Data Visualization and Text Mining/NLP Combined Assessment

Team 5: Diana Aycachi, Alessandro Casella, Kevin Farjallah, Diego Polar, Vivian Soo, and Madhuri Thackeray

Dec 13th, 2021

Index

Introduction and Executive Summary	3
Tokenization and Frequencies	3
N-gram Analysis	3
Correlograms Apartments for US, Spain, Canada	4
Sentiment Analysis for Australia, Canada, and United States	4
Dashboard analysis	5
Appendix	6
Appendix 1 Tokens and frequencies for the dataset	6
Appendix 2 Sentiment analysis filtered by price US-Canada_Australia	7
Appendix 3 - Correlogram for U.S., Canada, and Spain	8
Appendix 4 Bigram counts for the US	9
Appendix 5 Bigram counts for Canada	10
Appendix 6 Bigram counts for Australia	11
Appendix 7 Bigram counts for Brazil	12
Appendix 8 Bigram counts for Portugal	13
Appendix 9 Bigram counts for Hong Kong	14
Appendix 10 Bigram counts for Spain	15
Appendix 11 Bigram counts for China	16
Appendix 12 Bigram counts for Turkey	17
Appendix 13 Average price of listings per country	18
Appendix 14 Counts of each property type by country	19
Appendix 15 Property types listed in China	20
Appendix 16 Average review score per country	21
Appendix 17 Number of bedrooms and bathrooms per country	22
Appendix 18 Number of superhosts per country	23
Appendix 19 Dashboard #1	24
Appendix 20 Dashboard #2	25
Appendix 21 R code	26

Introduction and Executive Summary

In this report, we used R programming to perform text analysis on Airbnb's description of postings across countries. In addition, we used Tableau to better visualize the relationships between countries and some of their respective numerical variables such as price, review scores, and more. Where the analysis revealed that American and European hosts are friendlier to guests and take a higher consideration of their listing being close to public transportation as well having larger sized beds. Other point of note was that the most highly rated countries also had the lower average priced listing when compared to other countries.

Tokenization and Frequencies

Assuming all prices are listed in the same currencies, the average price per night across all countries is \$279. When comparing the top 10 most frequent word tokens between descriptions of below average and above average price per night, we noticed that for the higher price range, there is an added need for top entertainment, which are "shopping" and "pool" (Appendix 1). In Tableau, we can see that Hong Kong has the highest average price of \$774 per night, followed by Brazil and China. Countries such as the United States, Canada, and other western countries, however, have an average price of below \$200 per night (Appendix 13).

N-gram Analysis

Among the countries with below average price per night, the United States, Canada, Australia, and Portugal also have the highest average review scores compared to the other countries (Appendix 16). When we further examine the bigrams in R, we noticed that listings from these highly rated countries tend to have descriptions emphasizing on availability of nearby transportations and larger sized beds, such as "walking distance", "metro station", "queen bed", and "size bed" (Appendix 4 - 12).

Correlograms Apartments for US, Spain, Canada

Next, by creating two correlograms (Appendix 3) we compare the terms that are common and different between the United States and Canada, and between the United States and Spain.

Between the United States and Canada, we've found that "bathtub", "bbq", "bikes", "blankets", "advice", "fast" are some of the common terms they share. This suggests that the hosts of both countries offer apartments with bathtubs, space for barbeque, and possibly biking related amenities as well. In terms of differences, we can deduce that hosts from the United States might offer coffee while hosts from Canada might offer cuisine services or their properties might be located next to a variety of cuisine styles.

Between the United States and Spain, the common terms include "authentic", "bank", "cold", "club", which would mean that the hosts of these countries offer some authentic service or architecture. For terms that appear more frequently in the US, we have "closet", "coffee", "clean", "cable", "street", "bars", "subway" and more. For terms that appear more frequently in Spain we see terms like metro, balcony, barrio. However, metro can be translated as a kind of transportation like the subway, so this is under the category of common words. Hosts in Spain might offer properties located near to the plazas, which are parts of the cities that represent the downtown. On the other hand, hosts in the US put an emphasis on delivering coffee as an extra product or service, queen beds, and cleanliness.

Sentiment Analysis for Australia, Canada, and United States

For the sentiment analysis we looked at Australia, Canada, and the United States. Each country was further filtered based on high (>= \$279) and low (<= \$129) price ranges (Appendix 2). Their Affin, Bing and NRC scores were calculated to gain insight on how would describe a more expensive or cheaper accommodation and what facilities would entice a possible guest to

make the final decision. All three countries had a higher positive score than negative for all the sentiments, giving each of them an overall positive score. Most AirBnbs in Australia were either located in Sydney or on the outskirts for easy access. Prices for accommodation near the beach or walking distance from Sydney CBD were higher. Similarly, AirBnbs offered in Canada were in/near Montreal or the Montreal Airport with a great view of the city. Lastly for the United States, the highest number of listings were in Hawaii, making beach access an important feature for the final decision. Hosts who stayed in cities like Brooklyn and New York emphasized on comfort and community, with a bonus of cultural immersion.

