密级	
山纵	

博士学位论文

可压缩流动中间断问题的高分辨率数值求解方法及应用

作者姓名_	刘利
指导教师_	申义庆 研究员
_	中国科学院力学研究所
学位类别	理学博士
学科专业	流体力学
培养单位_	中国科学院力学研究所

2017年4月

A Study of High-Resolution Algorithms for Discontinuous Problems in Complex Compressible Flows and Their Applications

By Li Liu

A Dissertation Submitted to
University of Chinese Academy of Sciences
In partial fulfillment of the requirement
For the degree of
Doctor of Fluid Mechanics

Institute of Mechanics
University of Chinese Academy of Sciences

April, 2017

目录

目录 …		j
第一章	引言	1
1.1	本文研究的范围及其方程系统 · · · · · · · · · · · · · · · · · · ·	2
	1.1.1 单介质 Euler 方程 · · · · · · · · · · · · · · · · · ·	2
	1.1.2 理想磁流体方程 · · · · · · · · · · · · · · · · · · ·	3
	1.1.3 多介质 Euler 方程 · · · · · · · · · · · · · · · · · ·	5
	1.1.4 高速化学反应 Euler 方程	6
1.2	可压缩流中间断问题的理论研究简介	10
	1.2.1 Euler 方程弱解及解存在性的研究 · · · · · · · · · · · · · · · · · · ·	10
	1.2.2 黎曼问题和 Euler 方程近似解 · · · · · · · · · · · · · · · · · · ·	12
1.3	计算流体力学和数值方法发展 · · · · · · · · · · · · · · · · · · ·	13
	1.3.1 计算流体力学简介 · · · · · · · · · · · · · · · · · · ·	13
	1.3.2 数值方法的发展 · · · · · · · · · · · · · · · · · · ·	14
1.4	间断问题数值研究现状和不足	19
	1.4.1 激波捕捉格式和激波分辨率 · · · · · · · · · · · · · · · · · · ·	19
	1.4.2 物质界面和界面追踪方法 · · · · · · · · · · · · · · · · · · ·	20
	1.4.3 气相爆轰波	22
1.5	本文所开展研究内容 · · · · · · · · · · · · · · · · · · ·	31
第二章	刚性常微分方程和数值摄动 (NP) 方法 ······	33
2.1	刚性常微分(ODE)方程	33
2.2	数值摄动方法 · · · · · · · · · · · · · · · · · · ·	34
2.3	NP 格式的稳定性分析 · · · · · · · · · · · · · · · · · · ·	36
2.4	不同格式的数值比较	39
2.5	小结	41

第三章	DIP 方法在刚性化学反应流动中的应用 · · · · · · · · · · · · · · · · · · ·	43
3.1	空间刚性问题形成过程的分析	43
3.2	求解反应 Euler 方程的分裂方法·····	44
3.3	DIP 方法在反应 Euler 方程求解中的应用 ·····	47
参考文献	ik	49

表格

2.1	不同 ODE 格式精度分析·····	41
-----	--------------------	----

插图

1.1	过渡点示意图 [238]。	20
1.2	典型爆轰波压力曲线 [242] · · · · · · · · · · · · · · · · · · ·	23
1.3	二维胞格结构示意图 [242]。 · · · · · · · · · · · · · · · · · · ·	24
1.4	一个典型的爆轰波虚假传播计算结果 [280] · · · · · · · · · · · · · · · · · · ·	27
1.5	$2H_2 + O_2 + 7Ar$ 反应组分摩尔比变化和激波前沿距离间关系 [217]	29
1.6	$2H_2 + O_2 + 7Ar$ 反应不同特征值空间尺度和激波前沿距离间关	
	系 [217] · · · · · · · · · · · · · · · · · · ·	30
2.1	不同格式在 h 复平面上稳定区域 · · · · · · · · · · · · · · · · · · ·	39
2.2	不同格式求解 ODE 方程 (2.22) 结果. 参考解为采用 $N=3000$	
	网格得到 · · · · · · · · · · · · · · · · · · ·	40
3.1	界面在单元点间可能的分布情况一维示意图 · · · · · · · · · · · · · · · · · · ·	45
3.2	分裂方法迭代过程流程图	47

间断问题是计算流体力学中,乃至整个计算数学中长久存在的难点。在数学上,间断问题体现为,对流方程不存在无限可微的经典解而只能在更广义的不连续函数空间寻求弱解。弱解是普遍存在的,实际上,对于几乎所有连续力学模型都遵循的非线性双曲守恒方程的初值问题 (Cauchy 问题) 来说,即使初始值是光滑的,解在有限时间内也会发展出奇异性 [222,250,318]。从物理角度上看,间断体现为某些物理量在空间上的不连续性。流体力学中,间断主要体现为激波、接触间断、物质界面、爆轰(燃)波等。

激波在可压缩流体中就像衣服上的褶皱一样随处可见,是可压缩流中最主要的一类间断,所有和可压缩流动有关的问题都躲不开激波。在物理上,激波成因已经得到极为充分的研究 [193,203],然而更复杂的激波间或是激波与其他结构如激波/边界层、激波/界面间的相互作用等仍是当今理论研究 [14,122,198,311]、实验研究 [5,188,268] 和数值模拟 [104,286,288] 的热点,有很强的工程背景。除此之外,在化学反应流中,激波和化学反应相互作用还能形成如爆燃波、爆轰波等衍生的间断类型,其中爆轰波 [86,94,159] 的研究在诸如发动机 [37,38]、高能炸药爆炸 [48,72,159] 等诸多领域均有重要应用。

当流体中存在压强无法匹配时,根据特征线是汇聚或是发散的,会形成激波或稀疏波,当压力可以匹配而密度无法匹配时或存在不同状态的物质时,就会出现接触间断或界面 [315],事实上界面是不同状态的物质间存在的一种特殊的接触间断类型 [51],因此有些学者也把接触间断称为接触界面 [7,263]。通过接触间断,压力和法向速度连续而密度、切向速度以及物质状态可能存在间断。界面问题集中体现在各种多相流研究中,是其中最为关键问题,也是难点所在。多相流在高速可压缩流动中同样有广泛应用 [34],如空化 [22,108,293]、燃烧室混合 [158]、反应堆蒸汽发生器 [149] 和发电厂锅炉等方面。

激波和接触间断是孤立存在的吗?恰恰相反,可压缩多相流中广泛存在激波,而激波/界面相互作用极大增加了界面问题研究的难度[177,189,226]。

1.1 本文研究的范围及其方程系统

本文将从数值方法角度对高速可压缩流中的各类间断问题进行较为系统的 研究,其中包括先进的激波捕捉格式和激波识别方法、高精度低耗散的杂交格 式及其在磁流体中的应用、界面追踪方法和刚性化学反应流及爆轰波相关研究 等。

本文研究涉及四种方程系统,包括可压缩单介质理想气体、理想磁流体、存在界面的多介质流体以及存在化学反应的可压缩多组分气体混合物。下面分别给出具体的方程系统。

1.1.1 单介质 Euler 方程

研究各种常见单介质可压缩流动问题时,我们常采用无黏、无导热的 Euler 方程,它是 Navier-Stocks(NS) 方程的简化方程,既是 NS 方程分层次求解的一层,也能满足很多物理问题的求解要求,同时,Euler 方程研究也是其它如磁流体、多相流及化学反应流等复杂方程系统研究的基础。下面给出二维守恒型 Euler 方程:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} = 0 \tag{1.1}$$

其中

$$\boldsymbol{U} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ E \end{pmatrix}, \boldsymbol{F} = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ u(E+p) \end{pmatrix}, \boldsymbol{G} = \begin{pmatrix} \rho v \\ \rho u v \\ \rho v^2 + p \\ v(E+p) \end{pmatrix},$$

其中 ρ 为密度, u 为 x 方向速度, v 为 y 方向速度, p 是流体的压力, E 是总能量, 对于理想气体有如下形式状态方程

$$p = (\gamma - 1)[E - \frac{1}{2}\rho(u^2 + v^2)], \tag{1.2}$$

其中 γ 为比热比。

虽然 Euler 方程形式较 NS 方程大大简化, 但是采用 Euler 方程至少有四

点实际意义:

1. 可以认为 Euler 方程是 NS 方程在大雷诺数下的一种特例情况 [327]。

- 2. 在气体动力学中,求解无分离流动问题时,将无黏流动理论和边界层理论结合,可以很好解决这类工程问题。
- 3. 很多流动现象的机理研究都可以采用 Euler 方程, 比如激波结构, 由于系统 简单, 更容易分析和研究。
- 4. 由于 Euler 方程是 NS 方程的对流部分,数值上对流部分的方法设计更为困难,通常在 Euler 方程上设计算法,然后推广应用在 NS 方程中。

基于这些考虑,针对我们要研究的方法和问题来说,本文主要采用无黏 Euler 方程系统。

1.1.2 理想磁流体方程

磁流体 (MHD) 在气体动力学中主要出现在如飞行器再入、燃烧室等存在等离子体的超高温情况中。理想磁流体方程是磁流体研究中最简单的模型方程,它和 Euler 方程有类似的波动结构,但是它同时具有非严格的双曲性质、更复杂的特征值系统和流场结构。本文并不深入研究磁流体,只将 Euler 的数值方法推广于理想 MHD 方程求解中,验证方法的适用性。下面给出三维理想磁流体控制方程:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} + \frac{\partial \mathbf{H}}{\partial z} = 0, \tag{1.3}$$

其中

$$\boldsymbol{U} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \\ E \\ B_x \\ B_y \\ B_z \end{pmatrix}, \boldsymbol{F} = \begin{pmatrix} \rho u \\ \rho u^2 + p_t - B_x^2 \\ \rho uv - B_x B_y \\ \rho uw - B_x B_z \\ (E + p_t)u - B_x (uB_x + vB_y) \\ 0 \\ uB_y - vB_x \\ uB_z - wB_x \end{pmatrix},$$

 $G = \begin{pmatrix} \rho v \\ \rho u v - B_y B_x \\ \rho v^2 + p_t - B_y^2 \\ \rho u w - B_y B_w \\ (E + p_t) v - B_y (u B_x + v B_y) \\ v B_x - u B_y \\ 0 \end{pmatrix}, H = \begin{pmatrix} \rho w \\ \rho u w - B_z B_x \\ \rho v w - B_z B_y \\ \rho w^2 + p_t - B_z^2 \\ (E + p_t) w - B_z (u B_x + v B_y + w B_z) \\ w B_x - u B_z \\ w B_y - v B_z \end{pmatrix},$

和 $p_t = p + (B_x^2 + B_y^2 + B_z^2)/2$, 其中 **B** 为磁场强度,**E** 为电场强度,对于磁场有限制条件

$$\nabla \cdot \mathbf{B} = 0 \tag{1.4}$$

状态方程为

$$p = (\gamma - 1)[E - \frac{1}{2}\rho(u^2 + v^2) - \frac{1}{2}(B_x^2 + B_y^2 + B_z^2)].$$

理想磁流体方程将流体看成完美的导体,具有无限大的电导率,并且忽略了位移电流。该方程是模拟磁流体最简化的自恰系统,多用在研究等离子体的宏观稳定性和平衡性等方面,尤其在磁约束核聚变中,该方程有重要作用[87]。

理想磁流体方程 (1.3) 和 Euler 方程 (1.1) 相比,增加了前麦克斯韦 (Pre-Maxwell) 方程 [190],对于一维来说特征根从 3 个增加到 7 个,从小到大分别为

$$\lambda_{1,2,3,4,5,6,7} = u - c_f, u - c_a, u - c_s, u, u + c_s, u + c_a, u + c_f.$$

可见从原本一个声速量增加到了三个,分别可以称为快波,中速波 (Alfvén) 和慢波。Alfvén 波为

$$c_a = \frac{|B_x|}{\sqrt{\rho}},$$

快波和慢波为

$$c_{f,s} = \sqrt{\frac{1}{2} \left[c^2 + b^2 \pm \sqrt{(c^2 + b^2)^2 - 4c^2 c_a^2} \right]},$$

其中 c 为声速, $b^2 = \frac{B_x^2 + B_y^2 + B_z^2}{\rho}$ 。

,

对于一维方程系统来说,如果任意 u 的特征根都不相同,则认为该双曲系统为严格的双曲系统 [229],而方程 (1.3) 中,三个波速在特殊情况下可能等值,因此该系统为非严格双曲 (non-strictly hyperbolic) 系统 [63,224,229]。

由于理想磁流体中波速更多、特征值系统更为复杂以及其非严格双曲的特性都为数值方法的构造带来很多困难,流场中更为丰富的激波结构也对数值方法的稳定性提出考验。由于方程相似,很多 Euler 方程求解方法都曾推广到理想磁流体方程研究中。限于主题,本文并不对该方程系统做深入研究,只将构造的数值方法做初步推广工作。

1.1.3 **多介质** Euler 方程

界面问题是多介质、多相流中最基本问题,在多介质可压缩流中同样具有重要地位,界面出现在存在明确分界面的流体中,本文采用无相变、无扩散的多介质 Euler 方程描述这一问题,该方程系统也是描述界面问题的最简单系统。多介质 Euler 方程和单介质方程 (1.1) 相似,只是增加一个标记不同介质的方程,和界面相关的方程多采用非守恒形式,

$$\begin{cases}
\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} = 0 \\
\frac{\partial z}{\partial t} + u \frac{\partial z}{\partial x} + v \frac{\partial z}{\partial y} = 0
\end{cases}$$
(1.5)

其中

$$oldsymbol{U} = \left(egin{array}{c}
ho \
ho u \
ho v \
ho v \ oldsymbol{E} \end{array}
ight), oldsymbol{F} = \left(egin{array}{c}
ho u \
ho u v \
ho u v \ u(E+p) \end{array}
ight), oldsymbol{G} = \left(egin{array}{c}
ho v \
ho u v \
ho v^2 + p \ v(E+p) \end{array}
ight).$$

不同介质具有不相同的状态方程形式和参数,以两介质问题为例,

本文主要研究理想气体和水,理想气体状态方程在公式 (1.2) 中已经给出去,水 的状态方程为

$$p = (\gamma - 1)\rho e - \gamma B,\tag{1.7}$$

其中 $\gamma = 7.15$, B = 3309。

该方程系统忽略了粘性、热传导以及表面张力效应,是研究界面问题的极为简化的模型方程,可能只在高速问题中才有定量的研究的意义,如激波/气泡相互作用 [2,248]、水下爆炸 [199] 等方面。但是该方程系统仍然在界面问题的数值方法研究以及定性分析等方面有广范应用。

1.1.4 高速化学反应 Euler 方程

在化学反应流动中,激波会带来新的物理问题,如爆燃和爆轰。爆燃波和爆轰波是化学反应流中具有代表性的间断结构,它们的相关理论、实验以及数值研究在如炸药、发动机等极多高温、高超气体动力学领域中有重要意义。本文采用如下的无粘、无传热的 Euler 反应方程系统

$$\frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial \boldsymbol{F}}{\partial x} + \frac{\partial \boldsymbol{G}}{\partial y} = \boldsymbol{S} \tag{1.8}$$

其中

$$\boldsymbol{U} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ E \\ \rho z_1 \\ \rho z_2 \\ \vdots \\ \rho z_{ns-1} \end{pmatrix}, \boldsymbol{F} = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ u(E+p) \\ \rho z_1 u \\ \rho z_2 u \\ \vdots \\ \rho z_{ns-1} u \end{pmatrix}, \boldsymbol{G} = \begin{pmatrix} \rho v \\ \rho u v \\ \rho v^2 + p \\ v(E+p) \\ \rho z_1 v \\ \rho z_2 v \\ \vdots \\ \rho z_{ns-1} v \end{pmatrix}, \boldsymbol{S} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \omega_1 \\ \omega_2 \\ \vdots \\ \omega_{ns-1} \end{pmatrix},$$

其中 ns 为多组分流体中的组分数, z_i 和 ω_i 分别为 i 组分质量分数和生成率。由于总的质量分数为 1,则第 ns 组分为

$$z_{ns} = 1 - \sum_{i=1}^{ns-1} z_i.$$

不同的反应模型下生成率有不同形式,本文主要采用三种形式,从简单到复杂分别为固定比热比的单步总包反应模型,固定比热比的多步反应模型和变比热比的基元反应模型。

固定比热比单步总包反应模型

对于固定比热比的单步总包反应模型

$$A \rightarrow B$$

其中 A 代表反应物, B 代表生成物, 反应源项为

$$\omega_1 = -K(T)\rho z,\tag{1.9}$$

其中 K 为反应率可以通过 Arrhenius 率

$$K(T) = K_0 e^{-T_{ign}/T}$$

或者如下 Heaviside 率求得

$$K(T) = \begin{cases} 1/\epsilon, & T \geqslant T_{ign}, \\ 0, & T < T_{ign}, \end{cases}$$

其中 K_0 是反应率常数, T_{ign} 是燃点和 ϵ 是反应时间。状态方程为

$$p = (\gamma - 1) \left(E - \frac{1}{2} \rho (u^2 + v^2) - \frac{1}{2} \rho u^2 - q_0 \rho z \right).$$

其中 90 为反应热。

固定比热比多步反应模型

对于固定比热比多步反应模型,考虑有 ns 组分的可逆反应

$$\sum_{i=1}^{ns} \mu'_{i,j} \chi_i \leftrightarrow \sum_{i=1}^{ns} \mu''_{i,j} \chi_i \qquad (j = 1, \dots, nr)$$
 (1.10)

其中 nr 为反应方程数, 化学计量数 μ 为整数, χ_i 代表第 i 组分, 上标 ' 正方

向反应化学计量数,"代表反方向反应化学计量数。i组分反应率可以写成

$$\omega_i = W_i \sum_{k=1}^{nr} (\mu''_{i,k} - \mu'_{i,k}) K_k \prod_{j=1}^{ns} \left(\frac{\rho z_j}{W_j}\right)^{\mu'_{j,k}},$$

其中 nr 为反应数, W_i 为 i 组分的摩尔质量, 反应率 K_i 采用 Heaviside 形式

$$K_i(T) = \begin{cases} 1/\epsilon_i, & T \geqslant T_{ign}, \\ 0, & T < T_{ign}. \end{cases}$$
 $i = 1, 2, \dots, nr$

状态方程为

$$p = (\gamma - 1) \left(E - \frac{1}{2} \rho (u^2 + v^2) - \frac{1}{2} \rho u^2 - q_1 \rho z_1 - q_2 \rho z_2 - \dots - q_{ns} \rho z_{ns} \right).$$

其中 q_i 为 i 组分反应热。

多步基元反应模型

根据物理问题不同和对计算精准度要求不同,模拟可能需要了解详细的化学反应动力学过程,基元反应模型就是针对这样的要求提出的,这里的基元反应就是指反应物微粒(原子、分子、离子和自由基等)一步实现的化学变化。区别于多步简化模型,基元反应模型中的混合物各种热力学参数如焓、熵和比热比等会随着温度变化而改变。基元反应模型研究的气体对象为理想气体方程控制下的的热完全气体(T < 4000K)。关于量热完全气体(Calorically perfect/Perfect)、热完全气体(Thermally perfect/Semi-perfect)、理想气体(Ideal)和真实气体(Imperfect)的详细概念可以参照 [6]。

我们同样可以采用公式(1.10)来代表所有基元反应,其中 ns 代表所有反应物和三体的数目。第 i 组分的质量生成率为

$$\omega_i = W_i \sum_{k=1}^{nr} (\nu_{k,i}'' - \nu_{k,i}') \left\{ K_{f,k}(T) \prod_{j=1}^{ns} \gamma_j^{\nu_{b,k}'} - K_{b,j}(T) \prod_{j=1}^{ns} \gamma_j^{\nu_{k,j}'} \right\}$$
(1.11)

其中, $K_{f,k}$ 、 $K_{b,k}$ 分别为第 k 个反应的正向和逆向反应速率常数,可以通过 Arrhenius 公式求得

$$K_{f,k} = A_k T^{b_j} exp\left(-\frac{E_{a,k}}{R_n T}\right) \tag{1.12}$$

参数 A_k,b_k 和 $E_{a,k}$ 分别为第 k 个基元反应的指前因子、温度系数和活化能。逆反应速率常数 $K_{b,k}$ 可以通过下面方式求得

$$K_{b,k} = \frac{K_{f,k}}{K_{c,k}}, K_{c,k} = K_{p,k} \left(\frac{p_{atm}}{R_u T}\right)^{\sum_{i=1}^{n_s} (\nu_{i,k}^{"} - \nu_{i,k}^{"})}$$
(1.13)

其中, p_{atm} 为标准大气压, $K_{p,k}$ 为压力平衡常数

$$K_{p,k} = exp\left(\sum_{i=1}^{ns} (\nu''_{i,k} - \nu'_{i,k}) \left(\frac{S_i}{R_u} - \frac{H_i}{R_u T}\right)\right)$$
(1.14)

 S_k 和 H_k 为 k 组分的摩尔熵和焓, 具体表达见正文。

热完全气体混合物遵从道尔顿分压定律,混合气体压力等于各组分压力之和,而各组分气体仍然满足热完全气体假设。混合气体状态方程为

$$p = \rho RT = \sum_{i=1}^{ns} \rho_i R_i T = \sum_{i=1}^{ns} z_i \rho_i T = \rho \frac{R_u}{\bar{W}} T$$
 (1.15)

其中, \bar{W} 为平均摩尔质量

$$\bar{W} = \frac{1}{\sum_{i=1}^{ns} z_i / W_i}$$

需要注意的是,公式 (1.15) 中的 R 为混合气体的特定气体常数 (Special gas constant)

$$R = \sum_{i=1}^{ns} z_i R_i \tag{1.16}$$

 R_i 为第 i 个组分的气体常数

$$R_i = \frac{R_u}{W_i} \tag{1.17}$$

其中 R_u 为气体常数(又被称为摩尔气体常数、普世气体常数、理想气体常数) 其值为 $R_u=8.3144598J\cdot mol^{-1}\cdot K^{-1}$ 。每一气体组分均遵从热完全气体假设, 工程上通常采取拟合公式来得到每一组分的热力学参数,如等压比热 C_p 等,会 在正文中详细说明。

1.2 可压缩流中间断问题的理论研究简介

随着计算机技术的发展,数值求解已经慢慢成为研究各类方程的最主要工具。同时,伴随着学科的细化,数值研究和理论研究已经俨然成为两个相去甚远的方向。但是,数学理论一直都是数值方法的源头,也是数值研究的合理性所在。所以,尽管本文并不开展这方面理论性研究,然而仍有必要在引入数值方法之前简单介绍相关的数学理论的发展历史和现状。

1.2.1 Euler 方程弱解及解存在性的研究

Euler 方程遵循双曲守恒率,关于非线性双曲守恒率方程的理论研究基本上是从广义函数和弱解的概念被学者们熟知后才开始。1950 年 E.Hopf [126] 给出关于 Burgers 方程的严格数学理论研究,被认为是双曲率数学研究的奠基性工作,这之后有了这方面一系列重要工作 [154,155,200-202] 等。如,由于弱解定义不能保证问题解的唯一性,Lax [155] 和 Oleinik [200] 分别提出的保证解唯一性的熵条件。第二次世界大战中,跨音速飞行器出现,使人们越来越多的关注空气动力学研究及激波现象,也推动了守恒率方程研究的发展。

理论上,对于非线性双曲守恒率方程,即便初值充分光滑,在足够长的时间内,解都会失去光滑出现奇异性,这一现象被称为解的爆破。弱解的定义可针对于如下一般形式的双曲守恒率方程

$$u_t + \nabla_x f(u) = 0, \tag{1.18}$$

其中 $t \in R_+$, $x \in R^d$, $d \ge 1$, $u = u(t,x) \in R^n$, $n \ge 1$, $f(u) = (f_i^j(u))_{n \times d}$ 是 $n \times d$ 的矩阵。

