

TECHNICAL ENHANCEMENTS OF A SUBMILLIMETER-WAVE SPECTROMETER: LABORATORY DETECTION OF NEW LINES OF METHANOL RADICAL DERIVATIVES

J-T.Spaniol¹, O.Chitarra¹, T.S.Hearne¹, M-A. Martin-Drumel¹, O.Pirali¹

¹Université Paris Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France

Methanol radical derivatives: an astrophysical interest

Many molecules in space are radicals:

Major importance for astrochemistry!

Why should we investigate rotational spectrum of methanol radical derivatives?

- C, O and H containing species
- CH₂OH potentially precursor of Complex Organic Molecules¹
- CH₃O already detected in the Interstellar Medium²

^{1.} T. Butscher et al., MNRAS, 453, 1587, 2015

^{2.} J. Cernicharo et al., ApJ, 759, pL43, 2012

Experimental set-ups available at ISMO

Experimental set-ups available at ISMO

Experimental set-ups available at ISMO

Challenges

Low SNR for radicals

Need to improve our sensitivity $(A=\varepsilon^*l^*c)$

Sometimes hidden in precursors lines

Need to improve our discrimination power

Initial experimental set-up¹

Characteristics:

- Synthetizer (2-20 GHz) + frequency multiplier (VDI)
- Detector: Shottky diode or bolometer
- FM modulation + 2F detection
- 150 cm cell
- Radical produced by fluorine H abstraction
- Typical spectra recorded in 1min40 / 10 MHz²

Source

Lens

Pump

• Roots + primary vacuum pump (250m³/h)

- 1. O.Chitarra et al. A&A. 644. 2020
- 2. Step of 50kHz,

Effect of the magnetic field on an open-shell species¹:

Zeeman Interaction

Effect of the magnetic field on an open-shell species¹:

Effect of the magnetic field on an open-shell species¹:

Effect of the magnetic field on an open-shell species¹:

Zeeman Interaction

Without magnet

With magnet

Effect of the magnetic field on an open-shell species¹:

Effect of the magnetic field on an open-shell species¹:

(tine sit)

(tine 418770 418775 418780 418785 418790 418795 Frequency (MHz)

Without magnet

With magnet

Difference spectrum

- No signal of CH₂OH!
- Very short area of radical production!

1°: Increase synthesis yield

Decrease recombination of atomic fluorine

Increase synthesis yield of radicals

2°: Increase absorption length

3°: Improve discrimination

3°: Improve discrimination

3°: Improve discrimination

Results

Initial Set-Up

One area of production Single passage Single modulation (FM)

2 Spectra for each lines needed (total of 3min12 in usual conditions)

SNR~2 on weakest lines

Final Set-Up

Triple area of production
Double passage
Double modulation (FM+Magnetic field)

1 Spectrum for each lines needed (3min25 in usual conditions)

SNR~10 for the same line

Initial Set-Up

One area of production Single passage Single modulation (FM) in the same condition for the same time

2 Spectra for each lines needed (total of 3min12 in usual cond

SNR~2 on weakest lines

500 new lines of CH₂OH and 476 new lines of CH₃O measured up to 900 GHz

See O.Chitarra's talk (WJ03)

Conclusion and Perspectives

• New study on other interesting radicals: CH₂CN

- Apply a larger current larger magnetic field means a better modulation
- Fabry-Perot Cavity
 - => absorption will be increased by several orders of magnitude

Acknowledgement

Collaborators:

Institut des Sciences Moléculaires d'Orsay, France

Olivia Chitarra

Thomas Sandow Hearne

Marie-Aline Martin-Drumel

Olivier Pirali

Fabio Beccucci

Funding agencies:

