Claims:

**1.** (**Previously Presented**) A computer-implemented method for

processing video data comprising:

determining an ideal playback timing associated with the video data, the

ideal playback timing determined at least in part by way of information encoded

in the video data: and

if an actual playback timing of the video data lags the ideal playback

timing, the lag resulting from a limited processing power of the computer

implementing the method, varying a frame rate associated with the video data

using a smoothing function to recover toward the ideal playback timing, wherein

smoothly varying the frame rate includes controlling the frame rate using a

frame-dropping algorithm that drops frames in the video data in accordance with

the smoothing function.

2. (Canceled)

**3.** (**Previously Presented**) The computer-implemented method

as recited in Claim 1, wherein controlling the frame rate includes:

computing a delay by comparing the actual playback timing with the ideal

playback timing; and

if the delay exceeds a threshold value, determining that the actual

playback timing lags the ideal playback timing.

ECONOS De Saines de "

- **4. (Original)** The computer-implemented method as recited in Claim 3, wherein the threshold value accounts for ordinary system variations.
- **5. (Original)** The computer-implemented method as recited in Claim 3, wherein the delay is computed by subtracting the ideal playback timing from the actual playback timing.
- **6. (Original)** The computer-implemented method as recited in Claim 3, wherein the smoothing function incorporates the delay as a variable.
- 7. (Original) The computer-implemented method as recited in Claim 3, wherein the delay is computed as an average delay that includes an average of the delay associated with a current frame of the video data and at least a delay associated with a previous frame.
- **8. (Original)** The computer-implemented method as recited in Claim 7, wherein the average delay is an average of delays associated with the current frame and a plurality of previous frames.
- (Currently Amended) The computer-implemented method as recited in Claim 1 2, wherein the frame-dropping algorithm includes a rasterization algorithm.

- **10. (Previously Presented)** The computer-implemented method as recited in Claim 1, wherein the frame-dropping algorithm includes if a current frame is a B-frame, dropping the current frame.
- **11. (Previously Presented)** The computer-implemented method as recited in Claim 1, wherein the frame-dropping algorithm includes if a current frame is an I-frame. showing the current frame without further determination.
- **12. (Previously Presented)** The computer-implemented method as recited in Claim 1, wherein the frame-dropping algorithm includes if a current frame is a P-frame, processing the current frame to obtain enough information for processing subsequent frames before dropping the current frame.
- **13. (Previously Presented)** The computer-implemented method as recited in Claim 1, wherein the frame-dropping algorithm includes if the actual playback timing does not lag the ideal playback timing, overriding any determination to drop frames.
- **14. (Original)** The computer-implemented method as recited in Claim 1, wherein the ideal playback timing is determined from a presentation clock.
- 15. (Original) The computer-implemented method as recited in Claim 14, wherein the presentation clock includes a filter configured to remove noise.

- **16. (Original)** One or more computer-readable memories containing a computer program that is executable by a processor to perform the computer-implemented method recited in Claim 1.
- **17. (Previously Presented)** A computer-implemented method for managing video data frame rates comprising:

determining delays associated with playback of frames of video data;

calculating an average delay from averaging the delays;

determining an ideal frame rate associated with the frames;

calculating a frame skip factor; and

varying the frame rates associated with the playback by applying a framedropping algorithm configured to determine whether to drop a current frame using the frame skip factor, wherein the frame-dropping algorithm includes:

if the frame skip factor is greater than the ideal frame rate, adding the ideal frame rate to an iterator; and

if the iterator is greater than or equal to the frame skip factor, subtracting the frame skip factor from the iterator and showing the current frame.

**18. (Original)** The computer-implemented method as recited in Claim 17, wherein the frame skip factor is calculated with a tolerance factor that accounts for variability in a system timer.

19. (Original) The computer-implemented method as recited in Claim 17, wherein the frame-dropping algorithm includes an iterative algorithm that varies the frame rates using a smoothing function that includes the frame skip factor.

## 20. (Canceled).

- **21. (Previously Presented)** The computer-implemented method as recited in Claim 17, wherein the frame-dropping algorithm includes if the iterator is less than the frame skip factor, dropping the current frame.
- **22. (Original)** The computer-implemented method as recited in Claim 21, wherein the frame-dropping algorithm includes:

if the iterator is less than the frame skip factor, determining whether the average delay has reached a significant percentage of a maximum delay; and if so, showing the next I-frame subsequent to the current frame.

- **23. (Original)** The computer-implemented method as recited in Claim 17, wherein priority is given to the execution of the computer-implemented method to improve the quality associated with the calculated frame rates.
- **24. (Original)** One or more computer-readable memories containing a computer program that is executable by a processor to perform the method recited in Claim 17.



