工程化学

第五章 溶液中的化学反应 和水体保护

第五章作业

5.1 -P205: 练习题5, 6, 7

5.2 - P216: 练习题3, 4, 5, 6, 7, 8, 9

- >5.1 弱酸弱碱溶液及其应用
- ▶5.2 沉淀溶解反应、配位反应及其应用
- ❖5.3 相平衡和非水溶液化学反应及其应用
- ✓5.4 水质与水保保护

5.1 弱酸弱碱溶液及其应用

一、酸碱理论

什么是酸?什么是碱?

电离理论 一 质子理论 一 电子理论

酸碱质子理论

1923年由化学家布朗斯特(Brφnsted J. N. 丹麦) 和化学家劳莱 (Lowry T. M. 英国) 提出了酸碱质子理论,它认为:

凡是能够提供质子的分子或离子都是酸;凡是能够接受质子的分子或离子都是碱。

酸: HAc、HCl、H₂PO₄-、NH₄+

碱: NH_3 、 $C1^-$ 、 HPO_4^{2-}

共轭酸碱对

 $HAc-Ac^{-}$, $H_{3}O^{+}-H_{2}O$, $H_{2}O-OH^{-}$

酸碱电子理论

路易斯(Lewis G. N. 美国) 提出了酸碱的电子理论。 凡是题供的孤对电子的物质都称为碱,如 NH_3 、 CaO; 能与这孤对电子进行结合的物质都称为酸,如 HCl、 SO_3 。

路易斯理论在有机化学中应用得更为普遍,它常用亲电子试剂和亲核试剂来代替酸和碱的概念。

二、弱酸、弱碱的解离平衡及平衡常数

$$HAc + H_2O \longrightarrow H_3O^+ + Ac^-$$

达平衡时,标准解离常数:

$$K_{\rm a}^{\theta} = \frac{\{c({\rm H}_3{\rm O}^+)/c^{\theta}\}\{c({\rm Ac}^-)/c^{\theta}\}\}}{c({\rm HAc})/c^{\theta}}$$

HAc 的共轭碱 Ac-的解离平衡:

$$H_2O + Ac^- \longrightarrow OH^- + HAc$$

$$K_{b}^{\theta} = \frac{\{c(HAc)/c^{\theta}\}\{c(OH^{-})/c^{\theta}\}}{\{c(Ac^{-})/c^{\theta}\}}$$

$HAc -Ac^{-}$:

$$K_{a}^{\theta} \cdot K_{b}^{\theta} = \frac{\{c(H_{3}O^{+})/c^{\theta}\}\{c(Ac^{-})/c^{\theta}\}}{\{c(HA)/c^{\theta}\}} \cdot \frac{\{c(HAc)/c^{\theta}\}\{c(OH^{-})/c^{\theta}\}}{\{c(Ac^{-})/c^{\theta}\}}$$

$$= \{c(H_{3}O^{+})/c^{\theta}\}\{c(OH^{-})/c^{\theta}\}$$

$$K_{a}^{\theta} \cdot K_{b}^{\theta} = K_{w}^{\theta}$$

$$pK_{a}^{\theta} + pK_{b}^{\theta} = pK_{w}^{\theta}$$

表5-1 一些共轭酸碱的解离常数 (25°C时)

酸	$K_{ m a}^{\; heta}$	碱	$K_{b}^{\; \theta}$
HNO ₂	5.62×10^{-4}	NO_2^-	1. 78×10^{-11}
HF	6. 31×10^{-4}	F-	1. 58×10^{-11}
HAc	1. 74×10^{-5}	Ac ⁻	5. 75×10^{-10}
H_2CO_3	4.47×10^{-7}	HCO ₃ ⁻	2.24×10^{-8}
H_2S	8.90×10^{-8}	HS ⁻	1. 12×10^{-7}
H ₂ PO ₄	6. 17×10^{-8}	HPO ₄ ²⁻	1. 62×10^{-7}
NH ₄ ⁺	5.59×10^{-10}	NH ₃	1. 79×10^{-5}
HCN	4.93×10^{-10}	CN	2.03×10^{-5}
HCO ₃ ⁻	6. 17×10^{-11}	CO ₃ ²⁻	1. 61 × 10 ⁻⁴
HS ⁻	1.10×10^{-12}	S ²⁻	9. 10×10^{-3}
HPO_{A}^{2-}	4.79×10^{-13}	PO ₄ 3-	2.09×10^{-2}

性

增

强

增

酸

多元弱电解质

H_2CO_3 的一级解离:

$$H_2CO_3 + H_2O \longrightarrow H_3O^+ + HCO_3^- K_{a1}^{\theta} = 4.47 \times 10^{-7}$$

二级解离:

$$HCO_3^- + H_2O \longrightarrow H_3O^+ + CO_3^{2-} K_{a2}^{\theta} = 4.68 \times 10^{-11}$$

可见 $K_{a1}^{\theta} >> K_{a2}^{\theta}$,故酸的强度 $H_2CO_3 >> HCO_3^-$,相应的共轭 碱的强度 $CO_3^{2-} >> HCO_3^-$ 。

CO₃2-的一级解离为

$$CO_3^{2^-} + H_2O \longrightarrow HCO_3^- + OH^- K_{b1}^{\theta} = 2.14 \times 10^{-4}$$

二级解离为

$$HCO_3^- + H_2O \longrightarrow H_2CO_3 + OH^- K_{b2}^{\theta} = 2.24 \times 10^{-8}$$

$$NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+$$

$$K_{\rm a} = \frac{c({\rm H}_3{\rm O}^+)c({\rm NH}_3)}{c({\rm NH}_4^+)} = 5.75 \times 10^{-10}$$
 $K_{\rm b} = \frac{c({\rm NH}_4^+)c({\rm OH}^-)}{c({\rm NH}_3)}$

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

$$K_{\rm b} = \frac{c({\rm NH_4^+})c({\rm OH^-})}{c({\rm NH_3})} = 1.74 \times 10^{-5}$$

$$K_{\rm a} \times K_{\rm b} = c({\rm H}_{3}{\rm O}^{+})c({\rm OH}^{-})$$

= $5.75 \times 10^{-10} \times 1.74 \times 10^{-5} = K_{\rm w}$

二元酸:

$$K_{a1}K_{b2} = K_{a2}K_{b1} = K_{w}$$

三元酸:

$$K_{a1}K_{b3} = K_{a2}K_{b2} = K_{a3}K_{b1} = K_{w}$$

三、同离子效应和缓冲溶液

同离子效应

$$HAc + H_2O$$
 — $H_3O^+ + Ac^-$ 加入 $NaAc$

$$NH_3 + H_2O$$
 \longrightarrow $NH_4^+ + OH^-$ 加入 NH_4CI

在弱酸或弱碱等弱电解质溶液中,加入与弱酸或弱碱解离后具有相同离子的易溶强电解质,能使弱电解质解离度降低的现象称同离子效应

酸碱平衡的移动

1.同离子效应

在弱电解质溶液中加入与弱电解质含有相同离子的强电解质,使弱电解质的解离度降低的现象称为同离子效应。

$$HAc \rightleftharpoons H^{+} + A\dot{c}$$
 $NaAc \longrightarrow N\dot{a} + A\dot{c}$

例 已知0.10mol·L⁻¹HAc溶液的H⁺浓度为1.3×10⁻³ mol·L⁻¹,解离度为 1.3%, pH为2.89。在其中加入固体NaAc,使其浓度为 0.10mol·L⁻¹, 求此混合溶液中H+浓度及溶液的pH值。

解:

$$HAc + H_2O \Longrightarrow H_3O^+ + Ac^-$$

起始浓度/mol·L⁻¹

0.10 0 0.10

平衡浓度 / $mol \cdot L^{-1}$ $0.10 - x \approx 0.10$ X $0.10 + x \approx 0.10$

$$K_{\rm a} = \frac{c({\rm H}^+)c({\rm Ac}^-)}{c({\rm HAc})} = \frac{x(0.10+x)}{0.10-x} = \frac{0.10x}{0.10} = 1.8 \times 10^{-5}$$

$$c(H^+) = x = 1.8 \times 10^{-5} \text{ mol} \cdot L^{-1}, \text{pH} = 4.75$$

$$\alpha = \frac{c(H^+)}{c} = \frac{1.8 \times 10^{-5}}{0.10} \times 100\% = 0.018\%$$

0.10mol·L ⁻¹ HAc	c(H ⁺)/mol·L ⁻¹	α/%
未加NaAc 时	1.33×10 ⁻³	1.33
加入NaAc后	1.8×10 ⁻⁵	1.8×10 ⁻²

2. 同离子效应的应用

$$H_2S \rightleftharpoons HS^- + \underline{H}^+$$

$$\mathbf{H_2S} = \mathbf{HS}^- + \mathbf{H}^+$$
 $K_{a1} = \frac{c(\mathbf{H}^+)c(\mathbf{HS}^-)}{c(\mathbf{H_2S})} = 1.1 \times 10^{-7}$

$$HS^- \rightleftharpoons H^+ + S^{2-}$$

$$K_{a2} = \frac{c(H^+)c(S^{2-})}{c(HS^-)} = 1.3 \times 10^{-13}$$

$$H_2S \Longrightarrow 2H^+ + S^{2-}$$

$$K_{a1}K_{a2} = \frac{c(H^{+})c(S^{2-})}{c(HS^{-})} \cdot \frac{c(H^{+})c(HS^{-})}{c(H_{2}S)} = \frac{c^{2}(H^{+})c(S^{2-})}{c(H_{2}S)}$$
$$= 1.1 \times 10^{-7} \times 1.3 \times 10^{-13} = 1.4 \times 10^{-20}$$

$$\frac{c^2(H^+)c(S^{2-})}{c(H_2S)} = 1.4 \times 10^{-20}$$

- 1.饱和H₂S溶液的浓度为0.1mol·L⁻¹;
- 2.所以 $c^2(H^+)c(S^{2-})=1.4\times10^{-21}$,表明可以通过控制 溶液的酸度达到控制 s^{2-} 浓度的目的;
- 3.必须注意,此式并不表示 H_2S 发生一步解离产生了2个 H^+ 和1个 S^{2-} ,也不表示溶液中不存在 HS^- 。

缓冲溶液

定义:

在含有共轭酸碱对(弱酸一弱酸盐或弱碱一弱碱盐)的混合溶液中加入少量强酸或强碱或稍加稀释,溶液的pH值基本上无变化,这种具有保持溶液pH值相对稳定性能的溶液称为缓冲溶液。

$$HA + H_2O$$
 — $A^- + H_3O^+$ 共轭酸 共轭碱

缓冲溶液的重要作用

在电子半导体器件加工清洗中,常用 $HF-NH_4F$ 混合液来除去硅片表面多余的氧化物(SiO_2);电镀金属所用的电镀液常用缓冲溶液来控制其pH值;在农业改良土壤或施肥过程中,必须考虑不破坏土壤中的天然缓冲溶液;人体的唾液、血液和尿液的 pH 值分别在 $6.5 \sim 7.5$, $7.35 \sim 7.45$ 和 $4.8 \sim 8.4$ 才是正常的。

缓冲溶液

缓冲作用原理

25mL0.1mol·L⁻¹ HAc和25mL0.1mol·L⁻¹NaAc的混合溶液为什么具有缓冲能力呢?

1. 当加入少量强酸时, $c(H^+)$ ↑平衡左移, Ac^- 是抗酸部分2. 当加入少量强碱时, $c(H^+)$ ↓平衡右移,HAc是抗碱部分

缓冲溶液pH的计算

以弱酸HB及共轭碱B-为例

$$\mathbf{H}\mathbf{B} + \mathbf{H}_2\mathbf{O} \Longrightarrow \mathbf{H}_3\mathbf{O}^+ + \mathbf{B}^-$$

$$K_{\rm a} = \frac{c({\rm H}^+)c({\rm B}^-)}{c({\rm HB})}$$

$$c(\mathbf{H}^+) = K_{\mathbf{a}} \frac{c(\mathbf{HB})}{c(\mathbf{B}^-)}$$

$$pH = pK_a (HB) - lg \frac{c(HB)}{c(B^-)} \Rightarrow pH = pK_a (HB) - lg \frac{c_a}{c_b}$$

若为弱碱及其共轭酸, 只要将

pH
$$\Rightarrow$$
pOH; $K_a \Rightarrow K_b$;

$$c_a \Rightarrow c_b$$
; $c_b \Rightarrow c_a$ 即可。

共轭酸浓度

例1 有50mL含有0.20mol·L $^{-1}$ NH $_3$ 水和0.10mol·L $^{-1}$ NH $_4$ +的缓冲溶液,求该缓冲溶液的pH值。

解: 已知
$$pK_{NH_3} = 4.76$$

$$pOH = pK_{NH_3} - lg\frac{c_b}{c_a}$$

$$= 4.76 - lg\frac{0.2}{0.1} = 4.46$$

$$pH = 9.54$$

$$pH = pK_{NH_4^+} - lg\frac{c_a}{c_b}$$

$$= 14 - 4.76 - lg\frac{0.1}{0.2} = 9.56$$

例2 有50mL含有0.10mol·L-1 HAc和0.10mol·L-1 NaAc的缓冲溶液,求:

- 1.该缓冲溶液的pH值;
- 2.加入1.0 mol·L⁻¹的HCl 0.1mL后,溶液的pH值。

解: 1.
$$pH = pK_a - \lg \frac{c_a}{c_b}$$
$$= 4.76 - \lg \frac{0.10}{0.10} = 4.76$$
$$2. \quad c_a \approx 0.10 + \frac{1.0 \times 0.1}{50.1} = 0.102 \text{(mol.L}^{-1}\text{)}$$
$$c_b \approx 0.10 - \frac{1.0 \times 0.1}{50.1} = 0.098 \text{(mol.L}^{-1}\text{)}$$
$$pH = pK_a - \lg \frac{c_a}{c_b}$$
$$= 4.76 - \lg \frac{0.102}{0.098} = 4.74$$

例3 90mL0.010mol·L⁻¹ HAc和30mL 0.010mol·L⁻¹ NaOH 混合后,溶液的pH为多少?

解: 反应后系统为: HAc+NaAc

$$c_{\text{HAc}} = \frac{60 \times 0.010}{120} = 0.0050 \text{mol} \cdot \text{L}^{-1}$$

$$c_{\text{NaAc}} = \frac{30 \times 0.010}{120} = 0.0025 \text{mol} \cdot \text{L}^{-1}$$

pH = p
$$K_{\text{HAc}} - \lg \frac{c_{\text{HAc}}}{c_{\text{NaAc}}}$$

= $4.75 - \lg \frac{0.0050}{0.0025} = 4.45$

缓冲溶液 pH 的计算

$$HA + H_2O \longrightarrow A^- + H_3O^+$$

$$K_{\rm a}^{\theta} = \frac{\{c({\rm H}_3{\rm O}^+)/c^{\theta}\}\{c({\rm Ac}^-)/c^{\theta}\}\}}{c({\rm HAc})/c^{\theta}}$$

$$c(\mathrm{H_3O^+})/c^{\theta} = K_{\mathrm{a}}^{\theta} \frac{c(\mathrm{HA})/c^{\theta}}{c(\mathrm{A}^-)/c^{\theta}}$$

$$pH = pK_a^{\theta} + \lg \frac{c(A^{-})/c^{\theta}}{c(HA)/c^{\theta}} \qquad c(A^{-})/c(HA)称缓冲比$$

重要缓冲溶液 pH标准缓冲溶液

pH标准缓冲溶液	pH标准值 (>5°C)
0.034mol·L-1饱和酒石酸氢钾	3.56
0.025mol·L ⁻¹ 邻苯二甲酸氢钾	4.01
$0.025 mol \cdot L^{-1}KH_2PO_4 - 0.025 mol \cdot L^{-1}$ Na_2HPO_4	6.86
0.01mol·L⁻¹硼砂	9.18

- 例4 今有三种酸(CH_3)₂ AsO_2H 、 $CICH_2COOH$ 、 CH_3COOH ,它们的 K_a 分别为 6.4×10^{-7} 、 1.4×10^{-5} 、 1.76×10^{-5} ,试问:
 - ①欲配制pH=6.50的缓冲溶液,采用哪种酸最好?
- ②需要多少克这种酸和多少克NaOH以配制1.00L缓冲溶液,其中酸和它的对应盐的总浓度等于1.00mol· L^{-1} ?

