

Etanchéité statique et dynamique

PROJET MQ17 A2016

ETUDES DES MATÉRIAUX UTILISÉS LORS DE CONDITIONS EXTRÊMES

G.COULON – Q.GRAS – N.GUGGENBUHL – B.ROUSSEAU

P.REVEL – A.JOURANI

Eléments d'étanchéité

→ Joints

- Assure une étanchéité
- Doit résister à la cinématique du système
- Résister à l'environnement et au temps

Sujet

Conditions extrêmes:

- → Haute température
- → Basse température
- → Haute pression
- → Environnement corrosif

Secteur et industries intéressés :

- →Aéronautique
- → Aérospatiale
- → Militaire
- → Construction navale
- \rightarrow ..

Etude: 2 cas statiques – 2 cas dynamiques

Plan

I) Joints statiques

- → Raccord filetage taraudage
- → Joints plats

II) Joints dynamiques

- → Joints à brosse dans l'aéronautique
- → Revêtement abradable

Conclusion

Historique

1° CAS: RACCORD FILETAGE TARAUDAGE

Raccord filetage taraudage

En condition normale

-Tuyau de gaz : Kevlar + élastomère

-Tuyau d'eau : Téflon (PTFE)

Fibre de cellulose + élastomère

• • •

Raccord filetage taraudage

EnPro Industries companies

En condition extrêmes Utilisation de deux matériaux : -Matériau principale

-Couche externe

Acier inox faible teneur en carbone

Alliage nickel-chrome

PTFE, Argent, Or

		Base Material		Plating/ Coating		Pressur Limit	e	Tempera Limi	
		SS 304		PTFE		3500*		450°F	
†	_	SS 304		Silver		3500*		700°F	
		SS 304		Gold		3500*		700°F	
	=	17-4 PH		PTFE		3500*		450°F	
		17-4 PH		Gold		3500*		900°F	
		A286		PTFE		3500*		450°F	
	-	A286		Gold		3500*		1000°F	
		A286		Silver		3500*		800°F	
		Alloy X-75	0	PTFE		3500*		450°F	
		Alloy X-750		Silver		3500*		800°F	
		Alloy X-750		Gold		3500*		1400°F	

Raccord filetage taraudage

Matériaux principaux

17-4 PH

Acier inoxydable à faible teneur en carbone

-Carbone (0,08%), chrome (17%), tantale, cuivre,...

-500°

-N'est pas passivable dans tous les cas

A286

Acier inoxydable à Faible teneur en carbone

-Résiste à la corrosion

-600°

Alloy X-750

Alliage nickel-chrome

-Nickel (70%), chrome (17%), fer (9%)...

-760°

Raccord filetage taraudage

Matériaux d'enrobage

→ Bonne ductilité et résistance à la température

PTFE

Temp de fusion : 327°C Transition vitreuse : -30°C Module E : 300-800 Mpa

Inertie chimique avec acides

et bases

Argent

Temp de fusion : 962°C

Module E: 83 GPa

Or

Temp de fusion : 1064°C

Module E: 78 GPa

Raccord filetage taraudage : Synthèse

- -Matériaux choisi en fonction de l'utilisation
- -Choisir entre inertie chimique ou résistance à la chaleur
- -La pression n'est pas un problème
- -Utilisation de métaux

2° CAS : les joints plats

Exemple d'assemblage de joints plats

1: Joint souple seul

2: Joint souple avec bague inox extérieure

3: Joint souple avec bague inox intérieure

4: Joint souple avec bague intérieure et extérieure

Montage d'une bride par serrage au couple

Principaux matériaux utilisés:

- -Elastomères
- -Métaux

Caractéristiques du joint en PTFE

- -Faible coefficient de friction
- -Imperméable
- -Bon isolant électrique
- -Bonne résistance chimique
- -Large plage de température de travail
- -Peu cher

3° CAS: Les joints à brosse en aéronautique

Forme et intégration

Réduction de 90% du flux d'air par rapport à un joint labyrinthe

Milieu

Température = 650°C

Pression = 1400kPa

Vitesse linéaire = 300m/s

Contact : Acier à revêtement dur (Cr2C3)

Milieu environnant : air

Matériaux

Elubsys, Rolls Royce, NASA, ...
Performances avec des superalliages métalliques

Cobalt (~50%	ex Haynes 25)	Nickel (~70% exemple Inconel IX750)			
+ Résistance	à l'oxydation	+ Résistance à l'oxydation			
+ Résistance	à la chaleur	+ Résistance à la chaleur			
		- Certaines nuances non adaptées			
PS	PS HVOF		+ Bon coefficient de frottement		
- Usure inférieur	+ Usure global inférieure	PS	HVOF		
- Coefficient de frottement important	+ Meilleur coefficient de frottement	+ Usure inférieure	- Usure supérieure		

4° CAS : Les revêtements abradables dans les turboréacteurs

Modèle de vibration des ailettes

Coupe d'un turbo réacteur

(source: Structural Dynamics and Vibration Laboratory)

Usure du revêtement dans un turboréacteur

Source: structural (Source: Dynamics and Vibration Laboratory)

Vibration

Jeux réduit

Usure

- Combustion des gaz (kérosène) :

- Caractère abradable :

- Bon comportement à haute température, environ 650°C (bonne résistance au fluage)
- Résiste à la combustion (résistance à l'oxydation)
- Bon comportement face aux chocs (ductilité et résilience)
- Usure la plus lente possible (structure fibreuse)

Revêtement en fibre de super alliage de nickel

(Source: alibaba.com)

Microstructure d'un superalliage à matrice nickel

(Source: onera.fr)

Tapis de fibres roulé

en super alliage matrice nickel

Usure de différents super alliages de nickel en solicitation, en fonction du temps et de la température

(Source : google patents)

Classe de matériaux dans les turboréacteurs

(Source : société française de métallurgie et de matériaux)

Composition massique du super alliage de nickel Hastelloy X

Weight %

Weight 4					
47 Balance					
22					
18					
9					
1.5					
0.6					
0.1					
1 max.					
1 max.					
0.008 max.					
0.5 max.					
0.5 max.					
0.15 max.					

Trempe Recuit

Barre d'Hastelloy X

(Source : Kalikund Steel & Engg.co.)

(Source : Hastelloy@ X ally)

Synthèse

- -La recherche et le choix du matériau constitue la plus grosse partie du travail
- Dans des cas extrêmes : chaque caractéristique est à prendre en compte
- -Des industries sont spécialisés dans la fabrication de joints statiques
 - L'ingénieur doit donc faire un choix de matériaux dans une gamme déjà proposés
- -Joint dynamique spécifiques pour chacun utilisations
- L'ingénieur doit faire des recherches, souvent en collaboration, pour développer de nouvelles technologies propre au cas extrême
- -Grande utilisation d'alliage Nickel-Chrome et d'Acier Inox