Optimal Project Design

George Georgiadis (Northwestern Kellogg)

with D. Garrett (TSE), A. Smolin (TSE), and B. Szentes (LSE)

Motivation

- Rents due to agency problems is key determinant of economic welfare
- Determinants of these frictions are usually part of model description
 - In adverse selection models, distribution of types typically exogenous
 - In moral hazard models, production technology taken as given
- If an agent's payoff depends on agency frictions, then he is likely to take actions to generate these frictions optimally.

This Paper

Reconsider std. principal-agent model under moral hazard to understand how an agent might gain by designing the production technology optimally

Motivation

- Rents due to agency problems is key determinant of economic welfare
- Determinants of these frictions are usually part of model description
 - In adverse selection models, distribution of types typically exogenous
 - In moral hazard models, production technology taken as given
- If an agent's payoff depends on agency frictions, then he is likely to take actions to generate these frictions optimally.

This Paper.

Reconsider std. principal-agent model under moral hazard to understand how an agent might gain by designing the production technology optimally.

Model

- Players. Risk-neutral principal & agent, and latter is cash-constrained
- Timing.
 - i. Agent chooses a "project" $c:\Delta([0,1])\to\mathbb{R}_+$; *i.e.*, a map from every output distribution with support on [0,1] to a (nonnegative) cost.
 - ii. Principal offers a wage scheme $w:[0,1] \to \mathbb{R}_+$
 - iii. Agent chooses an "action" $F \in \Delta([0,1])$
 - iv. Output $x \sim F$ and payoffs are realized
- Payoffs.
 - Agent: $\mathbb{E}_F[w(x)] c(F)$
 - Principal: $\mathbb{E}_F[x w(x)]$
 - Both players have outside option 0

Applications

- An entrepreneur (agent) seeks funding from a VC (principal)
- Before contracting, the entrepreneur must develop a business plan, specifying various aspects of his production function
- Conceivable he has at least some flexibility in choosing the biz plan.
- If VC has a lot of bargaining power, the entrepreneur benefits from putting forward a biz plan that exacerbates moral hazard problem.
- Remark: Abstract away from constraints in the agent's flexibility.
- More broadly, employees can often influence aspects of production function (e.g., assignment of projects, goals, evaluation metrics, etc)
 which provides an opportunity to shape their production technology.

Applications

- An entrepreneur (agent) seeks funding from a VC (principal)
- Before contracting, the entrepreneur must develop a business plan, specifying various aspects of his production function
- Conceivable he has at least some flexibility in choosing the biz plan.
- If VC has a lot of bargaining power, the entrepreneur benefits from putting forward a biz plan that exacerbates moral hazard problem.
- Remark: Abstract away from constraints in the agent's flexibility.
- More broadly, employees can often influence aspects of production function (e.g., assignment of projects, goals, evaluation metrics, etc)
 which provides an opportunity to shape their production technology.

Applications

- An entrepreneur (agent) seeks funding from a VC (principal)
- Before contracting, the entrepreneur must develop a business plan, specifying various aspects of his production function
- Conceivable he has at least some flexibility in choosing the biz plan.
- If VC has a lot of bargaining power, the entrepreneur benefits from putting forward a biz plan that exacerbates moral hazard problem.
- Remark: Abstract away from constraints in the agent's flexibility.
- More broadly, employees can often influence aspects of production function (e.g., assignment of projects, goals, evaluation metrics, etc), which provides an opportunity to shape their production technology.

Some Intuition

- First Best.
 - Agent sets c(F) = 0 for all F
 - Principal responds by offering wage 0 and implementing $F(x) = \mathbb{I}_{\{x=1\}}$
- Outcome is efficient but the agent is left with no rents!
- Mechanism. Agent chooses the project to make the moral hazard problem severe, which will enable him to extract rents.

Some Intuition

- First Best.
 - Agent sets c(F) = 0 for all F
 - Principal responds by offering wage 0 and implementing $F(x) = \mathbb{I}_{\{x=1\}}$
- Outcome is efficient but the agent is left with no rents!
- Mechanism. Agent chooses the project to make the moral hazard problem severe, which will enable him to extract rents.

