CompTIA Security+ Exam SY0-701

Lesson 3

Explaining Appropriate Cryptographic Solutions

Objectives

- Compare and contrast cryptographic algorithms
- Explain the importance of public key infrastructure and digital certificates
- Explain the importance of using appropriate cryptographic solutions for encryption and key exchange

Topic 3A

Cryptographic Algorithms

Cryptographic Concepts

- Encryption and decryption—encoding and decoding
 - Plaintext is the unencoded message
 - Ciphertext is the coded message
 - Cipher is the means of change or algorithm
- Cryptanalysis is the art of cracking cryptographic systems
- Meet Alice and Bob (and observe Mallory, lurking)
- Hashing algorithms
- Encryption ciphers
 - Symmetric
 - Asymmetric

Symmetric Encryption

- Encryption uses a reversible process (algorithm) based on a key that is only known by authorized persons
- Substitution and transposition
 - Process should be too complex to unravel without the key
- Symmetric algorithms
 - Same secret key is used for encryption and decryption
 - Fast—suitable for bulk encryption of large amounts of data
 - Problem storing and distributing key securely
 - Confidentiality only— sender and recipient know the same key

Key Length

- Key ensures ciphertext remains protected even when the operation of the algorithm is known
- Range of key values is the keyspace
- Longer key bit length means a larger keyspace
 - Protects against brute force cryptanalysis
- Advanced Encryption Standard (AES/AES256)
 - 256-bit key is exponentially stronger than 128-bit key
 - Larger keys use more CPU/memory/power resources

Asymmetric Encryption

- Public/private key pair
 - If the public key encrypts, only the private key can decrypt
 - Private key cannot be derived from the public key
 - Private key must be kept secret
 - Public key is easy to distribute (anyone can have it)
- Used for small amounts of authentication data
- Different ciphers have different recommended key lengths
 - Rivest, Shamir, Adelman (RSA) cipher (2,048-bit or better)
 - Elliptic Curve Cryptography (ECC) cipher (256-bit or better)

Hashing

Images © 123rf.com.

- Fixed length digest from variable string with cryptographic properties
 - One-way (plaintext cannot be recovered from the digest)
 - Anti-collision (no two plaintexts are likely to produce the same digest)
- Used for password storage and checksums (integrity)
- Secure Hash Algorithm (SHA)
 - 256-bit or better
- Message Digest Algorithm (MD5)
 - 128-bit only

Digital Signatures

- Using public key cryptography with hashing
- Digital signatures provide integrity, authentication, non-repudiation

Review Activity: Cryptographic Algorithms

- Cryptographic concepts
- Symmetric encryption
 - Same secret key encrypts and decrypts
- Key length
- Asymmetric encryption
 - Public/private key pair
- Hashing
 - Non-reversible
- Digital signatures
 - Sign message hash with private key and validate with public key

Lab Activity

Applied Lab: Using Storage Encryption

Topic 3B

Public Key Infrastructure

Certificate Authorities

- Public key infrastructure (PKI)
 - Prove identity of a public key holder (subject user or computer)
- Certificate authority (CA)
 - Repository of certificates and public keys issued to verified subjects
- Third-party CA
 - Entity that has established widespread trust in its policies and procedures for issuing certificates

Digital Certificates

- Contains subject's public key
- Information identifying the subject plus usage and validity
- Digital certificate standards
 - X.509 Public Key Infrastructure (PKIX)
 - PKCS (Public Key Cryptography Standards)

Root of Trust

- Root certificate
 - Self-signed, so users must trust in the CA's security procedures
- Single CA
 - CA issues certificates directly to subjects
- Hierarchical/chain of trust
 - Root CA
 - Intermediate CAs
 - Leaf certificates
- Self-signed certificates
 - Use certificate security without PKI, but provide no root of trust

Certificate Signing Requests

- Registration identification and authentication procedures
- Certificate Signing Request (CSR)
 - Subject generates key pair and sends public key to CA with CSR
 - Subject does NOT send private key: this must be kept known to the subject
 - CA performs subject identity checks
 - CA signs and issues certificate

Subject Name Attributes

- Common Name (CN)
 - Legacy method of recording fully qualified domain name (FQDN)
 - Deprecated by standards
 - BUT still used in many implementations
- Subject Alternative Name (SAN)
 - Structured identifiers: name and/or IP address
 - List multiple host/subdomains
 - Use wildcard subdomain

Certificate Revocation

- Revocation versus suspension
- Reason codes
- Certificate Revocation List (CRL)
 - List of revoked and suspended certificates
 - Browser CRL checking
- Online Certificate Status Protocol (OCSP)
 - Client queries single certificate per transaction
 - Provide real-time status information (though some rely on CRLs)

