Cálculo Numérico

Notas de aula - Processos Iterativos Matriciais Lineares

Prof. Yuri Dumaresq Sobral

Departamento de Matemática Universidade de Brasília

2025

- Já aprendemos a resolver sistemas de equações lineares usando a técnica da fatoração LU.
- Esta técnica, porém, requer manipulações não triviais de matrizes, que podem ser computacionalmente caras para sistemas muito grandes : a eliminação gaussiana requer \(\mathcal{O}(N^3)\) operações! CARO!
- Vamos construir, agora, métodos que tenham como base processos iterativos!
- Esperamos que estes métodos sejam mais fáceis de programar, e mais eficientes quando aplicados a sistemas muito grandes.
- Antes, porém, precisamos estudar com um pouco mais de detalhe os processos iterativos construídos com matrizes!
 Vamos nos concentrar inicialmente apenas nos processos lineares. (Lembrete: eles governam o erro de processos iterativos nas vizinhanças de seus pontos fixos!)

Relembrando:

• Considere uma função $g: IR \rightarrow IR$ tal que possamos construir, com base nela, o seguinte processo iterativo escalar:

$$x_{n+1} = g(x_n), \quad n = 0, 1, 2, 3, \dots$$

• O processo iterativo escalar linear mais geral que podemos construir é tomando g(x) = ax + b, isto é:

$$x_{n+1} = ax_n + b.$$

• Estudamos detalhadamente a estabilidade do seu ponto fixo

$$x^* = \frac{b}{1-a}.$$

- Se |a| < 1, então temos que x^* é ponto fixo assintoticamente estável do processo iterativo linear.
- Se |a| > 1, então temos que x^* é ponto fixo instável do processo iterativo linear.
- Se a = 0, então temos que $x^* = b$ é ponto fixo estável (trivial) do processo iterativo linear.

- Considere, agora, uma matriz T quadrada de ordem m, isto é, de tamanho $m \times m$. Considere os vetor $\mathbf{x}, \mathbf{b} \in IR^m$.
- O processo iterativo matricial linear mais geral que podemos construir é

$$\mathbf{x}_{n+1} = T\mathbf{x}_n + \mathbf{b}$$

• Vamos considerar o caso mais simples com $\mathbf{b} = \mathbf{0}$, isto é, $\mathbf{x}_{n+1} = T\mathbf{x}_n$, e vamos considerar \mathbf{x}_0 como valor inicial do processo. Neste caso, o processo iterativo se dá da seguinte maneira:

$$\mathbf{x}_1 = T\mathbf{x}_0, \qquad \mathbf{x}_2 = T\mathbf{x}_1 = T(T\mathbf{x}_0) = T^2\mathbf{x}_0$$

$$\mathbf{x}_3 = T\mathbf{x}_2 = T^3\mathbf{x}_0, \qquad \dots \qquad \mathbf{x}_n = T\mathbf{x}_{n-1} = T^n\mathbf{x}_0.$$

• Portanto, o processo iterativo é determinado por potências da matriz T! Muito parecido ao processo iterativo escalar linear $x_{n+1} = ax_n$, cuja solução é $x_n = a^n x_0$, com $a \in IR$.

- Apesar da semelhança com o caso escalar, não é possível encontrar um padrão óbvio em potências de matrizes. Vamos ver isto num exemplo.
- Exemplo: Considere $\mathbf{x}_{n+1} = T\mathbf{x}_n$ com m = 2 e

$$T = \begin{pmatrix} 0.6 & 0.2 \\ 0.2 & 0.6 \end{pmatrix}, \qquad \mathbf{x}_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix}, \qquad \mathbf{x}_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}.$$

Então, o processo iterativo é dado por:

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} 0.6 & 0.2 \\ 0.2 & 0.6 \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix} \Leftrightarrow \begin{cases} x_{n+1} = 0.6x_n + 0.2y_n \\ y_{n+1} = 0.2x_n + 0.6y_n \end{cases}$$

