LC 8 – Capteurs électrochimiques

Que va-t-on mesurer ?

Que va-t-on mesurer?

1. Piles électrochimiques et potentiel d'électrode

1.1 – Rappel sur les piles

Anode: oxydation

$$Zn(s) = Zn^{2+} + 2 e^{-}$$

Cathode: réduction

$$Cu^{2+} + 2 e^{-} = Cu(s)$$

1.1 – Rappel sur les piles

Anode: oxydation

$$Zn(s) = Zn^{2+} + 2 e^{-}$$

Cathode: réduction

$$Cu^{2+} + 2 e^{-} = Cu(s)$$

1.1 – Rappel sur les piles

Anode: oxydation

$$Zn(s) = Zn^{2+} + 2 e^{-}$$

Cathode: réduction

$$Cu^{2+} + 2 e^{-} = Cu(s)$$

Cathode: réduction

$$Cu^{2+} + 2 e^{-} = Cu(s)$$

 $Zn(s) = Zn^{2+} + 2 e^{-}$

Anode: oxydation

 $Zn(s)/Zn^{2+} \parallel Cu^{2+}/Cu(s)$

Le voltmètre mesure une tension, c'est à dire une différence de potentiel électrique, notée ΔE, entre les deux électrodes.

$$Zn(s)/Zn^{2+} || Cu^{2+}/Cu(s)$$

Le voltmètre mesure une tension, c'est à dire une différence de potentiel électrique, notée ΔE, entre les deux électrodes.

Il semble judicieux de définir une grandeur appelée potentiel, notée E pour caractériser chacune des deux électrodes.

$$\Delta E = E(Cathode) - E(Anode) = E_C - E_A$$

On choisit l'électrode standard à l'hydrogène (ESH) comme référence universelle :

 $E(H^+/H_2(g)) = 0$

Couple $H^+/H_2(g)$:

$$P(H_{2}(g)) = 1 bar$$

$$[H^+] = 1 \text{ mol.L}^{-1}$$

Dès que l'on parle de potentiel d'électrode, on sous entend « par rapport à l'ESH ».

Interprétation : le potentiel d'électrode de l'électrode de droite est défini comme la tension aux bornes de la pile

$$Pt(s)/H_2(g),H^+ || Cu^{2+}/Cu(s),$$

dont la force électromotrice (tension à vide) ΔE s'écrit bien

Couple $H^+/H_2(g)$:

 $P(H_{2}(g)) = 1 bar$

 $[H^{+}] = 1 \text{ mol.L}^{-1}$

$$\Delta E = E(Cu^{2+}/Cu(s)) - E(H^{+}/H_{2}(g)) = E(Cu^{2+}/Cu(s))$$

1.3 – Électrode au calomel saturé

1.3 - Électrode au calomel saturé

 $E_{ECS} = 0.241 \text{ V} \text{ à T} = 25^{\circ}\text{C}$

(sous entendu par rapport à l'ESH)

1.3 - Électrode au calomel saturé

 $E_{ECS} = 0.241 \text{ V} \text{ à T} = 25^{\circ}\text{C}$

(sous entendu par rapport à l'ESH)

Potentiel fixe à T donnée!

1.3 – Électrode au calomel saturé

1.3 – Électrode au calomel saturé

1.3 - Électrode au calomel saturé

1.3 – Électrode au calomel saturé

1.3 - Électrode au calomel saturé

On peut donc mesurer un potentiel d'électrode en utilisant une autre électrode de potentiel connu.

Peut-on relier la grandeur mesurée E à une information sur la composition chimique de l'électrode ?

2. Relation de Nernst

2.1 – Mise en évidence expérimentale

Montage:

2.1 – Mise en évidence expérimentale

Montage:

Principe:

Tracer
$$E = \Delta E_{mes} + E_{ECS} = f(log_{10}[Ag^+])$$

Solution	1	2	3	4
[Ag ⁺] (mol.L ⁻¹)	1.0x10 ⁻²	1.0x10 ⁻³	5.0x10 ⁻⁴	1.0x10 ⁻⁴
log ₁₀ [Ag ⁺]	-2,0	-3,0	-3,3	-4,0
ΔE _{mes} (V)				
E (V)				

On prend $E_{ECS} = 0.241 \text{ V}$

Soit une électrode dans laquelle on trouve les deux espèces du couple Ox/Rd.

