

TEMPERATURE CONTROLLER

Easily adjustable general-purpose linear/hysteric temperature controller

Features

Rotary encoder & 7-segment display interface for setting parameters Controls loads that either heat or cool the sensor

 $0.1\,^{\circ}$ C display resolution $\pm 0.5\,^{\circ}$ C accuracy in -10 $\,^{\circ}$ C to +85 $\,^{\circ}$ C range $\pm 2\,^{\circ}$ C accuracy in -55 $\,^{\circ}$ C to +125 $\,^{\circ}$ C range Adjustable control law allows for linear and/or hysteric load control with adjustable minimum switch period

Complementary OK and ERROR outputs indicate temperature error/alarm.

 $Robust\ storage\ of\ all\ parameters\ in \\ EEPROM$

Description

Temperature Controller is a general-purpose temperature controller that can be used for any single-ended load such as a resistive heater, cooling fan, refrigerator/freezer, either directly or through some intermediary (such as a relay).

The control law can be varied from a linear ramp in power between two levels to a purely hysteric output, with an additional minimum duty cycle and minimum switch period.

Complementary OK and ERROR outputs indicate a temperature-out-of-range and/or temperature-sensor error condition.

A rotary encoder and three-digit sevensegment display is used to configure parameters and display the current temperature.

Overview

Temperature Controller mounted in an enclosure with a relay, currently measuring 18.1°C.

The output is based on a control law as illustrated here, with an optional hysteresis and minimum switch delay. Note that P_{high} may be lower than P_{low} , which can be useful when used as a heater.

Contents

Assembly	3
Pin Description	5
Usage	6
Bill of materials	14
Mechanical Description	15
Electrical Characteristics	16
Operation	17

Copyright Notice

This entire work is copyright 2015 by Jonathan Lock and released under the terms of the Creative Commons Attribution-ShareAlike 3.0 Unported License.

https://creativecommons.org/licenses/by-sa/3.0/. Some Rights Reserved.

Hardware Revision History

1.1.0 First released version. Minor changes from hardware version 1.0.0.

Software Revision History

- **1.0.0** Initial version.
- 1.0.1 Updated seven-segment display to show 8.8.8. on startup to verify functionality of display.

Documentation Revision History

- **1.0.0** Initial version, applies to hardware revision 1.1.0.
- **1.0.1** Updated component C8 to comply with the device's input voltage range.

Absolute Maximum Ratings

Parameter	Symbol	RATING
Continuous maximum input supply voltage	$V_{in,max}$	$+20 \text{ V} - +30 \text{ V}^a$
Peak maximum input supply voltage		$+40~\mathrm{V}$
Continuous reverse supply voltage		-40 V
Output short circuit		Continuous
Continuous current sourced through output	$I_{L_{output}}$	2.5 A
Continuous current OK, ERROR output current	$I_{L_{status}}$	1.2 A
$Maximum\ load\ inductance\ on\ output,\ OK,\ or\ ERROR\ output(s)$		$66\mathrm{mH}$

^aMaximum supply voltage is limited by the power dissipation in the linear regulator IC4 and the thermal impedance to ambient. In an application with high ambient temperature and/or poor cooling the maximum input voltage must be de-rated to $+20 \, \mathrm{V}$ (or less).

Assembly

Temperature Controller is relatively simply to assemble, and can be soldered either in a re-flow oven or with a fine-pitch soldering iron. Note that two separate PCBs are used; a larger board with most components and a smaller board with 7-segment displays and current-limiting resistors. Both have components mounted on both sides. See the section Bill of materials for the components used and figure 5 for their placement. If soldering in a re-flow oven, mount the top side of the larger board (with IC1, C2, and C3) and the bottom side of the smaller board (with RN1 and RN5) first. Neither header J1 (used for one-time programming of the microprocessor) nor header JP1 (optionally used for diagnostic messages) strictly need be soldered to the board.

In low-noise environments the output common-mode choke L1 can be left unmounted. This will reduce noise immunity for the communications bus between Temperature Controller and the temperature sensor. If judged to be not needed, be sure to short the solder jumpers SJ1 and SJ2.

Programming the microprocessor

In order to program the microprocessor, supply power to the V+ raw and GND terminal block pins ($5 \, \text{V} - 20 \, \text{V}$). Use a programmer that supports programming the XMEGA16E5 (such as, among others, the AVRISP MKII). If J1 is not soldered to the board, connect a 2x3-pin 2.54 mm header to the programmer, insert the header on the board and rotate/apply torque to the header to ensure that all leads make contact with the board. If using Atmel Studio to program the microprocessor, only the internal flash and fuses need to be programmed. Transfer the the .hex file to the device and set up the fuses as follows;

Fusebyte 1 0x0A

Fusebyte 2 0xFE

Fusebyte 4 0xF1

Fusebyte 5 0xE8

Fusebyte 6 0xFF

This corresponds to;

- WDWP = 8CLK
- WDP = 8KCLK
- BOOTRST = APPLICATION
- BODPD = CONTINUOUS
- RSTDISBL = []
- SUT = 64MS
- WDLOCK = [X]
- BODACT = CONTINUOUS
- EESAVE = []
- BODLVL = 3VO
- FDACT5 = []
- FDACT4 = []
- VALUE = 0x3F

Pin Description

HEADER	Pin	DESCRIPTION	
	V+ IN	Positive power supply terminal	
	GND	Power ground return terminal for incoming	
	GND	power, power load, and the OK and $\overline{\text{OK}}$ signals.	
Enclosure		Primary high-power output. Note that load	
$\operatorname{terminals}$	OUT POS	must be connected between here and a GND	
		terminal.	
	PROBE GND	Temperature sensor ground	
	PROBE SIG	Temperature sensor communications line	
		Normally-high OK status indicator. If high, the	
	OK	measured temperature is in the range	
		ELO < t < EHI.	
		Normally-low OK status indicator. If low, the	
	$\overline{\mathrm{OK}}$	measured temperature is in the range	
		ELO < t < EHI.	
	TX	Tx output for UART communications	
JP1	GND	Ground reference for UART communications	
	RX	Rx input for UART communications. Not used	
	ItA	at all in the current firmware version.	
J1	-	Standard 6-pin debug-wire interface	

Usage

Initial set-up

In order to use Temperature Controller, assemble the device and program the microcontroller as per the section Assembly. Connect a DS18B20 (or equivalent) temperature sensor to the PROBE GND and PROBE SIG terminal block connections (commonly available in TO-92 or SO-8 packages, or in preassembled and often IP68 rated enclosure with a pigtail cable). The DS18B20 temperature sensor is used in the parasite-power mode; in this configuration connect the GND and VCC sensor lines to the PROBE GND terminal and the DQ line to the PROBE SIG terminal. Connect a 5 V - 20 V DC power supply to the V+ IN and GND connections.

On the first start-up the device will display CRC on the display, indicating that the stored settings are corrupt and invalid (this is normal, as the EEPROM has not been programmed with valid settings. Note that it is very unlikely that settings will become corrupt during normal operation, as multiple redundant checksummed copies are stored in EEPROM and verified on startup.). Press and release the encoder button to reset all settings to their default values — RST will be briefly displayed.

The idle-state behavior of Temperature Controller is to display the current measured temperature, expressed in degrees Celsius. For temperatures in the range -0.9 < t < 99.9, the temperature is displayed to a 0.1° C resolution. Outside this range the temperature is displayed at a 1° C resolution. Note that regardless of the display resolution, all internal control-law calculations are made at full accuracy.

By pressing and releasing the encoder button a list of all system parameters is brought up, this can be cycled through by rotating the encoder clockwise or counterclockwise. To change a parameter, press and release the encoder button when the desired parameter is displayed. At this stage, the numerical value of the parameter can be modified by rotating the encoder. When large value adjustments are desired one can hold the encoder button pressed and rotate the encoder, which will change the parameter value by a factor of 10 faster. To confirm the value of a parameter, press and release the encoder button without rotation; the device will save the new parameter setting to EEPROM and return to displaying the current measured temperature. By repeatedly going through all parameters the device can be set up for the desired application.

Ensure that cables with sufficient conductor area are selected for the V+ IN, GND, OUT POS, OK, and $\overline{\text{OK}}$ terminals. Note that it is important that the temperature sensor and only the temperature sensor be connected to the PROBE GND and PROBE SIG terminals.

