mas540 exercises

Jaemin Oh

 $March\ 23,\ 2021$

Exercise (1.4).

(a) Let I = [0,1]. Then $I \setminus \hat{C} = \bigcup_{n=1}^{\infty} \hat{C}_n^c$ where \hat{C}_n is n-th stage of constructing Fat Cantor set. Thus,

$$m(I \setminus \hat{C}) = m(I) - m(\hat{C}) = 1 - m(\hat{C}) = \lim_{n \to \infty} m(\hat{C}_n^c) = \sum_{n=1}^{\infty} 2^{n-1} l_n$$

because $\hat{C}_n^c \uparrow \bigcup_{n=1}^{\infty} \hat{C}_n^c$ and \hat{C} is closed hence measurable. Therfore $m(\hat{C}) = 1 - \sum_{n=1}^{\infty} 2^{n-1} l_n > 0$.

(b) \hat{C}_k consists of 2^k closed intervals whose length are $(1 - \sum_{n=1}^k 2^{n-1} l_n)/2^k$. Let $x \in \hat{C}$. Then $x \in \hat{C}_k$. So we can find $x_k \in I_k$ such that

$$|x - x_k| \le \left(1 - \sum_{n=1}^k 2^{n-1} l_n\right) / 2^k + \varepsilon_k l_k$$

for some $0 < \varepsilon_k < 1$. As $k \to \infty$, $|x - x_k| \to 0$ since $l_k \to 0$.

(c) The result of b tells us that every point of \hat{C} is a limit point of I. And we also know that \hat{C} is closed. Hence \hat{C} is a perfect set.

Let $(a,b) \subset \hat{C}$ and a < c < d < b. For large k, $l_k < d - c$ since $l_k \to 0$. Then, for \hat{C}_k , c and d must lie in different intervals of \hat{C}_k . So there is $e \notin \hat{C}_k$ such that c < e < d. Then [c,d] does not belong to \hat{C}_k which is a contradiction. So \hat{C} is totally disconnected.

(d) It is well known fact that a nonempty perfect set is uncountable. We had learned it in an introductory analysis course and topology course.

Exercise (1.7).

First, we will show that if O is open, then δO is also open. Let $\delta x \in \delta O$. Then $x \in O$. By openness, there is r > 0 such that $Q_r(x) \subset O$ where $Q_r(x)$ is a cube whose side length is r and centered at x. Thus $\delta Q_r(x) \subset \delta O$ and $\delta Q_r(x)$ contains δx . But a collection of all open rectangles forms a basis of Euclidean space. So δO is an open set.

Next, let a set E and a positive number ε be given. Choose $O \supset E$ such that $m_*(O \setminus E) < \varepsilon/(\delta_1 \cdots \delta_d)$. Then, there is an union of cube $\bigcup_{j=1}^{\infty} Q_j \supset O \setminus E$ such that $\sum_{j=1}^{\infty} m(Q_j) < \varepsilon/(\delta_1 \cdots \delta_d)$. Then,

$$m_*(\delta O \setminus \delta E) = m_*(\delta(O \setminus E)) \le m_*(\bigcup_{j=1}^{\infty} \delta Q_j) \le \sum_{j=1}^{\infty} m(\delta Q_j) < \varepsilon.$$

Thus δE is measurable.

Now let $E \subset \bigcup_{j=1}^{\infty} Q_j$. Then $\delta E \subset \bigcup \delta Q_j$, so $m(\delta E) \leq \delta_1 \cdots \delta_d \sum_{j=1}^{\infty} m(Q_j)$. Since $\bigcup_{j=1}^{\infty}$ is arbitrary, we get

$$m(\delta E) \leq \delta_1 \cdots \delta_d m(E)$$
.

Now let $\delta E \subset \bigcup_{j=1}^{\infty} Q'_j$. Then $E \subset \bigcup_{j=1}^{\infty} 1/\delta Q'_j$. So $m(E) \leq \sum_{j=1}^{\infty} m(Q'_j)/(\delta_1 \cdots \delta_d)$. Since $\bigcup_{j=1}^{\infty} Q'_j$ is arbitary, we get

$$m(E) \le \frac{m(\delta E)}{\delta_1 \cdots \delta_d}$$

and this finishes the proof.

Exercise (1.24).

