Final Year Physics Project - Interim Report

Benjamin Brown

Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

Introduction

Aims and Objectives

The aim of this project is to study the notion of folded hyperkähler manifolds, i.e. a 4-dimensional manifold which is hyperkähler away from some folding hypersurface, on which the hyperkähler structure degenerates and the metric is singular [1, 2]. The canonical example of a folded hyperkähler metric is a form of the Gibbons-Hawking ansatz on $\mathbb{R}^4 = \{(\tau, x, y, z)\}$ with coordinates [?]

$$h = \frac{1}{z}(d\tau + \psi)^2 + z(dx^2 + dy^2 + dz^2), \qquad d\psi = dx \wedge dy.$$
 (1)

h is clearly undefined at z=0 which defines the fold hypersurface \mathcal{S} , has signature (++++) for z>0, and signature (---) for z<0. The Kähler 2-forms are given by

$$\theta^1 = (d\tau + \psi) \wedge dx - zdy \wedge dz, \tag{2a}$$

$$\theta^2 = (d\tau + \psi) \wedge dy - zdz \wedge dx, \tag{2b}$$

$$\theta^3 = (d\tau + \psi) \wedge dz - zdx \wedge dy. \tag{2c}$$

Under the pullback of the involution $i: z \mapsto -z$, we have

$$i^*h = -h, i^*\theta^1 = \theta^1, i^*\theta^2 = \theta^2, i^*\theta^3 = -\theta^3.$$
 (3)

We note that the 2-forms $\theta^1, \theta^2, \theta^3$ are smooth at z = 0, whilst h is undefined. Pulling back these 2-forms to \mathcal{S} , we have

$$\mathcal{S}^* \theta^1 = (d\tau + \psi) \wedge dx, \qquad \mathcal{S}^* \theta^2 = (d\tau + \psi) \wedge dy, \qquad \mathcal{S}^* \theta^3 = 0. \tag{4}$$

If we write $\eta = d\tau + \psi$, then we note that $d\eta = dx \wedge dy$, we have that

$$\eta \wedge d\eta = d\tau \wedge dx \wedge dy \neq 0, \tag{5}$$

i.e. it defines a volume form on S and hence η defines a contact form for S.

Definition 1 ([2, ?]). A folded hyperkähler structure consists of a smooth 4-manifold \mathcal{M} , a smoothly imbedded hypersurface $\mathcal{S} \subset \mathcal{M}$, three smooth, closed 2-forms θ^i (i = 1, 2, 3) on \mathcal{M} , and a smooth diffeomorphism $i : \mathcal{M} \to \mathcal{M}$ such that

- 1. \mathcal{S} divides \mathcal{M} into two disjoint connected components: $\mathcal{M} \setminus \mathcal{S} \cong \mathcal{M}^+ \cup \mathcal{M}^-$,
- 2. the 2-forms θ^i define a hyperkähler structure on \mathcal{M}^{\pm} with hyperkähler metric h^{\pm} , where h^+ has signature (++++) and h^- has signature (---),
- 3. on the fold hypersurface $\mathcal{S} \subset \mathcal{M}$, one has $\mathcal{S}^*\theta^1 \neq 0$, $\mathcal{S}^*\theta^2 \neq 0$, $\mathcal{S}^*\theta^3 = 0$, and the distribution $\mathcal{D} \subset T\mathcal{S}$ given by $\mathcal{D} := \ker \mathcal{S}^*\theta^1 \oplus \ker \mathcal{S}^*\theta^2$ is a contact distribution,
- 4. i is an involution that fixes S and maps \mathcal{M}^{\pm} to \mathcal{M}^{\mp} such that

$$i^*h^{\pm} = -h^{\mp}, \qquad i^*\theta^1 = \theta^1, \qquad i^*\theta^2 = \theta^2, \qquad i^*\theta^3 = -\theta^3.$$
 (6)

Definition 2. Let S be a manifold of odd dimension 2n + 1. A contact structure is a maximally non-integrable hyperplane field $\xi = \ker \theta \subset TS$, i.e. the defining differential 1-form θ is required to satisfy

$$\theta \wedge (d\theta)^n \neq 0, \tag{7}$$

so it is nowhere vanishing. In other words, $\theta \wedge (d\theta)^n$ defines a volume form on \mathcal{S} . Remark 3. An integrable hyperplane field means that for any point $p \in \mathcal{M}$ one can find a codimension 1 submanifold \mathcal{S} whose tangent spaces coincide with the hyperplane field, i.e. such that $T_q\mathcal{S} = \xi_q$ for all $q \in \mathcal{S}$.

