AOCO (1ª parte): Questões e exercícios adicionais (soluções)

As questões de escolha múltipla (secção 1) e os problemas de resposta aberta (secção 2) foram retirados de testes de AOCO dos anos anteriores.

1 Questões de escolha múltipla

1. Considere os números sem sinal S=10110000 $_2$ e T=00110111 $_2$. O resultado da operação S-T é:

A. 01101001₂ B. 01011001₂ C. 01111101₂ **D. 01111001₂**

2. Qual das seguintes funções **não** é equivalente a $F(A, B, C) = (A + B) \cdot (\overline{B} + C)$?

A. $F(A, B, C) = (A + B + A) \cdot (\overline{B} + B \cdot C)$

B. $F(A, B, C) = \overline{\overline{B} + \overline{C}} + A \cdot \overline{B}$

C. $F(A, B, C) = B \cdot C + A \cdot \overline{B}$

D. $F(A, B, C) = \overline{B} \cdot C + A \cdot B$

3. A representação hexadecimal do número X no formato IEEE-754 é C0700000. Indique o valor decimal de X.

A. −3,75 B. −2,75 C. 5 D. −3

- 4. Quantas linhas da tabela de verdade da função $F(X,Y,Z) = \overline{X} \cdot \overline{Y} + \overline{X} \cdot Y \cdot Z + \overline{X} \cdot Z$ estão a 1? A. 5 B. 7 C. 4 **D. 3**
- 5. Que conjunto de circuitos **não** permite implementar todas as funções booleanas possíveis? A. {OR2, NOT} B. {MUX4:1} C. {NAND2} **D. {AND2, OR2}**
- 6. A figura apresenta um circuito com flip-flops D e um multiplexador de 2 para 1.

Considere que o valor inicial na saída dos *flip-flops* é 0. Indique o estado do circuito, $Q_2Q_1Q_0$, após quatro transições do sinal de relógio.

A. 110 B. 101 C. 000 D. 111

7. No sistema de memória de um CPU com 16 bits de endereço e 8 bits de dados, o sinal de *chip select* de uma memória RAM de 8 KiB é definido por $CS = \overline{A_{15}} \cdot A_{13}$. Que endereços do CPU são mapeados nessa memória?

A. 2000_H – $5FFF_H$

B. 2000_H –7FFF_H

C. 2000_{H} – $3FFF_{H}$ e 6000_{H} – $7FFF_{H}$

D. 4000_{H} –5FFF_H e 8000_{H} -9FFF_H

8. No seguinte circuito, a entrada I_0 do codificador de prioridade é a entrada de menor prioridade.

Suponha que as entradas (DCBA) assumem sucessivamente os valores (0110), (1010) e (0001). Então, a saída Z assume sucessivamente os valores:

- A. L, L, K
- B. M, N, K
- C. M, N, L
- D. L, K, M
- 9. A saída F do circuito mostrado abaixo repete-se a cada 8 períodos do sinal de relógio CLK ligado a um contador binário.

O padrão repetido é:

- A. 01111101
- B. 01101111
- C. 101111110
- D. 01110101
- 10. O intervalo de números inteiros representáveis em complemento para dois com 7 bits é:

 - A. [-63; 63] **B. [-64; 63**] C. [0; 127] D. [-64; 64]

- 11. Qual das seguintes expressões booleanas é equivalente a $X \cdot Y + \overline{X} \cdot Y \cdot Z$?
 - **A.** $Y \cdot (X + \overline{Y} + Z)$
- B. $\overline{X \cdot Y} + \overline{\overline{X} \cdot Y \cdot Z}$
- C. $(\overline{X} + \overline{Y}) \cdot (X + \overline{Y} + \overline{Z})$
- D. $\overline{(X \cdot Y)} \cdot \overline{(X \cdot \overline{Y} \cdot \overline{Z})}$
- 12. Quantos bits tem um barramento de endereços de um banco de 64 registos de 32 bits?
 - A. 32 B. 64 **C. 6** D. 5
- 13. Um CPU tem um barramento de dados de 8 bits e um barramento de endereços de 20 bits. Pretende-se dotar o sistema de uma memória RAM de $2^{15} \times 8$ bit, cuja primeira posição corresponda ao endereço $\mathrm{D4000_{H}}$. Qual é o endereço da última posição assumindo descodificação total?
 - A. DFFFF_H B. D7FFF_H C. D4FFF_H **D. DBFFF_H**
- 14. Considere a representação em complemento para dois com 8 bits. O menor número que pode ser somado a 001011002 sem causar overflow é:
 - A. 11010100₂ **B. 10000000₂** C. 10101100₂ D. 11111111₂

