Question number	Scheme	Marks
10 (a)	$\frac{1}{2} + \sin 3x = 0 \Rightarrow \sin 3x = -\frac{1}{2} \Rightarrow 3x = -\frac{\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \Rightarrow x = \frac{7\pi}{18}, \frac{11\pi}{18}$	M1
	Coordinates of M are $\left(\frac{7\pi}{18}, 0\right)^*$	A1
	Coordinates of N are $\left(\frac{11\pi}{18}, 0\right)$	A1 [3]
	ALT	
	$\frac{1}{2} + \sin\left(3 \times \frac{7\pi}{18}\right) = 0$ Coordinates of M are $\left(\frac{7\pi}{18}, 0\right) *$	[M1
	Coordinates of N are $\left(\frac{11\pi}{18}, 0\right)$	A1
(1)		A1]
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\cos 3x = 0 \Rightarrow 3x = \frac{\pi}{2} \Rightarrow x = \frac{\pi}{6}$	M1A1
	$y = \frac{1}{2} + \sin 3 \left(\frac{\pi}{6} \right) = 1.5$	dM1A1 [4]
	Coordinates of point A are $\left(\frac{\pi}{6}, 1.5\right)$	
	ALT	
	Max of sine curve is 1 so that $\frac{1}{2} + 1 = \frac{3}{2} \Rightarrow y = \frac{3}{2}$	[M1A1
	$\sin 3\theta = 1 \implies 3\theta = \frac{\pi}{2} \implies \theta = \frac{\pi}{6}$	dM1A1]
	Coordinates of point A are $\left(\frac{\pi}{6}, \frac{3}{2}\right)$	
(c)	Uses the given x coordinate for point M	
	At point $M = \frac{dy}{dx} = 3\cos\left(3 \times \frac{7\pi}{18}\right) = -\frac{3\sqrt{3}}{2}$	B1
	$y-0 = -\frac{3\sqrt{3}}{2} \left(x - \frac{7\pi}{18} \right) \Rightarrow 12y + 18\sqrt{3}x - 7\sqrt{3}\pi = 0$ o.e.	M1A1A1 [4]
(d)	$A = \int_0^{\frac{7\pi}{18}} \left(\frac{1}{2} + \sin 3x\right) dx + \left[\int_{\frac{7\pi}{18}}^{\frac{11\pi}{18}} \left(\frac{1}{2} + \sin 3x\right) dx \right]$	M1
	$A = \left[\frac{1}{2}x - \frac{\cos 3x}{3}\right]_0^{\frac{7\pi}{18}} + \left[\left[\frac{1}{2}x - \frac{\cos 3x}{3}\right]\right]_{\frac{7\pi}{18}}^{\frac{11\pi}{18}}$	M1
	$A = \left[\left(\frac{1}{2} \times \frac{7\pi}{18} - \frac{\cos 3\left(\frac{7\pi}{18}\right)}{3} \right) - \left(0 - \frac{\cos 3 \times 0}{3} \right) \right]$	
		M1

$$+ \left| \left[\left(\frac{1}{2} \times \frac{11\pi}{18} - \frac{\cos 3 \left(\frac{'11\pi'}{18} \right)}{3} \right) - \left(\frac{1}{2} \times \frac{7\pi}{18} - \frac{\cos 3 \left(\frac{7\pi}{18} \right)}{3} \right) \right] \right|$$

$$A = \left[(1.23287) + (0.22828) \right] = 1.46115... \approx 1.46$$
A1
[4]
Total 15 marks

