Discrete Mathematics Combinatorial Optimization Problem

Pham Quang Dung

Hanoi, 2012

Outline

- Introduction
- 2 Exhaustive Search
 - Backtracking algorithm
 - Branch-and-Bound algorithm
- 3 Johnson Algorithm for scheduling on two machines

Introduction

- $X = \{x = (x_1, \dots, x_n) \mid x_i \in A_i, \forall i = 1, \dots, n\}$ is a set of configurations
- Each configuration is associated with a value representing the quality of that configuration
- ullet Among configurations having a property \mathcal{P} , find the configuration with the highest quality

Definition

 $D \subseteq X$ is the set configurations $x \in X$ having property \mathcal{P}

Introduction

- Function f is called objective function
- $x^* \in D$ such that $f(x^*)$ is minimal (maximal) is called optimal solution
- $f^* = f(x^*)$ is called optimal objective value

Example: Traveling Salesman Problem

- Given a list of n cities with pairwise distances
- Find the shortest route that visits each city exactly once and returns to the origin city
- $x = (x_1, \dots, x_n)$, route is $x_1 \to x_2 \to \dots \to x_n \to x_1$
- $f(x) = c(x_1, x_2) + c(x_2, x_3) + \cdots + c(x_n, x_1)$

$$c = \left(\begin{array}{cccc} 0 & 3 & 7 & 4 \\ 3 & 0 & 1 & 2 \\ 7 & 1 & 0 & 5 \\ 4 & 2 & 5 & 0 \end{array}\right)$$

Example: Knapsack Problem

- Given a set of n kind of items 1, ..., n. Each item kind i has a weight a_i and a value c_i
- Compute how many items of each kind to take such that the total weight does not exceed a given value b and the total value is maximal

Definition

max
$$\sum_{i=1}^{n} c_i x_i$$

s.t. $\sum_{i=1}^{n} a_i x_i \leq b$, $x_i \in N, \forall i \in \{1, ..., n\}$

source: http://en.wikipedia.org/wiki/Knapsack_problem

Assignment Problem

- There n agents and n tasks. Each agent i can perform a task j with a cost c(i,j)
- All tasks must be performed, each by exactly one agent and an agent must perform exactly one task
- Find an assignment agent-task for accomplishing all the tasks such that the total cost is minimal

Definition

- a configuration is $x = (x_1, \dots, x_n)$: agent i performs taks x_i
- cost $f(x) = \sum_{i=1}^{n} c(i, x_i)$

Outline

- Introduction
- 2 Exhaustive Search
 - Backtracking algorithm
 - Branch-and-Bound algorithm
- 3 Johnson Algorithm for scheduling on two machines

Backtracking algorithm

Algorithm 1: BackTracking(k)

```
1 Construct a candidate set S_k;

2 foreach y \in S_k do

3 \begin{vmatrix} a_k \leftarrow y; \\ \text{if } (a_1, \dots, a_k) \text{ is a complete configuration then} \end{vmatrix}

5 \begin{vmatrix} \overline{f} \leftarrow f(a_1, \dots, a_k); \\ \text{if } \overline{f} < f^* \text{ then} \\ & f^* \leftarrow \overline{f}; \end{vmatrix}

8 else

9 \begin{vmatrix} \text{BackTracking}(k+1); \end{vmatrix}
```

Algorithm 2: Main()

```
1 f^* \leftarrow \infty;
2 BackTracking(1);
```

9 / 25

Branch-and-Bound algorithm

- Base on Backtracking algorithm
- Suppose we have a partial solution $\overline{x} = (a_1, \dots, a_k)$, we must decide whether or not to continue to extend \overline{x} until complete solutions
 - Identify a lower bound function $g(\overline{x})$:

$$g(a_1,\ldots,a_k) \leq \min\{f(x) \mid x \in D, x_i = a_i, \forall i = 1,\ldots,k\}$$

• If $g(\overline{x}) < f^*$ then continue to extend. Otherwise, backtrack.

