GDB-9 & Small Molecule Universes

Stefan O. Gugler

Massachusetts Institute of Technology Department of Chemical Engineering

May 31, 2018

- GDB-9 dataset
- Small Ligand Universe General Reduction Rules SLU Analysis
- 3 Assembly of complexes General

GDB-17

- Up to 17 atoms with CNOS and halogens
- Results in 166 billion molecules
- Contains more nonaromatic heterocycles, quarternary centers, stereoisomers than PubChem

GDB-17

- H4: C15 & C16 graphs are allowed max one 3- or 4-membered ring.
- S1: No allenes (C=C=C).
- F2: Maximum one N or O in small rings.
- P4: No aliphatic thiols or thioethers.

Stefan O. Gugler (MIT) Group Meeting May 31, 2018 4/39

Examples of up to 4 atoms

```
1: C, N, O
```

- 2: C#C, C#N, C=O, CC, CO
- 3: CC#C, CC#N, CC=O, NC=O, CCC, CCO, COC
- 4: C1CC1, C1CO1, CC(=O)C, CC(=O)N, NC(=O)N, CC(C)C, CC(C)O, C(#C)C#C, C(#C)C#N, N#CC#N, O=CC#C, O=CC#N, O=CC=O, CC#CC, CCC#C, CCC#N, NCC#N, OCC#C, OCC#N, CCC=O, CNC=O, COC=O, OCC=O, CCCC, CCCO, CCCO, CCCO

GDB-9 and QM-9

- 134,000 molecules up to 9 CHNOF atoms from GDB-17
- Minimum energies, harmonic frequencies, dipole moments, polarizabilities, enthalpies, free energies of atomization
- B3LYP/6-31G(2df,p)

Small Ligand Universe: Motivation

- GDB-9 analogon for inorganic chemistry (less restrictive)
- First and second shell complexes are representative
- Establish more informatics for inorganic chemistry

Where do we find DLPNO?

cost (not to scale)

accuracy

Where do we find DLPNO?

990

Procedure

- Generate small ligand universe (SLU)
- Assemble complexes with different symmetries from truncated SLU
- 3 Analysis of symmetry classes

Full Space → Scored Space

- charge $\in [-2, +2]$
- H atoms $\in [0, 4]$
- element $\in \{C, N, O, P, S\}$

These rules are demonstrated in the following for the di-heavy-atoms.

Rules to reduce Full Space → Scored Space

Constraints:

- Charge $c = c_1 + c_2 \le 1$
- Sterics: H atoms < 4 on connecting atoms
- Closed shell (even number of electrons)

 \rightarrow Reduces 5625 ligands to 1171.

Octet Rule

Molecules that fulfill the octet rule are more stable.

$$u_{\text{octet,i}} = \begin{cases} 10 + 2 \cdot (8 - VE_i) & \text{if } 8 - VE_i < 0\\ 10 - 1 \cdot (8 - VE_i) & \text{if } 8 - VE_i \ge 0 \end{cases}$$
 (1)

$$u_{\text{octet}} = \frac{1}{2} \sum_{i}^{2} u_{\text{octet},1} + u_{\text{octet},2}$$
 (2)

Charge Constraints

We reward only mildly negatively charged compounds.

$$u_{\text{charge}} = \begin{cases} 0 & \text{if } c_1 + c_2 > 0\\ 3 & \text{if } 0 \ge c_1 + c_2 \ge -2\\ 1 & \text{if } c_1 + c_2 = -3\\ 0 & \text{if } c_1 + c_2 = -4 \end{cases}$$

$$(3)$$

VSEPR Constraints

If two atoms have the same amount of bond ready electrons, they are more stable.

$$u_{\text{VSEPR}} = 5 - \underset{i}{\text{Diff}} \left(VE_i - 2 \cdot LP_i + c_i - 2 \cdot h_i \right) \tag{4}$$

Sterics

All compounds with more than three H atoms on the connecting atom will be sterically hindered.

$$u_{\rm CA} = \begin{cases} 2 & \text{if } h_1 = 3\\ 3 & \text{if } h_1 < 3 \end{cases}$$
 (5)

Global utility function

$$u_{\text{total}} = u_{\text{octet}} + u_{\text{charge}} + u_{\text{VSEPR}} + u_{\text{CA}}$$
 (6)

Analysis: Score, bond order, charge, valence electrons

Recover spectrochemical series

Spectrochemical series is recovered in the top scores.

