DEEP LEARNING-BASED POWER ANALYSIS ATTACK FOR EXTRACTING AES KEYS

Authors: Ismail Negabi, Smail Ait El Asri,

Samir El Adib, Naoufal Raissouni

Publisher: Arabian Journal for Science and

Engineering (19 Sept 2023)

R. KIRTHIKA (23MCS001)

CRYPTOGRAPHY AND NETWORK SECURITY (CS-741)

Department of Computer Science and Engineering National Institute of Technology, Hamirpur March 2024

WE WILL DISCUSS:

- Side-Channel Attacks
 - Power Analysis Attack
- Role of DL (CNN)
- Research Paper Methodology (Algo + CNN)
- Research Paper Results & Extensions
- References

INTRODUCTION

Side Channel Attack (SCA) exploits unintended leaks of information during the implementation of cryptographic algorithms.

SCA Types:

Timing Attack (Kocher, 1996)

Power Analysis Attack

Electromagnetic Attack
Fault Analysis
Acoustic Analysis
Heat Analysis

Power analysis attack (PAA) is a method of SCA that aims to infer sensitive information, such as passwords or encryption keys, by analyzing the energy consumption fluctuations of a device.

POWER ANALSIS ATTACK

Output of Device(Target)

Power Consumption

- Power is consumed when there is transition state $0 \rightarrow 1$ or $1 \rightarrow 0$.
- We measure this power using an Oscilloscope in order to determine the output state.

Assumptions:

- Attacker has the access to the target device that he want to attack.
- Attacker is able to monitor and regulate(control) the various inputs passed to the target device.
- Attacker is able to tap the power line data during any encryption process

In a Nutshell...

In a Nutshell...

In a Nutshell...

Measuring the power (2 Methods) -

+5~

Hamming Distance – Power equivalent to number of bits changing on data bus.

(E.g.)
$$(1011) \rightarrow (1101) \rightarrow (1001) \rightarrow (0010) \rightarrow (0011)$$

2 1 3 1

Hamming Weight – Power equivalent to number of bits set to 1 on data bus.

(E.g.)
$$(1011) \rightarrow (1101) \rightarrow (1001) \rightarrow (0010) \rightarrow (0011)$$

3 2 1 3

Applying to AES

AES KEY SPACE:

Brute Force:

2 ^128 = 3.4028 x 10^38 ~1078289752 Trillion Yr

SCA:

Checking Key for each section = 2^8 = 256 Overall Round (10 or 16) = 256 x 10 (or 16) = 2560 (or 4096)

Why Deep Learning Model (CNN) approach ??

- Used to improve efficiency and accuracy of the attacks
- Used to identify hidden patterns & correlations.

Convolution Neural Network (CNN) Basics -

HARDWARE AND SOFTWARE CONFIGURATION

- ATmega328p microcontroller (μC2) (*Target Device*)
- Oscilloscope
- ATmega328p microcontroller (μC1) (*Interface*)
- Dell computer(i5-6300U, CPU@2.5 GHz, 8 GB of RAM and a 256 GB SSD.) (Attacker's Device)
- Arduino IDE
- Python

DATASET (Power Consumption Traces)

Training Dataset: 100k traces (out of which 10%(10k traces for Validation)

Testing Dataset : 2k traces

DATA CAPTURE WORKFLOW

Algorithm 1 Data Collection for Side Channel Attacks

```
1: function DATA_COLLECTION(trainingPhase)
      if trainingPhase then
3:
         key \leftarrow generate\_random\_key()
      else
         key \leftarrow fixedKey
      end if
      for i = 1 to 10 do
8:
         text \leftarrow generate\_random\_text()
         send_to_\mu C1_via_UART(text, key)
10:
          \mu C2\_data \leftarrow receive\_from\_\mu C1\_via\_I2C()
          \mu C2.prepare_data(\mu C2_data)
          \mu C2.signal\_start()
13:
          trace \leftarrow \mu C1.collect\_data()
14:
          send_trace_to_python(trace)
15:
       end for
16:
       return average_results()
17: end function
```

PROPOSED CNN ARCHITECTURE

Profiling Step:

- collecting and analyzing power consumption data in order to build a model of the target device.
- Generate a profile of energy consumption by analyzing a considerable number of power trace
- The DL model is trained to map the power traces to the data being processed.
- The output of the DL model is a score vector which represents the probability that the data being processed at the attack point is a specific value

Attacking Step:

- The attacker uses the trained DL model to classify the power traces captured from the target device and obtain a score vector
- Then identifies the subkey Ki with the highest probability in the score vector and compares it to the true subkey.
- If the two values match, the subkey has been successfully recovered

PROPOSED CNN ARCHITECTURE

RESEARCH RESULTS

RESULT

The author successfully shows that using the discussed approach he was able to recover the AES Key with only **1200 Traces** on avg.

LIMITATIONS

Issue of **Overfitting** during the validation phase

- Can be addressed by decreasing the model complexity as necessary

EXTENSION

- Extend our study to other popular microcontrollers.
- Explore other commonly used encryption algorithms and see if the said approach can also be used to extract keys from these algorithms.
- Possible countermeasures to protect microcontrollers against this type of attack

ANY QUESTIONS?

THANK YOU

R.Kirthika 23MCS001

23MCS001@nith.ac.in