FINANCIAL ECONOMETRICS

- Week 3, Lecture 1 -

MULTIVARIATE GARCH MODELS

VU ECONOMETRICS AND DATA SCIENCE 2024-2025

Paolo Gorgi

Today's class

- Multivariate GARCH models
 - VECH models
 - General VECH model
 - The DVECH model
 - The BEKK model
 - CCC and DCC models
- Simulate multivariate GARCH with R

Multivariate GARCH models

Modeling multiple stocks

In practice: we often deal with multiple financial assets.

Notation:

- **①** Single asset return: $y_{i,t}$, for i = 1, ..., n;
- \bigcirc Vector of n asset returns: $\mathbf{y}_t = (y_{1,t}, \dots, y_{n,t})^{\mathsf{T}}$;
- **3** Observed sample: $\{\boldsymbol{y}_t\}_{t=1}^T$.

Question: Can we model returns dynamics using n univariate GARCH models?

Answer: No. This would only be appropriate if the n returns are independent.

Problem: Empirical evidence suggests strong positive correlation across stock returns!... next slide...

Correlation across stock returns

Figure: Correlation of daily stock log-returns in S&P 100 index.

Time-varying variance and covariance (i)

Question: Can we use Vector ARMA (VARMA) models to describe the dependence structure of multiple stock returns?

Answer: No.

Problem: Both conditional variances and conditional covariances change over time!

Example: Conditional covariance and correlation between Microsoft and IBM log-returns changes dramatically over time (see next slide!)

Solution: We need multivariate GARCH models!

Time-varying variance and covariance (ii)

Figure: Rolling window estimate of variances, covariance and correlation between daily returns of MSFT and IBM (window length is 250 obs.).

Multivariate GARCH models (i)

Observation equation:

$$\boldsymbol{y}_t = \boldsymbol{\Sigma}_t^{1/2} \boldsymbol{\varepsilon}_t,$$

- $\boldsymbol{\varepsilon}_t = (\varepsilon_{1t}, \dots, \varepsilon_{nt})^{\mathsf{T}}$ is an *n*-dimensional error vector with multivariate standard normal distribution, i.e. $\boldsymbol{\varepsilon}_t \sim \mathrm{NID}_n(\mathbf{0}_n, \boldsymbol{I}_n)$.
- ② Σ_t is a symmetric and positive definite matrix that depends only on past observations Y^{t-1} .
- **3** Therefore, Σ_t is the conditional covariance matrix of y_t

$$\Sigma_t = \mathbb{V}ar(\boldsymbol{y}_t|Y^{t-1}) = \mathbb{E}(\boldsymbol{y}_t\boldsymbol{y}_t^{\mathsf{T}}|Y^{t-1}).$$

① The conditional distribution of y_t is $y_t|Y^{t-1} \sim N_n(\mathbf{0}_n, \Sigma_t)$.

Multivariate GARCH models (ii)

Note: The conditional covariance matrix Σ_t has the form

$$\Sigma_t = \begin{bmatrix} \sigma_{1t}^2 & \sigma_{12t} & \dots & \sigma_{1nt} \\ \sigma_{12t} & \sigma_{2t}^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \sigma_{(n-1)nt} \\ \sigma_{1nt} & \dots & \sigma_{(n-1)nt} & \sigma_{nt}^2 \end{bmatrix}.$$

Bivariate case (n = 2):

$$\Sigma_t = \begin{bmatrix} \sigma_{1t}^2 & \sigma_{12t} \\ \sigma_{12t} & \sigma_{2t}^2 \end{bmatrix}.$$

- Multivariate GARCH models differ in the way they specify the updating equation of the conditional covariance matrix Σ_t .
- There are different types of multivariate GARCH models: VECH-type models and CCC/DCC models.

VECH models

VECH model: most natural multivariate GARCH!

Idea: we can put the conditional covariance matrix Σ_t in vector form and then specify a vector-valued updating equation.

Important: we only need to specify an **updating equation** for the lower triangular elements Σ_t because Σ_t is a symmetric matrix!

- The specification of **VECH models** is based on the **half** vectorization operator $\operatorname{vech}(\cdot)$.
- The $\operatorname{vech}(\cdot)$ operator takes the lower triangular elements of Σ_t and stacks them into a vector.

