OpenFlow-Based Scalable Routing

with Hybrid Addresing in Data Center Networks

Fernando Crema

Corso di laurea magistrale in Data Science Università degli Studi di Roma La Sapienza

June 20, 2017

- Introduction
- Proposed Model
- 3 A comparison with other DCN fabrics
- Performance evaluation
- Conclusion
- Comments

Introduction

DCN Fabric

A system of switches and servers and the interconnections between them that can be represented as a fabric.

OpenFlow

- Is a Software Defined Network(SDN) API.
- Provides central programmable control and management of network.
 - Proactive or reactive control.
 - OF Controller.
 - Control traffic overhead for large networks.

Perform L2 and L3 forwarding by installing policies on the DCN switches.

SEATTLE

Ethernet compatible plug-and-play DCN fabric.

Problems with scalability to maintain switch states when number of hosts grow.

PortLand

L2 fabric which enables scalable routing with a virtual L2 addressing.

- Performs ARP resolution (location based Pseudo MAC).
- ② Uses location discovery protocol (LDP).
- 3 Limitated only to multi-rooted hierarchical tree topology.

IETF TRILL

Performs L2 bridging and multipath using RBridges.

- Switches learn the topology and discovers host by broadcasting local information.
- 2 Several DNC fabrics use TRILL to deal with scalability.

OSCAR

A OF based DCN fabric that uses a combination of virtual modular L2 addressing and L3 addressing to enable scalable routing in the DCN.

Proposed Model

Topologies

OSCAR can be deployed in almost any switch-centric DCN topology.

- Tree based topologies.
- Recursive topologies.
- Ontainer based modular data center topologies.

Data center topologies

Figure 1: A taxonomy of data center topologies.[7]

Fattree topology

Constraints[7]

- **1** Each *n*-port switch in edge tier is connected to $\frac{n}{2}$ servers.
- ② Remaining $\frac{n}{2}$ ports are connected to $\frac{n}{2}$ switches in aggregation level.
- Basic cell: pod
 - $\frac{n}{2}$ aggregation level switches.
 - $\frac{n}{2}$ edge-level switches.
 - Servers connected to edges.
- 4 Maximum number of hosts is $\frac{n^3}{4}$

Fattree topology

Example

Figure 2: A 3-level fat-tree topology with 4-port switches.[7]

Structure

OSCAR terminology

Figure 3: OSCAR fat-tree topology with terminology.

Functionality

Major operations

Figure 4: OSCAR major operations diagram.

Network Discovery by the Controller

- Objective to Discovery of switches and links using LLDP.
- OF Switches identified by 64 bit Data Path Ids (dpid).
 - Broadcast msgs: dpid, ports.
- 3 Applying LLDP periodically in case of failures.

Network Information Maintained in the OF Controller

- switch-in-segment(SI).
 - One time manual effort by the network administrator.
 - General control over the network in case of problems.
- hosts(dpid) = dpid, host-IP, host-MAC per switch.
- **1** hosts-in-segment(SI) = SI, ip-prefix, host-IP, host-MAC.

OSCAR requires manual configuration only during initial setup.

Loop-Free Forwarding

- Equal weigth shortest paths from an SS to another SS with Dijkstra.
- Flows entries matches with VMAC.
 - 00:00:00:00:SI1:SI2 and 00:00:00:00:SI2:SI1 are two different flows.
- Avoids forwarding loops giving directional VMAC in inter-segment routing.

Proactive Flow Installation for Forwarding

- After paths are computed, all switches have matching rules between SSes.
- Matching rules are installed for all possible paths.
- Inter-segment routing rules are installed once.

ARP Resolution

- One-hop switch intercepts and sends to controller.
- Ontroller looks at host-in-segment(SI) to determine SSI and DSI.
- 3 Returns VMAC (pair SSI, DSI).

VM Migration

- Migration within segment:
 - Update output port in L3 forwarding.
- Migration to another segment:
 - Update controllers host-in-segment(SI).
 - Update flow tables.

A comparison with other DCN fabrics

Switch state complexity

- TRILL and Seattle: all hosts forwards to every host.
 - TRILL uses less entries.
 - Order O(H) with H number of hosts.
- 2 PortLand: Hierarchichal PMAC -> O(Number of local ports)
- **3** $N + (H/N) + k_3 + 1)$ with:
 - N number of switches.
 - H number of hosts.
 - What we can do with H and N? O(N)

General comparison

Table comparing another DCN fabrics.

