SSD1680

Product Preview

176 Source x 296 Gate Red/Black/White Active Matrix EPD Display Driver with Controller

This document contains information on a product under development. Solomon Systech reserves the right to change or discontinue this product without notice.

Appendix: IC Revision history of SSD1680 Specification

Version	Change Items	Effective Date
0.10	Initial Release	28-Feb-19
0.11	Updated Feature list	02-Apr-19
0.12	Updated AC Characteristics	21-May-19
	Updated Component list	
0.13	Updated Component list	24-May-19
0.14	Updated Component list, removed case size for C0 and C1.	5-Jun-19

 SSD1680
 Rev 0.14
 P 2/46
 Jun 2019
 Solomon Systech

CONTENTS

1	GE	NERAL DESCRIPTION	5
2	FE	ATURES	5
3	OR	DERING INFORMATION	6
4	BL	OCK DIAGRAM	6
5	PIN	I DESCRIPTION	7
6	FUI	NCTIONAL BLOCK DESCRIPTION	10
	6.1	MCU INTERFACE	
	6.1.1	MCU Interface selection	
	6.1.2	MCU SERIAL INTERFACE (4-WIRE SPI)	
	6.1.3	MCU SERIAL PERIPHERAL INTERFACE (3-WIRE SPI)	
	6.2 6.3	OSCILLATORBOOSTER & REGULATOR	
	6.4	VCOM SENSING	
	6.5	RAM	13
	6.6	PROGRAMMABLE WAVEFORM FOR GATE, SOURCE AND VCOM	
	6.7 6.8	WAVEFORM SETTING TEMPERATURE SEARCHING	
	6.8.1	INTERNAL TEMPERATURE SENSOR	
	6.8.2	EXTERNAL TEMPERATURE SENSOR I2C SINGLE MASTER INTERFACE	
	6.8.3	FORMAT OF TEMPERATURE VALUE	
	6.9	WAVEFORM SETTING SEARCHING MECHANISM	
	6.10 6.11	ONE TIME PROGRAMMABLE (OTP) MEMORY THE FORMAT FOR TEMPERATURE RANGE (TR)	
	6.12	CASCADE MODE	
	6.13	VCI DETECTION	
	6.14	HV READY DETECTION	19
7	CO	MMAND TABLE	20
8	CO	MMAND DESCRIPTION	34
	8.1	DRIVER OUTPUT CONTROL (01H)	34
	8.2	GATE SCAN START POSITION (0FH)	36
	8.3	DATA ENTRY MODE SETTING (11H)	
	8.4 8.5	SET RAM X - ADDRESS START / END POSITION (44H)	
	8.6	SET RAM ADDRESS START / END FOSITION (45H)	
9		ERATION FLOW AND CODE SEQUENCE	
_	9.1	GENERAL OPERATION FLOW TO DRIVE DISPLAY PANEL	
	_	SOLUTE MAXIMUM RATING	
 11		ECTRICAL CHARACTERISTICS	
		CHARACTERISTICS	
	. AU 12.1	SERIAL PERIPHERAL INTERFACE	
		PLICATION CIRCUIT	
		CKAGE INFORMATION	
	14.1	DIE TRAY DIMENSIONS FOR SSD1680Z	
	14.2		

TABLES

TABLES	
Table 3-1 : Ordering Information	
TABLE 5-1: POWER SUPPLY PINS	
Table 5-2: Interface Logic Pins	8
Table 5-3: Analog Pins	
Table 5-4: Driver Output Pins	9
Table 5-5: Miscellaneous Pins	
Table 6-1: Interface pins assignment under different MCU interface	.10
Table 6-2: Control pins status of 4-wire SPI	.10
Table 6-3: Control pins status of 3-wire SPI	.11
TABLE 6-4: RAM BIT AND LUT MAPPING FOR 3-COLOR DISPLAY	.13
TABLE 6-5: RAM BIT AND LUT MAPPING FOR BLACK/WHITE DISPLAY	
TABLE 6-6: VS[NX-LUTM] SETTINGS FOR SOURCE VOLTAGE AND VCOM VOLTAGE	.14
TABLE 6-7: EXAMPLE OF 12-BIT BINARY TEMPERATURE SETTINGS FOR TEMPERATURE RANGES	.16
TABLE 6-8: EXAMPLE OF WAVEFORM SETTINGS SELECTION BASED ON TEMPERATURE RANGES	.17
Table 7-1: Command Table	.20
Table 10-1 : Maximum Ratings	.40
Table 11-1: DC Characteristics	.40
Table 11-2: Regulators Characteristics	
TABLE 12-1: SERIAL PERIPHERAL INTERFACE TIMING CHARACTERISTICS	.42
TABLE 13-1: COMPONENT LIST FOR SSD1680 APPLICATION CIRCUIT	.43
FIGURES	
FIGURE 4-1 : SSD1680 BLOCK DIAGRAM	6
FIGURE 6-1: WRITE PROCEDURE IN 4-WIRE SPI MODE	
FIGURE 6-2 : READ PROCEDURE IN 4-WIRE SPI MODE	
FIGURE 6-3: WRITE PROCEDURE IN 3-WIRE SPI	
FIGURE 6-4 : READ PROCEDURE IN 3-WIRE SPI MODE	
FIGURE 6-5: GATE WAVEFORM AND PROGRAMMABLE SOURCE AND VCOM WAVEFORM ILLUSTRATION	
FIGURE 6-6: WAVEFORM SETTING MAPPING	
FIGURE 6-7: THE WAVEFORM SETTING MAPPING IN OTP FOR WAVEFORM SETTING AND TEMPERATURE RANGE	
FIGURE 6-8: FORMAT OF TEMPERATURE RANGE (TR) IN OTP	
FIGURE 8-1: OUTPUT PIN ASSIGNMENT ON DIFFERENT SCAN MODE SETTING	
FIGURE 8-2: EXAMPLE OF SET DISPLAY START LINE WITH NO REMAPPING	
FIGURE 9-1: OPERATION FLOW TO DRIVE DISPLAY PANEL	
FIGURE 12-1: SPI TIMING DIAGRAM	
FIGURE 13-1: SCHEMATIC OF SSD1680 APPLICATION CIRCUIT	
FIGURE 14-1: SSD1680Z DIE TRAY INFORMATION (UNIT: MM)	
FIGURE 14-2 : SSD168078 DIE TRAY INFORMATION (JINIT: MM)	

SSD1680 | Rev 0.14 | P 4/46 | Jun 2019 | **Solomon Systech**

1 GENERAL DESCRIPTION

SSD1680 is an Active Matrix EPD display driver with controller for Red/Black/White EPD displays.

It consists of 176 source outputs, 296 gate outputs, 1 VCOM and 1VBD (for border), which can support displays with resolution up to 176x 296. In addition, SSD1680 has a cascade mode which provides two-chip solutions for displays with higher resolution.

In the SSD1680, data and commands are sent from MCU through hardware selectable serial peripheral interface. It has embedded booster, regulator and oscillator which is suitable for EPD display applications.

2 FEATURES

- Design for dot matrix type active matrix EPD display, support Red/Black/White color
- Resolution: 176 source outputs, 296 gate outputs, 1 VCOM and 1VBD (for border)
- Power supply:
 - VCI: 2.2 to 3.7V
 - VDDIO: Connect to VCI
 - VDD: 1.8V, regulate from VCI supply
- On chip display RAM
 - Mono B/W: 176x296 bits
 - Mono Red: 176x296 bits
- On-chip booster and regulator for generating VCOM, Gate and Source driving voltage
- Gate driving output voltage: 2-level outputs (VGH, VGL), Max 40Vp-p
 - VGH: 10V to 20V (Voltage adjustment step: 500mV)
 - VGL: -VGH (Voltage adjustment step: 500mV)
- Source / VBD driving output voltage: 4-levels outputs (VSH1, VSH2, VSS and VSL)
 - VSH1/VSH2: 2.4V to 17V (Voltage adjustment step: 100mV for 2.4V to 8.8V, 200mV for 8.8V to 17V)
 - VSL: -5V to -17V (Voltage adjustment step: 500mV)
- VCOM output voltage
 - DCVCOM: -3V to -0.2V in 100mV resolution
 - ACVCOM: 3-level outputs (VSH1+DCVCOM, DCVCOM, VSL+DCVCOM)
- On-chip oscillator, adjustable frame rate from 25Hz to 200Hz
- Programmable output Waveform Settings:
 - Individual setting of 5 LUT [LUT0~4]
 - VS: 2-bit per 4 phases
 - Common setting of 5 LUT
 - 48 phases (4 phases/group, 12 groups with repeat and state repeat function)
 - TP: Max. 255 frame/phase
 - RP: 1 to 256 times for repeat count
 - SR: 1 to 256 times for state repeat count; state repeat count for phase A,B and 1 state repeat count for phase C,D
 - FR: Selective Frame Rate for each group
 - XON: All Gate On Selection for each phase A,B and phase C,D
- Embedded OTP to store the waveform settings and parameters:
 - 36 sets of Waveform Settings (WS) including
 - waveform look up table (LUT),
 - Gate/Source voltage, VCOM value
 - Option for LUT end
 - 36 sets of Temperature Range (TR)
 - Display mode selection
 - 4-byte waveform version
 - 10-byte User ID
- · Embedded OTP to store the init code setting
- External or internal generated voltage for burning OTP
- Built-in CRC checking method for RAM content and WS & TR in OTP
- Panel break diagnostic
- VCI low voltage detection
- Driving voltage ready detection
- Support display partial update

SSD1680 Rev 0.14 P 5/46 Jun 2019 **Solomon Systech**

- Auto write RAM command for regular patterns
- Internal Temperature Sensor of +/-2degC accuracy from -25degC to 50degC
- I2C single master interface to communicate with external temperature sensor
- MCU interface: 4-wire or 3-wire Serial peripheral interface (maximum SPI write speed 20MHz)
- Cascade mode to support displays with higher resolution
- Available in COG package

3 ORDERING INFORMATION

Table 3-1: Ordering Information

Ordering Part Number	Package Form	Remark
SSD1680Z	Gold Bump Die	Bump Face Up On Waffle pack Die thickness: 300um Bump height: 12um
SSD1680Z8	Gold Bump Die	Bump Face Down On Waffle pack Die thickness: 300um Bump height: 12um

4 BLOCK DIAGRAM

Figure 4-1 : SSD1680 Block Diagram

SSD1680 | Rev 0.14 | P 6/46 | Jun 2019 | **Solomon Systech**

5 PIN DESCRIPTION

Key:

I = Input

O =Output

IO = Bi-directional (input/output)

P = Power pin

C = Capacitor Pin

NC = Not Connected

Table 5-1: Power Supply Pins

Name	Туре	Connect to	Function	Description	When not in use
VCI	Р	Power Supply	Power Supply	Power input pin for the chip.	-
VCIA	Р	Power Supply	Power Supply	Power input pin for the chip Connect to VCI in the application circuit.	-
VDDIO	P	Power Supply	Power for interface logic pins	Power input pin for the Interface Connect to VCI in the application circuit.	-
VDD	P	Capacitor	Regulator output	Core logic power pin VDD can be regulated internally from VCI. - For the single chip application, a capacitor should be connected between VDD and VSS under all circumstances. - For the cascade mode application, a capacitor should be connected between VDD and VSS in the master chip under all circumstances. For the slave chip, the capacitor is not necessary as VDD will be supplied from the cascade master chip externally.	-
VSS	P	VSS	GND	Ground (Digital).	-
VSSA	P	VSS	GND	Ground (Analog) - Connect to VSS in the application circuit.	-
VSSBG	Р	VSS	GND	Ground (Reference) pin Connect to VSS in the application circuit.	-
VSSGS	Р	VSS	GND	Ground (Output) pin Connect to VSS in the application circuit.	-
VPP	Р	Power Supply	OTP power	Power Supply for OTP Programming.	Open

