

Aix-Marseille Université Faculté d'Economie et de Gestion Aix-Marseille School of Economics

Projet

M1 Économétrie, statistiques & Magistère Économie, Data Science et Finance

Finance empirique

Rédigé par :

Setondji Hippolyte SODJINOU

Superviseur:

Marcel ALOY

Année Académique : 2024-2025

Table des matières

Ι	Int	roduction	1
II	Aı	nalyse des ETF	2
	1	Caractéristiques des ETFs	2
		Amundi Index MSCI Emerging Markets UCITS ETF DR (AEME.PA)	2
		Amundi MSCI Europe Growth UCITS ETF Acc (CG9.PA)	3
		Amundi MSCI Europe Value Factor UCITS ETF-C (CV9.PA)	4
	2	Représentation graphique de l'évolution de la valeur des trois ETF	5
II	[Aı	nalyse statistique des rendements géométriques	7
	1	Statistiques descriptives des rendements géométriques	7
	2	L'histogramme de la distribution de chaque ETF	10
	3	Le graphique QQ des ETF	12
	4	Test de normalité de Jarque-Bera	13
	5	La matrice des corrélations entre les rendements des 3 ETF	14
	6	Les fonctions d'autocorrélation des rendements	14
IV	Mo	odélisation économétrique	21
	1	Modèle $ARIMA(6,1,0)$ et représentation de la fonction de réponse aux impulsions (IRF)	21
	2	Tests de racine-unitaire ADF et KPSS	25
		L'ETF AEME.PA	25
		L'ETF CG9.PA	31
	3	Test de cointégration d'Engle et Granger entre les deux ETF	35
\mathbf{v}	Co	nclusion	38

Introduction

La finance empirique constitue un domaine d'étude essentiel, reliant la théorie financière à son application pratique à travers l'analyse de données réelles. Ce projet s'inscrit dans cette dynamique, avec pour objectif de développer une compréhension approfondie des propriétés statistiques et économétriques de certains instruments financiers, notamment les fonds négociés en bourse (ETF). Nous explorerons les caractéristiques fondamentales de ces ETF, analyserons leurs rendements à l'aide de statistiques descriptives et de tests de normalité, et appliquerons des modèles économétriques avancés tels que le modèle ARIMA et les tests de cointégration. Ce travail vise à illustrer comment les outils quantitatifs permettent d'éclairer les décisions en matière de gestion d'actifs et d'investissement, tout en mettant en lumière les défis méthodologiques liés à l'analyse des séries temporelles financières.

Analyse des ETF

1 Caractéristiques des ETFs

Amundi Index MSCI Emerging Markets UCITS ETF DR (AEME.PA)

L'ETF "Amundi Index MSCI Emerging Markets UCITS ETF DR (C)" (symbole : AEME.PA) a pour objectif de reproduire la performance de l'indice MSCI Emerging Markets, à la hausse comme à la baisse. Il offre une exposition aux principales actions des marchés émergents à l'échelle mondiale en une seule transaction.

Cet ETF est non éligible au PEA (Plan d'Épargne en Actions) et utilise une réplication physique complète, ce qui signifie qu'il détient effectivement les titres de l'indice de référence. Les dividendes générés sont capitalisés, c'est-à-dire réinvestis dans le fonds, ce qui contribue à l'augmentation de la valeur liquidative de l'ETF. Le ratio des frais annuels (TER) est fixé à 0,18 % par an, ce qui reflète des coûts de gestion compétitifs. Au 12 décembre 2024, la taille du fonds s'élève à environ 5 534,41 millions EUR, témoignant de sa solidité et de sa popularité auprès des investisseurs.

Lancé le 9 mai 2017 et domicilié au Luxembourg, cet ETF est conforme à la directive UCITS, ce qui garantit un cadre réglementaire strict pour les investisseurs.

Les 10 principaux titres

Nom	Devise	Poids	Secteur
TAIWAN SEMICONDUCTOR MANUFAC	TWD	10,54 %	Technologies de l'information
TENCENT HOLDINGS LTD	HKD	4,35 %	Services de communication
SAMSUNG ELECTRONIC CO LTD	KRW	2,34 %	Technologies de l'information
ALIBABA GROUP HOLDING LTD	HKD	2,26 %	Biens de consommation cyclique
HDFC BANK LIMITED	INR	1,54 %	Finance
MEITUAN-CLASS B	HKD	1,31 %	Biens de consommation cyclique
RELIANCE INDUSTRIES LTD	INR	1,15 %	Énergie
ICICI BANK LTD	INR	1,03 %	Finance
CHINA CONSTRUCTION BANK HK	HKD	1,00 %	Finance
INFOSYS LTD	INR	0,99 %	Technologies de l'information

Répartition des composants de l'indice

Répartition par secteur		
Technologies de l'information	24,31 %	
Finance	23,54 %	
Biens de consommation cyclique	13,31 %	
Services de communication	9,28 %	•
Industrie	6,67 %	
Matériaux	5,83 %	1
Biens de consommation non cyclique	4,79 %	I .
Énergie	4,56 %	I
Santé	3,39 %	I
Autres	4,33 %	I

Répartition par devise		
HKD	21,34 %	
INR	19,76 %	
TWD	19,70 %	
KRW	9,41 %	
CNH	4,12 %	I
SAR	4,03 %	I
BRL	3,56 %	I
ZAR	3,09 %	L
USD	2,57 %	1
Autres	12,42 %	

Amundi MSCI Europe Growth UCITS ETF Acc (CG9.PA)

L'ETF "Amundi MSCI Europe Growth UCITS ETF Acc" (symbole : CG9.PA) est un fonds qui vise à reproduire la performance de l'indice MSCI Europe Growth, à la hausse comme à la baisse. Cet ETF permet de suivre facilement l'évolution de près de 270 des plus importantes valeurs de 16 pays européens, représentatives des valeurs de croissance, en une seule transaction.

Cet ETF non éligible au PAE, est à réplication physique, c'est-à-dire qu'il détient directement les actions composant l'indice de référence. Il présente un ratio de frais annuels (TER) de 0,35 % et capitalise les dividendes, ce qui signifie que les revenus générés sont réinvestis dans le fonds plutôt que distribués aux investisseurs. Au 31 octobre 2024, le fonds gérait un actif total près de 151,29 millions EUR.