The OUT POS, OK, and $\overline{\text{OK}}$ connections can be used to drive a large range of resistive or inductive loads (see section Electrical Characteristics), such as lamps, relays, resistive elements, and so on.

Figure 2: Control law applied by Temperature Controller. This excludes any hysteresis applied, which requires the measured temperature to change by some amount h before changing the output power in the direction opposite to the last change.

Control law

Temperature Controller controls its power output using a linear/hysteric control law defined as

$$P = \begin{cases} P_{low} & t \leq t_{low} \lor P \leq P_{cutoff} \\ P_{high} & t \geq t_{high} \\ \frac{t - t_{low}}{t_{high} - t_{low}} \left(P_{high} - P_{low} \right) + P_{min} & otherwise \end{cases}$$
(1)

where P is the power to apply to the load, P_{low} is the power to apply at the low temperature threshold, P_{cutoff} is the power cutoff level, P_{high} is the power to apply at the high temperature threshold, t_{low} is the low-temperature threshold, t_{high} is the high-temperature threshold, and t is the temperature after applying hysteresis to the measured temperature such that (assuming some last measured hysteresis-controlled temperature t_k , the current measured temperature t_{meas} , the amount of hysteresis to apply h, and the new hysteresis-controlled temperature t_{k+1})

$$t_{k+1} = \begin{cases} t_{meas} - \frac{h}{2} & t_{meas} > t_k + \frac{h}{2} \\ t_{meas} + \frac{h}{2} & t_{meas} < t_k + \frac{h}{2} \\ t_k & otherwise \end{cases}$$
 (2)

This may be more easily interpreted graphically, as is shown in figure 2. To reduce power dissipation in the device and allow for a wide range of loads, the output is switched between two levels following a PDM scheme (similar to "standard PWM", but without a set switching frequency). An additional minimum switch delay parameter allows for setting a minimum time to wait between any two successive changes in the output. See table 2 for a list of all system parameters and their functions and tables 3, 4, and 5 for various application examples.

Table 2: All system parameters and purposes, along with their default, minimum, and maximum values.

NAME	FUNCTION	Unit	Default	MINIMUM	Maximum
TLO	Low-temperature threshold	° C	0	-55° C	125° C
THI	High-temperature threshold	° C	0	-55° C	125° C
THY	Temperature hysteresis	°C	0	0	125° C
PLO	Power to apply when at	%	0	0	100
	${ m temperature} \ { m TLO}$				
PHI	Power to apply when at	%	0	0	100
	${ m temperature} { m THI}$				
PCT	When power level is below	%	0	0	100
	this value, apply power level				
	PLO				
ELO	When temperature is below	°C	0	-55° C	125° C
	this value, activate the				
	output alarm.				
EHI	HI When temperature is above		0	-55° C	125° C
	this value, activate the				
	output alarm.				
SDL	Minimum time to wait	s	1.0	$0.01\mathrm{s}$	60 s
	between any two successive				
	output transitions.				

Table 3: Setting example for a brushless DC (EG. standard PC) cooling fan directly connected to the ${\tt OUT\ POS\ }$ and ${\tt GND\ }$ terminals.

PARAMETER	VALUE	Соммент	
TLO	40	At temperatures below 40°C the fan will be	
		completely off.	
THI	60	At temperatures above 60°C the fan will be	
		fully on.	
THY	4	A four-degree hysteresis ensures that minor	
		temperature variations doesn't result in a	
		changing fan speed.	
PLO	0	At temperatures below 40°C the fan will be	
		completely off.	
PHI	100	At temperatures above 60°C the fan will be	
		fully on.	
PCT	25	At calculated output power levels below 25%,	
		clamp to 0% output. This ensures the fan will	
		reliably start at the minimum nonzero power	
		level.	
ELO	-55	Effectively disable the low-temperature alarm	
		${ m threshold}.$	
EHI	65	Generate an alarm signal when the measured	
		temperature exceeds 65° C.	
SDL	0.01	Switch the output between ON and OFF as	
		quickly as possible. This will generate a PDM	
		output signal that (at most) switches at 50 Hz.	