Problem Formulation

• *Principal.* Given project *c*, she solves:

$$\max_{w(\cdot),F} \mathbb{E}_{F}[x-w(x)]$$
s.t. $\mathbb{E}_{F}[w(x)] - c(F) \ge \mathbb{E}_{\widetilde{F}}[w(x)] - c(\widetilde{F})$ for all \widetilde{F}

$$w(x) \ge 0 \text{ for all } x$$

$$F \in \Delta([0,1])$$

Denote the optimal contract by w^c and implemented action by F^c .

• Agent. Chooses the optimal project by solving:

$$\max \mathbb{E}_{F^c}[w^c(x)] - c(F^c)$$
s.t. $c : \Delta([0,1]) \to \mathbb{R}_+$

Problem Formulation

• *Principal.* Given project *c*, she solves:

$$\max_{w(\cdot),F} \mathbb{E}_{F}[x - w(x)]$$
s.t. $\mathbb{E}_{F}[w(x)] - c(F) \ge \mathbb{E}_{\widetilde{F}}[w(x)] - c(\widetilde{F})$ for all \widetilde{F}

$$w(x) \ge 0 \text{ for all } x$$

$$F \in \Delta([0,1])$$

Denote the optimal contract by w^c and implemented action by F^c .

• Agent. Chooses the optimal project by solving:

max
$$\mathbb{E}_{F^c}[w^c(x)] - c(F^c)$$

s.t. $c: \Delta([0,1]) \to \mathbb{R}_+$

- Optimal project is coarse: all feasible actions generate binary output
 - Binary projects effectively restrict the contracting space, forcing the principal to make a larger expected payment to the agent.
- Action space is rich: Optimal (binary) project comprises
 - continuum of zero-cost actions where project succeeds with some prob
 - a high cost action which guarantees success
 - a spectrum of actions in between.
- Inefficiency: Maximal output realized in equilibrium at bloated costs
- Ments: The agent extracts all rents
- 6 Characterization of payoff allocations for any production technology

- Optimal project is coarse: all feasible actions generate binary output
 - Binary projects effectively restrict the contracting space, forcing the principal to make a larger expected payment to the agent.
- Action space is rich: Optimal (binary) project comprises
 - continuum of zero-cost actions where project succeeds with some prob.
 - a high cost action which guarantees success
 - a spectrum of actions in between.
- Inefficiency: Maximal output realized in equilibrium at bloated costs
- Rents: The agent extracts all rents
- 6 Characterization of payoff allocations for any production technology

- Optimal project is coarse: all feasible actions generate binary output
 - Binary projects effectively restrict the contracting space, forcing the principal to make a larger expected payment to the agent.
- Action space is rich: Optimal (binary) project comprises
 - continuum of zero-cost actions where project succeeds with some prob.
 - a high cost action which guarantees success
 - a spectrum of actions in between.
- Inefficiency: Maximal output realized in equilibrium at bloated costs
- @ Rents: The agent extracts all rents
- 6 Characterization of payoff allocations for any production technology

- Optimal project is coarse: all feasible actions generate binary output
 - Binary projects effectively restrict the contracting space, forcing the principal to make a larger expected payment to the agent.
- Action space is rich: Optimal (binary) project comprises
 - continuum of zero-cost actions where project succeeds with some prob.
 - a high cost action which guarantees success
 - a spectrum of actions in between.
- Inefficiency: Maximal output realized in equilibrium at bloated costs
- Rents: The agent extracts all rents
- 6 Characterization of payoff allocations for any production technology

- Optimal project is coarse: all feasible actions generate binary output
 - Binary projects effectively restrict the contracting space, forcing the principal to make a larger expected payment to the agent.
- Action space is rich: Optimal (binary) project comprises
 - continuum of zero-cost actions where project succeeds with some prob.
 - a high cost action which guarantees success
 - a spectrum of actions in between.
- Inefficiency: Maximal output realized in equilibrium at bloated costs
- Ments: The agent extracts all rents
- Oharacterization of payoff allocations for any production technology

