ML Lecture 5: Logistic Regression

臺灣大學人工智慧中心 科技部人工智慧技術暨全幅健康照護聯合研究中心 http://ai.ntu.edu.tw

Step 1. Function Set

• Posterior Probability:

 $P_{w,b}(C_1|x) = \sigma(z)$,由 z 代入 sigmodfunction 後得 z=w*x+b, z 由 w 和 b 所控制產生

==> 所有 w 和 b 可產生的 function 所成的集合,就是一個 function set

Step 1: Function Set

Function set: Including all different w and b

• 以「圖像化」表示「Logistic Regression」 這件事

Input x_1 到 x_I 分別乘上 weight w_1 到 w_I (內積),再加上 bias, b,即為 z 通過 sigmoid function,output 的值是 **posterior probability**

- 比較 (Output 的值)
 - Logistic Regression:有通過 sigmoidfunction,output 的值介於 <u>0~1</u>
 - o Linear Regression:單純將 feature*w+b, output 可以是 $extit{ extit{CFO}}$ 值

Logistic Regression

Step 1:
$$f_{w,b}(x) = \sigma \left(\sum_{i} w_i x_i + b \right)$$

Output: between 0 and 1

Linear Regression

$$f_{w,b}(x) = \sum_{i} w_i x_i + b$$

Output: any value

Step 2:

Step 3:

Step 2. Goodness of a Function

● 目標:找出可以最大化產生這 N 筆 training data 機率的 $w^* \cdot b^*$

$$w^* \cdot b^* = arg \max_{w, b} L(w, b)$$

• **轉化目標**:找出可以**最小化** -lnL(w,b) 的 $w^* \cdot b^*$ (原因:簡化計算)

$$w^* \cdot b^* = arg \ max_{w,b} L(w,b) = arg \ min_{w,b} - lnL(w,b)$$

 \hat{y}^n : 1 for class 1, 0 for class 2

$$L(w,b) = f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3) \right) \cdots$$

$$\boxed{w^*, b^* = arg \max_{w,b} L(w, b)} = \boxed{w^*, b^* = arg \min_{w,b} -lnL(w, b)}$$

$$-lnL(w,b)$$

$$= -lnf_{w,b}(x^{1}) \longrightarrow -\begin{bmatrix} 1 \ lnf(x^{1}) + & 0 \ ln(1 - f(x^{1})) \end{bmatrix}$$

$$-lnf_{w,b}(x^{2}) \longrightarrow -\begin{bmatrix} 1 \ lnf(x^{2}) + & 0 \ ln(1 - f(x^{2})) \end{bmatrix}$$

$$-ln\left(1 - f_{w,b}(x^{3})\right) \longrightarrow -\begin{bmatrix} 0 \ lnf(x^{3}) + & 1 \ ln(1 - f(x^{3})) \end{bmatrix}$$

$$\vdots$$

● 計算

- \circ 左式、右式同取 -ln ,相乘變成相加
- 。 符號轉換: \hat{y} 的值代表說,現在 x 屬於哪一個 class
- 。 就可以寫成 $\Sigma \hat{y}^n ln f_{w,b}(x^n) + (1-\hat{y^n}) ln (1-f_{w,b}(x^n))$ Σ 後的式子,其實是兩個 Bernouli distribution 的 Cross Entropy

$$\circ H(p,q) = -\sum p(x)ln(q(x))$$

- 比較(Minimize 的對象)
 - o Logistic Regression: (function 的 output 與 targer) 的 cross entropy
 - o Linear Regression: (function 的 output 減 targer) 的 square error

Cross entropy:
$$l(f(x^n), \hat{y}^n) = -[\hat{y}^n lnf(x^n) + (1 - \hat{y}^n) ln(1 - f(x^n))]$$

Step 3. Find the best function

• 計算 -lnL(w,b) 對 w_i 的微分

Step 3: Find the best function

$$\frac{-\ln L(w,b)}{\partial w_i} = \sum_{n} -\left[\hat{y}^n \frac{\ln f_{w,b}(x^n)}{\partial w_i} + (1-\hat{y}^n) \frac{\ln (1-f_{w,b}(x^n))}{\partial w_i}\right]$$

$$\frac{\partial \ln f_{w,b}(x)}{\partial w_i} = \frac{\partial \ln f_{w,b}(x)}{\partial z} \frac{\partial z}{\partial w_i} \quad \frac{\partial z}{\partial w_i} = x_i$$

$$\frac{\partial \ln \sigma(z)}{\partial z} = \frac{1}{\sigma(z)} \frac{\partial \sigma(z)}{\partial z} = \frac{1}{\sigma(z)} \sigma(z) (1-\sigma(z))$$

$$f_{w,b}(x) = \sigma(z)$$

$$= 1/1 + exp(-z)$$

$$z = w \cdot x + b = \sum_{i} w_i x_i + b$$

Step 3: Find the best function

$$\frac{-lnL(w,b)}{\partial w_i} = \sum_{n} -\left[\hat{y}^n \frac{lnf_{w,b}(x^n)}{\partial w_i} + (1 - \hat{y}^n) \frac{ln\left(1 - f_{w,b}(x^n)\right)}{\partial w_i}\right]$$

