Conjuntos, relaciones y funciones

1. Repaso sobre la teoría de conjuntos.

Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros.

Dados dos conjuntos A y B decimos que A está contenido en B o también que A es un subconjunto de B si cada elemento de A es también un elemento de B, es decir, si $x \in A \implies x \in B$. En tal caso escribimos $A \subseteq B$.

Decimos que los conjuntos A y B son iguales si $A \subseteq B$ y $B \subseteq A$. En tal caso escribimos A = B. Decimos que A está contenido estrictamente en B si $A \subseteq B$ y $B \not\subseteq A$, es decir, si $A \subseteq B$ y $A \ne B$. En ese caso escribimos $A \subset B$.

Ejemplos.

i)
$$A = \{1, 2, 3, 5, 7\}, B = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

En este caso $A \subseteq B$ pero no vale que $B \subseteq A$ pues $4 \in B$ y $4 \notin A$. Luego, A está contenido estrictamente en B.

ii)
$$A = \{a, b, \{3\}, 2\}, B = \{a, b, 3, 2\}$$

En este caso $A \not\subseteq B$ pues $\{3\} \in A$ y $\{3\} \notin B$. Además, $B \not\subseteq A$ pues $3 \in B$ y $3 \notin A$.

iii) $\emptyset \subseteq A$ cualquiera sea el conjunto A, donde \emptyset denota el conjunto vacío.

iv)
$$A = \{a, b, c, d\}, B = \{b, d, c, a\}$$
. En este caso $A = B$.

Operaciones con conjuntos. Sean A y B dos subconjuntos de un conjunto dado V, al que llamaremos conjunto referencial. Definimos la unión, intersección, complemento, diferencia y diferencia simétrica de la siguiente manera:

$$A \cup B = \{x \in V \mid x \in A \text{ o } x \in B\} \qquad \text{(unión)}$$

$$A \cap B = \{x \in V \mid x \in A \text{ y } x \in B\} \qquad \text{(intersección)}$$

$$A' = \{x \in V \mid x \notin A\} \qquad \text{(complemento respecto del conjunto referencial } V)$$

$$A - B = \{x \in V \mid x \in A \text{ y } x \notin B\} \qquad \text{(diferencia)}$$

$$A \triangle B = (A \cup B) - (A \cap B) \qquad \text{(diferencia simétrica)}$$

Grafiquemos estos conjuntos en un diagrama de Venn:

 $A \cap B$

Observemos que, de estos conjuntos, el único que realmente depende del conjunto referencial V es A'. En general, cuando trabajemos con conjuntos, siempre supondremos que todos los conjuntos considerados son subconjuntos de un conjunto referencial y sólo aclararemos cuál es ese conjunto referencial cuando sea necesario.

Ejercicio. Probar que $A - B = A \cap B' = \{x \in A / x \notin B\}.$

Diremos que los conjuntos A y B son disjuntos si $A \cap B = \emptyset$.

Ejemplo. Dado el conjunto referencial $V = \{a, b, c, d, 2, \{2\}, 3, \{3\}, 7\}$ sean A, B y C los subconjuntos de V definidos por:

$$A = \{a, b, 2, \{3\}\}\$$
 $B = \{a, b, 2, 3\}\$ $C = \{2, 3, 7\}\$

se tiene que

$$A \cup B = \{a, b, 2, 3, \{3\}\}, \qquad A \cap B = \{a, b, 2\}, \qquad B - C = \{a, b\}$$

$$A \triangle C = \{a, b, \{3\}, 3, 7\}, \quad (A \cap B) - (A \triangle C) = \{2\}, \quad (A \cap B)' = \{c, d, \{2\}, \{3\}, 3, 7\}$$

Además, B - C y $(A \cap B)'$ son disjuntos.

Ejercicio. Sean A, B y C los conjuntos del ejemplo anterior. Hallar todos los subconjuntos de $B \cup C$ que sean disjuntos con A.

Ejercicio. Sean $A = \{1, \emptyset, a, 7\}$ y $B = \{\{1\}, a, b, 4\}$, $C = \{3, 6, b, a\}$. ¿Cuáles de las siguientes afirmaciones son verdaderas?

- i) $\emptyset \in A \cup B$
- ii) $\emptyset \in A \cap B$
- iii) $\emptyset \subseteq A$
- iv) $\emptyset \subseteq C$
- v) $7 \in (A \cup C) \cap (A \triangle B)$

Propiedades de las operaciones. Sean A, B y C subconjuntos de un conjunto referencial V. Entonces valen:

- i) $A \cup B = B \cup A$, $A \cap B = B \cap A$ y $A \triangle B = B \triangle A$
- ii) $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$ y $A \triangle (B \triangle C) = (A \triangle B) \triangle C$
- iii) $A \subseteq B \setminus B \subseteq C \Longrightarrow A \subseteq C$
- iv) $A \subseteq B$ y $A \subseteq C \Longrightarrow A \subseteq B \cap C$
- v) $A \cap B \subseteq A$ y $A \cap B \subseteq B$
- vi) $A \subseteq C$ y $B \subseteq C \Longrightarrow A \cup B \subseteq C$
- vii) $A \subseteq A \cup B$ y $B \subseteq A \cup B$
- viii) (A')' = A, $A \cap A' = \emptyset$ y $A \cup A' = V$
- ix) $A \triangle B = (A B) \cup (B A)$
- $\mathbf{x})\ (A\cap B)\cup C=(A\cup C)\cap (B\cup C)$
- xi) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- xii) $(A \cup B)' = A' \cap B'$
- xiii) $(A \cap B)' = A' \cup B'$

Demostración: Sólo demostraremos iv), vi), vii) y xi) y dejamos como ejercicio la demostración de las restantes propiedades.

