

HT71XX-1 30mA Low Power LDO

Features

- Low power consumption
- · Low voltage drop
- Low temperature coefficient

- High input voltage (up to 24V)
- Output voltage accuracy: tolerance ±3%
- TO92, SOT89 and SOT23-5 package

Applications

- · Battery-powered equipment
- · Communication equipment

Audio/Video equipment

General Description

The HT71XX-1 series is a set of three-terminal low power high voltage regulators implemented in CMOS technology. They allow input voltages as high as 24V. They are available with several fixed output voltages ranging from 2.1V to 5.0V. CMOS technology ensures low voltage drop and low quiescent current.

Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain variable voltages and currents.

Selection Table

Part No.	Output Voltage	Package	Marking
HT7121-1	2.1V		
HT7123-1	2.3V		
HT7125-1	2.5V		
HT7127-1	2.7V	TO92	71XXA-1 (for TO92)
HT7130-1	3.0V	SOT89	71XX-1 (for SOT89)
HT7133-1	3.3V	SOT23-5	1XX1 (for SOT23-5)
HT7136-1	3.6V		
HT7144-1	4.4V		
HT7150-1	5.0V		

Note: "XX" stands for output voltages.

For lead free devices, TO92 package will add a "#" mark at the end of the date code, whereas SOT89 & SOT23-5 packages will add a "#" mark at the end of the marking.

Block Diagram

Pin Assignment

Absolute Maximum Ratings

Supply Voltage0.3V to 26V	Storage Temperature50°C to 125°C
Operating Temperature –40°C to 85°C	

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Thermal Information

Symbol	Parameter	Package	Max.	Unit
Thermal Resistance (Junction to Ambient) (Assume no ambient airfl no heat sink)		SOT23-5	500	°C/W
	,	SOT89	200	°C/W
	•	TO92	200	°C/W
	Power Dissipation	SOT23-5	0.20	W
P _D		SOT89	0.50	W
		TO92	0.50	W

Note: P_D is measured at Ta= 25°C

Rev. 1.70 2 February 11, 2009

Electrical Characteristics

HT7121-1, +2.1V Output Type

Ta=25°C

Symbol	Parameter	Test Conditions		Min.	Trees	Max.	Unit
Symbol		V _{IN}	Conditions	WIII.	Тур.	IVIAX.	Oilit
V _{OUT}	Output Voltage	4.1V	I _{OUT} =10mA	2.037	2.100	2.163	V
I _{OUT}	Output Current	4.1V	_	20	30	_	mA
ΔV_{OUT}	Load Regulation	4.1V	1mA≤l _{OUT} ≤20mA	_	60	100	mV
V _{DIF}	Voltage Drop (Note)	_	I _{OUT} =1mA, ΔV _{OUT} =2%	_	100	_	mV
I _{SS}	Current Consumption	4.1V	No load	_	2.5	5.0	μА
$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	Line Regulation	_	3.1V≤V _{IN} ≤24V I _{OUT} =1mA	_	0.2	_	%/V
V _{IN}	Input Voltage	_	_	_	_	24	V
<u>Δ</u> Vουτ ΔΤα	Temperature Coefficient	4.1V	I _{OUT} =10mA 0°C <ta<70°c< td=""><td>_</td><td>±0.37</td><td>_</td><td>mV/°C</td></ta<70°c<>	_	±0.37	_	mV/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

HT7123-1, +2.3V Output Type

Ta=25°C

Symbol	Parameter -		Test Conditions	Min.	Trees	May	Unit
Symbol		V _{IN}	Conditions	wiin.	Тур.	Max.	Oilit
V _{OUT}	Output Voltage	4.3V	I _{OUT} =10mA	2.231	2.300	2.369	V
I _{OUT}	Output Current	4.3V	_	20	30	_	mA
ΔV_{OUT}	Load Regulation	4.3V	1mA≤l _{OUT} ≤20mA	_	60	100	mV
V _{DIF}	Voltage Drop (Note)	_	I _{OUT} =1mA, ΔV _{OUT} =2%	_	100	_	mV
I _{SS}	Current Consumption	4.3V	No load	_	2.5	5.0	μА
$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	Line Regulation	_	3.3V≤V _{IN} ≤24V I _{OUT} =1mA	_	0.2	_	%/V
V _{IN}	Input Voltage	_	_	_	_	24	V
<u>Δ</u> V _{OUT} ΔT _a	Temperature Coefficient	4.3V	I _{OUT} =10mA 0°C <ta<70°c< td=""><td>_</td><td>±0.39</td><td>_</td><td>mV/°C</td></ta<70°c<>	_	±0.39	_	mV/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

