# Econometrics, Lecture 10A ARIMA and unit roots

Ron Smith EMS, Birkbeck, University of London

Autumn 2020

#### Last time

- Defined a covariance stationary stochastic process: constant mean, variances and covariances after removal of deterministic elements
- ▶ Defined the lag operator,  $Ly_t = y_{t-1}$
- Introduced AR(p)

$$y_t = \sum_{i=1}^p \rho_i y_{t-i} + \varepsilon_t$$

and MA(q) processes

$$y_t = \sum_{i=1}^q \mu_i \varepsilon_{t-i} + \varepsilon_t$$

▶ Defined the order of intergration the number of times a series needed to be differenced to make it stationary.



#### **ARIMA**

► Combining AR and MA processes, gives ARMA, ARMA(1,1) is

$$y_t = \alpha + \rho y_{t-1} + \varepsilon_t + \mu \varepsilon_{t-1}.$$

Difference the data d times to make them stationary then model as an ARMA process of order p and q, giving an Autoregressive Integrated Moving Average, ARIMA(p,d,q) process:

$$A^{p}(L)\Delta^{d}y_{t} = \alpha + B^{q}(L)\varepsilon_{t}.$$

► ARIMA(1,1,1) and ARIMA(2,2,2) processes are

$$\begin{array}{rcl} \Delta y_t & = & \alpha + \rho \Delta y_{t-1} + \varepsilon_t + \mu \varepsilon_{t-1}, \\ \Delta^2 y_t & = & \alpha + \rho_1 \Delta^2 y_{t-1} + \rho_2 \Delta^2 y_{t-2} + \varepsilon_t + \mu_1 \varepsilon_{t-1} + \mu_2 \varepsilon_{t-2}. \end{array}$$

#### Common Factors

- ARIMA models often describe the univariate dynamics of a single economic time-series quite well and are widely used for forecasting.
- A potential problem is effects cancelling out. Suppose the true model is a random walk and we multiply both sides by  $(1-\rho L)$

$$\begin{array}{rcl} \Delta y_t &=& \alpha + \varepsilon_t, \\ (1 - \rho L) \Delta y_t &=& (1 - \rho L) \alpha + (1 - \rho L) \varepsilon_t, \\ \Delta y_t &=& (1 - \rho) \alpha + \rho \Delta y_{t-1} + \varepsilon_t - \rho \varepsilon_{t-1}. \end{array}$$

▶ You can estimate an ARIMA(1,1,1) model with significant AR and MA coefficients of opposite signs, that are individually but not jointly significant, cancelling out.

#### Frisch-Waugh theorem

Most economic time-series, e.g. log GDP, are non-stationary, trended, so can include a trend in the regression

$$y_t = \alpha + \beta x_t + \gamma t + \varepsilon_t,$$

Alternatively you can detrend the data by regressing  $y_t$  and  $x_t$  on t and using the residuals

$$y_t = a_y + b_y t + \widetilde{y}_t$$
  

$$x_t = a_x + b_x t + \widetilde{x}_t$$
  

$$\widetilde{y}_t = \beta \widetilde{x}_t + \varepsilon_t.$$

- ▶ The two estimates of  $\beta$  will be identical.
- ► Can do this for any variable and it is a useful trick for looking at the relationship between two variables controlling for others.

## Trend and difference stationary processes

- ► The trend in economic time-series can be generated in two ways.
- As stationary around a deterministic trend:

$$y_t = \alpha + \rho y_{t-1} + \gamma t + \varepsilon_t \tag{1}$$

with  $|\rho| < 1$ . The effects of the shocks  $\varepsilon_t$  are transitory and die away through time, since  $\varepsilon_{t-i}$  is multiplied by  $\rho^i$  when you substitute back. If the variables are in logs, the long run growth rate is  $g = \gamma/(1-\rho)$ .

As a random walk with drift, difference stationary:

$$\Delta y_t = \alpha + \varepsilon_t$$

$$y_t = \alpha + y_{t-1} + \varepsilon_t$$

The long run growth rate is  $\alpha$ .



