Calculus in Groups: Linkings and Configurations of Letters

Introduction.

Joint work with N.Gadish, A.Ozbek, D.Sinha

Lie coalgebras and rational homotopy III:

Rational measurement of the fundamental group

(working title)

D.Sinha and B.Walter

Lie coalgebras and rational homotopy I: Graph coalgebras (2011)

Lie coalgebras and rational homotopy II: Hopf invariants (2013)

J.Monroe and D.Sinha
Linking of letters and the lower central series of free groups (2022)

5 Minute Groups Intro.

"Def": A finitely presented group $G = \langle S \mid R \rangle$ ("generators S and relations R") is the collection of "words" in the "alphabet" $S \cup S^{-1}$ modulo the relations R.

No...

Classical example: S = set of actions

wake up $\rightarrow w$

get dressed $\rightarrow g$

brush teeth $\rightarrow b$

etc.

"word" = ordered list of actions

wgb = wake up, get dressed, brush teeth

If we think of these as *functions*, then we should probably write in the other order...

Every action has an "inverse" action

put shirt on $\rightarrow s$ take shirt off $\rightarrow s^{-1}$

"empty word" = "identity"

5 Minute Groups Intro.

"Def": A finitely presented group $G = \langle S \mid R \rangle$ ("generators S and relations R") is the collection of "words" in the "alphabet" $S \cup S^{-1}$ modulo the relations R.

Classical example: S = set of actions wake up $\rightarrow w$ get dressed $\rightarrow g$ brush teeth $\rightarrow b$ etc.

Every action has an "inverse" action

put shirt on $\rightarrow s$ take shirt off $\rightarrow s^{-1}$

"word" = ordered list of actions

wgb = wake up, get dressed, brush teeth

If we think of these as *functions*, then we should probably write in the other order...

5 Minute Groups Intro.

"Def": A finitely presented group $G = \langle S \mid R \rangle$ ("generators S and relations R") is the collection of "words" in the "alphabet" $S \cup S^{-1}$ modulo the relations R.

Classical example: S = set of actionswake up $\rightarrow w$ get dressed $\rightarrow g$ brush teeth $\rightarrow b$

Every action has an "inverse" action put shirt on $\rightarrow s$

etc.

take shirt off $\rightarrow s^{-1}$

R = collection

$$ss^{-1} = I$$

up

00

sp = ps

Put on underwear

- Put on pants
- Take off underwear
- Take off pants

 $up \neq pu \iff upu^{-1}p^{-1} \neq I$

l actions

• Go to hospital

Put on shirt
Put on pants
e off shirt
off pants

 $\iff sps^{-1}p^{-1} = I$

Do nothing

Benjamin Walter

5 Minute Groups Intro.

"Def": A finitely presented group $G = \langle S \mid R \rangle$ ("generators S and relations R") is the collection of "words" in the "alphabet" $S \cup S^{-1}$ modulo the relations R.

Classical example: S = set of actionswake $up \rightarrow w$ get dressed $\rightarrow g$ brush teeth $\rightarrow b$ etc.

Every action has an "inverse" action put shirt on $\rightarrow s$ take shirt off $\rightarrow s^{-1}$

R = collection of equivalent / trivial actions

$$ss^{-1} = I$$

 $up \neq pu \iff upu^{-1}p^{-1} \neq I$
 $sp = ps \iff sps^{-1}p^{-1} = I$

$$G = \langle u, p, s \mid sps^{-1}p^{-1}, sus^{-1}u^{-1} \rangle$$

Now you know about groups! (And FASHION!)

Questions:

- When are two groups equivalent?
 (different choice of generators & relations)
- 2. When are two words equivalent?

"Word Problem"

Plan: Invariants!

Want to tell apart things in here:

Dualize!

