Antworten zu Blatt 1

Aufgabe 1

1)
$$G' = (V', R', \alpha', \omega')$$
 mit $V' = a, b, c, d, e, f, g, h$ $R' = r_0, r_1, ..., r_{15}$ $\alpha'(r_i) = v_{\lfloor i/2 \rfloor}$ $\omega'(r_i) = v_{imod8}$

- 2) Schlingen: $\{r_0, r_{15}\}$, Parallel: \emptyset , Antiparallel: $\{(r_5, r_{10})\}$.
- 3) $\delta^+(v_6) = \{r_{12}, r_{13}\}$ (ausgehende relations), $\delta^+(v_7) = \{r_{14}, r_{15}\}$, $\delta^-(v_6) = \{r_{14}, r_6\}$ (eingehende relations), $\delta^-(v_7) = \{r_7, r_{15}\}$, $N^+(v_6) = \{v_5, v_4\}$ (ausgehende nächste knoten), $N^+(v_7) = \{v_7, v_6\}$, $N^-(v_6) = \{v_3, v_7\}$ (eingehende, vorhergehende knoten), $N^-(v_7) = \{v_3, v_7\}$,

- 4) Alle knoten haben 4 eingehende sowie ausgehende Verbindungen, daher ist sowohl Minimal-, als auch Maximalgrad = 4.
- 5) induzierter Subgraph von v_0, v_2, v_4, v_6 :

Aufgabe 2

Ja, mit τ

 $v_0 \leftrightarrow h$,

 $v_1 \leftrightarrow a$,

 $v_2 \leftrightarrow b$,

 $v_3 \leftrightarrow c$,

 $v_4 \leftrightarrow d$,

 $v_5 \leftrightarrow e$,

 $v_6 \leftrightarrow f$,

 $v_7 \leftrightarrow g$,

sowie die relationen behaltend.

Aufgabe 3

Partial und Subgraph (= Graph):

Weder Partial noch Subgraph davon:

