Lab 1: Instrumentation

Report by: Natalie Tran Performed by: Natalie Tran and Zachary Pouska

Date performed: 09/12/2022

Purpose

Learning how to use lab equipment. This includes a Digital Multi-Meter, a Function Generator, a Power Supply, and an Oscilloscope. A range of tests will be performed to get comfortable reading Voltage, Frequency, Period, and Amplitude from the Oscilloscope.

Results

Table 1: Power Supply vs DMM Voltage

Power Supply	Voltage Measured with
$\mathbf{Voltage} \ (\mathbf{V})$	the DMM (V)
1.0	0.964
2.0	2.088
3.0	3.262
4.0	3.933

Table 2: Channel Voltage Calibration

	Number of Vertical Deflections	Volts/Div Setting	Voltage
Channel 1	1	0.5V	0.5V
Channel 2	1	0.5V	0.5V

Table 3: Channel Period Calibration

	Number of Vertical Deflections	Sec/Div Setting	Period
Channel 1	2	$0.5 \mathrm{ms}$	1ms
Channel 2	2	$0.5 \mathrm{ms}$	$1 \mathrm{ms}$

Table 4: Interpreting Frequency from the Oscilloscope

Frequency from Signal Generator (Hz)	Number of Horizontal Divisions Peak to Peak	Period of Signal	Frequency (Hz)
50	2.4	24ms	41.7
500	4.8	2.4ms	417
800	6.7	$1.3 \mathrm{ms}$	746
2500	7.4	$0.74 \mathrm{ms}$	1350
5000	4.7	$235\mu\mathrm{s}$	4260
6500	8.4	$168\mu\mathrm{s}$	5950
8000	6.9	$138\mu\mathrm{s}$	7250

Figure 1: Ocilloscope Calibrated to 0.5 Volt/Div and 0.5 ms/Div

$Voltage_{pp}$	2.75V
$Voltage_p$	1.375 V
$Voltage_{rms}$	0.972V
Period	$1.9 \mathrm{ms}$
Frequency	526.0 hz

Analyzed Table for Fig.1

Table 5: Analyzed \mathbf{V}_{rms} vs DMM \mathbf{V}_{rms}

Trial	\mathbf{V}_{pp}	$ \mathbf{V}_p $	Calculated \mathbf{V}_{rms}	$\mathbf{DMM} \; \mathbf{V}_{rms}$	Percent Difference
1*	1.0	N/A	N/A	N/A	N/A
2*	1.5	N/A	N/A	N/A	N/A
3	2.0	1	0.707	0.621	12.9%
4	3.0	1.5	1.06	0.995	6.32%
5	4.0	2	1.414	1.348	5.48%
6	6.0	3	2.121	2.000	5.87%
7	8.0	4	2.828	2.666	5.90%

^{*}Trials 1 and 2 were not performed due to the frequency generator's inability to achieve a low voltage.

 $Voltage_{rms}$ is calculated using the equation:

$$V_{rms} = \frac{1}{\sqrt{2}} * V_p$$

Table 6: Calculating $Voltage_{pp}$ and Frequency of Waves on the New and Old Oscilloscope Generated by an External and Internal Frequency Generator.

Frequency	Signal		Old		New	
Generator	Type of Wave	Frequency (Hz)	V_{pp}	Frequency (Hz)	V_{pp}	Frequency (Hz)
	sine	1000	4	1000	3.8	1020
External	sine	2000	3.8	2083	3.8	2130
	sine	5000	3.8	5333	3.6	5.26
Oscilloscope	square	1000	8	1000	8.5	1000
	square	2000	8	2000	8.5	2000
	square	3000	8	3130	8.5	3000

Questions

- 1. What is the purpose of an oscilloscope? Graphically displaying changes in Voltage.
- 2. What is the difference among peak-to-peak voltage, peak voltage, and rms voltage? Voltage_{pp} is measured to be double the amplitude, or from the highest point to the lowest point. Voltage_p is the half of Voltage_{pp}, or the amplitude measured from the highest or lowest point to zero. Voltage_{rms} stands for 'Root Mean Square' of the voltage, giving the mean voltage over half a period.
- 3. What electrical variables can be measured with the digital multimeter? Amperes (A), Voltage (V), and Ohms (Ω) can be measured from a digital multimeter.

Using the oscilloscope, set up a sine function coming from the function generator and calculate the voltage peak-to-peak, voltage peak, voltage rms, and the period of the signal.

Case 1: 2 Volt/Div and 0.2 ms/Div Case 2: 5 Volt/Div and 50μ s/Div

	Case 1	Case 2
$Voltage_{pp}(V)$	8	20
$Voltage_p(V)$	4	10
Period	$0.84 \mathrm{ms}$	$210\mu s$
Frequency (Hz)	1190	4762

Conclusion

Overall, the main purpose of this lab was achieved, although there was a lack in usage of the newer oscilloscope with the built-in function generator. Reading the voltage and period on the older oscilloscope became comfortable, along with calculating voltage $_{rms}$ and frequency. Though, there were many challenges along the way. It was difficult to accurately read the oscilloscope due to the impercision of the graph the generated frequencies were displayed on. The frequency generator was also tough to calibrate to a specific frequency due to an inaccurate calibration knob. Some equipment were also unreliable, producing incorrect frequencies or voltages. An abundance of human error is also present in the results, as many readings were eyeballed, and given the best estimation possible. This resulted in mismatches in the calculated frequency and voltage.