1. Sean $X = \{1, 2, 3, ..., 10\}$ y $A = \{1, 2, 3, 4\}$. Definimos la relación de equivalencia siguiente sobre el conjunto $\mathcal{P}(X)$:

$$B R C \Leftrightarrow B \cup A = C \cup A$$
.

Entonces el cardinal del conjunto cociente $\mathcal{P}(X)/R$ es igual a

- (a) 4 (b) 16 (c) 64 (d) 128
- 2. El número de aplicaciones del conjunto $\mathcal{P}(\{1,2\})$ en el conjunto

$$\{f: \{1,2\} \to \{3,4,5\} \mid f \text{ es aplicación}\}$$

es igual a

- (a) 9^2 (b) 2^9 (c) 4^9 (d) 9^4
- 3. Dado $A \subseteq X$, recordemos que X A también se denota como $X \setminus A$ así como \overline{A} . Si $A, B \subseteq X$, entonces el subconjunto $(X (A \cap B)) \cap A$ es igual a
 - (a) \varnothing (b) $(X A) \cup B$ (c) $(X B) \cap A$ (d) X
- 4. Definimos en \mathbb{Z}_7 la siguiente relación binaria: $x R y \Leftrightarrow x + y = 0$. Entonces:
 - a) R no es relación de equivalencia,
 - b) R es relación de equivalencia y \mathbb{Z}_7/R tiene cardinal 4,
 - c) R es relación de equivalencia y \mathbb{Z}_7/R tiene cardinal 3,
 - d) R es relación de equivalencia y \mathbb{Z}_7/R tiene 5 elementos.
- 5. En S₉ no existen permutaciones de orden
 - (a) 20 (b) 12 (c) 15 (d) 18
- 6. Dado un grupo G, consideramos la aplicación $f: G \to G$ definida por $f(x) = x^{-1}$ para todo $x \in G$. Entonces
 - a) f es biyectiva y además es un homomorfismo de grupos,
 - b) aunque f no es biyectiva, sin embargo sí es un homomorfismo de grupos,
 - c) f es biyectiva, aunque no es un homomorfismo de grupos,
 - d) f no es biyectiva ni tampoco es un homomorfismo de grupos.

7. ¿Cuál de las siguientes afirmaciones es cierta para la permutación?

- a) σ es impar,
- b) σ es un ciclo,
- c) $\sigma = (1,4)(4,3)(2,5)(7,9)$ es una descomposición de σ en ciclos disjuntos,
- d) $\sigma^{61} = \sigma$
- 8. El cardinal del subespacio vectorial de \mathbb{Z}_5^3 generado por el conjunto $\{(1,1,1),(1,2,1)\}$ es:
 - (a) 25 (b) 10 (c) 125 (d) 15
- 9. Sean $U_1 = \langle (1,2,3), (1,1,1) \rangle$ y $U_2 = \langle (0,0,1), (3,5,7) \rangle$. ¿Cuál de las siguientes afirmaciones es cierta?
 - a) $\mathbb{R}^3 = U_1 + U_2$
 - b) $U_1 \cap U_2 = \{(0,0,0)\}$
 - c) $\mathbb{R}^3 = U_1 + U_2 \text{ y } U_1 \cap U_2 = \{(0,0,0)\}$
 - d) dim $(U_1 \cap U_2) = 2$
- 10. ¿Cuál de los siguientes espacios vectoriales no es isomorfo a \mathbb{R}^3 ?
 - a) $\{(x,y,z,t) \in \mathbb{R}^4 \mid x+y+z=0\},\$
 - b) $\{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 = 0, x_2 + x_3 = 0\},\$
 - c) $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2\times 2}(\mathbb{R}) \mid c+d=0 \right\}$
 - d) $\{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 \mid x_1 + x_2 = 0, 3x_1 + x_4 = 0\}.$
- 11. Sean $B = \{v_1, v_2\}$ y $B' = \{v'_1 = 5v_1 3v_2, v'_2 = -2v_1 + v_2\}$ dos bases de un espacio vectorial V sobre \mathbb{R} . Si las coordenadas de w respecto de la base B son (3, -2), entonces las coordenadas de w respecto de la base B' son
 - (a) (19,-11) (b) (1,1) (c) (21,-8) (d) (3,4)
- 12. Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ una aplicación lineal tal que f(1,1)=(1,-1) y f(3,5)=(-1,-1). Entonces la matriz asociada a f respecto de la base canónica de \mathbb{R}^2 es

(a)
$$\begin{pmatrix} 3 & -2 \\ -2 & 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}$ (c) $\begin{pmatrix} -1 & -2 \\ -2 & -3 \end{pmatrix}$ (d) $\begin{pmatrix} 1/2 & -1/2 \\ -1/2 & -1/2 \end{pmatrix}$

- 13. Sea $f : \mathbb{R}^3 \to \mathbb{R}^3$ la aplicación definida por f(x,y,z) = (x+y,x+z,2x+y+z). Entonces una base para Im(f) es:
 - a) $\{(1,1,2),(0,0,1)\},\$
 - $b) \{(1,0,1),(0,0,1)\},\$
 - c) $\{(1,1,2),(2,1,3)\},\$
 - d) {(1,1,2)}.
- 14. Sea $f: \mathbb{R}^4 \to \mathbb{R}^3$ una aplicación lineal tal que $\dim(N(f)) = 1$. Entonces:
 - a) f es inyectiva,
 - b) f es sobreyectiva,
 - c) f es biyectiva,
 - d) f es un isomorfismo.
- 15. Sea la matriz $A = \begin{pmatrix} 5 & 2 & 3 & 1 \\ 4 & 4 & 4 & 3 \\ 2 & 3 & 5 & 3 \\ 2 & 1 & 6 & 0 \end{pmatrix}$ con coeficientes en \mathbb{Z}_7 . Entonces el rango de

A es igual a

- (a) 4 (b) 1 (c) 3 (d) 2
- 16. Acerca del sistema siguiente con coeficientes en \mathbb{R}

$$\begin{cases} x + ay + z = 1 \\ (a-1)x + y = a \\ y + z = 1 \end{cases}$$

podemos afirmar que

- a) es siempre compatible determinado,
- b) la compatibilidad o incompatibilidad depende del valor de a,
- c) es siempre compatible indeterminado,
- d) es siempre incompatible.
- 17. ¿Cuál de las siguientes matrices no es diagonalizable sobre \mathbb{R} ?

(a)
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 4 \\ 0 & 2 \end{pmatrix}$ (c) $\begin{pmatrix} 9 & 8 \\ 8 & 9 \end{pmatrix}$ (d) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

18. ¿Cuál de los siguientes conjuntos constituye una base para \mathbb{Q}^3 formada por vectores propios para la matriz

$$A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$$
?

- a) $\{(0,1,1),(1,1,2),(1,2,3)\},\$
- b) $\{(-1,0,1),(1,1,2),(1,1,1)\},\$
- c) $\{(1,1,2),(1,1,0),(-1,0,1)\},\$
- $d) \{(0,1,1),(1,2,1),(-1,0,1)\}.$
- 19. Sea la aplicación $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^2$. Entonces $f^*(\{0, 1, -1\})$ es igual a:
 - (a) $\{0,1\}$ (b) $\{-1,0,1\}$ (c) \mathbb{Q} (d) $\{0\}$
- 20. Sea σ una permutación de orden 30. Entonces el cardinal del conjunto

$$\{\sigma^i \mid 25 \le i \le 40\}$$

es