Dashboard analysis

Looking at the Appendix 19 and 20, for the former we can notice that countries listed from the Western side have a lower price per night on average while maintaining the highest number of properties listed, especially the United States, who has by far the largest number of properties listed with a focus on apartments. While the latter shows that Brazil who has average reviews scores, focuses on bringing more space available to the guest inside the property, especially in the form of larger amounts of bedrooms and bathrooms compared to any other country. Combining the dashboard on Appendix 20 with the bigram analysis previously done, it was discovered that higher reviewed countries, had a major focus on larger bed sizes as well as walking distance, while lower reviewed countries, focused on their on nearby attractions and amenities. A final point of note when looking at both dashboards was the fact that the most popular countries were also the ones who had a lower price compared to the others (assuming that the currencies were all standardized in dollar amounts), such as the United States or Portugal that coincidently also have a large amount of superhosts (Appendix 18).

AppendixAppendix 1 Tokens and frequencies for the dataset

> low			>	high		
	word	n			word	n
1	building	686	1		building	317
2	quiet	678	2		enjoy	271
3	fully	659	3		shopping	271
4	center	582	4		fully	256
5	full	567	5		quiet	240
6	beautiful	566	6		spacious	232
7	enjoy	564	7		full	227
8	spacious	431	8		pool	225
9	perfect	405	9		beautiful	214
10	clean	379	10	ð	perfect	205

Appendix 2 Sentiment analysis filtered by price US-Canada_Australia

```
> bind_rows(United_States_afinn_high, United_States_bing_and_nrc_high)
  sentiment
                  method negative positive
1
        305
                   AFINN
                                NA
                                          NA
2
        200 Bing et al.
                                         260
                                60
        289
3
                      NRC
                                93
                                         382
> bind_rows(United_States_afinn_low, United_States_bing_and_nrc_low )
  sentiment
                  method negative positive
1
        346
                   AFINN
                                NA
                                          NA
2
        214 Bing et al.
                               144
                                         358
3
        343
                      NRC
                               179
                                         522
> bind_rows(afinn_Australia_high, bing_and_nrc_Australia_high)
  sentiment
                method negative positive
1
       198
                 AFINN
                            NA
2
       145 Bing et al.
                            41
                                    186
3
       164
                  NRC
                            70
                                   234
> bind_rows(afinn_Australia_low, bing_and_nrc_Australia_low)
  sentiment
                method negative positive
       265
1
                 AFINN
                            NA
                                     NA
2
                            75
                                    245
       170 Bing et al.
       239
                   NRC
                           104
                                    343
> bind_rows(afinn_Canada_high, bing_and_nrc_Canada_high)
  sentiment
                 method negative positive
1
         67
                  AFINN
                               NA
                                         NA
2
         54 Bing et al.
                               11
                                         65
3
         69
                    NRC
                               11
                                         80
> bind_rows(afinn_Canada_low, bing_and_nrc_Canada_low)
  sentiment
                  method negative positive
1
        261
                   AFINN
                                NA
                                          NA
2
        193 Bing et al.
                                74
                                         267
3
        266
                     NRC
                                         375
                               109
```

Appendix 3 - Correlogram for U.S., Canada, and Spain

> bigram_counts_US

	word1	word2	(Country	n
1	walking	distance	United	States	220
2	size	bed	United	States	207
3	queen	size	United	States	152
4	minute	walk	United	States	129
5	bedroom	apartment	United	States	119
6	washer	dryer	United	States	118
7	central	park	United	States	107
8	queen	bed	United	States	102
9	2	bedroom	United	States	96
10	flat	screen	United	States	94
11	1	bedroom	United	States	91
12	master	bedroom	United	States	91
13	ocean	views	United	States	89
14	newly	renovated	United	States	88
15	ocean	view	United	States	83
16	queen	sized	United	States	83
17	sized	bed	United	States	83
18	air	conditioning	United	States	82
19	easy	access	United	States	80
20	min	walk	United	States	76
21	sofa	bed	United	States	75
22	equipped	kitchen	United	States	74
23	screen	tv	United	States	69
24	north	shore	United	States	68
25	~ ~	£τ	コマキャンツ	CTCTCC	60

Appendix 5 Bigram counts for Canada

> bigram_counts_Canada

	_	_		
	word1	word2	Country	n
1	mont	royal	Canada	179
2	montr	al	Canada	133
3	de	la	Canada	119
4	walking	distance	Canada	109
5	metro	station	Canada	104
6	salle	de	Canada	86
7	size	bed	Canada	81
8	de	bain	Canada	78
9	centre	ville	Canada	75
10	jean	talon	Canada	75
11	5	minutes	Canada	74
12	downtown	montreal	Canada	67
13	min	walk	Canada	64
14	de	montr	Canada	62
15	equipped	kitchen	Canada	62
16	queen	size	Canada	60
17	plateau	mont	Canada	57
18	minutes	walk	Canada	55
19	wi	fi	Canada	54
20	la	rue	Canada	51
21	logement	est	Canada	49
22	10	minutes	Canada	48
23	le	quartier	Canada	47
24	de	marche	Canada	44
25	grocery	stores	Canada	44

