L'approche topologique.

Définition 1. Un espace topologique est une paire $(X, \Omega X)$ où X est un ensemble et $\Omega X \subseteq \wp(X)$ que l'on appelle ensemble des ouverts telle que

- \triangleright si $\mathcal{S} \subseteq_{\text{fin}} \Omega X$ alors $\bigcap \mathcal{S} = \bigcap_{V \in \mathcal{S}} V \in \Omega X$;
- \triangleright si $\mathcal{S} \subseteq \Omega X$ alors $\bigcup \mathcal{S} = \bigcup_{V \in \mathcal{S}} V \in \Omega X$.

Remarque 1. On a toujours \emptyset , $X \in \Omega X$ avec $\emptyset = \bigcup \emptyset$ et $X = \bigcap \emptyset$.

Exemple 1 (Topologie sur Σ^{ω} et intuition). On peut voir les ouverts comme "analogues" aux ensembles récursivement énumérables.

On définit une topologie sur Σ^{ω} où les ouverts sont ext(W) où $W \subseteq \Sigma^*$ et $\text{ext}(W) = \bigcup_{u \in W} \text{ext}(u)$ et

$$\mathsf{ext}(u) = \{ \sigma \in \Sigma^{\omega} \mid u \subseteq \sigma \}.$$

Ainsi, si on a une manière d'énumérer W, on peut tester si $u \in \text{ext}(W)$ en temps fini, mais il n'est pas forcément possible de vérifier que $u \notin \text{ext}(W)$.

Définition 2. Soit $(X, \Omega X)$ un espace topologique. Alors, on appelle $ferm\acute{e}$ un sous-ensemble $C \subseteq X$ tel que $X \setminus C \in \Omega X$.

Remarque 2. On a donc que \emptyset et X sont toujours fermés.

Remarque 3. L'ensemble des fermés sur $(X, \Omega X)$ est stable par

- ▶ unions finies.

Ce sont les "duales" des propriétés de stabilité des ouverts.

Avec quelques manipulations "simples", on peut arriver à la caractérisation suivante.

Lemme 1. Soit $(X, \Omega X)$ un espace topologique.

 \triangleright On a que $A \subseteq X$ est un ouvert ssi $\forall x \in X$ on a l'équivalence suivante

$$x \in A \iff \exists U \in \Omega X, \quad x \in U \subseteq A.$$

 \triangleright On a que $A \subseteq X$ est un fermé ssi $\forall x \in X$ on a l'équivalence suivante

$$x \in A \iff \forall U \in \Omega X, \quad (x \in U \implies A \cap U \neq \emptyset).$$

Lemme 2 (Avec Σ^{ω}). \triangleright Sur Σ^{ω} , on a que $A \subseteq \Sigma^{\omega}$ est ouvert ssi $\forall \sigma \in \Sigma^{\omega}$, on a l'équivalence suivante

$$\sigma \in A \iff \exists \hat{\sigma} \subseteq \sigma, \mathsf{ext}(\hat{\sigma}) \subseteq A.$$

 \triangleright Sur Σ^{ω} , on a que $A \subseteq \Sigma^{\omega}$ est fermé ssi $\forall \sigma \in \Sigma^{\omega}$, on a l'équivalence suivante

$$\sigma \in A \iff \forall \hat{\sigma} \subseteq \sigma, \operatorname{ext}(\hat{\sigma}) \cap A \neq \emptyset,$$

autrement dit,

$$\sigma \in A \iff \forall n \in \mathbb{N}, \begin{cases} \operatorname{ext}(\sigma(0) \dots \sigma(n)) \cap A \neq \emptyset \\ & \updownarrow \\ \forall \hat{\sigma} \subseteq \sigma, \exists \beta \supseteq \hat{\sigma}, \beta \in A. \end{cases}$$

Exemple 2. L'ensemble $\{a\}^{\omega}$ est un fermé mais pas un ouvert. En effet, si $\hat{\sigma} \subseteq a^{\omega}$ alors $\hat{\sigma} = a^{n}$, mais, si $|\Sigma| \geq 2$,

$$\operatorname{ext}(\mathsf{a}^n) \not\subseteq \{\mathsf{a}^\omega\}.$$

Corollaire 1. Une propriété $P \subseteq (\mathbf{2}^{AP})^{\omega}$ est de sûreté ssi P est un fermé.

