An overview of:

A model independent calibration of quasars

Xiaolei Li, Ryan E. Keeley, Arman Shafieloo, Xiaogang Zheng, Shou Cao, Marek Biesiada, Zong-Hong Zhu5

Resources:

github.com/parsa-ghafour/Conferences_and_Seminars

At a glance:

Foreword	Base relation	Data sets	Calibration	Results
Important characteristics of quasars	Relation between the log of their ultraviolet (UV) and X-ray luminosities	Quasar sample (Training data set)	Unanchored luminosity distance	Model independent calibration results for the quasar parameters
Quasars as standardized candles	Free parameters	Supernovae Ia sample (Test data set)	Generating a set of cosmological functions	$\log (D_L H_0)$ - redshift relation
Base relation	Hyper parameters		GP regression Reconstruct the expansion history	Residuals of the observed $\log (F_X)$ values with respect to the predicted $\log (F_X)$
Correlation between the Base relation and the			Likelihood	The linear relation between $\log{(L_{UV})}$ and
cosmological distances			LINMIX_ERR MCMC analysis	$\log(L_X)$

Foreword:

Quasars.

- Are luminous persistent sources
 - Can be observed up to redshifts of $z \approx 7.5$ (Mortlock et al. 2011)
 - Might be able to fill the redshift gap between the farthest observed Type Ia Supernovae and CMB (Scolnic et al. 2017)

Farthest SN Ia: $z \approx 2.3$ (ESA/Hubble, David O. Jones et al.)

CMB: higher redshift

Quasars can be used as standardized candles

Calibrate the
largest quasar ——
sample

Constraining the parameters of the Base relation

There is a strong correlation between the parameters characterizing the quasar luminosity relation and the cosmological distances

Base relation:

Quasars have also been used as standard candles whose standardization relies on the linear relation between the log of their ultraviolet (UV) and X-ray luminosities:

(Risaliti & Lusso 2015, 2017; Lusso & Risaliti 2016, 2017; Risaliti & Lusso 2019; Salvestrini et al. 2019; Lusso et al. 2019, 2020; Lusso 2020; Khadka & Ratra 2020a, b; Liu et al. 2020a, b, c; Geng et al. 2020; Zheng et al. 2021).

Slope Offset
$$\log(L_X) = \gamma \log(L_{UV}) + \beta_1$$
 rest-frame luminosities

Hyperparameters:

Data sets: (Test data set)

(Scolnic et al. 2017; Liao et al. 2019, 2020; Rasmussen & Williams 2006, Holsclaw et al. 2010a, b, 2011, Shafieloo, Kim & Linder 2012, Joudaki et al. 2018, Keeley et al. 2019, 2020, 2021

$$\varphi(z) = ln\left(\frac{H^{mf}(z)}{H(z)}\right)$$

$$\varphi(z) \leftrightarrow H(z)$$
Integrate this function to get the unanchored

luminosity distance

GP calculates a posterior for $D_L H_0$ function

 $D_L H_0(z) = (1+z) \int_0^z \frac{c}{h(z)} dz$ **Posterior** $P(D_L H_0 | D_L) = \int \frac{\mathcal{L}(D_L H_0(\varphi)) P(\varphi)}{P(D_L)}$ $\mathcal{L}(D_L H_0(\varphi))$ $P(\boldsymbol{\varphi})$ Likelihood Consequence using a of the data flat prior on the GP hyperparameters

Draw 1000 unanchored luminosity distances reconstructed from the SN Ia data

$$P(D_L H_0 | D_L) = \int \frac{\mathcal{L}(D_L H_0(\varphi)) P(\varphi)}{P(D_L)} D_L H_0$$

Calculate the predicted quasar X-ray flux corresponding to these unanchored luminosity

$$\log(L_X) = \gamma \log(L_{UV}) + \beta_1$$

$$\log(F_X) = \gamma \log(F_{UV}) + (2\gamma - 2)\log(D_L) + \beta_2$$

$$\beta_2 = \gamma \log(4\pi) - \log(4\pi) + \beta_1$$

$$\log(F_X)^{SN} = \gamma \log(F_{UV}) + (2\gamma - 2)\log(D_L H_0) + \beta$$

$$\beta = \beta_2 - (2\gamma - 2)\log(H_0)$$

$$log(F_X)^{SN} = \gamma log(F_{UV}) + (2\gamma - 2)log(D_L H_0) + \beta$$

$$log(F_X)^{QSO} = \gamma log(F_{UV}) + (2\gamma - 2)log(D_L H_0) + \beta$$

$$Likelihood$$
(Risaliti & Lusso 2015, and Lusso et al. 2020)
$$\mathcal{L}(\chi) = exp\left(-\frac{\chi^2}{2}\right)$$

$$\chi^2 = \sum_i \left[\frac{\left(\log(F_X(\gamma,\beta))_i^{SN} - \log(F_X(\gamma',\beta'))_i^{QSO}\right)}{s_i^2} + ln(s_i^2)\right]$$

$$S_i^2 = \sigma_{log(F_X)}^2 + \gamma^2 \sigma_{log(F_{UV})}^2 + \delta^2$$

13

LINMIX_ERR
$$\begin{array}{c}
\delta \text{ is only as large} \\
\text{as it needs to be}
\end{array}$$

$$\begin{array}{c}
s_i^2 = \sigma_{log(F_X)}^2 + \gamma^2 \sigma_{log(F_{UV})}^2 + \delta^2
\end{array}$$

$$x^2 = \sum_i \left[\frac{\left(\log(F_X(\gamma, \beta))_i^{SN} - \log(F_X)_i^{QSO}\right)}{s_i^2} + \ln(s_i^2) \right]$$

$$\mathcal{L}(\chi) = exp\left(-\frac{\chi^2}{2}\right)$$

i. Draw 1000 unanchored luminosity distances from supernovae data

ii. Calculate the predicted quasar X-ray flux corresponding to these unanchored luminosity distances

iii. Define the likelihood of the quasar parameters

iv. Calculate the posterior distribution of the quasar parameters

 $\gamma, \beta_1, \delta, 1\sigma, 2\sigma, 3\sigma$

Model independent calibration results for the quasar parameters. GP regression reconstructions of $D_L H_0$ based on the Pantheon SN Ia compilation were used. The contours represent the 1σ , 2σ , and 3σ uncertainties for γ , β , and δ .

18

 $\log (D_L H_0)$ -redshift relation for the 2421 calibrated quasars. The error bars of $log(D_L H_0)$ are obtained through error propagation and the purple solid line shows $\log (D_L H_0)$ drawn from the posterior of the Pantheon compilation calculated with GP.

Residuals of the observed $\log (F_X)$ values with respect to the predicted $\log (F_X)$ values derived from the GP reconstructions of the Pantheon SN Ia compilation, normalized to the calibrated errors. The right plot shows the histogram for $\log (F_X)$ and the purple line shows the best Gaussian fit with $\mu = -0.051$ and $\sigma = 0.988$. 19

Results:

The linear relation between $\log(L_{UV})$ and $\log(L_X)$ for the 2421 quasar sample we used. The purple solid line presents the best fit from our calibration results with slope $\gamma=0.648$. The lower panel shows the residual of $\log(L_X)$ with respect to the best fitting results.