- **226.** Em que condições a função quadrática $y = (m^2 4)x^2 (m + 2)x 1$ está definida?
 - **227.** Determine uma função quadrática tal que f(-1) = -4, f(1) = 2 e f(2) = -1.
- **228.** Seja $f(x) = ax^2 + bx + c$. Sabendo que f(1) = 4, f(2) = 0 e f(3) = -2, determine o produto abc.

III. Concavidade

109. A parábola representativa da função quadrática $y = ax^2 + bx + c$ pode ter a concavidade voltada para "cima" ou voltada para "baixo".

Se a > 0, a concavidade da parábola está voltada para cima.

Se a < 0, a concavidade da parábola está voltada para baixo.

IV. Forma canônica

110. A construção do gráfico da função quadrática $y = ax^2 + bx + c$ com o auxílio de uma tabela de valores x e y, como foi feito no item anterior, tornase às vezes um trabalho impreciso, pois na tabela atribuímos a x alguns valores inteiros e pode acontecer que em determinada função quadrática os valores de abscissa (valores de x), em que a parábola intercepta o eixo dos x ou a abscissa do ponto da parábola de maior ou menor ordenada, não são inteiros.

Para iniciarmos um estudo analítico mais detalhado da função quadrática, vamos primeiramente transformá-la em outra forma mais conveniente, chamada *forma canônica*.

EXERCÍCIOS

229. Determine os zeros reais das funções:

a)
$$f(x) = x^2 - 3x + 2$$

b)
$$f(x) = -x^2 + 7x - 12$$

c)
$$f(x) = 3x^2 - 7x + 2$$

d)
$$f(x) = x^2 - 2x + 2$$

e)
$$f(x) = x^2 + 4x + 4$$

f)
$$f(x) = -x^2 + \frac{3}{2}x + 1$$

g)
$$f(x) = x^2 - 2x - 1$$

h)
$$f(x) = -x^2 + 3x - 4$$

i)
$$f(x) = x^2 - \sqrt{2}x + \frac{1}{2}$$

j)
$$f(x) = x^2 + (1 - \sqrt{3})x - \sqrt{3}$$

k)
$$f(x) = 2x^2 - 4x$$

1)
$$f(x) = -3x^2 + 6$$

m)
$$f(x) = 4x^2 + 3$$

n)
$$f(x) = -5x^2$$

- 230. Uma empresa produz e vende determinado tipo de produto. A quantidade que ela consegue vender varia conforme o preço, da seguinte forma: a um preço y ela consegue vender x unidades do produto, de acordo com a equação $y = 50 \frac{x}{2}$. Sabendo que a receita (quantidade vendida vezes o preço de venda) obtida foi de CR\$ 1 250,00, qual foi a quantidade vendida?
- 231. Resolva o sistema

$$\begin{cases} \frac{1}{x} + \frac{1}{y} = \frac{7}{12} \\ x \cdot y = 12 \end{cases}$$

- **232.** a) Resolva a equação $x^2 3x 4 = 0$.
 - b) Resolva o sistema $\begin{cases} 2x + y = 4 \\ 2x + xy = -8 \end{cases}$
- **233.** Determine os zeros reais da função $f(x) = x^4 3x^2 4$.

Solução

Queremos determinar $x \in \mathbb{R}$ tal que $x^4 - 3x^2 - 4 = 0$. Fazendo a substituição $z = x^2$, vem:

$$z^2 - 3z - 4 = 0$$

cuja solução é z = 4 ou z = -1, mas $z = x^2$; então:

$$x^2 = 4 \implies x = \pm 2$$

e

$$x^2 = -1 \implies \nexists x \in \mathbb{R}$$

Logo, os zeros reais da função $f(x) = x^4 - 3x^2 - 4$ são x = 2 e x = -2.

- 234. Determine os zeros reais das funções:
 - a) $f(x) = x^4 5x^2 + 4$
 - b) $f(x) = -x^4 + 5x^2 + 36$
 - c) $f(x) = x^4 x^2 6$
 - d) $f(x) = x^4 4x^2 + 4$

- e) $f(x) = 2x^4 + 6x^2 + 4$
- f) $f(x) = -x^4 + 3x^2 3$
- g) $f(x) = 3x^4 12x^2$
- h) $f(x) = x^6 7x^3 8$
- **235.** Determine os valores de m para que a função quadrática $f(x) = mx^2 + (2m 1)x + (m 2)$ tenha dois zeros reais e distintos.

