Jacob Miller - Homework 4

March 2, 2020

```
[1]: import pandas as pd
  import numpy as np
  import patsy
  import statsmodels.api as sm
  import scipy
  import matplotlib.pyplot as plt
  from astropy.table import Table
```

0.1 Problem 1

```
[2]: # Problem setup
    SS_reg = 5550.8166
    SS_{tot} = 5784.5426
    table = Table([['Regression', 'Residual', 'Total'], # Source of Variation
                   [SS_reg, '[ ]', SS_tot], # Sum of Squares
                   ['[ ]', '[ ]', # Degrees of Freedom
                   ['[ ]', '[ ]', ' '], # Mean Square
                   ['[ ]', ' ', '
                                         '], # FO
                               ', ' ']], # P-value
                   ['[ ]', '
                  names = ('Source of Variation', 'Sum of Squares',
                           'Degrees of Freedom', 'Mean Square', 'FO', 'P-value'))
    # Sum of Squares
    SS_res = round(SS_tot - SS_reg, 4)
    # Degrees of Freedom
    DoF_reg = 2
    DoF_tot = 25 - 1
    DoF_res = round(DoF_tot - DoF_reg, 4)
    # Mean Squares
    MS_reg = round(SS_reg / DoF_reg, 4)
    MS_res = round(SS_res / DoF_res, 4)
    # F0
```

```
F0 = round(MS_reg / MS_res, 4)
# P-value
P = 1 - scipy.stats.f.cdf(F0, DoF_reg, DoF_res)
# Final table
table = Table([['Regression', 'Residual', 'Total'], # Source of Variation
               [SS_reg, SS_res, SS_tot], # Sum of Squares
               [DoF_reg, DoF_res, DoF_tot], # Degrees of Freedom
               [MS_reg, MS_res, ''], # Mean Square
               [FO, '', ''], # FO
               [P, '', '']], # P-value
              names = ('Source of Variation', 'Sum of Squares',
                       'Degrees of Freedom', 'Mean Square', 'F0', 'P-value'))
```

```
[3]: print(table.to_pandas().to_string())
```

```
Source of Variation Sum of Squares Degrees of Freedom Mean Square
                                                                              F0
P-value
           Regression
                            5550.8166
                                                         2
                                                             2775.4083 261.2419
4.440892098500626e-16
             Residual
                             233.7260
                                                        22
                                                               10.6239
                Total
                            5784.5426
                                                        24
```

```
[4]: |print('--> Small P-value [{:e}] | Reject null hypothesis <--'.format(P))
```

--> Small P-value [4.440892e-16] | Reject null hypothesis <--

Problem 2

```
[5]: df = pd.DataFrame(data = {'Pressure_(x)': [30, 31, 32, 33, 34, 35, 36],
                               'Mileage_(y1)': [29.5, 32.1, 36.3, 38.2,
                                                 37.7, 33.6, 26.8],
                               'Mileage_(y2)' : [30.2, 34.5, 35.0, 37.6,
                                                 36.1, 34.2, 27.4]}).\
                               set_index('Pressure_(x)')
```

1.0.1 Problem 2.a

```
[6]: df_com = df[df.columns[0]].append(df[df.columns[1]])
    plt.scatter(x = df_com.index.values, y = df_com)
    plt.xlabel('Pressure (psi)')
    plt.ylabel('Milage (thousands)')
    plt.show()
    print('--> Optimal tire pressure appears to be between 32 - 34 psi <--')</pre>
```


--> Optimal tire pressure appears to be between 32 - 34 psi <--

1.0.2 Problem 2.b

```
[7]: y, X = patsy.dmatrices('df_com.values ~ df_com.index', df_com)

model = sm.OLS(y, X)
results = model.fit()
results.model.data.design_info = X.design_info

print('--> y = {} + {} * x <--'.format(*np.round((results.params[0], results.params[1]), 2)))

fig, ax = plt.subplots()
fig = sm.graphics.plot_fit(results, 1, ax = ax)
ax.set_xlabel('Pressure (psi)')</pre>
```

```
ax.set_ylabel('Mileage')
plt.show()
```

```
--> y = 40.35 + -0.21 * x <--
```


