Theoretische Physik I $_{613348}^{613348}$ 4. Mai $_{2025}^{613348}$

Inhaltsverzeichnis

1	Transformationen				
2	Rotierendes Bezugssystem um einen festen Punkt				
3	Bogenlänge und Zerlegung der Beschleunigung	4			
4	Umrechnung der Newton'schen Gleichungen	5			
5	Wegintegrale 6				
6	Lagrange-Gleichungen 1. Art	grange-Gleichungen 1. Art			
7	Lagrange-Gleichungen 2. Art 7.1 Einteilchensystem	9 9 11			
8	Erhaltungsgrößen 8.1 Energieerhaltung	13 13 13 14			
9	3d Zweikörperproblem9.1 Finite und infinite Bewegung am Diagramm9.2 Bahnkurve durch Integration9.3 Wirkungsquerschnitt	15 15 15 15			
10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 16 17 18 18			
11	Noether-Theorem	19			
12	2 Legendre-Transformation 2				
13	.3 Hamilton-Formalismus				
14	Routh'sche Funktion	22			
15	5 Hamilton-Jacobi-Theorie				

1 Transformationen

Die Rotationen um die x-,y-,z-Achse um den Winkel φ , sowie dessen Verbindungen mit den Erzeugenden $T_{x,y,z}$ lauten

$$\underline{A}_{x,\varphi} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\varphi & \sin\varphi \\ 0 & -\sin\varphi & \cos\varphi \end{pmatrix} = \exp\left(\varphi\underline{T}_x\right) = \exp\left[\varphi\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}\right] \tag{1}$$

$$\underline{A}_{y,\varphi} = \begin{pmatrix} \cos \varphi & 0 & -\sin \varphi \\ 0 & 1 & 0 \\ \sin \varphi & 0 & \cos \varphi \end{pmatrix} = \exp\left(\varphi \underline{T}_y\right) = \exp\left[\varphi \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}\right] \tag{2}$$

$$\underline{A}_{z,\varphi} = \begin{pmatrix} \cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} = \exp\left(\varphi \underline{T}_z\right) = \exp\left[\varphi \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}\right] \tag{3}$$

Spiegelung

$$\underline{S} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \tag{4}$$

2 Rotierendes Bezugssystem um einen festen Punkt

Sei Σ das ruhende System. Ein Teilchen, das sich im rotierenden System Σ' bewegt, folgt der Bewegungsgl.

$$m\frac{\mathrm{d}'^2\vec{x}'}{\mathrm{d}t} = \underbrace{\frac{\mathrm{d}^2\vec{x}}{\mathrm{d}t^2}}_{=\vec{E}_{\mathrm{ext}}} -2m\vec{\omega} \times \frac{\mathrm{d}'\vec{x}}{\mathrm{d}t} - m\vec{\omega} \times (\vec{\omega} \times \vec{x}') - m\dot{\vec{\omega}} \times \vec{x}'$$
 (5)

mit der neu definierten Ableitung $\frac{\mathrm{d}'\vec{x}}{\mathrm{d}t} = \sum_{i=1}^{3} \dot{x}_i(t) \cdot \vec{e}_i(t)$ (d.h. die Geschwindigkeit/Beschleunigung aus Sicht des rotierenden Systems), der Drehachse $\vec{\omega}$ und der Kreisfrequenz, mit der Sich das System dreht ω .

Beispiel

3 Bogenlänge und Zerlegung der Beschleunigung

Die Bogenlänge ist der Betrag des infinitesimalen Wegelements

$$ds := \sqrt{d\vec{x} \cdot d\vec{x}} = |\vec{v}| \cdot dt \tag{6}$$

Tangenten-, Normalen- und Binomialvektor sind

$$\begin{split} \vec{e}_T &= \frac{\mathrm{d}\vec{x}}{|\mathrm{d}\vec{x}|} \equiv \frac{\mathrm{d}\vec{x}}{\mathrm{d}s} \\ \vec{e}_N &= \frac{\mathrm{d}\vec{e}_T}{\mathrm{d}s} \frac{1}{\left|\frac{\mathrm{d}\vec{e}_T}{\mathrm{d}s}\right|} \\ \vec{e}_B &= \vec{e}_T \times \vec{e}_N \end{split}$$

Betrachtet man die Bahnkurve auf infinitesimaler Ebene bereits als gekrümmte Bahn, lässt sich die Beschleunigung in Tangential- und Normalbeschleunigung wie folgt zerlegen

$$\ddot{\ddot{a}} = \dot{x} \cdot \vec{e}_T + \frac{\dot{x}^2}{R} \cdot \vec{e}_N \tag{7}$$

mit dem Radius des Schmiegekreises R.