Solução

Na função $f(x) = mx^2 + (2m - 1)x + (m - 2)$, temos: $a = m, b = 2m - 1, c = m - 2 = \Delta = 4m + 1.$

Considerando que a função é quadrática e os zeros são reais e distintos, então:

$$a = m \neq 0$$
 e $\Delta = 4m + 1 > 0$

ou seja:

Sabendo que a réceita (q₁ antidade vendida vencio o preco de venda) obtida to de CR3 / 256,00, qual
$$\frac{1}{4}$$
 - $\frac{1}{4}$ -

- **236.** Determine os valores de *m* para que a função quadrática $f(x) = (m-1)x^2 + (2m+3)x + m$ tenha dois zeros reais e distintos.
- 237. Determine os valores de m para que a equação do 2º grau $(m+2)x^2 + (3-2m)x + (m-1) = 0$ tenha raízes reais.
- Determine os valores de m para que a função $f(x) = mx^2 + (m+1)x + (m+1)$ tenha um zero real duplo.
- 239. Determine os valores de m para que a equação $x^2 + (3m + 2)x + (m^2 + m + 2) = 0$ tenha duas raízes reais iguais.
- **240.** Determine os valores de m para que a função $f(x) = (m+1)x^2 + (2m+3)x + (m-1)$ não tenha zeros reais.
- **241.** Determine os valores de *m* para que a equação $mx^2 + (2m-1)x + (m-2) = 0$ não tenha raízes reais.
- **242.** O trinômio $ax^2 + bx + c$ tem duas raízes reais e distintas; α e β são dois números reais não nulos. O que se pode afirmar sobre as raízes do trinômio $\frac{a}{\alpha} x^2 + \beta bx + \alpha \beta^2 c$?

- **243.** Mostre que na equação do 2º grau $ax^2 + bx + c = 0$, de raízes reais x_1 e x_2 , temos para a soma S das raízes $S = x_1 + x_2 = \frac{-b}{a}$ e para produto P das raízes $P = x_1 \cdot x_2 = \frac{c}{a}$.
 - **244.** Na equação do 2º grau $2x^2 5x 1 = 0$, de raízes x_1 e x_2 , calcule:
 - a) $x_1 + x_2$

d) $(x_1)^2 + (x_2)^2$

b) $x_1 \cdot x_2$

e) $\frac{x_1}{x_2} + \frac{x_2}{x_1}$

c) $\frac{1}{x_1} + \frac{1}{x_2}$

- f) $(x_1)^3 + (x_2)^3$
- **245.** As raízes da equação $2x^2 2mx + 3 = 0$ são positivas e uma é o triplo da outra. Calcule o valor de m.
- **246**. As raízes da equação $x^2 + bx + 47 = 0$ são inteiras. Calcule o módulo da diferença entre essas raízes.
- **247.** Se $r \in s$ são as raízes da equação $ax^2 + bx + c = 0$ e $a \neq 0$ e $c \neq 0$, qual é o valor de $\frac{1}{r^2} + \frac{1}{s^2}$?
- **248.** Determine o parâmetro m na equação $x^2 + mx + m^2 m 12 = 0$, de modo que ele tenha uma raiz nula e a outra positiva.
- **249.** Dadas as equações $x^2 5x + k = 0$ e $x^2 7x + 2k = 0$, sabe-se que uma das raízes da segunda equação é o dobro de uma das raízes da primeira equação. Sendo $k \neq 0$, determine k.
 - **250.** Mostre que uma equação do 2º grau de raízes x_1 e x_2 é a equação $x^2 Sx + P = 0$ em que $S = x_1 + x_2$ e $P = x_1 \cdot x_2$.
 - 251. Obtenha uma equação do segundo grau de raízes:
 - a) 2 e -3

d) 1 e $-\sqrt{2}$

b) $\frac{1}{2}$ e $-\frac{3}{2}$

e) $1 + \sqrt{3}$ e $1 - \sqrt{3}$

- c) 0,4 e 5
- **252.** Se a equação $ax^2 + bx + c = 0$, $a \ne 0$, admite as raízes reais não nulas x_1 e x_2 , obtenha a equação de raízes:
 - a) $(x_1)^2$ e $(x_2)^2$

c) $\frac{x_1}{x_2}$ e $\frac{x_2}{x_1}$

b) $\frac{1}{x_1}$ e $\frac{1}{x_2}$

d) $(x_1)^3$ e $(x_2)^3$

2°) Na função real $f(x) = -x^2 + x + \frac{3}{4}$, temos: a = -1, b = 1, $c = \frac{3}{4}$ e $\Delta = 4$.

