Problem 2

Solution 2.(a)

The elements of our set - which we will check if they form a group - are given by,

$$\mathcal{G} = \{ D_z(0), D_z(\pi/2), D_z(\pi), D_z(3\pi/2) \}$$
(46)

By definition of D_z rotations, we know that,

$$D_z(a)D_z(b) = D_z(a+b) (47)$$

Using this property, we can form a multiplication table,

*	0	1	2	3
0	$D_z(0)$	$D_z(1)$	$D_z(2)$	$D_z(3)$
1	$D_z(1)$	$D_z(2)$	$D_z(3)$	$D_z(0)$
2	$D_z(2)$	$D_z(3)$	$D_z(0)$	$D_z(1)$
3	$D_z(3)$	$D_z(0)$	$D_z(1)$	$D_z(2)$

Table 1: \mathcal{G} multiplication table

where $D_z(N)$ for $N \in {0,1,2,3}$ corresponds to,

$$D_z\left(\frac{n\pi}{2}\right) \tag{48}$$

- From the first row and column, we can see that D_0 forms the identity element on \mathcal{G} with respect to *
- All the elements in the multiplication table belong in \mathcal{G} , proving closure on \mathcal{G} with respect to * operation
- There is an inverse for each of the element given by,

$$D_z(N) = D_z(|N-4|) (49)$$

Associative nature of the set G under * can be proved,

$$D\left(F\frac{\pi}{2}\right)\left(D\left(G\frac{\pi}{2}\right)D\left(H\frac{\pi}{2}\right)\right) = D\left(F\frac{\pi}{2}\right)\left(D\left((G+H)\frac{\pi}{2}\right)\right) \tag{50}$$

$$=D\left(\left(F+G+H\right)\frac{\pi}{2}\right)\tag{51}$$

$$=D\left(\left(\left(F+G\right)+H\right)\frac{\pi}{2}\right)\tag{52}$$

$$= \left(D\left(F\frac{\pi}{2} \right) D\left(G\frac{\pi}{2} \right) \right) D\left(H\frac{\pi}{2} \right) \tag{53}$$

Hence, we can conclude that \mathcal{G} forms a group under *.

Solution 2.(b)

Yes, the group is abelian. You can determine this by seeing that the multiplication table is symmetric with respect to the diagonal.

Solution 2.(c)

The group has a subgroup,

$$\mathbb{Z}_2 = \{D_0, D_2\} \tag{54}$$

which can be seen from the multiplication table,

*	0	2
0	$D_z(0)$	$D_z(2)$
2	$D_z(2)$	$D_z(0)$

Table 2: \mathbb{Z}_2 multiplication table

where the associativity and identity are followed from the group \mathcal{G} . The inverse for each of the element in this \mathbb{Z}_2 group is given by $D_z(2)$.

Solution 2.(d)

We want to find the eigenvalues σ_x for the mirror operator M_x .

The mirror operator takes (x, y) to (-x, y).

$$M_{x}|x,y\rangle = |-x,y\rangle \tag{55}$$

Applying the M_x operator twice,

$$M_{x}(M_{x}|x,y\rangle) = M_{x}|-x,y\rangle \tag{56}$$

$$=|x,y\rangle \tag{57}$$

$$M_x^2 = \lambda^2 |x, y\rangle \tag{58}$$

Giving us, $\lambda^2 = 1$, hence the eigenvalues can be ± 1

Solution 2.(e)

The eigenvalues of $D_z(n\frac{\pi}{2})$ depends on n.

