#### 5 - Métodos estatísticos para a estimação do volume

Os métodos estatísticos também constituem uma maneira indireta de se obter o volume, com a peculiaridade de empregar como ferramenta principal a estatística.

Com a ferramenta estatística se consegue estimar o volume da árvore por meio de outras variáveis da mesma, que apresentam correlação com o volume, dentre as quais destacam-se o diâmetro a altura do peito (DAP) e a altura total (h).

A principal ferramenta estatística empregada na mensuração florestal para estudar as relações do volume com outras variáveis da árvore é a análise de regressão.

## 5.1 - Análise de regressão

## 5.1.1 - Regressão linear simples

O modelo de regressão definido como um modelo estatístico, difere em conceito de um modelo matemático por apresentar um termo denominado erro aleatório.

| Modelo matemático         | Modelo de regressão                     |
|---------------------------|-----------------------------------------|
| $Y = \beta_0 + \beta_1 X$ | $Y = \beta_0 + \beta_1 X + \varepsilon$ |

#### Modelo matemático

#### Modelo de regressão

$$Y = \beta_0 + \beta_1 X$$

$$\mathbf{Y} = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \mathbf{X} + \boldsymbol{\varepsilon}$$





#### ⇒ O método de mínimos quadrados ordinários

Este é um método de estimação muito empregado para estimar parâmetros de modelos de regressão. Seu objetivo principal consiste em minimizar a soma de quadrados dos erros, tal como será demonstrado a seguir:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \tag{1}$$

$$\varepsilon_i = Y_i - \beta_0 - \beta_1 X_i \tag{2}$$

$$\sum_{i=1}^{n} \varepsilon_{i}^{2} = \sum_{i=1}^{n} (Y_{i} - \beta_{0} - \beta_{1} X_{i})^{2}$$
(3)

$$\frac{\partial \sum_{i=1}^{n} \varepsilon_{i}^{2}}{\partial \beta_{0}} = 2 \sum_{i=1}^{n} (Y_{i} - \beta_{0} - \beta_{1} X_{i})(-1) = 0$$

$$(4)$$

$$\frac{\partial \sum_{i=1}^{n} \varepsilon_{i}^{2}}{\partial \beta_{1}} = 2 \sum_{i=1}^{n} (Y_{i} - \beta_{0} - \beta_{1} X_{i}) (-X_{i}) = 0$$
(5)

Dividindo-se (4) e (5) por -2, tem-se:

$$\begin{cases} \sum_{i=1}^{n} \left( Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} X_{i} \right) = 0 \\ \sum_{i=1}^{n} \left( Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} X_{i} \right) X_{i} = 0 \\ \sum_{i=1}^{n} \left( Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} X_{i} \right) X_{i} = 0 \end{cases}$$

$$\begin{cases} \sum_{i=1}^{n} Y_{i} - n \hat{\beta}_{0} - \hat{\beta}_{1} \sum_{i=1}^{n} X_{i} = 0 \\ \sum_{i=1}^{n} X_{i} Y_{i} - \hat{\beta}_{0} \sum_{i=1}^{n} X_{i} - \hat{\beta}_{1} \sum_{i=1}^{n} X_{i}^{2} = 0 \end{cases}$$

$$\begin{cases}
\sum_{i=1}^{n} Y_{i} - n\hat{\beta}_{0} - \hat{\beta}_{1} \sum_{i=1}^{n} X_{i} = 0 \\
\sum_{i=1}^{n} X_{i} Y_{i} - \hat{\beta}_{0} \sum_{i=1}^{n} X_{i} - \hat{\beta}_{1} \sum_{i=1}^{n} X_{i}^{2} = 0
\end{cases}$$
(6)

$$\hat{\beta}_0 = \frac{\sum_{i=1}^n Y_i}{n} - \hat{\beta}_1 \frac{\sum_{i=1}^n X_i}{n}$$

$$\hat{\beta}_0 = \overline{\mathbf{Y}} - \hat{\beta}_1 \overline{\mathbf{X}}$$

(8)

