

Memory

Computer Engineering 2

Motivation

Storing and retrieving data

Agenda

- Memory Technologies
 - PROM, EEPROM and flash, SRAM, SDRAM
- On-CHIP Memories STM32F429ZISRAM
 - SRAM and Flash
- External Memory (Off-Chip)
 - Flexible Memory Controller
- Appendix: Trends and Figures

Learning Objectives

At the end of this lesson, you will be able

- to classify widely used memory technologies
- to discuss the structure and function of an SRAM (static RAM)
- to discuss the structure and function of flash memory
- to outline the structure and function of an asynchronous SRAM device
- to outline how an external asynchronous SRAM device can be connected through the flexible memory controller (FMC)
- to explain how an internal 32-bit access is partitioned into several external half-word or byte accesses
- to interpret timing diagrams for read and write accesses to external, asynchronous SRAMs
- to summarize the differences between a NOR and a NAND flash
- to summarize the differences between a static RAM (SRAM) and a dynamic RAM (SDRAM)

Semiconductor Fundamentals

MEMORY TECHNOLOGIES

Memory Technologies

Semiconductor Memories Non-volatile Volatile Holds data even if power is turned off. Looses data when power is turned off. **EEPROM PROM** Flash NV - RAM **SRAM** SDRAM Electrically Erasable non-volatile RAM Synchronous Dynamic Programmable Read Only Block-wise EEPROM Static Random Access PROM Memory Random Access Memory Memory NOR Mask SDR nvSRAM programmed Random read access Single Data Rate Block-wise erase (factory) Fusible NAND **FRAM** DDR One-time programmable Block-wise read Ferroelectric RAM Double Data Rate (OTP) Block-wise erase

Units

Unit Symbols

- b = bit B = Byte
- Memory Chips
 - Binary prefixes according to JEDEC¹⁾ and IEC²⁾
 - Kilo K = 1024
 - Mega M = 1024×1024 = 1'048'510
 - Giga G = $1024 \times 1024 \times 1024$ = 1'073'741'824
 - Tera T = 1024 ^ 4 = 1'099'511'627'776 (nearly 10 % more than SI prefix)

Hard Disks

- Often use SI (or metric) prefixes
 - Kilo k = 1000
 - Mega M = 1000×1000
 - Giga G = $1000 \times 1000 \times 1000$
 - Tera T = 1000 ^ 4

- 1) JEDEC Solid State Technology Association
- 2) International Electrotechnical Commission

Memories Are Arrays of Bit Cells

■ Memory Architecture → n x m array

■ Bit cell → stores '1' or '0'

n words with m data bits

PROM – Programmable Read Only Memory

n x m array

→ n addresses with m data bits

n = number of word linesm = number of bit lines

Example 512 x 4 bit

Fusible Transistors

Programming applies higher voltage to destroy transistors (blow fuses)

Process is <u>not</u> reversible

Word line = '1'

→ transistor shortens bit line to GND

Word line = '0'

→ transistor open; pull-up pulls bit to Vcc

Transistor destroyed (fused)

→ always open, i.e. pull-up pulls
bit line to Vcc

EEPROM and Flash

Making PROMs Reprogrammable

- "Floating Gate" transistor
 - Replace fusing by reprogrammable "Floating Gate"
- Write cell to '0' → ON
 - High voltage Up deposits charge on floating gate (isolated by SiO2)
 - Transistor ON (conducting) if control gate equal '1'
- Erase cell to '1' → OFF
 - Discharge floating gate with negative Up
 - Transistor is OFF, i.e. blocking independent of value on control gate
- EEPROM
 - High cell area → low density, high cost per bit
- Flash
 - Erasing can only be done for whole sectors
 → small cell area, high density, low cost per bit

EEPROM and Flash

Use 'Floating Gates' instead of 'Fusible Transistors'

to control gate ON OFF

word line connected

programmed erased

ZHAW, Computer Engineering 11

Flash

Write Operations (Programming)

- Can only change bits from '1' to '0'
 - Otherwise, an erase operation is required
- Word, half-word or byte access possible
- Writing a double word ~16 us
 - I.e. around 1000 times slower than SRAM

Erase Operations

- Change all bits from '0' to '1'
 - Only possible by sector or by bank, not on a word
 - Typical sector sizes of 16
- Erase of a 128 Kbytes sector takes between 1 and 2 seconds ¹⁾
- Endurance: 10'000 erase cycles ²⁾
- Sector may not be accessed (write or read) during erase
 - I.e. execute program from another sector or from SRAM during erase
- 1) Depending on supply voltage and configuration parameters
- 2) Value from STM32F429ZI datasheet

Flash – NOR vs NAND Topology

07.02.2024 ZHAW, Computer Engineering source of drawings: Wikipedia 13

n x m SRAM Architecture

→ flip-flop (latch) based cells

Structure of SRAM cell in NMOS¹⁾

Flip-flop (latch) based structure, change from '1' to '0'

1) N-type metal-oxide-semiconductor logic

Read and write

- All accesses take roughly the same time
- Access time independent of location of data item in memory
- Access time independent of previous access¹⁾

Volatile

Memory content retained only as long as device is powered

Static

- Storage elements similar to flip-flops / latches
- No refresh required
 - refresh: periodic reading and rewriting of memory cell to maintain the content

Asynchronous SRAM Device

Asynchronous SRAM

Asynchronous SRAM Device

I.e. the device does not have a clock signal.

Alternatively the control logic can be represented with a truth table

CS	ŌE	WE	I/O	Function
L	L	Н	DATA OUT	Read Data
L	Χ	L	DATA IN	Write Data
L	Н	Н	HIGH-Z	Outputs Disabled
Н	Χ	Χ	HIGH-Z	Deselected

Some memory vendors call the signal CE (chip enable) instead of CS

ZHAW, Computer Engineering 07.02.2024 19

Asynchrones SRAM

Read Access

Timing Waveform of Read Cycle No. 1(1)

Write Access

Timing Waveform of Write Cycle No. 1 ($\overline{\textbf{WE}}$ Controlled Timing) $^{(1,2,4)}$

Synchronous Dynamic Random Access Memory

- Information stored as charge in capacitor
- High integration
 - Large memories at low cost
 - Allows to store large amounts of data
- Leakage current → Loss of charge
 - Capacitor holds charge only for a few milliseconds
 - Charge has to be refreshed periodically → dynamic
 - Refresh logic usually located on SDRAM device

Trench Cell

https://www.youtube.com/watch?v=3s7zsLU83bY

SDRAM Structure

Row and column addresses multiplexed

Organization e.g. 512 x 8-bit 64 x 64 bit storage matrix row address $A_5 ... A_0$ column address $A_2 ... A_0$ data D₇ .. D₀

ZHAW, Computer Engineering

Synchronous Interface

- Multiplexed row and column addresses
- Clocks up to 1200 MHz

RAS low → The master places the 6-bit row address on lines A[5:0].

CAS low → The master places the 3-bit column address on lines A[2:0]. Lines A[5:3] are unused.

Static RAM (SRAM)	Synchronous Dynamic RAM (SDRAM)	
Flip-flop/latch → 4 Transistors / 2 resistors	Transistor and capacitor	
word line !!b	word line	
Large cell Low density, high cost Up to 64 Mb per device	Small cell High density, low cost Up to 4 Gb per device	
Almost no static power consumption • Static i.e. no accesses taking place	Leakage currents Requires periodic refresh	
Asynchronous interface (no clock) • Simple connection to bus	Synchronous interface (clocked) Requires dedicated SDRAM Controller	
All accesses take roughly the same time • ~5ns per access → 200 MHz • Suitable for distributed accesses	Long latency for first access of a block • Fast access for blocks of data (bursts) • Large overhead for single byte	

Memory Technologies

Our System

ON-CHIP MEMORIES STM32F429ZI

CT System Overview

Simplified Model STM32F429ZI

On-chip system bus 32 data lines, 32 address lines and control signals

On-chip Memory: SRAM

Address Regions

SRAM1 112K bytes

SRAM2 16K bytes

SRAM3 64K bytes

CCM 64K bytes

CCM: Core Coupled Memory – Fast memory exclusively addressable by the CPU.

On-chip Memory: Flash

Flash

- Non-volatile memory
 - Memory content retained after power off
- Store code and persistent data
- NOR topology
 - Like most on-chip flash memories

Persistent Data denotes information that is infrequently accessed and not likely to be modified.

Source: Wikipedia

On-chip Memory: Flash

Flash Is Partitioned into Sectors

- Sectors can only be erased as a whole
- Writing through control registers no direct memory write accesses

17674.	Bank 1	Sector 0	0x0800'0000 - 0x0800'3FFF	16 Kbytes	
		Sector 1	0x0800'4000 - 0x0800'7FFF	16 Kbytes	
		Sector 2	0x0800'8000 - 0x0800'BFFF	16 Kbytes	
		Sector 3	0x0800'C000 - 0x0800'FFFF	16 Kbytes	
		Sector 4	0x0801'0000 - 0x0801'FFFF	64 Kbytes	total 2 Mbytes
		Sector 5	0x0802'0000 - 0x0803'FFFF	128 Kbytes	
		Sector 11	0x080E'0000 - 0x080F'FFFF	128 Kbytes	
HZCINI O B		Sector 12	0x0810'0000 - 0x0810'3FFF	16 Kbytes	
		Sector 13	0x0810'4000 - 0x0810'7FFF	16 Kbytes	
	Bank 2	Sector 14	0x0810'8000 - 0x0810'BFFF	16 Kbytes	tol
		Sector 15	0x0810'C000 - 0x0810'FFFF	16 Kbytes	
	Dalik Z	Sector 16	0x0811'0000 – 0x0811'FFFF	64 Kbytes	
		Sector 17	0x0812'0000 - 0x0813'FFFF	128 Kbytes	
		Sector 23	0x081E'0000 – 0x081F'FFFF	128 Kbytes	

On-chip Memory: Flash

Flash Has Higher Latency

- Read requires up to 8 Wait States¹⁾ on on-chip bus
- ST uses 128-bit buffer with pre-fetch queue
 - Reduces performance penalty when executing sequential instructions

1) depending on clock frequency and supply voltage

Extending Our System

EXTERNAL MEMORY (OFF-CHIP)

CT System Overview

Simplified Model STM32F429ZI

On-chip system bus
 32 data lines, 32 address lines and control signals

External bus
 16 data lines, 26 address lines and control signals

External Memory

Flexible Memory Controller

■ FMC – Configurable Bus Bridge

- Bridge between system bus and external bus
 - Slave on system bus
 - Master on external bus
- System bus accesses
 - In address range 0x6000'0000 to 0xDFFF'FFF
 - Bridged to external bus
 - I.e. FMC initiates a bus cycle on external bus

Number of data lines is a design decision and depends on the external memory device

Flexible Memory Controller

Different Number of Data Lines Causes Bottleneck

- E.g. 32-bit (word) access to 8-bit external memory 1)
 - Single access on system bus
 - Results in 4 accesses on external bus
 → increases access time by factor 4

Implementation FMC

- CPU write to memory
 - Address and data stored in FMC FIFO buffer
 - Avoids wait for slow memory
 - Free system bus for other accesses
- CPU read from memory
 - System bus has to wait until external memory device provides data

Flexible Memory Controller

- Writing a 32-bit Word from System Bus (32 Data Lines)
 - to a 32-bit wide external memory (32 data lines)

to a 16-bit wide external memory (16 data lines)

to an 8-bit wide external memory (8 data lines)

- Word stored in FMC-FIFO
- System bus is released for other accesses
- FMC-FIFO content is transferred to external memory using 1 to 4 bus cycles

Flexible Memory Controller

system bus has to wait until all data is available

Reading a 32-bit Word from

a 32-bit wide external memory (32 data lines)

a 16-bit wide external memory (16 data lines)

an 8-bit wide external memory (8 data lines)

Flexible Memory Controller

39

■ FMC – Memory Banks¹)

- ST defined address ranges for each type of memory
- Organized in 6 banks
- Each bank allows connection of 4 devices
- Pins are multiplexed
 - Not possible to fully use all the banks simultaneously

Memory banks and their location in memory

¹⁾ An organizational unit of memory. Bank size is architecture dependent

Memory Banks and their Locations in Memory

■ FMC – SRAM (Bank 1)

- Select one out of four SRAM devices
 - Address bits 27:26 → Encoded in signals NE[4:1]

A[27:26]	Enable	Memory Device
00	NE[1]	SRAM 1
01	NE[2]	SRAM 2
10	NE[3]	SRAM 3
11	NE[4]	SRAM 4

