第八章 二重积分

考试内容

二重积分的概念、基本性质和计算, 无界区域上简单的反常二重积分(数三).

考试要求

- 1.理解二重积分的概念,了解二重积分的基本性质,了解二重积分的中值定理.
- 2.掌握二重积分的计算方法(直角坐标、极坐标).
- 3.了解无界区域上较简单的反常二重积分并会计算.(数三)

§1.二重积分的概念

一、二重积分的定义

1.定义

设 $f\left(x,y\right)$ 是 闭 区 域 D 上 的 有 界 函 数 , 将 区 域 D 任 意 分 成 n 个 小 闭 区 域 $\Delta\sigma_{1}$, $\Delta\sigma_{2}$, ... $\Delta\sigma_{n}$. 其中, $\Delta\sigma_{i}$ 既表示第 i 个 小 区 域 , 也表示它的面积. 在每个 $\Delta\sigma_{i}$ 上任取一点 (ξ_{i},η_{i}) , 作乘积 $f\left(\xi_{i},\eta_{i}\right)\Delta\sigma_{i}$ $(i=1,2\cdots,n)$, 并作和式 $\sum_{i=1}^{n}f\left(\xi_{i},\eta_{i}\right)\Delta\sigma_{i}$. 若 $\lambda\to 0$ 时,极限 $\lim_{\lambda\to 0}\sum_{i=1}^{n}f\left(\xi_{i},\eta_{i}\right)\Delta\sigma_{i}$ 存在, 其中 λ 为 n 个 小 闭 区 域 的 直 径 中 的 最 大 值 ,则 称 此 极 限 值 为 函 数 $f\left(x,y\right)$ 在 区 域 D 上 的 二 重 积 分 , 记 作 $\iint_{\Omega}f\left(x,y\right)\mathrm{d}\sigma$, 即

$$\iint_{D} f(x, y) d\sigma = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta \sigma_{i}.$$

其中: f(x,y)称之为被积函数, f(x,y)d σ 称之为被积表达式, $d\sigma$ 称之为面积元素,x,y称之为积分变量, D称之为积分区域, $\sum_{i=1}^n f(\xi_i,\eta_i)\Delta\sigma_i$ 称之为积分和式.

- **2.几何意义:** 若 $f(x,y) \geqslant 0$,二重积分表示以 f(x,y) 为曲顶,以 D 为底的曲顶柱体的体积.
- **3.存在性定理:** f(x,y)在闭区域D上连续,则f(x,y)在D上的二重积分存在.

二、二重积分的性质

1.线性性质

$$\iint_{D} [\alpha f(x, y) + \beta g(x, y)] d\sigma = \alpha \iint_{D} f(x, y) d\sigma + \beta \iint_{D} g(x, y) d\sigma.$$

2.积分区域的可加性

若区域D可分为两个部分区域 D_1,D_2 ,则

$$\iint_{D} f(x, y) d\sigma = \iint_{D_{1}} f(x, y) d\sigma + \iint_{D_{2}} f(x, y) d\sigma.$$

3.若 f(x,y)=1, S_D 为区域 D 的面积,则 $\iint_D 1 d\sigma = S_D$.

4.若在D上, $f(x,y) \leqslant g(x,y)$,则有不等式

$$\iint_D f(x, y) d\sigma \leqslant \iint_D g(x, y) d\sigma,$$

特别地,

$$\left| \iint_{D} f(x, y) d\sigma \right| \leq \iint_{D} |f(x, y)| d\sigma.$$

5.估值不等式

设M与m分别是f(x,y)在闭区域D上最大值M和最小值m, σ 是D的面积,则

$$m\boldsymbol{\sigma} \leqslant \iint_{D} f(x, y) d\boldsymbol{\sigma} \leqslant M\boldsymbol{\sigma}.$$

三、二重积分中值定理

设函数 $f\left(x,y\right)$ 在闭区域 D 上连续, S_D 是 D 的面积,则在 D 上至少存在一点 $\left(\xi,\eta\right)$,使得

$$\iint_D f(x, y) d\sigma = f(\xi, \eta) S_D.$$

【例 8.1】设 $D = \{(x,y) | x^2 + y^2 \le 1\}$,比较下面三个二重积分的大小:

$$I_1 = \iint_D \sqrt{x^2 + y^2} d\sigma, I_2 = \iint_D (x^2 + y^2) d\sigma, I_3 = \iint_D (x^2 + y^2)^2 d\sigma.$$

【答案】 $I_1 > I_2 > I_3$.