Rev. 1.70 3 February 11, 2009

HT7125-1, +2.5V Output Type

Ta=25°C

Sumb al	Parameter	Test Conditions		Min.	Trees	Max	Unit
Symbol		V _{IN}	Conditions	WIII.	Тур.	Max.	Oilit
V _{OUT}	Output Voltage	4.5V	I _{OUT} =10mA	2.425	2.500	2.575	V
I _{OUT}	Output Current	4.5V	_	20	30	_	mA
ΔV_{OUT}	Load Regulation	4.5V	1mA≤I _{OUT} ≤20mA	_	60	100	mV
V _{DIF}	Voltage Drop (Note)	_	I _{OUT} =1mA, ΔV _{OUT} =2%	_	100	_	mV
I _{SS}	Current Consumption	4.5V	No load	_	2.5	5.0	μА
$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	Line Regulation	_	3.5V≤V _{IN} ≤24V I _{OUT} =1mA	_	0.2	_	%/V
V _{IN}	Input Voltage	_	_	_	_	24	V
<u>Δ</u> Vουτ ΔΤα	Temperature Coefficient	4.5V	I _{OUT} =10mA 0°C <ta<70°c< td=""><td>_</td><td>±0.41</td><td>_</td><td>mV/°C</td></ta<70°c<>	_	±0.41	_	mV/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

HT7127-1, +2.7V Output Type

Ta=25°C

Symbol	Parameter		Test Conditions	Min.	Turn	Max.	Unit
Symbol		V _{IN}	Conditions	IVIIII.	Тур.	IVIAX.	Oiiit
V _{OUT}	Output Voltage	4.7V	I _{OUT} =10mA	2.619	2.700	2.781	V
I _{OUT}	Output Current	4.7V	_	20	30	_	mA
ΔV_{OUT}	Load Regulation	4.7V	1mA≤l _{OUT} ≤20mA	_	60	100	mV
V _{DIF}	Voltage Drop (Note)	_	I _{OUT} =1mA, ΔV _{OUT} =2%	_	100	_	mV
I _{SS}	Current Consumption	4.7V	No load	_	2.5	5.0	μΑ
$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	Line Regulation	_	3.7V≤V _{IN} ≤24V I _{OUT} =1mA	_	0.2	_	%/V
V _{IN}	Input Voltage	_	_	_	_	24	V
$\Delta V_{OUT} \over \Delta T_{a}$	Temperature Coefficient	4.7V	I _{OUT} =10mA 0°C <ta<70°c< td=""><td>_</td><td>±0.43</td><td>_</td><td>mV/°C</td></ta<70°c<>	_	±0.43	_	mV/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

Rev. 1.70 4 February 11, 2009

HT7130-1, +3.0V Output Type

Ta=25°C

Symbol	Parameter	Test Conditions		Min.	Turn	Max.	Unit
Symbol	Parameter	V _{IN} Conditions	wiin.	Тур.	IVIAX.		
V _{OUT}	Output Voltage	5V	I _{OUT} =10mA	2.91	3.00	3.09	V
I _{OUT}	Output Current	5V	_	20	30	_	mA
ΔV _{OUT}	Load Regulation	5V	1mA≤l _{OUT} ≤20mA	_	60	100	mV
V _{DIF}	Voltage Drop (Note)	_	I _{OUT} =1mA, ΔV _{OUT} =2%	_	100	_	mV
I _{SS}	Current Consumption	5V	No load	_	2.5	5.0	μΑ
$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	Line Regulation	_	4V≤V _{IN} ≤24V I _{OUT} =1mA	_	0.2	_	%/V
V _{IN}	Input Voltage	_	_	_	_	24	V
<u>Δ</u> Vουτ <u>Δ</u> Τa	Temperature Coefficient	5V	I _{OUT} =10mA 0°C <ta<70°c< td=""><td>_</td><td>±0.45</td><td>_</td><td>mV/°C</td></ta<70°c<>	_	±0.45	_	mV/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

HT7133-1, +3.3V Output Type

Ta=25°C

Symbol	Parameter		Test Conditions	Min.	Tun	Max.	Unit
Symbol	Parameter	V _{IN}	Conditions	IVIIII.	Тур.	Wax.	Jiii
V _{OUT}	Output Voltage	5.5V	I _{OUT} =10mA	3.201	3.300	3.399	V
I _{OUT}	Output Current	5.5V	_	20	30	_	mA
ΔV_{OUT}	Load Regulation	5.5V	1mA≤I _{OUT} ≤30mA	_	60	100	mV
V _{DIF}	Voltage Drop (Note)	_	I _{OUT} =1mA, ΔV _{OUT} =2%	_	100	_	mV
I _{SS}	Current Consumption	5.5V	No load	_	2.5	5.0	μА
$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	Line Regulation	_	4.5V≤V _{IN} ≤24V I _{OUT} =1mA	_	0.2	_	%/V
V _{IN}	Input Voltage	_	_	_	_	24	V
<u>Δ</u> Vουτ ΔΤα	Temperature Coefficient	5.5V	I _{OUT} =10mA 0°C <ta<70°c< td=""><td>_</td><td>±0.5</td><td>_</td><td>mV/°C</td></ta<70°c<>	_	±0.5	_	mV/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

Rev. 1.70 5 February 11, 2009

HT7136-1, +3.6V Output Type

Ta=25°C

Summer al	Parameter	Test Conditions		Min.	T	Man	Unit
Symbol	Parameter	V _{IN}	Conditions	WIII.	Тур.	Max.	Oilit
V _{OUT}	Output Voltage	5.6V	I _{OUT} =10mA	3.492	3.600	3.708	V
I _{OUT}	Output Current	5.6V	_	20	30	_	mA
ΔV _{OUT}	Load Regulation	5.6V	1mA≤l _{OUT} ≤30mA	_	60	100	mV
V _{DIF}	Voltage Drop (Note)	_	I _{OUT} =1mA, ΔV _{OUT} =2%	_	60	_	mV
I _{SS}	Current Consumption	5.6V	No load	_	2.5	5.0	μА
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	Line Regulation	_	4.6V≤V _{IN} ≤24V I _{OUT} =1mA	_	0.2	_	%/V
V _{IN}	Input Voltage	_	_	_	_	24	V
<u>Δ</u> Vουτ ΔΤα	Temperature Coefficient	5.6V	I _{OUT} =10mA 0°C <ta<70°c< td=""><td>_</td><td>±0.6</td><td>_</td><td>mV/°C</td></ta<70°c<>	_	±0.6	_	mV/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

HT7144-1, +4.4V Output Type

Ta=25°C

Symbol	Parameter -		Test Conditions	Min.	Turn	Max.	Unit
Symbol		V _{IN}	Conditions	IVIIII.	Тур.	Wax.	Onne
V _{OUT}	Output Voltage	6.4V	I _{OUT} =10mA	4.268	4.400	4.532	V
I _{OUT}	Output Current	6.4V	_	20	30	_	mA
ΔV _{OUT}	Load Regulation	6.4V	1mA≤l _{OUT} ≤30mA	_	60	100	mV
V _{DIF}	Voltage Drop (Note)	_	I _{OUT} =1mA, ΔV _{OUT} =2%	_	100	_	mV
I _{SS}	Current Consumption	6.4V	No load	_	2.5	5.0	μΑ
$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	Line Regulation	_	5.4V≤V _{IN} ≤24V I _{OUT} =1mA	_	0.2	_	%/V
V _{IN}	Input Voltage	_	_	_	_	24	V
<u>Δ</u> Vουτ ΔΤα	Temperature Coefficient	6.4V	I _{OUT} =10mA 0°C <ta<70°c< td=""><td>_</td><td>±0.7</td><td>_</td><td>mV/°C</td></ta<70°c<>	_	±0.7	_	mV/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

Rev. 1.70 6 February 11, 2009

HT7150-1, +5.0V Output Type

Ta=25°C

Sumb al	Parameter	Test Conditions		Min.	Trees	Max	Unit
Symbol		V _{IN}	Conditions	wiin.	Тур.	Max.	Oilit
V _{OUT}	Output Voltage	7V	I _{OUT} =10mA	4.85	5.00	5.15	V
I _{OUT}	Output Current	7V	_	20	30	_	mA
ΔV_{OUT}	Load Regulation	7V	1mA≤I _{OUT} ≤30mA	_	60	100	mV
V _{DIF}	Voltage Drop (Note)	_	I _{OUT} =1mA, ΔV _{OUT} =2%	_	100	_	mV
I _{SS}	Current Consumption	7V	No load	_	2.5	5.0	μА
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	Line Regulation	_	6V≤V _{IN} ≤24V I _{OUT} =1mA	_	0.2	_	%/V
V _{IN}	Input Voltage	_	_	_	_	24	V
$\frac{\Delta V_{OUT}}{\Delta T_{a}}$	Temperature Coefficient	7V	I _{OUT} =10mA 0°C <ta<70°c< td=""><td>_</td><td>±0.75</td><td>_</td><td>mV/°C</td></ta<70°c<>	_	±0.75	_	mV/°C

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

Application Circuits

Basic Circuits

High Output Current Positive Voltage Regulator

Short-Circuit Protection by Tr1

Circuit for Increasing Output Voltage

Circuit for Increasing Output Voltage

Rev. 1.70 8 February 11, 2009

Constant Current Regulator

Dual Supply

Rev. 1.70 9 February 11, 2009

Package Information

3-pin TO92 Outline Dimensions

Cymrh al	Dimensions in mil		
Symbol	Min.	Nom.	Max.
А	170	_	200
В	170	_	200
С	500	_	_
D	11	_	20
E	90	_	110
F	45	_	55
G	45		65
Н	130	_	160
I	8	_	18
α	4 °	_	6°

