Вариационное исчисление: задачи, алгоритмы, примеры.

А.В. Ожегова, Р.Г. Насибуллин

Казань, 2013

Печатается по решению методической комиссии Института математики и механики им. Н.И. Лобачевского

Научный редактор

к.ф.-м.н., доцент Сурай Л.А.

Рецензенты

к.т.-н., доцент КГАСУ Горская Т.Ю. и к.ф.-м.н., доцент Тазюков Б.Ф.

Ожегова А.В., Насибуллин Р.Г.

Вариационное исчисление: задачи, алгоритмы, примеры: методическое пособие / А.В. Ожегова, Р.Г. Насибуллин – Казань: Казан. ун-т, 2013. – 40 с.

Данные методические указания предназначены для студентов 3, 4 курсов по специальностям/направлениям "математика", "математика и компьютерные науки", "механика", "механика и математическое моделирование" при изучении дисциплин "Вариационное исчисление и методы оптимизации", "Теория оптимизации", "Экстремальные задачи".

УДК 519.6, 517.97

ББК

© Казанский университет, 2013

© Ожегова А.В., Насибуллин Р.Г., 2013

Оглавление

Введение			
1.	Прост	гейшая задача вариационного исчисления 5	
	1.1	Постановка задачи	
	1.2	Алгоритм решения	
	1.3	Пример	
2.	Задача Больца		
	2.1	Постановка задачи	
	2.2	Алгоритм решения	
	2.3	Пример	
3.	Изопе	ериметрическая задача	
	3.1	Постановка задачи	
	3.2	Алгоритм решения	
	3.3	Пример	
4.	Задач	а со старшими производными	
	4.1	Постановка задачи	
	4.2	Алгоритм решения	
	4.3	Пример	
5.	Задач	а с подвижными концами	
	5.1	Постановка задачи	
	5.2	Алгоритм решения	
	5.3	Пример	
6.	Задач	а Лагранжа	
	6.1	Постановка задачи	
	6.2	Алгоритм решения	
	6.3	Пример	
Пил	Питература 30		

Введение

Данное методическое пособие посвящено задачам классического вариационного исчисления и является дополнением к курсу лекций "Вариационные исчисление и методы оптимизации", "Теория оптимизации" и "Экстремальные задачи", читаемым в Институте математики и механики им. Н.И. Лобачевского Казанского университета.

Изложение материла ведется по методологии, основанной на общем принципе исследования экстремальных задач — принципе Лагранжа. За базу взяты учебники [1] – [3], написанные преподавателями, читавшими курс оптимизации на механико-математическом факультете МГУ.

В каждом пункте настоящего пособия излагается постановка определенной задачи, приводятся основные определения, указывается алгоритм решения на основе имеющихся необходимых и достаточных условий экстремума с дальнейшей демонстрацией на конкретном примере.

1. Простейшая задача вариационного исчисления

1.1 Постановка задачи

Простейшей задачей классического вариационного исчисления (ПЗВИ) называется следующая экстремальная задача:

$$J(x(\cdot)) = \int_{t_0}^{t_1} f(t, x(t), \dot{x}(t)) dt \to \text{extr}, \qquad (1.1)$$

$$x(t_0) = x_0, \ x(t_1) = x_1,$$
 (1.2)

где $f = f(t, x(t), \dot{x}(t))$ — данная функция трех переменных, называемая **интегрантом**. Отрезок $[t_0, t_1]$ предполагается фиксированным и конечным, $t_0 < t_1$. Экстремум функционала (1.1) ищется среди непрерывно дифференцируемых функций $x \in C^1([t_0, t_1])$, удовлетворяющих **краевым условиям** (1.2). Такие функции называют **допустимыми** и говорят, что задача (1.1) - (1.2) дана в слабой постановке.

Введем норму в пространстве $C^1([t_0, t_1])$

$$||x||_1 = ||x||_{C^1([t_0,t_1])} := \max\{||x||_C, ||\dot{x}||_C\},$$

где

$$||x||_C := \max_{t_0 \le t \le t_1} |x(t)|.$$

Определение 1. Допустимая функция \hat{x} доставляет слабый локальный минимум в задаче (1.1) - (1.2) ($\hat{x} \in wlocmin$), если существует $\delta > 0$ такое, что

$$J(x(\cdot)) \ge J(\widehat{x}(\cdot))$$

для любой допустимой функции x, для которой

$$||x - \widehat{x}||_1 < \delta.$$

Определение 2. Допустимая функция \hat{x} доставляет слабый абсолютный (слабый глобальный) минимум в задаче (1.1) - (1.2) $(\hat{x} \in wabsmin)$, если

$$J(x(\cdot)) \ge J(\widehat{x}(\cdot))$$

для любой допустимой функции x.

В качестве множества допустимых функций можно выбрать пространство кусочно-непрерывно дифференцируемых функций на $[t_0,t_1]$ $(x\in KC^1[t_0,t_1])$ с нормой

$$||x||_0 = ||x||_C,$$

удовлетворяющих краевым условиям (1.2). В этом случае говорят о сильной постановке задачи.

Определение 3. Говорим, что допустимая функция \widehat{x} доставляет сильный локальный минимум в задаче (1.1)-(1.2) ($\widehat{x} \in strlocmin$), если существует $\delta > 0$ такое, что

$$J(x(\cdot)) \ge J(\widehat{x}(\cdot))$$

для любой допустимой функции х, для которой

$$||x - \widehat{x}||_0 < \delta.$$

Определение 4. Говорим, что допустимая функция \hat{x} доставляет сильный абсолютный (сильный глобальный) минимум в задаче $(1.1)-(1.2),\ ecnu$

$$J(x(\cdot)) \ge J(\widehat{x}(\cdot))$$

для любой допустимой функции x.

Часто в вариационном исчислении функции x(t), доставляющие минимум (максимум) функционалу, называют точками минимума (максимума) или точками экстремума.

Уравнение

$$-\frac{d}{dt}\widehat{f}_{\dot{x}}(t) + \widehat{f}_{x}(t) = 0, \quad \forall t \in [t_0, t_1].$$

называют *уравнением Эйлера*. Здесь

$$\widehat{f}_{\dot{x}}(t) := \frac{d}{d\dot{x}} f(t, x, \dot{x}) \Big|_{\substack{x = \widehat{x}(t) \\ \dot{x} = \widehat{x}}}, \quad \widehat{f}_{x}(t) := \frac{d}{dx} f(t, x, \dot{x}) \Big|_{\substack{x = \widehat{x}(t) \\ \dot{x} = \widehat{x}}}.$$

Функции, являющиеся решениями уравнения Эйлера, называются **экстремалями**. Экстремали, удовлетворяющие краевым условиям (1.2), называются **допустимыми экстремалями** в ПЗВИ (1.1)–(1.2). Скажем, что на \hat{x} выполнено *условие Лежандра*, если

$$\widehat{f}_{\dot{x}\dot{x}} \ge 0, \quad \forall \ t \in [t_0, t_1],$$

и *усиленное условие Лежандра*, если

$$\widehat{f}_{\dot{x}\dot{x}} > 0, \quad \forall \ t \in [t_0, t_1].$$

Уравнение

$$-\frac{d}{dt}\left(\widehat{f}_{\dot{x}\dot{x}}(t)\dot{h}(t) + \widehat{f}_{\dot{x}x}(t)h(t)\right) + \widehat{f}_{x\dot{x}}(t)\dot{h}(t) + \widehat{f}_{xx}(t)h(t) = 0$$

называют ypaвнением Якоби для исходной задачи на экстремали \widehat{x} .

Точка au называется **сопряженной с точкой** t_0 , если для решения уравнения Якоби h(t) с начальными условиями

$$h(t_0) = 0, \ \dot{h}(t_0) = 1,$$

имеет место равенство

$$h(\tau) = 0.$$

Говорят, что на \hat{x} выполнено **условие Якоби**, если в интервале (t_0, t_1) нет точек, сопряженных с t_0 , и **усиленное условие Якоби**, если в полуинтервале $(t_0, t_1]$ нет точек, сопряженных с t_0 .

Функция

$$\mathcal{E}(t, x, \dot{x}, u) = f(t, x, u) - f(t, x, \dot{x}) - f_{\dot{x}}(t, x, \dot{x})(u - \dot{x})$$

называется ϕy нкиuей Bейeрuтрaсa интегранта f.

Говорят, что на \widehat{x} выполнено *условие Вейерштрасса*, если

$$\mathcal{E}(t,\widehat{x},\dot{\widehat{x}},u) = f(t,\widehat{x},u) - f(t,\widehat{x},\dot{\widehat{x}}) - \widehat{f}_{\dot{x}}(t)(u-\dot{x}) \ge 0, \quad \forall u \in \mathbb{R}, \forall t \in [t_0,t_1].$$

1.2 Алгоритм решения

Для определенности будем исследовать ПЗВИ на минимум.