Table 4: Setting example for a resistive heater (such as an immersion heater keeping a pot of soup at a constant temperature) connected driven by a (normally open) relay controlled by the output.

PARAMETER VALUE COMMENT TLO 70 At temperatures below 70°C the heater winder fully on. THI 75 At temperatures above 75°C the heater winder fully off. THY 0.5 A 0.5°C hysteresis ensures that very sm temperature variations don't result in a second control of the contro	ll be		
THI 75 At temperatures above 75°C the heater wind fully off. THY 0.5 A 0.5°C hysteresis ensures that very sm	ll be		
THI 75 At temperatures above 75°C the heater wind fully off. THY 0.5 A 0.5°C hysteresis ensures that very sm	all		
THY 0.5 A 0.5° C hysteresis ensures that very sm	all		
THY 0.5 A 0.5° C hysteresis ensures that very sm	L		
	L		
temperature variations don't result in :			
Competatate variations don't result in	changing duty cycle (primarily useful when the		
changing duty cycle (primarily useful when	measured temperature is near 70 or 75°C).		
measured temperature is near 70 or 75° 0	!).		
PLO 100 At temperatures below 70°C the heater wi	ll be		
completely on.			
PHI 0 At temperatures above 75°C the heater wi	ll be		
completely off.			
PCT 0 Do not limit the minimum power level			
ELO 67 Generate an alarm signal when the measu	red		
temperature is below 67° C.			
EHI 78 Generate an alarm signal when the measu	red		
temperature exceeds 78° C.			
SDL 10 Limit the output switch frequency to be			
more than $0.05\mathrm{Hz}$. (IE. after an off \to on			
on→off transition, wait at least 10 second	ds		
before changing again).			

Table 5: Setting example for a cooler (such as a household freezer) driven by a (normally open) relay controlled by the output.

PARAMETER	VALUE	COMMENT	
1 ARAMETER	VALUE	COMMENT	
TLO	-18	Set both temperature thresholds to the same	
		value — this generates a purely hysteric	
		control; without any hysteresis temperatures	
		below -18°C will force the freezer to be fully	
		off, while when above -18°C the freezer will be	
		fully on.	
THI	-18		
THY	3	A 3°C hysteresis requires that the measured	
		temperature rise to $-18 + 1.5 = -16.5$ ° C	
		before turning on and fall below	
		-18 - 1.5 = -19.5°C before turning off.	
PLO	0	At temperatures below -19.5° C the freezer will	
		be completely turned off.	
PHI	100	At temperatures above -16.5° C the freezer will	
		be completely turned on.	
PCT	0	Do not limit the minimum power level.	
ELO	-55	Effectively disable the low-temperature alarm	
		${ m threshold}.$	
EHI	-10	Generate an alarm signal when the measured	
		temperature exceeds -10° C.	
SDL	60	Limit the freezer to turn on/off at most once	
		per minute. (Allowing for all the refrigerant to	
		equalize between power cycles).	

UART interface

An optional UART interface is available that can be used to view diagnostic/debug data during operation. The default firmware version displays limited output, by defining the DEBUG_PRINT symbol in config.h significantly more data can be printed. The UART interface is only configured to use the Tx pin (IE. only data transmission from Temperature Controller to some form of display). To use this interface, connect any 3.3V-compatible UART receiver to the Tx and GND pins of JP1 and configure it for 8 data bits, 1 start bit, 1 stop bit, no parity, no flow control, and a baud rate of 115200 bps.

Bill of materials

Note; A value of 4n7 corresponds to a value of 4.7n, and in the case of a capacitor corresponds to 4.7nF. The suggested part number is only that -asuggestion — and may be replaced with any other equivalent matching the specifications listed under value, rating, and type.

