微积分作业

 \mathbf{AI}

吉林大学公共数学教学与研究中心 2021年9月

第一次作业

学院		姓名	7 1	_ 学号	
一、单项选	择题				
1. 设函数 <i>f</i>	(x) 的定义域是 [0,1]], 则函数 g(a	(x) = f(x+a) +	$f(x-a) \left(0 < a\right)$	$(a<\frac{1}{2})$ 的
定义域是()					2)
	[a] (B) $[a]$) [-a, 1+a].
2. 设 $f(x)$ =	$= \begin{cases} x, & x \geqslant 0, \\ x^2, & x < 0, \end{cases} g(x)$	(x) = 5x - 4,	则 $f[g(0)] = ($).	
(A) 0	(B) -4 ;	(C) 16;	(D) -16		
$3.$ 在 $(-\infty$,	0) 上,下列函数中无	界函数是().		
(A) y = 2	y^x ; (B) $y = \arctan$	n x; (C)	$y = \frac{1}{x^2 + 1};$	(D) $y = \frac{1}{x}$.	
	$\{x_n\}$,则下列命题』				
(A) 如果	$\{x_n\}$ 有界, 则 $\{x_n\}$	必收敛; (I	B) 如果 $\{x_n\}$ 单	单调,则 $\{x_n\}$	必收敛;
(C) 如果	$\{x_n\}$ 收敛, 则 $\{x_n\}$	必有界; (I	D) 如果 {x _n } 收	女敛,则 $\{x_n\}$	必单调.
5. 设数列 {	a_n } $(a_n > 0, n = 1, 2,$	···) 满足 li	$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 0, \mathbb{A}$	J().	
(A) $\lim_{n\to\infty}$	$a_n = 0, (B)$	$\lim_{n \to \infty} a_n = C$	> 0;		
(C) $\lim_{n\to\infty} e^{-i\omega t}$	a_n 不存在; (D)	无法确定 <u>l</u> i	$\underset{\rightarrow \infty}{\mathrm{m}} \{a_n\}$ 是否存	在.	
二、填空题					
1. 设 $f(x)$ =	=2x+3, f[f(x)-1]	- 3] = <u> </u>			
2. 将复合函	数 $y = a^{\sin\sqrt{x^2+1}}$ 分類	解成简单函数	数为		_•
3. 函数 f(x	$(1) = \frac{e^x}{e^x + 1}$ 的反函数	$f^{-1}(x)$ 为_		_•	

4. $\lim_{n \to \infty} \left(1 - \frac{1}{2^2} \right) \left(1 - \frac{1}{3^2} \right) \cdots \left(1 - \frac{1}{n^2} \right) = \underline{\hspace{1cm}}$

5. $\lim_{n \to \infty} \left[\frac{n^3}{n^2 + 1} \sin \frac{1}{n} + \frac{\cos n}{n} + \left(\frac{n+1}{n-1} \right)^n \right] = \underline{\qquad}$

1. 设
$$f\left(\sin\frac{x}{2}\right) = 1 + \cos x$$
, 求 $f(\cos x)$.

$$2. \lim_{n \to \infty} \sqrt{n} (\sqrt{n+1} - \sqrt{n-1}).$$

3.
$$\lim_{n \to \infty} \left(\frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots+n} \right)$$
.

4.
$$\Re \lim_{n\to\infty} (1+2^n+3^n)^{\frac{1}{n}}$$
.

5.
$$\lim_{n \to \infty} \left(\frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 2} + \dots + \frac{n}{n^2 + n + n} \right)$$
.

四、证明题

设
$$x_1=\sqrt{6}, x_{n+1}=\sqrt{6+x_n}, n=1,2,\cdots$$
,证明 $\lim_{n\to\infty}x_n$ 存在,并求之.

