Please check the examination details be	low before ente	ring your candidate ir	nformation
Candidate surname		Other names	
Centre Number Candidate N	lumber		
Pearson Edexcel Inter	nation	al Advanc	ed Level
Time 1 hour 20 minutes	Paper reference	WCH ²	13/01
Chemistry			
International Advanced S	ubsidiary	//Advanced	Level
UNIT 3: Practical Skills in	Chemist	ry I	
You must have:			Total Marks
Scientific calculator, ruler			

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- There is a Periodic Table on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

E:1/1/1/1/1/

Answer ALL questions. Write your answers in the spaces provided.

- 1 This question is about some compounds of strontium.
 - (a) State a test for the strontium cation, giving the expected result.

(2)

(b) An unlabelled bottle was thought to contain solid strontium chloride.

A sample of the solid was dissolved in distilled water for tests to identify the anion.

Complete the table to give the expected results of the anion tests.

(2)

Reagent added for test	Expected result for the strontium chloride solution
Barium chloride acidified with hydrochloric acid	
Silver nitrate acidified with nitric acid	

(c) Anhydrous strontium sulfate undergoes thermal decomposition at approximately 1300 °C.

$$SrSO_4(s) \rightarrow SrO(s) + SO_2(g) + \frac{1}{2}O_2(g)$$

Suggest why this decomposition is unlikely to be possible in a school laboratory.

(1)

- /	٦,	۸ . ۵ ا ۵ ۰		strontium				-+ F70°C
- 11	าก	Ann	<i>i</i> arolis	STRONTILIM	nitrate	aecom	nnsas	ar 5/01
١,	u,	/ \	yaioas	Juonuani	IIIIIIIII	accom	poses	at 370 C.

$$Sr(NO_3)_2(s) \ \rightarrow \ SrO(s) \ + \ 2NO_2(g) \ + \ 1/_2O_2(g)$$

(i) Describe how to ensure the strontium nitrate decomposes fully.

(1)

(ii) State the colour of nitrogen dioxide gas.

(1)

(iii) Give the test for oxygen and the expected positive result.

(1)

(iv) The solid residue from the decomposition was added to distilled water.

Give **one** observation for the reaction that takes place, identifying the product of the reaction by name or formula.

(2)

Observation

Product

(Total for Question 1 = 10 marks)

2 Geraniol is used in perfumes and can be extracted from many plants.

Data on geraniol are shown.

Solubility in water	Melting temperature/°C	Boiling temperature/°C	Density/g cm ⁻³
insoluble	-15	230	0.889

The structure of geraniol is shown.

(a) Geraniol has **two** different types of functional group.

Name the functional groups, giving a chemical test and its positive result to show the presence of each group.

(4)

1113616	nctional group:			
Secon	d functional group	:		

(b) Geraniol is extracted by steam distillation.

The steam distillation product is geraniol and water. The water may contain dissolved impurities which have similar boiling temperatures to geraniol.

The contents of the collecting flask are transferred to a piece of apparatus used to separate the geraniol from the water layer.

Draw a labelled diagram of this apparatus and its contents.

(3)

(c) The geraniol will still contain small quantities of water.

Describe how to produce a sample of pure, dry geraniol using a named drying agent.

(3)

(d) The hazard labels for pure geraniol are shown.

(i) Complete the table to identify the hazards indicated by the symbols.

(2)

(ii) State **one** precaution, other than wearing safety spectacles and a laboratory coat, that should be taken when using pure geraniol to reduce the risk associated with the hazard symbol shown.

(1)

(e) State the appearance of the flame when geraniol is ignited.

(1)

- (f) Geraniol reacts with excess hydrogen gas.
 - (i) State the essential condition required for this reaction.

(1)

(ii) Draw the **skeletal** formula of the product of this reaction.

