Zusammenfassung ETiT II SS12

Maximilian Reuter

9. September 2012

Inhaltsverzeichnis

Ι	Elektrostatisches Feld	3
1	Konstanten	3
2	Ladungsformen	3
3	Das Coulombsche Gesetz / Gravitationsgesetz	3
4	Elektrisches Feld	3
5	Elektrischer Fluss	4
6	Potentialfunktionen 6.1 Punktladung	5 5 5
7	Influenz 7.1 Feldmühle	6
8	Kapazität 8.1 Kugelkondensator	6 7 7 8 8
9	Feldbilder	8
10	Energie im elektrischen Feld	9
11	Kräfte im elektrostatischen Feld	10

12	Bedingungen an Grenzflächen geschichteter Dielektrika	10
	12.1 Quer geschichtete Dielektrika	10
	12.2 Längs geschichtete Dielektrika	
	12.3 Schräg geschichtetes Dielektrikum	
II	Stationäres elektrisches Strömungsfeld	11
13	Basics	11
14	Ohmsches Gesetz	12
15	Leistungsdichte im Strömungsfeld	12
16	Relaxationszeitkonstante	12
17	Berechnung von Widerständen	13
	17.1 Methode 1: Allgemeingültige Methode	13
	17.2 Methode 2: Alternative für homogene Strömungen	13
	17.3 Methode 3: Durch τ (bei bekannter Kapazität)	13
18	Bedingungen an Grenzflächen	13
	18.1 Quer geschichtete Leiter	13
	18.2 Schräg geschichtete Leiter	14
	18.3 Verschiebungsdichte	14

Teil I

Elektrostatisches Feld

1 Konstanten

$$c_0=299792458\frac{m}{8}$$

$$\mu_0=4\pi\cdot 10^{-7}\frac{V_s^s}{Am}$$

$$\epsilon_0=8,854\cdot 10^{-12} \text{ (durch } \epsilon_0\cdot \mu_0\cdot c_0^2=1\text{)}$$

$$K=\frac{1}{4\pi\epsilon_0}=10^{-7}\cdot c_0^2$$

$$\epsilon_r: \text{temperaturunabhängig, oberhalb der ferroelektrischen Curie-Temperatur starkes absirbly starkers.}$$

Ladungsformen 2

Raumladungsdichte: $\rho = \lim_{\Delta V \to 0} \frac{\Delta Q}{\Delta V} = \frac{dQ}{dV}$ Ladung durch Ortsfunktion $\rho(x,y,z)$ berechnen: $Q = \int\limits_V \rho \ dV = \iiint\limits_V \rho(x,y,z) \ dx \ dy \ dz$

Flächenladungsdichte: $\sigma = \lim_{\Delta A \to 0} \frac{\Delta Q}{\Delta A}$ Bei einem Leiter mit $Lange >> Durchmesser \to$ Linienladungs. Linienladungsdichte: $\lambda = \lim_{\Delta l \to 0} \frac{\Delta Q}{\Delta l} = \frac{dQ}{dl}$

3 Das Coulombsche Gesetz / Gravitationsgesetz

Kraftwirkung zwischen zwei Ladungen Q_1 und Q_2 :

$$\vec{F} = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q_1 \cdot Q_2}{r^2} \cdot d\vec{r_0}$$

Kraftwirkung zwischen zwei Massen m_1 und m_2 :

$$F_m = G \cdot \frac{m_1 \cdot m_2}{r^2}$$

4 Elektrisches Feld

Elektrische Feldstärke:

$$\vec{E} = \frac{\vec{F}}{Q}$$

Elektrische Verschiebungsdichte:

$$\vec{D} = \epsilon_0 \cdot \vec{E} = \frac{\Delta \Psi}{\Delta A} = \frac{Q}{4\pi r^2} \cdot \vec{r}$$