Define functions on the level of words so that if $w_1 = w_2$ in G (i.e. modulo relations) then $f(w_1) = f(w_2)$ These are "invariants"

$$\longrightarrow G$$

Commutator
$$[a, b] = aba^{-1}b^{-1}$$

 $\operatorname{Fun}(G;\mathbb{R}) = \left\{ \operatorname{Functions} G \to \mathbb{R} \right\}$

$$\operatorname{Fun}(G, [G, G]; \mathbb{R}) = \begin{cases} \operatorname{Functions} G \to \mathbb{R} \\ \operatorname{vanishing} \operatorname{on} [G, G] \end{cases}$$

"linear"

$$\operatorname{Fun}(G, G^{[3]}; \mathbb{R}) = \begin{cases} \operatorname{Functions} G \to \mathbb{R} \\ \operatorname{vanishing on} [G, [G, G]] \end{cases}$$

"quadratic"

More general, fancier version uses Baker–Campbell–Hausdorff formula.

Bernoulli numbers appear, possible connection to Riemann zeta function.

$$\operatorname{Fun}(\widehat{G};\mathbb{R}) = \left\{ \begin{array}{l} \operatorname{Functions} \ G \to \mathbb{R} \\ \operatorname{on} \ nilpotent \ completion \end{array} \right\}$$

"power series"

Big picture (for experts)

Lower Central

Series

Do knot theory with words in group

Malcev completion

Calculus in Groups

Fun(G, $G^{[n]}$; \mathbb{R})

Functions vanishing on *n*-fold bracket words

00

Lie algebra

structure

$\operatorname{Fun}(\widehat{G} ; \mathbb{R})$ Lie coalgebra structure Fun(Γ_4 ; \mathbb{R}) \leftarrow Fun($G, G^{[5]}$; \mathbb{R}) $| dx^3 \leftarrow a + bx + cx^2 + dx^3 |$ Fun(Γ_3 ; \mathbb{R}) \leftarrow Fun($G, G^{[4]}$; \mathbb{R}) $| cx^2 \leftarrow a + bx + cx^2 |$ $\operatorname{Fun}(\Gamma_2; \mathbb{R}) \longleftarrow \operatorname{Fun}(G, G^{[3]}; \mathbb{R}) \qquad bx \leftarrow a + bx$ $\operatorname{Fun}(\Gamma_1; \mathbb{R}) \neq \operatorname{Fun}(G, G^{[2]}; \mathbb{R})$

Power Series

$$\vdots$$

$$\vdots$$

$$dx^{3} \leftarrow a + bx + cx^{2} + dx$$

$$\uparrow$$

$$cx^{2} \leftarrow a + bx + cx^{2}$$

$$\uparrow$$

$$bx \leftarrow a + bx$$

$$\uparrow$$

Group

 $G^{[4]} = [G, [G, [G, G]]] \rightarrow G^{[4]} / G^{[5]}$

 $G^{[3]} = [G, [G, G]] \longrightarrow G^{[3]} / G^{[4]}$

 $G^{[2]} = [G, G] \longrightarrow G^{[2]} / G^{[3]}$

 $G \longrightarrow G / [G, G] = \Gamma_1$

Dualize!

Invariants

Analogy

Functions vanishing on

 $H^0(\mathcal{K},\mathcal{K}_n; \mathbb{R})$

Finite type (Vassiliev) knot invariants.

Recall: singularity of knot resolves as "over-crossing" — "under-crossing"

Conjecture: $H^0(\mathcal{K}; \mathbb{R})$ Bi-algebra structure "Symbol" $H^0(\Gamma_3; \mathbb{R}) \leftarrow H^0(\mathcal{K}, \mathcal{K}_4; \mathbb{R})$ $H^0(\Gamma_2; \mathbb{R}) \longleftarrow H^0(\mathcal{K}, \mathcal{K}_3; \mathbb{R})$ $H^0(\Gamma_1; \mathbb{R}) \longleftarrow H^0(\mathcal{K}, \mathcal{K}_2; \mathbb{R})$ $H^0(\Gamma_0; \mathbb{R}) \neq H^0(\mathcal{K}, \mathcal{K}_1; \mathbb{R})$ Finite-Type

Dualize!