解: ① (CH₃)₂AsO₂H p
$$K_a$$
= -lg 6.4×10⁻⁷=6.19
ClCH₂COOH p K_a = -lg 1.4×10⁻⁵=4.85
CH₃COOH p K_a = -lg 1.76×10⁻⁵=4.75
显然(CH₃)₂AsO₂H的 p K_a 更接近所需pH,应选(CH₃)₂AsO₂H。

四、pH值的测定

测定含有弱酸或弱碱溶液的 pH值不能用酸碱中和滴定的方法。因为中和滴定的方法是能测定酸或碱的总浓度,而不能测定解离出来的 H+或OH-的浓度。

常用单一酸碱指示剂 (要记住)

终点颜色变化

无色→有色,浅色→有色

例: 酸滴定碱 →选甲基橙

碱滴定酸 →选酚酞

酸碱指示剂理论变色范围为 $pH = pK \pm 1$

影响酸碱指示剂变色范围的一些因素

- a. 人眼对颜色的敏感程度不同
- b. 温度、溶液以及一些强电解质的存在
- c. 指示剂的用量
- d. 混合指示剂(变化范围越窄越好)

水溶液中的沉淀溶解反应

溶度积原理

溶度积常数

将难溶电解质AgCl固体放入水中,当溶解和沉淀的速度相等时,就建立了AgCl固体和溶液中的Ag⁺和Cl⁻之间的溶解—沉淀平衡。

$$AgCl(s) \iff Ag^{+}(aq) + Cl^{-}(aq)$$

该反应的标准平衡常数为:

$$K^{\Theta} = c(Ag^+) \cdot c(Cl^-)$$

一般的难溶电解质的溶解沉淀平衡可表示为:

$$A_n B_m(s) \rightleftharpoons nA^{m+}(aq) + mB^{n-}(aq)$$

$$K_{sp}^{\Theta} = c(A^{m+})^n \cdot c(B^{n-})^m$$

该常数称为溶度积常数,

简称溶度积(solubility product)

 $\mathbf{K}^{\Theta}_{\mathrm{sp}}$ 值的大小反映了难溶电解质的溶解程度。其值与温度有关,与浓度无关。

2、溶度积和溶解度的关系

溶度积 $K_{\rm s}$ θ 仅对难溶电解质而言。

$$K_{\rm s}^{\theta}({\rm AgCl}) = 1.77 \times 10^{-10} > K_{\rm s}^{\theta}({\rm Ag_2CrO_4}) = 1.12 \times 10^{-12}$$

溶解度 s (以mol·dm-3表示) 大小?

设溶解度为 x mol·dm⁻³

$$AgCl(s) \longrightarrow Ag^{+}(aq) + Cl^{-}(aq)$$

平衡浓度/mol·dm-3

 χ

X.

$$s(\text{AgCl}) = x = \sqrt{K_s^{\theta}(\text{AgCl})} \cdot c^{\theta} = \sqrt{1.77 \times 10^{-10}} \text{ mol} \cdot \text{dm}^{-3}$$

$$=1.33\times10^{-5} \text{ mol}\cdot\text{dm}^{-3}$$

对 Ag₂CrO₄,设溶解度为 y mol·dm⁻³

$$Ag_2CrO_4(s) \longrightarrow 2 Ag^+(aq) + CrO^{2-}(aq)$$

平衡浓度/mol·dm-3

2 1

 \mathcal{V}

$$s(Ag_2CrO_4) = y = \sqrt{\frac{K_s^{\theta}(Ag_2CrO_4)}{4}} \cdot c^{\theta} = \sqrt{\frac{1.12 \times 10^{-12}}{4}} \text{ mol} \cdot \text{dm}^{-3}$$

$$= 6.54 \times 10^{-5} \text{ mol} \cdot \text{dm}^{-3}$$

3. 溶度积规则

$$A_n B_m(s) = n A^{m+}(aq) + m B^{n-}(aq)$$

$$Q_i = \{c(A^{m+})/c^{\theta}\}^n \cdot \{c(B^{n-})/c^{\theta}\}^m$$

$$Q_{\rm i} > K_{\rm s}^{\theta}$$
 有沉淀析出直至达饱和

$$Q_{\rm i} = K_{\rm s}^{\theta}$$
 溶解达平衡,饱和溶液

$$Q_{\rm i} < K_{\rm s}^{\theta}$$
 无沉淀析出,或沉淀溶解

例5 由附录III的热力学函数计算298K时AgC1的溶度积常数。

溶度积和溶解度的相互换算

例6 在25℃时,Ag₂CrO₄的溶解度是0.0217g·L⁻¹,试计算Ag₂CrO₄的*K*⊖_{SP}解:

$$c(\text{Ag}_2\text{CrO}_4) = \frac{s(\text{Ag}_2\text{CrO}_4)}{M(\text{Ag}_2\text{CrO}_4)}$$
$$= \frac{0.0217\text{g} \cdot \text{L}^{-1}}{331.8\text{g} \cdot \text{mo}\Gamma^{-1}} = 6.54 \times 10^{-5} \text{mol} \cdot \text{L}^{-1}$$

$$Ag_2CrO_4(s) \qquad 2Ag^+(aq) + CrO_4^{2-}(aq)$$

2S

平衡时浓度/mol·L-1

可得
$$K^{\ominus}_{SP} = c(Ag^{+})^{2} \cdot c(CrO_{4}^{2-}) = (2S)^{2} \cdot S = 4S^{3}$$

