RECURDYN

Expression Handbook

written by Solution Group of FunctionBay, Inc.

Table of Contents

<operators></operators>	
Arithmetic Operators	
Relational Operators	10
Logical Operators	
3 -1	
< FORTRAN FUNCTIONS >	
ABS	1;
ACOS	
AINT	
ANINT	
ASIN	
ATAN	
ATAN2	
COS	
COSH	
DIM	
EXP	
LOG	
LOG10	
MAX	
MIN	
MOD	
SIGN	
SIN	
SINH	
SQRT	
TAN	
TANH	
.,	
CIRALII ATIONI CONICTANITO	
< SIMULATION CONSTANTS >	
TIME	
PI	
RTOD	38
DTOR	39

< DISPLACEMENT >

AX	41
AY	42
AZ	43
DM	44
DX	45
DY	46
DZ	47
PHI	48
PITCH	49
PSI	50
ROLL	51
THETA	52
YAW	53
< VELOCITY >	
VM	
VR	
VX	
VY	
VZ	
WM	
WX	
WY	
WZ	64
< ACCELERATION >	
ACCM	66
ACCX	
ACCY	
ACCZ	
WDTM	
WDTX	
WDTY	
WDTZ	

< GENERIC FORCE > FX 76 TM.......79 TX80 T782 < SPECIFIC FORCE > CONTACT84 MOTION......85 JFRICTION86 COUPLER.......87 SHT3D CF89 JOINT......90 PTCV91 AXIAL93 TFORCE 94 RFORCE.......95 SCREWFORCE96 BEAM......97 MATRIXFORCE100 < SYSTEM ELEMENT > VARVAL105 < ARITHMETIC IF >

< INTERPOLATION >	
AKISPL	109
CUBSPL	110
< GENERAL >	
BISTOP	112
CHEBY	
FORCOS	
FORSIN	117
HAVSIN	118
IMPACT	119
POLY	12
SHF	
STEP	
STEP5	
SWEEP	125
< CONTROL & HYDRAULIC >	
PIN	128
POUT	129
HIN	130
HOUT	13 ²
< SENSOR >	
SNSR	133
EVTIME	
SENSOR	
SENSORONTIME	
SENSOROFFTIME	
SENSORDISTANCE	
SENSORDETECTEDPOINT	
< STRESS & STRAIN >	
STRESS	
STRAIN	142

Inc	ex1	1	-
IIIC	EX	4	ď

OPERATORS

Arithmetic Operators Relational Operators Logical Operators

Arithmetic Operators

The following arithmetic operators can be inserted in expressions.

Symbols

+	Addition
-	Subtraction
*	Multiplication
/	Division
**	Involution

Example

Arithmetic operators use standard arithmetic symbols. Note that two asterisks symbolize involution, so 2**n means 2 to the nth power. Also, when dividing (/) a number by zero (0), zero (0) must be expressed as 1e-20.

Relational Operators

Relational operators return the value 0 if false and the value 1 if true.

Format and Examples

<	The left operand is less than the right operand.	
	1.0<2.0 returns the value 1.	
	2.0<1.0 returns the value 0.	
<=	The left operand is less than or equal to the right operand.	
	1.0<=2.0 returns the value 1.	
	2.0<=1.0 returns the value 0.	
=	The left operand is equal to the right operand.	
	A=B returns the value 1 (if A-B <if th="" tolerance).<=""></if>	
	A=B returns the value 0 (if $ A-B > = IF$ Tolerance).	
>	The left operand is greater than the right operand.	
	2.0>1.0 returns the value 1	
	1.0>2.0 returns the value 0.	
>=	The left operand is greater than or equal to the right operand.	
	2.0>=1.0 returns the value 1.	
	1.0>=2.0 returns the value 0.	
<>	The left operand is not equal to the right operand.	
	A<>B returns the value 1 (if A-B >=IF Tolerance).	
	A<>B returns the value 0 (if A-B <if th="" tolerance).<=""></if>	

Logical Operators

The following logical operators can be inserted in expressions.

Operators

	Logical OR
&&	Logical AND

Examples

Values of A B		
	A is true	A is false
B is true	1	1
B is false	1	0

	Values of A&&B	
	A is true	A is false
B is true	1	0
B is false	0	0

FORTRAN FUNCTIONS

ABS

ACOS

AINT

ANINT

ASIN

ATAN

ATAN2

cos

COSH

DIM

EXP

LOG

LOG10

MAX

MIN

MOD

SIGN

SIN

SINH

SQRT

TAN

TANH

12

ABS

Returns the absolute value of the input value.

Format

ABS(x)

Argument

A real number or a function that returns a real number
--

Formula

ABS(x) = |x|

Example

ABS(-21)

ABS(DX(1,2)) <Argument (1) body1.Marker1, (2) body2.Marker2>

ACOS

Returns the inverse cosine, in radians, of the input value. The input must be a real number. The returned value is within the range of π - π .

Format

ACOS(x)

Argument

Formula

$$ACOS = cos^{-1}(x)$$

Example

As shown in the following figure, the ACOS function calculates the inverse cosine (in radians) of Marker 1 on the InertiaMarker's x-axis.

ACOS(DX(1,2)/DM(1,2)) < Argument: (1)body1.marker1, (2)body2.marker2 >

AINT

Returns the closest integer that is less than the input value.

Format

AINT(x)

Argument

X A real number or a function that returns a real number
--

Examples

Ex. 1) Function: AINT(1.2)

Result: 1

Ex. 2) Function: AINT(0.7)

Result: 0

ANINT

Returns the closest integer to the input value.

Format

ANINT(x)

Argument

Examples

Ex. 1) Function: ANINT(1.6)

Result: 2

Ex. 2) Function: ANINT(0.4)

Result: 0

ASIN

Returns the inverse sine, in radians, of the input value. The input must be a real number. The returned value is within the range of $-\pi/2 - \pi/2$.

Format

ASIN(x)

Argument

X	A real number or a function that returns a real number
---	--

Formula

$$ASIN=sin^{-1}(x)$$

Example

As shown in the following figure, the ASIN function calculates the inverse sine (in radians) of Marker 1 on the InertiaMarker's x-axis.

 $ASIN(\ DY(1,2)/DM(1,2)\) \qquad < Argument: \ (1)body1.marker1, \ (2)body2.marker2\ >$

ATAN

Returns the inverse tangent, in radians, of the input value. The input must be a real number. The returned value is within the range of $-\pi/2 - \pi/2$.

Format

ATAN(x)

Argument

X	A real number or a function that returns a real number
---	--

Formula

$$ATAN = tan^{-1}(x)$$

Example

As shown in the following figure, the ATAN function calculates the inverse tangent (in radians) of Marker 1 on the InertiaMarker's x-axis.

ATAN(DX(1,2)/DY(1,2)) <Argument: (1)body1.marker1, (2)body2.marker2 >

ATAN2

Returns the inverse tangent, in radians, of the input values. Both input values (numerator and denominator) must be real numbers. The returned value is within the range of $-\pi$ - π .

Format

ATAN2(dx,dy)

Arguments

dx	A real number or a function that returns a real number
	This value must belong to the x-axis in a tangent function.
dy	A real number or a function that returns a real number
	This value must belong to the y-axis in a tangent function.

Formula

$$ATAN2 = \begin{cases} \tan^{-1}(dx/dy) & dy > 0, dx > 0 \\ -\tan^{-1}(dx/dy) & dy < 0, dx > 0 \\ \tan^{-1}(dx/dy) + \pi & dy > 0, dx < 0 \\ \tan^{-1}(dx/dy) - \pi & dy < 0, dx < 0 \\ +\pi/2 & dy > 0, dx = 0 \\ -\pi/2 & dy < 0, dx = 0 \\ undefined & dy = 0, dx = 0 \end{cases}$$

Example

As shown in the following figure, the ATAN2 function calculates the inverse tangent (in radians) of Marker 1 on the InertiaMarker's x-axis.

ATAN2(DX(1,2),DY(1,2))

<Argument: (1)body1.marker1, (2)body2.marker2 >

COS

Returns the cosine of the input value. The input must be a real number. The returned value is within the range of -1 - 1.

Format

COS(x)

Argument

X	A real number or a function that returns a real number
---	--

Formula

$$COS = cos(x)$$

Examples

Ex. 1) Function: $COS(\pi/2)$

Result: 0

Ex. 2) Function: COS(1)

Result: 0.5403

COSH

Returns the hyperbolic cosine of the input value.

Format

COSH(x)

Argument

X	A real number or a function that returns a real number
---	--

Formula

$$COSH = \frac{e^x + e^{-x}}{2}$$

Examples

- Ex. 1) Function: COSH(0)
 - Result: 1
- Ex. 2) Function: COSH(1)
 - Result: 1.54308

DIM

Returns the actual value if the difference between x and y is positive and returns 0 if the difference between x and y is negative.

Format

DIM(x,y)

Arguments

X	A real number or a function that returns a real number
У	A real number or a function that returns real number

Formula

$$DIM = \begin{cases} 0, & x \le y \\ x - y, & x > y \end{cases}$$

Examples

Ex. 1) Function: DIM(15,5)

Result: 10

Ex. 2) Function: DIM(5,10)

Result: 0

EXP

Returns the natural logarithm (base e) constant raised to the input value.

Format

EXP(x)

Argument

X A real number or a function that returns a real number

Formula

 $EXP = e^x$

Examples

Ex. 1) Function: EXP(0)

Result: 1

Ex. 2) Function: EXP(3)

Result: 20.0855

LOG

Returns the natural logarithm of the input value.

Format

LOG(x)

Argument

Formula

 $LOG = \log_{e}(x)$

Examples

Ex. 1) Function: LOG(1)

Result: 0

Ex. 2) Function: LOG(10)

Result: 2.3026

LOG₁₀

Returns the base-10 logarithm of the input value.

Format

LOG10(x)

Argument

X A real number or a function that returns a real number	
--	--

Formula

 $LOG10 = \log_{10}(x)$

Examples

Ex. 1) Function: LOG10 (1)

Result: 0

Ex. 2) Function: LOG10 (10)

Result: 1

MAX

Returns the largest of the input values.

Format

 $MAX(x1,x2\{,x3\})$

Arguments

x1	A real number or a function that returns a real number
x2	A real number or a function that returns a real number
х3	A real number or a function that returns a real number (omissible)

Formula

MAX=max(x1,x2,x3)

Example

MAX(1,2,3)

MAX(DX(1), DX(2)) <Argument: (1)body1.marker1, (2)body1.marker2 >

MIN

Returns the smallest of the input values.

Format

 $MAX(x1,x2\{,x3\})$

Arguments

x1	A real number or a function that returns a real number
x2	A real number or a function that returns a real number
x3	A real number or a function that returns a real number (omissible)

Formula

MIN=min(x1,x2,x3)

Example

MIN (1,2,3)

MIN(DX(1), DX(2)) <Argument: (1)body1.marker1, (2)body1.marker2 >

MOD

Returns the remainder when x is divided by y.

Format

MOD(x,y)

Arguments

X	A real number or a function that returns a real number
У	A real number or a function that returns a real number

Formula

 $MOD=x-int(x/y)\cdot y$

Examples

Ex. 1) Function: MOD (1,2)

Result: 1

Ex. 2) Function: MOD (5,3)

Result: 2

SIGN

Returns an absolute value that has the magnitude x and the sign of y.

Format

SIGN(x,y)

Arguments

X	A real number or a function that returns a real number
У	A real number or a function that returns a real number

Formula

SIGN=
$$\begin{cases} |x| & (y > 0) \\ 0 & (y = 0) \\ -|x| & (y < 0) \end{cases}$$

Examples

Ex. 1) Function: SIGN (-4.7,1.2)

Result: 4.7

Ex. 2) Function: MOD (5.3,-6.5)

Result: -5.3

Ex. 3) Function: MOD (-2.5,-5.2)

Result: -2.5

SIN

Returns the sine of the input value. The returned value is within the range of -1-1.

Format

SIN(x)

Argument

X	A real number or a function that returns a real number
---	--

Formula

SIN=sin(x)

Examples

Ex. 1) Function: $SIN(\pi/2)$

Result: 1

Ex. 2) Function: SIN(1)

Result: 0.8415

SINH

Returns the hyperbolic sine of the input value.

Format

SINH(x)

Argument

|--|

Formula

$$SINH = \frac{e^x - e^{-x}}{2}$$

Examples

- Ex. 1) Function: SINH (0)
 - Result: 0
- Ex. 2) Function: SINH (1)
 - Result: 1.1752

SQRT

Returns the square root of the input value.

Format

SQRT(x)

Argument

	A real number or a function that returns a real number
X	If the input value is negative, then no value is
	returned.

Formula

$$SQRT = \sqrt{x}$$

Examples

Ex. 1) Function: SQRT(2)

Result: 1.41421

Ex. 2) Function: SQRT(-2)

Result: N/A

TAN

Returns the tangent of the input value.

Format

TAN(x)

Argument

|--|

Formula

TAN=tan(x)

Examples

Ex. 1) Function: $TAN(\pi)$

Result: 0

Ex. 2) Function: $TAN(\pi/4)$

Result: 1

TANH

Returns the hyperbolic tangent of the input value.

