专题

微生物的培养与应用

在缤彩纷呈的生物世界,微生物似乎显得过于微小与沉寂。然而,它们在自然界却作用非凡!

生物学发展的历史表明,诸多革命性地改变人类对生命的认识的事件,都与微生物有着千丝万缕的联系。例如,自然发生说的破灭,酶的原始概念"酵素"的提出,肺炎双球菌转化实验证明 DNA 是遗传物质,青霉素的发现,第一个杂合 DNA 分子的体外构建……

在借助显微镜第一次直面微生物之后,一代又一代科学家建立、发展和完善了微生物技术。课题1将带领我们学习这些技术中最基本、最核心的微生物培养技术。在此基础上,我们不妨也尝试一下本专题中的其他课题。相信在逐步深入的探索中,你能充分体会到动手动脑做科学的乐趣。

课题 7

微生物的实验室培养

课题背景

19世纪中期,关系到法国经济命脉的酿造业曾一度遭受毁灭性的打击。在生产 过程中, 出现了葡萄酒变酸、变味的怪事。经过一番研究, 法国科学家巴斯德发现, 导致生产失败的根源在于发酵物中混入了杂菌。由此人们认识到保持培养物纯净的 重要性。

防止杂菌入侵,获得纯净的培养物,是研究和应用微生物的前提。在实验室培 养微生物,一方面需要为培养的微生物提供合适的营养和环境条件,另一方面需要 确保无处不在的其他微生物无法混入。在本课题中,我们将通过培养大肠杆菌 (Escherichia coli) 的实验,学习微生物培养的基本技术。

弱 琼脂 (agar) 是一种从红藻中提 取的多糖。琼脂在98℃以上熔 化, 在44℃以下凝固, 在常规 培养条件下呈现固态。

基础知识

(一) 培养基

人们按照微生物对营养物质的不同需求, 配制出供其 生长繁殖的营养基质——培养基(culture media)。其中,配 制成的液体状态的基质称为液体培养基, 配制成的固体状 态的基质称为固体培养基。在液体培养基中加入凝固剂琼 脂后,制成琼脂固体培养基,它是实验室中最常用的培养 基之一。微生物在固体培养基表面生长,可以形成肉眼可 见的菌落(图2-1)。

虽然各种培养基的具体配方不 同,但一般都含有水、碳源(提供 碳元素的物质)、氮源(提供氮元素 的物质)和无机盐。回忆有关活细 胞中元素组成的知识,想一想为什 么大多数培养基都含有这四类物 质。下面让我们一起来看一看某种 细菌培养基的营养构成。

图 2-1 盛有液体培养基的锥形瓶和长有菌落的琼脂固体培养基

1000 mL 牛肉膏蛋白胨培养基的营养构成

培养基组分	提供的主要营养
牛肉膏 5 g	碳源、氮源、磷酸盐和维生素
蛋白胨 10 g	碳源、氮源和维生素
NaCl 5 g	无机盐
H ₂ O 定容至 1 000 mL	氢元素、氧元素

在提供上述几种主要营养物质的基础上,培养基还需 要满足微生物生长对pH、特殊营养物质以及氧气的要求。 例如,培养乳酸杆菌时需要在培养基中添加维生素,培养 霉菌时需将培养基的pH调至酸性,培养细菌时需将pH调 至中性或微碱性,培养厌氧微生物时则需要提供无氧的条 件。

(二) 无菌技术

获得纯净培养物的关键是防止外来杂菌的入侵。无菌 技术围绕着如何避免杂菌的污染展开,主要包括以下几个 方面。

- 1. 对实验操作的空间、操作者的衣着和手,进行清 洁和消毒 (disinfection)。
- 2. 将用于微生物培养的器皿、接种用具和培养基等 进行灭菌 (sterilization)。
- 3. 为避免周围环境中微生物的污染,实验操作应在 酒精灯火焰附近进行。
- 4. 实验操作时应避免已经灭菌处理的材料用具与周 围的物品相接触。

消毒是指使用较为温和的物理或化学方法杀死物体表面 或内部的部分微生物(不包括芽孢和孢子)。灭菌则是指使 用强烈的理化因素杀死物体内外所有的微生物,包括芽孢和 孢子。下面,我们重点学习消毒和灭菌的方法。