= $4 \times (6.54 \times 10^{-5})^{3} = 1.12 \times 10^{-12}$

例7 在25° C时AgBr的 $K_{SP}^{\Theta} = 5.35 \times 10^{-13}$,试计算AgBr的溶解度(以物质的量浓度表示)

解: 溴化银的溶解平衡为:

AgBr(s) ____ Ag⁺(aq) + Br(aq)
设AgBr的溶解度为S,则
$$c$$
 (Ag⁺) = c (Br)= S 得 $K^{\Theta}_{SP} = c(Ag^{+}) \cdot c(Br) = S \cdot S = 5.35 \times 10^{-13}$
所以 $S = \sqrt{5.35 \times 10^{-13}} = 7.31 \times 10^{-7} \text{ mol. L}^{-1}$

即AgBr的溶解度为 7.31×10⁻⁷ mol·L⁻¹

相同类型的难溶电解质: 其 K_{sp} 大的 s 也大。

不同类型的难溶电解质:不能直接用溶度积比较其溶解度的相对大小。

分子式	溶度积常数	溶解度/mol·L-1
AgCl	1.8×10 ⁻¹⁰	1.3×10 ⁻⁵
AgBr	5.0×10 ⁻¹³	7.1×10 ⁻⁷
AgI	8.3×10 ⁻¹⁷	9.1×10 ⁻⁹
Ag ₂ CrO ₄	1.120×10 ⁻¹²	6.54×10 ⁻⁵

溶度积原理

$$A_n B_m(s) = nA^{m+}(aq) + mB^{n-}(aq)$$

$$Q_i = c (A^{m+})^{n} \cdot c (B^{n-})^{m}$$

 $Q_{i}($ 离子积): 任一状态离子浓度的乘积,其值不定。

例8 将等体积的4×10⁻³ mo1·L⁻¹的AgNO₃和4×10⁻³ mo1·L⁻¹ K₂CrO₄混合,有无Ag₂CrO₄沉淀产生?

已知
$$K_{\text{sp}}^{\Theta}$$
 (Ag₂CrO₄)=1.12×10⁻¹²。

解: 等体积混合后,浓度为原来的一半。

$$c(Ag^{+})=2\times 10^{-3} \, \text{mol} \cdot \text{L}^{-1}; \ c(CrO_{4}^{\ 2-})=2\times 10^{-3} \, \text{mol} \cdot \text{L}^{-1}$$
 $Q_{i}=c^{2}(Ag^{+}) \cdot c(CrO_{4}^{\ 2-})$
 $=(2\times 10^{-3})^{2}\times 2\times 10^{-3}$
 $=8\times 10^{-9}>K_{sp}^{\Theta} \, (Ag_{2}CrO_{4})$
所以有沉淀析出

沉淀—溶解平衡的移动

影响溶解度的因素:同离子效应

因加入含有相同离子的易溶强电解质,而使难溶电解质溶解度降低的效应称之为同离子效应。

例9 已知室温下BaSO₄在纯水中的溶解度为1.07×10⁻¹⁰ mol·L⁻¹,BaSO₄在0.010 mol·L⁻¹Na₂SO₄溶液中的溶解度比在纯水中小多少?已知 $K^{\Theta}_{sp}(BaSO_4)=1.07\times10^{-10}$

解: 设BaSO₄在0.010 mol·L⁻¹ Na₂SO₄溶液中的溶解度为x mol·L⁻¹ 则 BaSO₄(s) \Longrightarrow Ba²⁺ + SO₄²⁻ 平衡时浓度 / mol·L⁻¹ x 0.010+x

因为溶解度x很小,所以 $0.010+x\approx0.010$,

$$0.010x = 1.07 \times 10^{-10}$$

 $x = 1.07 \times 10^{-8} \text{(mol \cdot L}^{-1)}$

计算结果与 $BaSO_4$ 在纯水中的溶解度相比较,溶解度为原来的 $1.07\times10^{-8}/1.00\times10^{-5}$,即约为0.0010倍。

影响溶解度的因素: 盐效应

在难溶电解质溶液中,加入易溶强电解质而使难溶电解质的溶解度增大的作用称为盐效应。

AgCl在KNO3溶液中的溶解度 (25°C)

c(KNO ₃)/(mol.L ⁻¹)	0.00	0.0010	0.00500	0.0100
s(AgCl))/(mol.L-1)	1.278	1.325	1.385	1.427

产生盐效应的原因

饱和BaSO₄溶液中加入KNO₃后溶液中的离子总数骤增,由于SO₄²-和Ba²+离子被众多的异号离子(K⁺,NO₃⁻)所包围,活动性降低,因而Ba²+和SO₄²-的有效浓度降低。

$$\mathcal{K}_{sp}^{\Theta}(\mathsf{BaSO}_4) = \alpha(\mathsf{Ba}^{2+}) \cdot (\mathsf{SO}_4^{2-})$$
$$= \gamma(\mathsf{Ba}^{2+}) \cdot \alpha(\mathsf{Ba}^{2+}) \cdot \gamma(\mathsf{SO}_4^{2-}) \cdot \alpha(\mathsf{SO}_4^{2-})$$