Week 9 Lecture

Given a 3-dimensional manifold Y, we have three symplectic forms θ^a defined on the product manifold $\mathbb{R} \times Y$ by

$$\theta^1 = f(dt \wedge \epsilon_1 + \epsilon_2 \wedge \epsilon_2), \tag{8a}$$

$$\theta^2 = f(dt \wedge \epsilon_2 + \epsilon_3 \wedge \epsilon_1), \tag{8b}$$

$$\theta^3 = f(dt \wedge \epsilon_3 + \epsilon_1 \wedge \epsilon_2), \tag{8c}$$

where f is a real, non-zero valued function of $\mathbb{R} \times Y$. Let $\omega = f^2 dt \wedge dx \wedge dy \wedge dz$ be the volume form on $\mathbb{R} \times Y$, so that

$$\theta^1 \wedge \theta^1 = \theta^2 \wedge \theta^2 = \theta^3 \wedge \theta^3 = 2\omega. \tag{9}$$

Recall the 't Hooft eta tensors $\bar{\eta}^a_{\mu\nu}~(a=1,2,3)$ defined in Ref. [3] by

$$\bar{\eta}_{\mu\nu}^{a} = \begin{cases} \epsilon_{a\mu\nu}, & \text{if } \mu, \nu = 1, 2, 3\\ \delta_{a\nu}, & \text{if } \mu = 0\\ -\delta_{a\mu}, & \text{if } \nu = 0\\ 0, & \text{otherwise,} \end{cases}$$

and which obey the following identities,

$$\bar{\eta}^a_{\mu\nu} = \epsilon_{0a\mu\nu} + \delta_{0\mu}\delta_{a\nu} - \delta_{a\mu}\delta_{0\nu},\tag{10a}$$

$$\bar{\eta}_{\mu\nu}^a = -\bar{\eta}_{\nu\mu}^a,\tag{10b}$$

$$\bar{\eta}^a_{\mu\nu}\bar{\eta}^b_{\mu\sigma} = \delta_{ab}\delta_{\nu\sigma} + \epsilon_{abc}\bar{\eta}^c_{\nu\sigma} \tag{10c}$$

so that three almost complex structures J^a on $\mathbb{R} \times Y$ can be given by

$$J^{a}(V_{\mu}) = \bar{\eta}^{a}_{\nu\mu}(V_{\nu}). \tag{11}$$

Indeed, we observe through an explicit calculation that

$$\begin{split} J^a J^b(V_\mu) &= \bar{\eta}^a_{\nu\mu} \bar{\eta}^b_{\sigma\nu}(V_\sigma) \\ &= -\bar{\eta}^a_{\nu\mu} \bar{\eta}^b_{\nu\sigma}(V_\sigma) \\ &= -(\delta_{ab}\delta_{\mu\sigma} + \epsilon_{abc} \bar{\eta}^c_{\mu\sigma})(V_\sigma) \\ &= -\delta_{ab}(V_\mu) + \epsilon_{abc} \bar{\eta}^c_{\sigma\mu}(V_\sigma) \\ &= (-\delta_{ab} + \epsilon_{abc} J^c)(V_\mu), \end{split}$$

so the endomorphisms defined in (11) obey the quaternionic multiplication relations, therefore providing three almost complex structures on $\mathbb{R} \times Y$. For $\mathbb{R} \times Y$ to be a hyperkähler manifold, we still require a metric that is compatible with each of the J^a . To this end, we can define the metric g to be given by $g_{\mu\nu} = \delta_{\mu\nu}\omega(V_0, V_1, V_2, V_3)$. Then the three symplectic forms given in 8a are compatible with the metric g, since

Claim 4. For each symplectic form θ^a , (a = 1, 2, 3), induced by the volume-preserving, linearly-independent vector fields V_{μ} , $(\mu = 0, 1, 2, 3)$ on the product manifold $\mathbb{R} \times Y$, we may write

$$\theta^a = \frac{1}{2} \bar{\eta}^a_{\mu\nu} \imath_{V_\mu} \imath_{V_\nu} \omega, \tag{12}$$

where $\omega = f dt \wedge \epsilon_1 \wedge \epsilon_2 \wedge \epsilon_3$ is the volume form on $\mathbb{R} \times Y$, and $\imath_{V_{\mu}}$ is interior multiplication (equivalently contraction) by the vector V_{μ} .

