UCD Solid-State Electronics (1) Vers. G

LIST OF PHYSICAL CONSTANTS, SEMICONDUCTOR DATA & USEFUL FORMULAE

Physical Constants:

•		
Planck's Constant	h	6.63 x 10 ⁻³⁴ Joule.sec
Charge on Electron	q	1.60 x 10 ⁻¹⁹ Coulomb
Electron Rest Mass	m	9.11 x 10 ⁻³¹ kg
kT at Room Temperature	kT	0.0259 eV
Permittivity of free-space	$\epsilon_{ m o}$	8.85 x 10 ⁻¹² Farads/m

Pure Semiconductor Data at 300K:

		Silicon	GaAs
Dielectric constant	$\epsilon_{\rm r}$	11.8	12.7
Intrinsic concentration	$n_{\dot{1}}$	$1.50 \times 10^{10} / \text{cm}^3$	$2.0 \times 10^6 / \text{cm}^3$
Electron Mobility	μ_n	$1300 \text{ cm}^2/(\text{V.sec})$	$8500 \text{ cm}^2/(\text{V.sec})$
Hole Mobility	$\mu_{ m p}$	$450 \text{ cm}^2/(\text{V.sec})$	$450 \text{ cm}^2/(\text{V.sec})$
Dielectric constant of SiO ₂ =	3.82		

1-D Schrödinger Wave Equation:

$$\frac{\hbar^2}{2m} \cdot \frac{d^2 \psi(x)}{dx^2} + \left[\mathcal{E} - U(x) \right] \cdot \psi(x) = 0$$

Fermi-Dirac Distribution:

$$f(\mathcal{E}) = \frac{1}{1 + e^{\left(\mathcal{E} - \mathcal{E}_f / kT\right)}}$$

Conductivity and Current Flow in a Metallic Conductor:

$$J = q \cdot n \cdot v_e \qquad v_e = \mu_e \cdot E \qquad \mu_e = \frac{q \cdot \overline{\tau}_e}{m} \qquad \sigma = q \cdot n \cdot \mu_e$$

Boltzmann Approximation for Carrier Concentrations in Thermal Equilibrium:

$$n_o = n_i \cdot \exp[(\varepsilon_f - \varepsilon_i)/kT]$$
 $p_o = n_i \cdot \exp[(\varepsilon_i - \varepsilon_f)/kT]$ $n_o \cdot p_o = n_i^2$

Einstein Relationships:
$$D_n = \left(kT/q\right) \cdot \mu_n \qquad D_p = \left(kT/q\right) \cdot \mu_p$$

Semiconductor Conductivity:
$$\sigma = q \cdot (\mu_n \cdot n + \mu_p \cdot p)$$

Total (a) Hole and (b) Electron Current Density:

(a)
$$J_p(x) = q\mu_p p(x)E(x) - qD_p \frac{dp(x)}{dx}$$
 (b) $J_n(x) = q\mu_n n(x)E(x) + qD_n \frac{dn(x)}{dx}$

Continuity Equation for Excess Minority (a) Holes and (b) Electrons:

(a)
$$\frac{\partial \Delta p}{\partial t} = -\frac{1}{q} \cdot \frac{\partial J_p}{\partial x} - \frac{\Delta p}{\tau_p}$$
 (b) $\frac{\partial \Delta n}{\partial t} = \frac{1}{q} \cdot \frac{\partial J_n}{\partial x} - \frac{\Delta n}{\tau_n}$

Poisson Equation:
$$\frac{dE(x)}{dx} = \frac{\rho(x)}{\varepsilon} = \frac{q}{\varepsilon} \cdot \left[p(x) - n(x) + N_D^+ - N_A^- \right]$$

Depletion Width in PN Junction:

Magn. of Fermi Level Displacement:

$$W = \left[\frac{2\varepsilon(\varphi_i - V)}{q} \cdot \frac{N_A + N_D}{N_A \cdot N_D} \right]^{\frac{1}{2}} \qquad |\phi_f| = \frac{kT}{q} \cdot \ln \left| \frac{N_A(orN_D)}{n_i} \right|$$

PN Junction Boundary Conditions:

$$\Delta n_p \left(-x_p\right) = n_{po} \left[e^{qV/kT} - 1\right] \qquad \Delta p_n \left(x_n\right) = p_{no} \left[e^{qV/kT} - 1\right]$$

Mathematical Identities:

$$Sin^{2}(\theta) = \frac{1}{2}(1 - Cos(2 \cdot \theta))$$

$$Cos^{2}(\theta) = \frac{1}{2}(1 + Cos(2 \cdot \theta))$$

$$\int x^{n} \cdot dx = \frac{x^{n+1}}{n+1} + C \qquad \frac{dx^{n}}{dx} = n \cdot x^{n-1} \qquad \frac{de^{k \cdot x}}{dx} = k \cdot e^{k \cdot x}$$