Groups II

Introduction to Model Theory (Third hour)

October 28, 2021

Section 1

Cosets, normal subgroups, and quotients

Cosets

Let G be a group and H be a subgroup.

- H acts on G via the group operation $h \cdot g$.
- The orbit of $g \in G$ is the set

$$H \cdot g = \{h \cdot g : h \in H\}.$$

- Such sets are called right cosets of H. They form a partition of G.
- Similarly, the left cosets of H are the sets of the form

$$g\cdot H=\{g\cdot h:h\in H\}.$$

• In an abelian group, left cosets and right cosets are the same thing.

Cosets

- $(\mathbb{Z},+)$ is a subgroup of $(\mathbb{R},+)$.
- The coset of π is the set

$$\mathbb{Z} + \pi = \{ n + \pi : n \in \mathbb{Z} \} = \{ \dots, \pi - 1, \pi, \pi + 1, \pi + 2, \dots \}.$$

The coset of 7 is the set

$$\mathbb{Z} + 7 = \{\ldots, 7 - 1, 7, 7 + 1, 7 + 2, \ldots\} = \mathbb{Z}.$$

Cosets

Let $2\mathbb{Z} = \{2n : n \in \mathbb{Z}\} = \{\dots, -2, 0, 2, 4, \dots\}$. Then $(2\mathbb{Z}, +)$ is a subgroup of $(\mathbb{Z}, +)$.

- If n is even, then the coset of n is $\{\ldots, -2, 0, 2, 4, \ldots\}$.
- If n is odd, then the coset of n is $\{\ldots, -1, 1, 3, 5, \ldots\}$.
- There are two cosets: the set of even numbers and the set of odd numbers.

Left and right quotients

Let G be a group and H be a subgroup.

Definition

G/H is the set of left cosets $\{gH:g\in G\}$.

 $H \setminus G$ is the set of right cosets $\{Hg : g \in G\}$.

Fact

There is a bijection between G/H and $H\backslash G$ sending gH to Hg^{-1} .

Order and index

Definition

The order of a group G is |G|, the size of G.

Definition

If H is a subgroup of G, the *index* of H in G is |G/H|, the number of left cosets.

 $|G/H| = |H \setminus G|$, so we could also use "right cosets."

Fact

- ② If K is a subgroup of H, then $|G/K| = |G/H| \cdot |H/K|$.

Order and index in finite groups:

Corollary

Let G be a finite group and H be a subgroup. Then the order of H divides the order of G.

Example

Suppose the order of G is a prime number p. If H is a subgroup of G, then |H| is 1 or p. So the only subgroups of G are $\{1\}$ and G.

Normal subgroups

Let H be a subgroup of G.

Definition

H is a normal subgroup if the following equivalent conditions hold:

- The right cosets of H are the same as the left cosets of H.
- For any $g \in G$, gH = Hg.
- For any $g \in G$, $gHg^{-1} = H$.
- For any inner automorphism ϕ_g , we have $\phi_g(H) = H$.

Example

In an abelian group, any subgroup is normal.

Quotient groups

Let G be a group and N be a normal subgroup. G/N is the set of cosets.

Fact

There is a group structure on the set G/N given by

$$aN \cdot bN := (ab)N.$$

Example

 $\mathbb{Z}/2\mathbb{Z}$ is the group given by $\begin{array}{c|cccc} + & \text{even} & \text{odd} \\ \hline \text{even} & \text{even} & \text{odd} \\ \hline \text{odd} & \text{odd} & \text{even}. \\ \end{array}$

Quotient groups via representatives

- Let G be a group and N be a normal subgroup.
- Let S be a subset of G containing exactly one element from each coset of N.
- For $x, y \in S$, define $x \cdot y$ to be the unique $z \in S$ such that z is in the same coset as $x \cdot y$.
- Then (S, \cdot) is a group, isomorphic to G/N via the map sending x to xN.