Substituindo (8) em (7) e desenvolvendo a expressão, tem-se:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} X_{i} Y_{i} - \frac{\sum_{i=1}^{n} X_{i} \sum_{i=1}^{n} Y_{i}}{n}}{\sum_{i=1}^{n} X_{i}^{2} - \frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n}}$$

$$\sum_{i=1}^{n} X_{i}^{2} - \frac{n}{n}$$
(9)

### EQUAÇÃO DE REGRESSÃO AJUSTADA

$$\hat{\mathbf{Y}} = \hat{\boldsymbol{\beta}}_0 + \hat{\boldsymbol{\beta}}_1 \mathbf{X} \tag{10}$$

#### ANÁLISE DE VARIÂNCIA DA REGRESSÃO (ANOVA)

| FV        | GL        | SQ                                                | QM                            | FCalc.    |
|-----------|-----------|---------------------------------------------------|-------------------------------|-----------|
| Regressão | p         |                                                   | SQReg/GLReg (V <sub>1</sub> ) | $V_1/V_2$ |
| Resíduo   | n – p – 1 | $\sum_{i=1}^{i=1} \left( Y_i - \hat{Y} \right)^2$ | SQRes/GLRes (V <sub>2</sub> ) |           |
| Total     | n – 1     | $\sum_{i=1}^n \left(Y_i - \overline{Y}\right)^2$  |                               |           |

#### Em que:

n = número total de dados;

p = número de variáveis independentes do modelo;

 $Y_i$  = valores observados para Y;

 $\hat{Y}$  = valores estimados de Y pela regressão;

 $\overline{Y}$  = valor médio de Y.

Cálculo da soma de quadrados:

- Soma de Quadrados do Total (SQTot)

$$SQTot = \sum_{i=1}^{n} Y_i^2 - \frac{\left(\sum_{i=1}^{n} Y_i\right)^2}{n}$$

- Soma de Quadrados da Regressão (SQReg)

$$SQ \operatorname{Re} g = \hat{\beta}_{1}^{2} \left( \sum_{i=1}^{n} X_{i}^{2} - \frac{\left( \sum_{i=1}^{n} X_{i} \right)^{2}}{n} \right)$$
 Ou

$$SQReg = \hat{\beta}_1 \left( \sum_{i=1}^n X_i Y_i - \frac{\left(\sum_{i=1}^n X_i\right) \left(\sum_{i=1}^n Y_i\right)}{n} \right)$$

- Soma de Quadrados do Resíduo (SQRes)

$$SQRes = SQTot - SQReg$$

## As hipóteses estatísticas testadas pelo teste F

$$\begin{cases} \mathbf{H}_0 : \beta_1 = 0 \\ \mathbf{H}_1 : \beta_1 \neq 0 \end{cases}$$

Se o valor de F calculado for menor do que o valor tabelado obtido em uma tabela de F a um determinado nível de probabilidade  $\alpha$  com (1; n – 2) graus de liberdade, não se rejeita  $H_0$ .

Em termos práticos, se F calculado > F tabelado, então a regressão existe, ou seja, variações ocorridas em Y podem ser explicadas pelas variações ocorridas em X de acordo com a equação ajustada em um nível  $\alpha$  de significância.

#### ⇒ Medidas de precisão da equação ajustada:

- Coeficiente de Determinação (R<sup>2</sup>): Informa a percentagem da variação dos dados observados em torno da média que está sendo explicada pela equação ajustada.

$$R^{2}(\%) = \frac{SQ \operatorname{Re} g}{SOTot} 100 \qquad \Longrightarrow \qquad 0 < R^{2} \le 100$$

- Erro Padrão da Estimativa ( $S_{y,x}$ ): Indica o erro médio absoluto cometido, na unidade original da variável, associado ao uso da equação.

$$S_{y.x} = \pm \sqrt{QM \operatorname{Re} s}$$

- Erro Padrão Relativo ( $S_{y.x}$  (%)): Diferente do erro padrão da estimativa, o erro padrão relativo indica o erro médio relativo da variável associado ao uso da equação.

$$S_{y.x}(\%) = \pm \frac{S_{y.x}}{\overline{\mathbf{V}}} 100$$

## 5.1.2 - Regressão linear múltipla

O modelo de regressão linear múltipla:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + ... + \beta_k X_{ni} + \epsilon_i$$

No estudo dos modelos de <u>regressão linear simples</u> pôde-se observar que o que caracteriza este tipo de modelo é a <u>existência de apenas uma variável independente X</u>. Para os modelos de <u>regressão linear múltipla</u>, pode-se considerar <u>mais de uma variável independente X</u>.

