22A G3/12

MCDONNELL DOUGLAS TECHNICAL SERVICES CO. HOUSTON ASTRONAUTICS DIVISION

SPACE SHUTTLE ENGINEERING AND OPERATIONS SUPPORT

DESIGN NOTE NO. 1.4-8-020

EULER ANGLES, QUATERNIONS, AND TRANSFORMATION MATRICES FOR SPACE SHUTTLE ANALYSIS

MISSION PLANNING, MISSION ANALYSIS, AND SOFTWARE FORMULATION

9 JUNE 1977

This Design Note is Submitted to NASA Under Task Order D0710, Task Assignment D, Contract NAS9-14960.

Prepared by:

Technical Specialist 488-5660, Ext. 248

STI FACILITY MATUT BRANCH

Approved by:

R. C. Pocklington

Task Manager

488-5660, Ext. 248

Approved by:

Work Package Manager 488-5660, Ext. 222

Approved by:

W. E. Wedlake

Integration Manager

488-5660, Ext. 293

Approved by:

WBS Manager

488-5660, Ext. 266

Page:

1.0 INTRODUCTION

Due to the extensive use of the quaternion in the onboard Space
Shuttle Computer System, considerable analysis is being performed using relationships between the quaternion, the transformation matrix, and the Euler angles. This Design Note offers a brief mathematical development of the relationships between the Euler angles and the transformation matrix, the quaternion and the transformation matrix, and the Euler angles and the quaternion. The analysis and equations presented here apply directly to current Space
Shuttle problems. Appendix A presents the twelve three-axis Euler transformation matrices as functions of the Euler angles, the equations for the quaternion as a function of the Euler angles, and the Euler angles as a function of the transformation matrix elements.

The equations of Appendix A are a valuable reference in Shuttle analysis work and this Design Note is the only known document where each of the twelve Euler angle to quaternion relationships are given. Appendix B presents a group of utility subroutines to accomplish the Euler-matrix, quaternion-matrix, and Euler-quaternion relationships of Appendix A.

DN No.: Page: 1.4-8-020

2.0 DISCUSSION

2.1 Euler Angle Transformation Matrices

The following analysis and utility subroutines are offered to simplify computer programs when working with coordinate transformation matrices and their relationships with the Euler Angles and the Quaternions. The coordinate transformation matrices discussed here are defined using the following figure,

FIGURE 1

The transformation matrix M, is defined to transform vectors in the \overline{x} - system $(\overline{x}, \overline{y}, \overline{z})$ into the original x-system (x, y, \overline{z}) z) and is given by the equation,

$$x = M\overline{x}$$

(1)where

$$x = (x, y, z)$$
 and $\overline{x} = (\overline{x}, \overline{y}, \overline{z})$.

Using the right-hand rule for positive rotations, the M matrix in (1) above is constructed by the following analysis. The first rotation in Figure 1 above is about the x-axis by the amount $\boldsymbol{\theta}_1$. The single rotation about the x-axis results in the following transformation,

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_1 & -\sin\theta_1 \\ 0 & \sin\theta_1 & \cos\theta_1 \end{pmatrix} \begin{pmatrix} \overline{x}^1 \\ \overline{y}^1 \\ \overline{z}^1 \end{pmatrix}$$
(2)

or $x = X\overline{x}'$ in matrix form. Rotation about the \overline{y}' -axis by the amount θ_2 yields the intermediate transformation matrix:

$$\begin{pmatrix} \overline{x}^{1} \\ \overline{y}^{1} \\ \overline{z}^{1} \end{pmatrix} = \begin{pmatrix} \cos\theta_{2} & 0 & \sin\theta_{2} \\ 0 & 1 & 0 \\ -\sin\theta_{2} & 0 & \cos\theta_{2} \end{pmatrix} \begin{pmatrix} \overline{x}^{11} \\ \overline{y}^{11} \\ \overline{z}^{11} \end{pmatrix}$$
(3)

or $\overline{x}' = Y_{\overline{x}}'$ in matrix form. Finally rotation about the \overline{z}'' -axis by the amount θ_3 yields the intermediate transformation matrix,

Page: 4

$$\begin{pmatrix} \overline{x}^{11} \\ \overline{y}^{11} \end{pmatrix} = \begin{pmatrix} \cos\theta_3 & -\sin\theta_3 & 0 \\ \sin\theta_3 & \cos\theta_3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \overline{x} \\ \overline{y} \\ \overline{z} \end{pmatrix}$$
(4)

and in matrix form $\overline{x}^n = Z\overline{x}_1$. Now using the three equations,

$$x = X\overline{x}^{1}$$

$$\overline{x}^{1} = Y\overline{x}^{n}$$

$$\overline{x}^{n} = Z\overline{x}$$
(5)

by substitution

$$x = (X Y Z) \overline{x}. \tag{6}$$

Then from equation 1,

$$M = (X Y Z) \tag{7}$$

Computation for the M matrix from the indicated matrix multiplication in equation (7) yields,

$$\mathsf{M} = \begin{pmatrix} (\cos\theta_2 \cos\theta_3) & (-\cos\theta_2 \sin\theta_3) & (\sin\theta_2) \\ (\cos\theta_1 \sin\theta_3 + \sin\theta_1 \sin\theta_2 \cos\theta_3)(\cos\theta_1 \cos\theta_3 - \sin\theta_1 \sin\theta_2 \sin\theta_3)(-\sin\theta_1 \cos\theta_2) \\ (\sin\theta_1 \sin\theta_3 - \cos\theta_1 \sin\theta_2 \cos\theta_3)(\sin\theta_1 \cos\theta_3 + \cos\theta_1 \sin\theta_2 \sin\theta_3)(\cos\theta_1 \cos\theta_2) \end{pmatrix}. \tag{8}$$

The matrix M in equation (8) is a function of;

- (1) The three Euler angles θ_1 θ_2 and θ_3 and
- (2) The sequence of rotations used to generate the matrix. By examination of equation (7) it is possible to show that there are twelve possible Euler rotational sequences. If the (X Y Z) notation in equation (7) represents a rotation about the X axis, then the Y axis and finally the Z axis, then the following per-

mutations of the rotational order represents the twelve possible Euler angle sets using three rotations,

Any repeated axis rotation such as XXY does not represent a three axis rotation but reduces to the two axis rotation XY. Hence the rotations described in (9) above represent all twelve possible sets of Euler angle defining sequences. Conversely then, for a given transformation matrix there are twelve Euler angle sets which can be extracted from the matrix. The Euler matrices corresponding to all possible rotational sequences of (9) above are presented in Appendix A.

The utility subroutines "EULMAT" generates the transformation matrix from a given Euler sequence and the Euler angles. The utility subroutine "MATEUL" extracts the Euler angles from a given Euler rotational sequence. The convention is established that the Euler angles occur in the same sequences as the axis rotations. Using this concept and functional notation, equation (7) could be expressed as

$$M = X Y Z = M(\theta_X, \theta_y, \theta_z)$$
and from (9)

Page: 6

$$M = X Z X = M(\theta_X, \theta_Z, \theta_X^{\dagger}) \text{ etc.}$$
 (11)

This convention is assumed in both subroutines and also used throughout this design note when Euler angles are used. A brief explaination of the use of these two utility subroutines is given in Appendix B.

