Kemi Aflevering 6 - Puffersystemer

Forsøget

Forsøget med pufferopløsninger består af 4 separate forsøg med måling af pH.

- 1. I første forsøg tilsættes 1 mL 1.00 M NaOH til et bæger der indeholder 50 mL vand, som forårsager en fortynding af NaOH
- 2. [200~I andet forsøg tilsættes 1 mL 1.00 M NaOH til et bæger der indeholder 50 mL af pufferopløsningen NH4Cl/NH3, med en koncentration på 0.10 M, som resulterer i reaktionen:

$$NH_4CL + NaOH \longrightarrow NH_3 + NaCL + H_2O$$

- 3. I tredje forsøg tilsættes 1 mL 1.00 M NaOH til et bæger der indeholder 50 mL af pufferopløsningen NH4Cl/NH3, med en koncentration på 0.05 M, som resulterer i samme reaktion som ovenstående.
- 4. I fjerde forsøg tilsættes 1 mL 1.00 M NaOH til et bæger der indeholder 50 mL af pufferopløsningen CH3COOH/CH3COONa, med en koncentration på 0.1 M, som resulterer i reaktionen:

$$CH_3COOH + NaOH \longrightarrow CH_3COONa + H_2O$$

For alle opløsningerne måles pH værdien før og efter tilsætning af NaOH, hvor efter differencen findes. Differencen er givet ved:

$$\Delta pH = |pH_{for} - pH_{efter}|$$

Teori

I forsøg nummer 2 og 3 sker der reaktionen:

$$NH_4CL + NaOH \longrightarrow NH_3 + NaCL + H_2O$$

Vi ignorerer tilskuerionerne da de ikke har noget indgreb i pH

$$NH_4^+ + OH^- \longrightarrow NH_3 + H_2O$$

Vi kan opstille et STL-skema for reaktionen, dog kender vi ikke den aktuelle koncentration for $\mathrm{NH_4}^+$ eller $\mathrm{NH_3}$ uden at kende pH for opløsningen

	$\mathrm{NH_4}^+$ +	$OH^- \longrightarrow$	$NH_3 +$	$\rm H_2O$
S	$n(NH_4^+)$	$n(\mathrm{OH^-})$	$n(NH_3)$	\sim
T	$-n(OH^-)$	$-n(OH^-)$	$n(OH^-)$	\sim
L	\sim	0	~	\sim

ligeledes for forsøg 4 kan vi opstille STL-skemaet

	CH ₃ COOH +	$OH^- \longrightarrow$	$\mathrm{CH_3COO}^- +$	H ₂ O
S	$n(\mathrm{CH_3COOH})$	$n(OH^-)$	$n(CH_3COO^-)$	>
T	$-n(OH^-)$	$-n(OH^-)$	$n(OH^{-})$	\sim
L	~	0	~	\sim

Databehandling

Vi har udført fire forskellige forsøg og fået resultaterne

Nr.	System	$pH_{før}$	$\mathrm{pH}_{\mathrm{efter}}$	$\Delta \mathrm{pH}$
1	50 ml vand	7.38	12.37	4.99
2	$50 \text{ ml } 0.1 \text{ M NH}_4\text{CL/NH}_3$	9.50	9.70	0.20
3	$50 \text{ ml } 0.05 \text{ M NH}_4\text{CL/NH}_3$	9.48	9.88	0.40
4	50 ml 0.1 M CH ₃ COOH/CH ₃ COONa	4.65	4.82	0.17

 pK_s værdierne for de forskellige syre er

 $\mathrm{H_3O^+}: \qquad pK_s = 0.00$ $\mathrm{NH_4CL}: \qquad pK_s = 9.25$ $\mathrm{CH_3COOH}: \qquad pK_s = 4.76$

Konklusion

Ud fra vores databehandling ser det ud som om at en pK_s -værdi der er for lav (H_3O^+) ikke laver et særlig effektivt puffersystem, Mens en pK_s -værdi der er ret høj også laver et værre puffersystem end en pK_s -værdi der ligger mellem de to "ekstremer". Grunden til at der ligger et "Sweet spot" i midten er fordi at hvis din pK_s -værdi er for lav er den korrosponderende base alt for svag til at kunne lave en god puffereffekt (H_3O^+) og H_2O , her er H_2O en meget svag base, mens H_3O^+ er en meget stærk syre, derfor laver de et dårligt puffersystem. Ligeledes hvis pK_s er for høj er syren for svag. Så derfor er puffersystemet bedst når både syre og base er nogenlunde lige stærke grundet

$$pK_s + pK_b = 14.00$$

Derudover hvis man kigger på resultaterne fra forsøg nummer 2 og 3 ligner det at hvis koncentrationen af pufferopløsningen halveres, så vil den få dobbelt ændring i pH ved samme indgreb.