Validate Statsomat/edapy

```
# Import
library(pastecs)
library(Hmisc)
library(knitr)
library(data.table)
library(psych)

# Upload and prepare dfs
filepath = "HolzingerSwineford1939.csv"
df <- fread(filepath, data.table=FALSE)</pre>
```

Dataset HolzingerSwineford1939.csv

```
# Data frame of the continuous variables
cols_continuous = c(0,1,7,8,9,10,11,12,13,14,15)
cols_continuous <- cols_continuous+1
df_num <- df[,cols_continuous]

# Validate table for continuous variables
kable(stat.desc(df_num),digits=2)</pre>
```

	V1	id	x1	x2	x3	x4	x5	x6	x7	x8	x9
nbr.val	301.00	301.00	301.00	301.00	301.00	301.00	301.00	301.00	301.00	301.00	301.00
nbr.null	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
nbr.na	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
\min	1.00	1.00	0.67	2.25	0.25	0.00	1.00	0.14	1.30	3.05	2.78
max	301.00	351.00	8.50	9.25	4.50	6.33	7.00	6.14	7.43	10.00	9.25
range	300.00	350.00	7.83	7.00	4.25	6.33	6.00	6.00	6.13	6.95	6.47
sum	45451.00	53143.00	1485.67	1832.50	677.38	921.33	1306.50	657.86	1259.96	1663.65	1617.61
median	151.00	163.00	5.00	6.00	2.12	3.00	4.50	2.00	4.09	5.50	5.42
mean	151.00	176.55	4.94	6.09	2.25	3.06	4.34	2.19	4.19	5.53	5.37
SE.mean	5.02	6.11	0.07	0.07	0.07	0.07	0.07	0.06	0.06	0.06	0.06
CI.mean.0.	$95 \ \ 9.87$	12.02	0.13	0.13	0.13	0.13	0.15	0.12	0.12	0.11	0.11
var	7575.17	11222.96	1.36	1.39	1.28	1.36	1.67	1.20	1.19	1.03	1.02
std.dev	87.04	105.94	1.17	1.18	1.13	1.16	1.29	1.10	1.09	1.01	1.01
coef.var	0.58	0.60	0.24	0.19	0.50	0.38	0.30	0.50	0.26	0.18	0.19

```
psych::describe(df_num)
```

