

Tensorized LSTM with Adaptive Shared Memory for Learning Trends in Multivariate Time Series

Dongkuan Xu¹, Wei Cheng², Bo Zong², Dongjin Song², Jingchao Ni², Wenchao Yu², Yanchi Liu², Haifeng Chen², Xiang Zhang¹

¹The Pennsylvania State University, ²NEC Laboratories America, Inc.

Motivation

Trends Are Everywhere System Monitoring Health Care Trend: Trend:

Abnormal sensor signals

Irregular heart rate

Gas Detection

Trend: Monotonous price

Trend: Gas Content

M Problem Definition

- ➤ Input: Multivariate time series
- > Output:
 - Trends detected in training set
 - Trends predicted in testing set

Output: $(I_1, S_1), (I_2, S_2), \dots, (I_n, S_n) \longrightarrow (I_{n+1}, S_{n+1})$ where $I_k > \mu$, $|S_k| > \theta$

Challenges

- Trends are various
- Temporal patterns of time series are complex
- Data contain noisy
- Trends are multi-granularity

Technical Highlights

- A multi-task deep model
- Consider long- and short-term dependency
- Jointly achieve flexible parameter sharing and model the temporal patterns

The Architecture of DeepTrends

\square Generate trends via I_2 filtering

$$\sum_{t=1}^{T} \|\hat{\mathbf{x}}_{t} - \mathbf{x}_{t}\|_{2}^{2} + \mu \sum_{t=2}^{T-1} \|\hat{\mathbf{x}}_{t-1} - 2\hat{\mathbf{x}}_{t} + \hat{\mathbf{x}}_{t+1}\|_{2}$$

M Predict trends via DeepTrends

specific representation, such that the hidden representation of each time series can be learned exclusively based on the data from that time series

☑ Core module: TLASM

To learn the sequential dependency of historical trends

Two typical architectures for modeling the temporal patterns of two time series with multi-task learning

Experiments

Dataset	Traffic			Ex	Rate	Solar-Power		
μ	1	10	40	100 2	6	20 400	600	800
# Trends	5	187	3755	1499 2312	2 1508	925 1395	7 8554	4856
# Time Steps			17544		7588		52560	
# Time Series	<u> </u>		9		7		9	

Visualization of the trend slope prediction

Dataset		Traffic			Exchange-Rate			Solar-Power		
						Duration	ı,			
		μ			μ			μ		
Methods	Metrics	10	50	170	2	6	20	400	600	800
CNN	Rmse	2.1215	3.9815	12.4465	3.5391	6.1490	10.0548	10.0505	15.4735	20.4078
	Rrse	1.0265	1.3997	2.0688	26.5035	29.3988	31.4994	2.4176	2.3791	2.5307
LSTM	Rmse	2.0466	3.2263	9.0031	3.0915	5.2540	9.0721	8.9872	13.0804	18.5547
	Rrse	0.9583	0.8745	0.9000	1.8089	1.7093	1.3682	1.1360	1.1401	1.2885
CLSTM	Rmse	2.2803	3.9689	10.3119	3.4449	5.8263	9.3573	8.9829	13.6282	19.1766
	Rrse	1.4100	0.9491	1.6693	1.9105	1.7658	14.4338	1.1832	1.6952	1.2246
TreNet	Rmse Rrse	1.9428 0.8959	3.0801 0.7253	9.4828 0.8561	3.0865 1.8188	5.2595 1.7208	8.1762 1.3823	9.0520 1.1911	12.9362 1.1852	18.7838 1.2383
LSTM-m	Rmse	2.3541	3.2469	9.8074	3.9940	5.2879	8.3240	8.0060	12.7251	19.2483
	Rrse	0.8733	0.7145	0.8474	1.3344	1.6351	1.3863	0.8539	0.9683	1.1861
TreNet-m	Rmse	2.2255	3.3440	10.6698	3.9548	7.2710	8.7669	7.9072	12.8988	19.3374
	Rrse	0.8530	0.7074	0.8994	1.2471	1.2502	1.2278	0.8433	0.9657	1.2025
ME-LSTM	Rmse	1.7984	3.0551	11.7528	3.0501	5.6678	8.3554	7.5384	12.1377	19.4335
	Rrse	0.6829	0.7654	0.9819	1.7857	1.1985	1.2548	0.8897	0.8400	1.0669
DTrends-L	Rmse	2.2076	3.3460	11.4092	3.7655	5.4440	8.6764	7.7359	12.3016	20.7890
	Rrse	0.8191	0.7724	0.8953	1.2020	1.1670	1.0719	0.8037	0.8973	1.1171
DTrends-C	Rmse	1.8120	3.0253	10.5177	3.1496	5.8344	8.3924	7.5047	9.8812	15.6963
	Rrse	0.6595	0.7762	0.8543	1.1326	1.1973	1.0718	0.8293	0.5995	0.82948
DeepTrends	Rmse Rrse	1.7587 0.6087	3.0182 0.7544	9.4343 0.8412	2.9920 1.1232	5.1705 1.1615	8.2209 1.0668	7.4439 0.8011	8.3247 0.5647	13.5987 0.7114

Welcome! Email: dux19@psu.edu WeChat: xudongkuan220019 Twitter: Dongkuan Xu