TDDD56 Programming parallel computers

Parallel Sorting Contest 2014

The winners are ...

Christoph Kessler, IDA Linköpings universitet

TDDD56 Programming parallel computers

Wrap-Up and Outlook

Christoph Kessler, IDA Linköpings universitet

Lectures (1)

- Lecture 1:
- Motivation, Multicore architectural concepts and trends.
- Lecture 2: Parallel programming with threads and tasks.
- Lesson 1: How to measure and visualize performance of parallel programs. CPU lab introduction.
- Lecture 3: Shared memory architecture concepts and performance issues*.
- Lecture 4: Non-blocking synchronization.
- Lecture 5-6: Theory: Design and analysis of parallel algorithms*.
- Lecture 7: Parallel sorting algorithms.
- Lesson 2: Selected theory exercises.

C. Kessler, IDA, Linköpings universitet.

Lectures (2)

- Lecture 8: Parallelization of sequential programs*
- Lecture 9: GPU architecture and trends
- Lecture 10: Introduction to CUDA programming
- Lecture 11: CUDA programming. GPU lab introduction
- Lecture 12: Sorting on GPU. Advanced CUDA issues. FFT on GPU
- Lecture 13: Introduction to OpenCL.
- Lesson 3: OpenCL. Shader programming. Exercises.
- Lecture 14: High-level Parallel Programming with Skeletons*
- Lecture 15: Advanced issues. Wrap-up

Kessler, IDA, Linköpings universitet

TDDD56 Programming parallel computers

Outlook

Christoph Kessler, IDA, Linköpings universitet

Master Thesis Topics
Available!

Christoph Kessler, IDA,
Linkopings universitet

Crown Scheduling Optimal and Heuristic Algorithms Faster, and no worse schedule quality (energy) than competing approaches for moldable task scheduling [Melot et al. ACM Trans. Arch. Code Opt., to appear 2015] Open problems ... Consider communication load on on-chip network Adapt for architectural properties e.g. voltage / frequency domains Generic Crown Scheduler (read platform description, optimize, generate C code) Automated microbenchmarking for moldable tasks Graphical visualizer for schedules

Master thesis projects available! (4)

- Application porting and algorithm engineering case studies for multicore
 - Medical image processing / Stencil computations
 - Statistics kernels
 - /// IP forwarding data plane on GPUs (algorithms, portability, scheduling)
- Automatic extraction and transformation of parallelism

Join our research: www.ida.liu.se/~chrke/exjobb

The End (?)

"Now, this is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning."

-- W. Churchill