Part	Mark	Notes	
(a)	M1	Sets the equation equal to 0, solves using inverse sin and obtains a correct	
		angle	
		$\frac{1}{2} + \sin 3x = 0 \implies \sin 3x = -\frac{1}{2} \implies 3x = -\frac{\pi}{6}$	
		Condone working in degrees for M mark.	
	A1	For correctly obtaining $\left(\frac{7\pi}{18}, 0\right)$ * with no errors.	
	cso	Award for finding $\frac{7\pi}{18}$ and $\frac{11\pi}{18}$ but not shown as coordinates.	
	A1	For correct coordinates of N: $\left(\frac{11\pi}{18}, 0\right)$	
Alternati	ive metho		
	M1	For correct substitution of $\frac{7\pi}{18}$ into $\frac{1}{2} + \sin 3x$	
	A1 cso	For correctly showing that $\frac{1}{2} + \sin\left(3 \times \frac{7\pi}{18}\right) = 0$ and stating $\left(\frac{7\pi}{18}, 0\right) *$	
		Award for showing $\frac{7\pi}{18}$ and finding $\frac{11\pi}{18}$ but not shown as coordinates	
	A1	For correct coordinates of N: $\left(\frac{11\pi}{18}, 0\right)$	
(b)	M1	For attempt to differentiate $y = \frac{1}{2} + \sin 3x$, set equal to 0 and solve for x.	
		$\frac{dy}{dx} = 3\cos 3x = 0 \Rightarrow 3x = \frac{\pi}{2} \Rightarrow x = \frac{\pi}{6}$	
		$\frac{dx}{dx}$ 2 6 Condone finding x in degrees for this mark.	
		Attempt at differentiation of two terms:	
		$\left \frac{1}{2} \to 0\right $	
		4	
	A1	$\sin(3x) \to k \cos(3x)$ For correctly obtaining $x = \frac{\pi}{6}$	
		Note: Do not award this mark if $\frac{dy}{dx}$ is incorrect.	
	dM1	Substitutes $x = \frac{\pi}{6}$ to find a value for y.	
		$y = \frac{1}{2} + \sin 3 \left(\frac{\pi}{6} \right) = 1.5$	
		Condone working with x in degrees for this mark.	
	A1	For correct coordinates of A.	
		$\left(\frac{\pi}{6},\frac{3}{2}\right)$	
		Allow values equivalent to $\frac{3}{2}$	
Alternati	Alternative method		
	M1	For stating that the maximum of a sine curve is 1 and adding $\frac{1}{2}$	
	A1	For correctly obtaining $y = \frac{3}{2}$	
	dM1	For setting $\sin 3x$ equal to 1 and attempt to solve for x	
		$\sin 3x = 1 \implies 3x = \frac{\pi}{2} \implies x = \frac{\pi}{6}$	
		Condone working with <i>x</i> in degrees for this mark.	

	A1	For correctly obtaining $x = \frac{\pi}{6}$
(c)	B1	For correct gradient at point M
	3.54	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = -\frac{3\sqrt{3}}{2}$
	M1	For a fully correct method of finding the equation of the tangent to C at M
		$y - 0 = ' - \frac{3\sqrt{3}}{2}' \left(x - \frac{7\pi}{18} \right)$
		Allow use of their $-\frac{3\sqrt{3}}{2}$ obtained from substitution of $x = \frac{7\pi}{18}$ into their $\frac{dy}{dx}$.
	A1	For a correct equation of the tangent in any form:
		$y - 0 = -\frac{3\sqrt{3}}{2} \left(x - \frac{7\pi}{18} \right)$
	A1	For correct equation of the tangent in the required form:
		$12y + 18\sqrt{3}x - 7\sqrt{3}\pi = 0$
		Accept integer multiples of this equation.
(d)	M1	For identifying the correct limits to find the area above the curve and the area
		below the curve:
		$\left \int_0^{\frac{7\pi}{18}} \left(\frac{1}{2} + \sin 3x \right) + \left \int_{\frac{7\pi}{18}}^{\frac{11\pi}{18}} \left(\frac{1}{2} + \sin 3x \right) \right \operatorname{or} \int_0^{\frac{7\pi}{18}} \left(\frac{1}{2} + \sin 3x \right) - \int_{\frac{7\pi}{18}}^{\frac{11\pi}{18}} \left(\frac{1}{2} + \sin 3x \right) \right $
		Allow use of their $\frac{11\pi}{18}$. Needs to correctly indicate dealing with areas above
		and below axis.
	M1	For an attempt to integrate $\frac{1}{2} + \sin 3x$ obtaining:
		$\frac{1}{2}x - k\cos 3x$ where $k \neq -3$
		For this mark ignore incorrect / absent limits.
	M1	For substituting limits correctly into their integrated expression (must be a
		changed expression).
		$A = \left[\left(\frac{1}{2} \times \frac{7\pi}{18} - \frac{\cos 3\left(\frac{7\pi}{18}\right)}{3} \right) - \left(0 - \frac{\cos 3 \times 0}{3} \right) \right]$
		$+ \left \left[\left(\frac{1}{2} \times \frac{11\pi}{18} - \frac{\cos 3 \left(\frac{11\pi}{18} \right)}{3} \right) - \left(\frac{1}{2} \times \frac{7\pi}{18} - \frac{\cos 3 \left(\frac{7\pi}{18} \right)}{3} \right) \right] \right $
		Allow use of their $\frac{11\pi}{18}$. Must show substitution or M0.
	A1	For correctly obtaining awrt 1.46

