Московский физико-технический институт Физтех-школа радиотехники и компьютерных технологий

Техническое задание курсового проекта Инструмент параллельной обработки изображения

Работу выполнил:

Шаверин Иван Б01-306

Содержание

1	Цел	ть курсового проекта	3
2	Общая идея задачи Основные подзадачи Детальное описание подзадач		3
3			3
4			
	4.1	Написание алгоритмов	3
	4.2	Распараллеливание вычислений	4
	4.3	Реализация загрузки и сохранения изображения;	4
	4.4	Разработка интерфейса	4
	4.5	Реализация наложения фильтров друг на друга	4
5	Ист	пользуемые программные и технические средства	4

1 Цель курсового проекта

Цель проекта — разработка интерактивного графического приложения для базовой обработки изображений с возможностью параллельного выполнения фильтрации.

2 Общая идея задачи

Разработать графический редактор с интуитивно понятным пользователю интерфейсом. Программа позволяет загрузить изображение и преобразовать его, изменив контрастность, яркость, повысив размытие, наложив другие фильтры.

С помощью распараллеливания вычислений между несколькими потоками исполнения есть возможность оптимизировать и ускорить обработку данных.

После редактирования изображение пользователь может сохранить результата работы.

3 Основные подзадачи

- Написание алгоритмов обработки изображения используя специализированные библиотеки;
- Распараллеливание вычислений между несколькими потоками;
- Реализация загрузки и сохранения изображения;
- Разработка удобного, понятного, и знакомого пользователю графического интерфейса;
- Реализация наложения фильтров друг на друга;

4 Детальное описание подзадач

4.1 Написание алгоритмов

Найди методы преобразования изображения, представленного в матричной форме RGB для повышения яркости, констрастности, и размытия изображения.

4.2 Распараллеливание вычислений

Эффективно разбить обработку единого изображения между несколькими потоками, количество которых обеспечивает максимальную производительность.

4.3 Реализация загрузки и сохранения изображения;

Создание простого програмного интерфейса для загрузки изображения в матричном виде и запись матрицы изображения в файл.

4.4 Разработка интерфейса

Необходимо реализовать способ выбора нужных пользователю фильтров.

4.5 Реализация наложения фильтров друг на друга

Необходима реализация переменных состояния изображения, для запоминания наложенных на него фильтров.

5 Используемые программные и технические средства

- Язык программирования: С++;
- Библиотеки: Qt5 (Widgets, GUI), OpenCV, thread;
- Средства контроля версий: Git (GitHub)
- Операционная система: Linux (Ubuntu);
- Система сборки: СМаке
- Средства тестирования: Google Test