

Form PTO 1390 (REV 5-93)		U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE		ATTORNEY'S DOCKET NUMBER B45110
		TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED / ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371		U.S. APPLICATION NO. (If known, see 37 C.F.R. 1.5) 09/509239
INTERNATIONAL APPLICATION NO. PCT/EP98/06040	INTERNATIONAL FILING DATE 17 September 1998	PRIORITY DATE CLAIMED 26 September 1997		
TITLE OF INVENTION FUSION PROTEINS COMPRISING HIV-1 TAT AND/OR NEF PROTEINS				
APPLICANT(S) FOR DO/EO/US Claudine BRUCK, Stephane Andre Georges GODART and Martine MARC-HAND				

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1. This is a **FIRST** submission of items concerning a filing under 35 U.S.C. 371.
2. This is a **SECOND** or **SUBSEQUENT** submission of items concerning a filing under 35 U.S.C. 371.
3. This express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).
4. A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
5. A copy of the International Application as filed (35 U.S.C. 371(c)(2))
 - a. is transmitted herewith (required only if not transmitted by the International Bureau).
 - b. has been transmitted by the International Bureau.
 - c. is not required, as the application was filed in the United States Receiving Office (RO/US).
6. A translation of the International Application into English (35 U.S.C. 371(c)(2)).
7. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))
 - a. are transmitted herewith (required only if not transmitted by the International Bureau).
 - b. have been transmitted by the International Bureau.
 - c. have not been made; however, the time limit for making such amendments has NOT expired.
 - d. have not been made and will not be made.
8. A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
9. An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).
10. A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).

Items 11. to 16. below concern other document(s) or information included:

11. An Information Disclosure Statement under 37 C.F.R. 1.97 and 1.98.
12. An assignment document for recording. A separate cover sheet in compliance with 37 C.F.R. 3.28 and 3.31 is included.
13. A **FIRST** preliminary amendment.
- A **SECOND** or **SUBSEQUENT** preliminary amendment.
- Please amend the specification by inserting before the first line the sentence: This is a 371 of International Application PCT/EP98/06040, filed 17 September 1998, which claims benefit from the following Provisional Application, GB 9720585.0 filed 26 September 1997.
14. A substitute specification.
15. A change of power of attorney and/or address letter.
16. Other items or information:

US APPLICATION NO. (if known see 37 CFR 1.50) 09/509239	INTERNATIONAL APPLICATION NO. PCT/EP98/06040	ATTORNEYS DOCKET NO. B45110		
17. [X] The following fees are submitted:		CALCULATIONS PTO USE ONLY		
Basic National Fee (37 C.F.R. 1.492(a)(1)-(5)):				
Search Report has been prepared by the EPO or JPO \$840.00				
International Preliminary Examination Fee paid to USPTO (37 CFR 1.482) \$670.00				
No International Preliminary Examination Fee paid to USPTO (37 CFR 1.482) but international search fee paid to USPTO (37 CFR 1.445(a)(2)) \$690.00				
Neither International Preliminary Examination Fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO..... \$970.00				
International Preliminary Examination Fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(2)-(4). \$96.00				
ENTER APPROPRIATE BASIC FEE AMOUNT =		\$840.00		
Surcharge of \$130.00 for furnishing the oath or declaration later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(e)).		\$0.00		
Claims	Number Filed	Number Extra	Rate	
Total claims	46 - 20 =	26	26 x \$18.00	\$468.00
Independent claims	4 - 3 =	1	1 x \$78.00	\$78.00
Multiple dependent claims (if applicable)		+ \$260.00		\$260.00
		TOTAL OF ABOVE CALCULATIONS =		\$806.00
Reduction by 1/2 for filing by small entity, if applicable. Verified Small Entity statement must also be filed. (Note 37 CFR 1.9, 1.27, 1.28).				\$
		SUBTOTAL =		\$1646.00
Processing fee of \$130.00 for furnishing the English translation later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(f)) +				\$
		TOTAL NATIONAL FEE =		\$1646.00
		Amount to be refunded		\$
		charged		\$

- a. A check in the amount of \$_____ to cover the above fees is enclosed.
- b. Please charge my Deposit Account No. 19-2570 in the amount of **\$1646.00** to cover the above fees.
A duplicate copy of this sheet is enclosed.
- c. The Commissioner is hereby authorized to charge any additional fees which may be required, or
credit any overpayment to Deposit Account No. 19-2570. A duplicate copy of this sheet is enclosed.
- d. General Authorization to charge any and all fees under 37 CFR 1.16 or 1.17, including petitions for
extension of time relating to this application (37 CFR 1.136 (a)(3)).

**NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to
revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.**

SEND ALL CORRESPONDENCE TO:
SMITHKLINE BEECHAM CORPORATION
 Corporate Intellectual Property - UW2220
 P.O. Box 1539
 King of Prussia, PA 19406-0939
 Phone (610) 270-5024
 Facsimile (610) 270-5090

SIGNATURE
 Zoltan Kerekes
 NAME
 38,938
 REGISTRATION NO.

09/509239

416 Rec'd PCT/PTO 23 MAR 2000

"EXPRESS MAIL CERTIFICATE"

"EXPRESS MAIL" MAILING LABEL NUMBER EL229502579US

DATE OF DEPOSIT 23 March 2000

Attorney Docket No. B45110

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Bruck, et al. 23 March 2000

International App. No.: PCT/EP98/06040 Group Art Unit No.: Unknown

International Filing Date: 17 September 1998 Examiner: Unknown

For: FUSION PROTEINS COMPRISING HIV-1 TAT AND/OR NEF PROTEINS

Assistant Commissioner of Patents

Box: PCT

Washington, D.C. 20231

PRELIMINARY AMENDMENT

Preliminary to the examination of this application, applicants respectfully request amendment of the above-identified application as follows:

IN THE CLAIMS:

Please delete claims 1-31.

Please add new claims 32-77.

32. A vaccine composition which comprises a protein comprising
 - (a) an HIV Tat protein or derivative thereof linked to either (i) a fusion partner or (ii) an HIV Nef protein or derivative thereof; or
 - (b) an HIV Nef protein or derivative thereof linked to either (i) a fusion partner or (ii) an HIV Tat protein or derivative thereof; or
 - (c) an HIV Nef protein or derivative thereof linked to an HIV Tat protein or derivative thereof and a fusion partner,
in admixture with a pharmaceutically acceptable excipient.
33. A composition as claimed in claim 32, comprising a Tat-Nef fusion protein or derivative thereof.

DO NOT FILE THIS DOCUMENT

Intl. App. No.: PCT/EP98/06040
Docket No. B45110

34. A composition as claimed in claim 32, comprising a Nef-Tat fusion protein or derivative thereof.
35. A composition according to claim 32, wherein the derivative of the Tat protein is a mutated Tat protein.
36. A composition according to claim 32, wherein the derivative of the Nef protein is a mutated Nef protein.
37. A composition as claimed in claim 32, wherein the fusion partner is a lipoprotein or derivative thereof.
38. A composition as claimed in claim 37, wherein the lipoprotein is Haemophilus Influenza B protein D or derivative thereof.
39. A composition as claimed in claim 38, wherein the fusion partner comprises between 100-130 amino acid from the N terminal of Haemophilus Influenza B protein D.
40. A composition as claimed in claim 32, wherein the Tat protein is the entire Tat protein.
41. A composition as claimed in claim 32, wherein the Nef protein is the entire Nef protein.
42. A composition as claimed in claim 32, wherein the Tat protein is fused to an HIV Nef protein and a fusion partner.
43. A composition as claimed in claim 32, wherein the protein has a Histidine tail.
44. A composition as claimed in claim 32, wherein the protein is carboxymethylated.
45. A composition as claimed in claim 32, additionally comprising an adjuvant.
46. A composition as claimed in claim 45, wherein the adjuvant is a TH1 inducing adjuvant.

47. A composition as claimed in claim 45 which adjuvant comprises monophosphoryl lipid A or a derivative thereof such as 3 de-O-acylated monophosphoryl lipid A.
48. A composition as claimed in claim 45, additionally comprising a saponin adjuvant.
49. A composition as claimed in any one of claims 45 to 48 which additionally comprises an oil in water emulsion.
50. A composition as claimed in claim 32 further comprising HIV gp160 or its derivative gp120.
51. A composition as claimed in claim 45 further comprising HIV gp160 or its derivative gp120.
52. A composition as claimed in claim 48 further comprising HIV gp160 or its derivative gp120.
53. A composition as claimed in claim 49 further comprising HIV gp160 or its derivative gp120.
54. A protein comprising an HIV Tat protein or derivative thereof linked to an HIV Nef protein or derivative thereof in Nef-Tat or Tat-Nef orientation.
55. A nucleic acid encoding a protein of claim 54.
56. A host transformed with a nucleic acid of claim 55.
57. A host as claimed in claim 56 wherein the host is either *E. coli* or *Pichia pastoris*.
58. A method of producing a protein of claim 54, comprising providing a host as claimed in claim 56 or 57, expressing said protein and recovering the protein.

59. A method of preparing (i) an HIV Nef protein or derivative thereof or (ii) an HIV Tat protein or derivative thereof in *Pichia pastoris* which method comprises the steps of transforming *Pichia pastoris* with DNA encoding said HIV Nef protein or derivative thereof of HIV Tat protein or derivative thereof, expressing said protein and recovering the protein.
60. The method of claim 58 further comprising a carboxymethylation step performed on the expressed protein.
61. The method of claim 59 further comprising a carboxymethylation step performed on the expressed protein.
62. A method of producing a vaccine, comprising admixing the protein from claim 58 with a pharmaceutically acceptable diluent.
63. A method of producing a vaccine, comprising admixing the protein from claim 59 with a pharmaceutically acceptable diluent.
64. A method of producing a vaccine, comprising admixing the protein from claim 60 with a pharmaceutically acceptable diluent.
65. The method of claim 62 further comprising the addition of HIV gp160 or its derivative gp120.
66. The method of claim 63 further comprising the addition of HIV gp160 or its derivative gp120.
67. The method of claim 64 further comprising the addition of HIV gp160 or its derivative gp120.

Intl. App. No.: PCT/EP98/06040
Docket No. B45110

68. The method of claim 58 further comprising the addition of an adjuvant, particularly a TH1 inducing adjuvant.
69. The method of claim 59 further comprising the addition of an adjuvant, particularly a TH1 inducing adjuvant.
70. The method of claim 60 further comprising the addition of an adjuvant, particularly a TH1 inducing adjuvant.
71. The method of claim 61 further comprising the addition of an adjuvant, particularly a TH1 inducing adjuvant.
72. The method of claim 62 further comprising the addition of an adjuvant, particularly a TH1 inducing adjuvant.
73. The method of claim 63 further comprising the addition of an adjuvant, particularly a TH1 inducing adjuvant.
74. The method of claim 64 further comprising the addition of an adjuvant, particularly a TH1 inducing adjuvant.
75. The method of claim 65 further comprising the addition of an adjuvant, particularly a TH1 inducing adjuvant.
76. A vaccine composition comprising a recombinant Tat-containing protein formulated with a mixture of 3D-MPL, QS21 and an oil in water emulsion.
77. A composition as claimed in claim 76 wherein the oil in water emulsion comprises squalene, polyoxyethylene sorbitan monooleate and α -tocopherol.

Intl. App. No.: PCT/EP98/06040
Docket No. B45110

REMARKS

The above-identified application is being entered into the National Phase from PCT application no. PCT/EP98/06040.

Applicants have deleted claims 1-31 and added new claims 32-77 to put the claims in conformity with U.S. practice.

No new matter has been introduced.

Respectfully submitted,

Zoltan Kerekes
Attorney for Applicants
Registration No. 38,938

SMITHKLINE BEECHAM CORPORATION
Corporate Intellectual Property - UW2220
P.O. Box 1539
King of Prussia, PA 19406-0939
Phone (610) 270-5024
Facsimile (610) 270-5090

N:\zk\apps\B45110\PREAMD.DOC

DO NOT RESEND

09/509239

FUSION PROTEINS COMPRISING HIV-1 TAT AND/OR NEF PROTEINS

The present invention relates to novel HIV protein constructs, to their use in medicine,
5 to pharmaceutical compositions containing them and to methods of their manufacture.

In particular, the invention relates to fusion proteins comprising HIV-1 Tat and/or Nef
proteins.

- 10 HIV-1 is the primary cause of the acquired immune deficiency syndrome (AIDS)
which is regarded as one of the world's major health problems. Although extensive
research throughout the world, has been conducted to produce a vaccine, such efforts
thus far, have not been successful.
- 15 Non-envelope proteins of HIV-1 have been described and include for example internal
structural proteins such as the products of the *gag* and *pol* genes and, other non-
structural proteins such as Rev, Nef, Vif and Tat (Greene et al., New England J. Med,
324, 5, 308 et seq (1991) and Bryant et al. (Ed. Pizzo), Pediatr. Infect. Dis. J., 11, 5,
390 et seq (1992)).
- 20 HIV Nef and Tat proteins are early proteins, that is, they are expressed early in
infection and in the absence of structural proteins.

- According to the present invention there is provided a protein comprising
- 25 (a) an HIV Nef protein or derivative thereof linked to either (i) a fusion partner or
(ii) an HIV Tat protein or derivative thereof; or
(b) an HIV Tat protein or derivative thereof linked to either (i) a fusion partner or
(ii) an HIV Nef protein or derivative thereof; or
(c) an HIV Nef protein or derivative thereof linked to an HIV Tat protein or
30 derivative thereof and a fusion partner.

By 'fusion partner' is meant any protein sequence that is not Tat or Nef.

Preferably the fusion partner is protein D or its' lipidated derivative Lipoprotein D,
from Haemophilus influenzae B. In particular, it is preferred that the N-terminal

third, i.e. approximately the first 100-130 amino acids are utilised. This is represented herein as Lipo D 1/3. In a preferred embodiment of the invention the Nef protein or derivative thereof may be linked to the Tat protein or derivative thereof. Such Nef-Tat fusions may optionally also be linked to an fusion partner, such as protein D.

5

The fusion partner is normally linked to the N-terminus of the Nef or Tat protein.

Derivatives encompassed within the present invention include molecules with a C terminal Histidine tail which preferably comprises between 5-10 Histidine residues.
10 Generally, a histidine tail containing n residues is represented herein as His (n). The presence of an histidine (or 'His') tail aids purification. More specifically, the invention provides proteins with the following structure

	Lipo D 1/3	-	Nef	-	His (6)
15	Lipo D 1/3	-	Nef-Tat	-	His (6)
	Prot D 1/3	-	Nef	-	His (6)
20	Prot D 1/3	-	Nef-Tat	-	His (6)
			Nef-Tat	-	His (6)

Figure 1 provides the amino-acid (Seq. ID. No. 7) and DNA sequence (Seq. ID. No. 6)
25 of the fusion partner for such constructs.

In a preferred embodiment the proteins are expressed with a Histidine tail comprising between 5 to 10 and preferably six Histidine residues. These are advantageous in aiding purification. Separate expression, in yeast (*Saccharomyces cerevisiae*), of Nef
30 (Macreadie I.G. et al., 1993, Yeast 9 (6) 565-573) and Tat (Braddock M et al., 1989, Cell 58 (2) 269-79) has already been reported. Nef protein only is myristilated. The present invention provides for the first time the expression of Nef and Tat separately

in a Pichia expression system (Nef-His and Tat-His constructs), and the successful expression of a fusion construct Nef-Tat-His. The DNA and amino acid sequences of representative Nef-His (Seq. ID. No.s 8 and 9), Tat-His (Seq. ID. No.s 10 and 11) and of Nef-Tat-His fusion proteins (Seq. ID. No.s 12 and 13) are set forth in Figure 2.

5

Derivatives encompassed within the present invention also include mutated proteins. The term 'mutated' is used herein to mean a molecule which has undergone deletion, addition or substitution of one or more amino acids using well known techniques for site directed mutagenesis or any other conventional method.