SSD1680 Rev 0.14 P 7/46 Jun 2019 **Solomon Systech**

Table 5-2: Interface Logic Pins

Name	Туре	Connect to	Function	Description	When not in use
SCL	I	MPU	Data Bus	This pin is serial clock pin for interface. Refer to MCU interface in Section 6.1.	-
SDA	I/O	MPU	Data Bus	This pin is serial data pin for interface. Refer to MCU interface in Section 6.1.	-
CS#	I	MPU	Logic Control	This pin is the chip select input connecting to the MCU. Refer to MCU interface in Section 6.1.	VDDIO or VSS
D/C#	I	MPU	Logic Control	This pin is Data/Command control pin connecting to the MCU. Refer to MCU interface in Section 6.1.	VDDIO or VSS
RES#	I	MPU	System Reset	This pin is reset signal input. Active Low.	-
BUSY	0	MPU	Device Busy Signal	This pin is Busy state output pin. When Busy is High, the operation of the chip should not be interrupted, and command should not be sent. For example., The chip would output Busy pin as High when - Outputting display waveform; or - Programming with OTP - Communicating with digital temperature sensor In the cascade mode, the BUSY pin of the slave chip should be left open.	Open
M/S#	I	VDDIO/VSS	Cascade Mode Selection	 This pin is Master and Slave selection pin. For the single chip application, the M/S# pin should be connected to VDDIO. In the cascade mode: For Master Chip, the M/S# pin should be connected to VDDIO. For Slave Chip, the M/S# pin should be connected to VSS. The oscillator, booster and regulator circuits of the slave chip will be disabled. The corresponding pins including CL, VDD, VDDIO, VGH, VGL, VSH1, VSH2, VSL and VCOM must be connected to the master chip. 	-
CL	I/O	NC	Clock signal	 This pin is the clock signal pin. For the single chip application, the CL pin should be left open. In the cascade mode, the CL pin of the slave chip should be connected to the CL pin of the master chip. 	Open
BS1	I	VDDIO/VSS	MCU Interface Mode Selection	This pin is for selecting 3-wire or 4-wire SPI bus. BS1 MCU Interface L 4-wire SPI H 3-wire SPI (9-bit SPI)	1
TSDA	I/O	Temperature sensor SDA	Interface to Digital Temp. Sensor	This pin is I ² C Interface to digital temperature sensor Data pin. External pull up resistor is required when connecting to I ² C slave.	Open
TSCL	0	Temperature sensor SCL	Interface to Digital Temp. Sensor	This pin is I ² C Interface to digital temperature sensor Clock pin. External pull up resistor is required when connecting to I ² C slave.	Open

SSD1680 | Rev 0.14 | P 8/46 | Jun 2019 | **Solomon Systech**

Table 5-3: Analog Pins

Name	Туре	Connect to	Function	Description	When not in use
GDR	0	POWER MOSFET Driver Control	VGH, VGL Generation	This pin is N-Channel MOSFET gate drive control pin.	1
RESE	I	Booster Control Input		This pin is Current sense input pin for the control Loop.	
VGH	С	Stabilizing capacitor		This pin is Positive Gate driving voltage. Connect a stabilizing capacitor between VGH and VSS in the application circuit.	•
VGL	С	Stabilizing capacitor		This pin is Negative Gate driving voltage. Connect a stabilizing capacitor between VGL and VSS in the application circuit.	
VSH1	С	Stabilizing capacitor	VSH1, VSH2, VSL Generation	This pin is Positive Source driving voltage, VSH1 Connect a stabilizing capacitor between VSH1 and VSS in the application circuit.	-
VSH2	С	Stabilizing capacitor		This pin is Positive Source driving voltage, VSH2 Connect a stabilizing capacitor between VSH2 and VSS in the application circuit.	
VSL	С	Stabilizing capacitor		This pin is Negative Source driving voltage. Connect a stabilizing capacitor between VSL and VSS in the application circuit.	ı
VCOM	С	Panel/ Stabilizing capacitor	VCOM Generation	This pins is VCOM driving voltage Connect a stabilizing capacitor between VCOM and VSS in the application circuit.	-

Table 5-4: Driver Output Pins

Name	Туре	Connect to	Function	Description	When not in use
S [175:0]	0	Panel	Source driving signal	Source output pin.	Open
G [295:0]	0	Panel	Gate driving signal	Gate output pin.	Open
VBD	0	Panel	Border driving signal	Border output pin.	Open

Table 5-5: Miscellaneous Pins

Name	Туре	Connect to	Function	Description	When not in use
NC	NC	NC	Not Connected	This is dummy pin. It should not be connected with other NC pins.	Open
RSV	NC	NC	Reserved	This is a reserved pin and should be kept open.	Open
TPA, TPB, TPC, TPD, TPF, FB	NC	NC	Reserved for Testing	Reserved pins. - Keep open. - Do not connect to other NC pins and test pins including TPA, TPB, TPC, TPD, TPE, TPF, TIN and FB.	Open
TIN	I	NC	Reserved for Testing	This is a reserved pin and should be kept open.	Open
TPE	0	NC	Reserved for Testing	This is a reserved pin and should be kept open.	Open

SSD1680 Rev 0.14 P 9/46 Jun 2019 **Solomon Systech**

6 Functional Block Description

6.1 MCU Interface

6.1.1 MCU Interface selection

The SSD1680 can support 3-wire/4-wire serial peripheral. MCU interface is pin selectable by BS1 shown in Table 6-1.

Table 6-1: Interface pins assignment under different MCU interface

		Pin Name				
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA
3-wire serial peripheral interface (SPI) – 9 bits SPI	Н	RES#	CS#	L	SCL	SDA

Note

6.1.2 MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 6-2

Table 6-2: Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	L	L
Write data	↑	Data bit	Н	L

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal
- (3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

Figure 6-1: Write procedure in 4-wire SPI mode

SSD1680 | Rev 0.14 | P 10/46 | Jun 2019 | **Solomon Systech**

 $^{^{(1)}}$ L is connected to V_{SS} and H is connected to V_{DDIO}

In the read operation (Command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). After CS# is pulled low, the first byte sent is command byte, D/C# is pulled low. After command byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

Figure 6-2: Read procedure in 4-wire SPI mode

6.1.3 MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	Tie LOW	L
Write data	↑	Data bit	Tie LOW	L

Table 6-3: Control pins status of 3-wire SPI

Note:

- (1) L is connected to V_{SS} and H is connected to V_{DDIO}
- (2) ↑ stands for rising edge of signal

Figure 6-3: Write procedure in 3-wire SPI

SSD1680 | Rev 0.14 | P 11/46 | Jun 2019 | **Solomon Systech**

In the read operation (Register 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command byte, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1. After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-4 shows the read procedure in 3-wire SPI.

Figure 6-4: Read procedure in 3-wire SPI mode

6.2 OSCILLATOR

The oscillator module generates the clock reference for waveform timing and analog operations.

6.3 BOOSTER & REGULATOR

A voltage generation system is included in the driver. It provides all necessary driving voltages required for an AMEPD panel including VGH, VGL, VSH1, VSH2, VSL and VCOM. External application circuit is needed to make the on-chip booster & regulator circuit work properly.

6.4 VCOM SENSING

This functional block provides the scheme to select the optimal VCOM DC level. The sensed value can be programmed into OTP.

The flow of VCOM sensing:

- Active Gate is scanning during the VCOM sense Period.
- Source are VSS.
- VCOM pin used for sensing.
- During Sensing period, BUSY is high.
- After Sensing, Active Gate return to non-select stage.

SSD1680 | Rev 0.14 | P 12/46 | Jun 2019 | **Solomon Systech**

6.5 RAM

The On chip display RAM is holding the image data.

- 1 set of RAM is built for Mono B/W. The RAM size is 176x296 bits.
- 1 set of RAM is built for Mono Red. The RAM size is 176x296 bits.

Table 6-4: RAM bit and LUT mapping for 3-color display

Data bit in R RAM	Data bit in B/W RAM	Image Color	LUT
0	0	Black	LUT 0 for driving Black
0	1	White	LUT 1 for driving White
1	0	Red	LUT 2 for driving Red
1	1	Red	LUT 3 = LUT2

Table 6-5: RAM bit and LUT mapping for black/white display

Data bit in R RAM	Data bit in B/W RAM	Image Color	LUT
0	0	Black	LUT 0 for driving Black
0	1	White	LUT 1 for driving White
1	0	Black	LUT 2 = LUT0
1	1	White	LUT 3 = LUT1

Programmable Waveform for Gate, Source and VCOM

TP: time of phase length from 0 to 255* frames Oindicates phase skipped

XON: All Gate On selection for each nAB or nCD.

FR: Frame frequency selection for each group.

EOPT: Option for LUT end

Figure 6-5 : Gate waveform and Programmable Source and VCOM waveform illustration

SSD1680 Rev 0.14 P 13/46 Jun 2019 Solomon Systech In the programmable waveform for Source and VCOM, there are 12 groups (Group0 to Group11) and each group has 4 phases (Phase A to Phase D) and 2 state repeats (Phase A and B, Phase C and D). Totally, there are 48 phases. In addition, in each phase, the phase length (TP[nX]) can be set by number of frame from 0 to 255 frames. Also, each group can be repeated with repeat counting number (RP[n]) from 1 to 256 times; each AB / CD phases can be repeated with state repeat counting number (SR[nAB]/SR[nCD]) from 1 to 256 times. For the voltage, there is four levels for Source voltage (VSS, VSH1, VSH2, VSL) and three levels for VCOM voltage (DCVCOM, VSH1+DCVCOM, VSL+DCVOM).

The description of each parameter is as follows.

- 1) TP[nX] represents the phase length set by the number of frame.
- The range of TP[nX] is from 0 to 255.
- n represents the Group number from 0 to 11; X represents the phase number from A to D.
- When TP[nX] = 0, the phase is skipped. When TP[nX] = 1, the phase is 1 frame, and so on. The maximum phase length is 255 frame.
- 2) RP[n] represents the repeat counting number for the Group.
- The range of RP[n] is from 0 to 255.
- n represents the Group number from 0 to 11.
- RP[n] = 0 indicates that the repeat times =1, RP[n] = 1 indicates that the repeat times = 2, and so on. The maximum repeat times is 256.
- 3) SR[nAB] and SR[nCD] represent the state repeat counting number for Phase A & B and Phase C & D respectively.
- The range of SR[nXY] is from 0 to 255.
- n represents the Group number from 0 to 11.
- SR[nXY] = 0 indicates that the repeat times = 1, SR[nXY] = 1 indicates that the repeat times = 2, and so on. The maximum repeat times is 256.
- 4) VS[nX-LUTm] represents Source and VCOM voltage level which is used in each phase. Table 6-6 shows the voltage settings for source voltage and VCOM voltage.
- n represents the Group number from 0 to 11.
- m represents the LUT number from 0-4.

Table 6-6: VS[nX-LUTm] settings for Source voltage and VCOM voltage

VS[nX-LUTm]	Source voltage	VCOM voltage
00 4	VSS	DCVCOM
01	VSH1	VSH1 + DCVCOM
10	VSL	VSL + DCVCOM
11	VSH2	N/A

- 5) FR[n] indicates the frame rate of group n
- The range of FR [n] is from 0 to 7.
- n represents the Group number from 0 to 11.
- 6) XON[nAB] and XON[nCD], indicates the gate scan selection.
- n represents the Group number from 0 to 11.
- XON[nXY] = 0 indicates Normal gate scan in Phase[nX] & Phase[nY].
- XON[nXY] = 1 indicates All gate on, that Gate keeps High until the phase for normal gate scan, in Phase[nX] & Phase[nY].

SSD1680 | Rev 0.14 | P 14/46 | Jun 2019 | **Solomon Systech**

6.7 WAVEFORM SETTING

As described in Section 6.6, parameters VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR[n] and XON[nXY] are used to define the driving waveform. In the SSD1680, there are 159 bytes in the waveform setting to store LUT0, LUT1, LUT2, LUT3 and LUT4, gate voltage, source voltage and frame rate. The waveform LUT of a particular temperature range can be loaded from OTP or written by MCU.

- WS byte 0~152, the content of VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR[n] and XON[nXY] are defined by Register 0x32
- WS byte 153, the content of Option for LUT end, is the parameter belonging to Register 0x3F.
- WS byte 154, the content of gate level, is the parameter defined by Register 0x03.
- WS byte 155~157, the content of source level, is the parameter defined by Register 0x04.
- WS byte 158, the content of VCOM level, is the parameter defined by Register 0x2C.

The SSD1680 waveform setting is shown in Figure 6-6: Waveform Setting mapping

STATE			D# D4	I 20 I 20	D		
T	addr.	D7 D6	D5 D4	D3 D2	D1 D0	addr.	D7 D6 D5 D4 D3 D2 D1 D0
2							TP[3A]
1			VS[1B-L0]				
S	2		VS[2B-L0]	VS[2C-L0]	VS[2D-L0]	83	SR[3AB]
Second S	3	VS[3A-L0]	VS[3B-L0]	VS[3C-L0]	VS[3D-L0]	84	TP[3C]
S		VS[4A-L0]	VS[4B-L0]	VS[4C-L0]	VS[4D-L0]		
C	5		VS[5B-L0]		VSI5D-L01		SRI3CDI
To			VS[6B-L0]				
R							
O					VS[/D-L0]		
10 VS CALC VS C			VS[8B-L0]	VS[8C-L0]	VS[8D-L0]		
THE COLOR VS VS VS VS VS VS VS V	9	VS[9A-L0]	VS[9B-L0]	VS[9C-L0]	VS[9D-L0]	90	SR[4AB]
11 VS VS VS VS VS VS VS	10	VS[10A-L0]	VS[10B-L0]	VS[10C-L0]	VS[10D-L0]	91	TP[4C]
12							
13							
14							
15							
10	14					95	TP[5A]
10	15	VSf3A-L11	VS[3B-L1]	VSI3C-L11	VSI3D-L11		
17	16	VS[4A-I 1]	VS[4R-I 1]	VS[4C-I 1]	VS[4D-I 1]		
18		VS[54-L1]	VS[5B-I 1]	VS[5C-L1]	VS[5D-I 1]		
19							IP[50]
20							
221 VS[9A-L1] VS[9C-L1] VS[9C-L2] VS[9C-L2]							
22	20		VS[8B-L1]	VS[8C-L1]		101	RP[5]
22		VS[9A-L1]	VS[9B-L1]	VS[9C-L1]	VS[9D-L1]	102	
24 VS 11AL1 VS 11BL1 VS 11BL1 VS 11BL1 VS 11BL1 VS 11BL			VS[10B-L11	VS[10C-L11			
24							
25		VO[11M-L1]	VO[11D-L1]	VO[110-L1]	A O[LID-FI]		
26		VS[UA-LZ]	VS[0B-L2]	VS[0C-L2]	VS[UD-LZ]		
27		VS[TA-L2]	VS[1B-L2]	VS[1C-L2]	VS[1D-L2]		
27		VS[2A-L2]	VS[2B-L2]	VS[2C-L2]	VS[2D-L2]		
28	27	VS[3A-L2]	VS[3B-L2]	VS[3C-L2]	VS[3D-L2]	108	
29		VS[4A-L2]	VS[4B-L2]	VS[4C-L2]	VS[4D-L2]		
30		VS[5A-L2]	VS[5B-L2]	VS[5C-L2]	VS[5D-L2]		
31		VO[OA LO]	VO[OD-L2]	V0[00 L2]	VO[0D-L2]		
33		VS[6A-L2]	VS[6B-L2]	VS[6C-L2]	VS[6D-L2]		
33		VS[7A-L2]	VS[7B-L2]	VS[7C-L2]	VS[7D-L2]		
34		VS[8A-L2]		VS[8C-L2]	VS[8D-L2]		
ST	33	VS[9A-L2]	VS[9B-L2]	VS[9C-L2]	VS[9D-L2]	114	SR[7CD]
36	34	VS[10A-L2]	VS[10B-L2]	VS[10C-L2]	VS[10D-L2]	115	RP[7]
36	35	VS[11A+L2]	VS[11BJ 2]	VS[11C-L2]	VS[11D-L2]		TP(8A)
38		V(C(0A 2)	VC[0D L2]	V(C(OC L2)	V(C(OD 1.3)		TI [UN]
38							
39							SR[8AB]
40	38	VS[2A-L3]	VS[2B-L3]	VS[2C-L3]	VS[2D-L3]	119	TP[8C]
40	39	VS[3A-L3]	VS[3B-L3]	VS[3C-L3]	VS[3D-L3]	120	TP[8D]
11	40	VS[4A-L3]	VS[4B-L3]	VS[4C-L3]	VS[4D-L3]	121	SR[8CD]
42							
43	42						
44							
45							
46							
47		VS[9A-L3]	VS[9B-L3]		VS[9D-L3]		
48	46	VS[10A-L3]	VS[10B-L3]	VS[10C-L3]	VS[10D-L3]	127	TP[9D]
48	47	VS[11A-L3]	VS[11B-L3]	VS[11C-L3]	VS[11D-L3]	128	SR[9CD]
49	48						
To To To To To To To To							
51							
S2							
53			VS[3B-L4]	VS[3C-L4]	VS[3D-L4]		
53			VS[4B-L4]	VS[4C-L4]	VS[4D-L4]		
54	53	VS[5A-L4]	VS[5B-L4]	VS[5C-L4]		134	TP[10D]
156							
56			VS[7B-I 4]	VS[7C-L4]	VS[7D-I 4]		
57							
139 SR(11AB) SR(
140 TP(11C) TP(11C)							
60							
61 TP[0B] 142 SR[11CD] 62 SR[0AB] 143 RP[11] 63 TP[0C] 144 FR[0] FR[1] 64 TP[0D] 145 FR[2] FR[3] 65 SR[0CD] 146 FR[4] FR[5] 66 RP[0] 147 FR[6] FR[7] 67 TP[1A] 148 FR[8] FR[9] 68 TP[1B] 149 FR[10] FR[11] 69 SR[1AB] 150 XON[0AB] XON[0CD] XON[1AB] XON[2CD] XON[3AB] XON[3CD] 70 TP[1C] 151 XON[4AB] XON[4CD] XON[4AB] XON[6CD] XON[7AB] XON[7CD] 71 TP[1D] 152 XON[8AB] XON[8CD] XON[8AB] XON[6CD] XON[1AB] XON[1CD] 72 SR[1CD] 153 XON[8AB] XON[8CD] XON[1AB] XON[1CD] XON[1AB] XON[1CD] 74 TP[2A] 155 VSH1 75 TP[2B] 156 VSH2 76 SR[2AB] 157 VSL 77 TP[2C] 158 VCOM		VS[11A-L4]			VS[11D-L4]		
61 TP[0B] 142 SR[11CD] 62 SR[0AB] 143 RP[11] 63 TP[0C] 144 FR[0] FR[1] 64 TP[0D] 145 FR[2] FR[3] 65 SR[0CD] 146 FR[4] FR[5] 66 RP[0] 147 FR[6] FR[7] 67 TP[1A] 148 FR[8] FR[9] 68 TP[1B] 149 FR[10] FR[11] 69 SR[1AB] 150 XON[0AB] XON[0CD] XON[1AB] XON[2CD] XON[3AB] XON[3CD] 70 TP[1C] 151 XON[4AB] XON[4CD] XON[4AB] XON[6CD] XON[7AB] XON[7CD] 71 TP[1D] 152 XON[8AB] XON[8CD] XON[8AB] XON[6CD] XON[1AB] XON[1CD] 72 SR[1CD] 153 XON[8AB] XON[8CD] XON[1AB] XON[1CD] XON[1AB] XON[1CD] 74 TP[2A] 155 VSH1 75 TP[2B] 156 VSH2 76 SR[2AB] 157 VSL 77 TP[2C] 158 VCOM	60					141	
62						142	SR[11CD]
144	62		SRI	0AB]			RP[11]
145							
65							
66							
66			SR[0CD]			FR[4] FR[5]
FR[6]	66		RF	P[0]			FR[6] FR[7]
68							FR[8] FR[9]
69	60					149	FR[10] FR[11]
70							
72 SR(1CD) 153 EÓPT 73 RP[1] 154 VGH 74 IP[2A] 155 VSH1 75 IP[2B] 156 VSH2 76 SR[2AB] 157 VSL 77 IP[2C] 158 VCOM 78 IP[2D] 158 VCOM		1	5KI	100			VONITARRI
72 SR(1CD) 153 EÓPT 73 RP[1] 154 VGH 74 IP[2A] 155 VSH1 75 IP[2B] 156 VSH2 76 SR[2AB] 157 VSL 77 IP[2C] 158 VCOM 78 IP[2D] 158 VCOM	69		IP	[10]			VOINTAND VOINTAND
73 RP[1] 154 VGH 74 TP[2A] 155 VSH1 75 TP[2B] 156 VSH2 76 SR[2AB] 157 VSL 77 TP[2C] 158 VCOM 78 TP[2D] 79 SR[2CD]	69 70			וטון			
74	69 70 71		TP	• •			
74	69 70 71 72		SR[1CD]			VGH
75 IP 2B 156 VSH2 76 SR[2AB 157 VSL 77 IP 2C 158 VCOM 78 IP 2D 79 SR[2CD]	69 70 71 72		SR[1CD]		154	
76 SR[2AB] 157 VSL 77 FP[2C] 158 VCOM 78 TP[2D] 79 SR[2CD]	69 70 71 72 73		SR[RF	1CD] P[1]			
77	69 70 71 72 73 74		SR[RF TP	1CD] P[1] [2A]		155	VSH1
78 TP[2D] 79 SR[2CD]	69 70 71 72 73 74 75		SRĮ RF TP TP	1CD] P[1] [2A] [2B]		155 156	VSH1 VSH2
79 SR[2CD]	69 70 71 72 73 74 75		SR(RF TP TP SR(1CD] P[1] [2A] [2B] 2AB]		155 156 157	VSH1 VSH2 VSL
	69 70 71 72 73 74 75 76		SRI RF TP TP SRI TP	1CD] P[1] [2A] [2B] 2AB] [2C]		155 156 157	VSH1 VSH2 VSL
80 RP(2)	69 70 71 72 73 74 75 76 77 78		SR RF TP SR TP TP	1CD] [1] [2A] [2B] [2C] [2C] [2C]		155 156 157	VSH1 VSH2 VSL
	69 70 71 72 73 74 75 76 77 78		\$R(RF TP TP \$R(TP TP \$R(\$R(1CD] [1] [2A] [2B] [2AB] [2C] [2C] [2D]		155 156 157	VSH1 VSH2 VSL
	69 70 71 72 73 74 75 76 77 78		\$R(RF TP TP \$R(TP TP \$R(\$R(1CD] [1] [2A] [2B] [2AB] [2C] [2C] [2D]		155 156 157	VSH1 VSH2 VSL

Figure 6-6: Waveform Setting mapping

SSD1680 | Rev 0.14 | P 15/46 | Jun 2019 | **Solomon Systech**

6.8 Temperature Searching

The SSD1680 has internal temperature sensor to detect the environment temperature or can communicate with the external temperature sensor by I2C single master interface or can communicate with the external MCU to get the temperature value through SPI. In the SSD1680, there is a dedicated format for the temperature value so that the driver IC can understand it. The format of temperature value is described in Section 6.8.3.

