

Bambordé Baldé | Co-Founder at Zaiku Group | Twitter: @zaikubalde • zaikugroup.com • November 27, 2020

Lecture Agenda Summary

- 1. Pre-Lecture Comments
- 2. Abstract Multiplicative Groups
- 3. Subgroups
- 4. Group Centres
- 5. Group Homomorphisms

Part A

- 1. Determinant (focus on 2 x 2 matrices)
- 2. Determinant & Invertibility
- 3. The General Linear Group
- 4. Special Linear Group
- 5. Study Materials Comments

Part B

Foundation Module Review

Rings and Fields 101 #1

Matrix Algebra #2

Quantum Operators + Composite Systems #3

Group Theory 101 #1

Linear Operators 101 #2

Finite dim. Hilbert Spaces #2

Naive Set Theory Overview #1

Complex Vector spaces 101 #2

Mat. Groups: GL(2, C) & U(2) + SU(2)

Completed ____

Ongoing | #n is the number of live lectures

YouTube Policy Implications

YouTube Will Now Show Ads On All Videos Even If Creators Don't Want Them

John Koetsier Senior Contributor ①
Consumer Tech

John Koetsier is a journalist, analyst, author, and speaker.

PART A: GROUP THEORY REFRESH

Abstract Multiplicative Group

Definition (1.0)

A multiplicative group is (G, \times) where G is a non-empty set and \times is a closed binary operation on G called multiplication satisfying the following axioms:

- 1. There exists an element $e \in G$ such that for all $A \in G$, $e \times A = A \times e = A$ (identity).
- 2. $A \times (B \times C) = (A \times B) \times C$ for all $A, B, C \in G$ (associativity).
- 3. For all $A \in G$ there exists $A^{-1} \in G$ such that $A \times A^{-1} = A^{-1} \times A = e$ (inverse)

Definition (1.1)

A group (G, \times) is said to be commutative (or abelian) if for all $A, B \in G$, $A \times B = B \times A$. Otherwise (G, \times) is called noncommutative (or non-abelian) group.

Proposition (1.0)

If (G, \times) is a group, then the following statements are true:

- 1. There is a unique $e \in G$ such that $A \times e = A \times e = A \ \forall A \in G$.
- 2. The inverse element A^{-1} is unique $\forall A \in G$.

Proof: Homework challenge!

Convention: From now on, we'll just write AB to denote the multiplication instead of $A \times B$. We'll also just write G instead of (G, \times) .

Definition (1.2)

$$\mathbb{C}^* = \left\{ z \in \mathbb{C} \mid z \neq 0 \right\}$$
 i.e. the set of all non-zero complex numbers.

▶ Is \mathbb{C}^* a group under the multiplication in \mathbb{C} ? If yes, is it abelian or non-abelian?

Subgroups

Definition (1.3)

Let G be a group and let $H \subseteq G$. We say H is a subgroup of G if H is also a group under the same multiplication.

- ▶ It's clear that G is a subgroup of itself. The subset with only identity element {e} is also a subgroup of G.
- ightharpoonup Can you find any non-trivial subgroup of \mathbb{C}^* ?

Proposition (1.1)

A subset $H \subseteq G$ is a subgroup of G iff the following conditions hold:

- 1. $e \in H$ where e is the identity in G.
- 2. $AB \in H$ for all $A, B \in H$.
- 3. If $A \in H$ then $A^{-1} \in H$.

Proof: Homework challenge?

Group Homomorphisms

Definition (1.4)

Let G_1 and G_2 be groups. A map $f: G_1 \to G_2$ is called homomorphism if f(AB) = f(A)f(B) for all $A, B \in G_1$.

- Let e_1 and e_2 be the respective identity elements of the two groups. Is it true that $f(e_1) = e_2$?
- ▶ If f is a bijection then we call f a group isomorphism and write $G_1 \simeq G_2$.

Definition (1.5)

The image of a homomorphism f is defined as $Im_f = \{f(A) \mid A \in \mathsf{G}_1 \}$.

ls Im_f a subgroup of G_2 ? If yes, can you say whether it is abelian or non-abelian?

Definition (1.6)

The kernel of a homomorphism $f: G_1 \longrightarrow G_2$ is defined as $Ker_f = \{A \in G_1 \mid f(A) = e_2\}$ where e_2 is the identity in G_2 .

ls Ker_f a subgroup of G_1 ? If yes, can you say whether it's abelian or non-abelian?

Group Commutators

Definition (1.7)

Let G be a group. The commutator between any two elements A, B is defined as $[A, B] = A^{-1}B^{-1}AB$.

