Trading Strategies in Cryptocurrency

Group #18

Yiding "Tim" Xie Tianyu "Tim" Sun Qianfeng Ying Yili Tang Feifei Yan **2018 Spring MATH GR5010**

Prof. Mikhail Smirnov

Presentation Date:

Apr. 30th, 2018

Technology used:

Excel, R, MATLAB, Python

Rehearsal:

Date: Apr. 28th, 2018

Time: 9'55"

Place: Butler Library

People: All group members

Motivation

Date: Apr. 2013 - Apr. 2018

	ВТС	VTI	BND
Annualized Return	2.49315725	0.19047774	0.02052555
Annualized Volatility	2.17052443	0.15149297	0.03915392
Sharpe Ratio	1.13942843	1.2573371	0.52422727

- Risk free rate is gathered from 10-yr US Treasury Rate (2%)
- If you invest \$1 in Apr 2013,
 - \$70.5 (BTC) Max. @ \$140
 - o \$1.85 (VTI)

Asset

Bitcoin

US equity, VTI

US inv grade bonds, BND

o \$1.07 (BND)

Agenda

- Pairs Trading Strategy
 - a. Concept
 - b. Identify correlated instruments/Hypothesis Testing
 - Co-integration Method
 - ii. Distance Method
 - iii. Ratio Method
 - c. Implement enter/exit strategy
 - d. Simulation for future profit
- 2. Two-Factor Momentum & Value Combined Strategy
 - a. Concept
 - b. Portfolio Construction
 - i. Momentum
 - ii. Value
 - c. Performance Analysis
- 3. Drawbacks

Pairs Trading

- A market neutral and profit-making trading strategy in a pair of highly correlated instruments under virtually any market conditions
 - Identify correlated pairs (BTC, LTC, ETH)
 - Identify potential trading opportunities from the price pairs
 - Cointegration test
 - Distance test
 - Ratio test
 - Compute potential future profits using simulation
- Data
 - High frequency data (1/9/2018~4/3/2018)

Identify Trading Opportunities(BTC & ETH)

Test for Correlation

- Cointegration method
 - Assume price follows lognormal distribution
 - Find the linear regression between the prices of two assets, and test for non-increasing error

```
\ln(P_{At}) = \mu + \gamma * \ln(P_{Bt}) + \varepsilon_t
\varepsilon_t = \rho \varepsilon_{t-1} + v_t
|\rho| < 1
```

```
> coint.matrix

ETH BTC LTC XRP

ETH NA 0.9862207 0.9991214 0.9919685

BTC 0.9828900 NA 0.9710207 0.9704971

LTC 0.9953614 0.9705915 NA 0.9957114

XRP 0.9895007 0.9713648 0.9969984 NA
```

```
> ind.matrix
ETH BTC LTC XRP
ETH NA TRUE FALSE TRUE
BTC TRUE NA TRUE TRUE
LTC FALSE TRUE NA FALSE
XRP TRUE TRUE FALSE NA
```

Test for Correlation

- Distance method
 - Find two assets with minimum distance

- Ratio test
 - Test for constant ratio between two assets(ADF)

$$y_{t} = c + \phi y_{t-1} + \beta_{1} \Delta y_{t-1} + \dots + \beta_{p} \Delta y_{t-p} + \varepsilon_{t}$$

$$H_{o}: \phi = 1$$

```
## choicel choice2 P.value
## 1 eth btc 0.918
## 2 ltc btc 0.663
## 3 ltc eth 0.577
## 4 eth xrp 0.557
## 5 ltc xrp 0.263
## 6 btc xrp 0.084
```

Compare Profits (BTC & ETH)

If $S_t > q \rightarrow Short$ position in A, long position in B If $S_t > -q \rightarrow Short$ position in B, long position in A

$$S_t = \mu + \hat{\gamma} * \ln(P_{Bt}) - \ln(P_{At})$$

$$S_t = S_{At}/S_{Bt}$$

> max(q_var[,2]) [1] 6733.704 > max(q_var) [1] 6026.108 > threshold[which.max(q_var)]
[1] 9128.09
> mean(threshold)
[1] 9532.687

> max(q_var)
[1] 5139.072

> threshold[which.max(q_var)]
[1] 0.09540484
> mean(threshold)
[1] 0.0856047

Simulation(BTC & ETH, T=250)

Two Factor Strategy

Factors:

- Momentum:
 - Measured as total return of an index over a specified horizon (trailing 1 month)
 - overweight assets with higher momentum and underweight those with lower momentum
- Value:
 - Comparison of the market capitalization of the currency to fundamental metrics
 - Overweight assets with lower value and underweight those with higher value metric
 - Fundamental Metric: Network Value to Transactions Ratio (NVT) = Network Value (Market Cap) divided by the USD volume transmitted through the blockchain

Currency Selection:

- o BTC, LTC, ETH, XRP, XLM, DASH, XEM
- Criteria: Top 15 market cap, long time horizon since inception, sufficient data points

Time Period:

- Nov. 2015 Mar. 2018
- In relatively high frequency investing where portfolios are rebalanced every day

Two Factor Strategy (Cont'd)

Two Factor Strategy (Cont'd)

- The slopes of the annualized return and volatility lines are simply constant because they are just multiples of each other
- Sharpe ratio increases as target risk level increases

Two Factor Strategy (Cont'd)

- Only 4 out of the 7 cryptocurrencies have data available on the transaction costs
- The other 3 are estimated based on averages
- Most of the time, the T-cost is only few basis points

Drawbacks

- Access to Data
 - a. Transaction costs are only partially gathered
 - b. Shorting fees are not considered
 - c. Inadequate high frequency data resources
- 2. Limited Time Horizon
- 3. Hard but feasible to short cryptocurrency (Bitfinex, Poloniex)
- 4. Market instability

Reference

https://coinmetrics.io/nvt/#assets=btc

https://bitinfocharts.com/comparison/bitcoin-transactionfees.html

https://www.stat.berkeley.edu/users/aldous/Research/Ugrad/Amy Zhang.pdf

https://brage.bibsys.no/xmlui/bitstream/handle/11250/221265/masterthesis.pdf?sequence=1

https://arxiv.org/pdf/1707.03746.pdf

https://www.researchgate.net/publication/273959237 Pairs trading and selection methods is co integration superior

https://bitcointalk.org/index.php?topic=1931802.0

Group Members

Yiding "Tim" Xie	yx2443@columbia.edu
Tianyu "Tim" Sun	ts3092@columbia.edu
Qianfeng Ying	qy2187@columbia.edu
Yili Tang	yt2585@columbia.edu
Feifei Yan	fy2234@columbia.edu