Video 4 Summary

Reetanjan Kali Roychowdhury

11 August 2022

1 Overview

Firstly , note that here we wish to express the $\mathbf{3*1}$ vector $\mathbf{Y} = \begin{bmatrix} 9.8 \\ 9.1 \\ 7.0 \end{bmatrix}$ approximately as a linear combination of the two $\mathbf{3*1}$ column vectors $\begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}$, i.e. we want to find \mathbf{A} and \mathbf{B} such that the following holds approximately:-

$$\begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix} * \mathbf{A} + \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} * \mathbf{B} \approx \begin{bmatrix} 9.8 \\ 9.1 \\ 7.0 \end{bmatrix}$$

This is of the form $\mathbf{Y} \approx \mathbf{X}\beta$, where $\mathbf{Y} = \begin{bmatrix} 9.8 \\ 9.1 \\ 7.0 \end{bmatrix}$, $\mathbf{X} = \begin{bmatrix} 3 & 4 \\ 4 & 1 \\ 2 & 3 \end{bmatrix}$ and $\beta = \begin{bmatrix} A \\ B \end{bmatrix}$.

Now, we can also write this approximate model as the following:- $\bar{\mathbf{Y}} = \mathbf{X}\bar{\boldsymbol{\beta}} + \boldsymbol{\varepsilon}$, where Y is a $\mathbf{n^*1}$ vector, X is a $\mathbf{n^*p}$, $\boldsymbol{\beta}$ is a $\mathbf{p^*1}$ and $\boldsymbol{\varepsilon}$ is a $\mathbf{n^*1}$ vector.

The above form $\bar{\mathbf{Y}} = \mathbf{X}\bar{\boldsymbol{\beta}} + \varepsilon$ is called the general form of a **Linear Model**, which is nothing but an approximate system of Linear Equations ! [Note:- We are going to put some statistical assumptions over ε later on , so that the Model shall then be called a **Linear Statistical Model**]

2 Solving for β

Now , we try to find β so that $\mathbf{Y} \approx \mathbf{X}\beta$ holds approximately . Using some Linear Algebra , we shall see that to solve for the required $\hat{\beta}$ we shall need the orthogonal projection of vector \mathbf{Y} onto the column space of matrix \mathbf{X} !

Figure 1: Projection onto Column Space

There is an easier technique using Linear Algebra to solve for this:-

1. Given Equation

$$Y \approx X * \beta$$

2. Multiplying both sides by X transpose and considering equality , we have

$$X^T Y = X^T X \beta \ (\dots \ i)$$

Solving the above equation shall give us our required β and hence the above equation is also the **NORMAL EQUATION**! Also, this equation is always consistent thus guaranteeing at least one solution for beta.

3. Now if X^TX is non-singular , then we have a unique solution for β else we shall infinitely many solutions . So , considering X^TX to be non-singular i.e. invertible , we multiply X^TX^{-1} on both sides of equation (..... i) to get:-

$$\hat{\beta} = (X^T X^{-1}) X^T Y$$

The $\hat{\beta}$ thus obtained through the process by solving the **NORMAL EQUATION** is called the Least Squares Estimator!