The Simple Linear Regression Model

GR 5205 / GU 4205 Section 2/ Section 3 Columbia University Xiaofei Shi

Regression Analysis

Regression

Statistical method to study dependencies between variables in the presence of noise.

• Linear Regression

Statistical method to study linear dependencies between variables in the presence of noise.

Day	Observation
1	84
2	94
3	47
4	42
5	39

Observation vs. Day

Day	Observation
1	84
2	94
3	47
4	42
5	39

Observation vs. Day

Another example...

Another example...

y vs. x

Regression procedures:

X - predictor (random) variable Y - response random variable

- Build your model:
 - 1) relationship:
 - 2) preference:
- ullet Estimate your model parameters: $(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$
 - 1) using observed data to express your preference:
 - 2) get parameters estimation for your model:
- Understand your model:
 - 1) properties of estimations:
 - 2) predictions

(Simple) linear regression procedures:

X - predictor (random) variable Y - response random variable

- Build your model:
 - 1) relationship: $Y = \beta_0 + X\beta_1 + \epsilon \Rightarrow Y_i = \beta_0 + X_i\beta_1 + \epsilon_i$
 - 2) preference: choose $eta_0,\ eta_1$ to minimize $\mathbb{E}\left[(Y-eta_0-Xeta_1)^2
 ight]$
- ullet Estimate your model parameters: $(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$
 - 1) using observed data to express your preference $\min_{eta_0,eta_1}Q:=\sum_{i=1}^n(y_i-eta_0-eta_1x_i)^2$
 - 2) get parameters estimation for your model: Today's mission!
- Understand your model:
 - 1) properties of estimations: HWK 1!
 - 2) predictions

A theoretical example: bivariate normal distribution

$$(X,Y) \sim \mathcal{N}\left(\left[egin{array}{c} 0 \ 0 \end{array}
ight], \left[egin{array}{c} 1 &
ho \
ho & 1 \end{array}
ight]
ight)$$

A theoretical example: bivariate normal distribution

$$(X,Y) \sim \mathcal{N}\left(egin{bmatrix} \mu_X \ \mu_Y \end{bmatrix}, egin{bmatrix} \sigma_X^2 &
ho \ \sigma_X \sigma_Y \
ho \ \sigma_X \sigma_Y & \sigma_Y^2 \end{bmatrix}
ight)$$

Useful Trick: normalization!

A theoretical example: bivariate normal distribution

$$(X,Y) \sim \mathcal{N}\left(\left[egin{array}{cc} \mu_X \ \mu_Y \end{array}
ight], \left[egin{array}{cc} \sigma_X^2 &
ho \ \sigma_X \sigma_Y \
ho \ \sigma_X \sigma_Y & \sigma_Y^2 \end{array}
ight]
ight)$$

- ullet Conditional expectation $\mathbb{E}[Y|X] =
 ho rac{\sigma_Y}{\sigma_X}(X-\mu_X) + \mu_Y$
- ullet Conditional variance $\operatorname{Var}\left[Y|X
 ight]=(1ho^2)\sigma_Y^2$
- ullet Let $(X_1,Y_1),(X_2,Y_2),\ldots,(X_n,Y_n)$ be i.i.d samples from (X,Y)
- SLR model: $Y_i = eta_0 + eta_1 X_i + \epsilon_i$

$$\Longrightarrow eta_0 = \mu_Y -
ho rac{\sigma_Y}{\sigma_X} \mu_X \qquad eta_1 =
ho rac{\sigma_Y}{\sigma_X}$$

$$\epsilon_i \sim \mathcal{N}(0,\sigma^2)$$
 $\sigma^2 = (1-
ho^2)\sigma_Y^2$

UMVUL for Bivariate Normal

$$eta_1 =
ho rac{\sigma_Y}{\sigma_X} \qquad \Rightarrow \widehat{eta}_1 = rac{\operatorname{Cov}(X,Y)}{\operatorname{Var}[X]} \ eta_0 = \mu_Y -
ho rac{\sigma_Y}{\sigma_X} \mu_X \quad \Rightarrow \widehat{eta}_0 = Y - X \widehat{eta}_1$$

- Uniformly: convergens property as sample size going to infinity
- Unbiased:
- Linear: with respect to response variable
- Minimum Variance:
- Rigorous proof will be shown later in this course

Adding data

$$eta_1 =
ho rac{\sigma_Y}{\sigma_X} \qquad \Rightarrow \widehat{eta}_1 = rac{\operatorname{Cov}(X,Y)}{\operatorname{Var}[X]} \ eta_0 = \mu_Y -
ho rac{\sigma_Y}{\sigma_X} \mu_X \quad \Rightarrow \widehat{eta}_0 = Y - X \widehat{eta}_1$$

Recall the estimation for μ_X, μ_Y

using data:
$$\;\hat{\mu}_{\scriptscriptstyle X}=ar{x},\hat{\mu}_{\scriptscriptstyle Y}=ar{y}\;$$

