MODS 207 : Gas price and urbanization

Final presentation - 21st May

Nghia Nguyen Danh

Théo Nguyen Ngoc

Content

- 1. Research question
- 2. Literature
- 3. Our data
- 4. Empirical strategy
- 5. Results and robustness checks

1. Research question

What is the correlation between the price of gas and the level of urbanisation in a country?

- To understand the impact oil has on the development of countries
- To consider the possible development in an era without petrol or fossil fuel
- We will also consider the speed at which the urbanisation happens!

2. Literature review

- Several articles somehow related to the topic were found
- Instinctively, there must be a correlation!
- Our previous MODS206 project pointed out a correlation, based on 4 rich countries

3. Our data

Criterias	Old data	New data
# observations	112	808
# countries	4	76
# countries of continent	Europe (2), North America (2)	Asia (28), Europe (31), Africa (4), SA (7), Oceania (2), NA (4)
# observations of continent	Europe (56). North America (56)	Asia (281), Europe (338), Africa (47), SA (82), Oceania (21), NA (39)
# years	28	13
year frame	1992-2019	1991-2016
control variables	gdp, num_car, oil consumption, services, industry	gdp, oil consumption, oil production, services, industry, region

4. Empirical strategy

- Step 1: From the last project, decide what we should expand on this project
- Step 2: Collect, process and clean data
- Step 3: Calculate the some variables (urban rate, oil_import, produce_oil)
- Step 4: Make the simple regressions with both urban and urban_rate
- Step 5: Add fixed effects (entity fixed effects at both region and country level) → make interpretation
- Step 6: Add nonlinear part into models
- Step 7: Add interaction effects to answer the research questions
- Step 8: Make causal interpretation and conclusion

5.1 Simple regression - urban vs urban_rate

Dep. Variable		urban	-R-squ	ared:		0.481	Dep. Varia	ble:	``urban_ra		N 15 15 15 15 15 15 15 15 15 15 15 15 15		0.143
Model:		OLS	-	R-squared:		0.477	Model:		-		R-squared:		0.136
Method:		Least Squares		tistic:		18.78	Method:		Least Squar				1.926
Date:	S	un, 20 Jun 2021		(F-statistic):		3.27e-13	Date:	-	Sun, 20 Jun 20	(S. O., 750.0 19.5	F-statist	ic):	0.088
Γime:		07:47:40	- 0	ikelihood:		-3238.8	Time:		07:47:		kelihood:		-145.6
lo. Observat:		808				6492.	No. Observ			08 AIC:			305.
of Residuals	:	801	BIC:			6524.	Df Residua	ls:	8	01 BIC:			338.
Of Model:		6					Df Model:			6			
Covariance T		cluster					Covariance	Type:	clust	er			
	coef	std err	Z	P> z	[0.025	0.975]		coef	std err	z	P> z	[0.025	0.975
intercept	-6.8069	18.271	-0.373	0.709	-42.618	29.004	intercept	0.1774	0.311	0.570	0.568	-0.432	0.78
gas_price	0.5981	1.833	0.326	0.744	-2.994	4.190	s gas_price	0.0765	0.051	1.489	0.136	-0.024	0.177
gdp	0.0004	9.56e-05	3.981	0.000	0.000	0.001	gdp	-3.259e-06	1.76e-06	-1.852	0.064	-6.71e-06	1.9e-0
oil cons	-0.0023	0.001	-3.230	0.001	-0.004	-0.001	oil_cons	6.803e-05	3.7e-05	1.841	0.066	-4.41e-06	0.000
oil_prod	0.0032	0.001	2.457	0.014	0.001	0.006	oil_prod	-2.832e-05		-1.075	0.282	-7.99e-05	2.33e-05
ind	0.3914	0.222	1.763	0.078	-0.044	0.827	ind	0.0078	0.005	1.486	0.137	-0.002	0.01
ser	0.9573	0.239	4.004	0.000	0.489	1.426	ser	-0.0032	0.004	-0.820	0.412	-0.011	0.009
Omnibus:		22.547	Durbi	n-Watson:		0.219	Omnibus:		106.7	67 Durbir	n-Watson:		0.278
rob(Omnibus):	0.000	Jarque	e-Bera (JB):		24.255	Prob(Omnib	us):	0.0	00 Jarque	-Bera (JB):	162.50
kew:	, -	-0.378				5.41e-06	Skew:	14 E	0.8	99 Prob(3	IB):		5.16e-36
		3,385	Cond.			4.35e+05	Kurtosis:		4.2	62 Cond.	No.		4.35e+0

Clustered SEs

5.2 Fixed effects - region level

Dep. Variable:	urban	R-squared:	0.606
Model:	OLS	Adj. R-squared:	0.600
Method:	Least Squares	F-statistic:	15.78
Date:	Sun, 20 Jun 2021	Prob (F-statistic):	1.64e-16
Time:	09:14:43	Log-Likelihood:	-3127.2
No. Observations:	808	AIC:	6282.
Df Residuals:	794	BIC:	6348.
Df Model:	13		
Covariance Type:	cluster		

	coef	std err	Z	P> z	[0.025	0.975]
intercept	8.0176	20.144	0.398	0.691	-31.463	47.498
gas_price	3.8243	2.632	1.453	0.146	-1.334	8.983
gdp	0.0004	0.000	4.320	0.000	0.000	0.001
oil_cons	-0.0015	0.001	-1.923	0.054	-0.003	2.81e-05
oil prod	0.0025	0.001	2.178	0.029	0.000	0.005
ind	0.4577	0.227	2.014	0.044	0.012	0.903
ser	0.8683	0.258	3.359	0.001	0.362	1.375
asia	-22.6989	4.174	-5.438	0.000	-30.879	-14.518
europe	-19.8834	3.525	-5.640	0.000	-26.793	-12.974
africa	-20.2008	4.655	-4.340	0.000	-29.324	-11.077
NA	-21.3419	5.834	-3.658	0.000	-32.777	-9.907
oceania	-10.5839	4.530	-2.336	0.019	-19.463	-1.705
le_2000	4.1162	2.342	1.758	0.079	-0.473	8.706
le 2010	2.6449	1.315	2.012	0.044	0.068	5.222

			
Dep. Variable:	urban_rate	R-squared:	0.192
Model:	OLS	Adj. R-squared:	0.179
Method:	Least Squares	F-statistic:	4.577
Date:	Sun, 20 Jun 2021	Prob (F-statistic):	1.04e-05
Time:	07:47:41	Log-Likelihood:	-121.73
No. Observations:	808	AIC:	271.5
Df Residuals:	794	BIC:	337.2
Df Model:	13		
Covariance Type:	cluster		

	coef	std err	Z	P> z	[0.025	0.975]
intercept	0.0705	0.308	0.229	0.819	-0.534	0.675
gas_price	0.0977	0.062	1.576	0.115	-0.024	0.219
gdp	-2.48e-06	1.91e-06	-1.296	0.195	-6.23e-06	1.27e-06
oil_cons	7.181e-05	3.48e-05	2.066	0.039	3.7e-06	0.000
oil_prod	-1.208e-05	3.31e-05	-0.365	0.715	-7.7e-05	5.28e-05
ind	0.0064	0.005	1.382	0.167	-0.003	0.016
ser	-0.0019	0.004	-0.491	0.623	-0.010	0.006
asia	0.0761	0.075	1.013	0.311	-0.071	0.223
europe	-0.0458	0.071	-0.644	0.519	-0.185	0.094
africa	0.1282	0.141	0.908	0.364	-0.148	0.405
NA	-0.2148	0.147	-1.465	0.143	-0.502	0.073
oceania	-0.0914	0.075	-1.226	0.220	-0.237	0.055
le_2000	0.0305	0.050	0.605	0.545	-0.068	0.129
le 2010	0.0412	0.037	1.114	0.265	-0.031	0.114

le_2000 > le_2010?