10

A mutated Tat is illustrated in Figure 2 (Seq. ID. No.s 22 and 23) as is a Nef-Tat Mutant-His (Seq. ID. No.s 24 and 25).

15

The present invention also provides a DNA encoding the proteins of the present invention. Such sequences can be inserted into a suitable expression vector and expressed in a suitable host.

20

A DNA sequence encoding the proteins of the present invention can be synthesized using standard DNA synthesis techniques, such as by enzymatic ligation as described by D.M. Roberts *et al.* in Biochemistry 1985, 24, 5090-5098, by chemical synthesis, by *in vitro* enzymatic polymerization, or by PCR technology utilising for example a heat stable polymerase, or by a combination of these techniques.

25

Enzymatic polymerisation of DNA may be carried out *in vitro* using a DNA polymerase such as DNA polymerase I (Klenow fragment) in an appropriate buffer containing the nucleoside triphosphates dATP, dCTP, dGTP and dTTP as required at a temperature of 10°-37°C, generally in a volume of 50µl or less. Enzymatic ligation of DNA fragments may be carried out using a DNA ligase such as T4 DNA ligase in an appropriate buffer, such as 0.05M Tris (pH 7.4), 0.01M MgCl₂, 0.01M dithiothreitol, 1mM spermidine, 1mM ATP and 0.1mg/ml bovine serum albumin, at a temperature of 4°C to ambient, generally in a volume of 50ml or less. The chemical synthesis of the DNA polymer or fragments may be carried out by conventional

phosphotriester, phosphite or phosphoramidite chemistry, using solid phase techniques such as those described in 'Chemical and Enzymatic Synthesis of Gene Fragments - A Laboratory Manual' (ed. H.G. Gassen and A. Lang), Verlag Chemie, Weinheim (1982), or in other scientific publications, for example M.J. Gait, H.W.D. Matthes, M. Singh, B.S. Sproat, and R.C. Titmas, Nucleic Acids Research, 1982, 10, 6243; B.S. Sproat, and W. Bannwarth, Tetrahedron Letters, 1983, 24, 5771; M.D. Matteucci and M.H. Caruthers, Tetrahedron Letters, 1980, 21, 719; M.D. Matteucci and M.H. Caruthers, Journal of the American Chemical Society, 1981, 103, 3185; S.P. Adams *et al.*, Journal of the American Chemical Society, 1983, 105, 661; N.D. Sinha, J. Biernat, J. McMannus, and H. Koester, Nucleic Acids Research, 1984, 12, 4539; and H.W.D. Matthes *et al.*, EMBO Journal, 1984, 3, 801.

The invention also provides a process for preparing a protein of the invention, the
15 process comprising the steps of :

- i) preparing a replicable or integrating expression vector capable, in a host cell, of expressing a DNA polymer comprising a nucleotide sequence that encodes the protein or
20 a derivative thereof
- ii) transforming a host cell with said vector
- iii) culturing said transformed host cell under conditions permitting expression of said DNA polymer to produce said protein; and
- iv) recovering said protein
25

The process of the invention may be performed by conventional recombinant
techniques such as described in Maniatis *et al.*, Molecular Cloning - A Laboratory
Manual; Cold Spring Harbor, 1982-1989.

30 The term 'transforming' is used herein to mean the introduction of foreign DNA into a host cell. This can be achieved for example by transformation, transfection or

infection with an appropriate plasmid or viral vector using e.g. conventional techniques as described in Genetic Engineering; Eds. S.M. Kingsman and A.J. Kingsman; Blackwell Scientific Publications; Oxford, England, 1988. The term 'transformed' or 'transformant' will hereafter apply to the resulting host cell
5 containing and expressing the foreign gene of interest.

The expression vectors are novel and also form part of the invention.

The replicable expression vectors may be prepared in accordance with the invention,
10 by cleaving a vector compatible with the host cell to provide a linear DNA segment having an intact replicon, and combining said linear segment with one or more DNA molecules which, together with said linear segment encode the desired product, such as the DNA polymer encoding the protein of the invention, or derivative thereof, under ligating conditions.

15

Thus, the DNA polymer may be preformed or formed during the construction of the vector, as desired.

20

The choice of vector will be determined in part by the host cell, which may be prokaryotic or eukaryotic but preferably is *E. coli* or yeast. Suitable vectors include plasmids, bacteriophages, cosmids and recombinant viruses.

25

The preparation of the replicable expression vector may be carried out conventionally with appropriate enzymes for restriction, polymerisation and ligation of the DNA, by procedures described in, for example, Maniatis *et al.* cited above.

30

The recombinant host cell is prepared, in accordance with the invention, by transforming a host cell with a replicable expression vector of the invention under transforming conditions. Suitable transforming conditions are conventional and are described in, for example, Maniatis *et al.* cited above, or "DNA Cloning" Vol. II, D.M. Glover ed., IRL Press Ltd, 1985.

- The choice of transforming conditions is determined by the host cell. Thus, a bacterial host such as *E. coli* may be treated with a solution of CaCl_2 (Cohen *et al.*, Proc. Nat. Acad. Sci., 1973, 69, 2110) or with a solution comprising a mixture of RbCl , MnCl_2 , potassium acetate and glycerol, and then with 3-[N-morpholino]-
5 propane-sulphonic acid, RbCl and glycerol. Mammalian cells in culture may be transformed by calcium co-precipitation of the vector DNA onto the cells. The invention also extends to a host cell transformed with a replicable expression vector of the invention.
- 10 Culturing the transformed host cell under conditions permitting expression of the DNA polymer is carried out conventionally, as described in, for example, Maniatis *et al.* and "DNA Cloning" cited above. Thus, preferably the cell is supplied with nutrient and cultured at a temperature below 50°C.
- 15 The product is recovered by conventional methods according to the host cell. Thus, where the host cell is bacterial, such as *E. coli* - or yeast such as *Pichia*; it may be lysed physically, chemically or enzymatically and the protein product isolated from the resulting lysate. Where the host cell is mammalian, the product may generally be isolated from the nutrient medium or from cell free extracts. Conventional protein
20 isolation techniques include selective precipitation, adsorption chromatography, and affinity chromatography including a monoclonal antibody affinity column.

For proteins of the present invention provided with Histidine tails, purification can easily be achieved by the use of a metal ion affinity column. In a preferred embodiment, the protein is further purified by subjecting it to cation ion exchange chromatography and/or Gel filtration chromatography. The protein is then sterilised by passing through a 0.22 μm membrane.
25

The proteins of the invention can then be formulated as a vaccine, or the Histidine residues enzymatically cleared.
30

The proteins of the present invention are provided preferably at least 80% pure more preferably 90% pure as visualised by SDS PAGE. Preferably the proteins appear as a single band by SDS PAGE.

- 5 The present invention also provides pharmaceutical composition comprising a protein
of the present invention in a pharmaceutically acceptable excipient.

Vaccine preparation is generally described in **New Trends and Developments in Vaccines**, Voller *et al.* (eds.). University Park Press, Baltimore, Maryland, 1978.

- 10 Encapsulation within liposomes is described by Fullerton, US Patent 4,235,877.

The proteins of the present invention are preferably adjuvanted in the vaccine formulation of the invention. Suitable adjuvants include an aluminium salt such as aluminium hydroxide gel (alum) or aluminium phosphate, but may also be a salt of calcium, iron or zinc, or may be an insoluble suspension of acylated tyrosine, or acylated sugars, cationically or anionically derivatised polysaccharides, or polyphosphazenes.

- In the formulation of the inventions it is preferred that the adjuvant composition induces a preferential TH1 response. Suitable adjuvant systems include, for example, a combination of monophosphoryl lipid A or derivative thereof, preferably 3-de-O-acylated monophosphoryl lipid A (3D-MPL) together with an aluminium salt.

- An enhanced system involves the combination of a monophosphoryl lipid A and a saponin derivative particularly the combination of QS21 and 3D- MPL as disclosed in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol as disclosed in WO 96/33739.

- A particularly potent adjuvant formulation involving QS21, 3D-MPL & tocopherol in an oil in water emulsion is described in WO 95/17210 and is a preferred formulation.

Accordingly in one embodiment of the present invention there is provided a vaccine comprising a protein according to the invention adjuvanted with a monophosphoryl lipid A or derivative thereof, especially 3D-MPL.

- 5 Preferably the vaccine additionally comprises a saponin, more preferably QS21.

Preferably the formulation additional comprises an oil in water emulsion and tocopherol. The present invention also provides a method for producing a vaccine formulation comprising mixing a protein of the present invention together with a 10 pharmaceutically acceptable excipient, such as 3D-MPL.

The vaccine of the present invention may additional comprise further HIV proteins, such as the envelope glycoprotein gp160 or its derivative gp 120.

- 15 In another aspect, the invention relates to an HIV Nef or an HIV Tat protein or derivative thereof expressed in *Pichia pastoris*.

The invention will be further described by reference to the following examples:

20 **EXAMPLES:**

General

- Nef and Tat proteins, two regulatory proteins encoded by the human 25 immunodeficiency virus (HIV-1) were produced in *E.coli* and in the methylotrophic yeast *Pichia pastoris*.

- The *nef* gene from the Bru/Lai isolate (Cell 40: 9-17, 1985) was selected for these constructs since this gene is among those that are most closely related to the 30 consensus Nef .

The starting material for the Bru/Lai *nef* gene was a 1170bp DNA fragment cloned on the mammalian expression vector pcDNA3 (pcDNA3/*nef*).

The *tat* gene originates from the BH10 molecular clone. This gene was received as an
5 HTLV III cDNA clone named pCV1 and described in Science, 229, p69-73, 1985.

1. EXPRESSION OF HIV-1 *nef* AND *tat* SEQUENCES IN E.COLI.

Sequences encoding the Nef protein as well as a fusion of *nef* and *tat* sequences were
10 placed in plasmids vectors: pRIT14586 and pRIT14589 (see figure 1).

Nef and the Nef-Tat fusion were produced as fusion proteins using as fusion partner a part of the protein D. Protein D is an immunoglobulin D binding protein exposed at the surface of the gram-negative bacterium *Haemophilus influenzae*.

15 pRIT14586 contains, under the control of a λPL promoter, a DNA sequence derived from the bacterium *Haemophilus influenzae* which codes for the first 127 amino acids of the protein D (Infect. Immun. 60 : 1336-1342, 1992), immediately followed by a multiple cloning site region plus a DNA sequence coding for one glycine, 6 histidines
20 residues and a stop codon (Fig. 1A).

This vector is designed to express a processed lipidated His tailed fusion protein (LipoD fusion protein). The fusion protein is synthesised as a precursor with an 18 amino acid residues long signal sequence and after processing, the cysteine at position
25 19 in the precursor molecule becomes the amino terminal residue which is then modified by covalently bound fatty acids (Fig. 1B).

pRIT14589 is almost identical to pRIT14586 except that the protD derived sequence starts immediately after the cysteine19 codon.
30 Expression from this vector results in a His tailed, non lipidated fusion protein (Prot D fusion protein).

Four constructs were made: LipoD-*nef*-His, LipoD-*nef-tat*-His, ProtD-*nef*-His, and ProtD-*nef-tat*-His.

The first two constructs were made using the expression vector pRIT14586, the last
5 two constructs used pRIT14589.

1.1 CONSTRUCTION OF THE RECOMBINANT STRAIN ECLD-N1 PRODUCING THE LIPOD-NEF-HIS FUSION PROTEIN.

10

1.1.1 Construction of the lipoD-*nef*-His expression plasmid pRIT14595

The *nef* gene(Bru/Lai isolate) was amplified by PCR from pcDNA3/Nef plasmid with primers 01 and 02.

15

NcoI

PRIMER 01 (Seq ID NO 1): 5' ATCGTCCATG.GGT.GGC.AAG.TGG.T 3'

20

SpeI

PRIMER 02 (Seq ID NO 2): 5' CGGCTACTAGTGCAGTTCTTGAA 3'

The *nef*DNA region amplified starts at nucleotide 8357 and terminates at nucleotide 8971 (Cell, 40: 9-17, 1985).

25

An NcoI restriction site (which carries the ATG codon of the *nef* gene) was introduced at the 5' end of the PCR fragment while a SpeI site was introduced at the 3' end.

30 The PCR fragment obtained and the expression plasmid pRIT14586 were both restricted by NcoI and SpeI, purified on an agarose gel, ligated and transformed in the

appropriate *E.coli* host cell, strain AR58. This strain is a cryptic λ lysogen derived from N99 that is *galE*::Tn10, Δ-8 (*chID-pgl*), Δ-H1 (*cro-chlA*), N⁺, and cI857.

The resulting recombinant plasmid received, after verification of the *nef* amplified 5 region by automatic sequencing,(see section 1.1.2 below) the pRIT14595 denomination.

1.1.2 Selection of transformants of *E. Coli* strain AR58 with pRIT14595

10

When transformed in AR58 *E.coli* host strain, the recombinant plasmid directs the heat-inducible production of the heterologous protein.

Heat inducible protein production of several recombinant lipoD-Nef-His 15 transformants was analysed by Coomassie Blue stained SDS-PAGE. All the transformants analysed showed an heat inducible heterologous protein production. The abundance of the recombinant Lipo D-Nef-Tat-His fusion protein was estimated at 10% of total protein.

20 One of the transformants was selected and given the laboratory accession number ECLD-N1.

The recombinant plasmid was reisolated from strain ECLD-N1, and the sequence of the *nef*-His coding region was confirmed by automated sequencing .This plasmid 25 received the official designation pRIT14595.

The fully processed and acylated recombinant Lipo D-*nef*-His fusion protein produced by strain ECLD-N1 is composed of:

30 °Fatty acids

°109 a.a. of proteinD (starting at a.a.19 and extending to a.a.127).

^aA methionine, created by the use of NcoI cloning site of pRIT14586 (Fig.1).

^o205a.a. of Nef protein (starting at a.a.2 and extending to a.a.206).

^oA threonine and a serine created by the cloning procedure (cloning at SpeI site of pRIT14586).

^oOne glycine and six histidines.

1.2 CONSTRUCTION OF RECOMBINANT STRAIN ECD-N1 PRODUCING PROT D-Nef-HIS FUSION PROTEIN.

10

Construction of expression plasmid pRIT14600 encoding the Prot D-Nef-His fusion protein was identical to the plasmid construction described in example 1.1.1 with the exception that pRIT14589 was used as receptor plasmid for the PCR amplified *nef* fragment.

15

E.coli AR58 strain was transformed with pRIT14600 and transformants were analysed as described in example 1.1.2. The transformant selected received laboratory accession number ECD-N1.

**1.3 CONSTRUCTION OF RECOMBINANT STRAIN ECLD-NT6
PRODUCING THE LIPO D-Nef-Tat-HIS FUSION PROTEIN.**

1.3.1 Construction of the lipo D-Nef-Tat-His expression plasmid pRIT14596

5

The *tat* gene(BH10 isolate) was amplified by PCR from a derivative of the pCV1 plasmid with primers 03 and 04. SpeI restriction sites were introduced at both ends of the PCR fragment.

10

SpeI

PRIMER 03 (Seq ID NO 3): 5' ATCGTACTAGT.GAG.CCA.GTA.GAT.C 3'

15

SpeI

PRIMER 04 (Seq ID NO 4): 5' CGGCTACTAGTTCCGGGCCT 3'

20

The nucleotide sequence of the amplified *tat* gene is illustrated in the pCV1 clone (Science 229 : 69-73, 1985) and covers nucleotide 5414 till nucleotide 7998.

25

1.3.2 Selection of transformants of strain AR58 with pRIT14596

30

Transformants were grown, heat induced and their proteins were analysed by Coomassie Blue stained gels. The production level of the recombinant protein was estimated at 1% of total protein. One recombinant strain was selected and received the laboratory denomination ECLD-NT6.

