

UNIVERSITY OF COLOMBO, SRI LANKA

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2014/2015 - 2nd Year Examination - Semester 4

IT4405: Computer Networks

PART 2 - Structured Question Paper

2nd August, 2015 (ONE HOUR)

To be	completed by the	candida	ite	
BIT	Examination	Index	No:	

Important Instructions:

- The duration of the paper is 1 (One) hour.
- The medium of instruction and questions is English.
- This paper has **3 questions** and **12 pages**.
- **Answer all questions.** All questions **do not** carry equal marks.
- Write your answers in English using the space provided in this question paper.
- Do not tear off any part of this answer book.
- Under no circumstances may this book, used or unused, be removed from the Examination Hall by a candidate.
- Note that questions appear on both sides of the paper. If a page is not printed, please inform the supervisor immediately.
- Calculators are **not** allowed.

_					
(1	uesti	nne.	Anc	WAr	24
•	uesu	ula	Alla		Cu

Indicate by a cross (x), (e.g. X) the numbers of the questions answered.

	Quest	ion nun	nbers	
To be completed by the candidate by marking a cross (x).	1	2	3	
To be completed by the examiners:				

					(1 ma
t is the maxim	um number (of possible h	osts on each	network?	
					(1 ma
e down the us	able address	ranges of the	e first three n	etworks.	
					at is the maximum number of possible hosts on each network? te down the usable address ranges of the first three networks.

Index	Nο													
muca	INO							 						

iv. Write down the broadcast addresses for the first three networks.

(1 marks)

(b)	Consider the network topology shown below where each node initially knows the link cost of
	its neighbours. Assuming a distance vector routing algorithm run by each node, show the
	distance table entries at node E after the convergence.

(3 marks)

Index No		
much 110	 	

(c) Fill in each box of the table by term or terms most appropriate for the given application type, chosen from the lists given.

(8 marks)

Application Type	Example application protocol	Transport layer protocol	Network architecture	QoS requirements
Plain old email				
On-line game				
browser based				
application				
skype				
software-as-a-service				

Example application protocol: POP, SMTP, HTTP, generic (that is OS specific API based application),

RTP, RTSP

Transport layer protocol: TCP, UDP

Network architecture: client-server, peer to peer, hybrid of client-server and peer-to-peer

QoS requirements: QoS required, QoS not essential

a es a es				
30 to 50 to				
Consider of T.	er a shared bus Ethernet ru	inning the CSMA/CD	protocol. The bus has	a one way propagati (4 ma)
			on the bus? State your	.•

Index No												_	
----------	--	--	--	--	--	--	--	--	--	--	--	---	--

	Calculate the minimum packet length permissible on a 1Gbps, 1km Ethernet. Assume propagation velocity of $2x10^8$ m/s.	e a signa
pres	ss whether each of the following statements is either true or false . If, false , brief	efly exp
ıy.		
		(10 m
i.	IEEE 802.3 Ethernet and IEEE 802.11 WLAN use identical frame structures.	(=

(c)

	receive a corresponding CTS frame.
iii.	ARP broadcasts are typically limited to a subnet or a VLAN.
iv.	Token passing multi access schemes are preferred over contention based access schemes fo carrying real time data.
iv.	
iv.	
iv.	
iv.	carrying real time data.
	CSMA/CD works well with wireless LANs which are broadcast media and it is easy for any give
	CSMA/CD works well with wireless LANs which are broadcast media and it is easy for any give

vii. BG	P is the unique Inter-Autonomous System routing protocol available on the Internet
	IP forwarding, two successive packets will take identical paths from a common router t me destination, based on their source IP address.
sa ix. Th	me destination, based on their source IP address. e VLAN concept saves time and money because network reconfiguration is done throug
sa ix. Th	me destination, based on their source IP address.
sa ix. Th	me destination, based on their source IP address. e VLAN concept saves time and money because network reconfiguration is done throug
sa ix. Th	me destination, based on their source IP address. e VLAN concept saves time and money because network reconfiguration is done throug
sa ix. Th	me destination, based on their source IP address. e VLAN concept saves time and money because network reconfiguration is done throug
sa ix. Th	me destination, based on their source IP address. e VLAN concept saves time and money because network reconfiguration is done throug
ix. Th	me destination, based on their source IP address. e VLAN concept saves time and money because network reconfiguration is done throug

Index N	0														

I then to network C .		(3

any occupies two buildings d finance and the other hou own below.			
	Floor 3	Development	
	Floor 2	Planning	
Finanace	Floor 1	Marketting	
General Administration	Floor 0	Human Resource Management	
Building A		Building B	
e backbone network design other supporting infrastruct			

Index No				
----------	--	--	--	--

		l will expan							(5 marks
(c) T	The compar	y's Intranet	is to be co	onnected	to the Inte	rnet. Show	how such	a conne	ection can b
	The comparecurely esta	y's Intranet blished.	is to be co	onnected	to the Inte	rnet. Show	how such	a conno	ection can b
	The comparecurely esta	y's Intranet blished.	is to be co	onnected	to the Inte	rnet. Show	how such	a conne	ection can b
	The comparecurely esta	y's Intranet blished.	is to be co	onnected	to the Inte	rnet. Show	how such	a conno	ection can b
	The comparecurely esta	y's Intranet blished.	is to be co	onnected	to the Inte	rnet. Show	how such	a conno	ection can b
	The comparecurely esta	y's Intranet blished.	is to be co	onnected	to the Inte	rnet. Show	how such	a conno	ection can b
	The comparecurely esta	y's Intranet blished.	is to be co	onnected	to the Inte	rnet. Show	how such	a conno	ection can b
	The comparecurely esta	y's Intranet blished.	is to be co	onnected	to the Inte	rnet. Show	how such	a conno	ection can b
	The compare ecurely esta	y's Intranet blished.	is to be co	onnected	to the Inte	rnet. Show	how such	a conno	ection can b
	The compare ecurely esta	y's Intranet blished.	is to be co	onnected	to the Inte	rnet. Show	how such	a conno	ection can b
	The comparecurely esta	y's Intranet blished.	is to be co	onnected	to the Inte	rnet. Show	how such	a conno	ection can b
	The comparecurely esta	y's Intranet blished.	is to be co	onnected	to the Inte	rnet. Show	how such	a conno	ection can b
	The comparecurely esta	y's Intranet blished.	is to be co	onnected	to the Inte	rnet. Show	how such	a conno	ection can b 2 marks)
	The compare ecurely esta	y's Intranet blished.	is to be co	onnected	to the Inte	rnet. Show	how such	a conno	ection can b 2 marks)
	The compare ecurely esta	y's Intranet blished.	is to be co	onnected	to the Inte	rnet. Show	how such	a conno	ection can b