07-08-3 期 末 高 数 B 参 考 答 案 及 评 分 标 准 (A) 08. 6. 20

- 一. 填空题(本题共9小题,每小题4分,满分36分)
- 1. 幂级数 $\sum_{n=3^n}^{\infty} \frac{(x-3)^n}{n \cdot 3^n}$ 的收敛域为 [0,6);
- **2**. 设 $z = y^2 + f(x^2 y^2)$, 其中 f(u) 可微, 则 $y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = \underline{2xy}$;
- **3.** 曲线 $\begin{cases} x + y + z = 4 \\ z = x^2 + y^2 \end{cases}$ 在点 (1,1,2) 处的法平面方程是 x y = 0;
- 4. 设 C 为曲线 $\begin{cases} x^2 + y^2 + z^2 = 4z \\ z = 1 \end{cases}$,则曲线积分 $\oint_C (x^2 + y^2 + z^2) ds = 8\sqrt{3}\pi$;

 5. 交换二次积分的次序 $\int_0^2 dx \int_{-\sqrt{2x-x^2}}^{\sqrt{2x}} f(x,y) dy = \int_{-1}^0 dy \int_{1-\sqrt{1-y^2}}^{1+\sqrt{1-y^2}} f(x,y) dx + \int_0^2 dy \int_{\frac{y^2}{2}}^{2} f(x,y) dx$;

 6. 三次积分 $\int_0^1 dx \int_0^{\sqrt{1-x^2}} dy \int_0^{\sqrt{1-x^2-y^2}} (x^2 + y^2 + z^2) dz$ 的值是 $\frac{\pi}{10}$;

$$\int_{0}^{2} dx \int_{-\sqrt{2x-x^{2}}}^{\sqrt{2x}} f(x, y) dy = \int_{-1}^{0} dy \int_{1-\sqrt{1-y^{2}}}^{1+\sqrt{1-y^{2}}} f(x, y) dx + \int_{0}^{2} dy \int_{\frac{y^{2}}{2}}^{2} f(x, y) dx;$$

- 6. 三次积分 $\int_0^1 dx \int_0^1 dy \int_0^1 (x^2 + y^2 + z^2) dz$ 的值是 $\frac{10}{10}$;

 7. 散度 $\operatorname{div}(x^3\mathbf{i} + y\cos(y 2z)\mathbf{j} + \mathbf{k})|_{(2,0,\pi)} = \underline{13}$;

 8. 已知第二型曲线积分 $\int_A^B (x^4 + 4xy^n) dx + (6x^{n-1}y^2 5y^4) dy$ 与路径无关,则 $n = \underline{3}$;
- **9.** 平面 5x + 4y + 3z = 1 被椭圆柱面 $4x^2 + 9y^2 = 1$ 所截的有限部分的面积为 $\frac{5\sqrt{2}\pi}{18}$.
 - 二. 计算下列各题(本题共 4 小题,每小题 7 分,满分 28 分)
 - **10.** 设 z = z(x, y) 是由方程 xy + yz + xz = 1 所确定的隐函数, $x + y \neq 0$,试求 $\frac{\partial^2 z}{\partial x \partial y}$.

$$\mathbf{R} \quad y dx + x dy + z dy + y dz + z dx + x dz = 0 , \quad dz = -\frac{y+z}{x+y} dx - \frac{x+z}{x+y} dy , \quad \frac{\partial z}{\partial x} = -\frac{y+z}{x+y} ,$$

$$\frac{\partial z}{\partial y} = -\frac{x+z}{x+y}, \quad \frac{\partial^2 z}{\partial x \partial y} = \frac{y+z}{(x+y)^2} - \frac{1+\frac{\partial z}{\partial y}}{x+y} = \frac{y+z}{(x+y)^2} - \frac{1-\frac{x+z}{x+y}}{x+y} = \frac{2z}{(x+y)^2} \quad (4+3 \text{ \%})$$

11. 计算二重积分
$$\iint_D (x+y)^2 dxdy$$
, 其中区域 $D = \{(x,y) | 2y \le x^2 + y^2 \le 4y \}$.

