Devoir à la maison $n^{\circ}06$

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

Partie I – Etude dans un cas particulier

- **I.1.a** On calcule le polynôme caractéristique de $A: \chi_A = (X+2)(X-1)^2$. Par conséquent le spectre de A est $\{-2; 1\}$.
 - **I.1.b** On vérifie aisément que (u_1, u_2, u_3) est une base de $\mathcal{M}_{3,1}(\mathbb{R})$ en calculant son déterminant dans la base canonique. De plus, $Au_1 = u_1$, $Au_2 = u_2$ et $Au_3 = -2u_3$ donc u_1 , u_2 et u_3 sont des vecteurs propres de A.
 - **I.1.c** On vient de trouver une base de $\mathcal{M}_{3,1}(\mathbb{R})$ constituée de vecteurs propres de A donc A est diagonalisable.
 - **I.1.d** B $u_1 = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix}$ n'est pas colinéaire à u_1 et de même pour u_2 et u_3 donc aucun élément de \mathcal{F} n'est vecteur

propre de B donc a fortiori commun à A et B.

- **I.2.a** $\chi_B = (X-2)^3$ (on développe par rapport à la deuxième ligne) donc le spectre de B est $\{2\}$.
 - **I.2.b** B 2I₃ = $\begin{pmatrix} 1 & -3 & -1 \\ 0 & 0 & 0 \\ 1 & -3 & -1 \end{pmatrix}$. Les trois colonnes de cette matrice sont colinéaires à u_4 donc I $m_2(B) \subset$

 $\operatorname{vect}(u_4)$ et u_4 est la première colonne donc $\operatorname{vect}(u_4) \subset \operatorname{Im}_2(B)$. Par conséquent $\operatorname{Im}_2(B) = \operatorname{vect}(u_4)$. Le théorème du rang nous dit alors que dim $\operatorname{E}_2(B) = 2$.

- **I.2.c** La somme des dimensions des sous espaces propres de B est égale à 2 < 3 donc B n'est pas diagonalisable.
- **I.3.a** B $u_5 = 2u_5$ et $Au_5 = u_5$ donc $\text{vect}(u_5) \subset E_1(A) \cap E_2(B)$. $E_1(A)$ et $E_2(B)$ sont de dimension 2 donc cette intersection est de dimension 1 ou 2 (on a déjà un vecteur non nul dans l'intersection). Si elle est de dimension 2, alors $E_1(A) = E_2(B)$ ce qui est absurde car u_1 est dans $E_1(A)$ mais pas dans $E_2(B)$. Par conséquent l'intersection est de dimension 1 et $E_1(A) \cap E_2(B) = \text{vect}(u_5)$.
 - **I.3.b** Comme u_3 n'est pas vecteur propre de B et qu'il engendre $E_{-2}(A)$, il n'y a pas de vecteur propre commun à A et B dans $E_{-2}(A)$. De plus, 2 est la seule valeur propre de B donc les vecteurs propres communs à A et B sont dans $E_1(A) \cap E_2(B)$.

D'après la question précédente, les vecteurs propres communs à A et B sont les vecteurs de la forme λu_5 , $\lambda \in \mathbb{R}^*$.

- I.4 I.4.a $AB = \begin{pmatrix} -1 & 1 & -1 \\ -4 & 6 & 0 \\ -3 & 1 & 1 \end{pmatrix}$ et $BA = \begin{pmatrix} 4 & -2 & 0 \\ -2 & 0 & -2 \\ 2 & -2 & 2 \end{pmatrix}$ donc [A, B] = C.
 - $\textbf{I.4.b} \ \ \text{On calcule le polynôme caractéristique de C. Pour } \lambda \in \mathbb{R}, \\ \chi_C(\lambda) = \begin{vmatrix} \lambda + 5 & -3 & 1 \\ 2 & \lambda 6 & -2 \\ 5 & -3 & \lambda + 1 \end{vmatrix}. \ \ \text{On remplace}$ $L_1 \ \text{par } L_1 L3:$

1

21 Put 21 20

$$\chi_C(\lambda) = \begin{vmatrix} \lambda & 0 & -\lambda \\ 2 & \lambda - 6 & -2 \\ 5 & -3 & \lambda + 1 \end{vmatrix}.$$
 On utilise la linéarité par rapport à la première ligne puis on remplace C_1 par $C_1 + C_3 : \chi_C(\lambda) = \lambda \begin{vmatrix} 0 & 0 & -1 \\ 0 & \lambda - 6 & -2 \\ \lambda + 6 & -3 & \lambda + 1 \end{vmatrix}$. Enfin, on développe par rapport à la première ligne :

par
$$C_1 + C_3 : \chi_C(\lambda) = \lambda$$
 $\begin{vmatrix} 0 & 0 & -1 \\ 0 & \lambda - 6 & -2 \\ \lambda + 6 & -3 & \lambda + 1 \end{vmatrix}$. Enfin, on développe par rapport à la première ligne

$$\chi_{\rm C}(\lambda) = \lambda(\lambda - 6)(6 + \lambda).$$

 $\chi_{\rm C}$ est scindé à racines simples donc C est diagonalisable. De plus les valeurs propres de C sont -6, 0 et 6 donc C est semblable à D.

Le rangs de C et de D sont alors égaux et rg(C) = 2.

Partie II - Condition nécessaire et conditions suffisantes

- II.1 II.1.a Soient λ et μ tels que $Ae = \lambda e$ et $Be = \mu e$. Alors $ABe = \mu Ae = \lambda \mu e$ et de même pour BAe donc $e \in \text{Ker}([A, B]).$
 - II.1.b e est non nul (car vecteur propre) donc [A, B] n'est pas injectif et comme il s'agit d'une matrice carrée (endomorphisme en dimension finie), cela prouve que [A, B] n'est pas inversible et rg([A, B]) < n.
- **II.2** On suppose [A, B] = 0. Comme $\mathbb{K} = \mathbb{C}$, A a au moins une valeur propre : soit $\lambda \in Sp(A)$. [A, B] = 0 donc $Ker([A, B]) = \mathcal{M}_{n,1}(K)$ et $E_{\lambda}(A) \subset Ker([A, B])$: A et B vérifient la propriété \mathcal{H} .
- **II.3** II.3.a Soit $X \in E_{\lambda}(A)$. Par hypothèse (AB - BA)X = 0 soit ABX = BAX. Or $AX = \lambda X$ donc $A(BX) = \lambda BX$ ce qui signifie que $BX \in E_{\lambda}(A)$: $\psi : X \mapsto BX$ est une application de $E_{\lambda}(A)$ dans lui même. De plus, par propriété du produit matriciel, ψ est linéaire donc ψ est un endomorphisme de $E_{\lambda}(A)$.
 - **II.3.b** λ est valeur propre de A donc $E_{\lambda}(A)$ est de dimension non nulle et comme $K = \mathbb{C}, \psi$ a au moins une valeur propre : il existe $\mu \in \mathbb{C}$ et $X \in E_{\lambda}(A)$ non nul tels que $\psi(X) = \mu X$. On a donc $BX = \mu X$, $AX = \lambda X$ et X non nul : X est un vecteur propre commun à A et B.
- **II.4** En dimension 1, tous les vecteurs non nuls sont des vecteurs propres donc \mathcal{P}_1 est vérifiée.
- **II.5 II.5.a** A et B ne vérifient pas \mathcal{H} donc $E_{\lambda}(A)$ n'est pas inclus dans Ker(C): il existe $u \in E_{\lambda}(A)$ tel que $u \notin \text{Ker}(\mathbb{C})$: u est donc un élément de $\mathcal{M}_{n,1}(\mathbb{C})$ qui vérifie $Au = \lambda u$ et $\mathbb{C}u \neq 0$.
 - **II.5.b** Par hypothèse Im C est de dimension 1 et v = Cu est un vecteur non nul de cette image donc Im C = vect(v).
 - **II.5.c** v = Cu donc $v = ABu BAu = ABu \lambda Bu$ soit $v = (A \lambda I)(Bu) : v \in Im_{\lambda}(A)$. La question précédente permet alors de dire que $\operatorname{Im} C \subset \operatorname{Im}_{\lambda}(A)$.
 - **II.5.d** Im C est de dimension 1 donc $1 \le \dim(\operatorname{Im}_{\lambda}(A))$.

 λ est valeur propre de A donc $E_{\lambda}(A)$ a une dimension non nulle et, d'après le théorème du rang, $\dim(\operatorname{Im}_{\lambda}(A)) \leq n - 1.$

Finalement

$$1 \le \dim(\operatorname{Im}_{\lambda}(A)) \le n - 1$$

II.5.e A et A – λI_n commutent donc [A, A – λI_n] = 0.

Par définition $[B, A - \lambda I_n] = B(A - \lambda I_n) - (A - \lambda I_n)B = BA - AB = -[A, B]$ d'où $[B, A - \lambda I_n] = -C$. ϕ et ψ sont des applications linéaires par propriétés du produit matriciel.

Soit $X \in Im_{\lambda}(A) : X = (A - \lambda I_n)Y$ où $Y \in \mathcal{M}_{n,1}(\mathbb{C})$.

Comme $[A, A - \lambda I_n] = 0$, $AX = (A - \lambda I_n)(AY)$ donc $AX \in Im_{\lambda}(A)$. Par conséquent φ est un endomorphisme de $Im_{\lambda}(A)$.

De même BX = $(A - \lambda I_n)(BY) - CY$. $CY \in Im C$ et $Im C \subset Im_{\lambda}(A)$ donc $CY \in Im_{\lambda}(A)$; on a aussi $(A - \lambda I_n)(BY) \in Im_{\lambda}(A)$ donc $BX \in Im_{\lambda}(A)$. On en conclut que ψ est un endomorphisme de $Im_{\lambda}(A)$.

II.5.f $\operatorname{Im}([\varphi, \psi]) \subset \operatorname{Im}(C)$ donc $\operatorname{rg}([\varphi, \psi]) \leq 1$. On peut donc appliquer l'hypothèse de récurrence à φ et ψ , endomorphismes de $\operatorname{Im}_{\lambda}(A)$ qui est de dimension non nulle et strictement inférieure à $n: \varphi$ et ψ ont un vecteur propre commun. A fortiori A et B ont un vecteur propre commun.

II.6 \mathcal{P}_1 est vraie.

Soit $n \in \mathbb{N}$, $n \ge 2$. On suppose que \mathcal{P}_k est vérifiée pour tout entier $k \in [1, n-1]$.

Soit E de dimension *n*.

Soit φ et ψ deux d'endomorphismes de E tels que $\operatorname{rg}([\varphi, \psi]) \leq 1$.

On considère A et B les matrices associées respectivement à φ et ψ dans une base de E, C = AB – BA.

Si rg(C) = 1 et si A et B ne vérifient pas \mathcal{H} , alors, d'après la question **II.5**, A et B ont un vecteur propre commun : φ et ψ ont un vecteur propre commun (K = \mathbb{C}) donc A a au moins une valeur propre.

Si rg(C) = 1 et A, B vérifient \mathcal{H} , alors d'après **II.3**, φ et ψ ont un vecteur propre commun.

Si rg(C) = 0, alors [A, B] = 0 et, d'après les questions **II.2** et **II.3**, φ et ψ ont un vecteur propre commun.

On en déduit que \mathcal{P}_n est vérifiée.

Par récurrence, on peut conclure que, pour tout $n \in \mathbb{N}^*$, \mathcal{P}_n est vraie.

Partie III - Etude d'un autre cas particulier

III.1 $g(P) = \sum_{k=0}^{2n} a_k X^{2n-k}$. On pose l = 2n - k pour obtenir $g(P) = \sum_{l=0}^{2n} a_{2n-l} X^l$.

III.2 Pour tout polynôme P, deg $P' \le \deg P$ et la dérivation des polynômes est linéaire donc f est un endomorphisme

La question précédente prouve que g est une application de E dans E.

Si $(P, Q) \in E^2$ et $\lambda \in \mathbb{C}$,

$$g(P + \lambda Q) = X^{2n}(P + \lambda Q) \left(\frac{1}{X}\right)$$
$$= X^{2n}P\left(\frac{1}{X}\right) + X^{2n}Q\left(\frac{1}{X}\right)$$
$$= g(P) + \lambda g(Q)$$

donc g est linéaire. g est donc un endomorphisme de E.

III.3 III.3.a Soit P un vecteur propre de g et λ la valeur propre associée. $g(P) = \lambda P$.

La question III.1 prouve que g est injective donc λ ne peut pas être nul. Par conséquent P et g(P) ont le même degré que l'on appelle d. (P n'est pas nul car vecteur propre).

On reprend les notations de la question III.1. $a_d \neq 0$ donc si k = 2n - d, $a_{2n-k} \neq 0$ et donc $\deg(g(P)) \geq 0$ 2n - d. Par conséquent $d \ge 2n - d$ et donc deg(P) $\ge n$.

III.3.b $g(X^n) = X^n$ et X^n n'est pas le polynôme nul donc X^n est un vecteur propre de g.

III.4.a $f^i(P) = P^{(i)}$. P' est nul si et seulement P est un polynôme constant c'est-à-dire un polynôme de degré **III.4**

On suppose que $\ker f^i = \mathbb{C}_{i-1}[X]$ pour un entier i entre 1 et 2n-1. $P \in \ker f^{i+1}$ si seulement si $P' \in \ker f^i$ donc si et seulement si $P' \in \mathbb{C}_{i-1}[X]$ donc $\ker f^{i+1} = \mathbb{C}_i[X]$. Par récurrence, pour tout i entre 1 et 2n, $\ker f^i = \mathbb{C}_{i-1}[X]$.

III.4.b Si P est non nul de degré i-1, alors $f^i(P) = 0P$ donc $0 \in Sp(f^i)$.

 $(f^i)^{2n+1} = (f^{2n^1})^i$ et si $P \in E$, sa dérivée d'ordre 2n+1 est nul donc X^{2n+1} est un polynôme annulateur de f^i . 0 est sa seule racine donc 0 est la seule valeur propre possible de f^i . Finalement $Sp(f^i) = \{0\}.$

III.5 Si $i \ge n+1$, $f^i(X^n) = 0X^n$ donc X^n est vecteur propre de f^i . Avec la question III.3.b, on peut en déduire que X^n est un vecteur propre commun à f et g.

On suppose réciproquement que i est tel que f et g ont un vecteur propre commun.

Soit P un vecteur propre commun. D'après la question III.3.a, $deg(P) \ge n$ et d'après la question III.4.b, $P \in \ker f^i$ donc d'après la question **III.4.a**, $\deg(P) \le i - 1$. Ainsi, $n \le i - 1$ soit $i \ge n + 1$.

Finalement f et g ont un vecteur propre commun si et seulement si $i \ge n + 1$.

III.6 $A_n = (a_{ij})_{1 \le i, j \le 2n+1}$ où pour i entre 2 et 2n, $a_{i,i-1} = i-1$ et tous les autres coefficients nuls :

$$\mathbf{A}_{n} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & 2 & \ddots & \vdots \\ & & & \ddots & 0 \\ \vdots & & & \ddots & 2n \\ 0 & \cdots & \cdots & 0 \end{pmatrix}$$

Pour k entre 0 et 2n, $g(X^k) = X^{2n-k}$ donc $B_n = (b_{ij})_{1 \le i,j \le 2n+1}$ où pour tout i entre 1 et 2n+1, $b_{i,2n+2-i} = 1$, tous les autres coefficients étant nuls.

III.7.a En prenant n = 1 dans la question précédente, on obtient bien $A_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ et $B_1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

Par produit matriciel, $(A_1)^2 = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et $(A_1)^3$ est la matrice nulle.

III.7.b On trouve $[A_1, B_1] = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 0 & -2 \\ 0 & -1 & 0 \end{pmatrix}$ qui est de rang 2.

$$[(A_1)^2, B_1] = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$
 qui est aussi de rang 2.

III.7.c Quand i = 2, $i \ge 1 + 1$ donc $(A_1)^2$ et B_1 ont un vecteur propre commun alors que la condition de la question **II.6** n'est pas vérifiée; celle-ci n'est donc pas nécessaire.

Quand i = 1, $rg([A_1, B_1]) < 3$ mais A_1 et B_1 n'ont pas de vecteur propre commun donc la condition de la question **II.1.b** n'est pas suffisante.

Partie IV - Forme normale pour un vecteur propre

IV.1 dim $E_{\lambda}(A) \ge 2$ donc on peut considérer deux vecteurs propres X et X' formant une famille libre associés à la valeur propre $\lambda : X = (x_1, \dots, x_n)$ et $X' = (x'_1, \dots, x'_n)$.

Si $x_1 = 0$ alors $X \in \mathcal{N}$.

SI $x_1 \neq 0$, on pose $X'' = x_1'X - x_1X'$. Alors $X'' \in \mathcal{N}$ (la première composante de X'' est nulle), X'' n'est pas nul (car (X, X') est libre) et est dans $E_{\lambda}(A)$ donc X'' est un vecteur propre de A.

Dans tous les cas, A admet un vecteur propre sous forme normale associé à la valeur propre λ .

- IV.2 IV.2.a Soit $A = (a_{ij})_{1 \le i,j \le n}$ tel que $a_{12} = 1$, $a_{21} = -1$, tous les autres coefficients nuls (ceci est possible car $n \ge 2$). A n'est pas la matrice nulle et est antisymétrique donc $\mathcal{A}_n(\mathbb{C}) \ne \{0\}$.
 - **IV.2.b** Soit $M \in \mathcal{A}_n(\mathbb{C})$, $M = (m_{ij})_{1 \le i,j \le n}$. Pour tous i et j, $m_{ij} = -m_{ji}$ donc en particulier les coefficients diagonaux m_{ii} sont nuls; comme il y en a un par colonne, on en déduit que les colonnes de M sont des éléments de \mathcal{N} .
 - **IV.2.c** Soit $M \in \mathcal{A}_n(\mathbb{C})$. La transposition est linéaire et $(AB)^T = B^TA^T$ donc

$$\begin{split} \phi(M)^\mathsf{T} &= (AM)^\mathsf{T} + (MA^\mathsf{T})^\mathsf{T} \\ &= M^\mathsf{T}A^\mathsf{T} + (A^\mathsf{T})^\mathsf{T}M^\mathsf{T} \\ &= -MA^\mathsf{T} + AM^\mathsf{T} \\ &= -\phi(M) \end{split}$$

donc $\varphi(M) \in \mathcal{A}_n(\mathbb{C})$. De même

$$\psi(M)^{\mathsf{T}} = (AMA^{\mathsf{T}})^{\mathsf{T}}$$
$$= AM^{\mathsf{T}}A^{\mathsf{T}}$$
$$= -\psi(M)$$

 φ et ψ sont donc des applications de $\mathcal{A}_n(\mathbb{C})$ dans lui-même. De plus, elles sont linéaires par propriétés du produit matriciel donc φ et ψ sont des endomorphismes de $\mathcal{A}_n(\mathbb{C})$.

IV.2.d Soit $M \in \mathcal{A}_n(\mathbb{C})$.

$$\begin{split} \phi \circ \psi(M) &= \phi(AMA^{\mathsf{T}}) \\ &= A(AMA^{\mathsf{T}}) + (AMA^{\mathsf{T}})A^{\mathsf{T}} \\ &= A^2MA^{\mathsf{T}} + AM(A^{\mathsf{T}})^2 \end{split}$$

et par ailleurs

$$\psi \circ \phi(M) = \psi(AM + MA^{T})$$
$$= A(AM + MA^{T})A^{T}$$
$$= A^{2}MA^{T} + AM(A^{T})^{2}$$

par conséquent, pour tout $M \in \mathcal{A}_n(\mathbb{C})$, $\varphi \circ \psi(M) = \psi \circ \varphi(M)$ donc $\varphi \circ \psi = \psi \circ \varphi$.

IV.3. IV.3.a • $X_1 \in \mathcal{M}_{n,1}(\mathbb{C})$ et $X_2^{\mathsf{T}} \in \mathcal{M}_{1,n}(\mathbb{C})$ donc $X_1X_2^{\mathsf{T}} \in \mathcal{M}_n(\mathbb{C})$. De même $X_2X_1^{\mathsf{T}} \in \mathcal{M}_n(\mathbb{C})$ donc $B \in \mathcal{M}_n(\mathbb{C})$. De plus

$$B^{\mathsf{T}} = (X_1 X_2^{\mathsf{T}})^{\mathsf{T}} - (X_2 X_1^{\mathsf{T}})^{\mathsf{T}} = X_2 X_1^{\mathsf{T}} - X_1 X_2^{\mathsf{T}}$$

donc $B \in \mathcal{A}_n(\mathbb{C})$.

• On suppose B = 0. Alors $X_1 X_2^T = X_2 X_1^T$. On multiplie à droite par $\overline{X_2}$ pour obtenir $X_1(X_2^T \overline{X_2}) = X_2(X_1^T \overline{X_2})$.

Or $X_2^{\top}\overline{X_2}$ et $X_1^{\top}\overline{X_2}$ sont des scalaires et (X_1, X_2) est libre (vecteurs propres associés à des valeurs propres distinctes) donc $X_2^{\top}\overline{X_2} = X_1^{\top}\overline{X_2} = 0$. En posant $X_2 = (\alpha_1, \dots, \alpha_n)$, cela nous donne $\sum_{i=1}^{n} |\alpha_i|^2 = 0$ et donc $X_2 = 0$ ce qui contredit le fait que X_2 soit un vecteur propre de A. Par conséquent $B \neq 0$.

• Pour i = 1 ou i = 2, $AX_i = \lambda_i X_i$ donc $X_i^T A^T = \lambda_i X_i^T$.

$$\begin{aligned} AB + BA^{\mathsf{T}} &= AX_{1}X_{2}^{\mathsf{T}} - AX_{2}X_{1}^{\mathsf{T}} + X_{1}X_{2}^{\mathsf{T}}A^{\mathsf{T}} - X_{2}X_{1}^{\mathsf{T}}A^{\mathsf{T}} \\ &= \lambda_{1}X_{1}X_{2}^{\mathsf{T}} - \lambda_{2}X_{2}X_{1}^{\mathsf{T}} + \lambda_{2}X_{1}X_{2}^{\mathsf{T}} - \lambda_{1}X_{2}X_{1}^{\mathsf{T}} \\ &= \lambda_{1}B + \lambda_{2}B \end{aligned}$$

d'où AB + BA^T = $(\lambda_1 + \lambda_2)$ B.

• De même

$$ABA^{T} = (AX_{1})(X_{2}^{T}A^{T}) - (AX_{2})(X_{1}^{T}A^{T})$$
$$= \lambda_{1}\lambda_{2}X_{1}X_{2}^{T} - \lambda_{2}\lambda_{1}X_{2}X_{1}^{T}$$

d'où ABA^T =
$$(\lambda_1 \lambda_2)$$
B.

- **IV.3.b** A et I_n commutent donc $(A \lambda_1 I_n)(A \lambda_2 I_n)B = A^2B (\lambda_1 + \lambda_2)AB + \lambda_1\lambda_2B$. On multiplie la relation $AB + BA^T = (\lambda_1 + \lambda_2)B$ par A à gauche : $A^2B + ABA^T = (\lambda_1 + \lambda_2)AB$ donc $(A \lambda_1 I_n)(A \lambda_2 I_n)B = -ABA^T + \lambda_1\lambda_2B$. Comme $ABA^T = (\lambda_1\lambda_2)B$, on conclut $(A \lambda_1 I_n)(A \lambda_2 I_n)B = 0$.
- **IV.3.c** B \neq 0 donc l'une au moins des colonnes de B est non nulle; soit C une colonne de B non nulle. (A $\lambda_2 I_n$)B = 0 donc (A $\lambda_2 I_n$)C = $0_{n,1}$ soit AC = λ_2 C. C n'est pas nulle donc C est un vecteur propre de λ

De plus $B \in \mathcal{A}_n(\mathbb{C})$ donc $C \in \mathcal{N}$. C, une des colonnes de B, est donc un vecteur propre de A sous forme normale.

- **IV.3.d** $(A \lambda_2 I_n)B \neq 0$ donc il existe X une colonne de $(A \lambda_2 I_n)B$ non nulle. Il existe alors U une des colonnes de B telle que $X = (A \lambda_2 I_n)U$. D'après la question b., X est un vecteur propre de A (associé à la valeur propre λ_1 et λ_2 est une valeur propre de A, $U \in \mathcal{N}$. Finalement X est donc un vecteur propre de A sous forme normale.
- **IV.4. IV.4.a** φ et ψ sont deux endomorphismes de $\mathcal{A}_n(\mathbb{C})$ tels que $\operatorname{rg}([\varphi,\psi])=0\leq 1$ donc, d'après la partie II, φ et ψ ont un vecteur propre commun : il existe $B\in\mathcal{A}_n(\mathbb{C})$ non nulle vecteur propre de φ et de ψ ; il existe donc $\alpha\in\mathbb{C}$ tel que $\varphi(B)=\alpha B$ soit $AB+BA^T=\alpha B$ et il existe $\beta\in\mathbb{C}$ tel que $ABA^T=\beta B$.
 - **IV.4.b** On multipliela relation $AB + BA^{T} = (\lambda_1 + \lambda_2)B$ par A à gauche : $A^2B + ABA^{T} = \alpha AB$ mais $ABA^{T} = \beta B$ donc $A^2B + \beta B = \alpha AB$. En factorisant par B, on obtient $(A^2 \alpha A + \beta I_n)B = 0$.
 - **IV.4.c** Le polynôme $X^2 \alpha X + \beta$ à coefficients complexes a deux racines (éventuellement confondues) donc il existe $(\gamma, \delta) \in \mathbb{C}^2$ tel que $X^2 \alpha X + \beta = (X \gamma)(X \delta)$. Alors $A^2 \alpha A + \beta I_n = (A \alpha I_n)(A \beta I_n)$ et, la relation de la question précédente devient : $(A \gamma I_n)(A \delta I_n)B = 0$.
 - **IV.4.d** On suppose $(A \delta I_n)B = 0$ donc, si $A \delta I_n$ est inversible, alors B = 0 ce qui est exclu donc $A \delta I_n$ n'est pas inversible et $\delta \in Sp(A)$. Une colonne non nulle de B est alors un vecteur propre de A sous forme normale.

IV.4.e Si $\delta = \lambda$ et $(A - \delta I_n)B \neq 0$.

Soit X une colonne non nulle de $(A - \delta I_n)B$ et U la colonne de B telle que $X = (A - \delta I_n)U$. $U \in \mathcal{N}$, $\delta \in Sp(A)$ et $(A - \gamma I_n)X = 0_{n,1}$ (d'après la question **IV.4.c**) donc X est un vecteur propre de A sous forme normale.

- **IV.4.f** A n'a qu'une valeur propre λ et $\delta \neq \lambda$ donc δ n'est pas valeur propre de A et $(A \delta I_n)$ est inversible. $A \gamma I_n$ et $A \delta I_n$ commutent donc si on multiplie à gauche la relation de la question **IV.4.c** par $(A \delta I_n)^{-1}$, on obtient $(A \gamma I_n)B = 0$.
- **IV.4.g** On est alors revenu à la situation de la question **IV.4.d** et donc A possède un vecteur propre sous forme normale.

On considère une matrice $A \in \mathcal{M}_n(\mathbb{C})$ quelconque.

A a au moins une valeur propre.

Si A a une seule valeur propre, d'après les questions précédentes, A possède un vecteur propre sous forme normale.

Si A a au moins deux valeurs propres distinctes, alors d'après **IV.3**, A possède un vecteur propre sous forme normale.

On en conclut que, dans tous les cas, une matrice A de $\mathcal{M}_n(\mathbb{C})$ possède un vecteur propre sous forme normale.