# **TOPIC 4: Efficient VSM**

#### GROUP 9



Na Gong Qian Xia Siying Liu

- 1. Data Structure
- 2. Preprocessing
- 3. Evaluation Metrics
- 4. Modeling & Results
- 5. Comparison Overview

## DATA STRUCTURE

- 1. NFCopurs: Medical text data set (English)
- 2. doc\_dump: 5371 documents
  - ID, URL, TITLE, ABSTRACT
- 3. **nfdump**: 3437 queries
  - ID, URL, TITLE, MAINTEXT, COMMENTS, TOPICS\_TAGS ...
- 4. 2-1-0.qrel \*3: 134,295 relevance judgments with three levels
  - QUERY\_ID, 0, DOC\_ID, RELEVANCE\_LEVEL
- 5. **stopword**: 543 given stopwords

- 1. Data Structure
- 2. Preprocessing
- 3. Evaluation Metrics
- 4. Modeling & Results
- 5. Comparison Overview

#### **PREPROCESSING**

- 1. Query cleaning
  - remove queries without relevance judgment
- 2. Feature Selection
- 3. Lower Case
- 4. Remove Stopwords
- 5. Tokenization
- 6. Remove punctuation
- 7. Stemming



RegexpTokenizer

PorterStemmer

5371 document + 3237 queries

- 1. Data Structure
- 2. Preprocessing
- 3. Evaluation Metrics
- 4. Modeling & Results
- 5. Comparison Overview

## **EVALUATION METRICS**

1. MAP (Mean average precision): Average of average precision over the set of queries.

MAP 
$$= \frac{1}{|Q|} \sum_{j=1}^{|Q|} \frac{1}{m_j} \sum_{k=1}^{m_j} P(R_{jk})$$

2. nDCG (Normalized discounted cumulative gain):

$$\text{nDCG}_{\text{p}} = rac{DCG_p}{IDCG_p}$$

DCG with penalty:

$$ext{DCG}_{ ext{p}} = \sum_{i=1}^p rac{rel_i}{\log_2(i+1)}$$

Alternative DCG:

$$DCG(k) = \sum_{i=1}^{k} \frac{2^{rel_i} - 1}{\log_2(i+1)}$$

- 1. Data Structure
- 2. Preprocessing
- 3. Evaluation Metrics
- 4. Modeling & Results
- 5. Comparison Overview

## **BASIC VSM**

1. 6 TFIDF Schemas (vector length: about 18000)

| TFIDF    | Document term weighting                                                                  | query term weighting                                                                     |
|----------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Schema 0 | $\frac{1 + \log f_{t,d}}{1 + \log(\max_t f_{t,d})} \cdot \log\left(\frac{N}{n_t}\right)$ | $\frac{1 + \log f_{t,d}}{1 + \log(\max_t f_{t,d})} \cdot \log\left(\frac{N}{n_t}\right)$ |
| Schema 1 | $\frac{1 + \log f_{t,d}}{1 + \log(\max_t f_{t,d})} \cdot \log\left(\frac{N}{n_t}\right)$ | $f_{t,d}$                                                                                |
| Schema 2 | $f_{t,d}.\log\left(\frac{N}{n_t}\right)$                                                 | $(0.5+0.5\frac{f_{t,d}}{max_tf_{t,d}}).\log\left(\frac{N}{n_t}\right)$                   |
| Schema 3 | $1 + \log f_{t,d}$                                                                       | $Log(1+\frac{N}{n_t})$                                                                   |
| Schema 4 | $(1 + \log f_{t,d}) \log \left(\frac{N}{n_t}\right)$                                     | $(1 + \log f_{t,d}) \log \left(\frac{N}{n_t}\right)$                                     |
| Schema 5 | $\frac{1 + \log f_{t,d}}{1 + \log(\max_t f_{t,d})} \cdot \log\left(\frac{N}{n_t}\right)$ | 0 or 1                                                                                   |

- 2. distance measurement: cosine similarity
- 3. evaluation methods: MAP and nDCG