第二次作业

学院 班级 姓名 学号

一、单项选择题

- 1. 己知 f(x) > 0, 且 $\lim_{x \to x_0} f(x) = k$, 则必有().
 - (A) $k \geqslant 0$;

- (B) k > 0; (C) k = 0; (D) k < 0.
- 2. 已知 $\lim_{x \to x_0} [f(x) + g(x)]$ 存在,则 $\lim_{x \to x_0} f(x)$ 与 $\lim_{x \to x_0} g(x)$ ().
 - (A) 均存在; (B) 均不存在; (C) 至少有一个存在; (D) 都存在或都不存在.
- 3. 设对任意 x 总有 $g(x) \leq f(x) \leq h(x)$, 且 $\lim_{x \to \infty} [h(x) g(x)] = 0$, 则 $\lim_{x \to \infty} f(x)$

 - (A) 存在且一定为 0; (B) 存在且一定不为 0;
 - (C) 一定不存在;
- (D) 不一定存在.
- 4. 己知 $\lim_{x \to \infty} \left(\frac{x^2 + 1}{x + 1} ax b \right) = 0$, 则(). (A) a = b = 1; (B) a = b = -1; (C) a = -1, b = 1; (D) a = 1, b = -1.

- 5. 当 $x \to \infty$ 时, $y = x \cos x$ 是().
 - (A) 无穷大; (B) 无界函数但不是无穷大; (C) 有界函数; (D) 无穷小.
- 6. 当 $x \to 0$ 时,下列与 x^2 同阶的无穷小是().

- (A) $1 e^x$; (B) $\ln(1 x^3)$; (C) $\arcsin(3x^2)$; (D) $1 \cos(x^2)$.

二、填空题

- 1. $\mathfrak{P}\lim_{x\to 0} (1-kx)^{\frac{1}{x}} = e^2, \ \mathbb{M} \ k = \underline{\hspace{1cm}}.$
- 2. 设函数 $f(x) = \begin{cases} \frac{\sin 2x}{x}, & x < 0, \\ a, & x = 0, & \text{在 } x = 0 \text{ 点连续,则 } a = \underline{\hspace{1cm}}, b = \underline{\hspace{1cm}}. \end{cases}$
- 穷","震荡")

 $4. \; x = 0$ 是函数 $f(x) = \frac{\ln(1+x)}{x}$ 的______间断点.(选填"跳跃","可去","无穷","震荡")

1.
$$\lim_{x \to +\infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x}).$$

2.
$$\lim_{x \to +\infty} \frac{x\sqrt{x} - 4x + 2}{3x - 4x\sqrt{x} + 1}$$
.

3.
$$\lim_{x\to 0} (1+x^2)^{\frac{1}{1-\cos x}}$$
.

4.
$$\lim_{x \to 0} \left(\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \frac{\sin x}{|x|} \right)$$
.

5.
$$\stackrel{\text{in}}{\not\sim} \lim_{x \to 0} \frac{\ln\left(1 + \frac{f(x)}{\sin x}\right)}{2^x - 1} = 2, \quad
\stackrel{\text{in}}{\not\sim} \lim_{x \to 0} \frac{f(x)}{x^2}.$$

四、证明题 证明方程 $2^x = x^2$ 在 (-1,1) 内必有实根.

第三次作业

学院

一、单项选择题

1. 若 f(x) 在 $x = x_0$ 处可导, 并且 $f'(x_0) = 3$, 则 $\lim_{h \to 0} \frac{h}{f(x_0 - h) - f(x_0)} = 0$

(A) $-\frac{1}{3}$; (B) -3; (C) $\frac{1}{3}$; (D) 3.

2. 函数 $f(x) = \begin{cases} x \arctan \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$ 则 f(x) 在 x = 0 处().

(A) 不连续;

(B) 连续但不可导;

(C) 可导但导数不连续; (D) 可导且导数连续.

3. 若函数 f(x) 在 x_0 点的左、右导数均存在,则 f(x) 在 x_0 点一定().

(A) 可导;

(B) 可微;

(C) 间断;

(D) 连续.

4. 设 $y = f(\ln x), f(u)$ 为可导函数,则 dy = (

(A) $f'(\ln x) dx$; (B) $f'(\ln x) \ln x dx$; (C) $f'(\ln x) \frac{1}{x} d(\ln x)$; (D) $f'(\ln x) \frac{1}{x} dx$.

5. 设 $y = x + \sin x$, 则当 $\Delta x \to 0$ 时,

(A) $dy|_{x=0}$ 与 Δx 是等价无穷小; (B) $dy|_{x=0}$ 与 Δx 是同阶无穷小;

(C) $dy|_{x=0}$ 是比 Δx 高阶的无穷小; (D) Δx 是比 $dy|_{x=0}$ 高阶的无穷小.

二、填空题

1. 曲线 $y = x + e^x$ 在 x = 0 处的切线方程是_____.

2. 设 $y = \log_x a(a > 0)$, 则 $\frac{\mathrm{d}y}{\mathrm{d}x} = \underline{\hspace{1cm}}$.

4. $\% f(x) = x^2 \cos x, \ \mathbb{M} f^{(50)}(0) = \underline{\hspace{1cm}}$

5. 设 $\varphi(x)$ 在 x = a 连续, $f(x) = |x - a|\varphi(x)$, 若 f(x) 在 x = a 可导,则 $\varphi(a) =$

1.
$$\[\] f(x) = \begin{cases} \cos x, & x \leq 0, \\ \ln(1+x) + 1, & x > 0. \end{cases} \] \[\] f'(x).$$

2. 己知方程
$$\ln \sqrt{x^2+y^2} = \arctan \frac{y}{x}$$
 确定函数 $y=y(x)$, 求 y'' .

3. 求
$$y = (1 + x^2)^{\sin x}$$
 的导数.

4. 设
$$\begin{cases} x = \ln(1+t^2), \\ y = t - \arctan t, \end{cases} \stackrel{\text{d}}{\Rightarrow} \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}.$$

5. 已知 f(x) 在 x=1 处具有连续的导数,且 f'(1)=2, 求 $\lim_{x\to 0^+}\frac{\mathrm{d}}{\mathrm{d}x}f(\cos\sqrt{x})$.

四、证明题

设函数 f(x) 对任何实数 a,b 有 f(a+b)=f(a)f(b), 且 f'(0)=1. 试证 f'(x)=f(x).

第四次作业

学院_______ 班级_______ 姓名_______ 学号______

一、单项选择题

1. 设 f(x) = x(x+1)(2x+1)(3x-1), 则 f'(x) = 0 在 (-1,0) 内有()个实根.

(A) 1; (B) 2; (C) 3; (D) 4.

2. 设 f(x) 在 [a,b] 上连续,在 (a,b) 内二阶可导,且 $f''(x) \neq 0$,则使 $f'(\xi) = \frac{f(b) - f(a)}{b-a}$ $(\xi \in (a,b))$ 成立的 ξ 的个数为().

(A) 惟一的一个; (B) 零个; (C) 两个; (D) 至少三个.

3. 下列各极限都存在,能用洛必达法则求的是().

(A) $\lim_{x\to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x}$; (B) $\lim_{x\to +\infty} \frac{x+\cos x}{x+\sin x}$; (C) $\lim_{x\to +\infty} \frac{\arctan x-\frac{\pi}{2}}{\operatorname{arccot} x}$; (D) $\lim_{x\to \infty} \frac{\mathrm{e}^x-\mathrm{e}^{-x}}{\mathrm{e}^x+\mathrm{e}^{-x}}$

4. 己知 $\lim_{x\to 0} \frac{e^x - ax - b}{1 - \sqrt{1 - x^2}} = 1$, 则().

(A) a = -1, b = 1; (B) a = -1, b = -1;

(C) a = 1, b = -1; (D) a = 1, b = 1.

(A) $\frac{(-1)^{n-1}n!}{n-2}$, (B) $\frac{(-1)^{n-1}}{n-2}$, (C) $\frac{(-1)^n n!}{n-2}$, (D) $\frac{(-1)^n}{n-2}$,

二、填空题

1. $\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right) = \underline{\qquad}$

2. $\lim_{x \to 0^+} (\sin x)^x = \underline{\hspace{1cm}}$

 $3. \lim_{x \to 0^+} \left(\frac{1}{x}\right)^{\tan x} \underline{\qquad}.$

4. 若 $\alpha > 0$, 则 $\lim_{x \to 0^+} x^{\alpha} \ln x =$ _______.

5. $\exists \exists \lim_{x \to 0} \frac{x - \sin x}{x^2 \ln(1 - bx)} = 1, \ \emptyset \ b = \underline{\qquad}.$

三、计算题
$$1. \lim_{n \to \infty} \left(n \sin \frac{1}{n} \right)^{n^2}.$$

2.
$$\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x}$$
.

3.
$$\lim_{x \to +\infty} \left(\frac{2}{\pi} \arctan x \right)^x$$
.

4.
$$\lim_{x \to 0} \frac{x(e^x + e^{-x} - 2)}{x - \sin x}$$
.

5. 设 f(x) 二阶可导, 且 f'(0) = 0, 求 $\lim_{x \to 0} \frac{f(x) - f(x - x^2)}{x^3}$.

四、证明题

1. 设函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导, $f(0)=f(1)=0,f\left(\frac{1}{2}\right)=1$. 证明 在 (0,1) 内至少存在一点 ξ , 使得 $f'(\xi)=1$.

2. 设函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(0)=0. 证明至少存在一点 $\xi\in(0,1)$, 使得 $3f(\xi)+(\xi-1)f'(\xi)=0$.

第五次作业

	学院	_ 班级	姓名	学号	_			
	一、单项选择题							
	1. 设 $f(x)$ 在 $[0,1]$	上有二阶导数,且 ;	f''(x) > 0,则下列	不等式中正确的是().			
	(A) $f'(1) > f'(0)$) > f(1) - f(0);	(B) $f'(1) > f(1)$	-f(0) > f'(0);				
	(C) $f(1) - f(0)$	> f'(1) > f'(0);	(D) $f'(1) > f(0)$	-f(1) > f'(0).				
	2. 设 $f(x)$ 二阶可导	寻, $f'(x) > 0$, $f''(x)$	< 0, 则在点 x ₀ 处	$\Delta x > 0$ 时,有().			
	(A) $\Delta y > \mathrm{d}y < 0$	0; (B) $dy > \Delta y >$	0; (C) $\Delta y >$	$\mathrm{d}y > 0;$ (D) $\mathrm{d}y < \Delta$	$\Delta y < 0.$			
	3. 设函数 $y = f(x)$) 满足 $y'' - 2y' + 4y$	$y=0, \stackrel{\text{def}}{=} f(x_0) >$	0 , 且 $f'(x_0) = 0$, 则	f(x) 在			
点:	x_0 ().							
	(A) 取得极大值;	(B) 取得	导极小值;					
	(C) 某邻域内单词	调增加; (D) 某令	邻域内单调减少.					
	4. 当 x > 0 时,曲约).					
	(A) 有且仅有水-	平渐近线;	(B) 有且仅	又有竖直渐近线;				
	(C) 既有水平渐远	近线,也有竖直渐近:	线; (D) 既无办	〈平渐近线, 也无竖直	渐进线.			
	二、填空题							
	1. 函数 $y = \frac{2x}{1+x^2}$	的单调增加区间为	J					
	2. 曲线 $y = x + x^{\frac{5}{3}}$	的上凹区间是						
	3. 要做一圆锥形漏斗,其母线长为20厘米,要使漏斗体积最大,其高为							
米.								
	4. 曲线 $y = \frac{x^2}{x+1}$ 的斜渐近线为							
	5. 曲线 $y = x \sin x$ 在点 $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ 处的曲率为							
		- ·						

1. 设函数 y=y(x) 由方程 $2y^3-2y^2+2xy-x^2=1$ 所确定,求 y=y(x) 的驻点,并判断它是否为极值点.

2. 求函数 $y = |x^2 - 5x + 4| + x$ 在 [-5, 6] 上的最大值和最小值.

3. 试确定常数 k 的值, 使曲线 $y = k(x^2 - 3)^2$ 在拐点处的法线通过坐标原点.

4. 在平面上通过点 P(4,9) 引一条直线, 要使它在两个坐标轴上的截距都为正, 且其和为最小, 求这直线方程.

四、证明题

1. 证明: 当 x > 0 时, $1 + x \ln(x + \sqrt{1 + x^2}) > \sqrt{1 + x^2}$.

2. 证明方程 $\ln x = \frac{x}{e} - 2\sqrt{2}$ 在 $(0, +\infty)$ 内有且仅有两个不同实根.

第六次作业

学院 班级 姓名 学号

一、单项选择题

- 1. 下列命题错误的是(
 - (A) 如果 f(x) 在区间 I 上的某个原函数为常数, 则在 I 上 f(x) = 0;
 - (B) 如果 f(x) 在区间 I 上不连续, 则 f(x) 在 I 上必无原函数;
 - (C) 如果 f(x) 的某个原函数为零, 则 f(x) 的所有原函数均为常数;
 - (D) 如果 f(x) 有原函数 F(x), 则 F(x) 是连续函数.
- 2. 已知 $f'(x) = g'(x), x \in \mathbf{R}$, 则有(

$$(A) f(x) = g(x);$$

(B)
$$\left[\int f(x) dx \right]' = \left[\int g(x) dx \right]';$$

(C)
$$d\left(\int f(x)dx\right) = d\left(\int g(x)dx\right);$$
 (D) $f(x) = g(x) + C.(C$ 为任意常数)

- 3. 下列各组函数中, 同一函数的原函数的是(

 - (A) $e^{2x+1} = 2e^{x+1}$; (B) $\sin^2 x = \cos^2 x$;

 - (C) $\cos 2x = 2\cos^2 x$; (D) $2\sqrt{x+1} = \sqrt{x^2+1}$.

4. 若
$$F'(x) = f(x)$$
, 则 $\int f(2x) dx = ($).

(A)
$$\frac{1}{2}F(2x) + C$$
; (B) $F(2x) + C$; (C) $\frac{1}{2}F(x) + C$; (D) $F(x) + C$.

5. 设
$$\int x f(x) dx = \arcsin x + C$$
, 则 $\int \frac{1}{f(x)} dx = ($).

(A)
$$\frac{1}{3}(1-x^2)^{\frac{3}{2}} + C;$$

(A)
$$\frac{1}{3}(1-x^2)^{\frac{3}{2}} + C;$$
 (B) $-\frac{1}{3}(1-x^2)^{\frac{3}{2}} + C;$

(C)
$$\frac{2}{3}(1-x^2)^{\frac{3}{2}}+C$$

(C)
$$\frac{2}{3}(1-x^2)^{\frac{3}{2}} + C;$$
 (D) $-\frac{2}{3}(1-x^2)^{\frac{3}{2}} + C.$

二、填空题

1.
$$\int (2^x + \log_2 x) dx =$$
______.

$$2. \int \frac{\mathrm{d}x}{\mathrm{e}^x + \mathrm{e}^{-x}}$$

- $3. \int \tan^3 x \sec^4 x dx = \underline{\qquad}.$
- 4. 己知 $f'(e^x) = xe^{-x}$, 且 f(1) = 0. 则 f(x) =_______.
- 5. 已知 f(x) 有连续的导数,则 $\int [f(x) + xf'(x)]dx = _____.$

1.
$$\int \arcsin x dx$$
.

