

(43) Internationales Veröffentlichungsdatum 25. März 2004 (25.03.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/024933 A2

- C12P 13/04, (51) Internationale Patentklassifikation⁷: 13/12
- PCT/EP2003/009453 (21) Internationales Aktenzeichen:
- (22) Internationales Anmeldedatum: 26. August 2003 (26.08.2003)
- (25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 26. August 2002 (26.08.2002) 102 39 082.7
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).

- (72) Erlinder; und
- (75) Erfinder/Anmelder (nur für US): KRÖGER, Burkhard [DE/DE]; Im Waldhof 1, 67117 Limburgerhof (DE). ZELDER, Oskar [DE/DE]; Franz-Stützel-Str. 8, 67346 Speyer (DE). KLOPPROGGE, Corinna [DE/DE]; Rastatter Str. 10, 68239 Mannheim (DE). SCHRÖDER, Hartwig [DE/DE]; Benzstr. 4, 69226 Nussloch (DE). HÄFNER, Stefan [DE/DE]; Luitpoldstr. 11, 67063 Ludwigshafen (DE).
- (74) Anwalt: KINZEBACH, Werner; Reitstötter, Kinzebach & Partner (GbR), Sternwartstr. 4, 81679 München (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,

[Fortsetzung auf der nächsten Seite]

- (54) Title: METHOD FOR ZYMOTIC PRODUCTION OF FINE CHEMICALS (METY) CONTAINING SULPHUR
- (54) Bezeichnung: VERFAHREN ZUR FERMENTATIVEN HERSTELLUNG SCHWEFELHALTIGER FEINCHEMIKALIEN (METY)

- (57) Abstract: The invention relates to methods for the zymotic production of fine chemicals, especially L-methionine, containing sulphur using bacteria, wherein a nucleotide sequence coding for a (metH)-gene methionine-synthase expressed.
- (57) Zusammenfassung: Die Erfindung Verfahren zur fermentativen betrifft Herstellung von schwefelhaltigen Feinchemikalien, insbesondere L-Methionin, unter Verwendung von Bakterien, in denen eine für ein Methionin-Synthase (metH)-Gen kodierende Nukleotidsequenz exprimiert

KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL,

PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

VERFAHREN ZUR FERMENTATIVEN HERSTELLUNG SCHWEFELHALTIGER FEINCHEMIKALIEN (METY)

Beschreibung 1 4 1

5

20

25

Gegenstand der Erfindung ist ein Verfahren zur fermentativen Herstellung von schwefelhaltigen Feinchemikalien, insbesondere L-Methionin, unter Verwendung von Bakterien, in denen eine für ein O-Acetyl-Homoserin-Sulfhydrolase (metY)-Gen kodierende Nukleotidsequenz exprimiert wird.

Stand der Technik

Schwefelhaltige Feinchemikalien, wie zum Beispiel Methionin, Homocystein, S-Adenosyl-10 Methionin, Glutathion, Cystein, Biotin, Thiamin, Liponsäure werden über natürliche Stoffwechselprozesse in Zellen hergestellt und werden in vielen Industriezweigen verwendet, einschließlich der Nahrungsmittel-, Futtermittel-, Kosmetik- und pharmazeutischen Industrie. Diese Substanzen, die zusammen als "schwefelhaltige Feinchemikalien" bezeichnet werden, umfassen organische Säuren, sowohl proteinogene als auch nicht-proteinogene Aminosäuren, Vitamine 15 und Cofaktoren. Ihre Produktion erfolgt am zweckmäßigsten im Großmaßstab mittels Anzucht von Bakterien, die entwickelt wurden, um große Mengen der jeweils gewünschten Substanz zu produzieren und sezemieren. Für diesen Zweck besonders geeignete Organismen sind coryneforme Bakterien, gram-positive nicht-pathogene Bakterien.

Es ist bekannt, dass Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen, wie zum Beispiel Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien, wie zum Beispiel die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zum Produkt, beispielsweise durch lonenaustauschchromatographie, oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.

Über Stammselektion sind eine Reihe von Mutantenstämmen entwickelt worden, die ein Sorti-30 ment wünschenswerter Verbindungen aus der Reihe der schwefelhaltigen Feinchemikalien produzieren. Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen hinsichtlich der Produktion eines bestimmten Moleküls werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Dies ist jedoch ein zeitaufwendiges und schwieriges Verfahren. Auf diese Weise erhält man z.B. Stämme, die resistent gegen Antimetabolite, wie z.B. die Methio-35 nin-Analoga α -Methyl-Methionin, Ethionin, Norleucin, N-Acetylnorleucin, S-Trifluoromethyl-

homocystein, 2-Amino-5-heprenoitsäure, Seleno-Methionin, Methioninsulfoximin, Methoxin, 1-Aminocyclopentan-Carboxylsäure oder auxotroph für regulatorisch bedeutsame Metabolite sind und schwefelhaltige Feinchemikalien, wie z. B. L-Methionin, produzieren.

- Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung von L-Aminosäure produzierender Stämme von Corynebacterium eingesetzt, indem man einzelne Aminosäure-Biosynthesegene amplifiziert und die Auswirkung auf die Aminosäure-Produktion untersucht.
- 10 Die WO-A-02/18613 beschreibt die Nukleinsäure- und Aminosäuresequenz für metY aus C. glutamicum und dessen Verwendung zur Herstellung von L-Lysin.

Kurze Beschreibung der Erfindung

20

35

Der Erfindung lag die Aufgabe zugrunde, ein neues Verfahren zur verbesserten fermentativen Herstellung von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, bereitzustellen.

Gelöst wird obige Aufgabe durch Bereitstellung eines Verfahrens zur fermentativen Herstellung einer schwefelhaltigen Feinchemikalie, umfassend die Expression einer heterologen Nukleotidsequenz, welche für ein Protein mit metY-Aktivität kodiert, in einem coryneformen Bakterium.

Ein erster Gegenstand der Erfindung ist Verfahren zur fermentativen Herstellung wenigstens einer schwefelhaltigen Feinchemikalie, welches folgende Schritte umfasst:

- a) Fermentation einer die gewünschte schwefelhaltige Feinchemikalie produzierenden coryneformen Bakterienkultur, wobei in den coryneformen Bakterien zumindest eine heterologe Nukleotidsequenz exprimiert wird, welche für ein Protein mit O-Acetyl-HomoserinSulfhydrolase (metY) –Aktivität kodiert;
 - b) Anreicherung der schwefelhaltigen Feinchemikalie im Medium oder in den Zellen der Bakterien, und
- 30 c) Isolieren der schwefelhaltigen Feinchemikalie, welche vorzugsweise L-Methionin umfasst.

Vorzugsweise besitzt obige heterologe metY-kodierende Nukleotidsequenz zur metY-kodierenden Sequenz aus Corynebacterium glutamicum ATCC 13032 eine Sequenzhomologie von weniger als 100%, wie z.B. mehr als 70%, wie 75, 80, 85, 90 oder 95 %, oder weniger als 70%, wie z.B. bis zu 60, 50, 40, 30, 20 oder 10 %. Die metY-kodierende Sequenz ist vorzugsweise aus einem der folgenden Organismen von Liste I abgeleitet:

dinhteriae	ATCC 14779
Corynebacterium diphteriae	ATCC 25584
Mycobacterium tuberculosis	
CDC1551	ATCC 824
Clostridium acetobutylicum	ATCC21591
Bacillus halodurans	ATCC 12980
Bacillus stearothermophilus	ATCC 49652
Chlorobium tepidum	ATCC27104
Synechococcus sp.	ATCC 36104
Emericella nidulans	ATCC 25285
Bacteroides fragilis	ATCC 7962
Lactococcus lactis	ATCC 19395
Bordetella bronchiseptica	ATCC 17933
Pseudomonas aeruginosa	ATCC 19718
Nitrosomonas europaea	ATCC 4399
Sinorhizobium meliloti	ATCC 43589
Thermotoga maritima	ATCC 25175
Streptococcus mutans	ATCC 25175
Burkholderia cepacia	ATCC 25416
Deinococcus radiodurans	ATCC 13939
Rhodobacter capsulatus	ATCC 11166
Pasteurella multocida	ATCC 6530
Clostridium difficile	ATCC 9689
Campylobacter jejuni	ATCC 33560
Streptococcus pneumoniae	ATCC 6308
Saccharomyces cerevisiae	ATCC 2704
Kluyveromyces lactis	ATCC 8585
Candida albicans	ATCC 10231
Schizosaccharomyces pombe	ATCC 24969

5 ATCC: American Type Culture Collection, Rockville, MD, USA

Die erfindungsgemäß eingesetzte metY-kodierende Sequenz umfasst vorzugsweise eine kodierende Sequenz gemäß SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51 und 53 oder eine dazu homologe Nukleotidsequenz, welche für ein Protein mit metY-Aktivität kodiert.

Die erfindungsgemäß eingesetzte metY-kodierende Sequenz kodiert außerdem vorzugsweise für ein Protein mit metY-Aktivität, wobei das Protein eine Aminosäuresequenz gemäß SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52

30

35

und 54 oder eine dazu homologe Aminosäuresequenz, welche für ein Protein mit metY-Aktivität steht, umfasst.

Die kodierende metY-Sequenz ist vorzugsweise eine in coryneformen Bakterien replizierbare oder eine stabil in das Chromosom intregrierte DNA oder eine RNA.

Gemäß einer bevorzugten Ausführungsform wird das erfindungsgemäße Verfahren durchgeführt, indem man

- 10 a) einen mit einem Plasmidvektor transformierten Bakterienstamm einsetzt der wenigstens eine Kopie der kodierenden metY-Sequenz unter der Kontrolle regulativer Sequenzen trägt, oder
 - b) einen Stamm einsetzt, in dem die kodierende metY-Sequenz in das Chromosom des Bakteriums integriert wurde
- Es ist weiterhin bevorzugt, die kodierende metY-Sequenz für die Fermentation zu überexprimieren.

Außerdem kann es wünschenswert sein, Bakterien zu fermentieren, in denen zusätzlich wenigstens ein weiteres Gen des Biosyntheseweges der gewünschten schwefelhaltigen Feinchemikalie verstärkt ist; und / oder

in denen wenigstens ein Stoffwechselweg zumindest teilweise ausgeschaltet sind, der die Bildung der gewünschten schwefelhaltigen Feinchemikalie verringert.

Außerdem kann es wünschenswert sein, Bakterien zu fermentieren, in denen zusätzlich wenigstens ein weiteres Gen des Biosyntheseweges der gewünschten schwefelhaltigen Feinchemikalie durch Stoffwechselmetabolite in seiner Aktivität nicht in unerwünschter Weise beeinflusst wird.

Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens werden deshalb coryneforme Bakterien fermentiert, in denen gleichzeitig wenigstens eines der Gene, ausgewählt unter

- a) dem für eine Aspartatkinase kodierenden Gen lysC,
- b) dem für eine Aspartat-Semialdehyd-Dehydrogenase kodierenden Gen asd
- c) dem für die Glycerinaldehyd-3-Phosphat Dehydrogenase kodierenden Gen gap,
- d) dem für die 3-Phosphoglycerat Kinase kodierenden Gen pgk,
- e) dem für die Pyruvat Carboxylase kodierenden Gen pyc,
- f) dem für die Triosephosphat Isomerase kodierenden Gen tpi,

p)

überexprimiert ist.

5

10

15

25

30

dem für die Homoserin O-Acetyltransferase kodierenden Gen metA, g) dem für die Cystathionin-gamma-Synthase kodierenden Gen metB, h) dem für die Cystathionin-gamma-Lyase kodierenden Gen metC, i) dem für die Serin-Hydroxymethyltransferase kodierenden Gen glyA, j) dem für die Methionin Synthase kodierenden Gen metH, k) dem für die Methylen-Tetrahydrofolat-Reduktase kodierenden Gen, metF l) dem für die Phosphoserin-Aminotransferase kodierenden Gen serC m) dem für die Phosphoserin-Phosphatase kodierenden Gen serB, n) dem für die Serine Acetyl-Transferase kodierenden Gen cysE, 0) dem für die Homoserin-Dehydrogenase kodierenden Gen hom,

Gemäß einer anderen Ausführungsform des erfindungsgemäßen Verfahrens werden coryneforme Bakterien fermentiert, in denen gleichzeitig wenigstens eines der Gene ausgewählt unter Genen der oben genannten Gruppe a) bis p) mutiert ist, so dass die korrespondierenden Proteine, verglichen mit nicht mutierten Proteinen, in geringerem Maße oder nicht durch Stoffwechselmetabolite in ihrer Aktivität beeinflusst werden und dass insbesondere die erfindungsgemäße Produktion der Feinchemikalie nicht beeinträchtigt wird.

- Gemäß einer anderen Ausführungsform des erfindungsgemäßen Verfahrens werden corynefor-20 me Bakterien fermentiert, in denen gleichzeitig wenigstens eines der Gene, ausgewählt unter
 - dem für die Homoserine-Kinase kodierenden Gen thrB, **q**) '
 - dem für die Threonin Dehydratase kodierenden Gen ilvA, r)
 - dem für die Threonin Synthase kodierenden Gen thrC s)
 - dem für die Meso-Diaminopimelat D-Dehydrogenase kodierenden Gen ddh t)
 - dem für die Phosphoenolpyruvat-Carboxykinase kodierenden Gen pck, u)
 - dem für die Glucose-6-Phosphat-6-Isomerase kodierenden Gen pgi, V)
 - dem für die Pyruvat-Oxidase kodierenden Gen poxB, w)
 - dem für die Dihydrodipicolinat Synthase kodiernden Gen dapA, x)
 - dem für die Dihydrodipicolinat Reduktase kodiernden Gen dapB; oder y)
 - dem für die Diaminopicolinat Decarboxylase kodiemden Gen lysA z)

abschwächt ist, insbesondere durch Verringerung der Expressionsrate des korrespondierenden Gens.

Gemäß einer anderen Ausführungsform des erfindungsgemäßen Verfahrens werden coryneforme Bakterien fermentiert, in denen gleichzeitig wenigstens eines der Gene der obigen Gruppen 35

10

15

20

q) bis z) mutiert ist, so dass die enzymatische Aktivität des korrespondierenden Proteins teilweise oder vollständig verringert wird.

Vorzugsweise werden in dem erfindungsgemäßen Verfahren Mikroorganismen der Art Corynebacterium glutamicum eingesetzt.

Ein weiterer Gegenstand der Erfindung betrifft ein Verfahren zur Herstellung eines L-Methioninhaltigen Tierfuttermittel-Additivs aus Fermentationsbrühen, welches folgende Schritte umfasst

- a) Kultivierung und Fermentation eines L-Methionin produzierenden Mikroorganismus in einem Fermentationsmedium;
- b) Entfernung von Wasser aus der L-Methionin haltigen Fermentationsbrühe:
- c) Entfernung der während der Fermentation gebildeten Biomasse in einer Menge von 0 bis 100 Gew.-%; und
- d) Trocknung der gemäß b) und/oder c) erhaltenen Fermentationsbrühe, um das Tierfuttermittel-Additiv in der gewünschten Pulver- oder Granulatform zu erhalten.

Gegenstand der Erfindung sind ebenfalls die erstmalig aus obigen Mikroorganismen isolierten kodierenden metY-Sequenzen, die davon kodierten O-Acetyl-Homoserin-Sulfhydrolasen sowie die funktionalen Homologen dieser Polynukleotide bzw. Proteine.

Detaillierte Beschreibung der Erfindung

a) Allgemeine Begriffe

Als Proteine mit der Aktivität der O-Acetyl-Homoserin Sulfhydrolase auch metY (EC 4.2.99.10) genannt, werden solche Proteine beschrieben, die in der Lage sind O-Acetyl-Homoserin und Sulfid unter Verwendung des Cofaktors Pyrodoxal-Phosphat zu Homocystein umzusetzen. Der Fachmann unterscheidet die Aktivivät der O-Acetyl-Homoserin Sulfhydrolase von der O-Succinyl-Homoserin-Sulfhydrolase auch metZ genannt. In dem letztgenannten Enzym dient O-Succinyl-Homoserin und nicht O-Acetyl-Homoserin als Substrat der Reaktion. Der Fachmann kann die enzymatische Aktivivtät von metY durch Enzymtests nachweisen, Vorschriften dafür können sein: Shimizu H. Yamagata S. Masui R. Inoue Y. Shibata T. Yokoyama S. Kuramitsu S. Iwama T. Biochimica et Biophysica Acta. 1549(1):61-72, 2001, Yamagata S. Isaji M. Nakamura K. Fujisaki S. Doi K. Bawden S. D'Andrea R. Applied Microbiology & Biotechnology. 42(1):92-9, 1994

WO 2004/024933

5

10

20

25

30

35

T/EP2003/009453

Im Rahmen der vorliegenden Erfindung umfasst der Begriff "schwefelhaltige Feinchemikalie" jegliche chemische Verbindung, die wenigstens ein Schwefelatom kovalent gebunden enthält und durch ein erfindungsgemäßes Fermentationsverfahrens zugänglich ist. Nichtlimitierende Beispiele dafür sind Methionin, Homocystein, S-Adenosyl-Methionin, insbesondere Methionin, und S-Adenosyl-Methionin.

7

Im Rahmen der vorliegenden Erfindung umfassen die Begriffe "L-Methionin", "Methionin", Homocystein und S-Adenosylmethionin auch die korrespondierenden Salze, wie z. B. Methionin-Hydrochlorid oder Methionin-Sulfat.

"Polynukleotide" bezeichnet im allgemeinen Polyribonukleotide (RNA) und Polydeoxyribonukleotide (DNA), wobei es sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.

Unter "Polypeptiden" versteht man erfindungsgemäß Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.

Der Begriff "Stoffwechselmetabolit" bezeichnet chemische Verbindungen, die im Stoffwechsel von Organismen als Zwischen- oder auch Endprodukte vorkommen und die neben ihrer Eigenschaft als chemische Bausteine auch modulierende Wirkung auf Enzyme und ihre katalytische Aktivität haben können. Dabei ist aus der Literatur bekannt, dass solche Stoffwechselmetabolite sowohl hemmend als auch stimulierend auf die Aktvität von Enzymen wirken können (Biochemistry, Stryer, Lubert, 1995 W. H. Freeman & Company, New York, New York.). In der Literatur ist auch beschrieben, dass es möglich ist durch Maßnahmen wie Mutation der genomischen DNA durch UV-Strahlung, ionisierender Strahlung oder mutagene Substanzen und nachfolgender Selektion auf bestimmte Phänotypen in Organismen solche Enzyme zu produzieren, in denen die Beeinflussung durch Stoffwechselmetabolite verändert wurde (Sahm H. Eggeling L. de Graaf AA. Biological Chemistry 381(9-10):899-910, 2000; Eikmanns BJ. Eggeling L. Sahm H. Antonie van Leeuwenhoek. 64:145-63, 1993-94). Diese veränderten Eigenschaften können auch durch gezielte Maßnahmen erreicht werden. Dabei ist dem Fachmann bekannt, dass in Genen für Enzyme bestimmte Nukleotide der für das Protein kodierenden DNA gezielt verändert werden können, so dass das aus der exprimierten DNA-Sequenz resultierende Protein bestimmte neue Eigenschaften aufweist, so zum Beispiel, dass die modulierende Wirkung von Stoffwechselmetaboliten gegenüber dem nicht veränderten Protein verändert ist

Enzyme können derart in ihrer Aktivität beeinflußt werden, dass es zu einer Verringerung der Reaktionsgeschwindigkeit, oder zu einer Veränderung der Affinität gegenüber dem Substrat o-

der zu einer Änderung der Reaktionsgeschwindigkeiten kommt.

Die Begriffe "exprimieren" bzw. "Verstärkung" oder "Überexpression" beschreiben im Kontext der Erfindung die Produktion bzw. Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden. Dazu kann man beispielsweise ein Gen in einen Organismus einbringen, ein vorhandenes Gen durch ein anderes Gen ersetzen, die Kopienzahl des Gens bzw. der Gene erhöhen, einen starken Promotor verwenden oder ein Gen verwenden, das für ein entsprechendes Enzym mit einer hohen Aktivität kodiert und man kann gegebenenfalls diese Maßnahmen kombinieren.

10

15

5

b) Erfindungsgemäße metY-Proteine

Erfindungsgemäß mit umfasst sind ebenfalls "funktionale Äquivalente" der konkret offenbarten metY-Enzyme aus Organismen obiger Liste I.

"Funktionale Äquivalente" oder Analoga der konkret offenbarten Polypeptide sind im Rahmen der vorliegenden Erfindung davon verschiedene Polypeptide, welche weiterhin die gewünschte biologische Aktivität, wie z.B. Substratspezifität, besitzen.

20

25

Unter "funktionalen Äquivalenten" versteht man erfindungsgemäß insbesondere Mutanten, welche in wenigstens einer der oben genannten Sequenzpositionen eine andere als die konkret genannte Aminosäure aufweisen aber trotzdem eine der oben genannten biologische Aktivitäten besitzen. "Funktionale Äquivalente" umfassen somit die durch eine oder mehrere Aminosäure-Additionen, -Substitutionen, -Deletionen und/oder -Inversionen erhältlichen Mutanten, wobei die genannten Veränderungen in jeglicher Sequenzposition auftreten können, solange sie zu einer Mutante mit dem erfindungsgemäßen Eigenschaftsprofil führen. Funktionale Äquivalenz ist insbesondere auch dann gegeben, wenn die Reaktivitätsmuster zwischen Mutante und unverändertem Polypeptid qualitativ übereinstimmen, d.h. beispielsweise gleiche Substrate mit unterschiedlicher Geschwindigkeit umgesetzt werden.

30

"Funktionale Äquivalente" umfassen natürlich auch Polypeptide welche aus anderen Organismen zugänglich sind, sowie natürlich vorkommende Varianten. Beispielsweise lassen sich durch Sequenzvergleich Bereiche homologer Sequenzregionen festlegen und in Anlehnung an die konkreten Vorgaben der Erfindung äquivalente Enzyme ermitteln.

35

"Funktionale Äquivalente" umfassen ebenfalls Fragmente, vorzugsweise einzelne Domänen oder Sequenzmotive, der erfindungsgemäßen Polypeptide, welche z.B. die gewünschte biologi-

WO 2004/024933

5

10

15

20

25

30

35

2

9

sche Funktion aufweisen.

"Funktionale Äquivalente" sind außerdem Fusionsproteine, welche ein der oben genannten Polypeptidsequenzen oder davon abgeleitete funktionale Äquivalente und wenigstens eine weitere, davon funktionell verschiedene, heterologe Sequenz in funktioneller N- oder C-terminaler Verknüpfung (d.h. ohne gegenseitigen wesentliche funktionelle Beeinträchtigung der Fusionsproteinteile) aufweisen. Nichtlimitiernde Beispiele für derartige heterologe Sequenzen sind z.B. Signalpeptide, Enzyme, Immunoglobuline, Oberflächenantigene, Rezeptoren oder Rezeptorliganden.

Erfindungsgemäß mit umfasste "funktionale Äquivalente" sind Homologe zu den konkret offenbarten Proteinen. Diese besitzen wenigstens 30%, oder etwa 40%, 50 %, vorzugsweise wenigstens etwa 60 %, 65%, 70%, oder 75% ins besondere wenigsten 85 %, wie z.B. 90%, 95% oder 99%, Homologie zu einer der konkret offenbarten Sequenzen, berechnet nach dem Algorithmus von Pearson und Lipman, Proc. Natl. Acad, Sci. (USA) 85(8), 1988, 2444-2448.

Homologe der erfindungsgemäßen Proteine oder Polypeptide können durch Mutagenese erzeugt werden, z.B. durch Punktmutation oder Verkürzung des Proteins. Der Begriff "Homolog", wie er hier verwendet wird, betrifft eine variante Form des Proteins, die als Agonist oder Antagonist der Protein-Aktivität wirkt.

Homologe des erfindungsgemäßen Proteine können durch Screening kombinatorischer Banken von Mutanten, wie z.B. Verkürzungsmutanten, identifiziert werden. Beispielsweise kann eine variegierte Bank von Protein-Varianten durch kombinatorische Mutagenese auf Nukleinsäurebene erzeugt werden, wie z.B. durch enzymatisches Ligieren eines Gemisches synthetischer Oligonukleotide. Es gibt eine Vielzahl von Verfahren, die zur Herstellung von Banken potentieller Homologer aus einer degenerierten Oligonukleotidsequenz verwendet werden können. Die chemische Synthese einer degenerierten Gensequenz kann in einem DNA-Syntheseautomaten durchgeführt werden, und das synthetische Gen kann dann in einen geeigneten Expressionsvektor ligiert werden. Die Verwendung eines degenerierten Gensatzes ermöglicht die Bereitstellung sämtlicher Sequenzen in einem Gemisch, die den gewünschten Satz an potentiellen Proteinsequenzen codieren. Verfahren zur Synthese degenerierter Oligonukleotide sind dem Fachmann bekannt (Z.B. Narang, S.A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al., (1984) Science 198:1056; Ike et al. (1983) Nucleic Acids Res. 11:477).

10

15

20

25

30

35

Zusätzlich können Banken von Fragmenten des Protein-Codons verwendet werden, um eine variegierte Population von Protein-Fragmenten zum Screening und zur anschließenden Selektion von Homologen eines erfindungsgemäßen Proteins zu erzeugen. Bei einer Ausführungsform kann eine Bank von kodierenden Sequenzfragmenten durch Behandeln eines doppelsträngigen PCR-Fragmentes einer kodierenden Sequenz mit einer Nuklease unter Bedingungen, unter denen ein Nicking nur etwa einmal pro Molekül erfolgt, Denaturieren der doppelsträngigen DNA, Renaturieren der DNA unter Bildung doppelsträngiger DNA, die Sense-/Antisense-Paare von verschiedenen genickten Produkten umfassen kann, Entfemen einzelsträngiger Abschnitte aus neu gebildeten Duplices durch Behandlung mit S1-Nuclease und Ligieren der resultierenden Fragmentbank in einen Expressionsvektor erzeugt werden. Durch dieses Verfahren kann eine Expressionsbank hergeleitet werden, die N-terminale, C-terminale und interne Fragmente mit verschiedenen Größen des erfidungsgemäßen Proteins kodiert.

Im Stand der Technik sind mehrere Techniken zum Screening von Genprodukten kombinatorischer Banken, die durch Punktmutationen oder Verkürzung hergestellt worden sind, und zum Screening von cDNA-Banken auf Genprodukte mit einer ausgewählten Eigenschaft bekannt. Diese Techniken lassen sich an das schnelle Screening der Genbanken anpassen, die durch kombinatorische Mutagenese erfindungsgemäßer Homologer erzeugt worden sind. Die am häufigsten verwendeten Techniken zum Screening großer Genbanken, die einer Analyse mit hohem Durchsatz unterliegen, umfassen das Klonieren der Genbank in replizierbare Expressionsvektoren, Transformieren der geeigneten Zellen mit der resultierenden Vektorenbank und Exprimieren der kombinatorischen Gene unter Bedingungen, unter denen der Nachweis der gewünschten Aktivität die Isolation des Vektors, der das Gen codiert, dessen Produkt nachgewiesen wurde, erleichtert. Recursive-Ensemble-Mutagenese (REM), eine Technik, die die Häufigkeit funktioneller Mutanten in den Banken vergrößert, kann in Kombination mit den Screeningtests verwendet werden, um Homologe zu identifizieren (Arkin und Yourvan (1992) PNAS 89:7811-7815; Delgrave et al. (1993) Protein Engineering 6(3):327-331

c) <u>Erfindungsgemäße Polynukleotide</u>

Gegenstand der Erfindung sind ebenso Nukleinsäuresequenzen (einzel- und doppelsträngige DNA- und RNA-Sequenzen, wie z.B. cDNA und mRNA), kodierend für eines der obigen mety-Enzyme und deren funktionalen Äquivalenten, welche z.B. auch unter Verwendung künstlicher Nukleotidanaloga zugänglich sind.

Die Erfindung betrifft sowohl isolierte Nukleinsäuremoleküle, welche für erfindungsgemäße Polypeptide bzw. Proteine oder biologisch aktive Abschnitte davon kodieren, sowie Nukleinsäure-

10

20

35

fragmente, die z.B. zur Verwendung als Hybridisierungssonden oder Primer zur Identifizierung oder Amplifizierung von erfindungsgemäßer kodierenden Nukleinsäuren verwendet werden können.

5 Die erfindungsgemäßen Nukleinsäuremoleküle k\u00f6nnen zudem untranslatierte Sequenzen vom 3'- und/oder 5'-Ende des kodierenden Genbereichs enthalten

Ein "isoliertes" Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure zugegen sind und kann überdies im wesentlichen frei von anderem zellulären Material oder Kulturmedium sein, wenn es durch rekombinante Techniken hergestellt wird, oder frei von chemischen Vorstufen oder anderen Chemikalien sein, wenn es chemisch synthetisiert wird.

Die Erfindung umfasst weiterhin die zu den konkret beschriebenen Nukleotidsequenzen komplementären Nukleinsäuremoleküle oder einen Abschnitt davon.

Die erfindungsgemäß Nukleotidsequenzen ermöglichen die Erzeugung von Sonden und Primern, die zur Identifizierung und/oder Klonierung von homologer Sequenzen in anderen Zelltypen und Organismen verwendbar sind. Solche Sonden bzw. Primer umfassen gewöhnlich einen Nukleotidsequenzbereich, der unter stringenten Bedingungen an mindestens etwa 12, vorzugsweise mindestens etwa 25, wie z.B. etwa 40, 50 oder 75 aufeinanderfolgende Nukleotide eines Sense-Stranges einer erfindungsgemäßen Nukleinsäuresequenz oder eines entsprechenden Antisense-Stranges hybridisiert.

Weitere erfindungsgemäße Nukleinsäuresequenzen sind abgeleitet von SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51oder 53 und unterscheiden sich davon durch Addition, Substitution, Insertion oder Deletion einzelner oder mehrerer Nukleotide, kodieren aber weiterhin für Polypeptide mit dem gewünschten Eigenschaftsprofil. Dies können Polynukleotide sein, die zu obigen Sequenzen in mindestens etwa 50%, 55%, 06%, 70%, 80% oder 90%, vorzugsweise in mindestens etwa 95%, 96%, 97%, 98% oder 99% der Sequenzpositionen identisch sind.

Erfindungsgemäß umfasst sind auch solche Nukleinsäuresequenzen, die sogenannte stumme Mutationen umfassen oder entsprechend der Codon-Nutzung eins speziellen Ursprungs- oder Wirtsorganismus, im Vergleich zu einer konkret genannten Sequenz verändert sind, ebenso wie natürlich vorkommende Varianten, wie z.B. Spleißvarianten oder Allelvarianten, davon. Gegenstand sind ebenso durch konservative Nukleotidsubstutionen (d.h. die betreffende Aminosäure

35

wird durch eine Aminosäure gleicher Ladung, Größe, Polarität und/oder Löslichkeit ersetzt) erhältliche Sequenzen.

Gegenstand der Erfindung sind auch die durch Sequenzpolymorphismen von den konkret offenbarten Nukleinsäuren abgeleiteten Moleküle. Diese genetischen Polymorphismen können zwischen Individuen innerhalb einer Population aufgrund der natürlichen Variation existieren. Diese natürlichen Variationen bewirken üblicherweise eine Varianz von 1 bis 5 % in der Nukleotidsequenz eines Gens.

Weiterhin umfasst die Erfindung auch Nukleinsäuresequenzen, welchen mit oben genannten kodierenden Sequenzen hybridisieren oder dazu komplementär sind. Diese Polynukleotide lassen sich bei Durchmusterung von genomischen oder cDNA-Banken auffinden und gegebenenfalls daraus mit geeigneten Primern mittels PCR vermehren und anschließend beispielsweise mit geeigneten Sonden isolieren. Eine weitere Möglichkeit bietet die Transformation geeigneter
 Mikroorganismen mit erfindungsgemäßen Polynukleotiden oder Vektoren, die Vermehrung der Mikroorganismen und damit der Polynukleotide und deren anschließende Isolierung. Darüber hinaus können erfindungsgemäße Polynukleotide auch auf chemischem Wege synthetisiert werden.

Unter der Eigenschaft, an Polynukleotide "hybridisieren" zu können, versteht man die Fähigkeit 20 eines Poly- oder Oligonukleotids unter stringenten Bedingungen an eine nahezu komplementäre Sequenz zu binden, während unter diesen Bedingungen unspezifische Bindungen zwischen nicht-komplementären Partnem unterbleiben. Dazu sollten die Sequenzen zu 70-100%, vorzugsweise zu 90-100%, komplementär sein. Die Eigenschaft komplementärer Sequenzen, spe-25 zifisch aneinander binden zu können, macht man sich beispielsweise in der Northem- oder Southern-Blot-Technik oder bei der Primerbindung in PCR oder RT-PCR zunutze. Üblicherweise werden dazu Oligonukleotide ab einer Länge von 30 Basenpaaren eingesetzt. Unter stringenten Bedingungen versteht man beispielsweise in der Northem-Blot-Technik die Verwendung einer 50 – 70 °C, vorzugsweise 60 – 65 °C warmen Waschlösung, beispielsweise 0,1x SSC-Puffer mit 0,1% SDS (20x SSC: 3M NaCl, 0,3M Na-Citrat, pH 7,0) zur Elution unspezifisch hybridisierter 30 cDNA-Sonden oder Oligonukleotide. Dabei bleiben, wie oben erwähnt, nur in hohem Maße komplementäre Nukleinsäuren aneinander gebunden. Die Einstellung stringenter Bedingungen ist dem Fachmann bekannt und ist z:B. in Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. beschrieben.

c) <u>Isolierung der kodierenden metY-Gene</u>

10

15

Die für das Enzym O-Acetyl-Homoserin-Sulfhydrolase kodierenden metY Gene aus den Organismen obiger Liste I sind in an sich bekannter Weise isolierbar.

Zur Isolierung der metY-Gene oder auch anderer Gene der Organismen aus obiger Liste I wird zunächst eine Genbank dieses Organsimus in Escherichia coli (E. coli) angelegt. Das Anlegen von Genbanken ist in allgemein bekannten Lehrbüchern und Handbüchern ausführlich beschrieben. Als Beispiel seien das Lehrbuch von Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, Deutschland, 1990), oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell50, 495-508 (198)) in λ -Vektoren angelegt wurde.

Zur Herstellung einer Genbank von Organismen der Liste I in E. coli können Cosmide, wie der Cosmidvektor SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84: 2160-2164), aber auch Plasmide, wie pBR322 (BoliVal; Life Sciences, 25, 807-818 (1979)) oder pUC9 (Vieira et al., 1982, Gene, 19: 259-268), verwendet werden. Als Wirte eignen sich besonders solche E. coli Stämme, die restriktions- und rekombinationsdefekt sind. Ein Beispiel hierfür ist der Stamm DH5lphamcr, der von Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) beschrieben wurde. Die mit Hilfe von Cosmiden klonierten langen DNA-Fragmente können anschließend wiederum in gängige, für die Sequenzierung geeignete Vektoren subkloniert und anschließend sequenziert werden, so wie es z. B. bei San-20 🕆 ger et al. (proceedings of the National Academy of Sciences of the United States of America, 74: 5463-5467, 1977) beschrieben ist.

Die erhaltenen DNA-Sequenzen können dann mit bekannten Algorithmen bzw. Sequenzanalyse-Programmen, wie z. B. dem von Staden (Nucleic Acids Research 14,217-232(1986)), dem von 25 Marck (Nucleic Acids Research 16, 1829-1836 (1988)) oder dem GCG-Programm von Butler (Methods ofBiochemical Analysis 39, 74-97 (1998)), untersucht werden.

Die für die metY-Gene kodierenden DNA-Sequenzen von Organismen gemäß obiger Liste I wurden gefunden. Insbesondere wurden DNA-Sequenzen gemäß SEQ ID NO:1, 3, 5, 7, 9, 11, 30 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51 und 53 gefunden. Weiterhin wurde aus diesen vorliegenden DNA-Sequenzen mit den oben beschriebenen Methoden die Aminosäuresequenzen der entsprechenden Proteine abgeleitet. Durch SEQ ID NO:2,4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52 und 54 sind die sich ergebenden Aminosäuresequenzen der metY Genprodukte dargestellt. 35

10

15

20

Kodierende DNA-Sequenzen, die sich aus den Sequenzen gemäß SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51 und 53 durch die Degeneration des genetischen Kodes ergeben, sind ebenfalls Gegenstand der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit diesen Sequenzen oder davon abgeleiteten Sequenzeteilen hybridisieren, Gegenstand der Erfindung.

14

Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide für Filter Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) und bei Liebl et al. (International Journal of Systematic Bacteriology (1991) 41: 255-260). Anleitungen zur Amplifikation von DNA-Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonukleotide synthesis: A Practical Approach (IRL Press, Ox- ford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994).

Weiterhin ist bekannt, dass Änderungen am N- und/oder C- Terminus eines Proteins dessen Funktion nicht wesentlich beeinträchtigen oder sogar stabilisieren können. Angaben hierzu findet der Fachmann unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169: 751-757 (1987)), bei O'Regan et al. (Gene 77: 237-251 (1989), bei Sahin-Toth et al. (Protein Sciences 3: 240–247 (1994)), bei Hochuli et al. (Biontechnology 6: 1321-1325 (1988)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.

Aminosäuresequenzen, die sich in entsprechender Weise aus den SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52 und 54 ergeben, sind ebenfalls Bestandteil der Erfindung.

d) <u>Erfindungsgemäß verwendete Wirtszellen</u>

- Weitere Gegenstände der Erfindung betreffen als Wirtszelle dienende Mikroorgansismen, insbesondere coryneforme Bakterien, die einen Vektor, insbesondere Pendelvektor oder Plasmidvektor, der wenigstens ein metY Gen gerfindungsgemäßer Definition trägt, enthalten oder in denen ein erfindungsgemäßes metY Gen exprimiert bzw. verstärkt ist.
- Diese Mikroorganismen können schwefelhaltige Feinchemikalien, insbesondere L-Methionin, aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Vorzugsweise sind dies coryneforme Bakterien, insbesondere der

Gattung Corynebacterium. Aus der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.

Als Beispiele für geeignete Stämme coryneformer Bakterien sind solche der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum (C. glutamicum), wie 5 Corynebacterium glutamicum ATCC 13032,

Corynebacterium acetoglutamicum ATCC 15806,

Corynebacterium acetoacidophilum ATCC 13870,

Corynebacterium thermoaminogenes FERM BP-1539, 10 Corynebacterium melassecola ATCC 17965

oder

25

der Gattung Brevibacterium, wie

Brevibacterium flavum ATCC 14067 15 Brevibacterium lactofermentum ATCC 13869 und

Brevibacterium divaricatum ATCC 14020 zu nennen;

oder davon abgeleitete Stämme, wie

Corynebacterium glutamicum KFCC10065

Corynebacterium glutamicum ATCC21608 20 a

welche ebenfalls die gewünschte Feinchemikalie oder deren Vorstufe(n) produzieren. Mit der Abkürzung KFCC ist die Korean Federation of Culture Collection gemeint, mit der Abkürzung ATCC die American type strain culture collection und mit der Abkürzung FERM die Sammlung des National institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Japan.

Durchführung der erfindungsgemäßen Fermentation e)

Erfindungsgemäß wurde festgestellt, dass coryneforme Bakterien nach Überexpression eines metY Gens aus Organismen der Liste I in vorteilhafter Weise schwefelhaltige Feinchemikalien, 30 insbesondere L-Methionin, produzieren.

Zur Erzielung einer Überexpression kann der Fachmann unterschiedliche Maßnahmen einzeln oder in Kombination ergreifen. So kann die Kopienzahl der entsprechenden Gene erhöht werden, oder es kann die Promotor- und Regulationsregion oder die Ribosomenbindungsstelle, die 35 sich stromaufwärts des Strukturgens befindet, mutiert werden. In gleicher Weise wirken Expres-

10

15

20

25

30

35

8

sionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich, die Expression im Verlaufe der fermentativen L-Methionin-Produktion zu steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer der mRNA wird ebenfalls die Expression verbessert. Weiterhin wird durch Verhinderung des Abbaus des Enzymproteins ebenfalls die Enzymaktivität verstärkt. Die Gene oder Genkonstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden.

Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al. (Biontechnology 5, 137-146 (1987)), bei Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988)), bei Eikmanns et al. (Gene 102, 93-98 (1991)), in der Europäischen Patentschrift 0472869, im US Patent 4,601,893, bei Schwarzer und Pühler (Biotechnology 9, 84-87 (1991), bei Remscheid et al. (Applied and Environmental Microbiology 60,126-132 (1994), bei LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung WO 96/15246, bei Malumbres et al. (Gene 134, 15-24 (1993)), in der japanischen Offenlegungsschrift JP-A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58,.191-195 (1998)), bei Makrides (Microbiological Reviews 60 : 512-538 (1996) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.

Gegenstand der Erfindung sind deshalb auch Expressionskonstrukte, enthaltend unter der genetischen Kontrolle regulativer Nukleinsäuresequenzen eine für ein erfindungsgemäßes Polypeptid kodierende Nukleinsäuresequenz; sowie Vektoren, umfassend wenigstens eines dieser Expressionskonstrukte. Vorzugsweise umfassen solche erfindungsgemäßen Konstrukte 5'-stromaufwärts von der jeweiligen kodierenden Sequenz einen Promotor und 3'-stromabwärts eine Terminatorsequenz sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils operativ verknüpft mit der kodierenden Sequenz. Unter einer "operativen Verknüpfung" versteht man die sequentielle Anordnung von Promotor, kodierender Sequenz, Terminator und gegebenenfalls weiterer regulativer Elemente derart, dass jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann. Beispiele für operativ verknüpfbare Sequenzen sind Aktivrieungssequenzen sowie Enhancer und dergleichen. Weitere regulative Elemente umfassen selektierbare Marker, Amplifikationssignale, Replikationsursprünge und dergleichen. Geeignete regulatorische Sequenzen sind z.B. beschrieben in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).

Zusätzlich zu den artifiziellen Regulationssequenzen kann die natürliche Regulationssequenz

3

25

30

35

vor dem eigentlichen Strukturgen noch vorhanden sein. Durch genetische Veränderung kann diese natürliche Regulation gegebenenfalls ausgeschaltet und die Expression der Gene erhöht oder erniedrigt werden. Das Genkonstrukt kann aber auch einfacher aufgebaut sein, das heißt es werden keine zusätzlichen Regulationssignale vor das Strukturgen insertiert und der natürliche Promotor mit seiner Regulation wird nicht entfernt. Statt dessen wird die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und die Genexpression gesteigert oder verringert wird. Die Nukleinsäuresequenzen können in einer oder mehreren Kopien im Genkonstrukt enthalten sein.

Beispiele für brauchbare Promotoren sind: die Promotoren, ddh, amy, lysC, dapA, lysA aus Corynebacterium glutamicum, aber auch gram-positiven Promotoren SPO2 wie sie in Bacillus Subtilis and Its Closest Relatives, Sonenshein, Abraham L.,Hoch, James A., Losick, Richard; ASM Press, District of Columbia, Washington und Patek M. Eikmanns BJ. Patek J. Sahm H. Microbiology. 142 1297-309, 1996 beschrieben sind, oder aber auch cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-lpp-lac-, laclq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, λ-PR- oder im λ-PL-Promotor, die vorteilhafterweise in gram-negativen Bakterien Anwendung finden. Bevorzugt ist auch die Verwendung induzierbarer Promotoren, wie z.B. licht- und insbesondere temperaturinduztierbarer Promotoren, wie der P_rP₁-Promotor. Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen verwendet werden. Darüber hinaus können auch synthetische Promotoren vorteilhaft verwendet werden.

Die genannten regulatorischen Sequenzen sollen die gezielte Expression der Nukleinsäuresequenzen ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird.

Die regulatorischen Sequenzen bzw. Faktoren können dabei vorzugsweise die Expression positiv beeinflussen und dadurch erhöhen oder erniedrigen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.

Die Herstellung einer Expressionskassette erfolgt durch Fusion eines geeigneten Promotors, einer geeigneten Shine-Dalgamow-Sequenz mit einer metY-Nukleotidsequenz sowie einem geeigneten Terminationssignal. Dazu verwendet man gängige Rekombinations- und Klonierungstechniken, wie sie beispielsweise in Current Protocols in Molecular Biology, 1993, John

20

25

30

35

Wiley & Sons, Incorporated, New York New York, PCR Methods, Gelfand, David H., Innis, Michael A., Sninsky, John J. 1999, Academic Press, Incorporated, California, San Diego, ., PCR Cloning Protocols, Methods in Molecular Biology Ser., Vol. 192, 2nd ed., Humana Press, New Jersey, Totowa. T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987) beschrieben sind.

Das rekombinante Nukleinsäurekonstrukt bzw. Genkonstrukt wird zur Expression in einem geeigneten Wirtsorganismus vorteilhafterweise in einen wirtsspezifischen Vektor insertiert, der eine optimale Expression der Gene im Wirt ermöglicht. Vektoren sind dem Fachmann wohl bekannt und können beispielsweise aus "Cloning Vectors" (Pouwels P. H. et al., Hrsg, Elsevier, Amsterdam-New York-Oxford, 1985) entnommen werden. Unter Vektoren sind außer Plasmiden auch alle anderen dem Fachmann bekannten Vektoren, wie beispielsweise Phagen, Transposons, IS-Elemente, Phasmide, Cosmide, und lineare oder zirkuläre DNA zu verstehen. Diese Vektoren können autonom im Wirtsorganismus repliziert oder chromosomal repliziert werden.

Zur Verstärkung wurden erfindungsgemäße metY Gene beispielhaft mit Hilfe von episomalen Plasmiden überexprimiert. Als Plasmide eignen sich solche, die in coryneformen Bakterien repliziert werden. Zahlreiche bekannte Plasmidvektoren, wie z. B. pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKEx1 (Eikmanns et al., Gene 102: 93-98 (1991)) oder pHS2-1 (Sonnen et al., Gene 107: 69-74 (1991)) beruhen auf den kryptischen Plasmiden pHM1519, pBL1 oder pGA1. Andere Plasmidvektoren, wie z. B. pCLiK5MCS, oder solche, die auf pCG4 (US-A 4,489,160) oder pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)) oder pAG1 (US-A 5,158,891) beruhen, können in gleicher Weise verwendet werden.

Weiterhin eignen sich auch solche Plasmidvektoren mit Hilfe derer man das Verfahren der Genamplifikation durch Integration in das Chromosom anwenden kann, so wie es beispielsweise von Remscheid et al. (Applied and Environmental Microbiology 60,126-132 (1994)) zur Duplikation bzw. Amplifikation des hom-thrB-Operons beschrieben wurde. Bei dieser Methode wird das vollständige Gen in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli), nicht aber in C. glutamicum replizieren kann. Als Vektoren kommen beispielsweise pSUP301 (Simon et al., Bio/ Technology 1,784-791 (1983)), pK18mob oder pK19mob (Schäfer et al., Gene 145,69-73 (1994)), Bernard et al., Journal ofMolecular Biology, 234: 534-541 (1993)), pEM1 (Schrumpf et al. 1991, Journal of Bacteriology 173: 4510–4516) oder pBGS8 (Spratt et al., 1986,

10

15

20

25

35

Gene 41: 337-342) in Frage. Der Plasmidvektor, der das zu amplifizierende Gen enthält, wird anschließend durch Transformation in den gewünschten Stamm von C. glutamicum überführt. Methoden zur Transformation sind beispielsweise bei Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican und Shivnan (Biotechnology 7, 1067-1070 (1989)) und Tauch et al. (FEMS Microbiological Letters 123,343-347 (1994)) beschrieben.

Enzyme können durch Mutationen in den korrespondierenden Genen derart in ihrer Aktivität beeinflußt werden, dass es zu einer teilweisen oder vollständigen Verringerung der Reaktionsgeschwindigkeit der enzymatischen Reaktion kommt. Beispiele für solche Mutationen sind dem Fachmann bekannt (Motoyama H. Yano H. Terasaki Y. Anazawa H. Applied & Environmental Microbiology. 67:3064-70, 2001, Eikmanns BJ. Eggeling L. Sahm H. Antonie van Leeuwenhoek. 64:145-63, 1993-94.)

Zusätzlich kann es für die Produktion von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, vorteilhaft sein, neben einer Expression bzw. Verstärkung eines erfindungsgemäßen metY-Gen eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, des Cystein-Stoffwechselwegs, der Aspartatsemialdehyd-Synthese, der Glykolyse, der Anaplerotik, des Pentose-Phosphat-Stoffwechsels, des Zitronensäure-Zyklus oder des Aminosäure-Exports zu verstärken.

So kann für die Herstellung von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, eines oder mehrere der folgenden Gene verstärkt sein:

- das für eine Aspartatkinase kodierende Gen lysC (EP 1 108 790 A2; DNA-SEQ NO. 281), -das für eine Aspartatsemialdehyd Dehydrogenase kodierende Gen asd (EP 1 108 790 A2; DNA-SEQ NO. 282),
- das für die Glycerinaldehyd-3-Phosphat Dehydrogenase kodierende Gen gap (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
- das für die 3-Phosphoglycerat Kinase kodierende Gen pgk (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
- das für die Pyruvat Carboxylase kodierende Gen pyc (Eikmanns (1992), Journal of Bacteriology
 174: 6076-6086),
 - das für die Triosephosphat Isomerase kodierende Gen tpi (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
 - das für die Homoserin O-Acetyltransferase kodierende Gen metA (EP 1 108 790 A2; DNA-SEQ NO. 725),
 - das für die Cystahionin-gamma-Synthase kodierende Gen metB (EP 1 108 790 A2; DNA-SEQ NO. 3491),

25

- das für die Cystahionin-gamma-Lyase kodierende Gen metC (EP 1 108 790 A2; DNA-SEQ NO. 3061),
- das für die Serin-Hydroxymethyltransferase kodierende Gen glyA (EP 1 108 790 A2; DNA-SEQ NO. 1110),
- das für die MethioninSynthase kodierende Gen metH (EP 1 108 790 A2),
 - das für die Methylentetrahydrofolat-Reduktase kodierende Gen metF (EP 1 108 790 A2; DNA-SEQ NO. 2379),
 - das für die Phosphoserin-Aminotransferase kodierende Gen serC (EP 1 108 790 A2; DNA-SEQ NO. 928)
- eines für die Phosphoserin-Phosphatase kodierende Gen serB (EP 1 108 790 A2; DNA-SEQ
 NO. 334, DNA-SEQ NO. 467, DNA-SEQ NO. 2767)
 - das für die Serine Acetyl-Transferase kodierende Gen cysE (EP 1 108 790 A2; DNA-SEQ NO. 2818)
- das für eine Homoserin-Dehydrogenase kodierende Gen hom (EP 1 108 790 A2; DNA-SEQ
 15 NO. 1306)

So kann für die Herstellung von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, in coryneformen Bakterien, vorteilhaft sein, gleichzeitig wenigstens eines der nachfolgenden Gene zu mutieren, so dass die korrespondierenden Proteine, verglichen mit nicht mutierten Proteinen, in geringerem Maße oder nicht durch einen Stoffwechselmetaboliten in ihrer Aktivität beeinflusst werden:

- das für eine Aspartatkinase kodierende Gen lysC (EP 1 108 790 A2; DNA-SEQ NO. 281),
- das für die Pyruvat Carboxylase kodierende Gen pyc (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
- das für die Homoserin O-Acetyltransferase kodierende Gen metA (EP 1 108 790 A2; DNA-SEQ NO. 725),
- das für die Cystahionin-gamma-Synthase kodierende Gen metB (EP 1 108 790 A2; DNA-SEQ NO. 3491),
- das für die Cystahionin-gamma-Lyase kodierende Gen metC (EP 1 108 790 A2; DNA-SEQ NO.
 3061),
 - das für die Serin-Hydroxymethyltransferase kodierende Gen glyA (EP 1 108 790 A2; DNA-SEQ NO. 1110),
 - das für die Methionin Synthase kodierende Gen metH (EP 1 108 790 A2),
- das für die Methylentetrahydrofolat-Reduktase kodierende Gen metF (EP 1 108 790 A2; DNA-SEQ NO. 2379),
 - das für die Phosphoserin-Aminotransferase kodierende Gen serC (EP 1 108 790 A2; DNA-

SEQ NO. 928)

- eines für die Phosphoserin-Phosphatase kodierende Gen serB (EP 1 108 790 A2; DNA-SEQ NO. 334, DNA-SEQ NO. 467, DNA-SEQ NO. 2767)
- das für die Serine Acetyl-Transferase kodierende Gen cysE (EP 1 108 790 A2; DNA-SEQ NO.

