Chapter 1. 인체의 세포생리학과 영양소 (1)

@ 세포생리학과 영양소의 역할

지구상에 존재하는 생명체들은 세포 각각의 중요한 생물학적인 역할을 수행하고 다른 세포간의 대화(신호전달체계)를 시도함으로써 거대한 생명체의 성장과 발달에서로 기여하고 있다. 이러한 과정에 당질, 지질, 단백질, 비타민, 무기질, 물 등의 영양소들은 다양하면서도 정확한 대사를 위하여 공급되어져야 세포기능을 조절하는 역할을 수행한다. 만약 영야소의 기능이 불완전한 상태오 제공된다면 질병이 발생하고 결국 죽음에 이르게 된다.

1. 생물체의 분류

지구에는 400만 종의 생물이 살고 있는데, 단생생물계, 원생생물계, 균류, 식물, 동물 등이 5계에 속하지만 크게 원핵생물과 진핵생물로 분류한다. 원핵생물은 핵(핵막)이 없으나, 진 핵생물은 핵막으로 둘러싸인 핵을 갖고 있어서 자신의 DNA을 잘 보관하고 있다. 진핵은 원핵보다 크며 고등동물의 기능에 적합한 분화와 조직화된 다세포 생물이 이에 속하며 원핵생물은 락토산균과 포도상구균 등이 속하지만 질소고정 박테리아 혹은 치즈·요구르트 를 생성하는 박테리아 등 호르몬, 백신 등을 합성하는 인류에 유익한 생물들도 있다. 표 1-1은 원핵과 진핵세포의 차이점을 설명한 것이다.

표 1-1. 원핵세포와 진핵세포의 차이점

	원핵세포	진핵세포
핵막	없다.	있다.
인	없다.	있다.
염색체	1개(환상구조) (histone 등 단백질과 결합되어 있다.)	다수 (histone 등 단백질과 복잡하게 결합되어 있다.)
분열	무사분열	유사분열
세포막	sterol이 없다.	sterol이 있다.
세포내운동	없다	세포질운동, 엔도시토오시스, 파고시토오시스
세포내 소기관	없다.	미토콘드리아, 엽록체(식물), 소포체, 골 지복합체 등
호흡계	세포막에 부착된 메소좀(mesosome)이 라는 막성 기관에 존재한다.	세포막 부분 또는 mitochondria에 존재한다.
크기	작다(보통 2µm 이하)	크다(2~100µm)

2. 진핵세포의 구조

❷고등동물을 구성하는 진핵 세포에서의 소기관의 역할로 그 기능을 알 수 있다.

인체를 기준으로 예를 들면 기관계(organ system)는 기관(organ), 기관은 조직(tissue), 조직은 세포(cell), 세포는 세포소기관(organelle), 세포소기관은 DNA로 구성된다. 인체의 소화기관계는 간, 소장, 대장, 이자, 식도 등으로 구성되어 있고, 간은 간 조직, 간 조직은 간세포, 간세포는 미토콘드리아, 핵 등소기관으로, 핵은 이들의 유전정보인 DNA를 구성하고 있다.

그림 **1-1**. 인체 소화기관계의 구성

1) 원형질막(plasma membrane)

원형질막은 세포를 외부로부터 격리시키는 막이다. 원형질막은 물질수송, 세포의 형태유지, 세포 간 정보교환 등의 역할을 한다. 특히 외부로부터의 정보교환은 세포막을 구성하는 당지질, 당단백질의 역할이 크다.

2) 핵(nucleus)

핵은 세포의 모든 유전정보를 DNA 형태로 가지고 있으며 핵막으로 둘러싸여있다. 핵막에는 핵공이라는 구멍이 있어서 합성된 RNA가 단백질합성을 하기위해 이동하는 통로를 제공한다.

3) 미토콘드리아(mitochondria)

모든 진핵세포는 산소를 이용하여 에너지를 얻는 산소호흡 과정을 하며 미토콘드리아에서 일어나고 있다. 미토콘드리아는 외막과 내막의 이중막으로 구성되어 외막은 내·외부물질의 이동제한에 관여한다. 내막은 에너지 생성과 물질수송 단백질을 함유하는 곳이다.

4) 소포체(endoplasmic reticulum)

단백질을 합성하는 라이보솜이 결합된 조면소포체와 라이보솜이 없는 활면소포체로 구분 된다. 전자는 단백질을 합성하여 세포 밖으로 내보내는 역할을, 후자는 지방합성과 생체물질의 반응자리 역할을 한다.

5) 라이보솜(ribosome)

단백질 합성에 필요한 작은 세포소기관으로 RNA와 단백질로 구성되어 있다. 소단위의 분자크기에 따라 큰 것과 작은 것이 있는데, 작은 단위는 mRNA와 tRNA 결합 자리이며 큰 것은 펩타이드 결합을 촉매한다.

6) 골지체(golgi apparatus)

골지체는 소포체가 확장되어 만들어진 납작한 원반모양의 구조물이다. 세포내에서 합성 된 융합물이 세포 밖으로 유출시키는 역할을 한다.

7) 라이소좀(lysosome)

라이소좀은 단백질, 지질, 당질을 가수분해하는 효소들을 포함하므로 세포내와 세포외 소화에 관여한다. 분해된 분자는 선택적으로 라이소좀에 운반되어 좀더 간단한 구성 성분으로 가수 분해된 후 세포내로 유입된다. 유전질환인 Tay-saches 질병은 라이소좀 내의 1개의 지질 가수분해효소가 결핍되어 뇌에 지질이 축적되어 정신장애를 일으킨다.

8) 퍼옥시좀(peroxisome)

산화효소를 함유하고 있는 구형상 막세포소기관으로 과산화물의 형성과 파괴에 관여하기 때문에 간과 신장의 해독작용에 매우 중요하다.

9) 세포골격(cytoskeleton)

세포질에 존재하고 세포의 일정한 형태를 유지시키는 골절구조를 말하며 세포소기관의 이동을 조정하는 역할을 한다. 튜불린(tublin)이라는 단백질로 구성된 미소관은 세포골격에서 가장 많이 존재하는 구성성분으로 신경세포의 축삭돌기, 수상돌기, 섬모 및 편모 등이 해당한다.