CE394M: Stress paths and invariants

Krishna Kumar

University of Texas at Austin

krishnak@utexas.edu

March 21, 2019

Overview

Stresses / strains in typical geotechnical lab tests

Stresses / strains

1D consolidation / simple shear

- Zero lateral strain ($\varepsilon_{22} = \varepsilon_{33} = 0$)
- ullet Stresses: σ and au
- Strains: $\varepsilon_{11} = \varepsilon_v$ and γ

2D plane strain

- Zero lateral strain ($\varepsilon_{22}=\gamma_{12}=\gamma_{23}=0$)
- Stresses: s and t
- Strains: ε_{ν} and ε_{γ}

3D general (axi-symmetric as a special case)

- Stresses: p and q
- Strains: ε_{v} and ε_{s}

1D simple shear

- No lateral strain
- 2 Constant normal effective stress σ'_{ν}
- $oldsymbol{0}$ Increasing shear strain γ
- **4** Measure shear resistance au
- lacktriangle Measure volumetric strain $arepsilon_{
 u}$ or void ratio $e=e_0-(1+e_0)arepsilon_{
 u}$
- No information for the lateral direction

Normal effective stress σ'_v

2D plane strain / Mohr-Coulomb model

Stresses and strains: independent components

- Mean stress: $s = (\sigma_I + \sigma_{III})/2$ and s' = s u
- **2** Volumetric strain: $\varepsilon_{v} = (\varepsilon_{I} + \varepsilon_{III})$
- ① Deviatoric / shear stress: $t = (\sigma_I \sigma_{III})/2$ and t' = t.
- **1** Deviatoric / shear strain: $\varepsilon_{\gamma} = (\varepsilon_I \varepsilon_{III})$
- Work increment:

$$\Delta W = \sigma_I' \Delta \varepsilon_I + \sigma_{III}' \Delta \varepsilon_{III} = s' \Delta \varepsilon_v + t \Delta \varepsilon_\gamma$$

3 s and t are often used to derive parameters for Mohr-Coulomb model because it only considers σ_I and σ_{III} and not σ_{II} .

CE394M: Stresses - paths & invariants

Stresses / strains in typical geotechnical lab tests

__2D plane strain / Mohr-Coulomb model

Principal stresses $\sigma_I > \sigma_{II} > \sigma_{III}$. This equation holds good and is the definition of σ in principal stress notations, i.e., I > II > III. No shear stresses on these planes.

2D Mohr circle

Effect of σ_{II}

Bishop (1966) defined **b-value**: $b = (\sigma_{II} - \sigma_{III})/(\sigma_I - \sigma_{III})$, where $\sigma_I > \sigma_{II} > \sigma_{III}$. Triaxial compression b = 0, triaxial extension b = 1. Typically $\phi'_{DS} = (1.05 - 1.15)\phi'_{TX}$.

Ladd et al., (1975)

CE394M: Stresses - paths & invariants

_Stresses / strains in typical geotechnical lab tests

—Effect of σ_{II}

 σ_{II} do have an effect on soil behavior. For example, the friction angle depends on the loading condition: triaxial compression, plane-strain, triaxial extension and others