

χ^2 Goodness of Fit Test

Dr. A. Ramesh

DEPARTMENT OF MANAGEMENT STUDIES

Agenda

- Python demo for testing GOF for Poisson distribution
- Understanding goodness of fit test for:
 - Uniform
 - Normal
- Python demo for testing GOF for uniform and normal distribution

Goodness of fit for Uniform Distribution

Milk Sales Data

<u>Month</u>	<u>Litres</u>
January	1,610
February	1,585
March	1,649
April	1,590
May	1,540
June	1,397
July	1,410
August	1,350
September	1,495
October	1,564
November	1,602
December	<u>1,655</u>
	18,447

Hypotheses and Decision Rules

H_o: The monthly milk figures for milk sales are uniformly distributed

Ha: The monthly milk figures for milk sales are not uniformly distributed

$$\alpha = .01$$

$$df = k - 1 - p$$

$$= 12 - 1 - 0$$

$$= 11$$

$$\chi^{2}_{.01,11} = 24.725$$

If
$$\chi^2_{Cal} > 24.725$$
, reject H_o.
If $\chi^2_{Cal} \le 24.725$, do not reject H_o.


```
In [1]: from scipy.stats import chi2
In [2]: import pandas as pd
import numpy as np
In [3]: chi2.ppf(0.99,11)
Out[3]: 24.724970311318277
```


Calculations

Month	f_{o}	f_	$(f_0 - f_e)^2/f_e$
January	1,610	1,537.25	3.44
February	1,585	1,537.25	1.48
March	1,649	1,537.25	8.12
April	1,590	1,537.25	1.81
May	1,540	1,537.25	0.00
June	1,397	1,537.25	12.80
July	1,410	1,537.25	10.53
August	1,350	1,537.25	22.81
September	1,495	1,537.25	1.16
October	1,564	1,537.25	0.47
November	1,602	1,537.25	2.73
December	1,655	1,537.25	9.02
	18,447	18,447.00	74.38

$$f_e = \frac{18447}{12} = 1537.25$$

$$\chi^2_{Cal} = 74.37$$


```
In [6]: x =[1610,1585,1649,1590,1540,1397,1410,1350,1495,1564,1602,1655]
In [7]: np.mean(x)
Out[7]: 1537.25
In [8]: exp_f=[1537.25,1537.25,1537.25,1537.25,1537.25,1537.25,1537.25,1537.25,1537.25,1537.25]
In [9]: from scipy.stats import chisquare chisquare(x,exp_f)
Out[9]: Power_divergenceResult(statistic=74.37583346885673, pvalue=1.78545252783034e-11)
```


Conclusion

$$\chi^2_{Cal} = 74.37 > 24.725$$
, reject H_o.

Goodness of Fit Test: Normal Distribution

- 1. Set up the null and alternative hypotheses.
- 2. Select a random sample and
 - a. Compute the mean and standard deviation.
 - b. Define intervals of values so that the expected frequency is at least 5 for each interval.
 - c. For each interval record the observed frequencies
- 3. Compute the expected frequency, e_i , for each interval.

Goodness of Fit Test: Normal Distribution

4. Compute the value of the test statistic.

$$\chi^{2} = \sum_{i=1}^{k} \frac{(f_{i} - e_{i})^{2}}{e_{i}}$$

5. Reject H_0 if

$$\chi^2 \geq \chi_\alpha^2$$

K-1-7

(where α is the significance level and there are k-3 degrees of freedom)

Example: IQL Computers

IQL Computers manufactures and sells a general purpose microcomputer. As part of a study to evaluate sales personnel, management wants to determine, at $\alpha=0.05$ significance level, if the annual sales volume (number of units sold by a salesperson) follows a normal probability distribution.

A simple random sample of 30 of the salespeople was taken and their numbers of units sold are below.

```
33 43 44 45 52 52 56 58 63 64
64 65 66 68 70 72 73 73 74 75
83 84 85 86 91 92 94 98 102 105
```

(mean = 71, standard deviation = 18.23)


```
In [12]: A = [33, 43, 44, 45, 52, 52, 56, 58, 63, 64, 64, 65, 66, 68, 70, 72, 73, 73, 74, 75, 83, 84, 85, 86, 91, 92, 94, 98, 102, 105]

In [13]: mean = np.mean(A) mean

Out[13]: 71.0

In [14]: std = np.std(A) std

Out[14]: 18.226354544998845
```


Hypotheses

H₀: The population of number of units sold
 has a normal distribution with mean 71
 and standard deviation 18.23

H_a: The population of number of units sold does not have a normal distribution with mean 71 and standard deviation 18.23

Interval Definition

To satisfy the requirement of an expected frequency of at least 5 in each interval we will divide the normal distribution into 30/5 = 6 equal probability intervals.

Observed and Expected Frequencies

$\underline{}$	f_{i}	e_i	f_i - e_i
Less than 53.02	6	5	1
53.02 to 63.03	3	5	-2
63.03 to <u>71.00</u>	6	5	1
71.00 to <u>78.</u> 97	5	5	0
78.97 to 88.98	4	5	-1
More than <u>88.98</u>	6	5	1
Total	30	30	

• Rejection Rule

With
$$\alpha = .05$$
 and $k - p - 1 = 6 - 2 - 1 = 3$ d.f. (where $k =$ number of categories and $p =$ number of population parameters estimated), $\chi_{.05}^2 = 7.815$

Reject H_0 if p-value $\leq .05$ or $\chi^2 \geq 7.815$.

In [5]: chi2.ppf(0.95,3)

out[5]: 7.8147279032511765

Test Statistic

$$\chi^{2} = \frac{(1)^{2}}{5} + \frac{(-2)^{2}}{5} + \frac{(1)^{2}}{5} + \frac{(0)^{2}}{5} + \frac{(-1)^{2}}{5} + \frac{(1)^{2}}{5} = \boxed{1.600}$$

