

Dr. rer. nat. Johannes Riesterer

Asymptotics

Für fast alle (hinreichend große) Mathlib

Für einen Filter I bedeutet die Bedingung $\forall^f x \ p(x)$ dass die Menge der Elemente, für die p(x) gilt, ein Element des Filters I ist, also $\{X \mid p(x)\} \in I$.

Asymptotics

Big O Notation Mathlib

Für einen Filter I und Funktionen f, g definieren wir

$$f = \mathcal{O}[I]g \leftrightarrow \exists c > 0, \forall^f x \in I, ||f(x)|| \le c \cdot ||g(x)||$$

Erklärung

Die Aussage besagt, dass für fast alle x in der Menge I, die Norm von f(x) durch ein Vielfaches der Norm von g(x) beschränkt ist. Das Vielfache wird durch die Konstante c dargestellt.

Asymptotics

Klein-o Notation Mathlib

Für einen Filter I und Funktionen f,g definieren wir

$$f = o[I]g \leftrightarrow \forall c > 0, \forall^f x \in I, ||f(x)|| \le c \cdot ||g(x)|| \text{ für } x \ge N$$

Erklärung

Die Aussage besagt, dass für jede positive Konstante c und für fast alle x in der Menge I die Norm von f(x) kleiner oder gleich $c \cdot \|g(x)\|$ ist. Dies beschreibt, dass f(x) asymptotisch schneller gegen 0 geht als g(x). In anderen Worten, der Ausdruck $\frac{\|f(x)\|}{\|g(x)\|}$ geht gegen 0 entlang I, wobei mögliche Probleme durch Division durch Null durch diese Definition vermieden werden.

Beweis: Klein-o impliziert Groß-O Mathlib

Wenn f = o[I]g, dann ist f = O[I]g.

Ableitungen

Klassische Definition in einer Dimension:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Definition mit o-Kalkül:

$$f(a+h) = f(a) + f'(a)h + o(h)$$

Äquivalenz:

1. Von o(h) zur klassischen Definition:

$$\frac{f(a+h)-f(a)}{h}=f'(a)+\frac{o(h)}{h}$$

Mit $\lim_{h\to 0} \frac{o(h)}{h} = 0$ folgt die klassische Definition.

2. Von der klassischen Definition zur o(h)-Form:

Nehmen wir $f'(a) = \lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$, dann:

$$f(a+h) = f(a) + f'(a)h + r(h)$$
, wobei $r(h)$ der Restterm ist.

Da
$$\lim_{h\to 0} \frac{r(h)}{h} = 0$$
, gilt $r(h) = o(h)$.

Ableitungen

Ableitungen

Eindeutigkeit

Die Ableitung df ist eindeutig bestimmt.

Beweis

Ist df' eine weiter Abbildung mit Eigenschaft (??), so gilt für jeden Basisvektor e_i

$$\lim_{t \to 0} \frac{f(a + te_i) - f(a) - df(a)te_i}{||te_i||} = 0$$
 (1)

$$\lim_{t \to 0} \frac{f(a + te_i) - f(a) - df'(a)te_i}{||te_i||} = 0$$
 (2)

$$\Rightarrow (df(a) - df'(a))(e_i) = \lim_{t \to 0} \frac{(df'(a) - df(a))(te_i)}{||te_i||} = 0 \quad (3)$$

Ableitungen

Ableitung Lean

Eine Funktion $f:V\to W$ zwischen normierten Räumen hat die lineare Abbildung f' als Ableitung entlang des Filters L, falls

$$f(x') = f(x) + f'(x' - x) + o(x' - x),$$

Lineare Abbildungen

Definition

Eine Abbildung $T:V\to W$ zwischen zwei Vektorräumen V und W über einem Körper K heißt **linear**, wenn für alle $v_1,v_2\in V$ und alle $\alpha,\beta\in K$ gilt:

$$T(\alpha v_1 + \beta v_2) = \alpha T(v_1) + \beta T(v_2).$$

Eigenschaften

- Lineare Abbildungen erhalten die Vektorraumstruktur: Sie respektieren die Addition und die Skalarmultiplikation.
- Jede lineare Abbildung ist durch ihr Verhalten auf einer Basis des Vektorraums eindeutig bestimmt.
- Die Ableitung einer linearen Abbildung ist die Abbildung selbst: Für eine lineare Abbildung T gilt D(T) = T.

Lineare Abbildungen

Beispiele

- Die Identitätsabbildung id $_V:V\to V$, definiert durch id $_V(v)=v$, ist linear.
- Projektionen und Rotationen in \mathbb{R}^n sind lineare Abbildungen.
- Matrizen wirken als lineare Abbildungen auf Vektorräumen.

Ableitungen

Definition in Lean (Mathlib)

In Lean4 (Mathlib) wird eine lineare Abbildung T zwischen zwei normierten Vektorräumen V und W über \mathbb{R} als eine stetige lineare Abbildung (continuous_linear_map) definiert:

$$T:V\to L[\mathbb{R}]W$$

Die lineare Struktur wird durch zwei Eigenschaften beschrieben:

- map_add : $T(v_1 + v_2) = Tv_1 + Tv_2$
- map_smul : $T(c \cdot v) = c \cdot Tv$

Vergleich

Im endlichdimensionalen Fall entspricht die Definition in Lean der üblichen Definition einer linearen Abbildung. Im unendlichdimensionalen Fall wird zusätzlich die Stetigkeit gefordert, da diese nicht automatisch gegeben ist.

Ableitungen

Beispiel

 $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$

$$f(x) := A \cdot x + b \tag{4}$$

$$df(a) := A \tag{5}$$

Beweis

$$\lim_{h\to 0}\frac{A(x+h)-A\cdot x-A\cdot h}{||h||}=\tag{6}$$

$$\lim_{h \to 0} \frac{A \cdot x + A \cdot h - A \cdot x - A \cdot h}{||h||} = 0 \tag{7}$$

Ableitungen

Partielle Ableitung

In Lean4 (Mathlib) wird eine lineare Abbildung T zwischen zwei normierten Vektorräumen V und W über \mathbb{R} als eine stetige lineare Abbildung (continuous_linear_map) definiert:

$$T:V\to L[\mathbb{R}]W$$

Die lineare Struktur wird durch zwei Eigenschaften beschrieben:

- map_add : $T(v_1 + v_2) = Tv_1 + Tv_2$
- map_smul : $T(c \cdot v) = c \cdot Tv$

Ableitungen

Definition

Eine Funktion f ist an x differenzierbar, wenn:

$$f(x') - f(x) - f'(x' - x) = o_L(x' - x)$$

Dies bedeutet, dass der Restterm f(x') - f(x) - f'(x' - x) schneller gegen 0 geht als x' - x, wenn $x' \to x$ unter einem Filter L.

Beispiele für Filter L

• Standardfall: Filter der Umgebung von xDer Filter $L = \mathcal{N}(x)$ beschreibt, dass x' beliebig nahe an xheranrückt. Dieser Filter erfasst alle offenen Umgebungen von x.

$$o_{\mathcal{N}(x)}(x'-x)$$

bedeutet, dass der Restterm verschwindet, wenn x' gegen x läuft.

Ableitungen

Beispiele für Filter *L* (Fortsetzung)

Filter auf einem Teilraum:

Wenn man Differenzierbarkeit nur auf einem Teilraum $S \subseteq E$ betrachtet, verwendet man den Filter $\mathcal{N}[S](x)$, der Umgebungen in S enthält. Damit kann man die Differenzierbarkeit von f auf S testen.

• Filter für gerichtete Mengen:

Bei Funktionen auf gerichteten Mengen (z.B. in Optimierungsproblemen) verwendet man den Filter L, der beschreibt, wie x' sich entlang einer Richtung oder eines Pfades $\gamma(t) \to x$ nähert.

Zusammenfassung

Der Filter L gibt die Art und Weise an, wie x' gegen x strebt. Der häufigste Fall ist der Filter der offenen Umgebungen von x, aber auch Teilräume oder spezielle Pfade können durch Filter modelliert werden.

Ableitungen

Ableitung Berechnen

Wie kann man die Ableitung einer Funktion berechnen?

Ableitungen

Partielle Ableitung

Für eine Funktion $f: \mathbb{R}^n \to \mathbb{R}$ definert man die partielle Ableitung

$$D_i f(x) = \lim_{h \to 0} \frac{f(x + h \cdot e_i) - f(x)}{h}$$

wobei ei der i-te Einheitsvektor ist.

$$\frac{\partial f(x)}{\partial x_i} := D_i f(x).$$

Richtungsableitung

Allgemeiner definiert man für $f: \mathbb{R}^n \to \mathbb{R}$ und $v \in \mathbb{R}^n$

$$D_{\nu}f(x) = \lim_{h \to 0} \frac{f(x+h \cdot \nu) - f(x)}{h}$$

die Richtungsableitung von f an der Stelle x in Richtung v.

Ableitungen

Differenzierbarkeit

Gradient

Der Vektor

$$\nabla f(a) := \begin{pmatrix} \frac{\partial f(a)}{\partial x_1} \\ \vdots \\ \frac{\partial f(a)}{\partial x_n} \end{pmatrix}$$

wird als Gradient bezeichnet.

