Chapter 14 - Problem Set 2

Calculus 3

Section 5: The Chain Rule

3-7 (odd)

Use The Chain Rule to find $\frac{dz}{dt}$ or $\frac{dw}{dt}$.

3. $z = xy^3 - x^2y$, $x = t^2 + 1$, $y = t^2 - 1$

Solution

$$\frac{dz}{dt} = \frac{dz}{dx} \left(\frac{dx}{dt}\right) + \frac{dz}{dy} \left(\frac{dy}{dt}\right)$$
$$\frac{dz}{dt} = [y^3 - 2xy](2t) + [3xy^2 - x^2](2t)$$
$$\frac{dz}{dt} = 2t[y^3 - 2xy + 3xy^2 - x^2]$$

5. $z = \sin x \cos y$, $x = \sqrt{t}$, y = 1/t

Solution

$$\frac{dz}{dt} = \frac{dz}{dx} \left(\frac{dx}{dt}\right) + \frac{dz}{dy} \left(\frac{dy}{dt}\right)$$
$$\frac{dz}{dt} = \left[\cos x \cos y\right] \left(\frac{1}{2}t^{-\frac{1}{2}}\right) + \left[-\sin x \sin y\right] \left(-t^{-2}\right)$$
$$\frac{dz}{dt} = \frac{1}{2\sqrt{t}} \cos x \cos y + \frac{1}{t^2} \sin x \sin y$$

7. $w = xe^{y/z}$, $x = t^2$, y = 1 - t, z = 1 + 2t

$$\begin{split} \frac{dw}{dt} &= \frac{dw}{dx} \left(\frac{dx}{dt} \right) + \frac{dw}{dy} \left(\frac{dy}{dt} \right) + \frac{dw}{dz} \left(\frac{dz}{dt} \right) \\ \frac{dw}{dt} &= \left[e^{y/z} \right] (2t) + \left[\frac{x}{z} e^{y/z} \right] (-1) + \left[-\frac{xy}{z^2} e^{y/z} \right] (2) \\ \hline \frac{dw}{dt} &= e^{y/z} \left[2t - \frac{x}{z} - \frac{2xy}{z^2} \right] \end{split}$$

Use the Chain Rule to find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$

11.
$$z = (x - y)^5$$
, $x = s^2 t$, $y = st^2$

Solution

$$\begin{split} \frac{\partial z}{\partial s} &= \frac{\partial z}{\partial x} \left(\frac{\partial x}{\partial s} \right) + \frac{\partial z}{\partial y} \left(\frac{\partial y}{\partial s} \right) \\ \frac{\partial z}{\partial s} &= \left[5(x - y)^4 \right] (2st) + \left[-5(x - y)^4 \right] (t^2) \\ \boxed{\frac{\partial z}{\partial s}} &= 5(x - y)^4 \left[2st - t^2 \right] \end{split}$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \left(\frac{\partial x}{\partial t} \right) + \frac{\partial z}{\partial y} \left(\frac{\partial y}{\partial t} \right)$$
$$\frac{\partial z}{\partial t} = \left[5(x - y)^4 \right] (s^2) + \left[-5(x - y)^4 \right] (2st)$$
$$\frac{\partial z}{\partial t} = 5(x - y)^4 \left[s^2 - 2st \right]$$

13. $z = \ln(3x + 2y)$, $x = s\sin t$, $y = t\cos s$

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \left(\frac{\partial x}{\partial s} \right) + \frac{\partial z}{\partial y} \left(\frac{\partial y}{\partial s} \right)$$
$$\frac{\partial z}{\partial s} = \left[\frac{3}{3x + 2y} \right] (\sin t) + \left[\frac{2}{3x + 2y} \right] (-t \sin s)$$
$$\frac{\partial z}{\partial s} = \frac{3 \sin t - 2t \sin s}{3x + 2y}$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \left(\frac{\partial x}{\partial t} \right) + \frac{\partial z}{\partial y} \left(\frac{\partial y}{\partial t} \right)$$
$$\frac{\partial z}{\partial t} = \left[\frac{3}{3x + 2y} \right] (s \cos t) + \left[\frac{2}{3x + 2y} \right] (\cos s)$$
$$\frac{\partial z}{\partial t} = \frac{3s \cos t + 2 \cos s}{3x + 2y}$$

