

BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift [®] DE 196 27 071 A 1

(51) Int. Cl.6: H 05 B 33/02 C 09 K 11/06 C08 G 61/12

PATENTAMT

Aktenzeichen: Anmeldetag:

196 27 071.5

Offenlegungstag:

5. 7.96

8. 1.98

(7) Anmelder:

Bayer AG, 51373 Leverkusen, DE

② Erfinder:

Jonas, Friedrich, Dr., 52066 Aachen, DE; Elschner, Andreas, Dr., 45479 Mülheim, DE; Wehrmann, Rolf, Dr., 47800 Krefeld, DE; Quintens, Dirk, Dr., Lier, BE

(54) Elektrolumineszierende Anordnungen

Elektrolumineszierende Anordnung, die loch- und/oder elektroneninjizierende Schichten enthalten, wobei die polymeren organischen Leiter ausgewählt sind aus der Gruppe der Polyfurane, Polypyrole, Polyaniline, Polythiophene und Polypyridine.

Beschreibung

Die Erfindung betrifft elektrolumineszierende Anordnungen, die leitfähige Polymere als loch- und/oder elektroneninjizierende Schicht enthalten.

Eine Elektrolumineszierende (EL) Anordnung ist dadurch charakterisiert, daß sie unter Anlegung einer elektrischen Spannung unter Stromfluß Licht aussendet. Derartige Anordnungen sind unter der Bezeichnung "Leuchtdioden" (LEDs = light emitting diodes) seit langem in der Technik bekannt. Die Emission von Licht kommt dadurch zustande, daß positive Ladungen ("Löcher", holes) und negative Ladungen ("Elektronen", electrons) unter Aussendung von Licht kombinieren.

Die in der Technik gebräuchlichen LEDs bestehen 15 alle zum überwiegenden Teil aus anorganischen Halbleitermaterialien. Seit einigen Jahren sind jedoch EL-Anordnungen bekannt, deren wesentliche Bestandteile organische Materialien sind.

Diese organischen EL-Anordnungen enthalten in der ²⁰ Regel eine oder mehrere Schichten aus organischen Ladungstransportverbindungen.

Der prinzipielle Schichtaufbau ist wie folgt. Die Zahlen 1 bis 10 bedeuten dabei:

- 1 Träger, Substrat
- 2 Basiselektrode
- 3 Löcher-injizierende Schicht
- 4 Löcher-transportierende Schicht
- 5 Emitter-Schicht
- 6 Elektronen-transportierende Schicht
- 7 Elektronen-injizierende Schicht
- 8 Topelektrode
- 9 Kontakte
- 10 Umhüllung, Verkapselung.

Dieser Aufbau stellt den allgemeinsten Fall dar und kann vereinfacht werden, indem einzelne Schichten weggelassen werden, so daß eine Schicht mehrere Aufgaben übernimmt. Im einfachsten Fall besteht eine EL-40 Anordnung aus zwei Elektroden, zwischen denen sich eine organische Schicht befindet, die alle Funktionen — inklusive der der Emission von Licht — erfüllt. Derartige Systeme sind z. B. in der Anmeldung WO 9013148 auf der Basis von Poly-[p-phenylenvinylen] beschrieben.

Bei der Herstellung von großflächigen, elektrolumineszierenden Anzeigeelementen muß mindestens eine der stromzuführenden Elektroden 2 oder 8 aus einem transparenten und leitfähigen Material bestehen.

Als Substrat 1 sind transparente Träger wie Glas oder 50 Kunststoff-Folien (z. B. Polyester, wie Polyethylenter-ephthalat oder Polyethylennaphthalat, Polycarbonat, Polyacrylat, Polysulfon, Poly-imid-Folie) geeignet.

Als transparente und leitfähige Materialien sind ge-

- a) Metalloxide, z. B. Indium-Zinn-Oxid (ITO), Zinnoxid (NESA), etc.,
- b) semi-transparente Metallfilme, z. B. Au, Pt, Ag, Cu, etc.

Als Emitterschicht 5 sind z. B. geeignet:

Als Emitterschicht 5 können in den erfindungsgemäßen Anwendungen sowohl niedermolekulare oder oligomere als auch polymere Materialien eingesetzt werden. Die 65 Substanzen zeichnen sich dadurch aus, daß sie photolumineszierend sind. Das heißt, es sind Fluoreszenzfarbstoffe bzw. fluoreszierende Moleküle und deren Umset-

zungsprodukte zu Oligomeren oder deren Einbau in Polymere geeignet.

