Homework and Tutorial

Assignments

> 4.14, 4.25, 4.31, 4.33, 4.35

Tutorial problems

- Basic Problems wish Answers 4.10, 4.16
- Basic Problems 4.26, 4.30

Chapter 4 The Continuous-Time Fourier Transform

(cont.)

Review

So, on the derivation of FT ...

Review Motivating Examples: Square wave

The CT Fourier Transform Pair

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt \qquad -FT$$
Fourier Transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega \quad \text{Inverse FT}$$
Inverse Fourier Transform

$$\mathcal{F}(x(t)) = X(j\omega)$$

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega)$$

$$x(t) = \mathcal{F}^{-1}(X(j\omega))$$

Inverse

Figure 4.11 Fourier transform pair of Figure 4.9 for several different values of W.

Review

Fourier Transform for Periodic Signals – Unified Framework

Outline

- Interesting properties of CTFT
 - Real signal
 - Convolution property LTI systems
 - Multiplication property Modulation & Sampling
- Linear-constant-coefficient differential equation of LTI systems

Problem 4.24 (a)

• Determine which, if any, of the real signals in (a)-(f) have Fourier transforms that satisfy each of the following condition:

$$ho$$
 $Re\{X(j\omega)\}=0$

$$Im\{X(j\omega)\} = 0$$

- There exists a real a such that $e^{ja\omega}X(j\omega)$ is real

- $\succ X(j\omega)$ is periodic

(d)

Impulse & Frequency Responses

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$
 h(t)
$$y(t) = \sum_{k=-\infty}^{\infty} a_k H(jk\omega_0) e^{jk\omega_0 t}$$

$$H(j\omega) = \int_{-\infty}^{+\infty} h(t)e^{-j\omega t}dt$$

Impulse response Frequency response

Remark:

Not every LTI system has frequency response; but according to Dirichlet conditions, most of stable LTI systems have.

Convolution Property

$$y(t) = h(t) * x(t) \leftrightarrow Y(j\omega) = H(j\omega)X(j\omega)$$

An intuitive interpretation:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega \implies x(t) = \int_{-\infty}^{+\infty} \underbrace{\frac{1}{2\pi} X(j\omega) d\omega}_{coefficient} e^{j\omega t}$$

$$y(t) = \int_{-\infty}^{+\infty} \underbrace{H(j\omega) \frac{1}{2\pi} X(j\omega) d\omega}_{new\ coefficient} e^{j\omega t} \implies y(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} H(j\omega) X(j\omega) e^{j\omega t} d\omega$$

$$Y(j\omega) = H(j\omega) X(j\omega)$$

Frequency Response Examples

Example 4.16 A differentiator

$$y(t) = \frac{dx(t)}{dt}$$
 — an LTI system

From differentiation property $\Rightarrow \frac{d}{dt} \stackrel{FT}{\longleftrightarrow} j\omega$

- Amplifies high frequencies (enhances sharp edges)
- 2) $+\pi/2$ phase shift $(j = e^{j\pi/2})$ Larger at high ω_0 phase shift $\frac{d}{dt}\sin\omega_0 t = \omega_0\cos\omega_0 t = \omega_0\sin(\omega_0 t + \frac{\pi}{2})$

$$\frac{d}{dt}\cos\omega_0 t = -\omega_0 \sin\omega_0 t = \omega_0 \cos(\omega_0 t + \pi/2)$$

Example 4.18: Impulse Response of an *Ideal* Lowpass Filter

Questions:

- Is this a causal system?
- 2) What is h(0)?

Convolution Calculation Examples

Example 4.20

Example 4.19

$$h(t) = e^{-t}u(t) , x(t) = e^{-2t}u(t)$$

$$y(t) = h(t) * x(t) = ?$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$Y(j\omega) = H(j\omega)X(j\omega) = \frac{1}{(1+j\omega)} \cdot \frac{1}{(2+j\omega)}$$

Partial fraction expansion
$$Y(j\omega) = \frac{1}{1+j\omega} \frac{a=1}{-2} \frac{1}{2+j\omega}$$

$$\forall \text{ inverse } FT$$

$$y(t) = \left[e^{-t} - e^{-2t}\right]u(t)$$

Multiplication Property

Since *FT* is highly symmetric,

$$x(t) = \mathcal{F}^{-1}\{X(j\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \, e^{j\omega t} d\omega, \quad X(j\omega) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) \, e^{-j\omega t} dt$$

 $x(t) * y(t) \longleftrightarrow X(j\omega) \cdot Y(j\omega)$

thus if

then the other way around is also true

$$x(t) \cdot y(t) \longleftrightarrow \frac{1}{2\pi} X(j\omega) * Y(j\omega)$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) Y(j(\omega - \theta)) d\theta$$

 $\frac{1}{2\pi}$ — A consequence of *Duality*

Example: Frequency Shifting

Figure 4.26 Implementation of a bandpass filter using amplitude modulation with a complex exponential carrier.

