第十二届全国大学生智能汽车竞赛

模拟复杂工程问题能力培养——

智能车竞赛教学活动

竞速比赛规则

智能车竞赛秘书处 2016-11-1

立足培养・重在参与・鼓励探索・追求卓越

清华大学中央主楼自动化系

目录

第十		届竞赛	规则导读	4
一,	前	言		6
_,	比	赛器材.		8
	1、	车模		8
		(1)	车模的种类	8
		(2)	车模修改要求	9
	2、	电子元	器件	9
		(1)	微控制器	9
		(2)	传感器	10
				10
				11
三、				11
	1、			11
				11
				间距11
			. –	14
	2、			
	_			
	3,			
ш	l la			20
四、				21
	А、			21
				21
				21
				21
	D			
	D١			
	۲.			
	٠١			
				23
				23
		\		

		(4)	比赛任务	23
	D,	电磁差	烂-电磁节能组	23
		(1)	车模	23
		(2)	传感器	23
		(3)	比赛赛道	24
		(4)	比赛任务	24
	E,	追逐类	5-光电追逐组	24
		(1)	车模	24
		(2)	传感器	24
		(3)	比赛赛道	25
		(4)	比赛任务	25
	F、	追逐类	5-电磁追逐组	25
		(1)	车模	25
		(2)	传感器	26
		(3)	比赛赛道	26
		(4)	比赛任务	26
	G,		失-双车对抗组	
			给出了创意类比赛初步规则,详细比赛规则将会在 2017 年三月进行公布。	
			车模	
			传感器	
			比赛赛道	
			比赛任务	
			炵-四旋翼导航组	
五、	比	赛组织		29
			}段	
			元程	
			『 与决赛规则	
			통流程	
				32
			ː事宜	
	3,		と项	
			分赛区奖项设置:	
			全国总决赛奖项设置:	
七、				
			车模修改要求	
			赛车磁标	
	附为	录 3: 亻	言标规格	38

第十二届竞赛规则导读

参加过往届比赛的队员可以通过下面内容了解第十二届规则主要变化。如果第一次参加比赛,则建议对于本文进行全文阅读。

- 1. 竞速比赛共分为为三个大类, 六个组别。详细情况参加文档第一节中的介绍。 相比于以往的规则, 比赛组别中不再区分光电、摄像头组别;
- 2. 电磁类-电磁节能组允许选手自行设计制作车模参加比赛;
- 3. 追逐类比赛中,超车允许在赛道上任何地点完成超车动作,并获得比赛时间 奖励。赛道十字路口不允许进行超车,赛道的环形路口,允许超车。一场比赛, 超车次数不超过 5 次。
- 4. 创意赛,允许参赛队伍直接向全国组委会报名。如果赛区内报名队伍数量超过一定限制,将会安排赛区资格预选赛。具体情况将会根据创意比赛队伍的数量确定。
- 5. 比赛控制芯片允许使用恩智浦公司的任意一款单片机,数量不限。比赛将特别推荐使用恩智浦公司以下系列芯片:
 - (1) S32K144 系列中 PS32K144UFTOVLLT;
 - (2)MPC5744P 系列中 SPC5744PK1AMLQ5;
 - (3)S12ZMVC 系列中 S912ZVML12F1MKH;
 - (4)KEA 系列中 S9KEAZ128 AMLK

以上芯片详细指标参见附录四。

相应鼓励政策将会在竞赛网站另行公布。

6. 选手手中如果还有往届的 A 车模,它只允许使用在光电追逐组、创意组内,不允许用于电磁双车组的比赛。

一、前言

智能车竞赛是从 2006 开始,由教育部高等教育司委托高等学校自动化类教学指导委员会举办的旨在加强学生实践、创新能力和培养团队精神的一项创意性科技竞赛,至今已经成功举办了十一届。在继承和总结前十一届比赛实践的基础上,竞赛组委会努力拓展新的竞赛内涵,设计新的竞赛内容,创造新的比赛模式,使得围绕该比赛所产生的竞赛生态环境得到进一步的发展。

为了实现竞赛的"立足培养、重在参与、鼓励探索、追求卓越"的指导思想,竞赛内容设置需要能够面向大学本科阶段的学生和教学内容,同时又能够兼顾当今时代科技发展的新趋势。比赛形式包括有竞速比赛与创意比赛两大类。竞速比赛中包含不同的组别,难度适合本科不同阶段学生参赛。在竞速赛基础上,适当增加挑战性,形成创意比赛的内容,适合部分有条件、能力强的本科生和研究生参加创意比赛。

参赛选手须使用竞赛秘书处统一指定的竞赛车模套件,采用恩智浦公司的 8 位、16 位、32 位微控制器作为核心控制单元,自主构思控制方案进行系统设计,包括传感器信号采集处理、电机驱动、转向舵机控制以及控制算法软件开发等,完成智能车工程制作及调试,于指定日期与地点参加各分(省)赛区的场地比赛.在获得决赛资格后,参加全国总决赛区比赛。参赛队伍的名次(成绩)由赛车现场成功完成赛道比赛时间来决定,参加全国总决赛的队伍同时必须提交车模技术报告。

竞赛秘书处制定如下比赛规则适用于各分/省赛区比赛以及全国总决赛,在 实际可操作性基础上,实现竞赛的公开、公平与公正。

总结第十一届比赛规则与经验,为了兼顾现在比赛规模的要求,同时避免同组别内出现克隆车的情况,能够便于参赛学校在有限的场地内使用兼容的赛道完成比赛准备, 竞速比赛将按照三个大类、六个组别进行设置。具体如下:

1. 光电类

该类别的车模允许采用光电、摄像头等传感器进行赛道检测。完成单车赛道 竞速比赛。按照所使用的车模种类,分为两个小组:

A. 光电四轮组: 使用指定的四轮车模完成比赛;

B. 光电直立组: 使用指定的两轮车模完成比赛。

2. 电磁类

使用指定的四轮车模完成比赛。该类别的车模只允许采用普通的磁场传感器, 检测赛道中作为引导信号的 20kHz 的交变磁场,完成单车赛道竞速比赛。按照车 模驱动电源分为两个小组:

- C. 电磁普通组: 车模使用原车模配备的电池完成竞速比赛, 比赛成绩只与车模运行时间有关;
- D. 电磁节能组:车模使用超级电容储能完成比赛,比赛成绩由车模运行时间和电容存储电能加权平均。该组别车模允许自行设计组装特制的车模参加比赛。

3. 追逐类

参赛队伍制作两个车模完成赛道竞速,比赛成绩由车模运行时间与通过终点的时间差共同决定。如果在比赛过程中,于规定路段完成赛道超车,则会有相应的时间奖励。按照赛道引导线形式分为两个组别:

- E. 光电追逐组: 两个车模采用光电竞速类的传感器完成赛道的检测;
- F. 电磁追逐组: 两个车模采用电磁类的传感器实现赛道的检测。

创意赛类别比赛,要求比赛车模在布置有信标的场地内完成比赛。参赛车模 允许安装光电传感器,识别场内信标的位置,完成信标的追逐。参赛车模根据任 务分为以下两个组别:

- G. 双车对抗组:参赛车模在预赛阶段,完成单车的资格赛。参加决赛的车模,按照预赛成绩分组进行对抗比赛,即两个车模同时在场地内运行,按照熄灭信标的多少决出胜负。
- H. 四旋翼导航组:参赛车模上不允许安装摄像头,但可以安装普通的光电传感器。参赛队伍可以使用四旋翼飞机悬停在赛场内,飞机上可以安装摄像头和处理器,检测车模与信标的位置,指挥车模完成信标追逐任务。

以上各组别的具体要求请参见此文档后面的具体描述。

每个学校在每个小组最多只允许报名一支队伍参赛;每个学校在每个比赛大 类中最多只允许遴选一支队伍进入全国总决赛。对于双车追逐组如果同一个学校 有两个队伍具有进入全国总决赛的资格,将会通过扩充双车组全国总决赛名额同时选入全国总决赛。创意类别的队伍将直接向全国组委会报名参赛。如果分赛区、省赛区报名参加创意类比赛的队伍超过一定数量,将可能在分赛区比赛期间安排预选赛。

二、比赛器材

1、车模

(1) 车模的种类

本届比赛指定采用四种标准车模,分别用于六个竞速组和两个创意组。四种 车模中包括两种四轮车模和两种两轮直立车模。

具体车模信息如下:

表 1 车模信息

编号	车模外观和规格	赛题组	供应厂商
B 型 车 模	电机: 540, 舵机: S-D5	C.电磁普通 D.电磁节能 F.电磁追逐 G.H.创意组	北京科宇通 博科技有限 公司
C 型 车 模	电机 RN-260, 舵机: FUTABA3010	A.光电四轮 D.电磁节能 E.光电追逐 G.H.创意组	东莞市博思 电子数码科 技有限公司

D 型 车 模	电机 RN-260	B.光电直立 G.H.创意组	东莞市博思 电子数码科 技有限公司
E型车模	电机 PS-380	B.光电直立 G.H 创意组	北京科宇通 博科技有限 公司

说明 1: 东莞博思公司对于 C,D 两种车型都进行了改进增强,在第 12 届比赛中,允许使用增强后的 C,D 两种车模,也允许使用往届的 C,D 旧车摸参加比赛;

说明 2: 原有的 A 型车模,也允许参加第 12 届比赛中的追逐类光电组、创意类的比赛。

(2) 车模修改要求

四种车模作为比赛统一平台,对于车模的机械的调整与修改有着严格要求。 具体要求参见附录 1:车模修改规定。

2、电子元器件

(1) 微控制器

- 采用恩智浦公司的 8 位、16 位、32 位系列微控制器作为车模中唯一可编程 处理器件。
- 使用微控制器的数量没有限制。
- 如果所选用的传感器或者其它电子部件中也包含有微处理器,对此微处理器的种类和数量不做限制,但其不得参与对于赛道信息识别和处理、不参与车模运动决策与控制。

(2) 传感器

- 传感器的种类需要根据不同竞赛组别而进行的选用。具体请参见"比赛任务" 中关于各比赛组别所允许使用的传感器类型说明。
- 传感器数量不超过 16 个。传感器数量统计规则如下:
 - ✓ 光电传感器接收单元计为1个传感器,发射单元不算:
 - ✓ CCD (线阵、面阵) 传感器计为 1 个传感器;
 - ✓ 磁场传感器在同一位置的不同方向的传感器统一计为一个传感器。不同位置的磁场传感器、线圈则分别统计。
 - ✓ 用于检测起跑线下永磁铁的干簧管或者霍尔传感器,无论多少个,统一 计为一个传感器;
 - ✓ 对于车模速度、姿态进行检测的传感器也计算在内。

● 传感器型号限制

- 1. 如果单独选用加速度器,则必须选择恩智浦公司的系列加速度器产品;
- 2. 如果选用陀螺仪传感器,对于型号没有限制;
- 3. 如果选用加速度、陀螺仪一体化的传感器,对于型号没有限制。

(3) 伺服电机

● 定义:

车模上的伺服电机是指除了车模原有驱动车轮的电机之外的电机,包括舵机、步进电机或者其它种类的电机。

直流电机

且加电机

图 1 车模上的伺服电机

● 数量限制

车模上的伺服电机数量不能够超过三个,其中包括转向控制舵机。

● 功能限制

车模上的伺服电机只能用于控制车模上的传感器的方位,或者改变车模底盘姿态。不允许直接或者间接控制车模的转向、改变车模车轮速度。

3、电路板

竞赛智能车中,除单片机最小系统的核心子板、加速度计和陀螺仪集成电路板、摄像头、舵机自身内置电路外,所有电路均要求为自行设计制作,禁止购买现成的功能模块。购买的单片机最小核心子板上,只允许带有单片机、时钟、电源以及单片机调试接口。自制的 PCB 板包括但不限于传感器及信号调理、电源管理、电机驱动、主控电路、调试电路等。如果自制电路采用工厂加工的 PCB 印制电路板,必须在铜层(TopLayer 或 BottomLayer)醒目位置放置本参赛队伍所在学校名称、队伍名称、参赛年份,对于非常小的电路板可以使用名称缩写,名称在车模技术检查时直接可见。

三、比赛环境

1、赛道

(1) 赛道材质

赛道采用 PVC 耐磨塑胶地板材料制作,材料与第十、十一届比赛相同。

(2) 赛道尺寸、形状、间距

赛道宽度(含路肩)不小于 45cm。预赛阶段的赛场形状为边长约 5m×7m 长方形,决赛阶段的赛场约为预赛阶段的两倍。两条相邻赛道中心线之间的间距 不小于 60cm。赛道中存在着直线、曲线、十字交叉路口等。曲线的曲率半径不小于 50cm。如下图所示:

图 2 赛道基本尺寸

(3) 赛道引导方式

不同组别,赛道引导方式不同。分为以下四种方式:

● 赛道边界线导引

对于光电类-光电四轮组和光电直立组两个组别、追逐类-光电追逐组的赛道,赛道两侧铺设有黑色边界线用于赛道引导。边界线的宽度为 25±5mm。如下图 所示:

图 3 赛道边界引导线

● 中心电磁导引

对于电磁类-电磁普通组和电磁节能组两个组别、追逐组-电磁追逐组的赛道,铺设有中心电磁引导线。引导线为一条铺设在赛道中心线上,直径为 0.1~1.0mm 的漆包线,其中通有 20kHz、100mA 的交变电流。频率范围 20k±1kHz,电流范围 100±20mA。

根据竞赛使用的 20kHz 的交变电流源的输出等效电路所示,可以使用下面建

议的测量电路测量赛道电流。如果参赛队伍所使用的电流源输出电流的波形接近方波,则可以使用普通的数字万用表的交流电流档测量电流源输出的电流值。

图 4 信号源输出等效电路

电磁线内嵌在赛道中心,上面使用白色胶带固定。如下图所示:

图 5 电磁引导线固定方式

在 PVC 赛道上刻画出固定漆包线的凹槽需要借助于一些小的工具,可以使用两片美工刀片制作成能够刻画出 1.5mm 的双缝刀片,沿着中心线进行刻画。然后将双缝中间的 PVC 材料表面揭开,便形成了宽度为 1.5mm 左右,深度为 1mm 左右的凹糟,可以铺设中心引导线。

图 6 刻画赛道中心凹槽双缝刀片

● 信标导引

仅用于创意组-双车对抗组和四旋翼导航组两个组别的比赛。在铺有蓝色广告布的平整场地内随机安放五至十左右的信标,车模在信标的导引下做定向运动。信标采用半球全向灯座,内部安装有红色和红外发光二极管(LED)阵列,通过比赛系统控制信标闪烁或者熄灭,如下图所示。

双车对抗组的比赛中,车模可以通过光电传感器、摄像头等识别信标的红光 或者红外光进行定位。由于信标采用了主动发射信号光的方式,所以提高了赛车 识别的准确性,减少了环境光线的影响。四旋翼导航组的比赛中,参赛车模通过 四旋翼飞机的指挥完成信标追逐任务。

关于信标的详细制作规范,可以参见竞赛组委会公布的《信标系统制作说明》 文档。

(4) 起跑线标志

竞速比赛要求车模在比赛完毕后,能够自动停止在停车区域内。除了创意组 别之外,其它各组别的停车区都是在赛道起跑线后三米的赛道内。停止时,要求 赛车的所有轮胎都必须在赛道内。

起跑线的标志有两种形式:

斑马线起跑线:如下图所示,计时起始点两边分别有一个宽度为 **10cm** 黑色斑马线,斑马线使用与赛道黑色边线一样的材料制作。

图 8 起跑区域

对于电磁类-电磁普通组和电磁节能组,在赛道中间安装有永久磁铁。磁铁参数: 直径 7.5 - 15mm,高度 1-3mm,表面磁场强度 3000-5000 高斯。

起跑线附近的永磁铁的分布是在跑道中心线两边对称分布。相应的位置如下图所示:

图 9 跑线中间的永磁体安放位置

对于创意类别的比赛,车模发车区域是在赛场一个边角内,边角的长宽都是 50cm。比赛完毕后,不要求车模停止在固定的停车区域。

(5) 赛道边界判定

除了创意组别之外,其它各组别都要求车模在运行过程中保持在赛道内。在赛道边缘处粘贴两层黑色高密度海绵条,形成赛道路肩,作为赛道边界。

海绵条宽度为 2.5cm, 两层高度 1cm。在赛道两侧相隔 25cm 粘贴, 交错分布, 间隔处仍为黑色边界。如下图所示:

图 10 赛道路肩

注:上图摘抄自《新出界规则测试》报告,北京科技大学智能车队。

(6) 赛道元素

比赛赛道是一个封闭曲线赛道,具有以下表格所示赛道元素。

注意:图例中除了赛道之外的交通标示只是用于赛道元素功能说明,在比赛现场的赛道周围没有这些交通标示。

 赛道
 图例
 说明

 直线
 道路
 这是赛道的基本形式。

表 2 赛道元素

环型赛道是由赛道中心 半径在 50 厘米至 150 厘 米的圆环组成。

出入环型赛道的直线赛道夹角在90°至180°之间,直线长度不小于50厘米。

对于电磁组赛道上引导 线会圆环两侧都铺设导 线,并联通过圆环,为了保 证环路两边电流大体一 致,在两支线上个子串联 一个 0.5 至 1 欧姆的匹配 电阻。

以上赛道元素,在分赛区(省赛区)比赛的时候,预赛、决赛和补赛的时候 赛道元素存在情况如下表所示:

