Информационная технология

АБСТРАКТНАЯ СИНТАКСИЧЕСКАЯ НОТАЦИЯ ВЕРСИИ ОДИН (ACH.1)

Часть 4

Параметризация спецификации АСН.1

Издание официальное

Предисловие

1 РАЗРАБОТАН Государственным научно-исследовательским и конструкторско-технологическим институтом «Тест» Министерства Российской Федерации по связи и информатизации

ВНЕСЕН Министерством Российской Федерации по связи и информатизации

- 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 21 января 2003 г. № 19-ст
- 3 Настоящий стандарт содержит полный аутентичный текст международного стандарта ИСО/МЭК 8824-4—95 «Информационная технология. Абстрактная синтаксическая нотация версии один (ACH.1). Параметризация спецификации ACH.1», ИСО/МЭК 8824-4—98/Доп. 1—2000 «ACH.1 семантическая модель»
 - 4 ВВЕДЕН ВПЕРВЫЕ

Содержание

1	Область применения	1
2	Нормативные ссылки	1
3	Определения	1
	3.1 Спецификация базовой нотации	1
	3.2 Спецификация информационного объекта	1
	3.3 Спецификация ограничения	1
	3.4. Дополнительные определения	1
4	Сокращения	2
5	Соглашение	2
6	Нотация	2
	6.1 Присваивания	2
	6.2 Параметризованные определения	2
	6.3 Символы	3
7	Элементы АСН.1	3
8	Параметризованные присвоения	3
9	Указания параметризованных определений	6
1(Параметры абстрактного синтаксиса	8
П	риложение А Примеры	9
П	риложение В Сводка нотаций	13

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Информационная технология

АБСТРАКТНАЯ СИНТАКСИЧЕСКАЯ НОТАЦИЯ ВЕРСИИ ОДИН (АСН.1)

Часть 4

Параметризация спецификации АСН.1

Information technology. Abstract Syntax Notation One (ASN.1). Part 4. Parameterization of ASN.1 specifications

Дата введения 2004—01—01

1 Область применения

Настоящий стандарт является частью абстрактной синтаксической нотации версии 1 (АСН.1) и определяет нотацию для параметризации спецификации АСН.1.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ Р ИСО/МЭК 8824-1—2001 Информационная технология. Абстрактная синтаксическая нотация версии один (АСН.1). Часть 1. Спецификация основной нотации [Рекомендация МККТТ X.680 (1994)]

ГОСТ Р ИСО/МЭК 8824-2—2001 Информационная технология. Абстрактная синтаксическая нотация версии один (АСН.1). Часть 2. Спецификация информационного объекта [Рекомендация МККТТ X.681 (1994)]

ГОСТ Р ИСО/МЭК 8824-3—2002. Информационная технология. Абстрактно-синтаксическая нотация версии один (АСН.1). Часть 3. Спецификация ограничения [Рекомендация МККТТ X.682 (1994)]

3 Определения

В настоящем стандарте применяют следующие термины:

- 3.1 Спецификация базовой нотации
- В настоящем стандарте используют термины, определенные в ГОСТ Р ИСО/МЭК 8824-1.
- 3.2 Спецификация информационного объекта
- В настоящем стандарте используют термины, определенные в ГОСТ Р ИСО/МЭК 8824-2.
- 3.3 Спецификация ограничения
- В настоящем стандарте используют термины, определенные в ГОСТ Р ИСО/МЭК 8824-3.
- 3.4 Дополнительные определения
- 3.4.1 **стандартное имя ссылки:** Имя ссылки, определенное без параметров, посредством другого «Assignment» нежели «ParameterizedAssignment». Такое имя указывает полное определение и не обеспечивается фактическими параметрами при использовании.
- 3.4.2 **параметризованное имя ссылки:** Имя ссылки, определенное с помощью параметризованного присваивания, которое указывает на неполное определение и поэтому должно быть обеспечено фактическими параметрами при использовании.
- 3.4.3 параметризованный тип: Тип, определенный с помощью присваивания параметризованного типа и, таким образом, компоненты которого являются неполными определениями, которые должны быть обеспечены фактическими параметрами при использовании типа.

- 3.4.4 **параметризованное значение:** Значение, определенное с помощью присваивания параметризованного значения и, таким образом, не полностью специфицированное, которое должно быть обеспечено фактическими параметрами при использовании.
- 3.4.5 **параметризованное множество значений:** Множество значений, определенное с помощью присваивания параметризованного множества значений и, таким образом, не полностью специфицированное, которое должно быть обеспечено фактическими параметрами при использовании.
- 3.4.6 **параметризованный класс объектов:** Класс информационных объектов, определенный с помощью присваивания параметризованного класса объектов, таким образом, спецификации его полей заданы не полностью и должны быть обеспечены фактическими параметрами при использовании.
- 3.4.7 **параметризованный объект:** Информационный объект, определенный с помощью присваивания параметризованного объекта и, таким образом, его компоненты заданы не полностью и должны быть обеспечены фактическими параметрами при использовании.
- 3.4.8 **параметризованное множество объектов:** Множество информационных объектов, определенное с помощью присваивания множества параметризованных объектов и, таким образом, его объекты заданы не полностью и должны быть обеспечены фактическими параметрами при использовании.
- 3.4.9 переменное ограничение: Ограничение, применяемое в спецификации параметризованного абстрактного синтаксиса и зависящее от некоторого параметра абстрактного синтаксиса.

