Nucleic Acids

- The largest biological molecules
- Store and transfer information within a cell
- Include DNA and RNA
- Are made of nucleotides
 - 5-carbon sugar
 - Phosphate group
 - Nitrogenous base

Copyright @The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-carbon sugar

Sugar-phosphate backbone in Nucleic Acids

The Components and Structure of DNA

DNA Structure and Function

DNA accomplishes the following:

- -Passes genetic information to the next generation
- -Puts those information to work by controlling the synthesis of proteins
- Is copied easily so that cell's genetic information is replicated every time a cell divides.

DNA is able to accomplish these things because of its unique structure.

DNA and Chromosomes

- Each DNA strand is divided into segments.
 - Each segment forms a gene.
 - Genes are the recipes for proteins.
 - The sequence of nucleotides in a gene dictate the order of amino acids in a polypeptide.
- Each DNA strand has many genes.
- Each DNA strand is called a chromosome.

Human cells have 46 chromosomes in each cell.

Each cell copies all of these chromosomes before it divides to pass along to daughter cells.

Chromosome Structure of Eukaryotes

Central Dogma of Molecular Biology

The Functions of DNA

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Base Pairing Aids DNA Replication

- DNA replication
 - Is the process by which DNA is copied
 - This is done before cell division.
 - Provides the new cells with a copy of the genetic information
 - Relies on the base-pairing rules

Base Pairing Aids DNA Replication

Conservative, Semi conservative or Dispersive mode of DNA replication?

DNA Replication could be divided into three phases:

- Initiation

- Elongation

- Termination

Initiation of DNA replication starts at Origin of Replication.

Enzyme <u>helicase</u> unwinds and breaks H-bonds of the double stranded DNA

The <u>single-stranded binding proteins</u> stabilize the separated strands

Initiation stars at Origin of Replication

Properties of DNA polymerases

Enzyme **DNA polymerase III** builds new DNA strands that will pair with each old DNA strand by A-T, G-C manner

- All DNA polymerases <u>require a primer</u>
 - RNA primer, synthesized by Primase (Enzyme Primase adds a small piece of RNA called a primer. DNA nucleotides can only be added to the 3' end of an existing chain)
- DNA polymerases add basses only from the <u>5'-3' direction</u>
- All DNA polymerases have 3'-5' exonuclease activity (proofreading ability)

5' ATGGCCTAATGCAATCTGATGGCCTTAAGCGT 3'

Primer sequences (10 bases): 5' ACGCUUAAGG 3'

Enzyme that makes the primer: Primase

On which base, at the 3'OH, DNA Polymerase will add its first base? G

The First base that will be added by the DNA Pol III: C

Sequence that the DNA polymersase III will incorporate:

5' CCATCAGATTGCATTAGGCCAT 3'

5' ATGGCCTAATGCAATCTGATGGCCTTAAGCGT 3'

Primer sequences (10 bases): 5' ACGCUUAAGG 3'

OKAZAKI Fragments

5'

DNA replication is accomplished by DNA polymerase and other enzymes:

- A.Enz. <u>helicase</u> unwinds and breaks H-bonds
- B. <u>single-stranded binding proteins</u> stabilize the molecule
- **C.** Enz. <u>primase</u> adds a small piece of RNA (called a primer) to origin of replication (DNA nucleotides can only be added to the 3' end of an existing chain)
- 1. <u>leading strand</u> one primer needed
- 2. <u>lagging strand</u> <u>Okazaki fragments</u> primer needed for each fragment
- **D.** Enz. **DNA polymerase III** builds new DNA strands that will pair with each old DNA strand. It adds new dNTPs to the 3'end of the primer by A-T, G-C manner (**from the 5' to 3' direction only**).
- E. **DNA polymerase I** replaces RNA primers w/ DNA
- **F.** Enz. **DNA ligase** joins Okasaki fragments together

Draw the Okazaki fragments (at least 2) with Directions

Which fragment will it remove and replace? (a or b or c or d)

Which property of this DNA polymerase is unique? 5' to 3' exonuclease activity

What's the role of DNA ligase here?

DNA Proof Reading

- It takes <u>E. coli</u> <1 hour to copy 5 million base pairs in its single chromosome
 - divide to form 2 identical daughter cells

- Human cell copies its 6 billion bases & divide into daughter cells in only few hours
 - remarkably accurate
 - only ~1 error per 100 million bases
 - ~30 errors per cell cycle

DNA Proof Reading

All DNA polymerases have 3'-5' exonuclease activity (proofreading ability)

DNA Repair Systems

- One major concern for an organism's survival is genomic stability
- Errors in DNA can occur during synthesis or post replication from environmental factors (i.e. UV radiation)
- Injury to DNA is minimized by systems that recognize and correct the damage. The repair systems are as complex as the replication apparatus itself, which indicates their importance for the survival of the cell.
- Errors in DNA may lead to mutations, which can cause a variety of problems including cancer
- Organisms have multiple repair systems
 - Base Excision
 - Nucleotide Excision
 - Mismatch Excision Repair (MMR)

Excision-repair removes and replaces a stretch of DNA that includes the damaged base(s).

Mismatch Repair (MMR)

- MMR is responsible for locating and removing mismatched base pairs
- Highly conserved throughout evolution
- Increases genomic stability 100 to 1,000 fold
- Lack of MMR has been linked to several forms of cancer

Mismatch Repair (MMR)

repaired DNA duplex

Recognition of Daughter Strand

- Recognition of newly synthesized and damaged daughter stands is critical in repair
- In prokaryotes MMR machinery recognizes the difference between the two strands by methylation status
- A parental strand is methylated at A or C, thus the unmethylated strand is the daughter strand

methyladenine

EXTRA SLIDES FOR ADDITIONAL READINGS (Not part of evaluative components)

Semi-conservative replication

- Meselson & Stahl
 - label nucleotides of "parent" DNA strands with heavy nitrogen = ¹⁵N
 - label new nucleotides with lighter isotope = ¹⁴N

DNA Replication

Semi-conservative replication

- Make predictions...
 - 15N strands replicated in 14N medium
 - 1st round of replication

DNA Replication

Semi-conservative replication

- Make predictions...
 - 15N strands replicated in 14N medium
 - 1st round of replication