Beispiele für derartige Materialien sind Cumarine, Perylene, Anthracene, Phenanthrene, Stilbene, Distyryle, Methine oder Metallkomplexe wie Alq3 usw. Als Polymere sind gegebenenfalls substituierte Phenylene, Phenylenvinylene oder Polymere mit fluoreszierenden Segmenten in der Polymerseitenkette oder im Polymerrückgrat geeignet. Eine umfassende Zusammenstellung ist in EP-A 532 798 wiedergegeben.

Es hat sich aber in der Praxis gezeigt, daß zur Erhöhung der Leuchtdichte elektronen- bzw. lochinjizierende Schichten (3, 4 und/oder 6, 7) in die elektrolumineszierenden Aufbauten eingebaut werden müssen.

In der Literatur wird eine Vielzahl von organischen Verbindungen beschrieben, die Ladungen (Löcher und/oder Elektronen) transportieren. Verwendet werden überwiegend niedermolekulare Substanzen, die z. B. im Hochvakuum aufgedampft werden. Einen guten Überblick über die Substanzklassen und ihre Verwendung geben z. B. die Veröffentlichungen EP-A 387 715, US-A 4 539 507, 4 720 432 und 4 769 292.

Nachteilig ist hierbei das Aufbringen durch Aufdampfen im Hochvakuum. Zur Vereinfachung des Herstel-²⁵ lungsverfahrens von ELP Anzeigen würde es von Vorteil sein, wenn die Schichten 3, 4 und 6, 7 z. B. durch Aufbringen aus Lösung hergestellt werden können.

Aus der EP-A 686 662 ist bekannt, spezielle Mischungen aus leitfähigen organischen polymeren Leitern wie 3,4-Polyethylendioxythiophen und Polyhydroxyverbindungen oder Lactamen als Elektrode 1 in ELP-Aufbauten einzusetzen.

In Synthetic Metals 76 (1996) 141—143 wird Poly-(3,4-ethylendioxythiophen) ebenfalls als Elektrode in LED's beschrieben, wobei darauf hingewiesen wird, daß das Poly-(3,4-ethylendioxythiophen) gegenüber Indiumzinnoxid (ITO) Elektroden nur zu niedrigeren Leuchtdichten führt.

Überraschenderweise wurde jetzt gefunden, daß reine polymere organische Leiter wie 3,4-Polyethylendioxythiophen als ladungsinjizierende Zwischenschicht auf transparenten Metallelektroden wie ITO zu Leuchtdichten in LED's führt, die den LED's mit reinem Metallelektroden bzw. reinen leitfähigen Polymerelektroden deutlich überlegen sind. Diese Schichten können aus Lösung oder durch direkte Polymerisation der den polymeren organischen Leitern entsprechenden Monomeren hergestellt werden.

Geeignete polymere organische Leiter sind z. B. Polyfurane, Polypyrrole, Polyaniline oder Polythiophene, Polypyridine. Diese sind z. B. in der EP-A 257 573 (Polyalkoxythiophene), WO 90/04256 (Polyaniline), EP-A 589 529 (Polystyrrol), DE-A 22 62 743 (Oligoaniline) beschrieben.

Besonders geeignet sind neutrale oder kationische Thiophene der Formel (I)

wobei

 R^1 und R^2 unabhängig voneinander für Wasserstoff, gegebenenfalls substituiertes C_1-C_{20} -Alkyl, CH_2OH oder C_6-C_{14} -Aryl stehen oder

 R^1 und R^2 zusammen $-(CH_2)_m-CH_2$ mit m=0 bis 12, vorzugsweise 1 bis 5, C_6-C_{14} -Arylen bedeuten, und n für eine ganze Zahl von 5 bis 100 steht.

Vorzugsweise stehen R^1 und R^2 für $-(CH_2)_1-CH_2-$ mit l=1 bis 4.

Die Polythiophene der wiederkehrenden Struktureinheit der Formel (I) sind bekannt (vgl. EP-A 440 958 und 339 340). Die Herstellung der erfindungsgemäßen Dispersionen bzw. Lösungen ist in EP-A 440 957 und DE-OS 42 11 459 beschrieben.

Die Polythiophene werden in der Dispersion bzw. Lösung bevorzugt in kationischer Form, wie sie z. B. durch Behandlung der neutralen Thiophene mit Oxidationsmitteln erhalten werden, eingesetzt. Übliche Oxidationsmittel wie Kaliumperoxodisulfat werden für die Oxidation verwendet. Durch die Oxidation erhalten die Polythiophene positive Ladungen, die in den Formeln nicht dargestellt sind, da ihre Zahl und ihre Position nicht einwandfrei feststellbar sind. Gemäß den Angaben in EP-A 339 340 können sie direkt auf Trägern hergestellt werden.

