Market Asymmetry and Monetary Policy

IHEID Brown Bag Lunch

Gregory Auclair allan.auclair@graduateinstitute.ch

Outline

1 Introduction

2 Model Setup

3 Results

4 Conclusion

Table of contents

Introduction

2 Model Setup

3 Results

4 Conclusion

Why Does Market Asymmetry Matter?

- Some firms have substantial pricing power
 - How does this affect aggregate price dynamics?
 - Do these firms respond differently to shocks?

Why Does Market Asymmetry Matter?

- Some firms have substantial pricing power
 - Do these firms respond differently to shocks?
 - Does this affect aggregate price dynamics?
- Markup dispersion implies households allocate income inefficiently
 - Does monetary policy directly affect allocative efficiency?

Why Does Market Asymmetry Matter?

- Some firms have substantial pricing power
 - How does this affect aggregate price dynamics?
 - Do these firms respond differently to shocks?
- Markup dispersion implies households allocate income inefficiently
 - Does monetary policy directly affect allocative efficiency?
- There are many indications large firms are getting larger
 - Large firms tend to be efficient, which is good
 - If markets become uncompetitive, then problematic
 - How do we evaluate the tradeoffs?

This Paper

- Solves a NK model where market position influences pricing behavior
 - Includes strategic interaction between firms

This Paper

- Solves a NK model where market position influences pricing behavior
 - Includes strategic interaction between firms
- Establishes a relation between aggregate price dynamics and concentration
 - Compares both margins: (i) fewer firms in an industry and
 (ii) domination of an industry by one firm

This Paper

- Solves a NK model where market position influences pricing behavior
 - Includes strategic interaction between firms
- Establishes a relation between aggregate price dynamics and concentration
 - Compares both margins: (i) fewer firms in an industry and
 (ii) domination of an industry by one firm
- Evaluates how shocks affect the dynamic allocative efficiency of the economy
 - Helps quantify the welfare loss from price distortions
 - Shows strategic complementarity can play a role under certain conditions

Greg Auclair Market Asymmetry 4 / 29

What Is the Typical Market Structure?

Fact 1: A Few Firms Control Most Market Share in an Industry

- In both Europe and the US, an HHI over 2000 seems typical for an industry
- A value of 2500 is considered "highly concentrated"
- Benkard et al. (2021) finds 44% of local markets in the US have an HHI over 2500, based on consumer survey data
- Top two firms usually control around 60% of market share within narrowly defined markets (both EU and US)

Fact 2: Leading Firm in an Industry Has a Large Advantage

- Controls 1.5x-2x the market share of the nearest rival
- Hottman et al. (2016) finds the markup is large: 24 to 100% higher than the sector average (depending on approach)

Evidence for High Concentration in EU

- HHI = sum of squared market shares across firms in an industry
 Range goes from 0 (perfect competition) to 10,000 (monopoly)
- EU Commission collects information on the market share of firms and competitors as part of its merger review process
- Affeldt et al. (2018) collects cases and the resulting database provides information on 10,000 antitrust markets

Figure: Antitrust Market HHIs from Affeldt et al.

Adding Market Structure to NK Model

- NK model typically uses a CES aggregator to describe demand
 - In this case, continuum of identical firms all have equal market power
- Nested CES (N-CES) adds competition within an industry
 - Firms are discrete, prices and market share can vary
- N-CES implies a link between market share and pricing power
- When firms are asymmetric, price elasticity of demand differs

$$\frac{\partial \log(y_{sjt})}{\partial \log(p_{sjt})} = (\varphi - \sigma)x_{sjt} - \varphi \quad \text{where} \quad x_{sjt} \equiv \frac{p_{sjt}y_{sjt}}{\sum_{s=1}^{n} p_{sjt}y_{sjt}}$$

$$= \frac{\varphi - \sigma}{p_{sjt}} - \varphi \quad \text{(if firms are identical)}$$
(2)