The lipoD-*nef-tat*-His recombinant plasmid was reisolated from ECLD-NT6 strain, sequenced and received the official designation pRIT14596.

The fully processed and acylated recombinant Lipo D-Nef-Tat-His fusion protein
5 produced by strain ECLD-N6 is composed of:

- °Fatty acids
- °109 a.a. of proteinD (starting at a.a.19 and extending to a.a.127).
- °A methionine, created by the use of NcoI cloning site of pRIT14586.
- 10 °205a.a. of the Nef protein (starting at a.a.2 and extending to a.a.206)
- °A threonine and a serine created by the cloning procedure
- °85a.a. of the Tat protein (starting at a.a.2 and extending to a.a.86)
- °A threonine and a serine introduced by cloning procedure
- °One glycine and six histidines.

15

1.4 CONSTRUCTION OF RECOMBINANT STRAIN ECD-NT1 PRODUCING PROT D-Nef-Tat-HIS FUSION PROTEIN.

Construction of expression plasmid pRIT14601 encoding the Prot D-Nef-Tat-His
20 fusion protein was identical to the plasmid construction described in example 1.3.1
with the exception that pRIT14600 was used as receptor plasmid for the PCR
amplified *nef* fragment.

E.coli AR58 strain was transformed with pRIT14601 and transformants were analysed
25 as described previously. The transformant selected received laboratory accession
number ECD-NT1.

30

2. EXPRESSION OF HIV-1 *nef* AND *tat* SEQUENCES IN PICHIA PASTORIS.

Nef protein, Tat protein and the fusion Nef -Tat were expressed in the methylotrophic yeast *Pichia pastoris* under the control of the inducible alcohol oxidase (AOX1) promoter.

To express these HIV-1 genes a modified version of the integrative vector PHIL-D2 (INVITROGEN) was used. This vector was modified in such a way that expression of heterologous protein starts immediately after the native ATG codon of the AOX1 gene and will produce recombinant protein with a tail of one glycine and six histidines residues . This PHIL-D2-MOD vector was constructed by cloning an oligonucleotide linker between the adjacent AsuII and EcoRI sites of PHIL-D2 vector (see Figure 3). In addition to the His tail, this linker carries NcoI, SpeI and XbaI restriction sites between which *nef*, *tat* and *nef-tat* fusion were inserted.

2.1 CONSTRUCTION OF THE INTEGRATIVE VECTORS pRIT14597 (encoding Nef-His protein), pRIT14598 (encoding Tat-His protein) and pRIT14599 (encoding fusion Nef-Tat-His).

The *nef* gene was amplified by PCR from the pcDNA3/Nef plasmid with primers 01 and 02(see section 1.1.1 construction of pRIT14595).The PCR fragment obtained and the integrative PHIL-D2-MOD vector were both restricted by NcoI and SpeI, purified on agarose gel and ligated to create the integrative plasmid pRIT14597 (see Figure 3).

The *tat* gene was amplified by PCR from a derivative of the pCV1 plasmid with primers 05 and 04(see section 1.3.1 construction of pRIT14596):

NcoI

30 PRIMER 05 (Seq ID NO 5): 5'ATCGTCCCATGGAGCCAGTAGATC 3'

An NcoI restriction site was introduced at the 5' end of the PCR fragment while a SpeI site was introduced at the 3' end with primer 04. The PCR fragment obtained and the PHIL-D2-MOD vector were both restricted by NcoI and SpeI, purified on agarose gel and ligated to create the integrative plasmid pRIT14598.

5

To construct pRIT14599, a 910bp DNA fragment corresponding to the *nef-tat*-His coding sequence was ligated between the EcoRI blunted(T4 polymerase) and NcoI sites of the PHIL-D2-MOD vector. The *nef-tat*-His coding fragment was obtained by XbaI blunted(T4 polymerase) and NcoI digestions of pRIT14596.

10

2.2 TRANSFORMATION OF PICHIA PASTORIS STRAIN GS115(his4).

15

To obtain *Pichia pastoris* strains expressing Nef-His, Tat-His and the fusion Nef-Tat-His, strain GS115 was transformed with linear NotI fragments carrying the respective expression cassettes plus the HIS4 gene to complement his4 in the host genome. Transformation of GS115 with NotI-linear fragments favors recombination at the AOX1 locus.

20

Multicopy integrant clones were selected by quantitative dot blot analysis and the type of integration, insertion (Mut^+ phenotype) or transplacement (Mut^s phenotype), was determined.

25

From each transformation, one transformant showing a high production level for the recombinant protein was selected :

Strain Y1738 (Mut^+ phenotype) producing the recombinant Nef-His protein, a myristylated 215 amino acids protein which is composed of:

30

^oMyristic acid

^oA methionine, created by the use of NcoI cloning site of PHIL-D2-MOD vector

^o205 a.a. of Nef protein(starting at a.a.2 and extending to a.a.206)

- °A threonine and a serine created by the cloning procedure (cloning at SpeI site of PHIL-D2-MOD vector.
- °One glycine and six histidines.

5 Strain Y1739 (Mut^t phenotype) producing the Tat-His protein, a 95 amino acid protein which is composed of:

- °A methionine created by the use of NcoI cloning site
- °85 a.a. of the Tat protein(starting at a.a.2 and extending to a.a.86)

10

- °A threonine and a serine introduced by cloning procedure
- °One glycine and six histidines

Strain Y1737(Mut^s phenotype) producing the recombinant Nef-Tat-His fusion protein,
15 a myristylated 302 amino acids protein which is composed of:

20

- °Myristic acid
- °A methionine, created by the use of NcoI cloning site
- °205a.a. of Nef protein(starting at a.a.2 and extending to a.a.206)
- °A threonine and a serine created by the cloning procedure
- °85a.a. of the Tat protein(starting at a.a.2 and extending to a.a.86)
- °A threonine and a serine introduced by the cloning procedure
- °One glycine and six histidines

3. EXPRESSION OF HIV-1 Tat-MUTANT IN PICHIA PASTÓRIS

As well as a Nef-Tat mutant fusion protein, a mutant recombinant Tat protein has also
5 been expressed. The mutant Tat protein must be **biologically inactive** while
maintaining its **immunogenic epitopes**.

A double mutant *tat* gene, constructed by D.Clements (Tulane University) was
selected for these constructs.

10 This *tat* gene (originates from BH10 molecular clone) bears **mutations** in the **active site region (Lys41→Ala)** and in **RGD motif (Arg78→Lys and Asp80→Glu)** (*Virology* 235: 48-64, 1997).

15 The mutant *tat* gene was received as a cDNA fragment subcloned between the EcoRI and HindIII sites within a CMV expression plasmid (pCMVLys41/KGE)

3.1 CONSTRUCTION OF THE INTEGRATIVE VECTORS

20 pRIT14912(**encoding Tat mutant-His protein**) and pRIT14913(**encoding fusion Nef-Tat mutant-His**).

The *tat* mutant gene was amplified by PCR from the pCMVLys41/KGE plasmid with primers 05 and 04 (see section 2.1 construction of pRIT14598)

25 An NcoI restriction site was introduced at the 5' end of the PCR fragment while a SpeI site was introduced at the 3' end with primer 04. The PCR fragment obtained and the PHIL-D2-MOD vector were both restricted by NcoI and SpeI, purified on agarose gel and ligated to create the integrative plasmid pRIT14912

30

To construct pRIT14913, the *tat* mutant gene was amplified by PCR from the pCMVLys41/KGE plasmid with primers 03 and 04 (see section 1.3.1 construction of pRIT14596).

- 5 The PCR fragment obtained and the plasmid pRIT14597 (expressing Nef-His protein) were both digested by SpeI restriction enzyme, purified on agarose gel and ligated to create the integrative plasmid pRIT14913

3.2 TRANSFORMATION OF PICHIA PASTORIS STRAIN GS115.

10

Pichia pastoris strains expressing Tat mutant-His protein and the fusion Nef-Tat mutant-His were obtained, by applying integration and recombinant strain selection strategies previously described in section 2.2 .

- 15 Two recombinant strains producing Tat mutant-His protein ,a 95 amino-acids protein, were selected: Y1775 (Mut⁺ phenotype) and Y1776(Mut^s phenotype).

One recombinant strain expressing Nef-Tat mutant-His fusion protein, a 302 amino-acids protein was selected: Y1774(Mut⁺ phenotype).

20

4. PURIFICATION OF Nef-Tat-His FUSION PROTEIN (PICHIA PASTORIS)

- 5 The purification scheme has been developed from 146g of recombinant Pichia pastoris cells (wet weight) or 2L Dyne-mill homogenate OD 55. The chromatographic steps are performed at room temperature. Between steps , Nef-Tat positive fractions are kept overnight in the cold room (+4°C) ; for longer time, samples are frozen at -20°C.

10

* ratio: 0,5M Arginin for a protein concentration of 1600μg/ml.

5 Purity

The level of purity as estimated by SDS-PAGE is shown in Figure 4 by Daiichi Silver Staining and in Figure 5 by Coomassie blue G250.

After Superdex200 step:	> 95%
After dialysis and sterile filtration steps:	> 95%

5 Recovery

51mg of Nef-Tat-his protein are purified from 146g of recombinant Pichia pastoris cells (= 2L of Dyno-mill homogenate OD 55)

10 5. VACCINE PREPARATION

A vaccine prepared in accordance with the invention comprises the expression product of a DNA recombinant encoding an antigen as exemplified in example 1 or 2 and as adjuvant, the formulation comprising a mixture of 3 de -O-acylated monophosphoryl lipid A 3D-MPL and QS21 in an oil/water emulsion.

3D-MPL: is a chemically detoxified form of the lipopolysaccharide (LPS) of the Gram-negative bacteria *Salmonella minnesota*.

20 Experiments performed at Smith Kline Beecham Biologicals have shown that 3D-MPL combined with various vehicles strongly enhances both the humoral and a TH1 type of cellular immunity.

25 **QS21:** is one saponin purified from a crude extract of the bark of the Quillaja Saponaria Molina tree, which has a strong adjuvant activity: it activates both antigen-specific lymphoproliferation and CTLs to several antigens. Experiments performed at Smith Kline Beecham Biologicals have demonstrated a clear synergistic effect of combinations of 3D-MPL and QS21 in the induction of both humoral and TH1 type cellular immune responses.

30

The oil/water emulsion is composed of 2 oils (a tocopherol and squalene), and of PBS containing Tween 80 as emulsifier. The emulsion comprised 5% squalene 5%

tocopherol 0.4% Tween 80 and had an average particle size of 180 nm (see WO 95/17210).

Experiments performed at Smith Kline Beecham Biologicals have proven that the
5 adjunction of this O/W emulsion to 3D-MPL/QS21 further increases their immunostimulant properties.

Preparation of the oil/water emulsion (2 fold concentrate)

10 Tween 80 is dissolved in phosphate buffered saline (PBS) to give a 2% solution in the PBS. To provide 100ml two fold concentrate emulsion 5g of DL alpha tocopherol and 5ml of squalene are vortexed to mix thoroughly. 90ml of PBS/Tween solution is added and mixed thoroughly. The resulting emulsion is then passed through a syringe and finally microfluidised by using an M110S microfluidics machine. The resulting
15 oil droplets have a size of approximately 180 nm.

Preparation of oil in water formulation.

Antigen prepared in accordance with example 1 or 2 (5 μ g) was diluted in 10 fold
20 concentrated PBS pH 6.8 and H₂O before consecutive addition of SB62, 3D-MPL (5 μ g), QS21 (5 μ g) and 50 μ g/ml thiomersal as preservative at 5 min interval. The emulsion volume is equal to 50% of the total volume (50 μ l for a dose of 100 μ l).

All incubations were carried out at room temperature with agitation.

25

6. IMMUNOGENICITY OF Tat AND Nef-Tat IN RODENTS

Characterization of the immune response induced after immunization with Tat and
30 NefTat was carried out. To obtain information on isotype profiles and cell-mediated immunity (CMI) two immunization experiments in mice were conducted. In the first experiment mice were immunized twice two weeks apart into the footpad with Tat or

- NefTat in the oxydized or reduced form, respectively. Antigens were formulated in an oil in water emulsion comprising squalene, tween 80TM (polyoxyethylene sorbitan monooleate) QS21, 3D-MPL and α -tocopherol, and a control group received the adjuvant alone. Two weeks after the last immunization sera were obtained and
- 5 subjected to Tat-specific ELISA (using reduced Tat for coating) for the determination of antibody titers and isotypes (Figure 6a). The antibody titers were highest in the mice having received oxydized Tat. In general, the oxydized molecules induced higher antibody titers than the reduced forms, and Tat alone induced higher antibody titers than NefTat. The latter observation was confirmed in the second experiment.
- 10 Most interestingly, the isotype profile of Tat-specific antibodies differed depending on the antigens used for immunization. Tat alone elicited a balanced IgG1 and IgG2a profile, while NefTat induced a much stronger T_{H2} bias (Figure 6b). This was again confirmed in the second experiment.
- 15 In the second mouse experiment animals received only the reduced forms of the molecules or the adjuvant alone. Besides serological analysis (see above) lymphoproliferative responses from lymph node cells were evaluated. After restimulation of those cells in vitro with Tat or NefTat ³H-thymidine incorporation was measured after 4 days of culture. Presentation of the results as stimulation indices
- 20 indicates that very strong responses were induced in both groups of mice having received antigen (Figure 7).

In conclusion, the mice studies indicate that Tat as well as Nef-Tat are highly immunogenic candidate vaccine antigens. The immune response directed against the

25 two molecules is characterized by high antibody responses with at least 50% IgG1. Furthermore, strong CMI responses (as measured by lymphoproliferation) were observed.

7. FUNCTIONAL PROPERTIES OF THE Tat AND Nef-Tat PROTEINS

30

The Tat and NefTat molecules in oxydized or reduced form were investigated for their ability to bind to human T cell lines. Furthermore, the effect on growth of

those cell lines was assessed. ELISA plates were coated overnight with different concentration of the Tat and NefTat proteins, the irrelevant gD from herpes simplex virus type II, or with a buffer control alone. After removal of the coating solution HUT-78 cells were added to the wells. After two hours of incubation the wells were
5 washed and binding of cells to the bottom of the wells was assessed microscopically. As a quantitative measure cells were stained with toluidine blue, lysed by SDS, and the toluidine blue concentration in the supernatant was determined with an ELISA plate reader. The results indicate that all four proteins, Tat and NefTat in oxydized or reduced form mediated binding of the cells to the
10 ELISA plate (Figure 8). The irrelevant protein (data not shown) and the buffer did not fix the cells. This indicates that the recombinantly expressed Tat-containing proteins bind specifically to human T cell lines.

In a second experiment HUT-78 cells were left in contact with the proteins for 16 hours. At the end of the incubation period the cells were labeled with [³H]-thymidine and the incorporation rate was determined as a measure of cell growth.
15 All four proteins included in this assay inhibited cell growth as judged by diminished radioactivity incorporation (Figure 9). The buffer control did not mediate this effect. These results demonstrate that the recombinant Tat-containing proteins are capable of inhibiting growth of a human T cell line.
20

In summary the functional characterization of the Tat and NefTat proteins reveals that these proteins are able to bind to human Tcell lines. Furthermore, the proteins are able to inhibit growth of such cell lines.

