Formulas used to calculate glacier melt in DMBSim

NOTES

- M_f is the melt factor
- r_i , r_f and r_s are the radiation factors. $r_f = (r_s + r_i) / 2$
- T(x,y) is the daily mean temperature, only when
 0 °C (else no melt)
- a_i(x,y) = 1 (= no effect) if you don't set parameter albedo_ice_decrease_elev in set_params

• Q(x,y) is radiation (also called I_{pot})

• f_{deb} is the debris reduction factor (default 0.6)

Ice covered with **thick debris (less melt).**Only if debris **shapefile** is used.

$$\left[f_{deb} \cdot \left[M_f + \frac{24}{1000} \cdot r_i \cdot Q(x, y) \right] \cdot T(x, y) \right]$$

Ice with no debris. You can use $a_i(x,y)$ if the ice gets darker on the tongue (more melt).

$$\left[\left[M_f + \frac{24}{1000} \cdot r_i \cdot a_i(x,y) \cdot Q(x,y) \right] \cdot T(x,y) \right]$$

Firn surface. Only if firn **shapefile** is used and only when it is not covered by seasonal snow.

$$\left[M_f + \frac{24}{1000} \cdot r_f \cdot Q(x,y)\right] \cdot T(x,y)$$

Snow surface (changes every day depending on snowfall and melt).

$$\left[M_f + \frac{24}{1000} \cdot r_s \cdot Q(x,y)\right] \cdot T(x,y)$$