	AREK POLEWSKI CESSNA 150M : MACIEJ LASEK GRUPA: ML6
Projekt 3 Charakterystyki aerodynamiczne san	nolotu
Data oddania projektu Oci	E NA:

Spis treści

1	Kadłu	b 1
2	Usterz	zenie poziome
3	Usterz	zenie pionowe
4	Inne e	lementy
	4.1	Podwozie
	4.2	Belka skrzydłowa
5	Podsu	mowanie wpływu poszczególnych elementów na opór
	5.1	Opory szkodliwe samolotu
	5.2	Wpółczynnik oporu kompletnego samolot
	5.3	Współczynnik siły nośnej samolotu
	5.4	Dokosnałość aerodynamiczna
	5.5	Aerodynamiczna funckja energetyczna
	5.6	Wyniki przedstawione na wykresach
6	Aprok	symacja charakterystyk aerodynamicznych. Biegunowa analityczna

1 Kadłub

(B) Widok z przodu

Rys. 1: Rzut czołowy kadłuba wraz z polem powierzchni

Pole powierzchni	S	1.21302	m^2
Współczynnik oporu	C_x	0.25	

TAB. 1: Kadłub na podstawie poradnika opory_kadlubow_v1.pdf

2 Usterzenie poziome

Ramię usterzenia poziomego	l_h	5.094	m
Pole usterzenia poziomego	S_h	2.1	m^2
Powierzchnia nośna	S	15	m^2
Średnia Cięciwa aerodynamiczna	C_a	1.5	m
Środek siły aerodynamicznej	X_{sa}	0.35	m
Środek siły ciężkości (na podstawie poradnika)	X_{sc} -	0.28	m
Moment	$C_m sa$	-0.048	
na podstawie skryptu	$\left(\frac{V_h}{V}\right)^2$	0.85	
Rozpiętość usterzenia poziomego	b_h	3.01	m
Współczynnik siły nośnej płata	C_{zp} (dla -2.0571 stopnia)	0.0056	

TAB. 2: Wartości

Równanie momentów podczas lotu musi być równe 0.

$$Cm_{S.A} + Cz \cdot (\bar{x}_{S.C} - \bar{x}_{S.A}) = \kappa'_H \cdot Cz_H$$

gdzie:

- $Cm_{S,A} = -0.048$ współczynnik momentu podłużnego płata samolotu względem środka aerodynamicznego płata,
- $\bar{x}_{S.A} = \frac{x_{S.A}}{C_a}$ względne położenie środka aerodynamicznego płata,
- $\bar{x}_{S.C} = \frac{x_{S.C}}{C_a}$ względne położenie środka masy samolotu
- $\kappa'_H = \frac{S_H \cdot l_H}{S \cdot C_a} \cdot \left(\frac{V_h}{V}\right)^2 = \frac{2.2 \cdot 5.094}{15 \cdot 1.5} \cdot 0.85 = 0.423$ podana w tabelce powyżej
- S_h , l_H pole powierzchni i ramię usterzenia poziomego
- Cz = 0.1 dla kąta natarcia równego $\alpha_p = -0.1^o$

Na podstawie powyższego związku można wyznaczyć wartość współczynnika C_{zh} zapewniającą równowagę momentów podłużnych względem osi Cy1

$$Cz_H = \frac{Cm_{S.A}}{\kappa'_H} + \frac{\bar{x}_{S.C} - \bar{x}_{S.A}}{\kappa'_H} \cdot C_Z$$

Tak więc:

$$Cz_H = \frac{1}{0.423} \cdot \left(-0.0480 + (0.28 - 0.236) \cdot 0.1 \right) = -0.1031$$
 (1)

Współczynnik oporu usterzenia poziomego, analogicznie jak dla płata nośnego, wyznaczamy ze związku:

$$Cx_{H} = (Cx_{H\infty})_{min} + \Delta Cx_{szcz} + \frac{Cz_{H}^{2}}{\pi \Lambda_{eH}}$$

gdzie:

- $(Cx_{H\infty})_{min} = 0.006$ minimalna wartość współczynnika oporu profilu usterzenia dla NACA 0009 ??
- $\Delta Cx_{szcz} = 0.0060$ przyrost współczynnika oporu profilowego wynikający z istnienia szczelin między statecznikiem

• $\Lambda = \frac{b_H^2}{S_H} \cdot e_H = \frac{3.01^2}{2.2} \cdot 0.9 = 3.706$ wydłużenie usterzenia poziomego skorygowane o wpływ obrysu usterzenia i szczelin między statecznikiem a sterem; wartość $e_H = 0.9$ przyjęta z powodu małego wydłużenia

Finalnie

$$Cx_H = 0.006 + 0.006 + \frac{(-0.1031)^2}{\pi \cdot 3.706} = 0.0129$$
 (2)

3 Usterzenie pionowe

W locie symetrycznym usterzenie pionowe opływane jest symetrycznie, zaś ster kierunku nie jest wychylony, zatem współczynnik oporu usterzenia pionowego nie zawiera oporu indukowanego i wynosi (oznaczenia analogiczne jak dla usterzenia poziomego):

$$Cx_V = \left(Cx_V\right)_{min} + \Delta Cx_{Vszcz} = 0.011$$

gdzie:

- $Cx_V = 0.006$ dla NACA 0012
- $\Delta Cx_{Vszcz} = 0.005$

4 Inne elementy

4.1 Podwozie

Rys. 2: Podwozie w Cessnie 150m

Jak widać na załączonym obrazku, podwozie składa się z przedniego koła oraz dwóch bocznych. Z uwagi na różnice w geometrii i kształcie, trzeba rozpatrzyć je osobno.

Do obliczenia pól przekrojów wykorzystałem Webplotdigitalizer w celu uzyskania obrysu w centymetrach, następnie zinterpolowałem liniowo w Pythonie przy użyciu biblioteki *numpy* i scałkowanem metodą trapezów.

Przednie podwozie

(B) Na podsawie przykładu ze strony 722 General Aviation Aircraft [General Aivation Aircraft]

Rys. 3: Rzut czołowy przedniego koła

Powierzchnia czołowa	S_{j}	$358.210cm^2 = 0.071642m^2$
Współczynnik oporu	Cx	1.8

TAB. 4: Wartości dla przedniego podwozia

Boczne podwozie

(A) Obrys wykonany w przy użyciu rysunku z Projektu 1 [**?**]

(B) Na podstawie pliku [?]

Rys. 4: Caption

Pole przekroju	S_{j}	0.15898	m^2
Siła oporu	P_{x}	91.233	N
Gęstość powietrza	$ ho_0$	1.225	$\frac{kg}{m^3}$
Prędkość przelotowa	V	54.444	$\frac{m}{s}$

TAB. 5: Boczne podwozie - dane

$$C_x = \frac{1}{S_j} \frac{P_x}{\frac{1}{2}\rho_0 v^2} = \frac{1}{0.159} \frac{9.3 \cdot 9.81}{\frac{1}{2}1.225 \cdot (54)^2} = 0.3160$$

4.2 Belka skrzydłowa

EXAMP

Determine the additive drag of a (Cessna-like) wing strut whose length is 5 ft, chord is 4 inches, and t/c is 0.2 at S-L at airspeed of 110 KTAS. The reference area is 160 ft². Assume no interference and $C_{\rm f}=0.008$.

Solution

Using Equation (15-86) we get:

$$\Delta C_{Dstrut} = \left[2C_f \left(1 + \frac{t}{c} \right) + \left(\frac{t}{c} \right)^2 \right] \left(\frac{L \times c}{S_{ref}} \right)$$

$$= \left[2(0.008)(1 + 0.2) + (0.2)^2 \right] \left(\frac{5 \times (4/12)}{160} \right)$$

$$= 0.0006167$$

(A) Przykład z [General Aivation Aircraft]

(B) Rozpórka skrzydła - wing strut

Rys. 5: Rozpórka skrzydła

Wyliczone na podstawie przykładu ze strony 716 z ksiązki [General Aivation Aircraft].

$$\Delta C_{Dstrut} = \left[2C_f\left(1+\frac{t}{c}\right) + \left(\frac{t}{c}\right)^2\right]\left(\frac{L\cdot c}{S_{ref}}\right) = \left[2*0.008\left(1+0.2\right) + \left(0.2\right)^2\right]\left(\frac{1.52\cdot 0.1}{0.0304}\right) = 0.2072$$

gdzie:

- c cięciwa rozpórki
- Cf = 0.008 współczynnik tarcia
- t/c = 0.2
- ΔC_{Dstrut} wsp oporu rozpórki na podstawie powierzchni odniesienia

