

1149908_1.TXT
SEQUENCE LISTING

<110> The Government of the United States of America, as
represented by the Secretary, Department of Health and Human
Services, Office of Technology Transfer, National Institutes of
Health
Becerra, S. Patricia
Notari, Luigi
Laborda, Jorge
Martinez, Julio Escribano

<120> PEDF-R RECEPTOR AND USES

<130> NIHA-0238

<140> 10/566,540

<141>

<150> PCT/US2004/025560

<151> 2004-08-05

<150> US 60/579,177

<151> 2004-06-12

<150> US 60/493,713

<151> 2003-08-07

<160> 35

<170> PatentIn version 3.5

<210> 1

<211> 2122

<212> DNA

<213> Homo sapiens

<400> 1		
ggcacgaggg cggccccagt cagacgcagg cagccccaaa gcctgaacag gcagggccag	60	
accaggcttc ttgcctccg ccagcgggaa ccccgagcta gagccgcagc gggacctgcc	120	
cggccccccgg ctccagcggag cgagcggcga gcaggccggct cacagaggcc tggccgcccc	180	
cggAACCCGGG ggccggcggg ccggccggcgc gatgtttccc cgcgagaaga cgtggaaacat	240	
ctcggttcgcg ggctcgccgt tcctcgccgt ctactacgtc ggctggccct cctgcctccg	300	
cgagcacgcg cccttcctgg tgGCCAACGC cacgcacatc tacggcgccct cggccggggc	360	
gctcacggcc acggcgctgg tcaccggggt ctgcctgggt gaggctggtg ccaagttcat	420	
tgaggatatct aaagaggccc ggaagcggtt cctggggccc ctgcacccct ccttcaacct	480	
ggtaaagatc atcccgagtt tcctgctgaa ggtctgcct gctgtatagcc atgagcatgc	540	
cagtgggcgc ctgggcattct ccctgaccgc cgtgtcagac ggcgagaatgc tcattatatc	600	
ccacttcaac tccaaggacg agctcatcca ggcctaatgtc tgacgcgggtt tcatacccggt	660	
gtactgtggg ctcatccctca ccctccctca ggggggtgcgc tacgtggatg gtggcatttc	720	
agacaacctg ccactctatg agcttaagaa caccatcaca gtgtccccct tctcgccgca	780	

1149908_1.TXT	
gagtgacatc	tgtccgcagg acagctccac caacatccac gagctgcggg tcaccaacac
cagcatccag	ttcaacctgc gcaacctcta ccgcctctcc aaggccctct tcccgcggaa
gccccctggtg	ctgcgagaga ttttgcagca ggataccgg gatggctgc gcttcgtca
gcggAACGGC	ctccctgaacc ggcccaaccc cttgtcgccg ttggcccccgg cccgcggccca
cgccccagag	gacaaggacc aggcgttggaa gagcgcggaa gcggaggatt actcgagct
gccggggagaa	gatcacatcc tggagcacct gcccggccgg cttaatgagg cccgtctggaa
ggccctgcgt	gagccacggg acctgtctac caccctctcc aacatgtgc ctgtcggtt
ggccacggcc	atgtatgtgc cttacacgtc gccgtggag agcgtctgt ctttaccat
ccgcttgcgt	gagtggctgc ccgcgttcc cgaggacatc cggtggatga aggagcagac
gggcgcgtc	tgccgttggacc tggtgtatgc cgccaaaggaa aagctggca ggcacccgtcc
ctccaggctg	ccggagcagg tggagctgcg ccgcgtccag tcgtggcg tccgtccgt
gtccctgcgc	gcctacagag aggcactgtcc cggtggatgc cgcaacaacc tctcgctggg
ggacgcgtg	gccaagggtggg aggagtgcga ggcgcgtcg ctgtcgccgc tcttgcac
caacgtggcc	ttcccgcccg aagctctgcg catgcgcga cccgcggacc cggtcccgcc
cccccggac	ccagcatccc cgacgttccca gctggccggg cctgtggccct tggtgac
ccctgtccc	gaggcccggc ccgtgtatgg ggccctgggg ctgtgagacc ccgcacctt
cgaggaaccc	tgccgttggac gcctccattt ccactgcgcgt gtgagatgag gggactcaca
gttgccaaga	gggggtttttt ccgtggccccc cctcgccagc cactcaccag ctgtatgcac
tgagggggaa	gggtttccaca cccctccctt gggccgttga ggcccgccgc acctgtgcct
taatcttccc	tccctgtgc tgcccgagca cccctccctt ccctttactt ctgagaactt
tgcagctgtcc	cttccctccc cgttttcat ggctgttga aatatgtgtg tgaagaatta
tttattttcg	ccaaaggcaca tgataataat gctgcagccc aaaaaaaaaaaa aaaaaaaaaaa
aaaaaaaaaa	aaaaaaaaaa aa

<210> 2
<211> 1515
<212> DNA
<213> Homo sapiens

<400> 2	atgtttcccc gcgagaagac gtggaaacatc tcgttgcgg gctgcggctt cctcgccgtc	60
	tactacgtcg gcgtggccctc ctgcctccgc gagcacgcgc ctttgcgtt ggccaaacgc	120
	acgcacatct acggcgccctc ggccggggcg ctacggcca cggcgttgcgtt caccgggttc	180
	tgcctgggtg aggtgttgc caagtttgcgtt gaggatctt aagaggcccg gaagcggttc	240
	ctggggccccc tgaccccttc ctcaacccgtt gtaaagatca tccgcgtttt cctgtgttgc	300

