太陽活動に伴って極域に降り込む高エネルギー粒子が NO_x (窒素酸化物)やオゾンなどの中層大気中の微量分子に及ぼす影響を観測的に調べるため、我々は 2012 年から南極・昭和基地(69.00° S、 39.85° E)、2016 年から北極域のノルウェー・トロムソ(69.35° N、 19.14° E)でミリ波分光観測を行っている。Isono et al., 2014b では、ミリ波分光を用いた昭和基地での NO(一酸化窒素)の観測で、季節変化に伴う長期変動と冬期に高エネルギー粒子の影響による短期変動が確認された。しかし、夏は NO の光解離による減少と高エネルギー粒子の影響による増加を切り分けることができなかった。そこで本研究では、季節が逆転する北極域を含めた両極域での同時観測による解析の実現を目指す。

トロムソでは NO の 2 本の超微細構造線のスペクトルを同時観測していたが、昭和基地で 2022 年 7 月から定常観測を開始した多周波数ミリ波分光計の FFT 分光計帯域は 2.5 GHz であり、トロムソでの観測で用いた分光計と比べ 2.5 倍の帯域を持つため、比較的近傍の周波数にある 6 本のスペクトルの同時観測が可能となった。

トロムソについては 2018 年 12 月 26 日から 2019 年 3 月 10 日までの 75 日間にわたって実施した NO のテスト観測、昭和基地については多周波数ミリ波分光計を用いて得られた 2023 年 3 月 22 日 から 31 日までの 10 日間にわたる NO の観測データの中から NO 柱密度の導出を行った。NO が存在する領域の大気温度は一様に 200 K で、NO 輝線は光学的に薄いと仮定した。

トロムソの分光計では積分時間は 24 時間であったが、NO の 6 本の超微細構造線から導出される柱密度を平均することで、昭和基地における積分時間は 12 時間と短くした。昭和基地での柱密度の誤差の平均はトロムソでの観測と比べて 20% 小さくなり、時間分解能を小さくしながら柱密度の誤差を小さくすることができた。解析の期間には磁場の擾乱により加速された電子の影響とみられる NO の増加が確認できた。

目次

第1章	イントロダクション・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
1.1	オゾンの重要性とオゾン減少・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
1.2	先行研究の結果と課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
1.3	本研究の目的と研究手法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
第2章	ミリ波観測法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
2.1	観測手法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
2.1.1	観測手法の概観と観測装置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
2.1.2	電波強度のキャリブレーション ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
2.1.3	光学的厚み・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
2.1.4	周波数スイッチング ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
2.2	観測場所・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
2.2.1	ノルウェー・トロムソでの観測 (69.35°N, 19.14°E) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
2.2.2	南極・昭和基地での観測 (69.00°S, 39.85°E) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21
第3章	ミリ波観測のデータ解析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
3.1	光学的厚みの測定データを基にしたスクリーニング・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	25
3.2	NO スペクトルデータのバックグラウンドノイズを基にしたスクリーニング・・・・	26
3.3	トロムソにおける光学的厚みの測定データの異常値の検討・・・・・・・・・・・・・	27
3.4	NO スペクトルデータのベースラインの補正 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	29
3.5	NO 柱密度(Column Density)の導出 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
第4章	結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
4.1	ノルウェー・トロムソでの解析結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
4.2	南極・昭和基地での解析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
第5章	考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
5.1	SOFIE データによって導出された NO 柱密度との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
5.2	高エネルギー電子の降り込みとの比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
5.2.1	Dst 指数との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
5.2.2	POES/MetOp 衛星の電子フラックスデータとの比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	40
5.2.3	OMNI Web Data Set との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	43
第6章	まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	46
付録 A	Dst 指数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	51
付録 B	SOFIE · · · · · · · · · · · · · · · · · · ·	52
付録 C	POES/MetOp · · · · · · · · · · · · · · · · · · ·	53

