PCF8574T I²C 并行口扩展电路

1. 特性

- 操作电压 2.5~6.0V
- 低备用电流(≤10 µ A)
- I²C 并行口扩展电路
- 开漏中断输出
- I²C 总线 实现 8 位远程 I/O 口
- 与大多数 MCU 兼容
- 口输出锁存,具有大电流驱动能力,可直接驱动 LED
- 通过 3 个硬件地址引脚可寻址 8 个器件(PCF8574A 可多达 16 个)
- DIP16, SO16 或 SSOP20 形式封装

2. 概述

PCF8574 是 CMOS 电路。它通过两条双向总线(I^2 C)可使大多数 MCU 实现远程 I/O 口扩展。该器件包含一个 8 位准双向口和一个 I^2 C 总线接口。PCF8574 电流消耗很低,且口输出锁存具有大电流驱动能力,可直接驱动 LED。它还带有一条中断接线(INT)可与 MCU 的中断逻辑相连。通过 INT 发送中断信号,远端 I/O 口不必经过 I^2 C 总线通信就可通知 MCU 是否有数据从端口输入。这意味着 PCF8574可以作为一个单被控器。

PCF8574 和 PCF8574A 的唯一区别仅在于器件地址不相同。

3. 订单信息

型号		封装
至与	名称	描述
PCF8574T	S016	塑料小型表面封装
PCF8574AT	3010	至件小至衣曲封表

4. 功能框图

5. 管脚描述

标号	管脚	描述				
かっ	S016	1曲 左				
A0	1	地址输入 0				
A1	2	地址输入1				
A2	3	地址输入2				
P0	4	准双向 I/O 口 0				
P1	5	准双向 I/O 口 1				
P2	6	准双向 I/O 口 2				
P3	7	准双向 I/O 口 3				
V_{SS}	8	地				
P4	9	准双向 I/O 口 4				
P5	10	准双向 I/O 口 5				
P6	11	准双向 I/O 口 6				
P7	12	准双向 I/O 口 7				
INT	13	中断输入(低电平有效)				
SCL	14	串行时钟线				
SDA	15	串行数据线				
V_{DD}	16	电源				

管脚配置(S016)

6. I²C 总线特性

 I^2C 总线用于不同的 IC 或模块之间的双线通信。两条线其中之一为串行数据线(SDA),另一条为串行时钟线(SCL)。当与器件的输出级相连时,这两条线都必须接上拉电阻。数据的传送只有在总线空闲时才能进行。

位传送

在每个时钟脉冲出现时,总线传送一个数据位。在时钟信号高电平期间,SDA线上的数据位应保持稳定,如果此时改变SDA线数据则被认为是总线的控制信号(见图1)。

起始和停止信号

当总线空闲时,数据和时钟线保持高电平。SCL 线为高电平时,SDA 线电平由高至低的变化定义为总线的起始信号(S); SCL 线为高电平时,SDA 线电平由低至高的变化定义为总线的停止信号(S)(见图 2)。

系统配置

产生信息的器件称为'发送器',接收信息的器件称为'接收器'。控制信息的器件称为'主控器', 而由主控器控制的器件称为'被控器'(见图 3)。

应答

在起动和停止信号之间所传送的数据数量不受限制。每个 8 位字节之后跟随一个应答位。应答位的时钟脉冲由主控器产生。被控接收器在接收到每一个字节数据之后必须发送一个应答信号;而主控器在接收到被控发送器发送的数据后,也必须发送一个应答信号。在出现与应答位对应的时钟脉冲时,产生应答位的器件将拉低 SDA 线,这样在应答位对应的时钟脉冲高电平期间,SDA 保持低电平状态。建立和保持时间必须纳入考虑。

当主控器作为接收器时,它必须在被控器发送完最后一个字节数据后产生非应答信号,此时发送器必须将数据线释放为高电平,以使主控器能够产生一个停止信号。

图 4 1²C 总线上的应答

7. 功能描述

图 5 1/0 口的简化结构图

寻址

PCF8574 的每个 I/O 口都可单独用作输入或输出。输入通过读模式将数据传送到 MCU (见图 8),输出通过写模式将数据发送到端口(见图 7)。

- (a) PCF8574.
- (b) PCF8574A.

