CHAP I : ESPACES MÉTRIQUES

<u>Difinition</u>: Souent X un ensemble et d: X × X → 1R une fonction telle que:

(0,1): \x,y \x, d(x,y) =0 <=> x = y

 $(D_2): \forall x, y \in X, d(x,y) = d(y,x)$

 $(D_3): \forall x, y, z \in X, d(x, y) + d(y, z) \ge d(x, z).$

Alors, d'est une métrique sur X et (X,d) est un espace métrique.

Lemme: Si $d: X^2 \to \mathbb{R}$ est une mitrique, alors d(x,y) > 0 $\forall x,y \in X$.

Dimoustration: Par D_A , nous avons que d(x,x)=0Par D_3 , nous avons $d(x,x)=0 \le d(x,y)+d(y,x)$ Anin', par D_2 , on conclut que $0 \le 2d(x,y)$.

Exum pers:

- Métrique enclidaine = métrique unuelle sur \mathbb{R}^n $\forall x,y \in \mathbb{R}^m$, $d(x,y) = \left(\sum_{i=1}^n |x_i - y_i|\right)^{1/2}$ (\mathbb{R}^n,d) est un espace métrique.
- · ritiques le sur Rn

Soit $p \in [1, \infty)$. Alors, $d_p(x, y) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{1/p} \forall x, y \in \mathbb{R}^m$ (\mathbb{R}^m, d_p) ext un espace mitrique.

· Métrique dos

do (x,y) = max |xi-Mil /

2 soit X = { cf: [a,b] → 1R}

Si $f, g \in X$, $d_{\infty}(f, g) = \max_{\{a,b\}} |f-g|$ (man existe par the der bornes atteintes).

· Mitingin discrite (diginerer).

Soit X un ensemble, R, y E X. Alors soit

 $d(x,y) = \begin{cases} 1 & \text{si } x \neq y \\ 0 & \text{si } x = y \end{cases}$

Alors (X, d) est un esp. métrique.

```
Thiorem: (Hitnigue produit)
          Sount (X, d,),..., (Xn, dn) espaces métriques.
           Soit X = \overrightarrow{\Pi} X_i = \{(x_1, ..., x_n) \mid x_i \in X_i \; \forall i \in [1, ..., n]\}
            et soit d(x,y) = \max \{d_i(x_i,y_i)\} avec x,y \in X.
Alors (x,d) est un espace métrique.
Démonstration
• (D_1): =>) & d(x,y) = 0, alors mous arous, pour i \in \{1,...,m\}
       0 ≤ d; (xi, y;) ≤ d (x, y) ≤0
      Done di (ki, yi) = 0 et prusque (Xi, di) est un
       espace mitrique, xi=y: pour tout i. Douc, x=y.
        (=) Si n = y, alors n: = y; pour tout i. Donc
             d:(x_i,y_i)=0 et donc \max\{d_i(x_i,y_i)\}=0
              => d(x,y)=0.
· (D2). Purque di sont des métagins, on a que
    d(x,y) = \max_{x \in i \in \mathbb{N}} \{d_i(x_i,y_i)\} = \max_{x \in i \in \mathbb{N}} \{d_i(y_i,x_i)\} = d(y_i,x_i)
·(D3). Purque pour tout i E[1,..., m3, di(ki,yi) & d(k,y),
     il existe li E {1,..., n} tel que
   d (x, 3) = dk (xk, 3k) = dk (xk, yk) + dk (yk, 3k)

≤ d (n,y) + d (y, g)

   pour x, y, z EX.
Pour R2, comparons la métrique ence et la métrique produit.
 (R2 = RxR).
                                                         x = (x_1, x_2)
 deuc (x,y) = \[ |x,-y,|^2 + |x_2-y_2|^2 \]
                                                    (aucc
                                                           4-(41,40))
 d prod (x,y) = max { |n,-y,1, |x2-y2|}
 Comparans les boules:
```

Deue (0,1) = { \alpha : deuc (\alpha,0) \le 1 \} ~> (\begin{aligned}
\text{3} \\
\text{3} \\
\text{3} \\
\text{3} \\
\text{4} \\
\text{4} \\
\text{5} \\
\text{4} \\
\text{5} \\
\text{5} \\
\text{6} \\
\text{7} \\
\text{7} \\
\text{6} \\
\text{7} \\
\text{7} \\
\text{6} \\
\text{7} \\
\text{7}

B prod (0,1) = { x : d prod (x,0) \le 1 } ~

Définition: Deux espaces suitagies (A, d_A) et (B, d_B) sont isométaquement equivalents s'il existe des fets récipaques $f: A \rightarrow B$ et $g: B \rightarrow A$ telles que pour tout $x, y \in A$, $d_B(f(x), f(y)) = d_A(x, y)$ et pour tout $u, x \in B$, $d_A(g(u), g(v)) = d_B(u, v)$.

Thiorime: Deux expaces mitriques (A, d_A) et (B, d_B) sont vomitriquement équivalents ssi il existe $f: A \rightarrow B$ tq: 1) f est bijective

2) $\forall x, y \in A$, $d_{B}(f(x), f(y)) = d_{A}(x, y)$

Demonstration:

- =>) supposons que (A, dA) et (B, dB) sont isométriquement équivalents. Alors par définition,
 - ·] f: A > B et g: B > A réciproques -> f bijective
 - · f satisfait (2) par difinition.
- Supposous qu'il existe $f: A \rightarrow B$ qui satisfait l'énoncé. Acors f unversible car byective. Posous $g: B \rightarrow A$ la réciproque tq g(b) = a si f(a) = b.

 Pour $u, v \in B$, soit x = g(u) et y = g(v).

 Alors $d_A(g(u), g(v)) = d_A(x, y)$ $= d_B(f(x), f(y))$ $= d_B(f(g(u)), f(g(v)))$ $= d_B(u, v)$

Fonctions continues sur les espaces métriques

Définition: Soit (X,d) et (Y,p) deux espaces métriques. un fonction $f:X\to Y$ est continue si pour $P\in X$ et E>0, il existe S(p,E)>0 tel que si d(p,x)< S(P,E) alors p(f(p),f(x))< E

```
et g: X \rightarrow Y et f: Y \rightarrow Z des fonctions continues,
         alors la fonction composé f \circ g : X \to Z est
          dumi continue.
Dimonstration: soit E>0. Purque f'est contrince, pour
               M \in Y, il existe S_n(M, E) > 0 to si
          p(y,g(p)) \leq S_{\Lambda}(y,E), alors \sigma(f(y),f(g(p)) \leq E.
            (Avec y & Y, g(p) & Y)
              Purque q'est continue, pour PEX, il
              existe 82 (P/E) >0 tog si
             d(x,p) \in S_2(p,\epsilon) alors p(g(x),g(p)) \in S_2(y,\epsilon).
             Donc, por le choix de 81, ceci miplique que
             si d(n,p) \leq S_2(p,E), alors \sigma(f(g(n)),f(g(p)) \leq E.
                (avec y vu comme g(x)).
Ensembles ouverts dans les espaces métagues.
Définition: soit (x,d) un espace métraju un sous-ensemble
           E = X est ouvert dans X si pour tout e E E,
           il existe $ >0 tel que si d(x,e)<8, alons x E E.
    La Milleure déf: E est ouvert si pour tout x € E, il
                     existe B(x,8) \subseteq E avec 8>0
Définition: Soit (x,d) un espace métague on définit la
            boule ouverte ele centre x et de rayon 12>6 par
              B(n,n) = { y ex | d (x,y) < n}
Proposition: B(x,r) est ouverte.
 Dimonstration: Pour y & B(x,r), posous 8 := 17-d(x,y)>0
              pour 3 € €, on a que d (x, z) ≤ d (x, y) + d(y, z) < 1
```

lorique on pose distribution.

> 3 EB (4,8)

Ceci implique que 3 EB(x, 2) => B(x, 2) awent sur X.

Si (x,d), (y,g) et (Z,σ) sont des espaces métriques

June: (Yoi de composition)

3 important: si X est muni de la distance discrète, alors pour tout E = x , E est ouvert.

Dimonstration: Soit X e E. Prenons S=1. & daise (x,e)<1, alors x = e et donc x = e E E.

Thiorine: (Propriétés du ouverts)

Soit (x,d) un espace unitrique. Alors

- (1) \$ et X sont ouverts
- si U a est ouvert pour tout à dans un ensemble A, gloss U Ma est owert
- (3) Si Uj est ouvert pour tout je {1,..., n} along Mi est awert.

Dunoustration:

- (1) Trivial
- (2) Si e E U Ma, il existe d. EA top e E Ma. Prusque Mo est ouvert, il existe 8 >0 tg si d(x,e) < 8, alors x e Uxo = U Nd.
- (3) $\& e \in \cap \mathcal{U}_{j}$, alors pour tout $j \in \{1,...,n\}$, $e \in \mathcal{U}_{j}$. Punque Mj est ouvert, il existe 8, >0 tel que d(x,e) < Sj miplique x EU; En premant $S = min \{Sj\} > 0$, si d(x,e) < S, alors $x \in M_j$ et donc $K \in \bigcap U_{\delta}$
- une intersection finie d'ensembles ouverts est auverte, pais pas nécessavement une interaction infinie.

S= n-d(x,y)

Définition: Soveit (x,d), (y,p) des espaces métagues, f: x > y um fonction et M = Y un sous-ensemble Alors l'unage récipaque de M par f est f-1 (U) = {n E X | f(x) E M}

Théorime: (continuité sur des ouverts) Souit (x,d) et (Y,9) des espaces mitriques. $f: X \to Y$ est continue s.s.i $\forall M \subseteq Y$ ouvert, f-1 (M) est awert.

Demonstration.

