2.4

3) $f(2) + \varepsilon$ f(2) $f(2) - \varepsilon$ f(x)

Choisissons $\varepsilon = \frac{1}{2}$.

Soit $\delta > 0$ un nombre positif quelconque.

Posons $x = 2 - \frac{\delta}{2}$. Alors on a $2 - \delta < x < 2$, d'où l'on déduit :

- (a) $-\delta < x 2 < 0$ entraı̂ne $\delta > 2 x > 0$, puis $|x 2| = 2 x < \delta$.
- (b) Vu que x < 2, on a E(x) < E(2) = 2.

Comme E(x) est entier, cela implique $E(x) \leq 1$.

On en tire $-E(x) \ge -1$, d'où suit $2 - E(x) \ge 1$.

On a ainsi obtenu $|E(x) - E(2)| = |E(x) - 2| = 2 - E(x) \ge 1 \ge \frac{1}{2} = \varepsilon$.

En résumé, on a montré qu'il existe $\varepsilon > 0$ tel que, pour tout $\delta > 0$, il existe $x \in \mathbb{R}$ avec $|x-2| < \delta$ et $|\mathrm{E}(x) - \mathrm{E}(2)| \geqslant \varepsilon$: la fonction E est par conséquent discontinue au point 2.