Computer Organization Architecture diagrams:

Top module: Simple_Single_CPU

Hardware module analysis:

- (1) PC:要執行程式的下一個指令位址
- (2) Full_adder.v:1bit的加法。
- (3) Adder.v: 利用Full_adder.v, 拼出32bits的adder。
- (4) ALU.v: 根據ctrl i的值來決定要做哪類基本運算。
- (5) ALU_Ctrl.v: 處理ALUOp_i和funct_i這兩個output
- (6) Decoder.v:藉由instr_op_i, 判斷其他的輸出應該要為多少。
- (7) Shifter_left_Two_32:往左shift兩個bits。
- (8) Sign_Extend.v: 將16bits轉32bits。
- (9) Simple_Single_CPU.v:把需要用到的線接上。

Finished part:

執行結果兩筆測資皆正確。

į	# run 1000ns			# run 1000ns		
1		2r0 =	0		2r0=	0
į	r1=	10		r1=	1	
1	r2=	4		r2=	0	
1	r3=	0		r3=	0	
į	r4=	0		r4=	0	
1	r5=	6		r5=	0	
ì	r6=	0		r6=	0	
1	r7=	0		r7=	14	
1	r8=	0		r8=	0	
į	r9=	0		r9=	15	
1	r10=	0		r10=	0	
ì	r11=	0		r11=	0	
1	r12=	0		r12=	0	
1	\$stop	called at time	: 260 ns	\$stop ca	alled at time	e : 260 ns

Problems you met and solutions:

- (1) 要仔細看圖中CPU的線如何接
- (2) debug 很多問題, 有時候稍微改一點就錯了
- (3) 寫作業的途中, 很常不確定自己所寫的部分是否正確。

Summary:

雖然離繳交日很久了,但原本很害怕寫verilog,花了很久的時間才慢慢完成,但對於CPU的運作更有一點概念了。