Datum:		Třída:
4.1.2024	Střední průmyslová škola, Chomutov, Školní 50, příspěvková organizace	A4
Číslo úlohy:		Jméno:
11.	Kamerový systém pro automatickou inspekci I.	T. Kubanek

Zadání:

Vytvořte program pomocí aplikace NI Vision Builder AI, který má za úkol pomocí průmyslové kamery vyhodnotit správnou výšku destičky, průměr kruhů, správnost čárového kódu a nápisu. Zároveň by měl program komunikovat s modelem kruhového dopravníku přes sběrnici RS232.

Schéma zapojení:

Použité přístroje:

Název přístroje:	Označení:	Údaje:	Inv. číslo:
Symetrický zdroj	-	15V/0,5A 12V/4A 5V/0,5A	LE2 5017
Kamera	-	-	-
Lampa1	-	-	LE 680/1
Lampa2	-	-	LE 680/2
Točna	-	-	LE 5042
Monitor	-	-	-

Popis pracoviště:

- Symetrický zdroj: pro napájení točny
- Točna: Má za úkol simulovat chod linky ve výrobě. Vyšle trigger signál do PC, když zareaguje snímač (přerušení signálu mezi laserovou diodou a optočlenem). Pomocí sériové linky komunikuje točna s PC a pomocí příkazů ji můžeme ovládat (točení, svícení diod, zvukový signál).
- Kamera simuluje kontrolu kvality ve výrobě. Obraz je vyobrazen na analogovém monitoru a zároveň na pc.
- Dvě světla: Jejich účel je zlepšit kvalitu obrazu.

Postup:

- 1. Nastavení komunikace s točnou (Seriál I/O).
- 2. Získání obrazu z kamery (Acquire Image).
- 3. Nastavení lokace zájmu (Filter Image).
- 4. Nalezení 2 rovných hran (Find Straight Edge).
- 5. Nalezení průsečíku těchto 2 hran (Geometry).
- 6. Nastavení koordinačního systému (Set Coordinate Systém).
- 7. Kalibrace na mm (Calibrate Image).
- 8. Nalezení kruhového objektu (Find Circular Edge) 2x.
- 9. Zjištění rozměru destičky (Caliper).
- 10. Čtení čárového kódu (Read 1D Barcode).
- 11. Čtení textu na destičce (Read/Verify Text).
- 12. Nastavení logické kalkulačky pro celkové hodnocení (Logic Calculator).
- 13. Přidání 5 "boxů" s texty splňuje/nejsplňuje (Custom Overlay).
- 14. Delay 250 ms zabezpečení dvojitého triggeru -> malé pootočení točny.
- 15. Nastavení zastavení točny, rozsvícení červené LED a zapnutí bzučáku, když destička nesplňuje podmínky, nebo rozsvícení zelené LED pokud splňuje podmínky (Seriál I/O).
- 16. Delay 2 s doba zastavení točny.
- 17. Vyhodnocení inspekce výrobku v závislosti na logické kalkulačce (Set Inspection Status 1).

Program:

Nastavení kalibrace (7cm):

Rozpoznání znaků:

Program:

Závěr:

Výsledkem naší úlohy je funkční program pro kontroly kvality destiček, který vyhodnotí, zda je kontrolovaná destička v normě anebo se jedná o vadný kus. Díky této úloze jsme simulovali kontrolu kvality výroby na dálku. Při takové kontrola je nahrazen lidský faktor a celkový proces se stává mnohem rychlejší a efektivnější. Při práci s programem Vision Builder AI 3.0 jsme postupovali dle přehledně zpracovaného manuálu a tím jsme pochopili celý princip. Po spuštění programu vše fungovalo tak, jak má.