6.8.1 Internal Temperature Sensor

The internal temperature sensor can be selected by command register. The accuracy of it is ±2degC from - 25degC to 50degC.

6.8.2 External Temperature Sensor I2C Single Master Interface

The driver IC can communicate with the external temperature sensor through I2C single master interface (TSDA and TSCL). TSDA will be SDA and TSCL will be SCL. TSDA and TSCL are required to connect with external pull-up resistor. Temperature register value of external temperature sensor can be read by command register.

6.8.3 Format of temperature value

The temperature value is defined by 12-bit binary. The rules are shown as below.

- If the Temperature value MSByte bit D11 = 0, then the temperature is positive and value (DegC) = + (Temperature value) / 16
- If the Temperature value MSByte bit D11 = 1, then the temperature is negative and value (DegC) = (2's complement of Temperature value) / 16

Table 6-7 shows some examples of 12-bit binary temperature value:

Table 6-7: Example of 12-bit binary temperature settings for temperature ranges

12-bit binary (2's complement)	Hexadecimal Value	TR Value [DegC]
0111 1111 1111	7FF	128
0111 1111 1111	7FF	127.9
0110 0100 0000	640	100
0101 0000 0000	500	80
0100 1011 0000	4B0	75
0011 0010 0000	320	50
0001 1001 0000	190	25
0000 0000 0100	004	0.25
0000 0000 0000	000	0
1111 1111 1100	FFC	-0.25
1110 0111 0000	E70	-25
1100 1001 0000	C90	-55

SSD1680 | Rev 0.14 | P 16/46 | Jun 2019 | **Solomon Systech**

6.9 Waveform Setting searching mechanism

As mentioned in Section 6.7, the SSD1680 OTP can store waveform setting and temperature range. If waveform setting and temperature range are programmed in OTP memory, corresponding waveform LUT can be selected according to the sensed temperature to drive the display. The Waveform Setting searching mechanism by driver IC is as follows.

- 1) Read temperature value by command register in the format of 12-bit binary.
- 2) According to read temperature and display mode selection, search LUT in OTP from TR0 to TR35 in sequence. The last match will be selected, then, the corresponding WS will be loaded in the LUT register to drive the display.

Remark: Waveform LUT selection criteria is "Lower temperature bound < Sensed temperature ≤ Upper temperature bound".

Table 6-8 shows an example for the waveform LUT searching from OTP:

- If the read temperature is 25degC, then, WS4 will be selected.
- If the read temperature is 34degC, then, WS7 will be selected. Although 34degC is also in the temperature range TR6, according to searching mechanism, the last match should be selected. Therefore, WS7 is selected.

Waveform TR Lower Limit TR Upper Limit **Temperature** Temperature range in OTP **LUT in OTP** Range in OTP [Hex] [Hex] -128 DegC < Temperature ≤ 5 DegC WS0 TR0 800 050 WS1 TR1 050 0A0 5 DegC < Temperature ≤ 10DegC TR2 0A0 0F0 10 DegC < Temperature ≤ 15DegC WS2 WS3 TR3 0F0 140 15 DegC < Temperature ≤ 20DegC WS4 TR4 140 190 20 DegC < Temperature ≤ 25DegC WS5 TR5 190 1E0 25 DegC < Temperature ≤ 30DegC 1E0 230 30 DegC < Temperature ≤ 35DegC WS6 TR6 210 7FF WS7 TR7 33 DegC < Temperature ≤ 127.9DegC 000 000 Others Others

Table 6-8: Example of waveform settings selection based on temperature ranges.

Precaution:

Please ensure the temperature range covers whole range of application temperatures, display will not be updated if no suitable temperature range matches the sensed temperature.

SSD1680 | Rev 0.14 | P 17/46 | Jun 2019 | **Solomon Systech**

6.10 One Time Programmable (OTP) Memory

In the SSD1680, there is an embedded OTP memory which is designed to store the waveform settings of different temperature range and some variables/parameters. The OTP memory can store 36 sets of waveform LUT settings (WS), 36 sets of temperature range (TR), VCOM value, display mode selection, waveform version and user ID. Figure 6 7 shows the address mapping of the 36 waveform setting (WS0 to WS35) and temperature range (TR0 to TR35).

addr.	D7	D6	D5	D4	D3	D2	D1	D0
0				144				
450	WS0							
158								
159				W	S1			
317				vv.	31			
318								
				W	S2			
476				•••	-			
477								
				W	S3			
635								
636								
				W	S4			
794				•••	-			
5406				1000	204			
				WS	634			
5564								
5565				WS	225			
5723				VV	555			
5724								
5725				TF	RO			
5726								
5727								
5728				TF	₹1			
5729								
5730								
5731				TF	R2			
5732								
5733								
5734				TF	๙Ӡ			
5735								
5736 5737				TF	24			
5737				IF	\ -1			
3736								
				••				
5826								
5827				TR	34			
5828								
5829								
5830				TR	35			
5831								

Figure 6-7: The Waveform setting mapping in OTP for waveform setting and temperature range

6.11 The Format for Temperature Range (TR)

The format of TR Lower limit and Upper limit as shown in Figure 6-8 which temp_L[11:0] is the lower limit and temp_H[11:0] is the upper limit of the temperature range. There has 36sets of TR for waveform LUT searching.

D7 D6 D5 D4 D3 D2 D1 D0										
temp_L[7:0]										
temp_H[3:0] temp_L[11:8]										
temp_H[11:4]										

Figure 6-8: Format of Temperature Range (TR) in OTP

SSD1680 | Rev 0.14 | P 18/46 | Jun 2019 | **Solomon Systech**

6.12 Cascade Mode

SSD1680 has a cascade mode that can cascade 2 chips to achieve the display resolution up to 352 (sources) x 296 (gates). The pin M/S# is used to configure the chip. When M/S# is connected to VDDIO, the chip is configured as a master chip. When M/S# is connected to VSS, the chip is configured as a slave chip.

When the chip is configured as a master chip, it will be the same as a single chip application, ie, all circuit blocks will be worked as usual. When the chip is configured as a slave chip, its oscillator and booster & regulator circuit will be disabled. The oscillator clock and all booster voltages will be come from the master chip. Therefore, the corresponding pins including CL, VDD, VGH, VGL, VSH1, VSH2, VSL, VGL and VCOM must be connected to the master chip.

6.13 VCI Detection

The VCI detection function is used to detect the VCI level when it is lower than Vlow, threshold voltage set by register.

In SSD1680, there is a command to execute the VCI detection function. When the VCI detection command is issued, the VCI detection will be executed. During the detection period, BUSY output is at high level. BUSY output is at low level when the detection is completed. Then, user can issue the Status Bit Read command to check the status bit for the result of VCI, which 0 is normal, 1 is VCI<VIow.

6.14 HV Ready Detection

The HV Ready detection function is used to detect whether the analog block is ready.

In SSD1680, there is a command to execute the HV Ready detection function. When the HV Ready detection command is issued, the HV Ready will be executed. During the detection period, BUSY output is at high level. BUSY output is at low level when the detection is completed. Then, user can issue the Status Bit Read command to check the status bit for the result of HV Ready, which 0 is normal, 1 indicate HV is not ready.

