

مبانی برنامه نویسی

Introduction to computers and C

Dr. Mehran Safayani safayani@iut.ac.ir safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/Programming_Basics_course

Introduction

- Software (the C instructions you write, which are also called code)
- Hardware (computers and related devices)

- Input units (keyboards, touch screens, mice and touchpads, microphone, webcam, ...)
- Output units (Monitor, printer, internet, speaker, ...)
- Memory unit
 - RAM (Random Access Memory)
 - Bit: smallest store space, either 0 or 1
 - Byte: a byte is 8 bit
 - 128 GB of RAM

Unit	Bytes	Which is approximately
1 kilobyte (KB)	1024 bytes	10 ³ bytes (1024 bytes exactly)
1 megabyte (MB)	1024 kilobytes	10 ⁶ (1,000,000) bytes
1 gigabyte (GB)	1024 megabytes	10 ⁹ (1,000,000,000) bytes
1 terabyte (TB)	1024 gigabytes	10 ¹² (1,000,000,000,000) bytes
1 petabyte (PB)	1024 terabytes	10 ¹⁵ (1,000,000,000,000,000) bytes
1 exabyte (EB)	1024 petabytes	10 ¹⁸ (1,000,000,000,000,000,000) bytes
1 zettabyte (ZB)	1024 exabytes	10 ²¹ (1,000,000,000,000,000,000,000) bytes

- ALU (Arithmetic and logic unit)
 - Add, subtract, multiply, division
 - Make decisions: comparing two items from the memory unit to determine whether they're equal
 - In today's systems, the ALU is part of the CP'

- CPU (Central Processing Unit)
 - This "administrative" section coordinates and supervises the operation of the other; The CPU tells:
 - the input unit when to read information into the memory unit,
 - the ALU when to use information from the memory unit in calculations
 - the output unit when to send information from the memory unit to specific output devices.
 - A dual-core processor has two CPUs, a quad-core processor has four and an octa-core processor has eight

Secondary Storage Unit

- Information on secondary storage devices is **persistent**—it's preserved even when the computer's power is turned off.
- SSD(solid-state drives)
- USB flash drives
- HDD (hard disk drive)

Data hierarchy

• Bits

 a digit that can assume one of two values—and is a computer's smallest data item. It can have the value 0 or 1.

Characters

- Digits, letters and special symbols are known as characters.
- decimal digits ($_{0}$ — $_{9}$), letters ($_{A}$ — $_{z}$ and $_{3}$ — $_{z}$) and special symbols such as \$ @ % & * () + " : ; , ? /
- C uses the ASCII (American Standard Code for Information Interchange) character set by default.
- C also supports Unicode® characters

Dec	Н	Oct	Cha	r	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html Ch	nr_
0	0	000	NUL	(null)	32	20	040	@#32;	Space	64	40	100	@	0	96	60	140	`	*
1				(start of heading)	33	21	041	!	1				A					6#97;	a
2				(start of text)	34	22	042	6#34;	er	66	42	102	4#66;	В	98	62	142	b	b
3				(end of text)	35	23	043	6#35;	#	67	43	103	6#67;	C	99	63	143	c	C
4				(end of transmission)	36	24	044	\$	ş	68	44	104	£#68;	D	100	64	144	d	d
5	5	005	ENQ	(enquiry)	37	25	045	6#37;	*	69	45	105	E	E	101	65	145	@#101;	e
6	6	006	ACK	(acknowledge)	38	26	046	6#38;	6.	70	46	106	6#70;	F	102	66	146	f	f
7	7	007	BEL	(bell)	39	27	047	'	1	71	47	107	6#71;	G	103	67	147	a#103;	a
8	8	010	BS	(backspace)	40	28	050	6#40;	(72	48	110	6#72;	H	104	68	150	a#104;	h
9	9	011	TAB	(horizontal tab)	41	29	051	a#41;)	73	49	111	6#73;	I	105	69	151	i	i
10	A	012	LF	(NL line feed, new line)	42	2A	052	6#42;	*	74	4A	112	6#74;	J	106	6A	152	j	j
11	В	013	VT	(vertical tab)	43	2B	053	6#43;	+	75	4B	113	6#75;	K	107	6B	153	a#107;	k
12	C	014	FF	(NP form feed, new page)	44	20	054	6#44;		76	4C	114	6,#76;	L	108	6C	154	l	1
13	D	015	CR	(carriage return)	45	2D	055	-	-	77	4D	115	6#77;	M	109	6D	155	a#109;	m
14	E	016	SO	(shift out)	46	2E	056	6#46;		78	4E	116	6#78;	N	110	6E	156	n	n
15	F	017	SI	(shift in)	47	2F	057	6#47;	1	79	4F	117	6#79;	0	111	6F	157	@#111;	0
16	10	020	DLE	(data link escape)	48	30	060	6#48;	0	80	50	120	6#80;	P	112	70	160	p	p
17	11	021	DC1	(device control 1)	49	31	061	6#49;	1	81	51	121	6#81;	Q	113	71	161	a#113;	q
18	12	022	DC2	(device control 2)	50	32	062	6#50;	2	82	52	122	6#82;	R	114	72	162	r	r
19	13	023	DC3	(device control 3)	51	33	063	6#51;	3	83	53	123	S	S	115	73	163	s	3
20	14	024	DC4	(device control 4)	52	34	064	6#52;	4	84	54	124	6#84;	T	116	74	164	t	t
21	15	025	NAK	(negative acknowledge)	53	35	065	a#53;	5	85	55	125	6#85;	U	117	75	165	@#117;	u
22	16	026	SYN	(synchronous idle)	54	36	066	6#54;	6	86	56	126	6#86;	V	118	76	166	v	V
23	17	027	ETB	(end of trans. block)	55	37	067	7	7	87	57	127	6#87;	W	119	77	167	@#119;	W
24	18	030	CAN	(cancel)	56	38	070	a#56;	8	88	58	130	6#88;	X	120	78	170	x	X
25	19	031	EM	(end of medium)	57	39	071	a#57;	9	89	59	131	6#89;	Y	121	79	171	y	Y
26	1A	032	SUB	(substitute)	58	3A	072	a#58;	:	90	5A	132	6#90;	Z	122	7A	172	z	Z
27	18	033	ESC	(escape)	59	3B	073	;	;	91	5B	133	6#91;]	123	7B	173	a#123;	1
28	10	034	FS	(file separator)	60	30	074	a#60;	<	92	5C	134	6#92;	1	124	7C	174		1
29	1D	035	GS	(group separator)	61	3D	075	a#61;	=	93	5D	135	£#93;]	125	7D	175	}	}
		036		(record separator)	10000000			>		053 5933				100	NO DESCRIPTION			a#126;	
		037		(unit separator)	63	3F	077	?	2	95	5F	137	6#95;		127	7F	177	6#127;	DEL

• Fields

• fields are composed of characters or bytes: a person's name, person's age

Records

- Several related fields can be used to compose a **record**. the record for an employee might consist of the following fields:
 - Employee identification number (a whole number).
 - Name (a group of characters).
 - Address (a group of characters).
 - Hourly pay rate (a number with a decimal point).

- Files:
 - a file contains arbitrary data in arbitrary formats.
- Databases:
 - A database is a collection of data organized for easy access and manipulation.

Machine Languages, Assembly Languages and High-Level Languages

- Machine Languages:
- Assembly Languages and Assemblers
- High-Level Languages and Compilers

Machine Languages, Assembly Languages and High-Level Languages

Machine Code	Assembly Code	C code
B8 05 00 00 00 ; mov eax, 5	section .text	int main() {
BB 03 00 00 00 ; mov ebx, 3 01 D8 ; add eax, ebx	global _start	int a = 5;
B8 01 00 00 00 ; mov eax, 1		int b = 3;
CD 80 ; int 0x80	_start:	int result =
	mov eax, 5 ; Store 5 in	a + b;
	register eax	return
	mov ebx, 3 ; Store 3 in	result;
	register ebx	}
	add eax, ebx ; Add ebx to eax	
	(eax = eax + ebx)	

Operating Systems

Windows

- In the mid-1980s, Microsoft developed the **Windows operating system**, consisting of a graphical user interface built on top of DOS (Disk Operating System)
- Linux—An Open-Source Operating System
- Apple's macOS and Apple's iOS for iPhone® and iPad® Devices
- Google's Android

The C Programming Language

 The C language was evolved from B by Dennis Ritchie at Bell Laboratories and was originally implemented in 1972

Built for Performance

- C is widely used to develop systems that demand performance, such as operating systems, embedded systems, real-time systems and communications systems
- Today's popular desktop operating systems—Windows, macOS and Linux—are partially written in C.
- Many popular applications are partially written in C, including popular web browsers (e.g., Google Chrome and Mozilla Firefox), database management systems (e.g., Microsoft SQL Server, Oracle and MySQL) and more.

The life-time of a computer program

Basics of a Typical C Program Development Process

- Phases of C Programs:
 - 1. Edit
 - 2. Preprocess
 - 3. Compile
 - 4. Link
 - 5. Load
 - 6. Execute

C Program development

Phase 1: Creating a Program

• Phase 2 and 3: Preprocessing and Compiling a C Program: The compiler translates the C program into machine-language code (also referred to as **object code**).

• Linking: C programs typically use functions defined elsewhere, such as in the standard libraries, open-source libraries or private libraries of a particular project. The object code produced by the C compiler typically contains "holes" due to these missing parts. A **linker** links a program's object code with the code for the missing functions to produce an **executable image** (with no missing pieces).

• Phase 5: Loading

• Phase 6: Execution

