Econ 703 TA Note 5

Chia-Min Wei *

October 23, 2025

1 Concave and Convex Functions on $\mathbb R$

Definition 1.1 (Concave): A function $f:(a,b)\to\mathbb{R}$ is said to be concave (convex) if for all $x\neq y\in(a,b)$ and $\lambda\in(0,1)$,

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y).$$
(\le)

If the inequality is strict for any $x \neq y$ and $\lambda \in (0,1)$, then we say that f is strictly convex (concave). Below are graphs of a concave and a convex function.

From now on, we state all theorems in terms of concave functions.

Theorem 1.1: Let $f:(a,b) \to \mathbb{R}$ be concave. Then for all a < s < u < t < b, we have

$$\frac{f(u) - f(s)}{u - s} \ge \frac{f(t) - f(s)}{t - s} \ge \frac{f(t) - f(u)}{t - u}$$

The inequalities are strict if f is strictly concave.

*†

Proof. There exists $\lambda \in (0,1)$ such that $u = \lambda s + (1-\lambda)t$. Then by concavity of f,

$$f(\lambda s + (1 - \lambda)t) \ge \lambda f(s) + (1 - \lambda)f(t).$$

Observe that

$$\frac{f(u) - f(s)}{u - s} = \frac{f(\lambda s + (1 - \lambda)t) - f(s)}{(\lambda - 1)s + (1 - \lambda)t}$$

$$\geq \frac{(\lambda - 1)f(s) + (1 - \lambda)f(t)}{(\lambda - 1)s + (1 - \lambda)t} = \frac{f(t) - f(s)}{t - s},$$

$$\frac{f(t) - f(u)}{t - u} = \frac{f(t) - f(\lambda s + (1 - \lambda)t)}{\lambda t - \lambda s}$$

$$\leq \frac{\lambda f(t) - \lambda f(s)}{\lambda t - \lambda s} = \frac{f(t) - f(s)}{t - s},$$

where we used the previous inequality to get the two inequalities.

The following graph illustrates the theorem.

2 Right and Left Derivatives and Subgradient

Definition 2.1 (Right and Left Derivative): A function $f:(a,b)\to\mathbb{R}$ is said to be **right (left) differentiable** at c if, for any sequence $\{x_n\}$ with $x_n>(<)c$ and $x_n\to c$, the limit

$$\lim_{n \to \infty} \frac{f(x_n) - f(c)}{x_n - c}$$

exists and is the same for all such sequence. This common value is called the **right (left) derivative** of f at c, denoted by f'(c+) (f'(c-)).

Remark: A function may be both right differentiable and left differentiable at c, yet still fail to be differentiable at c if the right and left derivatives are not equal. The following graph illustrates a function that has both right and left derivatives at x = 1, but is not differentiable at x = 1.

Theorem 2.1: Let $f:(a,b)\to\mathbb{R}$ be concave. Then f is both right and left differentiable at any point $c\in(a,b)$. Moreover, $f'(c-)\geq f'(c+)$.

Proof. Fix $c \in (a, b)$. We prove that f is right differentiable. Consider the set of slopes:

$$A = \left\{ \frac{f(x) - f(c)}{x - c} : x \in (a, b), \ x > c \right\}.$$

This set is bounded from above by $\frac{f(c)-f(k)}{c-k}$ where k=(c+a)/2 by Theorem 1.1. Hence, it has a supremum: $v=\sup A$. We show that v is the right derivative. Let $x_n>c$ and $x_n\to c$, and let $\epsilon>0$. By the definition of supremum, there exists z>x such that

$$\frac{f(z) - f(c)}{z - c} > v - \epsilon.$$

Since $x_n \to c$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have $x < x_n < z$, and thus

$$v \ge \frac{f(x_n) - f(c)}{x_n - c} \ge \frac{f(z) - f(c)}{z - c} > v - \epsilon$$

by Theorem 1.1. We have thus proved

$$\lim_{n \to \infty} \frac{f(x_n) - f(c)}{x_n - c} = v.$$

One can show similarly that f is left differentiable with left derivative inf B where

$$B = \left\{ \frac{f(x) - f(c)}{x - c} : x \in (a, b), \ x < c \right\}.$$

Since for all $a \in A, b \in B, a \ge b$ by Theorem 1.1, we have $f'(c+) = \sup A \le \inf B = f'(c-)$.