It is interesting to note that a negative rotation in the single axis rotation matrices of equations (2), (3) and (4) will result in the formation of the transpose of the matrix. However the transpose of M in equation (7) is formed from reversing the order of multiplication and transposing the individual axis rotation equations, i.e.

$$M^{T} = (X Y Z)^{T} = (Y Z)^{T} X^{T} = Z^{T} Y^{T} X^{T}.$$
 (12)

Hence the transposes of the matrices of (9) are easily formed by reversing the order of multiplication and transposing each single axis rotation equation. Using the notation in equations(10) and (11) above equation (12) could be written,

$$M^{T}(\theta_{x}, \theta_{y}, \theta_{z}) = M(-\theta_{z}, -\theta_{y}, -\theta_{x}).$$
 (13)

It is recommended to avoid confusion that the forward transformation be computed and simply transposed to yield the reverse transformation matrix. All matrices of Appendix A are in the forward form, i.e. $X = M\overline{x}$ and formed from (9).

Page: 7

2.2 TRANSFORMATION MATRICES USING THE HAMILTON QUATERNION

The transformation matrix of equation (1) can be written as a function of the Hamilton Quaternion;

$$q_1 = \cos \omega/2$$
 $q_2 = \cos \alpha \sin \omega/2$
 $q_3 = \cos \beta \sin \omega/2$
 $q_4 = \cos \gamma \sin \omega/2$

(14)

where ω is the rotation angle about the rotation axis with α , β , and γ direction angles with the x, y and z axes respectively. Notice also that $q_1^2+q_2^2+q_3^2+q_4^2=1$, since $\cos^2\alpha+\cos^2\beta+\cos^2\gamma=1$. The rotation angle, ω , is assumed positive according to the right-hand rule of axis rotation. The matrix M becomes

$$M = \begin{pmatrix} (q_1^2 + q_2^2 - q_3^2 - q_4^2) & 2(q_2q_3 - q_1q_4) & 2(q_2q_4 + q_1q_3) \\ 2(q_2q_3 + q_1q_4) & (q_1^2 - q_2^2 + q_3^2 - q_4^2) & 2(q_3q_4 - q_1q_2) \\ 2(q_2q_4 - q_1q_3) & 2(q_3q_4 + q_1q_2) & (q_1^2 - q_2^2 - q_3^2 + q_4^2) \end{pmatrix}.$$
(15)

For a more detailed discussion of the derivation of equation (15), see Reference 1. Using functional notation, equation (15) can be written,

$$M = M(q_1, q_2, q_3, q_4). (16)$$

Unlike the Euler angle rotational sequences to describe the transformation matrix of equation (1), only two quaternions can be found from equation (15). The two quaternions are:

Page: 8

$$q_1$$
 $-q_1$ q_2 $-q_2$ q_3 and $-q_3$ (17) q_4 $-q_4$

These two quaternions represent a positive rotation about the rotation axis pointing in one direction and a positive rotation about the same line of rotation pointing in the opposite direction. Both quaternions of (17) satisfy equation (15).

The utility subroutine "QMAT" generates the transformation matrix from a given quaternion. The "QMAT" algorithm generates the matrix as given in equation (15) without duplicating any arithmetic operations. The subroutine "MATQ" extracts the positive quaternion, i.e., $\mathbf{q}_1 > 0$, from the transformation matrix and normalizes the results to guarantee an orthogonal matrix. In order to avoid any discontinuity in extracting the quaternion from the transformation matrix, the procedure as described in Reference 2 is used.

Early works by Hamilton (Reference 3) presented the quaternion as having a scalar and a vector part, i.e.,

$$q_1 = S \quad \vec{V} = (q_2, q_3, q_4)$$
 (18)

and equation (16) could be expressed as,

$$M = M(q_1, q_2, q_3, q_4) = M(S, V).$$
 (79)

Page:

For a given quaternion the following relationship is true (from (17) above), M(S, V) = M(-S, -V).(20)

The transpose of the transformation matrix is given by,

$$M^{\mathsf{T}}(\mathsf{S}, \ \mathsf{V}) = M(\mathsf{-S}, \ \mathsf{V}) = M(\mathsf{S}, \ \mathsf{-V}). \tag{21}$$

2.3 EULER ANGLE AND QUATERNION RELATIONSHIPS.

By examination of equations (10) and (16) the equality,

$$M(X(\theta_1), Y(\theta_2), Z(\theta_3)) = M(\theta_1, \theta_2, \theta_3) = M(q_1, q_2, q_3, q_4)$$
 (22)

can be written. Based on an equality for each element of the matrix the following nine equations must be true;

$$\cos\theta_{2} \cos\theta_{3} = q_{1}^{2} + q_{2}^{2} - q_{3}^{2} - q_{4}^{2}$$

$$-\cos\theta_{2} \sin\theta_{3} = 2(q_{2}\dot{q}_{3} - q_{1}q_{4})$$

$$\sin\theta_{2} = 2(q_{2}q_{4} + q_{1}q_{3})$$

$$\cos\theta_{1} \sin\theta_{3} + \sin\theta_{1} \sin\theta_{2} \cos\theta_{3} = 2(q_{2}q_{3} + q_{1}q_{4})$$

$$\cos\theta_{1} \cos\theta_{3} - \sin\theta_{1} \sin\theta_{2} \sin\theta_{3} = q_{1}^{2} - q_{2}^{2} + q_{3}^{2} - q_{4}^{2}$$

$$-\sin\theta_{1} \cos\theta_{2} = 2(q_{3}q_{4} - q_{1}q_{2})$$

$$\sin\theta_{1} \sin\theta_{3} - \cos\theta_{1} \sin\theta_{2} \cos\theta_{3} = 2(q_{3}q_{4} - q_{1}q_{3})$$

$$\sin\theta_{1} \cos\theta_{3} + \cos\theta_{1} \sin\theta_{2} \sin\theta_{3} = 2(q_{3}q_{4} + q_{1}q_{2})$$

$$\cos\theta_{1} \cos\theta_{2} = q_{1}^{2} - q_{2}^{2} - q_{3}^{2} + q_{4}^{2} .$$
(23)

It is possible to solve for the values of the quaternion using the trigonometric half angle identities. For this Euler sequence, i.e. $X(\theta_1)$ Y (θ_2) Z (θ_3) , the following quaternion results;

Page: 10

$$q_{1} = -\sin^{1}_{2}\theta_{1} \sin^{1}_{2}\theta_{2} \sin^{1}_{2}\theta_{3} + \cos^{1}_{2}\theta_{1} \cos^{1}_{2}\theta_{2} \cos^{1}_{2}\theta_{3}$$

$$q_{2} = +\sin^{1}_{2}\theta_{1} \cos^{1}_{2}\theta_{2} \cos^{1}_{2}\theta_{3} + \sin^{1}_{2}\theta_{2} \sin^{1}_{2}\theta_{3} \cos^{1}_{2}\theta_{1}$$

$$q_{3} = -\sin^{1}_{2}\theta_{1} \sin^{1}_{2}\theta_{3} \cos^{1}_{2}\theta_{2} + \sin^{1}_{2}\theta_{2} \cos^{1}_{2}\theta_{1} \cos^{1}_{2}\theta_{3}$$

$$q_{4} = +\sin^{1}_{2}\theta_{1} \sin^{1}_{2}\theta_{2} \cos^{1}_{2}\theta_{3} + \sin^{1}_{2}\theta_{3} \cos^{1}_{2}\theta_{1} \cos^{1}_{2}\theta_{2}$$

$$(24)$$

Appendix A gives the quaternion as a function of the Euler angles for each of the twelve Euler rotational sequence presented in Section 2.1. The special equations for the quaternion as functions of the Euler angles, like equations (24) above, are sometimes cumbersome to use, especially when multiple Euler sequences are utilized. Less coding, but perhaps more computer operations, are required by using the more general method of first generating the matrix M from the given Euler angle set and then simply extracting the quaternion from the matrix. This method is effected by first a call to "EULMAT" and then a call to "MATQ".