Assim, o processo será dado por:

$$\left(\begin{array}{c} x_1 \\ y_1 \end{array}\right) = \left(\begin{array}{cc} 0.6 & 0.2 \\ 0.2 & 0.6 \end{array}\right) \left(\begin{array}{c} x_0 \\ y_0 \end{array}\right),$$

$$\left(\begin{array}{c} x_2 \\ y_2 \end{array}\right) = \left(\begin{array}{cc} 0.6 & 0.2 \\ 0.2 & 0.6 \end{array}\right) \left(\begin{array}{c} x_1 \\ y_1 \end{array}\right) = \left(\begin{array}{cc} 0.6 & 0.2 \\ 0.2 & 0.6 \end{array}\right) \left(\begin{array}{cc} 0.6 & 0.2 \\ 0.2 & 0.6 \end{array}\right) \left(\begin{array}{c} x_0 \\ y_0 \end{array}\right) =$$

$$\cdots = \begin{pmatrix} 0.6 & 0.2 \\ 0.2 & 0.6 \end{pmatrix}^{2} \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} 0.4 & 0.24 \\ 0.24 & 0.4 \end{pmatrix} \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix},$$

$$\begin{pmatrix} x_{3} \\ y_{3} \end{pmatrix} = \begin{pmatrix} 0.6 & 0.2 \\ 0.2 & 0.6 \end{pmatrix} \begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} = \begin{pmatrix} 0.6 & 0.2 \\ 0.2 & 0.6 \end{pmatrix}^{3} \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} =$$

$$\cdots = \begin{pmatrix} 0.288 & 0.224 \\ 0.224 & 0.288 \end{pmatrix} \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix},$$

$$\vdots$$

$$\begin{pmatrix} x_{10} \\ y_{10} \end{pmatrix} = \begin{pmatrix} 0.6 & 0.2 \\ 0.2 & 0.6 \end{pmatrix}^{10} \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} 0.05373 \dots & 0.05363 \dots \\ 0.05363 \dots & 0.05373 \dots \end{pmatrix} \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix},$$

$$\vdots$$

$$\begin{pmatrix} x_{100} \\ y_{100} \end{pmatrix} = \begin{pmatrix} 0.6 & 0.2 \\ 0.2 & 0.6 \end{pmatrix}^{100} \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} \approx \begin{pmatrix} 1.02 \cdot 10^{-10} & 1.02 \cdot 10^{-10} \\ 1.02 \cdot 10^{-10} & 1.02 \cdot 10^{-10} \end{pmatrix} \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix},$$

$$\vdots$$

Conclusão: Parece que $\mathbf{x}_n \to \mathbf{0}$ com $n \to \infty$. E parece que $T^n \to \mathbb{O}$ (matriz nula, isto é, $\{T^n\}_{ii} \to 0$), com $n \to \infty$.

- Vemos, portanto, que é muito difícil determinar o comportamento do sistema a partir das potências das matrizes.
- Será que não seria possível encontrar uma estrutura similar àquela dos processos iterativos escalares lineares?
- A idéia, portanto, seria tentar escrevermos o resultado do processo iterativo matricial linear como

$$\mathbf{x}_n = \lambda^n \mathbf{v}, \qquad \mathbf{v} \neq \mathbf{0},$$

com algum $\lambda \in IR$ e algum vetor $\mathbf{v} \in IR^m$. Mas será que isto funciona?

Vamos testar:

$$\mathbf{x}_{n+1} = T\mathbf{x}_n \Leftrightarrow \lambda^{n+1}\mathbf{v} = T\lambda^n\mathbf{v} \Leftrightarrow \lambda\mathbf{v} = T\mathbf{v}$$

• Portanto, se encontrarmos λ , \mathbf{v} que satisfaçam $T\mathbf{v} = \lambda \mathbf{v}$, a solução do processo iterativo será $\mathbf{x}_n = \lambda^n \mathbf{v}$ e conseguiremos determinar o que acontece com $n \to \infty$ de maneira mais trivial.

- Os números λ que satisfazem $T\mathbf{v} = \lambda \mathbf{v}$ são chamados de autovalores da matriz T.
- Os vetores \mathbf{v} que que satisfazem $T\mathbf{v} = \lambda \mathbf{v}$ são chamados de autovetores da matriz T.
- Os autovalores s\(\tilde{a}\) encontrados a partir do polin\(\tilde{o}\)mio
 caracter\((\tilde{s}\)tico de \(T\):

$$T\mathbf{v} = \lambda \mathbf{v} \Leftrightarrow T\mathbf{v} - \lambda \mathbf{v} = \mathbf{0} \Leftrightarrow (T - \lambda I)\mathbf{v} = \mathbf{0}$$

Para
$$\mathbf{v} \neq \mathbf{0}$$
, impomos $\det (T - \lambda I) = 0$.

