Tutorial #3

Lyssa Buissereth Liam Shamir Michael Russo

We will introduce a statistical test, show a sample hypothesis that you may want to answer, and finally sample calculations.

Always pick your tests when forming your hypothesis and before data collection. It helps prevent the temptation of switching tests after collecting data to force a conclusion.

Dataset Used - QIIME's Moving Pictures

[1] Moving Pictures Tutorial From QIIME:

https://docs.giime2.org/2020.2/tutorials/moving-pictures/

[2] Tutorial's Github Repo (provided by Zhengqiao):

https://github.com/EESI/giime2_tutorial

This dataset consists of "human microbiome samples from two individuals at four body sites at five timepoints, the first of which immediately followed antibiotic usage" [1]

After getting Moving Pictures dataset ⇒ Convert it into a .tsv (tab-separated values) file so you can view it in Excel/MATLAB/viewer of choice

t-test

 A generalized t-test is used to compare the estimated value of a parameter to the hypothesized value of that parameter

```
t = [(parameter estimate) - (parameter value (hypothesized))] / (standard error of parameter estimate)
```

• But it is most commonly used to compare means

```
t = [(mean est.) - (mean (hypothesized))] / (standard error of mean est.)
```

- 2 assumptions:
 - Population is <u>normally distributed</u>
 - Samples are taken <u>randomly</u>

• It functions much the same way as a Z-test, but is used when the variance of the population from which the sample came is unknown (i.e. you are analyzing a sample)

```
    Z = [(parameter est.) - (parameter value (hypothesized))] / (standard error of parameter)
    t = [(parameter est.) - (parameter value (hypothesized))] / (standard error of parameter est.)
```

- When the sample size increases substantially enough, the population's variance being unknown becomes less of an issue, and one can simply perform a standard Z-test
 - This is typically agreed upon as taking place when the sample size, n, becomes ≥ 30 [pg. 136, Biostatistical Analysis 5th Ed., Zar]

t-test: 2 sample

- Comparing 2 sample means is a bit different from comparing one sample mean to the population's mean
- Need to adjust the standard deviation calculation
- If unequal variances are assumed between the samples, std becomes

std = mean1 - mean2 / sqrt ((sample_variance1 / sample_size1) + (sample_variance2 / sample_size2))

• If equal variances are assumed, the test becomes:

$$T = rac{ar{Y_1} - ar{Y_2}}{s_p \sqrt{1/N_1 + 1/N_2}}$$

where

$$s_p^2 = \frac{(N_1 - 1)s_1^2 + (N_2 - 1)s_2^2}{N_1 + N_2 - 2}$$

t-test: hypotheses

- Null hypothesis H_0 : parameter est. \geq OR = OR \leq parameter value (hypothesized)
- Alternative hypothesis H_A: parameter est. > OR ≠ OR < parameter value (hypothesized)
 - Note: by convention, the null hypothesis <u>always</u> uses the equality version of a comparator $(\geq, =, \leq)$

- Can compare a sample to the population or a sample to another sample
 - \circ H_0 : parameter est. = parameter value hypothesized
 - \circ H₀: parameter est. 1 = parameter est. 2

- Can set expectations of a where you expect the parameter estimate to be distributed
 - \circ To either side of the parameter value hypothesized $\Rightarrow H_{\Delta}$: parameter est. \neq parameter value hypothesized
 - \circ Larger than the parameter value hypothesized $\Rightarrow H_{\Delta}$: parameter est. > parameter value hypothesized
 - \circ Smaller than the parameter value hypothesized \Rightarrow H_{Δ}: parameter est. < parameter value hypothesized

t-test: calculations

• To determine if the null hypothesis is rejected or not, need to calculate a threshold ("critical") value

- t_{CRIT} is taken from (or interpolated using) a "t table" whose parameters are
 - Alpha (α) value (prob. of finding parameter est. this far away from the parameter value hypoth.)
 - ∘ Number of tails (H_{Δ} includes a \neq ⇒ 2 tails, H_{Δ} includes > OR < ⇒ 1 tail)
 - Degrees of freedom (df = sample size 1)

If
$$|t_{CALC}| \ge |t_{CRIT}| = t_{\alpha \text{ (tail #), df}}$$
 then H_0 is rejected

"The average count of bacteria on the left hand of subject 1 is statistically significantly different from the average count of bacteria on the right hand of subject 1"

- No mention of which hand should have a higher or lower count ⇒ 2 tail
- Comparing two sample means
- Assuming equal variances between samples (because the samples came from the same individual)

```
H_0: mean(Left Palm Count(day 1)) = mean(Right Palm Count(day 1))

H_A: mean(Left Palm Count(day 1)) \neq mean(Right Palm Count(day 1))
```

To make sure I can test my hypothesis, I will need to ensure:

- Random sampling
- Normal distribution ⇒ Or gather more than 30 samples

Data Collection

Col's C-K are the palm samples from subject 1 on every checkup day.