Proof. By using the first identity in 10a and the anticommutativity of the interior multiplication $i_{V_{\mu}}i_{V_{\nu}} = -i_{V_{\nu}}i_{V_{\mu}}$, it follows immediately that

$$\begin{split} \frac{1}{2}\bar{\eta}^a_{\mu\nu}\imath_{V_\mu}\imath_{V_\nu}\omega &= \frac{1}{2}(\epsilon_{0a\mu\nu} + \delta_{0\mu}\delta_{a\nu} - \delta_{a\mu}\delta_{0\nu})\imath_{V_\mu}\imath_{V_\nu}\omega \\ &= f\left(\frac{1}{2}\epsilon_{0a\mu\nu}\imath_{V_\mu}\imath_{V_\nu} + \imath_{V_0}\imath_{V_a}\right)dt \wedge \epsilon_1 \wedge \epsilon_2 \wedge \epsilon_3 \\ &= \begin{cases} f(dt \wedge \epsilon_1 + \epsilon_2 \wedge \epsilon_3), & \text{if } a = 1 \\ f(dt \wedge \epsilon_2 + \epsilon_3 \wedge \epsilon_1), & \text{if } a = 2 \\ f(dt \wedge \epsilon_3 + \epsilon_1 \wedge \epsilon_2), & \text{if } a = 3 \end{cases} \\ &= \theta^a. \end{split}$$

Corollary 5 (Half-flat condition). The vector fields V_{μ} given above satisfy the half-flat

 $condition^1$

$$\frac{1}{2}\bar{\eta}_{\mu\nu}^a[V_\mu, V_\nu] = 0, \tag{13}$$

where [,] is the Lie bracket for vector fields.

Proof. Since the symplectic forms θ^a are closed, we have that

$$d\theta^{a} = d\left(\frac{1}{2}\bar{\eta}_{\mu\nu}^{a}\imath_{V_{\mu}}\imath_{V_{\nu}}\omega\right)$$
$$= \frac{1}{2}\bar{\eta}_{\mu\nu}^{a}d(\imath_{V_{\mu}}\imath_{V_{\nu}}\omega)$$
$$= \frac{1}{2}\bar{\eta}_{\mu\nu}^{a}\imath_{[V_{\mu},V_{\nu}]}\omega$$
$$= \imath_{\frac{1}{2}\bar{\eta}_{\mu\nu}^{a}[V_{\mu},V_{\nu}]}\omega = 0$$

where we have used the volume-preserving property of the V_{μ} , along with the identity

$$d(\imath_{V_{\mu}}\imath_{V_{\nu}}\omega) = \imath_{[V_{\mu},V_{\nu}]}\omega + \imath_{V_{\nu}}\mathcal{L}_{V_{\mu}}\omega - \imath_{V_{\mu}}\mathcal{L}_{V_{\nu}}\omega + \imath_{V_{\mu}}\imath_{V_{\nu}}d\omega. \tag{14}$$

From the non-degeneracy of the volume form ω , it follows that

$$\frac{1}{2}\bar{\eta}^a_{\mu\nu}[V_{\mu}, V_{\nu}] = 0.$$

Definition 6. A 4-metric is said to be *half-flat* if its Riemann tensor is proportional to its dual.

Remark 7. A half-flat 4-metric induces a hyperkähler structure on the manifold, since half-flatness corresponds to the self-dual Weyl tensor vanishing, which is equivalent to the holonomy group of the manifold being equal to the compact symplectic group Sp(1), which characterises hyperkähler structures by Berger's classification.

¹A 4-metric is said to be *half-flat* if its Riemann tensor is proportional to its dual. Then, by the virtue of the Bianchi identity, a half-flat metric is necessarily Ricci flat [4].

We summarise the above results following [5].