#### Representação matricial do modelo:

$$Y = X\beta + \varepsilon$$

#### Em que:

Y = vetor dos valores observados para Y;

 $X = matriz dos valores observados ou fixados para as <math>X_i$  variáveis independentes;

 $\beta$  = vetor dos parâmetros do modelo;

 $\varepsilon$  = vetor dos erros aleatórios.

$$Y = X\beta + \epsilon$$
 (11)  
$$\epsilon = Y - X\beta$$
 (12)

Sabendo-se, contudo, que a soma dos desvios em relação a um valor médio é nula, tem-se que:

$$\varepsilon'\varepsilon = (Y - X\beta)'(Y - X\beta) \qquad (13)$$

Derivando a matriz de erros ( $\epsilon'\epsilon$ ) em relação a  $\beta$ , tem-se:

$$\frac{\partial (\epsilon' \epsilon)}{\partial \beta} = (X'X)\hat{\beta} - X'Y = 0 \Longrightarrow (X'X)\hat{\beta} = X'Y \quad (14)$$

Pré-multiplicando ambos os lados da expressão (14) por  $(X'X)^{-1}$ , tem-se:

$$(X'X)^{-1}(X'X)\hat{\beta} = (X'X)^{-1}X'Y \qquad \Longrightarrow \qquad \hat{\beta} = (X'X)^{-1}X'Y$$

#### ANÁLISE DE VARIÂNCIA DA REGRESSÃO (ANOVA)

| FV        | GL    | SQ                      | QM                            | FCalc.    |
|-----------|-------|-------------------------|-------------------------------|-----------|
| Regressão | p     | $\hat{\beta}'X'Y$ -C    | SQReg/GLReg (V <sub>1</sub> ) | $V_1/V_2$ |
| Resíduo   | n-p-1 | $Y'Y - \hat{\beta}'X'Y$ | SQRes/GLRes (V <sub>2</sub> ) |           |
| Total     | n – 1 | Y'Y - C                 |                               |           |

 $F_{tab}(\alpha \%; p e n-p-1 gl)$ 

## As hipóteses estatísticas testadas pelo teste F

$$\begin{cases} H_0: \beta_i = 0 \\ H_1: \beta_i \neq 0 \end{cases}$$

Se o valor de F calculado for menor do que o valor tabelado obtido em uma tabela de F a um determinado nível de probabilidade  $\alpha$  com (p; n – p – 1) graus de liberdade, não se rejeita  $H_0$ .

Uma vez efetuada a análise de variância, todas as medidas de precisão apresentadas no item anterior podem ser calculadas e interpretadas aqui da mesma maneira. Entre elas, tem-se: o Coeficiente de Determinação ( $R^2$ ), o Erro Padrão da Estimativa ( $S_{v,x}$ ) e o Erro Padrão Relativo ( $S_{v,x}$ (%)).

#### 5.2 - Tabelas e equações de volume

De acordo com FINGER (1992), a tabela de volume pode ser definida como uma relação gráfica ou numérica expressa por diversos tipos de equações sendo capaz de exprimir o volume total ou parcial de uma árvore em função de variáveis independentes como o diâmetro, altura, fator de forma etc.

#### 5.2.1 - Tabela de volume local

✓ Neste tipo de tabela o volume é função apenas de uma variável independente, normalmente o <u>diâmetro</u>, que em geral coincide com o DAP.

- ✓ Aplica-se a pequenas áreas florestais em que haja alta correlação entre o diâmetro e a altura.
- ✓ Aplica-se também em situações em que é difícil de se medir a altura, como é o caso de algumas florestas da região amazônica, procurando-se, então, obter o volume em função apenas do diâmetro.
- ✓Em geral, tem uso reduzido no meio florestal, dado que é difícil encontrar povoamentos florestais em que apenas uma variável, no caso o diâmetro, possa explicar as variações ocorridas no volume.