Beispiel

4 Umrechnung der Newton'schen Gleichungen

Betrachte die Koordinatentransformation $\{x_1, x_2, x_3\} \rightarrow \{q_1, q_2, q_3\}$ durch die Funktionen

$$x_i = f_i(q_1, q_2, q_3, t)$$

Die Newton'schen Bewegungsgleichungen im Satz der neuen Variablen $\{q_1,q_2,q_3\}$ ergeben sich über

$$Q_k \equiv \sum_{j=1}^3 \frac{\partial f_j}{\partial q_k} K_j = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial}{\partial \dot{q}_k} T(q, \dot{q}, t) - \frac{\partial}{\partial q_k} T(q, \dot{q}, t)$$
(8)

mit der verallgemeinterten kinetischen Energie

$$T(q,\dot{q},t) = \frac{m}{2} \sum_{j=1}^{3} \left(\sum_{i=1}^{3} \frac{\partial f_{j}(q,t)}{\partial q_{i}} \dot{q}_{i} + \frac{\partial f_{j}(q,t)}{\partial t} \right)^{2} = \frac{m}{2} \sum_{i=1}^{3} \dot{x}_{i}^{2}$$

Beispiel

Newton'sche Bewegungsgln. in Zylinderkoordinaten

$$x_1 = f_1(q, t) = q_1 \cos q_2 \equiv \rho \cos \varphi$$

$$x_2 = f_2(q, t) = q_1 \sin q_2 \equiv \rho \sin \varphi$$

$$x_3 = f_3(q, t) = q_3 \equiv z$$

Die kinetische Energie ergibt sich aus

$$T = \frac{m}{2}(\dot{x}_1^2 + \dot{x}_2^2 + \dot{x}_3^2) = \frac{m}{2}\left[(\dot{\rho}\cos\varphi - \rho\dot{\varphi}\sin\varphi)^2 + (\dot{\rho}\sin\varphi + \rho\dot{\varphi}\cos\varphi)^2 + (\dot{z})^2\right] =$$

$$= \frac{m}{2}(\dot{\rho}^2 + \rho^2\dot{\varphi}^2 + \dot{z}^2)$$

Verwende nun die Gleichung für die generalisierten Kräfte

1) $Q_1 \equiv Q_\rho$

$$\frac{\partial}{\partial \rho} (\rho \cos \varphi) K_1 + \frac{\partial}{\partial \rho} (\rho \sin \varphi) K_2 + \frac{\partial}{\partial \rho} (z) K_3 = \begin{pmatrix} K_1 \\ K_2 \\ K_3 \end{pmatrix} \begin{pmatrix} \cos \varphi \\ \sin \varphi \\ 0 \end{pmatrix} = \vec{K} \vec{e}_r = K_r =$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial}{\partial \rho} \left(\frac{m}{2} (\dot{\rho}^2 + \rho^2 \dot{\varphi}^2 + \dot{z}^2) \right) - \frac{\partial}{\partial \rho} \left(\frac{m}{2} (\dot{\rho}^2 + \rho^2 \dot{\varphi}^2 + \dot{z}^2) \right) = m\ddot{\rho} - m\rho\dot{\varphi}^2$$

$$\Leftrightarrow K_r = m(\ddot{\rho} - \rho\dot{\varphi}^2)$$

2) $Q_2 \equiv Q_{\varphi}$

...
$$\Rightarrow K_{\varphi} = m(\rho \ddot{\varphi} + 2\dot{\rho} \dot{\varphi})$$

3) $Q_3 \equiv Q_z$

...
$$\Rightarrow K_z = m\ddot{z}$$

5 Wegintegrale

Um Wegintegrale zu berechnen, geht man wie folgt vor

1. Parametrisierung der Raumkurve

$$\vec{x} = \vec{x}(\tau), \qquad \tau \in [\tau_0, \tau_1]$$

s.d.
$$\vec{x}(\tau_0) = P_0 \text{ und } \vec{x}(\tau_1) = P_1$$
.

