LH_CD_LUIZ_CARLOS

Vou explorar os dados como se estivéssemos numa sala de decisão do estúdio: primeiro entendemos o terreno (o que existe, o que falta, o que distorce), depois olhamos padrões que realmente ajudam o negócio a decidir **que filme produzir**. No fim, respondo às perguntas do desafio, treino um modelo para prever a nota do IMDB e salvo o arquivo .pkl.

```
import pandas as pd, numpy as np, re, os, joblib
import matplotlib.pyplot as plt

from google.colab import files
from sklearn.model_selection import train_test_split
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.metrics import mean_absolute_error, mean_squared_error, classification_report, confusion_matrix
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import HistGradientBoostingRegressor
```

1) Carregar dados

```
up = files.upload()
name = list(up.keys())[0]
df = pd.read_csv(name)
df.head(8)
```


Escolher arquivos desafio_indi...m_imdb.csv

• **desafio_indicium_imdb.csv**(text/csv) - 303059 bytes, last modified: 04/09/2025 - 100% done Saving desafio_indicium_imdb.csv to desafio_indicium_imdb.csv

	Unnamed:	Series_T	itle	Released_Year	Certificate	Runtime	Genre	IMDB_Rating	Overview	Meta_score	Director	Star1	
0	1	The Godfa	ather	1972	А	175 min	Crime, Drama	9.2	An organized crime dynasty's aging patriarch t	100.0	Francis Ford Coppola	Marlon Brando	AI F
1	2		Dark night	2008	UA	152 min	Action, Crime, Drama	9.0	When the menace known as the Joker wreaks havo	84.0	Christopher Nolan	Christian Bale	L
2	3	Godfa	The ather: Part II	1974	А	202 min	Crime, Drama	9.0	The early life and career of Vito Corleone in	90.0	Francis Ford Coppola	Al Pacino	Rob
3	4	12 Angry	Men	1957	U	96 min	Crime, Drama	9.0	A jury holdout attempts to prevent a miscarria	96.0	Sidney Lumet	Henry Fonda	
4	5	The Lo the Rings: Return o	: The	2003	U	201 min	Action, Adventure, Drama	8.9	Gandalf and Aragorn lead the World of Men agai	94.0	Peter Jackson	Elijah Wood	Mort
									The lives				

5	6	Pulp Fiction	1994	Α	154 min	Crime, Drama	8.9	of two mob hitmen, a boxer, a gangst	94.0	Quentin Tarantino	John Travolta	Thı
6	7	Schindler's List	1993	Α	195 min	Biography, Drama, History	8.9	In German- occupied Poland during World War II,	94.0	Steven Spielberg	Liam Neeson	Fi
7	8	Inception	2010	UA	148 min	Action, Adventure, Sci-Fi	8.8	A thief who steals corporate secrets through t	74.0	Christopher Nolan	Leonardo DiCaprio	J Gc

Próximas etapas: Gerar código com df Ver gráficos recomendados New interactive sheet

2) Preparar variáveis

```
df = df.copy()
df["primary_genre"] = df["Genre"].astype(str).str.split(",").str[0].str.strip()
df["runtime_min"]
                   = df["Runtime"].apply(to_minutes)
df["gross_num"]
                   = df["Gross"].apply(to_number)
df["year"]
                   = pd.to_numeric(df["Released_Year"], errors="coerce")
df["metascore"]
                   = pd.to numeric(df["Meta score"], errors="coerce")
                   = pd.to_numeric(df["No_of_Votes"], errors="coerce")
df["votes"]
df["log_votes"]
                   = np.log1p(df["votes"])
df["log_gross"]
                   = np.log1p(df["gross_num"])
desc = df[["IMDB_Rating","metascore","runtime_min","year","votes","gross_num","log_votes","log_gross"]].describe().T
```

