

CHEM 110 Hand-in Sheet 2, 2013

Chapters 5 – 7: Chemical Bonding and Molecular Structure; Gases; Condensed Phases: Liquids and Solids

Please e-submit via the CHEM110 Moodle site or post to T&LC by: Wednesday 10th April.

Name: Student No:				Mark: (Out of 40)		
1	Which of N_2 or N_2^+ has the stronger bond? Use molecular orbital diagrams and bond order calculations to ustify selection. [6 marks]					
2	Identify the hybrid CS_2	tify the hybridization of the bolded atom in each of the following species: (a) (CH ₃) ₂ NH (b) SO ₂ (c) [3 mark]				
	(a)		(b)	(c)	r 1	
3	Write Lewis structures and predict (a) electron-domain geometry and (b) molecular geometry of the following molecules. Also (c) identify whether each of the molecules are polar or non-polar. [6 marks]					
	BF ₃			BrF ₃		
	(a) electron-domain g		(a) electron-domain geometry	(a) electron-domain geom	netry	
	(b) molecular geomet		(b) molecular geometry	(b) molecular geometry		
	(c) polar or non-polar	•?	(c) polar or non-polar?	(c) polar or non-polar?		
4	Sodium metal reacts with chlorine gas to form sodium chloride. A closed container of volume 3×10^3 mL contains chlorine gas at 27° C and 1.67×10^5 Pa. Then 6.90 g of solid sodium is introduced, and the reaction comes to completion. What is the final pressure if the temperature rises to 47° C? [6 marks]				and the reaction	

The concentration of NO_2 in a smoggy atmosphere was measured as 0.78 ppm. The bar 1.011×10^5 Pa. Calculate the Partial pressure of NO_2 in Pa.		m. The barometric pressure was [2 marks]			
6	For each of the following pairs of liquids, choose which has the lower vapour pressure at room temperature and explain you reasoning: (a) water, H_2O or methanol, CH_3OH (b) pentan-1-ol, $C_5H_{11}OH$, or hexan-1-ol $C_6H_{14}OH$.				
	(a)	(b)			
7	Silver has an atomic radius of 144 pm. What would the density of silver be in g mL ⁻¹ if it were to crystallise in: (a) a simple cubic lattice, (b) a body-centred cubic lattice, or (c) a face-centred cubic lattice? The actual density of silver is 10.6 g mL ⁻¹ . (d) Which cubic lattice does silver have?				
	(a)		[4 marks]		
	(b)		[4 marks]		
	(c)		[4 montes]		
			[4 marks]		
	(d)		[1 mark]		