Index

Note: Page numbers with "f" denote figures; "t" tables; "b" boxes.

Α	column vector, 212
Apse line rotation	direction cosine matrix, 204
angular momentum, 325	inverse transformation, 205–206
orbit intersection, 322–323, 322f	orthogonal matrix, 205
point of intersection, 323	rotation of, 207–209, 208f, 209f
radial velocity, 325	six symmetric Euler sequences, 210
trigonometric identity, 323, 326	transpose matrix, 204
Astronomical data, 721	unit vectors, 202
Averaging method, orbital perturbations	unprimed unit vectors, 203
angular momentum, 688	yaw, pitch and roll sequence, 213–214, 214f
eccentricity, 689	Cowell's method, 653, 654f
inclination, 692	CW equations. See Clohessy–Wiltshire (CW) equations
mean motion, 687	· · · · · · · · · · · · · · · · · · ·
perigee, 692–695, 694f	D
time-averaged variation, 688	_
true anomaly, 690–691	Dual-spin spacecraft, 157b–159b, 587f, 591f
true unomary, 676 671	angular momentum, 560
В	despun platform, 561
	dual-spin axisymmetric configuration, 559, 559f
Bac–cab rule, 9, 9b–10b	"energy sink" procedure, 559, 562
Barker's equation, 163	oblate spinner, 558
Bi-elliptic Hohmann transfer, 299–300, 308–312, 309f	OSO-I, 559
•	TACSAT I, 559
C	total rotational kinetic energy, 560
Chase maneuvers, 328–332	total transverse moment of inertia, 560
Chasles' theorem, 459	-
Circular orbits, 147, 147f	E
earth's gravitational parameter, 82	Earth's oblateness
geostationary equatorial orbit, 83, 86f	definition, 219
inertial angular velocity, 83	Molniya telecommunications satellites, 223-227, 223f
low earth orbit, 82	node regression, 220-221, 221f
period of, 81	perigee advance, 222–223
space shuttle main engines, 82	second zonal hormonics, 219-220, 220t
space shuttle orbiters, 82	zonal variation, 219-220
specific energy, 81–82	Elliptical orbits
velocity of, 81	angular velocity, 149
Clohessy-Wiltshire (CW) equations, 385, 385f	apoapsis and radial coordinate, 85
angular velocity, 383	apse line distance, 85-86, 87f
matrix notation, 386-387	Bessel functions, 160, 161f
relative velocity, 384–385	Cartesian coordinate system, 88, 88f
Conversion factors, 722	eccentric anomaly, 149, 149f, 162
Coordinate transformation, three-dimensional space orbits	eccentricity calculation, 90
arccosine function, 212–213	eccentricity plot, 159-160, 159f, 160f
arcsine function, 215–216	energy conservation, 89
asymmetric Euler sequences, 210	geocentric elliptical orbit, 154f
Cartesian reference axes, 202, 203f	Kepler's formula, 151, 152f
classical Euler sequence, 210, 211f, 212	Kepler's second law, 89

binomial theorem, 283 constant angular momentum, 281 dot product, 281 eighth-order polynomial, 285 geocentric position vector, 279 Lagrange coefficients, 280, 282 scalar triple product, 283 slant range, 283-284 Gauss variational equations Cartesian inertial frame, 672 direction cosine matrix, 672-674 eccentricity, 675-676 Gauss planetary equations, 674 Keplerian elements, 672

latitude argument, 673

contour plots, 305-306, 306f eccentricity, 302 elliptical orbit tangent, 301 inner planet, 426, 428f outer planet, 426, 427f

