Indian Institute of Technology Roorkee Optimization Techniques (MAN-010)

Exercise – 3

1. Consider the graphical representations of the following linear program:

Maximize (or minimize) $z = 5x_1 + 3x_2$

Subject to
$$x_1 + x_2 \le 6$$
, $x_1 \ge 3$, $x_2 \ge 3$, $2x_1 + 3x_2 \ge 3$, $x_1, x_2 \ge 0$.

- (a) In each of the following cases indicate if the feasible region has one point, infinite number of points, or no point.
 - (i) The constraints are as given above. (one)
 - (ii) The constraint $x_1 + x_2 \le 6$ is changed to $x_1 + x_2 \le 5$.. (none)
 - (iii) The constraint $x_1 + x_2 \le 6$ is changed to $x_1 + x_2 \le 7$. (infinite)
- (b) For each case in (a), determine the number of feasible extreme points, if any. (one, none, three)
- (c) For the cases in (a) in which a feasible solution exists, determine the maximum and minimum values of z and their associated extreme points (Max $z = 24 = \min z$, $\min z = 24$,

$$\max z = 29$$
).

- Solve graphically 2.
 - (i) Maximize (and minimize) $z = 10x_1 + 8x_2$ Subject to $x_1 + x_2 \ge 2$, $4x_1 + 5x_2 \le 20$, $5x_1 + 4x_2 \le 20$, $x_1, x_2 \ge 0$.
 - (ii) Maximize $z = 3x_1 + 4x_2$ Subject to $x_1 + 2x_2 \le 6$, $x_1 - 2x_2 \le 3$, $2x_1 - x_2 \ge -2$, $x_1 \le 4$, $x_1 \ge 0$.
- Consider the following problem: 3.

Maximize
$$z = -4x_1 + 6x_2$$
, s/t $2x_1 - 3x_2 \ge -6$, $-x_1 + x_2 \le 1$, x_1 , $x_2 \ge 0$.

Show graphically that the variables x_1 and x_2 can be increased indefinitely while the optimal value of the objective function remains constant.

Show graphically that the following problem has unbounded solution 4.

Maximize
$$z = 3x_1 + 4x_2$$
, s/t $2x_1 - 3x_2 \le 6$, $x_1 \le 5$, x_1 , $x_2 \ge 0$.

- 5. Show the correspondence between extreme point and basic feasible solutions of the following problems:
 - (i) Maximize $z = 3x_1 + 4x_2$ Subject to $x_1 + 2x_2 \le 8$, $3x_1 + 2x_2 \le 12$, $x_1, x_2 \ge 0$.
 - (ii) Maximize $z = 3x_1 + 4x_2$ Subject to $x_1 + 2x_2 \le 4$, $3x_1 + 2x_2 \le 12$, x_1 , $x_2 \ge 0$.
- 6. Find all basic feasible solutions and hence optimal solutions for the problems:
 - (i) Maximize $z = 3x_1 + 2x_2 x_4$ Subject to $x_1 + 2x_2 + 2x_3 = 4$, $3x_1 - x_2 + 6x_3 + x_4 = 5$, $x_1, x_2, x_3, x_4 \ge 0$.
 - (ii) Maximize $z = x_1 2x_2 + 3x_3$ Subject to

$$2x_1 + 2x_2 + 2x_3 + x_4 = 6$$
, $4x_1 + 5x_2 + 2x_3 + 2x_3 = 12$, $x_1, x_2, x_3, x_4 \ge 0$.