

Computação Evolucionária:

Da Biologia para Computação

Gisele L. Pappa

Introdução

- Métodos inspirados na teoria da evolução de Darwin, propostos pela primeira vez em 1958
- Anos 60
 - Algoritmos Genéticos e Programação Evolucionária (EUA) vs Estratégias Evolutivas (Alemanha)
- 1989: Livro de D. Goldberg sobre algoritmos genéticos
- 1992: Programação Genética (J.Koza)
- Anos 90 essas técnicas foram combinadas com o nome Computação Evolucionária

Introdução

- Historicamente, diferentes tipos de AEs têm sido associadas a diferentes tipos de representação
 - Vetores binários : Algoritmos Genéticos
 - Vetores de números reais : Estratégias Evolucionárias
 - Máquinas de estado finito: Programação Evolucionária
 - Árvores: Programação Genética
- Essas diferenças são irrelevantes, sendo a melhor estratégia
 - Escolher uma representação adequada para o problema
 - Escolher operadores genéticos que sejam adequados a representação escolhida

Evolução

Biologia Evolucionária (1)

- O que é evolução?
 - Mudança das características (genéticas) de uma população de uma geração para a próxima
 - Mutação dos genes
 - Recombinação dos genes dos pais
 - Seleção natural é seu principal agente causador

Biologia Evolucionária (2)

• Estruturas básicas:

Biologia Evolucionária (3)

- Cromossomos: Carregam informações hereditárias de um organismo
 - Podem ser dividido em genes (região do DNA que controla uma característica hereditária)
- Genótipo: Material genético contido em uma célula ou organismo
- Fenótipo: Características físicas ou bioquímicas de um organismo que podem ser observadas, e que são determinadas tanto pelo genótipo quanto por influências do meio
- Fitness: Probabilidade de reprodução de um indivíduo

Biologia Evolucionária (4)

- Variação genética
 - Cruzamento: troca de material genético entre dois cromossomos

Biologia Evolucionária (5)

- Variação genética
 - Mutação

Da biologia para computação

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

DCC

Idéias Básicas

- AE é um procedimento iterativo que evolui uma população de indivíduos
- Cada indivíduo representa uma solução candidata para um dado problema
- A cada iteração (geração):
 - Os melhores indivíduos são selecionados de acordo com uma função de fitness
 - Operadores genéticos são aplicados aos indivíduos selecionados, visando produzir novos indivíduos ("filhos")

Exemplos de Aplicação

- Muitas para listar
 - Engenharia
 - Design de circuitos
 - Modelos financeiros
 - Jogos
 - Bioinformática
- Capazes de gerar resultados competitivos com aqueles encontrados por humanos.

Independência de Aplicação

- O que faz EAs serem robustos para os mais diversos tipos de aplicações?
 - O algoritmo em si é o mesmo para qualquer problema
 - Existem 3 componentes importantes que devem ser definidos de acordo com o problema em mãos:
 - Representação dos indivíduos
 - Função de aptidão (fitness)
 - Operadores genéticos novos operadores podem ser definidos especificamente para o problema

http://gencar.co

http://gencar.co

- Cromossomo está dividido em 4 partes:
- 1. Forma (8 genes, um por vértice)
- 2. Tamanho da roda (2 genes)
- 3. Posição da roda (2 genes)
- 4. Densidade da roda (2 genes)

Motivação

- Maneira declarativa de resolver um problema (o que fazer), em contraste com métodos procedurais (como fazer)
- Processamento paralelo
- Oferecem soluções robustas e adaptativas
- Inteligência de máquinas
 - Possibilita incorporar conhecimento ao método sem explicitamente programá-lo
- Busca global

Da biologia para computação

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

DCC

Agradecimento

 Alguns slides dessa aula foram adaptados e traduzidos do livro "Fundamentals of Natural Computing", de Leandro Nunes de Castro e outros das aulas de Computação Natural de Alex A. Freitas (University of Kent)

Computação Evolucionária

Da Biologia para Computação

Gisele L. Pappa

