Α32 - Κωδικοποίηση

Φυλλάδιο Ασκήσεων 2

Άσκηση 2.1

- (i) Έστω $x,y\in\mathbb{F}_q^n$. Δείξτε ότι το $\operatorname{wt}(x+y)$ είναι άρτιος αν και μόνο αν τα $\operatorname{wt}(x),\operatorname{wt}(y)$ είναι και τα δύο άρτια ή και τα δύο περιττά. Υπόδειξη: Ονομάστε $X=\operatorname{supp}(x),Y=\operatorname{supp}(y)$ και παρατηρήστε ότι $\operatorname{wt}(x)=|X|,\operatorname{wt}(y)=|Y|$ και $\operatorname{wt}(x+y)=|X|+|Y|-2|X\cap Y|$.
- (ii) Έστω C ένας δυαδικος γραμμικός κώδικας. Δείξτε ότι είτε όλα τα διανύσματα του C έχουν άρτιο βάρος ή τα μισά έχουν άρτιο και τα μισά έχουν περιττό βάρος.

Υπόδειξη: Δείξτε ότι ο $C_0 = \{c \in C : \text{wt}(c) \equiv 0 \pmod 2\}$ είναι υπόχωρος του C. Πόσα σύμπλοκα του C_0 εντός του C υπάρχουν;

Άσκηση 2.2 Έστω C ένας δυαδικός, αυτο-δυϊκός [n,k] κώδικας. Αποδείξτε τα παρακάτω:

- (i) Κάθε λέξη του C έχει άρτιο βάρος.
- (ii) An $x, y \in C$ και $wt(x), wt(y) \equiv 0 \pmod{4}$, τότε $wt(x+y) \equiv 0 \pmod{4}$.
- (iii) Η λέξη $\mathbf{1} = (1, ..., 1)$ ανήκει στον C.
- (iv) Δείξτε ότι είτε κάθε λέξη του C έχει βάρος $\equiv 0 \pmod 4$ ή ακριβώς οι μισές λέξεις έχουν βάρος $\equiv 0 \pmod 4$ και οι μισές έχουν βάρος $\equiv 2 \pmod 4$.

Υπόδειξη: Δείξτε ότι ο $C_0=\{c\in C: \operatorname{wt}(c)\equiv 0\pmod 4\}$ είναι υπόχωρος του C. Αν υπάρχει λέξη $x\in C$ με $\operatorname{wt}(x)\equiv 2\pmod 4$, δείξτε ότι το πηλίκο C/C_0 περιέχει μόνο τα σύμπλοκα C_0 και $x+C_0$.

Ασκηση 2.3 Έστω C γραμμικός κώδικας πάνω από το \mathbb{F}_q μήκους n και διάστασης k και σταθεροποιήστε ένα δείκτη $1 \leq i \leq n$. Δείξτε ότι είτε κάθε λέξη του C έχει 0 στη συντεταγμένη i ή κάθε στοιχείο $\alpha \in \mathbb{F}_q$ εμφανίζεται σε ακριβώς q^{k-1} λέξεις του C.

Άσκηση 2.4 Έστω C γραμμικός κώδικας πάνω από το \mathbb{F}_q με παραμέτρους [n,k,d] και υποθέστε ότι για κάθε $1\leq i\leq n$ υπάρχει λέξη του κώδικα της οποίας η i συντεταγμένη είναι μη μηδενική.

- (i) Δείξτε ότι το άθροισμα των βαρών όλων των λέξεων του C είναι ίσο με $n(q-1)q^{k-1}$.
- (ii) Δείξτε ότι $d \le n(q-1)q^{k-1}/(q^k-1)$.
- (iii) Δείξτε ότι δεν υπάρχει γραμμικός δυαδικός [15,7,d]-κώδικας με $d\geq 8$.

Άσκηση 2.5 Έστω φυσικός $n\geq 3$. Δείξτε ότι υπάρχει [n,k,3] κώδικας πάνω από το \mathbb{F}_q αν και μόνο αν $q^{n-k}\geq (q-1)n$.