Data Structures for Range-Sum Queries The Evolution of the Data Cube

Paul Butler

CUMC 2010 Waterloo, Ontario

July 2010

The Range-Sum Problem: Example

Name	DOB	City	Height	Siblings	Pets
Joseph Matthews	Jan 9, 1987	Waterloo	172	2	1
Sarah MacDonald	Nov 17, 1988	Halifax	167	0	2
:		:	:		

▶ How many people in Vancouver were born before 1990?

The Range-Sum Problem: Example

Name	DOB	City	Height	Siblings	Pets
Joseph Matthews	Jan 9, 1987	Waterloo	172	2	1
Sarah MacDonald	Nov 17, 1988	Halifax	167	0	2
:	•	•	:	•••	

- ▶ How many people in Vancouver were born before 1990?
- ► What is the average number of siblings for people above 170 cm?

The Range-Sum Problem: Example

Name	DOB	City	Height	Siblings	Pets
Joseph Matthews	Jan 9, 1987	Waterloo	172	2	1
Sarah MacDonald	Nov 17, 1988	Halifax	167	0	2
÷		:	:		:

- ▶ How many people in Vancouver were born before 1990?
- ► What is the average number of siblings for people above 170 cm?
- ► What is the total number of pets owned by people 18 to 24 in Calgary?

Definition (Measure)

A column whose values we want to aggregate in our queries.

Definition (Measure)

A column whose values we want to aggregate in our queries.

Example

The **Pets** and **Siblings** columns from the last example are **measures**

Definition (Measure)

A column whose values we want to aggregate in our queries.

Example

The **Pets** and **Siblings** columns from the last example are **measures**

Definition (Dimension)

A column we want to use to select columns which belong to our aggregation.

Definition (Measure)

A column whose values we want to aggregate in our queries.

Example

The **Pets** and **Siblings** columns from the last example are **measures**

Definition (Dimension)

A column we want to use to select columns which belong to our aggregation.

Example

The DOB, City, and Height columns are dimensions.

► For each column, **dimension** vs. **measure** depends on which questions you want to answer.

- ► For each column, **dimension** vs. **measure** depends on which questions you want to answer.
- ▶ What is the average age of people with two pets

- ► For each column, **dimension** vs. **measure** depends on which questions you want to answer.
- ▶ What is the average age of people with two pets

- ► For each column, **dimension** vs. **measure** depends on which questions you want to answer.
- ▶ What is the average age of people with two pets
 - DOB would be a measure
 - ▶ Pets would be a dimension

The Naïve Approach

- Store the data as a table
- For every row:
 - ▶ If the dimension columns match our query, add the value in the measure column to a running total
- Return the running total

The Naïve Approach

- Store the data as a table
- For every row:
 - ▶ If the dimension columns match our query, add the value in the measure column to a running total
- Return the running total

Too slow for large amounts of data!

We can aggregate the data into a multi-dimensional array. [3]

					DOB			
			1985	1986	1987	1988	1989	
Height	: 165 166 167 168		: 192 325 487 326	: 342 275 326 363	: 558 707 363 193	: 56 855 193 350	: 591 484 350 422	
	169		438	456	550	385	412	
	:	• • •	:	:	:	:	:	

We can aggregate the data into a multi-dimensional array. [3]

					DOB			
			1985	1986	1987	1988	1989	
		•	:	:	:	:	:	
	165		192	342	558	56	591	
Height	166		325	275	707	855	484	
Height	167		487	326	363	193	350	
	168		326	363	193	350	422	
	169		438	456	550	385	412	
	:	٠	:	:	:	:	:	٠

Now cells not selected by the query are ignored. Less lookups, faster queries (but still too slow).

We can calculate partial sums for each row, column, etc. [3]

					С	ОВ		
			1985	1986	1987	1988	1989	 Sum
	:	·	:	:	:	:	:	 :
	165		192	342	558	56	591	 10937
	166		325	275	707	855	484	 10998
Height	167		487	326	363	193	350	 11064
	168		326	363	193	350	422	 10913
	169		438	456	550	385	412	 11347
	:		:	:		:	:	 :
	Sum		8121	8255	8206	8820	8026	 202169

We can calculate partial sums for each row, column, etc. [3]

					С	OB			
			1985	1986	1987	1988	1989		Sum
	165		: 192	342	: : 558	: : 56	: 591		10937
	166		325	275	707	855	484		10998
Height	167 168		487 326	326 363	363 193	193 350	350 422		11064 10913
	169		438	456	550	385	412		11347
	<u>:</u>	٠	:	<u>:</u>	:	:	:	٠	:
	Sum		8121	8255	8206	8820	8026		202169

Queries which only mention a subset of the dimensions run faster.

Example

How many dogs are owned by people born between 1986 and 1988 (inclusive)?

