Factor models via Autoencoders

A clever way of using Neural Networks to solve a familiar but important problem in Finance was proposed by <u>Gu, Kelly, and Xiu, 2019</u> (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3335536).

It is an extension of the Factor Model framework of Finance, combined with the tools of dimensionality reduction (to find the factors) of Deep Learning: the Autoencoder.

You can find <u>code (https://github.com/stefan-jansen/machine-learning-for-trading/blob/main/20 autoencoders for conditional risk factors/06 conditional autoence for this model as part of the excellent book by <u>Stefan Jansen (https://github.com/stefan-jansen/machine-learning-for-trading/blob/main/20 autoencoders for conditional risk factors/06 conditional autoence</u></u>

trading/blob/main/20_autoencoders_for_conditional_risk_factors/06_conditional_autoencoders_for_conditional_risk_factors/06_conditional_autoencoders_for_conditional_risk_factors/06_conditional_autoencoders_for_conditional_risk_factors/06_conditional_autoencoders_for_conditional_risk_factors/06_conditional_autoencoders_for_conditional_risk_factors/06_conditional_autoencoders_for_conditional_risk_factors/06_conditional_autoencoders_for_conditional_risk_factors/06_conditional_autoencoders_for_conditional_risk_factors/06_conditional_autoencoders_for_conditional_risk_factors/06_conditional_autoencoders_for_conditional_autoe

- <u>Github (https://github.com/stefan-jansen/machine-learning-for-trading)</u>
- In order to run the code notebook, you first need to run a notebook for <u>data prepara</u> <u>jansen/machine-learning-for-</u>

trading/blob/main/20_autoencoders_for_conditional_risk_factors/05_conditional_al

- This notebook relies on files created by notebooks from earlier chapters of
- So, if you want to run the code, you have a lot of preparatory work ahead of
- Try to take away the ideas and the coding

Factor Model review

We will begin with a quick review/introduction to Factor Models in Finance.

The universe of securities (e.g., equities) is often quite large

- several hundred (or thousands) of individual tickers
- denote the size by *n*

It is often the case that the returns of many securities can be explained

- as being the sum of influences of "common factors"
 - market index
 - industry indices
 - size, momentum

It is sometimes useful to approximate the return of a security

- as the dot product of
- ullet the sensitivity of the security to a number f of $common\ factors$
- the returns of the common factors

This is useful

- as a means of *dimensionality* reduction
 - lacktriangle we need timeseries of returns for only $f \leq n$ factors rather than all n securities
- as a means of understanding the behavior of two or more securities
 - as the sum of common influences
 - rather than completely idiosyncratic returns
 - Hedging, risk-management

First, some necessary notation:

- $\mathbf{r}_s^{(d)}$: Return of ticker s on day d.
- $\hat{\mathbf{r}}_s^{(d)}$: approximation of $\mathbf{r}_s^{(d)}$
- $n_{
 m tickers}$: large number of tickers
- $n_{\rm dates}$: number of dates
- ullet $n_{
 m factors}$: small number of factors: independent variables (features) in our approximation
- ullet Matrix ${f R}$ of ticker returns, indexed by date
 - $\mathbf{R}:(n_{\mathrm{dates}} \times n_{\mathrm{tickers}})$
 - $lacksquare ||\mathbf{R}^{(d)}|| = n_{ ext{tickers}}$
 - \circ ${f R}^{(d)}$ is vector of returns for each of the $n_{
 m tickers}$ on date d
- ${f r}$ will denote a vector of single day returns: ${f R}^{(d)}$ for some date d

Notation summary

term	meaning		
s	ticker		
$n_{ m tickers}$	number of tickers		
d	date		
$n_{ m dates}$	number of dates		
$n_{ m chars}$	number of characteristics per ticker		
m	number of examples		
	$m=n_{ m dates}$		
i	index of example		
	There will be one example per date, so we use \boldsymbol{i} and \boldsymbol{d} interchangeably.		
$[\mathbf{X^{(i)}},\mathbf{R^{(i)}}]$	example i		
	\$	\X^\ip	= (\ntickers \times \nchars)\$
	\$	\R^\ip	= \ntickers\$
$oldsymbol{\mathbf{X}}_{s}^{(d)}$	vector of ticker s 's characteristics on day d		
	\$	X^{dp_s}	= \nchars\$

Note

The paper actually seeks to predict $\hat{\mathbf{r}}_s^{(d+1)}$ (forward return) rather than approximate the current return $\hat{\mathbf{r}}_s^{(d)}$.

