

Dynamic Programming & Reinforcement Learning

Lecture 3
Finite-horizon Revenue Management &
Markov chains

Ger Koole

Revenue management

- Example of finite-horizon dynamic programming
- Illustration how (dynamic) optimization is used in practice
- Success story
 - crucial to airline & hotel industry
 - generated billions of Euros of revenue
 - used as main example in "Competing on Analytics"

Revenue management

- 1978: deregulation aviation US
- Low-cost carriers came into existence
- AA saw reduced market share
- 1985: American Airlines started RM
 - regular and supersaver tariff
 - limited number of seats and available well in advance
- Problem: how many seats to offer in different booking classes and when to close them?
- Solve a dynamic optimization model

Simple example RM

- 1 seat or room, possible prices 100 and 150
- 2 customers who arrive one-by-one, the first willing to pay 100, the second 150
- What are your consecutive prices?
- 1 seat or room, 2 "epochs", each time with probability 0.4 a customer willing to pay 150 and one willing to pay 100
- What are your prices?
- What is the value = maximal expected reward?

Example extended: capacity = 2, 3 epochs

Value function

```
time: [,1] [,2] [,3] [,4]
                                         Optimal policy
state
                                   time: [,1] [,2] [,3]
          0.0
   [1,]
                               state
                                         150 150
                                                   100
   [2,] 124.8 108 80
                                   [1,]
   [3,] 199.2 160
                                   [2,]
                                              100
                                                   100
                   80
                                         150
```

3 simulations

	[1]	1 2	3		[1]	1 2	3		[1]	1 2	3	
time	[1]	2 2	1		[1]	2 1	0		[1]	2 2	2	
states	[1]	150	100	100	[1]	150	150	150	[1]	150	100	100
actions	[1]	100	100	150	[1]	150	150	150	[1]	100	0	0
demand	[1]	0	100	100	[1]	150	150	0	[1]	0 0	0	
rewards	[1]	200			Г17	300			[1]	0		
total reward												

Suppose demand is 150 100 0 What is total rewa

What is total reward under the optimal policy?

Customer demand model

- n possible prices/fares/rates f₁>...>f_n
- Every customer has a willingness-to-pay ∈ {f₁,...,f_n}
- T short time periods
 - At most 1 request per period
 - Probability of request depends on class and time: λ_t(i)
 - $-\Sigma_i \lambda_t(i) \le 1$ for all t
 - Models "inhomogeneous Poisson process"

Dynamic programming model VU

- Capacity C, $\chi = \{0, \dots, C\}$, remaining capacity
- x>0:
 - $\mathcal{A}_{x} = \{1, \dots, n\}$, price to use
 - $p_t(x-1|x,a) = \sum_{i=1}^{a} \lambda_i(i), p_t(x|x,a) = 1 \sum_{i=1}^{a} \lambda_i(i)$
 - $r_t(x,a) = f_a \times P(customer willing to pay f_a) = f_a \sum_{i=1}^{a} \lambda_t(i)$
- x=0:
 - $\mathcal{A}_0 = \{0\}, p_t(0|0,0) = 1, r_t(0,0) = 0$
- $\mathcal{T} = \{1, ..., T+1\}$, T+1 is departure moment: $V_{T+1}(x) = 0 \forall x \in \mathcal{X}$
- Objective: compute V₁(C)
- $V_t(0) = 0 + V_{t+1}(0) = 0$, $1 \le t \le T$
- V_t(x) for x>0, 1≤t≤T:

$$V_{t}(x) = \max_{a=1,\dots,n} \left\{ f_{a} \sum_{i=1}^{a} \lambda_{t}(i) + \sum_{i=1}^{a} \lambda_{t}(i) V_{t+1}(x-1) + \left(1 - \sum_{i=1}^{a} \lambda_{t}(i)\right) V_{t+1}(x) \right\}$$

Restrictions on policy

- Prices will typically fluctuate
 - Can go up or down
- How to avoid prices going down?
 - add state component to remember last price
- How to avoid prices going down too often?
 - add penalty for price going down

Multiple dimensions

- Many airlines have networks
- Demand for multiple resources at a time (e.g., BCN → AMS → JFK)
- State becomes multi-dim: x = (x₁,...,x_n)
- Number of states is exponential in dimension → too big to compute
- Eg, n flights, each capacity C: (C+1)ⁿ states
 - Example C=n=100 \rightarrow 10²⁰⁰ > atoms in universe²
- Bellman's curse of dimensionality
 - approximation methods required

Forecasting and learning VU

- Crucial: right values for λ_t(i)
- Can be separate activity: forecasting (part of statistics)
- Can also be seen as partly unknown values that you learn while bookings arrive: partial information models
 - online learning
- Some airlines work this way: on the basis of bookings they adapt λ's