Corollary (Continuity of a Concave Function): Let $f:(a,b)\to\mathbb{R}$ be concave. Then f is continuous at all inner points, namely, f is continuous on (a,b).

Proof. Fix $c \in (a,b)$. Since f has a right derivative, for any sequence $x_n > c$ with $x_n \to c$,

$$\lim_{n \to \infty} \frac{f(x_n) - f(c)}{x_n - c} = f'(c+).$$

Because $x_n - c \to 0$, it follows that $f(x_n) - f(c) \to 0$. Similarly, if $x_n < c$ and $x_n \to c$, then $f(x_n) - f(c) \to 0$ as well. Thus, for any sequence $x_n \to c$, we obtain

$$\lim_{n \to \infty} f(x_n) = f(c).$$

Definition 2.2 (Subgradient): Let $f:(a,b)\to\mathbb{R}$ be concave. For any $c\in(a,b)$, a number $v\in[f'(c+),\ f'(c-)]$ is called a **subgradient** of f at c. The interval $[f'(c+),\ f'(c-)]$ is called the **subdifferential** of f at c.

Theorem 2.2: Let $f:(a,b)\to\mathbb{R}$ be concave, and let v be a subgradient of f at c. Then the tangent line

$$h(x) = f(c) + v(x - c)$$

lies above f(x), i.e., $h(x) \ge f(x)$ for all $x \in (a, b)$.

Proof. For any x > c,

$$\frac{f(x) - f(c)}{x - c} \le f'(c+) \le v \implies f(x) \le f(c) + v(x - c).$$

For any x < c,

$$\frac{f(x) - f(c)}{x - c} \ge f'(c - 1) \ge v \implies f(x) \le f(c) + v(x - c).$$

The following graph illustrates Theorem 2.2. If f is concave, then every tangent line at a point lies above the graph of the function.

3 Extreme Points

Theorem 3.1 (Necessary and Sufficient Condition for Maximal Points): Let $f:(a,b) \to \mathbb{R}$ be a concave function. Then $c \in (a,b)$ is a global maximal point if and only if 0 is a subgradient of f. Namely, $0 \in [f'(c+), f'(c-)]$.

Proof. (\Longrightarrow): Suppose f'(c-) < 0. Recall that

$$f'(c-) = \inf \left\{ \frac{f(x) - f(c)}{x - c} : x < c \right\}.$$

Therefore, there exists x < c such that $\frac{f(x) - f(c)}{x - c} < 0$. But then this implies f(x) - f(c) > 0, a contradiction. Hence, $f'(c-) \ge 0$. Similarly, one can prove that $f'(c+) \le 0$.

$$(\Leftarrow)$$
: By Theorem 2.2, $h(x) = f(c) + 0(x - c) = f(c) \ge f(x)$ for all $x \in (a, b)$.

Theorem 3.2: Let $f:(a,b)\to\mathbb{R}$ be a **strictly** concave function. Then f has at most one global maximal point.

Proof. Assume $x \neq y$ are both global maximal points, f(x) = f(y) = c. Consider z = 0.5x + 0.5y. Then f(z) > 0.5f(x) + 0.5f(y) > c, a contradiction.

Theorem 3.3: Let $f:(a,b)\to\mathbb{R}$ be a concave function. If f has a **global minimal point**, then f must be constant.

Proof. We show that if $c \in (a, b)$ is a global minimal point, then f(x) must be a constant function on (a, b). Take any $x, y \in (a, b)$ such that x < c < y. Since c lies strictly between a and b, we can write

$$c = \lambda x + (1 - \lambda)y$$

for some $\lambda \in (0,1)$. By concavity,

$$f(c) = f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y).$$

This implies $f(c) \ge f(x)$ or $f(c) \ge f(y)$. Without loss of generality, assume $f(c) \ge f(x)$.

Since c is a global minimal point, we also have $f(c) \leq f(x)$ and $f(c) \leq f(y)$. Hence, f(c) = f(x). Substituting into the concavity inequality gives

$$f(c) \ge \lambda f(c) + (1 - \lambda)f(y) \implies f(c) \ge f(y).$$

Therefore, we also have f(y) = c. We conclude that f(x) = f(y) = c.