Antisèche de Physique

Anya Voeffray *
Octobre 2024

 $MesCapacitesEnPhysique = \frac{Motivation \cdot CapacitesEnMaths}{AnneeDepuisLeDernierCoursDePhysique} \tag{1}$

^{*}thanks to no fucking one, I hate Physics

1 Masse Volumique (φ)

La masse volumique permet de définir la masse d'une matière pour $1m^3$ de cette même matière.

Par exemple ici, la masse volumique de l'eau:

$$\varphi = 1000 \frac{kg}{m^3} \tag{2}$$

Dans un exemple pratique, si on se retrouve avec 3l d'eau, pour calculer sa masse, cela donnerait:

$$3l = 3dm^3 = 0.003m^3 (3)$$

$$1000 \cdot 0.003 = 3kg \tag{4}$$

En résumé, voici les trois équations à se remémorer:

$$\varphi = \frac{m}{V} \tag{5}$$

$$m = \varphi \cdot V \tag{6}$$

$$V = \frac{m}{\varphi} \tag{7}$$

2 Chaleur Massique (C)

La chaleur massique représente la quantité de Joules nécessaires pour augmenter la température de 1kg d'une matière donnée de $1^{\circ}C$

$$C = \frac{J}{kg \cdot \theta} \tag{8}$$

Sachant que la chaleur massique de l'eau est comme suit: 1480 $\frac{J}{kg\cdot\theta}$

Il est donc possible de calculer l'augmentation de la température $(\bar{\theta})$ de 126kg d'eau à $20^{\circ}C$ si on lui applique 30000J:

$$\theta = \frac{J}{kg \cdot C} \tag{9}$$

Une fois les données entrées:

$$1.61e - 1 = \frac{30000}{126 \cdot 1480} \tag{10}$$

Dans l'ensemble, ajouter 30000joules à 126kg d'eau résulte en une augmentation de $1.61e{-}1$ degrés celsius.

2.1 Transfert d'énergie

Si on veut calculer la quantité d'énergie nécessaire pour passer d'une température données à une autre, il faut suivre l'équation suivante:

$$Q = m \cdot C \cdot \Delta \theta \tag{11}$$

 $\Delta\theta$ représente la différence de température calculée comme suis:

$$\theta_{final} - \theta_{initiale} \tag{12}$$

Exemple: J'aimerais chauffer 10kg d'eau depuis $20^{\circ}C$ vers $100^{\circ}C$:

$$Q = m_{eau} \cdot C_{eau} \cdot (100 - 20) \tag{13}$$

Une fois avec toutes les informations:

$$3.344e6 = 10 \cdot 4180 \cdot 80 \tag{14}$$

Il faudra donc dépenser 3.344e6 Joules pour chauffer 10kg d'eau de 80 degrés.

2.2 Transfert avec plusieurs matériaux

Pour calculer le transfert d'énergie entre plusieurs matériaux dans un environnement sans perte, il faudra suivre l'équation suivante.

$$0 = m_1 \cdot C_1 \cdot \Delta \theta_1 + m_2 \cdot C_2 \cdot \Delta \theta_2 \tag{15}$$

Il arrivera parfois de manquer d'une information. Voici les équations avec les différents éléments isolés

La température finale:

$$\theta_{finale} = \frac{m_1 \cdot C_1 \cdot \theta_{dep1} + m_2 \cdot C_2 \cdot \theta_{dep2}}{m_1 \cdot C_1 + m_2 \cdot C_2} \tag{16}$$

Une des chaleurs massiques:

$$C_1 = \frac{m_2 \cdot C_2 \cdot \Delta \theta_2}{m_1 \cdot \Delta \theta_1} \cdot -1 \tag{17}$$

Une des températures de départ:

$$\theta_{dep1} = \left(\frac{m_2 \cdot C_2 \cdot \Delta \theta_2}{m_1 \cdot C_1} - \theta_{finale}\right) \cdot -1 \tag{18}$$

Une des masses:

$$m_1 = \frac{m_2 \cdot C_2 \cdot \Delta \theta_2}{C_1 \cdot \Delta \theta_1} \cdot -1 \tag{19}$$

Il sera aussi possible que la chaleur massique de la matière ne soit pas existante. C'est à dire que c'est un agrégat de plusieurs matières, comme un thermos ou une cafetière. Dans ce cas, il faudra remplacer le $m \cdot C$ de la matière par son μ .

Le μ sera obligatoirement donné, à moins qu'il soit l'inconnu de l'équation. Dans le premier cas, voici ce que cela change à l'équation pour deux matières différentes.

$$0 = m_1 \cdot C_1 \cdot \Delta \theta_1 + \mu_2 \cdot \Delta \theta_2 \tag{20}$$

Dans le deuxième cas, voici l'équation qu'il faudra poser pour trouver le μ de la matière:

$$\mu_2 = \frac{m_1 \cdot C_1 \cdot \Delta \theta_1}{\Delta \theta_2} \cdot -1 \tag{21}$$

3 Transfert d'énergie avec changement d'état de la matière

Lors d'un transfert d'énergie, il est possible que la matière change d'état, par exemple de la glace qui va passer de -10° C à 10° C, elle va changer d'état et passer de solide à liquide, en l'occurrence de glace à eau.

C'est cette étape qui va consommer le plus d'énergie. La quantité d'énergie nécessaire pour passer de solide à liquide est propre à chaque matière et s'appelle la "Chaleur latente de fusion" (L_f) . On la retrouve dans des tableau, elle est fixe.

Par exemple on retrouvera ces valeurs:

Glace (Dont l'état liquide est l'eau) $\rightarrow 3.3 \cdot 10^5$ Aluminium $\rightarrow 3.96 \cdot 10^5$

On va donc retrouver une équation légèrement modifiée pour calculer l'énergie nécessaire au réchauffement de ladite matière:

$$Q = m_1 \cdot C_1 solide \cdot (\theta_{fusion} - \theta_{dep}) + L_f 1 \cdot m_1 + m_1 \cdot C_1 liquide \cdot (\theta_{final} - \theta_{solidification})$$
(22)

On se retrouve dans la logique suivante:

Il faut d'abord mener le solide jusqu'à θ_{fusion} puis y ajouter la Chaleur latente de fusion $(L_f 1 \cdot m_1)$ et finalement ajouter l'équation pour passer le liquide à sa température finale $(m_1 \cdot C_1 liquide \cdot (\theta_{final} - \theta_{solidification}))$

On se retrouve donc à devoir calculer 3 quantités d'énergie différentes qui vont finalement être additionnées pour connaître l'énergie nécessaire pour chauffer un solide passé son point de fusion.