# Functional Programming Lambda Calculus

Prof. Dr. Peter Thiemann

Albert-Ludwigs-Universität Freiburg, Germany

WS 2017-2018

#### The Lambda Calculus

### What Wikipedia says

Lambda calculus (also written as  $\lambda$ -calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application [...]. It is a universal model of computation that can be used to simulate any Turing machine and was first introduced by mathematician Alonzo Church in the 1930s as part of his research [on] the foundations of mathematics

### The Lambda Calculus

### What Wikipedia says

Lambda calculus (also written as  $\lambda$ -calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application [...]. It is a universal model of computation that can be used to simulate any Turing machine and was first introduced by mathematician Alonzo Church in the 1930s as part of his research [on] the foundations of mathematics.

#### Further down it says

- ✓ Lambda calculus has applications in many different areas in mathematics, philosophy, linguistics, and computer science.
- ✓ Lambda calculus has played an important role in the development of the theory of programming languages.
- **X** Functional programming languages implement the lambda calculus.

# Syntax of the $\lambda$ -calculus

#### $\lambda$ terms

$$M, N := x$$
 variable  $| (\lambda x.M)$  (lambda) abstraction  $| (M N)$  application

- Variables are drawn from infinite denumerable set
- $(\lambda x.M)$  binds x in M

# Syntax of the $\lambda$ -calculus

#### $\lambda$ terms

$$M,N ::= x$$
 variable  $| (\lambda x.M)$  (lambda) abstraction  $| (M N)$  application

- Variables are drawn from infinite denumerable set
- $(\lambda x.M)$  binds x in M

#### Conventions for omitting parentheses

- abstractions extend as far to the right as possible
- application is left associative

# Working with lambda terms

#### Free and bound variables

$$free(x) = \{x\}$$
 $free(M N) = free(M) \cup free(N)$ 
 $free(\lambda x. M) = free(M) \setminus \{x\}$ 
 $bound(x) = \emptyset$ 
 $bound(M N) = bound(M) \cup bound(N)$ 
 $bound(\lambda x. M) = bound(M) \cup \{x\}$ 
 $var(M) = free(M) \cup bound(M)$ 

A lambda term M is **closed** (M is a **combinator**) iff free(M) =  $\emptyset$ . Otherwise the term is **open**.

# Working with lambda terms

# Substitution $M[x \mapsto N]$

$$x[x \mapsto N] = N$$

$$y[x \mapsto N] = y$$

$$(\lambda x.M)[x \mapsto N] := \lambda x.M$$

$$(\lambda y.M)[x \mapsto N] := \lambda y.(M[x \mapsto N])$$

$$(\lambda y.M)[x \mapsto N] := \lambda y'.(M[y \mapsto y'][x \to N])$$

$$x \neq y, y \notin \text{free}(N)$$

$$(\lambda y.M)[x \mapsto N] := \lambda y'.(M[y \mapsto y'][x \to N])$$

$$(M M')[x \mapsto N] := (M[x \mapsto N])(M'[x \mapsto N])$$

### Guiding principle: capture freedom

In every  $(\lambda x.M)$  the bound variable x is "connected" to each free occurrence of x in M. These connections must not be broken by substitution.

#### Reduction rules

$$(\lambda x.M) \to_{\alpha} (\lambda y.M[x \mapsto y]) \quad y \not\in \mathsf{free}(M) \quad \mathsf{Alpha \ reduction} \\ ((\lambda x.M) \, N) \to_{\beta} M[x \mapsto N] \qquad \qquad \mathsf{Beta \ reduction} \quad (\mathsf{function \ application}) \\ (\lambda x.(M \, N)) \to_{\eta} M \qquad \qquad x \not\in \mathsf{free}(M) \quad \mathsf{Eta \ reduction} \quad$$

#### Reduction rules

$$(\lambda x.M) \to_{\alpha} (\lambda y.M[x \mapsto y])$$
  $y \notin \text{free}(M)$  Alpha reduction   
  $((\lambda x.M) N) \to_{\beta} M[x \mapsto N]$  Beta reduction (function application)   
  $(\lambda x.(M N)) \to_{\eta} M$   $x \notin \text{free}(M)$  Eta reduction

### Reductions may be applied everywhere in a term

$$\frac{M \to_{\times} M'}{(\lambda y.M) \to_{\times} (\lambda y.M')} \qquad \frac{M \to_{\times} M'}{(M N) \to_{\times} (M' N)} \qquad \frac{N \to_{\times} N'}{(M N) \to_{\times} (M N')}$$

# The theory of the lambda calculus

## Computation and equivalence

For  $x \subseteq \{\alpha, \beta, \gamma\}$  and reduction relation  $\rightarrow_x$ ,

- $\bullet \xrightarrow{*}_{X}$  is the reflexive-transitive closure,
- $\bullet \leftrightarrow_{\mathsf{X}}$  is its symmetric closure,
- $\bullet \stackrel{*}{\leftrightarrow}_{\times}$  is its reflexive-transitive-symmetric closure.

