## Statistical Methods in AI (CSE/ECE 471)

# Lecture-4: Intro to Performance Measures, Benchmarking

#### Ravi Kiran



Center for Visual Information Technology (CVIT), IIIT Hyderabad

## Announcements

- A1 has been posted. Due: 20/1, 11.59 PM
- This week's tutorial: Probability recap, ML datasets, visualization approaches. Bring your laptops.



Classification

Regression

Reinforcement

Learning



## The Train-Validation-Test paradigm



# The Train-Validation-Test paradigm





# **Binary Classification**



# Binary classification



Negative → E.g. Spam = NO

## Binary case...

$$Accuracy = \frac{(100 + 50)}{165} = 0.91$$

$$Misclassification = \frac{(10+5)}{165} = 0.09$$

$$TruePositiveRate(TP) = \frac{(100)}{105} = 0.95$$

$$FalsePositiveRate(FP) = \frac{(10)}{60} = 0.17$$

| n=165          | Predicted:<br>NO | Predicted:<br>YES |     |
|----------------|------------------|-------------------|-----|
| Actual:<br>NO  | TN = 50          | FP = 10           | 60  |
| Actual:<br>YES | FN = 5           | TP = 100          | 105 |
|                | 55               | 110               |     |

## Binary case...

$$TrueNegativeRate(TN) = \frac{(50)}{60} = 0.833$$

$$FalseNegativeRate(FN) = \frac{(5)}{105} = 0.048$$

|         | Predicted: | Predicted: |     |
|---------|------------|------------|-----|
| n=165   | NO         | YES        |     |
| Actual: |            |            |     |
| NO      | TN = 50    | FP = 10    | 60  |
| Actual: |            |            |     |
| YES     | FN = 5     | TP = 100   | 105 |
|         |            |            |     |
|         | 55         | 110        |     |

# Key accuracy measures and terminologies

• Classification Error =

$$\frac{errors}{total}$$

110

$$\frac{FP + FN}{TP + TN + FP + FN}$$

• Accuracy = 1 - Error = 
$$\frac{correct}{Total}$$

$$= \frac{TP + TN}{TP + TN + FP + FN}$$

# Precision and Recall

- Cancer-Prediction System
- Pool of 100 patients' data
- 3 patients' data from the pool are selected for chemotherapy;
   Rest (100-3=97) are declared healthy!
- 1 year later ...
- 1 of them did not actually have cancer! (FP)
- Precision = 2/(2+1) = 67%
- 3 from the 97 healthy declared ones have cancer (FN)
- Recall = 2/(2+3) = 40%
- Accuracy = (94+2)/100 = 96%

## **Precision and Recall – examples**

- A system which needs to launch a missile at a terrorist hideout located in a dense urban area.
- Precision not 100% → civilian casualties

- A system which needs to identify cancer-risk patients
- Recall not 100% → some patients will die of cancer

#### Precision and Recall – a probabilistic perspective

- n = # of patients who underwent a new cancer screening test
- Recall = Probability of test result + given a patient actually has cancer TP

| n=165          | Predicted:<br>NO | Predicted:<br>YES |     |
|----------------|------------------|-------------------|-----|
| Actual:<br>NO  | TN = 50          | FP = 10           | 60  |
| Actual:<br>YES | FN = 5           | TP = 100          | 105 |
|                | 55               | 110               |     |

 Precision = Probability of actually having cancer given the test result is +

$$\frac{TP}{TP + FP}$$

TP + FN

#### Summary of Measures



| n=165          | Predicted:<br>NO | Predicted:<br>YES |     |
|----------------|------------------|-------------------|-----|
| Actual:<br>NO  | TN = 50          | FP = 10           | 60  |
| Actual:<br>YES | FN = 5           | TP = 100          | 105 |
|                | 55               | 110               |     |