The VECH operator

The $\mathbf{vech}(\cdot)$ operator stacks the lower triangular elements of a squared matrix into a vector. For instance,

if
$$\boldsymbol{A} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix}$$
, then $\operatorname{vech}(\boldsymbol{A}) = \begin{bmatrix} \alpha_{11} \\ \alpha_{21} \\ \alpha_{31} \\ \alpha_{22} \\ \alpha_{32} \\ \alpha_{33} \end{bmatrix}$.

In general: $\operatorname{vech}(\cdot)$ of $n \times n$ matrix produces $\tilde{n} = n(n+1)/2$ vector that contains all lower triangular elements.

The bivariate VECH(1,1) model (i)

Bivariate case: $\operatorname{vech}(\Sigma_t) = (\sigma_{1,t}^2, \sigma_{12,t}, \sigma_{2,t}^2)^{\mathsf{T}}.$

The updating equation of the **bivariate VECH**(1,1) is

$$\begin{bmatrix} \sigma_{1,t}^2 \\ \sigma_{12,t} \\ \sigma_{2,t}^2 \end{bmatrix} = \begin{bmatrix} \tilde{\omega}_1 \\ \tilde{\omega}_2 \\ \tilde{\omega}_3 \end{bmatrix} + \begin{bmatrix} \tilde{\beta}_{11} & \tilde{\beta}_{12} & \tilde{\beta}_{12} \\ \tilde{\beta}_{21} & \tilde{\beta}_{22} & \tilde{\beta}_{23} \\ \tilde{\beta}_{31} & \tilde{\beta}_{32} & \tilde{\beta}_{33} \end{bmatrix} \begin{bmatrix} \sigma_{1,t-1}^2 \\ \sigma_{12,t-1} \\ \sigma_{2,t-1}^2 \end{bmatrix} + \begin{bmatrix} \tilde{\alpha}_{11} & \tilde{\alpha}_{12} & \tilde{\alpha}_{13} \\ \tilde{\alpha}_{21} & \tilde{\alpha}_{22} & \tilde{\alpha}_{23} \\ \tilde{\alpha}_{31} & \tilde{\alpha}_{32} & \tilde{\alpha}_{33} \end{bmatrix} \begin{bmatrix} y_{1,t-1}^2 \\ y_{1,t-1}y_{2,t-1} \\ y_{2,t-1}^2 \end{bmatrix}$$

- Σ_t depends only on past observations (and parameters) through $y_{1,t-1}^2$ and $y_{2,t-1}^2$ and $y_{1,t-1}^2y_{2,t-1}$.
- $y_{1,t-1}^2$ can be seen as an estimate of the variance of $y_{1,t-1}$.
- The product $y_{1,t-1}y_{2,t-1}$ can be seen as estimate of the covariance between $y_{1,t-1}$ and $y_{2,t-1}$.

The VECH(p,q) model

The updating equation of the n-dimensional VECH(p,q) model is

$$\operatorname{vech}(\boldsymbol{\Sigma}_t) = \tilde{\boldsymbol{W}} + \sum_{i=1}^q \tilde{\boldsymbol{A}}_i \operatorname{vech}(\boldsymbol{y}_{t-i} \boldsymbol{y}_{t-i}^{\scriptscriptstyle \top}) + \sum_{i=1}^p \tilde{\boldsymbol{B}}_i \operatorname{vech}(\boldsymbol{\Sigma}_{t-i}),$$

- \tilde{W} is an \tilde{n} -dimensional vector of parameters;
- $\tilde{\boldsymbol{B}}_i$ and $\tilde{\boldsymbol{A}}_i$ are $\tilde{n} \times \tilde{n}$ square matrices of parameters with dimension $\tilde{n} = n(n+1)/2$.

Remark (Unconditional variance)

The unconditional covariance matrix $\Sigma = \mathbb{V}ar(y_t)$ of the VECH(p,q) model, when it exists, is given by

$$vech(\mathbf{\Sigma}) = \left(\mathbf{I}_{\tilde{n}} - \sum_{i=1}^{q} \tilde{\mathbf{A}}_{i} - \sum_{i=1}^{p} \tilde{\mathbf{B}}_{i}\right)^{-1} \tilde{\mathbf{W}}.$$

The VECH model: advantages and limitations

Important: The VECH updating equation is very general!

Example (bivariate VECH(1,1)): the updating equation of σ_{1t}^2 is:

$$\begin{split} \sigma_{1t}^2 &= \tilde{\omega}_1 + \tilde{\beta}_{11} \sigma_{1,t-1}^2 + \tilde{\beta}_{12} \sigma_{12,t-1} + \tilde{\beta}_{12} \sigma_{2,t-1}^2 + \tilde{\alpha}_{11} y_{1,t-1}^2 \\ &+ \tilde{\alpha}_{12} y_{1,t-1} y_{2,t-1} + \tilde{\alpha}_{13} y_{2,t-1}^2. \end{split}$$

- The conditional variance σ_{1t}^2 depends on lagged values of $y_{1,t}^2$, $y_{2,t}^2$ and $y_{1,t}y_{2,t}$.
- Therefore, the specification is very flexible since it allows cross effects in the dynamics.
- However, the VECH(p,q) model has 2 strong limitations: the curse of dimensionality and Σ_t may not be positive definite.

The VECH model: limitations (i)

Problem 1: The curse of dimensionality

- Number of parameters to estimate increases very fast with the dimension n of the vector \mathbf{y}_t ;
- ② Number of parameters is of order $O(n^4)$;
 - for n = 2 stocks and p = q = 1, we have 21 parameters!
 - for n = 4 stocks and p = q = 1, we have 210 parameters!
 - for n = 10 stocks and p = q = 1, we have 6105 parameters!!!
- Infeasible in practical applications!

The VECH model: limitations (ii)

Problem 2: Positivity constraints

- It is not clear which restrictions we should impose on $\tilde{\boldsymbol{W}}$, $\tilde{\boldsymbol{B}}_i$ and $\tilde{\boldsymbol{A}}_i$ to ensure that $\boldsymbol{\Sigma}_t$ is a positive definite matrix for every t;
- If Σ_t is not a positive definite matrix, then it cannot be a conditional covariance!

Solution: Impose restrictions on the parameters and obtain other (less flexible) multivariate GARCH models!

- O DVECH model
- BEKK model

The DVECH model (i)

DVECH model: stands for *Diagonal VECH model!*

DVECH model: imposes that $\tilde{\boldsymbol{B}}_i$ and $\tilde{\boldsymbol{A}}_i$ are diagonal

Bivariate DVECH(1,1):

$$\begin{bmatrix} \sigma_{1,t}^2 \\ \sigma_{21,t} \\ \sigma_{2,t}^2 \end{bmatrix} = \begin{bmatrix} \tilde{\omega}_1 \\ \tilde{\omega}_2 \\ \tilde{\omega}_3 \end{bmatrix} + \begin{bmatrix} \tilde{\beta}_{11} & 0 & 0 \\ 0 & \tilde{\beta}_{22} & 0 \\ 0 & 0 & \tilde{\beta}_{33} \end{bmatrix} \begin{bmatrix} \sigma_{1,t-1}^2 \\ \sigma_{21,t-1} \\ \sigma_{2,t-1}^2 \end{bmatrix} + \begin{bmatrix} \tilde{\alpha}_{11} & 0 & 0 \\ 0 & \tilde{\alpha}_{22} & 0 \\ 0 & 0 & \tilde{\alpha}_{33} \end{bmatrix} \begin{bmatrix} y_{1,t-1}^2 \\ y_{1,t-1}y_{2,t-1} \\ y_{2,t-1}^2 \end{bmatrix}$$

Positive: number of parameters dropped from 21 to 9!

Negative: DVECH model does not allow for cross-causality in variance $(y_{1,t-1}^2$ does not affect $\sigma_{2,t}^2)$

The DVECH model (ii)

Bivariate DVECH: can easily be written as system of equations

$$\begin{split} &\sigma_{1,t}^2 = \omega_{11} + \beta_{11}\sigma_{1,t-1}^2 + \alpha_{11}y_{1,t-1}^2, \\ &\sigma_{2,t}^2 = \omega_{22} + \beta_{22}\sigma_{2,t-1}^2 + \alpha_{22}y_{2,t-1}^2, \\ &\sigma_{21,t} = \omega_{21} + \beta_{21}\sigma_{21,t-1} + \alpha_{21}y_{1,t-1}y_{2,t-1}. \end{split}$$

