L: tipo de linguagem $(D, \overline{})$ L-estrutura: De um conjunto uso vagio domínio do estutura - i a função interpretação da estrutura · ce6 - TeD (existem # D possivais malhes por C • $f \in \mathcal{F} \text{ t.q. } \mathcal{N}(f) = m \ge 1 \longrightarrow \overline{f} : D^m \longrightarrow D$ fumão

(existem (#D) possíveis escolhos

poro f a Dfinib) · RER tol qu N(R)=n > R relação m-snà em D (i.e. $\overline{R} \subseteq D^m$) (existem 2 "pontivis is wolhers fare R m D finita)

a: $\mathcal{D} \rightarrow dom(E)$ función: atribuição em E $t \in \mathcal{T}_L$ $t [a]_E$: valor de t em t para a • x [a] = a(n), $\forall x \in \mathcal{D}$ • $c [a] = \overline{c}$, $\forall c \in \mathcal{G}$ • $f(t_1, ..., t_m) [a] = \overline{f}(t_1[a], ..., t_n[a])$, $\forall f \in \mathcal{F}_{t,q}$. $s(f) = m \ge 1$ $\forall t_1, ..., t_m \in \mathcal{T}_L$

$$a(x) := a': \mathcal{V} \rightarrow dom(E)$$
atribuição em E

definida por $a'(y) = \begin{cases} d \text{ se } y = x \\ a(x) \text{ se } y \in \mathcal{V} \end{cases}$

• L[a] = 0• $R(t_1,...,t_m)[a] = 1$ see $(t,[a],...,t_m[a]) \in \mathbb{R}$ • V(R) = m

- · (74)[a] = 1 me 4[a] = 0
- · (4,4) [a] = 1 se p[a] = 4[a] = 1
- · (414)[M=0 m y[a]= 4[a]=0
- · (4>4) [a] = 0 m 4 [a] = 1 1 4 [c] = 0
- · (4004)[a] == 1 m y (a] == 4 [a] E
- $(\exists n \varphi) [a] = 1$ m fxist de $D t \cdot q$. $\Psi[a(\frac{\gamma}{d})] = 1$
- · $(\forall n \, \psi) \, [a]_{\varepsilon} = 1$ me Brotadod $\varepsilon D \, \psi \, [a \, (\frac{u}{d})]_{\varepsilon}^{=1}$.

Ex 5.1

$$a: 29 \rightarrow dom(E)$$
 atribuição $x_i \mapsto a(x_i)$

t[a] : volor de t em E para a

•
$$f(t_1,...,t_m)[a] = \overline{f}(t_1[a],...,t_m[a]),$$

para todo $f \in \overline{f} t_1...,t_m \in \overline{f}$
• para quaisque $t_1,...,t_m \in \overline{f}$

$$0 \ [a_2] = \overline{0} = 0$$

ii)
$$x_5 [a_1] = a_1 (x_5)$$

$$x_5 [a_2] = a_2 (x_5)$$

$$= 5$$

iii)
$$\Delta(x_2)[\alpha_1] = \overline{\Delta}(x_2[\alpha_1]) = \overline{\Delta}(\alpha_1(x_2)) = \overline{\Delta}(0) = 0 + 1 = 1$$

$$\Delta(x_2)[a_2] = \overline{\Delta}(x_2[a_2]) = \overline{\Delta}(a_2(x_2)) = \overline{\Delta}(a_$$

(iv)
$$(5(0)+x_3)[a_1] = 5(0)[a_1] + x_3[a_1]$$

= $\overline{5}(0[a_1]) + a_1(x_3)$
= $\overline{5}(\overline{5}) + 0 = (0+1)+0$

5.1 a) (out.)

