Pitanja za usmeni ispit iz R. Mat **MATEMATICKA LOGIKA**

1. Definicija suda i operacije sa sudovima.

```
S d (i ka ) je aka i la i ja a ece ica k j j e
```

e e biii i i la a . S d e aca a l i a abecede. S d e eiaie icia, kak bi d bili l e ije. ih l gickih (B le ih) e acija a d i a. O aca a Tak d la i

diije lii i aili la . S d e

k j kcija), \rightarrow ("ak A da B", i likacija/k dici al), \leftrightarrow ("A akk B",

l gicki e ici a (j. i b li a -, \land , i \lor) i i a 4 bi a e: \land (i, di j kcija), \lor (ili, ek i ale cija/bik dici al), i jed a :-(" e", egacija/k D da ak: Negiranje logickih sudova (i, ili, kondicional, bikondicional) u obliku recenica

• A: "Da a je lije da ." ∘ B: "Da a je ca da ."

P i je i egacija:

1. Negacija k $\,$ j kcije: "Da a $\,$ ije lije $\,$ i $\,$ ca da $\,$." $\overline{A \wedge B} \to \overline{A} \vee \overline{B}$ - "Da a $\,$ ije lije ili ije ca da ."

ca da .''

2. Negacija di j kcije: "Da a ije lije ili ca da." $\overline{A \vee B} \to \overline{A} \wedge \overline{B}$ - "Da a ije

lije i ije

Pi je da:

3. Negacija i likacije: "Ak je da a lije da , da je da a ca da ." $A
ightarrow B
ightarrow A \wedge B$ - "Da a je lije da i ije ca da ." 4. Negacija ek i ale cije: "Da a je lije da a ak je da a ca da ."

 $A \leftrightarrow B \to (A \land B) \lor (A \land B)$ - "Da a je lije da i ije ca da ili da a ije ca da ." lije da i je

D da ak: Jednakost formula, semanticke tablice, tautologija, primjeri tautologije L gicke f le jed ake ak i i e ijed i a e ijed i a ijabli.

O aca a ih a \equiv . Se a icke ablice ablice k ji a aca e g cek bi acije ijed i a ijabli, a ali ci a ijed i ihl gickih e ika. U ad je c je ijed cijele f le.

Ta l gija je f

lak jajeiiiaa eijedi aijabli. Oacaa je a⊤. U e a ick j ablici a l gija i a a ijed \top ad je Pi je i a l gija:

 \circ $A \lor A$ $\circ A \to A$ $\circ A \leftrightarrow A$ $\circ \ (A \to B) \to (B \to A)$

2. Svojstva operacija (asocijativnost, komutativnost...) 1. Ide e $lacksquare A \wedge A = A$ $\blacksquare A \lor A = A$

2. A cija i

3. K

 $A \wedge (B \wedge C) = (A \wedge B) \wedge C$ $A \vee (B \vee C) = (A \vee B) \vee C$ a i

 $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$

 $A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C)$ 5. DeM ga a a ila: $lacksquare A \wedge B = \overline{A} \vee \overline{B}$ $\blacksquare \ \overline{A \vee B} = \overline{A} \wedge \overline{B}$ 6. Ne al i ele e:

4. Di ib i

 \bullet $A \wedge 1 = A$ $\blacksquare A \lor 0 = A$ 7. A ihilacija: $A \wedge \bot = \bot$ $\blacksquare A \lor \top = \top$

8. K le e a :

o M d

o M d

Neka je B k

a ijabli)

 $\{\wedge,\neg\}$).

Na

SKUPOVI

7. Booleove funkcije.

svojstava operacija

6. **Definicija Booleove algebre.**

P a ila aklj ci a ja: ???

k je

a \perp). Neka

j a e acija a d i a.

 $lacksquare A \wedge \overline{A} = ot$

 $\blacksquare A \wedge B = B \wedge A$ $\quad \blacksquare \ \ A \vee B = B \vee A$

lacksquare A ee A = op9. I l i : $\blacksquare \overline{\overline{A}} = A$ 10. A cija: $\blacksquare A \wedge (A \vee B) = A$ $lacksquare A \lor (A \land B) = A$ 3. Neke vazne tautologije i pravila zakljucivanja.

 $\mathsf{e} \ : (A o B) \wedge A o B$

lle $: (A o B) \wedge \overline{B} o \overline{A}$

il gi a: $(A \rightarrow B) \land (B \rightarrow C) \rightarrow (A \rightarrow C)$

i ak a 2 a licia ele e a, "i i a" (aca a

dijebia e: "dij kcija" i "k j kcija". Sk Ba e 3 e acije a i a e Ble a

Sai dica (geea a) aca dajek Bleih eacija aca da (

ckjihe e ika a i bilkjaf la aca da.

