DOI: 10.34010/komputika.v8i2.2279

ISSN: 2252-9039 (print) ISSN: 2655-3198 (online)

Pembangunan Sistem Monitoring Pengelolaan Benih Tanaman Hutan Berbasis *Internet of Things* dan *Smart Energy*

Dedeng Hirawan^{1*}, Derandi Hermanda²

^{1,2)}Program Studi Teknik Informatika, Fakultas Teknik dan Ilmu Komputer, Universitas Komputer Indonesia Jl. Dipati Ukur No. 112 – 116, Bandung, Indonesia 40132

*email: dedeng@email.unikom.ac.id

ABSTRAK – Tujuan dari penelitian ini adalah membantu peneliti benih tanaman hutan dalam memantau benih pada proses perkecambahan (penyemaian). Saat ini jumlah keberhasilan dari perkecambahan kurang dari 50%, jumlah tersebut tidak sesuai dengan target awal yaitu lebih dari 65 % dari biji tanaman hutan yang disemai, sehingga perlu adanya sistem yang dapat memonitor proses perkecambahan. Metode yang digunakan adalah prototype dengan proses communication, quick plan, modelling quick design, construction of prototype dan development delivery and feedback. Berdasarkan hasil pengujian sistem yang sudah di implementasikan didapatkan, sebelum sistem diimplementasikan benih yang berkecambah sebanyak 65.75% dari 400 benih, setelah sistem diimplementasikan benih yang berkecambah sebanyak 89.75% dari 400 benih jadi ketika sistem diimplementasikan benih yang berkecambah meningkat 24%, sistem dapat menyalakan kipas menghisap udara panas di ruangan ketika suhu melebihi suhu yang di tentukan dan menyalakan water jet pump untuk melakukan penyiraman ketika kelembaban tanah mulai kering dan smart energy yang digunakan menjadi tenaga utama sistem dapat menghidupi sistem selama 24 jam tanpa ada kendala sistem padam.

Kata Kunci - Monitoring; Benih Tanaman; Smart Energy; Internet of Things; Perkecambahan.

Development of Monitoring Systems for Forest Plant Seed Based on Internet of Things and Smart Energy

ABSTRACT – The purpose of this study is to help researchers plant seed forest in monitoring the seeds on the germination process (seeding). Currently the amount of success of the germination is less than 50%, the amount is not in accordance with the initial target of more than 65% of the seeds forest plant, so there needs to be a system that can monitor the process of seeding. The method used is the prototype with the communication process, quick plan, quick design modeling, construction of the prototype and development of delivery and feedback. Based on the results of testing the system that has been implemented, it is obtained, before the system is implemented that seeds germinate as much as 65.75% of the 400 seeds, after the system is implemented the seeds germinate as much as 89.75% of the 400 seeds so when the system is implemented the germinated seeds increase by 24%, the system can turn on the fan suck hot air in the room when the temperature exceeds the specified temperature and turn on the water jet pump to do the watering when soil moisture starts to dry and the smart energy used to be the main power of the system can support the system for 24 hours without any system outages..

Keywords - Monitoring; Forest Plant Seed; Smart Energy; Internet of Things; Seeding.

1. Pendahuluan

Benih tanaman merupakan jasad hidup yang berfungsi sebagai sarana untuk reproduksi tanaman, benih merupakan hasil namanan yang juga merupakan awal kehidupan yang sangat menentukan kelangsungan generasi berikutnya [7]. Permasalahan muncul saat proses Uji Perkecambahaan/ Uji Visabilitas adalah sulitnya mengatur suhu ruangan pengujian yang panas pada siang hari dan juga proses penyiraman tanaman yang tidak teratur.

Setiap data pengujian tidak tercatat dengan baik seperti berapa suhu ruangan yang tepat untuk suatu bibit tanaman hutan berkecambah dan jenis tanah yang digunakan pada saat pengujian perkecambahan benih. Selanjutnya ketika sudah jam pulang kerja atau pun hari libur maka ruangan pengujian sudah tidak terurus sehingga proses penyiraman tidak di lakukan lagi menyebabkan pengujian terhambar dan juga dari 1000 butir benih yang tumbuh hanya sekitar 45% dari total dan jugaakses listrik ke ruangan pengujian sering terjadinya pemadaman dan tegangan listrik yang naik turun atau tidak stabil sehingga perlu *energy alternative* yang akan menjadi tenaga listrik utama di ruangan pengujian.