Page: 11

3.0 REFERENCES

 Working Paper: MDTSCO, TM No. 1.4-MPB-304, E914-8A/B-003, "Quaternions and Quaternion Transformations," David M. Henderson, 23 June 1976.

- 2. Transmittal Memo: MDTSCO, 1.4-MPB-229, "Improving Computer Accuracy in Extracting Quaternions," David M. Henderson, 9 March 1976.
- 3. Sir William Rowan Hamilton, LLD, LL.D. MRIA, D.C.L. CANTAB., "Elements of Quaternions" 2 Volumes, Chelsea Publishing Company, New York, N. Y., 3rd Edition 1969, Library of Congress 68-54711 #8284-0219-1.

APPENDIX A

The twelve Euler matrices for each rotation sequence are given based. on the single axis rotation equations (2), (3) and (4). The Euler matrices transform vectors from the system that has been rotated into vectors in the stationary system. Also presented here are the equations for the quaternion as a function of the Euler angles and the Euler angles as a function of the matrix elements for each rotation sequence.

Page: 13

(1)
$$M = M(X(\theta_1), Y(\theta_2), Z(\theta_3)) = XYZ$$

Axis Rotation Sequence: 1, 2, 3

$$\mathsf{M} = \begin{bmatrix} \cos\theta_2\cos\theta_3 & -\cos\theta_2\sin\theta_3 & \sin\theta_2 \\ \sin\theta_1\sin\theta_2\cos\theta_3 & -\sin\theta_1\sin\theta_2\sin\theta_3 & -\sin\theta_1\cos\theta_2 \\ +\cos\theta_1\sin\theta_3 & +\cos\theta_1\cos\theta_3 \\ -\cos\theta_1\sin\theta_2\cos\theta_3 & \cos\theta_1\sin\theta_2\sin\theta_3 & \cos\theta_1\cos\theta_2 \\ +\sin\theta_1\sin\theta_3 & +\sin\theta_1\cos\theta_3 \end{bmatrix}$$

$$q_1 = -\sin^{1/2}\theta_1 \sin^{1/2}\theta_2 \sin^{1/2}\theta_3 + \cos^{1/2}\theta_1 \cos^{1/2}\theta_2 \cos^{1/2}\theta_3$$

$$\cdot q_2 = \sin^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3} + \sin^{1}_{2}\theta_{2}\sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{1}$$

$$q_3 = -\sin^{1}\theta_1\sin^{1}\theta_3\cos^{1}\theta_2 + \sin^{1}\theta_2\cos^{1}\theta_1\cos^{1}\theta_3$$

$$q_4 = \sin^{1}\theta_1 \sin^{1}\theta_2 \cos^{1}\theta_3 + \sin^{1}\theta_3 \cos^{1}\theta_1 \cos^{1}\theta_2$$

$$\theta_1 = \tan^{-1}\left(\frac{-m_{23}}{m_{33}}\right)$$

$$\theta_2 = \tan^{-1}\left(\frac{m_{13}}{\sqrt{1-m_{13}^2}}\right)$$

$$\theta_3 = \tan^{-1}\left(\frac{-m_{12}}{m_{11}}\right)$$

Page: 14

(2)
$$M = M(X(\theta_1), Z(\theta_2), Y(\theta_3)) = XZY$$

Axis Rotation Sequence: 1, 3, 2

$$\mathsf{M} = \begin{bmatrix} \cos\theta_2\cos\theta_3 & -\sin\theta_2 & \cos\theta_2\sin\theta_3 \\ \cos\theta_1\sin\theta_2\cos\theta_3 & \cos\theta_1\cos\theta_2 & \cos\theta_1\sin\theta_2\sin\theta_3 \\ +\sin\theta_1\sin\theta_3 & -\sin\theta_1\cos\theta_3 \\ \sin\theta_1\sin\theta_2\cos\theta_3 & \sin\theta_1\cos\theta_2 & \sin\theta_1\sin\theta_2\sin\theta_3 \\ -\cos\theta_1\sin\theta_3 & +\cos\theta_1\cos\theta_3 \end{bmatrix}$$

$$q_1 = +\sin^{1}2\theta_1\sin^{1}2\theta_2\sin^{1}2\theta_3 + \cos^{1}2\theta_1\cos^{1}2\theta_2\cos^{1}2\theta_3$$

$$q_3 = -\sin^{1}2\theta_{1}\sin^{1}2\theta_{2}\cos^{1}2\theta_{3} + \sin^{1}2\theta_{3}\cos^{1}2\theta_{1}\cos^{1}2\theta_{2}$$

$$q_4 = +\sin^{1/2}\theta_1\sin^{1/2}\theta_3\cos^{1/2}\theta_2 + \sin^{1/2}\theta_2\cos^{1/2}\theta_1\cos^{1/2}\theta_3$$

$$\theta_1 = \tan^{-1}\left(\frac{m_{32}}{m_{22}}\right)$$

$$\theta_2 = \tan^{-1} \left(\sqrt{\frac{-m_{12}}{1-m_{12}^2}} \right)$$

$$\theta_3 = \tan^{-1}\left(\frac{m_{13}}{m_{11}}\right)$$

Page:

(3)
$$M = M(X(\theta_1), Y(\theta_2), X(\theta_3)) = XYX$$

Axis Rotation Sequence: 1, 2, 1

$$\mathsf{M} = \begin{bmatrix} \cos\theta_2 & \sin\theta_2\sin\theta_3 & \sin\theta_2\cos\theta_3 \\ \sin\theta_1\sin\theta_2 & \cos\theta_1\cos\theta_3 & -\cos\theta_1\sin\theta_3 \\ -\sin\theta_1\cos\theta_2\sin\theta_3 & -\sin\theta_1\cos\theta_2\cos\theta_3 \\ +\sin\theta_1\cos\theta_3 & -\sin\theta_1\sin\theta_3 \\ +\cos\theta_1\cos\theta_2\sin\theta_3 & +\cos\theta_1\cos\theta_2\cos\theta_3 \end{bmatrix}$$

