Ευθεία Εξίσωση Ευθείας

Κωνσταντίνος Λόλας

- Ορισμός
- Εξίσωση
- Γενική Εξίσωση, to rule them all!
- Ελάχιστος συνδυασμός με διανύσματα, shame!
- Εύρεση εξίσωσης από κάθε περίπτωση, brace yourselfs!
- 2 νέοι τύποι (απόστασης και εμβαδού)

- Ορισμός
- Εξίσωση
- Γενική Εξίσωση, to rule them all!
- Ελάχιστος συνδυασμός με διανύσματα, shame!
- Εύρεση εξίσωσης από κάθε περίπτωση, brace yourselfs
- 2 νέοι τύποι (απόστασης και εμβαδού)

- Ορισμός
- Εξίσωση
- Γενική Εξίσωση, to rule them all!
- Ελάχιστος συνδυασμός με διανύσματα, shame
- Εύρεση εξίσωσης από κάθε περίπτωση, brace yourselfs!
- 2 νέοι τύποι (απόστασης και εμβαδού)

- Ορισμός
- Εξίσωση
- Γενική Εξίσωση, to rule them all!
- Ελάχιστος συνδυασμός με διανύσματα, shame!
- Εύρεση εξίσωσης από κάθε περίπτωση, brace yourselfs!
- 2 νέοι τύποι (απόστασης και εμβαδού)

- Ορισμός
- Εξίσωση
- Γενική Εξίσωση, to rule them all!
- Ελάχιστος συνδυασμός με διανύσματα, shame!
- Εύρεση εξίσωσης από κάθε περίπτωση, brace yourselfs!
- 2 νέοι τύποι (απόστασης και εμβαδού)

- Ορισμός
- Εξίσωση
- Γενική Εξίσωση, to rule them all!
- Ελάχιστος συνδυασμός με διανύσματα, shame!
- Εύρεση εξίσωσης από κάθε περίπτωση, brace yourselfs!
- 2 νέοι τύποι (απόστασης και εμβαδού)

Γνωστά ή Αγνωστα νερά?

Λέξεις κλειδιά

- Κλίση
- Συντελεστής διεύθυνσης
- $\varepsilon \varphi \theta$
- \circ α
- Σημεία
- Παραλληλία
- Καθετότητα
- Σημεία τομής...

είναι μερικά που θυμάμαι!

Γραμμές, γραμμές παντού

- Τι είναι γραμμή?
- Γραφικά ή Αλγεβρικά?

Γραμμές, γραμμές παντού

- Τι είναι γραμμή?
- Γραφικά ή Αλγεβρικά?

Γραφικά

Εύκολο!

Αλγεβρικά

Ορισμός γραμμής

Μία εξίσωση με τουλάχιστον έναν άγνωστο

Σημείο στη γραμμή

Κάθε σημείο που επαληθεύει την εξίσωση

- y = 2
- x=1
- x y = 0
- y = 2x

- y = 2
- x = 1
- x y = 0
- y = 2x

- y = 2
- x = 1
- x y = 0
- y = 2x

- y = 2
- x = 1
- x y = 0
- y = 2x

Ορισμοί

Γωνία Ευθείας

Ονομάζουμε <u>γωνία της ευθείας με τον άξονα x'x</u>, την γωνία που σχηματίζει ο x'x όταν στραφεί αντίστροφα με τους δείκτες του ρολογιού έως ότου συμπέσει με την ευθεία

Συντελεστής Διεύθυνσης Ευθείας

Ονομάζουμε συντελεστή διεύθυνσης (ή κλίση) της ευθείας την εφαπτομένη της γωνίας της ευθείας με τον x'x

- Τι τιμές παίρνει μία γωνία
- Τι τιμές παίρνει η κλίση
- Πότε είναι παράλληλες δύο ευθείες
- Πότε είναι παράλληλη μία ευθεία με ένα διάνυσμα
- Ποιά άλλα διανύσματα είναι παράλληλα με την ευθεία?
- Πότε είναι κάθετες δύο ευθείες? μην βιάζεστε!!!!!