E-Feld um Punktladung (Abnahme $\frac{1}{r^2}$):

$$\vec{E} = \frac{Q}{4\pi\epsilon_0 r^2} \cdot \vec{r}$$

Arbeit um Ladung im Feld zu verschieben:

$$\Delta W_{mech} = F \cdot \Delta s = q \cdot E \cdot \Delta s$$

Potentielle Energie der Ladung nimmt um gleichen Betrag ab $\to \Delta U = E \cdot \Delta s$ Verschiebung in beliebige Richtung:

$$\Delta W_{mech} = F \cdot \Delta s \cdot cos\alpha = \left| \vec{F} \right| \cdot \left| \Delta \vec{s} \right| \cdot cos(\vec{F}, \Delta \vec{s})$$

Linienintegral:

$$W_{mech} = q \int_{A}^{B} \vec{E} \cdot d\vec{s}$$

Bei geschlossenem Weg ist das Feld Wirbelfrei, wenn:

$$\oint_{L} \vec{E} \cdot d\vec{s} = 0$$

Das Linienintegral der E-Feldstärke ist weg-unabhängig. Es kommt nur auf den Anfangsund Endpunkt an!

$$U_{AB} = \int_{A}^{B} \vec{E} \cdot d\vec{s}$$

Potential in Bezug auf Punkt 0:

$$\varphi_v = U_{v0} = \int\limits_v^0 \vec{E} \cdot d\vec{s} = -\int\limits_0^v \vec{E} \cdot d\vec{s}$$

Gradient:

$$E_x = -\frac{d\varphi}{dx}, \ E_y = -\frac{d\varphi}{dy}, \ E_z = -\frac{d\varphi}{dz} \to \vec{E} = -grad\varphi$$

5 Elektrischer Fluss

Elektrischer Fluss $\Delta \Psi = \Delta Q$:

$$\Delta \Psi = D \cdot A (= \left| \vec{D} \right| \left| \vec{A} \right| \cdot \cos(\vec{D}), \Delta \vec{A})$$

Bei beliebiger, jedoch nicht geschlossener Fläche

$$\Psi = \int\limits_A \vec{D} \cdot dA$$

Gaußscher Satz der Elektrostatik:

$$Q = \oint_{A} \vec{D} \cdot d\vec{A}$$

6 Potentialfunktionen

6.1 Punktladung

Spannung

$$U_{PB} = \frac{Q}{4\pi\epsilon} \left(\frac{1}{r_P} - \frac{1}{r_B}\right) = \varphi(P) - \varphi(B)$$

Ohne Festlegung eines Bezugspunkts: $\varphi(P) = \frac{Q}{4\pi\epsilon} \frac{1}{r} + const$ (bei weit entferntem oder geerdetem Bezugspunkt: const = 0)

6.2 Dipol

b: Abstand zwischen den Ladungsschwerpunkten

$$\varphi(P) = \frac{Q}{4\pi\epsilon} \cdot \frac{r_{-} - r_{+}}{r_{-} r_{+}}$$

Näherung für sehr kleines b:

$$\varphi(P) = \frac{p \cdot \cos\vartheta}{4\pi\epsilon r^2}$$

mit elektrischem Dipolmoment

$$p = Q \cdot b$$

Punktladung: Potentialabnahme mit $\frac{1}{r}$

Dipol: Potentialabnahme mit $\frac{1}{r^2}$, da sich die beiden Wirkungen zunehmend aufheben.

