

METHONTOLOGY. Tasks in the conceptualization activity

METHONTOLOGY. Terms Glossary

Name	Synonyms	Acronyms	Description	Туре
American Airlines		AA Flight	Flight operated by American	Concept
Flight		Ĭ	Airlines.	
Bed and Breakfast			An establishment (as an inn)	
			offering lodging and breakfast	
British Airways Flight		BA Flight	Flight operated by British	Concept
			Airways.	
Business Trip			A special package for	Concept
			businessmen, consisting of a flight	
			and a good quality hotel.	
Camping			Temporal lodging in a camp.	Concept
Economy Trip			An economic package, usually	Concept
			costing less than 1000\$.	
European Location			A location in Europe.	Concept
Five-stars Hotel			High quality hotel	Concept
Flight			A journey by plane identified by a	Concept
			flight number.	
Hotel		An establishment that provides		Concept
			lodging and usually meals,	
			entertainment, and various	
			personal services for the public	
Iberia Flight		IB Flight	Flight operated by Iberia.	Concept
Japan Location			A location in Japan.	Concept
Location	Place		A position or site occupied or	Concept
			available for occupancy or marked	
			by some distinguishing feature.	
Lodging	Accommodation		A temporary place to stay during a	Concept
			trip, sleeping accommodations.	
Luxury Trip			A luxury and expensive trip.	Concept
Spain Location			A location in Spain	Concept
Train Travel	RailTravel	-	A journey by train.	Concept
Travel			A journey from place to place.	Concept
Travel Package			A travel package that a person can	Concept
			ask for. It consists of one or	
			several means of transport and one	
			or several accommodations.	
****			1 1	

METHONTOLOGY. Primitives for Modelling

Taxonomies

Subclass-of:

Disjoint decomposition: a set of subclasses of C that do not have common instances and do not cover C

Partition: a set subclasses of C that cover C and do not have common instances or subclasses

Exhaustive-Decomposition: a set subclasses of C that cover C and may have common instances or subclasses

Example of a Taxonomy (I)

Example of a Taxonomy (II)

METHONTOLOGY. Identify Ad-hoc relations

METHONTOLOGY. Define a Concept Dictionary

Concept name	Class attributes	Instance attributes	Relations
AA7462			same Flight as
American Airlines Flight	company Name		
British Airways Flight	company Name		
Five-stars Hotel	number of Stars		
Flight			same Flight as
Location		name	is AnivalPlace of
		size	is Departure Place of
Lodging		price of Standard Room	placed in
Travel		arrival Date	arrival Place
		company Name	departure Place
		departure Date	
		retum Fare	
		single Fare	
Travel Package		budget	arrival Place
		finalPrice	departure Place
		name	accommodated in
		number of Days	travels in
		travel Restrictions	
USA Location			

©Asunción Gómez-Pérez,

METHONTOLOGY. Define Instance Attributes

Instance attribute name	Concept name	Value type	Measurement unit	Preci- sion	Range of values	Cardi- nality
budget	Business Trip	Float	Currency Quantity	0.01	10003000	(0,1)
budget	Economy Trip	Float	Currency Quantity	0.01	01000	(0,1)
name	Location	String				(I,N)
51Ze	Location	Integer	Square Meters	1		(1,1)
price of Standard	Lodging	Float				(0,1)
Room						V-3-7
budget	Luxury Trip	Float	Currency Quartity	10.0		(0,1)
arrival Date	Travel	Date				(0,1)
company Name	Travel	String				(O,N)
departure Date	Travel	Date				(0,1)
retum Fare	Travel	Float	Currency Quantity	10.0		(0,1)
single Fare	Travel	Float	Currency Quantity	10.0		(0,1)
budget	Travel Package	Float	Currency Quartity	10.0		(0,1)
finalPrice	Travel Package	Float	Currency Quantity	10.0		(0,1)
mumber of Days	Travel Package	Integer	days	1		(0,1)
travel Restrictions	Travel Package	String				(0,1)

©Asunción Gómez-Pérez,

METHONTOLOGY. Define Formal Axioms

Axiom name	Train inside Europe
Description	Every train that departs from a European location
_	must arrive at another European location
Expression	forall(?X,?Y,?Z)
	([Train Travel](?X) and
	[departure Place](?X,?Y) and
	[arrival Place](?X,?Z) and
	[European Location](?Y) ->
	[European Location](¿Z))
Concepts	Train Travel
	European Location
Referred attributes	-
Ad-hoc binary	departure Place
relations	arrival Place
Variables	?X
	?Y
	?Z

