Genetic Algorithm based Approach to Solve the Clustered Steiner Tree Problem

Tuan Anh Do¹, Ha-Bang Ban^{1*}, Thi Thanh Binh Huynh¹, Minh Tu Le¹ and Binh Long Nguyen¹

¹School of Information and Communication Technology, Hanoi University of Science and Technology, Dai Co Viet, Ha Noi, Vietnam.

*Corresponding author(s). E-mail(s): bangbh@soict.hust.edu.vn; Contributing authors: anhdt@soict.hust.edu.vn; binhht@soict.hust.edu.vn; minhtutx@gmail.com; binhlongmm99@gmail.com;

Abstract

In a complex network application, a set of nodes might be partitioned into multiple local clusters with different functions, properties, or communication protocols, and the communication is restricted between nodes of the same cluster to maximize efficiency and other security concern. Thus, there has been a rise in network design problems with additional constraints regarding the clustering of vertices, one of them being Clustered Steiner Tree Problem - a variant of the Steiner Tree Problem. Recently, a heuristic-based algorithm was proposed to solve the problem. However, its obtained result is limited in terms of solution quality when applied to the problem in the Euclidean case. This paper proposes a Genetic Algorithm called Shortest-Path Genetic Algorithm for solving the CluSteiner. In the proposal, a permutation-based individual representation that reduces the dimensionality of chromosomes to the number of clusters is devised. The proposed algorithm can solve the problem in both Euclidean and non-Euclidean cases. Experiment results compared to existing works in the literature are analyzed in detail to prove the effectiveness of the proposed algorithm.

Keywords: Genetic Algorithm, Clustered Steiner Tree Problem

1 Introduction

Steiner Tree Problem (STP) [1] is a well-known classical NP-Hard problem in optimization and graph theory. The problem revolves around finding a minimal cost tree T - a connected acyclic subgraph - of a graph G = (V, E, w) that spans all the vertices in a certain set of destinations $R \subset V$. This tree represents multipoint communications in the network, which are useful for many applications since it reduces the overhead of maintaining multiple one-on-one connections. For their theoretical significance and real-world applications, many of the Steiner Tree problem variants have been developed and extensively studied, one of which is Clustered Steiner Tree Problem (CluSteiner) [2].

The CluSteiner belongs to the class of clustered graph problems, alongside others such as Clustered Traveling Salesman Problem (CluTSP) [3], Clustered Shortest-Path Tree Problem (CluSPT) [4], Minimum Routing Cost Clustered Tree Problem (CluMRCT) [5], etc. These problems are distinguished in terms of their input graphs and objective functions. Table 1 compares the differences among these three types of clustered problems. In a complex network application, a set of nodes might be partitioned into multiple local clusters with different functions, properties, or communication protocols. The communication is restricted between nodes of the same cluster to maximize efficiency and other security concerns. Thus, there has been a rise in network design problems with an additional constraint on the clustering of vertices.

This problem was introduced by Bang et al. and was shown to be an NP-hard problem even when all the local topologies and the inter-cluster topology are given [2]. Given an undirected graph with non-negative edge weights and a subset of vertices, usually referred to as required vertices, the classical Steiner Tree Problem in graphs requires a tree of minimum weight that contains all required vertices (but may include additional vertices). The CluSteiner problem further employs an addition constraint used in many other clustered tree problems, such that the nodes composing each cluster must also be a connected sub-tree in the resulting tree T. More specifically, each destination node belongs to one and only one cluster, and all the local trees are mutually disjoint, where a local tree is a minimal subtree in T that spans all nodes in a cluster.

Despite the practicality and theoretical significance of CluSteiner, the research and studies of the problem are currently few and far between. Motivated by the practicality of CluSteiner, we propose a first approximate method to tackle the CluSteiner problem, more specifically, using Genetic Algorithm (GA). GA is a search heuristic inspired by Darwin's theory of natural evolution. This algorithm reflects the process of natural selection and "survival of the fittest". It has been utilized to solve various combinatorial optimization problems and has demonstrated effectiveness on some clustered graph problems [6, 7].

Consequently, this paper proposes a novel Genetic Algorithm for the CluSteiner problem called Shortest-Path Genetic Algorithm (SPGA). The main contributions of this paper are summarized as follows:

		*
Problem	Input	Objective
CluTSP	Graph consists of vertices and edges in which the vertex set is partitioned into a certain number of clusters.	Finding the shortest Hamilton cycle consecutively visits every vertex in each cluster.
CluSPT	Graph consists of vertices and edges in which the vertex set is partitioned into a certain number of clusters.	Finding a shortest-path spanning tree from a given source to all the other nodes while each cluster must induce a connected subtree.
CluSteiner	Graph consists of free vertices, required vertices, edges, in which the required vertex set is partitioned into a certain number of clusters.	Finding a minimum-cost Steiner tree inducing mutually disjoint minimal spanning trees in the clusters of a required vertex set.

Table 1: Problem Comparison

- Propose a GA combined with Shortest-Path Heuristic (SPH) to solve the CluSteiner.
- Devise a permutation-based encoding that reduces the dimensionality of chromosomes to the number of clusters and a corresponding decoding mechanism.
- Analyse the computational complexity and experiment results on various test instances to portray the efficiency of the proposal.

This paper is organized as follows. Section 2 examines the literature related to CluSteiner and GA. Section 3 provides the problem formulation, while some preliminaries used in our proposal are stated in Section 4. Section 5 describes our proposed algorithm in detail. An empirical study to analyze the algorithm's effectiveness is provided in section 6. Section 7 provides some discussions. Lastly, section 8 concludes some insights into the proposal and presents some future directions.

2 Related Works

With many applications, especially in the field of multicast and multipoint communication, Steiner Tree Problem is a class of combinatorial optimization problems that has been rigorously studied by many researchers. Numerous studies have been carried out to address multiple variants of this problem; for example, the Euclidean Steiner Tree Problem is a popular NP-hard problem where the Steiner points lie on a Euclidean plane or the Rectilinear Steiner tree problem where the rectilinear distance is used instead of Euclidean distance. Due to NP-hard, unless P = NP, a polynomial time approximation scheme is unlikely to exist. Therefore, it is not easy to solve well by using simple graph algorithms.

In [8], L. Chen et al. proposed a heuristic algorithm to solve the Steiner Tree Problem in a multi-domain context. The algorithm starts with a random node from the set of terminal vertices R and chooses it as the Steiner tree T. At each iteration, the solution is grown by adding the shortest path from T to the next element of R. When all elements of R are reached, the algorithm ends. The authors proved that the total length of the resulting tree is no greater than $2 \times (1 - \frac{1}{q})$ times the optimal tree, where q is the number of terminal nodes.

Since most versions of the Steiner Tree problems are NP-hard, popular approaches have been developing approximation algorithms, heuristics, or metaheuristics. Among those approaches, GA - a metaheuristic that belongs to the larger class of Evolutionary Algorithm (EA) - has proved to perform well for this problem type [9–13]. GA have been commonly used to generate high-quality solutions to optimization and search problems by relying on biologically inspired operators such as mutation, crossover, and selection [14].

In recent years, there has been a growing interest in the class of minimum cost clustering graph problems such as the CluTSP, CluSPT, CluMRCT, and many others. For instance, the NP-hard CluSPT has recently been widely investigated in its theoretical aspects [15], not to mention many approximation algorithms have been developed to tackle this problem [16–20]. Another example is the CluMRCT, which is an NP-hard problem with numerous practical applications, especially in network design, computational biology, and transportation [21–23].

The CluSteiner is no exception to this trend. This problem was introduced in [2], where Bang and Chen showed that the Steiner ratio for CluSteiner is lower and upper bounded by three and four, respectively. For CluSteiner, the Steiner ratio is the largest possible ratio of the minimal cost without using any Steiner vertex to the optimal cost. The authors investigated the Clustered Steiner tree problem on metric graphs, which are (non-negative) weighted graphs that satisfy the triangle inequality, i.e., w(a,b) + w(b,c) > w(a,c) and proved that this problem is NP-hard. They proposed a (2+p)-approximation algorithm, where p is the approximation ratio for the Steiner tree problem. However, we identify two drawbacks to their algorithm. Initially, their algorithm is only applied to metric problems. Secondly, the ratio of the approximation approach is not good in the general case. Therefore, solution quality is impossible to meet practical requirements. To fulfill the omission, we propose a metaheuristic including two subproblems. The first one is the minimum inter-cluster Steiner tree problem (InterCluster), in which we want to find a cluster Steiner tree with minimum inter-cluster cost and ignore the local cost. The second is the minimum local-cost Steiner tree problem (LocalCluster) which asks for the minimum local cost among all clustered Steiner trees with minimum intercluster cost.

3 Problem Formulation

The CluSteiner is a variant of the classical Steiner Tree Problem in graphs. In the CluSteiner, given an undirected weighted graph G = (V, E, w) and a set of required vertices R, the objective is to find a minimum weighted acyclic connected subgraph, i.e., a tree, in G that spans all vertices in R. The non-required vertices (vertices belong to $V \setminus R$) used as intermediate points in the tree are called Steiner vertices. In addition to the requirements of Steiner Tree Problem, the CluSteiner also provides a partition $R' = \{R_1, R_2, ..., R_k\}$ along with a clustering constraint such that a Steiner tree T must be a clustered tree for R'. A Steiner tree T is a clustered tree for R' if all the local trees are

mutually disjoint, where a local tree of R_i in T is the minimal subtree of T spanning R_i .

