Introduction & Random Sample

"I'm afraid that I rather give myself away when I explain, said he. Results without causes are much more impressive. Sherlock Holmes, The Stock-Broker's Clerk" Contents:

- ► Random Sample
- Distribution of sum of random variables from a random sample
- Random sample from a normal distribution
- Large sample behavior of the important statistics

Definition

If X_1, \dots, X_n are independent random variables with common marginal distribution with cdf F(x) then we say that they are independent and identically distributed (iid) with common cdf F(x) or X_1, \dots, X_n are random sample from a infinite population with distribution F(x).

Introduction & Random Sample

 X_1, \dots, X_n is a random sample from F(x)

$$X_1, \cdots, X_n \stackrel{iid}{\sim} F(x)[or \ f(x)]$$

$$F_{X_1,\dots,X_n}(x_1,\dots,x_n) = P[X_1 \le x_1,\dots,X_n \le x_n]$$

$$= \prod_{i=1}^n P[X_i \le x_i]$$

$$= \prod_{i=1}^n F(x_i).$$

$$f_{X_1,\dots,X_n}(x_1,\dots,x_n)=\prod_{i=1}^n f(x_i).$$

Sum of RV from a RS

Definition

Any function of random variables X_1, \dots, X_n is called *Statistic*. [function of X_1, \dots, X_n only not parameters]

$$\bar{X} = \frac{X_1 + \dots + X_n}{n}, \ S^2 = \sum_{i=1}^n \frac{(X_i - \bar{X})^2}{n-1},$$

$$T(X_1,\cdots,X_n)=\max(X_1,\cdots,X_n)$$

- Statistic is also a random variable
- Interest in distribution of a statistic

Sum of RV from a RS

Definition

The distribution of the statistic is called *sampling distribution* (of the statistic) in contrast to the population distribution

Definition

Sample Mean:
$$\bar{X} = \frac{X_1 + \dots + X_n}{n}$$
, Sample Variance: $S^2 = \sum_{i=1}^n \frac{(X_i - \bar{X})^2}{n-1}$

Sum of RV from a RS

[Theorem 5.2.6]

Theorem

Let
$$X_1, \dots, X_n \stackrel{iid}{\sim} (\mu, \sigma^2)$$
. Then

$$E\left(ar{X}
ight)=\mu,\ \ extsf{Var}\left(ar{X}
ight)=\sigma^{2}/ extsf{n},\ E\left(S^{2}
ight)=\sigma^{2}\ .$$

Proof: [See textbook for another proof.]

• Find the sampling distributions of a certain statistics that are functions of random sample X_1, \dots, X_n from a normal distribution.

Lemma

Let X_1, \dots, X_n be independent random variables. Let $g_i(x_i)$ be a function of x_i . Then the random variables $U_i = g_i(X_i), i = 1, \dots, n$ are mutually independent.

Theorem

- 1. If $Z \sim N(0,1)$ then $Z^2 \sim \chi^2(1)$
- 2. X_i , $i = 1 \cdots$, n are independent random variables, $X_i \sim \chi^2(p_i)$. Then $X_1 + \cdots + X_n \sim \chi^2(p_1 + \cdots, p_n)$.

Theorem

$$X_1, \cdots, X_n \stackrel{iid}{\sim} (\mu, \sigma^2)$$

- 1. \bar{X} and S^2 are independent
- 2. $\bar{X} \sim N(\mu, \sigma^2/n)$
- 3. $[(n-1)S^2]/\sigma^2 \sim \chi^2(n-1)$
- Other sampling distributions of sample mean and the ratio of sample variances.
 - :Student's *t*-distribution and Snedecor's *F*-distribution.

Definition (Students's t distribution)

The *t*-distribution with d.f. ν is the distribution of

$$T = \frac{Z}{\sqrt{W/\nu}},$$

where Z and W are independent with $Z \sim N(0,1)$, $W \sim \chi^2(\nu)$. The pdf of the t distribution is

$$f_T(t) = \frac{\Gamma[(\nu+1)/2]}{\Gamma[\nu/2]} \frac{1}{\sqrt{\pi\nu}} \left(1 + \frac{t^2}{\nu}\right)^{-(\nu+1)/2}, -\infty < t < \infty.$$

- Similar shape with N(0,1)
- Approaches to N(0,1) as $u o \infty$
- Has a heavier and flatter tail than N(0,1)

Definition (Snedecor's *F* distribution)

Let $W \sim \chi^2(\nu_1)$ and $V \sim \chi^2(\nu_2)$. Assume W and V are independent. Then the distribution of

$$F = \frac{W/\nu_1}{V/\nu_2}$$

has a F distribution with d.f.'s (ν_1, ν_2) . The pdf of the F distribution is

$$f_F(x) = \frac{\Gamma\left[(\nu_1 + \nu_2)/2\right]}{\Gamma\left[\nu_1/2\right]\Gamma\left[\nu_2/2\right]} \left(\frac{\nu_1}{\nu_2}\right)^{\nu_1/2} \frac{x^{(\nu_1/2)-1}}{\left[1 + (\nu_1/\nu_2)x\right]^{(\nu_1+\nu_2)/2}}$$

where $0 < x < \infty$.

