

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name:		
Avoigail	DeSantis	

UB Person Number:

Instructions:

- Textbooks, calculators and any other electronic devices are not permitted.
 You may use one sheet of notes.
- For full credit solve each problem fully, showing all relevant work.

1	2	3	4	5	6	7	TOTAL	GRADE
		>:						
				1	1			

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -2 \\ 2 \\ b \end{bmatrix}$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1,v_2,v_3\}$ linearly independent? Justify your answer.

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 \cdot & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute
$$A^{-1}$$
.

$$\begin{bmatrix} 1 & -1 & 3 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 3 & -3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & -3 & 0 & 1 \\ 0 & 1 & 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 0 & -3 & 1 \end{bmatrix} A^{-1} = \begin{bmatrix} -3 & 3 & -1 \\ 1 & -1 & 1 \\ 3 & -3 & 1 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} -7 & 3 & -1 \\ 1 & -1 & 1 \\ 7 & -7 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

The entrice of that
$$A^{T}C = B$$
 (where A^{T} is the trunspose $a^{T}A^{T}C = B(A^{T})^{T}$

$$C = B(A^{T})^{T}$$

$$C = B(A^{T})^{T}$$

$$C = A^{T}$$

$$C =$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

a) Find the standard matrix of T.

b) Find all vectors
$$\mathbf{u}$$
 satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

$$T(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) = \begin{bmatrix} 1 - 3(0) \\ 1 + (0) \\ 0 - 3(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$T(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \begin{bmatrix} 0 - 3(0) \\ 0 + 1 \\ 0 - 3(0) \end{bmatrix} = \begin{bmatrix} -3 \\ -3 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -3 & 1 \\ 1 & -3 & 1 \\ 0 & -1 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 1 \\ 0 & -1 & -3 \\ 0 & -1 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 1 \\ 0 & -1 & -3 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -3 & 1 \\ 0 & -1 & -3 \\ 0 & 0 & 0 \end{bmatrix} \qquad 0 = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \checkmark$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in Span(u, v)$ then $w \in Span(u, v)$.

True because if w+1(v) is a linear combo of span(v,v), then w+0(v) is also a linear combo of span(v,v) => therefore w is an element of span(v,v)

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

True
$$V = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
 $W = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

because the only way for a vectors to be
linearly dependent is if they are scalar multiples
of one another, but if a of the a vectors are
pealar multiples $A \times = 0$ will have a free variable
merefore it is not linearly independent

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

This shows that if
$$\{u,v\}$$
 - dependent then $\{T(u),T(v)\}$ - dependent this is not what this problem states.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in $\mathrm{Span}(v, w)$ then T(u) must be in $\mathrm{Span}(T(v), T(w))$.

True

If
$$U$$
 is a linear comod of $V \times W$
 $U = V + W$
 $U = C_1 V + C_2 W$

Hen $T(U) = T(V + W)$
 $T(U) = c_1 T(V) + c_2 T(W)$
 $T(U) = C_1 T(V) + C(W)$
 $T(U) = C_1 T(V) + C_2 W$
 $T(U) = C_1 T(V) + C_2 W$