Figure 4.27 Spectra of the signals in the system of Figure 4.26.

Example: Amplitude Modulation

Example 4.21

$$r(t) = s(t) \cdot p(t) \iff R(j\omega) = \frac{1}{2\pi} [S(j\omega) * P(j\omega)]$$

For
$$p(t) = \cos \omega_0 t \iff P(j\omega) = \pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$$

$$R(j\omega) = \frac{1}{2}S(j(\omega - \omega_0)) + \frac{1}{2}S(j(\omega + \omega_0))$$

(cont.)

 ω_1 : bandwidth

 $r(t) = s(t) \cdot \cos(\omega_0 t)$ Amplitude modulation (AM)

$$R(j\omega) = \frac{1}{2} [S(j(\omega - \omega_o))]$$

$$+ S(j(\omega + \omega_o))]$$

$$(-\omega_0 - \omega_1) (-\omega_0 + \omega_1)$$

$$R(j\omega) = \frac{1}{2\pi} [S(j\omega) * P(j\omega)]$$

$$A/2$$

$$(\omega_0 - \omega_1) (\omega_0 + \omega_1)$$

Drawn assume ω_{o} - ω_{1} >0 i.e. ω_{o} > ω_{1}

Signals and Systems

(cont.)

Amplitude Modulated Signal

ironbark.xtelco.com.au

Review

Example 4.8

$$x(t) = \sum_{n=0}^{\infty} \delta(t - nT)$$
 — sampling function

$$x(t) \stackrel{\text{FS}}{\longleftrightarrow} a_k = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-jk\omega_o t} dt = \frac{1}{T}$$

$$\Downarrow x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_o t} = \sum_{k=-\infty}^{+\infty} \frac{1}{T} e^{jk\omega_o t}$$

$$X(j\omega) = \sum_{k=-\infty}^{+\infty} \frac{2\pi}{T} \delta(\omega - \frac{k2\pi}{T})$$

x(t)

 $\omega_s = 2\pi / T$: sampling frequency

Note in this case, periodic in both time domain (with a period T) and frequency domain (with a period $2\pi/T$)

Example: Sampling

Sample a continuous signal

LTI Systems by LCCDE

(Linear-constant-coefficient differential equations)

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$

Using the Differentiation Property

$$\frac{d^k x(t)}{dt^k} \longleftrightarrow (j\omega)^k X(j\omega)$$

Transform both sides of the equation

$$\sum_{k=0}^{N} a_k (j\omega)^k Y(j\omega) = \sum_{k=0}^{M} b_k (j\omega)^k X(j\omega)$$

$$Y(j\omega) = \underbrace{\left[\frac{\sum_{k=0}^{M} b_k(j\omega)^k}{\sum_{k=0}^{N} a_k(j\omega)^k}\right]} X(j\omega) \qquad H(j\omega) = \underbrace{\left[\frac{\sum_{k=0}^{M} b_k(j\omega)^k}{\sum_{k=0}^{N} a_k(j\omega)^k}\right]}_{H(j\omega)}$$

$$H(j\omega) = \left[\frac{\sum_{k=0}^{M} b_k(j\omega)^k}{\sum_{k=0}^{N} a_k(j\omega)^k} \right]$$

Partial Fraction Expansion

Partial Fraction Expansion (No identical poles):

$$H(j\omega) = \frac{b_M(j\omega + z_1)(j\omega + z_2) \dots (j\omega + z_M)}{a_N(j\omega + p_1)(j\omega + p_2) \dots (j\omega + p_N)}$$

$$= \frac{A_1}{j\omega + p_1} + \frac{A_2}{j\omega + p_2} + \dots + \frac{A_N}{j\omega + p_N}$$

Partial Fraction Expansion (with identical poles):

$$H(j\omega) = \frac{b_{M}(j\omega + z_{1})(j\omega + z_{2}) \dots (j\omega + z_{M})}{a_{N}(j\omega + p_{1})^{k_{1}}(j\omega + p_{2})^{k_{2}} \dots (j\omega + p_{n})^{k_{n}}} =$$

$$= \frac{A_{1,1}}{(j\omega + p_{1})^{k_{1}}} + \frac{A_{1,2}}{(j\omega + p_{1})^{k_{1}-1}} + \dots \frac{A_{1,k_{1}}}{(j\omega + p_{1})}$$

$$+ \dots +$$

$$\frac{A_{n,1}}{(j\omega + p_{n})^{k_{n}}} + \frac{A_{n,2}}{(j\omega + p_{n})^{k_{n}-1}} + \dots \frac{A_{n,k_{n}}}{(j\omega + p_{n})}$$