A Simple Example

- Suppose the agent is restricted to choosing a project comprising two actions, F_1 and F_2 , with binary output; i.e., $supp(F_i) = \{0, 1\}$
- Easy to solve analytically and show that:
 - F_1 costs 0 and leads to x = 1 with probability 1/2 (otherwise x = 0)
 - F_2 costs 1/4 and leads to x = 1 with probability 1
 - Principal sets w(0) = 0 and w(1) = 1/2, implementing F_2
- Remarks:
 - Clearly, $c(F_1) = 0$: otherwise, agent can uniformly decrease costs
 - Cost $c(F_2) = 1/4$: just enough for principal to prefer to implement F_2
 - Deviation action F_1 determines w(1), enabling agent to earn rents

A Simple Example

- Suppose the agent is restricted to choosing a project comprising two actions, F_1 and F_2 , with binary output; i.e., $supp(F_i) = \{0, 1\}$
- Easy to solve analytically and show that:
 - F_1 costs 0 and leads to x = 1 with probability 1/2 (otherwise x = 0)
 - F_2 costs 1/4 and leads to x = 1 with probability 1
 - Principal sets w(0) = 0 and w(1) = 1/2, implementing F_2
- Remarks:
 - Clearly, $c(F_1) = 0$: otherwise, agent can uniformly decrease costs
 - Cost $c(F_2) = 1/4$: just enough for principal to prefer to implement F_2
 - Deviation action F_1 determines w(1), enabling agent to earn rents

A Simple Example

- Suppose the agent is restricted to choosing a project comprising two actions, F_1 and F_2 , with binary output; i.e., $supp(F_i) = \{0, 1\}$
- Easy to solve analytically and show that:
 - F_1 costs 0 and leads to x = 1 with probability 1/2 (otherwise x = 0)
 - F_2 costs 1/4 and leads to x = 1 with probability 1
 - Principal sets w(0) = 0 and w(1) = 1/2, implementing F_2
- Remarks:
 - Clearly, $c(F_1) = 0$: otherwise, agent can uniformly decrease costs
 - Cost $c(F_2) = 1/4$: just enough for principal to prefer to implement F_2
 - Deviation action F_1 determines w(1), enabling agent to earn rents

• Can the agent benefit from choosing a 3rd action?

- In the optimal project:
 - F_i leads to x = 1 w.p. p_i , where $p_1 < p_2 < p_3$ and $c(F_1) < c(F_2) < c(F_3)$
 - Principal implements F_3 , wherein x = 1 with probability 1
- Conditional on implementing F_3 , intermediate action F_2 is useful for the agent because it determines the optimal bonus.
- F_1 determines if implementing $p_3 = 1$ is optimal for principal.
 - Absent this action, p_2 would be implementable with bonus = $c(F_2)$, which could be preferable for the principal (reducing rents to 0).
- Actions support each other enabling agent to extract rents

• Can the agent benefit from choosing a 3rd action?

- In the optimal project:
 - F_i leads to x = 1 w.p. p_i , where $p_1 < p_2 < p_3$ and $c(F_1) < c(F_2) < c(F_3)$
 - Principal implements F_3 , wherein x = 1 with probability 1
- Conditional on implementing F_3 , intermediate action F_2 is useful for the agent because it determines the optimal bonus.
- F_1 determines if implementing $p_3 = 1$ is optimal for principal.
 - Absent this action, p_2 would be implementable with bonus = $c(F_2)$, which could be preferable for the principal (reducing rents to 0).
- Actions support each other enabling agent to extract rents

• Can the agent benefit from choosing a 3rd action?

- In the optimal project:
 - F_i leads to x = 1 w.p. p_i , where $p_1 < p_2 < p_3$ and $c(F_1) < c(F_2) < c(F_3)$
 - Principal implements F_3 , wherein x = 1 with probability 1
- Conditional on implementing F_3 , intermediate action F_2 is useful for the agent because it determines the optimal bonus.
- F_1 determines if implementing $p_3 = 1$ is optimal for principal.
 - Absent this action, p_2 would be implementable with bonus = $c(F_2)$, which could be preferable for the principal (reducing rents to 0).
- Actions support each other enabling agent to extract rents

• Can the agent benefit from choosing a 3rd action?