图 6 PCF8574 和 PCF8574A 的从地址

图 7 写模式 (输出)

图 8 读模式 (输入)

中断(见图9,10)

PCF8574 提供一个可以连接到 MCU 对应输入端的开漏输出口 (INT)。这样可使 PCF8574 能够启动系统中另外一处的动作。在输入模式中,口输入信号的上升或下降沿产生中断。在时间 t_{iv} 之后 INT 有效。

当口数据变为初始值或产生中断端口的数据写入/读出时,中断电路复位并重新激活。在下列条件下发生复位:

- 读模式中,SCL 信号上升沿之后的应答位
- 写模式中,SCL 信号从高到低的跳变之后的应答位
- 应答时钟脉冲期间的中断复位可能会导致中断的丢失

中断复位后 I/O 口的每个变化都会被检测,并在下一个时钟上升沿作为 INT 发送。对另一个器件的读写不影响中断电路。

图 10 I/0 口 P5 的输入变化产生中断

准双向 I/0 口(见图 11)

准双向 I/0 口可用作输入和输出而不需要通过控制寄存器定义数据的方向。上电时 I/0 口为高电平。该模式中只有 V_{DD} 提供的电流有效。在大负载输出时提供额外的强上拉以使电平迅速上升。当输出写为高电平时打开强上拉,在 SCL 的下降沿关闭。I/0 口用作输入之前应当为高电平。

图 11 P3 从低变为高再变为低时的瞬时上拉电流

极限参数

标号	参数	最小值	最大值	单位
V_{DD}	电源电压	-0.5	+7.0	V
V _I	输入电压	V_{SS} -0.5	V _{DD} +0.5	V
I_{I}	DC 输入电流	-	±20	mA
I_{O}	DC 输出电流	-	±25	mA
I_{DD}	电源电流	_	±100	mA
I_{SS}	电源电流	_	±100	mA
P _{tot}	总功率损耗	-	400	mW
Po	每个输出的功率损耗	_	100	mW
T_{stg}	储存温度	-60	150	$^{\circ}$
T _{amb}	工作环境温度	-40	+85	$^{\circ}$ C

DC 电气特性

 V_{DD} =2.5~6.0V; V_{SS} =0V; T_{amb} = -40~85°C

标号	参数	条件	最小值	典型值	最大值	单位
电源						•
V_{DD}	电源电压		2.5		6.0	V
I_{DD}	电源电流	工作模式; V _{DD} =6V;	_	40	100	∞A
		无负载; V _I = V _{DD} 或 V _{SS}				
		f _{SCL} =100KHz				
I_{stb}	备用电流	备用模式; V _{DD} =6V;	_	2.5	10	∞A
		无负载; V _I = V _{DD} 或 V _{SS}				
V_{POR}	上电复位电压	V _{DD} =6V;无负载;	_	1.3	2.4	V
		V _I =V _{DD} 或V _{SS} ;注1				
输入 SCL	;输入/输出 SDA					
$V_{\rm IL}$	低电平输入电压		-0.5		$+0.3~V_{DD}$	V
V_{IH}	高电平输入电压		$0.7 V_{DD}$	_	V _{DD} +0.5	V
I_{OL}	低电平输出电流	$V_{OL}=0.4V$	3		_	mA
I_L	漏电流	$V_{ m I}$ = $V_{ m DD}$ 或 $V_{ m SS}$	-1	_	+1	∞A
C_{i}	输入电容	$V_{I}=V_{SS}$	_	_	7	pF
1/0 □						•
V _{IL}	低电平输入电压		-0.5	_	$+0.3V_{DD}$	V
V_{IH}	高电平输入电压		$0.7 \mathrm{V_{DD}}$	_	V _{DD} +0.5	V
I_{IHL}	通过保护二极管的最	V_I \geqslant V_{DD} 或 V_I \leqslant V_{SS}	_	_	±400	∞A
	大允许电流					
I_{OL}	低电平输出电流	$V_{OL}=1V; V_{DD}=5V$	10	25	_	mA