2818) 5

25

- das für eine Homoserin-Dehydrogenase kodierende Gen hom (EP 1 108 790 A2; DNA-SEQ NO. 1306)
- Weiterhin kann es für die Produktion von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, vorteilhaft sein, zusätzlich zur Expression bzw. Verstärkung eines der erfindungsge-10 mäßen metY-Gene eines oder mehrere der folgenden Gene abzuschwächen, insbesondere deren Expression zu verringern, oder auszuschalten:
 - das für die Homoserine-Kinase kodierende Gen thrB (EP 1 108 790 A2; DNA-SEQ NO. 3453)
- das für die Threonin Dehydratase kodierende Gen ilvA (EP 1 108 790 A2; DNA-SEQ NO. 15
 - das für die Threonin Synthase kodierende Gen thrC (EP 1 108 790 A2; DNA-SEQ NO. 3486)
 - das für die Meso-Diaminopimelat D-Dehydrogenase kodierende Gen ddh (EP 1 108 790 A2; DNA-SEQ NO. 3494)
- 20 das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck (EP 1 108 790 A2; DNA-SEQ NO. 3157)
 - das für die Glucose-6-Phosphat-6-Isomerase kodierende Gen pgi (EP 1 108 790 A2; DNA-SEQ NO. 950)
 - das für die Pyruvat-Oxidase kodierende Gen poxB (EP 1 108 790 A2; DNA-SEQ NO. 2873)
 - das für die Dihydrodipicolinat Synthase kodiernde Gen dapA(EP 1 108 790 A2; DNA-SEQ NO.
 - das für die Dihydrodipicolinat Reduktase kodiemde Gen dapB (EP 1 108 790 A2; DNA-SEQ NO. 3477)
 - das für die Diaminopicolinat Decarboxylase kodiernde Gen lysA (EP 1 108 790 A2; DNA-SEQ NO. 3451) 30

Weiterhin kann es für die Produktion von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, vorteilhaft sein, zusätzlich zur Expression bzw. Verstärkung eines der erfindungsgemäßen metY-Gene in Coryneformen Bakterien gleichzeitig wenigstens eines der folgenden Gene so zu mutieren, dass die enzymatische Aktivität des korrespondierenden Proteins teilweise 35 oder vollständig verringert wird:

- das für die Homoserine-Kinase kodierende Gen thrB (EP 1 108 790 A2; DNA-SEQ NO. 3453)
- das für die Threonin Dehydratase kodierende Gen ilvA (EP 1 108 790 A2; DNA-SEQ NO. 2328)
- das für die Threonin Synthase kodierende Gen thrC (EP 1 108 790 A2; DNA-SEQ NO. 3486)
- das für die Meso-Diaminopimelat D-Dehydrogenase kodierende Gen ddh (EP 1 108 790 A2; DNA-SEQ NO. 3494)
 - das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck (EP 1 108 790 A2; DNA-SEQ NO. 3157)
- das für die Glucose-6-Phosphat-6-Isomerase kodierende Gen pgi (EP 1 108 790 A2; DNA10 SEQ NO. 950)
 - das für die Pyruvat-Oxidase kodierende Gen poxB (EP 1 108 790 A2; DNA-SEQ NO. 2873)
 - das für die Dihydrodipicolinat Synthase kodiernde Gen dapA(EP 1 108 790 A2; DNA-SEQ NO. 3476)
- das für die Dihydrodipicolinat Reduktase kodiemde Gen dapB (EP 1 108 790 A2; DNA-SEQ NO. 3477)
 - das für die Diaminopicolinat Decarboxylase kodiemde Gen lysA (EP 1 108 790 A2; DNA-SEQ NO. 3451)
- Weiterhin kann es für die Produktion von schwefelhaltige Feinchemikalien, insbesondere LMethionin, vorteilhaft sein, neben der Expression bzw. Verstärkung eines erfindungsgemäßen metY-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Microorganisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).
- Die erfindungsgemäß hergestellten Mikroorganismen können kontinuierlich oder diskontinuierlich im batch- Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zur Produktion von schwefelhaltige Feinchemikalien, insbesondere L-Methionin, kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) zu finden.
- Das zu verwendende Kulturmedium hat in geeigneter Weise den Ansprüchen der jeweiligen Stämme zu genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods für General Bacteriology" der American Society für Bacteriology (Washington D. C., USA, 1981) enthalten.

WO 2004/024933

5

10

35

Diese erfindungsgemäß einsetzbaren Medien umfassen gewöhnlich eine oder mehrerenKohlenstoffquellen, Stickstoffquellen, anorganische Salze, Vitamine und/oder Spurenelemente.

Bevorzugte Kohlenstoffquellen sind Zucker, wie Mono-, Di- oder Polysaccharide. Sehr gute Kohlenstoffquellen sind beispielsweise Glucose, Fructose, Mannose, Galactose, Ribose, Sorbose, Ribulose, Lactose, Maltose, Saccharose, Raffinose, Stärke oder Cellulose. Man kann Zucker auch über komplexe Verbindungen, wie Melassen, oder andere Nebenprodukte der Zucker-Raffinierung zu den Medien geben. Es kann auch vorteilhaft sein, Gemische verschiedener Kohlenstoffquellen zuzugeben. Andere mögliche Kohlenstoffquellen sind Öle und Fette wie z. B. Sojaöl. Sonnenblumenöl. Erdnußöl und Kokosfett, Fettsäuren wie z. B. Palmitinsäure, Stearinsäure oder Linolsäure, Alkohole wie z. B. Glycerin, Methanol oder Ethanol und organische Säuren wie z. B. Essigsäure oder Milchsäure.

Stickstoffquellen sind gewöhnlich organische oder anorganische Stickstoffverbindungen oder Materialien, die diese Verbindungen enthalten. Beispielhafte Stickstoffquellen umfassen Ammoniak-Gas oder Ammoniumsalze, wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat oder Ammoniumnitrat, Nitrate, Harnstoff, Aminosäuren oder komplexe Stickstoffquellen, wie Maisquellwasser, Sojamehl, Sojaprotein, Hefeextrakt, Fleischextrakt und andere. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.

Anorganische Salzverbindungen, die in den Medien enthalten sein können, umfassen die Chlorid-, Phosphor- oder Sulfatsalze von Calcium, Magnesium, Natrium, Kobalt, Molybdän, Kalium, Mangan, Zink, Kupfer und Eisen

- Als Schwefelquelle für die Herstellung von schwefelhaltigen Feinchemikalien, insbesondere von Methionin, können anorganische schwefelhaltige Verbindungen wie beispielsweise Sulfate, Sulfite, Dithionite, Tetrathionate, Thiosulfate, Sulfide aber auch organische Schwefelverbindungen, wie Mercaptane und Thiole, verwendet werden.
- 30 Als Phosphorquelle k\u00f6nnen Phosphors\u00e4ure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden.

Chelatbildner können zum Medium gegeben werden, um die Metallionen in Lösung zu halten. Besonders geeignete Chelatbildner umfassen Dihydroxyphenole, wie Catechol oder Protocatechuat, oder organische Säuren, wie Citronensäure.

Die erfindungsgemäß eingesetzten Fermentationsmedien enthalten üblicherweise auch andere

10

15

20

25

30

Wachstumsfaktoren, wie Vitamine oder Wachstumsförderer, zu denen beispielsweise Biotin, Riboflavin, Thiamin, Folsäure, Nikotinsäure, Panthothenat und Pyridoxin gehören. Wachstumsfaktoren und Salze stammen häufig von komplexen Medienkomponenten, wie Hefeextrakt, Melassen, Maisquellwasser und dergleichen. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genaue Zusammensetzung der Medienverbindungen hängt stark vom jeweiligen Experiment ab und wird für jeden spezifischen Fall individuell entschieden. Information über die Medienoptimierung ist erhältlich aus dem Lehrbuch "Applied Microbiol. Physiology, A Practical Approach" (Hrsg. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) S. 53-73, ISBN 0 19 963577 3). Wachstumsmedien lassen sich auch von kommerziellen Anbietem beziehen, wie Standard 1 (Merck) oder BHI (Brain heart infusion, DIFCO) und dergleichen.

Sämtliche Medienkomponenten werden, entweder durch Hitze (20 min bei 1,5 bar und 121°C) oder durch Sterilfiltration, sterilisiert. Die Komponenten können entweder zusammen oder nötigenfalls getrennt sterilisiert werden. Sämtliche Medienkomponenten können zu Beginn der Anzucht zugegen sein oder wahlfrei kontinuierlich oder chargenweise hinzugegeben werden.

Die Temperatur der Kultur liegt normalerweise zwischen 15°C und 45°C, vorzugsweise bei 25°C bis 40°C und kann während des Experimentes konstant gehalten oder verändert werden. Der pH-Wert des Mediums sollte im Bereich von 5 bis 8,5, vorzugsweise um 7,0 liegen. Der pH-Wert für die Anzucht läßt sich während der Anzucht durch Zugabe von basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure kontrollieren. Zur Kontrolle der Schaumentwicklung können Antischaummitte,I wie z. B. Fettsäurepolyglykolester, eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe, wie z. B. Antibiotika, hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff haltige Gasrnischungen, wie z. B. Umgebungsluft, in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

Die so erhaltenen, insbesondere L-Methionin enthaltenden, Fermentationsbrühen haben üblicherweise eine Trockenmasse von 7,5 bis 25 Gew.-%.

Vorteilhaft ist außerdem auch, wenn die Fermentation zumindest am Ende, insbesondere jedoch über mindestens 30% der Fermentationsdauer zuckerlimitiert gefahren wird. Das heißt, dass während dieser Zeit die Konzentration an verwertbarem Zucker im Fermentationsmedium auf ≥ 0 bis 3 g/l gehalten, beziehungsweise abgesenkt wird.

10

15

25

30

35

Die Fermentationsbrühe wird anschließend weiterverarbeitet. Je nach Anforderung kann die Biomasse ganz oder teilweise durch Separationsmethoden, wie z. B. Zentrifugation, Filtration, Dekantieren oder einer Kombination dieser Methoden aus der Fermentationsbrühe entfernt oder vollständig in ihr belassen werden.

Anschließend kann die Fermentationsbrühe mit bekannten Methoden, wie z. B. mit Hilfe eines Rotationsverdampfers, Dünnschichtverdampfers, Fallfilmverdampfers, durch Umkehrosmose, oder durch Nanofiltration, eingedickt beziehungsweise aufkonzentriert werden. Diese aufkonzentrierte Fermentationsbrühe kann anschließend durch Gefriertrocknung, Sprühtrocknung, Sprühgranulation oder durch anderweitige Verfahren aufgearbeitet werden.

Es ist aber auch möglich die schwefelhaltigen Feinchemikalien, insbesonder L-Methionin, weiter aufzureinigen. Hierzu wird die produkthaltige Brühe nach dem Abtrennen der Biomasse einer Chromatographie mit einem geeigneten Harz unterworfen, wobei das gewünschte Produkt oder die Verunreinigungen ganz oder teilweise auf dem Chromatographieharz zurückgehalten werden. Diese Chromatographieschritte können nötigenfalls wiederholt werden, wobei die gleichen oder andere Chromatographieharze verwendet werden. Der Fachmann ist in der Auswahl der geeigneten Chromatographieharze und ihrer wirksamsten Anwendung bewandert. Das gereinigte Produkt kann durch Filtration oder Ultrafiltration konzentriert und bei einer Temperatur aufbe-**20** · wahrt werden, bei der die Stabilität des Produktes maximal ist.

Die Identität und Reinheit der isolierten Verbindung(en) kann durch Techniken des Standes der Technik bestimmt werden. Diese umfassen Hochleistungs-Flüssigkeitschromatographie (HPLC), spektroskopische Verfahren, Färbeverfahren, Dünnschichtchromatographie, NIRS, Enzymtest oder mikrobiologische Tests. Diese Analyseverfahren sind zusammengefaßt in: Patek et al. (1994) Appl. Environ. Microbiol. 60:133-140; Malakhova et al. (1996) Biotekhnologiya 11 27-32; und Schmidt et al. (1998) Bioprocess Engineer. 19:67-70. Ulmann's Encyclopedia of Industrial Chemistry (1996) Bd. A27, VCH: Weinheim, S. 89-90, S. 521-540, S. 540-547, S. 559-566, 575-581 und S. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17.

Die Erfindung wird nun anhand der folgenden nicht-limitierenden Beispiele und unter Bezugnahme auf beiliegende Figuren näher beschrieben. Dabei zeigt

Figur 1 die Plasmidkarte zu Plasmid pClysC;

Figur 2 die Plasmidkarte zu Plasmid pCISlysCthr311ile;

Figur 3 die Plasmidkarte zu Plasmid pCPhsdhmetY Mt.

Restriktionsschnittstellen mit der entsprechenden Positionsangabe in Klammern sind in den Plasmidkarten angegeben. Wesentliche Sequenzabschnitte sind fettgedruckt beschrieben.

5 KanR steht für Kanamycin-Restistenzgen; ask steht für Aspartatkinasegen

Beispiel 1: Konstruktion von pCLiK5MCS

Zunächst wurden Ampicillinresistenz und Replikationsursprung des Vektors pBR322 mit den Oligonukleotiden p1.3 (SEQ ID NO:55) und p2.3 (SEQ ID NO:56) mit Hilfe der Polymerase-Kettenreaktion (PCR) amplifiziert.

p1.3 (SEQ ID NO:55)

5'-CCCGGGATCCGCTAGCGCCGCCGGCCGGCCCGGTGTGAAATACCGCACAG-3'

p2.3 (SEQ ID NO:56)

15

20

25

30

35

5'-TCTAGACTCGAGCGGCCGGCCGGCCTTTAAATTGAAGACGAAAGGGCCTCG-3'

Neben den zu pBR322 komplementären Sequenzen, enthält das Oligonukleotid p1.3 (SEQ ID NO:55) in 5'-3' Richtung die Schnittstellen für die Restriktionsendonukleasen Smal, BamHI, Nhel und Ascl und das Oligonukleotid p2.3 (SEQ ID NO:56) in 5'-3' Richtung die Schnittstellen für die Restriktionsendonukleasen Xbal, Xhol, Notl und Dral. Die PCR Reaktion wurde nach Standardmethode wie Innis et al. (PCR Protocols. A Guide to Methods and Applications, Academic Press (1990)) mit PfuTurbo Polymerase (Stratagene, La Jolla, USA) durchgeführt. Das erhaltene DNA Fragment mit einer Größe von ungefähr 2,1 kb wurde mit dem GFXTMPCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt. Die stumpfen Enden des DNA-Fragmentes wurden mit dem Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers miteinander ligiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben(1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Ampicillin (50µg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

Die Plasmid-DNA eines individuellen Klons wurde mit dem Qiaprep Spin Miniprep Kit (Qiagen, Hilden) nach Angaben des Herstellers isoliert und über Restriktionsverdaus überprüft. Das so erhaltene Plasmid erhält den Namen pCLiK1.

mgi Tagi

172

Ausgehend vom Plasmid pWLT1 (Liebl et al., 1992) als Template für eine PCR Reaktion wurde mit den Oligonukleotiden neo1 (SEQ ID NO:57) und neo2 (SEQ ID NO:58) eine Kanamycin-Resistenzcassette amplifiziert.

5

15

20

25

30

neo1 (SEQ ID NO:57):

5'-GAGATCTAGACCCGGGGATCCGCTAGCGGGCTGCTAAAGGAAGCGGA-3'

neo2 (SEQ ID NO:58):

10 5'-GAGAGGCGCCGCTAGCGTGGGCGAAGAACTCCAGCA-3'

Neben den zu pWLT1 komplementären Sequenzen, enthält das Oligonukleotid neo1 in 5'-3' Richtung die Schnittstellen für die Restriktionsendonukleasen Xbal, Smal, BamHl, Nhel und das Oligonukleotid neo2 (SEQ ID NO:58) in 5'-3' Richtung die Schnittstellen für die Restriktionsendonukleasen AscI und Nhel. Die PCR Reaktion wurde nach Standardmethode wie Innis et al. (PCR Protocols. A Guide to Methods and Applications, Academic Press (1990)) mit PfuTurbo Polymerase (Stratagene, La Jolla, USA) durchgeführt. Das erhaltene DNA Fragment mit einer Größe von ungefähr 1,3 kb wurde mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt. Das DNA-Fragment wurde mit den Restriktionsendonukleasen Xbal und Ascl (New England Biolabs, Beverly, USA) geschnitten und im Anschluß daran erneut mit dem GFXTMPCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt. Der Vektor pCLiK1 wurde ebenfalls mit den Restriktionsendonukleasen Xbal und Ascl geschnitten und mit alkalischer Phosphatase (Roche Diagnostics, Mannheim) nach Angaben des Herstellers dephosphoryliert. Nach Elektrophorese in einem 0,8%igen Agarosegel wurde der linearisierte Vektor (ca. 2,1kb) mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers isoliert. Dieses Vektor-Fragment wurde mit Hilfe des Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers mit dem geschnittenen PCR Fragment ligiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben(1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Ampicillin (50µg/ml) und Kanamycin (20µg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

Die Plasmid-DNA eines individuellen Klons wurde mit dem Qiaprep Spin Miniprep Kit (Qiagen, Hilden) nach Angaben des Herstellers isoliert und über Restriktionsverdaus überprüft. Das so

10

20

30

35

erhaltene Plasmid erhält den Namen pCLiK2.

Der Vektor pCLiK2 wurde mit der Restriktionsendonuklease Dral (New England Biolabs, Beverly, USA) geschnitten. Nach Elektrophorese in einem 0,8%igen Agarosegel wurde ein ca. 2,3 kb großes Vektorfragment mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers isoliert. Dieses Vektor-Fragment wurde mit Hilfe des Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers religiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben (1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Kanamycin (20μg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

Die Plasmid-DNA eines individuellen Klons wurde mit dem Qiaprep Spin Miniprep Kit (Qiagen, Hilden) nach Angaben des Herstellers isoliert und über Restriktionsverdaus überprüft. Das so erhaltene Plasmid erhält den Namen pCLiK3.

Ausgehend vom Plasmid pWLQ2 (Liebl et al., 1992) als Template für eine PCR Reaktion wurde mit den Oligonukleotiden cg1 ((SEQ ID NO:59) und cg2 (SEQ ID NO:60) der Replikationsursprung pHM1519 amplifiziert.

cg1 (SEQ ID NO:59): 5'-GAGAGGGCGGCCGCGCAAAGTCCCGCTTCGTGAA-3'

25 cg2 (SEQ ID NO:60):

5'-GAGAGGGCGGCCGCTCAAGTCGGTCAAGCCACGC-3'

Neben den zu pWLQ2 komplementären Sequenzen, enthalten die Oligonukleotide cg1 (SEQ ID NO:59) und cg2 (SEQ ID NO:60) Schnittstellen für die Restriktionsendonuklease Notl. Die PCR Reaktion wurde nach Standardmethode wie Innis et al. (PCR Protocols. A Guide to Methods and Applications, Academic Press (1990)) mit PfuTurbo Polymerase (Stratagene, La Jolla, USA) durchgeführt. Das erhaltene DNA Fragment mit einer Größe von ungefähr 2,7 kb wurde mit dem GFXTMPCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt. Das DNA-Fragment wurde mit der Restriktionsendonuklease Notl (New England Biolabs, Beverly, USA) geschnitten und im Anschluß daran erneut mit dem GFXTMPCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben

10

15

20

)

des Herstellers gereinigt. Der Vektor pCLiK3 wurde ebenfalls mit der Restriktionsendonuklease NotI geschnitten und mit alkalischer Phosphatase (Roche Diagnostics, Mannheim)) nach Angaben des Herstellers dephosphoryliert. Nach Elektrophorese in einem 0,8%igen Agarosegel wurde der linearisierte Vektor (ca. 2,3kb) mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers isoliert. Dieses Vektor-Fragment wurde mit Hilfe des Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers mit dem geschnittenen PCR Fragment ligiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben(1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Kanamycin (20µg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

Die Plasmid-DNA eines individuellen Klons wurde mit dem Qiaprep Spin Miniprep Kit (Qiagen, Hilden) nach Angaben des Herstellers isoliert und über Restriktionsverdaus überprüft. Das so erhaltene Plasmid erhält den Namen pCLiK5.

Für die Erweiterung von pCLik5 um eine "multiple cloning site" (MCS) wurden die beide synthetischen, weitestgehend komplementären Oligonukleotide HS445 ((SEQ ID NO:61) und HS446 (SEQ ID NO:62), die Schnittstellen für die Restriktionsendonukleasen Swal, Xhol, Aatl, Apal, Asp718, Miul, Ndel, Spel, EcoRV, Sall, Clal, BamHl, Xbal und Smal enthalten, durch gemeinsames erhitzen auf 95°C und langsames abkühlen zu einem doppelsträngigen DNA-Fragment vereinigt.

HS445 (SEQ ID NO:61):

5'-TCGAATTTAAATCTCGAGAGGCCTGACGTCGGGCCCGGTACCACGCGTCATATGACTAG 25 TCTAGACCCGGGATTTAAAT-3'

HS446 (SEQ ID NO:62):

- TGTCGACGATATCCCTAGGTCCGAACTAGTCATATGACGCGTGGTACCGGGCCCGACGTC 30 AGGCCTCTCGAGATTTAAAT-3'
- Der Vektor pCLiK5 wurde mit den Restriktionsendonuklease Xhol und BamHl (New England Biolabs, Beverly, USA) geschnitten und mit alkalischer Phosphatase (I (Roche Diagnostics, Mannheim)) nach Angaben des Herstellers dephosphoryliert. Nach Elektrophorese in einem 35

0,8%igen Agarosegel wurde der linearisierte Vektor (ca. 5,0 kb) mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers isoliert. Dieses Vektor-Fragment wurde mit Hilfe des Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers mit dem synthetischen Doppelsträngigen DNA-Fragment ligiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben(1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Kanamycin (20μg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

10

5

Die Plasmid-DNA eines individuellen Klons wurde mit dem Qiaprep Spin Miniprep Kit (Qiagen, Hilden) nach Angaben des Herstellers isoliert und über Restriktionsverdaus überprüft. Das so erhaltene Plasmid erhält den Namen pCLiK5MCS.

Sequenzierungsreaktionen wurden nach Sanger et al. (1977) Proceedings of the National Academy of Sciences USA 74:5463-5467 durchgeführt. Die Sequenzierreaktionen wurden mittels ABI Prism 377 (PE Applied Biosystems, Weiterstadt) aufgetrennt und ausgewertet.

Das entstandene Plasmid pCLiK5MCS ist als SEQ ID NO: 65 aufgeführt.

20

25

35

Beispiel 2: Konstruktion von pCLiK5MCS integrativ sacB

Ausgehend vom Plasmid pK19mob (Schäfer et al., Gene 145,69-73(1994)) als Template für eine PCR Reaktion wurde mit den Oligonukleotiden BK1732 und BK1733 das Bacillus subtilis sacB Gen (kodierend für Levan Sucrase) amplifiziert.

BK1732 (SEQ ID NO:63):

5'-GAGAGCGGCCGCCGATCCTTTTTAACCCATCAC-3'

30 BK1733 (SEQ ID NO:64):

5'-AGGAGCGGCCGCCATCGGCATTTTCTTTTGCG-3'

Neben den zu pEK19mobsac komplementären Sequenzen, enthalten die Oligonukleotide BK1732 und BK1733 Schnittstellen für die Restriktionsendonuklease Notl. Die PCR Reaktion wurde nach Standardmethode wie Innis et al. (PCR Protocols. A Guide to Methods and Applications, Academic Press (1990)) mit PfuTurbo Polymerase (Stratagene, La Jolla, USA) durchge-

10

15

þ

führt. Das erhaltene DNA Fragment mit einer Größe von ungefähr 1,9 kb wurde mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt. Das DNA-Fragment wurde mit der Restriktionsendonuklease Notl (New England Biolabs, Beverly, USA) geschnitten und im Anschluß daran erneut mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt.

Der Vektor pCLiK5MCS (hergestellt gemäß Beispiel 1) wurde ebenfalls mit der Restriktionsendonuklease Notl geschnitten und mit alkalischer Phosphatase (I (Roche Diagnostics, Mannheim)) nach Angaben des Herstellers dephosphoryliert. Nach Elektrophorese in einem 0,8%igen Agarosegel wurde ein ungefähr 2,4 kb großes Vektorfragment mit dem GFXTMPCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers isoliert. Dieses Vektor-Fragment wurde mit Hilfe des Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben des Herstellers mit dem geschnittenen PCR Fragment ligiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben(1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Kanamycin (20µg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

- Die Plasmid-DNA eines individuellen Klons wurde mit dem Qiaprep Spin Miniprep Kit (Qiagen, Hilden) nach Angaben des Herstellers isoliert und über Restriktionsverdaus überprüft. Das so erhaltene Plasmid erhält den Namen pCLiK5MCS integrativ sacB.
- Sequenzierungsreaktionen wurden nach Sanger et al. (1977) Proceedings of the National Academy of Sciences USA 74:5463-5467 durchgeführt. Die Sequenzierreaktionen wurden mittels ABI Prism 377 (PE Applied Biosystems, Weiterstadt) aufgetrennt und ausgewertet.

Das entstandene Plasmid pCLiK5MCS integrativ sacB ist als SEQ ID NO: 66 aufgeführt.

Weitere Vektoren die zur erfindungsgemäßen Expression oder Überproduktion von metY-Genen geeignet sind, können in analoger Weise herstellt werden.

Beispiel 3: Isolierung des lysC Gens aus dem C. glutamicum Stamm LU1479

35 Im ersten Schritt der Stammkonstruktion soll ein allelischer Austausch des lysC Wildtypgens, kodierend für das Enzym Aspartatkinase, in C. glutamicum ATCC13032, im folgenden LU1479

genannt, durchgeführt werden. Dabei soll im LysC Gen ein Nukleotidaustausch durchgeführt werden, so dass im resultierenden Protein die Aminosäure Thr an der Position 311 durch die Aminosäure Ile ausgetauscht ist.

32

Ausgehend von der chromosomalen DNA aus LU1479 als Template für eine PCR Reaktion wurde mit den Oligonukleotidprimern SEQ ID NO:67 und SEQ ID NO:68 lysC mit Hilfe des Pfu-Turbo PCR Systems (Stratagene USA) nach Angaben des Herstellers amplifiziert. Chromosomale DNA aus C. glutamicum ATCC 13032 wurde nach Tauch et al. (1995) Plasmid 33:168-179 oder Eikmanns et al. (1994) Microbiology 140:1817-1828 präpariert. Das amplifizierte Fragment wird an seinem 5'-Ende von einem Sall Restriktionsschnitt und an seinem 3'-Ende von einem Mlul Restriktionsschnitt flankiert. Vor der Klonierung wurde das amplifizierte Fragment durch diese beiden Restriktionsenzyme verdaut und mit GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) aufgereinigt.

15 SEQ ID NO:67

5'-GAGAGAGACGCGTCCCAGTGGCTGAGACGCATC -3'

SEQ ID NO:68

5'-CTCTCTCTGTCGACGAATTCAATCTTACGGCCTG-3'

20

25

30

Das erhaltenen Polynukleotid wurde über die Sall und Mlul Restriktionsschnitte in pCLIK5 MCS integrativ SacB (im folgenden pCIS genannt; SEQ ID NO: 66 aus Beispiel 2) kloniert und in E.coli XL-1 blue transformiert. Eine Selektion auf Plasmid-tragende Zellen wurde durch das Ausplattieren auf Kanamycin (20µg/ml)-haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht. Das Plasmid wurden isoliert und durch Sequenzierung die erwartete Nukleotidsequenz bestätigt. Die Präparation der Plasmid-DNA wurde nach Methoden und mit Materialien der Firma Quiagen durchgeführt. Sequenzierungsreaktionen wurden nach Sanger et al. (1977) Proceedings of the National Academy of Sciences USA 74:5463-5467 durchgeführt. Die Sequenzierreaktionen wurden mittels ABI Prism 377 (PE Applied Biosystems, Weiterstadt) aufgetrennt und ausgewertet. Das erhaltene Plasmid pCIS lysC ist als SEQ ID NO:69 aufgeführt. Die entsprechende Plasmidkarte ist in Figur 1 dargestellt.

Die Sequenz SEQ ID NO:69 umfasst die folgenden wesentlichen Teilbereiche:

LOCUS pCIS\lysC 5860 bp DNA circular

35 FEATURES

Location/Qualifiers

CDS¹⁾

155..1420

/vntifkey="4"

10

15

25

35

/label=lysC complement²⁾(3935..5356) CDS /vntifkey="4" /label=sacB\(Bacillus\subtilis) complement(5357..5819) promoter /vntifkey="30" /label=Promotor\sacB complement(3913..3934) C_region /vntifkey="2" /label=sacB\downstreambereich 1974..2765 CDS /vntifkey="4" /label=Kan\R

1) kodierende Sequenz

CDS

/vntifkey="4"

/label=Ori\-EC\(pMB)

Beispiel 4: Mutagenese des lysC Gens aus C. glutamicum 20

complement(3032..3892)

Die gerichtete Mutagenese des lysC Gens aus C. glutamicum (Beispiel 3) wurde mit dem QuickChange Kit (Fa. Stratagene/USA) nach Angaben des Herstellers durchgeführt. Die Mutagenese wurde im Plasmid pCIS lysC, SEQ ID NO:69 durchgeführt. Für den Austausch von thr311 nach 311ile mit Hilfe der Quickchange Methode (Stratagene) wurden folgende Oligonukleotidprimer synthetisiert

SEQ ID NO:70

5'-CGGCACCACCGACATCATCTTCACCTGCCCTCGTTCCG -3'

SEQ ID NO:71 30

5'-CGGAACGAGGCAGGTGAAGATGATGTCGGTGGTGCCG -3'

Der Einsatz dieser Oligonukleotidprimer in der Quickchange Reaktion führt in dem lysC Gen zu einem Austausch des Nukleotids in Position 932 (von C nach T) (vgl. SEQ ID NO:72) und im korrespondierenden Enzym zu einem Aminosäuresubstitution in Position 311 (Thr→lle) (vgl. SEQ ID NO:73). Der resultierende Aminosäureaustausch Thr311lle im lysC Gen wurde nach Transformation in E.coli XL1-blue und Plasmidpräparation durch Sequenzierung bestätigt. Das

²⁾ auf Komplementärstrang

Plasmid erhielt die Bezeichnung pCIS lysC thr311ile und ist als SEQ ID NO:74 aufgeführt. Die entsprechende Plasmidkarte ist in Figur 2 dargestellt.

5 Die Sequenz SEQ ID NO:74 umfasst die folgenden wesentlichen Teilbereiche:

LOCUS pCIS\lysC\thr311ile 5860 bp DNA circular

FEATURES

Location/Qualifiers

CDS¹⁾

CDS

155..1420

10

/vntifkey="4"

/label=lysC complement²⁾(3935..5356)

/vntifkey="4"

/label=sacB\(Bacillus\subtilis)

15 promoter complement(5357..5819)

/vntifkey="30"

/label=Promotor\sacB

C region

complement(3913..3934)

/vntifkey="2"

20

/label=sacB\downstreambereich

CDS

CDS

1974..2765

/vntifkey="4"

/label=Kan\R

complement(3032..3892)

25

/vntifkey="4"

/label=Ori\-EC\(pMB)

Das Plasmid pCIS lysC thr311ile wurde in C. glutamicum LU1479 mittels Elektroporation wie bei 30 Liebl, et al. (1989) FEMS Microbiology Letters 53:299-303 beschrieben, transformiert. Modifikationen des Protokolls sind in DE-A-10046870 beschrieben. Die chromosomale Anordnung des lysC-Lokus einzelner Transformanten wurde mit Standardmethoden durch Southernblot und Hybridisierung, wie in Sambrook et al. (1989), Molecular Cloning. A Laboratory Manual, Cold 35 Spring Harbor, beschrieben, überprüft. Dadurch wurde sichergestellt, dass es sich bei den Transformanten um solche handelt, die das transformierte Plasmid durch homologe Rekombination am lysC-Lokus integriert haben. Nach Wachstum solcher Kolonien über Nacht in Medien. die kein Antibiotikum enthielten, wurden die Zellen auf ein Saccharose-CM-Agarmedium (10%

¹⁾ kodierende Sequenz

²⁾ auf Komplementärstrang

5

10

15

20

25

30

35

Saccharose) ausplattiert und bei 30°C für 24 Stunden inkubiert.

Da das im Vektor pCIS lysC thr311ile enthaltende sacB Gen Saccharose in ein toxisches Produkt umwandelt, können nur solche Kolonien anwachsen, die das sacB Gen durch einen zweiten homologen Rekombinationsschritt zwischen dem Wildtyp lysC Gen und dem mutierten Gen lysC thr311ile deletiert haben. Während der homologen Rekombination kann entweder das Wildtyp Gen oder das mutierte Gen zusammen mit dem sacB Gen deletiert werden. Wenn das sacB Gen zusammen mit dem Wildtyp Gen entfernt wird, resultiert eine mutierte Transformante.

Anwachsende Kolonien wurden gepickt, und auf eine Kanamycin-sensitiven Phänotyp hin untersucht. Klone mit deletiertem SacB Gen müssen gleichzeitg Kanamycin-sensitives Wachstumsverhalten zeigen. Solche Kan-sensitiven Klone wurde im einem Schüttelkolben auf ihre Lysin-Produktivität hin untersucht (siehe Beispiel 6). Zum Vergleich wurde der nichtbehandelte Stamm LU1479 angezogen. Klone mit einer gegenüber der Kontrolle erhöhten Lysin-Produktion wurden selektiert, chromosomale DNA wurde gewonnen und der entsprechende Bereich des lysC Gens wurde durch eine PCR-Reaktion amplifiziert und sequenziert. Ein solcher Klon mit der Eigenschaft erhöhter Lysin-Synthese und nachgewiesener Mutation in lysC an der Stelle 932 wurde mit LU1479 lysC 311ile bezeichnet).

Beispiel 5: Herstellung Ethionin-resistenter C. glutamicum Stämme

Im zweiten Schritt der Stammkonstruktion wurde der erhaltene Stamm LU1479 lysC 311ile (Beispiel 4) behandelt, um eine Ethionin-Resistenz (Kase, H. Nakayama K.Agr. Biol. Chem. 39 153-106 1975 L-methionine production by methionine analog-resistant mutants of Corynebacterium glutamicum) zu induzieren: Eine Übernachtkultur in BHI-Medium (Difco) wurde in Citratpuffer (50mM pH 5,5) gewaschen und bei 30°C für 20 min mit N-Methyl-nitrosoguanidin (10mg/ml in 50mM Citrat pH5,5) behandelt. Nach der Behandlung mit dem chemischen Mutagen N-Methyl-nitrosoguanidin wurden die Zellen gewaschen (Citratpuffer 50mM pH 5,5) und auf ein Medium plattiert, das aus folgenden Komponenten, berechnet auf 500ml, zusammengesetzt war: 10g (NH₄)₂SO₄, 0.5g KH₂PO₄, 0.5g K₂HPO₄, 0.125g MgSO₄,7H₂O, 21g MOPS, 50mg CaCl₂, 15mg Proteokatechuat, 0,5mg Biotin, 1mg Thiamin, 5g/l D,L-Ethionin (Sigma Chemicals Deutschland), pH 7,0. Außerdem enthielt das Medium 0.5ml einer Spurensalzlösung aus: 10g/l FeSO₄-7H₂O, 1g/l MnSO₄*H₂O, 0.1g/l ZnSO₄*7H₂O, 0.02g/l CuSO₄, 0.002g/l NiCl₂*6H₂O, Alle Salze wurden in 0,1M HCl gelöst. Das fertig zusammengestellte Medium wurde sterilfiltriert und nach Zugabe von 40ml steriler 50% Glucoselösung, mit flüssigem sterilem Agar in einer Endkonzentration von 1,5% Agar versetzt und in Kulturschalen ausgegossen.

PCT/EP2003/009453

Auf Platten mit dem beschriebenen Medium wurden mutagenisierte Zellen aufgebracht und 3-7 Tage bei 30°C inkubiert. Erhaltene Klone wurden isoliert, mindestens einmal auf dem Selektionsmedium vereinzelt und dann auf ihre Methionin-Produktivität in einem Schüttelkolben in Medium II untersucht (siehe Beispiel 6

36

5

Beispiel 6: Herstellung von Methionin mit dem Stamm LU1479 lysC 311ile ET-16.

Die in Beispiel 5 hergestellten Stämme wurden auf einer Agar-Platte mit CM-Medium für 2 Tag bei 30°C angezogen.

10 CM-Agar.

10,0 g/l D-Glucose, 2,5 g/l NaCl, 2,0 g/l Harnstoff, 10,0 g/l Bacto Pepton (Difco), 5,0 g/l Yeast Extract (Difco), 5,0 g/l Beef Extract (Difco), 22,0 g/l Agar (Difco), autoklaviert (20 min., 121°C)

Anschließend wurden die Zellen von der Platte abgekratzt und in Saline resuspendiert. Für die Hauptkultur wurden 10 ml Medium II und 0,5 g autoklaviertes CaCO₃ (Riedel de Haen) in einem 100 ml Erlenmeyerkolben mit der Zellsuspension bis zu einer OD600nm von 1,5 beimpft und für 72h auf einem Orbitalschüttler mit 200 Upm bei 30°C inkubiert.

20 Medium II:

40g/l Saccharose

60g/l Melasse (auf 100% Zuckergehalt berechnet)

10g/I $(NH_4)_2SO_4$

0.4g/l MgSO₄*7H₂O

25 0.6g/l KH₂PO₄

0.3mg/l Thiamin*HCl

1mg/l Biotin (aus einer 1 mg/ml steril filtrierten Stammlösung die mit NH₄OH auf pH

8,0 eingestellt wurde)

2mg/l FeSO₄

30 2mg/l MnSO₄

mit NH₄OH auf pH 7,8 eingestellt, autoklaviert (121°C, 20 min). Zusätzlich wird Vitamin B12 (Hydroxycobalamin Sigma Chemicals) aus einer Stammlösung (200 μg/ml, steril filtriert) bis zu einer Endkonzentration von 100 μg/l zugegeben

35 Gebildetes Methionin, sowie andere Aminosäuren in der Kulturbrühe wurde mit Hilfe der Aminosäuresäure-Bestimmungsmethode von Agilent auf einer Agilent 1100 Series LC System

HPLC. Eine Derivatisierung vor der Säulentrennung mit Ortho-Phthalaldehyd erlaubte die Quantifizierung der gebildeten Aminosäuren. Die Auftrennung des Aminosäuregemisch fand auf einer Hypersil AA-Säule (Agilent) statt.

Solche Klone wurden isoliert, deren Methionin-Produktivität mindestens doppelt so hoch war, wie die des Ausgangsstamm LU1479 lysC 311ile. Ein solcher Klon wurde für die weiteren Versuche eingesetzt und bekam die Bezeichnung LU1479 lysC 311ile ET-16.

Beispiel 7: Klonierung von metY aus Mycobacterium tuberculosis und Klonierung in das Plas-10 mid pC Phsdh metY_Mt

Chromosomale DNA von *Mycobacterium tuberculosis* wurde von der American Type Strain Culture Collection (ATCC, Atlanta-USA) aus dem Stamm ATCC 25584 bezogen. Chromosomale DNA aus C. glutamicum ATCC 13032 wurde nach Tauch et al. (1995) Plasmid 33:168-179 oder Eikmanns et al. (1994) Microbiology 140:1817-1828 präpariert.

Mit den Oligonukleotidprimer SEQ ID NO:75 und SEQ ID NO:76, der chromosomalen DNA aus C. glutamicum als Template und Pfu Turbo Polymerase (Fa. Stratagene) wurde mit Hilfe der Polymerase-Kettenreaktion (PCR) nach Standardmethoden wie Innis et al. (1990) PCR Protocols. A Guide to Methods and Applications, Academic Press ein DNA Fragment von ca. 180 Basenpaaren aus dem nichtkodierenden 5'-Bereich (Promotorregion) der Homoserindehydrogenase (HsDH) amplifiziert. Das amplifizierte Fragment ist an seinem 5'-Ende von einer BamHl-Restriktionsschnittstelle und am 3'-Ende von einem über das Oligo eingeführten zu metY aus Mycobacterium tuberculosis homologen Bereich flankiert.

25

20

15

SEQ ID NO:75
5'-GAGAGGATCCGGAAGGTGAATCGAATTTCGG -3'
und
SEQ ID NO:76

30 5'-CTATTGCTGTCGGCGCTCATGATTCTCCAAAAATAATCGC -3'

Das erhaltene DNA Fragment wurde mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt.

Ausgehend von der chromosomalen DNA aus Mycobacterium tuberculosis als Template für eine PCR Reaktion wurde mit den Oligonukleotidprimem SEQ ID NO:77 und SEQ ID NO:78 metY mit

Hilfe des GC-RICH PCR Systems (Roche Diagnostics, Mannheim) nach Angaben des Herstellers amplifiziert. Das amplifizierte Fragment ist an seinem 3'-Ende von einer Xbal-Restriktionsschnittstelle, die über das Oligo eingeführt wurde, flankiert.

5 SEQ ID NO:77

5'-ATGAGCGCCGACAGCAATAG --3'

und

SEQ ID NO:78

5'-GAACTCTAGATCAGAACGCCGCCACGGAC -3'

10

15

20

25

30

Das ca. 1,4 kb große erhaltene DNA Fragment wurde mit dem GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt.

In einer weiteren PCR Reaktion wurden die beiden oben erhaltenen Fragmente gemeinsam als Template eingesetzt. Durch die mit dem Oligonukleotidprimer SEQ ID NO:76 eingebrachte, zu dem metY Fragment homologen Bereichen, kommt es im Zuge der PCR-Reaktion zu einer Anlagerung beider Fragmente aneinander und einer Verlängerung zu einem durchgehenden DNA-Strang durch die eingesetzte Polymerase. Die Standardmethode wurde dahingehend modifiziert, dass die verwendeten Oligonukleotidprimer SEQ ID NO:75 und SEQ ID NO:78 erst mit Beginn des 2. Zykluses dem Reaktionsansatz zugegeben wurden.

Das amplifizierte DNA Fragment von ungefähr 1,6 kb wurde mit dem GFX™PCR, DNA and Gel Band Purification Kit nach Angaben des Herstellers gereinigt. Im Anschluß daran wurde es mit den Restriktionsenzymen BamHI und Xbal (Roche Diagnostics, Mannheim) gespalten und gelelektrophoretisch aufgetrennt. Anschließend wurde das ca. 1,6 kb große DNA Fragment mit GFX™PCR, DNA and Gel Band Purification Kit (Amersham Pharmacia, Freiburg) aus der Agarose aufgereinigt.

Der Vektor pClik5MCS SEQ ID NO:65, im folgenden pC genannt, wurde mit den Restriktionsenzymen BamHI und Xbal (Roche Diagnostics, Mannheim) geschnitten und ein 5 kb großes Fragment nach elektrophoretischer Auftrennung mit GFX™PCR, DNA and Gel Band Purification Kit isoliert.

Das Vektorfragment wurde zusammen mit dem geschnittenen und aufgereinigten PCR-Fragment mit Hilfe des Rapid DNA Ligation Kit (Roche Diagnostics, Mannheim) nach Angaben 35 des Herstellers ligiert und der Ligationsansatz nach Standardmethoden wie in Sambrook et al.

(Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, beschrieben(1989)), in kompetente E.coli XL-1Blue (Stratagene, La Jolla, USA) transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Ausplattieren auf Kanamycin (20µg/ml) haltigen LB Agar (Lennox, 1955, Virology, 1:190) erreicht.

5

Die Präparation der Plasmid DNA wurde nach Methoden und mit Materialien der Fa. Quiagen durchgeführt. Sequenzierungsreaktionen wurden nach Sanger et al. (1977) Proceedings of the National Academy of Sciences USA 74:5463-5467 durchgeführt. Die Sequenzierreaktionen wurden mittels ABI Prism 377 (PE Applied Biosystems, Weiterstadt) aufgetrennt und ausgewertet.

10

Das entstandene Plasmid pC Phsdh metY_Mt (Mycobacterium tuberculosis) ist als SEQ ID NO:79 aufgeführt. Die entsprechende Plasmidkarte ist in Figur 3 dargestellt.

Die Sequenz SEQ ID NO:79 umfasst die folgenden wesentlichen Teilbereiche:

15

pC\Phsdh\metY_Mt 6591 bp DNA circular 21-JUL-2003 LOCUS

FEATURES

Location/Qualifiers

CDS

156..1505

20

/vntifkey="4" /label=metY\aus\M\tuberculosis

CDS

1855..2646

/vntifkey="4"

/label=Kan\R

25

4927..6048

CDS

/vntifkey="4"

/label=Rep\Protein

CDS

CDS

3919..4593 /vntifkey="4"

30

/label=ORF\1

complement(2913..3773)

/vntifkey="4"

/label=Ori\-EC\(pMB)

35

Beispiel 8:Transformation des Stammes LU1479 lysC 311ile ET-16 mit dem Plasmid pC Phsdh metY_Mt

Der Stamm LU1479 lysC 311ile ET-16 wurde mit dem Plasmid pC Phsdh metY_Mt nach der

PCT/EP2003/009453

beschriebenen Methode (Liebl, et al. (1989) FEMS Microbiology Letters 53:299-303) transformiert. Die Transformationsmischung wurde auf CM-Platten plattiert, die zusätzlich 20mg/l Kanamycin enthielten, um eine Selektion auf Plasmid-haltige Zellen zu erreichen. Erhaltene Kanresistente Klone wurden gepickt und vereinzelt. Die Methionin-Produktivität der Klone wurde in einem Schüttelkolbenversuch (s. Beispiel 6) untersucht. Der Stamm LU1479 lysC 311ile ET-16 pC Phsdh metY_Mt produzierte im Vergleich zu LU1479 lysC 311ile ET-16 signifikant mehr Methionin.

10

<u>Patentansprüche</u>

- Verfahren zur fermentativen Herstellung wenigstens einer schwefelhaltigen
 Feinchemikalie, welches folgende Schritte umfasst:
 - a) Fermentation einer die gewünschte schwefelhaltige Feinchemikalie produzierenden coryneformen Bakterienkultur, wobei in den coryneformen Bakterien zumindest eine heterologe Nukleotidsequenz exprimiert wird, welche für ein Protein mit O-Acetyl-Homoserin-Sulfhydrolase (metY) --Aktivität kodiert;
 - b) Anreicherung der schwefelhaltigen Feinchemikalie im Medium oder in den Zellen der Bakterien, und
 - c) Isolieren der schwefelhaltigen Feinchemikalie.
- Verfahren nach Anspruch 1, wobei die schwefelhaltige Feinchemikalie L-Methionin umfasst.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei die heterologe metY-kodierende Nukleotidsequenz zur metY-kodierenden Sequenz aus Corynebacterium glutamicum ATCC 13032 eine Sequenzhomologie vom weniger als 100% aufweist.
 - 4. Verfahren nach Anspruch 3, wobei die metY-kodierende Sequenz aus einem der folgenden Organismen abgeleitet ist:

- diahtoriaa	ATCC 14779
Corynebacterium diphteriae	ATCC 25584
Mycobacterium tuberculosis	7,100 2000
CDC1551	ATCC 824
Clostridium acetobutylicum	ATCC21591
Bacillus halodurans	
Bacillus stearothermophilus	ATCC 12980
Chlorobium tepidum	ATCC 49652
Synechococcus sp.	ATCC27104
Emericella nidulans	ATCC 36104
Bacteroides fragilis	ATCC 25285
Bacteroides fragino	ATCC 7962
Lactococcus lactis	ATCC 19395
Bordetella bronchiseptica	ATCC 17933
Pseudomonas aeruginosa	ATCC 19718
Nitrosomonas europaea	ATCC 4399
Sinorhizobium meliloti	ATCC 43589
Thermotoga maritima	ATCC 45305
Streptococcus mutans	ATCC 25175
Burkholderia cepacia	ATCC 25416
Deinococcus radiodurans	ATCC 13939
Delilococcas radiodararie	

5

10

Rhodobacter capsulatus	ATCC 11166
Pasteurella multocida	ATCC 6530
Clostridium difficile	ATCC 9689
Campylobacter jejuni	ATCC 33560
Streptococcus pneumoniae	ATCC 6308
Saccharomyces cerevisiae	ATCC 2704
Kluyveromyces lactis	ATCC 8585
Candida albicans	ATCC 10231
Schizosaccharomyces pombe	ATCC 24969

- 5. Verfahren nach einem der vorhergehenden Ansprüche, wobei die metY-kodierende Sequenz eine kodierende Sequenz gemäß SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51 und 53 oder eine dazu homologe Nukleotidsequenz, welche für ein Protein mit metY-Aktivität kodiert, umfasst.
- 6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die mety-kodierende Sequenz für ein Protein mit mety-Aktivität kodiert, wobei das Protein eine Aminosäuresequenz gemäß SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52 und 54 oder eine dazu homologe Aminosäuresequenz, welche für ein Protein mit mety-Aktivität steht, umfasst.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei die kodierende metYSequenz eine in coryneformen Bakterien replizierbare oder eine stabil in das
 Chromosom intregrierte DNA oder eine RNA ist.
 - 8. Verfahren gemäß Anspruch 7, wobei man
 - einen mit einem Plasmidvektor transformierten Bakterienstamm einsetzt der wenigstens eine Kopie der kodierenden metY-Sequenz unter der Kontrolle regulativer Sequenzen trägt, oder
 - b) einen Stamm einsetzt, in dem die kodierende metY-Sequenz in das Chromosom des Bakteriums integriert wurde
- 25 9. Verfahren nach einem der vorhergehenden Ansprüche, wobei die kodierende metY-Sequenz überexprimiert wird.
 - 10. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei man Bakterien fermentiert, in denen zusätzlich wenigstens ein weiteres Gen des Biosyntheseweges der

10

15

20

25

30

43

gewünschten schwefelhaltigen Feinchemikalie verstärkt ist oder derart mutiert ist, dass es durch Stoffwechselmetabolite nicht in seiner Aktivität beeinflusst wird.

