Internet Security

50.520 Systems Security Paweł Szałachowski

Internet Security

- End-to-end communication through the Internet
 - Applications are usually service-oriented
 - Services are associated with names
 - How to define a service (with the OSI model)?

Internet Security

- What protocols are involved?
 - How to translate names to addresses?
 - How to reach addresses?
 - How to talk securely to the service/endpoint?
- Desired properties
 - Make sure what is an authentic address
 - Make sure that traffic is sent via an authentic path
 - Make sure that the service/endpoint is authentic and data is protected

Border Gateway Protocol (BGP)

- Dominant Inter-domain routing protocol
 - Need of a dynamic Internet routing protocol
- Determines how packets traverse the Internet
- Autonomous Systems (ASes) are the protocol parties
- Allows to express routing policies

Border Gateway Protocol (BGP)

- AS-level entities
 - Each AS has a unique number associated (ASN)
- IP address blocks are assigned/delegated to ASes
 - Scalability reasons
 - ICANN is the root

Border Gateway Protocol (BGP)

- Route origination
 - Border routers announce prefixes
 - Longest prefix match
 - More specific prefix is preferable
 - Storage overhead
 - Business relationships
 - Valley-free routing

BGP Security

- Attacks on TCP
- Path manipulation
- Misconfigurations
- Malicious Route Origination
 - Route hijacking
 - Targeted attacks
 - Blackholing

Denver to Denver

Traceroute Path 2: from Denver, CO to Denver, CO via Iceland

NYC to LA

Traceroute Path 3: from New York, NY to Los Angeles, CA via Belarus

Guadalajara to Washington DC

Traceroute Path 1: from Guadalajara, Mexico to Washington, D.C. via Belarus

Chicago to Tehran

Traceroute Path 4: from Chicago, IL to Tehran, Iran

Frankfurt to Fremont

Traceroute Path 5: from Frankfurt, Germany to Fremont, CA via Iceland

Proposals

- Secure BGP (S-BGP)
- Secure Origin BGP (soBGP)
- Interdomain Route Validation (IRV)

• ...

S-BGP

- Introduces public-key infrastructure (PKI)
- Address allocation hierarchy is authenticated
- Certificates are used to authenticate AS
 - Address attestation proves that AS can originate an address
 - Route attestation proves what ASes are on the path

S-BGP

- Infrastructure
 - Network Operation Center (NOC)
 - Regional Registry (e.g., APNIC)
 - Repositories of certificates, revocations, and AAs
 - Routers

S-BGP

- Not widely deployed
 - Plain BGP still dominates
- Too complex for Ases
- CPU/mem/storage and SW/HW upgrades are necessary

Domain Name System (DNS)

- Hierarchical and decentralized naming systems
 - Name hierarchy with IANA as the root
- Public database with different resource records (RRs)
 - A, AAAA, TXT, PTR, ...
- UDP used by default

DNS resolution

- Domain zone
 - All DNS resources associated with the domain name
 - NXDOMAIN
- DNS resolvers, servers, clients, ...
- Responses contain sections (e.g., Authority and Additional Section)

DNS Caching

- Results are cached
 - Efficiency reasons
 - Cache is kept at many places

DNS Security

- DNS does not provide security properties
- On-path adversary
 - Can freely manipulate DNS responses
- Off-path adversary
 - Kaminsky DNS Vulnerability (2008)

Kaminsky's Attack

- Scenario
 - Adversary can query a remote (open) resolver
- Query format
 - IPs, ports, ...
 - Query ID
 - Has to be unique to associate queries&responses
 - Implemented sequentially (as counter)

Kaminsky's Attack

- Idea
 - With predicted Query ID and source port the adversary could inject a malicious DNS response
- Ports are usually random (need brute-force) but Query IDs are sequential. How to predict them?
 - The adversary can use the resolver to resolve own domain name

Kaminsky's Attack

- With the Query ID predicted the adversary can flood the resolver with responses (try to brute-force the port)
- Many variants of the attack
 - Target given response (knowing that a given domain will be queried)
 - Ask for a non-cached result and inject NS response

Prevention

- Randomization of the Query ID field
- More comprehensive protection against DNS attack

DNS Security Extension (DNSSEC)

- Introduces PKI
 - Basing on namespace hierarchy
- Provides authentication for resource records

DNSSEC

- New RRs
 - RRSING: contains a signature for another RR
 - DNSKEY: stores a public key
 - DS: hash of a domain owner name and DNSKEY record

DNSSEC

- Not widely deployed
 - Complex management, operation, overhead, ...
 - Can cause "problems"
- Increases amplification factor (when used via UDP)
- Difficult to modify/extend/patch
- Authenticating negative info (NXDOMAIN)

Why no one is concerned about that?

Transport Layer Security (TLS)

- End-entity PKI
 - Entities are usually identified by domain names
- Orthogonal to DNSSEC
- Certification Authorities (CAs) are trusted entities
 - (Too) many root and intermediate CAs

TLS Certificates

- Domain-Validated (DV) Certificates
 - Proving ownership over domain name
 - Email, HTTP, or DNS
- Organization-Validated (OV) Certificates
- Domain ownership + checking organization
- Extended-Validated (EV) Certificates
 - Domain ownership + checking organization + F2F meeting

TLS

- Widely deployed
 - The Let's Encrypt project issues free certificates
- Downgrading attacks
 - SSL/TLS stripping
- Impersonation attacks
 - Attacked CAs: DigiNotar, Comodo, ...
- DNS-based PKI enhancements
 - DNS-based Authentication of Named Entities (DANE)
 - Certification Authority Authorization (CAA)

DANE

- Domains can specify keys they trust
 - Their keys
 - CAs' keys
- Requires DNSSEC

CAA

- Trust agility
 - Allows to list trusted CAs
- DNSSEC recommended
- Mandatory from Sep 2017

Questions?