

- Vamos considerar uma situação genérica onde temos um modelo de amostragem $Y \sim p(y \mid \theta)$ e uma distribuição *a priori* $p(\theta)$.
- Embora na maioria dos problemas $p(y \mid \theta)$ e $p(\theta)$ possam ser calculados para quaisquer valores de $y \in \theta$,

$$p(\theta \mid y) = \frac{p(\theta)p(y \mid \theta)}{\int p(\theta) p(y \mid \theta) d\theta}$$

geralmente é difícil de calcular devido à integral no denominador.

▶ Se pudéssemos obter uma amostra de $p(\theta \mid y)$, poderíamos gerar $\theta^{(1)}, \dots, \theta^{(S)} \stackrel{i.i.d.}{\sim} p(\theta \mid y)$ e obter aproximações de Monte Carlo para quantidades *a posteriori*, com

$$E[g(\theta) \mid y] \approx \frac{1}{S} \sum_{s=1}^{S} g(\theta^{(s)})$$

► Mas e se não pudermos amostrar diretamente de $p(\theta \mid y)$?

1

- Em termos da aproximação da distribuição *a posteriori*, o crítico não é que tenhamos amostras i.i.d. de $p(\theta \mid y)$.
- Mas ao invés disso, somos capazes de construir uma grande coleção de θ -valores, $\{\theta^{(1)}, \dots, \theta^{(S)}\}$, cuja distribuição empírica se aproxima de $p(\theta \mid y)$.
- ightharpoonup A grosso modo, para quaisquer dois valores diferentes θ_a e θ_b , precisamos

$$\frac{\#\left\{\theta^{(s)} \text{ 's na coleção} = \theta_a\right\}}{\#\left\{\theta^{(s)} \text{ 's na coleção} = \theta_b\right\}} \approx \frac{p\left(\theta_a \mid y\right)}{p\left(\theta_b \mid y\right)}$$

- Vamos pensar intuitivamente sobre como podemos construir essa coleção.
- Suponha que temos uma coleção $\{\theta^{(1)}, \dots, \theta^{(s)}\}$ à qual gostaríamos de adicionar um novo valor $\theta^{(s+1)}$.
- Vamos considerar a adição de um valor θ^* que está próximo a $\theta^{(s)}$.

- \triangleright Devemos incluir θ^* no conjunto ou não?
- ▶ Se $p(\theta^* | y) > p(\theta^{(s)} | y)$ então queremos mais que θ^* esteja no conjunto do que $\theta^{(s)}$. θ^* é **mais verossímil** do que $\theta^{(s)}$.
- Visto que $\theta^{(s)}$ já está no conjunto, então parece que **devemos** incluir θ^* também.
- Por outro lado, se $p(\theta^* \mid y) < p(\theta^{(s)} \mid y)$ então parece que **não devemos necessariamente** inclui θ^* .
- Portanto, talvez nossa decisão de incluir θ^* ou não deva ser baseada em uma comparação de $p(\theta^* \mid y) \operatorname{com} p(\theta^{(s)} \mid y)$.
- Felizmente, essa comparação **pode ser feita** mesmo que não possamos calcular $p(\theta \mid y)$:

$$r = \frac{p\left(\theta^{*} \mid y\right)}{p\left(\theta^{(s)} \mid y\right)} = \frac{p\left(y \mid \theta^{*}\right)p\left(\theta^{*}\right)}{p(y)} \frac{p(y)}{p\left(y \mid \theta^{(s)}\right)p\left(\theta^{(s)}\right)} = \frac{p\left(y \mid \theta^{*}\right)p\left(\theta^{*}\right)}{p\left(y \mid \theta^{(s)}\right)p\left(\theta^{(s)}\right)}$$