(1)

(Total for Question 2 = 16 marks)

3 A student carried out experiments to determine the enthalpy change for the hydration of anhydrous copper(II) sulfate, $CuSO_4$, to form hydrated copper(II) sulfate crystals, $CuSO_4$ · $5H_2O$.

To find the enthalpy change of solution of anhydrous copper(II) sulfate, 25.0 cm³ of distilled water was placed in a polystyrene cup and the temperature measured at one minute intervals.

After 2.5 minutes, 7.50 g of anhydrous copper(II) sulfate was added and the mixture stirred continuously.

The results are shown.

Time/minutes	0	1	2	2.5	3	4	5	6	7	8
Temperature/°C	21.1	21.0	21.0	Х	34.2	37.6	36.9	36.1	35.2	34.3

(a) Plot a graph of temperature against time on the grid.

(3)

(b) Determine the maximum temperature change, ΔT , using your graph.

You **must** show your working on the graph.

(2)

 $\Delta T =$

(c) The value of the enthalpy change from this experiment was $-39.0 \, \text{kJ} \, \text{mol}^{-1}$.

Give **one** possible reason why this value is different from a data book value of $-61.4 \, \text{kJ} \, \text{mol}^{-1}$.

(1)

- (d) After another experiment to find the enthalpy change of solution of hydrated copper(II) sulfate crystals, the student constructed the Hess cycle shown.
 - (i) Calculate the enthalpy change of hydration for the conversion of anhydrous copper(II) sulfate to hydrated copper(II) sulfate crystals.

(1)

$$\begin{array}{c} CuSO_{4(s)} \xrightarrow{\Delta hydH} CuSO_{4} \cdot 5H_{2}O_{(s)} \\ -39.0 \text{ kJ nol}^{-1} \\ Cu^{2+}_{(aq)} + SO_{4(aq)} \end{array}$$

(ii) Give **one** possible reason why the enthalpy change of hydration in (d)(i) could **not** be found directly by experiment.

(1)

(Total for Question 3 = 8 marks)

BLANK PAGE

4 Students were set a challenge by their teacher to produce a chemical clock measuring a 20 s time interval. They used an opaque solution that became transparent, allowing a black cross to become visible after 20 s.

The students investigated the effect of temperature on their results and plotted a graph.

- (a) In this type of experiment 1/t (where t is time) may be used as a measure of the rate of reaction.
 - (i) Calculate the rate at 15 °C to a suitable number of significant figures. Include units in your answer.

(3)

(ii) Sketch a line showing how the rate of reaction varies with temperature for this reaction.

Temperature

(b) Evaluate the students' results and decide whether it is necessary to repeat their experiments.

(2)

(c) State how you would change the conditions to make this chemical clock measure $40 \, \text{s}$ at $22 \, ^{\circ}\text{C}$.

(1)

(Total for Question 4 = 7 marks)

5 A technician found a bottle of sodium hydroxide solution at the back of a cupboard. The technician determined its concentration by titrating 25.0 cm³ samples against 0.500 mol dm⁻³ hydrochloric acid from a burette.

The results obtained are shown.

(a) Complete the titre values.

(1)

			Titration	number	
	Rough	1	2	3	4
Final reading /cm³	24.90	21.25	42.85	21.80	43.15
Initial reading /cm³	2.30	0.00	21.25	0.50	21.80
Titre/cm ³					21.35

(b) (i) State why the value from Titration 2 was **not** used to calculate the mean.

(1)

(ii) Calculate the concentration of the sodium hydroxide solution in mol dm⁻³.

(4)

(c) Each reading of the burette has an uncertainty of $\pm 0.05 \text{cm}^3$.	
Calculate the percentage uncertainty in Titration 4.	
	(1)

(d) State the colour change that would be seen at the end-point in this titration using phenolphthalein as the indicator.