1. Найти допустимые экстремали. С этой целью выписать *необходимое* условие экстремума первого порядка для ПЗВИ — уравнение Эйлера:

$$-\frac{d}{dt}\widehat{f}_{\dot{x}}(t) + \widehat{f}_{x}(t) = 0.$$

Найти решения уравнения Эйлера \widehat{x} , удовлетворяющие заданным условиям на концах ("допустимые экстремали")

- 2. Для каждой допустимой экстремали проверить *необходимые и* достаточные условия локального минимума второго порядка.
 - 2.1. Проверить выполнение условия Лежандра:
 - а) Если условие Лежандра не выполнено, т.е функция $\hat{f}_{\dot{x}\dot{x}}$ знакопеременна на отрезке $[t_0,t_1]$, то не выполнено необходимое условие слабого (а, следовательно, и сильного) экстремума.
 - б) Если выполнено условие Лежандра:

$$\widehat{f}_{\dot{x}\dot{x}}(t) \ge 0, \ \forall t \in [t_0, t_1],$$

то \widehat{x} можно подозревать на точку слабого (сильного) локального минимума.

- в) Если выполнено усиленное условие Лежандра, то переходим к проверке *условия Якоби*.
- 2.2. Записать уравнение Якоби на экстремали \hat{x} :

$$-\frac{d}{dt}\left(\widehat{f}_{\dot{x}\dot{x}}(t)\dot{h}(t) + \widehat{f}_{\dot{x}x}(t)h(t)\right) + \widehat{f}_{x\dot{x}}(t)\dot{h}(t) + \widehat{f}_{xx}(t)h(t) = 0$$

и решить его с начальными данными

$$h(t_0) = 0, \ \dot{h}(t_0) = 1.$$

2.3. Найти сопряженные с t_0 точки τ , т.е. нули найденного решения h(t) уравнения Якоби при $t>t_0$ и проверить выполнение условия Якоби.

Если при выполнение усиленного условия Лежандра условие Якоби не выполнено, то не выполняется необходимое условие, следовательно, \hat{x} — не доставляет локального минимума.

Если при выполнении усиленного условия Лежандра выполнено усиленное условие Якоби, то выполнено достаточное условие слабого минимума, и $\hat{x} \in wlocmin$.

2.4. Проверка на сильный минимум.

- а) Если интегрант f является выпуклым по \dot{x} при всех фиксированных t и x, рассматриваемых в качестве параметра, то \hat{x} доставляет сильный минимум в задаче.
- б) Если интегрант f является ни выпуклым ни вогнутым, то следует проверить выполнение необходимого условия сильного экстремума условие Вейерштрасса:

$$\mathcal{E}(t, \widehat{x}, \dot{\widehat{x}}, u) \ge 0, \quad \forall u \in \mathbb{R}, \forall t \in [t_0, t_1].$$

Если не выполнено условие Вейерштрасса, то в этом случае найденная допустимая экстремаль не доставляет сильного минимума.

Замечание 2. При исследовании ПЗВИ на максимум необходимо следовать этому же алгоритму, учитывая, что условие Лежандра выполнено, если

$$\widehat{f}_{\dot{x}\dot{x}}(t) \le 0, \quad \forall t \in [t_0, t_1],$$

и усиленное условие Лежандра, если

$$\widehat{f}_{\dot{x}\dot{x}}(t) < 0, \quad \forall t \in [t_0, t_1].$$

Условие Вейерштрасса означает, что

$$\mathcal{E}(t, \widehat{x}, \dot{\widehat{x}}, u) \le 0, \quad \forall u \in \mathbb{R}, \ \forall t \in [t_0, t_1],$$

а для сильного максимума функция f должна быть вогнутой по \dot{x} .

Замечание 3. Задачу

$$J(x(\cdot)) = \int_{t_0}^{t_1} f(t, x(t), \dot{x}(t)) dt \to \sup,$$
$$x(t_0) = x_0, \ x(t_1) = x_1,$$

можно заменить эквивалентной ей задачей

$$-J(x(\cdot)) = -\int_{t_0}^{t_1} f(t, x(t), \dot{x}(t)) dt \to \inf,$$
$$x(t_0) = x_0, \ x(t_1) = x_1.$$

Замечание 4. В ПЗВИ (1.1)–(1.2) в качестве x(t) может выступать вектор функция $x(t) = (x_1(t), \ldots, x_n(t))$. Тогда необходимым условием локального экстремума является система уравнений Эйлера

$$-\frac{d}{dt}\widehat{f}_{\dot{x}_i}(t) + \widehat{f}_{x_i}(t) = 0, \quad \forall t \in [t_0, t_1], \ i = \overline{1, n}.$$

Условие Лежандра $\widehat{f}_{\dot{x}\dot{x}} \geq 0$ означает неотрицательную определенность матрицы

$$f_{\dot{x}\dot{x}} = \begin{pmatrix} f_{\dot{x}_1\dot{x}_1} & \dots & f_{\dot{x}_1\dot{x}_n} \\ \dots & \dots & \dots \\ f_{\dot{x}_n\dot{x}_1} & \dots & f_{\dot{x}_n\dot{x}_n} \end{pmatrix}$$

на элементе \widehat{x} , а условие $\widehat{f}_{\dot{x}\dot{x}}>0$ — ее положительную определенность.

Матричное уравнение Якоби

$$-\frac{d}{dt}\left(\widehat{f}_{\dot{x}\dot{x}}(t)\dot{h}(t) + \widehat{f}_{\dot{x}x}(t)h(t)\right) + \widehat{f}_{x\dot{x}}(t)\dot{h}(t) + \widehat{f}_{xx}(t)h(t) = 0$$

эквивалентно системе уравнений.

1.3 Пример

А) Найти решение следующей экстремальной задачи

$$J(x(\cdot)) = \int_{0}^{1} \dot{x}^{3} dt \to \inf,$$

$$x(0) = 0, \ x(1) = 1.$$

Решение

Запишем необходимое условие слабого, а значит, и сильного экстремума
 — уравнение Эйлера

$$-\frac{d}{dt}f_{\dot{x}} + f_x = 0 \Longleftrightarrow \frac{d}{dt}3\dot{x}^2 = 0 \Longleftrightarrow \dot{x} = \text{const.}$$

Общее решение уравнение Эйлера

$$x = x(t) = C_1 t + C_2.$$

Из условий на концах находим, что

$$C_1 = 1, C_2 = 0.$$

Таким образом, имеется единственная допустимая экстремаль

$$\widehat{x} = \widehat{x}(t) = t.$$

- 2. Проверим на $\hat{x} = t$ необходимые и достаточные условия экстремума.
 - 2.1. Усиленное условие Лежандра выполнено:

$$\hat{f}_{\dot{x}\dot{x}}(t) = 6\hat{x}(t) = 6 > 0, \quad \forall \ t \in [0, 1],$$

Следовательно, переходим к проверке условия Якоби.

2.2. Выпишем уравнение Якоби

$$-\frac{d}{dt}6\dot{h} = 0 \Leftrightarrow \ddot{h} = 0.$$

Общее решение уравнения Якоби

$$h(t) = C_1 t + C_2.$$

Начальным условиям

$$h(0) = 0, \dot{h}(0) = 1,$$

удовлетворяет функция

$$h(t) = t$$
.

- 2.3. Функция h(t) = t не имеет нулей в полуинтервале (0,1]. Значит, сопряженных точек нет, и стало быть, выполнено усиленное условие Якоби. Таким образом, выполнено достаточное условие слабого локального минимума, т.е. $\hat{x} \in wlocmin$.
- 2.4. Проверка на сильный экстремум.
 - а) Поскольку функция $f = \dot{x}^3$ не выпукла по \dot{x} , то достаточное условие сильного минимума не выполняется.

б) Проверим необходимое условие сильного минимума — условие Вейерштрасса:

$$\varepsilon(t, \hat{x}, \dot{\hat{x}}, u) = f(t, \hat{x}, u) - f(t, \hat{x}, \dot{\hat{x}}) - \hat{L}_{\dot{x}}(t)(u - \dot{x}) =$$

$$= u^3 - \dot{\hat{x}}^3 - 3\dot{\hat{x}}^2(u - \dot{\hat{x}}) = u^3 - 1 - 3(u - 1) = u^3 - 3u + 2.$$

Очевидно, что $\forall u \in \mathbb{R}, \forall t \in [0,1]$ функция

$$\varepsilon(t,\widehat{x},\dot{\widehat{x}},u) = u^3 - 3u + 2$$

знакопеременна, следовательно, условие Вейерштрасса не выполняется. Так как не выполняется необходимое условие, то функция \hat{x} не доставляет сильного локального минимума.

Ответ: $\widehat{x} = t \in wlocmin, J(\widehat{x}) = 1.$

В) Решить следующую экстремальную задачу

$$J(x_1(\cdot), x_2(\cdot)) = \int_1^2 (\dot{x}_1^2 + \dot{x}_2^2 + x_2^2) dt \to \inf,$$

$$x_1(1) = 1$$
, $x_1(2) = 2$, $x_2(1) = 0$, $x_2(2) = 1$.

Решение

1. Найдем допустимые экстремали. Система уравнений Эйлера имеет вид

$$\begin{cases} -\frac{d}{dt}2\dot{x}_1 = 0, \\ -\frac{d}{dt}2\dot{x}_2 + 2x_2 = 0. \end{cases}$$

Решив ее, получим

$$x_1(t) = C_1 t + C_2, \ x_2(t) = C_3 e^t + C_4 e^{-t}$$

Из граничных условий находим, что

$$C_1 = 1$$
, $C_2 = 0$, $C_3 = \frac{1}{e^2 - 1}$, $C_4 = -\frac{e^2}{e^2 - 1}$.

