Disjoint Sets and Union Find

An improved union, improved find, path compression, and rank-union variations

Connor Baker

Disjoint Sets and Union Find (Part 2)

Improved Find

- Idea: path compression
 - After we perform find(T t), change t's parent to the root
 - Subsequent calls to find (T t) (or any node which is in the subtree rooted at t) will be faster
 - We can do the same thing to all the nodes from t to the root
 - * Or... we should at least do it for all the nodes that we visit when we perform find (T t)

Improved Find: Example

Figure 1: Worst-case tree for N=16

- Equal-sized trees when union'd together
 - We call them binomial trees
- The blue circles trace find (14)
- Then after performing path compression, we have the following tree

Figure 2: Path compression resulting from a find (14) on the previous figure

• Notice how 12 and 14 are now the direct children of 0, which would speed up subsequent find operations that involve either them or their children

Connor Baker 1 of 4

Path Compression in Union

• Note: for demonstration purposes, assume that we use a naive union and start with a tall tree $\{0, 1, 2, 3\}$

Figure 3: A tall tree

- union(2, 4)
 - Remember that find is invoked in calls to union

Figure 4: A tall tree after find is invoked as part of union (2, 4)

- This update occurs after we do find (2), as an intermediate step during the execution of union (2, 4)
- We continue to improve the tree structure so that we have shallower trees after every call to find or union

Figure 5: A tall tree after union (2, 4) completes

Complexity Analysis

- The analysis is a little different since our speed improves over time
- ullet Let n be the number of items and initial sets
- For any sequence of m operations (union or find)

Implementation	Big-O
Set of sets	O(mn)

Connor Baker 2 of 4

Implementation	Big-O
Quick find	O(mn)
Tree (naive)	O(mn)
Tree (rank union and naive find)	$O(n + m \log(n))$
Tree (naive union and path compression)	$O(n + m \log(n))$
Tree (rank union and path compression)	$O(n + m \log(^*n))$

- log(*n)?
 - That's not a footnote!
 - It's defined as the number of times once can apply $n = \log(n)$ until $n \le 1$
- Practically speaking, $\log(*n)$ is equivalent to a constant (since it grows so slowly see the table below)
- So rank union and path compression is approximately O(n+m) for n items and m operations

n	$\log(^*n)$
1	0
(1,2]	1
(2,4]	2
(4, 16]	3
(16,65536]	4
$(65536, 2^{65536}]$	5

Rank Union Variations

- Union-by-size: attach the smaller of the trees to the larger of the two
 - We keep the root of the bigger tree
 - Easier when used in conjunction with path compression
 - * Otherwise it's harder tot rack the height
- Union-by-height: attach the shorter tree to the taller one
 - We keep the root of the taller tree
 - Easier to use when used alone (that means without path compression)

Connor Baker 3 of 4

Figure 6: Union-by-size vs. union-by-height

Building A Maze Example and Blob Detection Example omitted

Summary: Union Find

- A collection of disjoint sets
 - find(T t) returns the set that t belongs to
 - union(T i, T j) merges the sets i and j belong to
- Implementations
 - Naive
 - Union by rank
 - Path compression
 - Close to linear complexity for the most efficient approaches
- Applications
- Mazes
- MST
- NCA
- Vision: blob detection

Connor Baker 4 of 4