

Architektura systemów Voice over IP

Michał Hoeft

Plan wykładu

- Wstęp
 - Potrzeby VoIP
- Protokoły sygnalizacyjne
- Session Initiation Protocol
- Architektura SIP
- Scenariusze użycia
- Implementacje
- FreeSwitch
- Podsumowanie

Wstęp

- Jak od strony użytkownika wygląda procedura nawiązania połączenia?
- Jakie wymagania muszą spełniać rozwiązania VoIP?
- Jakie mechanizmy są potrzebne w systemach VoIP?

Wstęp

- Potrzeby VoIP
 - Nawiązanie połączenia
 - Odnalezienie abonenta wywoływanego
 - Powiązanie adresu IP z identyfikatorem
 - Ustalenie wspólnych warunków realizacji połączenia
 - Nawiązanie/zakończenie połączenia
 - Zmiana parametrów połączenia
 - Realizacja połączenia
 - Kodowanie mowy
 - Transmisja pakietów mowy

Protokoły sygnalizacyjne

	H.323	SIP	XMPP
	ITU-T (1996)	IETF	Jabber (1999) IETF (2002)
Przeznaczenie	Głos/video W sieciach pakietowych (nie tylko IP)	Głos w sieciach IP	Usługa obecności, IM
Protokoły transportu sygnalizacji	TCP, UDP	тср, <u>UDP</u> , sстр	тср, <u>UDP</u> , sстр
Postać wiadomości	Binarna	Tekstowa	Tekstowa (XML)

Podstawy

SESSION INITIATION PROTOCOL

Session Initiation Protocol

- SIP jest protokołem ogólnego przeznaczenia, którego zadaniem jest ustalanie, modyfikowanie i zakończenie sesji niezależnie od jej rodzaju. (IETF - RFC 3261)
- Przez sesję rozumiemy proces wymiany danych między jej uczestnikami (nie tylko rozmowa).
- Złożony i rozbudowany protokołów
 - Duża elastyczność
 - Duże możliwości zastosowania
 - SIP jest opisany przez dziesiątki RFC.

Session Initiation Protocol

- protokół warstwy aplikacji
- teoretycznie niezależny od niższych warstw
 - praktyka pokazuje coś innego
- architektura klient/serwer
- bezpieczeństwo protokół SIPS
- niezależność ścieżki sygnalizacyjnej i wymiany danych
- współpraca z innymi protokołami (SDP, RTP, RSTP)

Session Initiation Protocol

- Niezależność ścieżki sygnalizacyjnej i wymiany danych
 - Możliwość zastosowania innej topologii sieci dla sygnalizacji i innej dla mediów
 - Różne priorytety
 - Różne opóźnienia

Funkcje SIP

- Lokalizacja użytkownika pozwalającą na określenie, który terminal końcowy ma zostać wybrany dla konkretnej sesji.
- Dostępność użytkownika określającą gotowość abonenta wywoływanego do dołączenia do sesji.
- Możliwości użytkownika określające jakie parametry strumienia danych mogą zostać obsłużone przez terminal użytkownika.
- Zestawienie sesji pozwalające na komunikację strony wywoływanej i wywołującej.
- Zarządzanie sesją zawierające przenoszenie sesji, modyfikację jej parametrów oraz zakończenie.

Adresacja

sip:user:password@host:port;uri-parameters?headers

- user nazwa użytkownika powiązana z konkretnym kontem. Jeżeli w systemie istnieje możliwość obsługi tradycyjnych numerów telefonicznych pole to może mieć postać takiego numeru.
- password hasło powiązane z użytkownikiem. Standard pozwala na przesyłanie hasła w jawnej formie w SIP URI oraz SIPS URI jest to jednak ze względów bezpieczeństwa <u>bardzo niezalecane</u>.
- host określa serwer będący elementem infrastruktury SIP. Pole to może mieć postać adresu IPv4, IPv6 albo nazwy domenowej.
- port określa numer portu protokołu warstwy transportowej na której uruchomiona jest aplikacja SIP.
- URI-parameters pozwalają na konfigurację niektórych parametrów żądania tworzonego na podstawie przetwarzanego URI. Najczęściej spotykanym parametrem jest parametr 'transport'. Definiuje on z wykorzystaniem, którego protokołu transportowego ma zostać przesłana wiadomość SIP.

