Basis Representation Theorem - Alternate Proof

James Philip Rowell
January 3, 2019 (v01)

Basis Representation Theorem

Let b be a positive integer greater than 1.

For every positive integer n there is a unique sequence of integers $d_0, d_1, d_2, \dots, d_k$ such that:

$$n = d_k b^k + d_{k-1} b^{k-1} + \dots + d_2 b^2 + d_1 b^1 + d_0 b^0,$$

where $0 \le d_i < b$ for all i in $\{0, 1, 2, \dots, k\}$ and $d_k \ne 0$.

Definition: n is represented in base-b by the string of base-b-digits $(d_k d_{k-1} \cdots d_2 d_1 d_0)_b$

The paper "Counting" proves the "Basis Representation Theorem" by induction but suggests that it could also be proven by generalizing the technique used in exercise 2-iii; that proof follows.

Lemma

Let b be an integer such that $b \neq 0$ and $c_0, c_1, c_2, \ldots, c_n$ be a sequence of integers, then:

$$(((\ldots(((c_0)b+c_1)b+c_2)b+\ldots c_{n-2})b+c_{n-1})b+c_n)=c_0b^n+c_1b^{n-1}+c_2b^{n-2}+\ldots+c_{n-2}b^2+c_{n-1}b^1+c_nb^0+c_nb^n+$$

Proof of Lemma by Induction

Base case when n = 1:

$$(c_0)b + c_1 = c_0b^1 + c_1b^0$$

We also note that the Lemma holds for the case when n = 0 as $(c_0) = c_0 b^0$

Induction step: Assume the lemma is true for n = k and prove that it must be true for n = k + 1. QED

Euclidean Division Theorem

For all integers a and b such that b > 0, there exist unique integers q and r such that*:

$$a = qb + r$$
 such that $0 \le r < b$

Definition: In the above equation:

```
a is the dividend ("the number being divided")
b is the divisor ("the number doing the dividing")
q is the quotient ("the result of the division")
r is the remainder ("the leftover")
```

^{*}Aside: Actually the theorem is stronger than we have stated here. Specifically, it only requires that $b \neq 0$, however, to keep the remainder positive, the restriction on r would have to be stated like this $0 \leq r < |b|$ to deal with the possibility that b might be negative.