Foundations of Data Science DSL201

Anil Kumar Sao

Dept. of Computer Science and Engineering
IIT Bhilai

October 18, 2024

Decomposition of signal using Fourier transform

Decomposition of signal using Fourier transform

- Original (sampled at 48KHz): Original
- LPF 2000Hz: LPF 2000Hz
- LPF 3000Hz: LPF 3000Hz
- LPF 4000Hz: LPF 4000Hz
- LPF 5000Hz: LPF 5000Hz
- LPF 6000Hz: LPF 6000Hz
- LPF 7000Hz: LPF 7000Hz
- HPF 8000Hz: HPF 8000Hz
- Original (sampled at 48KHz): Original
- LPF 2000Hz: LPF 2000Hz
- LPF 3000Hz: LPF 3000Hz
- LPF 4000Hz: LPF 4000Hz
- LPF 5000Hz: LPF 5000Hz
- LPF 6000Hz: LPF 6000Hz
- LPF 7000Hz: LPF 7000Hz
- LPF 8000Hz: LPF 8000Hz
- HPF 8000Hz: HPF 8000Hz

2-D sinusoidal function

 $\sin(2\pi(\frac{u}{M}m+\frac{v}{N}n))$

FIGURE 1 Examples of finite two-dimensional discrete-space sinusoidal functions. The scaled frequencies of Fig. (6) measured in curloul image are (a) y = 1, y = 4; (b) y = 10, y = 5; (c) y = 15, y = 35; and (d) y = 65, y = 35.

Results of Gaussian lowpass filter

Results of Gaussian highpass filter for different cut-off frequency

abc

FIGURE Results of highpass filtering the image in Fig. 4.41(a) using a GHPF with $D_0 = 30$, 60, and 160, corresponding to the circles in Fig. 4.41(b). Compare with Figs. 4.54 and 4.55.

KL transform

KL Transform

Figure: Examples of images used to compute the principal components

Figure: Eigen Vectors- (a)1st, (b) 3rd, (c)5th, (d)10th, (e) 15th, (f)100th

Figure: Reconstructed image using Eigen Vectors-(a)1-5,(b)1-10,(c)1-20,(d)1-50,(e)1-100,(f)1-200,(g)1-500,(h)500-Remaining

Figure: (a)Original Image,(b) Reconstructed using first 500 eigen vectors from the previous datasets subspace

Figure: (a)Original Image,(b) Reconstructed using first 500 eigen vectors from the previous datasets subspace

Figure: Illustration of subject specific unique information derived using eigen decomposition. (a) Gray level image. The reconstructed face image using (b) first 10 eigenvectors, (c) 11-350 eigenvectors, (d) 351-10000 eigenvectors.