Applications of Data Analytics in Manufacturing

Minh Nguyen, Dr.

Micron Semiconductor Asia.

Overview of Production Line

- Event system: recipe changes, tool maintenance activities (PM), human actions.
- Monitoring system: wafer ID, sensor signals, timing gates.
- Measurement system: deviation quality gates, yield output.

Yield Modelling

Yield Modelling

Investigate what went wrong with a bad tool

What are the root causes? How to improve yield?

Answer from tool sensor signals

Yield Modelling

Predictive Maintenance

Predictive Maintenance

Predict when a tool would go bad.

Maintenance Model

Terminologies:

<u>Degradation signal Y:</u>

- Monotonically increasing or decreasing
- Recover after CM/PM

Failure Limit y^F:

 Tool fails when degradation signal hits

Control Limit C_L:

Perform PM when degradation signal hits

Real Scenario

Problem Formulation

Virtual Measurement

- Measurement is an expensive operation, some destructive.
 Consequently, its sampling rate is low.
- However, monitoring system has 100%, either sensor and scanning image.
- From

Virtual Measurement

Motivation: Predict low-sampled measurement using 100% sampled images.

Virtual Measurement

Big

100% wafer sampling → Higher visibility to detect defective wafers

DBSCAN Illustration - A density based method

DBSCAN

Parameters:

> Eps: Maximum radius(ε) of neighborhood

➤ MinPts: Minimum Number of points within Eps-neighbor

Modelling with Lasso and Random Forest

Purposes of Data Modelling

Inference

- Explain the relationship among predictors and between predictors and responses.
- Tell data insights and trigger investigation

Prediction

 Estimate responses given predictor values in a set of unobserved samples.

Data Structure

Sample training data ~20k rows, 100 unique engine id

Sample testing data ~13k rows, 100 unique engine id

id		cycle	setting1	setting2	setting3	s1	52	s3		s19	s20	s21	RUL	label1	label2
	1	1	-0.0007	-0.0004	100	518.67	641.82	1589.7		100	39.06	23.419			
	1	2	0.0019	-0.0003	100	518.67	642.15	1591.82		100	39	23.4236			
	1	3	-0.0043	0.0003	100	518.67	642.35	1587.99		100	38.95	23.3442			
	1	191	0	-0.0004	100	518.67	643.34	1602.36		100	38.45	23.1295			
	1	192	0.0009	0	100	518.67	643.54	1601.41		100	38.48	22.9649			
	2	1	-0.0018	0.0006	100	518.67	641.89	1583.84		100	38.94	23.4585			
	2	2	0.0043	-0.0003	100	518.67	641.82	1587.05		100	39.06	23.4085			
	2	3	0.0018	0.0003	100	518.67	641.55	1588.32		100	39.11	23.425			
	2	286	-0.001	-0.0003	100	518.67	643.44	1603.63		100	38.33	23.0169			
	2	287	-0.0005	0.0006	100	518.67	643.85	1608.5		100	38.43	23.0848			
														1	
id		cycle	setting1	setting2	setting3	s1	52	s3		s19	s20	521			
	1	. 1	0.0023	0.0003	100	518.6	7 643.0	2 1585.2	9	100	38.86	23.3735			
	1	. 2	-0.0027	-0.0003	100	518.6	7 641.7	1 1588.4	5	100	39.02	23.3916			
	1	. 3	0.0003	0.0001	100	518.6	7 642.4	6 1586.9	1	100	39.08	23.4166			
	1	30	-0.0025	0.0004	100	518.6	7 642.7	9 1585.7	2	100	39.09	23.4069			
	1	31	-0.0006	0.0004	1 100	518.6	7 642.5	8 1581.2	2	100	38.81	23.3552			
	2	1	-0.0009	0.0004	1 100	518.6	7 642.6	6 1589.	3	100	39	23.3923			
	2	2	-0.0011	0.0002	2 100	518.6	7 642.5	1 1588.4	3	100	38.84	23.2902			
	2	3	0.0002	0.0003	3 100	518.6	7 642.5	8 1595.	5	100	39.02	23.4064			
	2	48	0.0011	-0.0001	100	518.6	7 642.6	4 1587.7	1	100	38.99	23.2918			
	2	49	0.0018	-0.0001	100	518.6	7 642.5	5 1586.5	9	100	38.81	23.2618			
	3	1	-0.0001	0.0001	100	518.6	7 642.0	3 1589.9	2	100	38.99	23.296			
	3	2	0.0039	-0.0003	3 100	518.6	7 642.2	3 1597.3	1	100	38.84	23.3191			
	3	3	0.0006	0.0003	3 100	518.6	7 642.9	8 1586.7	7	100	38.69	23.3774			
	3		0.0014	0.0002	2 100	518.6	7 643.2	4 1588.6	1	100	38.56	23.227			
	3	126	-0.0016	0.0004	1 100	518.6	7 642.8	8 1589.7	5	100	38,93	23,274			

Data Structure

1. LASSO

Basic Model Assumptions

$$y = f(X)$$

- Two approaches to estimate f
 - Underlying model style (*)
 - Bayesian style

Ref: Chapter 5. Deep Learning. Ian Goodfellow, Yoshua Bengio and Aaron Courville

Linear Regression

• Assumption: $f(X) = B_0 + \sum_{j=1}^p X_j B_j$

To find B

$$J_B = (y - XB)^T (y - XB)$$

$$\frac{\partial J_B}{\partial B} = -2X^T(y - XB)$$

$$\hat{B} = (X^T X)^{-1} X^T y$$

Ridge Regression

$$J_B = (y - XB)^T (y - XB) + \lambda B^T B$$
$$\hat{B} = (X^T X + \lambda I)^{-1} X^T y$$

With $X = UDV^T$

$$\widehat{B} = V(D^2 + \lambda I)^{-1} D U^T y$$

$$\hat{y} = X\hat{B} = \sum_{j=1}^{p} u_j \left(\frac{d_j^2}{d_j^2 + \lambda}\right) u_j^T y$$

 u_j columns of U, d_j diagonal elements of D

Ref: SVD Tutorial

Ridge Regression

Lasso Regression

$$J_B = (y - XB)^T (y - XB) + \lambda \sum_{j=1}^p |B_j|$$

G-Formula

$$J_B = (y - XB)^T (y - XB) + \lambda \sum_{j=1}^p |B_j|^q$$

Lasso Solution – Least Angle Regression (LAR)

Algorithm 3.2 Least Angle Regression.

- 1. Standardize the predictors to have mean zero and unit norm. Start with the residual $\mathbf{r} = \mathbf{y} \bar{\mathbf{y}}, \, \beta_1, \beta_2, \dots, \beta_p = 0$.
- 2. Find the predictor \mathbf{x}_i most correlated with \mathbf{r} .
- 3. Move β_j from 0 towards its least-squares coefficient $\langle \mathbf{x}_j, \mathbf{r} \rangle$, until some other competitor \mathbf{x}_k has as much correlation with the current residual as does \mathbf{x}_j .
- 4. Move β_j and β_k in the direction defined by their joint least squares coefficient of the current residual on $(\mathbf{x}_j, \mathbf{x}_k)$, until some other competitor \mathbf{x}_l has as much correlation with the current residual.
- 5. Continue in this way until all p predictors have been entered. After $\min(N-1,p)$ steps, we arrive at the full least-squares solution.

• Questions?

2. RANDOM FOREST

Decision Tree

Salary is color-coded from low (blue, green) to high (yellow,red)

Decision Tree

An approach that is known as recursive binary splitting

Top-down,

Greedy

Predict the response for a given test observation <u>using the mean</u> of the training observations in the region

Tree Complexity and Overfitting

Tree Pruning

- Motivation: Simple tree is too biased.
 Complex tree is overfitting.
- Naïve solution: grow the tree only so long as the decrease in the RSS due to each split exceeds some (high) threshold.
 - Result in smaller trees, but is too short-sighted:

 a seemingly worthless split early on in the tree
 might be followed by a very good split

XOR

P	\overline{Q}	$P \ xor \ Q$
1	1	0
1	0	1
0	1	1
0	0	0

Tree Pruning

- Motivation: Simple tree is too biased.
 Complex tree is overfitting.
- Better solution: grow a large tree, then merge back nodes to obtain a smaller tree of the right size <u>link</u>

$$0.25 > 0 + 0 + 0$$

Cost complexity pruning (or Weakest link pruning)

- Define T_t a branch rooted at a node t, and and \tilde{T}_t is its set of terminal nodes.
- Let α be a regularization parameter.

$$R_{\alpha}(t) = R(t) + \alpha * 1$$

$$R_{\alpha}(T_t) = \sum_{t' \text{ in } \tilde{T}_t} R(t') + \alpha * |\tilde{T}_t|$$

$$R(t) = R(T_t)$$

$$\alpha_* = \frac{R(t) - R(T_t)}{\left|\tilde{T}_t\right| - 1}$$

Cost complexity pruning (or Weakest link pruning)

- 1. Construct a large tree T_0 .
- 2. Find a node t that minimizes the function $g(t) = \frac{R(t) R(T_t)}{|\tilde{T}_t| 1}$. Let $\alpha_1 = g(t)$ and remove all sub-nodes under t to produce T_1 .
- 3. Repeat step 2 to find two sequences

$$\alpha_1 < \alpha_2 < \alpha_3 < \cdots < \alpha_{|T|}$$

$$T_1 > T_2 < T_3 > \dots > t_0$$

Note: R(t) can be stored.

Single Decision Tree

Algorithm 8.1 Building a Regression Tree

- Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations.
- Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α.
- 3. Use K-fold cross-validation to choose α . That is, divide the training observations into K folds. For each $k = 1, \ldots, K$:
 - (a) Repeat Steps 1 and 2 on all but the kth fold of the training data.
 - (b) Evaluate the mean squared prediction error on the data in the left-out kth fold, as a function of α .

Average the results for each value of α , and pick α to minimize the average error.

4. Return the subtree from Step 2 that corresponds to the chosen value of α .

Bagging

Bagging – Prediction

 Averaging predictions from multiple trees, each is constructed on one part of a training data set. Famous method: Bootstrap (sampling with replacement).

Bagging – Variable Importance

At each tree

Importance of x_i = $e_1 - e_2$

Random Forest

Random Forest

Variable selection for each tree

41