Brass Page 1 of 5

Description

Image

Caption

1. French horn. © Copper Development Association 2. Pump parts. © Copper Development Association

The material

Brasses are alloys of copper (Cu) with 5 - 40% zinc (Zn). They combine excellent formability and machinability with good corrosion resistance. As the zinc content increases the melting point, density, modulus and electrical and thermal conductivities decrease; the expansion coefficient, the strength and the hardness increase.

Composition (summary)

Alpha,"70-30" or Cartridge brass: Cu + 30% Zn

Alpha-Beta, "60-40" or Naval brass: Cu + 40% Zn, often with a little lead

General properties

Thermal expansion coefficient

Density	493	-	534	lb/ft^3		
Price	* 2.51	-	2.77	USD/lb		
Date first used	-1200					
Mechanical properties						
Young's modulus	13.1	_	16	10^6 psi		
Shear modulus	5.08	-	6.09	10^6 psi		
Bulk modulus	14.5	-	16.8	10^6 psi		
Poisson's ratio	0.34	-	0.35	•		
Yield strength (elastic limit)	13.8	-	72.5	ksi		
Tensile strength	45	-	79.8	ksi		
Compressive strength	13.8	-	72.5	ksi		
Elongation	5	-	60	% strain		
Hardness - Vickers	65	-	220	HV		
Fatigue strength at 10^7 cycles	21.8	-	36.3	ksi		
Fracture toughness	27.3	-	54.6	ksi.in^0.5		
Mechanical loss coefficient (tan delta)	1e-4	-	5e-4			
Thermal properties						
Melting point	1.62e3	-	1.77e3	°F		
Maximum service temperature	410			°F		
Minimum service temperature	-459			°F		
Thermal conductor or insulator?	Good co	Good conductor				
Thermal conductivity	57.8	-	75.1	BTU.ft/h.ft^2.F		
Specific heat capacity	0.0889	-	0.0915	BTU/lb.°F		

9.44 - 11.5 ustrain/°F

Electrical properties

Electrical conductor or insulator? Good conductor

Electrical resistivity µohm.cm

Optical properties

Transparency Opaque

Processability

Castability 4 5 **Formability** 4 5 4 Machinability 5 Weldability 4 5 Solder/brazability 5

Durability: water and aqueous solutions

Water (fresh) Excellent Water (salt) Excellent Soils, acidic (peat) Acceptable Soils, alkaline (clay) Excellent Acceptable Wine

Durability: acids

Acetic acid (10%) Limited use Acetic acid (glacial) Unacceptable Citric acid (10%) Limited use Hydrochloric acid (10%) Unacceptable Hydrochloric acid (36%) Unacceptable Hydrofluoric acid (40%) Unacceptable Nitric acid (10%) Unacceptable Nitric acid (70%) Unacceptable Phosphoric acid (10%) Limited use Phosphoric acid (85%) Unacceptable Sulfuric acid (10%) Limited use Sulfuric acid (70%) Unacceptable

Durability: alkalis

Sodium hydroxide (10%) Excellent Sodium hydroxide (60%) Acceptable

Durability: fuels, oils and solvents

Amyl acetate Limited use Benzene Excellent Carbon tetrachloride Excellent Chloroform Excellent Crude oil Acceptable Diesel oil Excellent Lubricating oil Excellent Paraffin oil (kerosene) Excellent Petrol (gasoline) Excellent Silicone fluids Limited use Toluene Excellent **Turpentine** Excellent Vegetable oils (general) Excellent

White spirit Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde Limited use
Acetone Excellent
Ethyl alcohol (ethanol) Excellent
Ethylene glycol Acceptable
Formaldehyde (40%) Acceptable
Glycerol Excellent
Methyl alcohol (methanol) Excellent

Durability: halogens and gases

Chlorine gas (dry)

Fluorine (gas)

O2 (oxygen gas)

Sulfur dioxide (gas)

Excellent

Acceptable

Limited use

Limited use

Durability: built environments

Industrial atmosphereAcceptableRural atmosphereExcellentMarine atmosphereExcellentUV radiation (sunlight)Excellent

Durability: flammability

Flammability Non-flammable

Durability: thermal environments

Tolerance to cryogenic temperatures

Tolerance up to 150 C (302 F)

Tolerance up to 250 C (482 F)

