

Computer Vision and Image Processing (CSEL-393)

Dr. Qurat ul Ain Akram
Assistant Professor
Computer Science Department (New Campus) KSK, UET, Lahore

Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

Edge Detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels

Application

- What is an object
- How can we find it

Edge Detection in images

At edges intensity or color changes

Origin of Edges

Edges are caused by a variety of factors

Slide Credit: James Hays

Edge Types

Example of Edges

An edge is a place of rapid change in the image intensity function

Effect of noise

Effect of Noise

- Consider a single row or column of the image
- Plotting intensity as a function of position gives a signal
- Where is the edge

Effects of Noise

- Difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- What can we do about it?

Solution

First Smooth the image

• To find edges, look for peaks in $\frac{d}{dx}(f*g)$

Derivative Theorem of Smoothing

- Differentiation is convolution, and convolution is associative: $\frac{d}{d}(f*g)=f*\frac{d}{d}g$
- This saves us one operation:

Tradeoff between smoothing and localization

 Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales".

Derivatives and Noise

- Strongly affected by noise
 - obvious reason: image noise results in pixels that look very different from their neighbors
- The larger the noise is the stronger the response

What is to be done?

- Neighboring pixels look alike
- Pixel along an edge look alike
- Image smoothing should help
 - Force pixels different from their neighbors (possibly noise) to look like neighbors

Derivatives and Noise

Edge Detectors

- Gradient Operator
 - Prewitt
 - Sobel
- Laplacian of Gaussian
- Gradient of Gaussian (Canny Edge Detector)

Prewitt and Sobel Edge Detector

- Compute derivatives in x and y directions
- Find gradient magnitude
- Threshold gradient magnitude

Prewitt Edge Detector

Sobel Edge Detector

Marr Hildreth Edge Detector

- Smooth image by Gaussian filter → S
- Apply Laplacian to S
 - Used in mechanics, electromagnetics, wave theory, quantum mechanics and Laplace equation
- Find zero crossings
 - Scan along each row, record an edge point at the location of zero-crossing
 - Repeat above step along each column

Marr Hildreth Edge Detector

Gaussian smoothing

smoothed image Gaussian filter image
$$\varphi = \frac{1}{2\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

Find Laplacian

$$\Delta^{2}S = \frac{\partial^{2}}{\partial x^{2}}S + \frac{\partial^{2}}{\partial y^{2}}S$$

- ∇ is used for gradient (first derivative)
- Δ² is used for Laplacian (Secondt derivative

Laplacian of Gaussian

Deriving the Laplacian of Gaussian (LoG)

$$\Delta^2 S = \Delta^2 (g * I) = (\Delta^2 g) * I \qquad g = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$g_x = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2 + y^2}{2\sigma^2}} \left(-\frac{2x}{2\sigma^2} \right)$$

$$\Delta^2 g = -\frac{1}{\sqrt{2\pi}\sigma^3} \left(2 - \frac{x^2 + y^2}{\sigma^2} \right) e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Finding Zero Crossing

- Four cases of zero-crossings:
 - {+,-}
 - {+,0,-}
 - {-,+}
 - {-,0,+}
- Slope of zero-crossing {a, -b} is |a+b|.
- To mark an edge
 - compute slope of zero-crossing
 - Apply a threshold to slope

Example

Example

$$\Delta^2 G_{\sigma} = -\frac{1}{\sqrt{2\pi\sigma^3}} \left(2 - \frac{x^2 + y^2}{\sigma^2} \right) e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$\sigma=1$$

$$\sigma=3$$

$$\sigma=6$$
AlperYilmaz, 1

LOG Algorithm

- Apply LOG to the image
- Find Zero crossings of each row
- Find slope of zero crossing
- Apply threshold to the slope and mark edges

Canny Edge Detection

- Canny Edge Detector Steps
 - 1. Smooth image with Gaussian filter
 - 2. Compute derivative of filtered image
 - 3. Find magnitude and orientation of gradient
 - 4. Apply "Non-maximum Suppression"
 - 5. Apply "Hysteresis Threshold" (use range between low a
 - 6. nd high)

Home assignment

- Write a python code
 - Read an image
 - Find edges using
 - 1. Prewitt and sobel
 - 2. Laplacian of Gaussian (LOG)
 - 3. Canny
 - Write image having marked edges on drive

Readings

- Chapter
- Richard Szeliski, Computer Vision, Algorithms and Applications, 2nd Ed, https://szeliski.org/Book/

Gradient

- Gradient equation: $\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$
- Represents direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

- Gradient direction: $\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$
- The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Discrete Edge Operators

How can we differentiate a **discrete** image?

