Fast quantum integer multiplication without ancillas

arXiv:2403.18006

Gregory D. Kahanamoku-Meyer May 16, 2024

Today's goal: implement the following unitaries

Today's goal: implement the following unitaries

$$\mathcal{U}_{q \times q} \ket{x} \ket{y} \ket{0} = \ket{x} \ket{y} \ket{xy}$$

Today's goal: implement the following unitaries

$$\mathcal{U}_{q \times q} \left| x \right\rangle \left| y \right\rangle \left| 0 \right\rangle = \left| x \right\rangle \left| y \right\rangle \left| xy \right\rangle$$

$$\mathcal{U}_{c \times q}(a) |x\rangle |0\rangle = |x\rangle |ax\rangle$$

Today's goal: implement the following unitaries

$$\mathcal{U}_{q \times q} \ket{x} \ket{y} \ket{0} = \ket{x} \ket{y} \ket{xy}$$

$$\mathcal{U}_{c \times q}(a) |x\rangle |0\rangle = |x\rangle |ax\rangle$$

... with as few gates and qubits as possible.

Today's goal: implement the following unitaries

$$\mathcal{U}_{q \times q} \ket{x} \ket{y} \ket{w} = \ket{x} \ket{y} \ket{w + xy}$$

$$\mathcal{U}_{c \times q}(a) |x\rangle |w\rangle = |x\rangle |w + ax\rangle$$

... with as few gates and qubits as possible.

Asymptotic costs for quantum multiplication:

Asymptotic costs for quantum multiplication:

Schoolbook (via Cuccaro '04):

- Gates: $\mathcal{O}(n^2)$
- · Ancillas: 1

Asymptotic costs for quantum multiplication:

Schoolbook (via Cuccaro '04):

- Gates: $\mathcal{O}(n^2)$
- · Ancillas: 1

Karatsuba (Gidney '19):

- Gates: $\mathcal{O}(n^{1.58\cdots})$
- Ancillas: O(n)

Asymptotic costs for quantum multiplication:

Schoolbook (via Cuccaro '04):

- Gates: $\mathcal{O}(n^2)$
- · Ancillas: 1

Karatsuba (Gidney '19):

- Gates: $\mathcal{O}(n^{1.58\cdots})$
- Ancillas: $\mathcal{O}(n)$

This work:

- Gates: $\mathcal{O}(n^{1+\epsilon})$ for any $\epsilon > 0$
- · Ancillas: 0

Results (spoilers): in practice

Cost to multiply a 2048-bit quantum register by a 2048-bit classical value:

[1] Gidney '19, "Windowed quantum arithmetic"

Algorithm	Asymptotic	Gate count (millions)			Ancillas
Atgoritim	scaling	Toffoli	CR_{ϕ}	<i>H,X</i> ,CNOT	Ancillas
Schoolbook [1]	$\mathcal{O}(n^2)$	6.4	_	38	1*
Karatsuba [1]	$\mathcal{O}(n^{1.58})$	5.6	_	34	12730
Windowed [1]	$\mathcal{O}(n^2/\log^2 n)$	1.8	_	2.5	4106

4

Results (spoilers): in practice

Cost to multiply a 2048-bit quantum register by a 2048-bit classical value:

[1] Gidney '19, "Windowed quantum arithmetic"

Algorithm	Asymptotic	Gate count (millions)			Ancillas	
Atgoritim	scaling	Toffoli	CR_{ϕ}	<i>H,X</i> ,CNOT	Ancillas	
Schoolbook [1]	$\mathcal{O}(n^2)$	6.4	_	38	1*	
Karatsuba [1]	$\mathcal{O}(n^{1.58})$	5.6	_	34	12730	
Windowed [1]	$\mathcal{O}(n^2/\log^2 n)$	1.8	_	2.5	4106	
This work (standard QFT)	$\mathcal{O}(n^{1.29})^{**}$	0.6	0.3	1.9	79	
This work (phase gradient QFT)	$\mathcal{O}(n^{1.29})^{**}$	0.9	0.1	3.2	80	

4

Plan

1. Background and core algorithm (slides)

Plan

- 1. Background and core algorithm (slides)
- 2. Practical considerations and optimizations (choose your own adventure)

The "schoolbook" method: $xy = \sum_{ij} (2^i x_i)(2^j y_j) = \sum_{ij} 2^{i+j} x_i y_j$

				1	1	0	1
			×	1	0	1	0
				1	0	1	0
		1	0	1	0		
	1	0	1	0			
1	0	0	0	0	0	1	0

6

The "schoolbook" method:
$$xy = \sum_{ij} (2^i x_i)(2^j y_j) = \sum_{ij} 2^{i+j} x_i y_j$$

Running time: $\mathcal{O}(n^2)$ operations

Given two *n*-bit numbers *x* and *y*, what if we use base $b = 2^{n/2}$?