## **BASIC VSM**

| 92<br>92 | S0    | S1    | S2    | S3   | S4    | S5   |
|----------|-------|-------|-------|------|-------|------|
| MAP      | 0. 13 | 0. 11 | 0. 11 | 0.13 | 0. 13 | 0.09 |
| nDCG1    | 0.49  | 0.46  | 0.48  | 0.49 | 0.49  | 0.43 |
| nDCG2    | 0.49  | 0.46  | 0.48  | 0.46 | 0.49  | 0.43 |
| time     | 518   | 1158  | 499   | 555  | 507   | 1092 |

- MAP & nDCG: 3237 queries + 5371 documents
- time: cosine similarity computation time for all queries
- The TFIDF schema 0 and 4 have similar performances which are better than other schemas.
- The following speed up models and all result comparisons are based on TFIDF schema 0.

- 1. Generate M random vectors

  Based on the normal distribution of each term in documents(query)

  M: 10, 100, 300, 500, 1000, 2000, 2500, 3000
- 2. Compute the new documents(query) vector based on original documents(query) TFIDF and the M random vectors
- 3. Set thresholds to hash the inner product of new documents(query) vectors
  - one global threshold for whole documents(query)
  - different thresholds for each document(query)
- 4. Similarity computation
  - cosine similarity
  - hamming similarity

Cosine similarity and Hamming similarity

• Performance comparison of cosine similarity and hamming similarity



Cosine similarity and Hamming similarity

• Time comparison of cosine similarity and hamming similarity



One global threshold and Different thresholds

• MAP comparison of one global threshold and different thresholds



One global threshold and Different thresholds

nDCG comparison of one global threshold and different thresholds



- 1. Tiered index is the an approach which splits posting list into several tiers according to term frequency value.
- 2. Posting list was split into the same length tiers.
- 3. Three variables:
  - Tiers number
  - Required percentage of query terms a document contains (p).
  - Top K value

• Influence of tiers number, K=50, p=0.06



• Influence of value p, K=50, tiers=3



• Influence of Top K value, tiers=3, p=0.06



# PRE-CLUSTERING

• Single-path clustering w/ 47 different leaders size ∈ √N & [50,5000]



Trade-off: 300 leaders, 67s Time, 0.16 MAP, 0.29 nDCG

# PRE-CLUSTERING

• K-means clustering w/ 47 different leaders size ∈ √N & [50,5000]



Trade-off: 300 leaders, 71s Time, 0.20 MAP, 0.36 nDCG

## PRE-CLUSTERING

• Single-path vs. K-means





| avg.        | Time    | MAP   | nDCG  |
|-------------|---------|-------|-------|
| Single-path | 110,03  | 0,165 | 0,296 |
| K-means     | 113,004 | 0,200 | 0,358 |
| %           | 3%      | 22%   | 21%   |

- 1. Data Structure
- 2. Reprocessing
- 3. Evaluation Metrics
- 4. Modeling & Results
- 5. Comparison Overview

#### **COMPARISON OVERVIEW**

- MAP & nDCG: 3237 queries + 5371 documents
- Time: 1 query + 5371 documents (avg. of random 200 queries)
- Basic model: TFIDF schema 0, cosines similarity
- Tiered Index:
- Pre-Clustering: K-means, 300 leaders
- Random Projection: 2000 length, different threshold, hamming

|        | Basic Model | Tiered | Clustering | Random Projection |
|--------|-------------|--------|------------|-------------------|
| MAP    | 0,13        | 0,16   | 0,20       | 0,06              |
| MAP %  | -           | 26%    | 60%        | -54%              |
| nDCG   | 0,49        | 0,46   | 0,36       | 0,35              |
| nDCG % | -           | -6%    | -27%       | -29%              |
| Time   | 0,26        | 0,03   | 0,03       | 0,09              |
| Time % | -           | -88%   | -88%       | -63%              |

# THANK YOU!

We appreciate the coaching supports you provided

**GROUP 9**