Demostración de iv): Sabemos que $A \subseteq B$ y que $A \subseteq C$. Debemos probar que $A \subseteq B \cap C$: Sea $x \in A$. Como $A \subseteq B$ y $x \in A$ entonces $x \in B$ y como $A \subseteq C$ y $x \in A$ entonces $x \in C$. Luego resulta que $x \in B$ y $x \in C$, es decir, $x \in B \cap C$.

Demostración de vi): Sabemos que $A \subseteq C$ y que $B \subseteq C$. Debemos probar que $A \cup B \subseteq C$: Sea $x \in A \cup B$. Entonces $x \in A$ o $x \in B$.

Si $x \in A$ entonces, como $A \subseteq C$ resulta que $x \in C$. Si $x \in B$ entonces, como $B \subseteq C$ resulta que $x \in C$.

Hemos probado entonces que $x \in C$.

Demostración de viii): Sólo probaremos que $A \cap A' = \emptyset$ y dejamos el resto como ejercicio. Queremos ver que $\not\equiv x \ / \ x \in A \cap A'$. Supondremos que sí y llegaremos a una contradicción. Supongamos que existe $x \in A \cap A'$. Entonces $x \in A$ y $x \in A' = \{x \ / \ x \notin A\}$. Luego resultaría que $x \in A$ y $x \notin A$, lo que es una contradicción.

Demostración de xi): Debemos probar que $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$, es decir, que $(A \cup B) \cap C \subseteq (A \cap C) \cup (B \cap C)$ y $(A \cap C) \cup (B \cap C) \subseteq (A \cup B) \cap C$

Primero probemos que $(A \cup B) \cap C \subseteq (A \cap C) \cup (B \cap C)$. Sea $x \in (A \cup B) \cap C$. Entonces $x \in A \cup B$ y $x \in C$. Luego, $x \in A$ o $x \in B$, y además $x \in C$. Entonces debemos examinar dos casos:

Si $x \in A$ entonces $x \in A$ y $x \in C$ de donde $x \in A \cap C$ y por lo tanto $x \in (A \cap C) \cup (B \cap C)$. Si $x \in B$ entonces $x \in B$ y $x \in C$ de donde $x \in B \cap C$ y por lo tanto $x \in (A \cap C) \cup (B \cap C)$. Luego, cualquiera sea el caso, $x \in (A \cap C) \cup (B \cap C)$ como queríamos probar. Ahora probemos que $(A \cap C) \cup (B \cap C) \subseteq (A \cup B) \cap C$. Por la propiedad v), $A \cap C \subseteq A$ y, por vii), $A \subseteq A \cup B$. Luego, usando iii) resulta que $A \cap C \subseteq A \cup B$.

Por otra parte, por v), $A \cap C \subseteq C$. Por lo tanto se tiene que $A \cap C \subseteq A \cup B$ y $A \cap C \subseteq C$. Ahora, usando iv) se tiene que $A \cap C \subseteq (A \cup B) \cap C$.

Análogamente se demuestra que $B \cap C \subseteq (A \cup B) \cap C$. Luego, usando ahora la propiedad vi) resulta que $(A \cap C) \cup (B \cap C) \subseteq (A \cup B) \cap C$. \square

Diagramas de Venn. Supongamos que queremos determinar si la siguiente afirmación es cierta:

Cualesquiera sean los conjuntos A, B y C se verifica que $A \cup (B - C) = (A \cup B) - C$. Graficamos ambos miembros de esa igualdad en un diagrama de Venn

$$(A \cup B) - C$$

Como se ve, los conjuntos no parecen ser iguales: el primero contiene los elementos que pertenecen a $A \cap C$ y el segundo no. Probemos entonces que la afirmación es falsa: debemos mostrar conjuntos A, B y C tales que $A \cup (B - C) \neq (A \cup B) - C$. Notar que de los diagramas se deduce que para lograr eso debemos elegir A, B y C de tal manera que $A \cap C$ no sea vacío. Por ejemplo, elegimos $A = \{1, 2, 3\}, B = \{2, 5, 9, 0\}$ y $C = \{1, 4, 5\}$. Entonces $A \cup (B - C) = \{1, 2, 3\} \cup \{2, 9, 0\} = \{1, 2, 3, 9, 0\}$ y $(A \cup B) - C = \{1, 2, 3, 5, 9, 0\} - \{1, 4, 5\} = \{2, 3, 9, 0\}$, y por lo tanto no son iguales.

Los diagramas de Venn nos ayudan a intuir si la afirmación es verdadera o no. Luego, si pensamos que es verdadera debemos dar una demostración y si sospechamos que es falsa exhibir un contraejemplo.

Conjunto de partes. Dado un conjunto A definimos el conjunto de partes de <math>A como el conjunto

$$\mathcal{P}(A) = \{B / B \subseteq A\}$$

es decir, el conjunto formado por todos los subconjuntos de A.

Ejemplo. Si $A = \{a, b, c\}$ entonces su conjunto de partes es

$$\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\}$$

2. Lógica proposicional y su relación con la teoría de conjuntos.

Una proposición es una afirmación que sólo puede tomar dos valores de verdad: VER-DADERA o FALSA. Por ejemplo, la afirmación "18 es divisible por 3" es una proposición. También lo son la afirmaciones "todos los números naturales son pares" y "no existe en el plano ninguna recta que pase por el origen". La primera proposición es verdadera, la segunda y la tercera son falsas.