Given two *n*-bit numbers *x* and *y*, what if we use base $b = 2^{n/2}$?

 $xy = x_1y_1b^2 + x_0y_1b + x_1y_0b + x_0y_0$

7

Given two *n*-bit numbers x and y, what if we use base $b = 2^{n/2}$?

$$xy = x_1y_1b^2 + x_0y_1b + x_1y_0b + x_0y_0$$

Time remains $\mathcal{O}(n^2)$, because $4(n/2)^2 = n^2$

$$xy = x_1y_1b^2 + (x_0y_1 + x_1y_0)b + x_0y_0$$

$$xy = x_1y_1b^2 + (x_0y_1 + x_1y_0)b + x_0y_0$$

Observation:
$$x_0y_1 + x_1y_0 = (x_1 + x_0)(y_1 + y_0) - x_1y_1 - x_0y_0$$

$$xy = x_1y_1b^2 + (x_0y_1 + x_1y_0)b + x_0y_0$$

Observation:
$$x_0y_1 + x_1y_0 = (x_1 + x_0)(y_1 + y_0) - x_1y_1 - x_0y_0$$

Can compute xy with only three multiplications of size $\log b = n/2$:

- 1. x_1y_1
- 2. x_0y_0
- 3. $(x_1 + x_0)(y_1 + y_0)$

$$xy = x_1y_1b^2 + (x_0y_1 + x_1y_0)b + x_0y_0$$

Observation:
$$x_0y_1 + x_1y_0 = (x_1 + x_0)(y_1 + y_0) - x_1y_1 - x_0y_0$$

Can compute xy with only three multiplications of size $\log b = n/2$:

- 1. x_1y_1
- 2. x_0y_0
- 3. $(x_1 + x_0)(y_1 + y_0)$

Computational cost:
$$3(n/2)^2 = \frac{3}{4}n^2 = \mathcal{O}(n^2)$$

Depth: $d = \log_2 n$

Depth: $d = \log_2 n$

Operations: 3^d

Depth: $d = \log_2 n$

Operations: 3^d

Cost: $\mathcal{O}(n^{\log_2 3}) = \mathcal{O}(n^{1.58\cdots})$

$$|xy\rangle = QFT^{-1} \sum_{z} \exp\left(\frac{2\pi i xyz}{2^n}\right) |z\rangle$$

$$|xy\rangle = QFT^{-1} \sum_{z} \exp\left(\frac{2\pi i xyz}{2^n}\right) |z\rangle$$

How to implement
$$|x\rangle |y\rangle |0\rangle \rightarrow |x\rangle |y\rangle |xy\rangle$$
?

$$|xy\rangle = QFT^{-1} \sum_{z} \exp\left(\frac{2\pi i xyz}{2^n}\right) |z\rangle$$

How to implement
$$|x\rangle |y\rangle |0\rangle \rightarrow |x\rangle |y\rangle |xy\rangle$$
?

1) Generate
$$|x\rangle |y\rangle \sum_{z} |z\rangle$$

$$|xy\rangle = QFT^{-1} \sum_{z} \exp\left(\frac{2\pi i xyz}{2^n}\right) |z\rangle$$

How to implement
$$|x\rangle |y\rangle |0\rangle \rightarrow |x\rangle |y\rangle |xy\rangle$$
?

1) Generate $|x\rangle |y\rangle \sum_{z} |z\rangle$, 2) apply a phase rotation of $\exp\left(\frac{2\pi i xyz}{2^n}\right)$

$$|xy\rangle = QFT^{-1} \sum_{z} \exp\left(\frac{2\pi i xyz}{2^n}\right) |z\rangle$$

How to implement
$$|x\rangle |y\rangle |0\rangle \rightarrow |x\rangle |y\rangle |xy\rangle$$
?
1) Generate $|x\rangle |y\rangle \sum_z |z\rangle$, 2) apply a phase rotation of $\exp\left(\frac{2\pi i X y Z}{2^n}\right)$, 3) apply QFT⁻¹

How do we apply $\exp\left(\frac{2\pi i x y z}{2^n}\right)$?

How do we apply $\exp\left(\frac{2\pi i xyz}{2^n}\right)$?

$$xy = \sum_{i,j} 2^i 2^j x_i y_j$$

How do we apply $\exp\left(\frac{2\pi i X y Z}{2^n}\right)$?

$$xyz = \sum_{i,j,k} 2^i 2^j 2^k x_i y_j z_k$$

$$\exp\left(\frac{2\pi i x y z}{2^n}\right) = \prod_{i,j,k} \exp\left(\frac{2\pi i 2^{i+j+k}}{2^n} x_i y_j z_k\right)$$

How do we apply $\exp\left(\frac{2\pi i xyz}{2^n}\right)$?

$$xyz = \sum_{i,j,k} 2^i 2^j 2^k x_i y_j z_k$$

$$\exp\left(\frac{2\pi i x y z}{2^n}\right) = \prod_{i,j,k} \exp\left(\frac{2\pi i 2^{i+j+k}}{2^n} x_i y_j z_k\right)$$

 x_i, y_j, z_k are binary values—apply phase only if they all are equal to 1!

How do we apply $\exp\left(\frac{2\pi i x y z}{2^n}\right)$?

$$xyz = \sum_{i,j,k} 2^i 2^j 2^k x_i y_j z_k$$

$$\exp\left(\frac{2\pi i x y z}{2^n}\right) = \prod_{i,j,k} \exp\left(\frac{2\pi i 2^{i+j+k}}{2^n} x_i y_j z_k\right)$$

 x_i, y_j, z_k are binary values—apply phase only if they all are equal to 1!

A series of CCR_{ϕ} gates between the bits of $|x\rangle$, $|y\rangle$, and $|z\rangle$!

$$\exp\left(\frac{2\pi i xyz}{2^n}\right) = \prod_{i,j,k} \exp\left(\frac{2\pi i 2^{i+j+k}}{2^n} x_i y_j z_k\right)$$

The downside:

$$\exp\left(\frac{2\pi i xyz}{2^n}\right) = \prod_{i,j,k} \exp\left(\frac{2\pi i 2^{i+j+k}}{2^n} x_i y_j Z_k\right)$$

The downside: For n-bit numbers, this requires n^3 gates!

$$\exp\left(\frac{2\pi i xyz}{2^n}\right) = \prod_{i,j,k} \exp\left(\frac{2\pi i 2^{i+j+k}}{2^n} x_i y_j z_k\right)$$

The downside: For n-bit numbers, this requires n^3 gates!

A modest improvement: classical-quantum multiplication $|\mathcal{U}(a)|x\rangle |0\rangle = |x\rangle |ax\rangle$

$$\exp\left(\frac{2\pi i x y z}{2^n}\right) = \prod_{i,j,k} \exp\left(\frac{2\pi i 2^{i+j+k}}{2^n} x_i y_j z_k\right)$$

The downside: For n-bit numbers, this requires n^3 gates!

A modest improvement: classical-quantum multiplication $|\mathcal{U}(a)|x\rangle|0\rangle = |x\rangle|ax\rangle$

$$\exp\left(\frac{2\pi iaxz}{2^n}\right) = \prod_{i,j} \exp\left(\frac{2\pi ia2^{i+j}}{2^n}x_iz_j\right)$$

Here: $\mathcal{O}(n^2)$ controlled phase rotations (matches Schoolbook algorithm)

Fast quantum multiplication

Main question: Can we combine fast multiplication with Fourier arithmetic to get the benefits of both?

Goal:
$$U(a) |x\rangle |0\rangle = |x\rangle |ax\rangle$$

Goal: Apply phase $\exp\left(\frac{2\pi ia}{2^n}xz\right)$; x and z are quantum

Goal: Implement PhaseProduct
$$(\phi) |x\rangle |z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$$

Goal: Implement PhaseProduct
$$(\phi) |x\rangle |z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$$

We want to split the phase ϕxz into the sum of many phases, which are easy to implement.

Goal: Implement PhaseProduct
$$(\phi) |x\rangle |z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$$

We want to split the phase ϕxz into the sum of many phases, which are easy to implement.

Previously:

$$\exp(i\phi XZ) = \prod_{i,j} \exp\left(i\phi 2^{i+j} X_i Z_j\right)$$

Goal: Implement PhaseProduct
$$(\phi) |x\rangle |z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$$

We want to split the phase ϕxz into the sum of many phases, which are easy to implement.

Karatsuba:

$$xz = 2^{n}x_{1}z_{1} + 2^{n/2}((x_{0} + x_{1})(z_{0} + z_{1}) - x_{0}z_{0} - x_{1}z_{1}) + x_{0}z_{0}$$

Goal: Implement PhaseProduct
$$(\phi) |x\rangle |z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$$

We want to split the phase ϕxz into the sum of many phases, which are easy to implement.

