Problems:

- 1. **(LDA)** You are given a dataset of 2-dimensional samples in the following (x, y, label) format (refer data.csv, points can be in decimal)
 - 1,2,0
 - 1,1,0
 - 5,6,1
 - 8,9,1

Task-1 (25 pts): Compute the following terms and print them:

(For this Task, you are given a sample data.csv and helper code pa_4_problem_1_task_1.py, use it for the template, and write the function definitions there).

- (i). Difference of class wise means $= m_1 m_2$
- (ii). Total Within-class Scatter Matrix S_W
- (iii). Between-class Scatter Matrix S_B
- (iv). The EigenVector of matrix $S_W^{-1}S_B$ corresponding to highest EigenValue
- (v). For any input 2-D point, print its projection according to LDA.

Deliverable: (i) myLDA.py that performs all these tasks we will test it on our version of data.csv (ii) For this task there is no requirement of any report.

Code/Data Link: https://github.com/anandmishra22/PRML-Spring-2023.git

(Task-2 and 3 can be done in Google Colab and observations in the report need to be submitted)

Task-2 (5 pts): Show the LDA projection vector on a plot.

- Task-3 (10 pts): Compare the performance of 1-NN neighbor classifier on original data vs projected data. Write down your observations.
- 2. (Naive Bayes) You are given dataset (ref: naive_bayes.csv) describing weather conditions and whether or not people played a certain outdoor sport. The features are Outlook, Temperature (Temp), Humidity, and Windy, and the target variable is Play (whether they played or not). Dataset link:

 https://github.com/anandmishra22/PRML-Spring-2023.git
 - Task-0 (0 pt): Split the dataset into train-test so that randomly chosen 12 out of 14 samples go to train split and the remaining two samples go to test split.
 - **Task-1 (5 pts):** Calculate Prior Probabilities, i.e. the probability of playing (P(Play=yes)) and not playing (P(Play=no)).
 - Task-2 (10 pts): Calculate Likelihood Probabilities: i.e. the likelihood probabilities for each feature given the class (Play = yes or Play = no). For

example, calculate P(Outlook = Sunny|Play = yes), P(Temperature = Mild|Play = yes), and so on.

Task-3 (10 pts): Calculate Posterior Probabilities: Using the Naive Bayes formula, calculate the posterior probabilities for both classes (Play = yes and Play = no) for the testing split.

Task-1 (5 pts): Make Predictions: Based on the posterior probabilities, predict whether the given test split examples will result in playing the sport or not.

Task-1 (10 pts): Use Laplace Smoothing: Laplace smoothing is an essential technique in probabilistic models like Naive Bayes. It mitigates the challenge of zero probabilities for unseen events by introducing a small pseudocount. This adjustment ensures a more reliable and adaptable model, particularly when encountering unobserved combinations of feature values during classification.

Reference: https://towardsdatascience.com/laplace-smoothing-in-na%C3% AFve-bayes-algorithm-9c237a8bdece

Incorporating Laplace Smoothing, recalculate the Likelihood and Posterior Probabilities and make predictions on the test split. Report the observed differences in your predictions justify the results in the report.

Rubrics:

Task completion with proper documentation/comments and variable

naming: 80 PointsViva: 30 PointsReport: 40 Points

End of Paper