Chapter 1

Calculas on Manifolds

1.1 Some proofs

Theorem 1. Let $O \subseteq \mathbb{R}^{n+1}$ be open and $x \in \mathbb{R}$. Let's define O' as follows:

$$O' = \{(y_1, \dots, y_n) : (x, y_1, \dots, y_n) \in O\}$$

Then $O' \subseteq \mathbb{R}^n$ is open.

Proof. Let $(y_1, \ldots, y_n) \in O'$ be arbitrary. By definition, $(x, y_1, \ldots, y_n) \in O$. Since O is open there is an open rectangle $U \subseteq O$. Corrsponding open rectangle U' also contains our y. Now suppose $z \in U'$ is arbitrary. Then $(x, z_1, \ldots, z_n) \in U \subseteq O$. Therefore, $z \in O'$. Hence, O' is open. \square

Theorem 2. Let $O \in \mathbb{R}^{m+n}$ be open and $x = (x_1, \dots, x_m) \in \mathbb{R}^m$. Define

$$O' = \{(y_1, \dots, y_n) : (x_1, \dots, x_m, y_1, \dots, y_n) \in O\}$$

Then O' is also open in \mathbb{R}^n .

Proof. Previous proof works with some slight changes.

Theorem 3. If $B \subseteq \mathbb{R}^n$ is compact and $x \in \mathbb{R}$, then $\{x\} \times B \subseteq \mathbb{R}^{n+1}$ is also compact.

Proof. Suppose O is an open cover for $\{x\} \times B \subseteq \mathbb{R}^{n+1}$. Then we can construct an open cover O' by having a function $f: U \to U'$ by dropping the first coordinate. Since B is compact, there is a finite list of open sets U'_1, \ldots, U'_2 that covers B. From this finite set we can find a finite cover U_1, \ldots, U_n by going back pre-image by pre-image so that we contain α . Hence $\{x\} \times B \in \mathbb{R}^{n+1}$ is compact. \square

Theorem 4. If $B \in \mathbb{R}^m$ is compact and $x \in \mathbb{R}^n$, then $\{x\} \times B \in \mathbb{R}^{n+m}$ is also compact.

Proof. Similar as above.

Theorem 5. If B is compact and O is an open cover of $\{x\} \times B \in \mathbb{R}^{n+m}$, then there is an open set $U \in \mathbb{R}^n$ containing x such that $U \times B$ is covered by a finite number of sets in O.

Theorem 6. If $A \subseteq \mathbb{R}^n$ and $B \subseteq \mathbb{R}^m$ are compact, then $A \times B \subseteq \mathbb{R}^{m+n}$ is compact.

Theorem 7. $A_1 \times \cdots \times A_k$ is compact if each A_i is. In particular, a closed rectangle in \mathbb{R}^k is compact.

Theorem 8. A closed bounded subset of \mathbb{R}^n is compact. (The converse is also true (Problem 1-20)).

Theorem 9. Prove the converse of Corollary 1-7: A compact subset of \mathbb{R}^n is closed and bounded (see also Problem 1-28).

Proof. Let $B \subseteq \mathbb{R}^n$ be compact. Boundededness of B is trivial. We only have to show that B is closed, we will show that $\mathbb{R}^n \setminus B$ is open. Let $p \in \mathbb{R}^n \setminus B$ be arbitrary. For each $q \in B$, we consider the open set $W_q = B_r(q, \frac{|p-q|}{2})$. These consiststs of an open cover O of B. By compactness, $W_{q_1} \dots W_{q_m}$ covers B. Choose q_i such that $|p-q_i|$ is smallest. Then the neighbourhood $B(p) \subseteq \mathbb{R}^n \setminus B$. Hence, $\mathbb{R}^n \setminus B$ is open.

Exercise. 1-21(a) If A is closed and $x \notin A$, prove that there is a number d > 0 such that $|y - x| \ge d$ for all $y \in A$.

Proof. Let $x \notin A$. Since $\mathbb{R}^n \setminus A$ is open, there exists a neighborhood $B(x) \subseteq \mathbb{R}^n \setminus A$. Take d as the radius of this neighborhood B(x).

Exercise. 1-21(b) If A is closed, B is compact, and $A \cap B = \emptyset$, prove that there is d > 0 such that $|y - x| \ge d$ for all $y \in A$ and $x \in B$. Hint: For each $b \in B$ find an open set U containing b such that this relation holds for $x \in U \cap B$.