实验室常用的消毒和灭菌方法

消毒方法 日常生活中经常用到煮沸消毒法。在100℃ 煮沸5~6 min 可以杀死微生物细胞和一部分芽孢。对于一 些不耐高温的液体,如牛奶,则使用巴氏消毒法,在70~ 75 ℃煮 30 min 或在 80 ℃煮 15 min, 可以杀死牛奶中的微 生物,并且使牛奶的营养成分不被破坏。此外,人们也常 使用化学药剂进行消毒,如用酒精擦拭双手、用氯气消毒 水源等。

将微生物的接种工具, 如接种环、接种针 灼烧灭菌

6 牛肉膏和蛋白胨来源于动物原 料,含有糖、维生素和有机氮等 营养物质。

你想知道固体培养基的来历吗? 请点击人教网 www.pep.com.cn 查询。

② 无菌技术除了用来防止实验室的培 养物被其他外来微生物污染外,还 有什么目的?

▲ 在实验室中, 切不可吃东西、喝 水, 离开实验室时一定要洗手, 以防止被微生物感染。使用后 的培养基丢弃前一定要进行灭 菌处理, 以免污染环境。

- 请你判断以下材料或用具是否需要 消毒或灭菌。如果需要,请选择合 适的方法。
 - 1. 培养细菌用的培养基与培养皿。
 - 2. 玻棒、试管、烧瓶和吸管。
 - 3. 实验操作者的双手。

图 2-3 干热灭菌箱

图 2-4 高压蒸汽灭菌锅

教学用的大肠杆菌,可以到国家 指定的菌种保藏中心购买。 或其他金属用具,直接在酒精灯火焰的充分燃烧层灼烧,可以迅速彻底地灭菌 (图2-2)。此外,在接种过程中,试管口或瓶口等容易被污染的部位,也可以通过火焰灼烧来灭菌。

图 2-2 接种环的灼烧灭菌 (1、2、3表示先后顺序)

干热灭菌 将灭菌物品放入干热灭菌箱 (图2-3) 内,在160~170℃加热1~2h可达到灭菌的目的。能耐高温的、需要保持干燥的物品,如玻璃器皿 (吸管、培养皿)和金属用具等,可以采用这种方法灭菌。干热灭菌的具体操作步骤参见附录4。

高压蒸汽灭菌 将灭菌物品放置在盛有适量水的高压蒸汽灭菌锅 (图 2-4) 内。把锅内的水加热煮沸,将其中原有的冷空气彻底排除后,将锅密闭,继续加热使锅内的气压逐步上升,温度也随之升到100℃以上。为达到良好的灭菌效果,一般在压力为100 kPa,温度为121℃的条件下,维持15~30 min。高压蒸汽灭菌的具体操作步骤参见附录4。

除了以上方法外,实验室里还用紫外线或化学药物进行消毒。例如,接种室、接种箱或超净工作台在使用前,可以用紫外线照射30 min,以杀死物体表面或空气中的微生物。在照射前,适量喷洒石炭酸或煤酚皂溶液等消毒液,可以加强消毒效果。实验室中常用的其他化学消毒剂,参见附录5。

实验操作

本实验用牛肉膏蛋白胨固体培养基进行大肠杆菌的纯 化培养,可分成制备培养基和纯化大肠杆菌两个阶段进行。

(一) 制备牛肉膏蛋白胨固体培养基

- 1. 计算 根据牛肉膏蛋白胨培养基配方的比例, 计算配制 100 mL 的培养基时, 各种成分的用量。
- 2. 称量 准确地称取各种成分。牛肉膏比较黏稠,可以用玻棒挑取,放在称量纸上称量。牛肉膏和蛋白胨都容易吸潮,称取时动作要迅速,称后要及时盖上瓶盖。

- 3. 溶化 将称好的牛肉膏连同称量纸一同放入烧杯, 加入少量的水,加热。当牛肉膏溶化并与称量纸分离后,用 玻棒取出称量纸。往烧杯中加入称量好的蛋白胨和氯化 钠,用玻棒搅拌,使其溶解。加入琼脂,加热使其熔化。在 此过程中,不断用玻棒搅拌,防止琼脂糊底而导致烧杯破 裂。当琼脂完全熔化后,补加蒸馏水至100 mL。
- 4. 灭菌 将配制好的培养基转移到锥形瓶中,加棉 塞,包上牛皮纸,并用皮筋勒紧,再放入高压灭菌锅,在 压力为 100 kPa、温度为 121 ℃条件下,灭菌 15~30 min。 将培养皿用几层旧报纸包紧,5~8套培养皿作一包,包好 后放入干热灭菌箱内,在160~170℃下灭菌2h。
- 5. 倒平板 待培养基冷却至50℃左右时,在酒精 灯火焰附近倒平板。倒平板的具体操作描述如下。