表 3 比赛各阶段赛道元素存在情况 分赛区比赛

赛道元素		全国总决赛		
一 	预赛	决赛	补赛	王四心伏分
直线道路	存在	存在	存在	存在
曲线弯道	存在	存在	存在	存在
十字交叉路口	存在	存在	存在	存在
赛道障碍	存在	存在	不存在	存在
坡道	不存在	存在	不存在	存在
圆环	存在	存在	不存在	存在

2、环境

(1) 赛道场地

- 赛道场地地面平整。如果地面是平滑的水泥、水磨石、大理石地面则可以直接安装。如果为比赛场馆的地毯地面,则会在其上首先铺设一层 KT 板材,然后再铺设赛道。
- 地面颜色要求:与白色赛道有一定的色差,颜色可以根据现场底板的情况确定。一般情况下会采用蓝色的广告布铺设赛道背景颜色。具体比赛现场的赛道背景颜色将会在正式比赛前一个月进行正式公布。

(2) 环境光线

比赛场地,一般会安排在室内场地。在比赛过程中不能有阳光直接照射,也 没有强烈的白炽灯照射,对于电磁类的两个组别,由于受到环境光线影响小,所 以没有上述限制,有可能会在室外无阳光直射的环境中。

(3) 赛场围挡:

在比赛场地四周铺设围挡。围挡距离赛道大于 50 厘米。围挡高度不小于 30 厘米。围挡的材质可以使用长方体泡沫塑料块,也可以使用宣传布。

3、计时裁判系统

比赛所使用的计时裁判系统将会实时测量车模运行时间、判定车模出界。

(1) 车模计时磁标

比赛采用磁场感应方式记录车模通过赛道起跑线的时刻,或者检测车模是否运行在信标周围 22.5cm 范围内。感应线圈布置在赛道下面以及信标周围,对于运行车模干扰小,同时车模也不容易冲撞计时系统。如下图所示:

图 11 基于磁感应的比赛计时系统

为了能够触发计时系统,需要在车模底盘安装一块永磁铁作为标签。永磁铁 距离地面高度在 2cm 以内。由于该磁标体积很小,所以提高了车模检测位置的 精确度。具体按照方式如下图所示:

图 12 车模计时磁标

计时磁标可以永久粘在车模的地盘上,也可以在比赛前临时固定在车模的底盘上。具体磁标固定的位置并不要求精确,计时的过程是检测该磁标前后通过磁感应线圈的时间间隔。

特别提醒,对于创意类组别,只有车模上的磁标进入信标周围的磁感应线圈之内,才能够触发计时系统去切换到下一个信标点亮。

(2) 计时系统

比赛计时系统、信标控制系统由竞赛组委会在现场统一安置。

参赛选手在平时训练的时候,可以自行设计制作简化的比赛系统辅助进行调 试车模。也可以参照竞赛组委会提供的"比赛系统制作手册"设置制作。

四、比赛任务

本节将就各个组别所能够使用的车模、传感器以及比赛所需要完成的任务指标进行介绍。

A、光电类-光电四轮组

(1) 车模

可以使用 C 型车模。该车模采用后轮双电机驱动,电机型号 RN-260。前轮由 FUTABA3010 舵机控制转向。

(2) 传感器

允许使用各类光电传感器、摄像头、超声传感器器件进行赛道和环境检测。

(3) 比赛赛道

比赛是在 PVC 赛道上进行,赛道采用黑色边线进行导引。赛道中可能存在的元素包括表 2 中所有的元素。

(4) 比赛任务

选手制作的车模完成赛道运行一周。比赛时间从车模冲过起跑线到重新回到起跑线为止。如果车模没有能够停止在起跑线后三米的赛道停车区内,比赛时间加罚一秒钟。

车模在比赛时,需要安装一个计时磁标。车模制作时需要考虑安装位置。 车模制作完成后,长度(包括传感器)不超过 40cm,宽度不超过 25cm,高度不超过 40cm。

B、光电类-光电直立组

(1) 车模

可以使用D、E型直立车模。

(2) 传感器

允许使用各类光电、摄像头以及超声传感器进行赛道检测。

(3) 比赛赛道

比赛是在 PVC 赛道上进行,赛道采用黑色边线进行导引。赛道中可能存在的元素包括表 2 中所有的元素。

(4) 比赛任务

选手制作的车模完成赛道运行一周。比赛时间从车模冲过起跑线到重新回到起跑线为止。如果车模没有能够停止在起跑线后三米的赛道停车区内,比赛时间加罚一秒钟。

车模在比赛时,需要安装一个计时磁标。车模制作时需要考虑安装位置。 车模制作完成后,长度(包括传感器)不超过 40cm,宽度不超过 25cm,高度不超过 40cm。

C、电磁类-电磁普通组

(1) 车模

可以选用 B型四轮车模。

(2) 传感器

允许使用电感线圈或者其它磁场检测传感器检测赛道中存在的交变磁场。

禁止使用任何光电、摄像头传感器检测赛道信息。但仍然允许使用光电编码盘对车模速度进行检测。

(3) 比赛赛道

比赛是在 PVC 赛道上进行,赛道采用电磁线进行引导。赛道中可能存在的元素包括表 2 中除了"路障"之外的其它所有的元素。

(4) 比赛任务

选手制作基于电磁传感器的车模完成赛道运行一周。赛车的动力来源于车模上的蓄电池。比赛时间从车模冲过起跑线到重新回到起跑线为止。如果车模没有能够停止在起跑线后三米的赛道停车区内,比赛时间加罚一秒钟。