$$q_1 = \cos^{1}\theta_2\cos(\frac{1}{2}(\theta_1 + \theta_3))$$

$$q_2 = \cos^{1/2}\theta_2 \sin(\frac{1}{2}(\theta_1 + \theta_3))$$

$$q_3 = \sin^{1/2}\theta_2\cos(\frac{1}{2}(\theta_1 - \theta_3))$$

$$q_4 = \sin^{1}\theta_2 \sin(\frac{1}{2}(\theta_1 - \theta_3))$$

$$\theta_1 = \tan^{-1} \left(\frac{m_{21}}{-m_{31}} \right)$$

$$\theta_1 = \tan^{-1}\left(\frac{m_{21}}{-m_{31}}\right)$$

$$\theta_2 = \tan^{-1}\left(\frac{\sqrt{1 - m_{11}^2}}{m_{11}}\right)$$

$$\theta_3 = \tan^{-1}\left(\frac{m_{12}}{m_{13}}\right)$$

Page: 16

(4)
$$M = M(X(\theta_1), Z(\theta_2), X(\theta_3)) = XZX$$

Axis Rotation Sequence: 1, 3, 1

$$\mathsf{M} = \begin{bmatrix} \cos\theta_2 & -\sin\theta_2 \cos\theta_3 & \sin\theta_2 \sin\theta_3 \\ \cos\theta_1 \sin\theta_2 & \cos\theta_1 \cos\theta_2 \cos\theta_3 & -\cos\theta_1 \cos\theta_2 \sin\theta_3 \\ -\sin\theta_1 \sin\theta_3 & -\sin\theta_1 \cos\theta_3 \\ \sin\theta_1 \sin\theta_2 & \sin\theta_1 \cos\theta_2 \cos\theta_3 & -\sin\theta_1 \cos\theta_2 \sin\theta_3 \\ +\cos\theta_1 \sin\theta_3 & +\cos\theta_1 \cos\theta_3 \end{bmatrix}$$

$$q_{1} = \cos^{1}_{2}\theta_{2}\cos(\frac{1}{2}(\theta_{1} + \theta_{3}))$$

$$q_{2} = \cos^{1}_{2}\theta_{2}\sin(\frac{1}{2}(\theta_{1} + \theta_{3}))$$

$$q_{3} = -\sin^{1}_{2}\theta_{2}\sin(\frac{1}{2}(\theta_{1} - \theta_{3}))$$

$$q_4 = \sin^{1}\theta_2 \cos(\frac{1}{2}(\theta_1 - \theta_3))$$

$$\theta_1 = \tan^{-1} \left(\frac{m_{31}}{m_{21}} \right)$$

$$\theta_2 = \tan^{-1} \left(\frac{\sqrt{1 - m_{11}^2}}{m_{11}} \right)$$

$$\theta_3 = \tan^{-1} \left(\frac{m_{13}}{m_{12}} \right)$$

(5)
$$M = M(Y(\theta_1), X(\theta_2), Z(\theta_3)) = YXZ$$

Axis Rotation Sequence: 2, 1, 3

 $q_1 = \sin^{1}_{2}\theta_1 \sin^{1}_{2}\theta_2 \sin^{1}_{2}\theta_3 + \cos^{1}_{2}\theta_1 \cos^{1}_{2}\theta_2 \cos^{1}_{2}\theta_3$

 $q_2 = \sin^1_2\theta_1\sin^1_2\theta_3\cos^1_2\theta_2 + \sin^1_2\theta_2\cos^1_2\theta_1\cos^1_2\theta_3$

 $q_3 = \sin^{1}\theta_{1}\cos^{1}\theta_{2}\cos^{1}\theta_{3} - \sin^{1}\theta_{2}\sin^{1}\theta_{3}\cos^{1}\theta_{1}$

 $q_4 = -\sin^2\theta_1\sin^2\theta_2\cos^2\theta_3 + \sin^2\theta_3\cos^2\theta_1\cos^2\theta_2$

$$\theta_1 = \tan^{-1}\left(\frac{m_{31}}{m_{33}}\right)$$

$$\theta_2 = \tan^{-1} \left(\sqrt{\frac{-m_{23}}{1-m_{23}^2}} \right)$$

$$\theta_3 = \tan^{-1}\left(\frac{m_{21}}{m_{22}}\right)$$

Page:

(6)
$$M = M(Y(\theta_1), Z(\theta_2), X(\theta_3)) = YZX$$

Axis Rotation Sequence: 2, 3, 1

$$\mathsf{M} = \begin{bmatrix} \cos\theta_1 \cos\theta_2 & -\cos\theta_1 \sin\theta_2 \cos\theta_3 & \cos\theta_1 \sin\theta_2 \sin\theta_3 \\ +\sin\theta_1 \sin\theta_3 & +\sin\theta_1 \cos\theta_3 \\ \sin\theta_2 & \cos\theta_2 \cos\theta_3 & -\cos\theta_2 \sin\theta_3 \\ -\sin\theta_1 \cos\theta_2 & \sin\theta_1 \sin\theta_2 \cos\theta_3 & -\sin\theta_1 \sin\theta_2 \sin\theta_3 \\ +\cos\theta_1 \sin\theta_3 & +\cos\theta_1 \cos\theta_3 \end{bmatrix}$$

$$\theta_1 = \tan^{-1} \left(\frac{-m_{31}}{m_{11}} \right)$$

$$\theta_2 = \tan^{-1} \left(\frac{m_{21}}{\sqrt{1 - m_{21}^2}} \right)$$

$$\theta_3 = \tan^{-1}\left(\frac{-m_{23}}{m_{22}}\right)$$

(7)
$$M = M(Y(\theta_1), X(\theta_2), Y(\theta_3)) = YXY$$

Axis Rotation Sequence: 2, 1, 2

$$\mathbf{M} = \begin{bmatrix} -\sin\theta_1\cos\theta_2\sin\theta_3 & \sin\theta_1\sin\theta_2 & \sin\theta_1\cos\theta_2\cos\theta_3 \\ +\cos\theta_1\cos\theta_3 & +\cos\theta_1\sin\theta_3 \\ \sin\theta_2\sin\theta_3 & \cos\theta_2 & -\sin\theta_2\cos\theta_3 \\ -\cos\theta_1\cos\theta_2\sin\theta_3 & \cos\theta_1\sin\theta_2 & \cos\theta_1\cos\theta_2\cos\theta_3 \\ -\sin\theta_1\cos\theta_3 & -\sin\theta_1\sin\theta_3 & -\sin\theta_1\sin\theta_3 \end{bmatrix}$$

