Partial Gromov-Wasserstein Learning for Partial Graph Matching

Weijie Liu, Chao Zhang, Jiahao Xie, Zebang Shen, Hui Qian, Nenggan Zheng

2021.3.5

Outlines

- 1 Introduction
- 2 Preliminaries
- 3 PPGM(Partial OT for Graph Matching)
- 4 Heterogeneous Graph Matching
- **5** Experiments

- 1 Introduction
- 2 Preliminaries
- 3 PPGM(Partial OT for Graph Matching)
- 4 Heterogeneous Graph Matching
- 6 Experiments

Graph Matching (Alignment)

- Graph matching finds the correspondence of nodes across two graphs.
- Numerous existing methods match every node in one graph to one node in the other graph.
- But two graphs usually overlap partially in many real-world applications.

Full Matching Problem

Graph matching aims to find a matching matrix **T** between two graphs \mathcal{G}^s and \mathcal{G}^t .

Assuming \mathcal{G}^s has fewer nodes than \mathcal{G}^t , **T** is the solution to the following optimization formulation

$$\min_{\mathbf{T} \in \mathcal{P}^f} \left[\sum_{ii'} k_{ii'} T_{ii'} + \sum_{ii'jj'} d_{ii'jj'} T_{ii'} T_{jj'} \right] \tag{1}$$

subject to the feasible domain

$$\mathcal{P}^f = \left\{ \mathbf{T} \mid \mathbf{T} \in \{0, 1\}^{m \times n}, \mathbf{T} = \mathbf{1}, \mathbf{T}^\top \mathbf{1} \le \mathbf{1} \right\}$$
 (2)

 $\mathbf{T} = [T_{ii'}]: T_{ii'} = 1$ if node i in \mathcal{G}^s maps to node i' in \mathcal{G}^t , and $T_{ii'} = 0$ otherwise. $k_{ii'}$: value of the cost function for the unary assignment $i \to i'$. $d_{ii'j'j'}$: cost for the pairwise assignment $(i, j) \to (i', j')$.

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ 壹 めのの

Partial Matching

$$\min_{\mathbf{T} \in \mathcal{P}^p} \left[\sum_{ii'} k_{ii'} \, T_{ii'} + \sum_{ii'jj'} d_{ii'jj'} \, T_{ii'} \, T_{jj'} \right] \tag{3}$$

subject to the relaxed feasible domain

$$\mathcal{P}^p = \left\{ \mathbf{T} \mid \mathbf{T} \in \{0, 1\}^{m \times n}, \mathbf{T} \mathbf{1} \le \mathbf{1}, \mathbf{T}^\top \mathbf{1} \le \mathbf{1} \right\}$$
(4)

Limitations:

- limit the choice of cost functions;
- can lead to extreme cases(degraded matching T = 0 or still full matching with T1 = 1).

Solution: A novel partial graph matching framework based on partial OT.

- Introduction
- 2 Preliminaries
- 3 PPGM(Partial OT for Graph Matching)
- 4 Heterogeneous Graph Matching
- 6 Experiments

Optimal Transport

Let $X = \{\mathbf{x}_i\}_{i=1}^m$ and $\mathcal{Y} = \{\mathbf{y}_j\}_{j=1}^n$ be two sample spaces.

We assume two discrete probability distributions over X and $\mathcal Y$ respectively, i.e.

$$\mathbf{p} = \sum_{i=1}^{m} p_{i} \delta\left(\mathbf{x}_{i}\right) \text{ and } \mathbf{q} = \sum_{j=1}^{n} q_{j} \delta\left(\mathbf{y}_{j}\right), \text{ s.t. } \mathbf{p} \in \Sigma^{m}, \mathbf{q} \in \Sigma^{n}$$

The p-Wasserstein distance between \mathbf{p} and \mathbf{q} :

$$W_p^p(\mathbf{p}, \mathbf{q}) = \min_{\mathbf{T} \in \Pi(\mathbf{p}, \mathbf{q})} \langle \mathbf{K}^p, \mathbf{T} \rangle$$
 (5)

where cost matrix $\mathbf{K}^p = \begin{bmatrix} K_{ij}^p \end{bmatrix}$ and transport matrix $\mathbf{T} = \begin{bmatrix} T_{ij} \end{bmatrix}$. Gromov-Wasserstein (GW) distance:

$$GW_p^p(\mathbf{p}, \mathbf{q}) = \min_{\mathbf{T} \in \Pi(\mathbf{p}, \mathbf{q})} \sum_{i, j=1}^m \sum_{i', i'=1}^n D_{ii'jj'}^p T_{ii'} T_{jj'}$$
(6)

