This work was supported by the Independent Research Fund Denmark (No. 8022-00366B), the Australian Research Council Grant (Nos. FT180100140 and DP180103411), the NSF-China (No. 61672455), and the NSF of Zhejiang Province of China (No. LY18F020005)

36th IEEE International Conference on Data Engineering (ICDE 2020)

Indoor Mobility Semantics Annotation Using Coupled Conditional Markov Networks

Huan Li¹, Hua Lu¹, Muhammad Aamir Cheema², Lidan Shou³, Gang Chen³

¹ Aalborg University

² Monash University

³ Zhejiang University

Motivation

- To understand when-where-what about indoor user movements
 - input: an object's indoor positioning records
 - output: a sequence of mobility semantics (m-semantics), each including
 - a semantic region: e.g., a cashier or a shop
 - a time period
 - a mobility event: movement patterns like stay/pass

Positioning Records

location, timestamp
(120.21,62.94, 1F), 12:21:32
(120.61,63.04, 2F), 12:21:54
(120.54,63.01, 1F), 12:22:15
...
(100.32,50.55, 1F), 12:42:19
(98.62,48.47, 1F), 12:44:26

(53.77,11.01, 1F), 12:45:12

(52.89,10.82, 1F), 12:45:18

Mobility Semantics

John's Hotdog Deli, 12:21:32-12:22:15, stay

• • • • • •

Food Market, 12:42:19-12:44:26, pass

7-Eleven, 12:45:12-12:58:04, stay

••••

- M-semantics: intuitive, concise, independent of positioning techniques
 - behavior inference: John's Hotdog Deil + stay → buying some food
 - estimate the conversion rate of people (distinction between stay and pass)

Idea and Challenges

- Label-and-Merge for constructing m-semantics
 - label each record with a region and an event
 - merge the consecutive records having the same region and event labels
 - merging can be performed at different region granularities

- Challenge 1: spatial and temporal uncertainties
 - hard to identify exact whereabouts and mobility states
- Challenge 2: indoor venue with small extent but complex topology
 - outdoor annotation inapplicable: POI category or human activity regularity
- Challenge 3: regions and events are always correlated
 - the correlations over sequence clearly increase the labeling complexity

Technical Contributions

- Graphical model: coupled conditional Markov network
 - **joint relationship** as probabilistic dependencies among the positioning records, region labels, and event labels
 - probabilistic representation: overcome the spatiotemporal uncertainties (Challenge 1)
- Feature functions in the graphical model
 - incorporate useful knowledge about indoor topology and indoor mobility behaviors (Challenge 2)
- A novel alternate learning paradigm
 - progressively estimate optimal parameters for one label type with the other label type being fixed
 - mitigate the coupling of region labels and event labels (Challenge 3)

Problem Definition

- Positioning Sequence $P_o = \langle \theta_1, \theta_2, ..., \theta_n \rangle$
 - positioning record $\theta_i = (l_i, t_i)$, location l_i as a 2D point on a floor
- M-Semantics $ms = (r, \tau, e)$
 - region r, time period τ, mobility event $e ∈ \{stay, pass\}$
- M-Semantics Sequence $MS_o = \langle ms_1, ms_2, ..., ms_m \rangle$
- Given $P_o = \langle \theta_1, \theta_2, ..., \theta_n \rangle$, the goal of **m-semantics annotation** is to generate the **most-likely** $MS_o = \langle ms_1, ms_2, ..., ms_m \rangle$
- Labeling problem: configure optimal target variable Y that maximizes the conditional distribution over observation X

Conditional Markov Networks

- Conditional Markov Networks (CMNs)
 - $P(y \in Y \mid x \in X)$ factorized as a product of clique potentials $\phi_c(x_c, y_c)$
 - clique: a fully-connected sub-graph in the network
 - clique potentials: compatibility among clique nodes, i.e., the larger the potential value, the more likely the variable configuration for the clique nodes

$$P(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{c \in C} \phi_c(\mathbf{x}_c, \mathbf{y}_c)$$

$$= \frac{1}{Z(\mathbf{x})} \prod_{c \in C} \exp\{\mathbf{w}_c^\mathsf{T} \cdot \mathbf{f}_c(\mathbf{x}_c, \mathbf{y}_c)\}$$

$$= \frac{1}{Z(\mathbf{x})} \exp\{\sum_{c \in C} \mathbf{w}_c^\mathsf{T} \cdot \mathbf{f}_c(\mathbf{x}_c, \mathbf{y}_c)\}$$

- Unrolled CMNs and Parameter Sharing
 - unrolled net: rather complex as thousands of nodes involved over the time
 - parameter sharing: each clique template corresponds to one weight vector

$$P(\mathbf{y} \mid \mathbf{x}, \mathbf{w}) = \frac{1}{Z(\mathbf{x}, \mathbf{w})} \exp \left\{ \sum_{ct \in CT} \sum_{c \in C(ct)} \mathbf{w}_{ct}^{\mathsf{T}} \cdot \mathbf{f}_{c}(\mathbf{x}_{c}, \mathbf{y}_{c}) \right\}$$

Coupled CMN (C2MN)

- Matching Cliques: fitness of an observed node and a target node at a particular timestamp
- Transition Cliques: label smoothness of two consecutive target nodes
- Synchronization Cliques: transitional consistency for two pairs of an observed node and a target node
- Segmentation Cliques: comparability of multiple consecutive pairs of an observed node and a target node, in which the other type of target nodes have the same label

Feature Functions in C2MN

- A feature function: evaluates the labeling plausibility of the nodes in a particular type of cliques
- C2MN framework chooses the label configuration with the highest overall evaluation as the final result
- The **importance** of each function in the framework is determined by the weights **learned from training data**.

Clique Catagory	Region Relevant Dependencies	Event Relevant Dependencies
Matching Cliques	(1) Spatial Matching Function $\mathbf{f}_{sm}(\theta_i, r_i)$	(2) Event Matching Function $\mathbf{f}_{em}(\theta_i, e_i)$
Transition Cliques	(3) Space Transition Function $\mathbf{f}_{st}(r_i, r_{i+1})$	(4) Event Transition Function $\mathbf{f}_{et}(e_i, e_{i+1})$
Synchronization Cliques	(5) Spatial Consistency Function $\mathbf{f}_{sc}(\theta_i, \theta_{i+1}, r_i, r_{i+1})$	(6) Event Consistency Function $\mathbf{f}_{ec}(\theta_i, \theta_{i+1}, e_i, e_{i+1})$
Segmentation Cliques	(7) Event-based Segmentation Function $\mathbf{f}_{es}(c_{es}^{i:j})$	(8) Space-based Segmentation Function $\mathbf{f}_{ss}(c_{ss}^{i:j})$

Feature Function Design (I)

cluster

semantic regions

location estimate

(1) Spatial Matching Function

$$\mathbf{f}_{sm}(\theta_i, r_i) = \frac{UR(\theta_i.l, v) \cap Area(r_i)}{UR(\theta_i.l, v)}$$

intersection ratio

(2) Event Matching Function

$$\mathbf{f}_{em}(\theta_{i}, e_{i}) = \begin{cases} 1, & \text{if } (e_{i}, \theta_{i}.\mathsf{D}) = (stay, \mathsf{core}) \text{ or } (pass, \mathsf{noise}); \\ \alpha, & \text{if } (e_{i}, \theta_{i}.\mathsf{D}) = (stay, \mathsf{border}); \\ \beta, & \text{if } (e_{i}, \theta_{i}.\mathsf{D}) = (pass, \mathsf{border}); \\ 0, & \text{otherwise.} \end{cases}$$
spatiotemporal density

(3) Space Transition Function

$$\mathbf{f}_{st}(r_i, r_{i+1}) = \exp\left\{-\gamma_{st} \cdot \mathsf{E}_{p \in r_i, q \in r_{i+1}}[\mathsf{d}_I(p, q)]\right\}$$

distance between regions

 r_A

UR

 r_B

Feature Function Design (II)

(4) Event Transition Function

$$\mathbf{f}_{et}(e_i, e_{i+1}) = \begin{cases} 1, & \text{if } e_i = e_{i+1}; \\ 0, & \text{otherwise.} \end{cases}$$
event change

(5) Spatial Consistency Function

$$\mathbf{f}_{sc}(\theta_{i}, \theta_{i+1}, r_{i}, r_{i+1}) = \exp\left\{-|\mathsf{E}_{p \in r_{i}, q \in r_{i+1}}[\mathsf{d}_{I}(p, q)] - \mathsf{d}_{E}(\theta_{i}.l, \theta_{i+1}.l)|\right\}$$

spatial change under indoor topology

(6) Event Consistency Function

$$\mathbf{f}_{ec}(\theta_i, \theta_{i+1}, e_i, e_{i+1}) = \exp\left\{-\left|\min(1, \gamma_{ec} \cdot \frac{\theta_{i+1}.l - \theta_i.l}{\theta_{i+1}.t - \theta_i.t}) - \frac{\mathsf{I}_{\triangleright}(e_i) + \mathsf{I}_{\triangleright}(e_{i+1})}{2}\right|\right\}$$

moving speed

Feature Function Design (III)