=>) Soit $\mathcal{M} \in Y$ ouvert. Hontrous que $f^{-1}(\mathcal{M})$ est ouvert. soit $x \in f^{-1}(\mathcal{U})$. Alors, $f(x) \in \mathcal{U}$ et donc il existe E>0 tel que B (f(x), E) EN. Par continuité de f, il existe S>0 tel que si $y \in X$ et d(x,y) < S, alors $p(f(x), f(y)) < \varepsilon$. Montrous que B(x,8) & f - (14) La Ceci démontre immédiatement que f'(NL) est owert, car nous avous alors que pour ne f'(M), il existe 8>0 tg B(x,8) = f-1(11).

on a que y & B(x, S) car d(x, y) < S. Donc, $g(f(x), f(y)) < \varepsilon$. Arini, $f(y) \in B(f(x), \varepsilon) \subseteq \mathcal{U}$. Ains, par définition de l'unage léciproque, $y \in f^{-1}(\mathcal{U})$ et danc $f^{-1}(\mathcal{U})$ est auvert. ~ pour chaque élément différent de f(M), le 8 de la déf de containité marchera.

(=) supporous que pour tout M=Y ouvert, f-1(N) est ouvert. Soient MEX et 870. La boule B (f(x), E) & y est ouverte et danc par hyp, f-1 (B(f(x), E)) est ouverte dans X. Purque $f(x) \in B(f(x), E)$, alors $x \in f^{-1}(B(f(x), E))$. $\exists 8 > 0 \text{ tq } \mathcal{B}(x,8) \subseteq f^{-1}(\mathcal{B}(f(x),E)), \text{ puisqui ouvert}.$ Si d(x,y) < 8, alors $y \in f^{-1}(B(f(x), E))$. Done $f(y) \in B(f(x), E)$ et donc $p(f(y), f(x)) \angle E$. Ceci satisfait la ctuité de f. \rightarrow si x et y arrez proches dans B(x,S), alors f(x) et f(y) arrez

proches dans B(f(x), E). REFAIRE AVEC SCHÉMA.

turembles fermes dans les espaces mêtriques

<u>Définition</u>: (convergence)

Soit (xn) ner une suite dans un espace métrique (x,d). On dit que (kn) nEIN converge vers x lorsique pour E>O, I NEIN tel que si MEN et n > N, alors on a que d(x, xn) < E.

Définition Pab: Soit (xn) new une suite dans un espace métrique (x,d). Si x EX et E>O, on peut trouver NEW to si MEN et n>N, alous d(xn,x) < E. On dit que lin $x_n = x$ et x_n converge.

> ~ Voir comme une touce de laquelle n'n me peut sortir.

Lemme: (unicité de la limite) si une suite (nn) new dans un esp métrique (x,d) a une limite, alors cette ensite est unique

<u>Demonstration</u>: supposons par l'absurde que 3 x1, x2 EX tq lin $x_n = x_1 \neq x_2 = \lim_{n \to +\infty} x_n$

Par l'inégalité tranqueaire, nous avous que pour oid $(x_1, x_2) \in d(x_1, x_n) + d(x_n, x_2)$

Purique (21 n) nein est une suite convergente, Y €>0, 3 N, EN top si m>N1, d (x1,xn) ∈ €/2 et VE70 3 N2 EIN to si n3 N2, al(x1,xn) & E/2. Prenons M= max {N1, N2}. Alors, si m > N, d(x1, n2) & E/2 + E/2 = E Par & arbitraire et positivité de d, on a que

 $d(x_1, x_2) = 0$ a qui contredit que $x_1 \neq x_2$

Difinition: (Fermé)

Soit (X,d) un espace métrique. Un ensemble $F \subseteq X$ est fermé si $\forall (x_n)_{n \in \mathbb{N}} \in F$ convergente, on a

lui $x_n = x \in F$.

Terrorine: Soit (X,d) un espace métrique. F \(\times \) est fermé 8.5. i F c est ouvert, avec F c = X \F.

Demonstration:

=>) Notions $E = F^c$. Supposons par l'absurde que E n'est par ouvert. Alors, $\exists e \in E$ tel que pour tout 8 > 0 et un $x \in X$, si d(e,x) < S, an a que $x \in E$. Alors, $B(e,S) \cap F \neq 0$ car $x \in F$.

En particulier, on trouve $(y_n)_{n\in\mathbb{N}}$ to $\forall n$, $y_n\in F$, et $d(y_n,e)<\frac{1}{n}$. Puirpue $\lim_{n\to\infty}\frac{1}{n}=0$, on a lim $y_n=e$ or, $y_n\in F$ et $e \not = F$, et f est un ensemble fermi. Il y a danc contradiction.

E) supposons par l'absurde que F m'est pas fermé.

Purque E est ouvert, $\forall e \in E$, $\exists 8 > 0 \text{ tg si d}(x,e) < 8$, alous nemons $(y_n)_{n \in \mathbb{N}} \in F$ une suite convergente teg lim $y_n \notin F$ et donc $\lim_{n \to +\infty} y_n = y \in F$ car F pas fermé.

Purque $y_n \notin F$, $\not\exists 8 > 0 \text{ tg d}(y_1, y_n) < 8$.

Donc d(yn,y) > 8 pour 8>0 ce qui contreolit la déf de convergence de (yn)ners. Soit (X,d) un espace unitrique. Alors,

(1) L'ensemble X et p sont fermés.

- (2) Si fx est formé V x & A arbitraire, alors (Fx est formé (Intersection de formés est formée)
- (3) Si Fj est fermi V 1 \(\frac{1}{2} \) \(\text{n}, \text{alors} \quad \(\text{V} \) \(\text{F}_{j} \) est fermie.

 (union finie de fermis est fermie).

Dimous tration:

- (1) Puisque X est ouvert, X° = & est fermi. Puisque & est ouvert, &° = X est fermi.
- (2) on a que $\bigcap_{\alpha \in A} F_{\alpha} = X \setminus (\bigcup_{\alpha \in A} X \setminus F_{\alpha})$ Purque F_{α} est fermé, $X \setminus F_{\alpha}$ est ouvert. Ainsi, $\bigcup_{\alpha \in A} X \setminus F_{\alpha}$ est ouvert (par prop des ouverts). Donc, $A \in A \setminus (\bigcup_{\alpha \in A} X \setminus F_{\alpha})$ est fermé.
- (3) On a que $\int_{j=1}^{\infty} F_j = X \setminus \left(\bigcap_{j=1}^{\infty} X \setminus F_j\right)$.

 Pursque F_j est fermé $\forall j \in \{1...n\}, \bigcap_{j=1}^{\infty} X \setminus F_j$ est ouvert.

 Done $X \setminus \left(\bigcap_{j=1}^{\infty} X \setminus F_j\right)$ est fermé.

Thioreme: Soit (x,d), (y,p) deux espaces mitriques. $f: X \to Y$ est continue s.s.: $\forall F \subseteq Y$ ferme, $f^{-1}(F)$ est ferme.

Démonstration: Soit $\mathcal{M} = F^c => \mathcal{M}$ est ouvert avec $\mathcal{M} \subseteq Y$. on sait que f ctue $(=> f^{-1}(\mathcal{M}))^c$ fermi $(=> f^{-1}(\mathcal{M}^c)) = f^{-1}(F)$ fermi. CHAP II: ESPACES TOPOLOGIQUES

Définition: Soit X un ensemble et T une collectron de 95-ensembles de X patisfoisant les ascionnes suivants:

- (1) L'ensemble vide & et X appartrement à T
- (1) Si Ma ET YXEA, alors U Ma ET
- (3) Si Njet Vje {1...n}, alors My et

Nous disons que M & t est un ensemble ouvert sur la topologie t de l'espace topologique (x, t).

Exemples:

1) Topologie induscrite / topologie triviale Posous $(x, \tau = (x, \emptyset))$. C'est un esp. topo:

- 73 x, x = 1 x
- () XUØ=XET
- (3) XNØ=ØET

2) Topologie discrite

Porous (X, T = P(x)). C'est un esp. topologique. u concisond à l'espace x muni de tous en sour-ensembles possible de X, ce pui concispond aux ouverts moluits par la distance discrite.

3) $\chi = \{0,1,2\}$.

 $\chi := \{ \emptyset, \{13, \{23, \{1, 2, 3\}\} \text{ n'est par une tapologie} \}$ sur χ car $\{13012\} \triangleq \chi$.

Théorime: Si (X,d) est un espace mitrique, alors la collection de sour-ensembles MEX ouverts forment une topologie sur X.

Prive : Trivial par théorème des propriétés des ouverts dans esp. métrique.

Limmi: Soit (X,t) un espace topologique induit par un espace métrique (X,d). Alors, $\forall a,b \in X$ to $a \neq b$, il existe Ma, $Mb \in t$ to $a \in Ma$, $b \in Mb$ et $Ma \cap Mb = \emptyset$. (Tout espace topo violeit par un esp mitrique est un esp de Haurderff.)

6

Démonstration: Soit n = d(a,b). On peut prendu $Ma = B(a, \frac{n}{3})$ et $Mb = B(b, \frac{n}{3})$. On voit brein que $Ma \wedge Mb = \emptyset$

-> Arini, une topologie indiscrite (sur x non-viole) sur peut par provenir de la notion d'esp métrique.

Exemple: $X = \mathbb{R}^2$, $t = \{ \emptyset, \mathbb{R}^2 \} \cup \{ \mathcal{B}(0, \delta) \subseteq \mathbb{R}^2 \mid \delta > 0 \}$.

 (X, τ) est un espace topologique qui n'est par induit par une métrique, corr si $a, b \neq 0$, $a \neq b$, on a si $B(0,S_{\lambda}) \ni a$ et $b \in B(0,S_{2})$, puisque soit $S_{\lambda} \geqslant S_{2}$, soit $S_{\lambda} \leqslant S_{2}$, on a que $B(0,S_{\lambda}) \subseteq B(0,S_{2})$ on $B(0,S_{\lambda}) \notin B(0,S_{\lambda})$ et donc $B(0,S_{2}) \cap B(0,S_{\lambda}) \neq \emptyset$.

