Computer Architecture CSCI 4350

Arithmetic for Computers

Kwangsung Oh

kwangsungoh@unomaha.edu

http://faculty.ist.unomaha.edu/kwangsungoh

Arithmetic Logic Unit (ALU)

Roles of ALU

- Performing addition, subtraction, and logical operations
- Everything else in the computer is to service ALU
- Handling integers
- FPU (Floating Point Unit) Unit for floating point (real) numbers
- Implementation
 - All microprocessors has integer ALUs
 - On-chip or off-chip FPU (co-processor)

ALU Inputs and Outputs

Integer Representation

- Only 0 & 1
- Two representative representations
 - Sign-magnitude
 - Two's complement
- Sign-magnitude
 - Sign bit (left most bit: 0 positive, 1 negative)
 - +18 = 00010010
 - -18 = **1**0010010
 - !! Two zeros = +0 (00000000), -0 (10000000)
 - !! Need to consider both sign bit and magnitude in arithmetic

2's Complement

- Given N, 2's complement of N with n-bits
 - $2^n N = (2^n 1) N + 1 = bit complement of N + 1$
- 32-bit number
 - Positive number: 0 (x00000000) to 2³¹ 1 (x7FFFFFFF)
 - Negative number: -1 (xFFFFFFFF) to -2^{31} (x80000000)
- 3-bit Examples

$$-4 = 100$$

•
$$+2 = 010$$

$$-3 = 101$$

•
$$+1 = 001$$

$$-2 = 110$$

•
$$0 = 000$$

$$-1 = 111$$

Characteristics of 2's Complement

- A single zero
- Simple negation (bit complement of N + 1)

• 4 = 00000100

• Bit complement = 11111011

• Add 1 to LSB = 11111100

- Overflow only when
 - The same sign bit of two numbers but an opposite sign bit of result

Operation	Sign of A	Sign of B	If sign of result
A + B	+	+	-
A + B	-	-	+
A – B	+	-	-
A – B	-	+	+

- Simple arithmetic
 - A B = A + (-B) -> Adding 2's complement of B to A

Range of Numbers

8-bit 2's complement

```
• 127 = 0111 \ 1111 = 2^7 - 1
• -128 = 1000 \ 0000 = -2^7
```

16-bit 2's complement

```
• 32767 = 0111 1111 1111 1111 = 2^{15} - 1
• -32768 = 1000 0000 0000 0000 = -2^{15}
```

- n-bit 2's complement
 - $-2^{n-1} \sim 2^{n-1} 1$

Addition and Subtraction

Addition

- Normal binary addition
- Monitor sign bit for overflow

Subtraction

- Take the two's complement of subtrahend and add to minuend
- I.e., a b = a + (-b)
- Adder and complement circuits needed

Hardware for Addition and Subtraction

OF = Overflow bit

SW = **Switch** (select addition or subtraction)

Example of Multiplication

```
• 8 * 9 => 1000 * 1001
  Multiplicand 1000 (8 decimal)
  Multiplier x 1001 (9 decimal)
                    1000
                             <-- Partial products
                                if multiplier bit is 1, copy multiplicand
                  0000
                 0000
                                else 0, put zero
                1000
  Product
               01001000 (72 decimal)
```

Kwangsung Oh @ NeDraska Omaha

Multiplication

- Principles
 - Work out partial product for each digit
 - Shift each partial product
 - Add partial products
 - Note: need double length result

Multiplication Hardware

Unsigned Multiplication Algorithm

Example of Unsigned Binary Multiplication

	Prod		8 (1000) * 9	
С	R1 (A)	R2 (Q)	R3 (M)	8 (1000) 3
(Carry)		(Multiplier)	(Multiplicand)	
0	0000	100 <mark>1</mark>	1000	Initial values
0	1000	1001	1000	Add
0	0100	0100	1000	Shift
0	0010	0010	1000	Shift
0	0001	0001	1000	Shift
0	1001	0001	1000	Add
0	0100	1000	1000	Shift

(1001)

Signed Multiplication

- Unsigned binary multiplication algorithm
 - Does not work for signed multiplication
- Solution 1
 - Converting to positive number
 - Multiplying as above
 - If sings were different, negate the answer
- Solution 2
 - Booth's algorithm

Booth's Algorithm

Example of Booth's Algorithm

Production

R1 (A)	R2 (Q) (Multiplier)	Q ₋₁	R3 (M) (Multiplicand)	8 (1000) * 9 (1001)
00000	0100 <mark>1</mark>	0	01000	Initial values
11000	01001	0	01000	Sub (11000 – 2's complement): A + (-M)
11100	00100	1	01000	Shift
00100	00100	1	01000	Add (01000): A + M
00010	00010	0	01000	Shift
00001	00001	0	01000	Shift
11001	00001	0	01000	Sub (11000 - 2's complement): A + (-M)
11100	10000	1	01000	Shift
00100	10000	1	01000	Add (01000 - 2's complement): A + (-M)
00010	01000	0	01000	Shift

