1 Serial Port (RS232) Protocol

The host or PC communicates to the system over an asynchronous RS232 interface. The asynchronous interface parameters are:

The asynchronous serial interface uses a query response XML protocol.

1.1 Extensible Markup Language (XML) Commands

The command types are query commands, those sent from the host or PC to the system, and response commands, those sent back from the system to the host or PC. There is a response for each query.

The commands are formatted using XML format. In the figure, there is a start tag, which begins an enclosed area of text, known as an Item, according to the tag name. As in HTML, tags may include a list of attributes (consisting of an attribute name and an attribute value.) The Item defined by the tag ends with the end tag. The text or command data is placed between the start and end tags. Each data value is separated by a white space or comma.

The commands that do not have corresponding data, use an empty XML tag. The empty tag may have attributes. The empty tag is shorthand for the start and end tags without inclosing text.

A typical query command would look like:

and its response:

The command tag names and valid attributes are defined in the Command section.

Attributes that are common between all commands are listed in the table.

mnemonic	Name	description	value	mnemonic
OP	operation	the operation to perform on the	Get	GT
		location	Set	ST
			Clear	CL
			Reset	RS
LC	location	the location		
IN	index	the index of the item at location		
DT	data type	the type of data sent.	hex integer	HX
			pack char	WD
CS	checksum	checksum over the entire ASCII	16 bit	hex data
		XML command	integer	

The Get and Clear operations data field is empty on query messages. The Set and Clear operations data field is empty on response messages. These commands use the empty tags. Otherwise, the data field is filled with the data specified for each tag between the start and end tags.

The data type specifies the type of data in the data field. It is either:

- an ASCII representation of a hex integer or
- two packed ASCII characters into a word. The upper byte is the first character and the lower byte is the second character. The character string ABCD would be sent as two words ('A'<<8)|'B' and ('C'<<8)|'D'.

2 Command

The Command Module contains the methods that process messages received over the communications port. The commands are processed in three steps:

- the command is receive and copied over to the local XML tag.
- the command is processed by a module.
- the command response is posted.

When the posted response is read, the module is ready to accept a new command.

The command state machine the following states:

- null the state machine is waiting.
- process commands the state machine is processing a received command.
- post.response the response to the command is ready.

The command task processes the XML tags described in the following sections.

2.1 System

The System (SY) tag gives access to the system constants using the Ok (OK), Get (GT), Set (ST), Reset (RS), and Clear (CL) operations.

Operation	Location		data order	data type
Ok				
Get	Status	ST	Program Reboot	Int
			EEPROM Valid	Boolean
			Flash Valid	Boolean
Get	Status	SU	Best Effort	Boolean
Set				
Get	Stack	SK	Stack available size	Int
Get	Communication	SC	Transmitter Error	Int
			Receiver Error	
			Transmitter Overflow Error	
			Receiver Overflow Error	
			Encoder Error	
			Decoder Error	
Get	Program	PR	Version major number	unsigned int
			Version minor number	
			Version build number	
			Build date month	
			Build date day	
			Build date year	
			Checksum	
Get	EEPROM	EP	Same as in Program	unsigned int
Set			Set does not have checksum	
Get	Serial Number	SY	System serial number	word[8]
Set		CL	Cooler serial number	
		DW	Dewar serial number	
		BP	Bypass serial number	
		MD	Model number	
Reset	EEPROM	EP		
	Flash	FL		
Clear	Program	PR		
Clear	Communication	SC	DSP SCI Error	Boolean
			DSP SCI Error	Boolean
			DSP SCI Error	Boolean
			DSP SCI Error	Boolean
			App Comm Error	Boolean
			App Comm Error	Boolean

The Ok sends the Ok back. It is used to query if the DSP is operational. The Status (ST) data Program Reboot is a count of the number of times the DSP has been rebooted since

the counter was cleared (CL). The Status (SU) selects if the DSP is operating in best effort mode (1) or normal no effort mode (0).

The EEPROM valid checks the checksum of the EEPROM and returns true (1) if it is ok. The Flash valid checks the checksum of the Flash and returns true (1) if it is ok. The EEPROM Reset resets the EEPROM constants to the factory defaults and generates the EEPROM checksum. The Flash Reset generates the Flash checksum. The EEPROM and Flash Reset command is only active while the system is in shutdown state.

