X

d) 2000 J/mol

EKSEMPEL PÅ SEMESTERPRØVE TMT4110 KJEMI (kap 9-11)

Aylward & Findlay: SI Chemical Data	t liste.
Det er kun ett riktig svar for hver oppgave. Sett derfor kun ett kryss for hv Dersom to eller flere svar er avgitt for en oppgave bedømmes denne med n	
1. Termodynamikkens første lov kan uttrykkes som	
a) Energien i universet er konstant	X
b) Energien i universet øker med tiden	
c) Energien for et system er konstant	
d) Entropien i verden er konstant	
2. Den eksoterme reaksjonen $\frac{1}{2}$ O ₂ + H ₂ \rightarrow H ₂ O foregår i en lukket beholum. Energiutvekslingen med omgivelsene fører til at	older med konstant vo-
a) den indre energi til beholderen er uendret	
b) den indre energi til beholderen avtar	X
c) den indre energi til beholderen øker	
d) Energi fra omgivelsene tilføres beholderen	
3. En lukket gassbeholder ekspanderer mot et konstant ytre trykk. Ar omgivelsene tilsvarer	beidet som utføres på
α) ΡΔV	
$b) - P\Delta V$	X
$c) - V\Delta P$	
d) VΔP	
4. Standard molar entalpi for diamant (karbon) er	
a) 0 J/mol	
b) 2 J/mol	
c) -2000 J/mol	

entalpi for reaksjonen $C_6H_6(1) \rightarrow 3 C_2H_2(g)$ a) 632 kJ b) 730 kJ
b) 730 kJ
· ·
c) 234 kJ
d) 178 kJ
6. Fordampningsentalpien for vann ved 373,3 K er 40,66 kJ/mol. Spesifikk varmekapasitet for vann og vanndamp er henholdsvis 4,184 JK ⁻¹ g ⁻¹ og 2,02 JK ⁻¹ g ⁻¹ . Anta at disse verdiene er uavhengig av temperaturen. Hva er fordampningsentalpien for vann ved 340,2 K?
a) 40,95 kJ/mol
b) 42,15 kJ/mol
c) 41,95 kJ/mol
d) 39,37 kJ/mol
7. Standard dannelsesentalpi for H ₂ O(l) ved 298 K er - 285,8 kJ/mol. Beregn endring i indre
energi (E) for prosessen $H_2O(1) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$ ved 298 K og 1 atm.
a) – 285,8 kJ
b) 282,1 kJ
c) $- 289,5 \text{ kJ}$
d) 285,8 kJ
8. Gassen A ₂ reagerer med gassen B ₂ til gassen AB. Bindingsenergien for AB er langt større
enn for de to reaktantene. Hvilke av følgende utsagn for reaksjonen er korrekt
a) $\Delta H > 0$, $\Delta S > 0$
b) $\Delta H > 0$, $\Delta S < 0$
c) $\Delta H < 0$, $\Delta S >> 0$
d) $\Delta H < 0$, $\Delta S \approx u$ for and ret
9. Hvilke av følgende prosesser trenger energitilførsel
a) Jern ruster
b) Oppløsning av salt i vann
c) En satellitt faller tilbake på jorden
d) Oppløsning av saft i vann
10. Beregn entropiendringen for omgivelsene (ΔS_{surr}) for følgende prosess ved 25°C hvor ΔH°
= -2221 kJ: $C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(l)$
a) 7453 J/K
b) 88840 J/K
c) 2221 kJ/K
d) – 7453 J/K

