RSMAR: An iterative method for range-symmetric linear systems

Kui Du kuidu@xmu.edu.cn

School of Mathematical Sciences, Xiamen University

https://kuidu.github.io

joint work with Jia-Jun Fan and Fang Wang

@ BNU Zhuhai on 03/30/2024

Two main references

 A. Montoison, D. Orban, and M. A. Saunders.
 MINARES: An iterative solver for symmetric linear systems. arXiv:2310.01757, 2023.

 Y. Liu, A. Milzarek, and F. Roosta.
 Obtaining pseudo-inverse solutions with MINRES. arXiv:2309.17096, 2023.

Outline

- 1 The pseudoinverse solution of range-symmetric systems
- @ GMRES-type methods for singular range-symmetric systems
- **3** MINARES for symmetric systems
- 4 Numerical experiments
- Summary

The pseudoinverse solution

- $\mathbf{A}\mathbf{x} = \mathbf{b}$, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$. Consistent if $\mathbf{b} \in \text{range}(\mathbf{A})$, otherwise, inconsistent.
- A^{\dagger} : the Moore–Penrose inverse of A
- $A^{\dagger}b$: the pseudoinverse solution

$\mathbf{A}\mathbf{x} = \mathbf{b}$	$\operatorname{rank}(\mathbf{A})$	${f A}^\dagger {f b}$
consistent	= n	unique solution
consistent	< n	unique minimum 2-norm solution
inconsistent	= n	unique least-squares (LS) solution
inconsistent	< n	unique minimum 2-norm LS solution

Range-symmetric systems

• range-symmetric \mathbf{A} : range(\mathbf{A}) = range(\mathbf{A}^{\top}).

Fact I:

$$\mathbf{A} = \mathbf{U} \begin{bmatrix} \mathbf{C} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{U}^{\top}.$$

(C is invertible and U is orthogonal.)

Fact II:

$$\mathbf{A}^\dagger = \mathbf{A}^\mathrm{D} = \mathbf{U} egin{bmatrix} \mathbf{C}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{U}^ op.$$
 (Drazin inverse)

Fact III:

$$\mathbf{A}^{\dagger}\mathbf{b} + \text{null}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}^{\top}\mathbf{A}\mathbf{x} = \mathbf{A}^{\top}\mathbf{b}\}$$
$$= \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}^2\mathbf{x} = \mathbf{A}\mathbf{b}\}.$$

Krylov subspaces and (least squares) solutions

 $ullet \ \mathbf{x}_0 \in \mathbb{R}^n$, $\mathbf{r}_0 := \mathbf{b} - \mathbf{A} \mathbf{x}_0$,

$$\mathcal{K}_k(\mathbf{A}, \mathbf{r}_0) := \operatorname{span}\{\mathbf{r}_0, \mathbf{A}\mathbf{r}_0, \dots, \mathbf{A}^{k-1}\mathbf{r}_0\}.$$

• ℓ : the grade of \mathbf{r}_0 with respect to \mathbf{A} , i.e., ℓ satisfies

$$\dim \mathcal{K}_k(\mathbf{A}, \mathbf{r}_0) = \begin{cases} k, & \text{if } k \leq \ell, \\ \ell, & \text{if } k \geq \ell + 1. \end{cases}$$

- For any $\mathbf{A} \in \mathbb{R}^{n \times n}$,
 - (i) $\mathbf{b} \notin \mathrm{range}(\mathbf{A})$: # LS solution in $\mathbf{x}_0 + \mathcal{K}_{\ell-1}(\mathbf{A}, \mathbf{r}_0) \le 1$;
 - (ii) $\mathbf{b} \in \operatorname{range}(\mathbf{A})$: # solution in $\mathbf{x}_0 + \mathcal{K}_{\ell}(\mathbf{A}, \mathbf{r}_0) \leq 1$.

GMRES for singular range-symmetric systems

- GMRES: $\mathbf{x}_k := \underset{\mathbf{x} \in \mathbf{x}_0 + \mathcal{K}_k(\mathbf{A}, \mathbf{r}_0)}{\operatorname{argmin}} \|\mathbf{b} \mathbf{A}\mathbf{x}\|.$
- For singular range-symmetric A [BW97]:
 - (i) $b \in \operatorname{range}(A)$: $x_{\ell} = \text{solution}$. More precisely,

$$\mathbf{x}_{\ell} = \mathbf{A}^{\dagger} \mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{x}_{0},$$

the orthogonal projection of x_0 onto the solution set

$$\{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b}\} = \mathbf{A}^{\dagger}\mathbf{b} + \text{null}(\mathbf{A}).$$

(ii) $\mathbf{b} \notin \text{range}(\mathbf{A})$: $\mathbf{x}_{\ell-1} = \mathsf{LS}$ solution. Which one?