- In the optimal project:
 - F_i leads to x = 1 w.p. p_i , where $p_1 < p_2 < p_3$ and $c(F_1) < c(F_2) < c(F_3)$
 - Principal implements F_3 , wherein x = 1 with probability 1
- Conditional on implementing F_3 , intermediate action F_2 is useful for the agent because it determines the optimal bonus.
- F_1 determines if implementing $p_3 = 1$ is optimal for principal.
 - Absent this action, p_2 would be implementable with bonus = $c(F_2)$, which could be preferable for the principal (reducing rents to 0).
- Actions support each other enabling agent to extract rents

Plan of Attack

- Theorem 1: Show it suffices to restrict attention to binary projects
 - Given an arbitrary project, we construct a new project such that c(F) < 1 iff $supp(F) = \{0,1\}$, and the agent is (weakly) better off.
- This dramatically reduces the dimensionality of the problem so that:
 - In Stage 1, the agent assigns a cost $C(p) \ge 0$ to each $p = Pr\{x = 1\}$
 - In Stage 2, the principal offers a bonus contract $w(x) = b\mathbb{I}_{\{x=1\}}$
 - In Stage 3, agent chooses p at a cost C(p)
- Theorem 2: Characterize the optimal project (in closed form)

Plan of Attack

- Theorem 1: Show it suffices to restrict attention to binary projects
 - Given an arbitrary project, we construct a new project such that c(F) < 1 iff $supp(F) = \{0,1\}$, and the agent is (weakly) better off.
- This dramatically reduces the dimensionality of the problem so that:
 - In Stage 1, the agent assigns a cost $C(p) \ge 0$ to each $p = \Pr\{x = 1\}$
 - In Stage 2, the principal offers a bonus contract $w(x) = b\mathbb{I}_{\{x=1\}}$
 - In Stage 3, agent chooses p at a cost C(p)
- Theorem 2: Characterize the optimal project (in closed form)

Properties of an Optimal Project

Theorem 1.

- Suppose an optimal project exists.
- Then there exists another project, c, such that
 - i. c(F) < 1 if and only if $supp(F) = \{0, 1\}$ (i.e., output is binary), and
 - ii. the principal optimally implements $F(x) = \mathbb{I}_{\{x=1\}}$ (i.e., x = 1 w.p 1),

which gives the agent a (weakly) larger expected payoff.

- The principal optimally rewards those outputs which are indicative of the target action, and punishes those indicative of a deviation.
- Binary projects restrict the contracting space, limiting the principal's screening ability, and increasing the expected payment to the agent.

- Fix a c & suppose principal offers w^* , implementing F^* (w/ mean μ^*)
- Construct a new project \widetilde{c} : For each $\mu \in [0,1]$, define

$$B_{\mu} = (1 - \mu) + \mu \mathbb{I}_{\{x=1\}}$$
 and $\widetilde{c}(B_{\mu}) = \inf \{c(F) : \mathbb{E}_F[x] = \mu\}$

i.e., B_{μ} is a distribution with support $\{0,1\}$ and mean μ , and we assign it the cost of the cheapest distribution in c with same mean.

• Given \widetilde{c} , wolog, the principal offers a bonus contract $w(x) = b\mathbb{I}_{\{x=1\}}$, or equivalently, a linear contract w(x) = bx.

Consider the problem of implementing any action at max profit

$$\begin{split} &\Pi(F) = \sup_{w(\cdot) \geq 0} \; \left\{ \mathbb{E}_F \big[x - w(x) \big] \; : \; F \text{ is IC} \right\} \; \text{, and} \\ &\widetilde{\Pi}(B_\mu) = \sup_{b \in [0,1)} \; \left\{ (1-b)\mu \; : \; B_\mu \text{ is IC} \right\}, \end{split}$$

in the original and the new project, c and \tilde{c} , respectively.