We will present this as an approximation problem as opposed to a prediction problem for simplicity of presentation (i.e., to include PCA as a model).

A **factor model** seeks to approximate/explain the return of a *number* of tickers in terms of common "factors" ${f F}$

$$egin{array}{lll} oldsymbol{f F}: (n_{
m dates} imes n_{
m factors}) \ oldsymbol{f R}_1^{(d)} &=& eta_1^{(d)} \cdot oldsymbol{f F}^{(d)} + \epsilon_1 \ dots & dots \ oldsymbol{f R}_{n_{
m tickers}}^{(d)} &=& eta_{n_{
m tickers}}^{(d)} \cdot oldsymbol{f F}^{(d)} + \epsilon_{n_{
m tickers}} \end{array}$$

There are several ways to create a factor model

- depending on what we assume
- is given, in addition to ${f R}$

We will examine each method, but here is a high-level summary:

${f Name}$	${f Given}$	Solve for
Pre-defined factors	$\mathbf{F}:(n_{ ext{dates}} imes n_{ ext{factors}})$	$eta_s:(n_{ ext{factors}})$
Pre-defined sensitivities	$eta:(n_{ ext{tickers}} imes n_{ ext{factors}})$	$\mathbf{F}^{(d)}$
Nothing pre-defined		\mathbf{F},eta^T
AE for cond. risk factors		$\mathbf{F}^{(d)}, ar{eta}^{(d)}: (n_{ ext{tickers}} imes n_{ ext{factors}})$
		$\operatorname{time-varying} ar{eta} : (n_{\operatorname{tickers}} imes n)$

The first two approaches

- take one part (e.g., sensitivities or factor returns) of the product as given
- solves for the other part

The PCA approach

- solves for *both* parts of the product
 - subject to the ticker sensitivities β being fixed through time

The Autoencoder for Conditional Risk factors approach

- solves for *both* parts of the product
 - lacktriangle and has time-varying sensitivities eta and factor returns ${f F}$

Pre-defined factors, solve for sensitivities

Suppose ${f F}$ is given: a matrix of returns of "factors" over a range of dates

- $\mathbf{F}^{(d)}$ includes the returns of multiple factor tickers
 - e.g., market, several industries, large/small cap indices

Solve for β_s , for each s

- $n_{
 m tickers}$ separate Linear Regression models
- Linear regression for ticker *s*:
 - r_s and ${f F}$ are time series (length $n_{
 m dates}$) of returns for tickers/factors
 - Solve for β_s
 - constant over time

constant over time
$$\beta_s^{(d)} = \beta_s$$

$$\bullet \left\langle \mathbf{X}^{(d)}, \mathbf{y}^{(d)} \right\rangle = \left\langle \mathbf{F}^{(d)}, \mathbf{r}_s^{(d)} \right\rangle$$

$$\mathbf{r}_s = \begin{pmatrix} \mathbf{r}_s^{(1)} \\ \mathbf{r}_s^{(2)} \\ \vdots \\ \mathbf{r}_s^{(n_{\mathrm{dates}})} \end{pmatrix}, \ \mathbf{F} = \begin{pmatrix} \mathbf{F}_1^{(1)} & \dots & \mathbf{F}_{n_{\mathrm{factors}}}^{(1)} \\ \mathbf{F}_1^{(2)} & \dots & \mathbf{F}_{n_{\mathrm{factors}}}^{(2)} \\ \vdots \\ \mathbf{F}_1^{(n_{\mathrm{dates}})} & \dots & \mathbf{F}_{n_{\mathrm{factors}}}^{(n_{\mathrm{dates}})} \end{pmatrix}, \ \beta_s = \begin{pmatrix} \beta_{s,1} \\ \beta_{s,2} \\ \vdots \\ \beta_{s,n_{\mathrm{factors}}} \end{pmatrix}$$

