Data Mining II: Advanced Methods and Techniques

Lecture 5

Natasha Balac, Ph.D.

Today

- Bayesian Learning
- HMM
- SVM

Bayesian Decision Theory

Bayesian Decision Theory

- Originally developed by Thomas Bayes in 1763
- The general idea is that the likelihood of a future event occurring is based on the past probability that it occurred
- A simplified Bayes Theorem simply tells us that in the absence of other evidence
 - the likelihood of an event is equal to its past likelihood

Bayesian Belief Networks

- Consists of nodes labeled by their discrete states
- The links between nodes represent conditional probabilities
- Links are directional
 - when A points at B, A is said to influence B

Bayesian Belief Network Example

- Over-simplified network
 - how lung cancer is influenced by other states
 - and how the presence of particular symptoms might be influenced by lung cancer © Copyright 2003, Natasha Balac

Bayesian Belief Networks Example

A human expert might provide matrices of all the probabilities in the network

P(cancer|smoking):

	cancer	healthy
Never	0.001	0.999
former	0.005	0.995
heavy	0.06	0.94
light	0.04	0.96

...and so forth for the 4 other nodes

• If we have complete matrices for belief network we can make predictions for any state in the network given a set of input variables

Bayesian Belief Networks Example

We could now answer questions such as:

- What is the likelihood a person will have lung cancer given that they are a heavy smoker and have been exposed to asbestos?
- A person has severe coughing, chest pain and is a smoker. What is the likelihood of a cancer diagnosis?
- What is the likelihood of past asbestos exposure given that a person has been diagnosed with cancer?

Bayesian Belief Networks

The probability of a particular state is the product of the probabilities of all the states, given their prior states

$$p(\omega_k \mid \mathbf{x}) \propto \prod_{i=1}^d p(x_i \mid \omega_k)$$

Markov Chain

• A Markov chain is a type of belief network where you have a sequence of states $(x_1, x_2 ... x_i)$ where the probability of each state is dependent only on the previous state

$$P(x_1,x_2,...x_i,x_{i+1})$$

$$=P(x_{i+1}|x_1,x_2,...x_i)P(x_1,x_2,...x_i)$$

Hidden Markov Models

- In a Hidden Markov Model (HMM) the a Markov Chain is expanded to include the idea of hidden states
- Given a set of observations $x_1, x_2...x_n$ and a set of hidden underlying states $s_1, s_2...s_n$, there is now a *transition probability* for moving between the hidden states:

 $a_{kl} = P(s_i = l \mid s_{i-1} = k)$

...where I and k are the states at positions I and i-1

Emission Probabilities

- At each state, there is a probability of "emitting" a particular observation
- •We define this as

$$e_{kb} = P(x_i = b \mid s_i = k)$$

...where e is the probability that the state k at position i emits observation b

and s_i is the state at position i and x_i is the observation at that point

Probability of a Path

The probability of an individual path through a sequence of hidden states in terms of Bayes theorem

$$P(x,s) = a_{0s_1} \prod_{i} e_{s_i x_i} a_{s_i s_{i+1}}$$

Probability that we observe the sequence of visible states is equal to the product of the conditional probability that the system has made a particular transition multiplied by the probability that it emitted the observation in our target sequence

HIDDEN MARKOV MODELS (HMM)

- First order discrete HMM: stochastic generative mode for time series
 - \blacksquare S: set of states
 - \blacksquare A: discrete alphabet of symbols
 - \blacksquare T: probability transition matrix
 - \blacksquare *E* : probability emission matrix
 - First order assumption: The emission and transition depend on the current state only, not on the entire previous states
- Meaning of "Hidden"
 - Only emitted symbols are observable
 - Random walk between states are hidden

HMM EXAMPLE

HMMs FOR BIOLOGICAL SEQUENCES

- Most common use
 - To model sequence families

Standard HMM architecture

- start, e<u>nd</u>
- main states
- insert states
- delete states
- N: length of model, typically average length of the sequences in the family

THE STANDARD HMM ARCHITECTURE

3 HMM QUESTIONS

- Likelihood question:
 - How likely is this sequence for this HMM?
- Decoding question:
 - What is the most probable sequence of transitions and emissions through the HMM underlying the production of this particular sequence?
- Learning question:

18

How should their values be revised in light of the observed sequence?
© Copyright 2003, Natasha Balac

APPLICATION OF HMMs

- For any given sequence
 - The computation of its probability according to the model as well as its most likely associated path
 - Analysis of the model structure
- Applications
 - Multiple alignments
 - Database mining and classification of sequence and fragments
 - Structural analysis and pattern discovery

HMM Example

3 Urns 2

3 Colors of Marbles

$$\Pi = \begin{bmatrix} 0.3 & 0.2 & 0.5 \end{bmatrix}$$

$$A = \begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$$

Prob of starting at Urn 1 is 30%

Prob of staying at Urn 1 is 40% Prob of trans from Urn 1 to Urn 2 is 30% Prob of trans from Urn 1 to Urn 3 is 30%

Each urn contains a mix of red, blue, and green marbles

$$B = \begin{bmatrix} 0.2 & 0.8 & 0.0 \\ 0.4 & 0.4 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

20% of marbles in Urn 1 are red 80% of marbles in Urn 1 are blue No green marbles in Urn 1

Possible sequence of observations

Given a set of observations (marbles), we don't know the state sequence (sequence of urns), that produced the observations.

Support Vector Machines (SVM)

Support Vector Machines (SVM)

- Blend of linear modeling and instance based learning
- SVM select a small number of critical boundary instances called support vectors from each class and build a linear discriminant function that separates them as widely as possible
- They transcend the limitations of linear boundaries by making it practical to include extra nonlinear terms in the calculations
 - making it possible to form quadratic, cubic, higher-order decision boundaries

Support vector machines

- Algorithms for learning linear classifiers
- Resilient to overfitting because they learn a particular linear decision boundary
 - The maximum margin hyperplane
- They are fast in the nonlinear case
 - Employ a clever mathematical trick to avoid the creation of "pseudo-attributes"
 - Nonlinear space is created implicitly

The maximum margin hyperplane

Support vectors

- The instances closest to the maximum margin hyperplane are called support vectors
- Important observation: the support vectors define the maximum margin hyperplane!
 - All other instances can be deleted without changing the position and orientation of the hyperplane
- Hyperplane $x = w_0 + w_1a_1 + w_2a_2$ can be written as

$$x = b + \sum_{i \text{ is supp. vector}} \alpha_i y_i \mathbf{a}(i) \bullet \mathbf{a}$$

Finding support vectors

- Support vector: training instance for which $\alpha_i > 0$
- Determining α_i and b all and is a constrained quadratic optimization problem
 - There are off-the-shelf tools for solving these problems
 - Some special-purpose algorithms are faster
 - Example: Platt's sequential minimal optimization algorithm (implemented in WEKA)
- So far we assumed linearly separable data

Nonlinear SVMs

- Same trick can be applied
 - "pseudo attributes" representing attribute combinations
- Overfitting is unlikely to occur because maximum margin hyperplane is stable
 - There are usually few support vectors relative to the size of the training set
- Computation time still a problem
 - Every time an instance is classified it's dot product with all support vectors must be calculated

Kernel trick

- Avoid computing the "pseudo attributes"
- We can compute the dot product before the nonlinear mapping is performed
- Example: instead of computing

$$x = b + \sum_{i \text{ is supp. vector}} \alpha_i y_i \mathbf{a}(i) \bullet \mathbf{a}$$

we can compute

$$x = b + \sum_{i \text{ is supp. vector}} \alpha_i y_i (\mathbf{a}(i) \bullet \mathbf{a})^n$$

 This corresponds to a map into the instance space spanned by all products of n attributes

Noise

- So far we have assumed that the data is separable (in original or transformed space)
- SVMs can be applied to noisy data by introducing a "noise" parameter C
- C bounds the influence of any one training instance on the decision boundary
- Corresponding constraint: $0 \le \alpha_i \le C$
- Still a quadratic optimization problem C has to be found by experimentation

Sparse data

- SVM algorithms can be sped up dramatically if the data is sparse (many values are 0)
- Why? Because they compute lots and lots of dot products
- With sparse data dot products can be computed very efficiently
 - We just need to iterate over the values that are non-zero
- SVMs can process sparse data sets with tens of thousands of attributes

Applications

- Machine vision: face identification
 - Outperforms alternative approaches (1.5% error)
- Handwritten digit recognition: USPS data
 - Comparable to best alternative (0.8% error)
- Bioinformatics: prediction of protein secondary structure
- Text classification
- Algorithm can be modified to deal with numeric prediction problems

Differences between MLP and SVM

- In MLPs complexity is controlled by keeping number of hidden nodes small
- In SVM complexity is controlled independently of dimensionality
- The mapping means that the decision surface is constructed in a very high (often infinite) dimensional space
- Curse of dimensionality (makes finding the optimal weights difficult) is avoided by using the notion of an inner product kernel and optimizing the weights in the

SVM Strengths

- Complexity/capacity is independent of dimensionality of the data thus avoiding curse of dimensionality
- Statistically motivated
 - Can get bounds on the error
- Finding the weights is a quadratic programming problem
 - guaranteed to find a minimum of the error surface
 - Thus the algorithm is efficient and SVMs generate near optimal classification and are insensitive to overtraining
- Obtain good generalization performance due to high
 36 Jimension of feature space

SVM Strengths

- SVMs are a superclass of network containing both MLPs and RBFNs
 - both can be generated using the SV algorithm
- By using a suitable kernel SVM automatically computes all network parameters for that kernel
- Example:
 - RBF SVM: automatically selects the number and position of hidden nodes (and weights and bias)

Weaknesses

- Slow training (compared to RBFNs/MLPs)
 computationally intensive solution especially for large amounts of training data => need special algorithms
- Generates complex solutions
 - normally > 60% of training points are used as support vectors - especially for large amounts of training data
- Example (from Haykin's paper) increase in performance of 1.5% over MLP
 - MLP used 2 hidden nodes and SVM used 285
- ■3Difficult to incorporate prior knowledge

Summary

- The SVM was proposed by Vapnik and colleagues in the 70's but has only recently become popular early 90's
- It (and other kernel techniques) is currently a very active (and trendy) topic of research
 More information:

http://www.kernel-machines.org

book:

AN INTRODUCTION TO SUPPORT VECTOR
MACHINES (and other kernel-based learning
methods). N. Cristianini and J. Shawe-Taylor, Cambridge
University Press. 2000. ISBN: 0 521 78019 5

LAB Time!!

■ Lab #3

Large $\sigma = 1$

Difference in Activations between Linear and Gaussian Nets

Small $\sigma = 0.2$

Food Recognition Neural Network

Support Vector Machines (SVMs)

- Transform the data with a non-linear mapping f so that it is linearly separable
- 2. Cover's theorem: non-linearly separable data can be transformed into a new feature space which is linearly separable if
 - 1. mapping is non-linear
 - 2. dimensionality of feature space is high enough
- 3. Construct the 'optimal' hyperplane (linear weighted sum of outputs of first layer) which maximizes the degree of separation (the *margin of separation -* r) between the 2

⁴¹classe

© Copyright 2003, Natasha Balac

Minimizing Error

- MLPs and RBFN stop training when all points are classified correctly
- Decision surfaces are not optimized in the sense that the 42generalization error is not minimised

First layer

First layer: mapping performed from the input space into a feature space of higher dimension where the data is now linearly separable using a set of m₁ non-linear functions (RBFNs)

43

After learning

- 1. RBFN /MLP decision surfaces might not be at optimal position
 - 1. Example, as shown in the figure, both learning rules will not perform further iterations (learning) since the error criterion is satisfied
- 2. In contrast the SVM algorithm generates the optimal decision boundary (the dotted line) by maximizing the distance between the classes r
 - which is specified by the distance between the decision boundary and the nearest data points
- 3. Points which lie exactly r/2 away from the decision boundary are known as *Support Vectors*
 - 1. Most important points since moving them moves the decision boundary

Decision Boundary

The algorithm to generate the weights proceeds in such a way that **only** the support vectors determine the weights and thus the boundary 45

Output of the SVM

- Output of the SVM can also be interpreted as a weighted sum of the inner (dot) products of the
 - images of the input x
 - and the support vectors x_i in the feature space
- which is computed by an inner product kernel function $K(\underline{x},\underline{x}_m)$

Output of the SVM

Where: $\underline{\phi}^{T}(\underline{x}) = [\phi_{1}(\underline{x}), \phi_{2}(\underline{x}), ..., \phi_{m1}(\underline{x})]^{T}$ I.e. image of x in feature space and $d_{i} = +/-1$ depending on the class of \underline{x}_{i}