#### LØYSING ØVING 4

### Løysing oppgåve 1 Vibrerande to-partikkelsystem

a) Vi kontrollerer fyrst at kreftene på dei to massane er

$$F_1 = -\frac{\partial V}{\partial x_1} = -\frac{\partial V}{\partial x} \frac{\partial x}{\partial x_1} = -k(x-l)$$
 og  $F_2 = -\frac{\partial V}{\partial x_2} = -\frac{\partial V}{\partial x} \frac{\partial x}{\partial x_2} = k(x-l)$ ,

som sjølvsagt er motsett like store.

To derivasjonar med omsyn på t av  $A\cos(\omega_1 t + \alpha)$  gjev ein faktor  $-\omega_1^2$ . Innsetting gjev

$$\frac{d^2}{dt^2}(x-l) = -\omega_1^2(x-l) = -\frac{k}{m_1}(x-l)$$
 dvs  $\omega_1 = \sqrt{\frac{k}{m_1}}$ , q.e.d.

Ved hjelp av Newtons 2. lov finn ein differensiallikninga for relativ-koordinaten x,

$$\frac{d^2}{dt^2}(x-l) = \frac{d^2x_1}{dt^2} - \frac{d^2x_2}{dt^2} = \frac{F_1}{m_1} - \frac{F_2}{m_2} = -k(x-l)\left(\frac{1}{m_1} + \frac{1}{m_2}\right)$$
$$= -k(x-l)\frac{m_1 + m_2}{m_1 m_2} \equiv -\frac{k}{\mu}(x-l),$$

der  $\mu$  er den såkalla reduserte massen. (Eit kjent omgrep for to-partikkel-system i klassisk mekanikk.)

Med prøvefunksjonen  $x-l=A\cos(\omega t+\alpha)$  finn ein vinkelfrekvensen  $\omega=\sqrt{k/\mu}$  for den klassiske svingninga. Her legg vi merke til at den reduserte massen er mindre enn den minste av dei to massane:

$$\mu = \frac{m_1 m_2}{m_1 + m_2} = m_1 \frac{1}{1 + m_1 / m_2} = m_2 \frac{1}{1 + m_2 / m_1} < \min(m_1, m_2).$$

Dette impliserer at vinkelfrekvensen  $\omega$  er større enn  $\max(\omega_1, \omega_2)$ .

[Kommentar: Dersom f.eks  $m_1 = m_2$ , blir den reduserte massen  $\mu = m_1/2$  og vinkelfrekvensen blir  $\omega = \sqrt{2k/m_1}$ . Denne frekvensen er ein faktor  $\sqrt{2}$  høgare enn frekvensen ein får dersom den eine partikkelen er spent fast, medan den andre vibrerer  $(\sqrt{k/m_1})$ . Dette resultatet kan vi og forstå når vi merkar oss at når begge partiklane svingar, i mottakt, så ligg tyngdepunktet (midtpunktet av fjæra) i ro. Vinkelfrekvensen  $\omega$  er bestemt av fjærkonstanten til ei "halv fjær", som er dobbelt så stor som fjærkonstanten til heile fjæra:  $\omega = \sqrt{2k/m_1}$ . Moral: Dersom du sagar av ein del av spiralfjærene på bilen din, for at den skal ligge lågare og sjå meir ut som ein sportsmodell, så blir fjæringa stivare, og kjøre-eigenskapene kan bli dårlegare.]

Når det ikkje verkar ytre krefter på to-partikkel systemet vil tyngdepunktet ifølgje Newtons 1. lov bevege seg med jamn hastigheit. Denne trivielle bevegelsen kan vi eliminere ved å velje eit koordinatsystem der tyngdepunktet ligg i ro.

b) Likninga beskriv ein (fiktiv) partikkel med masse  $\mu$  som bevegar seg i potensialet  $\frac{1}{2}k(x-l)^2$ . Vi har altså eit harmonisk oscillatorpotensial med likevektsposisjon for x=l. Men at

likevektsposisjonen er forskjellig frå null bør ikkje spele noka rolle for energinivåa. Tvilar du på dette, så er det berre å innføre variabelen x' = x - l. Den oppgjevne likninga kan då skrivast på forma

$$\left[ -\frac{\hbar^2}{2\mu} \left( \frac{\partial}{\partial x'} \right)^2 + \frac{1}{2} k(x')^2 \right] \psi(x') = E \psi(x').$$

Dersom du samanliknar med standardutgåva får du energinivåa

$$E_n = \hbar \sqrt{k/\mu} (n + \frac{1}{2}) = \hbar \omega (n + \frac{1}{2}), \qquad n = 0, 1, 2, \dots,$$

der  $\mu$  er den reduserte massen.

