# Algorithms for Approximating the Normalizing Constant of the G-Wishart Distribution

Bokgyeong Kang

Pennsylvania State University bxk487@psu.edu

December 3, 2019

## Gaussian Graphical Models

Useful: Understanding dependence relationship between variables.

- Let G=(V,E) be an undirected graph.
- The vertices V is associated with a p-dimensional vector  $\mathbf{X}$ ,

$$\mathbf{X} = (X_1, \cdots, X_p)^{\top} \sim N_p(0, \Sigma), \quad \mathbf{K} = \Sigma^{-1},$$

where  $K_{ij} = 0$  if  $X_i$  and  $X_j$  are conditionally independent.

Example: A 4-dimensional cycle graph.



$$\mathcal{K} \sim \mathcal{N}_5(0, \Sigma)$$
 
$$\mathcal{K} = \left( \begin{array}{cccc} * & * & * & 0 \\ * & * & 0 & * \\ * & 0 & * & * \\ 0 & * & * & * \end{array} \right)$$

### The G-Wishart Distributions

$$\mathbf{X} = (X_1, \cdots, X_p)^{\top} \sim N_p(0, \Sigma), \quad K = \Sigma^{-1},$$

Interest: Bayesian inference on K.

The G-Wishart distribution is a conjugate prior for K.

(prior) 
$$K|G \sim W_G(\delta, D)$$
 (1)

(posterior) 
$$K|(X,G) \sim W_G(\delta^*,D^*)$$
 (2)

Computational challenge: If  $K \sim W_G(\delta, D)$ ,

$$P(K|G) = \frac{1}{I_G(\delta, D)} exp\{h_{\delta, D}(K)\}.$$
 Intractible!

Goal of this project: Compare two existing methods to approximate it.

Monte Carlo method vs. Laplace method

## Monte Carlo Approximation (Atay-Kayis and Massam, 2005)

Goal: Approximate  $I_G(\delta, D) = \int e^{h_{\delta,D}(K)} dK$ 

Theorem: Atay-Kayis and Massam (2005)

$$I_G(\delta, D) = C_{\delta, D} \frac{E}{E} [f_D(\psi_{\mathcal{V}})]$$
  
$$\psi_{ii} \sim \sqrt{\chi_{\delta, \mathcal{V}_i}^2}, \quad i = 1, \dots, p,$$
  
$$\psi_{ij} \sim N(0, 1), \quad (i, j) \in \{(i, j) \in \mathcal{V} : i \neq j\},$$

where  $\mathcal{V}$  is the set of indices of the free elements.

#### Idea: Use Monte Carlo method.

- 1. Generate  $\psi_{ii}^{(1)}, \cdots, \psi_{ii}^{(N)}$  from  $\sqrt{\chi_{\delta,\nu_i}^2}, \quad i=1,\cdots,p$
- 2. Generate  $\psi_{ii}^{(1)}, \dots, \psi_{ii}^{(N)}$  from  $N(0,1), (i,j) \in \{(i,j) \in \mathcal{V} : i \neq j\}$

$$\hat{I}_G^{mc}(\delta, D) = C_{\delta, D} \frac{1}{N} \sum_{\ell=1}^N f_D(\psi_{\mathcal{V}}^{(\ell)})$$

## Laplace Approximation (Lenkoski and Dobra, 2011)

Motivation: In MC, the number of iterations relies on the dimension.

Goal: Efficiently approximate  $I_G(\delta, D) = \int e^{h_{\delta,D}(K)} \prod_{(i,j) \in \mathcal{V}} dK_{ij}$ .

Idea: Use Taylor's expansion and Gaussian assumption to approximate integrals of the form  $\int e^{h(x)} dx$ .

Suppose h(x) has an unique global maximum at  $\hat{x}$ .

$$h(x) \approx h(\hat{x}) - \frac{1}{2} |h''(\hat{x})| (x - \hat{x})^2$$
 : Taylor's theorem (3)

$$\int e^{h(x)} dx \approx e^{h(\hat{x})} \int e^{-\frac{1}{2}|h''(\hat{x})|(x-\hat{x})^2} dx \tag{4}$$

$$\approx (2\pi)^{1/2} |h''(\hat{x})|^{-1/2} e^{h(\hat{x})} \quad :: x \sim N(\hat{x}, |h''(\hat{x})|^{-1}) \quad (5)$$

Approximation to  $I_G(\delta, D)$ :

$$\hat{I}_G^{lap}(\delta,D) = (2\pi)^{|\mathcal{V}|/2} [\det|H_\delta(\hat{\mathbf{K}})|]^{-1/2} e^{h_{\delta,D}(\hat{\mathbf{K}})} = J_{\delta,D}(\hat{\mathbf{K}})$$

## Laplace Approximation (Lenkoski and Dobra, 2011)

## Approximation to $I_G(\delta, D)$ :

$$\hat{l}_G^{lap}(\delta,D) = (2\pi)^{|\mathcal{V}|/2} [\det \lvert H_\delta(\hat{\mathbf{K}}) \rvert]^{-1/2} e^{h_{\delta,D}(\hat{\mathbf{K}})} = J_{\delta,D}(\hat{\mathbf{K}}),$$

where  $\hat{\mathbf{K}}$  is the mode of  $h_{\delta,D}(K)$  (i.e., the mode of  $W_G(\delta,D)$ ) and is obtained by an iterative algorithm called "iterative proportional algorithm".

#### Properties of the Laplace approximation:

- The accuracy of the approximation depends on the degree to which the density resembles a Gaussian distribution.

  - We assumed that  $\mathbf{K} \sim N(\hat{\mathbf{K}}, |H_{\delta}(\hat{\mathbf{K}})|^{-1}).$  As  $\delta$  increases, the variance for each  $K_{ij}$  decreases.
- The number of iterations does not depend on the dimension, p.

# Simulation Study

## Simulation settings: Approximation to $I_G(\delta, D)$

- $\delta \in \{3, 10, 25, 50, 100\}$
- $p \in \{5, 20, 100, \frac{200}{500}\}$
- G is a p-dimensional cycle graph
- D is an arbitrary matrix that allows the normalizing constant to be finite.
- N = 25,000 (MC sample size)

#### As $\delta$ increases: when p = 5

|                                   | δ       |         |         |         |         | Time (sec) |
|-----------------------------------|---------|---------|---------|---------|---------|------------|
|                                   | 3       | 10      | 25      | 50      | 100     | Time (sec) |
| 1îmc(\$ D)                        | 14.201  |         | 166.236 | 407.693 | 975.966 | 14.104     |
| $log \hat{I}^{mc}_{G}(\delta, D)$ | (8e-04) | (3e-04) | (9e-06) | (3e-08) | (2e-14) | 14.104     |
| $log \hat{I}_G^{lap}(\delta, D)$  | 11.068  | 50.044  | 166.149 | 407.618 | 977.033 | 0.069      |

# Simulation Study

## As *p* increases:



#### Conclusion

#### Based on the simulation study:

- The Monte Carlo method is accurate but computationally demanding for a high-dimensional dataset.
- The Laplace method is computationally efficient even for the high dimension.
- The Laplace method approximates  $I_G(\delta, D)$  better for larger values of  $\delta$ .

#### Recommendation:

- For small  $\delta$ , Monte Carlo method.
- For large  $\delta$  or very high-dimensional data, Laplace method.