Independencia lineal y generación lineal

Martes 13 de septiembre

Ejercicio 1. Decidir si los siguientes subconjuntos de \mathbb{R}^3 son linealmente independientes. Cuando un conjunto no lo sea, mostrar una relación lineal no trivial entre sus elementos.

- $(1) \{(1,0,-1), (1,2,1), (0,-3,2)\}, \qquad (4) \{(1,1,1,1), (1,2,1,2), (1,3,1,3), (0,1,2,3)\},\$
- $(2) \ \big\{(1,0,-1),\ (1,-2,1),\ (2,-2,0)\big\}, \quad (5) \ \big\{(1,1,0,0),\ (0,0,1,1),\ (1,0,0,4),\ (0,0,0,2)\big\},$
- $(3) \ \left\{ (1,3,-3), \ (2,3,-4), \ (1,-3,1) \right\}, \quad (6) \ \left\{ (1,1,2,4), \ (2,-1,-5,2), \ (1,-1,-4,0), \ (2,1,1,6) \right\}.$

Ejercicio 2. Probar los siguientes:

- (a) Todo subconjunto de un conjunto LI es LI.
- (b) Todo conjunto que contiene un subconjunto LD es también LD.
- (c) Todo conjunto que contiene al vector 0 es LD.
- (d) Un conjunto es LI si y sólo si todos sus subconjuntos finitos son LI.
- (e) Probar que un conjunto de vectores $\{v_1, \ldots, v_n\}$ es LD si y sólo si alguno de los vectores está en el generado por los otros, esto es: existe $i, 1 \leq i \leq n$ tal que $v_i \in \langle v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n \rangle$.

Ejercicio 3. Decidir si los siguientes subconjuntos del espacio vectorial $\mathbb{R}^{\mathbb{R}}$ de funciones : $\mathbb{R} \to \mathbb{R}$ son LI:

(a)
$$\{1, \sin, \cos\}$$
, (b) $\{1, \sin^2, \cos^2\}$.

Ejercicio 4. Sea V el \mathbb{Q} -espacio vectorial de sucesiones con valores racionales, o sea funciones : $\mathbb{N} \to \mathbb{Q}$. Encontrar un subconjunto infinito de V que sea LI.

Ejercicio 5. Dar 3 vectores en \mathbb{R}^3 que sean LD y tales que dos cualesquiera de ellos sean LI.

Ejercicio 6. Sea \mathbb{k} un subcuerpo de \mathbb{C} . Consideramos el espacio vectorial $\mathbb{k}^{\mathbb{k}}$ de funciones : $\mathbb{k} \to \mathbb{k}$. Sea $\{f_1, \ldots, f_n\}$ un conjunto LI de funciones pares en $\mathbb{k}^{\mathbb{k}}$ (i.e., $f(x) = f(-x) \ \forall x$) y sea $\{g_1, ..., g_m\}$ un conjunto LI de funciones impares (i.e., $g(-x) = -g(x) \ \forall x$). Probar que $\{f_1, ..., f_n, g_1, ..., g_m\}$ es LI.

Ejercicio 7. Sean \mathbb{k} un subcuerpo de \mathbb{C} y V un \mathbb{k} -espacio vectorial. Sean α, β y γ vectores en V. Probar que si $\{\alpha, \beta, \gamma\}$ es LI, entonces tambien lo es $\{\alpha + \beta, \alpha + \gamma, \beta + \gamma\}$. Mostrar que esto no es cierto si en lugar del cuerpo \mathbb{k} consideramos \mathbb{Z}_2 .

★ Ejercicio 8. Sean $\{v_1, v_2, v_3\}$ tres vectores en \mathbb{Q}^4 ; en particular, cada uno de ellos es un vector en el \mathbb{R} -espacio vectorial \mathbb{R}^4 . ¿Es cierto que el conjunto de vectores es LI como vectores en \mathbb{Q}^4 si y sólo si lo es como conjunto de vectores en \mathbb{R}^4 ?

Práctico 4

\star Ejercicio 9. Supongamos que tenemos un conjunto LI $\{v_1,\ldots,v_n\}$ en un espacio vectorial V. Sea $w \in V$. Probar que si $\{v_1+w,\ldots,v_n+w\}$ es LD, entonces $w \in \langle v_1,\ldots,v_n \rangle$.

Ejercicio 10. Sea V un \Bbbk -espacio vectorial. Sean $v_1, v_2 \in V$ y $\lambda \in \Bbbk$. Probar que $\langle v_1, v_2 \rangle = \langle v_1, v_2 + \lambda v_1 \rangle$.

Presentación de subespacios. Bases y dimensión

Jueves 15 de septiembre

Ejercicio 11. Para cada ítem del **Ejercicio 1** denotamos por S_i al subconjunto indicado. Sea W_i el subespacio de \mathbb{R}^3 (casos i = 1, 2, 3) ó \mathbb{R}^4 (casos i = 4, 5, 6) generado por S_i .

- (a) Hallar la dimensión de W_i y dar una base del mismo.
- (b) Caracterizar W_i mediante ecuaciones.
- (c) Para i = 1, 2, 3 decidir cuáles de los vectores (4, -5, 1), (5, 15, 5), (-5, 15, -5) están en W_i . Para i = 4, 5, 6, hacer lo propio con los vectores (1, 1, -4, 4), (1, 1, -4, -4), (1, 1, 4, 4), (1, 1, 1, 2).

Ejercicio 12. Dar una base y la dimensión de los siguientes subespacios vectoriales.

- (a) $\{(x, y, z) \in \mathbb{R}^3 : z = x + y\},\$
- (b) $\{(x, y, z, w, u) \in \mathbb{R}^5 : w = x + z, y = x z, u = 2x 3z\},\$
- (c) $\{a_0 + a_1x + a_2x^2 + a_3x^3 \in \mathbb{R}_3[x] : a_0 + a_3 = a_1 + a_2\},\$
- (d) $\{p(x) \in \mathbb{R}_4[x] : p'(0) = 0\}.$

Ejercicio 13. Los siguientes subconjuntos $S_i \subset \mathbb{R}^n$ son LI $(n=3 \circ 4)$. Completarlos a una base de \mathbb{R}^n .

(1) $S_1 = \{(1,1,0), (0,0,1)\},\$

(3) $S_3 = \{(1,1,1,1), (2,0,2,0), (1,2,2,1)\},\$

(2) $S_2 = \{(1, 1, 0, 0), (0, 0, 1, 0)\},\$

(4) $S_4 = \{(0, 1, 2, 1), (0, 1, 1, 1)\}.$

Martes 20 de septiembre

Ejercicio 14. Sean V un espacio vectorial de dimensión finita y $W \subset V$ un subespacio. Probar que si $\dim W = \dim V$, entonces W = V.

Ejercicio 15. Sea \mathbb{k} un cuerpo. Dado $m \in \mathbb{N}_0$ denotamos por $\mathbb{k}_m[x]$ al subespacio de $\mathbb{k}[x]$ formado por los polinomios de grado $\leq m$, junto con el polinomio nulo.

- (a) Sean p_1, \ldots, p_n polinomios no nulos en $\mathbb{k}[x]$ tales que sus grados son distintos dos a dos. Probar que $\{p_1, \ldots, p_n\}$ es LI en $\mathbb{k}[x]$.
- (b) Probar que $\{1, 1+x, (1+x)^2\}$ es una base de $\mathbb{k}_2[x]$.
- (c) Probar que $\mathbb{k}_2[x]$ es generado por $\{1, 2+2x, 1-x+x^2, 2-x^2\}$. ¿Es ese conjunto una base?

Ejercicio 16. Supongamos que tenemos $q_0, q_1, \dots q_m \in \mathbb{k}_m[x]$ tales que $q_j(1) = 0$ para todo j. Probar que $\{q_0, q_1, \dots, q_m\}$ es LD.

Ejercicio 17. Calcular la dimensión de los siguientes espacios vectoriales exhibiendo una base.