Si p q son proposiciones, podemos construír nuevas proposiciones a partir de ellas usando los conectivos lógicos \land , \lor y \neg , donde $\neg p$ es la negación de p. La proposición $p \land q$ es verdadera si y sólo si p y q lo son, la proposición $p \lor q$ es verdadera si y sólo si p es verdadera o q lo es y la proposición $\neg p$ es verdadera si y sólo si p es falsa. Por ejemplo, dadas las proposiciones p: 18 es divisible por 3, q: todos los números naturales son mayores que 7 y r: un número entero menor que 8 nunca es divisible por 11, entonces $p \land q$ es la proposición "18 es divisible por 3 y todos los números naturales son mayores que 7", $p \lor r$ es la proposición "18 es divisible por 3 o un número entero menor que 8 nunca es divisible por 11" $y \neg r$ es la proposición "existe un número entero menor que 8 que es divisible por 11". Además $p \land q$ es falsa pues q es falsa, $p \lor r$ es verdadera pues p es verdadera p es falsa.

En resumen, los valores de verdad de $p \land q$, $p \lor q$ y $\neg p$ están dados por las tablas de verdad

p	q	$p \wedge q$
1	1	1
1	0	0
0	1	0
0	0	0

p	q	$p \lor q$
1	1	1
1	0	1
0	1	1
0	0	0

p	$\neg p$
1	0
0	1

donde 1 significa VERDADERO y 0 significa FALSO Una proposición importante es $\neg p \lor q$, veamos su tabla de verdad

p	q	$\neg p$	$\neg p \lor q$
1	1	0	1
1	0	0	0
0	1	1	1
0	0	1	1

Observemos que $\neg p \lor q$ es verdadera cuando la validez de p implica la validez de q: para que sea verdadera $\neg p \lor q$ debe ocurrir que cuando p es verdadera entonces q también debe serlo (en cambio, cuando p es falsa, no importa si q es verdadera o no). Debido a esto decimos que p implica q cuando $\neg p \lor q$ es verdadera. En tal caso escribimos $p \Longrightarrow q$. Otra proposición importante es $(\neg p \lor q) \land (\neg q \lor p)$, que es verdadera cuando $p \Longrightarrow q$ y $q \Longrightarrow p$. En tal caso decimos que p y q son equivalentes y escribimos $p \Longleftrightarrow q$. Dejamos como ejercicio verificar que su tabla de verdad es

p	q	$p \Longleftrightarrow q$
1	1	1
1	0	0
0	1	0
0	0	1

Luego, dos proposiciones son equivalentes cuando ambas son verdaderas o ambas son falsas. Dejamos como ejercicio demostrar que las proposiciones $p \Longrightarrow q$ y $\neg q \Longrightarrow \neg p$ son equivalentes.

Sea X un conjunto. Si para cada $x \in X$ tenemos una proposición p(x) decimos que p es una función proposicional predicable sobre X. Por ejemplo, $p(n): n(n+1) \leq 2^n$ es una función proposicional predicable sobre \mathbb{N} .

Si p y q son funciones proposicionales predicables sobre un conjunto V podemos considerar el subconjunto A de V cuyos elementos son los $x \in V$ tales que p(x) es verdadera y el subconjunto B de V formado por los $x \in V$ tales que q(x) es verdadera. Por ejemplo, si $V = \mathbb{R}$, dadas las funciones proposicionales $p(x) : x \leq \sqrt{2}$ y $q(x) : x^2 = x - 7$ entonces $A = \{x \in \mathbb{R} \mid x \leq \sqrt{2}\}$ y $B = \{x \in \mathbb{R} \mid x^2 = x - 7\}$. En general se tiene que $A = \{x \in V \mid p(x)\}$ y $B = \{x \in V \mid q(x)\}$. Es fácil ver que:

- i) $A \subseteq B$ si y sólo si $p(x) \Longrightarrow q(x)$ para todo $x \in V$
- ii) A = B si y sólo si $p(x) \iff q(x)$ para todo $x \in V$
- iii) $A \cap B = \{x \in V / p(x) \land q(x)\}$
- iv) $A \cup B = \{x \in V / p(x) \lor q(x)\}$
- v) $A' = \{x \in V / \neg p(x)\}$

Veamos ahora cómo podemos probar que $(A \cap B)' = A' \cup B'$, donde $A \vee B$ son subconjuntos de un conjunto referencial V. Para cada $x \in V$ definimos las proposiciones $p(x) : x \in A \vee q(x) : x \in B$. Entonces se tiene que $A = \{x \in V \mid p(x)\} \vee B = \{x \in V \mid q(x)\}$.

Ahora, $(A \cap B)' = \{x \in V / \neg (p(x) \land q(x))\}$ y $A' \cup B' = \{x \in V / \neg p(x) \lor \neg q(x)\}$. Por lo tanto, para probar la igualdad de conjuntos nos basta mostrar que las proposiciones $\neg (p(x) \land q(x))$ y $\neg p(x) \lor \neg q(x)$ son equivalentes.

Como dos proposiciones son equivalentes si tienen la misma tabla de verdad (cada una es verdadera si y sólo si la otra lo es), basta entonces hallar las tablas de verdad de cada una de estas proposiciones y ver que son iguales.

p	q	$p \wedge q$	$\neg(p \land q)$
1	1	1	0
1	0	0	1
0	1	0	1
0	0	0	1

p	q	$\neg p$	$\neg q$	$\neg p \lor \neg q$
1	1	0	0	0
1	0	0	1	1
0	1	1	0	1
0	0	1	1	1

Esta es otra manera de probar las igualdades de conjuntos.

3. Relaciones.

Si A_1, A_2, \ldots, A_n son conjuntos, definimos el producto cartesiano de A_1, A_2, \ldots, A_n en la forma

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2, \ldots, a_n) / a_i \in A_i \ \forall i \ (1 \le i \le n)\}$$

En particular, si A y B son conjuntos, el producto cartesiano de A por B es

$$A \times B = \{(a, b) / a \in A \land b \in B\}$$

Ejemplo. Si $A = \{1, 2\}$ y $B = \{1, 3, a\}$ entonces

$$A \times B = \{(1,1), (1,3), (1,a), (2,1), (2,3), (2,a)\}$$

Decimos que \mathcal{R} es una relación de A en B si \mathcal{R} es un subconjunto de $A \times B$. Decimos que \mathcal{R} es una relación en A si \mathcal{R} es una relación de A en A, es decir, un subconjunto de $A \times A$. Si \mathcal{R} es una relación de A en B también escribiremos $a \mathcal{R} b$ en lugar de $(a, b) \in \mathcal{R}$.

