

B. Áramlatok

Feladat	Currents
Időkorlát	3 seconds
Memória	1 gigabyte

Egy elhagyatott ház átriumában jól elrejtve egy ősi könyvre bukkantál, amely Bonn városának legféltettebb titkát tárja fel. Mélyen a város alatt egy N barlangból álló rendszer található, melyet M csatorna köt össze. Minden csatornában van egy egyirányú varázsáramlat, amely gyorsan képes egy hajót átvinni az adott csatornán. A barlangrendszernek jelenleg pontosan egy kijárata van, amely az N-1. barlangban található.

Izgatottan várod, hogy felfedezhesd a barlangokat!

A barlangrendszerben egy troll lakik, aki szeret szórakozni a hívatlan vendégekkel. A trollnak varázsereje van, amit **legfeljebb egyszer** használhat fel a látogatásod során és amivel módosíthatja a barlangrendszert és megnehezítheti a kijárat elérését.

A barlanglátogatás több körből áll. Minden kör a következőképpen alakul:

- 1. Először a troll eldöntheti, hogy használja-e a varázserejét vagy sem. Ha igen, a varázslat a következő:
 - o megfordítja az áramlat irányát minden csatornában, azaz minden a o b azonnal b o a-ra változik;
 - \circ bezárja az N-1. barlang kijáratát és
 - új kijáratot nyit a 0. barlangban.
- 2. Ezután választasz egy áramlatot, amely a jelenlegi barlangodból indul, és a csónakoddal egy másik barlangba hajózol. Az egyszerűség kedvéért a csónak használatát "lépésnek" fogjuk nevezni.

Továbbá ha a kijárattal egy barlangban vagy, **azonnal** használod azt a barlangrendszer elhagyásához. Fontos megjegyzés: hogy ez akár egy kör alatt is megtörténhet, ha a 0. barlangban vagy és a troll úgy dönt, hogy használja a varázserejét.

A célod, hogy a lehető leggyorsabban elhagyd a barlangrendszert, hogy időben odaérj az EGOI záróünnepségére.

A troll célja pont az ellenkező: ameddig csak lehet, a barlangrendszerben akar tartani. A troll mindig ismeri a pozíciódat, és azt a pillanatot választja a varázslatra, amikor az a legjobban segíti a célja elérésében.

Minden c ($0 \le c \le N-2$) barlangra külön-külön vizsgáld meg azt a lehetőséget, hogy a c barlangból kezded az utad. Mindegyik esetben határozd meg azt a **legkisebb lépésszámot**, amellyel biztosan ki tudsz jutni a c barlangból, függetlenül attól, hogy a troll mikor dönt úgy, hogy használja a képességét.

Ha varázslat még nem történt, minden barlang elérhető a 0. barlangból és az N-1. barlang elérhető minden barlangból.

Bemenet

A bemenet első sora két egész számot tartalmaz: N és M, ahol N a barlangok, M a csatornák számát jelöli. A bemenet következő M sora egyenként két egész számot tartalmaz: a_i és b_i , melyek egy olyan csatornát jelképeznek, amely aktuálisan az a_i . barlangból b_i . barlangba való eljutáshoz használható. Nincs olyan csatorna, amely egy barlangot önmagával kötne össze. Minden barlangpárhoz legfeljebb egy-egy csatorna tartozik mindkét irányban.

Kimenet

Írj ki egy sorba N-1 egész számot, ahol az i. egész szám ($0 \le i \le N-2$) az a legkisebb lépésszám, amellyel biztosan ki lehet jutni az i. barlangból.

Megjegyzés: az N-1. barlang lépésszámát nem kell kiírni (mivel ebben az esetben azonnal elhagynád a barlangot).

Korlátok és pontozás

- $2 \le N \le 200\,000$.
- $1 \le M \le 500\,000$.
- $0 \le a_i, b_i \le N-1$ és $a_i \ne b_i$
- ullet A csatornák irányának megfordítása előtt a 0. barlangból elérhető az összes barlang és az N-1. barlang minden barlangból elérhető.

A megoldásodat tesztcsoportokra teszteljük, minden tesztcsoport adott pontot ér. Minden tesztcsoport több tesztesetet tartalmaz. Egy tesztcsoport pontjainak megszerzéséhez az adott tesztcsoport összes tesztesetére helyesen kell futnia a megoldásodnak.

Csoport	Pontozás	Korlátok
1	12	$M=N-1$, $a_i=i$ and $b_i=i+1$ minden i -re. Azaz a barlangrendszer egy $0 o 1 o 2 o \ldots o N-1$ útvonalként írható fel.
2	15	Minden barlangnak közvetlen csatornája van a $N-1$. barlangba. Fontos megjegyzés: további csatornák is lehetnek.
3	20	$N,M \leq 2000$
4	29	Bármely barlang elhagyása után nem lehet oda visszatérni (amíg a csatornák iránya meg nem változik). Más szóval a csatornák egy irányított, körmentes gráfot alkotnak.
5	24	Nincs további korlátozás

Példák

Az első példában vegyük azt az esetet, amikor az 1. barlangból indulunk. Mivel nem tudjuk, mikor történik az irány megváltoztatása, a 4. barlang kijárata felé kell kezdenünk a mozgást. Ezt megtehetjük a 2. vagy a 3. barlangon keresztül. A 3. barlangon keresztül haladni jobb megoldás, mivel ha az irányváltás ott történik, akkor lesz egy csatornánk, amelyet felhasználva közvetlenül a 3. barlangból a 0. barlangba juthatunk el, ahol kilépünk a barlangrendszerből.

Pontosabban fogalmazva csupán három lehetőség van arra, hogy a troll mikor dönt úgy, hogy használja a mágikus erejét:

- Ha a troll akkor használja a képességét, amikor az 1. barlangban vagy, akkor az 1. barlangból közvetlenül a 0. barlangba léphetsz és kijutsz.
- Ha a troll akkor használja a képességét, miután az 1. barlangból a 3. barlangba mentél, akkor a 3. barlangból közvetlenül a 0. barlangba léphetsz és kijutsz.
- Ha a troll úgy dönt, hogy nem használja a képességét a két helyzet egyikében sem, akkor a
 3. barlangból a 4. barlangba kell lépned és kijutsz..

Az első esetben csak egy lépést kellett tenned, a többi esetben mindig kettőt. Ez azt jelenti, hogy a válasz ebben az esetben $\max(1,2,2)=2$.

Megjegyzendő, hogy ha az 1. barlangból a 2. barlangba mész, a troll három lépésre kényszeríthet.

Az első és a második példa megfelel a 3., a 4. és az 5. tesztcsoportok feltételeinek.

A harmadik példa megfelel az összes tesztcsoportra vonatkozó korlátozásoknak.

A negyedik példa megfelel a 3. és az 5. tesztcsoport feltételeinek és az alábbiakban látható.

Bemenet	Kimenet
5 6	2 2 2 1
0 1	
1 2	
1 3	
2 4	
3 4	
0 3	
7 10	2 1 2 3 2 4
2 6	2 1 2 3 2 4
5 3	
4 2	
1 6	
2 3	
3 6	
4 5	
0 4	
4 1	
0 1	
2 1	1
0 1	1
0 1	
6 8	2 4 3 3 1
0 1	
4 0	
1 2	
2 3	
3 5	
0 4	
4 5	
2 0	