

RIYA Program 2024

PROBLEM FORMULATION REPORT

<u>Dynamics of the QZS isolator with Coned Disks</u>

Name: Jacob Thomas Sony

Home Institution: Indian Institute of Technology Bombay

Mentor(s): Prof. R. Singh (OSU) and Dr. P Gilmore (Toyota R&D)

Laboratory: Acoustics & Dynamics Lab + Toyota R&D

Overview

- Vibration Isolation Necessary for many engineering scenarios [1]
- Quasi-Zero Static (QZS) isolators Isolate low frequency vibration without sacrificing load bearing capability [2]
- QZS Isolator Design Strategies -
 - 1. Combining a positive and negative stiffness elements [2]
 - 2. Compact isolators using **coned disk** springs, which have **dynamic stiffness** and **nonlinear force-deflection** regimes [2-3]
- Series Spring Stack (Figure 1) Used to achieve the desired stroke displacement, since a single spring has insufficient stroke

Figure 1: Schematic of a disk spring stack^[4]

Figure 2:
Physical prototype of a disk spring stack^[2]

Properties of Coned-Disk Springs

• Analytical expression [3] for Force $P(\delta)$ vs deflection δ (in the absence of edge friction)

$$P(\delta) = \frac{E\delta\pi}{a^2} \left(\frac{\alpha}{\alpha - 1}\right)^2 \left[(h - \delta) \left(h - \frac{\delta}{2}\right) M + N \right]$$

where

$$\alpha = \frac{a}{b}, M = \left(\frac{\alpha + 1}{\alpha - 1} - \frac{2}{\ln(\alpha)}\right)\tau, N = \frac{\tau^3}{6}\ln(\alpha)$$

E is the Young's modulus

• For $h/\tau \approx 1.41$, the spring stiffness in the vicinity of $\delta = h$ is close to zero, highlighting the **QZS nature**

Figure 3:
Cross-section of a coned-disk spring[3]

Figure 4: Force-deflection curves for coned-disk springs[3]

Effect of Disk-to-Disk variations

- Major Design assumption Identical springs in a stack, but hard to achieve in practice due to manufacturing constraints [3].
- Static load-deflection behavior of spring stack is sensitive to variation in h/τ ratio of different springs, especially when $h/\tau > 1.414$ [3] (snap-through behavior due to negative-stiffness regimes)

Figure 7: Force-deflection curves for 6-spring stacks

Case (a) - Springs with Negative minimum stiffness
Case (b) - Springs with Positive minimum stiffness

Snap-through behavior and directional dependence are clearly visible in Case (a)

Analysis of a 2-Spring Stack

Figure 6: Static model of 2-spring stack^[3]

The height/thickness ratios of the top and bottom springs are h_1/τ and h_2/τ respectively, with force deflection behaviors given by $P_1(\delta)$ and $P_2(\delta)$ respectively.

- δ_{st} is the input displacement and δ_1 is the displacement response coordinate.
- For a given value of δ_{st} , the value of δ_1 can be determined using the **equality of forces** in both springs [3].

$$P_1(\delta_{st} - \delta_1) = P_2(\delta_1)$$

The solution(s) of the above non-linear equation yield the value(s) of δ_1 .

- For a 2-spring stack, there can be 1 or 3 equilibrium-points.
- The stability of each equilibrium point can be determined using the sign of second-derivative of the potential energy.

Figure 7:
Analytical force-deflection curves of different 2-spring stacks

Case (a) $[h_1/\tau, h_2/\tau] = [1.32, 1.36]$ - Only stable equilibria

Case (b) $[h_1/\tau, h_2/\tau] = [1.36, 1.58]$ - Only stable equilibria

Case (c) $[h_1/\tau,h_2/\tau]=[1.58,1.64]$ - Both stable and unstable equilibria

Stable and Unstable equilibrium points are marked with filled and unfilled circles respectively.

PROBLEM FORMULATION

• Goal - To go beyond static analysis and venture into the dynamics of the system!

PROBLEM FORMULATION

Objective 1-

- A. Modeling the non-linear dynamics of a spring stack-mass-damper system with base-excitation
- B. Numerical Simulation of the model to obtain displacement, velocity, and acceleration profiles of the system for time-domain analysis, as well as Force-displacement profiles for physical-domain analysis

Objective 2 -

A. Validation of results obtained in simulation through experiments

Objective 3 -

- A. Investigate the effect of damping, hysteresis and other non-linearities on the dynamics
- B. Frequency domain analysis of the non-linear system
- C. Compare the response of the 2 spring-stack with that of a single spring and the linearized system
- D. Compare the response of a 2 spring-stack consisting of identical springs with that of a spring-stack consisting of non-identical springs.

