Spring 2021 MATH 76 Activity 2

1. The main goal of this problem is to determine the volume of the solid S obtained by rotating the region bounded by the graphs of $y = \sqrt{x}$, y = 2 - x, and y = 0 about the x-axis (see figures below).

- (a) Locate where the graphs of $y = \sqrt{x}$ and y = 2 x intersect.
- (b) Notice that the radii of the disks (see figures below) obtained by slicing the solid S perpendicularly to the x-axis, change from \sqrt{x} (on the left hand side of the intercept of (a)) to 2-x (on the right hand side of the intercept of (a)).

- i. First set up the volume of the solid obtained by rotating the region shaded on the figure below.
- ii. Compute that volume.

- (c) i. Next, set up he volume of the solid obtained by rotating the region shaded on the figure below.
 - ii. Compute that volume.

- (d) By using parts (b) and (c) above, determine the volume of the solid S.
- 2. What is the volume of the solid obtained by rotating the region bounded by the graphs of $y = \sqrt{x}, y = 2 x$ and x = 0 about the x-axis?

3. Compute the volume of the solid obtained by revolving the area between the graphs of $y=x^2$ and $y=\frac{x}{2}$ about the y-axis.

4. (a) Determine the volume of the solid obtained by rotating the region between the graphs of $y = x\sqrt{2-x}$ and y = 0 about the x-axis.

(b) Compute the volume of the solid obtained by rotating the same region about the y-axis.