# PRINTABLE VERSION

### Quiz 3

## You scored 50 out of 100

### **Question 1**

### Your answer is CORRECT.

Suppose we are told that set A satisfies  $\{1, \pi, \clubsuit\} \cap A = \{1\}$ . Of the following options which can be used for the set A?

- a) One set A will make this true.
- **b)**  $\bigcirc$  {1,  $\pi$ ,  $\clubsuit$ }
- $c) \odot Z$
- d)  $\bigcirc \{\emptyset\}$
- $e) \cap \{-1, \clubsuit, \heartsuit\}$
- $f_{1} \odot \{\pi, 2\}$

#### **Question 2**

### Your answer is CORRECT.

The statement  $A \subseteq B$  implies which of the following?

- a)  $\bigcirc \forall x \in B, x \in A$ .
- b)  $\bigcirc \exists x, x \in A \land x \in B$ .
- c)  $\bigcirc$   $\forall$   $x \in A$ ,  $x \in B$ .
- $\mathbf{d}$ )  $\bigcirc \mathbf{A} = \emptyset \land \mathbf{B} = \emptyset$

### **Ouestion 3**

## Your answer is CORRECT.

Suppose |S| = 7 and  $|S \times T| = 14$ . What is the cardinality of T?

a) 
$$|T| = 9$$

**b)** 
$$|T| = 2$$

**c)** 
$$|T| = 98$$

**d)** 
$$\bigcirc |T| = 5$$

**e)** 
$$|T| = 14$$

### **Ouestion 4**

### Your answer is INCORRECT.

Suppose |T| = 5 and  $|P(S) \times T| = 40$ . What is the cardinality of S?

a) 
$$|S| = 40$$

c) 
$$|S| = 8$$

**d)** 
$$\bigcirc |T| = 5$$

e) 
$$|S| = 3$$

### **Question 5**

### Your answer is INCORRECT.

Is it possible for  $(1,3) \in \mathbb{N}$ ?

- a) This can happen, but it doesn't always happen.
- b) This is true. It always happens!
- c)  $\bigcirc$  This is impossible! It never happens!

### **Question 6**

## Your answer is INCORRECT.

Consider the set S defined below:

$$S = \{n \in N : n^2 \in N\}$$

Which of the following is true?

$$a) \bigcirc S = N$$

$$\mathbf{b}) \odot \mathbf{S} = \emptyset$$

$$\mathbf{c)} \odot \mathbf{S} = \{2^b : b \in \mathbf{N}\}$$

**d)** 
$$\bigcirc$$
 S =  $\{2i + 1 : i \in N\}$ 

$$e) \odot S = \{2m : m \in N\}$$

### **Question 7**

### Your answer is CORRECT.

Suppose we have two sets S and T, each described in terms of a condition:  $S = \{x \in U : P(x)\}$  and  $T = \{x \in U : Q(x)\}$ . (Here U is a Universal set.) If it is also true that

$$S \nsubseteq T$$

then which of the following statements must be true?

$$a) \odot \forall x \in U, P(x) \Rightarrow Q(x)$$

$$\mathbf{b}$$
)  $\bigcirc \exists t \in U, P(t) \land Q(t)$ 

$$c) \bigcirc \forall x \in U, \ Q(x) \Rightarrow P(x)$$

$$d$$
)  $\bigcirc \forall x \in U, P(x) \Rightarrow Q(x)$ 

$$e) \bigcirc \forall x \in U, \ Q(x) \Rightarrow P(x)$$

#### **Ouestion 8**

### Your answer is INCORRECT.

A Venn Diagram or De Morgan's Laws should help you complete this sentence:

$$A - B =$$

$$a) \cap A \cap \overline{B}$$

$$\mathbf{b}$$
  $\bigcirc$   $\mathbf{A} \cup \overline{\mathbf{B}}$ 

$$c) \circ \overline{A} \cup \overline{B}$$

### **Question 9**

## Your answer is CORRECT.

Consider the image shown:



Which set of points is depicted in the image above?

a) 
$$\bigcirc \{(x,2) : x \in Z \land -3 \le x \le 3\}$$

**b)** 
$$\bigcirc \{(x, x^2) : x \in Z \land -3 \le x \le 3\}$$

c) 
$$(x, \sin(\pi x)) : x \in Z \land -3 \le x \le 3$$

**d)** 
$$\bigcirc \{(x, 2x) : x \in Z \land -3 \le x \le 3\}$$

e) 
$$((x, \sqrt{9-x^2}) : x \in Z \land -3 \le x \le 3)$$

$$f_1 \cap \{(2, x) : x \in Z \land -3 \le x \le 3\}$$

### **Question 10**

## Your answer is INCORRECT.

$$P({3,4}) \cap P({3,-3,4}) =$$

$$a) \odot \{ \emptyset, \{3\}, \{4\}, \{3,4\} \}$$

**b)** 
$$\bigcirc$$
 { {4}, {3,4} }

e) 
$$0$$
 {3, 4,  $-3$ }

- **d)**  $\bigcirc$  { {4} }
- e) 0 { {-3} }
- **f**) (3, 4)