Appendix

Data -set	9_stat MulPAA	DTW_I	DTW_D	WEASEL MUSE	MLSTM FCN	TapNet	Rocket MTS	MrSEQL				
AWR	0.01	0.05	0.4	179.00	1.39	2.98	0.01	8.70				
AF	0.62	2.28	0.4	0.25	0.81	0.00	0.13	0.28				
BM	0.07	0.03	0.3	0.10	1.03	0.00	0.01	0.26				
CT	0.58	7.35	2.51	121.38			0.34	23.04				
CR	0.83			4.51	1.77	0.08		16.44				
DDG	17.17	44.51	6.48		40.55	0.00	0.77	219.45				
ER	1.07	60.49	35.2	0.09	0.85	0.00	0.77	0.16				
EW	0.15	0.29	0.17		135.19		0.13					
EP	0.14	0.04	0.4	2.71	0.67	0.05	0.03	0.82				
EC	8.40	11386	2769.3	72.02	2.87		14.65	31.07				
FD	89.80	2339	272.13	514.00	66.12		5.49	,				
FM	0.92	0.27	0.1	0.52	2.22	0.01	0.08	4.11				
HMD	4.98	72.46	8.42	28.35	0.93	0.47	0.63	14.34				
HW	0.48	3.12	1.1	27.24	0.68	0.45	0.11	1.89				
HB	0.37	1.17	0.58	287.93	5.70	4.80	0.09	42.97				
IWB								150.92				
JV	0.55			0.57				0.19				
LSST	0.07	0.4	0.4	24.10	1.40	0.40	0.03	21.19				
LIB	1.90	9.13	3.1	0.54	6.68	0.01	0.30	0.24				
MI	22.80	2295	418		15.28		3.20	992.61				
NTP	0.68	0.23	0.8	8.14	2.20	0.14	0.07	2.85				
PSF	1.35	1	1.12		11.93	0.00	1.41	600.94				
PD	8.44	1010.28	196.48	0.41	136.50	0.01	1.09	0.94				
PS	37.03	156.33	21.33		11.48	0.00	1.78	1030.10				
RS	0.16	0.04	0.3	0.31	0.68	0.01	0.02	0.26				
SRS1	7.16			36.72	1.88			20.55				
SRS2	1.23	39.5	15.1	45.73	1.95	0.76	0.49	22.99				
SAD	1.20	47.57	15.43				0.70	119.29				
SWJ	0.15	0.57	0.37	5.62	0.62	0.09	0.04	2.16				
UW	0.30	1.32	1.04	9.59	0.68		0.14	1.87				
Total time	208.62*	17478.43	3770.96	1369.83	452.08	10.26	32.51	3330.64				

TABLE 4: Total training time in minutes for all compared methods on all the MTSC benchmark datasets where the method could complete training and prediction.

Figure 11: Comparison of mean rank classification accuracy for RocketMTS, 9_stat_MulPAA, DTW_I and DTW_D over 26 equal-length datasets. We note that on this expanded set of problems, ROCKET achieves a statistically significant difference to the baselines. All the other compared methods did not complete on all 26 datasets so were not included in this diagram. In terms of actual gap in accuracy between the compared methods: if we take DTW_D as the baseline over the 26 datasets, 9_stat_MulPAA has +2.7% and ROCKET has +19% difference in mean accuracy to DTW_D. This shows that the subset of datasets on which we compare these methods has a significant impact on the ranking and the gap in accuracy. Overall, ROCKET does seem to be ahead in accuracy as compared to all the other methods, over many different subsets of the MTSC archive. Also see Table 5 for more details regarding accuracy.

^{*} All datasets can be run in parallel which will reduce time for computation to 89 minutes.

