SCALAR MULTIPLICATION OF A VECTOR

For the vector $k\vec{a}$, where k is a scalar and \vec{a} is a nonzero vector:

- If k > 0, then $k\vec{a}$ is in the same direction as \vec{a} with a magnitude $k|\vec{a}|$
- If k < 0, then $k\vec{a}$ is in the opposite direction as \vec{a} with a magnitude

Ex 1.

Given the vectors \vec{u} and \vec{v} as shown, draw a vector for each of the following.

multiplication of the zero vector by a scalar gives the zero vector. ie. $k\vec{0} = \vec{0}$ The zero vector:

The unit vector: dividing any vector by its magnitude gives the unit vector... a vector in the same direction that is 1 unit long.

 $\frac{\vec{a}}{|\vec{a}|}$ is a vector in the same direction as \vec{a} with a magnitude of 1

$$\vec{v} = 700 \, \text{km} \, \text{CE}$$
 $\vec{v} = \frac{700 \, \text{km} \, \text{CE}}{700} = 1 \, \text{km} \, \text{CE}$

Ex 2.

The angle between \vec{x} and \vec{y} is 110°. If $|\vec{x}| = 5$ and $|\vec{y}| = 7$, determine the unit vector in the same direction as $\vec{x} + \vec{y}$.

Collinear Vectors:

- Two vectors are collinear if they are parallel or can be translated to the same straight line (ie. same direction)
- Two vectors \vec{u} and \vec{v} are collinear if and only if it is possible to find a nonzero scalar k such that $\vec{u} = k\vec{v}$
- Note: "parallel" and "collinear" are used interchangeably

Ex 3.

The vectors \hat{a} and \hat{b} magnitude and direction of $2\vec{a} - 3\vec{b}$.

make an angle of 57° with each other. Determine the

$$|\vec{r}|^2 = x^2 + 3^2 - x(3)(x) \cos 57^{\circ}$$

 $|\vec{r}| = x^2 + 3^2 - x(3)(x) \cos 57^{\circ}$

$$\frac{5in0}{3} = \frac{5in57}{2.54}$$

$$0 = 5in^{-1} \left[\frac{35in57}{2.54} \right]$$

$$0 = 82^{0}$$

$$\tilde{\Gamma} = 2.54 \text{ units } \left[82^{\circ} \text{ cc w of } \tilde{\Delta} \right]$$

Ex 4. Three collinear vectors \vec{u} , \vec{v} , and \vec{w} are related to each other such that $\vec{u} = 2\vec{v}$ and $\vec{v} = 3\vec{w}$. Determine the integer values for **a** and **b** such that $a\vec{v} + b\vec{w} = \vec{0}$.

$$a\overrightarrow{v} + b\overrightarrow{w} = \overrightarrow{o}$$

$$a(3\overrightarrow{w}) + b\overrightarrow{w} = \overrightarrow{o}$$

$$3a\overrightarrow{w} + b\overrightarrow{w} = \overrightarrow{o}$$

$$3a + b = \overrightarrow{o}$$

$$b = -3a \rightarrow \infty \text{ number of solns}$$

Ex 5.

In ABC, a median is drawn from A to the midpoint of BC which is labelled D. If $\overrightarrow{AB} = \overrightarrow{b}$ and $\overrightarrow{AC} = \overrightarrow{c}$, prove that $\overrightarrow{AD} = \frac{1}{2}\overrightarrow{b} + \frac{1}{2}\overrightarrow{c}$

$$\frac{\text{What we know}}{\text{AD} = \vec{b} + \vec{BD} = \vec{c} + \vec{cD}}$$

$$\overrightarrow{AD} + \overrightarrow{AD} = \overrightarrow{b} + \overrightarrow{BD} + C + \overrightarrow{CD} - \overrightarrow{BD}$$

$$2\overrightarrow{AD} = \overrightarrow{b} + \overrightarrow{C} + \overrightarrow{BD} - \overrightarrow{BD}$$

$$2\overrightarrow{AD} = \overrightarrow{b} + \overrightarrow{C}$$

$$\overrightarrow{AD} = \overrightarrow{b} + \overrightarrow{C}$$

$$\overrightarrow{AD} = \frac{1}{2}\overrightarrow{b} + \frac{1}{2}\overrightarrow{C}$$

Alternative $\vec{CD} = -\vec{C} + \vec{AD}$ $\vec{DB} = -\vec{AD} + \vec{b}$ $\vec{CD} = \vec{DB}$ $\vec{CD} = \vec{C} + \vec{AD} = \vec{C} + \vec{D}$ $\vec{AD} + \vec{AD} = \vec{C} + \vec{D}$

 $2 \overrightarrow{AD} = \overrightarrow{C} + \overrightarrow{D}$ $\overrightarrow{AD} = \frac{1}{2} \overrightarrow{C} + \frac{1}{2} \overrightarrow{D}$

