Exercice 1

Thème abordé : structures de données : les piles

On cherche à obtenir un mélange d'une liste comportant un nombre <u>pair</u> d'éléments. Dans cet exercice, on notera N le nombre d'éléments de la liste à mélanger.

La méthode de mélange utilisée dans cette partie est inspirée d'un mélange de jeux de cartes :

- On sépare la liste en deux piles :
 - ⇒ à gauche, la première pile contient les N/2 premiers éléments de la liste ;
 - ⇒ à droite, la deuxième pile contient les N/2 derniers éléments de la liste.
- On crée une liste vide.
- On prend alors le sommet de la pile de gauche et on le met en début de liste.
- On prend ensuite le sommet de la pile de droite que l'on ajoute à la liste et ainsi de suite jusqu'à ce que les piles soient vides.

Par exemple, si on applique cette méthode de mélange à la liste ['V','D','R','3','7','10'], on obtient pour le partage de la liste en 2 piles :

Pile gauche	
'R'	
'D'	
'V'	

Pile droite
'10'
'7'
'3'

La nouvelle liste à la fin du mélange sera donc ['R','10','D','7','V','3'].

1. Que devient la liste ['7','8','9','10','V','D','R','A'] si on lui applique cette méthode de mélange ?

On considère que l'on dispose de la structure de données de type pile, munie des seules instructions suivantes :

p = Pile(): crée une pile vide nommée p

p.est_vide(): renvoie Vrai si la liste est vide, Faux sinon

p.empiler(e): ajoute l'élément e dans la pile

e = p.depiler(): retire le dernier élément ajouté dans la pile et le retourne (et l'affecte à la variable e)

p2 = p.copier(): renvoie une copie de la pile p sans modifier la pile p et l'affecte à une nouvelle pile p2

21-NSIJ2G11 Page : 2 /18

2. Recopier et compléter le code de la fonction suivante qui transforme une liste en pile.

3. On considère la fonction suivante qui partage une liste en deux piles. Lors de sa mise au point et pour aider au débuggage, des appels à la fonction affichage_pile ont été insérés. La fonction affichage_pile(p) affiche la pile p à l'écran verticalement sous la forme suivante :

dernier élément empilé
•••
premier élément empilé

```
def partage(L):
N = len(L)
p_gauche = Pile()
p_droite = Pile()
for i in range(N/2):
    p_gauche.empile(L[i])
for i in range(N/2,N):
    p_droite.empile(L[i])
affichage_pile(p_gauche)
affichage_pile(p_droite)
return p_gauche, p_droite
```

Quels affichages obtient-on à l'écran lors de l'exécution de l'instruction : partage([1,2,3,4,5,6]) ?

21-NSIJ2G11 Page : 3 /18

- 4.
- 4.a Dans un cas général et en vous appuyant sur une séquence de schémas, **expliquer** en quelques lignes comment fusionner deux piles p_gauche et p_droite pour former une liste L en alternant un à un les éléments de la pile p_gauche et de la pile p_droite.
- 4.b. **Écrire** une fonction fusion(p1,p2) qui renvoie une liste construite à partir des deux piles p1 et p2.
- **5. Compléter** la dernière ligne du code de la fonction affichage_pile pour qu'elle fonctionne de manière récursive.

```
def affichage_pile(p):
p_temp = p.copier()
if p_temp.est_vide():
    print('____')
else:
    elt = p_temp.depiler()
    print('| ', elt, ' |'))
    ...  # ligne à compléter
```

21-NSIJ2G11 Page : 4 /18