- Verfahren gemäß einem der vorhergehenden Ansprüche, wobei man Bakterien fermentiert, in denen wenigstens ein Stoffwechselweg zumindest teilweise ausgeschaltet ist, der die Bildung der gewünschten schwefelhaltigen Feinchemikalie verringert.
 - 12. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei man coryneforme Bakterien fermentiert, in denen gleichzeitig wenigstens eines der Gene, ausgewählt unter
 - a) dem für eine Aspartatkinase kodierenden Gen lysC,
 - b) dem für die Glycerinaldehyd-3-Phosphat Dehydrogenase kodierenden Gen gap,
 - c) dem für die 3-Phosphoglycerat Kinase kodierenden Gen pgk,
 - d) dem für die Pyruvat Carboxylase kodierenden Gen pyc,
 - e) dem für die Triosephosphat Isomerase kodierenden Gen tpi,
 - f) dem für die Homoserin O-Acetyltransferase kodierenden Gen metA,
 - g) dem für die Cystahionin-gamma-Synthase kodierenden Gen metB,
 - h) dem für die Cystahionin-gamma-Lyase kodierenden Gen metC,
 - i) dem für die Serin-Hydroxymethyltransferase kodierenden Gen glyA,
 - j) dem für die Methylen-Tetrahydrofolat-Reduktase kodierenden Gen metF,
 - dem für die Metnyler-Tetranydrorotat Abdahanse kodierenden Gen metH,
 k) dem für die Vitamin B12 abhängige Methionin-Synthase kodierenden Gen metH,
 - dem für die Phosphoserin-Aminotransferase kodierenden Gen serC
 - m) dem für die Phosphoserin-Phosphatase kodierenden Gen serB
 - n) dem für die Serine Acetyl-Transferase kodierenden Gen cysE, und
 - o) dem für eine Homoserin-Dehydrogenase kodierenden Gen hom,

überexprimiert oder so mutiert ist, dass die korrespondierenden Proteine, verglichen mit nicht mutierten Proteinen, in geringerem Maße oder nicht durch Stoffwechselmetabolite in ihrer Aktivität beeinflusst werden.

- 13. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei man coryneformen Bakterien fermentiert, in denen gleichzeitig wenigstens eines der Gene, ausgewählt unter
 - a) dem für die Homoserine-Kinase kodierenden Gen thrB,
 - b) dem für die Threonin Dehydratase kodierenden Gen ilvA,
- 35 c) dem für die Threonin Synthase kodierenden Gen thrC
 - d) dem für die Meso-Diaminopimelat D-Dehydrogenase kodierenden Gen ddh

- e) dem für die Phosphoenolpyruvat-Carboxykinase kodierenden Gen pck,
- f) dem für die Glucose-6-Phosphat-6-Isomerase kodierenden Gen pgi,
- g) dem für die Pyruvat-Oxidase kodierenden Gen poxB,
- h) dem für die Dihydrodipicolinat Synthase kodiemden Gen dapA,
- i) dem für die Dihydrodipicolinat Reduktase kodiernden Gen dapB; oder
- j) dem für die Diaminopicolinat Decarboxylase kodiernden Gen

durch Veränderung der Expressionsrate oder durch Einführung einer gezielten Mutation abschwächt ist.

10

20

5

14. Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche, wobei man Mikroorganismen der Art Corynebacterium glutamicum einsetzt.

- Verfahren zur Herstellung eines L-Methionin haltigen Tierfuttermittel-Additivs aus
 Fermentationsbrühen, welches folgende Schritte umfasst
 - a) Kultivierung und Fermentation eines L-Methionin produzierenden
 Mikroorganismus in einem Fermentationsmedium;
 - b) Entfernung von Wasser aus der L-Methionin haltigen Fermentationsbrühe;
 - c) Entfemung der während der Fermentation gebildeten Biomasse in einer Menge von 0 bis 100 Gew.-%; und
 - d) Trocknung der gemäß b) und/oder c) erhaltenen Fermentationsbrühe, um das Tierfuttermittel-Additiv in der gewünschten Pulver- oder Granulatform zu erhalten.
- Verfahren gemäß Anspruch 15, wobei man Mikroorganismen gemäß der Definition in
 einem der Ansprüche 1 bis 14 einsetzt.

Fig. 1

Fig. 2

.

(See

Fig. 3

• •

SEQUENZPROTOKOLL

<120> Verfahren zur Herstellung schwefelhaltiger Feinchemikalien
<130> M/43128

<170> PatentIn version 3.1

<211> 1317

<210> 1

<160> 66

<212> DNA

<213> Corynebacterium diphtheriae

<220>

<221> CDS

<222> (1)..(1317)

<223>

atg	aca			-		_		tgg Trp		gag Glu	48
								gat Asp			96
_		_					_	ttt Phe 45			144
								ggc Gly		tac Tyr	192
			Asn					gaa Glu			240

•	PCT/EP2003/009453
	PCT/EP2003/009453

aat Asn	ctt Leu	gaa Glu	ggt Gly	ggc Gly 85	gta Val	cac His	gcc Ala	gta Val	ctt Leu 90	ttc Phe	gct Ala	tcc Ser	gga Gly	atg Met 95	gcc Ala	288
gcc Ala	gaa Glu	acc Thr	gcc Ala 100	gca Ala	atc Ile	ctc Leu	aac Asn	atc Ile 105	gcc Ala	cgc Arg	gcg Ala	ggt Gly	tcc Ser 110	cac His	atc Ile	336
gtg Val	tcc Ser	agt Ser 115	cct Pro	cgc Arg	att Ile	tac Tyr	ggc Gly 120	ggc Gly	acc Thr	gaa Glu	aca Thr	ctc Leu 125	ttt Phe	gcc Ala	gtc Val	384
aca Thr	ttg Leu 130	gca Ala	cgc Arg	ctg Leu	ggc Gly	atc Ile 135	gaa Glu	acc Thr	act Thr	ttc Phe	gta Val 140	gaa Glu	aat Asn	cct Pro	gac Asp	432
gac Asp 145	cca Pro	gcc Ala	tca Ser	tgg Trp	gag Glu 150	gct Ala	gca Ala	gtt Val	caa Gln	gac Asp 155	aac Asn	acg Thr	gta Val	gct Ala	ctc Leu 160	480
tac Tyr	gga Gly	gaa Glu	acc Thr	ttc Phe 165	gct Ala	aat Asn	cca Pro	caa Gln	gca Ala 170	gac Asp	gtg Val	ctt Leu	gat Asp	att Ile 175	ccc Pro	528
gca Ala	atc Ile	gca Ala	gag Glu 180	gtt Val	gcc Ala	cat His	aaa Lys	cat His 185	caa Gln	gta Val	cca Pro	ctg Leu	atc Ile 190	gtc Val	gac Asp	576
aac Asn	acc Thr	ctc Leu 195	gca Ala	acc Thr	gca Ala	gcc Ala	ctt Leu 200	gta Val	cgc Arg	ccc Pro	ctc Leu	gaa Glu 205	ctc Leu	ggt	gca Ala	624
Asp	Val 210	Val	Val	Ala	Ser	Leu 215	Thr	Lys	Phe	Tyr	220	GIA	Asn	GIY	tcc Ser	672
Gly 225	Leu	Gly	Gly	Val	Leu 230	Ile	Asp	Gly	Gly	Asn 235	Phe	: Asp	Trp	THE	gtc Val 240	720
Thr	Arg	Asn	Gly	Glu 245	Pro	Ile	Phe	Pro	Asp 250	Phe	val	. Thr	PIC	255		768
Āla	Tyr	His	Gly 260	Leu	Lys	Tyr	Ser	Asp 265	Leu	GIÀ	. YTS	. Pro	270)	gga Gly	816
Leu	Lys	Ala 275	Arg	Val	Gly	Leu	Leu 280	Arg	Asp	Thr	. GT	285	i L Ale	l Pro	tca Ser	864
cca Pro	ctc Leu 290	Asn	gca Ala	tgg Trp	atc Ile	acc Thr 295	gca Ala	caa Gln	ggg ggg	cto Lev	gad Asp 300) Int	cto Lev	tcg Sei	g cta Leu	912
cga Arg 305	Val	caa Gln	cgc Arg	cac His	aac Asn 310	gaa Glu	aac Asn	gca Ala	ctc Leu	gca Ala 315	val	a gca L Ala	caa Glr	tto Phe	teu 320	960
gcc Ala	aac Asn	cac His	gag Glu	aaa Lys	gta Val	gcc Ala	aag Lys	gtt Val	aac Asn	tac Tyr	gca Ala	a ggo a Gly	ctt Lei	cco Pro	gac Asp	1008

CT/EP2003/009453

3/130

		3/130		
•	325	330	335	
tcc cct tgg tac Ser Pro Trp Tyr 340	cca gtc aaa Pro Val Lys	gaa aaa ctc gga Glu Lys Leu Gly 345	ttc gac tac acc ggc 1056 Phe Asp Tyr Thr Gly 350	5
tcc gta ctt tcc Ser Val Leu Ser 355	ttt gac gtt Phe Asp Val	aaa ggt gga aaa Lys Gly Gly Lys 360	aac gaa gca tgg cgc 1104 Asn Glu Ala Trp Arg 365	4
ttt atc gac gca Phe Ile Asp Ala 370	ctc aaa cta Leu Lys Leu 375	cac tcg aac ctc His Ser Asn Leu	gcc aac gtc gga gac 1153 Ala Asn Val Gly Asp 380	2
gta cgt tcc ctc Val Arg Ser Leu 385	gta gtc cac Val Val His 390	cca gcg acc acc Pro Ala Thr Thr 395	acg cac tca caa tcg 120 Thr His Ser Gln Ser 400	0
gaa gaa tcg gca Glu Glu Ser Ala	ctt cta gcc Leu Leu Ala 405	gca gga att aat Ala Gly Ile Asn 410	caa gca acc atc cga 124 Gln Ala Thr Ile Arg 415	8
ctc tcc gtc ggc Leu Ser Val Gly 420	Ile Glu Ser	atc gac gac atc Ile Asp Asp Ile 425	atc gcc gac ctc aca 129 Elle Ala Asp Leu Thr 430	6
gca ggt ttc gac Ala Gly Phe Asp 435	gca atc taa Ala Ile		131	.7
<210> 2				
<211> 438				
<212> PRT				
<213> Coryneba	cterium diph	theriae		
<400> 2			•	
Met Pro Thr Lys	Tyr Asp Asn 5	. Ser Asn Ala Asr 10	n Lys Trp Gly Phe Glu 15	
Thr Arg Ser Ile 20	His Ala Gly	Gln Ser Val Ası 25	o Ser Asp Thr Ser Ala 30	
Arg Asn Leu Pro 35	o Ile Tyr Leu	Thr Ser Ser Tyi	r Val Phe Asn Asp Ala 45	
Glu His Ala Ala	Asn Arg Phe	Asn Leu Ser As	p Ala Gly Pro Val Tyr	
50	55		60 .	

Asn Leu Glu Gly Gly Val His Ala Val Leu Phe Ala Ser Gly Met Ala 85 90 95

Ala Glu Thr Ala Ala Ile Leu Asn Ile Ala Arg Ala Gly Ser His Ile 100 105 110

Val Ser Ser Pro Arg Ile Tyr Gly Gly Thr Glu Thr Leu Phe Ala Val 115 120 125

Thr Leu Ala Arg Leu Gly Ile Glu Thr Thr Phe Val Glu Asn Pro Asp 130 135 140

Asp Pro Ala Ser Trp Glu Ala Ala Val Gln Asp Asn Thr Val Ala Leu 145 150 155 160

Tyr Gly Glu Thr Phe Ala Asn Pro Gln Ala Asp Val Leu Asp Ile Pro 165 170 175

Ala Ile Ala Glu Val Ala His Lys His Gln Val Pro Leu Ile Val Asp 180 185 190

Asn Thr Leu Ala Thr Ala Ala Leu Val Arg Pro Leu Glu Leu Gly Ala 195 200 205

Asp Val Val Val Ala Ser Leu Thr Lys Phe Tyr Thr Gly Asn Gly Ser 210 215 220

Gly Leu Gly Gly Val Leu Ile Asp Gly Gly Asn Phe Asp Trp Thr Val 225 230 235 240

Thr Arg Asn Gly Glu Pro Ile Phe Pro Asp Phe Val Thr Pro Asp Pro 245 250 255

Ala Tyr His Gly Leu Lys Tyr Ser Asp Leu Gly Ala Pro Ala Phe Gly 260 265 270

Leu Lys Ala Arg Val Gly Leu Leu Arg Asp Thr Gly Ala Ala Pro Ser 275 280 285

Pro Leu Asn Ala Trp Ile Thr Ala Gln Gly Leu Asp Thr Leu Ser Leu 290 295 300

Arg Val Gln Arg His Asn Glu Asn Ala Leu Ala Val Ala Gln Phe Leu 305 310 315 320

Ala Asn His Glu Lys Val Ala Lys Val Asn Tyr Ala Gly Leu Pro Asp 325 330 335

Ser Pro Trp Tyr Pro Val Lys Glu Lys Leu Gly Phe Asp Tyr Thr Gly 340 345

Ser Val Leu Ser Phe Asp Val Lys Gly Gly Lys Asn Glu Ala Trp Arg 360 355

Phe Ile Asp Ala Leu Lys Leu His Ser Asn Leu Ala Asn Val Gly Asp 375 370

Val Arg Ser Leu Val Val His Pro Ala Thr Thr His Ser Gln Ser 395 390 385

Glu Glu Ser Ala Leu Leu Ala Ala Gly Ile Asn Gln Ala Thr Ile Arg

Leu Ser Val Gly Ile Glu Ser Ile Asp Asp Ile Ile Ala Asp Leu Thr 420 425

Ala Gly Phe Asp Ala Ile 435

<210> 3

<211> 1350

<212> DNA

<213> Mycobacterium tuberculosis

<220>

CDS <221>

(1)..(1350) <222>

<223>

<400> 3 48 atg age gee gae age aat age ace gae gee gat eeg ace geg eat tgg Met Ser Ala Asp Ser Asn Ser Thr Asp Ala Asp Pro Thr Ala His Trp tog tto gaa aco aaa cag ata cac got ggt cag cac cot gat cog aco 96 Ser Phe Glu Thr Lys Gln Ile His Ala Gly Gln His Pro Asp Pro Thr 25

acc aac gcc cgg gct ctg ccg atc tat gcg acc acg tcg tac acc ttc Thr Asn Ala Arg Ala Leu Pro Ile Tyr Ala Thr Thr Ser Tyr Thr Phe 45

35

40

6/130

PCT/EP2003/009453

						gcc Ala						192
						aac Asn						240
						ggt						288
			Glu			gcc Ala		Leu				336
_		Val		_	_	cgc Arg 120	_				_	384
						ctc Leu						432
						tgg Trp						480
						atc Ile						528
						gtc Val						576
						acg Thr 200						624
_		 _				cat His	_	_		 _	 	672
						gtg Val						720
						ggc Gly						768
						ctg Leu						816
	Arg				Arg	gac Asp 280						864
Asn				Ala		ggt Gly						912

	PCT/EP2003/009453

gag Glu 305	cgg Arg	cac His	gtc Val	gcc Ala	aac Asn 310	gcg Ala	cag Gln	cgc Arg	gtc Val	gcc Ala 315	gag Glu	ttc Phe	ctg Leu	gcc Ala	gcc Ala 320	960
cgc Arg	gac Asp	gac Asp	gtg Val	ctt Leu 325	tcg Ser	gtc Val	aac Asn	tat Tyr	gcg Ala 330	gjå aaa	ctg Leu	ccc Pro	tcc Ser	tcg Ser 335	ccc Pro	1008
tgg Trp	cat His	gag Glu	cgg Arg 340	gcc Ala	aag Lys	agg Arg	ctg Leu	gcg Ala 345	ccc Pro	aag Lys	gga Gly	acc Thr	320 GJA 333	gcc Ala	gtg Val	1056
ctg Leu	tcc Ser	ttc Phe 355	gag Glu	ttg Leu	gcc Ala	ggc Gly	360 Gly ggc	atc Ile	gag Glu	gcc Ala	ggc Gly	aag Lys 365	gca Ala	ttc Phe	gtg Val	1104
aac Asn	gcg Ala 370	ttg Leu	aag Lys	ctg Leu	cac His	agc Ser 375	cac His	gtc Val	gcc Ala	aac Asn	atc Ile 380	ggt Gly	gac Asp	gtg Val	ege Arg	1152
tcg Ser 385	ctg Leu	gtg Val	atc Ile	cac His	ccg Pro 390	gca Ala	tcg Ser	acc Thr	act Thr	cat His 395	gcc Ala	cag Gln	ctg Leu	agc Ser	ecg Pro 400	1200
gcc Ala	gag Glu	cag Gln	ctg Leu	gcg Ala 405	acc Thr	Gly 999	gtc Val	agc Ser	ccg Pro 410	ggc	ctg Leu	gtg Val	cgt Arg	ttg Leu 415	gct Ala	1248
gtg Val	ggc Gly	atc Ile	gaa Glu 420	ggt Gly	atc Ile	gac Asp	gat Asp	atc Ile 425	ctg Leu	gcc Ala	gac Asp	ctg Leu	gag Glu 430	Leu	ggc	1296
ttt Phe	gcc Ala	gcg Ala 435	gcc Ala	cgc Arg	aga Arg	ttc Phe	agc Ser 440	gcc Ala	gac Asp	ccg Pro	cag Gln	tcc Ser 445	Val	gcg Ala	gcg	1344
ttc Phe	tga						•									1350

<210> 4

<211> 449

<212> PRT

<213> Mycobacterium tuberculosis

<400> 4

Met Ser Ala Asp Ser Asn Ser Thr Asp Ala Asp Pro Thr Ala His Trp

Ser Phe Glu Thr Lys Gln Ile His Ala Gly Gln His Pro Asp Pro Thr 20 25 30

Thr Asn Ala Arg Ala Leu Pro Ile Tyr Ala Thr Thr Ser Tyr Thr Phe

45

35 40

Asp Asp Thr Ala His Ala Ala Ala Leu Phe Gly Leu Glu Ile Pro Gly 50 55 60

Asn Ile Tyr Thr Arg Ile Gly Asn Pro Thr Thr Asp Val Val Glu Gln 65 70 75 80

Arg Ile Ala Ala Leu Glu Gly Gly Val Ala Ala Leu Phe Leu Ser Ser 85 90 95

Gly Gln Ala Ala Glu Thr Phe Ala Ile Leu Asn Leu Ala Gly Ala Gly 100 105 110

Asp His Ile Val Ser Ser Pro Arg Leu Tyr Gly Gly Thr Tyr Asn Leu 115 120 125

Phe His Tyr Ser Leu Ala Lys Leu Gly Ile Glu Val Ser Phe Val Asp 130 135 140

Asp Pro Asp Asp Leu Asp Thr Trp Gln Ala Ala Val Arg Pro Asn Thr 145 150 155 160

Lys Ala Phe Phe Ala Glu Thr Ile Ser Asn Pro Gln Ile Asp Leu Leu 165 170 175

Asp Thr Pro Ala Val Ser Glu Val Ala His Arg Asn Gly Val Pro Leu 180 185 190

Ile Val Asp Asn Thr Ile Ala Thr Pro Tyr Leu Ile Gln Pro Leu Ala 195 200 205

Gln Gly Ala Asp Ile Val Val His Ser Ala Thr Lys Tyr Leu Gly Gly 210 215 220

His Gly Ala Ala Ile Ala Gly Val Ile Val Asp Gly Gly Asn Phe Asp 225 230 235 240

Trp Thr Gln Gly Arg Phe Pro Gly Phe Thr Thr Pro Asp Pro Ser Tyr 245 250 255

His Gly Val Val Phe Ala Glu Leu Gly Pro Pro Ala Phe Ala Leu Lys 260 265 270

Ala Arg Val Gln Leu Leu Arg Asp Tyr Gly Ser Ala Ala Ser Pro Phe 275 280 285

Asn Ala Phe Leu Val Ala Gln Gly Leu Glu Thr Leu Ser Leu Arg Ile 290 295 300

Glu Arg His Val Ala Asn Ala Gln Arg Val Ala Glu Phe Leu Ala Ala 305 310 315 320

Arg Asp Asp Val Leu Ser Val Asn Tyr Ala Gly Leu Pro Ser Ser Pro 325 330 335

Trp His Glu Arg Ala Lys Arg Leu Ala Pro Lys Gly Thr Gly Ala Val

Leu Ser Phe Glu Leu Ala Gly Gly Ile Glu Ala Gly Lys Ala Phe Val 355 360 365

Asn Ala Leu Lys Leu His Ser His Val Ala Asn Ile Gly Asp Val Arg 370 375 380

Ser Leu Val Ile His Pro Ala Ser Thr Thr His Ala Gln Leu Ser Pro 385 390 395 400

Ala Glu Gln Leu Ala Thr Gly Val Ser Pro Gly Leu Val Arg Leu Ala 405 410 415

Val Gly Ile Glu Gly Ile Asp Asp Ile Leu Ala Asp Leu Glu Leu Gly 420 425 430

Phe Ala Ala Arg Arg Phe Ser Ala Asp Pro Gln Ser Val Ala Ala 435 440 445

Phe

<210> 5

<211> 1284

<212> DNA

<213> Clostridium acetobutylicum

<220>

<221> CDS

<222> (1)..(1284)

<223>

<400	> 5															
-+-	~~t	maa.	gaa Glu	aga Arg 5	aaa Lys	ttt Phe	ggt Gly	ttt Phe	gaa Glu 10	aca Thr	tta Leu	cag Gln	gtt Val	cat His 15	gca Ala	48
gga Gly	caa Gln	gtt Val	gct Ala 20	gat Asp	cca Pro	act Thr	aca Thr	gga Gly 25	tca Ser	aga Arg	gct Ala	gta Val	cct Pro 30	att Ile	tat Tyr	96
caa Gln	aca Thr	aca Thr 35	tca Ser	tat Tyr	gta Val	ttt Phe	aaa Lys 40	aat Asn	gct Ala	gat Asp	cat His	gca Ala 45	gca Ala	aat Asn	tta Leu	144
ttt Phe	caa Gln 50	ttg Leu	aaa Lys	gaa Glu	cct Pro	gga Gly 55	aat Asn	gta Val	tat Tyr	aca Thr	agg Arg 60	ata Ile	atg Met	aat Asn	cca Pro	192
aca Thr 65	act Thr	gat Asp	gta Val	ttt Phe	gaa Glu 70	caa Gln	aga Arg	gta Val	gca Ala	gct Ala 75	ctt Leu	gag Glu	ggc Gly	gga Gly	gtt Val 80	240
gct Ala	gga Gly	ctt Leu	gca Ala	aca Thr 85	gca Ala	tca Ser	gga Gly	ctt Leu	gca Ala 90	gca Ala	att Ile	acc Thr	tat Tyr	gct Ala 95	att Ile	288
tta Leu	aat Asn	gtg Val	gca Ala 100	agt Ser	gct Ala	ejå aaa	gat Asp	gaa Glu 105	att Ile	gtt Val	gca Ala	gca Ala	agt Ser 110	acc Thr	tta Leu	336
tat Tyr	ggt Gly	gga Gly 115	aca Thr	tat Tyr	gaa Glu	tta Leu	ttt Phe 120	G1 <i>y</i> 999	gtt Val	act Thr	ctt Leu	aag Lys 125	гλа	ctt Leu	gga Gly	384
ata Ile	aag Lys 130	gtt Val	gtt Val	ttt Phe	gta Val	gat Asp 135	cca Pro	gat Asp	aat Asn	cct Pro	gaa Glu 140	ABD	ata Ile	aga Arg	aaa Lys	432
gca Ala 145	ata Ile	aat Asn	gat Asp	agg Arg	aca Thr 150	aaa Lys	gct Ala	gta Val	tat Tyr	999 Gly 155	GIA	act Thr	att Ile	gga Gly	aat Asn 160	480
cca Pro	aga Arg	ata Ile	aat Asn	gtt Val 165	ttg Leu	gat Asp	ata Ile	gag Glu	gca Ala 170	Val	gct Ala	: aaa Lys	att : Ile	gco Ala 175	cat His	528
gaa Glu	aat Asn	aaa Lys	ata Ile 180	Pro	ctt Leu	ata Ile	atc Ile	gat Asp 185	Asn	aca Thr	ttt Phe	ggt Gly	Thi	Pro	g tat o Tyr	576
ctt Leu	ata Ile	aga Arg 195	Pro	ata Ile	gaa Glu	ttt Phe	gga Gly 200	Ala	gat Asp	ata Ile	gti Val	t gta l Val 209	r ur:	tca Sei	a gca r Ala	624
aca Thr	aag Lys 210	Phe	ata Ile	gga Gly	gga Gly	cat His 215	GTA	act Thr	act Thr	ata : Ile	ggt Gl; 220	A GT	a att	ata e Ile	a gtt e Val	672
gat Asp 225	Gly	gga Gly	aaa Lys	ttt Phe	gat Asp 230	tgg Trp	aga Arg	gct	agt Ser	gga Gl _y 235	, па	g tti s Phe	e Pro	gat As	t ttt p Phe 240	720

PCT/EP2003/009453

11/130

	•																
•	aca Thr	aca Thr	ccg Pro	gat Asp	aag Lys 245	agc Ser	tat Tyr	aat Asn	gga Gly	ctt Leu 250	ata Ile	tat Tyr	gct Ala	gat Asp	cta Leu 255	ggt Gly	768
	gca Ala	cct Pro	gct Ala	ttt Phe 260	gct Ala	tta Leu	aaa Lys	gca Ala	aga Arg 265	gtt Val	caa Gln	ctt Leu	tta Leu	aga Arg 270	aat Asn	aca Thr	816
	ggt Gly	gca Ala	acg Thr 275	ctt Leu	agt Ser	cca Pro	caa Gln	agt Ser 280	gct Ala	ttt Phe	tat Tyr	ttc Phe	cta Leu 285	caa Gln	G1Y 333	ttg Leu	86 4
	gaa Glu	tca Ser 290	ctt Leu	tca Ser	ctt Leu	agg Arg	gtt Val 295	caa Gln	aaa Lys	cat His	gtt Val	gat Asp 300	aat Asn	aca Thr	aga Arg	aag Lys	912
	gta Val 305	gtt Val	gaa Glu	ttc Phe	ttg Leu	aag Lys 310	aac Asn	cat His	cca Pro	aaa Lys	gtt Val 315	tca Ser	tgg Trp	ata Ile	aat Asn	tat Tyr 320	960
	cct Pro	gaa Glu	ctt Leu	gag Glu	gaa Glu 325	agt Ser	cct Pro	tat Tyr	aaa Lys	gag Glu 330	tta Leu	gca Ala	aat Asn	aaa Lys	tat Tyr 335	204	1008
	cca Pro	aag Lys	ggt Gly	gca Ala 340	Gly	tca Ser	ata Ile	ttt Phe	aca Thr 345	Pne	gga Gly	ata Ile	aag Lys	gga Gly 350	GL	ctt Leu	1056
	gaa Glu	gct Ala	ggt Gly 355	Lys	aga Arg	ttt Phe	ata Ile	aat Asn 360	Ser	gtt Val	aaa Lys	cta Leu	tto Phe 365	. 361	ctt Lev	ttg Leu	1104
	gca Ala	aat Asn 370	. Val	gca Ala	gat Asp	gca Ala	aaa Lys 375	Sex	ctt Lev	gtt Val	ata Ile	cat His 380	PLC	tca Sei	a agt r Sei	aca Thr	1152
	act Thr 385	His	gct Ala	gaa Glu	ctt Leu	aat Asn 390	GIU	gaa Glu	ı gaa ı Glı	a caa ı Gln	aaa Lys 395	, WTC	a gct a Ala	ggt a Gly	t gt Y Va	t act l Thr 400	1200
į	cca	gat Asp	ato Met	ata : Ile	aga Arg 405	, Leu	tca Ser	ata Ile	a gga e Gly	a gta y Val 410	GIL	g gat ı Asj	t gca p Ala	a gag a Gl	g ga u As 41	t tta p Leu [.] 5	1248
	ata Ile	tgg Tr	gaq Ası	tta Lev 420	a aat 1 Asr	caa Glr	gct Ala	cto	gaa u Glu 42	u Gli	a gct n Ala	taa	a				1284

<210> 6

<211> 427

<212> PRT

<213> Clostridium acetobutylicum

<400> 6

Met Ser Glu Glu Arg Lys Phe Gly Phe Glu Thr Leu Gln Val His Ala 1 5 10 15

Gln Thr Thr Ser Tyr Val Phe Lys Asn Ala Asp His Ala Ala Asn Leu

Phe Gln Leu Lys Glu Pro Gly Asn Val Tyr Thr Arg Ile Met Asn Pro

Thr Thr Asp Val Phe Glu Gln Arg Val Ala Ala Leu Glu Gly Gly Val

Ala Gly Leu Ala Thr Ala Ser Gly Leu Ala Ala Ile Thr Tyr Ala Ile

Leu Asn Val Ala Ser Ala Gly Asp Glu Ile Val Ala Ala Ser Thr Leu

Tyr Gly Gly Thr Tyr Glu Leu Phe Gly Val Thr Leu Lys Lys Leu Gly

Ile Lys Val Val Phe Val Asp Pro Asp Asn Pro Glu Asn Ile Arg Lys

Ala Ile Asn Asp Arg Thr Lys Ala Val Tyr Gly Glu Thr Ile Gly Asn

Pro Arg Ile Asn Val Leu Asp Ile Glu Ala Val Ala Lys Ile Ala His

Glu Asn Lys Ile Pro Leu Ile Ile Asp Asn Thr Phe Gly Thr Pro Tyr

Leu Ile Arg Pro Ile Glu Phe Gly Ala Asp Ile Val Val His Ser Ala

Thr Lys Phe Ile Gly Gly His Gly Thr Thr Ile Gly Gly Ile Ile Val

Asp Gly Gly Lys Phe Asp Trp Arg Ala Ser Gly Lys Phe Pro Asp Phe

Thr Thr Pro Asp Lys Ser Tyr Asn Gly Leu Ile Tyr Ala Asp Leu Gly

PCT/EP2003/009453

13/130

Ala Pro Ala Phe Ala Leu Lys Ala Arg Val Gln Leu Leu Arg Asn Thr 260 265 270

Gly Ala Thr Leu Ser Pro Gln Ser Ala Phe Tyr Phe Leu Gln Gly Leu 275 280 285

Glu Ser Leu Ser Leu Arg Val Gln Lys His Val Asp Asn Thr Arg Lys 290 295 300

Val Val Glu Phe Leu Lys Asn His Pro Lys Val Ser Trp Ile Asn Tyr 305 310 315 320

Pro Glu Leu Glu Glu Ser Pro Tyr Lys Glu Leu Ala Asn Lys Tyr Leu 325 330 335

Pro Lys Gly Ala Gly Ser Ile Phe Thr Phe Gly Ile Lys Gly Gly Leu 340 345 350

Glu Ala Gly Lys Arg Phe Ile Asn Ser Val Lys Leu Phe Ser Leu Leu 355 360 365

Ala Asn Val Ala Asp Ala Lys Ser Leu Val Ile His Pro Ser Ser Thr 370 375 380

Thr His Ala Glu Leu Asn Glu Glu Glu Gln Lys Ala Ala Gly Val Thr 385 390 395 400

Pro Asp Met Ile Arg Leu Ser Ile Gly Val Glu Asp Ala Glu Asp Leu
405 410 415

Ile Trp Asp Leu Asn Gln Ala Leu Glu Gln Ala 420 425

<210> 7

<211> 1293

<212> DNA

<213> Bacillus halodurans

<220>

<221> CDS

<222> (1)..(1293)

<223>

<400> 7	
atg aat cat gaa aac caa tgg cag tta gaa aca aag gcc gtt cat tca Met Asn His Glu Asn Gln Trp Gln Leu Glu Thr Lys Ala Val His Ser 1 10 15	48
gga cag gag atc gat ccg aca acg ttg tcg cga gcc gtc cca ttg tac Gly Gln Glu Ile Asp Pro Thr Thr Leu Ser Arg Ala Val Pro Leu Tyr 20 25 30	96
caa acg acg tcc tac gga ttt aaa gat aca gac cat gcg gcg aat tta Gln Thr Thr Ser Tyr Gly Phe Lys Asp Thr Asp His Ala Ala Asn Leu 35 40 45	144
ttt tca cta agt gaa ttt ggc aat atc tat acc cga ttg atg aac cca Phe Ser Leu Ser Glu Phe Gly Asn Ile Tyr Thr Arg Leu Met Asn Pro 50 55 60	192
acg aca gat gtg ttt gaa aaa cgt gtg gct gcg tta gaa gga gga gcg Thr Thr Asp Val Phe Glu Lys Arg Val Ala Ala Leu Glu Gly Gly Ala 65 70 75 80	240
gca gct tta gcg acg gcc tca ggg cag gcg gcc att acg tat tcg att Ala Ala Leu Ala Thr Ala Ser Gly Gln Ala Ala Ile Thr Tyr Ser Ile 85 90 95	288
tta aat att gcg gag gct gga gat gaa atc gtg tcc gct agt agc ctt Leu Asn Ile Ala Glu Ala Gly Asp Glu Ile Val Ser Ala Ser Ser Leu 100 105 110	336
tac ggc gga acg tat aat tta ttt tcg att acg ttg cca aag cta ggg Tyr Gly Gly Thr Tyr Asn Leu Phe Ser Ile Thr Leu Pro Lys Leu Gly 115 120 125	384
gta aac gtc cgt ttc gtt gat cca tcg gac cca gaa aac ttc aaa gca Val Asn Val Arg Phe Val Asp Pro Ser Asp Pro Glu Asn Phe Lys Ala 130 135 140	432
gcg att act gaa aag acg aaa gcc att ttc gct gag tcg att gga aac Ala Ile Thr Glu Lys Thr Lys Ala Ile Phe Ala Glu Ser Ile Gly Asn 145 150 155 160	480
cct aag gga gac gtg tta gat att gaa gcg gtg gcg aaa gtt gca cac Pro Lys Gly Asp Val Leu Asp Ile Glu Ala Val Ala Lys Val Ala His 165 170 175	528
gat cat cac ctt ccc ctc att gtc gat aac acg ttt cca agc cca tat Asp His His Leu Pro Leu Ile Val Asp Asn Thr Phe Pro Ser Pro Tyr 180 185 190	576
ttg ctt caa ccg ata aag cac ggc gca gac att gtt gtg cat tca gca Leu Leu Gln Pro Ile Lys His Gly Ala Asp Ile Val Val His Ser Ala 195 200 205	624
aca aaa ttt atc ggt ggt cat ggg acg tcg ata gga ggg atc att gtc Thr Lys Phe Ile Gly Gly His Gly Thr Ser Ile Gly Gly Ile Ile Val 210 215 220	672
gat gga ggg acg ttt gat tgg gcg aaa acg gat cga tat cca ggg cta Asp Gly Gly Thr Phe Asp Trp Ala Lys Thr Asp Arg Tyr Pro Gly Leu 225 230 235 240	720

•																
aca Thi	aca Thr	cct Pro	gat Asp	ccg Pro 245	agt Ser	tac Tyr	cac His	ggt Gly	gtt Val 250	Val	tat Tyr	aca Thr	gat Asp	gcg Ala 255	gtc Val	768
ggt Gly	cca Pro	att Ile	gct Ala 260	tat Tyr	att Ile	att Ile	aaa Lys	gcg Ala 265	cgt Arg	gtt Val	cag Gln	cta Leu	ttg Leu 270	cgt Arg	gac Asp	816
atg Met	: Gly a aaa	gca Ala 275	gcc Ala	ata Ile	tcg Ser	cca Pro	ttt Phe 280	aac Asn	tcg Ser	ttt Phe	tta Leu	ctg Leu 285	ttg Leu	caa Gln	gjå aaa	864
tto Lev	ggaa Glu 290	acg Thr	ttg Leu	cat His	tta Leu	cgg Arg 295	atg Met	gag Glu	aga Arg	cat His	agt Ser 300	gaa Glu	aat Asn	gcc Ala	tac Tyr	912
aaa Lys 305	gta Val	gca Ala	ga g Glu	ttc Phe	ctt Leu 310	gag Glu	caa Gln	cat His	caa Gln	gcg Ala 315	gtc Val	gaa Glu	tcg Ser	gtg Val	agc Ser 320	960
tac Ty:	tct Ser	gga Gly	ctg Leu	cca Pro 325	tcc Ser	cat His	cca Pro	tcc Ser	tac Tyr 330	cca Pro	tta Leu	gcg Ala	aaa Lys	aaa Lys 335	tac Tyr	1008
tta Le:	cct Pro	aaa Lys	ggc Gly 340	caa Gln	G1y 999	gct Ala	atc Ile	tta Leu 345	acg Thr	ttc Phe	gag Glu	gta Val	aag Lys 350	ggc	ggc	1056
gtt Va]	gaa Glu	gca Ala 355	gga Gly	aag Lys	aaa Lys	ctc Leu	att Ile 360	cat His	tcg Ser	gtc Val	cag Gln	cta Leu 365	ttc Phe	tcc Ser	cac His	1104
ct t Le	gcc Ala 370	aac Asn	gta Val	ggt Gly	gat Asp	tca Ser 375	aaa Lys	tcg Ser	ttg Leu	atc Ile	atc Ile 380	cat His	cct Pro	gca Ala	agc Ser	1152
Thi 385	acc Thr	cac His	caa Gln	cag Gln	ctc Leu 390	tcg Ser	gaa Glu	gca Ala	gaa Glu	cag Gln 395	cga Arg	gac Asp	gca Ala	gga Gly	gtg Val 400	1200
aca Thi	cct Pro	Gly	atg Met	atc Ile 405	aga Arg	ctt Leu	tcg Ser	gta Val	gga Gly 410	acc Thr	gaa Glu	tcg Ser	att Ile	cat His 415	gat Asp	1248
att Ile	atc lle	acc Thr	gat Asp 420	ctc Leu	aaa Lys	cag Gln	gcg Ala	att Ile 425	gag Glu	gcg Ala	agt Ser	caa Gln	gcg Ala 430	taa		1293

<210> 8

<211> 430

<212> PRT

<213> Bacillus halodurans

<400> 8

Met Asn His Glu Asn Gln Trp Gln Leu Glu Thr Lys Ala Val His Ser

- Gly Gln Glu Ile Asp Pro Thr Thr Leu Ser Arg Ala Val Pro Leu Tyr 20 25 30
- Gln Thr Thr Ser Tyr Gly Phe Lys Asp Thr Asp His Ala Ala Asn Leu 35 40 45
- Phe Ser Leu Ser Glu Phe Gly Asn Ile Tyr Thr Arg Leu Met Asn Pro 50 60
- Thr Thr Asp Val Phe Glu Lys Arg Val Ala Ala Leu Glu Gly Gly Ala 65 70 75 80
- Ala Ala Leu Ala Thr Ala Ser Gly Gln Ala Ala Ile Thr Tyr Ser Ile 85 90 95
- Leu Asn Ile Ala Glu Ala Gly Asp Glu Ile Val Ser Ala Ser Ser Leu 100 105 110
- Tyr Gly Gly Thr Tyr Asn Leu Phe Ser Ile Thr Leu Pro Lys Leu Gly
 115 120 125
- Val Asn Val Arg Phe Val Asp Pro Ser Asp Pro Glu Asn Phe Lys Ala 130 135 140
- Ala Ile Thr Glu Lys Thr Lys Ala Ile Phe Ala Glu Ser Ile Gly Asn 145 150 155 160
- Pro Lys Gly Asp Val Leu Asp Ile Glu Ala Val Ala Lys Val Ala His 165 170 175
- Asp His His Leu Pro Leu Ile Val Asp Asn Thr Phe Pro Ser Pro Tyr 180 . 185 190
- Leu Leu Gln Pro Ile Lys His Gly Ala Asp Ile Val Val His Ser Ala 195 200 205
- Thr Lys Phe Ile Gly Gly His Gly Thr Ser Ile Gly Gly Ile Ile Val 210 215 220
- Asp Gly Gly Thr Phe Asp Trp Ala Lys Thr Asp Arg Tyr Pro Gly Leu 225 230 235
- Thr Thr Pro Asp Pro Ser Tyr His Gly Val Val Tyr Thr Asp Ala Val 245 250 255
- Gly Pro Ile Ala Tyr Ile Ile Lys Ala Arg Val Gln Leu Leu Arg Asp

CT/EP2003/009453 17/130

260

270 265

Met Gly Ala Ala Ile Ser Pro Phe Asn Ser Phe Leu Leu Gln Gly 280 285 275

Leu Glu Thr Leu His Leu Arg Met Glu Arg His Ser Glu Asn Ala Tyr 295 290

Lys Val Ala Glu Phe Leu Glu Gln His Gln Ala Val Glu Ser Val Ser 315 310 305

Tyr Ser Gly Leu Pro Ser His Pro Ser Tyr Pro Leu Ala Lys Lys Tyr 335 325 330

Leu Pro Lys Gly Gln Gly Ala Ile Leu Thr Phe Glu Val Lys Gly Gly 350 345

Val Glu Ala Gly Lys Lys Leu Ile His Ser Val Gln Leu Phe Ser His 360 355

Leu Ala Asn Val Gly Asp Ser Lys Ser Leu Ile Ile His Pro Ala Ser 370 375

Thr Thr His Gln Gln Leu Ser Glu Ala Glu Gln Arg Asp Ala Gly Val 400 390 395

Thr Pro Gly Met Ile Arg Leu Ser Val Gly Thr Glu Ser Ile His Asp 415 410

Ile Ile Thr Asp Leu Lys Gln Ala Ile Glu Ala Ser Gln Ala 430 420 425

<210> 9

<211> 1203

<212> DNA

<213> Bacillus stearothermophilus

<220>

<221> CDS

<222> (1)..(1203)

<223>

<400> 9 atg tcg tat gta ttc cgc gac agc gag cac gcg gcc Met Ser Tyr Val Phe Arg Asp Ser Glu His Ala Ala 1 5 10	
ttg aaa gag gaa ggt ttt att tat acg cgc att atg Leu Lys Glu Glu Gly Phe Ile Tyr Thr Arg Ile Met 20 25	
gac gtg ttc gaa aag cgg atc gcg gcg ctt gaa ggc Asp Val Phe Glu Lys Arg Ile Ala Ala Leu Glu Gly 35 40	
ctc gcg ctg tca tcg ggg cag gcg gcg gtg ttt tat Leu Ala Leu Ser Ser Gly Gln Ala Ala Val Phe Tyr 50 55 60	
atc gcc tcg gcg ggc gat gaa atc gtc tcg tct tcg Ile Ala Ser Ala Gly Asp Glu Ile Val Ser Ser Ser 65 70 75	Ser Ile Tyr Gly 80
gga acg tac aac ttg ttc gcc cat acg ctg cgc aag Gly Thr Tyr Asn Leu Phe Ala His Thr Leu Arg Lys 85 90	Phe Gly Ile Thr 95
gtg aag ttt gtc gat ccg tcc gac ccc gaa aac ttt Val Lys Phe Val Asp Pro Ser Asp Pro Glu Asn Phe 100 105	Glu Arg Ala Ile 110
acc gac aaa acg aaa gcc ttg ttt gcg gaa acg atc Thr Asp Lys Thr Lys Ala Leu Phe Ala Glu Thr Ile 115 120	Gly Asn Pro Lys 125
aac gat gtg ttg gac att gaa gcg gtg gcc gac atc Asn Asp Val Leu Asp Ile Glu Ala Val Ala Asp Ile 130 135 140	Ala His Arg His
gcc att ccg ctc att gtc gac aac acg gtg gcc agt Ala Ile Pro Leu Ile Val Asp Asn Thr Val Ala Ser 145 150 155	Pro Tyr Leu Leu 160
cgg ccg att gaa ttc ggc gcc gat atc gtc gtc cac Arg Pro Ile Glu Phe Gly Ala Asp Ile Val Val His 165. 170	Ser Ala Thr Lys 175
ttc atc ggc ggg cac ggc aat tcg atc ggc ggt gtg Phe Ile Gly Gly His Gly Asn Ser Ile Gly Gly Val 180 185	Ile Val Asp Ser 190
ggc aag ttt gac tgg aaa ggg agc ggc aag ttt ccg Gly Lys Phe Asp Trp Lys Gly Ser Gly Lys Phe Pro 195 200	Glu Phe Thr Glu 205
cca gac cca agc tac cac ggt ttg gtg tat gtg gac Pro Asp Pro Ser Tyr His Gly Leu Val Tyr Val Asp 210 215 220	Ala Val Gly Glu
gcg gcg tac atc acg aaa gcg cgc atc cag ctc ttg Ala Ala Tyr Ile Thr Lys Ala Arg Ile Gln Leu Leu 225 230 235	Arg Asp Leu Gly 240
gcg gcg ttg tcg ccg ttt aat gcg ttt ttg ctt ttg Ala Ala Leu Ser Pro Phe Asn Ala Phe Leu Leu	caa ggg ttg gag 768 Gln Gly Leu Glu

PCT/EP2003/009453

19/130

	•									•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
					245					250					255		
	acg Thr	ctc Leu	cat His	ttg Leu 260	cgg Arg	atg Met	cag Gln	ege Arg	cat His 265	agc Ser	gaa Glu	aac Asn	gcc Ala	ctt Leu 270	gcc Ala	gtc Val	816
	gcc Ala	aag Lys	ttt Phe 275	tta Leu	gaa Glu	gag Glu	gaa Glu	gaa Glu 280	gcg Ala	gtc Val	gaa Glu	tcg Ser	gtc Val 285	aat Asn	tac Tyr	cca Pro	864
	gjå aaa	ctt Leu 290	ccg Pro	agc Ser	cat His	ccg Pro	tcg Ser 295	cat His	gaa Glu	ctg Leu	gcg Ala	aaa Lys 300	aaa Lys	tat Tyr	ttg Leu	cca Pro	912
	aac Asn 305	ej aaa	caa Gln	gga Gly	gcg Ala	atc Ile 310	gtc Val	acg Thr	ttt Phe	gaa Glu	atc Ile 315	aaa Lys	ggc Gly	Gly	gtc Val	gaa Glu 320	960
	gcc Ala	Gly	aaa Lys	aaa Lys	ctg Leu 325	atc Ile	gac Asp	tcg Ser	gtc Val	aaa Lys 330	ctg Leu	ttc Phe	tct Ser	cat His	ttg Leu 335	gcc Ala	1008
	aac Asn	atc Ile	ggc Gly	gat Asp 340	tcg Ser	aaa Lys	tcg Ser	ctc Leu	atc Ile 345	atc Ile	cac His	ccg Pro	gcc Ala	agc Ser 350	aca Thr	acg Thr	1056
	cac His	gag Glu	cag Gln 355	ctg Leu	agc Ser	cca Pro	gat Asp	gaa Glu 360	cag Gln	ctg Leu	tcc Ser	gcc Ala	ggc Gly 365	gtc Val	acc Thr	cca Pro	1104
	ggc	ctt Leu 370	gtg Val	cgt Arg	ctg Leu	tcc Ser	gtc Val 375	ggc	aca Thr	gaa Glu	gcg Ala	atc Ile 380	gac Asp	gac Asp	att Ile	ttg Leu	1152
	gac Asp 385	gac Asp	ttg Leu	cgc Arg	caa Gln	gcc Ala 390	att Ile	cgc Arg	caa Gln	agc Ser	cag Gln 395	acg Thr	gtg Val	ely aaa	gtg Val	aag Lys 400	1200
	tag																1203
	<210)> 1	LO														
	<21	.> 4	100														
	<212	!> I	PRT														
<213> Bacillus stearothermophilus																	
							•	٠									
	<400		10						•		_			_	_,		
	Met 1	Ser	Tyr		Phe 5	Arg	Asp	Ser	Glu	His 10	Ala	Ala	Asn	Leu	Phe 15	Gly	
	Leu	Lys	Glu	Glu 20	Gly	Phe	Ile	Tyr	Thr 25	Arg	Ile	Met	Asn	Pro 30	Thr	Asn	

Asp Val Phe Glu Lys Arg Ile Ala Ala Leu Glu Gly Gly Ile Gly Ala 35 40 45

Leu Ala Leu Ser Ser Gly Gln Ala Ala Val Phe Tyr Ser Ile Ile Asn 50 55 60

Ile Ala Ser Ala Gly Asp Glu Ile Val Ser Ser Ser Ser Ile Tyr Gly 65 70 75 80

Gly Thr Tyr Asn Leu Phe Ala His Thr Leu Arg Lys Phe Gly Ile Thr 85 90 95

Val Lys Phe Val Asp Pro Ser Asp Pro Glu Asn Phe Glu Arg Ala Ile 100 105 110

Thr Asp Lys Thr Lys Ala Leu Phe Ala Glu Thr Ile Gly Asn Pro Lys
115 120 125

Asn Asp Val Leu Asp Ile Glu Ala Val Ala Asp Ile Ala His Arg His 130 135 140

Ala Ile Pro Leu Ile Val Asp Asn Thr Val Ala Ser Pro Tyr Leu Leu 145 150 155 160

Arg Pro Ile Glu Phe Gly Ala Asp Ile Val Val His Ser Ala Thr Lys 165 170 175

Phe Ile Gly Gly His Gly Asn Ser Ile Gly Gly Val Ile Val Asp Ser 180 185 190

Gly Lys Phe Asp Trp Lys Gly Ser Gly Lys Phe Pro Glu Phe Thr Glu 195 200 205

Pro Asp Pro Ser Tyr His Gly Leu Val Tyr Val Asp Ala Val Gly Glu 210 215 220

Ala Ala Tyr Ile Thr Lys Ala Arg Ile Gln Leu Leu Arg Asp Leu Gly 225 230 235 240

Ala Ala Leu Ser Pro Phe Asn Ala Phe Leu Leu Leu Gln Gly Leu Glu 245 250 255

Thr Leu His Leu Arg Met Gln Arg His Ser Glu Asn Ala Leu Ala Val 260 265 270

Ala Lys Phe Leu Glu Glu Glu Glu Ala Val Glu Ser Val Asn Tyr Pro 275 280 285

CT/EP2003/009453

21/130

Gly Leu Pro Ser His Pro Ser His Glu Leu Ala Lys Lys Tyr Leu Pro 290 295 300

Asn Gly Gln Gly Ala Ile Val Thr Phe Glu Ile Lys Gly Gly Val Glu 305 310 315 320

Ala Gly Lys Lys Leu Ile Asp Ser Val Lys Leu Phe Ser His Leu Ala 325 330 335

Asn Ile Gly Asp Ser Lys Ser Leu Ile Ile His Pro Ala Ser Thr Thr 340 345 350

His Glu Gln Leu Ser Pro Asp Glu Gln Leu Ser Ala Gly Val Thr Pro 355 360 365

Gly Leu Val Arg Leu Ser Val Gly Thr Glu Ala Ile Asp Asp Ile Leu 370 375 380

Asp Asp Leu Arg Gln Ala Ile Arg Gln Ser Gln Thr Val Gly Val Lys 385 390 395 400

<210> 11

<211> 1290

<212> DNA

<213> Chlorobium tepidum

<220>

<221> CDS

<222> (1)..(1290)

<223>

<400> 11 atg agt gag gat aac acc ttc cgg ttc gag acc ttg cag gtt cac gcc 48 Met Ser Glu Asp Asn Thr Phe Arg Phe Glu Thr Leu Gln Val His Ala ggg cag gag cct gat ccg gtg acc gga tcg cgc gcc gtg ccc att tac 96 Gly Gln Glu Pro Asp Pro Val Thr Gly Ser Arg Ala Val Pro Ile Tyr 20 cag acc acc tec tac gtg ttc gag aac gcc gag cac ggc gct gac ctg 144 Gln Thr Thr Ser Tyr Val Phe Glu Asn Ala Glu His Gly Ala Asp Leu 40 35 ttc gcg ctt cgc aag gcg ggc aat atc tac acg cgc ctg atg aac ccg 192 Phe Ala Leu Arg Lys Ala Gly Asn Ile Tyr Thr Arg Leu Met Asn Pro