METHONTOLOGY. Define Rules

Rule name	Costa Cruises rule		
Description	Every ship that departs from Europe is		
	arranged by the company Costa Cruises		
Expression	if [European Location](? Y) and		
	Ship(?X) and		
	[departure Place](?X,?Y)		
	then [company Name](?X, "Costa Cruises")		
Concepts	Ship		
	European Location		
Referred attributes	company Name		
Ad-hoc binary	departure Place		
relations	-		
Variables	?X		
	?Y		

METHONTOLOGY. Define Instances

Instance Name	Concept Name	Attribute	Values
AA7462_Feb08_2002	AA7462	company Name	American Airlines
		departure Date	02/08/2002
		arrival Date	02/08/2002
		single Fare	300
AA7462_Feb16_2002	AA7462	company Name	American Airlines
		departure Date	02/16/2002
		arrival Date	02/16/2002
		single Fare	300

Knowledge Web Ontologies

Event Ontology

Documentation Ontology

Relationships between Person, Project and Documentation

Ontology Design Patterns for Modelling

- Pattern is something proposed for imitation.
- **Design Pattern** refers to shared guidelines that help solve design problems.

Inventory of Patterns. General Template

- General Information:
 - Name
 - Identifier
 - Ontology modelling component type (LP, AP and CP)
- *Use Case*, or problem to be addressed.
- <u>Ontology Design Pattern</u>, or proposed solution in different formats.
- Relations to other ontology model components. This slot is optional.
- Comments. This slot is also optional.

Logical Patterns. Definition

- Elements of the OWL module from the NeOn metamodel or compositions of those elements.
- Content-independent
 - Expressed with only a logical vocabulary (OWL namespace)
- Solve logical modelling problems
- Affect only a specific and delimited part of the ontology
- Examples:
 - Primitive and defined class, subClassOf relation, n-ary relation, etc.

18 Logical Patterns and Template

- LP for Modelling a Primitive Class
- LP for Modelling a Defined Class
- LP for Modelling a SubClassOf Relation
- LP for Modelling Multiple Inheritance between Class
- LP for Modelling an Equivalence Relation between
- LP for Modelling an Object Property
- LP for Modelling a SubPropertyOf Relation
- LP for Modelling a Datatype Property
- LP for Modelling an Existential Restriction
- LP for Modelling a Universal Restriction
- LP for Modelling a UnionOf Relation
- LP for Modelling an Individual
- LP for Modelling Disjoint Classes
- LP for Modelling Exhaustive Classes
- LP for Modelling N-ary Relation
 - Introducing a new class for the relation
 - Using lists for arguments in the relation
- LP for Modelling Specified Values
 - Values as sets of individuals
 - Ontological Engineering subclasses partitioning a 'feature'

Slot	Value			
General Information				
Name	Name of the component			
Identifier	An acronym composed of: component type + component + number			
Type of Component	Logical Pattern (LP)			
	Use Case			
General	Description in natural language of the general problem addressed by the modelling component.			
Examples	Description in natural language of some examples for the general problem.			
Ontolo	ogy Design Pattern			
	Informal			
General	Description in natural language of the general solution provided by the modelling component, refering to the NeOn OWL Ontology Metamodel defined in D1.1.1.			
Examples	Description in natural language of the solution applied to the examples.			
Graphical				
(UML) Diagram for the General Solution	Graphical representation of the general solution provided, taking into account the UML Profile proposed in WP1.			
(UML) Diagram for Examples	Graphical representation of the solution provided, using examples and taking into account the UML Profile proposed in WP1.			
	Formalization			
General	Formalization of the pattern in terms of the NeOn OWL Ontology Metamodel.			
Examples	Formalization of the examples (using abstract syntax for OWL code).			
Relationships				
Relations to other modelling components	Description of any relation to other modelling componens (use, specialize, etc.).			
	Comments			
Comments	Remarks for clarifying the use of the modelling component. ©Asunción Gonnez-Perez,			

- In Semantic Web languages such as RDF and OWL, a property is a binary relation. In some cases, the natural and convenient way to represent certain situations is to link an individual to more than just one individual or value by means of **n-ary relations**.
- One solution recommended by the W3C Semantic Web Best Practices and Deployment Working Group (SWBPD) is to introduce a new class for the relation.
- The solution resides in creating a new class and n new object properties to represent an n-ary relation. An instance of the relation linking the n individuals is then an instance of this class.

