Corso di Laurea in Informatica Calcolo Numerico Esame del 1/9/2011

(Cognome	Nome	Email
•	0051101110	1 101110	

- 1. Si supponga di dover calcolare $f(x) = (2+x)^2 (2-x)^2$ per piccoli valori di x.
 - (a) Determinare (e discutere) il condizionamento del problema del calcolo di f(x).
 - (b) Determinare, svolgendo le parentesi, una diversa espressione per f(x).
 - (c) Studiare l'errore di arrotondamento nei seguenti algoritmi per il calcolo di f(x):
 - l'algoritmo che eleva al quadrato 2+x e 2-x sottraendo i risultati ottenuti;
 - l'algoritmo che deriva dall'espressione ottenuta al punto (b).

2. Determinare una riflessione di Householder che porti il vettore $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ nella forma $\begin{pmatrix} k \\ 0 \end{pmatrix}$, con k opportuno.

3. Determinare la funzione trigonometrica della forma

$$y = \alpha + \beta \cos x + \gamma \sin x$$

che approssima ai minimi quadrati i seguenti dati:

4. Calcolare gli autovalori e le relative molteplicità algebriche e geometriche della matrice 6×6

$$A = \begin{pmatrix} -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{pmatrix}.$$

Studiare la convergenza del metodo delle potenze applicato alla matrice ${\cal A}.$

5. Che relazione c'è tra la SVD di una matrice $A \in \mathbf{R}^{m \times n}$ e le possibili soluzioni del problema ai minimi quadrati

$$\min_{x \in \mathbf{R}^n} ||Ax - b||_2 ?$$

Nel seguito, sia A una matrice 4×6 avente i valori singolari $1, 1, 10^{-12}, 0$.

- (a) Qual è il rango (o caratteristica) di A?
- (b) Quante soluzioni può avere il problema ai minimi quadrati

$$\min_{x \in \mathbf{R}^6} \|Ax - b\|_2$$

con $b \in \mathbf{R}^4$?

(c) Dette v_3 e v_4 la terza e quarta colonna della matrice V della SVD di A, cosa si può dire sulle componenti di una soluzione del problema ai minimi quadrati lungo v_3 e v_4 ?