조 영 혁

노다시스템



## 1. Get GPIO source from Git-Hub

### Python 설치

\$ sudo add-apt-repository ppa:fkrull/deadsnakes

\$ sudo apt-get update

\$ sudo apt-get install python3.6

### Python버젼을 변경

\$ alias python='/usr/bin/python3'

### Python pip install

\$ sudo apt-get install python3-pip

\$ pip3 install numpy

pip 설치

numpy lib 설치



## 2. Python 셋팅 및 환경 설정

Jetson GPIO lib 설치 및 권한 부여

```
$ git clone <a href="https://github.com/NVIDIA/jetson-gpio.git">https://github.com/NVIDIA/jetson-gpio.git</a>
```

- \$ cd jetson-gpio
- \$ sudo python3 setup.py install

```
$ sudo groupadd -f -r gpio gpio를 그룹으로 추가
$ sudo usermod-a -G gpio <user_id> gipo 그룹에 자신의 ID 등록
```

\$ sudo cp lib/python/Jetson/GPIO/99-gpio.rules /etc/udev/rules.d/

\$ sudo reboot : 재부팅

\$ sudo udevadm control --reload-rules && sudo udevadm trigger



## 3. LED 회로 보드

- 브레드 보드





#### **- 4**색 띠 저항기



| 색   | 값    |
|-----|------|
| 검정색 | 0    |
| 잘 색 | 1    |
| 빨강색 | 2    |
| 주황색 | 3    |
| 노란색 | 4    |
| 초록색 | 5    |
| 파란색 | 6    |
| 보라색 | 7    |
| 회 색 | 8    |
| 하얀색 | 9    |
| 은 색 | ±10% |
| 금 색 | ± 5% |



## LED회로

- -LED는 회로 연결 시에 잘못 연결하면 LED가 타버릴 수 있기 때문에 이 점을 유의하고 진행해야 한다.
- -LED를 사용할 때 개인 취향이지만 LED의 수명과 온도를 낮춰 주기위해 저항을 사용할 수 있다.
- -LED의 핀연결은 긴다리인(+)극은 아두이노의 DIGITAL 신호핀에, 짧은 다리인(-)극은 저항→GND(-극)에 연결해 주도록 한다.









#### Jetson Nano J41 Header

| Pi<br>GPIO# | Sysfs<br>GPIO | Name                | Pin | Pin | Name                | Sysfs<br>GPIO | Pi<br>GPIO# |
|-------------|---------------|---------------------|-----|-----|---------------------|---------------|-------------|
|             |               | 3.3VDC<br>Power     | 1   | 2   | 5.0VDC<br>Power     |               |             |
| 2           |               | SDA1<br>I2C Bus 1   | 3   | 4   | 5.0VDC<br>Power     |               |             |
| 3           |               | SCL1<br>I2C Bus 1   | 5   | 6   | GNID                |               |             |
| 4           | gpio216       | AUDIO_MCLK          | 7   | 8   | TXD0                |               | 14          |
|             |               | GND                 | 9   | 10  | RXD0                |               | 15          |
| 17          | gpio50        | UART2_RTS           | 11  | 12  | DAP4_SCLK           | gpio79        | 18          |
| 27          | gpio14        | SPI2_SCK            | 13  | 14  | GNID                |               |             |
| 22          | gpio194       | LCD_TE              | 15  | 16  | SPI2_CS1            | gpio232       | 23          |
|             |               | 3.3VDC<br>Power     | 17  | 18  | SPI2_CS0            | gpio15        | 24          |
| 10          | gpio16        | SPI_MOSI            | 19  | 20  | GND                 |               |             |
| 9           | gpio17        | SPI_MISO            | 21  | 22  | SPI2_MISO           | gpio13        | 25          |
| 11          | gpio18        | SPI1_SCK            | 23  | 24  | SPI1_CS0            | gpio19        | 8           |
|             |               | GND                 | 25  | 26  | SPI1_CS1            | gpio20        | 7           |
| (0)         |               | ID_SDA<br>I2C Bus 0 | 27  | 28  | ID_SCL<br>I2C Bus 0 |               | (1)         |
| 5           | gpio149       | CAM_AF_EN           | 29  | 30  | GNID                |               |             |
| 6           | gpio200       | GPIO_PZ0            | 31  | 32  | LCD_BL_PWM          | gpio168       | 12          |
| 13          | gpio38        | GPIO_PE6            | 33  | 34  | GND                 |               |             |
| 19          | gpio76        | DAP4_FS             | 35  | 36  | UART2_CTS           | gpio51        | 16          |
| 26          | gpio12        | SPI2_MOSI           | 37  | 38  | DAP4_DIN            | gpio77        | 20          |
|             |               | GND                 | 39  | 40  | DAP4_DOUT           | gpio78        | 21          |