 \triangleright Example of *t*-statistics

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Then

$$rac{ar{X}-\mu}{S/\sqrt{n}}\sim t_{(n-1)}$$

 \triangleright Example of *F*-statistics

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu_X, \sigma_X^2)$, and $Y_1, \ldots, Y_m \stackrel{iid}{\sim} N(\mu_Y, \sigma_Y^2)$. Then

$$\frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2} \sim F_{(n-1),(m-1)}$$

Theorem

- 1. If $X \sim F(\nu_1, \nu_2)$ then $1/X \sim F(\nu_2, \nu_1)$
- 2. If $X \sim t(\nu)$ then $X^2 \sim F(1, \nu)$
- 3. If $X \sim F(\nu_1, \nu_2)$ then

$$rac{(
u_1/
u_2)X}{1+(
u_1/
u_2)X} \sim \textit{Beta}(
u_1/2,
u_2/2)$$

Proof: See Exercise 5.17 and 5.18.

If $X \sim F(\nu_1, \nu_2)$, then

•
$$E(X) = \frac{\nu_2}{\nu_2 - 2}$$
 for $\nu_2 > 2$

$$Var(X) = \frac{2\nu_2^2(\nu_1 + \nu_2 + 2)}{\nu_1(\nu_2 - 2)^2(\nu_2 - 4)} \text{ for } \nu_2 > 4$$

- Investigate the large sample behaviors of the sequence of random variables.

 - ⊲ Delta method

Convergence in probability

Definition $(X_n \stackrel{P}{\rightarrow} X)$

A sequence of random variables X_1, X_2, \cdots converges in probability to a random variable X if, for every $\epsilon > 0$,

$$\lim_{n\to\infty} P[|X_n - X| \ge \epsilon] = 0$$

or equivalently

$$\lim_{n\to\infty} P[|X_n - X| < \epsilon] = 1.$$

ightharpoonup Example: $X \sim F_X(x)$, $X_n = [(n-1)/n]X$. Then $X_n \stackrel{P}{\to} X$.

Convergence in probability

Theorem (WLLN)

If
$$X_1, \dots X_n \stackrel{iid}{\sim} (\mu, \sigma^2)$$
, $\sigma^2 < \infty$ Then $\bar{X}_n \stackrel{P}{\rightarrow} \mu$. Proof.

Theorem

If $X_n \stackrel{P}{\to} X$ and g is a function defined on the range of X such that $D_g = \{x | g \text{ is discontinuous at } x\}$ has $P[X \in D_g] = 0$, then $g(X_n) \stackrel{P}{\to} g(X)$.

 \triangleright Examples: $S^2 \stackrel{P}{\rightarrow} \sigma^2$? $S \stackrel{P}{\rightarrow} \sigma$?

Almost sure convergence

Definition
$$(X_n \to X \ a.s. \ (Or, \ X_n \stackrel{a.s.}{\to} X))$$

A sequence of random variables X_1, X_2, \cdots converges almost surely to a random variable X if, for every $\epsilon > 0$,

$$P\left\{\lim_{n\to\infty}[|X_n-X|<\epsilon]\right\}=1.$$

Note: X_n converges to X almost surely if the functions $X_n(s)$ converges to X(s) for all $s \in S$ (S: sample space) except for some singletons. (except for $s \in N$, where $N \subset S$ and P(N) = 0)

ightharpoonup Example: $X \sim F_X(x)$, $X_n = [(n-1)/n]X$. Then $X_n \to X$ a.s.