The Clear (CL) operation resets the program reboot counter to one or the individual communication errors to zero.

The system status is queried by:

The response for a single program reboot and valid EEPROM and Flash is:

The program counter is cleared by:

The response for a single program reboot and valid EEPROM and Flash is:

2.2 Time

The Time (TM) tag gives access to the operating times using the Get (GT) and Clear (CL) operations.

Operation	Location		data order	data type
Get	Current	CR	Days	unsigned int
	Operating Time		Hours	
			Minutes	
			Seconds	
Clear	Current	CR		
	Operating Time			
Get	Accumulated	AC	System days	unsigned int
Set	Operating Time		System hours	
			Cooler days	
			Cooler hours	
Clear	Accumulated	AC	System	boolean
	Operating Time		Cooler	

The Clear (CL) operation resets the current operating time or the accumulated operating times to zero. There are no data values for the current operating time. The accumulated operating time requires two integer data values where a 1 in the first location will clear the system and a one in the second location will clear the cooler. Else, the locations will not be cleared.

The accumulated run time is cleared by:

The response is the same.

The current operation time is queried by:

The response for 16 hours, 5 minutes and 26 seconds is:

2.3 Relays

The Relay (RL) tag gives access to the relays using the Get (GT) and Set (ST) operations.

Operation	Location		data order	data type
Get	Status	ST	Fault On/Off	boolean
Set			Bypass On/Off	
			Forced Bypass On/Off	
			LNA Power On/Off	
Get	Measurement	MS	Internal LNA Current	int
			External A LNA Current	
			External B LNA Current	
Get	Bounds	BN	Internal LNA minimum current	int
Set			Internal LNA maximum current	
			External A LNA minimum current	
			External A LNA maximum	
			current	
			External B LNA minimum current	
			External B LNA maximum current	

The Status data sets/resets with True(1)/False(0), else it does nothing. The Forced Bypass is toggled when there is a True (1) or False (0) value entered.

The Relay status is queried by:

The response for the fault and bypass relays on and the forced bypass relay and LNA power off is:

2.4 LEDs

The LED (LD) tag gives access to the LEDs using the Get (GT) and Set (ST) operations.

Operation	Location		data order	data type
Get Set	Status	ST	Ready On/Off Fault On/Off	boolean
Get Set	Status	ST	Alarm On/Off	boolean

The LED commands are similar to the relay command.

2.5 Motor Drive

The Motor Drive (MD) tag gives access to the Motor Drive constants using the Get (GT) and Set (ST) operations.

Operation	Location		data order	data type
Get	Status	ST	Frequency Table On/Off	boolean
Set				
Get	Setpoint	SP	Period	int
Set			Offset	
			DSP Clock Frequency	
			PWM duty	
Get	Measurement	MS	Period count	int
			Duty cycle	
Get	Bounds	BN	Motor minimum period	int
Set			Motor maximum period	
Get	Coefficient	CF	Power Square	int
Set			Power Gain	
			Power Offset	
			Temperature Square	
			Temperature Gain	
			Temperature Offset	

The DSP Clock frequency is accessible by Get only.

The frequency table in status turns on (1) or off (0) the frequency adjustment from the lookup table over motor power and ambient temperature as described in the section. The frequency minimization in status turns on (1) or off (0) the motor frequency minimization control loop. The coefficients are described in section.

The setpoints set the PWM period as described in the section. The offset is a signed 16 bit value that introduces a dc offset to the motor drive voltage. The DSP Clock frequency is in MHz and is scaled down by 2^{16} . It is used to calculate the PWM frequency from the PWM period.

The Motor Drive status is queried by:

The response for the frequency adjust off is:

The frequency adjust is turned on with:

2.6 Power

The Power (PW) tag gives access to the Power constants and measurements using the Get (GT) and Set (ST) operations.