Откуда

$$\begin{cases} \widehat{x}_1(t) = t, \\ \widehat{x}_2(t) = \frac{e^t - e^{-t+2}}{e^2 - 1}. \end{cases}$$

- 2. Проверим на полученных экстремалях необходимые и достаточные условия экстремума второго порядка.
 - 2.1. Так как матрица

$$\widehat{f}_{\dot{x}\dot{x}}(t) = \left(\begin{array}{cc} 2 & 0\\ 0 & 2 \end{array}\right)$$

положительно определена при любом $t \in [0,1]$, то выполнено усиленное условие Лежандра.

2.2. Для проверки условия Якоби запишем систему уравнений Якоби. Учитывая, что

$$\widehat{f}_{\dot{x}\dot{x}}(t) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \quad \widehat{f}_{\dot{x}x}(t) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

$$\widehat{f}_{x\dot{x}}(t) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad \widehat{f}_{xx}(t) = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix},$$

имеем

$$-\frac{d}{dt} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} \dot{h}_1 \\ \dot{h}_2 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = 0,$$

то есть

$$\begin{cases} -\frac{d}{dt}2\dot{h}_1 = 0, \\ -\frac{d}{dt}2\dot{h}_2 + 2h_2 = 0. \end{cases}$$

Общее решение этой системы

$$h_1(t) = A_1t + A_2, \ h_2(t) = A_3e^t + A_4e^{-t}.$$

Константы A_1, A_2, A_3, A_4 найдем из условий

$$h_1(0) = 0, \ \dot{h}(0) = 1, \ h_2(1) = 0, \ \dot{h}_2(1) = 1,$$

которые приводят к системе

$$\begin{cases} A_1 + A_2 = 0, \\ A_1 = 1, \\ A_3 e + A_4 e^{-1} = 0, \\ A_3 - A_4 e^{-1} = 1. \end{cases}$$

Откуда

$$A_1 = 1, \ A_2 = -1, \ A_3 = \frac{1}{2e}, \ A_4 = \frac{e}{2}.$$

Следовательно, решение системы уравнений Якоби имеет вид

$$h_1(t) = t, \ h_2(t) = \frac{e^{t-1} + e^{1-t}}{2}.$$

- 2.3. Очевидно, что на (1,2] нет точек, сопряженных с точкой 1. Следовательно, выполнено усиленное условие Якоби. Так как усиленные условия Лежандра и Якоби являются достаточным условием слабого локального минимума, то $\hat{x} \in wlocmin$.
- 2.4. Поскольку интегрант является выпуклым по \dot{x} , то $\hat{x}(t) = (\hat{x}_1, \hat{x}_2)$ является и сильным локальным минимумом.
- 3. Так как интегрант $f(t) = \dot{x}_1^2 + \dot{x}_2^2 + x_2^2$ является к тому же квадратичным, то $\widehat{x}(t) = (\widehat{x}_1, \widehat{x}_2)$ доставляет абсолютный минимум.

Ответ: $\widehat{x} = t \in wabsmin, J(\widehat{x}) = \frac{2e^2}{e^2-1}$.

С) Найти решение следующей экстремальной задачи

$$J(x_1(\cdot), x_2(\cdot)) = \int_0^{\pi} (2x_1x_2 - 2x_1^2 + \dot{x}_1^2 - \dot{x}_2^2)dt \to \inf,$$

$$x_1(0) = 0, \ x_1(\pi) = 1, \ x_2(0) = 0, \ x_2(\pi) = 1.$$

Решение

1. Запишем необходимое условие 1-го порядка — систему уравнений Эйлера

$$\begin{cases} \ddot{x}_1 + 2x_1 - x_2 = 0, \\ \ddot{x}_2 + x_1 = 0. \end{cases}$$

Преобразуя, получим

$$\begin{cases} x_2 = \ddot{x}_1 + 2x_1, \\ x_1^{(4)} + 2\ddot{x}_1 + x_1 = 0; \end{cases} \iff$$

$$\iff \begin{cases} x_2 = \ddot{x}_1 + 2x_1, \\ x_1 = C_1 \cos t + C_2 \sin t + t(C_3 \cos t + C_4 \sin t). \end{cases}$$

В силу граничных условий $x_1(0) = 0, \ x_1(\pi) = 1,$ имеем

$$C_1 = 0, C_3 = -\frac{1}{\pi},$$

т.е.

$$x_1 = C_2 \sin t + t \left(-\frac{1}{\pi} \cos t + C_4 \sin t \right)$$

И

$$x_2 = (C_2 \sin t + t(-\frac{1}{\pi}\cos t + C_4 \sin t))'' + 2(C_2 \sin t + t(-\frac{1}{\pi}\cos t + C_4 \sin t)) =$$

$$= C_2 \sin t + C_4 (2\cos t + t\sin t) + \frac{1}{\pi} (2\sin t - t\cos t).$$

Неизвестные C_2 и C_4 найдем условий на концах $x_2(0)=0,\ x_2(\pi)=1.$ Легко получить, что $C_4=0,$ а C_2 — произвольная константа.

Тогда

$$x_2(t) = C_2 \sin t + \frac{1}{\pi} (2 \sin t - t \cos t).$$

В итоге имеем семейство допустимых экстремалей

$$\begin{cases} \widehat{x}_1 = C_2 \sin t - \frac{t}{\pi} \cos t, \\ \widehat{x}_2(t) = C_2 \sin t + \frac{1}{\pi} (2 \sin t - t \cos t), \end{cases}$$

где C_2 — любая константа.

2. Далее перейдем к проверке условия Лежандра. Матрица

$$\widehat{f}_{\dot{x}\dot{x}} = \left(\begin{array}{cc} 2 & 0\\ 0 & -2 \end{array}\right)$$

— знаконеопределена, т.е. не выполнено необходимое условие экстремума 2-го порядка \Longrightarrow экстремума нет.

Ответ: экстремума нет.

2. Задача Больца

2.1 Постановка задачи

Задачей Больца (ЗБ) называется следующая экстремальная задача:

$$\mathcal{B}(x(\cdot)) = \int_{t_0}^{t_1} f(t, x(t), \dot{x}(t)) dt + \psi(x(t_0), x(t_1)) \to \text{extr},$$
 (2.1)

где $f = f(t, x(t), \dot{x}(t))$ — данная функция трех переменных, а $\psi = \psi(x_0, x_1)$ — данная функция двух переменных. Функцию f называют **интегрантом**, функцию ψ — **терминантом**, функционал \mathcal{B} — **функционалом Больца**. Отрезок $[t_0, t_1]$ предполагается фиксированным и конечным, $t_0 < t_1$. Задачу Больца рассматриваем в слабой постановке, т.е. экстремум функционала (2.1) ищем среди непрерывно дифференцируемых функций, которые в данной задаче будут **допустимыми**.

Определение 5. Функция $\hat{x} \in C^1[t_0, t_1]$ доставляет слабый локальный минимум в задаче (2.1) ($\hat{x} \in wlocmin$ (2.1)), если существует $\delta > 0$ такое, что

$$\mathcal{B}(x(\cdot)) \ge \mathcal{B}(\widehat{x}(\cdot))$$

для любой функции $x \in C^1[t_0, t_1]$, для которой

$$||x(\cdot) - \widehat{x}(\cdot)||_1 < \delta.$$

Определение 6. Функция $\widehat{x} \in C^1[t_0, t_1]$ доставляет слабый абсолютный минимум в задаче (2.1) ($\widehat{x} \in wlocmin$ (2.1)), если существует $\delta > 0$ такое, что

$$\mathcal{B}(x(\cdot)) \ge \mathcal{B}(\widehat{x}(\cdot))$$

для любой функции $x \in C^1[t_0, t_1]$.

2.2 Алгоритм решения

- 1. Выписать необходимые условия экстремума первого порядка:
 - а) уравнение Эйлера

$$-\frac{d}{dt}\widehat{f}_{\dot{x}} + \widehat{f}_{x} = 0;$$

б) условия трансверсальности

$$\widehat{f}_{\dot{x}}(t_0) = \widehat{\psi}_{x(t_0)},$$

$$\widehat{f}_{\dot{x}}(t_1) = -\widehat{\psi}_{x(t_1)}.$$

Найти допустимые экстремали, т.е. решения уравнения Эйлера, удовлетворяющие условиям трансверсальности. 2. Показать используя определение, что решением является одна из допустимых экстремалей или, что решения нет.

