Inteligencia Artificial
2017-II
Examen Parcial
2017-10-21
Tiempo Límite: 3 horas

Nombre:	

Profesor: Mg. Diego Benavides

El examen contiene 3 páginas (incluyendo esta) y 7 preguntas. El total de puntaje es 20.

Tabla de puntaje (uso del profesor)

Question	Points	Score
1	2	
2	2	
3	2	
4	4	
5	4	
6	3	
7	3	
Total:	20	

- 1. (2 points) ¿Cuál es la diferencia entre el aprendizaje humano y el aprendizaje de máquina? Explique con sus palabras los límite de la inteligencia artificial.
- 2. (2 points) ¿Cuál es la diferencia del aprendizaje inductivo y el aprendizaje deductivo dentro de un modelo de aprendizaje?
- 3. (2 points) Hallar la entropía de un mensaje M de longitud 1 caracter, considerando el conjunto de caracteres ASCII y suponiendo una equiprobabilidad en sus 256 caracteres utilizando la formula general de la entropía para n estados.
- 4. (4 points) Hallar el árbol de decisión resultante haciendo uso del algoritmo ID3 y utilizando los datos de entrenamiento de la Tabla 1. ¿Cuáles son las variables aleatorias resultantes en los nodos del árbol? ¿Por qué algunas son descartadas?
- 5. (4 points) Entrenar un Perceptron simple con los datos de entrenamiento presentados en la Figura 1. Clasificar los datos de prueba de la Figura 2 y dar como resultado las etiquetas obtenidas con el modelo. Suponer que $\mu = 0.2$, $\theta = 0$, $w_0 = 0.4$, $w_1 = -0.8$, $w_2 = 0.3$ y que la función o es la umbral.

$$w_i \leftarrow w_i + \mu(t - o)x_i$$

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

Table 1: Datos de entrenamiento PlayTennis.

Figure 1: Patrones de entrenamiento (Datos de entrenamiento).

Figure 2: Datos de prueba.

6. (3 points) Sabemos de la regla de entrenamiento Delta para entrenar un Perceptron que el error cuadrático medio es

$$E(\vec{w}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2,$$

donde Des el conjunto de datos de entrenamiento y la forma de actualización del vector \vec{w} esta dada por

$$\vec{w} \leftarrow \vec{w} + \Delta \vec{w}$$
.

donde $\Delta \vec{w} = -\eta \nabla E(\vec{w})$. Deducir la expresión de actualización para cada parámetro del vector \vec{w} .

7. (3 points) Considerar los datos en el espacio unidimensional mostrados en la Figura 3. Hallar el clustering óptimo para k=2, iniciando con los centroides $\mu_1=2$ y $\mu_2=4$.

Figure 3: Datos de entrenamiento Clustering.