Lancé le 26 février 2009 et domicilié au Luxembourg, cet ETF est conforme à la directive UCITS, ce qui garantit un cadre réglementaire strict pour les investisseurs.

Les 10 principaux titres

Nom	Devise	Poids	Secteur
NOVO NORDISK A/S-B	DKK	6,49 %	Santé
ASML HOLDING NV	EUR	5,59 %	Technologies de l'information
SAP SE / XETRA	EUR	4,89 %	Technologies de l'information
ASTRAZENECA GBP	GBP	3,79 %	Santé
LVMH MOET HENNESSY LOUIS VUI	EUR	3,41 %	Biens de consommation cyclique
SCHNEIDER ELECT SE	EUR	2,64 %	Industrie
UBS GROUP AG	CHF	1,91 %	Finance
AIRBUS SE	EUR	1,84 %	Industrie
NOVARTIS AG-REG	CHF	1,81 %	Santé
AIR LIQUIDE SA	EUR	1,78 %	Matériaux

Répartition des composants de l'indice

Répartition par secteur		
Industrie	25,34 %	
Santé	20,74 %	
Technologies de l'information	14,65 %	
Biens de consommation cyclique	13,92 %	•
Biens de consommation non cyclique	9,43 %	
Finance	7,68 %	•
Matériaux	4,79 %	I .
Services de communication	2,45 %	1
Services aux collectivités	0,81 %	1
Autres	0,19 %	T

Repartition par	devise	
EUR	48,98 %	
GBP	19,23 %	-
CHF	14,98 %	•
DKK	9,09 %	•
SEK	5,78 %	1.0
USD	1,28 %	T
NOK	0,66 %	

Amundi MSCI Europe Value Factor UCITS ETF-C (CV9.PA)

L'ETF "Amundi MSCI Europe Value Factor UCITS ETF-C" (symbole : CV9.PA) a pour objectif de répliquer au plus près l'évolution de l'indice de stratégie MSCI Europe Value, à la hausse comme à la baisse. Cet ETF permet de suivre facilement l'évolution de près de 300 des plus importantes valeurs de 15 pays européens, représentatives des valeurs de rendement, en une seule transaction.

Cet ETF, non éligible au PEA, est à réplication synthétique (non financée) et présente un ratio de frais annuels de 0,23 %. Les dividendes sont capitalisés, ce qui signifie qu'ils sont réinvestis dans le fonds. Au 31 octobre 2024, l'encours sous gestion était près de 255,51 millions EUR. Il est domicilié au Luxembourg et a été lancé le 26 février 2009.

Les 10 principaux titres

Nom	Devise	Poids	Secteur
ROCHE HOLDING AG - GENUSSS	CHF	3,80 %	Santé
SHELL PLC GBP	GBP	3,60 %	Énergie
HSBC HLDGING PLC GBP	GBP	3,36 %	Finance
NESTLE SA-REG	CHF	2,67 %	Biens de consommation non cyclique
ALLIANZ SE-REG	EUR	2,31 %	Finance
TOTALENERGIES SE PARIS	EUR	2,23 %	Énergie
SANOFI - PARIS	EUR	2,08 %	Santé
DEUTSCHE TELEKOM NAMEN (XETRA)	EUR	2,04 %	Services de communication
SIEMENS AG-REG	EUR	1,91 %	Industrie
NOVARTIS AG-REG	CHF	1,84 %	Santé

Répartition des composants de l'indice

Répartition par secteur		
Finance	32,79 %	
Biens de consommation non cyclique	11,29 %	•
Santé	9,94 %	•
Industrie	9,70 %	•
Énergie	8,99 %	•
Services aux collectivités	7,07 %	•
Matériaux	7,02 %	•
Services de communication	5,42 %	
Biens de consommation cyclique	5,18 %	1
Autres	2,60 %	T

Répartition par devise				
52,43 %				
26,53 %				
14,42 %				
3,96 %	L			
1,10 %	I			
0,94 %	I			
0,63 %	I			
	26,53 % 14,42 % 3,96 % 1,10 % 0,94 %			

2 Représentation graphique de l'évolution de la valeur des trois ETF

Graphiquement, sur les sept dernières années, l'ETF CG9.PA est le plus performant, avec une croissance rapide et des sommets atteints après la chute de 2020 (COVID 19). Quant aux deux autres ETF, AEME.PA montre une croissance régulière, avec une bonne reprise après 2020 tandis que CV9.PA a une croissance plus stable et modérée, avec une reprise plus lente après 2020.

En résumé, CG9.PA est idéal pour ceux qui recherchent une forte croissance, tandis que AEME.PA et CV9.PA offrent plus de stabilité.

Analyse statistique des rendements géométriques

1 Statistiques descriptives des rendements géométriques

TABLE III.1 – Statistiques descriptives des rendements de L'ETF Amundi Index MSCI Emerging Markets UCITS ETF DR (C), utilisant les observations 2017-05-05 - 2024-11-25 (1970 observations valides)

Statistique	Valeur
Moyenne	0,00016126
Médiane	0,00072696
Minimum	-0,12325
Maximum	0,072304
Écart-type	0,011593
C.V.	71,888
Asymétrie	-0,99293
Ex. kurtosis	$10,\!594$
Percentile 5%	-0.017832
Percentile 95%	$0,\!016544$
Amplitude interquartile	$0,\!012257$
Obs. manquantes	2

- L'espérance des rendements géométriques journaliers est 0,00016126 soit 0,00016126 * 252 * 100 = 4,063752% pour une année. En détenant cet actif aujourd'hui, on peut s'attendre à un rendement moyen d'environ 4,06% l'année prochaine. Cette estimation n'est pas sans risque.
- L'écart-type des rendements journaliers est 0.011593 soit $0.011593 * \sqrt{252} * 100 = 18,403316\%$ pour une année. Les rendements observés chaque année s'écartent en moyenne de 18.4% autour de l'espérance.
- La distribution présente une asymétrie négative (-0,99293), ce qui indique que les pertes importantes sont plus fréquentes que les gains importants.
- L'excès de kurtosis élevé (10,594) montre que la distribution des rendements a des queues épaisses (leptokurtique), ce qui signifie une forte probabilité d'observer des événements extrêmes.
- Le rendement minimal est -0.12325 soit une perte de 12.325% sur une journée. Les variations sur une année pourraient devenir très importantes (perte élevée).
- Le rendement maximal est 0,072304 soit un gain de 7,2304% sur une journée. Les variations sur une année pourraient devenir très importantes (gain élevé). Ces résultats indiquent qu'au cours des sept dernières années, les pertes sont plus importantes que les gains pour les investisseurs potentiels de l'ETF Amundi Index MSCI Emerging Markets UCITS ETF DR (C).