Format

TANH(x)

Argument

x	A real number or a function that returns a real number
Λ	7 real number of a function that returns a real number

Formula

TANH=
$$\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

Examples

Ex. 1) Function: TANH(1)

Result: 0.76159

Ex. 2) Function: TANH(-3)

Result: -0.99505

SIMULATION CONSTANTS

TIME

PΙ

DTOR

RTOD

TIME

Returns the simulation time.

Format

TIME

PΙ

Returns pi (π) .

Format

ΡI

Formula

PI = 3.1415926.....

Example

 $sin(2*PI*time) = sin(2\pi t)$ 45*PI/180= $\pi/4$

RTOD

Converts a radian value to a degree value.

Format

RTOD

Formula

RTOD= $180^{\circ}/\pi$

Example

RTOD*pi=180

DTOR

Converts a degree value to a radian value.

Format

DTOR

Formula

DTOR= $\pi/180^{\circ}$

Example

DTOR*180=3.141592

**Caution: If d is inserted at the end of a real number (such as 180d) in an expression, then it is recognized as a degree and automatically converted to a radian value. Therefore, 180d*DTOR will return an incorrect calculation

DISPLACEMENT

AX

AY

ΑZ

DM

DX

DΥ

DΖ

PHI

PITCH

PSI

ROLL

THETA

YAW

AX

Returns the rotation angle on the x-axis for one marker's InertiaMarker or the rotation angle on the x-axis for two markers.

Format

Argument List		
	ID	Entity
	1	Body1.Marker1
	2	Body2.Marker2

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of a marker to be calculated
Marker2	If omitted, then the InertiaMarker is applied.

Formula

$$\mathbf{AX} = ATAN2(\hat{y}_{mk1} \cdot \hat{z}_{mk2}, \hat{y}_{mk1} \cdot \hat{y}_{mk2})$$

 $\mathbf{\hat{y}}_{mk1}$: y-direction unit vector of Marker1

 $\hat{\mathbf{Z}}_{mk2}$: z-direction unit vector of Marker2

 $\mathbf{\hat{y}}_{mk2}$: y-direction unit vector of Marker2

Example

AX (body1.Marker1)

AX (body1.Marker1, body2.Marker2)

AX (1,2) <Argument: (1)body1.Marker1, (2)body2.Marker2 >

AY

Returns the rotation angle on the y-axis for one marker's InertiaMarker or the rotation angle on the y-axis for two markers.

Format

Argument List		
	ID	Entity
	1	Body1.Marker1
	2	Body2.Marker2

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of a marker to be calculated
IVIai Kei Z	 If omitted, then the InertiaMarker is applied.

Formula

$$\mathbf{AY} = ATAN2(\hat{z}_{mk1} \cdot \hat{x}_{mk2}, \frac{\mathbf{\hat{z}}_{mk1}}{\mathbf{\hat{z}}_{mk2}})$$

 $\mathbf{\hat{z}}_{\mathrm{mk1}}$: z-direction unit vector of Marker1

 $\hat{\mathbf{x}}_{\mathrm{mk2}}$: x-direction unit vector of Marker2

 $\hat{\mathbf{Z}}_{mk2}$: z-direction unit vector of Marker2

Example

AY (body1.Marker1)

AY (body1.Marker1, body2.Marker2)

AY (1,2) <Argument: (1)body1.Marker1, (2)body2.Marker2 >

ΑZ

Returns the rotation angle on the z-axis for one marker's InertiaMarker or the rotation angle on the z-axis for two markers.

Format

Argument List		
ID	Entity	
1	Body1.Marker1	
2	Body2.Marker2	

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of a marker to be calculated
Markerz	If omitted, then the InertiaMarker is applied.

Formula

$$AZ = ATAN2(\hat{x}_{mk1} \cdot \hat{y}_{mk2}, \hat{x}_{mk1} \cdot \hat{x}_{mk2})$$

 $\hat{\mathbf{X}}_{mk1}$: x-direction unit vector of Marker1

 $\hat{\mathbf{y}}_{\mathrm{mk2}}$: y-direction unit vector of Marker2

 $\boldsymbol{\hat{x}}_{mk2}$: x-direction unit vector of Marker2

Example

AZ (body1.Marker1)

AZ (body1.Marker1, body2.Marker2)

AZ (1,2) <Argument: (1)body1.Marker1, (2)body2.Marker2 >

DM

Returns the absolute distance from one marker to the InertiaMarker or the absolute distance between two markers.

Format

Argument List		
	ID	Entity
	1	Body1.Marker1
	2	Body2.Marker2

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of a marker to be calculated
Markerz	If omitted, then the InertiaMarker is applied.

Formula

$$DM = \left(\left[\vec{R}_{mk1} - \vec{R}_{mk2} \right] \cdot \left[\vec{R}_{mk1} - \vec{R}_{mk2} \right] \right)^{1/2}$$

 $ec{R}_{ ext{mk1}}$: Position vector of Marker1

 \vec{R}_{mk2} : Position vector of Marker2

Example

DM (body1.Marker1)

DM (body1.Marker1, body2.Marker2)

DM (1,2) <Argument: (1)body1.Marker1, (2)body2.Marker2 >

DX

Returns the x-direction location of one marker or the distance between two markers in relation to a third marker's x-direction.

Format

Argument List		
	ID	Entity
	1	Body1.Marker1
	2	Body2.Marker2

Arguments

Marker1	The name or argument number of a marker to be calculated
NA - ulu- u2	The name or argument number of a marker to be calculated
Marker2	If omitted, then the InertiaMarker is applied.
	The name or argument number of the reference marker that will
Marker3	serve as the standard for direction
	 If omitted, then the InertiaMarker is applied.

Formula

$$\mathbf{DX} = \left[\vec{R}_{\text{mk1}} - \vec{R}_{\text{mk2}} \right] \cdot \hat{x}_{\text{mk3}}$$

 $\vec{R_{\mathrm{mk1}}}$ Position vector of Marker1

 $ec{R_{\mathrm{mk2}}}$ Position vector of Marker2

 $\hat{\mathcal{X}}_{\mathrm{mk3}}$ x-direction unit vector of Marker3

Example

DX(body1.Marker1)

DX(body1.Marker1, body2.Marker1)

DX(body1.Marker1, body2.Marker1, body3.Marker1)

DX(1,2,3) <Argument: (1)body1.Marker1, (2)body2.Marker1, (3)body3.Marker1>

DY

Returns the y-direction location of one marker or the distance between two markers in relation to a third marker's y-direction.

Format

Argument List		
ID	Entity	
1	Body1.Marker1	
2	Body2.Marker2	

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of a marker to be calculated
Markerz	If omitted, then the InertiaMarker is applied.
	The name or argument number of the reference marker that will
Marker3	serve as the standard for direction
	If omitted, then the InertiaMarker is applied.

Formula

$$\mathbf{DY} = \left[\vec{R}_{\mathrm{mk1}} - \vec{R}_{\mathrm{mk2}}\right] \cdot \hat{y}_{\mathrm{mk3}}$$

 $ec{R}_{ ext{mk-1}}$: Position vector of Marker1

 \vec{R}_{mk2} : Position vector of Marker2

 \hat{y}_{mk3} : y-direction unit vector of Marker3

Example

DY(body1.Marker1)

DY(body1.Marker1, body2.Marker1)

DY(body1.Marker1, body2.Marker1, body3.Marker1)

DY(1,2,3) <Argument: (1)body1.Marker1, (2)body2.Marker1, (3)body3.Marker1>

DZ

Returns the z-direction location of one marker or the distance between two markers in relation to a third marker's z-direction.

Format

Argument List		
	ID	Entity
I	1	Body1.Marker1
ı	2	Body2.Marker2

Arguments

Marker1	The name or argument number of a marker to be calculated
Mandana2	The name or argument number of a marker to be calculated
Marker2	If omitted, then the InertiaMarker is applied.
	The name or argument number of the reference marker that will
Marker3	serve as the standard for direction
	If omitted, then the InertiaMarker is applied.

Formula

$$\mathbf{DZ} = \left[\vec{R}_{\mathrm{mk1}} - \vec{R}_{\mathrm{mk2}} \right] \cdot \hat{z}_{\mathrm{mk3}}$$

 $ec{R}_{ ext{mk-1}}$: Position vector of Marker1

 $ec{R}_{
m mk2}$: Position vector of Marker2

 \hat{z}_{mk3} : z-direction unit vector of Marker3

Z Marker3 Ground.InertiaMarker

 \vec{R}_{mk1}

Example

DZ (body1.Marker1)

DZ(body1.Marker1, body2.Marker1)

DZ(body1.Marker1, body2.Marker1, body3.Marker1)

DZ (1,2,3) <Argument: (1)body1.Marker1, (2)body2.Marker1, (3)body3.Marker1>

PHI

Returns the rotation angle of the third rotation in a z-x-z sequence of Euler angles.

Format

Argument List		
I	D	Entity
	1	Body1.Marker1
	2	Body2.Marker2

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of a marker to be calculated
Marker2	If omitted, then the InertiaMarker is applied.

Formula

In line with the sequentially defined rotation order, return rotation angle $\,\phi\,$ on the z-axis, which is the third rotation.

Example

PHI(body1.Marker1)

PHI(body1.Marker1, body2.Marker2)

PHI(1,2) <Argument: (1)body1.Marker1, (2)body2.Marker2 >

PITCH

Returns the rotation angle for the second rotation in a z-y-x sequence of Euler angles.

Format

Argument List		
ID	Entity	
1	Body1.Marker1	
2	Body2.Marker2	

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of a marker to be calculated
iviarker2	If omitted, then the InertiaMarker is applied.

Formula

$$\begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \\ = \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & \sin \theta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \end{bmatrix}$$

In line with the sequentially defined rotation order, return rotation angle $\,\theta\,$ on the yaxis, which is the second rotation.

Example

PITCH (body1.Marker1)

PITCH (body1.Marker1, body2.Marker2)

PITCH (1,2) <Argument: (1)body1.Marker1, (2)body2.Marker2 >

PSI

Returns the rotation angle of the first rotation in a z-x-z sequence of Euler angles.

Format

Argument List		
ID	Entity	
1	Body1.Marker1	
2	Body2.Marker2	

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of a marker to be calculated
IVIdi Kei Z	If omitted, then the InertiaMarker is applied.

Formula

In line with the sequentially defined rotation order, return rotation angle $\,\psi\,$ on the z-axis, which is the first rotation.

Example

PSI (body1.Marker1)

PSI (body1.Marker1, body2.Marker2)

PSI (1,2) <Argument: (1)body1.Marker1, (2)body2.Marker2 >

50

ROLL

Returns the rotation angle of the third rotation in a z-y-x sequence of Euler angles.

Format

Argument List		
ID	Entity	
1	Body1.Marker1	
2	Body2.Marker2	

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of a marker to be calculated
IVIdI KEI Z	If omitted, then the InertiaMarker is applied.

Formula

In line with the sequentially defined rotation order, return rotation angle $\,\phi\,$ on the x-axis, which is the third rotation.

Example

ROLL (body1.Marker1)

ROLL (body1.Marker1, body2.Marker2)

ROLL (1,2) <Argument: (1)body1.Marker1, (2)body2.Marker2 >

THETA

Returns the rotation angle of the second rotation in a z-x-z sequence of Euler angles.

Format

Argument List	
ID	Entity
1	Body1.Marker1
2	Body2.Marker2

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of a marker to be calculated
Markerz	If omitted, then the InertiaMarker is applied.

Formula

In line with the sequentially defined rotation order, return rotation angle $\,\theta\,$ on the x-axis, which is the second rotation.

Example

THETA (body1.Marker1)

THETA (body1.Marker1, body2.Marker2)

THETA (1,2) <Argument: (1)body1.Marker1, (2)body2.Marker2 >

YAW

Returns the rotation angle of the first rotation in a z-y-x sequence of Euler angles.

Format

Argument List		
	ID	Entity
ı	1	Body1.Marker1
1	2	Body2.Marker2

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of a marker to be calculated
Markerz	 If omitted, then the InertiaMarker is applied.

Formula

$$\begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \end{bmatrix} = \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \\ \mathbf{z'} \end{bmatrix}$$

In line with the sequentially defined rotation order, return rotation angle $\ \psi$ on the z-axis, which is the first rotation.

Example

YAW (body1.Marker1)

YAW (body1.Marker1, body2.Marker2)

YAW (1,2) <Argument: (1)body1.Marker1, (2)body2.Marker2 >

VELOCITY

VM

VR

VX

VY

VΖ

WM

WX

WY

WZ

VM

Returns the absolute velocity of one marker or the absolute value of the relative velocity between two markers.

Format

Argument List		
ID	Entity	
1	Body1.Marker1	
2	Body2.Marker2	
3	Ground.InertiaMarker	

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of a marker to be calculated
Markerz	• If omitted, then the InertiaMarker is applied.
	The name or argument number of the reference marker that will
Marker3	serve as the standard for direction
	• If omitted, then the InertiaMarker is applied.

Formula

$$VM = \sqrt{\left(\,^{(mk3)}\vec{V}_{mk1} - ^{(mk3)}\vec{V}_{mk2} \, \right)^2}$$

 $(^{mk3})\overrightarrow{V}_{mk1}$: Marker1's velocity vector from Marker3

 $(^{mk3})\overrightarrow{V}_{\mathrm{mk2}}$: Marker2's velocity vector from Marker3

Example

VM (body1.marker1)

VM (body1.marker1, body2.marker2)

 $VM (body 1. marker 1,\ body 2. marker 2,\ body 3. marker 3)$

VM (1,2,3) <Argument: (1)body1.marker1, (2)body2.marker2, (3)body3.marker3>

VR

Returns the change in two markers' relative velocity and/or breakaway direction. A positive value (+) indicates that the distance between the two markers is growing. A negative value (-) value indicates that the distance between the two markers is shrinking.

Format

Argument List		
Γ	ID	Entity
	1	Body1.CM
Г	2	Ground.InertiaMarker
Γ	3	Ground.InertiaMarker

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of a marker to be calculated
iviarker2	If omitted, then the InertiaMarker is applied.
	The name or argument number of the reference marker that will serve
Marker3	as the standard marker for the velocity vector
	If omitted, then the InertiaMarker is applied.

Formula

Example

VR (body1.marker1)

VR (body1.marker1, body2.marker2)

VR(body1.marker1, body2.marker2, body3.marker3)

VR (1,2,3) < Argument: (1)body1.marker1, (2)body2.marker2, (3)body3.marker3>

As shown in the following figure, Body1 is placed at (50,300,0) and a translational joint is modeled. This joint is assigned a motion velocity of 1000 mm/sec. By applying the VR function for the InertiaMarker and CM marker to InertiaMarker and Body1, the displacement in the y direction and the VR function results are retrieved, as shown in the following graphs. One of the key examples of a real life application of the VR function is an expression-used to model dampers (shock Absorbers) on automobile suspension systems.

Returns the x-direction velocity for one marker or the relative velocity of two markers in the x-direction.

Argument List		
ID	Entity	
1	Body1.Marker1	
2	Body2.Marker2	
3	Body3.Marker3	

Arguments

Marker1	The name or argument number of a marker to be calculated
	The name or argument number of the marker to use in the relative
Marker2	calculation
	 If omitted, then the InertiaMarker is applied.
Marker3	The name or argument number of the marker for axis definition
Markers	 If omitted, then the InertiaMarker is applied.
	A standard marker for calculating velocity
	 The formula measures the velocity relative to Marker4's
Marker4	angular velocity.
	• Generally, this marker uses the same value as Marker3. If
	omitted, then the InertiaMarker is applied.

Formula

$$\mathbf{VX} = \left(\begin{bmatrix} {}^{(mk4)}\vec{V}_{mk1} - {}^{(mk4)}\vec{V}_{mk2} \end{bmatrix} \cdot \hat{x}_{mk3} \right)$$

 $^{(mk4)}\vec{V}_{mk1}$: Velocity vector of Marker1 relative to Marker4's angular velocity $^{(mk4)}\vec{V}_{mk2}$: Velocity vector of Marker2 relative to Marker4's angular velocity \hat{x}_{mk3} : x-direction unit vector of Marker3

Example

VX(body1.marker1, body2.marker2)

VX(body1.marker1, body2.marker2, body3.marker3)

VX(body1.marker1, body2.marker2, body3.marker3, body4.marker4)

VX (1,2,3) <Argument: (1)body1.marker1, (2)body2.marker2, (3)body3.marker3>

Returns the y direction velocity for one marker or the relative velocity of two markers in the y direction.

Format

Argument List		
Entity		
Body1.Marker1		
Body2.Marker2		
Body3.Marker3		

Arguments

Marker1	The name or argument number of a marker to be calculated
	The name or argument number of the marker to use in the relative
Marker2	calculation
	If omitted, then the InertiaMarker is applied.
N4 - 11 - 12	The name or argument number of the marker for axis definition
Marker3	 If omitted, then the InertiaMarker is applied.
	A standard marker for calculating velocity
	The formula measures the velocity relative to Marker4's
Marker4	angular velocity.
	Generally, this marker uses the same value as Marker3. If
	omitted, then the InertiaMarker is applied.

Formula

$$VY = \left(\left[\begin{smallmatrix} (mk4) \vec{V}_{mk1} & -^{(mk4)} \vec{V}_{mk2} \end{smallmatrix} \right] \cdot \hat{y}_{mk3} \right)$$

 $^{(mk4)}\vec{V}_{mk1}$: Velocity vector of Marker1 relative to Marker4's angular velocity

 \hat{V}_{mk2} : Velocity vector of Marker2 relative to Marker4's angular velocity \hat{y}_{mk3} : y-direction unit vector of Marker3

Example

VY(body1.marker1, body2.marker2)

VY(body1.marker1, body2.marker2, body3.marker3)

VY(body1.marker1, body2.marker2, body3.marker3, body4.marker4)

VY(1,2,3) < Argument: (1)body1.marker1, (2)body2.marker2, (3)body3.marker3 >

VZ

Returns the z-direction velocity for one marker or the relative velocity of two markers in the z-direction.

Format

Argument List		
ID	Entity	
1	Body1.Marker1	
2	Body2.Marker2	
3	Body3.Marker3	

Arguments

Marker1	The name or argument number of a marker to be calculated
	The name or argument number of the marker to use in the relative
Marker2	calculation
	If omitted, then the InertiaMarker is applied.
M	The name or argument number of the marker for axis definition
Marker3	If omitted, then the InertiaMarker is applied.
	A standard marker for calculating velocity
	The formula measures the velocity relative to Marker4's
Marker4	angular velocity.
	Generally, this marker uses the same value as Marker3. If
	omitted, then the InertiaMarker is applied.

Formula

$$VZ = \left(\left[\begin{smallmatrix} (mk4) \vec{V}_{mk1} & -^{(mk4)} \vec{V}_{mk2} \end{smallmatrix} \right] \cdot \hat{z}_{mk3} \right)$$

 $^{(mk4)}\vec{V}_{mk1}$: Velocity vector of the Marker1 relative to Marker4's angular velocity

 \vec{V}_{mk2} : Velocity vector of the Marker2 relative to Marker4's angular velocity

 \hat{z}_{mk3} : z-direction unit vector of Marker3

Example

VZ(body1.marker1, body2.marker2)

 $VZ (body 1. marker 1,\ body 2. marker 2,\ body 3. marker 3)$

VZ(body1.marker1, body2.marker2, body3.marker3, body4.marker4)

VZ(1,2,3) <Argument: (1)body1.marker1, (2)body2.marker2, (3)body3.marker3>

WM

Returns the absolute value of a marker's angular velocity or the relative angular velocity between two markers.

Format

Argument List		
ID	Entity	
1	Body1.Marker1	
2	Ground.InertiaMarker	

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of a marker to be calculated
Markerz	If omitted, then the InertiaMarker is applied.

Formula

$$\mathbf{WM} = \left(\left[\vec{\omega}_{\mathrm{mk1}} - \vec{\omega}_{\mathrm{mk2}} \right] \cdot \left[\vec{\omega}_{\mathrm{mk1}} - \vec{\omega}_{\mathrm{mk2}} \right] \right)^{1/2}$$

 $ec{\omega}_{\mathrm{mk1}}$: Marker1's angular velocity vector from the InertiaMarker

 $\vec{\omega}_{\mathrm{mk2}}$: Marker2's angular velocity vector from the InertiaMarker

Example

WM (body1.marker1)

WM (body1.marker1, body2.marker2)

WM (1,2) <Argument: (1)body1.marker1, (2)body2.marker2 >

WX

Returns one marker's x-axis angular velocity or the x-axis relative angular velocity between two markers.

Format

Argument List		
ID	Entity	
1	Body1.Marker1	
2	Body2.Marker2	
3	Ground.InertiaMarker	

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of a marker to be calculated
Markerz	If omitted, then the InertiaMarker is applied.
	The name or argument number of the reference marker that will
Marker3	serve as the standard for direction
	If omitted, then the InertiaMarker is applied.

Formula

$$WX = \left[\vec{\omega}_{mk1} - \vec{\omega}_{mk2}\right] \cdot \hat{x}_{mk3}$$

 $ec{\omega}_{ ext{mk1}: ext{ Marker1's angular velocity vector from the InertiaMarker}$

 $ec{\omega}_{
m mk2}$: Marker2's angular velocity vector from the InertiaMarker

 $\hat{\mathcal{X}}_{\text{mk3}}$: x-direction unit vector of Marker3

Example

WX(body1.marker1)

WX(body1.marker1, body2.marker2)

WX(body1.marker1, body2.marker2, body3.marker3)

WX(1,2,3) < Argument: (1)body1.marker1, (2)body2.marker2, (3)body3.marker3>

WY

Returns one marker's y-axis angular velocity or the y-axis relative angular velocity between two markers.

Format

Argument List		
ID	Entity	
1	Body1.Marker1	
2	Body2.Marker2	
3	Ground.InertiaMarker	

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of a marker to be calculated
Markerz	If omitted, then the InertiaMarker is applied.
	The name or argument number of the reference marker that will
Marker3	serve as the standard for direction
	If omitted, then the InertiaMarker is applied.

Formula

$$WY = \left[\vec{\omega}_{mk1} - \vec{\omega}_{mk2}\right] \cdot \hat{y}_{mk3}$$

 $ec{\omega}_{ ext{mk1}: ext{ Marker1's angular velocity vector from the InertiaMarker}$

 $ec{\omega}_{
m mk2}$: Marker2's angular velocity vector from the InertiaMarker

 $\hat{y}_{\scriptscriptstyle{\mathrm{mk3}}}$: y-direction unit vector of Marker3

Example

WY(body1.marker1)

WYbody1.marker1, body2.marker2)

WY(body1.marker1, body2.marker2, body3.marker3)

WY(1,2,3) < Argument: (1)body1.marker1, (2)body2.marker2, (3)body3.marker3>

WZ

Returns one marker's z-axis angular velocity or the z-axis relative angular velocity between two markers.

Format

Argument List		
ID	Entity	
1	Body1.Marker1	
2	Body2.Marker2	
3	Ground.InertiaMarker	

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of a marker to be calculated
Markerz	 If omitted, then the InertiaMarker is applied.
	The name or argument number of the reference marker that will
Marker3	serve as the standard for direction
	 If omitted, then the InertiaMarker is applied.

Formula

$$WZ = \left[\vec{\omega}_{mk1} - \vec{\omega}_{mk2}\right] \cdot \hat{z}_{mk3}$$

 $ec{\omega}_{
m mk1}$: Marker1's angular velocity vector from the InertiaMarker

 $ec{\omega}_{
m mk2}$: Marker2's angular velocity vector from the InertiaMarker

 $\hat{\mathcal{Z}}_{mk3}$: z-direction unit vector of Marker3

Example

WZ(body1.marker1)

WZ (body1.marker1, body2.marker2)

WZ(body1.marker1, body2.marker2, body3.marker3)

WZ(1,2,3) <Argument: (1)body1.marker1, (2)body2.marker2, (3)body3.marker3>

ACCELERATION

ACCM

ACCX

ACCY

ACCZ

WDTM

WDTX

WDTY

WDTZ

ACCM

Returns the absolute value for the acceleration of one marker or the relative acceleration between two markers.

Format

Argument List		
ID	Entity	
1	Body1.Marker1	
2	Body2.Marker2	
3	Ground.InertiaMarker	

Arguments

Marker1	The name or argument number of a marker to be calculated
Manhana	The name or argument number of a marker to be calculated
Marker2	If omitted, then the InertiaMarker is applied.
	A standard marker for calculating acceleration
	The formula calculates the acceleration of Marker1 and Marker2
Marker3	relative to the angular velocity and the angular acceleration of
	Marker3.
	If omitted, then the InertiaMarker is applied.

Formula

$$ACCM = \left(\left[{^{(mk3)}}\vec{a}_{mk1} - ^{(mk3)}\vec{a}_{mk2} \right] \cdot \left[{^{(mk3)}}\vec{a}_{mk1} - ^{(mk3)}\vec{a}_{mk2} \right] \right)^{1/2}$$

 \vec{a}_{mk1} : Acceleration vector of Marker1 relative to the angular velocity and the angular acceleration of Marker3

 $\vec{a}_{\rm mk2}$: Acceleration vector of Marker2 relative to the angular velocity and the angular acceleration of Marker3

Example

ACCM(body1.Marker1)

ACCM(body1.Marker1, body2.Marker2)

ACCM(body1.Marker1, body2.Marker2, body3.Marker3)

ACCM(1,2,3) < Argument (1)body1.Marker1, (2)body2.Marker2, (3)body3.Marker3>

ACCX

Returns the x-axis acceleration of one marker or the x-axis relative acceleration between two markers.

Format

Argument List		
	ID	Entity
	1	Body1.Marker1
	2	Body2.Marker2
	3	Body3.Marker3

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of a marker to be calculated • If omitted, then the InertiaMarker is applied.
Marker3	The name or argument number of the marker for axis definition • If omitted, then the InertiaMarker is applied.
Marker4	A standard marker for calculating acceleration The formula calculates acceleration relative to the angular velocity and the angular acceleration of Marker4. Generally, this marker uses the same value as Marker3. If omitted, then the InertiaMarker is applied.

Formula

$$ACCX = \left[{}^{(mk4)}\vec{a}_{mk1} - {}^{(mk4)}\vec{a}_{mk2} \right] \cdot \hat{x}_{mk3}$$

 \vec{a}_{mk1} : Acceleration vector of Marker1 relative to the angular velocity and angular acceleration of Marker4

 $\vec{a}_{\rm mk4}$ $\vec{a}_{\rm mk2}$: Acceleration vector of Marker2 relative to the angular velocity and angular acceleration of Marker4

 $\hat{\mathcal{X}}_{mk3}$: x-direction unit vector of Marker3

Example

ACCX(body1.Marker1, body2.Marker2)

ACCX(body1.Marker1, body2.Marker2, body3.Marker3, body4.Marker4)

ACCX(1,2,3) < Argument: (1)body1.Marker1, (2)body2.Marker2, (3)body3.Marker3 >

ACCY

Returns the y-axis acceleration for one marker or the y-axis relative acceleration between two markers.

Format

Argument List		
ID	Entity	
1	Body1.Marker1	
2	Body2.Marker2	
3	Body3.Marker3	

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of a marker to be calculated • If omitted, then the InertiaMarker is applied.
Marker3	The name or argument number of the marker for axis definition • If omitted, then the InertiaMarker is applied.
Marker4	A standard marker for calculating acceleration The formula calculates acceleration relative to the angular velocity and the angular acceleration of Marker4. Generally, this marker uses the same value as Marker3. If omitted, then the InertiaMarker is applied.

Formula

$$ACCY = \begin{bmatrix} {}^{(mk4)}\vec{a}_{mk1} - {}^{(mk4)}\vec{a}_{mk2} \end{bmatrix} \cdot \hat{y}_{mk3}$$

 \vec{a}_{mk1} : Acceleration vector of Marker1 relative to the angular velocity and angular acceleration of Marker4

 $\vec{a}_{\rm mk2}$: Acceleration vector of Marker2 relative to the angular velocity and angular acceleration of Marker4

 \hat{y}_{mk3} : y-direction unit vector of Marker3

Example

ACCY(body1.Marker1, body2.Marker2)

ACCY(body1.Marker1, body2.Marker2, body3.Marker3, body4.Marker4)

ACCY(1,2,3) < Argument: (1)body1.Marker1, (2)body2.Marker2, (3)body3.Marker3 >

ACCZ

Returns the z-axis acceleration of one marker or the z-axis relative acceleration between two markers.

Format

Argument List		
ID	Entity	
1	Body1.Marker1	
2	Body2.Marker2	
3	Body3.Marker3	

Arguments

Marker1	The name or argument number of a marker to be calculated	
Marker2	The name or argument number of a marker to be calculated • If omitted, then the InertiaMarker is applied.	
Marker3	The name or argument number of the marker for axis definition • If omitted, then the InertiaMarker is applied.	
Marker4	A standard marker for calculating acceleration The formula calculates acceleration relative to the angular velocity and the angular acceleration of Marker4. Generally, this marker uses the same value as Marker3. If omitted, then the InertiaMarker is applied.	

Formula

$$ACCZ = \left[{}^{(mk4)}\vec{a}_{mk1} - {}^{(mk4)}\vec{a}_{mk2} \right] \cdot \hat{z}_{mk3}$$

 \vec{a}_{mk1} : Acceleration vector of Marker1 relative to the angular velocity and angular acceleration of Marker4

 $\vec{a}_{\rm mk2}$: Acceleration vector of Marker2 relative to the angular velocity and angular acceleration of Marker4

 $\hat{\mathcal{Z}}_{mk3}$: z-direction unit vector of Marker3

Example

ACCZ(body1.Marker1, body2.Marker2)

ACCZ(body1.Marker1, body2.Marker2, body3.Marker3, body4.Marker4)

ACCZ(1,2,3) < Argument: (1)body1.Marker1, (2)body2.Marker2, (3)body3.Marker3 >

WDTM

Returns the absolute value for the angular acceleration of one marker or the relative angular acceleration between two markers.

Format

Argument List		
ID	Entity	
1	Body1.Marker1	
2	Body2.Marker2	
3	Ground.InertiaMarker	

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of the comparison marker for a
	relative calculation
	 If omitted, then the InertiaMarker is applied.
Marker3	A standard marker for calculating angular acceleration
	This formula measures angular acceleration relative to
	Marker3's angular acceleration.
	 If omitted, then the InertiaMarker is applied.

Formula

$$\label{eq:wdtm} \text{WDTM=} \Big(\! \Big[\!\! \left[\!\! \begin{array}{c} ^{(mk3)} \dot{\vec{\omega}}_{mk1} - \!\!\! ^{(mk3)} \dot{\vec{\omega}}_{mk2} \end{array} \!\! \right] \! \cdot \! \Big[\!\! \left[\!\! \begin{array}{c} ^{(mk3)} \dot{\vec{\omega}}_{mk1} - \!\!\! ^{(mk3)} \dot{\vec{\omega}}_{mk2} \end{array} \!\! \right] \!\! \Big)^{\!\! 1/2} \\$$

 $\overset{(mk3)}{\vec{\mathcal{O}}_{mk1}}$: Angular acceleration vector of Marker1 relative to the angular velocity and angular acceleration of Marker3

 $\overset{\circ}{\vec{\omega}_{\rm mk2}}$: Angular acceleration vector of Marker2 relative to the angular velocity and angular acceleration of Marker3

Example

WDTM(body1.Marker1)

WDTM(body1.Marker1, body2.Marker2)

WDTM(body1.Marker1, body2.Marker2, body3.Marker3)

WDTM(1,2,3) < Argument (1)body1.Marker1,(2)body2.Marker2, (3)body3.Marker3 >

WDTX

Returns the x-axis angular acceleration of one marker or the x-axis relative angular acceleration between two markers.

Argument List	
ID	Entity
1	Body1.Marker1
2	Body2.Marker2
3	Body3.Marker3

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of the comparison marker for a
	relative calculation
	 If omitted, then the InertiaMarker is applied.
Marker3	The name or argument number of the marker for axis definition
Markers	 If omitted, then the InertiaMarker is applied.
	A standard marker for calculating acceleration
	The formula calculates acceleration relative to the angular
Marker4	velocity and the angular acceleration of Marker4.
	Generally, this marker uses the same value as Marker3. If
	omitted, then the InertiaMarker is applied.

Formula

WDTX =
$$\begin{bmatrix} {}^{(mk4)}\dot{\vec{\omega}}_{mk1} - {}^{(mk4)}\dot{\vec{\omega}}_{mk2} \end{bmatrix} \cdot \hat{x}_{mk3}$$

 $\stackrel{(mk4)}{\vec{\mathcal{O}}}_{mk1}$: Angular acceleration vector of Marker1 relative to the angular velocity and angular acceleration of Marker4

 $\stackrel{(mk4)}{\vec{\omega}}_{mk2}$: Angular acceleration vector of Marker2 relative to the angular velocity and angular acceleration of Marker4

 \hat{x}_{mk3} : x-direction unit vector of Marker3

Example

WDTX(body1.Marker1, body2.Marker2)
WDTX(body1.Marker1, body2.Marker2, body3.Marker3, body4.Marker4)
WDTX(1,2,3) <Argument (1)body1.Marker1, (2)body2.Marker2, (3)body3.Marker3>

WDTY

Returns the y-axis angular acceleration of one marker or the y-axis relative angular acceleration between two markers.

Format

Argument List		
I	D	Entity
	1	Body1.Marker1
	2	Body2.Marker2
	3	Body3.Marker3
-	4	Ground.InertiaMarker

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of the comparison marker for a relative calculation
	 If omitted, then the InertiaMarker is applied.
Maultan2	The name or argument number of the marker for axis definition
Marker3	 If omitted, then the InertiaMarker is applied.
	A standard marker for calculating acceleration
	The formula calculates acceleration relative to the angular
Marker4	velocity and the angular acceleration of Marker4.
	Generally, this marker uses the same value as Marker3. If
	omitted, then the InertiaMarker is applied.

Formula

$$WDTY = \begin{bmatrix} {}^{(mk4)}\dot{\vec{\omega}}_{mk1} - {}^{(mk4)}\dot{\vec{\omega}}_{mk2} \end{bmatrix} \cdot \hat{y}_{mk3}$$

 $\overset{\text{(mk4)}}{\cancel{\mathcal{O}}_{mkl}}$: Angular acceleration vector of Marker1 relative to the angular velocity and angular acceleration of Marker4

(mk4) $\dot{\vec{O}}_{mk2}$: Angular acceleration vector of Marker2 relative to the angular velocity and angular acceleration of Marker4

 \hat{y}_{mk3} : y-direction unit vector of Marker3

Example

WDTY(body1.Marker1, body2.Marker2, body3.Marker3, body4.Marker4)
WDTY(body1.Marker1, body2.Marker2)
WDTY(1,2,3) <Argument (1)body1.Marker1, (2)body2.Marker2, (3)body3.Marker3>

WDTZ

Returns the z-axis angular acceleration of one marker or the z-axis relative angular acceleration between two markers.

Arguments

Marker1	The name or argument number of a marker to be calculated
Marker2	The name or argument number of the comparison marker for a relative calculation
	If omitted, then the InertiaMarker is applied.
	The name or argument number of the marker for axis definition
Marker3	 If omitted, then the InertiaMarker is applied.
	A standard marker for calculating acceleration
Marker4	The formula calculates acceleration relative to the angular
	velocity and the angular acceleration of Marker4.
	 Generally, this marker uses the same value as Marker3. If
	omitted, then the InertiaMarker is applied.

Formula

WDTZ =
$$\begin{bmatrix} {}^{(mk4)}\dot{\vec{\omega}}_{mk1} - {}^{(mk4)}\dot{\vec{\omega}}_{mk2} \end{bmatrix} \cdot \hat{z}_{mk3}$$

(mk4) $\dot{\vec{O}}_{mk1}$: Angular acceleration vector of Marker1 relative to the angular velocity and angular acceleration of Marker4

 $\stackrel{\text{(mk4)}}{\cancel{\mathcal{O}}_{\text{mk2}}}$: Angular acceleration vector of Marker2 relative to the angular velocity and angular acceleration of Marker4

 \hat{z}_{mk3} : z-direction unit vector of Marker3

Example

WDTZ(body1.Marker1, body2.Marker2, body3.Marker3, body4.Marker4) WDTZ(body1.Marker1, body2.Marker2)

WDTZ(1,2,3) < Argument (1)body1.Marker1, (2)body2.Marker2, (3)body3.Marker3 >

GENERIC FORCE

FΜ

FΧ

FΥ

FΖ

TM

TX TY

ΤZ

FM

Returns the absolute value of a translational force by using two markers with a force or joint entity.

Format

Arguments

Marker1	The name or argument number of a force to be measured, joint
	entity action, or base marker
Marker2	The name or argument number of a force to be measured, joint
	entity action, or base marker (not Marker1)

Formula

$${\bf FM} = \left(\begin{tabular}{l} $^{(mk2)}$ \vec{F}_{mk1} \cdot $^{(mk2)}$ \vec{F}_{mk1} $\end{tabular} \right)^{1/2}$$

$$\begin{tabular}{l} $^{(mk2)}$ \vec{F}_{mk1} : Force vector from Marker2 to Marker1 $\end{tabular}$$

Example

FM(body1.marker1, body2.marker2)
FM(1,2) <Argument: (1)body1.marker1, (2)body2.marker2 >

FX

Returns the force value, calculated using two markers with a force or joint entity, in the x-direction of a standard marker.

Format

Arguments

Marker1	The name or argument number of a force to be measured, joint
	entity action, or base marker
Marker2	The name or argument number of a force to be measured, joint
	entity action, or base marker (not Marker1)
Marker3	The name or argument number of the standard marker for the
	direction in which the force is measured
	If omitted, then the InertiaMarker is applied.

Formula

$$FX = {}^{(mk2)}\vec{F}_{mk1} \cdot \hat{\mathbf{x}}_{mk3}$$

 $^{(\mathrm{mk2})}\vec{F}_{\mathrm{mk1}}$: Force vector from Marker2 to Marker1

 $\hat{\mathbf{x}}_{mk3}$: x-direction unit vector of Marker 3

Example

FX(body1.marker1, body2.marker2)

FX(body1.marker1, body2.marker2, body3.marker3)

FX(1,2) <Argument: (1)body1.marker1, (2)body2.marker2 >

 $FX(1,2,3) \qquad < Argument \ (1)body1.marker1, \ (2)body2.marker2 \ , \ (3)body3.marker3 \ > \\$

FY

Returns the force value, calculated using two markers with a force or joint entity, in the y-direction of a standard marker.

Format

Arguments

Marker1	The name or argument number of a force to be measured, joint
	entity action, or base marker
Maulanu	The name or argument number of a force to be measured, joint
Marker2	entity action, or base marker (not Marker1)
Marker3	The name or argument number of the standard marker for the
	direction in which the force is measured
	If omitted, then the InertiaMarker is applied.