SSD1680 | Rev 0.14 | P 19/46 | Jun 2019 | **Solomon Systech**

7 COMMAND TABLE

Table 7-1: Command Table

00h 20 0Dh	rection
Division Control Contr	rection
Name	rection
MUX Gate lines setting as (A[8:6] 0	rection
B[2: 0] = 000 [POR]. Gate scanning sequence and displaying the sequence and displaying and analysis	el, gate
Gate scanning sequence and di B[2]: GD Selects the 1st output Gate GD=0 [POR], G0 is the 1st gate output channe output sequence is G0,G1, G2, GD=1, G1 is the 1st gate output channe output sequence is G1, G0, G3, B[1]: SM Change scanning order of gate SM=0 [POR], G0, G1, G2, G3295 (left and r interlaced) SM=1, G0, G2, G4G294, G1, G3, B[0]: TB TB = 0 [POR], scan from G0 to G TB = 1, scan from G295 to G0. O 0 03 0 0 0 0 0 1 1 1 Gate Driving voltage Control Set Gate driving voltage A[4:0] = 00h [POR] VGH setting from 10V to 20V A[4:0] VGH A[4:0] VGH A[4:0] VGH A[4:0] VGH A[4:0] O0h 20 ODh O3h 10 OEh	el, gate
B[2]: GD Selects the 1st output Gate GD=0 [POR], G0 is the 1st gate output channe output sequence is G0,G1, G2, GD=1, G1 is the 1st gate output channe output sequence is G1, G0, G3, B[1]: SM Change scanning order of gate SM=0 [POR], G0, G1, G2, G3295 (left and rinterlaced) SM=1, G0, G2, G4G294, G1, G3, B[0]: TB TB = 0 [POR], scan from G0 to GTB = 1, scan from G295 to G0.	el, gate
Selects the 1st output Gate GD=0 [POR], G0 is the 1st gate output channe output sequence is G0,G1, G2, GD=1, G1 is the 1st gate output channe output sequence is G1, G0, G3, G2, G3 B[1]: SM Change scanning order of gate SM=0 [POR], G0, G1, G2, G3295 (left and rinterlaced) SM=1, G0, G2, G4G294, G1, G3, B[0]: TB TB = 0 [POR], scan from G0 to GTB = 1, scan from G295 to G0. O	
GD=0 [POR], G0 is the 1st gate output channe output sequence is G0,G1, G2, GD=1, G1 is the 1st gate output channe output sequence is G1, G0, G3, B[1]: SM Change scanning order of gate SM=0 [POR], G0, G1, G2, G3295 (left and rinterlaced) SM=1, G0, G2, G4G294, G1, G3, B[0]: TB TB = 0 [POR], scan from G0 to TB = 1, scan from G295 to G0. O	
G0 is the 1st gate output channe output sequence is G0,G1, G2, GD=1, G1 is the 1st gate output channe output sequence is G1, G0, G3, B[1]: SM Change scanning order of gate SM=0 [POR], G0, G1, G2, G3295 (left and rinterlaced) SM=1, G0, G2, G4G294, G1, G3, B[0]: TB TB = 0 [POR], scan from G0 to G TB = 1, scan from G295 to G0. O 0 03 0 0 0 0 0 1 1 Gate Driving voltage Control Set Gate driving voltage A[4:0] = 00h [POR] VGH setting from 10V to 20V A[4:0] VGH setting from 10V to 20V	
output sequence is G0,G1, G2, GD=1, G1 is the 1st gate output channed output sequence is G1, G0, G3, B[1]: SM Change scanning order of gate SM=0 [POR], G0, G1, G2, G3295 (left and rinterlaced) SM=1, G0, G2, G4G294, G1, G3, B[0]: TB TB = 0 [POR], scan from G0 to G TB = 1, scan from G295 to G0. O 0 03 0 0 0 0 0 1 1 Gate Driving voltage O 1 0 0 0 A4 A3 A2 A1 A0 Control Set Gate driving voltage A[4:0] = 00h [POR] VGH setting from 10V to 20V A[4:0] VGH A[4:0] VGH Setting from 10V to 20V A[4:0] VGH A[4:0] O0h O0h 20 ODh O3h 10 OEh	
D=1, G1 is the 1st gate output channer output sequence is G1, G0, G3, B[1]: SM Change scanning order of gate of SM=0 [POR], G0, G1, G2, G3295 (left and reinterlaced) SM=1, G0, G2, G4G294, G1, G3, B[0]: TB TB = 0 [POR], scan from G0 to GTB = 1, scan from G295 to G0. O O O O O O O O O	
output sequence is G1, G0, G3, B[1]: SM Change scanning order of gate of SM=0 [POR], G0, G1, G2, G3295 (left and r interlaced) SM=1, G0, G2, G4G294, G1, G3, B[0]: TB TB = 0 [POR], scan from G0 to TB = 1, scan from G295 to G0. O 0 03 0 0 0 0 0 1 1 0 Gate Driving voltage Control Set Gate driving voltage A[4:0] = 00h [POR] VGH setting from 10V to 20V A[4:0] VGH A[4:0] VGH O0h 20 0Dh O3h 10 0Eh	
B[1]: SM Change scanning order of gate of SM=0 [POR], Go, G1, G2, G3295 (left and rinterlaced) SM=1, G0, G2, G4G294, G1, G3,	
Change scanning order of gate of SM=0 [POR], Go, G1, G2, G3295 (left and rinterlaced) SM=1, Go, G2, G4G294, G1, G3, B[0]: TB TB = 0 [POR], scan from G0 to G TB = 1, scan from G295 to G0. O 0 03 0 0 0 0 0 1 1 Gate Driving voltage O 1 0 0 0 A4 A3 A2 A1 A0 Control Set Gate driving voltage A[4:0] = 00h [POR] VGH setting from 10V to 20V A[4:0] VGH setting from 10V to 20V A[4:0] VGH A[4:0] VGH A[4:0] VGH SETTING FOR THE PROPERTY OF THE	,
SM=0 [POR], G0, G1, G2, G3295 (left and r interlaced) SM=1, G0, G2, G4G294, G1, G3, B[0]: TB TB = 0 [POR], scan from G0 to GTB = 1, scan from G295 to G0. O	driver
Interlaced SM=1, G0, G2, G4G294, G1, G3,B[0]: TB TB = 0 [POR], scan from G0 to GTB = 1, scan from G295 to G0. TB = 1, scan from G295 to G0. Set Gate driving voltage Set Gate driving voltage A[4:0] = 00h [POR] VGH setting from 10V to 20V A[4:0] VGH setting from 10V to 20V A[4:0] VGH A[4:	
SM=1, G0, G2, G4G294, G1, G3,B[0]: TB TB = 0 [POR], scan from G0 to 0 TB = 1, scan from G295 to G0. O	ight gate
G0, G2, G4G294, G1, G3, B[0]: TB TB = 0 [POR], scan from G0 to G TB = 1, scan from G295 to G0. O 1 0 0 0 A4 A3 A2 A1 A0 Control Set Gate driving voltage A[4:0] = 00h [POR] VGH setting from 10V to 20V A[4:0] VGH A[4:0] V 00h 20 0Dh 03h 10 0Eh	
B[0]: TB TB = 0 [POR], scan from G0 to 0 TB = 1, scan from G295 to G0. TB = 1, scan from G295 to G0.	G295
TB = 0 [POR], scan from G0 to 0 TB = 1, scan from G295 to G0.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0 0 0 0 0 0 0 1 1 Gate Driving voltage Gontrol Set Gate driving voltage A[4:0] = 00h [POR] VGH setting from 10V to 20V A[4:0] VGH setting from 10V to 20V A[4:0] VGH A[4:	±295
0 1 0 0 A ₄ A ₃ A ₂ A ₁ A ₀ Control A[4:0] = 00h [POR] VGH setting from 10V to 20V A[4:0] VGH	
0 1 0 0 A ₄ A ₃ A ₂ A ₁ A ₀ Control A[4:0] = 00h [POR] VGH setting from 10V to 20V A[4:0] VGH	
VGH setting from 10V to 20V A[4:0] VGH A[4:0] VGH O0h 20 ODh O3h 10 OEh	
A[4:0] VGH A[4:0] V 00h 20 0Dh 03h 10 0Eh	
00h 20 0Dh 03h 10 0Eh	/GH
	15
04h 10.5 0Fh	5.5
	16
	6.5
06h 11.5 11h	
	17
08h 12.5 13h	7.5
07h 12 14h 7	7.5 18
	7.5 18 8.5
0Ah 13.5 17h	7.5 18 8.5 19
	7.5 18 8.5 19
0Ch 14.5	7.5 18 8.5 19 9.5 20
	7.5 18 8.5 19
	7.5 18 8.5 19 9.5 20

 SSD1680
 Rev 0.14
 P 20/46
 Jun 2019
 Solomon Systech

Command Table												
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	04	0	0	0	0	0	1	0	0		0 0
0	1		A ₇	A_6	A_5	A ₄	A ₃	A ₂	A ₁	A ₀	Control	A[7:0] = 41h [POR], VSH1 at 15V
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		B[7:0] = A8h [POR], VSH2 at 5V. C[7:0] = 32h [POR], VSL at -15V
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	C ₀		Remark: VSH1>=VSH2

A[7]/B[7] = 1, VSH1/VSH2 voltage setting from 2.4V to 8.8V

H2

A[7]/B[7] = 0, VSH1/VSH2 voltage setting from 9V to 17V

A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2
23h	9	3Ch	14
24h	9.2	3Dh	14.2
25h	9.4	3Eh	14.4
26h	9.6	3Fh	14.6
27h	9.8	40h	14.8
28h	10	41h	15
29h	10.2	42h	15.2
2Ah	10.4	43h	15.4
2Bh	10.6	44h	15.6
2Ch	10.8	45h	15.8
2Dh	11	46h	16
2Eh	11.2	47h	16.2
2Fh	11.4	48h	16.4
30h	11.6	49h	16.6
31h	11.8	4Ah	16.8
32h	12	4Bh	17
33h	12.2	Other	NA
34h	12.4		
35h	12.6		
36h	12.8		
37h	13		
38h	13.2		
39h	13.4		
3Ah	13.6		
3Bh	13.8		

C[7] = 0, VSL setting from -5V to -17V

C[7:0]	VSL
0Ah	-5
0Ch	-5.5
0Eh	-6
10h	-6.5
12h	-7
14h	-7.5
16h	-8
18h	-8.5
1Ah	-9
1Ch	-9.5
1Eh	-10
20h	-10.5
22h	-11
24h	-11.5
26h	-12
28h	-12.5
2Ah	-13
2Ch	-13.5
2Eh	-14
30h	-14.5
32h	-15
34h	-15.5
36h	-16
38h	-16.5
3Ah	-17
Other	NA

0	0	80	0	0	0	0	1	0	0	0	Initial Code Setting OTP Program	Program Initial Code Setting
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	09	0	0	0	0	1	0	0	1	Write Pegister for Initial	Write Register for Initial Code Setting
	0	09	_	_		_				<u> </u>	Code Setting	Selection
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	710	- Code Setting	A[7:0] ~ D[7:0]: Reserved
0	1		B ₇	B_6	B_5	B ₄	B_3	B_2	B ₁	B_0		Details refer to Application Notes of Initial
0	1		C ₇	C_6	C ₅	C ₄	C ₃	C_2	C ₁	C ₀		Code Setting
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		-
0	0	0A	0	0	0	0	1	0	1	0	Read Register for Initial Code Setting	Read Register for Initial Code Setting

SSD1680 Rev 0.14 P 21/46 Jun 2019 Solomon Systech

Com	man	d Tak	ole														
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description					
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start		with Phase 1, Phase 2 and Phase 3				
0	1		1	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control	for soft start curi	rent and duration setting.				
0	1		1	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		A[7:0] -> Soft sta	art setting for Phase1				
0	1		1	C ₆	C ₅	C ₄	C ₃	C_2	C ₁	Co		= 8Bh B[7:0] -> Soft sta	[POR] art setting for Phase2				
0	1		0	0	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		= 9Ch	[POR]				
			Ŭ	Ū	25	54	25	<u></u>	,			C[7:0] -> Soft sta = 96h	art setting for Phase3 [POR]				
												D[7:0] -> Duration	on setting				
													[POR]				
													otion of each byte: [6:0] / C[6:0]:				
												Bit[6:4]	Driving Strength Selection				
												000	1(Weakest)				
												001	2				
												010	3				
												011	4				
												100 5					
												110 7 111 8(Strongest)					
												111 8(Strongest)					
												Bit[3:0]	Min Off Time Setting of GDR [Time unit]				
												0000	NA				
												0011	197				
												0100	2.6				
												0101	3.2				
												0110	3.9				
												0111	4.6				
												1000	5.4				
												1001	6.3				
												1010	7.3				
												1011	9.8				
												1101	11.5				
												1110	13.8				
												D[5:0]: duration setting of phase D[5:4]: duration setting of phase 3 D[3:2]: duration setting of phase 2 D[1:0]: duration setting of phase 1					
												Bit[1:0] Duration of Phase [Approximation]					
												00 10ms					
												01	20ms				
												10	30ms				
												11	40ms				

SSD1680 | Rev 0.14 | P 22/46 | Jun 2019 | **Solomon Systech**

Com	man	d Ta	ble													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description				
							•	1	1							
0	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Sleep mode Control:				
0	1		0	0	0	0	0	0	A ₁	A_0		A[1:0]: Description				
												00 Normal Mode [POR]				
												01 Enter Deep Sleep Mode 1				
												11 Enter Deep Sleep Mode 2				
												After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will keep output high. Remark: To Exit Deep Sleep mode, User required to send HWRESET to the driver				
0 0 11 0 0 0 1 0 0 0 1 Data Entry mode setting Define data entry sequ									Define data entry sequence							
0	1	• •	0	0	0	0	0	A ₂	A ₁	A ₀	Data Littly mode county	A[2:0] = 011 [POR]				
							o o	N2	A	Αυ						
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high.				
												Note: RAM are unaffected by this command.				