- (a) \mathbb{C}^n como \mathbb{C} -espacio vectorial.
- (d) $\{A \in \mathbb{k}^{n \times n} : A \text{ es triangular superior } \}.$
- (b) \mathbb{C}^n como \mathbb{R} -espacio vectorial.

(e) $\{A \in \mathbb{k}^{n \times n} \colon \operatorname{tr} A = 0\}.$

(c) $\{A \in \mathbb{k}^{n \times n} : A = A^t\}.$

(f) $\{A \in \mathbb{C}^{2 \times 2} \colon A = (\overline{A})^t\}$ como \mathbb{R} -EV.

Nota: si $A = (a_{ij})_{1 \le i,j \le n} \in \mathbb{C}^{n \times n}$ se define $\overline{A} := (\overline{a_{ij}})_{1 \le i,j \le n} \in \mathbb{C}^{n \times n}$ (conjugar las entradas de A).

Suma (directa) de subespacios

Martes 27 de septiembre

Ejercicio 18. Sean W_1 y W_2 los siguientes subespacios de \mathbb{R}^6 :

$$W_1 = \{(x_1, x_2, x_3, x_4, x_5, x_6) \colon x_1 + x_2 + x_3 = 0, x_4 + x_5 + x_6 = 0\};$$

$$W_2 = \langle (1, -1, 1, -1, 1, -1), (1, 0, 2, 1, 0, 0), (1, 0, -1, -1, 0, 1), (2, 1, 0, 0, 0, 0) \rangle.$$

- (a) Dar una base y la dimensión de $W_1 \cap W_2$. Describirlo con ecuaciones.
- (b) Dar una presentación por ecuaciones de W_1+W_2 . Obtener una base y su dimensón.
- (c) Decir cuáles de los siguientes vectores están en $W_1 \cap W_2$ y cuáles en $W_1 + W_2$:

$$(1,1,-2,-2,1,1);\ (0,0,0,1,0,-1);\ (1,1,1,0,0,0);\ (3,0,0,1,1,3);\ (-1,2,5,6,5,4).$$

Ejercicio 19. Para cada uno de los conjuntos S_i definidos en el **Ejercicio 13**, sea W_i el subespacio de \mathbb{R}^n (n=3 ó 4) generado por S_i . Hallar un complemento de W_i en \mathbb{R}^n .

Ejercicio 20. Decidir si las siguientes afirmaciones son verdaderas o falsas.

- (a) Sea V un espacio vectorial de dimensión 42. Si V_1 y V_2 son subespacios con dim $V_1=33$ y dim $V_2=9$ tales que $V=V_1+V_2$, entonces $V=V_1\oplus V_2$.
- (b) Sea V un espacio vectorial de dimensión 42. Si V_1 y V_2 son subespacios con dim $V_1=33$ y dim $V_2=9$ tales que $V_1\cap V_2\neq 0$, entonces $V=V_1\oplus V_2$.
- (c) Si V_1 y V_2 son subespacios de \mathbb{k}^8 con dim $V_1 = \dim V_2 = 4$ entonces $\mathbb{k}^8 = V_1 \oplus V_2$.
- (d) Si V_1 y V_2 son subespacios de \mathbb{k}^8 con dim $V_1 = \dim V_2 = 5$ entonces $V_1 \cap V_2 = 0$.

Nota: los números 42 y 33 no son demasiado especiales para este tipo de problemas, pero si para otros: https://www.youtube.com/watch?v=ASoz_NuIvPO

Ejercicio 21. Sea U un subespacio vectorial de un espacio vectorial V. Expresar U+U en términos de U.

Ejercicio 22. Sean V un \Bbbk -espacio vectorial de dimensión n y $U \subset V$ un subespacio de dimensión n-1.

- (a) Probar que si $v \notin U$ entonces $V = U \oplus \langle v \rangle$.
- (b) Probar que si W es un subespacio de V no contenido en U, entonces V = U + W.