Замечание. В векторном случае $x(t) = (x_1(t), \dots, x_n(t))$, необходимыми условиями являются:

а) система уравнений Эйлера

$$-\frac{d}{dt}f_{\dot{x}_i} + f_{x_i} = 0, \ i = \overline{1, n};$$

б) условия трансверсальности

$$\widehat{f}_{\dot{x}_i}(t_0) = \widehat{\psi}_{x_i(t_0)}, \ i = \overline{1, n},$$

$$\widehat{f}_{\dot{x}}(t_1) = -\widehat{\psi}_{x_i(t_1)}, \ i = \overline{1, n}.$$

2.3 Пример

А) Найти решения следующей экстремальной задачи

$$\mathcal{B}(x(\cdot)) = \int_{0}^{1} (\dot{x}^{2} - x)dt + x^{2}(1) \to \inf.$$

Отметим, что в нашем случае

$$f(t, x, \dot{x}) = \dot{x}^2 - x, \ \psi(x(0), x(1)) = x^2(1).$$

Решение

- 1. Запишем необходимые условия:
 - а) уравнение Эйлера

$$-\frac{d}{dt}f_{\dot{x}} + f_x = 0 \Longleftrightarrow 2\ddot{x}^2 + 1 = 0;$$

б) условия трансверсальности

$$f_{\dot{x}}(0) = \psi_{x(0)} \iff \dot{x}(0) = 0,$$

$$f_{\dot{x}}(1) = -\psi_{x(1)} \iff 2\dot{x}(1) = -2x(1) \iff \dot{x}(1) + x(1) = 0.$$

Общее решение уравнение Эйлера

$$x(t) = -t^2/4 + C_1t + C_2.$$

Из условий трансверсальности находим, что $C_1 = 0, C_2 = 3/4$. Таким образом имеется единственная допустимая экстремаль $\hat{x} = (3 - t^2)/4$.

2. Покажем, что она доставляет абсолютный минимум в задаче. Действительно, если $h(t)\in C^1[t_0,t_1],$ то $\widehat{x}(t)+h(t)$ — произвольная допустимая точка в ЗБ и

$$\mathcal{B}(\widehat{x}(t) + h(t)) - \mathcal{B}(\widehat{x}(t)) = \int_{0}^{1} 2\dot{\widehat{x}}\dot{h}dt + \int_{0}^{1} \dot{h}^{2}dt - \int_{0}^{1} hdt + 2\widehat{x}(1)h(1) + h^{2}(1).$$

Интегрируя по частям и учитывая, что $\widehat{x} = (3 - t^2)/4$ получим

$$\mathcal{B}(\widehat{x}(t) + h(t)) - \mathcal{B}(\widehat{x}(t)) = 2\dot{\widehat{x}}h\Big|_{0}^{1} - \int_{0}^{1} (2\ddot{\widehat{x}} + 1)hdt +$$

$$+ \int_{0}^{1} \dot{h}^{2} dt + 2\hat{x}(1)h(1) + h^{2}(1) = \int_{0}^{1} h^{2} dt + h^{2}(1) \ge 0.$$

В итоге имеем, что

$$\mathcal{B}(\widehat{x}(t) + h(t)) - \mathcal{B}(\widehat{x}(t)) \ge 0$$

при любом выборе функции h, т.е. $\widehat{x}(t)$ доставляет абсолютный минимум.

Ответ: $\hat{x} = (3 - t^2)/4 \in absmin.$

В) Найти решения следующей экстремальной задачи

$$\mathcal{B}(x(\cdot)) = \int_{0}^{\pi} (\dot{x}^2 + x^2 - 4x\sin t)dt + 2x^2(0) + 2x(\pi) - x^2(\pi) \to \inf.$$

В нашем случае

$$f(t, x, \dot{x}) = \dot{x}^2 + x^2 - 4x \sin t,$$

a

$$\psi(x(0), x(1)) = 2x^{2}(0) + 2x(\pi) - x^{2}(\pi).$$

Решение

- 1. Необходимые условия:
 - а) уравнение Эйлера

$$-\frac{d}{dt}2\dot{x} + 2x - 4\sin t = 0 \Longleftrightarrow 2\ddot{x}^2 - x = -2\sin t;$$

б) условия трансверсальности

$$\begin{cases} 2\dot{x}(0) = 4x(0), \\ 2\dot{x}(\pi) = -2 + 2x(\pi), \end{cases} \iff \begin{cases} \dot{x}(0) = 2x(0), \\ \dot{x}(\pi) = x(\pi) - 1. \end{cases}$$

Получим допустимую экстремаль

$$\widehat{x}(t) = e^t + \sin t.$$

2. Пусть $h(t) \in C^1[t_0, t_1]$. Тогда

$$B(\widehat{x}(t) + h(t)) - B(\widehat{x}(t)) =$$

$$= \int_{0}^{\pi} (\dot{\widehat{x}} + \dot{h})^{2} + (\widehat{x} + h)^{2} - 4(\widehat{x} + h) \sin t dt + \int_{0}^{\pi} \dot{\widehat{x}}^{2} + \widehat{x}^{2} - 4\widehat{x} \sin t dt +$$

$$+2(\widehat{x}(0) + h(0))^{2} + 2(\widehat{x}(\pi) + h(\pi)) - (\widehat{x}(\pi) + h(\pi))^{2} - 2\widehat{x}(0)^{2} - 2\widehat{x}(\pi) + \widehat{x}(\pi)^{2} =$$

$$= \int_{0}^{\pi} 2\dot{\widehat{x}}\dot{h}dt + \int_{0}^{\pi} \dot{h}^{2}dt + 2\int_{0}^{\pi} \widehat{x}hdt + \int_{0}^{\pi} h^{2}dt - 4\int_{0}^{\pi} h \sin t dt +$$

$$+4\widehat{x}(0)h(0) + 2h^{2}(0) + 2h(\pi) - 2\widehat{x}(\pi)h(\pi) + h^{2}(\pi) =$$

$$= 2\dot{\widehat{x}}h\Big|_{0}^{\pi} - 2\int_{0}^{\pi} \ddot{\widehat{x}}hdt + \int_{0}^{\pi} \dot{h}^{2} + 2\int_{0}^{\pi} \widehat{x}hdt + \int_{0}^{\pi} h^{2}dt -$$

$$-4\int_{0}^{\pi} h \sin t dt + 4\widehat{x}(0)h(0) + 2h^{2}(0) + 2h(\pi) - 2\widehat{x}(\pi)h(\pi) + h^{2}(\pi).$$

Учитывая, что

$$\dot{\hat{x}} = e^t + \cos t, \ \ddot{\hat{x}} = e^t - \sin t,$$

имеем

$$-2\int_{0}^{\pi} \ddot{\widehat{x}}hdt + 2\int_{0}^{\pi} \widehat{x}hdt - 4\int_{0}^{\pi} h\sin tdt = 0$$

И

$$2\hat{x}(\pi)h(\pi) - \hat{x}(0)h(0) = -4\hat{x}(0)h(0) - 2h(\pi) + 2\hat{x}(\pi)h(\pi).$$

Следовательно,

$$\mathcal{B}(\widehat{x}(t) + h(t)) - \mathcal{B}(\widehat{x}(t)) = \int_{0}^{\pi} \dot{h}^{2} dt + \int_{0}^{\pi} h^{2} + 2h^{2}(0) + h^{2}(\pi) \ge 0$$

для любых допустимых функций $\hat{x} + h \in C^1[0,\pi]$. Следовательно,

$$\widehat{x}(t) = e^t + \sin t$$

доставляет слабый абсолютный минимум в задаче.

Ответ: $\widehat{x}(t) = e^t + \sin t \in absmin.$

3. Изопериметрическая задача

3.1 Постановка задачи

Изопериметрической задачей (ИЗ) называется следующая экстремальная задача:

$$J_0(x(\cdot)) = \int_{t_0}^{t_1} f_0(t, x(t), \dot{x}(t)) dt \to \text{extr},$$
 (3.1)

$$J_i(x(\cdot)) = \int_{t_0}^{t_1} f_i(t, x(t), \dot{x}(t)) dt = \gamma_i, \ i = \overline{1, m},$$
 (3.2)

$$x(t_0) = x_0, \ x(t_1) = x_1,$$
 (3.3)

где $f_i = f_i(t, x(t), \dot{x}(t))$ — данные функции трех переменных. Отрезок $[t_0, t_1]$ предполагается фиксированным и конечным, $t_0 < t_1$. Экстремум функционала (3.1) ищется среди непрерывно дифференцируемых функций $x \in C^1([t_0, t_1])$, удовлетворяющих изопериметрическим условиям (3.2) и условиям на концах (3.3), такие функции называются допустимыми в ИЗ.

Определение 7. Допустимая функция \hat{x} доставляет **слабый локальный минимум** в задаче (3.1) - -(3.3) $(\hat{x} \in wlocmin (3.1))$, если существует $\delta > 0$ такое, что

$$J_0(x(\cdot)) \ge J_0(\widehat{x}(\cdot))$$

для любой допустимой функции х, для которой

$$||x(\cdot) - \widehat{x}(\cdot)||_1 < \delta.$$

Определение 8. Допустимая функция \widehat{x} доставляет **слабый абсолютный минимум** в задаче (3.1)-(3.3) ($\widehat{x} \in wlocmin(3.1)$), если существует $\delta > 0$ такое, что

$$J_0(x(\cdot)) \ge J_0(\widehat{x}(\cdot))$$

для любой допустимой функции x.

