數值分析

Chapter 2 Solving Nonlinear Equations

授課教師:劉耀先

國立陽明交通大學 機械工程學系 EE464

yhliu@nctu.edu.tw

110學年度第一學期

Outline

- Background
- Estimation of Errors in Numerical Solutions
- Bisection Method
- Regular Falsi Method
- Newton's Method
- Secant Method
- Fixed Point Iteriation Method
- Use of MATLAB Built-in Functions
- Equations with Multiple Solutions
- System of Nonlinear Equations

2.1 Background

 A solution (or Root) to the equation is a numerical value of x that satisfies the equation

$$f(x) = 0 \prod^{find} solution(root)$$

- When the equation is simple, the value of x can be determined analytically
- Numerically solving an equation ⇒ has to choose desired accuracy
- Approaches:

Initial value $x \rightarrow$ an approximate solution \rightarrow a more accurate solution

Overview of approaches in solving equations numerically

- A numerical solution is obtained in a process that starts by finding an approximate solution and is followed by a numerical procedure in which a better (more accurate) solution is determined.
- Evaluate f(x) at different values of x
- It starts at one value of x and then changes the value of x in small increments
- A numerical solution is obtained one root at a time

(1) Bracketing method

- Identify the interval that includes the solution
- The endpoints of the interval are the upper bound and lower bound of the solution
- Reduce the size of the interval by numerical scheme until the distance between the endpoints is less than the desired accuracy of the solution
- Always converge to the solution
- Bisection method, regula falsi method

(2) Open method

- Assume an initial (one point) for the solution
- The value of this initial guess should be close to the actual solution
- Using numerical scheme to calculate better (more accurate) values for the solution
- Usually more efficient but sometimes might not yield the solution
- Newton's method, secant method, fixed point iteration

2.2 Estimation of errors in numerical solutions

- X_{Ts}: exact(true) solution f(X_{TS})=0
- X_{Ns} : numerical solution $f(X_{NS})=\varepsilon$ a small number $\neq 0$
- (1) True error = X_{TS} - X_{NS}
- (2) Tolerance in $f(x) = |f(x_{TS}) f(x_{NS})| = |o \varepsilon| = |\varepsilon|$
- (3) Tolerance in the solution: the maximum amount by which the true solution can deviate from an approximate numerical solution
- useful for bracketing method
- if solution is within [a,b], $x_{NS} = \frac{a+b}{2}$
- Tolerance= $\left|\frac{b-a}{2}\right|$

Estimation of errors in numerical solutions

Relative error

• True relative error =
$$\frac{|\mathbf{x}_{TS} - \mathbf{x}_{NS}|}{x_{TS}}$$

• Estimated Relative Error =
$$\frac{\left|\frac{x_{NS}^{(n)} - x_{NS}^{(n-1)}}{x_{NS}}\right|}{x_{NS}}$$

• When the estimated numerical solutions are close to the true solution, it is anticipated that the difference $(x_{NS}^{(n)} - x_{NS}^{(n-1)})$ is small compared to the value of $x_{NS}^{(n)}$, and the Estimated Relative Error is approximately the same as the True Relative Error

2.3 Bisection method

- A bracketing method to find f(x)=0 when
 - solution is within a known value of [a,b]
 - f(x) is continuous
 - the equation has one solution

- Procedure
 - $f(a) \cdot f(b) < 0$
 - use the midpoint $(\frac{a+b}{2})$ as the new estimate X_{NS1}
 - assign X_{NS1} to a or b depending on the sign
 - the new interval is the half of the original interval

Bisection method

- (1) Choose [a,b] so that f(a)f(b)<0
- **(2)** $X_{NS1} = \frac{a+b}{2}$
- (3) Check
 - $f(a)\cdot f(X_{NS1})<0 \Rightarrow [a, X_{NS1}]$
 - $f(a)\cdot f(X_{NS1})>0 \Rightarrow [X_{NS1},b]$
- (4) Select a new interval [a,b] and go back to step2
- (5) Repeat until a specified tolerance
- Always converge but slowly

