PAT-NO: JP405342631A

DOCUMENT-IDENTIFIER: JP 05342631 A

TITLE: OPTICAL INFORMATION RECORDING MEDIUM AND ITS

MANUFACTURE

.....

PUBN-DATE: December 24, 1993

INVENTOR-INFORMATION:

NAME
ISOMURA, HIDEMI
YOSHIOKA, KAZUMI
AKIYAMA, TETSUYA
OTA, TAKEO

ASSIGNEE-INFORMATION:

NAME COUNTRY

MATSUSHITA ELECTRIC IND CO LTD N/A

APPL-NO: JP04154651

APPL-DATE: June 15, 1992

INT-CL (IPC): G11B007/24, G11B007/26

ABSTRACT:

PURPOSE: To provide a stable <u>optical information recording medium</u> excellent

in recording and erasing characteristics and capable of withstanding thermal

shocks at the time of recording and due to environmental changes.

CONSTITUTION: Tantalum oxide, tantalum nitride or tantalum oxynitride is

used as the material of first and second dielectric layers 2, 6 and a middle

layer 7 based on zinc sulfide is formed at the interface between the second

dielectric layer 6 and a reflecting layer 8. The bonding strength of the

tantalum oxide, tantalum nitride or tantalum oxynitride to the
reflecting layer

5/12/06, EAST Version: 2.0.3.0

8 is increased and the resulting recording medium withstands thermal shocks at the time of recording and due to environmental changes and has improved recording and erasing characteristics.

COPYRIGHT: (C) 1993, JPO&Japio

....

(19)日本国特新庁(JP) (12) 公開特許公報(A) (11)特許出願公開番号

特開平5-342631

(43)公開日 平成5年(1993)12月24日

(51)Int.CL⁵

識別記号

庁内整理番号

FI

技術表示箇所

G11B 7/24

5 3 6 Q 7215-5D 5 3 1

7/26

7215-5D

審査請求 未請求 請求項の数2(全 4 頁)

(21)出願番号

特願平4-154651

(22)出顧日

平成4年(1992)6月15日

(71)出願人 000005821

松下電器產業株式会社

大阪府門真市大字門真1006番地

(72)発明者 機村 秀己

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 ▲吉▼岡 一己

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72) 発明者 秋山 哲也

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 小鍜治 明 (外2名)

最終頁に続く

(54)【発明の名称】 光学式情報記録媒体とその製造方法

(57)【要約】

【目的】 記録消去特性に優れ記録時及び環境変化によ る熱衝撃に耐えられる安定な光学式情報記録媒体を提供 する。

【構成】 第1,第2の誘電体層2,6として酸化タン タル、または窒化タンタル、またはタンタル窒酸化物を 用い反射層8と接する界面に硫化亜鉛を主成分とする中 間層7を設け、酸化タンタル、窒化タンタル、タンタル 窒酸化物と反射層8との付着力をあげ、記録時及び環境 変化による熱衝撃に耐えられ、記録消去特性が向上す る.

1 ---ディスク基板

2--第10龄电传層

3---茅1の中間層

4--- 記録層

5---第2の中間層

6---第2の誘電体層

1…第3の中間層

8--- 反射層

9---接着剂

10---保護板

1

【特許請求の範囲】

【請求項1】透明基板の一方の面にタンタル化合物から なる第1の誘電体層と、硫化亜鉛を主成分とする第1の 中間層と、レーザ光の照射によりそのエネルギーを吸収 して昇温、溶融し、急冷して非晶質化する性質と非晶質 の状態を昇温することにより結晶化する性質を有する記 録層と、硫化亜鉛を主成分とする第2の中間層と、前記 第1の誘電体層と同一材料からなる第2の誘電体層と、 硫化亜鉛を主成分とする第3の中間層と反射層とを順次 形成したことを特徴とする光学式情報記録媒体。

【請求項2】透明基板の一方の面にタンタル化合物から なる第1の誘電体層と、硫化亜鉛を主成分とする第1の 中間層と、レーザ光の照射によりそのエネルギーを吸収 して昇温、溶融し、急冷して非晶質化する性質と非晶質 の状態を昇温することにより結晶化する性質を有する記 録層と、硫化亜鉛を主成分とする第2の中間層と、前記 第1の誘電体層と同一材料からなる第2の誘電体層と、 硫化亜鉛を主成分とする第3の中間層と反射層とを順次 形成した光学式情報記録媒体の製造法であって、第1、 第2の誘電体層をスパッタ法を用い、スパッタ圧力を5 ×10-4Torr~5×10-3Torrとし、酸素分圧 を5×10-5Torr~1×10-4Torrで形成する ことを特徴とする光学式情報記録媒体の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はレーザービーム等によ り、情報を高密度、大容量で記録再生及び消去できる光 学式情報記録媒体に関するものである。

[0002]

