Guia 4

1 Teorico

•

• Teorema Relacion limite y sucesiones: Sea $f: A - \{a\}$ entonces $\lim_{x \to a} f(x) = l \Leftrightarrow \lim_{n \to \infty} f(x_n) = l$ para toda sucesion x_n con valores en A que cumple con $x_n \neq a$ para todo n y $\lim_{n \to \infty} x_n = a$

2 Practico

1.

2.

3.

a)
$$f(x) = x^4$$
; $l = a^4$, $x \to a$

$$- |x^4 - a^4| = |x - a| |x + a| |x^2 + a^2|$$

$$- |x| - |a| \le |x - a| < 1 \text{ (Acotamos en un entorno)} \Leftrightarrow |x| < 1 + |a|$$

$$- |x^4 - a^4| \le |x - a| (|x| + |a|) (|x|^2 + |a|^2) < |x - a| (1 + |a| + |a|) ([1 + |a|]^2 + |a|^2)$$

$$- \delta = \min\left(1, \frac{\varepsilon}{0}\right)$$
b) $f(x) = \frac{1}{x}$, $l = 1$, $x \to 1$

$$- |\frac{1}{x} - 1| = |\frac{1 - x}{x}|$$

$$- |x - 1| < \frac{1}{2} \Leftrightarrow \frac{1}{2} < x < \frac{3}{2} \Leftrightarrow \frac{1}{x} < 2 \text{ , con } x > 0 \text{ en este intervalo}$$

$$- |\frac{1}{x} - 1| < 2|x - 1|$$

$$- \delta = \min\left(\frac{1}{2}, \frac{\varepsilon}{2}\right)$$
c) $f(x) = x^4 + \frac{1}{x}$, $x \to 1$, $l = 2$

$$- |x^4 + \frac{1}{x} - 2| = |x^4 - 1 + \frac{1}{x} - 1| \le |x^4 - 1| + |\frac{1}{x} - 1|$$

4. Demostrar por definicion los siguientes limites

 $-\delta = \min\left(1, \frac{1}{2}, \frac{\varepsilon/2}{()}, \frac{\varepsilon/2}{2}\right)$

a)
$$\lim_{x\to a} \sqrt{x} = \sqrt{a} \ a > 0$$

$$- |\sqrt{x} - \sqrt{a}| = \left| \frac{x-a}{\sqrt{x} - \sqrt{a}} \right|$$

$$- |x-a| < \frac{a}{2} \Leftrightarrow 0 < \frac{a}{2} < x < \frac{3a}{2} \Leftrightarrow \sqrt{\frac{a}{2}} < \sqrt{x} < \sqrt{\frac{3a}{2}} \Leftrightarrow \sqrt{\frac{a}{2}} + \sqrt{a} < \sqrt{x} + \sqrt{a}$$

$$- \frac{1}{\sqrt{x} + \sqrt{a}} < \frac{1}{\sqrt{\frac{a}{2}} + \sqrt{a}}$$

$$- \left| \frac{x-a}{\sqrt{x} - \sqrt{a}} \right| < \frac{|x-a|}{\sqrt{\frac{a}{2}} + \sqrt{a}} \Rightarrow \delta = \min\left(\frac{a}{2}, \varepsilon\left(\sqrt{\frac{a}{2}} + \sqrt{a}\right)\right)$$

b)
$$\lim_{x\to a} \frac{x^2 - a^2}{x - a} = 2a$$

$$- \left| \frac{x^2 - a^2}{x - a} - 2a \right| = |x + a - 2a| = |x - a|$$

- Basta tomar $\varepsilon = \delta$

c)
$$\lim_{x\to 0} x^2 \operatorname{sen}\left(\frac{1}{x}\right) = 0$$

$$- |x^2 \operatorname{sen}\left(\frac{1}{x}\right)| \leqslant |x^2| = |x|^2$$

– Basta tomar $\delta = \sqrt{\varepsilon}$

d)
$$\lim_{x \to 3} \frac{1}{(x-3)^2} = \infty$$

- Considere: M > 0

$$- \quad M < \frac{1}{(x-3)^2} \leqslant \frac{1}{|x-3|^2} \Leftrightarrow |x-3| < \frac{1}{\sqrt{M}}$$

5. Demostrar por definicion que no existen los siguientes limites:

a)
$$\lim_{x\to 0} \frac{1}{x}$$

$$- \lim_{x \to 0^-} \frac{1}{x} = -\infty$$

$$-\frac{1}{x} < -M \text{ si } 0 - \delta < x < 0$$

$$-\frac{1}{-M} < x$$
, basta tomar $-\delta = \frac{1}{-M}$

— Por otro lado es demostrable que: $\lim_{x \to 0^+} \frac{1}{x} = \infty$

$$-M < \frac{1}{x} \text{ si } 0 < x < \delta$$

– De:
$$M < \frac{1}{x} \Leftrightarrow x < \frac{1}{M}$$
, basta tomar $\delta = \frac{1}{M}$

b)
$$\lim_{x\to 0^+} \operatorname{sen}\left(\frac{1}{x}\right)$$

- Suponga por el absurdo que este limite existe y es L. Por definicion si tomo $\varepsilon=\frac{1}{2}$ deberia poder encontrar δ
- $\left| \sec\left(\frac{1}{x}\right) \right| < \frac{1}{2}$ si $|x-0| < \delta$, pero lo estamos viendo para el limite derecho, es decir: $0 < x < \delta \Rightarrow 0 < \sec\left(\frac{1}{x}\right) < \frac{1}{2}$
- Por la arquimenidad, puedo elegir $x_1 = \frac{1}{n\pi} < \delta$ para todo δ

