

Universidade Tecnológica Federal do Paraná – UTFPR Bacharelado em Ciência da Computação

BCC33B – Arquitetura e Organização de Computadores

Prof. Rogério A. Gonçalves

rogerioag@utfpr.edu.br

Aula 013

Unidade de Controle

Aula de Hoje

- Unidade de Controle
- Tipos de Unidade de Controle

<u>Definições</u>

- Programa
- Instruções
- Ciclo de Instrução
- Micro-operações
- Sinais de Controle

- •Um computador executa um programa.
- Ciclo de busca/execução.
- Cada ciclo tem um número de passos.
- Estes passos são chamados de microoperações.
- Cada passo faz muito pouco.
- Operação atômica da CPU.

Subdivisão do Programa

Tipos de micro-operação

• Transferência de dados entre registradores.

• Transferência de dados de registrador para interface externa.

 Transferência de dados da interface externa para registrador.

•Realizar operações aritméticas ou lógicas.

Funções da unidade de controle

- Sequenciamento:
 - Fazer a CPU percorrer uma série de microoperações.
- Execução:
 - Faz cada micro-operação ser executada.
- Isso é feito por meio de Sinais de Controle.

Sinais de controle

Clock

 Uma microinstrução (ou conjunto de microinstruções paralelas) por ciclo de clock

Registrador de instrução

- Código de operação da instrução atual
- Determina quais microinstruções são realizadas

Flags

- Estado da CPU
- Resultados das operações anteriores

Sinais do barramento de controle:

- Interrupções.
- Confirmações.

Modelo de unidade de controle

Sinais de controle – saída

Dentro da CPU:

- -Causam movimentação de dados.
- -Ativam funções específicas.

Via barramento de controle:

- -Para memória.
- -Para módulos de E/S.

Organização Interna

- Normalmente, um único barramento interno.
- Portas controlam movimento de dados para dentro e fora do barramento.
- •Sinais de controle comandam transferência de dados de e para barramento externo do sistema.
- •Registradores temporários necessários para a operação apropriada da ALU.

Organização Interna

Clock:

- Sequência repetitiva de pulsos.
- Útil para medir duração de micro-operações.
- Deve ser longo o suficiente para permitir propagação de sinal.
- Diferentes sinais de controle em diferentes momentos dentro do ciclo de instrução.
- Precisa de um contador com diferentes sinais de controle para t1, t2 etc.

Implementação

- Tudo o que a unidade de controle faz é gerar um conjunto de sinais de controle.
- Cada sinal de controle é on ou off.
- Represente cada sinal de controle por um bit.
- Tenha uma palavra de controle para cada microoperação.
- Tenha uma sequência de palavras de controle para cada instrução em código de máquina.
- Acrescente um endereço para especificar a próxima microinstrução, dependendo das condições.

Implementação

- Microprocessador grande de hoje:
 - Muitas instruções e hardware associado em nível de registrador.
 - Muitos pontos de controle a serem manipulados.
- Isso resulta em memória de controle que:
 - Contém um grande número de palavras.
 - -Correspondentes ao número de instruções a serem executadas.
 - Tem uma grande largura de palavra:
 - -Devido ao grande número de pontos de controle a serem manipulados.

Arquitetura de von Neumann

Busca da Instrução

Ciclo de Busca

Obs.: Cada micro-operação envolve o movimento de dados entre registradores

Sequência de micro-operações:

$$T_0$$
: RE \leftarrow (PC)

 T_1 : RD \leftarrow (memória)

PC \leftarrow (PC) +1

 T_2 : RI \leftarrow (RD)

micro-operações

<u>Ciclo de Execução</u>

Obs.: O ciclo de execução depende de cada op-code.

