Year 12 Chemistry

Topic Test # 1 (Equilibrium) - 2012

Name: ANSWERS Mark = 39 / 39

Part 1: Multiple Choice Section

7 marks

_

1. C 2. C 3. B 4. B 5. C 6. D 7. A

Part 2: Short Answer Section

32 marks

_

8. The equilibrium between $NO_2(g)$ and $N_2O_4(g)$ at 25°C is described by the equation:

$$2 \text{ NO}_2(g) \rightleftharpoons \text{N}_2\text{O}_4(g)$$

$$\Delta H = -58 \text{ kJ}$$
 with K = 0.010 at 25°C

Answer true or false to these statements

Statements	True or False
$[N^2O^4] = 0.010 \times [NO^2]^2$ if system is at equilibrium at 25°C	True
At 25°C and at equilibrium, the value of [NO ₂] ² /[N ₂ O ₄] is constant	True
At 47°C the K would be greater than 0.010	False

✓ each (3 marks)

9. The conversion of SO_2 to SO_3 is an important step in the Contact Process in the manufacture of H_2SO_4 . The reaction for the conversion is:

2 SO₂(g) + O₂(g)
$$\rightleftharpoons$$
 2 SO₃(g) Δ H = −198 kJ

Complete columns 2 and 3 of this table when conditions listed in column 1 are applied to the system at equilibrium.

Merely write 'increase', 'decrease' or 'no effect' for your answers.

Imposed change	Rate of forward reaction at new equilibrium	Yield
Increased temperature	increase	decrease
Decreased pressure	decrease	decrease
Add more air	increase	increase

(6 marks)

10.	Methanol, CH ₃ OH is prepared commercially by reacting CO and H ₂ in the preser Cr_2O_3 and ZnO. The equilibrium reaction is $CO(g) + 2 H_2(g) \rightleftarrows CH_3OH(g)$				ence of		
	(a)	Write an expression for K					
		K =	[CH₃OH]				
			[CO].[H ₂] ²	✓			
	(b)	What	effect would the removal of the ZnO/	′Cr₂O₃ have or	the:		
		(i)	rate of the forward reaction	decrease	✓		
		(ii)	yield	none	✓		
	(c)	When the temperature is decreased, more CH₃OH is produced. Is the reaction endothermic or exothermic? exothemric ✓					
	(d)		pressure (high / low) would you by to get a high yield?	high	✓		
					(1 + 2 + 1 + 1	L = 5 marks)	
11	(a)	Explain fully why certain foods are placed in fridges.					
		At a lower temperature, reactants collide less frequently and a smaller proportion of molecules have sufficient E_K to overcome activation energy barrier.					
		So the rate of reactions which lead to food spoillage decreases. \checkmark					
						(3 marks)	
	(b)	Consider the reaction: $2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$					
		At 23°C, K = 2.3×10^{-4} and at 87°C. K = 8.9×10^{-5}					
		Use this data to explain whether the forward reaction is exothermic or endothermic.					
		As te	mperature has increased, the valu	e of K has als	o decreased	✓	
		This i	indicates a shift to the left (\downarrow [SO ₃];	↑[SO ₂]; ↑[O ₂])		✓	
		By LCP ↑T causes a shift in endothermic direction.					
		This means that reverse reaction is endothermic, ∴ forward reaction is exothermic			✓		
						(3 marks)	

12. When carbon dioxide dissolves in water the following equilibria are established:

$$CO_2(g) + H_2O(I) \rightleftharpoons CO_2(aq)$$

$$CO^2(aq) + H^2O(I) \rightleftharpoons H^{+}(aq) + HCO^{3}(aq)$$

$$HCO^{3}(aq) \rightleftharpoons H^{+}(aq) + CO^{3}(aq)$$

Describe the effect that the following changes would separately have on the apparent solubility of carbon dioxide (use 'increase', 'decrease' or 'no change'). Give an explanation for each of you answers.

Change	Effect	Explanation
Adding more solid sodium carbonate	decrease	↑[CO ₃ ²⁻] ∴ all equilibria shift left At new equilibrium less CO ₂ will appear to be dissolved
Adding a solution of calcium nitrate	increase	↓[CO ₃ ²⁻] Ca ²⁺ (aq) + CO ₃ ²⁻ (aq) → CaCO ₃ (s) ∴ all equilibria shift right At new equilibrium more CO ₂ will appear to be dissolved
Adding a dilute solution of sodium hydroxide	increase	↓[H ⁺] H ⁺ (aq) + OH ⁻ (aq) → H ₂ O(l) ∴ all equilibria shift right At new equilibrium more CO ₂ will appear to be dissolved
Increasing the pressure increase		↑[CO₂(g)] ∴ all equilibria shift right At new equilibrium more CO₂ will appear to be dissolved

✓ effect,
$$\checkmark$$
 ✓ explanation (4 x 3 = 12 marks)

End of Test