

Hypothetical DSP System: Stage-by-Stage Convolution

We'll model a signal going through 4 stages:

- 1. Pre-emphasis / high-pass (removes DC or slow variations)
- 2. Smoothing / low-pass (reduces noise)
- 3. Matched filter (detects a known pattern)
- 4. Channel model (distortion due to echo/fading)

Each stage has a different h[n] and purpose.

Stage 1: Pre-emphasis / High-pass Filter

Goal:

Remove slow-varying or DC components.

Impulse Response:

$$h_1[n] = [1, -1]$$

This is a first-difference filter.

Input:

$$x[n] = [1, 1, 2, 4, 7]$$

Output
$$y_1[n] = x[n] * h_1[n]$$
:

$$egin{aligned} y_1[0] &= 1 imes 1 = 1 \ y_1[1] &= 1 imes (-1) + 1 imes 1 = 0 \ y_1[2] &= 2 imes 1 + 1 imes (-1) = 1 \ y_1[3] &= 4 imes 1 + 2 imes (-1) = 2 \ y_1[4] &= 7 imes 1 + 4 imes (-1) = 3 \ y_1[5] &= 7 imes (-1) = -7 \end{aligned}$$

✓ Effect: Converts slowly increasing signal into its rate of change. Enhances fast transitions.

Stage 2: Smoothing / Low-pass Filter

Goal:

Reduce fast noise or jitter.

Impulse Response:

$$h_2[n] = rac{1}{3}[1,1,1]$$

This is a moving average filter.

Input:

Let's feed it the output of Stage 1:

$$x[n] = [1, 0, 1, 2, 3, -7]$$

Convolution:

$$y_2[n] = rac{1}{3}\left[1,(1+0),(1+0+1),(0+1+2),(1+2+3),(2+3-7),(3-7),(-7)
ight] \Rightarrow \left[0.37,(1+0),(1+0+1),(0+1+2),(1+2+3),(2+3-7),(3-7),(-7)
ight] \Rightarrow \left[0.37,(1+0),(1+0),(1+0),(1+0),(1+2),(1+2+3),(2+3-7),(3-7),(-7)
ight] \Rightarrow \left[0.37,(1+2),(1+$$

✓ Effect: Smooths fluctuations, suppresses noise.

♦ Stage 3: Matched Filter

Goal:

Detect a known signal (e.g., drone chirp: [2, 4, 2])

Impulse Response:

$$h_3[n] = [2, 4, 2]$$
 (flipped template)

Input:

Assume signal embedded in noise:

$$x[n] = [0, 1, 2, 4, 2, 0, 0]$$

Convolution Output:

(We'll compute only key value)

• At n = 4:

$$y_3[4] = 2 \times 2 + 4 \times 4 + 2 \times 2 = 4 + 16 + 4 = 24$$
 (peak match)

 \checkmark Effect: Picks up known signal pattern \rightarrow maximum when match occurs

Stage 4: Channel Model (Echo/Multipath)

Goal:

Simulate how signal is **distorted in air** (e.g., multipath echo)

Impulse Response:

$$h_4[n] = [1, 0, 0.5]$$

This means: direct path (1), echo after 2 units (0.5 strength)

Input:

$$x[n] = [1, 2, 0, 0]$$

Convolution:

$$\begin{split} y[0] &= 1 \times 1 = 1 \\ y[1] &= 2 \times 1 = 2 \\ y[2] &= 0 \times 1 + 2 \times 0 + 1 \times 0.5 = 0.5 \Rightarrow [1, 2, 0.5, 1.0, 0] \\ y[3] &= 0 \times 1 + 0 \times 0 + 2 \times 0.5 = 1.0 \\ y[4] &= 0 \times 1 + 0 \times 0.5 = 0 \end{split}$$

✓ Effect: Simulates real-world distortion due to echo or channel multipath.

Summary Table

Stage	h[n]	Purpose	Result
1. Pre-emphasis	[1, -1]	Highlight fast changes	Edge/transition detector
2. Smoothing	$\frac{1}{3}[1,1,1]$	Noise reduction	Low-pass behavior
3. Matched filter	[2, 4, 2]	Detect known shape	Peak on match
4. Channel model	[1, 0, 0.5]	Simulate echo	Distorted version of input

Would you like to now:

- ★ Combine all stages into a pipeline and simulate it fully?
- In Plot all of them visually using Python?

Let's proceed step-by-step!