Ejemplos.

- i) Sea $A = \mathbb{N}$ y sea $B = \{1, 2, -1, 0\}$. Las siguientes son relaciones de A en B:
- a) $\mathcal{R}_1 = \{(1,0), (2,-1)\}$
- b) $\mathcal{R}_2 = \emptyset$
- c) $\mathcal{R}_3 = \{(n,2) \in \mathbb{N} \times B / n \text{ es impar}\}$
- ii) $\mathcal{R} = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid a+b \geq 0\}$ es una relación en \mathbb{Z}
- iii) $\mathcal{R} = \{(n, a) \in \mathbb{N} \times \mathbb{Z} / 2n = a^2\}$ es una relación de \mathbb{N} en \mathbb{Z}

Sea \mathcal{R} una relación en un conjunto A. Decimos que \mathcal{R} es

reflexiva sii $a \mathcal{R} a$ para todo $a \in A$ $sim\acute{e}trica$ sii $a \mathcal{R} b \Longrightarrow b \mathcal{R} a$ $antisim\acute{e}trica$ sii $a \mathcal{R} b \wedge b \mathcal{R} a \Longrightarrow a = b$ transitiva sii $a \mathcal{R} b \wedge b \mathcal{R} c \Longrightarrow a \mathcal{R} c$

Ejemplo. Dado $A = \{1, 2, 3\}$, consideremos la relación en A

$$\mathcal{R}_1 = \{(1,1), (1,2), (1,3), (2,3), (3,2)\}$$

Esta relación no es reflexiva: $(2,2) \notin \mathcal{R}_1$.

Tampoco es simétrica: $(1,2) \in \mathcal{R}_1$ pero $(2,1) \notin \mathcal{R}_1$ ni es antisimétrica: $(3,2) \in \mathcal{R}_1$ y $(2,3) \in \mathcal{R}_1$ pero $2 \neq 3$.

Por último, no es transitiva: $(3,2) \in \mathcal{R}_1$ y $(2,3) \in \mathcal{R}_1$ pero $(3,3) \notin \mathcal{R}_1$.

En cambio, si definimos en el mismo conjunto A la relación

$$\mathcal{R}_2 = \{(1,1), (2,2), (3,3)\}$$

resulta que es reflexiva, simétrica, antisimétrica y transitiva.

Y si ahora consideramos en A la relación $\mathcal{R}_3 = \emptyset$, vemos que no es reflexiva, pero es simétrica, antisimétrica y transitiva. Dejamos como ejercicio verificar estas afirmaciones.

Finalmente, la relación \mathcal{R}_4 en A definida por

$$\mathcal{R}_4 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$$

es reflexiva, simétrica y transitiva pero no es antisimétrica.

Relaciones de orden y relaciones de equivalencia. Dada una relación \mathcal{R} en un conjunto A decimos que

 \mathcal{R} es una relación de orden si y sólo si \mathcal{R} es reflexiva, antisimétrica y transitiva.

 \mathcal{R} es una relación de equivalencia si y sólo si \mathcal{R} es reflexiva, simétrica y transitiva.

Ejemplos.

- i) La relación en $A = \mathbb{R}$ definida por $a \mathcal{R} b$ sii $a \leq b$ es una relación de orden.
- ii) Cualquiera sea el conjunto A, la relación en A definida por $a \mathcal{R} b$ sii a = b es una relación de equivalencia.
- iii) Sea X un conjunto. La relación en $A = \mathcal{P}(X)$ definida por $A \mathcal{R} B$ sii $A \subseteq B$ es una relación de orden.
- iv) En $A = \{1, 2, 3, 4\}$. definimos las siguientes relaciones

$$\mathcal{R}_1 = \{(1,1), (2,2), (3,3), (4,4), (1,2), (1,3), (1,4), (2,3)\}$$

$$\mathcal{R}_2 = \{(1,1), (2,2), (1,2), (2,1), (3,3), (3,4), (4,3), (4,4)\}$$

Dejamos como ejercicio verificar que \mathcal{R}_1 es una relación de orden y \mathcal{R}_2 es una relación de equivalencia.

Sea \mathcal{R} una relación de equivalencia en un conjunto A. Si $a\mathcal{R}b$ decimos que a y b son equivalentes.

Ejercicio. Sea $A = \{1, 2, 3, 4, 5, 6\}.$

- i) Definir una relación de orden \mathcal{R} en A tal que $(6,5) \in \mathcal{R}$ y $(1,5) \notin \mathcal{R}$
- ii) Determinar si existe una relación de equivalencia \mathcal{R} tal que $(6,2) \in \mathcal{R}$, $(2,3) \in \mathcal{R}$ y $(3,6) \notin \mathcal{R}$. Justificar.
- iii) Determinar si existe una relación de orden \mathcal{R} tal que $(6,2) \in \mathcal{R}$, $(2,3) \in \mathcal{R}$ y $(3,6) \in \mathcal{R}$. Justificar.
- iv) ¿Existe alguna relación de orden en A que sea también de equivalencia?

Relaciones de equivalencia y particiones. Sea $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Dada la relación de equivalencia en A

$$\mathcal{R}_1 = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7), (8,8), (1,2), (2,1), (1,3), (3,1), (2,3), (3,2), (4,5), (5,4), (6,8), (8,6)\}$$

graficamos la relación poniendo un punto por cada elemento de A y una flecha de a a b para cada $a, b \in A$ tal que $(a, b) \in \mathcal{R}_1$.