Définition: (continuité)

Societ (X,T) et (Y,σ) olune espaces topologiques. Une fouction $f:X\to Y$ est continue si $f^{-1}(M)$ est ouvert dans X quand $M\subseteq Y$ est ouvert. f ctue (=>) si $M\in \sigma$, alors $f^{-1}(M)\in T$.

Exemples:

- 17 Toute fonction et u sur des espaces métriques
- 2) Si t discrète, f:x >y tjn ctue:

4 si MET, alon f'(M) ET ties can T' est discrète.

3) Si o indiscrète, f: × → × tjr ctue:

2, soit re e v. Deux cas:

Si M=Y, f-'(Y) = X ET Si M=Ø, f-'(Ø) = Ø ET. Si T est indiscrète et o discrète, alors si f: x -> y est continue, alors f est constante. En effet, soit $x \in X \notin \emptyset$. Alors $\{f(x)\} \in \sigma$ can σ describe. $f^{-1}(\{f(x)\}) \in \{\phi, x\}$ par etuté de f. $f'(\{f(x)\}) = X \cdot f$ est donc constante.

- 5) si f est courtante, alors f est continue. On a f(x) ec ey. Si lleo, · soit cell, f-1(u)=X et · soit c & M, f - 1 (M) = & ET.
- ~ si tour les nugletons d'un ensemble appartiennent à la topologie, alors leur intérrection est forciment dans la topo donc c'est la topo indiscrète.

Theoreme: (composition de fots dues).

Soit (X,T), (Y, o), (Z, µ) des espaces topologiques et $g: X \to Y$ et $f: Y \to Z$ des fonctions ctues.

Alors, gof: x > Z est continue

Demonstration: Porons 11 € p. Purque q est ctue, q'(11) € 0. Purque f est due, f'(g'(U)) ET.

(gof) (u) et.

Définition: (Fermé). Soit (X,T) un espace topologique. Un ensemble fermi FSX est fermi si Fi est ouvert.

Terroriene: Soit (X,t) un espace topo. Alons,

- (1) L'ensemble & et X sont fermés
- (2) Si Fx est fermé pour « EA arbitraire, Px est fermé
- (3) Si Fj fermé pour j E{1...n}, ÜF, est fermé.

$$\mathfrak{F}$$

(1)
$$\emptyset' = X$$
 owert => \emptyset fermi $X^{c} = \emptyset$ owert => X fermi.

(2) . Montrous que $\left(\bigcap_{\alpha \in A} F_{\alpha}\right)^{c}$ est ouvert :

 $\left(\bigcap_{\alpha \in A} F_{\alpha}\right)^{c} = \bigcup_{\alpha \in A} X \setminus F_{\alpha}$. Nous sourous que $X \setminus F_{\alpha} = F_{\alpha}^{c}$ est ouvert par hyp que F_{α} fermi. Donc par prop des ouverts, $\left(\bigcap_{\alpha \in A} F_{\alpha}\right)^{c}$ est ouvert donc $\bigcap_{\alpha \in A} F_{\alpha}$ est fermi.

(3) Montrons que (ÜF;) est auvert.

 $(\bigcup_{j=1}^{n} F_{j})^{c} = \bigcap_{j=1}^{n} X \setminus F_{j}$ on sait que $X \setminus F_{j} = F_{j}^{c}$ ouvert. Par prop. du ouvert, $\bigcap_{j=1}^{n} X \setminus F_{j}^{c}$ est ouvert, donc $\bigcup_{j=1}^{n} F_{j}^{c}$ ext feumé.

Théorème: Soient (X,τ) et (Y,σ) des esp. top. f:X→Y est continue ssi f-1(F) ⊆ X fermé si F∈Y fermé.

Inténieur et fermeture

Définition: Soit (X,τ) esp. top. On a pour $A \subseteq X$ ent $(A) = \bigcup \{ \mathcal{U} \in \tau \mid \mathcal{U} \subseteq A \}$ $(\mathcal{U}(A) = \bigcup \{ F \text{ ferme } | A \subseteq F \}$

Summe: 1) lot (A) = { x ex 1 } let to x ell = A}

2) Int (A) est le plus grand auvert contenu dans A.
Int (A) est l'unique VET toq VSA et
pour tout WET tel que si WSA, WGV.

Démonstration: 1) Musie une observation.

2) Soit V= int (A). Alors VET comme riunion d'ouverts. Si WEA et WET, alors WE Int (A) = V.

Unicité: \Re Int $(A) \subseteq W$, W = int (A)Supposons $W' \subseteq A \text{ tq } W' \subseteq T \text{ et tq } \Re$ LET et $W' \subseteq L \subseteq A \Rightarrow W' = L$ Purque $W' \subseteq A \text{ owsert}, \Rightarrow W' \subseteq \text{Int } (A) \subseteq A \Rightarrow W' = \text{Int}(A)$

<u>Jemme</u>: Soit (X, T) un espace topologique, $A \subseteq X$.

(Cl (A^{c})) = $(Int(A))^{c}$ · $(nt(A^{c})) = (Cl(A))^{c}$

Demonstration:

Int
$$(A^c) = U\{Let \mid L \subseteq A^c\}$$

$$= ((U\{Let \mid L \subseteq A^c\})^c)^c$$

$$= (((A^c)^c)^c)^c$$

$$= (((A^c)^c)^c)^c$$

$$= ((A^c)^c)^c$$

$$= (((A^c)^c)^c)^c = (((A^c)^c)^c)^c = (((A^c)^c)^c)^c$$

$$= (((A^c)^c)^c)^c = (((A^c)^c)^c)^c = (((A^c)^c)^c)^c$$

- Lemme: Soit (X, t) un espace topologique et ACX.
 - 1. Cl(A) = { REX : YHET OVEC XEM, on a Anu + of

3

- 2. CL(A) est le plus petit fermé contenant A, coid CL(A) est l'unique unsemble fermé G ty $A \subseteq G$ et, S: F fermé avec $A \subseteq F \subseteq G$, alors F = G.
- Junne: Soit (x,α) un esp. mitrojue et $A \subseteq x$. Alors CL(A) consiste à tous les x to $\exists (x_n)_{n \in \mathbb{N}} \in A$ avec $d(x,x_n) \to 0$. $\Rightarrow CL(A) = \{x \in X \mid \exists x_n \in A \text{ ower } d(x,x_n) \to 0\}$.
- Zumme: Soverit A un ss-ensemble d'um emp topo et F fermi contendit A. alors $CL(A) \subseteq F$.
- Définition: Soit (X,E) un esp topo et ASX. La frontière de A (ou le bord) est $\partial(A) = Cl(A)$ lub A
- Définition Soit (X,T) un esp top et $F \subseteq X$ fermi on dit que $A \subseteq X$ est un SS - ensemble deux ou F Si CL(A) = F

Définition: Deux espaces topologiques (X, T) et (Y, σ) sont homéomorphes lorsqu'il existe $\theta: X \to Y$ bysiction to θ et θ^{-1} sont continues pour les topologies prises.

Exemples nyllabous + moter manuscrites.

Thronine: Soit $f:(X,T) \rightarrow (Y, \sigma)$ une bijection continue. LCSSE:

- (1) f(M) est ouvert dans Y & M awert dans X
- (2) f(F) est fermé dans Y hi F fermé dans x
- (3) f est un homiomorphisme.

Dimoustration:

(1) => (2): Soit F = X formé. Alors F est ouvert dans X. Nous avons donc que

 $f(F^c) = \{f(x) \in Y \mid x \notin F\}$ $= \{f(x) \in Y \mid f(x) \notin f(F)\} \text{ can } f \text{ chu } bijective.$

Mais aussi que

f(F) = {f(x) & Y | f(x) & f(F)}

Donc, prusque F' est ouvert par def, f(F') est ouvert par (1) hypothèse, et $f(F)^c$ est ouvert dans y par motre diveloppement. Donc f(F) est fermi dans y.

(2) => (3): Sovient $g = f^{-1}$, $F \subseteq X$ fermé. Alors, $g^{-1}(F) = f(F)$ qui est fermé par (2). Ainsi, $g^{-1}(F)$ est fermé danc g est continue. $g^{-1}(F)$ est fermé que f et f^{-1} sont réciproque et continues danc f est homéomorphisme.

(3) =>(1) : Évident pour difuirtion de ctuité.

2. Jour - espaces topologiques

dennne: Soit X un ensuible arbitravie et il une couletion de 55 - ensuibles ou X. Alors il exerte une topologie unique Tritq

- (1) HE TH
- (2) si t est une topologie avec $H \subseteq T$, $T_H \subseteq T$. Nous dissous que T_H est la puis petite topologie contenant H.

Preuve:

- <u>unicité</u>: Souit Tye et T_{H} ' qui satisfont (1) et (2).

 Alors, l'unique $H \subseteq T_{H}$ (par (1)), on a que $T_{H}' \subseteq T_{H}$.

 En échangeant les rôles, on ontrint $T_{H} \subseteq T_{H}'$.

 Donc $T_{H} = T_{H}'$.
- Existance: Soit $T = \{T \subseteq P(x) \mid T \text{ topologie et } H \subseteq T \}$ Nous avous que $T_{disc} \in F$ donc T est non-vide. Persons $T_{\mathcal{H}} = \bigcap T$. On a que $\forall T \in T$, $\mathcal{H} \subseteq T$ donc $\mathcal{H} \subseteq \bigcap T = T_{\mathcal{H}}$.

Ty est une topologie comme 1 de topologies (clair).

terme: Soit A non-vide, $(X_{\lambda}, T_{\lambda})$ du espaces topologiques et $f_{\lambda}: X \to X_{\lambda}$ dus fets pour $\alpha \in A$.

Alors is existe une peus petite topo i sur x pour laquelle fix sont continues.

Dimonstration: Soit H= [fi (11) | XEA, LETa].

for sont continues pour τ topo de x h: $f_{\alpha}^{-1}(\mu) \in \tau$. Possous alone $\tau = \tau_{\gamma_{k}}$.

