Übersicht

- 6 Programmierparadigmen
 - Einführung
 - Funktionale Programmierung
 - Imperative Programmierung
 - Logische Programmierung
 - Zusammenfassung und Ausblick

Übersicht

- 6 Programmierparadigmen
 - Einführung
 - Funktionale Programmierung
 - Imperative Programmierung
 - Logische Programmierung
 - Zusammenfassung und Ausblick

Einführung

- Programmierparadigma =
 - fundamentaler Programmierstil und bedingt damit auch
 - , Denkmuster" für Entwurf und Formulierung von Algorithmen
- Wir trennen von Algorithmenparadigmen [Saake&Sattler]
- Einige Paradigmen haben wir schon kennengelernt
 - Strukturierte Programmierung
 - Imperative Programmierung
 - Objektorientierte Programmierung
- Denn: Java folgt *all diesen* Paradigmen
- Verschiedene Paradigmen können miteinander vereinbar sein
- Viele Programmiersprachen folgen mehreren Paradigmen,
 Dabei oft Fokus auf ein Paradigma (in Java: OOP)

Prozedurale und strukturierte Programmierung

- *Prozedurale* P. = Unterteilung in Unterprogramme
 - Unterprogramm (Prozedur/Funktion) löst kleineres Teilproblem
 - Lesbarkeit/Wartbarkeit und Wiederverwendung von Code
- Strukturierte P. = Prozedurale P. + Kontrollstrukturen
 - Sequenz
 - Fallunterscheidung (Auswahl, bedingte Anweisung)
 - Schleife (Iteration, bedingte Wiederholung)
- Bemerkungen
 - Prozedurale P.

 Strukturierte P.
 - z.B. keine goto[⋆] Anweisung (⇒ "Spaghetti-Code")
 - Ziel: Kostenreduktion(!) für Software
 - Pascal (1972), C (1972)*, Modula-2 (1978), Ada (1983),...
 - Spezialfall: Objektorientierte P.

 Strukturierte P.
- Als nächstes: drei für Programmiersprachen fundamentale Paradigmen

Übersicht

- 6 Programmierparadigmen
 - Einführung
 - Funktionale Programmierung
 - Imperative Programmierung
 - Logische Programmierung
 - Zusammenfassung und Ausblick

Funktionale Programmierung

- Algorithmus = Menge von Funktionen
- Ausführen/Berechnen = Auswerten der Funktionen
- Funktionsbegriff im Sinn von mathematischer Funktion

$$f: \mathcal{X}_1 \times \mathcal{X}_2 \times \dots \times \mathcal{X}_n \rightarrow \mathcal{Y}_1 \times \mathcal{Y}_2 \times \dots \times \mathcal{Y}_m$$
$$(y_1, y_2, \dots, y_m) = f(x_1, x_2, \dots, x_n)$$

- Es gibt *keine* veränderlichen Daten!
- Es gibt keinen Zustand, den wir direkt beobachten könnten!
- Bemerkung zu [Saake&Sattler] (Kapitel 3.2)
 - Begriff *applikative* Programmierung . . .
 - Im Sinne von Anwenden/Auswerten von Funktionsdefinitionen
 - Wir betrachten die Begriffe hier als synonym.

Terme und Unbestimmte

- Definition von Funktionen durch Terme
 - **z**.B. f(x) = 5x + 1
- Die Argumente, z.B. x, heißen *Unbestimmte*
 - Unbestimmte sind keine Variablen!
 - Unbestimmte sind Symbole und stehen als "Platzhalter"
- Im folgenden verwendete Konvention f
 ür Unbestimmte
 - x, y, z sind vom Typ int (repräsentieren Werte $x \in \mathbb{Z}$)
 - $p, q, r \text{ sind vom Typ bool } (p \in \{true, false\})$
- Konvention für Terme
 - Operationen auf \mathbb{Z} (z.B. (x+2)x) und Vergleiche (z.B. x < y)
 - Logische Operationen ¬p (nicht), $p \lor q$ (oder), $p \land q$ (und)
 - Fallunterscheidung if-else
- \blacksquare Wir beschränken uns auf Funktionen $f: \mathcal{X}_1 \times \dots \times \mathcal{X}_n \to \mathcal{Y}$

Undefinierte Werte

- $lue{}$ Wir erweitern hier für alle Typen deren Wertemenge um $lue{}$
- Symbol ⊥ steht für *undefiniert*
- z.B.

```
int x \Rightarrow x \in \mathbb{Z} \cup \{\bot\}
bool x \Rightarrow x \in \{\text{true}, \text{false}\} \cup \{\bot\}
```

■ Wir betrachten hier ein Modell einer Programmiersprache: Es gibt keine exakte Entsprechung von ⊥ in einer "echten" Programmiersprache!

Funktionsdefinition

Definition (Funktionsdefinition)

Sind $v_1, ..., v_n$ Unbestimmte vom Typ $\tau_1, ..., \tau_n$ (bool oder int) und ist $t(v_1, ..., v_n)$ ein Term, so heißt

$$f(v_1,\ldots,v_n)=t(v_1,\ldots,v_n)$$

eine Funktionsdefinition vom Typ τ . Dabei ist τ der Typ des Terms.

- f heißt Funktionsname
- $\mathbf{v}_1, \dots, \mathbf{v}_n$ heißen formale Parameter
- $t(v_1, ..., v_n)$ heißt Funktionsausdruck

Beispiele für Funktionsdefinitionen

- f(x,y) = x + y
- $f(x,y,z) = if \ x \le y \land y \le z$ then true else false fi
- $f(x) = if x \ge 0 then x else x fi$
- $f(x,y) = if x \leq y then x else y fi$
- f(p) = if p then 1 else 0 fi
- f(p,q) = if p then q else false fi

```
\begin{split} f: bool \times bool &\rightarrow bool \\ f(false, false) &= f(false, true) = f(true, false) = false \\ f(true, true) &= true \end{split}
```

$$f(p,q) = p \wedge q$$

Erweiterung der Funktionsdefinition

Erweiterung der Definition von Termen:

Auswertungen definierter Funktionen sind Terme

■ Beispiel:
$$f(x,y) = 2 \cdot g(x) + y$$
, $g(x) = x - 1$
$$f(3,1) = 2 \cdot g(3) + 1 = 2(3-1) + 1 = 4 + 1 = 5$$

■ Damit sind auch rekursive Funktionen möglich

Definition (Rekursive Funktion)

Eine Funktion heißt *rekursiv*, wenn sie – direkt oder indirekt – durch sich selbst definiert ist.

