

§ 4 微分

例1 考察正方形面积

$$S=x^2$$

它的微小增量

$$\Delta S = S(x_0 + \Delta x) - S(x_0)$$

$$= (x_0 + \Delta x)^2 - x_0^2$$

$$= 2x_0 \Delta x + (\Delta x)^2$$

$$= \mathcal{L} \Delta x \text{ 的线性}(-\text{Mor}-x) + \Delta x \text{ 的高阶无穷小}.$$

 $2x_0\Delta x$ 称为 ΔS 的线性主部.

1. 微分概念

定义1 若
$$y = f(x)$$
 在点 x_0 处的增量 $\Delta y = f(x_0 + \Delta x) - f(x_0)$

可以表示为

$$\Delta y = A\Delta x + o(\Delta x),$$

则称 y = f(x) 在点 x_0 处的可微,

并称 $A\Delta x$ 为 y = f(x) 在点 x_0 处的微分,记为

$$dy|_{x=x_0}$$
 $\not\equiv$ $df(x_0)$.

即
$$dy|_{x=x_0} = A\Delta x$$
 或 $df(x_0) = A\Delta x$.

当 $A \neq 0$ 时, 称 $dy = A\Delta x$ 是 Δy 的线性主部.

可微即可导

定理1 y = f(x) 在点 x_0 处的可微的充要条件是 y = f(x) 在点 x_0 处的可导.

证 "⇒" 设 y = f(x) 在点 x_0 处的可微,则 $\Delta y = A\Delta x + o(\Delta x)$,

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} (A + \frac{o(\Delta x)}{\Delta x}) = A, \quad \text{if } y = f(x) \text{ i.i.} \quad x_0 \text{ which if } y = f(x) \text{ i.i.}$$

" \leftarrow " 设 y = f(x) 在点 x_0 处的可导,则

$$\Delta y = f'(x_0)\Delta x + \alpha \Delta x, \qquad \alpha \Delta x = o(\Delta x),$$

所以 y = f(x) 在点 x_0 处的可微.

这时
$$dy = f'(x_0) \Delta x$$
.

几何意义

当 y = x 时,有 dy = dx 与 $dy = 1 \cdot \Delta x$ 比较得 $dx = \Delta x$.

所以一般微分写成 dy = f'(x)dx, 也是用这个公式计算的.

$$dy = f'(x_0)\Delta x = AD \cdot \tan \alpha = CD$$
,

全增量
$$\Delta y = f(x_0 + \Delta x) - f(x_0) = BD$$
,

当 Δx 很小时, $BD \approx CD$.

点A附近的曲线段近似于切线段.

基本初等函数的微分公式

(1)
$$dC = 0$$
.

$$(2) dx^{\alpha} = \alpha x^{\alpha-1} dx.$$

$$(3) \quad da^x = a^x \ln a dx,$$

$$de^x = e^x dx$$
.

(4)
$$d \log_a x = \frac{1}{x \ln a} dx$$
, $d \ln x = \frac{1}{x} dx$.

$$d\ln x = \frac{1}{x}dx.$$

$$(5) \quad d\sin x = \cos x dx,$$

$$d\cos x = -\sin x dx$$
,

$$d \tan x = \sec^2 x dx,$$

$$d \tan x = \sec^2 x dx$$
, $d \cot x = -\csc^2 x dx$,

 $d \sec x = \sec x \tan x dx$, $d \csc x = -\csc x \cot x dx$.

(6)
$$d \arcsin x = -d \arccos x = \frac{1}{\sqrt{1-x^2}} dx$$
.

$$d \arctan x = -d \arctan x = \frac{1}{1+x^2} dx.$$

微分法则

(1)
$$d[u(x) \pm v(x)] = du(x) \pm dv(x),$$

(2)
$$d[u(x)v(x)] = v(x)du(x) + u(x)dv(x),$$

$$d[ku(x)] = kdu(x),$$

(3)
$$d\left[\frac{u(x)}{v(x)}\right] = \frac{v(x)du(x) - u(x)dv(x)}{v^{2}(x)},$$
$$d\left[\frac{1}{v(x)}\right] = -\frac{dv(x)}{v^{2}(x)}.$$

(4) 复合函数微分 d(f(g(x))) = f'(g(x))g'(x)dx.