4 Сокращения

В настоящем стандарте использовано следующее сокращение: АСН.1 — абстрактная синтаксическая нотация версии 1.

5 Соглашение

В настоящем стандарте используют соглашения, приведенные в ГОСТ Р ИСО/МЭК 8824-1, раздел 5.

6 Нотация

В данном разделе приведена сводка нотации, определенной в настоящем стандарте.

6.1 Присваивания

- В настоящем стандарте определена следующая нотация, которая может использоваться как альтернатива для присваивания «Assignment» (см. ГОСТ Р ИСО/МЭК 8824-1, раздел 12):
 - ParametrizedAssignment (см. 8.1).

6.2 Параметризованные определения

- 6.2.1 В настоящем стандарте определена следующая нотация, которая может использоваться как альтернатива для определяемого типа «DefinedType» (см. ГОСТ Р ИСО/МЭК 8824-1, пункт 13.1):
 - ParametrizedType (см. 9.2).
- 6.2.2 В настоящем стандарте определена следующая нотация, которая может использоваться как альтернатива для определяемого значения «DefinedValue» (см. ГОСТ Р ИСО/МЭК 8824-1, пункт 13.1):
 - ParametrizedValue (см. 9.2).
- 6.2.3 В настоящем стандарте определена следующая нотация, которая может использоваться как альтернатива для определяемого типа «DefinedType» (см. ГОСТ Р ИСО/МЭК 8824-1, пункт 13.1):
 - ParametrizedValueSetType (cm. 9.2).
- 6.2.4 В настоящем стандарте определена следующая нотация, которая может использоваться как альтернатива для класса объектов «ObjectClass» (см. ГОСТ Р ИСО/МЭК 8824-2, пункт 9.2):
 - ParametrizedObjectClass (см. 9.2).
- 6.2.5 В настоящем стандарте определена следующая нотация, которая может использоваться как альтернатива для объекта «Object» (см. ГОСТ Р ИСО/МЭК 8824-2, пункт 11.2):
 - ParametrizedObject (см. 9.2).
- 6.2.6 В настоящем стандарте определена следующая нотация, которая может использоваться как альтернатива для множества объектов «ObjectSet» (см. ГОСТ Р ИСО/МЭК 8824-2, пункт 12.2):
 - ParametrizedObjectSet (см. 9.2).

6.3 Символы

В настоящем стандарте определена следующая нотация, которая может использоваться как альтернатива для символа «Symbol» (см. ГОСТ Р ИСО/МЭК 8824-1, пункт 12.1):

- ParametrizedReference (см. 9.1).

7 Элементы АСН.1

В настоящем стандарте используют элементы АСН.1, определенные в ИСО/МЭК 8824-1, раздел 11.

8 Параметризованные присвоения

8.1 Существуют операторы параметризованного присвоения, соответствующие каждому из операторов присвоения, определенному в ГОСТ Р ИСО/МЭК 8824-1 и ГОСТ Р ИСО/МЭК 8824-2. Конструкция «ParameterizedAssignment» есть:

```
ParameterizedAssignment : : =
ParameterizedTypeAssignment
ParameterizedValueAssignment
ParameterizedValueSetTypeAssignment
ParameterizedObjectClassAssignment
ParameterizedObjectAssignment
ParameterizedObjectSetAssignment
```

8.2 Каждая конструкция «Parameterized<X>Assignment» имеет тот же самый синтаксис, что и «<X>Assignment», за исключением того, что имеется начальный элемент «ParameterList». Таким образом, начальный элемент становится параметризованным именем ссылки (см. 3.4.2).

 Π р и м е ч а н и е — ГОСТ Р ИСО/МЭК 8824-1 налагает требование, заключающееся в том, что все имена ссылки, назначенные в пределах модуля, параметризованные или нет, должны различаться.

```
ParameterizedTypeAssignment : : =
       typereference
        ParameterList
        ":: = "
        Type
ParameterizedValueAssignment : : =
        valuereference
        ParameterList
        Type
         ": : = "
        Value
ParameterizedValueSetTypeAssignment : : =
        typereference
        ParameterList
        Type
        "::="
        ValueSet
ParameterizedObjectClassAssignment : : =
        objectclassreference
        ParameterList
        "::="
        ObjectClass
```

```
ParameterizedObjectAssignment : : =
objectreference
ParameterList
DefinedObjectClass
": : ="
ObjectClass

ParameterizedObjectSetAssignment : : =
objectsetreference
ParameterList
DefinedObjectClass
": : ="
ObjectSet
```

8.3 Конструкция "ParameterList" есть список параметров "Parameter", заключенных в фигурные скобки.

```
ParameterList : : = "{" Parameter "," + "}"
```

Каждый параметр "Parameter" состоит из пустой ссылки "DummyReference" и, возможно, из параметра управляющего слова "ParamGovernor".

