GEL-19879 ÉLECTROMAGNÉTISME 10 décembre 1999

EXAMEN FINAL:

Répondre dans le cahier d'examen sur la page de droite uniquement.

Signer et remettre ce questionnaire en même temps que votre cahier d'examen.

NOM: Signature

Question 1 (25 points)

Un cylindre infini est chargé uniformément avec une densité de charge volumique uniforme $\rho_V = \rho_L/\pi a^2$ pour r<a. Ce cylindre est entouré d'une paroi cylindrique infinie portant une charge de surface négative $\rho_S = -\rho_L/2\pi b$ à r=b. La permittivité est $\epsilon = 2\epsilon_0$ entre les deux cylindres (a<r
cb) et ϵ_0 ailleurs.

- a) Quel est le champ électrique partout dans l'espace (de r=0 à r=∞)?
- b) Quelle est l'énergie emmagasinée dans le champ par unité de longueur des cylindres?

Question 2 (45 points)

Le champ électrique d'une onde plane est orienté dans la direction $(\hat{\imath}_x+\hat{\imath}_y)/\sqrt{2}$ alors que le champ magnétique est orienté suivant $(\hat{\imath}_x-\hat{\imath}_y)/\sqrt{2}$. À z=0, la puissance transportée par l'onde est de 1x10⁻³ W/m². La conductivité du milieu est σ =2 S/m et sa permittivité ϵ =2.5 ϵ ₀. La fréquence de l'onde est de 100 MHz.

a) Quelle est la direction de propagation de l'onde?

- b) Faites un schéma du système de coordonnées cartésien et indiquez-y la direction des champs électrique et magnétique de l'onde ainsi que la direction de propagation.
- c) Quelle est la polarisation de l'onde?
- d) De quel type de matériau s'agit-il?
- e) Trouvez les grandeurs caractéristiques de l'onde: α , β et η
- f) Quelle est la vitesse de phase?
- g) Quelle est l'amplitude E₀ du champ électrique?
- h) Quelle est l'expression des champs électriques et magnétiques (écrivez l'expression algébrique puis incluez les valeurs numériques).
- i) À quelle distance la puissance de l'onde est-elle réduite à 1% de sa puissance initiale?

Question 3 (10 points)

On considère l'électroaimant suivant:

- a) En considérant que $\mu >> \mu_0$, quel est le flux magnétique ϕ circulant dans la branche centrale du circuit?
- b) Quelle est l'inductance propre de la bobine?

Question 4 (20 points)

Des charges de surfaces de $\pm p_s$ sont accumulées sur deux électrodes planes infinies séparées par une distance d. Une couche de diélectrique de permittivité ϵ =5 ϵ_0 et d'épaisseur d/3 est insérée dans la partie centrale.

- a) Quel est le champ électrique dans toutes les régions de l'espace entre les électrodes? (Servez-vous des notions connues, il n'est pas nécessaire de faire le calcul).
- b) En considérant que V=0 sur l'électrode inférieure, quel est le potentiel V de l'électrode supérieure?
- c) Quelle est la capacité du système?
- d) Comparez la capacité obtenue à celle du même système sans diélectrique?

Question 5 (5 points boni)

Une onde passe de l'air à un milieu diélectrique de permittivité ϵ =4 ϵ 0, de perméabilité μ 0 et de conductivité nulle. Pour un angle d'incidence de 60°, quel sera le coefficient de réflexion en intensité pour une polarisation parallèle et pour une polarisation perpendiculaire au plan d'incidence.