EECE 2560: Fundamentals of Engineering Algorithms

Hash Tables

Direct-Address Tables

 Direct addressing is a simple technique that works well when the universe U of keys is reasonably small assuming that no two elements have the same key.

Direct-Address Table Operations

Each of the following operations takes only O(1) time.

DIRECT-ADDRESS-SEARCH(T, k)

1 return T[k]

DIRECT-ADDRESS-INSERT (T, x)

1 T[x.key] = x

DIRECT-ADDRESS-DELETE (T, x)

1 T[x.key] = NIL

Hash Tables

- The downside of direct addressing is obvious: if the universe *U* is large, storing a table *T* of size |*U*| may be impractical, or even impossible, given the memory available on a typical computer.
- Furthermore, the set K of keys actually stored may be so small relative to U that most of the space allocated for T would be wasted.
- When the number of keys actually stored is small relative to the total number of possible keys, hash tables become an effective alternative to directly addressing an array.
- A hash table is an effective data structure for implementing dictionaries operations INSERT, SEARCH, and DELETE.
- Although searching for an element in a hash table can take as long as searching for an element in a linked list – O(n) time in the worst case - in practice, hashing performs extremely well.

Hash Functions

- With direct addressing, an element with key k is stored in slot k.
- With hashing, this element is stored in slot h(k); that is, we use a hash function h to compute the slot from the key k.
- A hash function h must be deterministic in that a given input k should always produce the same output h(k).
- In the shown example, h maps the universe U of keys into the slots of a hash table T [0 .. m - 1] where the size m of the hash table is typically much less than |U|

Hash Collision

- Two keys may hash to the same slot. We call this situation a collision.
- The ideal solution would be to avoid collisions altogether or at least minimizing their number.
- We might try to achieve this goal by choosing a suitable hash function h.
- Because |U| > m, however, there must be at least two keys that have the same hash value; avoiding collisions altogether is therefore impossible.

Collision Resolution by Chaining

In chaining, we place all the elements that hash to the same slot into the same linked list, as shown.

Hash Table Operations

The dictionary operations on a hash table T are easy to implement when collisions are resolved by chaining:

CHAINED-HASH-INSERT (T, x)

1 insert x at the head of list T[h(x.key)]

CHAINED-HASH-SEARCH (T, k)

1 search for an element with key k in list T[h(k)]

CHAINED-HASH-DELETE (T, x)

1 delete x from the list T[h(x.key)]

Hash Functions

- A good hash function satisfies (approximately) the assumption of simple uniform hashing: each key is equally likely to hash to any of the m slots, independently of where any other key has hashed to.
- Most hash functions assume that the universe of keys is the set $\mathbb{N} = \{0,1,2,....\}$ of natural numbers.
- Thus, if the keys are not natural numbers, we find a way to interpret them as natural numbers.

Division Hash Function

- In the *division method* for creating hash functions, we map a key k into one of m slots by taking the remainder of k divided by m. That is, the hash function is $h(k) = k \mod m$.
- For example, if the hash table has size m = 12 and the key is k = 100, then h(k) = 4.
- Example of **bad** choice of *m* is 2^p , as h(k) = p lowest-order bits of *k*.
 - We are better off designing the hash function to depend on all the bits of the key.
- A prime not too close to an exact power of 2 is often a good choice for m.
 - Example: we wish to allocate a hash table, with collisions resolved by chaining, to hold elements with keys range from 0 to 2000. We don't mind examining an average of 3 elements in an unsuccessful search, and so we allocate a hash table of size m = 701 because it is a prime near 2000/3 but not near any power of 2.

Resolving Collisions by Open Addressing

- In open addressing, all elements occupy the hash table itself.
 - That is, each table entry contains either an element of the set or NIL.
- When searching for an element, we systematically examine table slots until either we find the desired element or we have ascertained that the element is not in the table.
- Unlike chaining, no lists and no elements are stored outside the table.
- Thus, in open addressing, the hash table can "fill up" so that no further insertions can be made.
- The advantage of open addressing is that it avoids pointers altogether.
- Instead of following pointers, we compute the sequence of slots to be examined.

Open Addressing (Cont'd)

- To perform insertion using open addressing, we successively examine, or *probe*, the hash table until we find an empty slot in which to put the key.
- To determine which slots to probe, we extend the hash function to include the probe number (starting from 0) as a second input.
- For every key k, the probe sequence

```
\langle h(k,0), h(k,1), ..., h(k,m-1) \rangle should be a permutation of \{0, 1, ..., m-1\}.
```

 So that every hash-table position is eventually considered as a slot for a new key as the table fills up.

Open Addressing - Insert

The following HASH-INSERT procedure takes as input a hash table T and a key k. It either returns the slot number where it stores key k or flags an error because the hash table is already full.

```
HASH-INSERT (T, k)

1 i = 0

2 repeat

3 j = h(k, i)

4 if T[j] == NIL

5 T[j] = k

6 return j

7 else i = i + 1

8 until i == m

9 error "hash table overflow"
```


Open Addressing - Search

The algorithm for searching for key k probes the same sequence of slots that the insertion algorithm examined when key k was inserted.

Therefore, the search can terminate (unsuccessfully) when it

finds an empty slot.
(This argument assumes that keys were not deleted from the hash table.)

```
HASH-SEARCH(T, k)

1  i = 0

2  repeat

3   j = h(k, i)

4   if T[j] == k

5   return j

6   i = i + 1

7  until T[j] == \text{NIL or } i == m

8  return NIL
```


Open Addressing - Delete

- To delete a key from slot i of an open-address hash table, we cannot simply mark that slot as empty by storing NIL in it. If we do that, we might be unable to retrieve any key k that was inserted after slot i when slot i was probed as occupied.
- We can solve this problem by marking the slot, storing in it the special value DELETED instead of NIL.
- We would then modify the procedure HASH-INSERT to treat such a slot as if it were empty so that we can insert a new key there.
- We do not need to modify HASH-SEARCH, since it will pass over DELETED values while searching.

Linear Probing

• Given an ordinary hash function h'(k), linear probing uses the hash function:

$$h(k,i) = (h'(k) + i) \mod m$$
 for $i = 0,1, ..., m-1$.

- Given key k, we first probe T[h'(k)], i.e., the slot given by the auxiliary hash function.
- We next probe slot T[h'(k) + 1], and so on up to slot T[m 1].
- Then we wrap around to slots T[0], T[1], ... until we finally probe slot T[h'(k) - 1]. Because the initial probe determines the entire probe sequence, there are only m distinct probe sequences.
- In the shown example T[h'(k)] = i