Berdasarkan masalah yang telah diuraikan tersebut untuk melakukan pengelolaan benih tanaman hutan adalah dengan menciptakan alat yang berperan sebagai media monitoring dan pengkontrolan ruangan pengujian.

2. METODE DAN BAHAN

Pada penelitian ini digunakan metode *prototyping* dalam proses pembangunan perangkat lunak dan perangkat keras. Hal ini dikarenakan pada pembuatan sistem, keterlibatan pengguna sangat tinggi sehingga sistem diharapkan dapat memenuhi kebutuhan pengguna dengan lebih baik [4,5]. Dimuat dalam gambar 1.

Gambar 1. Metode Prototyping

Penjelasan point metode *prototyping* adalah sebagai berikut:

1. Communication

Peneliti melakukan analisis kebutuhan sistem dengan mengumpulkan data, yaitu dengan melakukan wawancara dengan penguji Balai Perbenihan Tanaman Hutan, serta mengumpulkan data-data tambahan baik yang ada di jurnal maupun di buku.

2. Quick Plan

Peneliti pada tahap ini melanjutkan dari proses *communication*. Pada tahap ini dihasilkan data yang berhubungan dengan keinginan pengguna dalam pemabngunan sistem, yaitu sebuah sistem yang

dapat mengawasi dan mengelola perkecambahan tanaman hutan yang dapat mengurangi kegagalan perkecambahan benih tanaman hutan.

3. Modelling Quick Design

Peneliti mulai melakukan sebuah perancangan sistem sesuai dengan kebutuhan dari penguji Balai Perbenihan Tanaman Hutan (BPTH) yang dapat diperkirakan sebelum proses pengkodean. Proses modeling quick design ini dilakukan dengan merancang struktur data, arsitektur software dan unified modeling language (UML).

4. Construction of Prototype

Pada tahap ini peneliti mulai melakukan pengkodean yaitu membangun sistem sesuai dengan perencanaan pada tahap modeling quick design, melakukan pengkodean pada Raspberry Pi untuk mengatur fungsi sensor DHT 22, Soil Moisture, voltage dan ampere untuk mengambil dan menampilkan data sensor pada website, mengaktifkan relay untuk menyalakan exaust fan ketika suhu ruangan pengujian melebih batas yang sudah di tentukan dan menyalakan water jet pump ketika kelembaban tanah mulai kering, serta menyimpan data benih dan penggujian yang sudah di lakukan di Raspberry Pi. Setelah pengkodean selesai selanjutnya dilakukan pengujian terhadap sistem yang telah dibangun, tujuannya ada menemukan kesalahan-kesalahan terhadap sistem tersebut untuk kemudian bisa di perbaiki.

5. Developtment Delivery & Feedback

Tahap ini bisa dikatan final dalam pembuatan sebuah sistem. Setelah melakukan analisis, desain dan pengkodean, maka sistem yang sudah jadi akan digunakan oleh pengguna, kemudian sistem yang telah dibangun dilakukan pemeliharaan atau maintenance secara berkala.

3. HASIL DAN PEMBAHASAN

3.1. Internet of Things

Internet of Things (IOT) terdiri dari 2 pilar utama yaitu "internet" dan "Things", jadi setiap objek yang mampu terhubung ke internet akan masuk ke dalam kategori "Things" seperti mencakup seperangkat entitas yang lebbih umum seperti smartphone, sensors, manusia dan objek lainnya. Konteksnya mampu berkomunikasi dengan entitas lain, membuatnya dapat diakses kapan saja, dimana saja. Secara garis besar dengan Internet of Things (IOT) objek harus dapat diakses tanpa batasan waktu atau tempat [1,2].

D Hirawan & D Hermanda Komputika: Jurnal Sistem Komputer, Vol. 8, No. 2, Oktober 2019

Ruang Pengujian Benih Gambar 2. Analisis Arsitektur Sistem

3.2. Arsitektur Sistem

Arsitektur sistem merupakan sebuah proses untuk mendeskripsikan fisik sistem yang akan dibangun dan juga komponen-komponen pedukungnya. Berikut adalah gambaran dari arsitektur sistem yang akan dibangun dapat dilihat pada gambar 2.

