

Machine Learning

Linear regression with one variable

Model representation

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Classification: Discrete-valued output

Training set of housing prices (Portland, OR)

Size in feet $^{2}(x)$

1534

852

m= 47

How do we represent h?

$$h_{e}(x) = \Theta_{o} + \Theta_{i} \times Shorthand: h(x)$$

Linear regression with one variable. (x)
Univariate linear regression.

Lone variable

Machine Learning

Linear regression with one variable

Cost function

Training Set

	Size in feet ² (x)	Price (\$) in 1000's (y)	
•	2104	460 7	
	1416	232	· M= 47
	1534	315	
	852	178	
	•••)

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters

How to choose θ_i 's ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Squared error faction

Andrew Ng

Machine Learning

Linear regression with one variable

Cost function intuition I

Simplified

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal: minimize $J(\theta_0, \theta_1)$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\underset{\theta_1}{\text{minimize }} J(\theta_1) \qquad \bigcirc_{\prime} \times^{\prime \prime}$$

(for fixed
$$\theta_1$$
, this is a function of x)

$$\frac{h_{\theta}(x)}{y}$$

$$\frac{h_{\theta}$$

 $J(\theta_1)$

Andrew Ng

 $h_{\theta}(x)$

Machine Learning

Linear regression with one variable

Cost function intuition II

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

$h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

(function of the parameters $heta_0, heta_1$)

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$

(function of the parameters $heta_0, heta_1$)

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$

(function of the parameters $heta_0, heta_1$)

Machine Learning

Linear regression with one variable

Gradient descent

Have some function
$$J(\theta_0,\theta_1)$$
 $\mathcal{J}(\Theta_0,\Theta_1,\Theta_1,\dots,\Theta_n)$ Want $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$ $\max_{\Theta_0,\dots,\Theta_n} \mathcal{J}(\Theta_0,\dots,\Theta_n)$

Outline:

- Start with some θ_0, θ_1 (Say $\Theta_0 = 0$, $\Theta_1 = 0$)
- Keep changing $\underline{\theta_0},\underline{\theta_1}$ to reduce $\underline{J(\theta_0,\theta_1)}$ until we hopefully end up at a minimum

Gradient descent algorithm

 $-\underline{\alpha}_{\partial\theta_{i}}^{\underline{\upsilon}}J(\theta_{0},\theta_{1})$

repeat until convergence {

learning rate

ai= a+1

Assignment

$$0$$
 and i

(for j = 0 and j = 1)

Incorrect:

- $\text{temp0} := \theta_0 \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$
- \rightarrow temp1 := $\theta_1 \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$
- $\rightarrow \theta_0 := \text{temp} 0$

$$\theta_0 := \text{tempo}$$
 $\theta_1 := \text{tempo}$

 $\Rightarrow \text{ temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$

$$:=\theta_0$$

$$\frac{1}{2}$$

$$\rightarrow \theta_0 := \text{temp0}$$

$$:= \theta_1$$

 $\rightarrow \text{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

$$t \sim v_1$$

 $\rightarrow \overline{\theta_1 := \text{temp1}}$

Truth assetion

Machine Learning

Linear regression with one variable

Gradient descent intuition

Gradient descent algorithm

repeat until convergence {
$$\Rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (simultaneously update $j = 0$ and $j = 1$) } learning derivative rate
$$(simultaneously update = 0)$$
 (simultaneously update $j = 0$ and $j = 1$)
$$(simultaneously update = 0)$$
 (simultaneously update $j = 0$ and $j = 1$)

Andrew Ng

$$\theta_1 := \theta_1 - \bigcirc \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

time.

Machine Learning

Linear regression with one variable

Gradient descent for linear regression

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for
$$j = 1$$
 and $j = 0$)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{2}{\partial \phi_{j}} \int_{\mathbb{R}^{2}} \frac{\int_{\mathbb{R}^{2}} \left(h_{0}(\mathbf{x}^{(i)}) - y^{(i)} \right)^{2}}{\int_{\mathbb{R}^{2}} \frac{\partial}{\partial \phi_{j}} \int_{\mathbb{R}^{2}} \frac{\partial}{\partial \phi_{j}} \left(h_{0}(\mathbf{x}^{(i)}) - y^{(i)} \right)^{2}}{\int_{\mathbb{R}^{2}} \frac{\partial}{\partial \phi_{j}} \int_{\mathbb{R}^{2}} \frac{\partial}{\partial \phi_{j}} \left(h_{0}(\mathbf{x}^{(i)}) - y^{(i)} \right)^{2}}{\int_{\mathbb{R}^{2}} \frac{\partial}{\partial \phi_{j}} \int_{\mathbb{R}^{2}} \frac{\partial}{\partial \phi_{j}} \left(h_{0}(\mathbf{x}^{(i)}) - y^{(i)} \right)^{2}}{\int_{\mathbb{R}^{2}} \frac{\partial}{\partial \phi_{j}} \int_{\mathbb{R}^{2}} \frac{\partial}{\partial \phi_{j}} \left(h_{0}(\mathbf{x}^{(i)}) - y^{(i)} \right)^{2}}{\int_{\mathbb{R}^{2}} \frac{\partial}{\partial \phi_{j}} \int_{\mathbb{R}^{2}} \frac{\partial}{\partial \phi_{j}} \left(h_{0}(\mathbf{x}^{(i)}) - y^{(i)} \right)^{2}}{\int_{\mathbb{R}^{2}} \frac{\partial}{\partial \phi_{j}} \int_{\mathbb{R}^{2}} \frac{\partial}{\partial \phi_{j}} \left(h_{0}(\mathbf{x}^{(i)}) - y^{(i)} \right)^{2}}{\int_{\mathbb{R}^{2}} \frac{\partial}{\partial \phi_{j}} \int_{\mathbb{R}^{2}} \frac{\partial}{\partial \phi_{j}} \left(h_{0}(\mathbf{x}^{(i)}) - y^{(i)} \right)^{2}}{\int_{\mathbb{R}^{2}} \frac{\partial}{\partial \phi_{j}}$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta_0}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)} \right)$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta_0}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)} \right). \quad \mathbf{x}^{(i)}$$

Gradient descent algorithm

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \left[\frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \right]$$

$$\theta_1 := \theta_1 - \alpha \left[\frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)} \right]$$

update θ_0 and θ_1 simultaneously

Andrew Ng

 $J(\theta_0,\theta_1)$

 $J(\theta_0,\theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0,\theta_1)$

 $J(\theta_0,\theta_1)$

 $J(\theta_0,\theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0,\theta_1)$

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.