

Devoir surveillé 6 - 04/02/25

Exercice 1 : On admet le théorème suivant : Si $A \in \mathcal{M}_n(\mathbb{K})$ (avec $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$ et $n \in \mathbb{N}^*$) telle que son polynôme caractéristique χ_A soit scindé sur \mathbb{K} alors il existe un unique couple $(D, N) \in (\mathcal{M}_n(\mathbb{K}))^2$ tel que

- \bullet A = D + N
- D est diagonalisable dans $\mathcal{M}_n(\mathbb{K})$
- N est nilpotente (c'est-à-dire il existe $k \in \mathbb{N}, N^k = 0$, on définit l'indice de nilpotente min $\{k \in \mathbb{N}, N^k = 0\}$)
- \bullet DN = ND

Ce qui implique que D et N sont des polynômes en A et $\chi_A = \chi_D$. Le couple (D,N) s'appelle la décomposition de Dunford en A.

- 1. Soit $A = \begin{pmatrix} 2 & 3 \\ 0 & -1 \end{pmatrix}$
 - (a) Déterminer D diagonale et P inversible telle que $A = PDP^{-1}$.
 - (b) Déterminer la décomposition de Dunford de A.
- 2. Soit $A = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}$
 - (a) Déterminer son polynôme caractéristique χ_A .
 - (b) Donner la décomposition de Dunford de A. 1.5
- 3. Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que $A^2(A I_n) = 0$.
 - (a) Démontrer que X(X-1) est annulateur de A^2 .
 - (b) Démontrer que la décomposition de Dunford de A est $(A^2, A A^2)$
- 4. Soient E un \mathbb{K} -espace vectoriel de dimension n, u et v deux endomorphismes diagonalisables de E qui commutent.
 - (a) i. Démontrer que tout sous espace propre de u est stable par v. On note v_i l'endomorphisme v induit sur $E_{\lambda_i}(u)$ pour tout $\lambda_i \in Sp(u)$.
 - ii. En déduire qu'il existe une base commune de diagonalisation pour u et v.
 - (b) Soient A et B deux matrices diagonalisables de $\mathcal{M}_n(\mathbb{K})$ qui commutent. Démontrer que A-B est diagonalisable dans $\mathcal{M}_n(\mathbb{K})$.
 - (c) Soient A et B deux matrices nilpotentes de $\mathcal{M}_n(\mathbb{K})$, qui commutent et dont les indices de nilpotence sont p et q. Démontrer que A-B est nilpotente, d'indice de nilpotence inférieur ou égal à p+q-1.
 - (d) Déterminer les matrices de $\mathcal{M}_n(\mathbb{K})$ qui sont à la fois diagonalisables et nilpotentes.
 - (e) Démontrer l'unicité de la décomposition de Dunford.
- 5. Donner un exemple de matrice de $\mathcal{M}_2(\mathbb{R})$ n'admettant pas de décomposition de Dunford.

Exercice 2 : Soient E un \mathbb{R} -espace vectoriel de dimension $n \in \mathbb{N}^*$ et $f \in \mathcal{L}(E)$ Une version du théorème appelé "Lemme des noyaux" est admis : Soient $P_1, ..., P_p \in \mathbb{R}[X]$ (avec $p \in \mathbb{N}^*$) des polynômes de degré 1 sans racine commune alors $Ker((P_1 \times ... \times P_p)(f)) = Ker(P_1(f)) \bigoplus Ker(P_2(f)) \bigoplus ... \bigoplus Ker((P_p(f)))$.

- 1. Supposons que le polynôme caractéristique de f est scindé à racines simples, démontrer que les sous espaces propres de E sont supplémentaires de E. \mathcal{L}
- 2. On suppose dans cette question que (f Id)(f + Id) = 0
 - (a) On note $R_1(X)=X-1, R_2(X)=X+1.$ Déterminer $a,b\in\mathbb{R}$ tels que $aR_1+bR_2=1$
 - (b) On note $K_1 = Ker(R_1(f))$ et $K_2 = Ker(R_2(f))$ et p_1 la projection sur K_1 de direction K_2 et p_2 la projection sur K_2 de direction K_1 . Démontrer que $p_1 = bR_2(f)$ et $p_2 = aR_1(f)$
 - (c) Démontrer que pour tout $k \in \mathbb{N}$, $f^k \circ p_1 = p_1$ et $f^k \circ p_2 = (-1)^k p_2$
 - (d) En déduire que pour tout $k \in \mathbb{N}$, $f^k = (b + (-1)^k a)f + (b (-1)^k a)Id$