- 4 □ ト 4 圖 ト 4 ≣ ト 4 ≣ ト 9 Q (^)

Weijie Liu, Chao Zhang, Jiahao Xie, Partial Gromov-Wasserstein Learning

Partial OT

The partial OT problem focuses on transporting only a fraction $0 \le b \le 1$ of the mass with minimum transportation costs. So the set of admissible couplings is

$$\Pi^{b}(\mathbf{p}, \mathbf{q}) = \left\{ \mathbf{T} \mid \mathbf{T} \in \mathbb{R}_{+}^{m \times n}, \mathbf{T} 1 \le \mathbf{p}, \mathbf{T}^{\top} \mathbf{1} \le \mathbf{q}, \mathbf{1}^{\top} \mathbf{T} \mathbf{1} = b \right\}.$$
 (7)

Partial Wasserstein distance and partial GW distance:

$$PW_p^p(\mathbf{p}, \mathbf{q}) = \min_{\mathbf{T} \in \Pi^b(\mathbf{p}, \mathbf{q})} \langle \mathbf{K}^p, \mathbf{T} \rangle,$$

$$PGW_p^p(\mathbf{p}, \mathbf{q}) = \min_{\mathbf{T} \in \Pi^b(\mathbf{p}, \mathbf{q})} \sum_{i,j=1}^m \sum_{i', i'=1}^n D_{ii'jj'}^p T_{ii'} T_{jj'}$$

Weijie Liu, Chao Zhang, Jiahao Xie, Partial Gromov-Wasserstein Learning

Notations for Graph

We consider undirected and attributed graphs as $G = (\mathcal{V}, \mathcal{E}, \mathbf{X}, \mathbf{W}, f)$.

- \bullet $\mathcal V$ and $\mathcal E$ are the sets of vertices and edges of the graph, respectively.
- Node features are summarized in a $|\mathcal{V}| \times D$ matrix **X**.
- $\mathbf{W} \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$ assigns each observed edge $(u_i, u_j) \in \mathcal{E}$ for $u_i, u_j \in \mathcal{V}$ a weight w_{ij} .
- $f: \mathbf{X} \to \mathbf{Z}$ associates each vertex u_i with some representation vector \mathbf{z}_i .
- Cost matrix $\mathbf{C} = [c_{ij}] \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$ (Each c_{ij} characterizing the dissimilarity between vertices i and j.)

Given a source graph \mathcal{G}^s and a target graph \mathcal{G}^t ($|\mathcal{V}^s| \leq |\mathcal{V}^t|$), we assign two distributions $\mu^s = \begin{bmatrix} \mu_i^s \end{bmatrix}$ and $\mu^t = \begin{bmatrix} \mu_i^t \end{bmatrix}$ to the two graphs, where

$$\mu_i^z = \frac{\sum_j w_{ij}^z}{\sum_{ij} w_{ij}^z}, for \quad z = s, t.$$
(8)

GW Distance for Graph Matching

The GW distance between \mathcal{G}^s and \mathcal{G}^t :

$$GW(\boldsymbol{\mu}^{s}, \boldsymbol{\mu}^{t}) = \min_{\mathbf{T} \in \Pi(\boldsymbol{\mu}^{s}, \boldsymbol{\mu}^{t})} \sum_{i, j, i', j'} \ell\left(c_{ij}^{s}, c_{i'j'}^{t}\right) T_{ii'} T_{jj'}$$

$$= \min_{\mathbf{T} \in \Pi(\boldsymbol{\mu}^{s}, \boldsymbol{\mu}^{t})} \left\langle \mathbf{L}\left(\mathbf{C}^{s}, \mathbf{C}^{t}, \mathbf{T}\right), \mathbf{T}\right\rangle$$
(9)

- $\ell\left(c_{ij}^{s}, c_{i'j}^{t}\right)$ measures the distance between two scalars c_{ij}^{s} and $c_{i'j}^{t}$.
- $\mathbf{L}\left(\mathbf{C}^{s}, \mathbf{C}^{t}, \mathbf{T}\right) = \left[l_{jj'}\right] \in \mathbb{R}^{|\mathcal{V}^{s}| \times |\mathcal{V}^{t}|}$
- $\bullet \ l_{jj'} = \sum_{i,i'} \ell \left(c^s_{ij}, c^t_{i'j'} \right) T_{ii'}.$

The optimal transport map indicates the correspondence of vertices across the two graphs.

