第5章 半导体存储电路

教学内容

§ 5.1 概述

第一讲: 触发器的电路结构与动作特点

§ 5.2 SR锁存器

§ 5.3 电平触发的触发器脉冲触发的触发器 边沿触发的触发器 边沿触发的触发器 触发器逻辑功能及其描述方法

第二讲:

§ 5.4-5 寄存器和存储器

教学要求

一. 重点掌握的内容:

- 1. 触发器的特点,现态和次态的概念.触发器逻辑功能的表示方法。
- 2. 触发器四种结构形式及其动作特点。
- 3. 触发器在逻辑功能上的四种主要类型,及其各自的功能特点和逻辑功能表示形式。

二.一般掌握的内容:

- 1. 触发器的电路结构形式和逻辑功能的关系
- 2. 常用集成电路触发器逻辑符号、功能特点以及异步置位、复位端的作用。

5.1 概述

一、触发器

1.概念:

能够存储1位二值信号的基本单元电路。

2.特点:

- (1)有两个稳定的状态: 0和1。
- (2)在适当输入信号作用下,可从一种状态翻转到另一种状态; 在输入信号取消后,能将获得的新状态保存下来。

二、触发器的现态和次态

现态: Q 次态: Q*

三、触发器逻辑功能描述方法

功能表(特性表)、特性方程、状态图、波形图

四、触发器分类

按结构可分为

SR锁存器

电平触发的触发器

脉冲触发的触发器

边沿触发触发器

按逻

辑

功

能

可

分为

SR触发器

JK触发器

D触发器

T和T'触发器

5.2 SR锁存器(基本RS触发器)

1.或非门构成

$R_D S_D$	Q	\mathbf{Q}^*	功能
0 0	0 1	Q	保持
0 1	0 1	1	置1
1 0	0 1	0	置0
1 1	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	0*	不定

$R_D S_D$	Q	\mathbf{Q}^*	功能
0 0	0 1	Q	保持
0 1	0 1	1	置1
1 0	0 1	0	置0
1 1	0 1	0*	不定

$R_D S_D$	Q	\mathbf{Q}^*	功能
0 0	0 1	Q	保持
0 1	0 1	1	置1
1 0	0	0	置0
1 1	0 1	0*	不定

$R_{D} = \begin{pmatrix} G_{1} & Q \\ Q & Q \\ Q & Q \end{pmatrix}$ $S_{D} = \begin{pmatrix} G_{2} & Q \\ Q & Q \end{pmatrix}$

或非门组成的基本 RS触发器的特性表

$R_D S_D$	Q	\mathbf{Q}^*	功能
0 0	0 1	Q	保持
0 1	0 1	1	置1
1 0	0 1	0	置0
1 1	0 1	0*	不定

当S_D、R_D同时撤去时,输出端Q和Q′状态不定。

设计电路时此种情况应避免

特性方程:
$$\begin{cases} Q^* = S + R'Q \\ SR = 0 \end{cases}$$

已知或非门构成的基本RS触发器输入波形, 试画出输出Q和Q'的波形。

2.与非门构成

$R'_D S'_D$	Q	\mathbf{Q}^*	功能
1 1	0 1	Q	保持
1 0	0 1	1	置1
0 1	0	0	置0
0 0	0 1	1*	不定

$\mathbf{R}_{\mathbf{D}}^{'} \mathbf{S}_{\mathbf{D}}^{'}$	Q	Q*	功能
1 1	0 1	Q	保持
1 0	0 1	1	置1
0 1	0 1	0	置0
0 0	0 1	1*	不定

$\mathbf{R}_{\mathbf{D}}^{'} \mathbf{S}_{\mathbf{D}}^{'}$	Q	Q*	功能
1 1	0 1	Q	保持
1 0	0 1	1	置1
0 1	0 1	0	置0
0 0	0 1	1*	不定

$R'_D S'_D$	Q	Q*	功能
1 1	0 1	Q	保持
1 0	0 1	1	置1
0 1	0	0	置0
0 0	0 1	1*	不定

当Sp'、Rp'同时撤去时,输出端Q和Q'状态不定。

设计电路时此种情况应避免

特性方程:
$$\begin{cases} Q^* = S + R'Q \\ SR = 0 \end{cases}$$

RS锁存器动作特点:

输入信号在全部作用时间内都直接改变输出端Q和Q′的状态。

 S_D 直接置位端 R_D 直接复位端

例5.2.1

5.3.1 电平触发的触发器(同步触发器)

1.电平触发SR触发器

同步SR触发器的特性表

CLK	S	R	\mathbf{Q}^*	功能
0	×	×	Q	保持
1	0	0	Q	保持
1	1	0	1	置1
1	0	1	0	置0
1	1	1	_	不定

特性方程:

$$\begin{cases} Q^* = S + R'Q \\ SR = 0 \end{cases}$$

电平触发方式的动作特点:

在 CLK=1期间,输入信号的变化都直接改变输出端Q和Q′的状态;CLK=0期间输出状态保持不变。

2.D锁存器

功能表		
CLK D Q*		
0	×	Q
1	0	0
1	1	1

特性方程:

$$Q^*=D$$

例: 5.3.2

特性方程:

$$Q^*=D$$

② CLK=1期间,输出Q随输入多次翻转,降低触发器的抗干扰能力。

5.3.3 脉冲触发的触发器(主从触发器)

1.主从SR触发器

	主	从
CLK	Q_m,Q_m	Q, Q'
1	随RS翻转	保持

(1)接收输 入信号过程 CLK=1期间: 主触发器控 制门G₇、G₈打 开,接收输 入信号S、R, 从触发器控 制门G₃、G₄封 锁,其状态 保持不变。

	主	从
CLK	Q_m,Q_m	Q, Q'
0	保持	随Q _m ,Q _m '翻转

主从SR触发器

特性方程:

$$\begin{cases}
Q^* = S + R'Q \\
SR = 0
\end{cases}$$

CLK下降沿到来时有效

- ②从电平触发到脉冲触发,解决CLK=1期间,输出Q随输入可能多次翻转问题。
- ② Q_m Q_m'仍存在多次翻转,输入信号仍需满足SR=0约束条件。

例5.4.1

$$\begin{cases} Q^* = S + R'Q \\ SR = 0 \end{cases}$$

2.主从JK触发器

$$S = JQ'$$
 $R = KQ$

主从JK触发器没有约束。

$$Q^* = S + R'Q$$

= $JQ' + (KQ)'Q$
= $JQ' + K'Q$
 CLK 下降沿时有效

$$S = JQ'$$
 $R = KQ$

J=1 K=0时, CLK=1期间主触发器置1;

CLK下降沿到达时,从触发器置1,Q*=1。

J=0 K=1时, CLK=1期间主触发器置0; CLK下降沿到达时, 从触发器置0, Q*=0。

$$J=0$$
 $K=0$ 时,触发器保持原来状态不变, $Q^*=Q$ 。

J=1 K=1时,

Q=0,G₇输出0,主触发器置1,CLK↓,Q*=1; _____O*=

Q=1,G₈输出0,主触发器置0,CLK↓,Q*=0。 ✓

JK触发器的特性表

J	K	Q	Q^*	功能	
0	0	0	0	$Q^* = Q$	保持
0	0	1	1	2 -2	NK1.1
0	1	0	0	$Q^* = 0$	置 0
0	1	1	0	2 -0	
1	0	0	1	$Q^* = 1$	置 1
1	0	1	1	\mathcal{Q} -1	且. 1
1	1	0	1	$Q^* = Q'$	翻转
1	1	1	0		田がイマ

具有多 输入端的主 从JK触发器, 输入端J₁和 J₂、K₁和K₂ 是与的关系。

集成主从JK触发器

低电平有效

$$K = K_1 K_2 K_3$$

低电平有效

CP下降沿触发

 $J = J_1 J_2 J_3$

例5.4.2

$$Q^* = JQ' + K'Q$$

脉冲触发方式的动作特点:

- (1) 触发器翻转分两步动作:第一步,在 CLK=1期间主触发器接收输入端信号,被置成相应的状态,从触发器不变;第二步,CLK下降沿到来时从触发器按照主触发器的状态翻转,输出端Q和Q′的状态改变发生在CLK下降沿。
- (2) 在CLK=1的全部时间里输入信号都将对主触发器起控制作用。

一次变化现象:

在Q=0时,J端出现正向干扰,在Q=1时,K端出现正向干扰,触发器的状态只能根据输入端的信号(正向干扰信号)改变一次的现象称为一次变化现象。

一次变化现象降低了主从JK触发器的抗干扰能力。

主从JK触发器在使用时要求J、K信号在CLK上升沿前加入,CLK=1期间保持不变,CLK下降沿时触发器状态发生改变。

例5.4.3

CLK-

第三个CLK=1期间,Q=0, J=K=1,主触发器被置1,虽然CLK下降沿到达时又回到J=0,从触发器保持输出Q*=1。

5.3.2 边沿触发的触发器

1.用两个电平触发D触发器组成的边沿触发器

带异步置位、复位端的CMOS边沿触发D触发器

2.维持阻塞边沿触发器

多输入端

低电平有效

上升沿触发

3.利用传输延迟时间的边沿触发器

特性表

CLK	J	K	Q^*
×	×	×	Q
Ţ	0	0	Q
Ţ	0	1	0
Ţ	1	0	1
Ţ	1	1	Q'

边沿触发器动作特点:

触发器的次态仅仅取决于时钟信号的上 升沿(下降沿)到达时输入的逻辑状态,而 在这以前或以后,输入信号的变化对触发器 输出的状态没有影响。

边沿触发器有效地提高了触发器的抗干扰能力,因而也提高了电路的工作可靠性。

集成边沿D触发器

注意:CC4013的异步输入端 R_D 和 S_D 为高电平有效。

集成边沿JK触发器

注意

- ①74LS112为CP下降沿触发。
- ②CC4027为CP上升沿触发,且其异步输入端 $R_{\rm D}$ 和 $S_{\rm D}$ 为高电平有效。

例5.5.1

己知D和CP的波形,试画出Q的波形。设触发器初始状态为0。

课堂练习

题目:时钟CP及输入信号D的波形如图所示,试画 出各触发器输出端Q的波形,设各输出端Q的 初始状态为0.

5.3.4 触发器的逻辑功能及其描述方法

一、触发器按逻辑功能的分类

按 逻 辑 功 能 可

SR触发器

JK触发器

D触发器

T和T'触发器

SR触发器

1. 定义

凡在时钟信号作用下,具有如Table1 所示功能的触发器。

Table1 特性表

S	R	Q	Q*
0	0	0 1	0 1
0	1	0 1	0 0
1	0	0 1	1 1
1	1	0 1	不定不定

2.特性方程

4. 逻辑符号

RS触发器的特性方程为

$$\begin{cases} Q^* = S + R'Q \\ SR = 0 \end{cases}$$
 (约束条件)

3.状态转换图

JK触发器

Table2 特性表

1. 定义

J	K	Q	Q*	功能
0	0	0 1	0 1	保持
0	1	0 1	0	置0
1	0	0 1	1 1	置1
1	1	0 1	1 0	翻转

4. 逻辑符号

2.特性方程

JK触发器 的特性方程为

$$\begin{array}{c|c}
J & \neg & Q \\
CLK & C1 \\
K & \neg & P \\
\end{array}$$

$$Q^* = JQ' + K'Q$$

3.状态转换图

T触发器

Table3. 特性表

1. 定义

T	Q	\mathbf{Q}^*	功能
0	0 1	0 1	保持
1	$egin{array}{c} ar{0} \\ 1 \end{array}$	$ar{f 1}$	翻转

当T=1时,称为 T'触发器。

$$Q^* = Q'$$

2.特性方程
$$Q^* = TQ' + T'Q$$

3.状态转换图

4. 逻辑符号

D触发器

Table4. 特性表

4. 逻辑符号

1. 定义

D	Q	\mathbf{Q}^*	功能
0	0 1	0	置0
1	0 1	1	置1

2.特性方程

$$Q^* = D$$

3.状态转换图

例1: 时钟CLK波形如图所示,试画出各触发器输出端Q的波形,设Q的初始状态为0.

$$Q_1^* = J_1 Q_1' + K_1' Q_1$$

$$= Q_1' \quad (CLK \downarrow)$$

$$D = Q_2'$$
 $Q_2^* = D$
 $= Q_2' \quad (CLK \uparrow)$

$$Q_1^* = J_1 Q_1' + K_1' Q_1 \qquad Q_2^* = D$$

$$= Q_1' \quad (CLK \downarrow) \qquad = Q_2' \quad (CLK \uparrow)$$

例2: 时钟CP波形如图所示,试画出各触发器Q端的波形,设各输出端Q的初始状态Q=0。

$$J=Q_2'$$

$$K=1$$

 \mathbb{CP}

$$D = Q_1$$

二、不同逻辑功能触发器之间的相互转换

关键: 找出被转换触发器的激励条件。

利用已有触发器和待求触发器的特性方程相等的原则,求出转换逻辑,得到被转换触发器的驱动方程。

转换步骤:

- (1) 写出已有触发器和待求触发器的特性方程。
- (2) 变换待求触发器的特性方程,使之形式与已有触发器的特性方程一致。
- (3) 比较已有和待求触发器的特性方程,根据两个方程相等的原则求出转换逻辑。
 - (4) 根据转换逻辑画出逻辑电路图。

JK触发器→RS触发器

变换RS触发器的特性方程,使之形式与JK触发器的特性方程一致:

RS触发器 特性方程

$$\begin{cases} Q^* = S + R'Q \\ RS = 0 \end{cases}$$

$$Q^* = S + R'Q = S(Q' + Q) + R'Q$$

$$= SQ' + SQ + R'Q$$

$$= SQ' + R'Q + SQ (R' + R)$$

$$= SQ' + R'Q + R'SQ + RSQ$$

$$= SQ' + R'Q$$

$$Q^* = JQ' + K'Q$$

 $Q^* = SQ' + R'Q$
比较,得:
$$\begin{cases} J = S \\ K = R \end{cases}$$

电路图

JK触发器→T触发器

T触发器特性方程:

$$Q^* = TQ' + T'Q = T \oplus Q$$

与JK触发器的特性方程比较,得:

$$\begin{cases}
J = T \\
K = T
\end{cases}$$

D触发器→T触发器

$$D = T \oplus Q$$

D触发器→T∕触发器

$$D = Q'$$

三、触发器电路结构和逻辑功能的关系

同一种逻辑功能的触发器可以用不 同的电路结构实现。反过来,用同一种 电路结构形式可以作成不同逻辑功能的 触发器。

电路的结构形式决定了其触发方式。

• 逻辑功能:

2* 与输**2**及 的关系

在CLK作用后稳态之间

电路结构形式:具有不同的动作特点(转换状态的动态过程)(同步,主从,边沿)

5.4 寄存器

在数字电路中,用来存放二进制数据或代码的电路称为寄存器。

寄存器是由具有存储功能的触发器组合起来构成的。一个触发器可以存储1位二进制代码,存放*n*位二进制代码的寄存器,需用*n*个触发器来构成。

(1) 清零。 $R'_D = 0$,异步 清零。即有:

$$Q_3 Q_2 Q_1 Q_0 = 0000$$

(2) 送数。 $R'_{D}=1$ 时,CLK上升沿送数。即有:

$$Q_3^* Q_2^* Q_1^* Q_0^* = D_3 D_2 D_1 D_0$$

(3) 保持。在 $R'_D=1$ 、 CLK上升沿以外时间,寄存器内容将保持不变。

5.5 存储器

半导体存储器: 能存储大量二值信息的半导体器件

- 除采用磁、光原理的辅 存外,其它存储器主要 都是采用半导体存储器
- 本章介绍采用半导体存储器及其组成主存的方法

- ② 单元数庞大
- ◎ 输入/输出引脚数目有限

存储器的逻辑结构示意图

选择存储器件的考虑因素:

- (1) 容量
- (3) 易失性
- (5) 只读性
- (7) 可靠性

- (2) 速度 (ns)
- (4) 功耗
- (6) 价格

半导体存储器的分类:

- 按制造工艺
 - 双极型: 速度快、集成度低、功耗大
 - MOS型:速度慢、集成度高、功耗低
- 按使用属性
 - 随机存取存储器RAM: 可读可写、断电丢失
 - 只读存储器ROM: 正常只读、断电不丢失

半导体存储器的分类:

随机存取存储器 (RAM)

只读存储器

(ROM)

静态RAM(SRAM)

动态RAM (DRAM)

非易失RAM (NVRAM)

半导体 存储器

掩膜式ROM

一次性可编程ROM (PROM)

紫外线擦除可编程ROM (EPROM)

电擦除可编程ROM (EEPROM)

闪烁存储器FLASH ROM (EEPROM)