2. Formuliere das Differential

$$d\vec{x} = \frac{d\vec{x}}{d\tau}d\tau = \left(\frac{dx_1}{d\tau}\vec{e}_1 + \frac{dx_2}{d\tau}\vec{e}_2 + \frac{dx_3}{d\tau}\vec{e}_3\right)d\tau$$

3. Formuliere die Kraft

$$\vec{K}(\vec{x}) = \vec{K}(\vec{x}(\tau))$$

4. Einsetzen in das Integral

$$A = \int_{c} \vec{K} d\vec{x} = \int_{\tau_0}^{\tau_1} d\tau \left(K_1(\tau) \cdot \frac{dx_1}{d\tau} \vec{e}_1 + K_2(\tau) \cdot \frac{dx_2}{d\tau} \vec{e}_2 + K_3(\tau) \cdot \frac{dx_3}{d\tau} \vec{e}_3 \right)$$

Beispiel

Wegintegral im Kraftfeld

$$\vec{K} = \begin{pmatrix} axy^3 \\ bx^2y^2 \\ cz^3 \end{pmatrix}$$

von $P_0 = (1,0,0)$ nach $P_1 = (0,1,1)$ auf einem schraubenförmigen Weg

1) Parametrisierung der Raumkurve

$$\vec{x}(\tau) = \begin{pmatrix} \cos \tau \\ \sin \tau \\ \tau = \frac{\pi}{2} \end{pmatrix}, \qquad \tau \in [0, \frac{\pi}{2}]$$

2) Formuliere das Differential

$$d\vec{x} = \begin{pmatrix} -\sin \tau \\ \cos \tau \\ \frac{2}{\pi} \end{pmatrix} d\tau$$

3) Formuliere die Kraft

$$\vec{K} = \begin{pmatrix} a\cos\tau\sin^3\tau \\ b\cos^2\tau\sin^2\tau \\ c\left(\frac{2\tau}{\tau}\right)^3 \end{pmatrix}$$

4) Einsetzen in das Integral

$$A = \int_0^{\pi/2} d\tau \begin{pmatrix} a\cos\tau\sin^3\tau \\ b\cos^2\tau\sin^2\tau \\ c\left(\frac{2\tau}{\pi}\right)^3 \end{pmatrix} \begin{pmatrix} -\sin\tau \\ \cos\tau \\ \frac{2}{\pi} \end{pmatrix} =$$

$$= \int_0^{\pi/2} d\tau \left[-a\frac{d}{d\tau}\frac{\sin^5\tau}{5} + b\frac{d}{d\tau}\left(\frac{\sin^3\tau}{3} - \frac{\sin^5\tau}{5}\right) + c\left(\frac{2}{\pi}\right)^4\tau^3 \right] = -\frac{a}{5} + \frac{2b}{15} + \frac{c}{4}$$

6 Lagrange-Gleichungen 1. Art

$$m\ddot{\vec{x}} = \vec{K} + \vec{Z} \equiv \vec{K} + \lambda \cdot \vec{\nabla}\varphi \tag{9}$$

$$\varphi(\vec{x}, t) = \text{konst} \tag{10}$$

Lösungsstrategie für kartesische Koordinaten

1. Umstellen nach einer Koordinate

$$\varphi(x, y, z, t) = \text{konst}$$
 $\Leftrightarrow z = f(x, y, t)$

2. Lagrange-Multiplikator mit eliminierter Koordinate Betrachte die Bewegungsgl. der zu eliminierenden Koordinate (hier z), setze z und dessen Ableitungen ein und stelle nach λ um.

$$\begin{split} m\ddot{z} &= K_z + \lambda \big(x, y, z, t \big) \\ \Leftrightarrow \lambda \big(x, y, \dot{x}, \dot{y}, \ddot{x}, \ddot{y}, t \big) &= \dots \end{split}$$

3. Setze z,λ in die Bewegungsgl
n. für x,yein Dann verbleiben

$$m\ddot{x} = K_x(x, y, \dot{x}, \dot{y}, t) + \lambda(x, y, \dot{x}, \dot{y}, \ddot{x}, \ddot{y}, t) \cdot \frac{\partial \varphi}{\partial x}(x, y, z, t)$$
$$m\ddot{y} = K_y(x, y, \dot{x}, \dot{y}, t) + \lambda(x, y, \dot{x}, \dot{y}, \ddot{x}, \ddot{y}, t) \cdot \frac{\partial \varphi}{\partial y}(x, y, z, t)$$