					D	ОВ			
			1985	1986	1987	1988	1989		Sum
	: 165	·	: 192	: 342	: 558	: 56	: 591	•	: 10937
Height	166 167		325 487	275 326	707 363	855 193	484 350		10998 11064
Ticigit	168		326	363	193	350	422		10913
	169 :		438 :	456 :	550 :	385	412		11347 :
	Sum		8121	8255	8206	8820	8026		202169

Example

How many dogs are owned by people born between 1986 and 1988 (inclusive)?

					D	ОВ			
			1985	1986	1987	1988	1989		Sum
	:		:	:	:	•	:		:
	165		192	342	558	56	591		10937
	166		325	275	707	855	484		10998
Height	167		487	326	363	193	350		11064
	168		326	363	193	350	422		10913
	169		438	456	550	385	412		11347
	:	·	:	:	:	:	:	٠	:
	Sum		8121	8255	8206	8820	8026		202169

$$8255 + 8206 + 8820 = 25281$$

With **Data Cubes**, the question becomes How do we find the sum of values which fall inside a given (hyper)rectangle in a multidimensional array?

Prefix-Sum Table

Observation: range sums can be computed as a sum of four range queries starting from 0. [4]

Prefix-Sum Table

Observation: range sums can be computed as a sum of four range queries starting from 0. [4]

In general: $\leq 2^d$ operations, where d is number of dimensions.

With **Prefix-Sum Tables**, the question becomes How do we find the sum of values which fall inside a given (hyper)rectangle in a multidimensional array with one corner fixed at the origin?

Prefix-Sum Table

Array A

Index	0	1	2	3	4	- 5	6	7	8
0	3	5	1	2	2	4	- 6	3	3
1	7	3	2	6	8	7	1	2	4
2	2	4	2	3	3	3	4	5	7
3	3	2	1	5	3	5	2	8	2
4	4	2	1	3	3	4	7	1	3
5	2	3	3	6	1	8	5	1	1
6	4	5	2	7	1	9	3	3	4
7	2	4	2	2	3	1	9	1	3
8	5	4	3	1	3	2	1	9	6

Array P

Index	0	1	2	3	4	- 5	- 6	7	- 8
0	3	8	9	11	13	17	23	26	29
1	10	18	21	29	39	50	57	62	69
2	12	24	29	40	53	67	78	88	102
3	15	29	35	51	67	86	99	117	133
4	19	35	42	61	80	103	123	142	161
5	21	40	50	75	95	126	151	171	191
6	25	49	61	93	114	154	182	205	229
7	27	55	69	103	127	168	205	229	256
8	32	64	81	116	143	186	224	257	290

Updating the Prefix-Sum Table

Array	P	١

Index	0	1	2	3	4	5	6	7	8
0	3	5	1	2	2	4	- 6	3	3
1	7	* 4	2	6	8	7	1	2	4
2	2	4	2	3	3	3	4	5	7
3	3	2	1	5	3	5	2	8	2
4	4	2	1	3	3	4	7	1	3
5	2	3	3	6	1	8	5	1	1
6	4	5	2	7	1	9	3	3	4
7	2	4	2	2	3	1	9	1	3
8	5	4	3	1	3	2	1	9	- 6

Array P

Index	0	1	2	3	4	- 5	6	7	8
0	3	8	9	11	13	17	23	26	29
1	10	* 19	22	30	40	51	58	63	70
2	12	25	30	41	54	68	79	89	103
3	15	30	36	52	68	87	100	118	134
4	19	36	43	62	81	104	124	143	162
5	21	41	51	76	96	127	152	172	192
6	25	50	62	94	115	155	183	206	230
7	27	56	70	104	128	169	206	230	257
8	32	65	82	117	144	187	225	258	291

Relative Prefix Method

Geffner, Agrawal, El Abbadi, Smith [1] introduced two new tables

- ► relative-prefix table
- overlay table

Overlay Table - Anchor Value

Overlay Table - Outer Values

muex	U		_ 4						
0									
1									
2 3									
3									
4									
5									
6					X ₁				
7				Y ₁					
,									
8				_					
	0	1	2	3	4	5	6	7	8
8	0	_1_	2	3	4	5	6	7	8
8 Index 0	0	1	2	3	4	5	6	7	8
8 Index 0	0	1	2	3	4	5	6	7	8
8 Index 0 1 2 3	0	1	2	3	4	5	6	7	8
8 Index 0 1 2 3	0	1	2	3	4	5	6	7	8
8 Index 0 1 2 3 4 5	0	1	2	3	4		6	7	8
8 Index 0 1 2 3	0	1	2	3	4	5 X ₂	6	7	8

