Skaitmeninis intelektas ir sprendimų priėmimas

Laimonas Beniušis Kompiuterių Mokslas 1, stud.nr: 1410102 Užduotis 2

Tikslas: Dirbtinio neurono mokymas

Teisingumo lentelės:

$x_1 AND x_2$

X ₁	X ₂	t
0	0	-1
0	1	-1
1	0	-1
1	1	1

x_1 AND x_2 OR x_3

X_1	X ₂	X_3	t
0	0	0	-1
0	0	1	1
0	1	0	-1
0	1	1	1
1	0	0	-1
1	0	1	1
1	1	0	1
1	1	1	1

Aktivacijos funkcija: func. Aktivacijos funkcijos išvestinė: deriv Į funkciją perduodamos matricos ir veiksmai atliekami su kiekvienu matricos elementu

Mokymo algoritmas:

- 1. Inicializacija
 - 1. Parenkama aktivacijos funkcija, jos išvestinė ir alpha reikšmė (žingsnio daugiklis)
 - 2. Nustatomos matricos MI (ivedimo), MR (išvedimo), MS (svoriu, nustatomos atsitiktinai)
- 2. Mokymo iteracija:
 - 1. M0 ← MI
 - 2. $M1 \leftarrow \text{func}(M0 \times MS)$ (matricy daugyba)
 - 3. ME ← MR M1 (matricų atitinkančių elementų atimtis)
 - 4. Jeigu ME paklaida pakankamai maža, baigiam darba
 - 5. MD ← ME * deriv(M1) (matricu atitinkančių elementų daugyba)
 - 6. MS ← MS + alpha * (M0^T x MD) (transponuotos M0 ir MD matricų daugyba, rezultato elementai padauginami iš alpha. MS matricoje išsaugojami nauji svoriai)
 - 7. Jeigu viršijom iteracijų kiekio limitą, baigiam darbą
 - 8. Grįžtam į 1 mokymo iteracijos žingsnį

Pagal sąlygą, reikia aprėpti reikšmes [-1, 1]

Tai paprastai įgyvendina slenkstinė funkcija, kuri atskiria teigiamas ir neigiamas reikšmes, tačiau mokymui ji netinka, mokymui naudojama modifikuota sigmoido funkcija.

Sigmoido funkcija $\frac{1}{1+e^{(-x)}}$ aprėpia reikšmes (0, 1)

 $\frac{2}{1+e^{(-x)}}$ funkcija aprėpia reikšmes (0, 2), kas yra tinkamas intervalo dydis, tačiau 1 per daug $\frac{2}{1+e^{(-x)}}$ -1 funkcija aprėpia reikšmes (-1, 1), kurios yra tinkama mokymui.

Taip pat $\frac{2}{1+e^{(-x)}}$ -1 funkcija gali būti išreiškiama per hiperbolinį tangentą t. y. $\tanh(\frac{x}{2})$

Jos išvestinė yra $2\frac{e^x}{(e^x+1)^2}$

Rezultatai: (visos matricos transponuotos, del geresnio duomenų pateikimo)

x₁ AND x₂ funkcijai užteko 5 iteracijų, svoriai:

Pradiniai svoriai:

[000]

Galutiniai svoriai:

Aktivacijos funkcijos reikšmės:

 $[-0.70147668 - 0.34921542 - 0.43288244 \ 0.04218851]$

x₁AND x₂OR x₃ funkcijai užteko 8 iteracijų, gauti svoriai:

Pradiniai svoriai:

[-0.16595599 0.44064899 -0.99977125 -0.39533485]

Galutiniai svoriai:

 $[\ 1.1528132 \ 1.19378034 \ 3.99783126 \ 2.23030798]$

Aktivacijos funkcijos reikšmės:

[-0.66840659 0.80943303 -0.13348578 0.94669746 -0.16133333 0.94366251 0.47057983 0.98504141]