弱解定义 [329]: 如果可测向量函数 $u=(u^1,\cdots,n^n):\Omega\subset R_+\times R_x^d\to R^n$ 满足

- 1. $u \in L^1_{loc}(\Omega)$,
- 2. $f(u) \in L^1_{loc}(\Omega)$,
- 3. 对于所有 $\phi \in C_0^{\infty}(\Omega)$ 都满足

$$\int \int_{\Omega} u^{j} \phi_{t} + f^{j}(u) \cdot \Delta_{x} \phi dx dt = 0, \quad j = 1, \dots, n,$$

则称 u 在分布的意义下满足双曲守恒率方程 (1.18),或称 u 为方程 (1.18) 的一个弱解。其中 R 为实数空间, L^1_{loc} 为强可测一阶可积空间 [324],C 为复数空间。

然而,由于缺乏针对于弱解有效的数学工具,如泛函分析等常用的标准微分工具都不再奏效,当前仅对单守恒率方程有完善的理论研究 [60,154,202],而对于方程组理论的研究,目前主要停留在一维问题,及两方程的二维问题。研究内容也从奢求理论解转移到证明方程解的存在性及数值解的收敛性上来。目前理论研究方法主要包括 Glimm 格式 [95] 和补偿列紧理论 [316,321]。Glimm 格式曾经是研究方程组解存在性定理的唯一方法,1965 年 Glimm 采用该方法证明了一维单方程的一般形式下"小初值"和特殊形式下"大初值"解得存在性,其中"小初值"指的是初始值总变差 $TV(u_0)$ 充分小,并和 Lax [97] 证明了 2×2 方程组在严格双曲,非线性情况下,初始扰动充分小假设下弱解的存在性。然而该方法依然存在有很多局限性 [178]。补偿列理论在 80 年代由 Tartar 提出 [259,260],之后得到广泛研究和应用,尤其在气体动力学方程中,如 1983 年 DiPerna 等 [68],1985 年 Ding 等人 [46,67],1994 年和 1996 年 Lions 等 [168,169] 的一系列工作解决了气体动力学方程组在不同比热比 γ 下如下形式的等熵流动方程的解存在性问题。

$$\begin{cases} \rho_t + (\rho u)_x = 0, \\ (\rho u)_t + (\rho u^2 + p(\rho))_x = 0, \end{cases}$$

其中, $p = p_0 \rho^{\gamma}$ 。但是我们知道,尽管在无黏、无传热流体中,流体穿过激波也并不是等熵过程,虽然后续工作,如 Huang 等人对等温过程也给出了解存在性证明,但是目前补偿列紧理论只能适用于严格双曲 2×2 方程组

$$\begin{cases} u_t + f(u, v)_x = 0, \\ v_t + g(u, v)_x = 0. \end{cases}$$

该方法也尚不能给出 Euler 方程解存在性证明。对于高维问题,目前是数学上的一个热点问题,当然也是难点,尚缺乏充分的理论结果 [207,241,258]。不过我们都坚信,欧拉方程乃至 NS 方程解的存在性和唯一性终有一天都会得到完善的数学证明。

1.2.2 黎曼问题和 Euler 方程近似解

尽管欧拉方程的解在数学上缺乏足够的存在性证明,但是我们仍然需要通过一定方式求得它的近似解,甚至近似解本身要比解的存在性研究更为久远。我们可以一直追溯到伟大的数学家、物理学家伯恩哈德·黎曼。1858年,黎曼[222]在研究激波管问题时,巧妙的构造了 Euler 方程在一组特殊初值条件下的理论解,这组初值设定为任意间断值的阶跃函数,即

$$U = \begin{cases} U_L & x < x_0 \\ U_R & x \ge x_0 \end{cases}$$

根据间断不同,黎曼构造出了四类解,分别由向前、向后稀疏波和向前、向后激波组成,并利用相平面分析方法给出了判别条件。该类 Cauchy 问题被称为黎曼问题。尽管黎曼问题在黎曼所有伟大工作中并不是那么显眼,但是该问题在求解拟线性双曲方程尤其在求解空气动力学方程中起到了第一块基石的作用 [90],并且开创了"微分方程广义解"概念及"相平面分析"方法之先河,具有的超前性。1957年 Lax [155,208,209] 对一维黎曼解存在性和唯一性给出了证明。至此,一维黎曼问题得到彻底解决,它的理论解由冲击波,中心稀疏波和接触间断三类基本波构成。

二维黎曼问题由于复杂性,到了 80 年代,甚至它问题的提法都尚未澄清。85 年,张同和郑玉玺分析最简二维模型黎曼问题,成为二维问题的一个实质性突破。1990 年他们在文献 [310] 中给出一套分析和猜想,他们假设初始间断线在t>0 时发出一道平面基本波,这样四道波相互作用会形成 16 类不同问题。随着数值计算的发展,Schulz 和 Carsten [230],Chang [43,44] 等,Lax 和 Liu [157] 对这一猜想进行了数值模拟,并最终将二维黎曼问题完善为 19 类。目前为止,尚没有一类情况被完善证明 [328]。

黎曼问题的重要意义并不仅在于它是对流方程的一组理论解,而在于它是构造更一般 Cauchy 问题近似解的基础,通过将一般的初值离散成有限个黎曼问题,然后采用拼接的方式得到下一时刻值的分布,以此来推进时间的发展,使得近似求解一般初值 Euler 方程乃至所有非线性对流方程成为可能。

1.3 计算流体力学和数值方法发展

理论研究虽然非常严谨,但是远远无法满足多变的工程需要。尤其在流体力学领域,早期工程研究主要通过实验模拟完成。随着计算机技术发展,数值研究的优点不断彰显,如,省钱、省人力、模拟更为灵活,同时能给出更为详细的计算资料,又如,数值模拟可以免受研究问题尺度、环境限制等。

1.3.1 计算流体力学简介

采用数值离散逼近方法求解和研究方程原本就是数学中的常用手段,如有限差分方法早在19世纪前就经常用来分析方程性质。伴随着非线性双曲型守恒率方程理论的完善,以及人类计算能力的极大提高,通过数值方法求解双曲率方程成为数学研究的一大分支。尤其在流体力学研究中,通过数值方法求解流体力学控制方程已经发展成了独立且庞大的一门学科—计算流体力学(CFD)。

学者们普遍将 1922 年 Lewis Fry Richardson 采用数值方法预测天气的工作 [220] 作为 CFD 开始的标志,在同时期,美国学者也曾采用世界上第一台通用计算机 ENIAC 进行了类似的 CFD 计算。实际上 CFD 尚未真正出现前,相关理论工作早已开始,我们上节已经讲述了大量此类工作,包括 CFD 出现后的大量工作,都可以被划归在数学范围内,我们当然也可以称它们为 CFD 的早期理论研究。如 1928 年,Coutant、Friedrichs 和 Lewy [57] 提出有限差分方法求解偏微分方程时收敛的 Courant-Friedrichs-Lewy(CFL)条件,值得注意的是CFL条件只是数值解收敛的一个必要条件,并非充分条件,很多论文甚至书籍提到这项工作时曾出现错误。

计算流体力学成为了独立学科以后,研究重点也有了很大偏移,基于其工程背景的要求,区别于数学理论研究,CFD 绝大部分工作都集中于数值方法的发展、工程应用的推广以及以 CFD 为工具的物理机理性研究上。从 70 年代开始,伴随着数值方法、模型方程、网格划分以及计算机软硬件能力不断提升,CFD 真正得到了广泛应用,从航空、气象、船舶、化工到体育、动画等等各个领域都慢慢有了 CFD 的身影。1981 年第一代商业化软件 PHONICS 出现,标志着 CFD 从科研向工程应用的延伸。进入 90 年代,一大批优秀的商业软件涌现,如 FLUENT,CFX,STAR-CD 等等,在此基础上,CFD 工程师也成为许多行业中不可或缺的角色,推动着其他相关学科的研究和工业化的发展。

1.3.2 数值方法的发展

流体力学方程的数值方法从大的框架可以分为有限差分法、有限体积法、有限元法、边界元法和有限分析法等。各个方法具有不同的求解区域离散方式和控制方程离散方式,具有各自的优缺点,本文采用有限差分方法。

有限差分方法使用有限个网格节点代替连续的计算域,以泰勒级数展开等方法,将控制方程中的导数用节点函数值的差商代替进行离散。有限差分方法是一种直接将微分方程变为代数问题的数值方法,直观且简单,发展较为成熟。下面简单的回顾数值方法的发展和现状。

1959 年, Godunov [98] 首先采用数值方法求解非线性偏微分方程,文中他证明,想要保持方程的解是单调的,那么线性对流格式最多只有一阶精度,同时他认为一阶迎风格式在某种意义上是最好的,并且给出了如何将迎风格式应用在非线性守恒方程系统的方法。在 Godunov 的方法中,在每一个时刻,每个计算单元当成一个值,经过一个很短时间后,通过在单元交界面求解黎曼问题

$$U_0(x) = \begin{cases} U_L = U_i & x < x_{i+\frac{1}{2}} \\ U_R = U_{i+1} & x > x_{i+\frac{1}{2}} \end{cases}$$
 (1.19)

在该时间步结束时进行单元平均,可以得到新的分段的分布,以此推进方程的发展。Godunov 方法整体具有一阶精度,即便处理间断时也能得到非常稳定计算结果。

从 Godunov 之后数值方法的研究变得更为清晰, Godunov 类方法主要包括, 近似黎曼求解器、空间离散方法和时间离散方法。

1.3.2.1 空间离散方法

尽管 Godunov 定理将线性方法的稳定性和一阶格式紧紧的绑定,但是在西方学术圈,该研究并没有得到足够的重视,60 和70 年代,学者们仍然试图构造了一系列更高阶的格式。P.D.Lax 和B.Wendroff [153] 在1960 年合作构造了二阶差分格式— Lax-Wendroff 格式,尽管该格式由于耗散不足会导致计算激波时出现严重的振荡,但是仍然具有深远影响。Lax-Wendroff 格式和它的一系列二阶、三阶改进格式 [36,182,225,227] 主导了对流方程研究领域超过了10年之久。

直到 70 年代, 才有人开始意识到 Godunov 定理的重要性并试图将其避开, 这之后不到一年时间,就出现了两种无振荡的高精度对流格式,分别是 Boris 和 Book 提出的通量修正输运方法 (Flux-Corrected Transport/FCT) 方法和接下来 Van Leer 提出的 MUSCL (Monotone Upstream Scheme for Conservation Laws) 格式。FCT 方法依然采用 Lax-Wendroff 方法类似的预估-校正结构, 第一步采用 一阶格式预估时间发展后的解,然后在校正步通过反扩散的方式移除大量的耗 散误差, 达到二阶或三阶精度。在第二步, 修正的通量会和临时解进行比较, 并 且在需要的地方进行限制,保证没有新的极值点出现也没有极值增加。其中的对 比过程让该方法成为非线性方法。 经过 1973 年到 1979 年的发展 [26,28,29,298], FCT 方法得到较广泛的应用, 但是其并没有对后期的 Godunov 型高精度格式发 展起到太大影响。同时期, Van Leer 认为振荡是由于非单调插值引起的, 他继承 了 Godunov 方法的特点,将单元内的常值分布变为线性分布或二次分布,然后 非线性限制分布函数的一阶和二阶导数值,以此得到二阶精度的稳定 MUSCL 格式 [?,270,271,273,273,274]。MUSCL 类格式在 80 年代继续发展并成为当时 最为流行的格式。FCT 方法和 MUSCL 格式虽然相去甚远, 但是它们都是通过 方法中的非线性性质来防止计算中大梯度带来的数值振荡,在对流方法接下来 的发展中这一特点一直得到了保存。

同一时期, Harten 在 ICASE 做访问学者, 在这里他受到 Roe 关于迎风格式工作的影响 [118],他考虑到无振荡插值只适用在一维空间,所以并不太接受无振荡插值的概念。实际上,他更多的受到 Glimm 和 Lax 关于一维标量守恒方程的解的总变差是不增的这一研究结果启发 [156]。通过分析,Harten 引入离散方程的总变差作为其振荡性质的度量 [101,114],总变差同样可以应用在更高纬度求解上。由此,Harten 提出了总变差不增(Total-Variation-Diminishing/TVD)方法,并推导出保证 TVD 性质的充分条件。之后学者们证明了 TVD 性质在线性方程中可以推导出单调插值条件。在当时,TVD 方法迅速成为了高精度迎风格式的代名词。

随着算法研究的发展,TVD类格式暴露出了它们固有的不足,如无法区分激波和光滑的极值点,导致光滑区域精度过低。在不久之后,Goodman和 LeVeque [101] 认为 TVD 在高维离散中过于呆板,导致高维 TVD 对流格式精度不会高于一阶。Harten 因此重新审视了曾被他忽视的无振荡插值方面的工作,并和 Osher 合作提出了基本无振荡(Essentially Non-Oscillatory/ENO)格式 [116,119]。ENO 格式的基本思想是在构造插值多项式时采用自适应选取最光

滑插值模板的方式来避免引入数值振荡。ENO 格式不再满足 TVD 性质, 允许总变差有微小的增加, 但是仍需满足总变差有界(Total-Variation-Bounded/TVB)。

ENO 格式单一选取模板的策略虽然能够达到无振荡的目的,然后由于光滑 区模板的浪费造成精度仍然不足。1994 年 Liu 等人 [179] 提出了加权的思想,将 ENO 的所有子模板进行凸组合加权取代原有的选取最光滑的模板的方法,以此 来构造光滑区的高精度并保持间断区域 ENO 的性质。该文章中构造了最早的 三阶有限体积 WENO 格式。随后,1996 年 Jiang 和 Shu [246] 构造了经典的五阶 WENO 格式并给出了光滑因子和非线性权重构造的基本框架。

进入新世纪,以 WENO 格式为代表的高精度激波捕捉格式应用更为广泛,WENO 本身也在不断地发展和完善中。2005 年,Henrick [121] 指出 Jiang 和 Shu 所构造的经典的五阶 WENO 格式 (WENO-JS) 在导数为零的极值点达不到理想精度。他构造了一个映射函数来使极值点达到理想精度(WENO-M),在 2008 年,Borges 等人建议采用五点模板来构造高阶的光滑因子,并发展了WENO-Z 格式。另一方面,更高阶的 WENO 格式也得到发展,如七阶、九阶甚至十一阶 WENO [16,91] 以及中心型 WENO 格式等 [165,184]。

从以上回顾可以看出,空间格式的研究主要关注点是保证间断稳定性情况下提高光滑区域的精度。然而,保证稳定性,一定数值耗散是不可避免的,因此协调、处理这一对矛盾是格式研究发展的重点。尽管通过构造更高阶的 WENO 格式可以提高光滑区域的精度,但在在计算如可压缩湍流等问题时,耗散仍然可能过大不足以捕捉小尺度的快波 [140,309]。另外,WENO 格式本身需要较高的计算量,通过这种方式提高精度往往是得不偿失的。

目前提高光滑区精度主要有两种方法,一种方法是借鉴有近似谱方法分辨特性的紧致格式 [160] 的优点,构造紧致重构 WENO (CRWENO) 格式;另一种方法是结合高精度线性格式构造杂交格式或称混合格式 (Hybrid Scheme)。CRWENO 格式的思想是将低阶紧致模板做 WENO 格式的非线性加权重构得到激波稳定的高阶紧致格式,这部分工作主要见于文献 [66,92,139] 等。研究表明 CRWENO 和传统 WENO 格式相比,的确具有更好的小尺度分辨能力 [309]。值得一提的是,2015 年 Peng 和 Shen [210] 在 Shen 等人 [234,238] 的多步加权WENO 思想基础上,构造了多步加权的 CRWENO 格式,该格式基于紧致格式的隐式特性,通过改善间断附近过渡点精度来改善全局精度,取得了良好的效果。杂交格式和 CRWENO 格式相比,由于它思想简单,有丰富的选择,因此应

用和研究都更为广泛。杂交格式采用间断识别方法来区分光滑区域和间断区域,然后采用激波捕捉格式和其他低耗散、计算量小的线性格式在不同区域求解,达到兼顾两者优点的目的。常用的杂交格式有混合中心-WENO 格式 [123,143],混合紧致-WENO 格式 [212,219]、混合谱方法-WENO 格式 [56] 等。由于间断识别方法在杂交格式中至关重要,发展间断识别器也是杂交格式研究的一个热门领域。2006 年 Shen 和 Zha [237] 以 WENO-JS 和 WENO-Z 格式的光滑因子为基础,提出了一种无参数的间断识别方法,并且构造了有限紧致格式。

1.3.2.2 近似黎曼求解器

近似黎曼求解器的发展是和空间离散方法同步进行的。黎曼求解器的作用是为了解决非线性方程线性化近似的问题。在 Godunov 等的早期工作中,学者们采用基于理论解的"精确黎曼求解器",但是这过于耗费计算量,并且和近似黎曼求解器比也并没有优势。因此,发展黎曼问题的数值解或称为"近似黎曼求解器"成为 CFD 算法研究的另一大主要方面。由于黎曼求解器主要工作就是将非线性方程分裂为正向传播和负向传播的波,以便于采用迎风格式,所以也将其称为分裂方法。分裂方法并没有和空间离散方法类似的清晰的时间脉络,种类也比较繁多,具体可以分为通量差分分裂(flux-difference splitting)、流通矢量分裂(flux-vector splitting)、特征重构方法和对流迎风分离压力(Advection upstream splitting method/AUSM)等。

通量差分分裂方法基于对精确黎曼求解器的模拟,该类方法又称为 Godunov 类方法,如最经典也最为常用的基于当地 Jacobian 矩阵线化的 Roe 求解器 [223]、基于简单波分解的 Osher 求解器 [206]、基于两波假设的 HLL 求解器 [117] 以及可以模拟接触间断的基于三波假设的 HLLC 求解器 [263]、需要迭代的双激波近似黎曼求解器 [176] 和为了避免红玉现象而提出的旋转混合求解器等。

流通矢量分裂方法基于无碰撞 Boltzmann 方程,因此该类方法也称为 Boltzmann 类方法 [118],流通矢量分裂方法将相邻单元间的分布函数进行抹平,因此较通量差分分裂有较大的误差,但是由于它们通常形式简单、易于实现,所以仍然有较多的应用。常用的流通矢量分裂方法有 Lax-Friedrichs (LF) 分裂 [154], Steger-Warming (SW) 分裂 [254] 和 Van-Leer 分裂 [275] 等。

特征分裂方法 (特征重构方法) 不同于在物理空间进行分裂的 FDS 和 FVS 方法,它的所有分裂和重构都在特征空间进行。在特征空间求得导数的近似后

再变换回物理空间。该类方法具有最好的求解质量,严格保证了局部特征方向,然而由于其过大的矩阵运算,目前仅常用在一维问题的求解中。所有流通矢量分裂的分裂方法都可以应用在特征分裂中。

对流迎风分离压力方法是从 Van Leer 分裂方法发展而来的,它们将无粘通量分裂为与特征速度相关的对流项和与特征声速相关的压力项,对其进行分别处理。该类方法兼具了 FVS 和 FDS 的一些优势,具有 FVS 的简单性和效率,又具有 FVS 的精准性,自 Liou 在 1993 年 [174] 提出以来就得到了广泛的关注和发展。目前应用较为广泛的有可以避免"Carbuncle" 现象的 AUSM+ 格式 [171,173]、激波计算稳定的 AUSMDV 格式 [277],以及结合了它们优点的AUSMPW [146] 和 AUSMPW+ [145] 格式。以上这些方法由于将总焓从能量方程分出,所以也可以统称为 H-CUSP(Total enthalpy convective upwind and split pressure)方法,然而从特征值系统看的话,总焓并不能沿着传播方向保持守恒 [304,304],而总能却保持守恒,据此 Zha 提出了在对流项使用总能的E-CUSP 格式 [301,302,305],该格式同样具有低耗散而且更为稳定。

1.3.2.3 时间离散方法

在 Godunov 类方法推广开之前的 60-70 年代,学者们往往将时间和空间统一离散,如当时经典的 Lax-Wendroff 格式等,时间和空间精度也需要统一分析。随着 Godunov 类方法普及,由于它们属于半离散方法,时间离散和空间离散需要独立进行,因此对流方程的时间离散方法也得到发展。

时间离散方法其实是一个极为古老的问题,它们基本上都是来源于 20 世纪以前对如下的常微分方程的求解,

$$\frac{dx}{dt} = f(t, x), x(0) = x_0, \tag{1.20}$$

如最早的一阶 Euler 方法(1768 年)。1895 年 Runge 和 1900 年 Heun 尝试在 Euler 方法中增加子时间步,到 1901 年 Kutta 最终给出了显式 Runge-Kutta 方法的一般形式。隐式方法的发展同样可以追溯到 1824 年,Cauchy 为了进行误差估计,在 Euler 方法中引入中间变量,间接的构造了隐式 Euler 格式。但是直到 1955 年才由 Hammer 和 Hollingsworth 在 Radau 格式基础上构造了第一个二阶的隐式 Runge-Kutta 类格式 [107]。

Runge-Kutta 格式并不单指一种格式,而是一系列的总称,如三阶 Runge-

Kutta 就可以有无数种系数组合。1988 年, Shu [245] 根据对流方程解的 TVD 性质,给出了一组三阶 Runge-Kutta 的系数组合,该格式被称为 TVD Runge-Kutta 格式。TVD Runge-Kutta 格式在对流方程数值模拟中得到了广泛的应用。

1.4 间断问题数值研究现状和不足

在 1.2 节我们笼统的回顾了一般流体力学的数值方法,通过这些脉络性的介绍,我们从单介质流体力学角度了解了 Euler 方程数值求解体系的发展过程,但是这些介绍远没有触及本文所要关注的间断问题研究现状和遇到的问题。本小结将分别介绍和总结和激波、物质界面以及爆轰波相关的研究前沿。

1.4.1 激波捕捉格式和激波分辨率

在 Godunov 求解体系中,数值稳定性一直是处在第一位的。无论是早期的无振荡插值、总变差不增还是现在 WENO 格式的基本无振荡思想的提出,都是为了保证计算的稳定性。在保证稳定性基础上,WENO 格式改进的主要工作集中在提高光滑区域的精度,尤其关注非线性权重容易出问题的极值点。对于激波,尽管光滑区域精度提高的确能改善激波的分辨效果,但是这只是高精度带来的间接作用。很少有人关注改善激波区域或附近区域精度而直接改善激波的分辨率。

2014 年,Shen 和 Zha [238] 分析了现存的五阶 WENO 格式发现,在如图 1.1 所示的连接光滑区和间断区的过渡点 i-1,传统 WENO 格式的精度只有一阶,激波分辨率不足可能对激波引起的分离流、激波/湍流相互作用等问题的计算结果产生影响。在该文章中,他们在两个临近四阶模板上构造了两个四阶通量和一个光滑/间断识别器来提高过渡点精度。在更早的工作中 [240],Shen 等人曾提出多步重构的思想,并试图用来解决传统 WENO-JS 格式的光滑因子在极值点不满足 $\beta_k = D(1+O(\Delta x^2))$ 的问题。尽管该方法并不能满足极值点五阶收敛的充分必要条件 [121],但是多步重构的思想仍然有重要的意义。

本文基于 [238] 的研究,给出了一种新的 WENO 格式构造方法,该方法结合了 Henrick 的投影函数,并通过逐阶构造的方法来提高 WENO-Z 在过渡点精度、降低耗散,进而改善方法对于激波的分辨率,第四章对此有详细的研究,并通过算例验证了该方法在求解和激波相关的问题时,的确有更好的效果。

图 1.1: 过渡点示意图 [238]。

1.4.2 物质界面和界面追踪方法

在物理上,界面一般定义为不同物质或物质不同物理状态间分界面。根据 是否考虑界面厚度,可以将界面分为传统界面和耗散界面两类。

1.4.2.1 传统界面

虽然理论上界面存在一定厚度,但在多相流体力学中,由于界面真实厚度 只有分子的量级,在绝大多数模拟中,我们将界面当成没有厚度的几何分界面, 同时忽略跨过界面的扩散作用。