MrSEQL SAX	0.99	0.27	0.95	96:0	0.99	0.34	0.88		0.99	0.56		0.56	0.15	0.47	0.73	0.10	0.45	0.59	0.87	0.51	0.87	96:0	0.92	0.26	0.87	0.68	0.51	0.98	0.33	0.87	2	28
Rocket MTS	0.99	0.07	1.00		1.00	0.52	0.99	0.91	0.99	0.42	0.64	0.51	0.45	0.58	0.75			0.64	0.91	0.58	0.88	0.84	0.98	0.27	0.91	0.86	0.53		0.53	0.94	14	26
TapNet	0.97	0.20	1.00		0.93	0.52	0.88		96.0			0.44	0.39	0.32	0.55			0.55	0.82		0.91	0.80	0.97	0.13	0.85		0.49		0.33			20
MLSTM FCN	0.79	0.27	1.00		0.82	0.54	0.87	0.71	0.80	0.25	0.55	0.56	0.34	0.50	99.0			0.75	0.64	0.51	96.0	0.99	89.0	0.27	0.82	0.87	0.52		0.33	0.75	4	26
WEASEL MUSE	66.0	0.40	1.00	0.99	86.0		0.97		0.99	0.47	0.63	0.55	0.37	0.52	0.71		86.0	0.64	0.89		0.91		0.97		0.93	0.70	0.53		0.27	0.93	4	23
DTW_D	0.99	0.20	0.98		1.00	0.58	0.92	0.62	96.0	0.32	0.53	0.53	0.19	0.61	0.72			0.55	0.87	0.50	0.88	0.71	0.98	0.15	0.80	0.78	0.54		0.20	0.90	33	26
DTW_I	86.0	0.27	1.00		0.99	0.48	0.92	09.0	0.98	0.30	0.51	0.52	0.29	0.51	99.0			0.58	0.89	0.01	0.85	0.73	0.94	0.15	0.84	0.77	0.53		0.33	0.87	3	26
9_stat MulPAA	0.99	0.33	0.98	96.0	0.99	0.58	0.91	99.0	0.97	0.28	0.56	0.54	0.31	0.18	0.77		0.97	0.49	89.0	0.47	0.90	0.82	0.82	0.16	0.87	0.77	0.44	0.95	0.33	0.73	0	29
Catch22 PAA	96.0	0.33	0.98	98.0	96:0	0.46	0.91	0.82	0.94	0.24	0.58	0.58	0.27	0.19	0.71		0.64	0.47	0.73	0.57	0.74	98.0	89.0	0.12	0.76	0.72	0.49		0.40	0.77	1	28
9_stat PAA	0.93	0.20	1.00	0.87	0.97	99.0	0.87	0.64	0.93	0.33	0.55	0.46	0.28	0.19	92.0		96:0	0.50	0.58	0.52	08.0	0.82	0.63	0.09	0.84	0.72	0.47	06.0	0.27	0.41	2	29
4_stat PAA	0.92	0.27	0.95	0.73	0.97	0.50	98.0	0.54	0.87	0.32	0.55	0.54	0.31	0.15	92.0		96:0	0.36	0.51	0.50	0.79	0.79	0.47	0.07	0.80	0.84	0.48	0.87	0.13	0.59	0	29
9_stat Window	0.93	0.27	1.00	0.87	0.93	0.48	0.90	0.85	1.00	0.32	0.57	0.48	0.26	0.18	0.77			0.44	0.72	0.49	0.83	0.80	0.85	0.16	0.80	0.83	0.49		0.40	0.54	2	27
4_stat Window	0.94	0.33	0.93	0.79	96.0	0.50	0.85	0.79	96.0	0.26	0.57	0.54	0.28	0.17	0.76		0.98	0.35	89.0	0.47	0.84	0.77	0.78	0.13	0.81	0.92	0.48	0.94	0.33	0.54	2	29
Catch22	86.0	0.27	1.00	0.89	0.97	0.36	0.87	0.83	06.0	0.23	0.54	0.54	0.26	0.20	0.73		0.74	0.55	0.75	0.49	98.0	06.0	0.84	0.15	0.77	0.59	0.49	0.95	0.40	0.82	1	29
9_stat	0.93	0.27	1.00	98.0	1.00	0.62	0.77	89.0	96:0	0.28	0.54	0.46	0.22	0.13	0.80	0.65	0.97	0.47	0.61	0.50	0.78	0.79	0.64	0.10	0.79	0.72	0.46	0.92	0.27	0.38	4	30
4_stat	0.65	0.27	0.95	0.72	0.79	09.0	0.64	0.42	0.93	0.33	0.54	0.53	0.28	90.0	0.73	0.64	0.97	0.36	0.49	0.46	0.84	0.77	0.48	0.07	92.0	08.0	0.45	0.87	0.47	0.37	0	30
Data -set	AWR	AF	BM	CT	CR	DDG	ER	EW	EP	EC	FD	FM	HMD	HW	HB	IWB	Z	LSST	LIB	MI	NTP	PSF	PD	PS	RS	SRS1	SRS2	SAD	SWJ	MU	Wins/Ties	Completed

TABLE 5: Accuracy results of all compared methods on all the MTSC benchmark datasets where the method could complete training and prediction.