

EBPI Epidemiology, Biostatistics and Prevention Institute

Generalised Regression

Torsten Hothorn & Luisa Barbanti, Lucas Kook

Introduction

The Central Dogma of Statistics

Everything is in the distribution:

$$Y \sim \mathbb{P}_Y$$

Y is called response (outcome, dependent, endogenous) variable (actually: "random" variable)

Regression Analysis

Everything is in the *conditional* distribution:

$$Y \mid X = X \sim \mathbb{P}_{Y \mid X = X}$$

X (typically multivariate) are called explanatory (design, independent, exogenous, predictor) variables or covariates

How do changes in \mathbf{x} propagate to changes in $\mathbb{P}_{Y|\mathbf{X}=\mathbf{x}}$?

NB: Terminology

"Regression" classically means

$$Y \in \mathbb{R}$$

$$Y \mid \mathbf{X} = \mathbf{x} \sim \mathsf{N}(\mu(\mathbf{x}), \sigma^2) \Rightarrow \mathbb{E}(Y \mid \mathbf{X} = \mathbf{x}) = \mu(\mathbf{x})$$

"Generalised Regression" means

$$Y \mid \mathbf{X} = \mathbf{X} \sim \mathbb{P}_{Y \mid \mathbf{X} = \mathbf{X}}$$

without these restrictions.

Univariate Distributions

Distribution Functions

Sample space: $Y \in \Xi$

 σ -algebra: $\mathfrak C$ (in essense the set of "suitable" subsets of Ξ)

Probability measure: $\mathbb{P}_Y : \mathfrak{C} \to [0,1]$

Distribution: $Y \sim \mathbb{P}_Y$

 $A \in \mathfrak{C}$ is called *event* and $\mathbb{P}_{Y}(A)$ is a *probability*

Cumulative distribution function: $F_Y : \Xi \to [0, 1]$ with

$$F_Y(y) = \mathbb{P}_Y(\{\nu \in \Xi \mid \nu \leq y\})$$

 F_Y is monotone non-decreasing

Dichotomous Variables

$$Y \in \{y_1, y_2\}, F_Y(y_1) = \pi_1, F_Y(y_2) = 1$$

Dichotomous Variables

Density function: $f_Y : \Xi \to \mathbb{R}^+$

$$f_Y(y_1) = F_Y(y_1) = \pi_1$$

$$f_Y(y_2) = F_Y(y_2) - F_Y(y_1) = 1 - \pi_1$$

Dichotomous Variables

Odds function:
$$O_Y: \Xi \to \mathbb{R}^+$$

 $O_Y(y) = \frac{F_Y(y)}{1 - F_Y(y)}$
 $O_Y(y_1) = \frac{\pi_1}{1 - \pi_1}$

NB: This is equivalent to $Y \sim B(1, \pi_1)$

Polytomous Variables

$$Y \in \{y_1, y_2, \dots, y_K\}, F_Y(y_k) = \pi_k, F_Y(y_K) = 1$$

Polytomous Variables

Density function:
$$f_Y(y_1) = \pi_1$$
,

$$f_Y(y_k) = F_Y(y_k) - F_Y(y_{k-1}) = \pi_k - \pi_{k-1}$$

NB:
$$F_Y(y_k) = \sum_{i=1}^k f_Y(y_i)$$

Odds function:
$$O_Y(y_k) = \frac{F_Y(y_k)}{1 - F_Y(y_k)} = \frac{\pi_k}{1 - \pi_k}$$

NB: ordered polytomous means $y_1 < y_2 < \cdots < y_K$ NB: This is equivalent to a multinomial distribution

Count Variables

$$\Xi = \mathbb{N}, F_Y(i) = \pi_i, F_Y(\infty) = 1$$

Count Variables

Density function: $f_Y(0) = \pi_0, f_Y(i) = \pi_i - \pi_{i-1}$

Count Variables

Odds function: $O_Y(i) = \frac{\pi_i}{1-\pi_i}$

Continuous Variables

Bounded: $\Xi = (0, 1)$

Positive: $\Xi = (0, \infty)$

Real: $\Xi = \mathbb{R}$

Cumulative distribution function: $F_Y:(0,1)\to[0,1]$

Odds function: $O_Y(y) = \frac{F_Y(y)}{1 - F_Y(y)}$

Density function: $f_Y(y) = F'_Y(y)$

Quantile function: $F_Y^{-1}(\tau)$ with $F_Y^{-1}:(0,1)\to \Xi$

NB: Densities

Density wrt dominating measure μ : $\mathbb{P}_{Y} = f_{Y} \odot \mu$

$$F_Y(y) = \int \mathbb{1}(u \le y) f_Y(u) d\mu(u) \stackrel{y=\infty}{=} 1$$

Discrete (wrt counting measure):

$$F_Y(y) = \sum_{u \in \Xi} \mathbb{1}(u \le y) f_Y(u)$$

 $f_Y(y)$ is a probability

Continuous (wrt Lebesque measure):

$$F_Y(y) = \int \mathbb{1}(u \le y) f_Y(u) du$$

 $f_Y(y)$ is NOT a probability (but risk or intensity)

Cumulative distribution function: $F_Y : (0, \infty) \to [0, 1]$

Odds function: $O_Y(y) = \frac{F_Y(y)}{1 - F_Y(y)}$

Density function: $f_Y(y) = F'_Y(y)$

Quantile function: $F_{Y|X=x}^{-1}(\tau)$

Cumulative distribution function: $F_Y : \mathbb{R} \to [0, 1]$

Odds function: $O_Y(y) = \frac{F_Y(y)}{1 - F_Y(y)}$

Density function: $f_Y(y) = F'_Y(y)$

Quantile function: $F_{Y|X=x}^{-1}(\tau)$

Mixed Discrete / Continuous Variables

$$\Xi = [0, \infty), F_Y(0) = \pi_0$$

Parameterisations

Dicho/Polytomous: π_1, \ldots, π_{K-1} (binomial or multinomial distribution); fully parameterised

Sparse parameterisations ("shape" given, few parameters ϑ):

Count: Poisson, Negative-binomial, ...

Bounded continuous: Beta

Positive continuous: χ^2 , F, Weibull, log-normal, ...

Real: Normal, Logistic, t, ...

write $F_Y(Y \mid \vartheta)$

Estimation (1: "nonparametric")

$$Y_1, \ldots, Y_N \text{ iid } Y_i \sim \mathbb{P}_Y$$

$$\hat{F}_{Y,N}(y) = N^{-1} \sum_{i=1}^{N} \mathbb{1}(Y_i \leq y)$$

Empirical cumulative distribution function;

$$\mid F_{Y}(y) - \hat{F}_{Y,N}(y) \mid \rightarrow 0$$
 a.s. when $N \rightarrow \infty$ (Glivenko-Cantelli)

Estimation (2: "parametric")

 Y_1, \ldots, Y_N iid $Y_i \sim \mathbb{P}_Y$ with $F_Y(y \mid \vartheta)$, unknown parameter(s) $\vartheta \in \Theta$ (parameter space)

$$\hat{\vartheta}_N = \underset{\vartheta \in \Theta}{\operatorname{arg max}} \sum_{i=1}^N \log(f_Y(Y_i \mid \vartheta))$$

Maximum-likelihood estimation (Fisher, 1922); very general and some nice properties

Things are a bit more complex, but for the moment we've got everything we need.