• A stable LTI system *S* has the frequency response

$$H(j\omega) = \frac{j\omega + 4}{6 - \omega^2 + 5j\omega}$$

- Determine a differential equation relating the input x(t) and output y(t) of S
- Determine the impulse response h(t) of S
- What is the output of S when the input is $\chi(t) = e^{-4t}u(t) te^{-4t}u(t)$

$$\frac{Y(j\omega)}{X(j\omega)} = H(j\omega) = \frac{j\omega + 4}{6 - \omega^2 + 5j\omega} \qquad H(j\omega) = \frac{j\omega + 4}{(2 + j\omega)(3 + j\omega)} = \frac{A}{2 + j\omega} - \frac{B}{3 + j\omega} = \frac{2}{2 + j\omega} - \frac{1}{3 + j\omega}$$

$$Y(j\omega) \cdot (6 - \omega^2 + 5j\omega) = X(j\omega) \cdot (j\omega + 4) \qquad \therefore e^{-at}u(t) \longleftrightarrow \frac{1}{a + j\omega} \qquad \therefore h(t) = 2e^{-2t}u(t) - e^{-3t}u(t)$$

$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = \frac{dx(t)}{dt} + 4x(t)$$

$$\therefore X(j\omega) = \frac{1}{4+i\omega} - \frac{1}{(4+i\omega)^2}$$

 $\therefore Y(j\omega) = H(j\omega) \cdot X(j\omega) = \frac{1}{(4+j\omega)(2+j\omega)} = \frac{A}{4+j\omega} - \frac{B}{2+j\omega}$ Fourier Transform

Table 4.1 Properties of the Fourier Transform

TABLE 4.1	PROPERTIES	OF THE	FOURIER	TRANSFORM
17 (121-1-1-1	1 1101 11111111111111111111111111111111	01 1112	COLLEC	110000000000

Section	Property	Aperiodic signal	Fourier transform	
		x(t)	$X(j\omega)$	
		y(t)	$Y(j\omega)$	
4.3.1	Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$	
1.3.2	Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$	
4.3.6	Frequency Shifting	$e^{j\omega_0 t}x(t)$	$X(j(\omega-\omega_0))$	
4.3.3	Conjugation	$x^{\star}(t)$	$X^*(-j\omega)$	
4.3.5	Time Reversal	x(-t)	$X(-j\omega)$	
4.3.5	Time and Frequency Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$	
4.4	Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$	
4.5	Multiplication	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) Y(j(\omega-\theta)) d\theta$	
4.3.4	Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$	
4.3.4	Integration	$\int_{-\infty}^{t} x(t)dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$	
4.3.6	Differentiation in Frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$	
			$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\} \end{cases}$	
4.3.3	Conjugate Symmetry for Real Signals	x(t) real	$X(j\omega) = X(-j\omega)$ $\Re \{X(j\omega)\} = \Re \{X(-j\omega)\}$ $\Im \{X(j\omega)\} = -\Im \{X(-j\omega)\}$ $ X(j\omega) = X(-j\omega) $ $\Im \{X(j\omega) = -\Im \{X(-j\omega)\}$	
			$ \langle X(j\omega) = -\langle X(-j\omega) \rangle $	
4.3.3	Symmetry for Real and Even Signals	x(t) real and even	$X(j\omega)$ real and even	
4.3.3	Symmetry for Real and Odd Signals	x(t) real and odd	$X(j\omega)$ purely imaginary and od	
		$x_e(t) = \mathcal{E}v\{x(t)\}$ [x(t) real]	$\Re\{X(j\omega)\}$	
4.3.3	Even-Odd Decompo- sition for Real Sig- nals	$x_o(t) = \mathfrak{O}d\{x(t)\}$ [x(t) real]	$j\mathfrak{I}m\{X(j\omega)\}$	
4.3.7	Parseval's Relation for Aperiodic Signals			
	$ x(t) ^2 dt =$	$=\frac{1}{2\pi}\int_{-\infty}^{+\infty} X(j\omega) ^2d\omega$		

Table 4.2 Basic Fourier Transform Pairs

Signal Fourier transform		Fourier series coefficients (if periodic)	
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a_k	
$e^{j\omega_{0}t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise	
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0$, otherwise	
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{otherwise}$	
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1$, $a_k = 0$, $k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$	
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and $x(t+T) = x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$	
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k	
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	_	
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	_	
$\delta(t)$	1	_	
u(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$	_	
$\delta(t-t_0)$	$e^{-j\omega t_0}$		
$e^{-at}u(t)$, $\Re e\{a\}>0$	$\frac{1}{a+j\omega}$	_	
$te^{-at}u(t)$, $\Re e\{a\}>0$	$\frac{1}{(a+j\omega)^2}$	_	
$\frac{r^{a-1}}{(n-1)!}e^{-at}u(t),$ $\Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$		

$$e^{-at}u(t) \longleftrightarrow \frac{1}{a+j\omega}$$

$$te^{-at}u(t) \longleftrightarrow \frac{1}{(a+j\omega)^2}$$