General Information		
Name N-ary Relation: New Class		
Identifier	LP-NR -01	
Type of Component	Logical Pattern (LP)	

Use Case		
	Express that:	
General	 A binary relationship really needs a further argument. Two binary relationships always go together and should be represented as one n-ary relation. A relationship is really amongst several things. 	
Examples	Suppose that someone wants to express that 'business plans' have 'business tasks' with a concrete 'duration'.	

Ontology Design Pattern				
	Informal			
	Create a new class and <i>n</i> new object properties.			
General	Therefore, instantiate the classes Class and ObjectProperty.			
Examples	Create the classes 'BusinessPlan', 'BusinessTask', 'hasBT_Relation', and 'Duration'.			
	In the definition of the class 'BusinessPlan', specify an object property 'hasBusinessTask' with the range restriction going to 'hasBT_Relation' class.			
	Define 'task_Value' and 'hasDuration' as functional object properties.			
	In the definition of the class 'hasBT_Relation', specify two object properties 'task_Value' and 'hasDuration' with the range restriction going to the classes 'BusinessTask' and 'Duration', respectively.			

Ontology Design Pattern			
	Formalization		
	Class(Class partial OntologyElement)		
General	Class(Property partial OntologyElement)		
	Class(ObjectProperty partial Property)		
	Class(BusinessPlan partial restriction(hasBusinessTask allValuesFrom(hBT_Relation)) owl:Thing)		
	Class(hBT_Relation partial owl:Thing restriction(task_Value someValuesFrom(BusinessTask)) restriction(hasDuration allValuesFrom(Duration)))		
Examples	Class(BusinessTask partial owl:Thing)		
	Class(Duration partial owl:Thing)		
	ObjectProperty(task_Value Functional domain(owl:Thing))		
	ObjectProperty(hasDuration Functional domain(owl:Thing))		

Relationships		
Relations to other modelling components	Possible use of this LP in APs and CPs.	

Architectural Patterns (APs). Definition

- Logical Patterns (LPs) or compositions of LPs
- Content-independent
- Solve architectural modeling problems
- Characterize the overall structure of the ontology
 - An AP expresses 'how an ontology should look like'
- Examples:
 - Taxonomy, lightweight ontology, etc.

3 Architectural Patterns (APs)

Taxonomy

A hierarchical structure of classes only related by subsumption relations.

• Lightweight ontology. Taxonomy + the following features:

- A class can be related to other classes through the disjointWith relation.
- Object and datatype properties can be defined and used to relate classes.
- A specific domain and range can be associated with defined object and datatype properties.

Modular architecture

- Structuring an ontology as a configuration of components, each having its own identity based on some design criteria.
- When an ontology is committed to a huge domain of knowledge, a good practice is to decompose the domain into smaller subdomains which address simpler tasks. Each subdomain can be then encoded in an ontology module, so as to provide the whole ontology with a modular architecture.

Architectural Patterns (APs) Template and Example

Content Design Patterns (CPs). Definition

- Instances of LPs or compositions of LPs.
- Domain-dependent
 - Expressed with a domain specific (non logical)
 vocabulary
- Solve domain modelling problems
- Affect the specific part of the ontology dealing with the domain modelling problem
- Examples:
 - Plans, Medical Guidelines, Sales Order, etc.

6 Content Patterns (CPs) and Template

- Participation Pattern
- Description-Situation Pattern
- Role-Task Pattern
- Plan-Execution Pattern
- Simple Part-Whole Relation Pattern
 - Modelling a part-whole relation
 - Representing a part-whole class hierar

Value				
value				
General Information				
Name of the component				
An acronym composed of: component type + component + number				
Content Pattern (CP)				
Use Case				
Description in natural language of the general problem addressed by the modelling component.				
Description in natural language of some examples for the general problem.				
Ontology Design Pattern				
Informal				
Description in natural language of the general solution provided by the modelling component, refering to the NeOn OWL Ontology Metamodel defined in D1.1.1. In this case we focus on a generic domain.				
Description in natural language of the solution provided using examples. In this case we focus on a specific domain. This could be optional.				
Graphical				
Graphical representation of the general solution provided, taking into account the UML Profile proposed in WP1.				
Graphical representation of the solution provided, using examples and taking into account the UML Profile proposed in WP1. This could be optional.				
Formalization				
Formalization of the pattern in terms of the most general classes and properties in OWL abstract syntax.				
Formalization of specialized solution for the examples (using abstract syntax for OWL code). This could be optional.				
Relationships				
Description of any relation to other modelling componens (use, specialize, etc.).				
Comments				
Remarks for clarifying the use of the modelling component.				

Example of Content Pattern: Participation

• This NeOn Ontology Modelling Component represents participation at spatio-temporal location.

General Information			
Name	Participation		
Identifier	CP-PA-01		
Type of Component	Content Pattern (CP)		

	Use Case
General	Express that objects take part in events.
Examples	Suppose that someones wants to represent people which take part in an international conference.

Example of Content Pattern: Participation

Ontology Design Pattern				
Informal				
General	The pattern consists in a 'participant-in' relation between <i>objects</i> and <i>events</i> , and assumes a time indexing for it. Time indexing is provided by the temporal location of the event at a <i>time interval</i> , while the respective spatial location at a <i>space region</i> is provided by the participating object.			
	The pattern should instantiate the classes Class and ObjectProperty.			
Graphical Graphical				
(UML) Diagram for the General Solution	spatial-location Space-Region Spatial-location Spatial-location Object constant-participant-in Space-Region Spatial-location Spatial-location Object constant-participant-in Space-Region Spatial-location Object constant-participant-in Space-Re			

Ontological Engineering

©Asunción Gómez-Pérez,

Example of Content Pattern: Participation

Ontology Design Pattern				
Formalization				
General	Class(Space-Region partial owl:Thing)			
	ObjectProperty(spatial-location Functional domain(Object) range(Space-Region))			
	Class(Object partial owl:Thing)			
	ObjectProperty(temporary-part-of domain(Object) range(Object))			
	ObjectProperty(participant-in domain(Object) range(Event))			
	ObjectProperty(constant-participant-in domain(Object) range(Event))			
	Class(Event partial owl:Thing)			
	ObjectProperty(part-of domain(Event) range(Event))			
	ObjectProperty(temporal-location domain(Event) range(Time-Interval))			
	Class(Time-Interval partial owl:Thing)			

Relationships			
Relations to other modelling components	Relations to the following LPs: LP-DC / LP-PC and LP-OP.		

Ontology Reengineering

- Ontology Reengineering refers to the process of retrieving and transforming a conceptual model of an existing and implemented ontology into a new, more correct and more complete conceptual model which is reimplemented.
- Ontology Forward Engineering refers to the activity of outputting a new implementation of the ontology on the basis of the new conceptual model.
- Ontology Restructuring refers to the activity of correcting and reorganizing the knowledge contained in an initial conceptual model, and detecting missing knowledge.
- Ontology Reverse Engineering refers to the activity of outputting a possible conceptual model on the basis of the code in which the ontology is implemented.

Ontology Reengineering (II)

The **concept level of abstraction** that underlies the development process also underlies the reengineering process.

Ontology Reengineering (III)

The **model** for ontology reengineering permit different ways, as for example:

Reverse Engineering. Example

Restructuring. Example

(def-class PUBLICATION-REFERENCE (abstract-information). Example 2 "we have decided that a publication reference is an intangible, abstract information" ((has-title :type string) (has-author:type generic-agent) (has-date :type calendar-date) (has-place-of-publication :type location))) **Abstract-information** (def-class ARTICLE-REFERENCE (Publication-Reference) ((has-page-numbers :type string) **Subclass-of** (article-of-journal :type journal) (issue-number :type integer) **Publication-Reference** (issue-volume :type integer))) .- has-title: string Has-date

I want to build my ontology

- Which one are the activities involved in the ontology development process?
- Which one is the goal of each activity?
- When should I carry out each activity?
- Where is the relationship of one activity with the others?
- Where can I find ontologies with the goal of reusing them?
- How can I build the ontology for my application?
- Do I need a single ontology or an ontology network?
 - Example of building an ontology in the *Employment Mediators Marketplace*

