

Distributed Deep Learning for Multi-Label Chest Radiography Classification

Maram Monshi, Josiah Poon & Vera Chung

Problem

- Chest radiography (CXR) supports the diagnosis and treatment for a series of thoracic diseases like pneumonia
- Recent automatic classifiers use deep learning but:
- Neglect label co-occurrence & interdependency
- > Fail to make full use of accelerators
- Result in inefficient & computationally expensive models
- **CXR** classifiers' performance can be improved by:
- > Leveraging label co-occurrence (Chen et al., 2020)
- > Selecting the optimal CXR format (Sabottke and Spieler, 2020)
- > Training with an efficient approach

Fig 1. CXR Classification

(Positive \ Negative)

Literature

- **Binary classification with Convolution Neural Network (CNN)**
- > CheXNet (Rajpurkar et al., 2017)
- > TieNet (Wang et al., 2018)
- > MultiViewModel (Monshi et al., 2019)
- > VGG16-based model (Yarnall, 2020)
- **Multi-label classification**
- > Chexclusion (Seyyed-Kalantari et al., 2020)
- > Latent-space self-ensemble (Hou et al., 2021)
- > VSEGCN (Hou et al., 2021)

They did not consider pathology correlation & ignored labels relation

We extended this wave of research using more efficient training methods

Method

Dataset:

- 1. MIMIC-CXR (Johnson et al., 2019) 377,110 $\stackrel{\text{preprosessing}}{\longrightarrow}$ 356,225 CXRs
- 2. Chexpert (Irvin et al., 2019) 224,316 ** 212,498 CXRs
- > U-zeros method
- Split (80-10-10)

Iau	IG T.	ΡU	SIL	IVE	la	ne	ı CC	J-U	CC	uii	EII	CE			
Label	% of all	% of	labe	l co-c	occur	rence									
	data	At	Ca	Со	Ed	EC	Fr	LL	LO	NF	PE	PO	Pa	Px	SD
Atelectasis (At)	16	100	12	6	27	5	4	3	43	0	49	1	2	9	60
Cardiomegaly (Ca)	13	14	100	5	43	7	3	2	48	0	44	1	2	3	58
Consolidation (Co)	7	14	10	100	21	4	3	5	38	0	50	2	7	5	52
Edema (Ed)	25	17	22	6	100	4	2	2	53	0	51	1	2	3	64
Enlarged Cardiom. (EC)	14	18	6	20	20	100	6	5	48	0	36	2	1	7	52
Fracture (Fr)	4	14	9	4	11	7	100	4	40	0	27	3	2	12	40
Lung Lesion (LL)	4	11	7	8	9	6	4	100	58	0	36	3	5	9	35
Lung Opacity (LO)	50	13	12	5	26	5	3	5	100	0	49	2	4	9	58
No Finnding (NF)	11	0	0	0	0	0	0	0	0	100	0	0	0	0	39
Pleural Effusion (PE)	41	19	14	9	31	5	3	4	61	0	100	1	2	8	61
Pleural Other (PO)	2	11	9	9	9	5	8	9	53	0	26	100	4	7	39
Pneumonia (Pa)	3	10	8	17	20	3	2	8	67	0	29	2	100	2	29
Pneumothorax (Px)	9	16	4	4	8	4	5	4	47	0	34	1	1	100	60
Support Devices (SD)	55	17	13	7	29	5	3	3	53	8	46	1	2	10	100

Table 1: Positive label co-occurrence

» Data Augmentation:

To increase the accuracy of detecting abnormalities from CXRs (Monshi et al., 2021)

Fig 2. Data Augmentation

» CNN Architecture:

> Xclassifier is based on Dense CNN (DenseNet-121) (Huang et al.,2017)

Due to its success in CXRs classification (Rajpurkar et al., 2017) (Yao et al., 2017) (Mo and Cai, 2019) (Chen et al., 2020) (Bressem et al., 2020)

Fig 3. Dense block

» Antialiasing & Subsampling:

> Insert a blur kernel m x m before each downsampling step in DenseNet

This increases ImageNet (Zhang, 2019) & CXR classification accuracy

over one GPU &

 $Relu \circ Conv_{k,s} \rightarrow BlurPool_{m,s} \circ Relu \circ Conv_{k,1}$

Table 2: DenseNet-121 variations models and training performance								
Model	Description	Accuracy	AUC					
DenseNet-121	Single 7x7 convolution layer with no anti-aliasing layer	90.69	81.34					
DenseNet-121d	Three 3x3 convolution layers with no anti-aliasing layer	90.73	81.28					
DenseNetblur-121d	Three 3x3 convolution layers with anti-aliasing blur pool	90.80	81.96					

Distributed Data Parallel (DDP): (Li et al., 2019)

Use 64 CXRs (batch size) for each of the DDP provides 4x speed-up 4 GPUs to accelerate convergence