- 15. Um parque de estacionamento tem 350 lugares. O sistema de *hardware* que controla as entradas guarda o número de lugares ocupados num registo com N bits. Qual é o menor valor possível de N?
 - A. 8 **B. 9** C. 11 D. 10
- 16. Considere os números $S = 1010111_2$ e $T=0111000_2$. Tendo em conta que os números estão representados em sinal e grandeza com 7 bits, o resultado da operação binária S+T é:
 - A. Não é possível representar com 7 bits B. 0101001 C. 1001111 **D. 0100001**
- 17. Considerar o circuito da figura em que inicialmente $B_2 = B_1 = 0$ e $B_0 = 1$.

Após 5 ciclos de relógio, o estado do sistema é:

A.
$$B_2 = 1$$
 $B_1 = 0$ $B_0 = 1$

B.
$$B_2 = 1$$
 $B_1 = 1$ $B_0 = 1$

C.
$$B_2 = 0$$
 $B_1 = 1$ $B_0 = 1$

D.
$$B_2 = 0$$
 $B_1 = 0$ $B_0 = 1$

18. Um CPU tem um barramento de endereços de 18 bits e um barramento de dados de 8 bits. Supor que apenas dispõe de circuitos RAM com 64 KiB (com 8 bits por posição). Quantos circuitos RAM são necessários para dotar o sistema da maior capacidade de memória possível?

19. Considere o seguinte circuito e a forma de onda gerada.

Para t = 0, $Q_1Q_0 = 00$. Quais são os valores das entradas $A_3A_2A_1A_0$?

20. Considere a figura seguinte.

O circuito realiza a função: A. $\overline{A \cdot \overline{B} + \overline{A} \cdot B}$ B. $\overline{A \cdot B}$ C. $(A + B) \cdot \overline{(A + B)}$ **D.** $A \oplus B$

2 Problemas de resposta aberta

- 1. A representação em formato IEEE 754 (precisão simples) de B é $40\text{A}00000_{16}$. Seja $A = -2.5_{10}$.
 - (a) Converter A para o formato IEEE 754 e apresentar o resultado da conversão em hexadecimal.

A é negativo: sinal é 1.

$$2,5_{10} = 10,1_2 = 1,01 \times 2^1$$

Expoente codificado é $127+1 = 128 = 10000000_2$

Codificação de A: 1 | 10000000 | 01000...0 = C0200000₁₆

(b) Apresentar todos os passos do cálculo de $A \times B$ (em binário).

Codificação de *B*: 0 | 10000001 | 01000...0

- 1. Sinal: negativo (operandos com sinais diferentes)
- 2. Expoente: 10000000 + 10000001 = 100000001 Subtraindo 127₁₀: 100000001 - 01111111 = 10000010
- 3. Produto das mantissas: $1,01 \times 1,01 = 1,1001$
- 4. Normalização: desnecessária.

O resultado é: $1 \mid 10000010 \mid 100100...0 = C1480000_{16}$.

- 2. Considere os números X e Y cujos valores decimais são respetivamente -57 e 71. Considere também $Z = ACO_{16}$.
 - (a) Determine o valor decimal *Z* considerando que este é um número sem sinal.

$$Z = 10 \times 16^2 + 12 \times 16^1 = 2752_{10}$$

(b) Represente *X* e *Y* em complemento para 2 com 10 bits.

$$X = 1111000111_2$$
 e $Y = 0001000111_2$

(c) Qual deve ser o tamanho mínimo da representação de X e Y para que não ocorra *overflow* na operação X-Y?

$$X - Y = -57 - 71 = -128$$

Como a gama de representação com N bits, em complemento para 2, é $[-2^{N-1}; 2^{N-1}-1]$, é necessário ter no mínimo N=8.

