Examining the relationship between categorical variables

EDUC 641: Week XX

TBD

Roadmap

Research is a <u>partnership</u> of questions and		What types of data are collected?		
data		Categorical data	Continuous data	
	Descriptive questions	 How many members of class have black hair? What proportion of the class attends full-time? 	 How tall are class members, on average How many hours per week do class members report studying, on average? 	
What kinds of questions can be asked of those data?	Relational questions	 Are male-identifying students more likely to study part-time? Are PrevSci PhD students more likely to be female-identifying? 	 Do people who say they study for more hours also think they'll finish their doctorate earlier? Are computer-literate students less anxious about statistics? 	

Goals of the unit

- Describe relationships between quantitative data that are categorical
- Calculate an index of the strength of the relationship between two categorical variables, the chi-squared (\(\chi^2\)) statistic
- Write R scripts to conduct these analyses
- Formulate and describe the purpose of a null hypothesis
- Conceptually describe the criteria to make a statistical inference from a sample to a population
- Interpret and report the results of a contingency-table analysis and a statistical inference from a chi-squared statistic

A reminder of our motivating question

Were convicted murderers more likely to be sentenced to death in Georgia if they killed someone Black or if they killed someone White?

Materials

- 1. Death penalty data (in file called deathpenalty.csv)
- 2. Codebook describing the contents of said data
- 3. R script available ...

What we've done

Up until now, we've been examining each variable by itself,

Relationships between variables

Two-way tables

Now we seek to create a *joint display* of the values of *RVICTIM* and *DEATHPEN*

```
table(df$deathpen, df$rvictim)

#>
#> Black White
#> No 1483 863
#> Yes 23 106
```

It would be helpful to have these in percentage terms. Proportion of convicted murderers sentenced to death in case of Black victim: $\frac{23}{1483 + 23}*100 = 1.53\%$ Can ask R for this too:

```
round(prop.table(table(df$deathpen, df$rvictim), margin=2)*100, 2)
```

```
#>
#> Black White
#> No 98.47 89.06
#> Yes 1.53 10.94
```

Putting it into words

In our sample of convicted murderers in Georgia, when a **Black person** was a victim...

In our sample of convicted murderers in Georgia, when a **White person** was a victim...

Grouped charts

Can visualize these counts

What is "related"?

To answer whether *DEATHPEN* and *RVICTIM* are related in our observed sample...

it might be helpful to imagine what the proportion of defendants sentenced to death would look like **if there were NO relationship**

Frequencies that we OBSERVE

#>				
#>		Black	White	Sum
#>	No	1483	863	2346
#>	Yes	23	106	129
#>	Sum	1506	969	2475

Frequencies that we would EXPECT if there were NO relationship

deathpen	Black	White	Sum
No			2346
Yes			129
Sum	1506	969	2475

Observed vs. Expected

Frequencies that we OBSERVE

```
#>
#> Black White Sum
#> No 1483 863 2346
#> Yes 23 106 129
#> Sum 1506 969 2475
```

Frequencies that we would EXPECT if there were NO relationship

deathpen	Black	White	Sum	Proport.
No			2346	0.948
Yes			129	0.052
Sum	1506	969	2475	1.000
Proportion	0.608	0.392	1.000	

Observed vs. Expected

Frequencies that we OBSERVE

#>
#> Black White Sum
#> No 1483 863 2346
#> Yes 23 106 129
#> Sum 1506 969 2475

Frequencies that we would EXPECT if there were NO relationship

deathpen	Black	White	Sum
No	1428	918	2346
Yes	78	51	129
Sum	1506	969	2475

What do you think? Is there a relationship between *DEATHPEN* and *RVICTIM*?

A desired index...?

Frequencies that we OBSERVE

#>				
#>		Black	White	Sum
#>	No	1483	863	2346
#>	Yes	23	106	129
#>	Sum	1506	969	2475

Frequencies that we would EXPECT if there were NO relationship

deathpen	Black	White	Sum
No	1428	918	2346
Yes	78	51	129
Sum	1506	969	2475

It would be nice to have an index of the NET DISCREPANCY between the OBSERVED and EXPECTED frequencies in the sample

The Chi-Squared \(\chi^2\) statistic

We can summarize the **NET DISCREPANCY** between the tables of **OBSERVED** and **EXPECTED** frequencies, using a statistic called the Pearson Chi-Squared \((\chi^2)\) statistic

Frequencies that we OBSERVE

#> #> Black White Sum #> No 1483 863 2346 #> Yes 23 106 129 #> Sum 1506 969 2475

Frequencies that we would EXPECT if NO relationship

deathpen	Black	White	Sum
No	1428	918	2346
Yes	78	51	129
Sum	1506	969	2475

 $\$ \chi^2 = \frac{(1483-1428)^2}{1428} + \frac{(863-918)^2}{918} + \frac{(23-78)^2}{78} + \frac{(106-51)^2}{51} \$\$ \chi^2 = 103.8 \$\$ Yay! We got an answer, but what does it mean...?