我们知道,数值耗散会抹平原本清晰的分界面,如果想要得到准确的界面 位置就需要使用界面方法或称为界面模型。目前,尽管界面方法有多种分类方式 [267],但是多数学者都将其分为界面追踪方法和界面捕捉方法两类 [25]。

界面追踪方法是借助拉格朗日技术,采用运动网格或标记粒子来实时跟踪界面位置的变化。如锋面追踪(Front-tracking)方法 [65,267,269] 和标记(Marker) [215] 方法就是通过引入第二套移动网格来高准确度的给出界面位置和曲率。该类方法的难点是在于对界面破碎和合并的模拟较为复杂 [243,264]。Particle-in-

Cell (PIC) 方法 [33,112] 和 Marker-and-Cell (MAC) 方法 [185,261,262,292] 是 通过在界面附近引入拉格朗日粒子,然后追踪粒子的运动来跟踪界面位置。粒子类方法是最为古老的界面方法 [185],但是应用非常有限,究其原因,计算量和存储量过大是粒子类方法的一个限制,在流场压缩和膨胀的时候粒子点的管理是另外一个难点 [269],除此之外,粒子类方法还难以给出准确的几何界面线(面)。

另一类界面方法完全是基于欧拉技术,该类方法在欧拉网格内引入界面方程的形式来定义界面的位置。最典型的方法当属水平集 (Level Set) 方法和流体体积分数 (Volume of Fluid/VOF) 法。Level Set 方法 [205,231,257] 采用一个光滑的距离函数,用距离函数为零的位置来定义界面。自从该方法提出后,由于它优美的数学理论、漂亮的计算结果,Level Set 方法得到极为广泛的发展和应用。当然,Level Set 也有诸多不足,如鲁棒性差,重新初始化计算量大,耗散大等,尤其被学者们诟病的是它的守恒性较其它界面方法都要更差。VOF 方法 [124,152,294] 也属于欧拉的框架,该方法在每个单元间引入一个代表某一相流体的体积分数,当体积分数介于 0 和 1 之间则认为该单元跨过界面,通过捕捉体积分数来获得界面位置。不同于 Level Set 方法,VOF 方法具有精确的守恒性。该方法难点在于每一步需要有效的界面重构方法。界面重构决定于当地的体积分数和梯度方向,界面可以通过分段线性插值得到 [228],但该过程目前仍然过分复杂也难以取得预想的效果。

整体来讲,界面追踪方法更直观,在处理界面的融合和破裂时有其优势;界面捕捉方法更易于实现,在处理界面伴随流场压缩或膨胀时有优势 [167]。将它们彼此结合来避免它们各自的缺陷是目前一个比较流行的思路,其中应用最多的是和粒子类方法相结合,比如利用粒子方法的守恒性和 Level Set 方法的光滑性的粒子-水平集(Particle Level Set)方法 [79,80]。然而这种结合即增加了方法实现的难度,在复杂问题时也并不那么奏效。

1.4.2.2 耗散界面

通常的界面方法都不考虑界面厚度,然而,在研究某些物理问题,如研究物质间的扩散、相变(尤其对于三相点流体混合物)[131,134]、晶体生长[55]及化学反应等时,界面厚度都是至关重要。这一类无法忽略厚度的界面被称为耗散界面(diffuse interface)[?]。

对于耗散界面,学者主要采用 Cahn-Hilliard 方程 [77,297] 进行模拟。模拟过渡界面的方法主要有如下几种 [133],锋面追踪方法 [269] 在界面两侧采用光滑的分布,所以可以追踪耗散界面,然而这种界面厚度主要是由数值耗散造成,并非可控的。Du 等人 [73,281] 采用三条 level set 线的方法来追踪耗散界面,这种方式并不能得到界面内真实的分布,只能应用在界面厚度变化不大的情况中。还有其它方法,如连续界面力模型 (cotinuum surface force model) [31]、相场模型 (phase-field) [4,8] 等。

本文提出一种基于欧拉网格,具有界面追踪思想的粒子方法—双信息保存方法(Dual information preseving method/DIP)。该方法既可以用来追踪传统界面也可以追踪耗散界面,模拟界面厚度变化。DIP 方法直接用来求解对流方程

$$\frac{\partial z}{\partial t} + u \frac{\partial z}{\partial x} + v \frac{\partial z}{\partial y} = 0 \tag{1.21}$$

在该方法中,引入两类拉格朗日信息点,分别称为单元点(Cell-Point)和粒子点(Particle-Point)信息点,单元点限定在单元内运动,粒子点全计算域追踪。在计算开始,每个单元分别在单元中心引入一个单元点和一个粒子点,计算中根据速度场进行位置更新。

信息点并不同于 MAC 方法中的标记粒子,也不同于 PIC 方法中携带全部流体信息的真实粒子。主要有两点区别:

- 1. 信息点既是虚拟例子,又同时携带有位置信息和对流信息 *z*。由于单元点是虚拟的,所以在每一步我们都可以随时生成或抹去;信息点上携带有对流信息 *z* 又可以用来更新当地节点上的对流值。
- 2. 信息点是布置在全计算域的,并不是通过追踪信息点来达到追踪界面的目的, 而是通过粒子点上的对流信息 *z* 来捕捉出界面的位置、曲率等各种信息。

该部分工作我们将在第五章进行详细探讨。

1.4.3 气相爆轰波

爆轰波是高速化学反应流和爆炸中常见的一类间断问题,爆轰波的传播是物理化学强耦合过程,是激波和化学反应系统相互作用的结果。随着爆轰波传过,波后反应物随即发生高速的化学反应,形成高温、高压爆轰产物并释放大

图 1.2: 典型爆轰波压力曲线 [242]

量化学反应热用以维持爆轰波的传播,这种过程称为自持爆轰。爆轰过程根据 反应物状态可以分为气相、液相和固相爆轰,它们本质上是一致的,但是气相 爆轰由于本身机理最为简单,研究也最为丰富,本文只涉及气相爆轰方面的研 究工作。

1.4.3.1 爆轰波理论

关于爆轰波的理论包括最早期的平衡爆轰 Chapman-Jouguet(C-J) [45,142] 理论以及 ZND 理论。

C-J 理论将爆轰波模拟成一维稳态的没有厚度的强间断,反应热的释放是瞬间完成,通过爆轰波前后守恒关系式、能量方程和爆轰波稳定传播的 C-J 条件得到波后状态。C-J 理论中所有状态都是是平衡态,对应的模型为无限速率反应模型,因此无法考虑爆轰波结构,也不能解释传播机理。

直到上世纪 40 年代,Zeldovich [299],Doring [71] 和 Von Neumann [276] 对 C-J 理论进行改进提出 ZND 理论。ZND 理论中,爆轰波由前导激波和被激波诱导的反应区组成,前导激波提供一个绝热压缩过程,导致反应物温度、压力升高,分子活化,这个阶段称为诱导阶段。诱导阶段过后化学反应开始,热量大量释放,产生向后膨胀作用,驱使爆轰波传播。图 1.2 是一个典型爆轰波压力曲线,在前导激波过后压力突越到 p_N (称为 Von Neumann 峰),随着反应进行,压力急剧下降,在反应终了,压力降至 p_{CJ} ,经过 C-J 面,爆轰产物进入等熵膨胀的 Taylor 膨胀区。

ZND 理论假设反应流动是一维均匀且不可逆的,并假设反应区的每一个断

图 1.3: 二维胞格结构示意图 [242]。

面都处在热力学平衡状态。该理论虽然能描述爆轰波的一维稳态结构,并能预测爆轰波的波速,但是仍然不是完美的模型,ZND 理论将爆轰看成一维均匀不可逆的,只能解释一维稳态爆轰结构。实际上,对于几乎所有可燃气体,爆轰波波阵面都是本质不稳定的。不稳定性会产生更复杂的一维和高维的物理现象。这种不稳定性主要取决于反应的活化能 $E_a/(RT)$ 。

在一维上,不稳定性会造成爆轰波在传播方向上的脉动振荡,表现为压力峰值随时间在 Von Neuman 峰值附近有规律的上下脉动 [83,159]。对于活化能较低的爆轰,脉动通常在 0.8- $1.6P_{vn}$ 之间。对于高活化能的强不稳定爆轰,脉动更为剧烈,可能会存在熄火和重新起爆过程。

在高维上,除了有径向不稳定性外,横向也会叠加脉动,产生横向波,造成 波阵面的三波点。三波点在空间上运动碰撞,反射的轨迹,构成了鱼鳞状的胞格结构。和一维类似,对于活化能较低的爆轰,横向波很弱,甚至可以看成声波。因此波阵面上过驱的马赫杆和欠驱的入射激波差别很小,都是爆轰波,分布也非常规则,产生的胞格非常均匀。相反,如果爆轰波不稳定性较强,横向 波也同样变强,造成马赫杆和入射波强度差别较大。入射波甚至会衰减到局部 熄火,然后在下一次三波点碰撞中重新起爆。对于这种情况,胞格结构会非常不规则。图 1.3 是二维均匀的胞格结构示意图。

目前,相比如理论分析无法解释不稳定性和空间结构等问题,爆轰波的数值模拟变得更加主流,尤其是采用能反映化学动力学细节的基元反应模型进行

计算,可以定性与定量的再现爆轰波的胞格 [317,325]、旋转爆轰 [39,320]、熄火区 [322]、以及一维或高维的不稳定现象等。尽管数值模拟具有便于实现,可以模拟复杂工况等优点,然而在爆轰的计算中仍然有一些问题和难点,其中比较显著的是化学反应时间尺度和空间的尺度过小的问题,尺度为系统特征的一种度量,详细的解释见附录??。除传统的源项造成的时间刚性外,还可能存在更为复杂的空间刚性问题。除此,还包括组分守恒性和反应区耗散等问题。

1.4.3.2 源项数值刚性问题的时间方法

在高速化学反应流模拟中,经常会遇到化学反应源项存在刚性的问题,这种刚性体现为反应时间尺度远小于流动所采用的时间步长。例如,很多燃烧反应精确计算所需的时间步要精确到纳秒的量级 [195,251],在真实计算中,由于计算能力的限制,我们无法将总体的时间步长缩小到该量级。如果采用和对流过程统一的时间方法而不做特殊处理,如采用最常用的显式的 Runge-Kutta 格式时,可能会造成计算不准确或存在较为严重的数值振荡甚至发散。

对于时间尺度差异带来的求解问题,目前主要有两种解决方法。一种方法采用源项点隐 (Point implicit) [74] 或者全隐式的方式 [82] 整体求解,这种方法称为耦合方法。另一种方法通过算子分裂将源项分裂出来,然后采用独立的时间方法和时间步长进行处理,这种方法通常称为解耦的方法。两种方法各有优势,耦合方法主要优点在于避免解耦误差。然而该类方法需要求解大型矩阵,随着反应模型复杂,矩阵也会更加复杂。另外耦合方法由于简化矩阵运算会引入一系列的近似,结果上耦合方法和解耦方法比并不能体现出太多的优势 [148],因此,目前更多学者都采用解耦方法。

解耦方法通过算子分裂,将化学反应流动方程在时间步内解耦成对流和反应两个子步,然后分别采用与各自的特征时间尺度相匹配的时间步长进行计算。这样处理由于较为灵活,也比较符合物理直观,因而得到广泛的应用 [163,186,187]。分裂方法通常采用 Strang 分裂,既能有二阶的精度,又可以减小反应步时间步长,但是也有学者指出 Strang 分裂在计算间断问题时只有一阶精度,且没有一阶分裂方法准确 [58]。

对流子步的计算仍采用常用的 Euler 方程求解,反应子步通常具有如下 ODE 方程形式

$$\frac{dx}{dt} = f(t, x), x(0) = x_0, (x \in \mathbb{R}^s, t \le 0).$$
 (1.22)

关于该方程的研究早在 80 年代就已经已经较为成熟 [105,283], 最为著名和常用的当属单步的 Runge-Kutta 格式,包括各类显式 RK 和隐式 RK 格式,而且同样可以应用在如对流方程求解中,这在前文对流方程时间方法中有指出,不再赘述。

传统处理刚性 ODE 方程的方法主要包括减小时间步长和采用隐式格式两类方法。如采用刚性不稳定格式在每一步对流步采用很多的子时间步进行稳定的计算,这里由于考虑到计算量通常采用最简单的一阶显式 Euler 格式,时间步长选取可以采用固定步长或自适应步长两种方式。采用固定步长需要预设步长,并且不能随着刚性的变化采用最节约计算的步长。采用自适应步长 [141] 避免了固定步长的一系列问题,但是在计算刚性不强的问题上时由于精度不足会存在过大的误差。

隐式类格式通常具有较好的刚性稳定性 [195],可以构造一致高精度的刚性稳定隐式格式,然而,隐式格式避免不了需要进行大量的收敛迭代和矩阵运算,在求解形式简单的 ODE 方程中鲜有应用。

除上述两类方法外,也有极为稀少的具有显形式的刚性稳定格式,如目前较为常用的线化梯形公式 (linearised Trapezoidal method/LT) [280,308],该方法具有二阶精度,且在一定程度上刚性稳定,通常都不需要进行迭代。但是线化梯形公式也仅有二阶精度,相比于对流步的三阶、四阶 Runge-Kutta 时间精度,这远远是不够的。另外,线化梯形公式也并非绝对稳定的,在道刚性更强的计算中,仍可能崩溃。

在本文中的第七章中,基于数值摄动的思想 [89,295,312],构造了仅针对于 ODE 方程的三阶摄动格式,该格式具有显式形式因此无需迭代,具有更好的刚性稳定性,在求解 ODE 方程中较传统格式具有优势。

1.4.3.3 刚性化学反应流动的空间刚性问题

上面我们介绍了源项刚性带来的时间尺度问题,该问题可以通过算子分裂结合有效的 ODE 求解方法来避免。但是如果工况中刚性进一步加大,这种影响会在空间求解上也有所体现。最具有代表性的问题是模拟高速化学反应流时爆轰波的虚假传播问题。这一问题最早在出现在 Colella1986 年的研究 [54] 中。他在数值模拟反应欧拉方程时发现,如果存在间断,如爆轰波,计算结果中经常出现错误的波速和结构。1990 年,LeVeque 和 Yee 发现即便在含源项的线性

第一章 引言 27

图 1.4: 一个典型的爆轰波虚假传播计算结果 [280]

波动方程中也可能存在相似的间断虚假传播问题。这一问题在接下来二十年时间内得到广泛的关注和研究 [18-20,41,280,308]。图 1.4 给出一组典型的爆轰波虚假传播的计算结果。这一类由于源项刚性而导致爆轰波空间数值求解问题的流动又被称为刚性化学反应流(Stiff reacting flow)。

刚性化学反应流产生根本原因是由于极快的反应速度造成空间上的反应区域也极为狭窄,化学反应时间尺度和空间尺度间具有复杂的相关性。我们如果采用达到小于反应区域尺度的空间网格来数值模拟自然可以避免所有的空间刚性问题,这种求解通常称为完全求解(fully resolved)。然而这个尺度往往是达不到的,例如,在尚不存在空间刚性的氢氧爆轰求解中,最理想的求解尺度已经达到 10⁻⁷ m 量级 [217],刚性化学反应流的完全求解尺度会更小。因此,我们一般只能采用网格尺度远大于反应尺度的网格进行求解,这种求解称为不完全

求解(Underresolved)[18]。在不完全求解情况下,如果不采用特殊的方法,我们将无法在网格内追踪反应的传播。格式的耗散不可避免会抹平组分和温度曲线,造成部分反应在激波前激活,这种激活会产生非物理的状态。该状态随着计算累计就会造成虚假传播现象。关于该问题,在正文中会有详细的分析。

2012 年 Wang [280] 对这 20 年关于避免刚性化学反应流中虚假传播现象的研究进行了回顾。Bao 和 Jin 在刚性流假设下,在源项中发展了一种随机投影的方法来捕捉爆轰波 [18–20],但是该类方法无法应用在无刚性问题中。Zhang等人提出了一种平衡态的方法(ESM)[308] 来抑制虚假状态的产生,然而该方法是和空间格式相关的,难以推广到高阶格式,除此之外该方法最大的问题是,对于复杂的化学反应,往往没法预先知道平衡态。Chang 基于 HartenENO子网格重构的思想 [115],发展了对流步的有限体积 ENO 方法 [41],Wang 等人 [279, 280] 提出了结合了反应步子网格重构思想的高阶有限差分格式。然而,Yee 等人 2013 年指出 [289],子网格重构方法和他们自己提出的非线性限制器方法 [291],只能在一定稀疏的网格和适度的源项刚性情况下推迟非物理传播现象的出现,但是随着网格稀疏或是刚性进一步加强,虚假传播现象仍然会出现。

理论上,在不完全求解情况下,可以将反应面看成反应和未反应两项之间的几何界面,因此可以应用上文所列的各种界面追踪方法进行模拟。如 VOF 方法、Level set 方法以及锋面追踪方法等都曾用来追踪预混火焰面 [194,214]。也有人尝试采用追踪激波面的方法来抑制虚假传播这一非物理现象 [196]。然而,对于更精细的化学反应模型,由于反应速度并不是恒定的,反应区域中既可能存在刚性区域又存在非刚性的区域,反应面是有有一定厚度和内部结构的,因此界面类方法在化学反应流中,难以有很好的推广。

近些年,有人尝试采用结合了拉格朗日粒子和欧拉背景网格的拉格朗日-欧拉(Lagrangian-Euler/LE)方法来求解线性对流-扩散方程 [70,175,192,249],取得了较好的效果。LE 类方法基本思想是采用适当的算子分裂技术将模型方程分成不同的部分,然后选用欧拉方法或是拉格朗日方法来对应求解 [175]。2007年 Shipilova等人 [244]尝试用一种 LE 方法 (PTM 方法)求解对流-扩散-反应方程,数值结果显式 PTM 方法即便在很稀疏的网格下也可以有效的抑制数值振荡。这种 LE 的思想并不新颖,实际上所有界面追踪类界面方法都是采用的同样的思想,只是他们仅将拉格朗日粒子或网格用来追踪界面,当时并没有人将这种思想用来直接求解方程本身。目前,这种 LE 方法仅用来求解简单的方

第一章 引言 29

图 1.5: $2H_2 + O_2 + 7Ar$ 反应组分摩尔比变化和激波前沿距离间关系 [217]

程、方程组,尚没有人采用类似的思想求解化学反应方程系统。

在论文中第八章中,我们采用算子分裂方法,将化学反应欧拉方程分裂为 Euler 方程和组分方程,然后再将组分方程进一步分裂为组分对流方程和反应 ODE 方程,组分对流方程采用 DIP 方法直接求解。由于 DIP 方法的拉格朗日 特性,可以追踪界面的连续运动,同时又由于该方法继承了针对于方程本身求 解的 LE 思想,对于有反应区域厚度的问题同样可以模拟。通过一些列的算例, 我们验证了该方法的有效性。

1.4.3.4 基元反应模型下爆轰波的数值模拟

空间刚性问题一般只出现在总包反应的单方程模型、较为简单的多步反应模型中或是更为严苛的反应条件下。为了更准确的模拟反应动力学过程,我们通常会采用能反映化学动力学细节的基元反应模型进行计算。基元反应模型的求解中,空间刚性问题在并不是常见现象,但是其中仍存在空间分辨率不足等问题。实际上,每种组分的反应率相差很大,图 1.5 给出氢氧爆轰过程不同组分变化和诱导激波前沿距离的对数曲线,可以看到在 $x \approx 10^{-4} cm$,某些曲线如 OH 就开始变化;对于绝大多数组分都在 $10^{-4} < x < 10^{-2} cm$ 之间出现变化;到了 $x \approx 10^{-2} cm$ 后所有组分都会有剧烈变化。图 1.6是通过特征分析给出的化学反应各组分空间尺度和激波前沿距离之间的关系,从中也可以看出,同一空间位置不同组分空间尺度之间差异、同一组分不同空间位置空间尺度同样存在巨大差异。

对于爆轰空间尺度问题,目前除加密网格外,并没有其它特别完善的解决

图 1.6: $2H_2 + O_2 + 7Ar$ 反应不同特征值空间尺度和激波前沿距离间关系 [217]

办法。如自适应网格加密技术可以通过在不同空间尺度的区域实时采用不同大小的网格,似乎是非常适合爆轰波的计算 [40,137],但是目前该类技术在爆轰计算仍有很多困难,因此也并不常用。在固定网格和有限的计算资源下,想要达到完全求解每一空间尺度几乎是不可能的,其中空间尺度较小的组分曲线会由于网格分辨率不足导致的过度耗散而抹平、对应的反应区拉长。爆轰波和激波不同,耗散对于激波而言并不能改变激波前后状态,但是爆轰波组分计算不准确会导致不精确的化学反应结果,得到错误的反应产物,进而影响整体的结果。对此,Powers [217] 等人总结出三点:

- 1) 想要准确预诱导区尺度就需要对引起这一强非线性现象的物理问题在恰当 的尺度合理的求解。但是目前没有发现任何文献对诱导区尺度做过网格收敛 分析,所以很难说这些物理问题是否被合理求解了。
- 2) 对于弯曲的爆轰波,新的几何尺度会和反应区尺度竞争决定整体的波动特性。能否准确的捕捉爆轰波的多维问题很大程度取决于对于反应区尺度和曲率尺度等物理问题的准确计算。
- 3) 在非定常的计算中,任何瞬态爆轰波的高波束波长应该和定常结构中的最佳特征尺度在同一量级。在任何情况下,尤其是在非稳定问题中,想要完全捕捉非定常动力学过程,所用的长度尺度需要等于或者小于最佳定常空间尺度。

和刚性化学反应流问题相似,我们无法采用欧拉方法在不完全求解下准确 计算化学反应组分,但是我们可以通过拉格朗日-欧拉的思想进行计算来消除由 于网格不足产生的数值耗散的影响。基于这样的考虑,在第九章,我们将 DIP 方法推广到基元反应模型下的爆轰波模拟中,结合算子分裂方法将方程分裂为 Euler 方程部分、组分对流部分和源项部分,针对每一部分的特征分别采用欧拉体系的高精度方法、拉格朗日体系的 DIP 方法和数值摄动方法进行求解。数值结果表明新的方法能准确的计算如爆轰波速等问题,并且相比于传统方法在组分守恒性,组分曲线的耗散性上有更大的优势。

1.5 本文所开展研究内容

本文研究内容主要分为上下两部分。在上部分中,我们研究欧拉方程激波相关的空间方法,包括

- 1) 针对间断附近过渡点降阶问题,我们提出一种多步加权的思想,并构造了五 阶多步加权 WENO 格式,结果显示新格式在激波附近区域的精度得到较大 提高。
- 2) 针对混合格式的关键问题—间断识别,我们对比了现存的大部分识别方法, 认为基于 τ₅ 函数的 SZ 识别方法无人为参数,方便使用,且有较好的表现, 是本文最推荐的识别方法。
- 3) 本文将采用了 SZ 识别方法的杂交格式—有限紧致格式推广到理想磁流体求解中,考虑到磁流体方程有复杂的特征值系统和波系,本文结合无需特征系统求解的 E-CUSP 类格式,可以高精度低耗散的求解理想磁流体方程。

区别与上部分的纯欧拉体系的方法,下部分内容主要是欧拉-拉格朗日结合的方法,包括以下内容:

- 1) 由于传统界面方法无法处理耗散界面、界面守恒性不好等问题,本文提出一种基于欧拉背景网格的拉格朗日粒子类方法—双信息保存方法,并验证了该方法良好的守恒性。
- 2) 本文结合避免界面附近振荡的虚拟流体方法,将双信息保存方法应用在两相流界面问题求解中,取得了较好的结果。
- 3) 针对于化学反应流动方程中的反应源项 ODE 方程时间刚性,本文基于数值 摄动思想,构造了一系列高阶、显式且稳定的单步数值摄动方法,可以较好的避免时间刚性造成的 ODE 求解困难。

