module 5 final project

ASAD RAHMAN

PROJECT AIMS

Apply transfer learning techniques to improve model accuracy and efficiency to improve diagnosis of retinal diseases

METHODOLOGY

DATASET: 84,484 OCT Retinal Images

CREATE and TEST MODEL

IMPROVE MODEL with TRANSFER LEARNING

Druser

Normal

piabetic Macular Edema

THE DATA

- Optical Coherence Tomography
- Images of the Retina
- 4 Classifications of retinal state

NEURAL NETWORK:

BASELINE MODEL

- Base Keras model obtained 83% accuracy on training images
- Only 47% accuracy on testing images

Convolutional Neural Network

- Testing image accuracy 69%
 - 22% increase on individual subtleties

Greater usability with newer images

Pretrained Network

- O VGG19
- Obtained 88% accuracy on training set
- Massive improvement on testing set –78% accuracy
 - 31% increase from baseline model

Future Recommendations

MORE REFINED PREPROCESSING
OF IMAGES COULD RESULT IN
MORE EFFICIENT MODEL

ATTEMPT TRANSFER LEARNING WITH A DIFFERENT NETWORK

INTRODUCE BOTTLENECK FEATURES TO REDUCE RUNTIME

Thank You

Questions?