集合论简介

集合论是研究集合一般性质的数学分支,它的 创始人是康托尔(G, Cantor, 1845-1918)。在 现代数学中,每个对象(如数,函数等)本质上都 是集合,都可以用某种集合来定义,数学的各个 分支,本质上都是在研究某一种对象集合的性质。 集合论的特点是研究对象的广泛性,它也是计算 机科学与工程的基础理论和表达工具,而且在程 序设计,数据结构,形式语言,关系数据库,操 作系统等都有重要应用。

第三章 集合的基本概念和运算

2.1 集合的基本概念

内容:集合,元素,子集,幂集等。

重点: (1) 掌握集合的概念及两种表示法,

- (2) 常见的集合 N, Z, Q, R, C 和特殊集合 ϕ, E ,
- (3) 掌握子集及两集合相等的概念,
- (4) 掌握幂集的概念及求法。

- 一、集合的概念。
 - 1、集合——一些确定的对象的整体。

集合用大写的字母标记

其中的对象称元素,用小写字母标记

$$A = \{a_1, a_2, \cdots a_n\}$$

表示集合 A 含有元素 $a_1, a_2, \cdots a_n$

注意: (1) $a \in A$ 或 $a \not\in A$

- (2) 集合中的元素均不相同 {a,b,c},{a,b,b,c},{c,a,b} 表示同一个集合。
- (3) 集合的元素可以是任何类型的事物, 一个集合也可以作为另一个集合的元素。 例如: $A = \{a, \{b, c\}, b, \{b\}\}$

- 2、集合的表示法。
 - (1) 列举法(将元素一一列出) 例如: $A = \{2,3,4,5\}$
 - (2) 描述法(用谓词概括元素的属性)

例如: $B = \{x \mid x \in Z \land 2 \le x \le 5\}$

- 一般,用描述法表示集合 $A = \{x \mid P(x)\}$
- 3、常见的一些集合。

N, Z, Q, R, C

- 4、集合间的关系。
 - (1) B为A 的子集,记 $B \subseteq A$

$$B \subseteq A \Leftrightarrow \forall x (x \in B \rightarrow x \in A)$$

$$B \not\subseteq A \Leftrightarrow \exists x (x \in B \land x \notin A)$$

$$B$$
为 A 的真子集,记 $B \subset A$

$$B \subset A \Leftrightarrow B \subseteq A \land B \neq A$$

$$B \not\subset A \Leftrightarrow B \not\subseteq A \lor B = A$$

- 4、集合间的关系。
 - (2) 对任意集合 A有 A \subset A
 - (3) 两集合A,B 相等,记作A = B $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$
 - 5、特殊的集合。

空集φ

全集E(或 U)

 $\phi \subseteq A \subseteq E(A)$ 为任一集合)

例1、选择适当的谓词表示下列集合。

(1) 小于5的非负整数集

解:
$$\{x \mid x \in N \land x < 5\}$$

(2) 奇整数集合

解:
$$\{x \mid x = 2n + 1 \land n \in Z\}$$

例1、选择适当的谓词表示下列集合。

(3) 10的整倍数集合,

解:
$$\{x \mid x = 10n \land n \in Z\}$$

 $(4) \{3,5,7,11,13,17,19\}$

解: {x | x是素数 \(2 < x < 20 \)}

例2、用列举法表示下列集合。

(1)
$$S_3 = \{x \mid x \in Z \land 5 < x \le 10\}$$

解:
$$S_3 = \{6,7,8,9,10\}$$

(2)
$$S_4 = \{ \langle x, y \rangle \mid x = 0 \land (y = 1 \lor y = 2) \}$$

解:
$$S_4 = \{\langle 0,1 \rangle, \langle 0,2 \rangle\}$$

例3、确定下面命题的真值:

$$(1) \phi \subseteq \phi$$

(2)
$$\phi \in \phi$$

$$(3) \phi \subseteq \{\phi\}$$

$$(4) \phi \in \{\phi\}$$

真值T

真值F

真值T

真值T

例3、确定下面命题的真值:

(5)
$$\{a,b\}\subseteq \{a,b,c,\{a,b,c\}\}$$
 真值 T

(6)
$$\{a,b\} \in \{a,b,c,\{a,b,c\}\}$$
 真值 F

(7)
$$\{a,b\} \subseteq \{a,b,\{\{a,b\}\}\}\$$
 真值 T

(8)
$$\{a,b\} \in \{a,b,\{\{a,b\}\}\}\$$
 真值 F

2.2 集合上的运算

内容:集合的运算,环和(对称差),幂集,运算律。

重点: (1) 掌握集合的运算

$$A \cup B, A \cap B, A - B, \overline{A}, A \oplus B$$

$$\rho(A)$$

(2) 掌握基本运算律的内容及运用。

一、集合的运算。

集合A,B的并集 $A \cup B$,交集 $A \cap B$,相对补集A - B,绝对补集 \overline{A} ,对称差 $A \oplus B$ 。

$$A \bigcup B = \{x \mid x \in A \lor x \in B\}$$

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

(当
$$A \cap B = \phi$$
 时,称 A, B 不交)