1149908_1.TXT

gtcctgcctg	ctgatagcca	ttagcatgcc	agtggcgcc	tggcatctc	cctgacccgc	360
gtgtcagacg	gcgagaatgt	cattatatcc	cacttcaact	ccaaggacga	gctcatccag	420
gccaatgtct	gcagcggtt	catccccgt	tactgtggc	tcatccctcc	ctcccctccag	480
ggggtcgcct	acgtggatgg	tggcattca	gacaacctgc	cactctatga	gcttaagaac	540
accatcacag	tgtccccctt	ctcggcggag	agtgacatct	gtccgcagga	cagctccacc	600
aacatccacg	agctgcgggt	caccaacacc	agcatccagt	tcaacctgcg	caacctctac	660
cgcctctcca	aggcccttt	ccgcggag	ccccgggtc	tgcagagat	gtgcaggcag	720
ggataccggg	atggcctcg	ctttctgcag	cggaaaggcc	tctgtaaaccg	gccaaccccc	780
tttgtggcgt	tgccccccgc	ccgccccac	ggcccagagg	acaaggacca	ggcagtggag	840
agcgcaccaag	cggaggattt	ctcgcagct	ccggagaag	atcacatct	ggagcacctg	900
ccgcggcgc	tcaatgaggc	cctgtggag	gcctgcgtgg	agccacccgg	cctgtgacc	960
accctctcca	acatgctgcc	tgtgcgtctg	gccacggcca	tgtgtgtcc	ctacacgctg	1020
ccgcgtggaga	gcgcctctgc	cttcaccatc	cgcttgcgtgg	agtggctgcc	cgacgttccc	1080
gaggacatcc	ggtgtggatgaa	ggagcagacg	ggcagcatct	gccagttacct	ggtgatgcgc	1140
gccaagagga	agctggggcag	gcacctgccc	tccaggctgc	cgaggcaggt	ggagctgcgc	1200
cgcgtccagt	cgtgtccgtc	cgtgcgcgt	tcctgcgcgg	cctacagaga	ggcactgccc	1260
ggctggatgc	gcaacaacct	ctcgctgggg	gacgcgtgg	ccaagtggga	ggagtgcag	1320
cgcgcgcgtc	tgctcggcct	cttctgcacc	aacgtggct	tccggccgaa	agctctgcgc	1380
atgcgcgcac	ccggccgaccc	ggctccgc	ccgcggacc	cagcatcccc	gcagcaccag	1440
ctggccgggc	ctgccccctt	gctgagcacc	cctgtccccc	aggccggcc	cgtgtatggg	1500
gcctggggc	tgtga					1515