华肉膏蛋白胨固体培养基配方

牛肉膏 5.0 g 10.0 g 蛋白胨 5.0 g NaCl 20.0 g 琼脂

将上述物质溶解后,用蒸馏水定 容至1000 mL。

倒平板操作

1.将灭过菌的培养皿放 在火焰旁的桌面上, 右手拿装有培养基 的锥形瓶,左手拔 出棉塞。

2. 右手拿锥形瓶, 使瓶 口迅速通过火焰。

3. 用左手将培养 皿打开一条稍大于 瓶口的缝隙,右手 将锥形瓶中的培养基 (约10~20 mL) 倒入培 养皿,左手立即盖上培养 皿的皿盖。

4. 等待平板冷却 凝固(大约需5~ 10 min) 后, 将平 板倒过来放置,使 皿盖在下、皿底在 上。

讨论

- 1. 培养基灭菌后,需要冷却到50℃左右 时,才能用来倒平板。你用什么办法来估计培养 基的温度?
 - 2. 为什么需要使锥形瓶的瓶口通过火焰?
- 3. 平板冷凝后, 为什么要将平板倒置?
- 4. 在倒平板的过程中,如果不小心将培养 基溅在皿盖与皿底之间的部位,这个平板还能 用来培养微生物吗? 为什么?

微生物的接种技术还包括斜面 接种、穿刺接种等方法。虽然这 些技术的操作方法各不相同, 但是, 其核心都是要防止杂菌 的污染, 保证培养物的纯度。

(二) 纯化大肠杆菌

微生物接种的方法很多,最常用的是平板划线法和稀 释涂布平板法。请你选用其中的一种方法, 在牛肉膏蛋白 胨固体培养基上纯化大肠杆菌。

平板划线法是通过接种环在琼脂固体培养基表面连续 划线的操作,将聚集的菌种逐步稀释分散到培养基的表面。 在数次划线后培养,可以分离到由一个细胞繁殖而来的肉 眼可见的子细胞群体,这就是菌落 (colony)。

什么总是从上一次划线的末端开始划线?

需要灼烧接种环吗? 为什么?

2. 在灼烧接种环之后,为什么要等其冷却

稀释涂布平板法则是将菌液进行一系列的梯度稀释, 然后将不同稀释度的菌液分别涂布到琼脂固体培养基的表 面,进行培养。在稀释度足够高的菌液里,聚集在一起的 微生物将被分散成单个细胞,从而能在培养基表面形成单 个的菌落。

管中。用手指轻压移液管上的橡皮头,吹吸三次,使菌液与水充分混匀。

3. 从 10¹ 倍稀释的试管中吸取 1 mL 稀释液,注入 10² 倍稀释的试管中,重复第 2 步的混匀操作。依次类推,直到完成最后一支试管的稀释。

注意: 移液管需要经过灭菌。操作时,试管口和移液管应在离火焰1~2 cm 处。

注意: 1. 将涂布器末端浸在盛有体积分数为70%的酒精的烧杯中。取出时,要让多余的酒精在烧杯中滴尽,然后将沾有少量酒精的涂布器在火焰上引燃。

2. 操作中一定要注意防火! 不要将过热的涂布器放在盛放酒精的烧杯中,以免引燃其中的酒精。 讨论

涂布平板的所有操作都应在火焰附近进行。结合平板划线与系列稀释的无菌操作要求,想一想, 第2步应如何进行无菌操作?

将接种后的培养基和一个未接种的培养基都放入37℃ 恒温箱中,培养12h和24h后,分别观察并记录结果。

结果分析与评价

- 1. 未接种的培养基表面是否有菌落生长? 如果有菌 落生长,说明了什么?
- 2. 在接种大肠杆菌的培养基上, 你是否观察到了独 立的菌落? 这些菌落的颜色、形状和大小相似吗?
- 3. 培养12h和24h后,观察到的实验结果相同吗? 如果不同,请分析产生差异的原因。
- 4. 如果你在培养基上观察到了不同形态的菌落, 你 能分析出可能是由哪些原因引起的吗?
 - 5. 你是如何记录实验结果的? 与其他同学交流互评。

课题延伸

为了保持菌种的纯净,需要进行菌种的保藏。对于频繁 使用的菌种, 我们可以采用临时保藏的方法。首先, 将菌种 接种到试管的固体斜面培养基上,在合适的温度下培养。当 菌落长成后,将试管放入4℃的冰箱中保藏(图2-5)。以 后每3~6个月,都要重新将菌种从旧的培养基上转移到新 鲜的培养基上。但是,这种方法保存的时间不长,菌种容 易被污染或产生变异。