Plugging in Karatsuba:

$$\begin{split} \exp{(i\phi xz)} &= \exp{(i\phi 2^n x_1 z_1)} \\ & \cdot \exp{(i\phi x_0 z_0)} \\ & \cdot \exp{\left(i\phi 2^{n/2} ((x_0 + x_1)(z_0 + z_1) - x_0 z_0 - x_1 z_1)\right)} \end{split}$$

Goal: Implement PhaseProduct
$$(\phi) |x\rangle |z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$$

We want to split the phase ϕxz into the sum of many phases, which are easy to implement.

Plugging in Karatsuba:

$$\begin{split} \exp{(i\phi xz)} &= \exp{(i\phi 2^n x_1 z_1)} \\ & \cdot \exp{(i\phi x_0 z_0)} \\ & \cdot \exp{\left(i\phi 2^{n/2} ((x_0 + x_1)(z_0 + z_1) - x_0 z_0 - x_1 z_1)\right)} \end{split}$$

How are we supposed to reuse values in the phase?

Goal: Implement PhaseProduct
$$(\phi) |x\rangle |z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$$

We want to split the phase ϕxz into the sum of many phases, which are easy to implement.

Karatsuba:

$$xz = 2^{n}x_{1}z_{1} + 2^{n/2}((x_{0} + x_{1})(z_{0} + z_{1}) - x_{0}z_{0} - x_{1}z_{1}) + x_{0}z_{0}$$

Goal: Implement PhaseProduct
$$(\phi) |x\rangle |z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$$

We want to split the phase ϕxz into the sum of many phases, which are easy to implement.

Re-ordering Karatsuba:

$$xz = (2^{n} - 2^{n/2})x_1z_1 + 2^{n/2}(x_0 + x_1)(z_0 + z_1) + (1 - 2^{n/2})x_0z_0$$

Goal: Implement PhaseProduct
$$(\phi) |x\rangle |z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$$

We want to split the phase ϕ xz into the sum of many phases, which are easy to implement.

Plugging in reordered Karatsuba:

$$\exp(i\phi xz) = \exp\left(i\phi(2^{n} - 2^{n/2})x_{1}z_{1}\right)$$

$$\cdot \exp\left(i\phi(1 - 2^{n/2})x_{0}z_{0}\right)$$

$$\cdot \exp\left(i\phi 2^{n/2}(x_{0} + x_{1})(z_{0} + z_{1})\right)$$

Goal: Implement PhaseProduct(
$$\phi$$
) $|x\rangle$ $|z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$

We want to split the phase ϕxz into the sum of many phases, which are easy to implement.

Plugging in reordered Karatsuba:

$$\begin{split} \exp{(i\phi xz)} &= \exp{(i\phi_1 x_1 z_1)} & \phi_1 &= (2^n - 2^{n/2})\phi \\ & \cdot \exp{(i\phi_2 x_0 z_0)} & \phi_2 &= (1 - 2^{n/2})\phi \\ & \cdot \exp{(i\phi_3 (x_0 + x_1)(z_0 + z_1))} & \phi_3 &= 2^{n/2}\phi \end{split}$$

Goal: Implement PhaseProduct(
$$\phi$$
) $|x\rangle$ $|z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$

We want to split the phase ϕxz into the sum of many phases, which are easy to implement.

Plugging in reordered Karatsuba:

$$\begin{split} \exp{(i\phi xz)} &= \exp{(i\phi_1 x_1 z_1)} & \phi_1 &= (2^n - 2^{n/2})\phi \\ & \cdot \exp{(i\phi_2 x_0 z_0)} & \phi_2 &= (1 - 2^{n/2})\phi \\ & \cdot \exp{(i\phi_3 (x_0 + x_1)(z_0 + z_1))} & \phi_3 &= 2^{n/2}\phi \end{split}$$

Each of these has the same structure, but on half as many qubits \rightarrow do it recursively!

Goal: Implement PhaseProduct
$$(\phi) |x\rangle |z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$$

$$\exp(i\phi xz) = \exp(i\phi_1 x_1 z_1) \qquad \phi_1 = (2^n - 2^{n/2})\phi$$

$$\cdot \exp(i\phi_2 x_0 z_0) \qquad \phi_2 = (1 - 2^{n/2})\phi$$

$$\cdot \exp(i\phi_3 (x_0 + x_1)(z_0 + z_1)) \qquad \phi_3 = 2^{n/2}\phi$$

Recursion relation: T(n) = 3T(n/2)

Goal: Implement PhaseProduct(
$$\phi$$
) $|x\rangle$ $|z\rangle = \exp(i\phi xz) |x\rangle |z\rangle$

$$\exp(i\phi xz) = \exp(i\phi_1 x_1 z_1) \qquad \phi_1 = (2^n - 2^{n/2})\phi$$

$$\cdot \exp(i\phi_2 x_0 z_0) \qquad \phi_2 = (1 - 2^{n/2})\phi$$

$$\cdot \exp(i\phi_3 (x_0 + x_1)(z_0 + z_1)) \qquad \phi_3 = 2^{n/2}\phi$$

Recursion relation:
$$T(n) = 3T(n/2) \Rightarrow \mathcal{O}(n^{\log_2 3}) = \mathcal{O}(n^{1.58\cdots})$$
 gates!

