VE203 Discrete Math

Spring 2022 — HW3 Solutions

March 30, 2022

Exercise 3.1

reflexive: Since $\bigcup \Pi = A$, for any $x \in A$, there exists $B \in \Pi$ such that $x \in B$.

Therefore, $xR_{\Pi}x \Rightarrow T$.

symmetric: $xR_{\Pi}y \Leftrightarrow (\exists B \in \Pi)(x \in B \land y \in B) \Leftrightarrow (\exists B \in \Pi)(y \in B \land x \in B) \Leftrightarrow yR_{\Pi}x,$

so $(xR_{\Pi}y) \wedge (yR_{\Pi}x) \Rightarrow \top$

transitive: $xR_{\Pi}y \Leftrightarrow (\exists B_1 \in \Pi) (x \in B_1 \land y \in B_1)$

 $yR_{\Pi}z \Leftrightarrow (\exists B_2 \in \Pi) (y \in B_2 \land z \in B_2)$

Since $B_1 \cap B_2 \neq \phi$, $B_1 = B_2 = B$ according to the property of partition.

So $(\exists B \in \Pi)(x \in B \land z \in B)$, then $xR_{\Pi}y \land yR_{\Pi}z \Rightarrow xR_{\Pi}z$.

Exercise 3.2

(i) We derive Eq.(1) definition according to the definition.

$$\frac{(x+y+1)(x+y)}{2} + y = 333$$

where $x, y \in \mathbb{N}$.

Reduce Eq.(1)

$$x^{2} + (2y+1)x + (y^{2} + 3y - 666) = 0$$

whose $\Delta x = -8y + 2665$ is a perfect square. Then we use Python to traverse y from 1 to 333 to find all possible pair(x,y).

We finally derive only one pair that satisfies all limitation factor.

$$x = 17, y = 8$$

(ii)
$$f(x,y,z) = \left(\left(\begin{array}{c} x+y+1 \\ 2 \end{array} \right) + y+z+1 \right) + z$$

Exercise 3.3

i) (a) self-reflexive

Since
$$[a, b] = [a, b]$$
,
 $[a, b] \leq_{int} [a, b]$

(b) anti-symmetric

Since both [a, b] and [c, d] are intervals,

$$a \le b$$
 and $c \le d$

Then for

$$[a, b] \leq_{\text{int}} [c, d] \land [c, d] \leq_{\text{int}} [a, b]$$

if $b \leq c \wedge d \leq a$ exist, we derive

$$a \le b \le c \le d$$
 while $d \le a$

contradiction * Therefore, we can only deduce that

$$[a,b] = [c,d]$$

(c) transitive

Let $[a, b] \leq_{\text{int}} [c, d]$ and $[c, d] \leq_{\text{int}} [e, f]$. - If any of the \leq int is valid due to =, the transitivity is trivial. - When $b \leq c$ and $d \leq e$,

$$b \le c \le d \le e$$

where $c \leq d$ since [c, d] is an interval and hence

$$[a,b] \leq_{\text{int}} [c,d] \wedge [c,d] \leq_{\text{int}} [e,f] \Rightarrow [a,b] \leq_{\text{int}} [e,f]$$

ii) (a) self-reflexive

It is trivial that $(x_1, \ldots, x_n) \leq (x_1, \ldots, x_n)$.

(b) anti-symmetric

If $(x_1, ..., x_n) \neq (y_1, ..., y_n)$, and

$$(x_1, \dots, x_n) \le (y_1, \dots, y_n) \quad \Rightarrow \quad \dots x_{k1} < y_{k1}$$
$$(y_1, \dots, y_n) \le (x_1, \dots, x_n) \quad \Rightarrow \quad \dots y_{k2} < y_{k3}$$

Whatever the relative value of k_1 and k_2 , there is contradiction. Therefore

$$(x_1, \dots, x_n) \le (y_1, \dots, y_n) \land (y_1, \dots, y_n) \le (x_1, \dots, x_n) \quad \Rightarrow \quad (x_1, \dots, x_n) = (y_1, \dots, y_n)$$

(c) transitive

If there is a "=", then it is trivial.

Let the k-value for x and y are k_1 and k_2 correspondingly. Then let $k_3 = \min\{k_1, k_2\}$.

Then the disjunction (V) of the two following formula must be true.

$$x_{k3} < y_{k3} = z_{k3}$$
$$x_{k3} = y_{k3} < z_{k3}$$

Namely

$$(x_1,\ldots,x_n)\leq (z_1,\ldots,z_n)$$

iii) We know

$$\begin{cases} \forall a \in P, a \leq_{P} \\ a \leq_{P} b \land b \leq_{P} a \Rightarrow a = b \\ a \leq_{P} b \land b \leq_{P} c \Rightarrow a \leq_{P} c \end{cases}$$

Then, for (P, \leq_{p^d})

$$a \leq_{\mathbf{p}^d} a$$

since $a \leq_{\mathbf{P}} a$.

$$a \leq_{\mathrm{p}^d} b \wedge b \leq_{\mathrm{p}^d} a \Leftrightarrow b \leq_{\mathrm{p}} a \wedge a \leq_{\mathrm{P}} b \Rightarrow a = b$$

