符ん

课程名称		工程矩阵理论		考试学期	05-06-2		得	分			
适用专业_		工科硕士研究生		考试形式	闭 卷		考试时间长度		150 分	150 分钟	
	题号		_ =_		<u></u>		fi	六	_ 七		
	得分										

一. (16%) 假设
$$C^{2\times 2}$$
 的 子空 间 $V_1 = \left\{ \begin{pmatrix} a & b \\ a & b \end{pmatrix} | \forall a,b,c \in C \right\}$,

- 二. (8%) 设矩阵 $A = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 2 & 1 \\ 1 & -1 & 0 \end{pmatrix}$ 。试将 $A^2 e^A$ 表示成关于 A 的次数不超过 2 的多项式。
 - 三. (16%) $C^{2\times 2}$ 上的线性变换 f 定义如下:

对任意
$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in C^{2\times 2}$$
, $f(X) = \begin{pmatrix} a-b & c-d \\ c-d & a-b \end{pmatrix}$

- 1. 求f在 $C^{2\times 2}$ 的基 E_{11} , E_{12} , E_{21} , E_{22} 下的矩阵;
- 2. 求f的值域R(f)及核子空间K(f)的各一组基及它们的维数;
- 3. 问: $C^{2\times 2} = R(f) \oplus K(f)$ 是否成立? 为什么?
- 四. (8%) 假设矩阵 $A = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & -2 & 0 & 0 \\ -2 & 4 & 0 & 0 \end{pmatrix}$,求A的广义逆矩阵 A^+ 。
- 五. (12%) 假设矩阵 A 的特征多项式是 $c(\lambda) = (\lambda a)^6$,最小多项式是 $m(\lambda) = (\lambda a)^3$,并且 r(A aI) = 3。
 - 1. 写出 A 的若当标准形 K, 并讨论 A^2 的若当标准形 J;

2. 写出 e^{Jt}

六. (10%) 假设
$$A \in C^{s \times t}, B \in C^{m \times n}, M = \begin{pmatrix} A & O \\ O & B \end{pmatrix}$$
。 若 $\|A\|_F = a$, $\|B\|_F = b$,
$$\|A\|_2 = c$$
, $\|B\|_2 = d$ 。 试求 $\|M\|_F$ 和 $\|M\|_2$ 。

七. (30%)证明题:

- 1. 假设 $n \times n$ 矩阵A满足 $A^2 = 2A$,证明:
 - (1). A 相似于对角阵 $\Lambda = \begin{pmatrix} 2I_r \\ O \end{pmatrix}$, 其中 r 为 A 的秩;
 - (2). tr(A) = 2r(A).
- 2. 假设酉矩阵A是正定的,证明: A=I。
- 3. 假设 $A \neq n \times n$ 上三角矩阵,若A是正规矩阵,证明:A是对角阵。
- 假设 $n \times n$ 矩阵A的秩等于1,若A不是幂零阵,证明:A相似于对角阵。
- 假设 A, B 均是 $n \times n$ Hermite 矩阵,若 A 的特征值均大于 a , B 的特征值均大 于b,证明: A+B的特征值均大于a+b。