Introduction to Project 7: functional MRI of the auditory system

Quantitative and Functional Imaging
BME 4420/7450
Fall 2022

fMRI data analysis

- Auditory activation experiment
- Two imaging runs:
 - Hearing words, silence
 - Hearing chords, silence
- Create an activation map for each run

Zephyr/Science Photo Library

Signal changes in brain

- Neurons need energy (glucose+O₂) to do work
- Cerebral blood flow (CBF) increases locally
- Oxygen saturation increases locally
- Oxygen makes iron in Hb less magnetic
- Magnetic field around vessels becomes more uniform (T_2 * increases) longer T2
 - Measure signal increase
- DeoxyHb is the (endogenous) contrast agent

Auditory stimulation with words

Auditory stimulation with chords

Map the correlation between expected and actual pixel signals

Correlation coefficients above some threshold are shown in color, superimposed on grayscale anatomical image

Steps in the project

- Smooth image data (to improve SNR)
- Create head mask
- Calculate correlation coefficient between ideal response to stimulus and the signal in each voxel
 - Words vs. silence
 - Chords vs. silence
- Identify a region of interest (ROI) in the auditory cortex using your activation map
- Calculate the contrast-to-noise ratio (CNR) in the ROI
- Calculate the center of activation
- Goal: compare activation to Words and Chords
- [Grad/extra credit:] Correct signal drift—does this improve CNR? model the drift & subtract from data