MAS DSE 230 Scalable Analytics Model Evaluation

Mai H. Nguyen

TODAY'S TOPICS

- Model Evaluation
- Dask
- Cloud Computing
- AWS

MODEL EVALUATION

- Evaluation Metrics
- Generalization & Overfitting
- Model Selection & Model Evaluation
- Hyperparameter Tuning
- Ensemble Learning

MODEL EVALUATION

- Evaluation Metrics
- Generalization & Overfitting
- Model Selection & Model Evaluation
- Hyperparameter Tuning
- Ensemble Learning

BUILDING MACHINE LEARNING MODEL

- Model parameters are adjusted during model training to change input-output mapping
- Parameters are learned or estimated from data
 - "fitting the model", "training the model", "building the model"
- Goal: Minimize some error function

BUILDING VS APPLYING MODEL

Adjust model parameters "Train"

Test model on new data "Inference"

How do you evaluate a model?

TYPES OF CLASSIFICATION ERRORS

ACCURACY RATE

True	Predicted	Error
Yes	Yes	True Positive (TP)
No	No	True Negative (TN)
No	Yes	False Positive (FP)
Yes	No	False Negative (FN)

$$= \frac{TP + TN}{TP + TN + FP + FN}$$

$$= (3 + 4) / 10 = 7 / 10 = 0.7$$

ERROR RATE

True	Predicted	Error
Yes	Yes	True Positive (TP)
No	No	True Negative (TN)
No	Yes	False Positive (FP)
Yes	No	False Negative (FN)

= # incorrect predictions # total predictions

$$= 1 - Accurate Rate = 1 - 0.7 = 0.3$$

CONFUSION MATRIX

Is this animal a mammal?

Class Labels

	Predicted Class Label		
True		Yes	No
Class Label	Yes	True Positive (TP)	False Negative (FN)
	No	False Positive (FP)	True Negative (TN)

CONFUSION MATRIX & ACCURACY RATE

	Pred	dicted Clas	s Label
True Class		Yes	No
Label	Yes	TP = 3	FN = 2
	No	FP = 1	TN = 4

Accuracy =
$$\frac{\text{# correct predictions}}{\text{# total predictions}}$$

$$= \frac{\text{TP + TN}}{\text{TP + TN + FP + FN}}$$

$$= (3 + 4) / 10 = 7 / 10 = 0.7$$

DSE 230 - Spring 2021

CONFUSION MATRIX & ERROR RATE

incorrect predictions
total predictions

$$= \frac{FN + FP}{TP + TN + FP + FN}$$

= 1 - Accurate Rate = 1 - 0.7 = 0.3

CONFUSION MATRIX

Want values on diagonal to be high, and values on off-diagonal to be low.

LIMITATION WITH ACCURACY

- Say 3% of samples are cancer
- If model <u>always</u> predicts non-cancer
 - Accuracy = 97%
 - But no cancer cases detected!

DSE 230 - Spring 2021

PRECISION & RECALL

True	Predicted	Error
Yes	Yes	True Positive (TP)
No	No	True Negative (TN)
No	Yes	False Positive (FP)
Yes	No	False Negative (FN)

Recall =
$$\frac{TP}{TP + FN}$$
 All samples with $\frac{TP}{True = Yes}$

PRECISION & RECALL

True	Predicted	Error
Yes	Yes	True Positive (TP)
No	No	True Negative (TN)
No	Yes	False Positive (FP)
Yes	No	False Negative (FN)

Precision =
$$\frac{TP}{TP + FP}$$
 = $\frac{Positive samples correctly predicted}{All samples predicted as Positive}$

Measure of exactness

$$Recall = \frac{TP}{TP + FN} = \frac{Positive samples correctly predicted}{All samples with true label Positive}$$

Measure of completene

Precision = Positive Predictive Value

Recall = Sensitivity

F-MEASURE

Precision

Recall

- F₁: evenly weighted
- F₂: weights Recall more
- F_{0.5}: weights Precision more

F1-score is harmonic mean of precision and recall F1-score ranges from 0 to 1 (1: perfect precision & recall)

DSE 230 - Spring 2021

LINEAR REGRESSION

Goal: Find regression line that minimizes sum of residuals

REGRESSION EVALUATION METRICS

Mean Squared Error

$$ext{MSE}(y, \hat{y}) = rac{1}{n_{ ext{samples}}} \sum_{i=0}^{n_{ ext{samples}}-1} (y_i - \hat{y}_i)^2.$$

Root Mean Squared Error

$$RMSE = \sqrt{MSE}$$

Mean Absolute Error

$$ext{MAE}(y, \hat{y}) = rac{1}{n_{ ext{samples}}} \sum_{i=0}^{n_{ ext{samples}}-1} \lvert y_i - \hat{y}_i
vert$$

R-Squared

$$R^2(y,\hat{y}) = 1 - rac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - ar{y})^2}$$

CLUSTER ANALYSIS

- Cluster analysis divides data into groups
 - o Grouping is based on some similarity measure.
 - Samples within a cluster are more similar to each other than to samples in other clusters.

http://www-users.cs.umn.edu/~kumar/dmbook/index.php

EVALUATING CLUSTERING RESULTS

- Within-Cluster Sum of Squared Error (WSSE)
- For each sample, error is distance to centroid.
 Then, WSSE is computed as:

$$WSSE = \sum_{i=1}^{K} \sum_{x \in C_i} ||x - m_i||^2$$

- x: data sample in cluster C_i
- m_i : cluster centroid (i.e., mean of cluster)
- $||x m_i||^2$: Euclidean distance between m_i and x

EVALUATING CLUSTERING RESULTS

- WSSE₁ < WSSE₂
 - Means that WSSE₁ is better numerically
- Caveats
 - Does not mean that clustering 1 is more 'correct' than clustering 2
 - Larger values of k will always reduce WSSE

Clustering results need interpretation!

CLUSTER EVALUATION METRICS

WSSE

- Within-cluster sum-of-squared error
- Measures cluster cohesion

BSSE

- Between-cluster sum-of-squared error
- Measures cluster separation
- Davies-Bouldin Index (DBI)
 - Measures both cluster cohesion and cluster separation

$$WSS = \sum_{i} \sum_{x \in C_i} (x - c_i)^2$$

$$BSS = \sum m_i (c - c_i)^2$$

$$DB = \frac{1}{n} \sum_{i=1}^{n} \max_{j \neq i} \left(\frac{\sigma_i + \sigma_j}{d(c_i, c_j)} \right)$$

EVALUATION METRICS

- Classification
 - Defined in terms types of classification errors
- Regression
 - Defined in terms of difference between prediction and target
- Cluster Analysis
 - Defined in terms of cluster cohesion & separation

MODEL EVALUATION

- Evaluation Metrics
- Generalization & Overfitting
- Model Selection & Model Evaluation
- Hyperparameter Tuning
- Ensemble Learning

BUILDING VS APPLYING MODEL

Adjust model parameters "Train"

Test model on new data "Inference"

GENERALIZATION

Goal: Want model to perform well on data it was not trained on, i.e., to **generalize** well to unseen data

OVERFITTING & GENERALIZATION

- Overfitting
 - Model is fitting to noise in data instead of to underlying distribution of data
- Overfitting leads to poor generalization
 - Model that overfits will not generalize well to new data
- Reasons for overfitting
 - Training set is too small
 - Model is too complex, i.e., has too many parameters

OVERFITTING

http://stats.stackexchange.com/questions/192007/what-measures-you-look-at-the-determine-over-fitting-in-linear-regression

Underfitting

Model has not learned structure of data

High training error High test error

Just Right

Model has learned distribution of data

Low training error Low test error

Overfitting

Model is fitting to noise in data

Low training error High test error

BIAS & VARIANCE

- Overfitting & Bias-Variance
 - Overfitting leads to poor generalization
 - Related to bias-variance trade-off in statistical learning
- Components of model generalization error
 - o Bias
 - Error made by model based on assumptions in learning algorithm
 - Variance

Error from algorithm's sensitivity to variabilities in training data

BIAS & VARIANCE

BIAS-VARIANCE TRADEOFF

- To create model that generalizes well
 - Need to balance bias and variance to minimize total error

Total Error = Bias^2 + Variance + Irreducible Error

MODEL EVALUATION

- Evaluation Metrics
- Generalization & Overfitting
- Model Selection & Model Evaluation
- Hyperparameter Tuning
- Ensemble Learning

ADDRESSING OVERFITTING

Model Selection

- Process of selecting a model from collection of candidate models
- Based on model complexity
 - Selecting model with right level of complexity
 - To address overfitting and maximize generalization
- Methods
 - Use a validation set
 - Incorporate model complexity in error function

MODEL SELECTION

- Considerations
 - Complexity
 - Accuracy
 - Interpretability
 - Computational and/or memory efficiency
 - Scalability
 - o others

ADDRESSING OVERFITTING USING VALIDATION SET

TRAINING & VALIDATION ERRORS

MODEL SELECTION

VALIDATION SET

- Ways to create & use validation set
 - Holdout method
 - Repeated holdout
 - K-fold cross-validation
 - Leave-one-out cross-validation

HOLDOUT METHOD

Training Data All data available for building model Validation Data Holdout set used to Used for training model determine when training should stop

REPEATED HOLDOUT

- Repeating holdout method several times
- Randomly select different hold out set each iteration
- Average validation errors over all repetitions

K-FOLD CROSS-VALIDATION

LEAVE-ONE-OUT CROSS-VALIDATION

ADDRESSING OVERFITTING USING REGULARIZATION

Model complexity

- Number of parameters in model
- Chance of overfitting increases with model complexity

Regularization

- Constrain or shrink ("regularize") model parameters
- To control model complexity by reducing variance of model
- Add penalty term to error function used to train model
 - e.g., to discourage large values of parameters

LINEAR REGRESSION WITH REGULARIZATION

- Linear regression with regularization
- Ridge regression: L2-norm regularization

$$\min_{w} ||Xw - y||_2^2 + \alpha ||w||_2^2$$

Lasso regression: L1-norm regularization

$$\min_w ||Xw-y||_2^2 + \alpha ||w||_1$$

Elastic regression: L2-norm & L1-norm regularization

MODEL EVALUATION

- Model Evaluation
 - Assessing performance of a trained model
- Estimating generalization performance of model
 - Methods for model selection can be used

DATASETS

Cannot be used in any way in model fitting!

Training Data

Model Fitting: Adjust model parameters Validation Data

Model Selection:
Select model to avoid overfitting
Estimate generalization performance

Test Data

Model Evaluation:

Evaluate performance on new data

MODEL EVALUATION

- Evaluation Metrics
- Generalization & Overfitting
- Model Selection & Model Evaluation
- Hyperparameter Tuning
- Ensemble Learning

HYPERPARAMETER TUNING

- An approach to model selection
- Model parameters
 - Parameters that are learned from data
 - Adjusted during training
 - Example: Feature to split on for each node in decision tree
- Model hyperparameters
 - Parameters that determine model architecture
 - Knobs of model that can be tuned to improve performance
 - "Hyperparameter Tuning"
 - Must be set before training begins
 - Example: max depth of decision tree

DSE 230 - Spring 2021

HYPERPARAMETER TUNING METHODS

Idea:

- Evaluate range of values for each hyperparameter
- Evaluate model for each combination of hyperparameter values to get optimal set

Grid search

- Exhaustive approach
- Specify list of values for each hyperparameter

Random search

- Specify range of values for each hyperparameter
- Hyperparameter values are randomly sampled from given range based on specified statistical distribution

DSE 230 - Spring 2021

CROSS-VALIDATION IN HYPERPARAMETER TUNING

Evaluate model on each combination of hyperparameter values using k-fold cross-validation

MODEL EVALUATION

- Evaluation Metrics
- Generalization & Overfitting
- Model Selection & Model Evaluation
- Hyperparameter Tuning
- Ensemble Learning

DECISION TREE

ENSEMBLE METHODS

• "ensemble":

a group producing a single effect (from Merriam-Webster)

• Idea:

Combine several simple models into more complex one

• Approach:

- Construct a set of models from training data
- Prediction is made by combining outputs of the multiple models
 - ☐ Classification: Combine votes of classifiers

ENSEMBLE METHODS

Advantage

 Ensemble learning generates more robust model with is less susceptible to overfitting and generalizes better

Rationale

- Ensemble with majority voting
 - Base classifiers may make mistakes, but ensemble will misclassify a pattern only if over half of base classifiers are incorrect.
- Intuitively, combining decisions from multiple "experts" may be more reliable than relying on a single "expert"

Approaches

- Bagging
- Boosting

ENSEMBLE METHOD: BAGGING

- Bagging stands for "bootstrap aggregation"
- Approach:
 - Sample training data set with replacement to construct bootstrap samples
 - Build separate classifier on each bootstrap sample
 - Each classifier predicts class label for unknown record
 - Bagged classifier takes majority vote
- Generalization can be improved since variance of individual base classifiers is reduced

RANDOM FOREST

- "forest"
 - Ensemble method
 - Model is composed of set of decision trees => forest!
- "random"
 - For each tree is trained on randomly selected training samples
 - Subset of variables chosen randomly is used to determine best split
- Idea:
 - To improve generalization over single decision tree

DSE 230 - Spring 2021

RANDOM FOREST - ILLUSTRATION

RANDOMNESS IN RANDOM FOREST

Randomness can be incorporated in several ways:

- Forest-RI
 - Random attribute selection: At each node, randomly select subset of input attributes to consider in splitting node
- Forest-RC
 - Random combinations of attributes: At each node, randomly select subset of input attributes to be linearly combined. These new attributes are considered in splitting node
- Randomly select best split:
 - At each node, randomly select one of F best splits

FEATURE IMPORTANCE

- Importance of each variable in prediction task
- Provides model explainability
- Process
 - Keep track of decrease in Gini index when splitting by each feature
 - Add up for all splits in all base trees
 - Find average over all trees

MGTA 495 - Winter 2021 M. H. Nguyen

ENSEMBLE METHOD: BOOSTING

Boosting

- Combine set of "weak learners" (i.e., base models) to create composite strong learner
- Base models added iteratively until no further improvements can be made or max number of models have been added
- Weighted aggregation of base models' outputs used as final prediction
- Base models are created sequentially

ADABOOST

Adaptive Boosting

 Adaptive: New models are built based on errors from previous ones

Main ideas

- Misclassified samples are weighted more
- New models focus more on samples that are difficult for existing models
- Models are weighted relative to their predictive performance
- Final prediction is weighted average of base models

XGBOOST

Gradient Boosting

- New models are trained to minimize residuals (i.e., errors) of existing models
- Loss function combines error and penalty term for model complexity
- Gradient descent used to minimize loss when adding new models

eXtreme Gradient Boosting

- Implementation of gradient boosted trees
- Optimized for execution speed and model performance
- Uses parallelization and distributed computing to speed computation

ENSEMBLE MODELS

- In practice, often results in improved performance due to lower variance
- Training takes longer
- Ensembles more difficult to understand than single models.

MODEL EVALUATION

- Evaluation Metrics
- Generalization & Overfitting
- Model Selection & Model Evaluation
- Hyperparameter Tuning
- Ensemble Learning