$$q_1 = +\cos^{1/2}\theta_2\cos(\frac{1}{2}(\theta_1 + \theta_3))$$

$$q_2 = +\sin^{\frac{1}{2}\theta}2\cos(\frac{1}{2}(\theta_1 - \theta_3))$$

$$q_3 = +\cos^{1/2}\theta_2\sin(\frac{1}{2}(\theta_1 + \theta_3))$$

$$q_4 = -\sin^{1/2}\theta_2\sin(\frac{1}{2}(\theta_1 - \theta_3))$$

$$\theta_1 = \tan^{-1}\left(\frac{m_{12}}{m_{32}}\right)$$

$$\theta_2 = \tan^{-1}\left(\frac{\sqrt{1-m_{22}^2}}{m_{22}}\right)$$

$$\theta_3 = \tan^{-1} \left(\frac{m_{21}}{m_{23}} \right)$$

(8)
$$M = M(Y(\theta_1), Z(\theta_2), Y(\theta_3)) = YZY$$

Axis Rotation Sequence: 2, 3, 2

$$\mathsf{M} = \begin{bmatrix} \cos\theta_1 \cos\theta_2 \cos\theta_3 & -\cos\theta_1 \sin\theta_2 & \cos\theta_1 \cos\theta_2 \sin\theta_3 \\ -\sin\theta_1 \sin\theta_3 & +\sin\theta_1 \cos\theta_3 \\ \sin\theta_2 \cos\theta_3 & \cos\theta_2 & \sin\theta_2 \sin\theta_3 \\ -\sin\theta_1 \cos\theta_2 \cos\theta_3 & \sin\theta_1 \sin\theta_2 & -\sin\theta_1 \cos\theta_2 \sin\theta_3 \\ -\cos\theta_1 \sin\theta_3 & +\cos\theta_1 \cos\theta_3 \end{bmatrix}$$

$$q_1 = +\cos^{1/2}\theta_2\cos(\frac{1}{2}(\theta_1 + \theta_3))$$

$$\phi_2 = +\sin^{1/2}\theta_2\sin(\frac{1}{2}(\theta_1 - \theta_3))$$

$$q_3 = +\cos^{1/2}\theta_{2}\sin(\theta_{1} + \theta_{3})$$

$$q_4 = +\sin^{1}\theta_{2}\cos(\frac{1}{2}(\theta_{1} - \theta_{3}))$$

$$\theta_1 = \tan^{-1} \left(\frac{m_{32}}{-m_{12}} \right)$$

$$\theta_2 = \tan^{-1} \left(\frac{\sqrt{1-m_{22}^2}}{m_{22}} \right)$$

$$\theta_3 = \tan^{-1}\left(\frac{m_{23}}{m_{21}}\right)$$

(9)
$$M = M(Z(\theta_1), X(\theta_2), Y(\theta_3)) = ZXY$$

Axis Rotation Sequence: 3, 1, 2

$$\mathbf{M} = \begin{bmatrix} -\sin\theta_1\sin\theta_2\sin\theta_3 & -\sin\theta_1\cos\theta_2 & \sin\theta_1\sin\theta_2\cos\theta_3 \\ +\cos\theta_1\cos\theta_3 & +\cos\theta_1\sin\theta_3 \\ -\cos\theta_1\sin\theta_2\sin\theta_3 & \cos\theta_1\cos\theta_2 & -\cos\theta_1\sin\theta_2\cos\theta_3 \\ +\sin\theta_1\cos\theta_3 & +\sin\theta_1\sin\theta_3 \\ -\cos\theta_2\sin\theta_3 & \sin\theta_2 & \cos\theta_2\cos\theta_3 \end{bmatrix}$$

$$q_1 = -\sin^{1}_{2}\theta_{1}\sin^{1}_{2}\theta_{2}\sin^{1}_{2}\theta_{3} + \cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3}$$

$$q_2 = -\sin^1_2\theta_1\sin^1_2\theta_3\cos^1_2\theta_2 + \sin^1_2\theta_2\cos^1_2\theta_1\cos^1_2\theta_3$$

$$q_3 = +\sin^{1}_{2}\theta_{1}\sin^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3} + \sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}$$

$$q_4 = +\sin^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3} + \sin^{1}_{2}\theta_{2}\sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{1}$$

$$\theta_1 = \tan^{-1} \left(\frac{-m_{12}}{m_{22}} \right)$$

$$\theta_2 = \tan^{-1} \left(\frac{m_{32}}{\sqrt{1 - m_{32}^2}} \right)$$

$$\theta_3 = \tan^{-1} \left(\frac{-m_{31}}{m_{33}} \right)$$

Page: 22

(10)
$$M = M(Z(\theta_1), Y(\theta_2), X(\theta_3)) = ZYX$$

Axis Rotation Sequence: 3, 2, 1

$$\mathbf{M} = \begin{bmatrix} \cos\theta_1\cos\theta_2 & \cos\theta_1\sin\theta_2\sin\theta_3 & \cos\theta_1\sin\theta_2\cos\theta_3 \\ -\sin\theta_1\cos\theta_3 & +\sin\theta_1\sin\theta_3 \\ \sin\theta_1\cos\theta_2 & \sin\theta_1\sin\theta_2\sin\theta_3 & \sin\theta_1\sin\theta_2\cos\theta_3 \\ +\cos\theta_1\cos\theta_3 & \cos\theta_1\sin\theta_3 \\ -\sin\theta_2 & \cos\theta_2\sin\theta_3 & \cos\theta_2\cos\theta_3 \end{bmatrix}$$

$$\begin{aligned} q_1 &= + \sin^{1} 2\theta_{1} \sin^{1} 2\theta_{2} \sin^{1} 2\theta_{3} + \cos^{1} 2\theta_{1} \cos^{1} 2\theta_{2} \cos^{1} 2\theta_{3} \\ , q_2 &= - \sin^{1} 2\theta_{1} \sin^{1} 2\theta_{2} \cos^{1} 2\theta_{3} + \sin^{1} 2\theta_{3} \cos^{1} 2\theta_{1} \cos^{1} 2\theta_{2} \\ q_3 &= + \sin^{1} 2\theta_{1} \sin^{1} 2\theta_{3} \cos^{1} 2\theta_{2} + \sin^{1} 2\theta_{2} \cos^{1} 2\theta_{1} \cos^{1} 2\theta_{3} \\ q_4 &= + \sin^{1} 2\theta_{1} \cos^{1} 2\theta_{2} \cos^{1} 2\theta_{3} - \sin^{1} 2\theta_{2} \sin^{1} 2\theta_{3} \cos^{1} 2\theta_{1} \end{aligned}$$

$$\theta_1 = \tan^{-1}\left(\frac{m_{21}}{m_{11}}\right)$$

$$\theta_2 = \tan^{-1} \left(\frac{-m_{31}}{\sqrt{1-m_{31}^2}} \right)$$

$$\theta_3 = \tan^{-1}\left(\frac{m_{32}}{m_{33}}\right)$$

Page: 23

(11)
$$M = M(Z(\theta_1), X(\theta_2), Z(\theta_3)) = ZXZ$$

Axis Rotation Sequence: 3, 1, 3

$$\mathbf{M} = \begin{bmatrix} -\sin\theta_1\cos\theta_2\sin\theta_3 & -\sin\theta_1\cos\theta_2\cos\theta_3 & \sin\theta_1\sin\theta_2 \\ +\cos\theta_1\cos\theta_3 & -\cos\theta_1\cos\theta_3 \\ -\cos\theta_1\cos\theta_2\sin\theta_3 & \cos\theta_1\cos\theta_2\cos\theta_3 & -\cos\theta_1\sin\theta_2 \\ +\sin\theta_1\cos\theta_3 & -\sin\theta_1\sin\theta_3 \\ \sin\theta_2\sin\theta_3 & \sin\theta_2\cos\theta_3 & \cos\theta_2 \end{bmatrix}$$

$$q_1 = +\cos^{1}\theta_2\cos(\theta_1 + \theta_3)$$

$$q_2 = +\sin^{1}\theta_2\cos(\theta_1 - \theta_3)$$

$$q_3 = +\sin^{1/2}\theta_2\sin(\frac{1}{2}(\theta_1 - \theta_3))$$

$$q_4 = +\cos^{1/2}\theta_2\sin(\frac{1}{2}(\theta_1 + \theta_3))$$

$$\theta_1 = \tan^{-1} \left(\frac{m_{13}}{m_{23}} \right)$$

$$\theta_2 = \tan^{-1} \left(\frac{\sqrt{1 - m_{33}^2}}{m_{33}} \right)$$

$$\theta_3 = \tan^{-1}\left(\frac{m_{31}}{m_{32}}\right)$$

Page:

(12)
$$M = M(Z(\theta_1), Y(\theta_2), Z(\theta_3)) = ZYZ$$

Axis Rotation Sequence: 3, 2, 3

$$\mathsf{M} = \begin{bmatrix} \cos\theta_1 \cos\theta_2 \cos\theta_3 & -\cos\theta_1 \cos\theta_2 \sin\theta_3 & \cos\theta_1 \sin\theta_2 \\ -\sin\theta_1 \sin\theta_3 & -\sin\theta_1 \cos\theta_3 \\ \sin\theta_1 \cos\theta_2 \cos\theta_3 & -\sin\theta_1 \cos\theta_2 \sin\theta_3 \\ +\cos\theta_1 \sin\theta_3 & +\cos\theta_1 \cos\theta_3 \\ -\sin\theta_2 \cos\theta_3 & \sin\theta_2 \sin\theta_3 \end{bmatrix} \quad \begin{array}{c} \cos\theta_1 \sin\theta_2 \\ \cos\theta_1 \sin\theta_2 \\ -\cos\theta_1 \sin\theta_3 \\ -\sin\theta_2 \cos\theta_3 \end{array}$$

$$q_1 = +\cos^{\frac{1}{2}\theta}2\cos(\frac{1}{2}(\theta_1 + \theta_3))$$

$$q_2 = -\sin \theta_2 \sin(\theta_1 - \theta_3)$$

$$q_3 = +\sin^{1/2}\theta_2\cos(\frac{1}{2}(\theta_1 - \theta_3))$$

$$q_4 = +\cos^{1}\theta_2\sin(\theta_1 + \theta_3)$$

$$\theta_1 = \tan^{-1}\left(\frac{m_{23}}{m_{13}}\right)$$

$$\theta_2 = \tan^{-1} \left(\frac{\sqrt{1 - m_{33}^2}}{m_{33}} \right)$$

$$\theta_3 = \tan^{-1} \left(\frac{m_{32}}{-m_{31}} \right)$$

Page: 25

APPENDIX B

The following subroutines with a brief description of their use are presented in this appendix.

- (1) "EULMAT" Generates the transformation matrix from a given set of Euler angles and an axis rotation sequence.
- (2) "MATEUL" Extracts the Euler angles from the given transformation matrix and an axis rotation sequence.
- (3) "QMAT" Generates the transformation matrix from a given quaternion.
- (4) "MATQ" Extracts the quaternion from a given transformation matrix.
- (5) "YPRQ" Generates the quaternion directly from the yaw-pitch-roll Euler angles.
- (6) "POSNOR" Computes the positive-normalized quaternion from the given quaternion.

Page: 26

NAME: EULMAT

PURPOSE: Generates a 3 x 3 transformation matrix from a

given sequence and Euler angle set.

INPUT: ISEQ - Rotation Sequence (Integer Array (3); i.e.,

1, 2, 3)

EUL - Euler Angles in radians, in "ISEQ"

Order; ARRAY (3)

OUTPUT: A - The 3 x 3 transformation matrix

ALGORITHM REFERENCE: Appendix A; Euler Sequences (1) thru (12).

EULER ANGLES TO THE TRANSFORMATION MATRIX

	Ţ	EULER ANGLES TO THE TRANSFORMATION MATRIX
	SFOR, IS FOR SIE3	FULMA1, EULMAT -02/19/77-36:24:23 (, 3)
**************************************	SUBR0	UTINE EULMAT ENTRY POINT 000237 -
*	STORK	CETUSEDI CODELIT GGEZEG; DATA (C) CCTITUA; BEANK COMMON (2)
	EXTER	NAL REFEFFNCES (BLOCK, NAME) "
	2003 1004 2005	SIN COS NERRIS
	STORA	GE ASSIGNMENT (BLOCK, TYPE, RELATIVE LOCATION, NAME)
	7501 10501 10601 2000 0000	
		en de la companya de La companya de la co
	00101 00103 20104	SUBPOUTINE EULMAT(ISEG, EUL, A) DIMENSION ISEU(3), EUL(3), A(3,3) DIMENSION X(3,3,0), B(3,3)
	00103 00113 00116	4± 00 100 K=1,3 5≈ 00 10 1=1,3 6⇒ 00 5 J=1,3 7* X(1,J,K)=2.0
· '	30117 30121 90123 33125	9# IF(1.E0.J) X(1,J,K1=1.J 9# S CONTINUE 10# 16 CONTINUE 11# IF(ISEQ(K).LE.G) GO TO 100
	00127 00130 00131 00133	12# SINA=SIN(FUL(K)) 13# COSA=COS(FUL(K)) 14# IF(ISEO(M).EQ.2) GO TO 2C 15# IF(ISEC(K).EQ.3) GO TO 3D
	00135 00136 00137 00147	16# X(2,2,K)=COSA 17# X(2,3,K)=-SINA 18# X(3,2,K)= SINA 19# X(3,2,K)=COSA
	00141 00142 30143 00144	20* 60 TO 100 21* 20 X(1,1,k)=COSA 22* X(1,0,K)= SINA 23* X(3,1,K)=-SINA
	00145 00146 00147	24* X(3,5,K)=COSA 25* GO TO 175 26* 3D X(1,1,K)=COSA 27* X(1,2,K)=-SIN/
	20151 20151 30152,	$\frac{29*}{29*}$ $\frac{x(2,1,k)=SINN}{x(2,2,k)=COSA}$
		ECHOLOGIA SI ACA II ROCE
	• •	
-		··

man designation of the second	T	EULER AND	SLES TO THE TRAN	NSFORMATION MATRIX	
	20153 90155 20147	3.1 p 3.1 p	190 CONTIN		
	00161 00164 00167 00173	33# 34# 55#	00 31.5 00 31.5	: I = 1, 3) J = 1, 3	,
	00173 00175 00177 00201 00203	27.74 27.74 27.74 27.74 41.4	IF(L.E IF(L.E IF(ABS IF(ABS	*** **** **** **** **** **** **** ****	753 0 TO 253
	00204 00207 5021.0	42章 43章 4 <u>4章</u> 45章	256 CCMTI IF(L.E IF(L.E 300 CONTIN	0.1) B(I,J)=TEMP 0.2) A(I,J)=TEMP	_
	76212 30215 66217 69223	46÷ 47≑ 48≑	400 CONTINENT END	in the state of th	
	····	END OF COM	PILATION:	NO. DIAGNOSTICS.	, p
		· .	•		·
	_				
			4		•
•	· · · · · · · · · · · · · · · · · · ·		•		
<u></u>			,		
	,				
				<u> </u>	
					,
				· •	-
	•			,	

Page: 29

NAME:

MATEUL

PURPOSE:

Extracts the Euler angles from the given trans-

formation matrix and the required Euler

rotational sequence.