Impulsive maneuvers propellant mass fraction vs. Δv, 300, 301f pumping maneuver, 300 specific impulses, 300, 300t

periapsis radius, 302

specific energy, 301

total energy expenditure, 302

Interplanetary trajectories	turn angle, 426–427
aiming radius, 427-428, 431	wait time, 411–412
angular momentum, 428	_
apoapsis radius, 431	J
Cassini spacecraft, 443–444, 444f	Jacobi constant
circular orbit planets, 408, 409f	earth-moon system, 135f, 136
departure trajectory	energy and angular momentum, 134
angular momentum, 419	secondary mass, speed, 133
circular parking orbit, 418–420, 421f	zero velocity, 134–135
heliocentric velocity vector, 420	zero verocky, 13 i 133
hyperbolic trajectory, 418	L
locus of, 420, 421f	_
parabolic trajectory, 418	Lagrange points
periapsis radius, 418–419	bisection method, 129–130, 129f, 130b
periapsis speed, 420	comoving coordinate system, 128
spacecraft departure, 418, 419f, 422f	contour plot, 128, 129f
spacecraft departure, 416, 4171, 4221 spacecraft heliocentric speed, 421–423	equilibrium points, 126–128
earth's sphere	halo orbits, 132
gravitational force, 413, 413f	linear equations, 127
Keplerian orbit, 416	Wilkinson Microwave Anisotropy Probe, 132–133
Newton's law of gravitation, 413–414	Local vertical/local horizontal (LVLH) frame, 368, 368f
primary gravitational acceleration, 415	M
radius of, 416	Moments of inertia, 476f
secondary/perturbing acceleration, 415	angular momentum components, 475
spacecraft motion equation, 414	angular velocity vector, 482
three-body system, 413–414, 414f	characteristic equation, 487
eccentricity, 427	coefficient matrix, 486
gravity assist flybys, 443	diagonal matrix, 477
heliocentric departure trajectory, 437	direction cosine matrix, 486
heliocentric ecliptic frame, 444, 445f	eigenvector and eigenvalue, 487–489
heliocentric orbits, 407	matrix components, 476
heliocentric velocity, 433–437	orthogonal system, 483
Hohmann transfer, 406–407, 407f, 408f	parallel axis theorem, 490–496, 490f
inner planet, 426, 428f	positive-definite matrix, 487
outer planet, 426, 427f	second-order tensor, 483–486
hyperbola family, 428–429, 429f	shapes of, 477, 478f
hyperbola locus, 428–429, 429f	unit vectors, 475
hyperbolic excess velocity, 426, 436	unit vectors, 475
leading-side planetary flyby, 433, 434f	N
minimum total time, 412–413	
non-Hohmann interplanetary trajectories, 449-455, 450f	Nearly equal numbers computation, 737
optimal periapse radius, 430	Newton's law of motion
orbital elements, 444-449, 447t	absolute acceleration, 21f
orbital periods, 409	angular impulse, 21–23
patched conics method, 405, 417-418	angular momentum, 21
periapsis velocity, 430	linear momentum, 21
phase angle, 408–409, 411–412	resultant/net force, 19
round-trip mission, 410, 410f	slug, definition, 19–20
scalar components, 434–436	Non-Hohmann transfers
sensitivity analysis, 424–426	apse line, 317–322, 317f, 318f
synodic period, 409	interplanetary trajectories, 449-455, 450f
time of flight, 411	Nonimpulsive orbital maneuvers
trailing-side planetary flyby, 433, 435f	Cartesian component, 344
true anomalies, 408	elementary rocket dynamics, 345