【従来の技術】光ディスクメモリに関しては、TeとT 30 e Ozを主成分とするTe Ox (0<x<2.0)薄膜 を用いた追記型のディスクがある。また繰り返し記録・ 消去が可能な消去ディスクが実用化されつつある。この 消去ディスクはレーザ光により記録薄膜を加熱し、溶融 し、急冷することにより、非晶質化して情報を記録し、 またこれを加熱し徐冷することにより結晶化して消去す ることができるものであるが、この記録薄膜の材料とし てはS. R. Ovshinsky (エス・アール・オブ シンスキー) 氏等のカルコゲン材料Ge15Te81Sb2 S2等が知られている。また、As2S2やAs2Se3あ るいはSb₂Se₃等カルコゲン元素と周期律表第V族あ るいはGe等の第IV族元素等の組み合せからなる薄膜等 が広く知られている。これらの記録薄膜をレーザ光ガイ ド用の溝を設けた基板に形成し、光ディスクとして用い ることができる。

【0003】これらのディスクにレーザ光で情報を記録 し、その情報を消去する方法としては、あらかじめ記録 薄膜を結晶化させておき、これに約1μmに絞ったレー ザ光を情報に対応させて強度変調を施し、例えば円盤状

クパワーレーザ光照射部位は、記録薄膜の融点以上に昇 温し、かつ急冷し、非晶質化したマークとして情報の記 録がおこなえる。またこの変調バイアスパワーレーザ光 照射部位は、記録薄膜の結晶化温度以上に昇温し、既記 録信号情報を消去する働きがありオーバライトできる。 このように記録薄膜はレーザ光によって融点以上に昇温 し、また結晶化温度以上に昇温されるものである。この ため記録薄膜の下面および上面に、耐熱性のすぐれた誘 電体層を基板および接着層に対する保護層として設けて 10 いるのが一般的である。これらの誘電体層の熱伝導特性 により、昇温および急冷、徐冷の特性が変わるものであ るから、誘電体層の材質あるいは層構成を選ぶことによ って記録および消去の特性を決めることができるもので ある。

2

[0004]

【発明が解決しようとする課題】記録薄膜を加熱昇温 し、溶融急冷非晶質化および加熱昇温結晶化の手段を用 いる情報記録および消去可能なオーバライト記録媒体に おける課題は、加熱サイクルに対応して信号品質が変動 することである。この変動要因としては、記録スポット 光による400℃以上の急速な加熱、冷却の繰り返し刺 激によるディスク基板あるいは誘電体層の熱的、機械的 な損傷がある。ディスク基板あるいは誘電体層が熱的な 損傷を受けた場合、記録再生、消去のサイクルにおいて ノイズの増大を生じ、サイクル特性の劣化が発生すると いう課題があった。

【0005】もう一つは前述したように相変化を利用し た消去ディスクは熱記録であるため、記録あるいは消去 をおこなったときの冷却速度が特性を左右するものであ る。すなわち誘電体層の材質あるいは誘電体層の膜厚等 のディスク構成によっては冷却速度が左右され、この冷 却速度を早くするため誘電体材質として酸化タンタル、 窒化タンタル、タンタル窒酸化物を使用し、記録消去の 繰り返しによる熱衝撃を小さくでき、サイクル特性が大 幅に改善された。また、酸化タンタル、窒化タンタル、 タンタル窒酸化物は記録層との付着力が弱いため記録層 と接する界面に硫化亜鉛を主成分とする薄い中間層を設 けることによりこの付着力が改善された。しかし、酸化 タンタル、窒化タンタル、タンタル窒酸化物は反射層と の付着力が弱いため記録時及び環境変化による剥離等が 発生するという課題があった。

【0006】本発明の目的は記録消去特性に優れ、記録 時および環境変化による熱衝撃に耐えられる光ディスク を提供することである。

[0007]

【課題を解決するための手段】本発明は透明基板の一方 の面に酸化タンタル、または窒化タンタル、またはタン タル窒酸化物からなる第1の誘電体層と、硫化亜鉛を主 成分とする第1の中間層とレーザ光の照射により、その の記録ディスクを回転せしめて照射した場合、このピー 50 エネルギーを吸収して昇温、溶融し、急冷して非晶質化 3

する性質と非晶質の状態を昇温することにより結晶化す る性質を有する記録層と、硫化亜鉛を主成分とする第2 の中間層と前記第1の誘電体層と同一材料からなる第2 の誘電体層と、硫化亜鉛を主成分とする第3の中間層と 反射層とを順次形成したことを特徴とするものである。 [8000]

【作用】本発明によれば、酸化タンタル、窒化タンタ ル、タンタル窒酸化物は、反射層との付着力が弱いが、 反射層と接する界面に硫化亜鉛を主成分とする薄い中間 層を設けることにより、付着力が改善され記録時及び環 10 は生じなかった。 境変化による熱衝撃に耐えられるものとなる。

