Semantic Search (Part III)

[DAT640] Information Retrieval and Text Mining

Krisztian Balog University of Stavanger

October 21, 2019

Assignment 2B

Overview

- **Scenario 1**: The model is trained using cross-validation, that is on 4/5 of queries, then applied on the remaining 1/5 of queries (repeated 5 times)
- Scenario 2: The model is trained on all available training data

Search API

Discussion

Question

Why should we consider the first-pass retrieval results when computing features and learning the model?

Entity retrieval

Recap

- Ad hoc entity retrieval
 - Given a keyword query, return a ranked list of entities from an entity catalog (knowledge base)
 - Idea: Construct term-based representations of entities (entity description documents), which can then be ranked the same way as documents
 - o Specific techniques: catch-all field, predicate folding, URI resolution

Example

Name	Audi A4
Name variants	Audi A4 Audi A4 Allroad
Attributes	The Audi A4 is a compact executive car produced since late 1994 by the German car
	manufacturer Audi, a subsidiary of the Volkswagen Group []
	1996 2002 2005 2007
Types	Product Front wheel drive vehicles Compact executive cars
	All wheel drive vehicles
Outgoing relations	Volkswagen Passat (B5) Audi 80
Incoming relations	Audi A5
<foaf:name></foaf:name>	Audi A4
<dbo:abstract></dbo:abstract>	The Audi A4 is a compact executive car produced since late 1994 by the German car
	manufacturer Audi, a subsidiary of the Volkswagen Group []
Catch-all	Audi A4 Audi A4 Audi A4 Allroad The Audi A4 is a compact executive car produced
	since late 1994 by the German car manufacturer Audi, a subsidiary of the Volkswagen
	Group [] 1996 2002 2005 2007 Product Front wheel drive vehicles
	Compact executive cars All wheel drive vehicles Volkswagen Passat (B5) Audi
	80 Audi A5

Ranking term-based entity representations

Overview

- Unstructured retrieval models
 - LM, BM25, **SDM**
- Fielded retrieval models
 - MLM, BM25F, PRMS, FSDM

Mixture of Language Models (MLM)

 Idea: Build a separate language model for each field, then take a linear combination of them

$$P(t|\theta_d) = \sum_i w_i P(t|\theta_{d_i})$$

- where
 - \circ *i* corresponds to the field index
 - o w_i is the field weight (such that $\sum_i w_i = 1$)
 - $\circ \ P(t| heta_{d_i})$ is the field language model

Probabilistic Retrieval Model for Semistructured data (PRMS)

- Extension to MLM for dynamic field weighting
- To key ideas
 - Instead of using a fixed (static) field weight for all terms, field weights are determined dynamically on a term-by-term basis
 - Field weights can be established based on the term distributions of the respective fields
- ullet Replace the static weight w_i with a mapping probability P(f|t)

$$P(t|\theta_d) = \sum_{f} P(f|t)P(t|\theta_{d_f})$$

 \circ Note: we now use field f instead of index i when referring to fields

Estimating the mapping probability

By applying Bayes' theorem and using the law of total probability:

$$P(f|t) = \frac{P(t|f)P(f)}{P(t)} = \frac{P(t|f)P(f)}{\sum_{f' \in \mathcal{F}} P(t|f')P(f')}$$

- where
 - \circ P(f) is a prior that can be used to incorporate, for example, domain-specific background knowledge, or left to be uniform
 - \circ P(t|f) is conveniently estimated using the background language model of that field $P(t|C_f)$

Example

t = ``Meg"		t = ``Ryan"		t = ``war"		t = ``redemption"	
f	P(f t)	f	P(f t)	f	P(f t)	f	P(f t)
cast	0.407	cast	0.601	genre	0.927	title	0.983
team	0.381	team	0.381	title	0.070	location	0.017
title	0.187	title	0.017	location	0.002	year	0.000

Table: Example mapping probabilities computed on the IMDB collection, taken from Kim et al., 2009.

Exercise #0

- Getting term probabilities from Elasticsearch
- Code skeleton on GitHub: exercises/lecture_15/exercise_0.ipynb (make a local copy)

Exercise #1

- Implementing PRMS
- Code skeleton on GitHub: exercises/lecture_15/exercise_1.ipynb (make a local copy)

Reading

- Entity-Oriented Search (Balog)¹
 - Chapter 3

 $^{^{1}\}mathsf{PDF}: \mathtt{https://rd.springer.com/content/pdf/10.1007\%2F978-3-319-93935-3.pdf}$