Contrôle continu n° 1

Durée 1h20

Tous documents, calculatrices et téléphones interdits. Une rédaction précise et concise sera récompensée.

Questions de cours

- 1) Quels sont les sous-groupes de \mathbb{Z} ? (0.5p)
- 2) Si dans un groupe de neutre e, un élément a est d'ordre p et que pour un entier n on a $a^n = e$, quelle est la relation entre n et p. (0.5p)
- 3) Que dire de l'intersection de deux sous-groupes? de l'union? (le prouver) (2p).

Exercice 1

On considère l'ensemble de matrices 3x3 suivant

$$H_3(\mathbb{R}) = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\}.$$

- 1) Montrer que H_3 (muni la multiplication de matrices) est un groupe. (2p)
- 2) Montrer que H_3 contient un sous-groupe isomorphe à \mathbb{R} . (1p)
- 3) Trouver le centre de H_3 (les éléments qui commutent avec tous les autres). (2p)

Exercice 2

On considère le sous-ensemble U des nombres complexes de module 1.

- 1) Trouver un morphisme de groupe surjectif entre le groupe additif \mathbb{R} et le groupe multiplicatif \mathbb{U} . (1p)
- 2) Donner le novau de ce morphisme. (1p)
- 3) Quelle loi peut on mettre sur $[0, 2\pi[$ afin d'en faire un groupe. (2p)

»»> TOURNEZ SVP »»>

Exercice 3

Soit n un entier $n \geq 2$. On rappelle que le groupe $\mathbb{Z}/n\mathbb{Z}$ peut être vu comme l'ensemble $\{k \in \mathbb{N}, k < n\}$, muni de l'opération

 $i\bar{+}j:=$ le reste de la division euclidienne de i+j par n.

On note $(\mathbb{Z}/n\mathbb{Z})^*$ l'ensemble des éléments k de $\mathbb{Z}/n\mathbb{Z}$ pour lesquels le sous-groupe $\langle k \rangle$ engendré par k est le groupe $\mathbb{Z}/n\mathbb{Z}$ tout entier. On définit l'application $\bar{\times}$ sur $\mathbb{Z}/n\mathbb{Z}$ qui à deux éléments p, q de $\mathbb{Z}/n\mathbb{Z}$ associe le reste de la division euclidienne par n du produit pq.

- 0) Soient $i, j, k \in \mathbb{Z}/n\mathbb{Z}$, à quoi correspond i + j + k? 3i? (1.5p)
- 1) Soit k un élément quelconque de $\mathbb{Z}/n\mathbb{Z}$. Montrer que k appartient à $(\mathbb{Z}/n\mathbb{Z})^*$ si et seulement si il existe il existe un élément l de $\mathbb{Z}/n\mathbb{Z}$ tel que $k \bar{\times} l = 1$. (2p)
- 2) Montrer que k appartient à $(\mathbb{Z}/n\mathbb{Z})^*$ si et seulement si k est premier avec n. (1p)
- 3) Montrer que $((\mathbb{Z}/n\mathbb{Z})^*, \bar{\times})$ est un groupe. (2p)
- 4) Montrer que, pour tout $n \leq 7$, $(\mathbb{Z}/n\mathbb{Z})^*$ est un groupe cyclique (faire une étude cas-par-cas : n = 2, puis n = 3, puis...) (2p)