Name Vorname Matrikohummer Studiengang (Hauptfach)	Note:
	' "
Fachrichtung (Nebentach)	
	1, 1 1 1
Unturschrift der Knadidathrons Kandidaten	1'
Dunischill der Kandidatinvons Kandidaten	
TECHNISCHE UNIVERSITÄT MÜNCHEN	2
Fakultät für Mathematik	
-	3
Semestralkleusur	
WS 2003/04	4
Lineare Algebra und Analytische Geometrie 1	
& Mathematik für Physiker 1	5
Prof. Dr. Gregor Kemper	
09.02.2004	
	6
Hörsaal: Platz:	
Nur von der Aufsicht auszulüllen;	7
Hőrsati verlassen von: bis:	I
Vorzeitig abgegeben um:	8
Beschdere Bemerkungen:], []
Biltir boachtan Sie: Die Arbeitszeit berägt 90 Minuten. Die Klausur hat 6 Aufgaben. Es cind keine Hittsmittel zugelisseen. Bitte schnibten Sie ihre Litzunigen zunächsi jeweits auf das Blatt mit der Aufgabe und benutzen Sie erst denn die Zusatzbilätter. Zum Bestehen der Klausur sind de. 3.17 Punkte erfunterlich, Viel Erfolgt	Σ
Ich bin mit der Veröffentlichung meines Klausurergebnisses (Matrixeirummer und Note) im Internet einvarstanders. Unierschrift	Erstkorrektor Ir

Aufgabe 1 (ca. 7 Punkte):

(a) Für welche $\alpha \in \Re$ hat das lineare Gleichungssystem

$$x + y + 2z = 3$$

 $-3x - 2y + (2\alpha - 6)z = \alpha - 9$
 $\alpha x + y + (2\alpha - 4)z = \alpha + 2$

über \Re (i) keine Lösung (ii) genau eine Lösung (iii) unendlich viele Lösungen?

(b) Bestimmen Sie für $\alpha=1$ die Lösungsmenge des linearen Gleichungssystems über R aus (a).

Aufgabe 2 (ca. 6 Punkte): Es sei G eine Gruppe. Zeigen Sie: G ist genau dann abelsch, wenn die Abbildung $\varphi:G\to G,x\mapsto x^2$ ein Homomorphismus ist.

Aufgabe 3 (ca. 8 Punkte): Es sei V der R-Vektorraum $V := \mathbb{R}^{2\times 2}$, und es sei

$$S := \left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right)$$

 $S:=\left(\left(\begin{array}{cc}1&0\\0&0\end{array}\right),\left(\begin{array}{cc}0&1\\0&0\end{array}\right),\left(\begin{array}{cc}0&0\\1&0\end{array}\right),\left(\begin{array}{cc}0&0\\0&1\end{array}\right)\right)$ die "Standardbasis" von V. (Sie brauchen nicht zu beweisen, dass S eine Basis von V ist.) Es sei ferner $\phi:V\to V$ definiert durch $\phi(X):=X+X^T$, wobei X^T die transponierte Matrix bezeichnet.

- (a) Zeigen Sie, dass o linear ist.
- (b) Bestimmen Sie die Darstellungsmatrix $D_S(\varphi)$.
- (c) Bestimmen Sie je eine Basis für Kern(ϕ) und Bild(ϕ).
- (d) Brgánzen Sie eine Basis von Bild (ϕ) zu einer Basis von V (eine Begründung brauchen Sie nicht anzugeben).

Aufgabe 4 (ca. 7 Punkte): Im R-Vektorraum $V:=\mathbb{R}^3$ seien Unterräume U_1 und U_2 gegeben durch

 $U_1 = ((-1,2,3),(-1,5,5)),$ $U_2 = ((2,-2,1),(-1,3,-2)).$

Bestimmen Sie die Dimensionen $\dim(U_1)$, $\dim(U_2)$, $\dim(U_1+U_2)$ und $\dim(U_1\cap U_2)$.

Aufgabe 6 (ca. 5 Punkte): Beantworten Sie folgende Pragen durch Ankreuzen von "Ja" oder "Nein". Begründungen brauchen Sie nicht anzugeben.

Jeder Modul über einem kommutativen Ring hat eine Basis. Jeder Vektorraum hat eine Basis.	□ Ja ä Ja	Si Nein
	₫Ja	[] Nein
Dist. (() Dis		
Die Menge $\{(x,y,z) \in \mathbb{R}^3 x+y+z=1\}$ ist ein Unterraum des \mathbb{R} -Vektorraums \mathbb{R}^3 .	ها □	Q Nein
Die Menge $\{(x,y) \in \mathbb{F}_2^2 x^2 + y = \bar{0}\}$ ist ein Unterraum des \mathbb{F}_2 -Vektorraums \mathbb{F}_2^2 .	ar	□ Nein
Eine linear unabhängige Teilmenge eines Vektorraums enthält niemals den Nuflvektor.	□Ja	② Nein
Die Komposition $g \circ f$ zweier injektiver Abbildungen $f: A \to B$ und $g: B \to C$ (mit A, B, C Mengen) ist immer injektiv.	□Ja	☐ Nein
In jedem kommunitven Ring ist das Produkt zweier Elemente nur dann gleich O, wenn mindestens eines dieser Elemente gleich O ist.	□ Ja	T) Nein
Die Vereinigung zweier Unterräume eines Vektorraums ist stets wieder ein Unterraum,	□ Ja	□ Nein
Der Durchschnitt zweier Unterrüume eines Vektorraums ist stets wieder ein Unternum.	□Ja	□ Nein
Eine Matrix $A \in K^{n \times n}$ (K ein Körper, $n \in \mathbb{N}$) ist genau donn invertierbar, wenn die Abblidung $\varphi_A : K^a \to K^n, x \mapsto A \cdot x$ surjektiv 152.	□ Ja	∯ Ncin

Aufgabe 5 (ca. 7 Punkte): Es sei V der R-Vektorraum $V = \mathbb{R}^2$.

- (a) Geben Sie ein Beispiel für eine lineare Abbildung $\varphi:V\to V$ mit der Eigenschaft $\varphi\circ\varphi=\mathrm{id}_V$, aber $\varphi\ne\mathrm{id}_V$ und $\varphi\ne-\mathrm{id}_V$ an (eine Begründung bruuchen Sie nicht anzugeben).
- (b) Es sei aun ψ: V → V eine lineare Abhildung mit der Eigenschaft ψ ο ψ = id_V, aber ψ ≠ id_V und ψ ≠ -id_V. Zeigen Sie: Es gibt eine Basis B = {b₁, b₂} von V mit ψ(b₁) = b₁ und ψ(b₂) = -b₂.