"CAPD"培训班 练习四

目的: 1、练习 Pump、Pipe、Pipeline 的用法;

2、练习设计指标(Design Specification)的用法。

内容:

1、将20℃的水从蓄水池输送到高位水池,环境地理位置如下图:

输送管道采用\$133×4的无缝碳钢管。所用离心泵的特性参数如下表;

流量(m³/hr)	70	90	109	120
扬程 (m)	59.0	54.2	47.8	43.0
效率 (%)	64.5	69	69	66
允许吸上真空度(m)	5.0	4.5	3.8	3.5

泵出口安装一只 V500 系列的等百分比流量截止阀 (Globe Valve)调节输送流量。 计算以下数据:

- 1) 最大输送流量(m³/hr)及相应的轴功率。
- 2) 阀门开度为 20%时的流量及相应的轴功率。
- 2、 (30 分) 某吸收塔用 293.15 K 的清水作为吸收剂,正常用量为 50 m³/hr。清

水贮槽液面至吸收塔顶加料口的垂直高度为 40 m。清水贮槽内压力为 0.1013MPa, 吸收塔内压力为 0.3 MPa。

初步设计方案如下(参见下图):

使用 ϕ 108×4 的无缝钢管作为输水管,进水管道长 10 m,需要安装 1 个 90° 弯头(Elbow)和 2 只闸阀(Gate Valve);出水管道长 55 m,需要安装 6 个 90° 弯头,2 只闸阀;离心泵入口的安装高度比清水贮槽液面低 0.5 m。

为降低能耗,采用变频电动机改变离心泵转速来调节输送流量,转速变化范围为 1500~2800 rpm。离心泵的特性曲线如下表:

转速 3000 rpm	流量(m³/hr)	23	41.5	60	84
	扬程(m)	113	107	96	69
	效率 (%)	63	68	71	67
转速 2500 rpm	流量(m³/hr)	20	35	50	70
	扬程 (m)	76	72	64	44
	效率 (%)	64.5	69	69	66
转速 2000 rpm	流量(m³/hr)	16.5	28	41	58
	扬程(m)	51	48.5	43.5	30.5
	效率 (%)	62	64	65	63

求:

- 1) 最大输水量;
- 2) 输水量为正常用量时离心泵所需的转速、轴功率和泵出口压力;
- 3) 输水量为 50%正常用量时离心泵所需的转速、轴功率和泵出口压力。