vars n mean sd median trimmed mad min max range skew

```
1 301 151.00 87.04 151.00 151.00 111.19 1.00 301.00 300.00 0.00
## V1
## id
       2 301 176.55 105.94 163.00 176.78 140.85 1.00 351.00 350.00 -0.01
                                        1.24 0.67
## x1
     3 301
              4.94
                    1.17
                           5.00
                                 4.96
                                                   8.50
                                                        7.83 - 0.25
       4 301
                                  6.02 1.11 2.25
                                                   9.25
                                                        7.00 0.47
## x2
              6.09
                   1.18
                           6.00
                                2.20
## x3
       5 301
             2.25
                    1.13
                          2.12
                                        1.30 0.25
                                                   4.50
                                                        4.25 0.38
## x4
     6 301
             3.06 1.16
                          3.00 3.02 0.99 0.00
                                                   6.33
                                                        6.33 0.27
## x5
     7 301
             4.34 1.29 4.50 4.40 1.48 1.00
                                                   7.00 6.00 -0.35
              2.19 1.10 2.00 2.09 1.06 0.14
       8 301
                                                   6.14 6.00 0.86
## x6
## x7
       9 301
             4.19 1.09 4.09 4.16 1.10 1.30
                                                   7.43
                                                        6.13 0.25
             5.53 1.01 5.50 5.49 0.96 3.05 10.00
## x8
      10 301
                                                        6.95 0.53
## x9
      11 301 5.37 1.01 5.42 5.37 0.99 2.78 9.25 6.47 0.20
##
     kurtosis se
## V1
       -1.21 5.02
       -1.36 6.11
## id
## x1
       0.31 0.07
## x2
       0.33 0.07
## x3
       -0.91 0.07
## x4
       0.08 0.07
## x5
      -0.55 0.07
## x6
        0.82 0.06
## x7
      -0.31 0.06
## x8
       1.17 0.06
       0.29 0.06
## x9
# Data frame of the discrete variables
cols_discrete \leftarrow c(2,3,4,5,6)
cols_discrete <- cols_discrete+1</pre>
df_cat = df[,cols_discrete]
# Validate tables for discrete variables
Hmisc::describe(df_cat)
## df_cat
##
## 5 Variables 301 Observations
## sex
       n missing distinct
                            Info Mean
                                               Gmd
           0 2 0.749
##
      301
                                     1.515 0.5012
##
## Value
               1
## Frequency
            146 155
## Proportion 0.485 0.515
## ageyr
##
       n missing distinct
                            Info Mean
                                               Gmd
##
      301
           0 6
                             0.907
                                      13
                                           1.123
##
## lowest : 11 12 13 14 15, highest: 12 13 14 15 16
##
## Value
             11 12
                        13
                              14
                                    15
                                         16
                                         7
## Frequency
             8 101 110
                             55
                                    20
## Proportion 0.027 0.336 0.365 0.183 0.066 0.023
```

```
## agemo
                                            Gmd .05
                                                         .10
##
        n missing distinct Info Mean
          0 12 0.993
                                                   0
##
      301
                                  5.375
                                          3.976
##
      .25
              .50
                     .75
                           .90
                                    .95
        2
              5
                       8
                             10
                                     11
##
## lowest: 0 1 2 3 4, highest: 7 8 9 10 11
## Value
              0
                  1
                        2
                             3
                                  4
                                       5
                                            6
                                                 7
                                                      8
                                                                10
              22
                        26
                             26
                                  27
## Frequency
                   31
                                       27
                                            21
## Proportion 0.073 0.103 0.086 0.086 0.090 0.090 0.070 0.083 0.086 0.076 0.063
## Value
              11
## Frequency
## Proportion 0.093
## -----
## school
   n missing distinct
##
      301
              0
##
## Value
         Grant-White
                      Pasteur
## Frequency 145
## Proportion
                0.482
                          0.518
## grade
      n missing distinct
                          Info
                                  Mean
                                            Gmd
##
      300
          1 2 0.748
                                  7.477 0.5006
## Value
## Frequency 157 143
## Proportion 0.523 0.477
```

Dataset Baitingdata.csv

```
# Upload and prepare dfs
filepath = "Baitingdata.csv"
df <- fread(filepath, data.table=FALSE)

# Data frame of the continuous variables
cols_continuous = c(9,10,11,12,22,23,24)
cols_continuous <- cols_continuous+1
df_num <- df[,cols_continuous]

# Validate table for continuous variables
kable(stat.desc(df_num),digits=2)</pre>
```

	1st locate	1st attack	1st attack stop	2nd attack	CBH (cm)	DBH (cm)	height (m)
nbr.val	124.00	116.00	116.00	23.00	160.00	160.00	160.00
nbr.null	0.00	0.00	0.00	0.00	42.00	42.00	0.00

	1st locate	1st attack	1st attack stop	2nd attack	CBH (cm)	DBH (cm)	height (m)
nbr.na	36.00	44.00	44.00	137.00	0.00	0.00	0.00
\min	1.00	1.00	58.00	73.00	0.00	0.00	0.40
max	595.00	595.00	600.00	595.00	29.60	9.42	9.00
range	594.00	594.00	542.00	522.00	29.60	9.42	8.60
sum	16317.00	18273.00	58509.00	7650.00	997.56	317.53	463.20
median	100.50	103.50	600.00	319.00	5.30	1.69	2.50
mean	131.59	157.53	504.39	332.61	6.23	1.98	2.90
SE.mean	11.87	13.92	15.72	31.73	0.52	0.16	0.15
CI.mean.0.95	23.51	27.57	31.14	65.81	1.02	0.32	0.30
var	17485.66	22474.43	28668.94	23160.70	42.52	4.31	3.70
std.dev	132.23	149.91	169.32	152.19	6.52	2.08	1.92
coef.var	1.00	0.95	0.34	0.46	1.05	1.05	0.66

```
psych::describe(df_num)
```

