4. Теория графов

Терминология и обозначения

Граф G = (V, E) задается непустым множеством вершин V и множеством ребер E, состоящим из пар элементов V. Если рассматриваются неупорядоченные пары, граф называется **неориентированным**, если упорядоченные — **ориентированным**. Если ребро (a,b) принадлежит графу, то вершины a и b называют **смежеными**. Ребро вида (a,a) называется **петлей**. Неориентированный граф без петель называют **обыкновенным**. Во всех задачах этого раздела, где термин "граф" употребляется без уточнения, имеются в виду обыкновенные графы.

Графы $G_1 = (V_1, E_1)$ и $G_2 = (V_2, E_2)$ называют **изоморфными**, если существует биекция $f: V_1 \to V_2$, такая, что для любых $a,b \in V_1$ $(a,b) \in E_1$ тогда и только тогда, когда $(f(a), f(b)) \in E_2$. Эта биекция f называется **изоморфизмом** графа G_1 на граф G_2 . Если графы G_1 и G_2 изоморфны, то пишем, что $G_1 \cong G_2$. Отношение изоморфизма графов есть отношение эквивалентности, так как оно рефлексивно, симметрично и транзитивно. Следовательно, множество всех графов разбивается на классы так, что графы из одного класса попарно изоморфны, а графы из разных классов не изоморфны.

Степень вершины a — количество смежных с ней вершин, обозначается через d(a). **Набор степеней** графа — упорядоченная по неубыванию последовательность степеней вершин.

Для графа G=(V,E) справедливо соотношение $\sum_{a\in V}d(a)=2m$, где m – число ребер графа.

Дополнительный граф к графу G = (V, E) — такой граф $\overline{G} = (V', E')$, у которого V' = V, а $(a,b) \in E'$ тогда и только тогда, когда $(a,b) \notin E$.

Подграф графа G=(V,E) – такой граф G'=(V',E'), что $V'\subseteq V$, $E'\subseteq E$.

Остовный подграф графа G = (V, E) — такой граф G' = (V', E'), у которого V' = V, $E' \subseteq E$, т.е. остовный подграф получается из исходного графа удалением только ребер без удаления вершин.

Порожденный подграф графа G = (V, E) — такой граф G' = (V', E'), у которого $V' \subseteq V$, $E' = \{ (a,b) \in E \mid a,b \in V' \}$, т.е. порожденный подграф получается из исходного графа удалением вершин и всех ребер, инцидентных удаленным вершинам.

Последовательность вершин $a_1, a_2, ..., a_k$, такая, что $(a_i, a_{i+1}) \in E$ для всех i=1,...,k-1, называется **маршрутом**, соединяющим вершины a_1 и a_k . **Длина маршрута** – число ребер k-1.

Путь — это маршрут, в котором все ребра различны. *Простой путь* — путь, в котором все вершины различны.

Цикл — это замкнутый путь, в котором $a_1 = a_k$ и все ребра различны. **Простой цикл** — цикл, в котором вершины $a_1,...,a_{k-1}$ различны.

Связный граф – такой граф, в котором для любых двух вершин имеется маршрут, соединяющий эти вершины.

Компонента связности графа – связный подграф, не содержащийся в большем связном подграфе.

Перешеек – ребро, при удалении которого увеличивается число компонент связности.

Расстояние между вершинами связного графа — длина кратчайшего простого пути, соединяющего эти вершины. **Эксцентриситет** вершины — расстояние от этой вершины до наиболее удаленной от нее.

Диаметр графа – максимальный среди всех эксцентриситетов вершин.

Радиус графа – минимальный среди всех эксцентриситетов вершин.

Центральная вершина – вершина, эксцентриситет которой равен радиусу графа. **Центр** графа – множество всех центральных вершин.

Эйлеров цикл – цикл, проходящий через все ребра графа. Граф, который имеет эйлеров цикл, называется **эйлеровым графом**.

Критерий эйлеровости графа. Связный граф является эйлеровым тогда и только тогда, когда степени всех его вершин четны.

Гамильтонов цикл – простой цикл, проходящий через все вершины графа. Граф, который имеет гамильтонов цикл, называется *гамильтоновым графом*.

 \mathcal{A} вудольный граф — граф, множество вершин которого можно разбить на две части (доли) так, что концы каждого ребра лежат в разных частях.

Критерий двудольности Кенига. Для двудольности графа необходимо и достаточно, чтобы он не содержал циклов нечетной длины.

