

+51/1/40+

QCM

TEST

Nom et prénom :

Soit le chronogramme suivant. Quelles sont les lignes de code qui pourraient Question 1 4

donner ce résultat ?

t = [0:63]/8000 $s = 0.25 + 0.25*\cos(\%pi*8*128*t)$ plot2d(t,s)

Code:

t = [0:63]/8000s = 0.25 + 0.25*sin(%pi*8*128*t)plot2d(t,s)

code:

t = [0:63]/8000s=sin(%pi*8*128*t) plot2d(t,s)

code:

t = [0:63]/8000s = 0.25 + 0.25 * sin(2*%pi*8000*t)plot2d(t,s)

Que vaut la partie réelle de $e^{\frac{-2\pi i}{8}}$ Question 2

$$\frac{\sqrt{3}}{2}$$

$$\frac{2}{8}$$

$$\frac{\cos \pi 4}{\sqrt{2}}$$

 $-\cos(\frac{\pi}{4})$

Question 3 Que vaut la fonction

$$S(f) = a \, rac{\sin(rac{\pi N f}{f_e})}{\sin(rac{\pi f}{f_e})}$$

quand la variable f tend vers 0?

1/1

3/3

1/1

0/1

1

Question 4 \clubsuit Soit le signal suivant: $s(t) = 0.1 + 0.2 \cos(400 \pi t) + 0.8 \sin(100 \pi t)$. Quelles sont, parmi les fréquences suivantes, celles qui satisfont les conditions de Shannon?

$$f_e = 410 \text{ Hz}$$
 $f_e = 50 \text{ Hz}$

$$f_e = 410 \text{ kHz}$$

$$M f_e = 810 \; \mathrm{Hz}$$

$$f_{\rm e} = 50 \; {\rm Hz}$$

$$\Box$$
 $f_e = 110 \; \mathrm{Hz}$

Question 5 \clubsuit Le signal $s(t)=0,25+0,2\cos(800\pi t)$ est échantillonné à la fréquence d'échantillonnage $f_{\rm e}=4000 Hz$. Quels sont les taux de compression qu'il est possible d'atteindre par sous-échantillonnage sans altération aucune lors de la décompression?

3/3

10

____ t=[0:1:D]

t=[0:D]/fe

-	
	Question 6 Pour suréchantillonner un signal s dans un rapport 4 (cochez la ou les bonnes réponses):
	\square on ajoute trois échantillons entre deux échantillons de s .
	\square on ajoute un échantillon tous les trois échantillons de s .
1/1	on ajoute quatre échantillons en fin de signal s .
	\square on ajoute un échantillon tous les quatre échantillons de s .
	Question 7 On calcule le spectre d'amplitude du signal s sur une fenêtre rectangulaire de 256 échantillons. Cochez la ou les instructions scilab adéquates.
	\square Sp=fft(s) \square S(f)=TFD(s)
1/1	Sp=ift(s) Sp=abs(fft(s(1:256))) Sp=abs(s)/256
	Question 8 On affiche la composition fréquencielle Sp d'un signal contenu dans un vecteur s de 256 échantillons en faisant plot2d(f,abs(Sp)/256). Comment calculer le vecteur f ?
	f=[0:255]/fe
1/1	f=[0:256]*fe
	Question 9 Soit le signal suivant: $s(t) = 0.75 \cos(50 \pi t)$. Quelle est sa période T ? Sa fréquence f ?
	$\boxed{\hspace{0.5cm}} f = 25 \text{ Hz} \qquad \boxed{\hspace{0.5cm}} T = 40 \text{ ms} \qquad \boxed{\hspace{0.5cm}} f = 50\pi \text{ Hz}$
2/2	$T = 50\pi \text{ s}$ $T = 50\pi t \text{ s}$ $T = 50 \text{ kHz}$
	Question 10 Le rapport signal sur bruit d'une ligne téléphonique exprimé en décibels vaut $SNR_{dB} = 20 \log \left(\frac{\text{signal}}{\text{bruit}} \right) = 40dB$. Que vaut le rapport signal sur bruit ?
1/1	
	Question 11 ♣ Si le niveau sonore correspondant à 2.10 ⁻¹² W/m² est traduit par 0dB, à quel niveau correspond un son de 40dB?
	$\times 2.10^{-10} \text{W/m}^2$ $\qquad \qquad \qquad$
0/2	\boxtimes un niveau 100 fois plus grand \square 80.10 ⁻¹² W/m ²
	Question 12 \clubsuit Un signal dans le vecteur scilab s contient N échantillons prélevés entre $t=0$ et $t=D$ secondes à la fréquence d'échantillonnage $f_e=44100 \mathrm{Hz}$. Comment constituer le vecteur scilab t qui contiendra les instants d'échantillonnage?

t=[0:1/fe:D]

t=[0:N]/fe

____ t=[0,D]

_____t=[0,D[

1/2

Question 13 La figure 1 représente le spectre d'amplitude d'un signal placé dans le vecteur scilab s. On précise que N=1024. On a $s = \{s_n = s(nT_e), n = 0, 1, ..., 16001\}$. Cocher la ou les expressions possibles pour $s_n = s(nT_e)$.

 $s_n = 0, 5$

1/1

1/1

2/2

Question 14 La figure 1 représente le spectre d'amplitude d'un signal placé dans le vecteur scilab s. On précise que N=1024. On a $s = \{s_n = s(nT_e), n = 0, 1, ..., 16001\}$. Quelle est la résolution fréquentielle?

1024 Hz

8000/1024 Hz

8000 Hz

_ 1024/8000 s

1/8000 s

Question 15 \clubsuit La figure 2 représente le spectrogramme d'un signal s. La barre de couleur (ou colorbar) située sur la droite indique que 0dB est représenté par du noir tandis que -60dB est représenté par du blanc. Que vous apprend ce spectrogramme ? Cochez la ou les assertions justes.

La fréquence d'échantillonnage vaut 4kHz.

Le signal contient une composante à 400 Hz.

Le signal dure 10 secondes

Le signal contient trois composantes fréquentielles.

Le signal contient une composante à 900 Hz.

1/1

1/1

-1/1