Лагранжианом задачи называется функция

$$L = L(t) = L(t, \lambda) = \sum_{i=0}^{m} \lambda_i f_i(t, x, \dot{x}).$$

Скажем, что на \hat{x} выполнено *условие Лежандра*, если

$$\widehat{L}_{\dot{x}\dot{x}} \ge 0, \ \forall t \in [t_0, t_1]$$

и *усиленное условие Лежандра*, если

$$\widehat{L}_{\dot{x}\dot{x}} > 0, \ \forall \ t \in [t_0, t_1].$$

Уравнение

$$-\frac{d}{dt}\left(\widehat{L}_{\dot{x}\dot{x}}(t)\dot{h}(t)+\widehat{L}_{\dot{x}x}(t)h(t)\right)+\widehat{L}_{x\dot{x}}(t)\dot{h}(t)+\widehat{L}_{xx}(t)h(t)+\sum_{i=1}^{m}\mu_{i}g_{i}=0,$$

где $g_i(t) = -\frac{d}{dt}\widehat{f}_{i\dot{x}}(t) + \widehat{f}_{ix}(t)$ называют **уравнением Якоби** для исходной задачи (3.1) на экстремали \widehat{x} .

Пусть на экстремали \hat{x} выполнено усиленное условие Лежандра. Точка τ называется **сопряженной с точкой** t_0 , если существует нетривиальное решение h решение неоднородного уравнения Якоби, для которого

$$\int_{0}^{\tau} g_i(t)h(t)dt = 0, \quad i = 1, \dots, m, \ h(t_0) = h(\tau) = 0.$$

Говорят, что на \hat{x} выполнено **условие Якоби**, если в интервале (t_0, t_1) нет точек, сопряженных с t_0 , и **усиленное условие Якоби**, если в полуинтервале $(t_0, t_1]$ нет точек, сопряженных с t_0 .

Если функции

$$g_i(t) = -\frac{d}{dt}\widehat{f}_{i\dot{x}}(t) + \widehat{f}_{ix}(t), \ i = \overline{1,m}$$

линейно независимы, то говорят, что выполнено условие *регулярности*.

3.2 Алгоритм решения

1. Выписать необходимое условие экстремума первого порядка — уравнение Эйлера

$$-\frac{d}{dt}\widehat{L}_{\dot{x}}(t) + \widehat{L}_{x}(t) = 0 \tag{3.4}$$

для лагранжиана задачи

$$L = L(t) = L(t, \lambda) = \sum_{i=0}^{m} \lambda_i f_i(t, x, \dot{x}),$$

где $\lambda = (\lambda_0, \dots, \lambda_m)$ — вектор, так называемых, множителей Лагранжа, одновременно не обращающихся в ноль.

Найти решение $\hat{x}(t)$ уравнения (3.4), удовлетворяющие условиям (3.2) и (3.3), т.е. допустимые экстремали в данной задаче. При этом необходимо рассмотреть случаи

$$\lambda_0 = 0$$
 и $\lambda_0 \neq 0$.

Во втором случае λ_0 выбирается произвольно.

- 2. Для каждой допустимой экстремали проверить *необходимые и* достаточные условия экстремума второго порядка.
 - 2.1 Проверить выполнение условия Лежандра:
 - а) если условие Лежандра не выполнено, не выполнено необходимое условие слабого экстремума, т.е. \hat{x} не доставляет локального экстремума задачи;
 - б) если выполнено усиленное условие Лежандра, то переходим к проверке условия Якоби.

2.2 Проверка условия Якоби.

Дадим аналитическое средство нахождения сопряженных точек для случая, когда функции $g_i, i=1,\ldots,m$, линейно независимы на отрезках $[\tau_0,\tau_1], t_0 \leq \tau_0 < \tau_1 \leq t_1$. Пусть h_0 — решение однородного уравнения Якоби $(\mu_i=0,\ i=1,\ldots,m)$ с краевыми условиями

$$h_0(t_0) = 0, \dot{h}_0(t_0) = 1;$$

 h_j — решение неоднородного уравнения Якоби ($\mu_i=0,\ i\neq j$), и краевыми условиями

$$h_j(t_0) = 0, \dot{h}_j(t_0) = 0, \ j = 1, \dots, m.$$

Точка au является сопряженной тогда и только тогда, когда матрица

$$H(\tau) = \begin{pmatrix} h_0(\tau) & \dots & h_m(\tau) \\ \int_{t_0}^{\tau} h_0 g_1 dt & \dots & \int_{t_0}^{\tau} h_m g_1 dt \\ \dots & \dots & \dots \\ \int_{t_0}^{\tau} h_0 g_m dt & \dots & \int_{t_0}^{\tau} h_m g_m dt \end{pmatrix}$$

является вырожденной.

Если при выполнение усиленного условия Лежандра условие Якоби не выполнено, то не выполняется необходимое условие экстремума, следовательно, \widehat{x} — не доставляет локального экстремума.

Если при выполнение усиленного условия Лежандра выполнено усиленное условие Якоби, то проверяем условие регулярности.

2.3 Проверка условия регулярности.

Если условие регулярности выполнено, то на \widehat{x} выполнены достаточное условие слабого минимума.

3. Если проверка достаточных и необходимых условий второго порядка затруднена, то допустимую экстремаль можно исследовать на экстремум с помощью его определения.

4. Если в задаче (3.1) функционал J_0 квадратичен

$$J_0(x(\cdot)) = \int_{t_0}^{t_1} \left(A_0 \dot{x}^2 + B_0 x^2 \right) dt,$$

функционалы J_i линейны

$$J_i(x(\cdot)) = \int_{t_0}^{t_1} (a_i \dot{x} + b_i x) dt = \gamma_i, \ i = \overline{1, m},$$

причем функции A_0, a_1, \ldots, a_m непрерывно дифференцируемы, функции B_0, b_1, \ldots, b_m непрерывны и выполнено условие Лежандра и условие регулярности. Тогда, если не выполнено условие Якоби, то нижняя грань в задаче равна $-\infty$. Если выполнено усиленное условие Якоби, то допустимая экстремаль существует, единственна и доставляет абсолютный минимум.

3.3 Пример

Найти решение следующей экстремальной задачи

$$J_0(x(\cdot)) = \int_0^1 (\dot{x}^2 + x^2) dt \to \inf,$$

$$J_1(x(\cdot)) = \int_0^1 x e^{-t} dt = \frac{1 - 3e^{-2}}{4},$$
(3.2')

$$x(0) = 0, x(1) = \frac{1}{e}.$$
 (3.3')

Решение

1. Для лагранжиана задачи

$$L = \lambda_0(\dot{x}^2 + x^2) + \lambda_1 x e^{-t}$$

выпишем необходимое условие — уравнение Эйлера

$$-\frac{d}{dt}L_{\dot{x}} + L_x = 0 \Longleftrightarrow -2\lambda_0 \ddot{x} + 2\lambda_0 x + \lambda_1 e^{-t} = 0. \tag{3.5}$$

Найдем решение дифференциального уравнение (3.5), удовлетворяющего условиям (3.2'), (3.3').

Пусть $\lambda_0 = 0$. Тогда из (3.5) мы получим, что $\lambda_1 = 0$, т.е. все множители Лагранжа одновременно обращаются в ноль. Значит необходимое условие экстремума не выполнено.

Пусть $\lambda_0 = 1/2$. Имеем

$$\ddot{x} - x = \lambda_1 e^{-t}.$$

Общее решение этого уравнения

$$x(t) = C_1 e^t + C_2 e^{-t} - \frac{1}{2} \lambda_1 t e^{-t}.$$

Константы C_1, C_2, λ_1 найдем из имеющих условий.

Получим, что имеется допустимая экстремаль

$$\widehat{x}(t) = te^{-t}.$$

- 2. Проверим необходимые и достаточные условия второго порядка.
 - 2.1 Проверим выполнение условия Лежандра

$$L_{\dot{x}\dot{x}}(\widehat{x}) = 2 > 0.$$

Выполнено усиленное условие Лежандра и значит, переходим к проверке условий Якоби.

2.2 Уравнение Якоби

$$-\frac{d}{dt}\left(\widehat{L}_{\dot{x}\dot{x}}(t)\dot{h}(t) + \widehat{L}_{\dot{x}x}(t)h(t)\right) + \widehat{L}_{x\dot{x}}(t)\dot{h}(t) + \widehat{L}_{xx}(t)h(t) + \sum_{i=1}^{m} \mu_i g_i = 0,$$

где $g_i(t) = -\frac{d}{dt} \widehat{f}_{i\dot{x}}(t) + \widehat{f}_{ix}(t)$ в нашем случае примет вид

$$\ddot{h} + h + \mu_1 = 0.$$

Найдем решение h_0 однородного уравнения Якоби

$$\ddot{h} + h = 0$$

с условиями $h_0(0) = 0, \dot{h_0}(0) = 1$. Имеем

$$h_0 = \frac{1}{2}e^t - \frac{1}{2}e^{-t}.$$

Найдем решение h_1 неоднородного уравнения Якоби

$$\ddot{h} + h + 1 = 0$$

с условиями $h_1(0) = 0, \dot{h_1}(0) = 0$. Получим

$$h_1(t) = \frac{1}{8}e^t - \frac{1}{8}e^{-t} - \frac{1}{4}te^{-t}.$$

Mатрица H имеет вид

$$H(t) = \begin{pmatrix} \frac{1}{2}e^{t} - \frac{1}{2}e^{-t} & \frac{1}{8}e^{t} - \frac{1}{8}e^{-t} - \frac{1}{4}te^{-t} \\ \int_{0}^{t} \left(\frac{1}{2} - \frac{1}{2}e^{-2\tau}\right) d\tau & \int_{0}^{t} \left(\frac{1}{8} - \frac{1}{8}e^{-2\tau} - \frac{1}{4}\tau e^{-2\tau}\right) d\tau \end{pmatrix}.$$

Сопряженные точки — это решения уравнения

$$\det H(\tau) = 0.$$

Легко получить, что

$$\tau = 0$$
.