- 4 □ ト 4 圖 ト 4 ≣ ト 4 ≣ ト 9 Q (^)

Heterogeneous Graphs

A heterogeneous graph contains multiple types of nodes and edges.

Neural networks like LSTM can generate node embeddings.

$$\max_{f} \sum_{u \in \mathcal{V}} \log \mathbb{P} \left(\mathcal{N}_{u} \mid f(u) \right) \tag{10}$$

 \mathcal{N}_u : neighborhood of vertices u.

 $f: \mathcal{V} \to \mathbb{R}^d$: the neural network to be trained.

| □ → ← □ → ← □ → ↑ Q (~)

- 1 Introduction
- 2 Preliminaries
- 3 PPGM(Partial OT for Graph Matching)
- 4 Heterogeneous Graph Matching
- 5 Experiments

Proposed Model

We simultaneously learn

- the transport map T(indicating the correspondence between graphs) and
- the node embeddings \mathbf{Z}^s and \mathbf{Z}^t that are parameterized by $\boldsymbol{\theta}^s$ and $\boldsymbol{\theta}^t$ respectively.

$$\min_{\mathbf{T}, \boldsymbol{\theta}^{s}, \boldsymbol{\theta}^{t}} \underbrace{\left\langle \mathbf{L}\left(\mathbf{C}^{s}\left(\boldsymbol{\theta}^{s}\right), \mathbf{C}^{t}\left(\boldsymbol{\theta}^{t}\right), \mathbf{T}\right), \mathbf{T}\right\rangle}_{\text{Gromov-Wasserstein discrepancy}} + \underbrace{\alpha\left\langle \mathbf{K}\left(\mathbf{Z}^{s}\left(\boldsymbol{\theta}^{s}\right), \mathbf{Z}^{t}\left(\boldsymbol{\theta}^{t}\right)\right), \mathbf{T}\right\rangle}_{\text{Wasserstein discrepancy}} + \underbrace{\alpha_{1}R\left(\mathbf{Z}^{s}\left(\boldsymbol{\theta}^{s}\right), \mathbf{Z}^{t}\left(\boldsymbol{\theta}^{t}\right)\right)}_{\text{prior information}}.$$
(11)

subject to $\mathbf{T} \in \Pi^b(\boldsymbol{\mu}^s, \boldsymbol{\mu}^t)$, where

$$\mathbf{C}^{z}(\boldsymbol{\theta}^{z}) = (1 - \alpha)\mathbf{G}^{z} + \alpha \mathbf{K}(\mathbf{Z}^{z}(\boldsymbol{\theta}^{z}), \mathbf{Z}^{z}(\boldsymbol{\theta}^{z}))$$
(12)

$$\begin{aligned} \mathbf{G}^{z} &= \left[g\left(w_{ij}^{z}\right) \right] \in \mathbb{R}^{|V^{z}| \times |V^{z}|}, \\ \mathbf{K}\left(\mathbf{Z}^{z}\left(\boldsymbol{\theta}^{z}\right), \mathbf{Z}^{z}\left(\boldsymbol{\theta}^{z}\right)\right) &= \left[k\left(\mathbf{z}_{i}\left(\boldsymbol{\theta}^{z}\right), \mathbf{z}_{j}\left(\boldsymbol{\theta}^{z}\right)\right) \right] \in \mathbb{R}^{|V^{z}| \times |V^{z}||}. \end{aligned}$$

Weijie Liu, Chao Zhang, Jiahao Xie, 'Partial Gromov-Wasserstein Learning

Learning Optimal Transport

Given θ_m^s and θ_m^t , we solve the following sub-problem

$$\min_{\mathbf{T}} \left\langle \mathbf{L} \left(\mathbf{C}^{s} \left(\boldsymbol{\theta}_{m}^{s} \right), \mathbf{C}^{t} \left(\boldsymbol{\theta}_{m}^{t} \right), \mathbf{T} \right) + \alpha \mathbf{K} \left(\mathbf{Z}^{s} \left(\boldsymbol{\theta}_{m}^{s} \right), \mathbf{Z}^{t} \left(\boldsymbol{\theta}_{m}^{t} \right) \right), \mathbf{T} \right\rangle \tag{13}$$

subject to $\mathbf{T} \in \Pi^b \left(\boldsymbol{\mu}^s, \boldsymbol{\mu}^t \right)$.