Przykładowa wiadomość SIP

Wiadomości i odpowiedzi SIP

Metoda	Odpowiedzi
REGISTER	1xx — informacyjne
INVITE	2xx – powodzenie
ACK	3xx – przekierowanie
BYE	4xx – błąd po stronie klienta
CANCEL	5xx – błąd po stronie serwera
OPTIONS	6xx – błąd globalny
REFER	
SUBSCRIBE	
NOTIFY	
MESSAGE	
INFO	
PRACK	
UPDATE	

Metody SIP

- REGISTER wykorzystywana w procesie rejestracji pozwalającym na lokalizację użytkownika poprzez powiązanie jego identyfikatora z parametrami protokołu transportowego (RFC 3261)
- INVITE wykorzystywana do inicjalizacji sesji oraz jeżeli przesyłana jest w ramach dialogu do zmiany jej parametrów (RFC 3261)
- ACK pozwalająca na pozytywne zakończenie procesu przetwarzania innych metod (RFC 3261)
- CANCEL wykorzystywana do anulowania aktualnie przetwarzanego żądania INVITE, jeszcze przed zestawieniem połączenia (RFC 3261)
- BYE wykorzystywana do zakończenia istniejącej już sesji (RFC 3261)

Metody SIP

- MESSAGE wykorzystywana do przesyłanie bezpośrednich wiadomości tekstowych (RFC 3428)
- UPDATE wykorzystywana do modyfikacji parametrów sesji bez zmiany stanu dialogu (RFC 3311)
- OPTIONS wykorzystywana do sprawdzenia możliwości elementów architektury SIP (RFC 3261)
- PRACK wykorzystywana do przesyłania informacji o tymczasowym potwierdzeniu (RFC 3262)
- SUBSCRIBE wykorzystywana do subskrypcji powiadamiania (RFC 3265)
- NOTIFY wykorzystywana do przesyłania powiadomień (RFC 3265)
- PUBLISH wykorzystywana do przesyłania wiadomości o zdarzeniach na serwer powiadamiania (RFC 3903)
- INFO wykorzystywana do przesyłania informacji w trakcie trwania sesji (RFC 6086)
- REFER wykorzystywana do wymuszania wywołania inicjalizacji połączenia (RFC 3515)

Przykładowa wiadomość SIP

Odpowiedź SIP

Wiadomości i odpowiedzi SIP

Metoda	Odpowiedzi
REGISTER	1xx — informacyjne
INVITE	2xx – powodzenie
ACK	3xx – przekierowanie
BYE	4xx – błąd po stronie klienta
CANCEL	5xx – błąd po stronie serwera
OPTIONS	6xx – błąd globalny
REFER	
SUBSCRIBE	
NOTIFY	
MESSAGE	
INFO	
PRACK	
UPDATE	

Odpowiedzi SIP

- 1xx informacyjne (np. 180 Ringing):
 - Żądanie zostało odebrane.
 - Podjęto kroki w celu jego wykonania.
 - Nie napotkano problemów.
- 2xx powodzenie (np. 200 OK):
 - Żądanie zostało przekazane poprawnie.
- 3xx przekierowanie (np. 303 Redirect):
 - Wskazanie podjęcia dodatkowych akcji związanych z obsługą otrzymanego żądania.
 - Wywołanie powinno zostać wysłane pod nowy adres.

Odpowiedzi SIP

- 4xx błąd po stronie klienta (np. 404 Not Found):
 - Żądanie błędnie sformułowane lub nie może być wypełnione przez dany serwer.
 - Żądanie zostanie odrzucone.
- 5xx błąd po stronie serwera (np. 503 Service Unavailable):
 - Dany serwer nie może wykonać zleconego zadania.
- 6xx błąd globalny (np. 600 Busy Everywhere):
 - Żaden z dostępnych serwerów nie może wykonać tego żądania.

REAL-TIME TRANSPORT PROTOCOL RTP CONTROL PROTOCOL

- Protokół transportowy
 - rozszerzający możliwości protokołu UDP o transmisję danych typu czasu rzeczywistego
 - Możliwość agregacji wielu strumieni multimedialnych

Podstawowe zadania RTP

- Identyfikacja i oznakowanie źródeł strumieni multimedialnych
- Przydzielanie znacznika czasu i numeru sekwencyjnego
- Monitorowanie warunków sieciowych
- Transmisja informacji o sesji użytkownika

Dlaczego rozszerzamy UDP a nie TCP?

