Основы машинного обучения

Лекция 11

Линейная классификация. Многоклассовая классификация.

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2025

Метод опорных векторов

Hinge loss

• Решаем задачу бинарной классификации: $\mathbb{Y} = \{-1, +1\}$

• Минимизация верхней оценки:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \max(0, 1 - y_i \langle w, x_i \rangle) \to \min_{w}$$

Какой классификатор лучше?

• Будем максимизировать отступ классификатора — расстояние от гиперплоскости до ближайшего объекта

- Будем максимизировать отступ классификатора расстояние от гиперплоскости до ближайшего объекта
- При этом будет стараться сделать поменьше ошибок
- По сути, делаем как можно меньше предположений о модели, и верим, что это понизит вероятность переобучения

Простой случай

- Будем считать, что выборка линейно разделима
- Существует линейный классификатор, не допускающий ни одной ошибки

- Требование 1: $y_i(\langle w, x_i \rangle + w_0) > 0$ для всех $i = 1, ..., \ell$
- Требование 2: максимальный отступ классификатора

• Расстояние от точки до гиперплоскости $\langle w, x \rangle + w_0 = 0$:

$$\frac{|\langle w, x \rangle + w_0|}{||w||}$$

• Отступ классификатора:

$$\min_{i=1,\dots,\ell} \frac{|\langle w, x_i \rangle + w_0|}{\|w\|}$$

Небольшое предположение

• Линейный классификатор:

$$a(x) = \text{sign}(\langle w, x_i \rangle + w_0)$$

• Если мы поделим w и w_0 на число a>0, то выходы классификатора никак не поменяются:

$$a(x) = \operatorname{sign}\left(\frac{\langle w, x_i \rangle + w_0}{a}\right) = \operatorname{sign}\left(\langle w, x_i \rangle + w_0\right)$$

Небольшое предположение

• Поделим w и w_0 на $\min_{i=1,\dots,\ell} |\langle w, x_i \rangle + w_0| > 0$, после этого будет выполнено

$$\min_{i=1,\dots,\ell} |\langle w, x_i \rangle + w_0| = 1$$

• Расстояние от точки до гиперплоскости $\langle w, x \rangle + w_0 = 0$:

$$\frac{|\langle w, x \rangle + w_0|}{\|w\|}$$

• Отступ классификатора:

$$\min_{i=1,\dots,\ell} \frac{|\langle w, x_i \rangle + w_0|}{\|w\|} = \frac{\min_{i=1,\dots,\ell} |\langle w, x_i \rangle + w_0|}{\|w\|} = \frac{1}{\|w\|}$$

- Требование 1: $y_i(\langle w, x_i \rangle + w_0) > 0$ для всех $i = 1, ..., \ell$
- Требование 2: максимальный отступ классификатора

$$\frac{1}{\|w\|} \to \max_{w}$$

- Требование 1: $y_i(\langle w, x_i \rangle + w_0) > 0$ для всех $i = 1, ..., \ell$
- Требование 2: максимальный отступ классификатора

$$\frac{1}{\|w\|} \to \max_{w}$$

• При условии, что $\min_{i=1,\dots,\ell} |\langle w, x_i \rangle + w_0| = 1$

- Требование 1: $y_i(\langle w, x_i \rangle + w_0) > 0$ для всех $i = 1, ..., \ell$
- Требование 2: максимальный отступ классификатора

$$\frac{1}{\|w\|} \to \max_{w}$$

- При условии, что $|\langle w, x_i \rangle + w_0| \ge 1$
- И мы минимизируем $\|w\|$ тогда где-то модуль отступа будет равен 1

Метод опорных векторов (SVM)

$$\begin{cases} ||w||^2 \to \min_{w,w_0} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 \end{cases}$$

• Любой линейный классификатор допускает хотя бы одну ошибку

$$\begin{cases} ||w||^2 \to \min_{w,w_0} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 \end{cases}$$

$$\begin{cases} ||w||^2 \to \min_{w,w_0} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 - \xi_i \\ \xi_i \ge 0 \end{cases}$$

$$\begin{cases} ||w||^2 \to \min_{w,w_0} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 - 10^{1000} \end{cases}$$

Метод опорных векторов

$$\begin{cases} ||w||^2 + C \sum_{i=1}^{\ell} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 - \xi_i \\ \xi_i \ge 0 \end{cases}$$

Метод опорных векторов

$$\begin{cases} ||w||^2 + C \sum_{i=1}^{\ell} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 - \xi_i \\ \xi_i \ge 0 \end{cases}$$

• Объединим ограничения:

$$\xi_i \ge \max(0, 1 - y_i(\langle w, x_i \rangle + w_0))$$

Метод опорных векторов

$$C\sum_{i=1}^{\ell} \max(0, 1 - y_i(\langle w, x_i \rangle + w_0)) + ||w||^2 \to \min_{w, w_0}$$

• Функция потерь (hinge loss) + регуляризация

Сравнение логистической регрессии и SVM

Резюме

- Логистическая регрессия обучение модели так, что на объектах с близкими прогнозами эти прогнозы стремятся к доле положительных объектов
- Метод опорных векторов основан на идее максимизации отступа классификатора

Многоклассовая классификация

Бинарная классификация

Многоклассовая классификация

Многоклассовая классификация

One-vs-all

- K классов: $\mathbb{Y} = \{1, ..., K\}$
- $X_k = (x_i, [y_i = k])_{i=1}^{\ell}$
- Обучаем $a_k(x)$ на X_k , k = 1, ..., K
- $a_k(x)$ должен выдавать оценки принадлежности классу (например, $\langle w, x \rangle$ или $\sigma(\langle w, x \rangle)$)
- Итоговая модель:

$$a(x) = \arg \max_{k=1,\dots K} a_k(x)$$

One-vs-all

- Модель $a_k(x)$ при обучении не знает, что её выходы будут сравнивать с выходами других моделей
- Нужно обучать К моделей

All-vs-all

- $X_{km} = \{(x_i, y_i) \in X \mid y_i = k$ или $y_i = m\}$
- Обучаем $a_{km}(x)$ на X_{km}
- Итоговая модель:

$$a(x) = \arg \max_{k \in \{1, \dots, K\}} \sum_{m=1}^{K} [a_{km}(x) = k]$$

All-vs-all

- Нужно обучать порядка K^2 моделей
- Зато каждую обучаем на небольшой выборке

Доля ошибок

• Функционал ошибки — доля ошибок (error rate)

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

• Нередко измеряют долю верных ответов (accuracy):

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

• Подходит для многоклассового случая!

Общие подходы

Микро-усреднение

Вычисляем TP_k , FP_k , FN_k , TN_k для каждого класса

Суммируем по всем классам, получаем ТР, FP, FN, TN

Подставляем их в формулу для precision/recall/...

Крупные классы вносят больший вклад

Макро-усреднение

Вычисляем нужную метрику для каждого класса (например, precision₁, ..., precision_K)

Усредняем по всем классам

Игнорирует размеры классов

Как делать нелинейные модели

- Признаки: площадь, этаж, расстояние до метро и т.д.
- Целевая переменная: рыночная стоимость квартиры

• Линейная модель:

$$a(x) = w_0 + w_1 * (площадь) + w_2 * (этаж) + w_3 * (расстояние до метро) + ···$$

• Вряд ли признаки линейно связаны с целевой переменной

• Линейная модель:

$$a(x) = w_0 + w_1 * (площадь) + w_2 * (этаж) + w_3 * (расстояние до метро) + ···$$

• Вряд ли признаки не связаны между собой

• Линейная модель с полиномиальными признаками:

$$a(x) = w_0 + w_1 * (площадь) + w_2 * (этаж)$$
 $+w_3 * (расстояние до метро) + w_4 * (площадь)^2$
 $+w_5 * (этаж)^2 + w_6 * (расстояние до метро)^2$
 $+w_7 * (площадь) * (этаж) + \cdots$

• Линейная модель с полиномиальными признаками:

$$a(x) = w_0 + w_1 * (площадь) + w_2 * (этаж)$$
 $+w_3 * (расстояние до метро) + w_4 * (площадь)^2$
 $+w_5 * (этаж)^2 + w_6 * (расстояние до метро)^2$
 $+w_7 * (площадь) * (этаж) + \cdots$

- Может быть сложно интерпретировать модель
- Что такое (расстояние до метро) * (этаж)²?

- Допустим, изначально имеем 10 признаков
- Полиномиальных степени 2: 55
- Полиномиальных степени 3: 220
- Полиномиальных степени 4: 715

• Линейная модель с полиномиальными признаками:

• Линейная модель с полиномиальными бинаризованными признаками:

$$a(x) = w_0 + w_1 * [30 < площадь < 50]$$
 $+w_2 * [50 < площадь < 80] + \cdots$ $+w_{20} * [2 < этаж < 5] + \cdots$ $+w_{100} * [30 < площадь < 50][2 < этаж < 5] + \cdots$

- Признаки интерпретируются куда лучше: [30 < площадь < 50][2 < этаж < 5][100 < расстояние до метро < 500]
- Но их станет ещё больше!

Решающие деревья

Логические правила

- [30 < площадь < 50][2 < этаж < 5][500 < расстояние до метро < 1000]
- Легко объяснить, как работают
- Находят нелинейные закономерности

- Нужно как-то искать хорошие логические правила
- Нужно уметь составлять модели из логических правил

- Внутренние вершины: предикаты $\left[x_j < t\right]$
- Листья: прогнозы $c \in \mathbb{Y}$

Сложность дерева

- Решающее дерево можно строить до тех пор, пока каждый лист не будет соответствовать ровно одному объекту
- Деревом можно идеально разделить любую выборку!
- Если только нет объектов с одинаковыми признаками, но разными ответами

- Внутренние вершины: предикаты $\left[x_j < t\right]$
- Листья: прогнозы $c \in \mathbb{Y}$

Предикаты

- Порог на признак $\left[x_{j} < t
 ight]$ не единственный вариант
- Предикат с линейной моделью: $[\langle w, x \rangle < t]$
- Предикат с метрикой: $[\rho(x, x_0) < t]$
- И много других вариантов
- Но даже с простейшим предикатом можно строить очень сложные модели

Прогнозы в листьях

- Наш выбор: константные прогнозы $c_v \in \mathbb{Y}$
- Регрессия:

$$c_v = \frac{1}{|R_v|} \sum_{(x_i, y_i) \in R_v} y_i$$

• Классификация:

$$c_v = \arg\max_{k \in \mathbb{Y}} \sum_{(x_i, y_i) \in R_v} [y_i = k]$$

Прогнозы в листьях

- Наш выбор: константные прогнозы $c_v \in \mathbb{Y}$
- Классификация и вероятности классов:

$$c_{vk} = \frac{1}{|R_v|} \sum_{(x_i, y_i) \in R_v} [y_i = k]$$

Прогнозы в листьях

- Можно усложнять листья
- Например:

$$c_v(x) = \langle w_v, x \rangle$$

Формула для дерева

- Дерево разбивает признаковое пространство на области R_1 , ..., R_J
- Каждая область R_i соответствует листу
- В области R_j прогноз c_j константный

$$a(x) = \sum_{j=1}^{J} c_j \left[x \in R_j \right]$$

Формула для дерева

$$a(x) = \sum_{j=1}^{J} c_j \left[x \in R_j \right]$$

- Решающее дерево находит хорошие новые признаки
- Над этими признаками подбирает линейную модель