A formal definition for CluSteiner is given in table 2.

	Table 2. Clastered Steiner Tree problem deminion
Input	- A weighted, complete graph $G = (V; E; w)$
	- A set of required vertices $R \subset V$
	- A partition $R' = \{R_1, R_2,, R_k\}$ of R ; R_i is the i^{th} cluster
Output	A clustered Steiner tree $T = (V_T, E_T)$ for R'
Objective	Minimize $\Sigma_{e \in E_T} w(e)$
Constraints	- T is a Steiner tree: $R \subset V_T$
	- A local tree $T_i = (V_{T_i}, E_{T_i})$ is a Steiner tree of cluster R_i : $R_i \subset V_{T_i}$
	- All local trees are mutually exclusive: $\forall 1 < i < j < k, V_T \cap V_{T-} = \emptyset$

Table 2: Clustered Steiner Tree problem definition

Fig. 1: An example of invalid and valid solution

An example of invalid and valid solution is illustrated in figure 1. In figure 1a, both the minimal local trees of cluster R_1 and cluster R_2 must contain vertex 2 so they are not mutually exclusive, hence the invalidity. Meanwhile, in figure 1b, the graph can be divided into three separate local trees $\{1, 3\}, \{2, 4, 5, 6\}$, and $\{8, 9\}$ spanning the three clusters R_1 , R_2 , and R_3 respectively.

4 Preliminaries

4.1 CluMST algorithm

The CluSteiner problem was first introduced by Bang and Chen in [2]. After proving that this problem is NP-hard, they proposed a (2 + p)-approximation

algorithm, where p is the approximation ratio for the Steiner Tree Problem. For each $1 \leq i \leq k$, the algorithm determines the local tree T_i of R_i as the Minimum Spanning Tree (MST) of $G_{R_i} = (R_i, E_{R_i})$, which is a subgraph of G containing only the vertices in R_i . Then, the graph G is transformed by contracting each T_i into a new vertex; the edges that are previously connected to any vertex in T_i are now connected to the contracted vertex instead. Formally, for a graph G = (V, E, w):

- Contracting an edge (u, v) means replacing u, v with a new vertex s, removing every other edge (u, t) or (v, t), adding edge (s, t) with w(s, t) = min(w(u, t), w(v, t)). s is a contracted vertex.
- Contracting a tree T_i means contracting all edges in T_i , in any order.
- Contracting the graph G means contracting all local trees T_i , in any order.

Consequently, the remaining task is to solve the original Steiner Tree Problem on the newly contracted graph with the contracted vertices as required vertices. Any *p*-approximation algorithm of the Steiner Tree Problem can now be plugged in to solve on the reduced graph.

This algorithm will hereby be called CluMST algorithm. Its pseudocode is shown in algorithm 1, where SMT(G', S) is a p-approximation algorithm that can solve the Steiner Tree Problem.

Algorithm 1 CluMST algorithm

```
Input: G = (V, E, w), R \subset V, partition R' = \{R_1, R_2, ..., R_k\} of R
Output: A clustered Steiner tree T = (V_T, E_T) for R'

1: \forall 1 \leq i \leq k, local tree T_i \leftarrow \text{MST} of G_{R_i} = (R_i, E_{R_i}, w)

2: G' \leftarrow the contracted graph of G

3: S \leftarrow the set of contracted vertices of G'

4: T_0 \leftarrow \text{SMT}(G', S)

5: T \leftarrow combination of T_i, 0 \leq i \leq k

6: return T
```

The (2 + p)-approximation of this algorithm is based on the fact that, in a metric graph, the total weight of the minimum spanning tree for a set of vertices, MST(G,R), is no more than twice the total weight of the Steiner minimum tree, SMT(G,R).

$$MST(G,R) \le 2 \times SMT(G,R)$$

This inequality is already verified in the paper [2]. First, we obtain an Eulerian tour by doubling the edges of the Steiner minimum tree. Then, because the graph is metric, by repeatedly taking a shortcut in the tour, we obtain a Hamiltonian path of G_R with less total weight than the Eulerian tour. Moreover, the Hamiltonian path of a graph always weighs more than its minimum spanning tree (removing an edge on the path makes a spanning tree), hence

the inequality. However, this paper will not focus on it because the inequality does not hold on the non-metric graph.

4.2 The Shortest-Path Heuristic

In [8], L. Chen et al. consider a multi-domain network composed of multiple network domains interconnected from their border nodes with inter-domain links. This problem is similar to the CluSteiner in that both are variants of the Steiner Tree Problem with a clustering constraint. However, instead of only R being clustered, the problem input provides the clustering information of the whole vertex set V of G.

Table 3: Steiner Tree problem in multi-domain context

Input	- A weighted undirected graph $G=(V; E; w)$
	- A set of required vertices $R \subset V$
	- A partition $V' = \{V_1, V_2,, V_k\}$ of V . $R_i = R \cap V_i$
Output	A Steiner tree $T = (V_T, E_T)$
Objective	Minimize $\Sigma_{e \in E_T} w(e)$
Constraints	- T is a Steiner tree: $R \subset V_T$
	- A subtree $T_i=(V_{T_i},E_{T_i})$ is a Steiner tree of cluster $V_i.$ $R_i\subset V_{T_i},$ $V_{T_i}\subset V_i$

In this paper, the authors proposed to use an algorithm called SPH to solve the Steiner Tree Problem. The first step of SPH, which uses the Floyd–Warshall algorithm on the subgraph of every domain, constructs a domain abstraction. Then, they use SPH to build the Steiner tree that spans nodes belonging to different domains. This paper will only focus on the algorithm SPH itself.

The algorithm starts with a random node from the set of required vertices R and chooses it as the Steiner tree T. At each iteration, T grows by adding the shortest path from T to the nearest vertex of R that is not in T. This nearest vertex can be found using Dijkstra's algorithm with multiple starting points. When all elements of R are reached, the algorithm ends.

Algorithm 2 SPH

```
Input: G = (V, E, w), R \subset V
Output: A Steiner tree T = (V_T, E_T)

1: T \leftarrow \text{random } r \in R

2: while \exists r \in R, r \notin V_T \text{ do}

3: r \leftarrow \text{the nearest vertex in } R \text{ but not in } T

4: T = T + \text{the shortest path to } r

5: end while

6: return T
```

The authors proved that the total length of the resulting tree is no greater than $2 \times (1 - \frac{1}{k})$ times the optimal tree, where k is the number of required vertices. The complexity of the whole algorithm is $O(knlog_2n + km)$, where n = |V| and m = |E|.

Interestingly, when the graph is metric, the SPH algorithm is equivalent to the Prim's minimum spanning tree algorithm. This is because, in metric graphs, the shortest path from a vertex u to another vertex v is the edge (u, v). Therefore, in metric graphs, a Steiner tree generated by SPH algorithm is the minimum spanning tree of $G_R = (R, E_R, w)$.

Proposed Algorithm

Previous sections have introduced the Clustered Steiner Tree Problem. In this section, an approach based on Genetic Algorithm to solve CluSteiner is described in detail.

5.1 Algorithm framework

The main idea of this approach is to divide the CluSteiner into two subproblems:

- Finding the local trees of k clusters.
- Finding edges connecting all k clusters into one tree.

For the first subproblem, the SPH algorithm can be used on every subgraph $G_i = (R_i \cup (V \setminus R), E_{G_i}, w)$ to find a local tree corresponding to the i^{th} cluster. Let the free vertex set be the set of non-required vertices (belong to $V \setminus R$) that have not been added to the solution component. Any free vertex can only be in a maximum of one local tree. Therefore, when constructing a local tree, any Steiner vertex that has already been included in previously built local tree is excluded from the free vertex set. However, this means a change in the order of clusters to construct a local tree would heavily affect the final result. Since the number of choices is equivalent to the number of cluster permutations (k!), an exhaustive search solution would be computationally infeasible. Hence, the author hereby proposes using GA for finding the best permutation of clusters. The algorithm is called SPGA, and its general framework is shown in Algorithm 3.

Algorithm 3 SPGA

```
Input: G = (V, E, w), R \subset V, R = \{R_1, R_2, ... R_k\}
Output: A clustered Steiner tree T = (V_T, E_T)
 1: P_0 \leftarrow \text{Initialize } N \text{ individuals}
 2: Evaluate(P_0)
                                                                                            \triangleright refer to 5.3
 3: T \leftarrow \text{Best solution in } P_0
 4: i \leftarrow 0
 5: while (Stopping conditions not satisfied) do
          C_i \leftarrow \mathbf{Crossover}(P_i) + \mathbf{Mutation}(P_i)
                                                                                 \triangleright refer to 5.4.1, 5.4.2
 6:
          Evaluate(C_i)
                                                                                            \triangleright refer to 5.3
 7:
          P_{i+1} \leftarrow \mathbf{Selection}(P_i + C_i)
                                                                                          \triangleright refer to 5.4.3
          T \leftarrow \text{Best solution in } P_{i+1}
 9:
          i \leftarrow i + 1
10.
11: end while
12: return T
```

5.2 Permutation Representation

In SPGA, an individual is encoded as a permutation of k, an array of distinct integers representing the priority of clusters. A cluster with higher priority will be visited and have its local tree constructed before another cluster with lower priority.