Example

Quotient groups via representatives

$\mathbb{Z}/4\mathbb{Z}$ is isomorphic to

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
1 2 3	1 2 3	3	0	1
3	3	0	1	2

Quotient groups via representatives

 \mathbb{R}/\mathbb{Z} is isomorphic to [0,1) with the group operation

$$x + y = \begin{cases} x + y & \text{if } x + y < 1 \\ x + y - 1 & \text{if } x + y \ge 1. \end{cases}$$

Kernels and images

Let $f: G \rightarrow H$ be a homomorphism.

Definition

The *image* of f is the set $\{f(x) : x \in G\}$.

The *kernel* of f is the set $\{x \in G : f(x) = 1_H\}$.

Fact

The image is a subgroup of H. The kernel is a normal subgroup of G.

Example

Consider the homomorphism $(\mathbb{R},+)\to\mathbb{C}^{\times}$ given by $\exp(2\pi ix)$.

- The image is the "circle group" $\{z \in \mathbb{C} : |z| = 1\}$.
- The kernel is $(\mathbb{Z}, +)$.

The fundamental theorem of homomorphisms

Fact

Let $f: G \to H$ be a homomorphism with kernel K and image f(G). Then $G/K \cong f(G)$. The isomorphism is

$$G/K \stackrel{\cong}{\to} f(G)$$

 $aK \mapsto f(a).$

Example

 \mathbb{R}/\mathbb{Z} is isomorphic to the circle group $\{z\in\mathbb{C}:|z|=1\}$. The isomorphism is

$$\mathbb{R}/\mathbb{Z} \stackrel{\cong}{\to} \{z \in \mathbb{C} : |z| = 1\}$$

 $\mathbb{Z} + a \mapsto \exp(2\pi i a).$

Motivation for normal subgroups, quotient groups

Let N be a subgroup of G.

- N is normal if and only if N is the kernel of *some* homomorphism $f: G \to H$
- In this case, G/N is isomorphic to the image of f.

Subgroups and quotients of $(\mathbb{Z}, +)$

Fact

The only subgroups of $\mathbb Z$ are $\{0\}$ and $n\mathbb Z$ for $n=1,2,3,\ldots$

Quotients of $(\mathbb{Z},+)$ are called *cyclic groups*. By the above, there are two types:

- $\mathbb{Z}/\{0\} \cong \mathbb{Z}$, the *infinite cyclic group*.
- $\mathbb{Z}/n\mathbb{Z}$ for $n \geq 1$, the cyclic group of order n.

The order of an element

Let G be any group and $g \in G$ be an element. There is a homomorphism

$$(\mathbb{Z},+) \to G$$

 $n \mapsto g^n$.

- The image is $\langle g \rangle$, the subgroup generated by g.
- Therefore $\langle g \rangle$ is a quotient of $(\mathbb{Z}, +)$, i.e., a cyclic group.
- The *order* of g is the order of $\langle g \rangle$.
- If g has infinite order, then $\langle g \rangle \cong \mathbb{Z}$.
- If g has order $n < \infty$, then $\langle g \rangle \cong \mathbb{Z}/n\mathbb{Z}$.

Remark

If G is finite, then the order of g is finite and divides |G|.

The order of an element

Consider the element -1 in the multiplicative group $\mathbb{R}^{\times} = (\mathbb{R} \setminus \{0\}, \cdot)$.

- The homomorphism $\mathbb{Z} \to \mathbb{R}^{\times}$ is $n \mapsto (-1)^n$.
- The image is $\langle -1 \rangle = \{+1, -1\}$.
- This is isomorphic to $\mathbb{Z}/2\mathbb{Z}$
- \bullet -1 has order 2.