15.
$$z = (\sin \theta)/r$$
, $r = st$, $\theta = s^2 + t^2$

Solution
$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial r} \left(\frac{\partial r}{\partial s} \right) + \frac{\partial z}{\partial \theta} \left(\frac{\partial \theta}{\partial s} \right) \\
\frac{\partial z}{\partial s} = \left[-\frac{\sin \theta}{r^2} \right] (t) + \left[\frac{\cos \theta}{r} \right] (2s)$$

$$\frac{\partial z}{\partial s} = -\frac{t \sin \theta}{r^2} + \frac{2s \cos \theta}{r}$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial r} \left(\frac{\partial r}{\partial t} \right) + \frac{\partial z}{\partial \theta} \left(\frac{\partial \theta}{\partial t} \right)$$
$$\frac{\partial z}{\partial t} = \left[-\frac{\sin \theta}{r^2} \right] (s) + \left[\frac{\cos \theta}{r} \right] (2t)$$
$$\frac{\partial z}{\partial t} = -\frac{s \sin \theta}{r^2} + \frac{2t \cos \theta}{r}$$

25-29 (odd)

Use the Chain Rule to find the indicated partial derivatives.

25.
$$z = x^4 + x^2y$$
, $x = s + 2t - u$, $y = stu^2$;

$$\frac{\partial z}{\partial s}, \frac{\partial z}{\partial t}, \frac{\partial z}{\partial u}$$
 when $s = 4, t = 2, u = 1$

When
$$s = 4$$
, $t = 2$, and $u = 1 \implies x = 7$, $y = 8$

$$\frac{\partial z}{\partial s} = \left[4x^3 + 2xy\right](1) + \left[x^2\right](tu^2) = 4x^3 + 2xy + x^2tu^2$$

$$\frac{\partial z}{\partial s} = 4(7)^3 + 2(7)(8) + (7)^2(2)(1)^2$$

$$\boxed{\frac{\partial z}{\partial s} = 1582}$$

$$\frac{\partial z}{\partial t} = \left[4x^3 + 2xy\right](2) + \left[x^2\right](su^2) = 8x^3 + 4xy + x^2su^2$$

$$\frac{\partial z}{\partial t} = 8(7)^3 + 4(7)(8) + (7)^2(4)(1)^2$$

$$\boxed{\frac{\partial z}{\partial t} = 3164}$$

$$\frac{\partial z}{\partial u} = [4x^3 + 2xy] (-1) + [x^2] (2stu) = -4x^3 - 2xy + 2x^2 stu$$

$$\frac{\partial z}{\partial u} = -4(7)^3 - 2(7)(8) + 2(7)^2 (4)(2)(1)$$

$$\frac{\partial z}{\partial u} = -700$$

27.
$$w = xy + yz + zx$$
, $x = r\cos\theta$, $y = r\sin\theta$, $z = r\theta$;

$$\frac{\partial w}{\partial r}, \frac{\partial w}{\partial \theta} \quad \text{when } r=2, \theta=\pi/2$$

When
$$r=2$$
 and $\theta=\pi/2$ \Rightarrow $x=0,\,y=2,\,z=\pi$
$$\frac{\partial w}{\partial r}=[y+z](\cos\theta)+[x+z](\sin\theta)+[x+y](\theta)$$

$$\frac{\partial w}{\partial r}=[2+\pi](0)+[0+\pi](1)+[0+2](\pi/2)=0+\pi+\pi$$

$$\boxed{\frac{\partial w}{\partial r}=2\pi}$$

$$\frac{\partial w}{\partial \theta} = [y+z](-r\sin\theta) + [x+z](r\cos\theta) + [x+y](r)$$

$$\frac{\partial w}{\partial \theta} = [2+\pi](-2\cdot1) + [0+\pi](0) + [0+2](2) = -4 - 2\pi + 0 + 4$$

$$\frac{\partial w}{\partial \theta} = -2\pi$$

29.
$$N = \frac{p+q}{p+r}$$
, $p = u + vw$, $q = v + uw$, $r = w + uv$ $\frac{\partial N}{\partial u}$, $\frac{\partial N}{\partial v}$, $\frac{\partial N}{\partial w}$ when $u = 2$, $v = 3$, $w = 4$