TABLE III.2 – Statistiques descriptives des rendements géométriques de l'ETF Amundi MSCI Europe Growth UCITS ETF Acc, utilisant les observations 2017-05-05 - 2024-11-25 (1970 observations valides)

Statistique	Valeur
Moyenne	0,00024296
Médiane	0,00063400
Minimum	-0,10582
Maximum	0,068680
Écart-type	0,0099275
C.V.	40,860
Asymétrie	-0,81353
Ex. kurtosis	10,101
Percentile 5%	-0,015620
Percentile 95%	$0,\!014277$
Amplitude interquartile	0,010044
Obs. manquantes	2

- La moyenne des rendements géométriques journaliers est 0,00024296 soit 6,122592% pour une année. On peut s'attendre à un rendement moyen d'environ 6,12% l'année à venir si on investit dans cet actif aujourd'hui.
- L'écart-type des rendements journaliers est de 0,0099275, ce qui correspond à 15,75942~% sur une année. Ainsi, les rendements annuels observés s'écartent en moyenne de 15,8% autour de la valeur attendue.
- La distribution présente une asymétrie négative (-0,81353), ce qui signifie que les pertes importantes surviennent plus fréquemment que les gains significatifs.
- L'excès de kurtosis élevé (10,101) indique que la distribution des rendements présente des queues épaisses (leptokurtique), ce qui implique une probabilité élevée d'observer des événements extrêmes.
- Le rendement minimal est de -0.10582, soit une perte de 10.582 % sur une journée. Les variations annuelles pourraient entraı̂ner des pertes considérables.
- Le rendement maximal est 0,068680 soit un gain de 6,868% sur une journée. Les variations sur une année pourraient devenir très importantes (gain élevé).
 - Ces résultats suggèrent que l'ETF Amundi MSCI Europe Growth UCITS ETF Acc est relativement stable, mais avec des périodes de volatilité significative et une tendance à une performance plus faible que la moyenne dans certaines conditions de marché.

TABLE III.3 – Statistiques descriptives des rendements géométriques de l'ETF Amundi MSCI Europe Value Factor UCITS ETF-C, utilisant les observations 2017-05-05 - 2024-11-25(1970 observations valides)

Statistique	Valeur
Moyenne	0,00017646
Médiane	0,00065996
Minimum	-0,14369
Maximum	0,096620
Écart-type	0,010819
C.V.	61,309
Asymétrie	-1,6023
Ex. kurtosis	$25,\!133$
Percentile 5%	-0.014732
Percentile 95%	$0,\!015221$
Amplitude interquartile	$0,\!0095528$
Obs. manquantes	2

- La moyenne des rendements géométriques journaliers est 0,00017646 soit 4,44679% pour une année. On peut s'attendre à un rendement moyen d'environ 4,45% l'année à venir si on investit dans cet actif aujourd'hui.
- L'écart-type des rendements journaliers est de 0,010819, ce qui correspond à 17,17463 % sur une année. Ainsi, les rendements annuels observés s'écartent en moyenne de 17,17% autour de la valeur attendue.
- La distribution présente une asymétrie négative (-1,6023), indiquant que la distribution des rendements est inclinée vers la gauche, avec plus de rendements faibles et quelques rendements extrêmes positifs. Cela suggère que l'ETF a été plus souvent sous-performant, mais avec des gains exceptionnels occasionnels..
- L'excès de kurtosis élevé (25,133) indique que la distribution des rendements présente des queues épaisses (leptokurtique), ce qui implique que l'ETF a connu plusieurs périodes de rendements extrêmes.
- Le rendement minimal est de -0,14369, soit une perte de 14,369% sur une journée. Les variations annuelles pourraient entraîner des pertes considérables.
- Le rendement maximal est 0,096620 soit un gain de 9,662% sur une journée. Les variations sur une année pourraient devenir très importantes (gain élevé).
 - En résumé, les rendements de l'ETF Amundi MSCI Europe Value Factor UCITS ETF-C présentent une volatilité assez importante, avec une tendance générale à des rendements faibles, mais certains gains exceptionnels. La distribution est fortement asymétrique et présente des événements extrêmes, ce qui pourrait indiquer un risque élevé mais aussi une opportunité pour des rendements élevés dans certains cas.

Rappelle:

1. Le rendement géométrique est calculé comme suit :

$$R_t = \ln\left(\frac{P_t}{P_{t-1}}\right)$$

où:

- P_t est le prix à la période t,
- P_{t-1} est le prix à la période précédente,
- R_t est le rendement géométrique.
- 2. Le **coefficient de Skewness (ou d'asymétrie)** d'une variable aléatoire x se calcule (asymptotiquement) selon la formule :

$$S = \frac{1}{T} \sum_{t=1}^{T} \left(\frac{x_t - \bar{x}}{\hat{\sigma}} \right)^3$$

où \bar{x} est la moyenne empirique et $\hat{\sigma}$ l'écart-type estimé, T étant la taille de l'échantillon.

3. Le **coefficient de kurtosis** d'une variable aléatoire x se calcule (asymptotiquement) selon la formule :

$$K = \frac{1}{T} \sum_{t=1}^{T} \left(\frac{x_t - \bar{x}}{\hat{\sigma}} \right)^4$$

où T est le nombre total d'observations, \bar{x} est la moyenne des observations, et $\hat{\sigma}$ est l'écart-type estimé. L'excès de kurtosis est EK = K - 3.

2 L'histogramme de la distribution de chaque ETF

Amundi Index MSCI Emerging Markets UCITS ETF DR (AEME.PA)

Amundi MSCI Europe Growth UCITS ETF Acc (CG9.PA)

Amundi MSCI Europe Value Factor UCITS ETF-C (CV9.PA)

Les histogrammes des trois ETF montrent que les rendements géométriques sont asymétriques et leptokurtiques.

3 Le graphique QQ des ETF

Amundi Index MSCI Emerging Markets UCITS ETF DR (AEME.PA)

Amundi MSCI Europe Growth UCITS ETF Acc (CG9.PA)

Amundi MSCI Europe Value Factor UCITS ETF-C (CV9.PA)

Les graphiques Q-Q des trois ETF montrent une divergence par rapport à la ligne de référence, particulièrement aux extrémités (au début et à la fin des données). Donc, les rendements géométriques ne suivent pas une loi normale.