- 4) 在刚性化学反应流求解中,由于爆轰波附近的数值耗散会产生爆轰波虚假传播现象,本文将双信息保存方法应用在刚性化学反应流求解中,通过抑制组分对流方程耗散来避免这一非物理的数值现象。
- 5) 在应用了基元反应模型的化学反应求解中,由于组份之间尺度相差很大,在求解网格不够精细情况下,经常遇到某些反应速度快的组分求解不准确的问题。本文将双信息保存方法应用在基元反应的反应欧拉方程求解中,由于该方法的拉格朗日特性,即便在较稀疏网格也能很好的计算组分对流过程,保持组分求解的守恒性。

第二章 双信息保存(DIP)方法

界面作为最为常见的物理现象之一,广泛的存在于力学、化学、生物工程、 材料科学和计算机图形学等多个学科领域。界面的准确模拟对于多相流动、晶体生长、火焰的发展和传播等等很多方面的研究都有重要意义。

2.1 不同的界面类型和界面方法

界面方法最早可以追溯到 1958 年的洛斯·阿拉莫斯国家实验室发展的 Particle-In-Cell(PIC) 方法 [81,111] 。在第一章 1.4.2 节中,对不同的界面方 法都有较详细的介绍。本章中,我们将从方程的角度来分析界面问题。

忽略力学模型,界面的运动可以抽象为求解对流方程

$$\frac{\partial z}{\partial t} + \boldsymbol{V} \cdot \nabla z = 0 \tag{2.1}$$

其中 V 为速度场,z 为区分界面两侧物质的物理量,如比热比 γ 、密度 ρ 等。下面将分别对不同类型的界面进行分析。

2.1.1 传统界面

尽管方程 (??) 是最简单的对流方程, 然而, 如果我们关注于界面的运动时, 想要实时的得到几何面 (线) 是异常困难的。以一维图 ?? 为例, 如果直接对方程 (??) 进行求解, 例如采用差分方法, 随着间断被耗散, 界面将无法识别。

因此,绝大多数界面方法并不直接求解方程 (??) 本身,而是采用一种追踪的视角进行模拟,图 ?? 给出了不同界面方法的一维示意图。其中锋面追踪方法直接追踪界面;MAC 方法在界面一侧添加标记点;而 VOF 方法在每一个网格引入一个体积分数函数,将界面的运动转化为体积分数的变化。只有 level set 方法求解方程 (??),但是也并不直接求解间断函数 z 本身,而是以到界面距离为新的函数 ϕ ,求解

$$\frac{\partial \phi}{\partial t} + \boldsymbol{V} \cdot \nabla \phi = 0$$

如图 ??.d 所示, level set 方法将 $\phi = 0$ 的位置识别为界面位置。

图 2.1: 界面的一维示意图

这些界面方法明显可以分成两类,一类全计算域计算的界面捕捉方法,如VOF 和 level set 方法,另外一类只对部分区域进行 Lagrangian 追踪的界面追踪方法,如锋面追踪、MAC 方法等。两类方法各有优势,全域计算的方法更适合处理光滑的几何形状,并且易于处理由于由于流体压缩性导致的膨胀过程,如图 ??.a 所示; Lagrangian 局部追踪的方法更易于处理锋利夹角、大变形以及界面破碎等问题,如图 ??.b 所示。由于各有明显的优势和缺点,有学者尝试将两种类型方法结合,如 level set-粒子方法,VOF-粒子方法等方法。

2.1.2 多相界面和耗散界面

除了经常研究的两相界面外,在工业、化学、生物等很多领域中存在三相甚至更多相物质之间的相互作用,我们可以将这种问题称为多相界面问题。相比两相界面丰富的研究,多相界面的研究无论在理论还是数值方面都很少[144]。除多相界面外,耗散界面是另外一类较难处理的界面问题,我们在第一章中对耗散界面做过简单介绍。

传统界面类方法求解多相界面和耗散界面困难的根本原因在于这些方法都不是针对某一真实的物理量进行求解,如 γ , ρ , 而只是从拓扑角度计算界面的运动。这一问题导致传统界面类方法无法直接求解如图 ?? 所示的多相界面和具有界面厚度 δ 的耗散界面。

2.2 双信息保存方法基本思想

首先我们考虑两个问题:

图 2.2: 不同界面方法一维示意图

- 1, 界面捕捉类方法由于采用全计算域求解,可以更好的处理界面膨胀(图??.a)、 界面张力等光滑函数问题; 界面追踪方法由于采用拉格朗日运动思想可以更 好的保持界面形状、计算界面大变形和破裂等问题。我们能否同时具备两方 面的优点呢?
- 2, 传统界面方法都不是直接求解方程(??)中的和物理相关的量 z, 因此较难处理多相界面和耗散界面。界面方法能否针对 z 进行求解?

2.2.1 信息点

粒子方法是一种最直观的界面方法,具有优良的 Lagrangian 特性,但是由于它明显的不足,学者们更愿意将它作为一种辅助手段,如用作示踪粒子,或者和其它方法结合,用粒子来修正计算结果,如 level set-粒子方法,VOF-粒子方法等。粒子方法最大的问题是粒子的离散性和分布的随意性,难以保证全域的覆盖,这样就无法像网格方法一样准确的得到任意位置的信息。粒子类界面方法主要包括早期的 Particle-In-Cell (PIC) 方法和目前仍在使用的 Marker-In-Cell (MAC) 方法。PIC 方法采用携带有质量的真实粒子模拟流体的运动,根据粒子携带的信息可以判断界面位置,然而,由于真实粒子无法人为的生成和

图 2.3: 不同类型界面方法适合求解的工况二维示意图

图 2.4: 多相界面和耗散界面一维示意图

抹去,无法保证全计算域每个网格都含有粒子。Marker-and-cell (MAC) 方法采用标记粒子,粒子除位置以外不含有其它信息,是完全的虚拟粒子,增加和减少都不会影响流场的物理性质,但是由于它完全不携带信息,只能通过有粒子和没有粒子判断界面,仍然无法做到覆盖计算域。

我们知道网格是对真实流场的离散,这种离散其实是真实流场信息在网格点上的映射,我们可以随时加密网格、减少网格或移动网格,尽管这可能影响计算精度,但是并不会改变所研究问题本质。如图 ??,类比于网格点,我们可以引入一套和网格点相似的、携带有输运值 z 的粒子,这种粒子可以根据需要增加、减少和移动。我们将这种携带有输运值的 Lagrangian 粒子称为**信息点**。

本文的方法中同时含有两类信息点,因此将该方法称为双信息保存方法,下

图 2.5: 信息点和网格节点类比一维示意图

文将分别介绍这两类信息点。

2.2.2 单元信息点(单元点)

对于固定网格方法,网格点位置是确定的,我们每个时刻都能得到确定的空间点上的计算值,并可以通过高阶插值运算得到空间任何点的近似值;对于运动网格,如自适应加密网格,我们也可以人为的控制网格加密规律,避免过分畸形的网格分布和网格形状。然而,粒子点的运动完全是由速度场决定的,所以粒子点的分布具有很高的随意性。MAC 方法也遇到相同的困难,某单元原本含有粒子,但是随着流场膨胀,单元不再含有粒子,但这并不代表该单元产生了相变。MAC 方法的解决策略是在初始计算时,在相应状态的单元内放置多达16 个粒子来避免这种错误的发生。但是这样即增加计算和存储,又不能从根本上避免粒子分布随意性这一问题。

对于信息点可以随时生成和抹去这一特点,我们为什么不构造一个限定在单元内的信息点呢?既可以解决粒子分布问题,又有利于单元上输运值和粒子上输运值之间的传递。我们将这种每个单元内唯一的信息点,称为单元信息点,简称为**单元点**(cell-point)。下面我们将从一维来介绍单元点求解方程(??)的步骤。

一. 初始化

如图 ?? 我们首先将 [i-1/2,i+1/2] 定义为第 i 单元。开始计算时,在每个单元内引入一个单元点。由于单元点是和每个单元关联的,所以单

元点无需特殊编号进行区分,单元点的位置可以根据在单元内相对坐标 X(i) 给出,为了简便,下文会在不产生歧义的情况下简写为 X。单元点的初始条件为:

$$X(i) = 0, \quad \bar{z}(i) = z(i)$$
 (2.2)

图 2.6: 单元信息点一维示意图

二. 运动追踪

单元点的运动速度是由所在的速度场决定的。通常计算中,例如在流体计算中,可以通过其它方程得到的网格点上的速度。然后通过插值可以近似求得粒子点所在位置的速度。理论上可以构造任意高阶的插值,为了简便,我们只采用两个单元的线性插值,以 *i* 单元的信息点为例

$$\bar{u}(i) = (1 - |X|)u(i) + |X|u(i + s_x)$$
(2.3)

其中 $s_x = \mathrm{sign}(X)$,通过相对坐标的符号决定是向正向还是向负向插值。 当粒子开始运动后我们需要每一步确定 i 单元点是否运动出单元,如果运动出单元新的位置,我们需要确定单元点新的位置。单元点 i 经过 Δt 时间内运动到临时坐标为

$$L_x = X\bar{u} + \Delta t/\Delta x \tag{2.4}$$

通过临时坐标可以确定新的所在单元 M 为

$$M = i + floor(L_r + 0.5) \tag{2.5}$$

和新的相对坐标为

$$\bar{X} = L_x - \text{floor}(L + 0.5) \tag{2.6}$$

其中 floor 为向上取整函数。

三. 单元点的更新

为了保证单元和单元点的一一对应,我们需要在每一时间步结束时对单元点进行更新,将含有多余单元点的和不含单元点的单元进行处理。

我们首先考虑这样一个问题,对于图 ?? 中所示的情况,i 单元点上 z=1,i+1 单元点上 z=0,那么界面究竟是图中哪种情况呢?这在离散问题中其实是无法确定的,需要进行统一的规定。根据所研究的问题是否涉及界面厚度分成无厚度界面和耗散界面两类。

1). 无厚度界面问题中单元点的消去方法

如果我们研究的是无厚度的传统界面或多相界面,我们规定界面位于 *z* 值较小的信息点位置,既图 ?? 中第二种情况。

如果一个单元内有多个信息点,如图 ??,根据上面界面位置的规定, 我们选择输运值 *z* 较小的单元点。

2). 无厚度界面问题中单元点的生成方法

在 k+1 时间步,对于没有单元点的单元 i,我们需要在单元中心引入新的单元点,单元点上对流信息 z 可以通过**回溯生成法**得到。如图 ??,回溯生成法的做法如下:

- i. 首先在计算时刻 t_{k+1} 的上一时间步 t_k ,假设我们曾在某一位置引入了一个新的单元点 P,该点速度为 u';
- ii. 经过时间 Δt , 在 k+1 时间步该单元点正好运动到 i 单元中心 X=0;
- iii. 由于我们不知道速度 u',我们假设 u' 为 k+1 时间步 i 单元中心的速度:

$$u' = u^{k+1}(i)$$

iv. 通过逆速度,可以得到临时坐标为

$$L_x = -u'\Delta t/\Delta x \tag{2.7}$$

根据公式 (??) 和 (??) 可以知道 P 在 k 时间步的单元为

$$M = i + \text{floor}(L_x + 0.5)$$

图 2.7: 界面在单元点间可能的分布情况一维示意图

图 2.8: 无厚度界面情况中单元点的消去方法一维示意图

图 2.9: 单元点的回溯生成法一维示意图

由于 k 时间步是已知的,根据求得的位置就可以知道该单元输运 值,即

$$\bar{z}^{k+1}(i) = \bar{z}^k(M)$$

3). 耗散界面问题中单元点的消去方法

如果我们研究的是耗散界面,则选择图 ?? 中第四种情况做为界面真实情况。由于耗散界面存在过渡值,如图 ?? ,如果单元内含有多个单元点,我们采取所有单元点位置和输运值 z 算数平均的形式。

4). 耗散界面问题中单元点的生成方法

在耗散界面问题中由于没有清晰的分界面,允许存在一定的耗散,因此我们采用另外一种插值的方法生成单元点。如图 ?? 所示,如果单元 i 没有单元点,我们在单元中心生成新的单元点,单元点上的输运值可以采用前后临近单元点加权平均的方式得到,权重反比于到 i 单元中心的距离:

$$\hat{z}_i = \frac{\omega_1 \bar{z}_{i-1} + \omega_2 \bar{z}_{i+1}}{\omega_1 + \omega_2} \tag{2.8}$$

其中, $\omega_1 = 1/L_1$, $\omega_2 = 1/L_2$ 。

每一时间步,经过单元点运动和更新的计算,我们可以得到每个单元中单元点的位置和输运值,然后将单元点的输运值作为该单元输运值。

2.2.3 粒子信息点(粒子点)

上文中,我们引入了单元信息点,通过单元信息点可以直接求解方程 (??),无论是传统的无厚度界面、多于两相物质的多相界面还是具有界面厚度的耗散

图 2.10: 耗散界面情况中单元点的消去方法一维示意图

界面都可以进行模拟。

单元信息点只具备一半的 Lagrangian 特性,尽管它弥补了粒子点不能全域覆盖、无法计算耗散界面等缺点,但由于每步的更新,新的单元点会不断替代旧的单元点,而新的单元点的生成存在误差,导致对界面结构的保持并不像纯粒子方法那么好。为了改进这一不足,我们引入了另外一套全域追踪的信息点,在每一步对单元点进行修正。将这种全域追踪、具有纯粒子点特性的单元点,称为粒子信息点,简称为粒子点。下面我们给出通过粒子点修正单元点的过程。

图 2.11: 耗散界面问题中单元点的生成方法一维示意图

一. 初始化

初始化时,在每个单元中心引入一个粒子点,由于粒子点是全域追踪的,我们需要为每一个粒子点建立一个无冲突的标记,这里以最开始所在单元作为标记。对于某一标记为i的粒子点,我们需要给出两个数组分别记录它所在单元ip(i)和单元相对坐标 $X_p(i)$ 。初始化过程和单元点相似

$$ip(i) = i, \quad X_p(i) = 0, \quad \bar{z}_p = z(i)$$
 (2.9)

二. 运动追踪

粒子点的运动和单元点相同,我们首先根据粒子点 i 所在单元 ip 和 X_p 线性插值出粒子点的运动速度

$$\bar{u}_p = (1 - |X_p|)u(ip) + |X_p|u(ip + s_x)$$
(2.10)

其中 $s_x = \text{sign}(X_p)$ 。 Δt 时间后单元点临时坐标变化为

$$L_x = X_p + u_p \Delta t / \Delta x \tag{2.11}$$

根据临时坐标可以得到新的单元位置和相对坐标:

$$ip = ip + floor(L_x + 0.5) \tag{2.12}$$

$$X_p = L_x - \text{floor}(L_x + 0.5)$$
 (2.13)

三. 修正单元点

在 t_k 时刻,假设我们已经更新了单元点,如果单元 ip 内含有粒子点,我们则采用粒子点重新更新单元点,关于新的单元点更新策略,无论是对于无厚度界面还是对耗散界面来说,都和通过单元点更新完全相同,只是用粒子点取代了原本的单元点。

2.2.4 边界处理

粒子方法的边界条件都很容易实现,下面我们分别介绍几种常用的边界条件。如图 ??, 首先假设我们计算从第 0 单元到 Nx 单元, DIP 方法由于在计算

中可能需要临近网格的信息,因此在左右分别构造一个虚拟网格 -1 和 Nx+1。

图 2.12: 边界和虚拟网格一维示意图

一. 周期边界条件

对于单元点,将 1 单元内单元点直接赋值给 Nx+1 虚拟单元,将 Nx-1 单元内单元点直接赋值给 -1 单元

$$X(-1) = X(Nx - 1), \quad X(Nx + 1) = X(1),$$

 $\bar{z}(-1) = \bar{z}(Nx - 1), \quad \bar{z}(Nx + 1) = \bar{z}(1)$ (2.14)

对于粒子点,如果有粒子流出,即 ip(i) > Nx 或 ip(i) < 0,则

$$ip(i) = ip(i) - Nx$$
, if $ip(i) > Nx$
 $ip(i) = ip(i) + Nx$, if $ip(i) < 0$ (2.15)

而 $X_p(i)$ 保持不变。

二. 入流条件

假设左侧为入流,对于单元点,我们令左侧虚拟单元 -1 中的单元点 始终放在单元中心,输运值为入流值。

$$X(-1) = 0, \quad \bar{z}(-1) = z_{\rm in}$$
 (2.16)

对于粒子点随着流体流入,我们在入流中添加新的粒子点,粒子点的总数会出现浮动,假设粒子点的数量用 N_p 表示,初始时 $N_p = Nx$ 。当 0 单元中不存在粒子点时,将新的粒子点放置在单元中心,粒子点的输运值为入流输运值,粒子点总数加 1。

$$\begin{cases}
N_p = N_p + 1 \\
ip(N_p) = 0 \\
X_p(N_p) = 0 \\
\bar{z}_p(N_p) = z_{\text{in}}
\end{cases} \text{ if } \operatorname{Mrk}_p(0) = 0 \tag{2.17}$$

其中 Mrk_p 为单元中粒子点数目标记函数。

三. 出流条件

和入流相似,假设右侧为出流条件,对于单元点,我们令虚拟单元 Nx + 1 中的单元点始终放在单元中心,输运值为 Nx 单元点输运值。

$$X(Nx+1) = 0, \quad \bar{z}(Nx+1) = z(Nx)$$
 (2.18)

对于粒子点,随着流出,粒子点的总数会减少,当有粒子点 ip(i) > Nx 时,我们将它去掉,并调整序号。

$$\begin{cases}
ip(i) = ip(N_p) \\
X_p(i) = X_p(N_p) \\
\bar{z}_p(i) = \bar{z}_p(N_p) \\
N_p = N_p - 1
\end{cases}$$
 if $ip(i) > Nx$ (2.19)

四. 固壁反射条件

假设图 ?? 中, 左边为固壁, 对于单元点有边界条件

$$X(0) = 0, \quad X(-1) = -X(1), \quad \bar{z}(-1) = \bar{z}(1)$$
 (2.20)

其中 $\bar{z}(0)$ 不做特殊处理。

对于粒子点, 边界无法穿透, 因此如果有粒子穿越边界, 我们将它做反射

$$\begin{cases}
tmp = ip(i) + X_p \\
ip(i) = -floor(tmp + 0.5) & if tmp < 0 \\
X_p(i) = -(tmp + ip(i))
\end{cases}$$
(2.21)

2.2.5 DIP 方法一维伪代码

为了更清晰的演示 DIP 方法的求解过程,下面我们给出 DIP 方法在一维中的伪代码。其中方框内为求解耗散界面时需要用到的代码。

一维双信息保存方法(DIP) 伪代码 初始化 ! 单元点初始化 DO i = 0, NxX(i) = 0! 其中 $-0.5 < X(i) \le 0.5$ 为单元内坐标 $\bar{z}(i) = z(i)$ ENDDO !粒子点初始化 Np = Nx! Np 为粒子点总数,会因为出流和入流变化 DO i = 0, Npip(i) = i $X_p(i) = 0$! 其中 N_p 为粒子点总数,会因为出流和入流变化 $\bar{z}_p(i) = z(i)$ ENDDO DO it = 1, NT! 时间循环 Mrk(i) = 0! 用来标记第 i 单元中临时的单元点数量和粒子点数量 $Mrk_p(i) = 0$ 1. 单元点的运动追踪 DO i = -1, Nx + 1 $s_x = sign(X(i))$ $\bar{u}(i) = (1 - |X|)u(i) + |X|u(i + s_x)$!速度插值 $L_x = X(i) + \bar{u}(i)\Delta t/\Delta x,$ $X(i) = L_x - floor(L_x + 0.5)$ $M(i) = i + floor(L_x + 0.5)$! i 单元点移动到 M 单元 2. 单元点的更新 IF Mrk(M) = 0 THEN X'(M) = X(i) $\bar{z}'(M) = \bar{z}(i)$ ELSE IF $\bar{z}(i) < \bar{z}'(M)$ THEN X'(M) = X(i)! 多个单元点,选取 z 值小的点 $\bar{z}'(M) = \bar{z}(i)$ ENDIF X'(M) = (X(i) + Mrk(M)X'(M))/(Mrk(M) + 1)! 多个单元点, 进行平均 $\bar{z}'(M) = (\bar{z}(i) + \operatorname{Mrk}(M)\bar{z}'(M)/(\operatorname{Mrk}(M) + 1)$ Mrk(M) = Mrk(M) + 1END DO

3. 粒子点的运动追踪 DO i = 0, Np

```
s_x = sign(X_p(i))
                                                               ! 速度插值
       \bar{u}_p(i) = (1 - |X_p|)u(ip) + |X|u(ip + s_x)
        L_x = X_p(i) + \bar{u}_p(i)\Delta t/\Delta x
                                                                    ! i 粒子点新位置
        X_p(i) = L_x - floor(L_x + 0.5)
         ip(i) = ip(i) + floor(L_x + 0.5)
4. 粒子点修正单元点
       IF Mrk_p(ip) = 0 THEN
         X'(ip) = X_p(i)
         \bar{z}'(ip) = \bar{z}_p(i)
       ELSE
          IF \bar{z}_p(i) < \bar{z}'(ip) THEN
             X'(ip) = X_p(i)
                                                                    ! 多个粒子点, 选取 z 值小的点
              \bar{z}'(ip) = \bar{z}_p(i)
         ENDIF
       X'(ip) = (X_p(i) + \operatorname{Mrk}_p(ip)X'_p(ip))/(\operatorname{Mrk}_p(ip) + 1) !多个粒子点,取平均
       \bar{z}'(ip) = (\bar{z}_p(i) + \operatorname{Mrk}_p(ip)\bar{z}'_p(ip))/(\operatorname{Mrk}_p(ip) + 1)
       \operatorname{Mrk}_p(ip) = \operatorname{Mrk}_p(ip) + 1
    END DO
5. 在空单元生成单元点
    DO i = 0, Nx
       IF Mrk(i) + Mrk_p(i) = 0 THEN
           L_x = -u(i)\Delta t/\Delta x
           M = i + floor(L_x + 0.5)
                                                                    ! 回溯生成单元点
           X'(i) = 0
           \bar{z}'(i) = \bar{z}(M)
          L_1 = |X'(i+1) + 1|
          L_2 = |X'(i-1) - 1|
          \bar{z}'(i) = (\bar{z}'(i+1)/L_1 + \bar{z}'(i-1)/L_2)/(1/L_1 + 1/L_2)
       ENDIF
    END DO
    DO i = 0, Nx
       \bar{z}(i) = \bar{z}'(i)
       X(i) = X'(i)
       z(i) = \bar{z}(i)
    END DO
```

2.2.6 二维 DIP 方法

粒子方法具有极好的高维拓展性,我们只需要增加 Y 方向的位置函数即可求解二维问题。下面以单元点为例简单的介绍下 DIP 方法求解二维方程 (??)

