Detecting Pneumonia within CT Scans Using Convolutional Neural Networks

Graham Chickering

November 18, 2020

Abstract

Convolutional Networks are a specific type of Neural Networks that have shown to be particularly effective at being able to identify distinct objects within images. This technique can be used to identify different sorts of condition, such as pneumonia, within medical images as well as detect other sorts of tumors or cancers. In theory this type of network is designed based on how the human brain works and the idea that multiple levels of neurons are connected together in order to detect and identify images. In practice though, running and training these types of neural networks can be very computationally expensive and require large amounts of memory and processing capabilities if working with a very large dataset. Especially when working in R which has limited memory capabilities, trying to run and train this type of model can be very slow and ineffective. Thanks to developments in cloud computing such as Google Cloud Storage and Tensorflow being able to store and run these types of models within R can become much faster and more efficient when trying to analyze large amounts of data. While there is more work to be done, this project shows how to create an infrastructure that efficiently stores data and then trains convolutional neural networks when working with the R Studio Environment.

Keywords: Convolutional Neural Networks, Google Cloud Storage, Tensorflow, Keras

Government agencies Payer records BIG DATA IN HEALTH CARE Smart phones Wearable devices Search engine data NEJM Catalyst (catalyst.nejm.org) © Massachusetts Medical Society

Figure 1: Big Data in Healthcare

1 Introduction

It has been estimated that roughly 80% of health care data is unstructured data, which can come in the form of videos, sensor data, images, or text. Although hospitals and researchers used to have a hard time extracting insights from this type of data, with the recent advances that have been made in data science and handling big data, this has created new application areas within the health care industry in sectors such as genomics, drug trials, predicting patient health, and medical imagery. Medical imaging research in particular has made significant progress recently with researchers being able to use different machine learning algorithms to detect different types of lesions and cancers from CT and other types of scans. In particular the advancements of convolutional neural networks to identify whether or not someone has pneumonia has become extremely promising and can be used to potentially help doctors identify whether or not someone has pneumonia that they might have missed, and reduce the amount of hours and amount of expertise required to view CT scans.

When working with medical imagery data sets though one of the first problems someone may run into is how to process and handle these large data sets. When trying to perform analysis on small and medium sized data sets within R, one would rarely run into complications that would be attributed to how R is loading and dealing with the data itself. But what happens when one moves from the world of medium sized data to the world of Big Data and large data sets? While many of us have probably been able to read in and load our data for projects into the R Studio environment without issues and without having to worry about whether the entirety of our data can even be loaded in, one may begin to run into complications the larger the data set becomes. By default, R loads all data into memory and while memory size depends slightly on your computer's configuration settings under any circumstances one cant have more than 2,147,483,647 rows or columns, which is roughly equivalent to 2 GB of memory that R is using. (see http://www.columbia.edu/~sjm2186/EPIC_R/EPIC_R_BigData.pdf). If you do end up crossing into the threshold where R can no longer store all the data in an effective way, there are multiple potential solutions in the forms of choosing random subsets of the data, buying a computer with larger memory, or use parallelization and using multiple clusters to perform the analysis. It is this solution of choosing random subsets of data, using the keras and tensorflow R packages, that will allow me to work with and convert large files of image data into a form that models can be trained on them.

On top of the issue of trying to run analysis on large data sets in R itself, is the issue of how to best store and load the original information and data. Often data sets are small enough that they can be stored on your local computer in a folder that is then uploaded into the R Studio Environment itself, but what should one do as the size of the data set substantially increases and one no longer wants to store large data sets directly on their machine. One solution to this problem is to take advantage of a cloud computing service and store the data directly in the cloud, freeing up space and memory on your personal computer. By storing the data on a cloud computing service, this can become especially useful when a project begins to get scaled up whether that is through adding new members to work on the project or when more and more data gets added to the project. In this project I will take advantage of Google Cloud Storage to store my data, which will look and store my data on the cloud without having to take up any space on my local machine.