UDP Header Offsets Octet 0 1 2 3 Octet Bit 0 1 2 3 Octet Bit 0 1 2 3 0 0 Source port Destination port

https://en.wikipedia.org/wiki/User_Datagram_Protocol

- Protokół UDP:
 - Możliwość realizacji transmisji jeden do wielu
 - Mniejsze opóźnienia niż TCP
 - Okrojone funkcje pozwalają na zastosowanie mniejszego nagłówka

| Offsets | Octet | Oc

https://en.wikipedia.org/wiki/User_Datagram_Protocol

Dlaczego UDP nie jest wystarczający:

Offsets Octet 0 2 3 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 Bit 0 Source port Destination port

Checksum

UDP Header

https://en.wikipedia.org/wiki/User Datagram Protocol

Length

Octet 0

32

- Dlaczego UDP nie jest wystarczający:
 - Brak mechanizmów gwarancji dostarczenia danych
 - Brak mechanizmów wykrywania duplikatów
 - Brak mechanizmów kontroli przepływu pakietów
 - Brak mechanizmów obsługi retransmisji pakietów
 - Brak mechanizmów umożliwiających synchronizację strumieni danych

UDP Header											
Offsets	Octet	0	1	2	3						
Octet	Bit	0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31						
0	0	Source	rce port	Destination port							
4	32	Lei	ength	Chec	ksum						

https://en.wikipedia.org/wiki/User_Datagram_Protocol

- Przedstawione problemy pozwala rozwiązać protokół RTP
 - Version wersja protokołu (2)
 - P określa czy zastosowano padding
 - X określa czy zastosowano nagłówek rozszerzeń
 - CC określa liczbę CSRC
 - M określa czy zastosowano profil appl.
 - PT określa profil danych

<i>y</i> 0011	RTP packet header									
Bit offset ^[b]	0–1	2	3	4–7	8	9–15	16–31			
0	Version	Р	Х	СС	М	PT	Sequence number			
32	Timestamp									
64	SSRC identifier									
96	CSRC identifiers									
96+32×CC	Profile-specific extension header ID Extension header length									
128+32×CC	Extension header									
120.02.00										

- Przedstawione problemy pozwala rozwiązać protokół RTP
 - Sequence number
 - Timestamp
 - SSRC Synchronization source ID
 - CSRC Contributing source ID

RTP packet header

Bit offset ^[b]	0–1	2	3	4–7	8	9–15	16–31		
0	Version	Р	Χ	СС	М	PT	Sequence number		
32	Timestamp								
64	SSRC identifier								
96		CSRC identifiers							
96+32×CC	Profile-specific extension header ID Extension header length								
128+32×CC		Extension header							

- Przedstawione problemy pozwala rozwiązać protokół RTP
 - Brak mechanizmów gwarancji dostarczenia danych
 - Brak mechanizmów wykrywania duplikatów

RTP packet header									
Bit offset ^[b]	0-1	2	3	4-7	8	9–15	16–31		
0	Version	Р	Х	СС	М	PT	Sequence number		
32	Timestamp								
64	SSRC Identifier								
96		CSRC identifiers							
96+32×CC	Profile-specific extension header ID Extension header length								
128+32×CC		Extension header							

- Przedstawione problemy pozwala rozwiązać protokół RTP
 - Brak mechanizmów umożliwiających synchronizację strumieni danych

RTP packet header									
Bit offset ^[b]	0–1	2	3	4–7	8	9–15	5 16–31		
0	Version	Р	Х	СС	М	PT	Sequence number		
32		Timestamp							
64	SSRC identifier								
96	CSRC identifiers								
96+32×CC	Profile-specific extension header ID								
128+32×CC		Extension header							

RTP CONTROL PROTOCOL

RTP Control Protocol

- Protokół zarządzający wspomagający monitorowanie połączeń RTP
 - Rozszerzenia pozwalające na określenie parametrów połączenia sieciowego
 - Rozszerzenie pozwalające na określenie parametrów usługi
- Możliwość prostego zarządzania połączeniem
 - Pakiety BYE
- Liczba pakietów RTCP nie powinna przekraczać
 5% liczby pakietów w strumieniu RTP

RTP Control Protocol

- Typy wiadomości RTCP:
 - Sender Report
 - Receiver Report
 - Source Description (SDES)
 - BYE
 - APP

RTP Control Protocol

- Pakiet RTCP może składać się z wielu komponentów – wiadomości różnego typu
- Na początku pakietu zawsze znajduje się SR/RR
- Wiadomość BY zawsze znajduje się na końcu

