Medidas repetidas

El análisis de medidas repetidas puede considerarse como una extensión del análisis para dos muestras relacionadas. En ambos proceso buscamos medir la evolución de una variable Y, sólo que en esta ocasión podemos comparar la evolución de la misma k veces (en vez de tener la limitación de sólo medir dos veces). Tenemos entonces Y₁, Y₂, ..., Y_k. Recordemos que Y puede estar relacionado a mediciones en el tiempo (Antes, durante y después) o mediciones comparables (Inteligencia emocional, comunicación efectiva y Asertividad).

Los test de medidas repetidas funcionan en dos estadios. El primero es una prueba general para luego, en caso se encuentren resultados significativos, se pasará a analizar los cambios en las mediciones específicas. De forma adicional se puede evaluar los efectos de un factor adicional mediante pruebas de tendencia central para muestras independientes (Por ejemplo, Sexo)

El análisis de medidas repetidas funciona para Y ordinales o no paramétricas y para variables cuantitativas con distribución normal, sin embargo los test específicos varían un poco.

En el caso de los contrastes para muestras paramétricas hay un elemento adicional a tener en cuenta. ANOVA supone que hay Esfericidad, es decir que las varianzas de las diferencias entre cada par de medidas repetidas son iguales $(Y_1 - Y_2 = Y_1 - Y_3 = Y_2 - Y_3)$. En caso no se cumpla este supuesto, igual es factible realizar el análisis, pero es necesario aplicar una corrección para F. En este curso se opta por trabajar por la corrección de Greenhouse-Geisser

Tipo de Contraste	Ordinal o No Paramétrico	Paramétrico
Supuestos	-	Normalidad Esfericidad (W de Mauchly) Ho: Esfericidad
General	Prueba de Friedman H_0 : $Me_1 = Me_2 = = Me_k$	ANOVA de medidas repetidas (Lambda de Wilks)
Específicos	T de Wilcoxon H ₀ : Me ₁ = Me ₂	t de student
Factor	U de Mann Whitney	ANOVA de medidas repetidas (Lambda de Wilks)

Ejercicio de Análisis de medidas repetidas (AMR1.sav)

Un grupo de investigadores deseaba estudiar la opinión de un grupo de potenciales electores sobre candidatos presidenciales en base al color de la ropa que usaban durante un discurso presidencial. Para tal fin, seleccionaron una muestra de 24 personas y se les mostraron 4 videos de candidatos exponiendo sus planes de campaña, cada uno con un color de ropa distinto (video 1: rojo, video 2: azul, video 3: negro, video 4: blanco). El grado en que los participantes estarían dispuestos a votar por cada candidato se evaluó a través de una escala Likert que iba del 1 (de ninguna manera votaría por él) al 7 (definitivamente votaría por él). Cabe agregar que la muestra estuvo dividida en dos grupos ideológicos: izquierda y derecha.

Debido a que tenemos normalidad en los datos y ambos grupos etáreos vieron y evaluaron 4 los videos, estamos ante un caso de ANOVA de medidas repetidas. Aquí, el factor intra-sujeto sería el color de la prenda usada por el candidato, mientras que el factor inter-sujeto es la ideología (izquierda y derecha). La secuencia a realizar en SPSS es:

Analizar \rightarrow Modelo lineal general \rightarrow Medidas repetidas \rightarrow Nombre del factor intra-sujetos: reemplazar el nombre factor1 por uno más específico si se desea \rightarrow Número de niveles: poner el número k de repeticiones \rightarrow Añadir \rightarrow Definir \rightarrow Variables intra-sujetos: Pasar las sucesivas mediciones Y1,...,Y $k \rightarrow$ Factores inter-sujetos: Pasar los factores inter-sujetos \rightarrow Opciones: check en Estadísticos descriptivos \rightarrow Continuar \rightarrow Gráficos: Eje horizontal axis: poner el factor intra-sujetos; Líneas separadas: poner un factor inter-sujetos \rightarrow Añadir \rightarrow Continuar \rightarrow Aceptar.

```
GLM Y1 Y2 Y3 Y4 BY Ideología

/WSFACTOR=color 4 Polynomial

/METHOD=SSTYPE(3)

/PLOT=PROFILE(color*Ideología)

/PRINT=DESCRIPTIVE

/CRITERIA=ALPHA(.05)

/WSDESIGN=color

/DESIGN=Ideología.
```

Aplique estos comandos al archivo y conteste las siguientes preguntas:

Uno de los supuestos de este modelo de ANOVA de medidas repetidas es que las correlaciones entre muestras y sus varianza son iguales ("supuesto de esfericidad"). Este supuesto es contrastado con la **Prueba de esfericidad de Mauchly y si no se satisface, es mejor usar el ANOVA en la versión de Greenhouse-Geisser**. En estos datos ¿Se cumple el supuesto de esfericidad? ¿Cuál versión del ANOVA sería la aplicable?

Prueba de esfericidad de Mauchly^a

Medida: MEASURE_1

Efecto intra-	W de	Chi-cuadrado	gl	Sig.	Epsilon ^b		
sujetos	Mauchly	aprox.			Greenhouse-Geisser	Huynh- Feldt	Límite- inferior
color	,372	20,496	5	,001	,667	,768	,333

Contrasta la hipótesis nula de que la matriz de covarianza error de las variables dependientes transformadas es proporcional a una matriz identidad.

a. Diseño: Intersección + Ideología

Diseño intra-sujetos: color

b. Puede usarse para corregir los grados de libertad en las pruebas de significación promediadas. Las pruebas corregidas se muestran en la tabla Pruebas de los efectos inter-sujetos.

