2.7 Linear Mappings

지금까지 Vector space의 구조에 대해서 배웠습니다.

만약 이러한 Vector space V_1,V_2 2개 존재할 때, 각각의 구조를 그대로 유지하는 Mapping을 살펴보는 장입니다. 즉, 구조에서 더 나아가 관계로 확장되는 것입니다.

Linear Mappings

mapping을 적용할 때, 이 속성이 유지되는 것을 원합니다. ightarrow 선형성 $두 개의 실수 \ \text{vector space} \ V, W$ 가 있다고 가정할 때, 아래의 조건을 성립하면 mapping $\Phi: V
ightarrow W$ 는 vector space의 구조를 유지합니다.

$$\Phi(\mathbf{x} + \mathbf{y}) = \Phi(\mathbf{x}) + \Phi(\mathbf{y})$$
$$\Phi(\lambda \mathbf{x}) = \lambda \Phi(\mathbf{x})$$

 $\forall x, y \in V \, \forall \lambda, \psi \in \mathbb{R} : \Phi(\lambda x + \psi y) = \lambda \Phi(x) + \psi \Phi(y).$

• 더 자세한 내용은 Chapter 4에서 다룹니다.

Definition 2.16 (Injective, Surjective, Bijective). Consider a mapping $\Phi: \mathcal{V} \to \mathcal{W}$, where \mathcal{V}, \mathcal{W} can be arbitrary sets. Then Φ is called

- Injective if $\forall x, y \in \mathcal{V} : \Phi(x) = \Phi(y) \implies x = y$.
- Surjective if $\Phi(\mathcal{V}) = \mathcal{W}$.
- Bijective if it is injective and surjective.

Injective

https://ko.wikipedia.org/wiki/단사 함수

- 단사 함수, 일대일 함수
- 정의역의 서로 다른 원소를 공역의 서 로 다른 원소로 대응시키는 함수

Surjective

<u>https://ko.wikipedia.org/wiki/전사 함수</u>

- 전사 함수
- 공역과 치역이 같은 함수

Bijective

<u>https://ko.wikipedia.org/wiki/전단사 함수</u>

- 전단사 함수, 일대일 대응 함수
- 두 집합 사이를 중복 없이 모두 일대일 로 대응시키는 함수
- mapping $\Psi:W o V$ 존재, Φ^{-1} 로 표기
- ullet Isomorphism: $\Phi:V o W$ linear and bijective
- Endomorphism: $\Phi: V \to V$ linear
- Automorphism: $\Phi:V \to V$ linear and bijective
- We define $\mathrm{id}_V:V\to V$, $x\mapsto x$ as the identity mapping or identity automorphism in V.

Isomorphism (동형 사상)

- ullet 벡터 공간 V 와 W사이에 일대일 대응을 보장하는 선형 함수
- 즉, V의 구조 (덧셈, 스칼라곱)를 그대로 보존하면서 W로 옮길 수 있습니다.
- 예시
 - $\circ~\Phi:\mathbb{R}^2 o\mathbb{R}^2$
 - $\bullet \ \Phi(x,y)=(2x,2y)$

구조를 보존하면서 다른 공간으로 옮기는 선형 변환

Endomorphism (자기 사상)

- 같은 벡터 공간 안에서 작동하는 선형 변환, V o V
- 예시
 - $\bullet \ \Phi: \mathbb{R}^2 o \mathbb{R}^2$
 - $\Phi(x,y) = (x,0)$

Automorphism (자기 동형 사상)

- 벡터 공간 V에서 자기 자신으로 가는 isomorphism
- 예시
 - ullet $\Phi:\mathbb{R}^2 o\mathbb{R}^2$
 - $\bullet \ \Phi(x,y) = (x+y,y)$

Identity Mapping (항등 사상, 변환)

- 자기 자신을 그대로 보내는
- 어떤 벡터 x가 있을 때, $id_V(x)=x$

Homomorphism (준동형사상)

Example 2.19 (Homomorphism)
$$\begin{aligned} \text{The mapping } \Phi : \mathbb{R}^2 &\to \mathbb{C}, \ \Phi(\boldsymbol{x}) = x_1 + ix_2 \text{, is a homomorphism:} \\ \Phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}\right) &= (x_1 + y_1) + i(x_2 + y_2) = x_1 + ix_2 + y_1 + iy_2 \\ &= \Phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) + \Phi\left(\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}\right) \\ \Phi\left(\lambda\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) &= \lambda x_1 + \lambda i x_2 = \lambda (x_1 + ix_2) = \lambda \Phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) \;. \end{aligned} \tag{2.88}$$

• 덧셈과 스칼라 곱이 정의된 벡터 공간 사이에서, 이 연산들을 보존하는 함수(mapping)은 모두 homomorphism 이라고 할 수 있습니다.

정리 (Theorem 2.17)

Theorem 2.17 (Theorem 3.59 in Axler (2015)). *Finite-dimensional vector spaces* V *and* W *are isomorphic if and only if* $\dim(V) = \dim(W)$.

유한한 차원의 두 벡터 공간 V,W가 있을 때, $\dim(V)=\dim(W)$ 라면, V와 W는 isomorphic 합니다.

즉, dim이 같으면 대수적인 구조가 같다는 것입니다.

또한 $\dim(V) = \dim(W)$ 라고 한다면 이 사이에 linear mapping이 존재한다는 것을 보장합니다.

Remark. Consider vector spaces V, W, X. Then:

- For linear mappings $\Phi:V\to W$ and $\Psi:W\to X$, the mapping $\Psi\circ\Phi:V\to X$ is also linear.
- If $\Phi:V\to W$ is an isomorphism, then $\Phi^{-1}:W\to V$ is an isomorphism, too.
- If $\Phi:V\to W,\ \Psi:V\to W$ are linear, then $\Phi+\Psi$ and $\lambda\Phi,\ \lambda\in\mathbb{R}$, are linear, too.
- $\mathbb{R}^{m \times n}$ **와** \mathbb{R}^{mn} 을 같은 것으로 취급할 수 있도록 해줍니다.
- 이는 두 벡터 공간이 **동일한 차원**이고, 이 사이에 linear / bijective mapping이 존재하기 때문입니다.

Matrix Representation of Linear Mappings

정리 2.17에 의해서 유한 차원의 vector space에서 dim이 같으면 서로 대수적 구조가 같다고 했습니다. 어느 n 차원 실수 공간 \mathbb{R}^n 과 n개의 원소로 이루어진 basis를 가지는 vector space를 고려하려고 합니다. 이때 basis 원소의 순서도 중요합니다. 이를 V의 ordered basis 혹은 n-tuple이라고 부릅니다.

- $B=(b_1,\cdots,b_n)$ (ordered basis)
- $\mathcal{B} = \{b_1, \cdots, b_n\}$ (unordered basis)
- $\mathbf{B} = [b_1, \cdots, b_n]$ (벡터 b_1, \cdots, b_n 이 columns인 행렬)

vector space V와 V의 ordered basis $B=(b_1,\cdots,b_n)$ 가 있을 때, any $x\in V$ 는 B에 대한 유일한 linear combination (선형 결합)으로 다음과 같이 표현할 수 있습니다.

$$\boldsymbol{x} = \alpha_1 \boldsymbol{b}_1 + \ldots + \alpha_n \boldsymbol{b}_n$$

 $\alpha_1, \cdots, \alpha_n$ 는 B에 대한 x의 좌표(coordinate)이고, 다음 벡터는

$$oldsymbol{lpha} = egin{bmatrix} lpha_1 \ dots \ lpha_n \end{bmatrix} \in \mathbb{R}^n$$

ordered basis B에 대한 x의 좌표 벡터 또는 좌표 표현입니다.

Figure 2.8 Two different coordinate systems defined by two sets of basis vectors. A vector æ has different coordinate representations depending on which coordinate system is chosen.

같은 벡터라고 하더라도, 어떤 basis로 나타내느냐에 따라 좌표는 달라질 수 있습니다.

Figure 2.9
Different coordinate representations of a vector \boldsymbol{x} , depending on the choice of basis.