Berikut ini adalah penjelasan dari gambaran arsitektur pembangunan sistem sistem pengelolaan benih tanaman hutan menggunakan *Internet of Things* (IOT) dan *smart energy*, sebagai berikut:

- 1. Aplikasi *web* akan digunakan oleh penguji, penguji dapat melihat keadaan suhu ruangan, kelembaban ruangan, kelembaban tanah bak pengujian dan ph tanah bak pengujian, penguji juga dapat melakuakn pengendalian perangkat.
- 2. Webservice digunakan sebagai mengirim data antara sensor dan halaman website.

- 3. Pengisian baterai dikontrol oleh *solar charge controller* untuk menghindari *over charge* ketika mendapatkan daya dari *solar panel*. [6]
- 4. *Regulator* 5V digunakan untuk *step down* arus 12V DC dari baterai ke 5V DC sehingga dapat memberikan daya untuk Raspberry Pi 3B.[6]
- 5. Relay 2 *channel* digunakan untuk mengaktifkan *absorbing fan* ketika suhu ruangan melebihi batas yang sudah di atur oleh penguji dan mengaktifkan *water jet pump* ketika kelembaban tanah mulai kering dari data sensor soil moisture.
- 6. Sensor suhu dan kelembaban menggunakan DHT 22, data sensor ini digunakan untuk mengukur suhu serta kelembaban udara ruangan pengujian.
- 7. Sensor kelembaban tanah, *data sensor* ini digunakan untuk mengukur tingkat kelembaban tanah bak pengujian.

Gambar 3. Alur Komunikasi Data

- 8. Data *sensor* ph tanah dan sensor tegangan dari *analog* di konversi menjadi digital menggunakan PCF8591 lalu data digunakan untuk mengukur keasaman tanah bak pengujian.
- 9. *Solar* panel sebagai *smart energy* mengubah cahaya matahari ke listrik digunakan sebagai sumber listrik utama.

3.3. Analisis Komunikasi Data

Komunikasi data merupakan suatu hal yang sangat penting dalam pembangunan sebuah aplikasi. Karena tanpa adanya komunikasi data, suatu aplikasi yang dibangun tidak akan bisa berjalan dengan semestinya. Komunikasi data yang digunakan pada sistem pengelolaan benih tanaman hutan menggunakan media internet dan *smart energy* ini adalah komunikasi antara *Raspberry Pi* dengan sensor dan modul relay dan *Raspberry Pi* dengan website menggunakan JSON [3,8]. Alur komunikasi data dapat dilihat pada gambar 3.

Berikut ini adalah penjelasan dari alur komunikasi data :

- 1. Semua sensor mengirim data ke Rasberry Pi.
- 2. Raspberry Pi mengirimkan data dari sensor ke website dengan JSON secara real-time delay time 1 detik atau secara berkala.
- 3. Penguji mengirim data user, penelitian dan benih ke *Raspberry Pi*, dan data langsung di simpan dalam bentuk log data.

4. Raspberry Pi akan memberikan trigger true pada relay channel 1 ketika kelembaban tanah sudah kering berkisar antara 10-30% kadar air di dalam tanah, ketika tanah sudah lembab maka membrikan trigger false, dan pada relay channel 2 raspberry pi akan memberikan trigger true ketika suhu ruangan melebihi batas yang sudah di tentukan oleh peneliti, ketika suhu ruangan sudah normal atau di bawah batas maka memberikan trigger false.

3.4. Use Case Diagram

Use case diagram merupakan pemodelan untuk behaviour sistem yang akan dibuat [9]. Untuk mendeskripsikan hubungan yang terjadi antar actor dengan aktivitas yang terdapat pada sistem. Use Case Diagram yang dirancang dapat dilihat pada gambar 4.

3.5. Class Diagram

Class Diagram merupakan gambaran dari struktur dan hubungan pada setiap objek-objek yang berjalan pada system. Class Diagram yang dirancang dapat dilihat pada gambar 5.

3.6. Skema Relasi

Skema relasi adalah rangkaian hubungan antara beberapa tabel pada sistem basis data. Skema relasi yang dirancang dapat dilihat pada gambar 6.