Fig. 2: An example chromosome representation

Figure 2 illustrates an example of permutation representation. In the example, cluster R_2 has a higher priority (priority 5) than any other cluster so it would be visited first. Conversely, cluster R_3 having the lowest priority (priority 1) will be visited last.

The first population P_0 is initialized by generating N random permutations, representing N individuals.

5.3 Chromosome Evaluation

To evaluate a chromosome represented by a permutation, we need to build a clustered Steiner tree and calculate its cost. The evaluation procedure of SPGA consists of two main steps corresponding to the two above-mentioned subproblems:

- Use SPH algorithm to construct the local tree of each cluster following the order determined by the priority permutation. The cost of each local tree T_i is the sum of all its edges' weight: $c(T_i) = \sum_{e \in E_T} w(e)$.
- Contract the graph by shrinking each cluster into a vertex, then use SPH algorithm to construct the inter-cluster links.

Let $\alpha(T)$ be the sum of all local trees' costs and $\beta(T)$ be the sum of all intercluster links. The fitness value of the chromosome, i.e. the cost of clustered Steiner tree T, is:

$$c(T) = \alpha(T) + \beta(T)$$

5.3.1 Construct local trees

Following the order determined by the chromosome, for each cluster R_i , reduce the initial graph G to construct subgraph $G_i = (V_i, E_i)$:

• $V_i = R_i \cup F_i$ where F_i is the set of free vertices that have not yet been included in any local tree. Let $F = V \setminus R$ be the set of all free vertices, then F_i is determined by:

$$F_i = F \setminus (F \cap (V_{T_1} \cup V_{T_2} \cup ... \cup V_{T_{i-1}}))$$

• $E_i \subset E$ is the set of edges that have both endpoints are vertices in V_i :

$$E_i = \{(u, v) \in E | u \in V_i, v \in V_i\}$$

On each subgraph G_i , the SPH algorithm (Algorithm 2) is utilized to construct the Steiner local tree $T_i = (V_{T_i}, E_{T_i})$ of cluster i.

Figure 3 demonstrates an example of a graph G with 3 clusters and the chromosome indicating the order of clusters: $R_2 \to R_1 \to R_3$. In figure 3a, the local tree T_2 of cluster 2 found by SPH contains three vertices (2, 5, 6) with the cost: $c(T_2) = w(2, 5) + w(2, 6) = 2 + 1 = 3$. Similarly, the costs of the other two local trees are $c(T_1) = w(1, 3) + w(3, 10) = 3 + 3 = 6$ and $c(T_3) = w(8, 9) = 2$. So the total cost of all local trees is $\alpha(T) = 3 + 6 + 2 = 11$.

Notice that in another chromosome where the priority of cluster 1 is higher than that of cluster 2, the local tree T_1 for cluster 1 would be constructed first, and it would consist of vertices (1, 2, 3, 7, 10) with cost $c(T_1) = w(1, 2) + w(2, 3) + w(2, 7) + w(7, 10) = 1 + 1 + 1 + 1 = 4$. Consequently, the cost of T_2 , which now consists of vertices (4, 5, 6), would be $c(T_2) = w(4, 5) + w(4, 6) = 2 + 2 = 4$, making the total cost of all local trees be $\alpha(T) = 4 + 4 + 2 = 10$.

Fig. 3: Construction of local trees example

5.3.2 Construct inter-cluster connections

For a graph G=(V,E,w), contraction of an edge $(u,v) \in E$ means replacing vertices u,v with a new vertex s, which s is considered a contracted vertex. For any other vertex t that has a connection to u or v, the edge is replaced with a new edge (s,t), and the weight of (s,t) is set to $w(s,t)=\min(w(t,u),w(t,v))$. Furthermore, let the graph G'=(V',E') be a subgraph of G; contraction of graph G' means contracting all of the edges in E' in an arbitrary order in a new graph denoted as G/G'.

A contracted graph G_0 of G is a graph produced by contracting all its local trees $T_1, T_2, ..., T_k$ constructed in the previous step. In other words, $G_0 = G/T_1/T_2/.../T_k$. Figure 4 demonstrates how graph G in the previous example is contracted.

Fig. 4: Contraction of graph G

Let S be the set of contracted vertex on G_0 . The problem of finding inter-cluster edges on G now becomes finding the minimum Steiner tree on the contracted graph G_0 , and the set of required vertices is S. And we can once again utilize the SPH algorithm. The cost of the inter-cluster links in G is equivalent to the cost of the Steiner tree yielded by the SPH algorithm on $(G_0, S).$

$$\beta(T) = c(SPH(G_0, S))$$

5.3.3 SPH Implementation

The SPH algorithm was already shown in the previous section (Algorithm 2). However, the complexity of SPH is quite large $O(knlog_2n + km)$, where k =|R|, n = |V|, m = |E|. This is mainly due to the repetitive use of Dijkstra's algorithm to find the closest required vertex.

This section introduces a different SPH implementation that only applies Dijkstra's algorithm once but yields the same result. Instead of keep resetting Dijkstra's algorithm whenever we find a new closest required vertex, we add every vertex on the path to the closest required vertex back to the unvisited set with a tentative distance of 0.

The modified SPH algorithm is shown in Algorithm 4. Some notations:

- S: Unvisited vertex set, initially contains all vertices.
- S_R: Unvisited required vertex set, initially contains all required vertices.
- d(v): Tentative minimum distance to v from among vertices currently in T. Initially, d(v) is set to infinity for all v.
- p(v): Predecessor of v in the tentative shortest path from T.

Algorithm 4 Modified SPH

```
Input: G = (V, E, w), R \subset V
Output: A Steiner tree T = (V_T, E_T) spanning R
  1: V_T \leftarrow \emptyset, E_T \leftarrow \emptyset
  2: S \leftarrow V
  3: S_R \leftarrow R
  4: \forall v \in V : d(v) \leftarrow \infty
  5: r \leftarrow \text{random in } R
  6: d(r) \leftarrow 0
  7: S \leftarrow S \setminus \{r\}
  8: while S_R is not empty do
           u \leftarrow argmin_{u \in S} d(u)
  9:
           S \leftarrow S \setminus \{u\}
10:
          if u \in S_R then
11:
                S_R \leftarrow S_R \setminus u
12:
                while u \notin V_T do
13:
                     V_T \leftarrow V_T \cup u, \quad E_T \leftarrow E_T \cup (p(u), u)
14:
                     d(u) \leftarrow 0, \quad S \leftarrow S \cup u
15:
                     u \leftarrow p(u)
16:
                end while
17:
           end if
18:
           for \forall (u,v) \in E do
19:
                if d(u) + w(u, v) < d(v) then
20:
                     d(v) \leftarrow d(u) + w(u,v)
21:
                     p(v) \leftarrow u
22:
                end if
23:
           end for
24:
25: end while
26: return T
```

In the modified SPH algorithm, the while loop in line 13 backtracks from the current required vertex u to its predecessor in tree T. Each iteration adds vertex u and its corresponding edge into the tree (line 14) and adds vertex u back to the unvisited set with distance 0 (line 15). Since each vertex can only be added to the tree once, the total number of iterations here is n = |V|. Furthermore, because each vertex can only be added back to the unvisited set at most once (when it is added to tree T), the number of iterations of the main while loops (line 8) is at most 2n = 2|V|. Hence, each edge(u, v) in E can only be referred to at most twice (line 19) for a total of 2m = 2|E| times. Overall, if we use binary data structure like set (binary search tree) or heap (priority queue) to store and retrieve minimum unvisited vertex (line 9), the complexity of the modified SPH algorithm is $O(n + 2nlog_2n + 2m) = O(nlog_2n + m)$.

5.4 Genetic Operator

5.4.1 Order Crossover

Order Crossover (OX1) is the crossover operator used in SPGA to create child individuals from two-parent individuals.

- Create two random crossover points.
- Copy the segment between the crossover points from the first parent to the child.
- Starting from after the second crossover point in the second parent, copy the remaining unused number to the child, wrapping around the list.

By swapping the role of the two parents, each crossover operation can create two offspring individuals.

Fig. 5: An example Order Crossover (OX1)

In each generation, crossover operator is executed N/2 times on N/2 random pairs of parent individuals, where N is the population size. In total, the size of the offspring population produced by the crossover operator is N.

5.4.2 Swapping Mutation

The mutation operator of SPGA is Swapping Mutation. This operator simply swaps the position of two random genes in the chromosome.

Fig. 6: Swap Mutation

The mutation operator is executed $\lceil p_m \times N \rceil$ times in each generation on random individuals, where p_m is the mutation percentage.

5.4.3 Elitish Selection

Let P_i be the population of the current generation i, and C_i be the population consisting of offspring generated by crossover and mutation operators. Firstly, all the offspring individuals in C_i are evaluated. Then, the population of the next generation is selected as the top N fittest individuals among the combined population of P_i and C_i .