 KNO_3 加入后,离子强度/增加,活度系数 γ 减少。

温度一定时份。是常数,

所以 $c(Ba^{2+})$ 和 $c(SO_4^{2-})$ 增加, $BaSO_4$ 的溶解度增加。

沉淀的溶解

生成弱电解质使沉淀溶解 通过氧化还原反应使沉淀溶解 生成配合物使沉淀溶解

1. 生成弱电解质使沉淀溶解

例:在含有固体CaCO₃的饱和溶液中加入盐酸,系统存在下列平衡的移动。

金属硫化物的溶解

PbS Bi₂S₃ CuS CdS Sb₂S₃ SnS₂ As₂S₃ HgS

例10 要使0.1molFeS完全溶于1L盐酸中、求所需盐酸的最低浓度。

解:
$$FeS(s)$$
 \Longrightarrow $Fe^{2+} + S^{2-}$

$$HCl \rightarrow Cl^{-} + H^{+}$$
 \Leftrightarrow $Ee^{2+} + H_{2}S$

$$HS^{-} + H^{+} \qquad H_{2}S$$

当0.10 mol FeS完全溶于1.0 L盐酸时:

$$c(\text{Fe}^{2+}) = 0.10 \text{ mol·L}^{-1}, \qquad c(\text{H}_2\text{S}) = 0.1 \text{ 0mol·L}^{-1}$$

$$K = \frac{c(\text{Fe}^{2+})c(\text{H}_2\text{S})}{c(\text{H}^+)^2} \cdot \frac{c(\text{S}^{2-})}{c(\text{S}^{2-})} = \frac{K_{\text{sp}}(\text{FeS})}{K_{\text{al}}(\text{H}_2\text{S}) \cdot K_{\text{a2}}(\text{H}_2\text{S})} c(\text{H}^+) = \sqrt{\frac{c(\text{Fe}^{2+}) \cdot c(\text{H}_2\text{S}) \cdot K_{\text{al}}(\text{H}_2\text{S}) \cdot K_{\text{a2}}(\text{H}_2\text{S})}{K_{\text{sp}}(\text{FeS})}}$$

所需的盐酸的最初浓度为:
$$0.0048 + 0.20 = 0.205 \text{ mol·L}^{-1}$$

$$= \sqrt{\frac{0.10 \times 0.10 \times 1.1 \times 10^{-7} \times 1.3 \times 10^{-13}}{6.3 \times 10^{-18}}}$$

 $=4.8\times10^{-3}$

难溶的金属氢氧化物的酸溶解:

$$M(OH)_n + nH^+$$
 \longrightarrow $M^{n+} + nH_2O$
$$K = \frac{c(M^{n+})}{c^n(H^+)} = \frac{c(M^{n+}) \cdot c^n(OH)}{c^n(H^+) \cdot c^n(OH)} = \frac{K_{\rm sp}}{(K_{\rm w})^n}$$
 室温时, $K_{\rm w}^{\Theta} = 10^{-14}$,而一般有:
$$MOH的K_{\rm sp}^{\Theta} + T_{\rm sp}^{\Phi} + T_{\rm s$$

2. 通过氧化还原反应使沉淀溶解

有些金属硫化物的 K_{sp} 数值特别小,因而不能用盐酸溶解。如 $CuS(K_{sp}^{\Theta})$ 为1.27×10⁻³⁶)需用硝酸:

CuS(s)
$$\rightleftharpoons$$
 Cu²⁺ + S²⁻
+
HNO₃ \rightarrow S \downarrow + NO \uparrow + H₂O

HgS (K^Osp=6.44×10⁻⁵³)需用王水才能溶解:

$$3HgS + 2HNO_3 + 12HCl \rightarrow 3H_2[HgCl_4] + 3S + 2NO + 4H_2O$$

3. 生成配合物使沉淀溶解

例如AgCI不溶于酸,但可溶于NH₃溶液:

$$\begin{array}{c} \text{AgCI(s)} \\ & + \\ 2\text{NH}_3 \end{array}$$

$$[\text{Ag(NH}_3)_2]^+$$

使Q_i < k[⊕]_{SP} ,则固体AgCl开始溶解。

难溶卤化物可以与过量的卤素离子形成配离子而溶解。

AgI + I⁻
$$\rightarrow$$
 AgI₂⁻
PbI₂ + 2I⁻ \rightarrow PbI₄²⁻
HgI₂ + 2I⁻ \rightarrow HgI₄²⁻
CuI + I⁻ \rightarrow CuI₂⁻

沉淀溶解的方法

- (1)酸 (碱或 铵盐)溶解
- (2)配位溶解
- (3)氧化还原溶解
- (4)氧化 配位 (王水) 溶解

多种沉淀之间的平衡

1. 分步沉淀

溶液中同时存在着几种离子。当加入某种沉淀剂时,沉淀是按照一定的先后次序进行,这种先后沉淀的现象,称为分步沉淀(fractional precipitation)。

例: 11 在浓度均为0.010mol·L⁻¹的l⁻和Cl⁻溶液中, 逐滴加入AgNO₃试剂,开始只生成黄色的 Agl沉淀,加入到一定量的AgNO₃时,才出现白色的AgCl沉淀。

开始生成AgI和 AgCI沉淀时所需要的Ag+离子浓度分别是:

$$AgI: c(Ag^{+}) > \frac{K_{sp}(AgI)}{c(I^{-})} = \frac{8.3 \times 10^{-17}}{0.010} = 8.3 \times 10^{-15} (\text{mol} \cdot \text{L}^{-1})$$

$$AgCI: c(Ag^{+}) > \frac{K_{sp}(AgCI)}{c(CI^{-})} = \frac{1.8 \times 10^{-10}}{0.01} = 1.8 \times 10^{-8} (\text{mol} \cdot \text{L}^{-1})$$