50 55 60

						aag Lys										240
						agc Ser										288
						gga Gly										336
			Thr			cag Gln		Lys								384
						gat Asp 135										432
	Ile	_		Asn	_	aaa Lys				_			_			480
						gat Asp										528
						atc Ile										576
						gat Asp										624
						999 Gly 215										672
_	_	_		-		gac Asp		-					_			720
						tat Tyr										768
						atc Ile										816
						ccg Pro										864
						cgc Arg 295										912
gaa	ctg	gcc	cgc	tgg	ctc	gaa	agg	cac	gat	gcg	gtt	gcg	tgg	gtg	aac	960

CT/EP2003/009453

		/O 20	Λ 1/Ω ? .	1033										,	CT	7EP2003/009
	M	/ U 20	U-4/UZ	4 /JJ					2.	3/130						
Glu 305	Leu	Ala	Arg	Trp	Leu 310	Glu	Arg	His	Asp	Ala 315	Val	Ala	Trp	Val	Asn 320	
L _ L	cca Pro	ggc Gly	ctc Leu	gaa Glu 325	agc Ser	cat His	ccg Pro	aca Thr	cac His 330	gcc Ala	ctg Leu	gca Ala	aaa Lys	aaa Lys 335	tat Tyr	1008
ctc Leu	acg Thr	cat His	ggc Gly 340	ttc Phe	ggc Gly	tgc Cys	gtg Val	ctg Leu 345	act Thr	ttc Phe	ggc Gly	gtg Val	aag Lys 350	ggt Gly	ggt Gly	1056
tat Tyr	gaa Glu	aac Asn 355	gcg Ala	gtg Val	aag Lys	ttc Phe	atc Ile 360	gac Asp	agc Ser	gtg Val	aag Lys	ctg Leu 365	gcg Ala	agc Ser	cac His	1104
ctg Leu	gcc Ala 370	aac Asn	gtg Val	ggt Gly	gat Asp	gca Ala 375	aaa Lys	acg Thr	ctc Leu	gtc Val	att Ile 380	cat His	ccg Pro	gca Ala	tcg Ser	1152
acg Thr 385	acg Thr	cac His	cag Gln	cag Gln	ctc Leu 390	agc Ser	gcc Ala	gag Glu	gaa Glu	cag Gln 395	gta Val	tcg Ser	gcg Ala	GTĀ	gtc Val 400	1200
acc Thr	gcc Ala	gat Asp	atg Met	gtg Val 405	cgc Arg	gtg Val	tcg Ser	gtt Val	ggt Gly 410	atc Ile	gag Glu	cat His	atc Ile	gat Asp 415	gac Asp	1248
atc Ile	aag Lys	gct Ala	gat Asp 420	ttc Phe	agc Ser	cag Gln	gct Ala	ttc Phe 425	gag Glu	aat Asn	tta Leu	gca Ala	tga			1290
<21	0>	12														
<21	1>	429														
<21	2>	PRT											·			
<21	3>	Chlo	robi	um t	epid	um										
<40		12														
Met	Ser	Glu	Asp	Asn	Thr	Phe	Arg	Phe	Glu	Thr	Lev	ı Glr	val	. Hi:	s Ala	

Met Ser Glu Asp Asn Thr Phe Arg Phe Glu Thr Leu Gln Val His Ala 1 5 10 15

Gly Glu Pro Asp Pro Val Thr Gly Ser Arg Ala Val Pro Ile Tyr 20 25 30

Gln Thr Thr Ser Tyr Val Phe Glu Asn Ala Glu His Gly Ala Asp Leu 35 40 45

Phe Ala Leu Arg Lys Ala Gly Asn Ile Tyr Thr Arg Leu Met Asn Pro 50 55 60

Thr Thr Asp Val Leu Glu Lys Arg Met Ala Ala Leu Glu Gly Gly Lys 65 70 75 80

Ala	Ala	Leu	Gly	Val 85	Ala	Ser	Gly	His	Ser 90	Ala	Gln	Phe	Ile	Ala 95	Ile
Ala	Thr	Ile	Cys 100	Gln	Ala	Gly	Asp	Asn 105	Ile	Val	Ser	Ser	Ser 110	Tyr	Leu
Tyr	Gly	Gly 115	Thr	Tyr	Asn	Gln	Phe 120	Lys	Val	Ala	Phe	Lys 125	Arg	Leu	Gly
Ile	Glu 130	Val	Arg	Phe	Val	Asp 135	Gly	Asn	Asp	Gln	Glu 140	Ala	Phe	Arg	Lys
Ala 145	Ile	Asp	Glu	Asn	Thr 150	Lys	Ala	Leu	Tyr	Met 155	Glu	Ser	Ser	Gly	Asn 160
Pro	Ala	Phe	His	Val 165	Pro	Asp	Phe	Asp	Ala 170	Ile	Ala	Lys	Ile	Ala 175	Arg
Glu	Asn	Gly	Ile 180	Pro	Leu	Ile	Val	Asp 185	Asn	Thr	Phe	Gly	Сув 190	Ala	Gly
Тут	Leu	Cys 195	Arg	Pro	Ile	Asp	His 200	Gly	Ala	Ser	Ile	Val 205	Val	Glu	Ser
Ala	Thr 210	Lys	Trp	Ile	Gly	Gly 215	His	Gly	Thr	Ser	Met 220	Gly	Gly	Ile	Ile
Val 225	Asp	Ala	Gly	Thr	Phe 230	Asp	Trp	Gly	Asn	Gly 235	Lys	Phe	Pro	Leu	Phe 240
Thr	Glu	Pro	Ser	Glu 245	Gly	Tyr	His	Gly	Leu 250	Lys	Phe	Tyr	Glu	Ala 255	Val
Gly	Glu	Leu	Ala 260	Phe	Ile	Ile	Arg	Ala 265	Arg	Val	Glu	Gly	Leu 270	Arg	Asp
Phe	Gly	Pro 275	Ala	Ile	Ser	Pro	Phe 280	Asn	Ser	Phe	Met	Leu 285	Leu	Gln	Gly
Leu	Glu 290	Thr	Leu	Ser	Leu	Arg 295	Val	Gln	Arg	His	Leu 300	Asp	Asn	Thr	Leu
Glu 305	Leu	Ala	Arg	Trp	Leu 310	Glu	Arg	His	Asp	Ala 315	Val	Ala	Trp	Val	Asn 320
Tyr	Pro	Gly	Leu	Glu 325	Ser	His	Pro	Thr	His 330	Ala	Leu	Ala	Lys	Lys 335	Tyr

Leu Thr His Gly Phe Gly Cys Val Leu Thr Phe Gly Val Lys Gly Gly 340 345 350

Tyr Glu Asn Ala Val Lys Phe Ile Asp Ser Val Lys Leu Ala Ser His 355 360 365

Leu Ala Asn Val Gly Asp Ala Lys Thr Leu Val Ile His Pro Ala Ser 370 375 380

Thr Thr His Gln Gln Leu Ser Ala Glu Glu Gln Val Ser Ala Gly Val 385 390 395 400

Thr Ala Asp Met Val Arg Val Ser Val Gly Ile Glu His Ile Asp Asp 405 410 415

Ile Lys Ala Asp Phe Ser Gln Ala Phe Glu Asn Leu Ala 420 425

<210> 13

<211> 1281

<212> DNA

<213> Lactococcus lactis

<220>

<221> CDS

<222> (1)..(1281)

<223>

aad Ast 65	gat Asp	gtt Val	: ttt . Phe	ga:	a gca u Ala 70	a cgo a Arg	ato J Ile	gca Ala	gct Ala	ctt Leu 75	gaa Glu	ggt Gly	gga Gly	agt Ser	gca Ala 80	240
gcc Ala	ctt Lev	ggt Gly	gtt Val	gg Gl ₃ 85	t tot y Sei	ggo Gly	tea Sei	a gcc Ala	gct Ala 90	att Ile	acc Thr	tat Tyr	gcc Ala	atc Ile 95	ttg Leu	288
aat Asn	ato Ile	gct Ala	aca Thr	· Val	ggt l Gly	gat Asp	aat Asr	att lle 105	• Val	tcc Ser	gca Ala	agt Ser	acc Thr 110	Leu	tat Tyr	336
gly	gga Gly	acc Thr 115	Tyr	cac His	ctt Lev	ttt Phe	tct Ser 120	Gly	act Thr	tta Leu	cca Pro	aaa Lys 125	Tyr	gga Gly	att Ile	384
aca Thr	act Thr 130	Lys	ttt Phe	gto Val	aat Asn	cca Pro 135	Asp	gac Asp	ccg Pro	aag Lys	aat Asn 140	ttt Phe	gaa Glu	gag Glu	gcg Ala	432
att Ile 145	Asp	gaa Glu	aaa Lys	acc Thr	aaa Lys 150	Ala	att Ile	tat Tyr	tat Tyr	gaa Glu 155	act Thr	ttg Leu	Gly	aat Asn	ccg Pro 160	480
gga Gly	aat Asn	aat Asn	gtg Val	att Ile 165	Asp	tat Tyr	gat Asp	gcc Ala	att Ile 170	ggt Gly	caa Gln	att Ile	gct Ala	aaa Lys 175	aaa Lys	528
cat His	gga Gly	att Ile	ccc Pro 180	gtt Val	att Ile	gtt Val	gat Asp	gca Ala 185	acg Thr	ttt Phe	act Thr	acc Thr	cct Pro 190	gtg Val	acc Thr	576
ttt Phe	aaa Lys	cca Pro 195	ttt Phe	gaa Glu	cat His	ggt Gly	gct Ala 200	aat Asn	gta Val	att Ile	gtt Val	cat His 205	tca Ser	gca Ala	acg Thr	624
aaa Lys	ttc Phe 210	att Ile	ggc Gly	ggt Gly	cat His	ggt Gly 215	act Thr	tct Ser	att Ile	ggt Gly	gga Gly 220	gtc Val	atc Ile	gtt Val	gat Asp	672
				Asp							cct Pro					720
gct Ala	gat Asp	gaa Glu	agc Ser	tac Tyr 245	aat Asn	gly ggg	att Ile	aaa Lys	ttt Phe 250	gcc Ala	gaa Glu	ttg Leu	ggt Gly	gaa Glu 255	att Ile	768
gct Ala	ttt Phe	gtg Val	act Thr 260	cgg Arg	gtt Val	aga Arg	gct Ala	att Ile 265	tta Leu	tta Leu	cgt Arg	gat Asp	acg Thr 270	ggt Gly	gcg Ala	816
gct Ala	tta Leu	tca Ser 275	cct Pro	ttt Phe	cat His	Ser	tgg Trp 280	ctt Leu	ttc Phe	tta Leu	cag Gln	999 Gly 285	cta Leu	gaa Glu	aca Thr	864
Leu	tca Ser 290	ctc Leu i	cgg Arg	gta Val	Glu .	cgt Arg 295	cac His	atc Ile	tcc Ser	aat Asn	act Thr 300	aaa Lys	aag Lys	att Ile	gta Val	912

35

T/EP2003/009453

		W	/U 20	U4/UZ·	4933					27	/130							
•	gaa Glu 305	ttt Phe	tta Leu	gac Asp	aat Asn	cat His 310	cct Pro	aag Lys	gtg Val	gaa Glu	ctt Leu 315	gtt Val	aac Asn	cat His	cct Pro	ctg Leu 320		960
	ctt Leu	gaa Glu	agt Ser	aat Asn	tcc Ser 325	tat Tyr	cat His	gcg Ala	ctc Leu	tat Tyr 330	cag Gln	aaa Lys	tat Tyr	tat Tyr	cca Pro 335	aaa Lys		1008
	Asp	Ala	Gly	Ser 340		Pne	Thr	Pne	345	Dea	בינם	p	_, _	350		•		1056
	Lys	Ala	Arg 355	Asp	ttg Leu	He	Asp	360	ьец	GIU	110	1110	365					1104
	Asn	Val 370	Gly	Asp	acc Thr	Lys	375	ьеп	HIG	116	1115	380)					1152
	cac His 385	Gln	cag Gln	g ctg Lev	aat Asn	gcc Ala 390	GLu	gaa Glu	ctt Leu	gct Ala	agt Ser 395	, AIC	ggg Gly	g att 7 Ile	tco Sei	Lys 400	a 5 0	1200
	gga	acc Thr	att	cga Arg	tta g Leu 405	Ser	gtt Val	ggt	att Ile	gaa Glu 410	LOP	gta Val	a act	t gad r As <u>r</u>	Let 41		t e	1248
	gct Ala	gat Asp	tta Lei	a gag u Glv 420	g caa u Glr	gca Ala	tta Lev	gaa Glu	aaa Lys 425	, 114	taa :	a						1281
	<2	10>	14															
	<2	11>	426															
	<2	12>	PRT															
	<2	13>	Lac	toco	ccus	lact	cis _.											
	-4	00>	14				•											
				n Hi	.s As 5	п Ту	r Ly	s Ph	e As	р Th 10	r Le	eu Gl	ln Va	al Hi	.s A. 1	la G	ly	
	G1	n Va	1 Pz	co As 20	sp Pr	o Va	1 Th	r Gl	y Se 25	r Ar	g Al	la Va	al P	ro Le 30	eu T	yr G	ln	

Ala Leu Gln Asp Pro Gly Ala Ile Tyr Ser Arg Leu Gly Asn Pro Thr 50 60

Thr Thr Ser Phe Val Phe Asn Asn Ser Asp His Ala Glu Ala Arg Phe

Asn Asp Val Phe Glu Ala Arg Ile Ala Ala Leu Glu Gly Gly Ser Ala

80

65 70 75

Ala Leu Gly Val Gly Ser Gly Ser Ala Ala Ile Thr Tyr Ala Ile Leu 85 90 95

Asn Ile Ala Thr Val Gly Asp Asn Ile Val Ser Ala Ser Thr Leu Tyr 100 105 110

Gly Gly Thr Tyr His Leu Phe Ser Gly Thr Leu Pro Lys Tyr Gly Ile 115 120 125

Thr Thr Lys Phe Val Asn Pro Asp Asp Pro Lys Asn Phe Glu Glu Ala 130 135 140

Ile Asp Glu Lys Thr Lys Ala Ile Tyr Tyr Glu Thr Leu Gly Asn Pro 145 150 155 160

Gly Asn Asn Val Ile Asp Tyr Asp Ala Ile Gly Gln Ile Ala Lys Lys 165 170 175

His Gly Ile Pro Val Ile Val Asp Ala Thr Phe Thr Thr Pro Val Thr 180 185 190

Phe Lys Pro Phe Glu His Gly Ala Asn Val Ile Val His Ser Ala Thr 195 200 205

Lys Phe Ile Gly Gly His Gly Thr Ser Ile Gly Gly Val Ile Val Asp 210 215 220

Gly Gly Asn Phe Asp Trp Ala Asn Gly Asn Phe Pro Asp Phe Thr Gln 225 230 235 240

Ala Asp Glu Ser Tyr Asn Gly Ile Lys Phe Ala Glu Leu Gly Glu Ile 245 250 250

Ala Phe Val Thr Arg Val Arg Ala Ile Leu Leu Arg Asp Thr Gly Ala 260 265 270

Ala Leu Ser Pro Phe His Ser Trp Leu Phe Leu Gln Gly Leu Glu Thr 275 280 285

Leu Ser Leu Arg Val Glu Arg His Ile Ser Asn Thr Lys Lys Ile Val 290 295 300

Glu Phe Leu Asp Asn His Pro Lys Val Glu Leu Val Asn His Pro Leu 305 310 315 320

CT/EP2003/009453

29/130

Leu Glu Ser Asn Ser Tyr His Ala Leu Tyr Gln Lys Tyr Tyr Pro Lys 325 330 335

Asp Ala Gly Ser Ile Phe Thr Phe Glu Leu Lys Asp Lys Asp Glu Lys 340

Lys Ala Arg Asp Leu Ile Asp His Leu Glu Ile Phe Ser Leu Leu Ala 355 360 365

Asn Val Gly Asp Thr Lys Ser Leu Ala Ile His Pro Ala Ser Thr Thr 370 380

His Gln Gln Leu Asn Ala Glu Glu Leu Ala Ser Ala Gly Ile Ser Lys 385 390 395 400

Gly Thr Ile Arg Leu Ser Val Gly Ile Glu Asp Val Thr Asp Leu Ile 405 410 415

Ala Asp Leu Glu Gln Ala Leu Glu Lys Ile 420 425

<210> 15

<211> 1173

<212> DNA

<213> Synechococcus sp.

<220>

<221> CDS

<222> (1)..(1173)

<223>

<400 atg Met 1			cgt Arg	ttc Phe 5	gaa Glu	acc Thr	ctc Leu	cag Gln	ctg Leu 10	cat His	gcc Ala	ggc Gly	cag Gln	tct Ser 15	cca Pro	48
gac Asp	tcg Ser	gcc Ala	acc Thr 20	aat Asn	gcc Ala	aga Arg	gcg Ala	gtg Val 25	ccg Pro	att Ile	tat Tyr	cag Gln	acc Thr 30	agc Ser	tcc Ser	96
tac Tyr	gtc Val	ttc Phe 35	aac Asn	gac Asp	gcc Ala	gag Glu	cac His 40	ggc Gly	gcc Ala	aac Asn	ctg Leu	ttt Phe 45	gga Gly	ctg Leu	Lys Lys	144
gaa Glu	ttc Phe	ggc Gly	aac Asn	atc Ile	tac Tyr	acc Thr	cgt Arg	ctg Leu	atg Met	aac Asn	ccg Pro	acg Thr	acg Thr	gat Asp	gtg Val	192

PCT/EP2003/009453

50 55 60

tto Phe 65	gag Glu	j aag Lys	g cgg	g gte	g gcg l Ala 70	g gco A Ala	c cto	g gaa ı Glu	a ggg	ggt Gly 75	gtg Val	gcc Ala	gcg Ala	ctg Leu	gcc Ala 80		240
aca Thr	gcc Ala	tc Se:	c ggt r Gly	Cag Gli 85	g teg n Sei	g gct Ala	caç a Gli	y tto n Phe	ctg Lev 90	gcg Ala	atc lle	acg Thr	aat Asn	tgc Cys 95	atg Met		288
cag Gln	gca Ala	G1;	g gat y Asp 100	Ası	ttt n Phe	gtg Val	g tco Sei	acg Thr 105	Ser	tto Phe	ctt Leu	tac Tyr	ggc Gly 110	ggc	acc Thr		336
tac Tyr	aac Asn	Glr Glr	n Phe	aaa Lys	gtg Val	caa Gln	tto Phe 120	ccc Pro	cgg Arg	ctg Leu	ggc Gly	atc Ile 125	Asp	gtg Val	ege Arg		384
		Asp					Glu	g ago Ser				Gln					432
aaa Lys 145	acc Thr	aaa Lys	ggc Gly	Leu	tac Tyr 150	Val	gaa Glu	gcg Ala	atg Met	ggc Gly 155	Asn	cca Pro	cgc Arg	ttc Phe	aac Asn 160		480
atc Ile	ccc Pro	gat Asp	ttc Phe	gag Glu 165	Gly	ctc Leu	tca Ser	gcc Ala	ctg Leu 170	gct Ala	aaa Lys	gag Glu	cgc Arg	ggc Gly 175	atc Ile		528
Pro	Leu	Ile	Val 180	Asp	Asn	Thr	Leu	gga Gly 185	Ala	Cys	Gly	Ala	Leu 190	Met	Arg		576
Pro	Ile	Asp 195	His	Gly	Ala	Asp	Val 200	gtg Val	Val	Glu	Ser	Ala 205	Thr	Lys	Trp		624
Ile	Gly 210	Gly	His	Gly	Thr	Ser 215	Leu	ggt Gly	Gly	Val	Ile 220	Val	Asp	Ala	Gly		672
Thr 225	Phe	Asn	Trp	Gly	Asn 230	Gly	Lys	ttc Phe	Pro	Leu 235	Leu	Ser	Gln	Pro	Ser 240		720
Ala	Ala	Tyr	His	Gly 245	Leu	Val	His	tgg Trp	Asp 250	Ala	Phe	Gly	Phe	Gly 255	Ser		768
								ccg Pro 265									816
gcc Ala	ctg Leu	cga Arg 275	gcc Ala	cgg Arg	gtc Val	gag Glu	ggt Gly 280	cta Leu	cgg Arg	gac Asp	tgg Trp	ggt Gly 285	ccg Pro	gcg Ala	gtt Val		864
agt Ser	ecc Pro 290	ttc Phe	aat Asn	agc Ser	Phe	ctg Leu 295	ctg Leu	ctg Leu	caa Gln	ggt Gly	cta Leu 300	gaa Glu	acc Thr	ctc Leu	agc Ser	:	912
ctg	cgg	gtg	gag	cgc	cac	acg	gag	aac	gcc	atg	gcg	ctg	gcc	acc	tgg	9	960

CT/EP2003/009453

31/130

	-														_		
:	305					His 310					313						
:	cta Leu	gca Ala	acg Thr	cac His	ccc Pro 325	aat Asn	gtg Val	gag Glu	cat His	gtg Val 330	agc Ser	tac Tyr	cca Pro	GJY ggc	ctg Leu 335	agc Ser	1008
	agc Ser	gat Asp	ccg Pro	tat Tyr 340	cac His	gca Ala	gct Ala	gcc Ala	aag Lys 345	aaa Lys	tac Tyr	ctg Leu	acg Thr	ggc Gly 350	cgg Arg	ggc	1056
	atg Met	gga Gly	tgc Cys 355	atg Met	ctg Leu	atg Met	ttc Phe	tcg Ser 360	ьeи	aag Lys	Gly	ggt Gly	tac Tyr 365		gat Asp	gca Ala	1104
	gtc Val	cgt Arg 370	Phe	atc Ile	aac Asn	agc Ser	ctt Leu 375	caa Gln	ctg Leu	gcc Ala	agt Ser	cac His 380		gcc Ala	aat Asn	gtg Val	1152
)	385 G1y G99	gat Asp	gcc Ala	aaa Lys	acc Thr	tgg Trp 390	tga						. ·				1173
	<21	0 >	16														
	<21	1>	390														
	<21	2>	PRT														
	<21	3>	Syne	choc	occu	s sp	•										
	4.6	0-	16														
	<40 Met			ı Arg	J Phe	e Glu	Thr	: Le	ı Glı	ı Let 10	u Hi	s Al	a Gl	y Gl	n Se 15	r Pro	
	Asr	Se:	r Ala	a Thi 20	r Ası	n Ala	Arg	Ala p	a Va: 25	l Pro	o Il	е Ту	r Gl	n Th 30	r Se	er Ser	
	туз	c Va	1 Pho 35	e Ası	n Ası	Ala	a Gla	1 Hi: 40	s Gl	y Al	a As	n Le	u Ph 45	e Gl	y Le	eu Lys	
	Glı	ı Ph 50		y As:	n Ile	е Ту	Th:	r Ar	g Le	u Me	t As	n Pr 60	ro Th	r Th	r As	sp Val	
	Ph 65	e Gl	u Ly	s Ar	g Va	1 Ala 70	a Al	a Le	u Gl	u Gl	y G] 75	ly Va	al Al	la A	la L	eu Ala 80	ı
	Th	r Al	a Se	r Gl	y Gl: 85	n Se	r Al	a Gl	n Ph	e Le 90	u Al	la I	le Ti	ar A	sn C	ys Met 5	:
	Gl	n Al	a Gl	y As 10	p As 0	n Ph	e Va	l Se	r Th	r Se 5	er Pl	ne Le	eu Ty	yr G	ly G 10	ly Thr	•

PCT/EP2003/009453

Tyr Asn Gln Phe Lys Val Gln Phe Pro Arg Leu Gly Ile Asp Val Arg

Phe Ala Asp Gly Asp Asp Val Glu Ser Phe Ala Ala Gln Ile Asp Asp

Lys Thr Lys Gly Leu Tyr Val Glu Ala Met Gly Asn Pro Arg Phe Asn

Ile Pro Asp Phe Glu Gly Leu Ser Ala Leu Ala Lys Glu Arg Gly Ile

Pro Leu Ile Val Asp Asn Thr Leu Gly Ala Cys Gly Ala Leu Met Arg

Pro Ile Asp His Gly Ala Asp Val Val Val Glu Ser Ala Thr Lys Trp

Ile Gly Gly His Gly Thr Ser Leu Gly Gly Val Ile Val Asp Ala Gly

Thr Phe Asn Trp Gly Asn Gly Lys Phe Pro Leu Leu Ser Gln Pro Ser

Ala Ala Tyr His Gly Leu Val His Trp Asp Ala Phe Gly Phe Gly Ser

Asp Val Cys Lys Met Leu Gly Val Pro Asp Asn Arg Asn Val Ala Phe

Ala Leu Arg Ala Arg Val Glu Gly Leu Arg Asp Trp Gly Pro Ala Val

Ser Pro Phe Asn Ser Phe Leu Leu Leu Gln Gly Leu Glu Thr Leu Ser

Leu Arg Val Glu Arg His Thr Glu Asn Ala Met Ala Leu Ala Thr Trp

Leu Ala Thr His Pro Asn Val Glu His Val Ser Tyr Pro Gly Leu Ser

Ser Asp Pro Tyr His Ala Ala Lys Lys Tyr Leu Thr Gly Arg Gly

Met Gly Cys Met Leu Met Phe Ser Leu Lys Gly Gly Tyr Asp Asp Ala

Val Arg Phe Ile Asn Ser Leu Gln Leu Ala Ser His Leu Ala Asn Val 375 370

Gly Asp Ala Lys Thr Trp 385

<210> 17

<211> 1314

<212> DNA

<213> Emericella nidulans

<220>

<221> CDS

(1) .. (1314) <222>

<223>

<400 atg Met 1			cct Pro	tca Ser 5	ccg Pro	aaa Lys	cgt Arg	ttc Phe	gag Glu 10	acc Thr	ctc Leu	cag Gln	ctc Leu	cat His 15	gcg Ala	48
ggc Gly	cag Gln	gag Glu	cct Pro 20	gac Asp	cct Pro	gca Ala	act Thr	aat Asn 25	tcc Ser	cgg Arg	gct Ala	gtc Val	cca Pro 30	atc Ile	tat Tyr	96
gcg Ala	aca Thr	acg Thr 35	tcc Ser	tac Tyr	acc Thr	ttc Phe	aat Asn 40	gac Asp	tcc Ser	gca Ala	cac His	ggc Gly 45	gcc Ala	agg Arg	ctt Leu	144
ttt Phe	ggc Gly 50	ctc Leu	aaa Lys	gag Glu	ttt Phe	ggc Gly 55	aat Asn	att Ile	tac Tyr	agc Ser	cga Arg 60	att Ile	atg Met	aat Asn	ccc Pro	192
aca Thr 65	gtc Val	gat Asp	gtc Val	ttc Phe	gaa Glu 70	aaa Lys	cgt Arg	att Ile	gct Ala	gca Ala 75	ctc Leu	gag Glu	gga Gly	ggt	gtc Val 80	240
gct Ala	gcg Ala	gtg Val	gct Ala	gcc Ala 85	tca Ser	tct Ser	ggc	cag Gln	gca Ala 90	gcc Ala	cag Gln	ttc Phe	atg Met	gcc Ala 95	atc Ile	288
tct Ser	gct Ala	cta Leu	gcc Ala 100	cat His	gct Ala	ggt Gly	gac Asp	aat Asn 105	atc Ile	gtt Val	tcc Ser	aca Thr	agt Ser 110	WOT	ttg Leu	336
tat Tyr	ggt Gly	ggt Gly 115	aca Thr	tac Tyr	aat Asn	cag Gln	ttt Phe 120	aag Lys	gtc Val	ctt Leu	ttc Phe	cca Pro 125	MLG	ctg Leu	gga Gly	384

							,									
	W	O 200	04/024	1933					34	/130			1	Ŏ	PC'	T/EP2003/00945
att Ile	acc Thr 130	Thr	aaa Lys	ttc Phe	gtg Val	cag Gln 135	gga Gly	gac Asp	aaa Lys	gca Ala	gag Glu 140	gac Asp	att Ile	gcc Ala	gcc Ala	432
gct Ala 145	atc Ile	gat Asp	gac Asp	cgt Arg	acc Thr 150	aag Lys	gcc Ala	gtc Val	tac Tyr	gtc Val 155	gag Glu	aca Thr	ata Ile	gga Gly	aac Asn 160	480
cct Pro	cgc Arg	tac Tyr	aat Asn	gtg Val 165	ccc Pro	gac Asp	ttt Phe	gag Glu	gtc Val 170	att Ile	gca Ala	aaa Lys	gta Val	gcc Ala 175	cat His	528
gag Glu	aag Lys	gga Gly	att Ile 180	ccc Pro	ctt Leu	gtg Val	gtt Val	gac Asp 185	aac Asn	acc Thr	ttc Phe	ggt Gly	gcc Ala 190	gga Gly	ggc Gly	576
tac Tyr	ttt Phe	gtt Val 195	cga Arg	ccc Pro	att Ile	gaa Glu	cat His 200	gly	gcc Ala	gac Asp	att Ile	gtc Val 205	gtg Val	cac His	agt Ser	624
Ala	act Thr 210	aaa Lys	tgg Trp	att Ile	gga Gly	ggt Gly 215	cat His	ggc	aca Thr	acc Thr	atc Ile 220	gga Gly	ggc Gly	gtt Val	gtc Val	672
gtg Val	gac Asp	agc Ser	ggc ggc	aaa Lys	ttc Phe	gac Asp	tgg Trp	ggc Gly	aag Lys	aac Asn	gcc Ala	gcg Ala	cgg Arg	ttt Phe	cct Pro	720

14		e As	p As	p Ar	g 15		s Al	a Va	1 Ту:	r Va: 15:		u Th	r Ile	e Gly	Asn 160	
cc Pr	t cg	c ta g Ty	c aa r As	t gt n Va 16	l Pr	c ga o As	c tt p Ph	t ga e Gl	g gt u Va 17	l Ile	t gca e Ala	a aaa a Lys	a gta s Val	a gco l Ala 17!	cat A His	528
ga Gl	g aag u Ly:	9 99 3 Gl	a at: y Ile 18	e Pro	c ct o Le	t gt u Va	g gt l Va	t gad 1 As 18	p Ası	c aco	c tto r Phe	e ggt e Gly	gco Ala 190	Gly	a ggc / Gly	576
ta: Ty:	c tti r Phe	gt: Va: 19:	l Arg	a cco	c at	t gaa e Gli	a ca u Hi 20	s Gl	e geo y Ala	e gad a Asp	e att	gte Val 209	l Val	g cad His	agt Ser	624
gc: Ala	a act Thi 210	. Ly	a tgg s Trp	g att	t gga e Gly	a ggt y Gly 215	/ Hi	t ggd s Gly	c aca 7 Thi	a acc	220	: Gly	a ggc / Gly	gtt Val	gtc Val	672
Va] 225	l Asp	Se:		r Lys	230	e Asp	Tr	o Gly	/ Lys	235	ı Ala	Ala	Arg	Phe	240	720
Glr	ı Phe	Thr	g cag Glr	245	Ser	Glu	ı Gly	/ Туг	His 250	Gly	Leu	Asn	Phe	255	Glu	768
Thr	Phe	Gly	Pro 260	Ile	: Ala	Phe	Ala	11e 265	Arg	Val	Arg	Val	Glu 270	Ile	Leu	816
Arg	Asp	Leu 275		Ser	Ala	Leu	Asn 280	Pro	Phe	Ala	Ala	Gln 285	Gln	Leu	Ile	864
Leu	Gly 290	Leu	gaa Glu	Thr	Leu	Ser 295	Leu	Arg	Ala	Glu	Arg 300	His	Ala	Ser	Asn	912
Ala 305	Leu	Ala	ctc Leu	Ala	Asn 310	Trp	Leu	Lys	Lys	Asn 315	Asp	His	Val	Ser	Trp 320	960
Val	Ser	Tyr	gtg Val	Gly 325	Leu	Glu	Glu	His	Ser 330	Ser	His	Glu	Val	Ala 335	Lys	1008
aag Lys	tac Tyr	ctc Leu	aag Lys 340	cgt Arg	ely aaa	ttc Phe	ggc Gly	ggt Gly 345	gtc Val	cta Leu	tcc Ser	ttt Phe	ggt Gly 350	gtc Val	aag Lys	1056
Gly	Glu	Ala 355	gcc Ala	Val	Gly	Ser	Gln 360	Val	Val	Asp	Asn	Phe 365	Lys	Leu	Ile	1104
tcc Ser	aat Asn 370	cta Leu	gca Ala	aat Asn	Val	gga Gly 375	gac Asp	tcc Ser	aag Lys	acc Thr	ctc Leu 380	gcg Ala	att Ile	cac His	ccc Pro	1152

CT/EP2003/009453

	·	VO 20	0-4/02	4733					3	5/130							
tgg Trp 385	agc Ser	acc Thr	act Thr	cac His	gag Glu 390	cag Gln	ttg Leu	acc Thr	gac Asp	cag Gln 395	gag Glu	cga Arg	atc Ile	gat Asp	tct Ser 400	1200	
ggt Gly	gtt Val	acg Thr	gaa Glu	gat Asp 405	gcc Ala	atc Ile	cgc Arg	atc Ile	tct Ser 410	gtc Val	ggc Gly	act Thr	gag Glu	cac His 415	atc Ile	1248	
gac Asp	gac Asp	atc Ile	atc Ile 420	gcc Ala	gac Asp	ttt Phe	gaa Glu	cag Gln 425	tca Ser	ttt Phe	gca Ala	gcg Ala	acc Thr 430	ttc Phe	aaa Lys	1296	
gtt Val	gtc Val	cgg Arg 435	agt Ser	gct Ala	tag											1314	
<21	0 >	18															
<21	1>	437									. •						
<21	2 >	PRT															
<21	3> :	Emer:	icel:	la n:	idula	ans											
<40	0 >	18		_		•		Dh.	a 1	mb	Lou	G] n	T.e.u	Hic	αla		

Met Ser Asp Pro Ser Pro Lys Arg Phe Glu Thr Leu Gln Leu His Ala

Gly Gln Glu Pro Asp Pro Ala Thr Asn Ser Arg Ala Val Pro Ile Tyr 25 20

Ala Thr Thr Ser Tyr Thr Phe Asn Asp Ser Ala His Gly Ala Arg Leu 35

Phe Gly Leu Lys Glu Phe Gly Asn Ile Tyr Ser Arg Ile Met Asn Pro 50

Thr Val Asp Val Phe Glu Lys Arg Ile Ala Ala Leu Glu Gly Gly Val 65

Ala Ala Val Ala Ala Ser Ser Gly Gln Ala Ala Gln Phe Met Ala Ile 85

Ser Ala Leu Ala His Ala Gly Asp Asn Ile Val Ser Thr Ser Asn Leu 100

Tyr Gly Gly Thr Tyr Asn Gln Phe Lys Val Leu Phe Pro Arg Leu Gly 120 115

Ile Thr Thr Lys Phe Val Gln Gly Asp Lys Ala Glu Asp Ile Ala Ala

140

130 135

Ala Ile Asp Asp Arg Thr Lys Ala Val Tyr Val Glu Thr Ile Gly Asn 145 150 155 160

Pro Arg Tyr Asn Val Pro Asp Phe Glu Val Ile Ala Lys Val Ala His 165 170 175

Glu Lys Gly Ile Pro Leu Val Val Asp Asn Thr Phe Gly Ala Gly Gly
180 185 190

Tyr Phe Val Arg Pro Ile Glu His Gly Ala Asp Ile Val Val His Ser 195 200 205

Ala Thr Lys Trp Ile Gly Gly His Gly Thr Thr Ile Gly Gly Val Val 210 215 220

Val Asp Ser Gly Lys Phe Asp Trp Gly Lys Asn Ala Ala Arg Phe Pro

225 230 235 240

Gln Phe Thr Gln Pro Ser Glu Gly Tyr His Gly Leu Asn Phe Trp Glu 245 250 255

Thr Phe Gly Pro Ile Ala Phe Ala Ile Arg Val Arg Val Glu Ile Leu 260 265 270

Arg Asp Leu Gly Ser Ala Leu Asn Pro Phe Ala Ala Gln Gln Leu Ile 275 280 285

Leu Gly Leu Glu Thr Leu Ser Leu Arg Ala Glu Arg His Ala Ser Asn 290 295 300

Ala Leu Ala Leu Ala Asn Trp Leu Lys Lys Asn Asp His Val Ser Trp 305 310 315 320

Val Ser Tyr Val Gly Leu Glu Glu His Ser Ser His Glu Val Ala Lys 325 330 335

Lys Tyr Leu Lys Arg Gly Phe Gly Gly Val Leu Ser Phe Gly Val Lys 340 345 350

Gly Glu Ala Ala Val Gly Ser Gln Val Val Asp Asn Phe Lys Leu Ile 355 360 365

Ser Asn Leu Ala Asn Val Gly Asp Ser Lys Thr Leu Ala Ile His Pro 370 375 380

336

37/130

Trp Ser Thr Thr His Glu Gln Leu Thr Asp Gln Glu Arg Ile Asp Ser 395 385 Gly Val Thr Glu Asp Ala Ile Arg Ile Ser Val Gly Thr Glu His Ile Asp Asp Ile Ile Ala Asp Phe Glu Gln Ser Phe Ala Ala Thr Phe Lys 425 Val Val Arg Ser Ala 435 19 · <210> 1287 <211> DNA <212> <213> Bacteroides fragilis <220> CDS <221> (1)..(1287) <222> <223> atg gaa acg aaa aaa tta cat ttt gag act tta caa ctc cat gtt gga 48 Met Glu Thr Lys Lys Leu His Phe Glu Thr Leu Gln Leu His Val Gly 10 cag gag act ccc gac ccg gca acc gat gcg cgt gcc gta cct att tat 96 Gln Glu Thr Pro Asp Pro Ala Thr Asp Ala Arg Ala Val Pro Ile Tyr cag aca act tcc tat gtg ttc cgg gat tcg gcc cat gcc gcc gca cga 144 Gln Thr Thr Ser Tyr Val Phe Arg Asp Ser Ala His Ala Ala Arg ttt gga ttg caa gac cct ggg aat att tat gga cga ctg acc aat tcc 192 Phe Gly Leu Gln Asp Pro Gly Asn Ile Tyr Gly Arg Leu Thr Asn Ser act cag gga gta ttg gag gaa cgc atc gca gca ctt gaa ggg gga gta 240 Thr Gln Gly Val Leu Glu Glu Arg Ile Ala Ala Leu Glu Gly Gly Val ggt ggg ctt gcc gtg gct tcc gga gct gcc gtg acc tat gct atc 288 Gly Gly Leu Ala Val Ala Ser Gly Ala Ala Ala Val Thr Tyr Ala Ile

gag aat atc acc cgt tcc ggt gat cat att gtg gct gcc aag acc att

Glu	Asn	Ile	Th:		g Se:	r Gly	/ Asj	9 His 105		· Va]	Ala	Ala	Lys 110		Ile	
tat Tyr	gly aaa	115 Gl ⁷ Gg	Thi	tai	t aad r Ası	tto Lev	g cto Lei 120	ı Ala	cat His	act Thr	ctg Leu	Pro 125	Ala	tat Tyr	gga Gly	384
		Thr			t gta e Val		Pro					naA				432
	Ile				aca 1 Thr 150	Lys					Glu					480
					ato E Ile					Val						528
				Pro	ctg Leu				Asn							576
			Pro		gag Glu			Ala								624
aca Thr	aaa Lys 210	ttc Phe	att Ile	ggc	gga Gly	cac His 215	ggc	agt Ser	tcg Ser	ttg Leu	gga Gly 220	gga Gly	gtt Val	att Ile	gtc Val	672
					gac Asp 230											720
Thr	Glu	Pro	Asp	Ala 245	agt Ser	Tyr	His	Gly	Val 250	Arg	Phe	Val	Asp	Ala 255	Ala	768
					att Ile											816
					.agc Ser											864
					ttg Leu											912
aag Lys 305	gtt Val	att Ile	gat Asp	ttt Phe	ctg Leu 310	gtg Val	aac Asn	cat His	ccg Pro	aag Lys 315	gta Val	gcg Ala	gct Ala	gtt Val	aat Asn 320	960
					ggt Gly											1008
ttt Phe	cct Pro	ggc	999 Gly 340	gca Ala	ggt Gly	tct Ser	atc Ile	ttc Phe 345	act Thr	ttc Phe	gag Glu	gta Val	aag Lys 350	gga Gly	gga Gly	1056

~/೯₽2003/009453

				022										_		T/EP2003/0094
•	W	O 200)4/024	933					39	/130						
acg Thr	gag Glu	gaa Glu 355	gcg Ala	cag Gln	aag Lys	ttt Phe	atc Ile 360	gat Asp	agt Ser	ctg Leu	cag Gln	ata Ile 365	ttc Phe	tct Ser	ttg Leu	1104
ctg Leu	gcc Ala 370	aat Asn	gtg Val	gcc Ala	gat Asp	gtg Val 375	aag Lys	tcg Ser	ctg Leu	gtg Val	att Ile 380	cat His	ccg Pro	ggc	act Thr	1152
Thr 385	Thr	His	Ser	Gln	ttg Leu 390	Asn	Ala	GIII	Giu	395	02-			-	400	1200
aaa Lys	ccc	gga Gly	acg Thr	gtc Val 405	Arg	ctt Leu	tcg Ser	ata Ile	ggt Gly 410	1114	gag Glu	cat His	att Ile	gag Glu 415	gac Asp	1248
att Ile	att : Ile	gat Asp	gac Asp 420	Leu	cgt Arg	cag Gln	gca Ala	tta Leu 425	GIU	aaa Lys	att Ile	taa	1			1287
<21	۷٥>	20														
<21	11>	428														
	12>															
<2	13>	Bact	eroi	ides	fraç	jilis	•									
	00>															
Me 1	t Gl	u Th	r Ly	s L y: 5	s Lev	ı His	3 Ph	e Gl	u Th 10	r Le	u Gl	n Le	u Hi	s Va 15	l Gly	7

Gln Glu Thr Pro Asp Pro Ala Thr Asp Ala Arg Ala Val Pro Ile Tyr 20

Gln Thr Thr Ser Tyr Val Phe Arg Asp Ser Ala His Ala Ala Arg 35

Phe Gly Leu Gln Asp Pro Gly Asn Ile Tyr Gly Arg Leu Thr Asn Ser 50

Thr Gln Gly Val Leu Glu Glu Arg Ile Ala Ala Leu Glu Gly Gly Val 65

Gly Gly Leu Ala Val Ala Ser Gly Ala Ala Ala Val Thr Tyr Ala Ile 85

Glu Asn Ile Thr Arg Ser Gly Asp His Ile Val Ala Ala Lys Thr Ile 105 100

Tyr Gly Gly Thr Tyr Asn Leu Leu Ala His Thr Leu Pro Ala Tyr Gly 120 115

•

Val Thr Thr Thr Phe Val Asp Pro Ser Asp Leu Phe Asn Phe Glu Arg

Ala Ile Arg Glu Asn Thr Lys Ala Ile Phe Ile Glu Thr Leu Gly Asn 145 150 155 160

Pro Asn Ser Asn Ile Ile Asp Met Asp Ala Val Ala Ala Ile Ala His 165 170 175

Lys Tyr Arg Ile Pro Leu Ile Val Asp Asn Thr Phe Gly Thr Pro Tyr 180 185 190

Leu Ile Arg Pro Ile Glu His Gly Ala Asp Ile Val Val His Ser Ala 195 200 205

Thr Lys Phe Ile Gly Gly His Gly Ser Ser Leu Gly Gly Val Ile Val 210 215 220

Asp Ser Gly Lys Phe Asp Trp Val Ala Ser Gly Lys Phe Pro Gln Leu 225 230 235 240

Thr Glu Pro Asp Ala Ser Tyr His Gly Val Arg Phe Val Asp Ala Ala 245 250 255

Gly Ala Ala Ala Tyr Ile Val Arg Ile Arg Ala Val Leu Leu Arg Asp 260 265 270

Thr Gly Ala Ala Ile Ser Pro Phe Asn Ala Phe Ile Leu Leu Gln Gly
275 280 285

Leu Glu Thr Leu Ser Leu Arg Val Glu Arg His Val Ala Asn Ala Leu 290 295 300

Lys Val Ile Asp Phe Leu Val Asn His Pro Lys Val Ala Ala Val Asn 305 310 315 320

His Pro Ser Leu Pro Gly His Pro Asp His Ala Ile Tyr Gln Arg Tyr 325 330 335

Phe Pro Gly Gly Ala Gly Ser Ile Phe Thr Phe Glu Val Lys Gly Gly 340 345 350

Thr Glu Glu Ala Gln Lys Phe Ile Asp Ser Leu Gln Ile Phe Ser Leu 355 360 365

Leu Ala Asn Val Ala Asp Val Lys Ser Leu Val Ile His Pro Gly Thr

CT/EP2003/009453

336

41/130

380

370 375

Thr Thr His Ser Gln Leu Asn Ala Gln Glu Leu Glu Glu Gln Gly Ile 385 390 395 400

Lys Pro Gly Thr Val Arg Leu Ser Ile Gly Thr Glu His Ile Glu Asp 405 410 415

Ile Ile Asp Asp Leu Arg Gln Ala Leu Glu Lys Ile 420 425

<210> 21

<211> 1278

<212> DNA

<213> Pseudomonas aeruginosa

<220>

<221> CDS

<222> (1)..(1278)

<223>

<400> 21							
atg aaa c Met Lys L 1	etg gaa acc Leu Glu Thi 5	c ctg gcc c Leu Ala	gtc cac Val His	gcc ggc Ala Gly 10	tac agc Tyr Ser	cct gac Pro Asp 15	ccg 48 Pro
acc acc c	egc gcg gtg Arg Ala Val 20	g gcg gtg . Ala Val	ccg atc Pro Ile 25	tac cag Tyr Gln	acc acc Thr Thr	tcc tac Ser Tyr 30	gcc 96 Ala
Phe Asp A	gac acc cag Asp Thr Gli 85	cat ggc His Gly	gcc gac Ala Asp 40	ctg ttc Leu Phe	gac ctg Asp Leu 45	aag gta Lys Val	ccg 144 Pro
ggc aac a Gly Asn I 50	atc tac aca Ile Tyr Thi	cgg atc Arg Ile 55	atg aac Met Asn	ccc acc Pro Thr	aac gac Asn Asp 60	gta ctg Val Leu	gaa 192 Glu
cag cgc g Gln Arg V 65	gtc gcg gcg /al Ala Ala	ctg gaa Leu Glu 70	Gly Gly aac aaa	gtc ggg Val Gly 75	gcg ctg Ala Leu	gcg gtg Ala Val	gcc 240 Ala 80
tcg ggg a Ser Gly M	atg gcg gcd Met Ala Ala 85	atc acc	tac gcg Tyr Ala	atc cag Ile Gln 90	acc gtc Thr Val	gcc gag Ala Glu 95	gcc 288 Ala

ggc gac aac atc gtc tcg gtg gcc aag ctc tac ggc ggc acc tac aac

Gly Asp Asn Ile Val Ser Val Ala Lys Leu Tyr Gly Gly Thr Tyr Asn

			His			cca Pro		Ile								384
		Asp				gcc Ala 135	Leu					Asp				432
						acc Thr					Ala					480
					Ala	gac Asp				Arg						528
				Thr		gcc Ala			Val							576
						gtg Val										624
						999 Gly 215										672
						cgc Arg										720
Ser	Tyr	His	Gly	Val 245	Thr	tac Tyr	Thr	Glu	Ala 250	Phe	Gly	Pro	Āla	Ala 255	Phe	768
Ile	Ġly	Arg	Сув 260	Arg	Val	gta Val	Pro	Leu 265	Arg	Asn	Met	Gly	Ala 270	Ala	Leu	816
Ser	Pro	Phe 275	Asn	Ala	Phe	ctc Leu	Ile 280	Leu	Gln	Gly	Leu	Glu 285	Thr	Leu	Ala	864
Leu	Arg 290	Met	Glu	Arg	His	tgc Cys 295	Asp	Asn	Ala	Leu	Ala 300	Val	Ala	Arg	Tyr	912
Leu 305	Gln	Gln	His	Pro	Gln 310		Ala	Trp	Val	Lys 315	Tyr	Ala	Gly	Leu	Ala 320	960
gac Asp	aac Asn	Pro	Glu	His 325	Ala	Leu .	Ala	Arg	Arg 330	Tyr	Leu	Gly	Gly	Arg 335	Pro	1008
			_			~~~	atc	cad	aac	aac	agc	acc	acc	aac	aca	1056
gcg Ala		Ile					Ile									1036

CT/EP2003/009453

43/130

365 360 355 gac gcc aag tcc ctg gcc tgc cac ccg gcg agc acc acc cac cgc cag 1152 Asp Ala Lys Ser Leu Ala Cys His Pro Ala Ser Thr Thr His Arg Gln 375 370 1200 ttg aac gcg gag gaa ctg gcc cgc gcc gga gtc tcc gac gac atg gtg Leu Asn Ala Glu Glu Leu Ala Arg Ala Gly Val Ser Asp Asp Met Val 390 385 cgg ctg tcg atc ggc atc gag cac atc gac gac atc ctc gcc gac ctc 1248 Arg Leu Ser Ile Gly Ile Glu His Ile Asp Asp Ile Leu Ala Asp Leu 415 410 405 1278 gac cag gec ctg gec gec gec gea ege tga Asp Gln Ala Leu Ala Ala Ala Arg 420 <210> <211> 425 <212> PRT <213> Pseudomonas aeruginosa <400> 22 Met Lys Leu Glu Thr Leu Ala Val His Ala Gly Tyr Ser Pro Asp Pro Thr Thr Arg Ala Val Ala Val Pro Ile Tyr Gln Thr Thr Ser Tyr Ala 30 20 Phe Asp Asp Thr Gln His Gly Ala Asp Leu Phe Asp Leu Lys Val Pro Gly Asn Ile Tyr Thr Arg Ile Met Asn Pro Thr Asn Asp Val Leu Glu Gln Arg Val Ala Ala Leu Glu Gly Gly Val Gly Ala Leu Ala Val Ala 80 75 70 Ser Gly Met Ala Ala Ile Thr Tyr Ala Ile Gln Thr Val Ala Glu Ala 90 Gly Asp Asn Ile Val Ser Val Ala Lys Leu Tyr Gly Gly Thr Tyr Asn