OBJECTIVE 1A - MODELING

System Sketch

Figure 8 Sketch of a spring stack-mass-damper system

In Figure 8,

m - Mass of the suspended block

c - Damping coefficient of the Damper

 NL_1 - Top conical disk spring with ratio h_1/ au

 $N\!L_2$ - Bottom conical disk spring with ratio h_2/ au

For the mass m,

 δ_{st} is the mean displacement in static equilibrium $x_{st,d}(t)$ is the dynamic displacement

$$x_{st}(t) = \delta_{st} + x_{st,d}(t)$$
 is the total displacement

For the bottom of NL_1 ,

 δ_1 is the mean displacement in static equilibrium

 $x_{1,d}(t)$ is the dynamic displacement

$$x_1(t) = \delta_1 + x_{1,d}(t)$$
 is the total displacement

OBJECTIVE 1A - MODELING

Equations of Motion in the absence of damping

Figure 9 -FBD of mass *m*

Figure 10 -FBD of springs

From Figure 9,

$$m\ddot{x}_{st} = -mg - P_1(x_{st} - x_1)$$

$$P_1(x_{st} - x_1) = P_2(x_1 - x_{base})$$

The state vector x(t) is defined as

$$x(t) = \begin{bmatrix} x_{st}(t) \\ \dot{x}_{st}(t) \end{bmatrix}$$

OBJECTIVE 1B - SIMULATION

MATLAB Simulator Pipeline

$$x(t) = \begin{bmatrix} x_{st}(t) \\ \dot{x}_{st}(t) \end{bmatrix}$$

$$f(x,t) = \begin{bmatrix} \dot{x}_{st}(t) \\ -g - \frac{1}{m}P_1(x_{st} - x_1) \end{bmatrix}$$

$$P_1(x_{st} - x_1) = P_2(x_1 - x_{base})$$

OBJECTIVE 1B - SIMULATION

Preliminary Results

Case 1: $h_1/\tau = 1.41$, $h_2/\tau = 1.41$, c = 0, $x_{base}(t) = 0.25 \sin(80\pi t)$ (in mm) (Identical Springs)

OBJECTIVE 1B - SIMULATION

Preliminary Results

Case 2: $h_1/\tau = 1.32$, $h_2/\tau = 1.36$, c = 0, $x_{base}(t) = 0.25 \sin(80\pi t)$ (in mm) (Non-Identical Springs)

APPENDIX A - REFERENCES

Journal / Conference Papers

- 1. Liu, C., Zhang, W., Yu, K., Liu, T., & Zheng, Y. (2024). Quasi-zero-stiffness vibration isolation: Designs, improvements and applications. In *Engineering Structures*, 301, 117282.
- 2. Gilmore, P., & Gandhi, U. (2021, August). Development of disc spring stack containment methods for vibration isolation. In *INTER-NOISE and NOISE-CON Congress and Conference Proceedings* (Vol. 263, No. 2, pp. 4871-4879). Institute of Noise Control Engineering.
- 3. Gilmore, P., Gandhi, U., & Singh, R. Effect of Disk-to-Disk Variations on the Nonlinear Static Characteristics and Stability Regimes of Coned Disk Spring Stacks: Experimental and Computational Studies of Quasi-Zero-Stiffness Isolators. *Available at SSRN 4799335*.
- 4. "Belleville washer". In Wikipedia.com. URL: https://en.wikipedia.org/wiki/Belleville washer

Software

- 1. Gilmore, P. (2024), MATLAB Code (stack equations solver mm 2springs.m). Personal Communication
- 2. Singh, R. (2024), MATLAB Code (basicFFT.m). Personal Communication

APPENDIX B - LEARNING OUTCOMES

- Understanding the fundamental ideas behind vibration isolation, QZS Isolators and Coned-Disk Springs
- Design aspects of a Coned-Disk Spring Stack such as Containment methods
- Static analysis of a Coned-Disk Spring Stack to study the Force-deflection behavior
- Effect of Disk-to-Disk variations on the quasi-static force-deflection in terms of factors like stability
- Dynamic analysis of a 2-Spring stack using Newton's Laws of Motion
- Simulating a Non-Linear Dynamical system in MATLAB using numerical methods like ode45 with appropriate tolerances.