ARCHITEKTURA SIP

Architektura SIP

- Oprogramowanie klienckie (UA User Agent)
 - UAC (User Agent Client)
 - UAS (User Agent Serwer)
- Serwer SIP
 - Registrar Server
 - Location Service
 - Proxy Server
 - stateless
 - stateful
 - Redirect Server
 - Authentication, Authorization, Accounting
 - Serwer Aplikacyjny
- Kontroler
 - Session Border Controller (interfejsy UNI, NNI)

User Agent

- Współpraca UAC i UAS
- Funkcje UAC (inicjacja połączenia):
 - Generacja żądań
 - Wysyłanie żądań
 - Przetwarzanie odpowiedzi
- Część serwerowa UAS (przetwarzanie żądań)
 - Autoryzacja
 - Badanie metody
 - Badanie nagłówka
 - Przetwarzanie wiadomości
 - Dodawanie rozszerzeń
 - Przetwarzanie właściwe żądań
 - Generacja odpowiedzi

Registrar Server

- Serwer rejestrujący zapisuje nową lokalizację, aby SIP mógł zlokalizować hosta wywoływanego.
- Lista powiązań użytkowników z lokalizacjami nazywamy Address of Record (AoR) i są przechowywane w serwerze lokalizacji (Location Service).

Proxy Server

- Jest to pośrednik urządzeń końcowych. Do jego zadań należy znajdowanie dróg połączeniowych między terminalami, a także przesyłanie żądań i odpowiedzi.
- Jeżeli jest to konieczne, modyfikuje pola nagłówkowe.
- Serwer pośredniczący odpowiada również za uwierzytelnienie użytkownika oraz autoryzację i kontrolę dostępu.

Redirect Server

- Mechanizm przekierowania ma zadanie ograniczyć przetwarzanie w serwerach Proxy.
- Kiedy serwer przekierowujący odbiera żądanie, którego nie może obsłużyć, zwraca do UAC adres kolejnego serwera przekierowującego, z którym powinien się skontaktować.
- Procedura ta powtarza się aż do momentu skontaktowania się UAC z właściwym serwerem.

Architektura SIP

- W praktyce
 - Serwery SIP często implementowane jako jedna usługa
 - Rozdzielne fizycznych maszyn dyktowane wydajnością, a nie realizowaną funkcją
 - Proxy połączone z Redirect
 - Odseparowane Registrar
- Który z serwerów musi sprostać największemu obciążeniu żądań SIP?

- SBC składają się z dwóch logicznych elementów
 - Session Gateway Control (SGC) odpowiedzialnym za monitorowanie i manipulowanie wiadomościami sygnalizacyjnymi
 - Media Proxy (MP) pośredniczy w ścieżce przekazywania strumienia mediów (strumienia RTP), tak że użytkownicy nie wymieniają się pakietami RTP bezpośrednio, a za pośrednictwem MP

Teoria

SCENARIUSZE UŻYCIA

Przepływ wiadomości Nawiązanie połączenia

Trochę inaczej

SCENARIUSZE UŻYCIA

Scenariusz połączenia

- Session Border Controller:
 - Urządzenie w sieci VoIP
 - Session działa w oparciu o sesje/połączenia
 - Border punkt graniczny między sieciami
 - Controller wpływa na realizowane połączenia
- RFC 5853 Requirements from SIP SBC Deployments

 W praktyce SGC oraz MP mogą być oddzielnymi rozproszonymi systemami.

- Główne zadania SBC
 - Bezpieczeństwo
 - Firewall i kontrola dostępu na poziomie aplikacji (protokół SIP)
 - Ukrywanie topologii
 - Ochrona przed DoS
 - Ochrona przed fraudami
 - Zapewnienie zgodności
 - Transkodowanie mediów
 - NAT Traversal
 - Normalizacja SIP
 - Konwersja DTMF
 - Konwersja fax
 - Jakość usług
 - CallAdmission Control
 - Monitoring QoS

Session Border Controller Firewall

- Sygnalizacja SIP
 - Dogłębna analiza pakietów dla wszystkich połączeń SIP
 - Klasyfikacja każdy dialog SIP jest akceptowany/odrzucany
 - Pakiety nie należące do sesji są odrzucane
 - Klasyfikacja połączeń SIP wg wartości w nagłówkach