(2)

From _____to

(Total for Question 5 = 9 marks)

TOTAL FOR PAPER = 50 MARKS

The Periodic Table of Elements

				VI	
ted	[222] Rn radon 86	Xe xenon 54	83.8 Kr krypton 36	He hetium 2 2 20.2 Ne neon 10 39.9 Ar argon 18	0 (8)
een repor	[210] At astatine 85	126.9 I todine 53	79.9 Br bromine 35	(17) 19.0 F Fluorine 9 9 9 9 35.5 CL chlorine	
16 have b	[209] Po potonium 84	127.6 Te tellurium 52	79.0 Se selenium 34	(16) 16.0 0 00 0 000 8 8 8 32.1 S sulfur 16	9
tomic numbers 112-116 hav but not fully authenticated	Bi Bi bismuth 83	121.8 Sb antimony 51	As As arsenic 33	(15) 14.0 N nitrogen 7 7 31.0 P phosphorus 15	2
tomic num but not fu	207.2 Pb tead 82	118.7 Sn tin 50	72.6 Ge germanium 32	(14) 12.0 C carbon 6 6 Si Silicon p	4
Elements with atomic numbers 112-116 have been reported but not fully authenticated	204.4 Tl thallium 81	114.8 In indium 49	69.7 Ga gattium 31	(13) 10.8 B boron 5 27.0 Al atuminium 13	m
Elem	200.6 Hg mercury 80	112.4 Cd cadmium 48	65.4 Zn zinc 30	(12)	
[272] Rg roentgenium	197.0 Au gold 79	Ag silver 47	63.5 Cu copper 29	ω	
Ds damstadtum r	195.1 Pt platinum 78	106.4 Pd patladium 46	58.7 Ní nickel 28	(01)	
Mt meitnerium of 109	192.2 Ir iridium 77	Rh rhodium 45	Co cobalt 27	(6)	
Hs Hassium n	190.2 Os osmium 76	Ru Ru ruthenium 44	55.8 Fe iron 26	1.0 Hydrogen 1	
[264] Bh bohrium 107	Re rhenium 75		54.9 Mn manganese 25	<i>e</i>	
[266] Sg seaborgium 106	183.8 W tungsten 74	95.9 [98] Mo Tc molybdenum technetium 42 43	52.0 Cr chromium r 24	nass ool umber (6)	
[262] Db dubnium s	180.9 Ta tantalum 73	92.9 Nb niobium r 41	50.9 V vanadium 23	relative atomic mass atomic symbol name atomic (proton) number (4) (5) (6)	
[261] Rf nuterfordium	178.5 Hf hafnium 72	91.2 Zr zirconium 40	47.9 Th titanium 22	relativ ator atomic (4)	
[227] Ac* actinium r	138.9 La* lanthanum 57	88.9 × yttrium 39	45.0 Sc scandium 21	(3)	
Ra radfum 88	137.3 Ba barium 14	87.6 Sr strontium 38	Ca calcium 20	(2) 9.0 Be beryllium 4 24.3 Mg magnesium	7
[223] Fr francium 87	132.9 Cs caesium 55	85.5 Rb rubidium s	39.1 K potassium 19	(1) 6.9 Lishium 1 3 3 3 23.0 Na sodium n	-

* Lanthanide series

* Actinide series

Cerium cerium 58	Pr Pr praseodymium 59	144 Nd neodymium 60	Pm promethium 61	Sm Samarium 62	152 Eu n europium 63	157 Gd gadolinium t	159 Tb terbium 65	163 Dy dysprosium 66	165 Ho hotmium 67	167 Er erbíum 68	169 Tm thullum 69	173 Yb ytterbium 70	175 Lu lutetium 71
232 Th Thorium 90	Pa protactinium 91	238 U uranium 92	[237]	[242] Pu plutonium 94	[243] Am americium 95	[247] Cm canton 96	[245] Bk berkelium 97	[251] Cf californium 98	[254] Es einsteinlum 99	[253] Fm fermium 100	[256] Md mendelevlum 101	[254] No nobetium 102	[257] Lr lawrencium 103