Project 4

EECS 281

Video

- There is a video already on YouTube
 - You can find the link in the Project 4 Specification
- These slides still have lots that isn't in the video, so make sure you look through them

Agenda

- Graphs and Minimum Spanning Trees
 - Prim's Algorithm
 - Kruskal's Algorithm
- The Travelling Salesperson problem
 - Optimal solution algorithm
 - Fast but not optimal algorithm
- Project 4 FAQ

Order of Solution

- Do them in the order given:
 - MST
 - FASTTSP
 - OPTTSP
- Why? OPTTSP can use the first two
 - FASTTSP: best so far
 - MST: used for lower bound

Visualizing Results

- Use the visualization tool
- Only available on Autograder 2
 - AG1 runs the SQL server
 - We didn't want to add more for it to do
- https://g281-2.eecs.umich.edu/p4viz/

Graphs

- A set of objects where some/all of them are connected by links

Graphs

- Different types of graphs
 - Directed/Undirected
 - Weighted/Unweighted
 - Multigraph
 - 0 ..

Graphs

- Different types of graphs
 - Directed/Undirected
 - Weighted/Unweighted
 - Multigraph
 - 0 ..
- Know these terms for the exam!

 Problem: Given a graph of cities, devise a minimum cost method (in terms of length of path constructed) of connecting them all together.

 Given a MST of a graph G and a point A not in the graph. Construct an MST with the graph formed by joining every vertex in G with A.

- Given a MST of a graph G and a point A not in the graph. Construct an MST with the graph formed by joining every vertex in G with A.
- Modify this algorithm to produce an MST of a whole graph.

Prim's Algorithm

- a. Mark all nodes unvisited, distance ∞, no previous
- b. Pick a starting point; change its distance to 0
- c. Loop V times:
 - Find the smallest **false** one
 - Mark this node as visited
 - Update distance of any false node adjacent to that node
- d. This loop variable should be a **count**, not an index

 Problem: Given a graph, find the shortest path to visit all nodes in the graph and come back to the starting position

What is the starting point? Does it matter?

- Problem: Given a graph, find the shortest path to visit all nodes in the graph and come back to the starting position
- This is an NP-hard problem
 - NP-hard problems can be even more difficult than NP-complete problems! (see EECS 376)

- Problem: Given a graph, find the shortest path to visit all nodes in the graph and come back to the starting position
- If the graph is unweighted and complete then how can we solve this problem?

- Problem: Given a graph, find the shortest path to visit all nodes in the graph and come back to the starting position
- Now consider a weighted directed graph.
 How can we solve this problem?
 - One possible solution: Consider all possible routes!
 or in other words, Brute force!

 Guess the password: A user on Facebook can have a 4 letter password comprised of ASCII characters. Guess his password. You have unlimited attempts.

- Guess the password: A user on Facebook can have a 4 letter password comprised of ASCII characters. Guess his password. You have unlimited attempts.
- Guess all possible permutations!
 - How many permutations will you consider?

 Inference: Brute force algorithms are usually the worst possible solution to a problem.

- Inference: Brute force algorithms are usually the worst possible solution to a problem.
 - But we will optimize

- Guess the password: A user on Facebook can have a 4 letter password comprised of ASCII characters. Guess his password. You have unlimited attempts.
- You deduce somehow that the third letter can only be an 'a' or a 'c'.

- Guess the password: A user on Facebook can have a 4 letter password comprised of ASCII characters. Guess his password. You have unlimited attempts.
- You deduce somehow that the third letter can only be an 'a' or a 'c'.
 - How much better is this than the previous solution?

- Guess the password: A user on Facebook can have a 4 letter password comprised of ASCII characters. Guess his password. You have unlimited attempts.
- You deduce somehow that the third letter can only be an 'a'.
 - Now how many cases would you consider?

 This is the essence of the branch and bound optimization. You think smartly and eliminate multiple possibilities to get better runtime.

- How to generate all possible routes from point A to point B in a graph?
 - Randomly connect edges?

 How can we eliminate some unnecessary permutations while brute forcing the TSP problem?

- How can we eliminate some unnecessary permutations while brute forcing the TSP problem?
 - Keep track of previous best. If while generating permutations you exceed previous best: discard current solution and move on to the next.

What is the optimal path here?

- What is the optimal path here?
 - Around the outside edges.