5.5 Time complexity analysis

The time complexity of SPGA is estimated by the following formula:

$$O(SPGA) = O(crossover) + O(mutation) + O(selection) + O(evaluation)$$

Let k be the number of clusters and also the length of a chromosome. Each crossover or mutation operator has linear complexity with respect to k. Each generation generates a number of child individuals linear to POP_SIZE . So:

$$O(crossover) = O(mutation) = O(MAX_GENERATIONS \times POP_SIZE \times k)$$

The selection operator needs to sort the population in order to select the fittest individuals. The sort function has linearithmic time complexity.

$$O(selection) = MAX_GENERATIONS \times POP_SIZE \times log_2POP_SIZE$$

The time complexity of SPH is $O(nlog_2n + m)$ (subsection 5.3.3). Each evaluation finds the local Steiner tree of k clusters and the inter-cluster Steiner tree by using SPH. So the time complexity of all evaluations is:

$$O(evaluation) = MAX_EVALUATIONS \times k \times (nlog_2n + m)$$

It is clear that the main bottleneck of SPGA is the time complexity of the evaluation procedure. The time complexity of SPGA can be considered equivalent to the time complexity of evaluation:

$$O(SPGA) = O(evaluation) = MAX_EVALUATIONS \times k \times (nlog_2n + m)$$

5.6 SPGA in metric case

In metric graphs, SPH is equivalent to the Prim's algorithm (subsection 4.2), so the local tree of cluster R_i is the minimum spanning tree of $G_{R_i} = (R_i, E_{R_i}, w)$. Therefore, each local tree constructed by SPH spans all required vertices of the corresponding cluster and does not contain any Steiner vertex as in figure 7a.

As a result, the order of clusters has no influence on the solution construction for each cluster's local tree. After each cluster is contracted to a vertex in the graph G', an inter-cluster connection is constructed. This stage in SPGA uses SPH to determine the shortest distance between 2 clusters R_i and R_j in G' by finding the shortest path between a vertex in V_i and a vertex in V_j . In other words, the inter-cluster tree constructed using SPH also does not contain any Steiner node, as in figure 7b. It leads to a consequence when CluMST uses SPH as a Steiner Tree Problem solver. It gives the same results as SPGA on the metric graphs. The problem then becomes trivial in the case of metric graphs; therefore, we are interested in the non-metric graph case in this paper.

Fig. 7: An example of SPGA on metric graph

6 Computational Results

6.1 Problem instances

A set of instances in our experiments are chosen from Non-Euclidean CluSPT ([24]) in which each instance is an input graph. We take the first vertex in each cluster and randomly select some vertices in the remaining ones. The non-selected vertices become the non-required vertices. In this way, the required vertices in each instance are different, and each cluster has at least one vertex. There are seven datasets comprising 140 instances in total, categorized into two kinds regarding dimensionality: small instances, each of which has between 30 and 120 vertices, and large instances, each of which has over 260 vertices. Therefore, we have a variety of different classes of instances with varying sizes (different numbers of vertices, edges, and clusters). It allows us to evaluate the efficiency of the proposed algorithm in many scenarios. More details of the datasets are given in table 4.

Type #NoIns			#Vertices	#Clusters	#ReqVertices
Tr 1 C 11	27	Max	105	75	80
$Type_1_Small$	21	Min	51	5	12
Trung E Consil	21	Max	120	10	28
$Type_5_Small$	21	Min	30	5	8
Type 6 Small	37	Max	105	42	51
$Type_6_Small$	31	Min	51	2	12
Type_1_Large	15	Max	242	50	110
Type_T_Large		Min	262	10	49
Type_3_Large	10	Max	750	25	135
Type_5_Large		Min	300	6	50
Type_5_Large	15	Max	500	25	96
Type_5_Large	15	Min	300	5	49
Type_6_Large	15	Max	442	49	98
Type_o_Large	10	Min	262	9	48

 Table 4: Dataset information

6.2 Experiment criteria

The quality of the algorithms was assessed by the following criteria:

- AVG: The average objective function value over 30 runs.
- BF: Best objective function value achieved over 30 runs
- **RPD:** Relative Percentage Difference.
- **PI:** Percentage of Improvement.

Let S_{ar}^i be the solution produced by algorithm a in r^{th} on instance i. Let B^i be the best solution among all algorithms, for instance, i. Then RPD value is calculated using the following equation. The smaller the RPD value, the better the quality of solution found.

$$RPD_{ar}^i = \frac{S_{ar}^i - B^i}{B^i} \times 100\%$$

The Improvement Percentage (PI) is used to signify the improvement of algorithm a over b. Let AVG_a^i and AVG_b^i be the average value over 30 runs on instance i of two algorithms a and b, respectively. Then the improvement of the algorithm a over algorithm b is:

$$PI_{ab}^i = \frac{AVG_b^i - AVG_a^i}{AVG_b^i} \times 100\%$$

6.3 Experimental Setting

To evaluate the efficiency of the proposed metaheuristic, we implement it on a benchmark dataset and compare it with the other algorithms. However, there is only an approximation algorithm for the CluSteiner in the metric case [4]. Besides this algorithm, we do not find any effort on metaheuristics to solve

^{*} NoIns: Instances, ReqVertices: Required Vertices

	~		
Algorithm	Type	metric	non-metric
CluMST [2]	Approximation ratio	X	
SPMST	Heuristic	X	x
BSPH	Heuristic	X	x
SPGA	Metaheuristic	X	x

Table 5: A list of algorithms in this paper

this problem. Therefore, we adjust the approximation ratio algorithm with the Steiner Tree Solver being SPH to solve CluSteiner in both metric and non-metric cases. Therefore, these algorithms can be compared with the same instances. Table 5 demonstrates all algorithms used in the experiments.

- **SPMST** is the algorithm 1, which was published in [2] with the Steiner Tree Solver being SPH.
- BSPH is a variation of SPGA. It is similar to the evaluation function of SPGA, but instead of using GA to optimize the permutation of clusters, we generate 50000 (MAX_EVALUATION of SPGA) random permutations and evaluate them to find the permutation that gives the best solutions. The comparison with this algorithm will show how the evolution mechanism of GA improves solutions compared to just randomly exploring the search space.

Each algorithm was simulated 30 times on each instance. The hardware environment is Intel(R) Core(TM) i5-3470 CPU 3.2GHz, 16GB RAM. The source codes were implemented in Java language.

The parameters used for SPGA are provided in Table 6. In the pilot study, these parameters are chosen so that the proposed algorithm takes the best solutions. This parameter setting has thus been used in the following experiments.

Parameter	Definition	Value
POP_SIZE $MAX_GENERATIONS$ $MAX_EVALUATIONS$ P_c P_m	Number of individuals in population Maximum number of GA generations Maximum number of evaluations Crossover probability Mutation probability	100 500 50000 0.90 0.05

Table 6: Parameters for SPGA

6.4 Experimental Scenario

To evaluate the performance in detail of the proposed algorithms, we perform two experiments as follows:

Experiment 1: Analysis of the obtained results by the Non-parametric statistic.

	/				
Friedman Value	Value in X^2	$p ext{-value}$	Iman-Davenport Value	Value in \mathcal{F}_F	$p ext{-value}$
204.471 5.991		$1.18*10^{-10}$	376.301	3.028	$7.98 * 10^{-80}$
Aligned Friedman Value	Value in X^2	p-value	Quade Value	Value in F_F	p-value
93.350	5.991	$8.41*10^{-11}$	216.297	3.028	$2.22*10^{-57}$

Table 7: Results of the Friedman, Iman-Davenport, Aligned Friedman and Quade tests (α =0.05)

Experiment 2: Analyze the quality of the proposed algorithm in comparison with other algorithms.

6.5 Experimental results

6.5.1 Non-parametric statistics to compare the results of the proposed algorithm and the existing algorithm

Non-parametric statistics are utilized to compare the efficacy of the algorithms BSPH, SPMST and the proposed algorithm SPGA. There are two significant steps in the comparing method:

- First, we employ statistical methods such as Friedman, Aligned Friedman, and Quade [25, 26] to compare the results obtained by the aforementioned algorithms.
- After rejecting the hypothesis of equivalence of means of results obtained by algorithms in the first step, post-hoc statistical procedures [25, 26] are utilized to compute the concrete differences among algorithms and to compare a control algorithm with the remaining algorithms.

The results obtained by algorithms on types of instances are pointed out in Table 1, Table 4, and Table 6. In these tables, the bold, black cells in a column of an algorithm denote instances where this algorithm outperforms the other three.

Table 7 illustrates the result of applying Friedman's, Iman-Davenport's, Aligned Friedman's, and Quade's tests. The results in this table show that all of Friedman, Iman-Davenport, Aligned Friedman, and Quade values are greater than their associated critical values. In addition, all p-values are less than 0.05, so all the null hypotheses, i.e., the equivalence of the medians of the results of the different benchmarks are rejected. In other words, there are significant differences among the observed results with a probability error of $p \leq 0.05$.

The ranking obtained by the Friedman, Friedman Aligned, and Quade tests is presented in Table 8. Results in this table strongly suggest the existence of significant differences among the algorithms considered. The results in Table 8 also point out that the SPGA algorithm has the smallest ranking. Thus it is selected as the control algorithm. After that, we compare the control algorithm

SPGA

ests				
	Algorithms	Friedman	Friedman Aligned	Quade
	SPMST	2.9714	350.400	2.999
	PCDH	1 6649	140 849	1 7/15

1.3642

Table 8: Average rankings achieved by the Friedman, Friedman Aligned, and Quade tests

(SPGA) with two other algorithms (BSPH, and SPMST) by using more powerful statistical methods, i.e., Holland, Holm, etc. Table 9 shows all the possible hypotheses of comparison between the control algorithm and other algorithms, ordered by their p-value and associated with their level of significance.