## **Testing**

- We want to test the null of a difference stationary process (one with a unit root) against the alternative of a trend stationary process.
- ▶ Substitute  $\gamma = g(1 \rho)$  then subtract  $y_{t-1}$  from both sides, so we can write the trend stationary process as:

$$y_t = \alpha + \rho y_{t-1} + \gamma t + \varepsilon_t \tag{2}$$

$$\Delta y_t = \alpha + (\rho - 1)(y_{t-1} - gt) + \varepsilon_t \tag{3}$$

$$\Delta y_t = \alpha + \beta (y_{t-1} - gt) + \varepsilon_t \tag{4}$$

where  $\beta = \rho - 1$ .

- If  $\rho = 1$  or equivalently  $\beta = 0$ , we get the random walk with drift: with growth rate  $\alpha$ .
- We use the restricted trend form (4) since making  $\rho=1$  in (2) would make  $\Delta y_t=\alpha+\gamma t+\varepsilon_t$ . But we do not want a trend in the change.



#### Random Walks and stochastic trends

Substituting back in the random walk we get

$$\begin{array}{rcl} y_t & = & \alpha + y_{t-1} + \varepsilon_t \\ y_t & = & \alpha + (\alpha + y_{t-2} + \varepsilon_{t-1}) + \varepsilon_t \\ y_t & = & y_{t-2} + 2\alpha + \varepsilon_t + \varepsilon_{t-1} \end{array}$$

Continuing the process to period zero, we get:

$$y_t = y_0 + \alpha t + \sum_{i=0}^{t-1} \varepsilon_{t-i}.$$
 (5)

In a difference stationary process, the series is determined by an initial value,  $y_0$ , a deterministic trend  $\alpha t$ , and a 'stochastic trend',  $\sum_{i=0}^{t-1} \varepsilon_{t-i}$ , the sum of past errors. the efects of the shocks are permanent or persistent, they last for ever, and

## Trend in change is quadratic trend in level

If we had not restricted (4) so that the trend term dropped out when  $\beta=0$ , there would be a quadratic trend in  $y_t$ . Show this by substituting back in

$$y_{t} = \alpha + y_{t-1} + \gamma t + \varepsilon_{t}$$

$$y_{t} = \alpha + (\alpha + y_{t-2} + \gamma(t-1) + \varepsilon_{t-1}) + \gamma t + \varepsilon_{t}$$
 (6)

etc.

#### Testing for unit roots

- ► Choosing between the trend stationary and difference stationary model is a matter of testing  $H_0: \beta = 0$  or equivalently  $\rho = 1$ ; whether there is a 'unit root' in  $y_t$ .
- ▶ To do this we can estimate (4), a regression of  $\Delta y_t$  on a constant,  $y_{t-1}$  and a linear trend to estimate  $\widehat{\beta}$  the coefficient on  $y_{t-1}$ ;
- ► Construct the 't statistic'  $\tau_{\beta} = \widehat{\beta}/SE(\widehat{\beta})$  to test  $H_0: \beta = 0$ ; against  $H_1: \beta < 0$ .
- ▶ If we do not reject  $H_0$  we conclude that there is a unit root in  $y_t$ , it is I(1), stationary after being differenced once.
- ▶ If we reject the null we conclude that  $y_t$  is trend stationary I(0). This is a one-sided test and if  $\widehat{\beta} > 0$ , we certainly do not reject the null of a unit root.

#### Dickey Fuller and Augmented Dickey Fuller tests

- ▶ The test statistic  $\tau_{\beta}$  does not have a standard t distribution, but a Dickey Fuller distribution. This is because under  $H_0$  the dependent variable is I(0) but the regressor,  $y_{t-1}$  is I(1), so usual Gauss-Markov assumptions do not hold.
- ▶ With trend the 5% critical value, CV, is about -3.5 (-2.9 no trend), programs give you CVs or p values.
- ▶ To get good estimates of (4) we require  $\varepsilon_t$  white noise. To remove any serial correlation, lags of the dependent variable are added to give the 'Augmented Dickey Fuller' (ADF) regression:

$$\Delta y_t = \alpha + \beta y_{t-1} + \gamma t + \sum_{i=1}^{p} \delta_i \Delta y_{t_{-i}} + \varepsilon_t$$
 (7)

where p is chosen to try to make the residual white noise. Again the procedure is to use the t ratio on  $\beta$  with the non standard critical values to test  $H_0: \beta = 0$  against  $H_1: \beta < 0$ .