■ Beispiel: Fakultätsfunktion $x! = x \cdot (x-1) \cdot (x-2) \cdots 2 \cdot 1$

$$fac(x) = if x = 0 then 1 else x \cdot fac(x-1) fi$$

Beispiel: Fakultätsfunktion x!

- $fac(x) = if x = 0 then 1 else x \cdot fac(x-1) fi$
- Berechne **fac**(3)

$$\begin{array}{lll} \mathbf{fac}(3) & = & \mathbf{if} \ 3 = 0 \ \mathbf{then} \ 1 \ \mathbf{else} \ 3 \cdot \mathbf{fac}(3-1) \ \mathbf{fi} \\ & = & \mathbf{if} \ \mathbf{false} \ \mathbf{then} \ 1 \ \mathbf{else} \ 3 \cdot \mathbf{fac}(3-1) \ \mathbf{fi} \\ & = & 3 \cdot \mathbf{fac}(3-1) \ = \ 3 \cdot \mathbf{fac}(2) \\ & = & 3 \cdot \left(\mathbf{if} \ 2 = 0 \ \mathbf{then} \ 1 \ \mathbf{else} \ 2 \cdot \mathbf{fac}(2-1) \ \mathbf{fi}\right) \ = \ \dots \\ & = & 3 \cdot \left(2 \cdot \mathbf{fac}(2-1)\right) = 3 \cdot 2 \cdot \mathbf{fac}(1) \\ & = & (3 \cdot 2) \cdot \left(\mathbf{if} \ 1 = 0 \ \mathbf{then} \ 1 \ \mathbf{else} \ 1 \cdot \mathbf{fac}(1-1) \ \mathbf{fi}\right) \ = \ \dots \\ & = & (3 \cdot 2) \cdot \left(1 \cdot \mathbf{fac}(1-1)\right) \ = \ (3 \cdot 2 \cdot 1) \cdot \mathbf{fac}(0) \\ & = & (3 \cdot 2 \cdot 1) \cdot \left(\mathbf{if} \ 0 = 0 \ \mathbf{then} \ 1 \ \mathbf{else} \ 0 \cdot \mathbf{fac}(0-1) \ \mathbf{fi}\right) \\ & = & (3 \cdot 2 \cdot 1) \cdot \left(\mathbf{if} \ \mathbf{true} \ \mathbf{then} \ 1 \ \mathbf{else} \ 0 \cdot \mathbf{fac}(0-1) \ \mathbf{fi}\right) \\ & = & (3 \cdot 2 \cdot 1) \cdot 1 \ = \ 6 \end{array}$$

Undefinierte Ergebnisse

- Eine Funktion muss nicht für alle Eingaben definiert sein.
- Was ergibt fac(-1) ?

$$\begin{array}{lll} \mathbf{fac}(-1) & = & \mathbf{if} & -1 = 0 \; \mathbf{then} \; 1 \; \mathbf{else} \; -1 \cdot \mathbf{fac}(-1-1) \; \mathbf{fi} \\ & = & -\mathbf{fac}(-2) \\ & = & -\big(\mathbf{if} \; -2 = 0 \; \mathbf{then} \; 1 \; \mathbf{else} \; -2 \cdot \mathbf{fac}(-2-1) \; \mathbf{fi}\big) \\ & = & +2 \cdot \mathbf{fac}(-3) \; = \; \dots \; = \; ? \end{array}$$

- Die Berechnung terminiert nicht!
- Das Ergebnis ist undefiniert!
- Wir beschreiben das semantisch als

$$\mbox{fac}(x) \; = \; \begin{cases} x < 0 \, \colon & \bot \\ x = 0 \, \colon & 1 \\ x > 0 \, \colon & x \cdot (x - 1)! \end{cases}$$

Undefinierte Werte ⇒ Nicht-Terminierung

Undefinierte Werte

Der Wert einer Funktionsauswertung f(x), die *nicht terminiert*, ist *undefiniert*! — Wir schreiben $f(x) = \bot$.

- $lue{}$ Vorstellung von ot als *unendlich lange* Berechnung
- Konsequenz
 - $f(..., \bot, ...) = \bot$ für alle Funktionen f
 - Jeder Vergleich mit \bot liefert \bot ! z.B. $(\bot = \bot) \to \bot$ und $(x = \bot) \to \bot$ und auch $(x \ne \bot) \to \bot$
- Beispiel

$$\begin{array}{lll} f(x) & = & \text{if } f(x) = 0 \text{ then } 1 \text{ else } 0 \text{ fi} \\ f(x) & = & \bot & \text{für alle } x \in \text{int} \end{array}$$

Partielle Funktion

Definition (Partielle Funktion)

Eine Funktion, die nicht für alle Elemente ihrer Definitionsmenge (alle möglichen Eingaben) einen wohldefinierten Wert liefert, heißt partiell.

■ Beispiel: fac(x) = if x = 0 then 1 else $x \cdot fac(x-1)$ fi

$$\mathsf{fac}(x) \; = \; \begin{cases} x < 0 \colon & \bot \\ x = 0 \colon & 1 \\ x > 0 \colon & x \cdot (x-1)! \end{cases}$$

Weitere Beispiele

- Indirekte Rekursion even, odd
- Addition und Multiplikation von natürlichen Zahlen
- Primzahlen prim : int → bool
- Fibonacci Zahlen
- McCarthys 91-Funktion

Beispiel: even und odd

Regeln $\begin{array}{cccc} \mathbf{even}(0) &=& \mathbf{true} \\ \mathbf{odd}(0) &=& \mathbf{false} \\ \mathbf{even}(x+1) &=& \mathbf{odd}(x) \\ \mathbf{odd}(x+1) &=& \mathbf{even}(x) \\ \end{array}$

