Разбор летучки

Лекция 5

Байесовские методы классификации

Екатерина Тузова

Мотивирующий пример

Классификация сообщений

Датасет 20 newsgroups содержит почти 20000 сообщений из списков рассылки Usenet.

Классификация сообщений

Датасет 20 newsgroups содержит почти 20000 сообщений из списков рассылки Usenet.

Примеры сообщений из списка рассылки sci.crypt:

When you find out a floppy password protect program, could you e-mail me.

Thanks

Not to mention Computer Associates. I'll have to be careful to stop telling people I'm a Clipper programmer, they might lynch me...:-)

Классификация сообщений

Датасет 20 newsgroups содержит почти 20000 сообщений из списков рассылки Usenet.

Примеры сообщений из списка рассылки sci.crypt:

When you find out a floppy password protect program, could you e-mail me.

Thanks

Not to mention Computer Associates. I'll have to be careful to stop telling people I'm a Clipper programmer, they might lynch me...:-)

Задача: Построить классификатор, предсказывающий по тексту сообщения список рассылки, в который оно было отправлено.

Вероятностная постановка задачи

X – множество объектов

Y – множество меток классов

 $X \times Y$ – вероятностное пространство с плотностью

$$p(x,y) = P_y p(x|y)$$

 P_y – априорная вероятность класса y p(x|y) – функция правдоподобия класса y

Вероятностная постановка задачи

X – множество объектов

Y – множество меток классов

 $X \times Y$ – вероятностное пространство с плотностью

$$p(x,y) = P_y p(x|y)$$

 P_y – априорная вероятность класса y p(x|y) – функция правдоподобия класса y

Задача: Построить алгоритм $a: X \to Y$, минимизирующий вероятность ошибки.

Плотности p(x|y)

Известное и неизвестное

Как правило, априорные вероятности P_y и функции правдоподобия классов p(x|y) неизвестны.

Известное и неизвестное

Как правило, априорные вероятности P_y и функции правдоподобия классов p(x|y) неизвестны.

2 подзадачи:

- 1. По выборке X^l из неизвестного распределения с плотностью p(x,y) построить оценки вероятностей \hat{P}_y и функций правдоподобия $\hat{p}(x|y)$ для каждого класса
- 2. По известным P_y и p(x|y) построить функцию a(x), минимизирующую вероятность ошибочной классификации

Вопрос

Предположим, что нам известно заранее распределение с плотностью p(x,y). Как оценить вероятность ошибочной классификации для произвольного алгоритма $a:X \to Y$?

a:X o Y разбивает X на непересекающиеся области:

$$A_s = \{x \in X | a(x) = s\} \quad s \in Y$$

a:X o Y разбивает X на непересекающиеся области:

$$A_s = \{x \in X | a(x) = s\} \quad s \in Y$$

Ошибка: объект x класса y попадает в A_s , $s \neq y$

Вероятность ошибки:
$$p(A_s,y) = \int\limits_{A_s} p(x,y) dx$$

 ${\sf N}$ дея: Введем λ_y — штраф за назначение неправильного класса объекту из y

Идея: Введем λ_y — штраф за назначение неправильного класса объекту из y

Функционал среднего риска алгоритма a:

$$R(a) = \sum_{s \in Y} \sum_{y \in Y} \lambda_y P_y p(A_s | y)$$

Оптимальный Байесовский классификатор

Минимум среднего риска R(a) достигается при:

$$a(x) = \arg\max_{y \in Y} \lambda_y P_y p(x|y)$$

Принцип максимума апостериорной вероятности

Апостериорная вероятность класса y для объекта x:

$$P(y|x) = \frac{p(x,y)}{p(x)} = \frac{P_y p(x|y)}{\sum\limits_{s \in Y} P_s p(x|s)} \propto P_y p(x|y)$$

Принцип максимума апостериорной вероятности

Апостериорная вероятность класса y для объекта x:

$$P(y|x) = \frac{p(x,y)}{p(x)} = \frac{P_y p(x|y)}{\sum\limits_{s \in Y} P_s p(x|s)} \propto P_y p(x|y)$$

Перепишем оптимальный алгоритм с использованием апостериорных вероятностей:

$$a(x) = \arg\max_{y \in Y} \lambda_y P(y|x)$$

Если $\lambda_y=1$, то алгоритм максимизирует апостериорную вероятность для объекта x.

