Teoria dos números e corpos finitos

Lucas João Martins

- 1. (4.6) For each of the following equations, find an integer x that satisfies the equation.
- **a.** $5x \equiv 4 \pmod{3}$

$$x = 2$$

 $5 \times 2 = 10$
 $10 - 4 = 6 = 3 \times 2$

b. $7x \equiv 6 \pmod{5}$

$$x = 3$$

 $7 \times 3 = 21$
 $21 - 6 = 15 = 5 \times 3$

c. $9x \equiv 8 \pmod{7}$

$$x = 4$$

 $9 \times 4 = 36$
 $36 - 8 = 28 = 7 \times 4$

2. (4.7) In this text, we assume that the modulus is a positive integer. But the definition of the expression $a \mod n$ also makes perfect sense if n is negative. Determine the following:

Usando $a \mod n = a - \lfloor a/n \rfloor \times n$.

a. 5 mod 3

b. 5 mod - 3

$$5 - \lfloor 5/-3 \rfloor \times -3$$
$$5 - (-2 \times -3)$$
$$5 - 6$$
$$-1$$

c. $-5 \mod 3$

$$-5 - \lfloor -5/3 \rfloor \times 3$$
$$-5 - (-2 \times 3)$$
$$-5 + 6$$
1

d. $-5 \mod -3$

$$-5 - \lfloor -5/ - 3 \rfloor \times -3$$

 $-5 - (1 \times -3)$
 $-5 + 3$
 -2

3. (4.8) A modulus of 0 does not fit the definition but is defined by convention as follows: $a \mod 0 = a$. With this definition in mind, what does the following expression mean: $a \equiv b \pmod{0}$?

Significa que a e b são iguais.

- 4. (4.1) For the group S_n of all permutations of n distinct symbols:
- a. what is the number of elements in S_n ?

n!

b. show that S_n is not abelian for n > 2.

Um contra exemplo com o S_3 seria:

$${3,2,1} \cdot {1,3,2} = {2,3,1}$$

 ${1,3,2} \cdot {3,2,1} = {3,1,2}$

5. (4.4) Reformulate Equation (4.1), removing the restriction that a is a nonnegative integer. That is, let a be any integer.

A equação continua a mesma.

6. (4.5) Draw a figure similar to Figure 4.1 for a < 0.

7. (4.13) Find the multiplicative inverse of each nonzero element in \mathbb{Z}_5 .

Para todo $a \in \mathbb{Z}_5$, precisamos encontrar um $b \in \mathbb{Z}_5$ onde $ab \equiv 1 \pmod{5}$

- $1 \rightarrow 1$
- $2 \rightarrow 3$
- $3 \rightarrow 2$
- $4 \rightarrow 4$

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

W	- W	W^{-1}
0	0	-
1	4	1
2	3	3
3	2	2
4	1	4

- 8. (4.20) Develop a set of tables similar to Table 4.3 for GF(5).
- 9. (4.10) What is the smallest positive integer that has exactly k divisors, for $1 \le k \le 6$?

$$\begin{aligned} k &= 1 \to 1 \to \{1\} \\ k &= 2 \to 2 \to \{1, 2\} \\ k &= 3 \to 4 \to \{1, 2, 4\} \\ k &= 4 \to 6 \to \{1, 2, 3, 6\} \\ k &= 5 \to 16 \to \{1, 2, 4, 8, 16\} \\ k &= 6 \to 12 \to \{1, 2, 3, 4, 6, 12\} \end{aligned}$$

10. (4.2) Does the set of residue classes (mod 3) form a group

Considere as seguintes tabelas de multiplicação e adição para responder as perguntas:

Tabela 1: Adição

30.			
+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

Tabela 2: Multiplicação

X	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

a. with respect to modular addition?

Sim, o elemento identidade é 0 e a inversa de 0, 1, 2 são respectivamente 0, 2, 1.

b. with respect to modular multiplication?

Não, o elemento identidade é 1, mas 0 não possui inversa.

11. (4.3) Consider the set $S = \{a, b\}$ with addition and multiplication defined by the following tables. Is S a ring? Justify your answer.

+	a	b	×	a	b
	a			a	
b	b	a	ь	a	b

S é um anel por causa dos seguintes motivos:

- \bullet a soma de qualquer dois elementos em S resulta em um elemento também em S
- ele é associativo sobre a adição
- a é a identidade da adição
- ullet a inversa aditiva de a e b são b e a respectivamente
- ele é comutativo sobre a adição
- \bullet o produto de qualquer dois elementos em S resulta em um elemento também em S

- ele é associativo sobre o produto
- ele é distributivo sobre as duas operações

12. (4.11) Prove the following:

a. $a \equiv b \pmod{n}$ implies $b \equiv a \pmod{n}$

Essa é a definição de congruência apresentada no livro.