Vemos que p < .05, es decir que no se cumple el supuesto de esfericidad. Por lo tanto, correspondería usar el ANOVA de Greenhouse-Geisser.

b) ¿Puede decirse que hay diferencias entre las evaluaciones de los candidatos de acuerdo al color de su vestimenta?

Pruebas de efectos intra-sujetos.

Medida: MEASURE_1

Origen		Suma de cuadrados tipo III	gl	Media cuadrática	F	Sig.
	Esfericidad asumida	33,365	3	11,122	48,597	,000
anla ii	Greenhouse-Geisser	33,365	2,002	16,665	48,597	,000
color	Huynh-Feldt	33,365	2,303	14,489	48,597	,000
	Límite-inferior	33,365	1,000	33,365	48,597	,000
	Esfericidad asumida	8,781	3	2,927	12,790	,000
color * Ideología	Greenhouse-Geisser	8,781	2,002	4,386	12,790	,000
color lueologia	Huynh-Feldt	8,781	2,303	3,813	12,790	,000
	Límite-inferior	8,781	1,000	8,781	12,790	,002
	Esfericidad asumida	15,104	66	,229		
Error(color)	Greenhouse-Geisser	15,104	44,046	,343		
	Huynh-Feldt	15,104	50,661	,298		
	Límite-inferior	15,104	22,000	,687		

Concluimos que hay diferencias entre las evaluaciones de los candidatos de acuerdo al color de su vestimenta al ver que todos los contrastes que la significancia de Greenhouse-Geisser es menor a .05.

1. La existencia de tendencias (hasta cúbicas) en las sucesivas mediciones se trata con las pruebas de tendencias (Pruebas de contrastes intra-sujetos), en donde se ve en general qué tipos de tendencias se manifiestan y si estas cambian según niveles del factor inter sujetos. En esta muestra ¿cuáles son las tendencias significativas? Use el gráfico de interacción para observar las tendencias.

Pruebas de contrastes intra-sujetos

Medida: MEASURE_1

Origen	Color	Suma de cuadrados tipo III	gl	Media cuadrática	F	Sig.
	Lineal	29,502	1	29,502	80,336	,000
Color	Cuadrático	,010	1	,010	,084	,775
	Cúbico	3,852	1	3,852	19,727	,000
	Lineal	6,769	1	6,769	18,432	,000
color * Ideología	Cuadrático	,010	1	,010	,084	,775
	Cúbico	2,002	1	2,002	10,253	,004
	Lineal	8,079	22	,367		
Error(color)	Cuadrático	2,729	22	,124		
	Cúbico	4,296	22	,195		

Vemos que hay tendencia lineal en las medias del Color (p <.05) y también tendencia cúbica (p < .05).

2. El efecto general del factor Inter-sujetos se comprueba con las Pruebas de los efectos inter-sujetos. En este caso ¿hay efecto del factor edad?

Pruebas de los efectos inter-sujetos

Medida: MEASURE_1

Variable transformada: Promedio

Origen	Suma de cuadrados tipo III	gl	Media cuadrática	F	Sig.
Intersección	1433,760	1	1433,760	143,064	,000
Ideología	55,510	1	55,510	5,539	,028
Error	220,479	22	10,022		

Vemos que efectivamente hay diferencias a nivel inter-sujeto (p < .05).

El gráfico de tendencias o perfiles ilustra lo visto anteriormente

Ejercicio de Análisis de medidas repetidas - no paramétricas (AMR2.sav)

Un grupo de 30 personas evaluó 3 posibles responsables del por qué de los últimos fracasos de la selección peruana de fútbol utilizando una escala ordinal de 10 puntos, en donde 1 = "muy importante" y 10 "nada importante". Se buscaba conocer si a) los 3 posibles responsables son percibidos como igual de importantes y b) si las evaluaciones diferían según el sexo del participante.

Analizar → Pruebas no paramétricas → Cuadros de diálogo antiguos → k muestras relacionadas --> Variables de prueba: pasar las variables Y1, Y2, Y3 --> Check on Friedman --> Opciones: Estadísticos: check en Descriptivos y en Cuartiles --> Continuar --> Exact --> check en Exact --> Continuar --> Aceptar.

NPAR TESTS

/FRIEDMAN=Y1 Y2 Y3

/STATISTICS DESCRIPTIVES QUARTILES

/MISSING LISTWISE

/METHOD=EXACT TIMER(5).

Estadísticos de contraste^a

N	30
Chi-cuadrado	6,494
gl	2
Sig. asintót.	,039
Sig. exacta	,038
Probabilidad en el punto	,001

a. Prueba de Friedman

Vemos que la Sig. Exacta es menor a .05. Por tanto rechazamos H0 y concluimos que los 3 posibles responsables no son igualmente evaluados.

Se desea ver si las evaluaciones de los posibles responsables de los malos resultados futbolísticos cambian según sexo. Entonces segmentamos archivo según sexo y volvemos a realizar el análisis de Friedman (cuya sintaxis se encuentra líneas arriba).

SORT CASES BY Sexo.

SPLIT FILE LAYERED BY Sexo.

Estadísticos de contraste^a

	N	15
	Chi-cuadrado	27,887
Masculino	gl	2
iviasculino	Sig. asintót.	,000
	Sig. exacta	,000
	Probabilidad en el punto	,000
	N	15
	Chi-cuadrado	22,167
Femenino	gl	2
rememilio	Sig. asintót.	,000
	Sig. exacta	,000
	Probabilidad en el punto	,000

a. Prueba de Friedman

Podemos concluir que las diferencias en las apreciaciones de los 3 posibles responsables se presentan tanto en hombres como mujeres (sig. Exacta).