

MEC-E8006 Fatigue of Structures

Lecture 2: Analysis of fatigue loading

Question?

How can we identify cycles from load histories?

Different loading history

$$\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2}$$

$$\sigma_a = \left| \frac{\sigma_{max} - \sigma_{min}}{2} \right|$$

$$\sigma_{min} = minimum stress$$

$$\sigma_{max} = maximum stress$$

$$\sigma_m = mean \ stress$$

$$\sigma_a = amplitude stress$$

Stress ratio

$$R = \frac{\sigma_{min}}{\sigma_{max}}$$

Different loading history

Constant amplitude, constant mean stress

Constant minimum, changing amplitude

Mean changes at intervals, Constantly changing amplitude

Constantly changing mean, constantly changing amplitude

Material stress-strain behavior

$$\varepsilon = \varepsilon_e + \varepsilon_p$$

$$\varepsilon = \frac{\sigma}{E} + (\frac{\sigma}{K'})^{1/n'}$$

Material stress-strain behavior is described using Ramberg-Osgood equation in order to explain the material behavior during cyclic loading.

$$\Delta \varepsilon = \frac{\Delta \sigma}{F} + \Delta \varepsilon_p$$

This load history of is repeatedly applied to the material with mentioned properties.

How can we identify cycles from this irregular loading history?

$$E = 210\,000\,\text{MPa}$$

 $K = 804\,\text{MPa}$
 $n = 0.0686$

$$\varepsilon = \frac{\sigma}{E} + \left(\frac{\sigma}{K}\right)^{1/n}$$

Point 1

$$\sigma_1 = 550 \text{ MPa}$$

$$\varepsilon_1 = \frac{\sigma}{E} + \left(\frac{\sigma}{K}\right)^{1/n}$$

The stress-strain variation in each cycle forms a closed hysteresis loop.

Knowing about the cyclic stress-strain curve provides physical justification to identify cycles from load histories.

Rainflow cycle counting

Peaks: A, C

Valleys: B, D

Simple ranges: A-B, B-C

Overall ranges: A-D, D-G

For cycle X-Y

Peak: σ_X

Valley: σ_Y

Range: $\Delta \sigma = \sigma_X - \sigma_Y$

Mean: $\sigma_m = (\sigma_X + \sigma_Y)/2$

$$\Delta \sigma_{YZ} \ge \Delta \sigma_{XY}$$

X-Y = cycle

Rearrange the history so that the sequence begins with the highest peak

(D-E) (\leq) (E-F) "is current reversal smaller than the following reversal?"

$$\Delta_{\text{E-F}} < \Delta_{\text{D-E}}$$

(E-F) (\leq) (F-G) "is current reversal smaller than the following reversal?"

 $\Delta_{F\text{-}G} \geq \Delta_{E\text{-}F}$

cycle	range	mean
E-F	4.0	1.0

 $\Delta_{F\text{-}G} \geq \Delta_{E\text{-}F}$

cycle	range	mean
E-F	4.0	1.0

 $\Delta_{F-G} \ge \Delta_{E-F}$

(D-G) (\leq) (G-H) "is current reversal smaller than the following reversal?"

cycle	range	mean
E-F	4.0	1.0

$$\Delta_{G-H} < \Delta_{D-G}$$

(G-H) (\leq) (H-A) "is current reversal smaller than the following reversal?"

cycle	range	mean
E-F	4.0	1.0

$$\Delta_{\text{H-A}} < \Delta_{\text{G-H}}$$

(H-A) (\leq) (A-B) "is current reversal smaller than the following reversal?"

cycle	range	mean
E-F	4.0	1.0

$$\Delta_{\text{A-B}} < \Delta_{\text{H-A}}$$

(A-B) (\leq) (B-C) "is current reversal smaller than the following reversal?"

cycle	range	mean
E-F	4.0	1.0

$$\Delta_{B-C} \ge \Delta_{A-B}$$

cycle	range	mean
E-F	4.0	1.0
A-B	3.0	-0.5

 $\Delta_{B-C} \ge \Delta_{A-B}$

cycle	range	mean
E-F	4.0	1.0
A-B	3.0	-0.5

 $\Delta_{B-C} \ge \Delta_{A-B}$

(D-G) (\leq) (G-H) "is current reversal smaller than the following reversal?"

cycle	range	mean
E-F	4.0	1.0
A-B	3.0	-0.5

$$\Delta_{\text{G-H}} < \Delta_{\text{D-G}}$$

(G-H) (\leq) (H-C) "is current reversal smaller than the following reversal?"

cycle	range	mean
E-F	4.0	1.0
A-B	3.0	-0.5

$$\Delta_{\text{H-C}} < \Delta_{\text{G-H}}$$

(H-C) (\leq) (C-D) "is current reversal smaller than the following reversal?"

cycle	range	mean
E-F	4.0	1.0
A-B	3.0	-0.5

$$\Delta_{C-D} \ge \Delta_{H-C}$$

cycle	range	mean
E-F	4.0	1.0
A-B	3.0	-0.5
H-C	7.0	0.5

$$\Delta_{\text{C-D}} \geq \Delta_{\text{H-C}}$$

cycle	range	mean
E-F	4.0	1.0
A-B	3.0	-0.5
H-C	7.0	0.5

Remove H-C

 $\Delta_{C-D} \ge \Delta_{H-C}$

(D-G) (\leq) (G-D) "is current reversal smaller than the following reversal?"

cycle	range	mean
E-F	4.0	1.0
A-B	3.0	-0.5
H-C	7.0	0.5

$$\Delta_{G-D} \ge \Delta_{D-G}$$

cycle	range	mean
E-F	4.0	1.0
A-B	3.0	-0.5
H-C	7.0	0.5
D-G	9.0	0.5

 $\Delta_{G\text{-}D} \geq \Delta_{D\text{-}G}$

Study material

Chapter 9: 9.9.2

Chapter 14: 14.5.2

Chapter 12: 12.1-12.2, 12.4-12.5