运筹学第三次作业参考答案(20231011)

1. 用两阶段方法求解下述线性规划问题,并完成后附讨论。

$$\max 2x_1 - 4x_2 + 5x_3 - 6x_4$$
s.t. $x_1 + 4x_2 - 2x_3 + 8x_4 = 2$

$$-x_1 + 2x_2 + 3x_3 + 4x_4 = 1$$

$$x_i \ge 0, i = 1, 2, 3, 4$$

讨论:

在应用两阶段方法时可能遇到原问题有可行解,但系数矩阵不是行满秩矩阵的情况,如下面的例子所示,此时会出现什么情况?应该如何处理?

$$\max 2x_1 - 4x_2 + 5x_3 - 6x_4$$
s.t. $x_1 + 4x_2 - 2x_3 + 8x_4 = 2$

$$-x_1 + 2x_2 + 3x_3 + 4x_4 = 1$$

$$2x_1 + 2x_2 - 5x_3 + 4x_4 = 1$$

$$x_i = 0, i = 1, 2, 3, 4$$

解:

第一阶段,添加人工变量 x_5, x_6 ,得到辅助问题

$$\max -x_5 - x_6$$
s. t. $x_1 + 4x_2 - 2x_3 + 8x_4 + x_5 = 2$
 $-x_1 + 2x_2 + 3x_3 + 4x_4 + x_6 = 1$
 $x_i \ge 0, i = 1, 2, ..., 6$

BV	x_1	x_2	x_3	x_4	x_5	x_6	RHS
x_5	1	4	-2	8	1	0	2
x_6	-1	2	3	4	0	1	1
	0	6	1	12	0	0	3
BV	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	x_6	RHS
x_4	1/8	1/2	-1/4	1	1/8	0	1/4
x_6	-3/2	0	4	0	-1/2	1	0
	-3/2	0	4	0	-3/2	0	0
BV	x_1	x_2	<i>x</i> ₃	χ_4	<i>x</i> ₅	x_6	RHS
x_4	1/32	1/2	0	1	3/32	1/16	1/4
x_3	-3/8	0	1	0	-1/8	1/4	0
	0	0	0	0	-1	-1	0

第二阶段,去掉人工变量对应的列,目标函数变为 $\max 2x_1 - 4x_2 + 5x_3 - 6x_4$,继续迭代

BV	x_1	x_2	x_3	x_4	RHS
x_4	1/32	1/2	0	1	1/4
x_3	-3/8	0	1	0	0
	65/16	-1	0	0	3/2
BV	x_1	x_2	x_3	x_4	RHS
x_1	1	16	0	32	8
x_3	0	6	1	12	3
	0	-66	0	-130	-31

所有检验数均为负数,得到最优解 $x = (8,0,3,0)^{\mathsf{T}}$,最优值为 $z_{max} = 31$

讨论: 当系数矩阵不是行满秩时,仍然尝试使用两阶段法。第一阶段,添加人工变量 x_5, x_6, x_7 ,得到

$$\max -x_5 - x_6 - x_7$$
s. t.
$$x_1 + 4x_2 - 2x_3 + 8x_4 + x_5 = 2$$

$$-x_1 + 2x_2 + 3x_3 + 4x_4 + x_6 = 1$$

$$2x_1 + 2x_2 - 5x_3 + 4x_4 + x_7 = 1$$

$$x_i \ge 0, i = 1, 2, ..., 7$$

BV	x_1	x_2	<i>x</i> ₃	χ_4	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	RHS
x_5	1	4	-2	8	1	0	0	2
x_6	-1	2	3	4	0	1	0	1
x_7	2	2	-5	4	0	0	1	1
	2	8	-4	16	0	0	0	4

BV	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	<i>x</i> ₇	RHS
x_4	1/8	1/2	-1/4	1	1/8	0	0	1/4
x_6	-3/2	0	4	0	-1/2	1	0	0
x_7	3/2	0	-4	0	-1/2	0	1	0
	0	0	0	0	-2	0	0	0