Branch-and-Bound algorithm

Algorithm 3: BackTracking(k)

Algorithm 4: Main()

```
1 f^* \leftarrow \infty;
2 BackTracking(1);
```

Knapsack Problem

Definition

max
$$\sum_{i=1}^{n} c_i x_i$$

s.t. $\sum_{i=1}^{n} a_i x_i \leq b, x_i \in N, \forall i \in \{1, ..., n\}$

- Without loss of generality, suppose that $\frac{c_1}{a_1} \geq \frac{c_2}{a_2} \geq \cdots \geq \frac{c_n}{a_n}$
- Observation:

$$\max\{f(x) = \sum_{i=1}^{n} c_i x_i : \sum_{i=1}^{n} a_i x_i \le b, x_i \in \mathbb{N}\} \le \max\{f(x) = \sum_{i=1}^{n} c_i x_i : \sum_{i=1}^{n} a_i x_i \le b, x_i \ge 0\} = \frac{b*c_1}{a_1}$$

- $\sigma_k = \sum_{i=1}^k c_i \alpha_i$, $b_k = b \sum_{i=1}^k a_i \alpha_i$
- $g(\alpha_1, \ldots, \alpha_k) = \max\{f(x) : \sum_{i=1}^n a_i x_i \le b, x \ge 0, x_i = \alpha_i, \forall i \in \{1, \ldots, k\}\} = \sigma_k + \frac{b_k * c_{k+1}}{a_{k+1}}$

Knapsack Problem

TSP

- $Cmin = min\{c(i,j) : \forall i \neq j \in \{1, ..., n\}\}$
- Suppose we have a partial solution $\overline{x} = (\alpha_1, \dots, \alpha_k)$
- $\sigma_k = c(\alpha_1, \alpha_2) + c(\alpha_2, \alpha_3) + \cdots + c(\alpha_{k-1}, \alpha_k)$
- $g(\alpha_1,\ldots,\alpha_k) = \sigma_k + (n-k+1) * Cmin$

TSP

Outline

- Introduction
- 2 Exhaustive Search
 - Backtracking algorithm
 - Branch-and-Bound algorithm
- 3 Johnson Algorithm for scheduling on two machines

- There are n jobs, each job must be processed consecutively on two machines: A and then B
- a_i and b_i are processing time of the job i on machine A and B
- Compute the processing schedule such that the completion time is minimized

	D_1	D_2	D_3	D_4	D_5
Α	3	4	6	5	6
В	3	3	2	7	3

- A schedule is modeled by a permutation $\pi = (\pi_1, \dots, \pi_n)$ of $1, \dots, n$
- Denote s_{jX}, t_{jX} respectively the starting and finishing times of the processing of the job j on machine $X, \forall j \in \{1, ..., n\}, X \in \{A, B\}$
- Constraints
 - **1** $t_{\pi_k A} \leq s_{\pi_{k+1} A}, \forall k = 1, \dots, n-1$
 - $t_{\pi_k A} \leq s_{\pi_k B}, \forall k = 1, \dots, n$
 - **3** $s_{\pi_k B} \geq \max\{t_{\pi_k A}, t_{\pi_{k-1} B}\}$
- Completion time $T(\pi) = t_{\pi_n B}$
- Optimality is achieved iff the equalities in constraints 1, 2, and 3 are achieved

- $T(\pi) = d_B(\pi) + \sum_{j=1}^n b_j$
- $d_B(\pi)$ is the sum of idle times of the machine B plus $t_{\pi_1 A}$

•

$$d_B(\pi) = \max_{1 \leq u \leq n} \Delta_u(\pi)$$

where:

•

$$\Delta_1(\pi) = a_{\pi_1}$$

0

$$\Delta_u(\pi) = \sum_{j=1}^u a_{\pi_j} - \sum_{j=1}^{u-1} b_{\pi_j}, \forall u = 2, \ldots, n$$

• The original problem is reduced to $\min\{d_B(\pi) : \pi \in P\}$, P is the set of permutations of $1, \ldots, n$

Lemma

$$\pi = (\pi_1, \dots, \pi_{k-1}, \pi_k, \pi_{k+1}, \dots, \pi_n)$$
 and $\pi' = (\pi_1, \dots, \pi_{k-1}, \pi_{k+1}, \pi_k, \dots, \pi_n)$. If $\min(a_{\pi_k}, b_{\pi_{k+1}}) \leq \min(a_{\pi_{k+1}}, b_{\pi_k})$, then $T(\pi) \leq T(\pi')$

Proof.