 $Parameter: := ParamGovernor ":" \ DummyReference \mid DummyReference$

ParamGovernor : : = Governor | DummyGovernor

Governor : : = Type | DefinedObjectClass DummyGovernor : : = DummyReference

DummyReference : : = Reference

"DummyReference" в "Parameter" может замещаться:

- а) "Type" или "DefinedObjectClass", в том случае, когда не должно быть "ParamGovernor";
- б) "Value" или "ValueSet"; в этом случае должен присутствовать "ParamGovernor"; когда "ParamGovernor" есть "Governor", он должен быть "Туре", когда "ParamGovernor" есть "Dummy-Governor", фактическим параметром для "ParamGovernor" должен быть "Туре";
- в) "Object" или "ObjectSet"; в этом случае должен присутствовать "ParamGovernor"; если "ParamGovernor" есть "Governor", это должен быть "DefinedObjectClass", если "ParamGovernor" есть "DummyGovernor", то фактическим параметром для "ParamGovernor" должен быть "DefinedObjectClass";
 - "DummyGovernor" должен быть "DummyReference", который не имеет "Governor".
- 8.4 Областью действия "DummyReference", появляющейся в конструкции "ParameterList", является сам "ParameterList" вместе с той частью "ParameterizedAssignment", которая следует за ": : =". "DummyReference" скрывает любую другую ссылку "Reference" с таким же именем в этой области действия.
- 8.5 Использование пустой ссылки "DummyReference" в ее области действия должно быть согласовано с ее синтаксической формой, и (там, где применимо) с управляющим параметром, а все использования той же самой "DummyReference" должны быть согласованы друг с другом.

П р и м е ч а н и е — Когда синтаксическая форма имени пустой ссылки двусмысленна (например, не ясно, используется "objectclassreference" или "typereference"), неоднозначность может быть разрешена при первом использовании имени пустой ссылки справа от оператора присваивания. После этого характер имени пустой ссылки становится известным. Однако характер пустой ссылки не определяется полностью по правой стороне оператора присваивания, когда он, в свою очередь, используется только как фактический параметр в параметризованной ссылке; в этом случае характер пустой ссылки должен быть определен при рассмотрении определения этой параметризованной ссылки. Пользователи нотации должны учитывать, что такая практика может сделать спецификации ASN.1 менее понятными, поэтому рекомендуется предусматривать соответствующие комментарии для пояснений.

Пример

гле:

Рассмотрим следующее присваивание параметризованного класса объектов:

PARAMETERIZED-OBJECT-CLASS {TypeParam, INTEGER: valueParam,

```
INTEGER: VahieSetParam} : : =
```

```
CLASS {
    &valueField1 TypeParam,
    &valueField2 INTEGER DEFAULT valueParam,
    &valueField3 INTEGER (ValueSetParam),
    &valueSetField INTEGER DEFAULT {ValueSetParam}
}
```

Для определения правильного использования пустых ссылок "DummyReference" в контексте "ParameterizedAssignment" и, только для той цели, могут быть рассмотрены "DummyReference" для того, чтобы быть определенными следующим образом:

```
TypeParam : := UnspecifieldType valueParam INTEGER : := unspecifieldIntegerValue ValueSetParam INTEGER : := {UnspecifieldInteger ValueSet}
```

- a) ТуреРагат есть пустая ссылка "DummyReference", которая замещает "Туре". Поэтому ТуреРагат может быть использован везде, где можно использовать "typereference", например как "Туре" для значения фиксированного типа поля valueField1.
- б) ValueParam есть пустая ссылка "DummyReference", которая замещает значение целочисленного типа. Следовательно, valueParam можно использовать везде, где можно использовать "valuereference" для целочисленного значения, например как значение по умолчанию для значения фиксированного-типа поля valueField2.
- в) ValueSetParam есть пустая ссылка "DummyReference", которая замещает множество значений целочисленного типа. Следовательно, ValueSetParam можно использовать везде, где можно использовать "typereference" для целочисленного значения, например как "Type" в нотации "ContainedSubtype" для valueField3 и ValueSetField.
- 8.6 Каждая пустая ссылка "DummyReference" должна использоваться по крайней мере один раз в пределах своей области действия.