Operation	Location		data order	data type
Get	Status	ST	Loop is Regulating	Boolean
			Power Loop is Active	
			Power Duty at Limit	
			Power Drive Foldback type	int
Get	Status	SU	Cooldown on Tamb/Trej	Boolean
			Power Loop is enabled	
			Power Drive is enabled	
			Power Model is enabled	
			Power Fault type	int
Get	Setpoint	SP	Motor Power	int
Set			Motor Duty cycle	
Get	Measurement	MS	Motor Power (real)	int
			Motor Voltage (real)	
			Motor Current (real)	
			Input Voltage	
			PWM Gain	
			Motor Current (real peak)	
			Motor Current (imaginary peak)	
			Motor Voltage (real peak)	
			Motor Power Setpoint	
			Voltage Feedforward Ratio	
Get	Calibration	CL	Motor voltage gain	int
Set			Motor voltage offset	
			Motor current gain	
			Motor current offset	
			Motor phase gain	
			Motor phase offset	
Get	Coefficient	CF	Input new coefficient	int
Set			Input new shift	
			Input old coefficient	
			Input old shift	
Get	Bounds	BN	Motor minimum power	int
Set			Motor maximum power	
			Minimum input voltage	
			Maximum input voltage	
			Motor minimum impedance	
			Motor maximum impedance	
			Power loop negative error limit	

			Power loop positive error limit	
Get	Bounds	BM	Motor current maximum limit	int
Set			PWM Duty maximum limit	
Get	Limit	LM	Trej Temperature Gain	int
Set			Trej Temperature Offset	
			Minimum Rejection Temperature	
			Maximum Rejection Temperature	
			Input Voltage Gain	
			Input Voltage Offset	
			Minimum Input Voltage	
			Maximum Input Voltage	
Get	Limit	LN	Phase Gain	int
Set			Phase Offset	
Get	Limit	LO	Tamb Temperature Gain	int
Set			Tamb Temperature Offset	
Get	Cooldown	CT	Second Order Trej Gain	int
Set	Table		First Order Trej Gain	
			Second Order Tcsw Gain	
			First Order Tcsw Gain	
			Power Constant	

The status gets if the power loop is regulating (1) or not (0) and if the power duty has exceeded the maximum limit (1). The power drive foldback types are:

- Cooldown Table 0
- Trej Foldback 1
- Tamb Foldback 2
- Vin Foldback 3
- Phase Foldback 5

The status (SU) sets the cooldown using Tamb (0) or Trej (1). The remaining selections should be set to -1 so as not to change their status.

The setpoint gets or set the current motor power. The motor power can only be set while the temperature loop is disabled and the state is not in shutdown state. The motor power conversion is in Power (Pm) section. The motor duty is not setable using this tag.

The measurements get the measured ADC values. The conversions for the values are in the following sections:

- Power in Power (Pm) section.
- Voltage in Input Voltage (Vin) section. The conversion for motor Vrms is the same as for the input voltage.
- Current in Motor Current (Imot) section.

The PWM Gain is the drive level to the PWM section where 2^{15} is maximum PWM drive and 0 is minimum. The Voltage Feedforward ratio is the Power control loop feedforward

ratio where 2¹⁴ is unity. The real and imaginary peak currents are referenced to the PWM voltage waveform and are the equivalent sinewave peak value at the fundamental frequency.

The calibration calibrates the motor voltage and current measurements and is described in the section. The limit is an upper bounds on the motor drive power with respect to motor rejection temperature and is described in the section.

The power bounds define the upper and lower limits of power to the motor. The lower limit is the idle current used at state initial. The motor drive power will limit at the maximum power in initial state. It will be limited by the less of the maximum power bounds; the motor temperature rejection, input voltage, or motor phase foldback limit; and the cooldown table limit in all other states. The input voltage range is used to detect an input voltage fault during state regulation. The power loop error limits are scaled by the power shifted down by 16 bits.

2.7 Temperature

The Temperature (TP) tag gives access to the Temperature constants and measurements using the Get (GT) and Set (ST) operations.

Operation	Location		data order	data
				type
Get	Status	ST	Temperature Loop is regulating	boolean
			Narrow range temperature is out of bounds	
			Wide range temperature is out of bounds	
			Rejection temperature is out of bounds	
			Ambient temperature is out of bounds	
Get	StatUs	SU	Temperature Loop is enabled.	Boolean
Set			Temperature loop mode of operation	Int
			TemperatureLoopIsRegulatingTight	Boolean
			Tcsn is within range	Boolean
			Tcsw is within range	Boolean
			Trej is within range	Boolean
			Tamb is within range	Boolean
			Tcsw Backup sensor is enabled	Boolean
			Tesn is too cold	Boolean
			Tcsw is too warm	Boolean
Get	Setpoint	SP	Cold stage narrow range temperature	Int
Set				
Get	Measurement	MS	Cold stage narrow range temperature	int
			Cold stage wide range temperature in use	
			Motor rejection temperature	
			Ambient temperature	
			Cold stage narrow temperature setpoint	
			Cold stage wide range temperature primary	
			Cold stage wide range temperature backup	
Get	Loop	LP	Loop remainder	int
			Loop error	
			Loop accumulator lower	
			Loop accumulator lower middle	
			Loop accumulator upper middle	
			Loop accumulator upper	
Get	Coefficient	CF	Input upper coefficient	int
Set			Input upper shift	
			Input lower coefficient	
			Input lower shift	
Get	Bounds	BN	Narrow range minimum temperature	int
Set			Narrow range maximum temperature	
			Wide range minimum temperature	1

