Вариант

Пусть масса УСК m=225кг, $I_{22}=12.5$ кг/м 2 , . Кроме того, индивидуально предоставляются начальные координаты и скорости УСК $y_i(0)$ и $\dot{y_i}(0)$, программные тяги двигателей $f_{z1}(t)$, предельные значения тяг боковых двигателей f_{z3}^{max} , а также дискретный набор возможных ошибок в работе маршевых двигателей и ошибок в определении начальных отклонений.

Требуется определить наличие седловой точки. Если она найдена, требуется определить наихудшие возмущения и функционал качества, соответствующий седловой точке.

Положим, что тяга боковых двигателей $|f_{z3}| < 4$ Н. Начальные отклонения от программной траектории по продольной оси $x_1(0) = 0$ м, по оси, перпендикулярной направлению сближения $x_3(0) = -32$ м. Начальные скорости отсутствуют. Набор дискретных возмущений на каждом этапе сближения (для разгона и торможения - индексы 1 и 3 соотв., во время дрейфа возмущения отсутствуют) следующий:

- a) $\Delta M_{z2}^1 = 0.0005$ Hm, $\Delta M_{z2}^3 = 0$ Hm, $\Delta f_{z1}^1 = -0.05$ H, $\Delta f_{z1}^3 = 0$ H, 6) $\Delta M_{z2}^1 = 0.0005$ Hm, $\Delta M_{z2}^3 = 0$ Hm, $\Delta f_{z1}^1 = 0.05$ H, $\Delta f_{z1}^3 = 0$ H, 8) $\Delta M_{z2}^1 = 0.0005$ Hm, $\Delta M_{z2}^3 = -0.002$ Hm, $\Delta f_{z1}^1 = 0.05$ H, $\Delta f_{z1}^3 = -0.1$ H, $\Delta M_{z2}^3 = 0.0005$ Hm, $\Delta M_{z2}^3 = -0.002$ Hm, $\Delta f_{z1}^1 = 0.05$ H, $\Delta f_{z1}^3 = 0.1$ H, $\Delta M_{z2}^1 = 0.0005$ Hm, $\Delta M_{z2}^3 = -0.002$ Hm, $\Delta f_{z1}^1 = -0.05$ H, $\Delta f_{z1}^3 = 0.1$ H,

Результаты проведения моделирования

	Дистанция,	Время	Время Область достижимости, м.		Седловая точка, м.		
Nº	M.	сближения, с.	разгона / торможения	+	-	х	Z
1	15	58,3852	26,2843	30,1277	-30,4600	-0,1504	-0,4210
2	15	290,7642	2,9314	751,1225	-751,4533	-0,1522	-0,2492
3	150	184,6303	83,1181	301,2263	-304,5462	-1,5038	-4,2404
4	150	919,4772	9,2699	7510,2690	-7513,5910	-1,5252	-2,1440
5	1500	583,8522	262,8425	3013,4310	-3046,5820	-15,0428	-41,8677
6	1500	2907,6420	29,3138	74952,6300	-74985,7700	-15,2477	-21,1766

Здесь,

Х – ось направленная перпендикулярно направлению сближения, значения по этой оси показывают, насколько космонавт отклонился вправо/влево от цели.

Вывод:

Во всех смоделированных операциях сближения, с различных дистанций и за различное время, седловая точка была найдена.

Z – ось направленная параллельно направлению сближения, значения по этой оси показывают, насколько космонавт не долетел/перелетел заданную цель;

