LOGIQUE

Corrigé de l'examen de Décembre 2007- G. Sénizergues

```
Exercice 3(sur 5 points)
Q1-
1-0=0 \longrightarrow 0=0 (ax)
2- REF | 0 = 0 (\forall_q)
3- REF, \neg (0 = 0) \vdash (\neg_q)
4- REF, \neg (0 = 0) \vdash 0 = S(0)(\text{aff}_d)
5- REF \vdash \neg (0 = 0) \rightarrow 0 = S(0)(\rightarrow_d)
6- REF \vdash \exists y (\neg (0 = 0) \to 0 = S(y))(\exists_d)
7- EG \vdash \exists y (\neg (0 = 0) \to 0 = S(y)) (\text{aff}_{q}^{*})
1'- S(x) = S(x) - S(x) = S(x) (ax)
2'- REF \vdash S(x) = S(x) \ (\forall_a)
3'- REF, \neg(x = 0) \vdash S(x) = S(x)(\text{aff}_{a})
4'- REF \vdash \neg(x=0) \rightarrow S(x) = S(x)(\rightarrow_d)
5'- REF \vdash \exists y(\neg(x=0) \rightarrow S(x) = S(y))(\exists_d)
6'- EG \vdash \exists y(\neg(x=0) \rightarrow S(x) = S(y))(\text{aff}_{a}^{*})
Q3-
Posons H(x) := \exists y (\neg(x = 0) \rightarrow x = S(y)).
La preuve donnée en Q1 se termine par EG \vdash H(0).
Réécrivons la preuve de Q2, en changeant la première occurrence de x en S(x): on obtient la
preuve suivante de EG \vdash H(S(x)):
8- S(x) = S(x) \vdash S(x) = S(x) (ax)
9- REF \vdash S(x) = S(x) \ (\forall_q)
10- REF, \neg (S(x) = 0) \vdash S(x) = S(x)(\text{aff }_q)
11- REF \vdash \neg (S(x) = 0) \rightarrow S(x) = S(x)(\rightarrow_d)
12- REF \vdash \exists y(\neg(S(x) = 0) \rightarrow S(x) = S(y))(\exists_d)
13- EG \vdash \exists y(\neg(S(x)=0) \rightarrow S(x)=S(y))(\text{aff}_{q}^{*})
On fait suivre 1-13 d'une preuve par récurrence de \forall x H(x):
14- EG, H(x) \vdash H(S(x))(13, \text{aff}_{q}^{*})
15- EG \vdash H(x) \to H(S(x))(\to_d)
16- EG \vdash \neg \forall x H(x) \rightarrow H(S(x))(\forall_d)
17- EG \vdash H(0) \land (\forall x H(x) \rightarrow H(S(x)))(6,16 \land_d)
18- EG, H(x) \vdash H(x)(ax')
19- EG, \forall x H(x) \vdash H(x)(\forall_q)
20- EG, REC<sub>H</sub> \vdash H(x)(17,19 \rightarrow_q)
```

Comme $EG \cup \{REC_H\}$ est une partie finie de PA' la suite des lignes 1-20 est une preuve dans LJ de PA' $\vdash H(x)$ i.e.

$$PA' \vdash \exists y (\neg(x=0) \rightarrow x = S(y)).$$

Q4-

Choisissons $t_1 := 0$. La suite des lignes 1-5 de Q1 est une preuve dans LJ de

$$EG \vdash (\neg (0 = 0) \to 0 = S(t_1))$$

Choisissons $t_2 := x$. La suite des lignes 1'-4' de Q2 est une preuve dans LJ de

$$EG \vdash (\neg(x=0) \rightarrow S(x) = S(t_2))$$

Tout terme t_3 sur la signature $\{0, S, +, \times\}$ et l'ensemble de variables $\{x\}$ est un polynôme, à coefficients entiers naturels, sur l'indéterminée x. En particulier, pour tout entier $n \in \mathbb{N}$, il existe un entier m, tel que

$$\mathbb{N} \models (t_3(\underline{n}) = \underline{n} + \underline{m})$$

(où, pour tout $p \in \mathbb{N}$, \underline{p} est le terme $S(S \dots (0) \dots)$, qui contient p occurrences du symbole S), ce qui est incompatible avec

$$\mathbb{N} \models \underline{n} = S(t_3(\underline{n})).$$

Il n'existe donc aucun terme t_3 tel que

$$PA' \vdash (\neg(x=0) \rightarrow x = S(t_3))$$

Explication:

- la théorie EG est "de Harrop" ; c'est pour quoi, dès que EG $\models_{\text{LJ}} \exists y \Phi(y)$ il existe un terme t tel que EG $\models_{\text{LJ}} \Phi(t)$
- par contre PA' n'est pas "de Harrop"; en particulier la formule REC_H utilisée en Q3 n'est pas une formule de Harrop.

Exercice 4(sur 5 points)

Q1-

1- $A, B \vdash A, B(ax')$

$$2-A \longmapsto A, B(\rightarrow_d)$$

$$3- \vdash (B \rightarrow A), (A \rightarrow B)(\rightarrow_d)$$

$$4- \vdash (A \to B) \lor (B \to A)(\lor_d)$$

Q2- Considérons la structure de Kripke $\mathcal{K} := (K, \leq, \mid \vdash -)$ où

$$K := \{0, 1, 2\}, \le := \{(0, 1), (0, 2)\} \text{ et } \mid \vdash - := \{(1, P), (2, Q)\}.$$

Par définition : $1 \mid -P \text{ et } 1 \not \mid -Q$

Donc 1 $\not\vdash -P \rightarrow Q$

Et comme $0 \le 1$ on en déduit que :

$$0 \not\vdash P \to Q \tag{1}$$

En échangeant 1 avec 2 et P avec Q dans l'argument précédent, on obtient :

$$0 \not\vdash -Q \to P \tag{2}$$

Et de (1)(2) on déduit que :

$$0 \not\vdash - (P \rightarrow Q) \lor (Q \rightarrow P)$$

La structure \mathcal{K} est un contre-modèle de $(P \to Q) \lor (Q \to P)$. Le séquent $\vdash \vdash (P \to Q) \lor (Q \to P)$ n'est donc pas prouvable dans LJ .

Q3 Soit $\mathcal{K} = (K, \leq, | \vdash -)$ une structure de Kripke *linéaire*. Soient A, B des formules. Considérons l'ensemble de noeuds

Cas $1: E = \emptyset$.

Dans ce cas, pour tout $k \in K$, $k \models B \rightarrow A$.

Cas $2: E \neq \emptyset$. (notons e l'un des éléments de E). Soit $k \in K$. Comme l'ordre \leq est total, $k \leq e$ ou $e \leq k$. Si $k \leq e: k \not\models -A$, car la relation $\mid \models -$ est "croissante" (i.e. $(k \mid \vdash -F)$ et $k \leq k'$) entraı̂ne que $k' \mid \vdash -F$).

Si $e \leq k : k \mid \vdash -B$.

Finalement, pour tout $k \in K$, $k \not\vdash -A$ ou $k \vdash -B$.

Ceci entraı̂ne que pour tout $k \in K$ et tout $k' \geq k$, (si $k' \mid \vdash -A$ alors $k' \mid \vdash -B$),

i.e. pour tout $k \in K$, $k \mid \vdash -A \rightarrow B$.

Comme l'un des cas 1,2 se produit, on obtient

$$\mathcal{K} \mid \vdash - (A \to B) \lor (B \to A).$$

Q4- On note LT le système LJ auquel on ajoute le schéma d'axiome S:

$$\vdash (A \to B) \lor (B \to A).$$

La formule $(P \to Q) \lor (Q \to P)$ est une instance de S, donc elle appartient à $\mathcal{F}(LT)$, mais d'après Q2, elle n'appartient pas à $\mathcal{F}(LJ)$.

La formule $P \vee \neg P$ a un contre-modèle linéaire (K :={0,1} avec $0 \le 1$ et $\mid \vdash - := \{(1, P)\}$). Donc, d'après Q3, cette formule n'appartient pas à $\mathcal{F}(LT)$. Par contre $P \vee \neg P$ appartient à $\mathcal{F}(LK)$.