Вопрос

Чего еще не хватает для работающего классификатора?

На полпути к классификатору

1. Что представляют из себя X и Y для сообщений из списков рассылки

На полпути к классификатору

- 1. Что представляют из себя X и Y для сообщений из списков рассылки
- 2. Выбрать функции правдоподобия p(x|y)

На полпути к классификатору

- 1. Что представляют из себя X и Y для сообщений из списков рассылки
- 2. Выбрать функции правдоподобия p(x|y)
- 3. Научиться оценивать априорные вероятности классов \hat{P}_y и функции правдоподобия $\hat{p}(x|y)$ из данных

Векторизация с использованием словаря

$$V=v_1,\ldots,v_{|V|}$$
 – упорядоченное множество слов

Сообщение можно представить в виде вектора, в котором на j-ой позиции стоит 1, если v_d встречается в сообщении, и 0 в противном случае

 $X \equiv \{0,1\}^{|V|}$, а Y это множество идентификаторов рассылки

Пример

 $V=\mbox{who}$, I, let, dogs, out, the

Пример

V = who, I, let, dogs, out, the

Сообщение «Who let the dogs out? Who, who, who, who?» будет векторизовано как [1, 0, 1, 1, 1, 1].

Пример

V = who, I, let, dogs, out, the

Сообщение «Who let the dogs out? Who, who, who, who?» будет векторизовано как $[1,\ 0,\ 1,\ 1,\ 1]$.

Как будет векторизовано предложение «Well, if I am a dog, the party is on [...]»?

Как определить функцию правдоподобия для сообщения, представленного в виде бинарного вектора?

Наивность

Идея: будем использовать дискретное распределение на множестве X, то есть сопоставим вероятность θ_{yx} каждому значению $x \in X$, тогда

$$p(x|y) = \theta_{yx}$$

Идея: Предположим, что все признаки (компоненты вектора x) независимы при условии y, тогда:

$$p(x|y) = \prod_{d=1}^{|V|} p(x^d|y)$$

Идея: Предположим, что все признаки (компоненты вектора x) независимы при условии y, тогда:

$$p(x|y) = \prod_{d=1}^{|V|} p(x^d|y)$$

Полученный классификатор называют наивным Байесовским классификатором из-за наивности сделанного предположения

$$a(x) = \arg\max_{y \in Y} \lambda_y P_y \prod_{d=1}^{|V|} p(x^d|y)$$

Распределение Бернулли

Распределение Бернулли – дискретное распределение на множестве 0,1 с параметром $\theta \in [0,1]$ — вероятностью успеха и функцией вероятности:

$$Ber(x;\theta) = \theta^x (1-\theta)^{1-x}$$

Daniel Bernoulli 18

Распределение Бернулли

Распределение Бернулли – дискретное распределение на множестве 0,1 с параметром $\theta \in [0,1]$ — вероятностью успеха и функцией вероятности:

$$Ber(x;\theta) = \theta^x (1-\theta)^{1-x}$$

$$p(x|y) = \prod_{d=1}^{|V|} \theta_{yd}^{x} (1 - \theta_{yd})^{1-x}$$

Daniel Bernoulli 18

Метод максимального правдоподобия

Попробуем оценить параметры функций правдоподобия по выборке $X^l.$

$$L(\theta) = \sum_{i=1}^{l} \ln p(x_i; \theta) \to \max_{\theta}$$

Как записать условие оптимума?