Col. A has each bacteria's taxonomy, col. B has IDs called the OTUs for each bacteria, and the cell values are counts of that bacteria in the sample

	^		~	-	-	,	J	- 1		J	1
1		# Constructed from biom file	lp 1	lp 1	lp 1	lp 1	rp 1				
2		#OTU ID	L2S155	L2S175	L2S204	L2S222	L3S242	L3S294	L3S313	L3S341	L3S360
3	kBacteria; pPr	01173073677a287321be3484fbed0007	0	0	0	0	0	0	0	0	0
4	kBacteria; pVe	0160e14a78b18b903618f11bc732746e	0	0	0	0	23	0	0	0	0
5	kBacteria; pPro	01b99cb344ed2530f7d80897ffe257a9	30	0	0	0	0	11	0	13	0
6	kBacteria; pFir	01ce91fd8dbecf637eb5e67cdab5c5aa	2	0	0	4	0	0	0	0	0
7	kBacteria; pFir	01e0b7ac306895be84179f2715af269b	0	0	0	0	0	0	0	0	0
8	kBacteria; pBa	025dd300b0ccbd9d5898969c2a1ab138	0	0	0	0	0	0	0	0	0
9	kBacteria; pFir	02878fe3ccc81d4c884ca5574178d6a0	0	0	0	0	0	0	0	0	0
10	kBacteria; pBa	029cc71dc93341de90188b686798aa0d	0	0	0	0	0	0	0	0	0
11	kBacteria; pFir	02ef9a59d6da8b642271166d3ffd1b52	0	0	0	0	0	0	0	0	0
12	kBacteria; pBa	0305a4993ecf2d8ef4149fdfc7592603	0	0	0	0	28	0	0	0	0
13	kBacteria; pBa	0310f41e594c49368dde5c5993a7a5d0	0	0	14	0	0	0	0	0	0
14	kBacteria; pBa	0316af109bb877b5c7a85ddecd6dfd1e	0	0	0	0	0	0	0	0	0
15	kBacteria; pAc	03178a409a41853ea09a94055e138e19	0	0	0	0	0	0	0	0	0
16	kArchaea; pCr	033511c7ff4fe93866075cfb9129aa3b	0	0	0	0	0	0	0	0	0
17	kBacteria; pFir	0335b1664150f1e151340b1450eae898	0	0	0	0	0	0	0	0	0
18	kBacteria; pFir	047b7fb62a5e9d2711e639ae1cb1519a	0	0	0	0	0	0	0	0	0
19	kBacteria; pBa	04c7e0ea3038f942f5a28778a74cd1c0	0	0	0	0	0	0	0	0	0
20	kBacteria; pFir	04fd81a94c775a5906f2d92cf0548e4d	0	0	0	0	0	0	0	0	0
21	kBacteria; pFir	052128d7d424728578efe7852b0afd0d	0	0	0	0	8	0	0	0	0
22	kBacteria; pPro	0524cb6dcc8f60dafc09c46911c9d0ac	0	0	0	0	0	0	0	0	9
23	kBacteria; pFir	059408ca99f1001f64e6df1e06fb951d	0	0	0	0	0	0	0	0	0
24	kBacteria; pPro	063fa4f5a6fa894f7f8243468324ac5e	0	15	0	21	0	0	0	0	0
25	kBacteria; pPro	06845c67bc4203081a981200f33e87eb	0	0	0	0	0	0	0	0	0

Dear reader,

Pay no attention to the row colors. I simply forgot to unhighlight them

Calculations

```
[h,p] ttest2(L(:,1),R(:,1)) % comparing left & right palms on sampling day 1
```

```
>> [h,p]

ans =

1.0000 0.0047
```

MATLAB's ttest2 automatically computes a 2 sample t-test and compares it to t_{CRIT} assuming $\alpha = 0.05$

h = null **h**ypothesis rejection.

