ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – СОФИЯ					
КАТЕДРА ТЕОРЕТИЧНА ЕЛЕКТРОТЕХНИКА					
Студент		Фак. №			
Факултет	Група	Дата			
Преподавател		Подпис			

Упражнение №1

ИЗСЛЕДВАНЕ НА ЛИНЕЙНА ЕЛЕКТРИЧЕСКА ВЕРИГА ПРИ СИНУСОИДАЛЕН РЕЖИМ

1. Теоретични положения

2. Опитна постановка

2.1. Определяне на комплексните съпротивления на двуполюсниците

2.2. Определяне на комплексните съпротивления на двуполюсниците чрез цифров ватметър

2.3. Изследване на електрическия режим във веригата

2.4. Изследване на електрическия режим във веригата чрез цифров ватметър

2.5. Моделиране на теоремата на Тевенен относно тока I_3

3. Резултати от измерванията и изчисленията

3.1. Определяне на комплексните съпротивления на двуполюсниците

Изследвани	U	I	P	P'	z	φ	$Z = ze^{j\varphi}$	$Z = R \pm jX$
двуполюсници	V	A	W	$\uparrow \downarrow$	Ω	deg	Ω	Ω
$Z_{1}\left(RL\right)$								
$Z_{2}\left(RC\right)$								
$Z_{3}\left(C ight)$								
$Z_{e}\left(Z_{1}\ Z_{2}\right)$								

3.2. Определяне на комплексните съпротивления на двуполюсниците чрез цифров ватметър

Изследвани	U	Ι	P	Q	S	$\cos \varphi$	$\cos \varphi'$	Z	$Z = ze^{j\varphi}$	$Z = R \pm jX$
двуполюсници	V	A	W	VAr	VA		$\uparrow \downarrow$	Ω	Ω	arOmega
$Z_1(RL)$										
$Z_2(RC)$										
$Z_3(C)$										
$Z_{e}\left(Z_{1}\ Z_{2}\right)$										

3.3. Изследване на електрическия режим във веригата

U=1	00 V	Измерени	Изчислени
I_1	mA		
I_2	mA		
I_3	I_3 mA		
$U_{_1}$	V		
\overline{U}_2	V		
P	W		

3.4.	Определяне на параметрите на двуполюсника относно клона	Z_3	при	теоремі	ите на
	Тевенен и Нортън				

$$U_0 = V$$
, $I_k = A$, $Z_e = \Omega$

3.5. Съпоставяне на резултатите относно тока $I_3 [\mathit{mA}]$

No	Токът I_3 , измерен или изчислен по различен начин	Ефективна стойност	Комплексна стойност
1	Измерен, съгласно т. 3.3		
2	Изчислен, съгласно т. 3.3		
3	Измерен, съгласно теоремата на Тевенен, т. 2.5		
4	Изчислен по теоремата на Тевенен с измереното \boldsymbol{U}_0		
5	Изчислен по теоремата на Тевенен с изчисленото $\overset{ullet}{U}_0$		
6	Изчислен по теоремата на Нортън с измерения I_k		
7	Изчислен по теоремата на Нортън с изчисления I_k		

3.6. Определяне на параметрите на двуполюсниците

	Z_1 (RL)	Z_{2} ($Z_3(C)$	
	$R[\Omega]$	L[H]	$R[\Omega]$	$C[\mu F]$	$C[\mu F]$
Измерени					
с <i>RLC</i> -метър					
Изчислени					
от т. 3.1					
Изчислени					
от т. 3.2					

4. Изчисления