MATIGO EXAMINATIONS BOARD

UACE

APPLIED MATHEMATICS P425/2

MARKING GUIDE 2023

Qn	Answer	Mark	Part Marks
1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	For the table with frequencies
1(a)	Number of people whose mass is less than $54g = 16 + 16 + 24 + = 56$ $Probability = \frac{56}{80}$ $= \frac{7}{10}$	B1 A1	For number of ducklings whose mass is less than 54 <i>g</i> For correct answer

(b)	Number of duckling whose mass is greater than $53g = 16 + 16 + \frac{53-52}{2} \times 24 = 44$	B1	For number of ducklings
	Probability = $\frac{44}{80}$		whose mass
	$=\frac{11}{20}$		> 53 <i>g</i>
	20		For the
		A1	answer
3(a)		B1	For the table
	55 52 x 2 4 5		
	applying linear extrapolation $\frac{x-52}{5-4} = \frac{52-55}{4-2}$	M1	Application of the method
	x = 50.5 The temperature after 5minutes is 50.5°C	A1	For the answer
(b)	55 53.5 52 2 y 4	M1	Application of the method
	applying linear interpolation		
	$\frac{y-2}{53.5-55} = \frac{4-2}{52-55}$ $y = 3$ Time for the temperature of 53.5°C is 3 minutes	A1	For the answer
2			
	\xrightarrow{B} \xrightarrow{A}		
	200m X	M 1	For
	For car B, $U = 44 ms^{-1}$, $a = 0.5 ms^{-2}$,	1111	Correct substitution

Matigo Examinations Board 2023

	$S = ut + \frac{1}{2}at^{2}$ $200 + x = 44t + \frac{1}{2} \times 0.5 t^{2}$ $200 + x = 44t + 0.25 t^{2} \dots \dots$	M1 B1 A1	For substitution For the quadratic equation in terms of t For values of t For the correct value of t
4	$C = 170mm, \Delta C = \frac{1}{2} \times 10^{-0} = 0.5$ $d = 54mm, \Delta d = \frac{1}{2} \times 10^{-0} = 0.5$ $\pi = \frac{C}{d}$ $\pi_{max} = \frac{C + \Delta C}{d - \Delta d}$ $\frac{170 + 0.5}{54 - 0.5}$ 3.186915888 $\pi_{min} = \frac{C - \Delta C}{d + \Delta d}$ $\frac{170 - 0.5}{54 + 0.5}$ 3.110091743	M1 M1 A1 M1 A1	For π_{max} method For substitution For the answer For substitution For the answer

7									
		х	y	R_{x}	R_{ν}	$d = R_x - R_y$	d^2	B1	For R_{χ}
		7	5	8	7	1	1	B 1	For R_y
		18	3	7	8	-1	1		
		37	9	6	6	0	0		
		52	12	5	5	0	0		
		61	17	4	4	0	0		
		68	41	3	3	0	0		
		75	49	2	2	0	0		
		82	97	1	1	0	0		
							$\sum d^2 = 2$		
		c			ignifica	$-\frac{6\sum d^{2}}{n(n^{2}-1)} - \frac{6\times 2}{8(8^{2}-1)} = 0.9762$ ant at 5% level of sign		M1 A1 A1	For substitution For the answer For the comment
6				k(1) +	$\sum_{k(2)+k} P$	(X = x) = 1 k(3) + k(4) + k(5) = 1 k(3) + k(4) + k(5) = 1			
						$k = \frac{1}{4\pi}$		B 1	For k
					P(X	(x = x) = 3k			
(a)					1 (21	$15k = 1$ $k = \frac{1}{15}$ $(= x) = 3k$ $3 \times \frac{1}{15}$ 0.2		M1	For the working
						3 × <u>15</u>			working
						0.2		A1	For the
						<u></u>			answer
(b)	x	1		2		3 4	5		
	P(X=x)	$^{1}/_{15}$		$^{2}/_{15}$		/ ₁₅	1/3		For values of
			•					B2	x and $P(X =$
									<i>x</i>)

Matigo Examinations Board 2023

5	$\Delta KE = -16$ $\frac{1}{2} m (v^2 - u^2) = -16$ $\frac{1}{2} 4 (v^2 - 5^2) = -16$ $v^2 = 17$ From: $v^2 = u^2 + 2as$ $17 = 5^2 + 2as$	M1 B1 M1 M1	For substitution For v^2 or v For the method and substitution For a
	Alternative $a = -0.1ms^{-2}$ $W.D = \Delta KE$ $W.D = -16$ $W.D = F \times S$ $-16 = F \times 40$ $F = -0.4N$ $F = ma$ $-0.4 = 4a$ $a = -0.1ms^{-2}$	B1 M1 B1 M1	For W.D = -16 For method and substitution For F
		A1	For substitution For <i>a</i>
8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	For F_{x}
		B 1	For F_y