Tolerance up to 450 C (842 F)

Tolerance up to 850 C (1562 F)

Tolerance above 850 C (1562 F)

Unacceptable
Unacceptable
Unacceptable

Geo-economic data for principal component

Annual world production 1.56e7 ton/yr Reserves 5.31e8 I. ton

Primary material production: energy, CO2 and water

Embodied energy, primary production * 5.66e3 6.25e3 kcal/lb * 3.38 lb/lb CO2 footprint, primary production 3.74 Water usage * 36.7 40.5 gal(US)/lb Eco-indicator 95 1.4e3 millipoints/kg Eco-indicator 99 millipoints/kg 1.77e3

Material processing: energy

Casting energy * 896 990 kcal/lb 350 kcal/lb Extrusion, foil rolling energy * 316 Rough rolling, forging energy kcal/lb * 173 192 Wire drawing energy kcal/lb * 1.11e3 1.21e3 Metal powder forming energy * 2.29e3 2.55e3 kcal/lb Vaporization energy * 9.93e5 1.09e6 kcal/lb Coarse machining energy (per unit wt removed) * 72.8 80.5 kcal/lb Fine machining energy (per unit wt removed) * 265 294 kcal/lb

Grinding energy (per unit wt removed)	* 479	-	530	kcal/lb
Non-conventional machining energy (per unit wt removed)	9.93e3	-	1.09e4	kcal/lb
Material processing: CO2 footprint				
Casting CO2	* 0.62	-	0.685	lb/lb
Extrusion, foil rolling CO2	* 0.219	-	0.242	lb/lb
Rough rolling, forging CO2	* 0.12	-	0.133	lb/lb
Wire drawing CO2	* 0.762	-	0.842	lb/lb
Metal powder forming CO2	* 1.69	-	1.88	lb/lb
Vaporization CO2	* 688	-	760	lb/lb
Coarse machining CO2 (per unit wt removed)	* 0.0504	-	0.0557	lb/lb
Fine machining CO2 (per unit wt removed)	* 0.184	-	0.203	lb/lb
Grinding CO2 (per unit wt removed)	* 0.332	-	0.367	lb/lb
Non-conventional machining CO2 (per unit wt removed)	6.88	-	7.6	lb/lb
Material recycling: energy, CO2 and recycle for Recycle	raction			
Embodied energy, recycling	* 1.31e3	_	1.45e3	kcal/lb

Recycle	✓					
Embodied energy, recycling	* 1.31e3	-	1.45e3	kcal/lb		
CO2 footprint, recycling	* 0.954	-	1.05	lb/lb		
Recycle fraction in current supply	45	-	60	%		
Downcycle	✓					
Combust for energy recovery	×					
Landfill	✓					
Biodegrade	×					
Toxicity rating	Non-toxic					
A renewable resource?	×					

Environmental notes

Brass is non-toxic and readily recycled

Supporting information

Design guidelines

Brasses are readily worked by casting, drawing, spinning and machining. They have a pleasing color ranging from the red of copper through browner bronze-like hues and gold (jewelry brass closely resembles the color of 14 carat gold).

Technical notes

There is now a UNS designation system for copper and its alloys: the letter C (for 'copper') followed by a 5-digit number. Only the first digit means anything: C1**** designates almost pure copper, the C2, C3 and C4 series are brasses with increasing zinc content, the C5s are bronzes based on copper and tin, the C6s are other bronzes containing aluminum instead of tin, and the C7s are copper-nickel alloys. More information on designations and equivalent grades can be found on the Granta Design website at www.grantadesign.com/designations

Phase diagram

Phase diagram description

Brasses are alloys of copper (Cu) with 5 - 40% zinc (Zn), for which this is the phase diagram. The two most widely used compositions are 70-30 brass and 60-40 brass. Their compositions are shown.

Typical uses

70-30 Brasses: deep drawn parts such as cartridge and shell casings; musical instruments and other objects made by sheet-metal working; decorative components for architecture; marine components; condenser and cooling units; jewelry.60-40 Brasses: tubing for condensers; heat exchangers; valve and pump parts; taps and water pipes; fasteners and springs.

Tradenames

Red brass (15% Zn); Jewelry brass (12.5% Zn); Yellow brass (35% Zn); Muntz metal (40% Zn).

Links

Reference

ProcessUniverse

Producers