Algorithmic Methods for Mathematical Models Assignment: Greedy Algorithms

Arnau Abella Universitat Politècnica de Catalunya

November 25, 2020

(a) Specify the algorithm, including: i) the candidates; and ii) the greedy function q(). Specify q() using mathematical notation and a short descriptive text.

Note: Local Search included.

Algorithm 1: Greedy Algorithm

Input:

- A set of offices O, each office o requires b_0 PetaBytes (10⁶ GB) of data storage
- A set of storage providers D, each storage provider d has a capacity k_d in PBs, a fixed cost f_d and an additional cost s_d per stored PB

Output: A set w of assignments $\langle d, O' \rangle$ where $d \in D$, $O' \subseteq O$, $|O'| \leq 3$,

 $|w| \leq 3$, $\bigcup_{O_i' \in w} O_i' = O$ and $\bigcap_{O_i' \in w} O_i' = \emptyset$

 $w \leftarrow \emptyset$

return w

forall $o \in O$ do

```
/* c_{min} is the cost of the minimal assignment
                                                                                                 */
    /* d_u is the storage provider to upgrade
                                                                                                 */
     (c_{min}, d_{min}, d_u) \leftarrow argmin\{q(\langle o, d \rangle, w) | d \in D\}
    if c_{min} = \infty then
     \bot return INFEASIBLE
    else if d_{min} \in w then
                                            /* update the assigned offices */
         O'' \leftarrow O'_{d_{min}} \cup \{o\}
         w \leftarrow w \cup \{\langle d_{min}, O'' \rangle\}
    else if |w| < 3 \land d_u = null \text{ then } /* add a new storage provider
      w \leftarrow w \cup \{\langle d_{min}, \{o\}\rangle\}
                                             /* replace d_u storage provider */
    else
         w' \leftarrow w \setminus \{d_u\}
        O'' \leftarrow \{O'_{d_u} \cup \{o\}\} 
w \leftarrow w' \cup \{\langle d_{min}, O'' \rangle\}
    end
end
```

$$q(\langle o, d \rangle, w) = \begin{cases} \infty & d \in w \land (|O'_d| = 3 \lor b_o \gt (k_d - \sum_{o' \in O'} b_{o'})) \\ b_o s_d & d \in w \land |O'_d| < 3 \land b_o \le (k_d - \sum_{o' \in O'} b_{o'}) \\ q'(\langle o, d \rangle, w) & d \notin w \land |w| = 3 \end{cases}$$
$$min(f_d + b_0 s_d, \ q'(\langle o, d \rangle, w)) & d \notin w \land |w| < 3 \end{cases}$$
$$q'(o, d, w) = min\{q'(o, d, d', w) | d' \in w\}$$
$$q'(o, d, d', w) = \begin{cases} \infty & |O'_{d'}| = 3 \lor b_o \gt (k_d - \sum_{o' \in O'_{d'}} b_{o'}) \\ (f_d + s_d(b_o + \sum_{o' \in O'_{d'}} b_{o'})) - (f_{d'} + s_{d'}(b_o + \sum_{o' \in O'_{d'}} b_{o'})) & |O'_{d'}| < 3 \land b_o \le (k_d - \sum_{o' \in O'_{d'}} b_{o'}) \end{cases}$$

Figure 1: Cost function

(b) Detail the decisions made in every iteration of the algorithm until a solution is obtained. For each iteration, compute the value of the proposed greedy function q() for all the candidates.

Note: this execution does not include the Local Search.

Office	d_1	d_2	d_3	d_4	d_5
$q(o_1)$	500	380	380	890	700
$q(o_2)$	500	30	380	890	700
$q(o_3)$	500	∞	380	890	700
$q(o_4)$	500	∞	130	890	700
$q(o_5)$	500	∞	130	890	700
$q(o_6)$	500	∞	∞	890	700
$q(o_7)$	200	∞	∞	890	700