Stock Price Prediction Analytics System

Jie Heng (018321914) Savitha Vijayarangan (018315986)

Abstract

This project builds a stock price prediction system using Yahoo Finance data. Historical prices for NVIDIA and Apple are stored in Snowflake and forecasted with machine learning for the next 7 days, automated via Airflow for daily updates.

Keywords

Stock Price Prediction, Yahoo Finance, Snowflake, ML Forecasting, Airflow, Data Pipeline.

I. Problem Statement

This project builds a stock price prediction system using Yahoo Finance API [1] data. Historical prices of NVIDIA and Apple are stored in Snowflake and analyzed with machine learning models to forecast the next 7 days, enabling automated financial analytics for informed investment decisions. A reliable database ensures consistent storage of historical data for accurate predictions, while automated data pipelines streamline daily ETL and forecasting, maintaining up-to-date data for analysis. The system stores historical stock data in Snowflake and uses Airflow to automate daily ETL and forecasting. This ensures up-to-date data, accurate predictions, and real-time trend analysis, providing investors and analysts with reliable insights for informed decision-making.

II. Requirements

Collect historical stock prices (180 days) for NVDA and AAPL. Store data into a Snowflake table with proper schema. Run a daily ETL pipeline to refresh stock prices. Apply ML forecasting to predict the next 7 days of stock prices for both companies. Store predicted prices into a dedicated table [2]. Forecast accuracy needs clean, complete data. It predicts only 7 days, limiting long-term use. Using the same model for all stocks may miss industry patterns, and reliance on Snowflake ML limits advanced model flexibility. Analysts can view trends and predictions, while investors assess future prices with indicators. The system supports adding more stocks with minor code and table changes.

III. Functional Analysis

Overall Architecture

Figure 1: Overall Architecture

Data Pipeline The proposed system consists of two main data pipelines, implemented as Airflow DAGs: ETL Pipeline: Fetches and loads historical stock data into Snowflake daily. Forecasting Pipeline: Trains a prediction model (e.g., ARIMA) and inserts the predicted stock prices into Snowflake.

Figure 2: Airflow DAGS

Functional Components

Use functions and tasks to solve the problem [3] [4].

Table 1: Function - return_snowflake_conn()

Name Extract NA Parameters

Return List of dictionaries (records) where each dictionary represents a stock record

Purpose Extracting stock data from Yahoo Finance API for NVDA and AAPL (last 180 days)

Table 2: Task - extract

Name return_snowflake_conn

Parameters None

Snowflake cursor object Return

Establishes a connection to Snowflake via Airflow's SnowflakeHook Purpose

Name transform **Parameters** extracted data

Return Dictionary with keys "symbol" and "records" Purpose Transform extracted stock data for consistency

Table 3: Task - transform

Name load

Parameters transformed_data, target_table

Return

Purpose Load the transformed stock data into Snowflake

Table 4: Task - load

Name get_snowflake_cursor

None **Parameters**

Return Snowflake cursor object

Purpose Gets a new Snowflake connection cursor using Airflow SnowflakeHook

Table 5: Function - get_snowflake_cursor()

Name train

Parameters train_input_table (str), train_view (str), forecast_function_name (str)

Return None

Create a view from the input data and to set up a Snowflake machine learning forecast function Purpose

for stock price predictions.

Table 6: Task - train

Name predict

forecast_function_name (str), train_input_table (str), forecast_table (str), final_table (str) **Parameters**

Return

Uses the trained forecast function to generate predictions and merges historical data with predictions Purpose

into a final table

Table 7:Task - predict

IV. Table Structure

$MYLABDATABASE.RAW.STOCK_DATA$

Field Name SYMBOL	Data Type VARCHAR	Attributes Not null	Constraints Primary Key with DATE	Description NVDA, AAPL
DATE	DATE	Not null	Primary Key with SYMBOL	Trading date
OPEN	FLOAT			Opening price
CLOSE	FLOAT			Closing price
LOW	FLOAT			Lowest price
HIGH	FLOAT			Highest price

MYLABDATABASE.ADHOC.STOCK_DATA_VIEW

Field Name	Data Type	Attributes	Constraints	Description
DATE	DATE	Not null	Primary Key,	Trading date
			Foreign Key	
CLOSE	FLOAT / NUMBER		Foreign Key	Stock closing price
SYMBOL	VARCHAR	Not null	Primary Key,	NVDA, AAPL
			Foreign Key	

$MYLABDATABASE.ADHOC.STOCK_DATA_FORECAST$

Field Name	Data Type	Attributes	Constraints	Description
SERIES	VARCHAR	Not null	Primary Key, Foreign Key	Stock symbol
TS	FLOAT	Not null	Primary Key	Forecasted date
FORECAST	FLOAT			Predicted closing price
LOWER_BOUND	FLOAT			Lower bound of the confidence interval
UPPER_BOUND	FLOAT			Upper bound of the confidence interval

$MYLABDATABASE.ANALYTICS.MARKET_DATA$

Field Name SYMBOL	Data Type VARCHAR	Attributes Not null	Constraints Primary Key with DATE, Foreign Key	Description NVDA, AAPL
DATE	DATE	Not null	Primary Key with SYMBOL, Foreign Key	Trading date or Forecasted date
ACTUAL	FLOAT			Actual closing price (present for historical data, NULL for predictions)
FORECAST	FLOAT		Foreign Key	Forecasted closing price (NULL for historical data, present for predictions)
LOWER_BOUND	FLOAT		Foreign Key	Lower bound of the confidence interval
UPPER_BOUND	FLOAT		Foreign Key	Upper bound of the confidence interval

V. Implementation (Python Codes & SQL Queries)

Refer to github url:

data226/lab1_etl.py at main · SunnyJaneH/data226

data226/lab1 trainpredict.py at main · SunnyJaneH/data226

Airflow UI Screenshots

Figure 3: Variables

Figure 4: Connection

Figure: Airflow UI Screenshots

Figure 5: ETL Pipeline

Figure 6: Forecasting Pipeline

SQL Query

Refer to code.

VI. Results & Findings

Figure 7: Output in Snowflake

The predicted price for AAPL remains relatively stable, hovering around \$235.7 to \$235.8. The lower bound of the confidence interval gradually decreases from \$227.78 to \$218.75, indicating potential downside risk. NVDA's predicted price shows a gradual decline from \$131.98 on March 5 to \$122.63 on March 13. The lower bound drops significantly from \$124.44 to \$103.02, showing increasing downside risk.

References

- [1] yahoo, "yfinance 0.2.54", https://pypi.org/project/yfinance/
- [2] K. Han, "Data226 Building a Stock Price Prediction Analytics using Snowflake & Airflow", 2025
- [3] K, Han, "country capital to snowflakse v2.py", 2025
- [4] K, Han, "sjsu-data226-SP25/week6/train_predict.py",2025