Matigo Examinations Board 2023

		$\theta = tan^{-1} \left(\frac{F_y}{F_x}\right)$ $= tan^{-1} \left(\frac{2}{8.4641}\right)$ $= 13.3^{\circ}$ The resultant is 8.69718N in the direction 13.3° above the 5N force										
9(a)	Time (s) 10 - 19 20 - 24 25 - 29 30 31 - 34 35 - 39 40 - 59	$ \begin{array}{c} f \\ 20 \\ 20 \\ 15 \\ 14 \\ 16 \\ 10 \\ 10 \end{array} $	x 14.5 22 27 30 33 37 49.9	fx 290 440 405 420 528 370 495	class width $ fx^{2} 4205 9680 10935 12600 17424 13690 24502.5 \sum fx^{2} = 93036.5 $	i 10 5 5 1 4 5 20	fd 2.0 4.0 3.0 14.0 4.0 2.0 0.5	Class boundaries 9.5 - 19.5 19.5 - 24.5 24.5 - 29.5 29.5 - 30.5 30.5 - 34.5 34.5 - 39.5 39.5 - 59.5	B1 B1 B1	For fx For fx^2 For fd Also recognize other symbols for class width such as c, w etc		
(b)(i)		M1 A1	For substitution For answer									
(ii)		Standard deviation = $\sqrt{\frac{\Sigma f x^2}{\Sigma f}} - \left(\frac{\Sigma f x}{\Sigma f}\right)^2$ $= \sqrt{\frac{930365}{105} - \left(\frac{2948}{105}\right)^2}$ $= 89.8462 \text{ seconds}$										

Matigo Examinations Board 2023

13	$f(x) = \begin{cases} kx & 0 \le x \le 8 \\ 8x & 8 \le x \le 9 \\ 0 & othewise \end{cases}$		
(a)	$\int_{0}^{8} kx dx + \int_{8}^{9} 8x dx = 1$ $k \left[\frac{x^{2}}{2} \right]_{0}^{8} + 8k \left[\frac{x}{1} \right]_{8}^{9} = 1$ $k \left[\frac{8^{2}}{2} - \frac{0^{2}}{2} \right] + 8k [9 - 8] = 1$ $40k = 1$	M1 M1 M1	For the method For integrating For substituting limits
	$40k = 1$ $k = \frac{1}{40}$	A1	For k
(b)	For $0 \le x \le 8$ $f(x) = kx = \frac{x}{40}$ $\begin{array}{c ccc} x & 0 & 8 \\ \hline f(x) & 0 & 1/5 \\ \hline \end{array}$ For $8 \le x \le 9$ $\begin{array}{c ccc} x & 8 & 9 \\ \hline f(x) & 1/5 & 1/5 \\ \hline \end{array}$	B1 B1	For the table
	f(x) $1/5$ 0 0 8 9 x	A2	For the sketch of f(x)

Matigo Examinations Board 2023

(c)	$E(X) = \int_{0}^{8} xkxdx + \int_{8}^{9} x8kdx$	M1	For the method
	$= k \left[\frac{x^3}{3} \right]_0^8 + 8k \left[\frac{x^2}{2} \right]_0^9$ $= \left[\frac{8^3}{3} - \frac{0^3}{3} \right] + 8k \left[\frac{9^2}{2} - \frac{8^2}{2} \right]$	M1	For integrating
	$= \left[\frac{8^3}{3} - \frac{0^3}{3}\right] + 8k \left[\frac{9^2}{2} - \frac{8^2}{2}\right]$ $= \frac{713k}{3}$ $= \frac{179}{30}$	M1	For substituting limits
	$= \frac{179}{30} = 5.9667$	A1	For $E(X)$
11(a)	$P(B) = 0.4, P(B^I/C) = 0.64$	M1	For the
	0.24 + 0.07 + P = 0.4 $P = 0.09$	A1	method For P
	$P\left(\frac{B^{I}}{C}\right) = \frac{P(B^{1}nC)}{P(C)}$ $\frac{P(C) - P(BnC)}{P(C)}$	M 1	For the method
	$0.64 = \frac{r}{0.09 + r}$	A1	For r
	r = 0.16 A and B are independent	A1	For q
	q + 0.16 + 0.24 + 0.07 + p + r + s = 1 0.2 + 0.16 + 0.24 + 0.07 + 0.09 + s = 1 s = 0.08	A1	For s

