Secture 1 ROLES OF STATISTICS IN ENGINEERING

Department of Mathematics

Võ Văn Nam

- Engineering Method and Statistical Thinking
- Collecting Engineering Data
- Mechanistic and Empirical Models
- Probability and Probability Models

1. Engineering Method and

Statistical Thinking

What is Statistics?

Statistics, a mathematical branch, encompasses *collecting*, *analyzing*, *interpreting*, *presenting*, and *organizing data*. It offers methods for extracting insights and drawing conclusions, playing a pivotal role in decision-making and predictions across science, business, economics, and the social sciences.

Key concepts in statistics include:

Descriptive Statistics involves the methods for summarizing and presenting data.

Inferential statistics allows conclusions and predictions to be made about a population based on a sample of data

Big picture of Statistics

Why is Statistics?

- Statistics allows you to understand a subject much more deeply.
- Statistics helps us make discoveries in science, make decisions based on data, and make predictions.
- Statisticians and statistical methods are important parts of pharmaceutical industry, social science, business practice, etc.

6 / 17

Statistical concepts

- **Population**: The entire set of individuals, items, or data of interest. It represents the complete group under study.
- Sample: A subset of the population selected for analysis. Samples are used to make inferences about the entire population.
- Data: consist of information coming from observations, counts, measurements, or responses.
- Parameter: a numerical measurement describing some characteristic of a population.
- Statistic: a numerical measurement describing some characteristics of a sample.

Engineering Method & Statistical Thinking

The **engineering**, **or scientific**, **method** is the systematic approach employed in defining and resolving these societal challenges through the effective application of scientific principles.

The **field of statistics** deals with the collection, presentation, analysis, and use of data to make decisions, solve problems, and design products and processes.

2. Collecting Engineering Data

Types of Data

- Qualitative Data (Categorical Data) Qualitative data represents categories or labels and cannot be measured numerically. It is divided into two subtypes:
 - Nominal Data e.g., colors, gender, types of fruits, or marital status.
 - Ordinal Data e.g., educational levels (high school, college, graduate), customer satisfaction ratings ("poor," "average," "good").
- Quantitative Data (Numerical Data) Quantitative data consists of numerical values that can be measured and counted. It is divided into two subtypes:
 - Discrete Data the number of cars in a parking lot, the number of students in a class, or the count of defects in a manufacturing process.
 - Continuous Data height, weight, temperature, or time.

Collecting data

- Retrospective study: Analyzing historical data to identify associations or patterns.
- Observational study: A researcher observes and measures characteristics of interest of part of a population.
- **Designed experiment**: A treatment is applied to part of a population and responses are observed.

3. Mechanistic and Empirical

Models

Mechanistic Models

Definition

Mechanistic models are based on a fundamental understanding of the underlying mechanisms and principles governing a system.

Examples:

- Newton's laws of motion in mechanics.
- Differential equations modeling chemical reactions.
- Mathematical models of fluid dynamics.

Empirical models

Definition

Empirical models, also known as phenomenological or statistical models, are based on observed data and correlations without necessarily considering the underlying mechanisms.

Examples:

- Regression models predicting sales based on marketing spending.
- Machine learning algorithms trained on historical data for predictive analytics.
- Statistical models for economic forecasting.

4. Probability

& Probability Models

Probability and Probability Models

Probability is a measure of the likelihood that a particular event will occur. It quantifies uncertainty and is expressed as a number between 0 and 1, where 0 indicates impossibility, 1 indicates certainty, and values in between represent degrees of likelihood. In other words, probability is a way of quantifying the chance or likelihood of different outcomes in a given situation.

Probability models are mathematical representations used to describe and quantify uncertain events or phenomena. These models help in understanding the likelihood of different outcomes in a given situation and are a fundamental component of probability theory.