Baeaca da ii ali dicaaca da, j. aii dicaciji ik ji aidkie ije ai dica. N. $\{\land,\lor,\lnot\}$ je ai dica ac a da, ali ije baa, je je dki gkakji e a i dica (.

ada e 3 e acije a B, jed a a a: "k le e i a je", i

aca a $(B, -, {}^{\complement}, \wedge, \vee, \perp, \top)$ algeb a d a, ak ad lja a ih 10

4. Definicija algebre sudova odnosno skupovni izraz algebre sudova.

5. Definicija formule racuna sudova, skupa izvodnica, te baze racuna sudova. la ac a daje akaf lakja e edbiii baeac a da l gickih e ika. O a je dalje a a lje a d d a i l gickih e ika, i e e dalje aaljaia df le edke eddjeda a ihda.

e a: Bil k ja algeb a e defi i a

k ja f kcija $F:B^n\to B$. S ak B le f kcij

e defiiaialgeba daik

Tak dje e a i a B le a algeb a

B le ih f kcija a ijabli je 2^{2^n} .

k je i ak a 2 a lici a ele e a, " la" (aca a 0) i "jedi ica" Neka je B k 1). Neka ada e 3 e acije a B, jed a a a: "k le e i a je", i d ije (aca a e je"i" baja je". Sk Ba e 3 e acije a i a e B le a algeba i aca a $(B, \neg, \cdot, +, 0, 1)$ algeb a da, akad lja a ih 10 ja Blee algeb e. e a: B le a algeb a k i ii a j a e acija ka i algeb a d a i algeb a Na k a.

a ijabli. Neka je $B=\{0,1\}$ i $(B,-,\cdot,+,0,1)$ B le a algeb a. B le a f kcija a ijabli je bil

k bi acija la i jedi ica (" la a") i ijed i f kcije ("i la a"). B j ih g cih

1. Sto je skup, kako ga zapisujemo, koje su operacije, sto je (pravi) podskup, kojih je 9

c edje e e ke ka

e ada i ablic

e bi i jed ak

k ,a

 $A = \{1, 2, 3\}$

 $B = \{1, 2, 3\}$

 $A \subseteq B$

 $A \subset C$

a ijede i ih 10 j a a ka i k d B le ih algeb i.

 $C = \{1, 2, 3, 4\}$

.Na i je:

k .

(1)

(2)

(3)

(4)

(5)

i e i ad. Tak

Sk je jeda df da e alih ja a e aicii e e defiia eg e i aka jed a d ih e elja. Sk e ce i je ka k lekcija bjeka a. Objek i k a e ele e i k a. Sk ie aca aj eliki lia, a ele e ika ali e e aiai e abajaja, . $A=\{1,2,3\}$, ili e

ada a ja ek g j a, $B = \{x \in \mathbb{Z} : 1 \le x \le 3\}.$ O e acije a k i a : \circ U ija: $A \cup B = \{x : x \in A \lor x \in B\}$ \circ Pe jek: $A \cap B = \{x : x \in A \land x \in B\}$ \circ K le e : $A = \{x : x \in U \land x \not\in A\}$ \circ Ra lika: $A \setminus B = \{x : x \in A \land x \notin B\}$ \circ Si e ic a a lika: $A \triangle B = (A \setminus B) \cup (B \setminus A)$

 \circ Ka e ije d k : $A imes B = \{(a,b) \,:\, a \in A \,\wedge\, b \in B\}$

 \circ Pdk : $A \subseteq B \leftrightarrow \forall x (x \in A \rightarrow x \in B)$ \circ Paidk: $A \subset B \leftrightarrow A \subseteq B \land A \neq B$

Pdk je k kji je ada ek dg

Pai dk je dk kji ije jedak k

jed aka akk Sk i 1,2,3 i 2,1,3

antisimetricnosti i tranzitivnosti.

2. Kada su dva skupa jednaka?

Jesu li skupovi {1,2,3} i {2,1,3} jednaki?

K d k

ijedi $A\subseteq B \ \land \ B\subseteq A$. Pi $\ \mathsf{e} \quad :A=B$. jed akije i aj i e ele e e. **BINARNE RELACIJE**

1. Definirajte binarnu relaciju na skupu X i svojstva refleksivnosti, simetricnosti,

Dajte primjer relacija koji zadovoljavaju po jednu od ovih uvjeta.

Daka jedaka aki aj i e ele e e. Falije e ka e da daka Ai B

 \circ Pa cijal i edjaj: e acija \leq a k \mathbb{N} . \circ T al i edjaj: e acija \leq a k \mathbb{Z} . **KOMBINATORIKA** 1. Navedi osnovna pravila prebrojavanja. Ak ed e a bil kak a edi -1 k ija, da ce ba e jed a d jih ad a a i ba e da edea. P ce : Ak je ed e a bil kak a je e k ija, da ba jed a k ija ad i ba $\lfloor \frac{m-1}{n} \rfloor + 1$ ed e a. k .N . k 1,2 je d k Pdk je aki k k ji je ada ek d g

o Pacijal i edjaj: akk je eflek i a, a i i e ic a i a i i a.

edi a.

o T al i edjaj: akk je a cijal i edjaj i kada da ele e a edj b

k $A = \{1, 2, 3\}$. P i je i elacija k je ad lja aj jed d ih j a a:

acija -cla g k a je n!. e Pe acija a aljaje je - kaaalje adele e aa-clag lika. Bj acija -cla g lik aje $\frac{m!}{\lambda_1!*\lambda_2!*\ldots*\lambda_n!}$, gdje $\lambda_1,\;\lambda_2,\;\ldots,\;\lambda_n$ ka i ele e a a lik a, a je ka di al lik a (d b jka i ele e a a). Pe acija je eb i l caj - e acije (ak dje a a a ijacija), gdje je = . B j acija -cla g k a je $\frac{n!}{(n-r)!}$. 6. Sto su r-permutacije n-clanog skupa i koliko ih ima? Na koliko nacina moze 10 ljudi sesti ako na raspolaganju imaju 20 razlicitih stolica?

a lja ja eda (ili -k bi acija) je -cla i dk -cla g k a.

aljajaje - kaaaljeadeleeaa-clagka.Bj

d ad jeg claa x_n k ji e a lja λ_n a, i gdje je b j k a i ele e a a $\lambda_1+\lambda+2+\ldots+\lambda_n=n$. M lik M aca a a $M=\{x_1^{\lambda_1},\ x_2^{\lambda_2},\ \ldots,\ x_n^{\lambda_n}\}$. acije lika (akdje a e - e acije a alja je) - kea aljee delee aa lika) kjee gdbiii lik a.

Od 30 l a abecede e a a i i $30 \cdot 30 \cdot \ldots \cdot 30 = 30^8$ l ih ijeci.

b j ih e acija ih jeg ih -k bi acija. P aka -k bi acija g

Na koliko nacina mozemo 20 knjiga staviti na policu ako imamo tri razlicite knjige od

lik agdje je = .B j e acija k ac g lik a je $\frac{k!}{\lambda_1! * \lambda_2! * \dots * \lambda_n!}$, gdje je k

dele e a a lika) k je e g dbiii lika. T je i ka - e

ka di al lika (d bjka iele eaa), a $\lambda_1, \, \lambda_2, \, \dots, \, \lambda_n$ ka

acijek ac g lik a e gcee acije(d - ke a a lje e

lika je akdje lik, ie a ka i akgele e a,

jedi ac i ac a i e e acije ih -k bi acija.

10. Sto su permutacije konacnog multiskupa i koliko ih ima?

Na koliko nacina mozemo podijeliti 12 bombona na cetvero djece ako su: a) bomboni jednaki, b) bomboni jednaki i svako dijete mora dobiti barem jedan bombon, c) bomboni razliciti? Ak ekib j $n\in\mathbb{N}$ aie ka b j $k\in\mathbb{N}$ i dih b je a $(\lambda_1+\lambda_2+\ldots+\lambda_k=n)$), ka e da je edje a k- ka $(\lambda_1, \lambda_2, \dots, \lambda_k)$ k icija b ja . Ak je $n \geq k$, da je edje a k-ka $(\lambda_1, \lambda_2, \ldots, \lambda_k)$ jaki a a b ja, i ji $\binom{n-1}{k-1}$ jakih a a a b ja .

