

# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

| ФАКУЛЬТЕТ | Информатика и системы управления                        |
|-----------|---------------------------------------------------------|
| КАФЕДРА   | Программное обеспечение ЭВМ и информационные технологии |
|           |                                                         |

# ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1

«Длинная арифметика»

| Студент | Маслова Марина Дмитриевна |  |
|---------|---------------------------|--|
|         | фамилия, имя, отчество    |  |
| Группа  | ИУ7-23Б                   |  |

# Оглавление

| Техническое задание                                | 3 |
|----------------------------------------------------|---|
| Условие задачи                                     | 3 |
| Входные данные                                     | 3 |
| Выходные данные                                    | 3 |
| Задача, реализуемая программой                     |   |
| Способ обращения к программе                       | 3 |
| Возможные аварийные ситуации и ошибки пользователя |   |
| Описание внутренних структур данных                | 4 |
| Описание функций                                   | 5 |
| Описание алгоритма                                 | 6 |
| Тесты                                              | 7 |
| Контрольные вопросы                                | 9 |
| Вывол                                              |   |

#### Техническое задание

#### Условие задачи

Смоделировать операцию умножения действительного числа в форме  $\pm$ m.n E  $\pm$ K, где суммарная длина мантиссы (m+n) — до 30 значащих цифр, а величина порядка K — до 5 цифр, на целое число длиной до 30 десятичных цифр. Результат выдать в форме  $\pm$ 0.m1 E  $\pm$ K1, где m1 — до 30 значащих цифр, а K1 — до 5 цифр.

#### Входные данные

- 1. Строка, в которой записано длинное вещественное число в экспоненциальной или обычной форме. Строка должна иметь вид  $\pm$ m.n  $E \pm K$ , где суммарная длина мантиссы (m+n) до 30 значащих цифр, а величина порядка K до 5 цифр при этом ввод точки, экспоненты, пробелов и знака «+» необязателен.
- 2. Строка, в которой записано длинное целое число. Строка должна иметь вид ±n1, где длина n1 не превышает 30 при этом ввод знака «+» необязателен.

#### Выходные данные

Строка, являющаяся результат операции умножения двух введенных чисел и представленная в виде  $\pm 0.m1$  E  $\pm K1$ , где m1- до 30 значащих цифр, а K1- до 5 цифр.

#### Задача, реализуемая программой

Осуществление операции умножение длинного вещественного числа на длинное целое число.

## Способ обращения к программе

Через терминал.

## Возможные аварийные ситуации и ошибки пользователя

Некорректный ввод (использование недопустимого символа, превышение максимально возможного количества символов, неверный формат ввода).

Переполнение порядка в результате умножения.

# Описание внутренних структур данных

В программе используются две структуры данных: одна — для представления длинного вещественного числа — big\_double, другая — для представления длинного целого числа — big\_int.

```
typedef struct
     char sign;
     char num[MAX_DOUBLE_LEN];
     short int len_num;
     short int point_place;
     int order:
} big_double;
     Структура big double имеет 5 полей:
     char sign – знак вещественного числа;
     char num[MAX_DOUBLE_LEN] – массив символов для хранения
мантиссы числа;
     short int len_num – длина мантиссы;
     short int point_place – положение точки отсчитывая от старшего разряда;
     int order – порядок вещественного числа.
     В данную структуру записывается введенное вещественное число и
результат вычислений.
typedef struct
     char num[MAX_INT_LEN + 1];
     short int len_num;
} big_int;
    Структура big int имеет два поля:
    char num[MAX_INT_LEN + 1] – массив символов, представляющих
```

цифры числа и знак, хранящийся в элементе с индексом 0.

short int len\_num – длина целого числа.

В данную структуру записывается введенное целое число.

# Описание функций

```
mulriply_big_numbers()
```

Осуществляет умножение длинного вещественного и длинного целого чисел

#### **Parameters**

```
[in] int_num Указатель на длинное целое число
```

[in] double\_num Указатель на длинное вещественное число

[out] result\_num Указатель на результат (длинное вещественное число)

#### Returns

Код ошибки

#### normalize\_number()

Преобразовывает длинное вещественное число к нормализованному виду

#### **Parameters**

[in, out] Указатель на длинное вещчественное число

#### read\_big\_double()

Считывает длинное вещественное число.

#### **Parameters**

[out] number Указатель на длинное вещественное число

#### Returns

Код ошибки

#### print\_big\_double()

Выводит нормализованное вещественное число на экран

#### **Parameters**

[in] number Указатель на длинное вещественное число

#### read\_int\_str()

Считывает строку для последующего преобразования в int.

#### **Parameters**

```
[in] max_int_len Максимальное количество цифр в числе
[out] read_str Указатель на считанную строку
```

#### Returns

Код ошибки

read\_mantissa()

Считывает мантиссу длинного вещественного числа.

#### **Parameters**

[out] number Указатель на длинное вещественное число

#### Returns

```
Код ошибки (целое число) read_order()
```

Считывает порядок длинного вещественного числа.

#### **Parameters**

[out] order Указатель на порядок вещественного числа

#### **Returns**

Код ошибки

round\_num()

Округляет вещественное число при выходе за разряды мантиссы

#### **Parameters**

```
[in] last Последняя вышедшая за разряды цифра
[out] number Указатель на округленное вещественное число
```

#### read\_big\_int()

Считывает длинное целое число

#### **Parameters**

[out] number Указатель на длинное целое число

#### Returns

Код ошибки

# Описание алгоритма

Для осуществления операции умножения используется алгоритм вычисления методом Транхенберга. Он представляет собой модифицированный способ умножения «столбиком», в котором каждая цифра числа вычисляется сразу, что не требует отдельного хранения результатов умножения каждой цифры второго числа на первое.

