

Search Heuristics

- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing

Greedy best-first search

- Greedy (best-first) search tries to expand the node that is closest to the goal, because this is likely to lead to a solution quickly
- Thus, the evaluation function is f(n) = h(n)
- E.g., in minimizing road distances, a heuristic lower bound for distances of cities is their straight-line (Euclidean) distance
- Greedy search ignores the cost of the path that has already been traversed to reach \boldsymbol{n}
- Therefore, the solution given is not necessarily optimal

Demo Contours Greedy (Empty)

Demo Contours Greedy (Pacman Small Maze)

- Because greedy search can start down an infinite path and never return to try other possibilities, it is incomplete
- Because of its greediness the search makes choices that can lead to a dead end; then one backs up in the search tree to the deepest unexpanded node
- Greedy search resembles DFS in the way it prefers to follow a single path all the way to the goal, but will back up when it hits a dead end
- The worst-case time and space complexity is $O(b^m)$
- The quality of the heuristic function determines the practical usability of greedy search

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

• A* Search orders by the sum: f(n) = g(n) + h(n)

A* search

- A* combines the value of
 - the heuristic function h(n) and
 - the cost to reach the node n, g(n)
- Evaluation function f(n) thus estimates the cost of the cheapest solution through n
- A* tries the node with the lowest f(n) value first
- This leads to both complete and optimal search algorithm, provided that h(n) satisfies certain conditions
 - h(n) is **admissible** if it never overestimates the cost to reach the goal

The actual cost that has been paid to reach node n

An estimate of the cost that still needs to be paid to reach the goal from node n

Tampere University

Optimality of A*

Provided that h(n) is admissible, then in tree search A* gives the optimal solution

- Let G_2 be a suboptimal goal node generated to the tree
- Let C* be the cost of the optimal solution
- Because G_2 is a goal node, it holds that $h(G_2) = 0$,

and we know that $f(G_2) = g(G_2) > C^*$

- On the other hand, if a solution exists, there must exist a node n that is on the optimal solution path in the tree
- Because h(n) does not overestimate the cost of completing the solution path, $f(n) = g(n) + h(n) \le C^*$
- We have shown that $f(n) \le C^* < f(G_2)$, so G_2 will not be expanded and A* must return an optimal solution

DATA.ML.310 | ARTIFICIAL INTELLIGENCE | WINTER 2023

UCS vs A* Contours

Uniform-cost expands equally in all "directions"

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality

Demo Contours (Empty) -- UCS

Demo Contours (Empty) -- Greedy

Demo Contours (Empty) – A*

Demo Contours (Pacman Small Maze) - A*

Comparison

Greedy

Uniform Cost

A*

A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

• . . .

Memory-bounded heuristic search

- Once again, the main drawback of search is not computation time, but rather space consumption
- Therefore, several memory-bounded variants of A* developed
- IDA* (Iterative Deepening A*) adapts the idea of iterative deepening
- The cutoff used is the f-cost (g + h) rather than the depth
- At each iteration the cutoff value is the smallest *f*-cost of any node that exceeded the cutoff on the previous iteration
- Subsequent more modern algorithms carry out more complex pruning

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

Inadmissible heuristics are often useful too

Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

Goal State

8-puzzle

Heuristic functions

- In 8-puzzle we can define the following heuristic functions, which never overestimate:
 - h₁: the number of misplaced tiles: any tile that is out of place must be moved at least once to obtain the desired configuration
 - *h*₂: The sum of **Manhattan distances** of tiles from their goal
 position: the tiles need to be
 transported to their goal positions to
 reach the desired configuration

- In the initial configuration all tiles are out of their place: $h_1(s_1) = 8$
- The value of the second heuristic for the example is:

$$3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$$

Goal State

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
UCS	112	6,300	3.6 x 10 ⁶	
TILES	13	39	227	

$$\begin{aligned} & \mathsf{TILES} = h_1 \\ \mathsf{MANHATTAN} = h_2 \end{aligned}$$

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
TILES	13	39	227	
MANHATTAN	12	25	73	

Relaxation & heuristics

- We can study relaxed problems from which some restrictions of the original problem have been removed
- The cost of an optimal solution to a relaxed problem is an **admissible heuristic** for the original problem (does not over-estimate)
- The optimal solution in the original problem is, by definition, also a solution in the relaxed problem
- E.g., heuristic h_1 for the 8-puzzle gives perfectly accurate path length for a simplified version of the puzzle, where a tile can move anywhere
- Similarly, h_2 gives an optimal solution to a relaxed 8-puzzle, where tiles can move also to occupied squares

 If a collection of admissible heuristics is available for a problem, and none of them dominates any of the others, we can use the composite function

$$h(n) = \max\{h_1(n), \dots, h_m(n)\}$$

- The composite function dominates all of its component functions and is consistent if none of the components overestimates
- One way of relaxing problems is to study subproblems

- E.g., in 8-puzzle we could study only four tiles at a time and let the other tiles wander to any position
- By combining the heuristics concerning distinct tiles into one composite function yields a heuristic function, that is much more efficient than the Manhattan distance

A* Graph Search Gone Wrong

State space graph

Search tree

Consistency of Heuristics

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost \leq actual cost to goal $h(A) \leq$ actual cost from A to G
 - Consistency: heuristic "arc" cost \leq actual cost for each arc $h(A) h(C) \leq \cos(A \text{ to } C)$
- Consequences of consistency:
 - The *f* value along a path never decreases

$$h(A) \leq \operatorname{cost}(A \text{ to } C) + h(C)$$

• A* graph search is optimal

Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s
 optimally are expanded before nodes that
 reach s suboptimally
 - Result: A* graph search is optimal

Optimality

- Tree search:
 - A* is optimal if heuristic is admissible
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems

