## Importing necessary libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

## Importing the dataset



### Out[5]:

|   | Passengerld | Survived | Pclass | Name                                                          | Sex    | Age  | SibSp | Parch | Ticket              | Fare    |
|---|-------------|----------|--------|---------------------------------------------------------------|--------|------|-------|-------|---------------------|---------|
| 0 | 1           | 0        | 3      | Braund,<br>Mr. Owen<br>Harris                                 | male   | 22.0 | 1     | 0     | A/5 21171           | 7.2500  |
| 1 | 2           | 1        | 1      | Cumings,<br>Mrs. John<br>Bradley<br>(Florence<br>Briggs<br>Th | female | 38.0 | 1     | 0     | PC 17599            | 71.2833 |
| 2 | 3           | 1        | 3      | Heikkinen,<br>Miss.<br>Laina                                  | female | 26.0 | 0     | 0     | STON/O2.<br>3101282 | 7.9250  |
| 3 | 4           | 1        | 1      | Futrelle,<br>Mrs.<br>Jacques<br>Heath<br>(Lily May<br>Peel)   | female | 35.0 | 1     | 0     | 113803              | 53.1000 |
| 4 | 5           | 0        | 3      | Allen, Mr.<br>William<br>Henry                                | male   | 35.0 | 0     | 0     | 373450              | 8.0500  |
| 4 |             |          |        |                                                               |        |      |       |       |                     | •       |

In [6]: ▶

data.tail()

### Out[6]:

|     | Passengerld | Survived | Pclass | Name                                                 | Sex    | Age  | SibSp | Parch | Ticket        | Fare  | C |
|-----|-------------|----------|--------|------------------------------------------------------|--------|------|-------|-------|---------------|-------|---|
| 886 | 887         | 0        | 2      | Montvila,<br>Rev.<br>Juozas                          | male   | 27.0 | 0     | 0     | 211536        | 13.00 | _ |
| 887 | 888         | 1        | 1      | Graham,<br>Miss.<br>Margaret<br>Edith                | female | 19.0 | 0     | 0     | 112053        | 30.00 |   |
| 888 | 889         | 0        | 3      | Johnston,<br>Miss.<br>Catherine<br>Helen<br>"Carrie" | female | NaN  | 1     | 2     | W./C.<br>6607 | 23.45 |   |
| 889 | 890         | 1        | 1      | Behr, Mr.<br>Karl<br>Howell                          | male   | 26.0 | 0     | 0     | 111369        | 30.00 |   |
| 890 | 891         | 0        | 3      | Dooley,<br>Mr.<br>Patrick                            | male   | 32.0 | 0     | 0     | 370376        | 7.75  |   |
| 4   |             |          |        |                                                      |        |      |       |       |               | •     | • |

In [7]: ▶

data.describe()

### Out[7]:

|       | Passengerld | Survived   | Pclass     | Age        | SibSp      | Parch      | Fare       |
|-------|-------------|------------|------------|------------|------------|------------|------------|
| count | 891.000000  | 891.000000 | 891.000000 | 714.000000 | 891.000000 | 891.000000 | 891.000000 |
| mean  | 446.000000  | 0.383838   | 2.308642   | 29.699118  | 0.523008   | 0.381594   | 32.204208  |
| std   | 257.353842  | 0.486592   | 0.836071   | 14.526497  | 1.102743   | 0.806057   | 49.693429  |
| min   | 1.000000    | 0.000000   | 1.000000   | 0.420000   | 0.000000   | 0.000000   | 0.000000   |
| 25%   | 223.500000  | 0.000000   | 2.000000   | 20.125000  | 0.000000   | 0.000000   | 7.910400   |
| 50%   | 446.000000  | 0.000000   | 3.000000   | 28.000000  | 0.000000   | 0.000000   | 14.454200  |
| 75%   | 668.500000  | 1.000000   | 3.000000   | 38.000000  | 1.000000   | 0.000000   | 31.000000  |
| max   | 891.000000  | 1.000000   | 3.000000   | 80.000000  | 8.000000   | 6.000000   | 512.329200 |
| 4     |             |            |            |            |            |            | <b>•</b>   |