Como se observa en el gráfico, podemos partir al conjunto A en cuatro subconjuntos disjuntos dos a dos, no vacíos, cada uno de ellos formado por todos los elementos de A que están relacionados entre sí:

$$\{1,2,3\}, \{4,5\}, \{7\}, \{6,8\}$$

Recíprocamente, dada la partición de A en los subconjuntos disjuntos dos a dos, no vacíos

$$\{1,4,5\}, \{2,7\}, \{3,6,8\}$$

poniendo ahora un punto por cada elemento de A y una flecha de a a b para los $a, b \in A$ que pertenecen a un mismo subconjunto se tiene

de donde obtenemos la relación de equivalencia

$$\mathcal{R}_2 = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7), (8,8), (1,4), (4,1), (1,5), (5,1), (4,5), (5,4), (2,7), (7,2), (3,6), (6,3), (6,8), (8,6), (3,8), (8,3)\}$$

Notemos además que si construímos la relación de equivalencia correspondiente a la partición

$$\{\{1,2,3\}, \{4,5\}, \{7\}, \{6,8\}\}$$

volvemos a obtener la relación \mathcal{R}_1 y si construímos la partición correspondiente a \mathcal{R}_2 volvemos a obtener la partición

$$\{\{1,4,5\},\quad \{2,7\},\quad \{3,6,8\}\}$$

Es decir, estas construcciones son recíprocas. Para hacer esto en general, veamos cómo hallamos la partición de A usando \mathcal{R}_1 : $\{1, 2, 3\}$ es el subconjunto de A formado por todos

los elementos de A que son equivalentes a 1, $\{4,5\}$ es el subconjunto de A formado por todos los elementos de A que son equivalentes a 4, $\{7\}$ es el subconjunto de A formado por todos los elementos de A que son equivalentes a 7 y $\{6,8\}$ es el subconjunto de A formado por todos los elementos de A que son equivalentes a 6. Para cada $a \in A$ consideremos el subconjunto de todos los elementos de A que son equivalentes a a, $C_a = \{b \in A / b \mathcal{R}_1 a\}$, al que llamaremos clase de equivalencia de a. Entonces resulta que los conjuntos disjuntos dos a dos y no vacíos que forman la partición de A son las clases de equivalencia de los elementos 1, 4, 7 y 6. $\{1,2,3\} = \mathcal{C}_1$, $\{4,5\} = \mathcal{C}_4$, $\{7\} = \mathcal{C}_7$ y $\{6,8\} = \mathcal{C}_6$.

Notar que $C_1 = C_2 = C_3$, $C_4 = C_5$ y $C_6 = C_8$. Esto se debe a que \mathcal{R}_1 es una relación de equivalencia. En general, si \mathcal{R} es una relación de equivalencia en un conjunto A entonces se verifican:

- i) $a \in \mathcal{C}_a$ para todo $a \in A$
- ii) $C_a = C_b$ si y sólo si $(a, b) \in \mathcal{R}$
- iii) $C_a \cap C_b = \emptyset$ si y sólo si $(a, b) \notin \mathcal{R}$

Probaremos esto más adelante.

Recíprocamente, dada la partición $\{\{1,4,5\}, \{2,7\}, \{3,6,8\}\}$ habíamos construído la relación de equivalencia

$$\mathcal{R}_2 = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7), (8,8), (1,4), (4,1), (1,5), (5,1), (4,5), (5,4), (2,7), (7,2), (3,6), (6,3), (6,8), (8,6), (3,8), (8,3)\}$$

Notemos que esta relación \mathcal{R}_2 queda definida por

 $(a,b) \in \mathcal{R}_2$ si y sólo si a y b pertenecen al mismo subconjunto de la partición

En un momento veremos que la relación así obtenida es de equivalencia pues los conjuntos que forman la partición son disjuntos dos a dos, no vacíos y su unión es A.

Veamos ahora el caso general, pero primero definamos el concepto de partición: sea A un conjunto y sea \mathcal{P} un conjunto formado por subconjuntos de A. Decimos que \mathcal{P} es una partición de A si se verifican:

- 1) $P \neq \emptyset$ para todo $P \in \mathcal{P}$ (los elementos de la partición son no vacíos)
- 2) Dados $P,Q \in \mathcal{P}$, si $P \neq Q$ entonces $P \cap Q = \emptyset$ (dos elementos distintos de la partición son disjuntos)
- 3) $\forall a \in A \ \exists P \in \mathcal{P} \ / \ a \in P$ (todo elemento de A pertenece a algún elemento de la partición o, lo que es lo mismo, A es la unión de todos los elementos de la partición)

Ejemplo. Sea $A = \{1, 2, 3, 4, 5, a, b, c, d\}$. Entonces

$$\mathcal{P} = \{\{1, a, c\}, \{2, 3, 4, 5\}, \{b, d\}\}$$

es una partición de A pero no son particiones de A

$$\{\{5, b, c\}, \{2, 3, 4, 1\}, \{d\}\}$$
 ni $\{\{1, a, c\}, \{2, 3, 4, 5\}, \{b, d, 1\}\}$

pues en el primer caso no se verifica 3) y en el segundo no se verifica 2).

Importante: no confundir el concepto de partición de un conjunto A con el conjunto de partes de A.

Cuando una relación es de equivalencia también suele denotársela por \simeq en lugar de \mathcal{R} . Sea \simeq una relación de equivalencia en un conjunto A. Definimos la clase de equivalencia de a como el subconjunto de A formado por todos los elementos que son equivalentes a a:

$$C_a = \{b \in A / b \simeq a\}$$

A veces diremos simplemente la clase de a en lugar de la clase de equivalencia de a.

