Негладкая оптимизация. Проксимальный метод Методы оптимизации

Александр Безносиков

Московский физико-технический институт

24 октября 2024

Негладкие задачи

Негладкие задачи

•00000

• **Вопрос**: функция f(x) = |x| выпукла?

•00000

Вопрос: функция f(x) = |x| выпукла? Безусловно. А дифференцируемая и гладкая?

•00000

- **Вопрос:** функция f(x) = |x| выпукла? Безусловно. А дифференцируемая и гладкая? Нет.
- Получается, что даже довольно простые выпуклые задачи могут быть негладким. До этого мы смотрели только на гладкие задачи.

•00000

- Вопрос: функция f(x) = |x| выпукла? Безусловно. А дифференцируемая и гладкая? Нет.
- Получается, что даже довольно простые выпуклые задачи могут быть негладким. До этого мы смотрели только на гладкие задачи.
- Будем рассматривать следующее предположение вместо гладкости (Липшицевости градиента):

Определение М-Липшецевой функции

Пусть дана функция $f: \mathbb{R}^d \to \mathbb{R}$. Будем говорить, что она является M-Липшицева, если для любых $x,y\in\mathbb{R}^d$ выполнено

$$|f(x) - f(y)| \le M||x - y||_2.$$

•00000

- Вопрос: функция f(x) = |x| выпукла? Безусловно. А дифференцируемая и гладкая? Нет.
- Получается, что даже довольно простые выпуклые задачи могут быть негладким. До этого мы смотрели только на гладкие задачи.
- Будем рассматривать следующее предположение вместо гладкости (Липшицевости градиента):

Определение М-Липшецевой функции

Пусть дана функция $f: \mathbb{R}^d \to \mathbb{R}$. Будем говорить, что она является M-Липшицева, если для любых $x,y\in\mathbb{R}^d$ выполнено

$$|f(x)-f(y)|\leq M\|x-y\|_2.$$

Понятие (и все результаты далее) можно перенести на некоторое ограниченное выпуклое множество \mathcal{X} . Связано этом в том числе с тем, что не бывает сильно выпуклых и Липшецевых на \mathbb{R}^d функций.

Вопрос: почему?

Негладкие задачи

•00000

- Вопрос: функция f(x) = |x| выпукла? Безусловно. А дифференцируемая и гладкая? Нет.
- Получается, что даже довольно простые выпуклые задачи могут быть негладким. До этого мы смотрели только на гладкие задачи.
- Будем рассматривать следующее предположение вместо гладкости (Липшицевости градиента):

Определение М-Липшецевой функции

Пусть дана функция $f: \mathbb{R}^d \to \mathbb{R}$. Будем говорить, что она является M-Липшицева, если для любых $x,y\in\mathbb{R}^d$ выполнено

$$|f(x)-f(y)|\leq M\|x-y\|_2.$$

Понятие (и все результаты далее) можно перенести на некоторое ограниченное выпуклое множество \mathcal{X} . Связано этом в том числе с тем, что не бывает сильно выпуклых и Липшецевых на \mathbb{R}^d функций.

Вопрос: почему? Линейный и квадратичный рост не сочетаются.

Субградиент и субдифференциал

Если функция не дифференцируема в точке, а значит градиента нет. Что может существовать вместо градиента?

Негладкие задачи

00000

Субградиент и субдифференциал

Если функция не дифференцируема в точке, а значит градиента нет. Что может существовать вместо градиента?

Субградиент и субдифференциал

Пусть дана выпуклая функция $f:\mathbb{R}^d \to \mathbb{R}$. Вектор g будем называть субградиентом этой функции f в точке $x \in \mathbb{R}^d$, если для любого $y \in \mathbb{R}^d$ выполняется:

$$f(y) \ge f(x) + \langle g, y - x \rangle.$$

Множество $\partial f(x)$ всех субградиентов f в x будем называть субдифференциалом.

4□ > 4□ > 4□ > 4□ > 4□ > 9<</p>

Негладкие задачи

000000

Условие оптимальности

Негладкие задачи

000000

Теорема (условие оптимальности)

 x^* – минимум выпуклой функции f тогда и только тогда, когда

$$0 \in \partial f(x^*)$$
.

<u> Условие оптим</u>альности

Теорема (условие оптимальности)

 x^* – минимум выпуклой функции f тогда и только тогда, когда

$$0 \in \partial f(x^*)$$
.

Доказательство:

Негладкие задачи

000000

 \Leftarrow Если $0 \in \partial f(x^*)$, то по выпуклости и определению субградиента: $f(x) \geq f(x^*) + \langle 0, x - x^* \rangle = f(x^*)$. Доказано по определению глобального минимума.

Условие оптимальности

Теорема (условие оптимальности)

 x^* – минимум выпуклой функции f тогда и только тогда, когда

$$0 \in \partial f(x^*).$$

Доказательство:

Негладкие задачи

000000

- \Leftarrow Если $0 \in \partial f(x^*)$, то по выпуклости и определению субградиента: $f(x) \geq f(x^*) + \langle 0, x x^* \rangle = f(x^*)$. Доказано по определению глобального минимума.
- \Rightarrow Если $f(x) \geq f(x^*)$ для любых $x \in \mathbb{R}^d$, то для вектора 0 выполнено $f(x) \geq f(x^*) + \langle 0, x x^* \rangle$ для любого $x \in \mathbb{R}^d$. Доказано по определению субградиента.

Свойство М-Липшицевой функции

Лемма (свойство М-Липшицевой функции)

Пусть дана выпуклая функция $f: \mathbb{R}^d \to \mathbb{R}$. Тогда функция f является M-Липшицевой тогда и только тогда, когда для любого $x \in \mathbb{R}^d$ и $g \in \partial f(x)$ имеем $||g||_2 < M$.

Негладкие задачи

000000

 \Rightarrow Пусть дополнительно к выпуклости функция f еще и M-Липшицева, тогда

Негладкие задачи

000000

- \Rightarrow Пусть дополнительно к выпуклости функция f еще и M-Липшицева, тогда
 - Рассмотрим $g \in \partial f(x)$, тогда по выпуклости и определению субградиента для любого $y \in \mathbb{R}^d$:

$$f(y) - f(x) \ge \langle g, y - x \rangle.$$

Негладкие задачи

000000

- \Rightarrow Пусть дополнительно к выпуклости функция f еще и M-Липшицева, тогда
 - Рассмотрим $g \in \partial f(x)$, тогда по выпуклости и определению субградиента для любого $y \in \mathbb{R}^d$:

$$f(y) - f(x) \ge \langle g, y - x \rangle.$$

Из Липшицевости f:

$$M||y-x||_2 \ge f(y) - f(x) \ge \langle g, y-x \rangle.$$

Негладкие задачи

000000

 \Rightarrow Пусть дополнительно к выпуклости функция f еще и M-Липшицева, тогда

• Рассмотрим $g \in \partial f(x)$, тогда по выпуклости и определению субградиента для любого $y \in \mathbb{R}^d$:

$$f(y) - f(x) \ge \langle g, y - x \rangle.$$

Из Липшицевости f:

$$M||y-x||_2 \ge f(y)-f(x) \ge \langle g,y-x\rangle.$$

• Возьмем y = g + x, тогда

$$M||g||_2 = M||y - x||_2 \ge \langle g, y - x \rangle = ||g||_2^2.$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - か 9 0 0 0

Негладкие задачи

000000

 \Rightarrow Пусть дополнительно к выпуклости функция f еще и M-Липшицева, тогда

• Рассмотрим $g \in \partial f(x)$, тогда по выпуклости и определению субградиента для любого $v \in \mathbb{R}^d$:

$$f(y) - f(x) \ge \langle g, y - x \rangle$$
.

Из Липшицевости f:

$$M||y-x||_2 \ge f(y)-f(x) \ge \langle g,y-x\rangle.$$

Возьмем y = g + x, тогда

$$M||g||_2 = M||y - x||_2 \ge \langle g, y - x \rangle = ||g||_2^2.$$

Что и требовалось.

00000

 \leftarrow Пусть дополнительно к выпуклости у функции f все субградиенты равномерно ограничены: $\|g\|_2 \leq M$ для любого $x \in \mathbb{R}^d$ и $g \in \partial f(x)$. Тогда

Негладкие задачи

00000

 \Leftarrow Пусть дополнительно к выпуклости у функции f все субградиенты равномерно ограничены: $\|g\|_2 \leq M$ для любого $x \in R^d$ и $g \in \partial f(x)$. Тогда

• Рассмотрим $g \in \partial f(x)$, тогда по выпуклости и определению субградиента для любого $y \in \mathbb{R}^d$:

$$f(y) - f(x) \le \langle g, x - y \rangle.$$

Негладкие задачи

00000

 \Leftarrow Пусть дополнительно к выпуклости у функции f все субградиенты равномерно ограничены: $\|g\|_2 \leq M$ для любого $x \in R^d$ и $g \in \partial f(x)$. Тогда

• Рассмотрим $g \in \partial f(x)$, тогда по выпуклости и определению субградиента для любого $y \in \mathbb{R}^d$:

$$f(y) - f(x) \le \langle g, x - y \rangle.$$

• КБШ:

$$f(y) - f(x) \le ||g||_2 \cdot ||x - y||_2.$$

Негладкие задачи

00000

 \Leftarrow Пусть дополнительно к выпуклости у функции f все субградиенты равномерно ограничены: $\|g\|_2 \leq M$ для любого $x \in R^d$ и $g \in \partial f(x)$. Тогда

• Рассмотрим $g \in \partial f(x)$, тогда по выпуклости и определению субградиента для любого $y \in \mathbb{R}^d$:

$$f(y) - f(x) \le \langle g, x - y \rangle.$$

КБШ:

$$f(y) - f(x) \le ||g||_2 \cdot ||x - y||_2.$$

• Пользуемся предположением и получаем:

$$f(y) - f(x) \le M||x - y||_2.$$

Негладкие задачи

00000

 \Leftarrow Пусть дополнительно к выпуклости у функции f все субградиенты равномерно ограничены: $\|g\|_2 \leq M$ для любого $x \in R^d$ и $g \in \partial f(x)$. Тогда

• Рассмотрим $g \in \partial f(x)$, тогда по выпуклости и определению субградиента для любого $y \in \mathbb{R}^d$:

$$f(y) - f(x) \le \langle g, x - y \rangle.$$

КБШ:

$$f(y) - f(x) \le ||g||_2 \cdot ||x - y||_2.$$

• Пользуемся предположением и получаем:

$$f(y) - f(x) \le M||x - y||_2.$$

Что и требовалось.

Субградиентный метод

Рассматриваем задачу:

$$\min_{x\in\mathbb{R}^d}f(x),$$

где f выпуклая и M-Липшицева.

Субградиентный метод

Рассматриваем задачу:

$$\min_{x\in\mathbb{R}^d}f(x),$$

где f выпуклая и M-Липшицева.

 Простая идея – вместо градиента использовать какой-то субградиент в текущей точке:

Алгоритм 2 Субградиентный метод

Вход: размеры шага $\gamma > 0$, стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- Вычислить $g^k \in \partial f(x^k)$
- $x^{k+1} = x^k \gamma \sigma^k$
- 4: end for

Негладкие задачи

Выход: $\frac{1}{K} \sum_{k=0}^{K-1} x^k$

• Ничего сверхъестественного:

$$||x^{k+1} - x^*||_2^2 = ||x^k - \gamma g^k - x^*||_2^2$$

= $||x^k - x^*||_2^2 - 2\gamma \langle g^k, x^k - x^* \rangle + \gamma^2 ||g^k||_2^2$

Негладкие задачи

Ничего сверхъестественного:

$$||x^{k+1} - x^*||_2^2 = ||x^k - \gamma g^k - x^*||_2^2$$

= $||x^k - x^*||_2^2 - 2\gamma \langle g^k, x^k - x^* \rangle + \gamma^2 ||g^k||_2^2$

Из M-Липшицевости f следует, что субградиентый ограничены:

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2 - 2\gamma \langle g^k, x^k - x^* \rangle + \gamma^2 M^2$$

• Ничего сверхъестественного:

$$||x^{k+1} - x^*||_2^2 = ||x^k - \gamma g^k - x^*||_2^2$$
$$= ||x^k - x^*||_2^2 - 2\gamma \langle g^k, x^k - x^* \rangle + \gamma^2 ||g^k||_2^2$$

Из М-Липшицевости f следует, что субградиентый ограничены:

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2 - 2\gamma \langle g^k, x^k - x^* \rangle + \gamma^2 M^2$$

Из выпуклости и определения субградиента:

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2 - 2\gamma(f(x^k) - f(x^*)) + \gamma^2 M^2$$

• С предыдущего слайда:

Негладкие задачи

$$2\gamma(f(x^k) - f(x^*)) \le ||x^k - x^*||_2^2 - ||x^{k+1} - x^*||_2^2 + \gamma^2 M^2$$

С предыдущего слайда:

Негладкие задачи

$$2\gamma(f(x^k) - f(x^*)) \le ||x^k - x^*||_2^2 - ||x^{k+1} - x^*||_2^2 + \gamma^2 M^2$$

Суммируем по всем k и усредняем:

$$\frac{2\gamma}{K} \sum_{k=0}^{K-1} (f(x^k) - f(x^*)) \le \frac{\|x^0 - x^*\|_2^2}{K} + \gamma^2 M^2$$

• С предыдущего слайда:

$$2\gamma(f(x^k) - f(x^*)) \le ||x^k - x^*||_2^2 - ||x^{k+1} - x^*||_2^2 + \gamma^2 M^2$$

• Суммируем по всем k и усредняем:

$$\frac{2\gamma}{K} \sum_{k=0}^{K-1} (f(x^k) - f(x^*)) \le \frac{\|x^0 - x^*\|_2^2}{K} + \gamma^2 M^2$$

Откуда

$$\frac{1}{K} \sum_{k=0}^{K-1} (f(x^k) - f(x^*)) \le \frac{\|x^0 - x^*\|_2^2}{2\gamma K} + \frac{\gamma M^2}{2}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなぐ

• С предыдущего слайда:

$$\frac{1}{K} \sum_{k=0}^{K-1} (f(x^k) - f(x^*)) \le \frac{\|x^0 - x^*\|_2^2}{2\gamma K} + \frac{\gamma M^2}{2}$$

• Гладкости нет, поэтому не получится доказать, что $f(x^k) \leq f(x^{k-1})$. Поэтому просто неравенство Йенсена для выпуклой функции:

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k}\right)-f(x^{*}) \leq \frac{\|x^{0}-x^{*}\|_{2}^{2}}{2\gamma K}+\frac{\gamma M^{2}}{2}$$

• С предыдущего слайда:

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k}\right)-f(x^{*}) \leq \frac{\|x^{0}-x^{*}\|_{2}^{2}}{2\gamma K}+\frac{\gamma M^{2}}{2}$$

• Вопрос: как подобрать шаг?

• С предыдущего слайда:

Негладкие задачи

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k}\right)-f(x^{*}) \leq \frac{\|x^{0}-x^{*}\|_{2}^{2}}{2\gamma K}+\frac{\gamma M^{2}}{2}$$

Адаптивные методы

Вопрос: как подобрать шаг? минимизировать правую часть по γ : $\gamma = \frac{\|x^0 - x^*\|_2}{M\sqrt{K}}$. Откуда

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k}\right)-f(x^{*}) \leq \frac{M\|x^{0}-x^{*}\|_{2}}{\sqrt{K}}$$

Можно более практично: $\gamma_k \sim \frac{1}{\sqrt{L}}$.

Сходимость

Теорема сходимость субградиентного спуска для M-Липшицевых и выпуклых функций

Пусть задача безусловной оптимизации с M-Липшицевой, выпуклой целевой функцией f решается с помощью субградиентного спуска. Тогда справедлива следующая оценка сходимости

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k}\right)-f(x^{*})\leq \frac{M\|x^{0}-x^{*}\|_{2}}{\sqrt{K}}$$

Более того, чтобы добиться точности ε по функции, необходимо

$$K = O\left(rac{M^2\|x^0 - x^*\|_2^2}{arepsilon^2}
ight)$$
 итераций.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ り<0</p>

Субградиентный метод: итог

Обобщение градиентного спуска на негладкие задачи.

- Обобщение градиентного спуска на негладкие задачи.
- Оценки сходимости в выпуклом случае: $\sim \frac{1}{\sqrt{K}}$, в сильно выпуклом случае: $\sim \frac{1}{K}$. Вопрос: какие были у градиентного спуска в гладком случае?

- Обобщение градиентного спуска на негладкие задачи.
- Оценки сходимости в выпуклом случае: $\sim \frac{1}{\sqrt{K}}$, в сильно выпуклом случае: $\sim \frac{1}{\kappa}$. Вопрос: какие были у градиентного спуска в гладком случае? $\sim \frac{1}{\kappa}$ и линейная соответственно. Сходимость медленнее.

- Обобщение градиентного спуска на негладкие задачи.
- Оценки сходимости в выпуклом случае: $\sim \frac{1}{\sqrt{K}}$, в сильно выпуклом случае: $\sim \frac{1}{K}$. Вопрос: какие были у градиентного спуска в гладком случае? $\sim \frac{1}{K}$ и линейная соответственно. Сходимость медленнее.
- Может возможно улучшить результат? Например, улучшить анализ или использовать моментум.

- Обобщение градиентного спуска на негладкие задачи.
- Оценки сходимости в выпуклом случае: $\sim \frac{1}{\sqrt{K}}$, в сильно выпуклом случае: $\sim \frac{1}{K}$. Вопрос: какие были у градиентного спуска в гладком случае? $\sim \frac{1}{K}$ и линейная соответственно. Сходимость медленнее.
- Может возможно улучшить результат? Например, улучшить анализ или использовать моментум. В общем случае результат для субградиентного метода является неулучшаемым для выпуклых и сильно-выпуклых задач, т.е. он оптимален.

- Обобщение градиентного спуска на негладкие задачи.
- Оценки сходимости в выпуклом случае: $\sim \frac{1}{\sqrt{K}}$, в сильно выпуклом случае: $\sim \frac{1}{K}$. Вопрос: какие были у градиентного спуска в гладком случае? $\sim \frac{1}{K}$ и линейная соответственно. Сходимость медленнее.
- Может возможно улучшить результат? Например, улучшить анализ или использовать моментум. В общем случае результат для субградиентного метода является неулучшаемым для выпуклых и сильно-выпуклых задач, т.е. он оптимален. Вопрос: а что в невыпуклом случае?

- Обобщение градиентного спуска на негладкие задачи.
- Оценки сходимости в выпуклом случае: $\sim \frac{1}{\sqrt{K}}$, в сильно выпуклом случае: $\sim \frac{1}{K}$. Вопрос: какие были у градиентного спуска в гладком случае? $\sim \frac{1}{K}$ и линейная соответственно. Сходимость медленнее.
- Может возможно улучшить результат? Например, улучшить анализ или использовать моментум. В общем случае результат для субградиентного метода является неулучшаемым для выпуклых и сильно-выпуклых задач, т.е. он оптимален. Вопрос: а что в невыпуклом случае? С этого мы начинали курс лучше, чем полный перебор там ничего не придумать.

AdaGradNorm

- Для субградиентного метода был взят шаг $\gamma = \frac{\|x^0 x^*\|_2}{M\sqrt{K}}.$
- Как уже было сказано, что можно взять k вместо K: $\gamma_k = \frac{\|x^0 x^*\|_2}{M\sqrt{k}}$. Вопрос: как заменить его более практично убрать M, K и $\|x^0 x^*\|_2$, не теряя их физический смысл?

- Для субградиентного метода был взят шаг $\gamma = \frac{\|\mathbf{x}^{\mathsf{U}} \mathbf{x}^*\|_2}{M_*/K_*}$.
- Как уже было сказано, что можно взять k вместо K: $\gamma_k = \frac{\|x^0 - x^*\|_2}{M\sqrt{k}}$. Вопрос: как заменить его более практично – убрать M, K и $\|x^0 - x^*\|_2$, не теряя их физический смысл?

Адаптивные методы

•000000000000000

• М – ограничение нормы (суб)градиента, тогда можно использовать сам (суб)градиент в качестве этого ограничения, кроме этого $||x^0 - x^*||_2 < D$:

$$\gamma_k = \frac{D}{\sqrt{\sum_{t=0}^k \|g^t\|_2^2}}.$$

AdaGradNorm

Негладкие задачи

 Получился метод AdaGradNorm. Ada – адаптивность под локальные свойства задачи (в данном случае локальные значения M).

Алгоритм 3 AdaGradNorm

 \mathbf{B} ход: D>0, стартовая точка $x^0\in\mathbb{R}^d$, сумма квадратов норм градиентов $G^0=0$, количество итераций K

- 1: for k = 0, 1, ..., K 1 do
- 2: Вычислить $g^k \in \partial f(x^k)$
- 3: Вычислить $G^{k+1} = G^k + \|g^k\|_2^2$
- 4: $x^{k+1} = x^k \frac{D}{\sqrt{G^{k+1}}}g^k$
- 5: end for

Выход: $\frac{1}{K} \sum_{k=0}^{K} x^k$

AdaGrad

Негладкие задачи

Пойдем дальше и сделаем адаптивность по каждой координате (индивидуальный шаг). Получится AdaGrad:

$$\gamma_{k,i} = rac{D_i}{\sqrt{\sum\limits_{t=0}^k (g_i^t)^2}},$$
 где $\|x_i - x_i^*\|_2 \leq D_i.$

AdaGrad

Алгоритм 4 AdaGrad

Вход: $D_i>0$, стартовая точка $x^0\in\mathbb{R}^d$, сумма квадратов градиентов $G_i^0=0$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Вычислить $g^k \in \partial f(x^k)$
- 3: Для каждой координаты: $G_i^{k+1} = G_i^k + (g_i^k)^2$
- 4: Для каждой координаты: $x_i^{k+1} = x_i^k \frac{D_i}{\sqrt{G_i^{k+1}}} g_i^k$
- 5: end for

Выход: $\frac{1}{K} \sum_{k=0}^{K} x^k$

Распишем шаг по каждой координате:

$$(x_i^{k+1} - x_i^*)^2 = (x_i^k - \gamma_{k,i} g_i^k - x_i^*)^2$$

= $(x_i^k - x_i^*)^2 - 2\gamma_{k,i} g_i^k (x_i^k - x_i^*) + \gamma_{k,i}^2 (g_i^k)^2.$

Откуда:

$$g_i^k(x_i^k - x_i^*) = \frac{1}{2\gamma_{k,i}}(x_i^k - x_i^*)^2 - \frac{1}{2\gamma_{k,i}}(x_i^{k+1} - x_i^*)^2 + \frac{\gamma_{k,i}}{2}(g_i^k)^2.$$

С предыдущего слайда:

Негладкие задачи

$$g_i^k(x_i^k - x_i^*) = \frac{1}{2\gamma_{k,i}}(x_i^k - x_i^*)^2 - \frac{1}{2\gamma_{k,i}}(x_i^{k+1} - x_i^*)^2 + \frac{\gamma_{k,i}}{2}(g_i^k)^2.$$

• Суммируем по всем координатам i от 1 до d:

$$\langle g^k, x^k - x^* \rangle = \sum_{i=1}^d \left[\frac{1}{2\gamma_{k,i}} (x_i^k - x_i^*)^2 - \frac{1}{2\gamma_{k,i}} (x_i^{k+1} - x_i^*)^2 + \frac{\gamma_{k,i}}{2} (g_i^k)^2 \right]$$

Выпуклость и определение субградиента дают:

$$f(x^k) - f(x^*) \le \sum_{i=1}^d \left[\frac{1}{2\gamma_{k,i}} (x_i^k - x_i^*)^2 - \frac{1}{2\gamma_{k,i}} (x_i^{k+1} - x_i^*)^2 + \frac{\gamma_{k,i}}{2} (g_i^k)^2 \right]$$

• С предыдущего слайда:

$$f(x^k) - f(x^*) \le \sum_{i=1}^d \left[\frac{1}{2\gamma_{k,i}} (x_i^k - x_i^*)^2 - \frac{1}{2\gamma_{k,i}} (x_i^{k+1} - x_i^*)^2 + \frac{\gamma_{k,i}}{2} (g_i^k)^2 \right].$$

• Суммируем по всем k и усредняем:

$$\frac{1}{K} \sum_{k=0}^{K-1} \left(f(x^k) - f(x^*) \right) \\
\leq \frac{1}{2K} \sum_{k=0}^{K-1} \sum_{i=1}^{d} \left[\frac{1}{\gamma_{k,i}} (x_i^k - x_i^*)^2 - \frac{1}{\gamma_{k,i}} (x_i^{k+1} - x_i^*)^2 + \gamma_{k,i} (g_i^k)^2 \right] \\
= \frac{1}{2K} \sum_{i=1}^{d} \sum_{k=0}^{K-1} \left[\frac{1}{\gamma_{k,i}} (x_i^k - x_i^*)^2 - \frac{1}{\gamma_{k,i}} (x_i^{k+1} - x_i^*)^2 + \gamma_{k,i} (g_i^k)^2 \right].$$

• С предыдущего слайда:

Негладкие задачи

$$\frac{1}{K} \sum_{k=0}^{K-1} \left(f(x^k) - f(x^*) \right) \\
\leq \frac{1}{2K} \sum_{i=1}^{d} \sum_{k=0}^{K-1} \left[\frac{1}{\gamma_{k,i}} (x_i^k - x_i^*)^2 - \frac{1}{\gamma_{k,i}} (x_i^{k+1} - x_i^*)^2 + \gamma_{k,i} (g_i^k)^2 \right].$$

Адаптивные методы

0000000000000000

• Преобразуем (здесь мы ввели $\gamma_{-1,i} = +\infty$):

$$\frac{1}{K} \sum_{k=0}^{K-1} \left(f(x^k) - f(x^*) \right) \\
\leq \frac{1}{2K} \sum_{i=1}^{d} \sum_{k=0}^{K-1} \left[\left(\frac{1}{\gamma_{k,i}} - \frac{1}{\gamma_{k-1,i}} \right) (x_i^k - x_i^*)^2 + \gamma_{k,i} (g_i^k)^2 \right].$$

Доказательство сходимости AdaGrad

Воспользуемся ограниченностью $||x_i^k - x_i^*||_2^2 \le D_i^2$:

$$\frac{1}{K} \sum_{k=0}^{K-1} \left(f(x^k) - f(x^*) \right) \leq \frac{1}{2K} \sum_{i=1}^{d} \sum_{k=0}^{K-1} \left[\left(\frac{1}{\gamma_{k,i}} - \frac{1}{\gamma_{k-1,i}} \right) D_i^2 + \gamma_{k,i} (g_i^k)^2 \right].$$

Адаптивные методы

0000000000000000

Подставляем выражение для $\gamma_{k,i}$:

$$\frac{1}{K} \sum_{k=0}^{K-1} \left(f(x^k) - f(x^*) \right) \\
\leq \frac{1}{2K} \sum_{i=1}^{d} \sum_{k=0}^{K-1} \left[\left(\sqrt{\sum_{t=0}^{k} (g_i^t)^2} - \sqrt{\sum_{t=0}^{k-1} (g_i^t)^2} \right) D_i + \frac{D_i(g_i^k)^2}{\sqrt{\sum_{t=0}^{k} (g_i^t)^2}} \right] \\
\leq \frac{1}{2K} \sum_{i=1}^{d} D_i \left[\sqrt{\sum_{t=0}^{K-1} (g_i^t)^2} + \sum_{k=0}^{K-1} \frac{(g_i^k)^2}{\sqrt{\sum_{t=0}^{k} (g_i^t)^2}} \right] .$$

Александр Безносиков

Воспользуемся техническим фактом, который говорит, что для любых чисел $\{a_k\}_{k=0}$ выполнено:

Адаптивные методы

occonoconoción

$$\sum_{k=0}^{K-1} \frac{(a_k)^2}{\sqrt{\sum_{t=0}^k (a_i^t)^2}} \le 2\sqrt{\sum_{k=0}^{K-1} (a_i^k)^2}.$$

Итого:

Негладкие задачи

$$\frac{1}{K} \sum_{k=0}^{K-1} \left(f(x^k) - f(x^*) \right) \le \frac{3}{2K} \sum_{i=1}^d D_i \sqrt{\sum_{t=0}^{K-1} (g_i^t)^2}.$$

М-Липшицевость функции дает ограниченность компонент субградиента:

$$\frac{1}{K}\sum_{k=0}^{K-1}\left(f(x^k)-f(x^*)\right)\leq \frac{3M}{2\sqrt{K}}\sum_{k=0}^{d}D_i=\frac{3M\tilde{D}}{2\sqrt{K}}.$$

Александр Безносиков

Теорема сходимость AdaGrad для M-Липшицевых и выпуклых функций

Пусть задача оптимизации с M-Липшицевой, выпуклой целевой функцией f решается с помощью AdaGrad на ограниченном множестве. Тогда справедлива следующая оценка сходимости:

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^k\right)-f(x^*)\leq \frac{3M\tilde{D}}{2\sqrt{K}},$$

где $ilde{D} = \sum_{i=1}^d D_i$.

Более того, чтобы добиться точности arepsilon по функции, необходимо

$$K = O\left(rac{9M^2 ilde{D}^2}{4arepsilon^2}
ight)$$
 итераций.

RMSProp

Негладкие задачи

• Проблема AdaGrad, что старые градиенты в шаге могут быть уже не особо релевантны. **Вопрос:** как можно попробовать их "забывать"?

- Проблема AdaGrad, что старые градиенты в шаге могут быть уже не особо релевантны. **Вопрос:** как можно попробовать их "забывать"?
- Может помочь техника моментума с $\beta_2 \in (0,1)$ (вспомните, как она работала в случае тяжелого шарика):

$$G_i^{k+1} = \beta_2 G_i^k + (1 - \beta_2) (g_i^k)^2,$$

 $\gamma_{k,i} = \frac{D_i}{\sqrt{G_i^{k+1}}} g_i^k.$

Получился метод RMSProp.

RMSProp

Алгоритм 5 RMSProp

Вход: $D_i>0$, моментум $\beta_2\in(0,1)$, стартовая точка $x^0\in\mathbb{R}^d$, сглаженная сумма квадратов градиентов $G_i^0=0$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Вычислить $g^k \in \partial f(x^k)$
- 3: Для каждой координаты: $G_i^{k+1} = \beta_2 G_i^k + (1-\beta_2)(g_i^k)^2$
- 4: Для каждой координаты: $x_i^{k+1} = x_i^k \frac{D_i}{\sqrt{G_i^{k+1}}} g_i^k$
- 5: end for

Выход:
$$\frac{1}{K} \sum_{k=0}^{K} x^k$$

Почему бы не добавить и классический моментум вида тяжелого шарика для ускорения? Получится метод Adam:

тяжелый шарик:
$$v^{k+1}=\beta_1 v^k+(1-\beta_1)g^k,$$
 RMSProp: $G_i^{k+1}=\beta_2 G_i^k+(1-\beta_2)(g_i^k)^2,$ $x_i^{k+1}=x_i^k-\frac{D_i}{\sqrt{G_i^{k+1}}}v_i^{k+1}.$

• Почему бы не добавить и классический моментум вида тяжелого шарика для ускорения? Получится метод Adam:

тяжелый шарик:
$$v^{k+1}=\beta_1 v^k+(1-\beta_1)g^k,$$
 RMSProp: $G_i^{k+1}=\beta_2 G_i^k+(1-\beta_2)(g_i^k)^2,$ $x_i^{k+1}=x_i^k-\frac{D_i}{\sqrt{G_i^{k+1}}}v_i^{k+1}.$

• Можно еще чуть-чуть доработать — например, обезопасить себя от деления на 0 с помощью небольшой добавки $e \sim 10^{-6}-10^{-8}$:

$$x_i^{k+1} = x_i^k - \frac{D_i}{\sqrt{G_i^{k+1} + e}} v_i^{k+1}$$

◆ロト ◆個ト ◆見ト ◆見ト ・ 見 ・ からで

Проксимальный оператор

Adam

Алгоритм 6 Adam

Вход: $D_i > 0$, моментумы $\beta_1 \in (0,1)$ и $\beta_2 \in (0,1)$, стартовая точка $x^0 \in$ \mathbb{R}^d , сглаженная сумма квадратов градиентов $G_i^0=0$, сглаженная сумма градиентов $v^0 = 0$, добавка e > 0, количество итераций K

- 1: for $k = 0, 1, \dots, K 1$ do
- Вычислить $g^k \in \partial f(x^k)$ 2:
- Вычислить $v^{k+1} = \beta_1 v^k + (1 \beta_1) g^k$ 3:
- 4:
- Для каждой координаты: $G_i^{k+1} = \beta_2 G_i^k + (1-\beta_2)(g_i^k)^2$ Для каждой координаты: $x_i^{k+1} = x_i^k \frac{D_i}{\sqrt{G_i^{k+1} + e}} v_i^{k+1}$ 5:
- 6: end for

Выход:
$$\frac{1}{K} \sum_{k=0}^{K} x^k$$

Адаптивные методы: итог

Негладкие задачи

• Суть – подбирать шаг, исходя из локальных свойств задачи, что кажется более эффективным и удобным подходом.

- Суть подбирать шаг, исходя из локальных свойств задачи, что кажется более эффективным и удобным подходом.
- Но подбор параметров все еще нужен: шаги D_i , моментумы β_1, β_2 , и является теми параметрами, который нужно подбирать на практике.
- Часто рекомендуют брать $\beta_1 = 0.9$, а $\beta_2 = 0.99$, и $D_i = D$ для всех i, но все равно нужно подбирать D.
- Сейчас и эта проблема решена в так называемых parameter-free методах. Они вообще не требуют подбора, а запускаются из "коробки".

Адаптивные методы: итог

- Суть подбирать шаг, исходя из локальных свойств задачи, что кажется более эффективным и удобным подходом.
- Но подбор параметров все еще нужен: шаги D_i , моментумы β_1, β_2 , и является теми параметрами, который нужно подбирать на практике.
- Часто рекомендуют брать $\beta_1 = 0.9$, а $\beta_2 = 0.99$, и $D_i = D$ для всех i, но все равно нужно подбирать D.
- Сейчас и эта проблема решена в так называемых parameter-free методах. Они вообще не требуют подбора, а запускаются из "коробки".
- Adam и его модификации являются самым популярным методами решения задач оптимизации, лежащих в основе обучения нейронных сетей.

Проксимальный оператор

Негладкие задачи

- Поняли, что негладкие задачи «более сложные» по сравнению с гладкими задачами.
- Может быть получится «спрятать под ковер» отсутствие гладкости.

Проксимальный оператор

- Поняли, что негладкие задачи «более сложные» по сравнению с гладкими задачами.
- Может быть получится «спрятать под ковер» отсутствие гладкости.
- Такую возможность дает проксимальный оператор:

Определение проксимального оператора

Для функции $r: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ проксимальный оператор определяется следующим образом:

$$\operatorname{prox}_r(x) = \arg\min_{\tilde{x} \in \mathbb{R}^d} \left(r(\tilde{x}) + \frac{1}{2} \|x - \tilde{x}\|^2 \right).$$

Свойства проксимального оператора

Лемма (свойство проксимального оператора)

Пусть $r: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ выпуклая функция, для которой определен ргох $_r$. Если существует такая $\hat{x} \in \mathbb{R}^d$, что $r(x) < +\infty$. Тогда проксимальный оператор однозначно определен (т.е. всегда возвращает единственное уникальное значение).

Свойства проксимального оператора

Лемма (свойство проксимального оператора)

Пусть $r:\mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ выпуклая функция, для которой определен ргох $_r$. Если существует такая $\hat{x} \in \mathbb{R}^d$, что $r(x) < +\infty$. Тогда проксимальный оператор однозначно определен (т.е. всегда возвращает единственное уникальное значение).

<u>Доказательство:</u> Проксимальный оператор возвращает минимум некоторой задачи оптимизации. Вопрос: что можно сказать про эту задачу?

Лемма (свойство проксимального оператора)

Пусть $r:\mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ выпуклая функция, для которой определен ргох $_r$. Если существует такая $\hat{x} \in \mathbb{R}^d$, что $r(x) < +\infty$. Тогда проксимальный оператор однозначно определен (т.е. всегда возвращает единственное уникальное значение).

Доказательство: Проксимальный оператор возвращает минимум некоторой задачи оптимизации. Вопрос: что можно сказать про эту задачу? Она сильно выпуклая, а значит имеет строго один уникальный минимум (существование \hat{x} необходимо для того, чтобы $r(\tilde{x}) + \frac{1}{2} ||x - \tilde{x}||^2$ где-то принимала конечное значение).

Негладкие задачи

Примеры проксимального оператора

• $r(x) = \lambda ||x||_1$, где $\lambda > 0$. Тогда

$$[\operatorname{prox}_r(x)]_i = [|x_i| - \lambda]_+ \cdot \operatorname{sign}(x_i)$$

Такой проксимальный оператор еще называют трешхолдом.

Примеры проксимального оператора

• $r(x) = \lambda \|x\|_1$, где $\lambda > 0$. Тогда

$$[\operatorname{prox}_r(x)]_i = [|x_i| - \lambda]_+ \cdot \operatorname{sign}(x_i)$$

Такой проксимальный оператор еще называют трешхолдом.

• $r(x) = \frac{\lambda}{2} \|x\|_2^2$, где $\lambda > 0$. Тогда

$$\operatorname{prox}_r(x) = \frac{x}{1+\lambda}.$$

Примеры проксимального оператора

• $r(x) = \lambda ||x||_1$, где $\lambda > 0$. Тогда

$$[\operatorname{prox}_r(x)]_i = [|x_i| - \lambda]_+ \cdot \operatorname{sign}(x_i)$$

Такой проксимальный оператор еще называют трешхолдом.

• $r(x) = \frac{\lambda}{2} ||x||_2^2$, где $\lambda > 0$. Тогда

$$\operatorname{prox}_r(x) = \frac{x}{1+\lambda}.$$

• $r(x) = \mathbb{I}_{\mathcal{X}}(x)$, где \mathcal{X} – выпуклое множество, и

$$\mathbb{I}_{\mathcal{X}}(x) = \begin{cases} 0, & x \in \mathcal{X} \\ +\infty, & x \notin \mathcal{X} \end{cases}.$$

Вопрос: чему равен prox?

Негладкие задачи

• $r(x) = \lambda ||x||_1$, где $\lambda > 0$. Тогда

$$[\operatorname{prox}_r(x)]_i = [|x_i| - \lambda]_+ \cdot \operatorname{sign}(x_i)$$

Адаптивные методы

Такой проксимальный оператор еще называют трешхолдом.

• $r(x) = \frac{\lambda}{2} ||x||_2^2$, где $\lambda > 0$. Тогда

$$\operatorname{prox}_r(x) = \frac{x}{1+\lambda}.$$

• $r(x) = \mathbb{I}_{\mathcal{X}}(x)$, где \mathcal{X} – выпуклое множество, и

$$\mathbb{I}_{\mathcal{X}}(x) = \begin{cases} 0, & x \in \mathcal{X} \\ +\infty, & x \notin \mathcal{X} \end{cases}.$$

Вопрос: чему равен prox?

$$\operatorname{prox}_r(x) = \operatorname{proj}_{\mathcal{X}}(x).$$

Негладкие задачи

Примеры проксимального оператора

• $r(x) = \lambda ||x||_1$, где $\lambda > 0$. Тогда

$$[\operatorname{prox}_r(x)]_i = [|x_i| - \lambda]_+ \cdot \operatorname{sign}(x_i)$$

Адаптивные методы

Такой проксимальный оператор еще называют трешхолдом.

• $r(x) = \frac{\lambda}{2} ||x||_2^2$, где $\lambda > 0$. Тогда

$$\operatorname{prox}_r(x) = \frac{x}{1+\lambda}.$$

• $r(x) = \mathbb{I}_{\mathcal{X}}(x)$, где \mathcal{X} – выпуклое множество, и

$$\mathbb{I}_{\mathcal{X}}(x) = \begin{cases} 0, & x \in \mathcal{X} \\ +\infty, & x \notin \mathcal{X} \end{cases}.$$

Вопрос: чему равен prox?

$$\operatorname{prox}_r(x) = \operatorname{proj}_{\mathcal{X}}(x).$$

И еще множество других примеров и их комбинаций 🕟 🕞

Александр Безносиков Лекция 5 24 октября 2024 33 / 46

Свойства проксимального оператора

Лемма (свойство проксимального оператора)

Пусть $r: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ выпуклая функция, для которой определен prox_r . Тогда для любых $x,y \in \mathbb{R}^d$ следующие три условия являются эквивалентными:

- $\operatorname{prox}_r(x) = y$,
- $x y \in \partial r(y)$,
- $\langle x-y, z-y \rangle \leq r(z) r(y)$ для любого $z \in \mathbb{R}^d$.

Негладкие задачи

• Первое условие переписывается, как

$$y = \arg\min_{ ilde{x} \in \mathbb{R}^d} \left(r(ilde{x}) + \frac{1}{2} \|x - ilde{x}\|_2^2 \right).$$

Прокс. метод

Негладкие задачи

• Первое условие переписывается, как

$$y = \arg\min_{ ilde{x} \in \mathbb{R}^d} \left(r(ilde{x}) + \frac{1}{2} \|x - ilde{x}\|_2^2 \right).$$

• Из условия оптимальности для выпуклой функции r это эквивалентно вопрос: чему?

Негладкие задачи

• Первое условие переписывается, как

$$y = \arg\min_{\tilde{x} \in \mathbb{R}^d} \left(r(\tilde{x}) + \frac{1}{2} \|x - \tilde{x}\|_2^2 \right).$$

 Из условия оптимальности для выпуклой функции r это эквивалентно вопрос: чему?

$$0 \in \partial \left(r(\tilde{x}) + \frac{1}{2} \|x - \tilde{x}\|_2^2 \right) \bigg|_{\tilde{x} = y} = \partial r(y) + y - x.$$

Прокс. метод

Негладкие задачи

• Первое условие переписывается, как

$$y = \arg\min_{ ilde{x} \in \mathbb{R}^d} \left(r(ilde{x}) + \frac{1}{2} \|x - ilde{x}\|_2^2 \right).$$

• Из условия оптимальности для выпуклой функции *r* это эквивалентно вопрос: чему?

$$0 \in \partial \left(r(\tilde{x}) + \frac{1}{2} \|x - \tilde{x}\|_2^2 \right) \bigg|_{\tilde{x} = y} = \partial r(y) + y - x.$$

Получили эквивалентность первого и второго условий.

<u>Док</u>азательство

Первое условие переписывается, как

$$y = \arg\min_{\tilde{\mathbf{x}} \in \mathbb{R}^d} \left(r(\tilde{\mathbf{x}}) + \frac{1}{2} \|\mathbf{x} - \tilde{\mathbf{x}}\|_2^2 \right).$$

 Из условия оптимальности для выпуклой функции r это эквивалентно вопрос: чему?

$$0 \in \partial \left(r(\tilde{x}) + \frac{1}{2} \|x - \tilde{x}\|_2^2 \right) \bigg|_{\tilde{x} = y} = \partial r(y) + y - x.$$

Получили эквивалентность первого и второго условий.

• Из определения субдифференциала, для любого субградиента $g \in \partial f(y)$ и для любого $z \in \mathbb{R}^d$:

$$\langle g, z - y \rangle \leq r(z) - r(y).$$

<u>Док</u>азательство

Первое условие переписывается, как

$$y = \arg\min_{\tilde{x} \in \mathbb{R}^d} \left(r(\tilde{x}) + \frac{1}{2} ||x - \tilde{x}||_2^2 \right).$$

 Из условия оптимальности для выпуклой функции r это эквивалентно вопрос: чему?

$$0 \in \partial \left(r(\tilde{x}) + \frac{1}{2} \|x - \tilde{x}\|_2^2 \right) \bigg|_{\tilde{x} = y} = \partial r(y) + y - x.$$

Получили эквивалентность первого и второго условий.

• Из определения субдифференциала, для любого субградиента $g \in \partial f(y)$ и для любого $z \in \mathbb{R}^d$:

$$\langle g, z - y \rangle \leq r(z) - r(y).$$

В частности справедливо и для g = x - y.

Первое условие переписывается, как

$$y = \arg\min_{\tilde{x} \in \mathbb{R}^d} \left(r(\tilde{x}) + \frac{1}{2} ||x - \tilde{x}||_2^2 \right).$$

 Из условия оптимальности для выпуклой функции r это эквивалентно вопрос: чему?

$$0 \in \partial \left(r(\tilde{x}) + \frac{1}{2} \|x - \tilde{x}\|_2^2 \right) \bigg|_{\tilde{x} = y} = \partial r(y) + y - x.$$

Получили эквивалентность первого и второго условий.

• Из определения субдифференциала, для любого субградиента $g \in \partial f(y)$ и для любого $z \in \mathbb{R}^d$:

$$\langle g, z - y \rangle \leq r(z) - r(y).$$

В частности справедливо и для g = x - y. В обратную сторону тоже очевидно: для g = x - y выполнено соотношение выше, значит $g \in \partial r(y)$.

Первое условие переписывается, как

$$y = \arg\min_{\tilde{x} \in \mathbb{R}^d} \left(r(\tilde{x}) + \frac{1}{2} ||x - \tilde{x}||_2^2 \right).$$

 Из условия оптимальности для выпуклой функции r это эквивалентно вопрос: чему?

$$0 \in \partial \left(r(\tilde{x}) + \frac{1}{2} \|x - \tilde{x}\|_2^2 \right) \bigg|_{\tilde{x} = y} = \partial r(y) + y - x.$$

Получили эквивалентность первого и второго условий.

• Из определения субдифференциала, для любого субградиента $g \in \partial f(y)$ и для любого $z \in \mathbb{R}^d$:

$$\langle g, z - y \rangle \leq r(z) - r(y).$$

В частности справедливо и для g = x - y. В обратную сторону тоже очевидно: для g = x - y выполнено соотношение выше, значит $g \in \partial r(y)$. Лемма доказана.

Негладкие задачи

Лемма (свойство проксимального оператора)

Пусть $r:\mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ выпуклая функция, для которой определен ргох $_r$. Тогда для любых $x,y\in\mathbb{R}^d$ выполнено следующее:

- $\langle x y, \operatorname{prox}_r(x) \operatorname{prox}_r(y) \rangle \ge \|\operatorname{prox}_r(x) \operatorname{prox}_r(y)\|_2^2$,
- $\|\operatorname{prox}_r(x) \operatorname{prox}_r(y)\|_2 \le \|x y\|_2$.

Негладкие задачи

• Пусть $u = \operatorname{prox}_r(x), v = \operatorname{prox}_r(y).$

Негладкие задачи

• Пусть $u = \operatorname{prox}_r(x)$, $v = \operatorname{prox}_r(y)$. Тогда из предыдущего свойства:

$$\langle x - u, z_1 - u \rangle \le r(z_1) - r(u),$$

 $\langle y - v, z_2 - v \rangle \le r(z_2) - r(v).$

Прокс. метод

Негладкие задачи

• Пусть $u = \operatorname{prox}_r(x)$, $v = \operatorname{prox}_r(y)$. Тогда из предыдущего свойства:

$$\langle x - u, z_1 - u \rangle \le r(z_1) - r(u),$$

 $\langle y - v, z_2 - v \rangle \le r(z_2) - r(v).$

• Подставляем $z_1 = v$ и $z_2 = u$. Суммируем:

$$\langle x - u, v - u \rangle + \langle y - v, u - v \rangle \le 0$$

Негладкие задачи

• Пусть $u = \operatorname{prox}_r(x)$, $v = \operatorname{prox}_r(y)$. Тогда из предыдущего свойства:

$$\langle x - u, z_1 - u \rangle \le r(z_1) - r(u),$$

 $\langle y - v, z_2 - v \rangle \le r(z_2) - r(v).$

• Подставляем $z_1 = v$ и $z_2 = u$. Суммируем:

$$\langle x - u, v - u \rangle + \langle y - v, u - v \rangle \le 0$$

Откуда

$$\langle x - y, v - u \rangle + \|v - u\|_2^2 \le 0.$$

Негладкие задачи

• Пусть $u = \text{prox}_r(x)$, $v = \text{prox}_r(y)$. Тогда из предыдущего свойства:

$$\langle x - u, z_1 - u \rangle \le r(z_1) - r(u),$$

 $\langle y - v, z_2 - v \rangle \le r(z_2) - r(v).$

Подставляем $z_1 = v$ и $z_2 = u$. Суммируем:

$$\langle x - u, v - u \rangle + \langle y - v, u - v \rangle \le 0$$

Откуда

$$\langle x - y, v - u \rangle + \|v - u\|_2^2 \le 0.$$

А это и требовалось доказать. Вопрос: как быстро доказать второе утверждение леммы?

• Пусть $u = \text{prox}_r(x)$, $v = \text{prox}_r(y)$. Тогда из предыдущего свойства:

$$\langle x - u, z_1 - u \rangle \le r(z_1) - r(u),$$

 $\langle y - v, z_2 - v \rangle \le r(z_2) - r(v).$

Подставляем $z_1 = v$ и $z_2 = u$. Суммируем:

$$\langle x - u, v - u \rangle + \langle y - v, u - v \rangle \le 0$$

Откуда

$$\langle x - y, v - u \rangle + \|v - u\|_2^2 \le 0.$$

А это и требовалось доказать. Вопрос: как быстро доказать второе утверждение леммы? КБШ.

37 / 46

Композитная задача

Негладкие задачи

• Рассмотрим следующую задачу:

$$\min_{x \in \mathbb{R}^d} [f(x) + r(x)].$$

Прокс. метод ●00000000

Композитная задача

Рассмотрим следующую задачу:

$$\min_{x \in \mathbb{R}^d} [f(x) + r(x)].$$

- Такая задача называется композитной.
- Предположим, что f является L-гладкой выпуклой функцией, rвыпуклой (необязательно гладкой, но) проксимально дружественной функцией.

• Рассмотрим следующую задачу:

$$\min_{x \in \mathbb{R}^d} [f(x) + r(x)].$$

- Такая задача называется композитной.
- Предположим, что f является L-гладкой выпуклой функцией, r выпуклой (необязательно гладкой, но) проксимально дружественной функцией.
- Получается целевая функция состоит из гладкой и в общем случае негладкой части. Если $r\equiv 0$, то получаем гладкую задачу, которую умеем решать. Если $f\equiv 0$, то получаем негладкую задачу.

Алгоритм 7 Проксимальный градиентный метод

Вход: размер шага $\gamma>0$, стартовая точка $x^0\in\mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Вычислить $\nabla f(x^k)$
- 3: $x^{k+1} = \operatorname{prox}_{\gamma r}(x^k \gamma \nabla f(x^k))$
- 4: end for

Негладкие задачи

Выход: x^K

Проксимальный градиентный метод

Алгоритм 8 Проксимальный градиентный метод

Вход: размер шага $\gamma>0$, стартовая точка $x^0\in\mathbb{R}^d$, количество итераций K

- 1: for k = 0, 1, ..., K 1 do
- 2: Вычислить $\nabla f(x^k)$
- 3: $x^{k+1} = \operatorname{prox}_{\gamma r}(x^k \gamma \nabla f(x^k))$
- 4: end for

Негладкие задачи

Выход: x^K

• Если *r* непрерывно дифференцируема, то условие оптимальности для подзадачи подсчета проксимального оператора записывается, как:

$$0 = \gamma \nabla r(x^{k+1}) + x^{k+1} - \gamma \nabla f(x^k).$$

Проксимальный градиентный метод

Алгоритм 9 Проксимальный градиентный метод

Вход: размер шага $\gamma > 0$, стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- Вычислить $\nabla f(x^k)$
- $x^{k+1} = \text{prox}_{\gamma r}(x^k \gamma \nabla f(x^k))$
- 4: end for

Негладкие задачи

Выход: x^K

• Если r непрерывно дифференцируема, то условие оптимальности для подзадачи подсчета проксимального оператора записывается, как:

$$0 = \gamma \nabla r(x^{k+1}) + x^{k+1} - \gamma \nabla f(x^k).$$

Откуда получаем так называемую неявную запись метода:

$$x^{k+1} = x^k - \gamma(\nabla f(x^k) + \nabla r(x^{k+1}))$$

Сходимость

Лемма (свойство проксимального оператора)

Пусть $f: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$, $r: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ выпуклые функции. Дополнительно предположим, что f является непрерывно дифференцируемой и L-гладкой, а для r определен prox_r. Тогда x^* – решение композитной задачи оптимизации тогда и только тогда, когда для любого $\gamma > 0$ выполнено:

$$x^* = \mathsf{prox}_{\gamma r}(x^* - \gamma \nabla f(x^*)).$$

Негладкие задачи

• Условие оптимальности:

$$0 \in \nabla f(x^*) + \partial r(x^*).$$

Негладкие задачи

• Условие оптимальности:

$$0 \in \nabla f(x^*) + \partial r(x^*).$$

Откуда

$$x^* - \gamma \nabla f(x^*) - x^* \in \gamma \partial r(x^*).$$

Прокс. метод 000●00000

Негладкие задачи

• Условие оптимальности:

$$0 \in \nabla f(x^*) + \partial r(x^*).$$

Откуда

$$x^* - \gamma \nabla f(x^*) - x^* \in \gamma \partial r(x^*).$$

• Из свойств проксимального оператора

$$x^* = \mathsf{prox}_{\gamma r}(x^* - \gamma \nabla f(x^*)).$$

А это и требовалось.

Прокс. метод

Негладкие задачи

$$\begin{aligned} &\|\operatorname{prox}_r(x) - \operatorname{prox}_r(y)\|_2 \le \|x - y\|_2 \\ &x^* = \operatorname{prox}_{\gamma r}(x^* - \gamma \nabla f(x^*)). \end{aligned}$$

Вопрос: в доказательстве какого метода уже нам нужны были такие свойства?

Сходимость

Негладкие задачи

• В итоге имеем следующие свойства:

$$\begin{aligned} &\|\operatorname{prox}_r(x) - \operatorname{prox}_r(y)\|_2 \le \|x - y\|_2 \\ &x^* = \operatorname{prox}_{\gamma r}(x^* - \gamma \nabla f(x^*)). \end{aligned}$$

Вопрос: в доказательстве какого метода уже нам нужны были такие свойства? Градиентный спуск с проекцией. Вспомним, что проксимальный оператор включает в себя и оператор проекции.

Прокс. метод

Сходимость

Негладкие задачи

• В итоге имеем следующие свойства:

$$\begin{aligned} &\|\operatorname{prox}_r(x) - \operatorname{prox}_r(y)\|_2 \le \|x - y\|_2 \\ &x^* = \operatorname{prox}_{\gamma r}(x^* - \gamma \nabla f(x^*)). \end{aligned}$$

Bonpoc: в доказательстве какого метода уже нам нужны были такие свойства? Градиентный спуск с проекцией. Вспомним, что проксимальный оператор включает в себя и оператор проекции.

• Поэтому доказательство будет один в один.

Прокс. метод

• Рассматриваем:

Негладкие задачи

$$||x^{k+1} - x^*||_2^2 = ||\operatorname{prox}_{\gamma r}(x^k - \gamma_k \nabla f(x^k)) - x^*||_2^2$$

Прокс. метод 00000●000

Рассматриваем:

$$||x^{k+1} - x^*||_2^2 = ||\operatorname{prox}_{\gamma r}(x^k - \gamma_k \nabla f(x^k)) - x^*||_2^2$$

Используем второй свойство с предыдущего слайда:

$$||x^{k+1} - x^*||_2^2 = ||\operatorname{prox}_{\gamma_r}(x^k - \gamma_k \nabla f(x^k)) - x^*||_2^2$$

= $||\operatorname{prox}_{\gamma_r}(x^k - \gamma_k \nabla f(x^k)) - \operatorname{prox}_{\gamma_r}(x^* - \gamma_k \nabla f(x^*))||_2^2$

Рассматриваем:

$$\|x^{k+1} - x^*\|_2^2 = \|\operatorname{prox}_{\gamma r}(x^k - \gamma_k \nabla f(x^k)) - x^*\|_2^2$$

• Используем второй свойство с предыдущего слайда:

$$||x^{k+1} - x^*||_2^2 = ||\operatorname{prox}_{\gamma_r}(x^k - \gamma_k \nabla f(x^k)) - x^*||_2^2$$

= $||\operatorname{prox}_{\gamma_r}(x^k - \gamma_k \nabla f(x^k)) - \operatorname{prox}_{\gamma_r}(x^* - \gamma_k \nabla f(x^*))||_2^2$

• Теперь первое свойство с предыдущего слайда:

$$||x^{k+1} - x^*||_2^2 \le ||x^k - \gamma_k \nabla f(x^k) - x^* + \gamma_k \nabla f(x^*)||_2^2$$

$$= ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k) - \nabla f(x^*), x^k - x^* \rangle$$

$$+ \gamma_k^2 ||\nabla f(x^k) - \nabla f(x^*)||_2^2$$

Александр Безносиков Лекция 5 24 октября 2024 43 / 46

Негладкие задачи

• С предыдущего слайда:

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k) - \nabla f(x^*), x^k - x^* \rangle + \gamma_k^2 ||\nabla f(x^k) - \nabla f(x^*)||_2^2$$

Прокс. метод

• С предыдущего слайда:

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2 - 2\gamma_k \langle \nabla f(x^k) - \nabla f(x^*), x^k - x^* \rangle + \gamma_k^2 ||\nabla f(x^k) - \nabla f(x^*)||_2^2$$

• Вспомним такой объект, как дивергенция Брэгмана, порожденную выпуклой функцией f:

$$V_f(x, y) = f(x) - f(y) - \langle \nabla f(y), x - y \rangle \ge 0.$$

• Воспользуемся сильной выпуклостью и гладкостью:

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2$$

$$- 2\gamma_k \left(f(x^k) - f(x^*) - \langle \nabla f(x^*), x^k - x^* \rangle + \frac{\mu}{2} ||x^k - x^*||_2^2 \right)$$

$$+ 2\gamma_k^2 L \left(f(x^k) - f(x^*) - \langle \nabla f(x^*), x^k - x^* \rangle \right)$$

$$= (1 - \mu \gamma_k) ||x^k - x^*||_2^2 + 2\gamma_k (\gamma_k L - 1) V_f(x^k, x^*)$$

• Дальше как раньше подбирает γ_k , пользуемся неотрицательности дивергенции Брэгмана.

Негладкие задачи

- Проксимальный градиентный спуск для композитной задачи с L-гладкой выпуклой функцией f и выпуклой проксимально дружественной функцией r имеет такую же сходимость, что и метод градиентного спуска для функции f. Свойства гладкости/негладкости r при этом не влияют.
- Кажется, что положив $f \equiv 0$, с помощью такого метода можно решать любую негладкую задачу.

Прокс. метод

Негладкие задачи

- Проксимальный градиентный спуск для композитной задачи с L-гладкой выпуклой функцией f и выпуклой проксимально дружественной функцией r имеет такую же сходимость, что и метод градиентного спуска для функции f. Свойства гладкости/негладкости r при этом не влияют.
- Кажется, что положив $f \equiv 0$, с помощью такого метода можно решать любую негладкую задачу. Вопрос: так ли это?

Прокс. метод

Негладкие задачи

- Проксимальный градиентный спуск для композитной задачи с L-гладкой выпуклой функцией f и выпуклой проксимально дружественной функцией r имеет такую же сходимость, что и метод градиентного спуска для функции f. Свойства гладкости/негладкости r при этом не влияют.
- Кажется, что положив $f \equiv 0$, с помощью такого метода можно решать любую негладкую задачу. Вопрос: так ли это? если разрешить считать проксимальный оператор неточно (численно), то и правда можно решать любую задачу негладкой оптимизации.

Прокс. метод

Негладкие задачи

- Проксимальный градиентный спуск для композитной задачи с L-гладкой выпуклой функцией f и выпуклой проксимально дружественной функцией r имеет такую же сходимость, что и метод градиентного спуска для функции f. Свойства гладкости/негладкости r при этом не влияют.
- Кажется, что положив $f \equiv 0$, с помощью такого метода можно решать любую негладкую задачу. Вопрос: так ли это? если разрешить считать проксимальный оператор неточно (численно), то и правда можно решать любую задачу негладкой оптимизации. НО это с точки зрения теории не лучше, чем решать задачу субградиентным спуском, потому что при решении подзадачи проксимального используется какой-то вспомогательный метод (например, тот же субградиентный спуск).

Прокс. метод

00000000

Александр Безносиков Лекция 5 24 октября 2024 46 / 46