What is claimed are:

5

10

1. A method of manufacturing non-volatile memory device, comprising the steps of:

forming a floating gate on a semiconductor substrate;

implementing nitrification treatment for the top surface of the floating gate;

forming a silicon nitride film on the floating gate experienced by the nitrification treatment;

forming a metallic oxide film on the silicon nitride film;

implementing annealing in order to supplement oxygen for the metallic oxide film; and

forming a control gate on the metallic oxide film.

- 2. The method as claimed in claim 1, further comprising the step

 of forming a native oxide film on the floating gate experienced by the

 nitrification treatment before the step of forming the silicon nitride film after

 the step of implementing the nitrification treatment.
- 3. The method as claimed in claim 1, wherein the nitrification treatment is implemented using a NH₃ gas in the furnace.
 - 4. The method as claimed in claim 3, wherein the nitrification treatment is implemented at a temperature of $600 \sim 850 \,^{\circ}$ C and a pressure of $10 \sim 100$ torr for $30 \sim 120$ minutes.

5. The method as claimed in claim 1, wherein the silicon nitride film is formed using a NH₃ gas and a SiH₂Cl₂ gas, or the NH₃ gas and a SiH₄ as a source gas by means of a low pressure-chemical vapor deposition (LP-CVD) method.

5

15

20

- 6. The method as claimed in claim 5, wherein the silicon nitride film is formed in thickness of about $3\sim150\,\text{Å}$ at a temperature of $600\sim800\,\text{°C}$ and a pressure of $0.05\sim0.5$ torr.
- 7. The method as claimed in claim 1, wherein the metallic oxide film is a Ta₂O₅ film, a TiO₂ film, a Ta₃N₄ film or a TaON film.
 - 8. The method as claimed in claim 7, wherein the metallic oxide film is formed in thickness of about $20 \sim 150 \,\text{Å}$ using a metal precursor as a source gas and oxygen (O₂) as a reaction gas.
 - 9. The method as claimed in claim 1, wherein the annealing is implemented under an oxygen (O₂) atmosphere or a N₂O atmosphere at a temperature of about $700 \sim 900 \,^{\circ}\text{C}$ by means of a rapid thermal process(RTP) or furnace annealing.