

DESIGN, AUTOMATION AND TEST IN FUROPE

THE EUROPEAN EVENT FOR ELECTRONIC SYSTEM DESIGN & TEST

31 MARCH – 2 APRIL 2025 LYON, FRANCE

CENTRE DE CONGRÈS DE LYON

OpenC²: An <u>Open</u>-Source End-to-End Hardware <u>C</u>ompiler Development Framework for Digital <u>C</u>ompute-in-Memory Macro

<u>Tianchu Dong</u>, Shaoxuan Li, Yihang Zuo, Hongwu Jiang, Yuzhe Ma, Shanshi Huang The Hong Kong University of Science and Technology (Guangzhou)

E-mail: shanshihuang@hkust-gz.edu.cn

Background

- The success of **DL** depends on both **algorithm advances** and **hardware development**.
- The conventional Von Neumann architecture faces the "memory wall" problem, leading to the popularity of CIM techniques.
- **Digital CIM** has shown impressive hardware performance improvement in accelerating vector-to-matrix multiplications in DL algorithms.
- Current DCIM designs are highly dependent on **time-consuming manual efforts**.
- Existing DCIM compiler: **privacy**, dependence on **commercial EDA tools**.
- This work proposes **OpenC**² to provide an **open-source** customizable compiler, and serve as a **baseline** for developing DCIM macro compilers.

Floorplan of Digital CIM Macro

Components of DCIM Macro

- **Bitcell Array:** Bitcell (SRAM+NOR) + R/W circuit.
- Adder Tree: for partial products in different rows.
- Accumulator: for bit-serial input.
- **Decoder:** for wordline.
- **Driver:** for wordline and input.
- · Cotrol Block.

Parameters to Describe DCIM Macro

- **R:** num of rows in DCIM macro.
- C: num of columns in DCIM macro.
- W: weight bit width.
- **I:** input bit width.

Overall Flow of OpenC²

- Front-end Netlist Generation
 - Output File Format: VERILOG, SPICE.
 - **Control Block:** RTL template, then synthesis by YOSYS.
 - Other Components: Generate netlist directly.

- Back-end Layout Generation
 - Output File Format: DEF, GDSII.
 - **Hierarchical Physical Design:** 7 sub-modules.
 - Template-based Placer & Open-source Router.

OpenC²-Generated Layout

• 64x64 (4kb) Layout Example for 4-bit by 4-bit Computations.

Area Analysis

6

- OpenC²+FreePDK45 Compare with AutoDCIM+TSMC40:
 - OpenC² delivered more than a 30% reduction in area across all design sizes.
 - OpenC² delivered an enhancement of over 40% in area efficiency across all design sizes.

March 27, 2025 Tianchu Dong@HKUST(GZ)

Power and Efficiency Analysis

Compare With Some SOTA Silicon Designs:

- OpenC²-generated designs @ 1V, 100MHz.
- Silicon designs: TSMC 22nm, TSMC 5nm, TSMC 3nm.

Thanks for Your Attention!

<u>Tianchu Dong</u>, Shaoxuan Li, Yihang Zuo, Hongwu Jiang, Yuzhe Ma, Shanshi Huang The Hong Kong University of Science and Technology (Guangzhou) E-mail: shanshihuang@hkust-gz.edu.cn