Formula

$$\mathbf{FY} = {}^{(m\mathbf{k}2)} \vec{F}_{m\mathbf{k}1} \cdot \hat{\mathbf{y}}_{m\mathbf{k}3}$$

 $^{(\mathrm{mk2})}\vec{F}_{\mathrm{mk1}}$: Force vector from Marker2 to Marker1

 $\boldsymbol{\hat{y}}_{mk3}$: y-direction unit vector of Marker3

Example

FY(body1.marker1, body2.marker2)

FY(body1.marker1, body2.marker2, body3.marker3)

FY(1,2) <Argument: (1)body1.marker1, (2)body2.marker2 >

FY(1,2,3) <Argument (1)body1.marker1, (2)body2.marker2 , (3)body3.marker3 >

FZ

Returns the force value, calculated using two markers with a force or joint entity, in the z-direction of a standard marker.

Format

Arguments

Marker1	The name or argument number of a force to be measured, joint
	entity action, or base marker
Marker2	The name or argument number of a force to be measured, joint
	entity action, or base marker (not Marker1)
Marker3	The name or argument number of the standard marker for the
	direction in which the force is measured
	If omitted, then the InertiaMarker is applied.

Formula

$$FZ=^{(mk2)}\vec{F}_{mk1}\cdot\hat{z}_{mk3}$$

 \vec{F}_{mk1} : Force vector from Marker2 to Marker1

 \hat{Z}_{mk3} : z-direction unit vector for Marker3

Example

FZ(body1.marker1, body2.marker2)

FZ(body1.marker1, body2.marker2, body3.marker3)

FZ(1,2) <Argument: (1)body1.marker1, (2)body2.marker2 >

 $\label{eq:fz} FZ(1,2,3) \qquad < Argument \ (1)body1.marker1, \ (2)body2.marker2 \ , \ (3)body3.marker3 \ > \\$

TM

Returns the absolute value of the torque force between two markers with a force or joint entity.

Format

Arguments

Marker1	The name or argument number of a force to be measured, joint
	entity action, or base marker
Marker2	The name or argument number of a force to be measured, joint
	entity action, or base marker (not Marker1)

Formula

$$\mathbf{TM} = \left(\begin{smallmatrix} (\mathrm{mk2}) \vec{T}_{mk2} \end{smallmatrix} \cdot \begin{smallmatrix} (\mathrm{mk2}) \vec{T}_{\mathrm{mk1}} \end{smallmatrix} \right)^{1/2}$$

 $^{(\mathrm{mk2})}\vec{T}_{\mathrm{mk1}}$: Torque vector from Marker2 to Marker1

Example

TM(body1.marker1, body2.marker2)

TM(1,2) <Argument: (1)body1.marker1, (2)body2.marker2 >

TX

Returns the torque force between two markers with a force or joint entity measured along the x-axis of a standard marker.

Format

Arguments

Marker1	The name or argument number of a force to be measured, joint
	entity action, or base marker
Marker2	The name or argument number of a force to be measured, joint
	entity action, or base marker (not Marker1)
Marker3	The name or argument number of the standard marker for the
	direction in which the force is measured
	 If omitted, then the InertiaMarker is applied.

Formula

$$TX = \vec{T}_{mk1} \cdot \hat{X}_{mk3}$$

 \vec{T}_{mk1} : Torque vector from Marker2 to Marker1

 $\hat{\mathbf{x}}_{\mathrm{mk3}}$: x-direction unit vector of Marker3

Example

TX(body1.marker1, body2.marker2)

TX(body1.marker1, body2.marker2, body3.marker3)

TX(1,2) <Argument: (1)body1.marker1, (2)body2.marker2 >

 $TX(1,2,3) < Argument \ (1)body1.marker1, \ (2)body2.marker2 \ , \ (3)body3.marker3 \ > \ (2)body3.marker3 \ > \ (3)body3.marker3 \ > \$

TY

Returns the torque force between two markers with a force or joint entity measured along the y-axis of a standard marker.

Format

Arguments

Marker1	The name or argument number of a force to be measured, joint	
	entity action, or base marker	
Marker2	The name or argument number of a force to be measured, joint	
	entity action, or base marker (not Marker1)	
Marker3	The name or argument number of the standard marker for the	
	direction in which the force is measured	
	If omitted, then the InertiaMarker is applied.	

Formula

$$TY \!\!=^{\!(mk2)} \!\! \vec{T}_{mk1} \cdot \hat{y}_{mk3}$$

 $^{(mk2)}\vec{T}_{mk1}$: Torque vector from Marker2 to Marker1

 $\mathbf{\hat{y}}_{mk3}$: y-direction unit vector of Marker3

Example

TY(body1.marker1, body2.marker2)

TY(body1.marker1, body2.marker2, body3.marker3)

TY(1,2) <Argument: (1)body1.marker1, (2)body2.marker2 >

 $TY(1,2,3) < Argument \ (1)body 1.marker 1, \ (2)body 2.marker 2 \ , \ (3)body 3.marker 3 \ > \ (2)body 3.marker 3 \ > \ (3)body 3.marker 3 \ > \$

TZ

Returns the torque force between two markers with a force or joint entity measured from the z-axis of a standard marker.

Format

Arguments

Marker1	The name or argument number of a force to be measured, joint
	entity action, or base marker
Marker2	The name or argument number of a force to be measured, joint
	entity action, or base marker (not Marker1)
Marker3	The name or argument number of the standard marker for the
	direction in which the force is measured
	If omitted, then the InertiaMarker is applied.

Formula

$$\mathsf{TZ} = ^{(\mathsf{mk2})} \vec{T}_{mk1} \cdot \hat{z}_{\mathsf{mk3}}$$

 $^{(\mathrm{mk2})}\vec{T}_{\mathrm{mk1}}$: Torque vector from Marker2 to Marker1

 \hat{z}_{mk3} : x-direction unit vector of Marker3

Example

TZ(body1.marker1, body2.marker2)

TZ(body1.marker1, body2.marker2, body3.marker3)

TZ(1,2) <Argument: (1)body1.marker1, (2)body2.marker2 >

TZ(1,2,3) <Argument (1)body1.marker1, (2)body2.marker2, (3)body3.marker3 >

SPECIFIC FORCES

CONTACT

MOTION

JFRICTION

COUPLER

GEAR

SHT3D CF

JOINT

PTCV

CVCV

AXIAL

TFORCE

RFORCE

SCREWFORCE

BEAM

BUSH

SPRING

MATRIXFORCE

CONTACT

Returns the action force of a contact entity.

Format

Argument List	
ID	Entity
1	Contact1
2	Ground.Marker1

Arguments

CONTACT entity	The name or argument number of the contact entity to be measured
Flag	 A value that specifies the body to which the output load is applied If the flag value is 0, then the force applied to the action marker (body) is returned. If the flag value is 1, then the force applied to the base marker (body) is returned.
Component	The components subject to the returned force • One component can be inserted in line with 6 numbered powers and sizes (1: FM, 2:FX, 3:FY, 4:FZ, 5:TM, 6:TX, 7:TY, 8:TZ).
RMarker	The name or argument number of the standard marker for the direction in which the force is measured

Example

CONTACT (CONTACT1, 0, 1, Ground.InertiaMarker)

CONTACT (1, 0, 1, 2) < Argument: (1) CONTACT1, (2) Ground.InertiaMarker >

MOTION

Returns the reaction force of a driving motion acting on a joint. In this case, the driving motion of the joint must be activated.

X Applicable joints: Revolute, Translational Cylindrical, PTCV

Format

Argument List	
ID	Entity
1	RevJoint1
2	Ground.Marker1

Arguments

JOINT entity	The name or argument number of the joint entity that performs the driving motion to be measured
Flag	 A value that specifies the body to which the output load is applied If the flag value is 0, then the force applied to the action marker (body) is returned. If the flag value is 1, then the force applied to the base marker (body) is returned.
Component	The components subject to the returned force • One component can be inserted in line with 6 numbered powers and sizes (1: FM, 2:FX, 3:FY, 4:FZ, 5:TM, 6:TX, 7:TY, 8:TZ).
RMarker	The name or argument number of the standard marker for the direction in which the force is measured

Example

MOTION (RevJoint1, 0, 1, Ground.InertiaMarker)

MOTION (1, 0, 1, 2) <Argument: (1) RevJoint1, (2) Ground.InertiaMarker >

JFRICTION

Returns the reaction force of a friction force acting on a joint. In this case, the friction force of the joint must be activated

Format

Arguments

JOINT entity	The name or argument number of the joint entity with the friction to be measured
Flag	 A value that specifies the body to which the output load is applied If the flag value is 0, then the force applied to the action marker (body) is returned. If the flag value is 1, then the force applied to the base marker (body) is returned.
Component	 The components subject to the returned force One component can be inserted in line with 6 numbered powers and sizes (1: FM, 2:FX, 3:FY, 4:FZ, 5:TM, 6:TX, 7:TY, 8:TZ).
RMarker	The name or argument number of the standard marker for the direction in which the force is measured

Example

COUPLER

Returns the reaction force of a coupler entity.

Format

Arguments

COUPLER entity	The name or argument number of the coupler entity to be measured
Flag	 A value that specifies the body to which the output load is applied If the flag value is 0, then the force applied to the action marker (body) is returned. If the flag value is 1, then the force applied to the base marker (body) is returned.
Component	The components subject to the returned force • One component can be inserted in line with 6 numbered powers and sizes (1: FM, 2:FX, 3:FY, 4:FZ, 5:TM, 6:TX, 7:TY, 8:TZ).
RMarker	The name or argument number of the standard marker for the direction in which the force is measured

Example

GEAR

Returns the reaction force of a gear joint entity.

Format

Argument List	
ID	Entity
1	Gear1
2	Ground.Marker1

Arguments

GEAR entity	The name or argument number of the gear entity to be measured
Flag	 A value that specifies the body to which the output load is applied If the flag value is 0, then the force applied to the 1st joint is returned. If the flag value is 1, then the force applied to the 2nd joint is returned.
Component	The components subject to the returned force • One component can be inserted in line with 6 numbered powers and sizes (1: FM, 2:FX, 3:FY, 4:FZ, 5:TM, 6:TX, 7:TY, 8:TZ).
RMarker	The name or argument number of the standard marker for the direction in which the force is measured

Example

GEAR (GEAR1, 0, 1, Ground.InertiaMarker)

GEAR (1, 0, 1, 2) < Argument: (1) GEAR1, (2) Ground.InertiaMarker >

SHT3D_CF

Returns the contact force of a node. The node must be defined as the output of the sheet shell body defined with the MTT3D toolkit shell sheet entity.

Format

Arguments

Sheet shell	The name or argument number of the sheet shell entity to be
entity	measured
Node id	A nodes selected from the sheet shell body output page
Flag	A value that specifies the body to which the output load is applied
	 If the flag value is 0, then the force applied to the action marker (body) is returned. If the flag value is 1, then the force applied to the
	base marker (body) is returned.
Component	The components subject to the returned force • One component can be inserted in line with 6 numbered powers and sizes (1: FM, 2:FX, 3:FY,
	4:FZ, 5:TM, 6:TX, 7:TY, 8:TZ).
RMarker	The name or argument number of the standard marker for the direction in which the force is measured

Example

SHT3D_CF(SheetShell1,357,0,2, Ground.InertiaMarker)
SHT3D_CF(1,357,0,2,2) < Argument: (1) SheetShell1, (2) Ground.InertiaMarker >

JOINT

Returns the reaction force of an input joint entity.

* Applicable joints:

Revolute, Translational, Spherical, Cylindrical, Universal, Planar, Screw, Fixed, Atpoint, Orientation, Distance, Inline, Inplane, Parallel, Perpendicular, Constant Velocity Joint

Format

Argument List	
ID	Entity
1	JOINT1
2	Ground.Marker1

Arguments

Joint entity	The name or argument number for the joint entity to be measured
Flag	 A value that specifies the body to which the output load is applied If the flag value is 0, then the force applied to the action marker (body) is returned. If the flag value is 1, then the force applied to the base marker (body) is returned.
Component	 The components subject to the returned force One component can be inserted in line with 6 numbered powers and sizes (1: FM, 2:FX, 3:FY, 4:FZ, 5:TM, 6:TX, 7:TY, 8:TZ).
RMarker	The name or argument number of the standard marker for the direction in which the force is measured

Example

JOINT(JOINT1, 0, 1, Ground.InertiaMarker)

JOINT (1, 0, 1, 2) < Argument: (1)Joint1, (2) Ground.InertiaMarker >

PTCV

Returns the reaction force of a point to curve joint entity.

Format

Argument List	
ID	Entity
1	PTCV1
2	Ground.Marker1

Arguments

PTCV entity	The name or argument number for the PTCV entity to be measured
Flag	 A value that specifies the body to which the output load is applied If the flag value is 0, then the force applied to the action marker (body) is returned. If the flag value is 1, then force applied to the base marker (body) is returned.
Component	The components subject to the returned force • One component can be inserted in line with 6 numbered powers and sizes (1: FM, 2:FX, 3:FY, 4:FZ, 5:TM, 6:TX, 7:TY, 8:TZ).
RMarker	The name or argument number of the standard marker for the direction in which the force is measured

Example

PTCV(PTCV1, 0, 1, Ground.InertiaMarker)

PTCV(1, 0, 1, 2) <Argument: (1) PTCV1, (2) Ground.InertiaMarker >

CVCV

Returns the reaction force of a curve to curve joint entity.