- Τι τιμές παίρνει μία γωνία
- Τι τιμές παίρνει η κλίση
- Πότε είναι παράλληλες δύο ευθείες
- Πότε είναι παράλληλη μία ευθεία με ένα διάνυσμα
- Ποιά άλλα διανύσματα είναι παράλληλα με την ευθεία?
- Πότε είναι κάθετες δύο ευθείες? μην βιάζεστε!!!!!

- Τι τιμές παίρνει μία γωνία
- Τι τιμές παίρνει η κλίση
- Πότε είναι παράλληλες δύο ευθείες
- Πότε είναι παράλληλη μία ευθεία με ένα διάνυσμα
- Ποιά άλλα διανύσματα είναι παράλληλα με την ευθεία?
- Πότε είναι κάθετες δύο ευθείες? μην βιάζεστε!!!!!

- Τι τιμές παίρνει μία γωνία
- Τι τιμές παίρνει η κλίση
- Πότε είναι παράλληλες δύο ευθείες
- Πότε είναι παράλληλη μία ευθεία με ένα διάνυσμα
- Ποιά άλλα διανύσματα είναι παράλληλα με την ευθεία?
- Πότε είναι κάθετες δύο ευθείες? μην βιάζεστε!!!!!

- Τι τιμές παίρνει μία γωνία
- Τι τιμές παίρνει η κλίση
- Πότε είναι παράλληλες δύο ευθείες
- Πότε είναι παράλληλη μία ευθεία με ένα διάνυσμα
- Ποιά άλλα διανύσματα είναι παράλληλα με την ευθεία?
- Πότε είναι κάθετες δύο ευθείες? μην βιάζεστε!!!!!

- Τι τιμές παίρνει μία γωνία
- Τι τιμές παίρνει η κλίση
- Πότε είναι παράλληλες δύο ευθείες
- Πότε είναι παράλληλη μία ευθεία με ένα διάνυσμα
- Ποιά άλλα διανύσματα είναι παράλληλα με την ευθεία?
- Πότε είναι κάθετες δύο ευθείες? μην βιάζεστε!!!!!

Λίγη ιστορία

Κλίση διανύσματος

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}$$

Εξισώση ευθείας 1 (από κλίση και σημείο)

Ας θεωρήσουμε ότι <u>υπάρχει συντελεστής διεύθυνσης λ</u> και ας έχουμε γνωστό <u>ένα σημείο</u> $B(x_0,y_0)$. Κάθε σημείο A(x,y) που ανήκει στην ευθεία θα έχει με το γνωστό σημείο κλίση λ . Αρα

$$\begin{split} \lambda_{\overrightarrow{AB}} &= \lambda \\ \frac{y - y_0}{x - x_0} &= \lambda \\ y - y_0 &= \lambda (x - x_0) \end{split}$$

Ας είναι δύο σημεία (x_1,y_1) και (x_2,y_2) . Αν $x_1 \neq x_2...$

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}$$

$$y - y_0 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_0)$$

Ας είναι δύο σημεία (x_1,y_1) και (x_2,y_2) . Αν $x_1 \neq x_2$...

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}$$

$$y - y_0 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_0)$$

Ας είναι δύο σημεία (x_1,y_1) και (x_2,y_2) . Αν $x_1 \neq x_2...$

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}$$

$$y - y_0 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_0)$$

Ας είναι δύο σημεία (x_1,y_1) και (x_2,y_2) . Αν $x_1 \neq x_2$...

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}$$

$$y - y_0 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_0)$$

Εξισώση ευθείας 3 (δεν έχει κλίση)

Εύκολο?

Τι πιο λογικό να πούμε για δύο ευθείες ότι

$$\lambda_1 = \lambda_2$$

- ullet Αν ορίζεται κλίση τότε $\lambda_1=\lambda_2$
- Αν δεν ορίζεται... δεν έχουν

Τι πιο λογικό να πούμε για δύο ευθείες ότι

$$\lambda_1 = \lambda_2$$

Λάθος. Θα πρέπει:

- Αν ορίζεται κλίση τότε $\lambda_1 = \lambda_2$
- Αν δεν ορίζεται... δεν έχουν

Τι πιο λογικό να πούμε για δύο ευθείες ότι

$$\lambda_1 = \lambda_2$$

Λάθος. Θα πρέπει:

- Αν ορίζεται κλίση τότε $\lambda_1 = \lambda_2$
- Αν δεν ορίζεται... δεν έχουν

Τι πιο λογικό να πούμε για δύο ευθείες ότι

$$\lambda_1 = \lambda_2$$

Λάθος. Θα πρέπει:

- Αν ορίζεται κλίση τότε $\lambda_1 = \lambda_2$
- Αν δεν ορίζεται... δεν έχουν!

Κάθετες

με ληστεία κλίσεων από διανύσματα

$$\begin{split} \vec{a}\vec{b} &= 0\\ (x_1,y_1)(x_2,y_2) &= 0\\ x_1x_2 + y_1y_2 &= 0\\ x_1x_2 &= -y_1y_2 \end{split}$$

και άρα

αν ορίζονται οι κλίσεις...

$$\frac{y_1}{x_1} \frac{y_2}{x_2} = -1$$
$$\lambda_1 \cdot \lambda_2 = -1$$

Αν δεν ορίζονται...

Κάθετες

με ληστεία κλίσεων από διανύσματα

$$\begin{split} \vec{a}\vec{b} &= 0\\ (x_1,y_1)(x_2,y_2) &= 0\\ x_1x_2 + y_1y_2 &= 0\\ x_1x_2 &= -y_1y_2 \end{split}$$

και άρα

• αν ορίζονται οι κλίσεις...

$$\frac{y_1}{x_1} \frac{y_2}{x_2} = -1$$
$$\lambda_1 \cdot \lambda_2 = -1$$

Αν δεν ορίζονται...

Κάθετες

με ληστεία κλίσεων από διανύσματα

$$\begin{split} \vec{a}\vec{b} &= 0\\ (x_1,y_1)(x_2,y_2) &= 0\\ x_1x_2 + y_1y_2 &= 0\\ x_1x_2 &= -y_1y_2 \end{split}$$

και άρα

• αν ορίζονται οι κλίσεις...

$$\frac{y_1}{x_1} \frac{y_2}{x_2} = -1$$
$$\lambda_1 \cdot \lambda_2 = -1$$

Αν δεν ορίζονται...

Γωνία

όχι ακόμα!

Σημεία Τομής

Εχουμε δύο εξισώσεις με τουλάχιστον έναν άγνωστο σε κάθε μία εξίσωση που ζητάμε κοινά x και y, άρα...

- ullet σχηματίζει γωνία τάδε με x'x
- έχει τάδε κλίση
- περνά από σημείο
- περνά από δύο σημεία
- είναι παράλληλη σε ευθεία, διάνυσμα...
- είναι κάθετη σε ευθεία, διάνυσμα
- και ότι άλλο ξεχνάω...

- ullet σχηματίζει γωνία τάδε με x'x
- έχει τάδε κλίση
- περνά από σημείο
- περνά από δύο σημεία
- είναι παράλληλη σε ευθεία, διάνυσμα...
- είναι κάθετη σε ευθεία, διάνυσμα
- και ότι άλλο ξεχνάω...

- ullet σχηματίζει γωνία τάδε με x'x
- έχει τάδε κλίση
- περνά από σημείο
- περνά από δύο σημεία
- είναι παράλληλη σε ευθεία, διάνυσμα...
- είναι κάθετη σε ευθεία, διάνυσμα.
- και ότι άλλο ξεχνάω...

- ullet σχηματίζει γωνία τάδε με x'x
- έχει τάδε κλίση
- περνά από σημείο
- περνά από δύο σημεία
- είναι παράλληλη σε ευθεία, διάνυσμα...
- είναι κάθετη σε ευθεία, διάνυσμα..
- και ότι άλλο ξεχνάω...

- ullet σχηματίζει γωνία τάδε με x'x
- έχει τάδε κλίση
- περνά από σημείο
- περνά από δύο σημεία
- είναι παράλληλη σε ευθεία, διάνυσμα...
- είναι κάθετη σε ευθεία, διάνυσμα...
- και ότι άλλο ξεχνάω...

