Diffusion Models

The essential idea, inspired by non-equilibrium statistical physics, is to systematically and slowly destroy structure in a data distribution through an iterative **forward diffusion process**. We then learn a **reverse diffusion process** that restores structure in data, yielding a highly flexible and tractable generative model of the data.

Linear vs Cosine Schedule

What does architecture look like

Figure 2: The directed graphical model considered in this work.

Forward diffusion process

Given a data point sampled from a real data distribution $\mathbf{x}_0 \sim q(\mathbf{x})$, let us define a *forward diffusion process* in which we add small amount of Gaussian noise to the sample in T steps, producing a sequence of noisy samples $\mathbf{x}_1, \dots, \mathbf{x}_T$. The step sizes are controlled by a variance schedule $\{\beta_t \in (0,1)\}_{t=1}^T$.

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-eta_t}\mathbf{x}_{t-1}, eta_t\mathbf{I}) \quad q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

The data sample \mathbf{x}_0 gradually loses its distinguishable features as the step t becomes larger. Eventually when $T \to \infty$, \mathbf{x}_T is equivalent to an isotropic Gaussian distribution.

Reverse Diffusion Process:

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \coloneqq \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

To calculate noise:

- $log(P_{theta}(x_0))$

$$\mathbb{E}_{\mathbf{x}_0,\boldsymbol{\epsilon}} \left[\frac{\beta_t^2}{2\sigma_t^2 \alpha_t (1 - \bar{\alpha}_t)} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2 \right]$$

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
 - 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
 - 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

5: Take gradient descent step on
$$\nabla_{\theta} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}, t) \|^{2}$$

- - 6: until converged

Algorithm 2 Sampling

1:
$$\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

2: for $t = T$

2: **for**
$$t = T, ..., 1$$
 do

3:
$$\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 if $t >$

3:
$$\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 if $t > 1$, else $\mathbf{z} = \mathbf{0}$

3:
$$\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \text{ if } t >$$

4:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$

Results

Model	FID	Year
StyleGAN	3.26	2022
BigRoc-XL	3.63	2021
OpenAl Paper	4.59/3.94	2021
DDPM	12.3	2020