- Lemma 1: For any F such that $\mathbb{E}_F[x] = \mu$, $\widetilde{\Pi}(B_\mu) \leq \Pi(F)$. i.e., implementing B_μ is less profitable than an F with same mean.
 - Suppose the principal were restricted to linear contracts in c. Then:

$$\Pi_{lin}(F) = \widetilde{\Pi}(B_{\mu})$$
 for all F with mean μ .

• Absent this restriction, her profit is weakly larger; i.e., $\Pi(F) \ge \Pi_{lin}(F)$.

- Define $B^* = B_{\mu^*}$ and $b^* = \mathbb{E}_{F^*}[w^*(x)]/\mu^* < 1$
- If $w(x) = b^* \mathbb{I}_{\{x=1\}}$ implements B^* , then:
 - **1** It makes the same expected payment to the agent as w^* .
 - ② It generates profit equal to $\Pi(F^*)$ for the principal.
- If b^* does not implement B^* , adjust cost $\widetilde{c}(B^*) = \inf_{\mu} \{b^*\mu c(B_{\mu})\}$
- Lemma 2: Principal cannot implement B^* with any $b < b^*$.
 - Suppose B^* can be implemented by some $b < b^*$
 - If $\widetilde{c}(B^*)$ was adjusted, this contradicts the above definition of $\widetilde{c}(B^*)$.
 - If $\widetilde{c}(B^*)$ was not, then the premise contradicts Lemma 1.

- By assumption, F^* is optimal in c; i.e., $\Pi(F^*) \ge \Pi(F)$ for all F
- By Lemma 1, $\widetilde{\Pi}(B_{\mu}) \leq \Pi(F)$ for any F with mean μ
- By construction, $\widetilde{\Pi}(B^*) = \Pi(F^*)$, and therefore,

$$\widetilde{\Pi}(B^*) \ge \widetilde{\Pi}(B_\mu)$$
 for all μ

i.e., the principal optimally implements B^* in \widetilde{c} .

- Also by construction, agent is weakly better off relative to $\{c, w^*\}$.
- If $\mu^* = 1$, then the proof is complete.

• Suppose $\mu^* < 1$. Since b^* implements B^* , the following IC is satisfied

$$b^*\mu^* - \widetilde{c}(B^*) \ge b^*\mu - \widetilde{c}(B_\mu)$$
 for all μ .

- Observation: This constraint is slack for all $\mu > \mu^*$.
 - If not, b^* implements $B_{\mu'}$ for some $\mu' > \mu^*$ giving principal bigger profit
- Therefore, wolog, we can adjust $\widetilde{c}(B_{\mu}) = \infty$ for all $\mu > \mu^*$.
- Multiply bonus b^* , costs and success prob. $\Pr\{x=1\}$ by $1/\mu^* > 1$.
 - Payoffs are scaled up and IC constraints are unchanged.
- **Summary:** New project comprises only actions with support $\{0,1\}$, principal optimally implements x = 1 w.p. 1, and agent is better off.

Implication

- By Theorem 1, it suffices to restrict attention to:
 - Actions such that

$$x = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}$$

- A cost function $C(p) \ge 0$ such that principal optimally implements p = 1
- Bonus contracts $w(x) = b\mathbb{I}_{\{x=1\}}$
- We will solve the problem using backward induction

Heuristic Characterization – Stage 2

• Fix a cost function $C(\cdot)$. Then the principal solves

$$\max \ p(1-b)$$
 s.t. $pb-C(p) \ge \widetilde{p}b-C(\widetilde{p})$ for all $\widetilde{p} \in [0,1]$
$$p \in [0,1] \text{ and } b \ge 0$$

 Guess that C is twice differentiable and convex. Then we can replace the agent's IC constraint with its first-order condition:

$$b = C'(p)$$

and rewrite the principal's problem as

$$\pi \coloneqq \max_{p} p \left[1 - C'(p) \right]$$

Heuristic Characterization – Stage 2

• Fix a cost function $C(\cdot)$. Then the principal solves

max
$$p(1-b)$$

s.t. $pb - C(p) \ge \widetilde{p}b - C(\widetilde{p})$ for all $\widetilde{p} \in [0,1]$
 $p \in [0,1]$ and $b \ge 0$

 Guess that C is twice differentiable and convex. Then we can replace the agent's IC constraint with its first-order condition:

$$b = C'(p)$$

and rewrite the principal's problem as

$$\pi \coloneqq \max_{p} p \left[1 - C'(p) \right]$$

Heuristic Characterization - Stage 1

The agent solves

$$\max_{C(\cdot)\geq 0} p^* b - C(p^*)$$
s.t $p^* \left[1 - C'(p^*)\right] \geq p \left[1 - C'(p)\right]$ for all p (IC_P)

where $p^* = 1$ by Theorem 1, and $b = C'(p^*)$ from the agent's FOC.

