Cavallaro, Jeffery Math 231b Homework #4

3.8.47

What is the orthogonal complement in $L^2(\mathbb{R})$ of the set of all even functions?

Every function $f \in L^2(\mathbb{R})$ can be written as a combination of an even function and an odd function: $f = f_e + f_o$. Furthermore, the integral of an even function over all of \mathbb{R} is not necessarily 0, but the integral of an odd function over all of \mathbb{R} is 0.

So assume $f \in L^2(\mathbb{R})$ is an even function and assume $g \in L^2(\mathbb{R})$:

$$\int_{\mathbb{R}} fg = \int_{\mathbb{R}} f(g_e + g_o) = \int_{\mathbb{R}} fg_e + \int_{\mathbb{R}} fg_o = \int_{\mathbb{R}} fg_e$$

because an even function times an odd function is odd. But this will only be 0 for any even f if $g_e=0$ and thus g must be odd.

Therefore, the orthogonal complement to the set of even functions in $L^2(\mathbb{R})$ is the set of odd functions in $L^2(\mathbb{R})$.

3.8.50

Let S be a subset of an inner product space. Show: $S^{\perp} = (\operatorname{span} S)^{\perp}$.

 \subseteq Assume $\vec{x} \in S^{\perp}$.

$$\forall\,\vec{y}\in S, \vec{x}\perp\vec{y}.$$

Assume $\vec{y} \in \text{span}(S)$.

$$\exists \{\vec{y}_1, \dots, \vec{y}_n\} \subseteq S \text{ and scalars } \alpha_1, \dots, \alpha_n \text{ such that } \vec{y} = \sum_{k=1}^n \alpha_k \vec{y}_k.$$

$$\langle \vec{y}, \vec{x} \rangle = \left\langle \sum_{k=1}^{n} \alpha_k \vec{y}_k, \vec{x} \right\rangle = \sum_{k=1}^{n} \alpha_k \left\langle \vec{y}_k, \vec{x} \right\rangle = 0, \text{ since } \vec{x} \perp \vec{y}_k.$$

Therefore $\vec{x} \perp \vec{y}$ and thus $\vec{x} \in (\operatorname{span} S)^{\perp}$.

 \supseteq Assume $\vec{x} \in (\operatorname{span} S)^{\perp}$.

$$\forall \vec{y} \in \text{span}(S), \vec{x} \perp \vec{y}.$$

But
$$\forall \vec{y} \in S, \vec{y} \in \text{span}(S)$$
.

And so
$$\forall \vec{y} \in S, \vec{x} \perp \vec{y}$$
.

Therefore $\vec{x} \in S^{\perp}$.

3.8.52

Let E be the Banach space \mathbb{R}^2 with norm $\|(x,y)\| = \max(|x|,|y|)$. Show that E does not have the closest point property.

Let $S = \{(x,0) \mid x \in [-1,1]\}$, which is a closed and convex subset of E. Also, let $w = (0,1) \in E$:

Thus, $\forall p \in S, d(w, p) = 1$ and so the closest point is not unique.

Therefore, E does not have the closest point property with the given norm.

3.8.53

Let S be a closed subspace of a Hilbert space H and let $(\vec{e}_1, \vec{e}_2, \ldots)$ be a complete orthonormal sequence in S. For an arbitrary $\vec{x} \in H$ there exists $\vec{y} \in S$ such that $\|\vec{x} - \vec{y}\| = \inf_{\vec{z} \in S} \|\vec{x} - \vec{z}\|$. Define \vec{y} in terms of $(\vec{e}_1, \vec{e}_2, \ldots)$.

Assume $\vec{x} \in H$.

Thus,
$$\exists \, \vec{y} \in S, \|\vec{x} - \vec{y}\| = \inf_{\vec{z} \in S} \|\vec{x} - \vec{z}\|.$$

By definition, this means that $d(x, S) = \|\vec{x} - \vec{y}\|$.

By Theorem done is class, we can conclude that $\vec{x} - \vec{y} \perp S$.

Thus, $\vec{x} - \vec{y} \perp \vec{e}_n$.

Now, since
$$(\vec{e}_n)$$
 is complete: $\vec{y} = \sum_{n=1}^{\infty} \langle \vec{y}, \vec{e}_n \rangle \vec{e}_n$.

$$\langle \vec{x}, \vec{e}_n \rangle - \langle \vec{y}, \vec{e}_n \rangle = \langle \vec{x} - \vec{y}, \vec{e}_n \rangle = 0 \text{, since } \vec{x} - \vec{y} \perp \vec{e}_n \text{, and so } \langle \vec{x}, \vec{e}_n \rangle = \langle \vec{y}, \vec{e}_n \rangle.$$

$$\therefore \vec{y} = \sum_{n=1}^{\infty} \langle \vec{x}, \vec{e}_n \rangle \vec{e}_n$$