付録 D OMNI Web Data Set	•••••	55
------------------------	-------	----

参考文献

- [1] Eugene Rozanov, M Calisto, T Egorova, T Peter, and W Schmutz. Influence of the precipitating energetic particles on atmospheric chemistry and climate. *Surveys in geophysics*, Vol. 33, pp. 483–501, 2012.
- [2] A Seppälä, CE Randall, Mark A Clilverd, Eugene Rozanov, and CJ Rodger. Geomagnetic activity and polar surface air temperature variability. *Journal of Geophysical Research: Space Physics*, Vol. 114, No. A10, 2009.
- [3] Manuel López-Puertas, B Funke, S Gil-López, T Von Clarmann, GP Stiller, M Höpfner, S Kellmann, H Fischer, and CH Jackman. Observation of NOx enhancement and ozone depletion in the northern and southern hemispheres after the october—november 2003 solar proton events. Journal of Geophysical Research: Space Physics, Vol. 110, No. A9, 2005.
- [4] Yasuko Isono, Akira Mizuno, Tomoo Nagahama, Yoshizumi Miyoshi, Takuji Nakamura, Ryuho Kataoka, Masaki Tsutsumi, Mitsumu K Ejiri, Hitoshi Fujiwara, Hiroyuki Maezawa, et al. Ground-based observations of nitric oxide in the mesosphere and lower thermosphere over antarctica in 2012–2013. *Journal of Geophysical Research: Space Physics*, Vol. 119, No. 9, pp. 7745–7761, 2014.
- [5] A Mizuno, T Nagahama, A Morihira, H Ogawa, N Mizuno, Y Yonekura, H Yamamoto, H Nakane, and Y Fukui. Millimeter-wave radiometer for the measurement of stratospheric ClO using a superconductive (SIS) receiver installed in the southern hemisphere. *International Journal of Infrared and Millimeter Waves*, Vol. 23, No. 7, pp. 981–995, 2002.
- [6] 伊藤弘樹. ノルウェー・トロムソに向けたミリ波分光観測装置の開発~NO 分子両極域同時観測を目指して~. 名古屋大学大学院 理学研究科 修士論文, 2017.
- [7] 上村美久. 地上ミリ波観測装置による極域中間圏一酸化窒素の時間変動. 名古屋大学大学院 理学研究科 修士論文, 2014.
- [8] 中井 直正, 坪井 昌人, 福井 康雄(編). 宇宙の観測 II 電波天文学, シリーズ現代の天文学, 第 16 巻, 5.3.2 節, p. 203. 日本評論社, 第 1 版, 2009.8.
- [9] B Ulich, J Davis, P Rhodes, and J Hollis. Absolute brightness temperature measurements at 3.5-mm wavelength. *IEEE Transactions on antennas and propagation*, Vol. 28, No. 3, pp. 367–377, 1980.
- [10] Yasuko Isono, Akira Mizuno, Tomoo Nagahama, Yoshizumi Miyoshi, Takuji Nakamura, Ryuho Kataoka, Masaki Tsutsumi, Mitsumu K Ejiri, Hitoshi Fujiwara, and Hiroyuki Maezawa. Variations of nitric oxide in the mesosphere and lower thermosphere over antarctica associated with a magnetic storm in april 2012. Geophysical Research Letters, Vol. 41, No. 7, pp. 2568–2574, 2014.
- [11] 岩田裕之. 南極昭和基地における中層大気多分子同時観測のためのミリ波分光観測装置フロ