以上定义加以推广,

$$\bigcup_{i=1}^{n} A_{i} = A_{1} \cup A_{2} \cup \cdots \cup A_{n}$$

$$= \{x \mid x \in A_{1} \lor x \in A_{2} \lor \cdots \lor x \in A_{n}\}$$

$$\bigcap_{i=1}^{n} A_{i} = A_{1} \cap A_{2} \cap \cdots \cap A_{n}$$

$$= \{x \mid x \in A_{1} \land x \in A_{2} \land \cdots \land x \in A_{n}\}$$

$$A - B = \{x \mid x \in A \land x \notin B\}$$

$$\overline{A} = E - A = \{x \mid x \in E \land x \notin A\} \quad (其中E为全集),$$

$$A \oplus B = (A - B) \cup (B - A) = (A \cup B) - (A \cap B)$$

例1、设
$$E = \{1, 2, 3, 4, 5\}$$
, $A = \{1, 4\}$,

$$B = \{1, 2, 5\}$$
, $C = \{2, 4\}$, 求出以下集合。

$$(1) A \cap B$$

{1}

$$(2) B-C$$

 $\{1,5\}$

$$(3)$$
 \overline{A}

 ${2,3,5}$

(4)
$$B \cup \overline{A}$$

 $\{1, 2, 3, 5\}$

例1、设
$$E = \{1, 2, 3, 4, 5\}$$
, $A = \{1, 4\}$, $B = \{1, 2, 5\}$, $C = \{2, 4\}$, 求出以下集合。

- (5) $A \oplus B$ {2,4,5}
- $(6) \quad \overline{(A \cup B)} \qquad \qquad \{3\}$
- $(7) \quad (A \cap B) \cup \overline{C} \qquad \{1, 3, 5\}$
- (8) $(A \cap B) \cup (A \cap C)$ {1,4}

二、幂集。

定义1:n 元集(n个元素的集合)的m元($m \le n$)子集。

例如: $A = \{a,b,c\}$ 为3元集,求它的全部子集。

0元子集: ϕ (只有一个),

1元子集: $\{a\},\{b\},\{c\}$ (共 $C_3^1=3$ 个),

2元子集: $\{a,b\},\{a,c\},\{b,c\}$ (共 $C_3^2=3$ 个),

3元子集: $\{a,b,c\}$ (共 $C_3^3 = 1$ 个)。

一般,n 元集共有子集 $C_n^0 + C_n^1 + \cdots + C_n^n = (1+1)^n = 2^n \uparrow$ 。

定义2:集合 A 的幂集,记 $\rho(A)$,是 A的全体子集的集合

例5、
$$A = \{a,b,c\}$$
, 求 $\rho(A)$ 。

解:
$$\rho(A) = \{\phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$$

若A有n个元素,则 $\rho(A)$ 有 2^n 个元素。

例6、求以下集合的幂集。

$$(1) A = \phi$$

$$(4) A = \{1, \{2, 3\}\}\$$

解:
$$\rho(A) = \{\phi\}$$

解:
$$\rho(A) = \{\phi, \{1\}, \{\{2,3\}\}, A\}$$

(2)
$$A = \{\phi\}$$

(5)
$$A = \{\{\phi, 2\}, \{2\}\}$$

解:
$$\rho(A) = \{\phi, A\}$$

解:
$$\rho(A) = \{\phi, \{\{\phi, 2\}\}, \{\{2\}\}, A\}$$

$$(3) A = \{\phi, \{\phi\}\}$$

解:
$$\rho(A) = \{\phi, \{\phi\}, \{\{\phi\}\}\}, A\}$$

三、集合运算律。

- 1、幂等律: $A \cup A = A$, $A \cap A = A$
- 2、结合律: $(A \cup B) \cup C = A \cup (B \cup C)$,

$$(A \cap B) \cap C = A \cap (B \cap C)$$

- 3、交換律: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- 4、分配律: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$,

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

三、集合运算律。

- 5、同一律: $A \cup \phi = A$, $A \cap E = A$
- 6、零律: $A \cup E = E$, $A \cap \phi = \phi$
- 7、**互否律:** A[JA=E] (排中律),

$$A \cap \overline{A} = \phi$$
 (矛盾律)