https://www.jetsonhacks.com/nvidia-jetson-nano-j41-header-pinout/





#### #!/usr/bin/env python

```
import RPi.GPIO as GPIO
import time
# Pin Definitions
output pin = 18 # BOARD pin 12, BCM pin 18
def main():
    # Pin Setup:
    # Board pin-numbering scheme
   GPIO.setmode(GPIO.BCM)
   # set pin as an output pin with optional initial state of HIGH
   GPIO.setup(output pin, GPIO.OUT, initial=GPIO.HIGH)
    print("Starting demo now! Press CTRL+C to exit")
    curr_value = GPIO.HIGH
   try:
        while True:
            time.sleep(1)
            # Toggle the output every second
            print("Outputting {} to pin {}".format(curr_value, output_pin))
            GPIO.output(output pin, curr value)
            curr_value ^= GPIO.HIGH
   finally:
        GPIO.cleanup()
if name == ' main ':
   main()
```



- button Pin = Board 12
- LED Pin = Board 18

-버튼을 누르는 동안 LED On



```
#!/usr/bin/env python
import RPi.GPIO as GPIO
import time
# Pin Definitons:
led_pin = 12 # BOARD pin 12
but pin = 18 # BOARD pin 18
def main():
    prev value = None
   # Pin Setup:
   GPIO.setmode(GPIO.BOARD) # BOARD pin-numbering scheme
   GPIO.setup(led_pin, GPIO.OUT) # LED pin set as output
   GPIO.setup(but pin, GPIO.IN) # Button pin set as input
    # Initial state for LEDs:
   GPIO.output(led_pin, GPIO.LOW)
   print("Starting demo now! Press CTRL+C to exit")
   try:
       while True:
           curr_value = GPIO.input(but_pin)
           if curr value != prev value:
               GPIO.output(led pin, not curr value)
               prev_value = curr_value
               print("Outputting {} to Pin {}".format(curr_value, led_pin))
           time.sleep(1)
   finally:
       GPIO.cleanup() # cleanup all GPIO
if name == ' main ':
   main()
```



- button Pin = Board 12
- LED Pin = Board 18
- -첫번째 버튼에 LED 1번 깜빡임
- -두번재 버튼에 LED 3번 깜빡임
- -세번째 버튼에 LED 5번 깜박임
- -......
- ......
- 길게 누르면 초기 리셋

```
#!/usr/bin/env pvthon
import RPi.GPIO as GPIO
import time
# Pin Definitons:
led pin = 12  # Board pin 12
but_pin = 18 # Board pin 18
def main():
    # Pin Setup:
   GPIO.setmode(GPIO.BOARD) # BOARD pin-numbering scheme
   GPIO.setup(led pin, GPIO.OUT) # LED pin set as output
   GPIO.setup(but pin, GPIO.IN) # button pin set as input
    # Initial state for LEDs:
   GPIO.output(led pin, GPIO.LOW)
   print("Starting demo now! Press CTRL+C to exit")
   try:
       while True:
           print("Waiting for button event")
           GPIO.wait_for_edge(but_pin, GPIO.FALLING)
           # event received when button pressed
           print("Button Pressed!")
           GPIO.output(led_pin, GPIO.HIGH)
           time.sleep(1)
           GPIO.output(led pin, GPIO.LOW)
   finally:
       GPIO.cleanup() # cleanup all GPIOs
if name == ' main ':
   main()
```



# THANK YOU

Suggestions Questions