Hmisc::describe(df_cat)

```
##
                                      sd median trimmed
                  vars
                         n
                             mean
                                                          mad min
                                                                      max range
## 1st locate
                    1 124 131.59 132.23 100.50 109.45 108.97 1.0 595.00 594.00
## 1st attack
                     2 116 157.53 149.91 103.50 136.76 122.31 1.0 595.00 594.00
## 1st attack stop 3 116 504.39 169.32 600.00 541.16
                                                         0.00 58.0 600.00 542.00
## 2nd attack
                    4 23 332.61 152.19 319.00 330.42 167.53 73.0 595.00 522.00
## CBH (cm)
                    5 160
                             6.23
                                    6.52 5.30
                                                  5.11
                                                         5.34 0.0 29.60 29.60
## DBH (cm)
                    6 160
                             1.98
                                    2.08
                                          1.69
                                                  1.63
                                                         1.70 0.0
                                                                     9.42
                                                                           9.42
## height (m)
                     7 160
                             2.90
                                    1.92
                                         2.50
                                                  2.62
                                                        1.56 0.4
                                                                     9.00
##
                   skew kurtosis
                                    se
## 1st locate
                   1.52
                            2.16 11.87
## 1st attack
                 1.07
                            0.27 13.92
## 1st attack stop -1.52
                           0.85 15.72
## 2nd attack
              0.26
                          -1.08 31.73
## CBH (cm)
                   1.70
                            3.22 0.52
## DBH (cm)
                   1.70
                            3.22 0.16
## height (m)
                   1.40
                            1.99 0.15
# Data frame of the discrete variables
cols_discrete \leftarrow c(0,1,2,3,4,5,6,7,8,13,25,26,27,28,29,30,31,32)
cols_discrete <- cols_discrete+1</pre>
df_cat = df[,cols_discrete]
# Validate tables for discrete variables
```

```
## df_cat
##
                    160 Observations
   18 Variables
## elevation (m)
##
         n missing distinct
                                Info
                                         Mean
                                                   {\tt Gmd}
##
                 0
                          8
                               0.984
                                         1050
                                                 264.2
       160
##
## lowest : 700 800 900 1000 1100, highest: 1000 1100 1200 1300 1400
##
```

```
## Value 700 800 900 1000 1100 1200 1300 1400 ## Frequency 20 20 20 20 20 20 20 20
## Proportion 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
##
     n missing distinct
##
     160 0 29
##
## lowest : 14.08.13 15.08.13 16.08.13 17.08.13 19.08.13
## highest: 22.08.30 22.08.31 22.08.32 24.08.13 26.08.13
## transect
  n missing distinct
##
     160 0
##
          N Y Y-not m
58 100 2
## Value
## Frequency
## Proportion 0.362 0.625 0.013
## Tree number
##
    n missing distinct
     100 60
##
## lowest : 1000 - 0157 1000 - 0858 1000 - 0863 1000 - 0864 1100 - 0108
## highest: 700 - 0740 700 - 0778 800 - 0329 900 - 0627 900 - 0628
## -----
## Baiting tree no.
  n missing distinct
     160 0 80
##
##
## lowest : 0799A 1001 1002 1018 108 , highest: B1002 B1003 B1004 B1005 B1100
## Termite/C
    n missing distinct
##
     160
         0
##
## Value
## Frequency 80 80
## Proportion 0.5 0.5
## -----
## Detected
                       Info Sum
0.523 124
##
    n missing distinct
                                     Mean
         0 2
                                124
                                     0.775 0.3509
##
##
## -----
## Attacked
       n missing distinct
##
                       Info Sum
                                     Mean
                                             Gmd
      160 0 2
##
                        0.598
