Полные дифференциалы

23.04.2017

Приращением функции f(t) называют величину $\Delta f = f(t+dt) - f(t)$. Если f = f(t), то полным дифференциалом называют величину df = f'(t)dt, по сравнению с приращением по формуле Тейлора

$$\Delta f = f(t+dt) - f(t) = f'(t)dt + \frac{1}{2}f''(t)dt^2 + \frac{1}{6}f^{(3)}(t)dt^3 + \dots$$

В большинстве задач нужны только дифференциалы первого порядка, поэтому приращение величины Δf за время dt равно df = f'(t)dt. Дифференциалы можно и нужно понимать как бесконечно малые приращения. Для функции нескольких переменных f(x, y, z, ...)

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz + \dots$$

Величина $(\partial f/\partial x)dx$ есть приращение функции f при изменении только аргумента x. Соответственно, полное приращение есть сумма таких величин для разных аргументов.

1. Запишите полные дифференциалы следующих величин:

1)
$$i^{229}$$
,

$$(-i)^{4851}$$
,

3)
$$i^{101} \perp i^{102} \perp i$$

4)
$$i^{-413}$$

5)
$$i^{225} - i^{224} - i^{-224} + i^{-22}$$

6)
$$(i^{253} + i^{250})i^{-343}$$

7)
$$(-3i)^{-20}$$

$$8)(i^{-20} + (-i)^{-21})i$$

9)
$$(1-i)^{51}$$

10)
$$(i\sqrt{3}-1)^{20}$$
.

11)
$$(3+4i)^{5\pi/\arctan(4/3)}$$

$$12) \left(\frac{i+1}{\sqrt{2}}\right)^{-12},$$

13) Re
$$(29e^{i(7\pi/2-\arctan(20/21))})$$

14) Im
$$|9 - 7i|$$

15) Re
$$(5e^{\pi - \arctan(4/3)})$$

16)
$$\operatorname{Im} (i^{228} + (1+i)^{14})$$

$$17) \left| \frac{-i - \sqrt{3}}{2} \right|^{25}$$

18)
$$|3i+4|^{16}$$

19)
$$|1+i|^{-13}$$

$$20) |i^{3204}|.$$