Lecture 04:

Linear and Non-Linear Regression

Markus Hohle
University California, Berkeley

Machine Learning Algorithms
MSSE 277B, 3 Units
Fall 2024

Outline

Linear Regression

- Mathematical Notation
- What is Linear?
- Some Statistics
- a Python example

Logistic Regression

Outline

Linear Regression

- Mathematical Notation
- What is Linear?
- Some Statistics
- a Python example

Logistic Regression

Berkeley Linear and Non-Linear Regression

Regression vs **Classification**

regression

curve fit: finding model parameters by **minimizing** χ^2

$$\chi^2 = \sum_k \frac{(\overline{y}_k - y_k)^2}{\sigma_k^2}$$

turning an image the right way:

- maximizing autocorrelation function
- training an Al

Berkeley Linear and Non-Linear Regression

Regression vs **Classification**

regression

classification

cat

note: we can use (non-linear) regression for classification!

dog

$$\rightarrow y_k = f(x_1, \dots x_n, \dots x_N) + \epsilon$$

for each data point k

ansatz:

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_n + \epsilon$$

linear combination

y: response

X: regressors (assumed to be independent)

β: factors (how a regressor contributes to the response)

 β_0 : intercept

ε: error (stochasticity of the data, assumed to be

normally dist.)

Outline

Linear Regression

- Mathematical Notation
- What is Linear?
- Some Statistics
- a Python example

Logistic Regression

response

factors

error

regressors

intercept

linear ≠ not curved

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_n^n + \epsilon$$
 ...is still linear

just define: $\bar{x}_n \coloneqq x_n^n$

$$y_k = \beta_1 x_n^{\beta_2}$$

...is still linear

just use log:
$$\bar{y}_k = \log(y_k) = \log(\beta_1) + \beta_2 \log(x_n)$$

= $\bar{\beta}_1 + \beta_2 \bar{x}_n$

As long as we can recover the linear structure by any transformation → it is linear

in part. log scaling is quite common <u>examples:</u>

- log fold change (DESeq/RNASeq)
- log odds ratio (comparing models, HMM)

y:

x:

β:

ε:

 β_0 :

- sound → dB is a log unit
- log incidence rates (medical studies)
- percentiles (medical studies)

-....

...what is **not** linear?

$$y_k = \beta_0 + \beta_1 x_n^{\beta_2}$$
 log trick does not work here

general: linear refers to the factors

$$y_k = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

2D plane in 3D space

$$y_k = \beta_0 + \beta_1 x_1^2 + \beta_2 x_2^2$$

2D parabolic

$$y_k = \beta_0 + \beta_1 x_1^2 - \beta_2 x_2^2$$

2D hyperbolic

...and many more...

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_n + \epsilon$$

Outline

Linear Regression

- Mathematical Notation
- What is Linear?
- Some Statistics
- a Python example

Logistic Regression

for *K* data points in *N* dimensional space

$$y_k = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \epsilon$$

$$\begin{pmatrix} y_1 \\ \vdots \\ y_k \\ \vdots \\ y_K \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1n} & \dots & x_{1N} \\ \vdots & x_{k1} & & x_{kn} & & & \\ 1 & x_{k1} & & x_{kn} & & & \\ 1 & x_{K1} & x_{K2} & \dots & x_{Kn} & \dots & x_{KN} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \\ \vdots \\ \beta_N \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_k \\ \vdots \\ \varepsilon_K \end{pmatrix}$$

$$Y = X\beta + \varepsilon$$

$$Y = X\beta + \varepsilon$$

<u>fitting:</u> finding the best β in terms of minimizing the errors

$$(Y - X\beta)^{T}(Y - X\beta) = \sum_{k} \varepsilon_{k}^{2}$$

$$\frac{\partial}{\partial R} \sum_{k} \varepsilon_{k}^{2} = 0$$
 \longrightarrow