Section 2

Around classification

Direct products

Let G, H be groups. The *direct product* is $G \times H$ with the group operation given by

$$(g,h)\cdot(g',h')=(gg',hh').$$

Example

The direct product of $(\mathbb{R},+)$ and $(\mathbb{R},+)$ is \mathbb{R}^2 with the group operation of vector addition

$$(x,y) + (x',y') = (x + x', y + y').$$

Example

The direct product of $(\mathbb{R},+)$ and \mathbb{R}^{\times} is the set $\{(x,y)\in\mathbb{R}^2:y\neq 0\}$, with the group operation given by

$$(x,y)\cdot(x',y')=(x+x',yy').$$

Finite abelian groups

Fact

Every finite abelian group is a direct product of zero or more finite cyclic groups

$$\mathbb{Z}/n_1\mathbb{Z}\times\mathbb{Z}/n_2\mathbb{Z}\times\cdots\times\mathbb{Z}/n_k\mathbb{Z}.$$

This gives a classification of finite abelian groups.

Remark

Actually, there is some redundancy. For example,

$$\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$$
.

Finite groups

Can we hope for a classification of finite groups?

- Theoretically, yes.
- Practically, no. (There are too many finite groups.)

Simple groups

Definition

A group G is *simple* if the only normal subgroups of G are $\{1\}$ and G.

Intuition:

- Simple = "prime."
- If G is *not* simple, then G decomposes into smaller groups G/N and N.

Decomposition into simple groups

Fact

Let G be a finite group. Then there is a chain of subgroups

$$\{1\} = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_{n-1} \subseteq G_n = G$$

such that G_{i-1} is a normal subgroup of G_i and the quotient G_i/G_{i-1} is a simple group.

Fact (Jordan-Hölder)

The length of the chain n is uniquely determined. The quotient groups G_i/G_{i-1} are uniquely determined up to isomorphism and permutation.

Intuition: the G_i/G_{i-1} are the "prime factors" of G.

Strategy for classifying finite groups

To classify finite groups,

- Classify finite simple groups.
- 2 Classify the ways to "re-assemble" *G* from its simple factors.

Finite simple groups

Finite simple groups have been classified, but the classification theorem is **VERY** hard to prove.

The simplest simple groups

- If p is prime, then the cyclic group $\mathbb{Z}/p\mathbb{Z}$ is simple.
 - These are the only abelian simple groups.
- Let S_n be the nth symmetric group. There is a homomorphism $sgn: S_n \to \{\pm 1\}$ such that $sgn(\tau) = -1$ for any transposition τ . The kernel of sgn is a subgroup $A_n \subseteq S_n$ of index 2, called the *alternating group*. If $n \geq 5$, then A_n is a simple group.

The first few simple groups are

$$\mathbb{Z}/2\mathbb{Z}$$
, $\mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/5\mathbb{Z}$, $\mathbb{Z}/7\mathbb{Z}$, ..., A_5 , A_6 , A_7 , A_8 , ...

The classification of finite simple groups

The finite simple groups are:

- Cyclic groups of prime order.
- ② Alternating groups A_n , for $n \ge 5$.
- The simple groups of Lie type.
 - ▶ Sort of like $GL_n(\mathbb{R})$, if you replace \mathbb{R} with a finite field.
- 26 other groups, the "sporadic groups"
 - The five Mathieu groups, the four Janko groups, the three Conway groups, the three Fischer groups, the Higman-Sims group, the McLaughlin group, the Held group, the Rudvalis group, the Suzuki sporadic group, the O'Nan group, the Harada-Norton group, the Lyons group, the Thompson group, the baby monster group, and the monster group.

Re-assembling groups

If we know H = G/N and N, can we determine G?

- This is called the extension problem
- One solution is $G = H \times N$, but there are usually other solutions.
- In theory, there is a method to find all the solutions.
- In practice, there are too many solutions.

Fact

If G has order 128, then the simple factors of G must be

$$\mathbb{Z}/2\mathbb{Z}, \ \mathbb{Z}/2\mathbb{Z}, \ \mathbb{Z}/2\mathbb{Z}, \ \mathbb{Z}/2\mathbb{Z}, \ \mathbb{Z}/2\mathbb{Z}, \ \mathbb{Z}/2\mathbb{Z}.$$

But there are more than 2000 possibilities for G.

Section 3

Solvable and nilpotent groups

Characteristic subgroups

Definition

A characteristic subgroup of G is a subgroup $H \subseteq G$ such that $\sigma(H) = H$ for any automorphism $\sigma \in G$.