4. Integration liefert x(t), y(t) und somit $z(t), \lambda(t)$

Beispiel

geg: Schiefe Ebene mit konstantem Neigungswinkel α

Es gilt die Zwangsbedingung

$$\varphi(x, y, z, t) = \frac{z}{x} = \tan \alpha = \text{konst.}$$

und somit die Lagrange'schen Bewegungsgln. 1. Art

$$m\ddot{x} = -\lambda \tan \alpha$$

$$m\ddot{y} = 0$$

$$m\ddot{z} = -mg + \lambda$$

1) Umstellen von φ = konst. nach z und bestimme deren Ableitungen

$$\varphi = z - x \tan \varphi = 0$$

 $\Leftrightarrow z = x \tan \alpha$

 $\Rightarrow \dot{z} = \dot{x} \tan \alpha$

 $\Rightarrow \ddot{z} = \ddot{x} \tan \alpha$

2) Einsetzen in die Bew.gl. der zu eliminierenden Koordinate

$$m\ddot{z} = -mg + \lambda$$

$$\Rightarrow m(\ddot{x} \tan \alpha) = -mg + \lambda$$

$$\Leftrightarrow \lambda = m\ddot{x} \tan \alpha + mg$$

3) Einsetzen von λ in die Bew.gl. von x

$$p(\ddot{x} = -(p(\ddot{x} \tan \alpha + p(g)) \tan \alpha)$$

$$\Leftrightarrow \ddot{x} \left(\tan \alpha + \frac{1}{\tan \alpha} \right) = -g$$

$$= \frac{\sin \alpha}{\cos \alpha} + \frac{\cos \alpha}{\sin \alpha} = \frac{1}{\cos \alpha \sin \alpha}$$

$$\Leftrightarrow \ddot{x} = -g \cos \alpha \sin \alpha$$

4) Integration von \ddot{x} , um x(t) und somit z(t) zu erhalten

$$\Rightarrow x(t) = -\frac{1}{2}g\cos\alpha\sin\alpha + v_0 \cdot t + x_0$$

$$\Rightarrow z(t) = x \cdot \tan\alpha \stackrel{x(t)}{=} -\frac{1}{2}g\sin^2\alpha \cdot t^2 + (v_0 \cdot t + x_0)\tan\alpha$$

Abbildung 1: Bewegung eines Massenpunkts entlang einer schiefen Ebene unter dem Winkel $\alpha = 20^{\circ}$, Anfangsgeschwindigkeit $v_0 = 15$ m/s und Anfangsposition $x_0 = 15$ m

7 Lagrange-Gleichungen 2. Art

7.1 Einteilchensystem

Bei r holonomen Zwangsbedingungen

$$\varphi_{\nu} = \text{konst}, \qquad \nu = 1, ..., r$$

besitzt der Massenpunkt

$$f = 3 - r$$

Freiheitsgrade. Dann werden nur f geeignet gewählte Koordinaten $q_1,...,q_f$ benötigt, um die Bewegung des Körpers zu beschreiben. Die restlichen Koordinaten werden mit den Zwangsbedingungen gleichgesetzt $q_{f+1} = \varphi_1, q_{f+2} = \varphi_2, ...$

Stelle dann die Lagrange-Funktion L=T-V auf (die nur von den geeignet gewählten Koordinaten q_k abhängt)

$$T = \frac{m}{2} (\dot{x}_1^2 + \dot{x}_2^2 + \dot{x}_3^2) \tag{11}$$

$$V = -\int \vec{F} \, \mathrm{d}\vec{x} \tag{12}$$

und bestimme die Bewegungsgln. mittels

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_k} - \frac{\partial L}{\partial q_k} = 0, \qquad k = 1, ..., f$$

Beispiel

geg: Schiefe Ebene mit konstantem Neigungswinkel α

Es gilt die Zwangsbedingung

$$\varphi(x, y, z, t) = \frac{z}{x} = \tan \alpha = \text{konst.}$$

Somit ist der Freiheitsgrad f=3-1=2. Es genügen also zwei Koordinaten, um das Problem zu beschreiben. Wähle die Polarkoordinaten, d.h. $q_1=d,q_2=y$ und

$$x = d \cdot \cos \alpha$$
$$z = d \cdot \sin \alpha$$

Bestimme die Lagrange-Funktion.

Stelle dafür die kinetische Energie und das Potential auf, die nur von den geeignet gewählten Koordinaten q_k abhängen dürfen.

$$\begin{split} T &= \frac{m}{2} (\dot{x}^2 + \dot{y}^2 + \dot{z}^2) = \frac{m}{2} \left(\dot{d}^2 \cos^2 \alpha + \dot{y}^2 + \dot{d}^2 \sin \alpha \right) = \frac{m}{2} \left(\dot{d}^2 + \dot{y}^2 \right) \\ F &= -mg \\ \Rightarrow V &= mgz \stackrel{z}{=} mg \cdot d \sin \alpha \\ \Rightarrow L &= T - V = \frac{m}{2} \left(\dot{d}^2 + \dot{y}^2 \right) - mg \cdot d \sin \alpha \end{split}$$

