SYS2041 – Électronique numérique Cours 6 : Circuits combinatoires

Alexandre BRIÈRE

Quésaco?

Combinaison de portes logiques sans stockage de valeurs intermédiaires

⇒ la sortie dépend uniquement des entrées du circuit

Exemples de circuits :

- Comparateurs
- Codeurs et décodeurs
- Convertisseur
- Multiplexeurs et démultiplexeurs
- Opérateurs arithmétique (addition, multiplication, etc.)

Comparateur

- Permet de déterminer la relation entre deux nombres binaires
- Exemple:
 - ► Comparateur d'égalité

A	В	$A \stackrel{?}{=} B$
0	0	1
0	1	0
1	0	0
1	1	1

Décodeur

- Passé du code binaire d'entrée aux sorties correspondantes
- Exemple
 - ▶ Allumer une LED parmi 8 en fonction des 3 bits d'entrée

A_2	A_1	A_0	F
0	0	0	$\overline{A_2} \overline{A_1} \overline{A_0}$
0	0	1	$\overline{A_2} \overline{A_1} A_0$
0	1	0	$\overline{A_2} A_1 \overline{A_0}$
0	1	1	$\overline{A_2} A_1 A_0$
1	0	0	$A_2 \overline{A_1} \overline{A_0}$
1	0	1	$A_2 \overline{A_1} A_0$
1	1	0	$A_2 A_1 \overline{A_0}$
1	1	1	$A_2 A_1 A_0$

Codeur

- Traduire les entrées en une valeur binaire
- Exemple
 - ▶ Donner le code DCB correspondant à la touche pressée sur un clavier

Entrée	<i>S</i> ₃	S_2	S_1	S_0
E0	0	0	0	0
E1	0	0	0	1
E2	0	0	1	0
E3	0	0	1	1
E4	0	1	0	0
E5	0	1	0	1
E6	0	1	1	0
E7	0	1	1	1
E8	1	0	0	0
E9	1	0	0	1

Convertisseur de code

- Passer d'un codage à un autre
- Exemple : passage du code binaire au code de Gray
 - ▶ Le bit de poids fort est identique
 - On additionne de gauche à droite les paires de bits pour obtenir le bit suivant du code de Gray sans tenir compte des retenus

Convertisseur de code

- Exemple : passage du code de Gray au code binaire
 - ▶ Le bit de poids fort est identique
 - On additionne chaque nouveau bit du code binaire créé au bit du code de Gray adjacent sans tenir compte des retenus

Multiplexeur

- ullet Composant permettant de choisir un signal parmi N entrées
- Exemple : multiplexeur 1 parmi 4

Sel_1	Sel ₀	Entrée sélectionnée
0	0	<i>E</i> ₀
0	1	E_1
1	0	E_2
1	1	<i>E</i> ₃

Multiplexeur

Demultiplexeur

- ullet Composant transférant le signal d'entrée sur l'une de ses N sorties
- Exemple : démultiplexeur 1 parmi 4

Sel_1	Sel ₀	Sortie sélectionnée
0	0	S_0
0	1	S_1
1	0	S_2
1	1	<i>S</i> ₃

Demultiplexeur

Demi-additionneur 1 bit

Rappel de l'addition binaire :

- 0 + 0 = 0
- 0+1=1
- 1 + 0 = 1
- $1 + 1 = 10 \Rightarrow$ Retenue sortante C_{out}

Demi-additionneur 1 bit

Additionneur complet 1 bit

Temps d'établissement :

Délais entre la répercussion sur les sorties d'une modification des entrées.

Additionneur complet 1 bit

Additionneur N bits

 \Rightarrow On parle d'additionneur à propagation de retenue.

Additionneur N bits à anticipation de retenue

- Propagation de retenue P:
 - ⇒ Si au moins une entrée est à 1
- Génération de retenue G :
 - \Rightarrow Si les deux entrées sont à 1
- Retenue sortante C_{out} :
 - \Rightarrow S'il y a une retenue entrante et propagation ou s'il y a génération

Additionneur N bits à anticipation de retenue

Soustracteur 1 bit

Rappel de la soustraction binaire :

- 0 0 = 0
- 1 1 = 0
- 1 0 = 1
- $(1)0-1=1 \Rightarrow \text{avec } \text{``emprunt } \text{``de } 1$

Indice:

- En complément à $1: X = \overline{X}$
- En complément à 2 : $X = \overline{X} + 1$

Soustracteur 1 bit

Multiplieur N bits

Rappel de la multiplication binaire :

- $0 \times 0 = 0$
- $0 \times 1 = 0$
- $1 \times 0 = 0$
- $1 \times 1 = 1$

Indice:

⇒ Posez la multiplication binaire

Multiplieur 3 bits : poser l'opération

Multiplieur 3 bits : schéma logique

ALU Arithmetic Logic Unit

• Unité Arithmétique et Logique (UAL) dans la langue de Molière

ALU : représentation symbolique

Sel	Opération
00	AND
01	OR
10	XOR
11	ADD

Références

- [1] Sébastien GAGEOT et Franck CRISON : SYS2041 : Systèmes numériques (ESIEA - Campus de Laval).
- [2] Julien DENOULET, Bertrand GRANADO et Farouk VALETTE : 2E200 : Électronique Numérique, Combinatoire et Séquentielle (Faculté des Sciences et Ingénierie de Sorbonne Université).
- [3] Thomas FLOYD:

 Systèmes numériques.

 Éditions Reynald Goulet, 2018.