Lab02 Metoda najmniejszych kwadratów

Patryk Blacha, Radosław Szepielak

18 czerwca 2025

Spis treści

1	1 Wprowadzenie teore															1
	1.1 Metoda najmniejsz	zych kwadratów	w]	klas	yfika	cji				 						1
2	2 Metodologia															1
	2.1 Zbiór danych i prz	ygotowanie					 			 						1
	2.1 Zbiór danych i prz 2.2 Proces przetwarza:	nia					 	•		 	•					2
3	3 Analiza numeryczna															2
	3.1 Współczynniki uwa	arunkowania .					 	•		 	•					2
4	4 Wyniki eksperyment	alne														3
	4.1 Porównanie skuted	zności					 			 			 			3
	4 Wyniki eksperyment 4.1 Porównanie skutec 4.2 Szczegółowa analiz	a błędów					 			 						3
5	5 Dyskusja															3
	5 Dyskusja5.1 Interpretacja wyni	ków					 			 			 			3
	5.2 Ograniczenia meto															

1 Wprowadzenie teoretyczne

1.1 Metoda najmniejszych kwadratów w klasyfikacji

Metoda najmniejszych kwadratów (MNK) została zastosowana do problemu klasyfikacji binarnej poprzez odpowiednie przekształcenie etykiet. Dla macierzy cech $\bf A$ i wektora $\bf b$ rozwiązanie wyraża się wzorem:

$$\mathbf{w} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$$

gdzie ${\bf w}$ zawiera optymalne wagi modelu.

2 Metodologia

2.1 Zbiór danych i przygotowanie

- Zbiór Breast Cancer Wisconsin zawierający 30 cech diagnostycznych
- $\bullet\,$ Podział na treningowy (300 próbek) i walidacyjny (260 próbek)
- Kodowanie etykiet: 1 (złośliwy), -1 (łagodny)

Rysunek 1: Rozkład wartości cechy 'radius (mean)' z podziałem na klasy

2.2 Proces przetwarzania

- 1. Normalizacja brakująca (dane już wystandaryzowane)
- 2. Generowanie cech kwadratowych dla wybranych atrybutów
- 3. Budowa macierzy projektowych dla modeli liniowych i nieliniowych

Rysunek 2: Posortowane wartości cechy 'radius (mean)'

3 Analiza numeryczna

3.1 Współczynniki uwarunkowania

- Współczynnik uwarunkowania dla modelu liniowego: 2.10×10^{12} Ten współczynnik jest wysoki, co wskazuje na potencjalne problemy numeryczne. Macierz A jest prawdopodobnie źle uwarunkowana, co może prowadzić do niestabilnych wyników.
- Współczynnik uwarunkowania dla modelu kwadratowego: 1.07×10^{18} Ten współczynnik jest dużo wyższy niż dla modelu liniowego, co wskazuje na złe uwarunkowanie macierzy. Wyniki uzyskane tą metodą są prawdopodobnie mało wiarygodne.
- \bullet Współczynnik uwarunkowania dla modelu liniowego z regularyzacją: 5.31×10^{10} Współczynnik uwarunkowania jest niższy niż w przypadku metody bez regularyzacji i metody

kwadratowej, ale nadal wysoki. Regularyzacja poprawiła uwarunkowanie macierzy, ale nadal istnieje ryzyko niestabilności.

• Współczynnik uwarunkowania dla modelu liniowego SVD: 1.45×10^6 Współczynnik uwarunkowania jest znacznie niższy niż w poprzednich przypadkach, co sugeruje, że metoda SVD jest bardziej stabilna numerycznie.

4 Wyniki eksperymentalne

4.1 Porównanie skuteczności

Model	Dokładność
Liniowy	97.31%
Liniowy SVD	97.31%
Liniowy z regularyzacją	97.69%
Kwadratowy	91.92%

Tabela 1: Porównanie efektywności modeli

4.2 Szczegółowa analiza błędów

Model	TP	TN	FP	FN
Liniowy	58	195	5	2
Liniowy SVD	58	195	5	2
Liniowy z regularyzacją	58	196	4	2
Kwadratowy	55	184	16	5

Tabela 2: Macierz pomyłek dla różnych modeli.

5 Dyskusja

5.1 Interpretacja wyników

- $\bullet\,$ Wysoka dokładność modelu liniowego sugeruje liniową separowalność danych
- Spadek dokładności dla modelu kwadratowego wskazuje na:
 - Przeuczenie na szumach
 - Problemy numeryczne związane z wysokim współczynnikiem uwarunkowania

5.2 Ograniczenia metody

- Wrażliwość na współliniowość cech
- Brak automatycznej selekcji cech
- Problemy z interpretacją wag przy wysokiej korelacji zmiennych

Pełne parametry modeli

```
Wagi modelu liniowego (pierwsze 5):

- Bias: -6.172

- radius_mean: -0.608

- texture_mean: 0.025

- perimeter_mean: 0.078

- area_mean: 0.00058
```

Literatura

 \bullet Materiały pomocnicze do laboratorium zamieszczone na platformie Teams (lab02/lab2-intro.pdf)