Segmentation cliques can only be identified when **one target** variable has been **configured**

(7) Event-based Segmentation Function

$$\mathbf{f}_{es}(c_{es}^{i:j}) = \left(2 \cdot \mathsf{I}_{\triangleright}(c_{es}^{i:j}.e) - 1\right) \cdot \begin{pmatrix} DISTNUM(r_i, \dots, r_j) \\ \sum_{x=i}^{j-1} \mathsf{d}_E(\theta_x.l, \theta_{x+1}.l) / (\theta_j.t - \theta_i.t) \\ -TURNNUM(\theta_i.l, \dots, \theta_j.l) \end{pmatrix}^\mathsf{T}$$

region number, moving distance, turn number

(8) Space-based Segmentation Function

$$\mathbf{f}_{ss}(c_{ss}^{i:j}) = \begin{pmatrix} -NUM(e_i, \dots, e_j)/(\theta_j.t - \theta_i.t) \\ -(\sum_{x=i}^{j-1} \mathbf{f}_{et}(e_x, e_{x+1})/(\theta_j.t - \theta_i.t) \\ \mathsf{I}_{\triangleright}(e_i) + \mathsf{I}_{\triangleright}(e_j) \end{pmatrix}^\mathsf{T}$$

event number, event change number, stay number in head/tail

Supervised Learning of C2MN

- Given full labeled data as (P, R, E), to find all $w_{ct} \in w$ that maximize P(R, E | P, w)
- Objective function for C2MN (parameter sharing)

$$L(\mathbf{w}) = -\log P(R, E \mid P, \mathbf{w}) + \frac{\mathbf{w}^{\mathsf{T}} \mathbf{w}}{2\sigma^{2}}$$

$$= \sum_{ct \in CT} \sum_{c \in \mathsf{C}(ct)} \left(-\mathbf{w}_{ct}^{\mathsf{T}} \cdot \mathbf{f}_{c}(P_{c}, R_{c}, E_{c}) \right) + \log Z(P, \mathbf{w}) + \frac{\mathbf{w}^{\mathsf{T}} \mathbf{w}}{2\sigma^{2}}$$

$$= \sum_{ct \in CT} \left(-\mathbf{w}_{ct}^{\mathsf{T}} \cdot \sum_{c \in \mathsf{C}(ct)} \mathbf{f}_{c}(P_{c}, R_{c}, E_{c}) \right) + \log Z(P, \mathbf{w}) + \frac{\mathbf{w}^{\mathsf{T}} \mathbf{w}}{2\sigma^{2}}$$

$$= \sum_{ct \in CT} -\mathbf{w}_{ct}^{\mathsf{T}} \cdot \mathbf{f}_{ct}(P_{ct}, R_{ct}, E_{ct}) + \log Z(P, \mathbf{w}) + \frac{\mathbf{w}^{\mathsf{T}} \mathbf{w}}{2\sigma^{2}}$$

$$= -\mathbf{w}^{\mathsf{T}} \cdot \mathbf{f}(P, R, E) + \log Z(P, \mathbf{w}) + \frac{\mathbf{w}^{\mathsf{T}} \mathbf{w}}{2\sigma^{2}}$$

 Computing Z(P, w) needs to consider all possible configurations for R and E: to employ pseudo-likelihood based on Markov blanket (immediate neighbors)

Alternate Learning Algorithm

- Optimization: Quasi-Newton method L-BFGS
 - requires both pseudo-likelihood and its gradient

$$\begin{aligned} \mathsf{PL}(\mathbf{w}) &= -\log \sum_{y_i \in R \cup E} \mathsf{P}(y_i \mid \mathsf{MB}(y_i), \mathbf{w}) + \frac{\mathbf{w}^\mathsf{T} \mathbf{w}}{2\sigma^2} \\ &= -\sum_{y_i \in R \cup E} \left(\mathbf{w}^\mathsf{T} \cdot \mathbf{f}(y_i, \mathsf{MB}(y_i)) + \log Z(\mathsf{MB}(y_i), \mathbf{w}) \right) + \frac{\mathbf{w}^\mathsf{T} \mathbf{w}}{2\sigma^2} \\ \nabla \mathsf{PL}(\mathbf{w}) &= \sum_{y_i \in R \cup E} \left(-\mathbf{f}(y_i, \mathsf{MB}(y_i)) + \mathsf{E}_{\mathsf{P}(y_i' \mid \mathsf{MB}(y_i), \mathbf{w})} [\mathbf{f}(y_i', \mathsf{MB}(y_i), \mathbf{w})] \right) + \frac{\mathbf{w}}{\sigma^2} \end{aligned}$$