- Por otro lado si tomo: $x_2 = \frac{1}{2m\pi + \frac{\pi}{2}} < \delta$
- Como esto sucede entonces porsupuesto deberia cumplirse:

$$\left| \operatorname{sen}\left(\frac{1}{1/n\pi}\right) \right| < \frac{1}{2} y \left| \operatorname{sen}\left(\frac{1}{1/(2m\pi + \pi/2)}\right) \right| < \frac{1}{2}$$

- $1 = \left| \operatorname{sen}(n\pi) \operatorname{sen}\left(2m\pi + \frac{\pi}{2}\right) \right| = \left| \operatorname{sen}(n\pi) L \operatorname{sen}\left(2m\pi + \frac{\pi}{2}\right) + L \right| \leqslant \frac{1}{2} + \frac{1}{2} = 1$, lo cual es un absurdo.
- c) Resolvemos el item b) pero con sucesiones:
 - Considere dos sucesiones tales que: $\lim_{n\to\infty} a_n = 0$
 - $\quad a_n = \left\{\frac{1}{\pi n}\right\} \;, \; b_n = \left\{\frac{1}{2\pi n + \pi/2}\right\} \;,$ est as sucesiones cumplen el limite anterior.
 - Luego: $\lim_{n\to\infty} f(a_n) = \lim_{n\to\infty} \operatorname{sen}(\pi n) = 0$
 - $-\lim_{n\to\infty} f(b_n) = \lim_{n\to\infty} \operatorname{sen}(2\pi n + \pi/2) = 1$
 - La sucesion converge a limites distintos.
- 6. Calcular los siguientes limites, en caso de existir justificar

a)
$$\lim_{y\to\infty} \frac{3y-4}{6y+1} = \lim_{y\to\infty} \frac{3-4/y}{6+1/y} = \frac{1}{2}$$

b)
$$\lim_{x \to -\infty} \frac{5x^3 - 2x + 7}{4x^2 - 7} = \lim_{y \to -\infty} \frac{5x - 2/x + 7/x^2}{4 - 7/x^2} = -\infty$$

c)
$$\lim_{x\to\infty} \frac{x^3 + 7x}{x^4 - 2} = \lim_{x\to\infty} \frac{1 + 7/x^2}{x - 2/x^3} = 0$$

d)
$$\lim_{x\to\infty} \left(\sqrt{x^2+1}-x\right) = \lim_{x\to\infty} \frac{x^2+1-x^2}{\sqrt{x^2+1}+x} = 0$$

e)
$$\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}} = \lim_{x \to \infty} \frac{1}{\sqrt{1 + 1/x^2}} = 1$$

- 7. Se satisface que: $f(x) \leq g(x) \leq h(x)$ y $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = l$ entonces: $\lim_{x \to a} g(x) = l$
- 8. Demostrar las siguientes afirmaciones:
 - a) $\lim_{x\to 0} f(x)$ existe, entonces, $\lim_{x\to 0} f(x) = \lim_{x\to 0} f(x^3)$
 - Como el limite de f(x) existe, entonces se debe cumplir la definicion
 - $|f(x) l| < \varepsilon \operatorname{si} |x 0| < \delta$
 - $-|f(x^3)-l|<\varepsilon$ si $|x-0|<\delta$, considere $y=x^3$ entones, el limite que tengo que demostrar es:
 - $|f(y) l| < \varepsilon \text{ si } |y^{1/3} 0| < \delta \Leftrightarrow |y 0| < \delta^3$
 - Es decir que para que el limite se cumpla $\delta_{\rm new} = \delta^3$
 - b) Si $\lim_{x\to 0} f(x^2)$ existe, entonces no necesariamente exite $\lim_{x\to 0} f(x)$
 - En efecto, si considera la funcion:

- $f(x) = \sqrt{x}$
- $-\,\,$ Esta funcion no tiene limite en 0^-
- c) Si $\lim_{x\to 0^+}\!f(1/x) \Rightarrow \lim_{x\to 0^+}\!f(1/x) = \lim_{x\to \infty}\!f(x)$
 - $y = \frac{1}{x}$
 - $|f(1/x) l| < \varepsilon \text{ si } 0 < x < \delta$
 - $\quad x < \delta \Leftrightarrow \frac{1}{\delta} < \frac{1}{x} \Rightarrow \frac{1}{\delta} < y \Rightarrow |f(y) l| < \varepsilon$
 - Esta ultima expresion es la del limite al infinito.
- d) $\lim_{x\to 0^+} f(x) = \infty \Leftrightarrow \lim_{x\to \infty} f(1/x) = \infty$
 - $-\lim_{x\to 0^+} f(x) = \infty \Rightarrow \lim_{x\to \infty} f(1/x) = \infty$
 - $\quad f(x) > M$ si $0 < x < \delta$ entonces, si $\frac{1}{\delta} < \frac{1}{x}$ luego: f(x) > M
 - Tomando $y = \frac{1}{x}$, reescribimos: $N < y \Rightarrow f\left(\frac{1}{y}\right) > M$
 - La vuelta es similar.
- e)
- 9.
- 10.