5.3 Fixed effects - country level - urban

The coefficient changed much from the model at region level (3.82 vs 0.56) although p-value is still very large.

 \rightarrow we need the nonlinear model.

The coefficients now become reasonable and they are significant.

Continued with 75 binary country variables (76 countries)

5.3 Fixed effects - country level - urban_rate

The coefficient changed from positive to negative although p-value is still very large

The coefficients are still positive and le 2000 is still smaller than le 2010.

→ This is a characteristic of our data

Continued with 75 binary country variables (76 countries)

5.4 Nonlinear models - urban (country level)

After adding non linear parts, the p-values have become very small \rightarrow the correlation is nonlinear rather than linear.

P-value: 1.68e-9 (F-test, nonlinear = 0)

Causal interpretation:

- When gas price increases from 1 to 2\$ per litter, urbanization will decrease 0.1731%
- When gas price increases from 2 to 3\$ per litter, urbanization will increase 9.6087%

5.4 Nonlinear models - urban rate (country level)

Dep. Variable:	urban rate	R-squared:	0.794	
Model:	OLS	Adj. R-squared:	0.770	
Method:	Least Squares	F-statistic:	43.24	
Date:	Mon, 14 Jun 2021	Prob (F-statistic):	4.18e-27	
Time:	16:53:54	Log-Likelihood:	430.10	
No. Observations:	808	AIC:	-688.2	
Df Residuals:	722	BIC:	-284.5	
Df Model:	85			
Covariance Type:	cluster			

	coef	std err	Z	P> z	[0.025	0.975]
gas_price	-0.2087	0.268	-0.780	0.435	-0.733	0.316
gdp	1.33e-06	3.29e-06	0.404	0.686	-5.12e-06	7.78e-06
oil_cons	1.226e-05	3.69e-05	0.332	0.740	-6e-05	8.45e-05
oil_prod	-2.735e-05	4.61e-05	-0.594	0.553	-0.000	6.29e-05
ser	0.0073	0.004	1.627	0.104	-0.001	0.016
ind	0.0071	0.005	1.387	0.165	-0.003	0.017
intercept	0.1206	0.306	0.395	0.693	-0.479	0.720
le_2000	0.0140	0.040	0.345	0.730	-0.065	0.093
le_2010	0.0292	0.032	0.912	0.362	-0.034	0.092
is_Algeria	-0.0131	0.109	-0.121	0.904	-0.226	0.200
is_Argentina	-0.4991	0.047	-10.599	0.000	-0.591	-0.407
		•	••			
is Venezuela	-0.6482	0.160	-4.051	0.000	-0.962	-0.335
gas_price^2	0.1604	0.214	0.751	0.453	-0.258	0.579
gas_price^3	-0.0382	0.052	-0.727	0.467	-0.141	0.065

P-value: 0.40 (F-test, nonlinear = 0)

It seems less useful to use the polynomial regression when we look at the urbanisation rate.

Can not make the causal interpretation between gas_price and urbanization rate (the coefficients are not significant, both linear and nonlinear case)

OLS Regression Results

OLS

Dep. Variable:

Model:

