	doc_1		doc_2		decision	id
cases			authors	Khemraj Shukla Patricio Clark Di Leoni James Blackshire Daniel Sparkman George Em Karniadakis		
		• K. Shukla	title	Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks		
		• P. C. D. Leoni	publication_date	2020-05-07 16:32:11+00:00		
	authors	J. Blackshire	source	SupportedSources.ARXIV		
		• D. Sparkman	journal	None		
		G. Karniadakis	volume		=	
		Physics-Informed Neural Network for Ultrasound Nondestructive Quantification of Surface Breaking	doi			
	title	Cracks		• http://arxiv.org/pdf/2005.03596v1		
	publication date 2020-05-07 00:00:00		urls	 http://arxiv.org/abs/2005.03596v1 http://arxiv.org/pdf/2005.03596v1 		
	source	SupportedSources.SEMANTIC_SCHOLAR		• http://arxiv.org/pdi/2005.05590V1	DUPLICATES	s 273
	journal	Journal of Nondestructive Evaluation	id	id-4028465553191741778		
	volume	39	abstract a	We introduce an optimized physics-informed neural network (PINN) trained to solve the problem of identifying		
	doi	10.1007/s10921-020-00705-1		and characterizing a surface breaking crack in a metal plate. PINNs are neural networks that can combine data and		
	urls	https://www.semanticscholar.org/paper/678f3815eec41961dc174abfc00b0557ed348f90		physics in the learning process by adding the residuals of a system of Partial Differential Equations to the loss function. Our PINN is supervised with realistic ultrasonic surface acoustic wave data acquired at a frequency of 5 MHz. The ultrasonic surface wave data is represented as a surface deformation on the top surface of a metal plate,		
	id	id5088211491032584001		measured by using the method of laser vibrometry. The PINN is physically informed by the acoustic wave		
	abstract	None		equation and its convergence is sped up using adaptive activation functions. The adaptive activation function uses a scalable hyperparameter in the activation function, which is optimized to achieve best performance of the		
	versions			network as it changes dynamically the topology of the loss function involved in the optimization process. The		
				usage of adaptive activation function significantly improves the convergence, notably observed in the current study. We use PINNs to estimate the speed of sound of the metal plate, which we do with an error of 1\%, and then, by allowing the speed of sound to be space dependent, we identify and characterize the crack as the positions where the speed of sound has decreased. Our study also shows the effect of sub-sampling of the data on the sensitivity of sound speed estimates. More broadly, the resulting model shows a promising deep neural network model for ill-posed inverse problems.		
			versions			