HOMEWORK 4: CAUCHY'S INTEGRAL COROLLARIES DUE: WEDNESDAY, OCTOBER 9TH

1) If $f: \mathbb{R} \times i \cdot (-1,1) \to \mathbb{C}$ is a holomorphic function on the real strip, with

$$|f(z)| \le A(1+|z|)^n$$

for some n fixed and all z, show that for each integer m we have

$$|f^{(m)}(x)| \le A_m (1+|x|)^n$$

for some $A_m > 0$ and all $x \in \mathbb{R}$.

- 2) Weirstrass's theorem asserts every continuous function on [0,1] can be approximated uniformly by polynomials. Is the same true for continuous complex valued functions on the unit disc B(0,1)?
- 3) The following function are analytic on the unit disc but cannot be extended outside this domain. If $f: B(z_0,r) \to \mathbb{C}$ is holomorphic, and $|z-z_0| = r$, then z is called **regular** if there is a power series centered at z agreeing with the one for f on points of intersection. Thus a function cannot be analytically continued outside the circle if no point is regular along the boundary.

Let $\alpha > 0$. Show that the following have radius of convergence 1:

$$f(z) = \sum_{n=0}^{\infty} z^{2^n}$$
 $g(z) = \sum_{n=0}^{\infty} 2^{-n\alpha} z^{2^n}$

Additionally, show the second extends continuously to the boundary circle |z|=1, and that neither can be analytically extended beyond the disc.

4) Suppose $f: \mathbb{C} \to \mathbb{C}$ is an analytic function $(R = \infty)$ and for each expansion

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

that one coefficient $a_N = 0$. Show that f is a polynomial function. (**hint:** Consider the sets $A_m = \{z \in \mathbb{C} \mid f^{(m)}(z) = 0\}$. Show f is polynomial if and only if some A_m is uncountable.).

5) Suppose f is holomorphic in Ω an open set except at a pole $z_0 \in \Omega$ where $|z_0| = 1$. If $\bar{B}(0,1)\setminus\{z_0\}\subseteq\Omega$ and

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

is a power series for f in B(0,1), show $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = z_0$.

6) If $f: B(0,1) \to \mathbb{C}$ is non-vanishing and continuous, holomorphic on B(0,1), then show that if |f(z)| = 1 for all |z| = 1, then f is constant. (hint: Show that f can be extended to all of \mathbb{C} by $1/\overline{f(\frac{1}{z})}$ as in the Schwarz reflection principle.)