

دانشگاه صنعتی شاهرود دانشکده مهندسی کامپیوتر و فناوری اطلاعات

درس اصول طراحي كامپايلر

مبحث Parsing (تجزیه)

مدرس: علیرضا تجری

مرور مباحث گذشته

■ استخراج / اشتقاق / بسط

- $E \rightarrow E + E \mid E * E \mid -E \mid (E) \mid id$
 - غیرپایانه E فرم جملهای E را استخراج (مشتق) میکند / بسط می دهد

E ⇒ -E

■ نحوه استخراج (id)-

• $E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(id)$

■ استخراج در صفر یا چند مرحله

• $E \stackrel{*}{\Rightarrow} -(id)$

■ استخراج در یک یا چند مرحله

• $E \stackrel{+}{\Rightarrow} -(id)$

برای هر رشته α داریم

- $\alpha \stackrel{*}{\Rightarrow} \alpha$
- if $\alpha \stackrel{*}{\Rightarrow} \beta$, $\beta \stackrel{*}{\Rightarrow} \gamma$ then $\alpha \stackrel{*}{\Rightarrow} \gamma$
- است. α اگر α انگاه α فرمجملهای گرامر β است.
 - غیرپایانه S سمبل شروع گرامر G است.
- یک جمله در G: فرمجملهای بدون غیرپایانه (ω)
- زبان تولید شده توسط گرامر L(G) مجموعه جملههای آن گرامر
- $\omega \in L(G) \Leftrightarrow S \stackrel{*}{\Rightarrow} \omega$
- گرامرهای معادل: دو گرامری که میتوانند یک زبان را تولید کنند

■ استخراج (id+id)_

- $E \rightarrow E + E \mid E * E \mid -E \mid (E) \mid id$
- $E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(id+E) \Rightarrow -(id+id)$
- $E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(E+id) \Rightarrow -(id+id)$
 - در هر مرحله، كدام غيرپايانه جايگزين شد؟
 - leftmost derivation بسط سمتچپترین
 - هر بار سمت چپترین غیرپایانه بسط داده می شود
 - rightmost derivation بسط سمتراستترین
 - هر بار سمتراستترین غیرپایانه بسط داده می شود

- $\alpha \Rightarrow \beta$
- $\alpha \Rightarrow \beta$

 $(A o \delta)$ نمونه بسط سمت چپترین (با اعمال قاعده

- $\omega A \gamma \Rightarrow \omega \delta \gamma$
 - با توجه به فرآیند استخراج یک جمله، می توان درخت تجزیه رشته را رسم کرد.

- ابهام وگرامر مبهم:
- گرامری مبهم است که برای یک جمله، بیش از یک استخراج سمت چپترین و یا بیش از یک استخراج سمتراستترین داشته باشد.
- $E \rightarrow E + E \mid E * E \mid -E \mid (E) \mid id$
- id + id * id

دانشگاه صنعتی شاهرود اصول طراحي كامپايلر ۶ از ۳۳

رفع ابهام else پادرهوا else پادرها

 $stmt \rightarrow if \ expr \ then \ stmt$ | $if \ expr \ then \ stmt \ else \ stmt$ | other

if E_1 then S_1 else if E_2 then S_2 else S_3


```
stmt \rightarrow if \ expr \ then \ stmt
| if \ expr \ then \ stmt \ else \ stmt
| other
```

if E_1 then if E_2 then S_1 else S_2

در این جمله، else برای کدام if است؟

```
if E1 then
if E2 then
S1
else
S2
```

if E1 then
if E2 then
S1
else
S2

■ قاعده کلی: هر else برای نزدیکترین if بدون elseدر نظر گرفته شود.


```
if E1 then
if E2 then
S1
else
S2
```

```
if E1 then
if E2 then
S1
else
S2
```

■ قاعده کلی: هر else برای نزدیک ترین if بدون elseدر نظر گرفته شود.

• ly stmt بين then و else بايد حتما داراي else باشد.

```
stmt \rightarrow if \ expr \ then \ stmt
| if \ expr \ then \ stmt \ else \ stmt
| other
```

دستهبندی کلی روشهای تجزیه

- ا روشهای تجزیه بالا به پایین
 - Top-Down •
- ساخت درخت تجزیه از ریشه به سمت برگها
 - روشهای تجزیه پایین به بالا
 - Bottom-Up •
- ساخت درخت تجزیه از برگها به سمت ریشه

در همه روشها، ورودی از چپ به راست بررسی شده و با توجه به آن درخت تجزیه ساخته میشود. هر باریک توکن

دستهبندی کلی روشهای تجزیه

- به طور کلی، پیچیدگی الگوریتم تجزیه یک رشته با استفاده از گرامرهای مستقل از متن:
 - $O(n^3)$ •
 - برای زبانهای برنامهنویسی:
 - معمولا (O(n
 - پارامتر n: تعداد توکنهای رشته
 - یکبار پیمایش توکنها از ابتدا تا انتها

روشهای بالا به پایین را میتوان به صورت دستی پیادهسازی کرد. معمولا روشهای پایین به بالا توسط ابزارهای تولید خودکار کامپایلر پیادهسازی میشوند.

فرآیند تجزیه در روشهای بالا به پایین

- 1) گره ریشه را ایجاد کنید.
- درگره N که با غیرپایانه A نشان داده شده است و فرزندی ندارد، یکی از قوانین مربوط به A را انتخاب کنید و فرزندان گره N را با توجه به آن قانون ایجاد کنید.
 - انتخاب قانون با توجه به توكن ورودى كنوني (پیشبینی lookahead)
 - 3) گره بعدی که باید گسترش یابد را پیدا کنید.
 - اولین گره گسترش نیافته سمت چپ

در حین تجزیه، lookahead از ابتدای رشته حرکت میکند و به انتهای رشته میرسد.