Preuve. L'idée est que $ext(P_{bad})$ est un ouvert et que

$$P = (\mathbf{2}^{\mathrm{AP}})^{\omega} \setminus \mathsf{ext}(P_{\mathrm{bad}}).$$

Proposition 1 (Clôture). Soit $A \subseteq X$ où $(X, \Omega X)$ est un espace topologique. Alors,

$$\bar{A} := \bigcap_{A \subseteq C \text{ où } C \text{ ferm\'e}} C$$

est un fermé.

Remarque 4. On a que A est un fermé ssi $\bar{A} = A$.

1 Théorème de décomposition.

Définition 3. Pour $(X, \Omega X)$ un espace topologique, on dit que $A \subseteq X$ est dense si

$$\forall U \in \Omega X, \quad U \neq \emptyset \implies U \cap A \neq \emptyset.$$

Exemple 3. Une partie $A \subseteq \Sigma^{\omega}$ est dense ssi

$$\forall u \in \Sigma^{\star} \quad \text{ext}(u) \cap A \neq \emptyset,$$

autrement dit, pour tout mot fini $u \in \Sigma^*$, il existe $\sigma \in \Sigma^{\omega}$ qui étend u (i.e. $u \subseteq \sigma$) et tel que $\sigma \in A$.

Lemme 3. On a que $P \subseteq (\mathbf{2}^{AP})^{\omega}$ est une propriété de vivacité ssi P est dense.

Théorème 1 (Décomposition). Soit $(X, \Omega X)$ un espace et $A \subseteq X$. Alors il existe $C \subseteq X$ un fermé et $D \subseteq X$ dense tel que

$$A = C \cap D$$
.

Preuve. On pose $C := \bar{A}$ et $D := A \cup (X \setminus \bar{A})$. Ainsi, on a bien que $A = C \cap D$. On a aussi que C est fermé. Montrons que D est dense.

Soit $U \in \Omega X$ non vide. Si $U \cap A = \emptyset$ alors $A \subseteq X \setminus U$, qui est un fermé. Donc $\bar{A} \subseteq X \setminus U$ et $U \subseteq X \setminus \bar{A}$.

2 Bases.

Définition 4. Soit X un ensemble et $\mathfrak{B} \subseteq \wp(X)$ tel que \mathfrak{B} est stable par intersections finies. Alors,

$$\Omega := \left\{ \left. \bigcup_{i \in I} B_i \, \right| \, \forall i \in I, B_i \in \mathfrak{B} \right\}$$

Hugo Salou – *M1 ens lyon*

est une topologie sur X et ${\mathfrak B}$ est appelée base de $\Omega.$ Autrement dit, on a défini

$$\Omega := \Big\{ \bigcup \mathcal{F} \ \Big| \ \mathcal{F} \subseteq \mathcal{B} \Big\}.$$

Lemme 4 (Quelques propriétés). \triangleright Si $u \subseteq v$ alors $\mathsf{ext}(v) \subseteq \mathsf{ext}(u)$.

 \triangleright Si $|\Sigma| \ge 2$ et $\mathsf{ext}(v) \subseteq \mathsf{ext}(u)$ alors $u \subseteq v$.

(Attention à la contravariance !)

 \triangleright Pour $u, v \in \Sigma^*$, on a

$$\mathsf{ext}(u)\cap\mathsf{ext}(v) = \begin{cases} \mathsf{ext}(v) & \text{ si } u\subseteq v\\ \mathsf{ext}(u) & \text{ si } v\subseteq u\\ \emptyset & \text{ sinon.} \end{cases}$$

Remarque 5. Sur Σ^{ω} , on a que pour tout ouvert U, il existe $W \subseteq \Sigma^{\star}$ tel que $U = \bigcup_{v \in W} \mathsf{ext}(v)$. Avec le lemme précédent, on a que $\Omega\Sigma^{\omega}$ a pour base

$$\{\mathsf{ext}(u) \mid u \in \Sigma^{\star}\} \cup \{\emptyset\}.$$

Remarque 6. On a $ext(\varepsilon) = \Sigma^{\omega}$.

Remarque 7. L'ensemble Σ^{ω} est un espace métrique complet pour la distance

$$\begin{split} d: \Sigma^\omega \times \Sigma^\omega &\longrightarrow [0,1] \\ \alpha, \beta &\longmapsto \begin{cases} 0 & \text{si } \alpha = \beta \\ 1/2^{\min n \mid \alpha(n) \neq \beta(n)} & \text{sinon.} \end{cases} \end{split}$$

On a que $d(\alpha, \gamma) \leq \max (d(\alpha, \beta), d(\beta, \gamma))$.

Semantics and Verifications