<210> 3
<211> 504
<212> PRT
<213> Homo sapiens
<400> 3

Met Phe Pro Arg Glu Lys Thr Trp Asn Ile Ser Phe Ala Gly Cys Gly
1 5 10 15

Phe Leu Gly Val Tyr Tyr Val Gly Val Ala Ser Cys Leu Arg Glu His
20 25 30

Ala Pro Phe Leu Val Ala Asn Ala Thr His Ile Tyr Gly Ala Ser Ala
35 40 45

Gly Ala Leu Thr Ala Thr Ala Leu Val Thr Gly Val Cys Leu Gly Glu
Page 3

50

55

60

Ala Gly Ala Lys Phe Ile Glu Val Ser Lys Glu Ala Arg Lys Arg Phe
 65 70 75 80

Leu Gly Pro Leu His Pro Ser Phe Asn Leu Val Lys Ile Ile Arg Ser
 85 90 95

Phe Leu Leu Lys Val Leu Pro Ala Asp Ser His Glu His Ala Ser Gly
 100 105 110

Arg Leu Gly Ile Ser Leu Thr Arg Val Ser Asp Gly Glu Asn Val Ile
 115 120 125

Ile Ser His Phe Asn Ser Lys Asp Glu Leu Ile Gln Ala Asn Val Cys
 130 135 140

Ser Gly Phe Ile Pro Val Tyr Cys Gly Leu Ile Pro Pro Ser Leu Gln
 145 150 155 160

Gly Val Arg Tyr Val Asp Gly Gly Ile Ser Asp Asn Leu Pro Leu Tyr
 165 170 175

Glu Leu Lys Asn Thr Ile Thr Val Ser Pro Phe Ser Gly Glu Ser Asp
 180 185 190

Ile Cys Pro Gln Asp Ser Ser Thr Asn Ile His Glu Leu Arg Val Thr
 195 200 205

Asn Thr Ser Ile Gln Phe Asn Leu Arg Asn Leu Tyr Arg Leu Ser Lys
 210 215 220

Ala Leu Phe Pro Pro Glu Pro Leu Val Leu Arg Glu Met Cys Lys Gln
 225 230 235 240

Gly Tyr Arg Asp Gly Leu Arg Phe Leu Gln Arg Asn Gly Leu Leu Asn
 245 250 255

Arg Pro Asn Pro Leu Leu Ala Leu Pro Pro Ala Arg Pro His Gly Pro
 260 265 270

Glu Asp Lys Asp Gln Ala Val Glu Ser Ala Gln Ala Glu Asp Tyr Ser
 275 280 285

Gln Leu Pro Gly Glu Asp His Ile Leu Glu His Leu Pro Ala Arg Leu
 290 295 300

1149908_1.TXT

Asn Glu Ala Leu Leu Glu Ala Cys Val Glu Pro Thr Asp Leu Leu Thr
 305 310 315 320

Thr Leu Ser Asn Met Leu Pro Val Arg Leu Ala Thr Ala Met Met Val
 325 330 335 340

Pro Tyr Thr Leu Pro Leu Glu Ser Ala Leu Ser Phe Thr Ile Arg Leu
 340 345 350

Leu Glu Trp Leu Pro Asp Val Pro Glu Asp Ile Arg Trp Met Lys Glu
 355 360 365

Gln Thr Gly Ser Ile Cys Gln Tyr Leu Val Met Arg Ala Lys Arg Lys
 370 375 380

Leu Gly Arg His Leu Pro Ser Arg Leu Pro Glu Gln Val Glu Leu Arg
 385 390 395 400

Arg Val Gln Ser Leu Pro Ser Val Pro Leu Ser Cys Ala Ala Tyr Arg
 405 410 415

Glu Ala Leu Pro Gly Trp Met Arg Asn Asn Leu Ser Leu Gly Asp Ala
 420 425 430

Leu Ala Lys Trp Glu Glu Cys Gln Arg Gln Leu Leu Leu Gly Leu Phe
 435 440 445

Cys Thr Asn Val Ala Phe Pro Pro Glu Ala Leu Arg Met Arg Ala Pro
 450 455 460

Ala Asp Pro Ala Pro Ala Pro Ala Asp Pro Ala Ser Pro Gln His Gln
 465 470 475 480

Leu Ala Gly Pro Ala Pro Leu Leu Ser Thr Pro Ala Pro Glu Ala Arg
 485 490 495

Pro Val Ile Gly Ala Leu Gly Leu
 500

<210> 4
 <211> 404
 <212> DNA
 <213> Homo sapiens

<400> 4
 cagcggaaacg gcctcctgaa ccggcccaac cccttgctgg cgttgcccc cggccggccc 60
 cacggcccaag aggacaagga ccaggcagtg gagagcgccc aagcggagga ttactcgag 120
 ctggccggag aagatcacat cctggagcac ctggccgccc ggctaatga ggcctgtctg 180

1149908_1.TXT

gaggcctgcg	tggagccac	ggacctgctg	accaccctct	ccaacatgct	gcctgtgcgt	240
ctggcacgg	ccatgatggt	gccctacacg	ctgcccgtgg	agagcgctct	gtccctcacc	300
atccgcttgc	tgagatggct	gccccacgtt	cccgaggaca	tccggtgat	gaaggagcag	360
acgggcagca	tctgcccagta	cctggtgatg	cgcgccaaga	ggaa		404

<210> 5
<211> 134
<212> PRT
<213> Homo sapiens

<400> 5

Gln	Arg	Asn	Gly	Leu	Leu	Asn	Arg	Pro	Asn	Pro	Leu	Leu	Ala	Leu	Pro
1				5			10						15		

Pro	Ala	Arg	Pro	His	Gly	Pro	Glu	Asp	Lys	Asp	Gln	Ala	Val	Glu	Ser
			20				25						30		

Ala	Gln	Ala	Glu	Asp	Tyr	Ser	Gln	Leu	Pro	Gly	Glu	Asp	His	Ile	Leu
35						40					45				

Glu	His	Leu	Pro	Ala	Arg	Leu	Asn	Glu	Ala	Leu	Leu	Glu	Ala	Cys	Val
50						55					60				

Glu	Pro	Thr	Asp	Leu	Leu	Thr	Thr	Leu	Ser	Asn	Met	Leu	Pro	Val	Arg
65						70					75			80	

Leu	Ala	Thr	Ala	Met	Met	Val	Pro	Tyr	Thr	Leu	Pro	Leu	Glu	Ser	Ala
						85			90				95		

Leu	Ser	Phe	Thr	Ile	Arg	Leu	Leu	Glu	Trp	Leu	Pro	Asp	Val	Pro	Glu
				100				105					110		

Asp	Ile	Arg	Trp	Met	Lys	Glu	Gln	Thr	Gly	Ser	Ile	Cys	Gln	Tyr	Leu
				115				120				125			

Val	Met	Arg	Ala	Lys	Arg
			130		

<210> 6
<211> 29
<212> DNA
<213> Artificial

<220>
<223> Primer 1 for the construction of p12

<400>	6	caccatgcag	cggAACGGCC	tcctgaaacc
-------	---	------------	------------	------------

1149908_1.TXT

<210> 7
<211> 25
<212> DNA
<213> Artificial

<220>
<223> Primer 2 for the construction of p12

<400> 7
ctatgttcctc ttggcgccga tcacc 25

<210> 8
<211> 22
<212> DNA
<213> Artificial

<220>
<223> Primer 3 for the construction of p12

<400> 8
gttccctttg gcgcgcatca cc 22

<210> 9
<211> 25
<212> DNA
<213> Artificial

<220>
<223> Primer 11 for the construction of R1 expression vectors

<400> 9
ccacatgttt ccccgcgaga agacg 25

<210> 10
<211> 25
<212> DNA
<213> Artificial

<220>
<223> Primer 12 for the construction of R1 expression vectors

<400> 10
ctacagcccc agggccccga tcacg 25

<210> 11
<211> 22
<212> DNA
<213> Artificial

<220>
<223> Primer 13 for the construction of R1 expression vectors

<400> 11
cagccccagg gccccgatca cg 22

<210> 12

1149908_1.TXT

<211> 1965
<212> DNA
<213> Mus musculus

<400> 12	
ggagacccca aggtatcgag actgcgggac ccactgccc caggacatcg agtcacgatg	60
ttcccgaggg agaccaagtg gaacatctca ttgcgtggct gcggccttct cggggctac	120
cacattggcg tggccctctg cctccgttag cacgcgcctc tcctgggtgc caacgcact	180
cacatctacg gaggctcgcc aggggcgtct accgcacag cgctggtcac tggggcctgc	240
ctgggtgaag caggtccaa cattatttag gtgtccaagg aggccggaa gcggctctg	300
ggtcctctgc atccctcctt caacctggtg aagaccatcc gtggctgtct actaaagacc	360
ctgcctgtcg attgcatga gcgcgcataa ggacgcctgg gcacatccct gactcgttgt	420
tcagacggag agaacgtcat catatcccc tttagctca aggatgagct catccaggcc	480
aatgtctgcg acacatttat cccgggtgtac tggccctca ttccctctac cctccaagggg	540
gtgcgcatacg tggatggcg catttcagac aacttgcac ttatgagct gaagaatacc	600
atcacagttt ccccatatttc agggagagt gacatctgc ctcaggacag ctccaccaac	660
atccacgagc ttgcgtcac caacaccagc atccagttca accttcgca tcttaccgc	720
ctctcgaagg ctctttccc gccagagccc atggcctcc gagagatgtg caaacaggc	780
tacagagatg gacttcgatt ctttaggagg aatggcctac tgaaccaacc caaccctttg	840
ctggcactgc ccccgattgtt cccccaggaa gaggatgcag aggaagctgc tgggtggag	900
gagagggtcg gagaggagga tcaattgcag ctttataaaaa aagatcgaaat tctagagcac	960
ctgcctgcca gactcaatga gcccctgtg gaggcctgtg tggaaacaaa ggacctgtat	1020
accacccctt ccaacatgtt accagtgcgc ctggcaacgg ccatgatgtt gcctataact	1080
ctggcgcgtgg agagtgcagt gtccctcacc atccgtttgt tggagtggct gcctgtatgtc	1140
cctgaagata tccgggtggat gaaagagcg acgggttagca tctgcgcgtt tctgggtatgt	1200
agggccaaga gggaaattggg tgaccatgtt cttccagac tggctgtgc ggtggactgt	1260
cgcacgtgcc agtctctgc ctgtgtccca ctgtttgtcg ccacatgttgc tgaggcccta	1320
cccaactggg tacgaaacaa cctctcactg ggggacgcgc tggccaaatg ggaagaatgc	1380
cagcgtcagc tactgtgttgc accaatgtgg cttcccgcc ggatgccttgc	1440
cgcacgtgcgc caccgtcccg cccactgcgc gcatgttgc ccacccaca ggatccacact	1500
ggccctccgc ctgtgtgaga atcaccatcc ccacatgcgc cggctaccag ccaagctcca	1560
agttgtctgttgc ccccaactaaaggagcccg ggggtggaaaca agatctgtc tggccggctt	1620
ctccccctta catgtgtgg aatgaggaca taggacccctg cacagctgc agtggcttt	1680
cgtatgtaaa cccatccacca gcccactact atgctactcc tgggtggag ggatggggag	1740

1149908_1.TXT
tcggccctccc ccggagccca cagagccctc ccccggtcacg tcacctgtgc cttactcctg 1800
cccaccacct ttcagtgcg gggcgtct taagaactcc acatctgtg ctgctccctg 1860
gtgtccaagt ttccctgcg agtgtgtgaa gaattattta ttttgc当地 agcagatcta 1920
ataaaagcca cagctcagct tctgccttcc tcacttctgc atgct 1965

<210> 13
<211> 1461
<212> DNA
<213> Mus musculus

<400> 13
atgttccccga gggagaccaa gtgaaacatc tcattcgctg gctgcggctt cctcggggtc 60
taccacatttgcgttgcctc ctgcctccgt gagcacgcgc ccttcctgtt ggccaacgc 120
actcacatctt acggaggccctc ggcaggggcg ctgcaccgc当地 cagcgctgtt cactggggcc 180
tgccctgggtt aaggcagggtgc caacatttattt gagggtgtccca aggaggcccg gaagcgggttc 240
ctgggtccctc tgcatccctc ctgcaccgtt gtgaaagacca tccgtggctg tctactaaag 300
accctgcgtt ctgttgc当地 tgagcgc当地 aatggacgc当地 tggcatctt cctgactcgt 360
gtttcagacg gagagaacgtt catcatatcc cacttttagt ccaaggatga gctcatccag 420
gc当地aatgtctt gc当地agcattt tatcccggtt tactgtggcc tcatccctcc taccctccaa 480
gggggtgc当地 atgttgc当地 cggcatttca gacaacttgc cactttatga gctgaagaat 540
accatcacag tgc当地ccctt ctgc当地ggc当地 agtgc当地atctt gccc当地tccaggatc当地 cagctccacc 600
aacatccacgc agtgc当地cgctt caccaacacc agcatccaggatc tcaaccctcg当地 caatctctac 660
cgccctctc当地 aggtctctt cccgccc当地aggatc cccatggtcc tccgagagat gtgcaaacag 720
ggctacagag atggacttgc attccctttagt aggaatggcc tactgaaccca acccaaccctt 780
ttgctggc当地 acgttccctt当地 agtgc当地ccctt当地 gagaggatgc当地 cagagggatc当地 tgctgtgggt 840
gaggagaggg ctggagagga ggtcaatttgc当地 cagcccttata gaaaagatgc当地 aattcttagag 900
cacctgc当地 ctgc当地aggatc当地 tggaggccctt ctggaggccctt gtgttggaaacc当地 aaaggacctg 960
atgaccaccc ttccaaatc gtc当地ccctt当地 agtgc当地ccctt当地 accatcccgctt tggtggagatc gctgc当地ctt 1020
actctgc当地 cggagatgc当地 agtgc当地ccctt当地 accatcccgctt tggtggagatc gctgc当地ctt 1080
gtccctgtt当地 atatcccggtt当地 gatgaaagatc当地 gagacgggtt当地 gcatctgc当地 gatctgtt当地 1140
atgaggggccca agaggaaattt gggtaccatc ctgc当地ccctt当地 gactgtctgatc gcaagggtt当地 1200
ctgc当地acgtt当地 cccaggatctt当地 gccc当地tctgtt当地 ccactgtctt当地 gccc当地accctt当地 cagtgaggcc 1260
ctacccaaactt gggtacgaaa caacccctt当地 ctggggggacg cgtggcccaa gtggaaagaa 1320
tgccagcgtt当地 agtactgtt当地 gggtctt当地 tgc当地ccctt当地 tggtggccctt gccc当地gatgc当地 1380
ttgc当地cgatgc当地 gccc当地accctt当地 cagccccactt gccc当地cagatc当地 ctgc当地accctt当地 acaggatgc当地 1440

cctggccctcc cgcccttgctg a

<210> 14
<211> 486
<212> PRT
<213> Mus musculus

<400> 14

Met Phe Pro Arg Glu Thr Lys Trp Asn Ile Ser Phe Ala Gly Cys Gly
1 5 10 15

Phe Leu Gly Val Tyr His Ile Gly Val Ala Ser Cys Leu Arg Glu His
20 25 30

Ala Pro Phe Leu Val Ala Asn Ala Thr His Ile Tyr Gly Ala Ser Ala
35 40 45

Gly Ala Leu Thr Ala Thr Ala Leu Val Thr Gly Ala Cys Leu Gly Glu
50 55 60

Ala Gly Ala Asn Ile Ile Glu Val Ser Lys Glu Ala Arg Lys Arg Phe
65 70 75 80

Leu Gly Pro Leu His Pro Ser Phe Asn Leu Val Lys Thr Ile Arg Gly
85 90 95

Cys Leu Leu Lys Thr Leu Pro Ala Asp Cys His Glu Arg Ala Asn Gly
100 105 110

Arg Leu Gly Ile Ser Leu Thr Arg Val Ser Asp Gly Glu Asn Val Ile
115 120 125

Ile Ser His Phe Ser Ser Lys Asp Glu Leu Ile Gln Ala Asn Val Cys
130 135 140

Ser Thr Phe Ile Pro Val Tyr Cys Gly Leu Ile Pro Pro Thr Leu Gln
145 150 155 160

Gly Val Arg Tyr Val Asp Gly Gly Ile Ser Asp Asn Leu Pro Leu Tyr
165 170 175

Glu Leu Lys Asn Thr Ile Thr Val Ser Pro Phe Ser Gly Glu Ser Asp
180 185 190

Ile Cys Pro Gln Asp Ser Ser Thr Asn Ile His Glu Leu Arg Val Thr
195 200 205

Asn Thr Ser Ile Gln Phe Asn Leu Arg Asn Leu Tyr Arg Leu Ser Lys
Page 10

1149908_1.TXT

210

215

220

Ala Leu Phe Pro Pro Glu Pro Met Val Leu Arg Glu Met Cys Lys Gln
 225 230 235 240

Gly Tyr Arg Asp Gly Leu Arg Phe Leu Arg Arg Asn Gly Leu Leu Asn
 245 250 255

Gln Pro Asn Pro Leu Leu Ala Leu Pro Pro Val Val Pro Gln Glu Glu
 260 265 270

Asp Ala Glu Glu Ala Ala Val Val Glu Glu Arg Ala Gly Glu Glu Asp
 275 280 285

Gln Leu Gln Pro Tyr Arg Lys Asp Arg Ile Leu Glu His Leu Pro Ala
 290 295 300

Arg Leu Asn Glu Ala Leu Leu Glu Ala Cys Val Glu Pro Lys Asp Leu
 305 310 315 320

Met Thr Thr Leu Ser Asn Met Leu Pro Val Arg Leu Ala Thr Ala Met
 325 330 335

Met Val Pro Tyr Thr Leu Pro Leu Glu Ser Ala Val Ser Phe Thr Ile
 340 345 350

Arg Leu Leu Glu Trp Leu Pro Asp Val Pro Glu Asp Ile Arg Trp Met
 355 360 365

Lys Glu Gln Thr Gly Ser Ile Cys Gln Tyr Leu Val Met Arg Ala Lys
 370 375 380

Arg Lys Leu Gly Asp His Leu Pro Ser Arg Leu Ser Glu Gln Val Glu
 385 390 395 400

Leu Arg Arg Ala Gln Ser Leu Pro Ser Val Pro Leu Ser Cys Ala Thr
 405 410 415

Tyr Ser Glu Ala Leu Pro Asn Trp Val Arg Asn Asn Leu Ser Leu Gly
 420 425 430

Asp Ala Leu Ala Lys Trp Glu Glu Cys Gln Arg Gln Leu Leu Leu Gly
 435 440 445

Leu Phe Cys Thr Asn Val Ala Phe Pro Pro Asp Ala Leu Arg Met Arg
 450 455 460

1149908_1.TXT
Ala Pro Ala Ser Pro Thr Ala Ala Asp Pro Ala Thr Pro Gln Asp Pro
465 470 475 480

Pro Gly Leu Pro Pro Cys
485

<210> 15
<211> 1533
<212> DNA
<213> Rattus sp.

<400> 15
tcctctgcct cccggcacag cgtctccgccc tccgcccccg gggaccccaag gttatcaaga 60
ctgcgggacc cactgcccgc aggacgtcta attacgatgt tcccaaggga gaccaagtgg 120
aacatctcgt tcgctggctg cggctccctc ggggtctacc acattggagt ggcctcctgc 180
ctccgtgagc acgcgcctt cctgggtggcc aacgcactc acatctacgg agcctcgca 240
ggggcgccta cccgcacagc gctggtcact ggggcctgcc tggcgaagc gggtgccaac 300
attattgagg tgtccaagga ggctcggaaag cggttccctgg gtcccctgca cccctccttc 360
aacctggtaa agaccatccg tggttgtcta ctgaagaccc tgccctgctga ttgccacacg 420
cgtgcagcg gacgcctggg catctccctg actcgagttt cggatggaga gaatgtcatc 480
atatgcact ttagctcaa ggatgagttt atccaggcca atgtttcagc cacttttac 540
ccctgttact gtggcctcat tcctccctacc ctcaagggg tgccgtatgt ggatggcgcc 600
atttcagaca acttgcact ttatgagctg aagaataccca tcacagtgtc cccattctca 660
ggcgagatgtg acatctgccc acaagacgc tccaccaaca tccacgaact tcgtatcacc 720
aacaccagca tccattcaa cctgcgcata tcctaccgc tctcgaaggc tctctcccg 780
ccagagccca tggttctccg agagatgtgc aaacagggtc accgagatgg acttcatttc 840
cttaggagga atggcctact gaaccaaccc aacccttgc tgccactgccc cccgggttgcc 900
ccccaggaag aggtgcaga ggaagctgccc gtgactgagg agaggactgg aggggaggat 960
cgattcttag agcacctgcg tgccgactc aacgaggccc tgctggaggc ctgtgtggaa 1020
ccgaaagacc tgatgaccac ccttccaac atgctgcagc tgccctggc cactgcattg 1080
atggtaccct atactctgc actggagac gcagtgctt tcaccatccg tttgttggag 1140
tggtgcctg atgtccctga ggatatcccg tggtgaaagg agcagacagg tagcatctgc 1200
cagtatctgg tgatgagggc caagaggaaa ttgggtgacc atctacccttc cagactgtct 1260
gagcagggtgg agtgcggcg tgccctgtc ctgcgcgttgccactgtc ttgcgcacc 1320
tacagtgagg cactgcccac ctgggtacga aacaacctt cactggggga cgcgcgtggcc 1380
aagtggaaag aatgccagcg tcaagctactg ctgggtctct tctgcaccaa tggcccttc 1440
ccgcctgtatc ccttgcgcata ggcgcaccc gcccacaga tcctgcacc 1500

1149908_1.TXT

ccacaggatc catctggcct cccacccgc tga

1533

<210> 16
<211> 1437
<212> DNA
<213> Rattus sp.

<400> 16		
atgttcccaa gggagaccaa gtgaaacatc tcgttcgctg gctgcggctt cctcggggtc	60	
taccacattg gagtgccctc ctgcctccgt gagcacgcgc ccttccttgtt ggccaacgcgc	120	
actcacatct acggaggccctc ggcaggggcg cttaaccgcac cagcgctgtt cactggggcc	180	
tgccctggcgca aagcgggtgc caacattttt gagggtgtcca aggaggctcg gaagcgggtc	240	
ctgggtcccc tgacccctctt ctcaacctgtt gtaaagacca tccgtgggtt tctactgaag	300	
accctgcctg ctgatggcca cacgcgtgcc agcggacgc tggtcatctc cctgactcgat	360	
gtttcggatg gagagaatgtt catcatatcg cacttttagt ccaaggatgtt gcttatccag	420	
gccaatgtttt gcagcacattt tatccctgtt tactgtggcc tcattccctcc tacccttcaa	480	
gggggtgcgtt atgtggatgg cgccatattca gacaacttgc cactttatgtt gctgaagaat	540	
accatcacag tgcctccattt ctcaaggcgat agtgacatctt gcccacaaga cagctccacc	600	
aacatccacg aacttcgtat caccaacacc agcatccaat tcaacctgcg caatctctac	660	
cgcctctgaa aggtctctttt cccgcccagag cccatgggtt tccgagagat gtgaaacacag	720	
ggctaccggat atggacttgc attcccttagg aggtatggcc tactgaacca acccaacctt	780	
tttgtggcac tgccccccgtt tgcccccaggaa gaagaggatg cagagggaaatc tgccgtgact	840	
gaggagagga ctgggggggaa ggatcggtt cttagcacc tgccctggccatg actcaacccgg	900	
gcccgtctgg aggcctgtgtt ggaaccggaaa gacctgtatccatccatccatccatccatccat	960	
ccagtgcgc tggccacttgc catgtggatccatccatccatccatccatccatccatccatccat	1020	
tccatccatccatccatccatccatccatccatccatccatccatccatccatccatccatccatccat	1080	
aaggagcaga caggtagcat ctggccatgtt ctgggtatgtt gggccaaagag gaaattgggt	1140	
gaccatctac ctccagact gtcgtggatgtt gtcgtggatgtt gtcgtggatgtt gtcgtggatgtt	1200	
tctgtggcac tgcgtggatgtt gtcgtggatgtt gtcgtggatgtt gtcgtggatgtt gtcgtggatgtt	1260	
ctctactggggatcgatgtt gtcgtggatgtt gtcgtggatgtt gtcgtggatgtt gtcgtggatgtt	1320	
ctctactggggatcgatgtt gtcgtggatgtt gtcgtggatgtt gtcgtggatgtt gtcgtggatgtt	1380	
cccaaccggccatg caccatccatccatccatccatccatccatccatccatccatccatccatccat	1437	

<210> 17
<211> 478
<212> PRT
<213> Rattus sp.

1149908_1.TXT

<400> 17

Met Phe Pro Arg Glu Thr Lys Trp Asn Ile Ser Phe Ala Gly Cys Gly
1 5 10 15

Phe Leu Gly Val Tyr His Ile Gly Val Ala Ser Cys Leu Arg Glu His
20 25 30

Ala Pro Phe Leu Val Ala Asn Ala Thr His Ile Tyr Gly Ala Ser Ala
35 40 45

Gly Ala Leu Thr Ala Thr Ala Leu Val Thr Gly Ala Cys Leu Gly Glu
50 55 60

Ala Gly Ala Asn Ile Ile Glu Val Ser Lys Glu Ala Arg Lys Arg Phe
65 70 75 80

Leu Gly Pro Leu His Pro Ser Phe Asn Leu Val Lys Thr Ile Arg Gly
85 90 95

Cys Leu Leu Lys Thr Leu Pro Ala Asp Cys His Thr Arg Ala Ser Gly
100 105 110

Arg Leu Gly Ile Ser Leu Thr Arg Val Ser Asp Gly Glu Asn Val Ile
115 120 125

Ile Ser His Phe Ser Ser Lys Asp Glu Leu Ile Gln Ala Asn Val Cys
130 135 140

Ser Thr Phe Ile Pro Val Tyr Cys Gly Leu Ile Pro Pro Thr Leu Gln
145 150 155 160

Gly Val Arg Tyr Val Asp Gly Gly Ile Ser Asp Asn Leu Pro Leu Tyr
165 170 175

Glu Leu Lys Asn Thr Ile Thr Val Ser Pro Phe Ser Gly Glu Ser Asp
180 185 190

Ile Cys Pro Gln Asp Ser Ser Thr Asn Ile His Glu Leu Arg Ile Thr
195 200 205

Asn Thr Ser Ile Gln Phe Asn Leu Arg Asn Leu Tyr Arg Leu Ser Lys
210 215 220

Ala Leu Phe Pro Pro Glu Pro Met Val Leu Arg Glu Met Cys Lys Gln
225 230 235 240

1149908_1.TXT

Gly Tyr Arg Asp Gly Leu Arg Phe Leu Arg Arg Asn Gly Leu Leu Asn
 245 250 255

Gln Pro Asn Pro Leu Leu Ala Leu Pro Pro Val Val Pro Gln Glu Glu
 260 265 270

Asp Ala Glu Glu Ala Ala Val Thr Glu Glu Arg Thr Gly Gly Glu Asp
 275 280 285

Arg Ile Leu Glu His Leu Pro Ala Arg Leu Asn Glu Ala Leu Leu Glu
 290 295 300

Ala Cys Val Glu Pro Lys Asp Leu Met Thr Thr Leu Ser Asn Met Leu
 305 310 315 320

Pro Val Arg Leu Ala Thr Ala Met Met Val Pro Tyr Thr Leu Pro Leu
 325 330 335

Glu Ser Ala Val Ser Phe Thr Ile Arg Leu Leu Glu Trp Leu Pro Asp
 340 345 350

Val Pro Glu Asp Ile Arg Trp Met Lys Glu Gln Thr Gly Ser Ile Cys
 355 360 365

Gln Tyr Leu Val Met Arg Ala Lys Arg Lys Leu Gly Asp His Leu Pro
 370 375 380

Ser Arg Leu Ser Glu Gln Val Glu Leu Arg Arg Ala Gln Ser Leu Pro
 385 390 395 400

Ser Val Pro Leu Ser Cys Ala Thr Tyr Ser Glu Ala Leu Pro Asn Trp
 405 410 415

Val Arg Asn Asn Leu Ser Leu Gly Asp Ala Leu Ala Lys Trp Glu Glu
 420 425 430

Cys Gln Arg Gln Leu Leu Leu Gly Leu Phe Cys Thr Asn Val Ala Phe
 435 440 445

Pro Pro Asp Ala Leu Arg Met Arg Ala Pro Ala Ser Pro Thr Ala Thr
 450 455 460

Asp Pro Ala Thr Pro Gln Asp Pro Ser Gly Leu Pro Pro Cys
 465 470 475

<210> 18
 <211> 20
 <212> DNA

1149908_1.TXT

<213> Artificial
<220>
<223> PCR primer
<400> 18
gcagtttctt gctgaaggtc 20

<210> 19
<211> 20
<212> DNA
<213> Artificial
<220>
<223> PCR primer
<400> 19
gctcgatccctt ggagttgaag 20

<210> 20
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 20
tgtggcctca ttcctcctac 20

<210> 21
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 21
tgagaatggg gacactgtga 20

<210> 22
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 22
tatccgggtgg atgaaagagc 20

