Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs

Stephanie L. Hyland*, Cristóbal Esteban*, Gunnar Rätsch *contributed equally

this work in a nutshell

- ► Generative adversarial network using recurrent neural networks (LSTMs)
- ▶ Data: **eICU** Collaborative Research Database
- ▶ Evaluation: **TSTR** method based on transfer learning
 - Use synthetic data to train classifier
- Privacy: empirical analysis, training GAN with differential privacy

the model (RGAN)

- Discriminator (LSTM) performs binary classification: real v. synthetic sample
- ▶ Generator (LSTM) tricks discriminator by generating realistic samples
- ▶ RCGAN: include **conditional** information (e.g. label of sequence) to both networks
 - ▶ Can generate examples from labels

privacy

- ▶ elCU Collaborative Research Database (via PhysioNet, Goldberger et al., 2000)
 - ▶ Vitals: MAP, heart rate (HR), SpO2, respiratory rate (RR)
 - ▶ Measurements every 15min for first 4 hours
 - Filter missing data: have 17,693 patients
- Predict vitals becoming abnormal in next hour (see table)

evaluation (TSTR)

- Visual evaluation doesn't work for time-series
- ▶ Evaluate sample quality via **TSTR** (train on synthetic, test on real):
 - use synthetic dataset to train a model
 - test it on real data

Epoch was chosen based on validation set performance for SpO2 < 95, HR > 100, RR < 13

		SpO2 < 95	HR < 70	HR > 100
AUROC	real	0.9587 ± 0.0004	0.9908 ± 0.0005	0.9919 ± 0.0002
	TSTR	0.88 ± 0.01	0.96 ± 0.01	0.95 ± 0.01
AUPRC	real	0.9059 ± 0.0005	0.9855 ± 0.0002	0.9778 ± 0.0002
	TSTR	0.66 ± 0.02	0.90 ± 0.02	0.84 ± 0.03
	random	0.16	0.26	0.18

		<i>RR</i> < 13	RR > 20	MAP < 70	MAP > 110
AUROC	real	0.9735 ± 0.0001	0.963 ± 0.001	0.9717 ± 0.0001	0.960 ± 0.001
	TSTR	0.86 ± 0.01	0.84 ± 0.02	0.875 ± 0.007	0.87 ± 0.04
AUPRC	real	0.9557 ± 0.0002	0.891 ± 0.001	0.9653 ± 0.0001	0.8629 ± 0.0007
	TSTR	0.73 ± 0.02	0.50 ± 0.06	0.82 ± 0.02	0.42 ± 0.07
	random	0.26	0.1	0.39	0.05

why?

real or fake?

discriminator

generated sample

- ... generate medical data?
 - ► Enable data sharing (if done carefully!)
 - Dataset augmentation
 - ▶ Simulation + training

code and paper:

github.com/ratschlab/RGAN/

https://bmi.inf.ethz.ch

• Q: is the GAN **overfitting** to the sensitive training data?

- 1. Does synthetic data look more similar to training data than to test data? MMD 3-sample test (Bounliphone et al., 2015)
- 2. Do reconstruction errors on training set look different to test set? Kolmogorov-Smirnov test between error distributions
- ► Use **differentially private** SGD (Abadi et al., 2016) to train discriminator: degrade TSTR performance, gain (ε, δ)-privacy