Learning phonotactics of any span and distance

Polynomial-time learner for $MTSL_k$, $k \ge 2$, with optional overlapping tiers

Ignas Rudaitis, Vilnius University

Performance on Quechua-derived data

Laryngeal restriction (TSL₂) (Gallagher, 2010)

Tier: aspirates ∪ ejectives

Restriction schema: *HH

Examples: kintu 'a bunch', k'inti 'a pair', k^h astuj 'to chew'

Counterexamples: *k'int'i, *k'inthi, *khast'uj

Distribution of mid vowels (TSL₃) (Gallagher, 2016)

Tier: [+cons, -uvular] U mid vowels U high vowels

Restriction schema: *ŌEŌ

Examples: erqe 'son', qhehu 'lazy', p'esqo 'bird' Counterexamples: *erpe, *thehu, *p'esko

Outcomes

Deriving the learning samples

Legend

- We obtain the Quechua data included with Gouskova & Gallagher (2020)'s code.
- We eliminate pre- and post-uvular allophones of all consonants, so that the mid vowels pattern with uvulars in a long-distance manner, like they do in Gallagher (2016)'s description.
- The original dataset is too small to achieve
- We expand it by sampling from its trigram model and reinforcing the restrictions in question.
- We feed the resulting samples into k-MTSLIA.

MTSL and overlapping tiers

- The MTSL class of stringsets is the intersection closure of TSL.
- Aksënova & Deshmukh (2018) consider a subclass of MTSL, where the tier alphabets of its consituent TSL stringsets do not overlap, as in A, B, but not *C.
- We will use the name {A, B}-MTSL to refer to this restricted subclass of MTSL.
- Aksënova & Deshmukh (2018) predicted that only {A, B}-MTSL would be relevant for phonotactics.
- So far, the distinction between {A, B}-MTSL and {A, B, C}-MTSL has received little attention in the literature.

- Gleim & Schneider (2023) provide counterexamples to the {A, B} hypothesis, necessitating new algorithms.
- Our learner, k-MTSLIA, is capable of identifying {A, B, C}-MTSL stringsets.

A novel treatment of 2-paths

- Some previous work on learning TSL₂, MTSL₂, and MITSL² relies on the notion of 2-paths (Jardine & Heinz, 2016; McMullin et al. 2021; De Santo & Aksënova, 2021).
- 2-paths (e.g. 🔀 🖂 😈) are essentially bigrams (🔀 😈) that are separated by intervening elements (-[c-d-]).
- The set of the interveners must be disjoint with the bigram itself: xyy is **not** a 2-path.
- When learning MTSL₂, what does it mean to witness a 2-path in the input data?

2-path in data	Reading	Explanation
u v	Impossible to restrict *uv without contradicting the data.	uv will project regardless of the tier.
x b y	To restrict *xy on a tier, we must also have b on that tier.	xby will project as xy otherwise.
x cd y	To restrict *xy on a tier, we must also have c or d on that tier.	xcdy will project as xy otherwise.

- 2-paths are **propositions** about the possible ways to restrict the bigrams ($\mathbf{x} \mathbf{y}$).
- We conjoin these propositions into one large CNF formula, which becomes the MTSL grammar.
- The size of the formula grows linearly with the size of the data, even when the number of relevant tiers explodes.
- Also, under this treatment, we trivially generalize to k-paths, $k \ge 2$.

Summary

- Our learner successfully learned the intersection of a ${\sf TSL}_2$ and a ${\sf TSL}_3$ pattern.
- However, this required an unnaturally large amount of learning data.
- The learner also lifts the assumption of non-overlapping tiers, made relevant by Gleim & Schneider (2023)'s data.

References

Aksënova, A., & Deshmukh, S. (2018). Formal restrictions on multiple tiers. In Proceedings of SCiL 2018 (pp. 64-73). • De Santo, A., & Aksënova, A. (2021). Learning Interactions of Local and Non-Local Phonotactic Constraints from Positive Input. In Proceedings of SCiL 2021 (pp. 167-176). • Gallagher, G. E. S. (2010). The perceptual basis of long-distance largngeal restrictions (PhD thesis, MIT). • Gallagher, G. (2016). Vowel height allophony and dorsal place contrasts in Cochabamba Quechua. Phonetica, 73(2), 101-119. • Gouskova, M., & Gallagher, G. (2020). Inducing nonlocal constraints from baseline phonotactics. Natural Language & Linguistic Theory, 38, 77-116. • Gleim, D., & Schneider, J. (2023). Phonological processes with intersecting tier alphabets. Proceedings of SCiL, 6(1), 243-249. • Jardine, A., & Heinz, J. (2016). Learning tier-based strictly 2-local languages. TACL 4, 87-98. • McMullin, K., Aksënova, A., & De Santo, A. (2019). Learning phonotactic restrictions on multiple tiers. Proceedings of SCiL, 2(1), 377-378.