Leu Leu Ala His Thr Leu Pro Arg Ile Gly Ile Gln Ala Arg Phe Ala 120

115

Ala His Asp Asp Val Ala Ala Leu Glu Ala Leu Ile Asp Glu Arg Thr 130 135 140

Lys Ala Val Phe Cys Glu Thr Ile Gly Asn Pro Ala Gly Asn Ile Ile 145 150 155 160

Asp Leu Gln Ala Leu Ala Asp Ala Ala His Arg His Gly Val Pro Leu 165 170 175

Ile Val Asp Asn Thr Val Ala Thr Pro Val Leu Cys Arg Pro Phe Glu 180 185 190

His Gly Ala Asp Ile Val Val His Ser Leu Thr Lys Tyr Met Gly Gly
195 200 205

His Gly Thr Ser Ile Gly Gly Ile Val Val Asp Ser Gly Lys Phe Asp 210 215 220

Trp Ala Ala Asn Lys Ser Arg Phe Pro Leu Leu Asn Thr Pro Asp Pro 225 230 235 240

Ser Tyr His Gly Val Thr Tyr Thr Glu Ala Phe Gly Pro Ala Ala Phe 245 250 255

Ile Gly Arg Cys Arg Val Val Pro Leu Arg Asn Met Gly Ala Ala Leu 260 265 270

Ser Pro Phe Asn Ala Phe Leu Ile Leu Gln Gly Leu Glu Thr Leu Ala 275 280 285

Leu Arg Met Glu Arg His Cys Asp Asn Ala Leu Ala Val Ala Arg Tyr 290 295 300

Leu Gln Gln His Pro Gln Val Ala Trp Val Lys Tyr Ala Gly Leu Ala 305 310 315 320

Asp Asn Pro Glu His Ala Leu Ala Arg Arg Tyr Leu Gly Gly Arg Pro 325 330 335

Ala Ala Ile Leu Ser Phe Gly Ile Gln Gly Gly Ser Ala Ala Gly Ala 340 345 350

Arg Phe Ile Asp Ala Leu Lys Leu Val Val Arg Leu Val Asn Ile Gly 355 360 365

Asp Ala Lys Ser Leu Ala Cys His Pro Ala Ser Thr Thr His Arg Gln 370 375 380

CT/EP2003/009453

45/130

Leu Asn Ala Glu Glu Leu Ala Arg Ala Gly Val Ser Asp Asp Met Val 385 390 395 400

Arg Leu Ser Ile Gly Ile Glu His Ile Asp Asp Ile Leu Ala Asp Leu 405 410 415

Asp Gln Ala Leu Ala Ala Ala Ala Arg 420 425

<210> 23

<211> 1296

<212> DNA

<213> Bordetella bronchiseptica

<220>

<221> CDS

<222> (1)..(1296)

<223>

<400 atg Met 1	200	gaa	ceg Pro	aac Asn 5	caa Gln	ccc Pro	atc Ile	tgg Trp	cgg Arg 10	ctg Leu	gag Glu	acc Thr	atc Ile	gcc Ala 15	gta Val	. .	48
cat His	ejà aaa	ggc	tac Tyr 20	cgg Arg	ccc Pro	gac Asp	ccg Pro	acc Thr 25	acg Thr	cgc Arg	gcg Ala	gtg Val	gcg Ala 30	gtg Val	ccg Pro	9	96
atc Ile	ta <i>c</i> Tyr	cag Gln 35	acc Thr	gtg Val	gcc Ala	tat Tyr	gcg Ala 40	ttc Phe	gac Asp	gac Asp	acc Thr	cag Gln 45	cat His	ggc	gcg Ala	14	44
gac Asp	ctg Leu 50	ttc Phe	gac Asp	ctg Leu	aag Lys	gtg Val 55	ccg Pro	ggc Gly	aat Asn	at <i>c</i> Ile	tac Tyr 60	acc Thr	cgc Arg	atc Ile	atg Met	1:	92
aac Asn 65	ccc Pro	acc Thr	acc Thr	gac Asp	gtg Val 70	ctg Leu	gag Glu	cag Gln	cgc Arg	gtg Val 75	gcg Ala	gcg Ala	ctg Leu	gaa Glu	tgc Cys 80	2	40
ggc Gly	gtg Val	gcc Ala	gcg Ala	ctg Leu 85	gcg Ala	ctg Leu	gcc Ala	tcc Ser	ggc Gly 90	cag Gln	gcg Ala	gcg Ala	gtg Val	acc Thr 95	tat Tyr	2	88
gcg Ala	atc Ile	ctg Leu	acc Thr 100	atc Ile	gcc Ala	gag Glu	gcg Ala	ggc Gly 105	gac Asp	aac Asn	atc Ile	gtg Val	tcg Ser 110	tcc Ser	agc Ser	3	36
acg	ctg	tat	ggc	ggc	acg	tac	aac	ctg	ttc	gcc	cac	acg	ctg	ccg	cag	3	84

										40/130	U					
Thi	Leu	115	_	, Gl	y Th:	г Ту	r Ası 120		ı Phe	: Ala	His	Thr 125		Pro	Gln	
		/ Ile			c cgo		e Ala					Leu				432
	Ala				gaç Gli 150	a Arg					Phe					480
					aad Asi					Ala						528
				Gly	gtg Val				. Val							576
ccc Pro	tac	ctg Leu 195	Leu	cgc Arg	e ccc	ato Ile	gag Glu 200	. His	ggc Gly	gcc Ala	gac Asp	atc Ile 205	gtg Val	gtg Val	cag Gln	624
tcg Ser	ct <i>c</i> Leu 210	Thr	aag Lys	tac Tyr	ctg Leu	ggc Gly 215	Gly	cac His	ggc	acc Thr	agc Ser 220	ctg Leu	ggc	Gly aaa	gcc Ala	672
	Ile				aag Lys 230	Phe					His					720
					ccc Pro											768
					gcg Ala											816
					gcg Ala											864
					acg Thr											912
					gcc Ala 310											960
					gly											1008
					ggc											1056
	Gly				gcc Ala	Gly										1104

	WO 2004/024933															2003/009
	W	O 200	4/024	933					47	/130					C I/E	~2003/003
		Arg					Gly								cac His	1152
						Arg						gag Glu			aag Lys 400	1200
gcc Ala	ggc	gtg Val	cgc Arg	gag Glu 405	Glu	acg Thr	gtg Val	cgc Arg	ctg Leu 410	Ser	atc Ile	gjå aaa	atc Ile	gag Glu 415	cat His	1248
at <i>c</i> Ile	gac Asp	gac Asp	ctg Leu 420	atc Ile	gcc Ala	gac Asp	ctg Leu	gaa Glu 425	Gln	gcg Ala	ctg Leu	gcg Ala	caa Gln 430	gtc Val	tga	1296
<21	0> :	24														
<21	l> 4	431														
<212	2> 1	PRT														
<21	3 > 1	Borde	etel]	la b	roncl	nisep	ptic	a						,		
<400)> 2	24														
Met 1	Ser	Glu	Pro	Asn 5	Gln	Pro	Ile	Trp	Arg 10	Leu	Glu	Thr	Ile	Ala 15	Val	
His	Gly	Gly	Tyr 20	Arg	Pro	Asp	Pro	Thr 25	Thr	Arg	Ala	Val	Ala 30	Val	Pro	
Ile	Tyr	Gln 35	Thr	Val	Ala	Tyr	Ala 40	Phe	Asp	Asp	Thr	Gln 45	His	Gly	Ala	
Asp	Leu 50	Phe	Asp	Leu	Lys	Val 55	Pro	Gly	Asn	Ile	Tyr 60	Thr	Arg	Ile	Met	
Asn	Pro	Thr	Thr	Asp	Val	Leu	Glu	Gln	Arg	Val	Ala	Ala	Leu	Glu	Сув	

Asn Pro Thr Thr Asp Val Leu Glu Gln Arg Val Ala Ala Leu Glu Cys
65 70 75 80

Gly Val Ala Ala Leu Ala Leu Ala Ser Gly Gln Ala Ala Val Thr Tyr

Ala Ile Leu Thr Ile Ala Glu Ala Gly Asp Asn Ile Val Ser Ser Ser 100 105

Thr Leu Tyr Gly Gly Thr Tyr Asn Leu Phe Ala His Thr Leu Pro Gln 120

Tyr Gly Ile Thr Thr Arg Phe Ala Asp Pro Arg Asn Leu Ala Ser Phe 130 135

Glu 145		Lev	ı Ile	e Asp	Glu 150		J Thr	Lys	Ala	11e 155		Ala	Glu	Ser	Val 160
Gly	Asn	Pro	Leu	Gly 165		Va]	l Thr	Asp	170		Ala	Leu	Ala	Glu 175	Ile
Ala	His	Arg	His 180	_	Val	Pro	Leu	11e 185		Asp	Asn	Thr	Val 190	Pro	Ser
Pro	Tyr	Leu 195		Arg	Pro	Ile	e Glu 200		Gly	Ala	Asp	Ile 205	Val	Val	Gln
Ser	Leu 210		- Lys	Tyr	Leu	Gly 215	Gly	His	Gly	Thr	Ser 220	Leu	Gly	Gly	Ala
Ile 225	Ile	Asp	Ser	Gly	Lys 230	Phe	Pro	Trp	Ala	Glu 235	His	Lys	Ala	Arg	Phe 240
Lys	Arg	Leu	Asn	Glu 245	Pro	Asp	Val	Ser	Туг 250		Gly	Val	Val	Tyr 255	Thr
Glu	Ala	Phe	Gly 260	Ala	Ala	Ala	Tyr	Ile 265	Gly	Arg	Ala	Arg	Val 270	Val	Pro
Leu	Arg	Asn 275		Gly	Ala	Ala	Ile 280	Ser	Pro	Phe	Asn	Ala 285	Phe	Gln	Ile
Leu	Gln 290	Gly	Ile	Glu	Thr	Leu 295	Ala	Leu	Arg	Val	Asp 300	Arg	Ile	Val	Glu
Asn 305	Ser	Val	Lys		Ala ,310	Gly	Phe	Leu	Arg	Asp 315	His	Pro	Lys	Val	Glu 320
Trp	Val	Asn	Tyr	Ala 325	Gly	Leu	Pro	Asp	His 330	Ala	Asp	His	Ala	Leu 335	Val
Arg	ГÀЗ	туг	Met 340	Gly	Gly	Lys	Ala	Pro 345	Gly	Leu	Phe	Thr	Phe 350	Gly	Val
Lys	Gly	Gly 355	Arg	Glu	Ala	Gly	Ala 360	Arg	Phe	Gln	Asp	Ala 365	Leu	Gln	Leu
Phe	Thr 370	Arg	Leu	Val		Ile 375	Gly	Asp	Ala	Lys	Ser 380	Leu	Ala	Thr	His

Pro Ala Ser Thr Thr His Arg Gln Leu Asn Pro Glu Glu Leu Glu Lys

49/130

PCT/EP2003/009453

385 390 395 400

Ala Gly Val Arg Glu Glu Thr Val Arg Leu Ser Ile Gly Ile Glu His
405 410 415

Ile Asp Asp Leu Ile Ala Asp Leu Glu Gln Ala Leu Ala Gln Val 420 425 430

<210> 25

<211> 1269

<212> DNA

<213> Nitrosomonas europaea

<220>

<221> CDS

<222> (1)..(1269)

115

<223>

<400>

									ggc Gly 10							48
			_	_		_			tac Tyr	_			_			96
									ttg Leu						cag Gln	144
									ccg Pro							192
									gtg Val							240
									gtg Val 90							288
ggc Gly	gac Asp	aac Asn	att Ile 100	atc Ile	tcc Ser	acc Thr	agc Ser	cag Gln 105	gtt Val	tac Tyr	ggt Gly	ggc Gly	acc Thr 110	tat Tyr	aat Asn	336
									ggt Gly							384

125

120

		Arg			gcc Ala											432
_	_			_	gag Glu 150	Ser				_	_			_		480
					gct Ala											528
				Thr	gta Val											576
		_	_		gtc Val	_			_				_			624
			_		gj ggc					_			_			672
					cgt Arg 230											720
Tyr	His	Gly	Val	Val 245	tat Tyr	Val	Āsp	Ala	Phe 250	Gly	Pro	Ala	Ala	Phe 255	Ile	768
Gly	Arg	Ala	Arg 260	Val	gta Val	Pro	Leu	Arg 265	Asn	Met	Gly	Ala	Ala 270	Ile	Ser	816
					ctg Leu											864
					tgc Cys											912
					gtc Val 310			-			_			_	_	960
Asn	Arg	Asp	Tyr	Ala 325	ctg Leu	Val	Gln	Lys	Tyr 330	Met	Asp	Gly	Gly	Ile 335	Pro	1008
					Phe											1056
					ctg Leu											1104
					gcc Ala											1152

PCT/EP2003/009453

51/130

380 370 ctc aat gat gaa gaa ctg gca aaa gcc ggt gtc agt gct gat ctg gtg 1200 Leu Asn Asp Glu Glu Leu Ala Lys Ala Gly Val Ser Ala Asp Leu Val 395 390 385 cgt tta tgt gtc ggc atc gag cat att gac gat ctg att gcc gat gta 1248 Arg Leu Cys Val Gly Ile Glu His Ile Asp Asp Leu Ile Ala Asp Val 405 410 gag cag gct ttc cag gat tag 1269 Glu Gln Ala Phe Gln Asp 420 <210> 26 422 <211> <212> PRT Nitrosomonas europaea <213> 26 <400> Met Lys Arg Glu Thr Leu Ala Ile His Gly Gly Phe Ala Gly Asp Pro 5 10 15 Gln Thr His Ala Val Ala Val Pro Ile Tyr Gln Thr Thr Ser Tyr Tyr 25 30 20 Phe Asp Asp Thr Gln His Gly Ala Asp Leu Phe Asp Leu Lys Val Gln 35 40 Gly Asn Ile Tyr Thr Arg Ile Met Asn Pro Thr Thr Ala Val Leu Glu 55 50 Glu Arg Val Ala Leu Leu Glu Gly Gly Val Gly Ala Leu Ala Met Ala 70 75 65 Ser Gly Met Ala Ala Ile Thr Ala Cys Val Gln Thr Leu Ala Arg Ala 95 85 Gly Asp Asn Ile Ile Ser Thr Ser Gln Val Tyr Gly Gly Thr Tyr Asn 100 105 110 phe Phe Cys His Thr Leu Pro Asn Leu Gly Ile Glu Val Arg Met Val 115

Asp Gly Arg Asn Pro Ala Ala Phe Ala Asp Ala Ile Asp Asp Asn Thr

135

130

Arg Met Ile Tyr Cys Glu Ser Ile Gly Asn Pro Ala Gly Asn Val Val 145 150 155 160

Asp Ile Ala Ala Leu Ala Glu Val Ala His Ala Ala Gly Val Pro Leu 165 170 175

Val Val Asp Asn Thr Val Pro Thr Pro Val Leu Cys Arg Pro Phe Glu 180 185 190

His Gly Ala Asp Ile Val Val His Ala Leu Thr Lys Tyr Met Gly Gly
195 200 205

His Gly Thr Ser Ile Gly Gly Ile Ile Val Asp Ser Gly Lys Phe Pro 210 215 220

Trp Glu Gly Asn Ser Arg Phe Pro Gln Phe Asn Gln Pro Asp Pro Ser 225 230 235 240

Tyr His Gly Val Val Tyr Val Asp Ala Phe Gly Pro Ala Ala Phe Ile 245 250 255

Gly Arg Ala Arg Val Val Pro Leu Arg Asn Met Gly Ala Ala Ile Ser 260 265 270

Pro Phe Asn Ser Phe Leu Ile Leu Gln Gly Ile Glu Thr Leu Pro Leu 275 280 285

Arg Met Glu Arg His Cys Thr Asn Ala Leu Ala Ile Ala Arg Tyr Leu 290 295 300

Gln Arg His Pro Lys Val Ser Trp Val Asn Phe Ala Gly Leu Glu Asp 305 310 315 320

Asn Arg Asp Tyr Ala Leu Val Gln Lys Tyr Met Asp Gly Gly Ile Pro 325 330 335

Ser Ser Ile Leu Ser Phe Gly Ile Lys Gly Gly Arg Glu Ala Cys Ala 340 345 350

Arg Phe Met Asp Arg Leu Met Leu Ile Lys Arg Leu Val Asn Ile Gly 355 360 365

Asp Ala Lys Thr Leu Ala Cys His Pro Ala Thr Thr His Arg Gln 370 375 380

Leu Asn Asp Glu Glu Leu Ala Lys Ala Gly Val Ser Ala Asp Leu Val 385 390 395 400

Arg Leu Cys Val Gly Ile Glu His Ile Asp Asp Leu Ile Ala Asp Val

Glu Gln Ala Phe Gln Asp 420

<210> 27

<211> 1281

<212> DNA

<213> Sinorhizobium meliloti

<220>

<221> CDS

<400> 27

<222> (1)..(1281)

<223>

)> '															
atg Met 1	aaa Lys	gcc Ala	gga Gly	ccc Pro 5	gga Gly	ttc Phe	agc Ser	acg Thr	ctt Leu 10	gca Ala	att Ile	cac His	gcc Ala	999 Gly 15	gcc Ala	48
cag Gln	ccc Pro	gat Asp	ccg Pro 20	acg Thr	acc Thr	ggt Gly	gcg Ala	cgg Arg 25	gcg Ala	acg Thr	ccg Pro	atc Ile	tat Tyr 30	cag Gln	acg Thr	96
acc Thr	agc Ser	ttc Phe 35	gtc Val	ttc Phe	aac Asn	gac Asp	acg Thr 40	gat Asp	cat His	gcg Ala	gcc Ala	gca Ala 45	ctc Leu	ttc Phe	ggc Gly	144
ctc Leu	cag Gln 50	caa Gln	ttc Phe	ggc ggc	aat Asn	atc Ile 55	tat Tyr	acc Thr	cgc Arg	atc Ile	atg Met 60	aat Asn	ccg Pro	acg Thr	cag Gln	192
gcg Ala 65	gtg Val	ctg Leu	gag Glu	gag Glu	cgg Arg 70	atc Ile	gcg Ala	gcg Ala	ctc Leu	gaa Glu 75	ggc Gly	gjå aaa	acc Thr	gcc Ala	80 GJÅ aaa	240
ctg Leu	gcc Ala	gtt Val	tcc Ser	tcg Ser 85	61 <i>y</i> 999	cat His	gcg Ala	gcc Ala	cag Gln 90	ctg Leu	ctg Leu	gtt Val	ttc Phe	cat His 95	acg Thr	288
atc Ile	atg Met	agg Arg	ccg Pro 100	ggt Gly	gac Asp	aat Asn	ttc Phe	gtt Val 105	tcc Ser	gcc Ala	aga Arg	cag Gln	ctt Leu 110	tac Tyr	ggc Gly	336
ggg Gly	tcg Ser	gcc Ala 115	aat Asn	cag Gln	ttc Phe	ggc Gly	cat His 120	gcc Ala	ttc Phe	aag Lys	gcc Ala	ttc Phe 125	gac Asp	tgg Trp	cag Gln	384

54/130

PCT/EP2003/009453

gtc Val	cgc Arg 130	tgg Trp	gcc Ala	gat Asp	tcg Ser	gcg Ala 135	gag Glu	ccc Pro	gaa Glu	agc Ser	ttc Phe 140	gat Asp	gcg Ala	cag Gln	atc Ile	432
gac Asp 145	gaa Glu	cgc Arg	acc Thr	aag Lys	gcg Ala 150	atc Ile	ttc Phe	atc Ile	gaa Glu	agc Ser 155	ctc Leu	gcc Ala	aat Asn	ccg Pro	Gly 160	480
						gcc Ala										528
gga Gly	ctg Leu	ccg Pro	ctc Leu 180	atc Ile	gtc Val	gac Asp	aat Asn	acg Thr 185	atg Met	gcg Ala	acg Thr	ccc Pro	tat Tyr 190	ctg Leu	atg Met	576
cgg Arg	ccg Pro	ctc Leu 195	gaa Glu	cac His	ggc	gcc Ala	gat Asp 200	atc Ile	gtc Val	gtc Val	cat His	tcg Ser 205	ctc Leu	acc Thr	aag Lys	624
ttc Phe	atc Ile 210	ggc Gly	ggt Gly	cac His	ggc	aat Asn 215	tcg Ser	atg Met	ggc Gly	ggc	atc Ile 220	atc Ile	gtc Val	gac Asp	ggc	672
ggt Gly 225	acg Thr	ttc Phe	gac Asp	tgg Trp	tcg Ser 230	aaa Lys	tcc Ser	ggc Gly	aag Lys	tat Tyr 235	ccg Pro	ctg Leu	ctg Leu	tcg Ser	gag Glu 240	720
ccg Pro	agg Arg	ccc Pro	gaa Glu	tat Tyr 245	ggc Gly	ggc Gly	gtc Val	gtc Val	ctg Leu 250	cac His	cag Gln	gcc Ala	ttc Phe	ggc Gly 255	aac Asn	768
ttc Phe	gcc Ala	ttc Phe	gcc Ala 260	atc Ile	gcc Ala	gca Ala	cgg Arg	gta Val 265	ttg Leu	ggt Gly	ctg Leu	agg Arg	gac Asp 270	ttc Phe	ggt Gly	816
ccg Pro	gcc Ala	att Ile 275	tcg Ser	ccc Pro	ttc Phe	aac Asn	gcc Ala 280	ttc Phe	ctg Leu	atc Ile	cag Gln	acc Thr 285	ggc Gly	gtc Val	gag Glu	864
acg Thr	ctg Leu 290	ccg Pro	ctg Leu	agg Arg	atg Met	cag Gln 295	cgc Arg	cat His	tgc Cys	gac Asp	aac Asn 300	gcg Ala	ctg Leu	gag Glu	gtc Val	912
gcc Ala 305	aaa Lys	tgg Trp	ctg Leu	aag Lys	gga Gly 310	cat His	gaa Glu	aag Lys	gtc Val	tcc Ser 315	tgg Trp	gtc Val	cgc Arg	tat Tyr	tcc Ser 320	960
gly ggg	ctc Leu	gaa Glu	gac Asp	gat Asp 325	ccg Pro	aac Asn	cac His	gca Ala	ctg Leu 330	cag Gln	aaa Lys	cgc Arg	tac Tyr	tcg Ser 335	ccg Pro	1008
aag Lys	GJA aaa	gcg Ala	gga Gly 340	gcc Ala	gtt Val	ttc Phe	acc Thr	ttc Phe 345	Gly 999	ctc Leu	gcg Ala	ggc	gga Gly 350	tac Tyr	gag Glu	1056
gcg Ala	gga Gly	aag Lys 355	cgc Arg	ttt Phe	gtc Val	gag Glu	gca Ala 360	ctg Leu	gaa Glu	atg Met	ttc Phe	tcc Ser 365	cat His	ctt Leu	gcc Ala	1104
aat Asn	atc Ile 370	ggc Gly	gac Asp	acg Thr	cgt Arg	tcg Ser 375	ctc Leu	gtc Val	atc Ile	cac His	ccc Pro 380	gca Ala	tcg Ser	acc Thr	acg Thr	1152

•									-							
cac His 385	cgg Arg	cag Gln	ctc Leu	acg Thr	ccg Pro 390	gag Glu	cag Gln	cag Gln	gtc Val	gcc Ala 395	gca Ala	ggc Gly	gcc Ala	gga Gly	ccc Pro 400	1200
gac Asp	gt <i>c</i> Val	atc Ile	cgg Arg	ttg Leu 405	tcg Ser	gtc Val	ggc Gly	atc Ile	gag Glu 410	gat Asp	gtg Val	gcc Ala	gac Asp	at <i>c</i> Ile 415	att Ile	1248
gcc Ala	gat Asp	ctc Leu	gaa Glu 420	cag Gln	gcg Ala	ctg Leu	ggc Gly	aag Lys 425	gcc Ala	tga						1281
<210> 28																
<211> 426																
<212> PRT																
<213> Sinorhizobium meliloti																
<400> 28																
Met 1	Lys	Ala	Gly	Pro 5	Gly	Phe	Ser	Thr	Leu 10	Ala	Ile	His	Ala	Gly 15	Ala	
Gln	Pro	Asp	Pro 20	Thr	Thr	Gly	Ala	Arg 25	Ala	Thr	Pro	Ile	Tyr 30	Gln	Thr	
Thr	Ser	Phe 35	Val	Phe	Asn	Asp	Thr 40	Asp	His	Ala	Ala	Ala 45	Leu	Phe	Gly	
Leu	Gln 50	Gln	Phe	Gly	Asn	Ile 55	Tyr	Thr	Arg	Ile	Met 60	Asn	Pro	Thr	Gln	
Ala 65	Val	Leu	Glu	Glu	Arg 70	Ile	Ala	Ala	Leu	Glu 75	Gly	Gly	Thr	Ala	Gly 80	
Leu	Ala	Val	Ser	Ser 85	Gly	His	Ala	Ala	Gln 90	Leu	Leu	Val	Phe	His 95	Thr	
Ile	Met	Arg	Pro 100	Gly	Asp	Asn	Phe	Val 105	Ser	Ala	Arg	Gln	Leu 110		Gly	
Gly	Ser	Ala 115	Asn	Gln	Phe	Gly	His 120	Ala	Phe	Lys	Ala	Phe 125		Trp	Gln	
Val	Arg 130	Trp	Ala	Asp	Ser	Ala 135	Glu	Pro	Glu	Ser	Phe 140		Ala	Glr	lle	

Asp Glu Arg Thr Lys Ala Ile Phe Ile Glu Ser Leu Ala Asn Pro Gly

PCT/EP2003/009453

145 150 155 160

Gly Thr Phe Val Asp Ile Ala Ala Ile Ala Asp Val Ala Arg Arg His 165 170 175

Gly Leu Pro Leu Ile Val Asp Asn Thr Met Ala Thr Pro Tyr Leu Met 180 185 190

Arg Pro Leu Glu His Gly Ala Asp Ile Val Val His Ser Leu Thr Lys 195 200 205

Phe Ile Gly Gly His Gly Asn Ser Met Gly Gly Ile Ile Val Asp Gly 210 215 220

Gly Thr Phe Asp Trp Ser Lys Ser Gly Lys Tyr Pro Leu Leu Ser Glu 225 230 235 240

Pro Arg Pro Glu Tyr Gly Gly Val Val Leu His Gln Ala Phe Gly Asn 245 250 255

Phe Ala Phe Ala Ile Ala Ala Arg Val Leu Gly Leu Arg Asp Phe Gly 260 265 270

Pro Ala Ile Ser Pro Phe Asn Ala Phe Leu Ile Gln Thr Gly Val Glu 275 280 285

Thr Leu Pro Leu Arg Met Gln Arg His Cys Asp Asn Ala Leu Glu Val 290 295 300

Ala Lys Trp Leu Lys Gly His Glu Lys Val Ser Trp Val Arg Tyr Ser 305 310 315 320

Gly Leu Glu Asp Asp Pro Asn His Ala Leu Gln Lys Arg Tyr Ser Pro 325 330 335

Lys Gly Ala Gly Ala Val Phe Thr Phe Gly Leu Ala Gly Gly Tyr Glu 340 345 350

Ala Gly Lys Arg Phe Val Glu Ala Leu Glu Met Phe Ser His Leu Ala 355 360 365

Asn Ile Gly Asp Thr Arg Ser Leu Val Ile His Pro Ala Ser Thr Thr 370 375 380

His Arg Gln Leu Thr Pro Glu Gln Gln Val Ala Ala Gly Ala Gly Pro 385 390 395 400

WO 2004/024933

CT/EP2003/009453

57/130

Asp Val Ile Arg Leu Ser Val Gly Ile Glu Asp Val Ala Asp Ile Ile 405 410 415

Ala Asp Leu Glu Gln Ala Leu Gly Lys Ala 420 425

<210> 29

<211> 1293

<212> DNA

<213> Thermotoga maritima

<220>

<221> CDS

<400> 29

<222> (1)..(1293)

<223>

atg Met 1	gac Asp	tgg Trp	aag Lys	aaa Lys 5	tac Tyr	ggt Gly	tac Tyr	aac Asn	aca Thr 10	agg Arg	gct Ala	ctt Leu	His	gca Ala 15	gly		48
tat Tyr	gaa Glu	cca Pro	ccc Pro 20	gag Glu	cag Gln	gcc Ala	aca Thr	gga Gly 25	tcg Ser	aga Arg	gcg Ala	gtc Val	cct Pro 30	ata Ile	tat Tyr		96
caa Gln	acg Thr	act Thr 35	tct Ser	tac Tyr	gtt Val	ttc Phe	aga Arg 40	gac Asp	tct Ser	gat Asp	cac His	gcg Ala 45	gcg Ala	aga Arg	ctc Leu	1	44
ttc Phe	gca Ala 50	ctg Leu	gaa Glu	gaa Glu	cct Pro	999 999 55	ttc Phe	atc Ile	tat Tyr	aca Thr	agg Arg 60	att Ile	gga Gly	aat Asn	cct Pro	1	92
acc Thr 65	gtc Val	tca Ser	gtt Val	ctt Leu	gaa Glu 70	gaa Glu	aga Arg	ata Ile	gcc Ala	gcc Ala 75	ctg Leu	gaa Glu	gaa Glu	GJÀ aaa	gtg Val 80	2	40
gga Gly	gcc Ala	tta Leu	gcg Ala	gtt Val 85	gcc Ala	agt Ser	gga Gly	caa Gln	gcc Ala 90	gct Ala	ata Ile	act Thr	tac Tyr	gcc Ala 95	att Ile	2	88
ttg Leu	aac Asn	atc Ile	gcg Ala 100	ggc Gly	cca Pro	gga Gly	gat Asp	gag Glu 105	atc Ile	gtc Val	agc Ser	GJA aaa	agc Ser 110	gcg Ala	ctg Leu	3	36
tat Tyr	Gly 999	gga Gly 115	acg Thr	tac Tyr	aat Asn	ctg Leu	ttc Phe 120	aga Arg	cac His	act Thr	ctc Leu	tat Tyr 125	aaa Lys	aaa Lys	tcc Ser	3	84
									aca Thr							4	32

130 135 140

gag Glu 145	gcc Ala	atc Ile	acc Thr	ga Gl	g aa u Ly 15	s Th	a aa r Ly	ag go /s Al	g gt a Va	g ta l Ty	r Lei	t gaa u Glu	a act 1 Thi	ato	e ggg 160	480
aat Asn	ccc Pro	ggt Gly	ctc Leu	Thi	r Va	g cc l Pr	g ga	c tt p Ph	t ga e Gl 17	u Al	g ata a Ile	a gcg a Ala	g gag a Glu	g ato 11e 175	gct Ala	528
cac His	aga Arg	cac His	ggt Gly 180	gtt Val	t cci	t tte	g at u Il	a gt e Va 18	l As	c aat p Asi	t aco	g gta . Val	get Ala 190	Pro	tac Tyr	576
Ile	Phe	Arg 195	Pro	Phe	e Glv	ı Hi:	s Gl 20	y Al O	a As	p Ile	e Val	205	Тут	Ser	gcc Ala	624
Thr	Lys 210	Phe	Ile	Gly	Gly	215	s Gl	y Thi	r Se	r Ile	220	Gly	Leu	Ile	gta Val	672
Asp 225	Ser	Gly	Lys	Phe	230	Trp	Th	r Ası	a Gly	235	Phe	Pro	Glu	Leu	240	720
gaa Glu	Pro	Asp	Pro	Ser 245	Tyr	His	Gly	y Val	250	Tyr	' Val	Glu	Thr	Phe 255	Lys	768
gaa g Glu A	Ala .	Ala	Tyr 260	Ile	Ala	Lys	Суг	265	Thr	Gln	Leu	Leu	Arg 270	Asp	Leu	816
gga a Gly s	Ser (Cys 275	Met	Ser	Pro	Phe	Asn 280	Ala	Phe	Leu	Phe	Ile 285	Leu	Gly	Leu	864
	Chr 1	Leu (Ser	Leu	Arg	Met 295	Lys	Lys	His	Cys	Glu 300	Asn	Ala	Leu	Lys	912
atc g Ile V 305	al C	lu l	Phe 1	Leų	Lys 310	Ser	His	Pro	Ala	Val 315	Ser	Trp	Val	Asn	Tyr 320	960
ccg a	le A	la C	3lu G	31y 325	Asn	Lys	Thr	Arg	Glu 330	Asn	Ala	Leu	Lys	Tyr 335	Leu	1008
aaa g Lys G	lu G	ly T	yr (∄ly :	Ala	Ile	Val	Thr 345	Phe	Gly	Val	Lys	Gly 350	Gly	Lys	1056
gag ge	la G 3	ly L 55	ys L	ys l	Phe :	Ile .	Asp 360	Ser	Leu	Thr	Leu	Ile 365	Ser	His	Leu	1104
gcc aa Ala As 37	sn II 70	le G	ly A	sp A	Ala A	rg ' 175	Thr	Leu	Ala	Ile	His 380	Pro	Ala	Ser	Thr	1152
acc ca	t ca	ig C	ag c	cc a	icg g	aa g	gaa	gag	cag	ttg	aaa	acg	ggt	gtt	act	1200

CT/EP2003/009453

Thr	His	Gln	Gln	Leu	Thr	Glu	Glu	Glu	Gln	Leu	Lys	Thr	Gly	Val	Thr	
385					390					395					400	

ccg gat atg ata aga ttg tct gtt gga ata gaa gat gtg gaa gat atc

1248

Pro Asp Met Ile Arg Leu Ser Val Gly Ile Glu Asp Val Glu Asp Ile

405

410

415

ata gcc gat ctg gat cag gct ctc aga aaa tct cag gag gga tga 1293

Ile Ala Asp Leu Asp Gln Ala Leu Arg Lys Ser Gln Glu Gly
420 425 430

<210> 30

<211> 430

<212> PRT

<213> Thermotoga maritima

<400> 30

Met Asp Trp Lys Lys Tyr Gly Tyr Asn Thr Arg Ala Leu His Ala Gly
1 5 10 15

Tyr Glu Pro Pro Glu Gln Ala Thr Gly Ser Arg Ala Val Pro Ile Tyr 20 25 30

Gln Thr Thr Ser Tyr Val Phe Arg Asp Ser Asp His Ala Ala Arg Leu 35 40 45

Phe Ala Leu Glu Glu Pro Gly Phe Ile Tyr Thr Arg Ile Gly Asn Pro 50 55 60

Thr Val Ser Val Leu Glu Glu Arg Ile Ala Ala Leu Glu Glu Gly Val 65 70 75 80

Gly Ala Leu Ala Val Ala Ser Gly Gln Ala Ala Ile Thr Tyr Ala Ile 85 90 95

Leu Asn Ile Ala Gly Pro Gly Asp Glu Ile Val Ser Gly Ser Ala Leu 100 105 110

Tyr Gly Gly Thr Tyr Asn Leu Phe Arg His Thr Leu Tyr Lys Lys Ser 115 120 125

Gly Ile Ile Val Lys Phe Val Asp Glu Thr Asp Pro Lys Asn Ile Glu
130 135 140

Glu Ala Ile Thr Glu Lys Thr Lys Ala Val Tyr Leu Glu Thr Ile Gly
145 150 155 160

- Asn Pro Gly Leu Thr Val Pro Asp Phe Glu Ala Ile Ala Glu Ile Ala 165 170 175
- His Arg His Gly Val Pro Leu Ile Val Asp Asn Thr Val Ala Pro Tyr
 180 185 190
- Ile Phe Arg Pro Phe Glu His Gly Ala Asp Ile Val Val Tyr Ser Ala 195 200 205
- Thr Lys Phe Ile Gly Gly His Gly Thr Ser Ile Gly Gly Leu Ile Val 210 215 220
- Asp Ser Gly Lys Phe Asp Trp Thr Asn Gly Lys Phe Pro Glu Leu Val 225 230 235 240
- Glu Pro Asp Pro Ser Tyr His Gly Val Ser Tyr Val Glu Thr Phe Lys

 245 250 255
- Glu Ala Ala Tyr Ile Ala Lys Cys Arg Thr Gln Leu Leu Arg Asp Leu 260 265 270
- Gly Ser Cys Met Ser Pro Phe Asn Ala Phe Leu Phe Ile Leu Gly Leu 275 280 285
- Glu Thr Leu Ser Leu Arg Met Lys Lys His Cys Glu Asn Ala Leu Lys 290 295 300
- Ile Val Glu Phe Leu Lys Ser His Pro Ala Val Ser Trp Val Asn Tyr 305 310 315 320
- Pro Ile Ala Glu Gly Asn Lys Thr Arg Glu Asn Ala Leu Lys Tyr Leu 325 330 335
- Lys Glu Gly Tyr Gly Ala Ile Val Thr Phe Gly Val Lys Gly Gly Lys 340 345 350
- Glu Ala Gly Lys Lys Phe Ile Asp Ser Leu Thr Leu Ile Ser His Leu 355 360 365
- Ala Asn Ile Gly Asp Ala Arg Thr Leu Ala Ile His Pro Ala Ser Thr 370 380
- Thr His Gln Gln Leu Thr Glu Glu Glu Gln Leu Lys Thr Gly Val Thr 385 390 395 400
- Pro Asp Met Ile Arg Leu Ser Val Gly Ile Glu Asp Val Glu Asp Ile

405

410

415

Ile Ala Asp Leu Asp Gln Ala Leu Arg Lys Ser Gln Glu Gly
420 425 430

<210> 31

<211> 1314

<212> DNA

<213> Streptococcus mutans

<220>

<221> CDS

<400> 31

130

<222> (1)..(1314)

<223>

atg Met 1	gag Glu	cta Leu	att Ile	aat Asn 5	aat Asn	aaa Lys	agg Arg	aga Arg	gct Ala 10	tcc Ser	atg Met	act Thr	cga Arg	gaa Glu 15	ttt Phe		48
tct Ser	ttt Phe	gaa Glu	act Thr 20	tta Leu	caa Gln	tta Leu	cat His	gcg Ala 25	gga Gly	caa Gln	agt Ser	gtt Val	gat Asp 30	ect Pro	aca Thr		96
aca Thr	aaa Lys	tcg Ser 35	cgt Arg	gca Ala	gta Val	cca Pro	atc Ile 40	tat Tyr	cag Gln	acg Thr	act Thr	tcc Ser 45	tat Tyr	gtg Val	ttt Phe	:	144
aat Asn	gat Asp 50	gca Ala	caa Gln	gat Asp	gct Ala	gaa Glu 55	gat Asp	tct Ser	ttt Phe	gca Ala	ctt Leu 60	cgt Arg	aca Thr	ccc Pro	Gly ggc	:	192
aat Asn 65	att Ile	tat Tyr	acg Thr	cgg Arg	atc Ile 70	act Thr	aat Asn	ccg Pro	act Thr	aca Thr 75	gcc Ala	gtt Val	ttt Phe	gaa Glu	gaa Glu 80		240
cgg Arg	atg Met	gcc Ala	gct Ala	ctt Leu 85	gaa Glu	ggt Gly	ggt Gly	gtc Val	ggt Gly 90	gca Ala	ctg Leu	gca Ala	aca Thr	gct Ala 95	tct Ser		288
ggt Gly	atg Met	gca Ala	gca Ala 100	gta Val	act Thr	tat Tyr	att Ile	gcc Ala 105	ttg Leu	gct Ala	ctt Leu	gct Ala	cat His 110	Ala	Gly		336
gat Asp	cat His	att Ile 115	gtg Val	tca Ser	gca Ala	gcg Ala	aca Thr 120	gtt Val	tac Tyr	ggt Gly	ggc Gly	act Thr 125	ttt Phe	aat Asn	ctt Leu		384
ctt Leu	aag Lys	gaa Glu	act Thr	tta Leu	cct Pro	cgc Arg	tat Tyr	ggc Gly	att Ile	act Thr	aca Thr	agt Ser	ttt Phe	gtt Val	gat Asp		432

135

140

									,	<i>02/13</i> (
gtt Val 145	. Ala	: aat : Asr	tto Phe	e get	t gaa a Gli 150	ı Ile	gaa Glu	gcg Ala	g gct a Ala	att Ile 155	e Thi	a gad r Asp	aac Lys	act Thr	aag Lys 160	480
ttt Phe	att : Ile	ato : Ile	gct Ala	gaa Glu 169	ı Thi	g tta C Lev	gga Gly	aat Asr	cet Pro 170	Lev	gga u Gly	a aat y Asr	ato Ile	gct Ala 175	gat Asp	528
ctt Leu	gaa Glu	aaa Lys	tta Lev 180	ı Ala	gag a Glu	g att	gcc Ala	cat His 185	Arg	cat His	get Ala	att a Ile	Pro	Lev	gtt Val	576
att Ile	gat Asp	aat Asn 195	Thr	ttt Phe	ggt Gly	act Thr	Pro 200	Tyr	ttg Leu	ctt Leu	: aat I Asr	gto Val 205	Phe	tct Ser	tac Tyr	624
ggt Gly	gtt Val 210	qaA	att Ile	gct Ala	gtt Val	cat His 215	Ser	gcc Ala	act Thr	aaa Lys	ttt Phe 220	: Ile	ggt	gga Gly	cat His	672
Gly 225	Thr	Ser	Ile	Gly	Gly 230	Val	Ile	Val	Asp	Ser 235	Gly	Asn	Phe	Asp	tgg Trp 240	720
Glu	Lys	Ser	Gly	Lys 245	Phe	Pro	Gln	Phe	Val 250	Glu	Pro	gat Asp	Pro	Ser 255	Туг	768
His	Ąap	Ile	Ser 260	Туг	Thr	Arg	Asp	Ile 265	Gly	Lys	Ala		Phe 270	Val	Thr	816
Ala	Val	Arg 275	Thr	Gln	Leu	Leu	Arg 280	Asp	Thr	Gly	Ala	285	Leu	Ser	Pro	864
Phe	Asn 290	Ala	Phe	Leu	Leu	Leu 295	Gln	Gly	Leu	Glu	Thr 300		Ser	Leu	Arg	912
Val 305	Glu	Arg	His	Val	Glu 310	Asn	Ala	Lys	Lys	Ile 315	Ala	tac Tyr	Tyr	Leu	Glu 320	960
Asn	His	Pro	Lys	Val 325	Thr	Lys	Val	Asn	Tyr 330	Ala	Ser	ttg Leu	Pro	Ser 335	Ser	1008
Pro	Tyr	Tyr	Asp 340	Leu	Ala	Gln	Lys	Tyr 345	Leu	Pro	Lys	gga Gly	Ala 350	Ser	Ser	1056
Ile	Phe	Thr 355	Phe	Asn	Val	Ala	Gly 360	Ser	Ala	Lys	Ala	gct Ala 365	Arg	Glu	Val	1104
Ile	Asp 370	Ser	Leu	Glu	Ile	Phe 375	Ser	Asp	Leu	Ala	Asn 380	gtt Val	Ala	Asp	Ala	1152
aaa Lys	cca Ser	cca Leu	gtt Val	gtt Val	Cat His	ecg (gca Ala	aca Thr	acc Thr	act Thr	cat His	ggt Gly	caa Gln	atg Met	act Thr	1200

CT/EP2003/009453

WO 2004/024933 63/130 385 390 395 400 gaa gaa gat cta cga gct tgc ggt att gaa cct gag caa atc cgt gtt 1248 Glu Glu Asp Leu Arg Ala Cys Gly Ile Glu Pro Glu Gln Ile Arg Val 405 410 tot att ggt ttg gaa aat got gat gac tta atc gaa gat ttg cgc cta 1296 Ser Ile Gly Leu Glu Asn Ala Asp Asp Leu Ile Glu Asp Leu Arg Leu 425 420 1314 gca ctt gaa aaa ata taa Ala Leu Glu Lys Ile 435 <210> 32 <211> 437 <212> PRT <213> Streptococcus mutans 32 Met Glu Leu Ile Asn Asn Lys Arg Arg Ala Ser Met Thr Arg Glu Phe

<400>

Ser Phe Glu Thr Leu Gln Leu His Ala Gly Gln Ser Val Asp Pro Thr 20

Thr Lys Ser Arg Ala Val Pro Ile Tyr Gln Thr Thr Ser Tyr Val Phe 40 45 35

Asn Asp Ala Gln Asp Ala Glu Asp Ser Phe Ala Leu Arg Thr Pro Gly 50

Asn Ile Tyr Thr Arg Ile Thr Asn Pro Thr Thr Ala Val Phe Glu Glu 70 75 80 65

Arg Met Ala Ala Leu Glu Gly Gly Val Gly Ala Leu Ala Thr Ala Ser 85 90

Gly Met Ala Ala Val Thr Tyr Ile Ala Leu Ala Leu Ala His Ala Gly 100

Asp His Ile Val Ser Ala Ala Thr Val Tyr Gly Gly Thr Phe Asn Leu 115 120 125

Leu Lys Glu Thr Leu Pro Arg Tyr Gly Ile Thr Thr Ser Phe Val Asp 130 135

Val Ala Asn Phe Ala Glu Ile Glu Ala Ala Ile Thr Asp Lys Thr Lys 145 150 155 160

Phe Ile Ile Ala Glu Thr Leu Gly Asn Pro Leu Gly Asn Ile Ala Asp 165 170 175

Leu Glu Lys Leu Ala Glu Ile Ala His Arg His Ala Ile Pro Leu Val 180 185 190

Ile Asp Asn Thr Phe Gly Thr Pro Tyr Leu Leu Asn Val Phe Ser Tyr
195 200 205

Gly Val Asp Ile Ala Val His Ser Ala Thr Lys Phe Ile Gly Gly His 210 215 220

Gly Thr Ser Ile Gly Gly Val Ile Val Asp Ser Gly Asn Phe Asp Trp 225 230 235 240

Glu Lys Ser Gly Lys Phe Pro Gln Phe Val Glu Pro Asp Pro Ser Tyr 245 250 255

His Asp Ile Ser Tyr Thr Arg Asp Ile Gly Lys Ala Ala Phe Val Thr 260 265 270

Ala Val Arg Thr Gln Leu Leu Arg Asp Thr Gly Ala Cys Leu Ser Pro 275 280 285

Phe Asn Ala Phe Leu Leu Gln Gly Leu Glu Thr Leu Ser Leu Arg 290 295 300

Val Glu Arg His Val Glu Asn Ala Lys Lys Ile Ala Tyr Tyr Leu Glu 305 310 315 320

Asn His Pro Lys Val Thr Lys Val Asn Tyr Ala Ser Leu Pro Ser Ser 325 330 335

Pro Tyr Tyr Asp Leu Ala Gln Lys Tyr Leu Pro Lys Gly Ala Ser Ser 340 345 350

Ile Phe Thr Phe Asn Val Ala Gly Ser Ala Lys Ala Ala Arg Glu Val 355 360 365

Ile Asp Ser Leu Glu Ile Phe Ser Asp Leu Ala Asn Val Ala Asp Ala 370 375 . 380

Lys Ser Leu Val Val His Pro Ala Thr Thr His Gly Gln Met Thr 385 390 395 400

Glu Glu Asp Leu Arg Ala Cys Gly Ile Glu Pro Glu Gln Ile Arg Val 410 405

Ser Ile Gly Leu Glu Asn Ala Asp Asp Leu Ile Glu Asp Leu Arg Leu 425 420

Ala Leu Glu Lys Ile 435

<210> 33

<211> 1431

<212> DNA

<213> Burkholderia cepacia

<220>

<221> CDS

<400> 33

<222> (1)..(1431)

<223>

<400)> 3	13														
ttg Leu 1	aag Lys	cgc Arg	egc Arg	acg Thr 5	ccg Pro	gtg Val	ata Ile	gga Gly	tgg Trp 10	ccg Pro	cca Pro	ctt Leu	tca Ser	ect Pro 15	ttc Phe	48
gcg Ala	agg Arg	ccg Pro	tcc Ser 20	gtg Val	gcc Ala	ccg Pro	ccg Pro	ccc Pro 25	agc Ser	atg Met	tcc Ser	gcg Ala	aac Asn 30	cgt Arg	ttc Phe	96
gac Asp	acg Thr	ctt Leu 35	gcg Ala	ctg Leu _,	cac His	gcc Ala	ggc Gly 40	gct Ala	gct Ala	ccc Pro	gac Asp	ccg Pro 45	acc Thr	acc Thr	Gly	144
gcg Ala	cgc Arg 50	gcc Ala	acg Thr	ccg Pro	att Ile	tac Tyr 55	cag Gln	act Thr	acc Thr	tcg Ser	ttt Phe 60	tcg Ser	ttc Phe	ege Arg	gat Asp	192
tcc Ser 65	gac Asp	cac His	gcc Ala	gcg Ala	gcg Ala 70	ctc Leu	ttc Phe	aat Asn	atg Met	gag Glu 75	cgc Arg	gcc Ala	ggt Gly	cat His	gtt Val 80	240
tat Tyr	tcg Ser	cgc Arg	att Ile	tcg Ser 85	aac Asn	ccg Pro	acc Thr	gtg Val	gcc Ala 90	gtg Val	ttc Phe	gag Glu	gaa Glu	cgc Arg 95	gtg Val	288
gcc Ala	gcg Ala	ctg Leu	gaa Glu 100	aac Asn	ggc ggc	gcg Ala	ggc Gly	gcg Ala 105	atc Ile	ggc Gly	acg Thr	gca Ala	agc Ser 110	ggc	cag Gln	336
aca	acc	ctg	cat	ctg	gcc	att	gcc	acg	ctg	atg	ggc	gcg	ggt	tcg	cat	384

PCT/EP2003/009453

										00/1	30					
Ala	Ala	11		s Le	eu Al	la I	le Al		ır Le	eu Me	et Gl	y Ala 12	-	y Sez	His	
atc Ile	gto Val	. Al	c tc a Se	c ag r Se	gc go er Al	la Le	g ta eu Ty 15	ac gg /r Gl	gc gg Ly Gl	gc to ly Se	g ca er Hi 14	s Ası	t cto n Le	g cto 1 Lei	g cac 1 His	432
tac Tyr 145	Thr	tt. Le	g cg u Ar	g cg g Ar	g tt g Ph 15	e G]	jc at .y Il	c ga .e G]	ig ac lu Th	g ac ir Th 15	r Ph	c gto e Val	c aaa l Lys	a ccc	ggc Gly 160	480
gac Asp	ctg Leu	ga Asj	c gc p Al	g tg a Tr 16	p Ar	g Al	e go a Al	g ct a Le	g cg u Ar 17	g Pr	a aa O As:	c acq	g cgg	g ctg J Lev 175	g ctg Leu	528
ttc Phe	Gly	gaq Glu	g acg u Thi 180	r Le	c gg u Gl	c aa y As	t cc n Pr	g gg o Gl 18	у Ье	c ga u As	c gt p Va	g cto l Lei	gat 1 Asp 190	Ile	gcc Ala	576
Ala	Val	Ala 195	ı Glı	ı Il	e Al	a Hi	s Gl 20	u Hi O	s Ar	g Va	l Pro	205	ı Lev	. Val	gac Asp	624
Ser	Thr 210	Phe	: Thr	Th:	r Pr	21:	r Le	u Le	u Ly:	s Pr	0 Phe 220	e Glu O	ı His	Gly	gcg Ala	672
gac Asp 225	ttc Phe	gtc Val	tat Tyr	cac His	s Sei 230	. Ala	a Th	c aa r Ly:	a tto s Pho	c cto E Len 23!	a Glž	ggc Gly	cac His	ggc	acg Thr 240	720
Thr	Ile	Gly	Gly	Va]	L Let	ı Val	l As <u>ı</u>	Gly	y Gly 250	Thi	r Phe	Asp	Phe	Asp 255	gcc Ala	768
tcg Ser	ejà aaa	cgc Arg	ttc Phe 260	Pro	gaa Glu	tto Phe	acc Thr	gaa Glu 265	ı Pro	tac Tyr	gac Asp	ggc Gly	Phe 270	His	Gly	816
atg Met	gtg Val	ttc Phe 275	gcc Ala	gag Glu	gag Glu	ago Ser	Thr 280	· Val	geg Ala	rcg Pro	y ttt Phe	ctg Leu 285	Leu	cga Arg	gca Ala	864
Arg .	ege Arg 290	gag Glu	gjå aaa	ctg Leu	cgc Arg	gac Asp 295	Phe	ggo	gca Ala	tgo Cys	ctg Leu 300		ccg Pro	caa Gln	gcc Ala	912
gca Ala 305	tgg Trp	caa Gln	ctg Leu	ctg Leu	caa Gln 310	Gly	atc Ile	gag Glu	acg Thr	Ctg Leu 315	Pro	ttg Leu	cga Arg	atg Met	gaa Glu 320	960
cgg (Arg l	cac (His	gtt Val	gcc Ala	aac Asn 325	acg Thr	cgc Arg	cgg Arg	gtg Val	gtc Val 330	gag Glu	ttc Phe	ctc Leu	gcc Ala	ggt Gly 335	cac His	1008
gcc g Ala A	lcg g	/al	999 Gly 340	gcc Ala	gtc Val	gcc Ala	tat Tyr	ccg Pro 345	gaa Glu	ctg Leu	ccc Pro	acg Thr	cac His 350	ccc Pro	gac Asp	1056
cac g His A	la I	etc eu i 55	gcg Ala :	aag Lys	cgg Arg	ctg Leu	ctg Leu 360	ccg Pro	cgc Arg	ggc Gly	gcc Ala	ggt Gly 365	gcc Ala	gtg Val	ttc Phe	1104

CT/EP2003/009453

•	W	O 200	4/024	933					67.	/130					СТИЕР	2003/0094
age Sei	ttc Phe 370	Asp	ctg Leu	cgc Arg	ggc Gly	gac Asp 375	cgc Arg	gcc Ala	gcc Ala	gga Gly	cgc Arg 380	agc Ser	ttt Phe	atc Ile	gaa Glu	1152
gc Ala 38	g ctc a Leu 5	tcg Ser	ctg Leu	ttc Phe	tcg Ser 390	cat His	ctc Leu	gcg Ala	aac Asn	gtg Val 395	ggc	gac Asp	gcg Ala	cgc Arg	tcg Ser 400	1200
ct:	gtg ı Val	atc Ile	cat His	ccc Pro 405	gcc Ala	tcg Ser	acc Thr	acc Thr	cac His 410	ttt Phe	cgc Arg	atg Met	gac Asp	gcc Ala 415	gct Ala	1248
gc Ala	c ctt a Leu	gcc Ala	gcg Ala 420	gcc Ala	ggt Gly	atc Ile	gcc Ala	gaa Glu 425	ggc	acg Thr	atc Ile	cgc Arg	ctc Leu 430	tcg Ser	atc Ile	1296
Gl	c ctc y Leu	Glu 435	Asp	Pro	Asp	Asp	Leu 440	Ile	Asp	Asp	Leu	Lys 445	Arg	Ala	Leu	1344
Ly	g gcc s Ala 450	Ala	Gln	Lys	Ala	Gly 455	Ser	Ser	Ser	Ala	Ala 460	His	Gly	ggc	gca Ala	1392
tc Se 46	c ggc r Gly 5	agt Ser	gcc Ala	gcc Ala	caa Gln 470	ccc Pro	ege Arg	Pro	gag Glu	tcc Ser 475	gca Ala	tga				1431
<2	10>	34														
<2	11>	476														
<2	12>	PRT														
<2	13>	Burk	hold	eria	cepa	acia										
	00>	34														
1	u Lys			5	٠.				10					15		
Al	a Arg	Pro	Ser 20	Val	Ala	Pro	Pro	Pro 25	Ser	Met	Ser	Ala	Asn 30	Arg	Phe	

Asp Thr Leu Ala Leu His Ala Gly Ala Ala Pro Asp Pro Thr Thr Gly 45 35 40

Ala Arg Ala Thr Pro Ile Tyr Gln Thr Thr Ser Phe Ser Phe Arg Asp 55 50

Ser Asp His Ala Ala Ala Leu Phe Asn Met Glu Arg Ala Gly His Val 80

Tyr Ser Arg Ile Ser Asn Pro Thr Val Ala Val Phe Glu Glu Arg Val **90**

Ala Ala Leu Glu Asn Gly Ala Gly Ala Ile Gly Thr Ala Ser Gly Gln 100 105

Ala Ala Leu His Leu Ala Ile Ala Thr Leu Met Gly Ala Gly Ser His 115 120

Ile Val Ala Ser Ser Ala Leu Tyr Gly Gly Ser His Asn Leu Leu His 130

Tyr Thr Leu Arg Arg Phe Gly Ile Glu Thr Thr Phe Val Lys Pro Gly 145 160

Asp Leu Asp Ala Trp Arg Ala Ala Leu Arg Pro Asn Thr Arg Leu Leu 165

Phe Gly Glu Thr Leu Gly Asn Pro Gly Leu Asp Val Leu Asp Ile Ala 185

Ala Val Ala Gln Ile Ala His Glu His Arg Val Pro Leu Leu Val Asp

Ser Thr Phe Thr Thr Pro Tyr Leu Leu Lys Pro Phe Glu His Gly Ala 210 215

Asp Phe Val Tyr His Ser Ala Thr Lys Phe Leu Gly Gly His Gly Thr 225

Thr Ile Gly Gly Val Leu Val Asp Gly Gly Thr Phe Asp Phe Asp Ala 250

Ser Gly Arg Phe Pro Glu Phe Thr Glu Pro Tyr Asp Gly Phe His Gly 260 .