CLAIMS

1008·12·99

1. A vaccine composition which comprises a protein comprising
 - (a) an HIV Tat protein or derivative thereof linked to either (i) a fusion partner or (ii) an HIV Nef protein or derivative thereof; or
 - (b) an HIV Nef protein or derivative thereof linked to either (i) a fusion partner or (ii) an HIV Tat protein or derivative thereof; or
 - (c) an HIV Nef protein or derivative thereof linked to an HIV Tat protein or derivative thereof and a fusion partner,
- 10 in admixture with a pharmaceutically acceptable excipient.
2. A composition as claimed in claim 1 comprising a Tat-Nef fusion protein or derivative thereof.
- 15 3. A composition as claimed in claim 1 comprising a Nef-Tat fusion protein or derivative thereof.
4. A composition according to any one of claims 1 to 3 wherein the derivative of the Tat protein is a mutated Tat protein.
- 20 5. A composition according to any one of claims 1 to 4 wherein the derivative of the Nef protein is a mutated Nef protein.
6. A composition as claimed in any one of claims 1 - 5 wherein the fusion partner is a lipoprotein or derivative thereof.
- 25 7. A composition as claimed in claim 6 wherein the lipoprotein is Haemophilus Influenza B protein D or derivative thereof.
- 30 8. A composition as claimed in claim 7 wherein the fusion partner comprises between 100-130 amino acid from the N terminal of Haemophilus Influenza B protein D.

M 06 · 12 · 99

9. A composition as claimed in any one of Claims 1 to 8, wherein the Tat protein is the entire Tat protein.
- 5 10. A composition as claimed in any one of Claims 1 to 8, wherein the Nef protein is the entire Nef protein.
11. A composition as claimed in any one of Claims 1 to 10, wherein the Tat protein is fused to an HIV Nef protein and a fusion partner.
- 10
12. A composition as claimed in any one of claims 1 to 11, wherein the protein has a Histidine tail.
13. A composition as claimed in any one of claims 1 to 12 wherein the protein is carboxymethylated.
- 15
14. A composition as claimed in any one of claims 1 to 13, additionally comprising an adjuvant.
- 20 15. A composition as claimed in claim 14, wherein the adjuvant is a TH1 inducing adjuvant.
16. A composition as claimed in claim 14 or 15 which adjuvant comprises monophosphoryl lipid A or a derivative thereof such as 3 de-O-acylated monophosphoryl lipid A.
- 25
17. A composition as claimed in any one of claims 14 to 16 additionally comprising a saponin adjuvant.
- 30 18. A composition as claimed in any one of claims 14 to 17 which additionally comprises an oil in water emulsion.

11 08 . 12 . 08

19. A composition as claimed in any one of claims 1 to 18 further comprising HIV gp160 or its derivative gp120.
20. A protein comprising an HIV Tat protein or derivative thereof linked to an HIV Nef protein or derivative thereof in Nef-Tat or Tat-Nef orientation.
21. A nucleic acid encoding a protein of claim 20.
22. A host transformed with a nucleic acid of claim 21.
23. A host as claimed in claim 22 wherein the host is either *E.coli* or *Pichia pastoris*.
24. A method of producing a protein of claim 20, comprising providing a host as claimed in claim 22 or 23, expressing said protein and recovering the protein.
25. A method of preparing (i) an HIV Nef protein or derivative thereof or (ii) an HIV Tat protein or derivative thereof in *Pichia pastoris* which method comprises the steps of transforming *Pichia pastoris* with DNA encoding said HIV Nef protein or derivative thereof or HIV Tat protein or derivative thereof, expressing said protein and recovering the protein.
26. The method of claim 24 or claim 25 further comprising a carboxymethylation step performed on the expressed protein.
27. A method of producing a vaccine, comprising admixing the protein from any one of claims 24 to 26 with a pharmaceutically acceptable diluent.
28. The method of claim 27 further comprising the addition of HIV gp160 or its derivative gp120.

AMENDED SHEET

11 06 . 13 . 00

29. The method of claims 24 to 28 further comprising the addition of an adjuvant, particularly a TH1 inducing adjuvant.
30. A vaccine composition comprising a recombinant Tat-containing protein formulated with a mixture of 3D-MPL, QS21 and an oil in water emulsion
- 5
31. A composition as claimed in claim 30 wherein the oil in water emulsion comprises squalene, polyoxyethylene sorbitan monooleate and α -tocopherol.

10

15

AMENDED SHEET

SEQUENCE LISTING

(1) GENERAL INFORMATION

(i) APPLICANT: SmithKline Beecham Biologicals S.A.

(ii) TITLE OF THE INVENTION: Vaccine

(iii) NUMBER OF SEQUENCES: 27

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: SmithKline Beecham
- (B) STREET: Two New Horizons Court
- (C) CITY: Brentford
- (D) STATE:
- (E) COUNTRY: Middx, UK
- (F) ZIP: TW8 9EP

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Diskette
- (B) COMPUTER: IBM Compatible
- (C) OPERATING SYSTEM: DOS
- (D) SOFTWARE: FastSEQ for Windows Version 2.0

(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE: 26-SEP-1997
- (C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Bor, Fiona R
- (B) REGISTRATION NUMBER:
- (C) REFERENCE/DOCKET NUMBER:

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: 0181 975 2817
- (B) TELEFAX: 0181 975 6141
- (C) TELEX:

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 28 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ATCGTCCATG .GGT.GGC.A AG.TGG.T

28

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

CGGCTACTAG TGCAGTTCTT GAA

23

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 29 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATCGTACTAG T.GAG.CCA. GTA.GAT.C

29

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

CGGCTACTAG TTTCCTTCGG GCCT

24

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ATCGTCCATG GAGCCAGTAG ATC

23

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 441 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

ATGGATCAA	AAACTTAGC	CCTTCCTTA	TTAGCAGCTG	GCGTACTAGC	AGGTTGTAGC	60
AGCCATTCA	CAAATATGGC	GAATACCAA	ATGAAATCAG	ACAAAATCAT	TATTGCTCAC	120
CGTGGTGCTA	GCGGTTATTT	ACCAGAGCAT	ACGTTAGAAT	CTAAAGCACT	TGCTTTGCA	180
CAACAGGCTG	ATTATTTAGA	GCAAGATTAA	GCAATGACTA	AGGATGGTCG	TTTAGTGGTT	240
ATTACACGATC	ACTTTTTAGA	TGGCTTGACT	GATGTTGCGA	AAAAATTCCC	ACATCGTCAT	300
CGTAAAGATG	GCCGTTACTA	TGTCATCGAC	TTTACCTTAA	AAGAAATTCA	AAGTTTAGAA	360
ATGACAGAAA	ACTTGAAAC	CATGCCACG	TGTGATCAGA	GCTCAACTAG	TGGCCACCAT	420
CACCATCACC	ATTAATCTAG	A				441

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 144 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met	Asp	Pro	Lys	Thr	Leu	Ala	Leu	Ser	Leu	Leu	Ala	Ala	Gly	Val	Leu
1				5					10					15	
Ala	Gly	Cys	Ser	Ser	His	Ser	Ser	Asn	Met	Ala	Asn	Thr	Gln	Met	Lys
					20			25					30		
Ser	Asp	Lys	Ile	Ile	Ile	Ala	His	Arg	Gly	Ala	Ser	Gly	Tyr	Leu	Pro
	35					35		40				45			
Glu	His	Thr	Leu	Glu	Ser	Lys	Ala	Leu	Ala	Phe	Ala	Gln	Gln	Ala	Asp
	50			55					55			60			
Tyr	Leu	Glu	Gln	Asp	Leu	Ala	Met	Thr	Lys	Asp	Gly	Arg	Leu	Val	Val
	65				70				75			80			
Ile	His	Asp	His	Phe	Leu	Asp	Gly	Leu	Thr	Asp	Val	Ala	Lys	Lys	Phe
				85				90				95			
Pro	His	Arg	His	Arg	Lys	Asp	Gly	Arg	Tyr	Tyr	Val	Ile	Asp	Phe	Thr
				100				105			110				
Leu	Lys	Glu	Ile	Gln	Ser	Leu	Glu	Met	Thr	Glu	Asn	Phe	Glu	Thr	Met
	115					115		120				125			
Ala	Thr	Cys	Asp	Gln	Ser	Ser	Thr	Ser	Gly	His	His	His	His	His	His
	130						130	135				140			

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 648 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

ATGGGTGGCA	AGTGGTCAA	AAGTAGTGTG	GTTGGATGGC	CTACTGTAAG	GGAAAGAATG	60
AGACGAGCTG	AGCCAGCAGC	AGATGGGTG	GGAGCAGCAT	CTCGAGACCT	GGAAAAACAT	120
GGAGCAATCA	CAAGTAGCAA	TACAGCAGCT	ACCAATGCTG	CTTGTGCCTG	GCTAGAAGCA	180
CAAGAGGAGG	AGGAGGTGGG	TTTCCAGTC	ACACCTCAGG	TACCTTAAG	ACCAATGACT	240
TACAAGGCCAG	CTGTAGATCT	TAGCCACTTT	TTAAAAGAAA	AGGGGGGACT	GGAAGGGCTA	300
ATTCACTCCC	AACGAAGACA	AGATATCCTT	GATCTGTGGA	TCTACCACAC	ACAAGGCTAC	360
TTCCCTGATT	GGCAGAACTA	CACACCAGGG	CCAGGGGTCA	GATATCCACT	GACCTTTGGA	420
TGGTGCTACA	AGCTAGTACC	AGTTGAGCCA	GATAAGGTAG	AAGAGGCCAA	TAAAGGAGAG	480
AACACCAGCT	TGTTACACCC	TGTGAGCCTG	CATGGAATGG	ATGACCTGA	GAGAGAAGTG	540
TTAGAGTGGG	GGTTTGACAG	CCGCCTAGCA	TTTCATCACG	TGGCCCGAGA	GCTGCATCCG	600
GAGTACTTCA	AGAACTGCAC	TAGTGGCCAC	CATCACCATC	ACCATTAA		648

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 216 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met	Gly	Lys	Trp	Ser	Lys	Ser	Ser	Val	Val	Gly	Trp	Pro	Thr	Val	
1				5				10				15			
Arg	Glu	Arg	Met	Arg	Arg	Ala	Glu	Pro	Ala	Ala	Asp	Gly	Val	Gly	Ala
								20			25		30		
Ala	Ser	Arg	Asp	Leu	Glu	Lys	His	Gly	Ala	Ile	Thr	Ser	Ser	Asn	Thr
								35			40		45		
Ala	Ala	Thr	Asn	Ala	Ala	Cys	Ala	Trp	Leu	Glu	Ala	Gln	Glu	Glu	Glu
								50			55		60		
Glu	Val	Gly	Phe	Pro	Val	Thr	Pro	Gln	Val	Pro	Leu	Arg	Pro	Met	Thr
								65			70		75		80
Tyr	Lys	Ala	Ala	Val	Asp	Leu	Ser	His	Phe	Leu	Lys	Glu	Lys	Gly	Gly
								85			90		95		
Leu	Glu	Gly	Leu	Ile	His	Ser	Gln	Arg	Arg	Gln	Asp	Ile	Leu	Asp	Leu
								100			105		110		
Trp	Ile	Tyr	His	Thr	Gln	Gly	Tyr	Phe	Pro	Asp	Trp	Gln	Asn	Tyr	Thr
								115			120		125		
Pro	Gly	Pro	Gly	Val	Arg	Tyr	Pro	Leu	Thr	Phe	Gly	Trp	Cys	Tyr	Lys
								130			135		140		
Leu	Val	Pro	Val	Glu	Pro	Asp	Lys	Val	Glu	Glu	Ala	Asn	Lys	Gly	Glu
								145			150		155		160
Asn	Thr	Ser	Leu	Leu	His	Pro	Val	Ser	Leu	His	Gly	Met	Asp	Asp	Pro
								165			170		175		
Glu	Arg	Glu	Val	Leu	Glu	Trp	Arg	Phe	Asp	Ser	Arg	Leu	Ala	Phe	His
								180			185		190		
His	Val	Ala	Arg	Glu	Leu	His	Pro	Glu	Tyr	Phe	Lys	Asn	Cys	Thr	Ser
								195			200		205		
Gly	His	His	His	His	His	His									
								210			215				

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 288 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

ATGGAGCCAG TAGATCCTAG ACTAGAGCCC TGGAAAGCATC CAGGAAGTCA GCCTAAAACT	60
GCTTGTACCA ATTGCTATTG TAAAAAGTGT TGCTTTCATT GCCAAGTTTG TTTCATAACA	120
AAAGCCTTAG GCATCTCCTA TGGCAGGAAG AAGCGGAGAC AGCGACGAAG ACCTCCTCAA	180
GGCAGTCAGA CTCATCAAGT TTCTCTATCA AAGCAACCCA CCTCCCAATC CCGAGGGGAC	240
CCGACAGGCC CGAAGGAAAC TAGTGGCCAC CATCACCATC ACCATTAA	288

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 96 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser	
1 5 10 15	
Gln Pro Lys Thr Ala Cys Thr Asn Cys Tyr Cys Lys Lys Cys Cys Phe	
20 25 30	
His Cys Gln Val Cys Phe Ile Thr Lys Ala Leu Gly Ile Ser Tyr Gly	
35 40 45	
Arg Lys Lys Arg Arg Gln Arg Arg Arg Pro Pro Gln Gly Ser Gln Thr	
50 55 60	
His Gln Val Ser Leu Ser Lys Gln Pro Thr Ser Gln Ser Arg Gly Asp	
65 70 75 80	
Pro Thr Gly Pro Lys Glu Thr Ser Gly His His His His His His His	
85 90 95	

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 909 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

ATGGGTGGCA AGTGGTAAA AAGTAGTGTG GTTGGATGGC CTACTGTAAG GGAAAGAACAT	60
AGACGAGCTG AGCCAGCAGC AGATGGGTG GGAGCAGCAT CTCGAGACCT GGAAAAACAT	120
GGAGCAATCA CAAGTAGCAA TACAGCAGCT ACCAATGCTG CTTGTGCCTG GCTAGAAGCA	180
CAAGAGGAGG AGGAGGTGGG TTTTCCAGTC ACACCTCAGG TACCTTTAAG ACCAATGACT	240
TACAAGGCAG CTGTAGATCT TAGCCACTTT TTAAAAGAAA AGGGGGGACT GGAAGGGCTA	300
ATTCACTCCC AACGAAGACA AGATATCCTT GATCTGTGGA TCTACCACAC ACAAGGCTAC	360

TTCCCTGATT	GGCAGAACTA	CACACCAGGG	CCAGGGTCA	GATATCCACT	GACCTTTGGA	420
TGGTGCTACA	AGCTAGTACC	AGTTGAGCCA	GATAAGGTAG	AAGAGGCCAA	TAAAGGAGAG	480
AACACCAGCT	TGTTACACCC	TGTGAGCCTG	CATGGAATGG	ATGACCCCTGA	GAGAGAAGTG	540
TTAGAGTGG	GGTTTGACAG	CCGCCTAGCA	TTTCATCACG	TGGCCCGAGA	GCTGCATCCG	600
GAGTACTTCA	AGAACTGCAC	TAGTGAGCCA	GTAGATCCTA	GACTAGAGCC	CTGGAAGCAT	660
CCAGGAAGTC	AGCCTAAAAC	TGCTTGCTACC	AATTGCTATT	GTAAAAAGTG	TTGCTTTCAT	720
TGCCAAGTTT	GTTCATAAAC	AAAAGCCTTA	GGCATCTCCT	ATGGCAGGAA	GAAGCGGAGA	780
CAGCGACGAA	GACCTCCTCA	AGGCAGTCAG	ACTCATCAAG	TTTCTCTATC	AAAGCAACCC	840
ACCTCCCAAT	CCCGAGGGGA	CCCGACAGGC	CCGAAGGAAA	CTAGTGGCCA	CCATCACCAT	900
CACCATTA						909