车模在比赛时,需要安装一个计时磁标,车模制作时需要考虑安装位置。车模制作完成后,长度(包括传感器)没有限制,宽度不超过 25cm,高度不超过 40cm。

D、电磁类-电磁节能组

(1) 车模

可以使用 B,C 型四轮车模, 也可以自制车模参加比赛。

(2) 传感器

传感器允许电感线圈或者其它磁场检测传感器检测赛道中存在的交变磁场。 禁止使用任何光电、摄像头传感器检测赛道信息。但仍然允许使用光电编码 盘对车模速度进行检测。

(3) 比赛赛道

比赛是在 PVC 赛道上进行,赛道采用电磁线进行引导。赛道中可能存在的元素包括表 2 中除了"路障"之外的其它所有的元素。

(4) 比赛任务

选手制作基于电磁传感器的车模完成赛道运行一周。比赛时间从车模冲过起跑线到重新回到起跑线为止。如果车模没有能够停止在起跑线后三米的赛道停车区内,比赛时间加罚一秒钟。

车模在比赛时,需要安装一个计时磁标,车模制作时需要考虑安装位置。车模制作完成后,长度(包括传感器)没有限制,宽度不超过 25cm, 高度不超过 40cm。

正式比赛时,车模不允许使用电池,只允许使用储能电容完成车模一圈的运行。储能电容在比赛前由比赛系统所提供的 12V、5A 的电源进行充电,并进行充电电能测量。车模的比赛成绩 T 将由车模运行时间 t(秒)与储能电容充电电能 E(焦耳)加权确定,计算公式如下:

$$T = t + J \cdot A$$

其中比例系数 A 为 0.05 秒/焦耳。

在现场调试的时候,允许车模使用自备的电池完成调试。正式比赛时,需要 更换成储能电容。

E、追逐类-光电追逐组

(1) 车模

可以选用C型四轮车模组成双车追逐车队。

(2) 传感器

允许采用光电管、线阵或者面阵摄像头进行赛道检测。

禁止使用激光发射管。

允许两车之间采用无线通讯模块进行通信。

(3) 比赛赛道

比赛是在 PVC 赛道上进行,赛道采用黑色边线引导。赛道中可能存在的元素包括表 2 中除了"路障"之外的其它所有的元素。比赛车模允许在赛道上任何地方完成不超过 5 次的超车动作。在十字路口车模需要直行,不允许超车;环形路口允许超车。

(4) 比赛任务

选手制作两辆车模完成赛道运行一周。车辆运行时间 t1 是从第一辆车模冲过起跑线开始,到最后一辆车重新回到起跑线为止。两个车辆相继通过起跑线的时间间隔为 t2。在比赛过程中,车模成功完成超越次数为 n。最终比赛时间有如下公式计算:

$$t = t1 + 5 \cdot t2 - 5 \cdot n \qquad ($$

如果两辆车模没有能够停止在起跑线后三米的赛道停车区内,比赛时间加罚一秒钟。

如果比赛中,有一辆车没有能够跑完全程,另外一辆车跑完全程,则比赛成绩最终为 t1+60 秒。

车模在比赛时,需要安装一个计时磁标,车模制作时需要考虑安装位置。

车模制作完成后,长度(包括传感器)没有限制,宽度不超过 **25cm**,高度不超过 **40cm**。

F、追逐类-电磁追逐组

(1) 车模

可以选用B型四轮车模组成双车追逐车队。

(2) 传感器

允许使用电感线圈或者其它磁场检测传感器检测赛道中存在的交变磁场。

禁止使用任何光电、摄像头传感器检测赛道信息。但仍然允许使用光电编码盘对车模速度进行检测。

允许两车之间采用无线通讯模块进行通信。

(3) 比赛赛道

比赛是在 PVC 赛道上进行,赛道采用电磁线进行引导。赛道中可能存在的元素包括表 2 中除了"路障"之外的其它所有的元素。比赛车模允许在赛道上任何地方完成不超过 5 次的超车动作。在十字路口车模需要直行,不允许超车;环形路口允许超车。

(4) 比赛任务

选手制作两辆车模完成赛道运行一周。车辆运行时间 t1 是从第一辆车模冲过起跑线开始,到最后一辆车重新回到起跑线为止。两个车辆相继通过起跑线的时间间隔为 t2。在比赛过程中,车模成功完成超越次数为 n。最终比赛时间有如下公式计算:

$$t = t1 + 5 \cdot t2 - 5 \cdot n \qquad ($$

如果两辆车模没有能够停止在起跑线后三米的赛道停车区内,比赛时间加罚一秒钟。

如果比赛中,有一辆车没有能够跑完全程,另外一辆车跑完全程,则比赛成绩最终为 t1+60 秒。

车模在比赛时,需要安装一个计时磁标,车模制作时需要考虑安装位置。

车模制作完成后,长度(包括传感器)没有限制,宽度不超过 **25cm**,高度不超过 **40cm**。

追逐类两个组别的比赛中,如果只有一辆车完成比赛,这次单车跑完的比赛

成绩以该辆车跑完全程时间再加上 60 秒计算。如果此时,该队伍还有重跑的机会,即前面冲出赛道的次数不超过一次,该双车队伍还可以申请重新比赛。如果在后面的比赛中的成绩比前面单车跑完的成绩提高了,则以后面比赛成绩为准。如果后面比赛没有完成,或者成绩更不理想,则还以前面单车跑完的成绩为准。

追逐类两个组别如在上下午两场的预赛中没有完成比赛,取得成绩。队伍可以自行选择一辆车模,在基础组别的摄像头或者光电组的预赛赛道上进行比赛。果完成比赛,则可以获得分赛区比赛的三等奖。如果没有完成比赛,则仍然可以参加分赛区比赛的补赛。