- ightharpoonup Tendo calculado r, como devemos **proceder**?
- Se r > 1:
 - Intuição: Como $\theta^{(s)}$ já está em nosso conjunto, devemos incluir θ^* , pois tem uma probabilidade maior do que $\theta^{(s)}$.
 - **Procedimento**: Aceite θ^* em nosso conjunto, ou seja, defina $\theta^{(s+1)} = \theta^*$.
- Se r < 1:
 - Intuição: A frequência relativa de *θ*-valores em nosso conjunto igual a θ^* em comparação com aqueles iguais a $\theta^{(s)}$ deve ser $p(\theta^* \mid y) / p(\theta^{(s)} \mid y) = r$. Isso significa que para cada instância de $\theta^{(s)}$, devemos ter apenas uma "fração" de uma instância de um valor θ^* .
 - **Procedimento**: Defina $\theta^{(s+1)}$ igual a θ^* ou $\theta^{(s)}$, com probabilidade r e 1-r respectivamente.
- Esta é a intuição básica por trás do famoso **algoritmo de Metropolis**.

- O algoritmo de Metropolis procede amostrando um valor de proposta θ^* próximo ao valor atual $\theta^{(s)}$ usando uma **distribuição simétrica de proposta** $J\left(\theta^* \mid \theta^{(s)}\right)$.
- ▶ **Simétrico** aqui significa que $J(\theta_b \mid \theta_a) = J(\theta_a \mid \theta_b)$, ou seja, a probabilidade de propondo $\theta^* = \theta_b$ dado que $\theta^{(s)} = \theta_a$ é igual à probabilidade de propor $\theta^* = \theta_a$ dado que $\theta^{(s)} = \theta_b$.
- Normalmente $J\left(\theta^* \mid \theta^{(s)}\right)$ é muito simples, com amostras de $J\left(\theta^* \mid \theta^{(s)}\right)$ estando perto de $\theta^{(s)}$ com alta probabilidade.
- **Exemplos**:
- ightharpoonup O valor do parâmetro δ é geralmente escolhido para fazer o algoritmo de aproximação funcionar de forma **eficiente**.
- **Como** δ afeta a eficiência?

O Algoritmo de Metropolis Resumo

- ► Tendo obtido um valor de proposta θ^* , nós o adicionamos ou uma cópia de $\theta^{(s)}$ ao nosso conjunto, dependendo da proporção $r = p(\theta^* \mid y) / p(\theta^{(s)} \mid y)$.
- Especificamente, dado $\theta^{(s)}$, o algoritmo de Metropolis gera um valor $\theta^{(s+1)}$ como segue:
 - 1. Gere uma amostra $\theta^* \sim J\left(\theta \mid \theta^{(s)}\right)$.
 - 2. Calcule a taxa de aceitação:

$$r = \frac{p\left(\theta^{*} \mid y\right)}{p\left(\theta^{(s)} \mid y\right)} = \frac{p\left(y \mid \theta^{*}\right)p\left(\theta^{*}\right)}{p\left(y \mid \theta^{(s)}\right)p\left(\theta^{(s)}\right)}$$

3. Tome

$$\theta^{(s+1)} = \begin{cases} \theta^*, \text{ com probabilidade } \min(r, 1) \\ \theta^{(s)}, \text{ com probabilidade } 1 - \min(r, 1) \end{cases}$$

A etapa 3 pode ser realizada amostrando $u \sim \text{Uniforme}(0,1)$ e definindo $\theta^{(s+1)} = \theta^*$ se u < r, ou definindo $\theta^{(s+1)} = \theta^{(s)}$ caso contrário.

Exemplo prático

- A NFL tem 32 times e cada time joga 16 jogos da temporada regular por ano, para um total de N=256 jogos.
- ▶ De acordo com o site Frontline, houve $Y_1 = 171$ concussões em 2012, $Y_2 = 152$ concussões em 2013, $Y_3 = 123$ concussões em 2014 e $Y_4 = 199$ concussões em 2015.
- ▶ O número de concussões é modelado por $Y_i \sim \text{Poisson}(N\lambda_i)$, onde $\lambda_i = \exp(\beta_1 + i\beta_2)$ é a taxa no ano i.
- ▶ Para completar o modelo Bayesiano, β_1 , β_2 ~ Normal $(0, \tau^2)$.
- O logaritmo da taxa média de concussão é linear no tempo, com β_2 determinando a inclinação. O **objetivo** é determinar se a taxa de concussão está aumentando, ou seja, $\beta_2 > 0$.