 Π р и м е ч а н и е — Если пустая ссылка "DummyReference" так и не появилась, то соответствующий "ActualParameter" не влияет на определение, мог бы быть просто «отброшен», хотя пользователю могло бы казаться, что имеет место некая спецификация.

Присваивания "ParameterizedValueAssignment", "ParameterizedValueSetTypeAssignment", "ParameterizedObjectAssignment" и "ParameterizedObjectSetAssignment", прямо или косвенно содержащие ссылку на себя, недействительны.

- 8.7 В определении "ParameterizedType", "ParameterizedValueSet" или "ParameterizedObjectClass" пустая ссылка "DummyReference" не должна передаваться как тегированный тип (как фактический параметр) рекурсивной ссылке на этот "ParameterizedType", "ParameterizedValueSet" или "ParameterizedObjectClass" (см. А.3).
- 8.8 В определении "ParameterizedType", "ParameterizedValueSet" или "ParameterizedObjectClass" не должно быть циклической ссылки на определяемый элемент, если только такая ссылка прямо или косвенно не помечена как OPTIONAL или, в случае "ParameterizedType" и "ParameterizedValueSet", дана путем ссылки на выборочный тип, по крайней мере одна из альтернатив которого является нециклической в определении.
- 8.9 Управляющий пустой ссылки "DummyReference" не должен включать в себя ссылку на другую "DummyReference", если эта другая "DummyReference" также имеет управляющего.
- 8.10 В параметризованном присваивании правая сторона ": : = " не должна состоять исключительно из "DummyReference".
- 8.11 Управляющий "DummyReference" не должен требовать знания "DummyReference" или определяемого параметризованного имени ссылки.

- 8.12 Когда в параметризованный тип в качестве фактического параметра подставляется значение или множество значений, то требуется, чтобы тип фактического параметра был совместим с управляющим соответствующего пустого параметра. (См. ГОСТ Р ИСО/МЭК 8824-1, F.6.2, F.6.3).
- 8.13 При определении параметризованного типа с пустым параметром вместо значения или множества значений тип, используемый для управления этим пустым параметром, должен быть таким, что все его значения допустимы для использования во всех правых частях присваиваний, где есть пустой параметр. (См. ГОСТ Р ИСО/МЭК 8824-1, F.6.5).

9 Указания параметризованных определений

9.1 В перечне "SymbolList" (в "Export" или "Import") параметризованное определение должно быть указано с помощью "ParameterizedReference":

```
ParameterizedReference : : = Reference | Reference "{" "}", где "Reference" — первый элемент в "ParameterizedAssignment", как определено в 8.2.
```

 Π р и м е ч а н и е — Первая альтернатива для "ParameterizedReference" предусмотрена исключительно для облегчения понимания. Обе альтернативы имеют один и тот же смысл.

9.2 Вне "Export" или "Import" параметризованное определение должно быть указано конструкцией "Parameterized<X>", которая может использоваться как альтернатива для соответствующего "<X>".

```
ParameterizedType : : = SimpleDefinedType ActualParameterList
```

```
SimpleDefinedType : : =

Externaltypereference |

typereference
```

ParameterizedValue : : = SimpleDefinedValue ActualParameterList

SimpleDefinedValue : : =

Externlvaluereference |

valuereference

ParameterizedValueSetType : : = SimpleDefinedType ActualParameterList

ParameterizedObjectClass : : = DefinedObjectClass ActualParameterList

ParameterizedObjectSet : : = DefinedObjectSet ActualParameterList

ParameterizedObject : : =
DefinedObject
ActualParameterList

9.3 Имя ссылки в "Defind<X>" должно быть именем ссылки, для которого сделано присваивание в "ParameterizedAssignment".

9.4 Для используемой альтернативы "Defined<X>" ограничения, определенные в ГОСТ Р ИСО/МЭК 8824-1 и ГОСТ Р ИСО/МЭК 8824-2 для обычных имен ссылок, должны использоваться и для соответствующих параметризованных имен ссылок.

 Π р и м е ч а н и е — Π о существу, ограничения следующие: каждый "Defined<X>" имеет две альтернативы — "<x>reference" и "External<x>Reference". Первая используется в модуле определения или когда определение было импортировано и нет противоречия имени; вторая используется тогда, когда нет перечисленного импорта (не рекомендуется) или если есть конфликт между импортированным именем и локальным определением (также не рекомендуется), или есть конфликт между импортированными именами.

9.5 Список фактических параметров "ActualParameterList" есть:

9.6 Должен быть ровно один параметр "ActualParameter" для каждого "Parameter" в соответствующем "ParameterizedAssignment", и они должны появляться в том же самом порядке. Конкретный выбор "ActualParameter" и управляющего (если он есть) должен определяться синтаксической формой "Parameter" и контекстов, в котором он встречается в "ParameterizedAssignment". "Actual-Parameter" должен иметь форму, необходимую для замены "DummyReference" в области ее действия (см. 8.4).