 $\mathbf{r}_s = \mathbf{F} * \beta_s$

Picture of linear regression

- One ticker s at a time, as a timeseries
 - selected column in left matrix
- Given
- \blacksquare matrix \mathbf{F} of factor timeseries
 - columns of right matrix

- Solve
- for sensitivities β_s (middle vector)
- dot product of sensitivity vector and row of factors on *one date(
 - estimated returns

$$\hat{\mathbf{r}}_s^{(d)} = eta_s \cdot \mathbf{F}^{(d)}$$

Linear regression solves for eta_s

• to minimize errors across dates

$$\sum_{d=1}^{n_{ ext{dates}}} \left(\mathbf{r}_s^{(d)} - \hat{\mathbf{r}}_s^{(d)}
ight)^2$$

In [3]: | fig

Out[3]:

Pre-defined sensitivities, solve for factors

Suppose β is given:

• for each ticker s: $\beta_{s,j}$ is the sensitivity of s to \mathbf{F}_j

Solve for $\mathbf{F}^{(d)}$ for each d

- $n_{
 m dates}$ separate Linear Regressions
- ullet Linear regression for date d
 - ullet ${f r}^{(d)}$ and $eta^{(d)}$ are cross sections (width $n_{
 m tickers}$) of one day ticker returns/sensitivities
 - Solve for $\mathbf{F}^{(d)}$
 - constant over tickers

$$\mathbf{r}^{(d)} = egin{pmatrix} \mathbf{F}_s^{(d)} = \mathbf{F}^{(d)} \ \mathbf{r}_1^{(d)} \ \vdots \ \mathbf{r}_{n_{ ext{tickers}}}^{(d)} \end{pmatrix}, \ \mathbf{F}^{(d)} = egin{pmatrix} \mathbf{F}_1^{(d)} \ \mathbf{F}_2^{(d)} \ \vdots \ \mathbf{F}_{n_{ ext{factors}}}^{(d)} \end{pmatrix}, \ eta = egin{pmatrix} eta_{1,1}, & \dots & eta_{1,n_{ ext{factors}}} \ eta_{2,1}, & \dots & eta_{2,n_{ ext{factors}}} \ \vdots \ eta_{n_{ ext{tickers}},1}, & \dots & eta_{n_{ ext{tickers}},n_{ ext{factors}}} \end{pmatrix}$$

Picture of Cross-Sectional regression

- One date d at a time
 - selected row of left matrix
- Given
- matrix β of sensitivities of each ticker to each factor

$$eta:(n_{ ext{tickers}} imes n_{ ext{factors}})$$

- sensitivities are constant through time
- Solve
- for factor returns at one date
 - selected row of right matrix
 - dot product of
 - sensitivity for one ticker (e.g., red row for AAPL)
 - \circ factor returns at date d
 - give estimated return of AAPL

$$\hat{\mathbf{r}}_{\mathrm{AAPL}} = eta^{\mathrm{AAPL}} \cdot \mathbf{F}^{(d)}$$

Cross-sectional regression solves for $\mathbf{F}^{(d)}$

Solve for sensitivities and factors: PCA

Yet another possibility: solve for β and ${\bf F}$ simulataneoulsy.

Recall Principal Components

ullet Representing ${f X}$ (defined relative to $n_{
m tickers}$ "standard" basis vectors) via an alternate basis ${f V}$

$$\mathbf{X} = ilde{\mathbf{X}} \mathbf{V}^T$$

In our case: we will factor ${f R}$.

