Caractérisation de premier en analyse LL(1)

Référence: 131 Développements pour l'oral.

Définition de premier.

Définition 1. Soit G une grammaire, et $w \in (V \cup \Sigma)^*$, on définit :

$$\mathbf{premier}(w) = \begin{cases} \mathbf{premier}'(w) & si \ w \Rightarrow^* \epsilon \\ \mathbf{premier}'(w) \cup \{\epsilon_0\} & si \ w \Rightarrow^* \epsilon \end{cases}$$

où:

$$\mathbf{premier}'(w) = \{ a \in \Sigma | w \Rightarrow^* aw', w' \in (V \cup \Sigma)^* \}$$

Remarque 1. ϵ_0 est un symbole frais qui peut être interprété comme « première lettre de ϵ ».

Définition axiomatique. On considère une vision ensembliste des fonctions. On veut montrer que la fonction **premier** est la plus petite partie P de $(V \cup \Sigma)^* \times (\Sigma \cup \{\epsilon_0\})$ telle que

- 1. $a \in P(a)$;
- 2. $\epsilon_0 \in P(\epsilon)$;
- 3. si $N \to w_1...w_n$, alors $P(w_1...w_n) \subset P(N)$;
- 4. si $N \to \epsilon$, alors $\epsilon_0 \in P(N)$;
- 5. $(P(w_1)\setminus\{\epsilon_0\}) \subset P(w_1...w_n)$;
- 6. si $\epsilon_0 \in P(w_1)$, alors $P(w_2...w_n) \subset P(w_1...w_n)$

Lemme 1. La fonction premier vérifie les axiomes 1 à 6.

Démonstration.

- 1. Pour $a \in \Sigma$, on a $a \Rightarrow^* a$ et donc $a \in \mathbf{premier}(a)$.
- 2. De même, $\epsilon \Rightarrow^* \epsilon$, et donc $\epsilon_0 \in \mathbf{premier}(\epsilon)$;
- 3. Si $N \to w_1...w_n$. Soit $a \in \mathbf{premier}(w_1...w_n)$. Si $a = \epsilon_0$, alors $w_1...w_n \Rightarrow^* \epsilon$, et donc par transitivité $N \Rightarrow^* \epsilon$. Ainsi, $\epsilon_0 \in \mathbf{premier}(N)$. Si $a \neq \epsilon_0$, on a $w_1...w_n \Rightarrow aw'$, et donc encore par transitivité, $N \Rightarrow^* aw'$, et finalement $a \in \mathbf{premier}(N)$.
- 4. Si $N \Rightarrow \epsilon$, alors $N \Rightarrow^* \epsilon$ et donc $\epsilon_0 \in \mathbf{premier}(N)$.
- 5. Soit $w_1...w_n \in (\Sigma \cup V)^*$. Soit $a \in \mathbf{premier}(w_1) \setminus \{\epsilon_0\}$. Ainsi, $a \in \mathbf{premier}'(w_1)$, et donc $w_1 \Rightarrow^* aw_1'$. En appliquant les mêmes règles au mot $w_1...w_n$, on a $w_1...w_n \Rightarrow^* aw_1'w_2...w_n$, et donc $a \in \mathbf{premier}(w_1...w_n)$.
- 6. Soit $w_1...w_n \in (\Sigma \cup V)^*$, avec $\epsilon_0 \in \mathbf{premier}(w_1)$. Alors, on a $w_1 \Rightarrow^* \epsilon$. En appliquant les même règle, on a $w_1...w_n \Rightarrow^* \epsilon w_2...w_n = w_2...w_n$. On en déduit directement $\mathbf{premier}(w_2...w_n) \subset \mathbf{premier}(w_1...w_n)$.

Lemme 2. Soit P la plus petite partie vérifiant les axiomes 1 à 6. Montrer que pour tout $n \in \mathbb{N}$, pour tout $a \in \Sigma$, pour tout $w, w' \in (\Sigma \cup V)^*$, on a

```
- si \ w \Rightarrow^n aw', alors a \in P(w);

- si \ w \Rightarrow^n \epsilon, alors \epsilon_0 \in P(w).
```

En admettant ce lemme pour l'instant, on peut montrer le résultat voulu.

Théorème 1. premier est la plus petite partie P vérifiant les propriétés 1 à 6.

Démonstration. Soit P la plus petite partie vérifiant les axiomes 1 à 6.

Puisque **premier** vérifie ces axiomes d'après le lemme 1, on a $P \subset$ **premier**.

Le lemme 2 nous permet de montrer l'autre inclusion. En effet, si $a \in \mathbf{premier}(w)$. Ainsi, il existe $w' \in (\Sigma \cup V)^*$ tel que $w \Rightarrow^* aw'$ (avec possiblement $a = \epsilon_0$ et donc $w' = \epsilon$). Par le lemme 2, on a directement $a \in P(w)$, et donc pour tout w, on a $\mathbf{premier}(w) \subset P(w)$.

Finalement, $\mathbf{premier} = P$.

Algorithme. Cette définition axiomatique nous donne un moyen de calculer **premier** par saturation.

Algorithme 1: Calcul_Premier(w)

Démonstration du lemme 2. On montre le résultat par récurrence forte sur n.

Pour n = 0, soit $a \in \Sigma$, $w, w' \in (\Sigma \cup V)^*$.

- Si w = aw', alors on a $a \in P(a)$ d'après 1, et en particulier $a \in P(a) \setminus \{\epsilon_0\}$. D'après 5, on a $a \in P(aw')$, et donc $a \in P(w)$.
- Si $w = \epsilon$, alors par 2, on a directement $\epsilon_0 \in P(w)$.

On suppose la propriété vraie pour tout k < n pour un certain n > 0, soit $a \in \Sigma$, $w, w' \in (\Sigma \cup V)^*$.

On note $w = w_1...w_m$.

- Si $w \Rightarrow^n aw'$. On veut montrer que $a \in P(w)$. On distingue deux cas
 - Si $w_1 \in \Sigma$, alors $w_1 = a$. Ainsi par 1 et 5, on a directement $a \in P(w)$.
 - Si $w_1 \notin \Sigma$, ie $w_1 = N \in V$. On distingue deux cas:
 - S'il existe j < n tel que

$$Nw_2...w_m \Rightarrow^j w_2...w_m \Rightarrow^{n-j} aw'$$

On a alors $\epsilon_0 \in P(N)$ par HR au rang j, et $a \in P(w_2...w_m)$ par HR au rang n-j. De plus, par l'axiome 6, on a $P(w_2...w_m) \subset P(w_1...w_m)$ et donc $a \in P(w)$. — Sinon, la première règle appliquée à N est de la forme $N \Rightarrow x_1...x_k$. De plus, puisque $x_1...x_k \Rightarrow^* \epsilon$, on prend i l'indice minimal tel que $x_i \Rightarrow^* a$. Il existe alors j < n tel que

$$Nw_2...w_n \Rightarrow^j x_i...x_kw_2...w_m \Rightarrow aw'$$

Par application successive de 6, on a

$$P(x_i...x_k) \subset P(x_1...x_k)$$

Or par HR, on a $a \in P(x_i) \subset P(x_i...x_k)$ par 5. En combinant, on a $a \in P(x_1...x_k)$, puis $a \in P(N)$ par 3, et finalement par 5, on a $a \in P(Nw_2...w_m)$, c'est-à-dire $a \in P(w)$.

— Si $w \Rightarrow^n \epsilon$, on recommence avec w qui commence par un non terminal.