Sterowanie Procesami Ciągłymi Laboratoria 18.10.2021

SPRAWOZDANIE 1 PRZEBIEGI CZASOWE

AutorMikołaj Zapotoczny (252939)

1 Zadanie 1

Przeprowadziłem obserwacje dla nieco większej liczby przebiegów, ale za to mogłem wyciągnąć więcej wniosków.

1.1 Delta większa niż zero

WNIOSKI:

Możemy zaobserwować, że w zadanym równaniu dla stałego 'b', a zmiennego 'a' zmienia się czas osiągnięcia tego samego stanu ustalonego, bo jak wiemy skok jednostkowy to pobudzenie, które powoduje stałą zmianę stanu ustalonego sygnału.

Ponadto dla stałego 'a' i zmiennego 'b' zmieniają się stany ustalone które osiąga układ.

Widzimy, że w obu przypadkach nie ma żadnych oscylacji.

1.2 Delta równa zero

WNIOSKI:

Jest to bardzo podobny przypadek co wyżej, gdyż dla różnych wartości 'a' i 'b' dających zerową deltę układ zmieniał swój osiągany stan ustalony.

Widzimy, że nie ma tutaj żadnych oscylacji. Mam wrażenie, że dla delty równej zero układ jest maksymalnie szybki bez oscylacji.

1.3 Delta większa niż zero

WNIOSKI:

Dla delty mniejszej niż zero przebiegi są najciekawsze.

Dla stałego 'a' i zmiennego 'b' widzimy, że stan ustalony jest zmienny i im większe 'b' tym ma niższą wartość. Ponadto widzimy, że wraz z wzrostem parametru 'b' maleją oscylacje i układ szybciej osiąga swój stan ustalony.

Natomiast dla stałego 'b' mamy jeden i ten sam stan ustalony dla wszystkich wartości 'a', ale znowu oscylacje maleją wraz ze zwiększaniem się parametru 'a', co jest bardzo dobrze zobrazowane na ostatnim wykresie.

2 Zadanie 2

Wyznaczenie parametrów układu mając wykres i postać transmitancji:

$$K(s) = \frac{1}{s^2 + a \cdot s + b}$$

2.1 Parametr b

Ten parametr można policzyć z wartości ustalonej, zatem:

$$\lim_{s \to 0} \frac{1}{s^2 + a * s + b} = \frac{1}{b}$$

Podstawiamy wartość z wykresu:

$$\frac{1}{b} = 0.02 = b = 50$$

Obliczona wartość zgadza się z wartością wprowadzoną do wygenerowania wykresu.

2.2 Parametr a

Natomiast współczynnik a można obliczyć przy użyciu wzoru funkcji

$$y(t) = A * e^{\delta t} * sin(\omega t + \phi)$$

, gdzie

$$\delta = Re\lambda_{1,2} = -\frac{a}{2}$$

Wykres funkcji poprowadzono w taki sposób, aby przechodziła przez szczytowe wartości sinusoidy. Dzięki temu człon $sin(\omega t + \phi)$ z powyższego wzoru ulega zredukowaniu do 1. Pozostaje wtedy człon $y(t) = A * e^{\delta t}$.

Wprowadziłem do Matlab'a dwa wektory: x i y zawierające dane wierzchołków, a następnie używając narzędzia Matlab'a: Curve Fitting. Otrzymałem wykres funkcji która mnie interesuje. Wszystkie parametry ustawione w narzędziu i wartości współczynników są przedstawione na zdjęciu poniżej.

Zatem:

$$a = 2 * 1.982 = 3.964$$

Co jest bardzo bliskie rzeczywistej wartości funkcji zawartej w programie. Ten niewielki błąd wynika z tego, że trudno jest wybrać odpowiednie punkty sinusoidy.

WNIOSKI: Da się wyprowadzić parametry a i b, ale bez pomocy Matlab'a lub innego narzędzia byłoby to bardzo czasochłonne i trudne. Widzimy, że dane

3 Pytanie

- -> Jaki realny obiekt mógłby posłużyć do tych badań?
- <– Realnym obiektem, który mógłby posłużyć do tych badań jest budynek, który chcemy ogrzewać. Gdy zmieniamy temperaturę, to moglibyśmy obserwować skoki i w zależności od tego jakiej transmitancji byśmy użyli to temperatura zmieniałby się w odpowiedni sposób.</p>

4 Schemat

5 Skrypt Matlab'a do zadania 1

```
2 %ODP. SKOKOWA DLA DELTY >0, B=1%
3 clear all;
4 close all;
6 u0=0;
7 du=1;
9 k = 1;
10 a=1;
b = [3,4,5,10];
12 c = 1;
13
14 \times 0 = 0;
15 \times 10 = 0;
sim('odpskok',30)
18 figure(1);
19 hold on;
20 grid on;
21
plot(ans.tout, ans.x);
24 legend('a=3','a=4','a=5','a=10')
25 title('Odpowiedz skokowa, delta > 0, b=1')
26 xlabel('Czas [s]')
```

```
27 ylabel('Wartosci')
32 %ODP. SKOKOWA DLA DELTY >0, A=1%
34 k = 1;
35 a = 1;
36 b=10;
c = [3, 4, 5, 10];
39 sim('odpskok',20)
41 figure (2);
42 hold on;
43 grid on;
46 plot(ans.tout, ans.x);
17 legend('b=3','b=4','b=5','b=10')
48 title('Odpowiedz skokowa, delta > 0, a=10')
49 xlabel('Czas [s]')
50 ylabel('Wartosci')
54 %ODP. SKOKOWA DLA DELTY =0%
56 k = 1;
57 a=1;
b = [2, 4, 6];
c = [1, 4, 9];
61 sim('odpskok',10)
63 figure (3);
64 hold on;
65 grid on;
68 plot(ans.tout, ans.x);
69 legend('a=2, b=1', 'a=4, b=4', 'a=6, b=9')
70 title('Odpowiedz skokowa, delta = 0')
71 xlabel('Czas [s]')
72 ylabel('Wartosci')
73
76 %ODP. SKOKOWA DLA DELTY < 0, a=1%
78 k = 1;
79 a = 1;
b=1;
c = [2,3,4,5,8,11,50];
```

```
83 sim('odpskok',10)
85 figure (4);
86 hold on;
87 grid on;
90 plot(ans.tout, ans.x);
91 legend('b=2','b=3','b=4','b=5','b=8','b=11','b=50')
92 title('Odpowiedz skokowa, delta < 0, a=1')
93 xlabel('Czas [s]')
94 ylabel('Wartosci')
98 %ODP. SKOKOWA DLA DELTY < 0, b=50%
100 k = 1;
101 a=1;
b=[1,2,3,4,5,8,11];
103 c = 50;
sim('odpskok',10)
107 figure (5);
108 hold on;
109 grid on;
110
plot(ans.tout, ans.x);
legend('a=1', 'a=2', 'a=3', 'a=4', 'a=5', 'a=8', 'a=11')
title('Odpowiedz skokowa, delta < 0, b=50')</pre>
xlabel('Czas [s]')
ylabel('Wartosci')
```

6 Skrypt Matlab'a do zadania 2

```
16 a=1;
17 b=4;
18 c = 50;
20 sim('odpskok',3)
22 figure(5);
23 hold on;
24 grid on;
plot(ans.tout, ans.x);
1 legend('Skok')
29 title('Zadanie 2')
30 xlabel('Czas [s]')
31 ylabel('Wartosci')
32
x = [0.46 \ 1.38 \ 2.26];
y = [0.02792 \ 0.02124 \ 0.02018];
```