df.head()

Load dataset and importing required library

```
import numpy as np
import pandas as pd

Double-click (or enter) to edit

df = pd.read_csv('/content/sample_data/Churn_Modelling.csv')
```

8		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Ва
	0	1	15634602	Hargrave	619	France	Female	42	2	
	1	2	15647311	Hill	608	Spain	Female	41	1	838
	2	3	15619304	Onio	502	France	Female	42	8	1596
	3	4	15701354	Boni	699	France	Female	39	1	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	1255
	4									•

df.shape (10000, 14)

Statistical analysis

df.info

<body> bound me</body>	ethod Data	aFrame.info	of R	NowNumber C	CustomerId	Surname	CreditScore
Geography	/ Gender	Age \					
0	1	15634602	Hargrave	61	.9 France	Female	42
1	2	15647311	Hill	60	8 Spain	Female	41
2	3	15619304	Onio	56	2 France	Female	42
3	4	15701354	Boni	69	9 France	Female	39
4	5	15737888	Mitchell	85	50 Spain	Female	43
						• • •	• • •
9995	9996	15606229	Obijiaku	77	'1 France	Male	39
9996	9997	15569892	Johnstone	51	.6 France	Male	35
9997	9998	15584532	Liu	76	9 France	Female	36
9998	9999	15682355	Sabbatini	77	2 Germany	Male	42
9999	10000	15628319	Walker	79	2 France	Female	28
Ter	nure B	alance Num	OfProducts	HasCrCard	IsActiveMem	ıber \	
0	2	0.00	1	1		1	

1

0

0

1

0

1

1

0

0

IsActiveMember 0 EstimatedSalary 0 Exited 0 dtype: int64

df.drop(['RowNumber','CustomerId','Surname'],axis=1, inplace=True)

Data Visualization

```
import matplotlib.pyplot as plt
import seaborn as sns
df.Geography.value_counts().plot(kind='bar')
df.Geography.value_counts()
```

France 5014 Germany 2509 Spain 2477

Name: Geography, dtype: int64

df.Gender.value_counts().plot(kind='bar')
df.Gender.value_counts()

Male 5457 Female 4543

Name: Gender, dtype: int64

df.Age.describe()

10000.000000 count mean 38.921800 std 10.487806 18.000000 min 25% 32.000000 50% 37.000000 75% 44.000000 max 92.000000

Name: Age, dtype: float64

df.Age.plot(kind='hist')

<matplotlib.axes._subplots.AxesSubplot at 0x7f8482367e90>

df.IsActiveMember.value_counts().plot(kind='bar')
df.IsActiveMember.value_counts()

5151
 4849

Name: IsActiveMember, dtype: int64

df.HasCrCard.value_counts().plot(kind='bar')
df.HasCrCard.value_counts()

```
1 7055
a 2945
```

```
df.Tenure.value_counts().plot(kind='bar');
df.Tenure.value_counts()
```

```
2
       1048
1
       1035
7
       1028
8
       1025
5
       1012
3
       1009
4
        989
9
        984
6
        967
10
        490
        413
```

Name: Tenure, dtype: int64

df.NumOfProducts.value_counts().plot(kind='bar');
df.NumOfProducts.value_counts()

1 5084 2 4590 3 266 4 60

Name: NumOfProducts, dtype: int64

df.Exited.value_counts().plot(kind='bar');

df.Exited.value_counts()

0 79631 2037

Name: Exited, dtype: int64

sns.countplot(x=df.Exited,hue=df.Gender)

<matplotlib.axes._subplots.AxesSubplot at 0x7f8481bb1410>

sns.countplot(x=df.Exited,hue=df.Geography)

<matplotlib.axes._subplots.AxesSubplot at 0x7f8481b387d0>

sns.countplot(x=df.Exited,hue=df.NumOfProducts)

<matplotlib.axes._subplots.AxesSubplot at 0x7f8481ab1e50>

sns.countplot(x=df.Exited,hue=df.HasCrCard)

<matplotlib.axes._subplots.AxesSubplot at 0x7f8481a43a50>

sns.countplot(x=df.Exited,hue=df.IsActiveMember)

<matplotlib.axes._subplots.AxesSubplot at 0x7f84819ade90>

Finding Outliers

sns.boxplot(x=df.Exited,y=df.Balance)

sns.countplot(x="Gender",hue="Exited",data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f8481c00050>

categorizing with LabelEncoding

df['Geography']=df['Geography'].map({'France':0,'Spain':1,'Germany':2})

X=df.iloc[:,:-1].values
y=df.iloc[:,-1].values

X.shape

(10000, 10)

▼ Feature Scaling

```
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import MinMaxScaler

le=LabelEncoder()
X[:,2]=le.fit_transform(X[:,2])

print(X)

    [[619 0 0 ... 1 1 101348.88]
       [608 1 0 ... 0 1 112542.58]
       [502 0 0 ... 1 0 113931.57]
       ...
       [709 0 0 ... 0 1 42085.58]
       [772 2 1 ... 1 0 92888.52]
       [792 0 0 ... 1 0 38190.78]]

MnScaler = MinMaxScaler()

X = MnScaler.fit_transform(X)
```

Train Test Split

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test =train_test_split(X,y,test_size=0.2, random_state=0)

from sklearn.preprocessing import StandardScaler

stdscaler = StandardScaler()

X_train = stdscaler.fit_transform(X_train)

X_test = stdscaler.transform(X_test)
```

Colab paid products - Cancel contracts here