4 Test de normalité de Jarque-Bera

Le test de Jarque-Bera est utilisé pour tester la normalité d'une distribution empirique, ce qui revient à tester l'hypothèse de nullité jointe des coefficients de skewness et d'excès de kurtosis :

$$H_0: S = 0 \text{ et } EK = 0.$$

Si H_0 est rejetée, la distribution est :

- soit asymétrique,
- soit leptokurtique ou platykurtique.

La statistique de ce test se calcule par la formule suivante :

$$JB = T \times \left[\frac{S^2}{6} + \frac{(K-3)^2}{24} \right] \sim \chi_2^2$$

Sous H_0 : la distribution des rendements suit une loi normale, la statistique de test suit une loi de Khi-deux à deux degrés de liberté.

Les statistiques de Jarque-Bera pour les ETF AEME.PA, CG9.PA et CV9.PA sont respectivement 9536,5895; 8593,0561 et 52693,109. Ces statistiques sont très élevées et sont supérieures au quantile d'ordre 0,05 de la loi de Khi-deux à 1970 (T-2) degré de liberté. L'hypothèse nulle est alors rejetée, cela confirme que les rendements ne suivent pas une distribution normale.

5 La matrice des corrélations entre les rendements des 3 ETF

$$\text{Matrice de Corrélation} = \begin{pmatrix} \text{AEME.PA CG9.PA CV9.PA} \\ 1.0000 & 0.6976 & 0.7009 \\ 0.6976 & 1.0000 & 0.7912 \\ 0.7009 & 0.7912 & 1.0000 \end{pmatrix} \quad \begin{array}{c} \text{AEME.PA} \\ \text{CG9.PA} \\ \text{CV9.PA} \\ \end{array}$$

6 Les fonctions d'autocorrélation des rendements

La fonction d'autocovariance mesure la relation entre une valeur y_t d'une série temporelle et une valeur décalée y_{t-s} , et s'écrit :

$$\gamma_s = E[(y_t - E(y_t))(y_{t-s} - E(y_{t-s}))], \quad s = 0, 1, 2, \dots$$

où γ_s représente l'autocovariance pour un décalage s.

Cependant, comme les valeurs d'autocovariance dépendent de l'échelle de la série y_t , on préfère utiliser les **autocorrélations**, qui sont obtenues en normalisant l'autocovariance par la variance (γ_0) :

$$\tau_s = \frac{\gamma_s}{\gamma_0}, \quad s = 0, 1, 2, \dots$$

Ces valeurs τ_s sont indépendantes de l'unité de mesure de y_t .

La fonction d'autocorrélation (ou corrélogramme) est le graphique qui représente τ_s pour différents retards s.

ETF AEME.PA Fonction d'autocorrélation de rAEME

RETARD	ACF		PACF		Q	[p. critique]
1	-0,1143	***	-0,1143	***	25,7756	[0,000]
2	0,0234		0,0105		26,8585	[0,000]
3	-0,0193		-0,0157		27,5954	[0,000]
4	0,0172		0,0132		28,1778	[0,000]
5	0,0422	*	0,0468	**	31,7008	[0,000]
6	-0,1053	***	-0,0976	***	53,6410	[0,000]
7	0,0869	***	0,0653	***	68,5965	[0,000]
8	-0,0478	**	-0,0282		73,1194	[0,000]
9	0,0236		0,0090		74,2271	[0,000]
10	-0,0106		-0,0015		74,4477	[0,000]
11	-0,0259		-0,0249		75,7757	[0,000]
12	0,0380	*	0,0206		78,6401	[0,000]
13	-0,0357		-0,0134		81,1717	[0,000]
14	0,0360		0,0167		83,7422	[0,000]
15	-0,0376	*	-0,0217		86,5512	[0,000]
16	-0,0253		-0,0380	*	87,8230	[0,000]
17	0,0289		0,0214		89,4820	[0,000]
18	-0,0564	**	-0,0447	**	95,8031	[0,000]
19	-0,0030		-0,0255		95,8213	[0,000]
20	0,0306		0,0452	**	97,6850	[0,000]
21	0,0096		0,0047		97,8695	[0,000]
22	-0,0464	**	-0,0466	**	102,1624	[0,000]
23	-0,0494	**	-0,0483	**	107,0260	[0,000]
$\frac{24}{24}$	0,0089		-0,0161		107,1834	[0,000]
25	-0,0073		-0,0022		107,2900	[0,000]
26	0,0087		0,0092		107,4397	[0,000]
$\frac{27}{27}$	-0,0577	**	-0,0553	**	114,1045	[0,000]
28	0,0247		0,0104		115,3237	[0,000]
29	-0,0148		-0,0169		115,7635	[0,000]
30	-0,0125		-0,0116		116,0756	[0,000]
31	0,0301		0,0270		117,8903	[0,000]
32	0,0153		0,0264		118,3578	[0,000]

***, **, * indiquent une significativité au seuil de 1%, 5% et 10% sur la base d'écart-type $\frac{1}{T^{0,5}}$.

ETF CG9.PA Fonction d'autocorrélation de rCG9

RETARD	ACF		PACF		Q	[p. critique]
1	-0,0304		-0,0304		1,8193	[0,177]
2	0,0481	**	0,0473	**	6,3925	[0,041]
3	-0,0298		-0,0270		8,1431	[0,043]
4	0,0323		0,0285		10,1985	[0,037]
5	0,0312		0,0357		12,1280	[0,033]
6	-0,0758	***	-0,0780	***	23,4824	[0,001]
7	0,0551	**	0,0503	**	29,4941	[0,000]
8	-0,0342		-0,0238		31,8137	[0,000]
9	0,0564	**	0,0441	*	38,1115	[0,000]
10	-0,0135		-0,0016		38,4752	[0,000]
11	-0,0011		-0,0066		38,4777	[0,000]
12	0,0304		0,0274		40,3101	[0,000]
13	-0,0431	*	-0,0366		43,9892	[0,000]
14	0,0344		0,0213		46,3419	[0,000]
15	-0,0011		0,0164		46,3441	[0,000]
16	-0,0112		-0,0250		46,5932	[0,000]
17	-0,0127		-0,0081		46,9147	[0,000]
18	-0,0246		-0,0218		48,1172	[0,000]
19	-0,0041		-0,0153		48,1501	[0,000]
20	0,0088		0,0209		48,3029	[0,000]
21	-0,0112		-0,0168		48,5547	[0,001]
22	-0,0325		-0,0305		50,6667	[0,000]
23	-0,0440	*	-0,0448	**	54,5300	[0,000]
24	-0,0327		-0,0388	*	56,6590	[0,000]
25	0,0047		0,0109		56,7032	[0,000]
26	-0,0130		-0,0105		57,0388	[0,000]
27	-0,0104		-0,0090		57,2549	[0,001]
28	-0,0202		-0,0157		58,0728	[0,001]
29	0,0290		0,0224		59,7524	[0,001]
30	0,0139		0,0179		60,1377	[0,001]
31	-0,0040		-0,0010		60,1698	[0,001]
32	-0,0169		-0,0160		60,7433	[0,002]