Rev. 1.70 10 February 11, 2009

3-pin SOT89 Outline Dimensions

Symphol .	Dimensions in mil		
Symbol	Min.	Nom.	Max.
A	173	_	181
В	59	_	72
С	90	_	102
D	35	_	47
E	155	_	167
F	14	_	19
G	17	_	22
Н	_	59	_
I	55	_	63
J	14	_	17

Rev. 1.70 11 February 11, 2009

5-pin SOT23-5 Outline Dimensions

Symphol	Dimensions in mm		
Symbol	Min.	Nom.	Max.
Α	1.00	_	1.30
A1	_	_	0.10
A2	0.70	_	0.90
b	0.35	_	0.50
С	0.10	_	0.25
D	2.70	_	3.10
E	1.40	_	1.80
е	_	1.90	_
Н	2.60	_	3.00
L	0.37	_	_
θ	1°	_	9°

Rev. 1.70 12 February 11, 2009

Product Tape and Reel Specifications

3-pin TO92 Reel Dimensions (Unit: mm)

Package Up, Flat Side Up

Package Up, Flat Side Down

Reel Dimensions

SOT89

Symbol	Description	Dimensions in mm
Α	Reel Outer Diameter	180.0±1.0
В	Reel Inner Diameter	62.0±1.5
С	Spindle Hole Diameter	12.75 ^{+0.15/-0.00}
D	Key Slit Width	1.90±0.15
T1	Space Between Flange	12.4 ^{+0.2/-0.00}
T2	Reel Thickness	17.0 ^{+0.0/-0.4}

SOT23-5

Symbol	Description	Dimensions in mm
Α	Reel Outer Diameter	178.0±1.0
В	Reel Inner Diameter	62.0±1.0
С	Spindle Hole Diameter	13.0±0.2
D	Key Slit Width	2.50±0.25
T1	Space Between Flange	8.4 ^{+1.5/-0.0}
T2	Reel Thickness	11.4 ^{+1.5/-0.0}

Rev. 1.70 14 February 11, 2009

Carrier Tape Dimensions

TO92

Symbol	Description	Dimensions in mm
I1	Taped Lead Length	(2.5)
Р	Component Pitch	12.7±1.0
P ₀	Perforation Pitch	12.7±0.3
P ₂	Component to Perforation (Length Direction)	6.35±0.40
F ₁	Lead Spread	2.5 ^{+0.4/-0.1}
F ₂	Lead Spread	2.5 ^{+0.4/-0.1}
Δh	Component Alignment	0.0±0.1
W	Carrier Tape Width	18.0 ^{+1.0/-0.5}
W ₀	Hold-down Tape Width	6.0±0.5
W ₁	Perforation Position	9.0±0.5
W ₂	Hold-down Tape Position	(0.5)
H ₀	Lead Clinch Height	16.0±0.5
H ₁	Component Height	Less than 24.7
D ₀	Perforation Diameter	4.0±0.2
t	Taped Lead Thickness	0.7±0.2
Н	Component Base Height	19.0±0.5

Note: Thickness less than 0.38 ± 0.05 mm~0.5mm

P0 Accumulated pitch tolerance: ± 1 mm/20pitches.

() Bracketed figures are for consultation only

Rev. 1.70 15 February 11, 2009

Carrier Tape Dimensions

SOT89

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	12.0 ^{+0.3/-0.1}
Р	Cavity Pitch	8.0±0.1
Е	Perforation Position	1.75±0.10
F	Cavity to Perforation (Width Direction)	5.50±0.05
D	Perforation Diameter	1.5 ^{+0.1/-0.0}
D1	Cavity Hole Diameter	1.5 ^{+0.1/-0.0}
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.0±0.1
A0	Cavity Length	4.8±0.1
В0	Cavity Width	4.5±0.1
K0	Cavity Depth	1.8±0.1
t	Carrier Tape Thickness	0.300±0.013
С	Cover Tape Width	9.3±0.1

SOT23-5

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	8.0±0.3
Р	Cavity Pitch	4.0±0.1
Е	Perforation Position	1.75±0.10
F	Cavity to Perforation (Width Direction)	3.50±0.05
D	Perforation Diameter	1.5 ^{+0.1/-0.0}
D1	Cavity Hole Diameter	1.5 ^{+0.1/-0.0}
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.00±0.05
A0	Cavity Length	3.15±0.10
В0	Cavity Width	3.2±0.1
K0	Cavity Depth	1.4±0.1
t	Carrier Tape Thickness	0.20±0.03
С	Cover Tape Width	5.3±0.1

Rev. 1.70 16 February 11, 2009

Copyright © 2009 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.