(
$$\Delta(0) + \chi_3$$
) [α_2] = $\overline{\Delta}$ ($\overline{0}$) $\overline{+}$ $\alpha_2(\chi_3)$

= (0+1) + 3 = 4

N) $\Delta(0 \times (\chi_2 \times \chi_3))$ [α_1] = $\overline{\Delta}$ ((0 \times (\chi_2 \times \chi_3)) [α_1])

= $\overline{\Delta}$ (0 [α_1] $\overline{\times}$ ($\chi_2 \times \chi_3$) [α_1])

= $\overline{\Delta}$ ($\overline{0}$ $\overline{\times}$ (χ_2 [α_1] $\overline{\times}$ (χ_3 [α_1]))

= $\overline{\Delta}$ ($\overline{0}$ $\overline{\times}$ (χ_4 [χ_4]) = $\overline{\Delta}$ (0) = 0+1 = 1

 $\Delta(0 \times (\chi_2 \times \chi_3))$ [α_2] = $\overline{\Delta}$ (0 \times (χ_4) \times $\overline{\Delta}$ (0 \times (χ_4) \times $\overline{\Delta}$ (0) = 0+1 = 1.

Ni) (($\Delta(0) + \chi_4$) \times \times (χ_4) \times $\overline{\Delta}$ (0) = 0+1 = 1.

Ni) (($\Delta(0) + \chi_4$) \times \times (χ_4) \times $\overline{\Delta}$ (0) = 0+1 = 1.

(($\Delta(0) + \chi_4$) \times \times (χ_4) \times $\overline{\Delta}$ (0) = 0+1 = 1.

5.1. a, (xi) = 0, pare todo i E INo az (xi) = i, pare todo i EINo b) i) y= x1=>6 $(x_1 = x_2)[a_1] = 1$ so $(a(x_1), a_1(x_2)) \in =$ sse 0=0, o que i verdede. Logo, φ [an] = 1. $\varphi[a_2] = (\varkappa_1 = \varkappa_2)[a_2] = 1$ see $a_2(\varkappa_1) = a_2(\varkappa_2)$ me 1=2, o que é folso. Portent, y [az] = 0 ii) Por i), 7 (x1=x2) [a1] = 0 1 7 (x1=x2) [a2]=1. iii) $\varphi = \Lambda(n_1) < (n_1+0)$. φ[a1)=1 m (s(x1) [a1], (x1+0) [a1]) ∈ < $MC\left(\overline{S}\left(a_1(x_1)\right),\overline{+}\left(a_1(x_1),\overline{o}\right)\right) \in \overline{<}$ sse 1 < 0, oque é folso. Portents, y [ai] = 0.

 $\varphi [az] = 1 \text{ m} \left(\overline{D} (az(x_1)), + (az(x_1), \overline{D}) \right) \in \overline{C}$ $Mc \quad 2 < 1 , \quad qu \quad \overline{D} \int_{D}^{D} dz dz dz dz$ Assim, $\varphi [az) = 0$.

iv) $\varphi = (x_1 < x_2) \rightarrow (x_1) < x_2$ $(x_1) < x_2$ $(x_2) < x_2$ $(x_1) < x_2$ $(x_2) < x_2$ (x_2)

 $φ [a_2]_{\epsilon_{Ant}} = 0 \quad m \quad (a_2(n_1), a_2(n_2)) \in \overline{Z} \quad (\overline{S}(a_2(n_1)), \overline{S}(a_2(n_2))) \notin \overline{Z}$ $m \quad 1 < 2 \quad 2 \quad 43 \quad , \quad o \quad qm \quad i \quad folio \, .$

Portents, p[az] = 1

(9) i) $\forall x_1 (x_1 = x_2) [a_1] = 1$ see Paratado $d \in IN_0$, $(x_1 = x_2) [a_1 (x_1)] = 1$ me Para tado $d \in IN_0$, $(d, a_1(x_2)) \in =$ see Para tado $d \in IN_0$, d = 0, o que é falso.

Portento, $\forall x_1 (x_1 = x_2) [a_1] = 0$.

