10/540823 JC17 Rec 2, 3//270 23 JUN 2005

Listing of Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (original)

An adsorbent material based on crosslinked, porous imidazole-divinylbenzene copolymers, said adsorbent material being formed by specific radical suspension polymerization of a monomer mixture in the presence of air and/or oxygen, a salt, and an inert substance, said adsorbent material comprising at least 50 weight percent divinylbenzene crosslinker and 4 to 30 weight percent of an imidazole derivative, said adsorbent material being highly crosslinked and highly porous, said adsorbent material having a spherical shape and specific characteristics of surface, pore size distribution, pore diameter, and particle size range, for application in blood-, blood plasma-, and albumin purification processes.

(original)

An adsorbent material of claim 1 where the radically polymerizable imidazole derivates are 1- or 4-substituted vinyl-, allyl- or propenylimidazoles or mixtures thereof.

(original)

An adsorbent material of claim 1 where the divinylbenzene copolymer comprises 50 weight % to 85 weight % of isomeric divinylbenzene and 5 weight % to 40 weight % of isomeric ethylvinylbenzene.

4. (original)

An adsorbent material of claim 1 having a specific surface from 200 m^2/g to 900 m^2/g .

5. (original)

An adsorbent material of claim 1 having a total pore volume from 1.0 to 2.0 cm³/g where 1 g of the material comprise up to 0.3 cm³ micropores, up to 1.2 cm³ mesopores, and up to 0.5 cm³ macropores.

6. (original)

An adsorbent of claim 1 comprising predominantly spherical particles having a particle size from 1 μm to 300 μm , preferably 50 μm to 200 μm or 1 μm to 50 μm .

7. (original)

A method of suspension polymerization to produce the adsorbent material of claim 1 where the aqueous phase comprises 5 weight % to 25 weight % of a salt and 0.5 weight % to 5 weight % of a suspension stabilizer, the organic phase comprises 25 weight % to 50 weight % of an inert substance, and the polymerization is conducted in the presence of air and/or oxygen.

8. (original)

A method of claim 7 where the inert substance preferably comprises toluene, ethyl acetate, butyl acetate, dichlorethane, carbon tetrachloride, exclusively or in mixture.

9. (original)

A method of claim 7 where the suspension stabilizer preferably comprises poly(vinyl alcohol) or methyl cellulose or hydroxyethyl cellulose or calcium phosphate or aluminium hydroxide or magnesium hydroxide.

10. (currently amended)

Application of the adsorbent materials of claims 1
to 9 for blood purification in plasma- or blood perfusion

processes.

11. (currently amended)

Application of the adsorbent materials of $\frac{\text{claim 1}}{\text{claims 1}}$ to 9 in the Molecular Adsorbent Recirculating System (MARS).

12. (currently amended)

Application of the adsorbent materials of $\underline{\text{claim 1}}$ $\underline{\text{claims 1}}$ to 9 as a sorbent for bilirubin and bile acids.