ACAMICA

¡Bienvenidas/os a Data Science!

Agenda

¿Cómo anduvieron?

Explicación: Puesta en Producción

Sentiment Analysis

Hands-on training

Break

Pipelines - Sklearn

Cierre

¿Cómo anduvieron?

Puesta en producción

Recorrido completo

¿Por qué Puesta en producción?

Queremos que el modelo que nosotros creamos pueda ser usado por otros usuarios. Con este fin vamos a tener que tener en cuenta tres aspectos principales que pueden resultar problemáticos:

- Acceso
- Compatibilidad (Lenguajes, Hardware, Librerias, etc.)
- Escala

Súper usuarios

Todos tienen los modelos y los recursos para correrlos

Súper usuarios

Todos tienen los modelos y los recursos para correrlos

SOLUCIÓN 2

Division of labor!

Division of labor!

Para el servidor **existen dos posibilidades** dependiendo del uso que le queramos dar:

- Servidor Local (en una empresa o institución) - Red local o intranet
- Nube Internet

Division of labor!

API: Application programing interface

Es una librería con una serie de funciones que nos permiten comunicarnos con el servidor

API de Watson: IBM cloud

IBM Watson · ¿Qué es?

Watson es una inteligencia Artificial multipropósito desarrollada y mantenida por IBM. Está especialmente diseñada para lidiar bien con el lenguaje natural y tiene varias funcionalidades. Consta de una serie de modelos muy complejos (poco bias) entrenados con bases de datos muy grandes.

IBM Watson · ¿Qué es?

Watson es una inteligencia Artificial multipropósito desarrollada y mantenida por IBM. Está especialmente diseñada para lidiar bien con el lenguaje natural y tiene varias funcionalidades. Consta de una serie de modelos muy complejos (poco bias) entrenados con bases de datos muy grandes.

¡Se hizo famosa ganando al Jeopardy!

IBM Watson · ¿Qué es?

En concreto, cuando decimos Watson nos referimos a una serie de modelos muy complejos (poco bias), entrenados (o pre-entrenados) con bases de datos muy grandes que se encuentra disponible en IBM Cloud.

Otras alternativas son:

- Google Cloud Platform
- Microsoft Azure

IBM Watson · ¿Cómo usarlo?

Vamos a seguir los pasos detallados <u>en la plataforma</u> <u>de Acámica,</u> y crearnos un usuario de IBM Cloud.

Debemos tener a mano <u>la documentación</u> para saber cómo conectarnos y usar las funciones disponibles.

Sentiment Analysis

Sentiment Analysis

Vamos a usar Watson para determinar si el contenido de un cuerpo de texto es positivo o negativo.

¿Cómo hacer Sentiment Analysis?

Sentiment Analysis • ¿Cómo hacerlo?

Está muy relacionado a lo que vimos de NLP. Una primera aproximación podría ser:

A pesar de ser muy simple, esto funciona (relativamente bien).

Sentiment Analysis · ¿Cómo hacerlo?

Está muy relacionado a lo que vimos de NLP. Una primera aproximación podría ser:

A pesar de ser muy simple, esto funciona (relativamente bien).

En el caso de Watson, se utilizan modelos más complejos de **Redes Recurrentes**. Esto permite tener en cuenta el orden de las palabras (estructura del texto) y no solo su aparición.

Hands-on training

Hands-on training

DS_Encuentro_44_Watson.ipynb

Pipelines de Scikit Learn

Workflow de trabajo

Desde la carga de los datos con los que vamos a trabajar hasta la salida del modelo, solemos aplicar una serie de pasos encadenados uno detrás del otro. A este camino se le llama "flujo de trabajo" (Workflow).

Por ejemplo, para un problema de NLP, el flujo podría esta compuesto por las siguientes acciones:

Workflow de trabajo

Notemos que tanto los datos del **Training Set** como los del **Test Set** deben realizar este mismo recorrido.

¿Qué es un Pipeline?

Pipeline · Definición

Es un único objeto que nos permite empaquetar todas estas acciones que van del preprocesamiento de los datos a la predicción del modelo.

Pipeline · ¿Para qué usarlo?

Es conveniente utilizarlo porque:

- Simplifica el proceso y aumenta la reproducibilidad
- Evita cometer errores (como saltarse algún preprocesamiento o mezclar datos del training set con datos del test set)
- Simplifica la implementación de cross-validation y la elección de hiperparámetros.

DOCUMENTACIÓN EJEMPLOS

Pipeline • Ejemplo de Pipeline

```
from sklearn.feature extraction.text import
CountVectorizer, TfidfTransformer
from sklearn.svm import LinearSVC
from sklearn.pipeline import Pipeline
X train, X test, y train, y test = make my dataset()
vect = CountVectorizer()
tfidf = TfidfTransformer()
clf = LinearSVC()
pipeline = Pipeline([('vect',vect),('tfidf',tfidf),('clf',clf)])
pipeline.fit(X train,y train)
y preds = pipeline.predict(X test)
```

Hands-on training

DS_Encuentro_44_Pipelines_y_Deploy.ipynb

Para la próxima

- 1. Terminar de ver los videos de puesta en producción.
- 2. Completar el notebook de hoy de Watson.
- 3. Terminar la entrega 06 si aún no lo hicieron.

ACAMICA