Helping Job Seekers on their way

Centralized network of ontologies

- 1. Build a reference ontology
- 2. Build mappings between the reference ontology and the data sources

Federated network of ontologies

- 1. Build a reference ontology for the domain
- 2. Build local ontologies
- 3. Build mappings between the core and local ontologies
- 4. Build mappings between the local ontologies and the data sources

O. Elicitation

O. Documentation

Ontological Engineering

Ontology Specification

60 Competency questions grouped into 5 categories (modular approach)

- Job Seeker (12)
 - What is his/her education level?
- Job Offer (12)
 - What are the required skills for the job offer?
- Time and date management (7)
 - When the job seeker completed his/her first degree?
- Currencies (4)
 - The offered salary is given in US dollars?
- General (25)
 - Given the employer information, economic activity of the employer and the job offer profile (job, contract type, salary, work condition, contract duration), what job seekers are the

most appropriate?

Ontological Engineering

Given the job offer profile (job, contract type, salary, work condition) and the required profile to seek (required education level, required work experience, required knowledge, required skills), what job seekers are the most appropriate?

Each organization has job offers for job seekers

Vocabulary:

Questions: contract type, salary, work condition,

job seeker, job offer, ...

Answers: autonomous, 3000 euro, holliday job, ...

Classes: Contract Type, Compensation, Work Condition, Job Seeker, Job Offer ...

Relations: has job category,

has compensation,

requires work experience ...

Attributes: Name, date of birth, email ...

O. Documentation

Ontological Engineering

©Asuncion Gomez-Perez,

Search and Assess Standards and Taxonomies

- We select the most appropriate standards and taxonomies for:
 - Occupation Classification
 ISCO-88 (COM), SOC, ISCO-88,
 ONET, Eures Taxonomy.
 - Classification of Economic Activities
 ISIC Rev. 3.1, NACE Rev. 1.1, NAICS
 - Apprenticeship classifications
 ISCED 97, FOET
 - Currency Classification
 ISO 4217
 - Geography Classification
 ISO 3166, Eures Taxonomy

Language Classification ISO 6392, CEF

Driving License Classification European Legislation

Skill Classification

Eures Taxonomy

Contract Types Classification

LE FOREM, Eures and BLL Classification

Work Condition Classification

LE FOREM, Eures and BLL Classification

Assessment activity: Matching terminology from Competency Questions against the Standards

Ontological Engin

Selection of Standards

Reference Ontology shall be based on the international, European or de-facto industrial standards

ds	
ds	

	C	Occupatio	on Classific	ition	Classification of Economic Activities			Apprent Classif	
	SOC ONET ISCO-88		ISCO-88 (COM)	ISIC Rev. 3.1	NACE Rev. 1.1			FOET	
The degree of coverage		Ø	Ø	Ø	Ø	Ø			☑
The current European needs				Ø		Ø		Ø	Ø

Currency	Geography	Language	Driving License		
Classification	Classification	Classification			
ISO 4217	ISO 3166	ISO 6392	Community Driving License		

Ontological Engineering ©Asunción Gómez-Pérez,

But, we need also proprietary taxonomies ...

Reengineering resources

Occupation Ontology

Knowledge Resource Reengineering

Search

Excerpt of the Geography Ontology

<rdf.Description rdf.about="webode://mccarthy.dia.fi.upm.es/Geography_Ontology#Country_SPAIN">
 <rdf.type rdf.resource="webode://mccarthy.dia.fi.upm.es/Geography_Ontology#Country"/>
 <GeoOnt.Code rdf.datatype="http://www.w3.org/2001/XMLSchema#string">ES</GeoOnt.Code>
 <GeoOnt.Name rdf.datatype="http://www.w3.org/2001/XMLSchema#string">SPAIN</GeoOnt.Name>
 <GeoOnt.is_located_in_Continent rdf.resource="webode://mccarthy.dia.fi.upm.es/Geography_Ontology#EU_Europe"/>
 <GeoOnt.has_region_Region rdf.resource="webode://mccarthy.dia.fi.upm.es/Geography_Ontology#Cataluriya"/>
 <GeoOnt.has_region_Region rdf.resource="webode://mccarthy.dia.fi.upm.es/Geography_Ontology#Canarias"/>
 <GeoOnt.has_region_Region rdf.resource="webode://mccarthy.dia.fi.upm.es/Geography_Ontology#Galicia"/>
 <GeoOnt.has_region_Region_rdf.resource="webode://mccarthy.dia.fi.upm.es/Geography_Ontology#Andalucia"/>
 </rdf.Description>