沉淀I⁻所需Ag⁺浓度比沉淀CI⁻ 所需Ag⁺浓度小,所以AgCI先沉 淀。 AgC1开始沉淀时

 \leq

例12 在1.0mol·L⁻¹Co²⁺溶液中,含有少量Fe³⁺杂质。 问应如何 控制pH值,才能达到除去Fe³⁺杂质的目的? $k_{sp}^{\Theta}\{Co(OH)_{2}\}=1.09\times I 0^{-15}$, $k_{sp}^{\Theta}\{Fe(OH)_{3}\}=2.64\times 10^{-39}$

解: ①使 Fe^{3+} 定量沉淀完全时的pH值: 由 $c(Fe^{3+})\cdot c^3(OH^-) > k_{sp}^{\Theta}\{Fe(OH)_3\}$, 得:

$$c(OH^{-}) \ge \sqrt[3]{\frac{K_{\rm sp}\{Fe(OH)_{3}\}}{c(Fe^{3+})}} = \sqrt[3]{\frac{4 \times 10^{-38}}{10^{-6}}} = 3.4 \times 10^{-11} (\text{mol} \cdot \text{L}^{-1})$$

$$pH = 14 - (-\lg 3.4 \times 10^{-11}) = 3.53$$

②使 Co^{2+} 不生成 $Co(OH)_2$ 沉淀的pH值: 由 $c(Co^{2+})c^2(OH^-) < K_{SP}^{\Theta}\{Co(OH)_2\}$,得:

$$c(OH^{-}) \le \sqrt{\frac{K_{\rm sp}\{Co(OH)_{2}\}}{c(Co^{2+})}} = \sqrt{\frac{1.09 \times 10^{-15}}{1.0}} = 3.30 \times 10^{-8} (\text{mol} \cdot \text{L}^{-1})$$

$$pH < 14 - (-\lg 3.3 \times 10^{-8}) = 6.51$$

pH 应控制在3.53~6.51之间。

例13 某溶液中Zn²+和Mn²+的浓度都为0.10mol·L⁻¹, 向溶液中通入H₂S气体,使溶液中的H₂S始终处于饱和状态, 溶液pH应控制在什么范围可以使这两种离子完全分离?

解: 根据 $K_{sp}^{\Theta}(ZnS)=2.93\times10^{-25}$, $K_{sp}^{\Theta}(MnS)=4.65\times10^{-14}$ 可知, ZnS 比MnS更容易生成沉淀。

先计算 Zn^2+ 沉淀完全时的 $\alpha(S^2-)$ 、 $\alpha(H^+)$ 和pH值:

$$c(S^{2-}) = \frac{K_{\rm sp}(ZnS)}{c(Zn^{2+})} = \frac{2.93 \times 10^{-25}}{1.0 \times 10^{-6}} = 2.9 \times 10^{-19} (\text{mol} \cdot \text{L}^{-1})$$

$$c(H^{+}) = \sqrt{\frac{K_{a1} \cdot K_{a2} c(H_{2}S)}{c(S^{2-})}} = \sqrt{\frac{1.4 \times 10^{-21}}{2.9 \times 10^{-19}}} = 6.9 \times 10^{-2} (\text{mol} \cdot \text{L}^{-1})$$

$$pH = 1.12$$

Mn²⁺开始沉淀时的α(S²⁻)、α(H⁺)和pH值:

$$c(S^{2-}) = \frac{K_{sp}(MnS)}{c(MnS)} = \frac{4.7 \times 10^{-14}}{0.1} = 4.7 \times 10^{-13} (mol \cdot L^{-1})$$

$$c(H^{+}) = \sqrt{\frac{1.4 \times 10^{-21}}{4.7 \times 10^{-13}}} = 5.5 \times 10^{-5} (mol \cdot L^{-1})$$

$$pH = 4.26$$

因此只要将pH控制在1.12~4.26之间,就能使ZnS沉 淀完全而Mn²⁺不产生沉淀,从而实现Zn²⁺和Mn²⁺的分离。

4. 分步沉淀和共同沉淀

向含有 $C1^-$, CrO_4^{2-} 的混合溶液中逐滴加入 $AgNO_3$ 溶 液,由于 Ag^+ 和 Cl^- 浓度的乘积首先达到 $K_s^{\theta}(AgCl)$, 所以溶液中先析出白色 AgCl 沉淀。随着沉淀析出,溶 液中 $C1^-$ 的浓度减小。当继续滴加 Ag^+ 时,若 Ag^+ 和 $C1^-$ 浓度的乘积小于 $K_s^{\theta}(AgCl)$ 值,则 AgCl 不再沉淀。 但当Ag+浓度的平方与 CrO₄2- 浓度的乘积达到 $K_s^{\theta}(Ag_2CrO_4)$ 值时,砖红色的 Ag_2CrO_4 就会沉淀出来, 这种现象称为分步沉淀。如果在静止的条件下逐滴加 入AgNO、溶液,由于Ag+局部过浓,白色的AgCl和 砖红色的Ag,CrO4可能会同时沉淀出来(砖红色可掩盖 白色),这种现象称为共同沉淀。

5. 沉淀的转化

$$AgCl + I \longrightarrow AgI + Cl$$

AgCl 可以转化成AgI 沉淀,而AgI 重要转化成AgCl 沉淀则不可能的发生。

沉淀的转化

由一种沉淀转化为另一种更难溶的沉淀的过程称沉淀的转化。

例12 1L 0.1mol·L⁻¹的Na₂CO₃可使多少克CaSO₄转化成CaCO₃? 解: CaSO₄(s) + CO₃²⁻ ____ CaCO₃(s) +

SO₄²⁻

解得x = 0.10, 即c(SO₄²⁻) = 0.10mol·L⁻¹ 故转化掉的CaSO₄的质量为136.141×0.1=13.6(g)