 $I_6 = I(2/3 < U < 1)$

Almost sure convergence

• Almost sure convergence — Convergence in probability \triangleright Example: Almost sure convergence \longleftarrow Convergence in probability ? [Example 5.5.8] Let $U \sim \text{Uniform}(0,1)$, $X_n = U + I_n$ and X = U, where $I_1 = I(0 < U < 1)$, $p_1 = P[I_1 = 1] = 1$ $I_2 = I(0 < U \le 1/2)$, $p_2 = P[I_2 = 1] = 1/2$ $I_3 = I(1/2 < U \le 1)$, $p_3 = P[I_3 = 1] = 1/2$ $I_4 = I(0 < U \le 1/3)$, $p_4 = P[I_4 = 1] = 1/3$

 $I_5 = I(1/3 < U \le 2/3)$, $p_5 = P[I_5 = 1] = 1/3$

 $p_6 = P[I_6 = 1] = 1/3$

Almost sure convergence

$$P[|X_n - X| \ge \epsilon] = P[I_n \ge \epsilon]$$

Is the sequence I_n for a given value of U=u converge ? (For example, consider when u=1/4. Then observe the values of X_n .)

Theorem (SLLN)

If
$$X_1, \cdots X_n \stackrel{iid}{\sim} (\mu, \sigma^2)$$
, $\sigma^2 < \infty$. Then $\bar{X}_n \stackrel{a.s.}{\rightarrow} \mu$.

Convergence in distribution

Definition $(X_n \stackrel{D}{\rightarrow} X)$

A sequence of random variables $X_i \sim F_i, i=1,\cdots$, i.e., $F_i(t) = Pr[X_i \leq t]$. Suppose that X is a random variable with cdf F, i.e., $F(t) = Pr[X \leq t]$. Then the sequence of random variables X_1, X_2, \cdots converges in distribution to a random variable X if

$$\lim_{n\to\infty}F_n(t)=F(t),$$

for all continuity points of F.

ightharpoonup Example: Let X_1, X_2, \cdots be iid U(0,1). Let $X_{(n)}$ be the $\max_{1 \le i \le n} X_i$. Then $n(1 - X_{(n)}) \stackrel{D}{\to} \operatorname{Exp}(1)$. [Example 5.5.11]

Convergence in distribution

Theorem (CLT)

If $\mathbf{X}_1, \mathbf{X}_2, \cdots$ are iid p-dimensional random vectors with finite mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$. Then

$$\sqrt{n}\left(\mathbf{\bar{X}}_{n}-\boldsymbol{\mu}\right)\overset{D}{\rightarrow}N_{p}\left(\mathbf{0},\boldsymbol{\Sigma}\right),$$

where
$$\mathbf{X}_{i} = (x_{1i}, x_{2i}, \cdots, x_{pi})'$$
, $\bar{\mathbf{X}}_{n} = \sum_{i=1}^{n} \mathbf{X}_{i}$, $\boldsymbol{\mu} = (\mu_{1}, \mu_{2}, \cdots, \mu_{p})'$, and

$$\mathbf{\Sigma} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1p} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_p^2 \end{pmatrix}$$

Convergence in distribution

Theorem (CLT with p = 1 (Theorem 5.5.14))

If X_1, X_2, \cdots are iid random variables with finite mean μ and variance σ^2 whose mgfs exist in a neighborhood of 0. Then

$$\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma}\stackrel{D}{\to} N\left(0,1\right).$$

Proof: [The proof in the textbook implies the following theorem.]

Theorem (Continuity Theorem)

If sequence of mgf $M_n(t) \to M(t)$ for all t in an open interval containing zero, then the corresponding cdfs $F_n(x) \to F(x)$ at all continuity point of F. That is $X_n \overset{D}{\to} X$.

Convergence in distribution

Theorem (Slutsky's theorem)

Let $X_n \stackrel{D}{\rightarrow} X$ and $Y_n \stackrel{P}{\rightarrow} c$, where c is a constant. Then

- 1. $Y_n X_n \stackrel{D}{\rightarrow} cX$
- $2. Y_n + X_n \stackrel{D}{\rightarrow} c + X$
- 3. $g(Y_n, X_n) \stackrel{D}{\to} g(c, X)$ in general when g is continuous.

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{S} \stackrel{D}{\to}$$

Theorem (Theorem 5.5.24)

Let $Y_n, n=1,2,\cdots$ be a sequence of random variables that satisfies $\sqrt{n}(Y_n-\theta)\overset{D}{\to} N(0,\sigma^2)$. For a given function g and a specific value of θ , suppose that $g'(\theta)$ exists and is not 0. Then

$$\sqrt{n}\left[g(Y_n)-g(\theta)\right] \stackrel{D}{\to} N\left[0,\sigma^2\left(g'(\theta)\right)^2\right].$$

$$ho$$
 Example: $X_1, \dots, X_n \stackrel{iid}{\sim} (\mu, \sigma^2)$. $g(\mu) = e^{\mu}$, $g(\mu) = 1/\mu$.

