Table 1. Hypotheses for covariates affecting landings. S_t is quarter 3 (July-September) catch in the current season, S_{t-1} is quarter 3 catch in the previous season. N_t is the post-monsoon October-March catch in the current season and N_{t-1} is the October-March catch in the prior season. Because the fishing season is July-June, N_t spans two calendar years.

Stage	Hypothesis	Resp.	Covariates
Age	DD1. S_t is dominated by mature age 2+ fish, thus	S_t	N_{t-1}
2+	abundance of the 1-yr and 2-yr ages in the prior season		
	(Oct-Jun catch) should be correlated with the		
	abundance of mature fish this year.		
Age	DD2. Abundance of 1-yr and 2-yr fish should be	N_t	S_{t-1} and S_{t-2}
1-2	correlated with strength of the cohorts from the		
	previous two seasons. The quarter 3 catch, dominated by mature fish, in the prior two years is expected to be		
	correlated with post-monsoon catch.		
Age	DD3. Because age 2 fish also appear in the	N_t	N_{t-1}
2+	post-monsoon catch, we also expect the post-monsoon	l ''t	111-1
- 1	catch in the previous season to be correlated with the		
	post-monsoon catch in the current season.		
Spawn	S1. The onset of monsoon precipitation triggers	S_t	Seasonal
	movement of adults from offshore to spawning areas due		precipitation
	to changes in salinity, turbulence or noise. Spent adults		anomaly during
	migrate inshore and are exposed to the fishery.		Jun-Jul in year t
Spawn	S2. The level of precipitation in pre-monsoon predicts	S_t	Seasonal
	spawning strength.		precipitation
			anomaly during
	CO T COTT:	0	Apr-May in year t
Spawn	S3. Low SST is associated with delayed and limited	S_t	Average SST during
	spawning as a behavioral response by adults to avoid exposing larvae to low temperatures associated with		Jun-Sep in year t
	poor survival.		
Spawn	S4. Extremely high upwelling brings poorly oxygenated	S_t	Average upwelling
SP4.11	water to the surface causing sardines to move offshore.		index Jun-Sep, Max
	8		upwelling index
			Jun-Sep in year t
Spawn	S5. Salinity changes due to precipitation or river run-off	S_t	Average Salinity
	trigger spawning. After spawning, spent adult move to		during Jun-Sep in
	inshore waters and are exposed to fishery.		year t

Table 1. Continued.

Stage	Hypothesis	Resp.	Covariates
Larv.	L1. Larval mortality is higher in colder water due to	N_t	Average SST during
	low motility causing increased predation and slower		Jun-Sep, Cum DD
	somatic growth. Low SST is also associated with strong		Jun-Sep in year t-1
	upwelling which advects larvae into offshore waters.		
Larv.	L2. Extremely strong upwelling brings poorly	N_t	Ave. upwelling
	oxygenated water to the surface causing larval mortality		index Jun-Sep, max
	and advects larvae offshore.		upwelling index
			Jun-Sep in year t-1
Juv.	J1. Upwelling is associated with higher productivity	N_t	Ave. upwelling
	and higher density of zooplankton, which leads to better		index Jun-Sep, max
	larval and juvenile growth and survival. Thus the		upwelling index
	strength of upwelling during the monsoon should be		Jun-Sep in year t-1
	associated with higher biomass in subsequent years.		and t-2
Juv.	J2. Chlorophyll blooms are signatures of high	N_t	Ave. Chl-a density
	productivity from nutrient influx either due to		Jun-Dec, Chl-a
	upwelling or coastal inputs. Bloom intensity in prior		density Jun-Dec in
	years should be associated with future sardine biomass.		year t-1 and t-2
All	A1. During the Mar-Apr, the sea temperatures are high	Catch	Ave. SST Q2 year t,
ages	and sardines migrate offshore to avoid high temp.	Q2	max SST Q2 year t
		year t	