Atividade prática

Reproduza os resultados do próximo *slide*, usando as informações apresentadas aqui. Este problema é apresentado em [1], mas **você deve tentar implementar primeiro!**

[1] S. K. Ghosh and B. J. Reich.

Bayesian statistical methods.

Chapman & Hall/CRC, Boca Raton, 1 edition, 2019.

O Algoritmo de Metropolis Exemplo prático

Os boxplots são a distribuição a posteriori de $N\lambda_i = N \exp{(\beta_1 + i\beta_2)}$, e os pontos são as amostras observadas.

Quantis de uma variável aleatória Definição

Ouantis

Para qualquer p com 0 , o <math>p-ésimo quantil da distribuição de uma variável aleatória X, denotado por x_p , é definido da seguinte forma:

ightharpoonup Se X for contínua, então o x_p (essencialmente) único é definido por:

$$P(X \le x_p) = p$$
 e $P(X \ge x_p) = 1 - p$

- Para o caso discreto, considere dois casos:
 - Seja x_k o valor para o qual $P(X \le x_k) = p$, se tal valor existir. Então o único quantil p é definido como o ponto médio entre x_k e x_{k+1} , ou seja, $x_p = (x_k + x_{k+1})/2$.
 - Se não houver tal valor, o único p-ésimo quantil é definido pela relação $P\left(X < x_p\right) < p$ e $P\left(X \le x_p\right) > p$ (ou $P\left(X \le x_p\right) > p$ e $P\left(X \ge x_p\right) > 1 p$).

Quantis de uma variável aleatória Definição

- Assim, o p-ésimo quantil é um ponto x_p que divide a distribuição de X em duas partes, onde $(-\infty, x_p]$ contém exatamente 100p% (ou pelo menos 100p%) da distribuição, e $[x_p, \infty)$ contém exatamente 100(1-p)% (ou pelo menos 100(1-p)%) da distribuição de X.
- Para p = 0,50, obtemos a **mediana**.
- Podemo ver os quantis como qualquer separatriz que divide o intervalo de frequência de uma população, ou de uma amostra, em partes iguais:
 - ► Tercil: cada parte tem 33,3% dos dados;
 - Quartil: cada parte tem 25% dos dados;
 - Quintil: cada parte tem 20% dos dados;
 - Decil: cada parte tem 10% dos dados;
 - Duodecil: cada parte tem 8,33% dos dados;
 - Percentil: cada parte tem 1% dos dados;
- ▶ A **distância interquartil** é a diferença entre o primeiro e terceiro quartis.

Quantis de uma variável aleatória Alguns exemplos

Considere que $X \sim \text{Bin}(x \mid p = 1/4, n = 12)$ e determine $x_{0.25}, x_{0.50}, e x_{0.75}$.

- ▶ $x_{0,25} = 2$ uma vez que $P(X < 2) = P(X = 0) + P(X = 1) = 0,1584 \le 0,25$ e $P(X \le 2) = 0,1584 + P(X = 2) = 0,3907 > 0,25$.
- ▶ Da mesma forma, $x_{0,50} = 3$ pois $P(X < 3) = 0,3907 \le 0,50$ e $P(X \le 3) = 0,6488 \ge 0,50$.
- Além disso, $x_{0,75} = 4$, já que P(X < 4) = 0, $6488 \le 0$, 75 e $P(X \le 4) = 0$, 8424 > 0, 75.

Quantis de uma variável aleatória Alguns exemplos

- Considere que $X \sim \text{Poisson}(x \mid \lambda = 5)$ e determine $x_{0.25}, x_{0.50}$, e $x_{0.75}$.
- Para este exemplo, $x_{0,25} = 2$, $x_{0,50} = 4$ e $x_{0,75} = 6$.
- **▶** Verifique estes resultados!