SSD1680 Rev 0.14 P 23/46 Jun 2019 **Solomon Systech**

Com	man	d Ta	ble									Description										
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description										
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).										
0	1		0	A ₆	A ₅	A ₄	0	A ₂	A ₁	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.										
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection										
0	1		0	0	0	0	0	A2	A1	Ao	VOI Detection	A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect A[2:0] VCI level 011 2.2V 100 2.3V 101 2.4V 110 2.5V 111 2.6V Other NA The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).										
0	0	18	0	0	0	1	1	0	0	0	Tomporature Sensor	Tamparatura Sansar Salaction										
0	J.	10	A ₇	0 A ₆	0 A ₅	A ₄	1 A ₃	A ₂	0 A ₁	A ₀	Temperature Sensor Control	Temperature Sensor Selection A[7:0] = 48h [POR], external temperatrure sensor A[7:0] = 80h Internal temperature sensor										
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.										
0	1		A ₁₁	A ₁₀	A 9	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Write to	A[11:0] = 7FFh [POR]										
0	1		A ₃	A ₂	A ₁	A ₀	0	0	0	0	temperature register)											
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.										
1	1		A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Read from	, , , , , , , , , , , , , , , , , , ,										
1	1		A ₃	A ₂	A ₁	A ₀	0	0	0	0	temperature register)											
			-		· ·						1											

SSD1680 | Rev 0.14 | P 24/46 | Jun 2019 | **Solomon Systech**

Com	man	<u>d T</u> a	ble														
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description					
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature					
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control (Write Command	sensor.					
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	to External temperature	A[7:0] = 00h [POR],					
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀	sensor)	B[7:0] = 00h [POR], C[7:0] = 00h [POR],					
"	'		0,	00	05	04	03	02	O i	00		[/:0] = 0011 [/OK],					
												A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st parameter 10 Address + pointer + 1st parameter + 2nd pointer 11 Address A[5:0] - Pointer Setting B[7:0] - 1st parameter C[7:0] - 2nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sensor					
												starts. BUSY pad will output high during operation. Activate Display Update Sequence					
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence					
												The Display Update Sequence Option is located at R22h.					
	ı	1		1				ı		1	T						
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display Update					
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[7:0] = 00h [POR] B[7:0] = 00h [POR]					
0	1		B ₇	0	0	0	0	0	0	0							
												A[7:4] Red RAM option					
												0000 Normal 0100 Bypass RAM content as 0					
												1000 Inverse RAM content					
												1000 Inverse train content					
												A[3:0] BW RAM option					
												0000 Normal					
												0100 Bypass RAM content as 0					
												1000 Inverse RAM content					
												DITI Course Outent Made					
												B[7] Source Output Mode 0 Available Source from S0 to S175					
												0 Available Source from S0 to S175 1 Available Source from S8 to S167					
												Available Soulce Holli So to S107					

SSD1680 Rev 0.14 P 25/46 Jun 2019 **Solomon Systech**

Com	man	d Ta	ble										
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Option	
0	1		A ₇	A_6	A_5	A_4	A_3	A_2	A ₁	A_0	Control 2	Enable the stage for Master Act	tivation
												A[7:0]= FFh (POR)	Parameter
												Operating sequence	(in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal	00
												→ Enable Analog	C0
												Disable Analog → Disable clock signal	03
												2 Bloadie Gook orginal	
												Enable clock signal	
												→ Load LUT with DISPLAY Mode 1→ Disable clock signal	91
												Enable clock signal	
												→ Load LUT with DISPLAY Mode 2→ Disable clock signal	99
												→ Disable clock signal	
												Enable clock signal	
												→ Load temperature value→ Load LUT with DISPLAY Mode 1	B1
												→ Disable clock signal	
												Enable clock signal	
												→ Load temperature value→ Load LUT with DISPLAY Mode 2	B9
												→ Disable clock signal	
												Enable clock signal	
												Enable clock signal → Enable Analog	
												→ Display with DISPLAY Mode 1	C7
												→ Disable Analog→ Disable OSC	
												Enable clock signal	
												→ Enable Analog→ Display with DISPLAY Mode 2	CF
												→ Disable Analog	
												→ Disable OSC	
												Enable clock signal	
												→Enable Analog	
												→ Load temperature value→ DISPLAY with DISPLAY Mode 1	F7
												→ Disable Analog	
												→ Disable OSC Enable clock signal	
												→Enable Analog	
												→ Load temperature value→ DISPLAY with DISPLAY Mode 2	FF
												→ Disable Analog	
												→ Disable OSC	
-									ı	1	T	1	
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White)	After this command, data entrie	
											/ RAM 0x24	written into the BW RAM until a	
												command is written. Address poladvance accordingly	Jinters Will
												advance accordingly	
												For Write pixel:	
												Content of Write RAM(BW) =	1
												For Black pixel:	_
												Content of Write RAM(BW) = 0	0

SSD1680 | Rev 0.14 | P 26/46 | Jun 2019 | **Solomon Systech**

Com	man	d Ta	ble									
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel:
												Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly.
												The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM
0	1	29	0	1	0	0	A ₃	A ₂	A ₁	A ₀		sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
		I _ I								1		
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	2B	0	0	1	0	1	0	1	1	Write Register for VCOM	This command is used to reduce glitch
0	1		0	0	0	0	0	1	0	0	Control	when ACVCOM toggle. Two data bytes D04h and D63h should be set for this command.
										<u> </u>	1	

 SSD1680
 Rev 0.14
 P 27/46
 Jun 2019
 Solomon Systech

Com	man	d Ta	ble															
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descrip	tion					
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register	Write VC	COM registe	er from M	1CU interface			
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	_	A[7:0] =	00h [POR]					
												A[7:0]	VCOM	A[7:0]	VCOM			
												08h	-0.2	44h	-1.7			
												0Ch	-0.3	48h	-1.8			
												10h	-0.4	4Ch	-1.9			
												14h	-0.5	50h	-2			
												18h	-0.6	54h	-2.1			
												1Ch	-0.7	58h	-2.2			
												20h	-0.8	5Ch	-2.3			
												24h	-0.9	60h	-2.4			
												28h	-1	64h	-2.5			
												2Ch	-1.1	68h	-2.6			
												30h	-1.2	6Ch	-2.7			
												34h	-1.3	70h	-2.8			
												38h -1.4 74h -2.9 3Ch -1.5 78h -3						
												3Ch -1.5 78h -3 40h -1.6 Other NA						
												4011	-1.0	Other	INA			
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read Register for Display Option:						
1	1		A_7	A ₆	A ₅	A ₄	A ₃	A_2	A ₁	A ₀	Display Option	Λ [7 , Ω],	VCOM OT	D Colooti	0.0			
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀			VCOM OT nand 0x37,		on			
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C_2	C ₁	Co		(0011111	iana oxor,	Dyte A)				
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀			VCOM Reg	gister				
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Eo		(Comir	nand 0x2C)					
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo		C[7:0]~	·G[7:0]: Dis	plav Mod	de			
1	1		G ₇	G_6	G_5	G ₄	G ₃	G_2	G ₁	G_0			nand 0x37,					
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	H ₀		[5 byte:	s]					
1	1		l ₇	I ₆	I ₅	I ₄	I ₃	l ₂	I ₁	I ₀		H[7:01~	-K[7:0]: Wa	veform V	ersion			
1	1		J_7	J_6	J 5	J_4	Jз	J_2	J_1	J ₀			nand 0x37,					
1	1		K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	K ₀		[4 byte:		-	- ,			
			_	_	I .		,				I	1						
0	0	2E	0	0	1	0	1	1	1	0	User ID Read		Byte User					
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀			J[7:0]: Usei [10 bytes]	יוט (גאט,	Byte A and			
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		2,100)	[.0.5,100]					
1	1		C ₇	C ₆	C 5	C ₄	Сз	C ₂	C ₁	C ₀								
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀								
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	Εı	E ₀								
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀								
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G₁	G ₀								
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H₁	H₀								
1	1		I ₇	I 6	I 5	I 4	l ₃	l ₂	I ₁	I ₀								
1	1		J_7	J_6	J ₅	J_4	J ₃	J_2	J ₁	J_0								
			1							1								

 SSD1680
 Rev 0.14
 P 28/46
 Jun 2019
 Solomon Systech

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]
1	1		0	0	A_5	A_4	0	0	A_1	A_0		A[5]: HV Ready Detection flag [POR=0]
												0: Ready 1: Not Ready
												A[4]: VCI Detection flag [POR=0]
												0: Normal
												1: VCI lower than the Detect level
												A[3]: [POR=0]
												A[2]: Busy flag [POR=0] 0: Normal
												1: BUSY
												A[1:0]: Chip ID [POR=01]
												Remark:
												A[5] and A[4] status are not valid after RESET, they need to be initiated by
												command 0x14 and command 0x15
												respectively.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting
												The contents should be written into RAM
												before sending this command.
												The command required CLKEN=1.
												Refer to Register 0x22 for detail. BUSY pad will output high during
												operation.
												<u> </u>
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
				J		•	Ü	Ů	Ü	•	2000 110	Load of the travoloim coming
												The command required CLKEN=1.
												Refer to Register 0x22 for detail.
												BUSY pad will output high during
												operation.
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		[153 bytes], which contains the content of
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR[n] and XON[nXY]
0	1		:	:	:	:	:	:	:	:		Refer to Session 6.7 WAVEFORM
0	1											SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command
												For details, please refer to SSD1680
												application note.
												BUSY pad will output high during
												operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1	55	A ₁₅	A ₁₄		A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈	J. 10 Olalao Hoda	A[15:0] is the CRC read out value
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		
	· ·		••			••		-			l	

 SSD1680
 Rev 0.14
 P 29/46
 Jun 2019
 Solomon Systech

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
		07	•	_		4	_	_			With Burleton C. Birds	With Devices to Divide Outles
0	0	37	0	0	0	1	0	1	1	0	Write Register for Display Option	Write Register for Display Option A[7] Spare VCOM OTP selection
0	1		A ₇	0 B ₆	B ₅	0 B ₄	0 B ₃	0 B ₂	0 B ₁	B ₀	-	0: Default [POR]
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		1: Spare
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		B[7:0] Display Mode for WS[7:0]
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		C[7:0] Display Mode for WS[15:8]
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	F ₀		D[7:0] Display Mode for WS[23:16] E[7:0] Display Mode for WS[31:24]
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go		F[3:0 Display Mode for WS[35:32]
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H₁	H₀		0: Display Mode 1
0	1		I ₇	I 6	I 5	I ₄	l ₃	l ₂	I ₁	I ₀		1: Display Mode 2
0 1												0: RAM Ping-Pong disable [POR]
					G[7:0]~J[7:0] module ID /waveform version.							
version. Remarks: 1) A[7:0]~J[7:0] can be sto												1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support
										ı	T	T
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register for User ID A[7:0]]~J[7:0]: UserID [10 bytes]
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		
0	1		C ₇	C ₆	C ₅	B ₄	B ₃	B ₂	C ₁	C ₀		Remarks: A[7:0]~J[7:0] can be stored in OTP
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		OTP
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀		
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H₁	H₀		
0	1		I ₇	l 6	I 5	I ₄	l ₃	l ₂	I ₁	I ₀		
0	1		J_7	J_6	J 5	J_4	J ₃	J_2	J ₁	J_0		
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode
0	1	38	0	0	0	0	0	0	A ₁	A ₀	OTP program mode	OTP program mode A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage
												Remark: User is required to EXACTLY follow the reference code sequences