Important: DVECH model can be rewritten in matrix form using Hadamard matrix product ⊙

$$\begin{bmatrix} \sigma_{1,t}^2 & \sigma_{21,t} \\ \sigma_{21,t} & \sigma_{2,t}^2 \end{bmatrix} = \begin{bmatrix} \omega_{11} & \omega_{21} \\ \omega_{21} & \omega_{22} \end{bmatrix} + \begin{bmatrix} \beta_{11} & \beta_{21} \\ \beta_{21} & \beta_{22} \end{bmatrix} \odot \begin{bmatrix} \sigma_{1,t-1}^2 & \sigma_{21,t-1} \\ \sigma_{21,t-1} & \sigma_{2,t-1}^2 \end{bmatrix} \\ + \begin{bmatrix} \alpha_{11} & \alpha_{21} \\ \alpha_{21} & \alpha_{22} \end{bmatrix} \odot \begin{bmatrix} y_{1,t-1}^2 & y_{1,t-1}y_{2,t-1} \\ y_{1,t-1}y_{2,t-1} & y_{2,t-1}^2 \end{bmatrix}$$

Hadamard product

Note: In the Hadamard product \odot each element ij of a matrix is the product of the elements ij of the two original matrices.

Example: given two 3×3 matrices $\boldsymbol{A} = (\alpha_{ij})$ and $\boldsymbol{B} = (\beta_{ij})$, we have that

$$\boldsymbol{A} \odot \boldsymbol{B} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \odot \begin{bmatrix} \beta_{11} & \beta_{12} & \beta_{13} \\ \beta_{21} & \beta_{22} & \beta_{23} \\ \beta_{31} & \beta_{32} & \beta_{33} \end{bmatrix} = \begin{bmatrix} \alpha_{11}\beta_{11} & \alpha_{12}\beta_{12} & \alpha_{13}\beta_{13} \\ \alpha_{21}\beta_{21} & \alpha_{22}\beta_{22} & \alpha_{23}\beta_{23} \\ \alpha_{31}\beta_{31} & \alpha_{32}\beta_{32} & \alpha_{33}\beta_{33} \end{bmatrix}$$

Note: In DVECH formulation all matrices are symmetric because the conditional covariance must be symmetric!

Multivariate DVECH model

General multivariate DVECH(1,1) model:

$$\Sigma_t = \boldsymbol{W} + \boldsymbol{A}_1 \odot (\boldsymbol{y}_{t-1} \boldsymbol{y}_{t-1}^{\mathsf{T}}) + \boldsymbol{B}_1 \odot \Sigma_{t-1}$$
,

where W, B_1 and A_1 are symmetric $n \times n$ matrices of parameters.

General multivariate DVECH(p,q) model:

$$\Sigma_t = W + \sum_{i=1}^q A_i \odot (y_{t-i}y_{t-i}^{\mathsf{T}}) + \sum_{i=1}^p B_i \odot \Sigma_{t-i},$$

where W, B_i and A_i are symmetric $n \times n$ matrices of parameters.

The sDVECH model

Question: Can we further attenuate the curse of dimensionality?

Answer: Yes, we replace the matrices B_i and A_i of the DVECH with scalar parameters β_i and α_i . The resulting model is called the **scalar DVECH** (sDVECH) model.

The sDVECH(1,1) model is:

$$\boldsymbol{\Sigma}_t = \boldsymbol{W} + \alpha_1 \, \boldsymbol{y}_{t-1} \boldsymbol{y}_{t-1}^{\intercal} + \beta_1 \, \boldsymbol{\Sigma}_{t-1} \ ,$$

where W is a symmetric matrix, and α_1 and β_1 are scalar parameters.

The sDVECH(1,1) is the DVECH(1,1) with \mathbf{B}_1 and \mathbf{A}_1 given by

$$\boldsymbol{B}_1 = \begin{bmatrix} \beta_1 & \dots & \beta_1 \\ \vdots & \ddots & \vdots \\ \beta_1 & \dots & \beta_1 \end{bmatrix}, \qquad \boldsymbol{A}_1 = \begin{bmatrix} \alpha_1 & \dots & \alpha_1 \\ \vdots & \ddots & \vdots \\ \alpha_1 & \dots & \alpha_1 \end{bmatrix}.$$

Simulated conditional covariance DVECH

Figure: Conditional variances, covariance and correlation generated from a DVECH model.

DVECH model: limitations

Recall: DVECH is a special case of VECH model where matrices of parameters are imposed to be diagonal!

Important: DVECH attenuates the curse of dimensionality

Problem: DVECH does not ensure that the conditional covariance Σ_t be positive definite!

Conclusion: DVECH only solves one of the problems of the VECH!

We need another model!

Exercise: DVECH model

Suppose you have portfolio of \$ 100,000 that is composed for 25% of Google's stocks and for 75% of IBM's stocks.

Stock prices went up in the last month 3% for Google and 1.3% for IBM.

The monthly log-returns of Google $\{y_{1t}\}$ and IBM stocks $\{y_{2t}\}$ are well described by the following DVECH(0,1) model

$$\begin{bmatrix} \sigma_{1,t}^2 & \sigma_{21,t} \\ \sigma_{21,t} & \sigma_{2,t}^2 \end{bmatrix} = \begin{bmatrix} 0.002 & 0.001 \\ 0.001 & 0.003 \end{bmatrix} + \begin{bmatrix} 0.8 & 0.5 \\ 0.5 & 0.9 \end{bmatrix} \odot \begin{bmatrix} y_{1,t-1}^2 & y_{1,t-1}y_{2,t-1} \\ y_{1,t-1}y_{2,t-1} & y_{2,t-1}^2 \end{bmatrix}$$

Question: What is the probability that you'll loose more than \$10,000 in the next moth?

The bivariate BEKK(1,1) model

BEKK model: stands for Baba-Engle-Kraft-Kroner model.

BEKK model: solves the issue of having a positive definite conditional covariance matrix Σ_t .

Bivariate BEKK(1,1):

$$\begin{bmatrix} \sigma_{1,t}^2 & \sigma_{21,t} \\ \sigma_{21,t} & \sigma_{2,t}^2 \end{bmatrix} = \begin{bmatrix} \omega_{11} & 0 \\ \omega_{21} & \omega_{22} \end{bmatrix} \begin{bmatrix} \omega_{11} & \omega_{21} \\ 0 & \omega_{22} \end{bmatrix} + \begin{bmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{bmatrix} \begin{bmatrix} \sigma_{1,t-1}^2 & \sigma_{21,t-1} \\ \sigma_{21,t-1} & \sigma_{2,t-1}^2 \end{bmatrix} \begin{bmatrix} \beta_{11} & \beta_{21} \\ \beta_{12} & \beta_{22} \end{bmatrix} \\ + \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{bmatrix} \begin{bmatrix} y_{1,t-1}^2 & y_{1,t-1}y_{2,t-1} \\ y_{1,t-1}y_{2,t-1} & y_{2,t-1}^2 \end{bmatrix} \begin{bmatrix} \alpha_{11} & \alpha_{21} \\ \alpha_{12} & \alpha_{22} \end{bmatrix}.$$

Homework Exercise: write explicitly the bivariate BEKK above as a system of three equations.

The multivariate BEKK(p,q)

Multivariate BEKK(1,1) model:

$$\boldsymbol{\Sigma}_t = \boldsymbol{W} \boldsymbol{W}^\top + \boldsymbol{A}_1 (\boldsymbol{y}_{t-1} \boldsymbol{y}_{t-1}^\top) \boldsymbol{A}_1^\top + \boldsymbol{B}_1 \boldsymbol{\Sigma}_{t-1} \boldsymbol{B}_1^\top,$$

Multivariate BEKK(p,q) model:

$$oldsymbol{\Sigma}_t = oldsymbol{W} oldsymbol{W}^{ op} + \sum_{i=1}^q oldsymbol{A}_i (oldsymbol{y}_{t-i} oldsymbol{y}_{t-i}^{ op}) oldsymbol{A}_i^{ op} + \sum_{i=1}^p oldsymbol{B}_i oldsymbol{\Sigma}_{t-i} oldsymbol{B}_i^{ op},$$

where W is a lower triangular $n \times n$ matrix and A_i and B_i are $n \times n$ matrices.

Remark

The BEKK(p,q) model has a positive definite conditional covariance matrix Σ_t for any $t \in \mathbb{N}$ if $\Sigma_0, \ldots, \Sigma_{-p-1}$ are positive definite and W or any B_i is a full rank matrix.

BEKK model: limitations

Advantage: BEKK model can ensure a positive definite covariance matrix!

