Ağaç Bazlı Yöntemler (İktisatçılar İçin) Makine Öğrenmesi (TEK-ES-2020)

Hüseyin Taştan Yıldız Teknik Üniversitesi

Karar Ağaçları

- Hem regresyon hem de sınıflandırma problemlerine uygulanabilir.
- ullet Karar ağaçlarında amaç X değişkenlerini basit ve kolayca yorumlanabilir alt bölgelere ayırmaktır.
- Daha sonra eğitim veri setinde bulunduğu alt bölgeye göre tahminler hesaplanır (ortalama ya da medyan kullanılabilir).
- Alt bölgelerin ayrılmasında uygulanan kurallar bir karar ağacı ile temsil edilebilir.
- Ancak tek başına karar ağaçları kestirim açısından regresyon ve diğer sınıflandırma yöntemlerine göre daha başarısız.
- Çözüm: Gruplama teknikleri kullanmak. Çok sayıda ağaç tahmin edilip kestirimden önce bunların birleştirilmesine dayanan bu yöntemlere örnek olarak torbalama (bagging), rassal ormanlar (random forests), takviye (boosting) verilebilir.

Değişken uzayının bölgelere ayrılması

Regresyon ağacının adımları:

1. X uzayını oluşturan (X_1, X_2, \dots, X_p) değişkenlerinin tüm olanaklı değerleri için J birbiriyle örtüşmeyen ve ayrık bölge oluşturulur:

$$(R_1,R_2,\ldots,R_J)$$

2. Herhangi bir R_j bölgesine düşen bir gözlem için çıktı değişkeninin ortalaması alınarak kestirim oluşturulur. Aynı bölgeye düşen gözlemler için aynı kestirim yapılır.

Bölgelerin şekli nasıl olacaktır? Tahmin edilen modelin yorum kolaylığı açısından X uzayının kutulara ayrılması uygundur. Bunun için aşağıdaki kalıntı kareleri toplamını minimum yapan kutular seçilir. \hat{y}_{R_i} j bölgesindeki ortalama olmak üzere:

$$\sum_{j=1}^{J}\sum_{i\in R_{i}}\left(y_{i}-\hat{y}_{R_{j}}
ight)^{2}$$

- Basitlik amacıyla elimizde iki değişken olsun X_1 ve X_2
- Bu x değişkenlerini yinelemeli bir şekilde alt bölgelere ayırabiliriz.
- Bölge sayısı 5 olsun.
- Bölgelerin sınırlarını belirleyen kesme noktaları optimizasyon probleminin çözümü ile bulunabilir.

1. Önce $X_1 = t_1$ kesme noktasında verileri iki bölgeye ayırırız.

- 1. Önce $X_1 = t_1$ noktasında verileri ayırırız.
- 2. Daha sonra, $X_1 < t_1$ ise $X_2 = t_2$ noktasından yine ikiye ayırım yaparız.

- 1. Önce $X_1 = t_1$ noktasında verileri ayırırız.
- 2. Daha sonra, $X_1 < t_1$ ise $X_2 = t_2$ noktasından yine ikiye ayırım yaparız.
- 3. Diğer bölge için: $X_1 > t_1$ ise $X_1 = t_3$ noktasından ayırım yaparız.

- 1. Önce $X_1 = t_1$ noktasında verileri ayırırız.
- 2. Daha sonra, $X_1 < t_1$ ise $X_2 = t_2$ noktasından ayırım yaparız.
- 3. $X_1 > t_1$ ise $X_1 = t_3$ noktasından ayırım yaparız.
- 4. $X_1 > t_3$ ise $X_2 = t_4$ noktasından ayırım yaparız.

- İç düğüm (node) sayısı: 4
- Son düğüm ya da yapraklar (terminal node or leaves) sayısı: 5 (bölge ortalamaları)
- Düğüm bağlantıları = ağaç dalları (branches)

Ağacın yorumlanması

- Herhangi bir düğüm noktasında $X_j \leq t_k$ soldak dalı, $X_j > t_k$ ise sağdaki dalı işaret etmektedir.
- Örneğin, $X_1 \leq t_1$ ve $X_2 \leq t_2$ ise R_1 tahmini yapılır.

Örnek: Data = Hitters

- Beyzbol oyuncularının maaşlarını (Salary) kestirmek amacıyla iki değişkenden (Years, Hits) oluşan bir regresyon ağacı
- Salary değişkeninin doğal logaritması alındı.
- Modele göre tecrübesi (Years) 4.5 yıldan az olan bir sporcu için $\log(\text{Salary})$ tahmini 5.11'dir. Para birimi cinsinden: $1000 \times e^{5.11} = 165174$ \$
- Ligde 4.5 yıldan fazladır oynayan ve 117.5'den daha az vuruş yapan bir sporcu için maaş tahmini: $1000 \times e^6 = 402834$ \$

Önceki ağacın farklı bir gösterimi

- Bu grafikte verilerin üç bölgeye ayrılması gösterilmektedir.
- Alt bölgeler aşağıdaki gibi yazılabilir:

1.
$$R_1 = \{X|Years < 4.5\}$$

2.
$$R_2 = \{X|Years \geq 4.5, \ Hits < 117.5\}$$

3.
$$R_3 = \{X|Years \ge 4.5, Hits \ge 117.5\}$$

Önceki ağacın farklı bir gösterimi

- Bu grafikte verilerin üç bölgeye ayrılması gösterilmektedir.
- Alt bölgeler aşağıdaki gibi yazılabilir:

1.
$$R_1 = \{X|Years < 4.5\}$$

2.
$$R_2 = \{X|Years \ge 4.5, Hits < 117.5\}$$

3.
$$R_3 = \{X|Years \ge 4.5, Hits \ge 117.5\}$$

 Yeni bir gözlem çifti için ait olduğu bölgenin maaş ortalaması (kırmızı) ile kestirim yapılır.

Ağacın Budanması

- Bir regresyon ağacı eğitim setinde iyi bir uyum sergilese de test verilerinde başarılı kestirimler vermez.
- Bunun nedeni aşırı uyumdur (overfitting). Ortaya çıkan ağaç çok büyük olma eğilimindedir.
- Çözüm: gereksiz dalları (branches) budayarak daha küçük ve daha başarılı kestirim performansına sahip ağaç oluşturmak
- Daha küçük ağaç daha az terminal düğüm noktalarına (yapraklara) sahiptir.
- Küçük ağaçlar az miktarda sapma içerse de varyansları çok daha düşüktür.
- Ağacın budanması:
 - 1. Büyük bir ağaç ile başla
 - 2. Daha sonra çapraz geçerleme ile en başarılı test performansına sahip alt ağacı seç.
- Ancak olanaklı alt ağaçların sayısı çok fazla olduğundan bu yol takip edilmez.

Ağacın Budanması

• Olanaklı tüm alt ağaçlar için çapraz geçerleme yapmak yerine α gibi bir ayarlama parametresi ile indekslenmiş ağaçları düşünebiliriz:

$$\sum_{m=1}^{|T|} \sum_{i: x_i \in R_m} ig(y_i - \hat{y}_{R_m}ig)^2 + lpha |T|$$

 α =ayarlama parametresi, |T| terminal düğüm sayısı

- \bullet α parametresi modelin (ağacın) karmaşıklığı ile model uyumu arasındaki ödünümü yakalar.
- $\alpha=0$ ise T alt ağacı başlangıçtaki karmaşık ağaca T_0 eşit olur.
- α büyüdükçe ağaç küçülür (son düğüm noktalarının sayısı azalır).
- α ayarlama parametresi çapraz geçerleme ile seçilebilir.

Örnek: Data = Hitters

- Budanmamış ağaç
- Veri seti rassal olarak ikiye ayrılıyor:
 eğitim verileri (132 gözlem) ve geçerleme
 verileri (131 gözlem)
- Farklı α değerleri için 6-katlı çapraz geçerleme ile test hatası tahmin ediliyor

Örnek: Data = Hitters

- Farklı ağaç büyüklükleri için (α) ortalama hata karesi (MSE)
- En düşük çapraz geçerleme MSE değerini veren ağaç büyüklüğü 3 olarak bulunmuştur. (önceki örneğe bakınız)
- Ağaç büyüdükçe eğitim (training) hatası azalmaya devam ediyor.

Sınıflandırma Ağaçları

- Sınıflandırma ağaçları algoritmik açıdan regresyon ağaçlarına çok benzer.
- Ancak bu durumda çıktı değişkeni sürekli değil kategoriktir.
- Eğitim setindeki tahminler değişkenlerin bulunduğu bölgede en fazla gözlemlenen gruba göre yapılır.

- Örnek sınıflandırma ağacı: Titanic gemi kazasında hayatta kalma
- Bu karar ağacında sadece cinsiyet (sex) ve yaş (age) kullanılmıştır. (Survived ~ Age + Sex)

Titanic verileri

Sınıflandırma ağaçlarında performans

- Sınıflandırma ağaçlarında bölgelerin ikili ayrımında kalıntı kareleri toplamı (SSR) ölçüt olarak kullanılamaz.
- SSR yerine $siniflandirma\ hata\ oranını$ (E) kullanabiliriz:

$$E=1-\max_k({\hat p}_{mk})$$

 \hat{p}_{mk} : eğitim setinde m bölgesinde k grubundaki gözlemlerin oranı.