【解析】积分区域相同,被积函数不同时,比较被积函数的大小.对于 $\forall (x,y) \in D$,

$$(x^2 + y^2)^2 \le x^2 + y^2 \le \sqrt{x^2 + y^2}$$
, 所以, $I_1 > I_2 > I_3$.

【例 8.2】二重积分 $I_i = \iint_{D_i} \sqrt{1-x^2-y^2} \, \mathrm{d}\sigma, i = 1, 2, 3, 4$. $D_i = \left\{ \left(x, y \right) \middle| x^2 + y^2 \leqslant \frac{1}{i} \right\}$,则下列积分中,最大的是().

新抚力 大学生学习与发展中心

(A) I_1 (B) I_2 (C) I_3 (D) I_4

【答案】(A).

【解析】根据二重积分的几何意义可知,被积函数大于零时,若区域之间存在包含关系, 则哪个积分区域大哪个积分值就大.故正确选项为(A).

【例 8.3】设g(x)有连续的导数,g(0)=0, $g'(0)=a\neq 0$,f(x,y)在点(0,0)的某邻

域内连续,则 $\lim_{r\to 0^+} \frac{\iint\limits_{x^2+y^2\leqslant r^2} f(x,y)dxdy}{g(r^2)} =$ (A) $\frac{f(0,0)}{a}$. (B) $\frac{f(0,0)}{2a}$. (C) $\frac{\pi}{a}f(0,0)$. (D) $\frac{\pi}{2a}f(0,0)$. 【答案】(C).

【解析】由二重积分的中值定理可得, $\iint\limits_{x^2+y^2\leqslant r^2}f(x,y)dxdy=\pi r^2f\left(\xi,\eta\right)$,其中 $\left(\xi,\eta\right)$ 为

圆域 $x^2+y^2\leqslant r^2$ 上的一个点.且 f(x,y) 在点 (0,0) 的某邻域内连续,则

 $\lim_{r \to 0^{+}} f(\xi, \eta) = f(0, 0) \qquad \text{.fin} \qquad \lim_{r \to 0^{+}} \frac{r^{2}}{g(r^{2})} = \lim_{r \to 0^{+}} \frac{2r}{2rg'(r^{2})} = \frac{1}{a} \qquad ,$ 以

§2.二重积分的计算

一、二重积分在直角坐标系中的计算

1. 积分区域 D 为 X 型区域

若积分区域D可以用不等式 $a \le x \le b, \varphi_1(x) \le y \le \varphi_2(x)$ 表示,则称区域D为X型区域.此时二重积分可化为:

$$\iint_D f(x, y) d\sigma = \int_a^b dx \int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy.$$

2. 积分区域 D 为 Y 型区域

若积分区域D可以用不等式 $c \le y \le d$, $\varphi_1(y) \le x \le \varphi_2(y)$ 表示,则称区域D为Y型区域. 此时二重积分可化为:

$$\iint_{D} f(x,y) d\sigma = \int_{c}^{d} dy \int_{\varphi_{l}(y)}^{\varphi_{2}(y)} f(x,y) dx.$$

【例 8.4】计算 $\iint_D (x+y) dx dy$, 其中区域 D 是由 x+y=1 与 x 轴、 y 轴所围成的区域.

【答案】
$$\frac{1}{3}$$
.

【解析】看成
$$X$$
 型区域:
$$\iint_{D} (x+y) dx dy = \int_{0}^{1} dx \int_{0}^{1-x} (x+y) dy = \int_{0}^{1} x (1-x) + \frac{(1-x)^{2}}{2} dx = \frac{1}{3}.$$

【例 8.5】计算 $\iint_D xy dx dy$,其中 D 是由抛物线 $y^2 = x$ 及 y = x - 2 所围成的区域.

【答案】 $\frac{45}{8}$.

【解析】易求得交点为(1,-1), (4,2), 看成Y型区域, 因此,

原式 =
$$\int_{-1}^{2} dy \int_{y^2}^{y+2} xy dx = \frac{1}{2} \int_{-1}^{2} \left[y(y+2)^2 - y^5 \right] dy = \frac{45}{8}.$$

二、二重积分在极坐标中的计算

设积分区域 D 可表示成: $\alpha \leqslant \theta \leqslant \beta, r_1(\theta) \leqslant r \leqslant r_2(\theta)$, 其中函数 $r_1(\theta)$, $r_2(\theta)$ 在

$$[\alpha,\beta]$$
上连续.则 $\iint_D f(x,y) d\sigma = \int_{\alpha}^{\beta} d\theta \int_{\varphi_l(\theta)}^{\varphi_2(\theta)} f(r\cos\theta, r\sin\theta) r dr.$

【注】极坐标与直角坐标的关系如下:

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \\ dxdy = rdrd\theta \end{cases}$$

【例 8.6】计算 $\iint_D x dx dy$, 区域 D 分别为如下区域:

- (1) 由 $x^2 + y^2 = 1$ 所围成的区域.
- (2) 由 $x^2 + y^2 = 2x(y \ge 0)$ 与 x 轴围成的区域.

新玩力 大学生学习与发展中心

(3)
$$D = \{(x, y) | x^2 + y^2 \le 4, x^2 + y^2 \ge 2y, x \ge 0, y \ge 0\}$$
.

【答案】(1) 0;(2) $\frac{\pi}{2}$;(3) 2.

【解析】(1) $\iint_{D} x dx dy = \int_{0}^{2\pi} d\theta \int_{0}^{1} r \cos\theta r dr = \frac{1}{3} \int_{0}^{2\pi} \cos\theta d\theta = 0.$

(2)
$$\iint_{D} x dx dy = \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} r \cos\theta r dr = \frac{8}{3} \int_{0}^{\frac{\pi}{2}} \cos^{4}\theta d\theta = \frac{8}{3} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{2}.$$

(3)
$$\iint_{D} x dx dy = \int_{0}^{\frac{\pi}{2}} d\theta \int_{2\sin\theta}^{2} r\cos\theta r dr = \frac{8}{3} \int_{0}^{\frac{\pi}{2}} (1 - \sin^{3}\theta) \cos\theta d\theta = \frac{8}{3} (1 - \frac{1}{4}) = 2.$$

【例 8.7】计算 $\iint_D y dx dy$, 其中区域 D 是由 x = -2, y = 0, y = 2 以及 $x = -\sqrt{2y - y^2}$ 所围成的区域.

【答案】
$$4-\frac{\pi}{2}$$
.

【解析】
$$\iint_{D} y dx dy = \int_{-2}^{0} dx \int_{0}^{2} y dy - \int_{\frac{\pi}{2}}^{\pi} d\theta \int_{0}^{2\sin\theta} r \sin\theta r dr = 4 - \frac{\pi}{2}.$$

三、无界区域上的二重积分(数学三)

一般原理:用有界区域上的二重积分取极限来定义无界区域上的二重积分.

设函数 f(x,y) 在无界区域 D 上有定义,且在区域 D 的任何有界部分上 f(x,y) 的二重 积分 存在,则函数 f(x,y) 在无界区域 D 上的二重积分 $\iint\limits_D f(x,y) \mathrm{d}\sigma = \lim\limits_{D_\Gamma \to D} \iint\limits_{D_\Gamma} f(x,y) \mathrm{d}\sigma.$

【例 8.8】计算二重积分 $\iint_D e^x xy dx dy$,其中 D 是以曲线 $y = \sqrt{x}$, $y = \frac{1}{\sqrt{x}}$ 及 y 轴为边界的无界区域.

【答案】
$$\frac{1}{2}$$
.

【解析】
$$\iint_{D} e^{x} xy dx dy = \int_{0}^{1} x e^{x} dx \int_{\sqrt{x}}^{\frac{1}{\sqrt{x}}} y dy = \frac{1}{2} \int_{0}^{1} (1 - x^{2}) e^{x} dx$$
$$= \frac{1}{2} e^{x} (1 - x^{2}) \Big|_{0}^{1} + \int_{0}^{1} x e^{x} dx = \frac{1}{2}.$$

§3.二重积分的对称性

一、二重积分的奇偶对称性

1. 设 f(x, y) 在有界闭区域 D 上连续,若 D 关于 x 轴对称,则

$$\iint_{D} f(x,y) dxdy = \begin{cases} 0, & f(x,y) 关于 y 为奇函数, \\ 2\iint_{D_{1}} f(x,y) dxdy, & f(x,y) 关于 y 为偶函数. \end{cases}$$

其中 D_1 为D在x轴上半平面部分.

2. 设 f(x, y) 在有界闭区域 D 上连续,若 D 关于 y 轴对称,则

$$\iint_{D} f(x,y) dxdy = \begin{cases} 0, & f(x,y) 关于 x 为奇函数, \\ 2\iint_{D_{2}} f(x,y) dxdy, & f(x,y) 关于 x 为偶函数. \end{cases}$$

其中 D_2 为D在y轴的右半平面部分.

【例 8.9】(1)已知
$$D = \{(x, y) | y \ge -x, y \le x, x \le 1\}$$
, 计算 $\iint_D e^x \sin y dx dy$; (2)已知 $D = \{(x, y) | x^2 + y^2 \le 2y\}$, 计算 $\iint_D x^3 y^2 dx dy$.