Gambar 4. Use case Diagram

Gambar 5. Class Diagram

D Hirawan & D Hermanda Komputika: Jurnal Sistem Komputer, Vol. 8, No. 2, Oktober 2019

Gambar 6. Skema relasi

3.7. Hasil Pengujian

Pengujian sistem merupakan hal terpenting yang bertujuan untuk menemukan kesalahan atau kekurangan pada sistem informasi yang diuji. Pengujian sistem dimaksud untuk mengetahui kinerja sistem informasi yang telah dibuat sesuai dengan tujuan perancangan sistem informasi. Tipe testing yang dilakukan yaitu meliputi *Testing Functionality* dan *Usability*.

3.7.1. Pengujian Black Box

Pengujian black box berfokus pada apakah perangkat lunak yang dibangun memenuhi kebutuhan yang disebutkan dalam spesifikasi [10]. Pengujian dilakukan dengan menjalankan atau mengeksekusi unit, kemudian diamati apakah hasil dari unit yang diuji tersebut apakah sesuai dengan yang diharapkan atau tidak.

Skenario pengujian perangkat lunak untuk penguji pada pembangunan sistem monitoring pengelolaan benih tanaman hutan berbasis *internet of things* dan *smart energy* dapat dilihat pada tabel 1.

Tabel 1. Skenario Pengujian Black Box

Tuber 1: Skertario i engajtan biaek box				
Kasus Uji	Detail Pengujian	Jenis Pengujian		
Login	Login penguji	Black Box		
Memulai	Memulai penelitian pengujian	Black Box		
Penelitian	benih			
Mengakhiri	Menyelesaikan penelitian	Black Box		
Penelitian	pengujian benih			
Ubah Data	Merubah data pengaturan	Black Box		
Pengaturan	waktu dan batas kelembaban			
Alat	tanah.			
Benih	Melihat data list benih	Black Box		
Tambah Data	Menambah data benih	Black Box		
Benih				
Detail Data	Melihat data detail benih	Black Box		
Benih				
Ubah Data	Merubah data benih	Black Box		
Benih				
Hapus Data	Menghapus data benih	Black Box		
Benih				
Penelitian	Melihat data list penelitian	Black Box		
Tambah Data	Menambah data penelitian	Black Box		
Penelitian				
Detail Data	Melihat data detail penelitian	Black Box		
Penelitian				
Ubah Data	Merubah data penelitian	Black Box		
Penelitian				
Hapus Data	Menghapus data penelitian	Black Box		
Penelitian				

Kasus Uji	Detail Pengujian	Jenis Pengujian	
Melihat File	Melihat file berisi data list	Black Box	
Excel Laporan	benih		
Data Benih			
Melihat File	Melihat file berisi data list	Black Box	
Excel Laporan	penelitian		
Data			
Penelitian			
Ubah Data	Mengubah data akun	Black Box	
Akun	pengguna		
Ubah	Mengubah data password	Black Box	
Password	akun pengguna		

3.7.2. Kesimpulan Pengujian Black Box

Berdasarkan hasil pengujian *Black Box* yang telah dilkaukan maka dapat disimpulkan bahwa secara fungsional seluruh proses pada sistem sebagian telah berjalan sesuai dengan yang di harapkan.

3.8. Pengujian Komponen Perangkat Keras

Pengujian komponen perangkat keras bertujuan utnuk mengetahui karakteristik dari setiap komponen yang digunakan dan utnuk mengetahui apakah tiap komponen dalam kondisi baik atau tidak, sehingga dapat memaksimalkan fungsi dari setiap komponen agar selanjutnya dapat digunakan pada sistem yang dibuat, tampilan dapat dilihat pada gambar 7.

3.8.1. Pengujian Sensor pH Tanah

Sensor pH Tanah merupakan sensor pendeteksi tingkat keasaman (*acid*) atau kebasaan (*alkali*) tanah, hasil pengujian dapat dilihat pada tabel 2.

1 40 61 2. 110	ion i crigajian c	
Tanggal	Jam	pН
2019-07-12	08:17:36	7
2019-07-12	08:20:37	7
2019-07-12	08:23:38	7
2019-07-12	08:26:38	7
2019-07-12	08:29:39	7
2019-07-12	08:32:40	7
2019-07-12	08:35:43	7
2019-07-12	08:38:43	7
2019-07-12	08:41:44	7
2019-07-12	08:44:45	7
2019-07-12	08:47:45	7
2019-07-12	08:50:46	7
2019-07-12	08:53:47	7
2019-07-12	08:56:47	7
2019-07-12	08:59:48	7
2019-07-12	09:02:49	7
2019-07-12	09:05:49	7
2019-07-12	09:08:53	7
2019-07-12	09:11:53	7
2019-07-12	08:17:36	7

Gambar 7. Tampilan Alat

3.8.2. Pengujian Sensor DHT 22

Sensor DHT 22 merupakan sensor yang digunakan untuk mengukur suhu dan kelembaban udara, pengujian nilai akurasi sensor dht 22 dengan membandingkan dengan *thermo-hygrometer* digital di ruangan pengujian dapat dilihat pada tabel 3.