                                     0.725 0.4013
                               116
## -----
## Recruited
     n missing distinct Info Sum Mean Gmd
160 0 2 0.727 94 0.5875 0.4877
##
##
```

```
## 2nd attack stop
   n missing distinct Info Mean
                                    Gmd .05
                                                  .10
      23 137 10 0.775 520.1 119.6 267.4 319.6
##
                  .75
##
     .25
           .50
                        .90
                              .95
##
    483.0 600.0
                 600.0
                       600.0
                              600.0
## lowest : 242 263 307 370 401, highest: 474 492 501 512 600
          242 263 307 370 401 474 492 501
                                              512
                                                   600
## Value
## Frequency 1 1 1 1 1 1 1 1
## Proportion 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.609
     n missing distinct Info Mean
                                     Gmd
     150 10 9 0.82 1.44
##
                                     2.155
## lowest: 0 1 2 3 4, highest: 4 5 7 8 12
## Value 0 1 2 3 4 5 7 8 12 ## Frequency 84 22 12 12 2 8 2 6 2
## Proportion 0.560 0.147 0.080 0.080 0.013 0.053 0.013 0.040 0.013
## H: 1-5%
  n missing distinct Info Mean Gmd .05
                                                  .10
     150
         10 31 0.993 12.53 15.33 0.00 0.00
##
     .25
            .50
                  .75 .90
                              .95
     1.00
         5.00 20.75 33.00
                            42.10
##
##
## lowest : 0 1 2 3 4, highest: 41 43 47 65 71
## H: 5-33%
                                     \operatorname{Gmd} .05
   n missing distinct Info Mean
                                                   .10
##
     150 10 40 0.998
                              20.57
                                   17.59
                                            2.45
                                                   5.00
                  .75
##
     . 25
           .50
                       .90
                              .95
     9.00 15.00 24.75 47.00
                              57.65
## lowest : 0 1 2 3 4, highest: 56 59 61 64 80
## -----
## H: 33+%
   n missing distinct
                       Info Mean
                                    Gmd
                                            . 05
                                                   .10
         10 38 0.999
                              20.13 16.75 4.00 5.00
##
    150
     .25
          .50
                 .75
                       .90
                              .95
##
     9.00 16.00 24.75 41.00 56.55
## lowest : 1 3 4 5 6, highest: 56 57 70 73 77
## ant sample
  n missing distinct value
      60 100
##
##
## Value
## Frequency 60
## Proportion 1
```

```
## field notes
##
         n missing distinct
##
         8
               152
## lowest : (Jimmy data)
                                                      *broken
## highest: (Jimmy data)
                                                      *broken
##
## (Jimmy data) (3, 0.375), *broken (2, 0.250), *broken, 5 @ resprout (1, 0.125),
## few ants (1, 0.125), few ants on lower branches but inhabited above (1, 0.125)
## species
##
        n missing distinct
##
       160
                0
##
## lowest : ANONO01 ANONO02 ANONO09 ANONO12 ANONO13
## highest: ANONO01 ANONO02 ANONO09 ANONO12 ANONO13
##
            ANONOO1 ANONOO2 ANONOO9 ANONO12 ANONO13
## Value
## Frequency
              4
                         6
                               40
                                     68
## Proportion 0.025 0.038 0.250
                                   0.425
                                           0.262
## ------
## lab notes
##
        n missing distinct
##
        15
               145
## lowest : 250 misread as 230 so changed
                                            ant ID from main data
                                                                             Bigger than 802
## highest: Much bigger than B0700
                                            Much bigger than B0805
                                                                             Small compared to 8
## 250 misread as 230 so changed (2, 0.133), ant ID from main data (6, 0.400),
## Bigger than 802 (1, 0.067), Much bigger than B0700 (1, 0.067), Much bigger than
## B0805 (1, 0.067), Small compared to 801 (1, 0.067), Taller petiole than 801 (1,
## 0.067), Vial transferred from Jimmy samples (2, 0.133)
```