- 3. Considerando a norma IEEE-754 para a representação de números em vírgula flutuante de 32 bits, responda às seguintes questões.
 - (a) Indique o valor decimal do número representado por BEA00000₁₆.

Como primeiro bit é 1, o sinal do número é negativo.

Expoente Real: $011111101_2 - 011111111_2 = 125 - 127 = -2$

Valor da Mantissa: $1.010000_2 = 2^0 + 2^{-2} = 1.25$

Valor decimal: –Valor da Mantissa \times 2^{Expoente} = $-1.25 \times 2^{-2} = -1.25 \times 0.25 = -0.3125$

(b) Para o caso de um expoente real igual a 4, indique o valor máximo representável. Apresente o resultado em notação hexadecimal.

O maior número representável deve ser positivo e ter a maior mantissa possível. Assim o bit de sinal será 0 e a mantissa será $1,11111(...)_2$.

Quanto ao expoente, dado que o expoente real é 4:

Expoente_{Real} = $00000100_2 + 011111111_2 = 10000011_2$

A correspondente representação em hexadecimal é: 41FFFFFF₁₆

(c) A representação dos números reais X e Y no formato IEEE-754 é:

 $X: 40E00000_{16}$ $Y: 42040000_{16}$

Realize a operação X+Y (sem conversão para decimal), indicando todos os passos.

$$\operatorname{Exp}_X = 10000001_2 - 011111111_2 = 00000010_2 \quad (= 2_{10})$$

$$\operatorname{Exp}_{Y} = 10000100_{2} - 011111111_{2} = 00000101_{2} \quad (=5_{10})$$

 $Mant_X = 1,11_2$

 $Mant_Y = 1,00001_2$

Como o valor absoluto de X é menor que o de Y, a mantissa de X deve ser deslocada de $00000101_2-00000010_2=00000011_2$ (= 3_{10}) posições para a direita.

 $Mant_X = 0.00111_2$ (expoente comum aos dois números é $00000101_2 = 5_{10}$)

Somando as mantissas: $0.00111_2 + 1.00001_2 = 1.01000_2$

Como o resultado da soma está normalizado, o resultado final é:

4. A figura mostra um circuito, com duas entradas A e B, e uma saída F(A, B), composto por um descodificador de 2 para 4 e um multiplexador de 4 para 1.

(a) Determine F(1,0).

AB=10 à entrada do descodificador ativa a saída Y_2 , i.e., $Y_2=1$, permanecendo as restantes saídas em 0. As entradas de seleção do multiplexador com AB=10 determinam a seleção da entrada D_2 , encaminhando o valor nela presente (0) para a saída F. Portanto, F(1,0)=0.

(b) Defina a função F(A, B) realizada pelo circuito numa tabela de verdade.

Aplicando o procedimento usado na alínea anterior às restantes combinações das entradas A e B obtém-se: A B F

 $\begin{array}{c|cccc} A & B & F \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$

5. O sistema de controlo de um frigorífico regista a temperatura em décimos de grau centígrado usando números inteiros. A gama de temperaturas prevista vai de −20 °C a 10 °C. Indique uma representação binária apropriada com o menor número possível de bits. Cada valor da temperatura deve ter uma representação única.

Como há valores positivos e negativos, deve usar-se uma representação com sinal. A representação em sinal e grandeza tem dois códigos para o valor 0. Portanto, usar a representação em complemento para dois.

Em décimos de grau, a gama a representar é [-200; 100]. São necessários 9 bits (gama [-256; +255]), porque a gama da representação em complemento para dois com N bits é [- 2^{N-1} ; 2^{N-1} -1]

- 6. A representação em formato IEEE 754 (precisão simples) de $B \in 40A00000_{16}$. Seja $A = -2.5_{10}$.
 - (a) Converter *A* para o formato IEEE 754 e apresentar o resultado da conversão em hexadecimal.

A é negativo: sinal é 1.

$$2.5_{10} = 10.1_2 = 1.01 \times 2^1$$

Expoente codificado é $127+1 = 128 = 10000000_2$

Codificação de A: 1 | 10000000 | 01000...0 = C0200000₁₆

(b) Apresentar todos os passos do cálculo de $A \times B$ (em binário).

Codificação de *B*: 0 | 10000001 | 01000...0

- 1. Sinal: negativo (operandos com sinais diferentes)
- 2. Expoente: 10000000 + 10000001 = 100000001Subtraindo 127_{10} : 100000001 - 011111111 = 10000010
- 3. Produto das mantissas: $1,01 \times 1,01 = 1,1001$

- 4. Normalização: desnecessária.
- O resultado é: $1 \mid 10000010 \mid 100100...0 = C1480000_{16}$.
- 7. A função booleana $F(X_2, X_1, X_0)$ tem o valor 1 se e só se o número de três bits $X_2X_1X_0$ for múltiplo inteiro (não-nulo) de 2 ou 3.
 - (a) Preencher a tabela de verdade de *F* apresentada a seguir.

X_2	X_1	X_0	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

(b) Determinar a representação de *F* como soma de produtos simplificada.

$$F = \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C} = \overline{A} \cdot B + A \cdot \overline{C}$$

(c) Apresentar o circuito lógico que implementa a função F.

(d) No circuito da figura, o bloco F implementa a função F. Explicar em que situações é que a saída $G(Y_2, Y_1, Y_0, Z_2, Z_1, Z_0)$ toma o valor 1.

A porta XNOR é 1 sempre que as suas entradas são iguais.

Portanto, G = 1 sempre que os valores A_2 , A_1 , A_0 e B_2 , B_1 , B_0 são ambos múltiplos de 2 ou 3, ou então quando nenhum dos valores é múltiplo de 2 ou 3. No primeiro caso,

não é necessário que sejam o mesmo múltiplo. Por exemplo, o número A_2, A_1, A_0 pode ser múltiplo de 3 e B_2, B_1, B_0 múltiplo de 2.

8. Considere o circuito sequencial indicado na figura.

(a) Assumindo que inicialmente $Z_1 = Z_2 = Z_3 = 1$, apresentar a forma de onda da saída F para a sequência de valores da entrada X indicada. (Usar o diagrama apresentado a seguir).

- (b) Explicar a finalidade do circuito. Quando é que se tem F = 1?
 - O sinal Z_1 é igual ao valor de X no ciclo anterior.
 - O sinal Z_2 é igual ao valor de X dois ciclos antes.
 - O sinal Z_3 é igual ao valor de X três ciclos antes.

Como $F=\overline{Z_1}\cdot Z_2\cdot Z_3$, a saída vem a 1 (um) sempre que valores sucessivos da entrada X constituem a sequência 110. (O circuito deteta a sequência 110.)

9. Simplificar algebricamente a seguinte expressão booleana: $\overline{A \cdot B + A \cdot C} + \overline{A} \cdot \overline{B} \cdot C$.

$$\overline{A \cdot B} + A \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C = \overline{A \cdot B} \cdot \overline{A \cdot C} + \overline{A} \cdot \overline{B} \cdot C$$

$$= (\overline{A} + \overline{B}) \cdot (\overline{A} + \overline{C}) + \overline{A} \cdot \overline{B} \cdot C$$

$$= \overline{A} + \overline{A} \cdot \overline{C} + \overline{A} \cdot \overline{B} + \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C$$

$$= \overline{A} \cdot (1 + \overline{C} + \overline{B} + \overline{B} \cdot C) + \overline{B} \cdot \overline{C}$$

$$= \overline{A} + \overline{B} \cdot \overline{C}$$

10. Um multiplexador 6:1 tem três entradas de seleção e 6 entradas de dados.

(a) Mostrar como se constrói um multiplexador 6:1 a partir de multiplexadores 2:1 e 4:1.

(b) Os valores das entradas de seleção do multiplexador 6:1 permitem especificar 8 valores diferentes. Indicar qual a entrada selecionada para cada valor (de acordo com o circuito apresentado na alínea anterior).

S_2	S_1	S_0	Entrada ligada à saída
0	0	0	I_0
0	0	1	I_1
0	1	0	I_2
0	1	1	I_3
1	0	0	I_4
1	0	1	I_5
1	1	0	I_4
1	1	1	I_5

- 11. A função booleana $F(A_1, A_0, B_1, B_0)$ tem o valor 1 se e só os números de 2 bits A_1A_0 e B_1B_0 diferirem exatamente de uma unidade.
 - (a) Preencher a tabela de verdade de *F* apresentada a seguir.

A_1	A_0		B_0	F	_	A_1	A_0	B_1	B_0	F
0	0	0	0	0		1			0	
0	0	0	1	1		1	0	0	1	1
0	0	1	0	0		1			0	
0	0	1	1	0		1	0	1	1	1
	1					1	1	0	0	0
0	1	0	1	0		1	1	0	1	0
0	1	1	0	1		1	1	1	0	1
0	1	1	1	0		1	1	1	1	0

(b) Mostrar que $F(A_1, A_0, B_1, B_0) = \overline{A_0} \cdot \overline{B_1} \cdot B_0 + \overline{A_1} \cdot A_0 \cdot \overline{B_0} + A_0 \cdot B_1 \cdot \overline{B_0} + A_1 \cdot \overline{A_0} \cdot B_0$.

Termo	Condição para termo = 1	Linhas da tabela de verdade
$\overline{A_0} \cdot \overline{B_1} \cdot B_0$	$A_0 = 0, B_1 = 0, B_0 = 1$	1, 9
$\overline{A_1} \cdot A_0 \cdot \overline{B_0}$	$A_1 = 0, A_0 = 1, B_0 = 0$	4, 6
$A_0 \cdot B_1 \cdot \overline{B_0}$	$A_0 = 1, B_1 = 1, B_0 = 0$	6, 14
$A_1 \cdot \overline{A_0} \cdot B_0$	$A_1 = 1, A_0 = 0, B_0 = 1$	9, 11

As linhas indicadas são exatamente as linhas que estão a 1 na tabela de verdade da alínea anterior, pelo que a expressão corresponde à função definida pela tabela.

Alternativa: construir a expressão soma-de-produtos a partir da tabela da alínea anterior e simplificar.

12. (a) O circuito M indicado na figura tem duas entradas de 4 bits $A = A_3 A_2 A_1 A_0$ e $B = B_3 B_2 B_1 B_0$. Indicar, justificando, qual é a função do circuito M?

A saída vem a 1 sempre que todas as entradas da porta lógica NOR sejam 0. Isso acontece quando os bits correspondentes de *A* e *B* são iguais.

O circuito é um comparador de igualdade: a saída fica a 1 apenas quando $A_3A_2A_1A_0=B_3B_2B_1B_0$.

(b) O circuito M é usado no circuito síncrono (sinal de relógio CLK) indicado na figura, que inclui ainda um registo de 4 bits e um contador de 5 bits. O circuito tem uma entrada *X* de 4 bits e usa saída *Y* de 5 bits. Assumir que a entrada *X* está sincronizada com o sinal de relógio CLK.

Assumindo que inicialmente Y=0 e que o conteúdo do registo é o valor 7, determinar o valor da saída (valor inicial e nos 8 ciclos seguintes) para a seguinte sequência de valores de X (um valor por ciclo): **11, 5, 5, 9, 3, 3, 3, 2, 2.**

Notar que $EN = \overline{M}$ e que Q = (valor de X no ciclo anterior). O contador incrementa a sua saída sempre que EN = 1 (na passagem do ciclo anterior para o atual).

ciclo	X	Q	M	EN	Y
inicial	11	7	0	1	0
1	5	11	0	1	1
2	5	5	1	0	2
3	9	5	0	1	2
4	3	9	0	1	3
5	3	3	1	0	4
6	3	3	1	0	4
7	2	3	0	1	4
8	2	2	1	0	5

Os valores de *Y* em ciclos sucessivos são (em decimal): 0 (valor inicial), 1, 2, 2, 3, 4, 4, 4, 5.

(c) Explicar a funcionalidade do circuito da alínea anterior.

O sinal de habilitação do contador (EN) está ativo (a 1) sempre que os valores de X e Q são diferentes. Em cada ciclo, Q é igual ao valor da entrada no ciclo anterior. Portanto, o circuito conta o número de alterações de valor da entrada X.

Fim.