And the estimation for
$$\sigma_X,\sigma_Y$$

using data:
$$\sigma_X^2=rac{1}{n-1}\sum_{i=1}^n(x_i-ar{x})^2,\;\sigma_Y^2=rac{1}{n-1}\sum_{i=1}^n(y_i-ar{y})^2$$

in matrix form:
$$\widehat{\sigma}_X^2=rac{1}{n-1}\|x-ar{x}1_n\|^2,\ \widehat{\sigma}_Y^2=rac{1}{n-1}\|y-ar{y}1_n\|^2$$

$$ullet$$
 As well as for $\operatorname{Cov}(X,Y) \Rightarrow \widehat{\operatorname{Cov}}(X,Y) = rac{1}{n-1}(x-ar{x}1_n)^ op (y-ar{y}1_n)$

$$ho = \operatorname{Corr}(X,Y) = rac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y} \Rightarrow \hat{
ho} = rac{\widehat{\operatorname{Cov}}(X,Y)}{\widehat{\sigma}_X \widehat{\sigma}_Y}$$

In other words...

$$egin{aligned} eta_1 &=
ho rac{\sigma_Y}{\sigma_X} & \Rightarrow \widehat{eta}_1 &= rac{\operatorname{Cov}(X,Y)}{\operatorname{Var}\left[X
ight]} \Rightarrow b_1 &= rac{(x-ar{x}1_n)^{ op}(y-ar{y}1_n)}{\|x-ar{x}1_n\|^2} \ eta_0 &= \mu_Y -
ho rac{\sigma_Y}{\sigma_X} \mu_X & \Rightarrow \widehat{eta}_0 &= Y - X \widehat{eta}_1 \Rightarrow b_0 &= ar{y} - ar{x}b_1 \end{aligned}$$

Recall the estimation for μ_X, μ_Y

using data:
$$~\hat{\mu}_{\scriptscriptstyle X}=ar{x},\hat{\mu}_{\scriptscriptstyle Y}=ar{y}$$

And the estimation for
$$\sigma_X, \sigma_Y$$

using data:
$$\sigma_X^2=rac{1}{n-1}\sum_{i=1}^n(x_i-ar{x})^2,\;\sigma_Y^2=rac{1}{n-1}\sum_{i=1}^n(y_i-ar{y})^2.$$

in matrix form:
$$\widehat{\sigma}_X^2=rac{1}{n-1}\|x-ar{x}1_n\|^2,\ \widehat{\sigma}_Y^2=rac{1}{n-1}\|y-ar{y}1_n\|^2$$

$$ullet$$
 As well as for $\operatorname{Cov}(X,Y)\Rightarrow\widehat{\operatorname{Cov}}(X,Y)=rac{1}{n-1}(x-ar{x}1_n)^ op(y-ar{y}1_n)$

$$ho = \operatorname{Corr}(X,Y) = rac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y} \Rightarrow \hat{
ho} = rac{\widehat{\operatorname{Cov}}(X,Y)}{\widehat{\sigma}_X \widehat{\sigma}_Y}$$

The Simple Linear Regression Model More general case...

- ullet Let $(X_1,Y_1),(X_2,Y_2),\ldots,(X_n,Y_n)$ be samples from the same model
- ullet If the SLR model holds, we write $\,Y_i=eta_0+X_ieta_1+\epsilon_i\,,\,$
- ullet Here, ϵ_i satisfies $\mathbb{E}[\epsilon_i]=0$ and $\mathbb{E}[\epsilon_i\epsilon_j]=\sigma^2\delta_{ij}$
- ullet Observations: predictor: x_1, x_2, \ldots, x_n response: y_1, y_2, \ldots, y_n
- ullet Preference: $Q=\sum_{i=1}^n(y_i-eta_0-x_ieta_1)^2$
- Model parameters: $eta_0, eta_1(,\sigma^2)$

General Methodology

- Preference + data \Rightarrow Q = Q(model parameters; data)
- Estimation of model parameters
 Minimizing Q wrt model parameters
 - Taking partial derivatives of Q wrt model parameters and set them to 0!

Least Square Estimator $b_1=rac{(x-ar{x}1_n)^ op(y-ar{y}1_n)}{\|x-ar{x}1_n\|^2} \qquad b_0=ar{y}-ar{x}b_1$

$$=rac{(x-x1_n)^+(y-y1_n)}{\parallel x-ar{x}1\parallel^2}$$

$$b_0=ar y-ar x b_1$$

Prediction and residual

$$b_1 = rac{(x - ar{x} 1_n)^ op (y - ar{y} 1_n)}{\|x - ar{x} 1_n\|^2} \qquad \qquad b_0 = ar{y} - ar{x} b_1$$

$$b_0=ar{y}-ar{x}b_1$$

- Prediction: $\hat{y}_i = b_0 + x_i b_1$
- Residual: $e_i = y_i - \hat{y}_i = y_i - b_0 - x_i b_1$
- Residual can be viewed as the estimation of unobservable error terms

$$\hat{\epsilon}_i=e_i=y_i-\hat{y}_i=y_i-b_0-x_ib_1$$

Estimation of $\widehat{\sigma}^2 = \text{MSE} = \frac{\sum_{i=1}^n e_i^2}{\sum_{i=1}^n e_i^2} = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n e_i^2} = \frac{\|y - \hat{y}\|^2}{\sum_{i=1}^n e_i^2}$

More about residuals...

Observation vs. Day

Day	Observation	Residual
1	84	-5.6
2	94	18.6
3	47	-14.2 Logo
4	42	-5 Ö
5	39	6.2

Properties of the line: $y = b_0 + xb_1$

$$b_1 = rac{(x - ar{x} 1_n)^ op (y - ar{y} 1_n)}{\|x - ar{x}\|}$$
 Observation vs. Day

$$b_0=ar{y}-ar{x}b_1$$