When
$$u = 2$$
, $v = 3$, and $w = 4 \implies p = 14$, $q = 11$, $r = 10$

$$\frac{\partial N}{\partial u} = \left[\frac{(p+r) - (p+q)}{(p+r)^2} \right] (1) + \left[\frac{1}{p+r} \right] (w) + \left[-\frac{p+q}{(p+r)^2} \right] (v)$$

$$\frac{\partial N}{\partial u} = \frac{r-q}{(p+r)^2} + \frac{w}{p+r} - \frac{v(p+q)}{(p+r)^2}$$

$$\frac{\partial N}{\partial u} = \frac{10 - 11}{(14 + 10)^2} + \frac{4}{14 + 10} - \frac{3(14 + 11)}{(14 + 10)^2}$$

$$\frac{\partial N}{\partial u} = \frac{-1}{576} + \frac{4}{24} - \frac{75}{576} = \frac{-1 + 96 - 75}{576} = \frac{20}{576}$$

$$\frac{\partial N}{\partial u} = \frac{5}{144}$$

$$\begin{split} \frac{\partial N}{\partial v} &= \left[\frac{r-q}{(p+r)^2}\right](w) + \left[\frac{1}{p+r}\right](1) + \left[-\frac{p+q}{(p+r)^2}\right](u) \\ \frac{\partial N}{\partial v} &= \frac{w(r-q)}{(p+r)^2} + \frac{1}{p+r} - \frac{u(p+q)}{(p+r)^2} \\ \frac{\partial N}{\partial v} &= \frac{4(10-11)}{(14+10)^2} + \frac{1}{14+10} - \frac{2(14+11)}{(14+10)^2} \\ \frac{\partial N}{\partial v} &= \frac{-4}{576} + \frac{1}{24} - \frac{50}{576} = \frac{-4+24-50}{576} = \frac{-30}{576} \\ \frac{\partial N}{\partial v} &= -\frac{5}{96} \end{split}$$

$$\frac{\partial N}{\partial w} = \left[\frac{r-q}{(p+r)^2}\right](v) + \left[\frac{1}{p+r}\right](u) + \left[-\frac{p+q}{(p+r)^2}\right](1)$$

$$\frac{\partial N}{\partial w} = \frac{v(r-q)}{(p+r)^2} + \frac{u}{p+r} - \frac{p+q}{(p+r)^2}$$

$$\frac{\partial N}{\partial w} = \frac{3(10-11)}{(14+10)^2} + \frac{2}{(14+10)} - \frac{14+11}{(14+10)^2}$$

$$\frac{\partial N}{\partial w} = \frac{-3}{576} + \frac{2}{24} - \frac{25}{576} = \frac{-3+48-25}{576} = \frac{20}{576}$$

$$\frac{\partial N}{\partial w} = \frac{5}{144}$$

Use Equation 5 to find $\frac{dy}{dx}$

31. $y \cos x = x^2 + y^2$

Solution

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{F_x}{F_y}$$

Let $F = y \cos x - x^2 - y^2$

$$F_x = -y\sin x - 2x$$
$$F_y = \cos x - 2y$$

$$F_y = \cos x - 2y$$

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(-y\sin x - 2x)}{\cos x - 2y} = \frac{2x + y\sin x}{\cos x - 2y}$$

Use Equations 6 to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$

35. $x^2 + 2y^2 + 3z^2 = 1$

Solution

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
 $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$

Let $F = x^2 + 2y^2 + 3z^2 - 1$

$$F_x = 2x \qquad F_y = 4y \qquad F_z = 6z$$

$$F_x = 2x F_y = 4y F_z = 6z$$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{2x}{6z} = -\frac{x}{3z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{4y}{6z} = -\frac{2y}{3z}$$

Section 6: Directional Derivatives and the Gradient Vector

5, 7

Find the directional derivative of f at the given point in the direction indicated by the angle θ .

