빅데이터

Dept. of Computer Engineering, Korea Polytechnic University

2019. 05. 29.

김홍준, 신제우

CONTENTS

- 01 데이터 파일
- 02 데이터 모델
- 03 분석 결과

01 데이터 파일

1.1 칼럼

Basic columns

거래 날짜, 종목 명, 종목 코드 , 시가, 고가, 저가, 종가, 거래량

Add columns

cv_diff_value, cv_diff_rate, cv_maN_value, cv_maN_rate, ud_Nd, cvNd_diff_rate

Option columns

vv_diff_value, vv_diff_rate, vv_maN_value, vv_maN_rate

02 데이터 모델

2.1 N일의 설정

N = 3

263

N = 4

2

N = 5

)

02 데이터 모델

2.2 독립변수 , 종속변수

총 칼럼 수 : 18개

4	А	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R
	basic_date	stockname	stock_cod	open_valu	high_value	low_value	close_valu	volume_va	cv_diif_val	cv_diif_rate	cv_maN_v	cv_maN_ra	ud_Nd	cvNd_diff_	vv_diif_val	vv_diif_rate	vv_maN_v	vv_maN_rate

독립변수 모델에서 제외된 칼럼

udNd (종속변수), 거래날짜, 종목 명, 종목 코드

사용한 칼럼 수 15개

경우의 수 : 469 * (K값) 5 = 2345 개

02 데이터 모델

2.2 독립변수 경우의 수

```
[3, 4]
[3, 4, 5]
[3, 4, 5, 6]
[3, 4, 5, 6, 7]
[3, 4, 5, 6, 7, 8]
[3, 4, 5, 6, 7, 8, 9]
[3, 4, 5, 6, 7, 8, 9, 10]
    4, 5, 6, 7, 8, 9, 10, 11]
[3, 4, 5, 6, 7, 8, 9, 10, 11, 13]
[3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14]
[3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15]
[3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16]
[3, 5]
[3, 5, 6]
[3, 5, 6, 7]
[3, 5, 6, 7, 8]
[3, 5, 6, 7, 8, 9]
[3, 5, 6, 7, 8, 9, 10]
[3, 5, 6, 7, 8, 9, 10, 11]
[3, 5, 6, 7, 8, 9, 10, 11, 13]
[3, 5, 6, 7, 8, 9, 10, 11, 13, 14]
[3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15]
[3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16]
[3, 6]
[3, 6, 7]
[3, 6, 7, 8]
[3, 6, 7, 8, 9]
[3, 6, 7, 8, 9, 10]
[3, 6, 7, 8, 9, 10, 11]
[3, 6, 7, 8, 9, 10, 11, 13]
[3, 6, 7, 8, 9, 10, 11, 13, 14]
[3, 6, 7, 8, 9, 10, 11, 13, 14, 15]
[3, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16]
[3, 7]
[3, 7, 8]
[3, 7, 8, 9]
[3, 7, 8, 9, 10]
[3, 7, 8, 9, 10, 11]
[3, 7, 8, 9, 10, 11, 13]
[3, 7, 8, 9, 10, 11, 13, 14]
[3, 7, 8, 9, 10, 11, 13, 14, 15]
[3, 7, 8, 9, 10, 11, 13, 14, 15, 16]
[3, 8]
[3, 8, 9]
[3, 8, 9, 10]
[3, 8, 9, 10, 11]
[3, 8, 9, 10, 11, 13]
[3, 8, 9, 10, 11, 13, 14]
[3, 8, 9, 10, 11, 13, 14, 15]