By combining Google Cloud Storage with Keras and Tensorflow, this will allow me to utilize a large data set that consisting of medical images. This data set will then be used to train and create a convolutional neural networks that will try to identify whether or not someone has pneumonia from the images.

This project will allow me to answer the questions of what is the best way to store

large data sets and perform computationally expensive analysis on those data sets? How does one handle and process images so that analysis can be performed on them, and how effective are convolutional neural networks at identifying pneumonia within CT scans?

2 Google Cloud Storage

When trying to work with Big Data, one of the first questions one has to answer is what is the best way to store and access this data. While smaller files can be stored directly on your computer and eventually loaded into R Studio to perform analysis on, when data moves into the gigabyte, terabyte, or even petabyte range one may not not want to store this data directly on their machine and use of large chunks of their limited memory that is available. With the advancement of cloud service solutions in recent years though, one can now use a platform such as Google Cloud Platform, Amazon Web Services, or Microsoft Azure, people can store large amounts of data directly on these platforms and take advantage of these companies large data warehouses for a small cost. This can allow one to free up space and memory on their own personal machine and access the data directly from these servers whenever they desire.

For this project, I am going to focus on how to setup and store medical imagery in Google Cloud Storage and learn how this can be connected to R Studio so that I can then before analysis on these images. The data set I will be working with is labeled Chest X-Ray images (https://data.mendeley.com/datasets/rscbjbr9sj/2) which will be used to detect and classify whether or not someone has pneumonia. This data set is roughly 2 GB in size and contains CT scans of patients who either have or dont have pneumonia. Due to Github having maximum storage limit of 1 GB, I wanted to look into ways that would allow me to work with a data set of this size and not have to upload the data directly into Github itself. One of the solutions for this was to use Google Cloud Storage and take advantage of the free credits that Google offers for new users using their service. By uploading and storing the data set directly onto the Google platform, this meant I could delete the data set off my computer for the time being and free up memory space.

In order to actually work with this data in R Studio though, a connection between R and Google Cloud was required to be setup. By utilizing the *googleCloudStorageR* package,

Figure 2: Google Cloud Storage Platform

I was able to setup a connection that allowed me to download the data from my Cloud Storage bucket and onto my desktop where it could then be read into R Studio without having to store the files themselves within R Studio. This allowed me to not have to store the data in my actual Github repository but still be able to perform analysis and build models on the images.

3 Image Transformation and Tensorflow

Once the images are in a place where they could be loaded into R, one needs to put the images into a format where R can actually perform analysis on them. For images, this can consist of different image transformations and adjustments such as cropping, brightness, contrasting, changing the color scale, or resizing an image. This sort of data augmentation, when performed on all the images in the data set can help create a more consistent form between all the images. By putting all the images in grayscale or cropping photos, this makes all the images' underlying form more consistent and makes it easier for models to distinguish differences in the images themselves. For the images in my medical imagery data set, this primarily consisted of resizing the images on a pixel by pixel basis so they were all the same size, and then converted them to a grayscale color. This made the underlying structure of the images the same for all the images in the dataset.

After getting all the images into the same structure, I needed to convert them to a

Figure 3: Pneumonia

Figure 4: Normal

Figure 5: Tensors in Tensorflow

form where I could actually perform analysis on the images. In order to do this I relied on the tensorflow R packages. Tensorflow is a "scalable and multiplatform programming interface for implementing and running machine learning algorithms" (Book page 427). Tensorflow allows execution on both CPU's and GPU's which help speed up processing time on complicated algorithms. This package is built around a "computation graph composed as a set of nodes where each node represents an operation that may have zero or more input or output. A tensor is created as a symbolic handle to refer to the input and output of these operations" (428 book). A tensor is best understood as either a scalar, vector, matrices and so on, which all correspond to a different rank tensor (see image below). These tensors are created from the values in the data you are working with and then are used to build and create the complex models one wants to work with

For the images in my data set, by using Tensorflow I was able to convert the images into a set of tensors that represented the pixels of the images themselves. Since the images had been resized to a 32x32 picture in grayscale coloring, this became a 32x32x1 tensor for each image. These tensors were then combined with their appropriate label for the type of image they were, either Normal or Pneumonia, creating a nicely formatted data set where we could then start to create models to best classify the data.