140.257

1.255

Table 9: The z-values and p-values of the Friedman, Quade procedures (SPGA is the control algorithm)

	Friedman				Quade		
i	Algorithms	z	p	Holm	z	p	Holm
2	SPMST BSPH	13.44 2.50	$3.23 * 10^{-41}$ 0.012	0.025 0.050	12.65 3.55	$1.01 * 10^{-36} \\ 3.74 * 10^{-4}$	0.025 0.050

The adjusted values p of the Friedman and Quade produced for comparisons between SPMST and BSPH algorithms with the control algorithm are presented in Table 10 and Table 11. The two algorithms, SPMST and BSPH, are worse than the control algorithm considering a level of significance $\alpha = 0.05$.

Table 10: Adjusted p-values for the Friedman test (SPGA is the control method)

i	Algorithms	Unadjusted p	p_{Bonf}	p_{Holm}
1 2	SPMST BSPH	$3.23 * 10^{-41}$ 0.012	$6.47 * 10^{-41} \\ 0.024$	$6.47 * 10^{-41} \\ 0.012$

6.5.2 Detail of comparison among the algorithms BSPH and SPGA

Tables 12 and 13 shows the PI values of SPGA over the two algorithms SPMST and BSPH respectively. It can be apparent that the results of SPGA dominate those of SPMST in all instances. With the largest improvement of 94.8% for instance 25pcb442-5x5 of Type 6 Large.

In a non-metric graph, the triangle inequality no longer holds. The weight of a direct edge between two vertices A and B might be significantly larger than a path through an intermediate vertex C. Hence, the cost could be geometrically high when building local trees with only direct edges among required vertices, like in SPMST. As for BSPH, its performance compared to SPGA is almost

Table 11: Adjusted p-values for the QUADE test (SPGA is the control method)

i	Algorithms	Unadjusted p	p_{Bonf}	p_{Holm}	p_{Finn}	p_{Pli}
1 2	SPMST BSPH	$1.01 * 10^{-36} 3.74 * 10^{-4}$	$2.03 * 10^{-36}$ $7.49 * 10^{-4}$	$2.03 * 10^{-36}$ $3.74 * 10^{-4}$	0.0 $3.74 * 10^{-4}$	$1.01 * 10^{-36} 3.74 * 10^{-4}$

Table 12: PI (%) of SPGA over SPMST

	Type	Minimum PI	Average PI	Maximum PI	Better
Small	Type_1_Small Type_5_Small Type_6_Small	23.024055 -34.834835 8.395062	60.643470 52.641868 60.086472	82.580147 79.989995 81.314408	27/27 19/21 37/37
Large	Type_1_Large Type_3_Large Type_5_Large Type_6_Large	73.470002 73.087508 63.635640 71.970007	85.595204 82.277263 81.227604 83.051579	92.720882 90.520467 90.823673 89.714611	15/15 10/10 15/15 15/15

Table 13: PI (%) of SPGA over BSPH

	Type	Minimum PI	Average PI	Maximum PI	Better
Small	Type_1_Small Type_5_Small Type_6_Small	0.000000 0.000000 0.000000	0.000000 0.000000 0.000000	0.000000 0.000000 0.000000	0/27 $0/21$ $0/37$
Large	Type_1_Large Type_3_Large Type_5_Large Type_6_Large	-0.103588 -0.915995 -0.052420 0.132225	1.847157 2.210894 1.865452 1.687693	4.923666 5.623651 5.362540 3.811856	14/15 6/10 14/15 15/15

exactly equal for small instances. On the other hand, the results for large instances are largely in favor of SPGA, with its superiority in almost all large instances. In fact, there are only three instances where SPGA produces results with slightly worse AVG values (instance 25eil101 of Type 1 Small, instance 10i120-46 of Type 5 Small, instance 5i400-205 of Type 5 Large). The differences are negligible, and it is only for AVG value, both algorithms find the same BF value over 30 runs.

Although one could argue that the differences are small, only around 5.6% improvement at max, it can be seen more clearly in figure 8, where the RPD values of the algorithms are illustrated. It shows that SPGA produced much better results in terms of stability between runs, and the majority of results of SPGA are closer to 0. This has proven that GA is effective in improving the result over generations, which produces better overall results compared to just randomly exploring the search space like in BSPH.

Fig. 8: RPD values of SPGA compared to BSPH

The detailed results of all instances are shown in Appendix.

6.5.3 Convergence trends and time running

Figure 8 shows the convergence trends of SPGA in selected type. In Figure 8, the vertical axis is the normalized value while the horizontal axis is the number of generations. The normalized objective function is calculated as follows:

$$\overline{f} = \frac{(f - f^{min})}{(f^{max} - f^{min})},$$

where f^{min} , f^{max} are the minimum and maximum function cost values across all test runs.

In Figure 8, the rate of improvement of solution quality increases very quickly after the first few generations and gradually slows down in later generations. The converge curve is smooth and spreads relatively evenly across generations. It demonstrates that the convergence rate is acceptable, and the algorithm SPGA preserves the population diversity during the evolution.

Figure 9 shows the running time of three algorithms. To compare their time complexity, three main perspectives can be considered. The same evaluation method can be found in some other works [27–29].

- The theoretical complexity: The time complexity of the SPMST, BSPH, and SPGA is $O((n+m) \times log(n)), O(log(n)+m)$, and $MAX_EVALUATIONS \times k \times (n \times log(n)+m)$, respectively. Thus, the three algorithms are equivalent in terms of theoretical time complexity.
- The time complexity by CPU times: All algorithms are run on the same computer languages, platforms, and compilers. It is convenient to compare their running time by CPU times. To compare the running time of the algorithms, we visualize the average time on many types in figure 10. The running time of SPGA grows moderately compared to BSPH and SPMST.

Fig. 9: The convergence trends of SPGA

The result is understandable because a metaheuristic-based algorithm often consumes more time than a heuristic-based one.

The time complexity by function evaluations: All algorithms run with the same number of fitness evaluations. As we know, the results of BSPH and SPMST still remain unchanged. That means BSPH and SPMST fail to find any better solutions with the additional number of fitness evaluations. They might exploit well, but they do not have enough diversification to bring the search to unexplored search regions. That is the reason why they stuck to local optima. Increasing the additional number of fitness runs cannot improve the solution quality. On the other hand, the balance between diversification and intensification helps SPGA to explore extensive solution space. It increases the chance of finding good solutions. Moreover, the additional number of fitness does not make SPGA consume too much time because the complexity of fitness evaluation is only $O(n \times log(n))$.

Fig. 10: Average running time of SPMST, BSPH and SPGA by seconds

7 Discussion

The class of clustered problems on graphs includes some variants: Clustered Traveling Salesman Problem (CluTSP) [3], Clustered Shortest Path Tree Problem (CluSPT) [18], and Clustered Steiner Tree Problem (CluSteiner) [2]. These problems differ in input graph and objective function. To the best of our knowledge, good algorithms to solve this problem might not work for others. Therefore, we cannot directly compare our algorithm with the ones for the other problems. Developing an efficient algorithm for CluSteiner is necessary.

- CluSteiner has many real-world applications. In network design, the aim is to connect a set of cell towers using the minimum number of transmission towers while the distances between towers are satisfied. Another application is for VLSI design, in which the aim is to connect a set of pins on a chip such that the number of wires is minimum while the maximum lengths of the wires are held. CluSteiner belongs to the class of NP-hard [2]. For NP-hard, three common approaches are usually used to solve the problem such as 1) exact algorithm, 2) approximation algorithm, and 3) heuristic or metaheuristic algorithm. First, the exact algorithm finds the optimal solution, and its time complexity is exponential time in the worst case. Therefore, it only solves the problem with small sizes. Secondly, an α -approximation algorithm produces a solution within some factor of α of the optimal solution. The work [2] is of this type. Nevertheless, its best ratio is far from the optimal solution. Thirdly, heuristic algorithms perform well in reality and evaluate their performance on benchmark datasets. The proposed metaheuristic algorithm falls into the last approach. A good metaheuristic must balance intensification (exploitation) and diversification (exploration), in which diversification tends to explore promising solution spaces, while intensification focuses on the search for explored solution spaces. This paper proposes a metaheuristic in which GA finds the best permutation of clusters (exploration) while SPH finds the minimum local trees (exploitation). Therefore, the proposed algorithm ensures a good balance between intensification and diversification.

Additionally, the algorithm in [2] only solves the problem in the metric cases where all edge costs are nonnegative and satisfy the triangle inequality. The proposed metaheuristic, on the other hand, is applied well to both metric and non-metric graphs. Moreover, its theoretical complexity remains unchanged though graph input is either metric or non-metric.

-To evaluate the efficiency of the proposed metaheuristic, we implement it on a benchmark dataset and compare it with the other heuristic and metaheuristic algorithms in the literature. However, there is only a (2+p)-approximation algorithm, where p is the best-known approximation ratio for the Minimum Steiner Tree Problem. In addition, their algorithm only applies to the problem in the metric case. Besides the algorithm, we do not find any effort on metaheuristics in the literature to directly solve CluSteiner to compare with our metaheuristic. To fulfill the omission, we adjust the approximation ratio algorithm [2] with the Steiner Tree Solver being SPH to solve CluSteiner in metric and non-metric cases. Therefore, the algorithms can be compared with the same instances. The results show that the SPGA is able to find better solutions than the existing algorithms, BSPH and SPMST, even with the same number of fitness evaluations. Our algorithm performs better than the others because of two reasons as followings:

- Heuristics (BSPH and SPMST) are often too greedy. Therefore, it can get stuck into a local optimum. SPGA, otherwise, is not greedy and thoroughly explores a more solution space. Therefore, the chance of obtaining better solutions is higher.
- SPGA balances between diversification and intensification, helping to explore a wider solution space and increasing the chance of finding good solutions.

