Problem 1)

Find the Laplace transform of the following function:

$$I(t) = t^n e^{-at}, \quad a > 0 \text{ and even } n.$$
 (1)

Problem 2)

Solve the following equation by the Laplace transform

$$\ddot{y} + 2\lambda\dot{y} + \omega_0^2 y = 0, (2)$$

where y(0) = 0 and $\dot{y}(0) = v$.

Problem 3)

A unit vector $\hat{\boldsymbol{n}}$ makes angles θ and α with the Cartesian axes z and x, respectively, and a unit vector $\hat{\boldsymbol{n}}'$ makes angles θ' and α' with z and x, respectively. Find $\cos \varphi$, where φ is the angle between $\hat{\boldsymbol{n}}$ and $\hat{\boldsymbol{n}}'$.

Problem 4)

Find a scalar function $\varphi(r)$ of $r = |\vec{r}|$ which satisfies the equation

$$\vec{\nabla} \cdot [\varphi(r)\vec{r}] = 0. \tag{3}$$

Problem 5)

Calculate the following: (1) $\vec{\nabla} \cdot [(\vec{a} \cdot \vec{r})\vec{b}]$, (2) $\vec{\nabla} \times [(\vec{a} \cdot \vec{r})\vec{b}]$, (3) $\vec{\nabla} \cdot \vec{a} \times \vec{r}$, (4) $\vec{\nabla} \times (\vec{a} \times \vec{r})$, (5) $\vec{\nabla} \cdot [\vec{r} \times (\vec{a} \times \vec{r})]$, where \vec{a} and \vec{b} are constant vectors.