1	1. A method of processing a semiconductor substrate, comprising the steps of:
2	depositing a protective layer on a substrate surface comprising a conductive element;
3	selectively removing a portion of the protective layer to expose the conductive element of
4	the substrate surface;
5	depositing a metallic passivating layer onto the exposed conductive element; and
6	removing at least a portion of the protective layer from the substrate after deposition of
7	the metallic passivating.
1	2. The method of claim 1, wherein the substrate surface comprises a dielectric material
2	in which the conductive element is disposed.
1	3. The method of claim 1, wherein the substrate surface comprises a low k dielectric
2	material.
1	4. The method of claim 1, wherein a portion of the thickness of the protective layer is
2	removed.
1	5. The method of claim 1, wherein the entire thickness of the protective layer is
2	removed.
1	6. The method of claim 1, wherein the substrate surface is treated to expose the
2	conductive element prior to deposition of the protective layer.
1	7. The method of claim 1, wherein the step of depositing a protective layer is
2	accomplished using a technique selected from the group consisting of chemical vapor deposition
3	(CVD), plasma enhance chemical vapor deposition (PECVD), spin on deposition and physical
4	vapor deposition.
1	8. The method of claim 1, wherein the protective layer comprises an organic material.

1	9. The method of claim 8, wherein the organic material of the layer is selected from the
2	group consisting of photoresist and amorphous carbon.
1	10. The method of claim 9, wherein the steps of depositing and processing the photoresist
2	protective layer comprise the steps of:
3	depositing a photoresist over the substrate surface; and
4	exposing and developing the photoresist under conditions that do not degrade the
5	substrate surface to expose a selected region of an underlying layer.
1	11. The method of claim 10, wherein the exposed and developed photoresist is removed
2	after deposition of the metallic passivating layer by ashing or wet chemical etch.
1	12. The method of claim 9, wherein the steps of depositing and processing the amorphous
2	carbon protective layer comprise the steps of:
3	depositing an amorphous carbon layer over the substrate surface; and
4	etching the amorphous carbon layer under conditions that do not degrade the substrate
5	surface.
1	13. The method of claim 12, wherein the amorphous carbon layer is removed after
2	deposition of the metallic passivating layer by ashing or reactive ion etch.
1	14. The method of claim 1, wherein the protective layer comprises a dielectric material.
1	15. The method of claim 14, wherein steps of depositing and processing the dielectric
2	protective layer comprise the steps of:
3	depositing a dielectric layer over the substrate surface; and
4	selectively etching the dielectric layer under conditions that do not degrade the substrate
5	surface.

1	16. The method of claim 15, wherein the dielectric protective layer is removed after
2	deposition of the passivating layer by etching using a technique selected from the group
3	consisting of wet etch, dry etch, reactive ion etch and plasma etch.
1	17. The method of claim 1, where steps for depositing and processing the protective layer
2	comprise the steps of:
3	depositing an intermediate layer on the substrate surface;
4	depositing a protective layer on the intermediate layer;
5	selectively removing the protective layer to expose the intermediate layer; and
6	selectively removing the intermediate layer under conditions that do not degrade the
7	conductive element.
1	18. The method of claim 17, wherein the intermediate layer comprises an etch stop and
2	the protective layer comprises a photoresist.
1	19. The method of claim 17, wherein the intermediate layer comprises a dielectric
2	material.
1	20. The method of claim 1, wherein the conductive material comprises copper.
1	21. The method of claim 1, wherein the passivating layer is selected from the group
2	consisting of ruthenium, tantalum, tungsten, cobalt, palladium, nickel, tin, titanium,
3	molybdenum, platinum, iron, and niobium, and alloys thereof.
1	22. The method of claim 1, wherein the step of depositing a metallic passivating layer
2	comprises electroless deposition.
1	23. The method of claim 22, wherein the step of electrolessly depositing a metallic
2	passivating layer comprises the steps of:

3	depositing an initiation layer on the first conductive material by exposing the substrate to
4	an activation solution;
5	cleaning the substrate after deposition of the initiation layer; and
6	depositing a metallic passivating layer on the initiation layer by exposing the initiation
7	layer to an electroless solution.
1	24. A method of processing a semiconductor substrate, comprising:
2	steps for depositing a protective layer on the substrate surface comprising a conductive
3	element disposed in a dielectric material;
4	steps for processing the protective layer to expose the conductive element;
5	steps for depositing a metallic passivating layer onto the conductive element; and
6	steps for removing at least a portion of the protective layer from the substrate after
7	electroless deposition.
1	25. The method of claim 24, wherein the step of depositing a metallic passivating layer
2	comprises the steps of:
3	steps for depositing an initiation layer on the first conductive material by exposing the
4	substrate to an activation solution;
5	steps for cleaning the substrate after deposition of the initiation layer; and
6	steps for depositing a metallic passivating layer on the initiation layer by exposing the
7	initiation layer to an electroless solution.
1	26. The method of claim 24, where steps for depositing and processing the protective
2	layer comprise the steps of:
3	steps for depositing an intermediate layer on the substrate surface;
4	steps for depositing a protective layer on the intermediate layer;