(b) (i)	Let X be $r.v$ the life time of bulbs $X \sim N(8, 1.5^2)$ $P(6 < X < 10) = P\left(\frac{6-8}{1.5} < Z < \frac{10-8}{1.5}\right)$	M1	For standardizing
	$= (-1.333 < Z < 1.333)$ $= 2P(0 < Z < 1.333)$ $= 2 \times 0.4087$ $= 0.8174$ $= 0.4087 + 0.4087 = 0.8174$ $P(X > a) = \frac{90}{100} = 0.9$ $P\left(Z > \frac{a - 8}{1.5}\right) = 0.9$	B1 A1	For the curve and adding probabilities For the answer
(ii)	$let \ Z_1 = \frac{a-8}{1.5}$ $Z_1 = -1.282 = \frac{a-8}{1.5}$ $a = 6.077$ $The \ life \ time \ exceeded \ by \ 90\% \ of \ techno \ smartphones \ is \ 6.077 hours$	M1 M1	For the method For standardizing For correct life time

14(a)	$let f(x) = X(\frac{1}{2} - sinX)$ $f(\frac{1}{2}) = \frac{1}{2}(\frac{1}{2} - sin\frac{1}{2}) = 0.0103$	B1 B1	For $f(1/2)$ For $f(3/5)$
	$f(3/5) = 3/5(\frac{1}{2} - \sin\frac{3}{5}) = -0.0388$ since $f(1/2) > 0$ and $f(3/5) < 0$, then there is a root between $1/2$ and $3/5$ $ALT : f(\frac{1}{2}) \cdot f(\frac{2}{5}) < 0 \text{ then } \frac{1}{2} < X_r < \frac{3}{5}$	A1	For conclusion
(b)		B1	For the table
	$\begin{array}{c ccccc} & 1/_2 & X_0 & 3/_5 \\ \hline & 0.0103 & 0 & -0.0388 \\ \end{array}$	M1	For the method
	$\frac{X_0 - \frac{3}{5}}{00.0103} = \frac{\frac{1}{2} - \frac{3}{5}}{0.01030.0388}$	A1	For the answer
	$X_0 = 0.52098$ $X_0 \approx 0.521$		
(c)	$f(x) = X(\frac{1}{2} - \sin X) = \frac{X}{2} - X\sin X$	M1	For $f^I(X)$
	$f^{I}(X) = \frac{1}{2} - (XCosX + SinX) = \frac{1}{2} - XCosX - SinX$		
	$X_{n+1} = X_n - \frac{f(X_n)}{f^I(X_n)}$		
	$X_{n+1} = X_n - \frac{\frac{X_n}{2} - X_n SinX_n}{\frac{1}{2} - X_n CosX_n - SinX_n}; n = 0,1,2,$		
	$n = 0 \qquad X_0 = 0.521$		

$X_1 = 0.521 - \frac{\frac{0.521}{2} - 0.521 Sin 0.521}{\frac{1}{2} - 0.521 Cos 0.521 - Sin 0.521}$, $ e = 0.0005$ $X_1 = 0.5236$	M1 B1	For substitution For X_1
$\begin{aligned} e_1 &\leq X_1 - X_0 \\ X_1 - X_0 &= 0.5236 - 0.521 \\ &= 0.0026 \\ n &= 1 \end{aligned}$ $X_2 = 0.5236 - \frac{\frac{0.5236}{2} - 0.5236Sin0.5236}{\frac{1}{2} - 0.5236Cos0.5236 - Sin0.5236}{X_2 = 0.5236}$ $E_2 &\leq X_2 - X_1 \\ X_2 - X_1 &= 0.5236 - 0.5236 \\ &= 0.0000$ $since e = 0.0005 < 0.0000, the root X_r = 0.524$	M1 B1 A1	For substitution For X_2 For the correct answer

15(a)	$h = \frac{2-1}{5}$ $= \frac{1}{5}$ $= 0.2$	B1	For h
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1	For y_0, y_5 and the sum For y_1, y_2, y_3, y_4 and the sum
	$\int_{1}^{2} \frac{x}{7x^{2} - 3} dx = \frac{1}{2} h \left[(y_{0} + y_{5}) + 2(y_{1} + y_{2} + y_{3} + y_{4}) \right]$	M1	For the substitution
	$= \frac{1}{2} \times 0.2[0.33 + 2(0.49876)]$ $= 0.132752$ ≈ 0.133	A1	For the answer
	$\int_{1}^{2} \frac{x}{7x^2 - 3} dx = \frac{1}{14} In[7x^2 - 2]_{1}^{2}$	M1M1	For integration For
	$= \frac{1}{14} \ln (7(2)^2 - 2) - \frac{1}{14} \ln (7(1)^2 - 2)$	M1	substituting limits For correct
	= 0.11776133 ≈ 0.118	A1	answer For
(ii)	$\%error = \frac{ error }{ exact\ value } \times 100$	M1	substitution

