpha}$

 $\mathbf{1}^{\cdot}_{\cdot}\sigma^{\parallel}_{\alpha\beta}$ $\mathbf{1}^{\cdot}_{\cdot}\sigma^{\perp}_{\alpha\beta}$ $\mathbf{1}^{\cdot}_{\cdot}\tau^{\parallel}_{\alpha\beta}$

 $-\frac{\sqrt{2}}{t \cdot k^2 t \cdot 1} - \frac{i \sqrt{2} k}{t \cdot k^2 t \cdot 1}$

0

0

0

	²⁻ σ [∥] † ^{αβχ}	0	0	$\frac{2}{t}$
Source constra	nints			
Spin-parity form	Covariant form		Multipl	licities
0° r [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$		1	
Θ⁺τ∥ == Θ	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$		1	
^{0⁺} • σ == 0	$\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta} = 0$		1	
$\frac{2 i k \cdot 1^{-} \sigma^{\parallel \alpha} + 1^{-} \tau^{\perp \alpha} == 0}{}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}{}_{\tau}\left(\Delta+\mathcal{H}\right)^{\beta\chi}+2\left(\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta}{}_{\beta}{}^{\chi}-\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\sigma^{\beta\alpha}{}_{\beta}\right)==\partial_{\chi}\partial^{\chi}\partial^{\alpha}\sigma^{\beta}\sigma^{\alpha}\sigma^{\beta}\sigma^{\alpha}\sigma^{\beta}\sigma^{\alpha}\sigma^{\beta}\sigma^{\alpha}\sigma^{\beta}\sigma^{\beta}\sigma^{\alpha}\sigma^{\beta}\sigma^{\beta}\sigma^{\beta}\sigma^{\alpha}\sigma^{\beta}\sigma^{\beta}\sigma^{\beta}\sigma^{\beta}\sigma^{\beta}\sigma^{\beta}\sigma^{\beta}\sigma^{\beta$	$^{\partial}_{\beta}$ τ (Δ+ \mathcal{K}) $^{\alpha\beta}$	3	
1⁻ _τ ∥ ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau} \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$		3	
$1^{-}_{\bullet}\sigma^{\parallel}^{\alpha} = 1^{-}_{\bullet}\sigma^{\perp}^{\alpha}$	$\partial_{\chi}\partial^{\alpha}\sigma^{\beta}_{\ \beta}^{\ \chi} + \partial_{\chi}\partial^{\chi}\sigma^{\beta\alpha}_{\ \beta} = 0$		3	
$i k \frac{1}{\cdot} \sigma^{\perp} \alpha^{\beta} + \frac{1}{\cdot} \tau^{\parallel} \alpha^{\beta} = 0$	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2 \partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha}$	χαβ ==	3	
	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$			
$-2 i k \frac{2^+ \sigma}{2^+ \sigma} \ ^{\alpha \beta} + \frac{2^+ \tau}{2^+ \tau} \ ^{\alpha \beta} = 0$	$-i\left(4\;\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\delta}+2\;\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi}_{}-\right.$		5	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \chi} -$			
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}{}_{\tau}(\Delta+\mathcal{K})^{\chi\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}{}_{\tau}(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}{}_{\tau}(\Delta+\mathcal{K})^{\beta\alpha}+$			
	$4 i k^{X} \partial_{\epsilon} \partial_{X} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\delta} - 6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{X} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{X} \partial^{\beta} \sigma^{\delta \alpha \epsilon} +$			
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \beta \delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi \tau} (\Delta + \mathcal{K})^{\gamma}$	(δ_		

 $2 \eta^{\alpha\beta} \underbrace{\partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta}_{\tau} (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta}^{\epsilon}}_{} = 0$

Massive spectrum

Total expected gauge generators:

Pole residue: $\left| -\frac{1}{r} \right| > 0$

		2				
	Square mass:	$\frac{\frac{t}{1}}{\frac{r}{2}} > 0$				
	Spin:	0				
	Parity:	Odd				
ľ	Massless spectrum					

(No particles)

Unitarity conditions

r. < 0 && t. < 0