% of correct predictions



% of + class correctly predicted [aka Recall / TPR]



correct prediction of + class



% of – class incorrectly predicted

## F1-score: A unified measure

- What to do when one classifier has better Precision but worse Recall, while other classifier behaves exactly opposite?
  - F-measure (Information Retrieval)

$$\mathbf{F}_1 = \frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$$

# **Utility and Cost**

- What to do when one classifier has better Precision but worse Recall, while other classifier behaves exactly opposite?
  - O F-measure (Information Retrieval)

$$\mathbf{F}_1 = \frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$$

- → F1 measure punishes extreme values more!
- → Definition of Recall and Precision have same numerator, different denominators. A sensible way to combine them is harmonic mean.

# **Utility and Cost**

- Sometimes, there is a cost for each error
  - O E.g. Earthquake prediction
    - False positive: Cost of preventive measures
    - False negative: Cost of recovery

- Detection Cost (Event detection)
  - $\bigcirc$  Cost =  $C_{FP}$  \* FP +  $C_{FN}$  \* FN



## Multi-class problems - Confusion matrix

| 165     | Predicted: | Predicted: |     |
|---------|------------|------------|-----|
| n=165   | NO         | YES        |     |
| Actual: |            |            |     |
| NO      | TN = 50    | FP = 10    | 60  |
| Actual: |            |            |     |
| YES     | FN = 5     | TP = 100   | 105 |
|         |            |            |     |
|         | 55         | 110        |     |

actual class

Avg. accuracy may not be very meaningful with imbalanced class label distribution

#### activity recognition from video



predicted class
Courtesy: vision.ihu.edu

### How to use 2-class measures for multi-class?

- The `Cow-Essay' strategy
  - Convert into 2-class problem(s) !



### How to use 2-class measures for multi-class?

- The `Cow-Essay' strategy
  - Convert into 2-class problem(s) !





# Example-based

- $\bullet$  <u>n</u> is the number of examples.
- $Y_i$  is the ground truth label assignment of the <u>i</u>th example...
- $\underline{\mathbf{X}_i}$  is the  $\underline{\mathbf{i}^{th}}$  example.
- $h(x_i)$  is the predicted labels for the <u>i</u>th example.

Precision = 
$$\frac{1}{n} \sum_{i=1}^{n} \frac{|Y_i \cap h(x_i)|}{|h(x_i)|}$$

What fraction of labels are predicted correctly ?

Recall = 
$$\frac{1}{n} \sum_{i=1}^{n} \frac{|Y_i \cap h(x_i)|}{|Y_i|}$$

What % of correct labels were predicted?

Accuracy = Fraction of samples predicted correctly

## Summary

- Many metrics:
  - Accuracy, TP, FP, Precision, Recall, AP/mAP
  - O Class imbalance and decision-cost imbalance must be taken into account
- Confusion Matrix: Important to analyze and refine solution.

## Baselines

- 0 cost-to-build classifiers
- Binary
  - Equal # of samples / class → Random Guessing (50% accuracy)
  - Class imbalance
    - $\rightarrow$  Guess according to class proportion (Accuracy =  $(4+1)^{2}$ )

21 (1-2)

O-Rule: Majority class (Accuracy = ) [slightly stronger baseline]

A useful metric is both accurate (in that it measures what it says it measures) and aligned with your goals.

Don't measure anything unless the data helps you make a better decision or change your actions.

~ Seth Godin

# References and Reading

- https://classeval.wordpress.com/introduction/basic-evaluationmeasures/
- <a href="https://towardsdatascience.com/what-metrics-should-we-use-on-imbalanced-data-set-precision-recall-roc-e2e79252aeba">https://towardsdatascience.com/what-metrics-should-we-use-on-imbalanced-data-set-precision-recall-roc-e2e79252aeba</a>

- Code
  - https://scikit-learn.org/stable/modules/model\_evaluation.html#classificationmetrics



re 3.1 Type I and Type II errors

levels to .01 or even .001

3,1,6,4