Valuation fields

1 Absolute values and completion

Definition 1. Let **k** be a field. An *absolute value* on **k** is a function $\|\cdot\|$: $\mathbf{k} \to \mathbb{R}_{\geq 0}$ satisfying the following properties for all $x, y \in \mathbf{k}$:

- (a) ||x|| = 0 if and only if x = 0;
- (b) $||xy|| = ||x|| \cdot ||y||$;
- (c) $||x + y|| \le ||x|| + ||y||$.

A field **k** equipped with an absolute value $\|\cdot\|$ is called a *valuation field*.

Remark 2. Let **k** be a field. Recall that a valuation on **k** is a function $v: \mathbf{k}^{\times} \to \mathbb{R}$ such that

- $\forall x, y \in \mathbf{k}^{\times}, v(xy) = v(x) + v(y)$;
- $\forall x, y \in \mathbf{k}^{\times}, v(x+y) \ge \min\{v(x), v(y)\}.$

We can extend v to the whole field \mathbf{k} by defining $v(0) = +\infty$. Fix a real number $\varepsilon \in (0,1)$. Then v induces an absolute value $|\cdot|_v : \mathbf{k} \to \mathbb{R}_+$ defined by $|x|_v = \varepsilon^{v(x)}$ for each $x \in \mathbf{k}$.

In some literature, the valuation v is called an *additive valuation* and the induced absolute value $|\cdot|_v$ is called a *multiplicative valuation*. In this note, the term *valuation* always refers to the additive valuation.

Definition 3. Let **k** be a field. Two absolute values $\|\cdot\|_1$ and $\|\cdot\|_2$ on **k** are said to be *equivalent* if there exists a real number c>0 such that

$$||x||_1 = ||x||_2^c, \quad \forall x \in \mathbf{k}.$$

Note that equivalent absolute values induce the same topology on the field \mathbf{k} .

Definition 4. Let $(\mathbf{k}, \|\cdot\|)$ be a valuation field. We say that \mathbf{k} is *complete* if the metric $d(x, y) := \|x - y\|$ makes \mathbf{k} a complete metric space.

Lemma 5. Let $(\mathbf{k}, \|\cdot\|)$ be a valuation field and $(\hat{\mathbf{k}}, \|\cdot\|)$ its completion as a metric space. Then the operations of addition and multiplication on \mathbf{k} can be extended to $\hat{\mathbf{k}}$ uniquely, making $(\hat{\mathbf{k}}, \|\cdot\|)$ a complete valuation field containing \mathbf{k} as a dense subfield.

Proof. Yang: To be added.

Unlike the real number field \mathbb{R} , even a valuation field is complete, we can not expect the theorem of nested intervals to hold.

Date: October 31, 2025, Author: Tianle Yang, My Homepage

Definition 6. A valuation field $(\mathbf{k}, \|\cdot\|)$ is called *spherically complete* if every decreasing sequence

Example 7. The field \mathbb{C}_p of p-adic complex numbers is not spherically complete, see Yang: to be added.

2 Non-archimedean fields

of closed balls in \mathbf{k} has a non-empty intersection.

Definition 8. Let $(\mathbf{k}, \|\cdot\|)$ be a valuation field. We say that \mathbf{k} is non-archimedean if its absolute value $\|\cdot\|$ satisfies the strong triangle inequality:

$$||x + y|| \le \max\{||x||, ||y||\}, \quad \forall x, y \in \mathbf{k}.$$

Otherwise, we say that \mathbf{k} is archimedean.

Let **k** be a non-archimedean field. Then easily see that $\{x \in \mathbf{k} : ||x|| \le 1\}$ is a subring of **k**. Moreover, it is a local ring whose maximal ideal is $\{x \in \mathbf{k} : ||x|| < 1\}$.

Definition 9. Let \mathbf{k} be a non-archimedean field. The ring of integers of \mathbf{k} is defined as

$$\mathbf{k}^{\circ} := \{ x \in \mathbf{k} : ||x|| \le 1 \}.$$

Its maximal ideal is

$$\mathbf{k}^{\circ \circ} := \{ x \in \mathbf{k} : ||x|| < 1 \}.$$

The residue field of \mathbf{k} is defined as

$$\mathscr{k}_{\mathbf{k}} := \widetilde{\mathbf{k}} := \mathbf{k}^{\circ}/\mathbf{k}^{\circ \circ}.$$

Yang: Is the valuation on residue field trivial?

Lemma 10. Recall that a metric space is *totally bounded* if for every $\varepsilon > 0$, it can be covered by finitely many balls of radius ε . A metric space is compact if and only if it is complete and totally bounded.

Proof. Yang: To be added.

Definition 11. Let **k** be a non-archimedean field. The *residue absolute value* on the residue field $\mathcal{K}_{\mathbf{k}}$ is defined as

$$|x| := \inf_{y \in \varphi^{-1}(x)} ||y||, \quad \forall x \in \mathcal{k}_{\mathbf{k}},$$

where $\varphi: \mathbf{k}^{\circ} \to \mathcal{K}_{\mathbf{k}}$ is the canonical projection.

Proposition 12. Let **k** be a non-archimedean field. Then the residue absolute value on the residue field \mathcal{R}_k is trivial.

Proof. For any
$$x \in \mathcal{K}_{\mathbf{k}}$$
, if $x = 0$, then by definition $|x| = 0$. If $x \neq 0$, then $\forall y \in \varphi^{-1}(x)$, we have $y \in \mathbf{k}^{\circ} \setminus \mathbf{k}^{\circ \circ}$, i.e., $||y|| = 1$. Thus by definition $|x| = 1$.

Proposition 13. Let **k** be a non-archimedean field. Set $I_r := \{x \in \mathbf{k} : ||x|| < r\}$ for each $r \in (0,1)$.

$$\widehat{\mathbf{k}}^{\circ} \cong \varprojlim_{r>0} \mathbf{k}^{\circ}/I_r.$$

Yang: To be checked.

Slogan Locally compact \iff pro-finite.

They are ideals of the ring of integers $\mathbf{k}^{\circ}.$ Then we have

Proposition 14. Let **k** be a non-archimedean field. Then **k** is totally bounded iff \mathbf{k}°/I_r is finite for each $r \in (0,1)$.