Eliminate

- A->B->E.....
- A->B->D.....


```
// Don't copy/paste from a PDF! There's a copy of this in a text
// file on Canvas (named genPerms.txt) for you to copy/paste from.
template <typename T>
void genPerms(vector<T> &path, size t permLength) {
 if (path.size() == permLength) {
    // Do something with the path
    return:
 } // if
 if (!promising(path, permLength)) // Add custom logic in promising()
      return:
 for (size_t i = permLength; i < path.size(); ++i) {</pre>
      swap(path[permLength], path[i]);
      genPerms(path, permLength + 1);
      swap(path[permLength], path[i]);
 } // for
} // genPerms()
```

OPTTSP WST

- Can we somehow eliminate a branch of the tree that starts out poorly, and will thus never lead to a solution that's better than our best so far?
 - Estimate cost of the remaining k nodes
 - Estimate must be faster than O(k!)
 - Big hint for p4

 It is inefficient even for a supercomputer to solve the TSP problem, so most people estimate a solution

- It is inefficient even for a supercomputer to solve the TSP problem, so most people estimate a solution
 - Solve in a greedy manner, i.e. add the closest point to the current point you're on and repeat
 - This is not the only, or even the best way, but it works fairly well

 Does this look like an efficient tour for our salesperson?

This looks better

Improving Heuristics

- Suppose you come up with a heuristic for the FASTTSP, and your solution path is too long to get full credit, two options:
 - Change to a different greedy heuristic
 - Add 2-Opt
- Be willing to try other heuristics!
 - Greedy Nearest Neighbor + 2-Opt will NOT earn all the points for FASTTSP, but it will earn most of them

Suppose Starting Path...

Current path:

The (- A) means that a full cycle would include A, but we could just keep track of A - B - E - F - C - D

2-Opt Time

Consider all possible non-overlapping adjacent pairs of points:

A-B versus E-F, F-C, C-D, D-A
B-E versus F-C, C-D, D-A
E-F versus C-D, D-A
F-C versus D-A

2-Opt Time

Suppose we're considering optimizing A-B and C-D

A-B length = 1.4; C-D = 1.4

Total = 2.8

Replace with:

A-C = 1; B-D = 1

Total = 2

Good savings = swap

2-Opt Time

Revised path:

Path Changes

Notice that the path has changed from:

To:

The entire middle has reversed order!

B-E-F-C Has become C-F-E-B

Run Through All Possible

- Always check adjacent pairs, compared to all other adjacent pairs
- As soon as you see an improvement, make it
- Pick up where you left off (think in terms of indices into the path)
- \bullet O(V²)

Be Careful with Online Help

- Many online sources find the best optimization, make it, then restart at the first index
 - They stop when there's no optimization to make
- This involves a triple nested loop
- This is O(V³), which is TOO LONG

- Why are we suggesting Prim's algorithm over Kruskal's?
- Is our graph dense in the MST part?
 - What if every location is in one region, or every location is in the other?
 - What if half are in one region and half are in another?
 - In each case above, how many edges are usable?

- Given vertices as ordered pairs in the x-y plane, how will you find out which line segment is smaller?
- For example:
 - o v1: {3, 3} v2: {6, 10} v3: {8, 8}
- Which is shorter, v1 to v2, or v1 to v3?
- How do you KNOW, without a calculator?

Delaying the Square Root

- What this means is that sometimes you can delay taking the square root, and just compare the values before that
- You must still use sqrt() when you're summing up
 - But you do this n times instead of n^2 times!

NOT Delaying the Sq. Root

- The idea from the previous slide works when comparing ONE line segment to another, NOT when summing up a set of line segments!
- Consider 100 + 1 compared to 49 + 49
- What about 10 + 1 compared to 7 + 7?

- When computing Euclidean distance don't use pow()
 - Instead, multiply or use sqrt() when needed
- The pow() function must work in general, such as 0.231^{-4.94}, whereas sqrt() and multiplication are optimized for simpler tasks

Problem Size / Distance Matrix

- In the MST and FASTTSP portions, the graph might have tens of thousands of vertices
 - Is there enough memory available to store a distance matrix?
 - Consider 50,000 vertices, 8 bytes per double
- In OPTTSP, problem size limited to < 40 nodes
 - Room for distance matrix, and faster if one exists

Functors!

- Each part can use a different functor for calculating distance between two points
- In MST, what is distance between a land pokemon and one in the sea area?
- In OPTTSP, there are so few nodes that you can pre-compute all possible distances
 - Functor can store the distance matrix as member
 - NOT needed, not a significant speed up

 You will be given graphs in P4 to execute algorithms on. How would you store them in memory?