- \bullet Zayıf yanı: E ağaç oluşturmada yeterli duyarlılığa sahip değil. Pratikte iki alternatif tercih edilir.
 - 1. Gini indeksi (G)
 - 2. Entropi (*D*)

Sınıflandırma performansı

Gini indeksi:

$$G = \sum_{k=1}^K {\hat p}_{mk} (1 - {\hat p}_{mk})$$

- Gini indeksi *K* sınıftaki toplam değişkenliğin bir ölçüsüdür.
- Tüm \hat{p}_{mk} değerleri 0'a ya da 1'e yakın olduğunda G küçük bir değer alır.
- Bu nedenle Gini indeksi bir düğümün saflığının (nude purity) da bir ölçüsüdür.

Entropi:

$$D = -\sum_{k=1}^K {\hat p}_{mk} \log({\hat p}_{mk})$$

• Entropi ölçütü, Gini indeksinde olduğu gibi, \hat{p}_{mk} 0'a ya da 1'e yakınsa küçük değerler alır.

Örnek: Data set = Heart Disease

Budanmamış Ağaç

Çapraz geçerleme ile budanmış ağaç

Thal=thallium test, kategorik değişken (seviyeler = normal, reversible, fixed): Thal:a (normal, sol düğüm), diğer Thal grupları (iki grup) sağ düğüm (bkz. ISLR, p.312)

Ağaçların zayıf ve güçlü yanları

Güçlü yanları

- Yorumlaması ve açıklaması kolaydır.
- Görsel olarak temsil edilebilir ve uzman olmayanlar bile kolayca anlayabilir.
- Bazılarına göre ağaçlar insanların karar alma süreçlerini daha iyi temsil edebilir.
- Nitel (kategorik) değişkenler kukla değişken yaratmaya gerek kalmadan modele eklenebilir.

Alternatif: Tek karar ağacı tahmin etmek yerine çok sayıda ağaç oluşturup bunların bileşkesini almak (toplulaştırmak): Rassal Ormanlar (Random

Forests), Bagging, Boosting

Zayıf yanları

- Diğer regresyon ve sınıflandırma yöntemlerine göre kestirim performansı daha kötüdür.
- Verilerde ufak bir değişiklik ağaçlarda önemli değişikliklere yol açabilir.
- Örneğin eğitim verilerini rassal olarak ikiye bölüp ayrı ayrı ağaç tahmini yapsak çok farklı sonuçlar elde edebilirz (yüksek varyans).

Bagging (Bootstrap Aggregating)

- Ağaçların yüksek varyansa sahip olduğunu belirtmiştik.
- Düşük varyanslı ağaç oluşturmanın bir yolu çok sayıda ağaç oluşturup bunları toplulaştırmaktır.
- İstatistik derslerimizden hatırlarsak, eğer elimizde birbirinden bağımsız ve türdeş çekilmiş (aynı dağılımdan gelen) ve varyansı σ^2 olan bir örneklem, (Z_1, Z_2, \ldots, Z_n) , varsa, örneklem ortalaması \bar{Z} 'ın varyansı σ^2/n olur.
- Başka bir deyişle, ortalamayı almak varyansı düşürür.
- Buna benzer bir yaklaşımı makine öğrenmesi algoritmalarına da uygulayabiliriz.
- Birbirinden farklı B tane eğitim verisi oluştur ve her biri için kestirim modelini tahmin et: $\hat{f}^1(x), \hat{f}^2(x), \dots, \hat{f}^B(x)$.
- Bunların ortalaması

$$\hat{f}_{avg} = rac{1}{B} \sum_{b=1}^{B} \hat{f}^{b}(x)$$

• Pratik zorluk: elimizde sadece bir tane eğitim seti var.

Bagging (Bootstrap Aggregating)

- Farklı eğitim setlerini elimizdeki gözlemlerden hareketle **bootstrap** yardımıyla oluşturabiliriz.
- Bootstrap Aggregating: Rassal olarak eğitim setinden bir örneklem çekilir ve model eğitilir. *B* gibi bir sayı için bu tekrarlanır ve ortalama alınır:

$$\hat{f}_{bag} = rac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x)$$

• Bu yöntem regresyon ve sınıflandırma ağaçlarına uygulanabilir. Ağaçlara budama yapılmaz.