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 303 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Met	Gly	Gly	Lys	Trp	Ser	Lys	Ser	Ser	Val	Val	Gly	Trp	Pro	Thr	Val
1					5				10				15		
Arg	Glu	Arg	Met	Arg	Arg	Ala	Glu	Pro	Ala	Ala	Asp	Gly	Val	Gly	Ala
						20			25				30		
Ala	Ser	Arg	Asp	Leu	Glu	Lys	His	Gly	Ala	Ile	Thr	Ser	Ser	Asn	Thr
						35			40				45		
Ala	Ala	Thr	Asn	Ala	Ala	Cys	Ala	Trp	Leu	Glu	Ala	Gln	Glu	Glu	Glu
						50			55				60		
Glu	Val	Gly	Phe	Pro	Val	Thr	Pro	Gln	Val	Pro	Leu	Arg	Pro	Met	Thr
						65			70				75		80
Tyr	Lys	Ala	Ala	Val	Asp	Leu	Ser	His	Phe	Leu	Lys	Glu	Lys	Gly	Gly
						85			90				95		
Leu	Glu	Gly	Leu	Ile	His	Ser	Gln	Arg	Arg	Gln	Asp	Ile	Leu	Asp	Leu
						100			105				110		
Trp	Ile	Tyr	His	Thr	Gln	Gly	Tyr	Phe	Pro	Asp	Trp	Gln	Asn	Tyr	Thr
						115			120				125		
Pro	Gly	Pro	Gly	Val	Arg	Tyr	Pro	Leu	Thr	Phe	Gly	Trp	Cys	Tyr	Lys
						130			135				140		
Leu	Val	Pro	Val	Glu	Pro	Asp	Lys	Val	Glu	Glu	Ala	Asn	Lys	Gly	Glu
						145			150				155		160
Asn	Thr	Ser	Leu	Leu	His	Pro	Val	Ser	Leu	His	Gly	Met	Asp	Asp	Pro
						165			170				175		
Glu	Arg	Glu	Val	Leu	Glu	Trp	Arg	Phe	Asp	Ser	Arg	Leu	Phe	His	
						180			185				190		
His	Val	Ala	Arg	Glu	Leu	His	Pro	Glu	Tyr	Phe	Lys	Asn	Cys	Thr	Ser
						195			200				205		
Glu	Pro	Val	Asp	Pro	Arg	Leu	Glu	Pro	Trp	Lys	His	Pro	Gly	Ser	Gln
						210			215				220		
Pro	Lys	Thr	Ala	Cys	Thr	Asn	Cys	Tyr	Cys	Lys	Lys	Cys	Cys	Phe	His
						225			230				235		240
Cys	Gln	Val	Cys	Phe	Ile	Thr	Lys	Ala	Leu	Gly	Ile	Ser	Tyr	Gly	Arg
						245			250				255		
Lys	Lys	Arg	Arg	Gln	Arg	Arg	Pro	Pro	Gln	Gly	Ser	Gln	Thr	His	
						260			265				270		
Gln	Val	Ser	Leu	Ser	Lys	Gln	Pro	Thr	Ser	Gln	Ser	Arg	Gly	Asp	Pro

275	280	285											
Thr	Gly	Pro	Lys	Glu	Thr	Ser	Gly	His	His	His	His	His	His
290					295					300			

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1029 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

ATGGATCAA	AAACTTTAGC	CCTTCTTA	TTAGCAGCTG	GCGTACTAGC	AGGTTGTAGC	60
AGCCATTCA	CAAATATGGC	GAATACCAA	ATGAAATCAG	ACAAAATCAT	TATTGCTCAC	120
CGTGGTGCTA	GCGTTATT	ACCAGAGCAT	ACGTTAGAAT	CTAAAGCACT	TGCTTTGCA	180
CAACAGGCTG	ATTATTTAGA	GCAAGATT	GCAATGACTA	AGGATGGTCG	TTTAGTGGTT	240
ATTCACGATC	ACTTTT	AGA	TGGCTTACT	GATGTTGCGA	AAAAATCCC	300
CGTAAAGATG	GCCGTTACTA	TGT	CATCGAC	TTTACCTAA	AAGAAATTCA	360
ATGACAGAAA	ACTTTGAAAC	CATGGGTGGC	AAAGTGGTCAA	AAAGTAGTGT	GGTTGGATGG	420
CCTACTGTAA	GGGAAAGAAT	GAGACGAGCT	GAGCCAGCAG	CAGATGGGT	GGGAGCAGCA	480
TCTCGAGACC	TGGAAAACA	TGGAGCAATC	ACAAGTAGCA	ATACAGCAGC	TACCAATGCT	540
GCTTGTGCCT	GGCTAGAAC	ACAAGAGGAG	GAGGAGGTGG	GTTTTCCAGT	CACACCTCAG	600
GTACCTTAA	GACCAATGAC	TTACAAGGCA	GCTGTAGATC	TTAGCCACTT	TTAAAAGAA	660
AAGGGGGGAC	TGGAAGGGCT	AATTCACTCC	CAACGAAGAC	AAGATATCCT	TGATCTGTGG	720
ATCTACCACA	CACAAGGCTA	CTTCCCTGAT	TGGCAGAACT	ACACACCAGG	GCCAGGGGTC	780
AGATATCCAC	TGACCTTTGG	ATGGTGTAC	AAGCTAGTAC	CAGTTGAGCC	AGATAAGGTA	840
GAAGAGGCCA	ATAAAGGAGA	GAACACCAGC	TTGTTACACC	CTGTGAGCCT	GCATGGAATG	900
GATGACCCTG	AGAGAGAAGT	GTTAGAGTGG	AGGTTTGACA	GCCGCCTAGC	ATTTCATCAC	960
GTGGCCCGAG	AGCTGCATCC	GGAGTACTTC	AAGAACTGCA	CTAGTGGCCA	CCATCACCAT	1020
CACCATTAA						1029

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 325 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Cys	Ser	Ser	His	Ser	Ser	Asn	Met	Ala	Asn	Thr	Gln	Met	Lys	Ser	Asp	
1						5				10			15			
Lys	Ile	Ile	Ile	Ile	Ala	His	Arg	Gly	Ala	Ser	Gly	Tyr	Leu	Pro	Glu	His
													20	25	30	
Thr	Leu	Glu	Ser	Lys	Ala	Leu	Ala	Phe	Ala	Gln	Gln	Ala	Asp	Tyr	Leu	
													35	40	45	
Glu	Gln	Asp	Leu	Ala	Met	Thr	Lys	Asp	Gly	Arg	Leu	Val	Val	Ile	His	
													50	55	60	
Asp	His	Phe	Leu	Asp	Gly	Leu	Thr	Asp	Val	Ala	Lys	Lys	Phe	Pro	His	
													65	70	75	80
Arg	His	Arg	Lys	Asp	Gly	Arg	Tyr	Tyr	Val	Ile	Asp	Phe	Thr	Leu	Lys	
													85	90	95	

Glu Ile Gln Ser Leu Glu Met Thr Glu Asn Phe Glu Thr Met Gly Gly
 100 105 110
 Lys Trp Ser Lys Ser Ser Val Val Gly Trp Pro Thr Val Arg Glu Arg
 115 120 125
 Met Arg Arg Ala Glu Pro Ala Ala Asp Gly Val Gly Ala Ala Ser Arg
 130 135 140
 Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Ala Thr
 145 150 155 160
 Asn Ala Ala Cys Ala Trp Leu Glu Ala Gln Glu Glu Glu Val Gly
 165 170 175
 Phe Pro Val Thr Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Ala
 180 185 190
 Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly
 195 200 205
 Leu Ile His Ser Gln Arg Arg Gln Asp Ile Leu Asp Leu Trp Ile Tyr
 210 215 220
 His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro
 225 230 235 240
 Gly Val Arg Tyr Pro Leu Thr Phe Gly Trp Cys Tyr Lys Leu Val Pro
 245 250 255
 Val Glu Pro Asp Lys Val Glu Glu Ala Asn Lys Gly Glu Asn Thr Ser
 260 265 270
 Leu Leu His Pro Val Ser Leu His Gly Met Asp Asp Pro Glu Arg Glu
 275 280 285
 Val Leu Glu Trp Arg Phe Asp Ser Arg Leu Ala Phe His His Val Ala
 290 295 300
 Arg Glu Leu His Pro Glu Tyr Phe Lys Asn Cys Thr Ser Gly His His
 305 310 315 320
 His His His

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1290 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

ATGGATCCAA	AAACTTAGC	CCTTCTTTA	TTAGCAGCTG	GCGTACTAGC	AGGTTGTAGC	60
AGCCATTCA	CAAATATGGC	GAATACCAA	ATGAAATCAG	ACAAAATCAT	TATTGCTCAC	120
CGTGGTCTA	GCGGTTATT	ACCAGAGCAT	ACGTTAGAAT	CTAAAGCACT	TGCCTTTGCA	180
CAACAGGCTG	ATTATTTAGA	GCAAGATT	GCAATGACTA	AGGATGGTCG	TTTAGTGGTT	240
ATTCACGATC	ACTTTTAGA	TGGCTTGACT	GATGTTGCGA	AAAAATTCCC	ACATCGTCAT	300
CGTAAAGATG	GCCGTTACTA	TGTATCGAC	TTTACCTAA	AAGAAATTCA	AAGTTTAGAA	360
ATGACAGAAA	ACTTGAAC	CATGGGTGGC	AAAGTGGCAA	AAAGTAGTGT	GGTTGGATGG	420
CCTACTGTAA	GGGAAAGAAT	GAGACGAGCT	GAGCCAGCAG	CAGATGGGGT	GGGAGCAGCA	480
TCTCGAGACC	TGGAAAAACA	TGGAGCAATC	ACAAGTAGCA	ATACAGCAGC	TACCAATGCT	540
GCTTGTGCCT	GGCTAGAACG	ACAAGAGGAG	GAGGAGGTGG	GTTTTCCAGT	CACACCTCAG	600
GTACCTTAA	GACCAATGAC	TTACAAGGCC	GCTGTAGATC	TTAGCCACTT	TTAAAAAGAA	660
AAGGGGGGAC	TGGAAGGGCT	AATTCACTCC	CAACGAAGAC	AAGATATCCT	TGATCTGTGG	720
ATCTACCACA	CACAAAGGCTA	CTTCCCTGAT	TGGCAGAACT	ACACACCAGG	GCCAGGGGTC	780
AGATATCCAC	TGACCTTTGG	ATGGTGTAC	AAGCTAGTAC	CAGTTGAGCC	AGATAAGGTA	840
GAAGAGGCCA	ATAAAGGAGA	GAACACCAAGC	TTGTTACACC	CTGTGAGCCT	GCATGGAATG	900

GATGACCCCTG	AGAGAGAAAGT	GTTAGAGTGG	AGGTTTGACA	GCCGCCTAGC	ATTTCATCAC	960
GTGGCCCGAG	AGCTGCATCC	GGAGTACTTC	AAGAACTGCA	CTAGTGAGCC	AGTAGATCCT	1020
AGACTAGAGC	CCTGGAAGCA	TCCAGGAAGT	CAGCCTAAAA	CTGCTTGTAC	CAATTGCTAT	1080
TGTAAAAAGT	GTTGCTTTCA	TTGCCAAGTT	TGTTTCATAA	CAAAAGCCTT	AGGCATCTCC	1140
TATGGCAGGA	AGAACGGAG	ACAGCGACGA	AGACCTCCTC	AAGGCAGTCA	GACTCATCAA	1200
GTTCCTCTAT	CAAAGCAACC	CACCTCCCAA	TCCCGAGGGG	ACCCGACAGG	CCCGAAGGAA	1260
ACTAGTGGCC	ACCATCACCA	TCACCATTAA				1290

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 412 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Cys	Ser	Ser	His	Ser	Ser	Asn	Met	Ala	Asn	Thr	Gln	Met	Lys	Ser	Asp
1						5				10			15		
Lys	Ile	Ile	Ile	Ala	His	Arg	Gly	Ala	Ser	Gly	Tyr	Leu	Pro	Glu	His
						20			25				30		
Thr	Leu	Glu	Ser	Lys	Ala	Leu	Ala	Phe	Ala	Gln	Gln	Ala	Asp	Tyr	Leu
						35			40			45			
Glu	Gln	Asp	Leu	Ala	Met	Thr	Lys	Asp	Gly	Arg	Leu	Val	Val	Ile	His
					50			55			60				
Asp	His	Phe	Leu	Asp	Gly	Leu	Thr	Asp	Val	Ala	Lys	Lys	Phe	Pro	His
					65			70			75			80	
Arg	His	Arg	Lys	Asp	Gly	Arg	Tyr	Tyr	Val	Ile	Asp	Phe	Thr	Leu	Lys
					85			90			95				
Glu	Ile	Gln	Ser	Leu	Glu	Met	Thr	Glu	Asn	Phe	Glu	Thr	Met	Gly	Gly
					100			105			110				
Lys	Trp	Ser	Lys	Ser	Ser	Val	Val	Gly	Trp	Pro	Thr	Val	Arg	Glu	Arg
					115			120			125				
Met	Arg	Arg	Ala	Glu	Pro	Ala	Ala	Asp	Gly	Val	Gly	Ala	Ala	Ser	Arg
					130			135			140				
Asp	Leu	Glu	Lys	His	Gly	Ala	Ile	Thr	Ser	Ser	Asn	Thr	Ala	Ala	Thr
					145			150			155			160	
Asn	Ala	Ala	Cys	Ala	Trp	Leu	Glu	Ala	Gln	Glu	Glu	Glu	Val	Gly	
					165			170			175				
Phe	Pro	Val	Thr	Pro	Gln	Val	Pro	Leu	Arg	Pro	Met	Thr	Tyr	Lys	Ala
					180			185			190				
Ala	Val	Asp	Leu	Ser	His	Phe	Leu	Lys	Glu	Lys	Gly	Gly	Leu	Glu	Gly
					195			200			205				
Leu	Ile	His	Ser	Gln	Arg	Arg	Gln	Asp	Ile	Leu	Asp	Leu	Trp	Ile	Tyr
					210			215			220				
His	Thr	Gln	Gly	Tyr	Phe	Pro	Asp	Trp	Gln	Asn	Tyr	Thr	Pro	Gly	Pro
					225			230			235			240	
Gly	Val	Arg	Tyr	Pro	Leu	Thr	Phe	Gly	Trp	Cys	Tyr	Lys	Leu	Val	Pro
					245			250			255				
Val	Glu	Pro	Asp	Lys	Val	Glu	Glu	Ala	Asn	Lys	Gly	Glu	Asn	Thr	Ser
					260			265			270				
Leu	Leu	His	Pro	Val	Ser	Leu	His	Gly	Met	Asp	Asp	Pro	Glu	Arg	Glu
					275			280			285				
Val	Leu	Glu	Trp	Arg	Phe	Asp	Ser	Arg	Leu	Ala	Phe	His	His	Val	Ala
					290			295			300				

Arg	Glu	Leu	His	Pro	Glu	Tyr	Phe	Lys	Asn	Cys	Thr	Ser	Glu	Pro	Val
305					310				315					320	
Asp	Pro	Arg	Leu	Glu	Pro	Trp	Lys	His	Pro	Gly	Ser	Gln	Pro	Lys	Thr
						325				330				335	
Ala	Cys	Thr	Asn	Cys	Tyr	Cys	Lys	Lys	Cys	Cys	Phe	His	Cys	Gln	Val
						340			345					350	
Cys	Phe	Ile	Thr	Lys	Ala	Leu	Gly	Ile	Ser	Tyr	Gly	Arg	Lys	Lys	Arg
							355		360			365			
Arg	Gln	Arg	Arg	Arg	Pro	Pro	Gln	Gly	Ser	Gln	Thr	His	Gln	Val	Ser
							370		375			380			
Leu	Ser	Lys	Gln	Pro	Thr	Ser	Gln	Ser	Arg	Gly	Asp	Pro	Thr	Gly	Pro
							385		390		395			400	
Lys	Glu	Thr	Ser	Gly	His	His	His	His	His	His					
							405				410				

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 981 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