• Using that $C'(1) = 1 - \pi$, we can rewrite this maximization program as

$$\max 1 - \pi - \int_0^1 C'(q) dq$$
s.t. $C'(p) \ge 1 - \frac{\pi}{p}$ for all $p < 1$

$$C(\cdot) \ge 0 \text{ and } \pi \in [0, 1]$$

Heuristic Characterization – Stage 1 (Continued)

• Step 1: For (any) fixed π , we solve

$$\max_{C(\cdot)\geq 0} 1 - \pi - \int_0^1 C'(p) dp$$
s.t. $C'(p) \geq 1 - \frac{\pi}{p}$ for all $p < 1$

• Objective decreases in C'(p) and constraint imposes lower bound. So

$$C'(p) = \left[1 - \frac{\pi}{p}\right]^+$$

• Step 2: Plugging $C'(\cdot)$ into the agent's objective, we solve

$$\max_{\pi \in [0,1]} \{-\pi \ln \pi\} \implies \pi^* = 1/e;$$

i.e., the principal's, as well as the agent's payoff is 1/e.

Heuristic Characterization – Stage 1 (Continued)

• Step 1: For (any) fixed π , we solve

$$\max_{C(\cdot)\geq 0} 1 - \pi - \int_0^1 C'(p) dp$$

s.t. $C'(p) \geq 1 - \frac{\pi}{p}$ for all $p < 1$

ullet Objective decreases in C'(p) and constraint imposes lower bound. So

$$C'(p) = \left[1 - \frac{\pi}{p}\right]^+$$

• Step 2: Plugging $C'(\cdot)$ into the agent's objective, we solve

$$\max_{\pi \in [0,1]} \{-\pi \ln \pi\} \implies \pi^* = 1/e;$$

i.e., the principal's, as well as the agent's payoff is 1/e.

Heuristic Characterization – Stage 1 (Continued)

• Step 1: For (any) fixed π , we solve

$$\max_{C(\cdot)\geq 0} 1 - \pi - \int_0^1 C'(p) dp$$

s.t. $C'(p) \geq 1 - \frac{\pi}{p}$ for all $p < 1$

ullet Objective decreases in C'(p) and constraint imposes lower bound. So

$$C'(p) = \left[1 - \frac{\pi}{p}\right]^+$$

• Step 2: Plugging $C'(\cdot)$ into the agent's objective, we solve

$$\max_{\pi \in [0,1]} \{-\pi \ln \pi\} \implies \pi^* = 1/e;$$

i.e., the principal's, as well as the agent's payoff is 1/e.

Characterization

Theorem 2. Optimal Project

• There exists an optimal project in which the agent chooses

$$C'(p) = \begin{cases} 0 & \text{if } p \le 1/e \\ 1 - \frac{1}{pe} & \text{if } p > 1/e \end{cases}$$

- The principal offers bonus contract with b = 1 1/e
- Each player obtains payoff equal to 1/e
- The agent chooses a convex cost function s.t any $p \le 1/e$ is costless, while larger p's are progressively more expensive and the principal is is indifferent across any bonus contract with $b \in [0, 1-1/e]$.
- Principal's profit $\pi = 1/e$, and agent captures all rents for p > 1/e.

Characterization

Theorem 2. Optimal Project

• There exists an optimal project in which the agent chooses

$$C'(p) = \begin{cases} 0 & \text{if } p \le 1/e \\ 1 - \frac{1}{pe} & \text{if } p > 1/e \end{cases}$$

- The principal offers bonus contract with b = 1 1/e
- Each player obtains payoff equal to 1/e
- The agent chooses a convex cost function s.t any $p \le 1/e$ is costless, while larger p's are progressively more expensive and the principal is is indifferent across any bonus contract with $b \in [0, 1-1/e]$.
- Principal's profit $\pi = 1/e$, and agent captures all rents for p > 1/e.

