超大質量天体に落下する星の光学的出現

大豆生田 幹

Contents

1	一般相対論	2
	1.1 概念	
	1.2 ベクトル	2
	1.3 内積	
	1.4 計量	
	1.5 並行移動と共変微分	:
	1.6 測地線	:
	1.7 アインシュタイン方程式	:
	1.8 シュバルツシルトの外部解	:
	シュバルツシルト時空における天体の軌道	4
	2.1 軌道の安定性	

Chapter 1

一般相対論

1.1 概念

1.2 ベクトル

時空は局所的に平坦とみなすことができた。つまり、時空は局所的にユークリッド空間と同相な空間と考えることができるので、そこでは滑らかな座標が存在する。そこで、座標を以下のようにとることにする。

$$(x^0, x^1, x^2, x^3)$$

時空上で実数値をもつ滑らかな関数 $f(x^i)$ と、実数 t をパラメータとする曲線 C(t) を考える。ここで、曲線 C(t) 上における関数 $f(x^i)$ の t 微分は

$$\frac{df}{dt} = \frac{\partial f}{\partial x^i} \frac{dx^i}{dt}$$

とかける。この右辺の成分それぞれに着目する。座標変換 $(x^0,x^1,x^2,x^3) \to (\bar x^0,\bar x^1,\bar x^2,\bar x^3)$ を考えると

(1)

$$v^i = \frac{dx^i}{dt}$$

では、

$$\bar{v}^i = \frac{d\bar{x}^i}{dt} = \frac{\partial \bar{x}^i}{\partial x^j} v^j$$

このような関係を満たすものを反変ベクトルと言い、上記のようにベクトルの添え字を上に書く。

(2)

$$w_i = \frac{df}{dx^i}$$

では、

$$\bar{w}_j = \frac{df}{d\bar{x}^i} = \frac{\partial x^i}{\partial \bar{x}^j} w_i$$

このような関係を満たすものを共変ベクトルと言い、上記のようにベクトルの添え字を下に書く。

以上のをまとめると、ベクトルは2種類に分類できて、それぞれの座標変換は以下のように書ける。

反変ベクトルの変換則

$$\bar{v}^i = \frac{\partial \bar{x}^i}{\partial x^j} v^j$$

共変ベクトルの変換則

$$\bar{w}_i = \frac{\partial x_j}{\partial \bar{x}^i} w_j$$

- 1.3 内積
- 1.4 計量
- 1.5 並行移動と共変微分
- 1.6 測地線
- 1.7 アインシュタイン方程式
- 1.8 シュバルツシルトの外部解

Chapter 2

シュバルツシルト時空における天体の軌道

2.1 軌道の安定性

$$\bar{w}_j = () \int$$

メモ用

1 = 0

$$\begin{cases} 1 = 0 \\ 1 = 0 \end{cases} \tag{2.1}$$