Quantis de uma variável aleatória Alguns exemplos

- 1. Seja $X \sim U(0,1)$, tome $p \in \{0,10, 0,20, 0,30, 0,40, 0,50, 0,60, 0,70, 0,80, 0,90\}$ e determine os valores de x_p correspondentes.
 - Aqui $F(x) = \int_0^x dt = x, 0 \le x \le 1$. Portanto $F(x_p) = p$ resulta em $x_p = p$.
- 2. O tempo de vida útil (em anos) de um equipamento eletrônico de determinado tipo pode ser expresso por uma variável aleatória contínua *X*, cuja função de densidade é

$$f(x) = \begin{cases} \frac{1}{2} \exp(-x/2), & \text{para } x \ge 0\\ 0, & \text{para } x < 0 \end{cases}$$

- A função de distribuição acumulada, $F(x) = 1 \exp(-x/2)$, para $x \ge 0$, é estritamente crescente.
- Para obtermos o valor do segundo **quartil**, fazemos:

$$F(x_{0,5}) = 1 - \exp\left(-\frac{x_{0,5}}{2}\right) = 0.5 \Rightarrow -\frac{x_{0,5}}{2} = \ln(0.5) = -0.693 \Rightarrow x_{0,5} = 1.39$$

- Analogamente encontramos: $x_{0,25} = 0,58, x_{0,75} = 2,77.$
- ▶ Isso quer dizer que metade dos equipamentos desse tipo duram no máximo 1,39 anos (ou seja, aproximadamente um ano e cinco meses). Além disso, verifica-se também que 50% desses equipamentos têm seu tempo de vida entre 0,58 anos e 2,77 anos (ou seja, entre sete meses e dois anos e nove meses aproximadamente).

Intervalos de credibilidade

Dado x e uma vez determinada uma distribuição a posteriori, um **intervalo de credibilidade** para um parâmetro θ (suponha, por enquanto, um escalar) é formado por dois valores em θ , digamos $[\underline{\theta}(x), \bar{\theta}(x)]$, ou mais simples, $(\underline{\theta}, \bar{\theta})$, tal que

$$P(\underline{\theta} < \theta < \overline{\theta} \mid x) = \int_{\theta}^{\overline{\theta}} h(\theta \mid x) d\theta = 1 - \alpha,$$

onde $1 - \alpha$ (geralmente 0,90, 0,95 ou 0,99) é o nível de credibilidade desejado.

Se $\Theta = (-\infty, +\infty)$, então uma maneira direta de construir um intervalo de credibilidade (neste caso, central) é baseado nas caudas da distribuição *a posteriori* tal que

$$\int_{-\infty}^{\underline{\theta}} h(\theta \mid x) d\theta = \int_{\overline{\theta}}^{+\infty} h(\theta \mid x) d\theta = \frac{\alpha}{2}.$$

Intervalos de credibilidade

Intervalo baseado em quantil

- ▶ Talvez a maneira mais fácil de se obter um intervalo de credibilidade seja usar quantis da distribuição a posteriori.
- Para fazer um intervalo de credibilidade de $100 \times (1-\alpha)\%$ baseado em quantil, encontre os números $\theta_{\alpha/2} < \theta_{1-\alpha/2}$ tais que
 - $P(\theta < \theta_{\alpha/2} \mid Y = y) = \alpha/2;$
 - $P(\theta > \theta_{1-\alpha/2} \mid Y = y) = \alpha/2.$
- So números $\theta_{\alpha/2}$, $\theta_{1-\alpha/2}$ são os quantis $\alpha/2$ e $1-\alpha/2$ da distribuição *a posteriori* de θ , e assim

$$\begin{split} \mathbf{P}\left(\theta \in \left[\theta_{\alpha/2}, \theta_{1-\alpha/2}\right] \mid Y = y\right) &= 1 - \mathbf{P}\left(\theta \notin \left[\theta_{\alpha/2}, \theta_{1-\alpha/2}\right] \mid Y = y\right) \\ &= 1 - \left[\mathbf{P}\left(\theta < \theta_{\alpha/2} \mid Y = y\right) + \mathbf{P}\left(\theta > \theta_{1-\alpha/2} \mid Y = y\right)\right] \\ &= 1 - \alpha. \end{split}$$

Intervalos de credibilidade

Intervalo baseado em quantil

- Suponha que de N = 10 sorteios condicionalmente independentes de uma variável aleatória binária, observemos Y = 2 ocorrências do evento "um".
- ▶ Usando uma distribuição *a priori* Uniforme para θ , a distribuição *a posteriori* é $\theta \mid \{Y = 2\} \sim \text{Beta}(1+2,1+8)$. **Veja a conjugação Beta-binomial.**
- Um intervalo de credibilidade de 95% pode ser obtido a partir dos quantis 0,025 e 0,975 desta distribuição Beta.
- Esses quantis valem 0,06 e 0,52 respectivamente, isto é, há 95% de chance da probabilidade *a posteriori* de $\theta \in [0,06, 0,52]$.