## Reparameterisations

► (7) is a reparameterisation of a AR(p+1) with trend, e.g. AR3.

$$\begin{array}{rcl} y_t & = & \rho_1 y_{t-1} + \rho_2 y_{t-2} + \rho_3 y_{t-3} + \varepsilon_t, \\ y_t & = & \rho_1 y_{t-1} + (\rho_2 + \rho_3) y_{t-2} - \rho_3 (y_{t-2} - y_{t-3}) + \varepsilon_t, \\ y_t & = & (\rho_1 + \rho_2 + \rho_3) y_{t-1} - (\rho_2 + \rho_3) (y_{t-1} - y_{t-2}) \\ & & - \rho_3 (y_{t-2} - y_{t-3}) + \varepsilon_t, \\ y_t - y_{t-1} & = & (\rho_1 + \rho_2 + \rho_3 - 1) y_{t-1} - (\rho_2 + \rho_3) (y_{t-1} - y_{t-2}) \\ & & - \rho_3 (y_{t-2} - y_{t-3}) + \varepsilon_t, \\ \Delta y_t & = & \beta y_{t-1} + \delta_1 \Delta y_{t-1} + + \delta_2 \Delta y_{t-2} + \varepsilon_t. \end{array}$$

## Testing for I(2)

▶ To test for a unit root in levels,  $H_0: I(1)$  against  $H_1: I(0)$ , in the intercept only version, we estimate

$$\Delta y_t = \alpha + \beta y_{t-1} + \sum_{i=1}^{p} \delta_i \Delta y_{t-i} + \varepsilon_t$$

and use the t statistic on  $\widehat{\beta}$  to test  $H_0: \beta=0$ ; against  $H_1: \beta<0$ .

► To test for a unit root in differences, H<sub>0</sub>: I(2) against H<sub>1</sub>: I(1), you just take a further difference:

$$\Delta^{2} y_{t} = \alpha + \beta \Delta y_{t-1} + \sum_{i=1}^{p} \delta_{i} \Delta^{2} y_{t-i} + \varepsilon_{t}$$

Trend in the change are not common for economic series. Again  $H_0: \beta=0$ ; against  $H_1: \beta<0$ .

#### Other types of test

There are many procedures for determining whether there is a unit root. They differ, for instance, in

- whether they use the null of a unit root like the ADF or the null of stationarity, like KPSS;
- how they correct for serial correlation (in a parametric way like the ADF adding lags or in a non-parametric way like Phillips Peron where you use a robust variance estimator);
- whether they include other variables; whether they use GLS detrending; and whether they use both forward and backward regressions.
- Many programs give you a lot of choices.

## It is hard to decide on the order of integration

- ▶ Tests have low power, it is hard to distinguish  $\rho=1$  from  $\rho=0.97$ .
- Sensitive to choice of deterministics (intercept and trend), and treatment of serial correlation
- Power depends on the span of the data not the number of observations. Can seem I(1) on short samples, I(0) on long.
- ▶ An I(0) process with a step change will appear I(1), since the shock (change in level) is permanent.
- ► The order of integration is a univariate statistical summary of how the time series moves over the sample, it is not an inherent structural property of the series. Whether you treat a variable as I(0) or I(1) depends on the purpose of the exercise, for estimation it is often safer to treat it as I(1).
- YOU DO NOT ALWAYS HAVE TO DECIDE. Unrestricted level ARDL or VARs are robust to not knowing the order of integration.



#### Next time

- Will combine the univariate ARIMA model with the linear regression model.
- ▶ Rather than having unobserved lagged shocks  $\varepsilon_{t-i}$ , will have observed lagged shocks  $x_{t-i}$ .
- Autoregessive Distributed Lag, ARDL(2,2)

$$y_t = \alpha_0 + \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \beta_0 x_t + \beta_1 x_{t-1} + \beta_2 x_{t-2} + \varepsilon_t$$

- Very flexible framework which can handle different orders of integration and cointegration.
- ► Can be given a theoretical interpretation in terms of a long-run equilibrium relationship and an adjustment process.