- ullet σχηματίζει γωνία τάδε με x'x
- έχει τάδε κλίση
- περνά από σημείο
- περνά από δύο σημεία
- είναι παράλληλη σε ευθεία, διάνυσμα...
- είναι κάθετη σε ευθεία, διάνυσμα...
- και ότι άλλο ξεχνάω...

- ullet σχηματίζει γωνία τάδε με x'x
- έχει τάδε κλίση
- περνά από σημείο
- περνά από δύο σημεία
- είναι παράλληλη σε ευθεία, διάνυσμα...
- είναι κάθετη σε ευθεία, διάνυσμα...
- και ότι άλλο ξεχνάω...

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

Ασκήσεις

Να βρείτε το συντελεστή διεύθυνσης λ μιας ευθείας η οποία:

- σχηματίζει με τον άξονα x'x γωνία $\omega=rac{\pi}{3}$

Λόλας Ευθεία 19/44

Να βρείτε το συντελεστή διεύθυνσης λ μιας ευθείας η οποία:

- σχηματίζει με τον άξονα x'x γωνία $\omega=\frac{\pi}{2}$
- είναι παράλληλη στο διάνυσμα $\vec{\alpha} = (2, -4)$

Λόλας Ευθεία 19/44

Να βρείτε το συντελεστή διεύθυνσης λ μιας ευθείας η οποία:

- σχηματίζει με τον άξονα x'x γωνία $\omega=\frac{\pi}{2}$
- είναι παράλληλη στο διάνυσμα $\vec{\alpha} = (2, -4)$
- διέρχεται από τα σημεία A(1,3) και B(3,6)

Λόλας Ευθεία 19/44

Να βρείτε τη γωνία που σχηματίζουν με τον άξονα x'x οι ευθείες που διέρχονται από τα σημεία

- **1** A(1,0) kal $B(2,\sqrt{3})$

Λόλας Ευθεία 20/44

Να βρείτε τη γωνία που σχηματίζουν με τον άξονα x'x οι ευθείες που διέρχονται από τα σημεία

- **1** A(1,0) kal $B(2,\sqrt{3})$
- **2** A(2,3) kal B(1,3)

Λόλας Ευθεία 20/44

Να βρείτε τον συντελεστή διεύθυνσης λ μιας ευθείας ε , η οποία:

- είναι παράλληλη στην ευθεία ε_1 που σχηματίζει με τον άξονα x'xγωνία $\omega = 120^\circ$

Λόλας Ευθεία 21/44

Να βρείτε τον συντελεστή διεύθυνσης λ μιας ευθείας ε , η οποία:

- είναι παράλληλη στην ευθεία ε_1 που σχηματίζει με τον άξονα x'xγωνία $\omega = 120^\circ$
- $oldsymbol{2}$ είναι κάθετη στην ευθεία $oldsymbol{arepsilon}_2$ που διέρχεται από τα σημεία A(2,3) και B(3,5)

Λόλας Ευθεία 21/44

Εστω η ευθεία ε που σχηματίζει με τον άξονα x'x γωνία $\omega=45^\circ$ και η ευθεία ζ που διέρχεται από τα σημεία $A(3,\alpha)$ και $B(5,3\alpha-2)$. Να βρείτε την τιμή του α , ώστε:

- Οι ευθείες ε και ζ να είναι παράλληλες

Λόλας Ευθεία 22 / 44

Εστω η ευθεία ε που σχηματίζει με τον άξονα x'x γωνία $\omega=45^\circ$ και η ευθεία ζ που διέρχεται από τα σημεία $A(3,\alpha)$ και $B(5,3\alpha-2)$. Να βρείτε την τιμή του α , ώστε:

- Οι ευθείες ε και ζ να είναι παράλληλες
- Οι ευθείες ε και ζ να είναι κάθετες

Λόλας Ευθεία 22 / 44

Θεωρούμε την ευθεία ε που διέρχεται από το σημείο A(1,2) και έχει συντελεστή διεύθυνσης $\lambda = 3$. Να βρείτε:

- Tην εξίσωση της ευθείας ε

Λόλας Ευθεία 23 / 44

Θεωρούμε την ευθεία ε που διέρχεται από το σημείο A(1,2) και έχει συντελεστή διεύθυνσης $\lambda = 3$. Να βρείτε:

- Tην εξίσωση της ευθείας ε
- Την τιμή του λ , για την οποία το σημείο $M(\lambda 1, 2\lambda)$ ανήκει στην ευθεία ε .

