x'(t) - a(x)x(t) = 0. Обозначим за A(t) интеграл $A(t) = \int\limits_0^t a(s)ds$, $\frac{dA}{dt} = a(t)$. $x'(t)e^{-A(t)} - e^{-A(t)}a(x)x(t) = 0$. $\frac{d}{dt}\Big(xe^{-A(t)}\Big) = 0$. $x(t) = Ce^{A(t)}$ — общее решение. Условие $\overline{\lim}_{t \to +\infty} A(t) < +\infty$ равносильно ограниченности сверху этой функции, то есть тому, что существует такое α , что $A(t) \le \alpha$ при всех $t \ge t_0$.

Далее за $\varphi(t) = 0$ обозначено нулевое решение; $t_0 = 0$.

Heoбxoдимость. Пусть A(t) сверху неограничена при $t\geqslant 0$. Покажем, что решение $\varphi(t)$ неустойчиво.

Пусть $\varepsilon = 1$, $\delta > 0$ — произвольное и $\left| x(0) - \varphi(0) \right| = |C| < \delta$, $|C| \neq 0$. A(t) неограничена, значит найдётся такое $t_1 > 0$, что $A(t_1) \geqslant \ln \left(\frac{\varepsilon}{|C|} \right)$. В таком случае $\left| x(t_1) - \varphi(t_1) \right| = |C| e^{A(t_1)} \geqslant \varepsilon$. Последнее означает, что решение неустойчиво.

 $\ensuremath{\mathcal{A}}$ страничена сверху числом α . Покажем устойчивость решения.

Пусть $\varepsilon>0$ и $\delta(\varepsilon)=\frac{\varepsilon}{e^{\alpha}}$. Потребуем, чтобы $\left|x(0)-\varphi(0)\right|=|C|<\delta$. Из этого следует, что для всех $t\geqslant0$

$$|x(t) - \varphi(t)| = |C|e^{A(t)} < \delta e^{\alpha} = \varepsilon.$$

Таким образом, устойчивость решения установлена. Теорема полностью доказана.