Proximal Point Method to Learn OT

In the n-th iteration, we update **T** by solving

$$\min_{\mathbf{T} \in \Pi^{b}(\boldsymbol{\mu}^{s}, \boldsymbol{\mu}^{t})} A_{n}(\mathbf{T}) := \left\langle \mathbf{L}\left(\mathbf{C}^{s}\left(\boldsymbol{\theta}_{m}^{s}\right), \mathbf{C}^{t}\left(\boldsymbol{\theta}_{m}^{t}\right), \mathbf{T}\right) + \alpha \mathbf{K}\left(\mathbf{Z}^{s}\left(\boldsymbol{\theta}_{m}^{s}\right), \mathbf{Z}^{t}\left(\boldsymbol{\theta}_{m}^{t}\right)\right), \mathbf{T}\right\rangle + \gamma \mathrm{KL}\left(\mathbf{T}||\mathbf{T}_{n}\right)$$

$$(14)$$

which is solved via projected gradient descent

$$\mathbf{T}_{l+1,n} = \operatorname{Proj}_{\mathbf{T} \in \Pi^b(\mu^s, \mu^t)}^{\mathrm{KL}} \left(\mathbf{T}_{l,n} \odot e^{-\tau \nabla A_n(\mathbf{T}_{l,n})} \right)$$
 (15)

where the projection according to the KL divergence onto a convex set C is defined as $\operatorname{Proj}_{\mathbf{T} \in C}^{\mathrm{KL}}(\mathbf{A}) = \operatorname{argmin}_{\mathbf{T}' \in C} \operatorname{KL}(\mathbf{T}' || \mathbf{A})$.

Complexity for Learning OT

- $\mathbf{L}\left(\mathbf{C}^{s}, \mathbf{C}^{t}, \mathbf{T}\right)$: $O\left(V^{3}\right)$, where $V = \max\left\{\left|V^{s}\right|, \left|V^{t}\right|\right\}$
- $\mathbf{K}(\mathbf{Z}^s(\boldsymbol{\theta}^s), \mathbf{Z}^t(\boldsymbol{\theta}^t))$: $O(V^2d)$, where d is the dimension of embeddings
- Total cost: $O(V^2d + NV^3)$.

Updating Embeddings

Let $\ell(\cdot, \cdot)$ be an element-wise loss function. Then $R\left(\mathbf{Z}^s\left(\boldsymbol{\theta}^s\right), \mathbf{Z}^t\left(\boldsymbol{\theta}^t\right)\right)$ for homogeneous graphs is given by

$$\sum_{z=s,t} \ell\left(\mathbf{K}\left(\mathbf{Z}^{z}\left(\boldsymbol{\theta}^{z}\right),\mathbf{Z}^{z}\left(\boldsymbol{\theta}^{z}\right)\right),\mathbf{G}^{k}\right) + \underbrace{\ell\left(\mathbf{K}\left(\mathbf{Z}^{s}\left(\boldsymbol{\theta}^{s}\right),\mathbf{Z}^{t}\left(\boldsymbol{\theta}^{t}\right)\right),\mathbf{G}^{st}\right)}_{\text{optional}}.$$

 $\mathbf{G}^{st} \in \mathbb{R}^{|V^s| \times |V^t|}$: ground truth correspondences across \mathbf{G}^s and \mathbf{G}^t . Given the learned transport plan $\hat{\mathbf{T}}_m$, we update the embeddings as follows

$$\begin{aligned} & \min_{\boldsymbol{\theta}^{s},\boldsymbol{\theta}^{t}} \left\langle \mathbf{L}\left(\mathbf{C}^{s}\left(\boldsymbol{\theta}^{s}\right),\mathbf{C}^{t}\left(\boldsymbol{\theta}^{t}\right),\hat{\mathbf{T}}_{m}\right),\hat{\mathbf{T}}_{m}\right\rangle \\ &+\alpha \left\langle \mathbf{K}\left(\mathbf{Z}^{s}\left(\boldsymbol{\theta}^{s}\right),\mathbf{Z}^{t}\left(\boldsymbol{\theta}^{t}\right)\right),\hat{\mathbf{T}}_{m}\right\rangle +\alpha_{1}R\left(\mathbf{Z}^{s}\left(\boldsymbol{\theta}^{s}\right),\mathbf{Z}^{t}\left(\boldsymbol{\theta}^{t}\right)\right) \end{aligned}$$

which can be solved effectively by SGD.

