Digital Signatures

A digital signature is a mathematical technique used to validate the authenticity and integrity of a message, software or digital document. As the digital equivalent of a handwritten signature or stamped seal, a digital signature offers far more inherent security, and it is intended to solve the problem of tampering and impersonation in digital communications.

Digital signatures can provide the added assurances of evidence of origin, identity and status of an electronic document, transaction or message and can acknowledge informed consent by the signer.

In many countries, including the United States, digital signatures are considered legally binding in the same way as traditional document signatures.

Digital signatures are the public-key primitives of message authentication. In the physical world, it is common to use handwritten signatures on handwritten or typed messages. They are used to bind signatory to the message.

Similarly, a digital signature is a technique that binds a person/entity to the digital data. This binding can be independently verified by receiver as well as any third party.

Digital signature is a cryptographic value that is calculated from the data and a secret key known only by the signer.

In real world, the receiver of message needs assurance that the message belongs to the sender and he should not be able to repudiate the origination of that message. This requirement is very crucial in business applications, since likelihood of a dispute over exchanged data is very high.

Importance of Digital Signature

Out of all cryptographic primitives, the digital signature using public key cryptography is considered as very important and useful tool to achieve information security.

Apart from ability to provide non-repudiation of message, the digital signature also provides message authentication and data integrity. Let us briefly see how this is achieved by the digital signature –

- **Message authentication** When the verifier validates the digital signature using public key of a sender, he is assured that signature has been created only by sender who possess the corresponding secret private key and no one else.
- **Data Integrity** In case an attacker has access to the data and modifies it, the digital signature verification at receiver end fails. The hash of modified data and the output provided by the verification algorithm will not match. Hence, receiver can safely deny the message assuming that data integrity has been breached.
- **Non-repudiation** Since it is assumed that only the signer has the knowledge of the signature key, he can only create unique signature on a given data. Thus the receiver can present data and the digital signature to a third party as evidence if any dispute arises in the future.

By adding public-key encryption to digital signature scheme, we can create a cryptosystem that can provide the four essential elements of security namely – Privacy, Authentication, Integrity, and Non-repudiation.

The steps followed in creating digital signature are:

- 1. Message digest is computed by applying hash function on the message and then message digest is encrypted using private key of sender to form the digital signature. (Digital signature = encryption (private key of sender, message digest) and message digest = message digest algorithm (message).
- 2. Digital signature is then transmitted with the message.(message + digital signature is transmitted)

- 3. Receiver decrypts the digital signature using the public key of sender. (This assures authenticity, as only sender has his private key so only sender can encrypt using his private key which can thus be decrypted by sender's public key).
- 4. The receiver now has the message digest.
- 5. The receiver can compute the message digest from the message (actual message is sent with the digital signature).
- 6. The message digests computed by receiver and the message digest (got by decryption on digital signature) need to be same for ensuring integrity.

Message digest is computed using one-way hash function, i.e. a hash function in which computation of hash value of a message is easy but computation of the message from hash value of the message is very difficult.