Rekursive Definition mit wechselseitiger Auswertung

 $lue{}$ Partielle Funktionen! – Erweiterung auf $\mathbb Z$

```
\begin{array}{rcl} \mathbf{even}(x) & = & \text{if } x = 0 \text{ then true else} \\ & & \text{if } x > 0 \text{ then } \mathbf{odd}(x-1) \text{ else } \mathbf{odd}(x+1) \text{ fi fi} \\ \mathbf{odd}(x) & = & \text{if } x = 0 \text{ then false else} \\ & & \text{if } x > 0 \text{ then } \mathbf{even}(x-1) \text{ else } \mathbf{even}(x+1) \text{ fi fi} \end{array}
```

Beispiel: even und odd

■ Berechne **even**(3)

```
\begin{array}{lll} \mathbf{even}(3) & = & \text{if } 3 = 0 \text{ then true else odd}(3-1) \text{ fi} \\ & = & \mathbf{odd}(2) \\ & = & \text{if } 2 = 0 \text{ then false else even}(2-1) \text{ fi} \\ & = & \mathbf{even}(1) \\ & = & \text{if } 1 = 0 \text{ then true else odd}(1-1) \text{ fi} \\ & = & \mathbf{odd}(0) \\ & = & \text{if } 0 = 0 \text{ then false else even}(0-1) \text{ fi} \\ & = & \text{false} \end{array}
```

Addition von natürlichen Zahlen

- Addition x + y basierend auf
 - *Nachfolger*funktion succ(x) = x+1 und
 - Vorgängerfunktion pred(x) = x 1 (partiell)
- Regeln

$$\begin{array}{rcl} x+0 & = & x \\ x+y & = & (x+1)+(y-1) \\ & = & \textbf{succ}(x)+\textbf{pred}(y) & \text{für } y>0 \end{array}$$

Umsetzung

$$\label{eq:add} \begin{array}{rcl} \mathbf{add}(x,y) & = & \mathtt{if} \ y = 0 \ \mathtt{then} \ x \\ & & \mathtt{else} \ \mathbf{add}(\mathtt{succ}(x), \mathtt{pred}(y)) \ \mathtt{fi} \end{array}$$

Addition nur mit succ

- Vermeide partielle Vorgängerfunktion pred
- Definiere (dreistellige) Hilfsfunktion

$$\label{eq:add3} \begin{array}{ll} \operatorname{add3}(x,y,z) \; = \; \operatorname{if} \; z \, = \, y \; \operatorname{then} \; x \\ & \quad \quad \operatorname{else} \; \operatorname{add3}(\operatorname{succ}(x),y,\operatorname{succ}(z)) \; \operatorname{fi} \end{array}$$

- **E**rgebnis x wie in **add**: es wird immer um 1 erhöht
- y bleibt unverändert
- z "zählt" 0,1,...,y
- Damit

$$\mathsf{add}(\mathsf{x},\mathsf{y}) = \mathsf{add3}(\mathsf{x},\mathsf{y},\mathsf{0})$$

■ Erweiterung auf $y \in \mathbb{Z}$? z.B. analog **even**, **odd**

Multiplikation von natürlichen Zahlen

- Definiere Multiplikation $x \cdot y$ durch Addition
- Regeln

$$\begin{array}{rcl} x \cdot 0 & = & 0 \\ x \cdot y & = & x \cdot (y - 1) + x \\ & = & \mathsf{add}(\mathsf{mult}(x, \mathsf{pred}(y)), x) & \text{für } y > 0 \end{array}$$

Umsetzung

$$mult(x,y) = if y = 0 then 0$$

else $add(mult(x,pred(y)),x) fi$

■ Ohne pred: analog add, add3

Grundrechenarten auf \mathbb{N}_0 bzw. \mathbb{Z}

- Definition von der natürlichen Zahlen durch Nachfolger
- Grundrechenarten auf succ (und pred) zurückführbar
- Analog zu add und mult:
 - **pow** $(x,y) = x^y$
 - $\operatorname{sub}(x,y) = x y$ (partiell auf \mathbb{N}_0)
 - **div** $(x,y) = \lfloor \frac{x}{u} \rfloor$ (partiell)
 - $\mod(x,y) = x \mod y \pmod{y}$
- Ubungen: alternative, "schnellere" Konstruktion für mult, pow

Beispiel: Ist x Primzahl?

Definition (Primzahl)

Eine *Primzahl* ist eine natürliche Zahl, die größer als eins und nur durch sich selbst und durch eins teilbar ist.

■ Definiere **prime** : **int** → **bool**

```
\begin{array}{rcl} \textbf{prime}(x) & = & \text{if } x < 0 \text{ then } \textbf{prime}(x) \text{ else} \\ & & \text{if } x \leqslant 1 \text{ then false else } \textbf{pr}(x,2) \text{ fi fi} \\ \\ \textbf{pr}(x,y) & = & \text{if } y \geqslant x \text{ then true} \\ & & \text{else } (\textbf{mod}(x,y) \neq 0) \ \land \ \textbf{pr}(x,\textbf{succ}(y)) \text{ fi} \end{array}
```

- **pr** testet Teilbarkeit für alle $2 \le y < x \pmod{x, y} = x \mod y$
- **prime** ist *partiell*: $prime(x) = \bot$ für x < 0

Effizientere Variante von prime

- I Ersetze $y \geqslant x$ durch $y^2 > x$ Denn für kleinsten Teiler k von x muss gelten $k \leqslant \sqrt{y}$
- **2** Teste Teilbarkeit durch 2 und keine weiteren geraden Zahlen

$$\begin{array}{lll} \textbf{pr}(x,y) & = & \text{if } y^2 > x \text{ then true} \\ & & \text{else if } y = 2 \text{ then } (\textbf{mod}(x,2) \neq 0) \ \land \ \textbf{pr}(x,3) \\ & & & \text{else } (\textbf{mod}(x,y) \neq 0) \ \land \ \textbf{pr}(x, \texttt{succ}(\texttt{succ}(y))) \text{ fi} \end{array}$$

- Teilbarkeit testen ($\mathbf{mod}(x,y) \neq 0$), falls nicht teilbar...
- Für y = 2: weiter mit 3
- Für $y \neq 2$: y ist ungerade, weiter mit $y + 2 = \mathbf{succ}(\mathbf{succ}(y))$

Fibonacci Folge

- Zahlenfolge 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .
- Regel

$$\begin{array}{lll} f_0 & = & 0 \\ f_1 & = & 1 \\ f_i & = & f_{i-1} \, + \, f_{i-2} & & \mbox{für $i \geqslant 2$} \end{array}$$

- Diese Folge kommt immer wieder bei Wachstumsvorgängen in der Natur (und auch für Algorithmen) vor.
- Viele interessante Eigenschaften u.a.
 Verwandtschaft mit dem Goldenen Schnitt

$$\phi = \lim_{i \to \infty} \frac{f_{i+1}}{f_i} = \frac{1 + \sqrt{5}}{2}$$

Ein Beispiel: Stammbaum von Kaninchen

Kaninchen und Fibonacci Zahlen

- Zwei Lebensphasen (klein) und (groß=geschlechtsreif)
- $lue{lue{\bullet}}$ Innerhalb eines Monats $lue{lue{\bullet}}
 ightarrow lue{lue{\bullet}}$
- Jedes ●-Paar zeugt jeden Monat ein neues ●-Paar.
- Beginne im 1. Monat mit einem •-Paar.
- Kaninchen sind monogam und unsterblich.