的实现过程,详细内容可见附录。

$$\frac{\partial z}{\partial t} + u \frac{\partial z}{\partial x} + v \frac{\partial z}{\partial y} = 0 {(2.22)}$$

一. 初始化

初始化除了维度增加以外完全和一维相同:

$$X(i,j) = 0, \quad Y(i,j) = 0, \quad \bar{z}(i,j) = z(i,j)$$
 (2.23)

二. 单元点的运动追踪

首先通过一维线性插值的方式得到单元点速度:

$$\begin{cases}
\bar{u}(i,j) = (1-|X|)u(i,j) + |X|u(i+s_x,j) \\
\bar{v}(i,j) = (1-|Y|)v(i,j) + |Y|v(i,j+s_y)
\end{cases}$$
(2.24)

为了表达简单,偶尔在不混淆的情况下将 X(i,j) 和 Y(i,j) 简写为 X 和 Y。其中

$$\begin{cases} s_x = \operatorname{sign}(X) \\ s_y = \operatorname{sign}(Y) \end{cases}$$

临时坐标变化:

$$\begin{cases} L_x = X(i,j) + \bar{u}(i,j)\Delta t/\Delta x \\ L_y = Y(i,j) + \bar{v}(i,j)\Delta t/\Delta y \end{cases}$$

所在单元变化和相对坐标变化为

$$\begin{cases} M(i,j) = i + \text{floor}(L_x + 0.5) \\ N(i,j) = j + \text{floor}(L_y + 0.5) \\ X(i,j) = L_x - \text{floor}(L_x + 0.5) \\ Y(i,j) = L_y - \text{floor}(L_y + 0.5) \end{cases}$$

三. 单元点的更新

单元点的更新过程和一维中相同,其中耗散型界面的单元点生成仍采

用临近单元单元点加权平均的形式,

$$\bar{z}(i,j) = \sum_{i_1,j_1} \left[\omega_{i_1,j_1} \bar{z}(i+i_1,j+j_1) \right] / \sum_{i_1,j_1} \omega_{i_1,j_1}$$

其中 $i_1 = -1, 1$, $j_1 = -1, 1$ 。权重函数反比于距离, $\omega_{i_1, j_1} = 1/L_{i_1, j_1}$,而距离很容易求得:

$$L_{i_1,j_1} = \sqrt{(X(i+i_1,j+j_1)+i_1)^2 + (Y(i+i_1,j+j_1)+j_1)^2}$$

2.3 数值算例

下面我们将通过一维和二维算例验证新方法的表现。

2.3.1 一维数值算例

1. 均匀速度场算例

对于均匀速度场, 粒子点和单元点是完全重合的, 信息点间的距离不会变化, 所以也不会出现一个单元存在多个或没有单元点的情况。

1). 我们首先测试一个在 u = 1 的均匀速度场中间断函数的传播问题。初始条件为

$$z = \begin{cases} 1, & \text{if } x < 0.2\\ 0, & \text{if } x \ge 0.2 \end{cases}$$

计算域为 [0,1],边界采用周期边界条件。计算采用的网格为 N=20,计算时间步长为 $\Delta t=0.005$,图 **??** 给出 23 个时间步后单元点的分布情况。从该算例可以看出,粒子类方法由于追踪的连续性,即便在极其稀疏的网格中,也能对每个信息点上的信息进行准确的追踪。

2). 接下来我们研究更复杂波形的传播, 初始条件为

$$z_0(x) = \begin{cases} \frac{1}{6} \left(G(x, \beta, z - \delta) + G(x, \beta, z + \delta) + 4G(x, \beta, z) \right), & -0.8 \leqslant x \leqslant -0.6, \\ 1, & -0.4 \leqslant x \leqslant -0.2, \\ 1 - |10(x - 0.1)|, & 0 \leqslant x \leqslant 0.2, \\ \frac{1}{6} \left(F(x, \alpha, a - \delta) + F(x, \alpha, a + \delta) + 4F(x, \alpha, a) \right), & 0.4 \leqslant x \leqslant 0.6, \\ 0, & otherwise, \end{cases}$$

图 2.13: 一维线性对流间断传播算例,均匀速度场 u=1,时间步 Nt=23 以及

$$G(x, \beta, z) = exp(-\beta(x - z)^2),$$

$$F(x, \gamma, a) = \sqrt{max(1 - \alpha^2(x - a^2), 0)}.$$

其中 a=0.5, z=-0.7, $\delta=0.05$ 和 $\beta=log2/36\delta^2$ 。计算采用 N=200 网格,计算时间为 T=6。我们将新方法的计算结果、采用了 WENO 格式的有限差分方法计算结果及参考解进行对比,从图 ?? 可以看出,对于该类线性问题,无论包含强间断的方波还是光滑的波形都能精确地求解。

2. 无粘 Burgers 方程问题

图 2.14: 一维对流方程组合波算例,均匀速度场 u=1, T=6

无粘 Burgers 方程

$$\frac{\partial z}{\partial t} + z \frac{\partial z}{\partial x} = 0, \quad z_0(x) = \sin(\pi x), \quad 0 \le x \le 2.$$
 (2.26)

速度场为 u=z,因此该方程是非线性方程,经过一段时间,原本光滑的波形会形成间断。图 ?? 给出 DIP 方法和 WENO 格式在 N=200 网格下计算结果对比,我们可以看到对于这种非线性问题,DIP 方法同样可以模拟,取得很好的结果。

2.3.2 二维数值算例

二维问题中存在复杂的拓扑变化,因此更适合用来测试界面方法的表现。

1. 均匀速度场算例

该算例采用 u = 1, V = 1 的均匀速度场, 计算区域为 $[0,1] \times [0,1]$ 初始时刻一个边长为 0.2 的正方形中心位于 (0.2,0.2), 正方形内 z = 1 其它区域 z = 0, 计算网格为 10×10 , 计算时间为 t = 0.6。从图 ?? 中给出计算

图 2.15: Bugers 方程算例, T=0.4

结果可以看到,在极其稀疏网格下,DIP 方法仍能准确计算每一个单元点的运动过程。

2. Zalesak 圆盘旋转算例

Zalesak 的圆盘旋转算例 [298] 是一个验证界面方法的经典算例, 速度场采用旋转速度场

$$\begin{cases} v_x(x,y) = 2\pi y, \\ v_y(x,y) = -2\pi x, \end{cases}$$

初始条件为

$$u(x,y) = \begin{cases} 0, & \sqrt{x^2 + y^2} > 0.4, \\ 0, & 0.4 < y < 0.6 \text{ and } x > 0.5, \\ 1, & \text{else.} \end{cases}$$

图 2.16: 二维均匀速度场间断传播算例, T=0.6

该问题中计算域为 $[0.1] \times [0,1]$,采用 $N=200 \times 200$ 网格。图 ?? 给出不同时刻的计算结果($T_1=0, T_2=0.25, T_3=0.5, T_4=0.75, T_5=1$ 和 $T_6=20$),从图中可以看出,DIP 方法可以很好保持圆盘的形状。

3. 界面拉伸算例

我们考虑另外一个常见的界面方法测试算例 [?,13],在计算开始,一个半径为 0.2 的圆圆心位于 $(0.5\pi,0.7)$:

$$u(x,y) = \begin{cases} 1, & \sqrt{(x-0.5\pi)^2 + (y-0.7)^2} \leq 0.2, \\ 0, & \text{else.} \end{cases}$$

速度场为

$$\begin{cases} v_x(x,y) = \cos(x - 0.5\pi)\sin(y - 0.5\pi), \\ v_y(x,y) = -\sin(x - 0.5\pi)\cos(y - 0.5\pi). \end{cases}$$

在该速度场作用下,界面会被不断拉伸,一般用来验证界面方法对于拓扑

图 2.17: Zalesak 圆盘旋转算例 $N = 200 \times 200$ 网格下计算结果 $(T_1 = 0, T_2 = 0.25, T_3 = 0.5, T_4 = 0.75, T_5 = 1$ and $T_6 = 20$),其中黑线为初始条件

变化的适应性,往往我们会在一段时间后采取逆速度场,通过圆是否回复 开始的位置来判断方法的守恒性。

图 ?? 中给出了 $N = 200 \times 200$ 网格下计算结果,分别为 $T = \pi$ 结果和接下来反向运动 π 的结果, $T = 2\pi$ 的结果和接下来反向运动 2π 的结果,可以看到新方法可以很好的计算界面的拓扑变化,并保持守恒性。

4. 多相界面问题

1). 前文指出,现有的界面方法在求解含有三相和三相以上物质的问题时较为困难,这里我们构造一个和上一个界面拉伸算例相似,但是含有多相分界面的新算例,该算例仍采用相同的速度场和其它计算条件,只是初始

条件变为

$$z_0 = \begin{cases} 1, & \text{if } r < 1/5 \\ 2, & \text{if } 1/5 \leqslant r < 2/5 \\ 3, & \text{if } 2/5 \leqslant r < 3/5 \\ 4, & \text{if } 3/5 \leqslant r < 4/5 \\ 5, & \text{if } 4/5 \leqslant r < 1 \\ 0, & \text{else} \end{cases}$$

初始分布如图 ??.a 所示,图 ??.b 给出 $T = 2\pi$ 时间后界面运动结果,可以看到,由于 DIP 方法针对于物理方程本身求解,因此可以毫无区别的模拟多相界面和两相界面。

2). 我们继续模拟另外一个有趣的多相界面算例,该算例模拟的是一个彩色圆盘旋转问题,计算域选取为[-2,2]×[-2,2],初始条件为

$$z_0 = \begin{cases} 1, & \text{if } x > y \text{ and } \operatorname{sign}(x) = \operatorname{sign}(y) \text{ and } r \leq 3 \\ 2, & \text{if } x \leq y \text{ and } \operatorname{sign}(x) = \operatorname{sign}(y) \text{ and } r \leq 3 \\ 3, & \text{if } |x| < |y| \text{ and } \operatorname{sign}(x) \neq \operatorname{sign}(y) \text{ and } r \leq 3 \\ 4, & \text{if } |x| \geq |y| \text{ and } \operatorname{sign}(x) \neq \operatorname{sign}(y) \text{ and } r \leq 3 \\ 0, & \text{else} \end{cases}$$

如图??.a 所示, 速度场为

$$\begin{cases} u = y\sqrt{x^2 + y^2} \\ v = -x\sqrt{x^2 + y^2} \end{cases}$$

图 ??.a 给出初始状态,经过 T = 4,图 ??.b 中显示,彩色圆盘由于中心速度快,边缘速度慢,因而被拉伸成细长的条带。对于这种界面极度拉伸问题,DIP 方法也可以很好的求解。

2.4 小结

本章中,我们构造了一种基于欧拉网格的粒子类方法求解线性对流方程,在该方法中同时引入两类携带有对流方程输运值的 Lagrangian 粒子—信息点,一类信息点在单元内运动,每一步都会重新生成用以保持信息点全域覆盖,称为

单元点,另一类全域追踪,用来修正单元点由于生成过程而产生的误差,称为粒子点。该方法由于针对于对流方程本身求解,可以很好的处理传统的两相界面、多相界面及耗散界面问题。本章给出了该方法详细的构造过程,并通过一系列算例验证了该方法的有效性和鲁棒性。

图 2.18: 界面拉伸算例, $N=200\times 200$, 其中黑线为参考解

图 2.19: 多相界面拉伸算例, $N = 400 \times 400$

图 2.20: 多相界面旋转算例, $N = 400 \times 400$

第三章 刚性常微分方程和数值摄动(NP)方法

3.1 刚性常微分(ODE)方程

在各个学科领域都广泛的存在着如下形式的常微分方程

$$\frac{dx}{dt} = f(t, x), x(0) = x_0, (x \in \mathbb{R}^s, t \le 0)$$
(3.1)

对于该类方程的理论及数值研究已经长达两个世纪,随着如 Runge-Kutta 等高精度单步格式的提出,该方程基本上已经不存在求解难题。然而却有一个问题是例外,那就是刚性方程 (Stiff equation)问题。

刚性方程在 ODE 数值方法发展中犹如一块乌云,甚至至今连明确的数学定义都没有 [283]。学者们给出了刚性方程多种描述,目前受到最广泛接受的仍然是 1985 年 Curtiss 和 Hirschfelder 最早给出的描述: 刚性方程是指那些采用某些特定的隐式格式求解,尤其是采用 BDF 格式,会比采用显示格式求解有优势,通常都有极大的优势,的一类方程('stiff equations are equations where certain implicit method, in particularly BDF, perform better, usually tremendously better, than explicit ones')。

刚性和非刚性方程求解起来差别巨大,比如采用显式格式求解刚性 ODE 方程,需要极小的时间步才能稳定,相反的,如果采用隐式格式求解非刚性 ODE 方程,又因为复杂的迭代同样会造成计算效率低下。如何能协调这一对矛盾,一直困扰着 ODE 数值方法的发展。E.Hairer 和 G.wanne 在关于 ODE 方程的经典教材 [106,283] 中,直接将刚性问题解法和非刚性问题解法分成两册分别讲述,但是由于刚性方程没有明确的定义,很难区分哪些 ODE 方程是刚性的哪些是非刚性的,同时,刚性也是会随时间发展变化的,刚性方程本身刚性的大小也难以界定。例如将在本文第八章中遇到的化学反应 ODE 方程,在该方程中,由于某些组分的时间尺度很小,存在较大的刚性。但是另一方面,由于刚性所在的区域相对计算区域而言很小,同时,考虑到化学反应方程组特征矩阵巨大,隐式求解会存在着复杂的矩阵运算,计算量并不一定降低,也难以采用高精度的隐式格式等问题,多数学者目前仍更愿意采用显式格式在充分小的时间步内进行求解。

如前言中所讨论的,目前除刚性稳定的隐式格式和刚性不稳定的显式格式外,也有一些格式一定程度上能兼顾刚性和非刚性的求解要求,例如,线化梯形公式(LT)[280,308],该方法具有二阶精度、显式形式和一定程度的刚性稳定性,因而在如化学反应这种即存在刚性和非刚性又由于特征矩阵巨大而难以采用隐式格式求解的方程中得到较多的应用。然而,线化梯形公式也仅仅具有二阶精度,在非刚性的区域精度不足,另外,该方法也非绝对的刚性稳定的,刚性过大仍然会出现计算问题。

由上面分析可以看出,如果能找到或者构造一种高精度的、刚性稳定且具有显形式的格式对于处理例如化学反应等可能存在刚性 ODE 方程的问题,尤为重要。在本章中,我们基于 Gao 数值摄动的思想 [89,235,312],构造了针对于 ODE 方程 (2.1) 的刚性稳定、高精度且具有显形式的数值摄动格式。并通过理论分析和数值计算验证了该类方法的效果。

3.2 数值摄动方法

数值摄动方法是 Gao 提出和发展的一种通过对低阶格式中的系数进行小参数摄动来构造高阶微分方程数值格式的方法,目前主要用来求解对流-耗散型方程如 NS 方程,包括摄动有限差分方法 [326,331] 和摄动有限体积方法 [332]。

数值摄动方法的基本过程是:将低阶格式(如一阶迎风格式、二阶中心格式)中的某些系数用网格长度的幂次多项式代替;通过微分方程本身(如对流扩散方程)得到更高阶的微分关系;确定幂次多项式中的参数用来消除重新构造的格式中各阶截断误差。这样就可以得到各阶的数值摄动格式。

下面我们基于相同的思想构造求解方程 (2.1) 的数值摄动 (NP) 方法。对于该方程, 一阶显示欧拉格式为

$$x_{n+1} - x_n = \Delta t f(t, x_n) \tag{3.2}$$

我们将它作为构造数值摄动方法的基本格式,对其泰勒展开,可以得到

$$\frac{dx}{dt} = f(t,x) - \frac{1}{2}\Delta t \frac{d^2x}{dt^2} - O(\Delta t^2). \tag{3.3}$$

和对流方程构造数值摄动方法 [89,312] 相同, 我们在方程 (2.2) 左侧引入一个

摄动多项式 p, 格式变为

$$p(x_{n+1} - x_n) = \Delta t f(t, x_n) \tag{3.4}$$

其中的幂次多项式 p 为

$$p = 1 + \sum_{i=1}^{\infty} a_i \Delta t^i. \tag{3.5}$$

将公式 (2.5) 带入公式 (2.4) 并且对其泰勒展开有

$$\frac{dx}{dt} = f(t,x) - \left(\frac{1}{2}\frac{d^2x}{dt^2} + a_1\frac{dx}{dt}\right)\Delta t - \left(\frac{1}{6}\frac{d^3x}{dt^3} + \frac{a_1}{2}\frac{d^2x}{dt^2} + a_2\frac{dx}{dt}\right)\Delta t^2 + O\left(\Delta t^4\right)$$
(3.6)

从中可以看出,如果我们令方程右端第二项为零,即

$$\frac{1}{2}\frac{d^2x}{dt^2} + a_1\frac{dx}{dt} = 0\tag{3.7}$$

格式 (2.4) 具有二阶精度。同样的方法,我们可以通过消除右端更多项来构造 更高阶格式。公式 (2.6) 中二阶导数,及其它高阶导数都可以直接通过原方程 (2.1) 求得:

$$\frac{dx}{dt} = f\frac{d^2x}{dt^2} = f'_t + f'_x f \cdots$$

因此,我们可以通过所需要构造的格式精度推导出摄动系数 a_1, a_2, \cdots :

$$a_1 = -\frac{f'_t + f'_x f}{2f}$$

$$a_2 = \frac{-2f(f''_{tt} + 2f''_{tx}f + f'_x f'_t + f'_x f'_x f + f''_{xx} f^2) + 3(f'_t + f'_x f)^2}{12f^2}$$
...

如果 f 仅是 x 的函数,则 a_i 可以简化为

$$a_1 = -\frac{f'}{2} \ a_2 = \frac{1}{12}f'^2 - \frac{1}{6}f''f \ \cdots$$
 (3.8)

为了简便,方程 (2.1) 的 N 阶数值摄动格式可以写为

$$x_{n+1} = x_n + \Delta x f(t, x_n) / p_N \tag{3.9}$$

其对应的摄动多项式可以记作

$$p_N = 1 + \sum_{i=1}^{N-1} a_i \Delta t^i$$

我们对三阶 NP (3NP) 格式进行进一步的变形,用来提高它的稳定性,三 阶变形 NP (3TNP) 格式的摄动多项式为

$$\overline{p}_3 = \frac{1 + b_1 \Delta t + b_2 \Delta t^2}{1 - b_2 \Delta t} \tag{3.10}$$

其中 \bar{p}_3 应该是 p_3 的二阶近似,有

$$b_1 = a_1 - \frac{a_2}{a_1 + 1} \ b_2 = \frac{a_2}{a_1 + 1} \tag{3.11}$$

新的三阶变形 NP 格式同样具有三阶精度,且较原有的三阶 NP 格式稳定区域更大,关于稳定性我们会在下一章分析。

3.3 NP 格式的稳定性分析

在前面刚性方程介绍中,曾提到,对于刚性方程的算法,稳定性是最重要的,因此我们验证一种方法是否适合求解刚性问题,首先要分析它的刚性稳定性 [232]。

对于格式刚性稳定性的分析,首先是格式的线性稳定性,线性稳定性一般通过 A 稳定性及强 A 稳定性来判定,关于线性稳定性,我们首先需要给出线性方程:

$$x' = qx, Re(q) < 0 (3.12)$$

采用某一方法对方程(2.12)进行离散后可以写成统一的形式

$$x_{n+1} = E(h)x_n (3.13)$$

其中 $h = q\Delta t$ 。

在 (2.13) 的基础上, 我们可以给出 A 稳定性和强 A 稳定性两条定义

DEFINITION 1 (A-stable). 根据 Dahlquist [61] 的分析,关于离散方程 (2.13) 如果对于任何的实部为负的复数 h 都有 |E(h)| < 1 ,则认为该格式为 A 稳定的。

DEFINITION 2 (Strong A-stable). 如果一个格式是 A-stable 的同时又满足

$$\lim_{Re(h)\to -\infty} |E(h)| = 0$$

,则认为该格式是强 A 稳定的。

在分析 NP 格式的线性稳定性前,我们先给出一些求解 ODE 方程常用的格式,尤其是常用在求解化学反应 ODE 方程中的格式,用来和 NP 格式进行对比,它们分别是一阶显式欧拉格式 (1EE)、一阶隐式欧拉格式 (1IE)、二阶线化梯形公式 (2LIE) 和三阶显式 Runge-Kutta (2RK) 格式。

(1) 一阶显式欧拉格式

$$x_{n+1} - x_n = \Delta t f(t, x_n) \tag{3.14}$$

$$E^{1EE}(h) = 1 + h (3.15)$$

(2) 一阶隐式欧拉格式

$$x_{n+1} - x_n = \Delta t f(t, x_{n+1}) \tag{3.16}$$

$$E^{1IE}(h) = \frac{1}{1 - h} \tag{3.17}$$

(3) 二阶线化梯形公式 [280,308]

$$x_{n+1} - x_n = \frac{\Delta t f(t, x_n)}{1 - 1/2\Delta t f'_r(t, x_n)}$$
(3.18)

$$E^{\text{2LIE}}(h) = \frac{1 + \frac{1}{2}h}{1 - \frac{1}{2}h} \tag{3.19}$$

需要注意的是求解线性方程 (2.12), 二阶线化梯形公式具有和二阶 NP 格式相同的形式。

(4) 三阶显式 Runge-Kutta 格式

$$x_{n+1} = x_n + \frac{1}{4}k_1 + \frac{3}{4}k_3$$

$$k_1 = \Delta t f(t_n, x_n)$$

$$k_2 = \Delta t f(t_n + \frac{1}{3}\Delta t, x_n + \frac{1}{3}k_1)$$

$$k_3 = \Delta t f(t_n + \frac{2}{3}\Delta t, x_n + \frac{2}{3}k_2)$$
(3.20)

$$E^{3RK}(h) = 1 + h + \frac{1}{2}h^2 + \frac{1}{6}h^3$$
 (3.21)

对于方程 (2.12), 很容易求得摄动系数为 $a_1 = -\frac{1}{2}q$, $a_2 = \frac{1}{12}q^2$, · · · . 因此 NP 格式的 E(h) 函数分别为

$$E^{\text{2NP}}(h) = \frac{1 + \frac{1}{2}h}{1 - \frac{1}{2}h}$$

$$E^{\text{3NP}}(h) = \frac{1 + \frac{1}{2}h + \frac{1}{12}h^2}{1 - \frac{1}{2}h + \frac{1}{12}h^2}$$

$$E^{\text{3TNP}}(h) = \frac{1 + \frac{1}{3}h}{1 - \frac{2}{3}h + \frac{1}{6}h^2}$$

图 2.1 给出不同格式在 h 复平面的稳定区域,图中可以看出,一阶隐式欧拉格式、二阶 NP 格式、三阶 NP 格式和三阶变形 NP 格式都是 A 稳定的,其中变形 NP 格式较三阶 NP 格式具有更大的稳定区域。只有三阶变形 NP 格式和一阶隐式欧拉格式是强 A 稳定的。

3.4 不同格式的数值比较

由于理论方法的限制,我们仅能比较不同格式的线性稳定性,而求解非线性方程是否稳定,我们只能通过数值的方法进行验证。

图 3.1: 不同格式在 h 复平面上稳定区域

算例 1). 首先我们研究如下一个非线性方程 [106]

$$\frac{dx}{dt} = f(t,x) = -50(x - \cos t) \tag{3.22}$$

针对该方程, 摄动系数为

$$a_1 = 25 - \frac{\sin t_n}{2(x_n - \cos t_n)}, \quad a_2 = \frac{1}{4} \left(\frac{\sin t_n}{x - \cos t_n} - 50 \right)^2 - \frac{\cos t_n - 50 \sin t_n}{6(x - \cos t_n)}$$

图 2.2 给出不同方法的求解结果。可以看到,一阶显式欧拉格式和三阶 Runge-Kutta 格式正如前面线性分析的结果一样是不稳定的,二阶 NP 格式也有一个点过冲。只有三阶 NP 格式、三阶 TNP 格式和一阶隐式欧拉格式是稳定的,而一阶隐式欧拉格式精度远远不如三阶 NP 和 TNP 格式。另外需要注意的是,尽管隐式格式能得到稳定的结果,然而在每一步都需要迭代。

算例 2). 方程

$$\frac{dx}{dt} = f(t,x) = -x^3, x_0 = 1, t = [0,1]$$
(3.23)

图 3.2: 不同格式求解 ODE 方程 (2.22) 结果. 参考解为采用 N=3000 网格得到

作为第二个算例,该算例存在精确解

$$x = \frac{1}{\sqrt{2t+1}}$$

同样不难求的摄动系数分别为

$$a_1 = \frac{3x_n^2}{2}, a_2 = -\frac{x_n^4}{4}$$

表 2.1 给出不同方法的误差和计算精度,可以看到,二阶 NP 格式、三阶 NP 格式和三阶 TNP 格式都能达到它们理论精度,而且三阶 NP 和三阶 TNP 格式误差要小于三阶 RK 格式。