Nonimpulsive orbital maneuvers (Continued)	absolute accelerations, 705
energy equation, 347	geocentric equatorial position, 707
linear differential equations, 345	horizontal parallax, 707, 707f
relative motion, 344	lunar ecliptic latitude, 707–708
scalar analysis, 348	lunar ecliptic longitude, 707–708
spacecraft mass, 347	lunar position coefficients, 708, 709t
total energy, 347	perturbing acceleration, 706
velocity vector, 344	spacecraft's earth orbit, 705, 706f
•	unit vector, 706–707
^	parameter variation
0	acceleration, 668
Orbital perturbations	Lagrange planetary equations, 670-671
atmospheric drag	Lagrangian matrix, 670
ballistic coefficient, 658	orbital elements, 668–670
drag force, 658	perturbed motion, 669
perturbing acceleration, 658	position vector, 667–668
spacecraft velocity, 658	velocity, 668
US Standard Atmosphere density profile, 656-657, 657f	solar gravity, 712–715
averaging method	solar radiation pressure
angular momentum, 688	atmospheric density, 697
eccentricity, 689	cannonball model, 696
inclination, 692	direction cosine matrix, 698
mean motion, 687	energy flux, 696
perigee, 692–695, 694f	Gauss planetary equations, 698–699
time-averaged variation, 688	geocentric ecliptic frame, 697
true anomaly, 690-691	geocentric equatorial frame, 697–698
Cowell's method, 653, 654f	magnitude of, 696
drag effect, 652	mean anomaly, 700
Encke's method	perturbing acceleration, 696
Lagrange coefficients, 654	perturbing force, 696
perturbed and osculating orbits, 654,	photon energy, 695
655f	position vectors, 701, 702f
rectification, 655-656, 655f, 656b	radiation intensity, 695
two-body motion, 653	shadow function, 696
Gauss variational equations, 652.	solar ecliptic longitude, 697, 699
See also Gauss variational equations	Stefan-Boltzmann constant, 695
geopotential perturbations, 652-653	Orbital position, 60f, 723
gravitational perturbations	circular orbits, 147, 147f
Cartesian coordinates, 660	elliptical orbits, 163
gradient operator, 660	angular velocity, 149
gravitational potential energy, 660	Bessel functions, 160, 161f
Legendre polynomials, 662, 663f	eccentric anomaly, 149, 149f, 162
perturbing acceleration, 663	eccentricity plot, 159-160, 159f, 160f
polar angle, 661–662	geocentric elliptical orbit, 154f
Rodrigues' formula, 662	Kepler's formula, 151, 152f
rotationally symmetric perturbation, 662	Lagrange series, 158–159
sectorial harmonics, 664–666	Laplace limit, 159
spherical coordinate system, 661-662,	mean motion, 149
661f	mean vs. true anomaly, 148, 148f
tesseral harmonics, 664–666	Newton's method, 152, 153f
zonal harmonics, 662–663	quadrant ambiguity, 150, 150f
Keplerian orbits, 652	tan (E/2) value, 151, 151f
Lagrange planetary equations, 652–653	trigonometric identity, 150
lunar gravity	truncated Bessel series solutions, 160-162, 161f

hyperbolic trajectories	gravity acceleration, 16, 17f
eccentricity plot, 165, 165f	kinematics
hyperbolic cosine, 166	binormal vector, 14
hyperbolic tangent, 168	Cartesian coordinate frame, 13
hyperbolic trig identity, 168	center of curvature, 14–15
• •	
Kepler's equation, 167, 168f	crossproduct, 13
parameters, 165–166, 166f	path/trajectory, definition, 11–12
transcendental equation, 169	position, velocity and acceleration vectors, 10, 11f
orbit formula, 145–146	unit vectors, orthogonal triad, 13, 13f
parabolic trajectories, 163–164, 164f	"universal" clock, 10
periapsis passage, 146	mass, definition, 15
universal variables	Newton's law of motion
energy equation, 174	absolute acceleration, 21f
hyperbolic mean anomaly, 173	angular impulse, 21–23
Kepler's equation, 176	angular momentum, 21
Lagrange coefficient, 180–181	linear momentum, 21
Newton's algorithm, 177	resultant/net force, 19
periapse passage, 176	slug, definition, 19–20
semimajor axis, 173, 174t	nonrotating inertial frame, 31, 32f
Stumpff functions, 174–176, 175f	numerical integration, 36–37, 40
universal anomaly, 177	Cartesian components, three-dimensional space, 37
universal Kepler's equation, 174–175	elementary calculus, 37
Orbiting Solar Observatory (OSO-I), 559	first-order differential equations, 37
	Heun's predictor-corrector method. See Heun's
P	predictor-corrector method
-	nonlinear differential equation, 38b-39b
Patched conics method, 405, 417–418	particle mechanics, 37
Phasing maneuvers, 312, 312f	position and velocity vectors, 38
Plane change maneuvers	RK methods. See Runge-Kutta (RK) methods
cranking maneuver, 332	Taylor series, 39
delta-v formula, 335–336, 335f	truncation error, 39–40
flight path angle, 333	relative position vectors, 28, 28f, 32
GEO satellites, 336	relative velocity, 33
impulsive plane change maneuver,	time derivatives, moving vectors
334, 334f	absolute angular acceleration, 28
intersection line, 332f, 333	absolute time derivatives, 26
launch azimuth, 338-344, 338f	angular acceleration, 23-24
vs. orbit inclination, 337, 337f	differential time interval, 23–24, 24f
launch latitude, 336, 337f	inertial and moving frame, 26, 26f
noncoplanar orbits, 332, 332f	unit vectors, 27
orbital plane rotation, 334, 335f	universal gravitational constant, 16
orbit orientation, 337, 338f	vectors
prograde orbits, 336	bac-cab rule, 9, 9b-10b
satellite launch, orbit view, 336, 336f	Cartesian components, 6
transverse unit vector, 333	Cartesian coordinate system, 3, 4f
trignometric identities, 333–334	crossproduct, 7–9, 8f
velocity vector, 334–335	definition, 2
Point masses	direction angles, 4–5, 5f
absolute acceleration, 29, 34	dot product, 5–6, 5f, 6f
absolute position vectors, 28, 28f	magnitudes and directions, 2, 2f
absolute velocity, 29, 33	matrix determinant, 8
angular velocity, 32	parallelogram rule, vector addition, 3, 3f
Coriolis force, 2	Pythagorean theorem, 4
force, definition, 16	unit vector, 3
Toree, deminion, 10	unit vector, 5

Point masses (Continued)	geocentric latitude, 266
vector algebra, 10	geodetic latitude, 265
vector triple product, 9	meridian ellipse, 263–265, 264f
weight, definition, 16	meridional coordinates, 265
Preliminary orbit determination	oblate spheroidal earth, 263, 264f
from angle and range measurements	topocentric equatorial coordinate system, 266–267, 266f
coordinate transformation, 273	topocentric equational coordinate system, 267–271,
	268f
earth-based tracking station, 272	two-body motion equations, 239
earth-orbiting body, 272, 272f	two-body modoli equations, 239
heliocentric state vector, 278–279	_
hour angle, 274	Q
relative position vector, 273–274	Quaternions, 523–524
topocentric declension and right ascension, 275	direction cosine matrix, 526
topocentric equatorial direction cosines, 273	Euler axis, 524
trig identities, 274	Euler principal rotation angle, 526
velocity and acceleration, 272	orthogonality property, 527
angles-only orbit determination method, 279	principal angle, 524
Gauss method, 280f	time derivative, 528–532
binomial theorem, 283	unit quaternions, 526–527
constant angular momentum, 281	unit vector, 524–525
dot product, 281	unit vector, 324–323
eighth-order polynomial, 285	R
geocentric position vector, 279	
Lagrange coefficients, 280, 282	Relative motion
scalar triple product, 283	angular acceleration, 369
slant range, 283–284	angular velocity, 369
Gibbs method	bean-shaped orbit, 374–376
angular momentum, 241	circular and elliptical orbit, 374, 375f
bac-cab rule, 241, 243	close-proximity circular orbits, 396-398, 396f, 398f
coplanar vectors, 240, 240f	CW equations, 385, 385f
perifocal coordinate system, 241	angular velocity, 383
position vectors, 242	matrix notation, 386–387
velocity, 241	relative velocity, 384–385
Julian day, 240	linearization of equation
Lambert's problem, 248f	angular momentum, 379
angular momentum, 251	binomial theorem, 378
binomial expansion theorem, 252	chase vehicle, position vector, 376, 377f
Lagrange coefficients, 249–250, 253–258	comoving frame, 379
Newton's method, 251	first-order differential equations, 381
prograde trajectories, 248	inertial geocentric equatorial frame, 377
retrograde trajectories, 248	linear second-order differential equations, 380–381
series expansions, 252–253	reference orbit, 378
Stumpff functions, 251–252	relative acceleration, 379
true anomaly, 247	LVLH frame, 368, 368f
sidereal time, 261f	Newton's second law, 367
Greenwich sidereal time, 259, 261	orthogonal transformation matrix, 369
Julian epoch, 261	position vector, 368
solar time, 258–259	relative position, velocity and acceleration, components, 370
universal time, 258–259	two-impulse rendezvous maneuvers, 387–395, 388f
vernal equinox, 259	Rigid body dynamics
topocentric coordinate system	Chasles' theorem, 459
eccentricity, 265	Euler angles
•	absolute angular velocity, 512
flattening, definition, 263–265	classical Euler angle sequence, 510, 510f
geocentric equatorial coordinates, 265	ciassical Euler angle sequence, 510, 5101

Index

Rocket vehicle dynamics (Continued)	inertial angular acceleration, 602
step mass, 643-644, 646	inertial angular velocity, 602
total mass, 643	local vertical/local horizontal orbital reference frame, 600
motion equations	601f
acceleration, 620-621	major-axis spinner, 606
aerodynamic drag force, 620	minor-axis spinner, 606
gravity force, 620	moments of inertia, 599-600
Newton's second law, 620-621	orbital frame's angular velocity, 602
satellite launch vehicle, 620, 620f	orbit eccentricity, 607-609
sounding rockets, 625-628	oscillation frequencies, 607
spewing compressed gas, 619	pitch oscillation frequency, 604
thrust and specific impulse, 625	quadratic equation, 605
thrust equation, 619-620	stability criteria, 606, 606f
effective exhaust velocity, 624	gyroscopic attitude control
exhaust mass flows, 623	absolute angular velocity, 590b-593b
one-dimensional momentum analysis, 622	angular acceleration, 596b
rocket and propellants, 622, 623f	angular momentum, 584-585
specific impulse, 624	body frame components, 584
unbalanced force, 624	constant angular velocity, 593
thrust-to-weight ratio, 625	Euler's equation, 590b-593b
Runge–Kutta (RK) methods	inertial angular velocity, 585
coupling coefficients, 41	momentum exchange systems, 546, 583
damped spring-mass system, 43, 43b, 44f	momentum wheels, 593, 594f
Euler's method, 42, 43b, 60f, 723	parallel axis theorem, 586
exponential factor, 45–47	relative rotational velocity, 586b–587b
forcing function, 44	spacecraft moment of inertia tensor, 589b-590b
Heun's method, 42, 43b, 723f	spin rate, 595
RK3, 42, 43b, 723f	spin vector, inclination angles, 595, 595f
RK4, 43–47, 43b, 723f	total mass, 583
second-order ordinary differential equation, 44	two-gimbal control moment gyro, 594, 594f
Taylor series, 41	nutation damper
•	absolute angular acceleration, 563
•	absolute angular velocity, 563
S	characteristic equation, coefficients, 568–569
Satellite attitude dynamics	components, 567
attitude control thrusters, 573-575, 573f	contact forces, 565
Coning maneuver, 570-573, 570f, 571f, 572f	damper mass, 564–567
control moment gyros, 544	energy dissipation, 562–563
dual-spin spacecraft, 587-589, 587f, 591f	inertial acceleration, 563
angular momentum, 560	linear differential equations, 568
despun platform, 561	matrix notation, 568
dual-spin axisymmetric configuration, 559, 559f	Newton's second law, 564
"energy sink" procedure, 559, 562	Routh-Hurwitz stability criteria, 568-569
oblate spinner, 558	satellite-damper mass, 563
OSO-I, 559	spring force, 563–564
TACSAT I, 559	time derivative, 567
total rotational kinetic energy, 560	types, 562–563, 562f
total transverse moment of inertia, 560	reaction/momentum wheels, 544
gravity-gradient stabilization	spin-stabilized spacecraft, 543
body frame components, 601–603	torque-free motion
circular orbit, 597–598, 597f	absolute angular velocity, 546–547
coefficient matrix, 605	angular momentum, 544–545, 548–550, 549f
gravitational force, 597–598	angular velocity components, 547, 547f, 549f
gravity-gradient torque, 604	cylindrical shell, 551f