19 / 29

Gradienten-Beispiele: Einfache Funktionen

Beispiel 1: Quadratische Funktion in 2D

$$f(x,y) = x^2 + y^2$$

Gradient:

$$\nabla f(x,y) = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} = \begin{pmatrix} 2x \\ 2y \end{pmatrix}$$

Beispiel 2: Quadratische Funktion in 3D

$$f(x, y, z) = x^2 + y^2 + z^2$$

Gradient:

$$\nabla f(x, y, z) = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix} = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}$$

Gradienten-Beispiele: Komplexere Funktionen

Beispiel 3: Exponentialfunktion

$$f(x,y) = e^{x^2 + y^2}$$

Gradient:

$$\nabla f(x,y) = \begin{pmatrix} \frac{\partial}{\partial x} e^{x^2 + y^2} \\ \frac{\partial}{\partial y} e^{x^2 + y^2} \end{pmatrix} = \begin{pmatrix} 2xe^{x^2 + y^2} \\ 2ye^{x^2 + y^2} \end{pmatrix}$$

Beispiel 4: Logarithmische Funktion

$$f(x,y) = \ln(x^2 + y^2)$$

Gradient:

$$\nabla f(x,y) = \begin{pmatrix} \frac{\partial}{\partial x} \ln(x^2 + y^2) \\ \frac{\partial}{\partial y} \ln(x^2 + y^2) \end{pmatrix} = \begin{pmatrix} \frac{2x}{x^2 + y^2} \\ \frac{2y}{x^2 + y^2} \end{pmatrix}$$

Vergleich: Lineare Abbildungen in Mathematik und Lean (Mathlib)

Richtungsableitungv und Ableitung

$$D_{v}f(x) = df(x)v$$

und damit insbesondere $df(a) \cdot h = \langle \nabla f(a), h \rangle$.

Beweisg

Folgt aus der Eindeutigkeit der Ableitung.

Mehrdimensionale Differentialrechnung

Differenzierbarkeit

Gradient

Sei $f:U \to \mathbb{R}$ differenzierbare Funktion, $a \in U$ und

 $v:=\mathsf{argmax}_{||h||=1}\{\partial_h f(a)\}.$ Dann gilt

$$||\nabla f(a)||v = \nabla f(a)$$
.

Gradient

Der Gradient zeigt in die Richtung des steilsten Anstiegs.

Mehrdimensionale Differentialrechnung

Differenzierbarkeit

Beweis

Für beliebiges h gilt

$$\partial_h f(a) = df(a)h = \langle \nabla f(a), h \rangle = ||\nabla f(a)|| \cdot ||h|| \cdot \cos(\varphi)$$

wobei φ den Innenwinkel zwischen $\nabla f(a)$ und h bezeichnet. Für ||h||=1 wird somit $\partial_h f(a)$ maximal, wenn $\varphi=0$ und somit $h=\frac{\nabla f(a)}{||\nabla f(a)||}$ ist.

Extrema

Extrema

Sei $f:X\subset\mathbb{R}^n\to\mathbb{R}$ eine relle Funktion. Ein Punkt $a\in X$ heißt lokales Maximum bzw. Minimum, falls eine Umgebung U von a existiert, so dass $f(x)\leq f(a)$ bzw. $f(x)\geq f(a)$ für alle $x\in U$ gilt. Liegt einer der beiden Fälle vor, so spricht man von einem lokalen Extremum. Gilt strikt f(x)< f(a) bzw. f(x)>f(a), so nennt man das Extremum isoliert. Ist U=X so nennt man es auch globales Maximum bzw. Minimum.

Extrema

Figure: Quelle: Wikipedia:

https://en.wikipedia.org/wiki/File:MaximumParaboloid.png

Extrema

Figure: Quelle: Wikipedia:

https://en.wikipedia.org/wiki/File: Maximum Counterexample.png

Extrema

Extrema

Ist $f:U\to\mathbb{R}$ differenzierbar und hat f in $a\in U$ ein lokales Extremum, so gilt

$$\frac{\partial}{\partial x_1}f(a)=\cdots=\frac{\partial}{\partial x_n}f(a)=0.$$

Sind die partiellen Ableitungen stetig, ist dies gleichbedeutend mit df(a) = 0.

Kritischer Punkt

Ein Punkt a mit df(a) = 0 wird kritischer Punkt genannt.

Extrema

Beweis

Setze $F_k(t):=f(a+te_k)$. Da f ein Extremum in a hat, hat F_k in einer hinreichend kleinen Umgebung um 0 ein Extremum. Da F_k eine Funktion einer Veränderlichen ist, gilt F'(0)=0. Da $\frac{\partial}{\partial x_k} f(a) = F'_k(0)$ folgt die Behauptung.