1.0.3 Problem 2.c

```
SS_pe = np.round(float(sum(df['PE Sums'])), 3)
SS_lof = np.round(float(SS_res - SS_pe), 3)
# Degrees of Freedom
DoF_reg = 1
DoF_tot = len(df_com) - 1
DoF_res = DoF_tot - DoF_reg
DoF_pe = len(df) # because each X has exactly 2 y, this is just num of X's
DoF_lof = DoF_res - DoF_pe
# Mean Squares
MS_reg = np.round(float(SS_reg / DoF_reg), 3)
MS_res = np.round(float(SS_res / DoF_res), 3)
MS_pe = np.round(float(SS_pe / DoF_pe), 3)
MS_lof = np.round(float(SS_lof / DoF_lof), 3)
# F0
F0 = round(MS_lof / MS_pe, 3)
# P-value
P = round(1 - scipy.stats.f.cdf(F0, DoF_reg, DoF_res), 10)
table = Table([['Regression', 'Error', 'Lack of Fit', 'Pure Error', 'Total'],
               [SS_reg, SS_res, SS_lof, SS_pe, SS_tot], # Sum of Squares
               [DoF_reg, DoF_res, DoF_lof, DoF_pe, DoF_tot], # Degrees of
 \rightarrowFreedom
               [MS_reg, MS_res, MS_lof, MS_pe, ''], # Mean Square
               ['', '', F0, '', ''], # F0
               ['', '', P, '', '']], # P-value
              names = ('Source of Variation', 'Sum of Squares',
                       'Degrees of Freedom', 'Mean Square', 'F0', 'P-value'))
```

[9]: print(table.to_pandas().to_string())

```
Source of Variation Sum of Squares Degrees of Freedom Mean Square
                                                                             F0
P-value
0
           Regression
                                 2.403
                                                         1
                                                                  2.403
1
                Error
                               183.434
                                                         12
                                                                 15.286
          Lack of Fit
                               177.644
                                                         5
                                                                 35.529 42.961
2.71169e-05
3
           Pure Error
                                 5.790
                                                         7
                                                                  0.827
                Total
4
                               185.837
                                                         13
```

1.0.4 Problem 2.d

--> R = 0.01293 | Low R-squared suggests model does not fit data well <--

1.0.5 Problem 2.e

```
[11]: print('--> P = {} | Reject hypothesis that model describes data <--'.format(P))
```

--> P = 2.71169e-05 | Reject hypothesis that model describes data <--

1.0.6 Problem 2.f

```
[12]: print('--> Assumed first order linear regression, bad assumption <--')
```

--> Assumed first order linear regression, bad assumption <--

2 Problem 4.3

```
[13]: df = pd.read_excel('Data/data-table-B2.xlsx')
    y, X = patsy.dmatrices('y ~ x4', df)
    model = sm.OLS(y, X)
    results = model.fit()
    results.model.data.design_info = X.design_info
```

2.0.1 Problem 4.3.a

```
[14]: # Get residuals and probability for plot
    residuals = results.resid
    Prob = [(i - 1/2) / len(y) for i in range(len(y))]

# Calculate OLS using residuals to plot straight line. Get y values from model
    resid_results = sm.OLS(Prob, sm.add_constant(sorted(residuals))).fit()
    X_range = np.linspace(min(residuals), max(residuals), len(residuals))

# Normal Probability Plot + straight line
    fig, ax = plt.subplots()
    ax.scatter(sorted(residuals), Prob)
    ax.plot(X_range, resid_results.params[0] + resid_results.params[1] * X_range)
    ax.set_xlabel('Residual')
    ax.set_ylabel('Probability')
```

```
plt.title('Normal Probability Plot')
plt.show()

print('--> Minimal fluctuation suggests normality is ok <--')</pre>
```


--> Minimal fluctuation suggests normality is ok <--

2.0.2 Problem 4.3.b

```
[15]: fig, ax = plt.subplots()
   ax.scatter(results.fittedvalues, residuals)
   ax.axhline(0)
   ax.set_xlabel('Fitted Values')
   ax.set_ylabel('Residuals')
   plt.title('Residuals Versus Predicted Response')
   plt.show()

   print('--> Appears to be non-constant variance (funnel or double-bow) <--')</pre>
```


--> Appears to be non-constant variance (funnel or double-bow) <--

3 Problem 4.5

```
[16]: df = pd.read_excel('Data/data-table-B4.xlsx')
y, X = patsy.dmatrices('y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9', df)
model = sm.OLS(y, X)
results = model.fit()
results.model.data.design_info = X.design_info
```