 SSD1680
 Rev 0.14
 P 30/46
 Jun 2019
 Solomon Systech

Com	man	d Ta	ble														
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description					
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control	Select border waveform for VBD					
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	A ₀		A[7:0] = C0h [POR], set VBD as HIZ.					
~			, ,,	7.0	7.5	7 14		7.2	' '	7.0		A [7:6] :Select VBD option					
												A[7:6] Select VBD as					
												00 GS Transition,					
												Defined in A[2] and					
												A[1:0]					
												01 Fix Level,					
												Defined in A[5:4] 10 VCOM					
												11[POR] HiZ					
												TI[FOR]					
												A [5:4] Fix Level Setting for VBD					
												A[5:4] VBD level					
												00 VSS					
												01 VSH1					
												10 VSL					
												11 VSH2					
												A[2] GS Transition control A[2] GS Transition control					
												A[2] GS Transition control 0 Follow LUT					
												0 Follow LUT (Output VCOM @ RED)					
												A [1:0] GS Transition setting for VBD					
												A[1:0] VBD Transition					
												00 LUT0					
												01 LUT1					
												10 LUT2					
												11 LUT3					
					l	1	l		l	1							
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LUT end					
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	1 ' ' '	A[7:0]= 02h [POR]					
	•		,	7.0	7.5		7.5	7.2	, ,,	7.0		22h Normal.					
												07h Source output level keep					
												previous output before power off					
	1				1	1				1							
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM Option					
0	1		0	0	0	0	0	0	0	A ₀		A[0]= 0 [POR]					
												0 : Read RAM corresponding to RAM0x24					
												1 : Read RAM corresponding to RAM0x26					
					<u> </u>	<u> </u>	<u> </u>]	<u> </u>							
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the start/end positions of the					
		77									Start / End position	window address in the X direction by an					
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Start, End position	address unit for RAM					
0	1 .		0	0	B ₅	B ₄	B ₃	B_2	B ₁	B ₀							
												A[5:0]: XSA[5:0], XStart, POR = 00h					
					<u> </u>	<u> </u>	<u> </u>					B[5:0]: XEA[5:0], XEnd, POR = 15h					
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the start/end positions of the					
0	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	A ₀	Start / End position	window address in the Y direction by an					
0	1		0	0	0	0	0	0	0	A ₈	1	address unit for RAM					
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	-	10.01. VC 10.01 VC+o++ DOD 000h					
											-	A[8:0]: YSA[8:0], YStart, POR = 000h B[8:0]: YEA[8:0], YEnd, POR = 127h					
0	1		0	0	0	0	0	0	0	B ₈							

 SSD1680
 Rev 0.14
 P 31/46
 Jun 2019
 Solomon Systech

Com	man	d Ta	ble														
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on				
0	0	46	0	1	0	0	0	1	1	0	Auto Write RED RAM for	-		M for Rea	ular Pattern		
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	A ₀	Regular Pattern	A[7:0] = 0					
												to Gate	ep Height, ter RAM ir	POR= 00 Y-direction	0 on according		
												A[6:4]	Height	A[6:4]	Height		
												000	8	100	128		
												001	16	101	256		
												010	32	110	296		
												011	64	111	NA		
												A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction according to Source A[2:0] Width A[2:0] Width 000 8 100 128					
												A[2:0]	Width	A[2:0]	Width		
												000	8	100	128		
												001	16	101	176		
												010	32	110	NA		
												011	64	111	NA		
											P	BUSY pactors		ut high du	ring		
0	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for	Auto Write	B/W RAI	M for Regi	ular Pattern		
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	A ₀	Regular Pattern	A[7:0] = 0					
	•		, ,	7.0	73	7 14	3	7.2	741	7.0		to Gate	ep Height, ter RAM ir	POR= 00 Y-direction	0 on according		
												A[6:4]	Height	A[6:4]	Height		
												000	8	100	128		
												001	16 32	101 110	256 296		
												010	64	111	NA		
												A[2:0]: Ste	ep Width, lter RAM ir	POR= 000			
												001	16	101	176		
												010	32	110	NA		
												011	64	111	NA		
												During op high.					

SSD1680 | Rev 0.14 | P 32/46 | Jun 2019 | **Solomon Systech**

Com	ommand Table													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initial settings for the RAM X		
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	counter	address in the address counter (AC) A[5:0]: 00h [POR].		
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initial settings for the RAM Y		
0	1		A_7	A_6	A_5	A_4	A ₃	A_2	A ₁	A_0	counter	address in the address counter (AC) A[8:0]: 000h [POR].		
0	1		0	0	0	0	0	0	0	A ₈		A[8.0]. 000H [POR].		
0							1	1	1	1	NOP	This command is an empty command; it does not have any effect on the display module. However it can be used to terminate Frame Memory Write or Read Commands.		

SSD1680 Rev 0.14 P 33/46 Jun 2019 **Solomon Systech**

8 COMMAND DESCRIPTION

8.1 Driver Output Control (01h)

This triple byte command has multiple configurations and each bit setting is described as follows:

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	MUX7	MUX6	MUX5	MUX4	MUX3	MUX2	MUX1	MUX0
PC)R	0	0	1	1	1	1	1	1
W	1								MUX8
PC)R								1
W	1						GD	SM	TB
PC)R						0	0	0

MUX[8:0]: Specify number of lines for the driver: MUX[8:0] + 1. Multiplex ratio (MUX ratio) from 16 MUX to 296MUX.

GD: Selects the 1st output Gate

This bit is made to match the GATE layout connection on the panel. It defines the first scanning line.

SM: Change scanning order of gate driver.

When SM is set to 0, left and right interlaced is performed.

When SM is set to 1, no splitting odd / even of the GATE signal is performed,

Output pin assignment sequence is shown as below (for 296 MUX ratio):

	SM=0	SM=0	SM=1	SM=1
Driver	GD=0	GD=1	GD=0	GD=1
G0	ROW0	ROW1	ROW0	ROW148
G1	ROW1	ROW0	ROW148	ROW0
G2	ROW2	ROW3	ROW1	ROW149
G3	ROW3	ROW2	ROW149	ROW1
:	:	:	:	:
G146	ROW146	ROW147	ROW73	ROW222
G147	ROW147	ROW146	ROW222	ROW73
G148	ROW148	ROW149	ROW74	ROW223
G149	ROW149	ROW148	ROW223	ROW74
:	:	:	:	:
G292	ROW292	ROW293	ROW146	ROW294
G293	ROW293	ROW292	ROW294	ROW146
G294	ROW294	ROW295	ROW147	ROW295
G295	ROW295	ROW294	ROW295	ROW147

See "Scan Mode Setting" on next page.

TB: Change scanning direction of gate driver.

This bit defines the scanning direction of the gate for flexible layout of signals in module either from up to down (TB = 0) or from bottom to up (TB = 1).

SSD1680 Rev 0.14 P 34/46 Jun 2019 **Solomon Systech**

Figure 8-1: Output pin assignment on different Scan Mode Setting

SSD1680 | Rev 0.14 | P 35/46 | Jun 2019 | **Solomon Systech**

8.2 Gate Scan Start Position (0Fh)

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	SCN7	SCN6	SCN5	SCN4	SCN3	SCN2	SCN1	SCN0
PC	OR	0	0	0	0	0	0	0	0
W	1	0	0	0	0	0	0	0	SCN8
PC	OR	0	0	0	0	0	0	0	0

This command is to set Gate Start Position for determining the starting gate of display RAM by selecting a value from 0 to 295. Figure 8-2 shows an example using this command of this command when MUX ratio= 295 and MUX ratio= 148. "ROW" means the graphic display data RAM row.

Figure 8-2: Example of Set Display Start Line with no Remapping

	MUX ratio (01h) = 127h	MUX ratio (01h) = 093h	MUX ratio (01h) = 095h
GATE Pin	Gate Start Position (0Fh)	Gate Start Position (0Fh)	Gate Start Position (0Fh)
	= 000h	= 000h	= 04Ah
G0	ROW0	ROW0	-
G1	ROW1	ROW1	-
G2	ROW2	ROW2	-
G3	ROW3	ROW3	-
:	:	÷	:
:	:	:	:
G72	:	:	-
G73	:	:	-
G74	:	:	ROW74
G75	:	:	ROW75
:	:	:	:
:	<u> </u>	:	:
G146	ROW146	ROW146	:
G147	ROW147	ROW147	:
G148	ROW148	-	:
G149	ROW149	-	:
:	:	:	:
	:	:	:
G220	:	:	:
G221	:	:	:
G222	:	:	ROW222
G223	:	:	ROW223
	:	:	:
:	:	:	:
G292	ROW292	-	-
G293	ROW293	-	-
G294	ROW294	-	-
G295	ROW295	-	-
Display Example	SOLOMON		SOLOMON

SSD1680 Rev 0.14 P 36/46 Jun 2019 **Solomon Systech**

8.3 Data Entry Mode Setting (11h)

This command has multiple configurations and each bit setting is described as follows:

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1						AM	ID1	ID0
PC	DR .	0	0	0	0	0	0	1	1

ID[1:0]: The address counter is automatically incremented by 1, after data is written to the RAM when ID[1:0] = "01". The address counter is automatically decremented by 1, after data is written to the RAM when ID[1:0] = "00". The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. The direction of the address when data is written to the RAM is set by AM bits.

AM: Set the direction in which the address counter is updated automatically after data are written to the RAM. When AM = "0", the address counter is updated in the X direction. When AM = "1", the address counter is updated in the Y direction. When window addresses are selected, data are written to the RAM area specified by the window addresses in the manner specified with ID[1:0] and AM bits.

SSD1680 | Rev 0.14 | P 37/46 | Jun 2019 | **Solomon Systech**

8.4 Set RAM X - Address Start / End Position (44h)

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1				XSA4	XSA3	XSA2	XSA1	XSA0
PC)R	0	0	0	0	0	0	0	0
W	1				XEA4	XEA3	XEA2	XEA1	XEA0
PC)R	0	0	0	1	0	1	0	1

XSA[4:0]/XEA[4:0]: Specify the start/end positions of the window address in the X direction by 8 times address unit. Data is written to the RAM within the area determined by the addresses specified by XSA [4:0] and XEA [4:0]. These addresses must be set before the RAM write.