Additionally

$$(a,b) \wedge (b,c)$$
, i.e., $b \leq_{\mathbf{p}^d} a \wedge a \leq_{\mathbf{p}^d} b \Rightarrow c \leq_{\mathbf{p}^d} a := (a,c)$

Exercise 3.4

We define a function $\{a_1, a_2, \ldots, a_{sr+1}\} \to \{0, 1, \ldots, n\}$ with $a_i \mapsto (x_i, y_i)$, where x_i is the number of elements after a_i that are not divisible by a_i , and y_i is the length of the longest sequence of elements, each dividing the following one. Then for any $i, j \in \{1, 2, \ldots, n\}$, we have $y_i > y_j$ when $a_j \mid a_i$, or $x_i > x_j$ when $a_i \nmid a_j$. The rest follows from the Pigeonhole Principle.

Exercise 3.5

For the case when $w(P-\{m\}) \neq k-1$, there may not exist any $i_0 \in \{1, \ldots, w(P-\{m\})\}$, such that m is an upper bound of C_{i_0} . We'll give an counter example using the following figure.

Figure 1: problem 3.5

Exercise 3.6

$$f(x) = \begin{cases} 0 & x = 1\\ \frac{1}{\frac{1}{x} - 1} & x = \frac{1}{n} (n \in N^+)\\ x & \text{otherwise} \end{cases}$$

Exercise 3.7

(i) (1) injective

Suppose that there are two functions $f(A_1, B_1) = C$, $f(A_2, B_2) = D$, in which $C = c_1c_2c_3...c_n...c_{2n}$ and $D = d_1d_2d_3...d_n...d_{2n}$. If we let C = D, which means $c_1c_2c_3...c_n...c_{2n}...=d_1d_2d_3...d_n...d_{2n}...$ then we have $c_1 = d_1, c_2 = d_2...c_{2n} = d_{2n}...$ Since $A_1 = c_1c_3...c_{2n+1}...$, $A_2 = d_1d_3...d_{2n+1}...$, we can deduct that $A_1 = A_2$, similarly $A_1 = A_2$. Thus the function is injective.

(2) surjective

For every result of the function C, it can be written as $C = c_1 c_2 c_3 \dots c_n \dots c_{2n} \cdot \{0, 1\}^{\mathbb{N}}$. Then we can find $A = c_1 c_3 \dots c_{2n+1} \dots, B = c_2 c_4 \dots c_{2n} \dots$, that f(A, B) = C. Thus the function is surjective. In this way, the function is a bijection.

(ii) For every element $A \in \{0,1\}^N$, since $\{0,1\}^N$ is a set of countably infinite sequence of 0 and 1, it can be written as $A = a_1 a_2 a_3 \dots a_n$, where $a_i \in \{0,1\}$. As is proved in

(i), it is a bijection.

(iii) (1) injective

Similar to (i), let $h(R_1, S_1) = A$, $h(R_2, S_2) = B$, where $A = 0.r_0s_0r_1s_1...r_ns_n..., B = 0.p_0q_0p_1q_1...p_nq_n...$ If A = B then $0.r_0s_0r_1s_1...r_ns_n... = 0.p_0q_0p_1q_1...p_nq_n...$, then $r_0 = p_0, s_0 = q_0, r_n = p_n, s_n = q_n$. Since $R_1 = 0.r_0r_1...r_n..., R_2 = 0.p_0p_1...p_n...$, we can deduct that $R_1 = R_2$. Similarly $S_1 = S_2$. Thus the function is injective.

(2) not surjective

Let h(A, B) = C, where $C = 0.91919191911...(r_i = 9, s_i = 1)$. Since A = 0.9999999... does not exist, it is not surjective.

(iv) (1) injective

almost the same as proved in (iii)

(2) not surjective

Let h(A, B) = C, where $C = 0.9190909090...(r_i = 9, s_0 = 1, s_i = 0 \text{ for } i > 0)$. B = 0.10000... does not exist since it would be written as 0.0999999.., so it is not surjective.

(v) Let $f:(0,1)\times(0,1)\to(0,1)\Leftrightarrow I\times I\to I$, and $g:(0,1)\to(0,1)\times(0,1)\Leftrightarrow I\to I\times I$. Consider $x=(x_0x_1x_2x_3\cdots)$ and $y=(y_0y_1y_2y_3\cdots)$.

By the definition in (i), $f((x,y)) = z = x_0y_0x_1y_1x_2y_2x_3y_3\cdots x_ny_n\dots$ If $(x,y) \neq (x',y')$, then their decimal expansions are also $z \neq z'$.

Therefore, f is injective. Also, there exists natural injection from $I \to I \times I$. Therefore, g is injective. By injection of f and g, there exists bijection between $(0,1)\times(0,1)\to(0,1)$.

Exercise 3.8

(i) linear poset: (1)

(ii) (iii)

	a	b	c	d	е	f	g	h	i	j	k	1	m	n	О	p
width	3	2	3	3	2	2	3	3	2	2	4	1	2	2	2	2
height	2	3	2	2	2	2	2	2	3	3	1	4	3	2	3	3