Database Management Systems

Course Code	19CS3502	Year	III	Semester	I
Course Category	Program Core	Branch	CSE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Engineering Mathematics -1, Data Structures
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Understand the basic concepts of database management systems	L2			
CO2	Apply SQL as well as Relational Algebra to find solutions to a broad range of queries	L3			
CO3	Apply various data models for database design	L3			
CO4	Apply normalization techniques to improve database design	L3			
CO5	Analyze a given database application scenario to use ER model for conceptual design of the database and make an effective report	L4			

Syllabus				
Unit No.	Contents	Mapped CO		
I	Introduction to Databases: Characteristics of the Database Approach,			
	Advantages of using the DBMS Approach, A Brief History of Database Applications. Overview of Database Languages and Architectures: Data			
	Models, Schemas and Instances, Three-Schema Architecture and Data	<u> </u>		
	Independence, Database Languages and Interfaces, Database System			
	environment, Centralized and Client-Server Architecture for DBMSs.			
п	Relational Model: The Relational Model Concepts, Relational Model			
	Constraints and Relational Database Schemas.			
	SQL: Data Definition, Constraints, and Basic Queries and Updates,	CO1,CO2,		
	SQL: Advanced Queries, Assertions, Triggers, and Views	CO3		
	Formal Relational Languages: Relational Algebra: Unary Relational			

	Operations: Select and Project, Relational Algebra Operations from Set				
	Theory, Binary Relational Operations: Join and Division, Examples of				
	Queries in Relational Algebra.				
	Conceptual Data Modeling: High-Level Conceptual Data Models for				
Ш	Database Design, A Sample Database Application, Entity Types, Entity				
	Sets, Attributes and Keys, Relationship Types, Relationship Sets, Roles,	CO1,CO3,			
	and Structural Constraints, Weak Entity Types, Refining the ER Design,				
	ER Diagrams, Naming Conventions and Design Issues, Relationship				
	Types of Degree Higher Than Two.Relational Database Design Using				
	ER-to-Relational Mapping.				
IV	Database Design Theory: Functional Dependencies, Normal forms				
	based on Primary Keys, Second and Third Normal Forms, Boyce-Codd	CO1,CO4			
	Normal Form, Multi valued Dependencies and Fourth Normal Form,	001,004			
	Join Dependencies and Fifth Normal Form.				
	Transaction Processing: Introduction, Transaction and System				
	Concepts, Desirable Properties of Transactions, Characterizing				
	Schedules Based on Recoverability & Serializability, Transaction				
	Support in SQL. Introduction to Concurrency Control: Two-Phase				
V	Locking Techniques: Types of Locks and System Lock Tables,	CO1			
	Guaranteeing Serializability by Two-Phase Locking.				
	Introduction to Recovery Protocols: Recovery Concepts, No-				
	UNDO/REDO Recovery Based on Deferred Update, Recovery				
	Techniques Based on Immediate Update, Shadow Paging.				

Learning Resources

Text Books

1. Database Systems Models, Languages, Design and Application Programming, RamezElmasri, ShamkantB. Navathe, Sixth edition, Pearson.

References

- 1. Data base System Concepts, Abraham Silberschatz, Henry F Korth, S. Sudarshan, Fifth Edition, McGraw Hill.
- 2. Data base Management Systems, Raghurama Krishnan, Johannes Gehrke, Third Edition, TMH.
- 3. Introduction to Database Systems, C.J.Date, Eigth Edition, Pearson
- e-Resources and other Digital Material:
- 1. https://nptel.ac.in/courses/106/105/106105175/
- 2. https://onlinecourses.nptel.ac.in/noc21_cs04/
- $3. \ \underline{https://nptel.ac.in/courses/106/106/106106093/}$