Die Bewegungsgln. sind somit

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}_k} - \frac{\partial L}{\partial q_k} = 0$$

d

$$\frac{\mathrm{d}}{\mathrm{d}t} m \dot{d} + mg \sin \alpha = 0$$

$$\Leftrightarrow \ddot{d} = -mg \sin \alpha$$

$$\stackrel{\int}{\Rightarrow} d(t) = -\frac{1}{2}g \sin \alpha t^2 + \dot{d}_0 t + d_0$$

y

$$\frac{\mathrm{d}}{\mathrm{d}t}m\ddot{y} = 0$$

$$\stackrel{\int}{\Rightarrow} y(t) = \dot{y}_0 t + y_0$$

7.2 Mehrteilchensystem

Für Systeme mit mehreren Teilchen gilt dieselbe Lagrange-Gleichung, jedoch werden kinetische Energie und Potential wie folgt formuliert

$$T = \sum_{j=1}^{N} \sum_{i=1}^{3} \frac{m_i}{2} (\dot{x}_i^{(j)})^2 =$$

$$= \frac{m_1}{2} \left[(\dot{x}_1^{(1)})^2 + (\dot{x}_2^{(1)})^2 + (\dot{x}_3^{(1)})^2 \right] + \frac{m_2}{2} \left[(\dot{x}_1^{(2)})^2 + (\dot{x}_2^{(2)})^2 + (\dot{x}_3^{(2)})^2 \right] + \dots$$

$$V = \sum_{j=1}^{N} V^{(j)}$$
(14)

Der Index (j) bezeichne dabei das Teilchen.

Beispiel

geg: Doppelpendel in der x-y-Ebene, die Gravitationskraft zeige in y-Richtung

Es gelten die Zwangsbedingungen

$$z^{(1)} = 0$$

$$l_1 = |\vec{x}^{(1)}| = \sqrt{(x^{(1)})^2 + y^{(1)}}^2$$

$$z^{(2)} = 0$$

$$l_2 = |\vec{x}^{(2)} - \vec{x}^{(1)}|$$

Somit gibt es

$$f = 3N - 4 = 3 \cdot 2 - 4 = 2$$

Freiheitsgrade.

Wähle die Winkel $q_1 = \varphi_1, q_2 = \varphi_2$ als Koordinaten, die die Bewegung beschreiben. Bestimme die Lagrange-Funktion.

$$T = \frac{m_1}{2} \left[(\dot{x}_1^{(1)})^2 + (\dot{x}_2^{(1)})^2 \right] + \frac{m_2}{2} \left[(\dot{x}_1^{(2)})^2 + (\dot{x}_2^{(2)})^2 \right] =$$

$$= \frac{m_1}{2} \left[\left(\frac{\mathrm{d}}{\mathrm{d}t} l_1 \sin \varphi_1 \right)^2 + \left(\frac{\mathrm{d}}{\mathrm{d}t} l_1 \cos \varphi_2 \right)^2 \right] + \frac{m_2}{2} \left\{ \left[\frac{\mathrm{d}}{\mathrm{d}t} (l_1 \sin \varphi_1 + l_2 \sin \varphi_2) \right]^2 +$$

$$+ \left[\frac{\mathrm{d}}{\mathrm{d}t} (l_1 \cos \varphi_1 + l_2 \cos \varphi_2) \right]^2 \right\} =$$

$$= \dots = \frac{m_1}{2} l_1^2 \dot{\varphi}^2 + \frac{m_2}{2} (l_1^2 \dot{\varphi}_1^2 + l_2^2 \dot{\varphi}_2^2 + 2 l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 \cos(\varphi_1 - \varphi_2))$$

$$V = V^{(1)} + V^{(2)} = -m_1 g y^{(1)} - m_2 g y^{(2)} =$$

$$= -m_1 g l_1 \cos \varphi_1 - m_2 g (l_1 \cos \varphi_1 + l_2 \cos \varphi_2) =$$

$$= -(m_1 + m_2) g l_1 \cos \varphi_1 - m_2 g l_2 \cos \varphi_2$$

$$L = T - V = \left(\frac{m_1 + m_2}{2} l_1^2 \dot{\varphi}_1^2 + \frac{m_2}{2} l_2^2 \dot{\varphi}_2^2 + m_2 l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 \cos(\varphi_1 - \varphi_2) \right) +$$

$$+ ((m_1 + m_2) g l_1 \cos \varphi_1 + m_2 g l_2 \cos \varphi_2)$$

 $|arphi_1|$

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{\varphi}_1} - \frac{\partial L}{\partial \varphi_1} = 0$$