1. 读写存储器RAM

	组成单元	速度	集成度	应用
SRAM	触发器	快	低	小容量系统
DRAM	极间电容	慢	高	大容量系统
NVRAM	带微型电池	慢	低	小容量非易失

2. 只读存储器ROM:

- 掩膜ROM: 信息制作在芯片中,出厂后不可更改
- PROM: 允许一次编程,此后不可更改
- EPROM: 用紫外光擦除,擦除后可编程;并允许用户多次擦除和编程。但擦除和编程时间较慢,次数也不宜多。
- EEPROM (E²PROM): 采用加电方法在线进行擦除和编程,也可多次擦写。擦除和写入时需要加高电压脉冲,擦、写时间仍较长。
- Flash Memory (闪存): 能够快速擦写的EEPROM, 但只能按块 (Block) 擦除

随机存储器RAM

5.5.1 静态随机存储器 (SRAM)

- SRAM的基本存储单元是触发器电路
- 每个基本存储单元存储二进制数一位
- 许多个基本存储单元形成行列存储矩阵
- SRAM一般采用"字结构"存储矩阵:
 - 每个存储单元存放多位(4、8、16等)
 - 每个存储单元具有一个地址

结构与工作原理

SRAM芯片2114

- 存储容量为1024×4
- 18个引脚:
 - 10根地址线A₉~A₀
 - 4根数据线I/0₄~I/0₁
 - 片选CS*
 - 读写WE*

SRAM的存储单元

六管N沟道增强

 $T_1 \sim T_4$ 为基本RS触发器, 作存储单元

 $X_i = 1$ 时,能在1行中被选中,

 T_5, T_6 导通, $Q \setminus Q' 与 B_j \setminus B'_j$ 相通

当CS'=0时,

若 R_{W} , = 1,则 A_1 导通, A_2 与 A_3 截止,

 $Q \rightarrow I/O$,读操作

若 R_{W} , = 0,则 A_1 截止, A_2 与 A_3 导通,

 $I/O \rightarrow Q$,写操作

 $Y_j = 1$ 时,所在列被选中,

 T_7, T_8 导通,这时 $\left\{\begin{array}{l} \hat{\mathbf{x}}i \\ \hat{\mathbf{x}}j \end{array}\right\}$ 单元与缓冲器相连

5.5.2* 动态随机存储器 (DRAM)

动态存储单元是利用MOS管栅极电容可以存储电荷的原理

- DRAM的基本存储单元是单个场效应管及其极间电容
- 必须配备"读出再生放大电路"进行刷新
- 每次同时对一行的存储单元进行刷新
- 每个基本存储单元存储二进制数一位
- 许多个基本存储单元形成行列存储矩阵
- DRAM一般采用"位结构"存储体:
 - 每个存储单元存放一位
 - 需要8个存储芯片构成一个字节单元
 - 每个字节存储单元具有一个地址

5.5.3 只读存储器ROM

ROM结构和工作原理

举例:

地	址	数		据	
A ₁	A ₀	D ₃	D ₂	D_1	Do
0	0	0	1	0	1
0	1	1	0	1	1
1	0	0	1	0	0
1	1	1	1	1	0

两个概念:

- 存储矩阵的每个交叉点是一个"存储单元",存储单元中有器件存入"1",无器件存入"0"
- 存储器的容量: "字数 x 位数"

1. 掩模ROM

出厂时已经固定,不能更改,适合大量生产 简单,便宜,非易失性

2 可编程ROM (PROM)

总体结构与掩模ROM一样,但存储单元不同

- *熔丝由易熔合金制成
- *出厂时,每个结点上都有
- *编程时将不用的熔断
- !! 是一次性编程,不能改写

PROM

写入时,要使用编程器 将为0的存储单元熔丝 烧断。

3 可擦除的可编程ROM(EPROM)

总体结构与掩模ROM一样,但存储单元不同

一、用紫外线擦除的PROM(UV EPROM)

顶部开有一个圆形的石英窗口,用于紫外线透过擦除原有信息

- 一般使用专门的编程器(烧写器)进行编程
- 编程后,应该贴上不透光封条
- 出厂未编程前,每个基本存储单元都是信息1
- 编程就是将某些单元写入信息0

EPROM芯片2716

- 存储容量为2K×8
- 24个引脚:
 - 11根地址线A₁₀~A₀ (Address Input)
 - 8根数据线DO₇~DO₀ (Data Output)
 - 片选/编程CE'/PGM

