PHYS11 CH:19.1-19.4

Ohm's Law, Series & Parallel Circuits, and Electric Power

Mr. Gullo

May, 2025

Outline

Learning Objectives

By the end of this lesson, you will be able to:

- State and apply Ohm's law to simple circuits
- Distinguish between series and parallel circuit configurations
- Calculate equivalent resistance for resistors in series and parallel
- Analyze current flow and voltage drops in different circuit configurations
- Compute electric power dissipation in resistive elements

Mr. Gullo

Current and Resistance

Electric Current

Electric current is the rate of charge flow:

$$I = \frac{\Delta Q}{\Delta t} \tag{1}$$

where:

- I is the current (measured in amperes, A)
- ullet ΔQ is the charge that passes (measured in coulombs, C)
- Δt is the time interval (measured in seconds, s)

Definition of Ampere

$$1 A = 1 C/s$$
 (2)

4□ > 4團 > 4를 > 4를 > 9

Mr. Gullo

Ohm's Law

Ohm's Law Statement

For ohmic materials, the voltage drop along a path is proportional to the current that runs through the path, with resistance as the constant of proportionality.

Mathematical Form

$$V = IR \tag{3}$$

where:

- V is the voltage drop (measured in volts, V)
- I is the current (measured in amperes, A)
- R is the resistance (measured in ohms, Ω)

Ohm's Law

Direct vs. Alternating Current

Direct Current (DC)

- Constant over time
- Flows in one direction
- Example: Batteries

Alternating Current (AC)

- Alternates back and forth over time
- Changes direction periodically
- Example: Household electricity

Current Types Visualization

Mr. Gullo

Electric Circuits

May 2025

Series Circuits: Characteristics

Definition

Resistors in series are connected head to tail, forming a single path for current flow.

Key Properties

- Same current flows through all resistors
- Voltage drop can be different across each resistor
- Voltage is the same at every point in a given wire
- Total voltage equals sum of individual voltage drops

Series Circuits: Equivalent Resistance

Equivalent Resistance Formula

For *N* resistors connected in series:

$$R_{\text{equiv}} = R_1 + R_2 + \dots + R_N \tag{4}$$

Interpretation

- The equivalent resistance is always greater than any individual resistance
- Adding resistors in series increases the total resistance
- Current is limited by the sum of all resistances

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

9/1

Parallel Circuits: Characteristics

Definition

Resistors in parallel provide multiple paths for current flow, with one end of each resistor connected to a common point.

Key Properties

- Same voltage across all resistors
- Current through each resistor can differ
- Total current equals sum of individual currents
- More paths available for current flow

Parallel Circuit

Parallel Circuits: Equivalent Resistance

Equivalent Resistance Formula

For *N* resistors connected in parallel:

$$\frac{1}{R_{\text{equiv}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$
 (5)

Special Case: Identical Resistors

For N identical resistors each with resistance R connected in parallel:

$$R_{\text{equiv}} = \frac{R}{N} \tag{6}$$

11/1

Interpretation

- The equivalent resistance is always less than the smallest individual resistance
- Adding resistors in parallel decreases the total resistance

Electric Power: Basic Concept

Definition

Electric power is the rate at which energy is transferred or converted in an electric circuit.

Key Points

- Electric power is dissipated in resistances of a circuit
- Capacitors do not dissipate electric power
- Power dissipation often manifests as heat
- ullet Measured in watts (W), where 1 W = 1 J/s

12/1

The heating effect of an electric current

- When an electric current flows through an electrical conductor the resistance of the conductor causes the conductor to be heated.
- This effect is used in the heating elements of various devices like those shown below:

Heating effect of resistance Phet

Electric Power: Mathematical Expressions

Basic Power Formula

Power is proportional to voltage and current:

$$P = IV (7)$$

Alternative Expressions (Using Ohm's Law)

Without current term:

$$P = \frac{V^2}{R} \tag{8}$$

Without voltage term:

$$P = I^2 R \tag{9}$$

Mr. Gullo

Equivalent Expressions

15/1

I Do: Ohm's Law Example

Problem

A resistor with resistance $R=10\,\Omega$ is connected to a voltage source of $V=12\,V$. Calculate the current flowing through the resistor.

16/1

I Do: Ohm's Law Example

Problem

A resistor with resistance $R=10\,\Omega$ is connected to a voltage source of $V=12\,\mathrm{V}$. Calculate the current flowing through the resistor.

Solution

Using Ohm's law: V = IR

Rearranging to solve for current: $I = \frac{V}{R}$

Substituting the values:

$$I = \frac{12 \,\mathrm{V}}{10 \,\Omega} \tag{10}$$

$$= 1.2 \,\mathsf{A}$$
 (11)

Therefore, the current flowing through the resistor is 1.2 A.

16/1

We Do: Series Circuit Analysis

Problem

Three resistors are connected in series: $R_1 = 5 \Omega$, $R_2 = 10 \Omega$, $R_3 = 15 \Omega$. If connected to a 30 V source:

- Calculate the equivalent resistance
- 2 Find the current through the circuit
- Calculate the voltage drop across each resistor

Partial Solution

1. Equivalent resistance:

$$R_{\text{equiv}} = R_1 + R_2 + R_3 \tag{12}$$

$$= 5\Omega + 10\Omega + 15\Omega \tag{13}$$

$$=30\,\Omega\tag{14}$$

17/1

We Do: Series Circuit Analysis (continued)

Complete the Solution

2. Circuit current:

$$I = \frac{V}{R_{\text{equiv}}} \tag{15}$$

$$=\frac{30\,\mathrm{V}}{30\,\Omega}\tag{16}$$

$$= 1 \,\mathsf{A} \tag{17}$$

3. Voltage drops across each resistor:

For R_1 : $V_1 = I \times R_1 = 1 \text{ A} \times 5 \Omega = ?$

For R_2 : $V_2 = I \times R_2 = 1 \text{ A} \times 10 \Omega = ?$

For R_3 : $V_3 = I \times R_3 = 1 \text{ A} \times 15 \Omega = ?$

Let's work through these calculations together.

Mr. Gullo Electric Circuits May 2025 18/1

You Do: Parallel Circuit Problem

Problem

Three resistors are connected in parallel: $R_1 = 6 \Omega$, $R_2 = 12 \Omega$, $R_3 = 4 \Omega$. If connected to a 24 V source:

- Calculate the equivalent resistance
- Find the total current from the source
- 3 Calculate the current through each resistor

Work on this problem independently, and we'll review the solution together afterward.

19/1

Key Concepts Summary

Ohm's Law

- V = IR
- Linear relationship for ohmic materials

Parallel Circuits

- Same voltage across all resistors
- $\bullet \ \frac{1}{R_{\text{equiv}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$

Series Circuits

- Same current through all resistors
- $R_{\text{equiv}} = R_1 + R_2 + \cdots + R_N$

Electric Power

•
$$P = IV = I^2R = \frac{V^2}{R}$$

Mr. Gullo

Electric Circuits

Practice Questions

Consider This

- How does adding more resistors in series affect the total current in a circuit?
- Why is the equivalent resistance in a parallel circuit always less than the smallest individual resistor?
- In what ways can you reduce power consumption in an electrical circuit?
- 4 How does current distribute in a parallel circuit? Why?

Next Steps

We will explore more complex circuit configurations and apply these principles to practical problems in our next lesson.

21/1