Пример

Параметризованный класс объектов предыдущего примера (см. 8.5) может быть указан следующим образом:

MY-OBJECT-CLASS::= PARAMETERIZED-OBJECT-CLASS {BIT STRING, 123, {4|5|6}}

- 9.7 Фактический параметр занимает место имени пустой ссылки в определении фактического типа, значения, множества значений, класса объектов, объекта или множества объектов, которые указываются данным экземпляром использования параметризованного имени ссылки.
- 9.8 Смысл любых ссылок, которые появляются в "ActualParameter", и умалчиваемый тег, применяемый к любым появляющимся тегам, определяются в соответствии со средой тегирования "ActualParameter", а не "DummyReference".

 Π р и м е ч а н и е — Таким образом, параметризация, подобно ссылкам, селективным типам и "COM-PONENTS OF", не является точной текстуальной заменой.

```
Пример
Рассмотрим следующие модули:
M1 DEFINITIONS AUTOMATIC TAGS : : = BEGIN EXPORTS T1;

T1 : : = SET {
  f1    INTEGER,
  f2    BOOLEAN
  }
END

M2 DEFINITIONS AUTOMATIC TAGS : : = BEGIN IMPORTS T1 FROM M1;

T3 : : = T2{T1}
  T2{X} : : = SEQUENCE {
```

```
a INTEGER,
b X
}
END
```

Применение 9.8 означает, что тег для компонента f1 из T3 (то есть @T3.b.f1) будет тегирован неявно, так как среда тегирования пустого параметра X, а именно — явное тегирование, не влияет на тегирование компонентов фактического параметра T1.

Рассмотрим модуль M3.

M3 DEFINITIONS AUTOMATIC TAGS: := BEGIN IMPORTS T1 FROM M1;

T5::= T4{T1}

T4{Y}::= SEQUENCE {
 a INTEGER,
 b Y
 }

END

Применение ГОСТ Р ИСО/МЭК 8824-1, пункт 30.6, означает, что тег для компонента b в Т5 (то есть @Т5.b) будет тегирован явно, так как пустой параметр (Y) всегда тегирован явно, следовательно, @Т5 эквивалентно

10 Параметры абстрактного синтаксиса

- 10.1 Приложение В ГОСТ Р ИСО/МЭК 8824-2 устанавливает класс информационного объекта ABSTRACT-SYNTAX и рекомендует использовать его для определения абстрактных синтаксисов, применяя в качестве примера абстрактный синтаксис, определенный как множество значений единственного типа АСН.1, который не был параметризован на внешнем уровне.
- 10.2 Когда тип АСН.1, используемый для определения абстрактного синтаксиса, является параметризованным, некоторые параметры могут быть подставлены как фактические параметры, а другие оставлены как параметры абстрактного синтаксиса.

```
Пример
```

Если параметризованный тип был определен вызываемым YYY-PDU с двумя пустыми ссыл-ками (например, первая — набор объектов некоторого заданного класса объектов, а вторая — целочисленное граничное значение). то:

определяет параметризованный абстрактный синтаксис, в котором множество объектов было разрешено, а «граничное значение» оставлено в качестве параметра абстрактного синтаксиса. Параметр абстрактного синтаксиса должен использоваться:

- а) прямо или косвенно в контексте ограничения;
- б) прямо или косвенно как фактические параметры, которые, в конечном счете, используются в контексте ограничения.

 Π р и м е ч а н и е — См. пример в А.2 и ИСО/МЭК 8824-1, пункт D.5.

10.3 Ограничение, множество значений которого зависит от одного или более параметров абстрактного синтаксиса, является переменным. Такие ограничения определяются после определения абстрактного синтаксиса (возможно профилем международного функционального стандарта или в заявке о соответствии реализации протоколу).

П р и м е ч а н и е — Если где-нибудь в цепочке определений, включаемой в спецификацию значений ограничения, появляется параметр абстрактного синтаксиса, то ограничение является переменным. Оно является переменным ограничением, даже если множество значений результирующего ограничения на зависит от фактического значения параметра абстрактного синтаксиса.

Пример

Значение (((1..3) EXCEPT a) UNION (1..3)) всегда 1..3 независимо от того, каково значение «а», тем не менее это все является переменным ограничением, если «а» является параметром абстрактного синтаксиса.

10.4 Формально переменное ограничение не влияет на множество значений в абстрактном синтаксисе.

П р и м е ч а н и е — Настоятельно рекомендуется, чтобы ограничения, которые, как ожидается, останутся в абстрактном синтаксисе переменными, имели спецификацию исключений, использующую нотацию ГОСТ ИСО/МЭК 8824-1, пункт 45.4.

