

### CS253A QR: Reinforcement Learning: Assignment №3

#### Ayat Ospanov

September 17, 2018

### Contents

| 1 | Exercise 2.6: Mysterious Spikes                 | 1 |
|---|-------------------------------------------------|---|
| 2 | Exercise 2.7: Unbiased Constant-Step-Size Trick | 1 |
| 3 | Exercise 3.1                                    | 2 |
| 4 | Exercise 3.2                                    | 2 |
| 5 | Exercise 3.3                                    | 2 |
| 6 | Exercise 3.4                                    | 2 |

# 1 Exercise 2.6: Mysterious Spikes

When given optimistic initial values,  $Q_n(a) > R_n, \forall a$  at the first steps. This means, that

$$Q_{n+1} = Q_n + \alpha(R_n - Q_n) \le Q_n$$

Therefore, all next step values are less (or equal) than the values at the previous step. As we initialized all starting values with a priori big values, there are lots of equal maximum values. Consequently, there is a big rate of optimal actions (optimal by algorithm) corresponding to those values. When all  $Q_n$ s drop under real high values of distributions, the curve stabilizes. This effect was also mentioned in the Exercise 2.5.

# 2 Exercise 2.7: Unbiased Constant-Step-Size Trick

As we have shown in the exercise 2.4,  $Q_{n+1}$  for variable  $\alpha$  is:

$$Q_{n+1} = \prod_{i=1}^{n} (1 - \alpha_i) Q_1 + \sum_{i=1}^{n} \left( \alpha_i \prod_{j=i+1}^{n} (1 - \alpha_j) R_i \right)$$

Here the weight given to  $R_i$  is  $\alpha_i \prod_{j=i+1}^n (1-\alpha_j)$ . This is exponential. As we have  $\alpha_i = \beta_i$ , we have to show that  $\beta_i \in [0,1]$  to prove that  $Q_n$  is an exponential recency-weighted average. Given  $\bar{o}_n = \bar{o}_{n-1} + \alpha(1-\bar{o}_{n-1})$ ,

$$\beta_n = \frac{\alpha}{\alpha + (1 - \alpha)\bar{o}_{n-1}}$$

By definition,  $\bar{o}_n \geq 0, \forall n \geq 0$  and  $\alpha \in [0, 1]$ . Thus,  $\alpha + (1 - \alpha)\bar{o}_{n-1} \geq \alpha$ . Knowing this, it is obvious that  $\beta_n \in [0, 1]$ .

Now, let's show that  $Q_n$  doesn't have the initial bias. To do this, have a look at  $Q_2$ :

$$Q_2 = Q_1 + \beta_1 (R_1 - Q_1)$$

Since  $\bar{o}_0 = 0$ ,

$$\beta_1 = \frac{\alpha}{\alpha + (1 - \alpha)\bar{o}_0} = \frac{\alpha}{\alpha + (1 - \alpha)0} = 1$$

This means, that  $Q_2 = Q_1 + R_1 - Q_1 = R_1$ .

We have proven that  $Q_n$  is an exponential recency-weighted average without initial bias.

### 3 Exercise 3.1

| Examples         | States                                       | Actions                            | Rewards                   |
|------------------|----------------------------------------------|------------------------------------|---------------------------|
| Self-driving car | Surroundings: e.g. distance to objects, etc. | Steering, accelerating, braking,   | Getting to destination    |
|                  |                                              |                                    | without crashes, overall  |
|                  |                                              |                                    | distance to objects, etc. |
| Towers of Hanoi  | All possible disk states                     | Move the top disk to another tower | Negative (e.g1) for       |
|                  |                                              |                                    | a move, so we do          |
|                  |                                              |                                    | less steps                |
| Checkers/Chess   | Positions of pieces                          | Moves of each piece                | Winning the game          |

### 4 Exercise 3.2

No. There are cases when it is impossible to use (classic) MDP: when there are infinite number of states or actions; when they are continuous; when the environment is non-stationary.

### 5 Exercise 3.3

It depends on the reliability of the actions. If you are sure the body does all actions (accelerator, steering wheel, and brake) (almost) without failures, we can select these actions. As the higher level actions depend on lower level ones, we need to be sure they are effective and faultless. So in terms of driving a car, if we simulate a driver, we can reliably accelerate, brake and etc. a car because they are easy to simulate, thus we can take these actions as main actions. When it is possible to simulate the motion of a car, we can choose 'choices of where to drive' as actions.

# 6 Exercise 3.4

| s    | a        | s'   | r                     | p(s',r s,a) |
|------|----------|------|-----------------------|-------------|
| high | search   | high | $r_{\mathrm{search}}$ | $\alpha$    |
| high | search   | low  | $r_{\mathrm{search}}$ | $1-\alpha$  |
| high | wait     | high | $r_{ m wait}$         | 1           |
| low  | search   | low  | $r_{\mathrm{search}}$ | $\beta$     |
| low  | search   | high | -3                    | $1-\beta$   |
| low  | wait     | low  | $r_{\mathrm{wait}}$   | 1           |
| low  | recharge | high | 0                     | 1           |