Modelo de ising con algoritmo metrópolis

Daniel Alejandro López Martínez

Septiembre 30 de 2020

Abstract

The abstract should briefly summarize your project in 150–250 words.

1 Simulación

- número de espines = 49×49 .
- ullet número de pasos Monte Carlo usados para dejar estabilizar el sistema =500
- $\bullet\,$ numero de pasos Monte Carlo usados para calcular los promedios = 600

Figure 1: Energía de la red de espines en función de temperatura

Figure 2: Magnetización de la red de espines.

2 Resultados obtenidos

Observamos cómo la energía tiende a equilibrarse después de un temperatura crítica donde los espines ahora se vuelto aleatorios. La magnetización pasa de ser máxima a promediar cero después de la temperatura crítica.

3 Elementos de teoría

1. Con qué probabilidad se está aceptando un cambio de un espín?

Solución: Se está aceptando con probabilidad $1 - e^{-\beta \Delta E}$.

2. Sea C_1 una configuración de espines, con energía H(C1) y C2 otra configuración de espines en la cuál se volteo un solo espín. Sea $W(C_1 \to C_2)$ la probabilidad de pasar de la configuración C_1 a la C_2 usando el algoritmo de Metropolis. Sea $P_{eq}(C_1) = e^{\beta H(C_1)}/Z$ la probabilidad en el ensamble canónico que la configuración C_1 ocurra (Z es la función de partición canónica). Mostrar que $P_{eq}(C_1)W(C_1 \to C_2) = P_{eq}(C_2)W(C_2 \to C_1)$

Solución: Sabemos que la probabilidad con la que se acepta el cambio de un espín:

$$W(C_1 \to C_2) = (1 - e^{-\beta(H(C_2) - H(C_1))})$$
(1)

Así:

$$P_{eq}(C_1)W(C_1 \to C_2) = \frac{e^{-\beta H(C_1)} - e^{-\beta H(C_2)}}{Z}$$
 (2)

Ahora:

$$W(C_2 \to C_1) = (e^{-\beta(H(C_1) - H(C_2))} - 1)$$
(3)

Además:

$$P_{eq}(C_2) = e^{\beta H(C_2)}/Z \tag{4}$$

Y multiplicando, se obtiene:

$$P_{eq}(C_1)W(C_1 \to C_2) = P_{eq}(C_2)W(C_2 \to C_1)$$
(5)

4 Conclusion

The conclusion text goes here.