Time series

* As the name suggests, the Time series deals with the data that is Releated to time

eg's:

- * stock market price
- * Daily weather Data
- * weekly sales

Before, we need to know what actually Time series data is used to predict.

For that, we need to understand two types of data for predictions:

to the top of a source

- 1) Interpolation.
- 2) Exterpolation.

Interpolation:

* In interpolation, New Data will be near to best Fit Line only.

Extrapolation:

-> Training Data → New Data

- New Data

* In Extrapolation, New Data is the one which won't be near.

* i.e, we've to predict post or future outputs also.

components of Time series:

There were 4 components of Time series, they are:

- i) Trend
- 2) Season
- 3) cycle
- 4) Noise

time series data is performing.

* If increasing consequently, then it's upward Trend.

- * If decreasing, then it's Downward Trend.
- * If not changing it's value, then Hoxizontal Trend.

Season:

It represents how a Data has performed at each Time Interval.

<u>eg's</u>:

- * sales per week.
- * share price for every hour.
- * profits of net every Day.

cycle:

It's about how a data has performed at a certain long period of Time.

Pasty's 5 year Ruling.

Noise: Deviation in the continous Trend (very high, unnormal) due to some sensations.

<u>eg's</u>:

- * Hindenburg Report.
- * ukraine/Russia war.
- * Elon musk stating Tesla accepts Bitcoin.

Moving Average:

By using Moving Average, we can draw a smoothening Line to understand the patterns.

Types of moving Averages:

- 1) simple Moving Average.
- 2) comulative moving Average.
- 3) Exponential Moving Average.

Simple Moving Average:

Here, we'll use a window size, and then uses the average of that windows to use for moving average line.

For eg Let's window size = 3

c1(Day's) c2(Data) c3 (simple Moving Average)

D) I NAN

D2 5 NAN

D3 10 10+5+1/3

D4 12 12+10+5/3

05 14 14+12+10/3

cumulative moving Average: Here, the cumulative average for each column is used to smooth the Data. ci (Day's) cz (Data) c3 (cumulative) - per line son to / isto DI 10+15/2 02 15 **D3** 10+15+20/3 20 04 10+15+20+30/21 30 05 10+15+20+30+50/5 50 06 10+15+20+30+50+100/6 100 D7 90 10+15+20+30+50+100+90/7

The bird John Ma District the Exposition of

. The Missel British with bottom brown se

Exponential moving Average:

- * Here Recent data will have more data weightage than the old data
- * i.e, old will have less weightage and new will have more weightage.

Stationary and non stationary:

A time series is said to be stationary when moving average and variance are constant overtime

eg: Flat / Hoxizontal Trend

The Time series is non stationary when moving average and variance are not constant overtime.

eg: upward Trend, Downward Trend, etc...

* we can convert Non stationary Time series to stationary using some operations like → Difference -> Log → Root, etc... ACF and PACF: Partial Auto Auto corelection corelection Function Function 1 year but no De son son &

continue of the world of the continue of the state of

* ACF is used to find the correlecation between Time series data and lag of it.

Time	Data	lagi	lag 2	lag 3	
ωı	9	NA	MA	NA	
W2	8	9	NA	NA	
ω3.	7	8	q	NA	
WH	VÍ	7	8	3.09.3	
ωS	14	11	7	8	
W C	5	14	11	7	
ω7	6	S	14	n de de	
	9 4	y ₄₋₁	y ₍₋₂	y _{t-3}	

* with this we can find ACF (4, 4,-1),

(4, 4-2) etc... and can apply coxelections.

* As the name suggests, in PACF we'll use partial lags only, i.e we'll skip some.

Finally, we'll use year & subs to Find correlections

year	subs		
2	-46		
4	+19		
6	+3		