Example of Booth's Algorithm

Production

R1 (A)	R2 (Q) (Multiplier)	Q ₋₁	R3 (M) (Multiplicand)	11 (01011) * -13 (10011)
00000	1001 <mark>1</mark>	0	01011	Initial values
10101 11010	10011 1100 <mark>1</mark>	0 1	01011 01011	Sub (10101, 2's complement): A + (-M) Shift
11101	01100	1	01011	Shift
01000	01100	1	01011	Add (01011): A + (-M)
00100	00110	0	01011	Shift
00010	00011	0	01011	Shift
10111	00011	0	01011	Sub (10101, 2's complement): A + (-M)
11011	10001	0	01011	Shift

Examples of More Booth's Algorithm

(a)
$$(7) \times (3) = (21)$$

(b)
$$(7) \times (-3) = (-21)$$

1001		1001	
× 0011	(0)	<u>×1101</u>	(0)
00000111	1-0	00000111	1-0
000000	1-1	1111001	0-1
111001	0-1	000111	1-0
11101011	(-21)	00010101	(21)

(c)
$$(-7) \times (3) = (-21)$$

(d)
$$(-7) \times (-3) = (21)$$

Division

- Unsigned binary division
 - By shift and subtract
- Signed binary division
 - More complex than multiplication
 - The unsigned binary division can be extended to negative numbers

Example of Division

147 / 11 -> 10010011 / 1011

Division Hardware

Unsigned Division Algorithm

Unsigned Binary Division Example

Quotient R2 (Q) (Dividend)	R3 (M) (Divisor)	7 (0111) / 2 (0010)
0111	0010	Initial values
111_	0010	Shift Left
$111\overline{0}$	0010	Sub (1110, 2's complement): A + (-M)
1110	0010	Add (0010): A + M
110_	0010	Shift Left
110 <mark>0</mark>	0010	Sub (1110, 2's complement): A + (-M)
1100	0010	Add (0010): A + M
100_	0010	Shift Left
100 <mark>1</mark>	0010	Sub (1110, 2's complement): A + (-M)
001	0010	Shift Left
$001\overline{1}$	0010	Sub (1110, 2's complement): A + (-M)
	R2 (Q) (Dividend) 0111 111_ 1110 1110 1100 1100 100_ 1001 001_	R2 (Q) R3 (M) (Divisor) 0111 0010 111_ 0010 1110 0010 1110 0010 1110 0010 1100 0010 1100 0010 1001 0010 1001 0010 1001 0010

Signed Division Algorithm

- Extending unsigned binary division
 - 1. 2n-bit 2's complement number for a negative number
 - 2. Shift A, Q left by 1-bit position
 - 3. Checking A sign and M sign
 - 4. If same A M, else A + M
 - 5. If sign of A is "the same as before" or (A = 0 and Q = 0), $Q_0 = 1$, else $Q_0 = 0$ and restore A value
 - 6. Repeat 2 ~ 4 n times
 - 7. If the signs of the divisor and dividend are the same, Q is quotient, else the quotient is the 2's complement of Q

Examples of Signed Division

A	Q	M = 0011	A	Q	M = 1101
0000	0111	Initial value	0000	0111	Initial value
0000	1110	shift	0000	1110	shift
1101		subtract	1101		add
0000	1110	restore	0000	1110	restore
0001	1100	shift	0001	1100	shift
1110		subtract	1110		add
0001	1100	restore	0001	1100	restore
0011	1000	shift	0011	1000	shift
0000		subtract	0000		add
0000	1001	$set Q_0 = 1$	0000	1001	$set Q_0 = 1$
0001	0010	shift	0001	0010	shift
1110		subtract	1110		add
0001	0010	restore	0001	0010	restore
	(a) (7)/(3)			(b) (7)/(-3)	

A	Q	M = 0011	A	Q	M = 1101
1111	1001	Initial value	1111	1001	Initial value
1111 0010	0010	shift add	1111 0010	0010	shift subtract
1111	0010	restore	1111	0010	restore
1110 0001 1110	0100 0100	shift add restore	1110 0001 1110	0100 0100	shift subtract restore
1100 1111 1111	1000	shift add set $Q_0 = 1$	1100 1111 1111	1000	$\begin{array}{c} \text{shift} \\ \text{subtract} \\ \text{set } Q_0 = 1 \end{array}$
1111 0010 1111	0010 0010	shift add restore	1111 0010 1111	0010 0010	shift subtract restore