Out-of-bag Hata Tahmini

- Bagging yönteminde test hatasını nasıl hesaplayabiliriz?
- Çapraz geçerleme uygulamadan test hatasını tahmin etmek mümkündür.
- Bootstrap ile ağaçlar oluşturulduğunda verilerin yaklaşık olark 2/3'ü kullanılmış olur. Geriye kalan 1/3 geçerleme seti olarak kullanılabilir. Her bir bootstrap adımında, gözlemlerin modelin eğitiminde kullanılmayan 1/3'lük kısmına **out-of-bag (OOB)** gözlemler denir.
- Bu OOB gözlemlerini test hatasını tahmin etmekte kullanabiliriz. Buna OOB hatası denir. (regresyon için OOB MSE, sınıflandırma için OOB sınıflama hatası)
- \bullet Bu yaklaşım büyük B değerleri için Biri-hariç çapraz geçerleme (LOOCV) benzeri sonuç üretir.
- Bootstrap örneklemleri için hesaplamalar yapılırken OOB hatası da kolayca hesaplanabilir. Ayrıca çapraz geçerleme yapmaya gerek kalmaz.

Değişken önem ölçüleri

- Bagging bir ağaç ile kıyaslandığında daha iyi kestirimler sunar.
- Ancak sonuçta ulaşılan model kolayca yorumlanamaz. Çünkü çok sayıda farklı ağacın bileşkesi olduğu için tek bir ağaçla temsil edilemez.
- Pratikte bunun sonucu hangi değişkenlerin önemli olduğunun görülememesidir.
- Değişken önem ölçüleri (variable importance measures) bu amaçla hesaplanabilir.
- Regresyon ağaçlarında her adımda bir değşiken için SSR'de meydana gelen azalma kaydedilip tüm *B* tane ağaç için ortalaması alınabilir. Büyük değerler daha önemli değişkene işaret eder.
- Sınıflandırma ağaçları için Gini indeksindeki azalmalar kullanılabilir.

Rassal Ormanlar

- Bagging yönteminde her adımda ayrı bir ağaç tahmin ediliyordu. Gözlemler farklılaşsa da aynı değişken seti kullanılıyordu.
- Bu süreçte ağaçlar birbirine benzer olma eğilimindedir. Yani ağaçlar arasında korelasyon yüksektir. Bu da ortalamanın varyansını arttırır.
- Rassal Ormanlar (Random Forests) benzer adımları takip eder. Ancak, korelasyonu azaltmak ve varyansı düşürmek (*decorrelating*) için ağaçlar oluşturulurken dal ayrımlarında tüm *p* değişkenleri değil de bunların *m* gibi bir rassal alt kümesi göz önüne alınır.
- Her hangi bir ağaçta yeni bir ayırım yapılırken gözönüne alınacak $m \approx \sqrt{p}$ tane X değişkeni rassal olarak belirlenir. Örneğin bir ağaçta X_1, X_3, X_5 kullanılırken başka bir ağaçta X_2, X_4 kullanılabilir (p=5 için).
- Bagging Rassal Ormanlar'ın özel bir halidir. m=p alındığında bagging elde edilir.

Boosting

- Boosting (Takviye) yöntemi Bagging ve Rassal Ormanlara benzer şekilde çalışır.
- Ancak ağaçlar bir önceki ağacın bilgisi göz önüne alınarak ardışık bir şekilde oluşturulur.
- Boosting yönteminde bootstrap kullanılmaz.
- İzleyen sayfada algoritma özetlenmiştir.
- Boosting algoritmasında 3 ayarlama parametresi vardır.
- B ağaç sayısı. Bagging ve Rassal Ormanlardan farklı olarak büyük B değerleri aşırı uyuma yol açabilir. Uygun değer çapraz geçerleme ile seçilebilir.
- Küçülme (shrinkage) parametresi λ boosting algoritmasının öğrenme hızını kontrol eder. Pratikte 0.01 veya 0.001 gibi değerler kullanılabilir.
- Ağaçlardaki düğüm sayısı d. Pratikte d=1 olarak seçilebilir.

Regresyon Ağaçları için Boosting Algoritması

- 1. Başlangıç değerlerini $\hat{f}(x) = 0$ ve $r_i = y_i$ olarak belirle.
- 2. Her $b = 1, 2, \dots, B$ için aşağıdaki adımları tekrarla:
 - a. Eğitim verilerini kullanarak d ayrıma sahip (d+1 son düğüm sayısı) \hat{f}^b ağacını tahmin et.
 - b. Ağacı, oluşturulan yeni ağacın küçültülmüş versiyonunu (λ küçültme parametresi) ekleyerek güncelle:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x)$$

c. Kalıntıları güncelle:

$$r_i \leftarrow r_i - \lambda \hat{f}^{b}\left(x_i
ight)$$

3. Takviyeli (boosted) model:

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^b(x)$$