Proof. Since A and B are disjoint, by 1-21(a) for each $b \in B$ we can find d > 0 such that $|y - b| \ge d$ for all $y \in A$. Consider the open cover $O = \{B_{\frac{d}{2}}(b) : b \in B\}$. Since B is compact, finitely many open set $B_{d_1}, \ldots B_{d_k}$ covers B. By triangale inequality if $x \in B_{d_i}$ then we have $|y - x| \ge d_i$. By picking the minimums of d_i we find our d.

Exercise. 1-21(c) Give a counterexample in \mathbb{R}^2 if A and B are closed but neither is compact.

Proof. Let
$$A = \mathbb{N}$$
 and $B = \{n + \frac{1}{2n} | n \in \mathbb{N}\}.$

Exercise. 1-22 If U is open and $C \subseteq U$ is compact, show that there is a compact set D such that $C \subseteq interior D$ and $D \subseteq U$.

Proof. Notice that U^c is closed and $C \cup U^c = \emptyset$. Therefore, by 1-21 there exists d > 0 such that |y - x| > d for all $x \in C$ and $y \in U^c$. Now consider the set

$$E = \bigcup_{x \in C} U_x$$

where U_x is an open neighbourhood with radius d/2 and centered at x. Then we have $C \subseteq E \subseteq U$. Moreover since C is compact we can assume that E is an union of finitely many sets U_x . Our choice of d guaruntees that if we take

$$D = \bigcup_{i=1}^{k} \overline{U}_{x_i}$$

then we still have $C \subseteq D \subseteq U$, where each \overline{U}_{x_i} is a closed neighbourhood.

Theorem 10. If $A \subseteq \mathbb{R}^n$, a function $f: A \to \mathbb{R}^m$ is continuous if and only if for every open set $U \subseteq \mathbb{R}^m$ there is some open set $V \subseteq \mathbb{R}^n$ such that $f^{-1}(U) = V \cap A$

1.1. SOME PROOFS 3

Proof. We prove the converse. Let $a \in A$ be arbitrary, we show that f is continuous at a. Let $\epsilon > 0$ be arbitrary. Then the neighbourhood $B = B_{\epsilon}(f(a)) \subseteq \mathbb{R}^m$ is open. Therefore, $f^{-1}(B) = V \cap A$ for some open set $V \subseteq \mathbb{R}^n$. But then, $a \in V$ so there is an open set $B_{\delta}(a) \subseteq V$ for some $\delta > 0$. Therefore, if $x \in B_{\delta}(a)$ and $x \in A$, then $f(x) \subseteq B$. Hence f is continuous at a.

If $A \to \mathbb{R}$ is bounded, the extent to which f fails to be continuous at $a \in A$ can be measured in a precise way. For $\delta > 0$ let

$$M(a, f, \delta) = \sup\{f(x) : x \in A \text{ and } |x - a| < \delta\}$$

$$m(a, f, \delta) = \inf\{f(x) : x \in A \text{ and } |x - a| < \delta\}$$

The oscillation o(f, a) of f at a is defined by $o(f, a) = \lim_{\delta \to 0^+} [M(a, f, \delta) - m(a, f, \delta)]$

Theorem 11. If f is bounded, then $o(f, a) = \lim_{\delta \to 0^+} [M(a, f, \delta) - m(a, f, \delta)]$ always exists.

Proof. Consider the sequence $M(a, f, \frac{1}{n}) - m(a, f, \frac{1}{n})$. This is a decreasing sequence which is bounded below by 0. Therefore, there exists a limit $a \ge 0$. It is easy to show

$$a = \lim_{\delta \to 0^+} [M(a, f, \delta) - m(a, f, \delta)]$$

since 1g(x) = M(a, f, x) - m(a, f, x) is a non-increasing function on x > 0.

Exercise. 1-23 If $f: A \to \mathbb{R}^m$ and $a \in A$, show that $\lim_{x\to a} f(x) = b$ if and only if $\lim_{x\to a} f^i(x) = b^i$ for $i = 1, \ldots, m$.

Proof. \to Suppose $\lim_{x\to a} f(x) = b$, then for each $\epsilon > 0$ there exists $\delta > 0$ such that if $y \in A$ and $0 < |x-y| < \delta$, then $|f(x)-b| < \epsilon$. Same choice of δ ensures that $|f^i(x)-b^i| < \epsilon$.

 \leftarrow Now suppose $\lim_{x\to a} f^i(x) = b^i$ for $i=1,\ldots,m$. Let $\epsilon>0$ be arbitrary. Then we find δ_1,\ldots,δ_m where each $\delta_i>0$ such that $|f^i(x)-b^i|<\epsilon$. Taking minimum of these δ_i as δ we find that $|f(x)-b|\leq \sum |f^i(x)-b^i|\leq n\epsilon$.