 $\exists n_1 (n_1 = n_2) [a_1] = 1$ son $\exists x_1 \text{ fiste puls memors um } de/N_0$ $tolque (n_1 = n_2) [a(n_1)] = 1$ son $\exists x_1 \text{ fiste puls memors um } de/N_0$ tolque d = 0, o que i verdode.

Assim, $\exists x, (x_1 = x_2) [a_1] = 1$.

(iii)
$$\varphi = \lambda(x_1) < (x_1 + 0)$$

($\forall x_1 \varphi$) $[a_1] = 1$ m $\exists x_1 \neq x_2 \neq x_3 \neq x_4 \neq x_5 \neq x_4 \neq x_5 \neq x_5$

Portont, (+x,4) [a1]=1

 $(\exists x, \varphi)$ [a₁]=1 son frist de INo t.q. $(d \ge 0 \text{ ou } d < 0)$, o que i verdade.

Assim, $(\exists x, \varphi)$ [a₁]=1.

que é verdade.

5.1 d)

- i) Vinnos que φ [az] = 0, pare φ = χ1 = χ2 Logo, φ mã é válida ma estrutura Exit
- mot à volido no estentene fait

iii) $\varphi = A(x_1) < (x_1 + 0)$

Vinnos que $\varphi[a_1] = 0$. Portents, φ musé e vélide ma estruture E_{Arit} .

(iv) Sejs a ume atribuição em f_{Ait} . $\varphi = (x_1 < x_2) \rightarrow (x_1 < x_2)$

Temos que

 $\varphi[a] = 1$ M $(a(x_1), a(x_2)) \notin \overline{<}$ ou $(\overline{s}(a(x_1)), \overline{s}(a(x_2))) \in \overline{<}$ M $a(x_1) \ge a(x_2)$ ou $a(x_1) + 1 < a(x_2) + 1$ M $a(x_1) \ge a(x_2)$ ou $a(x_1) < a(x_2)$,

o que é verdade, uma vez que a(x1), a(x2) E/No.

Portonts, $\varphi[a]=1$, pare todo a atribuição a em Exit, donde φ e vihida em Exit.

5.1

vskda.

e) Não sendo válidas em fait, as formulas das alíneas b) i, ii) e iii) não sai universalmente válidas

iv) Considerences a l-estature $E = (Z, ^{\sim})$ onde \tilde{o} é o nuímero zero, $S: Z \to Z$ é definida por $S(x) = x^2$, para todo $x \in Z$, $\tilde{+}$ é a adició resural em Z, $\tilde{\times}$ é a multiplicação resural em Z, $\tilde{\times}$ é a multiplicação resural em Z, $\tilde{\times}$ é a relação de igualdade resural em Z e $\tilde{\times}$ e a relação "menor do que" resural em Z.

Syon $a: \mathcal{D} \longrightarrow \mathbb{Z}$ a stribuição em E dodo for $a(\pi_i) = \int -2i$ se $i \in Impore e \varphi = (\pi_1 < \pi_2) \Rightarrow (\pi(\pi_1) < \pi(\pi_2)).$ $\begin{cases} 0 & \text{se } i \in \text{par} \end{cases}$

Temos que $\varphi[a]_{f} = 0$ me $(x_{1} < x_{2})[a]_{g} = 1$ e $(x_{1} < x_{2})[a]_{g} = 0$ me $(a(x_{1}), a(x_{2}))[a]_{g} = 0$ me $(a(x_{1}), a(x_{2})) \in \mathcal{L}$ e $(\mathcal{S}(a(x_{1})), \mathcal{S}(a(x_{2}))) \notin \mathcal{L}$ must -2 < 0 e $+ \mathcal{P} \circ 0$, o que e verded. Portents, $\varphi[a]_{f} = 0$ e $\varphi[a]_{f} = 0$ e $\varphi[a]_{g} = 0$ e