Format

Argume	nt List
ID	Entity
1	CVCV1
2	Ground.Marker1

Arguments

CVCV entity	The name or argument number for the CVCV entity to be measured
Flag	 A value that specifies the body to which the output load is applied If the flag value is 0, then the force applied to action marker (body) is returned. If the flag value is 1, then the force applied to base marker (body) is returned.
Component	The components subject to the returned force • One component can be inserted in line with 6 numbered powers and sizes (1: FM, 2:FX, 3:FY, 4:FZ, 5:TM, 6:TX, 7:TY, 8:TZ).
RMarker	The name or argument number of the standard marker for the direction in which the force is measured

Example

CVCV(CVCV1, 0, 1, Ground.InertiaMarker)

CVCV(1, 0, 1, 2) <Argument: (1)CVCV1, (2) Ground.InertiaMarker >

AXIAL

Returns the action force of an axial force or rotational axial force entity.

Format

Argument List	
ID	Entity
1	Axial1
2	Ground.Marker1

Arguments

AXIAL entity	The name or argument number for the axial force or rotational
	axial force entity to be measured
	A value that specifies the body to which the output load is applied
	If the flag value is 0, then the force applied to the action
Flag	marker (body) is returned.
	If the flag value is 1, then the force applied to the base
	marker (body) is returned.
	The components subject to the returned force
	One component can be inserted in line with 6
Component	numbered powers and sizes (1: FM, 2:FX, 3:FY, 4:FZ,
	5:TM, 6:TX, 7:TY, 8:TZ).
RMarker	The name or argument number of the standard marker for the
Kiviarker	direction in which the force is measured

Example

AXIAL(AXIAL1, 0, 1, Ground.InertiaMarker)

AXIAL(1, 0, 1, 2) <Argument: (1)Joint1, (2) Ground.InertiaMarker >

TFORCE

Returns the action force of a translational force entity.

Format

1	Argument List	
	ID	Entity
1	1	Translational1
1	2	Ground.Marker1

Arguments

	The second of the formula is a first translation of fermions of
TFORCE entity	The name or argument number for the translational force entity
	to be measured
	A value that specifies the body to which the output load is
	applied
Elag	If the flag value is 0, then the force applied to the
Flag	action marker (body) is returned.
	If the flag value is 1, then the force applied to the base
	marker (body) is returned.
	The components subject to the returned force
	One component can be inserted in line with 6
Component	numbered powers and sizes (1: FM, 2:FX, 3:FY,
	4:FZ, 5:TM, 6:TX, 7:TY, 8:TZ).
RMarker	The name or argument number of the standard marker for the
Kiviarker	direction in which the force is measured

Example

TFORCE (TFORCE1, 0, 1, Ground.InertiaMarker)

TFORCE (1, 0, 1, 2) < Argument: (1) TFORCE1, (2) Ground.InertiaMarker >

RFORCE

Returns the action force of a rotational force entity.

Format

Argument List		
	ID	Entity
	1	Rotational1
	2	Ground.Marker1

Arguments

RFORCE entity	The name or argument number of the rotational force entity to be measured
Flag	A value that specifies the body to which the output load is applied • If the flag value is 0, then the force applied to the action marker (body) is returned. • If the flag value is 1, then the force applied to the base marker (body) is returned.
Component	The components subject to the returned force • One component can be inserted in line with 6 numbered powers and sizes (1: FM, 2:FX, 3:FY, 4:FZ, 5:TM, 6:TX, 7:TY, 8:TZ).
RMarker	The name or argument number of the standard marker for the direction in which the force is measured

Example

RFORCE (RFORCE1, 0, 1, Ground.InertiaMarker)

RFORCE (1, 0, 1, 2) < Argument: (1) RFORCE1, (2) Ground.InertiaMarker >

SCREWFORCE

Returns the action force of a screw force entity.

Format

Arguments

SCREWFORCE entity	The name or argument number for the Screw Force entity to be measured
Flag	A value that specifies the body to which the output load is applied If the flag value is 0, then the force applied to the action marker (body) is returned. If the flag value is 1, then the force applied to the base marker (body) is returned.
Component	The components subject to the returned force • One component can be inserted in line with 6 numbered powers and sizes (1: FM, 2:FX, 3:FY, 4:FZ, 5:TM, 6:TX, 7:TY, 8:TZ).
RMarker	The name or argument number of the standard marker for the direction in which the force is measured

Example

SCREWFORCE (SCREWFORCE1, 0, 1, Ground.InertiaMarker) SCREWFORCE (1, 0, 1, 2)

<Argument: (1) SCREWFORCE1, (2) Ground.InertiaMarker >

BEAM

Returns the action force of a beam entity.

Format

Argument List		
ID	Entity	
1	BEAM1	
2	Ground.Marker1	

Arguments

BEAM entity	The name or argument number for the Beam entity to be
	measured
	A value that specifies the body to which the output load is applied
	If the flag value is 0, then the force applied to the action
Flag	marker (body) is returned.
	If the flag value is 1, then the force applied to the base
	marker (body) is returned.
	The components subject to the returned force
Component	One component can be inserted in line with 6
Component	numbered powers and sizes (1: FM, 2:FX, 3:FY, 4:FZ,
	5:TM, 6:TX, 7:TY, 8:TZ).
RMarker	The name or argument number of the standard marker for the
Rividikel	direction in which the force is measured

Example

BEAM(Beam1, 0, 1, Ground.InertiaMarker)

BEAM(1, 0, 1, 2) <Argument: (1)Beam1, (2) Ground.InertiaMarker >

BUSH

Returns the action force of a Bush entity.

Format

Argument List	
ID	Entity
1	Bushing1
2	Ground.Marker1

Arguments

BUSH entity	The name or argument number for the Bush entity to be measured
Flag	 A value that specifies the body to which the output load is applied If the flag value is 0, then the force applied to the action marker (body) is returned. If the flag value is 1, then the force applied to the base marker (body) is returned.
Component	The components subject to the returned force • One component can be inserted in line with 6 numbered powers and sizes (1: FM, 2:FX, 3:FY, 4:FZ, 5:TM, 6:TX, 7:TY, 8:TZ).
RMarker	The name or argument number of the standard marker for the direction in which the force is measured

Example

BUSH (BUSH1, 0, 1, Ground.InertiaMarker)

BUSH (1, 0, 1, 2) <Argument: (1) BUSH1, (2) Ground.InertiaMarker >

SPRING

Returns the action force of a translational or rotational spring entity.

Format

Arguments

SPRING entity	The name or argument number for the spring entity to be measured
Flag	 A value that specifies the body to which the output load is applied If the flag value is 0, then the force applied to the action marker (body) is returned. If the flag value is 1, then the force applied to the base marker (body) is returned.
Component	The components subject to the returned force • One component can be inserted in line with 6 numbered powers and sizes (1: FM, 2:FX, 3:FY, 4:FZ, 5:TM, 6:TX, 7:TY, 8:TZ).
RMarker	The name or argument number of the standard marker for the direction in which the force is measured

Example

SPRING (SPRING1, 0, 1, Ground.InertiaMarker)
SPRING (1, 0, 1, 2) <Argument: (1) SPRING1, (2) Ground.InertiaMarker >

MATRIXFORCE

Returns the action force of a matrix force entity.

Format

Arguments

144TD1)/50D65		
MATRIXFORCE	The name or argument number of the matrix force entity to be	
entity	measured	
	A value that specifies the body to which the output load is applied	
	If the flag value is 0, then the force applied to the	
Flag	action marker (body) is returned.	
	If the flag value is 1, then the force applied to the base	
	marker (body) is returned.	
	The components subject to the returned force	
Companent	One component can be inserted in line with 6	
Component	numbered powers and sizes (1: FM, 2:FX, 3:FY,	
	4:FZ, 5:TM, 6:TX, 7:TY, 8:TZ).	
DN 4aultau	The name or argument number of the standard marker for the	
RMarker	direction in which the force is measured	

Example

MATRIXFORCE(MATRIXFORCE1, 0, 1, Ground.InertiaMarker)

MATRIXFORCE(1,0,1,2) <Argument(1): MATRIXFORCE1,(2)Ground.InertiaMarker>

SYSTEM ELEMENTS

DIF DIF1 VARVAL

DIF

Returns the integral calculation for the differential equation in a differential equation entity.

Format

Argument List		
ID	Entity	
1	DE1	

Argument

Diff. Eq.	The name of the differential equation entity or argument
Dill. Eq.	number

Formula

$$\dot{\xi} = f(\xi, x, t)$$
 (Explicit Type)
 $0 = f(\xi, \dot{\xi}, x, t)$ (Implicit Type)

(where, ξ : differential variable, x = Other state variable)

Example

DIF(Model1.DE1)

DIF(1) < Argument: (1)DE1 >

$$V = RI + L\frac{dI}{dt}$$
, $Torque = K \cdot I$

$$V = \cos(2t), R = 1, L = 0.08, K = 6$$

An explicit differential equation can be used to create a torque model for the electrical motor described above.

$$\frac{dI}{dt} = \frac{V - RI}{L} \text{(Explicit Type)}$$

To define the explicit differential equation above:

Create a parametric value for each coefficient (R,L,K), and build models for the body, revolute joint, and rotational axial force. The result is derived by running the organized differential equation through the expression and DIF and applying each entity through the Rotational Axial Force model.

<Modeling>

Par	rametr	ic Valu	e List		
Pa	arametri	c Value	5		
	No	DP	Name	Value	
	1	~	R	1.	Е
	2	~	L	8.e-002	Е
	3	~	K	6.	Е

<Results>

DIF₁

Returns the calculation for a differential equation using a differential equation entity as it is.

Format

Argument List		
ID	Entity	
1	DE1	

Argument

Diff. Eq.	The name or argument number of the differential equation
Dill. Eq.	entity

Formula

$$\dot{\xi} = f(\xi, x, t)$$
 (Explicit Type)
 $0 = f(\xi, \dot{\xi}, x, t)$ (Implicit Type)

where, ξ : differential variable, x = Other state variable

Example

DIF1(Model1.DE1)

DIF1(1) < Argument: (1)DE1 >

The following is a comparison of the DIF and DIF1 functions on F(t)= 2t through the expression scope:

DIF
$$(f(t)) = \int 2t dt = t^2$$

DIF1
$$(f(t)) = \frac{d}{dt} \int 2t \ dt = 2t$$

— DIF(2t) — DIF1(2t)

VARVAL

Returns the result of a variable equation and enables an expression to use the calculation derived from a variable equation entity.

Argument

Variable Eq.	The name or argument number for the variable equation entity
--------------	--

Example

VARVAL (Model1.VE1)

VARVAL(1) < Argument: (1) VE1 >

Execution Sequence

- (1) Create Expression 1 to use in the variable equation: $\sin(2*pi*time)$.
- (2) Create a variable equation entity (VE1).
- (3) Connect Expression 1 to the variable equation entity (VE1).
- (4) Create Expression2 VARVAL (Model1. VE1).

The following example shows the results of test1 VE1, defined as $\sin(2*pi*time)$, and test2 VE2, defined as $2*\sin(2*pi*time*0.5)$, when Expression2 is calculated.

105

ARITHMETIC IF

IF

IF

Assigns the conditions for calculating functions and returns the value for those functions when the given conditions are satisfied.

Format

IF(f1: f2, f3, f4)

Arguments

f1	Defines the equation that provides the conditions under
	which to derive the value of the function.
f2	Returns the calculated values when f1 < -IFT. This must be a
	real number or a function that returns a real number.
f3	Returns the calculated values when -IFT ≤ f1 ≤ IFT. This
	must be a real number or a function that returns a real
	number.
f4	Returns the calculated values when f1 > IFT. This must be a
	real number or a function that returns a real number.

※ IFT (If Tolerance): When an If clause is calculated, the IFT value functions as a parameter that modifies the conditions so that they respond to 0 by allowing a slight range because the result of Expression1 may not be exactly 0. The input values for these parameters can be found on the Home tab of the Simulation menu in the RecurDyn GUI.

Formula

$$IF(f1: f2, f3, f4) = \begin{cases} f2, \text{ when } f1 < -IFT \\ f3, \text{ when } -IFT \le f1 \le IFT \\ f4, \text{ when } IFT < f1 \end{cases}$$

Example

The figure below shows the results of the following expression using IF functions: IF(TIME-2.0:0,0,1)

INTERPOLATION

AKISPL CUBSPL

AKISPL

Uses Akima spline interpolation to return the y values for the x variable input through the spline entity. The Akima spline is only continuous in the 1st derivative. Therefore, it is suitable for force elements, which do not require second order continuity.