$$\frac{\partial}{\partial \beta} \sum_{k} \varepsilon_{k}^{2} = 0 \quad \longrightarrow \quad \beta_{best} = \hat{\beta} = (X^{T}X)^{-1}X^{T}Y \quad \longrightarrow \quad \widehat{Y} = X\widehat{\beta} = X(X^{T}X)^{-1}X^{T}Y$$

$$\widehat{\mathbf{Y}} = \mathbf{X}\widehat{\boldsymbol{\beta}} = X(X^TX)^{-1}X^TY$$

$$Y = X\beta + \varepsilon$$

fitting: finding the best β in by minimizing the errors

y: response x: regressors
$$\beta$$
: factors β_0 : intercept ϵ : error

$$(Y - X\beta)^T (Y - X\beta) = \sum_{k} \varepsilon_k^2$$

$$\frac{\partial}{\partial \beta} \sum_{k} \varepsilon_{k}^{2} = 0 \quad \longrightarrow \quad \beta_{best} = \hat{\beta} = (X^{T}X)^{-1}X^{T}Y \quad \longrightarrow \quad \widehat{Y} = X\widehat{\beta} = X(X^{T}X)^{-1}X^{T}Y$$

the model

$$\widehat{Y} = X\widehat{\beta} = X(X^TX)^{-1}X^TY$$

hat matrix **H**

some properties of the hat matrix:

-
$$H = H^T$$
 (symmetry)

-
$$HH = H \rightarrow H^n = H$$
 (idempotency)

evaluating the fit:

$$\hat{\varepsilon} = Y - X\hat{\beta} = Y - \hat{Y} = (I - H)Y$$

$$\Rightarrow \hat{\varepsilon}^T \hat{\varepsilon} = [(I - H)Y]^T (I - H)Y = Y^T (I - H)Y$$

$$= Y^T (I - H)Y$$

$$= Y^T (I - H)Y$$
variance
$$\Rightarrow \hat{\sigma}^2 = \frac{\hat{\varepsilon}^T \hat{\varepsilon}}{K - N}$$

degrees of freedom

summary:

the model: $Y = X\beta + \varepsilon$

the fit: $\hat{Y} = X\hat{\beta} = X(X^TX)^{-1}X^TY$

residual sum of squares: $\hat{\varepsilon}^T \hat{\varepsilon} = Y^T (I - H) Y$

(after the fit)

variance: $\hat{\sigma}^2 = \frac{\hat{\varepsilon}^T \hat{\varepsilon}}{K - N}$ (after the fit)

often fit quality is judged by

$$R^2 \coloneqq 1 - \frac{\sum_k (\hat{y}_k - y_k)^2}{\sum_k (y_k - \langle y \rangle)^2}$$

or adjusted R^2

$$\bar{R}^2$$
: = $R^2 - (1 - R^2) \frac{N}{K - N - 1}$

and it is said that the fit is good if \mathbb{R}^2 is close to one....

...but that is not true...

y: response x: regressors β : factors β_0 : intercept ϵ : error

$$\chi^2_{red} = \frac{1}{df} \sum\nolimits_{i=1}^N \left(\frac{y_i - \widehat{\mathbf{y}_i}}{\sigma_i}\right)^2 \qquad df = N - p - 1 \qquad \begin{cases} y_i : & \text{measured value of data point} \\ \sigma_i : & \text{statistical error of } y_i \text{ (often aka } ey_i) \\ \widehat{\mathbf{y}_i} : & \text{prediction by the model } after the fit \\ N : & \text{number of data points} \\ \text{p:} & \text{number of fit parameter} \end{cases}$$

<u>def:</u>

 \bar{y} : mean of the data point values

$$R^2 = 1 - \frac{\sum_{i=1}^N (y_i - \widehat{y}_i)^2}{\sum_{i=1}^N (y_i - \overline{y})^2}$$
 variance data vs model (aka residual sum of squares) variance of the data (aka total sum of squares)