Ak aj je e ijedi, da a ijedi i $\lambda_1,\lambda_2,\dots,\lambda_k\in\mathbb{N}_{\mathbb{Q}}$, a da ka e da je edje a k-ka $(\lambda_1,\lambda_2,\ldots,\lambda_k)$ labi a a b ja ,i ji $\binom{n+k-1}{k-1}$ labih a a a b ja

a) 12 b b a e dijeli i a 4 djece a $\binom{12+4-1}{4-1} = \binom{15}{3}$ aci a. b) 12 b b a e jeli a 4 djece (i da ak dije e a d bi i ba e jeda b b) a $\binom{12-1}{4-1} = \binom{1}{4-1} = \binom{1}{4-1}$ a i a. c) Ak aci e a lici e b b e k A, da je k aci a a k gdje je =4, $\binom{1}{4-1} = \binom{1}{4-1} = \binom{1}{$

Bijekcija je f kcija k ja ak ele e i X id je a lici ele e i Y, i k ja je

k a Y.

 \circ a) x_n a) ije jeda dk ije aka ake i ice jed ad be: $a_0^0 + a_1 \cdot n^1 + \ldots + a_m \cdot n^m$ a_n^P • b) *x* a) je jeda dk ije a ka ak e i ic e jed ad be: a_n^P k a e

f(n) = 2n + 3 (1. a j) ili $f(n) = 3n^2 + 2n + 1$

ge a bi a a elacija a k X je aki d k a X imes X. Ak je $R \subseteq X imes X$ bi a a elacija a k X, da a aki a $(x,y) \in R$ ka e da je elaciji R , i xRy. Bi a a elacija R a k X je: \circ Reflek i a: akk a aki $x \in X$ ijedi xRx. \circ Si e ic a: akk a aki $x,y\in X$ ijedi xRy o yRx. \circ A i i e ic a: akk a aki $x,y\in X$ ijedi $xRy \wedge yRx
ightarrow x=y.$ \circ T a $\,$ i $\,$ i $\,$ a: akk $\,$ a $\,$ aki $\,x,y,z\in X\,$ $\,$ ijedi $\,xRy\,\wedge\,yRz\,
ightarrow\,xRz.$ k $A = \{1, 2, 3\}$. P i je i elacija k je ad $A = \{1, 2, 3\}$ lja aj jed d ih j a a: \circ Reflek i a: $R = \{(1,1), (2,2), (3,3)\}$ • Si e ic a: $R = \{(1,2), (2,1), (2,3), (3,2)\}$ • A i i e ic a: $R = \{(1,1), (2,2), (3,3)\}$ \circ T a ii a: $R = \{(1,2), (2,3), (1,3)\}$ 2. Definirajte relaciju ekvivalencije, klasu ekvivalencije, i kvocijentni skup. Dajte primjer jedne relacije ekvivalencije, i odredite joj klasu ekvivalencije, i kvocijentni skup. da je bi a a elacija R a k X ek i ale cija akk je eflek i a, i e ic a i Ka e a ii a. elaciji ek i ale cije Klaaek i ale cije ele e a je k ih ele e a a k ji Pi e [x], a je defi i a ka $[x] = \{y \in X : xRy\}$. K cije i k k a X elaciji ek i ale cije R je k ih kla a ek i ale cije. Pi e X/R, a je defi i a ka $X/R = \{[x] : x \in X\}$. k $A = \{1, 2, 3\}$. P i je elacije ek i ale cije: $R = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$. Kla a ek i ale cije ele e a 1: $[1] = \{1,2\}$. K cije i k k a A elaciji ek i ale cije R: $A/R = \{\{1, 2\}, \{3\}\}.$ 3. Definirajte relaciju parcijalnog uredjaja i relaciju totalnog uredjaja. Dajte primjer za jedno i drugo i nacrtajte Hasseov dijagram. Bi a a elacija R a k

2. Dirichletov princip 3. Sto je podskup, a sto uredjena n-torka k a 1,2,3. U edje a - ka je k lekcija ele e a a k j j je bi a ed lijed ele e a a. N . (1,2) je edje a 2- ka (d jka), a (2,1) je d ga edje a 2- ka (d jka). U - ka a je lje da e ele e i a ljaj . N . (1,1) je edje a 2- ka (d jka). 4. Napisi FUI (formulu ukljucivanja i iskljucivanja) Ak i a k ac e k e A_1 , A_2 , i A_3 , da ijedi: $|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$ $\circ \ |A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$ P ce : Ak i a k ac e k e $A_1, A_2, ..., A_n$, da ijedi:

K bi acija a a lja je eda (ili -k bi acija) je -cla i d l i k

k a.B j -k bi acija a a lja je -cla g k a je $\binom{n+r-1}{r}$.

5. Sto su kombinacije i permutacije?

B j -k bi acija -cla g k a je $\binom{n}{r}$.

K bi acija be

acija be

Pe

Pe

n!.