$$\frac{\partial \ln\left(1 - f_{w,b}(x)\right)}{\partial w_i} = \frac{\partial \ln\left(1 - f_{w,b}(x)\right)}{\partial z} \frac{\partial z}{\partial w_i} \qquad \frac{\partial z}{\partial w_i} = x_i$$

$$\frac{\partial \ln\left(1 - \sigma(z)\right)}{\partial z} = -\frac{1}{1 - \sigma(z)} \frac{\partial \sigma(z)}{\partial z} = -\frac{1}{1 - \sigma(z)} \sigma(z) \left(1 - \sigma(z)\right)$$

$$f_{w,b}(x) = \sigma(z)$$

$$= 1/1 + exp(-z)$$

$$z = w \cdot x + b = \sum_{i} w_i x_i + b$$

• 計算結果:

$$\sum_{n} - (\hat{y}^n - f_{w,b}(x^n))x_i^n$$

$$w_i^n \leftarrow w_i - \eta \Sigma_n - (\hat{y}^n - f_{w,b}(x^n))x_i^n$$

下面的式子代表 w 的 update 取決於三件事情

- 1. η (Learning rate):自己設定的
- 2. x_i :來自於 data
- 3. \hat{y}^n :目標、 $f_{w,b}(x^n)$ 現在 model 的 output $\hat{y}^n f_{w,b}(x^n)$ 代表現在 function 的 output 跟理想目標的差距有多大,越遠,update 量就越大

Step 3: Find the best function

$$\begin{aligned} & \underbrace{-lnL(w,b)}_{\partial w_i} = \sum_{n} - \left[\hat{y}^n \underbrace{lnf_{w,b}(x^n)}_{\partial w_i} + (1 - \hat{y}^n) \underbrace{ln\left(1 - f_{w,b}(x^n)\right)}_{\partial w_i} \right] \\ & = \sum_{n} - \left[\hat{y}^n \underbrace{\left(1 - f_{w,b}(x^n)\right)}_{\underline{-}} x_i^n - (1 - \hat{y}^n) \underbrace{f_{w,b}(x^n)}_{\underline{-}} x_i^n \right] \\ & = \sum_{n} - \left[\hat{y}^n - \hat{y}^n f_{w,b}(x^n) - f_{w,b}(x^n) + \hat{y}^n f_{w,b}(x^n) \right] \underline{x}_i^n \\ & = \sum_{n} - \left(\hat{y}^n - f_{w,b}(x^n)\right) x_i^n \end{aligned}$$

$$= \sum_{n} - \left(\hat{y}^n - f_{w,b}(x^n)\right) x_i^n$$

- 比較(Logistic Regression 跟 Linear Regression 做 Gradient Descent 時參數 update 的方式)
 - 相同:update 的式子
 - \circ 不同: \hat{y}^n

Logistic Regression 的 \hat{y}^n 一定是 0 或 1 Linear Regression 的 \hat{y}^n 可以是任何實數

Logistic Regression

Step 1:
$$f_{w,b}(x) = \sigma\left(\sum_{i} w_i x_i + b\right)$$

Output: between 0 and 1

Linear Regression

$$f_{w,b}(x) = \sum_{i} w_i x_i + b$$

Output: any value

Training data: (x^n, \hat{y}^n)

Step 2: \hat{y}^n : 1 for class 1, 0 for class 2

$$L(f) = \sum_n l(f(x^n), \hat{y}^n)$$

Training data: (x^n, \hat{y}^n)

 \hat{y}^n : a real number

$$L(f) = \frac{1}{2} \sum_{n} (f(x^{n}) - \hat{y}^{n})^{2}$$

Logistic regression:
$$w_i \leftarrow w_i - \eta \sum_n -\left(\hat{y}^n - f_{w,b}(x^n)\right) x_i^n$$

Step 3:

Linear regression:
$$w_i \leftarrow w_i - \eta \sum_n -\left(\widehat{y}^n - f_{w,b}(x^n)\right) x_i^n$$

Discriminative vs. Generative

定義

• **Discriminative** 的方法:如 Logistic Regression **Generative** 的方法:如使用 Gaussian 描述 Posterior probability

○ 相同:function set、model(皆為 $P(C_1|x) = \sigma(w \cdot x + b)$)

不同:兩者對 probability distribution 做不同的假設

■ Discriminative:沒有做任何假設

■ Generative: 會假設機率分佈是 Gaussian, Bernoulli, Naive Bayes... 等等

• 例子分別應用兩者的結果

- o 防禦力&特殊防禦力的例子,藍色是水系的寶可夢,紅色是一般系的寶可夢,都使用 7 個 feature
- Generative model 可獲得 73% 的正確率 Discriminative model 可獲得 79% 的正確率