ПРИЛОЖЕНИЕ А

(справочное)

Примеры

А.1 Примеры использования определения параметризованного типа

Предположим, что разработчику протокола нужно часто передавать аутентификатор с одним или более полями протокола. Он будет передаваться как BIT STRING рядом с полем. Без параметризации аутентификатор должен бы быть определен как BIT STRING, а затем "authenticator" с текстом, идентифицирующим, к чему он прилагался, должен добавляться при каждом появлении. Альтернативно разработчик может предпочесть преобразование каждого поля, имеющего аутентификатор, в последовательность SEQUENCE этого поля и "authenticator" а. Метод параметризации обеспечивает удобную краткую запись для решения этой задачи.

Сначала определяют параметризованный тип SIGNED{}:

Далее предположим, что для некоторых полей отправитель должен иметь возможность добавить (или не

добавить) аутентификатор. Этого можно достичь, сделав BIT STRING факультативной, но более изящное решение (меньшее количество битов в строке) состоит в том, чтобы определить другой параметризованный тип:

```
OPTIONALLY-SIGNED {ToBeSigned} : : = CHOICE {
    usigned-data [0] ToBeSigned,
    signed-data [1] SIGNED {ToBeSigned}
}
```

Примечание — Тегирование в CHOICE не является необходимым, если разработчик гарантирует, что ни одно из использований параметризованного типа не порождает фактический параметр, который является ВІТ STRING (тип SIGNED), но полезен для предотвращения ошибок в других частях спецификации.

А.2 Пример использования параметризованных определений вместе с классом информационных объектов

Используют классы информационных объектов для сбора всех параметров абстрактного синтаксиса. Таким образом, число параметров абстрактного синтаксиса может быть сокращено до одного, который является экземпляром совокупности классов. Продукция "InformationFromObject" может быть использована для извлечения информации от параметра объекта.

```
Пример
- - Экземпляр этого класса содержит все параметры для
- - абстрактного синтаксиса Message-PDU.
MESSAGE-PARAMETERS : : = CLASS {
   &maximum-priority-level
   &maximum-message-buffer-size INTEGER,
   &maximum-reference-buffer-size INTEGER
WITH SYNTAX {
  THE MAXIMUM PRIORITY LEVEL 1S
                                                  &maximum-priority-level
  THE MAXIMUM MESSAGE BUFFER SIZE 1S
                                                  &maximum-message-buffer-size
  THE MAXIMUM REFERENCE BUFFER SIZE 1S
                                                  &maximum-reference-buffer-size
- - Продукция "ValueFromObject" используется для извлечения
- - значения от абстрактного параметра синтаксиса, "рагат".
- - Значения могут быть использованы только в ограничениях.
- - Кроме того, параметр передается посредством другого
- - параметризованного типа.
Message-PDU {MESSAGE-PARAMETERS:param} : : = SEQUENCE {
                  INTEGER (0..param.&maximum-priority-level),
   priority-level
   message
                  BMPString (SIZE (0..param.&maximum-message-buffer-size)),
   reference
                  Reference {param}
Reference {MESSAGE-PARAMETERS:param}: : =
  SEQUENCE OF
  IA5String (SIZE (0..param.&maximum-reference-buffer-size))
- - Определение информационного объекта параметризованным
- - абстрактным синтаксисом.
- - Параметр абстрактного синтаксиса используется только в ограничениях.
message-Abstract-Sintax {MESSAGE-PARAMETERS:param}
ABSTRACT-SINTAX : : =
  Message-PDU {param}
  IDENTIFIED BY {joint-iso-coitt asnl(1) examples (123) 0}
}
```

Класс MESSAGE-PARAMETERS и объект параметризованного абстрактного синтаксиса message-Abstract-Syntax используются следующим образом:

- - Этот экземпляр MESSAGE-PARAMETERS определяет значения
- - параметров абстрактного синтаксиса.

```
THE MAXIMUM PRIORITY LEVEL IS 10
       THE MAXIMUM MESSAGE BUFFER SIZE IS 2000
       THE MAXIMUM REFERENCE BUFFER SIZE IS 100
     - - Абстрактный синтаксис теперь может быть определен всеми
     - - специфицированными переменными ограничениями.
     my-message-Abstract-Sintax ABSTRACT-SINTAX : : =
          message-Abstract-Sintax {my-message-parameters}
     А.З Пример определения параметризованного типа, который является конечным
     При спецификации параметризованного типа, который представляет родовой список, определяют тип
так, чтобы результирующая нотация АСН.1 была конченной. Например, можно определить:
     List1 {ElementTypeParam} : : = SEQUENCE {
                        ElementTypeParam,
          elem
                        List1 {ElementTypeParam} OPTIONAL
          next
который является конечным, а затем его использовать.
     IntegerList1::= List1 {INTEGER},
где результирующая нотация АСН.1 является такой, какой Вы ее обычно определили бы:
                        SEQUENCE {
     IntegerList1::=
           elem
                        INTEGER,
           next
                        IntegerList1 OPTIONAL
     Напротив, при
     List2 {ElementTypeParam} : : = SEQUENCE {
                        ElementTypeParam,
                       List2 {[0]} ElementTypeParam} OPTIONAL
          next
     IntegerList2 : : = List2 {INTEGER},
где результирующая нотация АСН.1 является бесконечной:
     IntegerList2 : : = SEQUENCE {
           elem
                       INTEGER
                       SEQUENCE {
           next
                       elem [0] INTEGER,
                        next SEQUENCE {
                            elem [0] [0] INTEGER,
                            next SEQUENCE {
                                 elem [0] [0] [0] INTEGER,
                                 next SEQUENCE {
                                      . . . - - и так далее
                                } OPTIONAL
                             } OPTIONAL
                        } OPTIONAL
           } OPTIONAL
     А.4 Пример определения параметризованного значения
     Если значение параметризованной строки определяется следующим образом:
     generioBirthdayGreeting {IA5String: name}
     IA5String : : = {"С днем рождения", имя, "| |"},
то следующие две строки являются такими же:
     greeting1 IA5String : : = generioBirthdayGreeting {"Джон"}
     greeting2 IA5String : : = "С днем рождения, Джон | |"
```