On a que \forall for, \forall $\mu \in \tau_{\alpha}$, $f_{\alpha}^{-1}(\mu) \in \tau_{\gamma_{k}}$ can $H \subseteq \tau_{\gamma_{k}}$. De plus, tout $f_{\alpha}^{-1}(\mu) \in x$ donc $\tau_{\gamma_{k}}$ est use topo sur x to \forall $x \in A$, f_{α} etue.

Defunction! (Application inclunon) Sait $Y \subseteq X$ et (X,T) un espace topologique. on difinit l'appeication viceunion comme: j: Y → x , j(y) = y ∀y ∈ y. Définition: (Sous-espace topologique) Si (X, T) est un esp top et Y = x, alors la topo de ss-espace Ty sur y induite par T est ea plus petite topologie sur y pour laquelle l'app. inclumon est contrinue. on dit que (Y, Ty) est un ss-esp top. de X. Lemme (caractérisation de la top. 81-espace) Soit (X, t) un e.t. et Y = X. Alors la topologie oh M-enpace ty gur y est to Ty={Ynuluet}. Dimonstration: Pasons 0 = {Y nu | u et} Pursque $j:(Y,T_y) \rightarrow (X,T)$ est être par hypothèse, on a que sillet, j'(u) ety. or, 1 (u) = { yey (j(y) Eu)} = {yey | ye u} = YNLL ETy. Donc ty en la plus petite topologie sur y contenant O. Montrons que 0 est une topologie: (1) Ø = Y n Ø , Y = Y n × => Ø , Y + O (2) U (YNM2) = YN (UM2) ED (3) $\bigcap (Y \cap M_i) = Y \cap (\bigcap M_i) \in \Theta$. => 0 = Ty est une toprologie. + exemples dans notes de cours + nyleatous.

(10)

Difinition: Saient (X, T) et (Y, O) our esp top. Alors la topologie produit pe sur X × Y est la plus petite topo sur X × Y pour laquelle les appercations projectives

 $\pi_{\times}: \times \times Y \to X$ et $\pi_{y}: \times \times Y \to Y$ $(x,y) \mapsto y$

sont continues

Lemme: Soient (X, T) et (Y, σ) et et μ la topo produit sur $x \times y$. Alors $0 \in \mu$ ssi pour $(x, y) \in 0$, on trouve $M \in T$ of $V \in \sigma$ to

(n,y) ∈ u × V ⊆ O. Un evenible est un owert de project est une union de product, contépuis or œuverts.

μ = { 0 | ∀ (x,y) ∈ 0,] μ ∈ t,] ν ∈ τ +q (x,y) ∈ U×ν ⊆ ο }

Lemme: Si (x, dx) et (Y, dy) sont deux e.m, la topo. produit des topos induites par dx et dy est la même que la topo induite par la distance produit.

Proposition: St(X,T), (Y,σ) , (Z,ρ) e.t. the fet etue $f: X \to Y \times Z$ consespond à une pair oh fets etus $f_Y: X \to Y$ et $f_Z: X \to Z$.

Demonstration:

(=). Parous O & Y x Z owert & pe?

0 = U{V × W | V ∈ o, W ∈ p et V × W ⊆ O}

f-1(0) = U { f-1(vxw) | VEO, WED, VXW & 03

= U {f-1(v) x f-1(w) | VEO, WED, VXW CO}

Et car $f_{\nu}^{-1}(v) \times f_{\nu}^{-1}(w)$ sont des ouverts de x car f_{ν} et f_{ν} sonct ctues et v et w accuerts.

=> Sifest chu et VEO, WEP,

 $f_{v}^{-1}(v) = f^{-1}(v \times z) \in \tau$ car $V \times z$ ouvert et f ctry.

f='(W) = f-'(Y x W) ET can Y x W " " " " "

Lemme: Sount t, et t, Alux top. run x. on a pue

Ex dans rylle + notes!

4. Topologie quotient.

25 intriction: manière ou "coller" des espaces.

Défuition: si ~ est une relation d'équivalence sur un ensemble × nous avous qu'elle donne origine à des classes d'équivalence

[x] = {y ex : y ~ x}.

On note X/n l'eusemble des classes d'épuivalence obtenues par n.

 $\times /_{\sim} = \{ [x] \mid x \in X \}$

On peut définir $q: X \rightarrow X/n : p(x) = [x].$ q est une surjection et $q(x) = p(y) := x \sim y.$

 $\underline{\text{dumme}}: \text{Soit} (X, T)$ un espace topologique et Y un ensemble. Si $f: X \to Y$ est une application, on pose

σ = { μ ς γ : f - 1 (μ) ετ }

Alors o est une topologie sur y to

- (1) f: x -> y est continue
- (2) Si θ topo sur Y avec $f:(X,T) \to (Y,\theta)$ etu, alors $\theta \subseteq \sigma$.

Démonstration (1) Montrous que o est une topologie:

- $f^{-1}(y) = x \in t \Rightarrow x \in \sigma$ $f^{-1}(y) = x \in t \Rightarrow x \in \sigma$
- (2) Si $\forall \alpha \in A$, $\mathcal{U}_{\alpha} \in \sigma$, $f^{-1}(\mathcal{U}_{\alpha}) \in \tau$ et donc $f^{-1}(\mathcal{U}_{\alpha \in A} \mathcal{U}_{\alpha}) = \mathcal{U}_{\alpha \in A} f^{-1}(\mathcal{U}_{\alpha}) \in \tau = \mathcal{U}_{\alpha \in A} \mathcal{U}_{\alpha} \in \sigma.$
- (3) Li pour je {1,..., n}, lje o, on a que f'(l);) et.

Donc, $f^{-1}(\bigcap_{j=1}^{m} \mathcal{U}_{j}) = \bigcap_{j=1}^{m} f^{-1}(\mathcal{U}_{j}) \in \mathcal{I} = \bigcap_{j=1}^{m} \mathcal{U}_{j} \in \mathcal{I}.$

Si $f: (X,T) \rightarrow (Y, \theta)$ est continue, on a pue M c 0 => f -1 (M) ET => ME O => O C O. Lo pour difinition de o (1) On a pur f'est ctue par définition. Définition: Sourit (x,t) un espace topologique et n une relation d'équivalence sur x. Coundérous q: x -> x/~ donnée par q(x) = [x] La topologie quotient o est la topologie la plus earige sur X/n pour eaquelle quest continue, cad 0 = { U = x/~ | 9-1(U) & T } 20 o est la topologie du ecume précédent pour q. Jemme: La toppologie quatrent consitte à des ensembles el tra XIN () [x] ET [n]ell o= { MSX/n | U [x] ET} 7 hi l'enremble des éléments des dans d'équivalence comprises dans le forment un obvert dans (X,T). \times / \sim topologie? ou purque XET, donc $\{[x,], [x,n]\} = \times \text{ et don}(\cup [x] = \times \in T$ { [...} + u u est l'ensemble de tt les + dd'éq dux claner d'éq de x donc Demonstration: $\sigma = \{ u \in \times /_{n} \mid q^{-1}(u) \in \overline{\iota} \}$ 9-1(M) = {nex|[n]e113 (dif) M = X/n 60 = (() [] => 0 = {U e ×/~ | U [2] e t } .

Definition: (X, T) et est dit de Housdorff si

tus que ne un, ye uy et un nuy = ø.

Définition: (X,T) un et et x EUET. On dit que le ext un voisinage ouvert de x.

Lemme: (x, t) e.t. Acors,

Dimonstration: =>) Si A awert, A E T et V x E A, x E A C A.

(=) $\forall x \in A$, x = a un voisinage suvert $\mathcal{U}_{x} \subseteq A$. Donc $\mathcal{U} \mathcal{U}_{x} \subseteq A$ et, prusque tous les points de Aadmettent un voisinage ouvers, $A \subseteq \mathcal{U} \mathcal{U}_{x}$. Donc $A = \mathcal{U} \mathcal{U}_{x}$.

Proposition: (X, T). e.t. de Hausdorff. Avers en singletons {2}

Dimourtration: Montrous que A = X \ [22] est ouvert.

Soit $y \in A$, donc $y \neq x$ par thousdorff, it exertse U, $N \in \mathcal{I}$ tels que $x \in U$, $y \in N$ et $U \cap N = \emptyset$.

Puisque N me contrient pas x, on sait que $\forall y \in A$, $y \in V \subseteq A$. On conclut par le lemme $\forall y \in A$, $y \in V \subseteq A$. On conclut par le lemme précident que A est ouvert, ou a donc que $x \setminus A = \{x\}$ est firmé.

Proposition: Soit (X, t) et si (X, t) est Housdorff, alors pour Y = x sover la topologie de si-espace l'est aussi.

Dimonstration: Soit Ty la topologie de si-espace de y sur X.

Si $n,y \in Y$ top $n \neq y$, alors $n,y \in X$ top $n \neq y$. Par Hausdorff, $\exists u, v \in T$ top $n \in U$, $y \in V$ et $u \cap V = \emptyset$.

Posons $\tilde{u} = u \cap Y$ et $\tilde{v} = v \cap Y$. Par déf de T_y , on sait que \tilde{u} , $\tilde{v} \in T_y$. Pursque $n,y \in Y$, on a que $n \in \tilde{u} \subseteq U$ et $y \in \tilde{V} \subseteq V$, et

 $\tilde{V} \cap \tilde{u} = (Y \cap V) \cap (Y \cap u) = \emptyset \Rightarrow (Y, \tau_y) \text{ Hausdorff}.$

Proposition: Sourit (X,t) et (Y,σ) et Si $f: X \rightarrow Y$ ctue et injective et Y floursdorff, avois X floursdorff.

Dimonstration: Soverit $\mathcal{K}, \mathcal{Y} \in X$ avec $\mathcal{M} \neq \mathcal{Y}$. Pursque f est injective, son a $f(\mathcal{R}) \neq f(\mathcal{Y})$.

