Australian Islamic College 2018

ATAR Chemistry Units 3 and 4

Task 13 (Weighting: 3%)

Empirical Formula and Stoichiometry Test

Test Time: 45 minutes

Please do not turn this page until instructed to do so.

Surname
Геаcher

Mark / 39	Percentage

Equipment allowed: Pens, pencils, erasers, whiteout, rulers and non-programmable calculators permitted by the Schools Curriculum and Standards Authority.

1.		n dioxide is prepared by reacting hydrochloric acid with marb im carbonate).	e chips
	If 3.125	g of marble chips were mixed with 20.0 mL of 2.00 mol $\rm L^{\text{-}1}$ He	CI _(aq)
	(a)	Write an equation for the reaction occurring.	[1 mark]
	(b)	Determine the limiting reagent and calculate the number of notine excess reagent remaining after the reaction is completed	
	(c)	What would be the volume of carbon dioxide produced at 25 1.00 atm?	°C and [2 marks]

2.		solid ammonium sulfite ((NH ₄) ₂ SO ₃) is heated strongly it decone gases ammonia (NH ₃), sulfur dioxide (SO ₂), and water.	omposes to
		$\!$	ealed gas
	(a)	Write a balanced chemical equation for the reaction.	[1 mark]
	(b)	Calculate the pressure inside the gas vessel when decompo complete.	sition is
		complete.	[4 marks]
	(c)	The gaseous products are passed through limewater, (Ca(O What mass of calcium sulfite (CaSO ₃) would precipitate?	H)₂ (<i>aq</i>)). [2 marks]

3.	carbo	known organic compound X, which was known to contain hydr n and chlorine was analysed to find its formula. A 10.15g samp usted in air and produced 4.40g of water.	
	chlorin	arate 5.48g of X underwent a substitution reaction to convert the atoms to chloride ions. On addition of excess silver nitrate sulting solution, 12.54g of silver chloride was precipitated.	
		d 5.00g sample of X was vapourised and found to occupy 1.05 and 150 kPa.	L at
	(a)	Calculate the empirical formula of X .	[8 marks]
	(b)	Calculate the molar mass of \mathbf{X} , and hence work out the molec formula.	ular
			[4 marks]
	(0)	Draw and name a possible structure for V that would react rea	odily with
	(c) aqueo	Draw and name a possible structure for X that would react	[2 marks]

4.	The blue-green pigment Chrysocolla, is a hydrated salt that contains copper,
	silicon and oxygen:

 $Cu_wSi_xO_y.ZH_2O$

A 10.00 g sample was carefully heated to remove water and the resulting solid had a mass of 7.21g.

To calculate the amount of silicon present, this 7.21g was roasted at high temperature in the presence of oxygen and 3.10g of SiO₂ was produced.

In a separate analysis, it was found that the original hydrated salt was found to contain 32.8% copper.

(a) Determine the empirical formula of Chrysocolla by calculating the values of w, x, y and Z.

[9 marks]

(b) Based on the colour of the pigment, state the oxidation number of the copper, and calculate the oxidation state of silicon in the compound.

[1 mark]

Spare paper