Generating and Developing Ideas

Engineering Design

Introduction

- Ideas
 - Incredibly important to business
 - Generate new or improved products
 - Cornerstone of innovation
- "The best way to have a good idea is to have lots of ideas"—Linus Pauling

Creative Thinking

- Creative thinking
 - Does not come easily to most people
- Education involves convergent or deductive thinking
 - Taught to look for "the right answer"
- No right or wrong answers, only ideas
- Vertical thinking
 - * Each idea rests on another idea
 - Logical form
 - Also called high probability thinking
 - Allows us to make assumptions without analysis
- Lateral thinking
 - Follows unconventional paths
 - Also called low probability or "out of the box" thinking
 - Allows new ideas

Brainstorming

- * Exchange of ideas in a group
 - Ideas used to stimulate more ideas
- * Attempt to get away from conventional solutions
- Friendly environment where new ideas are welcome
- Limited time frame
 - * As a group Define the problem & make sure everyone understands it
 - * Set relatively short time to generate ideas; be spontaneous, be outrageous, be imaginative
 - Listen carefully to others ideas and build on them
 - Go for quantity to ensure quality
 - * Evaluate after "ideation" session ends one person must be in charge of documenting the results

Sketching and Doodling

- Drawing is the language of all designers
- Sketching
 - Quick, freehand drawing
 - * Fast, efficient way to get ideas out of your head

* Forces you to develop idea in terms of relationships

between components

Figure 4-6: A sketch for a solar home, and its realization.

Figure 4-7: An example of an effective technical sketch.

Incubation Period

- The human mind is always working
 - * Even when not consciously thinking about a problem
- Provide time for ideas to incubate
- During sleep
 - * The mind sifts through information and categorizes it
- * Record ideas when they come to you

Development Work

- Ideas need development
 - When a number of ideas with good potential have been generated
 - When final solution path has been selected
- Goal of early development
 - Determine if the idea is a workable solution to the design problem

Choosing the Best Solution

- Optimal solution
 - Best solution that can be achieved
 - Considers all requirements and constraints
- Choosing may be difficult in a complex system
 - Involves analytical thinking
- ❖ Best or optimal solution
 - * Should be based on realistic, well-defined criteria
- * Review original specifications

Development of the Team

- Team structure
 - Based on the team goal
 - * Composed of people who are experts in their own fields
 - Group must have a shared vision
 - Team may have a coach
- Team success depends on synergy
 - Everyone working together as a team
- Effective leadership is important
- Self-directed team
 - Led by the team itself
- Common vision
 - Leads to motivation, better teamwork

Group Norms

- Norms describe well-established behavior
- Team must agree together to change unacceptable norms
- Good norms to consider
 - Scheduling meetings
 - * Recording written agendas and minutes
 - How to handle conflict
- Elements of a team charter
 - Identify team mission
 - Establish team values
 - Establish group norms
 - Identify strengths and weaknesses of team members

Communication

- Communication keeps all parts of the design process on track
- Poor communication Usually results in a crisis
- Two way process

❖ Positive, constructive feedback is necessary for personal and team growth

Reverse Engineering

Reverse Engineering

- Leads to A new understanding about products
- * Research
 - Important step in the design process
- * Reverse engineering
 - Process of analyzing a product's function and features
 - Begins with a product
 - Ends with understanding

The Big Picture

Identify the Purpose

- Determine what needs to be learned
- * Record purpose in engineer's notebook

Develop a Hypothesis

- Hypothesis
 - Statement that suggests a possible, unproven answer to a question
- Describe hypothesis of product function
- Write down questions and possible answers

Disassembly

- Disassembly process called teardown
- Carefully disassemble to uncover internal components and mechanisms
- Must be done in organized fashion
 - Keep careful notes
 - Organize parts with labels and plastic bags
 - * Take photos during the process

Analyze the Elements

- Attempt to answer the questions originally posed
- Four types of analysis
 - Functional
 - * Structural
 - Materials
 - Manufacturing

Functional Analysis

- Discover how the product works
- * Take measurements or perform tests on components
 - * Tools: micrometers and calipers

Structural Analysis

- Determine purpose of each part
- Determine how parts interact with each other
- Finite Element Analysis
 - Used to learn more about structural qualities

Materials Analysis

- Identify material by its common name
- Useful to know what the manufacturing process is
- Material properties may be determined by testing
- Molded plastic parts may be labeled with the material type or symbol

Manufacturing Analysis

- Types of manufacturing processes
 - Forming
 - * Separation
 - Joining

Product Redesign

- Communicate findings in a clear and concise manner
- Confirm purpose of the reverse engineering has been addressed
- Make recommendations for design change based on findings