***, **, * indiquent une significativité au seuil de 1%, 5% et 10% sur la base d'écart-type $\frac{1}{T^{0.5}}$.

ETF CV9.PA Fonction d'autocorrélation de rCV9

	RETARD	ACF		PACF		Q	[p. critique]
	1	0,0014		0,0014		0,0041	[0,949]
	2	0,0546	**	0,0546	**	5,8929	[0,053]
	3	0,0031		0,0029		5,9116	[0,116]
	4	0,0402	*	0,0373	*	9,1077	[0,058]
	5	0,0798	***	0,0797	***	21,6892	[0,001]
	6	-0,0798	***	-0,0848	***	34,2804	[0,000]
	7	0,0805	***	0,0735	***	47,1115	[0,000]
	8	-0,0604	***	-0,0557	**	54,3441	[0,000]
	9	0,0428	*	0,0307		57,9793	[0.000]
	10	0,0171		0,0229		58,5577	[0,000]
	11	-0,0366		-0,0352		61,2120	[0,000]
	12	-0,0114		-0,0264		61,4702	[0,000]
	13	-0,0460	**	-0,0247		65,6789	[0,000]
	14	0,0566	**	0,0380	*	72,0411	[0,000]
	15	0,0060		0,0236		72,1134	[0.00]
	16	-0,0131		-0,0172		72,4549	[0,000]
	17	-0,0258		-0,0263		73,7834	[0.00]
	18	-0,0893	***	-0,0857	***	89,6454	[0.000]
	19	-0,0434	*	-0,0569	**	93,3887	[0.00]
	20	0,0045		0,0270		93,4289	[0,000]
	21	0,0213		0,0260		94,3363	[0.000]
	22	-0,0400	*	-0,0282		97,5211	[0.000]
	23	-0,0503	**	-0,0408	*	102,5613	[0,000]
	24	0,0107		0,0024		102,7891	[0,000]
	25	0,0229		0,0290		103,8392	[0,000]
	26	0,0053		0,0102		103,8962	[0,000]
	27	-0,0376	*	-0,0263		106,7297	[0,000]
	28	0,0261		0,0287		108,0926	[0,000]
	29	-0,0042		-0,0151		108,1275	[0,000]
	30	0,0050		-0,0073		108,1771	[0,000]
	31	0,0030		0,0024		108,1947	[0,000]
	32	-0,0384	*	-0,0269		111,1564	[0,000]
** * •	1.		•• /	.1 1 1	07 -0-	7 1 1007	1 1 11/

***, **, * indiquent une significativité au seuil de 1%, 5% et 10% sur la base d'écart-type $\frac{1}{T^{0,5}}$.

Modélisation économétrique

1 Modèle ARIMA(6,1,0) et représentation de la fonction de réponse aux impulsions (IRF).

Dans la suite, nous utilisons que les deux premiers ETF : AEME.PA et CG9.PA.

L'ETF AEME.PA

Évaluations de la fonction : 55 Évaluations du gradient : 11

Modèle 6: ARIMA, utilisant les observations 2017-05-08: 2024-11-22 (T = 1970)

Estimation par AS 197 (MV exact) Variable dépendante : (1-L) l_AEME

Écarts-types basés sur la matrice hessienne

	${f coefficient}$	éc. type	${f z}$	p. critique	
const	0,000159267	0,000222999	0,7142	0,4751	
phi_1	-0,108810	0,0224265	-4,852	$1,\!22e\text{-}06$	**
phi_2	0,0109968	$0,\!0225460$	$0,\!4878$	0,6257	
phi_3	-0,0160351	$0,\!0225439$	-0,7113	$0,\!4769$	
phi_4	0,0192874	$0,\!0225362$	0,8558	0,3921	
phi_5	0,0356135	$0,\!0225347$	1,580	0,1140	
phi_6	-0,0974326	0,0224074	-4,348	$1,\!37e\text{-}05$	**
Moyenne var. dép.	0,000161	Éc. type var. dép.	0,011593		
Moyenne innovations	1,40e-06	Éc. type innovations	0,011443		
$\mathbf{R2}^{\circ}$	0,987135	R2 ajusté	0,987102		
Log de vraisemblance	6011,273	Critère d'Akaike	-12006,55		
Critère de Schwarz	-11961,86	Hannan-Quinn	-11990,13		
	Réel	Imaginaire	Modulo	Fréquence	
AR					
Ordre 1	-1,2267	0,6750	1,4002	0,4199	
Ordre 2	-1,2267	-0,6750	1,4002	-0,4199	
Ordre 3	1,3791	-0,7578	1,5736	-0,0800	
Ordre 4	1,3791	0,7578	1,5736	0,0800	
Ordre 5	0,0303	-1,4537	1,4540	-0,2467	
Ordre 6	0,0303	1,4537	1,4540	0,2467	