[BW97] P. N. Brown and H. F. Walker. *GMRES on (nearly) singular systems.* SIMAX, 1997.

A lifting strategy [LMR23]

• If $\mathrm{range}(\mathbf{A}) = \mathrm{range}(\mathbf{A}^\top)$ and $\mathbf{b} \notin \mathrm{range}(\mathbf{A})$, then the lifted vector,

$$\widetilde{\mathbf{x}}_{\ell-1} := \mathbf{x}_{\ell-1} - \frac{\mathbf{r}_{\ell-1}^{\top}(\mathbf{x}_{\ell-1} - \mathbf{x}_0)}{\mathbf{r}_{\ell-1}^{\top}\mathbf{r}_{\ell-1}}\mathbf{r}_{\ell-1},$$

is the orthogonal projection of \mathbf{x}_0 onto the least squares solution set $\{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}^\top \mathbf{A} \mathbf{x} = \mathbf{A}^\top \mathbf{b} \}$, i.e.,

$$\widetilde{\mathbf{x}}_{\ell-1} = \mathbf{A}^{\dagger}\mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger}\mathbf{A})\mathbf{x}_{0}.$$

• $\mathbf{x}_0 = \mathbf{0} \implies \widetilde{\mathbf{x}}_{\ell-1} = \mathbf{A}^{\dagger} \mathbf{b}$.

[LMR23] Y. Liu, A. Milzarek, and F. Roosta. *Obtaining pseudo-inverse solutions with MINRES*. arXiv:2309.17096, 2023.

GMRES for singular (skew-)symmetric systems

- "(skew-)symmetric" ∈ "range-symmetric"
- For symmetric \mathbf{A} , if $\mathbf{b} \notin \mathrm{range}(\mathbf{A})$, then $\mathbf{x}_{\ell-1} = \mathsf{LS}$ solution, but not necessarily $\mathbf{A}^\dagger \mathbf{b}$ [CPS11].

Trigger the lifting strategy if required.

• For skew-symmetric ${\bf A}$, i.e., ${\bf A}^{\top}=-{\bf A}$, if ${\bf b}\notin {\rm range}({\bf A})$, then

$$\mathbf{r}_{\ell-1}^{\top}(\mathbf{x}_{\ell-1} - \mathbf{x}_0) = 0,$$

which implies

$$\mathbf{x}_{\ell-1} = \widetilde{\mathbf{x}}_{\ell-1}.$$

[CPS11] S.-C. T. Choi, C. C. Paige, and M. A. Saunders. MINRES-QLP: A Krylov subspace method for indefinite or singular symmetric systems. SISC, 2011.

Summary of GMRES-type methods

ullet Let ${f A}$ be range-symmetric. For simplicity, we set ${f x}_0={f 0}.$

Method	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$
GMRES	$\mathbf{x}_k := \operatorname{argmin}_{\mathbf{x} \in \mathcal{K}_k(\mathbf{A}, \mathbf{b})} \ \mathbf{b} - \mathbf{A}\mathbf{x}\ $
RRGMRES	$\mathbf{x}_{k}^{\mathrm{R}} := \operatorname{argmin}_{\mathbf{x} \in \mathcal{K}_{k}(\mathbf{A}, \mathbf{A}\mathbf{b})} \ \mathbf{b} - \mathbf{A}\mathbf{x}\ $
DGMRES	$\mathbf{x}_k^{\mathrm{D}} := \operatorname{argmin}_{\mathbf{x} \in \mathcal{K}_k(\mathbf{A}, \mathbf{A}\mathbf{b})} \ \mathbf{A}(\mathbf{b} - \mathbf{A}\mathbf{x})\ $
RSMAR	$\mathbf{x}_k^{\mathrm{A}} := \operatorname{argmin}_{\mathbf{x} \in \mathcal{K}_k(\mathbf{A}, \mathbf{b})} \ \mathbf{A}(\mathbf{b} - \mathbf{A}\mathbf{x})\ $

Consistent:
$$\mathbf{x}_{\ell} = \mathbf{x}_{\ell}^{\mathrm{R}} = \mathbf{x}_{\ell}^{\mathrm{D}} = \mathbf{A}^{\dagger}\mathbf{b}$$
, $\mathbf{x}_{\ell}^{\mathrm{A}} = ???$
Inconsistent: $\widetilde{\mathbf{x}}_{\ell-1} = \mathbf{x}_{\ell-1}^{\mathrm{R}} = \mathbf{x}_{\ell-1}^{\mathrm{D}} = \mathbf{A}^{\dagger}\mathbf{b}$, $\mathbf{x}_{\ell-1}^{\mathrm{A}} = ???$

[MOS23] A. Montoison, D. Orban, and M. A. Saunders. *MINARES: An iterative solver for symmetric linear systems*. arXiv:2310.01757, 2023.