Splitting registers $|x\rangle \to |x_1\rangle\,|x_0\rangle$ and $|z\rangle \to |z_1\rangle\,|z_0\rangle$, can immediately do

- $\exp(i\phi_1 X_1 Z_1)$
- $\exp\left(i\phi_2 X_0 Z_0\right)$

Splitting registers $|x\rangle \to |x_1\rangle |x_0\rangle$ and $|z\rangle \to |z_1\rangle |z_0\rangle$, can immediately do

- $\exp(i\phi_1 x_1 z_1)$
- $\exp(i\phi_2x_0z_0)$

What about $\exp(i\phi_3(x_0 + x_1)(z_0 + z_1))$?

Splitting registers $|x\rangle \to |x_1\rangle \, |x_0\rangle$ and $|z\rangle \to |z_1\rangle \, |z_0\rangle$, can immediately do

- $\exp(i\phi_1X_1Z_1)$
- $\exp(i\phi_2 x_0 z_0)$

What about
$$\exp(i\phi_3(x_0 + x_1)(z_0 + z_1))$$
?

Use quantum addition circuits.

Splitting registers $|x\rangle \to |x_1\rangle \, |x_0\rangle$ and $|z\rangle \to |z_1\rangle \, |z_0\rangle$, can immediately do

- $\exp(i\phi_1 X_1 Z_1)$
- $\exp(i\phi_2X_0Z_0)$

What about
$$\exp(i\phi_3(x_0 + x_1)(z_0 + z_1))$$
?

Use quantum addition circuits.

But, addition is reversible \rightarrow do it *in-place*! E.g. $|x_1\rangle$ $|x_0\rangle$ \rightarrow $|x_1\rangle$ $|x_0+x_1\rangle$

Idea: "Shave off" the high bit before recursing

Trick: Using dirty qubits, can reduce to zero!

Making it go faster

So far: $\mathcal{O}(n^{1.58})$ gates using zero ancillas

Making it go faster

So far: $\mathcal{O}(n^{1.58})$ gates using zero ancillas

Can we make it go faster?

Let
$$b = 2^{n/2}$$
.

$$x = x_1b + x_0$$
$$z = z_1b + z_0$$

Let
$$b = 2^{n/2}$$
.

$$x = x_1b + x_0$$
$$z = z_1b + z_0$$

$$\phi XZ = \phi_1 X_1 Z_1 + \phi_2 (X_0 + X_1)(Z_0 + Z_1) + \phi_3 X_0 Z_0$$

Let
$$b = 2^{n/k}$$
.

$$x = \sum_{i=0}^{k-1} x_i b^i$$
 $z = \sum_{i=0}^{k-1} z_i b^i$

Let
$$b = 2^{n/k}$$
.

$$x = \sum_{i=0}^{k-1} x_i b^i$$
 $z = \sum_{i=0}^{k-1} z_i b^i$

$$\phi XZ = \sum_{\ell=1}^{2k-1} \phi_{\ell} \left(\sum_{i}^{k} W_{\ell}^{i} X_{i} \right) \left(\sum_{i}^{k} W_{\ell}^{i} Z_{i} \right)$$

$$\phi xz = \sum_{\ell=1}^{2k-1} \phi_{\ell} \left(\sum_{i} W_{\ell}^{i} x_{i} \right) \left(\sum_{i} W_{\ell}^{i} z_{i} \right)$$

We get to choose the 2k-1 values $w_{\ell}!$ (The ϕ_{ℓ} depend on our choices).

$$\phi xz = \sum_{\ell=1}^{2k-1} \phi_{\ell} \left(\sum_{i} W_{\ell}^{i} x_{i} \right) \left(\sum_{i} W_{\ell}^{i} z_{i} \right)$$

We get to choose the 2k-1 values $w_{\ell}!$ (The ϕ_{ℓ} depend on our choices).

$$w_1 = 0$$

$$\sum_{i=0}^{-1} w_1^i x_i = x_0 \tag{1}$$

$$\phi xz = \sum_{\ell=1}^{2k-1} \phi_{\ell} \left(\sum_{i} W_{\ell}^{i} x_{i} \right) \left(\sum_{i} W_{\ell}^{i} z_{i} \right)$$