$$\Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}t} \left((m_1 + m_2) l_1^2 \dot{\varphi}_1 + 2m_2 l_1 l_2 \dot{\varphi}_2 \cos(\varphi_1 - \varphi_2) \right) - \left(-m_2 l_1 l_2 \dot{\varphi}_1^2 \dot{\varphi}_2^2 \sin(\varphi_1 - \varphi_2) \right) = 0$$

$$\Leftrightarrow \dots$$

 $arphi_2$

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{\varphi}_2} - \frac{\partial L}{\partial \varphi_2} = 0$$

$$\Leftrightarrow \dots$$

Numerisches Lösen ergibt

8 Erhaltungsgrößen

8.1 Energieerhaltung

Hängt das Potential V nicht explizit von der Zeit ab, d.h. $\frac{\partial V}{\partial t}$ = 0, ist die Energie

$$E := T + V = \text{konst.} \tag{15}$$

eine Erhaltungsgröße.

Herleitung

Sei $\frac{\partial V}{\partial t} = 0$ und $x_a(t)$ erfüllen die Newton'sche Bewegungsgl. Untersuche die zeitliche Ableitung des Potentials.

$$\frac{\mathrm{d}}{\mathrm{d}t}V(x_1(t),...,x_{3N}(t)) = \sum_{a=1}^{3N} \frac{\partial V}{\partial x_a} \frac{\partial x_a}{\partial t} + \underbrace{0}_{=\frac{\partial V}{\partial t}} = -\sum_{a=1}^{3N} F_a \dot{x}_a = -\sum_{a=1}^{3N} m \ddot{x}_a \dot{x}_a = -\frac{\mathrm{d}}{\mathrm{d}t} \sum_{a=1}^{3N} m \frac{1}{2} \dot{x}_a^2 = -\frac{\mathrm{d}}{\mathrm{d}t} T$$

$$\Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}t}(T+V) \equiv \frac{\mathrm{d}}{\mathrm{d}t} E = 0$$

$$\Rightarrow E = \text{konst.}$$

8.2 Impulserhaltung

Ist das Potential V translationsinvariant, d.h. $V(\vec{x}^I,t) = V(\vec{x}^I + \vec{a},t)$, ist der Gesamtimpuls (der die Summe über die Einzelimpulse aller Teilchen ist)

$$\vec{P} := \sum_{I=1}^{N} \vec{p}^{I} = \sum_{I=1}^{N} m_{I} \dot{\vec{x}}^{I} \tag{16}$$

eine Erhaltungsgröße.

Herleitung

$$\overline{\text{Sei }V(\vec{x}^I,t)} \stackrel{!}{=} V(\vec{x}^I + \vec{a},t)$$

$$V(\vec{x}^I + \vec{a}, t) = T_{V, \vec{x}_0 = \vec{x}^I}(\vec{x}^I) =$$

$$= V(\vec{x}^I, t) + \sum_{I=1}^N \left(\frac{\partial V}{\partial x_1^I} ((\cancel{x}_1^I + a_1) - \cancel{x}_1^I) + \frac{\partial V}{\partial x_2^I} ((\cancel{x}_2^I + a_2) - \cancel{x}_2^I) + \frac{\partial V}{\partial x_3^I} ((\cancel{x}_3^I + a_3) - \cancel{x}_3^I) \right) \Big|_{\vec{x}^I} + \mathcal{O}(a^2) =$$

$$= V(\vec{x}^I, t) + \sum_{i=1}^3 a_i \sum_{I=1}^N \frac{\partial V}{\partial x_i} (\vec{x}^I, t) + \mathcal{O}(a^2) \stackrel{!}{=} V(\vec{x}^I, t)$$

$$\Rightarrow 0 \stackrel{!}{=} \sum_{i=1}^3 a_i \sum_{I=1}^N \frac{\partial V}{\partial x_i} (\vec{x}^I, t)$$

$$\Rightarrow 0 \stackrel{!}{=} \sum_{I=1}^N \frac{\partial V}{\partial x_i} (\vec{x}^I, t) = -\sum_{I=1}^N K_i^I = -\sum_{I=1}^N m_I \ddot{\vec{x}}^I = \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{I=1}^N m_I \dot{\vec{x}}^I \right) \equiv -\frac{\mathrm{d}}{\mathrm{d}t} \sum_{I=1}^N \vec{p}^I \equiv -\frac{\mathrm{d}}{\mathrm{d}t} \vec{P} \qquad \blacksquare$$

8.3 Drehimpulserhaltung

Ist das Potential V rotations invariant, d.h. $V(\vec{x}^I,t)=V(\underline{A}\vec{x}^I,t),$ ist der Drehimpuls

$$\vec{L} = \sum_{I=1}^{N} m_I \vec{L}^I = \sum_{I=1}^{N} m_I^2 \vec{x}^I \times \dot{\vec{x}}^I$$
 (17)

erhalten.

