HU: MGSDVRDLNALLPAVPSLGGGGGCALPVSGAAQWAPVLDFAPPGASAYGSL MO: MGSDVRDLNALLPAVSSLGGGGGCGLPVSGAAQWAPVLDFAPPGASAYGSL

HU: GGPAPPPAPPPPPPPPHSFIKQEPSWGGAEPHEEQCLSAFTVHFSGQFTGTAG MO: GGPAPPPAPPPPPPPPPHSFIKQEPSWGGAEPHEEQCLSAFTLHFSGQFTGTAG

HU: ACRYGPFGPPPPSQASSGQARMFPNAPYLPSCLESQPAIRNQGYSTVTFDGTPS MO: ACRYGPFGPPPPSQASSGQARMFPNAPYLPSCLESQPTIRNQGYSTVTFDGAPS

HU: YGHTPSHHAAQFPNHSFKHEDPMGQQGSLGEQQYSVPPPVYGCHTPTDSCTG MO: YGHTPSHHAAQFPNHSFKHEDPMGQQGSLGEQQYSVPPPVYGCHTPTDSCTG

HU: SQALLLRTPYSSDNLYQMTSQLECMTWNQMNLGATLKGVAAGSSSSVKWTE MO: SQALLLRTPYSSDNLYQMTSQLECMTWNQMNLGATLKGMAAGSSSSVKWTE

HU: GQSNHSTGYESDNHTTPILCGAQYRIHTHGVFRGIQDVRRVPGVAPTLVRSAS MO: GQSNHGIGYESDNHTAPILCGAQYRIHTHGVFRGIQDVRRVSGVAPTLVRSAS

HU: ETSEKRPFMCAYPGCNKRYFKLSHLQMHSRKHTGEKPYQCDFKDCERRFSR MO: ETSEKRPFMCAYPGCNKRYFKLSHLQMHSRKHTGEKPYQCDFKDCERRFSR

HU: SDQLKRHQRRHTGVKPFQCKTCQRKFSRSDHLKTHTRTHTGKTSEKPFSCR MO: SDQLKRHQRRHTGVKPFQCKTCQRKFSRSDHLKTHTRTHTGKTSEKPFSCR

HU: WPSCQKKFARSDELVRHHNMHQRNMTKLQLAL MO: WHSCQKKFARSDELVRHHNMHQRNMTKLHVAL

Fig. 2

Fig. 3

Fig. 4

Fig. 5C

Vaccine A stimulated line

Vaccine B stimulated line

Fig. 6A

Fig. 6B

p117-139 stimulated line

p117-139 stimulated clone

Fig. 7A

Fig. 7B

p6-22 stimulated clone

Fig. 7C

Fig. 7D

5 MGSDVRDI AAA	_NALL VAAAA	AAAA 	ilggg Aaaa 	GGCAL A	PVSGA AA/ RRF	AQWAP VAAA . RR	VLDFA	PPGAS AA	aygsl Aaaaa 	GGPAP NAAAA 	PPAPP 	PPPPP 	PPHSF	IKQE
	85 PHEEC	90 CLSAF AA	95 TVHF: A	100 SGQFTI AAA	105 GTAGAI VA	110 CRYGP	115 FGPPP	120 PSQAS	 125 SGQAR AA RI DDDD.	130 MFPNA A RRRR.	135 PYLPS AAA/	140 CLESQ NAA	145 PAIRN	150 QGYS
155 TVTFDGTI	160 PSYGH 	165 HTPSHH A R	170 IAAQF AAAA RRR.	175 PNHSF	180 KHEDPI	185 MGQQG	190 SLGEQ	195 QYSVP	200 PPVYG /	205 CHTPT VAAAAV	210 DSCTG A	215 SQALL 	220 LRTPY	225 SSDN AA
230 LYQMTSQI AAAAAAA DDDDDDD.	235 _ECMT 4	240 WNQMN	245 ILGAT A .RRRF	250 LKGVA AA.AA RRRRRF DDDDD	255 AGSSS: A RR	260 SVKWT RRRI D	265 EGQSNI 	270 HSTGY	275 ESDNH 	280 TTPIL	285 CGAQY 	290 RIHTH AA	295 GVFRG AAAAA RRRR	300 IQDV AAAA
305 RRVPGVAI AAAAA 	310 PTLVF AAAAV RR DDDDD	315 RSASET NAAAAA D	320 SEKR \A	325 PFMCA	330 YPGCNI	335 KRYFK RRRR	340 LSHLQ	345 MHSRK 	350 HTGEK 	355 PYQCD	360 FKDCE A	365 RRFSR AAA.A	370 SDQLKI AAAAA	375 RHQR AAA.
380 RHTGVKPI	385 FQCKT 	390 CQRKF . AAAA	395 SRSDI . AAAA	400 HLKTH AAA	405 TRTHT(410 GKTSE VAAA.	415 KPFSC	420 RWPSC A	425 QKKFA 4A RRRI	430 RSDEL AAAA RRRI	435 VRHHN NAAA. RR	440 MHQRN AAA	445 MTKLQ	450 LAL

Inventor(s): Alexander Gaiger et al.

"REPLACEMENT SHEET"

MGS														70 PPHSF	
• • • •								• • • • •							
														145 PTIRN	
					AA	۸				AA	٩	AAA	AAA		
1	55	160	165	170	175	180	185	190	195	200	205	210	215	220	225
														LRTPY	
			F	RRRR.											
														ODDDDI 	
2	30	225	2//0	2/15	250	255	260	265	270	275	290	205	200	295	300
LYQ	MTSQ	LECM	TWNQMI	NLGAT	LKGMA	AGSSS	SVKWT	EGQSN	HGIGY	ESDNH	TAPIL	CGAQY	RIHTH	GVFRG	IQDV
														AAAAA RRRR	
DDD	DDD.				DDDDD	DDDDD	D								
														370 SDQLK	
AAA	AA	AAAA		AA									AAA.A	AAAAA	AAA.
_							•			•				445	
		-												MTKLH 4	
										RRRI	RRR	RR			

Fig. 9A

Fig. 9B

Fig. 10A

Fig. 10B

Fig. 10C

	E10 (WT1 negative)
	TRAMP-C (WT1 positive)
0	BLK-SV40 (WT1 positive)
	E10+P117 (relevant peptide)
	E10+P126 (irrelevant peptide)

Fig. 10D

Fig. 14

Fig. 15

Fig. 16

Fig. 17

TABLE 1: Characteristics of Recombinant WT1 Proteins Used for Serological Analysis

	-		-
الب	<u>Kecombinant Protein</u>	WII Amino Acid Position	Molecular
/full-length	Ral2—WT1 full length fusion protein	aa 1-449	85kDa
/N-terminus	TRX-WT1 N-terminus fusion protein	aa 1-249	60kDa
WT1/C-terminus	WT1 C-terminus protein	aa 267-449	50kDa