Math 222 Lec 4

Asa Royal (ajr74)

January 24, 2024

epsilon-delta proofs of limits

Definition 1 (vector-valued function). Multivariate functions involving real numbers are generally $\mathbb{R}^n \to \mathbb{R}^m$. **Vector-valued functions** are a special case where n=1. I.e. vector valued functions are $f : \mathbb{R} - > \mathbb{R}^m$. E.g. $f : t \mapsto f(t_0 = (x(t), y(t), z(t_1))$. They take real numbers as an input (parameter) and output a vector.

Definition 2 (path/curve). Consider

$$\vec{c}: A \subset \mathbb{R} \mapsto \mathbb{R}^m$$

 $t \mapsto \vec{c}(t)$

If $\vec{c} = [a, b] \mapsto \mathbb{R}^3$, $C = \{\vec{c}(t) | a \le t \le b\}$ is the curve traced out by \vec{c} .

Definition 3 (velocity/speed/acceleration). If \vec{c} is a differentiable path, then the **velocity** of \vec{c} at time t is

$$\vec{c}'(t) = \lim_{h \to 0} \frac{\vec{c}(t+h) - \vec{c}(h)}{h}$$

The speed of of \vec{c} is $||\vec{c}'(t)||$, and the acceleration of \vec{c} is $\vec{c}''(t)$

Remark. The derivative of a differntiable path at time t is an $n \times 1$ matrix containing the derivative of each component of the path.

$$\vec{c}'(t) = \begin{bmatrix} dx_1/dt \\ dx_2/dt \\ \vdots \\ dx_n/dt \end{bmatrix}$$

Circular orbits

Remark. Consider a particle of mass m moving at constant speed s in a circular path of radius r_0 . Assuming it moves in the xy plane, we can ignore the z component of its path and write its location as

$$\vec{c}(t) = \left(r_0 \cos \frac{st}{r_0}, r_0 \sin \frac{st}{r_0}\right)$$

Note that θ in radians is $\frac{arclength}{radius}$. The particle's **frequency** is defined as

$$\omega = \frac{s}{r_0}$$

which means we can also express its location as

$$\vec{c}(t) = r_0 \cos \omega t, r_0 \sin \omega t$$

and its acceleratino as

$$\vec{a}(t) = \vec{c}''(t) = \left(-\frac{s^2}{r_0}\cos\frac{st}{r_0}, -\frac{s^2}{r_0}\sin\frac{st}{r_0}\right) = -\frac{s^2}{r_0^2}\vec{c}(t) = -\omega^2\vec{c}(t)$$

Remark. When a particle is moving at a constant speed in a circle, acceleration is in a direction opposite to $\vec{c}(t)$: towards the center of the circle. (This is perpendicular to $\vec{c}'(t)$). Acceleration times mass here = **centripetal force**.

1

Definition 4 (frequency).