Temperature-centric Reliability Analysis and Optimization Under Process Variation

Ivan Ukhov, Petru Eles, and Zebo Peng

Embedded Systems Laboratory Linköping University, Sweden

Topics

- * Uncertainty quantification
- * Temperature analysis
- * Reliability analysis
- * Design-space exploration

Process Variation

* Transient

Power

Temperature

* Static steady-state

Power

Temperature

* Dynamic steady-state

Temperature Analysis Under

- * Transient
- * Static steady-state
- * Dynamic steady-state

Prior Work

- * Transient [1]
- * Static steady-state [2, ...]
- * Dynamic steady-state

```
[1] Ukhov et al., TCAD, 2014. [2] ...
```

Failure Mechanisms

```
*
```

* Thermal cycling

* ...

Reliability Analysis

Probability density

Reliability Analysis Under

```
*
```

- * Thermal cycling
- * ...

Prior Work

Goals

- * Dynamic steady-state temperature
- * Stochastic-temperature reliability
- * Design-space exploration

^{*} Designed by Sergiu Rafiliu.

Uncertain Uncertain Certain

Polynomial Chaos

Polynomial Chaos

Polynomial Chaos

Quadratures

* Full-tensor-product

Quadratures

* Isotropic sparse

Quadratures

* Anisotropic sparse

•• • • • • •

•

•

Reliability Analysis

Application

Platform

Core

Uncertain parameters:

- * Effective channel length
- * Gate-oxide thickness

Failure mechanism:

* Thermal cycling

Optimization

Minimize:

* Energy

Such that:

- * Deadline
- * Temperature
- * Lifetime

Optimization

Minimize:

* Pr(Energy)

Such that:

- * Deadline
- * Pr(Temperature)
- * Pr(Lifetime)

Setup

- * 2, 4, 8, 16, and 32 cores
- * 40, 80, 160, 320, and 640 tasks
- * 10 test cases per pair cores/tasks

Calibration

Nodes	Vars	Cores
57	4	2
69	6	4
81	8	8
93	10	16
101	10	32

Optimization

Cores	P, min	D, min	F, %
2	1	1	40
4	5	2	60
8	17	4	70
16	56	8	100
32	300	9	100

Thank you!
Questions?