Tabel 3. Hasil Pengujian Sensor DHT 22

Tanggal	Jam	Jam Suhu (°C)	Kelembaban	
	Jani	Sullu (C)	(%)	
2019-07-12	08:17:36	25	39	
2019-07-12	08:20:37	25	38	
2019-07-12	08:23:38	25	38	
2019-07-12	08:26:38	25	36	
2019-07-12	08:29:39	25	35	
2019-07-12	08:32:40	12	35	
2019-07-12	08:35:43	25	36	
2019-07-12	08:38:43	25	34	
2019-07-12	08:41:44	25	35	
2019-07-12	08:44:45	25	33	
2019-07-13	08:01:27	25	34	
2019-07-13	08:04:27	25	34	
2019-07-13	08:07:28	25	33	
2019-07-13	08:10:29	25	33	
2019-07-13	08:13:32	25	33	
2019-07-13	08:16:32	25	34	
2019-07-13	08:19:33	25	31	
2019-07-13	08:22:34	25	32	
2019-07-13	08:25:34	25	29	
2019-07-13	08:28:35	25	29	
Rata -	Rata	24	30	

Tabel 4. Hasil	Donasiion	Concor Vo	lombobon	Tanah
1 avel 4. 1 lasii	T engunan	Sensor Ne	rembaban	l Lanan

Jam

08:02:31

08:05:31

08:08:32

08:11:32

08:14:33

08:17:36

08:20:37

08:23:38

08:26:38

08:29:36

11:55:00

11:58:02

12:01:04

12:04:06

12:07:08

12:10:10

12:13:12

12:16:14

12:19:16

12:22:17

Tanggal

2019-07-12

2019-07-12

2019-07-12

2019-07-12

2019-07-12

2019-07-12

2019-07-12

2019-07-12

2019-07-12

2019-07-12

2019-07-12

2019-07-12

2019-07-12

2019-07-12

2019-07-12

2019-07-12

2019-07-12

2019-07-12

2019-07-12

2019-07-12

Sensor Kelembaban Tanah		Ta	Tabel 5. Hasil Pengujian Penggunaan Baterai				
Nilai Kelembaban Tanah (%)	Keadaan Tanah	Tang	gal Waktu	Persenta Daya Bate (%)	Togangan		
43	Kering	17/07	/19 23.30	100	12.09		
43	Kering	17/07,	/19 23.30	100	12.09		
43	Kering	18/07	/19 00.14	72.07	12.03		
43	Kering	18/07	/19 00.26	68.04	12.05		
43	Kering	18/07	/19 00.38	68.08	12.07		
43	Kering	18/07	/19 00.50	68.08	12.06		
43	Kering	18/07	/19 01.02	68.04	12.06		
43	Kering	18/07	/19 01.14	68.04	12.07		
43	Kering	18/07	/19 01.26	68.08	12.05		
43	Kering	18/07	/19 01.38	68.08	12.06		
89	Basah	18/07	/19 01.50	68.08	12.06		
89	Basah	18/07	/19 02.02	68.08	12.06		
89	Basah	18/07	/19 02.14	68.04	12.06		
89	Basah	18/07	/19 02.26	68.04	12.05		
89	Basah	18/07	/19 02.38	68.08	12.04		
89	Basah	18/07	/19 02.50	68.04	12.05		
89	Basah	18/07	/19 03.02	68.08	12.06		
89	Basah	18/07	/19 03.14	68.04	12.04		
89	Basah	18/07	/19 03.26	68.08	12.06		

18/07/19

Basah

03.38

3.8.3. Pengujian Sensor Kelembaban Tanah

Pengujian sensor kelembaban tanah dilakukan dengan sensor di simpan pada tanah kering dan di ambil nilai yang terbaca pada saat kering lalu di simpan pada tanah yang basah dan di ambil nilai yang terbaca pada saat basah, hasil pengujian dapat dilihat pada tabel 4.

