Linear Regression

Week 04 - Day 01

Should I date this guy?

Congrats, you just used a model!

(Please appreciate how cool this gif is! :P)

What's a model?

How long will it take to go to the airport?

Will Italy win against Germany?

(No, because Italy is not in the World Cup 😝)

You use models every day

(transport, food, people, etc.)

"All models are wrong

but some are useful"

Regression

Regression

model for numerical values

How many hours

will I need to complete project 3?

What will my salary be in 2 years?

Regression != Time series analysis

Exercise

(notebook)

Regression (AKA Baseline)

Linear regression

Linear regression

Linear relationship

Simple case = One predictor

Slope + Intercept

(parameters to define a line)

arrival_time = 3 * mrt_stops + 10

Which model is better? Why?

Which one is better? Why?

Mimize the Error

Best model

Smallest error

Formula for error?

Residual = real value - prediction

Residuals

Sum of residuals

Absolute sum of residuals

Squared sum of residuals

Average absolute residual

Average squared residual

Sum of residuals

Absolute sum of residuals

Squared sum of residuals

Average absolute residual

Average squared residual

RSS = residual sum of squares

MSE = mean square error

MSE = RSS/n

Brute force approach

Simple case

=

one predictor

(and one intercept)

prediction = b0 + b1 * predictor

(this is the formula of a line!)

•

What's the best combination of (b0,b1)?

for b0 in range(-100,100)

for b1 in range (-100,100)

print(b0, b1, get_error(data, b0, b1))

-100, -100, 9469

-100,-99, 9321

• • •

100,99, 102934

100,100, 103563

Assumptions

Linearity

Independence

Normality

Equality of Variances

Linearity

X and Y should have a linear relationship (remember the linear correlation?)

Independence

The residuals should be independent one from each other

Equality of Variances

Linerin the coefficients!

z = log(x)

y = b0 + b1 * z

$z = x^2$

y = b0 + b1 * z

Categorical Features

Salary = 50,000 - 5,000 * is_female

Finding the intercept with Pearson's correlation coefficient

Only for the lesson/lab!

RECAP

- 1. Models are used to predict/classify
- 2. Models are built with historical data
- 3. We use models every day
- 4. Regression = predicting numbers
- 5. Linear regression
- 6. Best solution = smallest error