## Домашнее задание №2 «Логика и Теория Алгоритмов»

Саркисов Артём ИУ7-43Б Вариант №19

## Задание №1

Задана булева функция f=(1,1,1,0,0,1,0,1,1,0,1,0,0,0,1,1).

| x1  | x2                                                    | x3 | x4               | f                                      |
|-----|-------------------------------------------------------|----|------------------|----------------------------------------|
| 0   | 0                                                     | 0  | 0                | 1                                      |
| 0   | $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ | 0  | 1                | 1                                      |
| 0   | 0                                                     | 1  | 1<br>0           | 1                                      |
| 0   | 0                                                     | 1  | 1                | 0                                      |
| 0   | 1                                                     | 0  | 1<br>0           | 0                                      |
| 0   | 1                                                     | 0  | 1                |                                        |
| 0   | 1                                                     | 1  | 1<br>0           | 1 0                                    |
| 0   | 1                                                     | 1  | 1                | 1                                      |
| 1   | 0                                                     | 0  | 0                | 1                                      |
| 1 1 | 1<br>0<br>0<br>0<br>0<br>1                            | 0  | 1<br>0<br>1<br>0 | 0                                      |
| 1   | 0                                                     | 1  | 0                | 1                                      |
| 1   | 0                                                     | 1  | 1                | $\begin{vmatrix} 1 \\ 0 \end{vmatrix}$ |
| 1   | 1                                                     | 0  | 1<br>0           | 0                                      |
| 1   | 1                                                     | 0  | 1                | 0                                      |
| 1   | 1                                                     | 1  | 0                | 1                                      |
| 1   | 1                                                     | 1  | 1                | 1                                      |

## а) найти сокращенную ДНФ

Составим карту Карно для данной функции:



Перечислим все импликанты:

| Импликанта №1:                                             |    |    |    |    |  |  |  |  |
|------------------------------------------------------------|----|----|----|----|--|--|--|--|
| $\begin{array}{ c c c c }\hline x_3x_4\\x_1x_2\end{array}$ | 00 | 01 | 11 | 10 |  |  |  |  |
| 00                                                         | 1  | 1  | 0  | 1  |  |  |  |  |
| 01                                                         | 0  | 1  | 1  | 0  |  |  |  |  |
| 11                                                         | 0  | 0  | 1  | 1  |  |  |  |  |
| 10                                                         | 1  | 0  | 0  | 1  |  |  |  |  |
|                                                            |    |    |    |    |  |  |  |  |

$$K_1 = \overline{x}_2 \overline{x}_4$$

Импликанта №2:

| $\begin{bmatrix} x_3x_4 \\ x_1x_2 \end{bmatrix}$ | 00 | 01 | 11 | 10 |
|--------------------------------------------------|----|----|----|----|
| 00                                               | 1  | 1  | 0  | 1  |
| 01                                               | 0  | 1  | 1  | 0  |
| 11                                               | 0  | 0  | 1  | 1  |
| 10                                               | 1  | 0  | 0  | 1  |

$$K_2 = \overline{x}_1 \overline{x}_2 \overline{x}_3$$

Импликанта №3:

| $\begin{array}{ c c c }\hline x_3x_4\\ x_1x_2\\ \end{array}$ | 00 | 01 | 11 | 10 |
|--------------------------------------------------------------|----|----|----|----|
| 00                                                           | 1  | 1  | 0  | 1  |
| 01                                                           | 0  | 1  | 1  | 0  |
| 11                                                           | 0  | 0  | 1  | 1  |
| 10                                                           | 1  | 0  | 0  | 1  |

$$K_3 = \overline{x}_1 \overline{x}_3 x_4$$

Импликанта №4:

| $\begin{bmatrix} x_3x_4 \\ x_1x_2 \end{bmatrix}$ | 00 | 01 | 11 | 10 |
|--------------------------------------------------|----|----|----|----|
| 00                                               | 1  | 1  | 0  | 1  |
| 01                                               | 0  | 1  | 1  | 0  |
| 11                                               | 0  | 0  | 1  | 1  |
| 10                                               | 1  | 0  | 0  | 1  |

$$K_4 = \overline{x}_1 x_2 x_4$$

Импликанта №5:

