2019 Putnam B1

Tristan Shin

7 Dec 2019

(filler)

The answer is 5n+1. When n=0 this is clearly true.

An easy descent argument implies that the solutions to $x^2+y^2=2^n$ are $(\pm 2^{\frac{n}{2}},0)$ and $(0,\pm 2^{\frac{n}{2}})$ if n is even, or $(\pm 2^{\frac{n-1}{2}},\pm 2^{\frac{n-1}{2}})$ is n is odd.

Now, we count the number of squares in P_n that use an element from $P_n \setminus P_{n-1}$. Check that the convex hull of P_n is the square formed by the vertices in $P_n \setminus P_{n-1}$. So such a square must two edges along the sides of the large square. This only produces two types of squares: the big square formed by $P_n \setminus P_{n-1}$; and the four smaller squares which use one vertex in $P_n \setminus P_{n-1}$, two vertices in $P_{n-1} \setminus P_{n-2}$, and the vertex (0,0). So there are 5 such squares.

This immediately implies by induction that the total count is 5n + 1 as desired.