

Компьютерные сети лекция 2

Сергей Мясников Сетевой Инженер, T-Systems ex Mail.ru Group

План модуля

- 1. Работа в терминале, лекция 1
- 2. Работа в терминале, лекция 2
- 3. Операционные системы, лекция 1
- 4. Операционные системы, лекция 2
- 5. Файловые системы
- 6. Компьютерные сети, лекция 1
- 7. Компьютерные сети, лекция 2
- 8. Компьютерные сети, лекция 3
- 9. Элементы безопасности информационных систем

План занятия

- 1. <u>Модель OSI</u>
- 2. <u>L1: Физика</u>
- 3. L2 Коммутация
- 4. <u>L3 IP адресация</u>
- Итоги
- 6. Домашнее задание

Модель OSI

Протоколы и уровни

Распределение протоколов по уровням модели OSI

	TCP/IP	OSI					
7		Прикладной	напр., HTTP, SMTP, SNMP, FTP, Telnet, SSH, SCP, SMB, NFS, RTSP, BGP				
6	Прикладной	Представления	напр., XDR, AFP, TLS, SSL				
5		Сеансовый	напр., ISO 8327 / CCITT X.225, RPC, NetBIOS, PPTP, L2TP, ASP				
4	Транспортный	Транспортный	напр., TCP, UDP, SCTP, SPX, ATP, DCCP, GRE				
3	Сетевой	Сетевой	напр., IP, ICMP, IGMP, CLNP, OSPF, RIP, IPX, DDP				
2	Канальный	Канальный	напр., Ethernet, Token ring, HDLC, PPP, X.25, Frame relay, ISDN, ATM, SPB, MPLS, ARP				
1		Физический	напр., электрические провода, радиосвязь, волоконно-оптические провода, инфракрасное излучение				

N. 4

Модель передачи данных

Network Topology

Data Flow

L5-7 - APPLICATION

LY - HOST OR LOAD BALANCERS

L3 - ROUTERS

LZ - SWITCHES

Инкапсуляция данных

L1 - Физика

L1: Модули SFP

Различное наполнение коммутатора в зависимости от типа портов на сервере.

L1: Параметры Ethernet – Speed, Duplex

Разные типы линков по скорости:

- 100/1000 Mbit;
- 1G/10G;
- 10G/25G;
- 40G, 100G

Duplex:

- Full по умолчанию;
- Half проблема с линком.

L1: Коннекторы

Разные типы оптики – Single Mode, Multi-Mode.

Оптика распаивается на оптический кросс.

Оптический патчкорд обычно соединяет участок между кроссом и

оборудованием.

L1: состояние порта – UP, DOWN

ip -c -br link
ip link set dev <interface> down
ip link set dev <interface> up

```
sergaM1B00K6928:/mnt/c/Users/sergey.myasnikov$ ip -br l
lo
                 UNKNOWN
                                 00:00:00:00:00:00 < LOOPBACK, UP, LOWER UP>
                                 62:ce:ef:67:56:52 <BROADCAST, MULTICAST, MASTER>
bond0
                 DOWN
                                 66:d2:4c:e6:1e:b2 <BROADCAST, NOARP>
dummy0
                 DOWN
eth0
                 UP
                                 00:15:5d:52:c8:24 <BROADCAST, MULTICAST, UP, LOWER UP>
                                 0.0.0.0 < NOARP>
sit0aNONE
                 DOWN
```

LLDP – информация о соседнем устройстве

LLDP – протокол для обмена информацией между соседними устройствами, позволяет определить к какому порту коммутатора подключен сервер. apt install lldpd systemctl enable lldpd && systemctl start lldpd

L2 – Коммутация

Uplink и Downlink порты

Uplink – порты в сторону ядра сети. Обычно 4-6 портов на коммутаторе.

Downlink – порты к серверам. Обычно 24-48 портов на коммутаторе.

Oversubscription – переподписка, соотношение Downlink/Uplink.

МАС таблица

Хранятся записи вида «МАС-порт». Время хранения каждой записи ограничено, таймер – mac aging-time.

BUM трафик – Broadcast, Unknown-Unicast, Multicast – рассылается во все порты кроме входящего.

Пример MAC таблицы на Cisco коммутаторе:

#show	mac address-table Mac Address Ta	able	
Vlan	Mac Address	Туре	Ports
All	0100.0ccc.ccc	STATIC	CPU
All	0100.0ccc.cccd	STATIC	CPU
All	ffff.ffff.ffff	STATIC	CPU
10	0000.0c07.abcd	DYNAMIC	Gi0/1
20	000b.be68.bcde	DYNAMIC	Gi0/2
30	0013.6016.cdef	DYNAMIC	Gi0/3

VLAN – виртуальное разделение коммутатора

VLAN ID - метка в диапазоне 1 - 4096

http://xgu.ru/wiki/VLAN

Trunk и Access порты

Trunk порт:

- 1 порт много VLAN id;
- пакеты отправляются с меткой(тегом) dot1q, соответствующей
 VLAN id;
- VLAN без метки native vlan, по умолчанию VLAN id = 1;
- 802.1q стандарт Ethernet определяющий метки;
- используется, как правило, на Uplink портах;
- в linux устанавливается пакет vlan.