■ Anzahl der Kaninchenpaare im i. Monat = fi

Berechnung von Fibonacci Zahlen

- Rekursive Berechnung nach der Regel $f_0 = 0$, $f_1 = 1$ und $f_i = f_{i-2} + f_{i-1}$ für $i \ge 2$
- Umsetzung

$$fib(x) = if x = 0 then 0 else$$

if $x = 1 then 1 else fib(x-2) + fib(x-1) fi fi$

- Rekursion "anderer" Art: **fib** zweimal im gleichen Zweig
- Beispiel: Berechne **fib**(4)

$$\begin{aligned} & \textbf{fib}(4) & = & \textbf{fib}(2) + \textbf{fib}(3) \\ & = & \left(\textbf{fib}(0) + \textbf{fib}(1) \right) + \left(\textbf{fib}(1) + \textbf{fib}(2) \right) \\ & = & \left(\textbf{fib}(0) + \textbf{fib}(1) \right) + \left[\textbf{fib}(1) + \left(\textbf{fib}(0) + \textbf{fib}(1) \right) \right] \\ & = & \left(0 + 1 \right) + \left[1 + (0 + 1) \right] = 1 + \left[1 + 1 \right] = 1 + 2 = 3 \end{aligned}$$

Offensichtlich sind einige Auswertungen redundant!

Auswertung von fib

■ Wir stellen die rekursive Auswertungen als *Baum* dar.

- Die markierten Auswertungen sind redundant.
- Wir zählen wie folgt
 - Je 1 Auswertung für $\mathbf{fib}(0)$ und $\mathbf{fib}(1)$
 - Für $\mathbf{fib}(x)$: Summe Auswertungen für $\mathbf{fib}(x-2)$ und $\mathbf{fib}(x-1)$
 - Gleiches Prinzip! \Rightarrow allgemein f_{x+1} Auswertungen nötig
- f_i wächst exponentiell, da $f_i = \frac{1}{\sqrt{5}} \left(\varphi^i (1 \varphi)^i \right) \approx \frac{1}{\sqrt{5}} \varphi^i$

Effizientere Auswertung von fib

- Wir würden die Fibonacci Zahlen wohl nicht so berechnen!
- Denn eigentlich sind für **fib**(4) nur 4 Auswertungen nötig.
- Lösung: Zwischenergebnisse speichern und einsetzen
- Mögliche "iterative" Umsetzung

$$\mathbf{ifib}(x) = \mathbf{if} \ x = 0 \ \mathbf{then} \ 0 \ \mathbf{else}$$

$$\mathbf{if} \ x = 1 \ \mathbf{then} \ 1 \ \mathbf{else} \ \mathbf{ifib3}(x,0,1) \ \mathbf{fi} \ \mathbf{fi}$$

$$\mathbf{ifib3}(x,y,z) = \mathbf{if} \ x = 2 \ \mathbf{then} \ y + z$$

$$\mathbf{else} \ \mathbf{ifib3}(x-1,z,y+z) \ \mathbf{fi}$$

- x zählt Anzahl "Iterationen" i
- y und z speichern Zwischenergebnisse f_{i-2} und f_{i-1}
- Beispiel

$$ifib(6) = ifib3(6,0,1) = ifib3(5,1,1) = ifib3(4,1,2)$$

= $ifib3(3,2,3) = ifib3(2,3,5) = 3+5 = 8$

Was berechnet die folgende Funktion?

Zum Abschluss eine etwas kuriose Funktion

$$f(x) = if x > 100 then x - 10 else f(f(x+11)) fi$$

Nicht einfach zu sehen. Wir probieren . . .

Vermutung f ist äquivalent zu g mit

$$g(x) = if x > 100 then x - 10 else 91 fi$$

- Äquivalenz besteht tatsächlich: McCarthys 91-Funktion, Beweis folgt später (Korrektheit von Algorithmen)
- Frage: Kann man Äquivalenz von Algorithmen zeigen? Wie?

Ausblick: Funktionale Programmierung

- Bisher: Auswertung von Termen und Rekursion
 - Keine Schleifen
 - Keine Variablen
- Alle bisherigen Beispiele lassen sich genauso in Java umsetzen.
 - Das ist eine gute Übung für die Klausur!
- Was macht Funktionale Programmierung noch aus?
- Wesentlich: Funktionen als "Objekte" der Sprache
 - Funktions-Typen (z.B. $int \rightarrow int$) sind Typen (wie z.B. int)
 - Funktionen können erzeugt werden (λ-Operator)

Ausblick: Funktionen höherer Ordnung

Definition (Funktional)

Eine Funktion, die eine Funktion als Argument erhält oder eine Funktion als Ergebnis liefert, heißt *Funktional* oder *Funktion höherer Ordnung*.