			Wide range maximum temperature Motor rejection minimum temperature Motor rejection maximum temperature Ambient minimum temperature Ambient maximum temperature Temperature loop error limit	
Get	Bounds	BM	Wide range temperature too Warm	int
Set				
Get	State	SM	Mode	int
Set			State	

The temperature status reports if the temperature loop is regulation (1) or the temperatures are out of bounds (1).

The temperature status (SU) reports if the temperature loop is enabled (1). The temperature loop mode can be set to regulating on:

- Tcsn 0
- Tcsw 1
- Open 2

The setpoint is the temperature the cold stage is regulated to. The conversion factor is described in Narrow Range Cold Stage Temperature (Tcsn) section.

The measurements get the measured ADC values. The conversions for the values are in the following sections:

- Cold stage narrow range temperature in Narrow Range Cold Stage Temperature (Tcsn) section.
- Cold stage wide range temperature in Wide Range Cold Stage Temperature (Tcsw) section.
- Motor rejection temperature in Motor Heat Rejection Temperature (Trej) section.
- Ambient temperature in Ambient Temperature (Tamb) section.

The PWM Gain is the drive level to the PWM section where 2¹⁵ is maximum PWM drive and 0 is minimum.

The bounds are used in the temperature state machine logic to trip a fault as described in section. The temperature loop limits are scaled by the negative of the cold stage narrow range temperature gain.

The states and modes are described in section. These commands report back minor version 2 states only for backward compatability, whereas Sequence reports the new additional fault states. The additional fault state report back as bypass state.

2.8 Sequence

The Sequence (SQ) tag gives access to the sequencer state machine constants and measurements using the Get (GT) and Set (ST) operations.

Operation	Location		data order	data type
Get	StaTus	ST	Fault detection is enabled.	boolean
Set				
Get	State	SM	Mode	int
Set			State	

The state status reports if the fault detection is enabled (1) or disabled (1).

The states and modes are described in the section.

2.9 FaultThe Fault (FL) tag gives access to the fault records using the Get (GT) and Clear (CL) operations.

Operation	Location		data order	data type
Get	Status	ST	Motor power regulation	boolean
Clear			Wide range	boolean
			Motor rejection	boolean
			Temperature regulation	boolean
			LNA current	boolean
			Input voltage	boolean
			Duty cycle	boolean
			Active fault	unsign int
			Ambient Temperature	boolean
Get	Motor power regulation (first)	PM	Fault Type	unsign int
	Motor power regulation (recent)	PN	Operating State	unsign int
	Wide range temperature (first)	TW	Fault Count	unsign int
	Wide range temperature (recent)	TX	Runtime days	unsign int
	Motor rejection (first)	TR	Runtime hours	unsign int
	Motor rejection (recent)	TS	Runtime seconds	unsign int
	Temperature regulation (first)	TN	System days	unsign int
	Temperature regulation (recent)	TO	System hours	unsign int
	LNA current (first)	IL	Ambient temperature	int
	LNA current (recent)	IM	Motor rejection temperat	int
	Input voltage (first)	VI	Wide range temperature	int
	Input voltage (recent)	VJ	Narrow range temperature	int
	Duty Cycle (first)	DT	Input voltage	int
	Duty Cycle (recent)	DS	Motor voltage	int
	Wide range temperature (first)	TA	Motor current	int
	Wide range temperature (recent)	TB	LNA current	int

The Clear command does not clear the Active Fault, only the Boolean variables.

The valid data is as defined in the fault record section.

