

CÓDIGO: ACA-FO-96

VERSIÓN: 03

FORMATO CONTENIDO PROGRAMÁTICO DE LA ASIGNATURA PROGRAMAS DE PREGRADO Y POSTGRADO (FORMACIÓN POR COMPETENCIAS)

FECHA: 27/09/2024

Versión CPA	Fecha de actualización				
	del CPA				
4	23/01/2025				

Escuela Nombre del Programa o Departamento		Mod	Versión del plan de estudios					
Escuela de Ciencias E	xactas e Ingeniería	Ciencias de la computación e inteligencia artificial		Presencial			Versión 1	
Optativa 4. Intro	duccion a HPC	Modalidad de la asignatura (seleccione) Presencial		Semestre (pregrados)	IV	Cohorte (postgrados)		
Área o componente de formación	Complementario	Tipo de asignatura	N	Obligatoria	Código	PCIA5024	Créditos	3
Horas presenciales	4	Horas sincrónica	0	Horas asincrónicas	0	Horas de traba	ajo autónomo	5

3, etc. Espacio para 2 caracteres.

Commented [NYGO1]: Coloque la última versión del contenido programático de la asignatura, así como la fecha en la que se actualizó esa versión. Utilice la numeración 1, 2,

Commented [NYGO2]: Colocar el número de la Cohorte, ejemplo 1,2,3. Espacio para 4 caracteres.

Commented [NYGO3]: Apoyarse en lo consignado en el formato ACA-FO-59 diligenciado para el programa.

JUSTIFICACIÓN Y DESCRIPCIÓN DE LA ASIGNATURA

Justificación

Este curso establece los cimientos para comprender y utilizar herramientas y metodologías básicas para resolver problemas que requieren capacidades computacionales avanzadas. Con el crecimiento explosivo del volumen de datos en áreas como análisis financiero, biomedicina e inteligencia artificial, es indispensable que los estudiantes desarrollen habilidades para aprovechar tecnologías de cómputo paralelo y distribuido.

La Introducción a la Computación de Alto Desempeño pretende que los estudiantes comprendan no solo los aspectos teóricos del paralelismo y las arquitecturas computacionales modernas, sino que también estén equipados para optimizar soluciones informáticas que impacten positivamente sectores clave de la economía y la ciencia. Este curso, por tanto, responde a la necesidad de preparar profesionales con competencias para maximizar el rendimiento computacional y garantizar la eficacia en el uso de recursos tecnológicos.

Este curso provee a los estudiantes no solo con habilidades técnicas, sino que también fomentan el pensamiento crítico y la resolución de problemas complejos, alineándose con las demandas del mundo académico, científico e industrial actual.

Descripción

Esta asignatura ofrece a los estudiantes una comprensión inicial de los fundamentos de la Computación de Alto Desempeño. Se centra en conceptos básicos como el paralelismo, los modelos de programación paralela, y las arquitecturas subyacentes de sistemas de alto desempeño, incluyendo multiprocesadores y clústeres. Los estudiantes aprenden a diseñar y desarrollar programas básicos en ambientes paralelos utilizando herramientas como OpenMP y MPI, mientras se introducen a metodologías para evaluar el rendimiento de sus aplicaciones.

CÓDIGO: ACA-FO-96

VERSIÓN: 03

FORMATO CONTENIDO PROGRAMÁTICO DE LA ASIGNATURA PROGRAMAS DE PREGRADO Y POSTGRADO (FORMACIÓN POR COMPETENCIAS)

FECHA: 27/09/2024

JUSTIFICACIÓN Y DESCRIPCIÓN DE LA ASIGNATURA

En un mundo que depende cada vez más del procesamiento de grandes volúmenes de datos en áreas como inteligencia artificial, simulación y análisis de grandes volúmenes de datos, la Computación de Alto Desempeño se torna una herramienta indispensable para resolver problemas que demandan recursos computacionales significativos. Este curso introduce a los estudiantes a las habilidades necesarias para trabajar en sectores que utilizan aplicaciones intensivas en datos, como finanzas, salud, modelado climático y simulación computacional. Sirve como base para asignaturas más avanzadas de la línea de Computación de Alto Desempeño. Asimismo, conecta con áreas de Introducción a la Programación y Arquitectura de Computadoras, proporcionando un fundamento práctico para trabajar con sistemas de hardware avanzado y algoritmos paralelos.

