Optimization and Computational Linear Algebra for Data Science Final exam - December 17, 2019

- Please justify your answers, proving the statements you make. You are allowed to refer to results shown in lectures/recitations/homeworks as long as you state them precisely, meaning that you should say exactly which hypothesis are needed in the result you use.
- This exam is open book/notes. You are allowed to consult notes and books you bring, but not allowed to use electronic devices.
- The exam has 2 pages. It has 6 question groups that together total 100 points plus extra credit. Extra credit points will be added to you grade (but your grade can not exceed 100).

Problem 1 (16 points). True or false? [WITHOUT PROOF] Let $A \in \mathbb{R}^{n \times m}$ and $y \in \mathbb{R}^n$. We assume that the equation Ax = y admits one unique solution $x^* \in \mathbb{R}^m$.

Are the following statements true or false? You do not need to justify your answers in this exercise.

- (a) $y \in Im(A)$.
- (**b**) $Ker(A) = \{0\}.$
- (c) rank(A) = m.
- (d) $n \geq m$.

Problem 2 (16 points). **True or false?** [WITH PROOF] For each of the following, give a proof (if you think that the statement is true) or find a counterexample (if you think it is false). To give a counterexample, it suffices to find a value of n (the easiest way would probably be to take n = 1) and a function $f : \mathbb{R}^n \to \mathbb{R}$ for which the statement is not true.

- (a) If $f: \mathbb{R}^n \to \mathbb{R}$ is a differentiable function and if $\nabla f(x) = 0$ then x is a local maximum or a local minimum of f.
- (b) If $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function and if f(x) = f(x') = 0 for some $x, x' \in \mathbb{R}^n$, then

$$f\left(\frac{x+x'}{2}\right) \le 0.$$

Problem 3 (22 points). Let $A \in \mathbb{R}^{n \times m}$, $x_0 \in \mathbb{R}^m$ and $w \in \mathbb{R}^n$. We define

$$y = Ax_0 + w$$

i.e. y is a linear combination of the columns of A, plus the vector w that could for instance represent some noise. We assume that $n \ge m$ and rank(A) = m, so that $A^{\mathsf{T}}A$ is invertible. We consider the least-squares problem

minimize
$$||Ax - y||^2$$
 with respect to $x \in \mathbb{R}^m$. (1)

- (a) Show that the problem (1) has a unique solution $x^* = x_0 + (A^T A)^{-1} A^T w$.
- (b) Let $A = U \Sigma V^{\mathsf{T}}$ be the singular value decomposition of A: $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{m \times m}$ are orthogonal matrices and

$$\Sigma = \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \sigma_m \\ 0 & \cdots & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & \cdots & 0 \end{pmatrix} \in \mathbb{R}^{n \times m},$$

where $\sigma_1 \geq \cdots \geq \sigma_m$ are the singular values of A. Justify that $\sigma_m > 0$ and give the expression of the singular values of $(A^TA)^{-1}A^T$ in terms of the singular values of A.

(c) Show, using the previous questions, that $||x^* - x_0|| \le \frac{1}{\sigma_m} ||w||$. We recall that the spectral norm of a matrix is equal to its largest singular value.

Problem 4 (16 points). We admit that the constrained optimization problem

minimize
$$x^2 + y^2 + z^2$$
 subject to $x + y + z = 1$, (2)

has a unique solution (x^*, y^*, z^*) . Compute the values of x^*, y^* and z^* .

Problem 5 (16 points). Assume that we have a dataset of n points a_1, \ldots, a_n in \mathbb{R}^d . We let A be the $n \times d$ matrix

$$A = \begin{pmatrix} -a_1 - \\ \vdots \\ -a_n - \end{pmatrix}.$$

We assume that the points have been centered $(\sum_{i=1}^n a_i = 0)$ and we use Principal Component Analysis to obtain a dimensionally reduced dataset $b_1, \ldots, b_n \in \mathbb{R}^k$ for some $k \leq d$. Let $v_1, \ldots, v_d \in \mathbb{R}^d$ be the right singular vectors of A.

Recall (without proof) the expression of b_i in terms of a_i and the k first right singular vectors v_1, \ldots, v_k of A. Then, prove that for all $i \in \{1, \ldots, n\}$,

$$||b_i|| \le ||a_i||.$$

Problem 6 (8 points for (a) + 6 points for (b) + 5 extra-credit points for (c).). Let $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x) = x_1^2 + 4x_2^2 - 4x_1 - 8x_2 + 1$$
, for $x = (x_1, x_2) \in \mathbb{R}^2$.

- (a) Show that f is convex. Show that f admits a unique global minimizer x^* and give the coordinates of x^* .
- (b) We would like to minimize f using gradient descent with constant step-size $\alpha > 0$:

$$x(0) = (0,0)$$

$$x(t+1) = x(t) - \alpha \nabla f(x(t)), \quad \text{for all } t \ge 0.$$

Let $w(t) = x(t) - x^*$ and let $w_1(t)$, $w_2(t)$ be the coordinates of w(t). Show that for all $t \ge 0$:

$$\begin{cases} w_1(t+1) = (1-2\alpha)w_1(t) \\ w_2(t+1) = (1-8\alpha)w_2(t). \end{cases}$$

- (c) Extra-credit, 5 points. Deduce that:
 - if $0 < \alpha < 1/4$, gradient descent converge to x^* , that is, w(t) goes to 0 as t goes to infinity.
 - if $\alpha \geq 1/4$, gradient descent does not converge to x^* .

Problem 7 (Extra-credit, 10 points). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function, A be a $n \times m$ matrix and $\lambda > 0$. We assume that $x^* \in \mathbb{R}^m$ is a global minimizer of

$$f(Ax) + \lambda ||x||^2$$
.

Show that x^* belongs to the subspace S of \mathbb{R}^m spanned by the rows of A, that is $S = \operatorname{Im}(A^{\mathsf{T}})$.

Hint: consider P_S , the orthogonal projection onto S.

Problem 8 (Extra-credit, 10 points). We consider an unoriented graph of n nodes 1, 2, ..., n. Let $d \ge 0$ such that each node has a degree less or equal to d. Let $A \in \mathbb{R}^{n \times n}$ be the adjacency matrix of the graph. Show that if λ is an eigenvalue of A, then $|\lambda| < d$.

Hint: consider an eigenvector $x \in \mathbb{R}^n$ of A associated to λ , and look at the coordinate i such that $|x_i|$ is maximal.

