Classwork: Regents review 1. Given the function f represented in the table below.

\boldsymbol{x}	f(x)
-2	5
-1	0
0	1
1	-2
2	2

- (a) What is the x-intercept?
- (b) For what x is f(x) minimum?
- (c) What is the *y*-intercept of the function?

2. A \$4,250 investment earning a continuous interest rate of 3.25% over 3 years would be worth how much?

3. Explain how $\left(3^{\frac{1}{3}}\right)^2$ can be written as the equivalent radical expression $\sqrt[3]{9}$.

4. Given i is the imaginary unit, simplify $(2-xi)^2$ to the form a+bi.

5. Consider the function $h(x) = 2\sin(x) + 1$. What is the minimum value of h(x) for the domain $[0, 2\pi]$? Justify your answer by sketching a graph.

- 6. Sketch a graph of a cubic polynomial with the following characteristics:
 - three zeros: the origin, one positive, one negative
 - as $x \to +\infty$, $f(x) \to -\infty$
 - as $x \to -\infty$, $f(x) \to +\infty$

What is the sign of the function's leading coefficient?

7. On the axes below, graph one cycle of a cosine function with amplitude 3, period $\frac{\pi}{2}$, midline y = -1, and passing through the point (0, 2).

8. Graph $y = \log_2(x+3) - 5$ on the set of axes below. Use an appropriate scale to include both intercepts.

Describe the behavior of the given function as x approaches -3 and as x approaches positive infinity.