CE407 GÃ¹/₄venli Programlama Hafta-9

Sertifikalar ve Şifreleme Yöntemleri

Yazar: Dr. Ã-ÄŸr. Üyesi UÄŸur CORUH

İçindekiler

1	CE407 GA ¹ / ₄ venli Programlama									
	1.1	Hafta-	.9							
		1.1.1	Outline							
		1.1.2	Hafta-9: Sertifikalar ve Şifreleme Yöntemleri							

Şekil Listesi

Tablo Listesi

1 CE407 GÃ¹/₄venli Programlama

1.1 Hafta-9

1.1.0.1 Sertifikalar ve Şifreleme Yöntemleri İndir PDF¹, DOCX², SLIDE³, PPTX⁴

1.1.1 Outline

- Sertifikalar ve Åžifreleme Yöntemleri
- Simetrik ve Asimetrik Åžifreleme
- Dijital İmzalar ve Sertifika Yönetimi

1.1.2 Hafta-9: Sertifikalar ve Şifreleme Yöntemleri

Bu hafta, yaz $\ddot{A}\pm l\ddot{A}\pm m$ g \ddot{A}^{1} 4venli $\ddot{A}\ddot{Y}i$ ve ileti $\ddot{A}\ddot{Y}i$ mde kullan $\ddot{A}\pm l$ an $\ddot{A}\ddot{Y}i$ freleme y \ddot{A} ¶ntemleri ile sertifikalar $\ddot{A}\pm n$ temel ilkelerini inceleyece $\ddot{A}\ddot{Y}i$ z. Hem asimetrik hem de simetrik $\ddot{A}\ddot{Y}i$ freleme algoritmalar $\ddot{A}\pm n\ddot{A}\pm n$ dijital sertifikalar $\ddot{A}\pm n$ nas $\ddot{A}\pm l$ $\ddot{A}\ddot{Y}al\ddot{A}\pm a\ddot{Y}\ddot{A}\pm a\ddot{Y}\ddot{A}\pm n\ddot{A}\pm v$ e uygulama g \ddot{A}^{1} 4venli $\ddot{A}\ddot{Y}i$ ne nas $\ddot{A}\pm l$ katk $\ddot{A}\pm sa\ddot{Y}l$ 2d $\ddot{A}\pm k$ 1ar $\ddot{A}\pm k$ 2e $\ddot{A}\ddot{Y}$ 6dece $\ddot{A}\ddot{Y}i$ 2.

- 1.1.2.1 1. Şifreleme Yöntemlerinin Temelleri Teorik Aç \ddot{A} ±klama: Åžifreleme, verilerin gizlili \ddot{A} Ÿini korumak ve yetkisiz eri \ddot{A} Ÿimlere kar \ddot{A} Ÿ \ddot{A} ± koruma sa \ddot{A} Ÿlamak amac \ddot{A} ±yla kullan \ddot{A} ±lan bir tekniktir. Åžifreleme y \ddot{A} ¶ntemleri iki ana kategoriye ayr \ddot{A} ±l \ddot{A} ±r: simetrik ve asimetrik.
 - Simetrik Åžifreleme: Aynı anahtar hem ÅŸifreleme hem de ÅŸifre çözme iÅŸlemlerinde kullanılır. Örnek algoritmalar: AES, DES.
 - Asimetrik Åžifreleme: İki farklı anahtar kullanılır. Bir anahtar ÅŸifreleme için, diÄŸeri ise ÅŸifre ç¶zme için kullanılır. Ã-rnek algoritmalar: RSA, ECC.

¹ce407-week-9.tr doc.pdf

²ce407-week-9.tr_word.docx

 $^{^3\}mathrm{ce}407\text{-week-}9.\mathrm{tr}_\mathrm{slide.pdf}$

 $^{^4}$ ce 4 07-week- 9 .tr_slide.pptx

- 1.1.2.2 2. Simetrik Şifreleme Yöntemleri Teorik Aç \ddot{A} ±klama: Simetrik Å \ddot{Y} ifreleme, h \ddot{A} ±z ve verimlilik a \ddot{A} § \ddot{A} ±s \ddot{A} ±ndan asimetrik Å \ddot{Y} ifrelemeden daha avantajl \ddot{A} ±d \ddot{A} ±r, ancak anahtar payla \ddot{A} \ddot{Y} \ddot{A} ±m \ddot{A} ± sorunu vard \ddot{A} ±r.
 - AES (Advanced Encryption Standard): Yaygın kullanılan ve oldukça güvenli bir blok ÅŸifreleme algoritmasıdır. 128, 192 veya 256 bit anahtar uzunluklarıyla çalışır.
 - **DES** (**Data Encryption Standard**): Daha eski bir algoritma olup, gù¼nù¼mù½zde gù¼venlik açıkları nedeniyle artık önerilmemektedir.
 - Blok Åžifreleme ve Modlar: Blok ÅŸifreleme, veriyi sabit uzunluklardaki bloklar halinde ÅŸifreler. Ã-rneÄŸin, ECB (Electronic Codebook), CBC (Cipher Block Chaining) gibi ÅŸifreleme modları vardır.

Uygulama Ã-rnekleri:

- 1. **AES** kullanarak bir metni şifreleyip çözme iÅŸlemi.
- 2. CBC modunu kullanarak bir dosyanın ÅŸifrelenmesi ve ÅŸifre çözme iÅŸlemi.
- 1.1.2.3 3. Asimetrik Şifreleme Yöntemleri Teorik AçÄ \pm klama: Asimetrik şifrelemede iki anahtar bulunur: bir kamuya açÄ \pm k anahtar (public key) ve bir özel anahtar (private key). Veri, kamuya açÄ \pm k anahtar ile şifrelenir ve sadece özel anahtar ile çözülebilir.
 - RSA (Rivest-Shamir-Adleman): Yaygın kullanılan asimetrik ÅŸifreleme algoritmasıdır. Bù⁄4yù⁄4k asal sayılara dayalıdır ve hem ÅŸifreleme hem de dijital imza iÅŸlemlerinde kullanılÄ+r.
 - ECC (Elliptic Curve Cryptography): Daha küçük anahtar boyutları ile RSA'ya kıyasla daha güçlü güvenlik saÄŸlayan asimetrik bir ÅŸifreleme algoritmasıdır.

Uygulama Ã-rnekleri:

- 1. **RSA** kullanarak bir metni şifreleme ve çözme iÅŸlemi.
- 2. ECC kullanarak dijital imza oluÅŸturma ve doÄŸrulama.
- 1.1.2.4 4. Hibrit Şifreleme Teorik AçÄ \pm klama: Hibrit ÅŸifreleme, hem simetrik hem de asimetrik ÅŸifrelemeyi bir arada kullanÄ \pm r. Simetrik anahtarlar, asimetrik ÅŸifreleme ile gÃ $\frac{1}{4}$ venli bir ÅŸekilde paylaÅŸÄ \pm lÄ \pm r, ardÄ \pm ndan veriler simetrik anahtarla ÅŸifrelenir.
 - Uygulama: E-posta ve HTTPS gibi birçok güvenli iletiÅŸim protokolünde kullanılır.

Uygulama Ã-rnekleri:

- 1. Simetrik anahtar $\ddot{A}\pm n$ asimetrik olarak $\ddot{A}\ddot{Y}$ ifrelenmesi ve ard $\ddot{A}\pm n$ dan verilerin simetrik $\ddot{A}\ddot{Y}$ ifre ile korunmas $\ddot{A}\pm .$
- 2. Hibrit şifreleme kullanarak iki cihaz arasında güvenli veri alıÅŸveriÅŸi.
- 1.1.2.5 5. Dijital Sertifikalar ve Sertifika Yetkilileri (CAs) Teorik Açıklama: Dijital sertifikalar, bir kiÅŸinin veya kuruluÅŸun kimliÄŸini doÄŸrulayan elektronik belgeler olarak tanımlanabilir. Bu sertifikalar genellikle bir sertifika yetkilisi (Certificate Authority CA) tarafından imzalanır ve kullanıcılara güvenli bir ÅŸekilde iletilir.
 - X.509 Sertifikası: En yaygın kullanılan sertifika türüdür.
 - Sertifika Yetkilisi (CA): Sertifikaları dijital olarak imzalayan güvenilir otoriteler.
 - Sertifika Zinciri: Sertifikaların doÄŸrulanabilir bir hiyerarÅŸi ile baÄŸlandığı yapı. Her sertifika, bir üst otorite tarafından imzalanır.

Uygulama Ā-rnekleri:

- 1. Bir web sunucusu i \tilde{A} §in **SSL/TLS** sertifikas \ddot{A} \pm olu \ddot{A} \ddot{Y} turma ve y \tilde{A} 1 4kleme.
- 2. $\mathbf{X.509}$ sertifikalar $\ddot{\mathbf{A}}\pm\mathbf{n}\ddot{\mathbf{A}}\pm\mathbf{n}$ do $\ddot{\mathbf{A}}\ddot{\mathbf{Y}}$ rulanmas $\ddot{\mathbf{A}}\pm\mathbf{v}$ eg $\ddot{\mathbf{A}}^{1}$ /venlik zincirinin incelenmesi.
- **1.1.2.6 6. Dijital İmzalar Teorik Açıklama:** Dijital imzalar, verilerin kimliğini doğrulamak ve değişikliğe uğrayıp uÄŸramadığını kontrol etmek için kullanılır. İmza,

bir mesaj $\ddot{A}\pm n$ karmas $\ddot{A}\pm n\ddot{A}\pm$ (hash) hesaplayarak ve bu karmay $\ddot{A}\pm$ \tilde{A} ¶zel bir anahtarla \mathring{A} Ÿifreleyerek olu- \mathring{A} Ÿturulur.

- İmzanın DoÄŸrulanması: İmza, kamuya açık anahtar kullanılarak doÄŸrulanabilir.
- Uygulama Alanları: E-posta, yazılım dağıtımı, dijital sözleÅŸmeler.

Uygulama Ã-rnekleri:

- 1. Bir dosya için dijital imza oluÅŸturma ve doÄŸrulama.
- 2. $\mathbf{PGP}/\mathbf{GPG}$ kullanarak bir mesaj $\ddot{\mathbf{A}}\pm\mathbf{n}$ imzalanmas $\ddot{\mathbf{A}}\pm\mathbf{v}$ e do $\ddot{\mathbf{A}}\ddot{\mathbf{Y}}$ rulanmas $\ddot{\mathbf{A}}\pm\mathbf{.}$
- 1.1.2.7 7. Sertifika Tabanlı Kimlik DoÄŸrulama Teorik Açıklama: Sertifikalar, özellikle sunucular arası güvenli iletiÅŸimde kimlik doÄŸrulama için kullanılır. İstemci ve sunucu birbirlerinin sertifikalarını doÄŸrulayarak güvenli bir iletiÅŸim kanalı oluÅŸturur.
 - SSL/TLS: Web tarayıcıları ve sunucular arasındaki güvenli iletiÅŸimde kullanılan bir protokoldür.
 - Mutual Authentication: Hem sunucu hem de istemci birbirlerini sertifikalar aracılığıyla doÄŸrular.

Uygulama Ã-rnekleri:

- 1. SSL/TLS kullanarak g $\tilde{A}^{1/4}$ venli bir ba $\ddot{A}\ddot{Y}$ lant $\ddot{A}\pm$ kurulmas $\ddot{A}\pm$.
- 2. Sertifika tabanlı çift taraflı kimlik doÄŸrulama senaryosu uygulama.
- 1.1.2.8 8. PKI (Public Key Infrastructure Açık Anahtar Altyapısı) Teorik Açıklama: PKI, dijital sertifikaların oluÅŸturulması, dağıtılması, yönetilmesi ve doÄŸrulanması süreçlerini içeren bir yapıdır. PKI, güvenli iletiÅŸim saÄŸlamak için gerekli anahtar çiftlerinin ve sertifikaların yönetimini saÄŸlar.
 - BileÅŸenler: CA (Certificate Authority), RA (Registration Authority), CRL (Certificate Revocation List), OCSP (Online Certificate Status Protocol).
 - Uygulama Alanları: SSL/TLS, VPN, e-posta güvenliÄŸi, kod imzalama.

Uygulama Ã-rnekleri:

- 1. **PKI** kullanarak bir sertifika yönetim altyapısı kurma.
- 2. OCSP ve CRL ile sertifika iptallerinin kontrol edilmesi.
- 1.1.2.9 9. Beyaz Kutu Kriptografisi (Whitebox Cryptography) Teorik A \tilde{A} § \ddot{A} ±klama: Beyaz kutu kriptografisi, \tilde{A} ¶zellikle \tilde{A} Ÿifreleme algoritmalar \ddot{A} ±n \ddot{A} ±n a \tilde{A} § \ddot{A} ±k bir sistemde g \tilde{A} ¼venli bir \tilde{A} Ÿekilde uygulanmas \ddot{A} ±n \ddot{A} ± sa \ddot{A} Ÿlar. Bu teknikle, \tilde{A} Ÿifreleme i \tilde{A} Ÿlemleri s \ddot{A} ±ras \ddot{A} ±nda anahtarlar ve di \ddot{A} Ÿer hassas bilgiler koruma alt \ddot{A} ±nda tutulur.
 - Whitebox AES/DES: AES ve DES gibi simetrik ÅŸifreleme algoritmalarının beyaz kutu ortamlarında uygulanması.
 - Uygulama Alanı: Dijital hak yönetimi (DRM), mobil uygulama güvenliÄŸi.

Uygulama Ã-rnekleri:

- 1. Whitebox AES kullanarak bir dosya şifreleme işlemi gerçekleÅŸtirmek.
- 2. Whitebox kriptografi ile hassas verileri koruma alt $\ddot{A}\pm na$ almak.
- 1.1.2.10 10. Sertifika ve Anahtar Yönetimi Teorik AçÄ \pm klama: SertifikalarÄ \pm n ve kriptografik anahtarlarÄ \pm n etkin bir şekilde yönetilmesi, güvenli sistemlerin temel yapÄ \pm taÅŸlarÄ \pm ndan biridir. SertifikalarÄ \pm n zamanÄ \pm nda yenilenmesi, iptal edilmesi ve saklanmasÄ \pm , güvenli bir iletiÅŸim ortamÄ \pm için kritik öneme sahiptir.

Uygulama Ã-rnekleri:

1. Sertifikalar $\ddot{A}\pm n$ otomatik olarak yenilenmesi ve eski sertifikalar $\ddot{A}\pm n$ iptal edilmesi (CRL veya OCSP kullan $\ddot{A}\pm m\ddot{A}\pm)$.

2. Anahtar yönetim	sistemleri (K	ey Management	t Systems) ile	e anahtarlar $\ddot{A}\pm n$	$g\tilde{A}^{1}/4venli$	bir	ÅŸe-
kilde y $\tilde{A}\P$ netilmesi.							

9. Hafta-Sonu