Ligand	Score	
[C]#[N-]	14	
[C+]#[O-]	15	
[N-]#[C]	15	
[N+]=[O]	13	
[O-]#[O-]	14	
[S-]#[S-]	14	

s = 15 also contains species like [CH2-]#[CH], [OH-]=[NH], [NH2--]#[P].

Desired space = top scoring ligands

We include all ligands with a score at least as high as the lowest scoring spectrochemical series ligand (s = 13)

This gives us 553 ligands in total.

Overview of considered symmetry classes

Subsets of octahedral space

Set	description	size
Homoleptics	eq = ax	553
"5+1" symmetric	eq = $ax1 \neq ax2$	163,620
"4+2" symmetric	eq1 \neq eq2 = ax	185,376
Strongly symmetric	$eq \neq ax$	245,316
Equatorially asymmetric	eq1 \neq eq2 \neq ax	15,924,796
Weakly symmetric	eq \neq ax1 \neq ax2	45,077,310
Complete Heteroleptics	$L_i \neq L_j$	$\approx 5.9 \cdot 10^{12}$
Octahedral Space	all	$> 1.8 \cdot 10^{14}$

Properties of the sets

- Reduce space to facilitate sampling from non-homoleptics
- Example: strongly symmetric, monodentate ligand fields (163,620)
- Exclude all with charge smaller than -4, which results in 87,150 ligand fields (53 %).

Principal Component Analysis

- Use RACs to characterize complexes (JP in JPCA 2017).
- PCA shows highest variance
- Compare eigendecay on RAC155 and RAC RF39.

PCA: Strongly symmetric complexes

- Only RF39.
- Colored by connecting atom type (PC1 and PC2)
- Colored by metal type (PC3 and PC4)

25/39

PCA: Homoleptics span the space

Figure: Homoleptics

Figure: 4+2

Figure: 5+1

Figure : Strongly Symmetric

Footprint

We use five properties inspired by MCDL25 to characterize the ligand field and generate a five dimensional distribution:

- total charge
- total valence electrons
- electronegativity of the connecting atom
- $\int_{ax,eq}^{lc} \chi_1 = \sum EN_{CA} \cdot EN_i$
- $\frac{\mathrm{lc}}{\mathrm{ax,eq}}\chi_1' = \sum EN_{\mathrm{CA}} EN_i$

Correlations for strongly symmetric monodentates

The less peaky the better.

Entropy and KDE

We then calculate the entropy, $H_{\rm KDE}$, of the Kernel Density Estimated distrbution. We want it to be uniform (high entropy) not to oversample.

Example of KDE slice

Dimensions $^{lc}_{ax,eq}\chi_1$ vs. charge in H_{KDE} for strongly symmetric monodentates.

Entropies of various symmetry classes

Table : Entropic footprint

Set	$H_{ m KDE}$
Homoleptics	20.18
Strongly symmetric	14.04
"4+2" symmetric	13.68
"5+1" symmetric	13.65
Equatorially asymmetric	10.57
Weakly symmetric	8.86

Multinomial peaking

- The more dice, the more the distribution peaks which results in low entropy.
- Sample from low entropy uniformly and get similar molecules.

DFT calculations

We calculated the homoleptic sets (405 ligands).

Basis set: LACVPS (6-31G*)

Effective core potential: LANL2DZ

Functional: B3LYP

DFT calculations analysis

DFT calculations analysis

DLPNO-CCSD(T) calculations

- Basis set: CC-pV(D/T)Z (also tried def2)
- Auxiliary Basis: AutoAux
- RIJCOSX approximation for speed-up
- Increased maximum iterations for SCF to 500
- NormalPNO vs. TightPNO

Basis set comparison

CBS comparison and time analysis

Thanks for the opportunity to work in this lab!

Kulik Group
computational inorganic
molecular design, est. 2013

