CS 7	771A:	Intro t	o Macl	nine Le	arning,	IIT Kan	pur	Endser	n Exam	(22 Nov	2022)
Na	Name			50 marks							
Rol	ll No	Dept.				Page 1 of 6					
1. This 2. Wr 3. Wr 4. Dor	ite youi ite youi n't over	ion pape r name, r r final ans rwrite/sci	oll numbe swers nea ratch ansv	er, depart tly with a wers espe	tment in kand the blue blue blue blue blue blue blue blu	olock lette ack pen. Po MCQ.	Please verify. rs with ink on encil marks m justification	ay get smu	dged.	+2) = 12	TECHNOLOGY BY TE
1	twee is ser	ets some nt. Ksüm	thing sil nnöle tw	ly. The s eets sor	shares hares hares	ave a 109 silly with	ce of crashing chance of a 20% chance. Justify by c	crashing nce. Then	if no silly , the prob	tweet ability	
2				_			$\mathbf{z} > \mathbf{x}^{T} \mathbf{y}$, it se give a cou			hat	
3	$\phi:\mathcal{X}$	$\rightarrow \mathbb{R}^d$ s	s.t. for a	l x , y ∈	$\mathcal{X}, \phi(\mathbf{x})$	$^{T}\phi(\mathbf{y})$ =	rs with ± 1 or $= (1 + \mathbf{x}^{T} \mathbf{y})$ wer dimension) ² must us	$se d \ge 10$	dims.	

4	If $X, Y \in \mathbb{R}^{3 \times 3}$ are rank one matrices, then $X + Y$ can never be rank one, no
	matter what are X, Y . Give a brief proof if True else give a counter example.

Q2. (Informative non-response models) Melbo is studying how one's income level affects one's reluctance to reveal one's income publicly. n people were chosen with incomes X_1, X_2, \ldots, X_n . Melbo knows that the income levels X_i are distributed as independent standard Gaussian random variables i.e., $X_i \sim \mathcal{N}(0,1)$ for all i (let us interpret positive X_i as higher-than-median income and negative X_i as lower-than-median income). However, not everyone wants to reveal their income. When Melbo conducts the survey, the responses are Z_1, Z_2, \ldots, Z_n . If the ith person reveals their income, then $Z_i = X_i$ else $Z_i = \phi$. It is known that $\mathbb{P}[Z_i \neq \phi \mid X_i] = \exp\left(-\frac{\alpha^2 X_i^2}{2}\right)$, where $\alpha > 0$ is an unknown parameter to be learnt. (Total 12 marks)

1. Is a rich person e.g., $X_i=100$ more likely or less likely to reveal their income than a person with close-to-median income e.g., $X_j=-0.01$? Give brief justification. (1+1 = 2 marks)

2. Is a poor person e.g., $X_i = -10$ more likely or less likely to reveal their income than a person with close-to-median income e.g., $X_j = 0.1$? Give brief justification. (1+1 = 2 marks)

3. Derive an expression for $\mathbb{P}[Z_i \neq \phi]$ the prior probability of a person revealing their income. Show steps and give your answer as a function $h(\alpha)$. **Hint**: the density of a Gaussian looks like $\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(X-\mu)^2}{2\sigma^2}\right)$ and $X_i \sim \mathcal{N}(0,1)$. Also, $\int_{-\infty}^{\infty} \exp\left(-\frac{a^2t^2}{2}\right) dt = \sqrt{\frac{2\pi}{a^2}}$. (4 marks)

CS 771A	Intro to Machine Learning, IIT Kanpur	Endsem Exam (22 Nov 2022)
Name			50 marks
Roll No	Dept.		Page 3 of 6
4. Writ	e down an expression for the negative log-likelihood	of the form (no de	rivation needed
	$\mathcal{L}(\alpha) = -\sum_{i:Z_i \neq \phi} \ln \mathbb{P}[Z_i \neq \phi, X_i] - \sum_{i:Z_i \neq \phi} Z_i = 0$		
Noti	ce that the terms in the first summation involve joir		(2 marks)
			(2 / 1
5. Writ	e down an expression for the gradient $\mathcal{L}'(lpha)$ (no de	rivation needed).	(2 marks)