$$2. \int \frac{1}{1 + e^x} dx.$$

$$3. \int \frac{x + \sin x}{1 + \cos x} \mathrm{d}x.$$

$$4. \int \frac{x}{x^2 + 2x + 3} \mathrm{d}x.$$

$$5. \int \frac{x e^x}{\sqrt{e^x - 1}} dx.$$

6. 设
$$f(x) = \begin{cases} e^x, & x < 0, \\ \cos x, & x \ge 0, \end{cases}$$
 求 $\int f(x) dx$.

$$7. \int \frac{2}{x + \sqrt{1 - x^2}} \mathrm{d}x.$$

第七次作业

学院______ 班级______ 姓名______ 学号______

一、单项选择题

- 1. 函数 f(x) 在 [a,b] 上连续是 f(x) 在 [a,b] 上可积的().
 - (A) 必要条件; (B) 充分必要条件; (C) 充分条件; (D) 既非充分也非必要条件.

2.
$$\ \ \mathcal{U} \ M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x \cos^4 x}{1 + x^2} \mathrm{d}x, N = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin^3 x + \cos^4 x) \mathrm{d}x,$$

$$P = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin^3 x - \cos^4 x) dx, \, \, \text{M} \, \text{f} \, ().$$

- (A) N < P < M; (B) M < P < N; (C) N < M < P; (D) P < M < N.
- 3. 己知 F'(x) = f(x), 则 $\int_{a}^{x} f(t+a)dt = ($).
 - (A) F(x) F(a); (B) F(t) F(a); (C) F(x+a) F(2a); (D) F(t+a) F(2a).
- 4. 设 $f(x) = \int_0^{\sin x} \sin t^2 dt$, $g(x) = x^4 + x^5$, 则当 $x \to 0$ 时, g(x) 是 f(x) 的()
 - (A) 高阶无穷小; (B) 低阶无穷小; (C) 等价无穷小; (D) 同阶但非等价无穷小.
- 5. 设 f(x) 是以 T 为周期的可微函数,则下列函数中以 T 为周期的函数是()

(A)
$$\int_0^x f(t)dt$$
; (B) $\int_0^x f(t^2)dt$; (C) $\int_0^x f'(t^2)dt$; (D) $\int_0^x f(t)f'(t)dt$.

二、填空题

1.
$$\int_{-1}^{1} (x + \sqrt{1 - x^2}) = \underline{\qquad}.$$

$$2. \int_0^\pi \cos^8 \frac{x}{2} \mathrm{d}x = \underline{\qquad}.$$

3. 设
$$f(x)$$
 为 $(-\infty, +\infty)$ 上的连续函数,且 $f(x) = 3x^2 - x \int_0^1 f(x) dx$,则 $f(x) = 3x^2 - x \int_0^1 f(x) dx$,们 $f(x) = 3x^2 - x \int_0^1 f(x) dx$,们 $f(x) = 3x^2 - x \int_0^1 f(x) dx$,们 $f(x) = 3x^2 - x \int_0^1 f(x) dx$,

4.
$$\frac{d}{dx} \int_0^x \sin[(x-t)^2] dt =$$
______.

1.
$$\lim_{n \to \infty} n \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+n)^2} \right].$$

$$2. \lim_{x \to 0} \frac{\int_0^x \left(\frac{\sin t}{t} - 1\right) dt}{x^3}.$$

3.
$$\int_0^2 [x] \sqrt{2x - x^2} dx.([x] 表示不超过 x 的最大整数)$$

4. 己知
$$f(0) = 1, f(2) = 2, f'(2) = 5, 求 \int_0^1 x f''(2x) dx.$$

5. 设函数
$$f(x) = \begin{cases} 1 + x^2, & x < 0, \\ e^{-x}, & x \ge 0. \end{cases}$$
 求 $\int_1^3 f(x - 2) dx$.

四、证明题

已知 f'(x) 连续,且当 $x \ge 0$ 时, 恒有 f'(x) > 0,证明当 0 < a < b 时,

$$\int_{a}^{b} t f(t) dt > \frac{1}{2} \left[b \int_{0}^{b} f(t) dt - a \int_{0}^{a} f(t) dt \right].$$