Метод максимального правдоподобия

$$\frac{\partial}{\partial \theta} L(\theta) = \sum_{i=1}^{l} \frac{\partial}{\partial \theta} \ln p(x_i, \theta) = \sum_{i=1}^{l} \frac{x_i}{\theta} + \frac{1 - x_i}{\theta - 1} = 0$$

Метод максимального правдоподобия

$$\frac{\partial}{\partial \theta} L(\theta) = \sum_{i=1}^{l} \frac{\partial}{\partial \theta} \ln p(x_i, \theta) = \sum_{i=1}^{l} \frac{x_i}{\theta} + \frac{1 - x_i}{\theta - 1} = 0$$

$$\Rightarrow \hat{\theta}_{ML} = \frac{1}{l} \sum_{i=1}^{l} x_i$$

Наивный Байесовски классификатор

Оценим методом максимального правдоподобия априорные вероятности классов \hat{P}_y и параметры распределения Бернулли $\hat{\theta}_{yd}$

$$\hat{P}_{y} = \frac{\sum_{i=1}^{l} [y_{i} = y]}{l} \qquad \hat{\theta}_{yd} = \frac{\sum_{i=1}^{l} [y_{i} = y] x_{id}}{\sum_{i=1}^{l} [y_{i} = y]}$$

Наивный Байесовски классификатор

Оценим методом максимального правдоподобия априорные вероятности классов \hat{P}_y и параметры распределения Бернулли $\hat{\theta}_{yd}$

$$\hat{P}_{y} = \frac{\sum_{i=1}^{l} [y_{i} = y]}{l} \qquad \hat{\theta}_{yd} = \frac{\sum_{i=1}^{l} [y_{i} = y] x_{id}}{\sum_{i=1}^{l} [y_{i} = y]}$$

$$a(x) = \arg\max_{y \in Y} \lambda_y \hat{P}_y \prod_{d=1}^{|V|} Ber(x_{id}; \hat{\theta}_{yd})$$

Пример

$y \in Y$	\hat{P}_y	password	program	PGP
sci.crypt	0.4	0.8	0	1
comp.graphics	0.6	0.2	0.6	0

Пример

$y \in Y$	\hat{P}_y	password	program	PGP
sci.crypt	0.4	0.8	0	1
comp.graphics	0.6	0.2	0.6	0

Какой класс будет назначен сообщению «How should I add PGP support to my program?», если $\forall y \in Y(\lambda_y=1)$?

Пример

$y \in Y$	\hat{P}_y	password	program	PGP
sci.crypt	0.4	0.8	0	1
comp.graphics	0.6	0.2	0.6	0

Какой класс будет назначен сообщению «How should I add PGP support to my program?», если $\forall y \in Y(\lambda_y=1)$?

$$\begin{split} a(x) &= \arg\max_{y \in Y} \hat{P}(y|x = [0,1,1]) \\ &= \arg\max_{y \in Y} \left\{ \hat{p}(\mathsf{sci.crypt}|x), \hat{p}(\mathsf{comp.graphics}|x) \right\} \\ &= \arg\max_{y \in Y} \left\{ 0,0 \right\} \end{split}$$

Аддитивное сглаживание

Идея: Введем параметр $\alpha \geq 0$ и добавим его в ОМП для распределения Бернулли.

$$\hat{\theta}_{yd}^* = \frac{\sum_{i=1}^{l} [y_i = y] x_{id} + \alpha}{\sum_{i=1}^{l} [y_i = y] + 2\alpha}$$

Если в обучающей выборке много представителей класса y, содержащих слово v_d , то $\hat{\theta}^*_{yd}$ будет стремиться к ОМП, в обратном случае $\hat{\theta}^*_{yd} \approx \frac{1}{2}$

Плюсы

+ Просто реализовать и использовать

Плюсы

- + Просто реализовать и использовать
- + Можно обучать по потоку данных

Вопросы?

Фреквентистский и Байесовский подходы

Фреквентистский подход предполагает, что параметры распределения некоторой случайной величины – это фиксированные (но, возможно, неизвестные) значения.

Фреквентистский и Байесовский подходы

Фреквентистский подход предполагает, что параметры распределения некоторой случайной величины – это фиксированные (но, возможно, неизвестные) значения.

Байесовский подход считает все величины случайными, то есть у параметров тоже есть распределение:

$$p(x|\theta) = Ber(x|\theta)$$
 $p(\theta) = Beta(\theta|\alpha, \beta)$

Таким образом, при Байесовском подходе нас интересует не точечная оценка параметра $\hat{\theta}$, а его апостериорное распределение:

Фреквентистский и Байесовский подходы

Фреквентистский подход предполагает, что параметры распределения некоторой случайной величины – это фиксированные (но, возможно, неизвестные) значения.

Байесовский подход считает все величины случайными, то есть у параметров тоже есть распределение:

$$p(x|\theta) = Ber(x|\theta)$$
 $p(\theta) = Beta(\theta|\alpha, \beta)$

Таким образом, при Байесовском подходе нас интересует не точечная оценка параметра $\hat{\theta}$, а его апостериорное распределение:

$$p(\theta|x) = \frac{p(\theta)p(x|\theta)}{\int p(\theta)p(x|\theta)d\theta} \propto p(\theta)p(x|\theta)$$

Сопряжённое априорное распределение

Наблюдение: Часто можно выбрать априорное распределение $p(\theta)$ таким образом, чтобы апостериорное распределение $p(\theta|x)$ имело тот же вид, что и априорное, только с другими параметрами.

Сопряжённое априорное распределение

Наблюдение: Часто можно выбрать априорное распределение $p(\theta)$ таким образом, чтобы апостериорное распределение $p(\theta|x)$ имело тот же вид, что и априорное, только с другими параметрами.

Семейство распределений $p(\theta|\alpha)$ называется априорным сопряжённым для семейства функций правдоподобия $p(x|\theta)$, если апостериорное распределение $p(\theta|x,\alpha)$ остаётся в том же семействе:

$$p(\theta|x,\alpha) \propto p(\theta)p(x|\theta) = p(\theta|\alpha^*)$$

 α и α^* – это гиперпараметры, то есть параметры распределения параметров.

Бета-распределение

$$p(\theta|\alpha,\beta) = \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha,\beta)} \qquad B(\alpha,\beta) = \int_{0}^{1} \theta^{\alpha-1}(1-\theta)^{\beta-1}d\theta$$

И снова про аддитивное сглаживание

Бета-распределение является априорным сопряжённым для распределения Бернулли

$$\begin{split} p(\theta|x,\alpha,\beta) &\propto p(\theta|\alpha,\beta) p(x|\theta) \\ &\propto (\theta^{\alpha-1}(1-\theta)^{\beta-1})(\theta^x(1-\theta)^{1-x}) \\ &\propto \theta^{(\alpha+x)-1}(1-\theta)^{\beta+1-x} - 1 = Beta(\theta|\alpha^*,\beta^*) \end{split}$$

Оценка параметра θ

$$\hat{\theta} = \int_{0}^{1} \theta p(\theta|x, \alpha, \beta) d\theta = \mathbb{E}[Beta(\theta|\alpha^*, \beta^*)]$$
$$= \frac{\alpha^*}{\alpha^* + \beta^*} = \frac{\alpha + x}{\alpha + \beta + 1}$$

Если $\alpha=\beta$, то $\hat{\theta}$ в точности совпадает со сглаженной оценкой $\hat{\theta}^*$

Что почитать по этой лекции

- Kevin P. Murphy "Machine Learning: A Probabilistic Perspective" Chapter 3
- Воронцов "Байесовские алгоритмы классификации"
- · Tom Mitchell "Machine Learning" Chapter 6

На следующей лекции

- Перцептрон
- Функция потерь
- Препроцессинг
- Ошибка обобщения