Let s_n be enumeration of $\mathbb{Q} \cap [-1,1]$ and t_n be enumeration of $\mathbb{Q} \cap [-1,1]^c$. When $n=m^2$, put $r_n=t_m$. When $n \in (m^2,(m+1)^2)$, put $r_n=s_{n-m}$. Then r_n is an enumeration of \mathbb{Q} . Also, we get

$$m\left(\bigcup_{n=1}^{\infty} (r_n - 1/n, r_n + 1/n)\right) \le \sum_{m=1}^{\infty} 2/m^2 + m\left(\bigcup_{n \ne m^2} (r_n - 1/n, r_n + 1/n)\right)$$
$$\le \sum_{m=1}^{\infty} 2/m^2 + 2 + 1 < \infty.$$

Therefore, finiteness implies nonemptyness of the complement, since the Lebesgue measure of complement is positive.

Exercise (1.35).

First, let's briefly check the idea of constructing φ . Construction can be done by defining a sequence of functions, say φ_n . Put $\varphi_n(0) = 0$ and $\varphi_n(1) = 1$. Let C_{ji} be the i-th stage of constructing C_j . Then φ_i maps the discarded set of stage i to the discarded set of stage i, sequentially, and linearly(positive). We can extend φ_i by assigning value on C_{1i} using linearity and monotonicity. This sequence of functions converges uniformly, thus φ is continuous. The other properties of φ can be checked by this construction.

Let $\mathcal{N} \subset C_1$ be a non-measurable set. Then $\varphi(\mathcal{N}) \subset C_2$ so $\varphi(\mathcal{N})$ is measurable by completeness. If $\varphi(\mathcal{N})$ is a Borel set, then by continuity, $\varphi^{-1}(\varphi(\mathcal{N})) = \mathcal{N}$ must be a Borel set, which is a contradiction. So there is a Lebesgue measurable set which is not Borel measurable.

Since $\varphi(\mathcal{N})$ is measurable, $f = 1_{\varphi(\mathcal{N})}$ is a measurable map. Then $f \circ \varphi(x) = 1_{\mathcal{N}}(x)$ is non-measurable map.

Problem (1.4).

(a) A_{ε} is clearly bounded, so it is enough to show that the complement is open. Let $c \notin A_{\varepsilon}$. Then $osc(f,c) < \varepsilon$, so for some r > 0, $osc(f,c,r) < \varepsilon$. Choose any $d \in I(c,r)$. We can choose $r^* > 0$ so that $I(d,r^*) \subset I(c,r)$. Then

$$osc(f, d, r^*) \le osc(f, c, r) < \varepsilon$$

so $osc(f,d) < \varepsilon$, which says $I(c,r) \subset J \setminus A_{\varepsilon}$. Therefore $J \setminus A_{\varepsilon}$ is open in J, hence A_{ε} is compact.

(b) Let D_f be a set of all discontinuities of f. Then for any $\varepsilon > 0$, $A_{\varepsilon} \subset D_f$. So $m(A_{\varepsilon}) \leq m(D_f) = 0$. By the definition of Lebesgue measure, there is countably many open intervals which cover A_{ε} and have sum of length $\leq \varepsilon$. Using compactness, we can choose finite subcover, call them by $(a_i,b_i)_{i=1}^k$ where $a_i < a_{i+1}$. After discarding all of subcovers from J, we get compact subset of J, say J'. For each $c \in J'$, we can choose r_c such that $\operatorname{osc}(f,c,2r_c) < \varepsilon$. Again, using compactness, we can choose finitely many c's. Then finitely many closed intervals $[c-r_c,c+r_c]$ have finite intersections. By taking these endpoints (contain a_i,b_i 's) as endpoints of our partition (if necessary, consider a refinement), we get

$$U(f,P) - L(f,P) \le 2M\varepsilon + m(J)\varepsilon$$

where M is bound of f. The first term of estimate comes from (a_i, b_i) 's and the second term comes from J'.

(c) Since $D_f \subset \bigcup_{n=1}^{\infty} A_{1/n}$, so $m(A_{1/n}) = 0$ leads the conclusion. Assume not, i.e. $m(A_{1/n}) > \varepsilon$. Take partition P such that $U(f,P) - L(f,P) < \varepsilon/n$. Let [a,b] be interval of P whose interior intersects to $A_{1/n}$. Then

$$\sup_{x,y\in[a,b]}|f(x)-f(y)|\geq\frac{1}{n}.$$

But $m(A_{1/n}) > \varepsilon$. So

$$\sum_{[a,b]\cap A_{1/n}\neq\emptyset} \left[\sup_{x\in[a,b]} f(x) - \inf_{y\in[a,b]} f(y) \right] m \left(A_{1/n} \cap [a,b] \right)$$

$$= \sum_{[a,b]\cap A_{1/n}\neq\emptyset} \sup_{x,y\in[a,b]} |f(x) - f(y)| m \left(A_{1/n} \cap [a,b] \right)$$

$$\geq \frac{\varepsilon}{n}$$

$$> U(f,P) - L(f,P)$$

which is a contradiction.