8 Conclusion

This paper proposed a first metaheuristic combining GA with SPH to tackle the CluSteiner. The proposed algorithm introduces a new encoding method that decreases the chromosome dimensionality to the number of clusters and corresponding decoding. The proposed algorithm is applied to Euclidean and non-Euclidean cases well. Experiments and comparisons with several algorithms on numerous data sets were conducted to evaluate the proposal's efficiency. In most instances, the SPGA is better than other algorithms. The improvement is large and significant. However, the running time needs to be improved. That is our aim for future research.

Acknowledgments. This work is funded by the Ministry of Education and Training of Vietnam for Do Tuan Anh under project code B2023-BKA-05. In addition, Nguyen Binh Long is funded by Vingroup JSC and supported by the Master, Ph.D. Scholarship Programme of Vingroup Innovation Foundation (VINIF), Institute of Big Data, code VINIF.2021.ThS.BK.02.

Declarations

• Conflict of interest:

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

• Authors' contributions:

Do Tuan Anh: Methodology, Algorithms, Coding, Writing the manuscript. Ha-Bang Ban: Methodology, Algorithms, Coding, Writing the manuscript. Huynh Thi Thanh Binh: Methodology, Algorithms, Writing the manuscript. Minh Tu Le: Algorithms, Coding, Writing the manuscript. Binh Long Nguyen: Methodology, Coding, Writing the manuscript.

Table 1: Results obtained by SPMST, BSPH and SPGA on instances in Type_1_Small.

	Time	10.147 9.972 14.187 19.440 10.957 10.957 10.558 17.02 9.477 9.477 9.853 20.396 22.989 35.285 35.285 35.702 9.477 9.477 9.477 9.477 9.477 9.853 36.04 9.477 9.853 36.04 9.477 9.853 9.477 9.853 9.477 9.853 9.477 9.853 9.477 9.853 9.477 9.853 9.477 9.853 9.477 9.853 9.477 9.853 9.853 9.477 9.853 9.477 9.853 9.477 9.853 9.477 9.853 9.853 9.477 9.853 9	50.486
	Std	000000000000000000000000000000000000000	0.000
SPGA	Avg	689.000 972.000 630.000 527.000 887.000 887.000 905.000 906.000 9128.000 9128.000 928.000 928.000 1120.000 11218.000 1161.000 1383.000 1383.000 1384.000 1384.000	1386.000
	BF	689.000 972.000 630.000 527.000 887.000 887.000 905.000 906.000 928.000 1120.000 1120.000 929.000 929.000 11418.000 11418.000 11418.000 1133.000 13347.000 1354.000	1386.000
	Time	9.523 9.524 13.628 118.574 9.551 9.551 19.909 34.173 34.118 9.154 9.153 34.173 34.173 34.173 34.173 34.173 34.173 34.174 40.029 38.384 38.386 38.386 46.626 46.626 38.386 38.386 38.386 46.626 46.626 38.386 38.386 38.386 46.626 46.626 38.386 46.626 38.386 46.626 38.386 46.626 38.386 46.626 38.386 46.626 38.386 46.626 38.386 46.6266 46.626 38.386 46.626 46.626 46.626 46.626 46.626 46.626 46.6266 46.626 46.6	48.740
	Std		0.000
вѕрн	Avg	689.000 972.000 630.000 527.000 887.000 887.000 905.000 906.000 9128.000 9128.000 929.000 929.000 929.000 11218.000 1161.000 1383.000 1383.000 1384.000 1384.000	1386.000
	BF	689.000 972.000 630.000 527.000 887.000 887.000 905.000 906.000 912.000 1120.000 929.000 929.000 929.000 11418.000 11418.000 11313.000 1383.000 1383.000 1384.000 1383.000	1386.000
	Time	3.042 1.977 2.778 4.934 3.728 2.946 4.173 5.170 5.170 7.733 8.140 7.733 8.140 4.997 5.753 3.601 4.997 5.753 14.741 10.615 11.0615 11.0615 11.0615 11.10615 11.10615 11.10615 11.10615 11.10615	30.637
T	Std	000000000000000000000000000000000000000	0.000
$_{ m SPMST}$	Avg	1618.000 2994.000 2994.000 2589.000 1225.000 2262.000 2283.000 1202.000 1373.000 1373.000 1475.000 3552.000 1724.000 4254.000 4255.000 4321.000 3896.000 3896.000	4066.000
	BF	1618.000 22994.000 2589.000 11225.000 2262.000 22859.000 11373.000 12859.000 11455.000 2144.000 11455.000 25790.000 4254.000 4254.000 4321.000 3896.000 3896.000 4716.000 4716.000	4066.000
	Instance	5eil51 5berlin52 5st70 5pr76 5eil76 10eil51 10berlin52 10st70 10eil76 10pr76 10eil76 10pr76 15eil70 15eil70 15eil70 25ra499 25kroA100 25in105 50ra499 50kroB100 50kroB100	75 lin 105
l			

4 GA based Approach to Solve the C

Table 2: Results obtained by SPMST, BSPH and SPGA on instances in Type_1_Large.

		SFINIST				BSPH	Ho			SI	SPGA		
Instance	BF	Avg	Std	Time	BF	Avg	\mathbf{Std}	Time	BF	Avg	g Std		Time
10gil262	2878.000	2878.000	0.000	17.083	764.000	766.167	1.293	226.052	760.000	763.533	3 1.821	1 220.910	910
10a280	3139.000	3139.000	0.000	33.274	740.000	750.500	3.170	266.693	733.000	737.800			925
10lin318	3325.000	3325.000	0.000	28.906	706.000	707.933	2.476	343.999	705.000	708.667			648
10pr439	2723.000	2723.000	0.000	71.424	602.000	609.033	3.610	670.125	600.000	603.967		9 801.906	906
10 pcb 442	3972.000	3972.000	0.000	37.699	638.000	651.100	4.784	725.247	629.000	637.967		7 872.675	675
$25_{\mathrm{gil}262}$	6932.000	6932.000	0.000	36.265	954.000	982.067	11.296	246.667	934.000	952.167		5 277.969	696
25a280	9238.000	9238.000	0.000	46.097	989.000	997.833	7.299	300.465	956.000	982.367	_	2 350.827	827
25lin318	9094.000	9094.000	0.000	42.642	932.000	944.533	5.402	389.120	921.000	930.500	_	3 454.159	159
25pr439	6634.000	6634.033	0.180	89.562	847.000	860.567	6.525	912.211	829.000	837.033		5 2183.217	217
25pcb 442	7935.000	7935.000	0.000	84.111	945.000	968.067	8.334	940.570	918.000	935.567		•	059
50ei1262	10490,000	10490.000	0.00	86.306	1198.000	1206.300	6.283	273.347	1195.000	1199.733	3 4.589	9 307.166	166
50a280	14543.000	14543.000	0.00	68.512	1164.000	1176.300	4.706	306.116	1156.000	1161.100			403
50lin318	9494.000	9494.000	0.00	81.971	1164.000	1173.867	5.731	801.931	1148.000	1161.333			622
50pr439	15457.000	15457.000	0.000	140.362	1157.000	1183.400	13.819	2302.168	1100.000	1125.133		П	487
50pcb 442	13932.000	13932.600	0.490	130.904	1211.000	1225.833	6:039	1089.128	1172.000	1189.967		CA	286
	Tabl	le 3: Results obtained by SPMST, BSPH and SPGA on instances in Type-3-Large.	lts obtai	ined by 5	SPMST, 1	BSPH and	l SPGA	on instar	nces in Ty	/pe-3_Lar	ge.		
		SPMST	ST			BSPH	Hc			SPGA	ł.A		
Instance	BF	Avg	Std	Time	BF	Avg	Std	Time	BF	Avg	Std	Time	ı
6i300	2631.000	2631.000	0.000	23.298	602.000	602.800	0.872	230.866	602.000	602.000	0.000	241.642	
6i350	2521.000	2521.000	0.000	20.319	664.000	664.167	0.522	341.509	664.000	664.267	0.998	373.064	
61400	2156.000	2156.000	0.000	30.159	571.000	574.967	4.393	474.806	571.000	580.233	3.630	498.655	
61450	2405.000	2405.000	0.000	38.329	538.000	538.200	0.600	561.583	538.000	539.133	1.893	580.407	
6i500	2511.000	2511.000	0.000	49.881	530.000	533.133	1.454	786.500	531.000	533.833	0.582	862.624	
20i550	6147.000	6177.800	35.097	97.236	872.000	885.033	6.199	1771.105	834.000	855.233	8.682	1757.557	
20i600	8070.000	8088.667	17.568	120.698	898.000	914.200	8.252	2026.978	863.000	875.400	6.591	2233.854	
20i650	8110.000	8115.833	13.069	131.477	811.000	824.067	5.859	2312.930	762.000	782.200	8.953	2706.054	

3068.840 3880.9658.266 10.750804.733 859.800784.000 841.000 $2814.103 \\ 4078.662$ 7.267 6.221846.167 911.033833.000 898.000 $151.224 \\ 201.035$ 7.176 43.5675906.800 9070.067 5897.000 9011.00020i700 25i750

Table 4: Results obtained by SPMST, BSPH and SPGA on instances in Type_5_Small.