(Chip Enable/Program)

• 读写OE'

(Output Enable)

• 编程电压V_{PP} (Program Supply)

EPROM芯片2764

- 存储容量为8K×8
- 28个引脚:
 - 13根地址线A₁₂~A₀
 - 8根数据线 $D_7 \sim D_0$
 - 片选CE*
 - 编程PGM*
 - 读写OE*
 - 编程电压V_{PP}

叠栅注入MOS管

 G_f :浮置栅

工作原理:

若 G_f 上充以负电荷,则 G_c 处正常逻辑高电平下不导通

若 G_{ϵ} 上未充负电荷,则 G_{ϵ} 处正常逻辑高电平下导通

"写入":雪崩注入,D-S间加高压($20\sim25V$),发生雪崩击穿同时在 G_c 上加25V,50ms宽的正脉冲,吸引高速电子穿过 SiO_2 到达 G_f ,形成注入电荷

"擦除":通过照射产生电子-空穴对,提供泄放通道 紫外线照射20~30分钟(阳光下一周,荧光灯下3年)

二、电可擦除的可编程ROM(E²PROM)

- 用加电方法,进行在线(无需拔下,直接在电路中) 擦写(擦除和编程一次完成)
- 有字节擦写、块擦写和整片擦写方法
- 并行EEPROM: 多位同时进行
- 串行EEPROM: 只有一位数据线

EEPROM芯片2817A

- 存储容量为2K×8
- 28个引脚:
 - 11根地址线A₁₀~A₀
 - 8根数据线I/O₇~I/O₀
 - 片选CE*
 - 读写OE*、WE*
 - 状态输出RDY/BUSY*

	_				
R/B	\dashv	1	28	_	VCC
NC	\dashv	2	27	<u> </u>	WE
A7	\dashv	3	26	<u> </u>	NC
A6	_	4	25	<u> </u>	A8
A5	\dashv	5	24	_	A9
A4	\dashv	6	23	_	NC
A3	\exists	7	22	\vdash	OE
A2	\dashv	8	21	_	A10
A1	\dashv	9	20	<u> </u>	CE
AO	\exists	10	19	_	D7
DO	\dashv	11	18	_	D6
D1	-	12	17	\vdash	D5
D2	\exists	13	16		D4
GND	\dashv	14	15		D3
				I	

EEPROM芯片2864A

- 存储容量为8K×8
- 28个引脚:
 - 13根地址线A₁₂~A₀
 - 8根数据线I/O₇~I/O₀
 - 片选CE*
 - 读写OE*、WE*

为克服*UVEPROM*擦除慢,操作不便的缺点 采用*FLOTOX*(浮栅隧道氧化层*MOS*管)

 G_f 与D之间有小的隧道区, SiO_2 厚度 < 2×10^{-8} m 当场强达到一定大小($10^7 V / cm$),电子会穿越隧道 ---"隧道效应"

工作原理:

 G_f 充电荷后,正常读出 G_C 电压(3V)下,T截止 未充电荷时,正常读出 G_C 电压(3V)下,T导通

充电: W_i , G_C 加20V, 10ms 的正脉冲, B_j 接0 电子隧道区 $\rightarrow G_f$

放电: G_C 接0, W_i , B_j 加正脉冲, G_f 上电荷经隧道区放电

三、快闪存储器 (Flash Memory)

- 吸收了EPROM结构简单,编程可靠的优点,又保留了 E²PROM用隧道效应擦除的快捷特性,集成度可以很高。
- 擦除为分区擦除,提高了擦除速度;但写入速度相 比之下慢的多,所以不能满足随时写入和读出的功 能,仍归为ROM使用。
- 编程写入和擦除不需要使用编程器,其控制电路集成于存储器芯片中,只需5V工作电压即可,使用方便。

为提高集成度,省去T2(选通管) 改用叠栅MOS管(类似SIMOS管)

 G_f 与衬底间 S_iO_2 更薄($10 \sim 15nm$)

 G_f 与S区有极小的重叠区-(隧道区)

 G_f 放电,利用隧道效应

 $G_c = 0, V_{ss}$ 加12V,100ns的正脉冲

上电荷经隧道区放电

*工作原理:

向 G_f 充电利用雪崩注入方式,

D-S加正压(6V), V_{ss} 接0

 G_c 加12V,10us的正脉冲

5.5.4 存储器容量的扩展

1 位扩展方式

适用于每片RAM, ROM字数够用而位数不够时

接法: 将各片的地址线、读写线、片选线并联即可

例: 用八片1024 x 1位→ 1024 x 8位的RAM

2 字扩展方式

适用于每片RAM, ROM位数够用而字数不够时

例: 用四片256 x 8位→1024 x 8位 RAM

数据线: $I/O_0 \sim I/O_7$

地址线: $A_0 \sim A_7$

读/写信号:R/W'

片选信号: CS'

数据线: $I/O_0 \sim I/O_7$

地址线: $A_0 \sim A_7, A_8, A_9$

读/写信号:R/W'

每一片提供256个字,需要256个地址($A_{0\sim7}:0\sim0----1\sim1$) 用 A_0 , A_8 两位代码区分四片

即将 A_0A_8 译成 $Y_0' \sim Y_3'$,分别接四片的CS'

A_9	A_8	CS'_1	CS' ₂	CS' ₃	CS' ₄
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

四片的地址分配就是:

$$00A_7 \sim A_0$$
, $01A_7 \sim A_0$, $0 \sim 255$ $256 \sim 511$

$$01A_7 \sim A_0$$
, $10A_7 \sim A_0$, $11A_7 \sim A_0$
 $256 \sim 511$ $512 \sim 767$ $768 \sim 1023$

$$10A_7 \sim A_0, \qquad 11A_7 \sim A_0$$

$$768 \sim 1023$$

A_1	A_0	CS ₁	CS' ₂	CS ' ₃	CS' ₄
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

四片的地址分配就是:

$$A_9 \sim A_2 00$$
, $A_9 \sim A_2 01$, $A_9 \sim A_2 10$, $A_9 \sim A_2 11$

$$A_9 \sim A_2 01$$

$$A_9 \sim A_2 10,$$

$$A_9 \sim A_2 11$$

$$\begin{array}{c|cccc}
I/O_0 & \cdots & I/O_7 \\
256 \times 8 \\
RAM & & \\
A_0 A_1 & \cdots & A_7 R/W'CS \\
\hline
& & & & & & & & & & & \\
\hline
& & & & & & & & & & & \\
\hline
& & & & & & & & & & & \\
\hline
& & & & & & & & & & & \\
\hline
& & & & & & & & & & & \\
\hline
& & & & & & & & & & & \\
\hline
& & & & & & & & & & & \\
\hline
& & & & & & & & & & & \\
\hline
& & & & & & & & & & & \\
\hline
& & & & & & & & & & \\
\hline
& & & & & & & & & & \\
\hline
& & & & & & & & & & \\
\hline
& & & & & & & & & & \\
\hline
& & & & & & & & & & \\
\hline
& & & & & & & & & & \\
\hline
& & & & & & & & & & \\
\hline
& & & & & & & & & & \\
\hline
& & & & & & & & & \\
\hline
& & & & & & & & & & \\
\hline
& & & & & & & & & & \\
\hline
& & & & & & & & & & \\
\hline
& & & & & & & & & & \\
\hline
& & & & & & & & & & \\
\hline
& & & & & & & & & & \\
\hline
\end{array}$$

用2114(1K*4)芯片组成4K*8 RAM局部译码结构图

5.5. 5 用存储器实现组合逻辑函数

一、基本原理

从ROM的数据表可见: 若以地址线为输入变量,则数据线即为一组关于地址变量的逻辑函数

地	址	数		据	
A_1	A_0	D ₃	D ₂	D_1	Do
0	0	0	1	0	1
0	1	1	0	1	1
1	0	0	1	0	0
1	1	1	1	1	0

二、举例

例5.5.2用ROM产生:

$$\begin{cases} Y_1 = A'BC + A'B'C \\ Y_2 = AB'CD' + BCD' + A'BCD \end{cases}$$

$$Y_3 = ABCD' + A'BC'D'$$

$$Y_4 = A'B'CD' + ABCD$$

$$\begin{cases} Y_1 = \sum m(2,3,6,7) \\ Y_2 = \sum m(6,7,10,14) \\ Y_3 = \sum m(4,14) \\ Y_4 = \sum m(2,15) \end{cases}$$

例5.5.1

八段字符显示译码器