dissipative effects, 556–558	second zonal hormonics, 219-220, 220t
dot product operation, 544–545	zonal variation, 219–220
Euler's equation, 545, 554	geocentric equatorial and perifocal frames, 216,
intermediate-axis spinners, 555	216f
major-axis/oblate spinner, 555	components of, 218
minor-axis/prolate spinner, 555	coordinate system, 217
nutation angle, 554, 554f	matrix multiplications, 217
omega-perp, 547	matrix notation, 217
rotary kinetic energy, 556	orthogonal matrix, 217
rotational symmetric satellite, 544–545, 544f	geocentric right ascension–declination frame
satellite structure, 555, 558f	angular momentum, 188–189
space and body cones, 549, 550f	celestial sphere, 189, 190f
time derivative, 556	secondary (perturbing) gravitational forces, 188–189,
unstable motion, 555	189f
wobble angle, 549	sky chart, 189, 190f
yo-yo despin mechanism	star Regulus, celestial coordinates, 191, 191t
absolute velocity, 577	venus and moon ephemeris, 191, 191t
angular acceleration, 580	vernal equinox line, 188, 188f
angular momentum, 578	ground tracks, 227–231, 228f, 232f
angular velocity, 580	Russian space program, 223
despin process, 580, 581f	state vector
kinetic energy, 578	and geocentric equatorial frame, 192–196, 192f
moment of inertia, 577	orbital elements, 196–202, 196f
radial vs. tangential release, 581–583, 582f	Sun-synchronous orbits, 222–223, 222f
rotational kinetic energy, 577	Topocentric coordinate system
spacecraft's angular velocity, 576	eccentricity, 265
string and mass systems, 576, 576f	flattening, definition, 263–265
Sphere of influence (SOI) radius, 722t	geocentric equatorial coordinates, 265
Sphere of influence (501) facility, 722t	geocentric equatorial coordinates, 203 geocentric latitude, 266
Т	geodetic latitude, 265
-	meridian ellipse, 263–265, 264f
Tactical Communications Satellite (TACSAT I), 559	meridional coordinates, 265
Three-dimensional space orbits	oblate spheroidal earth, 263, 264f
coordinate transformation	Topocentric equatorial coordinate system, 266–267, 266f
arccosine function, 212–213	Topocentric equatoriar coordinate system, 267–271,
arcsine function, 215–216	268f
asymmetric Euler sequences, 210	Translational motion equations
Cartesian reference axes, 202, 203f	absolute acceleration, 470
classical Euler sequence, 210, 211f, 212	•
column vector, 212	continuous medium, mass element, 469, 469f
direction cosine matrix, 204	Newton's second law, 469
inverse transformation, 205–206	position vectors, 469
orthogonal matrix, 205	resultant external force, 470
rotation of, 207-209, 208f, 209f	Two-impulse Hohmann transfer, 312, 312f
six symmetric Euler sequences, 210	U
transpose matrix, 204	
unit vectors, 202	Universal variable approach
unprimed unit vectors, 203	energy equation, 174
yaw, pitch and roll sequence, 213-214, 214f	hyperbolic mean anomaly, 173
earth's oblateness effects	Kepler's equation, 176
definition, 219	Lagrange coefficient, 180–181
Molniya telecommunications satellites, 223-227, 223f	Newton's algorithm, 177
node regression, 220-221, 221f	periapse passage, 176
perigee advance, 222-223	semimajor axis, 173, 174t

