Virtual Applied Data Science Training Institute - Spring 2024 Training Series

Session 2: An Overview of Data Exploration

Compiled:

Dr. S. Tweneboah-Koduah

(Assistant Professor, Computer Science)

Gannon University, Erie, PA

What is data exploration?

A preliminary exploration of the data to better understand its characteristics.

- Key motivations of data exploration include
 - Helping to select the right tool for preprocessing, data analysis and data mining
 - Making use of humans' abilities to recognize patterns
 - People can recognize patterns not captured by data analysis tools

Exploratory Data Process

Why Data Preprocessing?

- Data in the real world is dirty
 - incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., occupation=""
 - noisy: containing errors or outliers
 - e.g., Salary="-10"
 - inconsistent: containing discrepancies in codes or names
 - e.g., Age="42" Birthday="03/07/1990"
 - e.g., Was rating "1,2,3", now rating "A, B, C"
 - e.g., discrepancy between duplicate records

Why Is Data Dirty?

- Incomplete data may come from
 - "Not applicable" data value when collected
 - Different considerations between the time when the data was collected and when it is analyzed.
 - Human/hardware/software problems
- Noisy data (incorrect values) may come from
 - Faulty data collection instruments
 - Human or computer error at data entry (at source)
 - Errors in data transmission
- Inconsistent data may come from
 - Different data sources (transaction processes)
 - Functional dependency violation (e.g., modify some linked data)
- Duplicate records also need data cleaning

Why Is Data Preprocessing Important?

- No quality data, no quality mining results!
 - Quality decisions must be based on quality data
 - e.g., duplicate or missing data may cause incorrect or even misleading statistics.
 - Data warehouse needs consistent integration of quality data
- Data extraction, cleaning, and transformation comprises the majority of the work of building a data warehouse

- A well-accepted multidimensional view:
 - Accuracy
 - Completeness
 - Consistency
 - Timeliness
 - Believability (Integrity)
 - Value added
 - Interpretability
 - Accessibility

Major Tasks in Data Preprocessing

- Data cleaning
 - Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies
- Data integration
 - Integration of multiple databases, data cubes, or files
- Data transformation
 - Normalization and aggregation
- Data reduction
 - Obtains reduced representation in volume but produces the same or similar analytical results

Forms of Data Preprocessing

Data Cleaning

Importance

- "Data cleaning is one of the three biggest problems in data warehousing" (according to Ralph Kimball)
- "Data cleaning is the number one problem in data warehousing"—DCI survey

Data cleaning tasks

- Fill in missing values
- Identify outliers and smooth out noisy data
- Correct inconsistent data
- Resolve redundancy caused by data integration

Missing Data

- Data is not always available
 - E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
 - equipment malfunction
 - inconsistent with other recorded data and thus deleted
 - data not entered due to misunderstanding
 - certain data may not be considered important at the time of entry
- Missing data may need to be inferred.

How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (assuming the tasks in classification—not effective when the percentage of missing values per attribute varies considerably.
- Fill in the missing value manually: tedious + infeasible?
- Fill in it automatically with
 - a global constant : e.g., "unknown", a new class?

Noisy Data

- Noise: random error or variance in a measured variable
- Incorrect attribute values may be due to
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
 - technology limitation
 - inconsistency in naming convention
- Other data problems which requires data cleaning
 - duplicate records
 - incomplete data
 - inconsistent data

Data Integration

- Data integration:
 - Combines data from multiple sources into a coherent store (useful for building relationships and modelling)
- Schema integration: e.g., A.cust-id ≡ B.cust-#
 - Integrate metadata from different sources
- Entity identification problem:
 - Identify real world entities from multiple data sources, e.g., Bill Clinton = William Clinton
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs. British units

Data Transformation

- Smoothing: remove noise from data
- Aggregation: summarization, data cube construction
- Generalization: concept hierarchy climbing
- Normalization: scaled to fall within a small, specified range
 - min-max normalization
- Attribute/feature construction
 - New attributes constructed from the given ones

Data Reduction

- Why data reduction?
 - A database/data warehouse may store terabytes of data
 - Complex data analysis/mining may take a very long time to run on the complete data set
- Data reduction
 - Obtain a reduced representation of the data set that is much smaller in volume but yet produce the same (or almost the same) analytical results
- Data reduction strategies
 - Dimensionality reduction e.g., remove unimportant attributes

Techniques used in Data Exploratory

- In EDA, as originally defined by Tukey
 - The focus was on visualization
 - Clustering and anomaly detection were viewed as exploratory techniques
 - In data mining, clustering and anomaly detection are major areas of interest, and not thought of as just exploratory
- This discussion of data exploration, focuses on
 - 1. Visualization (this moves us to the Power BI)
 - 2. Summary statistics

Your Comment, Contribution and Question

