HW4_Part1_Henry_Romero

March 10, 2025

```
[71]: import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      import seaborn as sns
      from sklearn.model_selection import train_test_split, cross_val_score
      from sklearn.preprocessing import MinMaxScaler
      from sklearn import linear model
      from sklearn.metrics import mean_squared_error, r2_score, u
       →explained_variance_score
      # Load dataset
      file_path = "~/Downloads/Pearson.csv" # Update to the father/son dataset
      df = pd.read_csv(file_path)
      # Display dataset information
      print("Dataset Info:\n", df.info())
      print("\nDataset Description:\n", df.describe())
      print("\nData Types:\n", df.dtypes)
      # Preprocessing Section and handle missing values
      print("\nChecking for missing values:\n", df.isnull().sum())
      df.dropna(inplace=True) # Removing rows with missing values (Not needed here)
      # Correlation Matrix
      corr matrix = df.corr()
      print("\nCorrelation Matrix:\n", corr_matrix)
      # Generate Correlation Heatmap
      plt.figure(figsize=(6,4))
      sns.heatmap(corr_matrix, annot=True, cmap="coolwarm") #Small for a small_
       ⇔dataset with 2 variables
      plt.title("Correlation Matrix Heatmap")
      plt.show()
      # Normalize Data with the minmax scaler
```

```
scaler = MinMaxScaler()
df_scaled = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)
# Split Data labels (Only 2)
X = df_scaled.iloc[:, :-1] # Father's height (independent variable)
y = df_scaled.iloc[:, -1] # Son's height (dependent variable)
print("independent Variables:",X)
print("Dependent variable:",y.name)
print(y)
# Conduct and Train Linear Regression Model
model = linear_model.LinearRegression()
→random_state=42) # 20 percent in training here
model.fit(X_train, y_train)
# Make Predictions
y_pred = model.predict(X_test)
print("Prediction:", y_pred)
# Evaluate Model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
explained_var = explained_variance_score(y_test, y_pred)
cross_val = cross_val_score(model, X, y, cv=5).mean()
print("Mean Squared Error:", mse)
print("R^2 Score:", r2)
print("Explained Variance Score:", explained_var)
print("Cross-Validation Score:", cross_val)
# Plotting graphs
plt.figure(figsize=(6,4))
plt.scatter(y_test, y_pred, color='blue', alpha=0.5)
plt.plot([0, 1], [0, 1], linestyle='dashed', color='red') # Ideal line
plt.xlabel("Actual Values")
plt.ylabel("Predicted Values")
plt.title("Linear Regression: Actual vs. Predicted")
plt.show()
residuals = y_test - y_pred # residuals and error heatmap that i think helps_1
⇒illustrate the difference of actual and predicted
residuals_df = pd.DataFrame({"Actual": y_test, "Predicted": y_pred, "Residual": u
 ⇔residuals})
plt.figure(figsize=(6, 4))
```

```
sns.heatmap(residuals_df.corr(), annot=True, cmap="coolwarm")
plt.title("Residuals Heatmap")
plt.show()
```

Dataset Info:

None

Dataset Description:

	Father	Son
count	1078.000000	1078.000000
mean	67.686827	68.684230
std	2.745827	2.816194
min	59.000000	58.500000
25%	65.800000	66.900000
50%	67.800000	68.600000
75%	69.600000	70.500000
max	75.400000	78.400000

Data Types:

Father float64 Son float64 dtype: object

Checking for missing values:

Father 0 Son 0 dtype: int64

Correlation Matrix:

Father Son
Father 1.000000 0.501163
Son 0.501163 1.000000

indep	endent Variables:	Father
0	0.365854	
1	0.262195	
2	0.365854	
3	0.414634	
4	0.128049	

1073	0.487805	
1074	0.750000	
1075	0.780488	
1076	0.713415	
1077	0.689024	
[1078	rows x 1 columns]	
Depen	dent variable: Son	
0	0.065327	
1	0.236181	
2	0.241206	
3	0.216080	
4	0.291457	
		
1073	0.618090	
1074	0.492462	
1075	0.542714	
1076	0.542714	

1077 0.427136

Name: Son, Length: 1078, dtype: float64 Prediction: [0.67320059 0.51920174 0.51663509 0.64496747 0.44476895 0.57566798 0.54230156 0.58593457 0.60646775 0.48840196 0.58080128 0.57566798 0.662934 0.43193572 0.56283474 0.47556873 0.53203497 0.51150179 0.59106787 0.46273549 0.46530214 0.57310134 0.47043543 0.59620116 0.53460162 0.55000151 0.61930099 0.6141677 0.46786878 0.46016884 0.48070202 0.5063685 0.4524689 0.51920174 0.60390111 0.59876781 0.46530214 0.49096861 0.5551348 0.60646775 0.58850122 0.5063685 0.52176838 0.52176838 0.57053469 0.48070202 0.51406844 0.48583532 0.47300208 0.5063685 0.57053469 0.52946833 0.53203497 0.59363452 0.5602681 0.43706901 0.55256815 0.52946833 0.3985693 0.47300208 0.51150179 0.56283474 0.30360334 0.40626924 0.4473356 0.57053469 0.47043543 0.43450236 0.57053469 0.65010076 0.57566798 0.58593457 0.53460162 0.48840196 0.48326867 0.44476895 0.51406844 0.49096861 0.48326867 0.55256815 0.42166913 0.55256815 0.45503555 0.5063685 0.42166913 0.47813537 0.56540139 0.49866855 0.65523406 0.41396918 0.36006958 0.51150179 0.5602681 0.47556873 0.48583532 0.48583532 0.41653583 0.4524689 0.53716827 0.59363452 0.55000151 0.56283474 0.53203497 0.51406844 0.56796804 0.49866855 0.43193572 0.5063685 0.51663509 0.46016884 0.49866855 0.53716827 0.53460162 0.55000151 0.48840196 0.47300208 0.44476895 0.53973492 0.52176838 0.46786878 0.44220231 0.5063685 0.46786878 0.5063685 0.54230156 0.59106787 $0.41910248\ 0.46530214\ 0.45503555\ 0.38060276\ 0.37033617\ 0.50380185$ 0.52946833 0.37803612 0.49353526 0.56540139 0.46273549 0.46016884 0.63213423 0.49096861 0.49353526 0.45760219 0.56283474 0.46530214 0.52176838 0.49866855 0.59363452 0.51920174 0.54743486 0.46786878 0.43450236 0.48583532 0.51663509 0.37546947 0.47043543 0.58336793 0.53973492 0.53203497 0.51920174 0.53203497 0.47300208 0.57823463 0.47556873 0.47043543 0.393436 0.41653583 0.5012352 0.57053469 0.54743486 0.47556873 0.54486821 0.56283474 0.41140254 0.50893514 0.51920174 0.54486821 0.54230156 0.43706901 0.5602681 0.56796804 0.63726753 0.45760219 0.4473356 0.49096861 0.43706901 0.56796804 0.50893514 0.38830271 0.43963566 0.61160105 0.60646775 0.44476895 0.52946833 0.50893514 0.55256815 0.57823463 0.58080128 0.63470088 0.48583532 0.57823463 0.43450236 0.50380185 0.58593457 0.50380185]

Mean Squared Error: 0.012642615360768435

R^2 Score: 0.2678415778774401

Explained Variance Score: 0.2733828200987253 Cross-Validation Score: 0.24998810034202762