Herleitung

9 3d Zweikörperproblem

9.1 Finite und infinite Bewegung am Diagramm

Aus der Energieerhaltung und der Tatsache, dass die Bewegung in der Ebene statt findet (x-y-Ebene) folgt

$$E - \frac{l^2}{2mr^2} - V(r) \equiv E - V_{\text{eff}}(r) \ge 0$$
 (18)

		$r \in [r_{\min}, r_{\max}]$
$E > E_0$	infinite Bewegung	$r \in [r_{\min}, \infty)$

9.2 Bahnkurve durch Integration

Die Bahnkurve $r(\varphi)$ oder $\varphi(r)$ lässt sich mittels Integration bestimmen

$$\varphi - \varphi_0 = l \int_{r_0}^r \frac{1}{r^2} \frac{\mathrm{d}r'}{\sqrt{2m(E - V(r')) - \frac{l^2}{r^2}}}$$
 (19)

9.3 Wirkungsquerschnitt

10 Starrer Körper

Für einen starren Körper gilt die Lagrange-Funktion

$$L = T - V = T_{\text{Trans}} + T_{\text{Rot}} - V = \frac{M}{2} \vec{V}^2 + \frac{1}{2} \vec{\omega}^T \underline{T} \vec{\omega} - V(X, Y, Z, \varphi, \theta, \psi)$$
 (20)

10.1 Trägheitstensor T

Der Trägheitstensor taucht im Rotationsanteil der kinetischen Energie eines starren Körpers auf und lautet für den diskreten bzw. kontinuierlichen Fall

$$\underline{T} = \begin{pmatrix} \sum m(y^2 + z^2) & -\sum mxy & -\sum mxz \\ -\sum mxy & \sum m(x^2 + z^2) & -\sum myz \\ -\sum mzx & -\sum myz & \sum m(x^2 + y^2) \end{pmatrix} =$$

$$= \begin{pmatrix} \int dV \, \rho(y^2 + z^2) & -\int dV \, \rho xy & -\int dV \, \rho xz \\ -\int dV \, \rho xy & \int dV \, \rho(x^2 + z^2) & -\int dV \, \rho yz \\ -\int dV \, \rho zx & -\int dV \, \rho yz & \int dV \, \rho(x^2 + y^2) \end{pmatrix} \tag{22}$$

$$= \begin{pmatrix} \int dV \, \rho(y^2 + z^2) & -\int dV \, \rho xy & -\int dV \, \rho xz \\ -\int dV \, \rho xy & \int dV \, \rho(x^2 + z^2) & -\int dV \, \rho yz \\ -\int dV \, \rho zx & -\int dV \, \rho yz & \int dV \, \rho(x^2 + y^2) \end{pmatrix}$$
(22)

Für ein ausgewähltes körperfestes Koordinatensystem werden die Nebendiagonalelemente null und der Trägheitstensor somit diagonal

$$\underline{T} = \begin{pmatrix} I_1 & 0 & 0 \\ 0 & I_2 & 0 \\ 0 & 0 & I_3 \end{pmatrix} = \begin{pmatrix} \sum m(y^2 + z^2) & 0 & 0 \\ 0 & \sum m(x^2 + z^2) & 0 \\ 0 & 0 & \sum m(x^2 + y^2) \end{pmatrix} =$$
(23)

$$= \begin{pmatrix} \int dV \, \rho(y^2 + z^2) & 0 & 0 \\ 0 & \int dV \, \rho(x^2 + z^2) & 0 \\ 0 & 0 & \int dV \, \rho(x^2 + z^2) \end{pmatrix}$$
(24)

Für hochsymmetrische Körper (z. B. Würfel, Kugel, Zylinder) liegen die Hauptachsen oft entlang der Symmetrieachsen.

Dann ist der rotationsanteil der kinetischen Energie

$$T_{\text{Rot}} = \frac{1}{2} \left(I_1 \omega_1^2 + I_2 \omega_2^2 + I_3 \omega_3^2 \right) \tag{25}$$

Beispiel

ges: Trägheitstensor eines homogenen Quaders

Verwende das Koordinatensystem, das entlang der Symmetrieachsen des Quaders liegt, d.h. $\vec{e}_{x,y,z}$. Dann sind die Hauptträgheitsmomente einfach $I_{1,2,3}$.

$$I_{1} = \int dV \, \rho(y^{2} + z^{2}) \stackrel{\rho = \frac{M}{V}}{=} \frac{M}{V} \int_{-a/2}^{a/2} dx \int_{-b/2}^{b/2} dy \int_{-c/2}^{c/2} dz \, (y^{2} + z^{2}) =$$

$$= \frac{M}{abc} \left[ac \cdot \frac{1}{3} \left((b/2)^{3} - (-b/2)^{3} \right) + ab \cdot \frac{1}{3} \left((c/2)^{3} - (-c/2)^{3} \right) \right] =$$

$$= \frac{M}{abc} \frac{2}{3} \frac{1}{2^{3}} \left(acb^{3} + abc^{3} \right) = \frac{M}{12} (b^{2} + c^{2})$$

10.2 Intrinsischer Drehimpuls \vec{M}

- 10.3 Drehmoment \vec{D}
- 10.4 Euler'sche Gleichungen

11 Noether-Theorem

12 Legendre-Transformation

Die Legendre-Transformation für eine Funktion, die von einer Variablen abhängt ist

$$g(p) = f(x) - \frac{\mathrm{d}f}{\mathrm{d}x} \cdot x \tag{26}$$

Für mehrdimensionale Funktionen gibt es die Möglichkeit eine oder mehrere Variablen zu tauschen.

$$\begin{split} g(p_1,x_2,...,x_n) &= f(x_1,...,x_n) - \left(\frac{\partial f}{\partial x_1}\right)_{x_2,...,x_n} \cdot x_1 \\ g(p_1,...,p_n) &= f(x_1,...,x_n) - \sum_i \left(\frac{\partial f}{\partial x_i}\right)_{x_j,\ j\neq i} \cdot x_i \end{split}$$

Algorithmus

- 1. Notiere die alte Funktion f und die neue Funktion g auf
- 2. Notiere die zu tauschende Variable x_i
- 3. Berechne und notiere die neue Variable $p_i = \left(\frac{\partial f}{\partial x_i}\right)_{x_i}$
- 4. Setze in die entsprechende Formel ein

Beispiel

13 Hamilton-Formalismus

1. Beginne mit der Lagrange-Funktion

$$L(q_1,...,q_f,\dot{q}_1,...,\dot{q}_f,t)$$

2. Bilde die kanonisch konjugierten Impulse zu den q_{a}

$$p_a = \frac{\partial L}{\partial \dot{q}_a}$$

3. Stelle die Hamilton-Funktion auf

$$H(q_1, ..., q_f, p_1, ..., p_f, t) = \sum_{b=1}^{f} p_b \cdot \dot{q}_b - L(q_1, ..., q_f, \dot{q}_1, ..., \dot{q}_f, t)$$
(27)

4. Stelle die Hamilton'schen Bewegungsgleichungen auf

$$\frac{\partial H}{\partial p_a} = \dot{q}_a \tag{28}$$

$$\frac{\partial H}{\partial q_a} = -\dot{p}_a \tag{29}$$

$$\frac{\partial H}{\partial q_a} = -\dot{p}_a \tag{29}$$

mit a = 1, ..., f.

Beispiel

14 Routh'sche Funktion

15 Hamilton-Jacobi-Theorie

16 Stichwortverzeichnis

D	T 11"
Begriff	Erklärung
Bogenlänge	
Drehmoment	
Euler'sche Gleichungen	
Galilei-Transformation	
generalisierte Kräfte	
Hauptträgheitsachse	
Hauptträgheitsmoment	
homogene Funktion	
Inertialsystem	Koordinatensystem, in dem sich ein Körper, auf den
	keine Kraft wirkt, in gleichförmiger Bewegung oder in
	Ruhe verbleibt
intrinsischer Drehimpuls	
kanonische Transformationen	Transformationen, die die Hamilton'schen Bewegungs-
	gleichungen forminvariant lassen
kanonisch konjugierter Impuls	
Kepler'sche Gesetze	
Konfigurationsraum	
konservative Kräfte	Kräfte, die aus einem Potential folgen
	$ec{K} = -ec{ abla} V$
Phasenraum	
Prinzip der kleinsten Wirkung	
Reparametrisierungsinvarianz	
Schwerpunktsatz	
Schwerpunktsystem	
Trägheitstensor	
verallgemeinerter Impuls	
Virialsatz	
Wegunabhängigkeit	
Zwangsbedingung	
Zwangskraft	
zyklische Variable	
*	1