Hypothesis testing and statistical inference

Big or small?

We can summarize the **NET DISCREPANCY** between the tables of **OBSERVED** and **EXPECTED** frequencies, using a statistic called the Pearson Chi-Squared (\(\chi^2\\)) statistic

Frequencies that we OBSERVE

#> #> Black White Sum #> No 1483 863 2346 #> Yes 23 106 129 #> Sum 1506 969 2475

Frequencies that we would EXPECT if NO relationship

deathpen	Black	White	Sum
No	1428	918	2346
Yes	78	51	129
Sum	1506	969	2475

 $\$ \chi^2 = 103.8 \\$ A decision rule: If \(\chi^2\) is big, then declare that there is a relationship between *DEATHPEN* and *RVICTIM*; if \(\chi^2\) is zero (or close to zero), then declare there is no relationship between *DEATHPEN* and *RVICTIM* ...

but what is **BIG**, what is **close to zero**, and is 103.8 **big** or **close to zero**?

Statistical inference

Let's take a step back to capture the nature of the problem

- We've looked at some data on some convicted murderers in the state of Georgia
- We're not interested in only *these* murderers, but we're interested in a broader *population* of murderers from which our *sample* was drawn
 - In fact, even if we could observe outcomes for all murderers in the state of Georgia, our observation of them is imperfect due to *measurement error* and so we only ever observe samples, never populations (more on this later)
- Is there something about sampling from a population that could resolve our problem?
- Is there some way to generalize our conclusions about our *sample* relationship between *DEATHPEN* and *RVICTIM* to the *underlying population*?
 - This is called *statistical inference* and it is *the* critical contribution of quantitative methods to research

Sampling idiosyncrasy

When you generalize from a sample back to its underlying population, you must be careful that your empirical study has not been the victim of *sampling idiosyncrasy*

Is the following scenario plausible?

- There really is no relationship between *DEATHPEN* and *RVICTIM* in the population
- By accident, we have drawn an idiosyncratic sample from the population
- This sampling idiosyncrasy ended up giving us a \(\chi^2\) statistic as large as 103.8 by pure accident

How can we assess the plausibility of this scenario?

The Null Hypothesis \((H_{0})\)

We start by imagining a hypothetical world in which there is **no relationship** between *DEATHPEN* and *RVICTIM* in a true population of convicted murderers. Then, we imagine drawing a series of samples of convicted murders over and over again (say...10,000 times) from this hypothetical population. What values of the \(\\chi^2\) statistic might we observe?

Testing the null

In this hypothetical example of repeated sampling from a null population, we could record all 10,000 values of the \(\chi^2\) statistic

The histogram summarizes the natural variation that could occur in a \(\\\chi^2\) statistic as a result of *random sampling idiosyncrasy*, after drawing repeated samples from a hypothetical

Testing the null

In this hypothetical example of repeated sampling from a null population, we could record all 10,000 values of the \(\chi^2\) statistic

If this were the histogram that could result from sampling idiosyncrasy, and this were the value of the \(\chi^2\) statistic, what would you think?

Testing the null

In fact, this is the value of the (\cdot) statistic we observed:

This is a histogram of possible $(\langle chi^2 \rangle)$ values that could result from sampling idiosyncrasy, and then the actual value of the $(\langle chi^2 \rangle)$ statistic in our sample. What do you think?

