UNIT 4 Analog and Digital Electronics

Sequential Circuit Latches and Flip-Flops

Rajeev Pandey

ECE Department

Sequential Circuit

Sequential circuit are those in which output at any given time not only dependent on the input, present at that time but also on previous output.

NOR Latch (Bistable state) Nor gate if any one input is '1' output will be '0'.

S	R	Q_{n+1}	Q_{n+1}	Operation
0	0	Q_n	$\overline{Q_n}$	hold
1	0	. 1	0	set
0	1	0	1	reset
1	1	0	0	not allowed

NAND Based SR latch (In NAND gate if one input is '0' output will be '1'.

S	R	Q_{n+1}	Q_{n+1}	Operation
0.	0	1	1	not allowed
0	1	1	0	set
1	O	0	1	reset
1	1	Q_n	$\overline{Q_n}$	hold

Clocked SR Latch(Level Triggered) with active High

S	R	Qn	Qnb	Qn+1	Qn+1b	Comment
0	0	0	1	0	1	Qn (No change)
		1	0	1	0	
0	1	0	1	0	1	Reset
		1	0	0	1	
1	0	0	1	1	0	Set
		1	0	1	0	
1	1	0	1	0	0	indeterminate
		1	0	0	0	

Clocked NAND SR LATCH Active High

S	R	S'	R'	Qn	Qnb	Qn+1	Qn+1b	Comment
0	0	1	1	0	1	1	1	indeterminate
				1	0	1	1	
0	1	1	0	0	1	0	1	Reset
				1	0	0	1	
1	0	0	1	0	1	1	0	Set
				1	0	1	0	
1	1	0	0	0	1	0	1	Qn (No change)
				1	0	1	0	

CLOCKED JK Latch NAND Based

Truth Table

J	K	Q_n	$\overline{Q_n}$	S	R	Q_{n+1}	$\overline{Q_{n+1}}$	Operation
0	0	0	- 1	1	1	0	1	hold
		1	0	1	1	1	0	
0	1	0	1	1	1	0	1	reset
	,	1	0	1	0	0,	1	
1	0	0	1	0	1	-1	0	set
		1	0	1	1	1	0	·
1	1	0	1	0	1	1	0	toggle
		1	0	1	0	0	1	

JK LATCH NOR BASED

JK as a toggle Switch

Master Slave JK FF

- When J=K=1 Toggle
- When the Clock pulse width is high, the output changes or toggle one or more in the same input J=K=1 the same clock period.
- This Problem is known as Race Around Condition.

Master Slave JK FF NAND Based

Master Slave JK FF NOR Based

D Latch

D	Qn+1
0	0
1	1

T FF T→ Toggle FF

T Flip-flop

RS FF Truth Table & Excitation Table

R	S	Q_{n+1}
0	0	Qn
0	1	1
1	0	0
1	1	•

Table 6.5 (a) RS Truth table

Q _n	Q _{n+1}	R	S
0	0	х	0
0	1	0	1
1	0	1	0
1	1	0	x

Table 6.5 (b) RS Excitation table

Find Q_{n+1} Expression

JK FF Truth & Excitation Table

J	к	Q_{n+1}
0	0	Q _n
0	1	0
1	0	1
1	11	\overline{Q}_n

Table 6.6 (a) JK truth table

Q _n	Q _{n+1}	J	к
0	0	. 0	х
0	1	1	x
1	0	x	1 1
1	1	x	0

Table 6.6 (b) JK excitation table

$$Q_{n+1} = JQb + KbQ$$

Flip-Flop Conversion **SR FF To D FF**

Input	Present state	Next state	Flip-flop inputs	
D	Q _n	Q _{n+1}	s	R
0	0	0	0	Х
0	1	0	0	1
1	0	1	1	0
1	1	1	х	0

JK To D FF

Input	Present state	Next state	Flip-flop inputs	
D	Q _n	Q _{n + 1}	J	K
0	0	0	0	Х
0	1	0	X	4
1	0	1	1	X
1	1	1	X	0

Analysis Prove that the given circuit is equivalent To T FF

END NEXT is Shift Registers And Counters