Limits

Example

Consider the standard function $f(x) = x^2$:

What happens to f(x) as $x \to 2$ (but $x \ne 2$)?

x	$\int f(x)$
2.1	4.41
2.01	4.0401
2.001	4.004001
2.0001	4.00040001
2	???
1.9999	3.99960001
1.999	3.996001
1.99	3.9601
1.9	3.61

It appears that $f(x) \to 4$ as $x \to 2$ (from either direction).

In the previous example, it turns out that f(x) is actually defined at x=2 and furthermore, f(2)=4. This special case will be used later as a formal definition of *continuity*. However, as previously stated, we don't actually care about the function value at x=2. In fact, the function might not even be defined at the x value in question.

Example

Consider the rational function:

$$f(x) = \frac{x^2(x-2)}{x-2}$$

Now, as $x\to 2$, the above table of values still applies and so it appears that $f(x)\to 4$ as $x\to 2$ (from either direction) even though f(2) is not defined. To reiterate, we do not care what actually happens at x=2. In fact, let's define f(2)=1:

$$f(x) = \begin{cases} \frac{x^2(x-2)}{x-2}, & x \neq 2\\ 1, & x = 2 \end{cases}$$

Still, $f(x) \to 4$ as $x \to 2$, regardless of the fact that f(2) = 1. Once again, we do not care about the function at x = 2; we only care what happens arbitrarily close to x = 2.

Example

Consider the function:

$$f(x) = \frac{\sin x}{x}$$

As $x \to 0$:

x	f(x)
1	0.841471
0.1	0.998334
0.01	0.999983
0	???
-0.01	0.999983
-0.1	0.998334
-1	0.841471

It appears that $f(x) \to 1$ as $x \to 0$.

In the previous two examples, when the functions are evaluated at the point in question the result is $\frac{0}{0}$, which is one of the so-called *indeterminate forms* $(\frac{0}{0},\frac{\infty}{\infty},\infty-\infty,1^{\infty})$. When the resulting form is indeterminate, additional effort is required to determine the actual behavior arbitrarily close to the point.

Definition: Limit of a Function at a Point

To say that L is the *limit* of a function f(x) at x=a, denoted by $\lim_{x\to a} f(x)=L$, means that $f(x)\to L$ as $x\to a$ (but $x\ne a$):

$$\forall \epsilon > 0, \exists \delta > 0, \forall x \in \mathbb{R}, 0 < |x - a| < \delta \implies |f(x) - L| < \epsilon$$

Select an $\epsilon>0$ and then find a $\delta>0$ such that f(x) is completely contained in the bounding box $(a-\delta,a+\delta)\times(L-\epsilon,L+\epsilon)$.

It is tempting to think that $\epsilon \to 0$ forces $\delta \to 0$ and that the bounding box converges on the point a,L; however, this is not always the case.

Example

Consider the constant function f(x) = 3 and a = 2:

For any ϵ , any δ is sufficient.

Example

Consider the function $f(x) = x^2 + 2x - 1$ and note that $\lim_{x \to 1} f(x) = 2$. Find a suitable δ to two decimal places for $\epsilon = 0.1$.

Although this can be done analytically, the algebra tends to get messy. A convenient shortcut is to use a graphing calculator. The general procedure is as follows:

1. Graph the function and mark the ϵ -neighborhood around the limit by graphing the constant functions y=2+0.1=2.1 and y=2-0.1=1.9. Adjust the Window so that there is sufficient separation to see all three graphs.

2. Use the *intersection* function to determine the minimum and maximum x values around x=1 such that the graph of the function is completely within the marked ϵ -neighborhood.

$$x_1 = 0.9748418$$

$$x_2 = 1.0248457$$

3. Calculate the distance of each endpoint from x = 1:

$$\delta_1 = 1.024845 - 1 = 0.0248457$$

$$\delta_2 = 1 - 0.9748418 = 0.0251582$$

4. Select the smaller of the two distances for δ :

$$\delta = \min\{\delta_1, \delta_2\} = 0.0248457$$

5. Be sure to round down to stay within the selected interval.

$$\delta = 0.024$$

Therefore, if
$$|x - 1| < 0.024$$
 then $|f(x) - 2| < 0.1$.

Find a suitable δ to four decimal places for $\epsilon=0.01$.

$$\delta_1 = 1.0024984 - 1 = 0.0024984$$

$$\delta_2 = 1 - 0.9974984 = 0.0025016$$

$$\delta = \min\{\delta_1, \delta_2\} = 0.0024984$$

 $\delta = 0.0024.$

Therefore, if |x - 1| < 0.0024 then |f(x) - 2| < 0.01.

