Lower Bound for Sorting (with compurisons)

Sorting algorithms we have seen so for Sect 8.1

are based on comparisons $T(n) \simeq \# of comparisons$

 $a_1 \ a_2 \ a_3 \ a_4 \ \dots \ a_n$ to sort Question is $a_i \in a_5$

Comparison. bused outling algorithm

Pros: - Change the resulting ordering Just by implementing a different comparator

- work for any kind of object where a comp function can be defined
- Cons design a puster algorithms without limiting ourself to comparisons

Prove that Ω (n logn) time is the best we can hope for comparison-based sorting algor

 $A = \alpha_1 \alpha_2 \alpha_3 \ldots \alpha_n$

Assume wlog that Vi,s a; \$ as

Decision-tree mobile

A decision tree is a binary tree that reppresents comparisons performed by a fixed comparison - based algorithm on any input of a fixed size n

Decision. tree for insection sort on n=3 $\alpha_1 \quad \alpha_2 \quad \alpha_3$

• The execution of the algorithm on a input of site n corresponds to a root-to-a-leaf path

- · The running time of 15 in the worst case is a (height of trae)
- Any correct sorting algorithm must be able
 to produce any permutation
 why? If not, It is wrong on some input
 If $\pi = 132$ is not a leaf
 there exists a input suy 597
 for which the algorithm is not correct!!

there exist at least n! leaves (I(n!))

Any sorting algorithm based on comparisons need Ω (n log n) time (or comparisons)

- · worst case time = Ω (height of the tree) = $\Omega(h)$
- · $\Omega(n!)$ leaves
- · Binary tree of height h has no more than 2h leaves proof
 - · buse case h = 0 O root # leaves = 2°=1
 - . Inductive step. true for any h, we want to prove this for h+1

Exercise (***)

Binary Search takes $\Theta(\log n)$ compunisons to reach a key in a sorted away A of site n. Is this algorithm optimal?

do it by your self