ATGGATCCAA	GCAGCCATT	ATCAAATATG	GCGAATA	ACCC	AAATGAA	ATC	AGACAAA	ATC	60		
ATTATTGCTC	ACCGTGGT	GC	TAGCGGT	TAT	TTA	GAC	ATACGTT	AGA	120		
CTTGC	TTTG	CAACACAGG	C	TGATT	TTTA	GAGCAAG	A	TAGCAATG	AC	180	
CGTTTAGT	GG	TC	ACTTTT	TA	GATGG	CTG	CTGATG	TTG	240		
CCACATCG	TC	ATCGTAA	AGA	TGGCG	TTAC	TATGT	CATCG	AA	300		
CAAAGTT	AA	AAATGAC	AGA	AAAC	TTGAA	ACCATGG	GGT	GCAAG	TTG	360	
GTGGTT	GG	GC	CTACT	G	TGAA	AGG	AGAC	GAG	TC	420	
GTGGGAGC	AG	CAT	TCGAGA	C	CCTGG	AAAAA	CATGG	GCAA	CA	480	
GCTACCA	ATG	CTG	TTGT	G	CTGG	CTAGA	GA	TCACA	AG	540	
GTCACAC	CTC	AGGTAC	CTT	AAGAC	CAAT	GTAC	AG	AG	CAG	600	
TTTTTAA	AA	AAAGGG	GGG	ACTGG	AAAGG	CTAATT	CACT	CCC	AAAGG	660	
CTTGATCT	GT	GGAT	CTACCA	CA	CACAC	AAAGG	CT	ACAC	AC	720	
GGGCCAG	GG	TCAGA	TATCC	ACTG	AC	GGATGG	TG	ACA	AGCT	780	
CCAGATA	AGG	TAGA	AGAGGC	CA	ATAA	AGGA	GAGAAC	CCA	GTG	840	
CTGCATGG	AA	TGG	ATGACCC	TG	AGAGAG	AA	GTGTTAG	AG	GGAGG	TTG	900
GCATTT	CATC	ACGTGG	CCCG	AGAG	CTGC	ACT	CCGGAG	TACT	TCAAGA	ACTG	960
CACCAT	CACC	ATCACC	ATTA	TTA	A						981

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 327 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Met	Asp	Pro	Ser	Ser	His	Ser	Ser	Asn	Met	Ala	Asn	Thr	Gln	Met	Lys
1					5				10					15	

Ser Asp Lys Ile Ile Ile Ala His Arg Gly Ala Ser Gly Tyr Leu Pro
 20 25 30
 Glu His Thr Leu Glu Ser Lys Ala Leu Ala Phe Ala Gln Gln Ala Asp
 35 40 45
 Tyr Leu Glu Gln Asp Leu Ala Met Thr Lys Asp Gly Arg Leu Val Val
 50 55 60
 Ile His Asp His Phe Leu Asp Gly Leu Thr Asp Val Ala Lys Lys Phe
 65 70 75 80
 Pro His Arg His Arg Lys Asp Gly Arg Tyr Tyr Val Ile Asp Phe Thr
 85 90 95
 Leu Lys Glu Ile Gln Ser Leu Glu Met Thr Glu Asn Phe Glu Thr Met
 100 105 110
 Gly Gly Lys Trp Ser Lys Ser Ser Val Val Gly Trp Pro Thr Val Arg
 115 120 125
 Glu Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Gly Val Gly Ala Ala
 130 135 140
 Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala
 145 150 155 160
 Ala Thr Asn Ala Ala Cys Ala Trp Leu Glu Ala Gln Glu Glu Glu
 165 170 175
 Val Gly Phe Pro Val Thr Pro Gln Val Pro Leu Arg Pro Met Thr Tyr
 180 185 190
 Lys Ala Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu
 195 200 205
 Glu Gly Leu Ile His Ser Gln Arg Arg Gln Asp Ile Leu Asp Leu Trp
 210 215 220
 Ile Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro
 225 230 235 240
 Gly Pro Gly Val Arg Tyr Pro Leu Thr Phe Gly Trp Cys Tyr Lys Leu
 245 250 255
 Val Pro Val Glu Pro Asp Lys Val Glu Glu Ala Asn Lys Gly Glu Asn
 260 265 270
 Thr Ser Leu Leu His Pro Val Ser Leu His Gly Met Asp Asp Pro Glu
 275 280 285
 Arg Glu Val Leu Glu Trp Arg Phe Asp Ser Arg Leu Ala Phe His His
 290 295 300
 Val Ala Arg Glu Leu His Pro Glu Tyr Phe Lys Asn Cys Thr Ser Gly
 305 310 315 320
 His His His His His
 325

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1242 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

ATGGATCCAA GCAGCCATTC ATCAAATATG GCGAATAACCC AAATGAAATC AGACAAAATC	60
ATTATTGCTC ACCGTGGTGC TAGCGTTAT TTACCAAGAGC ATACGTTAGA ATCTAAAGCA	120
CTTGCCTTG CACAAACAGGC TGATTATTTA GAGCAAGATT TAGCAATGAC TAAGGATGGT	180
CGTTTAGTGG TTATTCACGA TCACTTTTA GATGGCTTGA CTGATGTTGC GAAAAAAATTC	240
CCACATCGTC ATCGTAAAGA TGGCCGTTAC TATGTCATCG ACTTTACCTT AAAAGAAATT	300

CAAAGTTAG	AAATGACAGA	AAACTTGAA	ACCATGGGTG	GCAAGTGGTC	AAAAAGTAGT	360
GTGGTTGGAT	GGCCTACTGT	AAGGGAAAGA	ATGAGACGAG	CTGAGCCAGC	AGCAGATGGG	420
GTGGGAGCAG	CATCTCGAGA	CCTGGAAAAA	CATGGAGCAA	TCACAAGTAG	CAATACAGCA	480
GCTACCAATG	CTGCTTGTGC	CTGGCTAGAA	GCACAAGAGG	AGGAGGAGGT	GGGTTTCCA	540
GTCACACCTC	AGGTACCTT	AAGACCAATG	ACTTACAAGG	CAGCTGTAGA	TCTTAGCCAC	600
TTTTTAAAG	AAAAGGGGGG	ACTGGAAGGG	CTAATTCACT	CCCAACGAAG	ACAAGATATC	660
CTTGATCTGT	GGATCTACCA	CACACAAGGC	TACTTCCCTG	ATTGGCAGAA	CTACACACCA	720
GGGCCAGGGG	TCAGATATCC	ACTGACCTT	GGATGGTGCT	ACAAGCTAGT	ACCAGTTGAG	780
CCAGATAAGG	TAGAAGAGGC	CAATAAAGGA	GAGAACACCA	GCTTGTAC	CCCTGTGAGC	840
CTGCATGGAA	TGGATGACCC	TGAGAGAGAA	GTGTTAGAGT	GGAGGTTGA	CAGCCGCCTA	900
GCATTTCATC	ACGTGGCCCG	AGAGCTGCAT	CCGGAGTACT	TCAAGAACTG	CACTAGTGAG	960
CCAGTAGATC	CTAGACTAGA	GCCCTGGAAG	CATCCAGGAA	GTCAGCCTAA	AACTGCTTGT	1020
ACCAATTGCT	ATTGTAAGAA	GTGTTGCTT	CATTGCCAAG	TTTGTTCAT	AACAAAAGCC	1080
TTAGGCATCT	CCTATGGCAG	GAAGAAGCGG	AGACAGCGAC	GAAGACCTCC	TCAAGGCAGT	1140
CAGACTCATC	AAGTTCTCT	ATCAAAGCAA	CCCACCTCCC	AATCCCGAGG	GGACCCGACA	1200
GGCCCGAAGG	AAACTAGTGG	CCACCATCAC	CATCACCATT	AA		1242

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 414 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

```

Met Asp Pro Ser Ser His Ser Ser Asn Met Ala Asn Thr Gln Met Lys
 1           5          10          15
Ser Asp Lys Ile Ile Ile Ala His Arg Gly Ala Ser Gly Tyr Leu Pro
 20          25          30
Glu His Thr Leu Glu Ser Lys Ala Leu Ala Phe Ala Gln Gln Ala Asp
 35          40          45
Tyr Leu Glu Gln Asp Leu Ala Met Thr Lys Asp Gly Arg Leu Val Val
 50          55          60
Ile His Asp His Phe Leu Asp Gly Leu Thr Asp Val Ala Lys Lys Phe
 65          70          75          80
Pro His Arg His Arg Lys Asp Gly Arg Tyr Tyr Val Ile Asp Phe Thr
 85          90          95
Leu Lys Glu Ile Gln Ser Leu Glu Met Thr Glu Asn Phe Glu Thr Met
100         105         110
Gly Gly Lys Trp Ser Lys Ser Ser Val Val Gly Trp Pro Thr Val Arg
115         120         125
Glu Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Gly Val Gly Ala Ala
130         135         140
Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala
145         150         155         160
Ala Thr Asn Ala Ala Cys Ala Trp Leu Glu Ala Gln Glu Glu Glu
165         170         175
Val Gly Phe Pro Val Thr Pro Gln Val Pro Leu Arg Pro Met Thr Tyr
180         185         190
Lys Ala Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu
195         200         205
Glu Gly Leu Ile His Ser Gln Arg Arg Gln Asp Ile Leu Asp Leu Trp
210         215         220
Ile Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro

```

225	230	235	240
Gly Pro Gly Val Arg Tyr Pro Leu Thr Phe	Gly Trp Cys Tyr Lys	Lys Leu	
245	250	255	
Val Pro Val Glu Pro Asp Lys Val Glu	Glu Ala Asn Lys Gly	Glu Asn	
260	265	270	
Thr Ser Leu Leu His Pro Val Ser Leu His	Gly Met Asp Asp	Pro Glu	
275	280	285	
Arg Glu Val Leu Glu Trp Arg Phe Asp	Ser Arg Leu Ala	Phe His His	
290	295	300	
Val Ala Arg Glu Leu His Pro Glu Tyr	Phe Lys Asn Cys	Thr Ser Glu	
305	310	315	320
Pro Val Asp Pro Arg Leu Glu Pro Trp	Lys His Pro	Gly Ser Gln Pro	
325	330	335	
Lys Thr Ala Cys Thr Asn Cys Tyr	Cys Lys Cys Cys	Phe His Cys	
340	345	350	
Gln Val Cys Phe Ile Thr Lys Ala Leu	Gly Ile Ser Tyr	Gly Arg Lys	
355	360	365	
Lys Arg Arg Gln Arg Arg Pro Pro	Gln Gly Ser Gln	Thr His Gln	
370	375	380	
Val Ser Leu Ser Lys Gln Pro Thr	Ser Gln Ser Arg	Gly Asp Pro Thr	
385	390	395	400
Gly Pro Lys Glu Thr Ser Gly His His	His His His His		
405	410		

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 288 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

ATGGAGCCAG TAGATCCTAG ACTAGAGCCC	TGGAAGCATC CAGGAAGTCA	GCCTAAAACT	60
GCTTGTAACCA ATTGCTATTG TAAAAAAGTGT	TGCTTTCAATT	GCCAAGTTTG	120
GCTGCCTTAG GCATCTCCTA	TGGCAGGAAG AAGCGGAGAC	TTTCATAACA	
GGCAGTCAGA CTCATCAAGT	AGCGACGAAG ACCTCCTCAA	180	
CCGACAGGCC CGAAGGAAAC	TTCTCTATCA AAGCAACCCA	CCTCCCAATC	240
		CAAAGGGGAG	
		ACCATTAA	288

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 96 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Met Glu Pro Val Asp Pro Arg Leu Glu	Pro Trp Lys His Pro	Gly Ser	
1	5	10	15
Gln Pro Lys Thr Ala Cys Thr Asn Cys	Tyr Cys Lys Cys Cys	Phe	
20	25	30	
His Cys Gln Val Cys Phe Ile Thr Ala	Ala Leu Gly Ile Ser	Tyr Gly	

35	40	45
Arg Lys Lys Arg Arg Gln Arg Arg Arg Pro Pro Gln Gly Ser Gln Thr		
50	55	60
His Gln Val Ser Leu Ser Lys Gln Pro Thr Ser Gln Ser Lys Gly Glu		
65	70	75
Pro Thr Gly Pro Lys Glu Thr Ser Gly His His His His His His		
85	90	95

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 909 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

ATGGGTGGCA AGTGGTCAA AAGTAGTGTG GTTGGATGGC CTACTGTAAG GGAAAGAACAT	60
AGACGAGCTG AGCCAGCAGC AGATGGGTG GGAGCAGCAT CTCGAGACCT GGAAAAACAT	120
GGAGCAATCA CAAGTAGCAA TACAGCAGCT ACCAATGCTG CTTGTGCCTG GCTAGAAGCA	180
CAAGAGGAGG AGGAGGTGGG TTTTCCAGTC ACACCTCAGG TACCTTTAAG ACCAATGACT	240
TACAAGGGCAG CTGTAGATCT TAGCCACTTT TTAAAAGAAA AGGGGGGACT GGAAGGGCTA	300
ATTCACTCCC AACGAAGACA AGATATCCTT GATCTGTGGA TCTACCACAC ACAAGGCTAC	360
TTCCCTGATT GGCAGAACTA CACACCAGGG CCAGGGGTCA GATATCCACT GACCTTTGGA	420
TGGTGCTACA AGCTAGTACC AGTTGAGCCA GATAAGGTAG AAGAGGCCAA TAAAGGAGAG	480
AACACCAGCT TGTTACACCC TGTGAGCCTG CATGGAATGG ATGACCCCTGA GAGAGAAGTG	540
TTAGAGTGGG GTTTGACAG CGCCCTAGCA TTTCATCACG TGGCCCCAGA GCTGCATCCG	600
GAGTACTCTCA AGAACTGCAC TAGTGAGCCA GTAGATCCTA GACTAGAGCC CTGGAAGCAT	660
CCAGGAAGTC AGCCTAAAC TGCTTGTAAC AATTGCTATT GTAAAAAGTG TTGCTTTCAT	720
TGCCAAGTTT GTTCATAAC AGCTGCCCTA GGCATCTCCT ATGGCAGGAA GAAGCGGAGA	780
CAGCGACGAA GACCTCCTCA AGGCAGTCAG ACTCATCAAG TTTCTCTATC AAAGCAACCC	840
ACCTCCCAAT CCAAAGGGGA GCCGACAGGC CGGAAGGAAA CTAGTGGCCA CCATCACCAT	900
CACCATTA	909

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 303 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Met Gly Gly Lys Trp Ser Lys Ser Ser Val Val Gly Trp Pro Thr Val			
1	5	10	15
Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Gly Val Gly Ala			
20	25	30	
Ala Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr			
35	40	45	
Ala Ala Thr Asn Ala Ala Cys Ala Trp Leu Glu Ala Gln Glu Glu Glu			
50	55	60	
Glu Val Gly Phe Pro Val Thr Pro Gln Val Pro Leu Arg Pro Met Thr			
65	70	75	80

15 / 15

Tyr Lys Ala Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly
 85 90 95
 Leu Glu Gly Leu Ile His Ser Gln Arg Arg Gln Asp Ile Leu Asp Leu
 100 105 110
 Trp Ile Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr
 115 120 125
 Pro Gly Pro Gly Val Arg Tyr Pro Leu Thr Phe Gly Trp Cys Tyr Lys
 130 135 140
 Leu Val Pro Val Glu Pro Asp Lys Val Glu Glu Ala Asn Lys Gly Glu
 145 150 155 160
 Asn Thr Ser Leu Leu His Pro Val Ser Leu His Gly Met Asp Asp Pro
 165 170 175
 Glu Arg Glu Val Leu Glu Trp Arg Phe Asp Ser Arg Leu Ala Phe His
 180 185 190
 His Val Ala Arg Glu Leu His Pro Glu Tyr Phe Lys Asn Cys Thr Ser
 195 200 205
 Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser Gln
 210 215 220
 Pro Lys Thr Ala Cys Thr Asn Cys Tyr Cys Lys Lys Cys Cys Phe His
 225 230 235 240
 Cys Gln Val Cys Phe Ile Thr Ala Ala Leu Gly Ile Ser Tyr Gly Arg
 245 250 255
 Lys Lys Arg Arg Gln Arg Arg Arg Pro Pro Gln Gly Ser Gln Thr His
 260 265 270
 Gln Val Ser Leu Ser Lys Gln Pro Thr Ser Gln Ser Lys Gly Glu Pro
 275 280 285
 Thr Gly Pro Lys Glu Thr Ser Gly His His His His His His His
 290 295 300

