Vega Behavior

Pedro Giraldi

Vega

Call, Put

$$\nu = \frac{dC}{d\sigma} = \frac{dP}{d\sigma} = \frac{d\Delta}{dS_0} = S_0 n(d_1) \sqrt{T}$$

Volatility is more impactful on at the money option prices

Gamma and Vega Relationship

Given
$$\nu=S_0n(d_1)\sqrt{T}$$
 and $\Gamma=\frac{n(d_1)}{S_0\sigma\sqrt{T}}$ then
$$\nu=\frac{\Gamma}{{S_0}^2\sigma T}$$

Which shows that gamma and vega are inversely related in respect to time. What about volatility?

Gamma and Vega diverge in relation to time

Vega decays as time passes

