GRADUATED ASSIGNMENT FOR MULTI-GRAPH MATCHING

Arber Aga

What is graph matching

Graph matching is the problem of finding a similarity between graphs

- 1) Continuous relaxation
- 2) Tree search algorithms
- 3) Deep graph matching

APPLICATION IN COMPUTER VISION

Graph matching algorithms can encode geometric relationships between feature points.

Applications
Face recognition
Action recognition
Duplicate detection

Defining our problem

- Quadratic Assignment Problem (QAP) A generalization of the 'traveling salesman problem'
- Sinkhorn algorithm A simple iterative method to approach the double stochastic matrix is to alternately rescale all rows and all columns of a matrix to sum to 1
- The Hungarian matching algorithm is a algorithm that can be used to find maximum-weight matchings in bipartite graphs, which

is sometimes called the assignment problem


```
Input: Input graphs \{\mathcal{G}_1, \mathcal{G}_2, ... \mathcal{G}_m\}; node-wise similarity \{\mathbf{W}_{ij}\}; initial annealing \tau_0; descent
                factor \gamma; minimum \tau_{min}; clustering weight \mathbb{B} (all \mathbb{B}_{ij} = 1 if clustering is not considered).
 1 Randomly initialize joint matching \{U_i\}; projector \leftarrow Sinkhorn; \tau \leftarrow \tau_0;
 2 while True do
          while \{U_i\} not converged AND #iter \leq #MGMIter do
                \forall i \in [m], \mathbf{V}_i \leftarrow \mathbf{0};
               for \mathcal{G}_i, \mathcal{G}_j in \{\mathcal{G}_1, \mathcal{G}_2, ... \mathcal{G}_m\} do
 5
            \mathbf{V}_i \leftarrow \mathbf{V}_i + (\lambda \mathbf{A}_i \mathbf{U}_i \mathbf{U}_j^{\mathsf{T}} \mathbf{A}_j \mathbf{U}_j + \mathbf{W}_{ij} \mathbf{U}_j) \times \mathbb{B}_{ij}; # \text{ update } \mathbf{V}_i
             for \mathcal{G}_i in \{\mathcal{G}_1, \mathcal{G}_2, ... \mathcal{G}_m\} do
            \bigcup \mathbf{U}_i \leftarrow \operatorname{projector}(\mathbf{V}_i, \tau); # \operatorname{project} \mathbf{V}_i \text{ to (relaxed) feasible space of } \mathbf{U}_i
 8
          # graduated assignment control
 9
          if projector == Sinkhorn AND \tau \geq \tau_{min} then
10
            \tau \leftarrow \tau \times \gamma;
11
          else if projector == Sinkhorn AND \tau < \tau_{min} then
12
            projector ← Hungarian;
13
          else
14
                break;
15
    Output: Joint matching matrices \{U_i\}.
```


APPROACH

Iteratively solving the first-order Taylor expansion of the Multi-Graph QAP.

Before iteration Initialize matching matrix using similarity heuristic

Each iteration
Update matching matrix using Sinkhorn

Final iteration
Update matching matrix using Hungarian

RESEARCH QUESTION

How robust is state of the art graph matching algorithms to sample changes?

Hypothesis

Larger sample sizes lead to higher testing accuracy This will translate equally to other models

EXPERIMENTS

Experiment validation

Averages of 3 runs

Each run performed on the same machine after reset

GANN

Number of samples	F1 Score	Variance	Time (m)
20	88.87%	12.98%	1.42
30	92.85%	10.29%	1.15

GANN

Number of samples	F1 Score	Car	Wine bottle	Motorbike	Face	Duck
20	88.87%	60.67%	90.64%	94.00%	100%	98.67%
30	92.85%	72.67%	95.08%	100%	100%	96.50%

CIE

Number of samples	F1 Score	Variance	Time (h)
20	88.61%	15.67%	2.32
30	10.25%	10.39%	2.30

Conclusion

The experiments didn't fully meet our expectations

Further work

Try a larger sample size

Change the size of query/target graphs