3.0.1 Problem 4.5.a

```
[17]: # Get residuals and probability for plot
residuals = results.resid
Prob = [(i - 1/2) / len(y) for i in range(len(y))]

# Calculate OLS using residuals to plot straight line. Get y values from model
resid_results = sm.OLS(Prob, sm.add_constant(sorted(residuals))).fit()
X_range = np.linspace(min(residuals), max(residuals), len(residuals))

# Normal Probability Plot + straight line
```

```
fig, ax = plt.subplots()
ax.scatter(sorted(residuals), Prob)
ax.plot(X_range, resid_results.params[0] + resid_results.params[1] * X_range)
ax.set_xlabel('Residual')
ax.set_ylabel('Probability')
plt.title('Normal Probability Plot')
plt.show()

print('--> Minimal fluctuation suggests normality is ok <---')</pre>
```


--> Minimal fluctuation suggests normality is ok <--

3.0.2 Problem 4.5.b

```
[18]: fig, ax = plt.subplots()
   ax.scatter(results.fittedvalues, residuals)
   ax.axhline(0)
   ax.set_xlabel('Fitted Values')
   ax.set_ylabel('Residuals')
   plt.title('Residuals Versus Predicted Response')
   plt.show()

   print('--> If outlier in top left corner is removed, plot has incline <--')</pre>
```

print('--> from lower left to top right. Otherwise no significant pattern <--')</pre>


```
--> If outlier in top left corner is removed, plot has incline <--
--> from lower left to top right. Otherwise no significant pattern <--
```

3.0.3 Problem 4.5.c

```
[19]: fig, ax = plt.subplots(figsize = (10, 20))
    fig = sm.graphics.plot_partregress_grid(results, fig = fig)
    plt.show()
    print('--> Intercept, x1 have large influence. x2 minimal influence. <---')
    print('--> x3 and above appear to not have any influence <---')</pre>
```


- --> Intercept, x1 have large influence. x2 minimal influence. <--
- --> x3 and above appear to not have any influence <--

3.0.4 Problem 4.5.d

[20]: infl = results.get_influence()
 print(infl.summary_table())
 print('--> "Obs 15" (i.e. observation 16 because table is 0-based) <--')
 print('--> has larger absolute value than others, likely outlier <--')</pre>

======	=====						
======		=====					
	obs	endog	fitted	Cook's	student.	hat diag	dffits
ext.stu	ıd.	dffits					
			value	d	residual		internal
residua	residual						
		29.500	20 420	0.000	0 022	0 441	0 020
0.031			29.429	0.000	0.032	0.441	0.029
0.001		27.900	28.061	0.000	-0.063	0.244	-0.036
-0.060		0.034			0.000	***	0.000
	2	25.900	27.989	0.014	-0.783	0.181	-0.368
-0.771	-	0.363					
	3	29.900	29.160	0.001	0.265	0.099	0.088
0.256		.085					
		29.900	26.028	0.142	1.627	0.349	1.190
1.741		.274	20.400	0.040	0 500	0.005	0.400
-0.518		30.900 0.418	32.120	0.018	-0.532	0.395	-0.430
-0.516			30.362	0.232	-0.943	0.723	-1.525
-0.939		1.518	00.002	0.202	0.010	0.720	1.020
0.000		35.900	33.595	0.029	0.909	0.260	0.539
0.903	0	.535					
	8	31.500	31.321	0.000	0.076	0.362	0.057
0.073	0						
			33.512	0.082	-1.102	0.403	-0.905
-1.111		0.913					
4 447			33.599	0.057	-1.107	0.316	-0.753
-1.117	11	0.760 30.000	30.165	0.001	-0.082	0.538	-0.089
-0.079	-		30.103	0.001	-0.002	0.556	-0.009
0.015			39.861	0.127	-1.320	0.421	-1.127
-1.360						-	•

	13	41.900	40.071	0.283	1.119	0.693	1.681
1.130	1.	698					
	14	40.500	39.921	0.005	0.263	0.442	0.234
0.254	0.	226					
	15	43.900	39.647	0.372	2.002	0.481	1.929
2.284	2.	201					
	16	37.500	35.116	0.156	1.179	0.530	1.250
1.197	1.	270					
	17	37.900	39.811	0.062	-0.872	0.448	-0.785
-0.864	-C	.778					
	18	44.500	43.609	0.010	0.389	0.398	0.316
0.377	0.	307					
	19	37.900	36.340	0.035	0.695	0.420	0.591
0.681	0.	580					
	20	38.900	42.620	0.107	-1.525	0.316	-1.036
-1.609	-1	.094					
	21	36.900	39.705	0.210	-1.380	0.525	-1.450
-1.431	-1	.503					
	22	45.800	42.066	0.097	1.511	0.297	0.983
1.591	1.	035					
	23	25.900	26.591	0.049	-0.441	0.717	-0.703
-0.428	-C	.682					