3.8.4. Pengujian Penggunaan Baterai

Pengujian relay dilakukan dengan menghubungkan fan 12V dan water jet pump, secara umum relay merupakan komponen elektromekanikal berfungsi sebagai sakelar dengan yang memanfaatkan prinsip kerja elektromagnetika untuk menggerakan kontak saklar sehingga menghantarkan listrik yang bertegangan lebih tinggi AC maupun DC hanya dengan harus listrik yang kecil, hasil pengujian dapat dilihat pada tabel 5. [2]

3.8.5. Pengujian Pengelolaan Benih

Pengujian pengelolaan benih dilakukan dengan cara membandingkan data pengujian sebelum sistem terpasang dengan data setelah sistem terpasang. Dari hasil pengujian dapat diambil kesimpulan, sebelum sistem dipasang pengujian berlangsung 14 hari dengan persentase benih berkecambah 65.75% dan sesudah sistem dipasang pengujian berlangsung 11 hari dengan persentase benih berkecambah 89.75%, perbadingan persentase benih berkecambah sebelum sistem dipasang dan sesudah dipasang sebesar 24%. Sesudah sistem dipasang pengujian lebih cepat 3 hari sehingga dengan sistem dipasang berkecambah meningkat sebesar 24% dan pengujian lebih cepat 3 hari. Hal ini dapat dipengaruhi oleh keadaan suhu yang sudah diatur berdasarkan nilai dari sensor DHT 22, siklus penyiraman bibit berdasarkan nilai dari sensor kelembaban tanah dan kondisi pH tanah yang sesuai dengan kebutuhan bibit. Foto pengujian dapat dilihat pada gambar 8 dan 9.

68.08

12.06

Gambar 8. Sebelum Benih Tumbuh

Gambar 9. Benih Tumbuh

4. KESIMPULAN

Berdasarkan hasil pengujian perangkat lunak dan perangkat keras yang telah dibuat sebagai sistem monitoring pengelolaan benih tanaman hutan berbasis IOT dan *smart energy* maka diperoleh kesimpulan sebagai berikut: (1) Sistem yang telah dibangun dapat meningkatkan perkecambahan benih di atas rata-rata hingga 24%, (2) Sistem dapat menyalakan kipas menghisap udara panas di ruangan ketika suhu melebih suhu yang di tentukan dan menyalakan water jet pump untuk melakukan penyiraman ketika kelembaban tanah mulai kering, (3) Energy Matahari (*solar energy*) yang diubah menjadi tenaga listrik dengan solar panel yang menjadi tenaga utama sistem dapat menghidupi sistem selama 24 jam tanpa ada kendala sistem padam.

DAFTAR PUSTAKA

- [1] R. Buyya and A. V. Dastjerdi, Internet of Things: principles and paradigms. Amsterdam: Morgan Kaufmann, 2016.
- [2] H. Lund, P. A. Østergaard, D. Connolly, and B. V. Mathiesen, "Smart energy and smart energy systems," Energy, vol. 137, no. May, pp. 556– 565, 2017.
- [3] Raspberry Pi Foundation, "Raspberry Pi 3 Model B Technical Specifications," RaspberryPi 3 Model B, p. 8, 2016.
- [4] R.S. Pressman, "Prototype", dalam Software Engineering A Practitioner's Aproach, Thomas Chasson, 2001, pp. 31-32.
- [5] D. Hirawan and P. Sidik, "Prototype Emission Testing Tools for L3 Category Vehicle," IOP Conference Series: Materials Science and Engineering, vol. 407, p. 012099, 2018.

- [6] G. Subagja, D. Hirawan, "Purwarupa Sistem Monitoring Keamanan Toko Emas Family S Berbasis Internet of Things".
- [7] D.J. Sudrajat, "Tinjauan Standar Mutu Bibit Tanaman Hutan dan Penerapannya di Indonesia," Tekno Hutan Tanam., vol. 3, no. 3, pp. 85–97, 2010.
- [8] T. Marrs. "JSON at Work: Practical Data Integration for the Web". O'Reilly. 2017.
- [9] Munawar, "Analisis dan Peranccangan Sistem Berorientasi Objek dengan UML,". Informatika. Bandung. 2018.
- [10] S. Desikan and G. Ramesh, "Software testing: Principles and practice". Bangalore, India: Dorling Kindersley (India), 2006.