PPGM

Algorithm 1 Partial optimal transport-based Partial Graph Matching (PPGM)

```
1: Input: \alpha_1, total rounds M, graphs \mathcal{G}^s and \mathcal{G}^t, total transport mass b.
 2: Output: Correspondence set C.
 3: Initialize \theta^s and \theta^t randomly, \hat{\mathbf{T}}_0 = \boldsymbol{\mu}^s \boldsymbol{\mu}^{t\top}.
 4: for m = 0, ..., M-1 do
 5:
       \alpha = \frac{m}{M}
        Calculate \hat{\mathbf{T}}_{m+1} by solving (8).
         Update embedding via solving (14) or (15)
          Store the embedding
 9: end for
10: \hat{\mathbf{T}} = \hat{\mathbf{T}}_M
11: \tilde{\mathbf{T}} = [\hat{\mathbf{T}}, \mathbf{1} - \hat{\mathbf{T}}\mathbf{1}]
12: Initialize correspondence set C = \emptyset
13: for u_i \in \mathcal{V}^s do
14: j = \arg \max_{i} T_{ii}.
15: if j \neq (|\mathcal{V}^t| + 1) then
               \mathcal{C} = \mathcal{C} \cup \{(u_i, v_i)\}
16:
          end if
17.
18: end for
```

- Introduction
- 2 Preliminaries
- 3 PPGM(Partial OT for Graph Matching)
- 4 Heterogeneous Graph Matching
- 5 Experiments

Heterogeneous Network Embedding

- 3 parts to obtain the embeddings $\{f(u; \theta^z) \mid u \in \mathcal{V}^z, z = s, t\}$:
 - sampling heterogeneous neighbours: Random Walk with Restart(RWR) strategy;
 - 2 encoding contents: multilayer perceptron MLP-r;
 - aggregating heterogeneous neighbours: Bi-LSTM and attention mechanism.

Increasing Inter-type Separability

$$R\left(\mathbf{Z}^{s}\left(\boldsymbol{\theta}^{s}\right), \mathbf{Z}^{t}\left(\boldsymbol{\theta}^{t}\right)\right) = \sum_{z=s,t} \left(-\log \mathbb{P}\left(\mathcal{N}_{u}^{z} \mid f(u; \boldsymbol{\theta}^{z})\right) + \zeta \sum_{u \in \mathcal{V}^{z}} \left(r_{u} - h^{z}\left(\mathbf{z}\left(\boldsymbol{\theta}^{z}\right)\right)\right)^{2}\right)$$

$$(16)$$

Given the optimal transport $\hat{\mathbf{T}}_m$, we update the embeddings by solving

$$\begin{aligned} \min_{\boldsymbol{\theta}^{s}, \boldsymbol{\theta}^{t}, \boldsymbol{\beta}^{s}, \boldsymbol{\beta}^{t}} \left\langle \mathbf{L} \left(\mathbf{C}^{s} \left(\boldsymbol{\theta}^{s} \right), \mathbf{C}^{t} \left(\boldsymbol{\theta}^{t} \right), \hat{\mathbf{T}}_{m} \right), \hat{\mathbf{T}}_{m} \right\rangle + \alpha \left\langle \mathbf{K} \left(\mathbf{Z}^{s} \left(\boldsymbol{\theta}^{s} \right), \mathbf{Z}^{t} \left(\boldsymbol{\theta}^{t} \right) \right), \hat{\mathbf{T}}_{m} \right\rangle \\ + \alpha_{1} \sum_{z=s,t} \left(-\log \mathbb{P} \left(\mathcal{N}_{u}^{z} \mid f(u; \boldsymbol{\theta}^{z}) \right) \right. \\ \left. + \zeta \sum_{u \in \mathcal{U}^{z}} \left(r_{u} - h^{z} \left(\mathbf{z} \left(\boldsymbol{\theta}^{z} \right) \right) \right)^{2} \right) \end{aligned}$$

where r_u is the type of u.

- ◀ □ ▶ ◀ 圖 ▶ ∢ 重 ▶ → 重 → 夕久 ♡

Comparison between PPGW(b=1) and GWL

(b) Alignment of ours

(c) Embeddings of GWL

(d) Embeddings of ours

- PPGW successfully aligns all nodes while GWL only aligns two pairs of nodes correctly.
- The distances between embedding vectors directly indicate the node correspondence. In GWL, embedding vectors of different types are in the same region and cannot be distinguished, which worsens the alignment.

