Fractional Knapsack

Introduction

- Classical problems in algorithmic optimization
- In Knapsack problems, a knapsack with capacity W and n items with weights $w_1, w_2, ..., w_n$ and values $v_1, v_2, ..., v_n$ are given. The problem is to add items to the knapsack such that the total weight of the added items is $\leq W$ and the total value is maximized.
- Two variants
 - Fractional Knapsack
 Fractions of items can be taken. Greedy algorithm possible.
 - 2 0-1 Knapsack
 Take item fully or none. Greedy algorithm not possible.

Fractional Knapsack Greedy solution

We are given an instance of fractional Knapsack with capacity W = 30 and the weights and values of n = 4 items, as follows (a, 140, 20), (b, 50, 5), (c, 60, 10), (d, 50, 14)

Greedy Algorithm:

Step 1. Compute *value to weight* $\frac{v_i}{w_i}$ ratio of each items.

Item	Value	Weight	Ratio
a	140	20	7
b	50	5	10
С	60	10	6
d	50	14	3.5

Fractional Knapsack example ...

Step 2. Sort all items in the decreasing order of *value to weight* ratio.

Item	Value	Weight	Ratio
b	50	5	10
a	140	20	7
С	60	10	6
d	50	14	3.5

Step 3. Fill the Knapsack with the (*fraction of the*) item in the decreasing order.

#	Fraction of item added	Remaining capacity	Value
0		30	0
1	(1) b	25	50
2	(1) a	5	190
3	(1/2) c	0	220

Optimality of the greedy algorithm

Greedy Choice property. We need to show that there exists an optimal solution that selects the fraction f of an item i, as the greedy choice did.

Let T^* be a another optimal solution that does not select the fraction f of the item i, as the greedy choice did.

This means T^* has selected only a lesser fraction of i, because the fraction f is a greedy choice.

From T^* we can remove some items with total weight f*weight(i) and can replace with f*i.

Since *i* has better *value to weight* ratio, this gives another optimal solution.

Optimality of the greedy algorithm

Optimal substructure property. Let $T = \{i_1, i_2, \dots, i_k\}$ be an optimal solution of the fractional Knapsack problem S with weight W. We need to show that the solution set T^* we obtain by removing an item i_j from T is an optimal solution for the the problem $S* = S - \{i_j\}$, with weight $W - weight(i_j)$.

Assume the contrary that the solution T^* of the problem is not optimal. Then it means that there exists an optimal solution T^{**} such that $value(T^{**}) \geq value(T^*)$.

If so, then $T^{**} \cup \{i_j\}$ is an optimal solution to the original problem S, which is a contradiction.