Obhajoba diplomovej práce "Multiwavelength study of variable stars"

Matúš Kocka vedúci práce Dr. Filip Hroch oponent Dr. Rudolf Gális

Ústav Teoretickej Fyziky a Astrofyziky, Prírodovedecká Fakulta, Masarykova Univerzita

"High Energy Astrophysics"

Čierne diery, neutrónové hviezdy, AGN, supernovy, GRB, vysokoenergetické kozmické žiarenie, neutrína ...

NASA Fermi LAT: 2 ročná prehliadka oblohy v 20MeV - 300GeV

Mrk 501 "SED", získaná z multifrekvenčnej observačnej kampane 15.3.2009-1.8.2009 VERITAS.

INTEGRAL, XMM - Newton

Problémy röntgenovej astronómie:

- Málo fotónov
- Zložité metódy fokusovania
- So zvyšujúcou sa vlnovou dĺškou narastajúca náročnosť detekovať fotóny.

Mäkký röntgen: 1-10 keV XMM – Newton, MOS a PN kamery Tvrdý röntgen až gamma: 20 – 200 keV INTEGRAL/IBIS, ISGRI

Obhajoba diplomovej práce

INTEGRAL/IBIS 17-80 keV

XMM/EPIC-MOS1 1-10 keV

Kataklyzmické premenné hviezdy:

Nemagnetické (A): B<10⁵G Magnetické

Polary (B): $B \sim 10^7 G - 10^9 G$ Intermediálne polary (C): $10^6 G < B < 10^7 G$

Charakteristiky:

- Sekundarna zložka vypĺňa Rocheov lalok
- Typicky málo hmotná G hviezda neskorého typu
- Primárna zložka je WD ~0.8M⊙
- Rôzne kataklyzmické udalosti, vzplanutia, etc.
- Výrazné periodické, semi-periodické a neperiodické variácie v jasnosti, nielen v optickej oblasti
- Akréčny disk, horúca škvrna

CV – hviezdy podľa orbitálnych periód

Distribúcia orbitálnych period známych CV: U Gem (UG), Z Cam (ZC), SU UMa (SU), WZ Sge (WZ), ER UMa (ER), neklas. (XX). Čiarkovane je vyznačený 2-3h gap. Aungwerojwit (2007)

Spektrum CV vo vysokých energiách. Revnivtsev et. al. (2008)

WD – Bieli trpaslíci

Table 2.1: Basic statisticks of the compact objects Shapiro & Teukolsky (2004)

Object	Mass ^a	$Radius^b$	Mean Density	Surface Potential
	[M]	[R]	$[rcm^{-3}]$	$[GM/Rc^2]$
Sun	$ m M_{\odot}$	R⊙	1	10^{-6}
White Dwarf	\lesssim ${ m M}_{\odot}$	$\sim 10^{-2} R_{\odot}$	$\lesssim 10^7$	$\sim 10^{-4}$
Neutron Star	$\sim 1-3 M_{\odot}$	$\sim 10^{-5} R_{\odot}$	$\lesssim 10^{15}$	$\sim 10^{-1}$
Black Hole	Arbitrary	$2GM/c^2$	$\sim M/R^3$	~ 1

 $^{^{}a}\mathrm{M}_{\odot} = 1.989 \times 10^{33}\mathrm{g}$

Bieli trpaslíci sa rodia, keď normálne hviezdy zomierajú

- Už v nich neprebiehajú termonukleárne reakcie
- Pomaly chladnú (ak nemajú nejaký prísun hmoty)
- Tlak elektrónovo degenerovaného plynu pôsobí proti gravitácií
- Existuje limitná hmotnosť, tzv. Chanrasekharov limit,

$$M_{ch} = 1.457 \left(\frac{2}{\mu_e}\right)^2 \mathrm{M}_{\odot}$$

Ilustratívny odhad Chandrasekharovho limitu pomocou odhadu centrálneho tlaku WD:

$$P_c \approx \frac{2}{3}\pi G \rho^2 R_{wd}^2$$
 s hustotou $\rho = M_{wd}/\frac{4}{3}\pi R_{wd}^3$

Porovnáme s tlakom elektrónovo degenerovaného plynu:
$$P = \frac{(3\pi^2)^{2/3}}{4} \hbar c \left[\left(\frac{Z}{A} \right) \frac{\rho}{m_H} \right]^{4/3}$$

Dostaneme odhad pre najväčšiu možnú hmotnosť:
$$M_{ch} \sim \frac{3\sqrt{2\pi}}{8} \left(\frac{\hbar c}{G}\right)^{3/2} \left[\left(\frac{Z}{A}\right)\frac{1}{m_H}\right]^2 M_{\odot}$$

 $^{^{}b}{\rm R}_{\odot} = 6.9599 \times 10^{10}{\rm cm}$

The progenitor of a Type la supernova

Two normal stars are in a binary pair.