Proposition 8. Let $\Sigma^{(n)}$ be an n-dimensional manifold with corresponding volume form $\omega^{(n)}$, and consider the gauge Lie algebra $\mathfrak{sdiff}(\Sigma^{(n)})$ consisting of volume-preserving vector fields on $\Sigma^{(n)}$. The connections on Euclidean space \mathbb{R}^n may be written explicitly as 1-forms valued in $\mathfrak{sdiff}(\Sigma^{(n)})$ as $A = A_{\mu}dx^{\mu}$ ($\mu = 0, 1, 2, 3$). Then, if on $\Sigma^{(n)} \times \mathbb{R}^{4-n}$ we have that:

- 1. The A_{μ} are \mathbb{R}^n -invariant with respect to the coordinates $(x^0,...,x^{n-1})$,
- 2. The covariant derivatives of the connection $D_{\mu} = \frac{\partial}{\partial x^{\mu}} + A_{\mu}$ satisfy the half-flat condition, namely

$$\frac{1}{2}\bar{\eta}^{a}_{\mu\nu}[D_{\mu},D_{\nu}] = 0,$$

3. The A_{μ} $(0 \le \mu \le n-1)$ are linearly independent at each point of $\Sigma^{(n)}$.

Then four vector fields V_{μ} may be defined on $\Sigma^{(n)} \times \mathbb{R}^{4-n}$ as follows:

$$V_{\mu} = \begin{cases} A_{\mu}, & \text{for } 0 \le \mu \le n - 1, \\ D_{\mu}, & \text{for } n \le \mu \le 3. \end{cases}$$

These vector fields preserve the volume form $\omega = \omega^{(n)} \wedge ... \wedge dx^3$ and satisfy the half-flat condition I.B.. Hence, by the virtue of Remark 7, they induce a hyperkähler structure on $\Sigma^{(n)} \times \mathbb{R}^{4-n}$.

Example 9 (Gibbons-Hawking Metric). Suppose n=1 and that $\Sigma^{(1)}=\mathbb{R}$, i.e. the underlying space-time is $\mathbb{R}^4=\{(\tau,x,y,z)\}$ with volume form $\omega=d\tau\wedge dx\wedge dy\wedge dz$. Let the four vector fields V_{μ} be given by

$$V_0 = \phi \frac{\partial}{\partial \tau},\tag{15}$$

$$V_i = \frac{\partial}{\partial x^i} + \psi_i \frac{\partial}{\partial \tau},\tag{16}$$

where ϕ and ψ_i (i = 1, 2, 3) are smooth functions. For the V_{μ} to be volume-preserving, ϕ and ψ_i must be independent of τ . Moreover for the half-flat condition to be satisfied, we

require that

$$\frac{1}{2}\bar{\eta}_{\mu\nu}^{a}[V_{\mu},V_{\nu}] = 0 \implies \begin{cases}
[V_{0},V_{1}] + [V_{2},V_{3}] = 0 \\
[V_{0},V_{2}] + [V_{3},V_{1}] = 0 \implies \begin{cases}
\frac{\partial\phi}{\partial x} = \frac{\partial\psi_{3}}{\partial y} - \frac{\partial\psi_{2}}{\partial z}, \\
\frac{\partial\phi}{\partial y} = \frac{\partial\psi_{1}}{\partial z} - \frac{\partial\psi_{3}}{\partial x}, \\
\frac{\partial\phi}{\partial z} = \frac{\partial\psi_{2}}{\partial z} - \frac{\partial\psi_{3}}{\partial y}.
\end{cases}$$
(17)

Setting $\underline{\psi} \equiv (\psi_1, \psi_2, \psi_3)$, or $\psi \equiv \Sigma_{i=1}^3 \psi_i dx^i$, then 17 is equivalent to the condition that

$$\underline{\nabla}\phi = \underline{\nabla} \times \underline{\psi} \quad i.e. \text{ that } \quad \underset{3}{*} d\phi = d\psi, \tag{18}$$

where $*_3$ is the Hodge duality operator acting on $\mathbb{R}^3 = \{(x, y, z)\}$. Equation 18 is known as the *Bogomolny equations* or the *monopole equations* [], and implies that ϕ is harmonic. This set up corresponds to the Gibbons-Hawking ansatz used to create the Gibbons-Hawking multi-centre hyperkähler metric

$$h = \phi^{-1}(d\tau + \psi)^2 + \phi(dx^2 + dy^2 + dz^2)$$
(19)

with a triholomorphic Killing vector $\frac{\partial}{\partial \tau}$, since the coefficients of h are independent of τ [6].

Remark 10. One may recover the canonical folded hyperkähler metric 1 from Example I.B. by choosing $\phi = z$, so that $*_3d\phi = *_3dz = dx \land dy = d\psi$.

