

Problem Description

Objectives:

- Determine the most effective machine learning technique for predicting home values in the Ames, Iowa Housing Dataset.
- Understand the factors contributing to performance differences among Decision Tree, Random Forest, XGBoost, and Artificial Neural Network (ANN).

Dataset:

Ames, Iowa Housing Dataset¹

- 79 features, 1460 rows of training data
- Includes diverse property attributes like living area, lot size, and number of bedrooms.
- A mix of both numerical and categorical data.

Outline

- 1. Data Preprocessing
 - Feature Selection, PCA, Missing values, Encoding, Typos and Corrupt Data...
- 2. Feature Engineering
- 3. Model training
- 4. Model comparison
- 5. Conclusion

Data Preprocessing

Typos and Corrupt Data

A Exterior2nd	=	
VinylSd MetalSd	35% 15%	
Other (742)	51%	
Brk Cmn		

Exterior2nd: Exterior covering on house (if more than one material)

AsbShng Asbestos Shingles AsphShn Asphalt Shingles BrkComm Brick Common

- Missing Values
 - 0 for numerical values
 - 'None' for categorical values

Feature Engineering

- Interaction Features
 - LivingAreaQuality (GeneralLivingArea * OverallQuality)
- Ratios
 - BedBathRatio (Number of bed / Number of Bath + epsilon)
- Polynomial Features [2]
 - GeneralLivingArea²...
- Age Related
 - AgeAtSale (YrSold YrBuilt)

Decision Tree

- 5-fold CV
- PCA
 - Before
 - RMSE: 36,500Kaggle*: 0.238
 - After
 - RMSE: 29,000
 - Kaggle*: 0.246
 - Does not capture non-linear relationships
 - Loses crucial information
- Hyperparameters Search
 - Max_depth, min_samples_split...
 - Did not change results
- Outliers in dataset

Kaggle score*: measures the avg error percentage on unseen test data, lower better

Score

RMSE: 36,500

Kaggle: 0.238

No PCA

RMSE: 29,000

Kaggle: 0.246

No PCA

Random Forest

- Characteristics
 - Ensemble of 100 decision trees
 - Square Root of features per tree
 - Bagging
- PCA
 - Before

• RMSE: 28284

Kaggle: 0.142

- After
 - RMSE: 39841
 - Kaggle: 0.197
- No decision correction/boosting, perhaps too simple for our task

XGBoost

 Differs slightly from Random Forests due to *Gradient Boosting*.

Extreme Gradient Boosting³

- Ensemble learning method
- Combines predictions of multiple weak learners to create a strong learner (boosting) via a gradient descent algorithm (gradient)
- Handles missing values by default
- XGBoost works sequentially, where each new tree learner aims to correct mistakes from those that came before it.

XGBoost

Method:

- No PCA
- 5-fold CV
- Hyperparameter optimization
 - Before:
 - RMSE: 29,041
 - After:
 - RMSE: 27,314
- Hyperparameter grid search did not yield significant improvements to the RMSE.
- Therefore, pre-processing and hyper-parameter optimization did not significantly affect performance on this specific dataset for XGBoost.

```
# Define the hyperparameter grid to search
param_grid2 = {
    'learning_rate': [0.01, 0.1, 0.2],
    'n_estimators': [100, 200, 300],
    'max_depth': [3, 4, 5],
    'min_child_weight': [1, 2, 3],
    'subsample': [0.8, 0.9, 1.0],
    'colsample_bytree': [0.8, 0.9, 1.0],
}
```

Artificial Neural Networks (ANN)

Data Split:

80% training, 20% validation from 'training.csv'

Neural Network:

- Architecture: 3 hidden layers (128, 64, 32 neurons)
- Activation Function: ReLU

Model Evaluation:

Loss Function: RMSE

Overfitting Prevention:

Used Ridge Regularization
 (L2) in hidden layers

Before Regularization:

- Validation loss exceeded the training loss.
- Model convergence occurred at approximately 27,000.
- Kaggle score: 0.1872

After Regularization:

- In this phase, validation loss appears smaller than the training loss due to exclusion of regularization during its calculation.
- Model convergence improved to 22,000.
- Kaggle score: 0.13651

Comparison and Conclusion

Table 1: Comparison of Models Before and After Feature Engineering

Feature Engineering	Decision Tree	Random Forest	XGBoost	ANN
Before		36,924 0.198		
After	26,542 0.198	33,314 0.142	27,314 0.139	21,776 0.137

Note: The values in the table represent RMSE | Kaggle scores.

- Feature Engineering generally improves model performance across all models.
- XGBoost and ANN perform better on the housing price prediction task.

Takeaway

- PCA does not perform well on datasets with non-linear relationships.
- Hyper parameter tuning has minimal impact on the accuracy of the model.
- Model selection and feature engineering ultimately determines the ceiling of our performance.

Sources

- [1] Data: Kaggle. (2017). House Prices Competition Data. Retrieved from https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/data
- [2] Fan C, Cui Z, Zhong X. House Prices Prediction with Machine Learning Algorithms.
 Proceedings of the 2018 10th International Conference on Machine Learning and Computing ICMLC 2018. doi:10.1145/3195106.3195133.
- [3] Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. https://doi.org/10.1145/2939672.2939785