8、吸收律: $A \cup (A \cap B) = A$

$$A \cap (A \cup B) = A$$

三、集合运算律。

9、德●摩根律:

$$A - (B \cup C) = (A - B) \cap (A - C)$$

$$A - (B \cap C) = (A - B) \cup (A - C)$$

$$\overline{(B \cup C)} = \overline{B} \cap \overline{C}$$

$$\overline{(B \cap C)} = \overline{B} \cup \overline{C}$$

$$\overline{\phi} = E$$

$$\overline{E} = \phi$$

10、双重否定律: A = A

以上恒等式的证明思路:

欲证P = Q, 即证对任意 $x, x \in P \Leftrightarrow x \in Q$ 。

例4、证明分配律 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ 。 证明: 对任意 x, $x \in A \cup (B \cap C)$

$$\Leftrightarrow$$
 $(x \in A) \lor (x \in (B \cap C))$

$$\Leftrightarrow (x \in A) \lor (x \in B \land x \in C)$$

$$\Leftrightarrow$$
 $(x \in A \lor x \in B) \land (x \in A \lor x \in C)$

$$\Leftrightarrow$$
 $(x \in A \cup B) \land (x \in A \cup C)$

$$\Leftrightarrow x \in (A \cup B) \cap (A \cup C)$$

故
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

除基本运算外,还有以下一些常用性质(证明略)

11,
$$A \cap B \subseteq A$$
, $A \cap B \subseteq B$

12.
$$A \subseteq A \cup B$$
, $B \subseteq A \cup B$

13.
$$A-B \subseteq A$$

14
$$A - B = A \cap \overline{B}$$

15.
$$A \cup B = B \Leftrightarrow A \subseteq B$$

$$\Leftrightarrow A \cap B = A \Leftrightarrow A - B = \phi$$

此式给出了A是B的子集的3种等价定义。不仅提供了证明子集的新方法,也可以用于集合公式的化简。28

除基本运算外,还有以下一些常用性质(证明略)

$$16$$
、 $A ⊕ B = B ⊕ A$ "⊕"的交换律

$$17$$
、 $(A \oplus B) \oplus C = A \oplus (B \oplus C)$ "⊕"的结合律

18.
$$A \oplus \phi = A$$

19.
$$A \oplus A = \phi$$

$$20 \cdot A \oplus B = A \oplus C \Rightarrow B = C$$

例5、证明:
$$A-B=A\cap \overline{B}$$
 (第14条)
证明: 对任意 x ,
 $x \in A-B$
 $\Leftrightarrow x \in A \land x \notin B$
 $\Leftrightarrow x \in A \land x \in \overline{B}$
 $\Leftrightarrow x \in A \cap \overline{B}$
故 $A-B=A\cap \overline{B}$

例6、证明
$$A \cup (B-A) = A \cup B$$
。
证明: $A \cup (B-A) = A \cup (B \cap \overline{A})$
 $= (A \cup B) \cap (A \cup \overline{A})$
 $= (A \cup B) \cap E$
 $= A \cup B$

例7、化简
$$((A \cup B \cup C) \cap (A \cup B))$$

 $-((A \cup (B-C)) \cap A)$

解: 因为 $A \cup B \subseteq A \cup B \cup C$,

所以
$$(A \cup B \cup C) \cap (A \cup B) = A \cup B$$
,

又因为
$$A \subseteq A \cup (B-C)$$

所以
$$(A \cup (B-C)) \cap A = A$$
,

所以原式化简为 $(A \cup B) - A$

例7、化简
$$((A \cup B \cup C) \cap (A \cup B))$$

 $-((A \cup (B - C)) \cap A)$
解:又 $(A \cup B) - A$
 $=(A \cup B) \cap \overline{A}$
 $=(A \cap \overline{A}) \cup (B \cap \overline{A})$
 $=\phi \cup (B - A)$
 $=B - A$
最后,原式化简为 $B - A$ 。

例8、设 A, B, C均为E 的子集,以下命题中为真,为假的各有哪些?

(1)
$$A \subseteq B \Leftrightarrow A \bigcup B = B$$

(4)
$$A \subseteq B \Leftrightarrow A \cap B = B$$

$$(2) A \subseteq B \Leftrightarrow A \cup B = A$$

(5)
$$A \subseteq B \Leftrightarrow A \cup (B-A) = B$$

(3)
$$A \subseteq B \Leftrightarrow A \cap B = A$$

(6)
$$B \subseteq A \Leftrightarrow (A-B) \cap B = A$$

解: 为真的命题有(1)、(3)、(5),

为假的命题有(2)、(4)、(6)。