5	steps for exposing and developing the protective layer to expose the intermediate layer;
6	and
7	steps for etching the intermediate layer under conditions that do not degrade the
8	conductive element.
1	27. The method of claim 24, wherein steps for depositing and processing an amorphous
2	carbon protective layer comprise the steps of:
3	steps for depositing an amorphous carbon layer over the substrate surface; and
4	steps for etching the amorphous carbon layer under conditions that do not degrade the
5	conductive element.
1	28. The method of claim 24, wherein the steps for depositing and processing a photoresist
2	protective layer comprise the steps of:
3	steps for depositing a photoresist over the substrate surface; and
4	steps for exposing and developing the photoresist under conditions that do not degrade
5	the conductive element.
1	29. The method of claim 24, wherein the steps of depositing and processing a dielectric
2	protective layer comprise the steps of:
3	steps for depositing a dielectric protective layer over the substrate surface; and
4	steps for etching the dielectric protective layer under conditions that do not degrade the
5	conductive element.
1	30. A system for processing a semiconductor substrate, comprising:
2	means for depositing a protective layer on the substrate surface comprising a conductive
3	element disposed in a dielectric material;
4	means for processing the protective layer to expose the conductive element:

5	means for electrolessly depositing a metallic passivating layer onto the conductive
6	element; and
7	means for removing at least a portion of the protective layer from the substrate after
8	electroless deposition.
1	31. The system of claim 30, wherein the steps for depositing and processing a photoresis
2	protective layer comprises the steps of:
3	means for depositing a photoresist over the substrate surface; and
4	means for exposing and developing the photoresist under conditions that do not degrade
5	the conductive element.
1	32. The system of claim 30, wherein the step of electrolessly depositing a metallic
2	passivating layer comprises the steps of:
3	means for depositing an initiation layer on the first conductive material by exposing the
4	substrate to an activation solution;
5	means for cleaning the substrate after deposition of the initiation layer; and
6	steps for depositing a metallic passivating layer on the initiation layer by exposing the
7	initiation layer to an electroless solution.
1	33. The system of claim 30, where steps for depositing and processing the protective
2	layer comprises the steps of:
3	means for depositing an intermediate layer on the substrate surface;
4	means for depositing a protective layer on the intermediate layer;
5	means for exposing and developing the protective layer to expose the intermediate layer;
6	and

7	means for etching the intermediate layer under conditions that do not degrade the
8	conductive element.
1	34. The system of claim 30, wherein steps for depositing and processing an amorphous
2	carbon protective layer comprises the steps of:
3	means for depositing an amorphous carbon layer over the substrate surface; and
4	means for etching the amorphous carbon layer under conditions that do not degrade the
5	conductive element.
1	35. The system of claim 30, wherein depositing and processing a dielectric protective
2	layer comprises:
3	means for depositing a dielectric layer over the substrate surface; and
4	means for etching the dielectric layer under conditions that do not degrade the conductive
5	element.
1	36. A method of processing a semiconductor substrate, comprising the steps of:
2	depositing a metallic passivating layer onto a substrate surface comprising a conductive
3	element;
4	masking the passivating layer to protect the underlying conductive element of the
5	substrate surface;
6	removing the unmasked passivating layer; and
7	removing the mask from the passivating layer.
1	37. The method of claim 36, wherein the mask is removed by ashing or reactive ion etch.
1	38. The method of claim 36, wherein the unmasked passivating layer is removed to
2	expose the underlying substrate surface.

1	39. The method of claim 36, wherein the unmasked passivating layer is removed by
2	etching.
1	40. The method of claim 36, wherein the conductive material comprises copper.
1	41. The method of claim 36, wherein the passivating layer is selected from the group
2	consisting of ruthenium, tantalum, tungsten, cobalt, palladium, nickel, tin, titanium,
3	molybdenum, platinum, iron, and niobium, and alloys thereof.
1	42. The method of claim 36, wherein the passivating layer is deposited as a continuous
2	film.
3	