The more massive star becomes a giant...

...which spills gas onto the secondary star, causing it to expand and become engulfed.

The secondary, lighter star and the core of the giant star spiral toward within a common envelope.

The common envelope is ejected, while the separation between the core and the secondary star decreases.

The remaining core of the giant collapses and becomes a white dwarf.

The aging companion The star starts swelling, spilling increases onto the white dwarf.

IP – Intermediálne polary a PSR región

Revnivtsev et. al. (2008)

Magnetické pole v IP je natoľko silné, že spôsobí deštrukciu vnútornej časti akréčneho disku. Materiál následne padá po magnetických siločiarach v akejsi "akréčnej opone" na magnetické póly trpaslíka.

- Vytvára sa stacionárna šoková oblasť s teplotou > 10 keV
- Táto oblasť "svieti" v tvrdom röntgene
- Zabrzdený materiál postupne chladne a padá na povrch v tzv. PSR oblasti
- Hlavným "chladiacim" mechanizmom je brzdné žiarenie (bremsstrahlung)

PSR – Post Shock Region

Celkové spektrum tepelného brzdného žiarenia: $F_E = \int_{R_{wd}}^{z_0} j(z) dz$

Kde
$$j(z)$$
 vyzerá: $j(z) = 9.52 \times 10^{-38} \left(\frac{\rho(z)}{\mu m_H}\right)^2 T(z)^{-1/2} \left(\frac{E}{kT(z)}\right)^{-0.4} \exp\left(-\frac{E}{kT(z)}\right)$

Zombeck (1990), Suleimanov (2005)

Určenie hmotnosti

V diplomovej práci bližšie popisujem tzv. metódu kontinua:

- Hlavný "chladiaci" mechanizmus je tepelne brzdné žiarenie.
- Comptonov jav a cyklotrónová emisia sú zanedbatelné v IP.
- Teplota PSR regiónu je stabilná.
- Vzdialenosť PSR od povrchu WD je menšia ako jeho polomer.
- Teplotu PSR je možné získať aplikáciou vhodného modelu brzdného žiarenia na data, napr v XSPECu.
- Využitím nasledovných vzťahov:

$$R_{wd} = 7.8 \times 10^8 \left[\left(\frac{1.44 \text{M}_{\odot}}{M_{wd}} \right)^{2/3} - \left(\frac{M_{wd}}{1.44 \text{M}_{\odot}} \right)^{2/3} \right]^{1/2} \text{ cm}$$

$$kT_s = 16 \times \left(\frac{M}{0.5 \mathrm{M}_{\odot}}\right) \left(\frac{R}{10^9 \mathrm{cm}}\right)^{-1} \mathrm{keV}$$

$$\frac{M_{wd}}{\mathrm{M}_{\odot}} = 1.44 \times \left[\frac{1}{2} \left(1 + \sqrt{1 + 4 \times \left(\frac{59}{kT_s} \right)^2} \right) \right]^{-5/4}$$

Nauenberg (1972)

Spracovanie

- Získanie dát: ISDC data archív ~1.8 TB http://www.isdc.unige.ch/integral/archive
- ISDC Off-line Scientific Analysis (OSA) ver. 9
- HEAsoft 6.11.1
- og_create
- ibis_science_analysis
- mosaic_spec
- Získané mozaiky v: 20-100keV pre 10 binov

- Získanie dát: XMM-Newton Science Archive ~ 5GB http://xmm.esac.esa.int/xsa/
- XMM-Newton SAS
- HEAsoft 6.11.1
- Príprava dát: cifbuild, odfingest, emchain, mos-filter
- Spektrum zdroja a pozadia: evselect
- rmfgen, arfgen, specgroup
- Získané spektrá v 1-10 keV

Na spracovanie som používal:

INTEGRAL - eddie : 2x Xeon E5420 2.5GHz (2x4 core), 10GB RAM, 8.1T disk array XMM -Troll: (moj notebook) Core i7 M620 2.67GHz (4core), 4GB RAM, 3T disk array

Obhajoba diplomovej práce

Výsledky I

Table 5.2: Summary of the observations. Columns give the object name, coordinates of the source, its orbital period and distance, XMM-Newton observation ID, total exposures times for MOS1 and MOS2, total exposures for IBIS/ISGRI, and period of INTEGRAL observations, the IPs are ordering according to their RA.