There is two fault records stored for each type: the first occurrence and the most recent occurrence. The status returns true if there is a fault record for that fault record type. The active fault in status is the number of the active fault. The active fault codes are:

code	Fault type
0x0	Trej OutOfRange
0	
0x01	Tamb OutOfRange
0x0	Internal LNA Current OutOfRange
2	
0x12	External A LNA Current OutOfRange
0x2	External B LNA Current OutOfRange
2	
0x0	Vin OutOfRange
3	
0x0	Tcsw OutOfRange
4	
0x14	Tcsw too warm
0x0	Duty OutOfRange
5	
0x0	Tcsn NotRegulating
6	
0x07	Pmx NotRegulating
0x17	Impedance out of range
0x27	Motor current not regulating

There can be a first and most recent fault record. Clear clears both the first and most recent faults.

3 Formulas

The formulas to convert between standard units and ADC units for the variables and constants used by the commands is described below. The formulas convert from standard units to voltages read by the ADC. The conversion from voltages to ADC counts is:

$$ADCounts = \frac{2^{15}}{5} \cdot Voltage$$

3.1 Motor AC Frequency

The PWM period (Tpwm) determines the motor frequency (Fmot). Tpwm is inversely proportional to Fmot. It is dependent on the CPU frequency (Fcpu).

$$Tpwm = \frac{Fcpu}{(2*Rpwm*Fmot)}$$

Rpwm is the resolution of the PWM sinewaveform and is currently 256. The period that is loaded to the DSP is Tpwm-1.

The spreadsheet calculates Tpwm for a given motor frequency.

Motor Frequency		
CPU	Motor	PWM
Frequency	Frequency	Period
(MHz)	(Hz)	(-)
40	60	1302

3.2 Motor Heat Rejection Temperature (Trej)

The Motor Heat Reject temperature circuitry uses a YSI type 44017 thermistor as part of a voltage divider network.

The Steinhart and Hart equation is an empirical expression used for converting the thermistor resistance into temperature. It's inverse is.

$$= \frac{a - \frac{1}{T}}{c}$$

$$= \sqrt{\left(\frac{b}{3c}\right)^3 + \frac{2}{4}}$$

$$R = \exp\left(\left(-\frac{1}{2}\right)^{1/3} - \left(+\frac{1}{2}\right)^{1/3}\right)$$

where for the YSI type 44017 Thermistor:

$$a = 0.0012474$$
 $b = 0.000235$ $c = 9.466 E - 08$

The temperature is in degrees Kelvin.

The voltage that will be presented to the ADC, using the voltage divider rule, is:

$$R_x = \frac{R * 20 K}{R + 20 K}$$

$$V_T = \frac{5 V * R_x}{R_x + 4.99 K}$$

The Trej spreadsheet calculates the ADC voltage for a given Trej.

Motor Rejection Temperature Conversion

Kao

Motor Rejection Temperature Conversion					_	Kadc	
a	b	c				(Vadc/V)
0	0	0					6553.6
Trej	Trej	alpha	beta	R	Rx	Vt	Vadc
(oC)	(oK)	(-)	(-)	(ohm)	(ohm)	(V)	(-)
-40	233.15	-32132.73	28719.53	200804	18188	3.924	25713
-35	238.15	-31181.43	28456.17	144939	17575	3.894	25522
-30	243.15	-30269.25	28208.87	105768	16820	3.856	25271
-25	248.15	-29393.84	27976.47	77992	15918	3.807	24947
-20	253.15	-28553	27757.91	58086	14877	3.744	24538
-15	258.15	-27744.74	27552.24	43674	13718	3.666	24028
-10	263.15	-26967.19	27358.55	33137	12472	3.571	23404
-5	268.15	-26218.64	27176.04	25362	11182	3.457	22657
0	273.15	-25497.49	27003.96	19573	9892	3.323	21781
5	278.15	-24802.27	26841.6	15226	8645	3.170	20776
10	283.15	-24131.6	26688.32	11935	7474	2.998	19650
15	288.15	-23484.2	26543.55	9424	6405	2.811	18419
20	293.15	-22858.89	26406.73	7493	5451	2.610	17107
25	298.15	-22254.56	26277.36	5998	4614	2.402	15743
30	303.15	-21670.16	26154.96	4832	3892	2.191	14358
35	308.15	-21104.72	26039.11	3917	3275	1.981	12985
40	313.15	-20557.34	25929.41	3194	2754	1.778	11654
45	318.15	-20027.17	25825.47	2619	2316	1.585	10388

3.3 Ambient Temperature (Tamb)

The ambient temperature is measured with an LM335AZ Precision Temperature Sensor. The sensor transfer function is:

$$Vadc = \frac{10 \, mV}{K}$$

The sensor is specified to operate between -15C (258.15K) to +65C (338.15K).