Appendix 6 Bigram counts for Australia

> b	> bigram_counts_Australia				
	word1	word2	Country	n	
1	bondi	beach	Australia	116	
2	minute	walk	Australia	116	
3	train	station	Australia	110	
4	minutes	walk	Australia	109	
5	walking	distance	Australia	88	
6	bedroom	apartment	Australia	82	
7	queen	bed	Australia	80	
8	sydney	cbd	Australia	80	
9	min	walk	Australia	67	
10	size	bed	Australia	67	
11	public	transport	Australia	66	
12	queen	size	Australia	64	
13	bus	stop	Australia	60	
14	equipped	kitchen	Australia	54	
15	washing	machine	Australia	54	
16	central	station	Australia	53	
17	surry	hills	Australia	50	
18	air	conditioning	Australia	49	
19	opera	house	Australia	48	
20	darling	harbour	Australia	46	
21	2	bedroom	Australia	45	
22	short	walk	Australia	43	
23	plan	living	Australia	42	
24	street	parking	Australia	42	
25	10	minutes	Australia	40	

Appendix 7 Bigram counts for Brazil

> bigram_counts_Brazil

	word1	word2	Country	n
1	rio	de	Brazil	189
2	de	janeiro	Brazil	186
3	pr	ximo	Brazil	161
4	da	praia	Brazil	133
5	wi	fi	Brazil	122
6	ar	condicionado	Brazil	110
7	air	conditioning	Brazil	98
8	de	copacabana	Brazil	87
9	meu	espa	Brazil	86
10	condom	nio	Brazil	85
11	de	casal	Brazil	85
12	cable	tv	Brazil	81
13	pr	dio	Brazil	79
14	da	tijuca	Brazil	78
15	barra	da	Brazil	74
16	cama	de	Brazil	69
17	todos	os	Brazil	69
18	confort	vel	Brazil	66
19	ximo	ao	Brazil	64
20	da	cidade	Brazil	54
21	copacabana	beach	Brazil	53
22	double	bed	Brazil	53
23	praia	de	Brazil	53
24	rea	de	Brazil	49
25	dispon	vel	Brazil	48

_ I	oigram_cou	ints Porti	ıaal	
	word1	word2		n
1	da		Portugal	104
2	metro		Portugal	94
3	walking	distance	J	91
4	walking		Portugal	77
5			•	74
	city		Portugal	
6	de		Portugal	69
7	double		Portugal	68
8	santa	catarina	9	65
9	equipped		Portugal	59
10	casa		Portugal	56
11	douro	river	Portugal	54
12	de	metro	Portugal	51
13	minutes	walking	Portugal	51
14	sofa	bed	Portugal	50
15	casa	de	Portugal	49
16	free	wifi	Portugal	45
17	train	station	Portugal	45
18	de	casal	Portugal	42
19	5	minutes	Portugal	41
20	cama	de	Portugal	41
21	minutes	walk	Portugal	41
22	de	gaia	Portugal	38
23	private	bathroom	•	38
24	cable		Portugal	36
25	confort		Portugal	36
			_	

Appendix 9 Bigram counts for Hong Kong

> b	igram_cou	ınts_HK			
	word1	word2	Cou	untry	n
1	hong	kong	Hong	Kong	377
2	mtr	station	Hong	Kong	171
3	double	bed	Hong	Kong	104
4	causeway	bay	Hong	Kong	96
5	tsim	sha	Hong	Kong	96
6	sha	tsui	Hong	Kong	95
7	minutes	walk	Hong	Kong	91
8	mins	walk	Hong	Kong	85
9	walking	distance	Hong	Kong	81
10	sheung	wan	Hong	Kong	74
11	minute	walk	Hong	Kong	68
12	min	walk	Hong	Kong	64
13	free	wifi	Hong	Kong	63
14	washing	machine	Hong	Kong	61
15	newly	renovated	Hong	Kong	55
16	wan	chai	Hong	Kong	55
17	single	bed	Hong	Kong	53
18	private	bathroom	Hong	Kong	50
19	mong	kok	Hong	Kong	48
20	airport	bus	Hong	Kong	46
21	sai	ying	Hong	Kong	45
22	ying	pun	Hong	Kong	45
23	5	mins	Hong	Kong	43
24	air	${\it conditioning}$	Hong	Kong	43
25	wi	fi	Hong	Kong	43

>	> bigram_counts_Spain			
	word1	word2	Country	n
1	de	la	Spain	188
2	sagrada	familia	Spain	173
3	double	bed	Spain	131
4	equipped	kitchen	Spain	95
5	en	el	Spain	91
6	de	gracia	Spain	90
7	de	barcelona	Spain	89
8	air	conditioning	Spain	78
9	las	ramblas	Spain	75
10	sofa	bed	Spain	75
11	metro	station	Spain	74
12	5	minutes	Spain	73
13	washing	machine	Spain	68
14	minutes	walking	Spain	63
15	la	ciudad	Spain	62
16	single	beds	Spain	60
17	minutes	walk	Spain	59
18	10	minutes	Spain	58
19	city	center	Spain	55
20	wi	fi	Spain	55
21	paseo	de	Spain	54
22	plaza	catalunya	Spain	50
23	walking	distance	Spain	46
24	passeig	de	Spain	44
25	en	1 <i>a</i>	Spain	43

Appendix 11 Bigram counts for China

> bigram_counts_China

	- 9			
	word1	word2	Country	n
1	7ad9	e2	China	7
2	79bb	3	China	4
3	94c1	2	China	4
4	4f4f	2	China	3
5	884c	10	China	3
6	884c	150	China	3
7	884c	5	China	3
8	94c1	1	China	3
9	94c1	9	China	3
10	12	15	China	2
11	4e50	happy	China	2
12	5	8	China	2
13	533a	50	China	2
14	53e3	9	China	2
15	6709	24	China	2
16	7684	12	China	2
17	79bb	1	China	2
18	79bb	2	China	2
19	79bb	35	China	2
20	7ad9	1	China	2
21	7ad9	10	China	2
22	7ad9	14	China	2
23	7ad9	phone	China	2
24	7ea6	500	China	2
25	884c	3	China	2

Appendix 12 Bigram counts for Turkey

> 1	<pre>> bigram_counts_Turkey</pre>				
	word1	word2	Country	n	
1	walking	distance	Turkey	122	
2	taksim	square	Turkey	105	
3	5	minutes	Turkey	87	
4	istiklal	street	Turkey	73	
5	10	minutes	Turkey	66	
6	metro	station	Turkey	64	
7	wi	fi	Turkey	54	
8	blue	mosque	Turkey	51	
9	washing	machine	Turkey	49	
10	double	bed	Turkey	48	
11	minute	walk	Turkey	45	
12	minutes	walking	Turkey	45	
13	5	min	Turkey	42	
14	city	center	Turkey	42	
15	galata	tower	Turkey	42	
16	minutes	walk	Turkey	42	
17	10	min	Turkey	39	
18	<na></na>	<na></na>	Turkey	37	
19	hagia	sophia	Turkey	36	
20	topkapi	palace	Turkey	36	
21	air	conditioning	Turkey	35	
22	2	minutes	Turkey	33	
23	24	hours	Turkey	30	
24	3	minutes	Turkey	28	
25	free	wifi	Turkey	28	

Appendix 13 Average price of listings per country

Appendix 14 Counts of each property type by country

Appendix 15 Property types listed in China

Appendix 16 Average review score per country

Appendix 17 Number of bedrooms and bathrooms per country

Appendix 18 Number of superhosts per country

Appendix 19 Dashboard #1

Appendix 20 Dashboard #2

Tableau - Dashboard 2

Appendix 21 R code

#installing and loading the mongolite library to download the Airbnb data #install.packages("mongolite") #need to run this line of code only once and then you can comment out library(mongolite) library(jsonlite)

This is the connection_string. You can get the exact url from your MongoDB cluster screen #replace the <<use>user>> with your Mongo user name and <<password>> with the mongo password

#lastly, replace the <<server_name>> with your MongoDB server name connection_string <-

'mongodb+srv://dpolar96:918o412o@cluster0.prsct.mongodb.net/sample_airbnb?retryWrites=true&w=majority'

airbnb_collection <- mongo(collection="listingsAndReviews", db="sample_airbnb", url=connection_string)

#Here's how you can download all the Airbnb data from Mongo ## keep in mind that this is huge and you need a ton of RAM memory

airbnb_all <- airbnb_collection\$find()</pre>

#1 subsetting your data based on a condition:

Name <- airbnb all\$name

Descritpion <- airbnb_all\$description

Property_type <- airbnb_all\$property_type

Room_type <- airbnb_all\$room_type

Guest.number <- airbnb all\$accommodates

Bedrooms <- airbnb_all\$bedrooms

Beds <- airbnb all\$beds

Bathrooms <- airbnb_all\$bathrooms

Reviews_scores_value <- airbnb_all\$review_scores\$review_scores_value

airbnb_verified <- airbnb_all\$host\$host_verifications</pre>

Superhost <- airbnb_all\$host\$host_is_superhost

Host <- airbnb all\$host\$host name

ID <- airbnb_all\$host\$host_id Country <- airbnb_all\$address\$country City <- airbnb_all\$address\$market Cancellation <- airbnb_all\$cancellation_policy Price <- airbnb_all\$price Weekly price <- airbnb all\$weekly price Monthly_price <- airbnb_all\$monthly_price airbnb_work <- cbind(Name, Descritpion, Property_type, Room_type, Guest.number, Bedrooms, Beds, Bathrooms, Reviews_scores_value, Superhost, Host, Country, City, Cancellation, ID, Price, Weekly_price, Monthly_price) write.csv(airbnb work, "C:/Users/polar/Downloads/airbnb.csv") #Downloading necessary packages library(tidytext) library(tidyverse) library(tidyr) library(tidytuesdayR) library(stringr) library(textreadr) library(pdftools) library(textshape) library(twitteR) library(tm) library(ggplot2) library(scales) library(magrittr) library(dplyr) library(gutenbergr) library(Matrix) library(textdata) library(igraph) library(ggraph)