【答案】(1) 0;(2) 0.

【解析】(1) 积分区域 D 关于 x 轴对称, $f(x,y) = e^x \sin y$ 是关于 y 的奇函数,故

$$\iint_D e^x \sin y dx dy = 0.$$

(2) 积分区域 D 关于 Y 轴对称, $f(x,y) = x^3y^2$ 是关于 x 的奇函数,故

$$\iint_D x^3 y^2 dx dy = 0.$$

【例 8.10】设区域 $D = \{(x,y) | x^2 + y^2 \le 1, x \ge 0 \}$,计算二重积分

$$I = \iint_{D} \frac{1 + xy}{1 + x^2 + y^2} dxdy.$$

【答案】 $\frac{\pi}{2}\ln 2$.

【解析】积分区域关于 x 轴对称, $\frac{xy}{1+x^2+y^2}$ 是 y 的奇函数,从而 $\iint_D \frac{xy}{1+x^2+y^2} dxdy = 0$.

$$I = \iint_{D} \frac{1}{1+x^{2}+y^{2}} dxdy = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{1} \frac{r}{1+r^{2}} dr = \frac{\pi}{2} \ln(1+r^{2}) \Big|_{0}^{1} = \frac{\pi}{2} \ln 2.$$

【例 8.11】求二重积分 $\iint_D y \left[1 + x e^{\frac{1}{2}(x^2 + y^2)}\right] dxdy$ 的值,其中 D 是由直线 y = x, y = -1, x = 1 围成的平面区域.

【答案】
$$-\frac{2}{3}$$
.

【解析】
$$\iint_D y \left[1 + x e^{\frac{1}{2}(x^2 + y^2)} \right] dx dy = \iint_D y dx dy + \iint_D x y e^{\frac{1}{2}(x^2 + y^2)} dx dy , 其中,$$

$$\iint_{D} y dx dy = \int_{-1}^{1} dy \int_{y}^{1} y dx = \int_{-1}^{1} y (1 - y) dy = -\frac{2}{3}$$

添加 y = -x 后结合区域的对称性和被积函数的奇偶性知 $\iint_D xye^{\frac{1}{2}(x^2+y^2)} dxdy = 0$,于是

$$\iint_{D} y \left[1 + x e^{\frac{1}{2}(x^{2} + y^{2})} \right] dx dy = -\frac{2}{3}.$$

二、二重积分的轮换对称性

设f(x,y)在有界闭区域D上连续,若D关于直线y=x对称,则

$$\iint\limits_D f(x, y) \mathrm{d}x \mathrm{d}y = \iint\limits_D f(y, x) \mathrm{d}x \mathrm{d}y \ .$$

【例 8.12】已知区域D是由圆 $x^2 + y^2 = 4$ 在第一象限所围的部分,计算 $\iint_D \frac{x}{x+y} dxdy$.

【答案】 $\frac{\pi}{2}$.

【解析】由轮换对称性,所求 $I = \iint_D \frac{x}{x+y} dxdy = \iint_D \frac{y}{y+x} dxdy$,所以,

$$2I = \iint_D 1 dx dy = S_D = \frac{1}{4} \cdot 4\pi = \pi$$
, 所以, 所求积分为 $\frac{\pi}{2}$.

【例 8.13】 计算 $I = \iint_D (x+y)^2 dxdy$, 其中 $D = \{(x,y) \mid -1 \leqslant x \leqslant 1, -1 \leqslant y \leqslant 1\}$.

【答案】 $\frac{8}{3}$.

【解析】
$$\iint_D (x+y)^2 dxdy = \iint_D x^2 + 2xy + y^2 dxdy.$$

因为积分区域关于 x 轴对称, 2xy 是关于 y 的奇函数,从而 $\iint_{D} 2xy dx dy = 0$.所以,

$$\iint_{D} (x+y)^{2} dxdy = \iint_{D} x^{2} + y^{2} dxdy = 4 \iint_{D_{1}} x^{2} + y^{2} dxdy, \text{ 其中 } D_{1} \neq D \text{ 在第一象限的部分.}$$

由轮换对称性,
$$\iint\limits_{D} (x+y)^2 \mathrm{d}x \mathrm{d}y = 4 \iint\limits_{D_1} x^2 + y^2 \mathrm{d}x \mathrm{d}y = 8 \iint\limits_{D_1} x^2 \mathrm{d}x \mathrm{d}y = 8 \int_0^1 \mathrm{d}x \int_0^1 x^2 \mathrm{d}y = \frac{8}{3}.$$