Se há N op- codes, então há N seqüências diferentes de microoperações

Exemplo: ADD R1, (X)

Seqüência de micro-operações:

$$T_0$$
: RE \leftarrow (RI (endereço))

$$T_1$$
: RD \leftarrow (memória)

$$T_2$$
: R1 \leftarrow (R1) + (RD)

micro-operações

Funcionamento da UC

Modelo Geral da UC

<u>Implementações da UC</u>

2 Métodos de Implementação:

- Hardwired: usa um circuito combinacional
- Microprogramada: usa uma memória para microinstruções

Registradores

- Registrador de Endereço de Memória (MAR)
 - conectado ao barramento de endereço → especifica endereços para operações de leitura e escrita
- Registrador Buffer de Memória (MBR)
 - conectado ao barramento de dados → armazena o dado para escrita ou o último dado lido da memória.
- Program Counter (PC)
- armazena o endereço da próxima instrução a ser buscada.
- Registrador de Instrução (IR)
 - armazena a última instrução buscada.

Caminhos de dados e sinais de controle

Exemplo de sequência de sinal de controle – Busca

- \cdot MAR < (PC):
 - Unidade de controle ativa sinal para abrir portas entre PC e MAR.
- MBR < (memória):
 - Abre portas entre MAR e barramento de endereço.
 - Sinal de controle de leitura de memória.
 - Abre portas entre barramento de dados e MBR.

Decodificador

Saídas do Sequenciador

Unidade de controle microprogramada de Wilkes

Sinais de controle

- Matriz parcialmente preenchida com diodos.
- Durante o ciclo, uma linha ativada:
 - Gera sinais onde diodo está presente.
 - Primeira parte da linha gera controle.
 - Segunda gera endereço para próximo ciclo.

Características da UC Hardwired

- Complexa: dependendo do número de instruções
- Rápida: instruções executadas diretamente no hardware
- Inflexível: se quiser inserir mais uma instrução, precisa projetar um novo circuito

Problemas com projetos por hardware

- Sequenciação e lógica de micro-operações complexas.
- Difícil de projetar e de testar.
- Projeto inflexível.
- Difícil de acrescentar novas instruções.

UC Microprogramada

UC Microprogramada

Usa memória para armazenar as micro-instruções

UC Microprogramada

UC Microprogramada

Organização da Unidade de Controle

UC Microprogramada

<u>Características da UC Microprogramada</u>

- Mais simples de implementar
- Mais lenta
- Mais flexível: para alterar a UC basta alterar o firmware
- Mais fácil de corrigir erros
- Pode implementar instruções simples e complexas sem alterar o hardware

Tipos de micro-instrução

- Cada microinstrução especifica única (ou poucas) microinstrução(ões) a ser(em) executada(s).
 - -(microprogramação *vertical*)
- Cada microinstrução especifica muitas micro-operações diferentes a serem realizadas em paralelo
 - -(microprogramação horizontal)

Considerações de Projeto

- Tamanho das micro-instruções.
- Tempo de geração de endereço:
 - Determinado pelo registrador da instrução.
 - -Uma vez por ciclo, depois de a instrução ser lida.
 - Próximo endereço sequencial:
 - -Comum na maioria dos projetos.
 - Desvios:
 - -Condicionais e incondicionais.

Leitura Recomendada

Capítulo 15 e 16

STALLINGS, William. Arquitetura e Organização de Computadores. 8. ed. São Paulo, SP: Prentice-Hall, 2010. 624 p. ISBN 9788576055648.

Capítulo 5 e Apêndice C (disponível em PDF)

PATTERSON, David A.; HENNESSY, John L. Organização e projeto de computadores: a interface hardware/software. Rio de Janeiro, RJ: Elsevier, 2005. 484 p. ISBN 9788535215212.

Resumo da Aula de Hoje

Tópicos mais importantes:

- Unidade de Controle: características, tipos.

Entregar folha com:

- Nome
- RA
- Data de Hoje
- Resumo

Referências

- Materiais de aula do Prof. João Angelo Martini do DIN-UEM.
- Livros: Patterson e Stallings.