Este curso se desarrolla a través de clases teóricas, con la presentación de conceptos fundamentales, incluyendo paralelismo, arquitecturas de hardware y modelos de programación, acompañado de talleres prácticos para la implementación de programas simples en entornos paralelos utilizando herramientas como OpenMP y MPI; en particular alrededor de casos de estudio, buscando la resolución de problemas básicos con ejemplos reales para introducir a los estudiantes al impacto práctico del Computación de alto desempeño.

UNIDADES DE COMPETENCIA

- **1.3 Resolución y Optimización de Problemas de Ingeniería en Contextos Específicos**: Comprender los conceptos básicos de la computación de alto desempeño y su aplicación en distintos dominios. Conocer las arquitecturas paralelas y distribuidas más comunes. Utilizar herramientas y lenguajes de programación básicos en computación paralela.
- **5.2 Planificar y Ejecutar Actividades para Alcanzar Objetivos de Equipo**: Iniciar el trabajo en equipo en proyectos pequeños de paralelización. Colaborar en la implementación de soluciones sencillas.
- **6.1** Diseñar y Ejecutar proyectos de Experimentación en la Ingeniería: Planear la ejecución de ejercicios y proyectos en paralelo. Evaluar el rendimiento de programas en paralelo. Usar herramientas básicas de análisis de rendimiento.

CÓDIGO: ACA-FO-96

VERSIÓN: 03

FORMATO CONTENIDO PROGRAMÁTICO DE LA ASIGNATURA PROGRAMAS DE PREGRADO Y POSTGRADO (FORMACIÓN POR COMPETENCIAS)

FECHA: 27/09/2024

RESULTADOS DE APRENDIZAJE

1.3 Resolución y Optimización de Problemas de Ingeniería en Contextos Específicos

- Explicar los conceptos básicos de la computación paralela y distribuida.
- Implementar programas sencillos utilizando paradigmas de programación paralela.
- Analizar el rendimiento básico de aplicaciones en arquitecturas paralelas.

5.2 Planificar y Ejecutar Actividades para Alcanzar Objetivos de Equipo

• Trabajar en equipo en la implementación de pequeños proyectos paralelos.

6.1 Diseñar y Ejecutar proyectos de Experimentación en la Ingeniería

 Realizar experimentos básicos de rendimiento en aplicaciones paralelas y analizar los resultados para mejorar la eficiencia.

CONTENIDOS Y/O ACTIVIDADES

Introducción a la Computación de Alto Desempeño

Semana 1

Tema: Presentación del curso

Tema: Definición, importancia y aplicaciones de la Computación de Alto Desempeño en la ciencia y la ingeniería.

Principios de paralelismo computacional

Semanas 2 y 3

Tema: Conceptos de concurrencia, paralelismo y clasificación de Flynn (SISD, SIMD).

Introducción a arquitecturas paralelas

Semanas 4 y 5

Tema: Procesadores multinúcleo, clústeres y arquitecturas heterogéneas.

Semana 6

Actividad: Presentación de propuesta de proyecto

CÓDIGO: ACA-FO-96

VERSIÓN: 03

FORMATO CONTENIDO PROGRAMÁTICO DE LA ASIGNATURA PROGRAMAS DE PREGRADO Y POSTGRADO (FORMACIÓN POR COMPETENCIAS)

FECHA: 27/09/2024

Modelos de programación paralela

• Semanas 6, 7 y 8

Tema: Programación con hilos, tareas y espacios de memoria compartida (OpenMP).

Mensajería entre procesos

Semana 9, 10 y 11

Tema: Introducción a MPI para la comunicación en arquitecturas distribuidas.

• Semana 11

Actividad: Presentación de avances de implementación de proyecto

Evaluación de rendimiento

Semana 11, 12 y 13

Tema: Métricas como speedup, eficiencia, escalabilidad y balance de carga.

Aplicaciones prácticas en Computo de Alto Desempeño

Semana 14 y 15

Tema: Desarrollo de programas simples para problemas de cálculo científico o simulación.

Proyecto final

Semana 16

Tema: Presentación de la implementación y optimización del proyecto.