- Any subgroup of *G* defined in a "natural" way will be a characteristic subgroup.
- Characteristic subgroups are normal subgroups.

The derived subgroup

- The *commutator* of two elements xy is $[x, y] := xyx^{-1}y^{-1}$.
- [x, y] = 1 iff xy = yx (x and y commute).
- The derived subgroup or commutator subgroup G' is the subgroup of G generated by commutators.
 - ▶ When G is abelian, [x, y] = 1 for all x, y, so $G' = \{1\}$.
- The derived subgroup is a characteristic subgroup.

Fact

The derived subgroup is the smallest normal subgroup N such that G/N is abelian.

The quotient G/G' is called the *abelianization* of G.

Solvable groups

Let G be a group.

- Recursively define $G_0 = G$ and $G_{i+1} = G'_i$ (the derived subgroup).
- If $G_n = \{1\}$ for some finite n, then G is said to be *solvable*.
- The term "solvable" comes from Galois theory.

Solvable groups

- If G is abelian, then G is solvable.
- If G is simple and non-abelian, then G is *not* solvable.
- ullet If G is solvable, then any subgroup or quotient group of G is solvable.
- If N is a normal subgroup of G, then G is solvable if and only if N and G/N are solvable.
- If G, H are solvable, then $G \times H$ is solvable.

Solvable finite groups

Fact

Let G be a finite group. Then G is solvable iff every simple factor is abelian, iff every simple factor is $\mathbb{Z}/p\mathbb{Z}$ for various p.

Fact (Burnside *pq*-theorem)

Let G be a finite group. If |G| is divisible by only two primes, i.e., $|G| = p^k q^j$ for some primes p, q, then G is solvable.

Fact (Feit-Thompson theorem, VERY HARD)

Let G be a finite group. If |G| is odd, then G is solvable.

The Burnside and Feit-Thompson theorems use representation theory.

The center

The *center* of G, written Z(G) or C(G), is the subgroup

$$Z(G) = \{g \in G \mid \forall h \in G : gh = hg\}.$$

- Z(G) is a characteristic subgroup of G.
- Z(G) is abelian.
- Z(G) = G if and only if G is abelian.

Nilpotent groups

Let G be a group.

- Recursively define $G_0 = G$, and $G_{i+1} = G_i/Z(G_i)$.
- If $G_n = \{1\}$ for some n, then G is said to be *nilpotent*.
- The term "nilpotent" comes from Lie theory.

Nilpotent groups

- If G is abelian, then G is nilpotent.
- If G is nilpotent, then G is solvable.
- If *G* is nilpotent, then any subgroup or quotient group of *G* is nilpotent.
- If G, H are nilpotent, then $G \times H$ is nilpotent.

p-groups

Definition

A p-group is a finite group whose order is a power of p.

Fact

Let G be a finite group. Then G is a p-group iff every simple factor of G is $\mathbb{Z}/p\mathbb{Z}$, the cyclic group of order p.

Fact

Every p-group is nilpotent.

Fact

A finite group G is nilpotent if and only if G is a direct product of p-groups for various p.

Sylow subgroups

Let G be a finite group and p be a prime.

Definition

A p-subgroup of G is a subgroup that is a p-group.

A p-Sylow subgroup of G is a maximal p-subgroup.

Sylow subgroups

Theorem (Sylow)

Let G be a finite group of order n. Write n as $p^k m$ where m is not divisible by p.

- Every p-Sylow subgroup has order p^k.
- 2 If H, K are two different p-Sylow subgroups, then H and K are isomorphic and conjugate.

Example

Let G be any finite group. Let H be a 2-Sylow. Then H is a 2-group, and the index |G/H| is odd.

This can be used to prove the fundamental theorem of algebra.

Sylows and nilpotence

The following are equivalent for a finite group G and a prime p:

- One *p*-Sylow subgroup of *G* is normal.
- All p-Sylow subgroups of G are normal.
- There is exactly one *p*-Sylow subgroup of *G*.