Следовательно, точек сопряженных к 0 в полуинтервале (0, 1] нет, а значит усиленное Якоби выполнено.

2.3 Очевидно, что условие регулярности выполнено, т.к. в нашем случае m=1 и $g_1=1$.

Таким образом, $\widehat{x}(t) \in wlocmin$

4. Поскольку функционал J_0 квадратичен, а J_1 — линеен, то $\widehat{x}(t)$ доставляет абсолютный экстремум.

Otbet: $\widehat{x}(t) = te^{-t} \in absmin$.

4. Задача со старшими производными

4.1 Постановка задачи

Задачей со старшими производными (ЗССП) называется следующая экстремальная задача:

$$J(x(\cdot)) = \int_{t_0}^{t_1} f(t, x(t), \dot{x}(t), \dots, x^{(n)}(t)) dt \to \text{extr},$$
 (4.1)

$$x^{(k)}(t_0) = x_j^k, k = 0, 1, \dots, n - 1, j = 0, 1.$$
 (4.2)

где $f = f(t, x(t), \dot{x}(t))$ — данная функция n+1 переменных, называемая **интегрантом**. Отрезок $[t_0, t_1]$ предполагается фиксированным и конечным, $t_0 < t_1$. Экстремум функционала (4.1) ищется среди непрерывно дифференцируемых функций $x \in C^1([t_0, t_1])$, удовлетворяющих условиям (4.2) на концах отрезка $[t_0, t_1]$. Такие функции называют **допустимыми**.

Введем норму в пространстве $C^n([t_0, t_1])$:

$$||x||_n = ||x||_{C^n([t_0,t_1])} := \max \{||x||_C, ||\dot{x}||_C, \dots, ||x^{(n)}||_C\},$$

где

$$||x||_C := \max_{t_0 \le t \le t_1} \{|x(t)|\}.$$

Определение 9. Допустимая функция \hat{x} доставляет **слабый локальный минимум** в задаче (4.1), (4.2) ($\hat{x} \in wlocmin$ (4.1)), если существует $\delta > 0$ такое, что

$$J(x(\cdot)) \ge J(\widehat{x}(\cdot))$$

для любой допустимой функции х, для которой

$$||x(\cdot) - \widehat{x}(\cdot)||_n < \delta.$$

Определение 10. Допустимая функция \hat{x} доставляет слабый абсолютный минимум в задаче (4.1), (4.2) ($\hat{x} \in wlocmin$ (4.1)), если существует $\delta > 0$ такое, что

$$J(x(\cdot)) \ge J(\widehat{x}(\cdot))$$

для любой допустимой функции x.

Если в качестве множества допустимых функций выбрать множество кусочно-непрерывно дифференцируемых функций на $[t_0, t_1]$ ($x \in KC^1[t_0, t_1]$), удовлетворяющих краевым условиям (4.2), то ЗССП (4.1)–(4.2) исследуют на сильный экстремум с нормой $||x||_{n-1}$.

Уравнение

$$\sum_{k=0}^{n} (-1)^k \left(\frac{d}{dt}\right)^k \widehat{f}_{x^{(k)}}(t) = 0$$

называют *уравнением Эйлера-Пуассона*.

Функции, являющиеся решениями уравнения Эйлера-Пуассона называются **экстремалями**. Экстремали, удовлетворяющие краевым условиям (1.2), называются **допустимыми экстремалями** в ЗССП (4.1)–(4.2).

Скажем, что на \hat{x} выполнено *условие Лежандра*, если

$$\widehat{f}_{x^{(n)}x^{(n)}} \ge 0, \ \forall t \in [t_0, t_1]$$

и *усиленное условие Лежандра*, если

$$\widehat{f}_{x^{(n)}x^{(n)}} > 0, \ \forall \ t \in [t_0, t_1].$$

Уравнение Эйлера-Пуассона для функционала

$$K(x(\cdot)) = \int_{t_0}^{t_1} \sum_{i,j=0}^n A_{ij} x^{(i)} x^{(j)} dt, \ A_{ij}(t) = \widehat{f}_{x^{(i)} x^{(j)}}(t)$$

называют *уравнением Якоби* для задачи (4.1) на экстремали $x(\cdot)$.

Для квадратичного функционала, имеющую "диагональную" форму

$$K(x(\cdot)) = \int_{t_0}^{t_1} \sum_{k=0}^{n} A_k(x^{(k)})^2 dt,$$

уравнение Якоби примет вид

$$\sum_{k=0}^{n} (-1)^k \left(\frac{d}{dt}\right)^k \left(A_k x^{(k)}\right) = 0.$$

Пусть на $\widehat{x}(\cdot)$ выполнено усиленное условие Лежандра. Точка τ называется ${\it conps:}$ нетривиальное решение h уравнения Якоби, для которого

$$h^{(i)}(t_0) = h^{(i)}(\tau) = 0, \ i = 0, 1, \dots, n-1.$$

Говорят, что на $\widehat{x}(\cdot)$ выполнено **условие Якоби**, если в интервале (t_0, t_1) нет точек, сопряженных с t_0 , и **усиленное условие Якоби**, если в полуинтервале $(t_0, t_1]$ нет точек, сопряженных с t_0 .

Уравнение Якоби — это линейное уравнение 2n-го порядка, которое (изза усиленного условия Лежандра) можно разрешить относительно старшее производной. Пусть $h_1(\cdot),\ldots,h_n(\cdot)$ — решение уравнения Якоби, для которых $H(t_0)=\mathbf{O},$ а $H^{(n)}(t_0)$ — невырожденная матрица, где

$$H(t) = \begin{pmatrix} h_1(t) & \dots & h_n(t) \\ \dots & \dots & \dots \\ h_1^{(n-1)}(t) & \dots & h_n^{(n-1)}(t) \end{pmatrix},$$

$$H^{(n)}(t) = \begin{pmatrix} h_1^{(n)}(t) & \dots & h_n^{(n)}(t) \\ \dots & \dots & \dots \\ h_1^{(2n-1)}(t) & \dots & h_n^{(2n-1)}(t) \end{pmatrix}.$$

Точка τ является сопряженной к t_0 тогда и только тогда, когда матрица $H(\tau)$ является вырожденной.

4.2 Алгоритм решения

1. Записать необходимое условие экстремума первого порядка — уравнение Эйлера-Пуассона:

$$\sum_{k=0}^{n} (-1)^k \left(\frac{d}{dt}\right)^k f_{x^{(k)}} = 0.$$

Найти допустимые экстремали, т.е. решения уравнения Эйлера-Пуассона, удовлетворяющие краевым условиям на концах.

- 2. Проверить на допустимых экстремалях *необходимые и достаточные* условия высших порядков.
 - а) Проверить выполнение условия Лежандра.

Если не выполнено условия Лежандра, то не выполнено необходимое условие экстремума, т.е. найденная допустимая экстремаль не доставляет экстремума.

Если выполнено усиленное условие Лежандра, то перейти к проверке условия Якоби.

б) Проверка условия Якоби.

Если не выполнено условия Якоби, то не выполнено необходимое условие экстремума, т.е. найденная допустимая экстремаль не доставляет экстремума.

Если выполнено усиленное условие Якоби и при этом интегрант f квазирегулярен, то найденная допустимая экстремаль доставляет сильный минимум в задаче (4.1)–(4.2).

Если не выполнено условия Якоби и функционал (4.1) имеет вид

$$\int_{t_0}^{t_1} \sum_{k=0}^n A_k(x^{(k)})^2 dt,$$

то нижняя грань равна $-\infty$.

Если выполнено условия Якоби и функционал (4.1) имеет вид

$$\int_{t_0}^{t_1} \sum_{k=0}^n A_k(x^{(k)})^2 dt,$$

то допустимая экстремаль существует, единственна и доставляет абсолютный минимум.

3. Если проверка необходимых и достаточных условий 2-го порядка затруднена, то можно провести исследование при помощи определения экстремума.

4.3 Пример

Решить следующую экстремальную задачу

$$J(x(\cdot)) = \int_{0}^{T_0} (\ddot{x}^2 - \dot{x}^2) dt \to \min,$$

$$x(0) = \dot{x}(0) = x(T_0) = \dot{x}(T_0) = 0.$$

Решение

1. Запишем необходимое условие — уравнение Эйлера-Пуассона:

$$\ddot{x} + \ddot{x} = 0$$
.