In [8]: ▶

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
```

| #    | Column        | Non-Null Count   | Dtype   |
|------|---------------|------------------|---------|
|      |               |                  |         |
| 0    | PassengerId   | 891 non-null     | int64   |
| 1    | Survived      | 891 non-null     | int64   |
| 2    | Pclass        | 891 non-null     | int64   |
| 3    | Name          | 891 non-null     | object  |
| 4    | Sex           | 891 non-null     | object  |
| 5    | Age           | 714 non-null     | float64 |
| 6    | SibSp         | 891 non-null     | int64   |
| 7    | Parch         | 891 non-null     | int64   |
| 8    | Ticket        | 891 non-null     | object  |
| 9    | Fare          | 891 non-null     | float64 |
| 10   | Cabin         | 204 non-null     | object  |
| 11   | Embarked      | 889 non-null     | object  |
| dtyp | es: float64(2 | ), int64(5), obj | ect(5)  |
| memo | ry usage: 83. | 7+ KB            |         |

## **Checking for null values**

### This can be done by,

- 1. deleting null values
- 2. deleting row/column
- 3. replace with mean/median or mode

```
In [9]:
data.isnull().any()
```

#### Out[9]:

| PassengerId | False |
|-------------|-------|
| Survived    | False |
| Pclass      | False |
| Name        | False |
| Sex         | False |
| Age         | True  |
| SibSp       | False |
| Parch       | False |
| Ticket      | False |
| Fare        | False |
| Cabin       | True  |
| Embarked    | True  |
| dtype: bool |       |

### We find that columns Age, Cabin and Embarked contain null values.

```
M
In [10]:
data.isnull().sum()
Out[10]:
PassengerId
                 0
Survived
                 0
Pclass
                 0
Name
                 0
Sex
                 0
               177
Age
SibSp
                 0
Parch
                 0
Ticket
                 0
                 0
Fare
Cabin
               687
Embarked
                 2
dtype: int64
In [11]:
                                                                                         H
new_data=data
new_data['Age']=new_data['Age'].fillna(new_data['Age'].mean())
new data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
 #
     Column
                  Non-Null Count Dtype
---
 0
     PassengerId 891 non-null
                                   int64
 1
     Survived
                  891 non-null
                                   int64
 2
     Pclass
                  891 non-null
                                   int64
 3
     Name
                  891 non-null
                                   object
 4
     Sex
                  891 non-null
                                   object
 5
                                   float64
                  891 non-null
     Age
                  891 non-null
                                   int64
 6
     SibSp
 7
     Parch
                  891 non-null
                                   int64
 8
     Ticket
                  891 non-null
                                   object
 9
     Fare
                  891 non-null
                                   float64
 10
    Cabin
                  204 non-null
                                   object
     Embarked
                  889 non-null
                                   object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
                                                                                         M
In [12]:
new_data['Cabin']=new_data['Cabin'].fillna('Unknown',inplace=True)
```

```
In [13]:
                                                                                      M
new_data['Embarked']=new_data['Embarked'].fillna('Embarked',inplace=True)
In [14]:
                                                                                      M
new_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
#
    Column
                 Non-Null Count Dtype
                  -----
    PassengerId 891 non-null
                                 int64
0
 1
    Survived
                 891 non-null
                                 int64
 2
    Pclass
                  891 non-null
                                 int64
 3
    Name
                  891 non-null
                                 object
 4
    Sex
                  891 non-null
                                 object
 5
                                 float64
    Age
                 891 non-null
                                 int64
 6
                  891 non-null
    SibSp
 7
    Parch
                  891 non-null
                                 int64
 8
                  891 non-null
                                 object
    Ticket
 9
    Fare
                  891 non-null
                                 float64
 10 Cabin
                  0 non-null
                                 object
 11 Embarked
                 0 non-null
                                 object
```

### **Data Visualization**

memory usage: 83.7+ KB

dtypes: float64(2), int64(5), object(5)