Greg Auclair Market Asymmetry 7 / 29

Evidence on Firm Pricing Behavior

Fact 1: Large Firms Limit Pass-Through of Cost Shocks

- There is strong empirical evidence for this, but most papers are from the trade literature: e.g. Berman et al. (2012), Auer and Schoenle (2016), Amiti et al. (2019)
- Esitmates sugggest large firms pass through 50-60% of cost shocks, small firms have full pass through

Fact 2: Large Firms Are Strategic

- Rival prices typically a top response on research surveys looking at motivation for price changes
- Amiti et al. suggests large firms match around 50% of price increases by rival firms
- Small firms do not appear strategic

Price Elasticity of Demand

- The slope of the price elasticity of demand sets the markup
- The curvature determines the pass-through of cost shocks
- Strategic interaction also affects the curvature

Figure: Price Elasticity of Demand for Large and Small Firms

Table of contents

1 Introduction

2 Model Setup

3 Results

4 Conclusion

Asymmetric Specification

- Model is limited to the interaction of small and large firms
- Market share is function of prices

$$x_{sjt} = \left(\frac{p_{sjt}}{p_{jt}}\right)^{1-\varphi} \tag{3}$$

The industry price index is given by

$$p_{jt} = \left[\underbrace{(p_{sjt}^i)^{1-\varphi}}_{\text{own price}} + \underbrace{(n_s - 1)(p_{sjt}^{-i})^{1-\varphi} + n_{-s}(p_{-sjt}^{-i})^{1-\varphi}}_{\text{rival prices}} \right]^{\frac{1}{1-\varphi}}$$
(4)

- Firm considers number of rivals when setting prices
- Price \uparrow or number of rivals $\uparrow \Longrightarrow$ market share \downarrow

Competition within an Industry

- The model specifies one large firm in a sector and multiple small firms
- Differences in prices are explained by a productivity wedge

Figure: Competition from the Firm's Perspective

■ Under flexible prices, the firm's problem is $\Pi_{st} = (p_{st} - \mathcal{C}_{st})y_{st}$

Flexible Price Equilibrium

relative productivity of large firms (\bar{a}_L/\bar{a}_S)

Dynamic Problem with Sticky Prices

Rotemberg price adjustment costs introduced

$$\frac{\Theta_s}{2} \left(\frac{P_{st}^i}{P_{st-1}^i} - 1 \right)^2 Y_t \quad \text{where} \quad \Theta_s = x_s \Theta$$
 (5)

- Θ gives the adjustment cost, which is firm-specific
- Each firm's problem becomes

$$\mathcal{L} = \mathbb{E}_{t} \sum_{k=0}^{\infty} \Lambda_{t+k} \left[\left(p_{st+k} - \mathcal{C}_{st+k} \right) y_{st+k} - \frac{\Theta_{s}}{2} \left(\pi_{t+k} \frac{p_{st+k}}{p_{st+k-1}} - 1 \right)^{2} P_{t+k} Y_{t+k} \right]$$
 (6)

Stochastic discounting follows from the household Euler equation

$$\Lambda_{t+k} = \beta^k \frac{P_t}{P_{t+k}} \frac{C_t}{C_{t+k}} \tag{7}$$

Solution Method

- The solution to the firm's optimization problem is log-linearized
- The resulting decision rule is given by

$$\tilde{p}_{st}^{i} = \Gamma_{s} \, \tilde{p}_{st-1}^{i} + (1 + \Gamma_{s}^{\prime}) \, \tilde{C}_{st}^{i} + \Gamma_{s}^{*} \, \tilde{p}_{-st}^{-i} + \widehat{\Gamma}_{s} \, \tilde{\pi}_{t}$$
(8)

