Electric Water Heater

Swift Act Challenge

By: Nourhan Mansour

Hardware

- Using PICSimLab v0.8.0
- Board: PICGenios, PIC16F877A
- peripherals from the board:
 - Fan as cooling element
 - Heater as heating element
 - LM35 Heating Sensor
 - 7 Seg-Dsiplay
 - External EEPROM -> i2c
 - Heating LED [RB6]
 - Push buttons:
 - Power [RB3]
 - □ Up [RB4]
 - Down [RB5]
- Using MPLAB IDE

Specifications – ON/OFF Behavior

- If power is connected to the heater, the electric water heater is in OFF state
- 2. If the "ON/OFF" button is released and the electric water heater is in OFF state, the electric water heater goes to ON state
- 3. If the "ON/OFF" button is released and the electric water heater is in ON state, the electric water heater goes to OFF state
- 4. In the OFF state, all display should be turned OFF

Specifications – Temperature Setting

- The "Up" or "Down" buttons are used to change the required water temperature (set temperature)
- 2. The first "Up" or "Down" button press, enters the temperature setting mode
- 3. After entering temperature setting mode, a single "Up" button press increase the set temperature by 5 degrees
- 4. After entering temperature setting mode, a single "Down" button press decrease the set temperature by 5 degrees
- 5. The minimum possible set temperature is 35 degrees
- 6. The maximum possible set temperature is 75 degrees
- 7. The "External E2PROM" should save the set temperature once set
- 8. If the electric water heater is turned OFF then ON, the stored set temperature should be retrieved from the "External E2PROM"
- The initial set temperature is 60 degrees

Specifications – Temperature Sensing

- 1. The temperature sensor measures the water temperature
- 2. The water temperature should increase, if the "Heating Element" is ON
- 3. The water temperature should decrease, if the "Cooling Element" is ON
- 4. Temperature should be sensed once every 100 ms
- 5. The decision to turn ON or OFF either the "Heating Element" or the "Cooling Element" based on the average of the last 10 temperature readings

Specifications – Heating/Cooling Elements

- 1. The "Heating Element" should be turned ON, if the current water temperature is less than the set temperature by 5 degrees
- 2. The "Cooling Element" should be turned OFF, if the current water temperature is less than the set temperature by 5 degrees
- 3. The "Heating Element" should be turned OFF, if the current water temperature is greater than the set temperature by 5 degrees
- 4. The "Cooling Element" should be turned ON, if the current water temperature is greater than the set temperature by 5 degrees
- If the "Heating Element" is ON, the "Heating Element Led" should blink every 1 second
- 6. If the "Cooling Element" is ON, the "Heating Element Led" should be ON

Specifications – Seven Segments

- 1. 2 seven segment by default show the current water temperature or the set temperature
- 2. If the electric water heater is in the temperature setting mode, the 2 seven segment displays should blink every 1 second and show the set temperature
- 3. In the temperature setting mode, every change in the set temperature should be reflected on the 2 seven segment displays
- 4. The 2 seven segment display should exit the temperature setting mode, if the "UP" and "Down" buttons are not pressed for 5 seconds

Finite State Machine

Detailed Design

- Electrical_Heater
 - ☐ EH Init
 - EH_Update
 - Get_Setting_Temp
- SCH
 - □ SCH_Init
 - □ SCH Start
 - SCH_Add_Task
 - SCH_Dispatch_Tasks
- Heating_Element
 - Heating Elements init
 - eating_Element_Update
 - Get avg Temp

- □ PB
 - PB Init
 - PB_Update
 - PB_GetState
- Seg7
 - Seg7_Init
 - Seg7_Update
 - Set_Seg7
- EXT_E2PROM
 - EXT_E2PROM_Init
 - EXT_E2PROM_Read
 - EXT_E2PROM_Write

Detailed Design

- ADC
 - ADC_Init
 - ADC_Read
- □ 12C
 - I2C_Init
 - I2C Start
 - ☐ I2C_Re_Start
 - ☐ I2C_Stop
 - I2C_Rd
 - ☐ I2C_Write
 - I2C_Busy

- **GPIO**
 - GPIO_InitPort
 - GPIO_InitPortPin
 - GPIO_SetPortState
 - GPIO_SetPortPinState
 - GPIO_GetPortPinState

Context-Diagram

Timing Analysis

Task	Actions	BCET (ms)	WCET(ms)	Period of Action (ms)	Period of task (ms)
ЕН	Update state Update PB Update 7Seg numbers	~0 ~0 ~0	~0 ~0 ~0	20 20 1000	20
SSD	Update SSD	~0	~0	2	2
HE	Read Temp Update Heater/cooler	~0 ~0	~0 ~0	100 100	100
Tick (ms)					1
Major Cycle (ms)					20

Schedulability Check