Advantage: BEKK can address curse of dimensionality by imposing restrictions on parameters (like the DVECH model!).

Limitation: disadvantages of BEKK is that the parameters are difficult to interpret.

Solution: mmm... not really... topic of research! :)

For now: let's look at other models!

The CCC model

CCC model: another approach to specify Multivariate GARCH models and deal with the curse of dimensionality.

Important: The CCC is not a special case of the very general VECH model.

CCC: stands for Constant Conditional Correlation

Main property: conditional correlation matrix is constant

• Time-variation in the conditional covariance matrix Σ_t is only provided by dynamic variances;

The bivariate CCC model (i)

Bivariate CCC model:

$$\boldsymbol{y}_t = \boldsymbol{\Sigma}_t^{1/2} \boldsymbol{\varepsilon}_t, \qquad \boldsymbol{\Sigma}_t = \boldsymbol{D}_t \boldsymbol{R} \boldsymbol{D}_t,$$

$$\boldsymbol{\Sigma}_{t} = \begin{bmatrix} \sigma_{1t}^{2} & \sigma_{12t} \\ \sigma_{12t} & \sigma_{2t}^{2} \end{bmatrix} = \begin{bmatrix} \sigma_{1t} & 0 \\ 0 & \sigma_{2t} \end{bmatrix} \begin{bmatrix} 1 & \rho_{12} \\ \rho_{12} & 1 \end{bmatrix} \begin{bmatrix} \sigma_{1t} & 0 \\ 0 & \sigma_{2t} \end{bmatrix}$$

$$\sigma_{1,t}^2 = \omega_1 + \beta_1 \sigma_{1,t-1}^2 + \alpha_1 y_{1,t-1}^2$$

$$\sigma_{2,t}^2 = \omega_2 + \beta_2 \sigma_{2,t-1}^2 + \alpha_2 y_{2,t-1}^2$$

- \mathbf{R} is a 2 × 2 correlation matrix;
- D_t is a 2 × 2 diagonal matrix containing the conditional standard deviation.

The bivariate CCC model (ii)

Note: The model is called CCC because the conditional correlation matrix \mathbf{R} is constant

$$\boldsymbol{R} = \begin{bmatrix} 1 & \rho_{12} \\ \rho_{12} & 1 \end{bmatrix}.$$

Homework exercise: show that

$$\begin{bmatrix} \sigma_{1t}^2 & \sigma_{12t} \\ \sigma_{12t} & \sigma_{2t}^2 \end{bmatrix} = \begin{bmatrix} \sigma_{1t} & 0 \\ 0 & \sigma_{2t} \end{bmatrix} \begin{bmatrix} 1 & \rho_{12} \\ \rho_{12} & 1 \end{bmatrix} \begin{bmatrix} \sigma_{1t} & 0 \\ 0 & \sigma_{2t} \end{bmatrix}$$

- $\mathbb{C}orr(y_{1t}, y_{2t}|Y^{t-1}) = \rho_{12}$
- $\mathbb{C}ov(y_{1t}, y_{2t}|Y^{t-1}) = \sigma_{12t} = \sigma_{1t}\sigma_{2t}\rho_{12}$

The bivariate CCC model (iii)

Figure: Conditional variances, covariance and correlation generated from a CCC model.

Multivariate CCC model

Multivariate CCC model:

$$\Sigma_t = D_t R D_t,$$

$$\sigma_{i,t}^2 = \omega_i + \beta_i \sigma_{i,t-1}^2 + \alpha_i y_{i,t-1}^2.$$

- $D_t = \operatorname{diag}(\sigma_{1,t}, \dots, \sigma_{n,t})$ is an $n \times n$ diagonal matrix containing the conditional standard deviation.
- \mathbf{R} is an $n \times n$ correlation matrix.

Advantage: CCC model handles both the curse of dimensionality and the positive definiteness of Σ_t ;

Disadvantage: assumption that conditional correlation matrix is constant can be very restrictive!

