PRÁCTICA N°2						
2 UTONOMA	Materia: Arquitectura de computadoras (SIS-522) – G1	Estudiante: Patricia E. Saavedra Marca		50110		
S HAAS	Docente: Ing. Gustavo A. Puita Choque	Ci : 13870923	Ru: 109457			
	Auxiliar: Univ. Aldrin Roger Pérez Miranda	Fecha de entrega: 12/04/2024		- 1216		

1. ¿Cuál es la diferencia fundamental entre una memoria RAM y una memoria ROM en términos de accesibilidad y volatilidad?

La RAM es una memoria volátil y de acceso aleatorio, mientras que la ROM es no volátil y de acceso secuencial.

 \checkmark

2. ¿Qué ventajas y desventajas presentan las memorias estáticas y dinámicas en términos de velocidad, densidad y costo?

Memoria	Velocidad de acceso	Densidad y capacidad	Costo por bit
SRAM	Alta	Menor	Mayor
DRAM	baia	Mayor	Menor

3. ¿Qué diferencias fundamentales existen entre los módulos de memoria SIMM y DIMM en términos de diseño y capacidad?

Los DIMM tienen mayor capacidad y contactos en ambos lados, mientras que los SIMM tienen menor capacidad y contactos en un solo lado.

Además, los DIMM suelen tener una mayor densidad de chips de memoria en comparación con los SIMM.

4. ¿Por qué se utiliza la tecnología de Video RAM (VRAM) en los controladores de video de las computadoras y cuál es su función principal?

La VRAM tiene una característica única: puede leer y escribir al mismo tiempo en diferentes ubicaciones de memoria. Esto permite que la información se refresque constantemente en el monitor mientras el sistema actualiza lo que se muestra en la pantalla. Es esencial para una experiencia visual fluida.

5. Dibuja un diagrama que represente la jerarquía de memoria en un sistema informático típico y etiqueta cada nivel con el tipo correspondiente de memoria.

6. ¿Cuáles son los principales algoritmos de sustitución utilizados en la gestión de memoria caché y cómo afectan al comportamiento del sistema?

Son: LFU (Utilizado menos frecuentemente), FIFO (Primero en entrar primero en salir) y aleatorio. Estos algoritmos determinan cómo se seleccionan los bloques de memoria para ser reemplazados cuando se necesita espacio en la caché. Por ejemplo, LRU reemplaza el bloque que no ha sido accedido durante el período más largo.

7. ¿Cuál es la diferencia entre una memoria flash y una memoria EEPROM en términos de programación y borrado eléctrico?

La principal diferencia radica en el proceso de programación y borrado eléctrico. Mientras que la EEPROM permite borrar y reprogramar cada bit individualmente, la memoria flash borra y reprograma bloques de memoria en su totalidad.

8. Muestra una imagen de un chip de memoria RAM e identifique y nombre cada componente importante, como los bancos de memoria, los módulos de datos, etc.

9. Presenta dos imágenes, una de un módulo SIMM y otra de un módulo DIMM, y señale las diferencias clave entre ambos en términos de diseño físico y capacidad.

Característica	SIMM	DIMM	
Diseño físico	Contactos en un solo lado	Contactos en ambos lados	
Capacidad	Menor capacidad	Mayor capacidad	
Número de contactos	Menos contactos que los DIMM	Más contactos que los SIMM	
Uso común	Antiguo; menos común en sistemas modernos	Estándar en sistemas modernos	
Disposición de chips	Vertical	Horizontal	

10. ¿Qué diferencias existen entre la memoria caché L1, L2 y L3 en términos de tamaño, velocidad y proximidad al procesador?

Característica	Memoria Caché L1	Memoria Caché L2	Memoria Caché L3
Tamaño	Pequeño	Mediano	Grande
Velocidad	Más rápida	Más lenta	Más lenta
Proximidad al CPU	Más cercana	Cercana	Cercana