L'ETF CG9.PA

Évaluations de la fonction : 55 Évaluations du gradient : 11

Modèle 7 : ARIMA, utilisant les observations $2017-05-08:2024-11-22 \ (T=1970)$

Estimation par AS 197 (MV exact) Variable dépendante : (1-L) l_CG9

		coefficient	éc. typ	o e	${f z}$	p. critique	
const		0,000243750	0,000218	341	1,116	0,2643	
phi_1		-0,0249751	0,02247	08	-1,111	$0,\!2664$	
phi_2		0,0484516	0,02246	21	2,157	0,0310	**
phi_3		-0,0300005	0,02247	33	-1,335	0,1819	
phi_4		0,0330255	0,02246	57	1,470	0,1416	
phi_5		0,0335091	0,02244	75	1,493	$0,\!1355$	
phi_6		-0,0780695	0,02247	58	-3,473	0,0005	***
Moyenne var. dép).	0,000243	Éc. type va	r. dép.	0,009928		
Moyenne innovati		-2,16e-08	Éc. type inne	ovations	0,009865		
R2		0,997161	R2 ajus	sté	0,997153		
Log de vraisembla	ance	6303,609	Critère d'A	Akaike	-12591,22		
Critère de Schwar	$\mathbf{r}\mathbf{z}$	$-12546,\!53$	Hannan-G	Q uinn	-12574,80		
	Réel		Imaginaire	Mod	ulo	Fréquence	!
AR							
Ordre 1	-1,3048	3	0,6852	1,473	8	0,4230	
Ordre 2	-1,3048	3	-0,6852	1,473	8	-0,4230	
Ordre 3	1,4383		-0,7313	1,613	6	-0,0749	
Ordre 4	1,4383		0,7313	1,613	6	0,0749	
Ordre 5	0,0811		-1,5028	1,505	0	-0,2414	
Ordre 6	0,081		1,5028	1,505	Λ	0,2414	

On remarque dans les deux cas que le module de z est strictement supérieure à 1. Donc, la série est stationnaire.

2 Tests de racine-unitaire ADF et KPSS.

L'ETF AEME.PA

Test ADF

L'objectif de ce test est de tester l'hypothèse nulle H_0 : $\phi = 1$ (présence de racine unitaire) dans le modèle de régression :

$$y_t = \phi y_{t-1} + \ldots + \varepsilon_t$$

Test ADF avec constante sur la série logarithmique des prix

Test de Dickey-Fuller augmenté pour l_AEME

test à reculons à partir de 17 retards, suivant le critère BIC

taille de l'échantillon 1969

hypothèse nulle de racine unitaire : a = 1

test avec constante

avec un retard de (1 - L) l_AEME

modèle : $(1 - L)y = b_0 + (a - 1) * y(-1) + \ldots + e$

valeur estimée de (a-1): -0,00574361 statistique de test : $tau_c(1) = -2,22709$

p. critique asymptotique : 0,1967

Coeff. d'autocorrélation du 1er ordre pour e:0,001

Régression du test de Dickey-Fuller augmenté

MCO, utilisant les observations 2017-05-09 :2024-11-22 (T = 1969)

Variable dépendante : d_l_AEME

	coefficient	éc. type	t de Student	p. critique	
const	$0,\!0275166$	0,0122803	2,241	$0,\!0252$	**
l_AEME_1	-0,00574361	0,00257897	-2,227	$0,\!1967$	
d_l AEME_1	-0,111463	0,0224113	-4,974	$7{,}15e-07$	***

- l_AEME est le logarithme des prix de l'ETF AEME.PA.

La p.value obtenue est 0,1967, ce qui est supérieure au seuil critique. Nous ne pouvons pas rejeter l'hypothèse nulle de racine unitaire. Par conséquent, le logarithme du prix contient une racine unitaire. Ce dernier prouve que la série logarithme du prix n'est pas stationnaire. Ajoutons alors l'effet de tendance temporelle.

Test ADF avec constante et tendance temporelle sur la série logarithmique des prix

avec constante et tendance temporelle

avec un retard de (1 - L) l_AEME

modèle : $(1 - L)y = b_0 + b_1 * t + (a - 1) * y(-1) + ... + e$

valeur estimée de (a-1) : -0,00959137

statistique de test : $tau_ct(1) = -2,90436$

p. critique asymptotique 0,161

Coeff. d'autocorrélation du 1er ordre pour e:0,001

Régression du test de Dickey-Fuller augmenté

MCO, utilisant les observations 2017-05-09:2024-11-22 (T = 1969)

Variable dépendante : d_l_AEME

	coefficient	éc. type	t de Student	p. critique	
const	0,0447598	0,0153698	2,912	0,0036	***
1_AEME_1	-0,00959137	0,00330241	-2,904	0,1610	
$d_l_AEME_1$	-0,109536	0,0224210	-4,885	$1{,}12e-06$	***
time	1,08880e-06	5,84259e-07	1,864	0,0625	*

La p.value obtenue est 0,161, ce qui est supérieure au seuil critique. Nous ne pouvons pas rejeter l'hypothèse nulle de racine unitaire. Par conséquent, le logarithme du prix contient une racine unitaire. Ce dernier prouve que la série logarithmique des prix n'est pas stationnaire même en présence de tendance temporelle. Faisons le test sur la différence première de la série logarithmique.

Test ADF avec constante sur la différence première la série logarithmique des prix

Test de Dickey-Fuller augmenté pour d_l_AEME

test à reculons à partir de 17 retards, suivant le critère BIC

taille de l'échantillon 1969

hypothèse nulle de racine unitaire : a = 1

test avec constante

avec 0 retards de $(1 - L)d_l$ AEME

modèle : $(1 - L)y = b_0 + (a - 1) * y(-1) + e$

valeur estimée de (a-1): -1,11433

statistique de test : $tau_c(1) = -49,7539$

p. critique asymptotique 0,0001

Coeff. d'autocorrélation du 1er ordre pour e:0,001

Régression de Dickey-Fuller

MCO, utilisant les observations 2017-05-09:2024-11-22 (T = 1969)

Variable dépendante : d_d_l_AEME

	coefficient	éc. type	t de Student	p. critique	
const	0,000173305	0,000259629	0,6675	0,5045	
$d_l_AEME_1$	-1,11433	0,0223968	-49,75	0,0001	***

Test ADF avec constante et tendance temporelle sur la différence première la série logarithmique des prix

avec constante et tendance temporelle

avec 0 retards de $(1 - L)d_l$ AEME

modèle : $(1 - L)y = b_0 + b1 * t + (a - 1) * y(-1) + e$

valeur estimée de (a-1): -1,11433

statistique de test : $tau_ct(1) = -49,7413$

p. critique asymptotique 7,312e-129

Coeff. d'autocorrélation du 1er ordre pour e:0,001

Régression de Dickey-Fuller

MCO, utilisant les observations 2017-05-09:2024-11-22 (T = 1969)

Variable dépendante : d_d_l_AEME

	coefficient	éc. type	t de Student	p. critique	
const	0,000145809	0,000520343	0,2802	0,7793	
$d_l_AEME_1$	-1,11433	0,0224025	-49,74	7,31e-129	***
time	2,78578e-08	4,56844e-07	0,06098	0,9514	

La p-value dans les deux modèles (avec ou sans tendance temporelle) est inférieure au seuil critique de 5%. L'hypothèse nulle de racine unitaire est rejetée. La différence première la série logarithmique des prix de l'ETF AEME.PA ne contient pas de racine unitaire. Par conséquent, elle est stationnaire.