Example 11. Suppose that n=3, i.e. we consider the manifold $\Sigma^{(3)} \times \mathbb{R} = \{(x,y,z,\tau)\}$ with the $\mathfrak{sdiff}(\Sigma^{(3)})$ -valued 1-forms A_{μ} independent of x,y,z. Then I.B. reduces to Nahm's equations

$$\frac{\partial V_a}{\partial \tau} + \frac{1}{2} \epsilon_{abc} [V_b, V_c] = 0. \tag{20}$$

We can then use the V_a to define three complex symplectic structures on the product manifold $\Sigma^{(3)} \times \mathbb{R}$ following [7]:

Proposition 12. Let α be the volume form on $\Sigma^{(3)}$. Then given three time-dependent vector fields V_a (a=1,2,3) on $\Sigma^{(3)}$ which satisfy Nahm's equations 20 and are volume preserving on $\Sigma^{(3)}$, i.e. $\mathcal{L}_{V_a}\alpha=0$, we can construct three complex symplectic structures on the product

manifold $\Sigma^{(3)} \times \mathbb{R}$.

Proof. For brevity, write $\mathcal{M} = \Sigma^{(3)} \times \mathbb{R}$. For each time τ , let $\epsilon_1, \epsilon_2, \epsilon_3$ be the basis of 1-forms dual to the V_a . Then, for some non-vanishing real function f on $\Sigma^{(3)}$ that $\alpha = f\epsilon_1 \wedge \epsilon_2 \wedge \epsilon_3$ for the volume form on $\Sigma^{(3)}$. Define two 2-forms on \mathcal{M} by

$$\theta^1 = f(d\tau \wedge \epsilon_1 + \epsilon_2 \wedge \epsilon_3), \tag{21a}$$

$$\theta^2 = f(d\tau \wedge \epsilon_2 + \epsilon_3 \wedge \epsilon_1). \tag{21b}$$

Then $\theta_1^2 = \theta_2^2 = f dt \wedge \alpha$, and $\theta_1 \wedge \theta_2 = \theta_2 \wedge \theta_1 = 0$ and so if θ_1, θ_2 are closed on \mathcal{M} , then we have a complex symplectic structure on \mathcal{M} . To this end, we apply the identity 14 to $d(\imath_{V_2}\imath_{V_3}\alpha)$ to yield

$$d(\imath_{V_2}\imath_{V_3}\alpha) = \imath_{[V_2,V_3]}\alpha + \imath_{V_2}\mathcal{L}_{V_3}\alpha - \imath_{V_3}\mathcal{L}_{V_2}\alpha + \imath_{V_2}\imath_{V_3}d\alpha$$

= $\imath_{[V_2,V_3]}\alpha$,

since the vector fields are volume-preserving. Furthermore, we have that

$$i_{V_3}\alpha = f\epsilon_1 \wedge e_2, \qquad i_{V_2}i_{V_3}\alpha = f\epsilon_1, \qquad i_{V_1}\alpha = f\epsilon_2 \wedge \epsilon_3,$$

$$d(i_{V_1}\alpha) = \mathcal{L}_{V_1}\alpha - i_{V_1}d\alpha = 0,$$

and so $i_{V_1}\alpha$ is a closed 2-form. Temporarily let us write \underline{d} for the exterior derivative on forms over \mathcal{M} , and d for the exterior derivative of forms over $\Sigma^{(3)}$ with time regarded as a parameter. In this notation,

$$\underline{d}\psi = d\psi + dt \wedge \frac{\partial \psi}{\partial \tau},$$

and so

$$\underline{d}\theta_{1} = d\theta_{1} + d\tau \wedge \frac{\partial \theta_{1}}{\partial \tau}$$

$$= d(f\epsilon_{2} \wedge \epsilon_{3}) + d\tau \wedge \left[\frac{\partial f}{\partial \tau} d\tau \wedge \epsilon_{1} + \frac{\partial}{\partial \tau} (f\epsilon_{2} \wedge e_{3}) \right]$$

$$= d(\imath_{V_{1}}\alpha) + d\tau \wedge \left[d(f\epsilon_{1}) + \frac{\partial}{\partial \tau} (f\epsilon_{2} \wedge e_{3}) \right]$$

$$= 0 + d\tau \wedge \left[d(\imath_{V_{2}}\imath_{V_{3}}\alpha) + \frac{\partial}{\partial \tau} (\imath_{V_{1}}\alpha) \right],$$