Note: do not confuse R^2 with Pearsons coefficient: $\rho = \frac{cov(x,y)}{\sqrt{var(x)var(y)}}$

$$\chi_{red}^2 = \frac{1}{df} \sum_{i=1}^{N} \left(\frac{y_i - \hat{y}_i}{\sigma_i} \right)^2$$
$$df = N - p - 1$$

- scales difference between model
 and data to the error bars
- can be directly translated to a p-value
 via the Students distribution

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}}$$

variance data vs model
(aka residual sum of squares)
variance of the data
(aka total sum of squares)

 \bar{y} : mean of the data point values

data variance can be huge (i. e. exponential functions) $\rightarrow R^2$ could be around 1.0 even if fit is completely off!

$$\chi_{red}^2 = \frac{1}{df} \sum_{i=1}^{N} \left(\frac{y_i - \hat{y}_i}{\sigma_i} \right)^2$$
$$df = N - p - 1$$

- scales difference between model and data to the error bars
- can be directly translated to a p-value
 via the Students distribution

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}}$$

variance data vs model (aka residual sum of squares)

variance of the data (aka total sum of squares)

 \bar{y} : mean of the data point values

variance data vs model (aka residual sum of squares)

variance of the data (aka total sum of squares)

$$\approx 1 \rightarrow R^2 = 0$$

→ although the fit is good

$$\chi_{red}^{2} = \frac{1}{df} \sum_{i=1}^{N} \left(\frac{y_{i} - \hat{y}_{i}}{\sigma_{i}} \right)^{2}$$
$$df = N - p - 1$$

- scales difference between model and data to the error bars
- can be directly translated to a p-value
 via the Students distribution

$$R^2 = 1 - \frac{\sum_{i=1}^{N} (y_i - \widehat{y}_i)^2}{\sum_{i=1}^{N} (y_i - \overline{y})^2} = \frac{\text{variance data vs model}}{\text{(aka residual sum of squares)}}$$
variance of the data
(aka total sum of squares)

 \bar{y} : mean of the data point values

all plots: same R^2 , but different χ^2_{red}

$$\chi_{red}^2 = \frac{1}{df} \sum_{i=1}^{N} \left(\frac{y_i - \hat{y}_i}{\sigma_i} \right)^2$$
$$df = N - p - 1$$

- scales difference between model and data to the error bars
- can be directly translated to a p-value
 via the Students distribution

$$R^2 = 1 - \frac{\sum_{i=1}^{N} (y_i - \widehat{y}_i)^2}{\sum_{i=1}^{N} (y_i - \overline{y})^2} = \frac{\text{variance data vs model } (aka \text{ residual sum of squares})}{\text{variance of the data } (aka \text{ total sum of squares})}$$

 \bar{y} : mean of the data point values

conclusion:

- R^2 is not a measure of the fit quality (but χ^2 is)
- error bars are important
- given a good fit, R^2 tells how strong the dependent variable responds to the independent variable

Also, Wiki is full of examples...
...and warnings (see "caveats" therein)

<u>Outline</u>

Linear Regression

- Mathematical Notation
- What is Linear?
- Some Statistics
- a Python example

Logistic Regression

loading data

plotting data

scaling data fitting model

evaluating model

3.4801

	$\boldsymbol{x_1}$	x_2	x_3	x_4	x_5	y_k
Index	molecular_weight	electronegativity	bond_lengths	num_hydrogen_bonds	logP	toxicity_score
0	341.704	2.65585	3.09407	2	9.11147	80.9281
1	335.951	3.22262	2.89039	7	8.92848	83.4911
2	235.203	2.44115	2.48203	1	6.49731	61.8406
3	246.505	2.76656	2.71547	7	7.45089	57.0538

3.59569

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_n + \epsilon$$

437.939

y: toxicity_score

3

molecular_weight, electronegativity, bond_lengths, num_hydrogen_bonds, logP

10.9156

131.326

```
Train = pd.read_csv("molecular_train_gbc.csv")
Test = pd.read_csv("molecular_test_gbc.csv")
```

```
1) loading data
```

