Lecture 5 Introduction to Probabilistic models

Machine Learning
Ivan Smetannikov

04.07.2019

Lecture plan

- Overview and Motivation
- Distributions

Lecture plan

- Overview and Motivation
- Distributions

Problem

An illness, which is spread among 1% of population. This illness test returns true answers in 95% of cases. Someone receives a positive result. What is the probability, he actually suffers the illness?

predisposing symptoms test results diseases treatment outcomes

symptoms
test results
diseases
treatment outcomes

millions of pixels or thousands of superpixels

symptoms
test results
diseases
treatment outcomes

millions of pixels or thousands of superpixels

Each, needs to be labeled {grass, sky, water, cow, horse, ...}

symptoms
test results
diseases
treatment outcomes

millions of pixels or thousands of superpixels

Each, needs to be labeled {grass, sky, water, cow, horse, ...}

Probabilistic Graphical Models

Models

Declarative representation

Models

Declarative representation

Models

Partial knowledge of state of the world

- Partial knowledge of state of the world
- Noisy observations

- Partial knowledge of state of the world
- Noisy observations
- Phenomena not covered by our model

- Partial knowledge of state of the world
- Noisy observations
- Phenomena not covered by our model
- Inherent stochasticity

Declarative representation with clear semantics

Declarative representation with clear semantics

- Declarative representation with clear semantics
- Powerful reasoning patterns

Conditioning Decision making

Declarative representation with clear semantics

Powerful reasoning patterns

Conditioning Decision making

Established learning methods

predisposing symptoms test results diseases treatment outcomes class labels for thousands of superpixels

predisposing
symptoms
test results
diseases
treatment outcomes

class labels for thousands of superpixels

Random variables $X_1, ..., X_n$

predisposing
symptoms
test results
diseases
treatment outcomes

class labels for thousands of superpixels

Random variables $X_1, ..., X_n$

Joint distribution $P(X_1, ..., X_n)$

predisposing symptoms test results diseases treatment outcomes

class labels for thousands of superpixels

Random variables
$$X_1, ..., X_n$$

Joint distribution
$$P(X_1, ..., X_n)$$

Binary valued distibrution over 2^n possible states

Baye'sian networks

Directed graph

Baye'sian networks

Directed graph

Difficulty Intelligence Grade SAT Letter

Markov networks

Undirected graph

CPCS diagnosis ~480 nodes ~900 edges

Graphical Representation

- Intuitive and compact data structure
- Efficient reasoning using general—purpose algorithms
- Sparse parameterization
 - feasible elicitation
 - learning from data

Graphical Representation

- Intuitive and compact data structure
- Efficient reasoning using general—purpose algorithms
- Sparse parameterization
 - feasible elicitation ← by hand
 - learning from data ← automatically

Many Applications

- Medial diagnosis
- Fault diagnosis
- Natural language processing
- Traffic analysis
- Social network models
- Message decoding
- Computer vision
 - Image segmentation

- 3D reconstruction
- -Holistic scene analysis
- Speech recognition
- Robot localization and mapping

superpixels

superpixels

machine learning to separate superpixels

superpixels

machine learning to separate superpixels

Textual Information Extracion

Mrs. Green spoke today in New York. Green chairs the finance committee.

person

Textual Information Extracion

Mrs. Green spoke today in New York. Green chairs the finance committee.

person location person organization

Textual Information Extracion

Mrs. Green spoke today in New York. Green chairs the finance committee.

person location person organization

- Trained on historical data
- Learn to predict current and future road speed, including on unmeasured roads
- Dynamic route optimization

- 195 corridor experiment: accurate to ±5 MPH in 85% of cases
- Fielded in 72 cities

Causal protein-signaling networks derived from multiparameter single-cell data

- Representation
 - Directed and undirected
 - Temporal and plate models
- Inference
 - Exact and approximate
 - Decision making
- Learning
 - Parameters and structure
 - With and without complete data

Lecture Plan

- Overview and Motivation
- Distributions

- Intelligence (I) i^0 (low), i^1 (high)
- Difficulty (D) d^0 (easy), d^1 (hard)
- Grade (G) g^1 (A), g^2 (B), g^3 (C)