| импликанта №э:    |    |    |    |    |  |  |  |
|-------------------|----|----|----|----|--|--|--|
| $x_3x_4$ $x_1x_2$ | 00 | 01 | 11 | 10 |  |  |  |
| 00                | 1  | 1  | 0  | 1  |  |  |  |
| 01                | 0  | 1  | 1  | 0  |  |  |  |
| 11                | 0  | 0  | 1  | 1  |  |  |  |
| 10                | 1  | 0  | 0  | 1  |  |  |  |

$$K_5 = x_2 x_3 x_4$$

Импликанта №6:

| $x_3x_4$ $x_1x_2$ | 00 | 01 | 11 | 10 |
|-------------------|----|----|----|----|
| 00                | 1  | 1  | 0  | 1  |
| 01                | 0  | 1  | 1  | 0  |
| 11                | 0  | 0  | 1  | 1  |
| 10                | 1  | 0  | 0  | 1  |

$$K_6 = x_1 x_2 x_3$$

| Импликанта №7:                                               |    |    |    |    |  |  |  |  |
|--------------------------------------------------------------|----|----|----|----|--|--|--|--|
| $\begin{array}{ c c c c c }\hline x_3x_4\\x_1x_2\end{array}$ | 00 | 01 | 11 | 10 |  |  |  |  |
| 00                                                           | 1  | 1  | 0  | 1  |  |  |  |  |
| 01                                                           | 0  | 1  | 1  | 0  |  |  |  |  |
| 11                                                           | 0  | 0  | 1  | 1  |  |  |  |  |
| 10                                                           | 1  | 0  | 0  | 1  |  |  |  |  |

 $K_7 = x_1 x_3 \overline{x}_4$ 

### Сокращенная ДНФ:

$$K_1 \vee K_2 \vee K_3 \vee K_4 \vee K_5 \vee K_6 \vee K_7 = \overline{x}_2 \overline{x}_4 \vee \overline{x}_1 \overline{x}_2 \overline{x}_3 \vee \overline{x}_1 \overline{x}_3 x_4 \vee \overline{x}_1 x_2 x_4 \vee x_2 x_3 x_4 \vee x_1 x_2 x_3 \vee x_1 x_3 \overline{x}_4 \vee x_2 x_3 x_4 \vee x_3 x_4 \vee x_4 x_3 \overline{x}_4 \vee x_4 x_3 \overline{x}_4 \vee x_4 x_3 \overline{x}_4 \vee x_5 \nabla x_4 \nabla x_4 \nabla x_5 \nabla$$

### б) Найти ядро функции.

Ядровая импликанта:  $K_1 = \overline{x}_2 \overline{x}_4$ , т.к. на карте Карно элементарные конъюнкции  $x_1 \overline{x}_2 \overline{x}_3 \overline{x}_4$  и  $\overline{x}_1 \overline{x}_2 x_3 \overline{x}_4$  покрыты только этой импликантой. Следовательно, ядро:  $K_1 \overline{x}_2 \overline{x}_4$ .

### в) Получить все тупиковые ДНФ и указать, какие из них являются минимальными.

 $(K_2 \vee K_3)(K_3 \vee K_4)(K_4 \vee K_5)(K_5 \vee K_6)(K_6 \vee K_7) = (K_2 K_3 \vee K_2 K_4 \vee K_3 K_4 \vee K_3)(K_4 K_5 \vee K_4 K_6 \vee K_5 K_6 \vee K_5)(K_6 \vee K_7) = (K_2 K_4 \vee K_3)(K_4 K_6 \vee K_5)(K_6 \vee K_7) = (K_2 K_4 K_6 \vee K_2 K_4 K_5 \vee K_3 K_4 K_6 \vee K_3 K_5)(K_6 \vee K_7) = K_2 K_4 K_6 \vee K_2 K_4 K_5 K_6 \vee K_3 K_4 K_6 \vee K_3 K_5 K_6 \vee K_2 K_4 K_6 K_7 \vee K_2 K_4 K_5 K_7 \vee K_3 K_4 K_6 K_7 \vee K_3 K_5 K_7 = K_2 K_4 K_6 \vee K_3 K_4 K_6 \vee K_3 K_5 K_6 \vee K_3 K_5 K_7 \vee K_2 K_4 K_5 K_7$ 