Met Val Phe Ala Glu Glu Ser Thr Val Ala Pro Phe Leu Leu Arg Ala 275 280

Arg Arg Glu Gly Leu Arg Asp Phe Gly Ala Cys Leu His Pro Gln Ala

Ala Trp Gln Leu Leu Gln Gly Ile Glu Thr Leu Pro Leu Arg Met Glu 315

Arg His Val Ala Asn Thr Arg Arg Val Val Glu Phe Leu Ala Gly His 330

Ala Ala Val Gly Ala Val Ala Tyr Pro Glu Leu Pro Thr His Pro Asp

CT/EP2003/009453

69/130

340

345

350

His Ala Leu Ala Lys Arg Leu Leu Pro Arg Gly Ala Gly Ala Val Phe 355 360 365

Ser Phe Asp Leu Arg Gly Asp Arg Ala Ala Gly Arg Ser Phe Ile Glu 370 375 380

Ala Leu Ser Leu Phe Ser His Leu Ala Asn Val Gly Asp Ala Arg Ser 385 390 395 400

Leu Val Ile His Pro Ala Ser Thr Thr His Phe Arg Met Asp Ala Ala 405 410 415

Ala Leu Ala Ala Gly Ile Ala Glu Gly Thr Ile Arg Leu Ser Ile
420 425 430

Gly Leu Glu Asp Pro Asp Asp Leu Ile Asp Asp Leu Lys Arg Ala Leu 435 440 445

Lys Ala Ala Gln Lys Ala Gly Ser Ser Ala Ala His Gly Gly Ala 450 455 460

Ser Gly Ser Ala Ala Gln Pro Arg Pro Glu Ser Ala 465 470 475

<210> 35

<211>. 1722

<212> DNA

<213> Deinococcus radiodurans

<220>

<221> CDS

<222> (1)..(1722)

<223>

<400> 35
gtg gcc ttc ccg tgc ggt cag gcg ggg aac aag ata aca agg ccg ggc 48
Val Ala Phe Pro Cys Gly Gln Ala Gly Asn Lys Ile Thr Arg Pro Gly
1 5 10 15

caa tgt gtc aac ggg ggc agg gca cgc tca gcc ccg tct aag ttt cgc Gln Cys Val Asn Gly Gly Arg Ala Arg Ser Ala Pro Ser Lys Phe Arg

96

_ • •																
Lei	ı ga	c cc p Pr 35	o Le	a cc u Pr	c gc	c tc a Se	c gc r Al 40	a Le	a cti u Lei	t tti	t gaq e Glu	g gag ı Glu 45	ctc Leu	e ccg	cag Gln	144
cag Glr	g gag n Gli 50	g cc u Pr	a cc o Pr	c ac o Th	t to r Se	a ga r Gl 55	u Ar	c cci g Pro	g aga	a gad g Asp	c ctg Lev 60	g gct 1 Ala	cga Arg	cga Arg	cgg Arg	192
ego Arg 65	g Gl	c aa Y As:	c cg n Ar	g ac g Th	c cc r Pr 70	a tc o Se	a cg r Ar	t cad	c ggt s Gly	gco Ala 75	c aag a Lys	g gcc B Ala	ago Ser	ccc Pro	ctg Leu 80	240
ggo Gly	gto Val	g to: l Se:	a ac	g at r Me 85	g ag t Se	c cg r Ar	c cg	g geg	993 3 Gly 90	e cca / Pro	a ago Ser	ggg Gly	aag Lys	gcc Ala 95	acg Thr	288
cgg Arg	ato Met	g acg	g ata r Ile 100	e Ph	c aa e Ly	g tgi s Cyi	t cc	tto Phe 105	e Ser	att : Ile	cac His	agc Ser	agg Arg 110	Gln	Gly 999	336
gag Glu	tgo Cys	cgt Arg 115	j Asj	tgg Tr	g cgo	c ccc	c cga Arg	g Thr	tgo Cys	ttc Phe	ccc Pro	cga Arg 125	Gly	gcc	gcc Ala	384
acc Thr	atg Met 130	Thr	gat Asp	t acc	c aaa c Lys	a cag Glr 135	Pro	g cag o Gln	rct Pro	ctg Leu	cac His 140	Phe	gag Glu	acc Thr	ttg Leu	432
cag Gln 145	gtg Val	Cac His	gco Ala	. gly	a caa / Glr 150	ı Arg	e cco	gac Asp	ccc Pro	gtg Val 155	Thr	gga Gly	gcg Ala	cag Gln	caa Gln 160	480
acg Thr	ccc Pro	ato Ile	tac Tyr	gcc Ala 165	Thr	aac Asn	tcc Ser	tac Tyr	gtg Val 170	Phe	gag Glu	tcg Ser	ccc Pro	gag Glu 175	cac His	528
gcc Ala	gcc Ala	gac Asp	Ctc Leu 180	Phe	Gly 999	ctg Leu	cgg Arg	caa Gln 185	Phe	ggc	aac Asn	atc Ile	tac Tyr 190	agc Ser	cgc Arg	576
atc Ile	atg Met	aac Asn 195	ccc Pro	acc Thr	aac Asn	gac Asp	gtg Val 200	ttc Phe	gag Glu	cag Gln	cgg Arg	gtg Val 205	gcc Ala	gcc Ala	ct <i>c</i> Leu	624
gaa Glu	999 Gly 210	ggc Gly	gtg Val	ejy aaa	gcg Ala	ctg Leu 215	tcg Ser	gtg Val	tcg Ser	agc Ser	999 Gly 220	cac His	gcg Ala	GJÅ aaa	cag Gln	672
ctc Leu 225	gtg Val	aca Thr	ttg Leu	ctc Leu	acg Thr 230	ctg Leu	gcg Ala	cag Gln	gcg Ala	gga Gly 235	gac Asp	aac Asn	atc Ile	gtc Val	tcg Ser 240	720
tcg Ser	ccc Pro	aac Asn	ctg Leu	tac Tyr 245	ggc Gly	ggc Gly	acc Thr	gtc Val	aac Asn 250	cag Gln	ttc Phe	cgc Arg	gtc Val	acg Thr 255	ctc Leu	768
aag Lys .	cgg Arg	ctc Leu	ggc Gly 260	atc Ile	gag Glu	gtg Val	cgg Arg	ttt Phe 265	acc Thr	agc Ser	aaa Lys	Asp	gag Glu 270	cgc Arg	ccc Pro	816
gag (gaa Glu	ttc Phe	gcc Ala	gcg Ala	ctg Leu	atc Ile	gac Asp	gag Glu	cgc Arg	acg Thr	cgg Arg	gcc Ala	gta Val	tat Tyr	ctg Leu	864

WO 2004/024933

71/130

CT/EP2003/009453

•																
		275					280					285				
gaa Glu	acc Thr 290	atc Ile	ggc Gly	aac Asn	ccg Pro	gcg Ala 295	ctg Leu	aac Asn	att Ile	ccc Pro	gat Asp 300	ttc Phe	gag Glu	ggc	gtg Val	912
gcg Ala 305	aaa Lys	gtc Val	gcg Ala	cac His	gag Glu 310	cac His	ggc Gly	gtc Val	gcg Ala	gtg Val 315	gtc Val	gtg Val	gac Asp	aac Asn	acc Thr 320	960
ttc Phe	GJA 333	gcc Ala	ggc	gga Gly 325	tac Tyr	tac Tyr	tgc Cys	cag Gln	ccg Pro 330	ctg Leu	Arg	cac His	ggc Gly	gcc Ala 335	aac Asn	1008
atc Ile	gtg Val	ctg Leu	cac His 340	tcg Ser	gcg Ala	agc Ser	aag Lys	tgg Trp 345	atc Ile	ggc Gly	gjå aaa	cac His	ggc Gly 350	aac Asn	ggc Gly	1056
atc Ile	ggc Gly	355 355	gtc Val	atc Ile	gtg Val	gac Asp	ggc 360	gjà aaa	aac Asn	ttc Phe	gac Asp	tgg Trp 365	ggc Gly	agc Ser	GJÅ aaa	1104
cgg Arg	tat Tyr 370	ccg Pro	ctg Leu	atg Met	acc Thr	gag Glu 375	ccc Pro	tcg Ser	ccg Pro	agt Ser	tat Tyr 380	cac His	Gly Ggg	ctg Leu	aag Lys	1152
Phe 385	Trp	Glu	Thr	Phe	Gly 390	Glu	Gly	Asn	Gly	Leu 395	Gly	ctg Leu	Pro	Asn	11e 400	1200
Ala	Phe	Ile	Thr	Arg 405	Ala	Arg	Thr	Glu	Gly 410	Leu	Arg	gac Asp	Leu	Gly 415	Thr	1248
Thr	Leu	Ala	Pro 420	Gln	Gln	Ala	Trp	Gln 425	Phe	Leu	Gln	Gly	Leu 430	Glu	acc Thr	1296
ctg Leu	agc Ser	ctg Leu 435	ege Arg	gcc Ala	gag Glu	cgc Arg	cac His 440	gcc Ala	gag Glu	aac Asn	acc Thr	ctg Leu 445	Ala	ctg Leu	gcg	1344
cac His	tgg Trp 450	ctc Leu	atc Ile	agc Ser	cac His	ccg Pro 455	gac Asp	gtg Val	aag Lys	cag Gln	gtc Val 460	Thr	tac Tyr	Pro	ggc	1392
Leu 465	Ser	Asn	His	Pro	His 470	Tyr	Asp	Arg	Ala	Gln 475	Thr	Tyr	Leu	. Pro	egc Arg 480	1440
Gly	Ala	Gly	Ala	Val 485	Leu	Thr	Phe	Glu	Leu 490	Arg	Gly	Gly	Arg	495		1488
ggc	gaa Glu	gcg Ala	ttt Phe 500	att Ile	cgc Arg	tcg Ser	gtc Val	aag Lys 505	ctc Leu	gcg Ala	cag Gln	cac His	yal Val 510	Ala	aac Asn	1536
gtg Val	ggc Gly	gac Asp 515	acc Thr	cgc Arg	acg Thr	ctg Leu	gtc Val 520	att Ile	cat His	ccg Pro	gcg	agc Ser 525	Thr	acc Thr	cac His	1584
agc	cag	ctc	gac	gag	gtg	acg	cag	acg	aac	gcc	9 99	gto	acg	GGG	ggc	1632

PCT/EP2003/009453

Ser	${\tt Gln}$	Leu	Asp	Glu	Val	Thr	Gln	Thr	Asn	Ala	Gly	Val	Thr	Pro	Glv
	530					535					540				2

ctc atc cgg gtg tcg gtg ggc atc gag cac gta gac gac atc cgc gag
Leu Ile Arg Val Ser Val Gly Ile Glu His Val Asp Asp Ile Arg Glu
545 550 560

gac ttc gcg cag gcc ctg gcg agc gct ggg gag cgg gcg tga 1722
Asp Phe Ala Gln Ala Leu Ala Ser Ala Gly Glu Arg Ala
565 570

<210> 36

<211> 573

<212> PRT

<213> Deinococcus radiodurans

<400> 36

Val Ala Phe Pro Cys Gly Gln Ala Gly Asn Lys Ile Thr Arg Pro Gly
1 5 10 15

Gln Cys Val Asn Gly Gly Arg Ala Arg Ser Ala Pro Ser Lys Phe Arg 20 25 30

Leu Asp Pro Leu Pro Ala Ser Ala Leu Leu Phe Glu Glu Leu Pro Gln 35 40 45

Gln Glu Pro Pro Thr Ser Glu Arg Pro Arg Asp Leu Ala Arg Arg Arg 50 55 60

Arg Gly Asn Arg Thr Pro Ser Arg His Gly Ala Lys Ala Ser Pro Leu 65 70 75 80

Gly Val Ser Thr Met Ser Arg Arg Ala Gly Pro Ser Gly Lys Ala Thr 85 90 95

Arg Met Thr Ile Phe Lys Cys Pro Phe Ser Ile His Ser Arg Gln Gly
100 105 110

Glu Cys Arg Asp Trp Arg Pro Arg Thr Cys Phe Pro Arg Gly Ala Ala 115 120 125

Thr Met Thr Asp Thr Lys Gln Pro Gln Pro Leu His Phe Glu Thr Leu 130 135 140

Gln Val His Ala Gly Gln Arg Pro Asp Pro Val Thr Gly Ala Gln Gln 145 150 155 160

PCT/EP2003/009453 73/130

Thr Pro Ile Tyr Ala Thr Asn Ser Tyr Val Phe Glu Ser Pro Glu His

Ala Ala Asp Leu Phe Gly Leu Arg Gln Phe Gly Asn Ile Tyr Ser Arg

Ile Met Asn Pro Thr Asn Asp Val Phe Glu Gln Arg Val Ala Ala Leu

Glu Gly Gly Val Gly Ala Leu Ser Val Ser Ser Gly His Ala Gly Gln

Leu Val Thr Leu Leu Thr Leu Ala Gln Ala Gly Asp Asn Ile Val Ser

Ser Pro Asn Leu Tyr Gly Gly Thr Val Asn Gln Phe Arg Val Thr Leu

Lys Arg Leu Gly Ile Glu Val Arg Phe Thr Ser Lys Asp Glu Arg Pro

Glu Glu Phe Ala Ala Leu Ile Asp Glu Arg Thr Arg Ala Val Tyr Leu

Glu Thr Ile Gly Asn Pro Ala Leu Asn Ile Pro Asp Phe Glu Gly Val

Ala Lys Val Ala His Glu His Gly Val Ala Val Val Asp Asn Thr

Phe Gly Ala Gly Gly Tyr Tyr Cys Gln Pro Leu Arg His Gly Ala Asn

Ile Val Leu His Ser Ala Ser Lys Trp Ile Gly Gly His Gly Asn Gly

Ile Gly Gly Val Ile Val Asp Gly Gly Asn Phe Asp Trp Gly Ser Gly

Arg Tyr Pro Leu Met Thr Glu Pro Ser Pro Ser Tyr His Gly Leu Lys

Phe Trp Glu Thr Phe Gly Glu Gly Asn Gly Leu Gly Leu Pro Asn Ile

Ala Phe Ile Thr Arg Ala Arg Thr Glu Gly Leu Arg Asp Leu Gly Thr

Thr Leu Ala Pro Gln Gln Ala Trp Gln Phe Leu Gln Gly Leu Glu Thr 420 425

Leu Ser Leu Arg Ala Glu Arg His Ala Glu Asn Thr Leu Ala Leu Ala 435 440

His Trp Leu Ile Ser His Pro Asp Val Lys Gln Val Thr Tyr Pro Gly 450 455

Leu Ser Asn His Pro His Tyr Asp Arg Ala Gln Thr Tyr Leu Pro Arg 475

Gly Ala Gly Ala Val Leu Thr Phe Glu Leu Arg Gly Gly Arg Ala Ala

Gly Glu Ala Phe Ile Arg Ser Val Lys Leu Ala Gln His Val Ala Asn 505

Val Gly Asp Thr Arg Thr Leu Val Ile His Pro Ala Ser Thr Thr His 515 520

Ser Gln Leu Asp Glu Val Thr Gln Thr Asn Ala Gly Val Thr Pro Gly

Leu Ile Arg Val Ser Val Gly Ile Glu His Val Asp Asp Ile Arg Glu 545

Asp Phe Ala Gln Ala Leu Ala Ser Ala Gly Glu Arg Ala

<210> 37

1284 <211>

<212> DNA

<213> Rhodobacter capsulatus

<220>

CDS <221>

(1)..(1284)<222>

<223>

CT/EP2003/009453

75/130

•																	
atg Met 1	acc Thr	gac Asp	cag Gln	gcc Ala 5	ttt Phe	gac Asp	acg Thr	ctg Leu	caa Gln 10	att Ile	cac His	gcg Ala	Gly ggc	gcc Ala 15	gaa Glu		48
ccc Pro	gat Asp	ccc Pro	gcg Ala 20	acg Thr	ggc	gcg Ala	cgg Arg	cag Gln 25	gtg Val	ccg Pro	att Ile	tac Tyr	cag Gln 30	acc Thr	acc Thr	· · · · · ·	96
tcc Ser	tat Tyr	gtc Val 35	ttc Phe	aag Lys	gac Asp	gcc Ala	gac Asp 40	cat His	gcc Ala	gcg Ala	cgc Arg	ctg Leu 45	ttc Phe	gjå aaa	ctg Leu		144
cag Gln	gag Glu 50	gtg Val	ggc Gly	tat Tyr	atc Ile	tat Tyr 55	tcc Ser	cgc Arg	ctg Leu	acc Thr	aac Asn 60	ccg Pro	acc Thr	gtt Val	tcg Ser		192
gca Ala 65	ctg Leu	gcc Ala	gcc Ala	cgc Arg	gtt Val 70	gcg Ala	gcg Ala	ctt Leu	gaa Glu	ggc Gly 75	ggc Gly	gtg Val	ggc Gly	gcg Ala	gtc Val 80		240
tgc Cys	tgc Cys	tcg Ser	tcc Ser	ggc Gly 85	cat His	gcg Ala	gcg Ala	cag Gln	atc Ile 90	atg Met	gcg Ala	ctg Leu	ttt Phe	ccg Pro 95	ctg Leu		288
atg Met	Gly 999	ccg Pro	100 GJÀ 333	ctg Leu	aac Asn	atc Ile	gtc Val	gcc Ala 105	tcg Ser	acc Thr	cgg Arg	ctt Leu	tac Tyr 110	ggc	ggc	٠.	336
acg Thr	atc Ile	acc Thr 115	cag Gln	ttc Phe	agc Ser	cag Gln	acc Thr 120	atc Ile	aaa Lys	cgc Arg	ttc Phe	ggc Gly 125	tgg Trp	tcc Ser	tgc Cys		384
Thr	Phe 130	Val	Asp	Phe	qaA 7	Asp 135	Leu	Ala		Leu	Glu 140	Ala	Ala	Val	Asp		432
gac Asp 145	aac Asn	acc Thr	cgg Arg	gcg Ala	atc Ile 150	ttt Phe	tgc Cys	gaa Glu	tcg Ser	atc Ile 155	tcg Ser	aac Asn	ccg Pro	Gly	ggc Gly 160		480
Tyr	Ile	Thr	Asp	Leu 165	Pro	Ala	Val	Ala	Ala 170	Val	Ala	Asn	Lys	va1 175			528
Leu	Pro	Leu	Ile 180	Val	Asp	Asn	Thr	Leu 185	Ala	Ser	Pro	туr	190	Cys	cgc Arg	٠.	576
Pro	Ile	Glu 195	His	Gly	Ala	Thr	Leu 200	Val	Val	His	Ser	205	Thr	. гЛа	tac Tyr		624
ctg Leu	acc Thr 210	ggc Gly	aac Asn	ggc Gly	acg Thr	gtg Val 215	acg Thr	ggc Gly	gjå ååå	gtg Val	atc Ile 220	Val	gat Asp	tcg Ser	Gly		.672
aag Lys 225	ttc Phe	gac Asp	tgg Trp	tcg Ser	gcc Ala 230	tcg Ser	ggc	aag Lys	ttc Phe	ccc Pro 235	agc Ser	ctt Leu	tcg Ser	gcg Ala	Pro 240		720
gaa Glu	ccc Pro	gcc Ala	tat Tyr	cac His 245	gly ggg	ctg Leu	aag Lys	ttc Phe	cac His 250	gag Glu	gca Ala	ctc Leu	ggc	Pro 255	atg Met	•	768

											cgc Arg					816
			Pro					Tyr			atg Met					864
ctc Leu	agc Ser 290	Leu	cgc Arg	atg Met	gac Asp	aag Lys 295	cac His	gtc Val	gcc Ala	aat Asn	gcg Ala 300	aag Lys	gcg Ala	gtg Val	gcg Ala	912
	Trp										gtc Val					960
											cgg Arg					1008
											ggc Gly					1056
											agc Ser					1104
											gcc Ala 380					1152
											GJÀ aaa					1200
											gcc Ala					1248
_	_	Asp	_		ctg Leu		_	_		_	tga					1284
-210	1 2	R														

<210> 38

<211> 427

<212> PRT

<213> Rhodobacter capsulatus

<400> 38

Met Thr Asp Gln Ala Phe Asp Thr Leu Gln Ile His Ala Gly Ala Glu 1 5 10 15

Pro Asp Pro Ala Thr Gly Ala Arg Gln Val Pro Ile Tyr Gln Thr Thr

20

PCT/EP2003/009453

30

25

Ser Tyr Val Phe Lys Asp Ala Asp His Ala Ala Arg Leu Phe Gly Leu 35 40 45

Gln Glu Val Gly Tyr Ile Tyr Ser Arg Leu Thr Asn Pro Thr Val Ser
50 55 60

Ala Leu Ala Ala Arg Val Ala Ala Leu Glu Gly Gly Val Gly Ala Val 65 70 75 80

Cys Cys Ser Ser Gly His Ala Ala Gln Ile Met Ala Leu Phe Pro Leu 85 90 95

Met Gly Pro Gly Leu Asn Ile Val Ala Ser Thr Arg Leu Tyr Gly Gly
100 105 110

Thr Ile Thr Gln Phe Ser Gln Thr Ile Lys Arg Phe Gly Trp Ser Cys 115 120 125

Thr Phe Val Asp Phe Asp Asp Leu Ala Ala Leu Glu Ala Ala Val Asp 130 135 140

Asp Asn Thr Arg Ala Ile Phe Cys Glu Ser Ile Ser Asn Pro Gly Gly 145 150 155 160

Tyr Ile Thr Asp Leu Pro Ala Val Ala Ala Val Ala Asn Lys Val Gly
165 170 175

Leu Pro Leu Ile Val Asp Asn Thr Leu Ala Ser Pro Tyr Leu Cys Arg 180 185 190

Pro Ile Glu His Gly Ala Thr Leu Val Val His Ser Ala Thr Lys Tyr 195 200 205

Leu Thr Gly Asn Gly Thr Val Thr Gly Gly Val Ile Val Asp Ser Gly 210 215 220

Lys Phe Asp Trp Ser Ala Ser Gly Lys Phe Pro Ser Leu Ser Ala Pro 225 230 235 240

Glu Pro Ala Tyr His Gly Leu Lys Phe His Glu Ala Leu Gly Pro Met 245 250 255

Ala Phe Thr Phe His Ser Ile Ala Val Gly Leu Arg Asp Leu Gly Met 260 265 270

WO 2004/024933

78/130

Thr Met Asn Pro Gln Gly Ala His Tyr Thr Leu Met Gly Ile Glu Thr 275 280 285

Leu Ser Leu Arg Met Asp Lys His Val Ala Asn Ala Lys Ala Val Ala 290 . 295 300

Glu Trp Leu Ala Lys Asp Pro Arg Ile Asp Phe Val Thr Trp Ala Gly 305 310 315 320

Leu Pro Ser Ser Pro Trp His Glu Arg Ala Glu Arg Leu Cys Pro Lys 325 330 335

Gly Ala Gly Ala Leu Phe Thr Val Ala Val Lys Gly Gly Tyr Glu Ala 340 345 350

Cys Val Lys Leu Val Asn Asn Leu Lys Leu Phe Ser His Val Ala Asn 355 360 365

Leu Gly Asp Ala Arg Ser Leu Ile Ile His Ser Ala Ser Thr Thr His 370 375 380

Arg Gln Leu Thr Glu Glu Gln Gln Ile Lys Ala Gly Ala Ala Pro Asn 385 390 395 400

Val Val Arg Leu Ser Ile Gly Ile Glu Asn Ala Ala Asp Leu Ile Ala 405 410 415

Asp Leu Asp Gln Ala Leu Ala Ala Ala Thr Ala 420 425

<210> 39

<211> 1269

<212> DNA

<213> Pasteurella multocida

<220>

<221> CDS

<222> (1) .. (1269)

<223>

<400> 39
atg gaa ttt gca aca aaa tgt cta cat gcc ggt tat aca ccg aaa aat
Met Glu Phe Ala Thr Lys Cys Leu His Ala Gly Tyr Thr Pro Lys Asn

CT/EP2003/009453

	•																
	1				5					10					15		
	ggt Gly	gag Glu	cct Pro	cgt Arg 20	gtt Val	caa Gln	ccg Pro	atc Ile	gta Val 25	caa Gln	agt Ser	acc Thr	act Thr	ttt Phe 30	acc Thr	tac Tyr	96
	gat Asp	tcc Ser	gcc Ala 35	gaa Glu	gaa Glu	att Ile	ggt Gly	aag Lys 40	tta Leu	ttt Phe	gat Asp	tta Leu	caa Gln 45	gcg Ala	gct Ala	Gly	144
	Tyr	Phe 50	Tyr	Thr	Arg	Leu	Ser 55	Asn	Pro	act Thr	Thr	Asn 60	Ala	Ala	GIU	GIU	192
	Lys 65	Ile	Thr	Ala	Leu	Glu 70	GΤΆ	GIÀ	Vai	gca Ala	75	Met	Сув	IIII	ALG	80	240
	Gly	Gln	Ala	Ala	Val 85	Phe	Tyr	Ala	Met	ctc Leu 90	Asn	TIE	ren	GIR	95	GIY	288
	Asp	His	Phe	Ile 100	Ser	Ser	Ser	Tyr	Val 105	Tyr	GIĀ	GIÅ	ser	110	ASII	tta Leu	336
	Phe	Ala	His 115	Thr	Phe	Lys	Lys	Met 120	Gly	Ile	GIU	vaı	125	Pne	vaı	gat Asp	384
	Gln	Asp 130	Leu	Pro	Leu	Glu	Glu 135	Leu	Lys	Lys	Ala	11e 140	Arg	PIO	АВИ	acg Thr	432
	Lys 145	Ala	Ile	Phe	Ala	Glu 150	Thr	Ile	Ala	Asn	155	Ala	Leu	Arg	, vai	Leu 160	480
)	Asp	Ile	Glu	Lys	Phe 165	Val	Ala	Leu	Ala	Lys 170	A1a	Ala	GID	Ald	175		528
	Leu	Val	Asp	Asn 180	Thr	`Phe	Ala	Thr	185	ıyr	Pne	Cys	Arg	190)	gaa Glu	576
	Phe	Gly	Ala 195	Asn	Val	Val	Ile	His 200	Ser	Thr	ser	. гАг	205	. Ter	ı ABİ	o Gly e aaa	624
	cat His	gcg Ala 210	Ile	gcg Ala	ttg Leu	gga Gly	ggt Gly 215	tcg Ser	atc Ile	aca Thr	gat Asp	ggc Gly 220	, GT	g aat g Asi	t tti	gat Asp	672
	tgg Trp 225	Asn	aat Asn	ggt Gly	aaa Lys	ttc Phe 230	cca Pro	caa Gln	tta Leu	agc Ser	aca Thr 235	. PIC	gat As <u>r</u>	caa Gli	a act	tat Tyr 240	720
	cac His	ggt Gly	tta Leu	gtt Val	tat Tyr 245	acc Thr	gaa Glu	acc Thr	ttt Phe	gtt Val 250	Pro	gco Ala	gct Ala	tai Tyr	t at: r Il: 25!	t gtc e Val	768
	aaa	gcc	cgt	gtg	caa	tta	atg	cgt	gat	tta	ggt	gco	aca	a cca	a gc	a cca	816

Lys	Ala	Arg	Val 260	Gln	Leu	Met	Arg	Asp 265	Leu	Gly	Ala	Thr	Pro 270	Ala	Pro	
caa Gln	aat Asn	agt Ser 275	ttc Phe	ttg Leu	ctc Leu	aat Asn	gtg Val 280	ggc	atg Met	gaa Glu	act Thr	ctt Leu 285	gca Ala	ctg Leu	cgt Arg	864
atg Met	caa Gln 290	cgt Arg	cat His	tat Tyr	gaa Glu	aat Asn 295	gca Ala	caa Gln	gcg Ala	gtc Val	gcc Ala 300	gaa Glu	ttt Phe	tta Leu	gaa Glu	912
aat Asn 305	cat His	cca Pro	caa Gln	gtg Val	gca Ala 310	aaa Lys	gtg Val	agt Ser	tat Tyr	ccg Pro 315	ggc	ttg Leu	gca Ala	agt Ser	tca Ser 320	960
				cta Leu 325												1008
gtg Val	att Ile	tcc Ser	ttt Phe 340	gaa Glu	att Ile	aga Arg	gly ggg	gga Gly 345	aga Arg	gaa Glu	act Thr	gca Ala	gca Ala 350	aaa Lys	tgg Trp	1056
ctg Leu	aat Asn	gcg Ala 355	cta Leu	caa Gln	ctg Leu	gct Ala	tct Ser 360	cgt Arg	gaa Glu	gtc Val	cat His	gta Val 365	gcg Ala	gat Asp	att Ile	1104
Arg	act Thr 370	tgt Cys	gct Ala	tta Leu	cat His	ccg Pro 375	gcg Ala	acg Thr	tca Ser	aca Thr	cac His 380	cgt Arg	caa Gln	tta Leu	agt Ser	1152
gag Glu 385	gct Ala	gaa Glu	tta Leu	gaa Glu	aaa Lys 390	gtg Val	GJÅ aaa	att Ile	tct Ser	gcg Ala 395	ggt Gly	tta Leu	att Ile	cgt Arg	ctt Leu 400	1200
tct Ser	tgc Cys	ggt Gly	att Ile	gaa Glu 405	agt Ser	atc Ile	caa Gln	gat Asp	att Ile 410	ttg Leu	gct Ala	gac Asp	tta Leu	gaa Glu 415	caa Gln	1248
_		His		gca Ala :		taa										1269
<210	> 4	0		•												
<211	> 4	22														

<212> PRT

<213> Pasteurella multocida

Met Glu Phe Ala Thr Lys Cys Leu His Ala Gly Tyr Thr Pro Lys Asn

Gly Glu Pro Arg Val Gln Pro Ile Val Gln Ser Thr Thr Phe Thr Tyr

. 54

...75

Asp Ser Ala Glu Glu Ile Gly Lys Leu Phe Asp Leu Gln Ala Ala Gly 35 40 45

Tyr Phe Tyr Thr Arg Leu Ser Asn Pro Thr Thr Asn Ala Ala Glu Glu 50 55 60

Lys Ile Thr Ala Leu Glu Gly Gly Val Ala Thr Met Cys Thr Ala Ser 65 70 75 80

Gly Gln Ala Ala Val Phe Tyr Ala Met Leu Asn Ile Leu Gln Ala Gly
85 90 95

Asp His Phe Ile Ser Ser Ser Tyr Val Tyr Gly Gly Ser Tyr Asn Leu 100 105 110

Phe Ala His Thr Phe Lys Lys Met Gly Ile Glu Val Thr Phe Val Asp

Gln Asp Leu Pro Leu Glu Glu Leu Lys Lys Ala Ile Arg Pro Asn Thr 130 135 140

Lys Ala Ile Phe Ala Glu Thr Ile Ala Asn Pro Ala Leu Arg Val Leu 145 150 155 160

Asp Ile Glu Lys Phe Val Ala Leu Ala Lys Ala Ala Gln Ala Pro Leu 165 170 175

Leu Val Asp Asn Thr Phe Ala Thr Pro Tyr Phe Cys Arg Pro Ile Glu 180 185 190

Phe Gly Ala Asn Val Val Ile His Ser Thr Ser Lys Tyr Leu Asp Gly
195 200 205

His Ala Ile Ala Leu Gly Gly Ser Ile Thr Asp Gly Gly Asn Phe Asp 210 215 220

Trp Asn Asn Gly Lys Phe Pro Gln Leu Ser Thr Pro Asp Gln Thr Tyr 225 230 235 240

His Gly Leu Val Tyr Thr Glu Thr Phe Val Pro Ala Ala Tyr Ile Val 245 250 255

Lys Ala Arg Val Gln Leu Met Arg Asp Leu Gly Ala Thr Pro Ala Pro 260 265 270

Gln Asn Ser Phe Leu Leu Asn Val Gly Met Glu Thr Leu Ala Leu Arg 275 280 285

Met Gln Arg His Tyr Glu Asn Ala Gln Ala Val Ala Glu Phe Leu Glu 290 295 300

Asn His Pro Gln Val Ala Lys Val Ser Tyr Pro Gly Leu Ala Ser Ser 305 310 315 320

Pro Asp His Ala Leu Lys Gln Lys Tyr Leu Pro Asn Gly Leu Cys Gly
325 330 335

Val Ile Ser Phe Glu Ile Arg Gly Gly Arg Glu Thr Ala Ala Lys Trp 340 345 350

Leu Asn Ala Leu Gln Leu Ala Ser Arg Glu Val His Val Ala Asp Ile 355 360 365

Arg Thr Cys Ala Leu His Pro Ala Thr Ser Thr His Arg Gln Leu Ser 370 375 380

Glu Ala Glu Leu Glu Lys Val Gly Ile Ser Ala Gly Leu Ile Arg Leu 385 390 395 400

Ser Cys Gly Ile Glu Ser Ile Gln Asp Ile Leu Ala Asp Leu Glu Gln 405 410 415

Ala Phe His Ala Ala Lys 420

<210> 41

<211> 1266

<212> DNA

<213> Clostridium difficile

<220>

<221> CDS

<222> (1)..(1266)

<223>

	PCT/EP2003/009453
--	-------------------

•									-	, 200						
						a cta l Leu			Tyr							96
						a ctt n Leu										144
						ata J Ile 55										192
gaa Glu 65	aaa Lys	ata Ile	agt Ser	tta Leu	t Cta Leu 70	gag Glu	ggt Gly	gga Gly	gta Val	tct Ser 75	tct Ser	gta Val	gct Ala	gta Val	tca Ser 80	240
tca Ser	GJ 333	caa Gln	tct Ser	gca Ala 85	aat Asn	atg Met	ttg Leu	gca Ala	gtt Val 90	tta Leu	aat Asn	ata Ile	tgt Cys	aaa Lys 95	tca Ser	288
gga Gly	gat Asp	agt Ser	ata Ile 100	Leu	tgt Cys	tct Ser	tca Ser	aaa Lys 105	Val	tat Tyr	gga Gly	gga Gly	aca Thr 110	ttc Phe	aat Asn	336
			Pro			aaa Lys										384
Asp	Leu 130	Asp	Ser	Ser	Glu	gat Asp 135	Glu	Ile	Val	Glu	Leu 140	Ala	Lys	Glu	Asn	432
Thr 145	Lys	Val	Val	Phe	Ala 150	gaa Glu	Thr	Leu	Ala	Asn 155	Pro	Thr	Leu	Glu	Val 160	480
ata Ile	gat Asp	ttt Phe	gaa Glu	aaa Lys 165	ata Ile	gca Ala	aat Asn	gta Val	gct Ala 170	aag Lys	aga Arg	att Ile	aat Asn	gtt Val 175	cca Pro	528
Phe	Ile	Val	Asp 180	Asn	Ser	tta Leu	Ala	Ser 185	Pro	Val	Leu	Cys	Asn 190	Pro	Leu	576
Lys	Tyr	Gly 195	Ala	Asn	Ile	gtt Val	Thr 200	His	Ser	Thr	Thr	Lys 205	Tyr	Leu	Asp	624
ely aaa	cat His 210	gct Ala	tca Ser	agt Ser	gtt Val	gga Gly 215	gga Gly	att Ile	ata Ile	gtg Val	gat Asp 220	ggt Gly	gga Gly	aac Asn	ttt Phe	672
Asn 225	Trp	Asp	Asn	Gly	Lys 230	ttt Phe	Pro	Glu	Leu	Val 235	Glu	Pro	Asp	Pro	Thr 240	.720
Tyr	His	Gly	Ile	<i>Ser</i> 245	Tyr	act Thr	Gln	Lys	Phe 250	Gly	Asn	Ala	Ala	Tyr 255	Ala	768
act Thr	aaa Lys	gca Ala	aga Arg 260	gtt Val	cag Gln	ttg Leu :	Leu	aga Arg 265	gac Asp	tat Tyr	gga Gly	aat Asn	tgt Cys 270	tta Leu	agc Ser	816

WO 2004/024933	4
----------------	---

84/130

			gcg Ala													864
aga Arg	atg Met 290	gag Glu	aga Arg	cat His	agt Ser	gaa Glu 295	aat Asn	gca Ala	ctt Leu	aaa Lys	ata Ile 300	gct Ala	aga Arg	ttt Phe	tta Leu	912
gaa Glu 305	aaa Lys	cat His	gaa Glu	aat Asn	gta Val 310	gat Asp	tgg Trp	att Ile	aat Asn	tac Tyr 315	cca Pro	gga Gly	ctt Leu	gaa Glu	gat Asp 320	960
aac Asn	aag Lys	tat Tyr	tat Tyr	gag Glu 325	aat Asn	gcc Ala	aaa Lys	aag Lys	tat Tyr 330	tta Leu	tca Ser	aga Arg	gga Gly	tgt Cys 335	agt Ser	1008
			tca Ser 340													1056
ttt Phe	gtg Val	gaa Glu 355	aaa Lys	tta Leu	cag Gln	ata Ile	gca Ala 360	tct Ser	ttg Leu	gtt Val	aca Thr	cat His 365	gtt Val	tca Ser	gat Asp	1104
gta Val	aga Arg 370	act Thr	tgt Cys	gtt Val	ata Ile	cat His 375	cca Pro	gct Ala	tca Ser	act Thr	act Thr 380	cat His	aga Arg	caa Gln	tta Leu	1152
aca Thr 385	gaa Glu	gaa Glu	caa Gln	tta Leu	att Ile 390	gca Ala	tct Ser	gga Gly	gta Val	ttg Leu 395	cct Pro	tca Ser	cta Leu	ata Ile	aga Arg 400	1200
tta Leu	tct Ser	gtt Val	gga Gly	ata Ile 405	gaa Glu	aat Asn	gta Val	gag Glu	gat Asp 410	tta Leu	ata Ile	gct Ala	gat Asp	tta Leu 415	aat Asn	1248
	_		aat Asn 420		taa											1266

<210> 42

<211> 421

<212> PRT

<213> Clostridium difficile

<400> 42

Met Tyr Asn Lys Glu Thr Ile Cys Val Gln Gly Asn Tyr Lys Pro Gly
1 10 15

Asn Gly Glu Pro Arg Val Leu Pro Leu Tyr Gln Ser Thr Thr Phe Lys 20 25 30

Tyr Ser Ser Ile Asp Gln Leu Ala Glu Leu Phe Asp Leu Lys Val Asp

45

PCT/EP2003/009453

35 40

Gly His Ile Tyr Ser Arg Ile Ser Asn Pro Thr Ile Gln Ala Phe Glu 50 55 60

Glu Lys Ile Ser Leu Leu Glu Gly Gly Val Ser Ser Val Ala Val Ser 65 70 75 80

Ser Gly Gln Ser Ala Asn Met Leu Ala Val Leu Asn Ile Cys Lys Ser 85 90 95

Gly Asp Ser Ile Leu Cys Ser Ser Lys Val Tyr Gly Gly Thr Phe Asn 100 105 110

Leu Leu Gly Pro Ser Leu Lys Lys Phe Gly Ile Asp Leu Ile Ser Phe 115 120 125

Asp Leu Asp Ser Ser Glu Asp Glu Ile Val Glu Leu Ala Lys Glu Asn 130 135 140

Thr Lys Val Val Phe Ala Glu Thr Leu Ala Asn Pro Thr Leu Glu Val 145 150 155 160

Ile Asp Phe Glu Lys Ile Ala Asn Val Ala Lys Arg Ile Asn Val Pro 165 170 175

Phe Ile Val Asp Asn Ser Leu Ala Ser Pro Val Leu Cys Asn Pro Leu 180 185 190

Lys Tyr Gly Ala Asn Ile Val Thr His Ser Thr Thr Lys Tyr Leu Asp 195 200 205

Gly His Ala Ser Ser Val Gly Gly Ile Ile Val Asp Gly Gly Asn Phe 210 215 220

Asn Trp Asp Asn Gly Lys Phe Pro Glu Leu Val Glu Pro Asp Pro Thr 225 230 235 240

Tyr His Gly Ile Ser Tyr Thr Gln Lys Phe Gly Asn Ala Ala Tyr Ala 245 250 255

Thr Lys Ala Arg Val Gln Leu Leu Arg Asp Tyr Gly Asn Cys Leu Ser 260 265 270

Pro Phe Asn Ala Tyr Leu Thr Asn Leu Asn Val Glu Thr Leu His Leu 275 280 285

Arg Met Glu Arg His Ser Glu Asn Ala Leu Lys Ile Ala Arg Phe Leu 290 295 300

Glu Lys His Glu Asn Val Asp Trp Ile Asn Tyr Pro Gly Leu Glu Asp 305 310 315 320

Asn Lys Tyr Tyr Glu Asn Ala Lys Lys Tyr Leu Ser Arg Gly Cys Ser 325 330 335

Gly Val Leu Ser Phe Gly Val Arg Gly Gly Leu Glu Asn Ala Lys Lys 340 345 350

Phe Val Glu Lys Leu Gln Ile Ala Ser Leu Val Thr His Val Ser Asp 355 360 365

Val Arg Thr Cys Val Ile His Pro Ala Ser Thr Thr His Arg Gln Leu 370 380

Thr Glu Glu Gln Leu Ile Ala Ser Gly Val Leu Pro Ser Leu Ile Arg 385 390 395 400

Leu Ser Val Gly Ile Glu Asn Val Glu Asp Leu Ile Ala Asp Leu Asn 405 410 415

Gln Ala Leu Asn Phe 420

<210> 43

<211> 1272

<212> DNA

<213> Campylobacter jejuni

<220>

<221> CDS

<222> (1)..(1272)

<223>

<400> 43

atg aat ttc aat aaa gaa act tta gca tta cac gga gct tat aat ttt
Met Asn Phe Asn Lys Glu Thr Leu Ala Leu His Gly Ala Tyr Asn Phe
1 5 10 15

96

48

gat act caa aga agt att agt gtg cct ata tat caa aac act gcg tat Asp Thr Gln Arg Ser Ile Ser Val Pro Ile Tyr Gln Asn Thr Ala Tyr

20 25 aat ttt gaa aat ttg gat caa gct gca gca agg ttt aat ctt caa gaa 144 Asn Phe Glu Asn Leu Asp Gln Ala Ala Ala Arg Phe Asn Leu Gln Glu ctt ggc aat att tac tca aga ctt agc aat cct aca agc gat gtt tta 192 Leu Gly Asn Ile Tyr Ser Arg Leu Ser Asn Pro Thr Ser Asp Val Leu gga caa aga ctt gct aat gtc gaa gga ggt ttt gga att cct gtt 240 Gly Gln Arg Leu Ala Asn Val Glu Gly Gly Ala Phe Gly Ile Pro Val get age ggt atg gea get tgt ttt tat get ett ate aat tta gea agt 288 Ala Ser Gly Met Ala Ala Cys Phe Tyr Ala Leu Ile Asn Leu Ala Ser 85 tcg gga gat aat gtc gcg tat tcg aac aaa att tat ggt ggg act caa 336 Ser Gly Asp Asn Val Ala Tyr Ser Asn Lys Ile Tyr Gly Gly Thr Gln 100 110 act tta att tct cac aca ctt aaa aat ttt ggc ata gaa gct agg gaa 384 Thr Leu Ile Ser His Thr Leu Lys Asn Phe Gly Ile Glu Ala Arg Glu 115 ttt gat atc gat gat tta gat agc ttg gaa aaa gtt ata gat caa aac 432 Phe Asp Ile Asp Asp Leu Asp Ser Leu Glu Lys Val Ile Asp Gln Asn 130 aca aaa gcg att ttt ttc gaa agt ctt tca aat cct caa att gcc ata 480 Thr Lys Ala Ile Phe Phe Glu Ser Leu Ser Asn Pro Gln Ile Ala Ile 145 160 gct gat ata gaa aaa ata aac caa ata gca aaa aaa cat aaa atc gtt 528 Ala Asp Ile Glu Lys Ile Asn Gln Ile Ala Lys Lys His Lys Ile Val 165 age att tgt gat aat ace gtt get act eet tte tta ete caa eet ttt 576 Ser Ile Cys Asp Asn Thr Val Ala Thr Pro Phe Leu Leu Gln Pro Phe 180 aaa cat ggc gtg gat gta atc gtg cat agt tta agt aaa tat gta agc 624 Lys His Gly Val Asp Val Ile Val His Ser Leu Ser Lys Tyr Val Ser 195 ggt caa ggc act gct ttg ggt gga gca ctt ata gaa aga aaa gat tta 672 Gly Gln Gly Thr Ala Leu Gly Gly Ala Leu Ile Glu Arg Lys Asp Leu 210 aac gac ttg ctt aaa aat aac gat aga tat aaa gct ttt aac act cct 720 Asn Asp Leu Lys Asn Asn Asp Arg Tyr Lys Ala Phe Asn Thr Pro 225 235 gat cca agt tat cat gga ctg aat tta aat aca ctt gat ttg ccg att 768 Asp Pro Ser Tyr His Gly Leu Asn Leu Asn Thr Leu Asp Leu Pro Ile 245 ttt agt att aga gtc atc atc act tgg ctt aga gat cta gga gct agc 816 Phe Ser Ile Arg Val Ile Ile Thr Trp Leu Arg Asp Leu Gly Ala Ser 260 tta gca cct caa aat gct tgg tta ctt tta caa gga ctt gaa acc ttg 864

														_		
Leu	Ala	Pro 275	Gln	Asn	Ala	Trp	Leu 280	Leu	Leu	Gln	Gly	Leu 285	Glu	Thr	Leu	
				gaa Glu												912
				cat His												960
				tat Tyr 325												1008
				ctt Leu												1056
				gat Asp												1104
ggt Gly	gat Asp 370	agc Ser	aag Lys	tct Ser	ttg Leu	atc Ile 375	atc Ile	cat His	cct Pro	gct Ala	tct Ser 380	act Thr	act Thr	cat His	tcg Ser	1152
				gaa Glu												1200
				ata Ile 405												1248
				ata Ile			taa									1272
<210)> 4	4														
-211	- 4	23														

