

Pontificia Universidad Católica de Chile Departamento de Estadística Facultad de Matemática

Profesor: Fernando Quintana Ayudante: Daniel Acuña León

Ayudantía 6 EPG3310 - Probabilidad 17 de Abril

- 1. Sean X e Y variables aleatorias independientes. Sea g(x) una función sólo en x y h(y) una función sólo en y. Demuestre que las variables aleatorias U = g(X) y V = h(Y) son independientes.
- 2. Sean X_1 e X_2 variables aleatorias independientes que distribuyen $N(0, \sigma^2)$.
 - a) Encuentre la distribución conjunta de Y_1 e Y_2 , donde

$$Y_1 = X_1^2 + X_2^2$$
 e $Y_2 = \frac{X_1}{\sqrt{Y_1}}$

- b) Muestre que Y_1 e Y_2 son independientes, e interprete este resultado geométricamente.
- 3. Un punto es generado al azar en el plano de acuerdo al siguiente esquema en coordenadas polares. Se escoge un radio R, donde la distribución de R^2 es χ^2_2 . Independientemente se escoge un ángulo θ , donde $\theta \sim \mathtt{Unif}(0,2\pi)$. Encuentre la distribución conjunta de $X = R\cos\theta$ e $Y = R\sin\theta$.
- 4. Sea (Ω, \mathcal{F}, P) un espacio de probabilidad y $\{Z_n\}_{n\geq 1} \in (m\mathcal{F})^+$ tal que

$$\sum_{n\geq 1} E(Z_n) < \infty$$

Demuestre que $\sum_{n>1} Z_n < \infty$ c.s. y $Z_n \to 0$ c.s.

5. Demuestre que si una variable aleatoria X cumple que $X(\omega) \ge 0$, $\forall \omega \in \Omega$, entonces $F_X(x) = 0$ para x < 0 y

$$E(X) = \int_0^\infty [1 - F_X(x)] dx = \int_0^\infty P(X > x) dx$$