Country has region Region

Spain Cataluña

Canarias

Ontology instances

Canarias

Galicia

Andalucía

O. Elicitation

O. Documentation

Ontological Engineering

©Asuncion Gomez-Perez,

Assessing Time Ontologies

O. Searching

O. Assessment

O. Selection

1. Identification of criteria for comparing the candidate set of temporal ontologies

Time Points
Time Interval
Absolute and Relative Time
Relations between time intervals
Convex and non convex intervals

Distinction between open and closed intervals
Explicit modeling of proper intervals
Concatenation of intervals
Different temporal granularities

2. Assess all existing temporal ontologies against the criteria

	Cyc's	Unrestricted	Simple	Reusable	Kestrel	SRI's	SUMO Time	DAML	AKT Time
	Upper	Time Ontology	Time	Time	Time	Time	Ontology	Time	Ontology
	Ongogy	✓	Onto	Onpgy	Ontogy	Onpgy	✓	Onpgy	\checkmark
Time Points	V		1		V	$\overline{\Delta}$	<u> </u>	<u> </u>	
Time Interval			V	<u> </u>				<u> </u>	$\overline{\Delta}$
Absolute and Relative Time					V		A	N	
Relations between time intervals				V				K	
Convex and non convex intervals				∇			V	V	
Distinction between open and closed intervals								\checkmark	
Explicit modeling of proper intervals								V	
Concatenation of intervals	V					V	Asunció	n Gór — -Pérez	, \(\bigve{\sigma} \)
Different temporal granularities		V	V	V			V	V	
Provides axioms									

Process for <u>assessing</u> Time Ontologies (II)

- 3. Checking which temporal properties are needed for answering the Competency questions
 - a. When the job seeker completed his/her first degree?
 - b. Is the job seeker older than 30 years?
 - c. How much time did the job seeker spend completing his/her first degree?
 - d. How long is the duration of the contract?
 - e. Which job offers were posted in last 24 hours?
 - f. Which job offers were posted in last 7 days?
 - g. Which job offers were posted in last month?
 - h. Was the job seeker unemployed?
 - i. Was the job seeker a student between 1995 and 2000?

Time Points (a) Time Interval b, c Absolute and Relative a,d,f,g Time Relations between time intervals Convex and non convex h intervals Distinction between a,d,f,g open and closed intervals Explicit modeling of proper intervals Concatenation of intervals Different temporal granularities

4. Checking which temporal properties are needed for answering the Competency questions

The Time Ontology Selection

	Cyc's	Unrestricted	Simple	Reusable	Kestrel	SRI's	SUMO Time	DAML	AKT Time
	Upper	Time Ontology	Time	Time	Time	Time	Ontology	Time	Ontology
	Ontology		Ontology	Ontology	Ontology	Ontology		Ontology	
Time Points	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark
Time Interval	V				\checkmark	V	\triangleleft	V	\checkmark
Absolute and Relative Time			$\langle \rangle$	∇				V	\mathbf{V}
Relations between time intervals					Ŋ		V	V	
Convex and non convex intervals				\				V	
Distinction between open and closed intervals				\checkmark			☑	☑	
Explicit modeling of proper intervals								V	
Concatenation of intervals								V	
Different temporal granularities	Ŋ					V	\checkmark	\checkmark	\triangleleft
Provides axioms		\checkmark	V	V			V	V	

Conceptualization: Modular approach for ontology construction

Details of the ontology

SEEM

Local Ontologies Building Process

• Option 1: Building Local Ontologies from the Reference Ontology.

• Option 2: Building Local Ontologies as a reverse engineering process from ES Data Sources.

Hybrid approach for building Local Ontologies

A hybrid approach

- Option 1 for Job Seeker and Job Offer Ontologies
- Option 2 for Occupation, Education, etc.