In this case, we identify $\bf X$ with the returns $\bf R$. Thus, without dimensionality reduction:

$$\mathbf{R} = ilde{\mathbf{R}} V^T$$

where

$$\mathbf{R}, ilde{\mathbf{R}}: (n_{ ext{dates}} imes n_{ ext{tickers}})$$

$$\mathbf{V}^T:(n_{ ext{tickers}} imes n_{ ext{tickers}})$$

We will choose the second factorization.

- create a timeseries of returns for factors
- the sensitivity of a ticker to a factor remains constant over time

$$\mathbf{R}pprox\mathbf{F}eta^T$$

- $ullet \mathbf{F}^T:(n_{ ext{dates}} imes n_{ ext{factors}})$
 - the "alternative" basis: the "factors"
 - lacktriangle is f V with columns eliminated b/c of dimensionality reduction
- $ullet \ eta^T:(n_{ ext{factors}} imes n_{ ext{tickers}})$
 - so $\beta^{(s)}$ are sensitivities of s to factors
- Solve for \mathbf{F} , β simultaneously

 ${f r}_s$, the time series of returns of ticker s is approximated by a combination of returns of $n_{
m factors}$.

$$\mathbf{r}_s^{(d)} = eta_s * \mathbf{F}^{(d)}$$

• $eta_s^{(d)}$ is constant over time $eta_s^{(d)} = eta_s$

PCA seeks to approximate ${f R}$ with fewer than $n_{
m tickers}$ basis vectors

- this is the dimensionality reduction
- ullet reduce from $n_{
 m tickers}$ dimensions to $n_{
 m factors}$ dimensions

This paper

This paper will create a factor model that

- Solve for \mathbf{F}, β simultaneously
 - like PCA
 - but with time-varying β

This very general approach is facilitated because

• ${f F}$ and eta are defined by Neural Networks

Autoencoder

The paper refers to the model as a kind of Autoencoder.

Autoencoder

Let's review the topic.

- An Autoencoder has two parts: an Encoder and a Decoder
- The Encoder maps inputs $\mathbf{x}^{(i)}$, of length n
- Into a "latent vectors" $\mathbf{z^{(i)}}$ of length $n' \leq n$
- If n' < n, the latent vector is a bottleneck
 - reduced dimension representation of $\mathbf{x}^{(i)}$
- The Decoder maps $\mathbf{z^{(i)}}$ into $\hat{\mathbf{x}^{(i)}}$, of length n, that is an approximation of $\mathbf{x^{(i)}}$

The training examples for an Autoencoder are

$$\langle \mathbf{X}^{(d)}, \mathbf{y}^{(d)}
angle = \langle \mathbf{R}^{(d)}, \mathbf{R}^{(d)}
angle$$

That is

we want the output for each example to be identical to the input

The challenge:

- $\bullet \;$ the input is passed through a "bottleneck" ${\bf z}$ of lower dimensions than the example length n
- information is lost
- analog: using PCA for dimensionality reduction, but with non-linear operations

Autoencoder for Conditional Risk Factors

Imagine that we are given $\mathbf{R}:(n_{\mathrm{dates}} imes n_{\mathrm{tickers}})$

ullet timeseries (length $n_{
m dates}$) of returns of $n_{
m tickers}$ tickers

Suppose we map a one day set of returns $\mathbf{R}^{(d)}$ into two separate values

- $eta^{(d)}:(n_{ ext{tickers}} imes n_{ ext{factors}})$ -- the sensitivity of each ticker to each of $n_{ ext{factors}}$ one day "factor" returns
- ullet $\mathbf{F}^{(d)}:(n_{\mathrm{factors}} imes 1)$ -- the one day returns of n_{factors} factors

Our goal is to output $\hat{\mathbf{R}}^{(d)}$, an approximations of $\mathbf{R}^{(d)}$ such that

$$\hat{ extbf{R}}^{(d)} = eta^{(d)} * extbf{F}^{(d)}$$

$$\hat{ extbf{R}}^{(d)} \;\; pprox \;\; extbf{R}^{(d)}$$

This is the same goal as an Autoencoder but subject to the constraint that $\hat{\mathbf{R}}^{(d)}$

• is the product of the ticker sensitivities and factor returns

The Neural Network *simultaneously* solves for $\beta^{(d)}$ and $\mathbf{F}^{(d)}$.

