- 16.3 Prove Theorem 16.3. You can follow the outline below.
 - 1. First observe that $r\bar{r}$ is a factorization of N(r) in $\mathbb{Z}[i]$ as a product of Gaussian integers. Use the unique factorization theorem to deduce that every factorization of N(r) in $\mathbb{Z}[i]$ as a product of irreducible Gaussian integers has two factors.
 - 2. Observe that since r is not 0 or a unit in $\mathbb{Z}[i]$, its norm N(r) is an integer greater than 1. Introduce notiation for a prime factorization of N(r) is \mathbb{Z} , say $N(r) = p_1..p_t$. Be aware that the primes p_j may or may not be irreducible in $\mathbb{Z}[i]$; nothing is assumed about this. (Recall as an example that 2 is prime in \mathbb{Z} , but it is not irreducible in $\mathbb{Z}[i]$, since it factors as 2 = (1+i)(1-i). In any case, each prime p_j is a Gaussian integer $(p_j = p_j + 0i)$, and therefore factors uniquely in $\mathbb{Z}[i]$ as a product of one or more Gaussian integers. ARgue that there must exist a factorization of N(r) in $\mathbb{Z}[i]$ as a product of at least t irreducible Gaussian integers, and that therefore, by the first part, t equals 1 or 2.
 - 3. Suppose that t=2. Then $N(r)=r\bar{r}=p_1p_2$. Using the unique factorization theorem, deduce that r differs from either p_1 or p_2 by multiplication by a unit of $\mathbb{Z}[i]$. Conclude that there is a prime number p in \mathbb{Z} such that r equals one of the four numbers p, -p, pi, -pi. Notice that in all four of these cases, $N(r)=p^2$
 - 4. Suppose that t=1. To simplify notation, write p_1 simply as p. Thus, N(r)=p. Write r as a+bi, for integers a,b. Observe that if either a,b is 0, then N(r) cannot be a prime number. Thus, a,b are both nonzero. Observe that $p=N(r)=r\bar{r}=(a+bi)(a-bi)=a^2+b^2$

- 16.6 Let us examine the two smallest rings of the form $\mathbb{Z}_m[i]$
 - 1. According to the definitions, the ring $\mathbb{Z}_2[i]$ consists of all elements of the form a+bi, with $a,b\in\mathbb{Z}_2$. Deduce that $\mathbb{Z}_2[i]$ consists of four elements, 0,1,i,1+i
 - 2. Using these four elements, make addition and multiplication tables for $\mathbb{Z}_2[i]$, the way we did for fruit rings in Section 6.3
 - 3. Review the multiplication table and answer the following questions:
 - a) Are there zero divisors in $\mathbb{Z}_2[i]$?
 - b) Does every nonzero element of $\mathbb{Z}_2[i]$ have a multiplicative inverse?
 - c) Is $\mathbb{Z}_2[i]$ a field?
 - 4. Perform a similar analysis for the ring $\mathbb{Z}_3[i]$, starting with the observation that it contains nine distinct elements. List these elements, do not bother with the addition table, but make a multiplication table for $\mathbb{Z}_3[i]$. Use hte table to answer the following questions:
 - a) Are there zero divisors in $\mathbb{Z}_3[i]$?
 - b) Does every nonzero element of $\mathbb{Z}_3[i]$ have a multiplicative inverse?
 - c) Is $\mathbb{Z}_3[i]$ a field?

- 16.9 Prove theorem 16.9 by following the steps below:
 - 1. Review the construction of the polynomial congruence rings in order to observe that the ring $\mathbb{F}_p[x]_{x^2+1}$ consists of elements of the form $c+d\gamma$ where c,d are in \mathbb{F}_p , the element γ satisfies the rule $\gamma^2=-1$, and multiplication is given by the rule $(c+d\gamma)(e+f\gamma)=(ce-df)+(cf+de)\gamma$.
 - 2. Compare this to the defining description of the ring $\mathbb{F}_p[i]$ given above. Notice that the descriptions are the same, except that we use γ in one case and i in the other.
 - 3. Conclude that $\mathbb{F}_p[x]_{x^2+1}$ and $\mathbb{F}_p[i]$ are essentially the same rings; that is, they are identical except for a change in notation.