Midterm Exam

GITA315: Python Machine Learning

정보통신대학원 April 21, 2022

- starts at 7:10 pm and ends at 7:50 pm
- submit answers before 7:55 pm

Notice: Answer should be well structured and clear, easy to understand. Answers should be given in complete sentences. Any type of copy and paste should not be included in the answer.

Name:	Student Number:
<u> </u>	

100 points total

Problem 1: (30points total, 10 points each)

Consider a dataframe df with indexes (row numbers $0, 1, \ldots$) and labels (column names a, b, c, \ldots). We also assume that the values of this dataframe are all integers.

a) explain df.iloc[:, [i, j]] for some valid integers, i and j.

Answer

b) explain df.iloc[[i, j], [p, q]] for some valid integers, i, j, p, and q.

Answer

c) describe the difference between df and df.values.

Answer

Problem 2: (30 points)

The following is the implementation of a perceptron in Python.

Describe, specifically, the operation of the block surrounded by the blue rectangle. Your answer *should* include the descriptions for the step-by-step operations in the block.

```
import numpy as np
class Perceptron(object):
     def init (self, eta=0.01, n iter=50, random state=1):
          self.eta = eta
          self.n iter = n iter
          self.random state = random state
     def fit(self, X, y):
          Parameters
          X : \{array-like\}, shape = [n \ examples, n \ features]
            Training vectors, where n examples is the number of examples and
            n features is the number of features.
          y : array-like, shape = [n \ examples]
            Target values.
          rgen = np.random.RandomState(self.random state)
          self.w = rgen.normal(loc=0.0, scale=0.01, size=1 + X.shape[1])
          self.errors_ = []
          for in range(self.n iter):
               errors = 0
               for xi, target in zip(X, y):
                    update = self.eta * (target - self.predict(xi))
                    self.w [1:] += update * xi
                    self.w [0] += update
                    errors += int(update != 0.0)
```

self.errors_.append(errors)

```
return self
def net_input(self, X):
    return np.dot(X, self.w_[1:]) + self.w_[0]
def predict(self, X):
    return np.where(self.net_input(X) >= 0.0, 1, -1)
```

Answer:

Problem 3: (10 points)

```
We have two arrays, x and y:

n and m are integers, n > 1 and m > 1.

Shape of x is (n, m).

Shape of y is (n, ).

Any one of 1, 2, and 3 is selected for the value of y[i], i = 0, 1, 2, ..., n-1.

Explain x[y == 1, 1].
```

Answer:

Problem 4: (30 points)

The diagram below illustrates the concept of the logistic regression classifier. Explain the operation of this *in detail* using this diagram.

Answer: