CENTRO UNIVERSITÁRIO UNINORTE CURSO DE PÓS-GRADUAÇÃO EM: Pós

Graduação em Gerência de Banco de Dados.

DISCIPLINA: Mineração de Dados

Introdução

Prof.º: Manoel Limeira juniorlimeiras@gmail.com

<u>Agenda</u>

- Mineração de dados, o que é isso?
- Exemplos Práticos
- Padrões
- Machine Learning
- Visões sobre Data Mining (Mineração de Dados)
- Exemplos de Representações
- Tipos de Aprendizado
- Data Mining e a Ética

O que é isso? Por que estudar?

NETFLIX

Quais imagens são pessoas reais?

Exemplos

- Fertilização in vitro (Inglaterra)
 - Coleta de ovários e espermatozoides para produção de embriões
 - Como selecionar os melhores?
 - 60 características
- Produção de Leite (Nova Zelândia)
 - Quais animais manter no rebanho e quais vender para um matadouro?
 - 700 características
 - Histórico de reprodução e produção de leite (8 anos)
 - Problemas de saúde, parto difícil, temperamento

Por que estudar?

- A quantidade de dados no mundo parece cada vez maior e não há fim à vista.
- Discos baratos e armazenamento on-line
- Nossas escolhas são registradas na internet
- Lacuna entre geração e utilidade dos dados
- A busca (semi) automatizada por padrões nos dados
- A impressionante quantidade de oportunidades
 - O caso da fidelidade (ou não) dos clientes

<u>Machine Learning</u>

- O que é aprender, afinal?
 - Obter conhecimento por estudo, experiência ou aprendizado; tornar-se consciente pela informação; memorizar; ser informado, verificar; receber instruções.
- Aprender implica pensamento e propósito
 - É uma grande discussão
- E nas máquinas/computadores...
 - Uma máquina aprende ou se torna consciente?
 - Questão filosófica
- Melhorar o desempenho em novas situações
 - Também chamado de 'treinamento'

<u>Data Mining</u>

- Descobrir padrões, automaticamente, em grandes quantidades de dados e os padrões devem ser úteis
- Envolve aprendizado em um sentido prático
- Técnicas que permitam uma tomada de decisão
 - Utilizam estruturas de representação para descrever o aprendizado
 - Regras, árvores, probabilidades, equações
 - Obtenção de conhecimento
 - Avaliação do desempenho

<u>Machine Learning</u> e Estatística

- Diferença histórica (excessivamente simplificada)
 - **Estatística**: testar hipóteses
 - Machine Learning: encontrar a hipótese certa
- Enorme sobreposição
 - Árvores de decisão (C4.5 e CART)
 - Métodos vizinhos próximos
- Hoje as perspectivas convergiram
 - A maioria dos algoritmos de aprendizado de máquina emprega técnicas estatísticas

Na comunidade de Banco de dados

Na comunidade de Business Intelligence

Na comunidade de *Machine Learning*

Table 1.2 The Weather Data

		, II OULTOOK = Sunny			
Outlook	Temperature	Humidity	Windy	Play	and humidity = high
Sunny	Hot	High	False	No	then play = no
Sunny	Hot	High	True	No	
Overcast	Hot	High	False	Yes	<pre>If outlook = rainy</pre>
Rainy	Mild	High	False	Yes	and windy = true
Rainy	Cool	Normal	False	Yes	then $play = no$
Rainy	Cool	Normal	True	No	then pray - no
Overcast	Cool	Normal	True	Yes	
Sunny	Mild	High	False	No	<pre>If outlook =</pre>
Sunny	Cool	Normal	False	Yes	overcast
Rainy	Mild	Normal	False	Yes	then play = yes
Sunny	Mild	Normal	True	Yes	
Overcast	Mild	High	True	Yes	<pre>If humidity =</pre>
Overcast	Hot	Normal	False	Yes	normal
Rainy	Mild	High	True	No	then play = yes

If outlook - suppy

Table 1.1 The Contact Lens Data

Table 1.1 The Contact Lens Data						
Age	Spectacle Prescription	Astigmatism	Tear Production Rate	Recommended Lenses		
Young	Муоре	No	Reduced	None		
Young	Myope	No	Normal	Soft		
Young	Муоре	Yes	Reduced	None		
Young	Myope	Yes	Normal	Hard		
Young	Hypermetrope	No	Reduced	None		
Young	Hypermetrope	No	Normal	Soft		
Young	Hypermetrope	Yes	Reduced	None		
Young	Hypermetrope	Yes	Normal	Hard		
Prepresbyopic	Myope	No	Reduced	None		
Prepresbyopic	Myope	No	Normal	Soft		
Prepresbyopic	Myope	Yes	Reduced	None		
Prepresbyopic	Myope	Yes	Normal	Hard		
Prepresbyopic	Hypermetrope	No	Reduced	None		
Prepresbyopic	Hypermetrope	No	Normal	Soft		
Prepresbyopic	Hypermetrope	Yes	Reduced	None		
Prepresbyopic	Hypermetrope	Yes	Normal	None		
Presbyopic	Myope	No	Reduced	None		
Presbyopic	Myope	No	Normal	None		
Presbyopic	Myope	Yes	Reduced	None		
Presbyopic	Myope	Yes	Normal	Hard		
Presbyopic	Hypermetrope	No	Reduced	None		
Presbyopic	Hypermetrope	No	Normal	Soft		
Presbyopic	Hypermetrope	Yes	Reduced	None		
Presbyopic	Hypermetrope	Yes	Normal	None		

Table 1.4 The Iris Data

	Sepal Length	Sepal Width	Petal Length	Petal Width	Туре
1	5.1	3.5	1.4	0.2	Iris setosa
2	4.9	3.0	1.4	0.2	I. setosa
3	4.7	3.2	1.3	0.2	I. setosa
4	4.6	3.1	1.5	0.2	I. setosa
5	5.0	3.6	1.4	0.2	I. setosa
51	7.0	3.2	4.7	1.4	Iris versicolor
52	6.4	3.2	4.5	1.5	I. versicolor
53	6.9	3.1	4.9	1.5	I. versicolor
54	5.5	2.3	4.0	1.3	I. versicolor
55	6.5	2.8	4.6	1.5	I. versicolor
101	6.3	3.3	6.0	2.5	Iris virginica
102	5.8	2.7	5.1	1.9	I. virginica
103	7.1	3.0	5.9	2.1	I. virginica
104	6.3	2.9	5.6	1.8	I. virginica
105	6.5	3.0	5.8	2.2	I. virginica

```
If petal-length < 2.45 then Iris-setosa
If sepal-width < 2.10 then Iris-versicolor
If sepal-width < 2.45 and petal-length < 4.55 then Iris-versicolor
If sepal-width < 2.95 and petal-width < 1.35 then Iris-versicolor
If petal-length \geq 2.45 and petal-length < 4.45 then Iris-versicolor
If sepal-length \geq 5.85 and petal-length < 4.75 then Iris-versicolor
If sepal-width < 2.55 and petal-length < 4.95 and petal-width < 1.55 then
   Iris-versicolor
If petal-length \geq 2.45 and petal-length < 4.95 and petal-width < 1.55 then
   Iris-versicolor
If sepal-length \geq 6.55 and petal-length < 5.05 then Iris-versicolor
If sepal-width < 2.75 and petal-width < 1.65 and sepal-length < 6.05
   then Iris-versicolor
If sepal-length \geq 5.85 and sepal-length < 5.95 and petal-length < 4.85
   then Iris-versicolor
If petal-length ≥5.15 then Iris-virginica
If petal-width ≥ 1.85 then Iris-virginica
If petal-width ≥ 1.75 and sepal-width < 3.05 then Iris-virginica
If petal-length \geq 4.95 and petal-width < 1.55 then Iris-virginica
```

Table 1.5 The CPU Performance Data

	Cycle	Main Memory (Kb)		Cache (KB)	Channels		
	Time (ns)	Min	Max		Min	Max	Performance
	MYCT	MMIN	MMAX	CACH	CHMIN	СНМАХ	PRP
1	125	256	6000	256	16	128	198
2	29	8000	32,000	32	8	32	269
3	29	8000	32,000	32	8	32	220
4	29	8000	32,000	32	8	32	172
5	29	8000	16,000	32	8	16	132
	105	0000	0000	_		4.4	50
207	125	2000	8000	0	2	14	52
208	480	512	8000	32	0	0	67
209	480	1000	4000	0	0	0	45

$$PRP = -55.9 + 0.0489 \text{ MYCT} + 0.0153 \text{ MMIN} + 0.0056 \text{ MMAX}$$
$$+ 0.6410 \text{ CACH} - 0.2700 \text{ CHMIN} + 1.480 \text{ CHMAX}$$

Tipos de Aprendizado - Classificação

Tipos de Aprendizado - Regressão

Tipos de Aprendizado - Clusterização

Tipos de Aprendizado - Regras

<u>Data Mining e Ética</u>

- Questões éticas surgem em aplicações práticas
- Data mining não pode ser usado para discriminar
 - Empréstimo: usar algumas informações (por exemplo, sexo, religião, raça) é antiético
- Situação ética depende da aplicação
 - Por exemplo, esta mesma informação pode ser usada em uma aplicação médica
- Atributos podem conter informações problemáticas
 - Por exemplo, o código de área (CEP) pode se correlacionar com a raça

<u>Data Mining e Ética</u>

- Outras Questões importantes:
 - Quem tem permissão para acessar os dados?
 - Para que finalidade os dados foram coletados?
 - Que tipo de conclusões podem ser legitimamente tiradas disso?
 - Advertências devem ser anexadas aos resultados
 - Argumentos puramente estatísticos nunca são suficientes!

CENTRO UNIVERSITÁRIO UNINORTE CURSO DE PÓS-GRADUAÇÃO EM: Pós

Graduação em Gerência de Banco de Dados.

DISCIPLINA: Mineração de Dados

Introdução

Prof.º: Manoel Limeira juniorlimeiras@gmail.com