Ejemplo. Consideremos la relación \simeq en \mathbb{Z} definida por $a \simeq b$ si y sólo si b-a es divisible por 4. Dejamos como ejercicio verificar que es una relación de equivalencia. En este caso hay 4 clases de equivalencia:

$$C_0 = \{ a \in \mathbb{Z} / a = 4k / \text{ para algún } k \in \mathbb{Z} \}$$

$$C_1 = \{ a \in \mathbb{Z} / a = 4k + 1 / \text{ para algún } k \in \mathbb{Z} \}$$

$$C_2 = \{ a \in \mathbb{Z} / a = 4k + 2 / \text{ para algún } k \in \mathbb{Z} \}$$

$$C_3 = \{ a \in \mathbb{Z} / a = 4k + 3 / \text{ para algún } k \in \mathbb{Z} \}$$

Es fácil verificar que la clase de equivalencia de cualquier $a \in \mathbb{Z}$ es igual a alguna de éstas.

Ejercicio. Sea \simeq la relación de equivalencia en el conjunto de matrices de $n \times n$ con coeficientes 0 y 1 definida por

 $A \simeq B$ si y sólo si A y B tienen la misma cantidad de unos

- i) Determinar cuántas clases de equivalencia distintas hay.
- ii) Para n = 3, determinar la clase de equivalencia de la matriz $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

Proposición. Sea \simeq una relación de equivalencia en un conjunto A. Entonces se verifican:

- i) $a \in \mathcal{C}_a$ para todo $a \in A$
- ii) $C_a = C_b$ si y sólo si $a \simeq b$
- iii) $C_a \cap C_b = \emptyset$ si y sólo si $a \not\simeq b$

Demostración: i) Sea $a \in A$. Como \simeq es reflexiva entonces $a \simeq a$. Luego, $a \in \mathcal{C}_a$.

- ii) (\Longrightarrow) Si $\mathcal{C}_a = \mathcal{C}_b$, como $a \in \mathcal{C}_a$ por i), entonces $a \in \mathcal{C}_b$ de donde $a \simeq b$.
- ii) (\iff) Supongamos que $a \simeq b$. Debemos probar que $C_a = C_b$:
- \subseteq : Si $c \in \mathcal{C}_a$ entonces $c \simeq a$ y como $a \simeq b$ y \simeq es transitiva entonces $c \simeq b$ de donde $c \in \mathcal{C}_b$

 \supseteq : Si $c \in \mathcal{C}_b$ entonces $c \simeq b$. Como $a \simeq b$ y \simeq es simétrica entonces $b \simeq a$. Luego, $c \simeq b$ y $b \simeq a$. Usando ahora la transitividad resulta que $c \simeq a$ de donde $c \in \mathcal{C}_a$.

- iii) (\Longrightarrow) Supongamos que $\mathcal{C}_a \cap \mathcal{C}_b = \emptyset$. Queremos ver que $a \not\simeq b$. Supongamos que sí, entonces por ii) se tiene que $\mathcal{C}_a = \mathcal{C}_b$ de donde $\mathcal{C}_a = \mathcal{C}_a \cap \mathcal{C}_b = \emptyset$ lo cual contradice i).
- iii) (\iff) Supongamos que $a \not\simeq b$. Queremos ver que $\mathcal{C}_a \cap \mathcal{C}_b = \emptyset$. Supongamos que no, entonces sea $c \in \mathcal{C}_a \cap \mathcal{C}_b$. Luego, $c \simeq a$ y $c \simeq b$ pero esto implica, usando ii), que $\mathcal{C}_c = \mathcal{C}_a$ y $\mathcal{C}_c = \mathcal{C}_b$. Por lo tanto, $\mathcal{C}_a = \mathcal{C}_b$ de donde por ii) nuevamente resulta que $a \simeq b$, una contradicción. \square

Ejercicio. Sea \simeq una relación de equivalencia en un conjunto A y sean $a, b \in A$. Probar que $C_a \cap C_b \neq \emptyset$ si y sólo si $C_a = C_b$

Corolario. Sea \simeq una relación de equivalencia en un conjunto A y sean $a, b \in A$. Entonces $a \simeq b$ si y sólo si $\exists c \in A / a, b \in \mathcal{C}_c$

 $Demostración: (\Longrightarrow)$ Si $a \simeq b$ entonces $a \in \mathcal{C}_b$. Además, por i) de la proposición se tiene que $b \in \mathcal{C}_b$ de donde $a, b \in \mathcal{C}_b$

(\Leftarrow) Si $a, b \in \mathcal{C}_c$ para algún $c \in A$ entonces, por i), $a \in \mathcal{C}_a \cap \mathcal{C}_c$ y por lo tanto $\mathcal{C}_a \cap \mathcal{C}_c \neq \emptyset$. Entonces, por el ejercicio anterior, $\mathcal{C}_a = \mathcal{C}_c$. Del mismo modo se ve que $\mathcal{C}_b = \mathcal{C}_c$. Luego $\mathcal{C}_a = \mathcal{C}_b$ de donde, por ii) de la proposición, resulta que $a \simeq b \square$

Teorema. Sea A un conjunto. Se verifican:

- i) Si \simeq es una relación de equivalencia en A entonces $\mathcal{P} = \{\mathcal{C}_a \mid a \in A\}$ es una partición de A.
- ii) Si \mathcal{P} es una partición de A entonces la relación \simeq en A definida por

$$a \simeq b \text{ si y solo si } \exists P \in \mathcal{P} / a, b \in P$$

es de equivalencia.

iii) Las construcciones precedentes son recíprocas.

Demostración: i) Sea \simeq una relación de equivalencia en A. Veamos que $\mathcal{P} = \{C_a \mid a \in A\}$ es una partición de A. Para ello debemos ver que se cumplen los ítems 1), 2) y 3) de la definición de partición.