Exercise. 1-24. Prove that $f: A \to \mathbb{R}^m$ is continuous at a if and only if each f^i is.

Proof. \to Suppose $f: A \to \mathbb{R}^m$ is continuous at a. Then $\lim_{x\to a} f(x) = f(a)$ From 1-23, we see that $\lim_{x\to a} f^i(x) = f^i(a)$. Therefore, each $f^i: A \to \mathbb{R}$ is continuous at $a \in \mathbb{R}^n$.

 \leftarrow Suppose each $f^i:A\to\mathbb{R}$ is continuous at $a\in A$. Then we have $\lim_{x\to a}f^i(x)=f^i(a)$. Again, using 1-23 we conclude that $\lim_{x\to a}f(x)=f(a)$.

Exercise. 1-25 Prove that a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is continous. Hint: Use Problem 1-10.

Proof. We know from 1-10 that there is a M>0 such that $|T(h)|\leq M|h|$ for all $h\in\mathbb{R}^n$. Now take $\delta=\frac{\epsilon}{2M}$. Then, for any $y\in\mathbb{R}^n$ such that $|x-y|<\delta$ we have (for h=y-x):

$$|T(y) - T(x)| = |T(x+h) - T(x)|$$

$$= |T(x) + T(h) - T(x)|$$

$$= |T(h)|$$

$$\leq M|h|$$

$$< M\frac{\epsilon}{2M} = \epsilon$$

1.2 Differentiation

Problem. 2-1. Prove that if $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $a \in \mathbb{R}^n$, then it is continuous at a. Hint: User Problem 1-10.

Proof. Since f is differentiable at a, it is easy to show the weaker statement

$$\lim_{h \to 0} |f(a+h) - f(a) - L(h)| = 0$$

Now,

$$0 \le |f(a+h) - f(a)| \le |f(a+h) - f(a) - L(h)| + |L(h)|$$

Since both of the terms on the right side goes to 0 as $h \to 0$, it shows that f is continuous at a.

Problem. 2-2. A function $f: \mathbb{R}^2 \to \mathbb{R}$ is independent of the second variable if for each $x \in \mathbb{R}$ we have $f(x, y_1) = f(x, y_2)$ for all $y_1, y_2 \in \mathbb{R}$. Show that f is independent of the second variable if and only if there is a function $g: \mathbb{R} \to \mathbb{R}$ such that f(x, y) = g(x). What is f'(a, b) in terms of g'?

Proof. Suppose f is independent of the second variable. Define

$$g(x) = f(x, y)$$

Then g is well defined.

On the other hand, suppose there exists such function $g : \mathbb{R} \to \mathbb{R}$. Then f is independent of the second variable.

Problem. 2-12: A function $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p$ is bilinear if for $x, x_1, x_2 \in \mathbb{R}^n$, $y, y_1, y_2 \in \mathbb{R}^m$, and $a \in \mathbb{R}$ we have

$$f(ax, y) = af(x, y) = f(x, ay)$$
$$f(x_1 + x_2, y) = f(x_1, y) + f(x_2, y)$$
$$f(x, y_1 + y_2) = f(x, y_1) + f(x, y_2)$$

(a) Prove that if f is bilinear, then

$$\lim_{(h,k)\to 0} = \frac{|f(h,k)|}{|(h,k)|} = 0$$

- (b) Prove that Df(a, b)(x, y) = f(a, y) + f(x, b).
- (c) Show that the formula for Dp(a, b) in Theorem 2-3 is a special case of (b).

Proof. (a) We will be a little bit more verbose in our proof than the problem statement, and will use *norm* and *absolute* value sign properly. Let e_1, \ldots, e_n be an orthonormal basis of \mathbb{R}^n , and

similarly f_1, \ldots, f_m ben an orthonormal basis of \mathbb{R}^m . Moreover, let $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$ such that :

$$x = x_1 e_1 + \dots + x_n e_n$$

$$y = y_1 f_1 + \dots + y_m e_m$$

Then we have

$$f(x,y) = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_j f(e_i, f_j)$$

Hence,

$$||f(x,y)|| \le \sum_{i=1}^{n} \sum_{j=1}^{m} |x_i||y_j|||f(e_i, f_j)||$$

$$\le \sum_{i=1}^{n} \sum_{j=1}^{m} ||x||||y||||f(e_i, f_j)||$$

$$= ||x||||y|| \sum_{i=1}^{n} \sum_{j=1}^{m} ||f(e_i, f_j)||$$

$$= C||x||||y||$$

Therefore,

$$\frac{\|f(h,k)\|}{\|(h,k)\|} \le \frac{C\|h\|\|k\|}{\|(h,k)\|}$$

But $||h|||k|| \le ||h||^2 + ||k||^2 = ||(h, k)||^2$. Hence.