Soit une électrode dans laquelle on trouve les deux espèces du couple Ox/Rd.

On écrit la demi-équation de réduction : a Ox + b B + ne- = c Rd + d D

Soit une électrode dans laquelle on trouve les deux espèces du couple Ox/Rd.

On écrit la demi-équation de réduction : a Ox + b B + ne- = c Rd + d D

La loi de Nernst donne le potentiel d'électrode :

$$E(Ox/Rd) = E^{\circ}(Ox/Rd, T) + \frac{RT \ln(10)}{nF} \log_{10} \frac{[Ox]^{a}[B]^{b}}{[Rd]^{c}[D]^{d}}$$

Soit une électrode dans laquelle on trouve les deux espèces du couple Ox/Rd.

On écrit la demi-équation de réduction : a Ox + b B + ne- = c Rd + d D

La loi de Nernst donne le potentiel d'électrode :

$$E(Ox/Rd) = E^{\circ}(Ox/Rd, T) + \frac{RT \ln(10)}{nF} \log_{10} \frac{[Ox]^{a}[B]^{b}}{[Rd]^{c}[D]^{d}}$$

 E° (Ox/Rd, T) : potentiel standard (température T, pression p = 1 bar)

F = 96500 C.mol⁻¹: constante de Faraday

n nombre d'électrons captés par l'oxydant

R constante des gaz parfaits

Soit une électrode dans laquelle on trouve les deux espèces du couple Ox/Rd.

On écrit la demi-équation de réduction : a Ox + b B + ne - = c Rd + d D

La loi de Nernst donne le potentiel d'électrode :

$$E(Ox/Rd) = E^{\circ}(Ox/Rd, T) + \frac{RT \ln(10)}{nF} \log_{10} \frac{[Ox]^{a}[B]^{b}}{[Rd]^{c}[D]^{d}}$$

 E° (Ox/Rd, T) : potentiel standard (température T, pression p = 1 bar)

F = 96500 C.mol⁻¹: constante de Faraday

n nombre d'électrons captés par l'oxydant

R constante des gaz parfaits

Pour T = 25°C:
$$\frac{RT \ln(10)}{F} \approx 0.059 V$$

Soit une électrode dans laquelle on trouve les deux espèces du couple Ox/Rd.

On écrit la demi-équation de réduction : a Ox + b B + ne- = c Rd + d D

La loi de Nernst donne le potentiel d'électrode :

$$E(Ox/Rd) = E^{\circ}(Ox/Rd, T) + \frac{RT \ln(10)}{nF} \log_{10} \frac{[Ox]^{a}[B]^{b}}{[Rd]^{c}[D]^{d}}$$

 E° (Ox/Rd, T) : potentiel standard (température T, pression p = 1 bar)

F = 96500 C.mol⁻¹: constante de Faraday

n nombre d'électrons captés par l'oxydant

R constante des gaz parfaits

Pour T = 25°C:
$$\frac{RT \ln(10)}{F} \approx 0.059 V$$

Relation de Nernst à l'anode :

$$Zn^{2+} + 2e^{-} = Zn(s)$$
 $E(Zn^{2+}/Zn(s)) = E^{\circ}(Zn^{2+}/Zn(s), 298K) + \frac{0,059}{2}\log_{10}[Zn^{2+}]$

Relation de Nernst à l'anode :

$$Zn^{2+} + 2e^{-} = Zn(s)$$

$$E(Zn^{2+}/Zn(s)) = E^{\circ}(Zn^{2+}/Zn(s),298K) + \frac{0,059}{2}\log_{10}[Zn^{2+}]$$