- 2) plotting data
- 3) scaling data
- 4) fitting model
- 5) evaluating model

loading data

plotting data

fitting model

evaluating model

3) scaling data

```
Train = pd.read csv("molecular train qbc.csv")
      = pd.read csv("molecular test qbc.csv")
Test
out = sns.pairplot(Train, kind = "kde", \
                plot kws = {'color':[176/255, 224/255, 230/255]},\
                diag kws = {'color': 'black'})
out.map offdiag(plt.scatter, color = 'black')
scaler
           = MinMaxScaler(feature_range = (0, 1))
                                                             the scaler returns an np.array
           = pd.concat((Train, Test), axis = 0)
All
                                                              → convert back to data frame
(rows, ) = Train.shape
           = scaler.fit_transform(All)
AllS
TrainS = pd.DataFrame(AllS[:rows,:], columns = Train.columns)
TestS = pd.DataFrame(AllS[rows:,:], columns = Train.columns)
```

Berkeley Linear and Non-Linear Regression

```
TrainS = pd.DataFrame(TrainS, columns = Train.columns)
TestS = pd.DataFrame(TestS, columns = Train.columns)
```

equation = 'toxicity_score ~ ' + '+'.join(Train.columns[:-1])
print(equation)

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_n + \epsilon$$
 toxicity_score ~ molecular_weight + electronegativity + bond_lengths + num_hydrogen_bonds + logP

```
my_model = ols(equation, data = TrainS).fit()
my_model.summary()
```

OLS (ordinary least squares)

my model.summary()

Dep. Variable: toxicity score R-squared: Model: OLS Adj. R-squared: F-statistic:

Method: Least Squares Fri, 13 Sep 2024 Date:

Time: 20:57:10 No. Observations:

800 the number of regressors Df Residuals: 794

Df Model: Covariance Type:

- loading data
- plotting data
- scaling data
- fitting model
- evaluating model

$$y_k = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \epsilon$$

 2σ conf range of factors

molecular_weight 0.7961 0.089 8.982 0.000 0.622 0.970 electronegativity -0.1682 0.015 -11.591 0.000 -0.197 -0.140 bond_lengths 0.0204 0.049 0.417 0.677 -0.076 0.110		coef	std err	t	P> t	 [0.025	0.975]
<u>-, </u>	molecular_weight electronegativity bond_lengths num_hydrogen_bonds	0.7961 -0.1682 0.0204 0.0035	0.089 0.015 0.049 0.008	8.982 -11.591 0.417 0.458	0.000 0.000 0.677 0.647	 0.622 -0.197 -0.076 -0.011	0.173 0.970 -0.140 0.116 0.018 0.267

AIC:

BIC:

Prob (F-statistic):

Log-Likelihood:

1.984 Omnibus: 2.249 Durbin-Watson: Prob(Omnibus): 0.325 Jarque-Bera (JB): 2.240 Skew: -0.129 Prob(JB): 0.326 Kurtosis: 2.980

OLS Regression Results

not the fit quality!

p-values for

factors

0.790

0.789

597.5

1013.0

-2014.

-1986.

3.34e-266

p-value for

constant model

Notes:

number of data points

→ degree of freedom

approx. no of obs

is much larger than

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

more accurate: determining the p-values for the factors using ANOVA for the corresponding residuals

```
table = sm.stats.anova_lm(my_model, typ = 1)
print(table)
```