3.5 小结

本章,我们针对 ODE 方程可能存在的刚性问题,构造了高精度、刚性稳定且具有显式形式的数值摄动 (NP)格式,经过理论分析和数值计算,验证了

Scheme Ν L_1 error L_1 order L_{∞} error L_{∞} order 1IE20 7.7149d-38.7737d-340 3.9062d-30.984.4879d-30.9780 0.99 2.2712d-30.981.9656d-3160 9.8594d-41.00 1.1426d-30.99320 4.9377d-4 5.7304d-41.00 1.00 3RK20 1.3696d-51.7438d-53.08 3.08 40 1.6161d-6 2.0646d-680 1.9601d-73.042.5119d-73.04160 2.4128d-83.02 3.0964d-83.02 3202.9924d-93.013.8433d-93.012NP20 5.0683d-56.0346d-51.2338d-52.041.4812d-52.03 40 80 3.0414d-62.02 3.6679d-62.01 160 7.5487d-72.019.1226d-72.01320 1.8803d-72.01 2.2750d-72.00 3NP20 1.9980d-62.5388d-640 2.3999d-73.06 3.0629d-73.05 80 2.9376d-83.03 3.7628d-83.03 160 3.6325d-93.03 4.6607d-93.01 320 3.014.5143d-10 5.7972d-103.01 3TNP 20 1.8060d-62.2866d-640 2.1766d-73.062.7702d-7 3.0580 2.6685d-83.4085d-83.03 3.02 160 3.3025d-93.01 4.2255d-93.01 4.1057d-10320 3.01 5.2582d-103.01

表 3.1: 不同 ODE 格式精度分析

该类格式,尤其是三阶 TNP 格式高精度及刚性稳定等性质。再下一章中,我们将会把三阶 TNP 格式应用在化学反应方程求解中,用来解决化学反应 ODE 方程中的时间刚性问题。

第四章 DIP 方法在刚性化学反应流动中的应用

在爆轰波的计算中,除了可能存在如上一章所讨论的由于 ODE 方程导致的时间刚性问题外,还可能存在空间刚性问题。空间刚性问题并没有严格的定义,通常是指在网格不足时,爆轰波波速或爆轰波结构可能会出现非物理解 [54]。

4.1 空间刚性问题形成过程的分析

空间刚性问题的研究主要针对的是求解有化学反应源项的 Euler 方程系统,即方程组 (1.8)。然而该方程系统由于耦合了流动和反应过程,对于分析问题而言过分复杂。1990 年 Yee 等人发现即便在含源项的线性对流方程 (3.1) 中,也可能存在空间问题。下面我们就该方程定性的分析非物理解产生的过程和原因。

$$\frac{\partial z}{\partial t} + \frac{\partial z}{\partial x} = -\mu z(z - 0.5)(z - 1) \tag{4.1}$$

对于方程 (3.1),为了便于分析问题和进行求解,通常采用算子分裂的方法,将 该方程分裂成对流步和反应 ODE 步两部分,即

对流步(A):
$$\frac{\partial z}{\partial t} + \frac{\partial z}{\partial x} = 0$$
 (4.2)

反应步(R):
$$\frac{dz}{dt} = -\mu z(z - 0.5)(z - 1)$$
 (4.3)

然后采用一阶分裂算法

$$Z^{n+1} = R(\Delta t)A(\Delta t) \tag{4.4}$$

或者二阶 Strang 分裂 [?] 算法

$$Z^{n+1} = A(\frac{\Delta t}{2}R(\Delta t)A(\frac{\Delta t}{2})$$
(4.5)

进行计算。

方程 (3.1) 中的 μ 是可调参数,通过上一章可以知道,如果 μ 很大时候,

ODE 方程 (3.3) 会存在刚性,需要稳定的 ODE 求解方法,如 NP 格式,进行求解。这里我们采用一种经过特殊设计的初始条件

$$z_0(x) = \begin{cases} 1, & x \le 0.3, \\ 0, & x > 0.3. \end{cases}$$

由于初始条件中只包含 0 和 1 两个值,因此源项并不激活,在每个位置都应该为 0。但是在真实的计算中并非如此。我们知道,如果采用离散的数值方法进行计算时,例如采用有限差分方法时,不可避免会引入数值耗散,这样原本如图 (3.1).a 的波形会变成图 (3.1).b 中所示的情况;如果 μ 较小时,点 i 和 i+1 的源项在单位时间内产生的影响同样很小,最后结果可能变成如图 (3.1).c 中的结果;但是如果 μ 很大时,相应的错误的源项值同样会很大,ODE 过程产生的影响可能会如图 (3.1).d 所示,随着时间累计这种错误的源项激活过程就会导致非物理解的出现,也就是前文中所说的空间刚性问题。

根据以上定性的分析,我们可以得出这样的结论:对于线性方程 (3.1) 而言,空间刚性问题是由对流过程中的数值耗散导致的源项错误的激发造成的。在化学反应流动方程中这种非物理解的发生过程会更为复杂,但是根本原因应该是相同的,接下来我们就从反应欧拉方程的分析中进行验证。

4.2 求解反应 Euler 方程的分裂方法

一维化学反应欧拉方程为

$$\frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial \boldsymbol{F}}{\partial x} = \boldsymbol{S},\tag{4.6}$$

其中

图 4.1: 界面在单元点间可能的分布情况一维示意图

根据有无源项, 我们可以将方程 (3.6) 写成如下形式

$$\begin{cases}
\frac{\partial \mathbf{U}_1}{\partial t} + \frac{\partial \mathbf{F}_1}{\partial x} = 0, \\
\frac{\partial \mathbf{U}_2}{\partial t} + \frac{\partial \mathbf{F}_2}{\partial x} = \mathbf{S}_1,
\end{cases} (4.7)$$

其中

$$oldsymbol{U}_1 = \left(egin{array}{c}
ho \
ho u \ E \end{array}
ight), oldsymbol{F}_1 = \left(egin{array}{c}
ho u \
ho u^2 + p \ u(E+p) \end{array}
ight),$$

$$oldsymbol{U}_2 = \left(egin{array}{c}
ho z_1 \
ho z_2 \ dots \
ho z_{ns-1} \end{array}
ight), oldsymbol{F}_2 = \left(egin{array}{c}
ho u z_1 \
ho u z_2 \ dots \
ho u z_{ns-1} \end{array}
ight), oldsymbol{S}_1 = \left(egin{array}{c} \omega_1 \ \omega_2 \ dots \ \omega_{ns-1} \end{array}
ight).$$

对于方程(3.7)中第二项可以展开为

$$\mathbf{Z}\frac{\partial \rho}{\partial t} + \mathbf{Z}\frac{\partial \rho u}{\partial x} + \rho \frac{\partial \mathbf{Z}}{\partial t} + \rho u \frac{\partial \mathbf{Z}}{\partial x} = \mathbf{S}_1, \tag{4.8}$$

其中 $\mathbf{Z} = (z_1, z_2, \dots, z_{ns-1})^T$. 将其中的质量守恒方程消去可以得到

$$\frac{\partial \mathbf{Z}}{\partial t} + u \frac{\partial \mathbf{Z}}{\partial x} = \mathbf{S}_e, \tag{4.9}$$

其中 $\mathbf{S}_e = \mathbf{S}_1/\rho = (\omega_1/\rho, \omega_2/\rho, \cdots, \omega_{ns-1}/\rho)^T$.

可以看到,方程(3.9)和含源项的线性对流方程(3.1)具有完全相同的形 式,由此也可以证实,线性对流方程中的非物理解同样会存在于反应欧拉方程 中, 因此带来了化学反应方程的刚性问题。

和 (3.1) 中相同, 方程 (3.9) 同样可以算子分裂成对流项和反应项两部分, 这样就可以把方程 (3.7) 分裂为如下三部分

$$\left(\frac{\partial \mathbf{U}_1}{\partial t} + \frac{\partial \mathbf{F}_1}{\partial x} = 0,\right) \tag{4.10}$$

$$\begin{cases}
\frac{\partial U_1}{\partial t} + \frac{\partial F_1}{\partial x} = 0, \\
\frac{\partial \mathbf{Z}}{\partial t} + u \frac{\partial \mathbf{Z}}{\partial x} = 0, \\
\frac{d\mathbf{Z}}{\partial t} = \mathbf{S}.
\end{cases} (4.10)$$

$$\frac{d\mathbf{Z}}{dt} = \mathbf{S}_e. \tag{4.12}$$

这里我们并不采用一阶分裂方法或二阶 Strang 分裂方法, 而是通过一种迭 代的方式来减少分裂误差,具体的计算过程在流程图 3.2 中给出,其中 \hat{U}_1 和 \hat{Z} 是迭代过程的中间变量, E, A 和 R 分别代表求解方程 (3.10) 欧拉方程部分 (3.10)、组分对流部分(3.11)和反应 ODE 部分(3.12)的算子。

图 4.2: 分裂方法迭代过程流程图

4.3 DIP 方法在反应 Euler 方程求解中的应用

想要解决刚性问题,有两种方式,一种是限制源项错误的激活过程,如 Zhang 等人提出的平衡态方法 [308], Bao 和 Jin 提出的随机投影方法 [18-20], 及 Wang 等提出的反应步子网格重构方法 [280] 等,但是由于源项刚性并非一定存在,因此这些方法都需要一些预先的假设,如刚性前提假设等。另外一种消除刚性的方法是限制数值耗散,如 Chu 和 Shu 提出的反耗散 WENO 格式 [?] 和 Yee 等人提出的非线性限制器方法等 [291],但是想从 Euler 方程角度消除耗散几乎是不可能的,虽然减小耗散有利于抑制刚性问题的产生,但是即便很小的耗散也足以导致非物理状态的激发 [289]。

然而,消除方程 (3.6) 中的所有耗散是没有必要的,从分裂后的方程中可以看到,方程 (3.10) 中是否有耗散在对源项并没有直接影响,只要限制住方程 (3.11) 中的耗散就能避免非物理解的产生,这点和含源项的线性对流方程 (3.1) 是相同的。

方程 (3.11) 恰好是界面运动的控制方程,因此,采用界面方法捕捉或者追踪化学反应界面是一个很直接的想法,难点在于化学反应界面是有厚度的耗散界面,因此传统的很多界面方法都难以应用到该类问题。第?? 章,我们构造的 DIP 界面方法正是针对于方程 (3.11) 进行求解,具有处理耗散界面的能力,这里我们就将 DIP 方法应用在化学反应流动求解中。

DIP 方法应用在反应 Euler 方程求解中有三点需要注意: 1, 源项并不是作用在单元函数值上, 而是作用在单元内的单元点和粒子点上; 2, 由于 (3.11) 是一个方程组, 因此输运值也不再是 z 而是向量 z, 由于 z 中每个元素都遵循相同的速度场, 因此这里并不需要增加信息点数量。3, 反应界面是耗散界面,

因为我们应该采用针对于耗散界面的处理方法。这里以粒子点为例,给出运动追踪和更新的伪代码 (参照章节??),其中 $\mathbf{Z}=(z_1,z_2,\cdots,z_{ns-1})^T$,其它如 $\bar{\mathbf{Z}}$ 、 $\bar{\mathbf{Z}}_p$ 是类似的。

3. 粒子点的运动追踪

DO
$$i=0,Np$$

. . .

4. 粒子点修正单元点

```
\begin{split} X'(ip) &= (X_p(i) + \mathrm{Mrk}_p(ip) X_p'(ip)) / (\mathrm{Mrk}_p(ip) + 1) \\ \mathrm{DO} \ j &= 1, Ns - 1 \\ \bar{z}_j'(ip) &= (\bar{z}_{pj}(i) + \mathrm{Mrk}_p(ip) \bar{z}_j'(ip)) / (\mathrm{Mrk}_p(ip) + 1) \\ \mathrm{ENDDO} \\ \mathrm{Mrk}_p(ip) &= \mathrm{Mrk}_p(ip) + 1 \\ \mathrm{END} \ \mathrm{DO} \end{split}
```

- [1] AGARWAL, R., AUGUSTINUS, J., AND HALT, D. A comparative study of advection upwind split (ausm) and wave/particle split (wps) schemes for fluid and mhd flows. In AIAA 30th Plasmadynamics and Lasers Conference, AIAA Paper, Norfolk, VA (1999), pp. 99–3613.
- [2] ALLAIRE, G., CLERC, S., AND KOKH, S. A five-equation model for the simulation of interfaces between compressible fluids. *Journal of Computational Physics* 181, 2 (2002), 577–616.
- [3] AMSDEN, A. A., AND HARLOW, F. H. The smac method: A numerical technique for calculating incompressible fluid flows. Tech. rep., Los Alamos Scientific Lab., N. Mex., 1970.
- [4] Anderson, D., and McFadden, G. B. A diffuse-interface description of internal waves in a near-critical fluid. *Physics of Fluids 9*, 7 (1997), 1870–1879.
- [5] Anderson, M., Vorobieff, P., Truman, C., Corbin, C., Kuehner, G., Wayne, P., Conroy, J., White, R., and Kumar, S. An experimental and numerical study of shock interaction with a gas column seeded with droplets. *Shock Waves* 25, 2 (2015), 107–125.
- [6] Anderson Jr, J. D. Fundamentals of aerodynamics. Tata McGraw-Hill Education, 2010.
- [7] Andronov, V., Bakhrakh, S., Meshkov, E., Mokhov, V., Nikiforov, V., Pevnitskii, A., and Tolshmyakov, A. Turbulent mixing at contact surface accelerated by shock waves. Sov. Phys. JETP 44, 2 (1976), 424–427.
- [8] Antanovskii, L. K. A phase field model of capillarity. Physics of fluids 7, 4 (1995), 747–753.
- [9] ARTZI, M. B. The generalized riemann's problem for reactive flows. *Preprint* (1989).
- [10] ASHGRIZ, N., AND POO, J. Flair: Flux line-segment model for advection and interface reconstruction. *Journal of computational physics* 93, 2 (1991), 449–468.

- [11] ASLAM, T. D. A level-set algorithm for tracking discontinuities in hyperbolic conservation laws: I. scalar equations. *Journal of Computational Physics* 167, 2 (2001), 413–438.
- [12] ASLAM, T. D. A level set algorithm for tracking discontinuities in hyperbolic conservation laws ii: systems of equations. *Journal of Scientific computing* 19, 1-3 (2003), 37–62.
- [13] Aulisa, E., Manservisi, S., and Scardovelli, R. A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows. *Journal of Computational Physics* 188, 2 (2003), 611–639.
- [14] Babinsky, H., and Harvey, J. K. Shock wave-boundary-layer interactions, vol. 32. Cambridge University Press, 2011.
- [15] Balbás, J., Tadmor, E., and Wu, C.-C. Non-oscillatory central schemes for one-and two-dimensional mhd equations: I. *Journal of Computational Physics* 201, 1 (2004), 261–285.
- [16] Balsara, D. S., and Shu, C.-W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. *Journal of Com*putational Physics 160, 2 (2000), 405–452.
- [17] Balsara, D. S., and Spicer, D. S. A staggered mesh algorithm using high order godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. *Journal of Computational Physics* 149, 2 (1999), 270–292.
- [18] BAO, W., AND JIN, S. The random projection method for hyperbolic conservation laws with stiff reaction terms. *Journal of Computational Physics* 163, 1 (2000), 216–248.
- [19] BAO, W., AND JIN, S. The random projection method for stiff detonation capturing. SIAM Journal on Scientific Computing 23, 3 (2001), 1000–1026.
- [20] BAO, W., AND JIN, S. The random projection method for stiff multispecies detonation capturing. *Journal of Computational Physics* 178, 1 (2002), 37–57.
- [21] BATTEN, P., CLARKE, N., LAMBERT, C., AND CAUSON, D. M. On the choice of wavespeeds for the hllc riemann solver. SIAM Journal on Scientific Computing 18, 6 (1997), 1553–1570.

[22] Bergant, A., Simpson, A. R., and Tijsseling, A. S. Water hammer with column separation: A historical review. *Journal of fluids and structures* 22, 2 (2006), 135–171.

- [23] Berkenbosch, A., Kaasschieter, E., and Klein, R. Detonation capturing for stiff combustion chemistry. *Combustion Theory and Modelling* 2, 3 (1998), 313–348.
- [24] BISWAS, R., DEVINE, K. D., AND FLAHERTY, J. E. Parallel, adaptive finite element methods for conservation laws. *Applied Numerical Mathematics* 14, 1-3 (1994), 255–283.
- [25] BONOMETTI, T., AND MAGNAUDET, J. An interface-capturing method for incompressible two-phase flows. validation and application to bubble dynamics. *International Journal of Multiphase Flow* 33, 2 (2007), 109–133.
- [26] BOOK, D. L., BORIS, J. P., AND HAIN, K. Flux-corrected transport ii: Generalizations of the method. *Journal of Computational Physics* 18, 3 (1975), 248–283.
- [27] Borges, R., Carmona, M., Costa, B., and Don, W. S. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. *Journal of Computational Physics* 227, 6 (2008), 3191–3211.
- [28] Boris, J. P., and Book, D. Flux-corrected transport. iii. minimal-error fct algorithms. *Journal of Computational Physics* 20, 4 (1976), 397–431.
- [29] Boris, J. P., and Book, D. L. Flux-corrected transport is shasta, a fluid transport algorithm that works. *Journal of computational physics* 11, 1 (1973), 38–69.
- [30] BOURLIOUX, A., MAJDA, A. J., AND ROYTBURD, V. Theoretical and numerical structure for unstable one-dimensional detonations. SIAM Journal on Applied Mathematics 51, 2 (1991), 303–343.
- [31] Brackbill, J., Kothe, D. B., and Zemach, C. A continuum method for modeling surface tension. *Journal of computational physics* 100, 2 (1992), 335–354.
- [32] Brackbill, J. U., and Barnes, D. C. The effect of nonzero · b on the numerical solution of the magnetohydrodynamic equations. *Journal of Computational Physics* 35, 3 (1980), 426–430.
- [33] Brackbill, J. U., Kothe, D. B., and Ruppel, H. M. Flip: a low-dissipation, particle-in-cell method for fluid flow. *Computer Physics Communications* 48, 1 (1988), 25–38.

- [34] Brennen, C. E. Fundamentals of multiphase flow. Cambridge university press, 2005.
- [35] Brio, M., and Wu, C. C. An upwind differencing scheme for the equations of ideal magnetohydrodynamics. *Journal of computational physics* 75, 2 (1988), 400–422.
- [36] Burstein, S. Z., and Mirin, A. A. Third order difference methods for hyperbolic equations. *Journal of Computational Physics* 5, 3 (1970), 547–571.
- [37] Bussing, T., and Pappas, G. An introduction to pulse detonation engines. In 32nd Aerospace Sciences Meeting and Exhibit (1994), p. 263.
- [38] Bussing, T., and Pappas, G. Pulse detonation engine theory and concepts. Developments in high-speed-vehicle propulsion systems (A 97-15029 02-07), Reston, VA, American Institute of Aeronautics and Astronautics, Inc. (Progress in Astronautics and Aeronautics. 165 (1996), 421-472.
- [39] Bykovskii, F. A., Zhdan, S. A., and Vedernikov, E. F. Continuous spin detonations. *Journal of Propulsion and Power* 22, 6 (2006), 1204.
- [40] CALDER, A. C., CURTIS, B. C., DURSI, L., FRYXELL, B., MACNEICE, P., OL-SON, K., RICKER, P., ROSNER, R., TIMMES, F., TUFO, H., ET AL. High performance reactive fluid flow simulations using adaptive mesh refinement on thousands of processors. In *Proceedings of the 2000 ACM/IEEE conference on Supercomputing* (2000), IEEE Computer Society, p. 56.
- [41] Chang, S.-H. On the application of subcell resolution to conservation laws with stiff source terms. National Aeronautics and Space Administration, 1989.
- [42] Chang, S.-H. On the application of eno scheme with subcell resolution to conservation laws with stiff source terms. In *Computational Fluid Dynamics Symposium on Aeropropulsion* (1991), vol. 1, pp. 215–225.
- [43] CHANG, T., CHEN, G.-Q., AND YANG, S. On the 2-d riemann problem for the compressible euler equations. i. interaction of shocks and rarefaction waves. *Discrete* and Continuous Dynamical Systems 1 (1995), 555–584.
- [44] Chang, T., Chen, G.-Q., and Yang, S. On the 2-d riemann problem for the compressible euler equations ii. interaction of contact discontinuities. *Discrete and Continuous Dynamical Systems* 6, 2 (2000), 419–430.

[45] CHAPMAN, D. L. Vi. on the rate of explosion in gases. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 47, 284 (1899), 90–104.

- [46] Chen, G. Q. Convergence of the lax-friedrichs scheme for isentropic gas dynamics (iii). *Acta Math. Sci* 6, 1 (1986), 75–120.
- [47] Chen, S. Stability of a mach configuration. Communications on pure and applied mathematics 59, 1 (2006), 1–35.
- [48] Chéret, R. Detonation of condensed explosives. Springer Science & Business Media, 2012.
- [49] CHIPMAN, F. A-stable runge-kutta processes. BIT Numerical Mathematics 11, 4 (1971), 384–388.
- [50] Chorin, A. J. Random choice solution of hyperbolic systems. *Journal of Computational Physics* 22, 4 (1976), 517–533.
- [51] COCCHI, J.-P., AND SAUREL, R. A riemann problem based method for the resolution of compressible multimaterial flows. *Journal of Computational Physics* 137, 2 (1997), 265–298.
- [52] COCKBURN, B., AND SHU, C.-W. Tvb runge-kutta local projection discontinuous galerkin finite element method for conservation laws. ii. general framework. *Mathe*matics of computation 52, 186 (1989), 411–435.
- [53] COCKBURN, B., AND SHU, C.-W. Nonlinearly stable compact schemes for shock calculations. SIAM Journal on Numerical Analysis 31, 3 (1994), 607–627.
- [54] COLELLA, P., MAJDA, A., AND ROYTBURD, V. Theoretical and numerical structure for reacting shock waves. SIAM Journal on Scientific and Statistical Computing 7, 4 (1986), 1059–1080.
- [55] COLLINS, J. B., AND LEVINE, H. Diffuse interface model of diffusion-limited crystal growth. *Physical Review B 31*, 9 (1985), 6119.
- [56] Costa, B., and Don, W. S. Multi-domain hybrid spectral-weno methods for hyperbolic conservation laws. *Journal of Computational Physics* 224, 2 (2007), 970– 991.
- [57] COURANT, R., FRIEDRICHS, K., AND LEWY, H. Über die partiellen differenzengleichungen der mathematischen physik. *Mathematische annalen 100*, 1 (1928), 32–74.