위 예시를 보면 검은색으로 표현된 벡터 $[2,3]^T$ 는 단위 벡터로 표현하면 좌표가 (2,3)이 됩니다. (우리에게 익숙한 데카르트 좌표계) 하지만 $b_1=[1,-1]^T,\ b_2=[1,1]^T$ 벡터들로 표현하면 $\frac{1}{2}[-1,5]^T$ 가 됩니다.

여기서 중요한 점은 "basis에 따라 달라지는 이 좌표들 사이에는 어떠한 관계가 있을까?" 입니다.

Transformation Matrix 정의 2.19

Vector space V,W와 이에 대응되는 ordered bases $B=(b_1,\cdots,b_n),\ C=(c_1,\cdots,c_n)$ 이 있고, linear mapping $\Phi:V o W$ 가 있을 때, $j\in\{1,\cdots,n\}$ 에 대해

$$\Phi(oldsymbol{b}_j) = lpha_{1j} oldsymbol{c}_1 + \dots + lpha_{mj} oldsymbol{c}_m = \sum_{i=1}^m lpha_{ij} oldsymbol{c}_i$$

해당 식은 C에 대한 $\Phi(b_i)$ 의 유일한 표현입니다.

그리고 m imes n-행렬 A_Φ 를 transformation matrix of Φ 하고 하며, 아래로 표현되는 요소들을 가집니다.

예시

Example 2.21 (Transformation Matrix)

Consider a homomorphism $\Phi:V o W$ and ordered bases B= $(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_3)$ of V and $C=(\boldsymbol{c}_1,\ldots,\boldsymbol{c}_4)$ of W. With

$$\begin{split} &\Phi(\boldsymbol{b}_1) = \boldsymbol{c}_1 - \boldsymbol{c}_2 + 3\boldsymbol{c}_3 - \boldsymbol{c}_4 \\ &\Phi(\boldsymbol{b}_2) = 2\boldsymbol{c}_1 + \boldsymbol{c}_2 + 7\boldsymbol{c}_3 + 2\boldsymbol{c}_4 \\ &\Phi(\boldsymbol{b}_3) = 3\boldsymbol{c}_2 + \boldsymbol{c}_3 + 4\boldsymbol{c}_4 \end{split} \tag{2.95}$$

the transformation matrix ${m A}_\Phi$ with respect to B and C satisfies $\Phi({m b}_k)=$ $\sum_{i=1}^{4} \alpha_{ik} c_i$ for $k = 1, \dots, 3$ and is given as

$$A_{\Phi} = [\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3] = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 3 \\ 3 & 7 & 1 \\ -1 & 2 & 4 \end{bmatrix},$$
 (2.96)

where the $\alpha_j,\ j=1,2,3,$ are the coordinate vectors of $\Phi({m b}_j)$ with respect

Example 2.22 (Linear Transformations of Vectors)

We consider three linear transformations of a set of vectors in \mathbb{R}^2 with the transformation matrices

$$\boldsymbol{A}_{1} = \begin{bmatrix} \cos(\frac{\pi}{4}) & -\sin(\frac{\pi}{4}) \\ \sin(\frac{\pi}{4}) & \cos(\frac{\pi}{4}) \end{bmatrix}, \ \boldsymbol{A}_{2} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, \ \boldsymbol{A}_{3} = \frac{1}{2} \begin{bmatrix} 3 & -1 \\ 1 & -1 \end{bmatrix}.$$
 (2.97)

transformation matrix의 직관적 이해

앞서 살펴본 Linear mapping의 조건을 좌표 평면에 나타내면 다음과 같습니다.

- 직선이 직선이 채로 유지
- 원점 고정 유지
- → 격자선이 평행하고 균등한 상태를 유지

기존 격자선

선형 변환의 예시 (Rotation)

선형 변환 X

행렬은 선형 변환을 표현하는 도구

- 모든 선형 변환은 특정한 행렬 곱셈으로 표현할 수 있습니다.
 - 즉, 행렬은 선형 변환을 수치적으로 표현한 것입니다.
 - 행렬 곱을 통해 계산 가능하다는 것이 장점입니다.

예시 (transformation matrix)

어떠한 변환을 T라고 했을 때 (Transform) 90도로 회전하는 변환은 다음과 같습니다.

• 변환 결과 →
$$T igg[egin{pmatrix} x \\ y \end{bmatrix} igg) = igg[-y \\ x \end{bmatrix}$$

• 행렬로 표현
$$\rightarrow \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

행렬곱은 직관적으로 다음과 같이 열벡터의 선형결합으로 이해할 수 있습니다.

$$\begin{bmatrix} a & \mathbf{b} \\ c & \mathbf{d} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} a \\ c \end{bmatrix} + y \begin{bmatrix} \mathbf{b} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} ax + \mathbf{b}y \\ cx + \mathbf{d}y \end{bmatrix}$$

Basis Change

기저 변환의 필요성

같은 선형 변환을 나타내는 행렬 A는 기저가 바뀌면 표현이 달라집니다. 서로 다른 기저에서도 일관된 의미를 유지하기 위해 기저 변환을 배우는 이유입니다.

V와 W의 basis를 변경했을 때, linear mapping $\Phi:V o W$ 의 transformation matrix들이 어떻게 되는지 살펴보도록 하겠습니다. V와 W의 두 ordered basis는 다음과 같습니다.

$$B = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n), \quad \tilde{B} = (\tilde{\boldsymbol{b}}_1, \dots, \tilde{\boldsymbol{b}}_n)$$

$$C = (\boldsymbol{c}_1, \dots, \boldsymbol{c}_m), \quad \tilde{C} = (\tilde{\boldsymbol{c}}_1, \dots, \tilde{\boldsymbol{c}}_m)$$

- B,C에 대한 linear mapping $\Phi:V o W$ 의 transformation matrix를 $A_\Phi\in\mathbb{R}^{m imes n}$
- $ilde{B}, ilde{C}$ 에 대한 linear mapping $\Phi: V o W$ 의 transformation matrix를 $ilde{A}_\Phi \in \mathbb{R}^{m imes n}$

이때, basis B, C $ightarrow ilde{B}, ilde{C}$ 로 변경하면 $A_{\Phi} \in \mathbb{R}^{m imes n}$ 에서 $ilde{A}_{\Phi} \in \mathbb{R}^{m imes n}$ 로 변환할 수 있는지에 대해 살펴보겠습니다.

예시 2.23

Example 2.23 (Basis Change)

Consider a transformation matrix

$$\boldsymbol{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \tag{2.100}$$

with respect to the canonical basis in \mathbb{R}^2 . If we define a new basis

$$B = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix}$$
 (2.101)

we obtain a diagonal transformation matrix

$$\tilde{\boldsymbol{A}} = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \tag{2.102}$$

with respect to B, which is easier to work with than A.

- A: 기존(표준 기저) 선형 변환 행렬
- ullet B : 새로운 기저 벡터들을 열벡터로 갖는 행렬
- $ullet \ B^{-1} = rac{1}{2} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$: 기저 변환을 위해 필요한 역행렬
- $ilde{A}$: 새로운 기저 기준에서의 A의 표현 ightarrow 기저 변환된 행렬

Theorem (정리) 2.20

• 해당 정리에 대한 증명은 생략하겠습니다.

Theorem 2.20 (Basis Change). For a linear mapping $\Phi: V \to W$, ordered bases

$$B = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n), \quad \tilde{B} = (\tilde{\boldsymbol{b}}_1, \dots, \tilde{\boldsymbol{b}}_n) \tag{2.103}$$

of V and

$$C = (\boldsymbol{c}_1, \dots, \boldsymbol{c}_m), \quad \tilde{C} = (\tilde{\boldsymbol{c}}_1, \dots, \tilde{\boldsymbol{c}}_m)$$
 (2.104)

of W, and a transformation matrix A_{Φ} of Φ with respect to B and C, the corresponding transformation matrix \tilde{A}_{Φ} with respect to the bases \tilde{B} and \tilde{C} is given as

$$\tilde{\boldsymbol{A}}_{\Phi} = \boldsymbol{T}^{-1} \boldsymbol{A}_{\Phi} \boldsymbol{S} \,. \tag{2.105}$$