RSMAR for range-symmetric systems

- RSMAR: $\mathbf{x}_k^{\mathrm{A}} := \operatorname*{argmin}_{\mathbf{x} \in \mathcal{K}_k(\mathbf{A}, \mathbf{b})} \|\mathbf{A}(\mathbf{b} \mathbf{A}\mathbf{x})\|$, (well-defined?)
- For range-symmetric A, if $b \in \operatorname{range}(A)$, then $\mathbf{x}_{\ell}^{A} = \mathbf{x}_{\ell}$, and if $b \notin \operatorname{range}(A)$, then $\mathbf{x}_{\ell-1}^{A} = \mathbf{x}_{\ell-1}$. In other words, the final iterates of GMRES and RSMAR are the same.
- For inconsistent systems, $\|\mathbf{r}_{\ell-1}\| \neq 0$, but $\|\mathbf{Ar}_{\ell-1}\| = 0$.
- RSMAR for Ax = b "=" GMRES for Ay = Ab, y = Ax:

$$\min_{\mathbf{x} \in \mathcal{K}_k(\mathbf{A}, \mathbf{b})} \|\mathbf{A}(\mathbf{b} - \mathbf{A}\mathbf{x})\| = \min_{\mathbf{y} \in \mathcal{K}_k(\mathbf{A}, \mathbf{A}\mathbf{b})} \|\mathbf{A}\mathbf{b} - \mathbf{A}\mathbf{y}\|.$$

Implementation I (inspired by simpler GMRES)

• Arnoldi process yields $\mathrm{span}\{\widehat{\mathbf{v}}_1,\widehat{\mathbf{v}}_2,\ldots,\widehat{\mathbf{v}}_k\}=\mathcal{K}_k(\mathbf{A},\mathbf{Ab})$,

$$\widehat{\beta}_1\widehat{\mathbf{v}}_1 = \mathbf{A}\mathbf{b}, \quad \mathbf{A}\widehat{\mathbf{V}}_k = \widehat{\mathbf{V}}_{k+1}\widehat{\mathbf{H}}_{k+1,k}, \quad \widehat{\mathbf{V}}_k^\top \widehat{\mathbf{V}}_k = \mathbf{I}_k.$$

- $\mathcal{K}_k(\mathbf{A}, \mathbf{b}) = \operatorname{span}\{\mathbf{b}, \widehat{\mathbf{v}}_1, \dots, \widehat{\mathbf{v}}_{k-1}\}$ and $\mathbf{y}_k = \mathbf{A}\mathbf{x}_k^{\mathrm{A}} \Rightarrow \mathbf{x}_k^{\mathrm{A}} = \begin{bmatrix} \mathbf{b} & \widehat{\mathbf{V}}_{k-1} \end{bmatrix} \mathbf{z}_k$,

where \mathbf{z}_k solves

$$\mathbf{A} \begin{bmatrix} \mathbf{b} & \widehat{\mathbf{V}}_{k-1} \end{bmatrix} \mathbf{z} = \widehat{\mathbf{V}}_k \begin{bmatrix} \widehat{\beta}_1 \mathbf{e}_1 & \widehat{\mathbf{H}}_{k,k-1} \end{bmatrix} \mathbf{z} = \widehat{\mathbf{V}}_k \widehat{\mathbf{z}}_k.$$

Implementation II (inspired by RRGMRES)

• Arnoldi process yields $\mathrm{span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k\}=\mathcal{K}_k(\mathbf{A},\mathbf{b})$,

$$\beta_1 \mathbf{v}_1 = \mathbf{b}, \quad \mathbf{A} \mathbf{V}_k = \mathbf{V}_{k+1} \mathbf{H}_{k+1,k}, \quad \mathbf{V}_k^{\top} \mathbf{V}_k = \mathbf{I}_k.$$

• The subproblem:

$$\min_{\mathbf{x} \in \mathcal{K}_k(\mathbf{A}, \mathbf{b})} \|\mathbf{A}(\mathbf{b} - \mathbf{A}\mathbf{x})\|$$

$$= \min_{\mathbf{z} \in \mathbb{R}^k} \|\beta_1 \mathbf{H}_{k+2, k+1} \mathbf{e}_1 - \mathbf{H}_{k+2, k+1} \mathbf{H}_{k+1, k} \mathbf{z}\|.$$