It allows on XEA [4:0] \leq XSA [4:0]. The settings follow the condition on 00h \leq XSA [4:0], XEA [4:0] \leq 15h. The windows is followed by the control setting of Data Entry Setting (R11h)

8.5 Set RAM Y - Address Start / End Position (45h)

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	YSA7	YSA6	YSA5	YSA4	YSA3	YSA2	YSA1	YSA0
PC)R	0	0	0	0	0	0	0	0
W	1	0	0	0	0	0	0	0	YSA8
PC)R	0	0	0	0	0	0	0	0
W	1	YEA7	YEA6	YEA5	YEA4	YEA3	YEA2	YEA1	YEA0
PC)R	0	0	1	0	0	1	1	1
W	1	0	0	0	0	0	0	0	YEA8
PC)R	0	0	0	0	0	0	0	1

YSA[8:0]/YEA[8:0]: Specify the start/end positions of the window address in the Y direction by an address unit. Data is written to the RAM within the area determined by the addresses specified by YSA [8:0] and YEA [8:0]. These addresses must be set before the RAM write.

It allows YEA [8:0] \leq YSA [8:0]. The settings follow the condition on 00h \leq YSA [8:0], YEA [8:0] \leq 127h. The windows is followed by the control setting of Data Entry Setting (R11h)

8.6 Set RAM Address Counter (4Eh-4Fh)

Reg#	R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
4Eh	W	1				XAD4	XAD3	XAD2	XAD1	XAD0
	PC)R	0	0	0	0	0	0	0	0
	W	1	YAD7	YAD6	YAD5	YAD4	YAD3	YAD2	YAD1	YAD0
	POR		0	0	0	0	0	0	0	0
4Fh	W	1								YAD8
	PC)R								0

XAD[4:0]: Make initial settings for the RAM X address in the address counter (AC). **YAD[8:0]:** Make initial settings for the RAM Y address in the address counter (AC).

After RAM data is written, the address counter is automatically updated according to the settings with AM, ID bits and setting for a new RAM address is not required in the address counter. Therefore, data is written consecutively without setting an address. The address counter is not automatically updated when data is read out from the RAM. RAM address setting cannot be made during the standby mode. The address setting should be made within the area designated with window addresses which is controlled by the Data Entry Setting (R11h) {AM, ID[1:0]}; RAM Address XStart / XEnd Position (R44h) and RAM Address Ystart / Yend Position (R45h). Otherwise undesirable image will be displayed on the Panel.

SSD1680 | Rev 0.14 | P 38/46 | Jun 2019 | **Solomon Systech**

9 Operation Flow and Code Sequence

9.1 General operation flow to drive display panel

Figure 9-1: Operation flow to drive display panel

SSD1680 | Rev 0.14 | P 39/46 | Jun 2019 | **Solomon Systech**

10 Absolute Maximum Rating

Table 10-1: Maximum Ratings

Symbol	Parameter	Rating	Unit
Vcı	Logic supply voltage	-0.5 to +6.0	V
VIN	Logic Input voltage	-0.5 to V _{DDIO} +0.5	V
Vouт	Logic Output voltage	-0.5 to V _{DDIO} +0.5	V
Topr	Operation temperature range	-40 to +85	°C
T _{STG}	Storage temperature range	-65 to +150	°C

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{CI} be constrained to the range $V_{SS} < V_{CI}$. Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g., either V_{SS} or V_{DDIO}). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

11 Electrical Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, VDD=1.8V, T_{OPR}=25°C.

Table 11-1: DC Characteristics

Symbol	Parameter	Applicable pin	Test Condition	Min.	Тур.	Max.	Unit
Vcı	VCI operation voltage	VCI		2.2	3.0	3.7	V
V_{DD}	VDD operation voltage	VDD		1.7	1.8	1.9	V
V _{COM_DC}	VCOM_DC output voltage	VCOM		-3.0		-0.2	V
dV _{COM_DC}	VCOM_DC output voltage deviation	VCOM		-200		200	mV
Vсом_ас	VCOM_AC output voltage	VCOM		V _{SL} + V _{COM_DC}	V _{СОМ_DС}	V _{SH1} + V _{COM_DC}	V
V _{GATE}	Gate output voltage	G0~G295		-20		+20	V
V _{GATE(p-p)}	Gate output peak to peak voltage	G0~G295				40	V
V _{SH1}	Positive Source output voltage	VSH1		+2.4	+15	+17	V
dV _{SH1}	VSH1 output voltage	VSH1	From 2.4V to 8.8V	-100		100	mV
	deviation		From 9.0V to 17V	-200		200	mV
V _{SH2}	Positive Source output voltage	VSH2		+2.4	+5	+17	V
dV _{SH2}	VSH2 output voltage	VSH2	From 2.4V to 8.8V	-100		100	mV
	deviation		From 9.0V to 17V	-200		200	mV
V _{SL}	Negative Source output voltage	VSL		-17	-15	-9	V
dV _{SL}	VSL output voltage deviation	VSL		-200		200	mV
V _{IH}	High level input voltage	SDA, SCL, CS#, D/C#, RES#, BS1,		0.8V _{DDIO}			V
V _{IL}	Low level input voltage	M/S#, CL				0.2V _{DDIO}	V
Vон	High level output voltage	SDA, BUSY, CL	IOH = -100uA	0.9V _{DDIO}			V
V_{OL}	Low level output voltage		IOL = 100uA			$0.1V_{\text{DDIO}}$	V
V_{PP}	OTP Program voltage	VPP		7.25	7.5	7.75	V

SSD1680 | Rev 0.14 | P 40/46 | Jun 2019 | **Solomon Systech**

Symbol	Parameter	Applicable pin	Test Condition	Min.	Тур.	Max.	Unit
Islp_VCI	Sleep mode current	VCI	 DC/DC off No clock No output load MCU interface access RAM data access 		20	35	uA
Idslp_VCI1	Current of deep sleep mode 1	VCI	- DC/DC off - No clock - No output load - No MCU interface access - Retain RAM data but cannot access the RAM		1	3	uA
Idslp_VCI2	Current of deep sleep mode 2	VCI	 DC/DC off No clock No output load No MCU interface access Cannot retain RAM data 		0.7	3	uA
lopr_VCI	Operating Mode current	VCI	VCI=3.0V		1000		uA
V _{GH}	Operating Mode Output Voltage	VGH	Enable Clock and Analog by Master Activation Command	19.5	20	20.5	V
V _{SH1}		VSH1	VGH=20V VGL=-VGH	14.8	15	15.2	V
V _{SH2}		VSH2	VSH1=15V VSH2=5V	4.9	5	5.1	V
V _{SL}		VSL	VSL=-15V VCOM = -2V	-15.2	-15	-14.8	V
V _{СОМ}		VCOM	No waveform transitions. No loading. No RAM read/write No OTP read /write	-2.2	-2	-1.8	V

Table 11-2: Regulators Characteristics

Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit
IVSH	VSH1 current	VSH1 = +15V	VSH1			800	uA
IVSH1	VSH2 current	VSH2 = +5V	VSH2			800	uA
IVSL	VSL current	VSL = -15V	VSL			800	uA
IVCOM	VCOM current	VCOM = -2V	VCOM			100	uA

SSD1680 Rev 0.14 P 41/46 Jun 2019 **Solomon Systech**

12 AC Characteristics

12.1 Serial Peripheral Interface

The following specifications apply for: VDDIO - VSS = 2.2V to 3.7V, TopR = 25°C, CL=20pF

Table 12-1: Serial Peripheral Interface Timing Characteristics

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
fscL	SCL frequency (Write Mode)			20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60			ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	65			ns
tcsнigh	Time CS# has to remain high between two transfers	100			ns
tsclhigh	Part of the clock period where SCL has to remain high	25			ns
t _{SCLLOW}	Part of the clock period where SCL has to remain low	25			ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
t _{SIHLD}	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Read Mode)		-	2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	100			ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	50			ns
tcsнigh	Time CS# has to remain high between two transfers	250			ns
tsclhigh	Part of the clock period where SCL has to remain high	180			ns
tscllow	Part of the clock period where SCL has to remain low	180			ns
t _{SOSU}	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
t _{SOHLD}	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

SCL tcshigh tcshigh

SCL tsisu tschigh

tcshigh

tcshigh

tcshigh

tcshigh

tcshigh

tcshigh

tcshigh

tcshigh

tcshid

Figure 12-1: SPI timing diagram

SSD1680 | Rev 0.14 | P 42/46 | Jun 2019 | **Solomon Systech**

13 Application Circuit

ı | vss C2 GDR VSH2 TSCL CONNECTION TSCL TSDA BS1 BUSY RES# EXTERNAL TEMP SENSOR D/C# BS1 BUSY RES# SDA CONNECTION MCU D/C# VSS VDD VPP SDA VSH1 20 VCI VSS VDD VPP VSH1 VGH CO C1 C5 VSL VGL VCOM C7 C8

Figure 13-1: Schematic of SSD1680 application circuit

Table 13-1: Component list for SSD1680 application circuit

Part Name	Value	Requirements/Reference Part		
C0-C1	1uF	X5R/X7R; Voltage Rating : 6V or 25V		
C2-C7	1uF	0402/0603/0805; X5R/X7R; Voltage Rating : 25V		
C8	0.47uF, 1uF	0603/0805; X7R; Voltage Rating : 25V Note: Effective capacitance > 0.25uF @ 18V DC bias		
R1	2.2 ohm	0402, 0603, 0805; 1% variation, ≥ 0.05W		
D1-D3	Diode	MBR0530 1) Reverse DC voltage ≥ 30V 2) Io ≥ 500mA 3) Forward voltage ≤ 430mV		
Q1	NMOS	Si1304BDL/NX3008NBK 1) Drain-Source breakdown voltage \geq 30V 2) Vgs(th) = 0.9V (Typ), 1.3V (Max) 3) Rds on \leq 2.1 Ω @ Vgs = 2.5V		
L1	47uH	CDRH2D18 / LDNP-470NC lo= 500mA (Max)		
U1	0.5mm ZIF socket	24pins, 0.5mm pitch		

Remarks:

- 1) The recommended component value and reference part in Table 13-1 is subject to change depending on panel loading.
- 2) Customer is required to review if the selected component value and part is suitable for their application.

SSD1680 | Rev 0.14 | P 43/46 | Jun 2019 | **Solomon Systech**

14 Package Information

14.1 Die Tray Dimensions for SSD1680Z

Figure 14-1 : SSD1680Z die tray information (unit: mm)

Symbol	Spec(mm)
W1	101.60±0.10
W2	91.55±0.10
W3	91.85±0.10
Н	4.55±0.10
Dx	11.25±0.10
TPx	79.10±0.10
Dy	7.60±0.10
TPy	86.40±0.10
Px	11.30±0.05
Ру	2.70±0.05
Х	9.661±0.05
Υ	1.125±0.05
Z	0.40±0.05
N	264(pocket number)

SSD1680 | Rev 0.14 | P 44/46 | Jun 2019 | **Solomon Systech**

14.2 Die Tray Dimensions for SSD1680Z8

Figure 14-2 : SSD1680Z8 die tray information (unit: mm)

SSD1680 | Rev 0.14 | P 45/46 | Jun 2019 | **Solomon Systech**

Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

The product(s) listed in this datasheet comply with Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment and People's Republic of China Electronic Industry Standard GB/T 26572-2011 "Requirements for concentration limits for certain hazardous substances in electronic information products (电子电器产品中限用物質的限用要求)". Hazardous Substances test report is available upon request.

http://www.solomon-systech.com

SSD1680 Rev 0.14 P 46/46 Jun 2019 **Solomon Systech**