b. $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ imply $a \equiv c \pmod{n}$ As duas primeiras significam:

$$a - b = nk$$

$$b - c = nm$$

Então substituindo:

$$a - c = (a - b) + (b - c) = n(k + m)$$

13. (4.12) Prove the following:

a. $[(a \mod n) - (b \mod n)] \mod n \equiv (a - b) \mod n$ Considere o seguinte:

$$c = a \mod n$$

$$d=b \mod n$$

Então:

$$c = a + kn$$

$$d = b + mn$$

$$c - d = (a - b) + (k - m) \times n$$

$$(c-d) = (a-b) \mod n$$

b. $[(a \mod n) \times (b \mod n)] \mod n \equiv (a \times b) \mod n$

Com as definições de c e d da alternativa anterior:

$$cd = ab + n \times (kb + ma + kmn)$$

$$cd = (a \times b) \mod n$$

14. (4.9) In Section 4.3, we define the congruence relationship as follows: Two integers a and b are said to be congruent modulo n if $(a \mod n) = (b \mod n)$. We then proved that $a \equiv b \pmod n$ if $n \mid (a - b)$. Some texts on number theory use this latter relationship as the definition of congruence: Two integers a and b are said to be congruent modulo n if $n \mid (a - b)$. Using this latter definition as the starting point, prove that, if $(a \mod n) = (b \mod n)$, then n divides (a - b).

Qualquer inteiro a pode ser escrito como a=qn+r onde q é algum inteiro e r é um número entre $0,1,2,\ldots,n-1$. Usando a segunda definição, não há dois restos na lista citada que são congruente módulo n, porque a diferença entre eles é menor que n e portando n não divide essa diferença. Portando, esses dois números devem ter restos diferentes. Então é possível concluir que n divide (a-b) se e somente se a e b são números que possuem o mesmo resto quando dividido por n.

15. (4.14) Show that an integer N is congruent modulo 9 to the sum of its decimal digits. For example, $475 \equiv 4 + 7 + 5 \equiv 16 \equiv 1 + 6 \equiv 7 \pmod{9}$. This is the basis for the familiar procedure of "casting out 9's" when checking computations in arithmetic

Temos:

$$1 \equiv 1 \pmod{9}$$

 $10 \equiv 1 \pmod{9}$
 $10^2 \equiv 10(10) \equiv 1(1) \pmod{9}$
 $10^{n-1} \equiv 1 \pmod{9}$

Se escrever $N = a_0 + a_1 10^1 + \dots + a_{n-1} 10^{n-1}$. Então $N \equiv a_0 + a_1 + \dots + a_{n-1} \pmod{9}$.

16. (4.27) Determine the multiplicative inverse of $x^3 + x + 1$ in $GF(2^4)$ with $m(x) = x^4 + x + 1$.

$$x^2 + 1$$

Power REP	Polynomial REP	Binary REP	Decimal (Hex) RPEP
0	0	0000	0
g^0	1	0001	1
g^1	g	0010	2
$rac{g^2}{g^3}$	$egin{array}{c} \mathbf{g} \\ oldsymbol{g^2} \\ oldsymbol{g^3} \end{array}$	0100	4
g^3	g^3	1000	8
g^4	g+1	0011	3
g^5	$g^2 + g$	0110	6
g^6	$g^{3} + g^{2}$	1100	12
$egin{array}{c} g^6 \ g^7 \ g^8 \end{array}$	$g^3 + g^2$ $g^3 + g + 1$	1011	11
g^8	$g^2 + 1$	0101	5
g^9	$g^3 + g$	1010	10
g^{10}	$g^2 + g + 1$	0111	7
g^{11}	$g^3 + g^2 + 1$	1110	14
g^{12}	$g^3 + g^2 + g + 1$	1111	15
g^{13}	$g^3 + g^2 + 1$	1101	13
g^{14}	$g^{3} + 1$	1001	9

- 17. (4.28) Develop a table similar to Table 4.9 for $GF(2^4)$ with $m(x) = x^4 + x + 1$.
- 18. (4.23) For polynomial arithmetic with coefficients in Z_{10} , perform the following calculations.

a.
$$(7x+2) - (x^2+5)$$
:
 $9x^2 + 7x + 7$

a.
$$(6x^2 + x + 3) \times (5x^2 + 2)$$
:
 $5x^3 + 7x^2 + 2x + 6$

- 19. (4.22) Demonstrate whether each of these statements is true or false for polynomials over a field.
- a. The product of monic polynomials is monic.

True. O único termo que não é zero no resultado terá valor igual a 1.

b. The product of polynomials of degrees m and n has degree m + n.

True. Temos $c_{n+m} = a_n b_m \neq 0$.

c. The sum of polynomials of degrees m and n has degree max[m,n].

True quando $m \neq n$, mas false no geral quando m = n, por causa que os coeficientes com maiores graus podem se cancelar.

20. (4.19) Using the extended Euclidean algorithm, find the multiplicative inverse of

a. 1234 mod 4321:

1234

b. 1234 mod 4321:

 $gcd(40902, 24240) = 34 \neq 1.$

c. 550 mod 1769:

550