We get to choose the 2k-1 values $w_{\ell}!$ (The ϕ_{ℓ} depend on our choices).

$$w_2 = 1$$

$$\sum_{i=0}^{R-1} w_2^i x_i = x_0 + x_1 \tag{1}$$

$$\phi xz = \sum_{\ell=1}^{2k-1} \phi_{\ell} \left(\sum_{i} w_{\ell}^{i} x_{i} \right) \left(\sum_{i} w_{\ell}^{i} z_{i} \right)$$

We get to choose the 2k-1 values w_ℓ ! (The ϕ_ℓ depend on our choices).

$$W_3 = \infty$$

$$1/w_3 \sum_{i=0}^{k-1} w_3^i x_i = x_1 \tag{1}$$

$$\phi xz = \sum_{\ell=1}^{2k-1} \phi_{\ell} \left(\sum_{i} W_{\ell}^{i} x_{i} \right) \left(\sum_{i} W_{\ell}^{i} z_{i} \right)$$

We get to choose the 2k-1 values $w_{\ell}!$ (The ϕ_{ℓ} depend on our choices).

$$w_1 = 0$$
, $w_2 = 1$, $w_3 = \infty$

$$\phi XZ = \phi_1 X_0 Z_0 + \phi_2 (X_0 + X_1)(Z_0 + Z_1) + \phi_3 X_1 Z_1$$
 (1)

Complexity vs. k

This strategy yields asymptotic complexity $\mathcal{O}(n^{log_k(2k-1)})$

Complexity vs. k

This strategy yields asymptotic complexity $\mathcal{O}(n^{\log_k(2k-1)})$

Algorithm	Gate count
Schoolbook	$\mathcal{O}(n^2)$
k = 2	$\mathcal{O}(n^{1.58\cdots})$
k = 5	$\mathcal{O}(n^{1.37\cdots})$
k = 8	$\mathcal{O}(n^{1.30\cdots})$
:	:

Complexity vs. k

This strategy yields asymptotic complexity $\mathcal{O}(n^{log_k(2k-1)})$

Algorithm	Gate count
Schoolbook	$\mathcal{O}(n^2)$
k = 2	$\mathcal{O}(n^{1.58\cdots})$
k = 5	$\mathcal{O}(n^{1.37\cdots})$
k = 8	$\mathcal{O}(n^{1.30\cdots})$
:	:

Note: For quantum-quantum mult., get $\mathcal{O}(n^{\log_k(3k-2)})$

Thank you!

arXiv:2403.18006

Greg Kahanamoku-Meyer — gkm@mit.edu — https://gregkm.me/
I will be at Google QSS, including Friday resource estimation workshop!

Thank you!

arXiv:2403.18006

Greg Kahanamoku-Meyer — gkm@mit.edu — https://gregkm.me/ I will be at Google QSS, including Friday resource estimation workshop!

Further discussion:

- Circuit depth (new result: log-depth approx. QFT with few ancillas)
- · Optimizing the base case, and implementing arbitrary phase rotations
- Optimizing choice of k
- Optimizing choice of w_ℓ and computation of linear combinations
- · Modular arithmetic
- Dirty qubit construction

Backup

Circuit structure (depth and locality)

Under restricted gate sets, arbitrary rotation gates need to be synthesized.

Under restricted gate sets, arbitrary rotation gates need to be synthesized.

Idea: trade off rotation gates for other easier to synthesize gates

Under restricted gate sets, arbitrary rotation gates need to be synthesized.

Idea: trade off rotation gates for other easier to synthesize gates

Optimize the base case: 32-bit (say) PhaseProduct $\phi x'z'$

Under restricted gate sets, arbitrary rotation gates need to be synthesized.

Idea: trade off rotation gates for other easier to synthesize gates

Optimize the **base case**: 32-bit (say) PhaseProduct $\phi x'z'$

Direct (schoolbook)

Apply $32^2=1024~CR_\phi$ gates

Under restricted gate sets, arbitrary rotation gates need to be synthesized.

Idea: trade off rotation gates for other easier to synthesize gates

Optimize the base case: 32-bit (say) PhaseProduct $\phi x'z'$

Direct (schoolbook)

Apply $32^2 = 1024 \ CR_{\phi}$ gates

CR_{ϕ} optimized

- 1. Compute $|x'z'\rangle$ directly on 64 ancillas
- 2. Apply phase rotations on the output
- 3. Uncompute $|x'z'\rangle$

Under restricted gate sets, arbitrary rotation gates need to be synthesized.