COMPONENT NAME	VALUE	RATING	Түре	Suggested Part No.
C1, C2, C3	470n	20%, 16 V	X7R ceramic, SMD 0805	MC0805B474K500CT
C8	100n	20% 50 V	X7R ceramic, SMD 0805	MCSH21B104K101CT
C4, C5, C6, C7	2u2	$20\%, 50\mathrm{V}$	X7R ceramic, SMD 1206	GRM31CR71H225KA88L
D1, D3	1	3.3 V	Quad ESD suppression diode in SOT-353	PESD3V3L4UG
D4, D5	1	3A, 40V	Generic SMB Schottky diode	STPS340U
DISP1, DISP2, DISP3	1	1	KCSC02-105	KCSC02-105
IC1	1	ı	ATXMEGA16E5-AU	ATXMEGA16E5-AU
IC2	1	ı	ITS711L1	ITS711L1
IC4	ı	ı	LT3082EST#PBF	LT3082EST#PBF
JI	ı	1	2-row, 6-way 2.54 mm pitch header	2213S-06G
JP1	ı	ı	1-row, 3-way 2.54 mm pitch header	825433-3
m JP2/JP3	=	-	2-row, 12-way 2.54 mm pitch header	2213S-12G
L1	$2k2 \ @ \ 100 \ MHz$	$50\mathrm{mA}$	SMD common-mode choke	744232222
R1	4k7	$5\%, 63\mathrm{mW}$	Thick film, SMD 0603	CRCW06034K70FKEA
R2	360k	1%, 63 mW	Thick film, SMD 0603	${ m CRCW0603360KFKEA}$
RN1, RN5	1k	$5\%, 63\mathrm{mW}$	Thick film quad resistor array, SMD 1206	CAY16-102J4LF
RN2, RN3	$330\mathrm{R}$	$5\%, 63\mathrm{mW}$	Thick film quad resistor array, SMD 1206	CAY16-331J4LF
RN4	10k	5%, 63 mW	Thick film quad resistor array, SMD 1206	CAY16-103J4LF
SJ1, SJ2	1	1	Normally open solder jumper	-
SW1	-	-	EC12D1524406	EC12D1524406
X1	ı	ı	DIN rail housing; EMG 25-LG/SET and	EMG 25-LG/SET, 2943000; EMG
			EMG 25-H 7,5 MM $KLAR$	25-H 7,5MM KLAR, 2947132

Mechanical Description

Temperature Controller consists of a PCB and associated components, with a finished size of 71.8 mm by 21.6 mm, with a build height of 22 mm, limited by the rotary encoder SW1. There are no mounting holes integrated into Temperature Controller— a generic electronics enclosure (part X1) is instead used that allows mounting onto a standard "Top hat" 35 mm/7.5 mm DIN rail (EN 50022). PCB manufacturing requirements are shown in table 7 and should be generally achievable at any PCB house.

Table 7: PCB manufacturing requirements.

Parameter	Requirement	Unit
PCB thickness	Any (nominal 1.6)	mm
PCB layers	2	-
Copper fill thickness/density (tested)	35/1	$\mu m / oz/ft^2$
Trace isolation (minimum)	0.2032/8	m mm/mil
Trace width (minimum)	0.254/10	$\mathrm{mm/mil}$
Trace to board edge (minimum)	0.25	$_{ m mm}$
Drill to board edge (minimum)	0.4532	$_{ m mm}$
Drill diameter (minimum)	0.3	$_{ m mm}$
Via annular ring (minimum)	0.2032/8	m mm/mil

Electrical Characteristics

Output characteristics largely limited/controlled by IC2, ITS711L1. Thermal accuracy is entirely determined by the chosen sensor (nominally a Maxim DS18B20). See the relevant datasheet(s) for more information.

Parameter	Symbol	Test	Min	Typ	Max	Unit
		Conditions/Comments				
Input Characteristics						
Power Input voltage	V_{in}	Maximum input voltage	5.5		20-30	V
		dependent on cooling/ambient				
		temperature				
Quiescent supply current	I_Q	Excluding any current		35		mA
		through output load.				
		Virtually independant of				
		supply voltage.				
Output Characteristics						
Output current, active	$I_{L_{output}}$	Load dependent			2.5	A
Output impedance, active				83		$m\Omega$
Load inductance					66	mH
Output leakage current					24	μ A
Status output currents	$I_{L_{status}}$	Load dependent			1.2	A
Status leakage current					12	μ A
Thermal Characteristics						
A.L1		-10° C to +85° C			±0.5	°C
Absolute temperature accuracy		-55° C to +125° C			± 2	°C
Internal temperature resolution				0.0625		° C
Sample Rates/Timing						
Temperature sample rate	f_{samp}			1.25		Hz
UART baud rate	f_{baud}			115200		bps
Encoder sample period				1000		$\mu \mathrm{s}$
Display refresh period		Time for a full seven-segment		300		$\mu \mathrm{s}$
		refresh over all displays				
UART Logic Levels						
Logic high level		$I_{source} = 20\mu A$		3.1		V
Logic low level		$I_{sink} = 20\mu A$		0.3		V

Operation

The following sections will describe the internal operation of Temperature Controller, both from an electronic as well as software perspective.

Electronic structure

The electronic structure of Temperature Controller is relatively simple, without much in the way of odd or unusual design choices. See figure 3 for a complete schematic of the electronic parts used. Incoming power is brought in through X1. D4 and D5 act as protection in the event of reverse input polarity. This relatively unfiltered input is fed directly into the power distribution switch IC2, which handles all high-power switching. The linear regulator IC4 generates a 3.3 V supply for the remainder of the electronics. This particular regulator was chosen as it has a relatively low drop-out voltage, is stable with ceramic capacitors, and can withstand input voltages up to 40 V. The regulated 3.3 V supply is used to drive the microcontroller IC1, the external temperature sensor, and all user control/displays. RN2, RN3, and D1 form a robust ESD-protection network.

A common mode choke L1 is used to filter the communications bus used for the temperature sensor. This helps to reduce common-mode disturbances that couple to the communications conductor of the probe. As per the recommendations in the DS18B20 datasheet a $5\,\mathrm{k}\Omega$ pullup resistor biases the probes communications bus. (During a temperature conversion the microcontroller will switch the PROBE_SIG net to a hard-driven output to power the sensor.)

The seven-segment LED displays are driven in an entirely ordinary common-cathode scheme, where one display is active at a time and switched sequentially.

Software structure

Temperature Controller's software structure is relatively basic, after some peripheral/hardware initialization an infinite loop is entered which handles low-speed tasks (triggering a temperature conversion, acting on input from the rotary encoder, generating raw output to the display, saving parameters to EEPROM, and so on) in a cooperative multitasking manner. Two interrupt contexts are used, one of which periodically switches the active 7-segment display, the other which handles an internal timekeeping function, samples the rotary encoder state, and generates the software PDM output based on the current target power level.

The majority of the complexity in Temperature Controller lies in the user interface — decoding the encoder state, switching between different menu screens, altering parameters, saving parameters to EEPROM, and displaying data on the 7-segment displays. Some noteworthy aspects that may be useful to explicitly state are;

• The rotary encoder angular state is sampled and filtered in software, which ensures that mild jitter between any two positions does not result in a changing parameter value (see the enc_divisor parameter in struct rotary_enc_t).

- The rotary encoder button state is debounced in software using a rudimentary saturating-integrator scheme, with callbacks that are generated on detection of a press or release event.
- The entire menu structure is defined in globals.c/.h, with all references to other menus, text strings, and so on. This allows for a relatively flexible set-up, making it fairly easy to alter or add new parameters.
- enc_callbacks.c contains all the connections between the selected menu parameter and which actual parameter to modify.
- seven_seg.c/.h creates a printf-compatible interface for generating output to the display. This makes conversion from a numerical value (integer or floating point) to displayed characters simple.
- The flex_settings subsystem gives a general interface for reading/writing parameters in a thread-safe manner, as well as storing parameters in nonvolatile memory with adjustable levels of redundancy.
- During startup the software will check if the device started due to a watchdog timeout; if this is the case the device will alternatingly display SYS / ERR until restarted. Should this occur this indicates a serious software bug or (less likely) faulty hardware.

Figure 3: Temperature Controller schematic.

Note; Generate gerber files by selection; either base board or 7-seg board

(a) Complete top layer as seen from above.

(b) Complete bottom layer as seen from below.

Figure 4: PCB details.

Note; Generate gerber files by selection; either base board or 7-seg board

(a) Top layer component outline as seen from above.

(b) Bottom layer component outline as seen from below.

Figure 5: Component placement details.