Proposition (1.2)

Let [,] be the commutator on G. Then the following are true:

- 1. G is abelian iff [A, B] = e for all $A, B \in G$.
- 2. $[B, A] = [A, B]^{-1}$ for all $A, B \in G$
- 3. [A, BC] = [A, C][A, B][[A, B], C] for all $A, B, C \in G$.

Proof : Homework!

- Hence, the commutator is a measures on how abelian a group is!
- For most practical and interesting applications of group theory, the less abelian the better!

Group Centre

Definition (1.8)

Let G be a group. The centre of G is defined as $Z(G) = \{A \in G \mid [A, B] = e \text{ for all } B \in G\}.$

- In most textbooks the centre is equivalently defined as $Z(G) = \{A \in G \mid AB = BA \text{ for all } B \in G\}.$
- ► The reason for using the commutator in the definition above is to force you to get familiar with commutators before Lie Groups Lie Algebras section!

Proposition (1.3)

The centre Z(G) is a subgroup of G.

Proof: Homework challenge?

In a nutshell, the smaller the centre, the less abelian a group is!

PART B: MATRIX GROUPS

Matrix Determinant

Definition (1.0)

For
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_2(\mathbb{C})$$
, we define $\det(A) = a_{11}a_{22} - a_{12}a_{21}$.

- ▶ Be aware that some authors use the notation |A| instead of det(A).
- Let $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $\mathbb{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Then we have: $\det(X) = \det(Z) = -1$ and $\det(\mathbb{I}) = 1$.
- ▶ What about the determinant matrices such as *Y* and *H*?
- ▶ The concept of determinant can indeed be defined for any $n \ge 1$. In this course section we'll focus in the n = 2 case for simplicity.

Interestingly, for diagonal matrices
$$D=\begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} \in M_n(\mathbb{C})$$
, we have

$$\det(D) = a_{11} \times a_{22} \times \ldots \times a_{nn}.$$

Determinant Properties

Proposition (1.0)

Let $A, B \in M_2(\mathbb{C})$ and $\lambda \in \mathbb{C}$. Then the following properties hold:

- 1. $det(A^T) = det(A)$
- 2. $det(\lambda A) = \lambda^2 det(A)$.
- 3. det(AB) = det(A)det(B).

Proof: Homework challenge?

▶ Just as curiosity, for $A \in M_n(\mathbb{C})$ we have that $det(\lambda A) = \lambda^n det(A)$.

Proposition (1.1)

If $A \in M_2(\mathbb{C})$ is invertible then $\det(A^{-1}) = \frac{1}{\det(A)}$.

Proof: Homework challenge? Recall that $A \in M_2(\mathbb{C})$ is invertible if there exists $A^{-1} \in M_2(\mathbb{C})$ such that $AA^{-1} = A^{-1}A = \mathbb{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Determinants and Invertibility

Theorem (1.0)

Let $A \in M_2(\mathbb{C})$. Then the following statements are equivalent:

- 1. $\det(A) \neq 0$.
- 2. A is invertible.
- 3. Rank(A) = 2 i.e. dim Ran(A) = 2.
- 4. The rows of A are linearly independent.

Proof: Check the study materials or homework challenge?

- ▶ Hence, $A \in M_2(\mathbb{C})$ is invertible iff $\det(A) \neq 0$ and conversely if A is invertible then $\det(A) \neq 0$.
- ► If A is invertible, how do we compute its inverse? Can the determinant help us?

Computing Matrix Inverse

Proposition (1.2)

If
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_2(\mathbb{C})$$
 is invertible i.e. $\det(A) \neq 0$ then its

inverse is given by
$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$
.

Proof: Homework challenge?

- ▶ In general, if $A \in M_n(\mathbb{C})$ is invertible then $A^{-1} = \frac{1}{det(A)}Adj(A)$ where Adj(A) is the so-called adjoint (classical) matrix of A.
- ► A bit trivial, but try apply the inverse formula to:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ and } H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

The General Linear Group

Definition (1.2)

Let us define the set $GL(2,\mathbb{C})=\bigg\{A\in M_2(\mathbb{C})\mid \det(A)\neq 0\bigg\}.$

▶ We can generalise the definition above to any n > 1 i.e.

$$\mathit{GL}(n,\mathbb{C}) = \bigg\{ A \in \mathit{M}_n(\mathbb{C}) \mid \det(A)
eq 0 \bigg\}.$$

Proposition (1.3)

 $GL(2,\mathbb{C})$ is a group under matrix multiplication in $M_2(\mathbb{C})$.

