САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Алгоритмической математики

Лабораторная работа 2 "Алгоритм Ремеза"

Санкт-Петербург

Содержание

1	Цел	ь работ	Ы	2							
2	Зада	ание		2							
3	3 Построение многочленов										
	3.1	Много	член 5-ой степени	2							
		3.1.1	Таблица результатов	2							
		3.1.2	Графики погрешностей	3							
		3.1.3	Найденный многочлен	4							
3.2 Многочлен 10-ой степени		Много	очлен 10-ой степени	5							
		3.2.1	Таблица результатов	5							
		3.2.2	Графики погрешностей	6							
		3.2.3	Найденный многочлен	7							
4	Код	сценар	риев и функции	8							

1 Цель работы

Построение многочлена наилучшего равномерного приближения с помощью алгоритма Ремеза.

2 Задание

С помощью алгоритма Ремеза найти многочлены наилучшего равномерного приближения 5-ой и 10-ой степени для функции $f(x)=\frac{1000}{x^2-5x+60}$ на отрезке [a;b]=[-1;7].

3 Построение многочленов

3.1 Многочлен 5-ой степени

3.1.1 Таблица результатов

Таблица 1. Результаты для многочлена 5 степени.

Nº	уровень	глобальный максимум	точность	номер точки, за
	квазиальтернанса	погрешности	выравнивания	которой шёл максимум
1	0.0044918	0.017814	0.74785	1
2	0.0056883	0.015261	0.62726	6
3	0.0066137	-0.012856	0.48556	2
4	0.0077863	-0.010437	0.254	5
5	0.008251	0.0084858	0.027671	3
6	0.008294	0.008352	0.0069472	1
7	0.0083048	0.0083277	0.0027515	6
8	0.0083079	-0.0083082	3.8933e-05	4
9	0.0083079	-0.0083079	3.948e-13	2
10	0.0083079	-0.0083079	3.948e-13	2

3.1.2 Графики погрешностей

3.1.3 Найденный многочлен

 $L_5 = -0.0001740289x^5 + 0.0067366421x^4 - 0.0539489853x^3 - 0.1578708083x^2 + 1.4069231346x + 16.6637573436$

3.2 Многочлен 10-ой степени

3.2.1 Таблица результатов

Таблица 2. Результаты для многочлена 10 степени.

№	уровень	глобальный максимум	точность	номер точки, за
JN≚	квазиальтернанса	погрешности	выравнивания	которой шёл максимум
1	1.1532e-06	-6.8242e-05	0.9831	11
2	1.3966e-06	4.4011e-05	0.96827	10
3	1.9122e-06	4.3149e-05	0.95568	1
4	2.1004e-06	-2.7402e-05	0.92335	9
5	3.031e-06	-3.4716e-05	0.91269	2
6	3.6141e-06	1.7896e-05	0.79805	3
7	4.3282e-06	1.8106e-05	0.76095	8
8	5.6253e-06	-1.0224e-05	0.44977	4
9	6.0828e-06	-9.3518e-06	0.34955	7
10	6.4682 e-06	-7.4483e-06	0.13159	11
11	4.1806e-06	7.1571e-05	0.94159	12
12	6.4682e-06	-7.4483e-06	0.13159	11
13	6.556e-06	7.2279e-06	0.092958	10
14	6.6271 e-06	7.0866e-06	0.06484	1
15	6.6482 e-06	-6.8099e-06	0.023758	9
16	6.6666e-06	-6.7786e-06	0.016531	2
17	6.673e-06	-6.6893e-06	0.0024452	5
18	6.6743e-06	6.6866e-06	0.0018417	5
19	6.6755e-06	6.684e-06	0.0012609	8
20	6.6765e-06	-6.6778e-06	0.00019397	7
21	6.6766e-06	-6.6766e-06	2.4617e-10	0
22	6.6766e-06	-6.6766e-06	2.4617e-10	0

3.2.2 Графики погрешностей

3.2.3 Найденный многочлен

 $L_{10} = -1.3852195849 \cdot 10^{-8}x^{10} + 3.3481374149 \cdot 10^{-7}x^9 - 1.9035167286 \cdot 10^{-6}x^8 - 1.0988223274 \cdot 10^{-5}x^7 + 8.4121387845 \cdot 10^{-5}x^6 + 0.0005363647x^5 - 0.0003641573x^4 - 0.0365801852x^3 - 0.1620555088x^2 + 1.3888647251x + 16.6666695414$

4 Код сценариев и функции

W05.m

```
\begin{array}{lll} 1 & a \! = \! -1; & b \! = \! 7; \\ 2 & n \! = \! 5; \\ 3 & t \! = \! a \! : \! (b \! - \! a) \, / \, (n \! + \! 1) \! : \! b; \\ 4 & t t \! = \! a \! : \! (b \! - \! a) \, / \, 1000 \! : \! b; \\ 5 & res \! = \! []; \\ 6 & step \! = \! 0; \\ 7 & format short g \\ & W010.m \\ & 1 & a \! = \! -1; & b \! = \! 7; \\ 2 & n \! = \! 10; \\ 3 & t \! = \! a \! : \! (b \! - \! a) \, / \, (n \! + \! 1) \! : \! b; \\ 4 & t t \! = \! a \! : \! (b \! - \! a) \, / \, 1000 \! : \! b; \\ 5 & res \! = \! []; \\ 6 & step \! = \! 0; \\ 7 & format short g \\ \end{array}
```

W1.m

```
1 [p, sigma] = sys(t, f(t));
2 \text{ ra} = f(t) - \text{polyval}(p, t);
3 r = f(tt) - polyval(p, tt);
4 \left[ rmax, i \right] = max(abs(r));
5 \text{ tmax} = \text{tt(i)};
6 \text{ rmax} = r(i);
7 \text{ acc} = 1 - \frac{\text{abs}}{\text{sigma/rmax}};
   after = sum(t < tmax);
9 \text{ step} = \text{step} + 1;
10
   plot (tt, r, 'k', ...
11
        t, ra, 'ko', t, t*0, 'x', ...
12
         tmax, rmax, '*', tmax, 0, 'x')
13
   grid on
14
    title(sprintf('%d: \\sigma = \%g, rmax = \%g, acc = \%g (i>\%d)', ...
15
    step, abs(sigma), abs(rmax), acc, after))
16
17
   res = [res; [step, sigma, rmax, acc, after]];
18
19
   after
20
   ra0 = [0, ra, 0];
21
   disp('ra(after), rmax, ra(after+1)')
22
23
   [ra0(after+1), rmax, ra0(after+2)]
```

sys.m

```
1 function [p, sigma] = sys(t,y)
      m = length(t);
 2
      a=zeros(m);
 3
 4
      for i=1:m
 5
         for k=0:m-2
 6
            a(i,k+1)=t(i)^{(m-2-k)};
 7
         end for \\
 8
         a(i,m)=(-1)^i;
 9
      end for
10
11
      [i,k] = size(y)
12
      if i < k, y=y'; end
13
      p \!\!=\!\! a \!\setminus\! y \, ;
14
      sigma=p(m);
15
      p\left( m\right) =\left[ \,\right] ;
16
      p=p ';
17
   f.m
 1 function retval = f (input1)
 2 \text{ retval} = 1000./(\text{input1.}^2 - 5*\text{input1} + 60);
 3 endfunction
```