Key Management

- Key lifecycle
 - Key generation
 - Storage
 - Revocation
 - Expiration and renewal
- Decentralized key management
 - Each host or user account stores its own private key
- Key management system
 - Keys are generated and stored on a centralized server
 - Key Management Interoperability Protocol (KMIP)

Cryptoprocessors and Secure Enclaves

- Key generation challenges
 - Entropy and random number generation
 - Tamper-evident storage
- Trusted Platform Module (TPM)
 - Cryptoprocessor implemented on CPU (or motherboard)
- Hardware Security Module (HSM)
 - Cryptoprocessor in removable or dedicated hardware form factor (or virtual appliance)
 - Reduced attack surface and tamper-evident
- Secure enclave
 - Protect keys loaded in system memory

```
GnuPG needs to construct a user ID to identify your key.
Real name: James Pengellv
Email address: jpengelly@comptia.org
Comment:
You selected this USFR-TD:
    "James Pengelly <jpengelly@comptia.org>"
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
gpg: /home/kali/.gnupg/trustdb.gpg: trustdb created
gpg: directory '/home/kali/.gnupg/openpgp-revocs.d' created
gpg: revocation certificate stored as '/home/kali/.gnupg/openpgp-revocs.d/C3E
1D43D17CBCC7C80A3D4889564BC94BD4E1D99.rev'
public and secret key created and signed.
     rsa2048 2023-05-31 [SC] [expires: 2025-05-30]
     C3E1D43D17CBCC7C80A3D4889564BC94BD4E1D99
                         James Pengelly <jpengelly@comptia.org>
uid
     rsa2048 2023-05-31 [E] [expires: 2025-05-30]
```

Key Escrow

- Keys can be backed up to protect against data loss
- Anyone with access to backup keys could impersonate the true key holder
- Escrow backup
 - Placing archived keys with a trusted third party
- M-of-N control
 - Key recovery processes can be protected by M of N control
 - Split key into multiple parts held by different key recovery agents

Review Activity: Public Key Infrastructure

- Certificate authorities
- Digital certificates
- Root of trust
- Certificate signing requests
- Subject name attributes
- Certificate revocation
- Key management
- Cryptoprocessors and secure enclaves
- Key escrow

Topic 3C

Cryptographic Solutions

Encryption Supporting Confidentiality

- Data states
 - Data at rest, data in transit, data in use
- Bulk encryption
 - Using a private asymmetric key is inefficient for large amounts of data
 - Private key (key encryption key) is used to encrypt a symmetric key (media/data encryption key)

Disk and File Encryption

- Data at rest storage levels
- Full disk and partition encryption
 - Encrypt whole disk or partition on disk
 - Often performed by drive firmware (self-encrypting)
- Volume and file encryption
 - Often performed by OS/software
 - Usually requires file system support

Database Encryption

- Structured data
 - Tables, columns (fields), and rows (records)
 - Database Management System (DBMS)
 - Structured Query Language (SQL)
- Database-level encryption
 - Page-level decryption and encryption as data is moved from disk to memory
- Record-level encryption
 - Cell/column versus record-level
 - Enforce fine-grained access controls to support compliance requirements for privacy/security

Transport Encryption and Key Exchange

Perfect Forward Secrecy

Salting and Key Stretching

- Password hashes
- User-generated data is low entropy
 - Brute force attack discovers value by generating every possible value and finding a match
- Salting
 - Add a random value to each password when hashing it for storage
 - Prevents use of pre-computed hash tables
- Key stretching
 - Use additional rounds to strengthen keys
 - Makes attacker do more work, so slows down brute force

Blockchain

- Expanding list of transactional records (blocks)
- Each block is linked by hashing
- Open public ledger
- Ledger of transactions performed on a digital asset
- Peer-to-peer so transactions are public
- Transactions cannot be deleted or reversed
- Widely used for cryptocurrencies
- Potential uses for financial transactions, online voting systems, identity management systems, notarization, data storage, ...

Obfuscation

- Steganography
 - Concealing messages within a covertext
 - Often uses file data that can be manipulated without introducing obvious artifacts
 - Covert channels
- Data masking
 - Redacting information from fields
- Tokenization
 - Substituting data with token
 - Reversible with access to the token server
- De-identification

Review Activity: Cryptographic Solutions

- Encryption supporting confidentiality
- Disk and file encryption
- Database encryption
- Transport encryption and key exchange
- Perfect forward secrecy
- Salting and key stretching
- Blockchain
- Obfuscation

Lab Activity

Assisted Lab: Using Hashing and Salting

CompTIA Security+ Exam SY0-701

Lesson 3

Summary