More on Relations

Example 1

 $R_0 \subseteq \mathbb{R} \times \mathbb{R}$ with $(x, y) \in R_0$ iff $x \cdot y \ge 1$.

- $(4, 1.3) \in R_0$ because $4 \cdot 1.3 \ge 1$
- $(0.2, 0.4) \notin R_0$ because $0.2 \cdot 0.4 < 1$

Describing the Relation R_0

- Reflexive? NO! $(0,0) \not\in R_0$ because $0 \cdot 0 \not\ge 1$.
- Symmetric? **YES!** Suppose we have a pair $(a,b) \in R_0$. $a \cdot b \ge 1$, which means $b \cdot a \ge 1$. Therefore, $(b,a) \in R_0$ as well.
- Antisymmetric? **NO!** $(4, 1.3) \in R_0$ and $(1.3, 4) \in R_0$, but $4 \neq 1.3$
- Transitive? **NO!** $(0.5,4) \in R_0$. $(4,1) \in R_0$. If the relation is transitive, then $(0.5,1) \in R_0$. But $0.5 \cdot 1 < 1$, so it's not in the relation.

"Symmetric" is NOT the opposite of "antisymmetric."

Define W to be the set of nonempty subsets of \mathbb{N} . That is, $W = \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\}$. For example, $\{3,5,6\} \in W$.

Define $T \subseteq W \times W$ as:

$$(X, Y) \in T \text{ iff } X \cap Y \neq \emptyset$$

In other words, W contains (X, Y) only if X and Y have something in common.

- Reflexive?
 - Suppose $A \in W$. Then A is a nonempty subset of \mathbb{N} , which means $A \cap A \neq \emptyset$. Thus, $(A,A) \in T$.
 - YES
- Symmetric?
 - Suppose $(X,Y) \in T$. Then, $X \cap Y \neq \emptyset$. That means $Y \cap X \neq \emptyset$. Therefore, $(Y,X) \in T$.
 - YES

- Antisymmetric?
 - Suppose $(X,Y) \in T$ and $(Y,X) \in T$. Thus, $X \cap Y \neq \emptyset$ and $Y \cap X \neq \emptyset$. Hmm... it seems like we're stuck. Let's try hunting for counterexamples.
 - Counterexample: $(\{1,6\},\{1,3,5\}),\{1,3,5\}),(\{1,6\}$ are in T, but $\{1,6\} \neq \{1,3,5\}$

Inverse of a Relation

$$R^{-1} = \{ (y, x) \mid (x, y) \in R \}$$

New Material

Claim: Let R,S be relations on set U. If R and S are transitive, then $R \cap S^{-1}$ is transitive.

Proof: (direct)

Suppose R and S are transitive. [NTS: $R \cap S^{-1}$ is transitive, which means that for all choices of $x,y,z \in U$, if $(x,y) \in R \cap S^{-1}$ and $(y,z) \in R \cap S^{-1}$, then $(x,z) \in R \cap S^{-1}$

Consider arbitrary $a,b,c\in U$ such that $(a,b)\in R\cap S^{-1}$ and $(b,c)\in R\cap S^{-1}$.

By definition of \cap ,

- $(a,b) \in R$
- $(a, b) \in S^{-1}$
- $(b,c) \in R$
- $(b, c) \in S^{-1}$.

Because R is transitive, we know $(a, c) \in R$.

By definition of S^{-1} , $(ba) \in S$ and $(c,b) \in S$. Because S is transitive, $(c,a) \in S$. Therefore, $(a,c) \in S^{-1}$. So $(a,c) \in R$ and $(a,c) \in S^{-1}$. Therefore, $(a,c) \in R \cap S^{-1}$.

Because a,b,c were arbitrary, $R \cap S^{-1}$ is transitive.

An **equivalence relation** is a relation that is reflexive, symmetric, and transitive.

Example: = as defined over \mathbb{R} .

- $\forall x \in \mathbb{R}, \ x = x$
- $\forall x, y \in \mathbb{R}, (x = y \to y = x)$
- $\forall x, y, z \in \mathbb{R}$, $((x = y \land y = z) \rightarrow (x = z))$

Let R be an equivalence relation on set A, and let $w \in A$. The **equivalence class** of w (under R) is defined as:

$$[w]_R = \{b \in A \mid (w, b) \in R\}$$

(i.e., set of all elements of A that R relates to b)

$$R_{M} = \{(A, A)..(E, E), (A, E), (E, A), (B, D), (D, B)\}$$

$$[A]_{R_{M}} = \{A, E\}$$

$$[B]_{R_{M}} = \{B, D\}$$

$$[C]_{R_{M}} = \{C\}$$