CSE-170 Computer Graphics

Lecture 8
Color

Dr. Renato Farias rfarias2@ucmerced.edu

Perceived Color

- Perceived color depends on the combination of several factors
 - Properties of the object itself
 - Light source illumination
 - Color of the surrounding area
 - The human visual system

 Ex: if a surface reflects only blue and is illuminated by red light, it appears black

Achromatic Light

- Achromatic light
 - One intensity/brightness value representation
 - Ex: 0 is black and 255 is white
 - However, we perceive intensities in a nonlinear way: for ex, we equally perceive the differences:
 - 0.10% to 0.11% of intensity (.1% increase)
 - 0.50% to 0.55% of intensity (.5% increase)
 - Intensity levels should be spaced logarithmically to achieve equal steps in brightness
 - CRT monitor behavior is also not linear
 - Gamma correction

Color and achromatic light

- Achromatic light
 - How many intensities are enough?
 - A B&W image can use as many gray levels as needed
 - Halftone approximation
 - Many gray levels perceived from fewer gray levels
 - Dithering techniques in first printers

Color Representation

- How many colors are enough? Depends on:
 - Storage requirements (memory)
 - Processing time requirements (speed)
 - Frame buffer manipulation algorithms
 - Limitations of the monitor and computer
- Working with colors
 - Lookup tables: represent colors as indices to a color table
 - Quantization: reduce the number of colors used while minimizing perception of color changes
 - Dithering: simulate many colors from few ones (see previous slide)

Color Representation

- Today it is common to use 3x8=24-bit descriptions per r,g,b color
 - Called true color representation (256x256x256≈16million)
 - 32-bit descriptions will include "alpha channel" (4x8=32)
 - Alpha channel is most often used to define a transparency level
 - In the support code, we always use 32-bit descriptions
 - vec4 with: (r,g,b,a), each component with 8 bits

Chromatic Color

- Color perception usually involves
 - Hue: the color itself (red, green, purple, yellow, etc.)
 - Saturation: amount of white mixed in the color, ex:
 - Royal blue: highly saturated
 - Sky blue: unsatured (a pastel color has more white in it)
 - Lightness: intensity (colors can be darker or brighter)
 - Brightness: perceived intensity of a self-luminous object

Color Representation

- RGB representation
 - We have 3 types of cones in our retinas with different sensitivities to different wavelengths
 - So we can visually match a given color by additively mixing 3 colored lights
 - For example C = rR + gG + bB
- Others
 - RGB_{monitor}, HSV, CIE, etc.

Monitors are built for RGB signals

CRTs

- produce colors by lighting up triplets of adjacent RGB dots
 - Colors not mixed, remember dithering effect

LCDs

 backlight passes through 2 glass substrates with a thin layer of liquid crystal molecules between them that filter the light like Venetian blinds

- How many colors can a monitor display?
 - Chromaticity diagrams can specify

CIE: International Commission on Illumination

- CIE XYZ standard
 - CIE triplet is a unique numeric label to any perceivable color
 - Starting with fixed RGB light sources, subjects had to experimentally choose coefficient values rgb in order to match given color C
 - Values used: R=700, G=546.1, B=435.8

- CIE XYZ standard
 - Problems:
 - When two colors are mixed, a more saturated color is created
 - The 3 primaries form a bounded space and negative values are needed to represent a color outside the space
 - To avoid negative weights CIE devised a standard based on 3 supersaturated artificial primaries XYZ

- Origin is the black point
- Y is luminance, XZ is chromaticity at that luminance
- Distortion comes from the fact that the space is based on perceptual measurements

CIE xyY

- Ignoring luminance Y
 - Colors can be divided into two parts: brightness and chromaticity, so a planar diagram can be built:

$$x = X/(X+Y+Z)$$
$$y = Y/(X+Y+Z)$$

- Result is the wing-shaped CIE chromaticity diagram
 - All perceivable colors in 2D space, ignoring luminance

All perceivable colors (gamut of human vision)

Computer Models

Computer Models

- Monitors are designed to process RGB components
- Other computer representations exist for hardware needs and also for design purposes
 - In the end, the chosen representation is most often converted to RGB

RGB

- (0, 0, 0) is black
- (255, 255, 255) is white
- (255, 0, 0) is red
- (0, 255, 0) is green
- (0, 0, 255) is blue
- (255, 255, 0) is yellow
- (0, 255, 255) is cyan
- (255, 0, 255) is magenta

CMYK

- Cyan, Magenta, Yellow, Key (black)
 - Subtractive model
 - For printers
 - Think how inkjet printers work
 - -(0,0,0) is white
 - No ink emission is white (the paper color)
 - Dedicated black component produces better black than mixing other colors, and also saves costs with inks
 - So, ink jet printers have separate black ink
 - A "hardware-oriented" format

HSV (sometimes called HSL)

- User-oriented format
- Hue, Saturation, Value
 - Hue: red, yellow, green, blue, purple, etc.
 - Saturation: intensity of a specific hue (intense vs. dull)
 - Value: lightness (light vs. dark, or white vs. black)

Another interpretation: saturation gives the amount of white in a hue, and value the amount of black

RGB to HSV

```
Convert r,q,b in [0,1], to h,s,v; h in [0,360], s,v in [0,1]
   max = Max(r,g,b)
   min = Min(r,g,b)
                    // max gives the dominant color
   v = max;
   if ( max == min ) { s=0; h=0; return; }
   s = (max-min)/max; // saturation: how "dominant" v is
   delta = max-min;
   if (r == max)
                    // color is between magenta and yellow
    { h = (g-b)/delta; if (h<0)h+=6; } // h defines 60deg sector
   else if ( q == max ) // color is between yellow and cyan
     \{ h = 2+(b-r)/delta; \}
   else if (b == max) // color is between cyan and magenta
     { h = 4+(r-q)/delta; }
   h *= 60; // convert sector to degrees
```


HSV

- Summary
 - HSV is a perceptual user-oriented format
 - Intuitive tint, shade and tone parameters
 - Often chosen in color input dialogs
 - Good for Color Interpolation
 - Hue is interpolated independently from other values

Comparison

(from Wikipedia)