Relation de Nernst à la cathode :

$$Cu^{2+} + 2e^{-} = Cu(s)$$

$$E(Cu^{2+}/Cu(s)) = E^{\circ}(Cu^{2+}/Cu(s),298K) + \frac{0,059}{2}\log_{10}[Cu^{2+}]$$

Si
$$[Cu^{2+}] = [Zn^{2+}]$$
: $\Delta E = \Delta E^{\circ}$

Relation de Nernst à l'anode :

$$Zn^{2+} + 2e^{-} = Zn(s)$$

$$E(Zn^{2+}/Zn(s)) = E^{\circ}(Zn^{2+}/Zn(s),298K) + \frac{0,059}{2}\log_{10}[Zn^{2+}]$$

Relation de Nernst à la cathode :

$$Cu^{2+} + 2e^{-} = Cu(s)$$

$$E(Cu^{2+}/Cu(s)) = E^{\circ}(Cu^{2+}/Cu(s),298K) + \frac{0,059}{2}\log_{10}[Cu^{2+}]$$

Si
$$[Cu^{2+}] = [Zn^{2+}]$$
: $\Delta E = \Delta E^{\circ}$

A.N.:
$$E^{\circ}(Cu2+/Cu(s) = 0.34 \text{ V}; E^{\circ}(Zn2+/Zn(s) = -0.76 \text{ V})$$

- on retrouve bien la polarité de la pile
- on calcule $\Delta E = 1,1 \text{ V}$

Relation de Nernst à l'anode :

$$Zn^{2+} + 2e^{-} = Zn(s)$$

$$E(Zn^{2+}/Zn(s)) = E^{\circ}(Zn^{2+}/Zn(s),298K) + \frac{0,059}{2}\log_{10}[Zn^{2+}]$$

Relation de Nernst à la cathode :

$$Cu^{2+} + 2e^{-} = Cu(s)$$
 $E(Cu^{2+}/Cu(s)) = E^{\circ}(Cu^{2+}/Cu(s), 298K) + \frac{0,059}{2} \log_{10}[Cu^{2+}]$

La Relation de Nernst constitue un modèle du potentiel d'électrode E.

A température fixée, E ne dépend plus que de la composition de l'électrode.

E peut donc servir à mesurer des concentrations/pressions, à détecter des espèces.

3. Capteurs électrochimiques

On veut mesurer la concentration en ions Ag+ d'une solution inconnue de nitrate d'argent.

On veut mesurer la concentration en ions Ag+ d'une solution inconnue de nitrate d'argent.

Plonger le capteur dans une solution contenant les ions Ag+ va générer un faible courant électrique qui va circuler dans le voltmètre.

On veut mesurer la concentration en ions Ag+ d'une solution inconnue de nitrate d'argent.

Plonger le capteur dans une solution contenant les ions Ag+ va générer un faible courant électrique qui va circuler dans le voltmètre.

On veut mesurer la concentration en ions Ag+ d'une solution inconnue de nitrate d'argent.

Plonger le capteur dans une solution contenant les ions Ag+ va générer un faible courant électrique qui va circuler dans le voltmètre.

Le capteur réalisé est sélectif :

- insensible aux ions NO₃-,H₃O+, HO- présents,
- sensible seulement aux ions Ag+.

3.3 – Mesure de la teneur en O₂ de gaz d'échappement : sonde lambda

Couple $O_2(g)/O_2^{2-}$ (ion peroxyde): $O_2(g) + 2e^{-} = O_2^{2-}$

Si la pression en O₂ est différente d'une électrode à l'autre, la sonde lambda génère une force électromotrice.

Tension délivrée par la sonde si $\lambda \neq 1$: asservissement de la pompe à injection.

3.4 – Détecteurs de fumée électrochimiques

Modèle d'un détecteur de monoxyde de carbone.

En présence de monoxyde de carbone, le voltmètre détecte une tension, qui peut servir à alimenter une alarme ...

Apport de O₂ nécessaire, sinon réduction des ions H⁺ et production de H₂(g) (si CO(g) présent).