- Zentrales Element von funktionalen Programmiersprachen
- Alternative Schreibweise für f(x,y) mit $f: \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$ als

$$f \ x \ y \quad \mathsf{mit} \quad f: \mathcal{X} \to (\mathcal{Y} \to \mathcal{Z})$$

damit definiert

$$g = f x$$

eine neue Funktion $g: \mathcal{Y} \to \mathcal{Z}$, für die der Wert von x gebunden und y unbestimmt ist:

$$g(y) = f(x, y)$$

Ausblick: Funktionen erzeugen

- Funktionen können wie "Objekte" erzeugt werden
- Wir schreiben hier $(\cdot) \rightarrow \cdot$

$$\begin{array}{rcl} f(x,y) & = & x+y & f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \\ f(1,2) & = & 1+2 & = 3 \\ g(x) & = & (y) \to f(x,y) & g: \mathbb{Z} \to (\mathbb{Z} \to \mathbb{Z}) \\ g(1) & = & (y) \to f(1,y) & = & (y) \to 1+y \\ (g(1))(2) & = & 1+2 & = 3 \end{array}$$

• Wie eben: 2-stellige Funktion f(x,y) wird zu 1-stelliger Funktion g(x) durch Binden eines Arguments (*Currying*).

Typische Elemente Funktionaler Programmiersprachen

- Viele Sprachen haben ein Typsystem z.B. Haskell, ML
 - Typen können aus Definitionen abgeleitet werden
 - Typsystem nicht zwingend
- Oft Mustervergleiche (pattern matching), z.B. Haskell, ML
- Funktionen höherer Ordnung
- Umsetzung des Lambda-Kalkül
 - "Erzeugung" von (anonymen) Funktionen
- Verschiedene Auswertungsstrategien insb. lazy evaluation
- Einfache aber mächtige Operationen auf Listen
 - Rekursion mit *head* (erstes Element) und *tail* (Rest)
 - map: Anwendung einer Funktion auf jedes Listenelement
 - fold (auch inject, reduce, accumulate): z.B. Summenbildung
- Meist keine *rein* funktionalen Sprachen
 - Variablen, ... (Elemente imperativer P., auch OOP)

Abschließende Bemerkungen

- Wir hören auf, wenn es anfängt, spannend zu werden!
- Sonst müssten wir eine funktionale Programmiersprache lernen
- Warum ist es eine gute Idee, das (später) noch zu tun?
 - Auf den ersten Blick vielleicht gewöhnungsbedürftig, aber . . .
 - Funktionale Programmierung macht Spaß!
 - Oft elegante, kurze, gut lesbare Programme
 - Programme ggf. einfach automatisch parallelisierbar
- Konzepte Funktionaler Programmierung im "Alltag"
 - Computeralgebrasysteme, z.B. Maxima, Maple, Mathematica
 - Populäre Scriptsprachen wie z.B. Python oder Ruby
 - Teile der C++ Standard- bzw. boost Bibliotheken
 - Template metaprogramming in C++
 - Neue Konzepte seit C++11
 - Programmierung des GNU Emacs Editors ;-)
- Beispiele von Elementen Funktionaler Programmierung . . .

Ein Hauch von Funktionaler Programmierung in Java

Java definiert lambda expressions

```
// f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}
java.util.function.BinaryOperator < Integer >
   f = (x,y) -> { return x+y; };
int z = f.apply(1,2);
System.out.println(f.apply(1,2)); // \Rightarrow 3
```

- Den Typen von f schreiben wir i.d.R. nicht explizit
- Seit Java 8 brauchbar und oft sehr praktisch(!), aber . . .
- ... Möglichkeiten vergleichsweise eingeschränkt!
- Wir benötigen diese Schreibweise *nicht weiter*!

Ein JavaScript-Beispiel


```
let xhr = new XMLHttpRequest();
xhr.responseType = 'text';
xhr.open('GET', 'example.net/some/route');
xhr.onload = function() {
  if (xhr.status == 200) {
                                     // NK
    // ... use result ...
    console.log(xhr.responseText);
}:
xhr.send(); // initiate request ...
            // ... and go on ...
```

- Anfrage an Server soll nicht auf die Antwort warten, sonst würde z.B. das Browser-Fenster solange "blockiert".
- Sobald eine gültige Antwort übermittelt wurde, wird die angegebene anonyme Funktion aufgerufen.
- Beachte: Dort ist Anfrage in xhr gebunden.

Kurze Zusammenfassung

- Funktionale Programmierung kennt keine Variablen!
 - Kein veränderbarer Zustand
 - (Außer Zustand des Auswertalgorithmus selbst)
- Termauswertung
 - Sequenz
 - Fallunterscheidung
- Funktionsauswertung
 - Rekursion ersetzt Schleifen
 - Rekursion als ein zentrales Element
- Soweit alles noch in Java möglich! Ausprobieren!
- Funktionale Programmiersprachen
 - Erlauben Funktionen höherer Ordnung
 - "Rechnen mit Funktionen" (λ-Kalkül)
- Als nächstes: imperative Programmierung

Übersicht

- 6 Programmierparadigmen
 - Einführung
 - Funktionale Programmierung
 - Imperative Programmierung
 - Logische Programmierung
 - Zusammenfassung und Ausblick

Imperative Programmierung

- Algorithmus = Sequenz von Anweisungen
- Auswerten einer Anweisung = Zustandsänderung
- Zustand = Werte von Variablen
- Schrittweise Manipulation von veränderlichen Daten (Zustand)
- Orientierung an einem einfachen Prozessormodell
 - Abarbeiten von "Befehlen"
 - später: Registermaschine
- Erweiterung durch Strukturierte/Prozedurale/OO P.
 - Ohne diese Erweiterungen nicht praktikabel!
 - Java fällt damit in die Klasse imperativer Programmiersprachen
- Formale Beschreibung siehe z.B. [Saake&Sattler] (Kapitel 3.3)

Variablen

- Eine Variable besteht aus
 - einem eindeutigen Bezeichner (Namen, z.B. X) und
 - einem veränderlichen Wert (von einem bestimmten Typ)
- Die Anweisung X := t heißt *Wertzuweisung*
 - X bezeichnet eine Variable
 - t ist ein Term (ohne Unbestimmte) mit Wert w(t)
 - t darf Variablen enthalten (auch X selbst)
- Semantik der Wertzuweisung X := t
 - Nach Ausführung von X := t gilt X = w(t)
- Vor Ausführung der ersten Wertzuweisung gilt $X = \bot$