La série logarithmique des prix de l'ETF AEME.PA est intégrée d'ordre 1 I(1)

Test KPSS

Le test KPSS (Kwiatowski, Phillips, Schmidt et Shin, 1992) est un test de stationnarité, plutôt que de racine-unitaire, car les hypothèses nulle et alternatives sont :

 $H_0: y_t$ est stationnaire

contre

 $H_1: y_t$ est non stationnaire

Test KPSS sur la série logarithmique des prix

Régression KPSS

MCO, utilisant les observations 2017-05-05:2024-11-22 (T = 1971)

Variable dépendante : l_AEME

	coefficient	éc. type	t de Studen	t p. critique	_
const	4,76073	0,00227113	2096	0,0000	***
AIC:	-3449.8	BIC: -3444,2	21 HQC:	-3447.74	

Estimation robuste de la variance :0,0601441

Somme des carrés des résidus récurrents : 3,39197e + 006

Test KPSS pour l_AEME

T = 1971

Paramètre du retard de troncation = 5

Statistique de test = 14,5173

	10%	5%	1%
Valeurs critiques :	0,348 < .01	0,462	0,744
P. critique	< .01		

Puisque la p-value (P. critique) est inférieure à 0,01, on rejette l'hypothèse nulle. La série logarithmique des prix n'est pas stationnaire. Faisons alors le test sur la différence première du logarithme du prix

Test KPSS sur la différence première de la série logarithmique des prix

Régression KPSS

MCO, utilisant les observations 2017-05-08:2024-11-22 (T = 1970)

Variable dépendante : d_l_AEME

coefficient éc. type t de Student p. critique 0,000161260 0,000261187 0,6174 0,5370 const

BIC: -11964,9 HQC: -11968,4 AIC: -11970,5

Estimation robuste de la variance :0,000113762 Somme des carrés des résidus récurrents : 13,8471

Test KPSS pour d_l_AEME

T = 1970

Paramètre du retard de troncation = 5

Statistique de test = 0,0313639

10%5%1% Valeurs critiques: 0,348 0,462 0,744> .10P. critique

La p-value est supérieure à 0,10. Donc, nous ne pouvons pas rejeter l'hypothèse nulle de stationnarité. La différence première de la série logarithmique des prix est stationnaire.

La série logarithmique des prix de l'ETF AEME.PA est alors intégrée d'ordre 1. Cela confirme les résultats obtenus avec le test ADF.

L'ETF CG9.PA

Test ADF

Test ADF avec constante sur la série logarithmique des prix

Test de Dickey-Fuller augmenté pour l_CG9

test à reculons à partir de 17 retards, suivant le critère BIC taille de l'échantillon 1970 hypothèse nulle de racine unitaire : a=1

test avec constante

avec 0 retards de (1 - L)l_CG9

modèle : $(1 - L)y = b_0 + (a - 1) * y(-1) + e$

valeur estimée de $(a-1): \mbox{-}0{,}00130924$

statistique de test : $tau_c(1) = -1,08326$

p. critique asymptotique 0,7247

Coeff. d'autocorrélation du 1er ordre pour e:-0,030

Régression de Dickey-Fuller

MCO, utilisant les observations 2017-05-08 :2024-11-22 (T = 1970) Variable dépendante : d_l_CG9

	coefficient	éc. type	t de Student	p. critique
const	0,00656158	,	1,124	0,2611
l_CG9_1	-0,00130924		-1,083	0,7247

Test ADF avec constante et tendance temporelle sur la série logarithmique des prix

avec constante et tendance temporelle

avec 0 retards de $(1 - L)_1$ CG9

modèle : $(1 - L)y = b_0 + b_1 * t + (a - 1) * y(-1) + e$

valeur estimée de (a-1): -0,0101691

statistique de test : $tau_ct(1) = -3,20452$

p. critique asymptotique 0,08345

Coeff. d'autocorrélation du 1er ordre pour e:-0.025

Régression de Dickey-Fuller

MCO, utilisant les observations 2017-05-08:2024-11-22 (T = 1970)

Variable dépendante : d_{l} _CG9

	coefficient	éc. type	t de Student	p. critique	
const	0,0462459	0,0143799	3,216	0,0013	***
l_CG9_1	-0,0101691	0,00317336	-3,205	0,0834	*
time	3,11698e-06	1,03264e-06	3,018	0,0026	***

Les p.values obtenues dans les deux tests (avec ou sans tendance temporelle) sont respectivement 0,7247 et 0,08345, ce qui est supérieure au seuil critique de 5%. Nous ne pouvons pas rejeter l'hypothèse nulle de racine unitaire. Par conséquent, le logarithme du prix contient une racine unitaire. Ce dernier prouve que la série logarithmique des prix n'est pas stationnaire même en présence de tendance temporelle. Faisons le test sur la différence première de la série logarithmique.

Test ADF avec constante sur la différence première la série logarithmique des prix

Test de Dickey-Fuller augmenté pour d 1 CG9

test à reculons à partir de 17 retards, suivant le critère BIC

taille de l'échantillon 1969

hypothèse nulle de racine unitaire : a = 1

test avec constante

avec 0 retards de $(1 - L)d_l$ CG9

modèle : (1 - L)y = b0 + (a - 1) * y(-1) + e

valeur estimée de (a-1): -1,0304

statistique de test : $tau_c(l) = -45,6918$

p. critique asymptotique 2,906e-05

Coeff. d'autocorrélation du 1er ordre pour e:0,001

Régression de Dickey-Fuller

MCO, utilisant les observations 2017-05-09 :2024-11-22 (T = 1969) Variable dépendante : d_LCG9

	coefficient	éc. type	t de Student	p. critique	
const d_l_CG9_1	0,000250250 -1,03040	$0,000223800 \\ 0,0225512$	1,118 -45,69	0,2636 2,91e-05	***

