Smart Default Prediction and Evaluation System in Credit Loan

Instructors: Deng-Yang Huang Chih-yung Tsai

Presenters: Guan-Ting Li, Zi-Hsuan Yang

Team Members: Yan-Xiang Huang, Shih-Guo Hung,

Guan-Ting Li, Zi-Yun Su,

Hui-Ying Tsou, Fan-Yu Wang,

Tian-Zhou Wang, Zi-Hsuan Yang

(list by the alphabetical order of family name)

Table of Contents

0 Prologue

3 Machine Learning

1 Introduction to Dataset

4 Conclusion

2 Data Preprocessing

5 Interactive Default System

Prologue

Pain Points

- 1. For the borrowers identified in a non-traditional sense and capable of repayment, banks or loan distribution firms might overestimate their high default risk and refuse to provide credit loans.
- 2. How to effectively analyze the applications of past borrowers based on limited imbalanced data.
- 3. For customers who have never banked, it is difficult to estimate the default probability because of the lack of historical records.

Resolutions

- 1. All is used to predict more precisely whether customers will default or not.
- 2. Banks or loan distribution firms can identify potential customers with income and loan repayment capacity among those who are traditionally considered unable to lend. They can promote proper credit plans to different types of customers.

First Stage of Model Test

learn

Feature Engineering

Second Stage of Model Test

Conclusion & Prospect

Introduction to Dataset

Data **Examination**

- This dataset includes a total of 300,000 pieces of data in 122 fields.
- One of the fields is about default or not.
- It's an extremely imbalanced dataset. The ratio of nondefaulters to defaulters is 92:8.

Data Examination

Personal Information

- SK_ID_CURR
- ORGANIZATION_TYPE
- OCCUPATION_TYPE
- CODE GENDER
- DAYS_BIRTH
- DAYS_EMPLOYED
- NAME_EDUCATION_TY PE
- NAME_INCOME_TYPE
- AMT_INCOME_TOTAL
- NAME_FAMILY_STATUS
- CNT_CHILDREN
- CNT FAM MEMBERS
- NAME_TYPE_SUITE

Personal Asset

- FLAG_OWNCAR
- OWN_CAR_ AGE
- FLAG_OWN REALTY

Loan State

- TARGET
- NAME_CONTRACT_TYPE
- AMT CREDIT
- AMT_ANNUITY
- AMT GOODS PRICE
- WEEKDAY_APPR_PRO CESS START
- HOUR_APPR_PROCESS _START

Residence Information

- NAME_HOUSING_TYPE
- REGION_POPULATION RELATIVE
- REGION_RATING_CLIENT
- REGION_RATING_CLIENT W CITY
- INFORMATION ABOUT BUILDING

Application Documents

- REG_CITY_NOT_LIVECITY
- FLAG_DOCUMENT

Credit Information

- OBS_30_CNT_SOCIAL CIRCLE
- DEF_30_CNT_SOCIAL_ CIRCLE
- OBS_60_CNT_SOCIAL CIRCLE
- DEF_60_CNT_SOCIAL_ CIRCLE
- AMT_REQ_CREDIT_BU REAU

Group fields into 6 categories.

2 Data Preprocessing

Data processing

- Fill null values with zero in the fields of inquiries to a credit bureau, car age, and building rating.
- Fill with the string "other" if the null value of the classification field exceeds 10% of the data.
- The null values in the remaining fields are filled with the median and mode respectively.
- When the skewness exceeds 0.5, the field value is converted to logarithm, square root, or reciprocal.

Data Filling

- 1. Fill null values with zero in the fields of inquiries to a credit bureau, car age, and building rating.
- 2. Fill with the string "other" if the null value of the classification field exceeds 10% of the data.
- 3. The null values in the remaining fields are filled with the median and mode respectively.

Column Cleaning

- Delete the fields if the correlation between X variables is greater than 0.8.
- When the scatter plot shows a straight-line trend from lower left to upper right, there is a positive correlation between the two variables.

Machine Learning

Oversampling before & after

Before

Dataset : CreditV2-2

Model	Train Accuracy	Test Accuracy	recall(y=1)	F1 score(y=1)
DNN	92%	91.9%	0	0
KNN	92.18%	91.46%	0.01	0.03
Random Forest	91.91%	91.96%	0	0
Bayesian Classifier	89.53%	89.63%	0.1	0.13
XGBoost	91.94%	91.99%	0.01	0.02

After

DNN	68.65%	66.79%	0.62	0.24
KNN	95.97%	79.42%	0.22	0.15
☆ Random Forest	66.21%	65.39%	0.68	0.24
Bayesian Classifier	61.44%	57.19%	0.67	0.20
XGBoost	65.49%	67.19%	0.63	0.24

14

Data Scrubbing-Cluster & Column Consolidation

DAYS REGISTRATI AMT_INCOME_TOTA AMT REQ CREDIT **AMT CREDIT** ON **BUREAU** by hour, **Building-related** day, week, month, **AMT_ANNUITY** DAYS ID PUBLISH DAYS BIRTH rating season, year **AMT GOODS PRICE** DAYS LAST PHONE DAYS EMPLOYED CHANGE Change of **Numbers of Loan Information** Personal **Income State Building Rating Credit Inquiry** Information

Cluster before & after

Before

資料集: CreditV2-2、CreditV3-3

Model	Train Accuracy	Test Accuracy	recall(y=1)	F1 score(y=1)
DNN	68.65%	66.79%	0.62	0.24
Random Forest	66.21%	65.39%	0.68	0.24
Bayesian Classifier	61.44%	57.19%	0.67	0.20
XGBoost	65.49%	67.19%	0.63	0.24

After

Model	Train Accuracy	Test Accuracy	recall(y=1)	F1 score(y=1)
DNN	67.04%	76.31%	0.55	0.27
Random Forest	71.62%	69.92%	0.64	0.25
Bayesian Classifier	64.36%	61.92%	0.67	0.22
★ XGBoost	69.19%	68.85%	0.67	0.26

16

Feature Engineering--Wrapper

After the cluster, there are thirty-five fields left. By using the wrapper method, 17 features are selected for model tests.