		SPMST	T			BSPH	н.			SPGA	4		
Instance	BF	Avg	Std	Time	BF	Avg	Std	Time	BF	Avg	Std	Time	
5i30-17	2023.000	2023.000	0.000	1.283	765.000	765.000	0.000	2.911	765.000	765.000	0.000	3.061	
5145-18	1643.000	1643.000	0.000	1.624	469.000	469.000	0.000	6.352	469.000	469.000	0.000	6.753	
5i60-21	1020.000	1020.000	0.000	2.209	785.000	785.000	0.000	12.361	785.000	785.000	0.000	13.157	
5165-21	1670.000	1670.000	0.000	2.472	547.000	547.000	0.000	12.533	547.000	547.000	0.000	13.368	
5i70-21	1694.000	1694.000	0.000	3.358	618.000	618.000	0.000	18.195	618.000	618.000	0.000	18.965	
5175-22	2518.000	2518.000	0.000	2.678	577.000	577.000	0.000	18.285	577.000	577.000	0.000	19.256	
5i90-33	2179.000	2179.000	0.000	3.387	944.000	944.000	0.000	31.419	944.000	944.000	0.000	31.732	
51120-46	2834.000	2834.000	0.000	7.517	612.000	612.000	0.000	34.303	612.000	612.000	0.000	36.125	
7130-17	1480.000	1480.000	0.000	1.466	905.000	905.000	0.000	3.348	905.000	905.000	0.000	3.539	
7145-18	1070.000	1070.000	0.000	2.220	747.000	747.000	0.000	6.543	747.000	747.000	0.000	6.725	
7160-21	1370.000	1370.000	0.000	3.072	612.000	612.000	0.000	12.527	612.000	612.000	0.000	12.756	
7165-21	1922.000	1922.000	0.000	3.384	989.000	989.000	0.000	15.132	989.000	989.000	0.000	16.227	
7i70-21	1556.000	1556.000	0.000	3.489	705.000	705.000	0.000	16.037	705.000	705.000	0.000	16.219	
10i30-17	529.000	529.000	0.000	1.684	567.000	567.000	0.000	3.156	567.000	567.000	0.000	3.506	
10i45-18	333.000	333.000	0.000	2.254	449.000	449.000	0.000	5.662	449.000	449.000	0.000	290.9	
10i60-21	2821.000	2821.000	0.000	5.018	777.000	777.000	0.000	13.012	777.000	777.000	0.000	13.394	
10i65-21	2147.000	2147.000	0.000	4.242	750.000	750.000	0.000	14.096	750.000	750.000	0.000	14.662	
10i70-21	3998.000	3998.000	0.000	3.990	800.000	800.000	0.000	16.119	800.000	800.008	0.000	17.304	
10i75-22	1489.000	1489.000	0.000	6.641	778.000	778.000	0.000	20.942	778.000	778.000	0.000	21.924	
10i90-33	3584.000	3584.000	0.000	7.710	831.000	831.000	0.000	29.770	831.000	831.000	0.000	31.200	
10i120-46	3873.000	3873.000	0.000	12.370	844.000	844.000	0.000	57.763	844.000	844.000	0.000	56.198	

Table 5: Results obtained by SPMST, BSPH and SPGA on instances in Type_5_Large.

SPGA BSPH SPMST

6 GA based Approach to Solve the C

Time	197.400 439.493 719.214 261.202 561.080 961.736 363.863 761.643 761.643 441.55 441.376 888.959 1758.053		Time	29.501 8.657 9.616 17.256 20.870 10.549 19.629 24.766 11.019 10.671 18.900 21.849
Std	1.795 0.757 1.325 0.547 2.616 2.616 8.196 4.852 5.010 4.129 4.129 4.129 3.084 9.514		Std	0.0000000000000000000000000000000000000
Avg	556.333 572.600 644.367 644.367 643.567 643.567 747.967 982.467 747.967 984.533 1 776.500 984.567 887.100	e-6-Small.	Avg	439.000 750.000 646.000 491.000 407.000 696.000 746.000 758.000 823.000 845.000
BF	556.000 456.000 456.000 643.000 639.000 673.000 869.000 889.000 739.000 739.000 739.000 739.000 739.000 739.000 739.000 765.000 765.000 765.000 765.000 7765.000 7765.000 8770.	6: Results obtained by SPMST, BSPH and SPGA on instances in Type_6-Small. SPMST BSPH SPGA	BF	439.000 750.000 646.000 491.000 407.000 696.000 746.000 758.000 823.000 863.000 845.000
Time	204,639 445,520 623.949 265,457 267,457 613.052 339,357 671.879 1118,036 339,537 871.879 404.833 884,646 1533.057	instanc	Time	26.954 7.749 8.767 16.098 19.663 9.757 18.106 21.593 9.694 9.583 17.869
Std	0.719 2 0.586 4 4 1.310 6 1.1098 2 2.575 5 7.213 3 6.036 6 6.036 6 6.976 3 7.468 12 7.468 12 7.468 9 7.469 4 7.469 12 8 9 9.113 8	GA on	Std	000000000000000000000000000000000000000
	00 13:1 13:4 14:4 16:0 16:0 16:0 16:0 16:0 16:0 16:0 16:0	nd SP	Avg	439.000 646.000 491.000 497.000 696.000 776.000 823.000 863.000 845.000
Avg	572.300 572.300 458.467 646.167 646.967 646.967 646.967 646.900 898.367 762.967 1000.733 810.400	PH ar		438 646 646 696 696 696 746 823 863 863 863
BF	556.000 572.000 644.000 644.000 673.000 794.000 883.000 775.000 994.000 117.000 117.000	MST, BS	BF	439.000 750.000 646.000 491.000 407.000 696.000 746.000 758.000 823.000 845.000 900.000
Time	27.101 33.511 36.323 4.938 58.34.938 6.472 52.162 88.949 40.747 98.740 81.616 8	by SP	Time	2.563 1.556 1.841 2.397 3.073 3.538 5.275 5.275 5.860 3.576 3.953 4.462
Std	1	tained	Std	0.000 0.000
	0.000 0.000 0.000 0.000 0.000 0.000 3.768 0.000 0.000 0.000 0.000 0.000 0.180 1.263	ults ob	Avg	000000000000000000000000000000000000000
Avg	1764.000 1764.000 1257.000 4632.000 5832.000 6217.000 6217.000 6217.000 4638.000 6247.000 7834.000 8493.033	: Resu	1	592.000 1505.000 1726.000 1055.000 1583.000 1595.000 1539.000 1441.000 2878.000 2869.000
BF	1891.000 1 1764.000 1 1257.000 1 4652.000 4 3791.000 3 3791.000 5 6217.000 6 6217.000 6 4655.000 4 4655.000 4 4635.000 7 7834.000 7 8493.000 8 8493.000 8	Table 6	BF	592.000 1505.000 1726.000 1055.000 1583.000 946.000 1595.000 1595.000 1539.000 2878.000 2869.000
Instance	5i300-108 5i400-205 5i500-304 10i300-109 10i300-109 10i500-305 15i300-110 15i400-207 15i500-306 20i300-111 20i400-208 20i500-308 25i300-112 25i300-112 25i300-112		Instance	2lin105-2x1 4eil51-2x2 4berlin52-2x2 4pi76-2x2 4eil76-2x3 6berlin52-2x3 6pr76-2x3 8berlin52-2x4 9eil51-3x3 9pt70-3x3

23.650 29.242 11.679 9.381	19.131 20.807 20.746	21.545	18.855 22.516	46.250 23.451	10.763	22.626	11.683 22.033	38.416	45.870 39.901	39.222	43.485 42.763	40.279
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
857.000 891.000 972.000 742.000	$835.000 \\ 740.000 \\ 614.000$	695.000	909.000 771.000	$1093.000\\1161.000$	875.000	965.000	988.000 1089.000	961.000	1320.000 1035.000	1080.000	1179.000 1063.000	1264.000
857.000 891.000 972.000 742.000	835.000 740.000 614.000	695.000	909.000 771.000	1093.000 1161.000	875.000	965.000	988.000	961.000	1320.000 1035.000	1080.000	1179.000	1264.000
20.996 37.839 10.126 8.468	17.556 18.637 18.950	19.358	17.007 19.601	40.789 21.194	9.859	19.866	10.741 20.756	34.351	41.285	35.467	29.370 38.014	36.137
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
857.000 891.000 972.000 742.000	$835.000 \\ 740.000 \\ 614.000$	695.000	909.000 771.000	$1093.000\\1161.000$	875.000	965.000	988.000 1089.000	961.000	$1320.000\\1035.000$	1080.000	1179.000 1063.000	1264.000
857.000 891.000 972.000 742.000	835.000 740.000 614.000	695.000	909.000 771.000	1093.000 1161.000	875.000	965.000	988.000 1089.000	961.000	1320.000 1035.000	1080.000	1179.000 1063.000	1264.000
4.664 5.384 2.935 3.446	4.638 5.048 5.262	6.422	5.501 5.975	8.737 5.993	6.193	6.687	7.451 10.576	14.388	15.667 10.074	18.179	15.163 12.512	20.753
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2273.000 1583.000 2979.000 810.000	2621.000 1619.000 2092.000	2037.000	3044.000 1415.000	3280.000 2767.000	3731.000	2398.000	1798.000 4425.000	5143.000	3972.000 4659.000	2709.000	3552.000 4094.000	5288.000
2273.000 1583.000 2979.000 810.000	2621.000 1619.000 2092.000	2037.000	3044.000 1415.000	3280.000 2767.000	3731.000	4322.000 2398.000	1798.000 4425.000	5143.000	3972.000 4659.000	2709.000	3552.000 4094.000	5288.000
9eil76-3x3 9eil101-3x3 10berlin52-2x5 12eil51-3x4	12st70-3x4 12eil76-3x4 12pr76-3x4	15pr76-3x5 16eil51-4x4	16st70-4x4 16eil76-4x4	16 lin 105-4x4 18 pr 76-3x6	20eil51-4x5	20str0-4x5	25eil51-5x5 25eil76-5x5	25rat99-5x5	25eil101-5x5 28kroA100-4x7	30kroB100-5x6	35kroB100-5x5 36eil101-6x6	42 rat 99-6 x 7

 Table 7: Results obtained by SPMST, BSPH and SPGA on instances in Type_6_Large.