INPUT:

ISEQ - Rotation sequence, (Integer Array (3),

i.e., 1,2,3.)

 $A - The 3 \times 3 transformation$

OUTPUT:

EUL - The Euler angles, in "ISEQ" order; ARRAY(3).

ALGORITHM REFERENCE:

Appendix A; Euler angles as a function of the

matrix elements, sequences (1) thru (12).

TRANSFORMATION MATRIX TO THE CULER ANGLES

-	
***	GEOF, IS MATEUL, MATEUL FOR \$383-02/19/77-06:24:25 (,)
1.1 -4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	SUBROUTINE MATEUL ENTRY POINT 000335
	STORAGE USEDS CODE()) OUCUES, DATA() OUCUES, BEANK COMMON(\$)
	EXTERNAL REFERENCES (BLOCK, NAME)
	0003 SQRT 0004 ATAN2 0005 NERR35
•	STORAGE ASSIGNMENT (PLOCK, TYPE, RELATIVE LOCATION, MANE)
	7 3030 T 20301
	DD101 1* . SUBROUTINE MATEUL(ISEQ,A,FUL) D103 2* DIMENSION A(3,3),EUL(3)
	- 00104 3& DIMENSION ISEO(3) 0105 4* I=ISEC(1) 0105 5* J=ISEC(2) 0107 6* K=ISEC(3)
	10113 74 YERK=3 - 10111 9\$ IF(1.Eq.K) IEOK=4095 00113 9* BSIGN=1.0 00114 10* CSIGN=1.0
	- Joirs Ti* IF(T.E0.1) 60 to 10 00117
,	U0124 15♥
	- 30145 26* 50 10 37 - 30145 27* 23 IF(J.NE.3) GO 10 25 - 30147 28* 35164=-1.0
	

	_	- · · · · · · · · · · · · · · · · · · ·	the second temporal second second second second
	T	THANCEONIATION MATHEY TO THE EULED ANGLES	
	ሁ -	TRANSFORMATION MATRIX TO THE EULER ANGLES	
		(CONTINUED)	
	30150 30152	29*	
	30152		
	00153. G0154	25 CSIGN=-1.0 22*	and the same special graphs graphs and the same particles of the same special same and the same same same and the same same same same same same same sam
	J0155	33* 30 00 100 N=1,5	
	00161	- 34¢	
	- 30162 30163		1
	22165	36* IF (N.EC.2) 60 TO 70 37* IF (N.EC.1) 60 TO 55	
		38* IF (JESK.NE.C) 60 10 40	 -
		39* FNS6N=3516N 45* JJ=1	,
	33173	40* JJ=1 41* 50 TO 45	•
•	00174	42* 40 JJ=L	•
		43* IFIESION.GT.C.D) FOSGN=-	<u>C</u>
•	00177 00205	44* 45 [NUK=[NS6]*A([,J) 45* FDEN=FDSGL*A([,J])	
		46* 60 TO 95	• •
	00202	45* FDEN=FDSG.*A(Î,JJ) 46* GO TO 95 47* SU IF(IESK.NE.J) GO TO 55	:
	20234 20265	48# FNSGN=851GN	•
	<u> </u>	49* 1I=K 50* JJ=K	
	98207	51# GO TO AC	
	20213	52* 55 FOSCH=5SIGH	
	00211 - 00213	53* II=L 64* JJ=I	
	50213	55* 66 FNUN=FNSGN*A(J,K) 56* FDCN=FBSGN*A(TI,JJ)	
•	00214	56# FOCK=FUSGH#ACTI, JUI	
	00215 30215	574 GO TG 70 58* 70 IF(IEOK.NE.D) GO TO 80	t
	00223	59# FNUM=CSIG V#A(I,K)	
-	00221	FDEN-SUPI (I.A-AII.KIESZI	
•	50222	51♥ 50 16 9n ·	
	00222 00223 00224	62* 80 FNUMESÓPT (1.0-A(1,1)**2) 63* FDENEA(1,1)	
•	30225	90 EUL(N)=ATAN2(FNUNTFUERT	
	00226 00233	65÷ 100 CONTINUE	• ·
	J0231	66≄ RETURN 67≠ END	
			*
		FUR OF COURTESTION	
		END OF COMPILATION: NO DIAGNOSTICS	F 🕶
•			
		•	
	•		
•			
	<u> </u>		
	••		
	•		
		·	

QMAT NAME:

PURPOSE: Generates the transformation matrix from the given

quaternion.

Q - The quateraion; ARRAY(4). INPUT:

OUTPUT: A - The 3 \times 3 transformation matrix

Equation (15) from Section 2.2. ALGORITHM REFERENCE:

QUATERNION TO THE TRANSFORMATION MATRIX

_	<u></u>		
	3FOP, IS 0MAT, CHA FOR STE3-12/19/77-35:	T 04:19 (,0)	
**************************************	SUBROUTINE QUAT	ENTRY POINT 000077	en descriptions
	STORF DE USED: CODE	G 1 000103; DATA (G) DEULIE; REANK CORN	SM(2)
	· EXTERNAL REFERENCE	S (BLOCK, NAME)	
***************************************	0003 MERR35		•
		THE GOOD R OFFICE PROCESS OF THE SECOND RESERVED TO THE SECOND RESER	
·	0000 200057 INU 0200 R 203024 P6	5530 R 65 2865 TEMP	
	30101 1*	CHO E GUITA E TOUR ATEN AN	
	00103 2± 00104 3± 00105 4±	SUBROUTINE OMATIC,A) OIMENSION O(4),A(5,5) P2=G(2)+3(2) P3=G(3)+0(3)	
-	0106 5* 50167 6* 50110 7*	P4=C(4)+C(4) P5=P2*Q(2) P6=F4*0(4)	***********
- :	50111 6# 30112 9* 30113 10#	TEMP=1.7-P3*0(3) A(1,1)=TEMP=P6 A(2,2)=1.5-P5-P6	·
	30114 110 	A(\$;\$) = te kp - p = 5 P5= P2 = 0(3) P5= P4 = 0(1)	
	00117 14* 00120 15* 00121 16*	A(1,2)=P5-P5 A(2,1)=P5+P6 P5=P2*Q(4)	
	20122 17# 20123 12#	P6=P3@0(1) A(1,3)=P5+P6 A(3,1)=P5-P6 P5=P3@0(4)	
	00125 20* 00126 21*	P5=P2*((1)	
	30127 22* 30130 23* 50131 24* 20132 25*	A(3,2)=P5+P5 RETURN END	
	END OF COMPILA		
D			•
<u></u> .			-
		· · · · · · · · · · · · · · · · · · ·	
		•	

MATQ NAME:

Extracts the positive quaternion from the given **PURPOSE:**

transformation matrix.

A - The 3 \times 3 transformation matrix INPUT:

OUTPUT: Q - The positive quaternion; ARRAY(4).