This looks somewhat like PCA

- but, in PCA, β does not vary by day: it is constant over days in this model, $\beta^{(d)}$ varies by day

This paper goes one step further than the standard Autoencoder

```
ullet Inputs old X : (n_{
m dates} \ 	imes n_{
m tickers} \ 	imes n_{
m chars}) ullet rather than old R : (n_{
m dates} \ 	imes n_{
m tickers})
```

Each ticker s on each day d, has $n_{
m chars} \geq 1$ "characteristic"

- ullet one of them may the daily return ${f R}^{(d)}$
- but may also include a number of other time varying characteristics

The proposed model is a Neural Network with two sub-networks.

The Beta network computes
$$eta_s^{(d)} = ext{NN}_eta(\mathbf{X}_s^{(d)}; \mathbf{W}_eta)$$

- $\mathbf{X}_s^{(d)}$ as input
- ullet parameterized by weights \mathbf{W}_eta
- ullet $eta_s^{(d)}$ is only a function of $\mathbf{X}_s^{(d)}$, the characteristics of s
 - lacksquare and **not** of any other ticker s'
 eq s
 - lacksquare $eta_s^{(d)}$ shares \mathbf{W}_eta across **all** tickers s' and dates d'
 - contrast this with factor model with fixed factors
 - \circ we solve for a separate eta_s for each ticker s
 - o via per-ticker timeseries regression
 - contrast this with PCA
 - $\circ \;\; eta_s$ is influenced by $\mathbf{R}_{s'}$ for s'
 eq s

The Factor network computes $\mathbf{F}^{(d)} = \mathrm{NN}_{\mathbf{F}}(\mathbf{R}^{(d)}, \mathbf{W}_{\mathbf{F}})$

- $\mathbf{R}^{(d)}$ as input (not $\mathbf{X}^{(d)}$ as in the Beta network)
- ullet parameterized by weights ${f W_F}\,{f R}^{(d)}$ is only a function of ${f R}^{(d)}$ for date d
 - lacksquare and **not** of any other date d'
 eq d
 - $lackbox{\bf F}^{(d)}$ shares $f W_F$ across all dates

This model

- ullet has *neither* pre-defined Factors ${f F}$ or pre-defined Sensitivities eta
- Simultaneously solve for $eta_s^{(d)}$ and $\mathbf{F}^{(d)}$

Here is a picture

Summary of this paper

Approximate cross section of daily returns: $\hat{\mathbf{r}}^{(d)} \approx \mathbf{r}^{(d)}$ $\mathbf{r}^{(d)} \approx \hat{\mathbf{r}}^{(d)} = \beta^{(d)} * \mathbf{F}^{(d)}$

- like an Autoencoder
- subject
 - lacktriangledown to returns as product of sensitivities and factors: $\hat{f r}^{(d)}=eta^{(d)}*{f F}^{(d)}$
 - $ullet eta_s^{(d)} = ext{NN}_eta(\mathbf{X}_s^{(d)}; \mathbf{W}_eta)$
 - $\mathbf{F}^{(d)} = \mathrm{NN}_{\mathbf{F}}(\mathbf{R}^{(d)}, \mathbf{W}_{\mathbf{F}})$

Shapes:

- $ullet \mathbf{r}^{(d)}:(n_{ ext{tickers}} imes 1)$
- $\beta:(n_{ ext{tickers}} imes n_{ ext{factors}})$
- $\mathbf{F}^{(d)}:(n_{\mathrm{factors}} imes 1)$