[0009]

【実施例】図1は、本発明の一実施例の光学式情報記録 媒体の断面図を示し、図1において、1はディスク基板 でポリカーボネイト等の樹脂基板からなっている。この ディスク基板1はあらかじめレーザ光案内用の溝を形成 した樹脂基板あるいは2p法で溝を形成したガラス板、 ガラス板に直接溝を形成した基板であってもよい。2は 第1の誘電体層で酸化タンタルTa₂O₅からなってお り、膜厚は約150nmである。3、5、7は中間層で 20 硫化亜鉛に、酸化物としてSiOzを20%含有させた もので、膜厚は30nmである。6は記録層でTe-G e-Sbからなり膜厚は約30nmである。8はAL合 金からなる反射層で膜厚は約100 nmである。10は 保護板で接着剤9によって反射層8に貼り合わせてい る。これらの誘電体層2、6、中間層3、5、7、記録 層4、反射層8の形成方法としては、一般的には真空蒸 着あるいはスパッタ法が用いられる。

【0010】本実施例では、誘電体層として酸化タンタ ルの形成方法について説明する。酸化タンタルターゲッ 30 トをアルゴンガスと酸素の混合ガスを用いたスパッタ法 を用いている。この時のスパッタ圧力を5×10-4To rr~5×10-3Torrとし、この時、酸素分圧が特 性あるいは膜質を決定する上で重要である。そこで誘電 体膜の場合スパッタ時の酸素分圧は、5×10-5Tor r~6×10-2Torrの範囲が適当である。この分圧 より少なくすると膜が着色してしまうため、信号の記 録、再生時にレーザ光の吸収がおこる。また多くすると 膜が着色するという問題はないが、ディスク基板1との 密着性が低下し、環境変化における剥離やクラック等を 40 1 ディスク基板 生じる問題がある。

【0011】本実施例のディスク構成で、外径130m ■、1800 rpm回転、線速度8m/secでf1= 3. 43 MHzの信号、f 2=1.0 MHzの信号のオーバ ーライト特性を測定した。オーバーライトは、1個のサ ークルスポットで約1μmのレーザ光により、高いパワ ーレベル16mW、低いパワーレベル8mWの間の変調 で、高いパワーレベルで非晶質化マークを形成し、低い パワーレベルで非晶質化マークを結晶化して消去する同 時消録の方法で行った。

【0012】この結果、記録信号のC/N比としては、 55dB以上が得られ、消去特性として、オーバーライ ト消去率30dB以上が得られた。オーバライトのサイ クル特性については、特にビットエラーレイトの特性を 測定した結果、100万サイクル以上劣化が見られなか った。

【0013】また、この光学式情報記録媒体を室温環境 から90℃に保たれた恒温槽中への投入及び取りだしを 行っても、各層間での剥離やクラックの発生などの損傷

【0014】本実施例では、第1,第2誘電体材料を酸 化タンタルからなる誘電体層としたが窒化タンタル、タ ンタル窒酸化物でもよい。また、各層の膜厚歯、光学的 な干渉効果による再生信号の大きさと、熱の拡散速度を して決定されるものであり、第1の誘電体層の膜厚は、 150~200 nmの範囲が良い。第2の誘電体層の膜 厚は、20~50nmの範囲が良い。第1,第2,第3 の中間層の膜厚は1~5 nmの範囲が良い。

【0015】また、上記光学式情報記録媒体の誘電体層 の形成方法としては、前述した酸化タンタルのターゲッ トをアルゴンと酸素の混合ガスを用いたスパッタ法であ るが、この他、窒化タンタル、タンタル窒酸化物のター ゲットをアルゴンと窒素の混合ガス、アルゴンと酸素と 窒素の混合ガスを用いてもよい。

【0016】この時のスパッタ圧力、窒素分圧、酸素分 圧は上述した値でよく、スパッタ圧力は5×10-4To rr~5×10-3Torr、窒素分圧と酸素分圧は5× 10-5Torr~6×10-2Torrで誘電体層を形成 する.

[0017]

【発明の効果】以上、説明したように本発明によれば反 射層と接する界面に硫化亜鉛を主成分とする薄い中間層 を設けることにより記録、消去サイクル特性の安定な光 学式情報記録媒体が得られるとともに、多回数の書換え や環境変化に耐えられる光学式情報記録媒体を実現でき るものである。

【図面の簡単な説明】

【図1】本発明の実施例を示す光記録媒体の断面図 【符号の説明】

- - 2 第1の誘電体層
 - 3 第1の中間層
 - 4 記録層
 - 5 第2の中間層
 - 6 第2の誘電体層
 - 7 第3の中間層
 - 8 反射層
 - 9 接着剤
 - 10 保護板

【図1】

フロントページの続き

en eng + p +

(72)発明者 太田 威夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内