DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous Cars

Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray

ICSE 2018

About paper

Problem

• How to systematically detect erroneous behaviors in DNN-driven vehicle.

Contribution

- Present a systematic technique to automatically synthetize test cases that maximize neuron coverage.
- Show that synthetic input generated can be used to retrain the DNN

Result

 DeepTest found thousands of erroneous behaviors from the three top performing DNNs in the Udacity self-driving car challenge

Motivations

GENERAL MOTORS

Motivation

- Unexpected behaviors
- Current detecting mechanisms depend heavily on manual collection of labeled data

Motivation

- Challenges to Build a DNN testing software
 - DNN learn its logic from a large amount of data with minimal human intervention.
 - Express its logic in weight and activation function than control flow.
 - Code coverage not an efficient way to evaluate the quality of f a testing software

Background

- DNNS:
 - CNN

- High accuracy on the image recognition
- Each filter can abstract features from the previous layer

Background

- DNNS:
 - Recurrent Neural Networks

- Current prediction is fed to the next predictions
- Consider previous inputs to predict current input

Background

DNNS in Autonomous Vehicles:

Methodology

- How do we systematically explore the input-output spaces of an autonomous car DNN?
- How can we synthesize realistic inputs to automate such exploration?
- How can we optimize the exploration process?
- How do we automatically create a test oracle that can detect erroneous behaviors without detailed manual specifications?

How do we systematically explore the inputoutput spaces of an autonomous car DNN?

- Input-output space too large to be able to fully explore it
- Assume that inputs that have similar neuron coverage behave similarly
- Partition the space into equivalence classes and cover each class by picking one sample from it.

How do we systematically explore the inputoutput spaces of an autonomous car DNN?

- When can we consider that a neuron is activated?
- For fully connected layers, if neuron's output is above the activation threshold the neuron is considered as activated.
- For CNNs, compute the average of the output feature map to convert multidimensional output of a neuron into a scalar and compare it with the neuron activation threshold of 0,2
- For RNNs, Treat each neuron in the unrolled layers as a separate individual neuron for the purpose of neuron coverage computation

How can we synthesize realistic inputs to automate such exploration?

 Unlike DeepXplore, DeepTest synthesizes inputs by applying image transformations that mimic real-world phenomena to seed images.

DeepXplore:

all:right

DRV_C1:left

DeepTest:

1.1 original

1.2 with added rain

How can we synthesize realistic inputs to automate such exploration?

- 3 different type of transformation
 - Affine (translation, scale, shear, rotation)
 - Linear (contrast, brightness)
 - Convolutional (Fog, rain, blurring)

How can we optimize the exploration process?

Algorithm 1: Greedy search for combining image tranformations to increase neuron coverage

```
Input :Transformations T, Seed images I
   Output :Synthetically generated test images
   Variable: S: stack for storing newly generated images
             Tqueue: transformation queue
2 Push all seed imgs ∈ I to Stack S
3 genTests = \phi
4 while S is not empty do
        img = S.pop()
        Tqueue = \phi
        numFailedTries = 0
        while numFailedTries \leq maxFailedTries do
              if Tqueue is not empty then
                   T1 = Tqueue.dequeue()
10
              else
11
                   Randomly pick transformation T1 from T
12
13
              end
              Randomly pick parameter P1 for T1
14
              Randomly pick transformation T2 from T
15
              Randomly pick parameter P2 for T2
16
              newImage = ApplyTransforms(image, T1, P1, T2, P2)
17
18
              if covInc(newimage) then
                    Tqueue.enqueue(T1)
19
                    Tqueue.enqueue(T2)
20
                   UpdateCoverage()
21
                   genTest = genTests ∪ newimage S.push(newImage)
22
              else
23
                    numFailedTries = numFailedTries + 1
^{24}
25
              end
26
        end
  end
28 return genTests
```

 Use Combination of transformation

How can we optimize the exploration process?

Algorithm 1: Greedy search for combining image tranformations to increase neuron coverage

```
Input : Transformations T, Seed images I
   Output :Synthetically generated test images
   Variable: S: stack for storing newly generated images
             Tqueue: transformation queue
 2 Push all seed imgs ∈ I to Stack S
 3 genTests = \phi
 4 while S is not empty do
         img = S.pop()
         Tqueue = \phi
 6
 7
         numFailedTries = 0
 8
         while numFailedTries \leq maxFailedTries do
              if Tqueue is not empty then
10
                   T1 = Tqueue.dequeue()
              else
11
                    Randomly pick transformation T1 from T
12
              end
13
              Randomly pick parameter P1 for T1
14
              Randomly pick transformation T2 from T
15
              Randomly pick parameter P2 for T2
16
              newImage = ApplyTransforms(image, T1, P1, T2, P2)
17
              if covInc(newimage) then
18
                   Tqueue.enqueue(T1)
19
                   Tqueue.enqueue(T2)
20
                   UpdateCoverage()
21
                   genTest = genTests ∪ newimage S.push(newImage)
22
              else
23
                   numFailedTries = numFailedTries + 1
24
              end
26
         end
27 end
28 return genTests
```

 Keep track of the transformations that successfully increase neuron coverage for a given image and prioritize them.

How can we optimize the exploration process?

Algorithm 1: Greedy search for combining image tranformations to increase neuron coverage

```
Input : Transformations T, Seed images I
   Output :Synthetically generated test images
   Variable: S: stack for storing newly generated images
             Tqueue: transformation queue
 2 Push all seed imgs ∈ I to Stack S
3 genTests = \phi
   while S is not empty do
        img = S.pop()
         Tqueue = \phi
         numFailedTries = 0
         while numFailedTries \le maxFailedTries do
              if Tqueue is not empty then
                   T1 = Tqueue.dequeue()
10
              else
11
                   Randomly pick transformation T1 from T
12
              end
13
              Randomly pick parameter P1 for T1
14
              Randomly pick transformation T2 from T
              Randomly pick parameter P2 for T2
16
              newImage = ApplyTransforms(image, T1, P1, T2, P2)
17
              if covInc(newimage) then
18
                   Tqueue.enqueue(T1)
19
                   Tqueue.enqueue(T2)
20
                   UpdateCoverage()
21
                   genTest = genTests ∪ newimage S.push(newImage)
22
23
              else
                   numFailedTries = numFailedTries + 1
              end
         end
27 end
28 return genTests
```

Transformations		Parameters	Parameter ranges
Translation		(t_X, t_y)	(10, 10) to (100, 100) step (10, 10)
	Scale	(s_x, s_y)	(1.5, 1.5) to (6, 6) step (0.5, 0.5)
	Shear	(s_X, s_y)	(-1.0, 0) to (-0.1, 0) step (0.1, 0)
	Rotation	q (degree)	3 to 30 with step 3
	Contrast	α (gain)	1.2 to 3.0 with step 0.2
	Brightness	β (bias)	10 to 100 with step 10
	Averaging	kernel size	$3 \times 3, 4 \times 4, 5 \times 5, 6 \times 6$
	Gaussian	kernel size	$3 \times 3, 5 \times 5, 7 \times 7, 3 \times 3$
Blur	Median	aperture linear size	3, 5
	Bilateral Filter	diameter, sigmaColor, sigmaSpace	9, 75, 75

How do we automatically create a test oracle that can detect erroneous behaviors without detailed manual specifications?

- Creating a test oracle:
 - How to decide whether the output of the model is erroneous?
 - The authors leverage metamorphic relations between the car behaviors across different synthetic images
 - There is no single correct output for a given image
 - The steering angles deduced for synthetic and original images should be identical.

1.1 original

1.2 with added rain

How do we automatically create a test oracle that can detect erroneous behaviors without detailed manual specifications?