- Computation: alternate learning with MCMC inference
 - problem: R and E are correlated
 - in each iteration, fix R (or E), and **learn parameters for another**
 - use the current parameters to conduct MCMC sampling
 - compute pseudo-likelihood and its gradient
 - update parameters and exchange R and E
 - back to the loop until convergence

Experimental Settings

- Compared Methods
 - **SMoT**: speed threshold (for event) + nearest-neighbor regions
 - HMM+DC: HMM for region labeling + Density-based Clustering (i.e., ST-DBSCAN) for event labeling
 - SAP: first dynamic-velocity (SAPDV) or density-area (SAPDA) based event segmentation, then segmentation-level HMMs for regions
 - CMN: decouples event and region labeling with two parallel CMNs
 - C2MN variants
 - **C2MN/Tran** without transition cliques
 - C2MN/Syn without synchronization cliques
 - C2MN/ES without event-based segmentation cliques
 - C2MN/SS without space-based segmentation cliques
- Performance Metrics
 - region accuracy (RA); event accuracy (EA)
 - combined accuracy CA = 0.7 * RA + 0.3 * EA
 - perfect accuracy (PA): fraction of records having both labels correct

Real Data Results

- Wi-Fi positioning data, 7-floor shopping mall, 1 month
 - 5,218,361 positioning records for 44,863 p-sequences
- Training data processing
 - TRIPS* backend for coarsely annotation + Event Editor for confirmation (pairs of volunteers)
 - 10-fold cross-validation with a 70/30 train/test split

^{*} TRIPS: A system for translating raw indoor positioning data into visual mobility semantics. Huan Li, Hua Lu, Feichao Shi, Gang Chen, Ke Chen, and Lidan Shou. PVLDB, pp. 1918-1921, 2018.

Real Data Results

Methods	RA	EA	CA	PA
SMoT	0.7254	0.8125	0.7515	0.6687
HMM+DC	0.7443	0.8769	0.7841	0.6780
SAPDV	0.7028	0.8296	0.7408	0.6485
SAPDA	0.7394	0.8781	0.7810	0.6943
CMN	0.8860	0.8983	0.8897	0.6684
C2MN/Tran	0.8994	0.9109	0.9026	0.7474
C2MN/Syn	0.9332	0.9073	0.9254	0.8268
C2MN/ES	0.9222	0.9495	0.9304	0.7387
C2MN/SS	0.9014	0.9525	0.9167	0.7616
C2MN	0.9492	0.9691	0.9552	0.8866

- Two-way methods CMN and HMM+DC, two-step methods SMoT and SAPDV/SAPDA, cannot learn the interaction between regions and events
- C2MN with a **complete structure** outperforms all its variants
- Joint labeling on regions and events significantly improves overall accuracy
- Initially configuring events labels (using ST-DBSCAN) is more efficient

Synthetic Data Results

- Indoor simulator VITA*: generate trajectories with different levels of sampling frequency (T) and positioning error (u)
- The quality of m-semantics cannot be directly measured by labeling accuracy, we turn to the precision of queries
 - Top-k Popular Region Query (TkPRQ)
 - Top-k Frequent Region Pair Query (TkFRPQ)

 C2MN-based approach works very effectively even when the mobility data quality is low.

^{*} Vita: A versatile toolkit for generating indoor mobility data for real-world buildings. Huan Li, Hua Lu, Xin Chen, Gang Chen, Ke Chen, and Lidan Shou. PVLDB, pp. 1453-1456, 2016.

Summary

- The annotation of indoor mobility data with a semantic region, a time period, and a mobility event
- The C2MN is proposed to capture probabilistic dependencies among positioning records, regions, and events
- A set of **feature functions** are designed to incorporate indoor topology and mobility behaviors
- An alternate learning paradigm is proposed to enable parameter estimation over coupling of regions and events
- Future directions
 - more diverse mobility events (ontology extension)
 - outdoor scenarios, sparse mobility data
 - NER techniques (e.g., BiLSTM-CRF) for mobility annotation

Indoor Mobility Semantics Annotation Using Coupled Conditional Markov Networks

Thank You

