26 задача: Кластеризация предобученных векторов методом K-means

Михаил Алексеевич Сысак

Московский физико-технический институт

29 апреля 2019 г.

Постановка задачи Описание выборки

- Выборка состоит из предобученных векторов fasttext.
- Количество объектов 19924, количество признаков — 300.

Постановка задачи Описание алгоритма кластеризации

Mетод k-средних:

- $oldsymbol{0}$ Случайно выбирается k центроид.
- Для каждого объекта кластер определяется ближайшей к нему центроидой.
- В качестве новых центроид берутся центры масс полученных кластеров.
- Шаги 2-3 повторяются фиксированное количество раз, или пока функционал качества не сойдется.

Используемые модификации:

- k-means++
- MiniBatchKMeans

Метод k-средних

Структурный параметр — k (количество кластеров) в четырех диапазонах:

- 2, 3, ..., 10
- 10, 20, ..., 100
- 100, 200, ..., 1000
- 1000, 2000, ..., 10000

Критерии качества:

- ullet Сумма средних внутрикластерных расстояний Φ_0 и C_0
- ullet Сумма межкластерных расстояний Φ_1 и C_1
- Силуэт s_e и s_c

Каждый критерий вычисляется с использованием евклидовой метрики и косинусного расстояния.

$$\Phi_0 = \sum_{y \in Y} \frac{1}{|K_y|} \sum_{i: y_i = y} \rho^2(x_i, \mu_y)$$
 $\Phi_1 = \sum_{y \in Y} \rho^2(\mu_y, \mu)$

```
def Euclidean Internal Dist(data, pred, model, k):
    ret = 0
    for v in range(k):
        SIIMM = 0
        cnt = 0
        for i in range(19924):
            if y == pred[i]:
                cnt += 1
                summ += np.linalg.norm(data.values[i] - model.cluster centers [y]) ** 2
        if cnt > \theta:
            ret += summ / cnt
    return ret
```

```
def Euclidean External Dist(data, pred, model, k):
    mu = np.sum(data.values. axis = 0)/19924
    for v in range(k):
        ret += np.linalg.norm(model.cluster centers [v] - mu) ** 2
    return ret
```

$$C_0 = \sum_{y \in Y} \frac{1}{|K_y|} \sum_{i: y_i = y} \left(1 - \frac{(x_i, \mu_y)}{||x_i|| \cdot ||\mu_y||} \right) \quad C_1 = \sum_{y \in Y} \left(1 - \frac{(\mu_y, \mu)}{||\mu_y|| \cdot ||\mu||} \right)$$

```
def Cosine Internal_Dist(data, pred, model, k):
    ret = 0
for y in range(k):
        summ = 0
        cnt = 0
        for i in range(19924):
        if y == pred[i]:
            cnt += 1
            summ += sc.spatial.distance.cosine(data.values[i], model.cluster_centers_[y])
        if cnt > 0:
            ret += summ / cnt
        return ret
```

```
def Cosine External_Dist(data, pred, model, k):
    ret = 0
    mu = np.sum(data.values, axis = 0)/19924
    for y in range(k):
        ret += sc.spatial.distance.cosine(model.cluster_centers_[y], mu)
    return ret
```

◆ロ → ◆ 個 → ◆ 量 → ■ り へ ○

$$s = \frac{\sum\limits_{x_i \in X} \frac{b_i - a_i}{\max(a_i, b_i)}}{\sum\limits_{y \in Y} |K_y|}$$

Величины a и b для элемента x кластера y:

$$a = \frac{1}{|K_y| - 1} \sum_{x' \in K_y, x' \neq x} d(x, x') \quad b = \min_{y' \neq y} \frac{1}{|K_{y'}|} \sum_{x' \in K_{y'}} d(x, x')$$

d(i,j) определяется метрикой или функцией расстояния.

Критерий качества реализован в библиотеке scikit-learn.

- ◆ロ ▶ ◆ 昼 ▶ ◆ 昼 ▶ ● ● りへで

Вычислительный эксперимент код

```
euc int = np.array([[0. for i in range(10)] for i in range(9)])
euc ext = np.array([[0. for i in range(10)] for i in range(9)])
cos int = np.array([[0. for i in range(10)] for i in range(9)])
cos ext = np.array([[0, for i in range(10)] for i in range(9)])
euc sil = np.array([[0. for i in range(10)] for i in range(9)])
cos sil = np.array([[0, for i in range(10)] for i in range(9)])
for k in range(2, 11):
    print("k =", k)
    for i in range(10):
        model = MiniBatchKMeans(k, batch size = max(20 * k, 142))
       pred = model.fit predict(data)
       cos int[j][i] = Cosine Internal Dist(data, pred, model, k)
       cos ext[j][i] = Cosine External Dist(data, pred, model, k)
        euc ext[j][i] = Euclidian External Dist(data, pred, model, k)
        euc int[i][i] = Euclidian Internal Dist(data, pred. model, k)
        euc sil[i][i] = silhouette score(data, pred)
       cos sil[i][i] = silhouette score(data, pred, metric='cosine')
plt.figure(figsize = (16, 6))
plt.subplot(1, 2, 1)
plt.plot(range(2, 11), [np.mean(i) for i in euc int])
plt.fill between(range(2.11), [np.mean(i) - np.std(i) for i in euc intl.
                              [np.mean(i) + np.std(i) for i in euc intl, alpha=0.3)
plt.plot(range(2, 11), [np.mean(i) for i in euc ext])
plt.fill between(range(2.11), [np.mean(i) - np.std(i) for i in euc ext].
                              [np.mean(i) + np.std(i) for i in euc ext], alpha=0.3)
plt.xlabel("Количество кластеров k")
plt.ylabel("Евклидовы метрики качества")
plt.legend(["Внутрикластерное (евкл.)", "Межкластерное (евкл.)"])
plt.subplot(1, 2, 2)
plt.plot(range(2, 11), [np.mean(i) for i in cos int], c = "g")
plt.fill between(range(2.11), [np.mean(i) - np.std(i) for i in cos int].
                              [np.mean(i) + np.std(i) for i in cos int], alpha=0.3, color = "green")
plt.plot(range(2, 11), [np.mean(i) for i in cos ext], c = "r")
plt.fill between(range(2.11), [np.mean(i) - np.std(i) for i in cos ext].
                              Inp.mean(i) + np.std(i) for i in cos extl, alpha=0.3, color = "red")
plt.xlabel("Количество кластеров k")
plt.vlabel("Косинусные метрики качества")
plt.legend(["Внутрикластерное (кос.)", "Межкластерное (кос.)"])
plt.show()
```

Вычислительный эксперимент Графики критериев качества от структурного параметра

По отдельности критерии качества недостаточно информативны.

Вычислительный эксперимент Графики критериев качества от структурного параметра

По отдельности критерии качества недостаточно информативны.

Вычислительный эксперимент

Графики критериев качества от структурного параметра

Начиная с k=6, кластеризация перестает терять смысл с точки зрения «евклидова» силуэта, поскольку критерий становится отрицательным.

Близкие к нулю значения при k < 6 показывают, что в этом промежутке получаемые кластеры расположены на малых расстояниях друг от друга.

Вычислительный эксперимент

Графики критериев качества от структурного параметра

Кластеризация остается неэффективной для больших значений k.

Заключение

- При k > 6 кластеризация становится неэффективной.
- ullet Для $k \leq 6$ кластеры имеют смысл.
- ullet Разделение на k=2 кластера дает лучший результат.
- Несмотря на это, малое значение силуэта показывает, что такое сочетание алгоритма и критериев качества плохо подходит для кластеризации данной выборки.