0-1 Knapsack

Given a knapsack with maximum capacity
 W, and a set S consisting of n items

Each item i has some weight w_i and benefit value b_i (all w_i and W are integer values)

Paris '

0-1 Knapsack problem

Pack the knapsack to achieve maximum total value of packed items

$$\max \sum_{i \in T} b_i \quad \text{subject to } \sum_{i \in T} w_i \leq W$$

→ "0-1": Because items are indivisible; each item must be entirely accepted or rejected.

0-1 Knapsack Example

```
n = 4 (Number of elements)
W = 5 (Max capacity)
Elements (Weight, Benefit):
(2,3), (3,4), (4,5), (5,6)
```

Example (2)

$i \setminus W$	<i>y</i> 0	1	2	3	4	5
0	0	0	0	0	0	0
1						
2						
3						
4						

for
$$w = 0$$
 to W
 $V[0,w] = 0$

Example (3)

i\W	<i>I</i> 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

for
$$i = 1$$
 to n

$$V[i,0] = 0$$

Example (4)

i∖W	V 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0				
2	0					
3	0					
4	0					

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

Example (5)

i∖W	<u> </u>	1	2	3	4	5	_
0	0 -	9	0	0	0	0	Items:
1	0	0	→ 3				1: (2,3)
2	0						2: (3,4)
3	0						3: (4,5) 4: (5,6)
4	0						4: (5,6)

Example (6)

i∖W	<i>I</i> 0	1	2	3	4	5	
0	0	0 ~	0	0	0	0	Items:
1	0	0	3	3			1: (2,3)
2	0						2: (3,4)
3	0						3: (4,5) 4: (5,6)
4	0						4: (5,6)

Example (7)

i∖W	<i>J</i> 0	1	2	3	4	5	
0	0	0	0 ~	0	0	0	Items:
1	0	0	3	3	3		1: (2,3)
2	0						2: (3,4)
3	0						3: (4,5) 4: (5,6)
4	0						4: (5,6)

Example (8)

i∖W	<u> </u>	1	2	3	4	5	
0	0	0	0	0 ~	0	0	Items:
1	0	0	3	3	3	3	1: (2,3)
2	0						2: (3,4)
3	0						3: (4,5) 4: (5,6)
4	0						4: (5,6)

Example (9)

i\W	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0				
3	0					
4	0					

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

Example (10)

i∖W	<u> </u>	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3			
3	0					
4	0					

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

Example (11)

i∖W	V 0	1	2	3	4	5	
0	0	0	0	0	0	0	Items:
1	0	0	3	3	3	3	1: (2,3)
2	0	0	3	4			1: (2,3) 2: (3,4)
3	0						3: (4,5)
4	0						4: (5,6)

Paris 13

(5,6)

Example (12)

i∖W	<u> </u>	1	2	3	4	5	
0	0	0	0	0	0	0	Items:
1	0	0 _	3	3	3	3	1: (2,3)
2	0	0	3	4	4		2: (3,4)
3	0						3: (4,5) 4: (5,6)
4	0						4: (5,6)

Example (13)

i\W	<i>y</i> 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3 —	3	3	3
2	0	0	3	4	4	→ 7
3	0					
4	0					

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

Example (14)

i∖W	7 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	10	13	,4	4	7
3	0	0	3	4		
4	0					

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

Example (15)

i∖W	7 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0 —	-0	3	4	4	7
3	0	0	3	4	→ 5	
4	0					

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

if
$$\mathbf{w_i} \le \mathbf{w}$$
 // item i can be part of the solution if $\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$
$$\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}$$
 else
$$\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$$
 else $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

Example (16)

i\W	<i>y</i> 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	↓ 7
4	0					

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

if
$$\mathbf{w_i} \le \mathbf{w}$$
 // item i can be part of the solution
if $\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$
 $\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}$
else
 $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$
else $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

Example (17)

i\W	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	13	4	15	7
4	0	0	3	4	¹ 5	

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$\begin{split} & \text{if } w_i <= w \text{ // item i can be part of the solution} \\ & \text{if } b_i + V[i\text{-}1\text{,}w\text{-}w_i] > V[i\text{-}1\text{,}w] \\ & V[i\text{,}w] = b_i + V[i\text{-}1\text{,}w\text{-}w_i] \\ & \text{else} \\ & V[i\text{,}w] = V[i\text{-}1\text{,}w] \\ & \text{else } \textbf{V[i,w]} = \textbf{V[i\text{-}1,w]} \text{ // } w_i > w \end{split}$$

Example (18)

i\W	<i>y</i> 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	↓ 7

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

if
$$\mathbf{w_i} \le \mathbf{w}$$
 // item i can be part of the solution
if $\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$
 $\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}$
else
 $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$
else $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

Recursive Formula

$$V[k,w] = \begin{cases} V[k-1,w] & \text{if } w_k > w \\ \max\{V[k-1,w],V[k-1,w-w_k] + b_k\} & \text{else} \end{cases}$$

0-1 Knapsack Algorithm

```
for w = 0 to W
  V[0,w] = 0
for i = 1 to n
  V[i,0] = 0
for i = 1 to n
  for w = 0 to W
       if w<sub>i</sub> <= w // item i can be part of the solution
               if b_i + V[i-1,w-w_i] > V[i-1,w]
                       V[i,w] = b_i + V[i-1,w-w_i]
               else
                       V[i,w] = V[i-1,w]
       else V[i,w] = V[i-1,w] // w_i > w
```

Finding the Items

i∖W	V 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

Finding the Items (2)

i\W	<i>I</i> 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

Finding the Items (3)

$i\backslash W$	<i>y</i> 0	1	2	3	4	5
0	0	0	0	0	0	0
11	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

Finding the Items (4)

i∖W	<i>y</i> 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3 ←	γ	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

Finding the Items (5)

i∖W	0	1	2	3	4	5
0	0	0	0	0	0	0
\bigcirc	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

Finding the Items (6)

i∖W	<i>y</i> 0	1	2	3	4	5
0	0	0	0	0	0	0
\bigcirc	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

The optimal knapsack should contain {1, 2}

Algorithm: Finding the Items

- All of the information we need is in the table.
- V[n, W] is the maximal value of items that can be placed in the Knapsack.

```
Let i=n and k=W
if V[i,k] ≠ V[i-1,k] then
mark the i<sup>th</sup> item as in the knapsack
i = i-1, k = k-w<sub>i</sub>
else
i = i-1
```

Thank You

Stay Safe