Como a = -1 < 0, a função admite um valor máximo:

$$y_M = \frac{-\Delta}{4a} = \frac{-4}{4(-1)}$$
, isto é: $y_M = 1$

em

$$x_M = \frac{-b}{2a} = \frac{-1}{2(-1)}$$
, isto é: $x_M = \frac{1}{2}$.

VII. Vértice da parábola

117. O ponto $V\left(\frac{-b}{2a}, \frac{-\Delta}{4a}\right)$ é chamado vértice da parábola representativa da função quadrática.

EXERCÍCIOS

256. Determine os vértices das parábolas:

a)
$$y = x^2 - 4$$

d)
$$y = -x^2 + \frac{1}{2}x + \frac{3}{2}$$

b)
$$y = -x^2 + 3x$$

e)
$$y = -x^2 + x - \frac{2}{9}$$

c)
$$y = 2x^2 - 5x + 2$$

f)
$$y = x^2 - \frac{7}{3}x - 2$$

257 Determine o valor máximo ou o valor mínimo e o ponto de máximo ou o ponto de mínimo das funções abaixo, definidas em IR.

a)
$$y = 2x^2 + 5x$$

d)
$$y = x^2 - \frac{7}{2}x + \frac{5}{2}$$

b)
$$y = -3x^2 + 12x$$

e)
$$y = -x^2 + 5x - 7$$

c)
$$y = 4x^2 - 8x + 4$$

f)
$$y = -\frac{x^2}{2} + \frac{4}{3}x - \frac{1}{2}$$

258. Determine o valor de m na função real $f(x) = 3x^2 - 2x + m$ para que o valor mínimo seja $\frac{5}{3}$.

- 259. Determine o valor de m na função real $f(x) = -3x^2 + 2(m-1)x + (m+1)$ para que o valor máximo seja 2.
 - **260.** Determine o valor de m na função real $f(x) = mx^2 + (m-1)x + (m+2)$ para que o valor máximo seja 2.
 - 261. Determine o valor de m na função real $f(x) = (m-1)x^2 + (m+1)x m$ para que o valor mínimo seja I.
 - 262. Dentre todos os números reais de soma 8, determine aqueles cujo produto é máximo.

Solução

Indicando por x e z esses números e por y o seu produto, temos:

$$x + z = 8$$
 $y = x \cdot z$

Como precisamos ficar com uma só das variáveis, x ou z, fazemos

$$x + z = 8 \implies z = 8 - x$$

e portanto:

$$y = x \cdot z \implies y = x(8 - x) \implies y = -x^2 + 8x$$

Como a = -1 < 0, y é máximo quando

$$x = \frac{-b}{2a} = \frac{-8}{2 \cdot (-1)} \implies x = 4.$$

Substituindo em z = 8 - x, vem z = 4.

Logo, os números procurados são 4 e 4.

- **263.** Seja $y = -x^2 + 5x I$. Dado que x varia no intervalo fechado [0, 6], determine o maior (y_M) e o menor (y_m) valor que y assume.
 - **264.** Dada $f(x) = 2x^2 + 7x 15$, para que valor de x a função atinge um máximo?
- **265.** A parábola de equação $y = -2x^2 + bx + c$ passa pelo ponto (1, 0) e seu vértice é o ponto de coordenadas (3, v). Determine v.
- Dentre todos os números reais x e z tais que 2x + z = 8, determine aqueles cujo produto é máximo.
 - **267.** Dentre todos os retângulos de perímetro 20 cm, determine o de área máxima.
- **268.** Dentre todos os números x e z de soma 6, determine aqueles cuja soma dos quadrados é mínima.
- **269.** Determine o retângulo de área máxima localizado no primeiro quadrante, com dois lados nos eixos cartesianos e um vértice na reta y = -4x + 5.

270. É dada uma folha de cartolina como na figura ao lado. Cortando a folha na linha pontilhada resultará um retângulo. Determine esse retângulo, sabendo que a área é máxima.