Grunntilstanden er  $C_0 \exp(-\mu\omega(x')^2/2\hbar)$ , altså

$$\psi_0(x) = (\mu \omega / \pi \hbar)^{1/4} e^{-\mu \omega (x-l)^2 / 2\hbar}$$

dvs ein Gauss-funksjon som er symmetrisk med omsyn på likevektsposisjonen x=l. Sannsynlegheitsfordelinga  $|\psi(x)|^2$  for avstanden  $x=x_1-x_2$  har altså eit maksimum for likevektsavstanden x=l.

c) Ved hjelp av dei oppgjevne uttrykka for  $\partial/\partial x_1$  og  $\partial/\partial x_2$  har vi for impulsoperatorane for partikkel 1 og 2:

$$\hat{p}_1 = \frac{m_1}{M} \hat{P} + \hat{p}$$
 og  $\hat{p}_2 = \frac{m_2}{M} \hat{P} - \hat{p}$ .

Innsetting gjev Hamiltonoperatoren:

$$\begin{split} \hat{H} &= \frac{\hat{p}_{1}^{2}}{2m_{1}} + \frac{\hat{p}_{2}^{2}}{2m_{2}} + V(x) \\ &= \frac{1}{2m_{1}} \left( \frac{m_{1}}{M} \, \hat{P} + \hat{p} \right)^{2} + \frac{1}{2m_{2}} \left( \frac{m_{2}}{M} \, \hat{P} - \hat{p} \right)^{2} + V(x) \\ &= \frac{1}{2} \left( \frac{m_{1}}{M^{2}} + \frac{m_{2}}{M^{2}} \right) \hat{P}^{2} + \frac{1}{2} \left( \frac{1}{m_{1}} + \frac{1}{m_{2}} \right) \hat{p}^{2} + V(x) \qquad \text{(kryssledda kansellerer)} \\ &= \frac{\hat{P}^{2}}{2M} + \frac{\hat{p}^{2}}{2\mu} + V(x) \qquad \qquad \left( \hat{P} = \frac{\hbar}{i} \, \frac{\partial}{\partial X}; \qquad \hat{p} = \frac{\hbar}{i} \, \frac{\partial}{\partial x} \right), \end{split}$$

der

$$\frac{1}{\mu} \equiv \frac{1}{m_1} + \frac{1}{m_2}$$
 slik at  $\mu = \frac{m_1 m_2}{m_1 + m_2}$ .

Her er  $\mu$  den reduserte massen. Merk at Hamiltonoperatoren er uavhengig av tyngdepunktskoordinaten X. Det fyrste leddet i  $\hat{H}$  beskriv ein fri partikkel med masse M. Det andre leddet beskriv ein partikkel med masse  $\mu$  som bevegar seg i potensialet V(x). Dersom vi blir bedne om å skrive ned Hamiltonoperatoren for to slike uavhengige partiklar, er svaret nettopp operatoren  $\hat{H}$  ovanfor.

Vi merkar oss at  $\hat{p}_1 + \hat{p}_2 = \hat{P}$ . Operatoren  $\hat{P}$  svarer difor til ein observabel som er den samla impulsen  $P = p_1 + p_2$  til dei to partiklane

d) Dersom  $\psi$  skal vere ein eigenfunksjon til  $\hat{H}$  med energi E og til  $\hat{P}$  med eigenverdi P=0, må den oppfylle likningane

$$\hat{P}\psi = 0$$
 og  $\hat{H}\psi = E\psi$ .

Den første likninga fortel at  $\psi$  er uavhengig av tyngdepunktskoordinaten X. Den andre likninga gjev

$$\left[ -\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial x^2} + V(x) \right] \psi(x) = E\psi(x),$$

som er likninga i b). I denne oppgåva har vi altså vist korleis likninga med den reduserte massen oppstår. [Kommentar: Som du lett kan kontrollere er løysinga av likningane  $\hat{H}\psi_{\text{tot}}=E_{\text{tot}}\psi_{\text{tot}}$  og  $\hat{P}\psi_{\text{tot}}=P\psi_{\text{tot}}$  der

$$\psi_{\text{tot}}(x, X) = \psi(x) \cdot e^{iPX/\hbar},$$

og der  $\psi(x)$  er ei løysing av likninga over.]

### Løysing oppgåve 2 Vibrasjonsfriheitsgraden for toatomig molekyl

a) Vi finn

$$k = \frac{1}{2}m\omega^2 = \frac{1}{2}m(\hbar\omega/\hbar)^2 \approx \frac{1}{2} \cdot 16 \cdot 1.67 \cdot 10^{-27} \text{kg} (\frac{0.2 \text{eV}}{0.658 \cdot 10^{-15} \text{eVs}})^2 \approx 1.23 \cdot 10^3 \text{ N/m}.$$

Altså ei ganske kraftig fjær. (For ei *makroskopisk* fjær med denne fjærkonstanten kostar det ei kraft på 123 N å strekke den med 10 cm.)

b) Svaret er nei! Kvantemekanikken fortel at avstanden mellom dei to kjernene ikkje kan vere skarpt definert. Usikkerheiten i avstanden er minst når oscillatoren er i grunntilstanden. Forventningsverdien for avstanden mellom kjernene er da lik likevektsavstanden. Dette svarer til eit minimum for den potensielle energien for systemet. Avstanden er sannsynlegheitsfordelt rundt denne middelverdien med usikkerheit på omlag  $\sqrt{\hbar/m\omega}$ . Denne lengda gjev også skalaen for typiske utslag for oscillatoren

Denne lengda er

$$\sqrt{\frac{\hbar}{m\omega}} = \frac{\hbar}{\sqrt{m\hbar\omega}} = \frac{1.055 \cdot 10^{-34}}{\sqrt{16 \cdot 1.673 \cdot 10^{-27} \cdot 0.2 \cdot (1.602 \cdot 10^{-19})}} \text{ m} = 3.6 \cdot 10^{-12} \text{ m}.$$

Altså vesentleg mindre enn 1 atomradius, som er omlag  $10^{-10}$  m.

c) For den makroskopiske oscillatoren er vinkelfrekvensen  $\omega' = \sqrt{k/M}$ . Med  $k = \frac{1}{2}m\omega^2$ , dvs  $\omega = \sqrt{2k/m}$ , blir altså forholdet mellom de to energibeløpa

$$\frac{\hbar\omega'}{\hbar\omega} = \frac{\sqrt{k/M}}{\sqrt{2k/m}} = \sqrt{\frac{m}{2M}} = \sqrt{\frac{16 \cdot 1.673 \cdot 10^{-27}}{2 \cdot 1}} = 1.16 \cdot 10^{-13}.$$

Avstanden mellom energinivåa for den makroskopiske oscillatoren er altså  $\hbar\omega'=0.2~{\rm eV}\cdot 1.16\cdot 10^{-13}\approx 2.3\cdot 10^{-14}~{\rm eV}$ . Desse energinivåa ligg altså verkelig~tett! [Merk elles at moralen er at: Energinivåa for oscillatoren skalerer som  $M^{-1/2}$ .]