6.3 Linienladung

$$dQ = \lambda \cdot ds \to d\varphi(P) = \frac{\lambda ds}{4\pi\epsilon r}$$

$$\varphi(P) = \frac{\lambda}{4\pi\epsilon} \int_{-l}^{+l} \frac{1}{\sqrt{\rho^2 + (z-s)^2}} ds = \left[\frac{\lambda}{4\pi\epsilon} \cdot \operatorname{arsh}\left(\frac{s-z}{\rho}\right)\right]_{-l}^{+l}$$

mit

$$\operatorname{arsh}(x) = \ln(x + \sqrt{x^2 + 1})$$

Besser (für Zylindersymmetrische Anordnungen):

$$Q = \lambda l = \int_{Mantel} \vec{D} \cdot d\vec{A} = D(\rho) 2\pi \rho l$$

Feldstärke um die Ladung:

$$E(\rho) = \frac{\lambda}{2\pi\epsilon\rho}$$

Aus

$$U_{PB} = \int_{\rho_P}^{\rho_B} E(\rho) d\rho = \frac{\lambda}{2\pi\epsilon} [ln(\rho)]_{\rho_P}^{\rho_B}$$

folgt:

$$\varphi(\rho) = \frac{\lambda}{2\pi\epsilon} ln \frac{\rho_B}{\rho}$$

7 Influenz

Flächenladungsdichte:

$$\sigma = \frac{dQ}{dA} = \frac{d\Psi}{dA} = D$$

7.1 Feldmühle

$$\sigma = D = \epsilon_0 \cdot E$$

Ladung auf Fläche A:

$$Q = \int_{(A)} \sigma dA = \int_{(A)} \epsilon_0 E dA = \epsilon_0 E A$$

8 Kapazität

$$C = \frac{Q}{U}$$

Spannung zwischen Ladungen:

$$U = Ed$$

8.1 Kugelkondensator

Kapazität:

$$C = 4\pi\epsilon \frac{r_1 r_2}{r_2 - r_1}$$

Spannung zwischen den Elektroden:

$$U_{12} = \int_{r_1}^{r_2} E dr = \frac{Q}{4\pi\epsilon} (\frac{1}{r_1} \frac{1}{r_2})$$

Maximal auftretende Feldstärke (am inneren Rand des Dielektrikums):

$$E_{max} = \frac{U}{r_1} \frac{r_2}{r_2 - r_1}$$

Minimum der maximalen Feldstärke ($E_{max,min}$):

$$\frac{dE_{max}}{dr_1} = 0 \to r_{1,opt} = \frac{r_2}{2}$$

Sonderfall, Kapazität einer Kugel frei im Raum:

$$C = 4\pi\epsilon r_1$$

Dabei auftretende Feldstärke direkt an der Hülle: $E_{max} = \frac{U}{r}$

8.2 Koaxialer Zylinder

 $\rho = \text{Radius}$

Ladung auf dem Kondensator

$$Q = \lambda z = \oint_A \vec{D} \cdot d\vec{A} = D(\rho) \cdot A(\rho) = D(\rho) \cdot 2\pi \rho z$$

Feldstärke um im Zylinder

$$E(\rho) = \frac{\lambda}{2\pi\epsilon\rho}$$

Längenbezogene Kapazität:

$$C' = \frac{C}{z} = \frac{\lambda}{U} = \frac{2\pi\epsilon}{\ln\frac{\rho_2}{\rho_1}}$$

Minimum der Maximalen Feldstärke:

$$\frac{dE_{max}}{d\frac{\rho_2}{\rho_1}} = 0 \to \rho_{1,opt} = \frac{\rho_2}{e}$$

8.2.1 Geschichtete Dielektrika

Geschichtete Dielektrika $(\epsilon_1, \rho_1...\rho_2 \text{ und } \epsilon_2, \rho_2...\rho_3)$:

$$U_{ges} = U_{\rho_1 \rho_2} + U_{\rho_2 \rho_3} = \frac{\lambda}{2\pi} \left(\frac{1}{\epsilon_1} ln \frac{\rho_2}{\rho_1} + \frac{1}{\epsilon_2} ln \frac{\rho_3}{\rho_2} \right)$$

Längenbezogene Kapazität:

$$C' = \frac{\lambda}{U_{ges}} = \frac{2\pi}{\frac{1}{\epsilon_1} ln \frac{\rho_2}{\rho_1} + \frac{1}{\epsilon_2} ln \frac{\rho_3}{\rho_2}}$$