解
$$\iint_{D} (x+y)^{2} dxdy = \iint_{D} (x^{2}+y^{2}) dxdy = 2\int_{0}^{\frac{\pi}{2}} d\theta \int_{2\sin\theta}^{4\sin\theta} \rho^{3} d\rho = 120\int_{0}^{\frac{\pi}{2}} \sin^{4}\theta d\theta = \frac{45}{2}\pi$$
(2+2+3 分)

12. 设立体 Ω 由曲面 $x^2 + y^2 - z^2 = 1$ 及平面 z = 0, $z = \sqrt{3}$ 围成,密度 $\rho = 1$,求它对 z 轴的转动惯量.

$$\mathbf{k}\mathbf{f} \iiint_{\Omega} (x^2 + y^2) dv = \int_0^{\sqrt{3}} dz \int_0^{2\pi} d\theta \int_0^{\sqrt{1+z^2}} \rho^3 d\rho = \frac{\pi}{2} \int_0^{\sqrt{3}} (1+z^2)^2 dz = \frac{12}{5} \sqrt{3}\pi \quad (2+3+2 \text{ }\%)$$

13. 计算曲面积分 $\iint_{\Sigma} \frac{dS}{z}$, Σ 为球面 $x^2 + y^2 + z^2 = R^2$ 上满足 $0 < h \le z \le R$ 的部分.

解
$$\Sigma$$
 在 xOy 平面上的投影区域为 D :
$$\begin{cases} x^2 + y^2 \le \sqrt{R^2 - h^2} \\ z = 0 \end{cases}$$
, (1分)

$$\iint_{S} \frac{dS}{z} = R \iint_{D} \frac{d\sigma}{R^2 - x^2 - y^2} = 2\pi R \int_{0}^{\sqrt{R^2 - h^2}} \frac{\rho d\rho}{R^2 - \rho^2} = 2\pi R \ln \frac{R}{h}$$
 (3+1+2 \(\frac{4}{3}\))

三 (14). (本题满分 8 分) 求函数 $f(x,y) = x - x^2 - y^2$ 在区域 $D = \{(x,y) | 2x^2 + y^2 \le 1\}$ 上的最大值和最小值.

解 令
$$f_x = 1 - 2x = 0$$
, $f_y = -2y = 0$, 得 $x = \frac{1}{2}$, $y = 0$; (1分) 在区域 D 的边界

$$\partial D = \{(x, y) | 2x^2 + y^2 = 1\} \perp, \quad g(x) = f|_{\partial D} = x^2 + x - 1, \quad -\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}, \quad \diamondsuit$$

$$g'(x) = 2x + 1 = 0$$
, $\{ x = -\frac{1}{2}, (2 + 3), f\left(\frac{1}{2}, 0\right) = \frac{1}{4}, g\left(-\frac{1}{2}\right) = -\frac{5}{4},$

$$g\left(-\frac{1}{\sqrt{2}}\right) = -\frac{1}{2} - \frac{1}{\sqrt{2}}$$
, $g\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}} - \frac{1}{2}$, (3 分) 由比较得 $f_{\text{max}} = \frac{1}{4}$, $f_{\text{min}} = -\frac{5}{4}$ (2

4

四 (15)。(本题满分 8 分) 计算 $\iint_S (z+1) dx \wedge dy - y dz \wedge dx$,其中 S 为圆柱面 $x^2 + y^2 = 4$ 被平面 x+z=2 和 z=0 所截出部分的外侧.

共 4 页 第 2 页

解 补两个面, S_1 : 平面x+z=2被圆柱面 $x^2+y^2=4$ 所截部分,取上侧,在xOy平面

的投影区域记为 D: $\begin{cases} x^2+y^2\leq 4\\ z=0 \end{cases}$; $S_2:$ $\begin{cases} x^2+y^2\leq 4\\ z=0 \end{cases}$, 取下侧,由曲面 S,S_1,S_2 所围成

的内部区域记为V, (2分)由 Gauss 公式得

$$\iint_{\mathcal{L}} (z+1) \mathrm{d}x \wedge \mathrm{d}y - y \mathrm{d}z \wedge \mathrm{d}x$$

$$= \iint\limits_{S+S_1+S_2} (z+1) \mathrm{d}x \wedge \mathrm{d}y - y \mathrm{d}z \wedge \mathrm{d}x - \iint\limits_{S_1} (z+1) \mathrm{d}x \wedge \mathrm{d}y - \iint\limits_{S_2} \mathrm{d}x \wedge \mathrm{d}y \quad (1 \text{ \%})$$

$$= \iiint_V 0 dv - \iint_D (3-x) dx dy + \iint_D dx dy = -2 \iint_D dx dy = -8\pi \quad (3+1+1 \text{ f})$$

五(16). (本题满分 7 分) 计算
$$I = \int_{\mathcal{C}} \sqrt{x^2 + y^2} \, \mathrm{d}x + y \left(xy + \ln\left(x + \sqrt{x^2 + y^2} \right) \right) \mathrm{d}y \,,$$

其中 C 是由点 $B(1+\pi,0)$ 沿曲线 $y = \sin(x-1)$ 到点 A(1,0) 的一段弧.