G、创意类-双车对抗组

这里给出了创意类比赛初步规则,详细比赛规则将会在 **2017** 年 三月进行公布。

(1) 车模

可以选用表 1 中的任意一款车模制作。

(2) 传感器

允许采用光电管、线阵或者面阵摄像头、超声传感器等进行赛场环境。

(3) 比赛赛道

创意类-双车对抗组的比赛场地设置在平整的地面上,并铺设有蓝色的广告布。场地四周铺设 5cm 宽度的黄色胶带。比赛区域约为 5 米×7 米。车模发车区域位于比赛场地一角,由 2.5 厘米黑色胶带标记区域。发车区域长宽都是 50cm。

比赛区域内随机安放由 5 个左右的信标,它们统一由比赛计时系统控制,如下图所示。

图 1 创意类组别场地示意图

(4) 比赛任务

选手制作的车模开始位于发车区域内,此时所有的信标都是熄灭状态。开始 比赛后,比赛系统自动会点亮第一个信标,点亮的信标会以 10Hz 的频率发送红 色和红外闪烁光。此时选手的车模能够识别确定信标的方位并做定向运动。当车 模上安放的磁标进入信标附近的感应线圈后,比赛系统会自动切换点亮到下一个 信标,车模随机前往第二个点亮的信标。此过程将会进行 10 次左右。最终比赛 时间是从当一个信标点亮,到最后一次信标熄灭为止。

在此过程中,需要车模能够避免冲撞信标,以免造成车模行动受阻甚至损坏。车模冲撞信标并不进行判罚。

比赛分为资格预选赛与对抗决赛两个阶段。预选赛中,每个车模单独完成信标的追逐过程,按照成绩进行排名。在对抗决赛中,则按照预赛成绩进行配对分组对抗比赛。两个车队的车模同时在场内,按照熄灭信标的多少决出胜负。

车模需要安装计时磁标。车模制作完成后,长度(包括传感器)没有限制, 宽度不超过 25cm,高度不超过 40cm。

创意类组别中的磁标最多允许安装四个。磁标距离车模底盘或者车轮直线距离不超过 5 厘米,距离地面高度不超过 2 厘米。如下图所示。

图 14 创意类组别磁标可以使安装四个, 距离车模底盘或者车轮不超过超 5 厘米

H、创意类-四旋翼导航组

在车模、比赛场地等方面的要求与创意类-双车对抗组相同,只是要求车模上不允许按照摄像头传感器,但是可以安装普通的光电传感器。允许参赛队伍,通过遥控一个四旋翼飞机悬停在赛场上方,通过飞机平台上的各类传感器获得场内信标和车模的相对位置,通过无线通信方式指挥车模完成信标的追逐。

比赛成绩由最终车模运行时间决定。

四旋翼飞机平台可以自行制作,也可以购买组委会推荐的平台。具体信息将 会另行通知。

五、比赛组织

1、比赛阶段

竞赛分为分赛区(省赛区)和全国总决赛两个阶段。其中,全国总决赛阶段 在全国竞赛组委会秘书处指导下,与决赛承办学校共同成立竞赛执行委员会,下 辖技术组、裁判组和仲裁委员会,统一处理竞赛过程中遇到的各类问题。

全国和分赛区(省赛区)竞赛组织委员会工作人员,包括技术评判组、现场裁判组和仲裁组成员均不得在现场比赛期间参与任何针对个别参赛队的指导或辅导工作,不得泄露任何有失公允竞赛的信息。在现场比赛的时候,组委会可以聘请参赛队伍带队教师作为车模检查监督人员。

图 15 比赛职能机构

在分赛区(省赛区)阶段中,裁判以及技术评判由各分赛区(省赛区)组委会照上述决赛阶段组织原则实施,仲裁由分赛区(省赛区)组委会指定的仲裁组完成,不跨区、跨级仲裁。

现场比赛一般需要四天的组织时间。这四天的基本安排如下图所示:

图 16 赛会期间竞赛活动

分(省)赛区和总决赛的比赛规则相同。光电类的两个组别、追逐类的光电 追逐组原则上在同一个光线比较好场馆同时进行。电磁类的两个组别、追逐类的 电磁追逐组由于对于赛场光线环境要求不高,可以安排在副馆进行。六个赛题组 所遵循的比赛规则基本相同,但分别进行成绩排名。

分赛区和总决赛的现场比赛均包括预赛与决赛两个阶段。下面列出的现场预 赛、决赛阶段的比赛规则适用于各分赛区及总决赛的六个赛题组。

2、比赛流程

(1) 初赛与决赛规则

1)初赛阶段规则

- i. 比赛场根据场地条件以及报名队伍数量可能铺设两到六条赛道。不同组 别可能会公用赛道。
- ii. 参赛队根据比赛题目分为各个组,并以抽签形式决定组内比赛次序。
- iii. 比赛分为上下午两轮,每支参赛队伍可以在每轮比赛之前有统一的现场 调整时间,时间长度为 15 分钟。在此期间,参赛队伍可以携带有维修 工具,对赛车的软件、硬件进行调整,对赛车损毁部分进行修理。
- iv. 在每轮比赛中,选手进入场地会有 60 秒准备时间。准备时间完毕后, 选手将赛车放置在起跑区域内赛道上,赛车静止在起跑区。
- v. 开始比赛后,各组车模按照各自的比赛任务完成一次场上的比赛。如果车模在比赛过程中冲出赛道,则比赛重新开始。每支队伍总共有两次冲出赛道的机会。
- vi. 每支参赛队伍取两次预赛成绩中最好的一个作为最终预赛成绩;根据参 赛队伍数量,由组委会根据成绩选取一定比例的队伍晋级决赛。
- vii. 全部车模在整个比赛期间都统一放置在车模的展示区内。