- 1) loading data
- 2) plotting data
- 3) scaling data
- 4) fitting model
- 5) evaluating model

$$y_k = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \epsilon$$

	4.6			_	DD / > E \
	df	sum_sq	mean_sq	F	PR(>F)
molecular_weight	1.0	13.346285	13.346285	2847.525516	8.024085e-265
electronegativity	1.0	0.640388	0.640388	136.631363	3.085962e-29
bond_lengths	1.0	0.000684	0.000684	0.145954	7.025342e-01
num_hydrogen_bonds	1.0	0.000703	0.000703	0.150055	6.985866e-01
logP	1.0	0.013917	0.013917	2.969353	8.524510e-02
Residual	794.0	3.721459	0.004687	NaN	NaN

vs from t-test

0.0000

0.0000

0.6766

0.6473

0.0852

```
residuals = my_model.resid

plt.hist(residuals, color = 'w', edgecolor = 'black')
plt.title('fit residuals')
plt.ylabel('#')
plt.xlabel('value')
plt.show()
```


1) loading data

2) plotting data

3) scaling data

4) fitting model

5) evaluating model

$$y_k = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \epsilon$$

residuals approx. normally distributed around $\mu = 0$

```
residuals = my_model.resid
plt.hist(residuals, color = 'w', edgecolor = 'black')
plt.title('fit residuals')
plt.ylabel('#')
                                               residuals approx.
plt.xlabel('value')
                                               normally distributed
plt.show()
                                               around \mu = 0
```

- loading data
- plotting data
- scaling data
- fitting model
- 5) evaluating model

$$y_k = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \epsilon$$

stats.probplot(residuals, dist = "norm", plot = pylab) pylab.show()


```
Ypred = my model.predict(TestS)
higher = np.max([Ypred, TestS.toxicity_score])
lower = np.min([Ypred, TestS.toxicity_score])
plt.plot([lower, higher], [lower, higher], c = [0, 0, 0, 0.2],
         linewidth = 4)
plt.scatter(TestS.toxicity_score, Ypred, marker = '.', c = 'k')
plt.ylabel('prediction')
plt.xlabel('toxicity score')
                                           1.0
plt.show()
```


5) evaluating model

$$y_k = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \epsilon$$

Berkeley Linear and Non-Linear Regression

```
Ypred = my model.predict(TestS)
higher = np.max([Ypred, TestS.toxicity score])
lower = np.min([Ypred, TestS.toxicity score])
plt.plot([lower, higher], [lower, higher], c = [0, 0, 0, 0.2], linewidth = 4)
plt.scatter(TestS.toxicity_score, Ypred, marker = '.', c = 'k')
plt.ylabel('prediction')
plt.xlabel('toxicity score')
                                     1.0
plt.show()
                                     0.8
                                   0.6
0.4
                                     0.2
                                     0.0
                                                0.2
                                                              0.6
                                                                     0.8
                                                                           1.0
                                         0.0
                                                       0.4
                                                       toxicity_score
```

- 1) loading data
- 2) plotting data
- 3) scaling data
- 4) fitting model
- 5) evaluating model

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_n + \epsilon$$

```
mean_dev = np.sum( abs(TestS.toxicity_score - Ypred) )/len(Ypred)
print(mean_dev)
```


Outline

Linear Regression

- Mathematical Notation
- What is Linear?
- Some Statistics
- a Python example

Logistic Regression

<u>linear model:</u> regressors are continuous or categorical,

response is continuous

<u>logistic model:</u> response is **categorical**

y:	response
x:	regressors (assumed to be independent)
β:	factors
β_0 :	intercept
ε:	error (stochasticity of the data, assumed to be normally dist.)

Index	molecular_weight	electronegativity	bond_lengths	num_hydrogen_bonds	logP	label
0	341.704	2.65585	3.09407	2	9.11147	Toxic
1	335.951	3.22262	2.89039	7	8.92848	Toxic
2	235.203	2.44115	2.48203	1	6.49731	Non-Toxic
3	246.505	2.76656	2.71547	7	7.45089	Non-Toxic
4	437.939	3.4801	3.59569	3	10.9156	Non-Toxic

<u>linear model:</u> regressors are continuous or categorical,

response is continuous

<u>logistic model:</u> response is **categorical**

y: response

x: regressors (assumed to be independent)