- **271.** Determine o retângulo de maior área contido num triângulo equilátero de lado 4 cm, estando a base do retângulo num lado do triângulo.
- **272.** Num triângulo isósceles de base 6 cm e altura 4 cm está inscrito um retângulo. Determine o retângulo de área máxima, sabendo que a base do retângulo está sobre a base do triângulo.
- **273.** Uma conta perfurada de um colar é enfiada em um arame fino com o formato da parábola $y = x^2 6$. Do ponto P de coordenadas (4, 10) deixa-se a conta deslizar no arame até chegar ao ponto Q de ordenada -6. Qual é a distância horizontal percorrida pela conta (diferença entre as abscissas de $P \in Q$)?
- Uma parede de tijolos será usada como um dos lados de um curral retangular. Para os outros lados iremos usar 400 metros de tela de arame, de modo a produzir área máxima. Qual é o quociente de um lado pelo outro?

VIII. Imagem

118. Para determinarmos a imagem da função quadrática, tomemos inicialmente a função na forma canônica:

$$f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$$

ou seja, $f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a}$. Observemos que $\left(x + \frac{b}{2a}\right)^2 \geqslant 0$ para qualquer $x \in \mathbb{R}$; então temos que considerar dois casos:

1.º caso:

$$a > 0 \implies a\left(x + \frac{b}{2a}\right)^2 \ge 0$$
, e, portanto:
 $y = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} \ge \frac{-\Delta}{4a}$.

2º) Obter a imagem da função f de IR em IR definida por

$$f(x) = -\frac{x^2}{3} + 2x - \frac{5}{3}.$$

Na função $f(x) = -\frac{x^2}{3} + 2x - \frac{5}{3}$, temos:

$$a = -\frac{1}{3}$$
, $b = 2$ e $c = -\frac{5}{3}$

logo:

$$\Delta = b^2 - 4ac = 2^2 - 4 \cdot \left(-\frac{1}{3} \right) \left(-\frac{5}{3} \right) = \frac{16}{9}$$

e portanto:

$$\frac{-\Delta}{4a} = \frac{-\frac{16}{9}}{4\left(\frac{-1}{3}\right)} = \frac{4}{3}.$$

Como $a = -\frac{1}{3} < 0$, temos:

$$Im(f) = \left\{ y \in |\mathbb{R} \mid y \leqslant \frac{4}{3} \right\}.$$

EXERCÍCIOS

275. Determine a imagem das funções definidas em IR:

a)
$$y = x^2 - 3x$$

d)
$$y = -4x^2 + 8x + 12$$

b)
$$y = -x^2 + 4$$

e)
$$y = -x^2 + \frac{3}{2}x + 1$$

c)
$$y = 3x^2 - 9x + 6$$

f)
$$y = \frac{1}{2}x^2 + x + 1$$

EXERCÍCIOS

278. Faça o esboço do gráfico da função $y = x^2 - 4x + 3$.

Solução

Concavidade

Como a = 1 > 0, a parábola tem a concavidade voltada para cima.

Zeros da função

$$x^2 - 4x + 3 = 0 \implies x = 1$$
 ou $x = 3$

Os pontos no eixo x são $P_1(1, 0)$ e $P_2(3, 0)$.

Vértice

Em
$$y = x^2 - 4x + 3$$
, temos

$$a = 1, b = -4, c = 3 e \Delta = 4.$$

Como
$$\frac{-b}{2a} = \frac{4}{2 \cdot 1} = 2$$
 e $\frac{-\Delta}{4a} = \frac{-4}{4 \cdot 1} = -1$,

o vértice é V(2, -1).

Gráfico

Observe que a parábola sempre intercepta o eixo y. Para determinarmos onde o faz, basta lembrar que o ponto situado no eixo y tem abscissa nula, $\log o y(0) = 0^2 - 4 \cdot 0 + 3 = 3$, isto é, o ponto no eixo y é (0, 3).

Determinado o ponto onde a parábola corta o eixo y, podemos determinar um outro ponto (4, 3) da parábola, simétrico a (0, 3) em relação à reta x = 2 (eixo de simetria da parábola).

279. Faça o esboço do gráfico da função $y = -x^2 + 4x - 4$.

Solução

Concavidade

Como a = -1 < 0, a parábola tem a concavidade voltada para baixo.

Zeros da função

$$-x^2 + 4x - 4 = 0 \implies x = 2$$

A parábola admite um único ponto no eixo x, que é P = (2, 0).

Vértice

Considerando que a parábola admite um único ponto no eixo x, então esse ponto é o vértice da parábola.

Gráfico

280. Faça o esboço do gráfico da função $y = \frac{1}{2}x^2 + x + 1$.

Solução

Concavidade

Como $a = \frac{1}{2} > 0$, a parábola tem a concavidade voltada para cima.

Zeros da função

$$\frac{1}{2} x^2 + x + 1 = 0 \implies \Delta = -1 < 0 \implies \nexists$$
 raízes reais.

A parábola não tem pontos no eixo dos x.

Vértice

Em
$$y = \frac{1}{2}x^2 + x + 1$$
, temos:

$$a = \frac{1}{2}$$
, $b = 1$, $c = 1$ e $\Delta = -1$.

Como
$$\frac{-b}{2a} = \frac{-1}{2 \cdot \frac{1}{2}} = -1$$
 e $\frac{-\Delta}{4a} = \frac{1}{4 \cdot \frac{1}{2}} = \frac{1}{2}$, o vértice é $V\left(-1, \frac{1}{2}\right)$.

Gráfico

281. Construa o gráfico cartesiano das funções definidas em R:

a)
$$y = x^2 - 2x - 3$$

e)
$$y = x^2 - 3x + \frac{9}{4}$$

b)
$$y = 4x^2 - 10x + 4$$

f)
$$y = 3x^2 - 4x + 2$$

c)
$$y = -x^2 + \frac{1}{2}x + \frac{1}{2}$$

g)
$$y = -x^2 + x - 1$$

d)
$$y = -3x^2 + 6x - 3$$

h)
$$y = -\frac{1}{2}x^2 - x - \frac{3}{2}$$

282. No gráfico ao lado estão representadas três parábolas, I, 2, 3, de equações, respectivamente, y=ax², y=bx² e y=cx². Qual é a relação entre a, b e c?

FUNÇÕES QUADRÁTICAS

283. O gráfico do trinômio do 2º grau $ax^2 - 10x + c$ é o da figura:

Determine $a \in c$.

Solução

$$x_v = \frac{-b}{2a} = \frac{10}{2a} = 5 \implies a = 1$$

$$y_v = \frac{-\Delta}{4a} = \frac{-100 + 4ac}{4a} = \frac{-100 + 4c}{4} = -9 \implies c = 16$$

Resposta: a = 1 e c = 16.

284. A figura abaixo é o gráfico de um trinômio do segundo grau.

Determine o trinômio.

Solução

$$x_v = \frac{-b}{2a} = 2 \implies -b = 4a \implies b^2 = 16a^2$$

$$y_v = \frac{-(b^2 - 4ac)}{4a} = 3 \implies -(16a^2 - 4ac) = 12a$$

 $16a - 4c = -12 \implies 4a - c = -3$

Como
$$x_1 + x_2 = \frac{-b}{a} = 4$$
 (já utilizado em 1)

Temos, ainda:
$$x_1 \cdot x_2 = \frac{c}{a} = -5 \implies c = -5a$$

Substituindo (II) em (II), vem:
$$4a + 5a = -3 \implies a = -\frac{1}{3}$$
.

Portanto:
$$b = \frac{4}{3}$$
 e $c = \frac{5}{3}$. $a > (x)$ (d $a > (x)$) (a

Então, o trinômio é:
$$y = \frac{-1}{3}x^2 + \frac{4}{3}x + \frac{5}{3}$$
. Idom esca estocada en a la superior de la superio

285. Seja $f: \mathbb{R} \to \mathbb{R}$ a função definida por $f(x) = ax^2 + bx + c$, cujo gráfico é dado abaixo, sendo $a, b, c \in \mathbb{R}$. Determine o valor de a.

- Determine a função g(x) cujo gráfico é o simétrico do gráfico da função $f(x) = 2x x^2$ em relação à reta y = 3. Esboce o gráfico.
 - **287.** Os gráficos de duas funções quadráticas $g \in h$ interceptam-se nos pontos $P(x_i; y_i)$ e $Q(x_2; y_2)$, com $x_2 > x_i$, como mostra a figura.

Se $g(x) = ax^2 + bx + c$ e $h(x) = dx^2 + ex + f$, a área da região sombreada, na figura, é dada por $F(x_2) - F(x_1)$, em que $F(x) = \frac{d-a}{3} \cdot x^3 + \frac{e-b}{2} \cdot x^2 + (f-c)x$.

Nessas condições, quanto vale a área da região sombreada, no caso em que $g(x) = x^2 + x e h(x) = -x^2 - x + 4$?