Присоединяем ядровую импликанту K1 к каждому полученному члену и получаем 5 тупиковых ДНФ:

 $K_1K_2K_4K_6: \overline{x}_2\overline{x}_4 \vee \overline{x}_1\overline{x}_2\overline{x}_3 \vee \overline{x}_1x_2x_4 \vee x_1x_2x_3 \\ K_1K_3K_4K_6: \overline{x}_2\overline{x}_4 \vee \overline{x}_1\overline{x}_3x_4 \vee \overline{x}_1x_2x_4 \vee x_1x_2x_3 \\ K_1K_3K_5K_6: \overline{x}_2\overline{x}_4 \vee \overline{x}_1\overline{x}_3x_4 \vee x_2x_3x_4 \vee x_1x_2x_3 \\ K_1K_3K_5K_7: \overline{x}_2\overline{x}_4 \vee \overline{x}_1\overline{x}_3x_4 \vee x_2x_3x_4 \vee x_1x_3\overline{x}_4 \\ K_1K_2K_4K_5K_7: \overline{x}_2\overline{x}_4 \vee \overline{x}_1\overline{x}_2\overline{x}_3 \vee \overline{x}_1x_2x_4 \vee x_2x_3x_4 \vee x_1x_3\overline{x}_4 \\ \end{cases}$ 

Первые четыре ДНФ состоят из четырёх элементарных конъюнкций, а последняя – из пяти. Следовательно, кратчайшими будут первые четыре ДНФ. Все они состоят из одинакового числа литералов. Следовательно, все они являются минимальными.

# $\Gamma$ ) На картах Карно указать ядро и покрытия, соответствующие минимальным ДН $\Phi$ .

Карта Карно для минимальной ДНФ:  $K_1K_2K_4K_6 = \overline{x}_2\overline{x}_4 \vee \overline{x}_1\overline{x}_2\overline{x}_3 \vee \overline{x}_1x_2x_4 \vee x_1x_2x_3$ 



Карта Карно для минимальной ДНФ:  $K_1K_3K_4K_6=\overline{x}_2\overline{x}_4\vee\overline{x}_1\overline{x}_3x_4\vee\overline{x}_1x_2x_4\vee x_1x_2x_3$ 

|          |    | $X_3X_4$ |    |    |    |  |  |
|----------|----|----------|----|----|----|--|--|
|          |    | 00       | 01 | 11 | 10 |  |  |
|          | 00 | 1        | 1  | 0  | 1  |  |  |
| $X_1X_2$ | 01 | 0        | 1  | 1  | 0  |  |  |
|          | 11 | 0        | 0  | 1  | 1  |  |  |
|          | 10 | 1        | 0  | 0  | 1  |  |  |

Карта Карно для минимальной ДНФ:  $K_1K_3K_5K_6=\overline{x}_2\overline{x}_4\vee\overline{x}_1\overline{x}_3x_4\vee x_2x_3x_4\vee x_1x_2x_3$ 

Карта Карно для минимальной ДНФ:  $K_1K_3K_5K_7=\overline{x}_2\overline{x}_4\vee\overline{x}_1\overline{x}_3x_4\vee x_2x_3x_4\vee x_1x_3\overline{x}_4$ 



## Задание №2

Даны функции f и w:

| f                                                                                                           | w                 |
|-------------------------------------------------------------------------------------------------------------|-------------------|
| $((\overline{x}_1 \lor x_2 \lor x_3) \Rightarrow (\overline{x}_2 \sim x_3)) \sim (x_1 \sim \overline{x}_3)$ | (1,1,1,1,1,1,0,0) |