此时没办法再改进,但人工变量 x_6 , x_7 仍在基中,这是因为系数矩阵不是行满秩。解决方法: 去掉冗余行对应的人工变量(x_6 或 x_7),继续迭代。

BV	x_1	x_2	x_3	x_4	x_5	x_6	RHS
x_4	1/8	1/2	-1/4	1	1/8	0	1/4
x_6	-3/2	0	4	0	-1/2	1	0
	-3/2	0	4	0	-3/2	0	0

该表与之前求解原问题的情况一模一样,继续进行二阶段法即可。

2. 对于线性规划问题

$$\max 6x_1 - 2x_2 + 10x_3$$
s.t. $a_{i1}x_1 + a_{i2}x_2 + a_{i3}x_3 \le b_i, i = 1, 2$

$$x_j \ge 0, j = 1, 2, 3$$

其中 $b_i \ge 0$, $\forall i$,引入松弛变量 x_4 , x_5 获得初始顶点,然后进行一步单纯型迭代得到下面的线性规划问题,

$$\max \quad \gamma_{1}x_{1} + \gamma_{3}x_{3} + \gamma_{4}x_{4} + \gamma_{5}x_{5} + 20$$

$$s.t. \quad \beta_{11}x_{1} + x_{2} + 2x_{3} + \beta_{14}x_{4} = 5$$

$$\beta_{21}x_{1} + \beta_{22}x_{2} + \frac{1}{3}x_{3} + \beta_{24}x_{4} + \frac{1}{3}x_{5} = \eta$$

$$x_{j} \ge 0, \ \forall j$$

 χ_3

- 1)请指出上述迭代的进出基变量(说明理由);
- 2) 请确定上述两个模型的参数值。

BV

解:

1) 根据题意先列出这两步的单纯形表

			<u> </u>	1	<u> </u>		
χ_4	a_{11}	a_{12}	a_{13}	1	0	b_1	/1\
x_5	a_{21}	a_{22}	a_{23}	0	1	b_2	(1)
	6	-2	10	0	0		
BV	x_1	x_2	x_3	x_4	<i>x</i> ₅	RHS	
?	eta_{11}	1	2	eta_{14}	0	5	(2)
?	eta_{21}	eta_{22}	1/3	eta_{24}	1/3	η	(2)
	1/	Λ	1/ -	1/.	1/	-20	

 χ_4

RHS

 χ_{5}

由表(1)的检验数行可知,进基变量应为 x_1 或 x_3 ,出基变量应为 x_4 或 x_5 。表(2) x_5 列第二行由 1 变为 1/3,说明第二行进行了系数相除的操作,所以出基变量为 x_5 。观察 x_3 列,其值不为(0,1)^T,不可能进基。所以进基变量为 x_1 。

2) 根据上一问的分析,表(2)更新为

	BV	x_1	x_2	x_3	x_4	x_5	RHS	
-	x_4	0	1	2	1	0	5	(24)
	x_1	1	eta_{22}	1/3	0	1/3	η	(2)
		0	0	γ_3	γ_4	γ_5	-20	

由于第二行同时除以 3,所以 $a_{21}=3\beta_{21}=3$, $a_{22}=3\beta_{22}$, $a_{23}=1$, $b_2=3\eta$ 。再由表(2') x_5 列可知, x_4 行没有进行加减的操作,所以该行系数没有发生改变, $a_{11}=0$, $a_{12}=1$, $a_{13}=2$, $b_1=5$ 。

表(2')的检验数可直接计算

$$\gamma_3 = 10 - 6 \times \frac{1}{3} = 8$$
 $\gamma_4 = 0$
 $\gamma_5 = 0 - 6 \times \frac{1}{3} = -2$

再由表(2') x_2 列检验数知 $0 = -2 - 6\beta_{22}$,得到 $\beta_{22} = -1/3$, $a_{22} = 3\beta_{22} = -1$ 。根据 $6\eta = 20$,得到 $\eta = 10/3$, $b_2 = 3\eta = 10$.综上,所有参数值为

$$a_{11} = 0, a_{12} = 1, a_{13} = 2, b_1 = 5$$

$$a_{21} = 3, a_{22} = -1, a_{23} = 1, b_2 = 10$$

$$\beta_{11} = 0, \beta_{14} = 1$$

$$\beta_{21} = 1, \beta_{22} = -\frac{1}{3}, \beta_{24} = 0, \eta = \frac{10}{3}$$

$$\gamma_1 = 0, \gamma_3 = 8, \gamma_4 = 0, \gamma_5 = -2$$

3. 对于线性规划问题

$$\min x_1 + x_2$$

s. t. $x_1 \ge 0$

- 1) 请指出该可行域是否有顶点;
- 2) 请将其转换为标准形式,再指出标准形式下的可行域是否有顶点,并与1)中的结论进行比较;

解:

- 1) 可行域是 \mathbb{R}^2 上的 x_1 非负部分区域,画图可知没有顶点。也可以用定义验证,即任给点 $(x_1,x_2),x_1\geq 0$,存在两个点 $(x_1,x_2+1),(x_1,x_2-1)$,使得所给点是两个点的中点,因此没有顶点。
- 2) 标准形式为

min
$$x_1 + x_2^+ - x_2^-$$

s.t. $x_1, x_2^+, x_2^- \ge 0$

容易验证(0,0,0)是一个顶点。即假设存在 $v_1,v_2,\lambda\in[0,1]$ 使得(0,0,0) = λv_1 + $(1-\lambda)v_2$,因为 $v_1,v_2\geq 0$,所以只可能 $v_1,v_2=0$,因此(0,0,0)是一个顶点。

3) 标准形式下的顶点(0,0,0)对应原问题可行域的(0,0),而我们知道(0,0)不是顶点。 在引入松弛变量时,本质上已经将原问题转变成另外一个相关但不同的问题, 而新问题就会出现之前所没有的性质。在本例题中,标准形式的维度变得更 高,新可行域与原可行域形成多对一的映射关系,例如原可行域(0,0)实际上 对应标准形式中无穷多个点。 4. 写出下面线性规划的对偶规划

$$\min x_1 + 2x_2 + 4x_3$$
s. t.
$$2x_1 + 3x_2 + 4x_3 \ge 2$$

$$2x_1 + x_2 + 6x_3 = 3$$

$$x_1 + 3x_2 + 5x_3 \le 5$$

$$x_1, x_2 \ge 0, x_3 \in \mathbb{R}$$

解:

先将原问题转换为标准形式

$$-\max -x_1 - 2x_2 - 4(x_3^+ - x_3^-)$$
s.t.
$$2x_1 + 3x_2 + 4(x_3^+ - x_3^-) - x_4 = 2$$

$$2x_1 + x_2 + 6(x_3^+ - x_3^-) = 3$$

$$x_1 + 3x_2 + 5(x_3^+ - x_3^-) + x_5 = 5$$

$$x_1, x_2, x_3^+, x_3^-, x_4, x_5 \ge 0$$

得到标准形式下的对偶问题

$$\begin{aligned} -\min 2\tilde{y}_1 + 3\tilde{y}_2 + 5\tilde{y}_3 \\ \text{s. t.} \quad & 2\tilde{y}_1 + 2\tilde{y}_2 + \tilde{y}_3 \geq -1 \\ & 3\tilde{y}_1 + \tilde{y}_2 + 3\tilde{y}_3 \geq -2 \\ & 4\tilde{y}_1 + 6\tilde{y}_2 + 5\tilde{y}_3 \geq -4 \\ & -4\tilde{y}_1 - 6\tilde{y}_2 - 5\tilde{y}_3 \geq 4 \\ & -\tilde{y}_1 \geq 0 \\ & \tilde{y}_3 \geq 0 \end{aligned}$$

将 $-\tilde{y}_1$, $-\tilde{y}_2$, \tilde{y}_3 分别用 y_1 , y_2 , y_3 替代,化简得到原问题的对偶问题为

$$\max 2y_1 + 3y_2 - 5y_3$$
s. t.
$$2y_1 + 2y_2 - y_3 \le 1$$

$$3y_1 + y_2 - 3y_3 \le 2$$

$$4y_1 + 6y_2 - 5y_3 = 4$$

$$y_1, y_3 \ge 0, y_2 \in \mathbb{R}$$

(请同学们尽量将变量的约束条件设定为非负)