- [58] Crandall, M., and Majda, A. The method of fractional steps for conservation laws. *Numerische Mathematik* 34, 3 (1980), 285–314.
- [59] Crandall, M. G. The semigroup approach to first order quasilinear equations in several space variables. *Israel Journal of Mathematics* 12, 2 (1972), 108–132.
- [60] DAFERMOS, C. M. Generalized characteristics and the structure of solutions of hyperbolic conservation laws. Tech. rep., DTIC Document, 1976.
- [61] Dahlquist, G. G. A special stability problem for linear multistep methods. BIT Numerical Mathematics 3, 1 (1963), 27–43.
- [62] Dai, W., and Woodward, P. R. An approximate riemann solver for ideal magnetohydrodynamics. *Journal of Computational Physics* 111, 2 (1994), 354–372.
- [63] DAMEVIN, H.-M., AND HOFFMANN, K. Development of a modified runge-kutta scheme with tvd limiters for ideal three-dimensional magnetogasdynamics. In 32nd AIAA Plasmadynamics and Lasers Conference (2001), p. 2739.
- [64] Davis, S. F. An interface tracking method for hyperbolic systems of conservation laws. *Applied Numerical Mathematics* 10, 6 (1992), 447–472.
- [65] DE SOUSA, F., MANGIAVACCHI, N., NONATO, L., CASTELO, A., TOMÉ, M., FERREIRA, V., CUMINATO, J., AND MCKEE, S. A front-tracking/front-capturing method for the simulation of 3d multi-fluid flows with free surfaces. *Journal of Computational Physics* 198, 2 (2004), 469–499.
- [66] Deng, X., and Maekawa, H. Compact high-order accurate nonlinear schemes. Journal of Computational Physics 130, 1 (1997), 77–91.
- [67] DING, X. X., CHEN, G. Q., AND LUO, P. Z. Convergence of the lax-friedrichs scheme for isentropic gas-dynamics. 1. Acta Mathematica Scientia 5, 4 (1985), 415– 432.
- [68] DIPERNA, R. J. Convergence of the viscosity method for isentropic gas dynamics. Communications in mathematical physics 91, 1 (1983), 1–30.
- [69] DIRAC, P. The lorentz transformation and absolute time. Physica 19, 1-12 (1953), 888-896.
- [70] DONG, L., AND WANG, B. Trajectory-tracking scheme in lagrangian form for solving linear advection problems: preliminary tests. *Monthly Weather Review* 140, 2 (2012), 650–663.

[71] DÖRING, W. On detonation processes in gases. Ann. Phys 43, 421-436 (1943), 9.

- [72] Dremin, A. N., Savrov, S., Trofimov, V. S., and Shvedov, K. Detonation waves in condensed media. Tech. rep., DTIC Document, 1972.
- [73] Du, Q., Liu, C., and Wang, X. Retrieving topological information for phase field models. SIAM Journal on Applied Mathematics 65, 6 (2005), 1913–1932.
- [74] EBERHARDT, S., AND IMLAY, S. Diagonal implicit scheme for computing flows with finite rate chemistry. *Journal of Thermophysics and Heat Transfer* 6, 2 (1992), 208–216.
- [75] EDWARDS, J. R. A low-diffusion flux-splitting scheme for navier-stokes calculations. Computers & Fluids 26, 6 (1997), 635–659.
- [76] ELLING, V., AND LIU, T.-P. Supersonic flow onto a solid wedge. Communications on Pure and Applied Mathematics 61, 10 (2008), 1347–1448.
- [77] ELLIOTT, C. M., AND SONGMU, Z. On the cahn-hilliard equation. Archive for Rational Mechanics and Analysis 96, 4 (1986), 339–357.
- [78] ENGQUIST, B., AND SJÖGREEN, B. Robust difference approximations of stiff inviscid detonation waves. Department of Mathematics, University of California, Los Angeles, 1991.
- [79] ENRIGHT, D., FEDKIW, R., FERZIGER, J., AND MITCHELL, I. A hybrid particle level set method for improved interface capturing. *Journal of Computational physics* 183, 1 (2002), 83–116.
- [80] ENRIGHT, D., LOSASSO, F., AND FEDKIW, R. A fast and accurate semi-lagrangian particle level set method. *Computers & structures 83*, 6 (2005), 479–490.
- [81] EVANS, M. W., HARLOW, F. H., AND BROMBERG, E. The particle-in-cell method for hydrodynamic calculations. Tech. rep., DTIC Document, 1957.
- [82] FAN, Y., DURLOFSKY, L. J., AND TCHELEPI, H. A. A fully-coupled flow-reactive-transport formulation based on element conservation, with application to co 2 storage simulations. *Advances in Water Resources* 42 (2012), 47–61.
- [83] FAY, J. A. Two-dimensional gaseous detonations: Velocity deficit. *The Physics of Fluids* 2, 3 (1959), 283–289.

- [84] Fedkiw, R. P., Aslam, T., Merriman, B., and Osher, S. A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). *Journal of computational physics* 152, 2 (1999), 457–492.
- [85] FEYNMAN, R., AND VERNON JR., F. The theory of a general quantum system interacting with a linear dissipative system. *Annals of Physics* 24 (1963), 118–173.
- [86] FICKETT, W., AND DAVIS, W. C. Detonation: theory and experiment. Courier Corporation, 2012.
- [87] Freidberg, J. P. Ideal magnetohydrodynamics.
- [88] GAITONDE, D. V. Development of a solver for 3-d non-ideal magnetogasdynamics. AIAA paper 99 (1999), 3610.
- [89] GAO, Z. Numerical perturbation algorithm and its cfd schemes. Advances in Mechanics 40 (2010), 607–633.
- [90] GELFAND, I. Some problems in the theory of quasilinear equations. Amer. Math. Soc. Transl 29, 2 (1963), 295–381.
- [91] GEROLYMOS, G., SÉNÉCHAL, D., AND VALLET, I. Very-high-order weno schemes. Journal of Computational Physics 228, 23 (2009), 8481–8524.
- [92] GHOSH, D., AND BAEDER, J. D. Weighted non-linear compact schemes for the direct numerical simulation of compressible, turbulent flows. *Journal of Scientific* Computing 61, 1 (2014), 61–89.
- [93] GLAISTER, P. An approximate linearised riemann solver for the euler equations for real gases. *Journal of Computational Physics* 74, 2 (1988), 382–408.
- [94] GLASSMAN, I., YETTER, R. A., AND GLUMAC, N. G. Combustion. Academic press, 2014.
- [95] GLIMM, J. Solutions in the large for nonlinear hyperbolic systems of equations. Communications on Pure and Applied Mathematics 18, 4 (1965), 697–715.
- [96] GLIMM, J., GROVE, J. W., LI, X., AND ZHAO, N. Simple front tracking. Contemporary Mathematics 238, 2 (1999), 133–149.
- [97] GLIMM, J., AND LAX, P. D. Decay of solutions of systems of nonlinear hyperbolic conservation laws.

[98] Godunov, S. K. A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. *Matematicheskii Sbornik* 89, 3 (1959), 271–306.

- [99] GOMES, J., AND FAUGERAS, O. Reconciling distance functions and level sets. In Biomedical Imaging, 2002. 5th IEEE EMBS International Summer School on (2002), IEEE, pp. 15-pp.
- [100] GOODMAN, J., AND XIN, Z. Viscous limits for piecewise smooth solutions to systems of conservation laws. Archive for rational mechanics and analysis 121, 3 (1992), 235– 265.
- [101] GOODMAN, J. B., AND LEVEQUE, R. J. On the accuracy of stable schemes for 2d scalar conservation laws. *Mathematics of computation* (1985), 15–21.
- [102] G.Strang. *Linear Algebra and its Applications, 3rd ed.* Fort Worth, TX: Harcourt Brace Jovanovich, 1988.
- [103] Gurski, K. F. An hllc-type approximate riemann solver for ideal magnetohydrodynamics. SIAM Journal on Scientific Computing 25, 6 (2004), 2165–2187.
- [104] Hadjadj, A., Perrot, Y., and Verma, S. Numerical study of shock/boundary layer interaction in supersonic overexpanded nozzles. *Aerospace Science and Technology* 42 (2015), 158–168.
- [105] Haier, E., Norsett, S., and Wanner, G. Solving ordinary differential equations i, nonstiff problems. *Section III 8* (1987).
- [106] Hairer, E., and Wanner, G. Stiff differential equations solved by radau methods. Journal of Computational and Applied Mathematics 111, 1 (1999), 93–111.
- [107] Hammer, P. C., and Hollingsworth, J. W. Trapezoidal methods of approximating solutions of differential equations. *Mathematical Tables and Other Aids to Computation* (1955), 92–96.
- [108] Hammitt, F. G. Cavitation and multiphases flow phenomena. McGraw-Hill, 1980.
- [109] HAN, S.-H., LEE, J.-I., AND KIM, K. H. Accurate and robust pressure weight advection upstream splitting method for magnetohydrodynamics equations. *AIAA* journal 47, 4 (2009), 970.

- [110] HÄNEL, D., SCHWANE, R., AND SEIDER, G. On the accuracy of upwind schemes for the solution of the navier-stokes equations. *AIAA paper 1105* (1987), 1987.
- [111] HARLOW, F. H. Hydrodynamic problems involving large fluid distortions. *Journal* of the ACM (JACM) 4, 2 (1957), 137–142.
- [112] HARLOW, F. H., WELCH, J. E., ET AL. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. *Physics of fluids* 8, 12 (1965), 2182.
- [113] HARLOW F, W. J. Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. *Phys Fluids* 8, 218 (1965), 2–9.
- [114] Harten, A. High resolution schemes for hyperbolic conservation laws. *Journal of computational physics* 49, 3 (1983), 357–393.
- [115] HARTEN, A. Eno schemes with subcell resolution. [essentially nonoscillatory.
- [116] HARTEN, A., ENGQUIST, B., OSHER, S., AND CHAKRAVARTHY, S. R. Uniformly high order accurate essentially non-oscillatory schemes, iii. *Journal of computational physics* 71, 2 (1987), 231–303.
- [117] HARTEN, A., LAX, P. D., AND VAN LEER, B. On upstream differencing and godunov-type schemes for hyperbolic conservation laws. *SIAM Review 25*, 1 (1983), 35.
- [118] HARTEN, A., LAX, P. D., AND VAN LEER, B. On upstream differencing and godunov-type schemes for hyperbolic conservation laws. In *Upwind and High-Resolution Schemes*. Springer, 1997, pp. 53–79.
- [119] HARTEN, A., OSHER, S., ENGQUIST, B., AND CHAKRAVARTHY, S. R. Some results on uniformly high-order accurate essentially nonoscillatory schemes. Applied Numerical Mathematics 2, 3-5 (1986), 347–377.
- [120] Helzel, C., Leveque, R. J., and Warnecke, G. A modified fractional step method for the accurate approximation of detonation waves. *SIAM Journal on Scientific Computing* 22, 4 (2000), 1489–1510.
- [121] Henrick, A. K., Aslam, T. D., and Powers, J. M. Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. *Journal of Computational Physics* 207, 2 (2005), 542–567.

[122] HILDEBRAND, N., DWIVEDI, A., SHRESTHA, P., NICHOLS, J. W., JOVANOVIC, M. R., AND CANDLER, G. V. Global stability analysis of oblique shock/boundary layer interactions at mach 5.92. In APS Division of Fluid Dynamics Meeting Abstracts (2016).

- [123] HILL, D. J., AND PULLIN, D. I. Hybrid tuned center-difference-weno method for large eddy simulations in the presence of strong shocks. *Journal of Computational Physics* 194, 2 (2004), 435–450.
- [124] HIRT, C. W., AND NICHOLS, B. D. Volume of fluid (vof) method for the dynamics of free boundaries. *Journal of computational physics* 39, 1 (1981), 201–225.
- [125] HONKKILA, V., AND JANHUNEN, P. Hllc solver for ideal relativistic mhd. *Journal of Computational Physics* 223, 2 (2007), 643–656.
- [126] HOPF, E. The partial differential equation ut+ uux= μ xx. Communications on Pure and Applied mathematics 3, 3 (1950), 201–230.
- [127] Hu, X., Adams, N., and Iaccarino, G. On the hllc riemann solver for interface interaction in compressible multi-fluid flow. *Journal of Computational Physics* 228, 17 (2009), 6572–6589.
- [128] Hu, X., Khoo, B., Adams, N. A., and Huang, F. A conservative interface method for compressible flows. *Journal of Computational Physics* 219, 2 (2006), 553–578.
- [129] Hu, X. Y., and Khoo, B. C. An interface interaction method for compressible multifluids. *Journal of Computational Physics* 198, 1 (2004), 35–64.
- [130] Huang, F., and Wang, Z. Convergence of viscosity solutions for isothermal gas dynamics. *SIAM journal on mathematical analysis* 34, 3 (2002), 595–610.
- [131] Huang, J., and Webb, W. Diffuse interface in a critical fluid mixture. *The Journal of Chemical Physics* 50, 9 (1969), 3677–3693.
- [132] HWANG, P., FEDKIW, R., MERRIMAN, B., ASLAM, T., KARAGOZIAN, A., AND OSHER, S. Numerical resolution of pulsating detonation waves. *DCJ* 2 (2000), 1.
- [133] Jacqmin, D. Calculation of two-phase navier–stokes flows using phase-field modeling. *Journal of Computational Physics* 155, 1 (1999), 96–127.

- [134] Jamet, D., Lebaigue, O., Coutris, N., and Delhaye, J. The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change. Journal of Computational Physics 169, 2 (2001), 624–651.
- [135] Janhunen, P. A positive conservative method for magnetohydrodynamics based on hll and roe methods. *Journal of Computational Physics* 160, 2 (2000), 649–661.
- [136] Jeltsch, R., and Klingenstein, P. Error estimators for the position of discontinuities in hyperbolic conservation laws with source terms which are solved using operator splitting. *Computing and Visualization in Science* 1, 4 (1999), 231–249.
- [137] JI, H., LIEN, F.-S., AND YEE, E. A new adaptive mesh refinement data structure with an application to detonation. *Journal of Computational Physics 229*, 23 (2010), 8981–8993.
- [138] JIANG, G.-S., AND SHU, C.-W. Efficient implementation of weighted eno schemes. Journal of computational physics 126, 1 (1996), 202–228.
- [139] JIANG, L., SHAN, H., AND LIU, C. Weighted compact scheme for shock capturing. International Journal of Computational Fluid Dynamics 15, 2 (2001), 147–155.
- [140] JOHNSEN, E., LARSSON, J., BHAGATWALA, A. V., CABOT, W. H., MOIN, P., OLSON, B. J., RAWAT, P. S., SHANKAR, S. K., SJÖGREEN, B., YEE, H., ET AL. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. *Journal of Computational Physics* 229, 4 (2010), 1213–1237.
- [141] JOHNSON, C. Error estimates and adaptive time-step control for a class of onestep methods for stiff ordinary differential equations. SIAM Journal on Numerical Analysis 25, 4 (1988), 908–926.
- [142] JOUGUET, E. On the propagation of chemical reactions in gases. J. de mathematiques Pures et Appliquees 1, 347-425 (1905), 2.
- [143] Kim, D., and Kwon, J. H. A high-order accurate hybrid scheme using a central flux scheme and a weno scheme for compressible flowfield analysis. *Journal of Computational Physics* 210, 2 (2005), 554–583.
- [144] Kim, J., and Lowengrub, J. Phase field modeling and simulation of three-phase flows. *Interfaces and free boundaries* 7, 4 (2005), 435–466.

[145] Kim, K. H., Kim, C., and Rho, O.-H. Methods for the accurate computations of hypersonic flows: I. ausmpw+ scheme. *Journal of Computational Physics* 174, 1 (2001), 38–80.

- [146] Kim, K. H., Lee, J. H., and Rho, O. H. An improvement of ausm schemes by introducing the pressure-based weight functions. *Computers & fluids 27*, 3 (1998), 311–346.
- [147] Kim, M. S., and Lee, W. I. A new vof-based numerical scheme for the simulation of fluid flow with free surface. part i: New free surface-tracking algorithm and its verification. *International Journal for Numerical Methods in Fluids* 42, 7 (2003), 765–790.
- [148] Knio, O. M., Najm, H. N., and Wyckoff, P. S. A semi-implicit numerical scheme for reacting flow: Ii. stiff, operator-split formulation. *Journal of Computational Physics* 154, 2 (1999), 428–467.
- [149] Kolev, N. I. Multiphase flow dynamics: Fundamentals. Springer, 2005.
- [150] Kotov, D., Yee, H., Wang, W., and Shu, C. On spurious numerics in solving reactive equations. *Proceedings of the ASTRONUM-2012, The Big Island, Hawaii* (2012), 24–28.
- [151] Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., and Flaherty, J. E. Shock detection and limiting with discontinuous galerkin methods for hyperbolic conservation laws. *Applied Numerical Mathematics* 48, 3-4 (2004), 323–338.
- [152] LAFAURIE, B., NARDONE, C., SCARDOVELLI, R., ZALESKI, S., AND ZANETTI, G. Modelling merging and fragmentation in multiphase flows with surfer. *Journal of Computational Physics* 113, 1 (1994), 134–147.
- [153] LAX, P., AND WENDROFF, B. Systems of conservation laws. Communications on Pure and Applied mathematics 13, 2 (1960), 217–237.
- [154] Lax, P. D. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Communications on pure and applied mathematics 7, 1 (1954), 159– 193.
- [155] Lax, P. D. Hyperbolic systems of conservation laws ii. Communications on pure and applied mathematics 10, 4 (1957), 537–566.

- [156] Lax, P. D. Decay of solutions of systems of nonlinear hyperbolic conservation laws, vol. 101. American Mathematical Soc., 1970.
- [157] LAX, P. D., AND LIU, X.-D. Solution of two-dimensional riemann problems of gas dynamics by positive schemes. SIAM Journal on Scientific Computing 19, 2 (1998), 319–340.
- [158] Leckner, B. Fluidized bed combustion: mixing and pollutant limitation. *Progress in Energy and Combustion Science* 24, 1 (1998), 31–61.
- [159] LEE, J. H. The detonation phenomenon, vol. 2. Cambridge University Press Cambridge, 2008.
- [160] Lele, S. K. Compact finite difference schemes with spectral-like resolution. *Journal of computational physics* 103, 1 (1992), 16–42.
- [161] Lemos, C. A simple numerical technique for turbulent flows with free surfaces. International journal for numerical methods in fluids 15, 2 (1992), 127–146.
- [162] Lemos, C. M. Higher-order schemes for free surface flows with arbitrary configurations. *International journal for numerical methods in fluids 23*, 6 (1996), 545–566.
- [163] LeVeque, R. J. Numerical methods for conservation laws. Springer Science & Business Media, 1992.
- [164] LEVEQUE, R. J., AND YEE, H. C. A study of numerical methods for hyperbolic conservation laws with stiff source terms. *Journal of computational physics* 86, 1 (1990), 187–210.
- [165] LEVY, D., PUPPO, G., AND RUSSO, G. Compact central weno schemes for multidimensional conservation laws. SIAM Journal on Scientific Computing 22, 2 (2000), 656–672.
- [166] Li, G., and Qiu, J. Hybrid weighted essentially non-oscillatory schemes with different indicators. *Journal of Computational Physics* 229, 21 (2010), 8105–8129.
- [167] LI, Z., JABERI, F. A., AND SHIH, T. I. A hybrid lagrangian-eulerian particle-level set method for numerical simulations of two-fluid turbulent flows. *International journal for numerical methods in fluids* 56, 12 (2008), 2271–2300.
- [168] LIONS, P.-L., PERTHAME, B., AND SOUGANIDIS, P. E. Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in eulerian

and lagrangian coordinates. Communications on pure and applied mathematics 49, 6 (1996), 599–638.

- [169] LIONS, P.-L., PERTHAME, B., AND TADMOR, E. Kinetic formulation of the isentropic gas dynamics and p-systems. *Communications in mathematical physics* 163, 2 (1994), 415–431.
- [170] Liou, M.-S. Progress towards an improved cfd method: Ausm+. AIAA paper 1701 (1995), 155.
- [171] LIOU, M.-S. A sequel to ausm: Ausm+. Journal of computational Physics 129, 2 (1996), 364–382.
- [172] Liou, M.-S. *Ten Years in the Making: AUSM-family*. National Aeronautics and Space Administration, Glenn Research Center, 2001.
- [173] Liou, M.-S. A sequel to ausm, part ii: Ausm+-up for all speeds. *Journal of Computational Physics 214*, 1 (2006), 137–170.
- [174] Liou, M.-S., and Steffen, C. J. A new flux splitting scheme. *Journal of Computational physics* 107, 1 (1993), 23–39.
- [175] Liu, L., and Becerra, M. An efficient semi-lagrangian algorithm for simulation of corona discharges: the position-state separation method. *IEEE Transactions on Plasma Science* 44, 11 (2016), 2822–2831.
- [176] LIU, T., KHOO, B., AND WANG, C. The ghost fluid method for compressible gas-water simulation. *Journal of Computational Physics* 204, 1 (2005), 193–221.
- [177] LIU, T., KHOO, B., AND YEO, K. Ghost fluid method for strong shock impacting on material interface. *Journal of Computational Physics* 190, 2 (2003), 651–681.
- [178] Liu, T.-P., and Smoller, J. A. On the vacuum state for the isentropic gas dynamics equations. *Advances in Applied Mathematics* 1, 4 (1980), 345–359.
- [179] LIU, X.-D., OSHER, S., AND CHAN, T. Weighted essentially non-oscillatory schemes. *Journal of computational physics* 115, 1 (1994), 200–212.
- [180] LOMBARD, C., BARDINA, J., VENKATAPATHY, E., AND OLIGER, J. Multi-dimensional formulation of cscm-an upwind flux difference eigenvector split method for the compressible navier-stokes equations. In 6th Computational Fluid Dynamics Conference (1983), pp. 649–664.

- [181] MacCormack, R. An upwind conservation form method for ideal magnetohydrodynamics equations, aiaa, 1999.
- [182] MACCORMACK, R. The effect of viscosity in hypervelocity impact cratering. AIAA Paper No. 69-354 (1969).
- [183] MACCORMACK, R. W. Non-equilibrium ionized flow simulations within strong electro-magnetic fields. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition: Aerospace Sciences Meetings (2010), pp. 2010–0225.
- [184] MARTÍN, M. P., TAYLOR, E. M., WU, M., AND WEIRS, V. G. A bandwidth-optimized weno scheme for the effective direct numerical simulation of compressible turbulence. *Journal of Computational Physics* 220, 1 (2006), 270–289.
- [185] MCKEE, S., TOMÉ, M., FERREIRA, V., CUMINATO, J., CASTELO, A., SOUSA, F., AND MANGIAVACCHI, N. The mac method. *Computers & Fluids 37*, 8 (2008), 907–930.
- [186] McLachlan, R. I., and Quispel, G. R. W. Splitting methods. *Acta Numerica* 11 (2002), 341–434.
- [187] MCRAE, G. J., GOODIN, W. R., AND SEINFELD, J. H. Numerical solution of the atmospheric diffusion equation for chemically reacting flows. *Journal of Computational Physics* 45, 1 (1982), 1–42.
- [188] MERRITT, E. C., MOSER, A. L., HSU, S. C., LOVERICH, J., AND GILMORE, M. Experimental characterization of the stagnation layer between two obliquely merging supersonic plasma jets. *Physical review letters* 111, 8 (2013), 085003.
- [189] MESHKOV, E. Instability of the interface of two gases accelerated by a shock wave. Fluid Dynamics 4, 5 (1969), 101–104.
- [190] MIKEŠ, J., STEPANOV, S., AND JUKL, M. The pre-maxwell equations. In *Geometric Methods in Physics*. Springer, 2013, pp. 377–381.
- [191] MIYOSHI, T., AND KUSANO, K. A multi-state hll approximate riemann solver for ideal magnetohydrodynamics. *Journal of Computational Physics* 208, 1 (2005), 315–344.

[192] MORESI, L., DUFOUR, F., AND MÜHLHAUS, H.-B. A lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. *Journal of Computational Physics* 184, 2 (2003), 476–497.