desc

→		count	mean	std	min	25%	50%	75%	max
	IMDB_Rating	999.0	7.947948e+00	2.722895e-01	7.600000	7.700000e+00	7.900000e+00	8.100000e+00	9.200000e+00
	metascore	842.0	7.796912e+01	1.238326e+01	28.000000	7.000000e+01	7.900000e+01	8.700000e+01	1.000000e+02
	runtime_min	999.0	1.228719e+02	2.810123e+01	45.000000	1.030000e+02	1.190000e+02	1.370000e+02	3.210000e+02
	year	998.0	1.991214e+03	2.330854e+01	1920.000000	1.976000e+03	1.999000e+03	2.009000e+03	2.020000e+03
	votes	999.0	2.716214e+05	3.209126e+05	25088.000000	5.547150e+04	1.383560e+05	3.731675e+05	2.303232e+06
	gross_num	830.0	6.808257e+07	1.098076e+08	1305.000000	3.245338e+06	2.345744e+07	8.087634e+07	9.366622e+08
	log_votes	999.0	1.190417e+01	1.117715e+00	10.130185	1.092364e+01	1.183759e+01	1.282978e+01	1.464982e+01
	log_gross	830.0	1.642269e+01	2.411711e+00	7.174724	1.499272e+01	1.697069e+01	1.820843e+01	2.065783e+01

3) EDA rápida e honesta

missing = (df.isna().mean().sort_values(ascending=False)*100).round(1)
missing.head(12)

	0
gross_num	16.9
log_gross	16.9
Gross	16.9
Meta_score	15.7
metascore	15.7
Certificate	10.1
year	0.1
Unnamed: 0	0.0
Overview	0.0
IMDB_Rating	0.0
Genre	0.0
Runtime	0.0

dtype: float64

```
plt.figure(figsize=(7,4))
plt.hist(df["IMDB_Rating"].dropna(), bins=20)
plt.title("Distribuição IMDB_Rating")
plt.xlabel("IMDB_Rating"); plt.ylabel("Frequência")
plt.show()
```


Distribuição IMDB_Rating 160 140 120 Frequência 08 09 60 40 20 8.0 8.4 8.8 9.2 7.6 7.8 8.2 8.6 9.0 IMDB_Rating

```
plt.figure(figsize=(7,4))
plt.hist(df["metascore"].dropna(), bins=20)
plt.title("Distribuição Meta_score")
plt.xlabel("Meta_score"); plt.ylabel("Frequência")
plt.show()
```


Distribuição Meta_score Frequência Meta_score

```
plt.figure(figsize=(7,4))
plt.hist(df["log_votes"].dropna(), bins=20)
plt.title("Distribuição log(No_of_Votes)")
plt.xlabel("log(No_of_Votes)"); plt.ylabel("Frequência")
plt.show()
```



```
plt.figure(figsize=(7,4))
plt.hist(df["log_gross"].dropna(), bins=20)
plt.title("Distribuição log(Gross)")
plt.xlabel("log(Gross)"); plt.ylabel("Frequência")
plt.show()
```

 $\overline{\Rightarrow}$

Distribuição log(Gross) 120 - 100 - 80 - 40 - 20 - 8 10 12 14 16 18 20 log(Gross)

Padrões de associação (correlações numéricas)

```
num = ["IMDB_Rating","metascore","log_votes","log_gross","runtime_min","year"]
C = df[num].corr(numeric_only=True)
fig, ax = plt.subplots(figsize=(6.5,5))
im = ax.imshow(C.values, aspect="auto")
ax.set_xticks(range(len(num))); ax.set_xticklabels(num, rotation=45, ha="right")
ax.set_yticks(range(len(num))); ax.set_yticklabels(num)
for i in range(len(num)):
    for j in range(len(num)):
        ax.text(j, i, f"{C.values[i,j]:.2f}", ha="center", va="center", fontsize=8)
plt.title("Matriz de Correlação (matplotlib)")
plt.colorbar(im); plt.tight_layout(); plt.show()
```


Relações que interessam ao negócio

```
plt.figure(figsize=(7,4))
plt.scatter(df["metascore"], df["IMDB_Rating"], alpha=0.5)
plt.title("IMDB vs Meta_score")
plt.xlabel("Meta_score"); plt.ylabel("IMDB_Rating")
plt.show()
```


IMDB vs Meta_score 9.2 9.0 8.8 IMDB_Rating 8 8 8 9 9 8.0 7.8 7.6 30 40 50 60 70 80 90 100 Meta score

```
plt.figure(figsize=(7,4))
plt.scatter(df["log_votes"], df["log_gross"], alpha=0.4)
plt.title("log(votos) vs log(gross)")
plt.xlabel("log(No_of_Votes)"); plt.ylabel("log(Gross)")
x = df["log_votes"].replace([np.inf,-np.inf], np.nan).dropna()
y = df.loc[x.index, "log_gross"].dropna()
if len(x)==len(y) and len(x)>2:
    c = np.polyfit(x, y, 1)
    xp = np.linspace(x.min(), x.max(), 100)
    yp = c[0]*xp + c[1]
    plt.plot(xp, yp)
plt.show()
```


