1.
$$\frac{d}{dx}(c) = 0$$
, where c is a constant.

3.
$$\frac{d}{dx}(x^n) = nx^{n-1}.$$

5.
$$\frac{d}{dx}(e^x) = e^x$$
.

7.
$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$
.

9.
$$\frac{d}{dx}(\cos x) = -\sin x$$
.

11.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$
.

13.
$$\frac{d}{dx}(\cos ecx) = -\cos ecx \cot x$$
.

15.
$$\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$$
.

17.
$$\frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}$$
.

19.
$$\frac{d}{dx} (\cos ec^{-1}x) = \frac{-1}{x\sqrt{x^2-1}}$$
.

21.
$$\frac{d}{dx}(u^v) = u^v \frac{d}{dx}(v \ln u).$$

DIFFERENTIATION FORMULA

where u and v are functions of x.

INTEGRATION FORMULA

•	a	()		1
Z.		(x)	=	Ι.
	dx	` /		

4.
$$\frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}$$
.

6.
$$\frac{d}{dx}(a^x) = a^x \ln a$$
.

$$8. \frac{d}{dx} (\sin x) = \cos x.$$

$$\mathbf{10.} \, \frac{d}{dx} \big(\tan x \big) = \sec^2 x.$$

12.
$$\frac{d}{dx}(\cot x) = -\cos ec^2 x$$
.
14. $\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}$.

16.
$$\frac{d}{dx} (\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}}$$
.

18.
$$\frac{d}{dx} \left(\sec^{-1} x \right) = \frac{1}{x \sqrt{x^2 - 1}}$$
.

$$20. \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}.$$

$$22. \frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

INTEGRATION FORMULA

$1. \ \frac{d}{dx}[x] = 1$	$\int dx = x + C$	$8. \ \frac{d}{dx}[-\csc x] = \csc x \cot x$	$\int \csc x \cot x dx = -\csc x + C$
2. $\frac{d}{dx} \left[\frac{x^{r+1}}{r+1} \right] = x^r (r \neq -1)$	$\int x^r dx = \frac{x^{r+1}}{r+1} + C (r \neq -1)$	$9. \ \frac{d}{dx}[e^x] = e^x$	$\int e^x dx = e^x + C$
$3. \ \frac{d}{dx}[\sin x] = \cos x$	$\int \cos x dx = \sin x + C$	10. $\frac{d}{dx} \left[\frac{b^x}{\ln b} \right] = b^x (0 < b, \ b \neq 1)$	$\int b^x dx = \frac{b^x}{\ln b} + C \ (0 < b, \ b \ne 1)$
$4. \ \frac{d}{dx}[-\cos x] = \sin x$	$\int \sin x dx = -\cos x + C$	$11. \ \frac{d}{dx}[\ln x] = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + C$
$5. \ \frac{d}{dx}[\tan x] = \sec^2 x$	$\int \sec^2 x dx = \tan x + C$	12. $\frac{d}{dx}[\tan^{-1}x] = \frac{1}{1+x^2}$	$\int \frac{1}{1+x^2} dx = \tan^{-1} x + C$
$6. \ \frac{d}{dx}[-\cot x] = \csc^2 x$	$\int \csc^2 x dx = -\cot x + C$	13. $\frac{d}{dx}[\sin^{-1}x] = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C$
7. $\frac{d}{dx}[\sec x] = \sec x \tan x$	$\int \sec x \tan x dx = \sec x + C$	14. $\frac{d}{dx}[\sec^{-1} x] = \frac{1}{x\sqrt{x^2 - 1}}$	$\int \frac{1}{x\sqrt{x^2 - 1}} dx = \sec^{-1} x + C$

DIFFERENTIATION FORMULA