ELEN90051 Advanced Communication Systems 2018 Semester 1 Tutorial 3

MODULATION

Department of Electrical and Electronic Engineering University of Melbourne $\frac{26/03/2018}{}$

Instructions:

Answer all tutorial questions. Do not use any solution material that you happen to have, thus simulating a genuine exam environment.

1

- (a) What is the dimension of the signal space spanned by $\{s_1(t), s_2(t), s_3(t)\}$? The state a set of arthur with the signal space spanned by $\{s_1(t), s_2(t), s_3(t)\}$?
- (b) Sketch a set of orthonormal basis functions for the signal space, clearly labelling the axes and points.
- (c) Use the basis functions to represent the signals as vectors \mathbf{s}_1 , \mathbf{s}_2 , and \mathbf{s}_3 .
- 2 Consider the signal waveforms defined by

$$s_{1}(t) = \begin{cases} 2 & 0 \le t \le 1 \\ -1 & 1 \le t \le 4 \\ 0 & \text{otherwise} \end{cases} \begin{bmatrix} 2 & 0 \le t \le 1 \\ -1 & 1 \le t \le 4 \\ 0 & \text{otherwise} \end{bmatrix} \begin{bmatrix} 2 & 0 \le t \le 1 \\ 1 & 1 \le t \le 3 \\ 0 & \text{otherwise} \end{bmatrix} \begin{bmatrix} -1 & 0 \le t \le 1 \\ 2 & 1 \le t \le 3 \\ -1 & 3 \le t \le 4 \\ 0 & \text{otherwise} \end{bmatrix} \begin{bmatrix} -1 & 0 \le t \le 1 \\ 2 & 1 \le t \le 3 \\ 0 & \text{otherwise} \end{bmatrix}$$

(a) Determine a set of orthonormal basis functions for $s_1(t)$, $s_2(t)$, $s_3(t)$ and the corresponding vector representations.

Page 1 of 2
$$C_1 = C_1 + C_2 = C_2 + C_3 = C_4 + C_4 = C_4 + C_5 = C_5$$

Q3= [-1,2,2,-1

- What is the minimum distance between any pair of vectors in the set $\{\mathbf{s}_k\}_{k}^3$
- Why is it important to normalize the basis functions

To make the energy to be 1.

A set of M-PAM signals have the form

- where $s_m = \sqrt{\mathcal{E}_g} A_m$, $m = 1, \dots, M$.

 $s_m(t) = \begin{cases} s_m \phi(t) & 0 < t \leq T \\ 0 & \text{otherwise} \end{cases}$ ere $s_m = \sqrt{\mathcal{E}_g} A_m, \ m = 1, \dots, M.$ (a) Show with the aid of a diagram that $A_m = (2m-1-M) \frac{d}{2\sqrt{\mathcal{E}_g}}, \ m = 1, \dots, M,$ when $\phi(t)$ has unit to

when $\phi(t)$ has unit norm and d is the distance between $d=2\sqrt{\mathcal{E}_g}$ and M=4. What Symmetrical signals?

4 Recall that in M-ary FSK, the signal waveforms can be written as follows for $m = 1, \ldots, M$:

$$s_m(t) = \begin{cases} \sqrt{\frac{2\mathcal{E}}{T}} \cos(2\pi f_c t + 2\pi m \Delta f t) & 0 < t \le T \\ 0 & \text{otherwise} \end{cases}$$

What is the minimum frequency separation for the waveforms to be orthogonal?

Consider the two 8-point QAM signal constellations shown below. The minimum distance between adjacent points is $2\sqrt{\mathcal{E}_q}$.

- What is the average transmitted power for each constellation assuming that the signal points are equally probable?
- Which constellation is more power efficient?

End of Questions