- Como o polinômio característico tem grau m e todos seus coeficientes são IR, uma matriz T tem m autovalores complexos, com alguns podendo ser valores repetidos (multiplicidade!).
- Então, para cada par λ , \mathbf{v} , o processo iterativo terá seu comportamento determinado por $\mathbf{x}_n = \lambda^n \mathbf{v}$. Mas e o caso geral? Vamos apenas considerar um caso geral mais simples:

 Se a matriz T for tal que seus m autovetores v₁...v_m forem base de IR^m, isto é, se eles forem linearmente independentes e se qualquer vetor de IR^m puder ser escrito como uma combinação linear deles, então

$$\mathbf{x}_n = c_1 \lambda_1^n \mathbf{v}_1 + c_2 \lambda_2^n \mathbf{v}_2 + \cdots + c_m \lambda_m^n \mathbf{v}_m.$$

e as constantes $c_1 \dots c_m \in IR$ serão unicamente determinadas pela valor de \mathbf{x}_0 .

 Vamos voltar ao exemplo anterior e reescrevê-lo de acordo com o que aprendemos agora:

$$\left(\begin{array}{c} x_{n+1} \\ y_{n+1} \end{array}\right) = \left(\begin{array}{cc} 0.6 & 0.2 \\ 0.2 & 0.6 \end{array}\right) \left(\begin{array}{c} x_n \\ y_n \end{array}\right).$$

Então, para determinarmos os autovalores da matriz T:

$$\det\left(\left(\begin{array}{cc} 0.6 & 0.2 \\ 0.2 & 0.6 \end{array}\right) - \left(\begin{array}{cc} \lambda & 0 \\ 0 & \lambda \end{array}\right)\right) = 0 \ \Leftrightarrow \ \det\left(\begin{array}{cc} 0.6 - \lambda & 0.2 \\ 0.2 & 0.6 - \lambda \end{array}\right) = 0$$

$$\Leftrightarrow (0.6-\lambda)^2 - 0.04 = 0 \Leftrightarrow \lambda^2 - 1.2\lambda - 0.32 = 0 \Leftrightarrow \lambda_1 = 0.8, \ \lambda_2 = 0.4$$

• O autovetor associado ao autovalor $\lambda_1 = 0.8$ será dado por:

$$(T - \lambda_1 I) \mathbf{v}_1 = \mathbf{0} \iff (T - 0.8I) \mathbf{v}_1 = \mathbf{0} \iff$$

$$\begin{pmatrix} 0.6 - 0.8 & 0.2 \\ 0.2 & 0.6 - 0.8 \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1x} \\ \mathbf{v}_{1y} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} -0.2 & 0.2 \\ 0.2 & -0.2 \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1x} \\ \mathbf{v}_{1y} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \mathbf{v}_{1x} = \mathbf{v}_{1y} \iff \mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

• O autovetor associado ao autovalor $\lambda_2 = 0.4$ será dado por:

$$\mathbf{v}_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
.

 Desta forma, podemos finalmente escrever a solução geral do processo iterativo:

$$\mathbf{x}_n = c_1 \cdot 0.8^n \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 \cdot 0.4^n \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

• Conhecendo o valor de x_0 , podemos calcular c_1 e c_2 :

$$\mathbf{x}_n = 0.8^n \frac{x_0 + y_0}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 0.4^n \frac{y_0 - x_0}{2} \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

- E, agora, podemos ver claramente que tanto 0.8^n quanto 0.4^n tendem a 0 quando $n \to \infty$, isto é, $\mathbf{x}_n \to \mathbf{0}$ $n \to \infty$.
- Vemos, também, que a convergência para o ponto fixo assintoticamente estável $\mathbf{x}^* = \mathbf{0}$ é dominada pelo maior autovalor $\lambda_1 = 0.8$, pois, com $n \to \infty$:

$$\mathbf{x}_n = 0.8^n \left(\underbrace{\frac{\mathbf{x}_0 + \mathbf{y}_0}{2} \begin{pmatrix} 1\\1 \end{pmatrix}}_{\text{constante}} + \underbrace{0.5^n \frac{\mathbf{y}_0 - \mathbf{x}_0}{2} \begin{pmatrix} -1\\1 \end{pmatrix}}_{\rightarrow \mathbf{0}} \right) \approx 0.8^n \frac{\mathbf{x}_0 + \mathbf{y}_0}{2} \begin{pmatrix} 1\\1 \end{pmatrix} \rightarrow \mathbf{0}.$$