Proof: Homework challenge?

▶ On a side note, $GL(n, \mathbb{C})$ is an example of a Lie group i.e. a group that comes with a topological manifold structure!

Some Comments

- ▶ Recall that $GL(2,\mathbb{C})$ being group implies the following:
 - 1. $AB \in GL(2, \mathbb{C})$ for all $A, B \in GL(2, \mathbb{C})$ i.e if det(A) and det(B) are non-zero then det(AB) is non-zero.
 - 2. The matrix identity $\mathbb{I} \in GL(2,\mathbb{C})$ is the group identity element i.e. $A\mathbb{I} = \mathbb{I}A = A$ for all $A \in GL(2,\mathbb{C})$.
 - 3. A(BC) = (AB)C for all $A, B, C \in GL(2, \mathbb{C})$.
 - 4. For all $A \in GL(2,\mathbb{C})$ there exists $A^{-1} \in GL(2,\mathbb{C})$ such that $AA^{-1} = A^{-1}A = \mathbb{I}$.
- Proposition 1.3 is generally true for any $GL(n, \mathbb{C})$. But for QC purposes, you'll probably want $n = 2^k$ where k is the number of qubits under consideration so that $GL(n, \mathbb{C})$ matrices can act as operators on \mathbb{C}^{2^k} .
- Indeed most interesting constructions we make for $GL(2,\mathbb{C})$ will also be valid $GL(n,\mathbb{C})$. But be careful, there are some stuff that dependent on whether n is even or odd natural number!

The Center of $GL(2,\mathbb{C})$

Proposition (1.4)

$$Z(GL(2,\mathbb{C})) = \left\{ \lambda egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} = egin{pmatrix} \lambda & 0 \ 0 & \lambda \end{pmatrix} \mid \lambda \in \mathbb{C}^*
ight\}.$$

Proof: Homework challenge?

- As you can see the centre of $GL(2,\mathbb{C})$ is very small and so it's a very non-abelian group!
- ▶ The same applies to $GL(n, \mathbb{C})$ since its centre is also of the form:

$$Z(GL(n,\mathbb{C})) = \left\{ \lambda \mathbb{I}_n \mid \lambda \in \mathbb{C}^* \right\}$$
 where $\mathbb{I}_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 \\ \vdots & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$ is the identity matrix.

Special Linear Group

Definition (1.3)

We can define the set
$$SL(2,\mathbb{C})=\bigg\{A\in GL(2,\mathbb{C})\mid \det(A)=1\bigg\}.$$

▶ We can also generalise the definition above to any n > 1 i.e.

$$\mathit{SL}(n,\mathbb{C}) = igg\{ A \in \mathit{GL}(n,\mathbb{C}) \mid \det(A) = 1 igg\}.$$

Proposition (1.5)

 $SL(2,\mathbb{C})$ is a subgroup of $GL(2,\mathbb{C})$.

Proof: Homework challenge?

- ▶ The above proposition can of course be generalised to $SL(n, \mathbb{C})$.
- ▶ What could be Z(SL(2, C)) or more generally Z(SL(n, C))?
- As home challenge, try identity as many single qubit gates as possible that are elements of $SL(2,\mathbb{C})$. Then apply these to the qubits on the block sphere and see what happens!

The Determinant as Homomorphism

Proposition (1.6)

The map $\det: GL(2,\mathbb{C}) \longrightarrow \mathbb{C}^*$ is a group homomorphism i.e. $\det(AB) = \det(A)\det(B)$ for all $A, B \in G$.

Proof: You've already proved it!

- ▶ Of course, the above proposition is true for any det : $GL(n, \mathbb{C}) \longrightarrow \mathbb{C}^*$.
- Since det : $GL(2,\mathbb{C}) \longrightarrow \mathbb{C}^*$ is a group homomorphism, a natural question to ask is what is $Ker(\det)$? We know from Part A that $Ker(\det)$ is indeed a subgroup of $GL(2,\mathbb{C})$.
- ▶ The observation above also applies to det : $GL(n, \mathbb{C}) \longrightarrow \mathbb{C}^*$.

Denis Serre

Where should you focus?

Chapter 2: What Are Matrices | **Chapter 3:** Square Matrices

-----(Pages 15 - 38)-----

- GitHub (Curated study materials): github.com/quantumformalism
- YouTube: youtube.com/zaikugroup
- Twitter: @ZaikuGroup
- Gitter: gitter.im/quantumformalism/community