Prusque \mathcal{Y} Housdorff, $\exists \mathcal{U}, \mathcal{N} \in \sigma$ tels que $f(\mathcal{R}) \in \mathcal{U}$, $f(\mathcal{Y}) \in \mathcal{N}$ et $\mathcal{U} \cap \mathcal{N} = \emptyset$.

Par continuité ou f, $f^{-1}(\mathcal{U})$, $f^{-1}(\mathcal{N}) \in \mathcal{T}$. Puisque f est injecture, $f^{-1}(\mathcal{U}) \cap f^{-1}(\mathcal{N}) = \emptyset$ et donc car $\mathcal{N} \in f^{-1}(\mathcal{U})$ et $\mathcal{Y} \in f^{-1}(\mathcal{N})$, (X, τ) est du blaus dorff.

Proposition: Si(X,T) et (Y, σ) sont Hausdorff, alors $X \times Y$ avec la topologie produit l'est aum.

Dimonstration: faint (a,b) Ex et (6,d) EY to (a,b) \$\(\perp(a,b)\)\$.

Si $a \neq c$ et $b \neq d$, $\exists \mathcal{L}$, $\mathcal{N} \in \mathcal{I}$ to $\mathcal{L} \cap \mathcal{N} = \emptyset$ et $a \in \mathcal{L}$ et $c \in \mathcal{N}$.

] ũ, Ñ E o to ûnữ = ø et b e ũ et d e ñ.

Nous avour alors que

 $(a,b) \in \mathcal{U} \times \hat{\mathcal{U}} \in \mathcal{T}_{\pi}$ et $(c,d) \in \mathcal{N} \times \hat{\mathcal{N}} \in \mathcal{T}_{\pi}$ our c

 $(\mathcal{U} \times \tilde{\mathcal{U}}) \wedge (\mathcal{U} \times \tilde{\mathcal{V}}) = (\mathcal{U} \wedge \mathcal{V}) \times (\tilde{\mathcal{U}} \wedge \tilde{\mathcal{V}}) = \emptyset$ Donc $\times \times \times \times$ est buin séparé par la toppelogie produit. Définition: Soit \times un ensemble on out qu'un collection d'ensembles $\{u_{\alpha}\}_{\alpha \in A}$ est un reconvenent de \times si $\times \subseteq \bigcup u_{\alpha}$. Si $B \subseteq A$, on out que $\{u_{\alpha}\}_{\alpha \in B}$ est un sous-reconvenent de \times si $\bigcup u_{\alpha} \supseteq \times$.

Définition: (X, τ) est olit compact si $\forall \{\mathcal{U}_{\alpha}\}_{\alpha \in A}$ ensumbles ouverts tels que $\bigcup_{\alpha \in A} \mathcal{U}_{\alpha} = X$, il existe $\{\mathcal{U}_{\alpha(j)}\}_{\alpha(j) \in A}$ et $1 \leq j \leq n$ to $\bigcup_{j=1}^{n} \mathcal{U}_{\alpha(j)} = X$.

moins un sous-recouvrement fini de X.

 $\frac{\text{Difinition}}{\text{Minimizer}}$: Si (X, τ) est un esp. top alors un sous-ensemble $Y \in X$ est olit compact si la topologie de sous-espace sur Y est compact.

Yemme: "Bonne dif de ss-ensemble compact"

Un sous-ensemble Y d'un e.t (x,t) est dit compact si $Y \{ \mathcal{U}_{\alpha} \}_{\alpha \in A}$ ensembles owerts to $Y \subseteq \mathcal{U}$ \mathcal{U}_{α} , on peut trouvers un \mathcal{U}_{α} -necouvrement fini $\{ \mathcal{U}_{\alpha(j)} \}_{\alpha(j) \in A}$ $\{ \mathcal{U}_{\alpha(j)} \}_{\alpha(j) \in A}$

Dimonstration: % Y ext compact, par olif. $\exists \{V_{\alpha}\}_{\alpha \in A}$ fels que $V_{\alpha} \in \mathsf{T}_{\gamma}$ $\forall \alpha \in A$ avec $Y = \bigcup_{\alpha \in A} V_{\alpha}$.

Purique $V_{\alpha} \in \mathsf{T}_{\gamma}$, $\exists \sqcup_{\alpha} \in \mathsf{T}$ ful que $V_{\alpha} = Y \cap \sqcup_{\alpha}$.

On a que $V_{\alpha} \subseteq \sqcup_{\alpha}$ et donc $\{\sqcup_{\alpha}\}_{\alpha \in A}$ ext un reconvenient de Y dans X, càcl $Y \subseteq \bigcup_{\alpha \in A} \sqcup_{\alpha} \sqcup_{\alpha}$

Purique y est un compact, $\exists \alpha(\Lambda) ... \alpha(n) \in A$ $\forall Y = \bigcup_{i=1}^{n} \bigvee_{\alpha(i)} = \bigcup_{i=1}^{n} (Y \cap \mathcal{M}_{\alpha(i)})$:

donné que pour 1 = i = n, on a Y \ Maii) = Maii) et donc $Y = \bigcup_{i=1}^{m} (Y \cap \mathcal{U}_{\alpha(i)}) \subseteq \bigcup_{i=1}^{m} \mathcal{U}_{\alpha(i)}$ Auni, si y compact, Y { U a } at a recouvrement de y ds x, I flexij) I reien un sous-reconverment fine de Y de X Proposition: Soit R muni de la topologie usuelle. L'intervale fermi et borné [a,b] est compact. Dimonstration: (Stack Exch ... not important but interesting) On utilise la prope de la bone supénieure. tout sous-ensuible mon-viole et majoré de 12 posséde une borne supérieure. Si a=b, le cos est trivial. Posous a < b et prenous un recourrement owert $[a,b] \subseteq \bigcup_{i \in I} \mathcal{U}_i$. on a en particulier que c'est un reconvenient de [a, x] pour tout $n \in [a,b]$. Posons S l'ensemble de tous les x ∈ [a, b] tels pur [a, x] admet un sous-reconvenent on UMi. Fio top a EMio, donc a ES. of S est un ensemble mon-vide de R borné par b. Par la prop de la borne supérieure, on peut pour no := sup S e [a,b] trontrons par contradiction que no = b. Supposons que no < b. Notions que no >a. En effet, il existe io EI et E>O to [a, a+E] = llio, et donc 100 > a+E Prenons io to $x_0 \in \mathcal{U}_{i_0}$, et $\varepsilon > 0$ to $a \le x_0 - \varepsilon < x_0 < n_0 + \varepsilon \le b$ [no-E, no+E] & Mio > admis car Mio est ouvert.

Putique $x_0 - \varepsilon$, $x_0 + \varepsilon$] $\subseteq M_i$, \sim admis car M_i , est onwert. $\forall y \in M_i$, $\exists S > 0 + q B(y, S) \subseteq M_i$. Putique $x_0 - \varepsilon$ n'est pas un suprimum de S, it existe $n_0 - \varepsilon \leq n_i \leq x_0$, tel que $x_1 \in S$. telle manière, l'intervalle [a, 2, 1] admet un recourement

[a, n,] = U M;

Mais allors, prusque no-Esnisno et prusque [no-E, no+E] = Uio, en a que

[a, no + E] = U Mi; U Mi.

l' suit que 10+E ES, ce qui contredit 20 = sup S. Ausi, sup S=b et un même argument montre que b ∈ S.

([b-E,b] & llio pour un certain io et E>0, et donc $\exists x_1 \in [b-\epsilon, b] \ tq x \in S$, donnant un recouvrement fini pour [a,b].)

~ b∈S, donc 3 un recouverement fini

[a,b] = Ulij.

Thioreme: (Heurie - Borel)

un sous-espace T de R' (muni de la tops unulle) ex compact s.s.i. il ex fermi et borné.

Nous allons déduire la preuve de ce théorème comme couréquenas de quelques théorèmes à suivre.

Thioreme : un sour-ensemble firmé d'un ensemble compact est compact.

(St (X, T) e. E et K = X compact. Si F fume tq F = K , alors F est compact).

Démonstration: soit { ll 2} x EA un recouvrement de F. Puisque X/F ET, on a que U Ma U(X/F) = X 2 K qui est un recouvrement de K puisque K est compact, $\exists \alpha(j) \in A$ avec $1 \leq j \leq n$ KC X/FU U Mx(j)

Punque X/F NF = Ø et FSK, Û Ma(j) 2 F

=> Fest compact:

```
Dino. Punque 1 est borné, A = B(0,R) = [-R,R]
             Purque [-R.R] " est compact, et purque A
              est fermé, prisque A c [-R,R] n on a que A compact.
Proposition: Si A & R" est compact, alors A est borné.
 Demonstration: Si A & Rh est compact, alors
                   A = U B (0,R) = Rh.
              Par compacité, 3 R1,..., Rn tq
                  A = 0 B(0, R;) = B(0, R) avec R = max R;
               prene, A est borné.
 HB~ consignance unmidiate
Théorime: soit (X, E) un e.t. Hausdorff. Alors,
              YKEX compact, Kest firmt.
Dunonstration: Sount CEK et REXIK, denc R & C.
    Pungin X est Hausolorff, 3 Mr, Mc ET to nella
    et ce lle avec Un Me = Ø.
    Puisque K = U {c} & U Ue, on a que CEKUc ext
      un reconvenent ouvert de K. Par compacité de K,
      3 c(1) ... c(n) to UM c(j) est un reconvrement de K.
     Puisque VxeXIK, Un nuc = Ø, on a que
      Man U Mcij) = Ø => Mank = Ø.
       Puisque Vnex/F, 3 Un avec Un NK=0, n parièle
       un vousinage ouvert: REUREX/K
        => X/K est owert danc K est fermi.
HB ~ conséquence: Si A = R * est compact, A est fermé.
   Démonstration: Puisque R" muni de topo usuelle est Hausdoiff,
               étant donné que A est compact, on a par
               le them pricident que A est fermé.
Cer 3 consignences achivent la preuve du term Heini-Borce.
```

HB ~ Couriquence: Si A & Rh est fermi et borné, alors A est compact:

Sount (X,T) et (Y,σ) e.t. et $f:X\to Y$ containe. Thiorime: Si K Ex compact, was f(K) EY compact Dimoustration: Soit A un ensemble et soient el « et avec « E A, tels que f(K) & U Mx Alons U f'(Mx) = f'(U Mx) 2 K (udentités en rousse) Par continuité de f, f-'(UMa) ET. Par compacifé de K, 3 x(1)...x(n) EA tels que KE Uf- (Maij) ET. Prone Ü May 3 f (f (U May)) 2 f (K) ~ f(K) est compact Corollaire: (compacité comme prop topologique) Soit (X,T) et (Y, T) et homéonnorpher. Alors (x, t) compact <=> (Y, or) compact. is existe f: x -> y continue et byective, avec Demoustration: Y = f(x) et $x = f^{-1}(y)$. Par le théorème précédent, si X compact, y compact et si y compact, x compact. Soit (X, T) un e. t compact et ~ une relation d'équivalence sur X. Alois la topologie quotient sur X/~ est compacte.