2) 决赛阶段规则

- i. 参加决赛队伍按照预赛成绩排序, 比赛按照预赛成绩的倒序进行。
- ii. 决赛的比赛场地通常会共用一个赛道。决赛赛道与预赛赛道形状不同, 占地面积会增大,赛道长度会增加。电磁组可以另外单独铺设跑道。
- iii. 每支决赛队伍只有一次上场比赛机会,比赛过程与要求同预赛阶段。注 意:决赛队伍在场上比赛仍然和预赛过程一样:有两次冲出赛道的机会, 但没有维修赛车的机会。
- iv. 预赛成绩不记入决赛成绩,只决定决赛比赛顺序。没有参加决赛阶段比 赛的队伍, 预赛成绩为最终成绩, 参加该赛题组的排名。

(2) 比赛流程

按照比赛顺序,裁判员指挥参赛队伍顺序进入场地比赛。同一时刻,一个场地上只有一支队伍进行比赛。

在裁判员点名后,每队指定一名队员持赛车进入比赛场地。参赛选手有 60 秒的现场准备时间。准备好后,裁判员宣布比赛开始,选手将赛车放置在起跑区内,即赛车的任何一部分都不能超过计时起跑线。比赛开始后车模应该在 30 秒内离开发车区。沿着赛道跑完一圈。由计时起跑线传感器进行自动计时。赛车跑完一圈且自动停止后,选手拿起赛车离开场地,将赛车放置回指定区域。

如果比赛完成,由计算机评分系统自动给出比赛成绩。

(3) 比赛犯规与失败规则

比赛过程中,由比赛现场主裁判根据统一的规则对于赛车是否违反赛道约束 条件进行裁定。赛车前两次冲出跑道时,由裁判员取出赛车交给比赛队员,立即 在起跑区重新开始比赛。选手也可以在赛车冲出跑道后放弃比赛。

比赛过程中出现下面的情况,算作车模冲出跑道一次。

- 裁判点名后,30秒之内,参赛队没有能够进入比赛场地并做好比赛准备:
- 开始后, 赛车在 30 秒之内没有离开出发区
- ▼ 双车追逐过程中,两辆赛车发生碰撞或者物理接触,也记为冲出跑道一次。
- 赛车在离开出发区之后 60 秒之内没有跑完一圈;

比赛过程中如果出现有如下一种情况, 判为比赛失败:

- 赛车冲出跑道的次数超过两次:
- 比赛开始后未经裁判允许, 选手接触赛车:
- 决赛后,赛车没有通过现场技术检验。

如果比赛失败,则不计成绩。

比赛禁止事项:

● 不允许在赛车之外安装辅助照明设备及其它辅助传感器等;

- 选手进入正式比赛场地后,除了可以更换电池之外,不允许进行任何硬件电路和软件的更换。但是可以手工改动电路板上的拨码开关或者电位器等:
- 比赛场地内,在比赛时除了裁判与 1 名队员之外,不允许任何其他参赛人员进入场地;对于追逐类的两个组别,可以允许两个队员进行场地。 比赛前 60 秒准备时间内,允许参赛队员进入场地,协助对于比赛赛道进行清理。
- 不允许其它干扰或者远程遥控赛车运动的行为;
- 不允许赛车的任何传感器或者部件损毁跑道:
- 不允许车模设计方案抄袭,各个参赛队伍所设计的硬软件需要相互之间 有明显的不同。参加追逐类两个组别比赛的双车,如果来自不同队伍, 硬软件也需要有明显不同。

(4) 其它事宜

- 1) 现场正式比赛前,每个参赛队伍都有现场环境适应性调试阶段。调试跑道 与比赛跑道形状不一定一样。
- 2) 比赛开赛之前,所有车模都由比赛组委会收集并存放在同一保管区域,直 到比赛结束。
- 3) 在比赛期间,大赛组委会技术组将根据情况对参赛车模进行技术检查。如果违反了比赛规则的禁止事项,大赛组委会有权取消参赛队伍的成绩。

3、比赛奖项

比赛将按照"分赛区普及、全国赛提高"的原则,在分赛区、省赛区每个组别分别按照相同的比例设置奖项。每个组别按照相同的队伍选拔各分赛区队伍参加全国总决赛。

(1) 分赛区奖项设置:

一等奖:分赛区参赛队伍前 20%队伍。

二等奖:分赛区参赛队伍 35%。

三等奖: 正常完成比赛但未获得一、二等奖的队伍。

优秀奖: 未正常完成比赛, 但通过补赛完成比赛的队伍。

各分赛区可以根据比赛需要,修改和设置不同的奖项,并报大赛组委会审批。

(2) 全国总决赛奖项设置:

第十二届全国总决赛奖项设置将另行发布。

六、其它

- 1.比赛过程中有其他作弊行为的,取消比赛成绩;
- 2.参加预赛并晋级决赛的队伍人员不允许改变;
- 3.参加全国总决赛的队伍中的队员最多只允许改变一名队员。
- 4.本规则解释权归比赛组织委员会和竞赛秘书处所有。

第十二届全国大学生"思智浦" 标智能汽车竞赛组织委员会 全国大学生智能汽车竞赛秘显为 组织委员会 20秘 年100月 15

七、附件

附录 1: 车模修改要求

- 1) 禁止不同型号车模之间互换电机、舵机和轮胎;
- 2) 禁止改动车底盘结构、轮距、轮径及轮胎;如有必要可以对于车模中的零部件进行适当删减;
- 3) 禁止采用其它型号的驱动电机,禁止改动驱动电机的传动比;
- 4) 禁止改造车模运动传动结构;
- 5) 禁止改动舵机模块本身,但对于舵机的安装方式,输出轴的连接件没有 任何限制;
- 6) 禁止改动驱动电机以及电池,车模前进动力必须来源于车模本身直流电机及电池;
- 7) 禁止增加车模地面支撑装置。在车模静止、动态运行过程中,只允许车模原有四个车轮对车模起到支撑作用。对于电磁平衡组组,车模直立行走,在比赛过程中,只允许原有车模两个后轮对车模起到支撑作用。
- 8) 为了安装电路、传感器等,允许在底盘上打孔或安装辅助支架等。
- 9) 车轮