			Porb	Dist	XMM	Exp. time [ks]		Exp. time [ks]	Last obs.
obj.	R a [°]	Dec [°]	(min)	(pc)	obs. ID	MOS1	MOS2	IBIS/ISGRI	IBIS/ISGRI
IGR J15094-6649	227.358	-66.823	353.4	_	0551430301	31.61	31.62	592.46	2008-07-24
NY Lup	237.060	-45.479	574.2	540-840	0105460301	21.40	21.40	1589.29	2005-04-08
V2400 Oph	258.152	-24.245	205.8	300	0105460101	10.07	10.12	1368.89	2009-03-07
IGR J17195-4100	259.899	-41.014	240.3	110	0601270201	33.62	33.62	878.12	2008-10-23
IGR J17303-0601	262.589	-5.992	924	_	0302100201	13.28	13.28	248.62	2008-04-21
V1223 Sgr	283.759	-31.163	201.9	527	0145050101	38.66	38.67	264.66	2006-11-09
IGR J21335+5105	323.375	51.092	431.6	1400	0302100101	16.59	16.40	1589.68	2009-05-22

Table 5.4: Estimations of the WD masses for the 7 IPs studied in this work from previous reports.

System	Suzaku ^a	$Swift^b$	$RXTE^c$	$RXTE^d$	$ASCA^e$	This work
	XIS+HXD	BAT	PCA+HEXTE	PCA	SIS	XMM & Integral
	M_{WD}	M_{WD}	M_{WD}	M_{WD}	M_{WD}	M_{WD}
NY Lup	$1.15^{+0.08}_{-0.07}$	1.09 ± 0.07				0.84 ± 0.17
V2400 Oph	$0.62^{+0.06}_{-0.05}$	0.81 ± 0.10	0.59 ± 0.05	$0.71^{+0.07}_{-0.03}$	$0.68^{+0.42}_{-0.24}$	0.59 ± 0.34
V1223 Sgr	$0.75^{+0.05}_{-0.05}$	0.65 ± 0.04	0.95 ± 0.05	$1.07^{+0.08}_{-0.09}$	1.28(>0.84)	0.71 ± 0.67
IGR J17195-4100	$0.38_{-0.05}^{+0.05} \\ 0.91_{-0.17}^{+0.19}$					0.30 ± 0.11
IGR J21335+5105	$0.91^{+0.19}_{-0.17}$	0.91 ± 0.06				0.71 ± 0.60
IGR J15094-6649						0.40 ± 0.83
IGR J17303-0601	$1.06^{+0.19}_{-0.14}$	1.08 ± 0.07				0.97 ± 1.0

^a Yuasa et al. (2010)

^b Brunschweiger et al. (2009)

^c Suleimnaov et al. (2004)

^d Ramsay (2000)

^e Ezuka & Ishida (1999)

Zobrazenie spektier IGR J21335+5105, výsledná hmotnosť WD v tomto prípade: 0.7 +/- 0.6 M⊙

Záver

- Opísaná a vyskúšaná metóda určovania hmotnosti bieleho trpaslíka v IP je jednou z mála možností ako určiť jeho hmotnosť v takýchto systémoch.
- Hmotnosť WD je fundamentálny parameter, distribúcia ich hmotností a výskum akréčneho toku majú široké dôsledky nielen v štúdiu dynamiky týchto systémov, ale aj v kozmologických úvahách.
- Akrécia hmoty na kompaktné objekty je jedným z najdôležitejších zdrojov energie vo vesmíre.
- V mojej práci som určil hmotnosti 7 bielych trpaslíkov. Výsledky korešpondujú s doteraz známymi hmotnosťami. Žiaľ sú zaťažené relatívne veľkými chybami. Tie sú spôsobené prevažne zložitou kalibráciou.

Mirabel (2002)

Ďakujem za pozornosť

Prácu je možné nájasť v databáze is.muni alebo https://github.com/kockam/dipl