Zadanie projektowe 2

Michał Puścian 305995

10czerwca $2021\,$

Spis treści

1	Treść zadania	2
2	Metoda Simpsona 2.1 Zbieżność metody	2 2
n	2.2 Dokładność metody	2
3	Algorytm	2
	3.1 simpson	2
	3.2 goertzel	3
4	Przykłady	3
	4.1 Standardowa funkcja	3
	4.2 Całka na dużym przedziale oraz długi wektor współczynników	4
	4.3 Przypadek gdy współczynniki są zespolone	5
5	Wpływ ilości podziałów przedziału na dokładność kwadratu-	
	ry	5
	5.1 Wykres	6
	5.2 Obserwacje	6
6	Dokładność wyników w zależności od długości wektora współ-	
	czynników	6
	6.1 Wykres	7
	6.2 Obserwacje	7
7	Wnioski	7
8	Literatura	8

1 Treść zadania

32. Metoda Simpsona obliczania przybliżonej wartości całki $\int_a^b f(x)dx$, gdzie

$$f(x) = \sum_{k=1}^{n} a_k \sin kt.$$

Do obliczania wartości f(x) zastosować metodę Goertzela.

2 Metoda Simpsona

Na początku przypomnijmy co to kwadratury:

Kwadratury (czyli wzory przybliżonego całkowania) pozwalają obliczyć przybliżoną wartość całki I(f). Będziemy rozważać kwadratury postaci

$$S(f) = \sum_{k=0}^{n} A_k f(x_k)$$

gdzie - punkty $x_k \in [a, b]$, dla k = 0, ..., n, oraz $x_k \neq x_j$ dla $k \neq j(k, j = 0, ..., n)$ nazywane są węzłami kwadratury,

- A_k , dla $k=0,\ldots,n$, są współczynnikami kwadratury; są to stale niezależne od f.

Złożony wzór Simpsona po przekształceniu ma postać:

$$S(f) = \frac{H}{6} \left(f(a) + f(b) + 2 \sum_{k=1}^{N-1} f(a+kH) + 4 \sum_{k=0}^{N-1} f\left(a+kH + \frac{H}{2}\right) \right).$$

2.1 Zbieżność metody

Jako że sinus jest funkcją ciągłą to kwadratura Simpsona jest zawsze zbieżna dla takiej funkcji.

2.2 Dokładność metody

Dokładność naszej metody będzie zależała głównie od ilości przedziałów na jaką dzielimy nasz przedział od a do b. Im większa ta ilość tym otrzymamy dokładniejszy wynik.

3 Algorytm

3.1 simpson

Funkcja główna simpson przyjmuje argumenty:

- 1. a_k ciąg naszych współczynników przy sinusach
- 2. a początek przedziału całkowania
- $3. \ b$ koniec przedziału całkowania
- 4. N Na ile przedziałów dzielimy przedział od a do b

Działanie funkcji:

Na początku obliczamy sumy

$$\sum_{k=1}^{N-1} f(a+kH) + 4$$

oraz

$$\sum_{k=0}^{N-1} f\left(a + kH + \frac{H}{2}\right)$$

a potem obliczamy już pożądaną wartość S(f). Do obliczania wartości funkcji w punkcie wykorzystujemy funkcję goertzel.

Funkcja zwraca:

1. wynik - Wartość całki przy wykorzystaniu kwadratury Simpsona

3.2 goertzel

Funkcja przyjmuje tablice współczynników przy sinusach oraz dany punkt t
 po czym stosuje algorytm Goertzela dla punktu z = $\cos t$ + isint co daje nam
 wartość funkcji w punkcie.

4 Przykłady

4.1 Standardowa funkcja

$$an = [1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9]; a=0; b=10;$$

>> simpson(an,a,b,1000)

metodasimpsona =

```
11.7655

blad =
3.3838e-08

czas_simpsona =
0.0185

czas_matlaba =
0.1758

4.2 Całka na dużym przedziale oraz długi wektor współczynników
```

```
an = [7 548 5 4 3 9 459 58 4 37 475 85 9 59 3 47 6 8 37 4 7 9 7 5];
a=5;
b=1000;
>> simpson(an,a,b,50000)
metodasimpsona =
    -130.0102
blad =
    3.9575e-05
czas_simpsona =
    0.2083
czas_matlaba =
    0.1577
```

4.3 Przypadek gdy współczynniki są zespolone

```
an= [1 3+5j 3 1-7j]; a=-5; b=0;
>> simpson(an,a,b,1000)
metodasimpsona =
    -5.4942 + 0.5242i
czas_simpsona =
    0.0168
czas_matlaba =
    0.0159
blad =
    7.4235e-11
```

5 Wpływ ilości podziałów przedziału na dokładność kwadratury

Funkcja simpson została zastosowana na całce z przykładu drugiego, przy zmieniającej się ilości podziałów przedziału od 1 do 40000

5.1 Wykres

5.2 Obserwacje

Zgodnie z przewidywaniami im więcej podziałów przedziału całkowania, tym dokładniejszy wynik dostaniemy. Z wykresu możemy również zauważyć że dokładność wyniku rośnie coraz mniej wraz z ilością wykonanych podziałów.

6 Dokładność wyników w zależności od długości wektora współczynników

Funkcja simpson została zastosowana na i-liczbie funkcji. Dla i-tej funkcji wektor współczynników to wektor postaci [1 1 1 1...1] długości i, a liczba podziałów to 5000. Wyniki błędu, między funkcją simpson a funkcją matlabową, zostały zapisane do tablicy i przedstawione na wykresie.

6.1 Wykres

6.2 Obserwacje

Została zastosowana skala logarytmiczna. Długość podanej sumy sinusów zdaje się mieć kluczowe znaczenie pod względem dokładności wyniku funkcji simpson. Możemy zauważyć że na początku błąd rośnie w tempie większym niż wykładniczym, lecz zmienia się to w czasie i już po pewnym momencie rośnie dużo wolniej niż funkcja wykładnicza. Możemy również zaobserwować schemat wyglądu naszego błędu.

7 Wnioski

Po przeanalizowaniu wykresów oraz różnych przykładów funkcji można wysnuć różne wnioski. Przede wszystkim okazało się że zarówno ilość podziału przedziału, jak i długość wektora współczynników zdaje się mieć kluczową rolę w dokładności funkcji simpson. Możemy z pewnością powiedzieć że jeśli chcemy użyć dłuższej sumy sinusów to powinniśmy również proporcjonalnie zwiększyć ilość podziałów naszego przedziału (a,b).

8 Literatura

 $\label{lem:lem:madmn_zima_2020-21/mn_pliki/Zapiski_numeryczne_MAD.pdf} $$ \text{MADMN}_zima_2020-21/mn_pliki/Zapiski_numeryczne_MAD.pdf}$

http://pages.mini.pw.edu.pl/~wrobeli/MADMN_zima_2020-21/mn_pliki/Algorytm_Goertzela.pdf