where we have used the fact that $i_{V_1}\alpha$ is closed on $\Sigma^{(3)}$. Therefore θ_1 is closed on \mathcal{M} if and only if

$$d(\imath_{V_2}\imath_{V_3}\alpha) + \frac{\partial}{\partial \tau}(\imath_{V_1}\alpha) = \imath_{[V_2,V_3]}\alpha + \imath_{\frac{\partial V_1}{\partial \tau}}\alpha = 0,$$

since α is time-independent. From the non-degeneracy of α , we conclude that θ_1 is closed on \mathcal{M} if and only if $\frac{\partial V_1}{\partial \tau} + [V_2, V_3] = 0$, and the same argument for θ_2 proves that θ_2 is closed on \mathcal{M} if and only if $\frac{\partial V_2}{\partial \tau} + [V_3, V_1] = 0$. Hence we have a complex symplectic structure on \mathcal{M} .

Remark 13. If we define a third 2-form on \mathcal{M} by $\theta_3 = f(d\tau \wedge \epsilon_3 + \epsilon_1 \wedge \epsilon_2)$, then θ_3 is closed on \mathcal{M} if and only if $\frac{\partial V_3}{\partial \tau} + [V_1, V_2] = 0$. Therefore Nahm's equations 20 define three closed 2-forms on \mathcal{M} . By choosing the three almost complex structures given by 11 and Riemannian metric $g(V_{\mu}, V_{\nu}) = \delta_{\mu\nu}\omega(V_0, V_1, V_2, V_3)$, then the 2-forms are compatible with g and are actually Kähler 2-forms and g is a Hermitian metric - hence we have an almost hyperkähler structure on \mathcal{M} . By the virtue of Lemma 6.8 in [8], we actually have a hyperkähler structure on the manifold \mathcal{M} .

Example 14 (Real Heaven Metric). Now we choose n=2 i.e. consider $\Sigma^{(2)} \times \mathbb{R}^2 = \{(\tau, x, y, z)\}$ and a smooth function $\psi = \psi(x, y, z)$ independent of time τ . If we then

choose the vector fields

$$V_0 = e^{\frac{\psi}{2}} \left(\partial_z \psi \cos(\tau/2) \frac{\partial}{\partial \tau} + \sin(\tau/2) \frac{\partial}{\partial z} \right), \tag{22a}$$

$$V_1 = e^{\frac{\psi}{2}} \left(-\partial_z \psi \sin(\tau/2) \frac{\partial}{\partial \tau} + \cos(\tau/2) \frac{\partial}{\partial z} \right), \tag{22b}$$

$$V_2 = \frac{\partial}{\partial x} + \partial_y \psi \frac{\partial}{\partial \tau},\tag{22c}$$

$$V_3 = \frac{\partial}{\partial y} - \partial_x \psi \frac{\partial}{\partial \tau},\tag{22d}$$

then for the V_{μ} to satisfy the half-flat condition I.B., the function ψ must satisfy the 3-dimensional continuum Toda equation² [9]

$$\frac{\partial^2}{\partial^2 z}(e^{\psi}) + \frac{\partial^2 \psi}{\partial^2 y} + \frac{\partial^2 \psi}{\partial^2 x} = 0.$$
 (23)

This solution induces a hyperkähler metric with the Killing vector field $\frac{\partial}{\partial \tau}$, but is not triholomorphic. In the literature, this solution is known as the real heaven solution [10].

 $^{^2\}text{Equivalently}$ called the $SU(\infty)$ Toda equation in some literature.

Theorem 15 (Biquard, [2]). Given the real analytic data (S, β_2, β_3) , where S is a 3-manifold and β_2 and β_3 are closed 2-forms on S, such that their kernels form a contact distribution, then there exists in a small neighbourhood $(-\epsilon, \epsilon) \times S$ a unique folded hyperkähler metric such that $i^*\omega_2 = \beta_2$ and $i^*\omega_3 = \beta_3$. This metric satisfies the parity given in 3.

Proof. A solution of the system of Nahm's equations for the vectors V_1, V_2, V_3 on \mathcal{S} , depending solely on τ , and preserve a fixed volume form α on \mathcal{S} given by the system 20 gives rise to a hyperkähler metric.