2. Общее решение уравнение Эйлера-Пуассона:

$$x(t) = C_1 \sin t + C_2 \cos t + C_3 t + C_4.$$

Среди допустимых экстремалей всегда имеется допустимая экстремаль $\widehat{x}=0.$

- 3. Проверяем достаточное условие:
 - а) Усиленное условие Лежандра выполнено:

$$\hat{f}_{\ddot{x}\ddot{x}} = 2 > 0, \ \forall t \in [0, T_0].$$

б) Проверим выполнимость условия Якоби. Уравнение Якоби имеет вид

$$h^{(4)} + h^{(2)} = 0.$$

Положим, что

$$h_1(t) = 1 - \cos t, h_2 = \sin t - t,$$

$$H(t) = \begin{pmatrix} h_1(t) & h_2(t) \\ \dot{h}_1(t) & \dot{h}_2(t) \end{pmatrix} = \begin{pmatrix} 1 - \cos t & \sin t - t \\ \sin t & \cos t - 1 \end{pmatrix}.$$

Тогда H(0) = 0,

$$\det \ddot{H}(0) = \det \begin{pmatrix} \ddot{h}_1(0) & \ddot{h}_2(0) \\ \vdots & \vdots \\ \ddot{h}_1(0) & \ddot{h}_2(0) \end{pmatrix} = \det \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \neq 0.$$

Найдем сопряженные точки, решая уравнение $\det H(\tau) = 0$. Имеем

$$2(\cos \tau - 1) + \tau \sin \tau = 0 \Longleftrightarrow \sin \frac{\tau}{2} = 0, \frac{\tau}{2} = \operatorname{tg} \frac{\tau}{2}.$$

Ближайшая к нулю точка: $\tau = 2\pi$.

Ответ: Если $T_0 < 2\pi$, то $\widehat{x}(t) = 0$ — единственная допустимая экстремаль, доставляющая абсолютный минимум, $J_{\min} = J(0) = 0$. Если $T_0 > 2\pi$, точная нижняя грань функционала равна $-\infty$. Можно показать, что при $T_0 = 2\pi$ допустимые экстремали имеют вид $\widehat{x}(t) = C(1-\cos t)$ и все они доставляют абсолютный минимум.

5. Задача с подвижными концами

5.1 Постановка задачи

Задачей с подвижными концами называется следующая экстремальная задача:

$$J(\xi) = J(x(\cdot), t_0, t_1) = \int_{t_0}^{t_1} f_i(t, x(t), \dot{x}(t)) dt + \psi_0(t_0, x(t_0), t_1, x(t_1)) \to extr$$
(5.1)

$$\psi_i(t_0, x(t_0), t_1, x(t_1)) = 0, \ i = \overline{1, m}, \tag{5.2}$$

где $\xi = (x(\cdot), t_0, t_1), \Delta$ — заданный отрезок, $t_0, t_1 \in \Delta, t_0 < t_1$.

Элемент $\xi = (x(\cdot), t_0, t_1)$ называется **допустимым**, если $x \in C^1(\Delta)$, $t_0, t_1 \in \Delta, t_0 < t_1$, и выполняется условие (5.2) на концах.

Определение 11. Допустимый элемент $\hat{\xi}=(\hat{x}(\cdot),\hat{t}_0,\hat{t}_1)$ доставляет слабый локальный минимум, если существует $\delta>0$ такой, что для любого допустимого элемента $\xi=(x(\cdot),t_0,t_1),$ для которого

$$||x - \widehat{x}||_1 < \delta, |t_0 - \widehat{t}_0| < \delta, |t_1 - \widehat{t}_1| < \delta$$

выполняется

$$J(\xi) \ge J(\widehat{\xi}).$$

5.2 Алгоритм решения

Выписать: интегрант задачи

$$L = L(t) = L(t, \lambda) = \lambda_0 f(t, x, \dot{x}),$$

терминант задачи

$$l = \sum_{i=0}^{m} \lambda_i \psi_i(t_0, x(t_0), t_1, x(t_1)),$$

функцию Лагранжа

$$\mathcal{L} = \int_{t_0}^{t_1} L(t)dt + l(t).$$

- 1. Записать необходимые условия:
 - а) условие стационарности по x уравнение Эйлера для интегранта L

$$-\frac{d}{dt}L_{\dot{x}_i}(t) + L_{x_i}(t) = 0, \ \forall t \in \triangle;$$

б) условия трансверсальности для l

$$L_{\dot{x}}(t_0) = l_{x(t_0)},$$

$$L_{\dot{x}}(t_1) = -l_{x(t_1)};$$

в) условие стационарности по подвижным концам

$$\mathcal{L}_{t_0} = \mathcal{L}_{t_0}(t_0) = 0 \Leftrightarrow -\lambda_0 f(t_0) + l_{t_0} + l_{x(t_0)} \dot{x}(t_0) = 0,$$

$$\mathcal{L}_{t_1} = \mathcal{L}_{t_1}(t_1) = 0 \Leftrightarrow \lambda_0 f(t_1) + l_{t_1} + l_{x(t_1)} \dot{x}(t_1) = 0.$$

Отметим, что это условие выписывается только для подвижных концов отрезка интегрирования.

Найти допустимые экстремали. Рассмотреть два случая $\lambda_0 = 0$ и $\lambda_0 \neq 0$ (за λ_0 можем брать любую константу, при исследовании задачи на минимум берем $\lambda_0 > 0$). И учитывать, что множители Лагранжа одновременно не могут обращаться в ноль.

2. Показать, что найденные в пункте 1 допустимые экстремали доставляют экстремум или нет.

5.3 Пример

Найти решение следующей экстремальной задачи

$$J(x(\cdot)) = \int_{0}^{T} \dot{x}^{2} - x + 1dt \to extr,$$
$$x(0) = 0.$$

Решение

Имеем: интегрант задачи $L(t) = \lambda_0(\dot{x}^2 - x + 1)$, терминант задачи $l(t) = \lambda_1 x(0)$, функция Лагранжа $\mathcal{L} = \int\limits_0^1 \lambda_0(\dot{x}^2 - x + 1) dt + \lambda_1 x(0)$.

- 1. Запишем необходимые условия:
 - а) уравнение Эйлера для лагранжиана

$$-\frac{d}{dt}L_{\dot{x}} + L_x = 0 \Longleftrightarrow -2\lambda_0 \ddot{x} - \lambda_0 = 0;$$

б) трансверсальности по х для терминанта

$$L_{\dot{x}}(0) = l_{x(0)} \Longleftrightarrow 2\lambda_0 \dot{x}(0) = \lambda_1,$$

$$L_{\dot{x}}(T) = -l_{x(T)} \Longleftrightarrow 2\lambda_0 \dot{x}(T) = 0;$$

в) условие стационарности по подвижному концу T

$$\mathcal{L}_T(T) = 0 \Longleftrightarrow 2\lambda_0(\dot{x}^2(T) - x(T) + 1) = 0.$$

Если $\lambda_0 = 0$, то из б) следует, что $\lambda_1 = 0$ — все множители Лагранжа равны нулю. Значит в этом случае решения нет. Положим $\lambda_0 = 1$. Тогда условия а)-в) записываются следующим образом

$$-2\ddot{x} - 1 = 0, \ \dot{x}(T) = 0, x(T) = 1.$$

Общее решение уравнение Эйлера

$$x = -\frac{t^2}{4} + C_1 t + C_2.$$

Поскольку x(0) = 0, то $C_2 = 0$. Неизвестные C_1, T находим из условий трансверсальности

$$\begin{cases} -\frac{T}{2} + C_1 = 0, \\ -\frac{T^2}{4} + C_1 T = 1. \end{cases}$$

2. Отсюда $C_1=1,\,T=2.$ Таким образом, в задаче имеется единственный допустимый экстремальный элемент $\widehat{\xi}=(\widehat{x}(\cdot),\widehat{T})=(-\frac{t^2}{4}+t,2).$

3. Возьмем элемент $\hat{\xi} = (-\frac{t^2}{4} + t, T)$. Тогда

$$J(\xi) = \int_{0}^{T} \left(\left(-\frac{t}{2} + 1 \right)^{2} - \left(-\frac{t^{2}}{4} + t \right) + 1 \right) dt = \int_{0}^{T} \left(\frac{t}{2} - 1 \right)^{2} dt,$$
$$J(\widehat{\xi}) = \int_{0}^{2} \left(\frac{t}{2} - 1 \right)^{2} dt.$$

Очевидно, что $J(\xi) > J(\widehat{\xi})$ при $T > \widehat{T}$ и $J(\widehat{\xi}) < J(\xi)$ при $T < \widehat{T}$, поскольку под знаком интеграла стоит неотрицательная величина. Это означает, что в любой окрестности $\widehat{\xi}$ существует другой допустимый элемент, на котором значение функционала J как больше, так и меньше значения функционала J в точке $\widehat{\xi}$, т.е. $\widehat{\xi}$ не доставляет локального экстремума.