```
In [15]:

corr=data.corr()
corr
```

#### Out[15]:

|             | Passengerld | Survived  | Pclass    | Age       | SibSp     | Parch     | Fare      |
|-------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Passengerld | 1.000000    | -0.005007 | -0.035144 | 0.033207  | -0.057527 | -0.001652 | 0.012658  |
| Survived    | -0.005007   | 1.000000  | -0.338481 | -0.069809 | -0.035322 | 0.081629  | 0.257307  |
| Pclass      | -0.035144   | -0.338481 | 1.000000  | -0.331339 | 0.083081  | 0.018443  | -0.549500 |
| Age         | 0.033207    | -0.069809 | -0.331339 | 1.000000  | -0.232625 | -0.179191 | 0.091566  |
| SibSp       | -0.057527   | -0.035322 | 0.083081  | -0.232625 | 1.000000  | 0.414838  | 0.159651  |
| Parch       | -0.001652   | 0.081629  | 0.018443  | -0.179191 | 0.414838  | 1.000000  | 0.216225  |
| Fare        | 0.012658    | 0.257307  | -0.549500 | 0.091566  | 0.159651  | 0.216225  | 1.000000  |

In [16]: ▶

```
plt.subplots(figsize=(18,9))
sns.heatmap(corr,annot=True)
```

#### Out[16]:

#### <AxesSubplot:>



### **Outlier Detection**

In [17]: ▶

sns.boxplot(data.Age)

C:\Users\ishan\anaconda3\lib\site-packages\seaborn\\_decorators.py:36: Fut ureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing othe r arguments without an explicit keyword will result in an error or misint erpretation.

warnings.warn(

#### Out[17]:

<AxesSubplot:xlabel='Age'>



## **Splitting Dependent and Independent variables**

In [18]: ▶

x=data.iloc[:,2:9]
y=data.iloc[:,9]

```
In [19]: 
x.head()
```

#### Out[19]:

|     | Pclass | Name                                              | Sex    | Age  | SibSp | Parch | Ticket              |  |
|-----|--------|---------------------------------------------------|--------|------|-------|-------|---------------------|--|
| 0   | 3      | Braund, Mr. Owen Harris                           | male   | 22.0 | 1     | 0     | A/5 21171           |  |
| 1   | 1      | Cumings, Mrs. John Bradley (Florence<br>Briggs Th | female | 38.0 | 1     | 0     | PC 17599            |  |
| 2   | 3      | Heikkinen, Miss. Laina                            | female | 26.0 | 0     | 0     | STON/O2.<br>3101282 |  |
| 3   | 1      | Futrelle, Mrs. Jacques Heath (Lily May Peel)      | female | 35.0 | 1     | 0     | 113803              |  |
| 4   | 3      | Allen, Mr. William Henry                          | male   | 35.0 | 0     | 0     | 373450              |  |
| In  | [20]:  |                                                   |        |      |       |       |                     |  |
| y.h | ead()  |                                                   |        |      |       |       |                     |  |

#### Out[20]:

0 7.2500 1 71.2833 2 7.9250 3 53.1000 4 8.0500

Name: Fare, dtype: float64

# **Perform Encoding**

### We can perform label Encoding on Sex column

```
In [21]:
from sklearn.preprocessing import LabelEncoder

In [22]:
le=LabelEncoder()

In [23]:
x['Sex']=le.fit_transform(x['Sex'])
```

```
M
In [24]:
x['Sex']
Out[24]:
0
       1
1
       0
2
       0
3
       0
       1
886
       1
887
       0
888
       0
       1
889
890
Name: Sex, Length: 891, dtype: int32
In [25]:
                                                                                            H
x['Sex'].value_counts()
Out[25]:
1
     577
0
     314
Name: Sex, dtype: int64
In [26]:
                                                                                            H
```

### Out[26]:

x.head()

|   | Pclass | Name                                              | Sex | Age  | SibSp | Parch | Ticket              |
|---|--------|---------------------------------------------------|-----|------|-------|-------|---------------------|
| 0 | 3      | Braund, Mr. Owen Harris                           | 1   | 22.0 | 1     | 0     | A/5 21171           |
| 1 | 1      | Cumings, Mrs. John Bradley (Florence<br>Briggs Th | 0   | 38.0 | 1     | 0     | PC 17599            |
| 2 | 3      | Heikkinen, Miss. Laina                            | 0   | 26.0 | 0     | 0     | STON/O2.<br>3101282 |
| 3 | 1      | Futrelle, Mrs. Jacques Heath (Lily May Peel)      | 0   | 35.0 | 1     | 0     | 113803              |
| 4 | 3      | Allen, Mr. William Henry                          | 1   | 35.0 | 0     | 0     | 373450              |

