Lab 4-1 EEG classification

Department of Computer Science, NYCU

TA 賴佑家

Important Rules

Important Date:

- Report Submission Deadline: 4/12 (Tue) 11:59 a.m.
- Demo date: 4/12 (Tue)

Turn in:

- Experiment Report (.pdf)
- Source code (.py)

Notice: zip all files in one file and name it like 「DLP_LAB4-1_your studentID_name.zip」, ex: 「DLP_LAB4-1_309553005_賴佑家_.zip」

Lab Objective

• In this lab, you will need to implement simple EEG classification models which are EEGNet, DeepConvNet[1] with BCI competition dataset. Additionally, you need to try different kinds of activation function including "ReLU_, "Leaky ReLU_, , "ELU_,.

Requirements

- Implement the EEGNet, DeepConvNet with three kinds of activation function including "ReLU_, "Leaky ReLU_, "ELU_.
- In the experiment results, you have to show the highest accuracy (not loss) of two architectures with three kinds of activation functions.
- To visualize the accuracy trend, you need to plot each epoch accuracy (not loss) during training phase and testing phase.

Dataset

- BCI Competition III IIIb
- [2 classes, 2 bipolar EEG channels]
- Reference: http://www.bbci.de/competition/iii/desc_IIIb.pdf

Figure 3: Basket paradigm used for S4 and X11 [3].

Prepare Data

- Training data: S4b_train.npz, X11b_train.npz
- Testing data: S4b_test.npz, X11b_test.npz
- To read the preprocessed data, refer to the "dataloader.py".

B: batch size

• Input: [B, 1, 2, 750]

Output: [B, 2]

Ground truth: [B]

Create Model - EEGNet

Reference: Depthwise Separable Convolution

https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728

Create Model - EEGNet

EEGNet implementation details

```
EEGNet(
  (firstconv): Sequential(
    (0): Conv2d(1, 16, kernel size=(1, 51), stride=(1, 1), padding=(0, 25), bias=False)
    (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (depthwiseConv): Sequential(
    (0): Conv2d(16, 32, kernel size=(2, 1), stride=(1, 1), groups=16, bias=False)
    (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (2): ELU(alpha=1.0)
    (3): AvgPool2d(kernel size=(1, 4), stride=(1, 4), padding=0)
    (4): Dropout(p=0.25)
  (separableConv): Sequential(
    (0): Conv2d(32, 32, kernel size=(1, 15), stride=(1, 1), padding=(0, 7), bias=False)
    (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (2): ELU(alpha=1.0)
    (3): AvgPool2d(kernel size=(1, 8), stride=(1, 8), padding=0)
    (4): Dropout(p=0.25)
  (classify): Sequential(
    (0): Linear(in features=736, out features=2, bias=True)
```

Create Model - DeepConvNet

• You need to implement the DeepConvNet architecture by using the following table, where C = 2, T = 750 and N = 2. The max norm term is ignorable.

Layer	# filters	size	# params	Activation	Options
Input		(C, T)			
Reshape		(1, C, T)			
Conv2D	25	(1, 5)	150	Linear	mode = valid, max norm = 2
Conv2D	25	(C, 1)	25 * 25 * C + 25	Linear	$\bmod e = valid, \max norm = 2$
BatchNorm			2 * 25		${\rm epsilon} = 1\text{e-}05, \text{momentum} = 0.1$
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	50	(1, 5)	25 * 50 * 5+ 50	Linear	mode = valid, max norm = 2
BatchNorm			2 * 50		epsilon = 1e-05, momentum = 0.1
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	100	(1, 5)	50 * 100 * 5+ 100	Linear	mode = valid, max norm = 2
BatchNorm			2 * 100		epsilon = 1e-05, momentum = 0.1
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	200	(1, 5)	100 * 200 * 5+ 200	Linear	mode = valid, max norm = 2
BatchNorm			2 * 200		epsilon = 1e-05, momentum = 0.1
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Flatten					
Dense	N			softmax	$\max norm = 0.5$

The input data has reshaped to [B, 1, C, T]

Create Model - Activation Functions

• In the PyTorch framework, it is easy to implement the activation function.

```
nn.LeakyReLU(),
nn.ReLU(),
nn.ELU(),
```

```
EEGNet(
  (firstconv): Sequential(
    (0): Conv2d(1, 16, kernel size=(1, 51), stride=(1, 1), padding=(0, 25), bias=False)
    (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (depthwiseConv): Sequential(
    (0): Conv2d(16, 32, kernel size=(2, 1), stride=(1, 1), groups=16, bias=False)
    (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (2): ELU(alpha=1.0)
    (3): AvgPool2d(kernel size=(1, 4), stride=(1, 4), padding=0)
    (4): Dropout(p=0.25)
  (separableConv): Sequential(
    (0): Conv2d(32, 32, kernel size=(1, 15), stride=(1, 1), padding=(0, 7), bias=False)
    (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (2): ELU(alpha=1.0)
    (3): AvgPool2d(kernel size=(1, 8), stride=(1, 8), padding=0)
    (4): Dropout(p=0.25)
  (classify): Sequential(
    (0): Linear(in features=736, out features=2, bias=True)
```

Hyper Parameters

- Batch size= 64
- Learning rate = 1e-2
- Epochs = 150
- Optimizer: Adam
- Loss function: torch.nn.CrossEntropyLoss()
- You can adjust the hyper-parameters according to your own ideas.
- If you use "nn.CrossEntropyLoss", don't add softmax after final fc layer because this criterion combines LogSoftMax and NLLLoss in one single class.

Result Comparison

• You have to show the highest accuracy (not loss) of two architectures with three kinds of activation functions.

	ReLU	Leaky ReLU	ELU
EEGNet	85.33%	84.63%	82.93%
DeepConvNet	82.75%	86.33%	85.73%

Result Comparison

- To visualize the accuracy trend, you need to plot each epoch accuracy (not loss) during training phase and testing phase.
- In this part, you can use the matplotlib library to draw the graph.

Report Spec

- 1. Introduction (20%)
- 2. Experiment set up (30%)
 - A. The detail of your model
 - EEGNet
 - DeepConvNet
 - B. Explain the activation function (ReLU, Leaky ReLU, ELU)
- 3. Experimental results (30%)
 - A. The highest testing accuracy
 - Screenshot with two models
 - anything you want to present
 - B. Comparison figures
 - EEGNet
 - DeepConvNet
- 4. Discussion (20%)
 - A. Anything you want to share

- ---- Criterion of result (40%) ----
- Accuracy > = 87% = 100 pts
- Accuracy $85 \sim 87\% = 90$ pts
- Accuracy $80 \sim 85\% = 80 \text{ pts}$
- Accuracy $75 \sim 80\% = 70$ pts
- Accuracy < 75% = 60 pts
- Score: 40% accuracy results + 60% (report+ demo score)
- P.S If the zip file name or the report spec have format error, it will be penalty (-5).

Reference

[1] EEGNet: A Compact Convolutional Neural Network for EEG-based Brain-Computer Interfaces