Example 2.1

 Write a MATLAB program in a script file to determine the solution of the equation using bisection method:

$$8-4.5(x-\sin x)=0$$

- The solution should have a tolerance of less than 0.001 rad.
- Create a table that displays the values of a, b, x_{NS}, f(x_{NS}), and the tolerance for each iteration of the bisection process

2.4 Regula falsi method

- False position method, linear interpolation method
- Bracketing method to find f(x)=0
 - (1) solution is within [a,b]
 - (2) f(x) is continuous
 - (3) the equation has a solution
- The equation for the straight line that connects (a,f(a)) and (b, f(x)): $y = \frac{f(b) f(a)}{b a} (x b) + f(b)$ <2-10>

 $f(b_1)$

 $f(a_2)$

 $f(a_1)$

• the point X_{NS1} is the point when y=0 in the above equation

$$x_{NS} = \frac{af(b) - bf(a)}{f(b) - f(a)}$$
 <2-11>

Regula falsi method

- (1) Find [a,b] so that f(a)f(b)<0
- (2) Calculate X_{NS1}by <2-11>
- (3) Check the solution within [a, X_{NS1}] or [X_{NS1},b]
 - If $f(a)\cdot f(X_{NS1})<0 \Rightarrow [a, X_{NS1}]$
 - If $f(a)\cdot f(X_{NS1})>0 \Rightarrow [X_{NS1},b]$
- (4) Select the subinterval that contains the solution

$$[a,b]_{new} = [a,X_{NS1}]or[X_{NS1},b]$$

- (5) repeat $(2) \to (4)$
- Always converges to an answer

2.5 Newton's method (Newton-Raphson method)

- Find the solution of f(x)=0
 - f(x) is continuous and differentiable
 - Has a solution "near a given point"
- Process:
- Choose x₁ (first estimate)
- Find the intersection point of the tangent line at (x₁, f(x₁)) with the x axis as x₂
- Find the intersection point of the tangent line at (x₂, f(x₂))

with the x axis as x_3

• Since $f'(x_1) = \frac{f(x) - 0}{x_1 - x_2}$ $\rightarrow x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
 <2-14>

Newton's method

- If the equation is difficult to do the derivative, the slope can be determined numerically.
- Two error estimates:
 - Estimated relative error: $\left| \frac{x_{i+1} x_i}{x_i} \right| \le \varepsilon$
 - Tolerance in $f(x):|f(x_i)| \le \delta$
- It may not converge usually when
 - (1) Starting point is not close enough to the solution
 - (2) f'(x) is close to zero near the solution

2.6 Secant Method

- Use "two points" (x_1, x_2) in the neighborhood of the solution to determine a new estimate (x_3)
- Use x_2 and x_3 to calculate x_4

•
$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$
 <2-26>

 If the two points are close to each other, it is an approximated form of Newton's method

2.7 Fixed-point iteration method

- Solving the equation of f(x) = 0
- Rewrite the equation $f(x) = 0 \xrightarrow{rewrite} x = g(x)$ $\begin{cases} y = x \\ y = g(x) \end{cases}$

- The point of intersection of the two plots, called fixed point
- The numerical solution is determined by an iterative process using: $x_{i+1} = g(x_i)$ <2-29>

Fixed-point iteration method

• Iteration function: $x_{i+1} = g(x_i)$

The iterations may not converge toward the fixed point:

Fixed-point iteration method

- The iteration function is not unique
- Different iteration functions may yield different roots
- **Lipschitz continuous**: the fixed point method converge if the derivative of g(x) has an absolute value that is smaller than 1:

- Example: $f(x) = xe^{0.5x} + 1.2x 5 = 0$
- Case (a): $x = \frac{5 xe^{0.5x}}{1.2} = g(x)$

•
$$g'(1) = -2.0609$$
 $g'(2) = -4.5305$

Fixed-point iteration method

• Case (b):
$$x = \frac{5}{e^{0.5x} + 1.2}$$

•
$$g'(1) = -0.5079$$

$$g'(2) = -0.4426$$

• Case(c):
$$x = \frac{5 - 1.2x}{e^{0.5x}}$$

•
$$g'(1) = -1.8802$$

$$g'(2) = -0.9197$$

• Case(b) satisfies and
$$x_{i+1} = \frac{5}{e^{0.5xi} + 1.2}$$

• starting with $x_1 = 1$

$$x_2 = \frac{5}{e^{0.5 \cdot 1} + 1.2} = 1.7552 \quad x_3 = \frac{5}{e^{0.5 \cdot 1.7552} + 1.2} = 1.3869$$

...... Until converging to a solution of x=1.5050

2.8 MATLAB built-in function

- fzero: solve an equation with one variable
- $x = fzero(function, x_o)$
- (1) Write directly
- (2) user-defined function
- (3) Anonymous function (function handle)

• Example:

```
>>Fun = @(x)8-4.5*(x-sin(x))
>>sol=fzero(Fun,2)
```

Determine multiple roots separately

```
>>Fun=@ (x) x^2-x-6 >>sol=fzero(Fun,2.5)
>>sol=fzero(Fun,-1)
```

- roots: find the roots of a polynomial → R=roots(p)
- >> P=[1,-1,-6] >> R=roots(p)

2.9 Equations with multiple solutions

- Determine the approximate location of the roots by defining smaller intervals for each roots
- Apply any of the methods in the previous section over a restricted subinterval
- Use fplot to look for sign change at different interval

2.10 System of non-linear equations

- 2.10.1 Newton's method
- $f_1(x,y)=0$ (x_1,y_1) estimated solution
- $f_2(x,y)=0$ (x_2,y_2) true solution
- By Taylor series expansion

$$\begin{cases} f_1(x_2, y_2) = f_1(x_1, y_1) + (x_2 - x_1) \frac{\partial f_1}{\partial x_{|x_1, y_1}} + (y_2 - y_1) \frac{\partial f_1}{\partial y_{|x_1, y_1}} + \dots = 0 \\ f_2(x_2, y_2) = f_2(x_1, y_1) + (x_2 - x_1) \frac{\partial f_2}{\partial x_{|x_1, y_1}} + (y_2 - y_1) \frac{\partial f_2}{\partial y_{|x_1, y_1}} + \dots = 0 \end{cases}$$

Neglecting high order terms

$$\begin{cases} \frac{\partial f_1}{\partial x} \Delta x + \frac{\partial f_1}{\partial y} \Delta y = -f_1(x_{1, y_1}) \\ \frac{\partial f_2}{\partial x} \Delta x + \frac{\partial f_2}{\partial y} \Delta x + \frac{\partial f_2}{\partial y} \Delta y = -f_2(x_{1, y_1}) \end{cases} \longrightarrow \begin{cases} \Delta x = x_2 - x_1 \\ \Delta y = y_2 - y_1 \end{cases} \longrightarrow \begin{cases} x_2 = x_1 + \Delta x \\ y_2 = y_1 + \Delta y \end{cases}$$

The only unknowns

$$\begin{cases} \Delta x = x_2 - x_1 \\ \Delta y = y_2 - y_1 \end{cases} \longrightarrow \begin{cases} x_2 = x_1 + \Delta x \\ y_2 = y_1 + \Delta y \end{cases}$$

2.10 System of non-linear equations

- 2.10.2 Fixed point iteration method
- A system of n nonlinear equations

$$\begin{cases}
f_1(x_1, x_2, \dots, x_n) = 0 \\
f_2(x_1, x_2, \dots, x_n) = 0 \\
\vdots \\
f_n(x_1, x_2, \dots, x_n) = 0
\end{cases}$$

$$\begin{cases}
x_1 = g_1(x_1, x_2, \dots, x_n) \\
x_2 = g_2(x_1, x_2, \dots, x_n) \\
\vdots \\
x_n = g_n(x_1, x_2, \dots, x_n)
\end{cases}$$

- Guess $(x_1, x_2, \dots, x_n)_{1st}$ \rightarrow substitute into g_1, \dots, g_n
- Second estimate $(x_1, x_2, \dots, x_n)_{2nd}$ \rightarrow substitute into g_1, \dots, g_n
- The procedure is repeated until convergence