- **5.** $f(x,y) = xy^3 x^2$, (1,2), $\theta = \pi/3$
- 7. $f(x,y) = \arctan(xy), \quad (2,-3), \quad \theta = 3\pi/4$
 - (a) Find the gradient of f
 - (b) Evaluate the gradient at the point P
 - (c) Find the rate of change of f at P in the direction of the vector \vec{u}
- **9.** f(x,y) = x/y, P(2,1), $\vec{u} = \frac{3}{5} \hat{\mathbf{i}} + \frac{4}{5} \hat{\mathbf{j}}$

13, 15

Find the directional derivative of the function at the given point in the direction of the vector \vec{v} .

- **13.** $f(x,y) = e^x \sin y$, $(0,\pi/3)$, $\vec{v} = \langle -6, 8 \rangle$
- **15.** $g(s,t) = s\sqrt{t}$, (2,4), $\vec{v} = 2 \hat{\mathbf{i}} \hat{\mathbf{j}}$

21, 23

Find the directional derivative of the function at the point P in the direction of the point Q.

- **21.** $f(x,y) = x^2y^2 y^3$, P(1,2), Q(-3,5)
- **23.** $f(x,y) = \sqrt{xy}$, P(2,8), Q(5,4)

27, 29

Find the maximum rate of change of f at the given point and the direction in which it occurs.

- **27.** $f(x,y) = 5xy^2$, (3,-2)
- **29.** $f(x,y) = \sin(xy)$, (1,0)

37

The temperature T in a metal ball is inversely proportional to the distance from the center of the ball, which we take to be the origin. The temperature at the point (1,2,2) is 120°

- (a) Find the rate of change of T at (1,2,2) in the direction toward the point (2,1,3).
- (b) Show that at any point in the ball the direction of greatest increase in temperature is given by a vector that points toward the origin

Find equations of (a) the tangent plane and (b) the normal line to the given surface at the specified point.

47.
$$2(x-2)^2 + (y-1)^2 + (z-3)^2 = 10$$
, $(3,3,5)$

49.
$$xy^2z^3=8$$
, $(2,2,1)$

51.
$$x + y + z = e^{xyz}$$
, $(0, 0, 1)$

Section 7: Maximum and Minimum Values

5-21 (odd)

Find the local maximum and minimum values and saddle point(s) of the function. You are encouraged to use a calculator or computer to graph the function with a domain and viewpoint that reveals all the important aspects of the function.

5.
$$f(x,y) = x^2 + xy + y^2 + y$$

7.
$$f(x,y) = 2x^2 - 8xy + y^4 - 4y^3$$

9.
$$f(x,y) = (x-y)(1-xy)$$

11.
$$f(x,y) = y\sqrt{x} - y^2 - 2x + 7y$$

13.
$$f(x,y) = x^3 - 3x + 3xy^2$$

15.
$$f(x,y) = x^4 - 2x^2 + y^3 - 3y$$

17.
$$f(x,y) = xy - x^2y - xy^2$$

19.
$$f(x,y) = e^x \cos y$$

21.
$$f(x,y) = y^2 - 2y \cos x$$
, $-1 \le x \le 7$

33-39 (odd)

Find the absolute maximum and minimum values of f on the set D.

33.
$$f(x,y) = x^2 + y^2 - 2x$$
,

D is the closed triangular region with vertices (2,0), (0,2), and (0,-2)

35.
$$f(x,y) = x^2 + y^2 + x^2y + 4$$
,

$$D = \{(x, y) \mid |x| \le 1, |y| \le 1\}$$

37.
$$f(x,y) = x^2 + 2y^2 - 2x - 4y + 1$$
,

$$D = \{(x, y) \mid 0 \le x \le 2, 0 \le y \le 3\}$$

39.
$$f(x,y) = 2x^3 + y^4$$
.

$$D = \{(x, y) \mid x^2 + y^2 \le 1\}$$

43

Find the shortest distance from the point (2,0,-3) to the plan x+y+z=1.

45

Find the points on the cone $z^2 = x^2 + y^2$ that are closest to the point (4,2,0).

47

Find three positive numbers whose sum is 100 and whose product is a maximum.

55

A cardboard box without a lid is to have a volume of $32,000 \ cm^3$. Find the dimensions that minimize the amount of cardboard used.