예시 2.24

Example 2.24 (Basis Change)

Consider a linear mapping $\Phi: \mathbb{R}^3 \to \mathbb{R}^4$ whose transformation matrix is

$$\boldsymbol{A}_{\Phi} = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 3 \\ 3 & 7 & 1 \\ -1 & 2 & 4 \end{bmatrix}$$
 (2.117)

with respect to the standard bases

$$B = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}), \quad C = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right). \tag{2.118}$$

We seek the transformation matrix $\tilde{\boldsymbol{A}}_{\Phi}$ of Φ with respect to the new bases

$$\tilde{B} = \left(\begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right) \in \mathbb{R}^3, \quad \tilde{C} = \left(\begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix} \right). \quad (2.119)$$

Then,

$$\boldsymbol{S} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \qquad \boldsymbol{T} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \tag{2.120}$$

where the ith column of S is the coordinate representation of \tilde{b}_i in terms of the basis vectors of B. Since B is the standard basis, the coordinate representation is straightforward to find. For a general basis B, we would need to solve a linear equation system to find the λ_i such that

 $\sum_{i=1}^{3} \lambda_i \boldsymbol{b}_i = \tilde{\boldsymbol{b}}_j, j = 1, \dots, 3$. Similarly, the jth column of \boldsymbol{T} is the coordinate representation of $\tilde{\boldsymbol{c}}_j$ in terms of the basis vectors of C.

Therefore, we obtain

$$ilde{m{A}}_{\Phi} = m{T}^{-1} m{A}_{\Phi} m{S} = rac{1}{2} \begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 \\ 0 & 4 & 2 \\ 10 & 8 & 4 \\ 1 & 6 & 3 \end{bmatrix}$$
 (2.121a)

$$= \begin{bmatrix} -4 & -4 & -2 \\ 6 & 0 & 0 \\ 4 & 8 & 4 \\ 1 & 6 & 3 \end{bmatrix}. \tag{2.121b}$$

Image and Kernel

linear mapping에서 image와 kernel은 중요한 속성을 가진 vector space입니다. kernel과 image는 다음과 같이 정의될 수 있습니다.

• mapping Φ 에 대해서 벡터 공간 V를 domain(정의역) W를 codomain(공역)라고 부를 수 있습니다.

Definition 2.23 (Image and Kernel).

For $\Phi: V \to W$, we define the *kernel/null space*

$$\ker(\Phi) := \Phi^{-1}(\mathbf{0}_W) = \{ v \in V : \Phi(v) = \mathbf{0}_W \}$$
 (2.122)

and the image/range

$$\operatorname{Im}(\Phi) := \Phi(V) = \{ w \in W | \exists v \in V : \Phi(v) = w \}.$$
 (2.123)

We also call V and W also the *domain* and *codomain* of Φ , respectively.

직관적으로 살펴보았을 때, kernel은 mapping $\Phi:V o W$ 에서 0_W 로 사상(변환)되는 벡터 V의 공간입니다. 즉, 0_W (영벡터)로 보내지는 입력들의 조합입니다.

Remark.

- 항상 $\Phi(0_V)=0_W$ 입니다. 그러므로 $0_V\in\ker(\Phi)$ 입니다. 그래서 null space는 절대 공집합이 될 수 없습니다.
- $\operatorname{Im}(\Phi) \subseteq W$ 는 W의 subspace이고, $\ker(\Phi) \subseteq V$ 는 V의 subspace입니다.
- $\ker(\Phi) = \{0\}$ 일 때, Φ 는 injective(일대일, one-to-one) 입니다.