- Finalmente, vemos que quando $\mathbf{x}_n \to \mathbf{0}$, seu módulo $|\mathbf{x}_n| \to 0$. Estas condições são equivalentes. Então, vamos usar com certa frequência esta condição ao invés da condição vetorial.
- Com a intuição que ganhamos com os resultados deste exemplo, podemos agora sedimentar os seguintes conceitos fundamentais:
- O ponto fixo $\mathbf{x}^* = \mathbf{0}$ será assintoticamente estável se e somente se todos os autovalores λ_i da matrix T tiverem módulo menor que um, isto é, $|\lambda_i| < 1$. Se algum tiver módulo maior (ou igual) que 1, o ponto fixo do processo iterativo será instável (estável).
- Se uma matriz T for tal que todos seus autovalores, $|\lambda_i| < 1$, então $T^n \to \mathbb{O}$ com $n \to \infty$, isto é, todos os seus elementos $\{T^n\}_{ij} \to 0$ com $n \to \infty$. Dizemos que T é uma matriz convergente.

• O autovalor λ_i (complexo ou real) de maior módulo da matriz T, é chamado de raio espectral de T, denotado por $\rho(T)$.

$$\rho(T) = \max\{|\lambda_1|, |\lambda_2|, \dots, |\lambda_m|\}$$

- Portanto, uma matriz T será convergente se e somente se seu raio espectral $\rho(T) < 1$.
- O raio espectral de T determina quão rápido o processo vai convergir (ou divergir) para seu ponto fixo, pois:

$$\begin{aligned} |\mathbf{x}_{n}| &= |c_{1}\lambda_{1}^{n}\mathbf{v}_{1} + c_{2}\lambda_{2}^{n}\mathbf{v}_{2} + \dots + c_{m}\lambda_{m}^{n}\mathbf{v}_{m}| \\ &\leq |c_{1}\lambda_{1}^{n}\mathbf{v}_{1}| + |c_{2}\lambda_{2}^{n}\mathbf{v}_{2}| + \dots + |c_{m}\lambda_{m}^{n}\mathbf{v}_{m}| \text{ (designal dade triangular)} \\ &\leq |\lambda_{1}^{n}||c_{1}\mathbf{v}_{1}| + |\lambda_{2}^{n}||c_{2}\mathbf{v}_{2}| + \dots + |\lambda_{m}^{n}||c_{m}\mathbf{v}_{m}| \\ &\leq |\lambda_{1}^{n}||c_{1}||\mathbf{v}_{1}| + |\lambda_{2}^{n}||c_{2}||\mathbf{v}_{2}| + \dots + |\lambda_{m}^{n}||c_{m}||\mathbf{v}_{m}| \end{aligned}$$

Como $\rho(T) = \max\{|\lambda_1|, |\lambda_2|, \dots, |\lambda_m|\}$, então:

$$|\mathbf{x}_{n}| \leq |\lambda_{1}^{n}||c_{1}||\mathbf{v}_{1}| + |\lambda_{2}^{n}||c_{2}||\mathbf{v}_{2}| + \dots + |\lambda_{m}^{n}||c_{m}||\mathbf{v}_{m}|$$

$$\leq \rho(T)^{n} \left(\underbrace{|c_{1}||\mathbf{v}_{1}| + |c_{2}||\mathbf{v}_{2}| + \dots + |c_{m}||\mathbf{v}_{m}|}_{K \in \mathbb{R}}\right) = K\rho(T)^{n}$$

- Portanto, se $\rho(T) < 1$, temos que $|\mathbf{x}_n| \leq K \rho(T)^n \to 0$, quando $n \to \infty$, $\mathbf{x}^* = \mathbf{0}$ é um ponto fixo assintóticamente estável e T é uma matriz convergente. Caso contrário, se $\rho(T) \geq 1$, $\mathbf{x}^* = \mathbf{0}$ é um ponto fixo instável ou apenas estável.
- Quanto menor for $\rho(T)$, mais rapidamente o processo iterativo converge.
- Portanto, vamos querer construir processos iterativos com matrizes com o menor $\rho(T)$ possível! (lembrar da escolha de $|g'(x^*)|$ no caso de processos iterativos escalares!)
- PROBLEMA: calcular autovalores é caro, principalmente para sistemas grandes. Teremos que ser espertos!