➂

corollaire:

Démoustration: Par dif d'e.t. quotient, q: X -> X/~ est continue donc ou conclut $x \mapsto [x]$ par le thiereme précédent. \Box

> identier en nouse font né a $f(f^{-1}(B)) \subseteq B$ $A \subseteq f^{-1}(f(A))$ (viou $\forall A, B, f \text{ ctue}$)

Lemme: Si K = IR compact et non-viole, avois 3 a, b & K ta K = [a,b]. (peuser à un entervale trace) Demonstration: Supposous que c'est four. Nous aurous alors que V NEK, 3 y EK avec y < x tg K = U] 4, 00 [Dowert ! done ponne inférmière de K Par compacité de K, ∃ y, ... y n € K tq par incluse K = U] yj, o [=] min (y, ... yn), o [or, min (y, ... yn) EK, cici ne peut donc pas recouvrir entièrement K. 3 Corollaire: Soit KSIR compact et soit f: K -> IR continue. Alons f(K) est compact et $\exists \alpha, \beta \in f(K)$ to $f(K) \in [\alpha, \beta]$, and $\alpha = f(a)$, p = f(b). pronc $\forall x \in K, f(a) \leq f(x) \leq f(b)$ Dinnoustration: facilement déduit des lume + them ci-dessous Théorine: Soient (X, T) un espace topologique compact et (Y, o) un espace topologique de Haurdoiff. Si f: x - y ext une hijectron etue, alors f est un houtour orpume. <u>Dimonstration</u>: Par bijectivité de f, on a que, pour le Et, $(f^{-1})^{-1}(M) = f(M) = Y \setminus f(X \setminus M)$ Prinque X est compact, X lu est compact can fermé Puisque y est Haussdorff, f(XIU) est firmé care compact. Donc f(11) est ouvert =7 f⁻¹ continue donc f est un homiou orphime. Espaces compacts: fermi => compact theaces Haurdorff: compact >> fermi.

(16)

 \Box

L'application identité:

donnée par Tol(x) = a est continue si $T_2 \subseteq T_a$.

Demonstration: =>) Soit $U \in T_2$. On a que $f^{-1}(U) = U \in T_2$ pour chiefé de f oronc $T_2 \subseteq T_2$.

(=) Supprosous que $t_2 \in t_1$. Puisque $\forall M \in t_2$, on a que $M \in t_1$, donc

 $f^{-1}(\mu) = \mu \in C_2$ donc f etau. \Box

Theorime: Sount T, et T2 des topologies sur X.

- 1) Si Tz = T1 et T1 eompact, alors Tz l'est aum
- 2) & t25 t2 et T2 ext Hansolorff, ahors t, l'est ausni,
- 3) Si [25] et [, compact, [2 Hausdorff, alors],= [].

Dimonstration:

- 1) Punque $T_2 \subseteq T_A$, on a que let $(x,T_1) \rightarrow (x,T_2)$ est continue. Par le A^2 them de la po (5), punque (x,T_1) est compact, alors $V L \in T_A$, let $(LL)^{eT_1} L^{eT_2}$ est compact.

 Donc $V L \in T_2$, LL est compact alone (x,T_2) compact.
- 2) Purque $\tau_1 \in \tau_1$ et τ_2 est Hourdorff, $\forall x, y \in X$, $\exists y, v \in \tau_2$ to $x \in U$, $v \in V$ et $u \cap v = \emptyset$.

 Purque le est etue,

 $\operatorname{Id}^{-1}(\mathcal{M}) = \mathcal{M} \quad \text{et} \quad \operatorname{Id}^{-1}(\mathcal{V}) = \mathcal{V}$

Donc purqui $n \in \mathcal{U}$, $y \in V$ et $\mathcal{U} \cap V = \emptyset$ avec maintenant $\mathcal{U} \cap V \in \mathcal{T}_1$, on a que (X, \mathcal{T}_1) est Hausdorff.

7) Punque $T_2 \subseteq T_A$, $Id: (X,T_1) \to (X,T_2)$ est continue Puisque T_A compact et T_2 Haus doiff, par le thin du verso de $pg(\overline{D})$, Id est homeomorphisme donc $Id^{-1}: (X,T_2) \to (X,T_1)$ est ctue. Anni,

VILETA, $(\mathrm{Id}^{-1})^{-1}(\mu) = \mu \in T_2$ donc $T_1 \subseteq T_2$. Purque $T_1 \subseteq T_2$ et $T_2 \subseteq T_3$, on a que $T_1 = T_2$.

(Tycholoff) 5.19 Thiorem Soit (x, t) et (Y, o) deux et compacts. Alon (x x y , µ) où µ est top. produit est eouppact. Premere par dans le codre de cours?? Je vois demonister à VS mais implique exiaus alm chain Théoreme: Sount (X,T) et (Y, 5) des et compacts et soit je la tepologie produit. Si K = x et L = Y sont compacts alors K x L est compact dans fe. Dimoustration: · K compact sur T <=> V { M x } x EA avec M x ET et K C U Ux] acj) EA, 1 = j ≤ n | U acj) = K. · L compact sur oc=> Y { Np} BEB avec Np ET et L = U Np JB(j) & B, 1 & j & m | L & U VB(j)
B(j) & B Par définition d'ouverts, mous avous que U Ua ET, U UZET, DVBET, DVBET, BIJIEB BIJI ET Par définition de topologie produit, on a que U Ma × U Vp & m et U Maij) × U Vp(j) & pl. Nous avous olone que si (qui est enfait un reconvement K × L C U U X X B + B V B quelconque de KxL) alors qui est un sous-recouvrement KXL & U Ma(j) × U MB(j)

R(j) EB fini " Danc K x L est men compact. ~ ca doit ? la dimo la plus douteux de

cette synthèse... VS a un provise. C'est la dimo de Palvio

3. Compacité dans les espaces métriques.

Nous disons qu'un espace métrique est compact si la topologie induite est compacte.

Définition: Un espace métagin (X, d) est séquentiellement compact si toute suite de X admet une sous-suite convergente.

Exemples: [a,b] muni de la topo unelle en siquentiellement compact.

·]0,1] n'est par séquentiellement compact.

| Prenons (\frac{1}{2n})_{n \in N} . La limite doit faire partie
| de l'espace.

refinition: A topological space X is sequentially compact

if every sequence of points in X has a

convergent embsequence, converging to a point in X.

R n'espas sequentellement compact:

(n) nein nadmet pas de sous-suite convergente.

Théorème: un espace métrique est compact su le est séquentiellement compact.

Démoustration:

=>) soit (x,d) un espace suitrique. Supposous (x,d) compact et (xn)nEN une suite dans x.

Supposous par l'absurde que (X,d) n'est pas réquentiellement compact. Danc, (ren)ners n'adunet pas de sous-suite convergente. (on a donc bren que cette suite elle-nûme n'est pas convergente).

Alon, $\forall x \in X$, $\exists S(x) > 0$ et $N(x) \in \mathbb{N}$ to gin > N(x), on a que $x \in B(x, S(x))$

Remarquem qui $x \in B(x, S(x))$, donc

 $X = \bigcup_{x \in X} \{x\} \subseteq \bigcup_{x \in X} B(x, S(x)).$

Le dernier terme est un recombrement de X, et presque X est compact par enppethier,

```
] x(1), ..., x(n) to
       2 = ( B(x(i), S(x(i)))
Si m > max N(i), alors on a que
               Donc, prunque xn Ex et xn & UB(x(i), S(x(i)))
 mous avous contradiction car
            \ddot{\bigcup} B (x(i), 8(x(i))) est un reconstement
           de X par construction.
parser par un lemme intermédiaire:
<u>Lemme</u>: Poit (x,d) un espace métrique et {lla} des
        ouverts pour la topologie induite tels que X = U lla
        Si (x,d) est siquentiellement compact,
         alon 38>0 tel que YREX, JXEA top B(x,8) = 11 x.
Demonstration: supposons par l'absurde que l'affirmation
            du lemme est fairse. Alois,
           VMEN, JXn EX to VXEA, B(xn, 2-n) & Ux
                      cai ou preud une suite con-
                      vergente vers o arbitrain. Car 8 >0, donc "une certaine valeur < 8 sera atteinte".
           Par hypothen, (X, d) est séquentiellement compact
           donc (xn) new a une sous-ruite convergence.
         => \exists x \in X et (m_e)_{e \in IN} strictement croissante tq
               lun d(x_{n_p}, n_k) = 0.
           comme x * EX, 3 x & EA to x & E Ux par
            hypotèse, prurque {ua} « est un recouvrement
            de X, et donc car ll « ouvert, prusqu'on est dans
            un esp. mitrigu, 38, >0 tq 13(x, 8, ) = U2,
```

(car Md. ouvert). (B)

l'unque (me) e EIN converge vers me, nous pouvous prendre $l \in W$ to $d(x_{n_e}, x_*) < \frac{\delta_{n_e}}{2}$ et to

2^{-m}e \le \S_1/2 \si il suffit de monter dans les l pour satisfaire cette dernière

seuil, la premiere est d'office remplie.