Λόλας Ευθεία 23 / 44

Να βρείτε την εξίσωση της ευθείας ε που διέρχεται από το σημείο A(3,2)και:

- σχηματίζει με τον άξονα x'x γωνία $\omega=45^\circ$

Λόλας Ευθεία 24/44

Να βρείτε την εξίσωση της ευθείας ε που διέρχεται από το σημείο A(3,2)και:

- σχηματίζει με τον άξονα x'x γωνία $\omega=45^\circ$
- είναι παράλληλη στο διάνυσμα $\vec{\alpha} = (2, -4)$

Λόλας Ευθεία 24/44

Να βρείτε την εξίσωση της ευθείας ε που διέρχεται από το σημείο A(3,2)και:

- σχηματίζει με τον άξονα x'x γωνία $\omega=45^\circ$
- είναι παράλληλη στο διάνυσμα $\vec{lpha}=(2,-4)$
- είναι κάθετη στην ευθεία ζ με συντελεστή διεύθυνσης $-rac{1}{2}$

Λόλας Ευθεία 24/44

Εστω μία ευθεία ε που διέρχεται από το σημείο $M(\alpha, 2\alpha + 1)$ και έχει συντελεστή διεύθυνσης $\lambda = 1$.

- Nα βρείτε την εξίσωση της ευθείας ε

Λόλας Ευθεία 25 / 44 Εστω μία ευθεία ε που διέρχεται από το σημείο ${\rm M}(\alpha,2\alpha+1)$ και έχει συντελεστή διεύθυνσης $\lambda=1.$

- f 1 Να βρείτε την εξίσωση της ευθείας arepsilon
- f 2 Αν επιπλέον η ευθεία arepsilon διέρχεται από το σημείο ${
 m N}(1,-2)$, να βρείτε:
 - $\mathbf{1}$ την τιμή του α
 - ② τα σημεία τομής της ευθείας ε με τους άξονες και στη συνέχεια να τη σχεδιάσετε
 - (3) το εμβαδό του τριγώνου που σχηματίζεται από την ευθεία ε και τους άξονες

Λόλας Ευθεία 25/44

Εστω μία ευθεία ε που διέρχεται από το σημείο $\mathrm{M}(\alpha,2\alpha+1)$ και έχει συντελεστή διεύθυνσης $\lambda=1.$

- f 0 Να βρείτε την εξίσωση της ευθείας arepsilon
- $oldsymbol{2}$ Αν επιπλέον η ευθεία arepsilon διέρχεται από το σημείο $\mathrm{N}(1,-2)$, να βρείτε:

 - ② τα σημεία τομής της ευθείας ε με τους άξονες και στη συνέχεια να τη σχεδιάσετε
 - (3) το εμβαδό του τριγώνου που σχηματίζεται από την ευθεία ε και τους άξονες

Λόλας Ευθεία 25/44

Εστω μία ευθεία ε που διέρχεται από το σημείο ${\rm M}(\alpha,2\alpha+1)$ και έχει συντελεστή διεύθυνσης $\lambda=1.$

- f 1 Να βρείτε την εξίσωση της ευθείας arepsilon
- f 2 Αν επιπλέον η ευθεία f arepsilon διέρχεται από το σημείο ${
 m N}(1,-2)$, να βρείτε:
 - $\mathbf{0}$ την τιμή του α
 - ② τα σημεία τομής της ευθείας ε με τους άξονες και στη συνέχεια να τη σχεδιάσετε
 - ③ το εμβαδό του τριγώνου που σχηματίζεται από την ευθεία ε και τους άξονες