- Data bus configured in control registers
 - Example

•	SRAM1 as 32-bit	→ D[31:0]
•	SRAM2 as 8-bit	→ D[7:0] only
>	SRAM3 as 16-bit	→ D[15:0] only

SRAM4 as 32-bit \rightarrow D[31:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FMC Signals for SRAMs

Prefix 'N' → active-low signal

FMC signal name	I/O	Function	
A[25:0]	OUT	Address bus	
D[31:0]	INOUT	Data bidirectional bus	
NE[4:1]	OUT	Four enable lines 1)	
NOE	OUT	Output enable	
NWE	OUT	Write enable	
NBL[3:0]	OUT	Byte enable	

see "Synchronous Bus" in slide set "Microcontroller Basics"

- Write accesses: NBL[3:0] indicate which bytes shall be updated (see lab)
 - Example 32-bit data bus D[31:0]

•	W	ord	access
	vv	OIU	access

$$\rightarrow$$
 all four bytes NBL[3:0] = 0000b

$$\rightarrow$$
 two out of four bytes e.g. NBL[3:0] = 0011b

$$\rightarrow$$
 one out of four bytes e.g. NBL[3:0] = 1011b

Example 32K x 8-bit SRAM

Connecting an external 8-bit asynchronous SRAM device

Memory Banks and their Locations in Memory

■ An alternate view → use additional sheet

STM32F429 Flexible Memory Controller (FMC) Decoding

Connecting 8-16-32 Bit Memories to 32-bit Processors

8-bit wide memory

Flexible Memory Controller

0x0 = b0000 0x1= b0001 0x2= b0010 0x3= b0011 0x4= b0100 0x5= b0101 0x6= b0110 0x7= b0111 0x8 = b1000

Connecting 8-16-32 Bit Memories to 32-bit Processors

32-bit wide memory

Connecting 8-16-32 Bit Memories to 32-bit Processors

Controlling Byte or Half Word Write Cycles

NBL(1)

CT System Overview

Example (revisited)

Memory map of our previous 32K x 8 bit SRAM

Read Access

Timing Waveform of Read Cycle No. 1(1)

Write Access

Timing Waveform of Write Cycle No. 1 ($\overline{\textbf{WE}}$ Controlled Timing) $^{(1,2,4)}$

Timing on External Bus

As seen from the microcontroller

Read Access

Figures from STM32F4xxx reference manual p. 1591, chapter 37, Flexible Memory Controller

Write Access

HCLK is the clock period of the CPU and the internal data bus

Configuration of FMC

- Location of FMC control registers
 - 0xA000'0000 0xA000'0FFF
- Configure FMC according to SRAM datasheet
 - Data bus size → 8-bit, 16-bit, 32-bit
 - Access times
 - and others

The FMC Registers allow configuration for many different memory types. However we only cover a few selected parameters for asynchronous SRAM.

Configuring the FMC for SRAM

ADDSET and DATAST

→ Adapt STM32F4 to the speed of the memory

- Configuring length of access cycles
- HCLK programmed to 84 MHz during start-up of CT-Board
 - HCLK = Frequency of CPU and internal bus

Write Access

Conclusions

Semiconductor Memories

NV-RAM

non-volatile RAM

Non-volatile

Holds data even if power is turned off.

PROM

Programmable Read Only Memory

- Programmed through fuses/masks
- Factory or one time user programmed
- Irreversible programming

EEPROM

Electrically Erasable PROM

- Floating gate technology
- Random read and write
- Low density→ expensive

Flash

Block-wise EEPROM

- High density
- Medium read latency
- Sectors for erasing
- NOR: random read access → allows direct code execution
- NAND: High density, block-wise access SD-cards, SSD

Volatile

Looses data when power is turned off.

SRAM

Static Random Access Memory

- Flip-flop based structure
- Static: No refresh required
- Each access requires the same amount of time

SDRAM

Synchronous Dynamic Random Access Memory

- Capacitor-based
- Refresh
- High density
- Synchronous interface
- Latency
- Block-wise transfers

Flexible Memory Controller STM32

Configurable bridge to connect external memories → e.g. asynchronous SRAM, NOR flashes, etc.

For Information Only

TRENDS AND FIGURES

SDRAM – Synchronous Dynamic RAM

SDR Single Data Rate

DDR Dual Data Rate
uses rising and falling clock edge

Non-volatile Memory – Flash Densities

