Problem 47

The 1 H and 13 C{ 1 H} NMR spectra of caffeine ($C_{8}H_{10}N_{4}O_{2}$) recorded in DMSO- d_{6} solution at 298 K and 500 MHz are given below.

The ¹H NMR spectrum has signals at δ 3.16, 3.35, 3.84 and 7.96 ppm.

The 13 C $\{^{1}$ H $\}$ NMR spectrum has signals at δ 27.4, 29.3, 33.1, 106.5, 142.7, 148.0, 150.9 and 154.4 ppm.

The 15 N NMR spectrum has signals at δ 112.9, 149.6, 156.1 and 231.2 ppm.

The multiplicity-edited ¹H–¹³C HSQC, ¹H–¹³C HMBC and ¹H–¹⁵N HMBC spectra are given on the following pages. Use these spectra to assign each ¹H, ¹³C and ¹⁵N resonance to its corresponding nucleus.

Proton	Chemical Shift (ppm)	Nucleus	Chemical Shift (ppm)
		N_1	
		C ₂	
		N_3	
		C ₄	
		C ₅	
		C ₆	
		N_7	
H ₈		C ₈	
		N_9	
H ₁₀		C ₁₀	
H ₁₁		C ₁₁	
H ₁₂		C ₁₂	