Ejercicio 23. Sea \mathbb{k} un subcuerpo de \mathbb{C} . Consideramos el espacio vectorial $\mathbb{k}^{\mathbb{k}}$. Sean $\mathbb{k}_p^{\mathbb{k}}$ y $\mathbb{k}_i^{\mathbb{k}}$ los subespacios de funciones pares y funciones impares, respectivamente (Ver **Ejercicio 6**). Probar que $\mathbb{k}^{\mathbb{k}} = \mathbb{k}_p^{\mathbb{k}} \oplus \mathbb{k}_i^{\mathbb{k}}$.

Ejercicio 24. Sea V un espacio vectorial de dimensión finita, y sean V_1, \ldots, V_m subespacios de V. Probar que si $V = V_1 \oplus \cdots \oplus V_m$, entonces dim $V = \dim V_1 + \cdots + \dim V_m$.

Ejercicio 25. Sea V un espacio vectorial de dimensión $n \in \mathbb{N}$. Probar los siguientes:

- (a) Para cada j con $1 \le j \le n$ existe un subespacio de V de dimensión j.
- (b) Existen subespacios V_1, \ldots, V_n de dimensión 1 tales que $V = V_1 \oplus \cdots \oplus V_n$.

Para ejercitar la resistencia a la frustración

- ★ Ejercicio 26. Probar que \mathbb{R} mirado como \mathbb{Q} -espacio vectorial tiene dimensión infinita. Sugerencia 1: Usar que existe $\alpha \in \mathbb{R}$ tal que $p(\alpha) \neq 0$ para todo $p \in \mathbb{Q}[x]$ (por ejemplo, $\alpha = \pi$). Sugerencia 2: Usar que \mathbb{R} es "más infinito" que \mathbb{Q}^n para todo $n \in \mathbb{N}$.
- ★ Ejercicio 27. Supongamos que F y K son cuerpos tales que F es subcuerpo de K. Entonces K puede ser mirado como un F-EV. Supongamos que K tiene dimensión finita mirado como F-EV. Sea V un K-espacio vectorial (también se lo puede ver como un F-EV). Probar que V tiene dimensión finita mirado como K-EV si y solo si V tiene dimensión finita mirado como F-EV. Mostrar que en tal caso vale

$$\dim_{\mathbb{F}} V = \dim_{\mathbb{F}} \mathbb{K} \ \dim_{\mathbb{K}} V.$$

Nota: Esto generaliza lo calculado en Ejercicio 17 (a), (b).

Práctico 4

Definición

Sea \mathbb{k} un cuerpo. Recordar que dados $n \in \mathbb{N}_0$ y $x \in \mathbb{k}$, denotamos n $x := x + \cdots + x$ (n-veces) $\in \mathbb{k}$.

Se define la característica de k, denotada por cark, de la siguiente forma:

- si existe $n \in \mathbb{N}$ tal que $n \mid 1 = 0$, entonces $\operatorname{car} \mathbb{k} := \min \{ n \in \mathbb{N} : n \mid 1 = 0 \};$
- si no existe tal $n \in \mathbb{N}$, entonces car $\mathbb{k} := 0$.

★ Ejercicio 28. Cardinalidad de cuerpos finitos

Sea \mathbbm{k} un cuerpo *finito*. El objetivo de este ejercicio es probar que \mathbbm{k} tiene p^n elementos para algún primo p.

- (a) Probar que car \Bbbk es un número primo, lo denotaremos por p.
- (b) Probar que \mathbbm{k} es un \mathbbm{Z}_p -espacio vectorial con la suma de \mathbbm{k} y el producto por escalares dado por

$$: \mathbb{Z}_p \times \mathbb{k} \to \mathbb{k}, \qquad \bar{j} \cdot x := j \ x.$$

(Es necesario probar que esa función está bien definida, es decir: si $\bar{j} = \bar{h}$ entonces j = x = h x.)

- (c) Probar que \mathbbm{k} tiene dimensión finita como \mathbbm{Z}_p -espacio vectorial. La denotaremos por n.
- (d) Notar que hay un isomorfismo $(\mathbb{Z}_p)^n \to \mathbb{k}$ de \mathbb{Z}_p -espacios vectoriales. Deducir el cardinal de \mathbb{k} .