$\mathbf{Documents} \ \mathbf{autoris\acute{e}s} : \mathbf{cours}, \ \mathbf{TD}, \ \mathbf{notes} \ \mathbf{manuscrites}. \ \mathbf{Dur\acute{e}e} : \mathbf{1h} \ \mathbf{30}.$

Barème indicatif sur 40:3+3+2+4+8+2+2+4+3+1+3+2+3

Exercice 1

On pose $E = \{-1, 0, 1\}$, $A = \{-1, 0\}$ et $B = \{0, 1\}$.

1. Déterminer $\mathcal{P}(E)$, $\mathcal{P}(A)$, $\mathcal{P}(B)$, $\mathcal{P}(A \cup B)$ et $\mathcal{P}(A) \cup \mathcal{P}(B)$. Reproduire et compléter le tableau suivant.

$\mathcal{P}\left(E\right)$	
$\mathcal{P}\left(A\right)$	
$\mathcal{P}\left(B\right)$	
$\mathcal{P}(A) \cup \mathcal{P}(B)$	
$\mathcal{P}(A \cup B)$	

2. Comparer $\mathcal{P}(A) \cup \mathcal{P}(B)$ et $\mathcal{P}(A \cup B)$.

Exercice 2

Écrire la table de vérité de $(A \wedge B) \Rightarrow (A \vee \overline{C})$ (reproduire et compléter le tableau suivant).

A	B	C	\overline{C}	$A \wedge B$	$A \vee \overline{C}$	$(A \land B) \Rightarrow (A \lor \overline{C})$
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Exercice 3

Ecrire la négation de : Dans tous les IUT, tous les étudiants sont attentifs.

Exercice 4

L'ensemble de référence est \mathbb{R} . Préciser la valeur de vérité de

1.
$$\forall x \ x^2 = 4 \Rightarrow x = 2$$

$$2. \ \forall x \ x = 2 \implies x^2 = 4$$

3.
$$\exists x \ \forall y \ x + y > 0$$

$$4. \ \forall x \ \exists y \ x + y > 0$$

Exercice 5

On note \mathfrak{R} la relation définie dans $E = \{3, 5, 7, 11, 13\}$ par $x\mathfrak{R}y$ si et seulement si l'entier $\frac{x+y}{2}$ est un nombre premier.

1. Représenter graphiquement la relation \Re .

2. \Re est-elle

- (a) réflexive,
- (b) symétrique,
- (c) antisymétrique,
- (d) transitive?

Expliquer.

3. Matrice booléenne de la relation \mathfrak{R}

(a) Préciser la matrice booléeenne A de la relation \Re .

$$A = \begin{pmatrix} 3 & 5 & 7 & 11 & 13 \\ & 3 & & & & \\ & 5 & & & & \\ & 7 & & & & \\ & 11 & & & & \\ & 13 & & & & \end{pmatrix}$$

(b) En déduire la matrice A^2 .

Indication: En posant $A=(a_{ij})$ et $B=(b_{ij})$ $(1 \leq i \leq n, 1 \leq j \leq n),$ $A \wedge B=(p_{ij})$ où $p_{ij}=(a_{i1} \wedge b_{1j}) \vee (a_{i2} \wedge b_{2j}) \vee ... \vee (a_{in} \wedge b_{nj}).$

(c) En utilisant la matrice A, \Re est-elle

i. réflexive,

Indication: comparer I_5 et A.

ii. symétrique,

 $Indication : comparer {}^tA$ et A.

iii. antisymétrique,

 $iv.\ transitive\,?$

Indication: comparer A^2 et A.

Expliquer.

Exercice 6

n est un entier naturel quelconque.

En utilisant la fomule du binôme, développer et réduire $(n+2)^5$.

Exercice 7

On pose $u_0=13$ et pour tout entier naturel $n,\ u_{n+1}=\frac{1}{5}u_n+\frac{4}{5}.$ Démontrer par récurrence que pour tout entier naturel $n:u_n=1+\frac{12}{5^n}.$

Exercice 8

- 1. Ecrire le nombre 61 en base 2, en base 8, puis en base 16.
- 2. Quel est le nombre de chiffres du nombre 61^{1000} en base 2? *Indications*:
 - (a) $log_261 = 5,930737337562886276...$
 - (b) Le nombre de chiffres en base b d'un nombre x écrit en base 10 est $[log_b x] + 1$.

Exercice 9

On considère le treillis (E, \leq) avec $E = \{a, b, c, d, e\}$:

1. Reproduire et compléter le tableau suivant.

x	a	b	c	d	e
$x \wedge b$					
$x \lor b$					

3

- 2. En déduire les éventuels compléments de b. Expliquer.
- 3. En déduire (en justifiant) si le treillis est une algèbre de Boole.

Exercice 10

Préciser si la congruence (respectivement l'égalité) suivante est vraie ou fausse :

- 1. $6! \equiv 6 \pmod{9}$
- 2. $\overline{1457} = \overline{17} \operatorname{dans} \mathbb{Z}/18\mathbb{Z}$

Exercice 11

Soit $f: \mathbb{Z} \to \mathbb{N}$ définie par $f(n) = n^2$.

- 1. Préciser la nature de f: f est-elle injective, surjective, bijective? Expliquer.
- 2. On pose $A = \{-1, 0\}$ et $B = \{0, 1\}$.
 - (a) Préciser $A \cap B$, f(A), f(B), $f(A \cap B)$ et $f(A) \cap f(B)$. Reproduire et compléter le tableau suivant :

$A \cap B$	$f(A \cap B)$	f(A)	f(B)	$f(A) \cap f(B)$

(b) Comparer $f(A \cap B)$ et $f(A) \cap f(B)$.

Exercice 12

- 1. Déterminer le reste r dans la division euclidienne de 2028 par 17.
- 2. En déduire le reste r' de la division euclidienne de $2\,028^2$ par 17.
- 3. Reproduire et compléter le tableau suivant :

r	r'

Exercice 13

- 1. Appliquer l'algorithme d'Euclide étendu à $2\,021$ et $2\,019$.
- 2. En déduire $PGCD(2\,021,2\,019)$, ainsi qu'une décomposition de Bezout : $PGCD(2\,021,2\,019)=2\,021u+2\,019v.$
- 3. Résoudre 2021x + 2019y = 1 dans \mathbb{Z}^2 .