For forholdet mellom de to lengdeskalaene finn vi

$$\frac{\sqrt{\hbar/M\omega'}}{\sqrt{\hbar/m\omega}} = \left(\frac{2m}{M}\right)^{1/4} \approx 4.8 \cdot 10^{-7}.$$

Her er moralen at den typiske lengda (for f.eks grunntilstanden) skalerer som  $M^{-1/4}$ . Merk at lengdeskalaen for den makroskopiske oscillatoren då er ca  $10^{-18}$  m. I grunntilstanden for denne oscillatoren er usikkerheiten i posisjonen omtrent like stor.

d) Med eit utslag på  $x_{max} = 10$  cm er energien til den makroskopiske oscillatoren

$$E = \frac{1}{2}kx_{max}^2 = \frac{1}{2} \cdot 1.23 \cdot 10^3 \cdot (0.1)^2 \text{ Nm} = 6.15 \text{ Nm}.$$

Denne energien svarer til kvantetal i området

$$n \sim \frac{E}{\hbar\omega'} = \frac{E}{\hbar\omega} \frac{\hbar\omega}{\hbar\omega'} = \frac{6.15 \text{ Nm}}{0.2 \text{ eV}} \cdot \frac{1}{1.16 \cdot 10^{-13}} = 1.65 \cdot 10^{33}.(!)$$

[Kommentar: Ved å superponere stasjonære tilstandar med kvantetal i dette området kan vi byggje opp ei bølgjegruppe med oppførsel som liknar på den klassiske oscillasjonen med eit utslag på 10 cm.]

# Løysing oppgåve 3 Ikkje-stasjonær tilstand for partikkel i boks

a) Då sannsynleghetstettheiten  $|\Psi(x,0)|^2$  er symmetrisk mop midtpunktet av boksen, er forventningsverdien av posisjonen ved t=0

$$\langle x \rangle_0 = L/2.$$

Ut frå kurva for  $|\Psi(x,0)|^2$  estimerte oppgåveforfatteren (på augemål) usikkerheiten  $\Delta x$  til å ligge ein stad i hogget mellom  $0.12\,L$  og  $0.13\,L$ . Men her gjev NTNU deg eit stort slingringsmonn. (Kommentar: Ei utrekning vha Maple gav  $\Delta x \approx 0.1199\,L$ .)

b) Vha dei oppgjevne formlane kan vi skrive initialtilstanden på forma

$$\begin{split} \Psi(x,0) &= \sqrt{\frac{16}{5L}} \sin^3 \frac{\pi x}{L} = \sqrt{\frac{8}{5}} \sqrt{\frac{2}{L}} \left( \frac{3}{4} \sin \frac{\pi x}{L} - \frac{1}{4} \sin \frac{3\pi x}{L} \right) \\ &= \sqrt{\frac{9}{10}} \, \psi_1(x) - \sqrt{\frac{1}{10}} \, \psi_3(x). \end{split}$$

Initialtilstanden er altså ein superposisjon av grunntilstanden og 2. eksiterte tilstand, og koeffisientane er

$$c_1 = \sqrt{\frac{9}{10}}$$
 og  $c_3 = -\sqrt{\frac{1}{10}}$ .

c) Med  $\Psi(x,0) = c_1\psi_1 + c_3\psi_3$  har vi for normeringsintegralet

$$\int_0^L \Psi^*(x,0)\Psi(x,0)dx = \int_0^L (c_1\psi_1 + c_3\psi_3)^* (c_1\psi_1 + c_3\psi_3) dx$$

$$= |c_1|^2 \int_0^L \psi_1^* \psi_1 dx + |c_3|^2 \int_0^L \psi_3^* \psi_3 dx + c_1^* c_3 \int_0^L \psi_1^* \psi_3 dx + \text{kompl.-konj.}$$

Dei to første integrala er lik 1 (normering). Dei to siste er lik null (ortogonalitet). Dette gjev

$$\int \Psi^*(x,0)\Psi(x,0)dx = |c_1|^2 + |c_3|^2 = \frac{9}{10} + \frac{1}{10} = 1, \text{ q.e.d.}$$

d) (i) Bølgjefunksjonen har forma

$$\Psi(x,t) = c_1(t)\psi_1(x) + c_2(t)\psi_2(x),$$

med  $c_1(t) = (3/\sqrt{10}) \exp(-iE_1t/\hbar)$  og  $c_3(t) = (-1/\sqrt{10}) \exp(-iE_3t/\hbar)$ . Ifølgje sannsynlegheitstolkninga av utviklingskoeffisientane er dei moglege måleverdiane for energien

$$E_1 = \frac{\hbar^2 k_1^2}{2m} = \frac{\hbar^2 \pi^2}{2mL^2}$$
 og  $E_3 = \frac{\hbar^2 k_3^2}{2m} = 9E_1$ ,

og sannsynlegheitene ved t = 0 er

$$P_1(0) = |c_1(0)|^2 = \frac{9}{10}$$
 og  $P_3(0) = |c_3(0)|^2 = \frac{1}{10}$ .

(ii) Forventningsverdien av energien ved t=0 er

$$\langle E \rangle_0 = P_1(0)E_1 + P_3(0)E_3 = \frac{9}{10}E_1 + \frac{1}{10}E_3 = \frac{9}{5}E_1.$$

- (iii) Ved ei måling av energien  $E_n$  er systemet i tilstanden  $\psi_n(x) = \sqrt{2/L} \sin(n\pi x/L)$ , der n = 1 eller 3.
- (iv) Då sannsynlegheitene  $|c_1(t)|^2$  og  $|c_3(t)|^2$  er tidsuavhengige, blir svara på (i) og (ii) (ved ei måling ved tida t) dei same som for t = 0.
- e) Forventningsverdien av impulsen er

$$\langle p_x \rangle = \int \Psi^* \frac{\hbar}{i} \frac{\partial \Psi}{\partial x} dx.$$

Då  $\Psi$  er symmetrisk (også for t>0), blir  $d\Psi/dx$  antisymmetrisk, slik at integranden er ein odde funksjon mop midtpunktet av boksen. Difor er  $\langle p_x \rangle = 0$ , både for t=0 og seinare. Videre er (frå  $E=K=p_x^2/2m$ )

$$\left\langle p_x^2 \right\rangle = 2m \left\langle E \right\rangle = 2m \cdot \frac{9}{5} E_1 = \frac{9\hbar^2 \pi^2}{5L^2}$$
 slik at  $\Delta p_x = \frac{3\hbar\pi}{L\sqrt{5}}$ .

Med estimatet  $\Delta x \approx 0.13 L$  blir

$$(\Delta x)_0(\Delta p_x) = \hbar \cdot 0.13 \cdot 3/\sqrt{5} \approx 0.55 \,\hbar.$$

[Kommentar: Sidan produktet ligg så nær minimalverdien, er det på sin plass å rekne det ut med den meir nøyaktige numeriske verdien  $(\Delta x)_0 = 0.1199 L$ . Innsett finn ein  $(\Delta x)_0(\Delta p_x) = 0.5054 \hbar$ , som ligg svært nær minimalverdien  $\frac{1}{2}\hbar$ .]

# Løysing oppgåve 4

a) Integrala er:

$$\int_{-\infty}^{\infty} \delta(x)f(x)dx = f(0)$$

$$\int_{-\infty}^{\infty} \delta(x-c)g(x)dx = g(c);$$

$$\int_{-\infty}^{\infty} \delta(x)(Ax+B)dx = B;$$

$$\int_{-\infty}^{\infty} [\delta(x-a)+\delta(x-b)]f(x)dx = f(a)+f(b);$$

$$\int_{-1}^{4} [\delta(x-1)+\delta(x+3)]g(x)dx = g(1);$$

$$\int_{-\infty}^{\infty} \delta(2x)f(x)dx = \frac{1}{2}f(0);$$

$$\int_{-\infty}^{\infty} \delta(3x-6)f(x)dx = \frac{1}{3}f(2);$$

$$\frac{1}{2\pi}\int_{-\infty}^{\infty} e^{ixa}dx = \delta(a);$$

$$\frac{1}{2\pi}\int_{-\infty}^{\infty} e^{-ixa}dx = \delta(-a) = \delta(a);$$

$$\frac{1}{2\pi}\int_{-\infty}^{\infty} e^{ixa}da = \delta(x); \quad \text{(NB! Integrasjon over } a)$$

$$\frac{1}{2\pi}\int_{-\infty}^{\infty} e^{if_1f_2}df_1 = \delta(f_2);$$

$$\int_{-\infty}^{\infty} \delta(x-x')\delta(x-x'')dx = \delta(x'-x'')$$

b) Her er vel oppgaveteksten sjølvforklarande.