Meerkeuzevragen

1. С 7. Α 10. D D 4. 2. С 5. В 8. В 3. 6. C 9. В D

VRAAG 11

- a) Bij 'feedback inhibitie' zorgt het eindproduct van een (metabole) route [1p] ervoor dat het enzym aan het begin van de route/ de 'committed step' geremd wordt [1p].
- b) Metaalionen (bijv. Mg²⁺, Fe²⁺, Zn²⁺) [1p, voorbeeld niet nodig] Coenzymen/ organische moleculen afgeleid van vitamines (bijv. NAD(P)H, FADH₂, TPP, FMN, Coenzym A) [1p, voorbeeld niet nodig]
- c) De peptidebinding heeft door resonantiestructuren het karakter van een dubbele binding en is dus niet vrij roteerbaar [2p]
- d) Δ G0' is bepaald onder standaardcondities. Om te bepalen of een reactie spontaan kan verlopen moet je de Δ G berekenen. De Δ G is (i.t.t. Δ G0') afhankelijk van de concentraties van reactanten producten in de cel en kan daarom negatief zijn, terwijl de Δ G0' positief is **[2p]**
- e) Uit welke drie moleculen wordt een glycolipide gevormd? [2p]
 Sphingosine (backbone), suikermolecuul (of meerdere), vetzuur [0,67p per juist antwoord, max 3p]
 (glucose/ galactose i.p.v. suiker ook goed: zie p196 boek)

VRAAG 15.

<u>Primaire structuur</u>: peptidebindingen tussen de aminozuren <u>Secundaire structuur</u>: H-bruggen tussen backbone carbonyl en aminogroepen <u>Tertiaire structuur</u>: interacties tussen zijketens: waterstofbruggen, van der Waals, ionisch, disulfidebruggen.

Quaternaire structuur: zwakke/ niet-covalente interacties tussen subunits

Bij elk structuurniveau: 0,5 voor de binding, 0,5 voor de groep (0,25 voor type groep, 0,25 voor locatie groep). Bij tertaire structuur hoeven niet alle bindingen genoemd te worden.

VRAAG 14

a) Tekening: zie boek [1p]. Aangeven:

Figure 6.3

Blochemistry: A Short Course, Third Edition
© 2015 Macmillan Education

- Transitiestaat [0,5p]
- De energieniveaus van substraat en product [0,25p + 0,25p]
- De activeringsenergie [1p]
- Het verschil in vrije energie van de reactie (ΔG) [1p]
- b) Tekening: zie boek, tekening moet in (of duidelijk te vergelijken zijn met) tekening van vraag a) [1p]. Aangeven: ΔG [0,5p], activeringsenergie [0,5p]
- c) De activeringsenergie van de reactie met enzym is lager en de snelheid van een reactie is afhankelijk van deze activeringsenergie. [3p]

VRAAG 13.

a) $v_{max} = 1/snijpunt y-as$

 $K_M = -1/snijpunt x-as$

	v _{max} (Units/sec)	Κ _Μ (μ Μ)
zonder	12,4	3,7
met	12,4	10,3

- $-\;$ 2p voor juiste $K_M,\,2p$ voor juiste V_{max}
- $-\,$ Geen eenheden: 0,25p aftrek voor $K_M\,en$ 0,25p aftrek voor V_{max}
- b) De K_M gaat omhoog en de v_{max} blijft gelijk [1p]. Dit betekent dat het om een competitieve inhibitor gaat [1p].

VRAAG 12

$$\begin{array}{cccc} & O & O \\ \parallel & \parallel \\ ^{\dagger}NH_3\text{-}CH\text{-}C\text{-}NH\text{-}CH\text{-}C\text{-}NH\text{-}CH\text{-}COO^-} \\ \text{a)} & R_1 & R_2 & R_3 \end{array}$$

R₁: Val (V), Gly (G), Ala (A), Val (V) Leu (L), Ile (I), Met (M), Pro (P), Phe (F), Trp (W), **R**₂: Asp (D), Glu (E), **R**₃: Lys (K), Arg (R), His (H)

Puntenverdeling:

Basis tekening tripeptide (zijketens niet meerekend): 1,5p

■ Namen aminozuren: **0,5p** per juiste naam

Tekening zijketens: 0,5p per zijketen

b) Code aminozuren: **0,5p** per code

pH < pKa vooral geprotoneerde vorm (HA)pH > pKa vooral gedeprotoneerde vorm (A-)

	Term. amino	Zure R	Basische R	Term. carboxyl
	(pKa₁~9)	(pKa ₂ ~4)	(pKa₃~11)	(pKa ₄ ~2)
рН3	NH ₃ + (+)	COOH (0)	NH ₃ + (+)	COO- (-)
рН7	NH ₃ ⁺ (+)	COO- (-)	NH ₃ ⁺ (+)	COO- (-)
pH12	NH ₂ (0)	COO- (-)	NH ₂ (0)	COO- (-)

- d) pH waar het molecuul <u>netto</u> geen lading heeft. [1p]
- e) (2.34+6.69)/2=6.0 [1p]

VRAAG 16

- b) Steroiden [1p]
- c) Cholesterol <u>reguleert/buffert</u> [1,5p] de <u>vloeibaarheid</u> [1,5p] van het membraan.