Spotify Recommendation Algorithm

Our Agenda For Today

How We Came Up With Our Idea and Found Our Dataset

Different Approaches to Recommendation Algorithms

Our Spotify Recommendation Algorithm: What It Does and How It Works

How Does Our Algorithm Perform?

Additional Topics for Further Discussion and Improvement

How We Came Up With Our Idea and Found Our Dataset

What Brings Us Together?

Potential Datasets

- Art and Artists
- Netflix Shows
- Open Data on AWS
 - > Phishing
- > Spotify Hit Predictor

Our Dataset – 169,909 Songs from 1921-2020

The datasets features are:

<u>Acousticness</u> <u>Artists</u> <u>Danceability</u> <u>Duration</u>

Energy Explicit ID

<u>Instrumentalness</u> <u>Key</u> <u>Liveness</u> <u>Loudness</u>

Mode Name Popularity

Release date <u>Speechiness</u> <u>Tempo</u> <u>Valence</u>

<u>Year</u>

Different Approaches to Recommendation Algorithms

We Decided Against Our Initial Idea of Collaborative Filtering Due to a Lack of User Data

- Collaborative Filtering through Matrix Factorization is a common aspect of services like Netflix or Spotify.
 - It relies on similarities in taste and between songs to determine possible likes/matches.
- We didn't use this, since this requires user data on song preference, which was not something we could get.

Preference	Song A	Song B	Song C	Song D
User A	1	2	1	1
User B		1	1	3
User C	1		3	2

We Chose to Use Similarity Metrics for Our Recommendations

- To find song similarity, we needed to use metrics which calculated the distance between the numerical features of our data.
- Manhattan distance was our first choice, since it works better in higher dimensions, and is less sensitive to extreme values
- Cosine similarity, while not equivalent to Euclidean distance, gives us something similar.
 - More on that later...

Manhattan Distance

Cosine Similarity

Our Recommendation Algorithm: What It Does and How It Works

We Built Two Different Recommendation Functions

Cosine Similarity

Somewhat high computation time (4-5x Manhattan Distance time)

Returns the same relative ranking as Euclidean Distance

Manhattan Distance

Better than Euclidean Distance Quick computation times, even on high-dimensional datasets

Results are robust (not wildly impacted by outliers)

Our Data Preprocessing Steps

End Result: a Clean Dataset

Dealing with High Correlations Between Features

After Dropping the Energy Column

Exploring Our Data: KPrototypes Clustering

We chose to use KPrototypes clustering for our data to improve the computation speed and accuracy of the song recommendation functions.

	Accepts Numerical Data	Accepts Categorical Data	Time Complexity	Interpretability
KMeans	/	×	Decent	Very Good
KModes	×	\	Very Good	Unusable
KPrototypes	✓		Awful	Decent

Choosing the Correct Number of Clusters

Optimal Number of Clusters Using Elbow Method

Visualizing Our Clusters Using PCA

O Cluster 0: classical music, symphonies, podcasts, radio, and white noise

Cluster 1: music those using our recommender are likely to listen to

Cluster 2: older music and songs in non-English languages

Cluster Visualization in Two Dimensions

How Does Our Algorithm Perform?

You Be The Judge! Song Recommendations for Classmates

<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>
Until You Come Back to Me – Aretha Franklin	Streetcar – Daniel Caesar	More – Chief Keef	Sunflower – Post Malone
Feel Like I Do – Disclosure	Nights – Frank Ocean	Love Sosa – Chief Keef	Beautiful People – Ed Sheeran
I Like It – DeBarge	Die for You – The Weeknd	15 – Taylor Swift	I Don't Care – Ed Sheeran
Ultimate – Denzel Curry	Open – Kehlani	Going Bad – Drake	As Long As You Love Me – Justin Bieber
Blue World – Mac Miller	Garden – SZA	Poundcake – Drake/Jay-Z	Scared of the Dark – Lil Wayne
<u>Manhattan</u> Right Now – Lil Uzi Vert Yours Truly – Post Malone	<u>Manhattan</u> Love Don't Change – Jeremih To Die For – Kygo, St Lundi	<u>Manhattan</u> Cocoa Butter Kisses – Chance the Rapper Broken Clocks – SZA	<u>Manhattan</u> Graveyard – Halsey Like I Can – Sam Smith
<u>Cosine</u> For However Long – Bryson Tiller Without Me – Halsey, ILLENIUM	<u>Cosine</u> Hurting – Kygo The Worst – Jhene Aiko	<u>Cosine</u> Clique – Kanye West 3500 – Travis Scott	<u>Cosine</u> Reborn – Kids See Ghosts Canyon Moon - Harry Styles

Get Your Own Custom Song Recommendations!

Using Google API, we can import data from our Google Sheet to our Colab File and automate the recommendation system!

Measuring Accuracy Quantitatively is Difficult Without True Labels

- Common error metrics such as MAE, RMSE, MSE require there to be a predicted label and an actual label.
 - Because our dataset only contains information regarding the songs/artists/albums, we were unable to product any meaningful quantitative accuracy measure.
- However, given more resources, there are some steps we could take to create an accuracy system:

1. Internal Validation

- Cohesion across samples
- Compute the similarity between several records via 'Euclidian distance' in featurespace

Cohesion(
$$C_k$$
) = $\sum_{x \in C_k: y \in C_k}$ similarity(x, y)

2. External Validation / Twin Sample Validation

- Creating a sample of records that is expected to exhibit similar behavior to the training data
- Perform unsupervised learning on the 'twin-sample'
- Compare similarity between two sets results
 - F1, Jaccard Similarity.... any kind of External Validation method

Additional Topics for Further Discussion and Improvement

Possible Additions and Improvements to Our Project

Up-to-Date Song Dataset

1

Our current dataset stops at 2020. We looked into using Spotify's API to pull up-to-date song data, but found it was more trouble than it was worth.

Web-Based Front-End

2

Would allow users to input their songs and receive real-time results through a sleek user interface. Unfortunately, we couldn't get it working in time.

Artist Recommender

3

Similar to the song recommender. It would use naïve weighting for each artist and artist-relative popularity for each artists' songs.

Possible Ways to Improve the Underlying Algorithm

We feel our algorithm performs as best as can reasonably expected in most general-case scenarios, considering we used unsupervised learning to generate recommendations from imperfect data.

A few suggestions for potential improvements we could make to the underlying algorithm are:

Thank You! Any Questions?