解 补有向直线 \overline{AB} ,由 C 与 \overline{AB} 所围成的内部区域记为 D ,(1 分) 由 Green 公式得

$$I = \int_{C + \overline{AB}} \sqrt{x^2 + y^2} \, dx + y \left(xy + \ln\left(x + \sqrt{x^2 + y^2}\right) \right) dy - \int_{\overline{AB}} x dx = \iint_D y^2 dx dy - \pi - \frac{1}{2} \pi^2$$
(2+2+1 分)

$$= \frac{4}{9} - \pi - \frac{1}{2}\pi^2 \quad (1 \text{ } \%)$$

六(17)(本题满分 7 分)设 $a_1=1, a_2=2$,当 $n \geq 3$ 时,有 $a_n=a_{n-1}+a_{n-2}$,

(1) 证明不等式
$$0 < \frac{3}{2}a_{n-1} < a_n < 2a_{n-1}, n \ge 4$$
;

(2) 证明级数
$$\sum_{n=1}^{\infty} \frac{1}{a_n}$$
 收敛,且满足不等式 $2 \le \sum_{n=1}^{\infty} \frac{1}{a_n} \le \frac{5}{2}$.

解 (1) 首先易见 $\{a_n\}$ 单调递增,所以当 $n \ge 3$ 时, $a_n = a_{n-1} + a_{n-2} < 2a_{n-1}$,因而当 $n \ge 4$

时,
$$a_{n-2} > \frac{1}{2}a_{n-1}$$
, $a_n = a_{n-1} + a_{n-2} > \frac{3}{2}a_{n-1}$ (2分)

$$(2) \frac{1}{a_n} < \frac{2}{3} \cdot \frac{1}{a_{n-1}} < \left(\frac{2}{3}\right)^2 \cdot \frac{1}{a_{n-2}} < \dots < \left(\frac{2}{3}\right)^{n-3} \cdot \frac{1}{a_3} = \frac{1}{3} \left(\frac{2}{3}\right)^{n-3}, \quad n \ge 4$$

由比较判别法得级数
$$\sum_{n=1}^{\infty} \frac{1}{a_n}$$
 收敛。(**2 分**) $\sum_{n=1}^{\infty} \frac{1}{a_n} \le 1 + \frac{1}{2} + \frac{1}{3} \sum_{n=3}^{\infty} \left(\frac{2}{3}\right)^{n-3} = \frac{5}{2}$,

$$\frac{1}{a_n} > \frac{1}{2} \cdot \frac{1}{a_{n-1}} > \left(\frac{1}{2}\right)^2 \cdot \frac{1}{a_{n-2}} > \dots > \left(\frac{1}{2}\right)^{n-2} \cdot \frac{1}{a_2} = \left(\frac{1}{2}\right)^{n-1}, \quad n \ge 3$$

$$\sum_{n=1}^{\infty} \frac{1}{a_n} \ge 1 + \frac{1}{2} + \sum_{n=3}^{\infty} \left(\frac{1}{2}\right)^{n-1} = 1 + \sum_{n=2}^{\infty} \left(\frac{1}{2}\right)^{n-1} = 2 \quad (3 \text{ \%})$$

七(18)(本题满分 6 分)设C是圆周 $x^2 + y^2 = x + y$,取逆时针方向,连续函数f(u) > 0,

证明
$$\oint_C x f(y) dy - \frac{y}{f(x)} dx \ge \pi$$

证 圆周C所围的内部区域记为D,由 Green 公式得

利用轮换对称性,得
$$\iint_D f(y) d\sigma = \iint_D f(x) d\sigma$$
, (2分)于是

$$\oint_C x f(y) dy - \frac{y}{f(x)} dx = \iint_D \left(f(x) + \frac{1}{f(x)} \right) d\sigma \ge 2 \iint_D d\sigma = \pi \quad (2 \text{ }\%)$$