CÓDIGO: ACA-FO-96

VERSIÓN: 03

FORMATO CONTENIDO PROGRAMÁTICO DE LA ASIGNATURA PROGRAMAS DE PREGRADO Y POSTGRADO (FORMACIÓN POR COMPETENCIAS)

FECHA: 27/09/2024

Resultado de aprendizaje	Criterio de evaluación		Evaluador (Modalidades	Instrumentos
		1.1	de evaluación)	
Explicar los conceptos básicos de la computación				Exámenes teóricos sobre los conceptos
paralela y distribuida.	computación paralela.	paralelos.		fundamentales
paradigmas de programación paralela.		pequeños proyectos en lenguajes paralelos.		Rúbricas de evaluación de los proyectos sencillos.
	rendimiento en	Informes de análisis de rendimiento y propuestas de mejora.		Rúbrica de informes técnicos de análisis de rendimiento.
Trabajar en equipo en la implementación de pequeños proyectos	el equipo y	Informe de equipo que documente la contribución de cada		Rubrica que mida la colaboración y contribución individual.
paralelos.	asignadas.	miembro.		Rubrica co-evaluación y autoevaluación.
básicos de rendimiento en aplicaciones paralelas y	pruebas y analizar el			Rubrica que evalúe la calidad del análisis de las pruebas realizadas.

Corte	Estrategia sumativa	Unidades de competencia (UC)			% Corte
	(evidencia de aprendizaje)	1.3	5.2	6.1	
	Implementación de ejercicios en lenguajes paralelos.	10%			
1	Informe de equipo que documente la contribución de cada miembro.		10%		30%
	Reporte de pruebas y análisis de rendimiento.			10%	
	Implementación de ejercicios en lenguajes 5% paralelos.				
2	Implementación de ejercicios en lenguajes paralelos.	5%			30%

CÓDIGO: ACA-FO-96

VERSIÓN: 03

FORMATO CONTENIDO PROGRAMÁTICO DE LA ASIGNATURA PROGRAMAS DE PREGRADO Y POSTGRADO (FORMACIÓN POR COMPETENCIAS)

FECHA: 27/09/2024

	Informe de equipo que documente la		10%		
	contribución de cada miembro.		10/0		
	Reporte de pruebas y análisis de rendimiento.			10%	
	Implementación de ejercicios en lenguajes paralelos.	10%			
	Informe de equipo que documente la contribución de cada miembro.		14%		
3	Reporte de pruebas y análisis de rendimiento.			8%	40%
	Informes de análisis de rendimiento y propuestas de mejora.	8%			
Total		38%	34%	28%	100%

PERFIL DEL D	OCENTE		
Profesional en	Ingeniería de sistemas, Cieno Computación, Matemáticas apli campo afín.		Experiencia es programación en GPUs y lenguajes como CUDA, OpenCL y MPI. Dominio en lenguajes como C, C++, Python y su aplicación en entornos paralelos. Familiaridad con frameworks como TensorFlow o PyTorch para cómputo acelerado. Familiaridad con
Postgrado en	Maestría con formación esp tecnologías y herramientas de c alto desempeño.		aplicaciones científicas paralelas y técnicas para evaluar y medir su rendimiento (profiling y debugging)
Años experienci	a profesional (preferiblemente)	2	
Años experiencia docente (preferiblemente) 1		1	

Commented [4]: Se debe indicar cuáles son las condiciones mínimas de formación profesional y académica que debe tener el docente de la asignatura; de igual manera, se recomienda no escribir nombres de un profesor en particular. Espacio para 210 caracteres o 5 renglones.

Otra habilidad o competencia específica: Espacio para 530 caracteres o 10 renglones. Años experiencia profesional (preferiblemente) y Años experiencia docente (preferiblemente): Espacio para 4

CÓDIGO: ACA-FO-96

VERSIÓN: 03

FORMATO CONTENIDO PROGRAMÁTICO DE LA ASIGNATURA PROGRAMAS DE PREGRADO Y POSTGRADO (FORMACIÓN POR COMPETENCIAS)

FECHA: 27/09/2024

BIBLIOGRAFÍA

Textos guía

Levesque, J. (2018) High Performance Computing: Programming and Applications. CRC press, Taylor and Francis group. 1st Edition. ISBN: 9781138372689

Hager, G. & Wellein, G. (2010) Introduction to High Performance Computing for Scientists and Engineers. CRC press. ISBN: 9781439811924.

Pacheco, P. (1996) Parallel Programming with MPI. Morgan Kaufmann. 1st Edition. ISBN 9781558603394

Robey, R. & Zamora, Y. (2021) Parallel and High Performance Computing. Manning. 1st Edition. ISBN 9781617296468

Otros textos

Gropp, W., Lusk, E. & Skjellum, A. (2014) Using MPI, third edition: Portable Parallel Programming with the Message-Passing Interface. The MIT Press. 3rd Edición.

Rantaharju, J., Kim, S. & Bennett, E. (2018) Introduction to Parallel Programming with MPI Disponible en https://rantahar.github.io/introduction-to-mpi/