Generative v.s. Discriminative

- 討論:何時 Generative model 的表現較比 Discriminative model 好
 - 。 資料量大小:
 - Discriminative model 因爲不做任何假設,故 performance 受資料影響很大 Generative model 會做假設(如同自行腦補),資料量很少時,較有優勢
 - 資料量小:Discriminative model 誤差較大,Generative model 表現可能較好 資料量大:Discriminative model 誤差較小,表現較有可能優於 Generative model
 - o Noise 存在:
 - 資料有 noise 時,因為 label 本身就有些問題,故一些假設可能可以把有問題的 data 忽略掉 Generative model 的表現可能較 Discriminative 好
 - o 分割資料來源:
 - Discriminative model 直接假設一個 posterior probability Generative model 可將 formulation 拆成 **prior** 跟 **class-dependent** 的 probability 兩項 而這兩項可以來自**不** 同的資料來源
 - 舉例: 語音辨識使用 NN,是 discriminative 的方法; 但是整個語音辨識系統,是 generative 的 system。

prior 的部分使用文字的 data 處理,class-dependent 的部分,需要聲音和文字的配合。

Generative v.s. Discriminative

- Usually people believe discriminative model is better
- Benefit of generative model
 - With the assumption of probability distribution
 - · less training data is needed
 - more robust to the noise
 - Priors and class-dependent probabilities can be estimated from different sources.

Process of Multi-class Classification

- 定義
 - 三個類別: C_1, C_2, C_3
 - 。 每個類別相對應的 weight, bias $: w^1, w^2, w^3$ (vector), b_1, b_2, b_3 (scalar)
 - \circ 要分類的對象:x
- 步驟
 - 1. 將 x 乘上 weight 加上 bias 得到 z

$$z_1 = w^1 * x + b_1 ext{ ex. } z_1 = 3$$
 $z_2 = w^2 * x + b_2 ext{ ex. } z_2 = 1$ $z_3 = w^3 * x + b_3 ext{ ex. } z_3 = -3$

2. 將 z 丟入 Softmax function

取 exponential 得
$$e^{z1}, e^{z2}, e^{z3}$$
,相加得 total sum = $\Sigma_{j=1}^3 e^{z_j}$

各項除以 total sum (做 normalization),得 output, $y=(y_1,y_2,y_3)$

$$y_1=s^{z_1}/\Sigma_{j=1}^3e^{z_j}$$
 ex. 計算得 $y_1=0.88$ $y_2=s^{z_2}/\Sigma_{j=1}^3e^{z_j}$ ex. 計算得 $y_2=0.12$

$$y_2=s^{z_2}/\Sigma_{i=1}^3e^{z_j}$$
 ex. 計算得 $y_2=0.12$

$$y_3=s^{z_3}/\Sigma_{i=1}^3e^{z_j}$$
 ex. 計算得 $y_3=0$

Multi-class Classification (3 classes as example)

3. Minimize Cross Entropy

■ 計算 y 跟目標函數 \hat{y} 之間的 cross entropy $: -\Sigma_{i=1}^3 \hat{y} ln y_i$

$$\hat{y}_1 = egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix} \hat{y}_2 = egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix} \hat{y}_3 = egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}$$

■ 列出 maximum likelihood 的 function,經過整理即可得 minimize cross entropy

[Bishop, P209-210]

Multi-class Classification (3 classes as example)

Softmax

- o 對最大值做強化(取 exponential 時使大值跟小值間的差距更大)
- o 經過 Softmax function 後, output 值 (y) 介於 0~1 之間
- 。 y_i 即為第 i 個 class (z_i)的 posterior probability

 $y_1=0.88$ 代表 x 屬於 class1 的機率是 88% $y_2=0.12$ 代表 x 屬於 class2 的機率是 12%

 $y_3=0$ 代表 x 屬於 class3 的機率趨近於 0

Limitation of Logistic Regression

- Logistic Regression 有時無法直接對 data 做分類,因為兩個 class 之間的 boundary 是一直線, 無法好好地將資料分割
- 舉例:
 - 。 假設,如左下表格

class1 有兩筆 data: (0,1)、(1,0) class2 有兩筆 data: (0,0)、(1,1)

如右下圖,我們無法以 Logistic Regression 好好地將紅色、藍色分成兩邊 因爲其 boundary 是一直線

Limitation of Logistic Regression

- 解決: Feature Transformation
 - 。 將原來的 x_1,x_2 做一些轉化後,找到一個較好的 feature space,轉化成 $x_1^{'},x_2^{'}$ 讓 Logistic Regression 可以處理
 - o 舉例:

定義 $x_1^{'}$ 是某一點到 (0,0) 的距離, $x_2^{'}$ 是某一點到 (1,1) 的距離 轉換後,如右下圖,紅色的點重疊在一起,而 Logistic Regression 可找到 boundary 分開

Limitation of Logistic Regression

- 如何讓機器自己產生 Feature Transformation
 - 。 將許多個 Logistic Regression 串接起來,如下圖

前面兩個 Logistic Regression (藍色, 綠色)就是在做 Feature Transformation 轉換後,再由紅色的 Logistic Regression 做分類

Limitation of Logistic Regression

Cascading logistic regression models

(ignore bias in this figure)

• Neuron & Neural Network

- Neuron:我們將每一個 Logistic Regression 稱作 Neuron
- Neural network: 這些 Logistic Regression 串接起來就稱作 Neural network (類神經網路)
- This is Deep Learning!