MULTI-PHYSICS APPROACHES FOR MODELING CIVIL SYSTEMS

MODELING SOCIAL ASPECTS FOR A WATER SUPPLY SYSTEM

ROBERT EGEL | ASSIGNMENT 3

THE ENVIRONMENT: NYAMASHEKE - RWANDA

THE SYSTEM

Image reference: ingenieure-ohne-grenzen.org

Q_in = Inflow rate
Q_out = Outflow rate

SOCIAL ASPECTS

- EVERY PERSON IS RANDOMLY ASSIGNED A BOTTLE AND DRINKING HABIT
- FILL LEVEL OF EACH BOTTLE IS MONITORED
 CONTINUALLY
- IF FILL LEVEL FALLS BELOW THRESHOLD,
 PEOPLE LINE UP TO GET NEW WATER
- IF FILL LEVEL REACHES ZERO, PEOPLE GET UNSATISFIED WITH SYSTEM
- SOCIAL NORMS (EGOISM VS. ALTRUISM)

HIGH PERFORMANCE CRITERIA

Objective	Key indicator	Unit	Extent
provide enough water for each individual within school time	satisfaction rate	1	≥ 90%
provide healthy water	bacteria concentration	num/m³	< 25 * 10-4
provide a pleasant drinking temperature	temperature	°C	< 17

COMPARISON TO ASSIGNMENT 1

SYSTEM BEHAVIOR

SYSTEM BEHAVIOR

PARAMETER OPTIMIZATION (OFAT)