一阶微分形式的不变性

有
$$dy = f'(u)du$$
,

有
$$dy = f'(g(x))g'(x)dx$$
,

$$\xrightarrow{u=g(x)} du=g'(x)dx \rightarrow$$

也有 dy = f'(u)du.

所以, 不论 u 是自变量, 还是中间变量,

y = f(u) 的微分 dy = f'(u)du 在形式上完全相同.

这个性质称为一阶微分的形式不变性.

微分举例

例2 设
$$y = e^{1+2x} \cos x$$
, 求 dy.

$$\Re dy = d(e^{1+2x}\cos x) = d(e^{1+2x})\cos x + e^{1+2x} d\cos x
= 2e^{1+2x}\cos x dx - e^{1+2x}\sin x dx
= e^{1+2x}(2\cos x - \sin x)dx.$$

例3 设
$$y = x^2 \ln \sin x$$
, 求 dy.

解
$$dy = d(x^2 \ln \sin x) = \ln \sin x dx^2 + x^2 d \ln \sin x$$

 $= 2x \ln \sin x dx + x^2 \frac{1}{\sin x} d \sin x$
 $= (2x \ln \sin x + x^2 \frac{\cos x}{x}) dx.$

 $\sin x$

微分在近似计算中的应用

当 Δx 很小时,

$$\Delta y = f'(x_0) \Delta x + o(\Delta x) \approx f'(x_0) \Delta x,$$

$$\mathbb{P} \qquad f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \Delta x$$

我们用公式

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x$$

计算 X_0 附近的函数的近似值.

近似计算举例

例3 求 $\sqrt{0.97}$ 的近似值.

$$f'(x) = \frac{1}{2\sqrt{x}}, f'(1) = \frac{1}{2}.$$

$$\sqrt{0.97} \approx \sqrt{1} + (\sqrt{x})'|_{x=1} (-0.03)$$

$$=1+\frac{1}{2}(-0.03)=0.985.$$

误差估计

设某物量(如长度)的客观值 A, 仪器测得 a (近似值).

则 称
$$|A-a|$$
 为 A 的绝对误差, $\frac{|A-a|}{|a|}$ 为 A 的相对误差.

一般可依仪器精度,得到:

$$|A-a| \leq \delta_A$$
 中的 δ_A : 绝对误差限,

$$\frac{|A-a|}{|a|} \leq \frac{\delta_A}{|a|} + n \frac{\delta_A}{|a|}$$
相对误差限.

设 x 的近似值是 x_0 , 绝对误差**限**为 δ_x , 即 $|\Delta x| \leq \delta_x$.

则
$$y = f(x)$$
 的绝对误差限为 $\delta_y = |f'(x_0)| \delta_x$, $y = f(x)$ 的相对误差限为 $|f'(x_0)| \delta_x$

$$\frac{|f(x_0)|O_x}{|f(x_0)|}$$

例5 设测得圆板直径 $d_0 = 50.5$, 绝对误差限为 $\mathcal{S}_d = 0.04$, 试估计圆面积的误差(限).

解由
$$S = \frac{\pi d^2}{4}$$
 得

S 的绝对误差R

$$\delta_S = S' \delta_d = S'(50.5) \times 0.04 = \frac{\pi}{2} \times 50.5 \times 0.04$$

= 1.01\pi \approx 3.173.

$$S$$
 的相对误差限 $\frac{\delta_S}{S} = \frac{S'\delta_d}{S} = \frac{\frac{\pi}{2} \times 50.5 \times 0.04}{\frac{\pi \times 50.5^2}{4}} = \frac{0.04 \times 2}{50.5} \approx 0.158\%.$