## 25. (Currently Amended) An apparatus comprising:

means for determining <u>delays</u> <del>an ideal playback timing</del> associated with playback of frames of video data:

means for varying a frame rate associated with the video data using a smoothing function to recover toward the ideal playback timing;

means for calculating an average delay from averaging the delays; means for determining an ideal frame rate associated with the frames; means for calculating a frame skip factor; and

means for controlling the frame rate using a frame-dropping algorithm that drops frames in the video data in accordance with the smoothing function skip factor, wherein the frame-dropping algorithm includes:

if the skip factor is greater than the ideal frame rate, adding the ideal frame rate to an iterator; and

if the iterator is greater than or equal to the frame skip factor, subtracting the frame skip factor from the iterator and showing the current frame;

means for computing a delay by comparing an actual playback timing with
the ideal playback timing, the actual playback timing lagging the ideal playback
timing as a result of a limited processing capability of the apparatus; and
means for incorporating the delay into the smoothing function.

## 26. (Canceled)



**27. (Previously Presented)** The apparatus as recited in Claim 25, further comprising means for buffering the video data so that the frame-dropping algorithm is executing ahead of real time.

**28. (Previously Presented)** The apparatus as recited in Claim 25, further comprising means for incorporating a rasterization algorithm into the frame-dropping algorithm.

29. (First Instance) (Canceled).

29. (Second Instance) (Canceled).

**30. (Currently Amended)** One or more computer-readable media having stored thereon a computer-executable instructions-program that, when executed by one or more processors, causes the one or more processors to perform a computer-implemented method comprising:

determining an ideal playback timing delays associated with playback of frames of video data;

calculating an average delay from averaging the delays;

determining an ideal frame rate associated with the frames;

calculating a frame skip factor; and

if an actual playback timing of the video data lags the ideal playback timing, vary varying the frame rate associated with the playback of video data using a smoothing function to recover toward the ideal playback timing, wherein:

the lag results from an inherently limited processing capability of a system processing the video data; and

the frame rate is smoothly varied by applying a frame-dropping algorithm configured to determine whether to drop a current frame using the frame skip factor, that drops frames in the video data in accordance with the smoothing function wherein the frame dropping algorithm includes:

if the frame skip factor is greater than the ideal frame rate, adding the ideal frame rate to an iterator; and

if the iterator is greater than or equal to the frame skip factor, subtracting the frame skip factor from the iterator and showing the current frame.

## 31. (Canceled)

32. (Currently Amended) One or more computer-readable media as recited in Claim 30, wherein the frame-dropping algorithm includes:

computing an average delay by averaging delays associated with frames in the video data, and

incorporating the average delay into the smoothing function the frame skip factor is calculated with a tolerance factor that accounts for variability in a system timer.

**33.** (**Previously Presented**) An electronic device comprising:



a memory; and

a processor coupled to the memory, the processor being configured to:

determine delays associated with playback of frames of video data;

calculate an average delay from averaging the delays;

determine an ideal frame rate associated with the frames;

calculate a frame skip factor; and

vary a frame rate associated with the playback by applying a framedropping algorithm configured to determine whether to drop a current frame using the frame skip factor, wherein the frame-dropping algorithm includes:

if the frame skip factor is greater than the ideal frame rate, adding the ideal frame rate to an iterator; and

if the iterator is greater than or equal to the frame skip factor, subtracting the frame skip factor from the iterator and showing the current frame.

34-35. (Canceled).

36. (Currently Amended) The apparatus as recited in Claim 25, further comprising:

means for computing an average delay associated with playback of a plurality of frames; and

means for incorporating the average delay into the smoothing function

ACONAYCS The Susiness of F \*

wherein the frame skip factor is calculated with a tolerance factor that accounts for variability in a system timer.

- **37. (New)** The apparatus as recited in Claim 25, wherein the frame-dropping algorithm includes an iterative algorithm that varies the frame rates using a smoothing function that includes the frame skip factor.
- **38.** (New) The apparatus as recited in Claim 25, wherein the frame-dropping algorithm includes if the iterator is less than the frame skip factor, dropping the current frame.
- **39. (New)** The apparatus as recited in Claim 38, wherein the frame-dropping algorithm includes:

if the iterator is less than the frame skip factor, determining whether the average delay has reached a significant percentage of a maximum delay; and if so, showing the next I-frame subsequent to the current frame.

**40. (New)** One or more computer-readable media as recited in Claim 30, wherein the frame-dropping algorithm includes an iterative algorithm that varies the frame rates using a smoothing function that includes the frame skip factor.

- **41. (New)** One or more computer-readable media as recited in Claim 30, wherein the frame-dropping algorithm includes if the iterator is less than the frame skip factor, dropping the current frame.
- **42. (New)** The computer-implemented method as recited in Claim 41, wherein the frame-dropping algorithm includes:

if the iterator is less than the frame skip factor, determining whether the average delay has reached a significant percentage of a maximum delay; and if so, showing the next I-frame subsequent to the current frame.

**43. (New)** One or more computer-readable media as recited in Claim 30, wherein priority is given to the execution of the computer-implemented method to improve the quality associated with the calculated frame rates.