library(widyr)

library(tibble) library(stringr)

library(topicmodels) library(gutenbergr) library(quanteda)

library(RColorBrewer)

library(quanteda.textmodels)

```
airbnb <- read_csv("/Users/tsztinviviansoo/Desktop/combined project/airbnb.csv")
View(airbnb)
data <- c(airbnb[1],airbnb[3],airbnb[13])
data<- data.frame(data)
data
airbnb<-data.frame(airbnb)
colnames(airbnb)[1] <- "IDme"
colnames(airbnb)[3] <- "text"
airbnb_token <- airbnb %>%
 unnest tokens(word, text)
nrcpositive <- get_sentiments("nrc") %>%
 filter(sentiment == "positive")
mean(airbnb$Price)
summary(airbnb$Price)
#mean price is $279 but Q3 is $280 too which means the data is skewed right- median price
$129
#let us see if a higher price has more positive sentiment
high<-airbnb_token %>%
 filter(Price >= 279) %>%
                            #taking $279 as a reference point allows us to look at the highest
sentiment words for the top 25% listing prices
 inner_join(nrcpositive) %>%
 count(word, sort=T)
high
low<- airbnb token %>%
 filter(Price <= 129) %>%
                            #taking $129 as a reference point allows us to look at the highest
sentiment words for the bottom 25% listing prices
 inner_join(nrcpositive) %>%
 count(word, sort=T)
low
#R <=129
                   >=279
#1 building 686
                   #1 Building
#2 quiet
           678
                  #2 enjoy
#3 fully
           659
                 #3 shopping
```

```
#4 center
           582
                 #4 fully
#5 full
         567
               #5 quiet
#6 beautiful 566
                 #6 spacious
#7 enjoy
          564
                 #7 full
#8 spacious 431
                  #8 pool
#9 perfect
          405
                 #9 beautiful
#10 clean
           379
                 #10 perfect
#we noticed that for the higher price range, there is an added need for top sentiment, which are
shopping and pool
### For the sentiment analysis we will be looking at English speaking countries
#Filtering by country - Australia
Australia <- airbnb_token %>%
 filter(Country == "Australia") %>%
 anti_join(stop_words) %>%
 count(word, sort=T)
Australia
# Top 10 words and frequency
#
       word n
#1
     apartment 693
#2
        walk 530
#3
       beach 476
      bedroom 472
#4
#5
       sydney 459 #Listings in Sydney are more than any other city
      kitchen 453
#6
#7
       house 391
#8
        bed 375
#9
        city 353
#10
          2 347
#Filtering by country - Australia and prices above average ($279)
```

Australia_high

Australia high <- airbnb token %>%

anti_join(stop_words) %>%

count(word, sort=T)

filter(Country == "Australia" & Price >= 279) %>%

```
afinn_Australia_high <- Australia_high %>%
 inner_join(get_sentiments("afinn"))%>%
 summarise(sentiment=sum(value)) %>%
 mutate(method="AFINN")
bing_and_nrc_Australia_high <- bind_rows(</pre>
 Australia_high%>%
  inner join(get sentiments("bing"))%>%
  mutate(method = "Bing et al."),
 Australia high %>%
  inner_join(get_sentiments("nrc") %>%
          filter(sentiment %in% c("positive", "negative"))) %>%
  mutate(method = "NRC")) %>%
 count(method, sentiment) %>%
 spread(sentiment, n, fill=0) %>%
 mutate(sentiment = positive-negative)
bind_rows(afinn_Australia_high, bing_and_nrc_Australia_high)
## AFINN = 198
## Bing = 145 (Positive = 186 and Negative = 41)
## NRC = 164 (Positive = 234 and Negative = 70)
# Overall more positive than negative sentiments for Airbnbs above the average price point
#Top 10 words for Australia_high
#word n
#1
         beach 142 #people are willing to pay more if the Airbnb is closer to the beach
         walk 111
#2
#3
         home 99
       bedroom 98
#4
#5
         house 95
#6
           2 82
#7
        living 82
#8
        sydney 82
#9
      apartment 81
#10
        kitchen 79
#######
#Filtering by country - Australia and prices below $129
Australia_low <- airbnb_token %>%
 filter(Country == "Australia" & Price <= 129) %>%
```

```
anti_join(stop_words) %>%
 count(word, sort=T)
Australia low
afinn Australia low <- Australia low %>%
 inner_join(get_sentiments("afinn"))%>%
 summarise(sentiment=sum(value)) %>%
 mutate(method="AFINN")
bing_and_nrc_Australia_low <- bind_rows(</pre>
 Australia low%>%
  inner_join(get_sentiments("bing"))%>%
  mutate(method = "Bing et al."),
 Australia_low %>%
  inner_join(get_sentiments("nrc") %>%
          filter(sentiment %in% c("positive", "negative"))) %>%
  mutate(method = "NRC")) %>%
 count(method, sentiment) %>%
 spread(sentiment, n, fill=0) %>%
 mutate(sentiment = positive-negative)
bind_rows(afinn_Australia_low, bing_and_nrc_Australia_low)
## AFINN = 265
## Bing = 170 (Positive = 245 and Negative = 75)
## NRC = 239 (Positive = 343 and Negative = 104)
# Overall more positive than negative sentiments for Airbnbs below the average price point
## More positive sentiments in the lower price range than high, suggesting that more people
book cheaper Airbnbs
### Low cost apartments by the beach seem to be enticing for customers in Australia
#Top 10 words for Australia low
#
         word n
#1
      apartment 281
#2
         walk 250
#3
        sydney 222
#4
       kitchen 219 #Basic amenities are reviewed more in cheaper airbnbs to see if needs
aren't compensated for
#5
         house 209
#6
       bedroom 189
#7
         city 181
#8
         beach 180
```

```
#9
          bed 179
#10
       bathroom 168
#######
#Filtering by country - Canada
Canada <- airbnb_token %>%
 filter(Country == "Canada") %>%
 anti_join(stop_words) %>%
 count(word, sort=T)
Canada
#Looking at Top 10 frequent words after ignoring French stop words - de, la, le, du, est, vous
# Top 10 words and frequency
#
        word n
#1
      apartment 471
#2
       montreal 400 #Listings in Montreal more than any other city
#3
           2 377
#4
       minutes 351
#5
     restaurants 333
#6
       located 310
#7
        metro 299
#8
       kitchen 294
#9
         walk 267
#10
          bed 257
#Filtering by country - Canada and prices above average ($279)
Canada_high <- airbnb_token %>%
 filter(Country == "Canada" & Price >= 279)%>%
 anti join(stop words) %>%
 count(word, sort=T)
Canada_high
afinn_Canada_high <- Canada_high %>%
 inner_join(get_sentiments("afinn"))%>%
 summarise(sentiment=sum(value)) %>%
 mutate(method="AFINN")
bing_and_nrc_Canada_high <- bind_rows(</pre>
 Canada_high%>%
  inner_join(get_sentiments("bing"))%>%
  mutate(method = "Bing et al."),
```

```
Canada_high %>%
  inner_join(get_sentiments("nrc") %>%
         filter(sentiment %in% c("positive", "negative"))) %>%
  mutate(method = "NRC")) %>%
 count(method, sentiment) %>%
 spread(sentiment, n, fill=0) %>%
 mutate(sentiment = positive-negative)
bind_rows(afinn_Canada_high, bing_and_nrc_Canada_high)
## AFINN = 67
## Bing = 54 (Positive = 65 and Negative = 11)
## NRC = 69 (Positive = 80 and Negative = 11)
# Overall more positive than negative sentiments for Airbnbs above the average price point
#Top 10 words for Canada_high
#word n
#1
       montreal 20
#2
       downtown 18
#3
           3 16
         bed 16
#4
#5
       bedroom 16
#6
      apartment 15
#7
           2 14
#8
        house 12
       located 12
#9
#10
         floor 11
#######
#Filtering by country - Canada and prices prices below $129
Canada low <- airbnb token %>%
 filter(Country == "Canada" & Price <= 129)%>%
 anti_join(stop_words) %>%
 count(word, sort=T)
Canada low
afinn Canada low <- Canada low %>%
 inner_join(get_sentiments("afinn"))%>%
 summarise(sentiment=sum(value)) %>%
 mutate(method="AFINN")
```

```
bing_and_nrc_Canada_low <- bind_rows(