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 57 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

TTCGAAACCA TGGCCGCGGA CTAGTGGCCA CCATCACCAT CACCATTAAAC GGAATTTC

57

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 17 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

Thr Ser Gly His His His His His His
 1 5

Figure 1: A/ Map of plasmid pRIT14586

B/ Coding sequence of the first 127 amino acids

of protein D and multiple cloning site. The signal sequence is underlined.

```

BamHI
ATG GAT CCA AAA ACT TTA GCC CTT TCT TTA TTA GCA GCT GGC GTA CTA GCA GGT TGT AGC AGC
Met Asp Pro Lys Thr Leu Ala Leu Ser Leu Leu Ala Ala Gly Val Leu Ala Gly Cys Ser Ser
CAT TCA TCA AAT ATG GCG AAT ACC CAA ATG AAA TCA GAC AAA ATC ATT ATT GCT CAC CGT GGT
His Ser Ser Asn Met Ala Asn Thr Gln Met Lys Ser Asp Lys Ile Ile Ile Ala His Arg Gly
GCT AGC GGT TAT TTA CCA GAG CAT ACG TTA GAA TCT AAA GCA CTT GCT TTT GCA CAA CAG GCT
Ala Ser Gly Tyr Leu Pro Glu His Thr Leu Glu Ser Lys Ala Leu Ala Phe Ala Gln Gln Ala
GAT TAT TTA GAG CAA GAT TTA GCA ATG ACT AAG GAT GGT CGT TTA GTG GTT ATT CAC GAT CAC
Asp Tyr Leu Glu Gin Asp Leu Ala Met Thr Lys Asp Gly Arg Leu Val Val Ile His Asp His
TTT TTA GAT GGC TTG ACT GAT GTT GCG AAA AAA TTC CCA CAT CGT CAT CGT AAA GAT GGC CGT
Phe Leu Asp Gly Leu Thr Asp Val Ala Lys Lys Phe Pro His Arg His Arg Lys Asp Gly Arg
TAC TAT GTC ATC GAC TTT ACC TTA AAA GAA ATT GAA AGT TTA GAA ATG ACA GAA AAC TTT GAA
Tyr Tyr Val Ile Asp Phe Thr Leu Lys Glu Ile Gin Ser Leu Glu Met Thr Glu Asn Phe Glu
NcoI SpeI XbaI
ACC ATG GCC ACG TGT GAT CAG AGC TCA ACT AGT GGA CAC CAT CAC CAT CAC CAT TAA TCT AGA
Thr Met Ala Thr Cys Asp Gin Ser Ser Thr Ser Gly His His His His His His * 
```

The amino acid sequence of Figure 1 relates to Seq. ID no. 7 and the nucleic acid sequence of Figure 1 relates to Seq. ID. No. 6.

The DNA and amino acid sequences of Nef-His; Tat-His; Nef-Tat-His fusion and mutated Tat is illustrated.

Pichia-expressed constructs (plain constructs)

⇒ Nef - HIS

DNA sequence (Seq. ID. No. 8)

ATGGGTGGCAAGTGGTCAAAAAGTAGTGTGGTTGGATGGCCTACTGTAAGGGAAAGA
ATGAGACGAGCTGAGCCAGCAGCAGATGGGTGGGAGCAGCATCTCGAGACCTGGAA
AAACATGGAGCAATCACAGTAGCAATACAGCAGCTACCAATGCTGCTTGTGCCTGG
CTAGAAGCACAGAGGAGGAGGTGGGTTTCAGTCACACCTCAGGTACCTTTA
AGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTAAAAGAAAAGGGG
GGACTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATATCCTTGATCTGTGGATC
TACCACACACAAGGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGTC
AGATATCCACTGACCTTGGATGGTGTACAAGCTAGTACCAAGTGTGAGCCAGATAAG
GTAGAAGAGGCCAATAAAGGAGAGAACACCAGCTTACACCCTGTGAGCCTGCAT
GGAATGGATGACCCTGAGAGAGAAGTGTAGAGTGGAGGTTGACAGCCGCCTAGCA
TTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTGCACTAGTGGC
CACCACCATCACCATCAA

Protein sequence (Seq. ID. No. 9)

MGGKWSKSSVVGWPTVRERMRAEPAADGVGAASRDLEKHGAITSSNTAATNAACAW
LEAQEEEVEGFPTVPLRPMTYKAADVLSHFLKEKGLEGLIHSQRQDILDLWI
YHTQGYFPDWQNYTPGPGVRYPLTFWCYKLVPVEPDKVEEANKGENTSLHPVSLH
GMDDPEREVLEWRFDRLAFHHVARELHPEYFKNCTSHELLHHHHHH.

⇒ Tat - HIS

DNA sequence (Seq. ID. No. 10)

ATGGAGCCAGTAGATCCTAGACTAGAGCCCTGGAAGCATTCCAGGAAGTCAGCCTAAA
ACTGCTTGTACCAATTGCTATTGTAAGTGTGCTTCATTGCCAGTTGTTTC
ATAACAAAAGCCTTAGGCATCTCCTATGGCAGGAAGAAGCGGAGACAGCGACGAAGA
CCTCCTCAAGGCAGTCAGACTCATCAAGTTCTATCAAAGCAACCCACCTCCCAA

TCCCGAGGGGACCCGACAGGCCGAAGGAAACTAGTGGCCACCATCACCATCACCAT
TAA

Protein sequence (Seq. ID. No. 11)

MEPVDPRLFPWKHPGSQPKTACTNCYCKKCCFHQCQVCFITKALGISYGRKKRRQRRR
PPQGSQTHQVSLSKQPTSQRGDPTGPKETSGHHHHHH.

⇒ Nef - Tat - HIS

DNA sequence (Seq. ID. No. 12)

ATGGGTGGCAAGTGGCAAAAAGTAGTGTGGTTGGATGGCCTACTGTAAGGGAAAGA
ATGAGACGAGCTGAGCCAGCAGCAGATGGGGTGGGAGCAGCATCTCGAGACCTGGAA
AAACATGGAGCAATCACAAGTAGCAATAACAGCAGCTACCAATGCTGCTTGCCCTGG
CTAGAACAGACAAGAGGAGGAGGAGGTGGGTTTCAGTCACACCTCAGGTACCTTA
AGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTAAAAGAAAAGGGG
GGACTGGAAGGGCTAATTCACTCCCACAGAACAGAACAGATATCCTTGATCTGGATC
TACCAACACACAAGGCTACTTCCTGATTGGCAGAACTACACACCAGGGCCAGGGTC
AGATATCCACTGACCTTGATGGTGCTACAAGCTAGTACCAAGTTGAGCCAGATAAG
GTAGAACAGGCCAATAAAGGAGAGAACACCAGCTGTTACACCCTGTGAGCCTGCAT
GGAATGGATGACCTTGAGAGAGAACAGCTGTAGTGGAGGTTGACAGCCGCTAGCA
TTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTGCACTAGTGAG
CCAGTAGATCCTAGACTAGAGCCCTGGAAGCATCCAGGAAGTCAGCCTAAAAGTGC
TGTACCAATTGCTATTGAAAAAGTGTGCTTCATTGCCAAGTTGTTCATACAA
AAAGCCTTAGGCATCTCTATGGCAGGAAGAACGGAGACAGCGACGAAGACCTCCT
CAAGGCAGTCAGACTCATCAAGTTCTATCAAAGCAACCCACCTCCAATCCGA
GGGGACCCGACAGGCCGAAGGAAACTAGTGGCCACCATCACCATCACCATTAAC

Protein sequence (Seq. ID. No. 13)

~~

MGGKWSKSSVVGWPTVRERMRAEPAADGVGAASRDLEKHGAISSNTAATNAACAW
LEAQEEEEVGFPVTPQVPLRPMTYKAAVDLHFLKEKGGLERGLIHSQRRQDILDLWI
YHTQGYFPDWQNYTPGPGVRYPLTFGWCYKLVPVEPDVKVEEANKGENTSLHPVSLH
GMDDPEREVLEWRFDSSLAFHHVARELHPEYFKNCTSEPVDPRLFPWKHPGSQPKTA
CTNCYCKKCCFHQCQVCFITKALGISYGRKKRRQRRPPQGSQTHQVSLSKQPTSQR
GDPTGPKETSGHHHHHH.

E.coli-expressed constructs (fusion constructs)

⇒ LipoD-Nef-HIS

DNA sequence (Seq. ID. No. 14)

Nucleotides corresponding to the Prot D Fusion Partner are in bold.

The Lipidation Signal Sequence is underlined. After processing, the cysteine coded by the TGT codon, indicated with a star, becomes the amino terminal residue which is then modified by covalently bound fatty acids.

*

```

ATGGATCCAAAACTTAGCCTTTCTTATTAGCAGCTGGCGTACTAGCAGGTTGTC
AGCAGCCATTCAAAATGGCGAATACCCAAATGAAATCAGACAAAATCATTATT
GCTCACCGTGGTGCTAGCGGTTATTACCAAGAGCATACGTTAGAATCTAAAGCACTT
GCTTTGCACAACAGGCTGATTTTAGAGCAAGATTAGCAATGACTAAGGATGGT
CGTTAGTGGTTATTCACGATCACTTTAGATGGCTTGACTGATGTTGCGAAAAAA
TTCCCACATCGTCATCGTAAAGATGGCCTTACTATGTCATCGACTTACCTTAAAAA
GAAATTCAAAGTTAGAAATGACAGAAAACTTGAAACCATGGGTGGCAAGTGGTCA
AAAAGTAGTGTGGTTGGATGGCCTACTGTAAGGGAAAGAATGAGACGAGCTGAGCCA
GCAGCAGATGGGTGGGAGCAGCATCTCGAGACCTGGAAAACATGGAGCAATCACA
AGTAGCAATACACAGCAGCTACCAATGCTGCTTGCCTGGCTAGAAGCACAAGAGGAG
GAGGAGGTGGGTTTCCAGTCACACCTCAGGTACCTTAAGACCAATGACTTACAAG
GCAGCTGTAGATCTAGCCACTTTAAAAGAAAAGGGGGACTGGAAGGGCTAATT
CACTCCCAACGAAGACAAGATATCCTTGATCTGTGGATCTACCACACACAAGGCTAC
TTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGTCAGATATCCACTGACCTT
GGATGGTGCTACAAGCTAGTACCAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAA
GGAGAGAACACCAGCTGTTACACCCTGTGAGCCTGCATGGAATGGATGACCCTGAG
AGAGAAGTGTAGAGTGGAGGTTGACAGCCGCTAGCATTCATCACGTGGCCCCGA
GAGCTGCATCCGGAGTACTTCAAGAACTGCACTAGTGGCCACCACACCACCATCACC
TAA

```

Protein sequence of the processed lipidated ProtD-Nef-HIS protein (Seq. ID. No. 15)

(Amino-acids corresponding to Prot D fusion partner are in bold)

```

CSSHSSNMANTQMKSDKIIIAHRGASGYLPEHTLESKALAFAQQADYLEQDLAMTKD
GRLVVIHDHFLDGLTDVAKKFPHRHRKDGRYYVIDFTLKEIQSLEMTENFETMGGKW
SKSSVVGWPTVRERMRAEPAADGVGAASRDLEKHGAITSSNTAATNAACAWLEAQE
EEEVGFVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQRRQDILDLWIYHTQG
YFPDWQNYTPPGPVRYPLTFWCYKLVPVEPDKVEEANKGENTSLLHPVSLHGMDDP
EREVLEWRFDSRLAFHHARELHPEYFKNCTSGHHHHHH.

```

⇒ LipoD-Nef-Tat-HIS

DNA sequence (Seq. ID. No. 16)

Nucleotides corresponding to the Prot D Fusion Partner are in bold.

The Lipidation Signal Sequence is underlined. After processing, the cysteine coded by the TGT codon, indicated with a star, becomes the amino terminal residue which is then modified by covalently bound fatty acids.

*

```

ATGGATCCAAAAACTTAGCCCTTCTTATTAGCAGCTGGCGTACTAGCAGGTTGT
AGCAGGCCATTCAAAATATGGCGAATACCCAAATGAAATCAGACAAAATCATTATT
GCTCACCGTGGTGCTAGCGGTTATTACCAAGAGCATACGTTAGAATCTAAAGCACTT
GCGTTTGCACAACAGGCTGATTATTAGAGCAAGATTAGCAATGACTAAGGATGGT
CGTTAGTGGTTATTACGATCACTTTAGATGGCTTGACTGATGTTGCGAAAAAAA
TTCCCACATCGTCATCGTAAAGATGGCCGTTACTATGTCATCGACTTACCTTAA
GAAATTCAAAGTTAGAAATGACAGAAAACTTGAAACCATTGGGTGGCAAGTGGTCA
AAAAGTAGTGTGGTTGGATGGCTACTGTAAGGGAAAGAACGAGACGAGCTGAGCCA
GCAGCAGATGGGGTGGGAGCAGCATCTCGAGACCTGGAAAAACATGGAGCAATCACA
AGTAGCAATAACAGCAGCTACCAATGCTGCTTGTGCCTGGCTAGAACGACAAGAGGAG
GAGGAGGTGGGTTTCCAGTCACACCTCAGGTACCTTAAGACCAATGACTTACAAG
GCAGCTGTAGATCTTAGCCACTTTAAAGAAAAGGGGGACTGGAAGGGCTAATT
CACTCCCAACGAAGACAAGATATCCTTGATCTGTGGATCTACACACACAAGGCTAC
TTCCCTGATTGGCAGAACTACACACCAGGCCAGGGTCAGATATCCACTGACCTT
GGATGGTGCTACAAGCTAGTACCAAGTGTGAGCCAGATAAGGTAGAAGAGGCCAATAAA
GGAGAGAACACCCAGCTTGTACACCCCTGTGAGCCTGCATGGAATGGATGACCTGAG
AGAGAAGTGTAGAGTGGAGGTTGACAGCCGCCTAGCATTTCATCACGTGGCCCGA
GAGCTGCATCCGGAGTACTTCAAGAACTGCACTAGTGAGCCAGTAGATCCTAGACTA
GAGCCCTGGAAGCATTCCAGGAAGTCAGCCTAAAAGTGTGCTTGTACCAATTGCTATTGT
AAAAAGTGTGCTTCATTGCCAAGTTGTTCTAAACAAAGCCTTAGGCATCTCC
TATGGCAGGAAGAACGCGAGACAGCGACGAAGACCTCCTCAAGGCAGTCAGACTCAT
CAAGTTCTCTATCAAAGCAACCCACCTCCAATCCGAGGGGACCCGACAGGCCCG
AAGGAAACTAGTGGCCACCATCACCATCACCATTA

```

Protein sequence of the processed lipidated ProtD-NEF-TAT-HIS protein (Seq. ID. No. 17)

(Amino-acids corresponding to Prot D fusion partner are in bold)

```

CSSHSSNMANTQMKSDKIIIAHRGASGYLPEHTLESKALAFAAQQADYLEQDLAMTKD
GRLVVIHDHFLDGLTDVAKKFPHRHRKDGRYYVIDFTLKEIQSLEMTEFNFTMGGKW
SKSSVVGPTVRERMRAEPAADGVGAASRDLEKHGAITSSNTAATNAACAWLEAQE
EEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLLEGLIHSQRQDILDLWIYHTQG
YFPDWQNYTPPGPGVRYPLTFGWCYKLVPVEPDKEANKGENTSLLHPVSLHGMDDP
EREVLEWRFDSDLAFHHVARELHPEYFKNCTSEPVDPRLEPWKHPGSQPKTACTNCY
CKKCCFHQCQVCFITKALGISYGRKKRRQRRPPQGSQTHQVSLSKQPTSQRGDPTG
PKETSGHHHHHH.

