Multi-task Self-Supervised Object Detection via Recycling of Bounding Box Annotations

2019-07-08
Wonhee Lee (wonhee@vision.snu.ac.kr)

Multi-task Self-Supervised Object Detection via Recycling of Bounding Box Annotations

Objectives

- Improving the object detection accuracy
- The two requisites for object detection
 - Novel detector & backbone network
 - Lots of bounding box annotations
- Additional ways
 - Multi-task learning
 - Self-supervised learning
 - Annotation reusing

Introduction - MTL

- Multi-task learning (MTL)
 - Cooperative feature learning by several tasks
 - Synergetic when tasks are related to each other

Black: Yes, Necktie: Yes, Gender: Male, Strips: No, Yellow: No, White: No, Skin Exposure: No ...

Black: Yes, Necktie: No, Gender: Female, Strips: Yes, Yellow: No, White: Yes, Skin Exposure: Yes ...

Introduction - SSL

- Self-supervised learning (SSL)
 - annotated without any human effort
- Mostly for pretraining
 - performance: random init. < self-supervision pretraining < ImageNet pretraining

Introduction - Annotation Recycling

- Why Recycling?
 - used to create detection loss
 - used again to create losses of auxiliary tasks
 - extract information in the label to the extreme
- To boost up the main task

Mix & Match task by recycling segmentation label

Joint structure prediction by recycling segmentation label

Our Idea

- Start from the conventional detection setting with BBox annotations
- Extract additional information in the annotations (Recycling)
- Create three auxiliary tasks that predict it (SSL)
- Cooperative feature learning (MTL)
- Refine the classification result using the output of auxiliary tasks

Approach - 3 auxiliary tasks

- Multi-object labeling
- Closeness labeling
- Foreground labeling

Approach - architecture

- How object detection improves?
 - Multi-task learning: cooperative feature learning
 - Refinement: using contextual information in the auxiliary task output

Experiments

• 2.0 mAP ↑ on average

Dataset		VOC		COCO	
Training	07	07+12		17 train	
Test	07	07	12	17 val	17 test-dev
Baseline	77.0	81.7	75.3	32.7	32.8
+ Task1	78.9	83.8	77.4	34.1	34.2
+ Task2	77.3	83.0	76.0	33.3	33.5
+ Task3	77.0	82.0	75.1	32.9	32.8
+ Task1,2	78.5	83.7	77.3	34.5	34.6
+ Task1,2,3	78.7	83.7	77.5	34.6	34.7

Dataset

Backbone	MobileNet [23]		Inception-ResNet-v2 [44]			
Training	07	07+12		07	07+12	
Test	07	07	12	07	07	12
Baseline	61.2	68.6	62.0	80.7	84.3	78.2
+ Task1	63.4	71.3	64.5	81.7	85.9	80.5
+ Task2	62.5	69.3	62.6	81.0	84.8	79.0
+ Task3	61.3	68.8	61.7	80.6	84.2	78.3
+ Task1,2	63.9	70.9	64.5	81.8	86.1	80.1
+ Task1,2,3	63.8	70.8	64.4	81.8	86.0	80.0

Backbone Networks

Training	07	07-	+12
Test	07	07	12
Baseline	73.4	78.6	72.1
+ Task1	74.3	80.1	74.0
+ Task2	73.5	78.7	72.2
+ Task3	73.3	78.4	71.9
+ Task1,2	75.0	80.4	74.2
+ Task1,2,3	74.7	80.6	73.9

Base Detector (R-FCN)

Training	07	07-	+12
Test	07	07	12
Baseline	77.0	81.7	75.3
+ MTL	78.0 (+1.0)	83.0 (+1.3)	76.7 (+1.4)
+ Refinement	78.3 (+1.3)	82.7 (+1.0)	76.4 (+1.1)
+ Both	78.7 (+1.7)	83.7 (+2.0)	77.5 (+2.2)

Ablations

Contributions

- A first attempt to recycle BBox annotations for object detection
- Orthogonal to any proposal-based detection models
- Improvement (mAP 2.0↑ on avg) in multiple architectures

Visualization - Refinement

By multi-object labeling task

(a) Classification result changed from "sheep" to "dog"

Visualization - Refinement

By closeness labeling task

(b) Classification result changed from "chair" to "background"

Q & A

Thank You!