Show complete work—that is, all the steps needed to completely justify your answer. Simplify your answers as much as possible. You may refer to theorems in the class notes.

- 1. (a) Define what $a \equiv b \pmod{m}$ means.
 - (b) Find all solutions to $2x \equiv 2 \pmod{16}$.
 - (c) Find all solutions to $5x \equiv 2 \pmod{210}$.

Solution:

- (a) (5 points) See class notes.
- (b) (10 points) There are gcd(2, 16) = 2 solutions modulo 16. The congruence can be reduced to $x \equiv 1 \pmod{8}$, so the original congruence has the two solutions $x \equiv 1, 9 \pmod{16}$.
- (c) $(10 \text{ points}) \gcd(5, 210) = 5 \text{ does not divide } 2$, so there is no solution.
- 2. Suppose gcd(a, 561) = 1.
 - (a) Prove that $a^{560} \equiv 1 \pmod{m}$ for m = 3, 11, and 17.
 - (b) Deduce that $a^{560} \equiv 1 \pmod{561}$.

Solution:

(a) (15 points) Because $561 = 3 \cdot 11 \cdot 17$, gcd(a, 561) = 1 means that a is relatively prime to any of these m's. So we can use Fermat's Little Theorem:

$$a^{560} = (a^2)^{280} \equiv 1 \pmod{3}$$

$$a^{560} = (a^{10})^{56} \equiv 1 \pmod{11}$$

$$a^{560} = (a^{16})^{35} \equiv 1 \pmod{17}$$
.

(b) (10 points) This means that 3, 11, and 17 divide $a^{560} - 1$, and hence (because 3, 11, and 17 are pairwise relatively prime) so does $561 = 3 \cdot 11 \cdot 17$. (One could also invoke the Chinese Remainder Theorem here.)

(You might read that a composite number m is called a *Carmichael number* if the congruence $a^{m-1} \equiv 1 \pmod{m}$ is true for all a that are relatively prime to m. We just proved that 561 is a Carmichael number.)

- 3. (a) Define the arithmetic functions $\tau(n)$ and $\mu(n)$.
 - (b) Show that $\sum_{d|n} \mu(d) \tau(\frac{n}{d}) = 1$.

Solution:

- (a) (10 points) See class notes.
- (b) (15 points) By definition, $\tau(n) = \sum_{d|n} 1$, so $\sum_{d|n} \mu(d) \tau(\frac{n}{d}) = 1$ follows by Möbius inversion (because the constant function 1 is multiplicative, as is $\tau(n)$, which we have proved in class.

- 4. (a) Define a primitive root mod m.
 - (b) Find all primitive roots mod 7.

Solution:

- (a) (10 points) See class notes.
- (b) (15 points) 3 is a primitive root because $3^2 \equiv 2$, $3^3 \equiv 6$ (and those are the only powers we need to check to not give 1 modulo 7). Thus there are $\phi(\phi(7)) = 2$ primitive roots modulo 7, the other one being $3^5 \equiv 5 \mod 7$.