Notas por gênero e por certificado

```
g_order = df.groupby("primary_genre")["IMDB_Rating"].median().dropna().sort_values(ascending=False)
labels = g_order.index.tolist()
data = [df.loc[df["primary_genre"]==g, "IMDB_Rating"].dropna().values for g in labels]
plt.figure(figsize=(10,5))
plt.boxplot(data, labels=labels, showmeans=True)
plt.xticks(rotation=45, ha="right")
plt.title("IMDB_Rating por gênero principal")
plt.tight_layout(); plt.show()
```

 $\overline{\Rightarrow}$

/tmp/ipython-input-874748225.py:5: MatplotlibDeprecationWarning: The 'labels' parameter of boxplot() has been renamed 'tick_labels' sir
plt.boxplot(data, labels=labels, showmeans=True)


```
grp = df.groupby("Certificate")["IMDB_Rating"].describe()[["mean","count"]].sort_values("mean", ascending=False)
fig, ax = plt.subplots(figsize=(7,4))
ax.bar(grp.index.astype(str), grp["mean"].values)
ax.set_title("Média da nota por certificado"); ax.set_ylabel("IMDB_Rating (média)")
for i,v in enumerate(grp["mean"].values):
    ax.text(i, v, f"{v:.2f}", ha="center", va="bottom", fontsize=8)
plt.show()
```


Tendência temporal da nota

```
year_mean = df.dropna(subset=["year"]).groupby("year")["IMDB_Rating"].mean()
plt.figure(figsize=(8,4))
plt.plot(year_mean.index, year_mean.values)
plt.title("IMDB_Rating médio por ano")
```

```
plt.xlabel("Ano"); plt.ylabel("IMDB_Rating médio")
plt.show()
```


Quem domina o dataset?

```
top_dir = df["Director"].value_counts().head(12)
fig, ax = plt.subplots(figsize=(8,5))
ax.barh(top_dir.index[::-1], top_dir.values[::-1])
ax.set_title("Directores mais frequentes"); plt.tight_layout(); plt.show()
```


Diretores mais frequentes


```
stars = pd.concat([df["Star1"],df["Star2"],df["Star3"],df["Star4"]])
top_star = stars.value_counts().head(12)
fig, ax = plt.subplots(figsize=(8,5))
ax.barh(top_star.index[::-1], top_star.values[::-1])
ax.set title("Atores/atrizes mais frequentes"); plt.tight layout(); plt.show()
```

→

Hipóteses iniciais

Minha impressão é que popularidade puxa faturamento; que a crítica e o público andam juntos na média; que tempo demais pode cansar; e que o texto do Overview entrega pistas fortes do gênero.

Perguntas do desafio

1) O que eu recomendo para alguém que eu não conheço?

Gosto de equilibrar qualidade e alcance. Crio um score que multiplica a nota pelo peso relativo de votos. A lista abaixo é a minha "carta na manga".

```
t = df.copy()
t["score"] = t["IMDB_Rating"] * (t["log_votes"]/t["log_votes"].max())
rec = t.sort_values(["score","IMDB_Rating","votes"], ascending=False)[["Series_Title","IMDB_Rating","votes","Genre"]].head(10)
rec_plot = rec.iloc[::-1]
fig, ax = plt.subplots(figsize=(9,5))
ax.barh(rec_plot["Series_Title"], rec_plot["IMDB_Rating"].values)
ax.set_title("Top 10 por score de recomendação")
plt.tight_layout(); plt.show()
rec
```


Top 10 por score de recomendação

04/09/2025, 22:56				LH_CD_LUIZCARLOS.ipynb - Colab			
9	9 The Lord of the Rings: The Fellowship of the Ring		1661481	Action, Adventure, Drama			
2	The Godfather: Part II	9.0	1129952	Crime, Drama			
13	The Matrix	8.7	1676426	Action, Sci-Fi			
Próximas	etapas: Gerar código com rec Ver gráficos recom	enda	ados N	lew interactive sheet			

2) O que se relaciona com alta expectativa de faturamento?