# The theory of the lambda calculus

## Computation and equivalence

For  $x \subseteq \{\alpha, \beta, \gamma\}$  and reduction relation  $\rightarrow_x$ ,

- $\stackrel{*}{\rightarrow}$  is the reflexive-transitive closure.
- $\bullet \leftrightarrow_{\times}$  is its symmetric closure,
- $\bullet \stackrel{*}{\leftrightarrow}_{\times}$  is its reflexive-transitive-symmetric closure.

## Equality in lambda calculus

- Alpha equivalence:  $M =_{\alpha} N$  iff  $M \stackrel{*}{\leftrightarrow}_{\alpha} N$ .
- Standard:  $M =_{\beta} N$  iff  $M \stackrel{*}{\leftrightarrow}_{\alpha,\beta} N$ .
- Extensional:  $M =_{\beta n} N$  iff  $M \stackrel{*}{\leftrightarrow}_{\alpha,\beta,n} N$ .

#### Definition: Normal form

Let M be a lambda term.

A lambda term N is a **normal form** of M iff  $M \stackrel{*}{\to}_{\beta} N$  and there is no N' with  $N \to_{\beta} N'$ .

#### Definition: Normal form

Let M be a lambda term.

A lambda term N is a **normal form** of M iff  $M \stackrel{*}{\to}_{\beta} N$  and there is no N' with  $N \to_{\beta} N'$ .

Lambda terms with equivalent (equal modulo  $\alpha$  reduction) normal forms exhibit the same behavior. The reverse is not always true.

#### Definition: Normal form

Let M be a lambda term.

A lambda term N is a **normal form** of M iff  $M \stackrel{*}{\to}_{\beta} N$  and there is no N' with  $N \to_{\beta} N'$ .

Lambda terms with equivalent (equal modulo  $\alpha$  reduction) normal forms exhibit the same behavior. The reverse is not always true.

#### A lambda term without normal form

$$(\lambda x.x \ x)(\lambda x.x \ x) \rightarrow_{\beta} (\lambda x.x \ x)(\lambda x.x \ x)$$

# Computing with lambda terms makes sense

#### The Church-Rosser theorem

Beta reduction has the **Church-Rosser property**:



That is: For all  $M_1$ ,  $M_2$  with  $M_1 \stackrel{*}{\leftrightarrow}_{\beta} M_2$ , there is some N with  $M_1 \stackrel{*}{\rightarrow}_{\beta} N$  and  $M_2 \stackrel{*}{\rightarrow}_{\beta} N$ .

# Computing with lambda terms makes sense

#### The Church-Rosser theorem

Beta reduction has the **Church-Rosser property**:



That is: For all  $M_1$ ,  $M_2$  with  $M_1 \stackrel{*}{\leftrightarrow}_{\beta} M_2$ , there is some N with  $M_1 \stackrel{*}{\to}_{\beta} N$  and  $M_2 \stackrel{*}{\to}_{\beta} N$ .

## Corollary

A lambda term M has at most one normal form modulo  $\alpha$  reduction.

Programming in the pure lambda calculus

# From functions to arbitrary datatypes

## Any computation may be encoded in the lambda calculus

- Booleans and conditionals
- Numbers
- Recursion
- Products (pairs)
- Variants

## Requirements / Specification

Wanted: Lambda terms IF, TRUE, FALSE such that

- IF TRUE  $M N \stackrel{*}{\rightarrow}_{\beta} M$
- IF FALSE M N  $\overset{*}{\rightarrow}_{\beta}$  N

## Requirements / Specification

Wanted: Lambda terms IF, TRUE, FALSE such that

- IF TRUE M N  $\stackrel{*}{\rightarrow}_{\beta}$  M
- IF FALSE M N  $\stackrel{*}{\rightarrow}_{\beta}$  N

#### Idea

TRUE and FALSE are functions that select the first or second argument, respectively

#### **Booleans**

$$TRUE = \lambda x. \lambda y. x$$

$$FALSE = \lambda x. \lambda y. y$$

#### **Booleans**

$$TRUE = \lambda x. \lambda y. x$$

$$FALSE = \lambda x. \lambda y. y$$

#### Conditional

$$IF = \lambda b. \lambda t. \lambda f. b t f$$

#### **Booleans**

$$TRUE = \lambda x. \lambda y. x$$

$$FALSE = \lambda x. \lambda y. y$$

#### Conditional

$$IF = \lambda b. \lambda t. \lambda f. b t f$$

## Check the spec!

. . .

#### Natural numbers

## Requirements / Specification

Wanted: A family of lambda terms  $\lceil n \rceil$ , for each  $n \in \mathbb{N}$ , such that the arithmetic operations are *lambda definable*.

That is, there are lambda terms ADD, SUB, MULT, DIV such that

- $ADD \lceil m \rceil \lceil n \rceil \stackrel{*}{\rightarrow}_{\beta} \lceil m + n \rceil$
- $SUB \lceil m \rceil \lceil n \rceil \stackrel{*}{\rightarrow}_{\beta} \lceil m n \rceil$
- $MULT \lceil m \rceil \lceil n \rceil \stackrel{*}{\rightarrow}_{\beta} \lceil mn \rceil$
- $DIV \lceil m \rceil \lceil n \rceil \stackrel{*}{\rightarrow}_{\beta} \lceil m/n \rceil$

#### Church numerals

### One approach

The **Church numeral**  $\lceil n \rceil$  of some natural number n is a function that takes two parameters, a function f and some x, and applies f n-times to x.

#### Church numerals

## One approach

The **Church numeral**  $\lceil n \rceil$  of some natural number n is a function that takes two parameters, a function f and some x, and applies f n-times to x.

#### Zero

$$\lceil 0 \rceil = \lambda f. \lambda x. x$$

#### Church numerals

## One approach

The **Church numeral**  $\lceil n \rceil$  of some natural number n is a function that takes two parameters, a function f and some x, and applies f n-times to x.

#### Zero

$$\lceil 0 \rceil = \lambda f. \lambda x. x$$

#### Successor

$$SUCC = \lambda n. \lambda f. \lambda x. f(n f x)$$

# Church numerals — addition and multiplication

#### Addition

$$ADD = \lambda m. \lambda n. \lambda f. \lambda x. m f(n f x)$$

## Church numerals — addition and multiplication

#### Addition

$$ADD = \lambda m. \lambda n. \lambda f. \lambda x. m f(n f x)$$

#### Multiplication

$$MULT = \lambda . \lambda n. \lambda f. \lambda x. m(nf) x$$

## Church numerals — conditional

#### Wanted

IFO such that

- IF0  $\lceil 0 \rceil$  M N  $\overset{*}{\rightarrow}_{\beta}$  M
- *IF0*  $\lceil n \rceil$  M  $N \stackrel{*}{\rightarrow}_{\beta} M$  if  $n \neq 0$

## Church numerals — conditional

#### Wanted

IFO such that

- IF0 [0] M N  $\stackrel{*}{\rightarrow}_{\beta}$  M
- *IFO*  $\lceil n \rceil$  M  $N \stackrel{*}{\rightarrow}_{\beta} M$  if  $n \neq 0$

## Testing for zero

$$IF0 = \lambda n. \lambda z. \lambda s. n(\lambda x. s) z$$

## Church numerals — conditional

#### Wanted

IFO such that

- IF0 [0] M N  $\overset{*}{\rightarrow}_{\beta}$  M
- *IF0*  $\lceil n \rceil$  M  $N \stackrel{*}{\rightarrow}_{\beta} M$  if  $n \neq 0$

## Testing for zero

$$IF0 = \lambda n. \lambda z. \lambda s. n(\lambda x. s) z$$

## Check the spec!

. . .

## **Pairs**

## Specification

Wanted: lambda terms PAIR, FST, SND such that

- $FST(PAIR\ M\ N) \stackrel{*}{\rightarrow}_{\beta} M$
- $SND(PAIR\ M\ N)\stackrel{*}{\rightarrow}_{\beta} N$

## **Pairs**

## Specification

Wanted: lambda terms PAIR, FST, SND such that

- $FST(PAIR\ M\ N)\stackrel{*}{\rightarrow}_{\beta} M$
- $SND(PAIR\ M\ N)\stackrel{*}{\rightarrow}_{\beta} N$

### **Implementation**

$$PAIR = \lambda x. \lambda y. \lambda v. v x y$$

$$FST = \lambda p.p(\lambda x.\lambda y.x)$$

$$SND = \lambda p.p(\lambda x.\lambda y.y)$$

# Variants (Either)

### Specification

Wanted: lambda terms LEFT, RIGHT, CASE such that

- CASE(LEFT M) $N_l N_r \stackrel{*}{\rightarrow}_{\beta} N_l M$
- CASE(RIGHT M) $N_l N_r \stackrel{*}{\rightarrow}_{\beta} N_r M$

# Variants (Either)

## Specification

Wanted: lambda terms LEFT, RIGHT, CASE such that

- CASE(LEFT M) $N_l N_r \stackrel{*}{\rightarrow}_{\beta} N_l M$
- CASE(RIGHT M) $N_l N_r \stackrel{*}{\rightarrow}_{\beta} N_r M$

### **Implementation**

CASE =

LEFT =

RIGHT =

#### Recursion

## Fixpoint theorem

Every lambda term has a fixpoint:

For every M there is some N such that M  $N \stackrel{*}{\leftrightarrow}_{\beta} N$ .

#### Remark

Y is Curry's **fixpoint combinator**. There are infinitely many more fixpoint combinators with various properties.

#### Recursion

### Fixpoint theorem

Every lambda term has a fixpoint:

For every M there is some N such that M  $N \stackrel{*}{\leftrightarrow}_{\beta} N$ .

#### **Proof**

Let N = Y M where

$$Y := \lambda f.(\lambda x.f(x x)) (\lambda x.f(x x)).$$

#### Remark

Y is Curry's **fixpoint combinator**. There are infinitely many more fixpoint combinators with various properties.

# Wrapup

- Lambda calculus contains the primitives of the theory of recursive functions
- The theory of recursive functions is Turing complete
- Hence is the (untyped) lambda calculus