Last name	
First name	

LARSON—MATH 601—HOMEWORK WORKSHEET h05 Vector Spaces.

The space of a functions from a set S to a field \mathbb{F} is a vector space.

Let
$$V = \{ f : S \to \mathbb{F} | \text{ f is a function} \},$$

with an "addition" $f +_V g$ (for $f, g \in V$) defined by the rule $(f +_V g)(s) = f(s) +_F g(s)$

and a "scalar multiplication" $c \cdot f$ (for $c \in \mathbb{F}$, $f \in V$) defined by $(c \cdot f)(s) = cf(s)$.

For the purpose of this first example only **only** indicate the field addition by $+_F$ and the vector addition by $+_V$. They are **different**. I also indicated the scalar multiplication operator with a \cdot and the field multiplication by concatenation). Its always clear from the context which one is meant, but for one time only carefully distinguish between them.

- 1. Check all the vector space axioms for this example.
 - (a) vector addition is commutative,
 - (b) vector addition is associative,
 - (c) there is an additive identity "0" (in V),
 - (d) there are additive inverses " $-\alpha$ " for each $\alpha \in V$,
 - (e) $1 \cdot \alpha = \alpha$ (for $1 \in \mathbb{F}$ and $\alpha \in V$),
 - (f) $(c_1c_2) \cdot \alpha = c_1 \cdot (c_2 \cdot \alpha)$ (for $c_1, c_2 \in \mathbb{F}, \alpha \in V$),
 - (g) $c \cdot (\alpha_1 +_V \alpha_2) = c \cdot \alpha_1 +_V c \cdot \alpha_2$ (for $c \in \mathbb{F}$, $\alpha_1, \alpha_2 \in V$), and
 - (h) $(c_1 +_F c_2) \cdot \alpha = c_1 \cdot \alpha +_V c_2 \cdot \alpha$ (for $c_1, c_2 \in \mathbb{F}, \alpha \in V$).
- 2. Let \mathbb{R}^n be the set of tuples (a_1, a_2, \dots, a_n) $(a_i \in \mathbb{R})$.

Show: \mathbb{R}^n is a vector space over \mathbb{R} .