## Tabela de volume local $\Rightarrow$ v = f(d)

| Autor              | Modelo                                                       |
|--------------------|--------------------------------------------------------------|
| Kopezy – Gehrhardt | $v = \beta_o + \beta_1 d^2 + \epsilon$                       |
| Dissescu – Meyer   | $v=\beta_1 d+\beta_2 d^2+\epsilon$                           |
| Hohenald – Krernm  | $v=\beta_o+\beta_1 d+\beta_2 d^2+\epsilon$                   |
| Husch              | $ln(v) = \beta_o + \beta_1 log(d) + \varepsilon$             |
| Brenac             | $ln(v) = \beta_o + \beta_1 ln(d) + \beta_2 (1/d) + \epsilon$ |

Fonte: Loestsch et al. (1973)

#### 5.2.2 - Tabela de volume regional

- ✓ Neste tipo de tabela, o diâmetro não está tão fortemente correlacionado com a altura.
- ✓ Deste modo, este tipo de tabela leva em consideração as variáveis independentes <u>diâmetro</u> e <u>altura</u> para explicar as variações de volume ocorridas em um determinado povoamento florestal.
- ✓ Sendo assim, esta tabela pode ter um uso mais abrangente do que a tabela de volume local, sendo, portanto, normalmente mais empregada no meio florestal.

### Tabela de volume regional $\Rightarrow$ v = f(d, h)

| Autor             | Modelo                                                               |
|-------------------|----------------------------------------------------------------------|
| Schumacher & Hall | $v = \beta_0 d^{\beta_1} h^{\beta_2} \varepsilon$                    |
| Schumacher & Hall | $ln(v) = ln(\beta_o) + \beta_1 ln(d) + \beta_2 ln(h) + ln(\epsilon)$ |
| Spurr (1952)      | $v = \beta_1 d^2 h + \epsilon$                                       |
| Spurr (1952)      | $v = \beta_o + \beta_1 d^2 h + \epsilon$                             |
| Meyer             | $v=\beta_o+\beta_1d+\beta_2d^2+\beta_3dh+\beta_4d^2h+\epsilon$       |
| Ogaya             | $v = d^2(\beta_o + \beta_1 h) + \epsilon$                            |
| Takata            | $v = d^2h / (\beta_o + \beta_1 h) + \epsilon$                        |

Fonte: Loestsch et al. (1973)

## Exemplo de aplicação: (Soares et al., 2007)

| Árv  | d (cm) | h (m) | v (m <sup>3</sup> ) | $d^2h = X$ | $\mathbf{X}^2$ | XY      | $\mathbf{Y}^2$ |
|------|--------|-------|---------------------|------------|----------------|---------|----------------|
| 1    | 8,0    | 9,7   | 0,0274              | 620,8      | 385392,6       | 17,0    | 0,0008         |
| 2    | 27,7   | 27,6  | 0,7159              | 21177,2    | 448473969,3    | 15160,8 | 0,5125         |
| 3    | 23,2   | 26,5  | 0,5505              | 14263,4    | 203443438,5    | 7852,0  | 0,3031         |
| 4    | 17,7   | 17,4  | 0,1780              | 5451,2     | 29716083,0     | 970,3   | 0,0317         |
| 5    | 13,8   | 12,9  | 0,1003              | 2456,7     | 6035257,0      | 246,4   | 0,0101         |
| 6    | 17,0   | 16,5  | 0,1852              | 4768,5     | 22738592,3     | 883,1   | 0,0343         |
| 7    | 18,8   | 20,3  | 0,2423              | 7174,8     | 51478214,2     | 1738,5  | 0,0587         |
| 8    | 8,0    | 11,6  | 0,0327              | 742,4      | 551157,8       | 24,3    | 0,0011         |
| 9    | 15,0   | 16,7  | 0,1292              | 3757,5     | 14118806,3     | 485,5   | 0,0167         |
| 10   | 21,6   | 21,2  | 0,3542              | 9891,1     | 97833305,3     | 3503,4  | 0,1255         |
| 11   | 11,0   | 12,8  | 0,0608              | 1548,8     | 2398781,4      | 94,2    | 0,0037         |
| 12   | 24,2   | 24,7  | 0,4368              | 14465,3    | 209245135,5    | 6318,4  | 0,1908         |
| Soma |        |       | 3,0133              | 86317,7    | 1086418133,1   | 37293,8 | 1,2888         |

## Exemplo de ajuste do modelo de Spurr (1952)

$$v = \beta_0 + \beta_1 (d^2 h) + \epsilon$$

$$\mathbf{Y} = \beta_0 + \beta_1 \mathbf{X} + \boldsymbol{\varepsilon}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} X_{i} Y_{i} - \frac{\sum_{i=1}^{n} X_{i} \sum_{i=1}^{n} Y_{i}}{n}}{\sum_{i=1}^{n} X_{i}^{2} - \frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n}}$$

$$\hat{\beta}_1 = \frac{37293,8 - \frac{(86317,7)(3,0133)}{12}}{1086418133,1 - \frac{(86317,7)^2}{12}} = 0,0000336$$

$$\hat{\beta}_0 = \overline{\mathbf{Y}} - \hat{\beta}_1 \overline{\mathbf{X}}$$

$$\hat{\beta}_0 = 0.2511 - 0.0000336(7193.1) = 0.0097719$$

$$\hat{v} = 0.0097719 + 0.0000336(d^2h)$$

#### ANÁLISE DE VARIÂNCIA DA REGRESSÃO (ANOVA)

| FV        | GL | SQ      | QM      | FCalc    |
|-----------|----|---------|---------|----------|
| Regressão | 1  | 0,52402 | 0,52402 | 645,86** |
| Resíduo   | 10 | 0,00811 | 0,00081 |          |
| Total     | 11 | 0,53214 |         |          |

 $F_{tab}(1 \%; 1 e 10 gl) = 10,04$ 

# O teste F e as medidas de precisão da equação ajustada

#### - O teste F:

Interpretação: De acordo com este teste, rejeita-se  $H_0$ , isto é, as variações ocorridas no volume podem ser explicadas pela variável combinada  $d^2h$ , em nível de 1% de probabilidade.

#### - Coeficiente de Determinação (R<sup>2</sup>):

$$R^{2}(\%) = \frac{0,52402}{0,53214}100 = 98,47$$

<u>Interpretação</u>: A equação ajustada explica 98,47% das variações ocorridas no volume.

#### - Erro padrão das estimativa $(S_{v,x})$ :

$$S_{y.x} = \pm \sqrt{QM \text{ Re síduo}} = \pm \sqrt{0,00081} = \pm 0,02846 \text{ m}^3$$

**Interpretação:** o erro médio associado ao uso da equação ajustada é de  $\pm$  0,02846 m<sup>3</sup>.

#### - Erro padrão relativo( $S_{y,x}(\%)$ ):

$$S_{y.x}(\%) = \pm \frac{0,02846}{0,25111}100 = \pm 11,33$$

**Interpretação:** o erro médio associado ao uso da equação ajustada é de ± 11,33%.

#### Exemplo de ajuste do modelo de Schumacher e Hall

$$\mathbf{v} = \beta_0 \mathbf{d}^{\beta_1} \mathbf{h}^{\beta_2} \mathbf{\varepsilon}$$

$$ln(v) = ln(\beta_0) + \beta_1 ln(d) + \beta_2 ln(h) + ln(\epsilon)$$

Fazendo Y = ln(v);  $X_1 = ln(d)$ ;  $X_2 = ln(h)$ , vem:

$$Y = \alpha_0 + \beta_1 X_1 + \beta_2 X_2 + \delta$$



Modelo de regressão linear múltipla

Para ajustar o modelo de Schumacher e Hall linearizado tomemos como base os dados de Soares et al. (2007)