Finite difference approximations:

$$\frac{\partial I}{\partial x} \approx \frac{1}{2\varepsilon} \left(\left(I_{i+1,j+1} - I_{i,j+1} \right) + \left(I_{i+1,j} - I_{i,j} \right) \right) \qquad \qquad I_{i,j+1} \qquad I_{i+1,j+1}$$

$$\frac{\partial I}{\partial y} \approx \frac{1}{2\varepsilon} \left(\left(I_{i+1,j+1} - I_{i+1,j} \right) + \left(I_{i,j+1} - I_{i,j} \right) \right) \qquad \qquad I_{i,j} \qquad I_{i+1,j}$$

$$\begin{array}{|c|c|} \hline I_{i,j+1} & I_{i+1,j+1} \\ \hline I_{i,j} & I_{i+1,j} \\ \hline \end{array} \underline{\uparrow}_{\mathcal{E}}$$

Convolution masks:

$$\frac{\partial I}{\partial x} \approx \frac{1}{2\varepsilon} \begin{vmatrix} -1 & 1 \\ -1 & 1 \end{vmatrix}$$

$$\frac{\partial I}{\partial x} \approx \frac{1}{2\varepsilon} \begin{vmatrix} -1 & 1 \\ -1 & 1 \end{vmatrix} \qquad \frac{\partial I}{\partial y} \approx \frac{1}{2\varepsilon} \begin{vmatrix} 1 & 1 \\ -1 & -1 \end{vmatrix}$$

Discrete Edge Operators

• First order partial derivatives:

$$\frac{\partial I}{\partial x} \approx$$

$$\frac{\partial I}{\partial y} \approx -$$

•Second order partial derivatives:

	_		
•	Lap	lacian	

$$\nabla^2 I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

 $egin{array}{c|c} I_{i-1,j+1} & I_{i,j+1} & I_{i+1,j+1} \ I_{i-1,j} & I_{i,j} & I_{i+1,j} \ I_{i-1,j-1} & I_{i,j-1} & I_{i+1,j-1} \ \end{array}$

Convolution masks:

(more accurate)

The Sobel Operators

- Better approximations of the gradients exist
 - The Sobel operators below are commonly used

-1	0	1	
-2	0	2	
-1	0	1	
$\overline{s_x}$			

1	2	1	
0	0	0	
-1	-2	-1	
s_y			

Comparing Edge Operators

Gradient:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Good Localization Noise Sensitive Poor Detection

Roberts (2 x 2):

0	1
-1	0

Sobel (3 x 3):

-1	0	1
-1	0	1
-1	0	1

1	1	1
0	0	0
-1	-1	1

Sobel (5 x 5):

-1	-2	0	2	1
-2	-3	0	3	2
-3	-5	0	5	3
-2	-3	0	3	2
-1	-2	0	2	1

1	2	3	2	1
2	3	5	3	2
0	0	0	0	0
-2	-3	-5	-3	-2
-1	-2	-3	-2	-1

Poor Localization Less Noise Sensitive Good Detection

Effects of Noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge??

Solution: Smooth First

Where is the edge?

Look for peaks in $\frac{\partial}{\partial x}(h\star f)$

Derivative Theorem of Convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

...saves us one operation.

Laplacian of Gaussian (LoG)

Canny Edge Operator

- Smooth image / with 2D Gaussian: G* I
- Find local edge normal directions for each pixel

$$\overline{\mathbf{n}} = \frac{\nabla(G * I)}{|\nabla(G * I)|}$$

- Compute edge magnitudes $|\nabla(G*I)|$
- Locate edges by finding zero-crossings along the edge normal directions (non-maximum suppression)

$$\frac{\partial^2 (G * I)}{\partial \overline{\mathbf{n}}^2} = 0$$

The Canny Edge Detector

original image (Lena)

The Canny Edge Detector

magnitude of the gradient

The Canny Edge Detector

After non-maximum suppression

Canny Edge Operator

- The choice of σ depends on desired behavior
 - large σ detects large scale edges
 - small σ detects fine features