[3, 8, 9, 10, 11, 13, 14, 15, 16]
```

```
[4, 5]
[4, 5, 6]
[4, 5, 6, 7]
[4, 5, 6, 7, 8]
[4, 5, 6, 7, 8, 9]
[4, 5, 6, 7, 8, 9, 10]
[4, 5, 6, 7, 8, 9, 10, 11]
[4, 5, 6, 7, 8, 9, 10, 11, 13]
[4, 5, 6, 7, 8, 9, 10, 11, 13, 14]
[4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15]
    5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16]
[4, 6]
[4, 6, 7]
[4, 6, 7, 8]
[4, 6, 7, 8, 9]
[4, 6, 7, 8, 9, 10]
[4, 6, 7, 8, 9, 10, 11]
[4, 6, 7, 8, 9, 10, 11, 13]
[4, 6, 7, 8, 9, 10, 11, 13, 14]
[4, 6, 7, 8, 9, 10, 11, 13, 14, 15]
[4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16]
[4, 7]
[4, 7, 8]
[4, 7, 8, 9]
[4, 7, 8, 9, 10]
[4, 7, 8, 9, 10, 11]
[4, 7, 8, 9, 10, 11, 13]
[4, 7, 8, 9, 10, 11, 13, 14]
[4, 7, 8, 9, 10, 11, 13, 14, 15]
[4, 7, 8, 9, 10, 11, 13, 14, 15, 16]
[4, 8]
[4, 8, 9]
[4, 8, 9, 10]
[4, 8, 9, 10, 11]
[4, 8, 9, 10, 11, 13]
[4, 8, 9, 10, 11, 13, 14]
[4, 8, 9, 10, 11, 13, 14, 15]
[4, 8, 9, 10, 11, 13, 14, 15, 16]
[4. 9]
[4, 9, 10]
[4, 9, 10, 11]
[4, 9, 10, 11, 13]
[4, 9, 10, 11, 13, 14]
[4, 9, 10, 11, 13, 14, 15]
[4, 9, 10, 11, 13, 14, 15, 16]
[4, 10]
[4, 10, 11]
[4, 10, 11, 13]
[4, 10, 11, 13, 14]
[4, 10, 11, 13, 14, 15]
```

```
[9, 13]
[9, 13, 14]
[9, 13, 14, 15]
[9, 13, 14, 15, 16]
[9, 14]
[9, 14, 15]
[9, 14, 15, 16]
[9, 15]
[9, 15, 16]
[9, 16]
[10]
[10, 11]
[10, 11, 13]
[10, 11, 13, 14]
[10, 11, 13, 14, 15]
[10, 11, 13, 14, 15, 16]
[10, 13]
[10, 13, 14]
[10, 13, 14, 15]
[10, 13, 14, 15, 16]
[10, 14]
[10, 14, 15]
[10, 14, 15, 16]
[10, 15]
[10, 15, 16]
[10, 16]
[11]
[11, 13]
[11, 13, 14]
[11, 13, 14, 15]
[11, 13, 14, 15, 16]
[11, 14]
[11, 14, 15]
[11, 14, 15, 16]
[11, 15]
[11, 15, 16]
[11, 16]
[13]
[13, 14]
[13, 14, 15]
[13, 14, 15, 16]
[13, 15]
[13, 15, 16]
[13, 16]
[14]
[14, 15]
[14, 15, 16]
[14, 16]
[15]
[15, 16]
[16]
```


시스템 수행 시나리오

for_get_match_result (stock_data)

filtering_not_number (stock_data)

make_labels(filtered_stock, column_indexlist)

divide_training_and_test_label(labeled_target_stock, len_training_data)

training_data(training_label)

training_data(test_label)

get_match_result(result_accuracy_training, result_accuracy_test)