11. Beregn ΔG° for reaksjonen $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(1)$. ΔG°_f for henholds	vis
CH ₄ , CO ₂ , H ₂ O er -51, -394, -237 kJ/mol	
(a) - 974 kJ	
b) 817 kJ	
c) - 580 kJ	
d) -817 kJ	X
12. For flytende kvikksølv er entalpi og entropi for fordampning henholdsvis 58,51 kJ/mol	og
92,92 JK ⁻¹ mol ⁻¹ . Hva er kokepunktet for kvikksølv?	177
a) 629,7 K	X
b) 639,7 K	
c) 529,7 K	
d) 723,1 K	
13. Ved likevekt ved 800 K for reaksjonen $N_2(g) + 3 F_2(g) \rightarrow 2 NF_3(g)$ er partialtrykkene	for
$N_2(g)$, $F_2(g)$ og $NF_3(g)$ 0,021, 0,063, 0,48 atm. ΔG° for reaksjonen ved 800 K er	
a) – 85,7 kJ	
b) -71,1 kJ	X
c) 71,1 kJ	
d) 85,7 kJ	
44 4V9 400 50001V 1 4F(() VV) 1 10 1 1 2 2 2 () 2 2 ()	. .
14. Δ H° og Δ S° er -58,03 kJ/mol og -176,6 JK ⁻¹ mol ⁻¹ for reaksjonen 2 NO ₂ (g) \rightarrow N ₂ O ₄ (g).	L1-
kevektskonstanten for reaksjonen ved 100°C er	
a) 4,5x10 ⁻¹⁸	
b) 12,7	
c) 0,079	X
d) 2,2x10 ¹⁷	
15. Forskjellen i Gibbs energi mellom en ideell gass som endres fra 1 til 0,1 atm ved 298 K	er
a) - 5.70 kJ	
b) 5700 kJ	
c) 5,7 kJ	X
(d) - 5700 kJ	
16 H H F N F 2+	
16. Hvilken av H ₂ , F ⁻ , Na, Fe ²⁺ er det beste reduksjonsmiddelet under standard betingelser?	T
a) H ₂	
b) F	
c) Na	X
d) Fe^{2+}	

17. Hvilken av følgende reaksjoner kan benyttes til å lage en galvanisk celle	
a) NaF(aq) \rightarrow Na + $\frac{1}{2}$ F ₂ (g)	
b) $NaCl(aq) + AgNO_3(aq) \rightarrow AgCl(s) + NaNO_3(aq)$	
c) $Cu^{2+}(aq) + Mg(s) \rightarrow Mg^{2+}(aq) + Cu(s)$	X
d) $Zn^{2+}(aq) + Ni(s) \rightarrow Ni^{2+}(aq) + Zn(s)$	
18. Beregn standard cellepotensial for reaksjonen $CH_3OH(1) + 3/2O_2(g) \rightarrow CO_2(g) + 2 H_2C$)(l)
når Gibbs energi for reaksjonen er – 702 kJ.	
a) -2,43 V	
b) -1,21 V	
c) 2,43 V	
d) 1,21 V	X
24	
19. Gitt følgende galvanisk celle: Al Al ³⁺ (1,0 M) Pb ²⁺ (1,0 M) Pb. Beregn cellespenning	
for cellen etter at [Al ³⁺] er endret med 0,6 M pga av den galvaniske reaksjonen. Standard c	el-
lepotensial for cellen er 1,53.	T
a) -1,50 V	
b) 1,50 V	X
c) 1,56 V	
d) -1,56 V	
20 C II 4 : 1 / C II N N N 2 / (1 0 N) 1 C (2 0 N) 1 1	1 1
20. Cellepotensialet for cellen Pb Pb ²⁺ (1,8 M) Ag ₂ SO ₄ (M) Ag er 0,83 V. I den høyre	
av cellen ble det tilsatt overskudd Ag ₂ SO ₄ (s) slik at løsningen er mettet på Ag ₂ SO ₄ (s). Hva	ı er
løselighetsproduktet for Ag ₂ SO ₄ ? Standard cellepotensial for cellen er 0,93.	
a) 1,02x10 ⁻⁵	X
b) 2,04x10 ⁻⁶	
c) $1,04 \times 10^{-4}$	
d) 1.03×10^{-10}	