Gender Prediction Using Excel

This presentation explores how to predict gender using Excel, it offers a practical and accessible approach to data analysis.

BY: Kanupriya Nailwal

Problem Statement:

Unveil the gender mystery behind each name with the power of Excel.

Name -	Gender -				
Meghamala	Female				
Pragya	Female				
Kranti	Female				
Tulika	Female				
Aarushi	Female				
Pratigya	Female				
Madhavi	Female				
Charusila	Female				
Manmayi	Female				
Mahajabeen	Female				
Nidhyathi	Female				
Nainika	Female				
Madirakshi	Female				
Harijatha	Female				
Rupal	Female				
Eka	Female				
Ilampirai	Female				
Shrivalli	Female				
Oma	Female				
Kali	Female				
Gudiya	Female				
Neelabja	Female				

Data Splitting: Training and Validation:

This dataset consists of 3001 rows of data. Split data into 70% for training and 30% for validation using stratified splitting technique.

Tools & Formula Used

1 IF()

To predict the gender.

If female% is greater than male%, predict female, otherwise male.

Right()

It returns the last character of the name .

3 Pivot Table

To summarize data and generate insights.

4 VLOOKUP()

To find the gender value based on the last letter from test data and use that data to predict the Gender based on the new names in the test data.

Methodology:

- Extract the last letter from each name from training data.
- Check how frequently the letter occurs, corresponding to the gender. For instance: The letters 'a' & 'i' most frequently occur when the person is **Female**.
- Use this information to predict the gender.

Name 💌	Gender 💌	LastName 💌
Meghama	Female	а
Pragya	Female	а
Kranti	Female	i
Tulika	Female	а
Aarushi	Female	i
Pratigya	Female	а
Madhavi	Female	i
Charusila	Female	а
Manmayi	Female	i
Mahajabe	Female	n
Nidhyathi	Female	i
Nainika	Female	а
Madiraksh	Female	i
Harijatha	Female	а
Rupal	Female	1
Eka	Female	а
Ilampirai	Female	i
Shrivalli	Female	i
Oma	Female	а
Kali	Female	i
Gudiya	Female	а
Neelabja	Female	а
Sarbani	Female	i
Sharvani	Female	i
Tripuri	Female	ĭ
Naisha	Female	а

Pivot Table

Pivot tables are powerful for analyzing data by gender, summarizing and visualizing trends. Here a pivot table is created based on training dataset.

Last Letter 💌	Female	Male
a	73.04%	26.96%
b	16.67%	83.33%
d	2.86%	97.14%
e	50.00%	50.00%
f	33.33%	66.67%
g	0.00%	100.00%
h	3.94%	96.06%
i	81.93%	18.07%
j	3.70%	96.30%
k	8.70%	91.30%
I	31.58%	68.42%
m	14.29%	85.71%
n	7.11%	92.89%
0	40.00%	60.00%
p	6.67%	93.33%
q	0.00%	100.00%
r	7.41%	92.59%
S	10.71%	89.29%
t	6.49%	93.51%
u	20.83%	79.17%
v	0.00%	100.00%
У	9.52%	90.48%

Training data analysis:

Prediction On Validation Data

Using the **VLOOKUP** function and using the pivot table as reference the gender was predicted and using **IF** function the probabilities were compared.

	Α	В	С	D	Е	F	G
1	Column1 💌	Column2 💌	Column3 💌	Column4	Column5 💌	Column6	Column7
2	Name	Gender	LastName	Gender_M	Gender_F	Gender_predicted	RuleBasedModel(Accuracy)
3	Meghamala	Female	a	0.269647696	0.7303523	Female	TRUE
4	Pragya	Female	a	0.269647696	0.7303523	Female	TRUE
5	Kranti	Female	İ	0.180693069	0.81930693	Female	TRUE
6	Tulika	Female	a	0.269647696	0.7303523	Female	TRUE
7	Aarushi	Female	İ	0.180693069	0.81930693	Female	TRUE
8	Pratigya	Female	a	0.269647696	0.7303523	Female	TRUE
9	Madhavi	Female	İ	0.180693069	0.81930693	Female	TRUE
10	Charusila	Female	a	0.269647696	0.7303523	Female	TRUE
11	Manmayi	Female	İ	0.180693069	0.81930693	Female	TRUE
12	Mahajabeen	Female	n	0.92893401	0.07106599	Male	FALSE
13	Nidhyathi	Female	İ	0.180693069	0.81930693	Female	TRUE
14	Nainika	Female	a	0.269647696	0.7303523	Female	TRUE
15	Madirakshi	Female	İ	0.180693069	0.81930693	Female	TRUE
16	Harijatha	Female	a	0.269647696	0.7303523	Female	TRUE
17	Rupal	Female	I	0.684210526	0.31578947	Male	FALSE
18	Eka	Female	a	0.269647696	0.7303523	Female	TRUE
19	Ilampirai	Female	İ	0.180693069	0.81930693	Female	TRUE
20	Shrivalli	Female	İ	0.180693069	0.81930693	Female	TRUE
21	Oma	Female	a	0.269647696	0.7303523	Female	TRUE
22	Kali	Female	İ	0.180693069	0.81930693	Female	TRUE
23	Gudiya	Female	a	0.269647696	0.7303523	Female	TRUE
24	Neelabja	Female	a	0.269647696	0.7303523	Female	TRUE
25	Sarbani	Female	i	0.180693069	0.81930693	Female	TRUE
26	Sharvani	Female	i	0.180693069	0.81930693	Female	TRUE
27	Tripuri	Female	i _	0.180693069	0.81930693	Female	TRUE

Prediction Using F1 Score

 F1 Score – The harmonic mean between precision and recall which establishes the accuracy of the model in a much better manner.

CountOfGender	Category			
Gender ▼	Female	Male	(blank)	Grand Total
Female	367	7 50		417
Male	125	5 358	}	483
(blank)				
Grand Total	492	2 408		900
Precision	75%	6		
Recall	88%	ó		
F1 SCORE=	81%	ó		

2*Precision*Recall/(Precision+Recall)

- Precision The ratio of true values to our predicted true values (TP/(TP+FP))
- Recall The ratio of true values to the actual number of true values (TP/(TP+FN))
- To depict the values, we create a table called Confusion matrix

Testing the Model On Random Names-:

After building the model, tested it on random names using:

- VLOOKUP() Find the most probable gender based on the last letter.
- IF() Compares probabilities and assigns gender.

	A	В	С	D	Е	
1	Name	▼ LastLetter	▼ Male Chances ▼	Female Chances	Gender 🔻	
2	Zaraaya	a	26.96%	73.04%	Female	
3	Nirvaan	n	92.89%	7.11%	Male	
4	Vihaana	а	26.96%	73.04%	Female	
5	Saanvi	i	18.07%	81.93%	Female	

Conclusion:

- Gender can be predicted using names with 81% accuracy using Excel functions.
- Pivot Tables & VLOOKUP help identify patterns in last-letter frequencies.