Arguments

	An input variable for the AKISPL function
Х	 Generally, this variable is time or a function that returns a real
	number.
	An input variable for the AKISPL function
	The second variable is necessary for three dimensional spline
Z	functions.
	 This variable must be a function that returns a real number.
	Otherwise, 0 is applied.
Curve	
name	The name or argument number of the spline data defined by the subentity
Harrie	
	The interpolation method for the functions (return the value if 0, return
Order	calculation for 1st order differential equation if 1, and return calculation for
	2nd order differential equation if 2)

Formula

AKISPL=
$$\begin{cases} f(x, spline _data), & \text{Order=0} \\ df(x, spline _data) / dx, & \text{Order=1} \\ d^2 f(x, spline _data) / dx^2, & \text{Order=2} \end{cases}$$

Example

The example below was created using the following formula: AKISPL(time-4,0,1,0)

<Argument: (1) Spline>

Spline Data

2

3

36

-0.4

CUBSPL

Uses cubic spline interpolation to return the y values for the x variable input through the spline entity. The cubic spline has a continuous 2nd derivative. Therefore, it can be used in specified Motion for joints and bodies, which require continuous second derivatives, as well as for force elements

Argument List		
ID	Entity	
1	Spline1	

Arguments

	An input variable for CUBSPL	
Х	Generally, this variable is time or a function that returns a real	
	number.	
	An input variable for CUBSPL	
Z	This second variable is necessary for three dimensional spline	
	functions.	
	 This variable must be a function that returns a real number. 	
	Otherwise, 0 is applied.	
Curve		
name	The name or argument number for the spline data defined by the subentity	
	The interpolation methods for the functions (return the value if 0, return	
Order	calculation for 1st order differential equation if 1, and return calculation for	
	2nd order differential equation if 2)	
	Zilu oluei ullielelitiai equation il 2)	

Formula

CUBSPL= $\begin{cases} f(x, spline_data), & \text{Order=0} \\ df(x, spline_data) / dx, & \text{Order=1} \\ d^2 f(x, spline_data) / dx^2, \text{Order=2} \end{cases}$

The figure below was created using the following formula: CUBSPL(time,0,Spline1,0) CUBSPL(time,0,1,0)

<Argument (1) Spline1>

Spline Data

3

GENERAL

BISTOP

CHEBY

FORCOS

FORSIN

HAVSIN

IMPACT

POLY

SHF STEP

STEP5

SWEEP

BISTOP

Returns the contact force of a model in a gap defined by the relative location and velocity of two markers.

Format

Arguments

Distance(x)	The relative distance between the two markers on the contacting entities
Velocity($\dot{\mathcal{X}}$)	The relative velocity between the two markers on the contacting entities
Free length1 (X_1)	The contact distance between the two markers on the contacting entities • This value must be a real number or a function that returns a real number. • The free length(x ₁) is used to determine whether or not contact is made.
Free length2 (X_2)	The contact distance between the two markers on the contacting entities This value must be a real number or a function that returns a real number. Free length(x ₂) is used to determine whether or not contact is made.
Stiffness($m{k}$)	The modulus rigidity on the spring force
Stiffness exponent(exp)	The nonlinear coefficient value on the surface of the spring force
$Damping(\mathcal{C}_{\max})$	The maximum damping coefficient This must be a real number or a function that returns a real number
Penetration(d)	The depth of infiltration that induces the maximum damping coefficient

Formula

BISTOP =

$$\begin{cases} k(x_1 - x)^{\exp} - \text{STEP}(x, x_1 - d, c_{\max}, x_1, 0) \cdot \dot{x} & \text{when, } x < x_1 \\ 0 & \text{when, } x < x_1 \& \text{BISTOP} < 0) \\ 0 & \text{when, } x_1 \le x < x_2, \\ -k(x - x_2)^{\exp} - \text{STEP}(x, x_2, 0, x_2 + d, c_{\max}) \cdot \dot{x} & \text{when, } x \ge x_2 \\ 0 & \text{when, } x \ge x_2 \& \text{BISTOP} > 0) \end{cases}$$

Example

BISTOP(DX(body1.marker1, body2.marker2, body2.marker2), VX(body1.marker1, body2.marker2, body2.marker2),150,550,10000,1.3,100,2)

The following provides an example that defines a model that contacts both sides of a gap through the Axial Force and BISTOP functions. In this example, Body1's initial velocity defines the contact modeling on both sides.

(It is advantageous to select Free length if the contacting sides of the two entities are defined as reference markers when defining the DM function for both markers.) BISTOP(DX(1,2,2),VX(1,2,2),150,550,10000,1.3,100,2)

Argument List

CHEBY

Returns the result of the coefficients and variables evaluated using the Chebyshev polynomial.

Format

CHEBY(
$$x, x_0, c_0, c_1, ..., c_{30}$$
)

Arguments

	The input variable for the Chebyshev equation
X	 Generally, this variable is a real number, function,
	or time.
W.	The x-direction offset for the variable (X) in the Chebyshev
\mathbf{X}_0	polynomial
	The coefficient values in the Chebyshev polynomial that
	calculate the linear superposition in line with the
c_0, c_1, \dots, c_{30}	Chebyshev polynomial
	These values are defined by the number of input
	coefficients and can include up to 31 coefficients.

Formula

$$C(x) = \sum_{j=0}^{n} c_j \cdot T_j(x - x_0), \ 0 \le j \le n$$

where,
$$T_j(x-x_0) = 2 \cdot (x-x_0) \cdot T_{j-1}(x-x_0) - T_{j-2}(x-x_0)$$

 $T_0(x-x_0) = 1$, $T_1(x-x_0) = x-x_0$

Example

The graph below illustrates the output values of the following expression through the scope: CHEBY(time,2,1,2,1)

FORCOS

Returns the results of the coefficients and variables evaluated in a Fourier Cosine series.

Format

FORCOS(x,
$$x_0, \omega, c_0, c_1, ..., c_{30}$$
)

Arguments

	The input variable for the defined Fourier Cosine series
X	Generally, this variable is time or a function that
	results in a real number.
	The x-direction offset for the variable (X) in the Fourier
\mathbf{x}_0	Cosine series
	The base frequency for the Fourier Cosine series (in
ω	radians)
	The coefficient values in the Fourier cosine series that
	calculates the linear superposition in line with the Fourier
c_0, c_1, \dots, c_{30}	cosine series
	These values are defined by the number of input
	coefficients and can include up to 31 coefficients.

Formula

$$F(x) = c_0 + \sum_{j=1}^{n} c_j \cdot T_j(x - x_0) \quad 0 \le j \le n$$

$$(where \qquad T_j(x - x_0) = \cos[j * \omega * (x - x_0)])$$

Example

The graph below illustrates the output values of the following expression through the scope: FORCOS(time,0,360d,1,2,3)

FORSIN

Returns the results of the coefficients and variables evaluated in a Fourier sine series.

Format

FORSIN(x,
$$x_0, \omega, c_0, c_1, ..., c_{30}$$
)

Arguments

	The input variable for the defined Fourier sine series
X	Generally, this variable is time or a function that
	results a real number.
v	The x-direction offset for the variable (X) in the Fourier
x ₀	sine series
ω	The base frequency for the Fourier sine series (in radians)
	The coefficient values in the Fourier cosine series that
	calculates the linear superposition in line with the Fourier
c_0, c_1, \dots, c_{30}	cosine series
	These values are defined by the number of input
	coefficients and can include up to 31 coefficients.

Formula

$$F(x)=c_0 + \sum_{j=1}^n c_j \cdot T_j(x-x_0) \quad 0 \le j \le n$$

(where
$$T_j(x-x_0) = \sin[j \cdot \omega \cdot (x-x_0)]$$
)

Example

The graph below illustrates the output values of the following expression through the scope: FORSIN(time,0,360d,1,2,3)

HAVSIN

Interpolates between two markers using a trigonometric function. Generally, this function is used to link two markers in a gradual curve, similar to the Step and Step 5 functions.

Format

$$\text{HEAVISIN}(\mathbf{x}, \mathbf{x}_0, \mathbf{h}_0, \mathbf{x}_1, \mathbf{h}_1)$$

Arguments

•	
	The input variable for the defined HEAVISIN $old x_0 = x_1$
X	Generally, this variable is time or a function that
	returns a real number.
\mathbf{x}_0	The starting point for the HEAVISIN function
	The initial value for the input variable (within the range of
h_0	$x \le x_0$)
x ₁	The ending point for the HEAVISIN function
	The initial value for the input variable (within the range of
h ₁	$x \ge x_1$

Formula

$$\begin{aligned} \text{HAVSIN} &= h_0, & \text{when } x \leq x_0 \\ &= \frac{(h_0 + h_1)}{2} + \frac{(h_1 - h_0)}{2} \cdot \sin \left(\pi \frac{(x - x_0)}{(x_1 - x_0)} - \frac{\pi}{2} \right), & \text{when } x_0 < x \leq x_1 \\ &= h_1, & \text{when } x \geq x_1 \end{aligned}$$

Example

The graph below illustrates the output values of the following expression through the scope:
HAVSIN(time, 1.0, 0.0, 4.0, 1.0)

IMPACT

Returns the contact force in a contact model defined by the relative location and velocity of two markers.

Format

Arguments

	The expression for the relative distance between the two
Distance(X)	markers on the contacting entities
	The expression for the relative velocity between the two
Velocity(\dot{x})	•
	markers on the contacting entities
	The contact distance between the two markers on the contacting
Free length(\mathcal{X}_{l})	This must be a real number or a function that returns a Free Length Body 1 Marker 1
	real number.
	• The free length(x ₁) determines whether or not
	contact is made.
Stiffness(k)	The modulus rigidity on the spring force
Stiffness	The nonlinear coefficient value on the surface of the spring
exponent(exp)	force
Damping(C)	The maximum damping coefficient for the calculation of
Damping(C_{\max})	the damping force
Penetration(d)	The depth at which the damping coefficient reaches 0

Formula

IMPACT =

$$\begin{cases} k(x_1 - x)^{\exp} - \text{STEP}(x, x_1 - d, c_{\max}, x_1, 0) \cdot \dot{x} & \text{when, } x < x_1 \\ 0 & \text{when, } x < x_1 \& \text{ IMPACT } < 0 \\ 0 & \text{when, } x \ge x_1 \end{cases}$$

Example

IMPACT(DY(body2.marker2,body1.marker1),VY(body2.marker2,body1.marker1), 200, 1000, 1.3,10,2)

As illustrated in the figure below, after creating the two bodies, define the contact model between the two entities through the Axial Force and IMPACT functions, and produce an Axial Force output graph through the scope.

IMPACT(DY(1,2),VY(1,2),200,1000,1.3,10,2) <Argument: (1)body1.marker1, (2)body2.marker2 >

POLY

Returns the results of the input variables and coefficients evaluated in a polynomial function.

Format

$$POLY(x,x_0,a_0,a_1,...,a_{30})$$

Arguments

	The input variable for the defined polynomial function
X	Generally, this variable is time or a function that
	returns a real number.
\mathbf{x}_0	The starting point of the polynomial function
a ₀ ,a ₁ ,,a ₃₀	The set of polynomial coefficients (up to 31)

Formula

POLY =
$$\sum_{j=0}^{n} a_j (x - x_0)^j$$
 where, $0 \le j \le n$
= $a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots + a_n (x - x_0)^n$

Example

The graph below illustrates the output values of the following expression through

the scope:

POLY(time, 0, 1.0, 2.0, 1.0)

SHF

Returns the results of the input variables and coefficients evaluated as a sine wave in a simple harmonic function.

Format

SHF(x,x_0,a,ω,ϕ,b)

Arguments

x	The input variable for the defined SHF function • Generally, this variable is time or a function that returns a real number.
\mathbf{X}_0	The starting point of the simple harmonic function
a	The amplitude value for the sine wave of the variable • This value must be a real number or a function that returns a real number
ω	The frequency of the simple harmonic function
ϕ	The phase shift value of the simple harmonic function
b	The average frequency of the simple harmonic function

Formula

$$SHF = a \cdot \sin(\omega \cdot (x - x_0) - \phi) + b$$

Example

The graph below illustrates the output values of the following expression through the scope:

SHF(time, 10D, PI, 360D, 0,3)

STEP

Interpolates between two markers using a cubic polynomial. Generally, this function is used when linking two markers in a gradual curve.

Format

$$STEP(x,x_{0},h_{0},x_{1},h_{1})$$

Arguments

_	$\alpha_0 - \alpha_1$
	The variable for the defined STEP function
X	 Generally, this variable is time or a function that returns a real number.
	real number.
\mathbf{x}_0	The starting point of the STEP function.
\mathbf{h}_0	The initial value for the input variable (within the range of $\ \mathbf{X} \leq \mathbf{X}_0$)
\mathbf{x}_1	The ending point of the STEP function
h ₁	The initial value for the input variable (within the range of $\ x \geq x_1$)

Formula

$$\begin{split} \text{STEP} &= h_0 \ , & \text{when } x \leq x_0 \\ &= h_0 + (h_1 - h_0) \left[\frac{x - x_0}{x_1 - x_0} \right]^2 \left\{ 3 - 2 \left[\frac{x - x_0}{x_1 - x_0} \right] \right\}, \quad \text{when } x_0 < x \leq x_1 \\ &= h_1 \ , & \text{when } x \geq x_1 \end{split}$$

Example

The graph below illustrates the output values of the following expression through the scope:

STEP(time, 1.0, 0.0, 4.0, 1.0)

STEP5

Interpolates between two markers using a quantic polynomial. Generally, this function is used when linking two markers in a gradual curve.