Trunk и Access порты

Access nopt:

- 1 порт 1 VLAN id;
- порт принимает только пакеты без метки;
- используется, как правило, на портах пользователей или серверах с одним сетевым адресом.

VLAN B linux

apt install vlan

LAG – агрегация портов

- Используется для увеличения полосы в сторону сервера;
- Как правило, на сервере имеется 3-4 сетевых интерфейса;
- Позволяет использовать несколько физических интерфейсов как один логический.

LAG в Linux – бондинг, имя интерфейса bond0, bond1. apt install ifenslave modprobe bonding

Типы LAG:

- статический (на Cisco mode on);
- динамический LACP протокол (на Cisco mode active).

L3: IP адресация

IPv4 адрес

IPv4 address in dotted-decimal notation

Классовая адресация сетей

класс А	0 адрес се	ти (7 бит)	адрес хоста (24 бита)	*
класс В	10	адрес сети (14 бит)	адрес хос	ста (16 бит)
класс С	110	адрес сети (2	1 бит)	адрес хоста (8 бит)
класс D	1110	адрес	многоадресной рассылки	
класс Е	1111[1]		зарезервировано	

Class A – большая сеть, свыше 16 миллионов хостов в каждой сети.

Class B – 65 534 хостов в каждой сети.

Class C – 254 хоста.

IP классы

```
Class A
 127.255.255.255 = 01111111.11111111.11111111.11111111
               Onnnnnn . HHHHHHHHH . HHHHHHHHH
Class B
128. 0. 0. 0 = 10000000.00000000.00000000.00000000
191.255.255.255 = 10111111.11111111.11111111.11111111
               10nnnnn, nnnnnnn, HHHHHHHH, HHHHHHHH
Class C
192. 0. 0. 0 = 11000000.00000000.00000000.00000000
223.255.255.255 = 11011111.11111111.11111111.11111111
               110nnnnn . nnnnnnnn . nnnnnnnn . HHHHHHHH
Class D
224. 0. 0. 0 = 11100000.00000000.00000000.00000000
239.255.255.255 = 11101111.11111111.11111111.11111111
               Class E
240. 0. 0. 0 = 11110000.0000000.00000000.00000000
255.255.255.255 = 111111111.11111111.11111111.11111111
```

CIDR – бесклассовая адресация – маски

IPv4 CIDR

ІР/маска	До последнего IP в подсети	Маска	Всего адресов	Узловых адресов	Класс
a.b.c.d/ 32	+0.0.0.0	255.255.255.255	1	(нет)	1/256 C
a.b.c.d/ 31	+0.0.0.1	255.255.255.254	2	2[1]	1/128 C
a.b.c.d/30	+0.0.0.3	255.255.255.252	4	2	1/64 C
a.b.c.d/ 29	+0.0.0.7	255.255.255.248	8	6	1/32 C
a.b.c.d/ 28	+0.0.0.15	255.255.255.240	16	14	1/16 C
a.b.c.d/ 27	+0.0.0.31	255.255.255.224	32	30	1/8 C
a.b.c.d/ 26	+0.0.0.63	255.255.255.192	64	62	1/4 C
a.b.c.d/ 25	+0.0.0.127	255.255.255.128	128	126	1/2 C
a.b.c.0/ 24	+0.0.0.255	255.255.255.000	256	254	1 C
a.b.c.0/23	+0.0.1.255	255.255.254.000	512	510	2 C
a.b.c.0/22	+0.0.3.255	255.255.252.000	1024	1022	4 C

ipcalc – cli ip калькулятор

```
apt install ipcalc
ipcalc 192.168.1.1/24
ipcalc -b --split 10 20 192.168.100.0/24
```

```
sergaM1B00K6928:/mnt/c/Users/sergey.myasnikov$ ipcalc 192.168.1.1/24
Address: 192.168.1.1
                               11000000.10101000.00000001. 00000001
Netmask: 255.255.255.0 = 24 11111111.11111111.11111111. 00000000
Wildcard: 0.0.0.255
                               00000000.00000000.00000000. 11111111
=>
Network: 192.168.1.0/24
                               11000000.10101000.00000001. 00000000
HostMin: 192.168.1.1
                               11000000.10101000.00000001. 00000001
HostMax:
        192.168.1.254
                               11000000.10101000.00000001. 11111110
Broadcast: 192.168.1.255
                               11000000.10101000.00000001. 11111111
Hosts/Net: 254
                                Class C, Private Internet
```

IPv4 Частные подсети

Используются в сетях, не маршрутизируемых в интернете.