RTP

- Otwarcie "pin holes" zgodnie z negocjacją offer-answer
- Dogłębna inspekcja pakietów również na poziomie pakietów RTP
- Detekcja zerwanych połączeń
- Black / White lists

Session Border Controller Ukrycie topologii – B2BUA

- VIA stripping każda strona B2BUA będzie miała własne nagłówki VIA niezależne od drugiej strony
- Niezależne nagłówki Route/Record Route
- Modyfikacja nazw hostów (np. w To/From)
- E-SBC w Contact URI po obu stronach
- Różne Call ID dla dwóch stron połączenia
- Ukrywanie topologii warstwy 3.
 - modyfikacja źródłowego adresu w nagłówkach SIP

Session Border Controller Zapewnienie zgodności

- Wyzwanie Interoperability
 - Różne implementacje SIP
 - różnice w standardach i implementacjach dostawców
 - Media Transcoding (NB i WB)
 - Korekcja
 - DTMF, Faks, Głos, wideo
 - IPv6/IPv4
- E-SBC
 - Konfigurowalne zachowanie SIP po obu stronach
 - Zaimplementowane wiele stosów SIP
 - Wykorzystanie różnych kodeków

Session Border Controller SIP w sieci IPv4 i IPv6

Rozwiązanie korporacyjne

IP PBX

IP PBX

Rozwiązanie korporacyjne

Page 1

WSPÓŁPRACA Z PSTN

Przepływ wiadomości PSTN – IP

Przepływ wiadomości PSTN – IP – PSTN

Rozwiązanie operatorskie

IP MULTIMEDIA SUBSYSTEM

Architektura NGN

IP Multimedia Subsystem - IMS

- wpisuje się w ideę konwergencji zarówno usług oferowanych przez operatorów sieci jak i ich infrastruktury
- pozwala ona na rozszerzenie dostarczanych usług dla abonentów w sposób ujednolicony i uniwersalny w oparciu o protokół IP (docelowo IPv6).
- przewidziana jest współpraca z sieciami pracującymi w różnych technologiach np. PSTN oraz uniezależnienie od technologii wykorzystanej w sieci dostępowej.
- współpraca z bezprzewodowymi sieciami dostępowymi umożliwiającymi mobilność.

IP Multimedia Subsystem

- Elementy IMS
 - HSS (Home Subscriber Servers) oraz SLF (Subscriber Location Functions)
 - serwery CSCF (Call/Session Control Function)
 - MRF (Media Resource Functions) składający się z MRCF (Media Resource Function Controllers) oraz MRFP (Media Resource Function Processors)
 - Breakout Gateway Control Function
 - Serwery aplikacji AS (Application Server)
 - MGCF (Media Gateway Controller Function) oraz MGW (Media Gateway).
 - Brama sygnalizacyjna SGW (Signaling Gateway) do sieci PSTN

IP Multimedia Subsystem Scenariusz połączenia

IPTV na platformie IMS

Architektura funkcjonalna

IPTV na platformie IMS

- The N-PVR (Network-Personal Video Recorder Function) is a function which hosts IPTV N-PVR services and is split into a service control part (N-PVR-SCF), a media control part (N-PVR-MCF) and a media delivery function (N-PVR-MDF). The N-PVR-SCF exchanges messages with Core IMS. The service request/response messages between the UE and the N-PVR-SCF are transferred via the Core IMS. Media Control messages are exchanged between the UE and the N-PVR-MCF via the Xc reference point. Media Data is exchanged between UE and N-PVR-MDF via the Xd reference point.
- The BC (Broadcast Serving Function) is a function which hosts Broadcast IPTV services and is split into a service control part (BC-SCF), a media control part (BC-MCF) and a media delivery function (BC-MDF). The BC-SCF exchanges messages with Core IMS. The service request / response messages between the UE and the BC-SCF are transferred via the Core IMS. Media Data is exchanged between UE and BC-MDF via the Xd reference point.
- The CoD (Content on Demand) is an IPTV service function which is split into a service control part (CoD-SCF), a media control part (CoD-MCF) and a media delivery function (CoD-MDF). The CoD-SCF exchanges messages with Core IMS. The service request/response messages between the UE and the CoD-SCF are transferred via the Core IMS. Media Control messages are exchanged between the UE and the CoD-MCF via the Xc reference point. Media Data is exchanged between UE and CoD-MDF via the Xd reference point.

IMPLEMENTACJE

Implementacje

- Asterisk licencja GPL
- Yate licencja GPL z wyłączeniem odwołań do OpenH323 i Pwlib
- FreeSWITCH licencja MPL
- Kamailio/OpenSIPS licencja GPL/GPL

FreeSWITCH - Architektura

freeswitch.xml

```
<?xml version="1.0"?>
<document type="FreeSwitch/xml">
    <X-PRE-PROCESS cmd="include" data="vars.xml"/>
   <!-- sekcja konfiguracji -->
    <section name="configuration" description="Various Configuration">
        <X-PRE-PROCESS cmd="include" data="autoload_configs/*.xml"/>
    </section>
   <!-- sekcja planu połączeń -->
   <section name="dialplan" description="Regex/XML Dialplan">
        <X-PRE-PROCESS cmd="include" data="dialplan/*.xml"/>
   </section>
   <!-- sekcja książki adresowej -->
   <section name="directory" description="User Directory">
        <X-PRE-PROCESS cmd="include" data="directory/*.xml"/>
   </section>
    <!-- sekcja fraz językowych ->
    <section name="languages" description="Language Management">
        <X-PRE-PROCESS cmd="include" data="lang/pl/*.xml"/>
   </section>
</document>
```

Katalog	Zawartość konfiguracji
autoload_configs	W tym katalogu znajdują się pliki konfiguracyjne, które są ładowane automatycznie przy starcie FreeSWITCH-a. Pliki te zawierają konfigurację dla modułów FreeSWITCH-a.
dialplan	W tym katalogu znajdują się pliki konfiguracyjne definiujące plan połączeń (dialplan).
directory	W tym miejscu znajdują się konfiguracje zawierające definicje użytkowników, którzy mogą się rejestrować i używać FreeSwitch-a jako swoje centrali.
jingle_profiles	Jingle jest modułem wykorzystywanym przez FreeSWITCH-a do obsługi protokołu XMPP. W katalogu zdefiniowane są profile, które określają sposób użycia protokołu. Każdy profil ma przypisany port tcp/ip.
lang	Katalog zawierający zestaw definicji fraz dla wykorzystywanych języków.
mrcp_profiles	Konfiguracja protokołu MRCP (Media Resource Control Protocol) wykorzystywanego przez moduł rozpoznawania mowy oraz moduły TTS (Text To Speech).
sip_profiles	Konfiguracja profili SIP. Każdy profil SIP ma przypisany osobny port tcp/ip. Pliki z katalogu sip_profiles zawierają definicję kontekstów połączenia. W ramach każdego kontekstu, można definiować zestaw osobnych reguł w planie połączeń, realizowanych dla określonej grupy użytkowników (Przykładowo reguły dla połączeń przychodzących od zewnętrznych użytkowników centrali).

Pliki XML

```
<include>
         <user id="1000">
         <params>
                     <param name="password" value="$${default_password}"/>
                     <param name="vm-password" value="1000"/>
         </params>
         <variables>
                     <variable name="toll allow,, value="domestic,international,local"/>
                     <variable name="accountcode" value="1000"/>
                     <variable name="user context" value="default"/>
                     <variable name="effective caller id name" value="Extension 1000"/>
                     <variable name="effective caller id number" value="1000"/>
                     <variable name="outbound_caller_id_name,"</pre>
                                value="$${outbound caller name}"/>
                     <variable name="outbound caller id number,,</pre>
                                value="$${outbound caller id}"/>
                     <variable name="callgroup" value="techsupport"/>
         </variables>
         </user>
</include>
```

Zmienna	Opis
toll_allow	Specifies which types of calls this user can make
accountcode	Arbitrary value that shows up in CDR data
user_context	The Dialplan context that is used when this person makes a phone call
effective_caller_id_name	Caller ID name displayed on called party's phone when calling another registered user
effective_caller_id_number	Caller ID number displayed on called party's phone when calling another registered user
outbound_caller_id_name	Caller ID name sent to provider on outbound calls
outbound_caller_id_number	Caller ID number sent to provider on outbound calls
callgroup	Arbitrary value that can be used in Dialplan or CDR

Więcej na: http://wiki.freeswitch.org/wiki/Getting_Started_Guide#Dialplan
Warto zajrzeć przed laboratorium

FreeSWITCH Zastosowanie SBC

FreeSWITCH

Integracja systemów

PYTANIA, UWAGI, SUGESTIE