МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №6

по дисциплине «Качество и метрология программного обеспечения»

ТЕМА: «Оценка характеристик надежности программ по структурным схемам надежности»

Студент гр. 6304	Иванов В.С.
Преподаватель	Кирьянчиков В.А.

Санкт-Петербург 2020

Задание

Выполнить расчет характеристик надежности вычислительной системы по структурной схеме надежности, выбранной из таблицы 1 в соответствии с номером студента в списке группы.

В качестве оцениваемых характеристик следует рассматривать:

- а) Вероятность безотказной работы системы в заданный момент времени;
- b) Среднее время до отказа системы.

Выполнение расчетов следует производить двумя способами:

- 1) Расчетным способом;
- 2) Программным способом с помощью Анализатора структурных схем надежности RSSA (Reliability Structural Scheme Analyzer).

Вариант 7.

Вариант		N	[1			N:	,	N	3
	комбинат. соединения	λ_1	λ_2	λ_3	λ_4	комб. соедин.	λ	комб. соедин.	λ
7	C(4)	4.0	2.28	3.8	2.85	(1,1)	3.8	(2,2)	2.8

Ход работы

Был построен граф надежности с двумя мнимыми вершинами для перехода от N2 к N3 и для создания конечной вершины. Граф представлен на рис. 1.

Рисунок 1 – Граф надежности согласно варианту

1) Ручной расчёт

$$R_{N1} = e^{-(\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4)t} = e^{-12.93*2*10^{-5}} = 0.9997$$

$$R_{N2} = 1 - (1 - e^{-\lambda_{5,6}t})^2 = 2e^{-\lambda_{5,6}t} - e^{-2\lambda_{5,6}t} \cong 1$$

$$R_{N3} = 1 - (1 - e^{-2\lambda_{8-11}t})^2 = 2e^{-2\lambda_{8-11}t} - e^{-4\lambda_{8-11}t} \cong 1$$

$$R_S = e^{-(\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4)t} * \left(2e^{-\lambda_{5,6}t} - e^{-2\lambda_{5,6}t}\right) * \left(2e^{-2\lambda_{8-11}t} - e^{-4\lambda_{8-11}t}\right) = 0.9997$$

$$MTTF = \int\limits_0^\infty R_S(t)dt = \int\limits_0^\infty e^{-(\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4)t} * \left(2e^{-\lambda_{5,6}t} - e^{-2\lambda_{5,6}t}\right) * \left(2e^{-2\lambda_{8-11}t} - e^{-4\lambda_{8-11}t}\right)dt$$

В результате вычислений получили, что вероятность безотказной системы в заданный момент времени равна 0.9997, а среднее время до отказа системы -6249.92 часа.

$$\begin{split} MTTF &= \int\limits_0^\infty R_S(t)dt \\ &= \int\limits_0^\infty e^{-(\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4)t} * \left(2e^{-\lambda_{5,6}t} - e^{-2\lambda_{5,6}t}\right) * \left(2e^{-2\lambda_{8-11}t} - e^{-4\lambda_{8-11}t}\right)dt \\ &= \int\limits_0^\infty e^{-3173*10^{-7}t}dt \\ &- 2\int\limits_0^\infty e^{-2613*10^{-7}t}dt - 2\int\limits_0^\infty e^{-2793*10^{-7}t}dt + 4\int\limits_0^\infty e^{-2233*10^{-7}t}dt \\ &= \frac{1}{3173*10^{-7}} - \frac{2}{2613*10^{-7}} - \frac{2}{2793*10^{-7}} + \frac{4}{2233*10^{-7}} = 6249.92 \end{split}$$

В результате вычислений получили, что вероятность безотказной работы системы в заданный момент времени равна 0.9997, а среднее время до отказа системы – 6249.92 часа.

2) Программный расчёт

XML описание представлено в приложении А. Построенная схема представлена на рис. 2.

Рисунок 2 – Построенная схема

Результаты вычисления надежности и среднего времени безотказной работы представлены на рис. 3.

2.0 0.9997414151206782 6245.278718427245	t	R	T
2.0	2.0	0.9997414151206782	6245.278718427245

Рисунок 3 – Результаты программного расчета

Выводы

В результате выполнения данной лабораторной работы была выполнена оценка характеристик надежности программ по структурным схемам надежности. Результаты вычисления надежности и среднего времени безотказной работы ручным способом практически совпали с результатами, полученными с помощью программы.

ПРИЛОЖЕНИЕ А

XML

```
<Schema>
 <graf>
    <Block>
      <Id>1</Id>
      <Id2>1</Id2>
      <failureRate>4.0E-5</failureRate>
      <name>1</name>
      <quantity>1</quantity>
      t>
        <int>2</int>
      </list>
      <type></type>
    </Block>
    <Block>
      <Id>2</Id>
      <Id2>2</Id2>
      <failureRate>2.28E-5</failureRate>
      <name>2</name>
      <quantity>1</quantity>
      t>
        <int>3</int>
      </list>
      <type></type>
    </Block>
    <Block>
      <Id>3</Id>
      <Id2>3</Id2>
      <failureRate>3.8E-5</failureRate>
      <name>3</name>
      <quantity>1</quantity>
      <list>
        <int>4</int>
      </list>
      <type></type>
    </Block>
    <Block>
      <Id>4</Id>
      <Id2>4</Id2>
      <failureRate>2.85E-5</failureRate>
      <name>4</name>
      <quantity>1</quantity>
      <list>
        <int>5</int>
        <int>6</int>
      </list>
      <type></type>
    </Block>
    <Block>
      <Id>5</Id>
      <Id2>5</Id2>
      <failureRate>3.8E-5</failureRate>
      <name>5</name>
      <quantity>1</quantity>
      t>
        <int>7</int>
      </list>
      <type></type>
```

```
</Block>
<Block>
  <Id>6</Id>
  <Id2>6</Id2>
  <failureRate>3.8E-5</failureRate>
  <name>6</name>
  <quantity>1</quantity>
  <list>
    <int>7</int>
  </list>
  <type></type>
</Block>
<Block>
  <Id>7</Id>
  <Id2>7</Id2>
  <failureRate>0</failureRate>
  <name>7</name>
  <quantity>1</quantity>
  t>
    <int>8</int>
    <int>10</int>
  </list>
  <type></type>
</Block>
<Block>
  <Id>8</Id>
  <Id2>8</Id2>
  <failureRate>2.8E-5</failureRate>
  <name>8</name>
  <quantity>1</quantity>
  t>
    <int>9</int>
  </list>
  <type></type>
</Block>
<Block>
  <Id>9</Id>
  <Id2>9</Id2>
  <failureRate>2.8E-5</failureRate>
  <name>9</name>
  <quantity>1</quantity>
  t>
    <int>12</int>
  </list>
  <type></type>
</Block>
<Block>
  <Id>10</Id>
  <Id2>10</Id2>
  <failureRate>2.8E-5</failureRate>
  <name>10</name>
  <quantity>1</quantity>
  t>
    <int>11</int>
  </list>
  <type></type>
</Block>
<Block>
  <Id>11</Id>
  <Id2>11</Id2>
  <failureRate>2.8E-5</failureRate>
  <name>11</name>
```

```
<quantity>1</quantity>
     t>
       <int>12</int>
     </list>
     <type></type>
   </Block>
   <Block>
     <Id>12</Id>
     <Id2>12</Id2>
     <failureRate>0</failureRate>
     <name>12</name>
     <quantity>1</quantity>
     t/>
     <type></type>
   </Block>
 </graf>
 <ListOfFlag/>
 <listOfNode/>
 t/>
</Schema>
```