2024.10.26

Introduction to Carbon Capture Processes

KSSEA Academic Conference 2024

김성균 / Seonggyun Kim

Contents

Essential and relevant topics in CCUS

- Introduction
 - Why carbon capture?
 - Types of CCUS
- Post-combustion carbon capture
 - Process flowsheet
 - Important process parameters
- Importance of process simulation
- Prospects
 - Challenges
- CCUS in Scandinavia

CCS? CCU? CCUS?

- Carbon capture and storage/sequestration (CCS)
- Carbon capture, utilization and storage (CCUS)
 - Synthetic fuel (MeOH, etc.)
 - Enhanced Oil Recovery (EOR)

Enhanced oil recovery (ATACAN energy)

Why carbon capture?

- "Reaching net zero will be virtually impossible without CCUS" (International Energy Agency, 2020)
 - Tackling emissions from existing energy infrastructure retrofittable
 - A solution for some of the most challenging emissions heavy industries (cement, iron and steel, chemicals, synthetic fuels)
 - A cost-effective pathway for low-carbon hydrogen production "blue hydrogen"
 - Removing carbon from the atmosphere emissions that cannot be avoided or reduced directly

Why carbon capture?

- 64 % of global emissions come from **power** and **industry** sectors that are very difficult to decarbonize.
- CCUS allows continued use of existing infrastructure

Global CO2 emissions by sector (Gt), 2022 (IEA)

Types of CCUS

- Post-combustion
 - Most mature technology
 - Selective absorption of CO₂ in flue gases using amine solvents
 - "Acid gas treating" dates back to 1970s
- Pre-combustion
 - Fuel gasification to produce syngas (mostly CO + H_2) followed by water-gas shift reaction (CO + H_2 O \rightarrow CO₂ + H_2)
- Oxyfuel
 - Pure oxygen injection
- Direct air capture (DAC)
 - Filtering CO2 from atmosphere (very low concentration ~400 ppm)

CO2 capture/release reaction in post-combustion carbon capture (Clean Air Task Force)

Types of CCUS – **Post-combustion** carbon capture

- Gorgon Plant
 - Barrow Island, Australia
 - World's biggest carbon capture plant
 - CO2 from LNG plants
 - 2 Mt-CO₂/yr

Types of CCUS – **Oxyfuel** carbon capture

- Callide Oxyfuel Project
 - Queensland, Australia
 - World's first oxyfuel process
 - Retrofitted to a coal power station
 - 27,300 t-CO2/yr

Types of CCUS – **Direct air capture**

- ORCA Plant
 - Hellisheidi, Iceland
 - Heat and electricity supplied by the Hellisheidi Geothermal Power Plant
 - 4000 t-CO₂ /yr

Post-combustion Carbon Capture

Process flowsheet

Post-combustion Carbon Capture

Important process units

- Absorber
 - Inlet: Flue gas & lean solvent
 - Outlet: Treated gas & rich solvent
 - Solvent: MEA, MDEA, DEA, K₂CO₃, etc.
 - Blending solvents, additives (PZ)
- Regenerator (or stripper)
 - Separation of CO₂ from the solvent
- Heat exchanger
 - Absorber T: ~30 °C
 - Trade-off between absorption rate and solvent degradation
 - Regenerator T: ~110 °C
 - · Trade-off between yield and energy demand

Post-combustion Carbon Capture

Important process parameters

- L/G ratio in the absorber
 - Depends on the solvent
 - 5-20
- CO₂ loading in the lean solvent
 - [mol-CO2 / mol-amine]
 - 0.1-0.5
- CO₂ recovery
 - 80–90 %
- Specific reboiler duty (SRD)
 - [GJ/ton-CO₂]
 - 2.5–4.5 GJ/ton-CO₂
 - Related to "energy penalty" in power plants

From data to decisions

- Controlling/monitoring important process variables
 - Custom variables/equations (CO₂ loading, SRD, energy penalty...)
 - Economic insight (feed cost, utility cost, OpEx, CapEx, product value, NPV, EAOC, ...)
- Predicting process behavior
 - What if energy consumption drops? Less flue gas is produced, changing the plant's dynamics. How does the process adapt to ensure stability?
- Optimizing system performance
 - How do critical process parameters impact the system? Case studies reveal the relationships and inform operational decisions.
 - Economic analysis: Simulation helps identify cost-efficient improvements.
- Common chemical process simulation tools:
 - Aspen HYSYS, Aspen PLUS, AVEVA PRO/II, AVEVA Process Simulation, DWSIM, etc.

Development

- Stage 1: Collecting experimental data, importing to simulation software
 - Thermophysical properties $(C_p, \Delta H_f^0, \Delta G_f^0, K_{eq}, ...)$
- Stage 2: Adding fluid and reaction models to the software
 - Data validation (vapor pressure, mean ionic activity coefficient, osmotic coefficient, etc.)
- Stage 3: Constructing an example simulation with the fluid/reaction models
 - Matching reference process parameters in literature

Example – Simulation environment

Example – Relationship between the process parameters

(c) Bird-eye view

Prospects

On the road to decarbonization

- Growing importance
- Technological advances
 - Next-generation solvents, DAC, solid sorbents (e.g., K2CO3 "Benfield process")
 - Dynamic simulation (vs. steady-state simulation)
- Integration with other technologies
 - Hydrogen production
- Policy and economic incentives
 - European Union: Emissions Trading System (EU ETS)
 - European Commission: Carbon Border Adjustment Mechanism (CBAM) (December 2021)
- Bad news, good news
 - Gorgon carbon capture (Australia) operating at one-third capacity due to technical difficulties (injection pressure, geology, etc.)
 - Norwegian Longship CCS with EOR expected to operate in early 2025 with the potential to capture 70 Mt-CO₂ /yr.

What's happening around *here*?

- Sweden: Bioenergy with Carbon Capture and Storage (BECCS)
 - "Negative emissions" can be achieved
- Norway: Longship Project, expected to operate by Early 2025
 - Source: Heidelberg Materials' cement factory, Hafslund Oslo Celsio's waste incineration plant.
 - Liquefied CO₂ is transported by ships and stored 2,600 meters beneath the seabed.
 - Initial capacity: 1.5 Mt/yr, with pipeline infrastructure sized for 5 Mt.
 - Future expansion: Northern Lights plans to increase storage capacity to 5 Mt/yr in Phase 2
- Denmark: Aalborg Portland
 - Source: cement plant
 - Aiming to capture at least 0.4 Mt by 2030

Scandinavian CCS networks and hubs (David Pickering)

Stockholm Exergi BECCS in Stockholm

Longship project in Norway

GreenCem project in Aalborg, Denmark

in linkedin.com/in/seonggyunkim

seonggyun.kim@outlook.com