Zustand und Zustandstransformation

- $Zustand = partielle Abbildung Z : V \rightarrow W$
 - lacktriangle Menge von Variablen ${\mathcal V}$
 - Wertemenge W (hier alle Variablen vom gleichen Typ)
- Abbildung Z ordnet Variablen ihren momentanen Wert zu
 - Vereinfacht: Zustand als Menge von Variablen
- Zuweisung X := t transformiert Z in neuen Zustand Z'
 - Dabei ändert sich der Wert der Variablen in $X \in \mathcal{V}$
 - Zustandstransformation als Funktion
- Komplexe Anweisungen durch
 - Sequenz
 - Auswahl (Fallunterscheidung if-else)
 - Iteration (while Schleife)
- Formale Definition in [Saake&Sattler] (Kapitel 3.3)
 - Definiere Semantik durch Konstruktion von Transformationen
 - Bedeutung intuitiv klar, wir benötigen Formalismus nicht weiter

Kurze Charakterisierung

- Algorithmus wird beschrieben durch Folge von Anweisungen
- Anweisung =
 - Wertzuweisung als elementare Anweisung
 - Sequenz = Folge von Anweisungen
 - Auswahl = bedingte Ausführung
 - Iteration = bedingte Wiederholung (Schleife)
 - Bedingung = Wahrheitswert abhängig von Zustand
- Jede elementare Anweisung \Rightarrow Transformation des Zustands
- Zustand = Zuordnung von Werten zu Variablen(-namen)
- Bemerkungen
 - lacktriangle Definiere Iteration rekursiv \Rightarrow Schleife muss nicht terminieren
 - lacktriangleright Rekursion ightarrow Iteration: gleiche Mächtigkeit von imperativen und funktionalen Sprachen
 - Sprachelemente bereits ausreichend für universelle Programmiersprache

Syntax für Beispiele

- Wir verwenden eine einfache, fiktive imperative Sprache
- Beschränkung auf Typen int und bool
- Terme wie bisher aber
 - Variablen statt Unbestimmte
 - Keine Funktionsauswertung in Termen (keine Funktionen!)
 - Keine Fallunterscheidung in Termen
- Auswahl if P then α else β fi
- Iteration while P do α od
- Ein Programm besteht aus
 - Programmname
 - var X,Y,... : int P,Q,... : bool
 - input $X_1, ..., X_n$
 - a
 - \blacksquare output Y_1, \ldots, Y_m

Variablendeklaration

Eingabe-Variablen Anweisungen Ausgabe-Variablen

Beispiel: Fakultätsfunktion x!

■ Berechne $x! = x \cdot (x-1) \cdot (x-2) \cdots 2 \cdot 1$

■ Bezeichne mit [FAC](x) die Auswertung mit Eingabe X = x

$$\blacksquare \ \, \mathsf{Es} \ \, \mathsf{gilt} \ \, [\mathsf{FAC}](x) = \begin{cases} x \geqslant 0: & x! \\ x < 0: & \bot \end{cases}$$

Beispiel: Auswertung von FAC(3)

Bedeutung der einzelnen Schritte intuitiv klar

#	Anweisung	X	Υ
0	(input)	3	\perp
1	Y:=1	3	1
2	Y:=Y*X	3	3
3	X:=X-1	2	3
4	Y:=Y*X	2	6
5	X:=X-1	1	6
6	Y:=Y*X	1	6
7	X:=X-1	0	6
8	(output)	0	6
$(2) : I C I 0 C \dots 1$			

■ Formale Auswertung von [FAC](3) siehe [Saake&Sattler]

Beispiel: Fibonacci Zahlen

■ Iterative Berechnung nach der Regel $f_0 = 0$, $f_1 = 1$ und $f_i = f_{i-2} + f_{i-1}$ für $i \ge 2$

```
FIB:
var X, Y, Z, W : int;
input X;
if X=0 then Y:=0;
else
                             # f_{i-2}, f_{i-1}
  Y := 0; Z := 1;
  while X>1 do
    W := Y; Y := Z; Z := Z + W; # temporary W = Y
    X := X - 1;
  od:
  Y := Y + Z;
fi;
output Y;
```

■ FIB entspricht der funktionalen Implementierung ifib

Weitere Beispiele

- Einige Beispiele kennen wir schon in Java!
- Euklids Algorithmus: berechne größten gemeinsamen Teiler
 - Rekursive und iterative Variante
 - Beispiele für iterative Auswertung in [Saake&Sattler]
- Berechnung von Primzahlen
 - Iterative Variante: Erste n Primzahlen
 - Rekursive Variante: Entscheide ob x prim
- Berechnung der Quadratwurzel nach Heron
- Als Übung z.B.
 - Addition und Multiplikation von natürlichen Zahlen
 - z.B. Umsetzung in Java (ggf. mit Ausgabe des Zustands)
- Abschließend:
 Frage nach der Semantik eines gegebenen Algorithmus

Was berechnet das folgende Programm?

- Das folgende Programm beschreibt einen Algorithmus.
- Es ist nicht einfach zu sehen, welchen ...!?

```
XYZ:
var     W,X,Y,Z : int;
input     X;
Z:=0; W:=1; Y:=1;
while W \leq X do
     Z:=Z+1; W:=W+Y+2; Y:=Y+2;
od;
output Z;
```

- Eine Möglichkeit: verschiedene Eingabewerte probieren
- Immer noch schwer!
- *Später:* Wir zeigen $[XYZ](X) = \lfloor \sqrt{X} \rfloor$

Kurze Zusammenfassung

- Imperative Programmierung beschreibt Algorithmen durch
 - Folge von Anweisungen, die
 - den Zustand des Programms verändern
- Gegensatz zur Funktionalen Programmierung
 - Dort gibt es keine Zustandsänderungen
- Zustand = Menge von Variablen mit Werten
- Anweisungen =
 - Wertzuweisung
 - Sequenz von Anweisungen
 - Auswahl
 - Iteration
- In der "reinen Form": Keine Funktionsaufrufe, keine Rekursion!
 - Erweiterung durch Strukturierte/Prozedurale Programmierung
- Objektorientierte Programmierung als Erweiterung
 - Zustand in Objekten gekapselt
 - Zustandsänderung nur im Kontext des Objekts (Methoden)

Zwischenstand: Funktionale vs Imperative Programmierung

- Imperative Programmierung
 - Intuitiv (Anweisung = Handlung, z.B. Kochrezept)
 - Strukturierte P./OOP ⇒ komplexe Algorithmen beherrschbar
 - Grundlage für viele, weit verbreitete Sprachen, z.B. Fortran, Pascal, Modula-2, Ada, C/C++, Java, ...
- Funktionale Programmierung
 - Intuitiv (Code ähnelt oft mathematischer Vorschrift)
 - Aber ggf. gewöhnungsbedürftig
 - Weniger verbreitet, z.B. Lisp, Scheme, Clojure, ML, Haskell, Ocaml, Scala
- Probleme durch Zustandsänderungen
 - Lesbarkeit beeinträchtigt (zeitliche Abfolge wichtig!)
 - Korrektheit ggf. schwerer beweisbar
 - Schwerer optimierbar, parallelisierbar (durch Compiler)
 - Vorsicht: Seiteneffekte

Zur Risiken und Nebenwirkungen ...

Seiteneffekt

Als Seiteneffekt (side effect) bezeichnet man jede Art von bleibender Veränderung, die nach Abarbeitung einer – potentiell komplexen – Anweisung bestehen, d.h. beobachtbar, bleibt.

- Oft ist explizit eine "nebensächliche" Änderung gemeint
- z.B. Zählvariable im Gegensatz zu output Variable
- Deshalb auch Abgrenzung als Nebenwirkung (synonym)
- Ein einfaches Beispiel

```
X:=Y+1;
```

```
Y:=Y+1;
X:=Y;
```

- Beide Sequenzen liefern das Ergebnis X = Y + 1.
- Rechts zusätzlich Änderung von Y ⇒ Seiteneffekt
- Seiteneffekte wo möglich vermeiden! (Vorsicht bei ++ und --!)

Aus der Praxis...

"Bei mir funktioniert es! – Euer Test muss falsch sein!!!"

```
public class Fibonacci {
  static int[] f = { 0, 1 };
  public static int fib(int n) {
    while (n>=1) {
      int z = f[0];
      f[0] = f[1];
      f[1] += z;
      --n;
    return f[0];
```

Übersicht

- 6 Programmierparadigmen
 - Einführung
 - Funktionale Programmierung
 - Imperative Programmierung
 - Logische Programmierung
 - Zusammenfassung und Ausblick

Logische Programmierung

- Sachverhalt wird beschrieben durch logische Aussagen
- Für eine Anfrage wird durch Deduktion eine Antwort ermittelt
 - Schlussfolgerung
 - Ableiten von neuen Aussagen aus bestehenden
 - auch Deduktive Programmierung
- Logische Aussagen alleine ergeben kein Berechnungsmodell!
- Benötige Interpretation: Deduktionsalgorithmus
- Beispiel
 - Menge von Aussagen = Kriminalfall
 - Deduktionsalgorithmus = Sherlock Holmes
 - "A case of simple deduction, Watson."
- Diese Rolle übernimmt die Programmiersprache
 - z.B. Prolog-Interpreter
- Im folgenden stark vereinfachte Darstellung.

Aussagen und Aussageformen

- Aussage z.B. Susi ist die Tochter von Petra.
- Aussageform = Aussage mit Unbestimmten
 - X ist Tochter von Y.
- Belegung transformiert Aussageform in Aussage
 - $X \mapsto Susi, Y \mapsto Petra$
- Atomare Formeln ersetzen natürliche Sprache, z.B.
 - Tochter(Susi, Petra)Tochter(X, Y)

Aussage

Aussageform

- Im Vergleich:
 - Atomare Formeln entsprechen (ungeschachtelten) booleschen Funktionstermen
 - z.B. tochter : $\mathcal{P} \times \mathcal{P} \to \text{bool}$ mit Menge aller Personen \mathcal{P}

Logik der Fakten und Regeln

Alphabet

- Unbestimmte X, Y, Z, ...
- Konstanten a, b, c, ...
- Prädikatensymbole P, Q, R, . . . (mit Stelligkeit), z.B. Tochter
- Logische Verknüpfungen (Konnektive, Junktoren)
 - Konjunktion ∧
 - Implikation \Rightarrow
 - Keine Negation ¬ oder Disjunktion ∨ !
- Atomare Formeln: $P(t_1, ..., t_n)$
- **Fakten** = alle t_i sind Konstanten (P sind ohne Unbestimmte)
 - z.B. Tochter(Susi, Petra)
- Regeln = $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_m \Rightarrow \alpha_0$
 - lacksquare Atomare Formeln α_i
 - $\alpha_1 \wedge \cdots \wedge \alpha_m$ heißt *Prämisse* (dabei *leere* P. immer wahr)
 - α_0 heißt Konklusion

Beispiel: Ableitung neuer Fakten aus Fakten und Regeln

Fakten

Regel

$$Tochter(X,Y) \land Tochter(Y,Z) \Rightarrow Enkelin(X,Z)$$

- Ableitung neuer Fakten durch Implikation ⇒
 - Finde Belegung der Unbestimmten in einer Regel, so dass
 - als *Prämisse* (linke Seite) bekannte Fakten stehen, dann
 - ⇒ rechte Seite ergibt neuen Fakt
- Diese Schlussregel $P \land (P \Rightarrow Q) \Rightarrow Q$ heißt modus ponens
- Im Beispiel

$$X \mapsto Susi$$
, $Y \mapsto Petra$, $Z \mapsto Rita$
 $\Rightarrow Enkelin(Susi, Rita)$

Logische Programmierung

- ,Algorithmus" D gegeben als Menge von Fakten und Regeln
- F(D) sind alle aus D direkt oder indirekt *ableitbaren* Fakten
- Keine "Ausgabegabefunktion" stattdessen Anfragen
- **Anfrage** γ ist eine Konjunktion von atomaren Formeln α_i

$$\gamma = \alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_m$$

- Eine Antwort ist eine Belegung der Unbestimmten in γ , bei der aus allen α_i Fakten werden.
- Enthält γ keine Unbestimmten, dann Antwort \in {true, false}
- Beispiele
 - ullet $\gamma = \texttt{Tochter}(\mathsf{Susi}, \mathsf{Rita}) o \mathsf{Antwort} \ \mathtt{false}$

Algorithmus zur Beantwortung von Anfragen?

