La fonction dérivée

Soit f une fonction dérivable sur un intervalle $I \subset \mathbb{R}$.

La fonction qui à tout $x \in I$ associe le nombre dérivé f'(x) s'appelle la <u>fonction dérivée</u>.

Formule de la dérivée de la fonction $f(x)=x^2$

Soit la fonction f définie sur \mathbb{R} par $f(x)=x^2$.

On doit calculer le nombre dérivé de f en x:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} .$$

On a: $f(x+h)=(x+h)^2=x^2+2xh+h^2$ et $f(x)=x^2$ donc:

$$f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} (2x + h) = 2x$$
.

La fonction f est donc dérivable en x, pour tout $x \in \mathbb{R}$ et on a : f'(x) = 2x.

Si
$$f(x)=x^2$$
, alors $f'(x)=2x$

Dérivées des fonctions usuelles

Fonction f	Fonction dérivée f'
f(x) = ax + b a, b réels	f'(x) = a
$f(x) = ax^2 + bx + c$ a, b, c réels	f'(x) = 2ax + b
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$
$f(x) = x^n$	$f'(x) = nx^{n-1}$
$f(x) = \ln x$	$f'(x) = \frac{1}{x}$
$f(x) = e^x$	$f'(x) = e^x$

Règles de dérivation

Opérations usuelles avec les dérivées

Dérivée d'une somme : (u+v)'=u'+v'.

Dérivée d'un produit par un réel k : (ku)'=ku'.

Dérivée d'un produit : (uv)'=u'v+uv'.

Dérivée de l'inverse : $\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$.

Dérivée d'un quotient : $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$.

Dérivée d'une fonction composée

Si $f = u^n$ alors $f' = nu^{n-1}u'$.

Exemple: $f(x) = (\ln x)^3$. Donc $f = u^3$ avec $u = \ln x$ et $u' = \frac{1}{x}$. Alors $f'(x) = \frac{3(\ln x)^2}{x}$.

Si $f = \ln(u)$ alors $f' = \frac{u'}{u}$.

Exemple: $f(x) = \ln(x^3)$. Donc $f = \ln(u)$ avec $u = x^3$ et $u' = 3x^2$. Alors $f'(x) = \frac{3x^2}{x^3} = \frac{3}{x}$.

Si $f = e^u$ alors $f' = e^u u'$.

Exemple: $f(x) = e^{x^3}$. Donc $f = e^u$ avec $u = x^3$ et $u' = 3x^2$. Alors $f'(x) = e^{x^3} 3x^2 = 3x^2 e^{x^3}$.

Dérivée et sens de variations d'une fonction

Soit f une fonction dérivable sur un intervalle I ; f' est la fonction dérivée de f .

- Si pour tout $x \in I$, on a f' > 0, alors f est <u>strictement croissante</u> sur I.
- Si pour tout $x \in I$, on a f' < 0, alors f est <u>strictement décroissante</u> sur I.
- Si pour tout $x \in I$, on a f' = 0, alors f est <u>constante</u> sur I.

Maximum ou minimum local d'une fonction

Soit f une fonction dérivable sur un intervalle I ; f' est la fonction dérivée de f .

Si, pour la valeur x_0 de I, <u>la dérivée</u> f' <u>s'annule en changeant de signe</u>, alors la fonction f admet en x_0 un maximum ou un minimum local.

Le tableau de variations permet de savoir s'il s'agit d'un maximum ou d'un minimum.

Comment étudier les variations d'une fonction en utilisant la dérivée ?

- 1. On calcule la dérivée f' de f .
- 2. On étudie le signe de f' et on en déduit les variations de f .
- 3. On construit le tableau de variation et on détermine maximum et minimum.

Exemple : Étudier les variations de f définie sur $]0;+\infty[$ par $f(x)=\frac{\ln x}{x^2}$.

1. On calcule la dérivée f' de f:

$$f = \frac{u}{v}$$
 avec $u = \ln x$ et $v = x^2$. Donc $u' = \frac{1}{x}$ et $v' = 2x$. Alors, on a:

$$f'(x) = \frac{u'v - uv'}{v^2} = \frac{\frac{x^2}{x} - 2x \ln x}{x^4} = \frac{x - 2x \ln x}{x^4} = \frac{x(1 - 2\ln x)}{x^4} = \frac{1 - 2\ln x}{x^3}.$$

2. On étudie le signe de f' sur $]0;+\infty[$:

Sur $]0;+\infty[$, f' a le signe de $1-2\ln x$. On a:

$$1-2\ln x>0$$
 si $\ln x<\frac{1}{2}$, c'est-à-dire si $x<\sqrt{e}$.

On en déduit les variations de f:

f est croissante sur]0; e[; f est décroissante sur]e; + $\infty[$.

3. On construit le tableau de variation :

X	0		\sqrt{e}		+ ∞
f'(x)		+	0	-	
f(x)	- 0	×	▼ 1/2e		• 0

Où on a indiqué les limites:

$$\lim_{x\to 0} f(x) = -\infty \quad \text{et} \quad \lim_{x\to +\infty} f(x) = 0 .$$

La fonction f admet en $x = \sqrt{e}$ un maximum local avec $f(\sqrt{e}) = \frac{1}{2e}$.