Ex. 5.2.
$$E = (D, -) \qquad D = \{d_1, d_2\}$$

$$\overline{O} = d_1 \qquad + : D^2 \longrightarrow D$$

$$(x_1 y) \longmapsto d_2$$

$$\overline{X} : D \longrightarrow D$$

$$X \longmapsto X \qquad \overline{X} : D^2 \longrightarrow D$$

$$(x_1 y) \longmapsto \{d_1 \text{ se } x = y \text{ } d_2 \text{ se } x \neq y \text{ } d_2 \text{ se } x \neq y \text{ } d_2 \text{ } \text{ se } x \neq y \text{ } d_2 \text{ } \text{ se } x \neq y \text{ } d_2 \text{ } \text{ se } x \neq y \text{ } d_2 \text{ } d_2 \text{ se } x \neq y \text{ } d_2 \text{ } d_2 \text{ se } x \neq y \text{ } d_2 \text{ } d_2 \text{ se } x \neq y \text{ } d_2 \text{ } d_2 \text{ se } x \neq y \text{ } d_2 \text{ } d_2 \text{ se } x \neq y \text{ } d_2 \text{ } d_2 \text{ se } x \neq y \text{ } d_2 \text{ } d_2 \text{ } d_2 \text{ se } x \neq y \text{ } d_2 \text{ } d_2$$

$$a_1: \mathcal{D} \longrightarrow D$$
 $a_2: \mathcal{D} \longrightarrow D$ $x_i \longmapsto d_2 \in i \text{ par}$ todo i $d_1 \in i \text{ impor}$

a) i)
$$0[a_1] = \overline{0} = d_1$$

 $0[a_2] = \overline{0} = d_2$

(ii)
$$x_5[a_1] = a_1(x_5) = d_2$$

 $x_5[a_2] = a_2(x_5) = d_1$

iii)
$$\Delta(x_2)[a_1] = \overline{\Delta}(a_1(x_2)) = \overline{\Delta}(d_2) = d_2$$

 $\Delta(x_2)[a_2] = \overline{\Delta}(a_2(x_2)) = \overline{\Delta}(d_2) = d_2$

$$\begin{array}{ll} (\nabla) & \Lambda \left(O \times (x_2 \times x_3) \right) \left[a_1 \right] = \\ &= \overline{\Lambda} \left(\overline{X} \left(O \left[a_1 \right], \left(x_2 \times x_3 \right) \left[a_1 \right] \right) \right) = \\ &= \overline{\Lambda} \left(\overline{X} \left(\overline{O}, \overline{X} \left(a_1 (x_2), a_1 (x_3) \right) \right) \right) \\ &= \overline{\Lambda} \left(\overline{X} \left(d_1, \overline{X} \left(d_2, d_2 \right) \right) \right) \\ &= \overline{\Lambda} \left(\overline{X} \left(d_1, d_1 \right) \right) = \overline{\Lambda} \left(d_1 \right) = d_1 \end{array}$$

$$\begin{array}{ll} (\sigma) & \varphi = \chi_1 = \chi_2 \\ \varphi & [a_1]_f = 1 & \text{sse} & (\chi_1 & [a_1]_, \chi_2 & [a_1]_) \in = \\ \text{sse} & (d_2, d_1) \in = , & \text{oque} \\ & e & \text{folso}. \end{array}$$

$$logo$$
, $\psi[a_1]_{f} = 0$.

iii)
$$\varphi = \Delta(x_1) < (x_1 + 0)$$

$$\varphi [a_1]_{\varepsilon} = 1 \quad \text{SX} \quad (\Delta(x_1) [a_1], (x_1 + 0) [a_1]) \in \overline{<}$$

$$\text{SX} \quad (\overline{\Delta}(d_2), \overline{+}(d_2, d_1)) \in \overline{<}$$

$$\text{SX} \quad (d_2, d_2) \in \overline{<}, \quad o \quad q^m$$

mão é vindade.