- There is no single correct output for a given image
- Propose to use metamorphic relation :
 - even if we do not know the correct output of a single input, we might still know the relations between the outputs of multiple inputs
- We need to balance the metamorphic relation:
 - Tight metamorphic relations: false positives
 - Permissive metamorphic relations: false negatives
- Need to strike a balance between two extremes
 - Metamorphic relation: $(\hat{\theta}_i \theta_{ti})^2 \leq \lambda MSE_{orig}$
 - The set of outputs predicted by a model: $\{\theta_{o1}, \theta_{o2}, ..., \theta_{on}\}$
 - The set of manual labels: $\{\hat{\theta}_1, \hat{\theta}_2, ..., \hat{\theta}_n\}$
 - $MSE_{orig} = \frac{1}{n} \sum_{i=1}^{n} (\hat{\theta}_i \theta_{oi})^2$

Implementation

Model	Sub-Model	No. of Neurons	Reported MSE	Our MSE
Chauffeur	CNN LSTM	1427 513	0.06	0.06
Rambo	S1(CNN) S2(CNN) S3(CNN)	1625 3801 13473	0.06	0.05
Epoch	CNN	2500	0.08	0.10

dataset HMB_3.bag [16]

3 DNNs from the Udacity self-driving Challenge :

Rambo : 2nd CNN

Chauffeur: 3rd CNN + LSTM (Long short-term memory)

Epoch: 6th CNN

Steering angle scaled from -1 to 1

Implementation

Model	Sub-Model	No. of Neurons	Reported MSE	Our MSE
Chauffeur	CNN LSTM	1427 513	0.06	0.06
Rambo	S1(CNN) S2(CNN) S3(CNN)	1625 3801 13473	0.06	0.05
Epoch	CNN	2500	0.08	0.10

dataset HMB_3.bag [16]

3 DNNs from the Udacity self-driving Challenge :

Rambo: 2nd CNN

• Chauffeur: 3rd CNN + LSTM (Long short-term memory)

Epoch: 6th CNN

Steering angle scaled from -1 to 1

Why?

Result - Do different input-output pairs result in different neuron coverage?

Model	Sub-Model	Steering Angle	Steering Direction		
		Spearman Correlation	Wilcoxon Test	Effect size (Cohen's d)	
Chauffeur	Overall CNN LSTM	-0.10 (***) 0.28 (***) -0.10 (***)	left (+ve) > right (-ve) (***) left (+ve) < right (-ve) (***) left (+ve) > right (-ve) (***)	negligible negligible negligible	
Rambo	Overall S1 S2 S3	-0.11 (***) -0.19 (***) 0.10 (***) -0.11 (***)	left (+ve) < right (-ve) (***) left (+ve) < right (-ve) (***) not significant not significant	negligible large negligible negligible	
Epoch	N/A	0.78 (***)	left (+ve) < right (-ve) (***)	small	
*** indicates statistical significance with p-value $< 2.2 * 10^{-16}$					

- Correlation between neuron coverage and steering angle?
 - Spearman rank correlation ranges from -1 to 1
 - p-value : probability that the result is caused be chance
 - Authors claim that there is a correlation

Result - Do different input-output pairs result in different neuron coverage?

Model	Sub-Model	Steering Angle	Steering Direction	
		Spearman Correlation	Wilcoxon Test	Effect size (Cohen's d)
Chauffeur	Overall CNN LSTM	-0.10 (***) 0.28 (***) -0.10 (***)	left (+ve) > right (-ve) (***) left (+ve) < right (-ve) (***) left (+ve) > right (-ve) (***)	negligible negligible negligible
Rambo	Overall S1 S2 S3	-0.11 (***) -0.19 (***) 0.10 (***) -0.11 (***)	left (+ve) < right (-ve) (***) left (+ve) < right (-ve) (***) not significant not significant	negligible large negligible negligible
Epoch	N/A	0.78 (***)	left (+ve) < right (-ve) (***)	small
*** indicates statistical significance with p-value $< 2.2 * 10^{-16}$				

Correlation between neuron coverage and steering direction? The neuron coverage varies with steering direction with statistical significance for all the three overall models

Result - Do different realistic image transformations activate different neurons?

- Pick 1000 pictures to synthetize 70,000 new ones by applying different transformation.
- Evaluation:

$$Jaccard\ distance = 1 - \frac{|N1 \cap N2|}{|N1 \cup N2|}$$

T1 and T2: two different transformation on a same picture

N1 : neuron activated with the input T1 N2 : neuron activated with the input T2

Result - Do different realistic image transformations activate different neurons?