$$\frac{\|f(h,k)\|}{\|(h,k)\|} \le \frac{C\|h\|\|k\|}{\|(h,k)\|} \le \frac{C\|(h,k)\|^2}{\|(h,k)\|} \le C\|(h,k)\|$$

Therefore,

$$\lim_{(h,k)\to 0} \frac{\|f(h,k)\|}{\|(h,k)\|} = 0$$

Proof. (b)

$$\begin{split} &\lim_{(x,y)\to 0} \frac{\|f(a+x,y+b)-f(a,b)-f(a,y)-f(x,b)\|}{\|(x,y)\|} \\ &= \lim_{(x,y)\to 0} \frac{\|f(a,b)+f(a,y)+f(x,b)+f(x,y)-f(a,b)-f(a,y)-f(x,b)\|}{\|(x,y)\|} \\ &= \lim_{(x,y)\to 0} \frac{\|f(x,y)\|}{\|(x,y)\|} = 0 \end{split}$$

We also need to show that $Dp(a,b)(x,y)=f(a,y)+f(x,b):\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R}^p$ is linear, but that is easy to show.

Proof. For n = m = p = 1, the product is bilinear, and follows from there.

Problem. 2-13 Define $IP : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ by $IP(x,y) = \langle x,y \rangle$.

- (a) Find D(IP)(a,b) and (IP)'(a,b).
- (b) If $f, g : \mathbb{R} \to \mathbb{R}^n$ are differentiable and $h : \mathbb{R} \to \mathbb{R}$ is defined by $h(t) = \langle f(t), g(t) \rangle$, show that

$$h'(a) = \langle f'(a), g(a) \rangle + \langle f(a), g'(a) \rangle$$

(c) If $f: \mathbb{R} \to \mathbb{R}^n$ is differentiable and |f(t)| = 1 for all t, show that

$$\langle f'(t), f(t) \rangle = 0$$

(d) Exhibit a differentiable function $f: \mathbb{R} \to \mathbb{R}$ such that the function |f| defined by |f|(t) = |f(t)| is not differentiable.

Chapter 2

Linear Algebra Done right

2.1 Excercise: 3.D

Problem. 1. Suppose $T \in \mathcal{L}(U,V)$ and $S \in \mathcal{L}(V,W)$ are both invertible linear maps. Prove that $ST \in \mathcal{L}(U,W)$ is invertible and that $(ST)^{-1} = T^{-1}S^{-1}$

Proof. Since ST is a composition of two bijections, it is also a bijection, and hence is also a bijection. We only need to show that $(ST)^{-1} = T^{-1}S^{-1}$.

$$(T^{-1}S^{-1})(ST) = T^{-1}(S^{-1}S)T$$

= $T^{-1}IT$
= $T^{-1}T = I$

Similarly, $(ST)(T^{-1}S^{-1}) = I$.

Problem. 9. Suppose V is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that ST is invertible if and only if both S and T are invertible.

Proof. The reverse direction is immediate from Problem 1. Now suppose that ST is invertible. Let $v \in V$. Then STv = v. Hence S is surjective and therefore invertible. Suppose that Tu = Tv. Then, STu = STv. Since ST is invertible, we have u = v. Therefore, T is injective, and since V is finite dimension, T is invertible.

Problem. 10. Suppose V is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that ST = I if and only if TS = I

Proof. Suppose ST = I. Then STv = v. Since V is finite dimensional, S is invertible. Now,

$$I = S^{-1}S = S^{-1}(ST)S = (S^{-1}S)TS = ITS = TS$$

2.2 Exercise: 6.A

Problem. (29) Suppose V_1, \ldots, V_m are inner product spaces. Show that the equation

$$\langle (u_1, \dots, u_m), (v_1, \dots, v_m) \rangle = \langle u_1, v_1 \rangle + \dots + \langle u_m, v_m \rangle$$

defines an inner product on $V_1 \times \cdot \times V_m$.

2.3 Excercise: 7.C

Problem. 4. Suppose $T \in \mathcal{L}(V, W)$ Prove that T^*T is a positive operator on V and TT^* is a positive operator on W.

Proof.

$$(T^*T)^* = T^*T$$

Therefore, T^*T is self-adjoint. Moreover,

Therefore, T^*T is positive.