```

⇒ ProtD-Nef -HISDNA sequence (Seq. ID. No. 18)

Nucleotides corresponding to the Prot D Fusion Partner are in bold.

```

ATGGATCCAAGCAGCCATTCATCAAATATGGCGAATAACCAAATGAAATCAGACAAA
ATCATTATTGCTCACCGTGGTGTAGCGTTATTACCAAGAGCATACTGTTAGAATCT
AAAGCACTTGCGTTGCACAACAGGCTGATTATTAGAGCAAGATTAGCAATGACT
AAGGATGGTCGTTAGGGTTATTACGATCACTTTAGATGGCTTAGTGTGATGTT
GCGAAAAAAATTCCCACATCGTCATCGTAAAGATGCCGTTACTATGTCATCGACTTT
ACCTTAAAAGAAATTCAAAGTTAGAAATGACAGAAAATTGAAACCATGGGTGGC
AAGTGGTCAAAAAGTAGTGTGGTGGATGGCCTACTGTAAGGGAAAGAATGAGACGA
GCTGAGCCAGCAGCAGATGGGGTGGGAGCAGCATCTCAGACCTGGAAAAACATGGA
GCAATCACAAGTAGCAATAACAGCAGCTACCAATGCTGTTGTGCCTGGCTAGAAC
CAAGAGGAGGAGGAGGTGGGTTTCCAGTCACACCTCAGGTACCTTAAGACCAATG
ACTTACAAGGCAGCTGTAGATCTTAGCCACTTTAAAAGAAAAGGGGGACTGGAA
GGGCTAATTCACTCCCAACGAAGACAAGATATCCTTGATCTGTGGATCTACCACACA
CAAGGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCAGGGTCAGATATCCA
CTGACCTTGATGGTGTACAAGCTAGTACCAAGCTGAGCCAGATAAGGTAGAAGAG
GCCAATAAAGGAGAGAACACCAGCTTGTACACCCCTGTGAGCCTGCATGGAATGGAT
GACCCTGAGAGAGAAGTGTAGAGTGGAGGTTGACAGCCGCTAGCATTTCATCAC
GTGGCCCGAGAGCTGCATCCGGAGTACTCAAGAACTGCACTAGTGGCCACCATCAC
CATCACCAATTAA

```

Protein sequence (Seq. ID. No. 19)

(Amino-acids corresponding to Prot D fusion partner are in bold)

```

MDPSSHSSNMANTQMKSDKIIIAHRGASGYLPEHTLESKALAFQQADYL
EQDLAMTKDGRVVIHDHFLDGTDVAKKFPHRHRKDGRYYVIDFTLK
EIQSLEMTEFETMGGKWSKSSVVGWPTVRERMRRRAEPAADGVGAASRDL
EKHGAITSSNTAATNAACAWLEAQEEEVGFPVTPQVPLRPMTYKAADVLSH
FLKEKGGLIHSQRQRDILDLWIYHTQGYFPDWQNYTPGPGVRYPLTFGW
CYKLVPVEPDVKVEEANKGENTSLLHPVSLHGMDDPEREVLEWRFDSRLAFH
HVARELHPEYFKKNCTSGHHHHHH .

```

⇒ ProtD-Nef -Tat-HISDNA sequence (Seq. ID. No. 20)

7/17

Nucleotides corresponding to the Prot D Fusion Partner are in bold.

ATGGATCCAAGCAGCCATTCATCAAATATGGCGAATACCCAAATGAAATCAGACAAA
 ATCATTATTGCTCACCGTGGTCTAGCGGTTATTTACAGAGCATACTGTTAGAATCT
 AAAGCACTTGCCTTGACAAACAGGCTGATTATTTAGAGCAAGATTAGCAATGACT
 AAGGATGGTCGTTAGTGGTTATTCACGATCACTTTAGATGGCTTGACTGATGTT
 GCGAAAAAAATTCCCACATCGTCATCGTAAAGATGGCCGTACTATGTCATCGACTTT
 ACCTTAAAAGAAATTCAAAGTTAGAAATGACAGAAAACCTTGAAACCATGGGTGGC
 AAGTGGTCAAAAGTAGTGTGGTTGGATGGCCTACTGTAAGGGAAAGAATGAGACGA
 GCTGAGCCAGCAGCAGATGGGTGGAGCAGCATCTCGAGACCTGGAAAAACATGGA
 GCAATCACAAGTAGCAATACAGCAGCTACCAATGCTGCTTGTGCCTGGCTAGAACGA
 CAAGAGGAGGAGGAGGTGGTTTCCAGTCACACCTCAGGTACCTTAAGACCAATG
 ACTTACAAGGCAGCTGTAGATCTTAGCCACTTTAAAAGAAAAGGGGGACTGGAA
 GGGCTAATTCACTCCCAACGAAGACAAGATATCCTGATCTGTGGATCTACCACACA
 CAAGGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGTCAGATATCCA
 CTGACCTTGGATGGTCTACAAGCTAGTACCAAGCTTGAGCCAGATAAGGTAGAAGAG
 GCCAATAAAGGAGAGAACACCAGCTTGTACACCCCTGTGAGCCTGCATGGAATGGAT
 GACCCTGAGAGAGAAGTGTAGAGTGGAGGTTGACAGCCGCCTAGCATTTCATCAC
 GTGGCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTGCACTAGTGAGCCAGTAGAT
 CCTAGACTAGAGCCCTGGAAGCATCCAGGAAGTCAGCCTAAAAGTGTGTTACCAAT
 TGCTATTGTAAAAAGTGTGCTTCATTGCCAAGTTGTTCTATAACAAAAGCCTTA
 GGCATCTCCTATGGCAGGAAGAAGCGGAGACAGCGACGAAGACCTCCTCAAGGCAGT
 CAGACTCATCAAGTTCTATCAAAGCAACCCACCTCCCAATCCGAGGGACCCG
 ACAGGCCCGAAGGAAACTAGTGGCCACCATCACCACCATCACCATTAA

Protein sequence (Seq. ID. No. 21)

(Amino-acids corresponding to Prot D fusion partner are in bold)

MDPSSHS SNMANTQMKSDKIIIAHRGASGYLPEHTLESKALAFQQADYLEQDLAMT
 KDGRLVVIHDHFLDGLTDVAKKFPHRHRKDGRYYVIDFTLKEIQSLEMTEFETMGG
 KWSKSSVVGWPTVRERMRAEPAADGVGAASRDLEKHGAITSSNTAATNAACAWLEA
 QEEEVGFPVTPQVPLRPMTYKAADVLSHFLKEKGGLERLIHSQRQDILDWIYHT
 QGYFPDWQNYTPGPGVRYPLTFGWCYKLVPVEPKVEEANKGENTSSLHPVSLHGMD
 DPEREVLEWRFDSRLAFHHVARELHPEYFKNCTSEPVDPRLEPWKHPGSQPKTACTN
 CYCKKCCFHQCQVCFITKALGISYGRKKRRQQRRPPQGSQTHQVSLSKQPTSQRGDP
 TGPKETSGHHHHHH.

⇒ Tat-MUTANT-HIS

DNA sequence (Seq. ID. No. 22)

ATGGAGCCAGTAGATCCTAGACTAGAGCCCTGGAAGCATC	40
CAGGAAGTCAGCCTAAAAGTGTGTTGCTTACCAATTGCTATTG	80
TAAAAAGTGTGCTTCATTGCCAAGTTGTTCATATAACA	120
GCTGCCTTAGGCATCTCCTATGGCAGGAAGAACGGAGAC	160
AGCGACGAAGACCTCCTCAAGGCAGTCAGACTCATCAAGT	200
TTCTCTATCAAAGCAACCCACCTCCCATCAAAGGGAG	240
CCGACAGGCCGAAGGAAACTAGTGGCCACCATCACCATC	280
ACCATTAA	288

Protein sequence(Seq. ID. No. 23)

Mutated amino-acids in Tat sequences are in bold.

MEPVDPRLPEWKHPGSQPKTACTNCYCKKCCFHCQVCFIT	40
AALGISYGRKKRRQRRRPPQGSQTHQVSLSKOPTSQSKGE	80
PTGPKETSGHHHHHH.	95

⇒**Nef-Tat-Mutant-HIS**DNA sequence(Seq. ID. No. 24)

ATGGGTGGCAAGTGGCAAAAAAGTAGTGTGGTTGGATGGC	40
CTACTGTAAGGGAAAGAACGAGACGAGCTGAGCCAGCAGC	80
AGATGGGGTGGGAGCAGCATCTCGAGACCTGGAAAAACAT	120
GGAGCAATCACAAAGTAGCAATAACAGCAGCTACCAATGCTG	160
CTTGTGCCTGGCTAGAAGCACAAAGAGGAGGAGGTGGG	200
TTTTCAGTCACACCTCAGGTACCTTAAGACCAATGACT	240
TACAAGGCAGCTGTAGATCTTAGCCACTTTTAAAAGAAA	280
AGGGGGGACTGGAAGGGCTAATTCACTCCCACGAAGACA	320
AGATATCCTTGATCTGTGGATCTACCACACACAAGGCTAC	360
TTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGTCA	400
GATATCCACTGACCTTGGATGGTGTACAAGCTAGTACC	440
AGTTGAGCCAGATAAGGTAGAAGAGGCCATAAAAGGAGAG	480
AACACCAGCTTGTACACCCCTGTGAGCCTGCATGGAATGG	520
ATGACCTTGAGAGAGAACGTGTTAGAGTGGAGGTTGACAG	560
CCGCCTAGCATTTCATCACGTGGCCGAGAGCTGCATCCG	600
GAGTACTTCAAGAACTGCACACTAGTGAGCCAGTAGATCCTA	640
GAATAGAGCCCTGGAAGCATCCAGGAAGTCAGCCTAAAC	680
TGCTTGACCAATTGCTATTGTAAGGAGTGTGCTTTCAT	720
TGCCAAGTTGTTCATAACAGCTGCCTAGGCATCTCCT	760
ATGGCAGGAAGAACGGAGACAGCGACGAAGACCTCCTCA	800
AGGCAGTCAGACTCATCAAGTTCTATCAAAGCAACCC	840
ACCTCCCAATCCAAAGGGGAGCCGACAGGCCGAAGGAAA	880
CTAGTGGCCACCACATCACCACATTAA	909

09/509239-022300

Protein sequence (Seq. ID. No. 25)

Mutated amino-acids in Tat sequence are in bold.

MGGKWSKSSVVGPTVRERMRAEPAADGVGAASRDLEKH	40
GAITSSNTAATNAACAWLEAQEEEVGFPVTPQVPLRPMT	80
YKAADVLSHFLKEKGGLLEGLIHSQRQDILDLWIYHTQGY	120
FPDWQNYTPGPGVRYPLTFGWCYKLVPEPDKVEEANKGE	160
NTSLLHPVSLHGMDDPEREVLEWRFDSRLAFHHVARELHP	200
EYFKNCTSEPVDPRLEPWKHPGSQPKTACTNCYCKCCFH	240
CQVCFITAALGISYGRKKRRQRRRPPQGSQTHQVSLSKQP	280
TSQSKEPTGPKETSGHHHHHH.	302

卷之四

Fig . 3 Map of pRIT14597 integrative vector

MCS POLYLINKER: *nef* gene inserted between *NcoI* and *SpeI* sites.

<i>Acc II</i>	<i>Nco I</i>	<i>Spe I</i>	<i>Eco RI</i>
TTCGAAACC. <u>ATGGCCGCGGACTAGT</u> .GGC.CAC.CAT.CAC.CAT.TAA.CGGAA <u>TTTC</u>			
		Thr . Ser . Gly . His . His . His . His . His	

The amino acid sequence of Figure 3 relates to Seq. ID no. 27 and the nucleic acid sequence of Figure 3 relates to Seq. ID. No.26.

Fig . 4 SDS-PAGE: Nef-Tat-his fusion protein**Daiichi Silver Staining**

1 2 3 4

BlotαNef-Tat (LAS 97340)**Blot Tat2**

Fig . 5 SDS-PAGE: Nef-Tat-his fusion protein

Coomassie blue G250

- 1: MW (175/83/62,5/47,5/32,5/25/16,5/6,5 kDa)
- 2: TNH/23 SP eluate (4 µg)
- 3: TNH/23 Superdex200 eluate (4 µg)
- 4: TNH/23 Purified bulk (4 µg)
- 5: TNH/22 Purified bulk (4 µg)
- 6: TNH/23 Purified bulk (4 µg) / non reducing conditions
- 7: TNH/22 Purified bulk (4 µg) / non reducing conditions

Fig. 6A Tat-specific antibody titers and isotypes

Fig. 6B Tat-specific antibody titers and isotypes

group	immunization	midpoint titers				ratio IgG1/IgG2a
		Ig	IgG1	IgG2a	IgG2b	
1	reduced Tat	212799	123242	62697	55763	1,966
2	reduced Nef-Tat	75676	84046	18449	11692	4,556
3	adjuvant only	<4000	<4000	<4000	<4000	

Tat-specific Isotype patterns

Fig. 7 Antigen-specific lymphoproliferative response of pooled lymph node cells

Fig. 8 Cell binding assay

Fig. 9 Inhibition of cell growth

DECLARATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

Fusion Proteins Comprising HIV-1 Tat and/or Nef Proteins

the specification of which (check one)

[] is attached hereto.

[X] was filed on 17 September 1998 as Serial No. PCT/EP98/06040
and was amended on (if applicable).

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the patentability as defined in Title 37, Code of Federal Regulations, Section 1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, Section 119(a)-(d) or Section 365(b) of any foreign application(s) for patent or inventor's certificate, or Section 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below any foreign application for patent or Inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed.

Prior Foreign Application(s)

Number	Country	Filing Date	Priority Claimed
9720585.0	Great Britain	26 September 1997	Yes

I hereby claim the benefit under Title 35, United States Code, Section 119(e) of any United States provisional application(s) listed below.

Application Number	Filing Date
--------------------	-------------

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) or Section 365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of Title 35, United States Code, Section 112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application.

Serial No.	Filing Date	Status
------------	-------------	--------

I hereby appoint the practitioners associated with the Customer Number provided below to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith, and direct that all correspondence be addressed to that Customer Number:

Customer Number 20462.

Address all correspondence and telephone calls to Zoltan Kerekes, SmithKline Beecham Corporation, Corporate Intellectual Proprety-U.S., UW2220, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, whose telephone number is 610-270-2437.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full Name of Inventor: Claudine BRUCK

Inventor's Signature: CB Bruck Date: 7 March 2000

Residence: Rixensart, Belgium BEY

Citizenship: BELGIAN

Post Office Address: SmithKline Beecham Corporation
Corporate Intellectual Property - UW2220
P.O. Box 1539
King of Prussia, Pennsylvania 19406-0939

Full Name of Inventor: Stephane Andre Georges GODART

Inventor's Signature: Stephane Andre Georges GODART Date: 03 March 2000

Residence: Rixensart, Belgium BEY

Citizenship: BELGIAN

Post Office Address: SmithKline Beecham Corporation
Corporate Intellectual Property - UW2220
P.O. Box 1539
King of Prussia, Pennsylvania 19406-0939

Full Name of Inventor: Martine MARCHAND

Inventor's Signature: H. Shorlond Date: 20/10/2000

Residence: Glabais, Belgium *BCY*

Citizenship: **BELGIAN**

Post Office Address: SmithKline Beecham Corporation
Corporate Intellectual Property - UW2220
P.O. Box 1539
King of Prussia, Pennsylvania 19406-0939