save_data_to_csvfile

```
ef majority_vote(labels):
  vote_counts = Counter(labels)
  winner, winner_count = vote_counts.most_common(1)[0]
  num_winners = len([count
                     for count in vote_counts.values()
                     if count == winner_count])
   if num_winners == 1:
      return winner # unique winner, so return it
      return majority_vote(labels[:-1]) # try again without the farthest
lef knn_classify(k, labeled_points, new_point):
  by_distance = sorted(labeled_points,
                       key=lambda point_label: distance(point_label[0], new_point))
  k_nearest_labels = [label for _, label in by_distance[:k]]
  return majority_vote(k_nearest_labels)
```

```
def for get match result(stock data);
   matched_result = []
   iterable_columns = [3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16]
   number = 0
   filtered_stock = filtering_not_number(stock_data)
    for i in iterable_columns: # 시작컬럼 for문
        index_pointer = iterable_columns.index(i) + 1
       while index pointer < len(iterable_columns) + 1: # 컬럼조합 while문
           column_indexlist = [i] # 시작컬럼
            for j in range(index pointer - 1, len(iterable columns)):
               if j == iterable_columns.index(i); index_pointer += 1
               else; column_indexlist = column_indexlist + [iterable_columns[j]] # 시작, 마지막 컬럼 외에는 모든 컬럼조합하기
               print(column_indexlist)
               number += 1
               labeled target_stock = make_labels(filtered_stock, column_indexlist) # labeled_target_stock = ([독립변수들], 종송변수udnd) - 모든 filter
               len_training_data = int(len(labeled_target_stock) * 0.7)
               training_label, test_label = divide_training_and_test_label(labeled_target_stock, len_training_data) # 트레이닝, 테스트 7:3으로 나누기
               result_accuracy_training = training_data(training_label) # result_accruacy = (k, 그 때의 정확도), (k, 그 때의 정확도), (k, 그 때의 정확도),
               result_accuracy_test = training_data(test_label) # result_accruacy = (k, 그 때의 정확도), (k, 그 때의 정확도), (k, 그 때의 정확도),,
               result_appropriate_test_accuracy = get_match_result(result_accuracy_training, result_accuracy_test) # result_appropriate_test_accuracy_test)
               if result appropriate test accuracy != []: # 값이 없는 경우 패스
                   for k in range(len(result_appropriate_test_accuracy)):
                       matched_result.append((column_indexlist, result_appropriate_test_accuracy[k][0], result_appropriate_test_accuracy[k][1]))
            index_pointer += 1
    return matched_result
```

분석 시나리오

이엠티 (N-2)

좋은 결과값

독립변수 테스트정확도 N=2 이엠티 [9, 13] 3 88.41 [9, 13] 88.41 [9, 13] 5 86.96 [9, 13] 6 86.96 [9, 13] 7 84.06 7 [9, 11, 13] 73.91 [11, 13] 5 72.46 6 [11, 13] 72.46 7 71.01 [11, 13] [8, 17] 5 68.12 7 [8, 11, 13] 66.67 [8, 17] 7 65.22 [11] 6 65.22 [6, 8] 6 63.77 [6, 8, 9] 6 63.77 [6, 8, 9, 10] 6 63.77 [6, 8, 9, 10, 11] 3 63.77 [6, 8, 9, 10, 11] 6 63.77 [6, 8, 9, 10, 11, 13] 6 63.77 [8, 10] 7 63.77 [8, 15] 5 63.77 [8, 15] 6 63.77 [11] 7 63.77 4 [6, 8] 62.32 [6, 8] 5 62.32 62.32 [6, 8, 9] [6, 8, 9] 5 62.32 [6, 8, 9, 10] 62.32

안좋은 결과 값

3

42.03

[[5, 15]

[5, 15]		72.03
[10, 15, 16]	3	42.03
[16, 17]	7	42.03
[5]	6	40.58
[3, 17]	3	39.13
[5, 15, 16]	3	39.13
[5, 17]	4	39.13
[3, 17]	4	37.68
[3, 5]	3	34.78
[7, 17]	5	33.33
[7, 17]	6	33.33
[17]	6	31.88
[7, 14, 15, 16]	3	30.43
[17]	5	30.43
[17]	7	30.43
[17]	4	28.99
[7, 14, 15]	3	27.54
[16]	3	27.54
[7, 14]	3	26.09
[17]	3	26.09
[14, 15, 16]	3	24.64
[7]	6	20.29
[7]	7	20.29
[15]	7	20.29
[15]	3	17.39
[7]	3	15.94
[7]	4	15.94
[7]	5	15.94

이엠티 (N - 3)

좋은	결고	감
ᅙᆫ		日人

도리버스	1.	테스트정확도 N=3	[5, 0, 3, 10, 11, 15, 14, 15, 10]		05.77
독립변수			[3, 9, 10, 11, 13, 14, 15]	3	63.77
[9, 13]	7	84.06	[3, 9, 10, 11, 13, 14, 15, 16, 17]	3	63.77
[11, 13]	3	82.61	[3, 10, 11, 13, 14, 15]	3	63.77
[11, 13]	4	82.61	[5, 9, 10, 11, 13, 14, 15, 16, 17]	3	63.77
[13]	3	82.61	[9, 14]	7	63.77
[13]	4	82.61		3	63.77
[9, 11]	3	81.16	[9, 17]		
[9, 11, 13]	7	81.16	[9, 14]	5	62.32
[3, 5, 6, 7, 8, 9, 10]	3	79.71	[9, 14, 15]	6	62.32
[3, 5, 6, 7, 8, 9, 10, 11]	3	79.71	[9]	4	60.87
[3, 5, 6, 7, 8, 9, 10, 11, 13]	3	79.71	[4, 6]	3	59.42
[3, 7, 8]	3	79.71	[6]	3	59.42
[5, 7, 8]	3	79.71	[9, 14, 15]	7	59.42
[5, 7, 8, 9]	3	79.71	[8]	3	55.07
[8, 11, 13]	3	79.71	[8]	4	55.07
[8, 11, 13]	4	79.71	[17]	6	53.62
[9, 13]	3	79.71	[17]	4	50.72
[9, 13]	4	79.71	[17]	5	50.72
[3, 5, 6, 7, 8]	3	78.26	[17]	7	50.72
[3, 5, 6, 7, 8, 9]	3	78.26	[14]	6	47.83
[3, 7, 8, 9]	3	78.26	[14]	7	47.83
[5, 8, 9]	6	78.26	[14, 15]	3	46.38
[8, 13]	3	78.26	[14]	5	43.48
[8, 13]	4	78.26	[7]	6	34.78
[11, 13]	5	78.26	[7]	7	34.78
[11, 13]	6	78.26	[15]	4	34.78
[13]	7	78.26	[15]	3	30.43
[3, 4, 5, 6, 7, 8, 9, 10, 11]	3	76.81	[7]	4	27.54
[3, 4, 5, 6, 7, 8, 9, 10, 11, 13]	3	76.81	[7]	3	26.09

이엠티 (N - 4)

조ㅇ	フォ コLフト	
ᇂ근	包型版	

독립변수	_k 테스트정확도 N=4	이엠티	[11, 15]	7	73.53
[3, 4, 5, 6, 7, 8]	3 80.88		[13]	3	85.29
[3, 4, 5, 6, 7, 8, 9]	3 80.88		[13]	4	85.29
[3, 4, 5, 6, 7, 8, 9]	4 77.94		[13]	5	82.35
[3, 4, 5, 6, 7, 8, 9, 10]	3 82.35		[13]	6	82.35
[3, 4, 5, 6, 7, 8, 9, 10, 11]	3 82.35		[13]	7	85.29
[3, 4, 5, 6, 7, 8, 9, 10, 11, 13]	3 82.35		[13, 14]	5	79.41
[3, 5, 6, 7, 8]	3 80.88		[13, 14]	6	80.88
[3, 5, 6, 7, 8, 9]	3 80.88		[13, 14]	7	80.88
[3, 5, 6, 7, 8, 9, 10]	3 82.35		[13, 14, 15]	3	75
[3, 5, 6, 7, 8, 9, 10, 11]	3 82.35		[13, 14, 15]	4	75
[3, 5, 6, 7, 8, 9, 10, 11, 13]	3 80.88		[13, 14, 15]	5	77.94
[3, 6, 7, 8, 9, 10]	3 83.82		[13, 14, 15]	6	80.88
[3, 6, 7, 8, 9, 10, 11]	3 83.82			5	79.41
[3, 6, 7, 8, 9, 10, 11, 13]	3 82.35		[13, 15]		
[3, 7, 8]	3 82.35		[13, 15]	6	82.35
[3, 7, 8]	5 77.94		[13, 15]	7	76.47
[3, 7, 8]	6 79.41		[14]	5	54.41
[3, 7, 8]	7 76.47		[14]	6	57.35
[3, 7, 8, 9]	3 80.88		[14]	7	57.35
[3, 7, 8, 9]	5 77.94		[14, 15]	6	57.35
[3, 7, 8, 9]	6 79.41		[14, 15]	7	57.35
[3, 7, 8, 9]	7 76.47		[15]	3	41.18
[3, 7, 8, 9, 10, 11, 13]	7 73.53		[15]	5	50
[3, 8]	3 79.41		[15]	6	52.94
[3, 8]	5 76.47		[15]	7	52.94
[3, 8, 9]	3 79.41		[17]	4	55.88
[3, 8, 9]	5 76.47		[17]	6	58.82
				7	60.29
			[17]		60.29

옐로페이 (N - 2)

좋은 결과값

	A	В	С	D	E
1	독립변수	k	테스트정혹	N=2	옐로페
2	[9, 13]	7	95.65		
3	[9, 13]	3	92.75		
4	[9, 13]	4	92.75		
5	[9, 13]	5	92.75		
6	[9, 13]	6	92.75		
7	[8, 11, 13]	5	91.3		
8	[8, 11, 13]	6	91.3		
9	[9, 11, 13]	3	89.86		
10	[9, 11, 13]	4	89.86		
11	[8, 11, 13]	7	85.51		
12	[8, 9, 10, 11, 13]	4	75.36		
13	[8, 10, 11, 13]	4	75.36		
14	[9, 10, 11, 13]	4	75.36		
15	[6, 8, 9, 10, 11, 13]	4	72.46		
16	[8, 9, 10, 11, 13]	3	72.46		
17	[8, 10, 11, 13]	3	72.46		
18	[9, 10, 11, 13]	3	72.46		
19	[4, 8, 9, 10, 11, 13]	3	71.01		
20	[4, 9, 10, 11, 13]	4	71.01		
21	[3, 8, 9, 10, 11, 13]	3	69.57		
22	[3, 8, 9, 10, 11, 13]	4	69.57		

	A	В	С
842	[3, 5, 6]	6	33.33
843	[3, 11, 13, 14, 15]	7	33.33
844	[3, 13, 14, 15]	7	33.33
845	[3, 14, 15]	7	33.33
846	[4]	6	33.33
847	[5, 14, 15]	7	33.33
848	[14]	5	33.33
849	[14, 15]	3	33.33
850	[16]	4	33.33
851	[17]	5	33.33
852	[17]	7	33.33
853	[14, 15]	6	31.88
854	[14, 17]	4	31.88
855	[16]	3	31.88
856	[17]	6	31.88
857	[14]	6	30.43
858	[7]	5	28.99
859	[7]	7	27.54
860	[7, 15]	3	27.54
861	[7]	6	26.09
862	[15]	4	20.29

옐로페이 (N-3)

좋은 결과값

Α C D E 1 독립변수 k 테스트정획N=3 옐로페이 79.71 2 [8, 9, 10, 11, 13] 7 3 [3, 11, 13] 3 78.26 78.26 4 [3, 11, 13] 4 78.26 5 [8, 10, 11, 13] 7 6 [8, 11] 3 78.26 78.26 7 [8, 11] 4 8 [8, 11, 13] 5 78.26 9 [8, 11, 13] 6 78.26 5 10 [3, 8, 9, 10, 11, 13] 76.81 11 [3, 8, 9, 10, 11, 13] 6 76.81 12 [3, 13] 3 76.81 76.81 13 [3, 13] 4 76.81 14 [4, 9, 10, 11, 13] 3 15 [4, 9, 10, 11, 13] 4 76.81 16 [4, 10, 11, 13] 5 76.81 17 [4, 10, 11, 13] 6 76.81 18 [4, 13] 3 76.81 76.81 19 [4, 13] 4 76.81 20 [5, 6, 7, 8, 9, 10, 11, 13] 3 21 [5, 8, 9, 10, 11, 13] 5 76.81 22 [6, 8, 9] 5 76.81 23 [6, 8, 9] 6 76.81 24 [6 9 10] 76.81

	/ \		
1379	[8, 11, 13, 14, 15, 16, 17]	5	57.97
1380	[14, 15]	5	57.97
1381	[14, 15]	6	57.97
1382	[16, 17]	4	57.97
1383	[3, 13, 14, 15, 16, 17]	5	56.52
1384	[4, 15, 16, 17]	4	56.52
1385	[5, 15, 16, 17]	4	56.52
1386	[7, 14, 15]	6	56.52
1387	[9, 11, 13, 14, 15, 16, 17]	5	56.52
1388	[9, 13, 14, 15, 16, 17]	5	56.52
1389	[11, 13, 14, 15, 16, 17]	5	56.52
1390	[13, 14, 15, 16, 17]	5	56.52
1391	[14, 15]	7	55.07
1392	[14, 17]	3	55.07
1393	[17]	4	55.07
1394	[7, 14]	5	53.62
1395	[8]	3	53.62
1396	[8]	4	53.62
1397	[17]	3	52.17
1398	[7]	3	43.48
1399	[7]	4	43.48
1400	[7]	5	37.68

옐로페이 (N-4)

좋은 결과값

옐: 독립변수 테스트정획N=4 k 2 [3, 7, 8, 9, 10, 11, 13] 5 86.76 [3, 7, 8, 9, 10, 11, 13] 6 86.76 86.76 [3, 9, 10, 11, 13] [3, 9, 10, 11, 13] 86.76 86.76 [4, 7, 8, 9, 10, 11, 13] 6 [4, 7, 8, 9, 10, 11, 13] 86.76 5 86.76 [5, 7, 8, 9, 10, 11, 13] 6 9 [5, 7, 8, 9, 10, 11, 13] 86.76 5 10 [6, 7, 8, 9, 10, 11, 13] 86.76 11 [6, 7, 8, 9, 10, 11, 13] 86.76 12 [6, 11, 13] 86.76 86.76 13 [6, 11, 13] 14 [6, 13] 86.76 3 15 [6, 13] 4 86.76 16 [6, 13] 5 86.76 17 [7, 8, 9, 10, 11, 13] 86.76 86.76 18 [7, 8, 9, 10, 11, 13] 19 [7, 9, 10, 11, 13] 5 86.76 20 [7, 10, 11, 13] 5 86.76 21 [8, 11] 7 86.76 5 86.76 22 [9, 10, 11, 13]

	Α	В	С
1460	[7, 10, 11, 13, 14, 15, 16]	4	72.06
1461	[7, 10, 11, 13, 14, 15, 16, 17]	3	72.06
1462	[7, 10, 11, 13, 14, 15, 16, 17]	4	72.06
1463	[7, 14, 15, 16, 17]	3	72.06
1464	[7, 14, 15, 16, 17]	4	72.06
1465	[8, 16]	3	72.06
1466	[8, 16]	4	72.06
1467	[9, 15]	3	72.06
1468	[9, 15]	4	72.06
1469	[10, 14]	3	72.06
1470	[10, 14, 15, 16, 17]	3	72.06
1471	[13, 15]	3	72.06
1472	[13, 15]	4	72.06
1473	[13, 16]	3	72.06
1474	[13, 16, 17]	3	72.06
1475	[16, 17]	3	72.06
1476	[5, 14, 15]	4	70.59
1477	[8, 14]	3	70.59
1478	[9, 14]	3	69.12
1479	[15]	5	60.29
1480	[15]	6	60.29
1/121			

결과

좋은 칼럼

[8]종가 일간 변화량, [9]종가 일간 변화율, [11]종가의 N일 이동평균의 일간 변화율, [13]N일 간의 종가 상승률

안좋은 칼럼

[7]거래량, [14]거래량 일간 변화량, [15]거래량 일간 변화율

좋은 조합의 칼럼

시작 가 , 종가의 N일 이동 평균의 일간 (변화율, 일간 변화량), N일 간의 종가 상승 률

결과

결론 1

N 값이 커질 수록, 트레이닝 데이터와 테스트 데이터의 정확도가 비슷한 경우가 많아짐

결론 2

N 값이 클 수록 최대정확도와 최소정확도의 편차가 작고, 각 정확도마다의 표준편차도 작아짐

결론 3

K값에 따라 트레이닝 데이터와 테스트 데이터의 편차가 달라짐

종속변수udND의 데이터 모델: [cv_diff_value, cv_diff_rate, cv_maN_rate, cvNd_diff_rate] N=3, k=3 Thank you.