5.5 Interaction effects - oil_import - urban

0.990

0.988

HOUCII	ozs haji k squarca.					
Method:	Least Squares	F-statis	tic:		324.8	
Date: Mon	, 14 Jun 2021	Prob (F-	statistic):		2.65e-60	
Time:	17:21:56	Log-Like	lihood:		-1653.9	
No. Observations:	808	AIC:			3486.	
Df Residuals:	719	BIC:			3904.	
Df Model:	88					
Covariance Type:	cluster					
	coef	std err	Z	P> z	[0.025	0.975]
gas_price	14.5661	3.780	3.853	0.000	7.157	21.975
gdp	-6.667e-06	5.04e-05	-0.132	0.895	-0.000	9.2e-05
oil_cons	0.0027	0.001	3.053	0.002	0.001	0.004
ser	-0.0443	0.062	-0.710	0.478	-0.167	0.078
ind	-0.0572	0.061	-0.933	0.351	-0.177	0.063
intercept	28.1738	4.141	6.804	0.000	20.058	36.290
le_2000	-3.6226	0.678	-5.345	0.000	-4.951	-2.294
le_2010	-2.0104	0.365	-5.506	0.000	-2.726	-1.295
is_Algeria	39.9506	1.109	36.027	0.000	37.777	42.124
is_Argentina	61.4143	0.753	81.513	0.000	59.938	62.891
gas_price^2	-11.6529	3.039	-3.835	0.000	-17.609	-5.697
gas_price^3	2.7934	0.729	3.830	0.000	1.364	4.223
oil_import	0.0009	0.001	0.980	0.327	-0.001	0.003
<pre>gas_price X oil_import</pre>	-0.0032	0.003	-1.143	0.253	-0.009	0.002
<pre>gas_price^2 X oil_import</pre>	0.0037	0.003	1.372	0.170	-0.002	0.009
<pre>gas_price^3 X oil_import</pre>	-0.0008	0.001	-1.123	0.261	-0.002	0.001

R-squared:

Adj. R-squared:

P-value: 8.38e-7 (F-test, all cross variables = 0) \rightarrow The interaction effect is significant.

Causal interpretation:

- Oil_import = 100TWh
 - When gas price increases from 1
 - to 2\$ per litter, urbanization will decrease 0.6088%
 When gas price increases from 2

increase 9.3862%

to 3\$ per litter, urbanization will

to 2\$ per litter, urbanization will

- Oil import = -100TWh
- When gas price increases from 1
 - decrease 1.0688%
 When gas price increases from 2 to 3\$ per litter, urbanization will increase 9.3662%

5.7 Compare regions to Asia (bonus)

		OLS Reg	gression Re	sults		
Dep. Variab	le:		an R-squ			0.606
Model:				R-squared:		0.600
Method:		Least Squar	es F-sta	tistic:		15.78
Date:	S	un, 20 Jun 20			:):	1.64e-16
Time:			- CT-00-	ikelihood:		-3127.2
No. Observa		8	808 AIC:			6282.
Df Residual	s:		94 BIC:			6348.
Df Model:			13			
Covariance	Type:	clust	er			
	coef	std err	Z	P> z	[0.025	0.975]
intercept	-14.6813	19.967	-0.735	0.462	-53.817	24.454
gas_price	3.8243	2.632	1.453	0.146	-1.334	8.983
gdp	0.0004	0.000	4.320	0.000	0.000	0.001
oil_cons	0.0011	0.001	1.028	0.304	-0.001	0.003
oil_import	-0.0025	0.001	-2.178	0.029	-0.005	-0.000
ind	0.4577	0.227	2.014	0.044	0.012	0.903
ser	0.8683	0.258	3.359	0.001	0.362	1.375
SA	22.6989	4.174	5.438	0.000	14.518	30.879
europe	2.8155	4.165	0.676	0.499	-5.348/	10.979
africa	2.4981	4.983	0.501	0.616	-7.269	12.265
NA	1.3570	5.375	0.252	0.801	-9.178	11.892
oceania	12.1150	4.798	2.525	0.012	2.710	21.520
le_2000	4.1162	2.342	1.758	0.079	-0.473	8.706
le 2010	2.6449	1.315	2.012	0.044	0.068	5.222

We use the model at region level, with entity fixed effects at region level (taking Asia as a reference).

Only the coefficients of SA and Oceania are significant (p-values < 0.05). We can conclude:

- An observation in SA with the same profile as one in Asia will have the higher urbanization (22.69%)
- An observation in Oceania with the same profile as one in Asia will have the higher urbanization (12.1150%)

Conclusion

- The gas price does have a positive impact on urbanization (at country level), but this correlation is <u>nonlinear</u> (cubic correlation)
- However, the gas_price seems to have no impact on urbanization rate at country level.
- The oil import has a huge effect on the correlation between gas price and urbanization (there was a big difference between an oil import country and an oil export country)

Thank you for your attention!