• Two QR factorizations are required:

$$\mathbf{H}_{k+1,k} = \mathbf{Q}_{k+1} \begin{bmatrix} \mathbf{R}_k \\ \mathbf{0} \end{bmatrix}, \quad \mathbf{H}_{k+2,k+1} \mathbf{Q}_{k+1} \begin{bmatrix} \mathbf{I}_k \\ \mathbf{0} \end{bmatrix} = \widetilde{\mathbf{Q}}_{k+2} \begin{bmatrix} \widetilde{\mathbf{R}}_k \\ \mathbf{0} \end{bmatrix}.$$

• $\mathbf{x}_k^{\mathrm{A}} = \mathbf{V}_k \mathbf{R}_k^{-1} \widetilde{\mathbf{R}}_k^{-1} \begin{bmatrix} \mathbf{I}_k & \mathbf{0} \end{bmatrix} \widetilde{\mathbf{Q}}_{k+2}^{\mathsf{T}} \beta_1 (h_{11} \mathbf{e}_1 + h_{21} \mathbf{e}_2).$

MINARES for symmetric systems [MOS23]

- GMRES for symmetric systems "⇔" MINRES
- RSMAR for symmetric systems "⇔" MINARES
- The MINARES implementation in [MOS23] is based on the Arnoldi relation $\mathbf{AV}_k = \mathbf{V}_{k+1}\mathbf{H}_{k+1,k}$, and thus can be viewed as a short recurrence variant of RSMAR-II.
- We derive a new implementation for MINARES, which is based on $\widehat{\mathbf{AV}}_k = \widehat{\mathbf{V}}_{k+1}\widehat{\mathbf{H}}_{k+1,k}$ and can be viewed as a short recurrence variant of RSMAR-I.

[[]MOS23] A. Montoison, D. Orban, and M. A. Saunders. *MINARES: An iterative solver for symmetric linear systems*. arXiv:2310.01757, 2023.

Numerical experiments

A boundary value problem

$$\left\{ \begin{array}{ll} \Delta u + d \frac{\partial u}{\partial x} = f, & \text{in} \quad \Omega := [0,1] \times [0,1], \\[0.2cm] u(x,0) = u(x,1), & \text{for} \quad 0 \leq x \leq 1, \\[0.2cm] u(0,y) = u(1,y), & \text{for} \quad 0 \leq y \leq 1, \end{array} \right.$$

where d is a constant and f is a given function. [BW97]

FD discretization yields a singular range-symmetric A:

$$\mathbf{A} = \begin{bmatrix} \mathbf{T}_m & \mathbf{I}_m & & \mathbf{I}_m \\ \mathbf{I}_m & \ddots & \ddots & \\ & \ddots & \ddots & \mathbf{I}_m \\ \mathbf{I}_m & & \mathbf{I}_m & \mathbf{T}_m \end{bmatrix}, \quad \mathbf{T}_m = \begin{bmatrix} -4 & \alpha_+ & & \alpha_- \\ \alpha_- & \ddots & \ddots & \\ & \ddots & \ddots & \alpha_+ \\ \alpha_+ & & \alpha_- & -4 \end{bmatrix},$$

where m = 100, h = 1/m, $\alpha_{\pm} = 1 \pm dh/2$, and d = 10.

Convergence history for a consistent system

Convergence history for an inconsistent system

Summary

- RSMAR enriches the family of Krylov subspace methods for range-symmetric systems.
- For range-symmetric linear systems, the final iterates of RSMAR and GMRES are the same.
- For range-symmetric A,
 - (i) if $\mathbf{b} \in \mathrm{range}(\mathbf{A})$, the final iterate of RSMAR is $\mathbf{A}^{\dagger}\mathbf{b}$, and
 - (ii) if $\mathbf{b} \notin \mathrm{range}(\mathbf{A})$, the final iterate of RSMAR is a least squares solution and a lifting strategy can be used to obtain $\mathbf{A}^{\dagger}\mathbf{b}$.

Summary

- On singular inconsistent range-symmetric systems, RSMAR outperforms GMRES, RRGMRES, and DGMRES, and thus should be the preferred method in finite precision arithmetic.
- RSMAR-II is better than RSMAR-I in finite precision arithmetic.
- Possible research directions:
 - (1) preconditioning
 - (2) stopping criteria
 - (3) performance for linear discrete ill-posed problems

.

Our manuscript, slides, and MATLAB codes

K. Du, J.-J. Fan, and F. Wang.
 Obtaining the pseudoinverse solution of singular range-symmetric linear systems with GMRES-type methods.
 arXiv:2401.11788, 2024.

 The slides are available at https://kuidu.github.io/talk.html

 The MATLAB codes are available at https://kuidu.github.io/code.html