- 1 Introduction
- 2 Preliminaries
- 3 PPGM(Partial OT for Graph Matching)
- 4 Heterogeneous Graph Matching
- 5 Experiments

Setting

- $\ell(\cdot, \cdot)$: square loss
- $g(w_{ij}) = \frac{1}{1+w_{ij}}$

•
$$k(\mathbf{z}_i, \mathbf{z}_j) = 1 - \exp\left(-\delta\left(1 - \frac{\mathbf{z}_z^{\mathsf{T}} \mathbf{z}_j}{\|\mathbf{z}_i\|\|\mathbf{z}_j\|}\right)\right)$$

$$\begin{aligned} & \operatorname{recall} \ = \ \frac{\#\{ \ \operatorname{correct \ matching} \ \}}{\#\{ \ \operatorname{ground \ truth \ matching} \ \}} \\ & \operatorname{precision} \ = \ \frac{\#\{ \ \operatorname{correct \ matching} \ \}}{\#\{ \ \operatorname{total \ predicted \ matching} \ \}}, \end{aligned}$$

$$F1 = 2 \frac{\text{recall } \cdot \text{ precision}}{\text{recall } + \text{ precision}}.$$

Homogeneous Synthetic Datasets

ρ	0.7			0.5			0.3		
	recall	precision	F1	recall	precision	F1	recall	precision	F1
SuperGlue	$.40 \pm .10$.36 ± .12	$.38 \pm .11$	$.40 \pm .10$	$.33 \pm .08$	$.36 \pm .09$.23 ± .01	$.19 \pm .01$.21 ± .01
ZAC	$.69 \pm .03$	$.62 \pm .01$	$.65 \pm .02$	$.35 \pm .07$	$.30 \pm .08$	$.32 \pm .07$	$.20 \pm .02$	$.17 \pm .02$	$.19 \pm .02$
BB-GM	$.25 \pm .03$	$.20 \pm .03$	$.23 \pm .03$	$.22 \pm .04$	$.16 \pm .03$	$.18 \pm .03$	$.19 \pm .03$	$.12 \pm .01$	$.14 \pm .01$
PPGM	$.83 \pm .02$	$.73\pm.01$	$.78\pm.02$	$.46 \pm .02$	$.42\pm.01$	$.44 \pm .01$	$.38 \pm .02$	$.35\pm.03$	$.36 \pm .02$

Table 1: The performance of PPGM and state-of-the-art methods on K-NN graph datasets with varying overlap ratio ρ .

ρ	0.7			0.5			0.3		
	recall	precision	F1	recall	precision	F1	recall	precision	F1
SuperGlue	$.34 \pm .06$	$.31 \pm .05$	$.32 \pm .05$.29 ± .03	$.25 \pm .04$	$.27 \pm .04$.26 ± .02	$.19 \pm .01$.22 ± .01
ZAC	$.37 \pm .03$	$.34 \pm .04$	$.35 \pm .04$	$.34 \pm .01$	$.30 \pm .01$	$.32 \pm .01$	$.24 \pm .06$	$.21 \pm .06$	$.23 \pm .06$
BB-GM	$.31 \pm .07$	$.26 \pm .06$	$.28 \pm .06$	$.25 \pm .03$	$.19 \pm .02$	$.21 \pm .03$	$.18 \pm .01$	$.12 \pm .01$	$.14 \pm .01$
PPGM	$.64 \pm .09$	$.54\pm.08$	$.58\pm.08$	$.55\pm.06$	$.43\pm.06$	$.48\pm.06$	$.48 \pm .06$	$.35\pm .05$	$.40\pm.05$

Table 2: The performance of PPGM and state-of-the-art methods on BA graph datasets with varying overlap ratio ρ .

Heterogeneous Real-world Graphs

Data	Node	Edge		
	# author: 286	# author-paper: 618		
Source Graph	# paper: 286	# paper-paper: 133		
	# venue: 18	# paper-venue: 286		
	# author: 286	# author-paper: 618		
Target Graph	# paper: 286	# paper-paper: 123		
	# venue: 18	# paper-venue: 286		

Table 3: Datasets used in the heterogeneous graph matching experiment.

method	recall	precision	F1
SuperGlue	$.019 \pm .005$	$.026 \pm .008$	$.022 \pm .006$
ZAC	$.006 \pm .001$	$.005 \pm .001$	$.005 \pm .001$
BB-GM	$.001 \pm .001$	$.005 \pm .005$	$.002 \pm .002$
PPGM	$.030 \pm .007$	$.058\pm.011$	$.039 \pm .006$

Table 4: The performance of PPGM and state-of-the-art methods on academic social networks.