Validation of Implicit Algorithms for Unsteady Flows Including Moving and Deforming Grids

R. H. Nichols

The University of Alabama at Birmingham

HPCMP/PET CFD Onsite - AEDC

and

B. D. Heikkinen

Aerospace Testing Alliance

Desirable Features in an Unsteady Flow Solver

- Large time steps
 - Quicker turnaround
 - Fewer grid assembly or grid deformation steps per solution
- Temporal accuracy
 - Local convergence at each time step (errors propagate in time)
 - Grid convergence
 - Low numerical dissipation

Time Step Dilemma

- Time scale of physics (micromilliseconds)
 - Shedding frequency
 - Reaction rates
 - Turbulence scales
- Time scale of problem (seconds)
 - Store drop
 - Aircraft maneuver
 - Engine transient
 - Flutter cycle

Deforming Grids: Geometric Conservation Law

Geometric Conservation Law (GCL)

Navier-Stokes Equations:

$$\mathbf{V}\frac{\partial Q}{\partial t} + \mathbf{Q}\frac{\partial \mathbf{V}}{\partial t} + \frac{\partial E}{\partial x} + \frac{\partial F}{\partial y} + \frac{\partial G}{\partial z} = 0$$

Where the conservation variables are defined as:

$$q = QV$$

Geometric Conservation Law (GCL)

Relationship between volume and surface area: → →

$$\frac{d}{dt} \int_{\Omega} d\Omega = - \int_{\partial \Omega} c \cdot n ds$$

First or second order time implicit algorithm:

$$\frac{(1+\theta_2)V^{n+1}\Delta Q^{n+1}-\theta_2V^{n-1}\Delta Q^n}{\Delta t}+Q^nRHS^{n+1}_{GCL}+RHS^{n+1}=0$$

Where the GCL term is given by:

$$RHS_{CL} = \frac{\partial \xi_t}{\partial \xi} + \frac{\partial \eta_t}{\partial \eta} + \frac{\partial \zeta_t}{\partial \zeta}$$

Subiteration Strategy

Diagonal

Newton Method:

$$\Delta \tau = \Delta t$$

$$\frac{V_0^{n+1}I}{\Delta \tau} = 0$$

, OT

Diagonal Dual Time Stepping:

- Locally converge inner iteration
- Use convergence

acceleration

Flow Solvers Examined

NXAIR Flow Solver

- HLLEm inviscid flux
- 3rd order MUSCL
- van Albada limiters
- 2nd order time with GCL
- Unfactored SSOR
- Newton subiterations
- Turbulence models coupled inside
 Newton iteration
- Wall functions

OVERFLOW2 Flow Solver

- 2nd or 4th order central or 3rd order Roe inviscid flux
- 1st or 2nd order time
- Pulliam-Steger diagonalized ADI
- Newton or dual time stepping subiterations
- Freestream addition correction

Deforming Body Validation

Deforming Box GCL Test

$$x_{comp} = x_1 + f(x_2 - x_1)$$

$$y_{comp} = y_1 + f(y_2 - y_1)$$

$$f = \int_{0}^{1} \sin \frac{n\pi}{1000} \int_{0}^{2} dx$$

Deforming NACA0012 M=0.5 α =2°

$$x_{comp} = x_1 + f(x_2 - x_1)$$

$$y_{comp} = y_1 + f(y_2 - y_1)$$

$$f = \sin \frac{n\pi}{100}$$

Unsteady Flow Validation

Test Case Selection Criteria

- 2D with simple geometry
- Cases with analytical solutions
 - Inviscid vortex convection
 - Shock tube
- Cases with periodic behavior
 - Laminar cylinder vortex shedding
 - Pitching airfoil with attached boundary layer

Code Evaluation Criteria

- Local convergence in time
 - Time step variation
 - Subiteration variation
- Ability to capture relevant physics
- Cost of solution

Inviscid Vortex Convection

Initial Vortex

5 Grid Cycles

Inviscid Vortex Convection

Inviscid Vortex Convection

OVERFLOW2 2nd Order Time 3 Newton

Viscous Shock Tube

- Left state: $\rho/\rho_{ref} = 1.0$, $p/p_{ref} = 1.0$, $T_{wall}/T_{ref} = 1.0$
- •Right state: $\rho/\rho_{ref}=0.1$, $p/p_{ref}=0.1$, $T_{wall}/T_{ref}=1.0$
- Re (based on a_{inf}) = 1.0×10^5
- •Nondimensional time step = 0.00125
- •Results evaluated at nondimensional time = 0.2 (160 iterations)

Viscous Shock Tube

Viscous Shock Tube Subiteration Convergence

Viscous Shock Tube Computational Cost

Laminar Cylinder in Crossflow

- •M=0.2
- $\cdot Re_D = 150$
- $\Delta t = 9.12 \times 10^{-5}$ sec. (CFL=92)
- $\Delta t = 2.28 \times 10^{-5}$ sec. (CFL=23)
- •401x201 grid

Laminar Cylinder in Crossflow

Laminar Cylinder in Crossflow Error and Cost

Moving Body Validation

Pitching NACA0015 Airfoil

 $M = 0.29 \text{ Re}_{c} = 1.95 \times 10^{6}$

f = 10 hz

 $\Delta t = 1/5120$ and 1/10240 sec.

441471410 dsin 27ft

Pitching NACA0015 Airfoil

Pitching NACA0015 Airfoil

Pitching NACA0015 Airfoil Computational Cost

Summary

- Higher order time improves vortex convection performance for low numerical dissipation schemes
- GCL is required for deforming grids
- All algorithms demonstrated local convergence with increasing subiterations
- All algorithms showed improved or constant cost (CU) with increasing time step
- Need convergent inner algorithm