Regroupement et projection

Javiera CASTILLO NAVARRO
Gaston LENCZNER
Guillaume VAUDAUX RUTH
Adrien CHAN-HON-TONG
ONERA

Apprentissage supervisé : on veut construire une fonction f tel que le signe de f(x) approxime celui de y(x) avec y connu uniquement sur une base d'apprentissage.

Apprentissage supervisé : on veut construire une fonction f tel que le signe de f(x) approxime celui de y(x) avec y connu uniquement sur une base d'apprentissage.

Regroupement: on veut regrouper dans des points en groupe en fonction de leur distance.

Regroupement: on veut regrouper dans des points en groupe en fonction de leur distance.

- ⇒ Si on fixe le nombre de groupes, le problème est bien posé!
- \Rightarrow Si plus difficile de voir à quoi ça peut servir mais le problème est bien posé.

Exemple

Pour compresser une image, on peut vouloir grouper des couleurs. En fixant une couleur par groupe, on diminue le nombre de couleurs présentes.

Fig.1a: The Visual Effect of 24K Colors Depth Image Segmentation

Compression et apprentissage peuvent trouver des points communs.

si vous devez résumé une imagette en 1 nombre, choisir celui qui est représenté peut être une *bonne* solution.

La sémantique est généralement une compression mais une compression n'est PAS nécessairement sémantique :

Coder la taille plutôt que de coder le fait d'être une croix est optimal vis à vis de la distance euclidienne, mais détruit toute la sémantique croix/cercle.

Plan du cours

2 méthodes de *compression* (qu'il conviendrait d'étudier pour cela - ce qu'on ne fera pas)
Puis une application à l'apprentissage.

- K moyennes
- ▶ PCA
- ► Approche Sac de mots

Sac de mots ce qu'on faisait de mieux avant le deep learning...

Soit $x_1,...,x_N \in \mathbb{R}^D$ et K un nombre, le problème dit des K moyennes consiste à résoudre

$$\min_{c \in \mathbb{R}^{K \times D}} \sum_{n \in \{1, \dots, N\}} \min_{k \in \{1, \dots, K\}} ||c_k - x_n||_2^2$$

Il est important de ne pas confondre *problème* et solution. Ici, on se donne un problème, on ne parle pas encore de solution.

Soit $x_1,...,x_N \in \mathbb{R}^D$ et K un nombre, le problème dit des K moyennes consiste à résoudre

$$\min_{c \in \mathbb{R}^{K \times D}} \sum_{n \in \{1, \dots, N\}} \min_{k \in \{1, \dots, K\}} ||c_k - x_n||_2^2$$

ou de façon équivalente

$$\begin{aligned} \min_{c \in \mathbb{R}^{K \times D}, \sigma \in \{0,1\}^{N \times K}} & \sum_{n \in \{1,...,N\}, k \in \{1,...,K\}} \sigma_{n,k} ||c_k - x_n||_2^2 \\ sc: \forall n \in \{1,...,N\}, & \sum_{k \in \{1,...,K\}} \sigma_{n,k} = 1 \\ \forall n \in \{1,...,N\}, & i,j \in \{1,...,K\} \sigma_{n,i} = 1 \Leftrightarrow ||c_i - x_n|| \leq ||c_i - x_n|| \end{aligned}$$

Soit $x_1,...,x_N \in \mathbb{R}^D$ et K un nombre, le problème dit des K moyennes consiste à résoudre

$$\min_{c \in \mathbb{R}^{K \times D}} \sum_{n \in \{1, \dots, N\}} \min_{k \in \{1, \dots, K\}} ||c_k - x_n||_2^2$$

ou de façon équivalente

$$\begin{aligned} & \min_{c \in \mathbb{R}^{K \times D}, \sigma \in \mathbb{R}_{+}^{N \times K}} \sum_{n \in \{1, \dots, N\}, k \in \{1, \dots, K\}} \sigma_{n,k} ||c_{k} - x_{n}||_{2}^{2} \\ & sc : \forall n \in \{1, \dots, N\}, \sum_{k \in \{1, \dots, K\}} \sigma_{n,k} \geq 1 \end{aligned}$$

Soit $x_1,...,x_N \in \mathbb{R}^D$ et K un nombre, le problème dit des K moyennes consiste à résoudre

$$\min_{c \in \mathbb{R}^{K \times D}} \sum_{n \in \{1, \dots, N\}} \min_{k \in \{1, \dots, K\}} ||c_k - x_n||_2^2$$

ou de façon équivalente

$$\min_{c \in \mathbb{R}^{K \times D}, \rho \in \{1, \dots, K\}^N} \sum_{n \in \{1, \dots, N\}} ||c_{\rho_n} - x_n||_2^2$$

Soit $x_1,...,x_N \in \mathbb{R}^D$ et K un nombre, le problème dit des K moyennes consiste à résoudre

$$\min_{c \in \mathbb{R}^{K \times D}} \sum_{n \in \{1, \dots, N\}} \min_{k \in \{1, \dots, K\}} ||c_k - x_n||_2^2$$

C'est un problème NP complet dès D=2 quand $N,K\to\infty$ et dès K=2 quand $N,D\to\infty$.

Donc, en pratique on ne sait pas résoudre ce problème exactement.

$$\begin{split} \min_{c \in \mathbb{R}^{K \times D}, \rho \in \{1, \dots, K\}^N} \sum_{n \in \{1, \dots, N\}} ||c_{\rho_n} - x_n||_2^2 \\ \text{Si } c \text{ est fixé} ? \\ \min_{\rho \in \{1, \dots, K\}^N} \sum_{n \in \{1, \dots, N\}} ||c_{\rho_n} - x_n||_2^2 \\ \Leftrightarrow \sum_{n \in \{1, \dots, N\}} \min_{\rho \in \{1, \dots, K\}} ||c_{\rho_n} - x_n||_2^2 \end{split}$$

 $\Leftrightarrow \forall n \in \{1, ..., N\}, \ \rho_n = \text{arg min } ||c_k - x_n||_2^2$

$$\min_{c \in \mathbb{R}^{K \times D}, \rho \in \{1, \dots, K\}^N} \sum_{n \in \{1, \dots, N\}} ||c_{\rho_n} - x_n||_2^2$$

Si c est fixé, la solution optimale est d'associer chaque point x_n à son plus proche voisin dans $\{c_1,...,c_K\}$

$$\min_{c \in \mathbb{R}^{K \times D}, \rho \in \{1, \dots, K\}^N} \sum_{n \in \{1, \dots, N\}} ||c_{\rho_n} - x_n||_2^2$$

Si ρ est fixé?

$$\min_{c \in \mathbb{R}^{K \times D}} \sum_{n \in \{1, ..., N\}} ||c_{\rho_n} - x_n||_2^2
\Leftrightarrow \min_{c \in \mathbb{R}^{K \times D}} \sum_{k \in \{1, ..., K\}} \sum_{n \in \{1, ..., N\} / \rho_n = k} ||c_k - x_n||_2^2$$

$$\Leftrightarrow \forall k \in \{1,...,K\}, \ c_k = \underset{c_k \in \mathbb{R}^D}{\mathsf{arg\,min}} \sum_{n \in \{1,...,N\} \ / \ \rho_n = k} ||c_k - x_n||_2^2$$

$$\begin{aligned} \min_{\psi \in \mathbb{R}^{D}} \sum_{r \in \{1, \dots, R\}} ||\psi - \phi_{r}||_{2}^{2} \\ \Leftrightarrow \min_{\psi \in \mathbb{R}^{D}} R\psi^{T}\psi - 2\psi^{T} (\sum_{r \in \{1, \dots, R\}} \phi_{r}) + \sum_{r \in \{1, \dots, R\}} \phi_{r}^{T}\phi_{r} \\ \Leftrightarrow \min_{\psi \in \mathbb{R}^{D}} R\psi^{T}\psi - 2\psi^{T}\Phi \\ \Leftrightarrow \psi = \frac{1}{R}\Phi \end{aligned}$$

$$\min_{c \in \mathbb{R}^{K \times D}, \rho \in \{1, \dots, K\}^N} \sum_{n \in \{1, \dots, N\}} ||c_{\rho_n} - x_n||_2^2$$

Si ρ est fixé, la solution optimale est de choisir c_k comme le centre (la moyenne) de $\{x_n \ / \ \rho_n = k\}$

$$\min_{c \in \mathbb{R}^{K \times D}, \rho \in \{1, \dots, K\}^N} \sum_{n \in \{1, \dots, N\}} ||c_{\rho_n} - x_n||_2^2$$

Algorithme des K moyennes (approximation)?

- 1. initialiser c
- 2. calculer ρ optimal à c fixé
- 3. $\rho_c = \rho$
- 4. faire en boucle
 - 4.1 calculer c optimal à ρ fixé
 - 4.2 calculer ρ optimal à c fixé
 - 4.3 si $\rho = \rho_c$ arrêter sinon, $\rho_c = \rho$

$$\min_{c \in \mathbb{R}^{K \times D}, \rho \in \{1, \dots, K\}^N} \sum_{n \in \{1, \dots, N\}} ||c_{\rho_n} - x_n||_2^2$$

Algorithme des K moyennes? Optimum local possible!

D=K=2, N=4, imaginez un rectangle non carré, l'algorithme s'arrête si on a 2 groupes de 2 points adjacents – sauf que c'est optimal que s'il s'agit des petits cotés et non des grands!

$$\min_{c \in \mathbb{R}^{K \times D}, \rho \in \{1, \dots, K\}^N} \sum_{n \in \{1, \dots, N\}} ||c_{\rho_n} - x_n||_2^2$$

Algorithme des K moyennes (approximation)?

Convergence garantie car le critère décroît :

Quand on actualise partiellement le critère
$$\sum\limits_{n\in\{1,\dots,N\}}||c_{
ho_n}-x_n||_2^2$$

vis à vis de c ou ρ (l'autre étant fixé), on pourrait laisser la variable inchangée – si on la change, c'est pour faire diminuer le critère.

Donc le critère décroît strictement (s'il y a du changement).

Et il y a un nombre fini de ρ !

$$\min_{c \in \mathbb{R}^{K \times D}, \rho \in \{1, \dots, K\}^N} \sum_{n \in \{1, \dots, N\}} ||c_{\rho_n} - x_n||_2^2$$

Algorithme des K moyennes (approximation) :

- 1. initialiser c
- 2. calculer ρ optimal à c fixé
- 3. $\rho_c = \rho$
- 4. faire en boucle
 - 4.1 calculer c optimal à ρ fixé
 - 4.2 calculer ρ optimal à c fixé
 - 4.3 si $\rho = \rho_c$ arrêter sinon, $\rho_c = \rho$

L'initialisation est primordiale. L'initialisation de référence Kmeans++ : tirer les centres via leur distance aux centres précédents

Plan du cours

- K moyennes
- ► PCA
- ► Approche Sac de mots

PCA

 $x_1,...,x_N \in \mathbb{R}^D$ peut-on projeter les x dans un espace plus petit \mathbb{R}^D ($\mathcal{D} \ll D$) en perdant un minimum d'information?

 $x_1,...,x_N \in \mathbb{R}^D$ peut-on projeter les x dans un espace plus petit \mathbb{R}^D ($\mathcal{D} \ll D$) en perdant un minimum d'information?

 \Rightarrow information???

encore une fois garder l'information essentiel c'est compresser mais compresser peut détruire l'information...

 $x_1,...,x_N \in \mathbb{R}^D / \sum_n x_n = 0$ peut-on **linéairement** projeter les x dans un espace plus petit \mathbb{R}^D ($\mathcal{D} \ll D$) en conservant un maximum de variance? (variance == information??)

$$\max_{A \in \mathsf{R}^{D \times D} \ / \ AA^T = I} \ \sum_n \lvert \lvert A_{\{1,\dots,\mathcal{D}\}} x \rvert \rvert^2$$

 $x_1,...,x_N\in\mathbb{R}^D$ / $\sum_n x_n=0$ peut-on linéairement projeter les x dans un espace plus petit $\mathbb{R}^{\mathcal{D}}$ ($\mathcal{D}\ll D$) en conservant un maximum de variance?

$$D=2$$
 et $\mathcal{D}=1$

on cherche donc $u \in \mathbb{R}^2$ tel que

$$u = \max_{u} \sum_{n} \frac{(u^{T} x_{n})^{2}}{u^{T} u}$$

on cherche $u \in \mathbb{R}^2$ tel que

$$u = \max_{u} \sum_{n} \frac{(u^{T} x_{n})^{2}}{u^{T} u}$$

Notons, $\alpha = \sum_{n} x_{n,1}^2$, $\beta = \sum_{n} x_{n,2}^2$ et $\gamma = \sum_{n} x_{n,1} x_{n,2}$ et paramétrons $u = (1 \ t)$, on obtient l'équation :

$$\max_{t} \frac{1}{1+t^2} \sum_{n} x_{n,1}^2 + x_{n,2}^2 t^2 + 2x_{n,1} x_{n,2} t = \frac{1}{1+t^2} (\alpha + \beta t^2 + 2\gamma t)$$

Posons
$$f(t) = \frac{1}{1+t^2}(\alpha + \beta t^2 + 2\gamma t)$$

 $f'(t) = \frac{1}{1+t^2}(2\beta t + 2\gamma) - \frac{2t}{(1+t^2)^2}(\alpha + \beta t^2 + 2\gamma t)$
 $f'(t) = 0 \Leftrightarrow (1+t^2)(\beta t + \gamma) - t(\alpha + \beta t^2 + 2\gamma t) = 0$
 $\Leftrightarrow \beta t + C + \beta t^3 + Ct^2 - \alpha t - \beta t^3 - 2\gamma t^2 = 0$
 $\Leftrightarrow -\gamma t^2 + (\beta - \alpha)t + \gamma = 0$
 $\Rightarrow \text{ si } \gamma = 0, \text{ alors } t = 0$
 $\sin n, \Rightarrow t^2 - \frac{\beta - \alpha}{\gamma}t - 1 = 0$
 $\Leftrightarrow t = \frac{\beta - \alpha}{2\gamma} \pm \sqrt{1 + (\frac{\beta - \alpha}{2\gamma})^2}$

 $\max_{t} \frac{1}{1+t^2} (\alpha + \beta t^2 + 2\gamma t)$

on cherche $u \in \mathbb{R}^2$ tel que

$$u = \max_{u} \sum_{n} \frac{(u^{T} x_{n})^{2}}{u^{T} u}$$

en pratique si on projette les x dans la base orthonormale composée de u et de son complémentaire, on a $\sum_{n} x_{n,1} x_{n,2} = 0$

Cas général PCA

Soit
$$x_1, ..., x_N \in \mathbb{R}^D$$
 tel que $\forall i \neq j \ x_{n,i} x_{n,j} = 0$ alors $\forall u$

$$\sum_n (u^T x)^2 = \sum_n \sum_{i,j} u_i u_j x_{n,i} x_{n,j}$$

$$= \sum_{i,j} u_i u_j \sum_n x_{n,i} x_{n,j}$$

$$= \sum_d u_d^2 \sum_n x_{n,d}^2$$

dans ce cas, le meilleur vecteurs u (orthogonal) est tel que $u_d=0$ sauf pour d tel que $\sum_{n} x_{n,d}^2$ est maximal (1 pour ce d).

$$\max_{A \in \mathsf{R}^{D \times D} \ / \ AA^T = I} \ \sum_n \lvert \lvert A_{\{1,\dots,d\}} x \rvert \rvert^2$$

revient à diagonaliser la matrice de covariance $C_{i,j} = \sum_{n} x_{n,i} x_{n,j}$ en base orthonormale (possible car c'est une matrice symétrique)!

(Ce problème est lui même lié à la notion de décomposition en valeur singulière.)

Soit
$$x_1, ..., x_N \in \mathbb{R}^D$$
 avec $\sum_n x_n = 0$,
$$C_{i,j} = \sum_n x_{n,i} x_{n,j} \text{ la matrice de covariance,}$$

$$C = U^T \begin{pmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \dots & & & & \\ 0 & \dots & 0 & 0 & \lambda_D \end{pmatrix} U \text{ avec } \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_D$$

Les vecteurs $U_{\{1,\dots,\mathcal{D}\}}$ résolve le problème de la projection linéaire vers $\mathbb{R}^{\mathcal{D}}$ maximisant la variance!

Plan du cours

- K moyennes
- ► PCA
- Approche Sac de mots

On a vu 2 méthodes de *compression* - sachant que la sémantique c'est une compression mais qu'une compression n'est pas toujours sémantique!

Maintenant une application à une approche d'apprentissage.

Classification brute

problème

En encodant la valeur brute plutôt que les formes relative deux images équivalentes sont différentes!

Comment obtenir des représentations invariantes et discriminantes

Une idée

Un bout d'un objet permet parfois de savoir ce qu'est l'objet

Or les bouts sont plus facilement normalisables (coder les invariances et etc)

Sac de mots

Sac de mots : phase 1 création d'un dictionnaire

On prend toutes les images disponibles (indépendamment de leur classe)

Sac de mots : phase 1 création d'un dictionnaire

On prend toutes les images disponibles (indépendamment de leur classe)

On les coupe en plein de petits bouts (de façon dense généralement)

 $N \text{ images } \rightarrow K \times N \text{ bouts}$

Sac de mots : phase 1 création d'un dictionnaire

On prend toutes les images disponibles (indépendamment de leur classe)

On les coupe en plein de petits bouts (de façon dense généralement)

 $N \text{ images } \rightarrow R \times N \text{ bouts}$

On applique les K moyennes à l'ensemble de bouts \rightarrow K groupes

Avec par exemple K = 100000

Sac de mots : phase 2 encodage des images

Pour chaque image

On extrait ses R bouts

Qu'on associe au K centres

On obtient R valeurs dans $\{1,...,K\}$

Sac de mots : phase 2 encodage des images

Pour chaque image

On extrait ses R bouts

Qu'on associe au K centres

On obtient R valeurs dans {1,...,K}

Qu'on peut encoder dans un histogramme x de taille K (x_k est le nombre de valeurs égales à k ; la somme des x_k fait R)

Sac de mots : phase 3 classification

On peut alors apprendre un classifier sur ces vecteurs de dimension K

(Par exemple un MLP ou un SVM ou un arbre et non pas un CNN)

Sac de mots + MLP vs CNN

Sac de mots + MLP vs CNN