Models for time

- Finite horizon, $\mathcal{T}=\{0,...,T\}$, total reward
 - Good examples: revenue management, knapsack
 - Bad examples because no clear T: shortest path, inventory mgmt
- Infinite horizon, $\mathcal{T} = \{0,1,...\}$, total reward
 - Direct rewards must eventually get 0, otherwise not defined $(\pm \infty)$
 - E.g., shortest path
 - "Equivalent" to finite horizon with T big
- Infinite horizon, average reward
- Infinite horizon, discounted reward
 - both candidates for inventory mgmt
- Continuous time, infinite horizon, $\mathcal{T}=[0,\infty)$, discounted or average

This lecture: Markov chains = background for long-run average reward

Markov chains

- Time: $t \in \mathcal{T} = \{0, 1, 2, ...\}$
- States: | X | <∞, X_t is state at t
- No actions or rewards
- Transitions: $p(y|x)=P(X_{t+1}=y|X_t=x)$
- Initial distribution: π_0 , $P(X_0=x) = \pi_0(x)$
- Goal: What is distribution at t = X_t?

MCs: distribution at t

Reminder probability: P(A|B)=P(AB)/P(B),

$$P(A)=P(AB)+P(AB^{c})=P(A|B)P(B)+P(A|B^{c})P(B^{c})$$

- = law of total probability
- Applied to π₁:

$$\pi_1(y) = P(X_1 = y) = \Sigma_x P(X_1 = y | X_0 = x) P(X_0 = x) = \Sigma_x P(X_0 = x) p(y | x) = \Sigma_x \pi_0(x) p(y | x)$$

Recursion:

$$\pi_{t+1}(y) = P(X_{t+1} = y) = \Sigma_x P(X_t = x) p(y|x) = \Sigma_x \pi_t(x) p(y|x)$$

• Matrix notation: $\pi_{t+1}^T = \pi_t^T P$ with P matrix with $P_{xy} = p(y|x)$

(note: p(y|x) is sometimes written as p(x,y) or even p_{xy})

Example

- $\chi = \{1,2,3\}$
- p(2|1)=p(3|2)=1, p(1|3)=p(2|3)=1/2

$$\pi_{t+1}(1) = \sum_{x} \pi_t(x) p(1 \mid x) = \pi_t(3)/2, \ \pi_{t+1}(2) = \pi_t(1) + \pi_t(3)/2, \ \pi_{t+1}(3) = \pi_t(2)$$

- What is π_4 for $\pi_0 = (1,0,0)$?
- Simulation is alternative: simulate many times, take frequencies
 - traces 1,2,3,1,2 and 1,2,3,2,3 both occur with probability 0.5

MCs: properties

- Definition: A path is chain of states $x_1x_2...x_n$ for which $p(x_{k+1}|x_k)>0$
- A MC is
 - communicating: ∃ path between any 2 states
 - aperiodic: the gcd (greatest common divisor) of lengths of all paths from x to $x = 1 \forall x$
- How about the MC in the example?
- And how about this MC? Poll!
- What is π_4 for $\pi_0 = (1,0,0)$?

MCs: long-run behavior VU

- Time-average distribution : $\lim_{t\to\infty} t^{-1} \sum_{k=1}^{t} \pi_k$
- Limiting distribution : $\lim_{t\to\infty} \pi_t$
- Stationary distribution: solution of $\pi^T = \pi^T P$ with $\pi^T e = 1$
- Theorem: For aperiodic & communicating MCs the time-average, limiting and stationary distributions exist, are the same, unique and independent of π_0 (called π_*)
- What is the stationary distribution of the 1st example?

Example

Limiting distribution:

```
pi0=c(1,0,0); T=10000
for(t in 1:T){
  pi1=c(1/2*pi0[3],pi0[1]+1/2*pi0[3],pi0[2])
  pi0=pi1
}
pi1
```

[1] 0.2 0.4 0.4

- Time-average distribution gives the same
 - Also when averaged over a simulation = frequencies

```
state=1; visits=rep(0,3)
for(t in 1:T){
  visits[state]=visits[state]+1
  if(state==3){
    state=sample(2,1)
  }else{
    state=state+1
  }
}
visits/T
```

[1<u>]</u> 0.198 0.401 0.401

by the law of large numbers

Example: stationary distribution p(2|1)=1/

$$\pi^{T} = \pi^{T} P$$

$$\Leftrightarrow \pi(y) = \sum_{x} \pi(x) p(y \mid x) = \sum_{x} \pi(x) p_{xy}$$

$$\Leftrightarrow \pi(1) = 0.5\pi(3), \ \pi(2) = \pi(1) + 0.5\pi(3), \ \pi(3) = \pi(2)$$

$$\pi^{T} e = 1 \Leftrightarrow \pi(1) + \pi(2) + \pi(3) = 1$$

$$(0.2, 0.4, 0.4) \text{ is unique solution}$$

(3 variables, 4 equations, but 1 is redundant)

400

Answers to polls

paths 1. The MC is (Single Choice) * periodic and communicating aperiodic and communicating periodic and non-communicating aperiodic and non-communicating 2. The second MC is (Single Choice) * periodic and communicating aperiodic and communicating periodic and non-communicating aperiodic and non-communicating 3. What is pi_4? (Single Choice) * (0,1,0)(0,0,1)(0,1/2,1/2)(1/2,0,1/2)