

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA Primer Semestre de 2019

Tarea 2

Introducción a la Geometría Algebraica — MAT 2335 Fecha de Entrega: 2019/04/11

${\bf \acute{I}ndice}$

Problema 1.25	2
Problema 1.29	2
Problema 1.30	3
Problema 1.31	3
Problema 1.33	4
Problema 1.37	5
Problema 1.45	5
Problema 1.49	6
Problema 1.51	7
Problema 1.54	8

Notas

En esta tarea se usará la notación $\overline{a} = (a_1, ..., a_n)$

Problema 1.25:

- (a) Muestre que $V(y-x^2)\subset \mathbb{A}^2_{\mathbb{C}}$ es irreducible; en efecto, $I(V(y-x^2))=I(y-x^2)$
- (b) Separe $V(y^4-x^2,y^4-x^2y^2+xy^2-x^3)\subset \mathbb{A}^2_{\mathbb{C}}$ en componentes irreducibles.

Solución problema 1.25:

- (a) Se puede notar que si $(y x^2)$ es un ideal primo entonces $V(y x^2)$ es irreducible, y si $p(x,y) = y x^2$ es un polinomio irreducible el ideal generado es primo. Usando criterio de Eisenstein (con y sobre $\mathbb{C}[y][x]$) esto se tiene que p es irreducible, por lo que el ideal es primo y V(p) es irreducible.
- (b) Se factoriza cada polinomio

$$y^4 - x^2 = (y^2 - x)(y^2 + x)$$
$$y^4 - x^2y^2 + xy^2 - x^3 = -(x - y)(x + y)(x + y^2)$$

Con lo que se puede notar que ambos tienen el polinomio $x+y^2$ en común, por lo que $V(y^4-x^2,y^4-x^2y^2+xy^2-x^3)=V(y^2+x)\cup V(y^2-x,(x-y)(x+y))$. Se puede notar que $V(y^2-x,(x-y)(x+y))$ son tres puntos (0,0),(1,1),(1,-1), y $(0,0)\in V(y^2+x),$ luego $V(x-1,y-1)=\{(1,1)\},V(x-1,y+1)=\{(1,-1)\},$ por lo que se puede separar el conjunto algebraico en los conjuntos mostrados.

Problema 1.29:

Muestre que \mathbb{A}^n_k es irreducible si k es infinito.

Solución problema 1.29: Sea \mathbb{A}^n_k reducible, luego existen V_i tal que $\mathbb{A}^n_k = \bigcup_{i=1}^n V_i$, donde cada V_i es de la forma $V(f_{i,1},...,f_{i,n_i})$ con los $f_{i,j}$ no cero, notamos que $V_i \subseteq V(f_{i,1})$, por lo que $\mathbb{A}^n_k \subseteq \bigcup_{i=1}^n V(f_{i,1})$, pero se sabe que $\bigcup_{i=1}^n V(f_{i,1}) = V(\prod_{i=1}^n f_{i,1})$, con lo cual se ve que $V(\prod_{i=1}^n f_{i,1}) = \mathbb{A}^n_k$, pero se sabe¹ que si k es infinito el único polinomio que es cero para todos los valores es el cero, por lo que k tiene que ser finito.

¹Por tarea anterior

Problema 1.30:

Sea $k = \mathbb{R}$

- (a) Muestre que $I(V(x^2 + y^2 + 1)) = (1)$
- (b) Demuestre que todo subconjunto algebraico de $\mathbb{A}^2_{\mathbb{R}}$ es igual a V(F) para algún $F \in \mathbb{R}[x,y]$

Solución problema 1.30:

- (a) Ya que \mathbb{R} es un cuerpo ordenado se sabe que $x^2 \geq 0 \quad \forall x \in \mathbb{R}$, dado esto se nota que $x^2 + y^2 + 1 \geq 1 > 0 \quad \forall x, y \in \mathbb{R}$, por lo que $V(x^2 + y^2 + 1) = \emptyset$. Con esto se puede concluir lo que queríamos.
- (b) Sea A un subconjunto algebraico en $\mathbb{A}^2_{\mathbb{R}}$, luego A puede ser una de cuatro cosas, un conjunto finito de puntos, una curva, el plano o la unión de las anteriores, se nota que el último caso se reduce a los otros, ya que si la unión se puede ver como los ceros de la multiplicación de los polinomios correspondientes. En el primer caso, donde $S = \{(a_1, b_1), ..., (a_n, b_n)\}$, el polinomio $\prod_{i=1}^n ((x-a_i)^2 + (y-a_i)^2)$ cumple lo pedido. El segundo caso, por definición una curva es un polinomio, por lo que cumple lo pedido. Y el último caso, el polinomio 0 cumple lo que se quiere.

Problema 1.31:

- (a) Encuentre los componentes irreducibles de $V(y^2-xy-x^2y+x^3)$ en $\mathbb{A}^2_{\mathbb{R}}$ y también en $\mathbb{A}^2_{\mathbb{C}}$
- (b) Haga lo mismo para $V(y^2 x(x^2 1))$, y para $V(x^3 + x x^2y y)$

Solución problema 1.31:

- (a) La siguiente factorización se puede ver $y^2 xy x^2y + x^3 = (x y)(x^2 y)$, por lo que $V(y^2 xy x^2y + x^3) = V(x y) \cup V(x^2 y)$, ambos son irreducibles por criterio de Eisenstein (usando y en k[y][x]), por lo que es la factorización en conjuntos irreducibles. Esto es independiente de k, por lo que es la misma factorización para $\mathbb C$ y para $\mathbb R$.
- (b) Se nota que $y^2 x(x^2 1)$ es irreducible por criterio de Eisenstein (usando x en k[x][y]), por lo que $V(y^2 x(x^2 1))$ es irreducible. Para el otro conjunto algebraico, se ve que $x^3 + x x^2y y = (x^2 + 1)(x y)$, luego en \mathbb{C} $x^2 + 1 = (x i)(x + i)$, con lo que se tiene que $V(x^3 + x x^2y y)$ se separa en V(x y) y $V(x^2 + 1)$ en $\mathbb{A}^2_{\mathbb{R}}$, y en V(x y), V(x i) y V(x + i) en $\mathbb{A}^2_{\mathbb{C}}$.

Problema 1.33:

- (a) Separe $V(x^2+y^2-1,x^2-z^2-1)\subset \mathbb{A}^3_{\mathbb{C}}$ en componentes irreducibles.
- (b) Sea $V=\{(t,t^2,t^3)\in\mathbb{A}^3_{\mathbb{C}}:t\in\mathbb{C}\}.$ Encuentre I(V), y demuestre que es irreducible.

Solución problema 1.33:

(a) Sea $V = V(x^2+y^2-1,x^2-z^2-1)$, notamos que $V = V(x^2-z^2-1,y^2+z^2) = V(x^2-z^2-1,z-iy) \cup V(x^2-z^2-1,z+iy)$, los cuales se denominan V_1,V_2 correspondientemente. Se sabe que si $C[x,y,z]/I(V_i)$ es dominio, $I(V_i)$ es primo, y V_i es irreducible. Notamos que $(\mathbb{C}[x,y,z]/(z+iy))/(x^2-y^2-1) \simeq \mathbb{C}[x,y,z]/I(V_2)$, por lo que cocientando en orden, claramente $\mathbb{C}[x,y,z]/(z+iy) \simeq \mathbb{C}[x,y]$. Ahora, se cocienta $\mathbb{C}[x,y]/(x^2-y^2-1)$, se nota que si x^2-y^2-1 es irreducible, $\mathbb{C}[x,y]/(x^2-y^2-1)$ es dominio. Se asume que existen p,q de grado 1 tal que $x^2-y^2-1=p\cdot q$:

$$p(x,y) = ax + by + c$$
$$q(x,y) = dx + ey + f$$

Se ven las siguientes relaciones:

$$ad = 1$$

$$be = -1$$

$$cf = -1$$

$$(ea + bd) = 0$$

$$(cd + af) = 0$$

$$(bf + ec) = 0$$

Con lo que se nota que ninguno es cero, luego se trabajan un poco las expresiones y se consigue:

$$a = d^{-1}$$
$$b = -e^{-1}$$
$$e^{2} = d^{2}$$

Lo que nos da dos casos

Caso e = d: Se nota que entonces e(a + b) = 0, por lo que a = -b, se suma cd + af = 0 con bf + ec = 0 y se consigue cd + ce = 0, pero eso es 2cd = 0, una contradicción.

Caso e = -d: Se nota que entonces e(a - b) = 0, siguiendo la demostración anterior, pero restando, se llega a lo mismo, otra contradicción.

Por lo que se tiene lo pedido.

(b) Se nota que $V(y-x^2,z-x^3)=V$, luego $I(V)=(y-x^2,z-x^3)$, se sabe que si C[x,y,z]/I(V) es un dominio, entonces I(V) es primo. Sea φ morfismo natural, luego claramente $\operatorname{Im} \varphi=\mathbb{C}[x]$ y $I(V)\subseteq \ker \varphi$, sea $p\in \ker \varphi$, luego $p(x,x^2,x^3)=0$, pero eso significaría que $p\in I(V)$, por lo que $I(V)=\ker \varphi$. Luego se sabe que $\mathbb{C}[x]$ es euclidiano, por lo que particularmente es un dominio. Entonces I(V) es primo y V es irreducible.

Problema 1.37:

Sea k un cuerpo cualquiera, $F \in k[x]$ un polinomio de grado n > 0. Muestre que los residuos $\overline{1}, \overline{x}, ..., \overline{x}^{n-1}$ forman una base de k[x]/(F) sobre k.

Solución problema 1.37: Sea $F(x) = \sum_{i=0}^{n} a_i x^i$ y φ es morfismo natural de k[x] a k[x]/(F), luego se quiere que k[x]/(F) sea un espacio vectorial sobre k tal que dim k[x]/(F) = n. Viendo F en k[x]/(F) se puede notar que $\overline{x}^n = -\varphi(a_n)^{-1} \sum_{i=0}^{n-1} \varphi(a_i) \overline{x}^i$, por lo que \overline{x}^n se puede escribir en la base propuesta. Claramente $\overline{x}^{n+k} = -\varphi(a_n)^{-1} \sum_{i=0}^{n-1} \varphi(a_i) \overline{x}^{i+k}$, por lo que para $j \geq n$ \overline{x}^j se puede escribir en la base propuesta, si $j \geq n$ \overline{x}^j se puede escribir en la base propuesta. Con esto se tiene que para todo $G \in k[x]$ \overline{G} se puede escribir en la base propuesta, como φ es sobreyectivo, todo elemento en k[x]/(F) se puede escribir en la base propuesta, cumpliendo lo pedido.

Problema 1.45:

Sea R un subanillo de S, S un subanillo de T.

- (a) Si $S = \sum Rv_i, T = \sum Sw_j$, muestre que $T = \sum Rv_iw_j$.
- (b) Si $S = R[v_1, ..., v_n], T = S[w_1, ..., w_m],$ muestre que $T = R[v_1, ..., v_n, w_1, ..., w_m].$
- (c) Si R, S, T son cuerpos, y $S = R(v_1, ..., v_n), T = S(w_1, ..., w_m)$, demuestre que $T = R(v_1, ..., v_n, w_1, ..., w_m)$.

Solución problema 1.45:

- (a) Sea $u \in T$, luego $u = \sum_{j=1}^{n} \alpha_{j} w_{j}$ donde los $\alpha_{j} \in S$, como están en S, se pueden escribir de la siguiente forma $\alpha_{j} = \sum_{i=1}^{m} \beta_{i,j} v_{i}$, juntando ambas cosas: $u = \sum_{j=1}^{n} \sum_{i=1}^{m} \beta_{i,j} w_{j} v_{i}$ donde $\beta_{i,j} \in R$, por ende $T = \sum R v_{i} w_{j}$.
- (b) Asumamos que $T \subsetneq R[v_1, ..., v_n, w_1, ..., w_m]$, eso implica que existe $a \in T$ tal que $a \notin R[v_1, ..., v_n, w_1, ..., w_m]$. Como $a \in T$, a se puede escribir en base a los w_i y elementos en S, pero cada elemento en S se puede escribir en base a los v_j y elementos en R, por lo que a se puede escribir en base a los w_i , los v_j y elementos en R, pero eso significaría que $a \in R[v_1, ..., v_n, w_1, ..., w_m]$, una contradicción.
- (c) Es análogo a la (b), usando la definición de extensión de cuerpo en vez de la de anillo.

Problema 1.49:

Sea k un cuerpo, L = k(x) el cuerpo de funciones racionales en una variable sobre k.

- (a) Muestre que todo elemento de L que es integral sobre k[x] ya esta en k[x]. (Hint: Si $z^n + a_1 z^{n-1} + ... = 0$, tome z = F/G, con F, G coprimos. Entonces $F^n + a_1 F^{n-1} + ... = 0$, por lo que G divide a F.)
- (b) Muestre que no hay un elemento no cero $F \in k[x]$ tal que para todo $z \in L$, $F^n z$ es integral sobre k[x] para algún n > 0.

Solución problema 1.49:

- (a) Sea $a \in k(x)$ tal que $a \notin k[x]$ y a es integral sobre k[x], luego sea p(y) el polinomio mónico en k[x][y] tal que p(a) = 0. Se puede escribir a = F/G donde $F, G \in k[x]$ y son coprimos. Luego $p(F/G) = (F/G)^n + \sum_{i=0}^{n-1} \alpha_i \left(\frac{F}{G}\right)^i = 0$, se toma $G^n \cdot p(F/G) = F^n + \sum_{i=0}^{n-1} \alpha_i F^i G^{n-i} = 0$, se puede escribir $F^n = -\sum_{i=0}^{n-1} \alpha_i F^i G^{n-i}$, y se nota que $G \mid F^n$ por lo que $G \mid F$, pero G, F son coprimos, una contradicción, con eso tenemos que no existe $a \in k(x) \setminus k[x]$ que sea integral.
- (b) Por (a), se sabe que si $a \in L$ integral sobre k[x] entonces esta $a \in k[x]$. Ahora, se asume que existe F y n > 0 tal que para todo $z \in L$ F^nz es integral, específicamente entonces cumple para $1/F^{n+1}$, entonces $F^n/F^{n+1} = 1/F$ es integral, pero entonces $1/F \in k[x]$, lo que claramente es una contradicción.

6

Problema 1.51:

Sea k un cuerpo, $F \in k[x]$ un polinomio irreducible mónico de grado n > 0.

- (a) Muestre que L = k[x]/(F) es un cuerpo, y si a es el residuo de x en L, entonces F(a) = 0.
- (b) Suponga que L' es una extensión de cuerpo de $k, y \in L'$ tal que F(y) = 0. Demuestre que el homorfismo de k[x] a L' que toma x a y, induce un isomorfismo de L con k(y).
- (c) Con L', y como en (b), suponga que $G \in k[x]$ y G(y) = 0. Muestre que F divide a G.
- (d) Muestre que $F = (x a)F_1, F_1 \in L[x]$

Solución problema 1.51:

(a) Como F es irreducible, entonces (F) es maximal, y se sabe que un anillo cocientado por un ideal maximal es un cuerpo. Sea $a = \overline{x}$, luego $\overline{F(x)} = 0$, se puede operar $\overline{F(x)}$ de la siguiente forma

$$\overline{F(x)} = \overline{\sum_{i=0}^{n} b_i x^i}$$

$$= \sum_{i=0}^{n} \overline{b_i x^i}$$

$$= \sum_{i=0}^{n} \overline{b_i} \overline{x^i}$$

$$= \sum_{i=0}^{n} \overline{b_i} \cdot \overline{x}^i$$

Ya que $b_i \in k$, entonces $\overline{b_i} = b_i$, por lo que $\overline{F(x)} = \sum_{i=0}^n b_i a^i = 0$, con lo que a es una raíz.

(b) Se denota φ el homorfismo, de k[x] a L' tal que $x \mapsto y$, por primer teorema de isomorfismo Im $\varphi \simeq k[x]/\ker \varphi$, se nota que si Im $\varphi = k(y)$ y $\ker \varphi = (F)$ tenemos lo pedido. Trivialmente Im $\varphi \subseteq k(y)$, luego se sabe por una parte del 1.37 que la base de k(y) sobre k tiene a lo más el grado de F elementos que la generan, y más específicamente, todo elemento α de k(y) se puede escribir de la siguiente forma:

$$\alpha = \sum_{i=0}^{n} \alpha_i y^i$$

Donde $n = \dim k(y)$, luego sea $P(x) = \sum_{i=0}^{n} \alpha_i x^i$, claramente $\varphi(P) = \alpha$, por lo que $\alpha \in \operatorname{Im} \varphi$, por lo que $\operatorname{Im} \varphi = k(y)$. Se puede ver que $\ker \varphi \subseteq (F)$, sea $P \in (F)$, luego $P = \alpha \cdot F$ donde $\alpha \in k[x]$, entonces $\varphi(P) = \varphi(\alpha) \cdot \varphi(F) = \varphi(\alpha) \cdot 0 = 0$, por lo que $\ker \varphi = (F)$. Con esto se tiene lo que se quería.

- (c) Ya que G(y) = 0, $G \in \ker \varphi = (F)$, por lo que $F \mid G$.
- (d) Como $a \in L$, F(a) = 0 y $F \in k[x] \subset L[x]$, entonces $(x a) \mid F$, más aún existe $F_1 \in L[x]$ tal que $F_1(x) \cdot (x a) = F(x)$.

Problema 1.54:

Sea R un dominio con K su cuerpo cociente, y sea L una extensión finita y algebraica de K

- (a) Para todo $v \in L$, demuestre que existe $a \in R$ distinto a cero tal que av es integral sobre R
- (b) Muestre que hay una base $v_1, ..., v_n$ para L sobre K (como un espacio vectorial) tal que cada v_i es integral sobre R.

Solución problema 1.54:

(a) Notemos que como L es una extensión finita, por lo que existen $x_1, ..., x_n$ tal que $K(x_1, ..., x_n) = L$. Se nota que si todos los x_i cumplen la propiedad pedida y además la suma y la multiplicación de elementos que cumplen la propiedad, tambien la cumplen, tenemos lo pedido. Se observa $L = K(x_i)$, sea $1, x_i, x_i^2, ..., x_i^k$ tal que sean l.i. y que si se añade x_i^{k+1} son l.d., esto se logra ya que L es una extensión finita sobre K. Luego x_i^{k+1} se puede escribir en la base:

$$x_i^{k+1} = -\sum_{j=0}^k a_j x_i j i \tag{1}$$

Con esto se nota que hay un polinomio mónico $p(x) = x^{k+1} + \sum_{j=0}^k a_j x^j$, tal que x_i es raíz. Por el problema 1.51, p es irreducible (si no lo fuera existiría un cuerpo estrictamente entre L y K). Se nota que los $a_j \in K$, por lo que cada $a_j = \frac{b_j}{c_j}$ con los $b_j, c_j \in R$, sea $c = \prod_{j=0}^k c_j$, luego $c \cdot p \in R[x]$ y esto claramente nos lleva a concluir que cx_i es integral. Por lo que todos para todo x_i existe $a \in R$ tal que ax_i es integral. Sean $x, y \in L$ tal que cumplen que $\exists b, c \in R$ tal que bx, cy son integrales sobre R. Se

recuerda el coralario de la proposición 3^2 , con lo que como bx, cy son integrales, bcxy es integral y bc(x+y) = cbx + bcy es integral, por lo que tenemos lo que queríamos.

(b) Por lo visto en (a), se puede notar que las bases de $K(x_i)$ se pueden extender con elementos de las otras bases, como los x_i son integrales, las bases también lo son (son potencias de los x_i)

 $^{^2{\}rm Los}$ elementos integrales forman un subanillo