my-message-parameters MESSAGE-PARAMETERS : : = {

А.5 Пример определения множества параметризованных значений

Если два множества параметризованных значений определены следующим образом:

```
QuestList1{IA5String:extraQuest} IA5String : : = {"Джек" | "Джон" | extraQuest} QuestList2 {IA5String:ExtraQuests} IA5String : : = {"Джек" | "Джон" | ExtraQuests}
```

то следующие множества значений обозначают одно и то же множество значений:

```
SetOfQuests1 IA5String : : = {QuestList1 {"Джилл"}}
SetOfQuests2 IA5String : : = {QuestList2 | {{"Джилл"}}}
SetOfQuests3 IA5String : : = {"Джек" | "Джон" | "Джилл"}
```

и следующие множества значений обозначают одно и то же множество значений:

```
SetOfQuests4 IA5String : : = {QuestList2 {{"Джилл" | "Мэри"}}}
SetOfQuests5 IA5String : : = {"Джек" | "Джон" | "Джилл" | "Мэри"}
```

Следует обратить внимание, что множество значений всегда задается в фигурных скобках, даже когда это — ссылка на параметризованное множество значений. Опуская фигурные скобки у ссылки на "identifier", который был создан в присвоении множества значений, или у ссылки на "ParameterizedValueSetType", получим нотацию для "Туре", а не для множества значений.

А.6 Пример определения параметризованного класса

Следующий параметризованный класс может использоваться для определения классов ошибок, которые содержат коды ошибок различных типов. Следует обратить внимание, что параметр "ErrorCodeType" используется только как "DummyGovemor" для параметра "ValidErrorCodes".

```
GENERIC-ERROR {ErrorCodeType, ErrorCodeType:
```

Определение параметризованного класса может использоваться для определения различных классов, которые совместно используют некоторые характеристики, подобные одному и тому же синтаксису:

```
ERROR-1::= GENERIC-ERROR {INTEGER, {1|2|3}} ERROR-2::= GENERIC-ERROR {ErrorCodeString, {StringErrorCodes}} ERROR-3::= GENERIC-ERROR {EnumeratedErrorCode, {fatal|error}} ErrorCodeString::= IA5String (SIZE (4)) StringErrorCodes ErrorCodeString::= {"E001"|"E002"|"E003"} EnumeratedErrorCode::= ENUMERATED {fatal, error, warning} Определяемые классы тогда могут использоваться следующим образом: My-Errors ERROR-2::= {{CODE "E001"} | {CODE "E002"}} fatalError, ERROR-3::= {CODE fatal}
```

А.7 Пример определения множества параметризованных объектов

Определение множества параметризованных объектов AllTypes формирует множество объектов, которые содержит базовое множество объектов BaseTypes и множество дополнительных объектов, которые поставляются как параметр AdditionalTypes.