Invariants

knots with n singularities **Power Series** $dx^3 \leftarrow a + bx + cx^2 + dx^3$ $|cx^2| \leftarrow a + bx + |cx^2|$ $bx \leftarrow a + bx$

Analogy

Functions on words. (Not invariants yet)

Notation:

- Fix a presentation $G = \langle S | R \rangle$ of the group G.
- A word of length k is an element of $(S \coprod S^{-1})^{\times k}$
- The word $w = x_1 x_2 \dots x_k$ has **letters** x_1, x_2, \dots, x_k
- The **sign** of a letter is $dx_i = \pm 1$ depending on whether $x_i \in S$ or $x_i \in S^{-1}$

Examples:

 $a, ab, aaa^{-1}, aba^{-1}b^{-1}$

Signs:

$$da = 1$$
$$da^{-1} = -1$$

Functions and Forms:

- A function on $w = x_1 x_2 \dots x_k$ is a map $f: \{1, 2, \dots, k\} \rightarrow \mathbb{R}$
- The **1-form** dx gives sign of associated letter.
- General 1-forms are $\varphi = f \ dx$
- These behave like usual....

Example:

Integrals of functions. (Still not invariants)

Definition: The **integral** (or count) of f dx over the word w is

$$\int_{W} f \, dx = \sum_{i} f(i) \, dx_{i}$$

Notation: We'll say that f dx cobounds (over w) if

$$\int_{\mathcal{U}} f \, dx = 0$$

Example:

$$\int f dx = 1 - 2 - 1 + 3 = 1$$

$$\uparrow \uparrow \uparrow \uparrow \uparrow$$

$$f = 1 - 2 - 1 - 3$$

$$w = a b a^{-1} b^{-1}$$

Example:

Basic idea is from algebraic topology.

A word w defines a map

$$w: S^1 \to V_S S^1$$

Forms on $V_S S^1$ can be *pulled back* and integrated: $\int_{S^1} w^* f \ dx$

Indicator functions. (Weight 0 Invariants)

Definition: The **indicator function** for a letter $a \in S$ is

$$\delta_a(i) = \begin{cases} 1, & \text{if } x_i = a \text{ or } a^{-1} \\ 0, & \text{otherwise} \end{cases}$$

Examples:

$$\delta_a = 1 \quad 0 \quad 1 \quad 0 \\
w = a \quad b \quad a^{-1} \quad b^{-1}$$

$$\delta_{a} = \begin{cases}
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0
\end{cases}$$

$$\delta_{a} + 2\delta_{b} = \begin{cases}
1 & 2 & 1 & 2 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{cases}$$

$$w = \begin{cases}
a & b & a^{-1} & b^{-1}
\end{cases}$$

Bigger Example:

Note: The integral of an indicator form **counts** (with sign) the number of occurrences of the corresponding letter.

$$\int_{W} A = \#\{a \text{ in } w\} - \#\{a^{-1} \text{ in } w\}$$

Notation:

- Use <u>lowercase</u> letters for generators: $a,b,c \in S$
- Use <u>uppercase</u> letters for corresponding indicator forms:

$$A = \delta_a dx$$
, $B = \delta_b dx$, etc..

Convention: omit 0's

Indicator forms are pull-backs of bump forms

$$w: S^1 \to V_S S^1$$

They tell whether w went around some circle and when.

If **all** indicators cobound then the word **vanishes** in the abelianization $G^{ab} = G / [G, G]$

Anti-derivatives of functions. (Cobounding)

Definition: The **anti-derivative** (or cobounding function) of $\varphi = f \ dx$ is the function

 $d^{-1}(\varphi) = F(i) = \sum_{j < i} f(j) dx_j + f(i) \epsilon_i$

where $\epsilon_i = 1$ if $dx_i = 1$ and 0 otherwise.

Basic Examples:

dx 'nudges' value of f(x) to the **left** or **right** of letter.

Bigger Example:

Anti-derivatives of **indicators** are **square waves**

This is necessary to make *something* be a group homomorphism...

Why ϵ_i ????

Before discretizing, we 'push' area to one side of loop.

- When we do loop forwards, we've already seen area by discretization position.
- When we do loop backwards, we don't see area until after the discretization position.

Linking Products and Symbols.

Definition: The **linking product** of $\varphi = f \ dx$ and $\psi = g \ dx$ is the form $(d^{-1} \ \varphi) \ \psi = F \ g \ dx$

Notation: For indicator forms, we will drop the " d^{-1} "

$$(d^{-1}A)B = (A)B$$

$$(d^{-1}A)(d^{-1}B)C = (A)(B)C$$

$$(d^{-1}((d^{-1}A)B))C = ((A)B)C$$

We're mostly interested in this when either φ or ψ cobound.

Definition: A **symbol** Λ is a formal expression of iterated operations of

- linear combination and
- linking product of indicator forms.

These will give our invariants!

Examples:

$$A$$
 B $A + 2B$ $(A + B)C$ $(A)\{B - C\}$ $(A)B - A$ $((A)B - C)A$ $((A)\{B - C\})A$ $(A)(B - C)B$

Definition: The **weight** of symbol is # (linking products) + 1

Invariants.

Definition: The value of a symbol on a word is given by integrating the symbol over the word.

$$\Lambda(w) = \int_{w} \Lambda$$

Example: (A)B on
$$w = [[a,b],a]$$

(A)B 1 1 2 $\rightarrow 1+1-2=0$

(A) 1 1 1 1 2 2 2 1 $\rightarrow a$
 $a \ b \ a^{-1}b^{-1}a \ b \ a \ b^{-1}a^{-1}a^{-1}$

Theorem: If G is a free group, then a word is an n-fold commutator $w \in G^{[n]}$ if and only if all symbols of weight < n vanish on the word.

≈ [Monroe-Sinha]

Theorem: If $G = \langle S | R \rangle$, then a word is an n-fold commutator $w \in G^{[n]}$ if and only if all symbols of weight < n in the coideal generated by symbols vanishing on the relations vanish on the word.

[GOSW]

Integration by parts. (Anti-commutativity and Arnold identities)

Lemma: Integrals of linking products satisfy

$$\int_{W} F g dx + \int_{W} G f dx - \int_{W} f g dx = \int_{W} f dx \int_{W} g dx$$

Notation:

The **total intersection** of f dx and g dx is

$$\int_{W} fg \ dx$$

Proof (sketch): F and G are themselves integrals – results are double integrals, over $w \times w$

On diagonal, f(i)g(i) appears **twice** if $dx_i = 1$ and **not at all** if $dx_i = -1$

On diagonal, all f(i)g(i) appear with sign $dx_i^2 = 1$

If f dx and g dx cobound and have total intersection 0 then linking product is anti-commutative!

Integration by parts. (Anti-commutativity and Arnold identities)

Lemma: Integrals of linking products satisfy

$$\int_{W} F g dx + \int_{W} G f dx - \int_{W} f g dx = \int_{W} f dx \int_{W} g dx$$

Notation:

The **total intersection** of f dx and g dx is

$$\int_{W} fg \ dx$$

Lemma: Integrals of linking products satisfy

$$\int_{W} FG h dx + \int_{W} GH f dx + \int_{W} HF g dx$$

$$- \int_{W} F gh dx - \int_{W} G hf dx - \int_{W} H fg dx + \int_{W} fgh dx$$

$$= \int_{W} f dx \int_{W} g dx$$

If no pairwise total intersection and cobounding then this is the **Arnold Identity**.

Integration by parts. (Anti-commutativity and Arnold identities)

Lemma: Integrals of linking products satisfy

$$\int_{W} F g dx + \int_{W} G f dx - \int_{W} f g dx = \int_{W} f dx \int_{W} g dx$$

Notation:

The **total intersection** of f dx and g dx is

 $\int fg\ dx$

If f dx and g dx cobound and have total intersection 0 then linking product is anti-commutative!

Proposition: If these forms are **symbols** and at least one of them **cobounds**, then all total intersections vanish!

As functions on words, the following relations hold:

Anticommutativity
$$(M)N = -(N)M$$

Arnold Identity
$$(L)(M)N + (M)(N)L + (N)(L)M = 0$$

tal

this **ntity**.

Linking of Letters

Switch to camera.

Configuration of Letters.

Switch to camera.

From Symbols to Graphs!

Switch to camera.

The End