Boundary Conditions

Available BC types in Fluent

Velocity inlet

 Define the velocity and scalar properties of the flow at the boundary

Mass flow inlet

 Define the mass flow rate for compressible flows at the boundary

Pressure inlet

- Define the total pressure and other scalar properties at the boundary
- $p_{\text{total}} = p_{\text{static}} + 0.5 \rho v^2$

Pressure outlet

 Define the static pressure (and also other scalar variables, in case of backflow) at the boundary

Outflow

- Assume zero streamwise gradient for all flow variables except pressure
- Not appropriate for compressible flows
- Cannot use with pressure inlet

Pressure far-field

Model a free-stream compressible flow at infinity

Inlet/outlet vent

 Model an inlet/outlet vent with a specified loss coefficient

Intake/exhaust fan

 Model an external intake/exhaust fan with a specified pressure jump

Symmetry BC

Are these domains symmetric?

Are these domains symmetric?

Are these domains symmetric?

UDF C Macro Language

- DEFINE_PROFILE—specify profile condition on boundary face zone
- DEFINE_TRANSIENT_PROFILE—specify profile condition on boundary face zone as function of time
- DEFINE_PROPERTY—specify material property (density, viscosity, thermal conductivity, rate of strain, mixing laws, ...)
- DEFINE_SOURCE—specify custom source term (mass, momentum, energy, species mass fractions, radiation model, user-defined scalars); written for single cell

UDF: DEFINE_PROFILE

```
p(y) = 1.1 \times 10^5 - 0.1 \times 10^5 \left(\frac{y}{0.0745}\right)^2
/**********************
 UDF for specifying steady-state parabolic pressure profile boundary
 profile for a turbine vane
    **************************
#include "udf.h"
DEFINE_PROFILE(pressure_profile,t,i)
 real x[ND ND];
 real y;
 face t f;
 begin_f_loop(f,t)
 /* this will hold the position vector */
   F CENTROID(x,f,t);
   y = x[1];
   F_PROFILE(f,t,i) = 1.1e5 - y*y/(.0745*.0745)*0.1e5;
 end f loop(f,t)
```

UDF: DEFINE_PROPERTY

```
UDF that simulates solidification by specifying a temperature-
 dependent viscosity property
#include "udf.h"
DEFINE_PROPERTY(cell_viscosity,c,t)
 real mu lam;
 real temp = C T(c,t);
 if (temp > 288.)
  mu lam = 5.5e-3;
 else if (temp > 286.)
  mu lam = 143.2135 - 0.49725 * temp;
 else
  mu lam = 1.;
 return mu_lam;
```

UDF: DEFINE_SOURCE

$$source = -0.5C_2\rho y \mid v_x \mid v_x$$

```
UDF for specifying an x-momentum source term in a spatially
 dependent porous media
**************************
#include "udf.h"
#define C2 100.0
DEFINE SOURCE(xmom source,c,t,dS,eqn)
 real x[ND ND];
 real con, source;
 C CENTROID(x,c,t);
 con = C2*0.5*C_R(c,t)*x[1];
 source = -con*fabs(C_U(c, t))*C_U(c,t);
 dS[eqn] = -2.*con*fabs(C_U(c,t));
 return source;
```