Question number	Scheme	Marks
11 (a)	$f(x) = \int ax^2 - 14x - 10 dx = \frac{ax^3}{3} - \frac{14x^2}{2} - 10x + c$	M1A1
	$f(4) = \frac{a \times 4^3}{3} - \frac{14 \times 4^2}{2} - 10 \times 4 + c = 0 \Rightarrow \frac{64a}{3} - 152 + c = 0$	M1
	$f(-1) = \frac{a \times (-1)^3}{3} - \frac{14 \times (-1)^2}{2} - 10 \times (-1) + c = 25 \Rightarrow -\frac{a}{3} - 22 + c = 0$	M1
	$\frac{64a}{3} - 152 + c = 0$	
	$-\frac{a}{3} - 22 + c = 0$	
	$\Rightarrow 152 - \frac{64a}{3} = 22 + \frac{a}{3} \Rightarrow a = 6$	M1A1 [6]
(b)	$c = 22 + \frac{6}{3} = 24$	B1
	$f(x) = 2x^3 - 7x^2 - 10x + 24$	
	$\frac{2x^2 + x - 6}{x - 4)2x^3 - 7x^2 - 10x + 24}$	M1A1
	f(x) = (x-4)(2x-3)(x+2) = 0	dM1A1
	$x = 4, \frac{3}{2}, -2$	A1 [6]
	ALT $2x^3 - 7x^2 - 10x + 24 = (x - 4)(ax^2 + bx + c)$ a = 2, b = 1, c = -6	[M1
	$f(x) = (x-4)(2x^2 + x - 6)$	A1
	f(x) = (x-4)(2x-3)(x+2) = 0	dM1A1
	$x = 4, \frac{3}{2}, -2$	A1]
	Tota	l 12 marks

Part	Mark	Notes
(a)	M1	For an attempt to integrate $f'(x) = ax^2 - 14x - 10$
		See General Guidance on what constitutes an attempt to integrate.
	A1	For correctly integrating $f'(x)$ to obtain
		$f(x) = \frac{ax^3}{3} - \frac{14x^2}{2} - 10x + c$
		Must include $+c$ for this mark.
	M1	For substituting $x = \pm 4$ in their $f(x)$ and setting =0
	M1	For substituting $x = \pm 1$ in their $f(x)$ and setting =25

	M1	For correct method to solve the equations simultaneously to find a
		A correct intermediate step is required e.g. $65a = 390$
	A1	For fully correct working leading to $a = 6$
	cso	
(b)	B1	For correctly identifying $c = 24$
	M1	For attempt to divide $f(x)$ by $x - 4$
		Must get as far as $2x^2 + \cdots$
	A1	For correct division of $f(x)$ by $x - 4$ to obtain $2x^2 + x - 6$
	dM1	For an attempt to factorise their 3TQ which must come from a cubic.
		See General Guidance on what constitutes an attempt to factorise.
	A1	For obtaining correct factorisation of the cubic:
		(x-4)(2x-3)(x+2)
	A1	For all three correct solutions of the equation: $x = 4, \frac{3}{2}, -2$
Alternat	ive metho	od
	M1	For an attempt to find the quadratic factor that multiplies $x - 4$ to give $f(x)$
		Must get as far as $f(x) = (x-4)(2x^2 + bx + c)$
	A1	For correctly comparing coefficients to obtain $2x^2 + x - 6$
	dM1	For an attempt to factorise their 3TQ which must come from a cubic.
		See General Guidance on what constitutes an attempt to factorise.
	A1	For obtaining correct factorisation of the cubic:
		(x-4)(2x-3)(x+2)
	A1	For all three correct solutions of the equation: $x = 4, \frac{3}{2}, -2$
	Note: C	orrect solution seen with no working scores B0M0A0M0A0A0