Testing the null (p-values)

In fact, we don't need to examine the full histogram. Instead, we can say that in a hypothetical exercise of sampling repeatedly from a null population, less than 1 in a 1,000,000,000,000,000 (trillion) of all accidental values of the \(\\\\\\) statistic are larger than a value of 103.8

The statistic that captures the likelihood that one would observe a \(\\chi^2\) statistic of a given magnitude in a particular sample, in the presence of a null population, is called the p-value

Testing the null (p-values)

At what p-value would you cease to believe that the value of the \(\chi^2\) statistic in your own research was "big" (i.e., was unlikely to have occurred by accident)

Putting it all together

Basic steps of classical statistical inference

- 1. State a research question
- 2. Display and describe the observed data
- 3. Summarize the observed data in relationship to an expected value
 - We'll return to this more formally in the Continuous II unit to understand where these "expected" values come from
- 4. Estimate the *p*-value
- 5. Reject or fail to reject the null hypothesis
- 6. Interpret your findings drawing explicitly on plots, summary statistics and test statistics

Our intepretation:

In the population of convicted murderers in Georgia, the imposition of the death penalty and the race of the victim are related ($\langle \langle h^2 \rangle \rangle = 103.8, p < 0.001$) The percentage of convicted murderers who were sentenced to death after killing a White victim was more than 8 times the percentage of convicted to murderers who were sentenced to death after killing a Black victim. In Figure 1, we show...

Estimating the \(\chi^2\) statistic in R

```
chi_df <- chisq.test(df$deathpen, df$rvictim)</pre>
chi df
#>
#>
      Pearson's Chi-squared test with Yates' continuity correction
#>
#> data: df$deathpen and df$rvictim
\# X-squared = 103.82, df = 1, p-value < 2.2e-16
chi df$expected
             df$rvictim
#>
#> df$deathpen Black
                         White
          No. 1427, 50545, 918, 49455
#>
#> Yes 78.49455 50.50545
round(chi df$p.value, 5)
```

Incorporating a third variable

Sub-sample comparisons

There are more complex ways of doing this, but one approach is to replicate the original contingency table analysis in interesting "slices" of the sample, defined by a third variable

Cases with Black murderers

```
#>
#> Black White
#> No 1304 63
#> Yes 18 50
```

Black murderers, Black victims

When a Black victim is killed by a Black murderer, \$ \frac{18}{18+1304} = 1.36 \% \$\$ of the murderers are sentenced to death.

Black murderers, White victims

When a White victim is killed by a Black murderer, $\$ \frac{50}{50+63} = 44.25 \%$ \$\$ of the murderers are sentenced to death.

The percentage of Black murderers sentenced to death for killing a White victim is about 32.5 times the percentage of Black murderers sentenced to death for killing a Black victim, in Georgia

A statistical test

Observed:

```
#> df_b$rvictim
#> df_b$deathpen Black White
#> No 1304 63
#> Yes 18 50
```

Expected:

```
#> df_b$rvictim
#> df_b$deathpen Black White
#> No 1259 108
#> Yes 63 5
```

$(\dot 2)$ statistic:

```
#> X-squared
#> 414.7031
```

p-value

#> [1] 3.470593e-92

- \(H_{0}\): *DEATHPEN* and *RVICTIM* are unrelated in the population of convicted Black murderers in GA
- \(\chi^2\) statistic: 414.7
- *p*-value: <0.0001
- Decision: Reject \(H \{0\}\)
- Conclusion: There is a statistically significant relation between the assignment of the death penalty and the race of the victim, on average, in the population of Black murderers in GA.

Cases with White murderers

```
#>
#> Black White
#> No 179 800
#> Yes 5 56
```

White murderers, Black victims

When a Black victim is killed by a White murderer, $\$ \frac{5}{5+179} = 2.71 \%$ \$\$ of the murderers are sentenced to death.

White murderers, White victims

When a White victim is killed by a White murderer, $\$ \frac{56}{56+800} = 6.89 \%$ \$\$ of the murderers are sentenced to death.

The percentage of White murderers sentenced to death for killing a White victim is about 2.5 times the percentage of White murderers sentenced to death for killing a Black victim, in Georgia

A statistical test

Observed:

```
#> df_w$rvictim
#> df_w$deathpen Black White
#> No 179 800
#> Yes 5 56
```

Expected:

```
#> df_w$rvictim
#> df_w$deathpen Black White
#> No 173 806
#> Yes 11 50
```

$(\dot 2)$ statistic:

```
#> X-squared
#> 3.349547
```

p-value

#> [1] 0.06722351

- \(H_{0}\): *DEATHPEN* and *RVICTIM* are unrelated in the population of convicted White murderers in GA
- \(\chi^2\) statistic: 3.35
- *p*-value: 0.067
- Decision: Fail to reject $\(H_{\{0\}}\)$
- Conclusion: There is not a statistically significant relation between the assignment of the death penalty and the race of the victim, on average, in the population of White murderers in GA.

Synthesis and wrap-up