## а) Вычислить таблицу значений функции f.

Таблица значений функции f:

| $x_1$ | $x_2$ | $x_3$ | $\overline{x}_1$ | $\overline{x}_2$ | $\overline{x}_3$ | $(\overline{x}_1 \vee x_2 \vee x_3)$ | $\overline{x}_2 \sim x_3$ | $(\overline{x}_1 \lor x_2 \lor x_3) \Rightarrow (\overline{x}_2 \sim x_3)$ | $x_1 \sim \overline{x}_3$ | $\int f$ |
|-------|-------|-------|------------------|------------------|------------------|--------------------------------------|---------------------------|----------------------------------------------------------------------------|---------------------------|----------|
| 0     | 0     | 0     | 1                | 1                | 1                | 1                                    | 0                         | 0                                                                          | 0                         | 1        |
| 0     | 0     | 1     | 1                | 1                | 0                | 1                                    | 1                         | 1                                                                          | 1                         | 1        |
| 0     | 1     | 0     | 1                | 0                | 1                | 1                                    | 1                         | 1                                                                          | 0                         | 0        |
| 0     | 1     | 1     | 1                | 0                | 0                | 1                                    | 0                         | 0                                                                          | 1                         | 0        |
| 1     | 0     | 0     | 0                | 1                | 1                | 0                                    | 0                         | 1                                                                          | 1                         | 1        |
| 1     | 0     | 1     | 0                | 1                | 0                | 1                                    | 1                         | 1                                                                          | 0                         | 0        |
| 1     | 1     | 0     | 0                | 0                | 1                | 1                                    | 1                         | 1                                                                          | 1                         | 1        |
| 1     | 1     | 1     | 0                | 0                | 0                | 1                                    | 0                         | 0                                                                          | 0                         | 1        |

### б) Найти минимальные ДН $\Phi$ функций f и w.

Карта Карно функции f:

$$X_1X_2$$
 $00 \quad 01 \quad 11 \quad 10$ 
 $X_3 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0$ 

$$K_1 = x_1 x_2 \ K_2 = \overline{x}_1 \overline{x}_2 \ K_3 = x_1 \overline{x}_3 \ K_4 = \overline{x}_2 \overline{x}_3$$

 $K_1$  и  $K_2$  - ядровые импликанты, т.к на карте Карно элементарные конъюнкции  $\overline{x}_1x_2x_3$  и  $x_1x_2x_3$  покрыты только этими импликантами.

Минимальная ДНФ функции f:  $K_3K_1K_2=x_1\overline{x}_3\vee x_1x_2\vee \overline{x}_1\overline{x}_2$  и  $K_4K_1K_2=\overline{x}_2\overline{x}_3\vee x_1x_2\vee \overline{x}_1\overline{x}_2$  тупиковые ДНФ функции f, в свою очередь являются и минимальными, т.к имеет одинаково наименьшую сложность.

Карта Карно функции w:

| $x_1$ | $x_2$ | $x_3$ | w |
|-------|-------|-------|---|
| 0     | 0     | 0     | 1 |
| 0     | 0     | 1     | 1 |
| 0     | 1     | 0     | 1 |
| 0     | 1     | 1     | 1 |
| 1     | 0     | 0     | 1 |
| 1     | 0     | 1     | 1 |
| 1     | 1     | 0     | 0 |
| 1     | 1     | 1     | 0 |

$$X_1X_2$$
 $00 \quad 01 \quad 11 \quad 10$ 
 $X_3 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1$ 

7

$$K_1 = \overline{x}_1 \ K_2 = \overline{x}_2$$

Минимальная ДНФ функции w:  $w=\overline{x}_1 \vee \overline{x}_2$ 

в) Выяснить полноту системы  $\{f,w\}$ . Если система не полна, дополнить систему функцией g до полной системы.

| $x_1$ | $x_2$ | $x_3$ | $\int f$ | w |
|-------|-------|-------|----------|---|
| 0     | 0     | 0     | 1        | 1 |
| 0     | 0     | 1     | 1        | 1 |
| 0     | 1     | 0     | 0        | 1 |
| 0     | 1     | 1     | 0        | 1 |
| 1     | 0     | 0     | 1        | 1 |
| 1     | 0     | 1     | 0        | 1 |
| 1     | 1     | 0     | 1        | 0 |
| 1     | 1     | 1     | 1        | 0 |

Сохранение 0:  $f(0,0,0) = 1 \Rightarrow f \notin T_0$  и  $w(0,0,0) = 1 \Rightarrow w \notin T_0$ 

Сохранение 1:  $f(1,1,1) = 1 \Rightarrow f \in T_1$  и  $w(1,1,1) = 0 \Rightarrow w \notin T_1$ 