Gegenstand der Erfindung sind daher elektrolumineszierende Anordnungen, die loch- und/oder elektroneninjizierende Schichten aus den oben genannten polymeren organischen Verbindungen enthalten.

Gegenstand der vorliegenden Erfindung ist weiterhin die Verwendung von den genannten polymeren organischen Verbindungen als hoch- und/oder elektroneninjizierende Substanzen.

Die Zwischenschichten können aus Lösung auf die Basiselektrode 2 und/oder die Emitterschicht 5 aufgebracht werden.

Dazu wird bei den erfindungsgemäßen Systemen z. B. eine Lösung des 3,4-Polyethylendioxythiophens auf der Basiselektrode als Film verteilt. Als Lösungsmittel werden bevorzugt Wasser bzw. Wasser Alkoholgemische verwendet. Geeignete Alkohole sind z. B. Methanol, Ethanol, Propanol, Isopropanol.

Die Verwendung dieser Lösungsmittel hat den Vorteil, daß dann weitere Schichten aus organischen Lösungsmitteln, wie aromatischen oder aliphatischen Kohlenwasserstoffgemischen aufgebracht werden können, ohne daß die Schicht 3, 4 angegriffen wird. Gleiches gilt für das Aufbringen der Schicht 6, 7 auf die Emitterschicht 5.

Die Lösung des polymeren organischen Leiters wird durch Techniken wie Spincoaten, Casting, Rakeln, Drukken, Vorhanggießen etc. auf dem Substrat gleichmäßig verteilt. Anschließend werden die Schichten bei Raumtemperatur oder Temperaturen bis 300°C, bevorzugt 200°C getrocknet.

Die Dicke der Zwischenschicht beträgt etwa 3 bis 100 nm, typisch 10 nm.

Den Lösungen der polymeren organischen Leiter können außerdem organische, polymere Bindemittel und/oder organische, niedermolekulare Vernetzungsmittel zugesetzt werden. Entsprechende Bindemittel sind z. B. in der EP 564 911 beschrieben.

Auf der Basiselektrode können die erfindungsgemä-Ben Zwischenschichten 3,4 auch durch elektrochemische Polymerisation der den polymeren organischen Leitern entsprechenden Monomere erzeugt werden. Diese Verfahren sind bekannt und z.B. in EP 339 340 beschrieben.

Beispiele

Herstellung der 3,4-Polyethylendioxythiophenlösung (PEDT/PSS Stammlösung)

20 g freie Polystyrolsulfonsäure (Mn ca. 40 000), 21,4 g Kaliumperoxodisulfat und 50 mg Eisen(III)-sulfat werden unter Rühren in 2000 ml Wasser vorgelegt. Unter Rühren werden 8,0 g 3,4-Ethylendioxythiophen zugegeben. Die Lösung wird 24 h bei Raumtemperatur gerührt. Anschließend werden 100 g Anionenaustauscher (Handelsprodukt Bayer AG Lewatit MP 62) und 100 g Kationenaustauscher (Handelsprodukt Bayer AG Lewatit S 100), beide wasserfeucht, zugegeben und 8 Stunden gerührt.

Die Ionenaustauscher werden durch Filtration entfernt. Es wird eine Lösung mit einem Feststoffgehalt von ca. 1,2 Gew.-% erhalten, die gebrauchsfertig ist.

Beispiel 1

Bei der Herstellung einer elektrolumineszierenden Anordnung mit erfindungsgemäßer PEDT/PSS-Zwischenschicht wurde folgendermaßen vorgegangen.

a) Reinigung des ITO

ITO beschichtetes Glas (hergestellt von der Firma Balzers) wird in 20 × 30 mm große Stücke geschnitten und in folgenden Schritte gereinigt:

1. 15 min in destilliertem Wasser/Falterol-Spülmittel (basisch) im Ultraschallbad,

 2.2×15 min in jeweils frischem destilliertem Wasser im Ultraschallbad spülen,

3.15 min in Ethanol im Ultraschallbad,

4. 2 × 15 min in jeweils frischem Aceton im Ultraschallbad,

5. Trocknen auf fusselfreien Linsentüchern.

b) Aufbringen der PEDT/PSS-Schicht auf das ITO

2 Vol.-Teile der gefilterten PEDT/PSS-Stammlösung werden mit 1 Vol.-Teil Methanol gemischt. Etwa 1 ml dieser Lösung wird auf dem gereinigten ITO-Substrat verteilt. Die überstehende Lösung wird mit einem Spincoater 30 sec lang bei 1.500 U/min abgeschleudert. Der Film wird anschließend 20 min lang bei 70°C im Trokkenschrank getrocknet. Die Schichtdicke wird mit einem Stylusprofilometer (Tencor 200) bestimmt und beträgt 50 nm.

c) Aufbringen der elektrolumineszierenden Schicht

Auf die getrocknete PEDT/PSS-Schicht wird eine zweite Schicht, die elektrolumineszierende Schicht, aufgebracht. Dazu wird eine 1%ige-Lösung aus 7 Gew.-Teilen Poly(vinylcarbazol) (PVK) (Aldrich) und 3 Gew.-Teilen Methinfarbstoff (EP-A 699 730) hergestellt. Die Lösung wird gefiltert und 1 ml der Lösung wird auf dem PEDT/PSS verteilt. Die überstehende Lösung wird mit einem Spin-coater 30 sec lang bei 1000 U/min abgeschleudert. Anschließend wird die Probe 20 min lang bei 50°C im Vakuumtrockenschrank getrocknet. Die Gesamtschichtdicke der Probe beträgt danach 150 nm.

5

d) Aufdampfen der Metall-Elektroden und elektrische Kontaktierung

Die Probe wird in eine Aufdampfapparatur (Leybold 600) eingebaut. Eine Lochmaske mit einem Lochdurchmesser von 3 mm wird auf die polymere Schicht gelegt. Bei einem Druck von 10⁻⁵ mbar wird Al von einem Target mittels einer Elektronenstrahlkanone gegen die polymere Schicht gedampft. Die Al-Schichtdicke beträgt 500 nm. Die beiden Elektroden der organischen 10 LED werden über elektrische Zuführungen mit einer Spannungsquelle verbunden. Der positive Pol ist mit dem ITO-Elektrode, der negative Pol ist mit der Al-Elektrode verbunden.

e) Bestimmung der Elektrolumineszenz

Bereits bei kleinen Spannungen (U = 5 Volt) fließt ein Strom von 1 mA/cm² durch die Anordnung. Bei 8 Volt läßt sich mit einer Photodiode Elektrolumineszenz 20 nachweisen. Bei 20 Volt beträgt die Elektrolumineszenzintensität 50 cd/m² (Minolta, LS 100).

Das Kontrollexperiment ohne die erfindungsgemäße PEDT/PSS-Zwischenschicht führt zu niedrigeren EL-Intensitäten und zu einer höheren Einsatzspannung.

Beispiel 2

Bei der Herstellung einer elektrolumineszierenden Anordnung mit erfindungsgemäßer PEDT/PSS-Zwi- 30 schenschicht wurde folgendermaßen vorgegangen.

a) Reinigung des ITO

ITO beschichtetes Glas (hergestellt von der Firma 35 Balzers) wird in 20×30 mm große Stücke geschnitten und in folgenden Schritte gereinigt:

- 1. 15 min in destilliertem Wasser/Falterol-Spülmittel (basisch) im Ultraschallbad.
- 2.2×15 min in jeweils frischem destilliertem Wasser im Ultraschallbad spülen,
- 3. 15 min in Ethanol im Ultraschallbad,
- 4.2×15 min in jeweils frischem Aceton im Ultraschallbad.
- 5. Trocknen auf fusselfreien Linsentüchern.

b) Aufbringen der PEDT/PSS-Schicht auf das ITO

2 Vol.-Teile der gefilterten PEDT/PSS-Stammlösung 50 werden mit 1 Vol.-Teil Methanol gemischt. Etwa 1 ml dieser Lösung wird auf dem gereinigten ITO-Substrat verteilt. Die überstehende Lösung wird mit einem Spincoater 30 sec lang bei 1500 U/min abgeschleudert. Der Film wird anschließend 20 min lang bei 70°C im Trokkenschrank getrocknet. Die Schichtdicke wird mit einem Stylusprofilometer (Tencor 200) bestimmt und beträgt 50 nm.