5 lj di

{a,a,b,c}? Zasto?

po 4, 7, i 9 kopija?

ele e a a lik a.

Pe

acije -cla g k a e g ce e acije (d - ke a a lje e d ele e a a k a) k je e g d bi i i -cla g k a. B j - e acija -cla g k a je $\frac{n!}{(n-r)!}$ Na 20 aci a e 1. ba je i a ek d 20 lica. Na 19 aci a e 2. ba je i a ek d 19 e alih lica... Na 11 aci a e 10. baje i aek d 11 e alih lica. Uk a b j aci a je 20*19*...*11 = 20!/10!. 7. Sto su permutacije n-clanog skupa i koliko ih je? Na koliko nacina moze 5 ljudi sjesti na 5 stolica? acije -cla g k a e g ce e acije (d - ke a a lje e d ele e a a k a) k je e g d bi i i -cla g k a. B j e acija -cla g k a je

e je i a 5 lica a $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5! = 120$ aci a.

Na koliko nacina mozemo od 5 zena i 7 muskaraca odabrati 2 zene i 3 muskarca?

k a) k je e g d bi i i -cla g k a. B j -k bi acija -cla g k a je $\binom{n}{r}$.

Moze li se ta formula primijeniti u zadatku: Koliko ima 3-permutacija multiskupa M=

Mlik ilik aci lik jek kje eele e i galjai. Ka e da je

aj gdje e i cla x_1 a lja λ_1 a, d gi cla $x_2 \lambda_2$ a, i d. e

adak je b j - e acija ekglik a Mje

-cla i dk

8. Sto su r-kombinacije n-clanog skupa i koliko ih ima?

9. Sto je multiskup? Sto su r-permutacije multiskupa?

laee ei jeii

R-k bi acije -cla g k a e g ce k bi acije (d

Od 5 e a e dab a i 2 a $\binom{5}{2} = 10$ aci a. Od 7 ka aca

Koliko se osmoslovnih rijeci moze naciniti od 30 slova abecede?

 $\binom{7}{3}=35$ aci a. Uk a b j aci a je $\binom{5}{2}\cdot\binom{7}{3}=10\cdot 35=350$ aci a.

U ada k i a lik k ji ad i 3 k jige A, B, C, a a i $M=\{A^4,B^7,C^9\}$. g lik aje 20. B j e acija g lik aje $\frac{20!}{4!\cdot 7!\cdot 9!}$. Ka di al 11. Neka su X i Y konacni skupovi. Koliko ima injekcija i bijekcija sa X u Y i uz koje uvjete? ODGOVOR GENERIRAO AI, NE ZNAM JEL TOCNO I jekcija je f kcija k ja ak ele e i X id je a lici ele e i Y. B j

i jekcija je n^m , gdje je ka di al k a Y, a ka di al k a X.

jekcija. B j bijekcija je n!, gdje je ka di al

12. Definirajte slabi i jaki rastav prirodnog broja.

REKURZIJA 3 l caja: 1. f(n) = c, $\circ a_n^P =$

tupnja,

2. f(n) = Po

∘ b) ¢

Oblike li

P i je i:

 a_n^P

• $a_n + 2a_{n-1} - 3a_{n-2} = n^2 + 7n + 12$

a 2.

ja - 1 caj 2.

(2.

a j)

3. f(n) = c∘ a) d ije a ka ak e i ic e jed ad be: a_n^P ∘ b) (a ka ak e i ic e jed ad be: a_n^P 4. f(n) = cc, d, i k a e • a) d je a ka ak e i ic e jed ad be: a_n^P

 $_{-2} = 3n$ • a_n-2a_n Oblike ja - 1 caj 2. ic e jed a d be $x^2-2x+1=0
ightarrow x_1=x_2=1$ - 1 caj 2-a. K ije i • $a_n - 5a_n$ Oblik cic e jed a d be $x^2 - 5x - 6 = 0 \rightarrow x_1 = 6, x_2 = -1$ - 1 caj 3-a. K ije i ka ak • $a_n + a_{n-1} - 1$ ${f L}_2=n\cdot 3^n$ Oblik $c \cdot n^m \cdot 1$ caj 4. K ije i ka ak e i ic e jed a d be $x^2+x-2=0 \rightarrow x_1=2, x_2=-1$ - l caj 4-a.

K ije i ka ak e i ic e jed a d be $x^2+2x-3=0
ightarrow x_1=3, \ x_2=-1$ - jeda d

k ije a (x_1) je jed ak jed d k ije a ada e f le (n_1) - l caj 2-b.

a ka ak e i ic e jed ad be: