

A Comparison of Data-Driven Models for Predicting Stream Water Temperature

Helen Weierbach
Tackling Climate Change with
Machine Learning Workshop
NeurIPS 2020

Research Objectives

- To test the viability of low-complexity ML models and understand variables for predicting stream temperature at different spatial and temporal scales.
- To predict impacts of extreme hydrological events (flood/drought) on stream temperatures

Relevance and Impact

- Climate Change and Stream Water Temperature (WT)
 - WT drives stream physical and biogeochemical processes, important to aquatic life
 - Impacted by climate change: increased air temperature, disturbances, changing hydrological cycle
 - Water managers need local to regional WT predictions
- Process models and Machine Learning (ML) for WT
 - SNTEMP Process Model, ML Models (LSTMs, Source USS)
 MLPs outlined in Zhu et al. 2020)
 - Process-Guided Deep Learning hybrid models (USGS)
 - Test baseline approaches that can predict
 WT at different scales with broadly available measurements

River & Stream Temperatures
Change in average temperature since 1990

CLIMATE CO CENTRAL

Methods- Monthly Predictions

- Limited/ sparse available data with extremes
 - Input features: Meteorological data from CAMELS Daymet
 - WT: data from USGS NWIS using BASIN-3D integration tool
 (Varadharajan et al. 2019)
- ML Regression Models:
 - MLR, RF, SVR (persistence, historical)
 - 70/30 train-test split, random search cross validation hyperparameter optimization

*only 3 CAMELS stations have near complete 30 year WT records = station selection

FIR CREEK NEAR BRIGHTWOOD, OR

Preliminary Results

- Simple models predict WT well using only air temperature and solar radiation
 - SVR, RF out-perform baseline historical and persistence models (RMSE 0.63-0.82 °C)
- Model error is high for extremes in WT

Future Work

- Expand spatial and temporal scales
 - More locations is US, test limits of meteorological data
 - Train models at daily frequency
 - Incorporate lags, exploratory data analysis, new input variables, increase model complexity
 - Sensitivity analysis, UQ
 - How do predictions change with different meteorological data sources, input features etc.

Acknowledgements

Contact: hweierbach@lbl.gov

Co-authors:

*CCAI mentor

Charu Varadharajan

Aranildo R. Lima*

Boris Faybishenko

Danielle Christianson

Val Hendrix

Funding