The following are equivalent for a finite group G:

- *G* is nilpotent.
- For every prime p, there is a unique p-Sylow.
- Every *p*-Sylow is a normal subgroup.
- G is a direct product of its Sylow subgroups.

Section 4

Free groups and presentations

The free group on $\{a, b, c\}$

Idea: The free group on $\{a, b, c\}$ is the "most general" group F generated by a, b, c.

- Every element of F will be a product of $a, b, c, a^{-1}, b^{-1}, c^{-1}$.
- The only equations which hold in *F* are ones which must necessarily hold.

The free group on $\{a, b, c\}$

- Let Σ be the set of strings in the alphabet $\{a, b, c, a^{-1}, b^{-1}, c^{-1}\}$.
- Say that $s, t \in \Sigma$ are "equivalent" if you can get from s to t by inserting and deleting substrings of the form xx^{-1} or $x^{-1}x$, with $x \in \{a, b, c\}$.
 - ▶ For example, $abb^{-1}c \sim ac \sim aca^{-1}a \sim aca^{-1}bb^{-1}a$.
- Let F be Σ modulo equivalence. String concatenation defines a group operation on F.
- F is called the *free group* on $\{a, b, c\}$.

The free group on $\{a, b, c\}$

Say that a string $s \in \Sigma$ is "reduced" if s contains no substring of the form xx^{-1} or $x^{-1}x$ for $x \in \{a, b, c\}$.

Fact

Every string in Σ is equivalent to a unique reduced string.

So we could have constructed F as the set of reduced strings, with the group operation

 $s \cdot t =$ (the unique reduced string equivalent to the concatenation st).

For example, if $s = ab^{-1}$ and t = bc, then

$$s \cdot t = ab^{-1}bc = ac.$$

Free groups

The *free group* on a set S is constructed similarly.

- S can be empty or infinite.
- When $S = \{a\}$, the free group is simply $\{a^n : n \in \mathbb{Z}\}$. This is isomorphic to $(\mathbb{Z}, +)$.

Presentations

Idea: notation like

$$\langle a, b, c \mid abc = cba, \ a^2 = b \rangle$$

means

The most general group generated by three elements a, b, and c, such that abc = cba and $a^2 = b$.

Presentations

We can construct $\langle a, b, c \mid abc = cba, \ a^2 = b \rangle$ just like the free group on $\{a, b, c\}$, except that we change "equivalence":

- Two strings s, t are "equivalent" if you can get from s to t by the following operations:
 - ▶ Inserting or deleting a substring of the form xx^{-1} or $x^{-1}x$ for some $x \in \{a, b, c\}$ (as before).
 - ▶ Replacing a substring *abc* with *cba*, or vice versa.
 - ▶ Replacing a substring *aa* with *b*, or vice versa.

For example, cba = abc = aaac = bac.

Warning

In general, there is no algorithm to tell when two strings are equivalent, unlike the case of free groups.

Presentations

A more abstract construction of $G = \langle a, b, c \mid abc = cba, a^2 = b \rangle$ is as follows:

- Let F be the free group on $\{a, b, c\}$.
- Let N be the smallest normal subgroup of F containing $(abc)(cba)^{-1}$ and $(a^2)b^{-1}$.
- Then G is F/N.

An example presentation

- Let S_n be the nth symmetric group, the set of permutations/bijections of $\{1, 2, ..., n\}$.
- For $1 \le i < n$, let σ_i be the transposition which swaps i and i + 1:

$$\sigma_i(i) = i + 1$$

$$\sigma_i(i+1) = i$$

$$\sigma_i(x) = x \text{ if } x \neq i, i+1.$$

Fact

 S_n has the following presentation:

$$\begin{split} \langle \sigma_1, \sigma_2, \dots, \sigma_{n-1} \mid & \sigma_1^2 = \sigma_2^2 = \dots = \sigma_{n-1}^2 = 1, \\ & \sigma_i \sigma_j = \sigma_j \sigma_i \text{ whenever } |i-j| > 1, \\ & \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \text{ whenever } |i-j| = 1 \rangle. \end{split}$$