 β : factors β_0 : intercept

ε: error (stochasticity of the data, assumed to be

normally dist.)

dichotomic model: probability to be in state A) $\rightarrow p$

probability to be in state B) $\rightarrow 1 - p$

Toxic
Toxic
Non-Toxic
Non-Toxic
Non-Toxic

ansatz:

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \epsilon$$

log odds ratio: linear model

dichotomic model:

probability to be in state A) $\rightarrow p$

probability to be in state B) $\rightarrow 1 - p$

y: response

regressors (assumed to be independent)

 β : factors β_0 : intercept

error (stochasticity of the data, assumed to be normally dist.)

Toxic
Toxic
Non-Toxic
Non-Toxic

Non-Toxic

ansatz:

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \epsilon$$

log odds ratio: linear model

→ probability for being in a certain state

$$p = \frac{e^{\beta_0 + \beta_1 x_1 + \dots}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots}}$$

often:

$$logit(p) = log\left(\frac{p}{1-p}\right)$$

<u>examples:</u>

- probability that a gene has been mutated
- probability of being diseased (cancer, alzheimer etc) as function of age, environmental influence etc ...
- Verhulst equation: $N(t) = N_0 \frac{e^{rt}}{C + e^{rt}}$
- activation functions in ANNs

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \epsilon$$

y: response x: regressors (assumed to be independent) β : factors β_0 : intercept error (stochasticity of the data, assumed to be normally dist.)

Note: one can derive the logit function from max. entropy too!

$$p = \frac{e^{\beta_0 + \beta_1 x_1 + \dots}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots}} = \frac{1}{1 + e^{-\beta_0 - \beta_1 x_1 - \dots}}$$

onset of Alzheimer's disease (AD) is a function of *age* and years spent in *education* (and other risk factors we ignore here for the sake of simplicity)

education: $d = x_1$ [yrs] age: $a = x_2$ [yrs]

model: $p_{AD} = \frac{1}{1 + e^{-\beta_0 - \beta_1 d - \beta_2 a}}$

+ data set + fit \Rightarrow $\beta_0 = +0.1$ $\beta_1 = -1.5$ $\beta_2 = +0.12$

- positive value → increasing p

- negative value → decreasing p

intercept: "background" prevalence, not
 related to environmental/internal conditions

model:
$$p_{AD} = \frac{1}{1 + e^{-\beta_0 - \beta_1 d - \beta_2 a}}$$

education:
$$d = x_1$$
 [yrs]

education:
$$d=x_1$$
 [yrs] $\beta_0=+0.1$ age: $a=x_2$ [yrs] $\beta_1=-1.5$ $\beta_2=+0.12$

example: **65yrs** old person, **8yrs** spent in education
$$\rightarrow p_{AD} = 1.6\%$$

65yrs old person, **13yrs** spent in education
$$\rightarrow p_{AD} = 0.001\%$$

How does education compensate aging?

$$p_{AD}(d+\bar{d},a+\bar{a})=p_{AD}(d,a)$$

$$\rightarrow \bar{a} = 12.5 \, \bar{d}$$

hence, one more year prolonged education compensates 12.5 years of aging

(warning: don't confuse correlation with causation here!)

model:
$$p_{AD} = \frac{1}{1 + e^{-\beta_0 - \beta_1 d - \beta_2 a}}$$

education:
$$d = x_1$$
 [yrs]

age:
$$a = x_2$$
 [yrs]

$$\beta_0 = +0.1$$

$$\beta_0 = +0.1$$

$$\beta_1 = -1.5$$

$$\beta_2 = +0.12$$

How does the risk of onset changes *per year*?

relative change:

$$\frac{p_{AD}(a+1) - p_{AD}(a)}{p_{AD}(a)} \approx e^{\beta_2} - 1 \approx 12.7\%$$

response y: regressors (assumed to be independent) x: β: factors β_0 : intercept error (stochasticity of the data, assumed to be ε: normally dist.)