Idea: trade off rotation gates for other easier to synthesize gates

Optimize the **base case**: 32-bit (say) PhaseProduct $\phi x'z'$

Direct (schoolbook)

Apply $32^2 = 1024 \ CR_{\phi}$ gates

CR_{ϕ} optimized

- 1. Compute $|x'z'\rangle$ directly on 64 ancillas
- 2. Apply phase rotations on the output
- 3. Uncompute $|x'z'\rangle$

1024 $CR_{\phi}
ightarrow$ 64 R_{ϕ} plus \sim 2048 Toffoli

[Cleve and Watrous 2000]: QFT can be defined recursively.

[Cleve and Watrous 2000]: QFT can be defined recursively.

For any m < n, we may implement QFT₂ⁿ:

- 1. Apply QFT $_{2^m}$ on first m qubits
- 2. Apply phase rotation $2\pi xz/2^n$
 - $|x\rangle$ is value of first m qubits
 - $|z\rangle$ is value of final n-m qubits
- 3. Apply QFT_{2^{n-m}} on final n-m qubits

[Cleve and Watrous 2000]: QFT can be defined recursively.

For any m < n, we may implement QFT₂ⁿ:

- 1. Apply QFT_{2m} on first m qubits
- 2. Apply phase rotation $2\pi xz/2^n$
 - $|x\rangle$ is value of first m qubits
 - $|z\rangle$ is value of final n-m qubits
- 3. Apply QFT_{2^{n-m}} on final n-m qubits

[Cleve and Watrous 2000]: QFT can be defined recursively.

For any m < n, we may implement QFT₂ⁿ:

- 1. Apply QFT $_{2^m}$ on first m qubits
- 2. Apply phase rotation $2\pi xz/2^n$
 - $|x\rangle$ is value of first m qubits
 - $|z\rangle$ is value of final n-m qubits
- 3. Apply QFT_{2^{n-m}} on final n-m qubits

[Cleve and Watrous 2000]: QFT can be defined recursively.

For any m < n, we may implement QFT_{2ⁿ}:

- 1. Apply QFT_{2m} on first m qubits
- 2. Apply phase rotation $2\pi xz/2^n$
 - $|x\rangle$ is value of first m qubits
 - $|z\rangle$ is value of final n-m qubits
- 3. Apply QFT_{2^{n-m}} on final n-m qubits

Immediately gives us sub-quadratic exact QFT using only 1 ancilla.

Parallelization is natural.

Parallelization is natural.

We have *k* sub-registers to work with—can do *k* sub-products in parallel.

Parallelization is natural.

We have *k* sub-registers to work with—can do *k* sub-products in parallel.

Depth: PhaseProduct in $\mathcal{O}(n^{\log_k 2})$ and PhaseTripleProduct in $\mathcal{O}(n^{\log_k 3})$ using a few more ancillas

Parallelization is natural.

We have *k* sub-registers to work with—can do *k* sub-products in parallel.

Challenge for multiply: How to do the QFT in sublinear depth with even $\mathcal{O}(n)$ ancillas?

Modular arithmetic

So far: have been using phase

$$\exp\left(2\pi i \frac{xyz}{2^n}\right)$$

Modular arithmetic

So far: have been using phase

$$\exp\left(2\pi i \frac{xyz}{2^n}\right)$$

(denominator matches order of QFT)

So far: have been using phase

$$\exp\left(2\pi i \frac{xyz}{2^n}\right)$$

(denominator matches order of QFT)

Observation:

$$\exp\left(2\pi i \frac{xyz}{N}\right) = \exp\left(2\pi i \frac{(xy \mod N)z}{N}\right)$$

Goal: only use n bits for output modulo N

Observation:

$$\exp\left(2\pi i \frac{xyz}{N}\right) = \exp\left(2\pi i \frac{(xy \mod N)z}{N}\right)$$

Define

$$w = \frac{xy \bmod N}{N}$$

Goal: only use n bits for output modulo N

Observation:

$$\exp\left(2\pi i \frac{xyz}{N}\right) = \exp\left(2\pi i \frac{(xy \mod N)z}{N}\right)$$

Define

$$w = \frac{xy \bmod N}{N}$$

Now, multiplication:

$$|x\rangle |0\rangle \rightarrow |x\rangle |w\rangle$$

Goal: only use n bits for output modulo N

Observation:

$$\exp\left(2\pi i \frac{xyz}{N}\right) = \exp\left(2\pi i \frac{(xy \mod N)z}{N}\right)$$

Define

$$w = \frac{xy \bmod N}{N}$$

Now, multiplication:

$$\left|x\right\rangle \left|0\right\rangle \rightarrow \left|x\right\rangle \left|w\right\rangle$$