Graphically

• To capture rents, agent commits to rent seeking activity costing C(p).

Graphically

• To capture rents, agent commits to rent seeking activity costing C(p).

Payoff pairs implementable by an arbitrary binary project

Insofar, we have assumed the agent can choose any cost function

$$c:\Delta([0,1])\to\mathbb{R}_+$$

- Suppose the agent is constrained and must choose among a subset of these cost functions.
- Q: Can we make any predictions regarding surplus allocation?
- Let $V(c) = \{\pi^*, U^*\}$ be the set of equilibrium payoffs for given c, and define the payoff possibility set:

$$\mathcal{P} = \bigcup_{c:\Delta([0,1])\to\mathbb{R}_+} V(c).$$

Payoff pairs implementable by an arbitrary binary project

Theorem 3. Payoff Possibility Set

The payoff possibility set is

$$\mathcal{P} = \operatorname{co}\left(\left\{\pi, -\pi \log \pi\right\} : \pi \in [0, 1]\right).$$

Bounded Project Complexity

- Suppose the agent can choose a project with at most N actions.
- By Theorem 1, wolog, he chooses $p_i \in [0,1]$ and $C(p_i) \ge 0$ for each i

- Suppose agent can choose output distributions with support [-M,1].
- Suffices to focus on binary projects s.t $F(x) = \mathbb{I}_{\{x=1\}}$ is implemented.

• When M = 0, $C(\cdot)$ and b are given in Theorem 2.

- Suppose agent can choose output distributions with support [-M,1].
- Suffices to focus on binary projects s.t $F(x) = \mathbb{I}_{\{x=1\}}$ is implemented.

• As $M \uparrow$, both $C(\cdot)$ and b are shifted upwards.

- Suppose agent can choose output distributions with support [-M,1].
- Suffices to focus on binary projects s.t $F(x) = \mathbb{I}_{\{x=1\}}$ is implemented.

• For M sufficiently large, b = 1, and agent extracts all surplus.

- Suppose agent can choose output distributions with support [-M,1].
- Suffices to focus on binary projects s.t $F(x) = \mathbb{I}_{\{x=1\}}$ is implemented.

• As $M \uparrow$ further, $C(\cdot)$ is shifted downwards, decreasing distortion.

- Suppose agent can choose output distributions with support [-M,1].
- Suffices to focus on binary projects s.t $F(x) = \mathbb{I}_{\{x=1\}}$ is implemented.

• As $M \to \infty$, b = 1 and $C(\cdot) \to 0$ leading to efficiency.

Risk-averse Agent

• Theorem 1 holds if the agent is not too risk-averse.

Corollary 1. Risk-averse Agent

- Let $u_k(\cdot)$ be a sequence of functions satisfying $u_k'' < 0 < u_k'$ for each k, and $\lim_{k\to\infty} u_k(\omega) = \omega$ uniformly.
- There exists a K such that a binary project optimal whenever $k \ge K$.
- Theorem 2 the characterization of the optimal binary project is straightforward for any concave utility function.

Related Literature (Incomplete List)

- Principal-agent models:
 - Mirrlees (1976), Holmström (1979), Innes (1990)
 - Gaming / multitasking: Carroll (2015), Barron et al. (2020)
 - Endogenous monitoring technology: Georgiadis and Szentes (2020)
- Sequential mechanism design:
 - Krähmer and Kovác (2016)
 - Bhaskar et al. (2019)
 - Condorelli and Szentes (2020)

Discussion

- We consider an agency model of moral hazard in which production technology is endogenous and chosen by the agent.
- The agent optimally designs a project with binary output such that the principal is indifferent between b^* and any smaller bonus, enabling him to extract all rents.
- Potential implication. Promoting more flexibility for workers to design their job as an alternative to regulation (e.g., minimum wages)