Uso log gross como variável de interesse e vejo associações simples com itens que controlam popularidade e apelo de mercado.

```
cand = ["metascore","runtime_min","year","votes","IMDB_Rating","log_gross"]
df[cand].corr(numeric_only=True)["log_gross"].sort_values(ascending=False)
```

→ ▼		log_gross
	log_gross	1.000000
	votes	0.545438
	year	0.218014
	runtime_min	0.141440
	IMDB_Rating	-0.005405
	metascore	-0.046170

dtype: float64

3) O que dá para tirar do Overview? Dá para inferir gênero?

Faço um teste rápido com TF-IDF + Regressão Logística. Se houver classes raras, reduzo. Mostro o relatório e, se couber, uma matriz de confusão enxuta.

```
ok = df.dropna(subset=["Overview","primary genre"]).copy()
freq = ok["primary genre"].value counts()
ok = ok[ok["primary genre"].isin(freq[freq>=2].index)]
X text = ok["Overview"].astype(str)
y gen = ok["primary genre"].astype(str)
if y gen.nunique() >= 2 and y gen.value counts().min() >= 2:
    vec = TfidfVectorizer(max features=4000, ngram range=(1,2), min df=3)
    Xv = vec.fit transform(X text)
   Xtr, Xte, ytr, yte = train_test_split(Xv, y_gen, test_size=0.2, random_state=42, stratify=y_gen)
    clf = LogisticRegression(max iter=300)
    clf.fit(Xtr, vtr)
    yp = clf.predict(Xte)
    print(classification report(yte, yp))
    labs = sorted(yte.unique())
    if len(labs) <= 10:
        cm = confusion matrix(yte, yp, labels=labs)
       fig, ax = plt.subplots(figsize=(0.6*len(labs)+3, 0.6*len(labs)+3))
        im = ax.imshow(cm, aspect="auto")
        ax.set xticks(range(len(labs))); ax.set xticklabels(labs, rotation=45, ha="right")
        ax.set yticks(range(len(labs))); ax.set yticklabels(labs)
        for i in range(len(labs)):
            for j in range(len(labs)):
                ax.text(j, i, str(cm[i,j]), ha="center", va="center", fontsize=8)
        plt.title("Matriz de confusão (gênero via Overview)"); plt.colorbar(im); plt.tight layout(); plt.show()
else:
    print("Classes insuficientes para estratificar. Separamos as mais raras para manter o teste honesto.")
\overline{2}
                   precision
                                recall f1-score
                                                   support
           Action
                        0.50
                                  0.37
                                            0.43
                                                         35
        Adventure
                        0.00
                                  0.00
                                            0.00
                                                         14
        Animation
                        1.00
                                  0.06
                                            0.12
                                                         16
                        0.50
                                            0.10
                                                         18
        Biography
                                  0.06
           Comedy
                        0.40
                                  0.06
                                            0.11
                                                         31
            Crime
                        0.00
                                  0.00
                                            0.00
                                                         22
```

58

0.93

0.48

0.33

Drama

```
Film-Noir
                   0.00
                             0.00
                                       0.00
                                                     1
                             0.00
                                                     2
      Horror
                   0.00
                                       0.00
     Mystery
                   0.00
                             0.00
                                       0.00
                                                     2
                   0.00
                             0.00
                                       0.00
                                                     1
     Western
                                       0.35
                                                   200
    accuracy
  macro avg
                   0.25
                             0.14
                                       0.11
                                                   200
weighted avg
                                       0.25
                   0.37
                             0.35
                                                   200
/usr/local/lib/python3.12/dist-packages/sklearn/metrics/ classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and by
  warn prf(average, modifier, f"{metric.capitalize()} is", len(result))
/usr/local/lib/python3.12/dist-packages/sklearn/metrics/ classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and by
  warn prf(average, modifier, f"{metric.capitalize()} is", len(result))
/usr/local/lib/python3.12/dist-packages/sklearn/metrics/ classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and by
  _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
```

4) Como eu prevejo a nota do IMDB?

Trato como **regressão**. Entro com numéricas (metascore, duração, ano, log de votos e de receita), categóricas (certificado, gênero, diretor e elenco) e texto (Overview via TF-IDF). Avalio com **RMSE** e **MAE** — erro médio é fácil de explicar, RMSE pesa deslizes maiores.