- [193] MORETTI, G. Computation of flows with shocks. *Annual Review of Fluid Mechanics* 19, 1 (1987), 313–337.
- [194] MOUREAU, V., FIORINA, B., AND PITSCH, H. A level set formulation for premixed combustion les considering the turbulent flame structure. *Combustion and Flame* 156, 4 (2009), 801–812.
- [195] Najm, H. N., Wyckoff, P. S., and Knio, O. M. A semi-implicit numerical scheme for reacting flow: I. stiff chemistry. *Journal of Computational Physics* 143, 2 (1998), 381–402.
- [196] NGUYEN, D., GIBOU, F., AND FEDKIW, R. A fully conservative ghost fluid method and stiff detonation waves. In 12th Int. Detonation Symposium, San Diego, CA (2002).
- [197] Nichols, B., and Hirt, C. Improved free surface boundary conditions for numerical incompressible-flow calculations. *Journal of Computational Physics* 8, 3 (1971), 434–448.
- [198] Nichols, J. W., Larsson, J., Bernardini, M., and Pirozzoli, S. Stability and modal analysis of shock/boundary layer interactions. *Theoretical and Computational Fluid Dynamics* (2016), 1–18.
- [199] Nourgaliev, R. R., Dinh, T.-N., and Theofanous, T. G. Adaptive characteristics-based matching for compressible multifluid dynamics. *Journal of Computational Physics* 213, 2 (2006), 500–529.
- [200] OLEINIK, O. A. Discontinuous solutions of non-linear differential equations. *Uspekhi Matematicheskikh Nauk 12*, 3 (1957), 3–73.
- [201] OLEINIK, O. A. On the uniqueness of the generalized solution of the cauchy problem for a non-linear system of equations occurring in mechanics. *Uspekhi Matematicheskikh Nauk 12*, 6 (1957), 169–176.
- [202] OLEINIK, O. A. Uniqueness and stability of the generalized solution of the cauchy problem for a quasi-linear equation. *Uspekhi Matematicheskikh Nauk 14*, 2 (1959), 165–170.

- [203] OSHER, S. Shock modelling in transonic and supersonic flow.
- [204] OSHER, S., AND FEDKIW, R. Level set methods and dynamic implicit surfaces, vol. 153. Springer Science & Business Media, 2006.
- [205] OSHER, S., AND SETHIAN, J. A. Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. *Journal of computational physics* 79, 1 (1988), 12–49.
- [206] OSHER, S., AND SOLOMON, F. Upwind difference schemes for hyperbolic systems of conservation laws. *Mathematics of computation* 38, 158 (1982), 339–374.
- [207] Pang, Y., Cai, S., and Zhao, Y. Global solutions to the two-dimensional riemann problem for a system of conservation laws. *Journal of Mathematical Physics* 57, 6 (2016), 061501.
- [208] P.D.LAX. Shock waves and entropy, in contributions to nonlinear functionial analysis (e. a. zarantonello, ed.). *Academic Press, New York* (1971), 603–634.
- [209] P.D.LAX, B. W. Hyperbolic systems of conservation laws ii. Comm. Pure Appl. Math. 13 (1960), 537–566.
- [210] Peng, J., and Shen, Y. Improvement of weighted compact scheme with multi-step strategy for supersonic compressible flow. *Computers & Fluids 115* (2015), 243–255.
- [211] PILLIOD, J. E., AND PUCKETT, E. G. Second-order accurate volume-of-fluid algorithms for tracking material interfaces. *Journal of Computational Physics* 199, 2 (2004), 465–502.
- [212] PIROZZOLI, S. Conservative hybrid compact-weno schemes for shock-turbulence interaction. *Journal of Computational Physics* 178, 1 (2002), 81–117.
- [213] PIROZZOLI, S. Numerical methods for high-speed flows. Annual review of fluid mechanics 43 (2011), 163–194.
- [214] Poinsot, T., Echekki, T., and Mungal, M. A study of the laminar flame tip and implications for premixed turbulent combustion. *Combustion science and technology* 81, 1-3 (1992), 45–73.
- [215] Popinet, S., and Zaleski, S. A front-tracking algorithm for accurate representation of surface tension. *International Journal for Numerical Methods in Fluids 30*, 6 (1999), 775–793.

[216] POWELL, K. G., ROE, P. L., LINDE, T. J., GOMBOSI, T. I., AND DE ZEEUW, D. L. A solution-adaptive upwind scheme for ideal magnetohydrodynamics. *Journal of Computational Physics* 154, 2 (1999), 284–309.

- [217] POWERS, J. M., AND PAOLUCCI, S. Accurate spatial resolution estimates for reactive supersonic flow with detailed chemistry. *AIAA journal* 43, 5 (2005), 1088–1099.
- [218] QIU, J., AND SHU, C.-W. A comparison of troubled-cell indicators for runge–kutta discontinuous galerkin methods using weighted essentially nonoscillatory limiters. SIAM Journal on Scientific Computing 27, 3 (2005), 995–1013.
- [219] Ren, Y.-X., Zhang, H., et al. A characteristic-wise hybrid compact-weno scheme for solving hyperbolic conservation laws. *Journal of Computational Physics* 192, 2 (2003), 365–386.
- [220] RICHARDSON, L. F. Weather prediction by numerical process. Cambridge University Press, 2007.
- [221] RIDER, W. J., AND KOTHE, D. B. Reconstructing volume tracking. *Journal of computational physics* 141, 2 (1998), 112–152.
- [222] RIEMANN, B. Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Verlag der Dieterichschen Buchhandlung, 1860.
- [223] Roe, P. L. Approximate riemann solvers, parameter vectors, and difference schemes. Journal of computational physics 43, 2 (1981), 357–372.
- [224] Roe, P. L., and Balsara, D. S. Notes on the eigensystem of magnetohydrodynamics. SIAM Journal on Applied Mathematics 56, 1 (1996), 57–67.
- [225] Rubin, E. L., and Burstein, S. Z. Difference methods for the inviscid and viscous equations of a compressible gas. *Journal of Computational Physics* 2, 2 (1967), 178–196.
- [226] RUPERT, V. Shock-interface interaction: current research on the richtmyer-meshkov problem. In *Shock Waves*. Springer, 1992, pp. 83–94.
- [227] RUSANOV, V. On difference schemes of third order accuracy for nonlinear hyperbolic systems. *Journal of Computational Physics* 5, 3 (1970), 507–516.
- [228] SCARDOVELLI, R., AND ZALESKI, S. Direct numerical simulation of free-surface and interfacial flow. *Annual review of fluid mechanics* 31, 1 (1999), 567–603.

- [229] Schecter, S., and Shearer, M. Undercompressive shocks for nonstrictly hyperbolic conservation laws. *Journal of Dynamics and Differential Equations* 3, 2 (1991), 199–271.
- [230] SCHULZ-RINNE, C. W. Classification of the riemann problem for two-dimensional gas dynamics. SIAM journal on mathematical analysis 24, 1 (1993), 76–88.
- [231] Sethian, J. A. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol. 3. Cambridge university press, 1999.
- [232] Shampine, L. F. Numerical solution of ordinary differential equations, vol. 4. CRC Press, 1994.
- [233] Shang, J. Recent research in magneto-aerodynamics. *Progress in Aerospace Sciences* 37, 1 (2001), 1–20.
- [234] Shen, Y., Liu, L., and Yang, Y. Multistep weighted essentially non-oscillatory scheme. *International Journal for Numerical Methods in Fluids* 75, 4 (2014), 231–249.
- [235] Shen, Y., Yang, G., and Gao, Z. High-resolution finite compact difference schemes for hyperbolic conservation laws. *Journal of Computational Physics* 216, 1 (2006), 114–137.
- [236] Shen, Y., and Zha, G. Application of low diffusion e-cusp scheme with high order weno scheme for chemical reacting flows. In 40th Fluid Dynamics Conference and Exhibit (2010), p. 4995.
- [237] SHEN, Y., AND ZHA, G. Generalized finite compact difference scheme for shock/complex flowfield interaction. *Journal of Computational Physics* 230, 12 (2011), 4419–4436.
- [238] Shen, Y., and Zha, G. Improvement of weighted essentially non-oscillatory schemes near discontinuities. *Computers & Fluids 96* (2014), 1–9.
- [239] Shen, Y., Zha, G., and Huerta, M. A. E-cusp scheme for the equations of ideal magnetohydrodynamics with high order weno scheme. *Journal of Computational Physics* 231, 19 (2012), 6233–6247.

[240] Shen, Y.-Q., Wang, R.-Q., and Liao, H.-z. A fifth-order accurate weighted enn difference scheme and its applications. *Journal of Computational Mathematics* (2001), 531–538.

- [241] Sheng, W. Two-dimensional riemann problem for scalar conservation laws. *Journal of Differential Equations* 183, 1 (2002), 239–261.
- [242] Shepherd, J. Detonation in gases. *Proceedings of the Combustion Institute 32*, 1 (2009), 83–98.
- [243] Shin, S., and Juric, D. Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity. *Journal of Computational Physics* 180, 2 (2002), 427–470.
- [244] Shipilova, O., Haario, H., and Smolianski, A. Particle transport method for convection problems with reaction and diffusion. *International journal for numerical* methods in fluids 54, 10 (2007), 1215–1238.
- [245] Shu, C.-W. Total-variation-diminishing time discretizations. SIAM Journal on Scientific and Statistical Computing 9, 6 (1988), 1073–1084.
- [246] Shu, C.-W., and Osher, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. *Journal of Computational Physics* 77, 2 (1988), 439–471.
- [247] Shu, C.-W., and Osher, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii. *Journal of Computational Physics* 83, 1 (1989), 32–78.
- [248] SHYUE, K.-M. An efficient shock-capturing algorithm for compressible multicomponent problems. *Journal of Computational Physics* 142, 1 (1998), 208–242.
- [249] SMOLIANSKI, A., SHIPILOVA, O., AND HAARIO, H. A fast high-resolution algorithm for linear convection problems: particle transport method. *International journal for numerical methods in engineering* 70, 6 (2007), 655–684.
- [250] SMOLLER, J. Shock waves and reaction—diffusion equations, vol. 258. Springer Science & Business Media, 2012.
- [251] SMOOKE, M., Puri, I., and Seshadri, K. A comparison between numerical calculations and experimental measurements of the structure of a counterflow diffusion flame burning diluted methane in diluted air. In *Symposium (International) on Combustion* (1988), vol. 21, Elsevier, pp. 1783–1792.

- [252] Soloukhin, R. Multiheaded structure of gaseous detonation. Combustion and Flame 10, 1 (1966), 51–58.
- [253] Soo Kim, M., Sun Park, J., and Lee, W. I. A new vof-based numerical scheme for the simulation of fluid flow with free surface. part ii: application to the cavity filling and sloshing problems. *International Journal for Numerical Methods in Fluids* 42, 7 (2003), 791–812.
- [254] STEGER, J. L., AND WARMING, R. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. *Journal of computational physics* 40, 2 (1981), 263–293.
- [255] Sussman, M. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. *Journal of Computational Physics* 187, 1 (2003), 110–136.
- [256] Sussman, M., and Puckett, E. G. A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows. *Journal of Computational Physics* 162, 2 (2000), 301–337.
- [257] Sussman, M., Smereka, P., and Osher, S. A level set approach for computing solutions to incompressible two-phase flow. *Journal of Computational physics* 114, 1 (1994), 146–159.
- [258] Tan, D. C., and Zhang, T. Two-dimensional riemann problem for a hyperbolic system of nonlinear conservation laws: I. four-j cases. *Journal of differential equations* 111, 2 (1994), 203–254.
- [259] Tartar, L. Compensated compactness and applications to partial differential equations. In *Nonlinear analysis and mechanics: Heriot-Watt symposium* (1979), vol. 4, pp. 136–212.
- [260] Tartar, L. The compensated compactness method applied to systems of conservation laws. In *Systems of nonlinear partial differential equations*. Springer, 1983, pp. 263–285.
- [261] Tomé, M., Cuminato, J., Mangiavacchi, N., McKee, S., et al. Gensmac3d: a numerical method for solving unsteady three-dimensional free surface flows. *International Journal for Numerical Methods in Fluids 37*, 7 (2001), 747–796.

[262] Tome, M. F., and McKee, S. Gensmac: A computational marker and cell method for free surface flows in general domains. *Journal of Computational Physics* 110, 1 (1994), 171–186.

- [263] TORO, E. F., SPRUCE, M., AND SPEARES, W. Restoration of the contact surface in the hll-riemann solver. *Shock waves 4*, 1 (1994), 25–34.
- [264] Torres, D., and Brackbill, J. The point-set method: front-tracking without connectivity. *Journal of Computational Physics* 165, 2 (2000), 620–644.
- [265] Tosatto, L., and Vigevano, L. Numerical solution of under-resolved detonations. Journal of Computational Physics 227, 4 (2008), 2317–2343.
- [266] TÓTH, G. The · b= 0 constraint in shock-capturing magnetohydrodynamics codes.

 Journal of Computational Physics 161, 2 (2000), 605–652.
- [267] TRYGGVASON, G., BUNNER, B., ESMAEELI, A., JURIC, D., AL-RAWAHI, N., TAUBER, W., HAN, J., NAS, S., AND JAN, Y.-J. A front-tracking method for the computations of multiphase flow. *Journal of Computational Physics* 169, 2 (2001), 708–759.
- [268] Tumuklu, O., Levin, D. A., and Austin, J. M. Shock-shock interactions for a double wedge configuration in different gases. In 53rd AIAA Aerospace Sciences Meeting (2015), p. 1520.
- [269] Unverdi, S. O., and Tryggvason, G. A front-tracking method for viscous, incompressible, multi-fluid flows. *Journal of computational physics* 100, 1 (1992), 25–37.
- [270] Van Leer, B. Towards the ultimate conservative difference scheme i. the quest of monotonicity. 163–168.
- [271] Van Leer, B. Towards the ultimate conservative difference scheme. ii. monotonicity and conservation combined in a second-order scheme. *Journal of computational physics* 14, 4 (1974), 361–370.
- [272] Van Leer, B. Towards the ultimate conservative difference scheme iii. upstream-centered finite-difference schemes for ideal compressible flow. *Journal of Computational Physics* 23, 3 (1977), 263–275.

- [273] VAN LEER, B. Towards the ultimate conservative difference scheme. iv. a new approach to numerical convection. *Journal of computational physics* 23, 3 (1977), 276–299.
- [274] Van Leer, B. Towards the ultimate conservative difference scheme. v. a second-order sequel to godunov's method. *Journal of computational Physics 32*, 1 (1979), 101–136.
- [275] VAN LEER, B. Flux-vector splitting for the euler equations. In IN: International Conference on Numerical Methods in Fluid Dynamics, 8th, Aachen, West Germany, June 28-July 2, 1982, Proceedings (A84-35301 16-34). Berlin, Springer-Verlag, 1982, p. 507-512. (1982), pp. 507-512.
- [276] VON NEUMAN, J. Theory of detonation waves. Tech. rep., DTIC Document, 1942.
- [277] WADA, Y., AND LIOU, M. An accurate and robust splitting scheme for shock and contact discontinuities, aiaa, 1994.
- [278] WANG, C., LIU, T., AND KHOO, B. A real ghost fluid method for the simulation of multimedium compressible flow. *SIAM Journal on Scientific Computing 28*, 1 (2006), 278–302.
- [279] Wang, W., Shu, C.-W., Yee, H., Kotov, D. V., and Sjögreen, B. High order finite difference methods with subcell resolution for stiff multispecies discontinuity capturing. *Communications in Computational Physics* 17, 02 (2015), 317–336.
- [280] Wang, W., Shu, C.-W., Yee, H., and Sjögreen, B. High order finite difference methods with subcell resolution for advection equations with stiff source terms. Journal of Computational Physics 231, 1 (2012), 190–214.
- [281] WANG, X., AND Du, Q. Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. *Journal of mathematical biology* 56, 3 (2008), 347–371.
- [282] WANG, Z. J., AND CHEN, R. Optimized weighted essentially nonoscillatory schemes for linear waves with discontinuity. *Journal of Computational Physics* 174, 1 (2001), 381–404.
- [283] WANNER, G., AND HAIRER, E. Solving ordinary differential equations ii. Stiff and Differential-Algebraic Problems (1991).

[284] WELCH, J. E., HARLOW, F. H., SHANNON, J. P., AND DALY, B. J. The mac method-a computing technique for solving viscous, incompressible, transient fluidflow problems involving free surfaces. Tech. rep., Los Alamos Scientific Lab., Univ. of California, N. Mex., 1965.

- [285] WOODWARD, P., AND COLELLA, P. The numerical simulation of two-dimensional fluid flow with strong shocks. *Journal of computational physics* 54, 1 (1984), 115–173.
- [286] XIANG, G., WANG, C., TENG, H., AND JIANG, Z. Investigations of three-dimensional shock/shock interactions over symmetrical intersecting wedges. *AIAA Journal* 54, 1 (2016), 1472–1481.
- [287] Xu, Z., and Shu, C.-W. Anti-diffusive flux corrections for high order finite difference weno schemes. *Journal of Computational Physics* 205, 2 (2005), 458–485.
- [288] Yang, G., Yao, Y., Fang, J., Gan, T., and Lu, L. Large-eddy simulation of shock-wave/turbulent boundary layer interaction and its control using sparkjet. In *International Journal of Modern Physics: Conference Series* (2016), vol. 42, World Scientific, p. 1660186.
- [289] YEE, H., KOTOV, D. V., WANG, W., AND SHU, C.-W. Spurious behavior of shock-capturing methods by the fractional step approach: Problems containing stiff source terms and discontinuities. *Journal of Computational Physics* 241 (2013), 266–291.
- [290] YEE, H., AND SJÖGREEN, B. Development of low dissipative high order filter schemes for multiscale navier–stokes/mhd systems. *Journal of Computational Physics* 225, 1 (2007), 910–934.
- [291] YEE, H., AND SJÖGREEN, B. High order filter methods for wide range of compressible flow speeds. In *Spectral and High Order Methods for Partial Differential Equations*. Springer, 2011, pp. 327–337.
- [292] YOON, H., PARK, I., LEE, Y., AND JEONG, J. An unstructured smac algorithm for thermal non-equilibrium two-phase flows. *International Communications in Heat and Mass Transfer* 36, 1 (2009), 16–24.
- [293] Young, F. R. Cavitation. World Scientific, 1999.
- [294] Youngs, D. L. Time-dependent multi-material flow with large fluid distortion. Numerical methods for fluid dynamics 24, 2 (1982), 273–285.

- [295] Yu, C., Gao, Z., and Sheu, T. W. Development of a symplectic and phase error reducing perturbation finite-difference advection scheme. *Numerical Heat Transfer*, *Part B: Fundamentals* 70, 2 (2016), 136–151.
- [296] Yu, S.-H. Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws. *Archive for rational mechanics and analysis* 146, 4 (1999), 275–370.
- [297] Yue, P., Zhou, C., and Feng, J. J. Sharp-interface limit of the cahn-hilliard model for moving contact lines. *Journal of Fluid Mechanics* 645 (2010), 279–294.
- [298] Zalesak, S. T. Fully multidimensional flux-corrected transport algorithms for fluids. *Journal of computational physics* 31, 3 (1979), 335–362.
- [299] Zeldovich, J. To the theory of detonation propagation in gas systems. *Journal of experimental and theoretical physics* 10, 5 (1940), 542–568.
- [300] Zha, G. Comparative study of upwind scheme performance for entropy condition and discontinuities, aiaa, 1999. Tech. rep., Paper 99-CP-3348, June 28-July 1.
- [301] Zha, G., Shen, Y., and Wang, B. Calculation of transonic flows using weno method with a low diffusion e-cusp upwind scheme. In 46th AIAA Aerospace Sciences Meeting and Exhibit (2008), p. 745.
- [302] Zha, G.-C. Numerical tests of upwind scheme performance for entropy condition. AIAA journal 37, 8 (1999), 1005–1007.
- [303] Zha, G.-C. A low diffusion e-cusp upwind scheme for transonic flows. In 34th AIAA Fluid Dynamics Conference and Exhibit (2004), p. 2707.
- [304] Zha, G.-C. Low diffusion efficient upwind scheme. AIAA journal 43, 5 (2005), 1137–1140.
- [305] Zha, G.-C., and Bilgen, E. Numerical solutions of euler equations by using a new flux vector splitting scheme. *International Journal for Numerical Methods in Fluids* 17, 2 (1993), 115–144.
- [306] Zha, G.-C., and Hu, Z. Calculation of transonic internal flows using an efficient high-resolution upwind scheme. *AIAA journal* 42, 2 (2004), 205–214.
- [307] Zha, G.-C., Shen, Y., and Wang, B. An improved low diffusion e-cusp upwind scheme. *Computers & Fluids* 48, 1 (2011), 214–220.

[308] ZHANG, B., LIU, H., CHEN, F., AND WANG, J. H. The equilibrium state method for hyperbolic conservation laws with stiff reaction terms. *Journal of Computational Physics* 263 (2014), 151–176.

- [309] Zhang, S., Jiang, S., and Shu, C.-W. Development of nonlinear weighted compact schemes with increasingly higher order accuracy. *Journal of Computational Physics* 227, 15 (2008), 7294–7321.
- [310] Zhang, T., and Zheng, Y. X. Conjecture on the structure of solutions of the riemann problem for two-dimensional gas dynamics systems. *SIAM Journal on Mathematical Analysis* 21, 3 (1990), 593–630.
- [311] Zheltovodov, A. Shock waves/turbulent boundary-layer interactions-fundamental studies and applications. In *Fluid Dynamics Conference* (1996), p. 1977.
- [312] Zhi, G. Advances in perturbation finite difference (pfd) method [j]. Advances in Mechanics 2 (2000), 003.
- [313] Zhou, Q., Yao, Z., He, F., and Shen, M. A new family of high-order compact upwind difference schemes with good spectral resolution. *Journal of Computational Physics* 227, 2 (2007), 1306–1339.
- [314] Zhu, H., and Qiu, J. Adaptive runge–kutta discontinuous galerkin methods using different indicators: one-dimensional case. *Journal of Computational Physics* 228, 18 (2009), 6957–6976.
- [315] 傅德薰, 马延文, ET AL. 计算流体力学. 高等教育出版社, 2002.
- [316] 刘小民. 一维非严格双曲守恒律方程的 Riemann 问题. PhD thesis, 中国科学院研究 生院 (武汉物理与数学研究所), 2012.
- [317] 姜宗林, 滕宏辉, AND 刘云峰. 气相爆轰物理的若干研究进展. 力学进展 42, 2 (2012), 129–140.
- [318] 应隆安, AND 滕振寰. 双曲型守恒律方程及其差分方法, 1991.
- [319] 张德良, ET AL. 计算流体力学教程. 高等教育出版社, 2010.
- [320] 张旭东, 范宝春, 潘振华, AND 归明月. 旋转爆轰自持机理的数值研究. 弹道学报 23, 1 (2011), 1-4.
- [321] 杨瑞芳. 非齐次双曲型守恒律组的粘性解与弱解的研究. PhD thesis, 南京航空航天大学, 2007.

- [322] 潘振华, 范宝春, AND 归明月. T 型管内流动气体中爆轰绕射过程的数值模拟. 爆炸与冲击 34, 6 (2014), 709-715.
- [323] 王东红. 多介质流体界面追踪方法研究及误差分析. PhD thesis, 南京航空航天大学, 2014.
- [324] 王儒智. Banach 空间中非线性脉冲 volterra 积分方程的 l_ (loc)~ p 解. Master's thesis, 山东师范大学, 2005.
- [325] 王昌建, AND 徐胜利. 直管内胞格爆轰的基元反应数值研究. 爆炸與衝擊 25, 5 (2005), 405-416.
- [326] 申义庆, 高智, AND 杨顶辉. 一阶双曲方程的摄动有限差分格式. 计算物理 22, 6 (2005), 650-656.
- [327] 童秉纲, 孔祥言, 邓国华, ET AL. 气体动力学. 高等教育出版社, 1990.
- [328] 肖伟. 气体动力学中压差方程双对称结构 Riemann 问题. PhD thesis, 上海大学, 2012.
- [329] 赖耕. 二维可压流体 Euler 方程的几类流动结构. PhD thesis, 上海大学, 2010.
- [330] 赵宁, 余彦, AND 唐维军. Rm 不稳定性数值模拟方法. 计算数学 (2001).
- [331] 高智. 对流扩散方程的高精度差分算法. 北京计算流体力学讨论会文集 (第六辑) 1223 (1994).
- [332] 高智, AND 柏威. 对流扩散方程的摄动有限体积 (pfv) 方法及讨论. 力学学报 36, 1 (2004), 88–92.