=============

4 Problem 4.17

```
[21]: df = pd.read_excel('Data/data-table-B10.xlsx')
y, X = patsy.dmatrices('y ~ x1 + x2', df)
model = sm.OLS(y, X)
results = model.fit()
results.model.data.design_info = X.design_info
```

4.0.1 Problem 4.17.a

```
[22]: # Get residuals and probability for plot
residuals = results.resid
Prob = [(i - 1/2) / len(y) for i in range(len(y))]

# Calculate OLS using residuals to plot straight line. Get y values from model
resid_results = sm.OLS(Prob, sm.add_constant(sorted(residuals))).fit()
X_range = np.linspace(min(residuals), max(residuals), len(residuals))
```

^{--&}gt; "Obs 15" (i.e. observation 16 because table is 0-based) <--

^{--&}gt; has larger absolute value than others, likely outlier <--

```
# Normal Probability Plot + straight line
fig, ax = plt.subplots()
ax.scatter(sorted(residuals), Prob)
ax.plot(X_range, resid_results.params[0] + resid_results.params[1] * X_range)
ax.set_xlabel('Residual')
ax.set_ylabel('Probability')
ax.set_ylim(0, 1)
plt.title('Normal Probability Plot')
plt.show()

print('--> Normality plot exhibits negative skew, therefore problems <--')</pre>
```


--> Normality plot exhibits negative skew, therefore problems <--

4.0.2 Problem 4.17.b

```
[23]: fig, ax = plt.subplots()
   ax.scatter(results.fittedvalues, residuals)
   ax.axhline(0)
   ax.set_xlabel('Fitted Values')
   ax.set_ylabel('Residuals')
   plt.title('Residuals Versus Predicted Response')
   plt.show()
```


--> Definite non-linear pattern for residual vs. predicted plot <--

4.0.3 Problem 4.17.c

'Viscosity to Temp Only (PRESS_2)': press2})

[25]: print(comp_press)

	Ordinary Residuals	Full Model (PRESS_1)	Viscosity to Temp Only (PRESS_2)
0	0.999076	1.145488	1.506526
1	0.454365	0.506862	0.886794
2	0.123653	0.135198	0.524019
3	-0.074058	-0.079914	0.313249
4	-0.178770	-0.191651	0.203821
5	-0.221481	-0.237440	0.159980
6	-0.221793	-0.239329	0.160660
7	-0.187604	-0.205120	0.198456
8	-0.130516	-0.145596	0.263173
9	-0.055227	-0.063321	0.352562
10	0.372160	0.410135	0.567421
11	0.077448	0.083130	0.238523
12	-0.096263	-0.101347	0.052291
13	-0.182975	-0.190211	-0.037924
14	-0.210686	-0.217648	-0.066133
15	-0.200398	-0.207019	-0.055572
16	-0.159609	-0.165922	-0.013791
17	-0.094721	-0.099723	0.053905
18	-0.013032	-0.013988	0.142049
19	0.080256	0.088446	0.247925
20	-0.042795	-0.047041	-0.173574
21	-0.155507	-0.166500	-0.289264
22	-0.205218	-0.215530	-0.335759
23	-0.209330	-0.217084	-0.335802
24	-0.180441	-0.185957	-0.304061
25	-0.126153	-0.130009	-0.248337
26	-0.051064	-0.052956	-0.172336
27	0.036624	0.038465	-0.082802
28	0.136413	0.146056	0.021991
29	0.244301	0.268542	0.140661
30	-0.182774	-0.211246	-0.646409
31	-0.194985	-0.219217	-0.642721
32	-0.171097	-0.188507	-0.605512
33	-0.122608	-0.133304	-0.547849
34	-0.052320	-0.056512	-0.472294
35	0.031669	0.034206	-0.386085
36	0.127757	0.138902	-0.289256
37	0.230646	0.254115	-0.185306
38	0.342634	0.385215	-0.069492
39	0.464422	0.536768	0.061965

```
Full Model: PRESS Statistic = 3.112 | R^2 (Pred) = 77.75%

Partial Model: PRESS Statistic = 6.777 | R^2 (Pred) = 51.54%

--> Full Model: Lower PRESS, higher R^2 implies better prediction <--
```