4.1 Difference in neuron coverage caused by different image transformations

 Conclusion: different image transformations tend to activate different sets of neurons

Result - Can neuron coverage be further increased by combining different image transformations?

- Cumulative transformations without any guidance
 - Generated a total of 7,000 images from 100 seed images by applying 7 transformations with varying parameters.
 - Compare neuron coverage of synthetized pictures and original ones
- Guided transformation
 - Generated 254, 221, and 864 images from 100 seed images for Chauffeur, Epoch and Rambo. (Why different number?)

Model	Baseline	Cumulative Transformation		1	of guided <i>w.r.t.</i> Cumulative
Chauffeur-CNN Epoch Rambo-S1	658 (46%) 621 (25%) 710 (44%)	1,065 (75%) 1034 (41%) 929 (57%)	1,250 (88%) 1,266 (51%) 1,043 (64%)	104% 47%	17% 22% 12%
Rambo-S2 Rambo-S3	1,146 (30%) 13,008 (97%)	2,210 (58%) 13,080 (97%)	2,676 (70%) 13,150 (98%)	134% 1.1%	$\frac{21\%}{0.5\%}$

 I_{org} : original images

 I_{err} : transformed images whose outputs violate the metamorphic relation

MSE of I_{org} = 0.035, MSE of I_{err} = 0.41

- Can we say that larger MSEs indicate erroneous behaviors?
 - Not all violations can be considered buggy. The correct steering angle can vary widely based on the contents of the transformed image

Original image

Translation(50, 50), Epoch

Original image

Shear(0.4), Rambo

- We have to report bugs only for the transformations where the correct output should not deviate much from the labels of the corresponding seed images
 - Ex : fog, rain, ...

1.1 original

1.2 with added rain

- $|MSE_{(trans, param)} MSE_{org}| \le \epsilon$
- Only consider the transformations that obey the equation for counting erroneous behaviors
- This Filter cannot be applied to fog and rain.
- Guided search is not compatible with the filter ether as we cannot filter out a single transformation

(see Eqn. 2)	Simple Tranformation					Comp Fog	osite Tra Rain	nsformation Guided Search
1 2 3 4 5 6 7 8	15666 4066 1396 501 95 49 13	18520 5033 1741 642 171 85 24	23391 6778 2414 965 330 185 89 34	24952 7362 2627 1064 382 210 105 45	29649 9259 3376 4884 641 359 189 103	9018 6503 5452 4884 4448 4063 3732 3391	6133 2650 1483 997 741 516 287 174	1148 1026 930 872 820 764 721 668
9 10	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} 1 \\ 0 \end{array}$	12 3	19 5	56 23	3070 2801	111 63	637 597

Transformation	Chauffeur	Epoch	Rambo
Simple Transformation			
Blur	3	27	11
Brightness	97	32	15
Contrast	31	12	-
Rotation	-	13	-
Scale	-	10	-
Shear	-	-	23
Translation	21	35	-
Composite Transformation	1		
Rain	650	64	27
Fog	201	135	4112
Guided	89	65	666

Manual verification False Positive:

Model	Simple Transformation	Guided	Rain	Fog	Total
Epoch	14	0	0	0	14
Chauffeur	5	3	12	6	26
Rambo	8	43	11	28	90
Total	27	46	23	34	130

Result - Can retraining DNNs with synthetic images improve accuracy?

- Retrain Epoch model with rain and fog samples
 - Why only Epoch?
 - Why only this 2 transformations?
- Evaluate the original and retrained model with both synthetized and original pictures

Test set	Original MSE	Retrained MSE
original images	0.10	0.09
with fog	0.18	0.10
with rain	0.13	0.07

Conclusion

- Pros:
 - Present DeepTest a testing tools for DNN-driven vehicles.
 - Use neuron coverage to evaluate the testing quality.
 - Synthetize realistic output.
 - Show that synthetic input generated can be used to retrain the DNN
- Cons:
 - Don't maximize neuron coverage for LSTM.
 - Shuffle dataset to train LSTM, Is that a good way ?
 - They did not test the obstruction of the camera with drops or dust

Questions

