Homework 3

To receive full credits, you must describe the reasoning behind each step, e.g. KVL on L1, or using Ohm's law on R1, etc. Problems without reasoning receive 0 points regardless of providing correct or incorrect result. Problems with clear reasoning and correct result receives full points. Solutions with clear reasoning and incorrect results receive 3/4 of the total points.

<u>Use the branch current method (BCM) or node voltage method (NVM) to solve the following problems. Explain why you</u> selected such a method.

Problem 1: (10 points)

- a) Determine whether the diode is in the ON of OFF state. V_{γ} = 0.7 V.
- b) Solve for Vo and Is.

Problem 2: (10 points)

- a) Determine whether the diode is in the ON of OFF state. $V\gamma$ = 0.7 V.
- b) Solve for Vo and Is.

Problem 3: (20 points)

Solve for Vo. $V\gamma$ = 0.7 V.

Problem 4: (30 points)

Determine the range of Vs such that the diode would be in the ON state. V γ = 0.7 V

Problem 5: (20 points)

- a) Determine whether the diode is in the ON or OFF state. $V\gamma$ = 2 V.
- b) Solve for the node voltage Vx.

Problem 6: (10 points)

- a) Determine whether the diode is in the ON or OFF state. V_{γ} = 1 V.
- b) Solve for I.

$I_{s} = 1 + \frac{1}{s}$ $Selve For$ $I_{\frac{3}{2}} = \frac{1}{s}$	7 1 5	12 Vesister		
= A				
$T_s = 2 A$				

$$V_{2} = V_{3} + C_{1}7$$
Solve for I_{0} at the $20-\Omega$ resistor

$$I = \frac{V}{R}$$

$$I_{0} = \frac{V_{3}-V_{4}}{20}$$

$$kcl at $V_{1}: I_{2} = I_{5} + I_{0}$

$$\frac{O-V_{2}}{10} = \frac{V_{2}-V_{1}}{5} + \frac{V_{2}-V_{4}}{20}$$

$$\frac{O-(V_{1}+\alpha_{2})}{10} = \frac{(V_{3}+\alpha_{7})+1}{5} + \frac{V_{3}+2}{20}$$

$$-2(V_{3}+\alpha_{7}) = 4(V_{3}+1,7) + V_{3}+2$$

$$-2V_{3} - 1.4 = 4V_{3} + 6.8 + V_{2} + 2$$

$$-7V_{3} = 10.2$$

$$V_{3} = -1.457v$$

$$V_{0} = V_{1} - 0$$

$$= -C.757v$$

$$V_{0} = V_{1} - 0$$$$

	S	cli	18	fcr 2 - V 5	· I	S	a+	tl	re	20	L V	esis	tev				
_	T		V	₂ - V	<i>(</i>												
		- S =		5													
+																	
_		-	<u></u>	0	18	/ ^											
		_	V	0 2	701	17											
+																	
_																	
+																	
+																	
_																	
-																	
_																	
+																	
+																	

3 backgards - O cowend sources = 3 m browns	
Use node votlage method	
Kvenn Veltages	
V ₁ = C _V	
$V_2 = 4v$	
$V_{\chi} = V_2 - V_{\gamma}$	
= 2 v	

Kel at
$$N_2$$
: $I_2 = I_2$

$$\frac{V_3 - V_0}{2000} = \frac{V_0 - V_4}{4000}$$

$$2V_3 - 2V_0 = V_0 - V_4$$

$$10 - 2V_0 = V_0 + 4$$

$$3V_0 = 6$$

$$V_0 = 2 V$$
Pic de is CIV
$$Pic bleim 6b$$

$$I_3 \longrightarrow V_0$$

$$V_1 \longrightarrow V_2$$

$$V_2 \longrightarrow V_3$$

$$V_3 \longrightarrow V_4$$

$$V_4 \longrightarrow V_4$$

$$V_4 \longrightarrow V_4$$

$$V_5 \longrightarrow V_4$$

$$V_7 \longrightarrow V_8$$

$$V_8 \longrightarrow V_8$$

$$V_8$$

4 nodes - 1 vex - 3 volta	ise sources	= 0 unlo	ncwns	
Kuchn Veltuges				
V. =0 v				
V ₂ = V				
V ₃ = 5 v				
V ₄ = -4v				
Kel at Na: Ia + Is	=]			
$\frac{V_3 - V_4}{3000} + \frac{V_2 - V_4}{4000} = I$				
$I = \frac{5 + 4}{3000} + \frac{1 + 4}{4000}$				
= 0.00 428 A				