二、沉淀溶解反应应用举例

锅垢的主要组分 $CaSO_4$ 沉淀不溶于酸,难以除去,但可以用 Na_2CO_3 溶液处理,使其转化成更难溶的 $CaCO_3$ 沉淀:

$$CaSO_4(s) + CO_3^{2^-} \longrightarrow CaCO_3(s) + SO_4^{2^-}$$

$$K = \frac{c(SO_4^{2-})}{c(CO_3^{2-})} = \frac{c(SO_4^{2-})}{c(CO_3^{2-})} \cdot \frac{c(Ca^{2+})}{c(Ca^{2+})} = \frac{K_s^{\theta}(CaSO_4)}{K_s^{\theta}(CaCO_3)}$$

$$=\frac{4.93\times10^{-5}}{3.36\times10^{-9}}=1.47\times10^{4}$$

由于 CaCO, 沉淀易溶于稀酸, 所以可用"酸洗"除去。

三、配位解离平衡

可溶性配位化合物在溶液中可以发生解离。在解离时,外界和内界间全部解离成内界离子和外界离子,这与强电解质类似;而内界配离子中的中心体和配位体间,则与弱电解质相似,在溶液中或多或少地解离出中心体和配位体,并存在配位解离平衡。

1、稳定常数

$$Ag^+ + 2NH_3 \longrightarrow [Ag(NH_3)_2]^+$$

标准平衡常数:

$$K_{f}^{\theta} = \frac{c([Ag(NH_{3})_{2}]^{+})/c^{\theta}}{\{c(Ag^{+})/c^{\theta}\}\cdot\{c(NH_{3})/c^{\theta}\}^{2}}$$

 K_{f}^{θ} 称为配离子的稳定常数或生成常数,

$$K^{ heta}_{ alpha}$$

2. 不稳定常数

$$[Ag(NH_3)_2]^+ \longrightarrow Ag^+ + 2NH_3$$

$$K_{d}^{\theta} = \frac{\left[c(Ag^{+})/c^{\theta}\right] \cdot \left[c(NH)_{3}\right]/c^{\theta}}{c(\left[Ag(NH_{3})_{2}\right]^{+})/c^{\theta}}$$

[Ag(NH₃)₂]⁺在溶液中的解离与多元弱电解质的解离一样,也是分级进行的。

$$\left[Ag(NH_3)_2\right]^+ \longrightarrow Ag(NH_3)^+ + NH_3$$

$$K_{d1}^{\theta} = \frac{\left[c([Ag(NH_{3})]^{+})/c^{\theta}\right] \cdot \left[c(NH_{3})/c^{\theta}\right]}{c([Ag(NH_{3})_{2}]^{+})/c^{\theta}}$$

二级解离为

$$Ag(NH_3)^+ \longrightarrow Ag^+ + NH_3$$

$$K_{d2}^{\theta} = \frac{[c(Ag^{+})/c^{\theta}] \cdot [c(NH_{3})/c^{\theta}]}{c([Ag(NH_{3})]^{+})/c^{\theta}}$$

总的解离为

$$\left[Ag(NH_3)_2\right]^+ \longrightarrow Ag^+ + 2NH_3$$

$$K_{
m d}^{
m heta} = K_{
m d1}^{
m heta} \cdot K_{
m d2}^{
m heta}$$

 $K_{
m d}^{ heta}$ 也叫做不稳定常数, 可写成 $K_{
m au au au}^{ heta}$

四、配位反应的应用实例

1. 利用配离子的特殊颜色来鉴别物质

将白色的无水硫酸铜晶体投入"无水酒精"中,如果硫酸铜晶体变成浅蓝色,说明酒精中还有水。因为 $[Cu(H_2O)_4]^{2+}$ 显浅蓝色。

2. 用于溶解难溶电解质

在照相技术中,可用硫代硫酸钠作定影剂洗去溴胶版上未曝光的溴化银,这是因为 AgBr 能溶于配合剂 $Na_2S_2O_3$ 溶液,并形成可溶性的 $[Ag(S_2O_3)_2]^{3-}$ 配离子。

3、改变和控制离子浓度的大小

电镀液中,常加配合剂来控制被镀离子的浓度。例如采用 $CuSO_4$ 溶液作电镀液时,由于 Cu^{2+} 浓度过大,Cu 沉淀过快,将使镀层粗糙、厚薄不匀,且底层金属附着力差。但若采用配合物 $K[Cu(CN)_2]$ 溶液就能有效地控制 Cu^+ 浓度:

$$[Cu(CN)_2]^- \longrightarrow Cu^+ + 2 CN^-$$

这样 Cu 沉淀速率不会过快,可利用的 Cu^+ 总浓度又没有减少。同样,采用焦磷酸钾 $(K_4P_2O_7)$ 为配合剂的电镀液也可达到这个目的,而且 P_2O_7 — 无毒,这是近年来发展很快的无氰电镀液。

 $CuSO_4 + 2 K_4 P_2 O_7 \implies K_6 [Cu(P_2 O_7)_2] + K_2 SO_4$

4. 掩蔽有害物质

氰化物(如 NaCN)极毒,接触CN⁻的操作人员在工作结束后用FeSO4 溶液来洗手,就是利用下述反应:

6 NaCN + 3 FeSO₄ \longrightarrow Fe₂[Fe(CN)₆] \downarrow + 3 Na₂SO₄