- The Γ's collect all time-invariant terms
- The full solution incorporates the rival's decision rule

$$\tilde{p}_{st}^i = \underbrace{\frac{\Gamma_s}{1 - \Gamma_s^* \Gamma_{-s}^*}}_{\Upsilon_s} \tilde{p}_{st-1}^i + \underbrace{\frac{\Gamma_s^* \Gamma_{-s}}{1 - \Gamma_s^* \Gamma_{-s}^*}}_{\Upsilon_s^*} \tilde{p}_{-st-1}^{-i} + \underbrace{\frac{1 + \Gamma_s'}{1 - \Gamma_s^* \Gamma_{-s}^*}}_{\Upsilon_s^*} \tilde{C}_{st}^i + \underbrace{\frac{\Gamma_s^* (1 + \Gamma_{-s}')}{1 - \Gamma_s^* \Gamma_{-s}^*}}_{\Upsilon_s''} \tilde{C}_{-st}^{-i} + \underbrace{\frac{\hat{\Gamma}_s + \Gamma_s^* \hat{\Gamma}_{-s}}{1 - \Gamma_s^* \Gamma_{-s}^*}}_{\Upsilon_s^*} \tilde{\tau}_{t}^{-i}$$

- Rival past prices and marginal costs are included
- The solution for each type of firm is different

General Equilibrium

- Necessary to solve for the response of aggregate output and inflation to shocks
 - Two shocks are included: monetary policy and productivity
- Also necessary to solve for relation between firm-specific marginal costs and output
- Approach:

Parameter Settings

Table: Baseline Parameter Values

Parameter	Value	Description
β	0.99	Household time discount
α	0.30	Capital share
σ	1	Elasticity of substitution across goods
φ	10	Elasticity of substitution across varieties
Θ	125	Rotemberg price adjustment costs
n_L	1	Number of large firms in an industry
n_S	6	Number of small firms in an industry
\bar{a}_{L}^{G}	0.91	Productivity of large firms
$ar{a}_S$	1.09	Productivity of small firms
ϕ_π	1.50	Monetary policy inflation reaction
ϕ_{V}	0.125	Monetary policy output gap reaction
$ ho_{m}$	0.85	Persistence of monetary policy shocks
ρα	0.90	Persistence of productivity shocks

■ Value for Θ implies an average price duration of 8 months

Greg Auclair Market Asymmetry 17 / 29

Calibration: Targets and Model Results

Table: Industry-Level Targets

	Large firms		Small firms		
Description	Target	Value	Target	Value	Source
Targeted					
Market share	0.35	0.37	0.12	0.10	Affeldt et al. (2018)
Pass-through	0.65	0.66	0.97	0.91	Amiti et al. (2019)
Slope of best response price	0.48	0.51	0.00	0.10	lbid.
Markup $(\mu - 1)$	0.24	0.18	0.16	0.12	Hottman et al. (2016
Implied					
Log price	_	0.06	_	0.21	_

Table: Aggregate Targets

Description	Target (range)	Value	Source
Targeted	2045 - 2360 0.13 - 0.16 0.33 - 0.50	2060 0.14 0.36	Benkard et al. (2021) IRS SOI Tetlow (2022)
Price dispersion (std. dev.) Markup dispersion (std. dev.)	_ _ _	0.07 0.02	_ _

Table of contents

1 Introduction

2 Model Setup

3 Results

4 Conclusion

Slope of the Phillips Curve

■ With identical firms, the slope of the Phillips is given by

Figure: Response of Output and Inflation to a Monetary Policy Shock

Response to a Monetary Policy Shock

Figure: Reponse of Output and Inflation to a Monetary Policy Shock

Greg Auclair Market Asymmetry 21 / 29

Response to a Monetary Policy Shock

Response to a Productivity Shock

Figure: Reponse of Output and Inflation to a Productivity Shock

Response to a Productivity Shock

Allocative Efficiency

Figure: Reponse of Output and Inflation to a Monetary Policy Shock

Allocative Efficiency

Comparison with Standard NK Model

Table: OLS Regression of Price Dispersion on Inflation Following a Productivity Shock (Simulated Data)

Price dispersion	NK Model (1)	Baseline (2)			
Inflation	0.612***	0.027***			
	(0.054)	(0.003)			
Constant	-0.001***	0.069***			
	(0.000)	(0.000)			
R-squared	0.769	0.616			
Standard errors in parentheses					
*** p<0.01, ** p<0.05, * p<0.1					

Greg Auclair Market Asymmetry 27 / 29

Main Takeaways

Future Research Directions

- DiSP database on productivity differences
- Analysis of disersion in PPIs within an industry