MESTRADOS INTEGRADOS EM ENG. MECÂNICA E EM ENG. E GESTÃO INDUSTRIAL | 2017-18

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Reavaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular e microcomputadores;
- * Resolva cada um dos dois grupos utilizando folhas de capa distintas.

GRUPO I

- **1.** [7,0] Considere o conjunto $S = \{\vec{a}, \vec{b}, \vec{c}\} \subset \mathbb{R}^4$, em que $\vec{a} = (1,1,5,1)$, $\vec{b} = (2,-1,1,2)$ e $\vec{c} = (3,0,6,-3)$, o subespaço de \mathbb{R}^4 , $H = \{(x,y,z,w) \in \mathbb{R}^4 : x+y-z-w=0\}$, e o vetor $\vec{d} = (\alpha,\alpha,\alpha-1,\alpha) \in \mathbb{R}^4$.
 - a) Calcule o subespaço gerado pelo conjunto S, L(S); indique uma base para o subespaço obtido que inclua apenas elementos de S. Justifique.
 - **b**) Tendo em conta o resultado obtido na alínea anterior, determine o valor de $\alpha \in \mathbb{R}$ de modo que o conjunto $U = \{\vec{a}, \vec{b}, \vec{c}, \vec{d}\}$ seja linearmente dependente.
 - c) Recorrendo ao maior número possível de elementos de H, obtenha uma base ortogonal, V, para o espaço \mathbb{R}^4 .
 - **d**) Determine as coordenadas do vetor $\vec{f} = (1,0,1,1)$ em relação à base V.
- **2.** [1,2] Sejam os conjuntos $S = \{\vec{x}_1, \vec{x}_2, \vec{x}_3, ..., \vec{x}_s\} \subset \mathbb{R}^n$ e $K = \{\vec{y}_1, \vec{y}_2, \vec{y}_3, ..., \vec{y}_k\} \subset \mathbb{R}^n$. Mostre que L(S) = L(K), se e só se $\vec{x}_i \in L(K)$, i = 1, 2, ..., s e $\vec{y}_j \in L(S)$, j = 1, 2, ..., k.
- **3.** [2,5] Sejam \vec{a} , \vec{b} , \vec{c} e \vec{d} vetores não nulos do espaço \mathbb{R}^3 , tais que $\|\vec{d}\| = \sqrt{2}$, $\|\vec{b}\| = \|\vec{a}\| = 1$, $\{\vec{b}, \vec{d}\}$ é um conjunto ortogonal e $\vec{d} = (\vec{a} \times \vec{c}) \vec{b}$.
 - a) Calcule a norma do vetor $\vec{a} \times \vec{c}$.
 - **b**) Obtenha o ângulo, α , formado pelos vetores $2\vec{d} + \vec{b}$ e $\vec{a} \times \vec{c}$.
 - c) Verifique, justificando devidamente, se o conjunto $S = \{\vec{a}, \vec{b}, \vec{c}\}$ é uma base para o espaço \mathbb{R}^3 .

(continua no verso)

MESTRADOS INTEGRADOS EM ENG. MECÂNICA E EM ENG. E GESTÃO INDUSTRIAL | 2017-18

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Reavaliação

GRUPO II

- **4.** [1,3] Considere o conjunto de vetores $U = \{\vec{a}, \vec{b}, \vec{c}\} \subset \mathbb{R}^3$, tal que $\vec{a} \cdot \vec{b} \times \vec{c} = 0$. Será U linearmente dependente ou independente? Justifique devidamente a sua resposta.
- **5.** [8,0] Sejam o plano M: 2x+y+z=2, os pontos Q=(1,0,3) e R=(1,2,1), e a reta, r, com a equação vetorial $X(t)=P+t\vec{a}$, $t\in\mathbb{R}$, em que P=(-1,0,1) e $\vec{a}=(1,-2,3)$. Determine:
 - a) A distância do ponto Q à reta r e os pontos, T, desta reta, tais que a área do triângulo [TQR] seja igual a $\sqrt{3}$ unidades de área.
 - **b**) A equação vetorial da reta, h, contida no plano M, concorrente com a reta r e que passa num ponto, S, que é a projeção ortogonal de R sobre o plano M.
 - c) A equação vetorial de uma reta, s, que passa em R, é concorrente com a reta r e faz um ângulo de 60° com o plano M.