

University of Western Attica Faculty of Engineering Department of Informatics and Computer Engineering

Circuit Theory Lab Exercises

1st EXERCISE

Notes 2020, Voutsinas Stylianos Material revision, Editor 2021, Christos Kampouris

ATHENS 2021

1.1 Laboratory part

1.2 Circuits - theorems - basic laws

- As a circuit, the set of electrical sources and passive or active elements, which are connected to each other, is characterized.
- A branch is any part of the circuit that has its elements connected in series.
- A loop is any closed path of a circuit, designed so that the path does not pass through the same point twice.
- A node is the point where two or more branches join.

Kirchhoff's first law

The algebraic sum of all the intensities of the currents flowing into and out of the node is zero

Kirchhoff's second law

The sum of all potential differences across the individual branches of a loop is zero

Ohm's Law

The intensity of the current I is proportional to the potential difference with a ratio factor of 1/R

1. 3.1: Kirchoff's 1st law.

You experimentally verified through Figure 1 Kirchhoff's 1st law (the algebraic sum of all intensities of the currents flowing into and out of the node equals zero). Record your measurements and reasoning.

Figure 1

1.3.2: Kirchoff's 2nd law.

You experimentally verified through figure 2 Kirchhoff's 2nd law (^T the sum of all potential differences in the individual branches of a loop is equal to zero). Record your measurements and reasoning. Prove the simulation part based on the trend calculation formulas.

Figure 2

1.3.3:0 hm's law.

Make the circuit of figure 3. complete the following Table and graphically represent the relationship between voltage and current. What do you notice?

With a fixed resistance value of 1K, change your source voltage and complete the following table:

A distance	R	=	1K								
Source Voltage (V	0	1	2	3	4	5	6	7	8	9	10
Intensity (I)											
Voltage Drop across R (V)											

For a constant source voltage value of 10 V , change the resistor values and complete the following table:

Source	V	=	10	V							
voltage											
Resistance (0	1	2	3	4	5	6	7	8	9	10
KOhm)											
Intensity (I)											
Voltage											
Drop across											
R(V)											

1. 3.4 : Connecting a resistor as a potentiometer.

Implement the circuit of Figure 4. Change the value of the variable resistor and complete the table below. Comment.

Helpful Note: The circuit below uses voltage divider circuitry.

Figure 4

Resistance (R) %	10	20	30	40	50	60	70	80	90	100
Voltage (V)										

1.5. 5 : Connecting a resistor as a dimmer.

Implement the circuit of Figure 5. Change the value of the variable resistor and complete the table below.

Figure 5

Resistance (R) %	10	20	30	40	50	60	70	80	90	100
Intensity (I)										

1.6 Questions

• What will happen in Figure 5 if the variable resistor goes to 0%? You calculated the current that will flow through the resistor. Is there a way to fix this particular problem?

- The voltage measurement in figure 3, would it be better to include the voltage drop across the resistor R 4 and the ammeter? Justify.
- Consider a voltage divider with R 1 = R 2 = 1 K Ω . We connect a load RL = 10Ω . What will happen? Suggest a way to solve it.