c) Aufbringen der elektrolumineszierenden Schicht

Auf die getrocknete PEDT/PSS-Schicht wird eine zweite Schicht, die elektrolumineszierende Schicht, aufgebracht. Dazu wird eine 1,5%ige-Lösung aus 7 Gew.-Teilen Poly(vinylcarbazol) (PVK) (Aldrich) und 65 3 Gew.-Teilen Cumarin 6 (Lambda Physics) hergestellt. Die Lösung wird gefiltert und 1 ml der Lösung wird auf dem PEDT/PSS verteilt. Die überstehende Lösung wird

6

mit einem Spin-coater 10 sec lang bei 1800 U/min abgeschleudert.

d) Aufdampfen der Metall-Elektroden und elektrische Kontaktierung

Die Probe wird in eine Aufdampfapparatur (Leybold 600) eingebaut. Eine Lochmaske mit einem Lochdurchmesser von 3 mm wird auf die polymere Schicht gelegt.

Bei einem Druck von 10⁻⁵ mbar wird Al von einem Target mittels einer Elektronenstrahlkanone gegen die polymere Schicht gedampft. Die Al-Schichtdicke beträgt 500 nm. Die beiden Elektroden der organischen LED werden über elektrische Zuführungen mit einer Spannungsquelle verbunden. Der positive Pol ist mit dem ITO-Elektrode, der negative Pol ist mit der Al-Elektrode verbunden.

e) Bestimmung der Elektrolumineszenz

Bereits bei kleinen Spannungen (U = 10 Volt) fließt ein Strom von 0,1 mA/cm² durch die Anordnung. Bei 8 Volt läßt sich mit einer Photodiode Elektrolumineszenz nachweisen. Bei 20 Volt beträgt die Elektrolumineszenzintensität 10 cd/m² (Minolta, LS 100).

Beispiel 3

Bei der Herstellung einer elektrolumineszierenden Anordnung mit erfindungsgemäßer PEDT/PSS-Zwischenschicht wurde folgendermaßen vorgegangen.

a) Reinigung des ITO

ITO beschichtetes Glas (hergestellt von der Firma Balzers) wird in 20 × 30 mm große Stücke geschnitten und in folgenden Schritte gereinigt:

- 1. 15 min in destilliertem Wasser/Falterol-Spülmittel (basisch) im Ultraschallbad,
- 2.2×15 min in jeweils frischem destilliertem Wasser im Ultraschallbad spülen,
- 3.15 min in Ethanol im Ultraschallbad,
- 4. 2×15 min in jeweils frischem Aceton im Ultraschallbad,
- 5. Trocknen auf fusselfreien Linsentüchern.

b) Aufbringen der PEDT/PSS-Schicht auf das ITO

2 Vol-Teile der gefilterten PEDT/PSS-Stammlösung werden mit 1 Vol-Teil Methanol gemischt. Etwa 1 ml dieser Lösung wird auf dem gereinigten ITO-Substrat verteilt. Die überstehende Lösung wird mit einem Spincoater 30 sec lang bei 1500 U/min abgeschleudert. Der Film wird anschließend 20 min lang bei 70°C im Trokkenschrank getrocknet. Die Schichtdicke wird mit einem Stylusprofilometer (Tencor 200) bestimmt und beträgt 50 nm.

c) Aufbringen der elektrolumineszierenden Schicht

Auf die getrocknete PEDT/PSS-Schicht wird eine zweite Schicht, die elektrolumineszierende Schicht, aufgebracht. Dazu wird eine 1,5%ige-Lösung aus 7 Gew.-Teilen Poly(vinylcarbazol) (PVK) (Aldrich) und 3 Gew.-Teilen Perylenfarbstoff KF 856 (Handelsprodukt der BASF) hergestellt. Die Lösung wird gefiltert und 1 ml der Lösung wird auf dem PEDT/PSS verteilt

20

7

Die überstehende Lösung wird mit einem Spin-coater 10 sec lang bei 1800 U/min abgeschleudert. Die Gesamtschichtdicke der Probe beträgt danach 140 nm.

d) Aufdampfen der Metall-Elektroden und elektrische Kontaktierung

Die Probe wird in eine Aufdampfapparatur (Leybold 600) eingebaut. Eine Lochmaske mit einem Lochdurchmesser von 3 mm wird auf die polymere Schicht gelegt. Bei einem Druck von 10⁻⁵ mbar wird Al von einem Target mittels einer Elektronenstrahlkanone gegen die polymere Schicht gedampft. Die Al-Schichtdicke beträgt 500 nm. Die beiden Elektroden der organischen LED werden über elektrische Zuführungen mit einer Spannungsquelle verbunden. Der positive Pol ist mit dem ITO-Elektrode, der negative Pol ist mit der Al-Elektrode verbunden.

e) Bestimmung der Elektrolumineszenz

Bereits bei kleinen Spannungen (U = 5 Volt) fließt ein Strom von 1 mA/cm² durch die Anordnung. Bei 4 Volt läßt sich mit einer Photodiode Elektrolumineszenz nachweisen. Bei 15 Volt beträgt die Elektrolumineszenzintensität 30 cd/m² (Minolta, LS 100).