Λόλας Ευθεία 25/44

Δίνεται τρίγωνο $AB\Gamma$ με A(2,-3), B(1,5) και $\Gamma(2,3)$. Να βρείτε την εξίσωση:

- $\mbox{ } \mbox{ }$
- ② του ύψους ΑΔ
- ③ της διαμέσου ΒΜ

Λόλας Ευθεία 26/44

Δίνεται τρίγωνο $AB\Gamma$ με A(2, -3), B(1, 5) και $\Gamma(2, 3)$. Να βρείτε την εξίσωση:

- της ευθείας ε που διέρχεται από το σημείο A και είναι παράλληλη στην ευθεία ΒΓ
- του ύψους ΑΔ

Λόλας Ευθεία 26/44

Δίνεται τρίγωνο $AB\Gamma$ με A(2, -3), B(1, 5) και $\Gamma(2, 3)$. Να βρείτε την εξίσωση:

- της ευθείας ε που διέρχεται από το σημείο A και είναι παράλληλη στην ευθεία ΒΓ
- του ύψους ΑΔ
- της διαμέσου ΒΜ

Λόλας Ευθεία 26/44

Δίνονται τα σημεία A(1,4) και B(3,-6). Να βρείτε την εξίσωση της μεσοκαθέτου ε του τμήματος ${
m AB}$

> Λόλας Ευθεία 27 / 44

Να βρείτε την εξίσωση της ευθείας που διέρχεται από τα σημεία:

- $\ \, \mathbf{1} \ \, \mathrm{A}(3,2) \ \mathrm{kal} \, \mathrm{B}(-1,6)$
- $\ \, \mathbf{2} \ \, \Gamma(5,-3) \ \mathrm{kal} \ \Delta(5,-4) \\$

Λόλας Ευθεία 28/44

Να βρείτε την εξίσωση της ευθείας που διέρχεται από τα σημεία:

- **1** A(3,2) kal B(-1,6)
- $\ \ \, \Gamma(5,-3) \ \mathrm{kal} \ \Delta(5,-4) \\$

Λόλας Ευθεία 28/44

Δίνεται παραλληλόγραμμο $AB\Gamma\Delta$ με A(2,5), B(1,7) και $\Gamma(4,1)$. Να βρείτε την εξίσωση της διαγωνίου $\mathrm{B}\Delta$.

> Λόλας Ευθεία 29 / 44

Να βρείτε την εξίσωση της ευθείας ε όταν:

- Φ η ευθεία ε τέμνει τον άξονα y'y στο σημείο ${\rm A}(0,-3)$ και έχει συντελεστή διεύθυνσης $\lambda=2$
- ② η ευθεία ε διέρχεται από την αρχή των αξόνων και έχει συντελεστή διεύθυνσης $\lambda = -\frac{2}{3}$
- \odot η ευθεία ε διέρχεται από τα σημεία A(-1,4) και $B(\lambda^2,4)$

Λόλας Ευθεία 30/44

Να βρείτε την εξίσωση της ευθείας ε όταν:

- Φ η ευθεία ε τέμνει τον άξονα y'y στο σημείο ${\rm A}(0,-3)$ και έχει συντελεστή διεύθυνσης $\lambda=2$
- ② η ευθεία ε διέρχεται από την αρχή των αξόνων και έχει συντελεστή διεύθυνσης $\lambda = -\frac{2}{3}$
- \odot η ευθεία ε διέρχεται από τα σημεία A(-1,4) και $B(\lambda^2,4)$

Λόλας Ευθεία 30/44

Να βρείτε την εξίσωση της ευθείας ε όταν:

- ullet η ευθεία ε τέμνει τον άξονα y'y στο σημείο A(0,-3) και έχει συντελεστή διεύθυνσης $\lambda=2$
- διεύθυνσης $\lambda = -\frac{2}{3}$
- 3 η ευθεία ε διέρχεται από τα σημεία A(-1,4) και $B(\lambda^2,4)$

Λόλας Ευθεία 30 / 44

Δίνονται οι ευθείες $\varepsilon:y=\frac{x}{2}-1$ και $\zeta:(|\mu|-2)x-5$. Να βρείτε τις τιμές του μ ώστε η ευθεία να είναι:

- f 1 παράλληλη στην ευθεία $f \zeta$
- ② κάθετη στην ευθεία ζ

Λόλας Ευθεία 31/44

Δίνονται οι ευθείες $\varepsilon:y=\frac{x}{2}-1$ και $\zeta:(|\mu|-2)x-5$. Να βρείτε τις τιμές του μ ώστε η ευθεία να είναι:

- f 1 παράλληλη στην ευθεία ζ
- 2 κάθετη στην ευθεία ζ

Λόλας Ευθεία 31/44

Να βρείτε την εξίσωση της ευθείας ζ που διέρχεται από το σημείο A(-1,2)και:

- είναι παράλληλη στην ευθεία $\varepsilon_1: y = 3x + 1$

Λόλας Ευθεία 32 / 44

Να βρείτε την εξίσωση της ευθείας ζ που διέρχεται από το σημείο A(-1,2)και:

- είναι παράλληλη στην ευθεία $\varepsilon_1: y = 3x + 1$
- είναι κάθετη στην ευθεία $\varepsilon_2:y=-2x+3$

Λόλας Ευθεία 32 / 44

Δίνονται οι ευθείες $\varepsilon_1:y=2x-1$ και $\varepsilon_2:y=x+1$.

- Να βρείτε το σημείο τομής \mathbf{M} των ευθειών ε_1 και ε_2

Λόλας Ευθεία 33 / 44

Δίνονται οι ευθείες $\varepsilon_1:y=2x-1$ και $\varepsilon_2:y=x+1$.

- Να βρείτε το σημείο τομής M των ευθειών ε_1 και ε_2
- Να βρείτε την εξίσωση της ευθείας ε που διέρχεται από το σημείο τομής των ευθειών ε_1 και ε_2 και σχηματίζει με τον άξονα x'x γωνία $\omega = 135^{\circ}$

Λόλας Ευθεία 33 / 44

Δίνονται οι ευθείες $\varepsilon_1:y=2x-1$ και $\varepsilon_2:y=x+1.$

- $\ \, \textbf{ } \, \, \textbf{ } \,$
- ② Να βρείτε την εξίσωση της ευθείας ε που διέρχεται από το σημείο τομής των ευθειών ε_1 και ε_2 και σχηματίζει με τον άξονα x'x γωνία $\omega=135^\circ$
- 3 Να δείξετε ότι οι ευθείες ε_1 , ε_2 και $\zeta:y=5x-7$ συντρέχουν

Λόλας Ευθεία 33/44

Δίνεται τρίγωνο $AB\Gamma$ με $\Gamma(4,3)$. Αν η εξίσωση της ευθείας AB είναι y=2x+1 και του ύψους $A\Delta$ είναι y=x-1, να βρείτε τις συντεταγμένες των σημείων Α και Β

> Λόλας Ευθεία 34 / 44

Να βρείτε το πλησιέστερο σημείο της ευθείας $\varepsilon: y = -2x + 1$ από την αρχή των αξόνων και στη συνέχεια την ελάχιστη απόσταση του σημείο Ο από τα σημεία της ευθείας ε

Λόλας Ευθεία 35 / 44

Να βρείτε το συμμετρικό σημείο του σημείου ${\rm A}(5,4)$ ως προς την ευθεία $\varepsilon:y=-4x+7$

Λόλας Ευθεία 36/44

Δίνεται τρίγωνο $AB\Gamma$ με B(1,2). Το ύψος και η διάμεσος από μία κορυφή του τριγώνου έχουν εξισώσεις $y=\frac{1}{2}x+\frac{1}{2}$ και y=x. Να βρείτε τις άλλες κορυφές και το βαρύκεντρο του τριγώνου

> Λόλας Ευθεία 37 / 44

Δίνεται τρίγωνο ${\rm AB}\Gamma$ με ${\rm A}(1,2)$, ${\rm B}\Gamma:y=2x+5$ και η διάμεσος ${\rm BM}$ έχει εξίσωση $y=\frac12x-\frac12$. Να βρείτε:

- f 4 τις συντεταγμένες του σημείου Γ
- 2 την εξίσωση του ύψους $\Gamma\Delta$

Λόλας Ευθεία 38/44

Δίνεται τρίγωνο ${\rm AB}\Gamma$ με ${\rm A}(1,2)$, ${\rm B}\Gamma:y=2x+5$ και η διάμεσος ${\rm BM}$ έχει εξίσωση $y=\frac12x-\frac12$. Να βρείτε:

- f 1 τις συντεταγμένες του σημείου Γ
- $oldsymbol{2}$ την εξίσωση του ύψους $\Gamma\Delta$

Λόλας Ευθεία 38/44

Δίνονται τα σημεία A(-2,2) και B(3,1). Να βρείτε το σημείο M της ευθείας $\varepsilon:y=x+3$, τέτοιο ώστε το τρίγωνο ${
m AMB}$ να είναι ορθογώνιο στην κορυφή Μ

> Λόλας Ευθεία 39 / 44

Δίνεται τρίγωνο $AB\Gamma$ με AB: y=2x και $A\Gamma: y=3x-1$. Αν το σημείο M(1,0) είναι μέσον της πλευράς $B\Gamma$

> Λόλας Ευθεία 40 / 44

Θεωρούμε το σημείο ${\rm A}(2,1)$ και το συμμετρικό του ${\rm A}'$ ως προς τον άξονα x'x. Να βρείτε το γεωμετρικό τόπο των σημείων ${\rm M}$ για τα οποία ισχύει

$$\overrightarrow{OM} \cdot \overrightarrow{OA} + \overrightarrow{OM'} \cdot \overrightarrow{OA'} = 2$$

όπου \mathbf{M}' το συμμετρικό του \mathbf{M} ως προς τον άξονα x'x

Λόλας Ευθεία 41/44

Να βρείτε το γεωμετρικό τόπο των σημείων $\mathrm{M}(x,y)$ όταν:

- ① $M(\lambda-1,2\lambda-3)$, $\lambda\in\mathbb{R}$
- ② $M(-3, \lambda + 1)$, $\lambda \in \mathbb{F}$
- $\mathfrak{I}(\lambda^2+1,2), \lambda \in \mathbb{R}$

Λόλας Ευθεία 42/44

Να βρείτε το γεωμετρικό τόπο των σημείων M(x, y) όταν:

- ① $M(\lambda-1,2\lambda-3), \lambda \in \mathbb{R}$
- (2) M $(-3, \lambda + 1)$, $\lambda \in \mathbb{R}$

Λόλας Ευθεία 42 / 44

Να βρείτε το γεωμετρικό τόπο των σημείων ${
m M}(x,y)$ όταν:

- ① $M(\lambda-1,2\lambda-3)$, $\lambda \in \mathbb{R}$
- ② $M(-3, \lambda + 1)$, $\lambda \in \mathbb{R}$

Λόλας Ευθεία 42/44

Να βρείτε το γεωμετρικό τόπο των σημείων M(x, y) όταν:

- ① $M(\lambda-1,2\lambda-3), \lambda \in \mathbb{R}$
- (2) M $(-3, \lambda + 1)$, $\lambda \in \mathbb{R}$
- $\mathfrak{I}(\lambda^2+1,2), \lambda\in\mathbb{R}$
- \bullet M($-3, \eta \mu \lambda$), $\lambda \in \mathbb{R}$

Λόλας Ευθεία 42 / 44

Aν το σημείο $\mathrm{M}(\alpha,\beta)$ κινείται στην ευθεία $\varepsilon:y=2x-4$, να βρείτε πού κινείται το σημείο $\mathrm{N}\left(\frac{\alpha}{2},\frac{\beta}{2}\right)$

Λόλας Ευθεία 43/44

Να αποδείξετε ότι το σημείο $M(3-\sigma v \nu^2 \theta,1-\eta \mu^2 \theta)$, $\theta\in\mathbb{R}$, κινείται σε σταθερή ευθεία.

Λόλας Ευθεία 44/44