Clustering Gene Expression

CMSC423 Spring 2014 Héctor Corrada Bravo

Outline

- K-means (and K-medioids) clustering
- Model-Based clustering (soft K-means)
 - EM algorithm

Heatmaps

Measurements

Measurement is expression of gene *i* at time *j*

DATA MATRIX

Points

- Gene1= $(E_{11}, E_{12}, ..., E_{1N})$
- Gene2= $(E_{21}, E_{22}, ..., E_{2N})$ '

- Sample1= $(E_{11}, E_{21}, ..., E_{G1})$
- Sample2= $(E_{12}, E_{22}, ..., E_{G2})$

• E_{qi} =expression gene g, sample i

Distance

- Clustering organizes things that are close into groups
- What does it mean for two genes to be close?
- What does it mean for two samples to be close?

Once we know this, how do we define groups?

Clustering

Separation and homogeneity

Clustering Problem

 Partition a set of expression vectors into clusters

- Input: An n x m gene expression matrix E
- Output: Clusters of the n expression vectors from E satisfying the conditions of homogeneity and separation

Most Famous Distance

- Euclidean distance
 - Example distance between gene 1 and 2:
 - Sqrt of Sum of $(E_{1i}-E_{2i})^2$, i=1,...,N
- When N is 2, this is distance as we know it:

When N is 20,000 you have to think abstractly

Similarity

- Instead of distance, clustering can use similarity
- If we standardize points then Euclidean distance is equivalent to using absolute value of correlation as a similarity index
- Other examples:
 - Spearman correlation
 - Categorical measures

The similarity/distance matrices

The similarity/distance matrices

K-center Clustering Problem

 Given a set of data points, find k centers minimizing the maximum distance between these data points and centers

- Input: A set of points Data and an integer k
- Output: A set X of k centers that minimizes
 MaxDistance(Data, X) over all possible
 choices of X.

- Choose some point in Data as center
- While more centers needed:
 - Select the point farthest from current centers as next center

- Choose 1 point as center
- This is arbitrary

Iteration = 0

Iteration = 1

Iteration = 2

Iteration = 2

Iteration = 2

 Assign each point to its nearest center

Iteration = 2

 Assign each point to its nearest center

Iteration = 2

Analysis

- Running time?
- The 'how good is it theorem':
 - Let X_{opt} be an optimal set of centers
 - what does that mean?
 - and let X_{ft} be the solution given by *furthest* traversal
 - then

 $MaxDistance(Data, X_{ft}) \le 2 * MaxDistance(Data, X_{opt})$

Why is this not a good algorithm to use?

Better center choice

- Instead of using data points themselves as centers
- We can do better by choosing centers that are not in the dataset

Distortion

Distortion(Data, X)=
$$\frac{1}{n} \Sigma_{y \in Data} d(y, X)^2$$

Center of gravity:

Given a set of points, what is the *center* that minimizes *distortion?*

Construct the *center* by taking the *mean* of each coordinate

K-means problem:
minimize Distortion
instead of MaxDistance

- Choose K centroids
- These are starting values that the user picks.
- There are some data driven ways to do it

Iteration = 0

- Make first partition by finding the closest centroid for each point
- This is where distance is used

Iteration = 1

 Now re-compute the centroids by taking the *middle* of each cluster

Iteration = 2

 Repeat until the centroids stop moving or until you get tired of waiting

Iteration = 3

K-medoids

- A little different
- Centroid: The average of the samples within a cluster
- Medoid: The "representative object" within a cluster.
- Initializing requires choosing medoids at random.

K-means Limitations

Final results depend on starting values

 How do we chose K? There are methods but not much theory saying what is best.

K-means limitations

Analysis

Does it converge?

Fuzzy K-means Clustering

- No partitions now
- Assumption:
 - What we care to estimate are the centers, not the partitions
 - So, let's use all points to estimate each center, but weigh them by <u>how likely</u> they belong to that cluster

Iteration = 1

Model-Based Clustering

- No partitions now
- Points can be assigned to clusters with a probability

$$P(cl(\text{DataPoint}) = k \mid X) = \frac{f_k(\text{DataPoint})}{\Sigma_l f_l(\text{DataPoint})}$$

Iteration = 1

Model-Based Clustering

 Now re-compute the centers by taking the weighted mean of each cluster

$$\hat{\mu}_k = \frac{\sum_i z_{ik} x_i}{\sum_i z_{ik}}$$

$$z_{ik} = P(cl(x_i) = k|\Theta)$$

Iteration = 2

Final Thoughts

- The most overused statistical method in gene expression analysis
- Gives us pretty pictures with patterns
- But, pretty picture tends to be pretty unstable.
- Many different ways to perform clustering
- Tend to be sensitive to small changes in the data