 Canada_low %>%
  inner_join(get_sentiments("bing"))%>%
  mutate(method = "Bing et al."),
 Canada low %>%
  inner_join(get_sentiments("nrc") %>%
          filter(sentiment %in% c("positive", "negative"))) %>%
  mutate(method = "NRC")) %>%
 count(method, sentiment) %>%
 spread(sentiment, n, fill=0) %>%
 mutate(sentiment = positive-negative)
bind rows(afinn Canada low, bing and nrc Canada low)
## AFINN = 261
## Bing = 193 (Positive = 267 and Negative = 74)
## NRC = 266 (Positive = 375 and Negative = 109)
# Overall more positive than negative sentiments for Airbnbs below the average price point
## More positive sentiments in lower price range than high, suggesting that more people
booked cheaper Airbnbs
### Canada had the lowest score for Airbnbs at the high price range
#### Low cost apartments in Montreal seem enticing to customers
#Top 10 words for Canada low
#
         word n
#1
       apartment 357
#2
        minutes 293
#3
       montreal 286
#4
           2 280
#5
      restaurants 268
#6
         metro 258
#7
        located 236
#8
        kitchen 231
#9
          walk 220
#10
        station 207
#######
#Filtering by country - United States
United_States <- airbnb_token %>%
 filter(Country == "United States") %>%
 anti_join(stop_words) %>%
```

```
count(word, sort=T)
United_States
# Top 10 words and frequency
         word n
#1
        bedroom 1112
#2
       apartment 1023
#3
        kitchen 978
#4
         beach 838
#5
          bed 818
#6
           2 778
#7
        private 764
#8
        living 743
#9
        located 690
#10
          home 617
#Filtering by country - United States and prices above average ($279)
United_States_high <- airbnb_token %>%
 filter(Country == "United States" & Price >= 279)%>%
 anti_join(stop_words) %>%
 count(word, sort=T)
United_States_high
United_States_afinn_high <- United_States_high %>%
 inner join(get sentiments("afinn"))%>%
 summarise(sentiment=sum(value)) %>%
 mutate(method="AFINN")
United_States_bing_and_nrc_high <- bind_rows(</pre>
 United States high%>%
  inner_join(get_sentiments("bing"))%>%
  mutate(method = "Bing et al."),
 United_States_high %>%
  inner_join(get_sentiments("nrc") %>%
         filter(sentiment %in% c("positive", "negative"))) %>%
  mutate(method = "NRC")) %>%
 count(method, sentiment) %>%
 spread(sentiment, n, fill=0) %>%
 mutate(sentiment = positive-negative)
bind_rows(United_States_afinn_high, United_States_bing_and_nrc_high)
## AFINN = 305
```

```
## Bing = 200 (Positive = 260 and Negative = 60)
## NRC = 289 (Positive = 382 and Negative = 93)
# Overall more positive than negative sentiments for Airbnbs above the average price point
#Top 10 words for United States high
#
        word n
#1
        beach 211
#2
       bedroom 207
#3
        ocean 176
#4
           2 172
        living 145
#5
#6
         home 139
#7
       kitchen 138
#8
       located 127
#9
        views 115
#10
            3 103
#######
#Filtering by country - United States and prices below $129
United_States_low <- airbnb_token %>%
 filter(Country == "United States" & Price <= 129)%>%
 anti_join(stop_words) %>%
 count(word, sort=T)
United_States_low
United States afinn low <- United States low %>%
 inner_join(get_sentiments("afinn"))%>%
 summarise(sentiment=sum(value)) %>%
 mutate(method="AFINN")
United_States_bing_and_nrc_low <- bind_rows(</pre>
 United_States_low%>%
  inner_join(get_sentiments("bing"))%>%
  mutate(method = "Bing et al."),
 United_States_low %>%
  inner join(get sentiments("nrc") %>%
         filter(sentiment %in% c("positive", "negative"))) %>%
  mutate(method = "NRC")) %>%
 count(method, sentiment) %>%
 spread(sentiment, n, fill=0) %>%
 mutate(sentiment = positive-negative)
```

```
bind_rows(United_States_afinn_low, United_States_bing_and_nrc_low)
## AFINN = 346
## Bing = 214 (Positive = 358 and Negative = 144)
## NRC = 343 (Positive = 522 and Negative = 179)
# Overall more positive than negative sentiments for Airbnbs below the average price point
## More positive sentiments in lower price range than high, suggesting that more people
booked cheaper Airbnbs
### Many seem to opt for low cost bedrooms than entire apartments in the United States
#Top 10 words for United_States_low
#word n
#1
      apartment 566
#2
       bedroom 469
#3
       kitchen 463
#4
       private 447
#5
          bed 429
#6
       bathroom 355
#7
           2 342
#8
        living 339
#9
         walk 339
#10
        located 327
#######
#Creating bigram of comments
airbnb_bigrams <- data %>%
 unnest tokens(bigram, Descritpion, token = "ngrams", n=2)
airbnb_bigrams
airbnb_bigrams %>%
 count(bigram, sort = TRUE) #this has many stop words, need to remove them
#to remove stop words we need to separate each word then remove:
bigrams_separated <- airbnb_bigrams %>%
 separate(bigram, c("word1", "word2"), sep = " ")
bigrams_filtered <- bigrams_separated %>%
 filter(!word1 %in% stop_words$word) %>%
```

filter(!word2 %in% stop_words\$word)

#creating the new bigram, "no-stop-words":
bigram_counts <- bigrams_filtered %>%
 count(word1, word2, Country, sort = TRUE)
bigram_counts%>%
 head(25)

bigram_counts <- bigrams_filtered %>%
count(word1, word2, Country, sort = TRUE)%>%
head(25)
bigram_counts%>%
head(25)

bigram_counts_US <- bigrams_filtered %>% count(word1, word2, Country, sort = TRUE)%>% filter(Country=="United States") %>% head(25)

bigram_counts_Canada <- bigrams_filtered %>% count(word1, word2, Country, sort = TRUE)%>% filter(Country=="Canada") %>% head(25)

bigram_counts_Australia <- bigrams_filtered %>% count(word1, word2, Country, sort = TRUE)%>% filter(Country=="Australia") %>% head(25)

bigram_counts_Brazil <- bigrams_filtered %>% count(word1, word2, Country, sort = TRUE)%>% filter(Country=="Brazil") %>% head(25)

bigram_counts_Portugal <- bigrams_filtered %>% count(word1, word2, Country, sort = TRUE)%>% filter(Country=="Portugal") %>% head(25)

bigram_counts_HK <- bigrams_filtered %>%
 count(word1, word2, Country, sort = TRUE)%>%
 filter(Country=="Hong Kong") %>%
 head(25)

```
bigram_counts_Spain <- bigrams_filtered %>%
 count(word1, word2, Country, sort = TRUE)%>%
 filter(Country=="Spain") %>%
 head(25)
bigram_counts_China <- bigrams_filtered %>%
 count(word1, word2, Country, sort = TRUE)%>%
 filter(Country=="China") %>%
 head(25)
bigram counts Turkey <- bigrams filtered %>%
 count(word1, word2, Country, sort = TRUE)%>%
 filter(Country=="Turkey") %>%
 head(25)
airbnb_trigrams <- data %>%
 unnest_tokens(trigram, Descritpion, token = "ngrams", n=3)
airbnb_trigrams
airbnb_trigrams %>%
 count(trigram, sort = TRUE) #this has many stop words, need to remove them
#to remove stop words we need to separate each word then remove:
trigrams_separated <- airbnb_trigrams %>%
 separate(trigram, c("word1", "word2", "word3"), sep = " ")
trigrams filtered <- trigrams separated %>%
 filter(!word1 %in% stop_words$word) %>%
 filter(!word2 %in% stop_words$word) %>%
 filter(!word3 %in% stop_words$word)
#creating the new trigram, "no-stop-words":
trigram counts <- trigrams filtered %>%
 count(word1, word2,word3, Country, sort = TRUE)
trigram_counts%>%
 head(25)
airbnb_quadrograms <- data %>%
```

```
unnest_tokens(quadrogram, Descritpion, token = "ngrams", n=4)
airbnb_quadrograms
airbnb_quadrograms %>%
 count(quadrogram, sort = TRUE) #this has many stop words, need to remove them
#to remove stop words we need to separate each word then remove:
quadrograms_separated <- airbnb_quadrograms %>%
 separate(quadrogram, c("word1", "word2", "word3", "word4"), sep = " ")
quadrograms_filtered <- quadrograms_separated %>%
 filter(!word1 %in% stop_words$word) %>%
 filter(!word2 %in% stop_words$word) %>%
 filter(!word3 %in% stop_words$word) %>%
 filter(!word4 %in% stop_words$word)
#creating the new quadrogram, "no-stop-words":
quadrogram_counts <- quadrograms_filtered %>%
 count(word1, word2,word3,word4, Country, sort = TRUE)
quadrogram_counts%>%
 head(25)
#highest quadrogram count is n=34 / no high business insight / not making more sense
### creating a tidy format for US apartments
usa <- airbnb %>%
 filter(Country== "United States" & Property type=="Apartment")
tidy_usa <- usa %>%
 unnest_tokens(word, text) %>%
 anti_join(stop_words)
print(tidy usa)
### creating a tidy format for Spain apartments
spain <- airbnb %>%
 filter(Country== "Spain" & Property_type=="Apartment")
```

```
tidy_spain <- spain %>%
 unnest_tokens(word, text) %>%
 anti_join(stop_words)
print(tidy_spain)
### creating a tidy format for Canada apartments
canada <- airbnb %>%
 filter(Country== "Canada" & Property_type=="Apartment")
tidy_canada <- canada %>%
 unnest tokens(word, text) %>%
 anti_join(stop_words)
print(tidy_canada)
####We want to combine all the datasets and do frequencies
library(tidyr)
library(stringr)
frequency <- bind_rows(mutate(tidy_usa, author="United States"),
            mutate(tidy_canada, author= "Canada"),
            mutate(tidy_spain, author="Spain")
)%>%#closing bind_rows
 mutate(word=str_extract(word, "[a-z']+")) %>%
 count(author, word) %>%
 group by(author) %>%
 mutate(proportion = n/sum(n))%>%
 select(-n) %>%
 spread(author, proportion) %>%
 gather(author, proportion, `Canada`, `Spain`)
#let's plot the correlograms:
library(scales)
library(ggplot2)
ggplot(frequency, aes(x=proportion, y=`United States`,
            color = abs(`United States`- proportion)))+
 geom_abline(color="grey40", lty=2)+
 geom_jitter(alpha=.1, size=2.5, width=0.3, height=0.3)+
 geom_text(aes(label=word), check_overlap = TRUE, vjust=1.5) +
 scale_x_log10(labels = percent_format())+
 scale y log10(labels= percent format())+
 scale_color_gradient(limits = c(0,0.001), low = "darkslategray4", high = "gray75")+
 facet_wrap(~author, ncol=2)+
 theme(legend.position = "none")+
```