| Árv  | d (cm) | h (m) | v (m <sup>3</sup> ) | ln(d) (X <sub>1</sub> ) | ln(h) (X <sub>2</sub> ) | ln (v) (Y)   |
|------|--------|-------|---------------------|-------------------------|-------------------------|--------------|
| 1    | 8,0    | 9,7   | 0,0274              | 2,07944154              | 2,27212589              | -3,59721227  |
| 2    | 27,7   | 27,6  | 0,7159              | 3,32143241              | 3,31781577              | -0,33421479  |
| 3    | 23,2   | 26,5  | 0,5505              | 3,14415228              | 3,27714473              | -0,59692832  |
| 4    | 17,7   | 17,4  | 0,1780              | 2,87356464              | 2,85647021              | -1,72597173  |
| 5    | 13,8   | 12,9  | 0,1003              | 2,62466859              | 2,55722731              | -2,29958958  |
| 6    | 17,0   | 16,5  | 0,1852              | 2,83321334              | 2,80336038              | -1,68631896  |
| 7    | 18,8   | 20,3  | 0,2423              | 2,93385687              | 3,01062089              | -1,41757865  |
| 8    | 8,0    | 11,6  | 0,0327              | 2,07944154              | 2,45100510              | -3,42038020  |
| 9    | 15,0   | 16,7  | 0,1292              | 2,70805020              | 2,81540872              | -2,04639369  |
| 10   | 21,6   | 21,2  | 0,3542              | 3,07269331              | 3,05400118              | -1,03789355  |
| 11   | 11,0   | 12,8  | 0,0608              | 2,39789527              | 2,54944517              | -2,80016549  |
| 12   | 24,2   | 24,7  | 0,4368              | 3,18635263              | 3,20680324              | -0,82827985  |
| Soma |        |       |                     | 33,25476264             | 34,17142859-            | -21,79092708 |

| Árv  | $X_1^2$     | $X_2^2$     | $X_1X_2$    | $X_1Y$       | $X_2Y$       |
|------|-------------|-------------|-------------|--------------|--------------|
| 1    | 4,32407713  | 5,16255604  | 4,72475295  | -7,48019262  | -8,17331910  |
| 2    | 11,03191328 | 11,00790150 | 11,01990085 | -1,11007183  | -1,10886309  |
| 3    | 9,88569355  | 10,73967760 | 10,30384208 | -1,87683355  | -1,95622051  |
| 4    | 8,25737374  | 8,15942204  | 8,20825178  | -4,95969133  | -4,93018682  |
| 5    | 6,88888522  | 6,53941152  | 6,71187421  | -6,03566056  | -5,88057329  |
| 6    | 8,02709785  | 7,85882943  | 7,94251804  | -4,77770137  | -4,72735975  |
| 7    | 8,60751613  | 9,06383812  | 8,83273077  | -4,15897286  | -4,26779189  |
| 8    | 4,32407713  | 6,00742599  | 5,09672182  | -7,11248068  | -8,38336931  |
| 9    | 7,33353589  | 7,92652626  | 7,62426815  | -5,54173684  | -5,76143463  |
| 10   | 9,44144421  | 9,32692322  | 9,38400901  | -3,18912858  | -3,16972814  |
| 11   | 5,74990174  | 6,49967068  | 6,11330252  | -6,71450359  | -7,13886839  |
| 12   | 10,15284310 | 10,28358704 | 10,21800596 | -2,63919170  | -2,65613052  |
| Soma | 94,02435883 | 98,57576943 | 96,18017807 | -55,59616551 | -58,15384545 |
|      |             |             |             |              |              |

\_

$$\hat{\beta} = (X'X)^{-1}X'Y$$

$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\boldsymbol{\alpha}}_{0} \\ \hat{\boldsymbol{\beta}}_{1} \\ \hat{\boldsymbol{\beta}}_{2} \end{bmatrix} \qquad (X'X) = \begin{bmatrix} n & \sum_{i=1}^{n} X_{1} & \sum_{i=1}^{n} X_{2} \\ \sum_{i=1}^{n} X_{1} & \sum_{i=1}^{n} X_{1}^{2} & \sum_{i=1}^{n} X_{1} X_{2} \\ \sum_{i=1}^{n} X_{2} & \sum_{i=1}^{n} X_{2} X_{1} & \sum_{i=1}^{n} X_{2}^{2} \end{bmatrix} \qquad X'Y = \begin{bmatrix} \sum_{i=1}^{n} Y \\ \sum_{i=1}^{n} X_{1} Y \\ \sum_{i=1}^{n} X_{2} Y \end{bmatrix}$$