参赛车模的车轮需要是原车模配置的车轮和轮胎,不允许更改使用其它种类的车轮和轮胎,不允许增加车轮防滑胶套。

如果车轮损坏,则需要购买原车模提供商出售的车轮轮胎。

允许对于车轮轮胎做适当打磨,但要求原车轮轮胎花纹痕迹依然能够分辨。 不允许对于车轮胎进行雕刻花纹。

参赛队伍的轮胎表面不允许有粘性物质,检测标准如下:

车模在进入赛场之前,车模平放在地面 A4 打印纸上,端起车模后,A4 打印纸不被粘连离开地面。检查过程如下图所示:

图 17 车轮胎 A4 纸粘性检查

车模在赛道上运行之后,不能够留下可辨析的痕迹。

10) 光电直立组车模电池位置

允许更改车模电池的安装位置,但要求电池外轮廓距离车模底盘及其附属物的最短距离不得超过 30mm。车模底盘附属物包括车轮、车轮支架、电机支架、编码盘支架。

图 18 车模底盘及其附属物示意图

电池距离车模底盘最小距离的示意图如下:

图 19 电池距离车模底盘最小距离示意图

附录 2: 赛车磁标

在比赛中新的计时系统采用的铺设的线圈感应磁标进行计时(参见细则中 3.1 节)。为了便于车模安装,车模中可以采用以下几类钕铁硼永磁铁。

图 20 用于磁标的钕铁硼永磁铁

第一类扁平的长方磁铁便于直接使用胶水粘贴在车模底板,既牢靠,又距离地面近,便于触发计时系统。推荐采用这类磁标。

第二类和第三类都属于圆柱形的永磁铁,只是第三类中带有中间孔,方便利用螺丝固定在赛车底盘上。为了可靠触发计时系统,这两类的磁铁的大小(高、直径)应该在7至10毫米。太小不利于触发计时系统,太高则不易于安装。

以上三种磁标安装后距离赛道表面应小于 2 厘米。

附录 3: 信标规格

创意类组别竞赛场地内信标结构如下图所示:

图 21 信标结构与参数

- (1) 透明灯罩,直径为10厘米。透明灯罩减少了信标光强损失。
- (2) 白色灯座, 高度为 2 厘米;
- (3)可拆卸发光灯盘。将来可以只是更换该发光灯盘为其它信标模块(比如无线信标,声音信标等),便于系统升级。

发光 LED 的参数:

外圈红色 LED, 24 个。红色 LED, 波长 620-625nm, 最大功率 0.5W, 最大电流 120mA, 封装 5730, 双芯; 内圈红外 LED, 12 个。红外 LED, 台湾产,型号 5050IRC-85L,峰值波长 850nm,最大功率 0.9W,最大电流 60-240mA(单芯 20-80mA) 封装 5050SMD, 三芯;

LED(红色和红外)工作总平均电流为 1100mA,红外和红色工作平均电流大体相当。

LED 驱动电流波形都是占空比为 50%的方波波形,红色 LED 的频率为 10Hz, 红外 LED 频率为 40kHz。如下图所示:

图 22 LED 驱动电流波形

比赛场地中使用的信标是固定在直径为 45 厘米, 厚度 3.8 毫米的圆形亚克力板上, 如下图所示:

图 23 场内信标固定方式

信标控制器的工作原理和实现方案请参见竞赛网公布《信标组裁判系统原理与实现》。

参赛队伍可以参照上述信标参数和制作方案自行制作可供调试使用的信标。

附录 4: 鼓励推荐使用的微控制器型号

MCU 系	S32K144	MPC5744P	S12ZVMC	KEA
列				
型号	PS32K144UF	SPC5744PK1A	S912ZVML12F1	S9KEAZ128A
	T0VLLT	MLQ5	WKH	MLK
内核	ARM™ Cortex-M4F, 32-bit CPU DSP FPU	PowerPC e200z4 DSP FPU	S12Z	ARM Cortex-M0+
主频	112Mhz	150Mhz	50Mhz	48MHz
FLASH	512K	2.5M	1228K	128K
RAM	64K	384K	8K	16K
EEPRO	4K	Flash 模拟	512	Flash 模拟

M				
DAM	16 通道	32 通道	NA	NA
定时器	4*8ch,	3*6ch	4 Timer	10ch
	16-bit	eMOS	6 PWM	16bit
	FlexTimer	2*8ch PWM		
CAN	3	3	1	1
UART	3	2	2	3
SPI	2	4	1	2
ADC	2*16ch, 12bit	25ch, 12bit	9ch	16ch,12bit
工作电压	2.7-5.5V	3.3V	3.5V-20V	2.7-5.5V
引脚	100	144	64	80
开发环境	S32DS for ARM	S32DS for	Codewarrior	Codewarrior S32DS for ARM
	IAR	PowerPC	Codewaiiioi	IAR
调试器	U-MULTILINK J-Link	U-MULTILINK	U-MULTILINK	U-MULTILINK J-Link
样品情况	现在可以提供 200 片 2017 年 5 月可 以批量提供。	现在可以批量提 供	现在可以批量提 供	现在可以批量 提供
最小系统	现在可以提供 DEMO 板 2017年1月可 以提供最小系 统板 200 套	正在生产中 2017年1月可以 批量提供最小系 统板	现在可以批量提 供最小系统板	现在可以批量 提供最小系统 板