## Extra credit problems

## Math 485

- 0. Find a mistake or misprint in "Extra pearls". (The score depends on the type of mistake.)
- 1. (solved) Assume  $d_1, \ldots, d_p$  is a sequence of integers in a nonincreasing order. Show that it is multigraphic if and only if  $d_p \geq 0$ , the sum  $d_1 + \cdots + d_p$  is even and

$$d_1 \le d_2 + \dots + d_p.$$

- (A sequence of integers  $d_1, \ldots, d_p$  is called *multigraphic* if it appears as a sequence of degrees of a multigraph.)
- 2. (solved) Assume that a sequence  $d_1, \ldots, d_p$  is graphic,  $d_i \geq 1$  for each i and

$$d_1 + \dots + d_p \ge 2 \cdot (p-1).$$

Show that there is a *connected* graph G with the degree sequence  $d_1, \ldots, d_p$ .

- 3. (solved) Show that in any connected graph G there is a vertex v such that G-v is connected.
- 4. (solved) Let G be a connected graph. Show that any two paths of maximum length in G have a common vertex.
- 5. Assume two trees R and S have the vertices  $r_1, \ldots, r_n$  and  $s_1, \ldots, s_n$  correspondingly. Assume that  $R r_i$  is isomorphic to  $S s_i$  for each i. Show that R is isomorphic to S.
- 6. (solved) Let G be a critical graph and  $\chi(G) = k+1$ . Show that after removing any k-1 edges from G the obtained graph remains connected.
- 7. (solved) Assume both sequences  $d_1, \ldots, d_p$  and  $d_1 1, \ldots, d_p 1$  are graphic. Show that there is a graph with a 1-factor and degree sequence  $d_1, \ldots, d_p$ .
- 8. Show that any edge of cubic graph lies in an even number of Hamiltonian cycles.
- 9. (solved) Assume that the edges of a complete graph are colored in two colors. Show that there is a Hamiltonian cycle which either monochromatic or consists of two monochromatic paths.

- 10. Assume that G is a connected cubic graph such that for any two vertices v, w of G there is an isomorphism  $G \to G$  which sends v to w. Prove that G remains connected after removing any 2 edges.
- 41. (solved) Let G be a connected graph with no triangles. Given any two vertices v, w in G, denote by d(v, w) the length of a shortest path containing v to w

Show that G is a tree if and only if

$$d(x,y) + d(v,w) = \max\{d(x,v) + d(y,w), d(x,w) + d(y,v)\}\$$

for any 4 vertices x, y, v, w in G.

- 12. Understand the proof of Vizing's theorem (see the references for Theorem 2.2.2 in "Pearls" or find a proof elsewhere).
- 13. Suppose p = r(m, n) is the Ramsey number for m and n. Assume that G results from  $K_p$  by deleting a single edge. Show that G has a red/blue edge coloring with no red  $K_m$  and no blue  $K_n$ .
- 14. Assume that the real intervals  $I_1, \ldots, I_k$  have  $2 \cdot k$  different ends that are chosen randomly from  $\{1, 2, \ldots, 2 \cdot k\}$ . Consider the graph G with k vertexes such that ith vertex is connected to jth vertex if and only if  $I_i$  overlaps with  $I_j$ . Show that G has diameter  $\leq 2$  with probability at least  $\frac{2}{3}$ .
- 15. Understand the proof of Erdős–Lovász theorem (see the references for Theorem 2.1.5 in "Pearls", or Theorem 2.14 in "Extra pearls", or find a proof elsewhere).
- 16. (solved) Let G be a graph with p vertexes. Show that G is a tree if and only if its chromatic polynomial is  $x \cdot (x-1)^{p-1}$ .
- 17. Let T be a spanning tree in a graph G with weighted edges. Show that T has minimal total weight if and only if the weight of any edge (a, b) in G is at least as large as the weight of any edge on the path from a to b in T.
- 18. In a group of people, for some fixed s and any k, any k girls like at least k-s boys in total. Show that then all but s girls may get married on the boys they like.
- 19. Let M be a maximal planar map. Assume the vertexes of M are colored in 3 colors. Show that the number of the regions that get all three colors is even.
- 20. Let M be a map and G be its dual. Show that M and G have the same number of spanning trees.
- 21. Show that any map has a vertex of degree at most 3 or a country with at most 3 sides.