Statistik

Grundgesamtheit: Menge aller für eine Fragestellung relevanten Objekte.

Stichprobe: Teilmenge der Grundgesamtheit, die befragt wird / für die Merkmale erhoben werden.

Nominalskala: Skala nach Kategorien geordnet (Geschlecht, Sprache, Nationalität).

Ordinalskala: Skala nach Grad/Größe geordnet (Bildungsniveau, Dienstgrad).

Metrische Skala: Skala für diskrete Merkmale (Alter, Einwohnerzahl, Gewicht).

Absolute Häufigkeit: Absoluter Wert / absolute Größe von etwas (14 Buben in einer Klasse).

Relative Häufigkeit: Wert / Größe als Teilmenge relativ zu einer Grundmenge (14 Buben in einer Klasse mit 20 Schülern = 14 / 20 = 70%).

Stängelblattdiagramm

Arithmetisches Mittel (Mittelwert, Durchschnittswert, \bar{x}): $\bar{x} = \frac{x_1 + x_2 + ... + x_n}{n}$

Median (Zentralwert, \widetilde{x}): Wert in der Mitte einer Stichprobe. Bei gerader Stichprobenlänge ist der Median das arithmetische Mittel aus den beiden mittleren Werten.

Modus (Modalwert, x_D): Der / die am Häufigsten vorkommende(n) Wert(e) einer Stichprobe.

Spannweite: Die Differenz zwischen dem größten Wert (Maximum) und dem kleinsten Wert (Minimum) einer Stichprobe.

Varianz einer Stichprobe (Mean-Square):

$$V = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n}$$

Umgeformt:

$$V = \frac{x_1^2 + x_2^2 + \dots + x_n^2}{n} - (\bar{x})^2$$

Standardabweichung einer Stichprobe: (Root-Mean-Square, σ): Wurzel der Varianz

$$\sigma = \sqrt{V}$$

$$\sigma = \sqrt{\frac{x_1^2 + x_2^2 + ... + x_n^2}{n} - (\bar{x})^2}$$

Bei Varianz und Standardabweichung quadriert man alle Differenzen damit man keine negativen Werte bekommt, wodurch sich manche Werte aufheben würden.

Boxplot Diagramm

Stichprobe: Alle Daten eines Boxplot Diagramms $x_1, x_2, ..., x_n$

Das **erste Quartil** q_1 ist der Median der Daten, die unter \tilde{x} liegen (25 %). Hier 23 ($\frac{22+24}{2}$)

Das **zweite Quartil** q_2 ist gleich dem Median (Zentralwert) \tilde{x} (50 %). Hier 35 ($\frac{34+35}{2}$)

Das **dritte Quartil** q_3 ist der Median der Daten, die über \tilde{x} liegen (75 %). Hier 44.

Minimum: Unteres Ende der Stichprobe. Hier 13.

Maximum: Oberes Ende der Stichprobe. Hier 56.

Quartilsabstand: Differenz $q_3 - q_1$. Hier 43 (56–13).