1 Classification and Representation

1.1 Classification

The classification problem is just like the regression problem, except that the values we now want to predict take on only a small number of discrete values.

For now, we will focus on the binary classification problem in which y can take on only two values, 0 and 1. (Most of what we say here will also generalize to the multiple-class case.) For instance, if we are trying to build a spam classifier for email, then $x^{(i)}$ may be some features of a piece of email, and y may be 1 if it is a piece of spam mail, and 0 otherwise. Hence, $y \in \{0,1\}$.

0 is also called the negative class, and 1 the positive class, and they are sometimes also denoted by the symbols - and +. Given $x^{(i)}$, the corresponding $y^{(i)}$ is also called the label for the training example.

To attempt classification, one method is to use linear regression and map all predictions greater than 0.5 as a 1 and all less than 0.5 as a 0. However, this method doesn't work well because classification is not actually a linear function.

Logistic Regression is a classification algorithm that we apply to settings where the label y is discrete value, when it's either zero or one.

Don't be confused by the name "Logistic Regression"; it is named that way for historical reasons and is actually an approach to classification problems, not regression problems.

1.2 Hypothesis Representation

We could approach the classification problem ignoring the fact that y is discrete-valued, and use our old linear regression algorithm to try to predict y given x. However, it is easy to construct examples where this method performs very poorly.

Intuitively, it also doesn't make sense for $h_{\theta}(x)$ to take values larger than 1 or smaller than 0 when we know that $y \in \{0, 1\}$.

To fix this, lets change the form for our hypotheses $h_{\theta}(x)$ to satisfy $0 \le h_{\theta}(x) \le 1$. This is accomplished by plugging $\theta^T x$ into the Logistic Function.

Our new form uses the "Sigmoid Function," also called the "Logistic Function":

$$h_{\theta}(x) = g(\theta^{T} x)$$
$$z = \theta^{T} x$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

The following image shows us what the sigmoid function looks like:

The function g(z), shown here, maps any real number to the (0, 1) interval, making it useful for transforming an arbitrary-valued function into a function better suited for classification.

 $h_{\theta}(x)$ will give us the probability that our output is 1. For example, $h_{\theta}(x) = 0.7$ gives us a probability of 70% that our output is 1. Our probability that our prediction is 0 is just the complement of our probability that it is 1 (e.g. if probability that it is 1 is 70%, then the probability that it is 0 is 30%).

$$h_{\theta}(x) = P(y = 1|x; \theta) = 1 - P(y = 0|x; \theta)$$

 $P(y = 0|x; \theta) + P(y = 1|x; \theta) = 1$

1.3 Decision Boundary

In order to get our discrete 0 or 1 classification, we can translate the output of the hypothesis function as follows:

$$h_{\theta}(x) \ge 0.5 \to y = 1$$

$$h_{\theta}(x) < 0.5 \to y = 0$$

The way our logistic function g behaves is that when its input is greater than or equal to zero, its output is greater than or equal to 0.5:

$$g(z) \ge 0.5$$
 when $z \ge 0$

Remember.

$$z = 0, e^{0} = 1 \Rightarrow g(z) = 1/2$$
$$z \to \infty, e^{-\infty} \to 0 \Rightarrow g(z) = 1$$
$$z \to -\infty, e^{\infty} \to \infty \Rightarrow g(z) = 0$$

So if our input to g is $\theta^T X$, then that means:

$$h_{\theta}(x) = g(\theta^T x) \ge 0.5$$

when $\theta^T x \ge 0$

From these statements we can now say:

$$\theta^T x \ge 0 \Rightarrow y = 1$$

$$\theta^T x < 0 \Rightarrow y = 0$$

The **decision boundary** is the line that separates the area where y = 0 and where y = 1. It is created by our hypothesis function.

Example:

$$\theta = \begin{bmatrix} 5 \\ -1 \\ 0 \end{bmatrix}$$

$$y = 1 \text{ if } 5 + (-1)x_1 + 0x_2 \ge 0$$

$$5 - x_1 \ge 0$$

$$-x_1 \ge -5$$

$$x_1 \le 5$$

In this case, our decision boundary is a straight vertical line placed on the graph where $x_1 = 5$, and everything to the left of that denotes y = 1, while everything to the right denotes y = 0.

Again, the input to the sigmoid function g(z) (e.g. $\theta^T X$) doesn't need to be linear, and could be a function that describes a circle (e.g. $z = \theta_0 + \theta_1 x_1^2 + \theta_2 x_2^2$) or any shape to fit our data.