4 Keras and Convolutional Neural Networks

As we could see from the prior pictures of someone who had pneumonia versus someone who did not have pneumonia, it can be very hard to discern whether or not someone has pneumonia for a person without the technical training and expertise to identify pictures of pneumonia from looking at the CT scans. This ultimately requires doctors and those with the expertise to spend more time looking at the scans, rather than spending their already limited time directly helping patients. One way to help doctors to get back to directly helping patients is by utilizing machine learning to identify and detect different diseases or ailments within CT scans. By training and creating models that are able to discern between a normal or healthy scan versus someone who has a lesion or has pneumonia, we can begin to use artificial intelligence to alleviate some of the extraneous work that doctors are required to do.

4.1 Keras

For this project, I was specifically focused on creating a model that would would be able to discern between someone who has pneumonia versus someone who does not have pneumonia. In order to do this I utilized the *keras* package in order to build a convolutional neural network to be able to distinguish between the two different diagnosis. Keras is a "high-level neural network API that is built to run off other libraries such as Tensorflow to provide a user-friendly interface to building complex models" (book page 451). Keras, when working with Tensorflow, helps to provide the framework to begin building complex neural network models. This package will allow me to be able to not only train and build the model, but be able to test the model on another subset of images and be able to begin to predict whether or not someone has pneumonia from looking at a specific image. Specifically I used the keras package to build out a convolutional neural network that have been shown to work extremely well for image classification tasks.

Figure 6: Neural Network example

4.2 Neural Networks

Convolutional Neural Networks (CNN) at a high level are a form of deep learning thattakes an image as an input and eventually classifies it under a certain category. These types of networks are used heavily to perform tasks such as facial recognition, object detection, and image classification to just list a few. CNN's are a specific type of neural network, which falls under the branch of machine learning called deep learning. Neural networks are extremely popular today due to recent advances in both the algorithms for the models and the computer architecture which allows for much faster processing times of these complex models.

This figure above shows an example of what the underlying structure of a neural network looks like (see figure 6, ADD Source). The neural network show in this example consists of one input layer, one hidden layer with 4 hidden units, and then one output layer. The input layer would be the exact data you are feeding into the model, so for this picture this would mean there was two examples being fed into network to train the model. Then we can see how each of the input layers are connected to three of the gray nodes in the hidden layer. While this model only has one hidden layer and the inputs are only connected to 3 of the hidden units, in other models one could create multiple hidden layers, each with a different number of hidden units, and the number of units that are connected together from layer to layer can vary as well. After that we can see that there is one output layer for this example, but other networks can contain varying numbers of output units as well. Neural networks

in general can contain differing number of hidden layers, hidden units, input and output units and vary based on the data they have and the problem they are trying to solve. In general data is fed into the model, it is passed through the network using weights, and then often trained using a technique called backwards propagation. This technique is able to optimize the model by comparing the result found by the model to the true results, and then working backwards through the model to update the weights so that the model can better classify the input data. Neural networks in general have been shown to be extremely successful at a broad range of tasks such as natural language processing to self-driving cars and everything inbetween.

4.3 Convolutional Neural Networks (CNN)

As mentioned earlier, CNN's a specific form of Neural Network that is based heavily on how the visual cortext of the human brain works when recogizing images, which is what allows it to perform extremely well on image classification tasks. At a high level CNN's work by "combining the low level features in a layer-wise fashion to form high-level features" (book 519). So rather than just looking at each pixel of an image separately, this model works to combine pixels into distinct features that can then be used to identify exact objects within the images. In order for the model to actual identify distinct features it relies on an idea called feature mapping that groups patches of pixels together in the image and combines them into one feature in the new feature map. This is based on the underlying assumption that in the context of image data, "nearby pixels are typically more relevant to each other than picels that are far away from each other" (book 520).