5 Podsumowanie wpływu poszczególnych elementów na opór

Wyliczony opór poszczególnych elementów

	Elementy samolotu						
LP	Podzespół	Cxj	Sj	Cxj*Sj	Źródło danych		
1	Kadłub	0.25	1.21302	0.3033	opory_kadlubow_v1.pdf		
2	Usterzenie poziome	0.01291326318	2.2	0.0284	Poradnik2		
3	Usterzenie pionowe	0.011	0.02	0.0002	Poradnik2		
4	Podwozie boczne	0.3160794268	0.15898	0.0503	Podwozia.pdf		
5	Podwozie przednie	1.8	0.071642	0.1290	[General Aivation Aircraft]		
6	Belka skrzydłowa	0.2072	0.0304	0.0063	[General Aivation Aircraft]		
			suma Cxj*Sj	0.5174	,		

TAB. 6: Wszyskie elementy konstrukcyjne wybrane do obliczeń oporu

Minimalny opór szkodliwy:

$$Cx_{szk\ min} = \frac{Cx_j \cdot S_j}{S} = \frac{0.5174}{15} = 0.0345$$

5.1 Opory szkodliwe samolotu

$$C'x_{szk} = \left(Cx_{szk}\right)_{min} \cdot \left(1 + \frac{|Cz|}{\zeta}\right)$$

gdzie ζ współczynnik proporcjonalności zamian oporów szkodliwych. Dla Cessny 150m założyłem $\zeta=4.5$ z uwagi na kanciastą sylwetkę. Wszystkie te wartości zostały policzone w arkuszu kalkulacyjnym. Przykład dla $\alpha=-1^o$:

$$C'x_{szk} = .0345 \cdot \left(1 + \frac{|0.07526240|}{4.5}\right) = 0.03509$$

5.2 Wpółczynnik oporu kompletnego samolot

$$Cx = \left(Cx'_p + Cx'_{szk} + \frac{S_h}{S} \cdot Cx_H\right) \cdot (1 + K_{inf\ erf})$$

gdzie

- Cx'_p wsp oporu płata
- Cx'_{szk} współczynnik oporów szkodliwych
- $K_{inf\ erf} = 0.07$ współczynnik wzrostu oporów na skutek interferencji aerodynamicznej

Przykład dla $\alpha = -1^o$:

$$Cx = (0.0071 + 0.03509 + \frac{2}{15} \cdot 0.0129) \cdot (1 + 0.07) = 0.0472$$

5.3 Współczynnik siły nośnej samolotu

$$Cz' = C_z + \frac{S_H}{S} \cdot Cz_H$$

Przykład dla $\alpha = -1^{\circ}$:

$$Cz' = 0.07526 + \frac{2}{15} \cdot (-0.106) = 0.0598$$

5.4 Dokosnałość aerodynamiczna

$$K = \frac{Cz'}{Cx}$$

5.5 Aerodynamiczna funckja energetyczna

$$E = \frac{Cz'^3}{Cx^2}$$

5.6 Wyniki przedstawione na wykresach

(A) Wykresy zależności $K(\alpha), E(\alpha), Cz'(\alpha)$

Rys. 6: Wyniki obliczeń

6 Aproksymacja charakterystyk aerodynamicznych. Biegunowa analityczna

Zależność współczynnika oporu aerodynamicznego samolotu od współczynnika siły nośnej Cx(Cz) przyjmuje się w postaci niepełnego wielomianu drugiego stopnia:

$$Cx = Cx_0 + \frac{Cz^2}{\pi \Lambda_e}$$

Zależność ta nosi nazwę biegunowej analitycznej. Skorzystamy z mniej dokładnej dokładnej metody wykreślno rachunkowej. Wartość współczynnika aproksymacji odczytujemy z wykresu jako $Cx_0 = 0.05$.

$$\frac{\Delta Cx}{\Delta Cz^2} = \frac{1}{\pi\Lambda} = 1/15.22 = 0.0657$$

Obliczamy wartość wydłużenia efektywnego

$$\Lambda_e = \frac{1}{\pi \frac{\Delta C x}{\Delta C z^2}} = \frac{1}{0.0657\pi} = 4.8449$$

Następnie porównujemy ją z wydłużeniem geometrycznym licząc współczynnik Oswalda:

$$e = \frac{\Lambda_e}{\Lambda} = \frac{4.8449}{6.5967841} = 0.73443$$

Wyliczony współczynnik Oswalda znajduje się w dopuszczalnym zakresie od 0.7 do 0.98.

Rys. 7: $Cz^2(cx)$

Bibliografia

 $Wsp\'olczynnik \quad na \quad podstawie \quad https://aeroknowledge 77. files. wordpress. com/2011/09/58986488-theory-of-wing-sections-including-a-summary-of-airfoil-data.pdf$

Na podstawie przykładu ze strony 722 General Aviation Aircraft