- Beispiel: Anfrage $\gamma = \text{Enkelin}(X, \text{Rita})$
- Fakten: Tochter(Susi, Petra), Tochter(Petra, Rita)
- Regel: Tochter(X,Y) \land Tochter(Y,Z) \Rightarrow Enkelin(X,Z)
- Deduktion

$$\begin{array}{ccc} \mathtt{Enkelin}(X,\mathsf{Rita}) & \underset{\mathsf{Z}=\mathsf{Rita}}{\mapsto} & \mathtt{Tochter}(X,Y) \ \land \ \mathtt{Tochter}(Y,\mathsf{Rita}) \\ & \underset{\mathsf{Y}=\mathsf{Petra}}{\mapsto} & \mathtt{Tochter}(X,\mathsf{Petra}) \ \land \ \mathtt{true} \\ & \underset{\mathsf{X}=\mathsf{Susi}}{\mapsto} & \mathtt{true} \end{array}$$

• Antwort: $\{X = Susi\}$

Algorithmus zur Beantwortung von Anfragen

- Grundidee
 - lacksquare Starte mit Anfrage γ
 - Untersuche* Belegungen, die
 - \blacksquare einen Teil von γ mit Fakten gleichsetzen bzw.
 - lacksquare einen Fakt aus γ mit einer rechten Seite der Regel gleichsetzen

Setze diese Belegung ein.

- 2 Wende passende Regeln "rückwärts" an (Ersetze Konklusion durch Prämisse.)
- 3 Entferne gefundene Fakten aus Anfragemenge
 - Wiederhole Schritte bis γ leer ist
- * Dieser Algorithmus ist nicht deterministisch
 - Sherlock Holmes wählt immer die "richtigen" Belegungen!
- Reihenfolge spielt i.d.R. eine Rolle
 - Im Zweifelsfall systematisch alle Möglichkeiten probieren
 - z.B. durch Breitensuche backtracking (später!)

Abschließendes Beispiel: Addition von natürlichen Zahlen

- Fakt: succ(n, n+1) für alle $n \in \mathbb{N}_0$
- Regeln

$$\begin{array}{ccc} \stackrel{(1)}{\Rightarrow} & \operatorname{add}(X,0,X) \\ \operatorname{add}(X,Y,Z) \wedge \operatorname{succ}(Y,V) \wedge \operatorname{succ}(Z,W) & \stackrel{(2)}{\Rightarrow} & \operatorname{add}(X,V,W) \end{array}$$

■ Beispiel: $\gamma = \text{add}(3,2,5) \rightarrow \text{true}$

Weitere Beispiele

- Siehe [Saake&Sattler] (Kapitel 3.4)
- $\bullet \text{ add}(3,X,5) \rightarrow \{X=2\}$
- $add(X,Y,5) \rightarrow (X,Y) \in \{(0,5),(1,4),(2,3),(3,2),(4,1),(5,0)\}$
- add $(X, Y, Z) \rightarrow \bot$ (unendliches Ergebnis)
- $add(X,Y,1) \rightarrow (X,Y) \in \{(0,1),(1,0)\}$

Beispiel: add(X, Y, 1)

add(X,Y,1)
$$X = 1,Y = 0$$

$$true$$

$$add(X,Y',Z') \land succ(Y',Y) \land succ(Z',1)$$

$$Z' = 0$$

$$add(X,Y',0) \land succ(Y',Y)$$

$$(1) \quad X = 0,Y' = 0$$

$$add(0,0,0) \land succ(0,Y)$$

$$Y = 1$$

$$succ(0,1) \mapsto true$$

Kurze Zusammenfassung

- Logische Aussagen und Aussageformen
 - Als atomare Formeln
 - lacktriangleright Belegung: Aussageform o Aussage
- Menge von Fakten und Regeln
 - Fakten: Aussagen (keine Unbestimmte)
 - Regeln: Ableiten von neuen Fakten durch Deduktion
 - Schlussregel: modus ponens
- Anfrage → Antwort
 - Dazu ist ein Deduktionsalgorithmus nötig!
 - Integraler Teil der Programmiersprache.
- Wenig Ähnlichkeit zu funktionaler oder imperativer P.
 - Spezielle Einsatzgebiete, z.B. Expertensysteme, Theorembeweiser, model checking, . . .

Übersicht

- 6 Programmierparadigmen
 - Einführung
 - Funktionale Programmierung
 - Imperative Programmierung
 - Logische Programmierung
 - Zusammenfassung und Ausblick

Abschließend zu Programmierparadigmen

- Es gibt eine Vielzahl weiterer Programmierparadigmen
- Viele Programmiersprachen unterstützen *mehrere* Paradigmen
- Dabei steht i.d.R. ein Paradigma im Vordergrund
- Alle Paradigmen haben Stärken und Schwächen
 - z.B. Funktionale vs Imperative Programmierung
 - Oft Integration als Kompromiss
 - Selten Paradigma in Reinform (z.B. rein funktional)
- Beispiel Java
 - Objektorientiert
 - Strukturiert
 - Imperativ
 - wenige Elemente Funktionaler Programmierung (closures)
 - wenige Elemente Generischer Programmierung

Ausblick: Generische Programmierung

- Beschreibe Funktionen oder Objekte so, dass sie für verschiedene Datentypen verwendet werden können
- Beispiele
 - Absolutbetrag: gleiche Implementierung für int, double, ...
 - ullet Such- oder Sortieralgorithmus für beliebige Objekte/Typen benötigt Prädikat für Vergleich a < b
 - Komplexe Zahlen als Klasse: gleiche Implementierung für float oder double
- "Polymorphie von Datentypen und Klassen"
 - z.B. Platzhalter T statt konkreter Datentyp int
 - Begriff templates in C++: Schablonen für Klassen,...
- Java Generics
 - Nachgerüstet in Version 1.5
 - Weniger mächtig als z.B. templates in C++
 - Mit Schwächen, aber sehr praktisch
 - Beispiel: Comparable<T>

Zusammenfassung

- Programmierparadigma =
 - fundamentaler Programmierstil und bedingt damit auch
 - , Denkmuster" für Entwurf und Formulierung von Algorithmen
- Funktionale Programmierung
 - Auswertung von Funktionen
 - Keine Zustandsänderung (keine Variablen!)
 - Rekursion
- Imperative Programmierung
 - Anweisungen bedingen Zustandsänderungen
 - Zustand = Menge von Variablen
 - Iteration
 - Spezialfall: Objektorientierte Programmierung
- Logische Programmierung
 - Fakten und Regeln
 - Antwort auf Anfrage durch Deduktion
- In Java fehlten uns noch generics