V. Real number axioms

In these axioms, x, y, and z denote real numbers. Axioms 1–12 of this group are called the **field axioms**, while axioms 1–17 are called the **ordered field axioms**.

- (1) Additive closure: $\forall x, y \exists z (x + y = z)$
- (2) Multiplicative closure: $\forall x, y \exists z (x \cdot y = z)$
- (3) Additive associativity: x + (y + z) = (x + y) + z
- (4) Multiplicative associativity: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- (5) Additive commutativity: x + y = y + x
- (6) Multiplicative commutativity: $x \cdot y = y \cdot x$
- (7) Distributivity: $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$ and $(y + z) \cdot x = (y \cdot x) + (z \cdot x)^7$
- (8) Additive identity: There is a number, denoted 0, such that for all x, x + 0 = x.

- (9) Multiplicative identity: There is a number, denoted 1, such that for all x, $x \cdot 1 = 1 \cdot x = x$.
- (10) Additive inverses: For every x there is a number, denoted -x, such that x + (-x) = 0.
- (11) Multiplicative inverses: For every nonzero x there is a number, denoted x^{-1} , such that $x \cdot x^{-1} = x^{-1} \cdot x = 1$.
 - $(12) 0 \neq 1$
 - (13) Irreflexivity of $<: \sim (x < x)$
 - (14) Transitivity of \leq : If $x \leq y$ and $y \leq z$, then $x \leq z$
 - (15) Trichotomy: Either x < y, y < x, or x = y
 - (16) If x < y, then x + z < y + z
 - (17) If x < y and 0 < z, then $x \cdot z < y \cdot z$ and $z \cdot x < z \cdot y^{-7}$
- (18) Completeness: If a nonempty set of real numbers has an upper bound, then it has a *least* upper bound.