

2017 中国互联网安全大会 China Internet Security Conference

用户视角下的威胁情报质量评估方法

姜政伟

李强

中国科学院信息工程研究所,高级工程师

中国科学院信息工程研究所,博士研究生

目录

用户视角下的威胁威胁情报质量评估方法

- 研究现状
- 评估方法
- 评估实例
- 项目应用
- 参与方式

质量评估需求

指导供应商规范化威胁情报质量体系

国内外威胁情报供应商众多

- Gartner "Market Guide for Security Threat Intelligence Services" 列举49家
- Forrester "Vendor Landscape: External Threat Intelligence" 列 举30家

帮助用户评选合适的威胁情报服务

指标的选取与量化困难

威胁情报的业务侧重点各异

威胁情报体现的服务形式多样

研究机构/人员	主要思路	特点
CMU/ Metcalf	25个公共源上的黑名单,统计独有指示器总数及比例、交叉覆盖度	仅针对黑名单
RUB/Kührer	15个公共源及4个反病毒的黑名单,评估、识别和判断黑名单的有效性	
Niddel/ Pinto	评估 feeds的新鲜度、覆盖度、流行度、过期性、唯一性等	侧重数据层面
Polska/Pawlinsk	从信息分级、情报类型展开,评估相关性、准确性、完整性、实效性 和可利用性,从检测方法、优势和容量评估诈源范围	缺乏数量、成本等因素
Dragos/Sergio	相关性、及时性、准确性、完整性	笼统概括
CMU/Troy	搜集及时性、有效性、可实施性的人员反馈来评分	主观性很强
UB/Omar	正确性、相关性、有效性、唯一性	提出相应的 量化方法
Gartner	可利用程度、数据深度、广度、实效性;分析师能力	主要针对厂商的评选
ASU/Ajay	通过知识图谱计算可信性和相关性得到情报优先级排序	形成信任分值计量系统

维度未 成体系 人工处 理为主

区分度 不明显

威胁情报质量评估方法

评估原则

科学性与实用性

- 遵循数学原理
- 可实际操作

系统性和层次性

- 体系化的框架
- 按层次分解

全面性和代表性

- 相对全面
- 有所选取

动态性和静态性

- 可剪裁
- 有核心指标

组合测评/设计中考虑的维度

测评项目/内容

数据

数据量

数据来源

信誉

数据

性质

技术服务

- •服务形式/ 响应 速度/ 服务时间
- •服务人员规模/ 服务覆盖地域

技术培训

- 培训时长
- 培训形式

测试属性和方法

量化方法:归一化

源数据 提取

数据映射 转换

一致化

规范化

量化方法:权重及得分计算

- AHP层次分析法预处理
- 德尔菲法多方收集建议
- 序关系分析法调整

专家群决策赋权

合成权重

- 规范化决策矩阵 $R = (r_{ij})_{n \times m}$
- 离差最大化
- 权重集结,排序择优

- 打分与权重乘积累加
- 单项: $N_k = \sum v_i * I_i$
- 综合: $Score = \sum w_k * N_k$

计算总分

Feeds数据测试

测试内容

• Data Feeds的若干属性,包括新鲜度、覆盖度、流行度等

测试数据

- tiq-test测试数据集
- 20多个情报源收集的情报数据,包括 alienvault、feodo、malcode、blocklistde等

Feeds数据新鲜度测试

新鲜度(NOVELTY): FEEDS的更新频率

Feeds数据覆盖度测试

覆盖度(OVERLAP):情报源相互之间情况对比

Feeds数据流行度测试

流行度(POPULATION):数据具体内容情况,如区域

测试内容

- 关联搜索是网络攻击溯源中常用的方法
- 模拟分析人员关联搜索操作,测试基础支撑数据的情况, 包括覆盖度、命中率等

测试数据

- 从开源、自产、共享情报中构建测试数据集
- 调用威胁情报供应商的情报API
- 测试国内外多家知名威胁情报供应商
- 基础支撑数据服务包括PassiveDNS、Whois等

按类别标记

测试内容

- 综合评估供应商的威胁情报服务质量
- 基于组合评估维度和多级指标量化评估体系

测试数据

- 数据分析测试 + 人工搜集
- 测试国内外三家知名威胁情报供应商

综合测试

中测安华

参与测评

- 提供接口API或其它形式服务
- 提供相应说明文档

参与深化设计

共同讨论、修订、完善威胁 情报质量评估体系

谢谢