See Reference 2. ALGORITHM REFERENCE:

******	T		TRANSFORMATION	I MATRIX TO TH	E QUATERNION	
 • • • • • • • • • • • • • • • • •	ស់ គ	FoF -51 OR SPE3-:	12/19/77-36:	04:21 (, 0)		
		SUBBOUT	THE MATO	ENTRY POI	RT DECRUS	
-	1- <u>1-1-1</u>	STORAGE	USCO: CODE	(I) <u>989229</u> ;	DATA (SY DOSU SU:	BEVINE CONNUNCS.
		<u>EXTERN</u>	L REFERENCES	S CLLOCK, NA	ME)	
· · · · · · · · · · · · · · · · · · ·		- 0003 0004	SURT NERRES		· · · · · · · · · · · · · · · · · · ·	
		STORAGE			PE, PELATIVE LO	-
	<u></u>	2020 2020 2020	000013 10L 000111 35L 000015 INJ	0.3-91 0.3-01 0.3-05 0.3-05 0.3-05	307052 1076 1 308006 J	0001 201157 0000 R 001000
		0101 0103	1* ?*	SUBFGUTIN DIMENSION	.E MATQ(A,Q) 1 A(Z,3),G(4),T(4)
	0 ت	3104 0105 0105 0111	3# 4# 5# 6#	I=0 8I6=8.0 00 46 J=1 9(J)=8.0	•	
		0112 0114 9116 6123 9121	7≠ 8≠ 9÷ 10÷	IF(J.EQ.: IF(J.EQ.: Q(J)=1.0	1 60 TO 10 1 60 TO 20 1 50 TO 30 1 1 1 1 1 2 1 2 1 4 1 3 7 3	<u> </u>
		0122 0123 0124 0125	1?* 13*	T(J)=3.7 GO TO 35 13 TEMP=4(1, T(J)=4(3)	1)-A(2,2)-4(3,3 2)-A(2,3)	•
	<u> </u>	0126 2127 0132	15≠	GO TU 35 26 TEMPE-A(1 1(J)=A(1)	1,1)+A(2,7)-A(3, 3)-A(3,1)	3)+1.6
	5	0131 0132 0133 0134	21 	.?)A=(U)T 1.448_TF(TE	1.1)-4(2,2)+A(3, 1)-4(1,2) T.BIG) GO TO 42	
	ე ე	0136 0137 0140 0142 0144	27# 24* 25* 25* 27*	AIG=TEMP I=J 4G CONTINUE IF(I=EG;	3) 60 TO 50 [#508 T(F15)	
	 	0145 0147 0150 0153	28# 20# 30# 31#	IF(I.KE. TEMP=0.2: 00 S0 J= 0(J)=TEM	E) Q(1)=AFS(C.25 5/0(1) 2.4	*T(I)/0(I))
•	د ت	0154 0155	32* 33*	SQ CONTINUE 60 RETURN END		
		0157 EN	34≠ D OF COMPILA		NO DIACNOSTIC	S •
		•		<u></u>	REPRODUCIBU ORIGINAL PAC	

NAME: YPRQ

Generates the quaternion directly from the yaw-PURPOSE:

pitch-roll Euler angles, i.e., a 3, 2, 1 Euler

sequence.

YPR - The yaw-pitch-roll Euler angles; ARRAY (3). INPUT:

QO - The positive quaternion, ARRAY (4). OUTPUT:

Appendix A, the quaternion equations for Euler ALGORITHM REFERENCE:

sequence (10), a 3, 2, 1 sequence.

NOTE: This subroutine calls "POSNOR" to take the normal of the positive quaternion.

YAW-PITCH-ROLL EULER ANGLES TO THE QUATERNION

	T	
	afor, SI YPRO, YPRO FOR 5DE3-92/17/77-36:24:73 (,C)	
<u> </u>	SUBROUTINE YPRQ ENTRY POINT 27C114	****
	SYORAGE USED: CODE(I) 500131: DATA (DI BOODES: BUANK COMMON(2)	l ne
	EXTERNAL REFERENCES (BLOCK, NAME)	
	0003 PUSNOR 0000 COS 0005 SIN	•
	JOC6 NERRSE	
	STORAGE ASSIGNMENT UBLOCK, TYPE, PELATIVE LOCATION, NAME)	
	0900 R 167016 CP 6000 R 087011 CR 0000 P 04700 6906 P 04904 HY 4600 000016 IN4P\$ 3000 R 90000 - 0000 R 769012 SY	
:		
<u> </u>	COLOR	
	70105 5* HR=0.504YFR(3) 70105 5* CY=CUS(HY) 70107 7* CP=CUS(HP) 70110 7* CR=CUS(HP) 70111 8* CR=CUS(HP)	an'
	10112	
	30116 13# 0(2)=CY#CP#SR-SY#SP#CR 00117 14# 0(3)=CY#SP#CR+SY#CP#SR 00123 15# 0(4)=-CY#SP#SP#CR 00121 16# CALL PUSNCR(0,40)	
	30122 17# 9€TUBN 99123 18# END .	
	END OF COMPILATION: NO DIAGNOSTICS.	
· · ·		
,	•	
<u> </u>	REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR	

Page: 38

NAME: POSNOR

<u>PURPOSE</u>: To output the positive and normalized quaternion

from the given quaternion.

INPUT: Q - The quaternion; ARRAY (4).

OUTPUT: Q0 - The positive-normalized quaternion;

ARRAY (4).

ALGORITHM REFERENCE:

). If the sign of Q(1) is negative:

Set
$$QO(I) = -Q(I)$$
 for $I = 1, 2, 3, 4$.

2. Set QO(1) = QO(1)/TEMP

where TEMP = $\sqrt{Q0_1^2 + Q0_2^2 + Q0_3^2 + Q0_4^2}$

	SELECTS THE COSITIVE QUATERNION AND NORMALIZES
	arop.is
lander of the second of the se	SUBROUTINE POSMOR ENTRY POINT 6 20055
	STORAGE USED: CODE(1) 800067; DATA(U) DEDJ17; BUANK COMMON(25) C
	EXTERNAL REFERENCES (BLOCK, MAME)
-	0003 SQRT 0004 NERROS
	STORAGE ASSIGNMENT (BLOCK, TYPE, RELATIVE LOCATION, NAME) 3001 000016 1110 6001 000036 1210 6880 F 000002
	0001 00000 1ERP 600036 1210 6650 1 000000 0001 R 000000 1ERP
	00101 10 SUBFOUTINE POSNOR(0,00) 00103 20 DIMENSION Q(4),Q0(4) 00104 30 TEMP=1.7
	00105 4* IF(U(1).LT.3.3) TEMP=-1.5 00107 5* SUN=L.: 00113 6* DO 5: I=1.4
	SUM=SUM+QO(I) *LO(I) SUM SUM=SUM+QO(I) *LO(I) SUM SUM+QO(I) *LO(I) SUM SUM+QO(I) *LO(I) SUM+QO(I) *LO(I) SUM+QO(I) *LO(I) SUM+QO(I) *LO(I) SUM+QO(I) *LO(I) SUM+QO(I) SUM+QO(I) *LO(I) SUM+QO(I) *LO(I) *LO(I) SUM+QO(I) *LO(I) *
•	CD123
	END OF COMPILATION: NO DIAGNOSTICS.