Самодвойственность:  $f(1,1,1) = f(0,0,0) = 1 \Rightarrow f \notin S$  и  $w(1,0,1) = w(0,1,0) = 1 \Rightarrow w \notin S$ 

Монотонность: (0,0,0)<(0,1,0), но  $f(0,0,0)>f(0,1,0)\Rightarrow f\notin M$  и (0,0,0)<(1,1,0), но  $w(0,0,0)>w(1,1,0)\Rightarrow w\notin M$ 

Линейность функции: общий вид полинома Жигалкина для функции трёх переменных:  $f(x_1, x_2, x_3) = a_{123}x_1x_2x_3 \oplus a_{12}x_1x_2 \oplus a_{23}x_2x_3 \oplus a_{13}x_1x_3 \oplus a_1x_1 \oplus a_2x_2 \oplus a_3x_3 \oplus a_0$ 

| $x_1$ | $x_2$ | $x_3$ | f |                                                                                                                             |
|-------|-------|-------|---|-----------------------------------------------------------------------------------------------------------------------------|
| 0     | 0     | 0     | 1 | $a_0 = 1$                                                                                                                   |
| 0     | 0     | 1     | 1 | $a_0 \oplus a_3 = 1 \Rightarrow a_3 = 0$                                                                                    |
| 0     | 1     | 0     | 0 | $a_0 \oplus a_2 = 0 \Rightarrow a_2 = 1$                                                                                    |
| 0     | 1     | 1     | 0 | $a_0 \oplus a_{23} \oplus a_2 \oplus a_3 = 0 \Rightarrow a_{23} = 0$                                                        |
| 1     | 0     | 0     | 1 | $a_0 \oplus a_1 = 1 \Rightarrow a_1 = 0$                                                                                    |
| 1     | 0     | 1     | 0 | $a_0 \oplus a_{13} \oplus a_1 \oplus a_3 = 0 \Rightarrow a_{13} = 1$                                                        |
| 1     | 1     | 0     | 1 | $a_0 \oplus a_{12} \oplus a_1 \oplus a_2 = 1 \Rightarrow a_{12} = 1$                                                        |
| 1     | 1     | 1     | 1 | $a_0 \oplus a_{123} \oplus a_{12} \oplus a_{13} \oplus a_{23} \oplus a_1 \oplus a_2 \oplus a_3 = 1 \Rightarrow a_{123} = 1$ |

Полином Жигалкина функции f:  $f(x_1, x_2, x_3) = x_1x_2x_3 + x_1x_2 + x_1x_3 + x_2 + 1$ , т.к. полином функции f не является полиномом первой степени, то  $f \notin L$ 

 $w(x_1,x_2,x_3) = a_{123}x_1x_2x_3 \oplus a_{12}x_1x_2 \oplus a_{23}x_2x_3 \oplus a_{13}x_1x_3 \oplus a_1x_1 \oplus a_2x_2 \oplus a_3x_3 \oplus a_0$ 

| $x_1$ | $x_2$ | $x_3$ | $\overline{w}$ |                                                                                                                                           |
|-------|-------|-------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | 0     | 0     | 1              | $a_0 = 1$                                                                                                                                 |
| 0     | 0     | 1     | 1              | $a_0 \oplus a_3 = 1 \Rightarrow a_3 = 0$                                                                                                  |
| 0     | 1     | 0     | 1              | $a_0 \oplus a_3 = 1 \Rightarrow a_3 = 0$ $a_0 \oplus a_2 = 1 \Rightarrow a_2 = 0$                                                         |
| 0     | 1     | 1     | 1              | $a_0 \oplus a_2 = 1 \Rightarrow a_2 = 0$ $a_0 \oplus a_{23} \oplus a_2 \oplus a_3 = 1 \Rightarrow a_{23} = 0$                             |
| 1     | 0     | 0     | 1              | $a_0 \oplus a_{23} \oplus a_2 \oplus a_3 = 1 \Rightarrow a_{23} = 0$ $a_0 \oplus a_1 = 1 \Rightarrow a_1 = 0$                             |
| 1     | 0     | 1     | 1              | $a_0 \oplus a_1 - 1 \Rightarrow a_1 = 0$ $a_0 \oplus a_{13} \oplus a_1 \oplus a_3 = 1 \Rightarrow a_{13} = 0$                             |
| 1     | 1     | 0     | 0              | $a_0 \oplus a_{13} \oplus a_1 \oplus a_3 = 1 \Rightarrow a_{13} = 0$ $a_0 \oplus a_{12} \oplus a_1 \oplus a_2 = 0 \Rightarrow a_{12} = 1$ |
| 1     | 1     | 1     | 0              | V 12 1 2 12                                                                                                                               |
| 1     | 1     | 1     | 0              | $a_0 \oplus a_{123} \oplus a_{12} \oplus a_{13} \oplus a_{23} \oplus a_1 \oplus a_2 \oplus a_3 = 0 \Rightarrow a_{123} = 0$               |