(c) (-7)/(3) (d) (-7)/(-3)

Real Numbers

- Numbers with fractions
 - 10.23, 0.999993, 358.323, and 3.14159...
- Pure binary: $1001.1010 = 2^3 + 2^0 + 2^{-1} + 2^{-3} = 9.625$
- Where to put the binary point?
 - Fixed-point
 - Limited to present very large number and very small fraction
 - Floating point
 - Use the exponent to slide (place) the binary point
 - $-976,000,000,000,000. = 9.76 * 10^{14}$
 - $-0.0000000000000976 = 9.76 * 10^{-14}$

Floating Point Number

- Three components for FP number
 - Sign * Significand (Mantissa) * 2 ±Exponent

 Base 2 is omitted

Exponent (E)	Significand or Mantissa (S)
--------------	-----------------------------

- Exponent E (<u>Biased</u> representation)
 - Fixed value (bias) for k-bit exponent: 2^{k-1} 1 (higher number representation)
 - E.g., for 8-bit exponent -127 ~ 128
 - Simple comparison for nonnegative FP (bigger exponent is bigger)
- Significant **S** (Normalized representation)
 - ± 1.bbb ... bbb * 2^{±E}
 - The most significant digit is always 1 (omitted)
 - Thus, 23-bit significand can store 24-bit significand [1, 2)

32-bit Floating Point Number Examples

What is the smallest number in this representation?

Expressible Numbers in 32-bit Formats

Twos complement integers

Density of Floating-Point Numbers

- The maximum number of different values that can be represented with 32 bits is still 2³²
- FP numbers are not spaced evenly along the number line – Larger numbers are spaced more sparsely than smaller numbers

Standard for FP Number (IEEE 754)

- Supported by virtually all commercial microprocessors
- Formats
 - 32-bit single precision 8-bit exponent, 23-bit fraction
 - 64-bit double precision 11-bit exponent, 52-bit fraction
- Characteristics
 - Range: -126 ~ 127 (single), -1022 ~ 1023 (double)

Number	Exponent	Significand
± 0	All 0	All 0
± ∞	All 1	All 0
Denormalized	All 0	Nonzero
NaN (Not a Number)	All 1	Nonzero

NaN (Not a Number)

- The following practices may cause NaNs
 - All mathematical operations with a NaN as at least one operand
 - The divisions 0/0, ∞/∞ , $\infty/-\infty$, $-\infty/\infty$, and $-\infty/-\infty$
 - The multiplications $0\times\infty$ and $0\times-\infty$
 - The additions $\infty + (-\infty)$, $(-\infty) + \infty$ and equivalent subtractions
 - Applying a function to arguments outside its domain
 - Taking the square root of a negative number
 - Taking the logarithm of zero or a negative number
 - Taking the inverse sine or cosine of a number which is less than -1 or greater than +1

IEEE 754 Format

Encoding FP

• Example: 18.3 (32-bit)

18 = 10010

0.3 = 0100110011001100110 **←**

18.3 = 10010.0100110011001100110

 $= 1.00100100110011001100110 \times 2^{4}$ (normalized)

IEEE 754 Format:

Sign bit: **0** (+)

Biased exponent: 10000011 = 4 + 127 (biased)

Significand = **0010010011001100110**

Binary: 0 10000011 00100100110011001100110 0100 0001 1001 0010 0110 0110 0110 0110

Hex: 0x41926666 = 18.3

$0.3 \times 2 = 0.6$	0	
$0.6 \times 2 = 1.2$	1	
$0.2 \times 2 = 0.4$	0	
$0.4 \times 2 = 0.8$	0	
$0.8 \times 2 = 1.6$	1	
$0.6 \times 2 = 1.2$	1	
•••		
repeat (for 2	3 bit)	

Decoding FP

Example: 0xC34D4000 (hex)

IEEE 754 Format:

Sign bit: **1** (-)

Biased exponent: 10000110 = 134 - 127 (biased) = 7 (Exponent)

Significand = **100110101**

 $C34D400 = -1.100110101 \times 2^7 = -11001101.01$ (Shift point to the right 7)

- 1 1 0 0 1 1 0 1. 0 1

128 64 32 16 8 4 2 1. ½ ¼

= -205.25

FP Arithmetic +/-

- 4 Phases
 - Check for zeros
 - Align the significand of a smaller number (adjust the exponent)
 - Add or subtract the significands
 - Normalize the result

FP Arithmetic +/-

FP Arithmetic x/÷

- 4 Phases
 - Check for zeros
 - Add/subtract exponents
 - Multiply/divide significands (watch sign)
 - Normalize the result

FP Multiplication

FP Division