Format

 $STEP5(x,x_0,h_0,x_1,h_1)$

Arguments

3	$\Lambda_0 = \Lambda_1$	
	The input variable for the defined STEP5 function	
X	Generally, this variable is time or a function that returns a	
	real number.	
\mathbf{x}_0	he starting point of the STEP5 function	
\mathbf{h}_0	The initial value for the input variable (within the range of $\mathbf{X} \leq \mathbf{X}_0$)	
x ₁	The ending point of the STEP5 function	
h ₁	The initial value for the input variable (within the range of $\ { m X} \geq { m X}_1$)	

Formula

STEP5 =
$$h_0$$
, when $x \le x_0$
= $h_0 + (h_1 - h_0) \cdot \left[\frac{x - x_0}{x_1 - x_0} \right]^3 \cdot \left\{ 10 - 15 \cdot \frac{x - x_0}{x_1 - x_0} + 6 \cdot \left[\frac{x - x_0}{x_1 - x_0} \right]^2 \right\}$, when $x_0 < x \le x_1$
= h_0 , when $x \ge x_0$

Example

The graph below illustrates the output values for the following expression through the scope. (This highlights the difference between the STEP and STEP5 functions.)

STEP (time, 1.0, 0.0, 4.0, 1.0) STEP5(time, 1.0, 0.0, 4.0, 1.0)

SWEEP

Returns the results of a regular sine wave function with increasing linear frequency.

Format

$$SWEEP(x,a,x_0,f_0,x_1,f_1,x_b)$$

Arguments

X	Independent variable for the SWEEP functionThis variable must be time, a real number, or a function that returns a real number.
a	Sine function wave
\mathbf{x}_0	Starting point of the SWEEP function (${f x}$ value)
\mathbf{f}_{0}	Initial sine function frequency
\mathbf{x}_1	Ending point of the SWEEP function (\mathbf{x} value)
\mathbf{f}_1	Ending frequency of the sine function
\mathbf{X}_b	Range in which the SWEEP function is fully active

Formula

SWEEP=STEP5
$$(x, x_0, 0, x_0 + x_b, 1) \cdot a \cdot \sin(2\pi \cdot \int freq(x) dx$$

$$\begin{split} &freq(x) = \\ & \begin{cases} f_0 \,, & (x \leq x_0) \\ f_0 + \frac{f_1 - f_0}{x_1 - x_0} \cdot x \,, & (x_0 \leq x < x_1) \\ f_1, & (x_1 \leq x) \end{cases} \\ & \int freq(x) dx = \\ & \begin{cases} f_0 \cdot x \,, & (x \leq x_0) \\ f_0 \cdot x_0 + f_0 \cdot (x - x_0) + 0.5 \frac{f_1 - f_0}{x_1 - x_0} \cdot (x - x_0)^2 \,, & (x_0 \leq x < x_1) \\ f_0 \cdot x_0 + f_0 \cdot (x - x_0) + 0.5 \frac{f_1 - f_0}{x_1 - x_0} \cdot (x_1 - x_0)^2 + f_1 \cdot (x - x_0) \,, \end{cases} \end{split}$$

The graph below illustrates the output values of the following expression through the scope:

SWEEP(time, 1.0, 0.0, 0.0, 0.5, 100.0, 0.1)

CONTROL & HYDRAULIC

PIN POUT HIN HOUT

PIN

Imports calculated values of control plant from external control programs into the RecurDyn model for the co-simulation using CoLink or Control Toolkit. The values are used as RecurDyn plant inputs and the function returns the imported value.

Format

Argument

Ī	Plant Input Entity	The name or argument number of the PIN entity	
---	--------------------	---	--

Example

PIN(Mode1.PlantInput1)

PIN(1) < Argument: (1) Mode1.PlantInput1 >

POUT

Imports calculated values of RecurDyn plant from external control programs into the control model for the co-simulation using CoLink or Control Toolkit. The values are used as RecurDyn plant outputs and the function returns the imported value.

Argument

Example

POUT(Mode1.PlantOutput1)

POUT(1) < Argument: (1) Mode1. PlantOutput1>

HIN

Returns HIN entity value which is calculated in RecurDyn model so that it can be transferred to the external hydraulic software such as AMESim or FMI.

X The HIN/HOUT functions use a different plant than the PIN/POUT functions. In other words, for PIN/POUT, the RecurDyn model is the plant whereas for HIN/HOUT, hydraulic system model is the plant.

Format

Argument

Example

HIN(Mode1.HInput1)

HIN(1) <Argument: (1) Mode1. HInput1>

HOUT

Returns HOUT entity value which is calculated in the hydraulic model by the external hydraulic software such as AMESim or FMI. HOUT means that the hydraulic value is input to RecurDyn, so the returned value is used in RecurDyn model.

** The HIN/HOUT functions use a different plant than the PIN/POUT functions. In other words, for PIN/POUT, the RecurDyn model is the plant whereas for HIN/HOUT, hydraulic system model is the plant.

Format

Argument

Hyd_Output Entity	The name or argument number of the HOUT entity
-------------------	--

Example

HOUT(Mode1.HOutput1)

HOUT(1) < Argument: (1) Mode1. HOutput1 >

SENSORS

SNSR
EVTIME
SENSOR
SENSORONTIME
SENSOROFFTIME
SENSORDISTANCE
SENSORDETECTEDPOINT

SNSR

Returns the values measured on sensors created using various toolkits.

Format

Argument

SENSOR entity The name or argument number of the SENSOR entity
--

X Supported sensors and returned values

Toolkit	Senor	Returned Value
Belt	Speed	Velocity of the belt segment
	Distance	Distance from the center of the sensor to the belt segment
	Slip	Difference in velocity between the pulley and the belt segment
	Tension	Tension of the belt segment.
	Displacement	X-direction distance from the center of the sensor to the belt segment
Chain	Distance	Distance from the center of the sensor to the chain link
	Speed	Velocity of the chain link
	Tension	Tension of the chain link
MTT2D	Speed	Velocity of the sheet body
	Distance	Distance from the center of the sensor to the sheet body
	Event	On = 1, Off = 0
MTT3D	Speed	Velocity of the sheet body
	Distance	Distance from the center of the sensor to the sheet body
	Event	On = 1, Off = 0
Track_LM	Displacement	X-direction distance from the center of the sensor to the track link
Track_HM	Displacement	X-direction distance from the center of the sensor to the track link

Example

SNSR (mode1.Sensor1)

SNSR (1) <Argument: (1) mode1.Sensor1>

EVTIME

Returns the simulation time at the exact moment when a sensor entity, which is used in MTT2D or 3D, turns on. At all other times, it returns a value of 0.

Format

Argument

SENSOR entity	The name or argument number of the sensor entity
---------------	--

Example

EVTIME (Sensor1)

EVTIME (1) <Argument: (1) Sensor1 >

SENSOR

Returns the status of a Laser or PointInBox sensor entity. The status of the sensor is returned as a value of either 0 or 1 (on=1, off=0).

Format

Argument

SENSOR entity	The name or argument number of the sensor entity
---------------	--

Example

SENSOR (1) SENSOR (1) <Argument: (1) Sensor1 >

SENSORONTIME

Returns the simulation time at the exact moment when a Laser or PointlnBox sensor entity turns on.

The initial value is 0. The time at the moment of changing from OFF to ON is returned. If On/Off is repeated, the most recent ON time is returned.

Format

Argument List		
ID	Entity	
1	Sensor1	

Argument

SENSOR entity	The name or argument number of the sensor entity
---------------	--

Example

```
SENSORONTIME (Sensor1)
SENSORONTIME (1) <Argument: (1) Sensor1 >
```

SENSOROFFTIME

Returns the simulation time at the exact moment when a Laser or PointInBox sensor entity turns off.

The initial value is 0. The time at the moment of changing from ON to OFF is returned. If On/Off is repeated, the most recent Off time is returned.

Format

Argument

SENSO	OR entity	The name or argument number of the sensor entity	
-------	-----------	--	--

Example

```
SENSOROFFTIME (Sensor1)
SENSOROFFTIME (1) <a href="https://www.energen.com/sensor1">Argument: (1) Sensor1 > </a>
```

SENSORDISTANCE

Returns the displacement values from the moment when the Laser sensor entity turns on until the sensor's objective geometry. When the sensor is turned off, it returns a value of 0.

Format

Argument

SENSOR entity	The name or argument number of the sensor entity
---------------	--

Example

SENSORDISTANCE(Sensor1)

SENSORDISTANCE(1) <Argument: (1) Sensor1 >

SENSORDETECTEDPOINT

Returns the values for location, velocity, and acceleration in the objective area detected by the Laser sensor entity. When the detection status is off, it returns a value of 0.

Format

Arguments

Model	The name or argument number of the model		
SENSOR entity	The name or argument number of the sensor entity		
	A flag that indicates the returned displacement, velocity or		
	acceleration type and returns the calculated values for the		
Flag	input characters. Depending on the values, it selects 12		
	statuses for the detection location.		
	1:DM, 2:DX, 3:DY, 4:DZ, 5:VM, 6:VX, 7:VY, 8:VZ		
	9:ACCM, 10:ACCX, 11:ACCY, 12:ACCZ		
20.4	The name or argument number of the standard marker for		
RMarker	the direction to be measured		

Example

SENSORDETECTEDPOINT (Model1, Sensor1, 1, Body1.Marker1) SENSORDETECTEDPOINT (1,2,1,3)

<Argument: (1) Model1 (2)Sensor1 (3)Body1.Marker1 >

STRESS & STRAIN

STRESS STRAIN

STRESS

Returns the stress acting on a designated node on a flexible body.

Format

Argument L	ist	
ID	Entity	
1	Body1_FE.Node50051	
2	Ground.InertiaMarker	

Arguments

Node number, including the names of the FFlex or RFlex Boo			ex Body, or		
Node ID	argument number for the nodes to calculated for the stress value				
	The node	The node must be set as an output node.			
	Symbol that indicates the type of stress to measure				
	Stress	Name	Comment		
	Basic stress	Х	x direction from x face		
		Υ	y direction from y face		
		Z	z direction from z face		
Turo		XY	y direction from x face		
Туре		YZ	z direction from y face		
		ZX	z direction from z face		
	Principal stress	S1	First principal		
		S2	Second principal		
		S3	Third principal		
	Von-mises stress	VON	Von Mises stress		
RMarker	The name or argument number of the standard marker		marker for		
Kiviarker	direction to be measured				
Position	The location of measurement on the shell element (TOP or				
	BOTTOM)				

Example

 $STRESS(Body1_FE.node1, X, Ground. Inertia Marker)$

STRESS(1,VON,2) < Argument: (1) Body1_FE.node1 (2) Ground.InertiaMarker >

STRAIN

Returns the strain acting on a designated node on a flexible body.

Format

Argument List	
ID	Entity
1	Body1_FE.Node50051
2	Ground.InertiaMarker

Arguments

	Node number, includ	ding the na	ames of the FFlex or RFlex Body,	or
Node ID	argument number for the nodes to calculated for the stress value			
	The node must be set as an output node.			
	Symbol that indicates the type of strain to measure			
	Strain	Name	Comment	
	Basic strain	Х	x direction from x face	
		Υ	y direction from y face	
		Z	z direction from z face	
Turno		XY	y direction from x face	
Туре		YZ	z direction from y face	
		ZX	z direction from z face	
	Principal strain	E1	First principal	
		E2	Second principal	
		E3	Third principal	
	Von-mises strain	VON	Von Mises stress	
RMarker	The name or argument number of the standard mark		nber of the standard marker	for
Riviarker	direction to be measured			
Position	The location of measurement on the shell element (TOP or			
	BOTTOM)			

Example

STRAIN(Body1_FE.node1,X,Ground.InertiaMarker)

STRAIN(1,VON,2) < Argument: (1) Body1_FE.node1 (2) Ground.InertiaMarker >

Index

ABS12	DIF	101
ACCM65	DIF1	103
ACCX66	DIM	21
ACCY67	DM	43
ACCZ68	DTOR	38
ACOS13	DX	44
AINT14	DY	45
AKISPL108	DZ	46
ANINT15	EVTIME	132
ASIN16	EXP	22
ATAN17	FM	74
ATAN218	FORCOS	114
AX40	FORSIN	115
AXIAL92	FX	75
AY41	FY	76
AZ42	FZ	77
AZ42 BEAM96	FZ GEAR	
		87
BEAM96	GEAR	87 116
BEAM96 BISTOP111	GEARHAVSIN	87 116 128
BEAM96 BISTOP111 BUSH97	GEAR HAVSIN HIN	
BEAM	GEARHAVSINHINHOUT	
BEAM	GEAR HAVSIN HIN HOUT	
BEAM	GEARHAVSINHINHOUT	
BEAM	GEAR HAVSIN HIN HOUT IF IMPACT JFRICTION	

MATRIXFORCE 99	SQRT31
MAX25	STEP121
MIN26	
MOD27	STEP5122
MOTION 84	STRAIN140
PHI47	STRESS139
PI36	SWEEP123
PIN126	TAN32
PITCH48	TANH33
POLY 119	TFORCE93
POUT127	THETA51
PSI49	TIME35
PTCV90	TM78
RFORCE94	TX79
ROLL50	TY80
RTOD37	TZ81
SCREWFORCE95	VARVAL104
SENSOR133	VM54
SENSORDETECTEDPOINT 137	VR55
SENSORDISTANCE136	VX57
SENSOROFFTIME135	VY58
SENSORONTIME134	VZ59
SHF120	WDTM69
SHT3D_CF 88	WDTX70
SIGN28	WDTY71
SIN29	WDTZ72
SINH30	WM60
SNSR131	WX61
SPRING98	WY62

WZ	63
ΥΔ\ Λ/	52

RECURDYN