Projeto e Análise de Algoritmos Caminho Mínimo

Eriel Bernardo Albino, Lucas Fernandes Gauer e Nicolas Beraldo Junho de 2019

1 Problemas

O primeiro problema se baseia em uma rede de 10 computadores onde há múltiplas conexões entre eles.

Figura 1: Grafo exemplificando a rede

No grafo da figura 1 podemos visualizar com facilidade a organização da rede e a ligações entre os computadores. Os vértices são os computadores e as arestas o tempo de comunicação entre os computadores.

O segundo problema pode ser visualizado na figura 2. Esse grafo representa um mapa, onde os vértices são cidades e as arestas são as distâncias e as velocidades médias dos trajetos.

Figura 2: Grafo exemplificando o mapa

Busca-se saber, em ambos os problemas, qual é o melhor trajeto. Para isso temos que ver quais caminhos gastam menos tempo, esses tipos de problemas são conhecidos como problemas de caminhos mínimos.

2 Modelagem

Para iniciar a solução do problema primeiro temos que montar uma matriz de adjacência que represente os grafos corretamente

O grafo representado na figura 1 pode ser visualizado na matriz mostrada na figura 3, onde os vértices estão comentados e os valores para se ir de um vértice ao seu adjacente estão listados no elemento que combina os vértices, a variável "Z" representa "infinito", ou seja, não há adjacência entre os vértices.

```
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
{0, 5, Z, 5, 9, Z, Z, Z, Z, Z }, // 0
{5, 0, 4, 4, 9, 3, Z, Z, Z, Z }, // 1
{Z, 4, 0, Z, Z, 2, Z, Z, Z, Z }, // 2
{5, 4, Z, 0, 3, Z, 5, 6, Z, Z }, // 3
{9, 9, Z, 3, 0, Z, 9, 4, Z, Z }, // 4
{Z, 3, 2, Z, Z, 0, Z, 7, 1, Z }, // 5
{Z, Z, Z, 5, 9, Z, 0, 6, Z, 10}, // 6
{Z, Z, Z, Z, Z, 1, Z, 2, 0, Z }, // 8
{Z, Z, Z, Z, Z, Z, Z, 10,3, Z, 0 } // 9
```

Figura 3: Matriz problema 1

Nas figuras a seguir são representadas as matrizes de adjacência das velocidades e das distâncias entre as cidades.

```
{0,
       20,
             35,
                   0,
                          0,
                                0,
                                       200, 0,
{20,
                                                   0,
       0,
             0,
                    0,
                          5,
                                100, 0,
                                             0,
{35,}
                                       60,
                                             53,
       0,
             0,
                    120, 0,
                                0,
                                0,
                                             73,
                          60,
                                                   200.
{0,
       0,
             120, 0,
                                      0,
                    60,
                          0,
                                       0,
                                             0,
       100, 0,
                    0,
{0,
                          0,
                                0,
                                      0,
                                             0,
                                      0,
{200, 0,
                                             15,
             60,
                   0,
                          0,
                                0,
                                                   0,
<0,
                   73,
                                       15,
                                             0,
                          0,
{0,
                    200, 0,
                                      0,
                                             10,
       0,
                                      0,
{0,
```

Figura 4: Matriz problema 2 das velocidades

```
D,
                                             Η,
{0,
       60,
             20,
                    0,
                          0,
                                       90,
                                             0,
                                                    0,
{60,
             0,
                          10,
                                 40,
                                       0,
                                             0,
                                                    0,
                    0,
{20,
                    300,
                                       95,
                                             113, 0,
       0,
                          0,
                                 0,
             0,
              300, 0,
                          20.
                                             62.
                                                    100.
{0,
       0,
                                 0,
                                       0,
       10,
             0,
                    20,
                          0,
                                 0,
                                                    0,
       40,
                                                    69,
{0,
             0,
                    0,
                          0,
                                 0,
                                       0,
                                             0,
                          0,
                                             25,
{90,
             95,
                    0,
                                 0,
       0,
                                       0,
                                                    0,
<0,
                    62,
                          0,
                                 0,
                                             0,
                    100,
                                             60,
                                 69,
                                       0,
                                             0,
{0,
             0,
                                 150, 0,
                                                    460,
```

Figura 5: Matriz problema 2 das distâncias

3 Código

O código para determinar o caminho mínimo está em anexo ao relatório, nesta parte iremos ressaltar as partes cruciais para a resolução do problema. Foi utilizado o algoritmo de Floyd no código.

No trecho de código a seguir estamos determinando os tempos da matriz de adjacência do problema 2 pois são dadas distâncias e velocidades no problema.

```
for(int i = 0; i < N; ++i) {
    for(int j = 0; j < N; ++j) {
        // caso seja o proprio vertice
        if(i == j)
            original[i][j] = 0;
        // caso nao haja conexao entre os vertices
        else if(m_Vel[i][j] == 0)
            original[i][j] = Z;
        // caso haja uma conexao entre os vertices
        else
            original[i][j] = m_Dist[i][j] / m_Vel[i][j];
    }
}</pre>
```

Como é possível observar no código há 3 "if", ou condicionais. Quando os vértices relacionados são os mesmo é atribuído uma valor zero. Se não há valor de velocidade não há conexão entre os vértices, logo é atribuído infinito. Por último, se os casos anteriores não ocorrerem, se faz a divisão da distância pela velocidade para se definir o tempo.

Ao finalizar essa parte teremos a matriz de adjacência dos custos por tempo de cada aresta. No caso do problema 1 a matriz fornecida já é a matriz dos custos.

```
for (int k = 0; k < N; ++k)
    copiar (atual, anterior);
    for (int i = 0; i < N; ++i){
        // caso seja o mesmo vertice
        if(i = k) continue;
        // caso o custo seja infinito
        if (atual[i][k] = Z) continue;
        for (int j = 0; j < N; ++j){
            // caso seja o mesmo vertice
            if(j = k) continue;
            // caso o custo seja infinito
            if (atual [k] [j] = Z) continue;
            // compara o caminho atual a um alternativo
            atual[i][j] =
                min(anterior[i][j], anterior[i][k] + anterior[k][j]);
        }
   }
```

No trecho de código apresentado acima temos a implementação do algoritmo de Floyd similiar ao pseudocódigo visto em aula. Nesse método, atualizamos a nova matriz usando a matriz anterior de base ao fazer o mínimo entre dois elementos, os quais são escolhidos usando a seguinte lógica: $D_{ij}^k = min(D_{ij}^{k-1}, (D_{ik}^{k-1} + D_{kj}^{k-1}))$. Essa relação de mínimo faz a comparação entre os caminhos. Para o caso da primeira iteração os primeiros elementos a serem testados são o de custos de adjacência e um custo de caminho alternativo para o mesmo destino, para o resto dos casos são comparados os custos dos caminhos calculados anteriormente, assim a cada interação teremos uma matriz de custos de vértice a vértice e no fim teremos uma matriz que mostrará o custo dos menores caminhos de todos os vértices para todos os vértices.

4 Resolução

Na figura 6 temos a saída dos melhores caminhos entre os vértices e quais vértices nunca serão usados no problema 1, assim evitando transtornos na implementação da rede. Para o entendimento do problema foi padronizado que os vértices vão de 0 a 9 e são lidos da esquerda para direita de cima para baixo.

O formato de saída é: matriz de custos inicial, matriz de custos final e listagem de arcos não utilizados.

0.00 5.00 5.00 9.00 i i i	5.00 0.00 4.00 4.00 9.00 3.00 i	i 4.00 0.00 i i 2.00 i i	5.00 4.00 i 0.00 3.00 i 5.00 6.00 i	9.00 9.00 i 3.00 0.00 i 9.00 4.00 i	i 3.00 2.00 i 0.00 i 7.00 1.00	i i 5.00 9.00 i 0.00 6.00 i 10.00	i i 6.00 4.00 7.00 6.00 0.00 2.00 3.00	i i i i 1.00 i 2.00 0.00 i	i i i i 10.00 3.00 i 0.00
O arco O arco O arco	5.00 0.00 4.00 7.00 3.00 9.00 6.00 4.00 9.00 entre 0 entre 1 entre 5 entre 6	e 4 não e 6 não e 7 não	é utili é utili	zado. (B, zado. (E, zado. (F,	E)	10.00 9.00 11.00 5.00 8.00 9.00 0.00 6.00 8.00 9.00	11.00 6.00 5.00 6.00 4.00 3.00 6.00 0.00 2.00 3.00	9.00 4.00 3.00 8.00 6.00 1.00 8.00 2.00 0.00 5.00	14.00 9.00 8.00 9.00 7.00 6.00 9.00 3.00 5.00

Figura 6: Resultado do código para o problema 1

Na figura 7 temos as respostas para o problema 2

0.00 3.00 0.57 i i 0.45 i i	3.00 0.00 i i 2.00 0.40 i i i	0.57 i 0.00 2.50 i 1.58 2.13 i	i 2.50 0.00 0.33 i 0.85 0.50	i 2.00 i 0.33 0.00 i i i 0.38	i 0.40 i i 0.00 i 1.86 2.00	0.45 i 1.58 i i 0.00 1.67 i	i 2.13 0.85 i 1.67 0.00 6.00 i	i i 0.50 i 1.86 i 6.00 0.00 5.11	i i i 0.38 2.00 i i 5.11 0.00
O arco		e 8 não	é utili			0.45 3.45 1.02 2.52 2.85 3.85 0.00 1.67 3.02 3.22	2.12 3.18 2.13 0.85 1.18 3.21 1.67 0.00 1.35 1.56	3.47 2.26 3.00 0.50 0.83 1.86 3.02 1.35 0.00 1.21	3.67 2.38 3.21 0.71 0.38 2.00 3.22 1.56 1.21 0.00

Figura 7: Resultado do código para o problema 2

5 Considerações finais

Ainda que pareça que a utilização de grafos seja trivial em problemas consideravelmente grandes, são necessários um estudo detalhado e um algoritmo de qualidade para obter resultados eficazes. Na área da computação os grafos são utilizados para rotear as trilhas dos circuitos impressos para diminuir o tamanho das placas e consequentemente reduzir o custo de produção.