	Time	213.229	637.465	360.749	724.352	827.364
	Std	0.998	0.539	5.252	1.123	1.284
SPGA	Avg	704.933	709.100	750.467	548.267	574.867
	BF	704.000	709.000	741.000	548.000	573.000
	Time	181.501	279.955	315.022	612.453	689.842
н	Std	0.499	2.419	5.709	1.535	2.276
BSPH	Avg	705.867	712.500	757.067	549.667	580.433
	BF	704.000	709.000	742.000	548.000	575.000
	Time	16.265	18.486	19.905	77.835	53.734
_	Std	0.000	0.000	0.000	0.000	0.000
\mathbf{SPMST}	Avg	3026.000	3419.000	2716.000	1956.000	2475.000
	BF	3026.000	3419.000	2716.000	1956.000	2475.000
	Instance	9gil262-3x3	9a280-3x3	91in318-3x3	9pr439-3x3	9pcb442-3x3

8 GA based Approach to Solve the C

1389.903	674.259	250.576	647.201	418.245	2305.040	2482.785	337.389	397.933	474.788
3.070	1.906	7.986	5.452	8.158	10.264	11.250	8.668	4.272	5.994
687.200	670.033	913.767	990.933	985.900	877.300	1065.100	1091.267	1161.500	1296.067
682.000	668.000	906.000	973.000	977.000	856.000	1038.000	1080.000	1159.000	1284.000
1528.109	1585.656	259.140	318.408	426.355	2264.957	1123.131	308.694	368.672	423.700
4.593	3.956	4.544	6.092	5.207	7.398	11.829	9.278	5.696	6.377
705.633	681.867	935.433	998.600	1009.233	912.067	1107.133	1126.900	1167.533	1317.000
692.000	674.000	925.000	000.986	998.000	894.000	1075.000	1106.000	1159.000	1304.000
77.563	96.279	36.457	43.589	54.356	74.548	113.129	62.341	61.193	80.091
0.000	0.000	0.000	0.000	0.000	0.000	0.499	0.000	0.000	0.000
6017.000	5315.000	5760.000	6148.000	7952.000	7203.000	10355.467	6459.000	10857.000	10097.000
6017.000	5315.000	5760.000	6148.000	7952.000	7203.000	10355.000	6459.000	10857.000	10097.000
18pr439-3x6	20 pr 439 - 4 x 5	25gil262-5x5	25a280-5x5	25 lin 318 - 5x 5	25pcb442-5x5	36pcb442-6x6	42a280-6x7	49gil262-7x7	49 lin 318 - 7x7

References

- [1] Prömel, H.J., Steger, A.: The steiner tree problem a tour through graphs, algorithms, and complexity
- [2] Wu, B.Y., Lin, C.W.: On the clustered steiner tree problem. Journal of Combinatorial Optimization **30**, 370–386 (2015). https://doi.org/10.1007/s10878-014-9772-7
- [3] Chisman, J.A.: The clustered traveling salesman problem. Computers & Operations Research **2**(2), 115–119 (1975)
- [4] D'Emidio, M., Forlizzi, L., Frigioni, D., Leucci, S., Proietti, G.: On the clustered shortest-path tree problem. In: ICTCS, pp. 263–268 (2016)
- [5] Lin, C.-W., Wu, B.Y.: On the minimum routing cost clustered tree problem. Journal of Combinatorial Optimization 33(3), 1106–1121 (2017)
- [6] Menéndez, H.D., Barrero, D.F., Camacho, D.: A genetic graph-based approach for partitional clustering. International journal of neural systems 24(03), 1430008 (2014)
- [7] Ding, C., Cheng, Y., He, M.: Two-level genetic algorithm for clustered traveling salesman problem with application in large-scale tsps. Tsinghua Science & Technology **12**(4), 459–465 (2007)
- [8] Chen, L., Abdellatif, S., Gayraud, T., Berthou, P.: A steiner tree based approach for the efficient support of multipoint communications in a multi-domain context. In: 2017 IEEE Symposium on Computers and Communications (ISCC), pp. 316–321 (2017). https://doi.org/10.1109/ ISCC.2017.8024549
- [9] Haghighat, A.T., Faez, K., Dehghan, M., Mowlaei, A., Ghahremani, Y.: A genetic algorithm for steiner tree optimization with multiple constraints using prüfer number. In: EurAsia-ICT 2002: Information and Communication Technology, pp. 272–280 (2002). https://doi.org/10.1007/3-540-36087-5_32
- [10] Hesser, J., Männer, R., Stucky, O.: Optimization of steiner trees using genetic algorithms. In: Third International Conference on Genetic Algorithms, pp. 231–236 (1989)
- [11] Julstrom, B.: A genetic algorithm for the rectilinear steiner problem. In: 5th International Conference on Genetic Algorithms, pp. 474–480 (1993)
- [12] Kapsalis, A., Rayward-Smith, V., Smith, G.: Solving the graphical steiner tree problem using genetic algorithms. Journal of the Operational

- GA based Approach to Solve the CluSteiner
- Research Society 44 (1993). https://doi.org/10.1038/sj/jors/0440408
- [13] Esbensen, H.: Computing near-optimal solutions to the steiner problem in a graph using a genetic algorithm. Networks **26** (1995). https://doi.org/10.1002/net.3230260403
- [14] Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge, (1998). https://doi.org/10.7551/mitpress/3927.001.0001
- [15] D'Emidio, M., Forlizzi, L., Frigioni, D., Leucci, S., Proietti, G.: Hardness, approximability, and fixed-parameter tractability of the clustered shortest-path tree problem. Journal of Combinatorial Optimization 38, 165–184 (2018). https://doi.org/10.1007/s10878-018-00374-x
- [16] Thanh, P.D., Binh, H.T.T., Trung, T.B.: An efficient strategy for using multifactorial optimization to solve the clustered shortest path tree problem. Applied Intelligence **50**(4), 1233–1258 (2020)
- [17] Thanh, P.D., Binh, H.T.T., Long, N.B., et al.: A heuristic based on randomized greedy algorithms for the clustered shortest-path tree problem. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 2915–2922 (2019). IEEE
- [18] Binh, H.T.T., Thanh, P.D., Trung, T.B., et al.: Effective multifactorial evolutionary algorithm for solving the cluster shortest path tree problem. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2018). IEEE
- [19] Thanh, P.D., Dung, D.A., Tien, T.N., Binh, H.T.T.: An effective representation scheme in multifactorial evolutionary algorithm for solving cluster shortest-path tree problem. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2018). IEEE
- [20] Binh, H.T.T., Thanh, P.D., Thang, T.B.: New approach to solving the clustered shortest-path tree problem based on reducing the search space of evolutionary algorithm. Knowledge-Based Systems 180, 12–25 (2019). https://doi.org/10.1016/j.knosys.2019.05.015
- [21] Lin, C.W., Wu, B.Y.: On the minimum routing cost clustered tree problem. Journal of Combinatorial Optimization 33, 1106–1121 (2017). https://doi.org/10.1007/s10878-016-0026-8
- [22] Trung, T., Thanh, L., Hieu, L., Pham Dinh, T., Binh, H.: Multifactorial evolutionary algorithm for clustered minimum routing cost problem, pp. 170–177 (2019). https://doi.org/10.1145/3368926.3369712

- [23] Thang, T.B., Long, N.B., Hoang, N.V., Binh, H.T.T.: Adaptive knowledge transfer in multifactorial evolutionary algorithm for the clustered minimum routing cost problem. Applied Soft Computing 105, 107253 (2021)
- [24] Pham Dinh, T.: Cluspt instances, mendeley data, v3 (2019). https://doi.org/10.17632/b4gcgybvt6.3
- [25] Carrasco, J., García, S., Rueda, M.M., Das, S., Herrera, F.: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review. Swarm and Evolutionary Computation, 100665 (2020)
- [26] Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation 1(1), 3–18 (2011)
- [27] D. Stakic, M.Z., Anokic, A.: A reduced variable neighborhood search approach to the heterogeneous vector bin packing problem. ICT 50(4), 808–826 (2021)
- [28] BAN, H.-B.: Applying metaheuristic for time-dependent traveling salesman problem in postdisaster. International Journal of Computational Intelligence Systems **14**(1), 1087–1107 (2021)
- [29] BAN, H.-B.: A metaheuristic for the delivery man problem with time windows. Journal of Combinatorial Optimization 41(4), 794–816 (2021)