<210> 23
<211> 20
<212> DNA
<213> Artificial
<220>

1149908_1.TXT

<223> Primer

<400> 23

cagttccacc tgctcagaca

20

<210> 24

<211>

9

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 24

Asp Lys Thr His Thr Cys Pro Pro Cys
1 5

<210> 25

<211> 19

<212> DNA

<213> Artificial

<220>

<223> Forward primer

<400> 25

aaccccttgc tggcggtgc

19

<210> 26

<211> 19

<212> DNA

<213> Artificial

<220>

<223> Reverse primer

<400> 26

cccggtctgct ccttcatcc

19

<210> 27

<211> 292

<212> PRT

<213> Artificial

<220>

<223> adiponutrin

<400> 27

Tyr Asp Ala Arg Gly Ser Leu Phe His Ala Thr Arg His Leu Arg Asp
1 5 10 15Arg Met Leu Phe His Cys Val Gly Val Leu Ser Ile Pro Glu Gln Thr
20 25 30Leu Gln Val Leu Ser Asp Leu Val Arg Lys Ser Asn Ile Ile Phe Ser
Page 17

35

40

45

Phe Leu Gln Gly Cys Cys Asn Val Gln Leu Ile Lys Ile Leu Val Asp
 50 55 60

Phe Arg Val Val Asp Leu Cys Phe Ser Phe Arg Val Val Phe Ile Asp
 65 70 75 80

Ala Thr Pro Tyr Tyr Lys Val Lys Phe Leu His Val Asp Ile Lys Leu
 85 90 95

Leu Arg Leu Cys Thr Gly Leu Arg Phe Val Asp Leu Lys Gly Ile Leu
 100 105 110

Arg Leu Ala Phe Glu Glu Lys Ile Cys Gln Gly Lys Ser Ser Ser Glu
 115 120 125

Gly Met Asp Pro Glu Val Ala Met Pro Ser Trp Ala Asn Met Ser Leu
 130 135 140

Asp Ser Ser Ser Ala Ala Leu Arg Leu Glu Gly Asp Leu Leu His Leu
 145 150 155 160

Arg Ser Ile Leu Pro Trp Glu Ser Asp Thr Ser Pro Ala Thr Ser Glu
 165 170 175

Met Lys Asp Lys Gly Gly Tyr Met Ser Lys Ile Cys Leu Ile Ile Met
 180 185 190

Ser Tyr Val Leu Cys Val Ile Ala Ile Val Gln Val Thr Met Asp Val
 195 200 205

Leu Leu Gln Trp Val Ser Gln Val Phe Thr Arg Val Leu Cys Leu Leu
 210 215 220

Pro Ala Ser Arg Ser Gln Met Val Ser Ser Gln Gln Ala Ser Pro Cys
 225 230 235 240

Thr Pro Glu Asp Trp Cys Trp Thr Cys Pro Lys Gly Cys Pro Ala Glu
 245 250 255

Thr Lys Ala Glu Ala Thr Pro Arg Ser Ile Arg Ser Ser Asn Phe Phe
 260 265 270

Leu Gly Asn Lys Val Pro Ala Gly Ala Glu Gly Leu Ser Ser Phe Ser
 275 280 285

Glu Lys Ser Leu
290

<210> 28
<211> 41
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<400> 28

Gly	Leu	Leu	Asn	Arg	Pro	Asn	Pro	Leu	Leu	Ala	Leu	Pro	Pro	Ala	Arg
1			5					10						15	

Pro	His	Gly	Glu	Pro	Asp	Lys	Asp	Gln	Ala	Val	Glu	Ser	Ala	Gln	Ala
		20					25					30			

Glu	Asp	Tyr	Ser	Gln	Leu	Pro	Gly	Glu
35					40			

<210> 29
<211> 55
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<400> 29

Thr	Asn	Val	Ala	Phe	Pro	Pro	Glu	Ala	Leu	Arg	Met	Arg	Ala	Pro	Ala
1				5				10				15			

Asp	Pro	Ala	Pro	Ala	Pro	Ala	Asp	Pro	Ala	Ser	Pro	Gln	His	Gln	Leu
		20					25					30			

Ala	Gly	Pro	Ala	Pro	Leu	Leu	Ser	Thr	Pro	Ala	Pro	Glu	Ala	Arg	Pro
35					40						45				

Val	Ile	Gly	Ala	Leu	Gly	Leu
50					55	

<210> 30
<211> 14
<212> PRT
<213> Artificial

<220>
<223> R1

<400> 30

Asn	Ala	Thr	Ile	Tyr	Gly	Ala	Ser	Ala	Gly	Ala	Leu	Thr	Ala	

1

5

1149908_1.TXT
10

<210> 31
<211> 15
<212> PRT
<213> Artificial

<220>
<223> Patatain B2

<400> 31

Tyr Phe Asp Val Ile Gly Gly Thr Ser Thr Gly Gly Leu Leu Thr
1 5 10 15

<210> 32
<211> 15
<212> PRT
<213> Artificial

<220>
<223> CPLA2

<400> 32

Cys Ala Thr Tyr Val Ala Gly Leu Ser Gly Ser Thr Trp Tyr Met
1 5 10 15

<210> 33
<211> 20
<212> PRT
<213> Artificial

<220>
<223> R1

<400> 33

Ser Leu Gln Gly Val Arg Tyr Val Asp Gly Gly Ile Ser Asp Asn Leu
1 5 10 15

Pro Leu Tyr Glu
20

<210> 34
<211> 20
<212> PRT
<213> Artificial

<220>
<223> Patatin B2

<400> 34

Ala Arg Tyr Glu Phe Asn Leu Val Asp Gly Ala Val Ala Thr Val Gly
1 5 10 15

1149908_1.TXT

Asp Pro Ala Leu
20

<210> 35
<211> 19
<212> PRT
<213> Artificial

<220>
<223> CPLA2

<400> 35

Lys Ser Lys Lys Ile His Val Val Asp Ser Gly Leu Thr Phe Asn Leu
1 5 10 15

Pro Tyr Pro