标号	参数	条件	最小值	典型值	最大值	单位			
I_{OH}	高电平输出电流	$V_{OH}=V_{SS}$	30	_	300	∞A			
I_{OHt}	瞬时上拉电流	应答时高电平(见图 13)	_	-1	_	mA			
		$V_{OH}=V_{SS}$; $V_{DD}=2.5V$							
C_{i}	输入电容		_	_	10	pF			
Co	输出电容		_	_	10	pF			
端口时序	キ; C⊾≤100pF(见图 9,1	0)							
t _{pv}	输出数据有效时间		_	_	4	∞s			
t_{su}	输入数据建立时间		0	_	_	∞s			
t_h	输入数据保持时间		4	_	_	∞s			
中断 INT	(见图 12)								
I_{OL}	低电平输出电流	$V_{OL}=0.4V$	1.6	_	_	mA			
I_L	漏电流	$V_{ m I}$ = $V_{ m DD}$ 或 $V_{ m SS}$	-1	_	+1	∞A			
时序; C	≤100pF								
t_{iv}	输入数据有效时间		_	_	4	∞s			
t _{ir}	复位延迟时间		_	_	4	∞s			
选择输入 AO~A2									
$V_{\rm IL}$	低电平输入电压		-0.5	_	$+0.3V_{DD}$	V			
V _{IH}	高电平输入电压		$0.7 \mathrm{V_{DD}}$	_	V _{DD} +0.5	V			
I_{LI}	输入漏电流	V _{DD} 或 V _{DD} 脚	-250	_	+250	nA			

注 1: 上电复位电路复位 I²C 总线逻辑,并将所有 I/O 口都置位为 1。

12C 总线时序特性

标号	参数	最小值	典型值	最大值	单位
I ² C 总线时	才 序(见图 12;)				
f_{SCL}	SCL 时钟频率	_	_	100	kHz
t_{SW}	总线容许的尖峰信号宽度		_	100	ns
$t_{ m BUF}$	总线空闲时间	4. 7	_	_	∞s
t _{SU;STA}	起始信号的建立时间	4. 7	_	_	∞s
t _{HD;STA}	起始信号的保持时间	4. 0	_	_	∞s
t_{LOW}	SCL 低电平时间	4. 7	_	_	∞s
t _{HIGH}	SCL 高电平时间	4. 0	_	_	∞s
t_r	SCL 和 SDA 上升时间	_	_	1.0	∞s
$t_{\rm f}$	SCL 和 SDA 下降时间	_	_	0.3	∞s
$t_{SU;DAT}$	数据建立时间	250	_	_	∞s
$t_{HD;DAT}$	数据保持时间	0	_	_	∞s
$t_{\mathrm{VD;DAT}}$	SCL 低电平到数据输出有效	_	_	3. 4	∞s
$t_{\rm SU;STO}$	停止信号建立时间	4. 0		_	∞s

PROTOCOL	START CONDITION (S)	BIT 7 MSB (A7)	BIT 6 (A6)	BIT 0 LS <u>B</u> (R/W)	ACKNOWLEDGE (A)	STOP CONDITION (P)	
----------	---------------------------	----------------------	---------------	-------------------------------	--------------------	--------------------------	--

图 12 I²C 总线时序

S016: 塑料小型表面封装; 16 脚; 本体宽 7.5mm

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	Α3	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	2.65	0.30 0.10	2.45 2.25	0.25	0.49 0.36	0.32 0.23	10.5 10.1	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.10	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.41 0.40	0.30 0.29	0.050	0.419 0.394	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	0°

Note

^{1.} Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT162-1	075E03	MS-013AA			95-01-24 97-05-22