Nous avous que $B(x_{n_e}, 2^{-n_e}) \subseteq B(x_*, \delta_*)$ puisque $\forall x \in B(x_{n_e}, 2^{-n_e})$,

 $d(x, x_{k}) \leq d(x, x_{n_{\ell}}) + d(x_{n_{\ell}}, x_{k})$

= 2 -ne + 8 x/2 = 8 x/2 + 8 x/2

on a que B(xne, 2 ne) & B(xx, 8x) & Uxx

or par hypothèse abservale, on a que B(2n, 2-n) & ux Vac.A.

Repressons la dimonstration de notre thioreme...

- (=) Sont { lla} «EA un reconvenent quelconque de x. Par le lemine ci-demes, il existe 8 > 0 tq YREX, Ja(x) & A to B(x,8) & Main, car nous supposous (x,d) sig. compact
- Troubneus qu'il exeste un ensemble fini SCX to $X = \bigcup_{s \in S} B(s, S)$:

supposons par l'absurde que cela n'est pas vrai: Soit NO EX. Chainissons R, to x, EX\ B(x0,8). De mime, knn & X \ OB (xi, S).

Ceci constitue une suite (xn) nern, et par hypothère de compacité réquentièlee, il exerte une sour-suite convergente de $(x_n)_{n \in \mathbb{N}}$. Or ceci est une contradiction car $d(x_j, x_k) > \varepsilon$ Amini, il exuite $S \in X$ finis to $X = \bigcup_{S \in S} B(S,S)$.

Punque VSES, ∃d(s) ∈ A tq B(s,S) ⊆ Ud(s), on a que

X & U B(s,8) & U Macs).

et comme S est un ensemble fini, on a bren $que \left\{ \mathcal{U}_{\alpha(S)} \right\}_{\alpha(S) \in A}$ est un sous recouvrement finir de $\left\{ \mathcal{U}_{\alpha S} \right\}_{\alpha \in A}$. (X,d) est donc bren compact. \square

Proposition Si (x, a) esp. métrique est compact, alors (x, a) est complet.

orbusque $(x_n)_{n \in \mathbb{N}}$ est une fruite de lauchy, $\exists N_2 \in \mathbb{N}$ fel que ei $m, n \in \mathbb{N}$ et $m > n > N_2$, on a $d(x_m, x_n) \leq \frac{\varepsilon}{2}$.

Porous $N=\max\{N_1,N_2\}$. Alors, si on prind $m_\ell > m > N$, on a que $d(x_n,x_n) \leq \frac{E}{2} + \frac{E}{2} = E$ (Purque $(n_\ell)_{\ell \in \mathbb{N}}$ est skrickment croinante, on a $m_\ell > m$ $\forall \ell$ donc $m_\ell > m > N$, vaut $\forall m$. Rais general preuve est techniquement frine $\ell a \ell$) Nous allons faire de même pour le TVI par le biais de la compacité.

Rappel Théorien des bornes attentes:

Sount $A \subseteq \mathbb{R}$ et $f: A \to \mathbb{R}$ une fot. Si A est une intervalle et si f est othe, alons $\forall a, b \in A$ et $\forall y \in [f(a), f(b)]$, $\exists c \in [a,b]$ to f(c) = y.

Définition: (X, τ) est disconnexe si $\exists U, N \in \tau$ tels que $X = U \cup N \cup U \cap N = \emptyset$ et $U, N \neq \emptyset$. $X = X \in Connexe s' U n'est pas disconnexe.$

Reformulation: X est connexe si et seulement si pour X = UUV et UNV = ø, on a forciment que soit U, soit V est viole.

Définition: Si E est un sous-ensemble de (X, T), E est connexe (resp. disconnexe) si E muni de la topologie de sous-espace est connexe (resp. disconnexe).

ty E = UVV, UNVNE = Ø, UNE # Ø

et VNE # Ø.

- Exemples: (x, t ind) est connexe. En effet, $si \ u$, $v \in t \text{ ind}$ et $u \cup v = x$ et $u \cap v = x$, on a forcement que soit u, soit v = x.
 - Z, R\{03, Q sont disconnexes dans R. 2> en quieral, & E ⊆ R et si ∃ C ∈ R \ E to (-∞, c) ∧ E ≠ Ø et (c,∞) ∧ E ≠ Ø, alons E est dis connexe.
 - S_1 \times ext than dorff et n_0 , $n_1 \in \times$, along $\{x_0, x_1\} \subseteq \times$ ext disconnexe.

Thioring: Soit (X,T) un e.t. Si (X,T) est connexe et $f: X \rightarrow Y$ est une fot etue, alon f(X) est connexe.

Dimonstration: Démontrons la contraposée: $f: X \to Y$ est clui, $f: X \to Y$ est disconnexe alons X est disconnexe.

Par définition de disconnexité, $\exists u, v \in y \text{ top } f(x) \subseteq U \cup V$, $u \cap f(x) = \emptyset$, $u \cap f(x) \neq \emptyset$ et $v \cap f(x) \neq \emptyset$.

- on a qui $f^{-1}(\mu)$ $\cup f^{-1}(\pi) = f^{-1}(\mu \cup \pi) \supseteq f^{-1}(f(x)) \supseteq X$ olone $X \subseteq f^{-1}(\mu) \cup f^{-1}(\pi)$.
- Par continuit on f, on a que $f^{-1}(u)$, $f^{-1}(\Lambda f) \in T$.

 Punque un $f(x) \neq \emptyset$, $\exists x \in X \neq f(x) \in M$.

 Donc $X \cap f^{-1}(u) \neq \emptyset$.

 De mûne, $X \cap f^{-1}(\Lambda f) \neq \emptyset$.
- Si $x \in f^{-1}(u) \cap f^{-1}(v) \cap f^{-1}(f(x))$, alon on a pur $f(x) \in f(f^{-1}(u) \cap f^{-1}(v) \cap f^{-1}(f(x)))$

 $\leq f(f'(u)) \cap f(f'(v)) \cap f(f'(f(x)))$ $\leq u \cap v \cap f(x).$

Or cea est unipossible par hyp. ear $u \wedge v \wedge f(x) = \emptyset$. Donc $f^{-1}(u) \wedge f^{-1}(v) \wedge x = \emptyset$.

=> X est disconnexe.

corollaire: Poit (X, E) et (Y, T) oleux enpaces topologiques. homeomorphes Alon (X, E) est connexe ssi (Y, T) est connexe. Démo direct par them ci-dersons La connexité d'un espace est une propriété topologique.

Corollani: (TVI)Sout (X,t) e.t., $a,b \in X$. Si X est connexe et $f: X \to \mathbb{R}$ et u, alors pour $c \in [f(a), f(b)]$, $f: X \to f(x) = c$. Dimonstration: Purply $f(x) \subseteq \mathbb{R}$ est connexe par le thun pricedent, $\exists d, e \in X + q \text{ int}(f(X)) = (f(d), f(e))$ Alors, $g_i \in \{f(a), f(b)\} \subseteq (f(d), f(e)) \subseteq f(X)$ alone $e \in f(X)$ et alors $\exists x \in X + q = f(x) = e$.

Zemme: Soit (X,T) et, A un ensemble. Soit \triangle la topo discrite sur A. Soit $f:X \to A$ une fonction. LASSE:

1) Si $\alpha \in X$, $\exists \mu \in T$ owice $\alpha \in H$ to f est sur μ .

2) Si $\alpha \in A$, $f^{-1}(\{\alpha\}) \in T$.

3) $f: (X, \tau) \rightarrow (A, \Delta)$ ext clave.

Dimonstration

N=>2) Soit $y \in A$, possons $u = f^{-1}(\{y\})$. Alors par hugp, $\forall x \in u$, $\exists u_x \in t$ for $x \in u_2$ et $f|_{u_x}$ est constants. Pursque $\forall x \in u$, $u_x \in u$, on a que $\bigcup_{x \in u} u_x \subseteq u$. De plus, $u = \bigcup_{x \in u} \{x\} \subseteq \bigcup_{x \in u} u_x$ Donc $u = \bigcup_{x \in u} u_x$ et puisque tout $u_x \in \tau$, it suit que $u \in \tau$.

 $2 \Rightarrow 1$) Soit $x \in X$. Posons $M = f^{-1}(\{f(x)\}\}) \in T$ par tryp. Par déf d'ensemble moers , on a donc que $\forall c \in U$, f(c) = f(x), donc f est cst sur U.

2=73) Si $u \in \Delta$, alon $f^{-1}(u) = f^{-1}(\bigcup_{y \in u} \{y\})$

= $\bigcup_{y \in U} f^{-1}(\{y\}) \in T$ can \triangle est discrète.

 $3 \Rightarrow 2$) $\forall x \in A$, $\{x\} \in \Delta$ donc par ctuité ou f, f'($\{x\}$) $\in t$.

Définition: si en conditions du lumme ci-derrus nont respectées, mon dévous que f'est localement constante. Théorème: si A contrent au moiss deux points, alors un espace topologique (X,T) est connexe ssi toute fet localement courtante $f: X \to A$ est constante.

Dimonstration :

=>) Supprovous (X,T) connexu et $f:X\to A$ ctue. Pursque \triangle est indiscrite, pour $t\in X$, $\{f(t)\}$, $A\setminus\{f(t)\}\in \triangle$ Donc, $\mathcal{U}:=f^-'(\{f(t)\})$ et $\mathcal{N}:=f^-'(A\setminus\{f(t)\})\in T$ par ctuité du f.

Punque $\mu \cap \sigma = f^{-1}(\{f(t)\}) \cap f^{-1}(A \setminus \{f(t)\})$ = $f^{-1}(\{f(t)\}) \cap A \setminus \{f(t)\})$ = $f^{-1}(\emptyset) = \emptyset$

et $\mu \cup \pi = f^{-1}(\{f(t)\}) \cup f^{-1}(A \setminus \{f(t)\})$ = $f^{-1}(\{f(t) \cup A \setminus f(t)\})$ = $f^{-1}(A) = X$

par connexité de x on a que $N = \emptyset$ et U = X. Donc par (1) du lumme parré, $\forall x \in U = X$, f(x) ext.

(=) Montrous la contraposéi: Si (X, τ) est disconnexe, alors f: X → A locarement est est mon-constante.

Purique (X,T) est disconnexe, JU, $U \in T$ to $U \cap V = \emptyset$, $U \cup V = X$ et $U, V \neq \emptyset$ on choinit alors $a, b \in A$, $a \neq b$ et on pose f(x) = a si $x \in U$ f(x) = b si $x \in V$.

(tout en unpectant la condition qui floc. est. Anini, f n'est par constante can $a \neq b$ et $u, v \neq \emptyset$.

- Corollain: 1) un et (X, T) est connexu ssi te fet etre à traleurs entieris $f: X \to R$ est est
 - 2) un e.t. (X,t) est counesu ssi the fix $\to \mathbb{R}$ à valeur dans $\{0,13\}$ est est.

(2)

- -> le sont des car particuliers du dernier théorème.
- Théorime: soit 1R muni de la topologie unuelle. Alors les intervalles fermés [a,b] sont connexes.
- Dimonstration: Soit $f: [a,b] \rightarrow \mathbb{R}$ et u avec $f([a,b]) \subseteq \{0,1\}$. Si f n'est par constante, il existerait $e,d \in [a,b]$ tq f(c) = 0 et f(d) = 1. Par e tvi, $\exists e \in [c,d] tq$ $f(e) = \frac{1}{2} \times \{0,1\}$.
- Lemme: Soit (X,T) e.t. et $E \subseteq X$. Si E est connexe, (L(E)) est connexe.
- Preuve: soupossons \mathcal{U} , $\mathcal{N} \in \mathcal{I}$ to $\mathcal{C} (E) \cap \mathcal{N} \cap \mathcal{U} = \emptyset$ et $\mathcal{C} (E) \subseteq \mathcal{U} \cup \mathcal{V}$. Alors, $E \subseteq \mathcal{C} (E) \subseteq \mathcal{U} \cup \mathcal{V}$ et $\mathcal{E} \cap \mathcal{N} \cap \mathcal{U} = \emptyset$.

Par connexité de E, soit $E \cap U = \emptyset$, seit $E \cap V = \emptyset$. Spolig, ou suppron pu $E \cap V = \emptyset$. Alors $E \subseteq V^c$ et $V \subseteq E^c$. Purque $V \in C$, $V \subseteq Int(E^c) = (Cl(E))^c$ et alonc $Cl(E) \subseteq V^c$. Ainsi, $Cl(E) \cap V = \emptyset$ alonc Cl(E)est bien connexie.

- Lumme: couridrous (X,T) un espace topologique:
 - avoir $N_0 \in X$. Si $N_0 \in E_{\mathcal{A}}$ et $E_{\mathcal{A}}$ est connexe $\forall \alpha \in A$, avoir $U \in E_{\mathcal{A}}$ est connexe.
 - 2) Écrusois x n y si f un ensemble connexe E tq n, y e E. Alors n est une relation d'équivalence.
 - 3) Les clarres d'équivalence [21] sont connexes
 - 4) & F est connecte et [x] & F, alon F = [x]

Dimonstration:

- 1) Sount \mathcal{M} , $\mathcal{N} \in \mathcal{T}$ tells que $\mathcal{M} \in \mathcal{L}_{\mathcal{L}} \subseteq \mathcal{M} \cup \mathcal{N}$ et $(\mathcal{M} \in \mathcal{L}_{\mathcal{L}}) \cap \mathcal{M} \cap \mathcal{N} = \emptyset$. Spralg, supprosons que $\mathcal{R}_{0} \in \mathcal{M}$. Alors, $\forall x \in A$, $\exists x$
 - Donc (UEZ) NN = U (EZNN) = Ø

UE est bien connexe.

- 2) Reflexivité: trontrom que le snigleton $\{x\}$ est connexe:

 Posous $\mathcal{U}, \mathcal{N} \in \mathcal{T}$ to $\{x\} \subseteq \mathcal{U} \cup \mathcal{N}$ et $\mathcal{U} \cap \mathcal{N} \cap \{x\} = \emptyset$. Alors
 - · Soit n à 11, donc { 23 1 11 = 90 => [23 connerse.
 - Soit $x \in \mathbb{N}$, donc $\{x\} \cap \mathbb{N} = \emptyset = \sum \{x\}$ connexe. Donc $x \cap x$ car $\{x\}$ est commune.
 - Ponc 3 € connerse tq y, x € € => y ~ x.
 - · Transitivité: x ny =>] E connexe to x,y E E. y~3 =>] E'connexe to y, 3 e E'.
 - Par (1), purque E et E' sont connexes avec ny E E et y E E', on a pue E U E' est connexe. Donc x ~ 3 car x, 3 e E U E' qui est connexe.

```
3) Par définition, nous avous que
  [n] = {y e x 1 ] E = x connexe tq x, y e E}
Pour tout z E Ey, z ~ y ~ 2 olone Ey = [2].
 on a que
   [n] = U {y} & U Ey ye[2] Ey
 Purpu Vy E[x], Ey = [x], on a que U Ey = [x].
 Donc [x] = U Ey
 Punque ne Ey Vy E[2], pour (1) mous avous que
         = [x] ex connexe.
4) Si Fest connexe et [2] = F, alors \feF, frx
      Monc f e [x]. Avisi, F = [x] et donc [x] = F
~ Les ensembles [x] sont nommés composantes connexes de (x, t).
Proposition:
           Les composantes connexes d'un espace topologique (X, T)
            sont fermis. S'il y a seulement un nombre fini
            de composantes alors elles sont ouvertes.
            Alon, [x] est connexe, et donc cl ([x]) est
```

Dimoustration: Soit ~ comme dans le lemme précédent. connerce. Purque [n] = cl ([x]), [x]=cl([x]) et donc [20] en formé.

> On sait que q x -> x/n est continue. Purque [n] E×/~ est ferme, 9-1([x]) est connexi et fermie. de peur, si |{[x]|xex}| est fini, il y a

un nombre fine d'ensembles 9-1([x2]) EX oligioints (car [x] partitions de x) Donc prusque U q'([nx]) = q'([x]) est fermi commu union **メ**ギじ

a fermis, q'([x:]) est ouvert.

Connexité pour arcs:

<u>Définition</u>: Soit (x, τ) un . e.t., $x \in X$ et $y \in X$ sout relies par un chemin larrague $\exists \gamma : [0,1] \to X$ che ta $\gamma(0) = X$ et $\gamma(1) = y$.

Loutre-enemple. Si X = {0,13} est muni de la topo discrète, 0 et 1 me sont par relier. => La contrainte est dans la continuité de y.

<u>Lumme</u>: Si (X, t) est un espace topologique et si on écrit n si se est relie à y par un chemin, alors ~ est une rel. d'Équivalence.

Demoustration: · Reflexivité:

Si $x \in X$, on pose pour $t \in [0,1]$ y(t) = x. Avini, y(0) = y(x) = x est continue (comme fet ext).

· symétrie

Si $x \sim y$, $\exists y : [0,1] \rightarrow x$ ctur to y(0) = x et y(1) = y. On pox $\tilde{y}(t) = y(1-t)$ $\forall t \in [0,1]$ \tilde{y} ext contrince car composit on few ctues, et $\tilde{y}(0) = y(1) = y$ et $\tilde{y}(1) = y(0) = x$.

· Transitivité

Si $x \sim y$ et $y \sim 3$ is exerte $Y: [0, 1] \rightarrow x$ et $S: [0, 1] \rightarrow x$ $tq \quad Y(0) = x$ $tq \quad S(0) = y$ Y(1) = y S(1) = 3

Alour on pose

$$\eta(t) = \begin{cases} \gamma(2t) & \text{si} & 0 \leqslant t \leqslant \frac{1}{2} \\ \gamma(2t) & \text{si} & \frac{1}{2} \leqslant t \leqslant 1 \end{cases}$$

qui est contunie car $\gamma(1) = \delta(0)$, et $\eta(1) = 3$ et $\eta(0) = x = 7 \times 2$. <u>Définition</u>: (X, T) est connesse par arcs si deux points quelconques peuvent toujours être relies pour un chemin

Théoreme si un espace topologique est connexe par arcs, alors il ext connexe. (X,T)

<u>Pimoustration</u>: Sourie U, NET to UUV = X, U + Ø et V + Ø. Danc 3 x EU, y EV.

Puisque x est connexe par arcs, il existe γ: [0,1] → x chu tq γ(0) = 2 et γ(1) = y.

Y'(U) et Y'(V) sont ouverts par continuité de y et nous avour aumi que [0,1] = Y'(x) = Y'(UUV) = Y'(U) U Y'(V) Pumpin \(\(\tau \) = x et \(\(\tau \) = y , \(\tau \) \(\tau Puisque [0,1] est connerce, y'(u) 1 y'(v) # \$

donc 8 (UNN) + & ce qui imperique que UNV + Ø. Donc X est connexe.

contre-exemple: The deleted comb-space in TR2

= {(0,1)} U (K × [0,1]) U ([0,1] × {0})

with K = { h new.}

~ clearly the problem point is (0,1). (more info wikipedia)

Soit 1R^n muni de la topologie usuelle. Alors Thioreme tout ensemble ouvert se qui ex connexe est aumi connexe par arcs.

ate counter-ex at the end of the sylabors 23)

and the second s