Find the limiting distributions of $\sqrt{n}(g(\overline{X_n}) - g(\mu))$, where $\overline{X_n} = \sum_{i=1}^n X_i/n$

Theorem (Theorem 5.5.26)

Let Y_n , $n=1,2,\cdots$ be a sequence of random variables that satisfies $\sqrt{n}(Y_n-\theta)\overset{D}{\to}N(0,\sigma^2)$. For a given function g and a specific value of θ , suppose that $g'(\theta)=0$ and $g''(\theta)$ exists and is not 0. Then

$$n[g(Y_n)-g(\theta)] \stackrel{D}{\rightarrow} \sigma^2 \frac{g''(\theta)}{2} \chi_1^2.$$

Proof: By Taylor expansion

$$g(Y_n) = g(\theta) + g'(\theta)(Y_n - \theta) + \frac{g''(\theta)}{2}(Y_n - \theta)^2 + \frac{g'''(\xi)}{3!}(Y_n - \theta)^3$$
$$= g(\theta) + \frac{g''(\theta)}{2}(Y_n - \theta)^2 + \text{Remainder}$$

Order Statistics

The order statistics of a random sample X_1, \dots, X_n are the sample values placed in ascending order. They are denoted by

$$X_{(1)}, X_{(2)}, \cdots, X_{(n)},$$

where $X_{(i)}$ is the i^{th} smallest of X_1, \dots, X_n . Then joint pdf is

$$f_{X_{(1)},\cdots,X_{(n)}}(y_1,\cdots,y_n)=n!f_X(y_1)\cdots f_X(y_n),$$

for $-\infty < y_1 < \cdots < y_n < \infty$, and $f_X(\cdot)$ is pdf of X_i 's.

- Statistics defined in terms of order statistics.
 - 1. Sample Range: $= X_{(n)} X_{(1)}$
 - 2. Sample Median:

$$X_{([n+1]/2)},$$
 if n is odd $[X_{(n/2)} + X_{(n/2+1)}]/2,$ if n is even

Order Statistics

• Distribution of order statistics

Let X_1, \dots, X_n be a random sample with a common pdf $f_X(x)$ and a common cdf $F_X(x)$. Then the marginal and joint distributions of order statistics are as follow:

$$f_{X_{(j)}}(y_j) = \frac{n!}{(j-1)!(n-j)!} [F_X(y_j)]^{j-1} [1 - F_X(y_j)]^{n-j} f_X(y_j),$$

for $-\infty < y_j < \infty$.

Proof:

Order Statistics

$$f_{X_{(j)},X_{(k)}}(y_j,y_k) = \frac{n!}{(j-1)!(k-j-1)!(n-k)!} [F_X(y_j)]^{j-1} [F_X(y_k) - F_X(y_j)]^{k-j-1} [1 - F_X(y_k)]^{n-k} f_X(y_j) f_X(y_k),$$

for
$$-\infty < y_j < y_k < \infty$$
.

ightharpoonup Example: $X_1, \cdots, X_n \stackrel{iid}{\sim}$ Uniform(0,1). Find the distribution of $R = X_{(n)} - X_{(1)}$.

- Approximation of the parameter or distribution of statistic \triangleright Example: Suppose that a particular electrical component is to be modeled with an exponential(λ) life time.

$$p_1 = P[\text{component lasts at least } h \text{ hours}]$$

= $P[X \ge h; \lambda] = e^{-h/\lambda}$.

Assuming the components are independent. Consider the probability that out of c components, at least t will last h hours.

$$p_2 = P[\text{at least } t \text{ components last } h \text{ hours}]$$

$$= \sum_{k=t}^{c} {c \choose k} p_1^k (1 - p_1)^{c-k}.$$

With $c=20,\ t=15,\ h=150,\ \lambda=300,\ p_1=0.60653$ and $p_2=0.1382194.$

If the distribution is complicate like Gamma distribution, there is no close form of the probability for p_1 . \rightarrow approximation using simulation.

- 1. Generate $X_1, \dots, X_{n=20}$ from Exponential $(\lambda = 300)$
- 2. Define $Y_j = 1$ if at least $t = 15 X_j$'s are greater than or equal to h = 150, otherwise $Y_j = 0$.

ightharpoonup Example: Distribution of \bar{X}_n for n=10 and n=50, where $X_1, \cdots, X_n \stackrel{iid}{\sim} \mathsf{Bernoulli}(p=0.4)$.