Недопустимо внутри локальной сети использовать чужие публичные IP адреса, из-за этого вы потеряете доступ к этим адресам в сети интернет.

10.0.0.0 — 10.255.255.255 (маска подсети: 255.0.0.0 или /8)

172.16.0.0 — 172.31.255.255 (маска подсети: 255.240.0.0 или /12)

192.168.0.0 — 192.168.255.255 (маска подсети: 255.255.0.0 или /16)

100.64.0.0 — 100.127.255.255 (маска подсети: 255.192.0.0 или /10) Carrier-Grade NAT.

IPv4 Специальные подсети

127.0.0.0/8 – localhost, для передачи внутри хоста.

169.254.0.0/16 – автоназначение, если настроено получение адреса по DHCP, но ни один сервер не отвечает.

224.0.0.0/4 – мультикаст - многоадресная рассылка.

240.0.0/4 – зарезервировано для использования в будущем.

И много других, полный список по ссылке.

L 2.5 – ARP таблица

- ARP предназначен для определения MAC-адреса по IP-адресу;
- работает только для IP адресов внутри одной подсети

```
C:\Users\sergey.myasnikov>arp -a
Интерфейс: 100.100.14.113 --- 0x3
 адрес в Интернете Физический адрес
                                           Тип
                00-00-0c-9f-f0-02
 100.100.14.1
                                          динамический
 100.100.14.8 6c-9c-ed-40-42-c1
                                          динамический
 100.100.14.9 40-55-39-0c-dd-c1
                                          динамический
                     01-00-5e-00-00-16
 224.0.0.22
                                          статический
 255.255.255.255 ff-ff-ff-ff
                                          статический
arp -d 192.168.100.25
sergaM1B00K6928:/mnt/c/Users/sergey.myasnikov$ ip neigh
172.27.64.1 dev eth0 lladdr 00:15:5d:cd:3b:bf STALE
sudo ip neigh flush all
```

Шлюз по умолчанию – Default gateway

- адрес шлюза должен быть в одной сети с хостом;
- шлюз по умолчанию настраивается один раз на хост;
- если у хоста несколько сетевых интерфейсов, шлюз по умолчанию настраивается только на одном из них;
- шлюз по умолчанию и маршрут по умолчанию это разные вещи;
- как правило, для шлюза по умолчанию выбирают первый доступный адрес в сети.

ip – linux cli утилита

```
ip link – состояние интерфейсов;
ip address – IP адреса интерфейсов;
ip neighbour – ARP таблица;
ip route – таблица маршрутизации
```

```
[smamanjaro ~]$ ip -c -br link
                 UNKNOWN
                                00:00:00:00:00:00 < LOOPBACK, UP, LOWER UP>
lo
                                54:ee:75:32:28:c6 <NO-CARRIER, BROADCAST, MULTICAST, UP>
enp0s25
                 DOWN
                                e8:b1:fc:32:4c:27 <BROADCAST, MULTICAST, UP, LOWER UP>
wlp4s0
                 UP
[smamanjaro ~]$ ip -c -br address
                                127.0.0.1/8 ::1/128
                 UNKNOWN
lo
enp0s25
                 DOWN
wlp4s0
                 UP
                                192.168.1.21/24 fe80::c58e:4091:11b7:d022/64
[smamanjaro ~]$ ip -c neighbour
192.168.1.1 dev wlp4s0 lladdr 40:31:3c:03:80:9b REACHABLE
[smamanjaro ~]$ ip -c route
default via 192.168.1.1 dev wlp4s0 proto dhcp metric 600
192.168.1.0/24 dev wlp4s0 proto kernel scope link src 192.168.1.21 metric 600
192.168.250.0/24 via 192.168.250.1 dev wlp4s0 proto static metric 600
192.168.250.1 dev wlp4s0 proto static scope link metric 600
```

Итоги

Сегодня мы:

- рассмотрели модель OSI;
- рассмотрели физические интерфейсы и их параметры;
- познакомились с L2 коммутацией, VLAN, LAG;
- рассмотрели принципы ІР адресации, классы, маски подсети;
- познакомились с работой ARP.

Домашнее задание

Давайте посмотрим ваше домашнее задание.

- Вопросы по домашней работе задавайте в чате мессенджера
 Slack.
- Задачи можно сдавать по частям.
- Зачёт по домашней работе проставляется после того, как приняты все задачи.

Дополнительные материалы

Цикл статей - сети для самых маленьких

Xgu.ru - wiki по сетевым технологиям

Краткая справка по работе с утилитой ір

Лабораторная от Cisco - Cisco modeling Labs

Задавайте вопросы и пишите отзыв о лекции!

Сергей Мясников