6. Задача Лагранжа

Пусть n — фиксированное натуральное число, $k,m \geq 0$ — целые, причем $k \leq n, f_i, i = \overline{0,m}, \psi_i, i = \overline{0,m}, \varphi_i, i = \overline{0,k}$ — известные функции своих аргументов, Δ — заданный отрезок числовой прямой,

$$t_0, t_1 \in \triangle^{\circ}, t_0 < t_1, x(\cdot) \equiv (x_1(\cdot), \dots, x_n(\cdot)) \in C_n^1(\triangle),$$

$$\xi = (x(\cdot), t_0, t_1), ||\xi|| = \max\{||x||_1, |t_0|, |t_1|\}.$$

Зададим функционалы

$$\mathfrak{B}_{i}(\xi) = \int_{t_{0}}^{t_{1}} f_{i}(t, x(t), \dot{x}(t)) dt + \psi_{i}(t_{0}, x(t_{0}), t_{1}, x(t_{1})), \ i = \overline{0, m}.$$

6.1 Постановка задачи

Задачей Лагранжа в Понтрягинской форме называется следующая экстремальная задача:

$$\mathfrak{B}_0(\xi) \to \inf$$
 (6.1)

$$\mathfrak{B}_i(\xi) \le 0, i = \overline{1, m'},\tag{6.2}$$

$$\mathfrak{B}_i(\xi) = 0, \ i = \overline{m' + 1, m},\tag{6.3}$$

$$\dot{x}_j(t) = \varphi_j(t, x(t)), \ j = \overline{1, k}, \tag{6.4}$$

(6.4) — называется дифференциальной связью.

Определение 12. Допустимая точка $\hat{\xi} = (\hat{x}(\cdot), \hat{t}_0, \hat{t}_1)$ в задаче (6.1) — (6.4) доставляет слабый локальный минимум (максимум), если существует $\delta > 0$, что для любой допустимой функции $\xi = (x(\cdot), t_0, t_1)$ для которой

$$\|\xi - \widehat{\xi}\| < \delta$$

выполняется

$$\mathfrak{B}_0(\xi) \geq \mathfrak{B}_0(\widehat{\xi}) \quad \left(\mathfrak{B}_0(\xi) \leq \mathfrak{B}_0(\widehat{\xi})\right).$$

6.2 Алгоритм решения

Выписать лагранжиан задачи:

$$L = L(t) = L(t, \lambda) = \sum_{i=0}^{m} \lambda_i f_i(t, x, \dot{x}) + \sum_{j=0}^{k} p_j(\cdot)(x_j - \varphi),$$

где $\lambda=(\lambda_0,\dots,\lambda_m) \neq 0$ — вектор множителей; $\pmb{meрминанm}$ задачи

$$l = \sum_{i=0}^{m} \lambda_i \psi_i(t, x, \dot{x});$$

функцию Лагранжа:

$$\mathcal{L} = \int_{t_0}^{t_1} L(t)dt + l(t).$$

- 1. Выписать необходимые условия:
 - а) условие стационарности для лагранжиана задачи по x

$$-\frac{d}{dt}\widehat{L}_{\dot{x}_i}(t) + \widehat{L}_{x_i}(t) = 0, i = \overline{1, m};$$

$$(6.5)$$

б) условия трансверсальности

$$\widehat{L}_{\dot{x}_i}(t_0) = \widehat{l}_{x_i(t_0)}, i = \overline{1, m},$$

$$\widehat{L}_{\dot{x}_i}(t_1) = -\widehat{l}_{x_i(t_1)}, i = \overline{1, m};$$

в) условие стационарности по подвижным концам

$$\widehat{\mathcal{L}}_{t_0} = \mathcal{L}_{t_0}(\widehat{\xi}) = 0 \iff -f(t_0) + l_{t_0} + l_{x(t_0)}\dot{x}(t_0) = 0,$$

$$\widehat{\mathcal{L}}_{t_1} = \mathcal{L}_{t_1}(\widehat{\xi}) = 0 \iff f(t_1) + l_{t_1} + l_{x(t_1)}\dot{x}(t_1) = 0;$$

Отметим, что условия выписывается только для подвижных концов.

г) условие дополняющей нежесткости

$$\lambda_i \mathfrak{B}_i(\widehat{\xi}) = 0, i = \overline{1, m'};$$

д) условие неотрицательности

$$\lambda_i \ge 0, i = \overline{1, m'}, \sum_{i=0}^{m} \lambda_i^2 \ne 0.$$

Условия а)-д) дают множество допустимых экстремалей задачи (6.1)–(6.4) в слабой постановке.

2. Показать, что допустимые экстремали доставляют экстремум функционалу \mathfrak{B}_0 или решений нет.

6.3 Пример

Найти решение следующей экстремальной задачи

$$\mathfrak{B}_0(x(\cdot)) = \int_0^1 \dot{x}^2 dt \to extr,$$

$$\mathfrak{B}_1(x(\cdot)) = \int_0^1 x dt = 0, \ x(1) = 1.$$

Решение

Записываем лагранжиан задачи

$$L(t) = \lambda_0 \dot{x}^2 + \lambda_1 x;$$

терминант задачи

$$l(t) = \lambda_2(x(1) - 1);$$

функцию Лагранжа

$$\mathcal{L} = \int_{0}^{1} \lambda_0 \dot{x}^2 + \lambda_1 x dt + \lambda_2 (x(1) - 1).$$

- 1. Выпишем необходимые условия:
 - а) для лагранжиана уравнение Эйлера

$$-\frac{d}{dt}L_{\dot{x}} + L_x = 0 \Longleftrightarrow -2\lambda_0 \ddot{x} + \lambda_1 = 0; \tag{6.6}$$

б) трансверсальности по x для терминанта

$$L_{\dot{x}}(0) = l_{x(0)} \Longleftrightarrow 2\lambda_0 \dot{x}(0) = 0$$

$$L_{\dot{x}}(1) = -l_{x(1)} \Longleftrightarrow 2\lambda_0 \dot{x}(1) = -\lambda_2.$$

Так как концы фиксированы и нет ограничений типа неравенств, то отсутствуют условия в), г) и д).

2. Если $\lambda_0 = 0$, то из а) $\lambda_1 = 0$, а из б) $\lambda_2 = 0$ — все множители Лагранжа равны нулю. Следовательно, решения нет. Положим $\lambda_0 = \frac{1}{2}$. Тогда

$$\ddot{x} = \lambda_1$$
.

Общее решение: $x=C_1t^2+C_2+C_3$. Неизвестные константы C_1,C_2,C_3 находим из условия трансверсальности и условий, входящих в постановку задачи. Имеем

$$\begin{cases} C_2 = 0 \\ C_1 + C_3 = 1, \\ \frac{C_1}{3} + C_3 = 0. \end{cases}$$

Отсюда $C_1 = \frac{3}{2}, C_2 = 0, C_3 = -1/2$. Таким образом, в задаче имеется единственная допустимая экстремаль

$$\widehat{x} = \frac{3t^2 - 1}{2}.$$

3. Покажем с помощью непосредственной проверки, что функция \widehat{x} доставляет абсолютный минимум в задаче. Возьмем функцию $h \in C^1([0,1])$ такую, чтобы $\widehat{x}+h$ была допустимой функцией. Для этого надо взять функцию h, для которой h(1)=0 и $\int\limits_0^1 h dt=0$. Тогда

$$\mathfrak{B}_{0}(\widehat{x}+h) - \mathfrak{B}_{0}(\widehat{x}) = \int_{0}^{1} (\dot{\widehat{x}}+\dot{h})^{2} dt - \int_{0}^{1} \dot{\widehat{x}}^{2} dt = 2 \int_{0}^{1} \dot{\widehat{x}} \dot{h} dt + \int_{0}^{1} \dot{\widehat{h}}^{2} dt.$$

Интегрируя первый интеграл по частям с учетом условия на h и условия трансверсальности $\hat{x}(0) = 0$, получим

$$2\int_{0}^{1} \dot{\widehat{x}} \dot{h} dt = 2\dot{\widehat{x}} h \Big|_{0}^{1} - \int_{0}^{1} \ddot{\widehat{x}} h dt = -6\int_{0}^{1} h dt = 0.$$

Таким образом,

$$\mathfrak{B}_0(\widehat{x}+h)-\mathfrak{B}_0(\widehat{x})=\int\limits_0^1 \dot{\widehat{h}}^2 dt\geq 0$$

ИЛИ

$$\mathfrak{B}_0(\widehat{x}+h) \ge \mathfrak{B}_0(\widehat{x})$$

для любой допустимой точки $\widehat{x}+h$, т.е. $\widehat{x}=\frac{3t^2-1}{2}$ доставляет абсолютный минимум в данной задаче.

Ответ: $\widehat{x}(t) = \frac{3t^2-1}{2} \in absmin$.

Литература

- [1] Галеев Э. М., Тихомиров В.М. **Оптимизация: теория, примеры, задачи.** М.: Элиториал УРСС, 2000. 320 с.
- [2] Алексеев В.М., Галеев Э.М. Тихомиров В.М. **Сборник задач по оптимизации. Теория. Примеры. Задачи:** Учеб. пособие 2-е изд. М.: ФИЗМАТЛИТ, 2005. 256 с. ISBN 5-9221-0590-6.
- [3] Алексеев В.М., Галеев Э.М. Тихомиров В.М. Сборник задач по оптимизации. Теория. Примеры. Задачи: Учеб. пособие 2-е изд., перераб. и доп. М.: ФИЗМАТЛИТ, 2007. 256 с.