تجزیه گر پایینگرد بازگشتی Recursive Descent Parser

```
stmt
         \rightarrow expr;
                                                  ■ یک روش تجزیه بالا به پایین
             if ( expr ) stmt
             for ( optexpr ; optexpr ; optexpr ) stmt
             other
for (; expr; expr) other
           for
                       optexpr ; optexpr ; optexpr
```

۱۶ از ۳۳ اصول طراحی کامپایلر دانشگاه صنعتی شاهرود

expr

expr

other

تجزیه گر پایینگرد بازگشتی Recursive Descent Parser

۱۷ از ۳۳ دانشگاه صنعتی شاهرود

تجزیه گر پایینگرد بازگشتی Recursive Descent Parser

۱۸ از ۳۳ اصول طراحی کامپایلر دانشگاه صنعتی شاهرود

expr

optexpr

- یک روش تجزیه بالا به پایین (بدون سعی و خطا)
 - ایجاد یک تابع هر غیرپایانه
- تصمیمگیری در رابطه با انتخاب یک قاعده گرامری (switch if)
 - استفاده از قاعده انتخاب شده (function call)
 - match تابع
 - تطبیق ترمینال درون قاعده گرامری با توکن کنونی (lookahead)

حداقل تعداد توابع = تعداد غيرپايانهها + ١

گرامر نمونه

```
stmt \rightarrow expr;
| if (expr) stmt
| for (optexpr; optexpr; optexpr) stmt
| other

optexpr \rightarrow \epsilon
| expr
```

match تابع

```
void match(terminal t) {
    if ( lookahead == t ) lookahead = nextTerminal;
    else report("syntax error");
}
```

• تابع مربوط به غیرپایانه optexpr

```
void optexpr() {
    if ( lookahead == expr ) match(expr);
}
```

```
تابع مربوط به غیرپایانه stmt
void stmt() {
       switch ( lookahead ) {
       case expr:
               match(\mathbf{expr}); \ match(';'); \ break;
       case if:
               match(\mathbf{if}); \ match('('); \ match(\mathbf{expr}); \ match(')'); \ stmt();
               break;
       case for:
               match(\mathbf{for}); match('(');
               optexpr(); match(';'); optexpr(); match(';'); optexpr();
               match(')'; stmt(); break;
       case other;
               match(other); break;
       default:
               report("syntax error");
        }
```

- تجزیه چگونه انجام میشود؟
- تابع مربوط به سمبل شروع گرامر فراخوانی میشود.
- مقدار lookahead در ابتدا نشان دهنده اولین توکن ورودی است.
 - تجزیه رشته زیر

for (; expr; expr) other

- گرامر نباید چپگردی داشته باشد.
- اگر دو قاعده به صورت زیر داشته باشیم، توکن شروع دو قاعده باید متفاوت باشد.

$$A \to \alpha$$

$$A \rightarrow \beta$$

دنباله اجرای توابع، درخت تجزیه را ایجاد میکند.

left recursion چپگردی

$$A \rightarrow A \alpha \mid \beta$$

تابع غیرپایانه A؟

نیاز به یک گرامر معادل که چپگرد نباشد.

$$A \rightarrow A \alpha \mid \beta$$

■ غیرپایانه A چه فرمهای جملهایی تولید می کند؟

β, βα, βαα, βααα, ...

رفع چپگردی

$$A \rightarrow A \alpha \mid \beta$$

■ غیرپایانه A چه فرمهای جملهایی تولید می کند؟

β, βα, βαα, βααα, ...

$$\begin{array}{c} A \to \beta \ R \\ R \to \alpha \ R \mid \epsilon \end{array}$$

حالت کلی چپگردی آشکار

$$A \to A\alpha_1 \mid A\alpha_2 \mid \cdots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$$

$$A \to \beta_1 A' \mid \beta_2 A' \mid \cdots \mid \beta_n A'$$

$$A' \to \alpha_1 A' \mid \alpha_2 A' \mid \cdots \mid \alpha_m A' \mid \epsilon$$

چپگردی ضمنی (غیر آشکار)

$$S \Rightarrow Aa \Rightarrow Sda$$

رفع چپگردی ضمنی (غیر آشکار)

$$S \to A \ a \mid b$$

$$A \to A \ c \mid S \ d \mid \epsilon$$

- تبدیل چپگردی ضمنی به آشکار
- جایگزینی غیرپایانه با استفاده از قواعد گرامری
 - رفع چپگردی آشکار

$$A \rightarrow A c \mid A a d \mid b d \mid \epsilon$$

$$S \rightarrow A \ a \mid b$$

$$A \rightarrow b \ d \ A' \mid A'$$

$$A' \rightarrow c \ A' \mid a \ d \ A' \mid \epsilon$$

فاکتورگیری از چپ

■ سمت راست دو قاعده گرامری مربوط به یک غیر پایانه با یک فرم جملهای شروع شود.

$$stmt \rightarrow if expr then stmt else stmt$$

| $if expr then stmt$

$$A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$$

$$\begin{array}{cccc} A \to \alpha A' \\ A' \to \beta_1 & | & \beta_2 \end{array}$$

۳۱ از ۳۳ دانشگاه صنعتی شاهرود

فاکتورگیری از چپ

■ سمت راست دو قاعده گرامری مربوط به یک غیر پایانه با یک فرم جملهای شروع شود.

$$A \to \alpha \beta_1 \mid \alpha \beta_2 \mid \cdots \mid \alpha \beta_n \mid \gamma_n$$

دانشگاه صنعتی شاهرود ۳۳ از ۳۳ اصول طراحي كامپايلر