 $p_{AD}\ll 1$ (hence, for small Δa and "young" ages, i. e. below $pprox 80 \mathrm{yrs}$)

the risk of getting AD increases by 12.7% every year

(warning: does not mean that it increases by 127% in ten yrs - we made an approximation!)

model:
$$p_{AD} = \frac{1}{1 + e^{-\beta_0 - \beta_1 d - \beta_2 a}}$$

education:
$$d = x_1$$
 [yrs]

age:
$$a = x_2$$
 [yrs]

$$\beta_0 = +0.1$$

$$\beta_0 = +0.1$$

$$\beta_1 = -1.5$$

$$\beta_2 = +0.12$$

How does the risk of onset changes *per year*?

more precise: relative change of the odds ratio

$$\frac{\frac{\partial}{\partial x_i} \left(\frac{p_{AD}}{1 - p_{AD}} \right)}{\frac{p_{AD}}{1 - p_{AD}}} = \beta_i$$

 x_i is the desired regressor, for example, age again (x_2)

the factors β_i indicate how strong (and in which direction) p changes wrt a regressor x_i

let us return to the molecule data set:

1)	loading data
2)	plotting data
3)	scaling data

- 4) fitting model
- 5) evaluating model

Index	molecular_weight	electronegativity	bond_lengths	num_hydrogen_bonds	logP	label
0	341.704	2.65585	3.09407	2	9.11147	Toxic
1	335.951	3.22262	2.89039	7	8.92848	Toxic
2	235.203	2.44115	2.48203	1	6.49731	Non-Toxic
3	246.505	2.76656	2.71547	7	7.45089	Non-Toxic
4	437.939	3.4801	3.59569	3	10.9156	Non-Toxic

```
loading data
it is the same data set \rightarrow plotting and scaling is as before
                                                                                   plotting data
                                                               adding the
                                                                                   scaling data
                                                                intercept
X = sm.add_constant(TrainS)
                                                                                   fitting model
                                                                                   evaluating model
                                                              Python needs
                                                              True/False
Y = pd get_dummies(Train['label'])
                                                              as categorical
In [48]: print(Y)
     Non-Toxic Toxic
         False
0
                 True
                                                              we have two
         False
                True
                                                              states: toxic /
          True False
          True False
                                                                non-toxic
          True False
my_model = sm.GLM(Y, X, family = sm.families.Binomial()).fit()
                                                              GLM: general
my_model.summary()
                                                              linear model
```

Covariance Type:

it is the same data set → plotting and scaling is as before

```
X = sm.add constant(TrainS)
Y = pd.get dummies(Train['label'])
```

my_model = sm.GLM(Y, X, family = sm.families.Binomial()).fit() my model.summary()

Generalized Linear Model Regression Results

['Non-Toxic', 'Toxic'] Dep. Variable: No. Observations: Df Residuals: Model: Model Family: Binomial Link Function: Scale: Logit Method: Sat, 14 Sep 2024 Deviance: Date: Time: 20:59:18 No. Iterations:

nonrobust

Df Model: Log-Likelihood:

Pearson chi2: 1.14e+03 Pseudo R-squ. (CS): p-values for 0.4243

factors

	Tactor3						
	coef	std err	z	P> z		[0.025	0.975]
const molecular_weight electronegativity bond_lengths num_hydrogen_bonds logP	6.1641 -10.4920 3.2874 0.6736 -0.3082 -7.6090	0.585 3.626 0.599 1.913 0.303 2.978	10.536 -2.893 5.492 0.352 -1.018 -2.555	0.000 0.004 0.000 0.725 0.309 0.011		5.017 -17.599 2.114 -3.075 -0.902 -13.447	7.311 -3.385 4.461 4.422 0.285 -1.771

loading data

plotting data

scaling data

fitting model

evaluating model

$$0 = \frac{e^{\beta_0 + \beta_1 x_1 + \dots}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots}}$$

p-value for constant model

800

794

1.0000

-332.82

665.64

 2σ conf range of factors

accuracy:

How *often* did the model make the correct prediction.

cross-entropy:

How *certain* was the model when making the prediction.

