Investigating the Effectiveness of DCA Attacks on a White-Box Cryptography Implementation

J. Khelif, G. Le Diréach

Table of Contents

- White-Box model
- Side Channel & Practical Attack
- Gathering Traces & Trace analyse
- Result & Conclusion

White-Box model

White-Box Cryptography

Definition

Cryptographic algorithms designed to resist an attack model known as the white-box.

AES White-box by chow in 2002.

WB AES-128

General aspect

- Table-based implementations, Look-up tables that map plaintext to ciphertext under a fixed key.
- Unable store all possible output.
- Use smaller, obfuscated tables.

Need to modify the classical AES 128 encryption.

AES-128 modification

- Push AddRoundKey(key0).
- Pop AddRoundKey(key9).
- Swap AddRoundKey() and ShiftRows().

```
state \leftarrow plaintext
                                   state \leftarrow plaintext
AddRoundKey(state, k_0)
                                  for r = 1 ... 9
for r = 1 ... 9
                                       AddRoundKey(state, k_{r-1})
     SubBytes(state)
                                       ShiftRows(state)
     ShiftRows(state)
                                       SubBytes(state)
     MixColumns(state)
                                       MixColumns(state)
     AddRoundKey(state, k_r)
                                   AddRoundKey(state, k_9)
SubBytes(state)
                                   ShiftRows(state)
ShiftRows(state)
                                  SubBytes(state)
AddRoundKey(state, k_{10})
                                   AddRoundKey(state, k_{10})
ciphertext \leftarrow \mathtt{state}
                                   ciphertext \leftarrow \mathtt{state}
```

```
\begin{array}{l} \mathtt{state} \leftarrow plaintext \\ \mathtt{for} \ r = 1 \dots 9 \\ \mathtt{ShiftRows}(\mathtt{state}) \\ \mathtt{AddRoundKey}(\mathtt{state}, \widehat{k}_{r-1}) \\ \mathtt{SubBytes}(\mathtt{state}) \\ \mathtt{MixColumns}(\mathtt{state}) \\ \mathtt{ShiftRows}(\mathtt{state}) \\ \mathtt{AddRoundKey}(\mathtt{state}, \widehat{k}_9) \\ \mathtt{SubBytes}(\mathtt{state}) \\ \mathtt{AddRoundKey}(\mathtt{state}, \lambda_{10}) \end{array}
```


 $ciphertext \leftarrow \texttt{state}$

Look-up tables

Goal

Combine certain steps and compute all possible outputs into a table.

- T-box tables → combines ShiftRow and AddRoundKey.
- Tyi tables \rightarrow map the T-box output to the MixColumns computation.
- XOR tables → used to perform xor computations for the Tyi tables.

```
state \leftarrow plaintext
for r = 1 ... 9
     Shift.Rows
     TBoxesTyiTables
     XORTables
Shift.Rows
TBoxes
ciphertext \leftarrow \mathtt{state}
```

Investigating the Effectiveness of DCA Attack

Internal encoding

Security

We have no protection against key extraction attacks, We need to enforce

- confusion between the key and the tables.
- diffusion between the input and output.
- Random Bijection \rightarrow use non linear encoding on each tables achieve confusion.
- Mixing Bijection \rightarrow use network of linear encoding on tables to achieve *diffusion* .

Side Channel & Practical Attack

Side Channel & Practical Attack

Some definitions:

• What is Side Channel in White-Box Cryptography context ?

What is Differential Computation Analysis?

Side Channel & Practical Attack - DCA

• DPA (Physical) — DCA (Logical)

• Intermediate state: $I(P_i, k)$ Trace of intermediate state: $L(I(P_i, k) + y)$

3 values are available by the attacker:

$$P_i$$
 T_i C_i

• Analyse many $L(I(P_i, k) + y)$ of T_i with Hamming weights method

Side Channel & Practical Attack - Algorithm

Algorithm for first byte

- Gather traces → serializing read addresses ,their values.
- Modeling the leak $\rightarrow \text{Sel}(pe, kh, j) := \text{SBox}(pe \oplus kh)[j] = b \in \{0, 1\}$
- Sort traces \rightarrow two set of traces A_1 , A_0 depending of b.
- Compute correlation between b and traces $\rightarrow H(\overline{A}_0 \overline{A}_1)$
- Find best j, repeat two previous step for 1 < j < 8 and set score kh to H_i .
- Find best kh, repeat previous step for 1 < kh < 256 return kh with highest H_{kh}

Side Channel & Practical Attack - effect of encoding

Effect of encoding

Combination of Linear and Non-Linear Encodings make H_{kh} converging to 0, 0.25, 0.5, 0.75 or 1

• Modification \rightarrow ranked kh according to the results

Gathering Traces & Trace analyse

Gathering Traces & Traces Analyses

Gathering Traces & Traces Analyses - Finding pattern in White-Box AES

Gathering Traces & Traces Analyses - Finding pattern in White-Box AES

Gathering Traces & Traces Analyses - Finding pattern in White-Box AES

T-Box output values

Result & Conclusion

- Problem : when H_{kh} near 0.2 . Two possible convergence : 0 or 0.25
- Solution : key ranking now testing with different convergence when H_{kh} near 0.2

Annexes

Annexes-Random Bijection

Definition

From T we get a new table T' using two random bijection f,g.

$$T' = g \circ T \circ f^{-1}$$

Restriction

- Split in nibbles and cancel for the Xor operation.
- Cancel each other if there output is feed as an input.
- ullet Very first and the very last tables are not encoded o External encoding

Annexes-Mixing Bijection

Definition

From T we get a new table T' using two random linear bijection A,L. $T' = A \circ T \circ L^{-1}$

Restriction

- Commute with the XOR-operation.
- Apply to words that areinput or output of an XOR-network
- applied before the non-linear encodings

Annexes-Mixing Bijection