Das Kontrollexperiment ohne die erfindungsgemäße PEDT/PSS-Zwischenschicht führt zu niedrigeren EL-Intensitäten und zu einer höheren Einsatzspannung.

Beispiel 4

a) In eine Lösung aus 0,8 g Tetramethylammoniumtetrafluoroborat und 0,28 g 3,4-Ethylendioxythiophen in 100 ml Acetonitril wird ein nach Beispiel Ia gereinigtes ITO-Substrat und ein 1 × 2 cm² großes Platinblech gehängt. Die Glasplatte wird als Anode geschaltet. In 20 Sekunden wird bei einer Spannung von 2 V und einem Strom von 1,5 mA eine dünne 3,4-Polyethylendioxythiophenschicht als lochinjizierende Zwischenschicht abgeschieden.

b) Auf die getrocknete PEDT-Schicht wird eine zweite Schicht, die elektrolumineszierende Schicht, aufgebracht. Dazu wird eine 1%ige-Lösung aus 7 Gew.-Teilen Poly(vinylcarbazol) (PVK) (Aldrich) und 3 Gew.-Teilen Methinfarbstoff (EP-A 699 730) hergestellt. Die Lösung wird gefiltert und 1 ml der Lösung wird auf dem PEDT verteilt. Die überstehende Lösung wird mit einem Spin-coater 30 sec lang bei 1000 U/min abgeschleudert. Anschließend wird die Probe 20 min lang bei 50°C im Vakuumtrockenschrank getrocknet. Die Gesamtschichtdicke der Probe beträgt danach 150 nm.

c) Aufdampfen der Metall-Elektroden und elektrische Kontaktierung

Die Probe wird in eine Aufdampfapparatur (Leybold 600) eingebaut. Eine Lochmaske mit einem Lochdurchmesser von 3 mm wird auf die polymere Schicht gelegt. Bei einem Druck von 10^{-5} mbar wird Al von einem Target mittels einer Elektronenstrahlkanone gegen die polymere Schicht gedampft. Die Al-Schichtdicke beträgt 500 nm. Die beiden Elektroden der organischen LED werden über elektrische Zuführungen mit einer Spannungsquelle verbunden. Der positive Pol ist mit dem ITO-Elektrode, der negative Pol ist mit der Al-Elektrode verbunden.

8

d) Bestimmung der Elektrolumineszenz

Bereits bei kleinen Spannungen (U = 5 Volt) fließt ein Strom von 1 mA/cm² durch die Anordnung. Bei 4 Volt läßt sich mit einer Photodiode Elektrolumineszenz nachweisen. Bei 20 Volt beträgt die Elektrolumineszenzintensität 10 cd/m² (Minolta, LS 100).

Das Kontrollexperiment ohne die erfindungsgemäße PEDT-Zwischenschicht führt zu niedrigeren EL-Intensitäten und zu einer höheren Einsatzspannung.

Patentansprüche

1. Elektrolumineszierende Anordnung, die lochund/oder elektroneninjizierende Schichten enthalten, wobei die polymeren organischen Leiter ausgewählt sind aus der Gruppe der Polyfurane, Polypyrole, Polyaniline, Polythiophene und Polypyridine.

2. Elektrolumineszierende Anordnung gemäß Anspruch 1, wobei neutrale oder kationische Thiophene der Formel (I)

wobei

R¹ und R² unabhängig voneinander für Wasserstoff, gegebenenfalls substituiertes C₁—C₂₀-Alkyl, CH₂OH oder C₆—C₁₄-Aryl stehen oder

 R^1 und R^2 zusammen $-(CH_2)_m - CH_2 - mit m = 0$ bis 12, vorzugsweise 1 bis 5, $C_6 - C_{14}$ -Arylen bedeuten und

n für eine ganze Zahl von 5 bis 100 steht, eingesetzt werden.

3. Verwendung von polymeren organischen Verbindungen gemäß Anspruch 1 und 2 als Leiter in loch- und/oder elektroneninjizierenden Schichten von elektrolumineszierenden Anordnungen.

- Leerseite -