				-	uc			ucc	
NVID	IA-SMI	460.7	3.01	Driver	Version	: 460.	73.01	CUDA Versio	on: 11.2
GPU Fan	Name Temp	Perf	Persist Pwr:Usa		Bus-Id 		Disp.A ry-Usage	GPU-Util	Uncorr. ECC Compute M. MIG M.
0 N/A	Tesla 48C		-SXM2 171W /				04.0 Off 16160MiB	94%	0 Default N/A
1 N/A	Tesla 47C	V100- P0	-SXM2 90W /	Off / 300W			05.0 Off 16160MiB	92%	0 Default N/A
2 N/A	Tesla 47C	V100- P0	-SXM2 88W /	Off / 300W			06.0 Off 16160MiB	95%	0 Default N/A
3 N/A	Tesla 48C	V100- P0	-SXM2 67W /	Off ' 300W			07.0 Off 16160MiB	94%	0 Default N/A
Proc GPU	esses: GI ID	CI	Pl	D Ty	pe Pro	cess n	ame		GPU Memory Usage
0		N/A	2905				a/bin/py		12707MiB
1 2		N/A N/A	2905 2905				la/bin/pyt la/bin/pyt		12729MiB 12065MiB
- 2	N/A	N/A	2905				a/bin/py		12003MIB

Fig 4. Visualizing DDP

 $1.14 \times$ to $3.35 \times$ speed-up over data parallel Table 3: Training approaches and training performance

Accuracy AUC Avg. time per epoch (min) Training Approach Dataset Single GPU (1 x GPU) 88.09 CheXpert 78.55 88.36 79.25 Data parallel (4 x GPUs) CheXpert 14 DDP (4 x GPUs) CheXpert 88.33 80.10 Data parallel (4 x GPUs) MIMIC-CXR 90.27 80.97 181 MIMIC-CXR 90.31 81.76 DDP (4 x GPUs)

Implementation

Evaluation

Table 4: Image formats for chest x-rays and training performance

JPEG 89.58 81.57 6 Digital Imaging and Communications in Medicine (DICOM) Store medical imaging data Implement deep learning models DICOM did not improve accuracy & took significantly more time to train than JPEG	Chest x-ray format	Accuracy	AUC	Avg. time per epoch (min)	
Digital Imaging and Communications in Medicine (DICOM) Store medical imaging data Implement deep learning models DICOM did not improve accuracy & took significantly more time to train than 1PFG	DICOM	89.40	80.02	111	
Store medical imaging data Implement deep learning models DICOM did not improve accuracy & took significantly more time to train than 1PFG	JPEG	89.58	81.57	6	
DICOM did not improve accuracy & took significantly more time to train than 1PFG			ations		
DICOM did not improve accuracy & took significantly more time to train than 1PFG	Store medical imagi	ng data		Implement deep learning models	
	1000 - 1500 - 2000 -	2000 2500 3000			accuracy & took significantly more time to

Table 5: Comparing the Xclassifier with the benchmark

Multi-label classifier	Dataset	Accuracy	AUC
Latent-space self-ensemble (Gyawali et al., 2019)	CheXpert	_	66.97
CheXclusion (Seyyed-Kalantari et al., 2020)	CheXpert		80.50
Xclassifier	CheXpert	89.61	83.89
VSE-GCN (Hou et al., 2021)	MIMIC-CXR	_	72.10
CheXclusion (Seyyed-Kalantari et al., 2020)	MIMIC-CXR	_	83.40
Xclassifier	MIMIC-CXR	92.17	84.10
edema; lung opacity; pleural effusion atelectasis; edema	lun	g lesion; support de	vices

Xclassifier improves multi-label classification performance by 0.70% AUC on MIMIC-CXR & by 3.39% AUC on CheXpert

Fig 6. Correct output sample by the Xclassifier Model

Conclusion

Contribution:

- Propose Xclassifier, an efficient multi-label classifier that trains enhanced **DenseNet-121** with blur pooling to detect 14 observations from CXRs
- It accomplishes an ideal memory utilization, GPU computation, & high AUC on two large chest radiography datasets, MIMIC-CXR & CheXpert
- **Future Work:**
- Investigate the use of DICOM in detecting diseases with small & complex structures to offer a greater degree of understanding of our initial findings
- Concatenate patient data like age and gender to the flattened layer to improve prediction

References:

essem et al., (2020). Comparing different deep learning architectures for classification of chest radiographs. Chen et al., (2020). Label co-occurrence learning with graph convolutional networks for multi-label chest x-ray classification. Monshi et al., (2019). Convolutional neural network to detect thorax diseases from multi-view chest x-rays. Gyawali et al., (2019). Semi-supervised learning by disentangling and self-ensembling over stochastic latent space. Hou et al., (2021). Multi-label learning with visual-semantic embedded knowledge graph for diagnosis of radiology imaging. Huang et al., (2017). Densely connected convolutional networks. rvin et al., (2019). Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison ohnson et al., (2019a). MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Li et al., (2020). PyTorch Distributed: Experiences on Accelerating Data Parallel Training. Mo & Cai (2019) Deep learning based multilabel chest x-ray classification with entropy weighting loss

Monshi et al., (2021). CovidXrayNet: Optimizing Data Augmentation and CNN Hyperparameters for Improved COVID-19 Detection from CXR. Rajpurkar et al., (2017). Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning Sabottke et al., (2020). The effect of image resolution on deep learning in radiography Seyyed-Kalantari et al., (2020). CheXclusion: Fairness gaps in deep chest X-ray classifiers Wang et al., (2018). Tienet: Text-image embedding network for common thorax disease classification and reporting in chest x-rays.

Yao et al., (2017). Learning to diagnose from scratch by exploiting dependencies among labels. Yarnall (2020). X-Ray Classification Using Deep Learning and the MIMIC-CXR Dataset. Zhang (2019). Making convolutional networks shift invariant again.