Feldstärkeverhältnisse:

$$\frac{E_2(\rho_2)}{E_1(\rho_2)} = \frac{\epsilon_1}{\epsilon_2}$$

Das Maximum der Feldstärke tritt jeweils am Innenradius des Dielektrikums auf!

$$\frac{E_{max1}}{E_{max2}} = \frac{\epsilon_2 \rho_2}{\epsilon_1 \rho_1}$$

8.3 Superposition von Potentialen

Zwei parallele Linienladungen, ungleichen Vorzeichens, mit Radius ρ_0 , Punkt P mit φ_+ , φ_- :

$$C' = \frac{\lambda}{\varphi_+ - \varphi_-} = \frac{\pi \epsilon}{\ln \frac{f}{\rho_0}}$$

Potential:

$$\varphi(P) = \frac{\lambda}{2\pi\epsilon} ln \frac{\rho_{-}}{\rho_{+}}$$

Maximal auftretende Feldstärke (an der Leiteroberfläche):

$$E_{max} = \frac{U}{2\rho_0 ln\frac{d}{\rho_0}}$$

(Gleiche Vorzeichen:

$$\varphi(P) = \frac{\lambda}{2\pi\epsilon} \cdot \ln \frac{\rho_B}{\rho_1} + \frac{\lambda}{2\pi\epsilon} \cdot \ln \frac{\rho_B}{\rho_2} = \frac{\lambda}{2\pi\epsilon} \ln \frac{\rho_B^2}{\rho_1 \rho_2}$$

9 Feldbilder

d = Abstand zwischen zwei Äquipotentiallinien.

$$\Delta U = d \cdot E$$

b: Abstand zwischen zwei Feldlinien.

 ΔQ : Ladung auf den Elektroden.

$$\Delta Q = D \cdot \Delta A = \epsilon E \cdot \Delta A = \epsilon E bz$$

 ΔC : Teilkapazität pro Kästchen mit Seitenlängen d und b.

$$\Delta C = \frac{\Delta Q}{\Delta U} = \frac{\epsilon E b z}{dE} = \epsilon z \frac{b}{d} = const.$$

Längebezogene Kapazität:

$$\Delta C' = \frac{\Delta C}{z} = \epsilon \frac{b}{d} = const.$$

Der gesamte Feldraum kann als Reihen- und Parallelschaltung gleicher (Längen-bezogener) Teilkapazitäten $\Delta C'$ verstanden werden, für die gilt:

$$\Delta C' = \frac{\epsilon b}{d}$$

Für $\frac{b}{d} = 1$ (Quadrate) gilt:

$$\Delta C' = \epsilon \to C' = \epsilon \frac{n}{m-1}$$

mit n = Anzahl der Feldlinien und m = Zahl der Äquipotentiallinien (inc Oberfläche). Nur gültig für 2D Felder.

10 Energie im elektrischen Feld

Allgemein:

$$W_e = \int_{0}^{\infty} u(t)i(t)dt = \int_{0}^{Q_e} udQ$$

Plattenkondensator mit Abstand d:

$$W_e = \int_0^{Q_e} udQ = \int_0^{D_e} EdAdD = Ad\int_0^{D_e} EdD$$

mit Ad = V ist das vom Feld durchsetzte Volumen:

$$W_e = V \int_0^{D_e} E dD = \frac{1}{2} C U^2$$

Energiedichte:

$$w_e = \frac{W_e}{V} = \int_{0}^{D_e} E dD = \frac{1}{2} \cdot \frac{D_e^2}{\epsilon} = \frac{1}{2} DE$$

Aufzuwendende Kraft bei Vergrößerung der Kapazität:

$$F_x = -\frac{dW_e^{(Q)}}{dx} = \frac{Q^2}{2\epsilon A}$$

11 Kräfte im elektrostatischen Feld

Energieinhalt:

$$W_e = \frac{1}{2} \frac{Q^2 \cdot (d-x)}{2\epsilon A}$$

Fremdfeld einer Platte:

$$Q = \oint_{A} \vec{D} \cdot dA = D2A = \epsilon E2A$$

Kraft auf eine Kondensatorplatte:

$$F = \frac{DEA}{2} = \frac{Q^2}{2\epsilon A} = \frac{1}{2}Q \cdot E = \frac{U^2 \epsilon A}{2d^2}$$

Kraftdichte σ :

$$\sigma = \frac{1}{2}\epsilon E^2 = \frac{1}{2}DE$$

Energiedichte w_e :

$$w_e = \sigma$$

Kinetische Energie von Probeladungen im Feld:

$$W_{kin} = \frac{1}{2}mv^2 = QU$$

12 Bedingungen an Grenzflächen geschichteter Dielektrika

$$\vec{D} = \epsilon \cdot \vec{E}$$

$$D_{1normal} = D_{2normal}$$

$$E_{1tangential} = D_{2tangential}$$

12.1 Quer geschichtete Dielektrika

$$D_1 = D_2 (= D_{1normal} = D_{2normal})$$

$$\frac{E_1}{E_2} = \frac{\epsilon_{r2}}{\epsilon_{r1}}$$

$$E_2 = E_1 \frac{\epsilon_{r1}}{\epsilon_{r2}}$$

$$U = U_1 + U_2 = E_1 d_1 + E_1 d_2 \frac{\epsilon_{r1}}{\epsilon_{r2}}$$

12.2 Längs geschichtete Dielektrika

$$\frac{D_1}{D_2} = \frac{\epsilon_{r1}}{\epsilon_{r2}}$$

$$E_1 = E_2$$

12.3 Schräg geschichtetes Dielektrikum

Wie bekannt:

$$E_{1t} = E_{2t}$$

$$D_{1n} = E_{2n}$$

Winkel $\alpha = \measuredangle(\vec{E_n}, \vec{E})$:

$$\frac{\tan \alpha_1}{\tan \alpha_2} = \frac{\epsilon_{r1}}{\epsilon_{r2}}$$

Feldlininen werden beim Übergang in ein Dielektrikum mit größerer relativer Dielektrizitätszahl von der Normalen weg, also zur Grenzfläche hin gebrochen.

Teil II

Stationäres elektrisches Strömungsfeld

13 Basics

Zusammenhang zwischen Strom und Stromdichte:

$$\Delta I = \vec{J} \cdot \Delta \vec{A}$$

Betrag:

$$\rightarrow |\Delta I| = J_n \Delta A = J \Delta A \cdot \cos \alpha$$

Für eine beliebige gekrümmte Fläche gilt:

$$I = \int\limits_A \vec{J} \cdot d\vec{A}$$

Analog zu $\sum I = 0$:

$$\oint_{A} \vec{J} \cdot d\vec{A} = 0$$

Ohmsches Gesetz 14

Das Feldbild der Stromdichte in Leitern entspricht dem der Feldstärke in Dielektrika für Leitwert und Widerstand konstant:

$$\vec{E} = \rho \vec{J}$$

und

$$\vec{J} = \gamma \vec{E}$$

mit rho = spez. Widerstand und gamma = spez. Leitwert

Leistungsdichte im Strömungsfeld 15

Im homogenen Feld:

$$P = I^{2}R$$

$$\Delta P = (\Delta I)^{2} \frac{\Delta l}{\gamma \Delta A} = J^{2} \frac{\Delta l \Delta A}{\gamma}$$

$$p = \frac{\Delta P}{\Delta V} = \frac{J^{2}}{\gamma} = EJ = \gamma E^{2}$$

16 Relaxationszeitkonstante

Zeitkonstante τ :

$$\tau = RC = \frac{epsilon}{\gamma}$$

$$u = U_0 e^{\frac{-t}{\tau}}$$

Entscheidung ob ein langsam veränderliches Feld als Strömungsfeld oder elektro(quasi)statisches Feld zu behandeln ist:

elektro(quasi)statisch:

$$\frac{T}{4} << \tau$$

 $T_a \ll \tau$

Strömungsfeld:

$$\frac{T}{4} >> \tau$$

 $T_a >> \tau$

mit T= Periodendauer periodischer Größen und $T_a=$ Anstiegszeit transienter Größen.

17 Berechnung von Widerständen

17.1 Methode 1: Allgemeingültige Methode

$$R = \frac{U}{I} = \frac{\int\limits_{a}^{b} \vec{E} d\vec{s}}{\int\limits_{A}^{d} \vec{J} d\vec{A}} = \frac{\int\limits_{a}^{b} \vec{E} d\vec{s}}{\gamma \int\limits_{A}^{d} \vec{E} d\vec{A}}$$

Bei Kenntnis der Potentialfunktion:

$$R = \frac{U}{I} = \frac{\varphi_+ - \varphi_-}{I}$$

17.2 Methode 2: Alternative für homogene Strömungen

über dR oder dG integrieren, z.B koaxiale Zylinderanordnung:

$$R = \int_{\rho_1}^{\rho_2} dR = \int_{\rho_1}^{\rho_2} \frac{d\rho}{\gamma 2\pi \rho l_{Zyl}} = \frac{1}{\gamma 2\pi l_{Zyl}} \cdot ln \frac{\rho_2}{\rho_1}$$

oder stromdurchflossener Bügel (b = Breite):

$$dG = \frac{\gamma A}{l} = \frac{\gamma b d\rho}{\pi \rho}$$

$$G = \int_{\rho_1}^{\rho_2} dG = \int_{\rho_1}^{\rho_2} \frac{\gamma b \cdot d\rho}{\pi \rho} = \frac{\gamma b}{\pi} ln \frac{\rho_2}{\rho_1}$$

17.3 Methode 3: Durch τ (bei bekannter Kapazität)

$$\tau = RC = \frac{\epsilon}{\gamma} \to R = \frac{\epsilon}{\gamma C}$$

18 Bedingungen an Grenzflächen

18.1 Quer geschichtete Leiter

 \vec{E} und \vec{J} weisen nur Tangentialkomponenten auf.

$$\frac{E_1}{E_2} = \frac{\gamma_1}{\gamma_2}$$

$$E_2 = E_1 \frac{\gamma_1}{\gamma_2}$$

$$U = U_1 + U_2 = E_1 d_1 + E_2 d_2 = E_1 d_1 + E_1 d_2 \frac{\gamma_1}{\gamma_2}$$

18.2 Schräg geschichtete Leiter

 \vec{E} und \vec{J} schneiden die Grenzflächen schräg.

$$J_{xn} = \gamma_x E_{xn}$$

$$E_{1t} = E_{1t}$$

$$J_{1n} = J_{2n}$$

Winkel $\alpha = \measuredangle(\vec{E_n}, \vec{E})$:

$$\frac{\tan \alpha_1}{\tan \alpha_2} = \frac{\gamma_1}{\gamma_2}$$

D.h. Feld- und Strömungslinien werden beim Übergang in einen Leiter mit größerer Leitfähigkeit von der Normalen weg zur Grenzfläche hin gebrochen.

18.3 Verschiebungsdichte

Grundsätzlich:

$$J_{1n} = J_{2n}$$

$$\gamma_1 \frac{D_{1n}}{\epsilon_1} = \gamma_2 \frac{D_{2n}}{\epsilon_2}$$

Bedingung für $D_{1n} = D_{2n}$:

$$\frac{\epsilon_1}{\epsilon_2} = \frac{\gamma_1}{\gamma_2}$$

Falls $D_{1n} \neq D_{2n}$ Ausbildung einer Flächenladung:

$$D_{2n} - D_{1n} = \sigma$$