Probability and Stochastic Process by Joshua Reed, page 1 of 2

Probabilty

Events

An event is a collection of outcomes of a random experiment

 $S = \{$ collection of all outcomes of the experiment}

 $\phi = \{\text{empty set}\}\$ If $A \cap B = \phi$.

then A and B are mutually exclusive DeMorgan's $\overline{(A \cup B)} = (\overline{A} \cap \overline{B})$

Axioms and Properties

Axioms

I. P(A) > 0II. P(S) = 1

III. If $(A \cap B) = \phi$,

then $P(A \cup B) = P(A) + P(B)$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(\overline{A}) = 1 - P(A)$

Independence

If $P\{A \cap B\} = P\{A\}P\{B\}$, then A and B are independent

If $P(A \cap B|C) = P(A|C)P(B|C)$, A and B are **conditionally** independent given event C

Mutually Exclusivity

If $P\{A \cap B\} = \phi$, then A and B are M.E. And, in this case P(A|B) = P(A) and P(B|A) = P(B)

Conditional Probability $P(A|B) = P(A \cap B)/P(B) P(A \cap B) =$ P(A|B)P(B) = P(B|A)P(A)

Bayes' rule

P(B|A) = P(A|B)P(B)/P(A),

PDF and CDF **PDF**

The Probability Density Function is a function that accepts an outcome and returns the probability of that outcome occuring. Written as: p(x) and $f_x(x)$

PMF and CMF

Are the discrete time versions of the PDF and CDF

The Cumulative Distribution Function. Commonly written as:

P(x) and $F_x(x)$

Is the integral of the PDF.

 $F_x(x) = \int f_x(x) dx$

Distributions

Binomial

General

X = the number of successes in n trials. This is n trials of a Bernoulli random variable.

Probability Mass Function

 $P\{X = k\} = \binom{n}{k} p^k q^{n-k}$, for k = 0, 1, 2, ..., n, where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ Mean

 $m_x = np$

Variance

Var(x) = np(1-p)

Uniform

General

X has equal likeliness of taking any value in the interval [a, b]

Probability Density Function

 $f_x(u) = \frac{1}{b-a}$, for a < u < b, and is 0

Cumulative Distribution Function

$$F_x(u) = \begin{cases} 0, & u < a \\ \frac{u-a}{b-a}, & a < u < b \\ 1, & b < u \end{cases}$$

 $m_x = (a+b)/2$

Variance

$$Var(X) = \frac{(b-a)^2}{12}$$

Triangular

General

Upon adding two uniform distributions, we get the triangular density function. The function only has value over [2a, 2b]

$$f_x(\alpha) = \begin{cases} \frac{\alpha - 2a}{(b-a)^2}, & 2a < \alpha < (a+b)\\ \frac{2b - \alpha}{(b-a)^2}, & (a+b) < \alpha < (2b)\\ 0, & otherwise \end{cases}$$

Cumulative

This was not listed in the summary, and I need to review to understand why.

Exponential

General

X is the time to arrival or time to failure, where arrival rate is λ

X can also be viewed as departure time with departure rate μ

Probability Density Function

 $f_x(t) = \lambda e^{-\lambda t}$, for t > 0, and is 0 elsewhere.

Cumulative Distribution Function

 $F_x(t) = 1 - e - \lambda t$, for t > 0, and is 0 elsewhere.

Mean and Variance $m_x = \sigma_x = 1/\lambda$

General

The normal distribution

Probability Density Function

With mean m and standard deviation σ

Unit Gaussian (normal) $\sigma=1$, m=0

 $f_x(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}}$

Unit Gaussian Cumulative Distribution $\phi(u)$

 $\phi(u)$ was used to compute the following $P\{a < X < b\} = \phi(\frac{b-m}{\sigma}) - \phi(\frac{a-m}{\sigma})$

Mean and Variance

m and σ are the mean and standard deviation σ_x^2 is the variance

Geometric

General

X is the number of trials before the first p is the probability of success

Mass Function

 $P\{X=k\} = p(1-p)^{k-1}$, for $k=1,2,3,\dots$

Mean

 $m_x = 1/p$ **Variance**

 $Var(X) = (1 - p)/p^2$

Poisson

General

X is the number of arrivals in a time interval t

Mass Function

 $P\{X=k\}=\frac{(\lambda t)^k}{k!}e^{\lambda t}$, for $k=0,1,2,3,\dots$

Mean and Variance $m_x = Var(X) = \lambda t$

 λ is the arrival rate

Moments

First

General

The first moment is the mean of the distribution. Sometimes refered to as the center of mass.

Formula

Where p(x) is the probabilty of the outcome x occurring.

$$\mu_x = E\{X\} = \int p(x)xdx$$

And applies via a sum for the discrete case.

Nth Moment

$$E\{X^n\} = \int p(x)x^n dx$$

Variance of X $\sigma_x^2 = E\{[X - m_x]^2\} = E\{X^2\} - \mu_x^2$

Properties If Y = aX + b. then $m_y = am_x + b$

and $\sigma_y^2 = a^2 \sigma_x^2$

Expectations

General

The expectation E of a function q of a random variable x, $E\{g(X)\}$:

 $E\{g(X)\} = \int_{-\infty}^{\infty} g(u) f_x(u) du$ A sum can be substituted for the integral in the discrete case unless using impulse

functions **Properties**

 $E\{C\} = C$ $E\{aq(X) + bh(X)\} =$ $aE\{g(x)\} + bE\{h(X)\}$

If $g(X) \geq 0$, then $E\{g(X)\} \geq 0$ **Basic Maths**

Series and Sequences

Geometric Sequence A series with a constant ration between

successive terms. Ex. $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$ Often defined as using ar

Ex. $a + ar + ar^2 + ar^3 + ...$ For $r \neq 1$, the sum of the first n terms is: $\sum_{k=0}^{n-1} ar^k = a(\frac{1-r^n}{1-r})$

And for infinite sequences: $\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$, for |r| < 1

Arithmetic Series A series with a constant difference

between successive terms. Ex. 2+5+8+11+...Sum of an arithmetic series with n terms starting with a_1 and ending with a_2 :

$\sum = \frac{n(a_1 + a_2)}{2}$ Power Series

A series of the form:

Series of the form: $\sum_{n=0}^{\infty} = a_n(x-c)^n$ Where often c=0 $\sum_{n=0}^{\infty} = a_n(x)^n$ The power series allows generalization of multiplication, division, subtraction, and addition between like series. It is also possible to integrate or differentiate a power series.

Taylor Series

The Taylor series of f(x) (a function that For a set S of size k, the number of is infinetely differentiable at a number a) is the power series:

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a) + \dots$$
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$$

Logarithms

 $log_b c = k$ $b^k = c$ ln(xy) = ln(x) + ln(y)ln(x/y) = ln(x) - ln(y) $ln(x^y) = yln(x)$ ln(e) = 1ln(1/x) = -ln(x)Integrals $\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1$

Derivatives

 $\int \frac{1}{x} dx = \ln|x|$

 $\int_{0}^{\infty} u dv = uv - \int_{0}^{\infty} v du$ $\int_{0}^{\infty} e^{ax} dx = \frac{1}{a} e^{ax}$

 $\int xe^{ax}dx = \left(\frac{x}{a} - \frac{1}{a^2}\right)e^{ax}$

Combinatorics

Permutations

Number of ways to order n distinct elements: n!

k-Permutations of n

Ordered arrangements of a k-element subset of an n-set. $P(n,k) = \frac{n!}{(n-k)!}$

Permutations With Repitition

n-tuples over S is. k^n

Combination

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Binomial Theorem