The test results in the XGBoost model are shown in the table below.

Dataset	Train Accuracy	Test Accuracy	recall(y=1)	F1 score(y=1)
creditV3-4(35)	69.19%	68.85%	0.67	0.26
creditV3-4(17)	77.12%	73.10%	0.61	0.26

Feature Engineering -- SelectKBest

By using the SelectKBest method, fifteen, seven, and five features are selected respectively. The results are:

Dataset	Train Accuracy	Test Accuracy	recall(y=1)	F1 score(y=1)
creditV3-4(35)	69.19%	68.85%	0.67	0.26
creditV3-4(15)	70.25%	68.75%	0.64	0.25
creditV3-4(7)	57.44%	52.65%	0.6	0.17
creditV3-4(5)	56.29%	47.75%	0.65	0.17

Feature Engineering -- Feature Importance

By using the feature importance method, five features are selected for testing. The table below shows the results of the XGBoost model.

Dataset	Train Accuracy	Test Accuracy	recall(y=1)	F1 score(y=1)
creditV3-4(35)	69.19%	68.85%	0.67	0.26
creditV3-4(5)	73.31%	71.98%	0.65	0.27

Similar accuracy to original data can be achieved with only a few fields.

Ensemble Learning--Voting

To solve the problem caused by high bias or high variation in a single model, five selected features are used to integrate with multiple models in the soft voting method. Compared with other methods of feature engineering, the recall of test results rises.

The table below shows the test results in ensemble learning.

Dataset	Train Accuracy	Test Accuracy	recall(y=1)	F1 score(y=1)
creditV3-4(5)	73.31%	71.98%	0.65	0.27
creditV3-4 (Ensembling 5)	68.00%	70.00%	0.68	0.26

The Winner

Finally, XGBoost is selected in this project to predict the default rate of credit loans. The following figure shows the trend of the number of columns and model performance after cleaning and machine learning.

The Change of Model Performance

Conclusion

Conclusion in Management

Key decision factors:

Education Category, Credit Agency Score, Years Employed, and Score of Residence Region

Applications:

In the financial industry, the default system helps find reliable customers and sell more products. It can also apply to "fraud detection", "defective rate detection", "preventive medicine".

Members & Tasks

Name	Expertise	Task
Shih-Guo Hung	System Analysis, Programming, Project Management, Al Applications, Data Science, Modeling, System Architecture	Modeling, Program Development, Task Dispatch, Technical Support
Guan-Ting Li	Python, MySQL, Data Analysis, Data Cleaning, Data Science, Algorithms	Data cleaning, Feature Engineering, Programming, Oral Presentation
Zi-Hsuan Yang	Data analysis, Statistical Applications, Python, MySQL, HTML	PPT Preparation, Model Testing, Website Front-end Design, Oral Presentation
Hui-Ying Tsou	Foreign Languages (English, French, German, Japanese), Event Management, Project Execution	PPT Preparation, Text Editing

Members & Tasks

Name	Expertise	Task
Yan-Xiang Huang	Python, MySQL, HTML, Data Analysis, Data Science, Information Management	Website Front-end Design, Model Testing
Fan-Yu Wang	Python, HTML, MySQL, Information Management	PPT Preparation, Model Testing, Website Front-end Design
Tian-Zhou Wang	Team Coordination, Project Management, Data Analysis, System Analysis, Algorithm Model, Data Science	Team Leader, Task Coordination, Model Testing
Zi-Yun Su	Finance, Statistical Science, Brand Marketing, Python, MySQL	PPT Preparation, Model Testing

Visual Present

Scan and Enter
Our Website

前言

資料集介紹

資料預處理

機器學習

模型選定

總結

信用評級檢測互動區

智慧型信用貸款違約預測與評估系統

系統開發源起

现代金融機構信用風險管理之基礎和重要環節在於核准信用貸款前應有效評價和識別借款人潛在信用違約風險,計算借款人 的信用違約機率,進而對借款人進行有效風險濃別。傳統上,個人信用贷款的評估發放主要是基於個人資產、薪資、現金 流、工作、搬獲起稅和過去信貸記錄結合,放款機構透過以上資料辨讓他們會否有拖欠價還資效造成違約的風險。假如某個 工作或行業人士需要頻繁搬遷,放款機構一般會將此類經常性的流動視為不穩定的指標,並可能會對提供信貸予這些人士持 詳輔或非額帳房。

是以、金融機構在提供客戶貸款方案時、經常面臨如下痛點:

- 1.對於非傳統意義認定且具有還款能力的借款人,金融機構錯估其違約風險較高,以致拒絕提供信貸;
- 2.如何以有限非平衡數據對歷史借款人的提交資料進行有效分析:
- 3.對於未曾與銀行往來的客戶,缺乏歷史往來紀錄,難以判斷違約機率。

為解決前述困難·本組提供以下方法·幫助金融機構提升判定客戶違約與否之正確率·達成提供更好客戶服務與增加金融機構利潤之雙贏目標。