Ambient Temperature Conversion

gain			Kadc
(V/oK)			(Vadc/V)
0.01			6553.6
Tamb		V	Vadc
(oC)	(oK)	(Vdc)	(bits)
-25	248.15	2.482	16263
25	298.15	2.982	19540
85	358.15	3.582	23472

3.4 LNA Current (Ilna)

The circuitry that measures the LNA supply current uses a differential op-amp configuration to measure the voltage drop across a 10Ω precision resistor. The transfer function is:

$$Vadc = 10 \cdot I_{LNA}$$

Kadc

LNA Current Conversion

gain

(ohm) 10		(Vadc/V) 6553.6
I	V	Vadc
(mA)	(Vdc)	(bits)
125	1.250	8192
60	0.600	3932
40	0.400	2621

3.5 Motor Current (Imot)

The Imot calculation is in Irms. The transfer function from the motor current measurement circuitry is:

$$Vadc = \frac{0.1V}{A} * Irms$$

Motor Current Conversion

ga	in		Kadc
(ohm)		((Vadc/V)
	0.1		6553.6
I		V	Vadc
(A)		(Vdc)	(bits)
	1.5	0.150	983
	3	0.300	1966
	5	0.500	3277

3.6 Input Voltage (Vin)

The input voltage to the system is measured by a differential amplifier whose transfer function is:

$$Vadc = \frac{75 \, mV}{V} \cdot Vin$$

Input Voltage Conversion

gain

(ohm)	((Vadc/V)
0.08	491.52	6553.6
5 7*	X 7	X 7 1
Vin	V	Vadc
(Vdc)	(Vdc)	(bits)
43.2	3.240	21234
48	3.600	23593
52.8	3.960	25952

Kadc

3.7 Power (Pm)

The power into the motor is the motor current times the voltage. The voltage is derived from the input voltage times the PWM duty cycle. The power units in the DSP is the square root of the measured power.

Motor Drive Power

		power gain (V^2/W)	Kadc (Vadc/V)	
		0.01	6553.6	
power		power	power	sqrt(power)
(W)		(V^2)	(adc^2)	(adc)
	0	0	0	0
	10	0.08	3221225	1795
	30	0.23	9663676	3109
	50	0.38	16106127	4013
	70	0.53	22548578	4749
	90	0.68	28991029	5384

3.8 Wide Range Cold Stage Temperature (Tcsw)

The analog, wide-range temperature sensor circuitry was designed to cover an input range of temperatures from 360K to 65K, over 0.2V to 4.8V output range. The temperature to voltage is approximated by a first order fit where:

$$V_{\text{adc}} = (-15.59 \cdot 10^{-3} V/K) * T_{CSW_K} + 5.814V$$

Wide Range Cold Stage Temperature C

	_		
slope	offset	Kadc	
(V/oK)	(V)	(Vadc/V)	
-0.02	5.81	6553.6	
Tcsw		V	Vadc
(oC)	(oK)	(Vdc)	(bits)
-203.15	70	4.723	30951
-193.15	80	4.567	29929
84.85	358	0.233	1526

3.9 Narrow Range Cold Stage Temperature (Tcsn)

slope

The analog, wide-range temperature sensor circuitry was designed to cover an input range of temperatures from 83K to 73K, over 0.2V to 4.8V output range. The temperature to voltage is approximated by a first order fit where:

$$V_{\text{adc}} = (-0.46 \, V/K) * T_{CSW_K} + 38.38 \, V$$

Narrow Range Cold Stage Temperature

Kadc

slope

offset

I .			I .
(V/oK)	(V)	(Vadc/V) ((Vadc/oK)
-0.46	38.38	6553.6	-3015
Tcsw		V	Vadc
(oC)	(oK)	(Vdc)	(bits)
	0.1		-302
-191	82	0.660	4325
-194	79	2.040	13369
-195	78	2.500	16384
-196	77	2.960	19399
-199	74	4.340	28443