对于需要长期保存的菌种,可以采用甘油管藏的方法。 在3 mL的甘油瓶中,装入1 mL甘油后灭菌。将1 mL培 养的菌液转移到甘油瓶中,与甘油充分混匀后,放在-20℃ 的冷冻箱中保存。

图 2-5 菌种的斜面保藏

练习

- 1. 请你想一想,日常生活中保存食品的方法 有哪些? 这些方法是如何阻止或抑制微生物生长 的?
- 2. 无土栽培技术是用人工配制成的培养液 来栽培植物;植物组织培养技术则是将植物体的 组织接种在培养基上进行离体培养; 而在本课题 中,我们着重学习了微生物的培养技术。请你比较
- 这三种培养技术在设计思路和具体操作上的异同。
- 3. 巴斯德设计的鹅颈瓶实验有力地驳斥了 "自然发生论",证明微生物只能由微生物产生, 不能从没有生命的物质自然产生。请你解释其实 验原理,并分析这个实验对于微生物学的进步、 微生物学的研究方法以及食品保存等方面所产生 的影响。

课题之

土壤中分解尿素的细菌 的分离与计数

课题背景

尿素 [CO(NH2) 2] 是一种重要的农业氮肥。但 是, 尿素并不能直接被农作物吸收。只有当土壤中 的细菌将尿素分解成氨之后,才能被植物利用。土 壤中的细菌之所以能分解尿素,是因为它们能合成 脲酶。

尿素分子的立体结构

尿素最初是从人的尿液中发现的。当时,人们 普遍相信有机物只能由有生命活力的生物产生, 而

无法通过化学方法合成。但是, 1828年, 德国化学家维勒 (F. Wöhler) 成功地通过 无机物的化学反应合成了尿素,揭开了历史上人工合成有机物的新篇章。此后,尿素 的生产走向了工业化、尿素也逐步成为农业生产中重要的氮肥。

本课题以土壤中能分解尿素的细菌为研究对象,要达到两个主要目的:(1)从 土壤中分离出能够分解尿素的细菌; (2) 统计每克土壤样品中究竟含有多少这样的 细菌。

研究思路

(一) 筛选菌株

DNA 多聚酶链式反应 (PCR) 是一种在体外将少量 DNA 大量复制的技术(参见专题5课题2)。此项技术的自 动化,要求使用耐高温的 DNA 聚合酶。这种酶要能忍受 93℃左右的高温。如果请你来寻找这种耐高温的酶, 你会去 哪里寻找?

科学家是从水生耐热细菌Tag(Thermus aquaticus)中 分离到耐高温的 Tag DNA 聚合酶的。Tag 细菌是美国微生 物学家布鲁克 (T. Brock) 于1966年在美国黄石国家公园 的一个热泉(图2-6)中发现的。这说明,在寻找目的菌 株时,要根据它对生存环境的要求,到相应的环境中去寻 找。

为什么Tag细菌能从热泉中被筛选出来呢?这是因为 热泉70~80℃的高温条件淘汰了绝大多数微生物,而使耐 热的 Tag 细菌脱颖而出。实验室中微生物的筛选,也应用 了同样的原理, 即人为提供有利于目的菌株生长的条件

图 2-6 美国黄石国家公园的 一个热泉

本课题使用的培养基配方

KH2PO4 1.4g Na,HPO, 2.1g MgSO₄ · 7H₂O 0.29 葡萄糖 10.0g 尿素 1.0g 琼脂 15.0g 将上述物质溶解后, 用蒸馏水 定容到 1 000 mL。

② 想一想,如何根据平板上的菌落数 推测出每克样品中的菌落数?

6 每克样品中的菌株数 $= (C \div V) \times M$

其中,C代表某一稀释度下平板 上生长的平均菌落数,V代表涂 布平板时所用的稀释液的体积 (mL), M代表稀释倍数。

(包括营养、温度、pH等),同时抑制或阻止其他微生物生 K.

请你根据这一思路,分析旁栏中本课题将用到的培养 基配方,回答下面的问题。

- 1. 在该培养基的配方中, 为微生物的生长提供碳源和 氮源的分别是什么物质?
- 2. 绝大多数微生物都能利用葡萄糖, 但是, 只有能合 成脲酶的微生物才能分解尿素。请你分析该培养基的配方, 想一想这种培养基对微生物是否具有选择作用?如果具有、 是如何进行选择的?

在微生物学中,将允许特定种类的微生物生长,同时 抑制或阻止其他种类微生物生长的培养基, 称做选择培养 基 (selective media)。

(二) 统计菌落数目

在课题1中,我们学习了稀释涂布平板法。这一方法 常用来统计样品中活菌的数目。当样品的稀释度足够高时, 培养基表面生长的一个菌落,来源于样品稀释液中的一个 活菌。通过统计平板上的菌落数,就能推测出样品中大约 含有多少活菌。为了保证结果准确,一般选择菌落数在 30~300的平板进行计数。

两位同学用稀释涂布平板法测定同一土壤样品中的细 菌数。在对应稀释倍数为106的培养基中,得到以下两种统 计结果。

- 1. 第一位同学在该浓度下涂布了一个平板, 统计的菌 落数为230。
- 2. 第二位同学在该浓度下涂布了三个平板, 统计的菌 落数分别为21、212和256,该同学以这三个平板上菌落数 的平均值163作为统计结果。

你认为哪位同学的结果更接近真实值? 你认为这两位 同学的实验需要改进吗?如果需要,如何改进?

值得注意的是,统计的菌落数往往比活菌的实际数目 低。这是因为当两个或多个细胞连在一起时, 平板上观察 到的只是一个菌落。因此,统计结果一般用菌落数而不是 用活菌数来表示。除了上述的活菌计数法外,显微镜直接 计数也是测定微生物数量的常用方法。

(三) 设置对照

设置对照的主要目的是排除实验组中非测试因素对实 验结果的影响,提高实验结果的可信度。请你分析下面的 实例,想一想如何设置本实验的对照。

在做本课题的实验时, A同学从对应 106 倍稀释的培

养基中筛选出大约150个菌落。但是,其他同学在同样的稀释度下只选择出大约50个菌落。

其他同学认为A同学的结果有问题。他们分析可能是A同学的培养基被杂菌污染了,或者培养基中混入了其他含氮物质,因而导致不能分解尿素的细菌也能在该培养基上生长。

但是, A同学确信自己的实验操作准确无误, 与其他同学的结果之所以不相同, 是因为自己所选用的土壤样品不同。但是, A同学在设计实验的时候并没有设置对照, 因而此时也拿不出令同学们信服的证据。

你能通过设置对照,帮助A同学排除上述两个可能影响实验结果的因素吗?

实验设计

实验设计包括对实验方案,所需仪器、材料、用具和 药品,具体的实施步骤以及时间安排等的综合考虑和安排。 一般来说,实验设计做得周密细致,做实验时就能有条不 紊,将精力集中在具体的操作上。

请你根据实验流程示意图(图2-7)和提供的三个资料,思考有关问题,然后进行实验设计,并写出详细的实验方案。

对照实验是指除了被测试的条件以外,其他条件都相同的实验,其作用是比照实验组,排除任何其他可能原因的干扰,证明确实是所测试的条件引起相应的结果。

图 2-7 样品的稀释和稀释液的取样培养流程示意图

[资料一] 土壤取样

土壤有"微生物的天然培养基"之称。同其他生物环境相比、土壤中的微生物、数量最大、种类最多。在富含有机质的土壤表层、有更多的微生物生长。

土壤中的微生物,大约70%~90%是细菌。细菌适宜 在酸碱度接近中性的潮湿土壤中生长, 绝大多数分布在距 地表约3~8 cm 的土壤层。因此、土壤取样时、一般要铲 去表层土。在城市,常见的是公园里、街道旁、花盆中的 土壤; 在农村, 则容易收集到农田或菜园的土壤。你打算 选择什么样的土壤做实验呢?

[资料二] 样品的稀释

样品的稀释程度将直接影响平板上生长的菌落数目。 在实际操作中,通常选用一定稀释范围的样品液进行培养, 以保证获得菌落数在30~300之间、适于计数的平板。

测定土壤中细菌的数量,一般选用104、105和106倍 的稀释液进行平板培养; 测定放线菌的数量, 一般选用103、 104和105倍稀释;测定真菌的数量,一般选用102、103和 104倍稀释。根据这些数据,请你思考旁栏中的问题。

当你第一次做这个实验的时候,可以将稀释的范围放 宽一点。例如,可以将103~107倍的稀释液分别涂布到平 板上培养,以保证能从中选择出菌落数在30~300间的平 板进行计数。

[资料三] 微生物的培养与观察

不同种类的微生物,往往需要不同的培养温度和培养 时间。细菌一般在30~37℃的温度下培养1~2d; 放线菌 一般在25~28℃的温度下培养5~7d; 而霉菌一般在25~ 28℃的温度下培养3~4d。在本实验中,我们可以每隔24h 统计一次菌落数目,选取菌落数目稳定时的记录作为结果, 这样可以防止因培养时间不足而导致遗漏菌落的数目。

一般来说,在一定的培养条件下(相同的培养基、温 度及培养时间),同种微生物表现出稳定的菌落特征。这些 特征包括菌落的形状、大小、隆起程度和颜色等方面(图 2-8)。请仔细观察你所分离到的菌落,最好以表格的形式

为什么分离不同的微生物要采用不 同的稀释度?

> 测定土壤中细菌的总量和测定土壤 中能分解尿素的细菌的数量,选用 的稀释范围相同吗? 如果不同, 你 打算选用多大的稀释范围?

观察是科学研究的基本功。敏 锐的观察力来源于实践中一点 一滴的积累。

图 2-8 菌落的特征示意图

将不同菌落的特征记录下来。

操作提示

请你根据自己设计的实验方案进行操作。操作中,应 特别注意以下一些问题。

(一) 无菌操作

做这个实验前,请你先复习课题1中学习过的无菌 操作方法。此外,本课题中的无菌操作还须注意以下几 点。

- 1. 取土样用的小铁铲和盛土样的信封在使用前都需 要灭菌。
- 2. 应在火焰旁称取土壤。在火焰附近将称好的土样 倒入锥形瓶中, 塞好棉塞。
- 3. 在稀释土壤溶液的过程中,每一步都要在火焰旁 操作。

(二) 做好标记

本实验使用的平板和试管比较多。为避免混淆,最好 在使用前就做好标记。例如,在标记培养皿时(图2-9), 应注明培养基种类、培养日期以及平板上培养样品的稀 释度等。

在进行系列稀释的时候,为避免试管相互混淆,可以 将已经进行过稀释操作的试管,按稀释度递增的顺序,依 次放置在试管架的另一行。这样, 试管的位置就能清楚地 表示出稀释进行到哪一步。

(三) 制定计划

对于耗时较长的生物实验,需要事先制定计划,以便 提高工作效率,在操作时做到有条不紊。例如,在本实验 中,可以在第一天进行实验器材的灭菌以及制备培养基的 工作,第二天进行稀释涂布平板的操作,第三、四、五天 进行实验结果的观察与记录。

结果分析与评价

- 1. 结合对照,分析培养物中是否有杂菌污染以及选 择培养基是否筛选出一些菌落。
- 2. 是否获得了某一稀释度下, 菌落数目在30~300的 平板。在这一稀释度下,是否至少有两个平板的菌落数相 接近?
- 3. 你统计的每克土壤中含有能分解尿素的细菌的菌 落数是多少?与其他同学的结果接近吗?如果差异很大,

7 研究未知的微生物,一定要注 意进行规范的无菌操作,以防 被致病的微生物感染。实验后, 一定要洗手。

图 2-9 培养皿的标记

可能是什么原因引起的?

课题延伸

本课题对能分解尿素的细菌进行了初步的筛选。但 是,这只是分离纯化菌种的第一步。对分离的菌种作进一 步的鉴定,还需要借助生物化学的方法。

在细菌分解尿素的化学反应中,细菌合成的脲酶将 尿素分解成了氨。氨会使培养基的碱性增强,pH升高。因 此,我们可以通过检测培养基pH的变化来判断该化学反 应是否发生。

在以尿素为唯一氮源的培养基中加入酚红指示剂,培 养某种细菌后,如果pH升高,指示剂将变红(图2-10)。 这样,我们就可以初步鉴定该种细菌能够分解尿素。

相关链接

活菌计数技术广泛应用于土壤含菌量的测定、食品卫 生和水源污染度的检验等方面。如果你感兴趣,可以从下 列项目中选做一个。

- (一) 空气中微生物总数的检测
- (二) 水中细菌总数的检测
- (三) 牛奶中细菌的分离与计数
- (四) 土壤中真菌(或放线菌)的分离与计数

图 2-10 脲酶的检测

7 细菌的数目还可以通过滤膜法 来测定(以测定饮用水中大肠 杆菌的数目为例)。将已知体积 的水过滤后,将滤膜放在伊红 美蓝培养基(参见附录3)上培 养。在该培养基上,大肠杆菌的 菌落呈现黑色。可以根据培养 基上黑色菌落的数目, 计算出 水样中大肠杆菌的数量。

练习

- 1. 请你描述一个细菌在琼脂平板上形成一个肉眼可见的菌落的过程,并描述活菌计数的原理与方法。
- 2. 反刍动物,如牛和山羊,具有特殊的器官——瘤胃。在瘤胃中生活着多种微生物,其中许多微生 物能以尿素作唯一氮源。请你设计一个实验,从瘤胃中分离出能够分解尿素的微生物。

课题

分解纤维素的微生物的分离

课题背景

纤维素,一种由葡萄糖首尾相连而 成的高分子化合物,是地球上含量最丰 富的多糖类物质。植物的根、茎、叶等 器官都含有大量的纤维素。地球上的植 物每年产生的纤维素超过70亿吨,其中 40%~60%能被土壤中某些微生物分解 利用,这是因为它们能够产生纤维素酶。

纤维素的结构式

对这些微生物的研究与应用,使人们能够利用秸秆等废弃物生产酒精,用纤维素 酶处理服装面料等。而要研究这些微生物,首先要将它们从土壤中种类众多的微生物 中分离出来。在本课题中, 我们将探讨如何分离土壤中能够分解纤维素的微生物。

基础知识

(一) 纤维素与纤维素酶

棉花是自然界中纤维素含量最高的天然产物(图2-11),此外,木材、作物秸秆等也富含纤维素。许多商品纤 维素都是由天然纤维素制得的,如水溶性的羧甲基纤维素 钠(CMC-Na)、不溶于水的微晶纤维素(Avicel)等。

纤维素酶是一种复合酶,一般认为它至少包括三种组 分,即C,酶、Cx酶和葡萄糖苷酶,前两种酶使纤维素分解 成纤维二糖,第三种酶将纤维二糖分解成葡萄糖。正是在 这三种酶的协同作用下,纤维素最终被水解成葡萄糖,为 微生物的生长提供营养,同样,也可以为人类所利用。下 面我们通过一个小实验来体会纤维素酶的作用。

在2支20 mL的试管中,分别放入1 cm×6 cm的滤 纸条,再分别加入pH为4.8、物质的量浓度为0.1 mol/L的 醋酸--醋酸钠缓冲液10 mL、11 mL。在加入10 mL缓冲液 的试管中加入1 mL纤维素酶 (70~80 U/mL)。将2支试管 固定在50 mL的锥形瓶中,在摇床上以140 r/min 的转速振 荡反应1h, 观察结果。你也可以用报纸、复印纸做这个实 验。如果没有摇床,你可以采用定时人工振荡的方法。时

图 2-11 成熟的棉株

1 U表示1个酶活力单位,是指 在温度为25℃,其他反应条 件,如pH等,均为最适的情况 下,在1 min 内转化1 mmol 的 底物所需的酶量。

图 2-12 纤维素酶水解滤纸试验, 右边的试管中加入了纤维素酶, 而左 边的没有加入

图 2-13 四种纤维素分解菌在刚果 红培养基上形成的透明圈

一 本实验流程与课题2中的实验流程 有哪些异同?

- 为什么要在富含纤维素的环境中寻 找纤维素分解菌?
- 将滤纸埋在土壤中有什么作用? 你 认为滤纸应该埋进土壤多深?

间足够长时, 你会观察到滤纸被完全分解 (图 2-12)。

(二) 纤维素分解菌的筛选

在寻找微生物的过程中,人们希望能用一些简便直接 的方法,找到所需要的微生物,同时筛掉不需要的微生物, 就好像用筛子筛沙一样。在筛选纤维素分解菌的过程中, 人们发明了刚果红染色法,这种方法能够通过颜色反应直 接对微生物进行筛选。

刚果红 (Congo Red, 简称 CR) 是一种染料, 它可以 与像纤维素这样的多糖物质形成红色复合物,但并不和水 解后的纤维二糖和葡萄糖发生这种反应。当我们在含有纤 维素的培养基中加入刚果红时, 刚果红能与培养基中的纤 维素形成红色复合物。当纤维素被纤维素酶分解后,刚果 红一纤维素的复合物就无法形成,培养基中会出现以纤维 素分解菌为中心的透明圈 (图 2-13)。这样,我们就可以 通过是否产生透明圈来筛选纤维素分解菌。