Q3. (Quantile regression) Can we find the k^{th} largest number in a set of n numbers simply by solving an optimization problem?! Turns out it is indeed possible using a trick called quantile regression. For a set of real numbers $x_1 < x_2 < \dots < x_n$ (sorted in ascending order for sake of simplicity), for any integer $k = 0,1,2,\dots n$, consider the problem $\underset{z \in [x_1,x_n]}{\operatorname{soft}} f_k(z)$, with

$$f_k(z) \stackrel{\text{\tiny def}}{=} \left(\frac{k}{n} - 1\right) \cdot \sum_{x_i < z} (x_i - z) + \frac{k}{n} \cdot \sum_{x_i \ge z} (x_i - z)$$

There are no duplicates in $x_1, ..., x_n$. Assume that an empty sum equals 0.

1.	Find a minimizer fo	$r \operatorname{argmin}_{z \in [x_1, x_n]}$	$f_n(z)$ i.e., $k =$	n. Show brief	derivation. (1	.+1=2 marks
----	---------------------	--	----------------------	---------------	----------------	-------------

2.	Find a minimizer for argmin _{gela}	$f_0(z)$ i.e., $k=0$. Show brief derivation, $(1+1=2)$	marks

- 5. Let us handle $k \in [1, n-1]$. Show brief derivation that if $x_j < a < b \le x_{j+1}$, $a \ne b$, then
 - a. We have $f_k(a) > f_k(b)$ if $1 \le j < k$.
 - b. We have $f_k(a) < f_k(b)$ if k < j < n, we have.
 - c. We have $f_k(a) = f_k(b)$ if j = k, i.e., for $x_k < a < b \le x_{k+1}$. (4+4+4 = 12 marks)

After establishing a few more results like the ones above (which you do not have to show), we can deduce that any value of $z \in [x_k, x_{k+1}]$ is a minimizer of $\arg\min_{z \in [x_1, x_n]} f_k(z)$. (Total 16 marks)

	Machine Learning, IIT Kanpur	Endsem Exam (22 Nov 202
Name	ŢŢ	50 marks
toll No	Dept.	Page 5 of 6
<u>'</u>	,	<u>'</u>

Q4. (Robust mean estimation) Melbo has got samples X_1, \ldots, X_n from a Gaussian with unknown mean μ but known variance $\sigma = \frac{1}{\sqrt{2\pi}}$ i.e., with density $f(X;\mu) = \exp(-\pi(X-\mu)^2)$. Melbo wishes to estimate μ using these samples but is stuck since some samples were corrupted by Melbo's enemy Oblem. It is not known which samples did Oblem corrupt. Let's use latent variables to solve

Paga	6	٥f	6
Page	U	OI	U

this problem. For each i, we say $Z_i=1$ if we think X_i is corrupted else $Z_i=0$. For any $\mu\in\mathbb{R}$, we are told that $\mathbb{P}[Z_i=1\mid\mu]=\eta$, and that $\mathbb{P}[X_i\mid\mu,Z_i=1]=\epsilon$, and $\mathbb{P}[X_i\mid\mu,Z_i=0]=f(X_i;\mu)$. Thus, we suspect that Oblem corrupted around η fraction of the samples and we assume that a corrupted sample can take any value with probability ϵ . Assume $\epsilon,\eta<\frac{1}{10}$ and are both known.

1. For a given μ , derive for a rule to find out if $\mathbb{P}[Z_i = 1 \mid X_i, \mu] > \mathbb{P}[Z_i = 0 \mid X_i, \mu]$ or not.

2. Suppose we are given values of $Z_1,\ldots,Z_n\in\{0,1\}$. Derive an expression for the MLE estimate $\arg\max_{\mu\in\mathbb{R}}\prod_{i=1}^n\mathbb{P}[X_i\mid\mu,Z_i]$

Note that this allows us to execute alternating optimization to help Melbo solve the problem even in the presence of corruptions. We can initialize μ (say randomly), then use part 1 to set Z_i values for each i (set $Z_i=1$ if $\mathbb{P}[Z_i=1\mid X_i,\mu]>\mathbb{P}[Z_i=0\mid X_i,\mu]$ else set $Z_i=0$), then use part 2 to update μ given these Z_i values and then repeat the process till convergence. (5 + 5 = 10 marks)