- h=1 ⇒ null hypothesis is rejected
- h=0 ⇒ null hypothesis is not rejected

 $p = \mathbf{p}$ -value

ANOVA (one/two way)

ANOVA

- Analysis of Variance
- "One" way or "two" way = refers to the number of independent variables in the test
- Statistical test used to analyze the difference between the means of more than two groups.

Assumptions:

- 1. Data is normally distributed
- 2. Homogeneity of variances

One-way ANOVA

Dependent variable: Continuous

Independent variable: Categorical (at least 3 categories)

Application: Detect the difference in means of 3 or more independent groups.

- Can be thought of as an extension of the t-test.
- ANOVA uses the ratio of the between group variance to the within group variance to decide whether there are statistically significant differences between the groups or not.

One-way ANOVA (cont'd)

Interpretation:

- ANOVA tests null hypothesis "H0: all group means are equal" using an F-test.
- The p-value concludes whether or not there is at least one pairwise difference.
 - Null hypothesis (H0) of ANOVA is that there is no difference among group means.
 - If the p-value < 0.05, we reject H0 and conclude that there is a significant difference between at least one pair of means.

Two-way ANOVA

Dependent variable: Continuous

Independent variables: Two categorical (2+ levels within each)

Application: Comparing means for combinations of two independent categorical variables (factors)

- "Double-testing" that same group
- E.g. Testing one set of individuals before and after taking a medication to see if the medication worked or not

Two-way ANOVA (cont'd)

Interpretation:

There are three sets of hypothesis with a two-way ANOVA.

H0 for each set is as follows:

- The population means of the first factor are equal equivalent to a one-way ANOVA for the **row factor**.
- The population means of the second factor are equal equivalent to a one-way ANOVA for the **column factor**.
- There is no interaction between the two factors no interaction between columns (data sets) and rows.
 - any systematic differences between columns are the same for each row and that any systematic differences between rows are the same for each column

Number of Independent Variables	ANOVA Used	Example
One	One-way ANOVA	Independent: -coffee brand Dependent: -heart rate
Two or more	Two-way ANOVA	Independent: -coffee brand -anxiety level Dependent: -heart rate

Image cred: socratic.org, 2017

TEST 1

Question: "Is there a difference in microbiome populations between two body sites - LEFT and RIGHT palms?"

- Relative abundance of microbe counts (using OTU Table) obtained from two subjects.
- Presence (counts) of 30 microbes considered.
- Because hands are constantly interacting, expecting the microbes to be interchangeable between these two locations.
- One-way ANOVA

ANOVA1 results supports PCOA visual

P value (<.05) allows us to reject the hypothesis that there is variation between microbes in palms.

PCOA shows microbes to be clustered, therefore samples are similar.

LEFT PALM RIGHT PALM

TEST 2

"What factor impacts the microbe variation? Body site or time?"

- Body sites: tongue and gut
- Time: immediate start of antibiotic and 140 days of taking antibiotics
- Presence (counts) of 20 microbes considered.
- Each item to be classified in two ways, as opposed to only one way.
 - Column, row (interaction)
- Two-way ANOVA
 - Partitions the overall variance of the outcome variable into three components to test the three null hypotheses.

	COLUMN	COLUMN
ROW	Tongue - Day 1	Tongue - 140 days
ROW	Gut - Day 1	Gut - 140 days

	COLUMN	COLUMN
ROW	Tongue - Day 1	Tongue - 140 days
ROW	Gut - Day 1	Gut - 140 days

*null hypothesis = no interaction/mean is the same

			sktop Wind			
			A	AVO	Table	
Source	SS	df	MS	F	Prob>F	
Columns	0.00014	1	0.00014	0.04	0.8372	
Rows	0.00451	1	0.00451	1.39	0.2425	
Interaction	0.00041	1	0.00041	0.13	0.7225	
Error	0.24705	76	0.00325			
Total	0.25212	79				

- 1. Variability among columns.
- 2. Variability among rows.
- 3. Interactions between row and column.
 - These are differences between rows that are not the same at each column, equivalent to variation between columns that is not the same at each row.

- These results indicate that the differences that are seen are due to chance 83%, 24% and 72%
- On average, the treatment effect is indistinguishable from random variation.