Полином Жигалкина функции w:  $w(x_1,x_2,x_3)=x_1x_2+1$ , т.к. полином функции w не является полиномом первой степени, то  $w\notin L$ 

Критериальная таблица:

|   | $T_0$ | $T_1$ | S | M | L |
|---|-------|-------|---|---|---|
| f | _     | +     | _ |   | _ |
| w | _     | _     | _ | 1 | - |

Система  $\{f,w\}$  является функционально полным классом, т.к. функция w не сохраняет константу 1, которую сохраняет функция f.

г) Из функциональных элементов, реализующих функии полной системы  $\{f,w\}$ , построить функциональные элементы, реализующие базовые функции  $(\vee,\wedge,0,1)$ .

Система  $\{f,w\}$  является функционально полным классом. Значит, из этих функций с помощью суперпозиций можно выразить константы 0, 1, отрицание, конъюнкцию и дизъюнкцию.

Отрицание:  $w \notin T_0$  и  $w \notin T_1 \Rightarrow$  отрицанием строим из функции w, т.к. w(0,0,0) = 1 и w(1,1,1) = 0, то  $w(x,x,x) = \overline{x}$ .

Константа 1:  $f \notin T_0$  и  $f \in T_1 \Rightarrow$  константу 1 строим из функции f, т.к. f(0,0,0) = 1 и f(1,1,1) = 1, то f(x,x,x) = 1.

Константа 0: Для построения константы 0 возьмём отрицание от функции f(x,x,x).  $\overline{f(x,x,x)}=w(f(x,x,x),f(x,x,x),f(x,x,x))=0$ . Проверка: w(f(0,0,0),f(0,0,0),f(0,0,0))=w(1,1,1)=0 и w(f(1,1,1),f(1,1,1),f(1,1,1))=w(1,1,1)=0.

Дизъюнкция: для построения дизъюнкции из функции  $f=x_1\overline{x}_3 \lor x_1x_2 \lor \overline{x}_1\overline{x}_2$ , зафиксируем переменную  $x_1=1$  и обозначим  $x_2\to x$  и  $\overline{x}_3\to y$ . Тогда:  $f(1,x,\overline{y})=x\lor y$ . Выражение для дизъюнкции:  $d(x,y)=f(1,x,\overline{y})=f(f(x,x,x),x,\overline{y})=x\lor y$ .

Проверка: d(0,0) = f(f(0,0,0),0,1) = f(1,0,1) = 0, d(0,1) = f(f(0,0,0),0,0) = f(1,0,0) = 1, d(1,0) = f(f(1,1,1),1,1) = f(1,1,1) = 1, d(1,1) = f(f(1,1,1),1,0) = f(1,1,0) = 1.

Конъюнкция: для построения конъюнкции из функции  $w = \overline{x}_1 \vee \overline{x}_2$ , пусть  $x_1 = 1$ , обозначим  $\overline{x}_2 \to xy$ . Тогда:  $w(1, \overline{xy}, 0) = xy$ . Выражение для конъюнкции:  $k(x, y) = w(1, \overline{xy}, 0) = w(f(x, x, x), \overline{xy}, w(f(x, x, x), f(x, x, x), f(x, x, x))) = xy$ .

Проверка: k(0,0) = w(1,1,w(1,1,1)) = w(1,1,0) = 0, k(0,1) = w(1,1,w(1,1,1)) = w(1,1,0) = 0, k(1,0) = w(1,1,w(1,1,1)) = w(1,1,0) = 0, k(1,1) = w(1,0,w(1,1,1)) = w(1,0,0) = 1.