Test ADF avec constante et tendance temporelle sur la différence première de la série logarithmique des prix

avec constante et tendance temporelle

avec 0 retards de $(1 - L)d_l$ CG9

modèle : $(1 - L)y = b_0 + b1 * t + (a - 1) * y(-1) + e$

valeur estimée de (a-1):-1,03041statistique de test : $tau_ct(1)=-45,6806$ p. critique asymptotique 4,834e-137

Coeff. d'autocorrélation du 1er ordre pour e:0,001

Régression de Dickey-Fuller

MCO, utilisant les observations 2017-05-09 :2024-11-22 (T = 1969) Variable dépendante : d_d_l CG9

	coefficient	éc. type	t de Student	p. critique	
const d_l_CG9_1 time	0,000194148 -1,03041 5,68428e-08	0,000448462 0,0225568 3,93724e-07	0,4329 $-45,68$ 0.1444	0,6651 4,83e-137 0,8852	***

Les p-values dans les deux tests (avec ou sans tendance temporelle) sont respectivement 2,906e-05 et 4,834e-137. Elles sont inférieures au seuil critique de 5%. L'hypothèse nulle de racine unitaire est rejetée. La différence première la série logarithmique des prix de l'ETF CG9.PA ne contient pas de racine unitaire. Par conséquent, elle est stationnaire.

La série logarithmique des prix de l'ETF CG9.PA est alors intégrée d'ordre 1 I(1)

Test KPSS

Test KPSS sur la série logarithmique des prix

Régression KPSS MCO, utilisant les observations 2017-05-05:2024-11-22 (T=1971)

Variable dépendante : l_CG9

	coefficient	éc. type	t de Student	p. critique
const	4,82632	0,00417037	1157	0,0000

AIC: -1054,13 BIC: -1048,55 HQC: -1052,08

Estimation robuste de la variance :0, 204682

Somme des carrés des résidus récurrents : 2,30115e+007

Test KPSS pour l_CG9

T = 1971

Paramètre du retard de troncation = 5

Statistique de test =28,9396

	10%	5%	1%
Valeurs critiques : P. critique	0,348 < .01	0,462	0,744

Puisque la p-value est inférieure à 0,01, on rejette l'hypothèse nulle. La série logarithmique des prix n'est pas stationnaire. Effectuons un test sur la première différence de logarithme du prix.

Test KPSS sur la différence première de la série logarithmique des prix

Régression KPSS

MCO, utilisant les observations 2017-05-08:2024-11-22 (T = 1970)

Variable dépendante : d_l_CG9

	coefficient	éc. type	t de Student	p. critique
const	0,00024962	0,000223670	1,086	0,2775
				-

AIC: -12581,4 BIC: -12575,8 HQC: -12579,4

Estimation robuste de la variance :0,000100053 Somme des carrés des résidus récurrents :12,542

Test KPSS pour d_l_CG9

T = 1970

Paramètre du retard de troncation = 5

Statistique de test = 0,0323002

	10%	5%	1%
Valeurs critiques : P. critique	0,348 > .10	0,462	0,744

La p-value est supérieure à 0,10. Donc, nous ne pouvons pas rejeter l'hypothèse nulle de stationnarité. La différence première de la série logarithmique des prix est stationnaire.

La série logarithmique des prix de l'ETF CG9.PA est alors intégrée d'ordre 1. Cela confirme les résultats obtenus avec le test ADF.

3 Test de cointégration d'Engle et Granger entre les deux ETF

Le graphique montre qu'il n'y a pas une relation linéaire entre le logarithme des prix des deux ETF. Ce qui montre qu'il n'y a pas cointégration. Néanmoins ceci n'est qu'une interprétation graphique. Effectuons le test de cointégration d'Engle et Granger.

Test de cointégration de Engle et Granger (EG), précédés par les tests ADF

Étape 3 : cointégration

Régression de cointégration -

MCO, utilisant les observations 2017-05-05:2024-11-22 (T = 1971)

Variable dépendante : l_AEME

	coefficient	éc. type	t de Student	p. critique	;
const	2,64291	0,0351056	75,28	0,0000	***
l_CG9	0,438807	0,00726845	$60,\!37$	0,0000	***
Moyenn	e var. dép.	4,760732	Éc. type var.	dép.	0,100829
Somme	carrés résidu	5 7,024752	Éc. type régr	ession	0,059730
R2		0,649252	R2 ajusté		0,649074
Log de vraisemblance		e 2758,394	Critère d'Akaike		-5512,788
Critère de Schwarz		-5501,616	Critère Hann	Critère Hannan-Quinn	
$_{ m rho}$		0,988304	Durbin-Watson		0,023240

Étape 4: test de racine unitaire dans uhat

Test de Dickey-Fuller augmenté pour uhat

test à reculons à partir de 12 retards, suivant le critère BIC taille de l'échantillon 1969 hypothèse nulle de racine unitaire : a=1

test sans constante

avec un retard de (1-L)uhat

modèle : (1 - L)y = (a - 1) * y(-1) + ... + e

valeur estimée de (a-1): -0,0101875 statistique de test : $tau_c(2) = -2,9865$

p. critique asymptotique 0,1135

Coeff. d'autocorrélation du 1er ordre pour e:-0,001

La p-value (p. critique asymptotique) de test de Dickey-Fuller augmenté pour les erreurs est 0,1135, supérieure au seuil critique de 5%. Donc, nous ne pouvons pas rejeter l'hypothèse nulle de racine unitaire. Puisque le test ADF sur les logarithmes des prix des ETF montre qu'ils contiennent une racine unitaire, il n'y a pas de cointégration entre les deux ETF. Cela confirme le résultats graphique. L'évolution de la relation long terme entre les erreurs est donnée par la figure suivante :

Conclusion

Ce projet met en lumière les outils essentiels pour l'analyse empirique en finance. À travers l'étude des ETF, nous avons pu illustrer l'importance des statistiques descriptives, de la normalité des données et des corrélations entre actifs. L'application des modèles ARIMA et des tests économétriques a permis de comprendre les dynamiques temporelles des prix, mettant en évidence les défis liés à la prévision et à l'analyse de séries financières. Ces approches offrent des perspectives intéressantes pour les décideurs dans les domaines de la gestion de portefeuille et de l'analyse des risques.

Bibliographie

- [1] Support de cours
- $[2] \ Amundi.fr, \ Yahoo \ Finance.$
- [3] Gretl software