Cząstki elementarne i oddziaływania

ZADANIA 1

- 1. Relatywistyczna cząstka o masie m i pędzie \vec{p} skierowanym wzdłuż osi z zderza się ze spoczywającą cząstką o masie M. Obliczyć energię i pędy obu cząstek w ich układzie środka masy.
 - a) korzystając z transformacji Lorentza,
 - b) używając niezmiennika s,
 - c) Jaką energię musi mieć proton zderzający się z tarczą wodorową, aby w układzie środka masy zderzeń proton-proton energia wynosiła 1 TeV.
- 2. Rozpatrz ogólny przypadek rozpadu cząstki *X* na *a* i *b*.
 - a) Pokaż, że w układzie spoczynkowym X, energia cząstki a jest wyrażana poprzez zależność: $E_a = \frac{m_x^2 + m_a^2 m_b^2}{2m_x}$,
 - b) ile wynosi pęd cząstki a?
 - c) a ile wynosi pędy a i b, gdy są to cząstki o tej samej masie?
- 3. Jaka jest energia i pęd produktów rozpadu pionu w procesie: $\pi^+ \to \mu^+ + \nu_\mu$, w przypadku, gdy rozpatrujemy rozpad pionu w spoczynku.
- 4. Rozpatrujemy rozpad $K^{*-} \to K^-\pi^0$. Mezon K^{*-} porusza się wzdłuż wybranej osi z z pędem 5.5 GeV, a K^- emitowany jest pod kątem $\theta^* = 55^\circ$ względem kierunku lotu K^{*-} (kąt mierzony w układzie własnym K^{*-}). Jaka jest energia i pęd cząstek ze stanu końcowego w układzie detekcyjnym.
 - a) * proszę narysować wykres zależności kąta K^- oraz π^0 w układzie detektora od kątów w układzie spoczynkowym K^{*-} .
- 5. Relatywistyczny ($\gamma \gg 1$, $\beta \approx 1$) neutralny pion rozpada się na dwa fotony: $\pi^0 \to \gamma + \gamma$. Porównaj kąt pomiędzy tymi fotonami w układzie środka masy i laboratoryjnym. Policz go dla pędów pionu: $p_{\pi} = 1$ GeV i $p_{\pi} = 10$ GeV.
- 6. Oblicz średni czas życia mezonu K_s^0 , jeżeli w detektorze obserwuje się, że odległość od miejsca produkcji do rozpadu na dwa naładowane piony wynosi 3.7 cm, a jego pęd wynosi 700 MeV.
- 7. *Transformacja Lorentza w dowolnym kierunku:
 - a) zwykle przyjmujemy, że cząstka "matka" porusza się wzdłuż osi z, proszę wyrazić TL używając składowych pędu: równoległych i prostopadłych (czyli tzw. pędu poprzecznego).
 - b) TL można również zapisać w postaci macierzowej: $p = \Lambda p'$. Proszę poszukać informacji, jakie elementy są w macierzy Λ .