

Polar3 ™ HiPerFET™ **Power MOSFET**

IXFA10N60P IXFP10N60P

600V 10A $740 m\Omega$

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

Symbol	Test Conditions	Maximum Ra	atings
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	600	V
V _{DGR}	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	600	V
V _{GSS}	Continuous	±30	V
V _{GSM}	Transient	±40	V
I _{D25}	T _c = 25°C	10	A
I _{DM}	$T_{\rm c} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	25	Α
I _A	T _c = 25°C	10	A
E _{AS}	$T_c = 25^{\circ}C$	500	mJ
dv/dt	$I_{S} \le I_{DM}, V_{DD} \le V_{DSS}, T_{J} \le 150^{\circ}C$	10	V/ns
P_{D}	T _c = 25°C	200	W
T		-55 +150	°C
T _{JM}		150	°C
T _{stg}		-55 +150	°C
T _L T _{SOLD}	Maximum Lead Temperature for Soldering Plastic Body for 10s	300 260	°C °C
M _d	Mounting Torque (TO-220)	1.13 / 10	Nm/lb.in
Weight	TO-263 TO-220	2.5 3.0	g g

Symbol (T _J = 25°C,	Test Conditions Unless Otherwise Specified)	Charac Min.	cteristic Typ.	Values Max	
BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	600			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1mA$	3.0		5.5	V
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			25 500	μ Α μ Α
R _{DS(on)}	V _{GS} = 10V, I _D = 0.5 • I _{D25} , Note 1			740	mΩ

TO-263 (IXFA)

TO-220 (IXFP)

G = Gate = Drain S = SourceTab = Drain

Features

- International Standard Packages
- Fast Intrinsic Rectifier
- Avalanche Rated
- Low R_{DS(ON)} and Q_G
 Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- Laser Drivers
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol (T _J = 25°		Test Conditions Inless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max
g _{fs}		V _{DS} = 10V, I _D = 0.5 • I _{D25} , Note 1	6	11	S
C _{iss})			1720	pF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		160	pF
C _{rss}	J			14	pF
t _{d(on)}	7	Decistive Cuitabine Times		23	ns
t,	(Resistive Switching Times		27	ns
$\mathbf{t}_{d(off)}$		$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D2S}$ $R_{C} = 10\Omega$ (External)		65	ns
t,	J	n _G = 1052 (External)		21	ns
$\mathbf{Q}_{g(on)}$)			32	nC
\mathbf{Q}_{gs}	}	$V_{gs} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		12	nC
\mathbf{Q}_{gd}	J			10	nC
R _{thJC}					0.62 °C/W
R _{thCS}		TO-220		0.50	°C/W

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values		;	
$T_{\rm J} = 25^{\circ}$ C,	Unless Otherwise Specified)	Min.	Тур.	Max	
Is	$V_{GS} = 0V$			10	Α
sm	Repetitive, Pulse Width Limited by $T_{_{JM}}$			30	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.5	V
$\left. egin{array}{c} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight. ight.$	$I_F = 5A$, -di/dt = 200A/ μ s $V_R = 100V$		120 320 3	200	ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

TO-263 Outline 1. Gate 2. Drain 3. Source 4. Drain

MYZ	INCHES MILLIMET		1ETERS	
2114	MIN	MAX	MIN	MAX
Α	.160	.190	4.06	4.83
A1	.080.	.110	2.03	2.79
b	.020	.039	0.51	0.99
b2	.045	.055	1.14	1.40
С	.016	.029	0.40	0.74
c2	.045	.055	1.14	1.40
D	.340	.380	8.64	9.65
D1	.315	.350	8.00	8.89
Ε	.380	.410	9,65	10.41
E1	.245	.320	6.22	8.13
е	.100 BSC		2.54 BSC	
L	.575	.625	14.61	15.88
L1	.090	.110	2.29	2.79
L2	.040	.055	1.02	1.40
L3	.050	.070	1.27	1.78
L4	0	.005	0	0.13

MYZ	INC	INCHES		MILLIMETERS	
21M	MIN	MAX	MIN	MAX	
Α	.169	.185	4.30	4.70	
A1	.047	.055	1.20	1.40	
A2	.079	.106	2.00	2.70	
Ь	.024	.039	0.60	1.00	
b2	.045	.057	1.15	1.45	
С	.014	.026	0.35	0.65	
D	.587	.626	14.90	15.90	
D1	.335	.370	8.50	9.40	
(D2)	.500	.531	12.70	13.50	
Ε	.382	.406	9.70	10.30	
(E1)	.283	.323	7.20	8.20	
е	.100 BSC		2.54 BSC		
e1	.200 BSC		5.08 BSC		
H1	.244	.268	6.20	6.80	
L	.492	.547	12.50	13.90	
L1	.110	.154	2.80	3.90	
ØΡ	.134	.150	3.40	3.80	
Q	.106	.126	2.70	3.20	

Fig. 1. Output Characteristics @ $T_J = 25^{\circ}C$

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 5A Value vs.

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 5A Value vs.

Fig. 6. Maximum Drain Current vs. Case Temperature

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

