Современный синтез речи

(2023)

Figure 4: The progressively end-to-end process for TTS models.

Figure 6: The evolution of neural TTS models.

Alignment

VAE/CVAE

VAE

CVAE training

CVAE inference

(b) Inference procedure

phoneme → waveform

VITS (2021)

Table 1. Comparison of evaluated MOS with 95% confidence intervals on the LJ Speech dataset.

Model	MOS (CI)
Ground Truth	4.46 (±0.06)
Tacotron 2 + HiFi-GAN	$3.77 (\pm 0.08)$
Tacotron 2 + HiFi-GAN (Fine-tuned)	$4.25~(\pm 0.07)$
Glow-TTS + HiFi-GAN	$4.14 (\pm 0.07)$
Glow-TTS + HiFi-GAN (Fine-tuned)	$4.32 (\pm 0.07)$
VITS (DDP)	$4.39 (\pm 0.06)$
VITS	4.43 (\pm 0.06)

Table 3. Comparison of evaluated MOS with 95% confidence intervals on the VCTK dataset.

Model	MOS (CI)
Ground Truth	$4.38 (\pm 0.07)$
Tacotron 2 + HiFi-GAN	$3.14 (\pm 0.09)$
Tacotron 2 + HiFi-GAN (Fine-tuned)	$3.19 (\pm 0.09)$
Glow-TTS + HiFi-GAN	$3.76 (\pm 0.07)$
Glow-TTS + HiFi-GAN (Fine-tuned)	$3.82 (\pm 0.07)$
VITS	$4.38 \ (\pm 0.06)$

VQ-VAE

NaturalSpeech (2022)

Figure 1: The overall architecture for FastSpeech. (a). The feed-forward Transformer. (b). The feed-forward Transformer block. (c). The length regulator. (d). The duration predictor. MSE loss denotes the loss between predicted and extracted duration, which only exists in the training process.

Figure 1: System overview of NaturalSpeech.

Figure 2: The designed modules in NaturalSpeech.

NaturalSpeech (2022)

Table 4: MOS and CMOS comparisons between NaturalSpeech and previous TTS systems.

System	MOS	CMOS
FastSpeech 2 [18] + HiFiGAN [17]	4.32 ± 0.15	-0.33
Glow-TTS [13] + HiFiGAN [17]	4.34 ± 0.13	-0.26
Grad-TTS [14] + HiFiGAN [17]	4.37 ± 0.13	-0.24
VITS [15]	4.43 ± 0.13	-0.20
NaturalSpeech	4.56 ± 0.13	0

 "which demonstrates no statistically significant difference from human recordings for the first time on this dataset."

https://speechresearch.github.io/naturalspeech/

VALL-E (2023)

phoneme \rightarrow discrete code \rightarrow waveform

- neural codec language model
- Pre-training 60k hours

NAR Transformer Decoder

AR Transformer Decoder

 $c_{0,1:j-1}$ $c_{1,1:j-1}$

NAR ID j

~ 1 EnCodec

alliallia

EnCodec

alliallia

x 1

Text

x 1

Text

VALL-E (2023)

Table 7: Human evaluation with 60 speakers on VCTK with 3-second enrolled recording for each.

	SMOS	CMOS (v.s. VALL-E)
YourTTS*	$3.70_{\pm 0.09}$	-0.23
VALL-E	$3.81_{\pm 0.09}$	0.00
GroundTruth	$4.29_{\pm 0.09}$	-0.04

https://valle-demo.github.io/

VALL-E X (2023)

https://vallex-demo.github.io/

Список использованной литературы

- https://arxiv.org/pdf/2106.15561.pdf
- https://arxiv.org/pdf/2106.06103.pdf
- https://arxiv.org/pdf/2205.04421.pdf
- https://arxiv.org/pdf/2301.02111.pdf