<211> 423

<212> PRT

<213> Campylobacter jejuni

<400> 44

Met Asn Phe Asn Lys Glu Thr Leu Ala Leu His Gly Ala Tyr Asn Phe

Asp Thr Gln Arg Ser Ile Ser Val Pro Ile Tyr Gln Asn Thr Ala Tyr

Asn Phe Glu Asn Leu Asp Gln Ala Ala Ala Arg Phe Asn Leu Gln Glu 35 40 45

Leu Gly Asn Ile Tyr Ser Arg Leu Ser Asn Pro Thr Ser Asp Val Leu 50 55 60

Gly Gln Arg Leu Ala Asn Val Glu Gly Gly Ala Phe Gly Ile Pro Val 65 70 75 80

Ala Ser Gly Met Ala Ala Cys Phe Tyr Ala Leu Ile Asn Leu Ala Ser 85 90 95

Ser Gly Asp Asn Val Ala Tyr Ser Asn Lys Ile Tyr Gly Gly Thr Gln
100 105 110

Thr Leu Ile Ser His Thr Leu Lys Asn Phe Gly Ile Glu Ala Arg Glu 115 120 125

Phe Asp Ile Asp Asp Leu Asp Ser Leu Glu Lys Val Ile Asp Gln Asn 130 135 140

Thr Lys Ala Ile Phe Phe Glu Ser Leu Ser Asn Pro Gln Ile Ala Ile 145 150 155 160

Ala Asp Ile Glu Lys Ile Asn Gln Ile Ala Lys Lys His Lys Ile Val 165 170 175

Ser Ile Cys Asp Asn Thr Val Ala Thr Pro Phe Leu Leu Gln Pro Phe 180 185 190

Lys His Gly Val Asp Val Ile Val His Ser Leu Ser Lys Tyr Val Ser 195 200 205

Gly Gln Gly Thr Ala Leu Gly Gly Ala Leu Ile Glu Arg Lys Asp Leu 210 215 220

Asn Asp Leu Leu Lys Asn Asn Asp Arg Tyr Lys Ala Phe Asn Thr Pro 225 230 235 240

Asp Pro Ser Tyr His Gly Leu Asn Leu Asn Thr Leu Asp Leu Pro Ile 245 250 255

Phe Ser Ile Arg Val Ile Ile Thr Trp Leu Arg Asp Leu Gly Ala Ser 260 265 270

Leu Ala Pro Gln Asn Ala Trp Leu Leu Gln Gly Leu Glu Thr Leu 275 280 . 285

Ala Val Arg Ile Glu Lys His Ser Gln Asn Ala Glu Lys Val Ala Asn 290 295 300

48

Phe Leu Asn Ser His Pro Asp Ile Lys Gly Val Asn Tyr Pro Thr Leu 305 310 315 320

Ala Ser Asn Ala Tyr His Asn Leu Phe Lys Lys Tyr Phe Asp Lys Asn 325 330 335

Phe Ala Ser Gly Leu Leu Ser Phe Glu Ala Lys Asp Tyr Glu His Ala 340 345 350

Arg Arg Ile Cys Asp Lys Thr Gln Leu Phe Leu Leu Ala Ala Asn Leu 355 360 365

Gly Asp Ser Lys Ser Leu Ile Ile His Pro Ala Ser Thr Thr His Ser 370 375 380

Gln Leu Ser Glu Glu Glu Leu Gln Lys Ala Gly Ile Thr Lys Ala Thr 385 390 395 400

Ile Arg Leu Ser Ile Gly Leu Glu Asn Ser Asp Asp Leu Ile Ala Asp
405
410
415

Leu Lys Gln Ala Ile Glu Ser 420

<210> 45

<211> 1041

<212> DNA

<213> Streptococcus pneumoniae

<220>

<221> CDS

<222> (1)..(1041)

<223>

<400> 45

ttg agg aaa cca ggg aac att tat act cgt atc acc aat cct aca aca Leu Arg Lys Pro Gly Asn Ile Tyr Thr Arg Ile Thr Asn Pro Thr Thr 1 5 10 15

gct gcc ctt gaa ggt ggt gtt gaa gcg cta gca aca gca tca ggt atg 96 Ala Ala Leu Glu Gly Gly Val Glu Ala Leu Ala Thr Ala Ser Gly Met 20 25 30

	-									_	•, •							
																cat His		144
	gta Val	yte Va 50	g gc	t gc a Ala	t tc a Se	g act	t at r Ild 55	t ta e Ty:	c ggt r Glj	gga Gly	aco Thi	tto Phe	aat Asn	ctt Leu	ttg Leu	aaa Lys		192
	gaa Glu 65	cco Pro	c cti	t cci	t cg o Ar	t tai g Tyi 70	c Gl	t ato	c ace e Thi	aca Thr	acc Thr	ttt Phe	tto Phe	gat Asp	att Ile	gat Asp 80		240
	aat Asn	ttg Lei	g gag ı Glı	g gaa 1 Glu	a gt. 1 Va 85	a gaa 1 Glu	a gca a Ala	a gci a Ala	t ato	aaa Lys 90	gac Asp	aat Asr	acc Thr	aag Lys	ctt Leu 95	gtc Val		288
À					Let				ttg Leu 105	Ile					Leu			33 <i>6</i>
7	Lys	Lev	Ala 115	Glu ;	ı Ile	e Ala	His	120		Gln	Ile	Pro	Leu 125	Val	Ser	Asp		384
	Asn	Thr 130	Phe	Ala	Thi	Pro	Tyr 135	Leu	att Ile	Asn	Val	Phe 140	Ser	His	Gly	Val		432
	Asp 145	Ile	Ala	Ile	His	Ser 150	Val	Thr	aag Lys	Phe	Ile 155	Gly	Gly	His	Gly	Thr 160	•	480
	Thr	Ile	Gly	Gly	Ile 165	Ile	Val	qaA	agt Ser	Gly 170	Arg	Phe	Asp	Trp	Thr 175	Ala	į	528
ī	Ser	Gly	Lys	Phe 180	Pro	Gln	Phe	Val	gac Asp 185	Glu	Gly	Pro	Ser	Cys 190	His	Asn	!	576
	Leu	Ser	Tyr 195	Thr	Arg	Asp	Val	Gly 200	gca Ala	Ala	Ala	Phe	Ile 205	Ile	Ala	Val	•	524
	Arg	Val 210	Gln	Leu	Leu	Arg	Asp 215	Thr	ggt	Ala	Ala	Leu 220	Ser	Pro	Phe	Asn		572
	Ala 225	Phe	Leu	Leu	Leu	Gln 230	Arg	Leu	gaa Glu	Thr	Ser 235	Ser	Leu	Arg	Val	Glu 240	7	720
	Arg	His	Val	Gln	Asn 245	Ala	Glu	Thr	att Ile	Val 250	Asp	Phe	Leu	Val	Asn 255	His	.7	768
	Pro	Lys	Val	Glu 260	Lys	Val /	Asn	Тут	cca Pro 265	Lys	Leu	Ala	Asp	Ser 270	Pro	Tyr	8	16
	cat (Ala	ttg Leu 275	gct Ala	gag Glu	aaa t Lys :	ryr :	ttg Leu 280	cca Pro	aaa Lys	ggt Gly	gtc Val	ggt Gly 285	tca Ser	atc Ile	ttt Phe	8	64

WO 2004/024933	92
	92

	His Val				a gca cgc u Ala Arg 300			912
	_		Asp Leu	_	gcg gca n Ala Ala 315		_	960
~	_	_			c ggt caa s Gly Gln O	_	•	1008
_	_	gca ggt Ala Gly	_					1041

<210> 46

<211> 346

<212> PRT

Streptococcus pneumoniae <213>

<400> 46

Leu Arg Lys Pro Gly Asn Ile Tyr Thr Arg Ile Thr Asn Pro Thr Thr 5

Ala Ala Leu Glu Gly Gly Val Glu Ala Leu Ala Thr Ala Ser Gly Met

Thr Ala Val Thr Tyr Thr Ile Leu Ala Ile Ala His Ala Gly Asp His 35

Val Val Ala Ala Ser Thr Ile Tyr Gly Gly Thr Phe Asn Leu Leu Lys 50

Glu Pro Leu Pro Arg Tyr Gly Ile Thr Thr Thr Phe Phe Asp Ile Asp 65 70

Asn Leu Glu Glu Val Glu Ala Ala Ile Lys Asp Asn Thr Lys Leu Val 85 90 95

Leu Ile Glu Thr Leu Gly Asn Pro Leu Ile Asn Ile Pro Asp Leu Glu 100 105 110

Lys Leu Ala Glu Ile Ala His Lys His Gln Ile Pro Leu Val Ser Asp 115 120

Asn Thr Phe Ala Thr Pro Tyr Leu Ile Asn Val Phe Ser His Gly Val

PCT/EP2003/009453

130 135 140

Asp Ile Ala Ile His Ser Val Thr Lys Phe Ile Gly Gly His Gly Thr 145 150 155 160

Thr Ile Gly Gly Ile Ile Val Asp Ser Gly Arg Phe Asp Trp Thr Ala 165 170 175

Ser Gly Lys Phe Pro Gln Phe Val Asp Glu Gly Pro Ser Cys His Asn 180 185 190

Leu Ser Tyr Thr Arg Asp Val Gly Ala Ala Phe Ile Ile Ala Val 195 200 205

Arg Val Gln Leu Leu Arg Asp Thr Gly Ala Ala Leu Ser Pro Phe Asn 210 215 220

Ala Phe Leu Leu Gln Arg Leu Glu Thr Ser Ser Leu Arg Val Glu
225 230 235 240

Arg His Val Gln Asn Ala Glu Thr Ile Val Asp Phe Leu Val Asn His 245 250 255

Pro Lys Val Glu Lys Val Asn Tyr Pro Lys Leu Ala Asp Ser Pro Tyr
260 265 270

His Ala Leu Ala Glu Lys Tyr Leu Pro Lys Gly Val Gly Ser Ile Phe 275 280 285

Thr Phe His Val Lys Gly Glu Glu Glu Ala Arg Lys Val Ile Asp 290 295 300

Asn Leu Glu Ile Phe Ser Asp Leu Ala Asn Ala Ala Asp Ala Lys Ser 305 310 315 320

Leu Val Val His Pro Ala Thr Thr Thr His Gly Gln Leu Ser Glu Lys 325 330 335

Asp Leu Glu Ala Ala Gly Val Thr Pro Asn 340 345

<210> 47

<211> 1335

<212> DNA

<213> Saccharomyces cerevisiae

<220>

<221> CDS

<222> (1)..(1335)

<223>

ato		tct										ggc				48
ect Pro	ggt Gly	gac Asp	aat Asn 20	gct Ala	cac His	aga Arg	tcc Ser	aga Arg 25	gct Ala	gta Val	cca Pro	att Ile	tac Tyr 30	gcc Ala	acc Thr	96
act Thr	tct Ser	tat Tyr 35	gtt Val	ttc Phe	gaa Glu	aac Asn	tct Ser 40	aag Lys	cat His	ggt Gly	tcg Ser	caa Gln 45	ttg Leu	ttt Phe	ggt Gly	144
cta Leu	gaa Glu 50	gtt Val	cca Pro	ggt Gly	tac Tyr	gtc Val 55	tat	tcc Ser	cgt Arg	ttc Phe	caa Gln 60	aac Asn	cca Pro	acc Thr	agt Ser	192
aat Asn 65	gtt Val	ttg Leu	gaa Glu	gaa Glu	aga Arg 70	att Ile	gct Ala	gct Ala	tta Leu	gaa Glu 75	ggt Gly	ggt Gly	gct Ala	gct Ala	gct Ala 80	240
ttg Leu	gct Ala	gtt Val	tcc Ser	tcc Ser 85	ggt Gly	caa Gln	gcc Ala	gct Ala	caa Gln 90	acc Thr	ctt Leu	gcc Ala	atc Ile	caa Gln 95	ggt Gly	288
ttg Leu	gca Ala	cac His	act Thr 100	ggt Gly	gac Asp	aac Asn	atc Ile	gtt Val 105	tcc Ser	act Thr	tct Ser	tac Tyr	tta Leu 110	tac Tyr	ggt Gly	336
ggt Gly	act Thr	tat Tyr 115	aac Asn	cag Gln	ttc Phe	aaa Lys	atc Ile 120	tcg Ser	ttc Phe	aaa Lys	aga Arg	ttt Phe 125	ggt Gly	atc Ile	gag Glu	384
gct Ala	aga Arg 130	ttt Phe	gtt Val	gaa Glu	ggt Gly	gac Asp 135	aat Asn	cca Pro	gaa Glu	gaa Glu	ttc Phe 140	gaa Glu	aag Lys	gtc Val	ttt Phe	432
gat Asp 145	gaa Glu	aga Arg	acc Thr	aag Lys	gct Ala 150	gtt Val	tat Tyr	ttg Leu	gaa Glu	acc Thr 155	att Ile	ggt Gly	aat Asn	cca Pro	aag Lys 160	480
tac Tyr	aat Asn	gtt Val	ccg Pro	gat Asp 165	ttt Phe	gaa Glu	aaa Lys	att Ile	gtt Val 170	gca Ala	att Ile	gct Ala	cac His	aaa Lys 175	cac His	528
ggt Gly	att Ile	cca Pro	gtt Val 180	gtc Val	gtt Val	gac Asp	aac Asn	aca Thr 185	ttt Phe	ggt Gly	gcc Ala	ggt Gly	ggt Gly 190	tac Tyr	ttc Phe	576
tgt Cys	cag Gln	cca Pro	att Ile	aaa Lys	tac Tyr	ggt Gly	gct Ala	gat Asp	att Ile	gta Val	aca Thr	cat His	tct Ser	gct Ala	acc Thr	624

		195	i				200					205				
aaa Lys	tgg Trp 210	Ile	ggt Gly	ggt	cat His	ggt Gly 215	Thr	act Thr	atc Ile	ggt Gly	ggt Gly 220	att Ile	att Ile	gtt Val	gac Asp	672
	Gly					Lys			cca Pro							720
					Gly				act Thr 250							768
ggt Gly	aac Asn	ttg Leu	gca Ala 260	Tyr	atc Ile	gtt Val	cat His	gtt Val 265	aga Arg	act Thr	gaa Glu	cta Leu	tta Leu 270	aga Arg	gat Asp	816
			Leu						tct Ser							864
									aga Arg							912
									cca Pro							960
									cat His 330							1008
									tct Ser							1056
Pro	Asn	Ala 355	Asp	Lys	Glu	Thr	Asp 360	Pro	ttc Phe	Lys	Leu	Ser 365	Gly	Ala	Gln	1104
Val	Val 370	Asp	Asn	Leu	Lys	Leu 375	Ala	Ser	aac Asn	Leu	Ala 380	Asn	Val	Gly	Asp	1152
Ala 385	Lys	Thr	Leu	Val	Ile 390	Ala	Pro	Tyr	ttc Phe	Thr 395	Thr	His	Lys	Gln	Leu 400	1200
aat Asn	gac Asp	aaa Lys	gaa Glu	aag Lys 405	ttg Leu	gca Ala	tct Ser	ggt Gly	gtt Val 410	acc Thr	aag Lys	gac Asp	tta Leu	att Ile 415	cgt Arg	1248
gtc Val	tct Ser	gtt Val	ggt Gly 420	atc Ile	gaa Glu	ttt Phe	att Ile	gat Asp 425	gac Asp	att Ile	att Ile	gca Ala	gac Asp 430	ttc Phe	cag Gln	1296
caa Gln	tct Ser	ttt Phe 435	gaa Glu	act Thr	gtt Val	Phe	gct Ala 440	ggc	caa Gln	aaa Lys	cca Pro	tga				1335

<210> 48

<211> 444

<212> PRT

<213> Saccharomyces cerevisiae

<400> 48

Met Pro Ser His Phe Asp Thr Val Gln Leu His Ala Gly Gln Glu Asn 1 5 10 15

Pro Gly Asp Asn Ala His Arg Ser Arg Ala Val Pro Ile Tyr Ala Thr 20 25 30

Thr Ser Tyr Val Phe Glu Asn Ser Lys His Gly Ser Gln Leu Phe Gly
35 40 45

Leu Glu Val Pro Gly Tyr Val Tyr Ser Arg Phe Gln Asn Pro Thr Ser 50 55 60

Asn Val Leu Glu Glu Arg Ile Ala Ala Leu Glu Gly Gly Ala Ala Ala 65 70 75 80

Leu Ala Val Ser Ser Gly Gln Ala Ala Gln Thr Leu Ala Ile Gln Gly 85 90 95

Leu Ala His Thr Gly Asp Asn Ile Val Ser Thr Ser Tyr Leu Tyr Gly
100 105 110

Gly Thr Tyr Asn Gln Phe Lys Ile Ser Phe Lys Arg Phe Gly Ile Glu 115 120 125

Ala Arg Phe Val Glu Gly Asp Asn Pro Glu Glu Phe Glu Lys Val Phe 130 135 140

Asp Glu Arg Thr Lys Ala Val Tyr Leu Glu Thr Ile Gly Asn Pro Lys 145 150 155 160

Tyr Asn Val Pro Asp Phe Glu Lys Ile Val Ala Ile Ala His Lys His 165 170 175

Gly Ile Pro Val Val Val Asp Asn Thr Phe Gly Ala Gly Gly Tyr Phe 180 185 190

Cys Gln Pro Ile Lys Tyr Gly Ala Asp Ile Val Thr His Ser Ala Thr 195 200 205

Lys Trp Ile Gly Gly His Gly Thr Thr Ile Gly Gly Ile Ile Val Asp 210 215 220

Ser Gly Lys Phe Pro Trp Lys Asp Tyr Pro Glu Lys Phe Pro Gln Phe 225 230 235 240

Ser Gln Pro Ala Glu Gly Tyr His Gly Thr Ile Tyr Asn Glu Ala Tyr 245 250 255

Gly Asn Leu Ala Tyr Ile Val His Val Arg Thr Glu Leu Leu Arg Asp 260 265 270

Leu Gly Pro Leu Met Asn Pro Phe Ala Ser Phe Leu Leu Gln Gly 275 280 285

Val Glu Thr Leu Ser Leu Arg Ala Glu Arg His Gly Glu Asn Ala Leu 290 295 300

Lys Leu Ala Lys Trp Leu Glu Gln Ser Pro Tyr Val Ser Trp Val Ser 305 310 315 320

Tyr Pro Gly Leu Ala Ser His Ser His His Glu Asn Ala Lys Lys Tyr 325 330 335

Leu Ser Asn Gly Phe Gly Gly Val Leu Ser Phe Gly Val Lys Asp Leu 340 345 350

Pro Asn Ala Asp Lys Glu Thr Asp Pro Phe Lys Leu Ser Gly Ala Gln 355 360 365

Val Val Asp Asn Leu Lys Leu Ala Ser Asn Leu Ala Asn Val Gly Asp 370 375 380

Ala Lys Thr Leu Val Ile Ala Pro Tyr Phe Thr Thr His Lys Gln Leu 385 390 395 400

Asn Asp Lys Glu Lys Leu Ala Ser Gly Val Thr Lys Asp Leu Ile Arg 405 410 415

Val Ser Val Gly Ile Glu Phe Ile Asp Asp Ile Ile Ala Asp Phe Gln
420 425 430

Gln Ser Phe Glu Thr Val Phe Ala Gly Gln Lys Pro 435 440

<211> 1335

<212> DNA

<213> Kluyveromyces lactis

<220>

<221> CDS

<222> (1)..(1335)

<223>

<40	0>	49												
_			cac His	_	_		_		_		_	_	48	3
			gct Ala 20										96	5
		_	ttc Phe	_	_			_		_			144	Ė
			ggt Gly										192	2
			aag Lys										240)
			tct Ser										288	3
			ggt Gly 100										336	5
			caa Gln										384	1
			gat Asp										432	2
			aag Lys										480)
	_		gac Asp			_	_	_	_				528	ì

PCT/EP2003/009453

-		•••	-			•				99	/130						
					l Va					Gly						tgc Cys	576
				e Lys					, Ile					Ala		aag Lys	624
			Gly					Thi					Ile			tct Ser	672
(ГÀа					qaA					Phe				tct Ser 240	720
(cag 31n	cca Pro	tct Ser	gaa Glu	ggt Gly 245	Tyr	cat His	ggt Gly	ttg Leu	atc Ile 250	Phe	aat Asn	gat Asp	gcc Ala	ttt Phe 255	ggt Gly	768
					Ile											tta Leu	816
Ġ	Sly	Pro	Val 275	Leu	Ser	Pro	Phe	Ala 280		Phe	Leu	Leu	Leu 285	Gln	Gly	Leu	864
G	lu	Thr 290	Leu	Ser	Leu	Arg	Gly 295	Glu	aga Arg	His	Gly	Ser 300	Asn	Ala	Leu	Lys	912
1. 3	eu 05	Ala	Gln	Tyr	Leu	Glu 310	Ser	Ser	cca Pro	Tyr	Val 315	Ser	Trp	Val	Ser	Tyr 320	960
P	ro	Gly	Leu	Pro	Ser 325	His	Ser	His	cac His	Glu 330	Asn	Ala	Lys	ГÀв	Tyr 335	Leu	1008
Ğ	lu	Asn	Gly	Phe 340	Gly	Gly	Val	Leu	ser 345	Phe	Gly	Val	Lys	Asp 350	Leu	Pro	1056
A	sn	Ala	Ser 355	Glu	Glu	Ser	Asp	Pro 360	ttc Phe	Lys	Āla	Ser	Gly 365	Ala	Gln	Val	1104
V	al	Asp 370	Asn	Leu	Lys	Leu	Ala 375	Ser	aac Asn	Leu	Ala	Asn 380	Val	Gly	qaA	Ser	1152
1. 3	ys 85	Thr	Leu	Val	Ile	Ala 390	Pro	Tyr	ttc Phe	Thr	Thr 395	His	Gln	Gln	Leu	Thr 400	1200
A	sp (Glu	Glu	Lys	Leu 405	Ala	Ser (Gly		Thr 410	Lys	Asp	Leu	Ile	Arg 415	Val	1248
Se	et (gtt Val	ggt Gly	act Thr 420	gaa Glu	ttc : Phe :	att q Ile i	qaA	gac Asp 425	att Ile	att Ile	gct Ala	Āsp	ttt Phe 430	gaa Glu	gca Ala	1296

tct ttc gct act gtc ttc aat ggc caa aaa cct gaa taa Ser Phe Ala Thr Val Phe Asn Gly Gln Lys Pro Glu 435 440

1335

<210> 50

<211> 444

<212> PRT

<213> Kluyveromyces lactis

<400> 50

Met Pro Ser His Phe Asp Thr Leu Gln Leu His Ala Gly Gln Glu Lys

1 10 15

Thr Ala Asp Ala His Asn Pro Arg Ala Val Pro Ile Tyr Ala Thr Thr
20 25 30

Ser Tyr Val Phe Asn Asp Ser Lys His Gly Ala Gln Leu Phe Gly Leu 35 40 45

Glu Thr Pro Gly Tyr Ile Tyr Ser Arg Ile Met Asn Pro Thr Leu Asp 50 55 60

Val Leu Glu Lys Arg Leu Ala Ala Leu Glu Gly Gly Ile Ala Ala Leu 65 70 75 80

Ala Thr Ser Ser Gly Gln Ala Ala Gln Thr Leu Ala Val Thr Gly Leu 85 90 95

Ala His Thr Gly Asp Asn Ile Val Ser Thr Ser Phe Leu Tyr Gly Gly
100 105 110

Thr Tyr Asn Gln Phe Lys Val Ala Phe Lys Arg Leu Gly Ile Glu Ala 115 120 125

Arg Phe Val Asp Gly Asp Lys Pro Glu Asp Phe Glu Lys Leu Phe Asp 130 135 140

Glu Lys Thr Lys Ala Leu Tyr Leu Glu Ser Ile Gly Asn Pro Lys Tyr 145 150 155 160

Asn Val Pro Asp Phe Glu Lys Ile Val Ala Val Ala His Lys His Gly
165 170 175

Ile Pro Val Val Val Asp Asn Thr Phe Gly Ala Gly Gly Phe Phe Cys

190

180 185

Gln Pro Ile Lys Tyr Gly Ala Asp Ile Val Thr His Ser Ala Thr Lys 195 200 205

Trp Ile Gly Gly His Gly Val Thr Val Gly Gly Val Ile Ile Asp Ser 210 215 220

Gly Lys Phe Pro Trp Lys Asp Tyr Pro Glu Lys Phe Pro Gln Phe Ser 225 230 235 240

Gln Pro Ser Glu Gly Tyr His Gly Leu Ile Phe Asn Asp Ala Phe Gly
245 250 255

Pro Ala Ala Phe Ile Gly His Val Arg Thr Glu Leu Leu Arg Asp Leu
260 265 270

Gly Pro Val Leu Ser Pro Phe Ala Gly Phe Leu Leu Gln Gly Leu 275 280 285

Glu Thr Leu Ser Leu Arg Gly Glu Arg His Gly Ser Asn Ala Leu Lys 290 295 · 300

Leu Ala Gln Tyr Leu Glu Ser Ser Pro Tyr Val Ser Trp Val Ser Tyr 305 310 315 320

Pro Gly Leu Pro Ser His Ser His His Glu Asn Ala Lys Lys Tyr Leu 325 330 335

Glu Asn Gly Phe Gly Gly Val Leu Ser Phe Gly Val Lys Asp Leu Pro 340 345 350

Asn Ala Ser Glu Glu Ser Asp Pro Phe Lys Ala Ser Gly Ala Gln Val 355 360 365

Val Asp Asn Leu Lys Leu Ala Ser Asn Leu Ala Asn Val Gly Asp Ser 370 375 380

Lys Thr Leu Val Ile Ala Pro Tyr Phe Thr Thr His Gln Gln Leu Thr 385 390 395 400

Asp Glu Glu Lys Leu Ala Ser Gly Val Thr Lys Asp Leu Ile Arg Val 405 410 415

Ser Val Gly Thr Glu Phe Ile Asp Asp Ile Ile Ala Asp Phe Glu Ala 420 425 430

Ser Phe Ala Thr Val Phe Asn Gly Gln Lys Pro Glu 435 440

<210> 51

<211> 1323

<212> DNA

<213> Candida albicans

<220>

<221> CDS

<222> (1)..(1323)

<223>

atg	tct						caa Gln			48
							acc Thr 30			96
							ggt Gly		1	44
							aac Asn		1	92
							gca Ala		2	40
							gjå aaa		2	88
							ggt Gly 110		3	36
							gaa Glu		3	84
							att Ile		4	32
							aaa Lys		4	80

WO 2004/024933

PCT/EP2003/009453

103/130

-																
145					150)				155					160	
					ı Lys				Leu 170							528
				Ası					gct Ala							576
			His					Val	gtt Val							624
		Gly					Ile		ggt Gly							672
						Tyr			aaa Lys							720
					His				ttg Leu 250							768
									gaa Glu							816
									ttg Leu							864
									tct Ser							912
									gtt Val							960
									ttg Leu 330							1008
									tta Leu							1056
									aat Asn							1104
									ttg Leu							1152
									act Thr							1200
gat	gaa	gaa	aag	ttg	gct	tct	ggt	gtt	acc	aag	ggc	tta	atc	aga	gtt	1248

Asp Glu Glu Lys Leu Ala Ser Gly Val Thr Lys Gly Leu Ile Arg Val 405 410 415

tct act ggt act gaa tat att gat gat att att aac gac ttt gaa caa 1296 Ser Thr Gly Thr Glu Tyr Ile Asp Asp Ile Ile Asn Asp Phe Glu Gln 420 425 430

gca ttc aag aag gtt tat aac aac taa 1323 Ala Phe Lys Val Tyr Asn Asn 435 440

<210> 52

<211> 440

<212> PRT

<213> Candida albicans

<400> 52

Met Pro Ser His Phe Asp Thr Leu Gln Leu His Ala Gly Gln Pro Val 1 5 10 15

Glu Lys Pro His Gln Pro Arg Ala Pro Pro Ile Tyr Ala Thr Thr Ser 20 25 30

Tyr Val Phe Asn Asp Ser Lys His Gly Ala Gln Leu Phe Gly Leu Glu 35 40 45

Thr Pro Gly Tyr Ile Tyr Ser Arg Ile Met Asn Pro Thr Asn Asp Val 50 55 60

Phe Glu Gln Arg Ile Ala Ala Leu Glu Gly Gly Ile Gly Ala Leu Ala 65 70 75 80

Thr Ser Ser Gly Gln Ser Ala Gln Phe Leu Ala Ile Ala Gly Leu Ala 85 90 95

His Ala Gly Asp Asn Ile Ile Ser Thr Ser Tyr Leu Tyr Gly Gly Thr
100 105 110

Tyr Asn Gln Phe Lys Val Ala Phe Lys Arg Leu Gly Ile Glu Thr Lys 115 120 125

Phe Val Asn Gly Asp Ala Ala Glu Asp Phe Ala Lys Leu Ile Asp Asp 130 135 140

Lys Thr Lys Ala Ile Tyr Ile Glu Thr Ile Gly Asn Pro Lys Tyr Asn 145 150 155 160

170

Val Pro Asp Phe Glu Lys Ile Thr Lys Leu Ala His Glu His Gly Ile

Pro Val Val Asp Asn Thr Phe Gly Ala Gly Gly Phe Leu Val Asn 180 185 190

Pro Ile Ala His Gly Ala Asp Ile Val Val His Ser Ala Thr Lys Trp
195 200 205

Ile Gly Gly His Gly Thr Thr Ile Ala Gly Val Ile Val Asp Ser Gly 210 215 220

Asn Phe Pro Trp Thr Glu Tyr Pro Glu Lys Tyr Pro Gln Phe Ser Lys 225 230 235 240

Pro Ser Glu Gly Tyr His Gly Leu Ile Leu Asn Asp Ala Leu Gly Lys
245 250 255

Ala Ala Tyr Ile Gly His Leu Arg Ile Glu Leu Leu Arg Asp Leu Gly 260 265 270

Pro Ala Leu Asn Pro Phe Gly Ser Phe Leu Leu Gln Gly Leu Glu 275 280 285

Thr Leu Ser Leu Arg Val Glu Arg Gln Ser Glu Asn Ala Leu Lys Leu 290 295 300

Ala Gln Trp Leu Glu Lys Asn Pro Asn Val Glu Ser Val Ser Tyr Leu 305 310 315 320

Gly Leu Pro Ser His Glu Ser His Glu Leu Ser Lys Lys Tyr Leu Asn 325 330 335

Asn Asp Ala Lys Tyr Phe Gly Gly Ala Leu Ala Phe Thr Val Lys Asp 340 345

Ile Thr Asn Thr Ser Ser Asp Pro Phe Asn Glu Ala Ser Pro Lys Leu
355 360 365

Val Asp Asn Leu Glu Ile Ala Ser Asn Leu Ala Asn Val Gly Asp Ser 370 375 380

Lys Thr Leu Val Ile Ala Pro Trp Phe Thr Thr His Gln Gln Leu Ser 385 390 395 400

Asp Glu Glu Lys Leu Ala Ser Gly Val Thr Lys Gly Leu Ile Arg Val 405 410 415

PCT/EP2003/009453

48

384

Ser Thr Gly Thr Glu Tyr Ile Asp Asp Ile Ile Asn Asp Phe Glu Gln
420 425 430

106/130

Ala Phe Lys Lys Val Tyr Asn Asn 435 440

<210> 53

<211> 1290

<212> DNA

<213> Schizosaccharomyces pombe

<220>

<221> CDS

<222> (1)..(1290)

115

<223>

<400> 53

Met 1	Pro	Val	Glu	Ser 5	Glu	His	Phe	Glu	Thr 10	Leu	Gln	Leu	His	Āla 15	Gly	
			gat Asp 20													96
			tat Tyr													144
			gaa Glu													192
			ttt Phe													240
			act Thr													288
			aag Lys													336

atg cca gtc gag agt gaa cat ttc gaa act tta caa tta cat gct ggc

ggt ggt act tac aac ctc ttc aag gtt acc ctg cct aga ttg gga att

Gly Gly Thr Tyr Asn Leu Phe Lys Val Thr Leu Pro Arg Leu Gly Ile

120

ac Th:	t ac r Th	r Ly	g tti	t gte	c aat l Ası	t ggt 1 Gl ₃ 139	/ As	t gat p Asp	cct Pro	aat Asn	gat Asp 140	Leu	gca Ala	gct Ala	cag Gln	432
	e As					Ala		t tac			Ser					480
atg Mei	tac t Ty	c aad r Asi	gtt 1 Val	cco l Pro 165	as c	ttt Phe	gag Glu	g cgt ı Arg	atc Ile 170	Ala	gag Glu	gtt Val	gct Ala	cat His 175	gcc Ala	528
gct Ala	gg(Gl)	gtg Val	g ect l Pro 180	Let	a atç 1 Met	gto : Val	gat Ası	aac Asn 185	Thr	ttt Phe	ggc Gly	Gly	ggt Gly 190	ggt Gly	tat Tyr	576
			Pro					gcc Ala								624
Thr	Lys 210	Trp) Ile	: Gly	Gly	His 215	Gly	act Thr	Thr	Ile	Gly 220	Gly	Val	Ile	Val	672
Asp 225	Ser	Gly	. PÀs	Phe	Asp 230	Trp	Lys	aag Lys	Asn	Ser 235	Lys	Arg	Phe	Pro	Glu 240	720
Phe	Asn	Glu	Pro	His 245	Pro	Gly	Тут	cat His	Gly 250	Met	Val	Phe	Thr	Glu 255	Thr	768
Phe	Gly	Asn	Leu 260	Ala	Tyr	Ala	Phe	gct Ala 265	Сув	Arg	Thr	Gln	Thr 270	Leu	Arg	816
Asp	Val	Gly 275	Gly	Asn	Ala	Asn	Pro 280	ttc Phe	Gly	Val	Phe	Leu 285	Leu	Leu	Gln	864
Gly	Leu 290	Glu	Thr	Leu	Ser	Leu 295	Arg	atg Met	Glu	Arg	His 300	Val	Gln	Asn	Ala	912
Phe 305	Ala	Leu	Ala	Lys	Tyr 310	Leu	Glu	aag Lys	His	Pro 315	Lys	Val	Asn	Trp	Val 320	960
Ser	Tyr	Pro	Gly	Leu 325	Glu	Ser	His	gtc Val	Ser 330	His	Lys	Leu	Ala	Lys 335	Lys	1008
tac Tyr	ttg Leu	aaa Lys	aat Asn 340	ggt Gly	tac Tyr	Gly	gcc Ala	gtt Val 345	ctc Leu	agc Ser	ttt Phe	ggc	gct Ala 350	aaa Lys	ggt Gly	1056
Gly	Pro	Asp 355	Gln	Ser	Arg	Lys	Val 360	gtc Val	Asn	Ala	Leu	Lys 365	Leu	Āla	Ser	1104
cag Gln	ttg Leu 370	gcc Ala	aat Asn	gtt Val	Gly .	gat Asp 375	gcc Ala	aaa Lys	act Thr	ttg Leu	gtt Val 380	atc Ile	gct Ala	cct Pro	gcc Ala	1152

	Thr					tta Leu					Gln					1200
					Ile	cgt Arg				Gly						1248
						gct Ala			Leu							1290
<21	0>	54														
<21	1>	429														
<21	2>	PRT														
<21	3>	Schi	zosa	ccha	romy	ces j	dmoq	e								
<40	0>	54														
Met 1	Pro	Val	Glu	Ser 5	Glu	His	Phe	Glu	Thr 10	Leu	Gln	Leu	His	Ala 15	Gly	
Gln	Glu	Pro	Asp 20	Ala	Ala	Thr	Ser	Ser 25	Arg	Ala	Val	Pro	Ile 30	Tyr	Ala	
Thr	Thr	Ser 35	Tyr	Val	Phe	Arg	Asp 40	Cys	Asp	His	Gly	Gly 45	Arg	Leu	Phe	
Gly	Leu 50	Gln	Glu	Pro	Gly	Tyr 55	Ile	Tyr	Ser	Arg	Met 60	Met	Asn	Pro	Thr	
Ala 65	Asp	Val	Phe	Glu	Lys 70	Arg	Ile	Ala	Ala	Leu 75	Glu	His	Gly	Ala	Ala 80	
Ala	Ile	Ala	Thr	Ser 85	Ser	Gly	Thr	Ser	Ala 90	Leu	Phe	Met	Ala	Leu 95	Thr	
Thr		Ala	Lys 100	Ala	Gly	Asp	Asn	Ile 105	Val	Ser	Thr	Ser	Туг 110	Leu	Tyr	
		Thr 115	Tyr	Asn	Leu	Phe	Lys 120	Val	Thr	Leu	Pro	Arg 125	Leu	Gly	Ile	
Thr	Thr 130	Lys	Phe	Val	Asn	Gly 135	Asp	Asp	Pro	Asn	Asp 140	Leu	Ala	Ala	Gln	

Ile Asp Glu Asn Thr Lys Ala Val Tyr Val Glu Ser Ile Gly Asn Pro

145 150 155 160

Met Tyr Asn Val Pro Asp Phe Glu Arg Ile Ala Glu Val Ala His Ala 165 170 175

Ala Gly Val Pro Leu Met Val Asp Asn Thr Phe Gly Gly Gly Tyr
180 185 190

Leu Val Arg Pro Ile Asp His Gly Ala Asp Ile Val Thr His Ser Ala 195 200 205

Thr Lys Trp Ile Gly Gly His Gly Thr Thr Ile Gly Gly Val Ile Val 210 215 220

Asp Ser Gly Lys Phe Asp Trp Lys Lys Asn Ser Lys Arg Phe Pro Glu 225 230 235 240

Phe Asn Glu Pro His Pro Gly Tyr His Gly Met Val Phe Thr Glu Thr 245 250 255

Phe Gly Asn Leu Ala Tyr Ala Phe Ala Cys Arg Thr Gln Thr Leu Arg
260 265 270

Asp Val Gly Gly Asn Ala Asn Pro Phe Gly Val Phe Leu Leu Gln 275 280 285

Gly Leu Glu Thr Leu Ser Leu Arg Met Glu Arg His Val Gln Asn Ala 290 295 300

Phe Ala Leu Ala Lys Tyr Leu Glu Lys His Pro Lys Val Asn Trp Val 305 310 315 320

Ser Tyr Pro Gly Leu Glu Ser His Val Ser His Lys Leu Ala Lys Lys 325 330 335

Tyr Leu Lys Asn Gly Tyr Gly Ala Val Leu Ser Phe Gly Ala Lys Gly
340 345 350

Gly Pro Asp Gln Ser Arg Lys Val Val Asn Ala Leu Lys Leu Ala Ser 355 360 365

Gln Leu Ala Asn Val Gly Asp Ala Lys Thr Leu Val Ile Ala Pro Ala 370 375 380

Tyr Thr Thr His Leu Gln Leu Thr Asp Glu Glu Gln Ile Ser Ala Gly 395 400

52

47

38

Val Thr Lys Asp Leu Ile Arg Val Ala Val Gly Ile Glu His Ile Asp 405 410 415

Asp Ile Ile Ala Asp Phe Ala Gln Ala Leu Glu Val Ala
420
425

- <210> 55
- <211> 52
- <212> DNA
- <213> Künstliche Sequenz
- <220>
- <223> Beschreibung der künstlichen Sequenz:PCR primer
- <400> 55
- cccgggatcc gctagcggcg cgccggccgg cccggtgtga aataccgcac ag
- <210> 56
- <211> 53
- <212> DNA
- <213> Künstliche Sequenz
- <220>
- <223> Beschreibung der künstlichen Sequenz:PCR primer
- <400> 56
- tctagactcg agcggccgcg gccggccttt aaattgaaga cgaaagggcc tcg 53
- <210> 57
- <211> 47
- <212> DNA
- <213> Künstliche Sequenz
- <220>
- <223> Beschreibung der künstlichen Sequenz:PCR primer
- <400> 57
- gagatctaga cccggggatc cgctagcggg ctgctaaagg aagcgga
- <210> 58
- <211> 38
- <212> DNA
- <213> Künstliche Sequenz
- <220>
- <223> Beschreibung der künstlichen Sequenz:PCR primer
- <400> 58
- gagaggcgcg ccgctagcgt gggcgaagaa ctccagca
- <210> 59
- <211> 34
- <212> DNA
- <213> Künstliche Sequenz
- <220>
- <223> Beschreibung der künstlichen Sequenz:PCR primer

<400> 59	
gagagggegg cegegeaaag teeegetteg tgaa	34
	J 2
<210> 60	
<211> 34	
<212> DNA	
<213> Künstliche Sequenz	•
<220>	
<223> Beschreibung der künstlichen Sequenz:PCR primer	
<400> 60	
gagagggcgg ccgctcaagt cggtcaagcc acgc	34
<210> 61	
<211> 140	
<212> DNA	
<213> Künstliche Sequenz	
<220>	
<223> Beschreibung der künstlichen Sequenz:PCR primer	
reportersung der kunstitenen sequenz:PCR primer	
<400> 61	
togaatttaa atotogagag gootgacgto gggcooggta coacgogtoa tatgactagt	- 60
toggateray gyararcyce gararcgatg ctrttctgcg ttaattaaca attoggater	120
tctagacccg ggatttaaat	140
<210> 62	
<211> 140	
<212> DNA	
<213> Künstliche Sequenz	
-220	
<220>	
<223> Beschreibung der künstlichen Sequenz:PCR primer	
<400> 62	
gatcatttaa atcccgggtc tagaggatcc caattgttaa ttaacgcaga agagcatcga	60
tgtcgacgat atccctaggt ccgaactagt catatgacgc gtggtaccgg gcccgacgtc	120
aggeeteteg agatttaaat	140
<210> 63	
<211> 33	
<212> DNA	
<213> Künstliche Sequenz	
<220>	
<223> Beschreibung der künstlichen Sequenz:PCR primer	
<400> 63	
gagageggee geegateett tttaacceat cac	
	33
•	
<210> 64	
<211> 32	
<212> DNA	
<213> Künstliche Sequenz	

<220>

<223> Beschreibung der künstlichen Sequenz:PCR primer

<400> 64
aggageggee gecateggea ttttettttg eg

32

<210> 65 <211> 5091 <212> DNA <213> Kûnstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:Plasmid

<400> 65

gccgcgactg ccttcgcgaa gccttgcccc gcggaaattt cctccaccga gttcgtgcac 60 acccctatgc caagcttctt tcaccctaaa ttcgagagat tggattctta ccgtggaaat 120 tettegeaaa aategteece tgategeeet tgegaegttg gegteggtge egetggttge 180 gcttggcttg accgacttga tcagcggccg ctcgatttaa atctcgagag gcctgacgtc 240 gggcccggta ccacgcgtca tatgactagt tcggacctag ggatatcgtc gacatcgatg 300 ctcttctgcg ttaattaaca attgggatcc tctagacccg ggatttaaat cgctagcggg 360 ctgctaaagg aagcggaaca cgtagaaagc cagtccgcag aaacggtgct gaccccggat 420 gaatgtcagc tactgggcta tctggacaag ggaaaacgca agcgcaaaga gaaagcaggt 480 agettgeagt gggettacat ggegataget agaetgggeg gttttatgga cageaagega 540 accggaattg ccagctgggg cgccctctgg taaggttggg aagccctgca aagtaaactg 600 gatggctttc ttgccgccaa ggatctgatg gcgcagggga tcaagatctg atcaagagac 660 aggatgagga tcgtttcgca tgattgaaca agatggattg cacgcaggtt ctccggccgc 720 ttgggtggag aggetatteg getatgactg ggcacaacag acaatcggct gctctgatgc 780 cgccgtgttc cggctgtcag cgcaggggcg cccggttctt tttgtcaaga ccgacctgtc 840 cggtgccctg aatgaactgc aggacgaggc agcgcggcta tcgtggctgg ccacgacggg 900 cgttccttgc gcagctgtgc tcgacgttgt cactgaagcg ggaagggact ggctgctatt 960 gggcgaagtg ccggggcagg atctcctgtc atctcacctt gctcctgccg agaaagtatc 1020 catcatggct gatgcaatgc ggcggctgca tacgcttgat ccggctacct gcccattcga 1080 ccaccaageg aaacategea tegagegage aegtactegg atggaageeg gtettgtega 1140 tcaggatgat ctggacgaag agcatcaggg gctcgcgcca gccgaactgt tcgccaggct 1200 caaggegege atgeeegacg gegaggatet egtegtgace catggegatg cetgettgee 1260 gaatatcatg gtggaaaatg gccgcttttc tggattcatc gactgtggcc ggctgggtgt 1320 ggcggaccgc tatcaggaca tagcgttggc tacccgtgat attgctgaag agcttggcgg 1380 cgaatgggct gaccgcttcc tcgtgcttta cggtatcgcc gctcccgatt cgcagcgcat 1440 cgccttctat cgccttcttg acgagttctt ctgageggga ctctggggtt cgaaatgacc 1500 gaccaagega egeceaacet gecateaega gatttegatt ecacegeege ettetatgaa 1560 aggttgggct tcggaatcgt tttccgggac gccggctgga tgatcctcca gcgcggggat 1620 ctcatgetgg agttettege ccaegetage ggegegeegg ceggeeeggt gtgaaatace 1680 gcacagatgc gtaaggagaa aataccgcat caggcgctct tccgcttcct cgctcactga 1740 ctcgctgcgc tcggtcgttc ggctgcggcg agcggtatca gctcactcaa aggcggtaat 1800 acggttatcc acagaatcag gggataacgc aggaaagaac atgtgagcaa aaggccagca 1860 aaaggccagg aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tccgccccc 1920 tgacgagcat cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata 1980 aagataccag gegttteece etggaagete eetegtgege teteetgtte egaceetgee 2040 gettacegga tacetgteeg cetttetece ttegggaage gtggegettt etcatagete 2100 acgctgtagg tatctcagtt cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga 2160 accecegit cageecgace getgegeett ateeggtaac tategtettg agtecaacce 2220 ggtaagacac gacttatege caetggeage agecaetggt aacaggatta geagagegag 2280 gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag 2340 gacagtattt ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag 2400 ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gcaagcagca 2460 gattacgcgc agaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga 2520 cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat 2580 cttcacctag atccttttaa aggccggccg cggccgcgca aagtcccgct tcgtgaaaat 2640 tttcgtgccg cgtgattttc cgccaaaaac tttaacgaac gttcgttata atggtgtcat 2700 gacetteacg acgaagtact aaaattggee egaateatea getatggate tetetgatgt 2760 cgcgctggag tccgacgcgc tcgatgctgc cgtcgattta aaaacggtga tcggattttt 2820 ccgagctctc gatacgacgg acgcgccagc atcacgagac tgggccagtg ccgcgagcga 2880


```
cctagaaact ctcgtggcgg atcttgagga gctggctgac gagctgcgtg ctcggccagc 2940
gccaggagga cgcacagtag tggaggatgc aatcagttgc gcctactgcg gtggcctgat 3000
tcctcccgg cctgacccgc gaggacggcg cgcaaaatat tgctcagatg cgtgtcgtgc 3060
cgcagccagc cgcgagcgcg ccaacaaacg ccacgccgag gagctggagg cggctaggtc 3120
gcaaatggcg ctggaagtgc gtcccccgag cgaaattttg gccatggtcg tcacagagct 3180
ggaagcggca gcgagaatta tcgcgatcgt ggcggtgccc gcaggcatga caaacatcgt 3240
aaatgccgcg tttcgtgtgc cgtggccgcc caggacgtgt cagcgccgcc accacctgca 3300
ccgaatcggc agcagcgtcg cgcgtcgaaa aagcgcacag gcggcaagaa gcgataagct 3360
gcacgaatac ctgaaaaatg ttgaacgccc cgtgagcggt aactcacagg gcgtcggcta 3420
accccagtc caaacctggg agaaagcgct caaaaatgac tctagcggat tcacgagaca 3480
ttgacacacc ggcctggaaa ttttccgctg atctgttcga cacccatccc gagctcgcgc 3540
tgcgatcacg tggctggacg agcgaagacc gccgcgaatt cctcgctcac ctgggcagag 3600
aaaatttcca gggcagcaag acccgcgact tcgccagcgc ttggatcaaa gacccggaca 3660
cggagaaaca cagccgaagt tataccgagt tggttcaaaa tcgcttgccc ggtgccagta 3720
tgttgctctg acgcacgcgc agcacgcagc cgtgcttgtc ctggacattg atgtgccgag 3780
ccaccaggcc ggcgggaaaa tcgagcacgt aaaccccgag gtctacgcga ttttggagcg 3840
ctgggcacgc ctggaaaaag cgccagcttg gatcggcgtg aatccactga gcgggaaatg 3900
ccagctcatc tggctcattg atccggtgta tgccgcagca ggcatgagca gcccgaatat 3960
gegeetgetg getgeaacga eegaggaaat gaceegegtt tteggegetg accaggettt 4020
ttcacatagg ctgagccgtg gccactgcac tctccgacga tcccagccgt accgctggca 4080
tgcccagcac aatcgcgtgg atcgcctagc tgatcttatg gaggttgctc gcatgatctc 4140
aggcacagaa aaacctaaaa aacgctatga gcaggagttt tctagcggac gggcacgtat 4200
cgaagcggca agaaaagcca ctgcggaagc aaaagcactt gccacgcttg aagcaagcct 4260
geogagegee getgaagegt etggagaget gategaegge gteegtgtee tetggaetge 4320
tecagggegt geogeocgtg atgagaegge ttttegeeac getttgaetg tgggatacca 4380
gttaaaagcg gctggtgagc gcctaaaaga caccaagggt catcgagcct acgagcgtgc 4440
ctacaccgtc gctcaggcgg tcggaggagg ccgtgagcct gatctgccgc cggactgtga 4500
ccgccagacg gattggccgc gacgtgtgcg cggctacgtc gctaaaggcc agccagtcgt 4560
ccctgctcgt cagacagaga cgcagagcca gccgaggcga aaagctctgg ccactatggg 4620
aagacgtggc ggtaaaaagg ccgcagaacg ctggaaagac ccaaacagtg agtacgcccg 4680
agcacagega gaaaaactag ctaagtecag teaacgacaa getaggaaag etaaaggaaa 4740
tcgcttgacc attgcaggtt ggtttatgac tgttgaggga gagactggct cgtggccgac 4800
aatcaatgaa gctatgtctg aatttagcgt gtcacgtcag accgtgaata gagcacttaa 4860
ggtctgcggg cattgaactt ccacgaggac gccgaaagct tcccagtaaa tgtgccatct 4920
cgtaggcaga aaacggttcc cccgtagggt ctctctcttg gcctcctttc taggtcgggc 4980
tgattgctct tgaagctctc taggggggct cacaccatag gcagataacg ttccccaccg 5040
getegeeteg taagegeaca aggaetgete ecaaagatet teaaageeac t
                                                                  5091
```

```
<210> 66
<211> 4323
<212> DNA
```