- Intelligence (I) \leftarrow 2 i^0 (low), i^1 (high)
- Difficulty (D) \leftarrow 2 d^0 (easy), d^1 (hard)
- Grade (G) \leftarrow 3 g^1 (A), g^2 (B), g^3 (C)

- Intelligence (I) \leftarrow 2 i^0 (low), i^1 (high)
- Difficulty (D) \leftarrow 2 d^0 (easy), d^1 (hard)
- Grade (G) \leftarrow 3 g^1 (A), g^2 (B), g^3 (C)

Parameters: 2x2x3=12

ı	D	G	P(I,D,G)
i^0	d^0	g^1	0.126
i^0	d^0	g^2	0.168
i^0	d^0	g^3	0.126
i^0	d^1	g^1	0.009
i^0	d^1	g^2	0.045
i^0	d^1	g^3	0.126
i^1	d^0	g^1	0.252
i^1	d^0	g^2	0.0224
i^1	d^0	g^3	0.0056
i^1	d^1	g^1	0.06
i^1	d^1	g^2	0.036
i^1	d^1	g^3	0.024

- Intelligence (I) \leftarrow 2 i^0 (low), i^1 (high)
- Difficulty (D) \leftarrow 2 d^0 (easy), d^1 (hard)
- Grade (G) \leftarrow 3 g^1 (A), g^2 (B), g^3 (C)

Parameters: 2x2x3=12

Independent parameters: 11

ı	D	G	P(I,D,G)
i^0	d^0	g^1	0.126
i^0	d^0	g^2	0.168
i^0	d^0	g^3	0.126
i^0	d^1	g^1	0.009
i^0	d^1	g^2	0.045
i^0	d^1	g^3	0.126
i^1	d^0	g^1	0.252
i^1	d^0	g^2	0.0224
i^1	d^0	g^3	0.0056
i^1	d^1	g^1	0.06
i^1	d^1	g^2	0.036
i^1	d^1	g^3	0.024

sum=1

Conditioning

condition on g^1

ı	D	G	P(I,D,G)
i^0	d^0	g^1	0.126
i^0	d^0	g^2	0.168
i^0	d^0	g^3	0.126
i^0	d^1	g^1	0.009
i^0	d^1	g^2	0.045
i^0	d^1	g^3	0.126
i^1	d^0	g^1	0.252
i^1	d^0	g^2	0.0224
i^1	d^0	g^3	0.0056
i^1	d^1	g^1	0.06
i^1	d^1	g^2	0.036
i^1	d^1	g^3	0.024

Conditioning

condition on g^1

I	D	G	P(I,D,G)
i^0	d^0	g^1	0.126
ı	u	y	0.100
,0	10	<i>3</i>	0.120
i^0	d^1	g^1	0.009
ı	u	g	0.045
l	a ⁻	g^{-}	0.120
i^1	d^0	g^1	0.252
:1	70	2 8	0.0221
.1	u a	9	0.0050
i^1	d^1	g^1	0.06
-1	71	2	0.006
•1	71	3	0.021

Conditioning: Reduction

condition on g^1

ı	D	G	P(I,D,G)
i^0	d^0	g^1	0.126
i^0	d^1	g^1	0.009
i^1	d^0	g^1	0.252
i^1	d^1	g^1	0.06

Conditioning: Renormalization

I	D	G	P(I,D,G)
i^0	d^0	g^1	0.126
i^0	d^1	g^1	0.009
i^1	d^0	g^1	0.252
i^1	d^1	g^1	0.06

sum=0.447

 $P(I,D,g^1)$ unnormalized measure

Conditioning: Renormalization

ı	D	G	P(I,D, g^1)	
i^0	d^0	g^1	0.126	0.447
i^0	d^1	g^1	0.009	0.447
i^1	d^0	g^1	0.252	0.447
i^1	d^1	g^1	0.06	0.447

sum=0.447

 $P(I,D, g^1)$ unnormalized measure

Conditioning: Marginalization

Marginalize I

I	D	P(I,D)
i^0	d^0	0.282
i^0	d^1	0.02
i^1	d^0	0.564
i^1	d^1	0.134

Conditioning: Marginalization

Marginalize I