As matrizes do sistema de equações ficaram assim definidas:

$$\hat{\beta} = \begin{bmatrix} 12 & 33,25476264 & 34,17142859 \end{bmatrix}^{-1} \begin{bmatrix} -21,79092708 \\ 33,25476264 & 94,02435883 & 96,18017807 \\ 34,17142859 & 96,18017807 & 98,57576944 \end{bmatrix}^{-1} \begin{bmatrix} -21,79092708 \\ -55,5961655 \\ -58,15384545 \end{bmatrix}$$

Procedendo-se a inversão da matriz (X'X) e a multiplicação pelo vetor X'Y, obtém-se as seguintes estimativas para os parâmetros do modelo:

$$\hat{\beta} = \begin{bmatrix} -9,590713385 \\ +1,748280173 \\ +1,028900248 \end{bmatrix} = \begin{bmatrix} \hat{\alpha}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix}$$

Lembrando que  $\hat{\alpha}_0 = \ln(\hat{\beta}_0)$ , desta forma, a equação de volume fica assim definida:

$$\ln(v) = -9,59071 + 1,74828 \ln(d) + 1,02890 \ln(h)$$

$$SQTotal = \sum_{n} Y^{2} - \frac{\left(\sum_{n} Y\right)^{2}}{n} = 52,0191757 - 39,57037525 = 12,44880045$$

$$SQreg = \begin{bmatrix} -9,590713358 & 1,748280173 & 1,028900248 \end{bmatrix} \begin{bmatrix} -21,79092708 \\ -55,5961655 \\ -58,15384545 \end{bmatrix} -39,57037526 = 12,38798032$$

#### SQRes = SQTotal - SQReg = 0,06082015

| FV        | GL | SQ          | QM          | Fcalc   |
|-----------|----|-------------|-------------|---------|
| Regressão | 2  | 12,38798032 | 6,193990162 | 916,57* |
| Resíduo   | 9  | 0,06082015  | 0,006757794 |         |
| Total     | 11 | 12,44880047 |             |         |

 $F_{tab}(5\%, 2 e 9 gl) = 4.26$ 

# O teste F e as medidas de precisão da equação ajustada

#### - O teste F:

**Interpretação:** De acordo com este teste, rejeita-se  $H_0$ , isto é, as variações ocorridas no ln(v) podem ser explicadas por pelo menos uma das variáveis ln(d) e ln(h), em nível de 5% de probabilidade.

#### - Coeficiente de Determinação (R<sup>2</sup>):

$$R^{2}(\%) = \frac{12,38798032}{12,44880045}100 = 99,51\%$$

Interpretação: A equação ajustada explica 99,51% das variações ocorridas no ln(v). Problema!!!

- Erro padrão das estimativa  $(S_{y,x})$ :

$$S_{y.x} = \pm \sqrt{QMResíduo} = \pm \sqrt{0,006757794} = \pm 0,082206 \ln(m^3)$$

Interpretação: o erro médio associado ao uso da equação ajustada é de ± 0,082206 ln(m³) 

□ Problema!!!

- Erro padrão relativo( $S_{v,x}(\%)$ ):

$$S_{y.x}(\%) = \pm \frac{0,082206}{-1,815911}100 = \pm 4,53\%$$

**Interpretação:** o erro médio associado ao uso da equação ajustada é de  $\pm 4,53\%$ .



## Referências

FINGER, C. A. G. Fundamentos de biometria florestal. Santa Maria: UFSM, 1992. 269p.

LOETSCH, F.; ZOEHRER, F.; HALLER, K. E. Forest Inventory. v.2, Munchen: BLV, 1973. 469p.

SOARES, C. P. B.; NETO, F. P.; SOUZA, A. L. Dendrometria e Inventário Florestal. Viçosa: Editora UFV, 2007. 276p.