The DCC model (i)

DCC model: Dynamic Conditional Correlation model

DCC model: allows for time-varying conditional correlation matrix R_t

$$\boldsymbol{\Sigma}_{t} = \begin{bmatrix} \sigma_{1t}^{2} & \sigma_{12t} \\ \sigma_{12t} & \sigma_{2t}^{2} \end{bmatrix} = \begin{bmatrix} \sigma_{1t} & 0 \\ 0 & \sigma_{2t} \end{bmatrix} \begin{bmatrix} 1 & \rho_{12t} \\ \rho_{12t} & 1 \end{bmatrix} \begin{bmatrix} \sigma_{1t} & 0 \\ 0 & \sigma_{2t} \end{bmatrix}$$

$$\sigma_{1,t}^2 = \omega_1 + \beta_1 \sigma_{1,t-1}^2 + \alpha_1 y_{1,t-1}^2$$

$$\sigma_{2,t}^2 = \omega_2 + \beta_2 \sigma_{2,t-1}^2 + \alpha_2 y_{2,t-1}^2$$

The DCC model (ii)

Conditional correlation:

$$\rho_{12t} = q_{12t}/\sqrt{q_{11t}}\sqrt{q_{22t}},$$

where

$$\begin{split} q_{11t} &= \omega_q + \beta_q q_{11t-1} + \alpha_q v_{1,t-1}^2, \\ q_{22t} &= \omega_q + \beta_q q_{22t-1} + \alpha_q v_{2,t-1}^2, \\ q_{12t} &= \omega_q + \beta_q q_{12t-1} + \alpha_q v_{1,t-1} v_{2,t-1}. \end{split}$$

- $v_{1t} = y_{1t}/\sigma_{1t}$ and $v_{2t} = y_{2t}/\sigma_{2t}$ are standardized observations.
- This formulation is needed to ensure that ρ_{12t} is between -1 and 1.
- Each equation for q_{ijt} has same static parameters ω_q , β_q and α_q .

Other extensions

Important: Multivariate GARCH can be extended in many other ways:

- Observation equation:
 - Time-varying conditional mean $y_t = \mu_t + \sum_{t=0}^{1/2} \varepsilon_t$.
 - Non-Gaussian fat-tailed innovations $\epsilon_t \sim t(\nu)$.
- ② Updating equation:
 - Nonlinear, robust, leverage-effect, thresholds, etc.
 - Use of link functions such as multivariate exponential function.

Simulation: bivariate DVECH(1,1) with R (i)

```
R file: generate_DVECH.R
```

Set: Sample size and parameter values

```
n <- 1000
w11 <- 0.1
w22 <- 0.2
w12 <- 0.02
b11 <- 0.7
b22 <- 0.7
b12 <- 0.7
a11 <- 0.2
a22 <- 0.2
a12 <- 0.15
```

Define matrices **x** and **VECHt** for $\{y_t\}_{t=1}^T$ and $\{\operatorname{vech}(\Sigma_t)\}_{t=1}^T$.

```
x <- matrix(0,nrow = n, ncol = 2)
VECHt <- matrix(0,nrow=n,ncol=3)</pre>
```

Simulation: bivariate DVECH(1,1) with R (ii)

Initialize: $\operatorname{vech}(\Sigma_1)$ at unconditional covariance matrix.

```
VECHt[1,1] <- w11/(1-b11-a11)

VECHt[1,3] <- w22/(1-b22-a22)

VECHt[1,2] <- w12/(1-b12-a12)
```

Next: Generate first observation y_1

```
SIGMAt <- cbind(c(VECHt[1,1], VECHt[1,2]), c(VECHt[1,2], VECHt[1,3]))
x[1,] <- mvrnorm(1, rep(0,2), SIGMAt)</pre>
```

Note: The R function mvrnorm() generates from Multivariate normal. This function is part of package MASS.

Simulation: bivariate DVECH(1,1) with R (iii)

Finally: Run a for loop and simulate the series iterating the equations of y_t and vech (Σ_t)

```
for(t in 2:n){
   VECHt[t,1] <- w11 + b11*VECHt[t-1,1] + a11*x[t-1,1]^2
   VECHt[t,3] <- w22 + b22*VECHt[t-1,3] + a22*x[t-1,2]^2
   VECHt[t,2] <- w12 + b12*VECHt[t-1,2] + a12*x[t-1,1]*x[t-1,2]

   SIGMAt <- cbind(c(VECHt[t,1],VECHt[t,2]),c(VECHt[t,2],VECHt[t,3]))
   x[t,] <- mvrnorm(1, rep(0,2), SIGMAt)
}</pre>
```

Simulation: bivariate DVECH(1,1) with R (iv)

Figure: Series generated from a bivariate DVECH model.