```
In [27]:
x.Pclass.value_counts()

Out[27]:
3     491
1     216
2     184
Name: Pclass, dtype: int64
```

### We can perform one hot encoding on Pclass cloumn

```
In [28]:
                                                                                     M
x.shape
Out[28]:
(891, 7)
In [29]:
                                                                                     H
Pclass=pd.get_dummies(x['Pclass'])
In [38]:
                                                                                     M
Pclass
Out[38]:
     1 2 3
       0
    0 0 1
    1 0 0
    0 0 1
886
    0 1 0
887
          0
        0
888
    0 0 1
889
     1 0
    0 0 1
890
891 rows × 3 columns
```

| In [44]: | М |
|----------|---|
| x.head() |   |

#### Out[44]:

|   | Pclass | Name                                                 | Sex | Age  | SibSp | Parch | Ticket              | 2 | 3 | 1 | 2 | 3 |
|---|--------|------------------------------------------------------|-----|------|-------|-------|---------------------|---|---|---|---|---|
| 0 | 3      | Braund, Mr. Owen Harris                              | 1   | 22.0 | 1     | 0     | A/5 21171           | 0 | 1 | 0 | 0 | 1 |
| 1 | 1      | Cumings, Mrs. John<br>Bradley (Florence Briggs<br>Th | 0   | 38.0 | 1     | 0     | PC 17599            | 0 | 0 | 1 | 0 | 0 |
| 2 | 3      | Heikkinen, Miss. Laina                               | 0   | 26.0 | 0     | 0     | STON/O2.<br>3101282 | 0 | 1 | 0 | 0 | 1 |
| 3 | 1      | Futrelle, Mrs. Jacques<br>Heath (Lily May Peel)      | 0   | 35.0 | 1     | 0     | 113803              | 0 | 0 | 1 | 0 | 0 |
| 4 | 3      | Allen, Mr. William Henry                             | 1   | 35.0 | 0     | 0     | 373450              | 0 | 1 | 0 | 0 | 1 |

## Splitting into training and testing dataset

```
In [48]:
#890 rows
#training data 700-800
#testing data 200-300
from sklearn.model_selection import train_test_split
```

```
In [52]:
```

x\_train,x\_test,y\_train,y\_test=train\_test\_split(x,y,test\_size=0.2,random\_state=0)
x\_train.shape,y\_train.shape,x\_test.shape,y\_test.shape

#### Out[52]:

((712, 12), (712,), (179, 12), (179,))

## **Feature Scaling**

```
In [1]: ▶
```

from sklearn.preprocessing import StandardScaler
sc=StandardScaler()

```
In [32]: ▶
```

x[['Age','SibSp']]=sc.fit\_transform(x[['Age','SibSp']])

In [33]: x.head()

### Out[33]:

|    | Pclass | Name                                              | Sex | Age       | SibSp     | Parch | Ticket              |
|----|--------|---------------------------------------------------|-----|-----------|-----------|-------|---------------------|
| 0  | 3      | Braund, Mr. Owen Harris                           | 1   | -0.592481 | 0.432793  | 0     | A/5 21171           |
| 1  | 1      | Cumings, Mrs. John Bradley<br>(Florence Briggs Th | 0   | 0.638789  | 0.432793  | 0     | PC 17599            |
| 2  | 3      | Heikkinen, Miss. Laina                            | 0   | -0.284663 | -0.474545 | 0     | STON/O2.<br>3101282 |
| 3  | 1      | Futrelle, Mrs. Jacques Heath (Lily May Peel)      | 0   | 0.407926  | 0.432793  | 0     | 113803              |
| 4  | 3      | Allen, Mr. William Henry                          | 1   | 0.407926  | -0.474545 | 0     | 373450              |
| In | []:    |                                                   |     |           |           |       |                     |
|    |        |                                                   |     |           |           |       |                     |