- 1) Cada elemento de la partición es no vacío pues, por la proposición anterior, parte i), se tiene que $a \in \mathcal{C}_a$ para todo $a \in A$
- 2) Dos elementos distintos de la partición son disjuntos ya que si $C_a \neq C_b$ entonces, por la proposición anterior, parte ii), $a \not\simeq b$ de donde resulta, por iii), que $C_a \cap C_b = \emptyset$
- 3) Todo elemento de A pertenece a algún elemento de la partición porque, por i) de la proposición, dado $a \in A$ se tiene que $a \in \mathcal{C}_a$
- ii) Sea $\mathcal P$ una partición de A. Debemos probar que la relación \simeq en A definida por

$$a \simeq b \text{ si y s\'olo si } \exists P \in \mathcal{P} / a, b \in P$$

es de equivalencia.

 \simeq es reflexiva pues dado $a \in A$, como todo elemento de A pertenece a algún elemento de la partición, se tiene que $\exists P \in \mathcal{P} \, / \, a \in P$. Luego, $a \simeq a$

Es obvio que \simeq es simétrica. Veamos que es transitiva. Sean $a,b,c\in A$ tales que $a\simeq b$ y $b\simeq c$. Entonces $\exists P\in\mathcal{P}\,/\,a,b\in P$ y $\exists Q\in\mathcal{P}\,/\,b,c\in Q$. Si fuese $P\neq Q$ entonces se tendría que $P\cap Q=\emptyset$ ya que dos elementos distintos de la partición deben ser disjuntos. Pero eso no ocurre pues $b\in P\cap Q$, por lo tanto debe ser P=Q de donde resulta que $a,c\in P$ y por lo tanto $a\simeq c$

iii) Sea \mathcal{R} una relación de equivalencia en A y sea $\mathcal{P} = \{C_c / c \in A\}$ la partición de A construída a partir de \mathcal{R} . Si ahora definimos la relación \mathcal{R}' correspondiente a la partición \mathcal{P} en la forma

$$(a,b) \in \mathcal{R}'$$
 si y sólo si $\exists P \in \mathcal{P} / a, b \in P$

debemos ver que $\mathcal{R} = \mathcal{R}'$, es decir, que $(a, b) \in \mathcal{R}$ si y sólo si $(a, b) \in \mathcal{R}'$: Por el corolario, $(a, b) \in \mathcal{R} \iff \exists c \in A / a, b \in \mathcal{C}_c \iff \exists P \in \mathcal{P} / a, b \in P \iff (a, b) \in \mathcal{R}'$

Finalmente, sea $\mathcal P$ una partición cualquiera de A y sea $\mathcal R$ la relación de equivalencia en A definida por

$$(a,b) \in \mathcal{R}$$
 si y sólo si $\exists P \in \mathcal{P} / a, b \in P$

Si ahora construímos la partición de A correspondiente a la relación $\mathcal R$

$$\mathcal{P}' = \{ \mathcal{C}_c \, / \, c \in A \}$$

donde $C_c = \{b \in A / b \mathcal{R} c\}$, debemos probar que $\mathcal{P} = \mathcal{P}'$. Para ello utilizaremos el siguiente resultado

Afirmación: Si $P \in \mathcal{P}$ y $a \in P$ entonces $P = \mathcal{C}_a$.

Demostremos esta afirmación: Sea $P \in \mathcal{P}$ y sea $a \in P$. Debemos probar que $P = \mathcal{C}_a$. Para ello veamos las dos inclusiones:

 \subseteq : si $b \in P$ entonces, como $a \in P$, entonces $b, a \in P$. Luego, $(b, a) \in \mathcal{R}$ y por lo tanto $b \in \mathcal{C}_a$

 \supseteq : Si $b \in \mathcal{C}_a$ entonces $(b, a) \in \mathcal{R}$. Luego $\exists Q \in \mathcal{P} / b, a \in Q$ y como $a \in P \cap Q$ entonces resulta que $P \cap Q \neq \emptyset$. Pero \mathcal{P} es una partición de A, por lo tanto debe ser P = Q. Luego, $b \in P$.

Ahora finalmente probemos que $\mathcal{P} = \mathcal{P}'$:

 \subseteq : sea $P \in \mathcal{P}$ y sea $a \in P$ (existe a pues $P \neq \emptyset$). Luego, por la afirmación, $P = \mathcal{C}_a$ y por lo tanto $P \in \mathcal{P}'$.

 \supseteq : sea $\mathcal{C}_a \in \mathcal{P}'$. Como $a \in A$ y \mathcal{P} es una partición de A entonces existe $P \in \mathcal{P}$ tal que $a \in P$. Luego, por la afirmación, $P = \mathcal{C}_a$ y por lo tanto $\mathcal{C}_a \in \mathcal{P} \square$

4. Repaso sobre funciones.

Sean A y B conjuntos. Diremos que una relación f de A en B es una función si para cada $a \in A$ existe un único $b \in B$ tal que $(a, b) \in f$. Escribiremos $f : A \longrightarrow B$ para indicar que f es una función de A en B y denotaremos por f(a) al único $b \in B$ tal que $(a, b) \in f$.

Si $f:A\longrightarrow B$ y $g:A\longrightarrow B$ son funciones entonces f=g si y sólo si f(a)=g(a) para todo $a\in A$.

Si $f:A\longrightarrow B$ es una función llamaremos imagen de f al subconjunto de B definido por

$$Im(f) = \{b \in B / f(a) = b \text{ para algún } a \in A\}$$

Si $f:A\longrightarrow B$ es una función y S es un subconjunto de B denotaremos por $f^{-1}(S)$ al subconjunto de A

$$f^{-1}(S) = \{ a \in A / f(a) \in S \}$$

Ejemplos.

i) Sean $A = \{1, 2, 3, 4\}$ y $B = \{0, 2, 6\}$. Entonces $f_1 = \{(1, 0), (2, 2), (3, 6)\}$ no es una función pues $\not\equiv b \in B$ tal que $(4, b) \in f_1$

 $f_2 = \{(1,0),(2,0),(3,2),(4,6),(1,2)\}$ no es una función pues $(1,0) \in f_2$ y $(1,2) \in f_2$ $f_3 = \{(1,0),(2,0),(3,6),(4,0)\}$ es una función. En este caso se tiene que $f_3(1) = 0$, $f_3(2) = 0$, $f_3(3) = 6$, $f_3(4) = 0$ y la imagen de f_3 es $Im(f_3) = \{0,6\}$.

ii) Sean $A=\mathbb{N}$ y $B=\mathbb{R}$. Entonces $f=\{(a,b)\in\mathbb{N}\times\mathbb{R}\,/\,a-4b=3\}$ es la función $f:\mathbb{N}\longrightarrow\mathbb{R},\,f(a)=\frac{a-3}{4}$. En este caso

$$Im(f) = \{\frac{-2}{4}, \frac{-1}{4}, 0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \ldots\}$$

iii) Si A es un conjunto, $i_A:A\longrightarrow A$, $i_A(a)=a$ es una función, llamada la función identidad del conjunto A, y su imagen es A.

iv) Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = x^2$.

Entonces $Im(f) = \mathbb{R}_{\geq 0}$ y $f^{-1}(\{3, 16, -2\}) = \{\sqrt{3}, -\sqrt{3}, 4, -4\}.$

Diremos que una función $f: A \longrightarrow B$ es

inyectiva si vale: $f(a) = f(a') \Longrightarrow a = a'$

suryectiva o sobreyectiva si $\forall b \in B \ \exists a \in A \ / \ f(a) = b \ (es \ decir, \ si \ Im \ (f) = B)$

biyectiva si $\forall b \in B \ \exists! \ a \in A / f(a) = b$ (es decir, si es inyectiva y suryectiva)

Ejemplos. i) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = x^2$

Esta función no es inyectiva pues f(2) = f(-2). Tampoco es suryectiva pues $-5 \notin Im(f)$

ii) $f: \mathbb{N} \longrightarrow \mathbb{N}, f(n) = n^2$

Esta función es inyectiva: $f(n)=f(m) \implies n^2=m^2 \implies n=m$ o n=-m. Pero como n,m>0 entonces debe ser n=m

Esta función no es survectiva pues $3 \notin Im(f)$.

iii)
$$f: \mathbb{N} \longrightarrow \mathbb{N}, f(n) = \begin{cases} 7 & \text{si } n = 1\\ n - 1 & \text{si } n \ge 2 \end{cases}$$

Esta función no es inyectiva pues f(8)=f(1). Veamos que es suryectiva: dado $m\in\mathbb{N}$, sea n=m+1. Luego $n\in\mathbb{N}$ y, como $n\geq 2$ pues $m\in\mathbb{N}$, entonces f(n)=n-1=m

Composición de funciones. Si $f: A \longrightarrow B$ y $g: B \longrightarrow C$, definimos la composición de g con f como la función $g \circ f: A \longrightarrow C$, $(g \circ f)(a) = g(f(a))$

Ejercicio. Probar que si $f:A\longrightarrow B, g:B\longrightarrow C$ y $h:C\longrightarrow D$ son funciones entonces $h\circ (g\circ f)=(h\circ g)\circ f$

Función inversa. Dada una función $f: A \longrightarrow B$ decimos que f es *inversible* si existe una función $g: B \longrightarrow A$ tal que $g \circ f = i_A$ y $f \circ g = i_B$. En tal caso g es única, se llama la función inversa de f y se denota por f^{-1} . Además, si $g = f^{-1}$ entonces $f = g^{-1}$.

Proposición. Sea $f:A\longrightarrow B$ una función. Entonces f es inversible si y sólo si f es biyectiva.

 $Demostración: \ (\Longrightarrow)$ Sea f^{-1} la función inversa de f. Veamos que f es inyectiva y sobreyectiva.

f es inyectiva: Supongamos que f(a) = f(a'). Entonces

$$a = i_A(a) = (f^{-1} \circ f)(a) = f^{-1}(f(a)) = f^{-1}(f(a')) = (f^{-1} \circ f)(a') = i_A(a') = a'$$

Luego, a = a'.

f es sobreyectiva: Sea $b \in B$. Debemos hallar $a \in A$ tal que f(a) = b.

Sea
$$a = f^{-1}(b) \in A$$
. Entonces $f(a) = f(f^{-1}(b)) = (f \circ f^{-1})(b) = i_B(b) = b$.

(\iff) Supongamos ahora que f es biyectiva. Entonces, para cada $b \in B$ existe un único $a \in A$ tal que f(a) = b. Definimos $g : B \longrightarrow A$ en la forma:

$$g(b) = a$$
 si y sólo si a es el único elemento de A tal que $f(a) = b$

Dejamos como ejercicio probar que la función g así definida es la inversa de f. \square

Ejemplo. La función $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = 2x^3 - 1$ es biyectiva. Encontremos su inversa: dado $y \in \mathbb{R}$, $f^{-1}(y)$ es el único x tal que f(x) = y. Como

$$f(x) = y \iff 2x^3 - 1 = y \iff 2x^3 = y + 1 \iff x^3 = \frac{y+1}{2} \iff x = \sqrt[3]{\frac{y+1}{2}}$$

entonces la función inversa de f es

$$f^{-1}(y) = \sqrt[3]{\frac{y+1}{2}}$$

Ejercicio. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ la función definida por

$$f(x) = \begin{cases} -x^2 & \text{si } x \ge 0\\ x^2 & \text{si } x < 0 \end{cases}$$

Determinar si f es biyectiva y en tal caso calcular su inversa.