Example

Solve the previous problem for $\epsilon = 0.1$ analytically.

$$|f(x) - 2| < 0.1$$

$$|(x^2 + 2x - 1) - 2| < 0.1$$

$$|x^2 + 2x - 3| < 0.1$$

$$-0.1 < x^2 + 2x - 3 < 0.1$$

$$x^{2} + 2x - 3 > -0.1$$

$$x^{2} + 2x - 2.9 > 0$$

$$x = \frac{-2 \pm \sqrt{2^{2} - 4(1)(-2.9)}}{2(1)} = -1 \pm \sqrt{3.9}$$

$$x = -2.9748, 0.9748$$

$$0^{2} + 2(0) - 2.9 = -2.9 < 0$$

$$x \in (-\infty, -2.9748) \cup (0.9748, \infty)$$

$$x^{2} + 2x - 3 < 0.1$$

$$x^{2} + 2x - 3.1 < 0$$

$$x = \frac{-2 \pm \sqrt{2^{2} - 4(1)(-3.1)}}{2(1)} = -1 \pm \sqrt{4.1}$$

$$x = -3.0248, 1.0248$$

$$0^{2} + 2(0) - 3.1 = -3.1 < 0$$

$$x \in (-3.0248, 1.0248)$$

$$x \in ((-\infty, -2.9748) \cup (0.9748, \infty)) \cap (-3.0248, 1.0248)$$

$$0.9748 < x < 1.0248$$

$$\delta_1 = 1 - 0.9748 = 0.0252$$

$$\delta_2 = 1.0248 - 1 = 0.0248$$

$$\delta = \min\{\delta_1, \delta_2\} = 0.0248$$

$$\delta = 0.248$$

However, proving that $\lim_{x\to c}f(x)=L$ cannot be done by example — the result must hold for all $\epsilon>0.$

Strategy:

- 1. Assume that $\epsilon > 0$.
- 2. Rewrite $f(x) L < \epsilon$ as $g(x c) < \epsilon$ for $0 < |x c| < \delta$.
- 3. Consider $g(\delta) = \epsilon$.
- 4. Solve for $\delta(\epsilon)$.
- 5. Show that the selected δ works.

Helpful tools:

- 1. x = (x c) + c
- 2. Triangle inequality: |a+b| < |a| + |b|

Template:

- 0. Determine a suitable $\delta(\epsilon)$ on the side.
- 1. Assume that $\epsilon > 0$.
- 2. Let $\delta = \delta(\epsilon)$ previously found.
- 3. Show that if $0 < |x c| < \delta$ then f(x) L < e.

Example

Prove:
$$\lim_{x\to 1}(2x+5)=7$$

$$|(2x+5)-7|=|2x-2|=2|x-1|<\epsilon$$

$$2\delta=\epsilon$$

$$\delta = \frac{\epsilon}{2}$$

Assume that $\epsilon > 0$.

Let
$$\delta = \frac{\epsilon}{2}$$
.

Assume that
$$0 < |x - 1| < \delta$$
.

$$|f(x) - L| = |(2x + 5) - 7| = |2x - 2| = 2|x - 2| < 2\delta = 2\frac{\epsilon}{2} = \epsilon$$

Example

Prove:
$$\lim_{x \to 1} (x^2 + 2x - 1) = 2$$

$$|(x^{2} + 2x - 1) - 2)| = |x^{2} + 2x - 3|$$

$$= |(x - 1)(x + 3)|$$

$$= |x - 1||x + 3|$$

$$= |x - 1||(x - 1) + 4|$$

$$\leq |x - 1|(|x - 1| + 4)$$

$$= |x - 1|^{2} + 4|x - 1|$$

$$< \epsilon$$

$$\delta^{2} + 4\delta = \epsilon$$

$$\delta^{2} + 4\delta - \epsilon = 0$$

$$\delta = \frac{-4 \pm \sqrt{4^{2} - 4(1)(-\epsilon)}}{2(1)} = -2 \pm \sqrt{4 + \epsilon}$$

$$\delta = \sqrt{4 + \epsilon} - 2$$

Assume
$$\epsilon > 0$$
.
Let $\delta = \sqrt{4 + \epsilon} - 2$.

Assume that $0 < |x - 1| > \delta$

$$|f(x) - L| = |(x^2 + 2x - 1) - 2|$$

$$= |x^2 + 2x - 3|$$

$$= |(x - 1)(x + 3)|$$

$$= |x - 1||x + 3|$$

$$= |x - 1||(x - 1) + 4|$$

$$\leq |x - 1|(|x - 1| + 4)$$

$$< \delta(\delta + 4)$$

$$= \delta^2 + 4\delta$$

$$= (\sqrt{4 + \epsilon} - 2)^2 + 4(\sqrt{4 + \epsilon} - 2)$$

$$= (4 + \epsilon) - 4\sqrt{4 + \epsilon} + 4 + 4\sqrt{4 + \epsilon} - 8$$

$$= \epsilon$$

Example

Prove: $\lim_{x \to e} \ln(x) = 1$