Séries - exercices supplémentaires

Exercice 1 (\mathcal{O}) Soit $\alpha \in \mathbb{R}$. Déterminer la nature de la série de terme général

$$u_n = \frac{\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}}{n^{\alpha}}.$$

Rappel : c'est la suite $\left(\sum_{n=1}^{N} u_n\right)_{N \in \mathbb{N}}$.

Exercice 2 ($\stackrel{\triangleright}{\triangleright}$) Soit $(x_n)_{n\in\mathbb{N}}$ une suite réelle. On la supposera non nulle, et sans perte de généralité, on peut aussi supposer que $x_0 \neq 0$.

On suppose que pour tout suite réelle $(y_n)_{n\in\mathbb{N}}$ telle que $\sum y_n^2$ converge, la série $\sum x_n y_n$ converge. Le but est de montrer que $\sum x_n^2$ converge aussi.

- 1) Commençons par un résultat qui sera utile dans la suite : soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle positive telle que $u_0 > 0$ et $\sum u_n$ diverge. On pose $S_n = \sum_{k=0}^n u_k$. Montrer que $\sum \frac{u_n}{S_n}$ diverge.
- 2) Revenons à l'objectif initial : posons pour tout $n \in \mathbb{N}$, $S_n = \sum_{k=0}^n x_k^2$ et $y_n = \frac{x_n}{S_n}$. Montrer que pour tout $k \in \mathbb{N}$, $x_k^2 = \int_{S_{k-1}}^{S_k} \mathrm{d}t$, et en déduire que $\sum y_n^2$ converge.
- 3) Conclure.

Exercice 3 ($\stackrel{\triangleright}{\triangleright}$) Soit $(u_n)_{n\geqslant 0}$ une suite réelle à termes strictement positifs et convergeant vers 0. On pose, pour tout entier naturel n,

$$S_n = \sum_{k=0}^n u_k \text{ et } v_n = \frac{u_{n+1}}{S_n} .$$

- 1) Montrer que la suite $(v_n)_{n\geqslant 0}$ converge vers 0.
- 2) Montrer que les séries $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant 0}v_n$ sont de même nature. On pourra penser à utiliser des résultats de comparaison !