Dataset Used -

[1] Multivariate ANOVA (MANOVA) -- Notes and R Code:

https://gaopinghuang0.github.io/2017/11/20/MANOVA-notes-and-R-code#35-contrasts

The effects of cognitive behavior therapy (CBT) on obsessive compulsive disorder (OCD). Two dependent variables (DV1 and DV2) are considered: the occurrence of obsession-related behaviors (**Actions**) and the occurrence of obsession-related cognitions (**Thoughts**). OCD sufferers are grouped into three conditions: with CBT, with behavior therapy (BT), and with no-treatment (NT). [1]

MANOVA

Multivariate ANOVA

- Only difference being that MANOVA has TWO (or more) dependent variables, not one.
- MANOVA uses the covariance between means

MANOVA

WAIT

Previously mentioned data contains only one dependent variable: bacterial occurrence value,
 and in order to perform MANOVA, TWO or more dependent variables are needed

Example of Suitable Data

Suppose we want to know whether higher education (college, high school) attendance affects men and women in their professional development. Also assume we have each person's salary, duration of employment, number of promotions, highest schooling level, and job satisfaction.

Dependent	Independent
Salary	Gender
Duration of Employment	Highest Schooling Level
Number of Promotions	
Job Satisfaction	

MANOVA - Example

MANOVA - Example

Dependent	Independent
Actions	Group
Thoughts	

```
r = fitrm(OCD1, 'Actions-Thoughts ~ Group ');
[manovatbl,A,C,D] = manova(r)
```

The **fitrm** function uses a table (OCD1) and then a grouping notation to delineate (based on table headers) the dependent and independent variables to produce a MatLab RepeatedMeasuresModel class object that can be used by the manova function.

MANOVA - Example

Within	Between	Statistic	Value	F	RSquare	df1	df2	pValue
	3		S	\$	¥	3 3	33	£
Constant	(Intercept)	Pillai	0.95329	551.02	0.95329	1	27	1.6946e-19
Constant	(Intercept)	Wilks	0.046711	551.02	0.95329	1	27	1.6946e-19
Constant	(Intercept)	Hotelling	20.408	551.02	0.95329	1	27	1.6946e-19
Constant	(Intercept)	Roy	20.408	551.02	0.95329	1	27	1.6946e-19
Constant	Group	Pillai	0.23438	4.1327	0.23438	2	27	0.027178
Constant	Group	Wilks	0.76562	4.1327	0.23438	2	27	0.027178
Constant	Group	Hotelling	0.30612	4.1327	0.23438	2	27	0.027178
Constant	Group	Roy	0.30612	4.1327	0.23438	2	27	0.027178

Multiple Comparison Corrections

Multiple Comparison/Testing

- Testing many features at the same time high dimensional data.
 - Gencomics = Lots of Data = Lots of Hypotheses
- Therefore, P-value is no longer useful
 - Because testing many hypotheses simultaneously,
 even the slightest p-value cut off can propagate
 many false positives with high probability
- To solve this problem,
 - 1. Define a procedure
 - Estimate an informative <u>error rate</u> for the procedure (controlling Type 1 Error rate)
 - Control this error rate by adapting the procedure to it to guaranteed an error rate below a

Family-wide error rate

- The probability of at least one type I error
- Want to guard against ANY false positives
 - Control false discovery rates
- Two general types of FWER corrections:
 - Single step: equivalent adjustments made to each
 p-value
 - Sequential: adaptive adjustment made to each p-value

Benjamini-Hochberg Procedure

*Decreases the false discovery rate

A	0	P	Q	R	S
1	Benja	mini-Hochbe	rg Appro	oach	
2					
3	FDR	0.05			
4	k	6			
5					
6		p-value	rank	adj α	BH sig
7	В	0.00356	1	0.008333	yes
8	F	0.01042	2	0.016667	yes
9	Α	0.01208	3	0.025	yes
10	D	0.02155	4	0.033333	yes
11	E	0.03329	5	0.041667	yes
12	С	0.11542	6	0.05	no

rage cred: real-statistics

- 1. Arrange p-values in ascending order
- 2. Assign ranks to p-values
- Calculate each p-value's B-H critical value using:

```
(i/m)Q i = the individual p-value's rank
m = total # tests
Q = false discovery rate (a percentage, chosen by you)
```

4. Compare original p-values to the critical B-H from Step 3 - find the largest p-value that is smaller than the critical value (to test for significance)

Git Link