Universal variable approach (Continued)	inertial frame, motion equations
Stumpff functions, 174–176, 175f	absolute velocity and acceleration, 61
universal anomaly, 177	attractive forces, 63
universal Kepler's equation, 174–175	conservative force, 63
	gravitational attraction, 60–61
V	Newton's second law of motion, 61
Vector-based approach, two-body system, 723, 723f	Newton's third law, 61
angular momentum, 72, 75	position vector, 61–63
angular velocity, 77	potential energy, 63
angular verocity, // apse line, 76	in spacecraft, 62b–63b
circular orbits	state vectors, 64–66, 64b
earth's gravitational parameter, 82	two point masses 60, 60f
geostationary equatorial orbit, 83, 86f	two-point masses, 60, 60f
inertial angular velocity, 83	lagrange coefficients
low earth orbit, 82	angular momentum, 112–113
period of, 81	eccentricity, 117–120
•	position and velocity vectors, 111–112
space shuttle orbitors, 82	radial velocity, 115–116
space shuttle orbiters, 82	Taylor series, 120, 122
specific energy, 81–82	trig identity, 114–115
velocity of, 81	true anomaly, 114–115
curvilinear trajectory, 72, 73f	Laplace vector, 75–76
eccentricity and true anomaly, 76–77, 77f eccentricity vector, 76	latus and semilatus rectum, 79, 79f
	local horizon, 79
elliptical orbits apoapsis and radial coordinate, 85	orbit types, properties, 59–60
apse line distance, 85–86, 87f	parabolic trajectories
Cartesian coordinate system, 88, 88f	Cartesian coordinate system, 97–99, 98f
eccentricity calculation, 90	energy conservation, 96
energy conservation, 89	escape velocity, 96
Kepler's second law, 89	flight path angle, 97
periods and energies, 90, 90f	trigonometric identities, 97
Pythagorean theorem, 87	true anomaly, 97, 97f
rectilinear ellipse, 90	periapsis, 78
semimajor axis, 86, 91	perifocal frame position vector, 109–110, 109f
specific energy, 89	*
true anomaly, radial coordinate, 87	unit vector, 108, 109f
energy law, 80–81	velocity, 110
flight path angle, 79	radial and azimuthal components, 77, 78f
hyperbolic trajectories, 100f	relative angular momentum, 72
aiming radius, 102	relative linear momentum, 72
Cartesian coordinate system, 102, 103f	relative motion equations center of mass, 70–71
hyperbolic excess speed, 104	comoving reference frame, 68, 68f
Keplerian orbits, 104	gravitational parameter, 67
radial coordinate, 101	nonlinear second-order differential equation, 68
semimajor axis, 101, 106–108	nonrotating Cartesian coordinate system, 69
semiminor axis, 102	relative acceleration components, 69
specific energy, 104	relative acceleration vector, 66
"tool box", 104	relative velocity, 68
trajectories range, 104, 105f	time derivative, 69–70
trig identity, 100	relative position vector, 73, 74f
true anomaly, 100	restricted three-body problem
turn angle, 101	absolute acceleration, 125
vacant orbit, 100–101	gravitational forces, 126
01011, 100 101	gravitational forces, 120

inertial angular velocity, 123
Jacobi constant. See Jacobi constant
Lagrange points. See Lagrange points
mass ratios, 124
Newton's second law, 126
noninertial comoving reference frame, 123, 124f
position vector, 125
total mass, 124
velocity components, 73, 73f

Υ

Yaw-pitch-roll sequence, 521f angular velocity, 522 elementary rotation matrices, 520 inverse matrix, 521 inverse transformation, 522
MATLAB, 521
reverse transformation, 522
Yo-yo despin mechanism
absolute velocity, 577
angular acceleration, 580
angular momentum, 578
angular velocity, 580
despin process, 580, 581f
kinetic energy, 578
moment of inertia, 577
radial vs. tangential release, 581–583, 582f
rotational kinetic energy, 577
spacecraft's angular velocity, 576
string and mass systems, 576, 576f