In order to actually perform this feature mapping though a CNN relies on creating a series of different types of layers in the form of convolution layers, subsampling layers, pooling layers, and dropout layers.

4.3.1 Convolution layers

Convolution layers is one of the first layers that begins extracting features from the input images. This layer works by taking an input matrix that represents the image and a filter matrix, of potentially a different size, with a set of weifhts. These two matrices are multiplied together to create a feature map that begins to identify the low level features such as edges, blurriness, or sharpness of the image.

4.3.2 Subsampling and Pooling Layers

Another type of key layer is the subsampling and pooling layers. Usually the feature map that is created from the previous convolution layer is then fed into a subsampling/pooling layer. These layers work by combining small subsections of the feature map in order to simplify the feature map. The advantages of this include leading to higher computational efficiency by decreasing the size of the features and the number of parameters that are required to learn, as well as introducing local invariance that helps to generate feature that are more robust to noise from the input images (https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html).

4.3.3 Dropout layers

Dropout layers are then used to prevent over-fitting of the data set. It can be very easy to create a CNN that gets over-trained but then fails to perform well on the testing set of data. To prevent over-fitting and make the model work well for a broader range of images for general performance, dropout layers are introduced as a form of regularization. Dropout is usually applied to hidden units of layers and works by "during the training phase of a neural network, a fraction of the hidden units are randomly dropped at every iteration. This dropping out of random units requires the remaining units to rescale to account for the missing units which forces the network to learn a redundant representation of the data" (book 537). This makes it so the model is more generalizable and robust to changes in patterns in the data and prevent overfitting.

4.3.4 Challenges

When working with CNN's, these different types of layers that the network can be built off can all be included multiple times and in different orders. For example one could create a network of just a convolution layer and a dropout layer or someone could create a model that is convolution layer, pooling layer, convolution layer, and then two dropout layers. There is no set rules around what order or how many different layers your network can have. On top of having unlimited variations of the type of layers within the network, there is also unlimited parameters that one can choose in terms of the size of the feature map, the number of units to pool together in the pooling layer, or the number of units to dropout in the dropout layer to just list a few examples. Due to having so many input parameters that can be changed and altered when it comes to building the model, finding the best possible input parameters and underlying structure of the model can become computationally expensive very quickly.

On top of CNN's being very computationally expensive to run, being able to interpret the outputs and inputs of individual layers of the network is its own separate issue. Often these types of models are referred to as "black box" models because while a human can understand the input and outputs of the models, it is often hard to decipher and understand what exactly the model is doing inside the box. While there has been promising developments in this area such as Visualizing Activation Layers (add a link) and Occlusion Sensitivity (add a link), this still remains an area of the field that a lot of future work can be done in. So while CNN's have been shown to do an incredible job at image classification tasks, optimizing and understanding these types of models is an area that can cause problems and issues.

4.4 CNN's with Medical Images

For my project, I wanted to use Convolutional Neural Networks to see how well this type of network could perform on the task of trying to classify whether or not someone had pneumonia based just of a CT scan. At this point I have already gotten my images into a form that allows them to be passed as inputs to build a model, so the next step was for me to begin training the model.

come back and describe this I first started off by having my data split into training, validation, and testing sets. The training set would be used to train the model, the

put in an image that shows the original split in the data

5 Future Work

- working with google cloud platform environment, not having to store the data on my computer at all -model could have been optimized
- further application areas, such as lesions and other things that can be detected in ct scans (enhancing images themself)https://healthitanalytics.com/news/deep-learning-model-can-enhance-standard-ct-scan-technology