实验设计

请你根据实验流程图(图2-14)和提供的三个资料, 思考有关问题, 然后进行实验设计, 并写出详细的实验方 案。

图 2-14 分离分解纤维素的微生物的实验流程示意图

[资料一] 土壤取样

根据经验, 纤维素分解菌大多分布在富含纤维素的 环境中,因此,采集土样时,可以选择纤维素丰富的环境, 如树林中多年落叶形成的腐殖土,多年积累的枯枝败叶, 等等。你还可以将富含纤维素的物质,如滤纸等,埋在土 壤中。经过30 d左右,再从已腐烂的滤纸上筛选纤维素分 解菌。

[资料二] 选择培养

在将样品稀释涂布到鉴别纤维素分解菌的培养基之 前,可以通过选择培养增加纤维素分解菌的浓度,以确保 能够从样品中分离到所需要的微生物。请分析旁栏中的培 养基配方, 回答下面的问题。

- 1. 旁栏给出的配方是液体培养基还是固体培养基? 为什么?
- 2. 这个培养基对微生物是否具有选择作用? 如果具 有, 又是如何进行选择的?
 - 3. 你能否设计一个对照实验,说明选择培养的作用? 「资料三」 刚果红染色法

常用的刚果红染色法有两种,一种是先培养微生物。 再加入刚果红进行颜色反应,另一种是在倒平板时就加入 刚果红

方法一 在长出菌落的培养基上,覆盖质量浓度为 1 mg/mL的CR溶液, 10~15 min后, 倒去CR溶液, 加入 物质的量浓度为1 mol/L的NaCl溶液、15 min后倒掉NaCl 溶液、此时、产生纤维素酶的菌落周围将会出现透明圈。

方法二 配制质量浓度为 10 mg/mL 的 CR 溶液、灭 菌后,按照每200 mL培养基加入1 mL的比例加入 CR 溶 液,混匀后倒平板。等培养基上长出菌落后,产生纤维素 酶的菌落周围将会出现明显的透明圈。

操作提示

(一) 复习微生物技术

做这个实验前,请你先复习课题1和2中学习过的方 法,主要包括培养基的配制、无菌操作技术、稀释涂布平 板法、选择培养基的作用、土壤取样等。

(二) 选择培养的操作方法

将十样加入装有30 mL 选择培养基的锥形瓶中,将锥 形瓶固定在摇床上,在一定温度下振荡培养1~2d,直至 培养液变混浊。吸取一定的培养液(如5 mL),转移至另 一瓶新鲜的选择培养基中,以同样的方法培养到培养液变 混浊。吸取适量的培养液,稀释涂布到鉴别纤维素分解菌 的培养基上。

结果分析与评价

1. 你选用了哪种实验样品来分离纤维素分解菌? 取 样的环境有哪些特点? 作出这种选择的理由是什么?

纤维素分解菌的选择培养基 配方

纤维素粉	5 g
NaNO ₃	1 g
Na ₂ HPO ₄ ·7H ₂ O	1.2 g
KH ₂ PO ₄	0.9 g
$MgSO_4 \cdot 7H_2O$	0.5 g
KCl	0.5 g
酵母膏	0.5 g
水解酪素	0.5 g
将上述物质溶解	后,用蒸馏水
定容到 1 000 mL。	

※别纤维素分解菌的培养基 配方

CMC-Na	5~10 g	
酵母膏	1 g	
KH,PO4	0.25 g	
琼脂	15 g	
土豆汁	100 mL	
将上述物质:	容解后,用蒸馏>	k
定容到1000	mL.	

想一想,这两种方法各有哪些优点 与不足? 你打算选用哪一种?

- 为什么选择培养能够"浓缩"所需 的微生物?
 - 如果没有摇床,可以采用定时人 为摇晃锥形瓶的办法。

- 2. 培养基中有杂菌污染吗? 你是否分离到了能够产 生透明圈的微生物? 它们是纤维素分解菌吗?
- 3. 比较你的分离结果与其他同学的有什么不同。分 析产生不同结果的原因。

课题延伸

本课题对分解纤维素的微生物进行了初步的筛选。但 是,这只是分离纯化的第一步。为确定得到的是纤维素分 解菌,还需要进行发酵产纤维素酶的实验,纤维素酶的发 酵方法有液体发酵和固体发酵两种。纤维素酶的测定方法, 一般是采用对纤维素酶分解滤纸等纤维素后所产生的葡萄 糖进行定量的测定。

练习

- 1. 请在查阅资料的基础上, 写一篇科普短 文,介绍分解纤维素的微生物在生产和生活中的 微生物的一般方法?请用流程图表示。 应用。
 - 2. 学完这个专题后, 你能否总结出分离培养