### Задание №3

Доказать в исчислении высказываний (буквы обозначают произовльные формулы):  $\neg(\neg(\neg B \lor C) \to (\neg A \lor C)) \equiv (A\&(B\&\neg C)).$ 

Преобразуем исходное высказывание:  $\neg(\neg(\neg\neg B \to C) \to (\neg\neg A \to C)) \equiv (A\&(B\&\neg C)).$ 

Сначала докажем правило отрицания импликации:  $\neg(A \to B) \vdash A\& \neg B$ . Т.к. в левой части стоит внешнее отрицание и ее не удобно использовать в качестве гипотезы, по прибегнем к контрапозиции, то есть выведем отрицание левой части из отрицания правой:  $\neg(A\& \neg B) \vdash \neg \neg(A \to B)$ .

| Шаг | Формула                      | Комментарий     |
|-----|------------------------------|-----------------|
| 1   | $\neg (A \& \neg B)$         | Гипотеза        |
| 2   | $\neg\neg(A \to \neg\neg B)$ | По определени & |
| 3   | $A \to \neg \neg B$          | R3(2)           |
| 4   | $\neg \neg B \to B$          | Секвенция 3     |
| 5   | $A \to B$                    | R1(2)(4)        |
| 6   | $\neg\neg(A \to B)$          | R4(5)           |

Обозначим правило отрицания импликации - R10.

| Шаг | Формула                                               | Комментарий                               |
|-----|-------------------------------------------------------|-------------------------------------------|
| 1   | $\neg(\neg(\neg\neg B \to C) \to (\neg\neg A \to C))$ | Гипотеза                                  |
| 2   | $\neg(\neg\neg B \to C)\&\neg(\neg\neg A \to C)$      | Правило Де Моргана (отрицание дизъюнкции) |
| 3   | $\neg(\neg\neg B\to C)$                               | Свойство "распаковки"конъюнкции (2)       |
| 4   | $\neg \neg B \& \neg C$                               | R10(3)                                    |
| 5   | $\neg C$                                              | Свойство "распаковки"конъюнкции (4)       |
| 6   | $\neg \neg B$                                         | Свойство "распаковки"конъюнкции (4)       |
| 7   | В                                                     | R3(6)                                     |
| 8   | $\neg(\neg\neg A \to C)$                              | Свойство "распаковки"конъюнкции (2)       |
| 9   | $\neg \neg A \& \neg C$                               | R10(8)                                    |
| 10  | $\neg \neg A$                                         | Свойство "распаковки"конъюнкции (9)       |
| 11  | A                                                     | R3(10)                                    |
| 12  | $B\&\neg C$                                           | Свойство "сборки"конъюнкции (5) (7)       |
| 13  | $A\&(B\&\neg C)$                                      | Свойство "сборки"конъюнкции (11) (12)     |

Докажем выводимость левой части из правой.

| Шаг | Формула                                               | Комментарий                         |
|-----|-------------------------------------------------------|-------------------------------------|
| 1   | $(A\&(B\&\neg C))$                                    | Гипотеза                            |
| 2   | A                                                     | Свойство "распаковки"конъюнкции (1) |
| 3   | $\neg \neg A$                                         | R4(2)                               |
| 4   | $B\&\neg C$                                           | Свойство "распаковки"конъюнкции (1) |
| 5   | $\neg C$                                              | Свойство "распаковки"конъюнкции (4) |
| 6   | В                                                     | Свойство "распаковки"конъюнкции (4) |
| 7   | $\neg \neg B$                                         | R4(6)                               |
| 8   | $\neg(\neg\neg B \to C)$                              | R8(5,7)                             |
| 9   | $\neg(\neg\neg A \to C)$                              | R8(3,5)                             |
| 10  | $\neg(\neg\neg B \to C)\&\neg(\neg\neg A \to C)$      | Свойство "сборки"конъюнкции (8) (9) |
| 11  | $\neg(\neg(\neg\neg B \to C) \to (\neg\neg A \to C))$ | R10(10)                             |

Таким образом была доказана выводимость в обе стороны. Ч.т.д.