Department of Computer Science Ashoka University

Design and Analysis of Algorithms: CS-3210-1

Programming Assignment 1 - Proof of Correctness

Name: Dhruman Gupta

Here, I will be detailing the proof of correctness of the algorithm to show that it indeed computes all the maximal layers correctly. The algorithm takes a set of n points, and outputs $k \leq n$ layers, where the $1 \leq i \leq k$ layer is the i^{th} maximal layer.

The Algorithm

Note: for simplicity, we will assume that for each layer i, l_i represents the maximum y value of all elements in layer i.

- 1. Sort the n points in descending order on the x-axis. If two points share the same x-coordinate, then sort descending on y-axis.
- 2. Initialize an empty list L. Each element in this list will represent a maximal layer. Also, L[i] will represent the i^{th} maximal layer. Each layer is represented by a list, too, sorted descending on the x-axis. Note, that given an index, we can access the layer in O(1) time. So, accessing the greatest y-coordinate in a layer can be done in O(1) time.
- 3. Begin sweeping from the right i.e, the first point of the sorted array.
- 4. At each element $i = (x_i, y_i)$, we want to assign i to the correct layer. Do a binary search on the highest y-coordinate of each layer in L, to find the greatest layer j such that $y_i > m_j$.
 - (a) If such a layer exists, assign i to layer j.
 - (b) If no such layer exists, then create a new layer and assign i to it. Add this to the end of L.
- 5. When all points have been assigned to a layer, return L.

This algorithm correctly computes the maximal layers. We will now prove this.

Proof of Correctness

Below are a set of claims that will then be used to prove the correctness of the algorithm.

Claim: $i < j \implies l_i \ge l_j$ - i.e, L is sorted in descending order of l_i . This will also be an invariant.

Proof:

Initialization: The claim is vacously true at the beginning of the algorithm, as L is empty.

Maintenance: Assume that the claim is true at some step $i-1 \ge 0$. We will show that it is true at step i. We are inserting the ith = (x_i, y_i) element in the sorted set. The insertion step finds:

$$j = \underset{k, \text{ s.t } y_i > l_k}{\arg\max} l_k$$

Now, we have two cases: such a j exists, or not.

- 1. j exists. Then, $y_i > l_j$, also $y_i \le l_{j-1}$, because if it does not, then arg max would have chosen j-1. So, after y_i is added to layer j, l_j will be updated to y_i . Also, l_{j-1} will remain the same. So, the claim is true.
- 2. j does not exist. Then, a new layer is created, and y_i is added to it. The new layer will have $l_{k+1} = y_i$. We know that $\forall j, y_i \leq l_j$. So, this implies that $l_{k+1} \geq l_j$ for all j. So, the claim is true.

So, L is indeed sorted in descending order of l_i .

Claim: The algorithm computes all the maximal layers. Consider the following invariants:

- 1. L is sorted in descending order of l_i . (proven)
- 2. At step i, $\forall k, L[k]$ has all the elements in k^{th} maximal layer from the first i elements of the sorted array.

Trivially, if these invariants hold, then the final output L is correct. I will prove the second invariant.

Proof:

Need to show the initialization, maintainance, and termination steps.

Initialization: The claim is vacously true at the beginning of the algorithm, as i = 0. L is empty.

Maintenance: Assume that the claim is true at some step $i-1 \ge 0$. We will show that it is true at step i. We are inserting the $i^{th} = (x_i, y_i)$ element in the sorted set. Say we insert point i into the j^{th} layer. This insertion would be correct if and only if:

- 1. The point i dominates no point in layer j, and is dominated by at least 1 point in layer j-1 (if $j \neq 1$), and that no point in layer j+1 dominates i (if $j \neq k$ where k are the total number of maximal layers).
- 2. For all future insertions, the above holds for this point.

As we are sweeping in descending order, we know that of all the points in all built-up layers, point i has the lowest x value. If we insert into layer j, it means that $l_{j-1} \ge y_i$. This implies that that particular point in layer j-1 dominates point i. Also, it means that $l_{j+1} < y_i$. So no point in the layer j+1 has a y value more than i. Thus, no point in the next layer dominates i.

This concludes the proof that it is correct.

(P.S.) I know this proof is not complete and wrong in some places (need to show that the termination implies maximal layers), due to time restrictions I have omitted to write that.