#### Тесты

| No | Что проверяется              | Вещественное | Целое число | Результат                                 |
|----|------------------------------|--------------|-------------|-------------------------------------------|
| 1  | Некорректный<br>формат ввода | число<br>ert |             | Ошибка при<br>чтении порядка              |
| 2  | Некорректный<br>формат ввода | iu7          |             | При вводе использован некорректный символ |
| 3  | Некорректный<br>формат ввода | 1e23         | FGH         | При вводе использован некорректный символ |
| 4  | Некорректный формат ввода    | -12.3e+12.3  |             | Ошибка при<br>чтении порядка              |
| 5  | Некорректный<br>формат ввода | 1e+21        |             | При вводе использован некорректный символ |
| 6  | Некорректный<br>формат ввода | 1e88         | -1e56       | При вводе использован некорректный символ |

| 7  | Больше 30 цифр в мантиссе          | 99999999999999999991<br>1                        |                                         | Превышено максимальное количество символов       |
|----|------------------------------------|--------------------------------------------------|-----------------------------------------|--------------------------------------------------|
| 8  | Больше 5 цифр в<br>порядке         | 1e999991                                         |                                         | Ошибка при<br>чтении порядка                     |
| 9  | Больше 30 цифр в<br>целом числе    | 1e1                                              | 99999999999<br>9999999999999<br>9999991 | Превышено максимальное количество символов       |
| 10 | Наибольшее<br>значение             | 999999999999999<br>999999999999999<br>e99969     | 1                                       | +0.999999999999<br>999999999999999<br>999e99999  |
| 11 | Наименьшее<br>значение             | -999999999999<br>999999999999999<br>999 e -99999 | 999999999999<br>9999999999999<br>999999 | +0.999999999999<br>999999999999999<br>998e-99939 |
| 12 | Умножение на ноль                  | 1e1                                              | 0                                       | +0.0 E +0                                        |
| 13 | Ноль на ноль                       | 0                                                | 0                                       | +0.0 E +0                                        |
| 14 | Переполнение<br>порядка            | 99999999999999999999999999999999999999           | 99999999999<br>9999999<br>999999        | Переполнение порядка при выполнении умножения    |
| 15 | Переполнение<br>порядка            | 0.001 e -99999                                   | 1                                       | Переполнение порядка при выполнении умножения    |
| 16 | Ввод вещественного в обычной форме | 10                                               | 10                                      | +0.1 E +3                                        |
| 17 | Начальные нули                     | 00123e0                                          | 00123                                   | +0.15129 E +5                                    |
| 18 | Конечные нули                      | 0.800 e 1                                        | 1                                       | +0.8 E +1                                        |
| 19 | Округление                         | 4                                                | 999999999999<br>9999999<br>999999       | +0.4 E +31                                       |
| 20 | Округление                         | 13                                               | 99999999999<br>9999999999999<br>999993  | +0.13 E +32                                      |
| 21 | Положительное на положительное     | +12                                              | +12                                     | +0.144 E +3                                      |
|    |                                    | 8                                                |                                         |                                                  |

| 22 | Положительное на отрицательное | +12 | -12 | -0.144 E +3 |
|----|--------------------------------|-----|-----|-------------|
| 23 | Отрицательное на положительное | -12 | +12 | -0.144 E +3 |
| 24 | Отрицательное на отрицательное | -12 | -12 | +0.144 E +3 |

## Контрольные вопросы

### Каков возможный диапазон чисел, представляемых в ПК?

Если п – число разрядов процессора, то:

для целых положительных чисел:  $0 < x < 2^n - 1$ 

для целых отрицательных чисел: -  $2^{n-1} \le x < 0$ 

для вещественных чисел:  $3.6E-4951 \le x \le 1.1E+4932$  (максимальный размер мантиссы 52 двоичных разряда, порядка — 11 разрядов).

# **Какова возможная точность представления чисел, чем она определяется?**

Точность представления вещественных чисел зависит от максимального количества разрядов, отведенных под хранение мантиссы. При выходе мантиссы из разрядной сетки происходит округление и точность теряется. Под хранение мантиссы числа типа double отводится 52 двоичных разряда, что соответствует не более, чем 20 десятичным разрядам.

# Какие стандартные операции возможны на числами?

Сложение, вычитание, умножение, деление, сравнение, деление нацело, взятие остатка.

# Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?

Самым выгодным по памяти вариантом является массив элементов типа char. Так же можно использовать целые типы (int, short int), однако по

сравнению с массивом символов массив целых чисел будет занимать больше памяти.

# **Как можно осуществить операции над числами, выходящими за** рамки машинного представления?

Производить действия над числами поэлементно, заранее сохранив цифры числа в массив. Для выполнения операций использовать алгоритм «столбиком или его модификации.

# Вывод

В ходе выполнения лабораторной работы был успешно реализован алгоритм умножения длинного вещественного числа на длинное целое число, были получены навыки хранения чисел, не входящих в диапазон преставления в ПК, и работы с ними.

Было выяснено, что для хранения чисел, выходящих за рамки машинного преставления, эффективно использовать структуры для вещественных чисел – с полями, соответствующими знаку (символьный тип), мантиссе (массив символов), её длине (короткое целое), порядку (целое) и положению точки (короткое целое), для целых – самому числу со знаком (массив символов) и его длине (короткое целое).