- ントエンドの開発. 名古屋大学大学院 工学研究科 修士論文, 2019.
- [12] 小瀬垣貴彦. 南極昭和基地における中層大気多分子同時観測のためのミリ波分光観測装置フロントエンドの開発. 名古屋大学大学院 工学研究科 修士論文, 2020.
- [13] Taku Nakajima, Kohei Haratani, Akira Mizuno, Kazuji Suzuki, Takafumi Kojima, Yoshinori Uzawa, Shin'ichiro Asayama, and Issei Watanabe. Waveguide-type multiplexer for multiline observation of atmospheric molecules using millimeter-wave spectroradiometer. *Journal of Infrared, Millimeter, and Terahertz Waves*, Vol. 41, pp. 1530–1555, 2020.
- [14] K Sakuma, S Rachi, G Mizoguchi, T Nakajima, A Mizuno, and N Sekiya. A superconducting dual-band bandpass filter for if signals of multi-frequency millimeter-wave atmospheric spectrometer. IEEE Transactions on Applied Superconductivity, Vol. 33, No. 5, pp. 1–4, 2023.
- [15] 後藤宏文. トロムソにおける一酸化窒素 (NO) スペクトルデータのスクリーニングとキャリブレーションに関する考察. 名古屋大学 工学部 卒業論文, 2021.
- [16] Kyoto World Data Center for Geomagnetism. Mid-latitude geomagnetic indices "ASY" and "SYM" for 2009 (provisional). https://wdc.kugi.kyoto-u.ac.jp/aeasy/asy.pdf, 2010.
- [17] World Data Center for Geomagnetism, Kyoto, T. Kamei, M. Sugiura, and T. Araki. Auroral electrojet (AE) indices for January December 1992 (provisional). https://wdc.kugi.kyoto-u.ac.jp/aedir/ae2/onAEindex.html, 1992.
- [18] World Data Center for Geomagnetism, Kyoto, M. Nose, T. Iyemori, M. Sugiura, and T. Kamei. Geomagnetic Dst index. doi:10.17593/14515-74000, 2015.
- [19] Masahisa Sugiura and Toyohisa Kamei. Equatorial Dst index 1957-1986. https://wdc.kugi.kyoto-u.ac.jp/dstdir/dst2/onDstindex.html, 1986.
- [20] Kyoto World Data Center for Geomagnetism. Version definitions of AE and Dst geomagnetic indices. https://wdc.kugi.kyoto-u.ac.jp/wdc/pdf/AEDst_version_def_v2.pdf, 2022.
- [21] James M Russell III, Scott M Bailey, Larry L Gordley, David W Rusch, Mihály Horányi, Mark E Hervig, Gary E Thomas, Cora E Randall, David E Siskind, Michael H Stevens, et al. The aeronomy of ice in the mesosphere (AIM) mission: Overview and early science results. *Journal of Atmospheric and Solar-Terrestrial Physics*, Vol. 71, No. 3-4, pp. 289–299, 2009.
- [22] Utah State University Space Dynamics Laboratory. Aeronomy of ice in the mesosphere (AIM) solar occultation for ice experiment (SOFIE) instrument user guide. https://sofie.gats-inc.com/documents/docs_software/SOFIE_Users_Guide_sd106-303.pdf, 2006.
- [23] Janet Green. External users manual POES/MetOp SEM-2 processing. https://www.ngdc.noaa.gov/stp/satellite/poes/docs/NGDC/External_Users_Manual_POES_MetOp_SEM-2_processing_V1.pdf, 2013.
- [24] Dr. Janet Green. MEPED telescope data processing theoretical basis document version 1.0. https://www.ngdc.noaa.gov/stp/satellite/poes/docs/NGDC/MEPED%20telescope% 20processing%20ATBD_V1.pdf, 2013.
- [25] JH King and NE Papitashvili. Solar wind spatial scales in and comparisons of hourly wind and

- ACE plasma and magnetic field data. *Journal of Geophysical Research: Space Physics*, Vol. 110, No. A2, 2005.
- [26] Joe King, Natalia Papitashvili, GSFC/SPDF, and ADNET Systems, Inc. One min and 5-min solar wind data sets at the Earth's bow shock nose. https://omniweb.gsfc.nasa.gov/html/HROdocum.html, 2023.
- [27] Christopher T Russell. Geophysical coordinate transformations. Cosmic electrodynamics, Vol. 2, No. 2, pp. 184–196, 1971.