Remark. 영공간과 열공간

- $A\in\mathbb{R}^{m imes n}$ 그리고 linear mapping $\Phi:\mathbb{R}^n o\mathbb{R}^m,\ x o Ax$ 이 있을 때, 다음이 성립합니다.
- 행렬 A의 column이 a_i 일 때, $A=[a_1,\cdots,a_n]$ 에 대해 다음이 성립합니다.

$$\operatorname{Im}(\Phi) = \{ A\boldsymbol{x} : \boldsymbol{x} \in \mathbb{R}^n \} = \left\{ \sum_{i=1}^n x_i \boldsymbol{a}_i : x_1, \dots, x_n \in \mathbb{R} \right\}$$
 (2.124a)
= span[$\boldsymbol{a}_1, \dots, \boldsymbol{a}_n$] $\subseteq \mathbb{R}^m$, (2.124b)

용어	의미
${ m Im}(\Phi)$	Ax 가 도달 가능한 모든 벡터의 집합
열공간(column space)	A 의 열벡터들로 $span$ 된 부분공간
결론	$\operatorname{Im}(\Phi) = \operatorname{column} \operatorname{space} \operatorname{of} A$

- $\operatorname{rk}(A) = \dim(\operatorname{Im}(\Phi))$
- $\ker(\Phi)$ 는 Ax=0의 일반해입니다.
- kernel은 정의역인 \mathbb{R}^n 의 subspace입니다. 여기서 n은 행렬의 width입니다.
- kernel은 열들의 관계에 대해서 잘 설명해줍니다.

예시 2.25

• 4차원 공간에서 2차원 공간으로 linear mapping Φ 가 정의되어 있습니다.

$$\Phi: \mathbb{R}^4 \to \mathbb{R}^2, \quad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 2 & -1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 - x_3 \\ x_1 + x_4 \end{bmatrix}$$
(2.125a)

• 이를 다시 열성분으로 표현 (열벡터의 일차 결합) 할 수 있습니다.

$$=x_1\begin{bmatrix}1\\1\end{bmatrix}+x_2\begin{bmatrix}2\\0\end{bmatrix}+x_3\begin{bmatrix}-1\\0\end{bmatrix}+x_4\begin{bmatrix}0\\1\end{bmatrix} \ \ (\textbf{2.125b})$$

• $\operatorname{Im}(\Phi)$ 는 열벡터로 span되는 subspace 이기에 다음과 같이 표현할 수 있습니다.

$$\operatorname{Im}(\Phi) = \operatorname{span}\begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 2\\0 \end{bmatrix}, \begin{bmatrix} -1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}]. \tag{2.126}$$

• 이제 $\ker(\Phi)$ 를 구하기 위해서 Ax=0을 만족하는 x를 구할 수 있습니다.

Theorem 2.24 (Rank-Nullity Theorem)

• Vector space V,W 와 linear mapping $\Phi:V o W$ 에 대하여 다음이 성립합니다.

$$\dim(\ker(\Phi)) + \dim(\operatorname{Im}(\Phi)) = \dim(V). \tag{2.129}$$

- 만약 $\dim(\operatorname{Im}(\Phi)) < \dim(V)$ 라면 $\ker(\Phi)$ 는 nontrival입니다.
 - \circ 즉 0_V 가 아닌 원소를 적어도 하나를 포함하므로 $\dim(\ker(\Phi)) < 1$ 을 만족합니다.

- A_{Φ} 가 ordered basis에 때한 Φ 의 변환행렬 A 이고, $\dim(\mathrm{Im}(\Phi))<\dim(\mathrm{V})$ 이 성립하면 Ax=0은 무한히 많은 해를 가집니다
 - \circ $\ker(\Phi)$ 가 공집합이 아니므로 0_V 가 아닌 $\ker(\Phi)$ 에 있는 벡터로 무한히 많은 벡터들을 만들어 낼 수 있습니다.
- $\dim(V) = \dim(W)$ 라면 Φ 는 injective, surjective, bijective 합니다.

출처

- Mathmatics for Machine Learning (https://github.com/mml-book/mml-book.github.io)
- https://junstar92.github.io/mml-study-note/2022/07/05/ch2-7.html
- https://data-science-hi.tistory.com/102
- https://ahracho.github.io/posts/math_stat/linear_algebra/2018-08-15-9_orthogonality_projection/
- $\bullet \ \underline{ https://www.youtube.com/watch?v=} \underline{ bttps://www.youtube.com/watch?v=} \underline{ b$
- https://www.youtube.com/watch?v=P2LTAUO1TdA
- https://www.youtube.com/watch?v=uQhTuRlWMxw