Estimativa de máxima verossimilhança

- Considere o problema de estimar um conjunto de parâmetros θ de um modelo probabilístico, dado um conjunto de observações x_1, x_2, \dots, x_n .
- As técnicas de máxima verossimilhança assumem que
 - As amostras não dependem umas das outras, em que a ocorrência de um não tem efeito sobre os outros.
 - 2. Cada um deles pode ser modelado exatamente da mesma maneira.
- Isso significa que os eventos são independentes e identicamente distribuídos (i.i.d.).
- A suposição sobre i.i.d. implica que um modelo para a função densidade de probabilidade conjunta para todas as observações consiste no produto do mesmo modelo de probabilidade $p(x_i \mid \theta)$ aplicado a cada observação independentemente.
- Para n observações, isso pode ser escrito como

$$p(x_1,x_2,\ldots,x_n\mid\theta)=p(x_1\mid\theta)p(x_2\mid\theta)\ldots p(x_n\mid\theta)$$

Cada função $p(x_i \mid \theta)$ tem os mesmos valores de parâmetro θ , e o objetivo da estimativa de parâmetro é maximizar um modelo de probabilidade conjunta desta forma.

Estimativa de máxima verossimilhança

ightharpoonup Como as observações não mudam, este valor só pode ser alterado alterando a escolha dos parâmetros θ .

$$L\left(\theta\mid x_{1},x_{2},\ldots,x_{n}\right)=\prod_{i=1}^{n}p\left(x_{i}\mid\theta\right)$$

- Como os dados são fixos, é sem dúvida mais útil pensar nisso como uma função de verossimilhança para os parâmetros, que somos livres para escolher.
- ▶ Multiplicar muitas probabilidades pode levar a números muito pequenos e, portanto, as pessoas geralmente trabalham com o logaritmo da probabilidade, ou log-verossimilhança:

$$\ln L\left(\theta \mid x_{1}, x_{2}, \ldots, x_{n}\right) = \sum_{i=1}^{n} \ln p\left(x_{i} \mid \theta\right),\,$$

▶ Como os logaritmos são funções estritamente crescentes monotonicamente, maximizar a probabilidade logarítmica é o mesmo que maximizar a verossimilhança:

$$\theta_{\text{ML}} = \underset{\theta}{\operatorname{arg max}} \sum_{i=1}^{n} \ln p (x_i \mid \theta).$$

Máximo a posteriori

- A máxima verossimilhança assume que todos os valores de parâmetros são **igualmente prováveis** *a priori*: não julgamos alguns valores de parâmetros como mais prováveis do que outros antes de considerarmos as observações.
- Em vez de simplesmente computar a estimativa de máxima verossimilhança, ainda podemos obter alguns dos benefícios da abordagem bayesiana ao permitir que a distribuição *a priori* **influencie** a escolha da estimativa pontual.
- ▶ Uma maneira racional de fazer isso é escolher a estimativa do ponto **máximo** *a posteriori* (MAP).
- A estimativa MAP escolhe o ponto de probabilidade *a posteriori* máxima (ou densidade de probabilidade máxima no caso mais comum de θ contínuo):

$$\theta_{\text{MAP}} = \underset{\theta}{\text{arg max}} \ p(\theta \mid x) = \underset{\theta}{\text{arg max}} \left\{ \ln p(x \mid \theta) + \ln p(\theta) \right\}$$

- **Deserve** que, para uma *priori* **uniforme**, o termo $\ln p(\theta)$ é uma constante e a expressão acima coincide então com a solução de máxima verossimilhança.
- **Discussão:** Como computar θ_{ML} e θ_{MAP} de forma eficiente?