Estudos de Caso Swarm Intelligence

Computação Natural Gisele L. Pappa

Estudos de caso

- ACO
- Swarm music
- Swarm-bots

PSO para Classificação [Falco et al 2007]

PSO para Descoberta de Regras

- Um problema de classificação composto por n classes pode ser visto como:
 - Encontrar n centróides, onde cada centróide corresponde ao protótipo de uma classe
- Partícula é representada por um vetor de tamanho 2*n*

$$(\vec{p}_i^1,\ldots,\vec{p}_i^C,\vec{v}_i^1,\ldots,\vec{v}_i^C)$$

 Cada centróide tem d dimensões, onde d é o número de atributos da base

PSO para Classificação

- Avaliação
 - Baseada na taxa de erro

$$\psi_1(i) = \frac{100.0}{D_{\text{Train}}} \sum_{j=1}^{D_{\text{Train}}} \delta(\vec{x}_j) \qquad \delta(\vec{x}_j) = \begin{cases} 1 & \text{if } \text{CL}(\vec{x}_j) \neq \text{CL}_{\text{known}}(\vec{x}_j) \\ 0 & \text{otherwise} \end{cases}$$

Na distância de um exemplo para o centróide

$$\psi_2(i) = \frac{1}{D_{\text{Train}}} \sum_{j=1}^{D_{\text{Train}}} d\left(\vec{x}_j, \vec{p}_i^{\text{CL}_{\text{known}}(\vec{x}_j)}\right)$$

Combinação dos dois

$$\psi_3(i) = \frac{1}{2} \left(\frac{\psi_1(i)}{100.0} + \psi_2(i) \right)$$

PSO para Classificação

Atualização da velocidade

$$\vec{v}_i(t+1) = w \cdot \vec{v}_i(t) + c_1 \cdot U(0,1) \otimes (\vec{b}_i(t) - \vec{p}_i(t)) + c_2 \cdot U(0,1) \otimes (\vec{b}_g(t) - \vec{p}_i(t))$$

- U(0,1) é uma função que gera um vetor de números aleatórios entre 0 e 1, seguindo uma distribuição uniforme,.
- Inércia variável
- Vizinhança considera todas as outras partículas

$$w(t) = w_{\text{max}} - \left((w_{\text{max}} - w_{\text{min}}) \frac{t}{T_{\text{max}}} \right)$$

T_{max} é o número máximo de iterações

PSO para Classificação

- Parâmetros
 - 50 partículas
 - 1000 iterações
 - Velocidade [-0.05,+0.05
 - -C1 = c2 = 2
 - Inércia [0.4,0.9]

Resultados

Average percentages of incorrect classification on testing set

	PSO	Bayes Net	MLP ANN	RBF
Balance	13.12	19.74	9.29	33.61
Credit	18.77	12.13	13.81	43.29
Dermatology	6.08	1.08	3.26	34.66
Diabetes	21.77	25.52	29.16	39.16
E.Coli	13.90	17.07	13.53	24.38
Glass	38.67	29.62	28.51	44.44
Heart	15.73	18.42	19.46	45.25
Horse Colic	35.16	30.76	32.19	38.46
Iris	5.26	2.63	0.00	9.99
Thyroid	3.88	6.66	1.85	5.55
WDBCancer	3.49	4.19	2.93	20.27
WDBCancer-Int	2.64	3.42	5.25	8.17
Wine	2.88	0.00	1.33	2.88

Swarm Music www.timblackwell.com

Swarm Music

- Aplicação na área de jazz improvisado
 - Tem uma linguagem musical distinta para cada improvisador
 - Habilidade de lidar com contribuições vindas de outros músicos
 - Melodia é auto-organizável
- Músicos tem que prestar atenção no que está sendo tocado ao redor deles

Analogia com Swarms

- Em música, a melodia se move em torno de uma nota central e tem uma forma (da mesma forma que em *swarms* cada partícula é atraida pelo *swarm*)
 - Padrões de subida e descida de tons
 - Normalmente gradual
 - Acordes são grupos de notas e são atraídas por uma nota central
 - Interação local leva a estrutura

Swarm Music

- Sistema de interação e improvisação de música
- Colaboração entre os músicos é livre
- Partículas se movem no espaço de música e são atualizadas de acordo com um algoritmo de *flocking* (Bandos de pássaros)
- Partículas são atraídas para a nota do centro, mas também implementam propriedade que evitam colisões
 - Não existe conceito de melhor vizinhaça (já que não estamos tentando otimizar nada)

Swarm Music

- Um ou mais *swarms*
- Cada partícula tem uma orientação, posição e velocidade
- Partículas sofrem quatro tipos de acelerações
 - 3 tipos de aceleração de atração
 - 1 tipo de aceleração que previne colisões e permite que o swarm desvie de obstáculos
- Usa tanto feedback positivo e negativo

Espaço da Música

- Cada partícula é uma nota em um certo tempo
- Swarm pode ser lido como uma partitura

Demos

- Follow me (existe um condutor)
 - 2 swarms, um toca a mão direita e o outro a mão esquerda
- Autumn missed (apenas o *swarm* em uma improvisação de piano)
- Wind up (swarms com um quarteto)

Conclusões

- Usa a idéia de enxame de partículas
- O sistema já foi utilizado para tocar junto com a Orquestra Filarmônica da BBC e em vários outros concertos.

Swarm-Bots

www.swarm-bots.org

Robótica de Swarms

- Inspirado nas formigas e abelhas
- Sistemas robóticos distribuídos
 - Comunicação limitada entre agentes
- Comunicação direta e indireta em swarms
 - Indireta
 - Direta

Swarm Bots

- Idéia é construir vários robôs autônomos, mas que exibam um comportamento coletivo
 - Baseado na comunicação direta entre formigas
- Podem ser utilizados para realizar várias tarefas:
 - Criar correntes de robôs para realizar tarefas que um único robô não pode realizar
 - Andar em terrenos difícies
 - Coordenar o movimento de vários robôs

Simulação de Correntes de S-Bots

Filme: gap

- Cada robô possui uma garra
- Existe um sistema de sinalização por som
- Usa informação local
 - Apenas um robô pode detectar alguma coisa e comunicar aos outros
- Requer movimento coordenado

S-Bots Reais

- Controlados por uma rede neural
- Os parâmetros da rede são controlados por um AG
 - Robótica evolucionária
- Por que são swarms?
 - Comunicação direta através de sensores

Transporte Cooperativo

- Existe um mais de 20 robôs, e o sistema faz com 4 deles sejam "cegos"
 - Tolerância a falhas
- O que acontece quando o número de robôs é drasticamente reduzido?

Conclusões

- Inspiração em swarms não prevalece
- Mas a *performance* do sistema é muito melhor do que a *performance* de outros sistemas que utilizam apenas uma estratégia de comunicação não-direta
- Porém
 - A maioria desses sistemas continua sendo implementado apenas em simulações
 - A simulação parece fácil, mas...

Bibliografia

- Parpinelli, R.S., Lopes, H.S., Freitas, A.A. "Data mining with an ant colony optimization algorithm". IEEE Transactions on Evolutionary Computation, special issue on Ant Colony Algorithms, v. 6, n. 4, p. 321-332, August, 2002.
- An ant-based algorithm for annular sorting, M. Amos e
 O. Don, IEEE Congress on
 Evolutionary Computation, 2007.
- Swarm music: improvised music with multi-swarms, T.M. Blackwell. Artificial Intelligence and the Simulation of Behaviour, University of Wales, 2003.