Matigo Examinations Board 2023

(iii)	$=\frac{ 0.118-0.133 }{ 0.118 }\times 100$ 12.7% By increasing the number of sub – intervals	A1 A1	For correct answer For the answer
12(a)	for P for q $S_{1} = {1 \choose 3}km \qquad S_{2} = {1 \choose 2}km$ $V_{1} = {1 \choose 2}km/hr \qquad V_{2} = {5 \choose 6}km/hr$ $pVq = V_{1} - V_{2}$ $= {1 \choose 2} - {5 \choose 6}$ $= {-4 \choose -4}km/hr$	B1	For pVq
	$p \Upsilon_q = [S_1 - S_2] + PVqt$ $= {1 \choose 3} - {1 \choose 2} + {-4 \choose -4}t$ $= {0 \choose 1} + {-4 \choose -4}t = {-4t \choose 1 - 4t}$	M1 B1 M1	For working out $p \mathcal{T} q$ For $p \mathcal{T} q$ For $p \mathcal{T} q$. PVq
	For shortest distance $p \Upsilon q . PV q = 0$		

	${\binom{-4t}{1-4t}} {\binom{-4}{-4}} = 0$ $16t - 4 + 16t = 0$ $32t = 4$ $t = 0.125hrs$	M1	For working out the dot product For t
(b)	Shortest distance = $ p\Gamma q $	B1	For p r q
	$p\mathbf{\Gamma}q (0.125) = {-4 \times 0.125 \choose 1 - 4 \times 0.125}$ $= {-0.5 \choose 0.5}$	M1	For working out p r q
	$ \mathbf{p}\mathbf{\Gamma}\mathbf{q} = \sqrt{(-0.5)^2 + (0.5)^2}$ $= \sqrt{0.5}$ $0.7071km$	A1	For correct answer
10(a)	a θ $0.2 \operatorname{gcos} \theta$ θ $0.2 \operatorname{gcos} \theta$ $2 \operatorname{g}$ 7 $2 \operatorname{fr}$ $2 \operatorname{g}$ $2 \operatorname{g}$		

Matigo Examinations Board 2023

for the 0.2kg mass $T - (0.2gSin\theta + \mu R) = 0.2a \dots $		
$T - (0.2gSin\theta + \mu.0.2gCos\theta) = 0.2a$ $T - 0.2g\left(\frac{7}{25}\right) - \mu.0.2g\left(\frac{24}{25}\right) = 0.2\left(\frac{543g}{625}\right)$ $T - \frac{24\mu}{12.5} = \frac{718g}{3125}$	M1 B1	For equation 1 For $Sin\theta$ and $Cos\theta$
$Sin\theta = \frac{7}{25}$ $Cos\theta = \frac{24}{25}$	B1	For substitution of $R = 0.2gCos\theta$
for the $2kg$ mass $2g - T = 2a \dots $	M1	For equation 1
$2g - 2a - \frac{24}{125}\mu = \frac{718}{3125}g$	M1	For solving 1 and 2
$2g - 2\left(\frac{543g}{625}\right) - \frac{24}{125}\mu = \frac{718}{3125}g$	A1	For μ
$\mu=0.17g$		

(b)	When the string breaks $0 - (0.2gSin\theta + \mu R) = 0.2a$ $a = \frac{-(0.2g \times \frac{7}{25} + 0.17g \times 0.2g \times \frac{24}{25})}{0.2}$	M1 B1	For the method For a
	$a = -18.4177ms^{-2}$ $v^{2} = u^{2} + 2aS$ $0^{2} = 0.5^{2} + 2(-18.4177)S$ $S = 0.0068m$	M1 A1	For substitution For correct value of distance
16(i)	\tilde{a} T T T \tilde{a} \tilde{a} \tilde{a} \tilde{a} \tilde{a} \tilde{b} \tilde{b} \tilde{b}	B2	For the system well drawn
	For the $5kg$ mass $5g - T = 5(2a)$ $5g - T = 10a \dots 1$	M 1	

	For the $2kg$ mass	M1	For equation 1
	$2T - 2g = 2a \dots 2$		For equation 2
	10g - 2T = 20a $+ 2T - 2g = 2a$ $8g = 22a$	B1 A1	For solving 1 and 2
	$a = 3.5636ms^{-2}$ for the $2kg$ mass For the $5kg$, acceleration = 2×3.5636	M1	For a For
	$=7.1272ms^{-2}$	A1	substitution For 2a
(ii)	Using equation 1 $5g - T = 10(3.5636)$ $T = 13.364N$	M1 A1	For substitution For T
(iii)	$S = ut + \frac{1}{2}at^2$ $t = 1.5$ $S = 0(t) + \frac{1}{2}at^2$	M1	For substitution
	$S = 0(1.5) + \frac{1}{2}(3.5636)1.5^{2}$ $S = 4.00905m$	A1	For correct answer

Matigo Examinations Board 2023