System model	Topology supported	Switch state	Addressing	Routing	ARP	Loops
TRILL	General topologies	O(H)	Flat; with TRILL header and extra Ethernet header	Link state broadcast	Any switch maps to MAC address of another switch	TRILL header uses TTL alike field
SEATTLE	General topologies	O(H)	Flat	Link state broadcast	One-hop DHT	Unicast loops are possible
PortLand	Multi- rooted tree	O(no. of local ports)	Hierarchical PMAC address	LDP and fabric manager	Fabric manager	LDP and hierarchical MAC
OSCAR	Topologies with modular structure	O(N)	IP for intra- segment and VMAC for inter- segment routing	Pro-active forwarding using OF	First time by OF controller; later by access switches	Shortest path routing with directional VMAC

Figure 5: Comparison of OSCAR with other DCN fabric architectures

Performance evaluation

What are we evaluating?

The performance of OSCAR is evaluated in terms of **scalability** of the OF based fabric manager.

Control traffic volume

Throughput

Conditions

- Prototypes of TRILL, SEATLE and PortLand.
- All using a fattree topology.
 - 16, 54 and 128 hosts.
- Floodlight OF controller for fabric manager modules.
- Mininet 2.1.1 to create the test environments.
- 4 All links in the network at 1Gbps capacity.
- Results are averaged over 20 runs for each experiment.

Floodlight controller

Model

IBM Server x3500 M4

Processor

Intel(R) Xeon(R) CPU E5-2620 2.00GHz processor.

Other characteristics

- Ubuntu 14.04 VM.
- **2** 3584 MB RAM
- Maximum 10 cores available.

Mininet 2.1.1

Model

Desktop PC.

Processor

Intel i7 3.40GHz processor.

Other characteristics

- Ubuntu 14.04 VM.
- 4 10 GB RAM
- 4 CPU cores available.

Volume of control packets

Figure 6: Volume of control packets per number of hosts.

Which packets?

- OF packets.
- Ontrol packets such as LLDP, ARP, DHCP.
- Unk state advertisement during sequential all-to-all ICMP.

Explanation

- TRILL and SEATTLE use broadcast of link state.
 - SEATTLE unicast of control messages.
 - Consistent hashing.
- PortLand needs ARP resolution.
- Mow OSCAR manages this problems?
 - Proactive flow installation.
 - Unicast of ARP packets.

Average per server throughput

Figure 7: Average per server throughput per number of flows.

Rules of the game

- all-to-all segment-to-segment TCP traffic.
- OCN with 8 segments.
- **1** *n* number of hosts in each segment.
 - $n \in \{1, 2, 4, 6, 8\}$
- Flows generated using DITG.

Possible explanation

$$36 = \binom{9}{2} = \frac{9!}{2!7!} = \frac{9*7}{2}$$

- Author assumes possibly 9 segments instead of 8.
- 2 According to explanation should be s-1*n.
 - "The traffic is created with n number of hosts in each segment sending flows (...) to n other hosts in each of the other segments"

Time to complete communication

Figure 8: Time needed to complete all-to-all ICMP comm increasing cores.

OF packet rate against timeline

Figure 9: OF packet rate until communication ends for fattree topology with 54 hosts.

Throughtput in OSCAR

Figure 10: Throughput in OSCAR with increasing number of segments.

Why increasing segments helps throughput?

- Inter-segment paths.
- ② Using 128 hosts.

Conclusion

Problems

- Manual configuration of DCN switches.
- ② Large control packet trafic. (ARP packet traffic).
- Resetting of TCP connections due to VM migration.
- Scalability of OF for centralized dynamic routing.

OSCAR and DCN brief recap

- Scheme of combination or Virtual MAC based L2 and L3 addressing.
- ② Use of modular VMAC minimizes the number of forwarding entries.
- As the size of DCN grows the centralized control of OF becomes a bottleneck.

OSCAR achieves

- Reduces overall traffic with a proactive approach.
- 2 Loop-free forwarding.
- Low routing delay.
- Higher throughtput.
- Seemless VM migration.
- Smaller flow tables at switches.

Comments

On definition

A routing strategy

"We propose an OpenFlow (OF)-based SCAlable Routing strategy (OSCAR) for modular data center networks (DCN) using hybrid addressing".

A DCN fabric

"We propose an **OF** based **DCN** fabric named OSCAR (OpenFlow based SCAlable Routing) that uses a com-bination of virtual modular L2 addressing and L3 addressing to enable scalable routing in the DCN"

An OF based scalable routing scheme

"(...) **An OF based scalable routing scheme** named OSCAR has been proposed for DCNs with modular structure".

On optimization terminology

In abstract

"The control traffic is **minimized** to achieve high scalability and flexibility in DCN routing"

In comparison (optimized)

"OSCAR achieves flexibility in topologies supported, **optimization** in switch state, reduction in ARP packet traffic and loop freedom."

In conclusion

"Use of modular VMAC minimizes the number of forwarding entries."

On experiments

- No mention of standard deviation of results.
- No explanation of value 20 for experiments.
- No explanation of limitating examples on graphics 3 and 4.
- No negative results?