 \mathcal{L} ерево — связный граф, не имеющий циклов. \mathcal{L} ес — граф, не имеющий циклов. \mathcal{L} ист в дереве — вершина степени 1.

Пусть T — дерево с вершинами. Будем считать, что его вершинами являются натуральные числа 1, 2,..., n. Пусть a_1 — наименьший лист в T, а b_1 — смежная с ним вершина. Удалив из T вершину a_1 и ребро $e_1 = (a_1, b_1)$, получим дерево T_1 , к которому также применим описанную процедуру. Повторяем ее до тех пор, пока после удаления вершины a_{n-2} и ребра $e_{n-2} = (a_{n-2}, b_{n-2})$ не получим дерево T_{n-2} , состоящее из одного ребра $e_{n-1} = (a_{n-1}, b_{n-1})$. Дереву T ставим в соответствие упорядоченный набор чисел $p(T) = (b_1, \ldots, b_{n-2})$, который называется **кодом Прюфера.**

Пусть $V = \{1, 2, ..., n\}, n \ge 3$. Опишем процедуру восстановления по коду Прюфера $p(T) = (b_1, ..., b_{n-2})$, где $b_i \in V$ для всех i = 1, ..., n-2, дерева T, вершинами которого являются элементы множества V. Находим наименьший элемент a_1 множества V, не содержащийся среди элементов последовательности p(T), и восстанавливаем ребро (a_1, b_1) дерева. Далее удаляем a_1 из V и первую компоненту b_1 из последовательности p(T). Продолжаем процедуру для оставшихся чисел, пока не будут удалены все компоненты последовательности p(T). Два оставшихся элемента множества V — есть последнее ребро дерева T.

Корневое дерево – дерево с выделенной вершиной, которая называется корнем дерева.

 K_n — **полный граф** с вершинами, т.е. граф, в котором любые две вершины смежны. O_n — **пустой граф** с вершинами, т.е. граф, в котором никакие две вершины не смежны.

 $K_{p,q}$ – **полный двудольный граф**. В нем множество вершин можно разбить на две части V_1 и V_2 , причем $|V_1| = p$, $|V_2| = q$, и две вершины смежны тогда и только тогда, когда они принадлежат разным долям.

 Q_n — n-мерный куб. Вершинами этого графа являются все двоичные наборы длины и две вершины смежны тогда и только тогда, когда соответствующие наборы отличаются ровно в одной позиции.

 P_n – **простой путь** с вершинами.

 C_n — *простой цикл* с вершинами.

Плоский граф – граф, вершинами которого являются точки плоскости, а ребрам соответствуют непрерывные линии, соединяющие смежные вершины,

причем эти линии пересекаются только в концевых точках, т. е. в вершинах. Планарный граф – граф, изоморфный плоскому.

Гранью плоского графа называется максимальное по включению множество точек плоскости, каждая пара которых может быть соединена простой кривой, не пересекающей ребра графа.

Для связного плоского графа G = (V, E) с вершинами и ребрами имеет место формула Эйлера n + f = m + 2, где f — общее число граней графа.

Во всяком связном планарном графе с $(n \ge 3)$ вершинами и ребрами имеет место неравенство $m \le 3 \cdot (n-2)$.

Во всяком связном планарном графе с $(n \ge 3)$ вершинами и ребрами, не содержащем циклов длины три, имеет место неравенство $m \le 2 \cdot (n-2)$.

Во всяком связном планарном графе с $(n \ge 3)$ вершинами и ребрами, не содержащем циклов длины меньше $k \ (k \ge 3)$, имеет место неравенство $m \le \frac{k}{k-2} (n-2)$.

Операция подразбиения ребра (a,b) в графе G = (V,E) состоит в удалении ребра (a,b) и добавлении двух новых ребер (a,c),(c,b), где c — новая вершина. Графы G и G' называются **гомеоморфными**, если оба они могут быть получены из одного и того же графа подразбиением его ребер.

Критерий планарности Понтрягина-Куратовского. Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных графам K_5 или $K_{3,3}$.

Операция стягивания ребра (a,b) в графе G = (V,E) состоит в отождествлении (слиянии) смежных вершин a и b. Граф G называется стягиваемым κ графу G', если G' получается из G в результате некоторой последовательности стягиваний ребер.

Критерий планарности Вагнера. Граф планарен тогда и только тогда, когда он не содержит подграфов, стягиваемых к графам K_5 или $K_{3,3}$.