- 1) loading data
- 2) plotting data
- 3) scaling data
- 4) fitting model
- 5) evaluating model

loading data

plotting data

5) evaluating model

scaling data fitting model

```
How often did the model make the correct prediction.
accuracy:
               How certain was the model when making the prediction.
cross-entropy:
predProbs
            = my model.predict(sm.add constant(TestS))
            = np.round(predProbs).astype(int)
Pred
predictions = ['Non-Toxic' if i==1 else 'Toxic' for i in Pred]
                                              In [51]: predictions
                    ['Non-Toxic', 'Toxic']
Dep. Variable:
                                              Out[51]:
                                              ['Toxic',
                                               'Toxic',
                                               'Non-Toxic',
                                               'Non-Toxic',
                                               'Toxic',
                                               'Toxic',
                                               'Toxic',
TestY = Test['label']
            = 100*(TestY == predictions).sum()/len(predictions)
accuracy
print(f'accuracy = {accuracy: .2f}%')
accuracy = 80.50%
```

accuracy: How *often* did the model make the correct prediction.

cross-entropy: How *certain* was the model when making the prediction.

accuracy is $\approx 80\%$ But does it depend on the class? \rightarrow confusion matrix

- 1) loading data
- 2) plotting data
- 3) scaling data
- 4) fitting model
- 5) evaluating model

ideal world:

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

How *often* did the model make the correct prediction. accuracy:

cross-entropy:

How *certain* was the model when making the prediction.

accuracy is ≈ 80% But does it depend on the class? → confusion matrix

- loading data
- plotting data
- scaling data
- fitting model
- evaluating model

```
L = ['Non-Toxic', 'Toxic']
```

```
= confusion_matrix(TestY, predictions, labels = L, normalize = 'true')
\mathsf{CM}
disp = ConfusionMatrixDisplay(confusion_matrix = cm, display_labels = L)
```

disp.plot(cmap = 'gray')

plt.show()

two labels

accuracy: How *often* did the model make the correct prediction.

cross-entropy: How *certain* was the model when making the prediction.

accuracy is $\approx 80\%$ But does it depend on the class? \rightarrow confusion matrix

- 1) loading data
- 2) plotting data
- 3) scaling data
- 4) fitting model
- 5) evaluating model

accuracy:

How *often* did the model make the correct prediction.

cross-entropy:

How *certain* was the model when making the prediction.

1) loading data

2) plotting data

- 3) scaling data
- 4) fitting model
- 5) evaluating model

loading data

plotting data

fitting model

```
How often did the model make the correct prediction.
accuracy:
               How certain was the model when making the prediction.
cross-entropy:
                                                                   3) scaling data
PredProbs = np.vstack((predProbs, 1 - predProbs))
                                                                   5) evaluating model
fig, ax = plt.subplots(len(L), 1, sharex = True)
fig.set figheight(6)
fig.subplots_adjust(hspace = 0.5)
fig.suptitle('entropy')
for i, l in enumerate(L):
    idx = [k for k, y in enumerate(TestY) if y == 1]
    idx = np.array(idx)
    (value, where) = np histogram(PredProbs[i,idx],\
                                    bins = np.arange(0, 1, 0.01), \
                                    density = True)
    w = 0.5*(where[1:] + where[:-1])
    ax[i].plot(w, value, 'k-')
    ax[i].set_ylabel('frequency')
    ax[i].set_title(1)
ax[len(L)-1].set_xlabel('probability')
plt.show()
```

accuracy: How *often* did the model make the correct prediction.

cross-entropy: How *certain* was the model when making the prediction.

- 1) loading data
- 2) plotting data
- 3) scaling data
- 4) fitting model
- 5) evaluating model

Thank you very much for your attention!