

13-1 准静态过程 功 热量

第十三章 热力学基础

一 准静态过程(理想化的过程) 从一个平衡态到另一平衡态所经过的每 一中间状态均可近似当作平衡态的过程.

功(过程量)

1 功是能量传递和转换的量度,它引 起系统热运动状态的变化.

宏观运动能量

2 准静态过程功的计算

$$dW = Fdl = pSdl$$
$$dW = pdV$$

$$W = \int_{V_1}^{V_2} p \mathrm{d}V$$

注意:

作功与过程有关.

三 热量(过程量)

通过传热方式传递能量的量度,系统和外界之间存在温差而发生的能量传递.

功与热量的异同

- (1) 都是过程量: 与过程有关;
- (2) 等效性: 改变系统热运动状态作用相同;

1 cal = 4.18 J, 1 J = 0.24 cal

(3) 功与热量的物理本质不同.

宏观运动

分子热运动

分子热运动

分子热运动

13-1 准静态过程 功 热量

主要食物热量表

主食/%	R粮类	蛋奶/	肉类	蔬菜类	(生)
食物	热量 (大卡/100克)	食物	热量 (大卡/100克)	食物	(大卡
米饭	115	荷包蛋	199	→ 胡萝卜	
煮面条	109	水煮蛋	144	6 西红柿	-
慢头	221	牛奶	54	造 甜椒	
新鮮河粉	220	酸奶	72	M.S.	
蒸红薯	90	黄油	717	加 黄	
土豆泥	89	奶酪	85	西兰花	
小米網	46	鸡肉 生,去皮)	148	凌 菠菜	
燕麦粥	66	 	125	芹菜	
※正条	106	鸭肉肉 生,去皮)	135	香菇	
[豆杂粮粥	70	瘦羊肉	118	芦笋	12

60	分鐘各種運	動消耗量一覽	表
逛街	110大卡	游泳	1036大卡
騎腳踏車	184大卡	泡澡	168大卡
開車	82大卡	燙衣服	120大卡
打網球	352大卡	洗碗	136大卡
看電影	66大卡	爬樓梯	480大卡
遛狗	130大卡	洗衣服	114大卡
郊遊	240大卡	打掃	228大卡
有氧運動	252大卡	跳繩	448大卡
打拳	450大卡	午睡	48大卡
念書	88大卡	跳舞	300大卡
工作	76大卡	慢走	255大卡
高爾夫球	186大卡	快走	555大卡
看電視	72大卡	慢跑	655大卡
打桌球	300大卡	快跑	700大卡
騎馬	276大卡	體能訓練	300大卡
滑雪	354大卡	健美操	300大卡
插花	114大卡	練武術	790大卡
買東西	180大卡	仰臥起坐	432%

第十三章 热力学基础

一 内能 (状态量)

实验证明系统从状态A 变化到状态B,可以采用做功和传热的方法,不管经过什么过程,只要始末状态确定,做功和传热之和保持不变.

$$W_{A1B} + Q_{A1B} = W_{A2B} + Q_{A2B}$$
$$W_{A1B2A} + Q_{A1B2A} = 0$$

◆ 理想气体内能:

表征系统状态的单值函数,理想气体的内能仅是温度的函数.

$$E = E(T)$$

◆ 系统内能的增量只与系统的初态和末 态有关,与系统所经历的过程无关.

$$\Delta E_{AB} = C$$

$$\Delta E_{A1B2A} = 0$$

二热力学第一定律

$$Q = E_2 - E_1 + W$$

系统从外界吸收的热量,一部分使系统的内能增加,另一部分使系统的对外界做功.

$$Q = E_2 - E_1 + W = \Delta E + W$$

准静态过程

$$Q = \Delta E + \int_{V_1}^{V_2} p \mathrm{d}V$$

微变过程

$$dQ = dE + dW = dE + pdV$$

$$Q = E_2 - E_1 + W = \Delta E + W$$

第一定律的符号规定

	Q	ΔE	$oldsymbol{W}$
+	系统吸热	内能增加	系统对外界做功
	系统放热	内能减少	外界对系统做功

物理意义

(1) 能量转换和守恒定律 第一类永动机是不 第一类永动机 可能制成

(2) 实引前提下使体系持续地向外界输出能量。 历史上最著名的第一类永动机是法国人 亨内考在十三世纪提出的"魔轮",十 五世纪,著名学者达芬奇也曾经设计了 一个相同原理的类似装置,1667年曾有 人将达芬奇的设计付诸实践,制造了一 部直径5米的庞大机械,但是这些装置 经过试验均以失败告终。

第一类永动机试图在不获取能源的

滚珠永动机是利用格板的特殊形状,使一边重球滚到比另一边的距离轮心远些的地方。设计者本以为在两边重球的作用下会使轮子失去平衡而转动不息,但试验的结果却是否定的。