Portent,
$$\varphi[a_1]_E = 0$$
.

```
5.2
b) (cont.)
   (v) \varphi = (\chi_1 < \chi_2) \rightarrow (\Delta(\chi_1) < \Delta(\chi_2))
      \varphi [a_1]_{\bar{\epsilon}} = 1 sse (x_1 < x_2) [a_1] = 0 on
                                    s(x1) < s(x2) [a1] = 1
                            (a_1(x), a_1(x_2)) \notin \overline{<} o \cup
                        SSC
                                    (s(x1) [a1], s(x2)/2) E =
                        See (d_2, d_2) \notin \overline{c} \circ (\overline{D}(a_1(x_1)), \overline{D}(a_1(x_2))) \in \overline{c}
                        SSI (d_2, d_2) \notin \overline{\langle} \quad \text{ov} \quad (d_2, d_2) \in \overline{\langle} \quad ,
                                       o que i verdade.
       Fortants, \varphi(a_1)_E = 1.
  \varphi[a_2]_E = 1 ss (a_2(x_1), a_2(x_2)) \notin \overline{<}
                                (\overline{\Lambda}(a_2(x_1)),\overline{\Lambda}(a_2(x_2))) \in \overline{\langle}
                          sse (d_1, d_2) \notin \mathbb{Z}
                                (\overline{\Lambda}(d_1), \overline{\Lambda}(d_2)) \in \overline{C}
                         ssc (d_1, d_2) \notin \overline{c} ou (d_1, d_2) \in \overline{c}
                              o que et verdede.
  Logo, φ[az] = 1.
```

£x. 5.3

$$L = (\{0, \Lambda, +, \times\}, \{<, =\}, \mathcal{N}) \text{ onde}$$

$$\mathcal{N}(0) = 0, \mathcal{N}(\Lambda) = 1, \mathcal{N}(+) = \mathcal{N}(\times) = \mathcal{N}(<) = \mathcal{N}(=) = 2$$
a)
$$E = (\{0\}, -) \text{ estruture de tipo L}$$

$$\overline{O} \in \{0\};$$

$$\overline{S}: \{0\} \rightarrow \{0\}; \text{ função};$$

$$\overline{+}: \{0\} \times \{0\} \rightarrow \{0\}; \text{ função};$$

$$\overline{\times}: \{0\} \times \{0\} \rightarrow \{0\}; \text{ função};$$

$$\overline{<}: 716 | 2 \sqrt{50} \text{ bins no em } \{0\}; \text{ (ou sejs., } \overline{<} \text{ e subcoujouts}$$

$$du \{0\} \times \{0\};$$

$$=: 113 (450) \text{ bins no em } \{0\}; \text{ (i.e., } \overline{=} \subseteq \{0\} \times \{0\};$$

Assim, existem $1 \times 1^{1} \times 1^{1} \times 1^{1} \times 2^{1} \times 2^{1} = 4$ estruturas de tipo L com domínio $\{0\}$.

 $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $\overline{0} : \{0,1,2\} \to \{0,1,2\} \text{ is funges}, \ \overline{+}, \overline{\times} : \{0,1,2\}^2 \longrightarrow \{0,1,2\} \text{ is funges}$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $\overline{0} : \{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,1,2\}, -) \text{ is estimatione do tipo } L \iff \overline{0} \in \{0,1,2\};$ $E = (\{0,$

Araim, existem

3×33×39×39×29×29= 32×218

estrutures de tipo L com domínio {0,1,2}.

$$\frac{1}{7} : \{0,1,2\} \times \{0,1,2\} \longrightarrow \{0,1,2\}$$

$$(x, y) \longmapsto y$$

$$\overline{X} : \{0,1,2\} \times \{0,1,2\} \longrightarrow \{0,1,2\}$$

$$(21,1) \longrightarrow 21$$

$$= = \{ (1,2) \}$$