第3章 词法分析(3)

1. 正规式转换为等价的有穷自动机

- (1) 转换方法
 - ① 将正规式分解成一系列 子表达式。
 - ② 对于每个子表达式,用如下规则构造 FA:

正规式	FA
Ф	1 2
ε	1 € 2
R	1 R 2
R ₁ R ₂	$1 \xrightarrow{R_1} 2 \xrightarrow{R_2} 3$

正规式	FA
R ₁ R ₂	1 R ₂ 3
R*	1 ϵ 2 ϵ 3

注意:由于分解的方法和顺序不同,构造的 NFA 可能不同,但最小化的 DFA 一定相同!!

【举例】为 R=(a|b)*abb 构造 NFA N,使得 L(N)=L(R)。

【练习】课后习题 1(3), 11

- 1. 为正规式构造DFA:
 - (3) a((a|b)*|ab*a)*b

子集法:

 $T0=\varepsilon$ closure(1)={1}

 $T1 = \varepsilon_{closure(move(T0, a)) = \{2\}}$

ε closure(move(T0, b))=Φ

 $T2 = \varepsilon$ closure(move(T1, a))={2, 3}

 $T3 = \varepsilon_{closure(move(T1, b)) = \{2, 4\}}$

 ε closure(move(T2, a))={2, 3}=T2

 $T4= \varepsilon_{closure(move(T2, b))=\{2, 3, 4\}}$

 ε closure(move(T3, a))={2, 3}=T2

 ε _closure(move(T3, b))={2, 4}=T3

 ε _closure(move(T4, a))={2, 3}=T2

 ε _closure(move(T4, b))={2, 3, 4}=T4

- 11. 证明下列正规式等价。(若它们的最小化 DFA 都相同,则等价。)
 - (1) (a|b)*
 - (2) (a*|b*)*
 - (3) $((\epsilon|a)b^*)^*$

2. 正规文法转换为等价的 FA

- (1) 转换方法
 - 1) 输入字符集与正规文法的 V₇ 相同
 - 2) 状态集与正规文法中的 V_N 相同
 - 3) **左线性**正规文法的转换规则:
 - (1) 增加一个初态结点, 开始符号对应的结点作为终态
 - ② 对形如 A→t 的规则,引一条从初始状态到 A 的弧,标记为 t
 - (3) 对形如 A→Bt 的规则, 引一条从B到A的弧, 标记为t
 - 4) 右线性正规文法的转换规则:
 - (1) 增加一个终态结点, 开始符号对应的结点作为初态
 - (2) 对形如 A→t 的规则,引一条从A 到终态结点的弧,标记为t
 - ③ 对形如 A→tB 的规则, 引一条从 A 到 B 的弧, 标记为t 注: t 为 VT 或ε

【举例】求与文法 G[S]等价的 NFA M (右线性)

【练习】课后习题7

7. 构造文法 G[S]的最小化 DFA

G[S]:	S→aA	G[S]: S→aA
	S→bQ	S→bQ
	A→aA	A→aA
	A→bB	A→bB
	A→b	A→b
	B→bD	B→bD
	B→aQ	B→aQ
	Q→aQ	Q→aQ
	Q→bD	Q→bD
	Q→b	Q→b
	D→bB	D→bB
	D→aA	D→aA
	E→aB	E)aB
	E→bF	E→bF
	F→bD	F→bD
	F→aE	F-)aE
	F→b	F >b
b.73		

解:

简化后的G[S]: S→aA

 $S \rightarrow aA$ $S \rightarrow bQ$ $A \rightarrow aA$ $A \rightarrow bB$ $A \rightarrow b$ $B \rightarrow bD$ $B \rightarrow aQ$ $Q \rightarrow aQ$ $Q \rightarrow bD$ $Q \rightarrow bB$ $D \rightarrow aA$

最小化DFA:

(左线性)

【举例】求与文法 G[S]等价的 NFA M

G[S]: S→Aa S→ε A→Aa A→Sb A→a 解:

NFA:

DFA:

DFA可变换为:

则: 正规式为 R=(a|b)a(ba|a)*|ε

【练习】课后习题 10

10. 构造文法的有穷自动机,确定化。该自动机对应的语言是什么?

S→A0

A→A0 | S1 | 0

解:

DFA:

正规式: 00(10|0)*

语言: 以00开头的0、1串,且每个1后紧随一个0。

3. FA 转换为等价的正规文法

- (1) 转换方法
 - ① 与 f(A,a)=B 对应的产生式为: A→aB
 - ② 对终态结点 Z,增加产生式: Z→ε
 - ③ NFA 的初态对应文法的开始符号
 - ④ NFA 的输入字符集对应文法的 VT

【举例】

【练习】课后习题5

5. 构造 DFA 和正规文法,接收 Σ ={0,1}上所有满足该条件的字符串:每个 1 都有 0 直接跟在右边。

解:

正规文法G: A→0A

A→1B

B→0A

Α→ε

- 4. 词法分析程序的自动构造工具——LEX
 - (1) 把正规式转换(编译)为一个 NFA,进而转换为相应的 DFA,由此构造出词法分析程序。
 - (2) LEX 编译系统作用:从正规式产生识别单词的词法分析程序。
 - (3) "lex"命令: UNIX 使用"lex"命令,可以构造各种语言的词法分析程序。
 - (4) LEX 编译系统:

- (5) 应用:
 - 词法分析程序的设计技术,还用于信息检索、信息查询。
 - 词法分析程序的自动构造工具:用于生成一个程序,还用于识别印刷电路板中的缺陷、用于文本编辑的自动生成。

【本章小结】

- 1. 基本概念
 - ① 单词符号的类型 (5种)
 - ② 词法分析的任务: 读取源程序, 输出单词符号
 - ③ 词法分析的输出形式: 二元式
 - ④ 词法分析与语法分析的接口形式(2种)
- 2. 单词的描述工具和识别工具
 - ① 正规文法、正规式、有穷自动机(NFA、DFA)
 - ② 正规式的代数规律(5条)
- 3. 转换规则