• For n = 0, we need to apply $D_z(0)$ once on a state to get back to the original state, which in turn means gives us the eigenvalue equation. Giving us,

$$\lambda_z(D_z(0)) = +1 \tag{59}$$

• For n = 1, we need to apply $D_z(1)$ four times on a state before we get back to the original state. Giving us,

$$\lambda_z(D_z(1)) = \pm 1, \pm i \tag{60}$$

We get this by solving,

$$(\lambda_z(D_z(1)))^4 - 1 = 0 (61)$$

• For n = 2, we need to apply $D_z(2)$ two times on a state before we get back to the original state. Giving us,

$$\lambda_z(D_z(2)) = \pm 1 \tag{62}$$

• For n = 3, we need to apply $D_z(3)$ four times on a state before we get back to the original state. Giving us,

$$\lambda_z(D_z(2)) = \pm 1, \pm i \tag{63}$$

Solution 2.(f)

To show that, in general the rotation operator and the mirror operator do not commute, we can use a counter-example,

Let us denote the state in which the atom is in by

$$|1\rangle$$
, $|2\rangle$, $|3\rangle$, $|4\rangle$ (64)

where 1,2,3,4 corresponds to the state in that particular quadrant.

$$M_{x}D_{z}(1)|1\rangle = M_{x}|2\rangle \tag{65}$$

$$= |1\rangle \tag{66}$$

$$D_z(1)M_x |1\rangle = D_z(1) |2\rangle$$
 (67)

$$=|3\rangle \tag{68}$$

As $|1\rangle \neq |3\rangle$, we can conclude that, in general the rotation operator and the mirror symmetry operator do not commute.

Solution 2.(g)

We can show that M_x and $D_z(2)$ commute. We can arrange the 4 atoms in a set $\{0,1,2,3\}$ corresponding to a permutation $\{1, 2, 3, 4\}$

$$D_z(2)M_x\{1,2,3,4\} = D_z(2)\{2,1,4,3\}$$
(69)

$$= \{4, 3, 2, 1\} \tag{70}$$

and

$$M_x D_z(2)\{1,2,3,4\} = M_x\{3,4,1,2\}$$
(71)

$$= \{4, 3, 2, 1\} \tag{72}$$

which show us that these operators commute for our given scenario where the atoms are allowed to be in those 4 particular positions. This means they can have simultaneous eigenstates

We did this by using the operation of these two operators on an arbitrary permutation given by,

$$M_{x}\{a,b,c,d\} = \{b,a,d,c\}$$
 (73)

$$D_z(2)\{a,b,c,d\} = \{c,d,a,b\}$$
(74)

Solution 2.(h)

Let us first check the action of our two operators on the potential,

$$M_{x}V = M_{x}aXY \tag{75}$$

$$= -aXY (76)$$

which means M_{χ} anticommutes with V, and

$$D_z(2)V = D_z(2)aXY (77)$$

$$= aXY (78)$$

giving us $D_z(2)$ to commute with V

All states where $\epsilon = \epsilon'$ will be zero due to orthogonality. After assuming $\epsilon = \epsilon'$ (and dropping the label from the Dirac notation as we are assuming the same ϵ), let us check which other states will be zero too.

$$\langle +, + | V | +, + \rangle = \frac{1}{1^2} \langle +, + | D_z(2) M_x V M_x D_z(2) | +, + \rangle$$
 (79)

$$= -1 \langle +, + | D_z(2) V \underbrace{M_x M_x}_{1} D_z(2) | +, + \rangle$$
 (80)

$$= -1 \langle +, + | V | + + \rangle \tag{81}$$

$$=0 (82)$$

This means when the state has an even parity with respect to our operators $D_z(2)$, M_x go to zero.

By symmetry of the problem, a computation with $|-,-\rangle$ state will also give us the same result, where the state has an odd parity.

Let us check a state where the parities are mixed, i.e. even with $D_z(2)$ and odd with M_x ,

$$\langle +, -|V|+, -\rangle = -\langle +, -|M_x D_z(2) V D_z(2) M_x |+, -\rangle$$
 (83)

$$\langle +, -|V|+, -\rangle = -\langle +, -|M_x D_z(2) V D_z(2) M_x |+, -\rangle$$

$$= \langle +, -|D_z(2) V D_z(2) \underbrace{M_x M_x}_{1} |+, -\rangle$$
(83)
(84)

$$= \langle +, -|V|+, -\rangle \tag{85}$$

giving us something that is not necessarily zero. If we invert the parities, i.e. odd with $D_z(2)$ and even with M_x we will get a similar result by the symmetry of the problem.