Complete Neural Network

Beta (Input) side of network

The Beta network NN_{eta}

- maps ticker characteristics to ticker factor sensitivities
 - for each day

It uses a single layer fully connected (Dense) Layer with $n_{ m factors}$ units

- input: $n_{
 m chars}$ attributes (characteristics) for each of $n_{
 m tickers}$ tickers
- ullet output: $n_{
 m factors}$ factor sensitivities for each of $n_{
 m tickers}$ tickers

$$ext{NN}_eta:(n_{ ext{tickers}} imes n_{ ext{chars}}) \mapsto (n_{ ext{tickers}} imes n_{ ext{factors}})$$

Input \mathbf{X}

$$\mathbf{X}: (n_{ ext{dates}} imes n_{ ext{tickers}} imes n_{ ext{chars}})$$

$$\mathbf{X}^{(d)}:(n_{ ext{tickers}} imes n_{ ext{chars}})$$

- Example on date d
- ullet Consists of $n_{
 m tickers}$ tickers, each with $n_{
 m chars}$ characteristics

Sub Neural network $ext{NN}_{eta}$

$$ext{NN}_eta = ext{Dense} \; (n_{ ext{factors}})(\mathbf{X})$$

- Fully connected network
- ullet Dense $(n_{ ext{factors}})$ computes a function $(n_{ ext{tickers}} imes n_{ ext{chars}}) \mapsto (n_{ ext{tickers}} imes n_{ ext{factors}})$
- Threads over ticker dimension (<u>see</u>
 (https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense))
 - tickers share same weights across all tickers
 - single Dense $(n_{
 m factors})$ not $n_{
 m tickers}$ copies of Dense $(n_{
 m factors})$ with independent weights

$$\mathbf{W}_{eta}:(n_{ ext{factors}} imes n_{ ext{chars}})$$

- ullet weights shared across all d,s
 - $lackbox{f W}_{eta,s}^{(d)} = {f W}_{eta,s'}^{(d')}$ for all s',d'
 - the transformation of characteristics to beta *independent* of ticker
- ullet hence, size of \mathbf{W}_eta is $(n_{\mathrm{factors}} imes n_{\mathrm{chars}})$

$$eta^{(d)} = ext{Dense} \left(n_{ ext{factors}}
ight) (\mathbf{X}^{(d)}) \ eta^{(d)} : \left(n_{ ext{tickers}} imes n_{ ext{factors}}
ight)$$

Factor side of network

The Factor network NN_{F}

- maps ticker returns to factor returns
 - for each day

It uses a single layer fully connected (Dense) Layer with $n_{ m factors}$ units

- input: vector of ticker returns (one-day)
- output: vector of factor returns

 $ext{NN}_{\mathbf{F}}:n_{ ext{tickers}}\mapsto n_{ ext{factors}}$

Input ${f R}$

$$\mathbf{R}:(n_{ ext{dates}} imes n_{ ext{tickers}})$$

$$\mathbf{R}^{(d)}:(n_{ ext{tickers}} imes 1)$$

- Example on date d
- Consists of returns of $n_{
 m tickers}$ tickers

Sub Neural network $NN_{\mathbf{F}}$

 $\mathrm{NN}_{\mathbf{F}} = \mathtt{Dense} \; (n_{\mathrm{factors}})$

- Fully connected network
- ullet Dense($n_{ ext{factors}})$ computes a function $n_{ ext{tickers}} \mapsto n_{ ext{factors}}$

$$\mathbf{W_F}:(n_{ ext{factors}} imes n_{ ext{tickers}})$$

- ullet Weights shared across all d,s
 - $lackbox{f W}_{{f F},s}^{(d)} = {f W}_{{f F},s'}^{(d')}$ for all s',d'
 - the transformation of cross section of ticker returns to Factor returns independent of ticker
- ullet hence, size of $\mathbf{W_F}$ is $(n_{ ext{tickers}} imes n_{ ext{factors}})$

 $\mathbf{F}^{(d)} = ext{Dense}\left(n_{ ext{factors}}
ight)(\mathbf{R}^{(d)}) \ \mathbf{F}^{(d)}:n_{ ext{factors}}$

Dot

The Dot layer computes the dot product of tickers sensitivities and factor returns.