<213> Kunstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz:Plasmid

PCT/EP2003/009453

WO 2004/024933

aaaatatgta aggggtgacg ccaaagtata cactttgccc tttacacatt ttaggtcttg 900 cctgctttat cagtaacaaa cccgcgcgat ttacttttcg acctcattct attagactct 960 cgtttggatt gcaactggtc tattttcctc ttttgtttga tagaaaatca taaaaggatt 1020 tgcagactac gggcctaaag aactaaaaaa tctatctgtt tcttttcatt ctctgtattt 1080 tttatagttt ctgttgcatg ggcataaagt tgccttttta atcacaattc agaaaatatc 1140 ataatatctc atttcactaa ataatagtga acggcaggta tatgtgatgg gttaaaaagg 1200 ateggeggee getegattta aatetegaga ggeetgaegt egggeeeggt accaegegte 1260 atatgactag ttcggaccta gggatatcgt cgacatcgat gctcttctgc gttaattaac 1320 aattgggatc ctctagaccc gggatttaaa tcgctagcgg gctgctaaag gaagcggaac 1380 acgtagaaag ccagtccgca gaaacggtgc tgaccccgga tgaatgtcag ctactgggct 1440 atctggacaa gggaaaacgc aagcgcaaag agaaagcagg tagcttgcag tgggcttaca 1500 tggcgatagc tagactgggc ggttttatgg acagcaagcg aaccggaatt gccagctggg 1560 gcgccctctg gtaaggttgg gaagccctgc aaagtaaact ggatggcttt cttgccgcca 1620 aggatetgat ggegeagggg ateaagatet gateaagaga eaggatgagg ategtttege 1680 atgattgaac aagatggatt gcacgcaggt tctccggccg cttgggtgga gaggctattc 1740 ggctatgact gggcacaaca gacaatcggc tgctctgatg ccgccgtgtt ccggctgtca 1800 gegeagggge geceggitet tittgteaag acegaectgt ceggigeect gaatgaactg 1860 caggacgagg cagcgcgct atcgtggctg gccacgacgg gcgttccttg cgcagctgtg 1920 ctcgacgttg tcactgaagc gggaagggac tggctgctat tgggcgaagt gccggggcag 1980 gatctcctgt catctcacct tgctcctgcc gagaaagtat ccatcatggc tgatgcaatg 2040 cggcggctgc atacgcttga tccggctacc tgcccattcg accaccaagc gaaacatcgc 2100 atcgagcgag cacgtactcg gatggaagcc ggtcttgtcg atcaggatga tctggacgaa 2160 gagcatcagg ggctcgcgcc agccgaactg ttcgccaggc tcaaggcgcg catgcccgac 2220 ggcgaggatc tcgtcgtgac ccatggcgat gcctgcttgc cgaatatcat ggtggaaaat 2280 ggccgctttt ctggattcat cgactgtggc cggctgggtg tggcggaccg ctatcaggac 2340 atagegttgg ctaccegtga tattgetgaa gagettggeg gegaatggge tgaccgette 2400 ctcgtgcttt acggtatcgc cgctcccgat tcgcagcgca tcgccttcta tcgccttctt 2460 gacgagttet tetgageggg actetggggt tegaaatgac egaccaageg acgeccaace 2520 tgccatcacg agatttcgat tccaccgccg ccttctatga aaggttgggc ttcggaatcg 2580 ttttccggga cgccggctgg atgatcctcc agcgcgggga tctcatgctg gagttcttcg 2640 cccacgctag cggcgccgg gccggcccgg tgtgaaatac cgcacagatg cgtaaggaga 2700 aaataccgca tcaggcgctc ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt 2760 cggctgcggc gagcggtatc agctcactca aaggcggtaa tacggttatc cacagaatca 2820 ggggataacg caggaaagaa catgtgagca aaaggccagc aaaaggccag gaaccgtaaa 2880 aaggeegegt tgetggegtt ttteeatagg eteegeeeee etgaegagea teacaaaaat 2940 cgacgctcaa gtcagaggtg gcgaaacccg acaggactat aaagatacca ggcgtttccc 3000 cctggaaget cectegtgeg etetectgtt eegaceetge egettacegg atacetgtee 3060 geetttetee ettegggaag egtggegett teteataget eaegetgtag gtateteagt 3120 teggtgtagg tegttegete caagetggge tgtgtgcacg aaceceegt teagecegae 3180 cgctgcgcct tatccggtaa ctatcgtctt gagtccaacc cggtaagaca cgacttatcg 3240 ccactggcag cagccactgg taacaggatt agcagagcga ggtatgtagg cggtgctaca 3300 gagttettga agtggtggcc taactacggc tacactagaa ggacagtatt tggtatetgc 3360 gctctgctga agccagttac cttcggaaaa agagttggta gctcttgatc cggcaaacaa 3420 accaccgctg gtagcggtgg tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa 3480 ggatctcaag aagatccttt gatcttttct acggggtctg acgctcagtg gaacgaaaac 3540 tcacgttaag ggattttggt catgagatta tcaaaaagga tcttcaccta gatcctttta 3600 aaggccggcc gcggccgcca tcggcatttt cttttgcgtt tttatttgtt aactgttaat 3660 tgtccttgtt caaggatgct gtctttgaca acagatgttt tcttgccttt gatgttcagc 3720 aggaageteg gegeaaacgt tgattgtttg tetgegtaga atcetetgtt tgteatatag 3780 cttgtaatca cgacattgtt tcctttcgct tgaggtacag cgaagtgtga gtaagtaaag 3840 gttacatcgt taggatcaag atccatttt aacacaaggc cagttttgtt cagcggcttg 3900 tatgggccag ttaaagaatt agaaacataa ccaagcatgt aaatatcgtt agacgtaatg 3960 ccgtcaatcg tcatttttga tccgcgggag tcagtgaaca ggtaccattt gccgttcatt 4020 ttaaagacgt tcgcgcgttc aatttcatct gttactgtgt tagatgcaat cagcggtttc 4080 atcacttttt tcagtgtgta atcategttt agetcaatca tacegagage geegtttget 4140 aactcagccg tgcgtttttt atcgctttgc agaagttttt gactttcttg acggaagaat 4200 gatgtgcttt tgccatagta tgctttgtta aataaagatt cttcgccttg gtagccatct 4260 tcagttccag tgtttgcttc aaatactaag tatttgtggc ctttatcttc tacgtagtga 4320 gga 4323

900

<210> 67 <211> 35 <212> DNA <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz:PCR primer 67 gagagagaga cgcgtcccag tggctgagac gcatc 35 <210> 68 <211> 34 DNA <212> <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz:PCR primer <400> 68 ctctctctgt cgacgaattc aatcttacgg cctg 34 <210> 69 <211> 5860 <212> DNA <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz:Plasmid <400> 69 cccggtacca cgcgtcccag tggctgagac gcatccgcta aagccccagg aaccctgtgc 60 agaaagaaaa cactcctctg gctaggtaga cacagtttat aaaggtagag ttgagcgggt 120 · aactgtcagc acgtagatcg aaaggtgcac aaaggtggcc ctggtcgtac agaaatatgg 180 cggttcctcg cttgagagtg cggaacgcat tagaaacgtc gctgaacgga tcgttgccac 240 caagaagget ggaaatgatg tegtggttgt etgeteegea atgggagaea eeaeggatga 300 acttetagaa ettgeagegg cagtgaatee egtteegeca getegtgaaa tggatatget 360 cctgactgct ggtgagcgta tttctaacgc tctcgtcgcc atggctattg agtcccttgg 420 cgcagaagec caatetttea egggetetea ggetggtgtg etcaceaceg agegeeacgg 480 aaacgcacgc attgttgatg tcactccagg tcgtgtgcgt gaagcactcg atgagggcaa 540 gatetgeatt gttgetggtt tecagggtgt taataaagaa accegegatg teaccacgtt 600 gggtcgtggt ggttctgaca ccactgcagt tgcgttggca gctgctttga acgctgatgt 660 gtgtgagatt tactcggacg ttgacggtgt gtataccgct gacccgcgca tcgttcctaa 720 tgcacagaag ctggaaaagc tcagcttcga agaaatgctg gaacttgctg ctgttggctc 780 caagattttg gtgctgcgca gtgttgaata cgctcgtgca ttcaatgtgc cacttcgcgt 840

acgetegtet tatagtaatg atceeggeae tttgattgee ggetetatgg aggatattee

WO 2004/024933

8

PCT/EP2003/009453

			110,100			
tgtggaagaa	gcagtcctt	a ccggtgtcgc	aaccgacaag	tccgaagcca	aagtaaccgt	960
tctgggtatt	tccgataag	c caggcgaggc	tgcgaaggtt	ttccgtgcgt	tggctgatgc	1020
agaaatcaac	attgacatg	g ttctgcagaa	cgtctcttct	gtagaagacg	gcaccaccga	1080
catcaccttc	acctgccct	gttccgacgg	cegeegegeg	atggagatct	tgaagaagct	1140
tcaggttcag	ggcaactgga	a ccaatgtgct	ttacgacgac	caggtcggca	aagtctccct	1200
cgtgggtgct	ggcatgaagt	ctcacccagg	tgttaccgca	gagttcatgg	aagctctgcg	1260
cgatgtcaac	gtgaacatcg	g aattgatttc	cacctctgag	attegtattt	ccgtgctgat	1320
ccgtgaagat	gatctggatg	g ctgctgcacg	tgcattgcat	gagcagttcc	agctgggcgg	1380
cgaagacgaa	gccgtcgttt	atgcaggcac	cggacgctaa	agttttaaag	gagtagtttt	1440
acaatgacca	ccatcgcagt	tgttggtgca	accggccagg	tcggccaggt	tatgcgcacc	1500
cttttggaag	agcgcaattt	cccagctgac	actgttcgtt	tctttgcttc	cccacgttcc	1560
gcaggccgta	agattgaatt	cgtcgacatc	gatgctcttc	tgcgttaatt	aacaattggg	1620
atcctctaga	cccgggattt	aaatcgctag	cgggctgcta	aaggaagcgg	aacacgtaga	1680
aagccagtcc	gcagaaacgg	tgctgacccc	ggatgaatgt	cagctactgg	gctatctgga	1740
caagggaaaa	cgcaagcgca	aagagaaagc	aggtagcttg	cagtgggctt	acatggcgat	1800
agctagactg	ggcggtttta	tggacagcaa	gcgaaccgga	attgccagct	ggggcgccct	1860
ctggtaaggt	tgggaagccc	tgcaaagtaa	actggatggc	tttcttgccg	ccaaggatct	1920
gatggcgcag	gggatcaaga	tctgatcaag	agacaggatg	aggatcgttt	cgcatgattg	1980
aacaagatgg	attgcacgca	ggtteteegg	ccgcttgggt	ggaga ggcta	ttcggctatg	2040
actgggcaca	acagacaatc	ggctgctctg	atgccgccgt	gttccggctg	tcagcgcagg	2100
ggcgcccggt	tetttttgte	aagaccgacc	tgtccggtgc	cctgaatgaa	ctgcaggacg	2160
aggcagcgcg	gctatcgtgg	ctggccacga	cgggcgttcc	ttgcgcagct	gtgctcgacg	2220
ttgtcactga	agcgggaagg	gactggctgc	tattgggcga	agtgccgggg	caggatetee	2280
tgtcatctca	ccttgctcct	gccgagaaag	tatccatcat	ggctgatgca	atgcggcggc	2340
tgcatacgct	tgatccggct	acctgcccat	tcgaccacca	agcgaaacat	cgcatcgagc	2400
gagcacgtac	tcggatggaa	gccggtcttg	tcgatcagga	tgatctggac	gaagagcatc	2460
aggggctcgc	gccagccgaa	ctgttcgcca	ggctcaaggc	gcgcatgccc	gacggcgagg	2520
atctcgtcgt	gacccatggc	gatgcctgct	tgccgaatat	catggtggaa	aatggccgct	2580
tttctggatt	catcgactgt	ggccggctgg	gtgtggcgga	ccgctatcag	gacatagcgt	2640
tggctacccg	tgatattgct	gaagagettg	gcggcgaatg	ggctgaccgc	ttcctcgtgc	2700
tttacggtat	cgccgctccc	gattegeage (gcatcgcctt	ctatcgcctt	cttgacgagt	2760
tettetgage	gggactctgg	ggttcgaaat g	gaccgaccaa	gcgacgccca	acctgccatc	2820

116/130

acgagatttc	gattccaccg	ccgccttcta	tgaaaggttg	ggcttcggaa	tegtttteeg	2880
ggacgccggc	tggatgatcc	tccagcgcgg	ggatctcatg	ctggagttct	tcgcccacgc	2940
tageggegeg	ccggccggcc	cggtgtgaaa	tacegeacag	atgcgtaagg	agaaaatacc	3000
gcatcaggcg	ctcttccgct	tcctcgctca	ctgactcgct	gegeteggte	gtteggetge	3060
ggcgagcggt	atcagctcac	tcaaaggcgg	taatacggtt	atccacagaa	tcaggggata	3120
acgcaggaaa	gaacatgtga	gcaaaaggcc	agcaaaaggc	caggaaccgt	aaaaaggccg	3180
cgttgctggc	gtttttccat	aggctccgcc	cccctgacga	gcatcacaaa	aatcgacgct	3240
caagtcagag	gtggcgaaac	ccgacaggac	tataaagata	ccaggcgttt	ccccctggaa	3300
gctccctcgt	gcgctctcct	gttccgaccc	tgccgcttac	cggatacctg	teegeettte	3360
tcccttcggg	aagcgtggcg	ctttctcata	gctcacgctg	taggtatctc	agttcggtgt	3420
aggtcgttcg	ctccaagctg	ggctgtgtgc	acgaaccccc	cgttcagccc	gaccgctgcg	3480
ccttatccgg	taactatcgt	cttgagtcca	acccggtaag	acacgactta	tegecaetgg	3540
cagcagccac	tggtaacagg	attagcagag	cgaggtatgt	aggeggtget	acagagttct	3600
tgaagtggtg	gcctaactac	ggctacacta	gaaggacagt	atttggtatc	tgcgctctgc	3660
tgaagccagt	taccttcgga	aaaagagttg	gtagctcttg	atccggcaaa	caaaccaccg	3720
ctggtagcgg	tggtttttt	gtttgcaagc	agcagattac	gcgcagaaaa	aaaggatctc	3780
aagaagatcc	tttgatcttt	tctacggggt	ctgacgctca	gtggaacgaa	aactcacgtt	3840
aagggatttt	ggtcatgaga	ttatcaaaaa	ggatcttcac	ctagatcctt	ttaaaggccg	3900
gccgcggccg	ccatcggcat	tttcttttgc	gtttttattt	gttaactgtt	aattgtcctt	3960
gttcaaggat	gctgtctttg	acaacagatg	ttttcttgcc	tttgatgttc	agcaggaagc	4020
tcggcgcaaa	cgttgattgt	ttgtctgcgt	agaatcctct	gtttgtcata	tagcttgtaa	4080
tcacgacatt	gtttcctttc	gcttgaggta	cagcgaagtg	tgagtaagta	aaggttacat	4140
cgttaggatc	aagatccatt	tttaacacaa	ggccagtttt	gttcagcggc	ttgtatgggc	4200
cagttaaaga	attagaaaca	taaccaagca	tgtaaatatc	gttagacgta	atgccgtcaa	4260
tcgtcatttt	tgatccgcgg	gagtcagtga	acaggtacca	tttgccgttc	attttaaaga	4320
cgttcgcgcg	ttcaatttca	tctgttactg	tgttagatgc	aatcagcggt	ttcatcactt	4380
ttttcagtgt	gtaatcatcg	tttagctcaa	tcataccgag	agcgccgttt	gctaactcag	4440
ccgtgcgttt	tttatcgctt	tgcagaagtt	tttgactttc	ttgacggaag	aatgatgtgc	4500
ttttgccata	gtatgctttg	ttaaataaag	attcttcgcc	ttggtagcca	tcttcagttc	4560
cagtgtttgc	ttcaaatact	aagtatttgt	ggcctttatc	ttctacgtag	tgaggatctc	4620
tcagcgtatg	gttgtcgcct	gagctgtagt	tgccttcatc	gatgaactgc	tgtacatttt	4680

			118/130			
gatacgtttt	teegteaceg	tcaaagattg	atttataatc	ctctacaccg	ttgatgttca	4740
aagagctgto	: tgatgctgat	acgttaactt	gtgcagttgt	cagtgtttgt	ttgccgtaat	4800
gtttaccgga	gaaatcagtg	tagaataaac	ggatttttcc	gtcagatgta	aatgtggctg	4860
aacctgacca	ttcttgtgtt	tggtctttta	ggatagaatc	atttgcatcg	aatttgtcgc	4920
tgtctttaaa	gacgcggcca	gcgtttttcc	agctgtcaat	agaagtttcg	ccgacttttt	4980
gatagaacat	gtaaatcgat	gtgtcatccg	catttttagg	atctccggct	aatgcaaaga	5040
cgatgtggta	gccgtgatag	tttgcgacag	tgccgtcagc	gttttgtaat	ggccagctgt	5100
cccaaacgtc	caggcctttt	gcagaagaga	tatttttaat	tgtggacgaa	tcaaattcag	5160
aaacttgata	tttttcattt	ttttgctgtt	cagggatttg	cagcatatca	tggcgtgtaa	5220
tatgggaaat	gccgtatgtt	tccttatatg	gcttttggtt	cgtttcttc	gcaaacgctt	5280
gagttgcgcc	tectgecage	agtgcggtag	taaaggttaa	tactgttgct	tgttttgcaa	5340
actttttgat	gttcatcgtt	catgtctcct	tttttatgta	ctgtgttagc	ggtctgcttc	5400
ttccagccct	cctgtttgaa	gatggcaagt	tagttacgca	caataaaaaa	agacctaaaa	5460
tatgtaaggg	gtgacgccaa	agtatacact	ttgcccttta	cacattttag	gtcttgcctg	5520
ctttatcagt	aacaaacccg	cgcgatttac	ttttcgacct	cattctatta	gactctcgtt	5580
tggattgcaa	ctggtctatt	ttcctctttt	gtttgataga	aaatcataaa	aggatttgca	5640
gactacgggc	ctaaagaact	aaaaaatcta	tetgtttett	ttcattctct	gtattttta	5700
	tgcatgggca	•				5760
tatctcattt	cactaaataa	tagtgaacgg	caggtatatg	tgatgggtta	aaaaggatcg	5820
gcggccgctc	gatttaaatc	tcgagaggcc	tgacgtcggg			5860

<210> 70

<211> 38

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:PCR primer

<400> 70

cggcaccacc gacatcatct tcacctgccc tcgttccg

38

<210> 71

<211> 38 <212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:PCR primer

<400> 71

cggaacgagg gcaggtgaag atgatgtcgg tggtgccg

	10>	72														
	11>	126														
	12>	DNA			_											
	13> 20>	пЛя	C Mu	Lant	E											
	21>	CDS														
	22>		(1	266)												
<2	23>															
	00>	72					_				_					
gt	g gco	C CT	g gt	c gra	a cag	g aa	a ta	t gg:	c ggt	t tcc	: tc	ctt	gag	agt	gcg	48
1	. MI	r ne	u va	1 VQ.	1 01.	цыу	в ту	r Gr	y Gij 10	y sei	. sei	r ner	ı GIU	15 15	Ala	
_				-										13		
gaa	a cg	at	t ag	a aa	c gt	c gc	t ga	a cg	g ato	gtt	ge	acc	aag	aag	gct	96
Gli	ı Arg	g Il		g Ası	n Val	l Ala	a Gl		g Ile	val	. Ala	a Thr	Lys	Lys	Ala	
			20					25					30			
aas	aat	· ga	· r ate	- ata	a ati	ate	- to	r tc/		2 2 4 0					gat	344
Gly	/ Asi	ı Ası	o Vai	l Val	l Val	l Val	l Cv	s Sei	c Ala	. Met	Glv	. gac	Thr	Thr	Asp	144
		35					40				1	45			p	•
																•
gaa	l ctt	cta	a gaa	a ctt	gca	ge	gea	a gto	aat	ccc	gtt	ccg	cca	gct	cgt	192
GIL	50	ı Dei	I GI	ı net	I Ale	55	a Al	a val	L ASI	Pro	00 vaı	. Pro	Pro	Ala	Arg	
	50					-					00					
gaa	atg	gat	ato	cto	: ctg	act	: gct	ggt	gag	cgt	att	tct	aac	gct	ctc	240
	Met	Asp) Met	: Lev		l Thz	Ala	a Gly	r Glu		Ile	Ser	Asn	Ala	Leu	
65					70					75					80	
ato	gee	ato	r act	att	gaq	tec	: ctt	: aac	gca	gaa	acc	caa	tet	ttc	200	288
Val	Ala	Met	Ala	Ile	Glu	Ser	Lev	Gly	Ala	Glu	Ala	Gln	Ser	Phe	Thr	200
				85				_	90					95		
ggc	Ser	Cag Clr	get Ala	Glv	yeg Val	Len	Thr	acc Thr	gag Glu	cgc	cac	gga	aac	gca	cgc	336
0 -7	-		100					105		-T-9	UTO	Gly	110	VIG	MIG	
att	gtt	gat	gtc	act	cca	ggt	cgt	gtg	cgt	gaa	gca	ctc	gat	gag	ggc	384
Ile	Val			Thr	Pro	Gly			Arg	Glu	Ala		Asp	Glu	Gly	
		115					120					125				
aag	atc	tgc	att	gtt	gct	ggt	ttc	caq	ggt	att	aat	aaa	gaa	acc	cac	432
Lys	Ile	Cys	Ile	Val	Ala	Gly	Phe	Gln	Gly	Val	Asn	Lys	Glu	Thr	Arg	432
	130					135					140				_	
~~ +	~+~				~~+	act	~~-									
Asp	Val	Thr	Thr	Leu	Glv	Ara	Glv	Glv	tct Ser	gac	acc	act	gca Ala	get Val	gcg	480
145					150	3	1			155	1111	1114		741	160	
ttg	gca	gct	gct	ttg	aac	gct	gat	gtg	tgt	gag	att	tac	tcg	gac	gtt	528
Leu	Ala	Ala	Ala		Asn	Ala	Asp	Val	Cys	Glu	Ile	Tyr	Ser		Val	
				165					170					175		
gac	ggt	gtg	tat	acc	gct	gac	ccq	cac	atc	att	cct	aat	qca	cag	aaa	576
Asp	Gly	Val	Tyr	Thr	Āla	Āsp	Pro	Arg	Ile	Val	Pro	Asn	Ala	Gln	Lvs	376
			180					185					190		-	
a			_		++-	~	~ -	_	•			_				
Len	Glu	Lve	Len	agc Ser	Phe	gaa Glu	gaa Gl	atg	ctg Leu	gaa	ctt	gct	gct	gtt	ggc	624
	u	195	u				200	מפכ	nea	GIU	neu	205	wig	AGT	GTÅ	
		_					•									

PCT/EP2003/009453

		Ile			ctg Leu											672
gtg Val 225	Pro	ctt Leu	cgc Arg	gta Val	cgc Arg 230	tcg Ser	tct Ser	tat Tyr	agt Ser	aat Asn 235	gat Asp	ccc Pro	ggc Gly	act Thr	ttg Leu 240	720
att Ile	gcc Ala	ggc	tct Ser	atg Met 245	gag Glu	gat Asp	att Ile	cct Pro	gtg Val 250	gaa Glu	gaa Glu	gca Ala	gtc Val	ctt Leu 255	acc Thr	768
ggt Gly	gtc Val	gca Ala	acc Thr 260	gac Asp	aag Lys	tcc Ser	gaa Glu	gcc Ala 265	aaa Lys	gta Val	acc Thr	gtt Val	ctg Leu 270	ggt Gly	att Ile	816
					gag Glu											864
					gac Asp											912
gac Asp 305	ggc Gly	acc Thr	acc Thr	gac Asp	atc Ile 310	atc Ile	ttc Phe	acc Thr	tgc Cys	cct Pro 315	cgt Arg	tcc Ser	gac Asp	ggc Gly	cgc Arg 320	960
Arg	Ala	Met	Glu	Ile 325	ttg Leu	Lys	Lys	Leu	Gln 330	Val	Gln	Gly	Asn	Trp 335	Thr	1008
Asn	Val	Leu	Tyr 340	Asp	gac Asp	Gln	Val	Gly 345	Lys	Val	Ser	Leu	Val 350	Gly	Ala	1056
Gly	Met	Lys 355	Ser	His	cca Pro	Gly	Val 360	Thr	Ala	Glu	Ph e	Met 365	Glu	Āla	Leu	1104
Arg	Asp 370	Val	Asn	Val	aac Asn	Ile 375	Glu	Leu	Ile	Ser	Thr 380	Ser	Glu	Ile	Arg	1152
att Ile 385	tcc Ser	gtg Val	ctg Leu	atc Ile	cgt Arg 390	gaa Glu	gat Asp	gat Asp	ctg Leu	gat Asp 395	gct Ala	gct Ala	gca Ala	cgt Arg	gca Ala 400	1200
ttg Leu	cat His	gag Glu	Gln	ttc Phe 405	cag Gln	ctg Leu	Gly	Gly	gaa Glu 410	gac Asp	gaa Glu	gcc Ala	gtc Val	gtt Val 415	tat Tyr	1248
			gga Gly 420		taa											1266

<210> 73

<211> 421

<212> PRT

<213> LysC Mutante

<400> 73

Val Ala Leu Val Val Gln Lys Tyr Gly Gly Ser Ser Leu Glu Ser Ala 1 5 10 15

Glu Arg Ile Arg Asn Val Ala Glu Arg Ile Val Ala Thr Lys Lys Ala 20 25 30

Gly Asn Asp Val Val Val Cys Ser Ala Met Gly Asp Thr Thr Asp 35 40 45

Glu Leu Leu Glu Leu Ala Ala Ala Val Asn Pro Val Pro Pro Ala Arg 50 55 60

Glu Met Asp Met Leu Leu Thr Ala Gly Glu Arg Ile Ser Asn Ala Leu 65 70 75 80

Val Ala Met Ala Ile Glu Ser Leu Gly Ala Glu Ala Gln Ser Phe Thr 85 90 95

Gly Ser Gln Ala Gly Val Leu Thr Thr Glu Arg His Gly Asn Ala Arg
100 105 110

Ile Val Asp Val Thr Pro Gly Arg Val Arg Glu Ala Leu Asp Glu Gly
115 120 125

Lys Ile Cys Ile Val Ala Gly Phe Gln Gly Val Asn Lys Glu Thr Arg 130 135 140

Asp Val Thr Thr Leu Gly Arg Gly Gly Ser Asp Thr Thr Ala Val Ala 145 150 155 160

Leu Ala Ala Leu Asn Ala Asp Val Cys Glu Ile Tyr Ser Asp Val 165 170 175

Asp Gly Val Tyr Thr Ala Asp Pro Arg Ile Val Pro Asn Ala Gln Lys 180 185 190

Leu Glu Lys Leu Ser Phe Glu Glu Met Leu Glu Leu Ala Ala Val Gly
195 200 205

Ser Lys Ile Leu Val Leu Arg Ser Val Glu Tyr Ala Arg Ala Phe Asn 210 215 220

Val Pro Leu Arg Val Arg Ser Ser Tyr Ser Asn Asp Pro Gly Thr Leu 225 230 235 240

Ile Ala Gly Ser Met Glu Asp Ile Pro Val Glu Glu Ala Val Leu Thr

245 250 255

Gly	Val	Ala	Thr	Asp	Lys	Ser	Glu	Ala	Lys	Val	Thr	Val	Leu	Gly	Ile
			260					265					270	_	

Ser Asp Lys Pro Gly Glu Ala Ala Lys Val Phe Arg Ala Leu Ala Asp 275 280 285

Ala Glu Ile Asn Ile Asp Met Val Leu Gln Asn Val Ser Ser Val Glu 290 295 300

Asp Gly Thr Thr Asp Ile Ile Phe Thr Cys Pro Arg Ser Asp Gly Arg 305 310 315 320

Arg Ala Met Glu Ile Leu Lys Lys Leu Gln Val Gln Gly Asn Trp Thr 325 330 335

Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala 340 345 350

Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu 355 360 365

Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 370 375 380

Ile Ser Val Leu Ile Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala 385 390 395 400

Leu His Glu Gln Phe Gln Leu Gly Gly Glu Asp Glu Ala Val Tyr 405 410 415

Ala Gly Thr Gly Arg 420

<210> 74

<211> 5860

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:Plasmid

<400> 74

cccggtacca cgcgtcccag tggctgagac gcatccgcta aagccccagg aaccctgtgc 60
agaaagaaaa cactcctctg gctaggtaga cacagtttat aaaggtagag ttgagcgggt 120
aactgtcagc acgtagatcg aaaggtgcac aaaggtggcc ctggtcgtac agaaatatgg 180
cggttcctcg cttgagagtg cggaacgcat tagaaacgtc gctgaacgga tcgttgccac 240

caagaaggot ggaaatgatg togtggttgt otgotoogca atgggagaca coacggatga 300 acttctagaa cttgcagcgg cagtgaatcc cgttccgcca gctcgtgaaa tggatatgct 360 cctgactgct ggtgagcgta tttctaacgc tctcgtcgcc atggctattg agtcccttgg 420 cgcagaagcc caatctttca cgggctctca ggctggtgtg ctcaccaccg agcgccacgg 480 aaacgcacgc attgttgatg tcactccagg tcgtgtgcgt gaagcactcg atgagggcaa 540 gatetgeatt gttgctggtt tecagggtgt taataaagaa accegegatg teaceaegtt 600 gggtcgtggt ggttctgaca ccactgcagt tgcgttggca gctgctttga acgctgatgt 660 gtgtgagatt tactcggacg ttgacggtgt gtataccgct gacccgcgca tcgttcctaa 720 tgcacagaag ctggaaaagc tcagcttcga agaaatgctg gaacttgctg ctgttggctc 780 caagattttg gtgctgcgca gtgttgaata cgctcgtgca ttcaatgtgc cacttcgcgt 840 acgetegtet tatagtaatg atceeggeae tttgattgee ggetetatgg aggatattee 900 tgtggaagaa gcagtcctta ccggtgtcgc aaccgacaag tccgaagcca aagtaaccgt 960 1020 tctgggtatt tccgataagc caggcgaggc tgcgaaggtt ttccgtgcgt tggctgatgc agaaatcaac attgacatgg ttctgcagaa cgtctcttct gtagaagacg gcaccaccga 1080 catcatcttc acctgccctc gttccgacgg ccgccgcgcg atggagatct tgaagaagct 1140 tcaggttcag ggcaactgga ccaatgtgct ttacgacgac caggtcggca aagtctccct 1200 cgtgggtgct ggcatgaagt ctcacccagg tgttaccgca gagttcatgg aagctctgcg 1260 cgatgtcaac gtgaacatcg aattgatttc cacctctgag attcgtattt ccgtgctgat 1320 1380 cgaagacgaa gccgtcgttt atgcaggcac cggacgctaa agttttaaag gagtagtttt 1440 acaatgacca ccatcgcagt tgttggtgca accggccagg tcggccaggt tatgcgcacc 1500 cttttggaag agcgcaattt cccagctgac actgttcgtt tctttgcttc cccacgttcc 1560 gcaggccgta agattgaatt cgtcgacatc gatgctcttc tgcgttaatt aacaattggg 1620 atcetetaga ceegggattt aaategetag egggetgeta aaggaagegg aacaegtaga 1680 aagccagtcc gcagaaacgg tgctgacccc ggatgaatgt cagctactgg gctatctgga 1740 caagggaaaa cgcaagcgca aagagaaagc aggtagcttg cagtgggctt acatggcgat 1800 agctagactg ggcggtttta tggacagcaa gcgaaccgga attgccagct ggggcgccct 1860 ctggtaaggt tgggaagccc tgcaaagtaa actggatggc tttcttgccg ccaaggatct 1920 gatggcgcag gggatcaaga tctgatcaag agacaggatg aggatcgttt cgcatgattg 1980 aacaagatgg attgcacgca ggttctccgg ccgcttgggt ggagaggcta ttcggctatg 2040 actgggcaca acagacaatc ggctgctctg atgccgccgt gttccggctg tcagcgcagg 2100

PCT/EP2003/009453

ggcgcccggt tetttttgtc aagaccgacc tgtccggtgc cctgaatgaa ctgcaggacg 2160 aggeagegeg getategtgg etggeeaega egggegttee ttgegeaget gtgetegaeg 2220 ttgtcactga agcgggaagg gactggctgc tattgggcga agtgccgggg caggatctcc 2280 tgtcatctca ccttgctcct gccgagaaag tatccatcat ggctgatgca atgcggcggc 2340 tgcatacget tgatccgget acctgcccat tcgaccacca agcgaaacat cgcatcgage 2400 gagcacgtac teggatggaa geeggtettg tegateagga tgatetggae gaagageate 2460 aggggctcgc gccagccgaa ctgttcgcca ggctcaaggc gcgcatgccc gacggcgagg 2520 atctcgtcgt gacccatggc gatgcctgct tgccgaatat catggtggaa aatggccgct 2580 tttctggatt catcgactgt ggccggctgg gtgtggcgga ccgctatcag gacatagcgt 2640 tggctacccg tgatattgct gaagagcttg gcggcgaatg ggctgaccgc ttcctcgtgc 2700 tttacggtat cgccgctccc gattcgcagc gcatcgcctt ctatcgcctt cttgacgagt 2760 tettetgage gggaetetgg ggttegaaat gacegaecaa gegaegeeca acetgeeate 2820 acgagatttc gattccaccg ccgccttcta tgaaaggttg ggcttcggaa tcgttttccg 2880 ggacgccggc tggatgatcc tccagcgcgg ggatctcatg ctggagttct tcgcccacgc 2940 tageggegeg ceggeeggee eggtgtgaaa tacegeacag atgegtaagg agaaaatace 3000 gcatcaggeg etetteeget teetegetea etgaeteget gegeteggte gtteggetge 3060 ggcgagcggt atcagctcac tcaaaggcgg taatacggtt atccacagaa tcaggggata 3120 acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg 3180 egttgetgge gtttttecat aggeteegee eeeetgaega geateacaaa aategaeget 3240 caagtcagag gtggcgaaac ccgacaggac tataaagata ccaggcgttt ccccctggaa 3300 getecetegt gegetetect gtteegacee tgeegettae eggatacetg teegeettte 3360 tcccttcggg aagcgtggcg ctttctcata gctcacgctg taggtatctc agttcggtgt 3420 aggicgiteg ciccaagetg ggcigtgige acgaacece cgitcagece gacegeigeg 3480 ccttatccgg taactatcgt cttgagtcca acccggtaag acacgactta tcgccactgg 3540 cagcagccac tggtaacagg attagcagag cgaggtatgt aggcggtgct acagagttct 3600 tgaagtggtg gcctaactac ggctacacta gaaggacagt atttggtatc tgcgctctgc 3660 tgaagccagt taccttcgga aaaagagttg gtagctcttg atccggcaaa caaaccaccg 3720 ctggtagcgg tggttttttt gtttgcaagc agcagattac gcgcagaaaa aaaggatctc 3780 aagaagatcc tttgatcttt tctacggggt ctgacgctca gtggaacgaa aactcacgtt 3840 aagggatttt ggtcatgaga ttatcaaaaa ggatcttcac ctagatcctt ttaaaggccg 3900 gccgcggccg ccatcggcat tttcttttgc gttttattt gttaactgtt aattgtcctt 3960 gttcaaggat gctgtctttg acaacagatg ttttcttgcc tttgatgttc agcaggaagc 4020

5860

teggegeaaa egttgattgt ttgtetgegt agaateetet gtttgteata tagettgtaa 4080 tcacgacatt gtttcctttc gcttgaggta cagcgaagtg tgagtaagta aaggttacat 4140 cgttaggatc aagatccatt tttaacacaa ggccagtttt gttcagcggc ttgtatgggc 4200 cagttaaaga attagaaaca taaccaagca tgtaaatatc gttagacgta atgccgtcaa 4260 togtoatttt tgatoogogg gagtoagtga acaggtacca tttgccgttc attttaaaga 4320 cgttcgcgcg ttcaatttca tctgttactg tgttagatgc aatcagcggt ttcatcactt 4380 ttttcagtgt gtaatcatcg tttagctcaa tcataccgag agcgccgttt gctaactcag 4440 ccgtgcgttt tttatcgctt tgcagaagtt tttgactttc ttgacggaag aatgatgtgc 4500 ttttgccata gtatgctttg ttaaataaag attcttcgcc ttggtagcca tcttcagttc 4560 cagtgtttgc ttcaaatact aagtatttgt ggcctttatc ttctacgtag tgaggatctc 4620 teagegtatg gttgtegeet gagetgtagt tgcetteate gatgaactge tgtacatttt 4680 gatacgtttt tecgteaceg teaaagattg atttataate etetacaceg ttgatgttea 4740 aagagctgtc tgatgctgat acgttaactt gtgcagttgt cagtgtttgt ttgccgtaat 4800 gtttaccgga gaaatcagtg tagaataaac ggatttttcc gtcagatgta aatgtggctg 4860 aacctgacca ttcttgtgtt tggtctttta ggatagaatc atttgcatcg aatttgtcgc 4920 tgtctttaaa gacgcggcca gcgtttttcc agctgtcaat agaagtttcg ccgacttttt 4980 gatagaacat gtaaategat gtgtcateeg catttttagg ateteegget aatgeaaaga 5040 cgatgtggta gccgtgatag tttgcgacag tgccgtcagc gttttgtaat ggccagctgt 5100 cccaaacgtc caggcctttt gcagaagaga tatttttaat tgtggacgaa tcaaattcag 5160 aaacttgata tttttcattt ttttgctgtt cagggatttg cagcatatca tggcgtgtaa 5220 tatgggaaat geegtatgtt teettatatg gettttggtt egtttettte geaaacgett 5280 gagttgcgcc tcctgccagc agtgcggtag taaaggttaa tactgttgct tgttttgcaa 5340 actttttgat gttcatcgtt catgtctcct tttttatgta ctgtgttagc ggtctgcttc 5400 ttccagccct cctgtttgaa gatggcaagt tagttacgca caataaaaaa agacctaaaa 5460 tatgtaaggg gtgacgccaa agtatacact ttgcccttta cacattttag gtcttgcctg 5520 ctttatcagt aacaaacccg cgcgatttac ttttcgacct cattctatta gactctcgtt 5580 tggattgcaa ctggtctatt ttcctctttt gtttgataga aaatcataaa aggatttgca 5640 gactacgggc ctaaagaact aaaaaatcta tctgtttctt ttcattctct gtatttttta 5700 tagtttctgt tgcatgggca taaagttgcc tttttaatca caattcagaa aatatcataa 5760 tateteattt cactaaataa tagtgaacgg caggtatatg tgatgggtta aaaaggateg 5820

geggeegete gatttaaate tegagaggee tgaegteggg

<210> 75	
<211> 31	
<212> DNA	
<213> Künstliche Sequenz	
-	
<220>	
<223> Beschreibung der künstlichen Sequenz:PCR primer	
befault it	
<400> 75	
gagaggatee ggaaggtgaa tegaattteg g	
3-3-33 3333-3	31
<210> 76	
<211> 40	
<212> DNA	
<213> Künstliche Sequenz	
Allo Ammericae Degacae	
<220>	
<223> Beschreibung der künstlichen Sequenz:PCR primer	
(223) Beschiefbung der kunstitchen Sequenz:PCR primer	
<400> 76	
ctattgctgt cggcgctcat gattctccaa aaataatcgc	40
·	
<210> 77	
<211> 77 <211> 20	
<211> 20 <212> DNA	
<213> Künstliche Sequenz	
<220>	
<223> Beschreibung der künstlichen Sequenz:PCR primer	
12237 beschreibung der kunstlichen Sequenz:PCR primer	
<400> 77	
atgagegeeg acageaatag	
actuation actuation	20
<210> 78	
<211> 29	
<212> DNA	
<213> Künstliche Sequenz	
<220>	
<223> Beschreibung der künstlichen Sequenz:PCR primer	
, and the second ordered to branci	
<400> 78	
gaactctaga tcagaacgcc gccacggac	29
5 5 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	29
<210> 79	
<211> 6591	
<212> DNA	
<213> Künstliche Sequenz	
•	
<220>	
<223> Beschreibung der künstlichen Sequenz:Plasmid	
oodacha: rannara	
<400> 79	
gatccggaag gtgaatcgaa tttcggggct ttaaagcaaa aatgaacagc ttggtctata	60
	60
gtggctaggt accetttttg ttttggacac atgtagggtg gccgaaacaa agtaatagga	120
	120
caacaacgct cgaccgcgat tatttttgga gaatcatgag cgccgacagc aatagcaccg	

20000001	gaccgcgcat	taatcattca	aaaccaaaca	gatacacgct	ggtcagcacc	240
						300
	caccaacgcc					
	gcacgccgcc					360
ggatcggcaa	cccaccacc	gacgtcgtcg	agcagcgcat	cgccgcgctc	gagggcggtg	420
tggccgcgct	gttcctgtcg	tcggggcagg	ccgcggagac	gttcgccatc	ttgaacctgg	480
ccggcgcggg	cgatcacatc	gtgtccagcc	cgcgcctgta	cggcggcacc	tacaacctgt	540
tccactattc	gctggccaag	ctcggcatcg	aggtcagctt	cgtcgacgat	ccggacgatc	600
tggacacctg	gcaggcggcg	gtacggccca	acaccaaggc	gttcttcgcc	gagaccatct	660
ccaacccgca	gatcgacctg	ctggacaccc	cggcggtttc	cgaggtcgcc	categeaacg	720
gggtgccgtt	gatcgtcgac	aacaccatcg	ccacgccata	cctgatccaa	ccgttggccc	780
agggcgccga	catcgtcgtg	cattcggcca	ccaagtacct	gggcgggcac	ggtgccgcca	840
tegegggtgt	gatcgtcgac	ggcggcaact	tcgattggac	ccagggccgc	tteecegget	900
tcaccacccc	cgaccccagc	taccacggcg	tggtgttcgc	cgagctgggt	ccaccggcgt	960
ttgcgctcaa	agctcgagtg	cagctgctcc	gtgactacgg	ctcggcggct	tcgccgttca	1020
acgcgttctt	ggtggcgcag	ggtctggaaa	cgctgagcct	gcggatcgag	cggcacgtcg	1080
ccaacgcgca	gegegtegee	gagttcctgg	ccgcccgcga	cgacgtgctt	teggteaact	1140
atgcggggct	gccctcctcg	ccctggcatg	agcgggccaa	gaggctggcg	cccaagggaa	1200
ccggggccgt	gctgtccttc	gagttggccg	geggeatega	ggccggcaag	gcattcgtga	1260
acgcgttgaa	gctgcacagc	cacgtcgcca	acatcggtga	cgtgcgctcg	ctggtgatcc	1320
acccggcatc	gaccactcat	gcccagctga	gcccggccga	gcagctggcg	accggggtca	1380
gcccgggcct	ggtgcgtttg	gctgtgggca	tcgaaggtat	cgacgatato	ctggccgacc	1440
tggagcttgg	ctttgccgcg	gcccgcagat	tcagcgccga	cccgcagtcc	gtggcggcgt	1500
tctgatctag	acccgggatt	taaatcgcta	gegggetget	aaaggaagcg	gaacacgtag	1560
aaagccagtc	cgcagaaacg	gtgctgaccc	cggatgaatg	tcagctactg	ggctatctgg	1620
acaagggaaa	acgcaagcgc	aaagagaaag	caggtagctt	gcagtgggct	: tacatggcga	1680
tagctagact	gggcggtttt	atggacagca	agcgaaccgg	aattgccago	: tggggegeee	1740
tctggtaagg	ttgggaagcc	ctgcaaagta	aactggatgg	ctttcttgcc	: gccaaggatc	1800
tgatggcgca	ggggatcaag	atctgatcaa	gagacaggat	gaggatcgtt	tcgcatgatt	1860
					: attcggctat	1920
					gtcagcgcag	1980
					actgcaggac	2040

WO 2004/024933

128/130

PCT/EP2003/009453

gaggcagege ggctategtg getggecaeg aegggegtte ettgegeage tgtgetegae	2100
gttgtcactg aagcgggaag ggactggctg ctattgggcg aagtgccggg gcaggatctc	2160
ctgtcatctc accttgctcc tgccgagaaa gtatccatca tggctgatgc aatgcggcgg	2220
ctgcatacgc ttgatccggc tacctgccca ttcgaccacc aagcgaaaca tcgcatcgag	2280
cgagcacgta ctcggatgga agccggtctt gtcgatcagg atgatctgga cgaagagcat	2340
caggggctcg cgccagccga actgttcgcc aggctcaagg cgcgcatgcc cgacggcgag	2400
gatetegteg tgacceatgg egatgeetge ttgeegaata teatggtgga aaatggeege	2460
ttttctggat tcatcgactg tggccggctg ggtgtggcgg accgctatca ggacatagcg	2520
ttggctaccc gtgatattgc tgaagagctt ggcggcgaat gggctgaccg cttcctcgtg	2580
ctttacggta tcgccgctcc cgattcgcag cgcatcgcct tctatcgcct tcttgacgag	2640
ttcttctgag cgggactctg gggttcgaaa tgaccgacca agcgacgccc aacctgccat	2700
cacgagattt cgattccacc gccgccttct atgaaaggtt gggcttcgga atcgttttcc	2760
gggacgccgg ctggatgatc ctccagcgcg gggatctcat gctggagttc ttcgcccacg	2820
ctageggege geeggeegge eeggtgtgaa atacegcaca gatgegtaag gagaaaatae	2880
cgcatcaggc getetteege tteetegete actgaetege tgegeteggt egtteggetg	2940
cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt tatccacaga atcaggggat	3000
aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc	3060
gcgttgctgg cgtttttcca taggctccgc ccccctgacg agcatcacaa aaatcgacgc	3120
tcaagtcaga ggtggcgaaa cccgacagga ctataaagat accaggcgtt tccccctgga	3180
ageteceteg tgegetetee tgtteegaee etgeegetta eeggataeet gteegeettt	3240
ctcccttcgg gaagcgtggc gctttctcat agctcacgct gtaggtatct cagttcggtg	3300
taggtegtte getecaaget gggetgtgtg caegaaceee eegtteagee egaeegetge	3360
gccttatccg gtaactatcg tcttgagtcc aacccggtaa gacacgactt atcgccactg	3420
gcagcagcca ctggtaacag gattagcaga gcgaggtatg taggcggtgc tacagagttc	3480
ttgaagtggt ggcctaacta cggctacact agaaggacag tatttggtat ctgcgctctg	3540
ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa acaaaccacc	3600
gctggtagcg gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa aaaaggatct	3660
caagaagatc ctttgatctt ttctacgggg tctgacgctc agtggaacga aaactcacgt	3720
taagggattt tggtcatgag attatcaaaa aggatcttca cctagatcct tttaaaggcc	3780
ggccgcggcc gcgcaaagtc ccgcttcgtg aaaattttcg tgccgcgtga ttttccgcca	3840
aaaactttaa cgaacgttcg ttataatggt gtcatgacct tcacgacgaa gtactaaaat	3900
tggcccgaat catcagetat ggatetetet gatgtcgcgc tggagtccga cgcgctcgat	3960

gctgccgtcg atttaaaaac ggtgatcgga tttttccgag ctctcgatac gacggacgcg 4020 ccagcatcac gagactgggc cagtgccgcg agcgacctag aaactctcgt ggcggatctt 4080 gaggagetgg etgaegaget gegtgetegg eeagegeeag gaggaegeae agtagtggag 4140 gatgcaatca gttgcgccta ctgcggtggc ctgattcctc cccggcctga cccgcgagga 4200 cggcgcgcaa aatattgctc agatgcgtgt cgtgccgcag ccagccgcga gcgcgccaac 4260 aaacgccacg ccgaggagct ggaggcggct aggtcgcaaa tggcgctgga agtgcgtccc 4320 ccgagcgaaa ttttggccat ggtcgtcaca gagctggaag cggcagcgag aattatcgcg 4380 atogtggcgg tgcccgcagg catgacaaac atcgtaaatg ccgcgtttcg tgtgccgtgg 4440 ccgcccagga cgtgtcagcg ccgccaccac ctgcaccgaa tcggcagcag cgtcgcgcgt 4500 cgaaaaagcg cacaggcggc aagaagcgat aagctgcacg aatacctgaa aaatgttgaa 4560 cgccccgtga gcggtaactc acagggcgtc ggctaacccc cagtccaaac ctgggagaaa 4620 gcgctcaaaa atgactctag cggattcacg agacattgac acaccggcct ggaaattttc 4680 cgctgatctg ttcgacaccc atcccgagct cgcgctgcga tcacgtggct ggacgagcga 4740 agacegeege gaatteeteg eteacetggg cagagaaaat tteeagggea geaagaceeg 4800 cgacttcgcc agcgcttgga tcaaagaccc ggacacggag aaacacagcc gaagttatac 4860 cgagttggtt caaaatcgct tgcccggtgc cagtatgttg ctctgacgca cgcgcagcac 4920 gcagccgtgc ttgtcctgga cattgatgtg ccgagccacc aggccggcgg gaaaatcgag 4980 cacgtaaacc ccgaggtcta cgcgattttg gagcgctggg cacgcctgga aaaagcgcca 5040 gcttggatcg gcgtgaatcc actgagcggg aaatgccagc tcatctggct cattgatccg 5100 gtgtatgeeg cageaggeat gageageeeg aatatgegee tgetggetge aaegaeegag 5160 gaaatgaccc gegttttegg egetgaccag gettttteac ataggetgag eegtggecae 5220 tgcactctcc gacgatccca gccgtaccgc tggcatgccc agcacaatcg cgtggatcgc 5280 ctagetgate ttatggaggt tgetegeatg ateteaggea cagaaaaace taaaaaacge 5340 tatgagcagg agttttctag cggacgggca cgtatcgaag cggcaagaaa agccactgcg 5400 gaagcaaaag cacttgccac gcttgaagca agcctgccga gcgccgctga agcgtctgga 5460 gagetgateg aeggegteeg tgteetetgg aetgeteeag ggegtgeege eegtgatgag 5520 acggetttte gecaegettt gaetgtggga taccagttaa aageggetgg tgagegeeta 5580 aaagacacca agggtcatcg agcctacgag cgtgcctaca ccgtcgctca ggcggtcgga 5640 ggaggccgtg agcctgatct gccgccggac tgtgaccgcc agacggattg gccgcgacgt 5700 gtgcgcggct acgtcgctaa aggccagcca gtcgtccctg ctcgtcagac agagacgcag 5760 agccagccga ggcgaaaagc tctggccact atgggaagac gtggcggtaa aaaggccgca 5820

WO 2004/024933

PCT/EP2003/009453

6540

6591

gaacgctgga aagacccaaa cagtgagtac gcccgagcac agcgagaaaa actagctaag 5880 tccagtcaac gacaagctag gaaagctaaa ggaaatcgct tgaccattgc aggttggttt 5940 atgactgttg agggagagac tggctcgtgg ccgacaatca atgaagctat gtctgaattt 6000 agogtgteac gtcagaccgt gaatagagea ettaaggtet gegggeattg aacttecacg 6060 aggacgccga aagcttccca gtaaatgtgc catctcgtag gcagaaaacg gttcccccgt 6120 agggtetete tettggeete etttetaggt egggetgatt getettgaag etetetaggg 6180 gggeteaeae cataggeaga taacgtteee caceggeteg cetegtaage gcacaaggae 6240 tgctcccaaa gatcttcaaa gccactgccg cgactgcctt cgcgaagcct tgccccgcgg 6300 aaatttcctc caccgagttc gtgcacaccc ctatgccaag cttctttcac cctaaattcg 6360 agagattgga ttcttaccgt ggaaattctt cgcaaaaatc gtcccctgat cgcccttgcg 6420 acgttggcgt cggtgccgct ggttgcgctt ggcttgaccg acttgatcag cggccgctcg 6480

atttaaatct cgagaggcct gacgtcgggc ccggtaccac gcgtcatatg actagttcgg

acctagggat atcgtcgaca tcgatgctct tctgcgttaa ttaacaattg g

130/130