Output register requires $n + \mathcal{O}(\log(1/\epsilon))$ qubits

Fast classical-quantum multiplication: algorithm

 $\mathsf{PhaseProdu}\overline{\mathsf{ct}(\phi,\ket{x},\ket{z})}$

Input: Quantum state $|x\rangle |z\rangle$, classical value ϕ

Output: Quantum state $\exp(i\phi xz)|x\rangle|z\rangle$

- 1. Split $|x\rangle$ and $|z\rangle$ in half, as $|x_1\rangle$ $|x_0\rangle$ and $|z_1\rangle$ $|z_0\rangle$
- 2. Apply PhaseProduct $((2^n-2^{n/2})\phi,|x_1\rangle\,,|z_1\rangle)$
- 3. Apply PhaseProduct $((1-2^{n/2})\phi,|x_0\rangle,|z_0\rangle)$
- 4. Add $|x_1\rangle$ to $|x_0\rangle$, and $|z_1\rangle$ to $|z_0\rangle$. Registers now hold $|x_1\rangle$ $|x_0+x_1\rangle$ $|z_1\rangle$ $|z_0+z_1\rangle$.
- 5. Apply PhaseProduct $(2^{n/2}\phi, |x_0 + x_1\rangle, |z_0 + z_1\rangle)$.
- 6. Subtract $|x_1\rangle$, $|z_1\rangle$ to return to registers to $|x_1\rangle$ $|x_0\rangle$ $|z_1\rangle$ $|z_0\rangle$.

$$x(b) = x_1b + x_0$$
$$z(b) = z_1b + z_0$$

$$z(b)=z_1b+z_0$$

$$x(b) = x_1 b + x_0$$

$$z(b) = z_1 b + z_0$$

$$p(b) = x(b)z(b)$$
 has degree 2

Let
$$w \in \{0, \infty, 1\}$$

$$x(b) = x_1 b + x_0$$

$$z(b) = z_1 b + z_0$$

$$p(b) = x(b)z(b)$$
 has degree 2

Let
$$w \in \{0, \infty, 1\}$$

$$x(b) = x_1b + x_0$$

$$z(b) = z_1 b + z_0$$

$$p(b) = x(b)z(b)$$
 has degree 2

$$p(b) = p(\infty)b^2 + [p(1) - p(\infty) - p(0)]b + p(0)$$

Let
$$w \in \{0, \infty, 1\}$$

$$x(b) = x_1b + x_0$$

$$z(b) = z_1 b + z_0$$

$$p(b) = x(b)z(b)$$
 has degree 2

$$p(b) = x(\infty)z(\infty)b^2 + [x(1)z(1) - x(\infty)z(\infty) - x(0)z(0)]b + x(0)z(0)$$

$$x(b) = x_1b + x_0$$

$$z(b) = z_1b + z_0$$

$$x(0) = x_0$$

$$x(0) = x_0$$

$$x(\infty) \propto x_1$$

$$p(b) = x(b)z(b) \text{ has degree 2}$$

$$x(1) = x_0 + x_1$$

$$p(b) = x(\infty)z(\infty)b^2 + [x(1)z(1) - x(\infty)z(\infty) - x(0)z(0)]b + x(0)z(0)$$

$$x(b) = x_1b + x_0$$

$$z(b) = z_1b + z_0$$

$$x(0) = x_0$$

$$x(\infty) \propto x_1$$

$$p(b) = x(b)z(b) \text{ has degree 2}$$

$$x(1) = x_0 + x_1$$

$$p(b) = x_1 z_1 b^2 + \left[(x_0 + x_1)(z_0 + z_1) - x_1 z_1 - x_0 z_0 \right] b + x_0 z_0$$

$$x(b) = x_1b + x_0$$

$$z(b) = z_1b + z_0$$

$$x(0) = x_0$$

$$x(0) = x_0$$

$$x(\infty) \propto x_1$$

$$p(b) = x(b)z(b) \text{ has degree 2}$$

$$x(1) = x_0 + x_1$$

$$p(2^{n/2}) = x_1 z_1 2^n + [(x_0 + x_1)(z_0 + z_1) - x_1 z_1 - x_0 z_0] 2^{n/2} + x_0 z_0$$

$$x(b) = x_1b + x_0$$

$$z(b) = z_1b + z_0$$

$$x(0) = x_0$$

$$x(0) = x_0$$

$$x(\infty) \propto x_1$$

$$p(b) = x(b)z(b) \text{ has degree 2}$$

$$x(1) = x_0 + x_1$$

$$XZ = X_1Z_12^n + [(X_0 + X_1)(Z_0 + Z_1) - X_1Z_1 - X_0Z_0]2^{n/2} + X_0Z_0$$