• this is the predicted return

$$\hat{\mathbf{r}}^{(d)} = eta^{(d)} \cdot \mathbf{F}^{(d)}$$

Dot product threads over factor dimension

- ullet Computes $\hat{f r}_s^{(d)}=eta_s^{(d)}\cdot{f F}^{(d)}$ for each s
 - each s is a row of $\beta^{(d)}$

$$\hat{\mathbf{r}}^{(d)}:n_{ ext{tickers}}$$

Loss

The key to any NN is the Loss Function.

Let $\mathcal{L}_{(s)}^{(d)}$ denote error of ticker s on day d.

$$\mathcal{L}_{(s)}^{(d)} = \mathbf{r}_s^{(d)} - \hat{\mathbf{r}}_s^{(d)}$$

 $\mathcal{L}^{(d)}$ is the loss, across tickers, on date d (one training example)

$$\mathcal{L}^{(d)} = \sum_s \mathcal{L}^{(d)}_{(s)}$$

The number of examples m equals n_{dates}

So the Total Loss is

$$\mathcal{L} = \sum_d \mathcal{L}^{(d)}$$

Predicting future returns, rather than explaining contemporaneous returns

The model is sometimes presented as predicting **day ahead** returns rather than contemporaneous returns.

In that case the objective is

$$\hat{\mathbf{r}}^{(d)} = \mathbf{r}^{(d+1)}$$

and Loss for a single ticker and date becomes

$$\mathcal{L}_{(s)}^{(d)} = \mathbf{r}_s^{(d+1)} - \hat{\mathbf{r}}_s^{(d)}$$

Code

The model is built by the function make_model
(06_conditional_autoencoder_for_asset_pricing_model.ipynb#Automate-model-generation)

```
def make_model(hidden_units=8, n_factors=3):
    input_beta = Input((n_tickers, n_characteristics), name='input_beta')
    input_factor = Input((n_tickers,), name='input_factor')

    hidden_layer = Dense(units=hidden_units, activation='relu', name='hidden_la
yer')(input_beta)
    batch_norm = BatchNormalization(name='batch_norm')(hidden_layer)

    output_beta = Dense(units=n_factors, name='output_beta')(batch_norm)

    output_factor = Dense(units=n_factors, name='output_factor')(input_factor)

    output = Dot(axes=(2,1), name='output_layer')([output_beta, output_factor])

    model = Model(inputs=[input_beta, input_factor], outputs=output)
    model.compile(loss='mse', optimizer='adam')
    return model
```

Here is what the model looks like:

Highlights

- Two input layers
 - one each for the Beta and Factor networks
- The model is passed a pair as input
 - one input for each side of the network

```
Model(inputs=[input_beta, input_factor], outputs=output)
```

and is <u>called</u>
 (06 <u>conditional_autoencoder_for_asset_pricing_model.ipynb#Trail_model)</u> with a pair

```
model.fit([X1_train, X2_train], y_train,
...
```

Loss function: MSE

```
model.compile(loss='mse', optimizer='adam')
```

Training data

```
def get_train_valid_data(data, train_idx, val_idx):
    train, val = data.iloc[train_idx], data.iloc[val_idx]
    X1_train = train.loc[:, characteristics].values.reshape(-1, n_tickers, n_characteristics)
    X1_val = val.loc[:, characteristics].values.reshape(-1, n_tickers, n_characteristics)
    X2_train = train.loc[:, 'returns'].unstack('ticker')
    X2_val = val.loc[:, 'returns'].unstack('ticker')
    y_train = train.returns_fwd.unstack('ticker')
    y_val = val.returns_fwd.unstack('ticker')
    return X1 train, X2 train, y train, X1 val, X2 val, y val
```

• X1_train: ticker chacteristics

```
In [5]: print("Done")
```

Done