Relative Prefix Table

Relative Prefix (RP) array

rtcruu	1011	CIIA	(111)	uiiu	J				
Index	0	1	2	3	4	5	6	7	- 8
0	3	8	9	2	4	8	- 6	9	12
1	10	18	21	8	18	29	7	12	19
2	12	24	29	- 11	24	38	- 11	21	35
3	3	5	- 6	- 5	- 8	13	2	10	12
4	7	11	13	8	14	23	9	18	23
5	9	16	21	14	21	38	14	24	30
6	- 4	9	11	7	8	17	3	6	10
7	- 6	15	19	9	13	23	12	16	23
8	- 11	24	31	10	17	29	13	26	39

Relative Prefix Method

Array A

Index	0	1	2	3	4	5	- 6	7	- 8
0	3	5	1	2	2	- 4	6	3	3
1	7	3	2	6	8	7	1	2	4
2	2	4	2	3	3	3	4	5	7
3	3	2	1	5	3	5	2	8	2
4	4	2	1	3	3	4	7	1	3
5	2	3	3	6	1	8	5	1	1
6	4	5	2	7	1	9	3	3	4
7	2	4	2	2	3	1	9	1	3
8	5	4	3	1	3	2	1	9	6

Overlay boxes of size 3x3

Index	0	1	2	3	4	5	6	7	8
0	0	0	0	9	0	0	17	0	0
1	0			12			33		
2	0			20			50		
3	12	12	17	46	13	27	97	10	24
4	0			7			17		
5	0			15			40		
6	21	19	29	86	20	51	179	20	40
7	0			8		8	14		
8	0			20			32		

Relative Prefix (RP) array

rtoruu	, , ,	CILA	(111)	uiiu	J				
Index	0	1	2	3	4	- 5	6	7	- 8
0	3	8	9	2	4	8	6	9	12
1	10	18	21	8	18	29	7	12	19
2	12	24	29	- 11	24	38	- 11	21	35
3	3	5	- 6	- 5	- 8	13	2	10	12
4	7	11	13	8	14	23	9	18	23
- 5	9	16	21	14	21	38	14	24	30
6	4	9	- 11	7	8	17	3	6	10
7	- 6	15	19	9	13	* 23	12	16	23
8	11	24	31	10	17	29	13	26	39

Updating Overlay and Relative Prefix Table

Index	0	1	2	3	4	- 5	6	7	8
0									
1		8							
2									
3									
4									
5									
6									
7									
8									

Figure 14. Overlay regions during an update.

Relative Prefix (RP) array

Index	0	1	2	3	4	5	6	7	- 8
0	3	8	9	2	4	8	6	9	12
1	10	* 19	22	8	18	29	7	12	19
2	12	25	30	- 11	24	38	- 11	21	35
3	3	5	6	5	8	13	2	10	12
4	7	- 11	13	- 8	14	23	9	18	23
5	9	16	21	14	21	38	14	24	30
6	- 4	9	11	7	8	17	3	6	10
7	6	15	19	9	13	23	12	16	23
8	- 11	24	31	10	17	29	13	26	39

Overlay boxes

Index	0	_1	2	3	4	5	6	7	- 8
0	0	0	0	9	0	0	17	0	0
1	0	8		13			34		
2	0			21			51		
3	12	13	18	47	13	27	98	10	24
4	0			7			17		
5	0			15			40		
6	21	20	30	87	20	51	180	20	40
7	0			8			14		
8	0			20			32		

Dynamic Data Cube

	Q			11	R			15
				29				33
				40				48
Root:	15	29	35	51	16	35	48	66
NOOL.	S			10	Т			15
				24			*	31
				42				47
	12	26	34	52	8	30	54	61
		-			_			

T: $\begin{bmatrix} U & 7 & V & 8 \\ 4 & 16 & 12* & 15 \\ \hline W & 10 & Z & 6 \\ 4 & 14 & 12 & 16 \end{bmatrix}$

Δ -tree

Steve Geffner, Divyakanth Agrawal, Amr El Abbadi, and Terry Smith.

Relative prefix sums: An efficient approach for querying dynamic olap data cubes.

Technical report, Santa Barbara, CA, USA, 1999.

Steven Geffner, Divyakant Agrawal, and Amr El Abbadi.

The dynamic data cube.

In Carlo Zaniolo, Peter C. Lockemann, Marc H. Scholl, and Torsten Grust, editors, *EDBT*, volume 1777 of *Lecture Notes in Computer Science*, pages 237–253. Springer, 2000.

Jim Gray, Adam Bosworth, Andrew Layman, Don Reichart, and Hamid Pirahesh.

Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals.

pages 152-159, 1996.

Ching-Tien Ho, Rakesh Agrawal, Nimrod Megiddo, and Ramakrishnan Srikant.

Range queries in olap data cubes.

SIGMOD Rec., 26(2):73-88, 1997.

Slides

github.com/paulgb/cumc2010/raw/master/slides.pdf

Try Sage!

sagemath.org