Name: Imran Warfa ID: 500899229

1.) 235 total

25 - A 3 45 20 - B 3 45 190 - C

6.) Deciding how much martigage to be given -> Linean Regnession

which the mortgans led this letter loss

1)000 (1) ((0) 000 ! 1 000,001 = pa

a) I believe the correct model is finear Regression because we are dealing with a Regression Problem & not a dassification problem

(30), (80);

6) Walk-Score # of bedrooms | Annual Income y

.. Z = Wo. yo + W, x, + w2x2 + w3x3 = Wo + W, x, + W2 x2 + W3 x3

$$\omega_0 = $100,000$$
 $\omega_1 = 2000
 $\omega_2 = 10000
 $\omega_3 = $(x4 + 0.5)$

$$\hat{g} = 2 = 100,000 + 2000(62) + 10,000(4) + 8.5(50,000)$$

= \$689,000

:. I predict the montgage ben this data to be \$ 689,000

$$0.8 = \frac{1}{1 + e^{2}}$$

$$0.8 + 0.8e^{-2} = 1$$

$$0.8e^{-2} = 0.2$$

$$e^{-2} = 0.25$$

$$\ln(e^{-2}) = \ln(0.25)$$

TAND LAND TON

$$-7 = \ln(0.25)$$

continued on next page

$$2 = -125.8 + 0.5 - \frac{\omega c}{1000} 1000$$

$$WC = 1000 \pm + 25,800$$

$$0 = -25.8 + 0.5 \cdot \frac{(20,800)}{1000} = -15.4$$

$$P_{i} = \frac{1}{1 + e^{-(-15.4)}} = 2.05 \cdot 10^{-7}$$

②
$$z = -25.8 + 0.5 \cdot \frac{(17,600)}{1000} = -17$$

$$3 = -25.8 + 0.5 \cdot \frac{(35,200)}{1000} = -8.2$$

$$P_3 = \frac{1}{1 + e^{-(-8.2)}} = 2.745.10^{-4}$$

$$9 = -25.8 + 0.5 \cdot \frac{(30,100)}{1000} = -10.75$$

$$P_{4} = \frac{1}{1 + e^{-(-10.75)}} = 2.144.10^{-5}$$

next page (A)

$$\boxed{5} = -25.8 + 0.5 \cdot \frac{53,800}{1000} = 1.1$$

$$P_5 = \frac{1}{1 + e^{1.1}} = 0.75$$

	NC	y	Ý	
Ĭ.	20,800 17,600	0	0	Accuracy is = 1/5 = 20%
	35,200	1	0	
1	30,100	1		10(3) (C) (C) (C)
	53,800	1		(17,600)
		3	(20) 10 18	Pi = 4.14.10-8

3.) 3
$$w_0 = 5$$
, $w_1 = 3.5$, $\lambda = 0.01$, $\lambda = 0.01$
 $h_{\omega}(x) = Round(\sum_{j=0}^{n} w_j \cdot x_j)$

Assuming this is the data:

1st Quarter	Total Score
27	123

$$h_{\omega}(x) = Round(5+3.5.27) = 100$$

next page

Error =
$$J(\omega) = \frac{1}{2(2)} \left[(04 + 100)^2 + (123 - 131)^2 \right] + \frac{0.01}{2} \left[(5)^2 + (3.5)^2 \right]$$
 $J(\omega) = \frac{1}{4} \left[(16) + (64) \right] + (5 \times 10^{-3}) \left[25 + 12.25 \right]$
 $J(\omega) = 20 + 0.18625 = 20.18625$
 $D_{NR new} = U_{Rold} - 2 \cdot \left(\frac{1}{12} \sum_{i=1}^{10} \chi_{R_i}^{(i)} \cdot \left(\frac{1}{3} \right)^2 \sum_{j=0}^{10} U_{Rold} \cdot \chi_{j}^{(i)} \right) \right) - \frac{1}{4} \left[\lambda \cdot W_{Rold} \right]$
 $V_{O} = U_{Oold} - 2 \cdot \left(\frac{1}{12} \sum_{i=1}^{10} \chi_{Oi}^{(i)} \cdot \left(\frac{1}{3} \right)^2 \sum_{j=0}^{10} U_{Oold} \cdot \chi_{j}^{(i)} \right) \right) - \frac{1}{4} \left[\lambda \cdot W_{Rold} \right]$
 $V_{O} = U_{Oold} - 2 \cdot \left(\frac{1}{12} \sum_{j=1}^{10} \chi_{Oi}^{(j)} \cdot \left(\frac{1}{3} \right)^2 \sum_{j=0}^{10} U_{Oold} \cdot \chi_{j}^{(i)} \right) \right) - \frac{1}{4} \left[\lambda \cdot W_{Rold} \right]$
 $V_{Oold} = U_{Oold} - 2 \cdot \left(\frac{1}{12} \sum_{j=1}^{10} \chi_{Oold} \right) + \left(\frac{1}{12} \sum_{j=0}^{10} U_{Oold} \cdot \chi_{j}^{(i)} \right) - \frac{1}{4} \left[\lambda \cdot W_{Rold} \right]$
 $V_{Oold} = U_{Oold} - 2 \cdot \left(\frac{1}{12} \sum_{j=1}^{10} \chi_{Oold} \right) + \left(\frac{1}{12} \sum_{j=0}^{10} U_{Oold} \cdot \chi_{j}^{(i)} \right) - \frac{1}{4} \left[\lambda \cdot W_{Rold} \right]$
 $V_{Oold} = U_{Oold} - 2 \cdot \left(\frac{1}{12} \sum_{j=1}^{10} \chi_{Oold} \right) + \left(\frac{1}{12} \sum_{j=0}^{10} U_{Oold} \cdot \chi_{j}^{(i)} \right) - \frac{1}{4} \left[\lambda \cdot W_{Rold} \right]$
 $V_{Oold} = U_{Oold} - 2 \cdot \left(\frac{1}{12} \sum_{j=1}^{10} \chi_{Oold} \right) + \left(\frac{1}{12} \sum_{j=0}^{10} U_{Oold} \cdot \chi_{j}^{(i)} \right) - \frac{1}{4} \left[\lambda \cdot W_{Rold} \right]$
 $V_{Oold} = U_{Oold} - 2 \cdot \left(\frac{1}{12} \sum_{j=1}^{10} \chi_{Oold} \right) + \left(\frac{1}{12} \sum_{j=0}^{10} U_{Oold} \cdot \chi_{j}^{(i)} \right) - \frac{1}{4} \left[\lambda \cdot W_{Rold} \right] + \frac{1}{4} \left[\lambda \cdot W_{Rold} \right] +$

action .	weights	Initialization	New weights)
	Wo	5	5.0195	
	ω_1	3.5	4.39965	
	11145	(LIKP.		

These are the new updated weights after 1 epoch $\mathfrak{T}(\omega) = \frac{1}{2m} \sum_{i=1}^{m} (y^{(i)} - \sum_{i=0}^{n} \omega_{i} \cdot \chi_{i}^{(i)})^{2} + \frac{1}{2} \sum_{j=1}^{n} \omega_{j}^{2}$ $h_{\omega}(x) = \text{Round}(5.0195 + 4.39965 \cdot 27) = \text{Round}(123.8) = 124$ $h_{\omega}(x) = \text{Round}(5.0195 + 4.39965 \cdot 36) = \text{Round}(163.4) = 163$

$$J = \frac{1}{2(2)} \left[(104 - 124)^2 + (123 - 163)^2 \right] + \frac{0.01}{2} \left[(5.0195)^2 + (4.39965)^2 \right]$$

$$= \frac{1}{4} \left[2000 \right] + \frac{0.01}{2} \left[44.55 \right]$$

J= Error = 500.22

May - James - Tolke

The erron has increased from initial cost.

$$a$$
 $h_{\omega}(40) = Round (5.0195+4.39965.40)$

. I predict Raptons to score 181 points it they score 40 in the 1st Quarter using these updated weights

COLPERINGE)