

Areas Related to Circles Ex 15.1 Q13

Answer:

We know that the circumference C of a circle of radius r is

 $C = 2\pi i$

It is given that cost of fencing around the circular field would be Rs.2640 at the rate of Rs.12 per meter.

 $2\pi r \times 12 = 2650$

$$24 \times \frac{22}{7} r = 2650$$

$$r = \frac{2650 \times 7}{24 \times 22}$$
$$= 35 \text{ m}$$

We know that the area A of circle of radius r,

 $A = \pi r^2$

Substituting the value of r

$$A = \frac{22}{7} \times 35 \times 35$$

 $= 3850 \text{ m}^2$

Since, cost to plough per m^2 field = Rs. 0.50

Then, cost to plough 3850 m^2 field = Rs. 0.50×3850

Hence, amount required to plough the field is Rs. 1925

Areas Related to Circles Ex 15.1 Q14

Answer:

Let ABCD be the square inscribed in a circle of radius r.

Here, OA = OB = r.

$$\therefore OA^2 + OB^2 = AB^2$$

$$\Rightarrow r^2 + r^2 = AB^2$$

$$\Rightarrow 2r^2 = AB^2$$

Now, area of square ABCD = $AB^2 = 2r^2$

Area of circle = πr^2

Now we will find the ratio of area of the circle and the square.

$$\frac{\text{Area of circle}}{\text{Area of square}} = \frac{\pi r^2}{2r^2} = \frac{\pi}{2}$$

Hence, the ratio of area of the circle and square is $\pi:2$.

Areas Related to Circles Ex 15.1 Q15

Answer:

Let the radius of circular lawn be r. Then,

Area of circular lawn = πr^2

It is given that

Area of park excluding lawn = Area of rectangle-Area of circular lawn

$$8700 = 120 \times 100 - \pi r^2$$

$$\pi r^2 = 12000 - 8700$$

$$\frac{22}{7}r^2 = 3300$$

$$r^2 = \frac{3300 \times 7}{22}$$

$$r^2 = 1050$$

$$r = \sqrt{1050}$$

$$r = 32.40 \text{ m}$$

Hence, radius of circular lawn is 32.40 m

Areas Related to Circles Ex 15.1 Q16

Answer:

Let the radius of circles be r cm , r_1 cm and r_2 cm respectively. Then their areas are $A=\pi r^2$ cm^2 .

 $A_1 = \pi r_1^2$ cm² and $A_2 = \pi r_2^2$ cm² respectively.

It is given that,

Area A of circle = Area A_1 of circle + Area A_2 of circle

$$\pi r^{2} = \pi r_{1}^{2} + \pi r_{2}^{2}$$

$$\pi r^{2} = \pi \left(r_{1}^{2} + r_{2}^{2} \right)$$

$$r^2 = r_1^2 + r_2^2$$

$$r^2 = r_1^2 + r_2^2$$

We have, $r_{\rm i}=6~{\rm cm}$ and $r_{\rm 2}=8~{\rm cm}$

Substituting the values of $r_{\!\scriptscriptstyle 1}$, $r_{\!\scriptscriptstyle 2}$

 $r^2 = 6 \times 6 + 8 \times 8$

 $r^2 = 36 + 64$

 $r^2 = 100$

 $r = \sqrt{100}$

r = 10 cm

Hence, the radius of circle is 10 cm

******* END ******