Определение множества параметризованных объектов, AllTypes, может использоваться следующим образом:

```
{My-All-Types TYPE-IDENTIFIER : : = {AllTypes { 
 {My-Type-1 IDENTIFIER BY my-obj-id-value-1} |
```

```
{My-Type-2 IDENTIFIER BY my-obj-id-value-2} |
          {My-Type-3 IDENTIFIER BY my-obj-id-value-3}
     }}
     А.8 Пример определения множества параметризованных объектов
     Тип, определенный в А.4 ГОСТ Р ИСО/МЭК 8824-3, может использоваться в определении параметри-
зованного абстрактного синтаксиса следующим образом:
     - - PossibleBodyTypes является параметром абстрактного синтаксиса.
     message-abstract-syntax {MHS-BODY-CLASS: PossibleBodyTypes}
                       ABSTRACT-SYNTAX : = \{
       INSTANCE OF MHS-BODY-CLASS ({PossibleBodyTypes})
       IDENTIFIED {joint-iso-itu asn1 (1) examples(1) 123}
     }
     - - Это множество объектов перечисляет все возможные
     - - пары значений и идентификаторов-типа для типа "экземпляр-из".
     - - Множество объектов используется как фактический параметр
     - - определения параметризированного абстрактного синтаксиса.
     My-Body-Types MHS-BODY-CLASS : : = {
           {My-First-Type IDENTIFIED BY my-first-obj-id} |
           {My-Second-Type IDENTIFIED BY my-second-obj-id}
     my-message-abstract-syntax ABSTRACT-SYNTAX : : =
          message-abstract-syntax~\{\{My-Body-Types\}\}
                                          ПРИЛОЖЕНИЕ В
                                             (справочное)
                                           Сводка нотаций
     Следующие элементы определены в ГОСТ Р ИСО/МЭК 8824-1 и используются в настоящем стандарте:
          typereference
          valuereference
          "::="
          "{"
          "}"
     Следующие элементы определены в ГОСТ Р ИСО/МЭК 8824-2 и используются в настоящем стандарте:
          objectclassreference
          objectreference
          objectsetreference
     Следующие продукции определены в ГОСТ Р ИСО/МЭК 8824-1 и используются в настоящем стандарте:
          DefinedType
          DefinedValue
```

Следующие продукции определены в ГОСТ Р ИСО/МЭК 8824-2 и используются в настоящем стандарте:

Reference Type Value ValueSet

DefinedObjectClass DefinedObject DefinedObjectSet ObjectClass

```
Object
     ObjectSet
Следующие продукции определены в настоящем стандарте:
ParametrizedAssignment : : =
      Parametrized Type Assignment \\
      ParametrizedValueAssignment
      ParametrizedValueSetTypeAssignment |
      ParametrizedObjectClassAssignment
      ParametrizedObjectAssignment
      ParametrizedObjectSetAssignment
ParametrizedTypeAssignment : : =
      typereference ParameterList ":: =" Type
ParametrizedValueAssignment : : =
      valuereference ParameterList Type ":: =" Value
ParametrizedValueSetTypeAssignment : : =
      typereference ParameterList Type ":: =" ValueSet
ParametrizedObjectClassAssignment : : =
      objectclassreference ParameterList ": : =" ObjectClass
ParametrizedObjectAssignment : : =
      objectreference ParameterList DefinedObjectClass ": : =" Object
ParametrizedObjectSetAssignment : : =
      objectsetreference ParameterList DefinedObjectClass ": : =" ObjectSet
ParameterList : : = "{" Parameter "," + "}"
Parameter: := ParamGovenor ":" \ DummyReference \mid DummyReference
ParamGovenor : : = Govenor | DummyGovenor
Govenor : : = Type | DefinedObjectClass
DummyGovenor : : = DummyReference
DummyReference : : = Reference
ParametrizedReference : : =
      Reference | Reference "{" "}"
SimpleDefinedType : : = Externaltypereference | typereference
SimpleDefinedValue : : = Externalvaluereference | valuereference
ParametrizedType : : = SimpleDefinedType ActualParameterList
Parametrized Value::= Simple Defined Value\ Actual Parameter List
ParametrizedValue : : = SimpleDefinedValue ActualParameterList
Parametrized Value Set Type: := Simple Defined Type\ Actual Parameter List
```

 $Parametrized Object Class: = Defined Object Class\ Actual Parameter List$

 $ParametrizedObjectSet::= DefinedObjectSet\ Actual ParameterList$

ParametrizedObject : : = DefinedObject ActualParameterList

ActualParameterList : : = "{" ActualParameter "," + "}"

 $Actual Parameter: = Type \mid Value \mid ValueSet \mid DefinedObjectClass \mid Object \mid ObjectSet$

УДК 681.324:006.354

OKC 35.100.70

П85

ОКСТУ 4002

Ключевые слова: информационная технология, взаимосвязь открытых систем, спецификация абстрактной синтактической нотации, нотация АСН.1, протоколы прикладного уровня, параметризация, параметризованный тип, параметризованное значение, параметризованный объект, тег, структурированные типы

Редактор В.П. Огурцов
Технический редактор Н.С. Гришанова
Корректор В.С. Черная
Компьютерная верстка Е.Н. Мартемьяновой

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 03.03.2003. Подписано в печать 19.03.2003. Усл. печ. л. 2,32. Уч.-изд. л. 1,85. Тираж 215 экз. С 9986. Зак. 244.

ИПК Издательство стандартов, 107076 Москва, Колодезный пер., 14. http://www.standards.ru e-mail: info@standards.ru Набрано в Издательстве на ПЭВМ

Филиал ИПК Издательство стандартов — тип. «Московский печатник», 105062 Москва, Лялин пер., 6. Плр № 080102