通信总线协议

通信总线协议

- 一、UART协议
 - 1. UART帧格式
 - 2.硬件连接
- 二、IIC协议
 - 1.概述
 - 2.信号实现
 - 3.典型IIC时序
- 三、SPI协议
 - 1. SPI简介

通信基础

1. 并行和串行

并行通信: 并行是指多比特数据同时通过并行线进行传送,这样数据传送速度大大提高,但并 行传送的线路长度受到限制,因为长度增加,干扰就会增加,数据也就容易出错。

串行通信:将数据逐位按顺序在一条传输线上传送。优点是传输线少,长距离传送时×成本低, 缺点是传输速率低。

2. 传输方向

- 1. 单工通信
- 2. 双工通信

- 1. 半双工
- 2. 全双工
- 3. 波特率

一、UART协议

串口通信是一种, 串行 的全双工 的通行协议。

1. UART帧格式

- 1. 空闲位: 空闲时数据线为高电平状态,代表无数据传输。(不发数据时规定)
- 2. 起始位: 发送1位逻辑0 (低电平), 开始传输数据。
- 3. 数据位:可以是5~8位的数据,先发低位,再发高位 ,一般常见的就是8位 (1个字节),其他的如7位的ASCII码。
- 4. 校验位: 奇偶校验,将数据位加上校验位,1的位数为偶数(偶校验),1的位数4为奇数(奇校验)。
- 5. 停止位: 停止位是数据传输结束的标志,可以是1/1.5/2位的逻辑1(高电平)。必须有
- 6. 为何不能连续发送数据,是因为时钟不同步导致的,所以一次只能发送一次数据,没发送一次数据消除一次累计误差。

2.硬件连接

二、IIC协议

IIC总线是一种串行 的半双工 总线、主要用于近距离,低速的 芯片之间的通行,IIC总线有两根双向的信号线,一根是SDA用于接收数据,一根时钟线SCL用于通信双方时钟的同步。

1.概述

1. 简介

IIC总线是一种多主机总线,连接在IIC总线上的器件分为主机和从机,主机有权发起和结束一次通信,而从机只能被主机呼叫;

总线上存在多个主机, 当多个主机同时启动时, IIC具备冲突检测 (检测到多个主机的同时启动时, 产生的冲突) 和仲裁 (选择哪个主机进行启动)的功能, 防止错误产生。

每一个连接到IIC总线上的器件都有唯一的地址(7 bit),且每个器件都可以作为主机也可以作为从机。总线上的器件增加和删除不影响其他器件正常工作。

2. 通信过程

- 1 1. 主机发送起始信号启动总线
- 2 2. 主机发送一个字节数据指明从机地址和后续字节的传送方向
- 3 /* 从机地址占高七位,最后一位是读写位, ❷表示主机给从机发数据,1表示从机给主机发数据 */
- 4 3. 被寻址的从机/* 发送应答信号 */回应主机
- 5 // 当确定一次通信方向时,通信方向是不能改变的,只有重新对设置发送还是接收设备才能改变 方向
- 6 4. 发送器发送一个字节数据
- 7 5. 接收器发送应答信号回应发送器
- 8 ... (循环步骤4、5)
- 9 n. 通信完成后主机发送停止信号释放总线

3. IIC总线寻址方式

IIC总线上传送的数据是广义的,即包括地址,也包括数据。

主机在发送起始信号后必须先发送一个字节的数据(包含7位从机地址,最低位为数据传输方向, O表示主机发送数据,1表示主机接收数据);

从机接收到主机发来的数据后会进行比较,如果与自己地址相同,则会认为自己被主机寻址,然后根据第8为将自己定为发送器或接收器。

2.信号实现

1. 起始信号和停止信号

SCL为高电平时, SDA由1变0表示起始信号。

SCL为高电平时, SDA由O变1表示停止信号。

起始信号和停止信号都是由主机发送, 起始信号产生后总线处于占用状态, 停止信号产生后总线处于空闲状态。

2. 字节传送与应答

IIC发送字节必须是8位的

数据发送时, 先发的是高位, 后发的是低位和串口不同

当发送器发送完8位长度数据后,接收器需要给个1位的应答信号

应答信号是接收器发送的

3. 同步信号

SCL为低电平期间,允许发送器将SDA上的数据进行改变

SCL为高电平期间,不允许发送器将SDA上的数据进行改变,且接收器可以对SDA上数据进行读取。

3.典型IIC时序

1. 主机向从机发送数据

2. 从机向主机发送数据

3. 主机先向从机发送数据, 然后从机在向主机发送数据

注意: 交换数据发送方向时, 主机可以不用向从机发送停止信号。

三、SPI协议

1. SPI简介

SPI 是高速的、全双工、同步的串行通信总线,采用主从方式工作。一般有一个主机多个从机, SPI至少有四根线。分别是MISO(主设备输入从设备输出),MOSI(主设备输出从设备输入), SCLK(时钟线),CS(片选线)。

- 1. 寻址方式: 通过对CS线控制, 选择需要通信的从设备。
- 2. 通信过程

数据传送时, 先传送高位, 后传送低位。

无需应答信号即可开始下一个字节的传送。

3. 极性和相位

两种极性, 两种相位