- π and π' are different at only position k and k+1, so $\Delta_u(\pi) = \Delta_u(\pi'), \forall u=1,\ldots,k-1,k+2,\ldots,n$
- To prove the lemma, we prove that
 - $\max(\Delta_k(\pi), \Delta_{k+1}(\pi)) \leq \max(\Delta_k(\pi'), \Delta_{k+1}(\pi'))$
 - $\Leftrightarrow \max(\Delta_k(\pi) \delta, \Delta_{k+1}(\pi) \delta) \leq \max(\Delta_k(\pi') \delta, \Delta_{k+1}(\pi') \delta)$ with $\delta = \sum_{i=1}^{k+1} a_{\pi(i)} - \sum_{i=1}^{k-1} b_{\pi(i)}$
 - $\bullet \Leftrightarrow \max(-a_{\pi(k+1)}, -b_{\pi(k)}) \leq \max(-a_{\pi(k)}, -b_{\pi(k+1)})$
 - $\Leftrightarrow \min(a_{\pi(k)}, b_{\pi(k+1)}) \leq \min(a_{\pi(k+1)}, b_{\pi(k)})$ (this is the original hypothesis)

Lemma

If $min(a_i, b_j) \leq min(a_j, b_i)$ and $min(a_j, b_k) \leq min(a_k, b_j)$, then $min(a_i, b_k) \leq min(a_k, b_i)$

Proof.

The lemma can trivially proved by considering all 16 possible cases

Theorem

 $T(\pi)$ is minimized when $min(a_{\pi_k},b_{\pi_{k+1}}) \leq min(a_{\pi_{k+1}},b_{\pi_k}), \forall k=1,\ldots,n-1$

Proof.

- Suppose that $\pi' = (\pi'_1, \pi'_2, \dots, \pi'_n)$ is an optimal solution
- If there exists $1 \le k \le n-1$ such that $\min(a_{\pi'_k}, b_{\pi'_{k+1}}) > \min(a_{\pi'_{k+1}}, b_{\pi'_k})$, then by swapping π'_k and π'_{k+1} , we obtain a new solution which is not worse than π' and is thus an optimal solution
- The process is repeated until we obtain an optimal solution an optimal solution π having $\min(a_{\pi_k}, b_{\pi_{k+1}}) \leq \min(a_{\pi_{k+1}}, b_{\pi_k}), \forall k = 1, \ldots, n-1$

- Divide the jobs into two groups:
 - N_1 contains jobs i such that $a_i \leq b_i$
 - N_2 contains jobs i such that $a_i > b_i$
- ② Sort jobs of N_1 in the increasing order of a_i which results in a sequence of jobs L_1
- **3** Sort jobs of N_2 in the decreasing order of b_i which results in a sequence of jobs L_2
- **4** The concatenation $L_1::L_2$ is an optimal solution to the problem

Example

	D_1	D_2	D_3	D_4	D_5
Α	3	4	6	5	6
В	3	3	2	7	3

- $N_1 = \{D_1, D_4\}, N_2 = \{D_2, D_3, D_5\}$
- Sort: $L_1 = \langle D_1, D_4 \rangle$, $L_2 = \langle D_2, D_5, D_3 \rangle$
- Optimal solution is $\langle D_1, D_4, D_2, D_5, D_3 \rangle$, completion time = 26

Machines

B D1 D4 D2 D5 D3

A D1 D4 D2 D5 D3