Given (S, β_2, β_3) we take the basis of 1-forms $(\theta^1, \theta^2, \theta^3)$ which satisfy $d\theta^1 = \theta^2 \wedge \theta^3$, $\beta_2 = -\theta^1 \wedge \theta^3$, and $\beta_3 = \theta^1 \wedge \theta^2$, and (X_1, X_2, X_3) as the basis of vector fields dual to the 1-forms. Then the conditions $d\beta_2 = d\beta_3 = 0$ correspond to the fact that X_2 and X_3 both preserve the volume form α . We therefore solve the system of equations with the initial conditions

$$V_1(0) = 0, V_2(0) = X_2, V_3(0) = X_3.$$
 (24)

For the given real analytic data, the theorem of Cauchy-Kowalevski produces a unique solution defined for a small enough τ .

We observe that $(-V_1(-\tau), V_2(-\tau), V_2(-\tau))$ is also a solution with the same initial conditions, and so V_1 is even whereas V_2, V_3 are odd, which implies the invariance under the involution 3 for the solution. Moreover, since $X_1 = -[X_2, X_3]$ we have that

$$V_1 = \tau X_1 + \mathcal{O}(\tau^3). \tag{25}$$

Hence we deduce that, for the behaviour of the metric (odd, positive for $\tau > 0$, negative for $\tau < 0$):

$$h = \tau (d\tau^2 + (\theta^2)^2 + (\theta^3)^2) + \tau^{-1}(\theta^1)^2 + \mathcal{O}(\tau^3)G(d\tau, \tau^{-1}\theta^1, \theta^2, \theta^3), \tag{26}$$

which gives us the three Kähler forms. Here, $G((e^i)) = \sum G_{ij}e^ie^j$ is a symmetric 2-tensor with smooth coefficient G_{ij} .

Reciprocally, given a real analytic hyperkähler metric with the behaviour 26, we calculate its Laplacian

$$\Delta = -\tau^{-1}(\partial_{\tau}^2 + \tau^2 X_1^2 + X_2^2 + X_3^2) + \dots$$
 (27)

It then results immediately that we can resolve $\Delta y = 0$ in a neighbourhood of S with $y = \tau + \mathcal{O}(\tau^2)$. This solution is unique, and lets us reconstruct the unique vector fields V_a .

Background Theory

Work Done in Term 1

The results section is where you'll make a summary of your work done during Term 1. It should occupy no more than one page.

Aim for Term 2

The Plan of work to be done in Term 2 should occupy no more than one page. Again, it may be convenient to present it as a series of bullet points or as a Table. Provide estimated timescales for what you will do and try to be realistic.

References

- [1] N. Hitchin, "Higgs bundles and diffeomorphism groups," ArXiv e-prints, Jan. 2015.
- [2] O. Biquard, "Métriques hyperkähleriennes pliées," ArXiv e-prints, Mar. 2015.
- [3] G. 't Hooft, "Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle," *Phys. Rev.*, vol. D14, pp. 3432–3450, 1976.
- [4] A. Ashtekar, T. Jacobson, and L. Smolin, "A new characterization of half-flat solutions to einstein's equation," *Comm. Math. Phys.*, vol. 115, no. 4, pp. 631–648, 1988.
- [5] Y. Hashimoto, Y. Yasui, S. Miyagi, and T. Ootsuka, "Applications of the Ashtekar gravity to four dimensional hyperkähler geometry and Yang-Mills Instantons," *Jour*nal of Mathematical Physics, vol. 38, pp. 5833–5839, Nov. 1997.
- [6] G. Gibbons and S. Hawking, "Gravitational multi-instantons," *Physics Letters B*, vol. 78, no. 4, pp. 430 432, 1978.
- [7] S. K. Donaldson, "Complex cobordism, Ashtekar's Equations and diffeomorphisms," in *Symplectic Topology* (D. Salamon, ed.), London Math. Soc., 1992.

- [8] N. J. Hitchin, "The self-duality equations on a riemann surface," *Proceedings of the London Mathematical Society*, vol. s3-55, no. 1, pp. 59–126, 1987.
- [9] T. Ootsuka, S. Miyagi, Y. Yasui, and S. Zeze, "Anti-self-dual Maxwell solutions on hyper-Kähler manifold and N = 2 supersymmetric Ashtekar gravity," Classical and Quantum Gravity, vol. 16, pp. 1305–1312, Apr. 1999.
- [10] J. F. Plebaski, "Some solutions of complex einstein equations," *Journal of Mathematical Physics*, vol. 16, no. 12, 1975.