第7章 非线性方程与方程组的数值解法

- § 7.1 方程求根与二分法
- § 7. 2 不动点迭代法及其收敛性
- § 7. 3 迭代收敛的加速方法*
- § 7.4 牛顿法
- § 7.5 弦截法与抛物线法
- § 7.6 求根问题的敏感性与多项式的零点*
- § 7.7 非线性方程组的数值解法*

§ 7.1 方程求根与二分法

在科学研究和工程设计中, 经常会遇到的一大类 问题是非线性方程

$$f(x)=0 (7.1)$$

的求根问题,其中f(x)为非线性函数。

方程f(x)=0的根,亦称为函数f(x)的零点。

如果f(x)可以分解成 $f(x) = (x - x^*)^m g(x)$,其中m为正整数且 $g(x^*) \neq 0$,则称 x^* 是f(x)的m重零点,或称方程f(x) = 0的m重根。当m=1时称 x^* 为单根。若f(x)存在m阶导数,则是方程f(x)的m重根(m>1) 当且仅当

$$f(x^*) = f'(x^*) = \dots = f^{(m-1)}(x^*) = 0, f^{(m)}(x^*) \neq 0$$

当f(x)不是x的线性函数时,称对应的函数方程为非线性方程。如果f(x)是多项式函数,则称为代数方程,否则称为超越方程(三角方程,指数、对数方程等)。一般称n次多项式构成的方程

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$
 $(a_n \neq 0)$

为n次代数方程, 当n>1时, 方程显然是非线性的

一般稍微复杂的3次以上的代数方程或超越方程, 很难甚至无法求得精确解。本章将介绍常用的求解 非线性方程的近似根的几种数值解法

求根步骤

通常方程根的数值解法大致分为三个步骤进行

- ① 判定根的存在性。即方程有没有根? 如果有根, 有几个根?
- ② 确定根的分布范围。即将每一个根用区间隔 离开来,这个过程实际上是获得方程各根的 初始近似值。
- ③ 根的精确化。将根的初始近似值按某种方法逐步精确化。直到满足预先要求的精度为止

二分法又称二分区间法, 是求解方程(7.1)的近似根的一种常用的简单方法。

设函数f(x) 在闭区间 [a,b] 上连续,且f(a)f(b) <0,根据连续函数的性质可知,f(x)=0在 (a,b) 内必有实根,称区间 [a,b] 为有根区间。为明确起见,假定方程 f(x)=0在区间 [a,b] 内有惟一实根 x^* 。

二分法的基本思想是: 首先确定有根区间,将区间二等分,通过判断f(x)的符号,逐步将有根区间缩小,直至有根区间足够地小,便可求出满足精度要求的近似根。

有根区间的确定

- 为了确定根的初值,首先必须圈定根所在的范围, 称为圈定根或根的隔离。
- 在上述基础上,采取适当的数值方法确定具有一定 精度要求的初值。
- 对于代数方程,其根的个数(实或复的)与其次数相同。至于超越方程,其根可能是一个、几个或无解,并没有什么固定的圈根方法
- 求方程根的问题,就几何上讲,是求曲线 y=f(x)与 x轴交点的横坐标。

有根区间的确定

由高等数学知识知, 设f(x)为区间[a,b]上的单值 连续, 如果f(a)-f(b)<0,则[a,b]中至少有一个实根。 如果f(x)在[a,b]上还是单调地递增或递减,则仅有 一个实根。

- 大体确定根所在子区间的方法有:

 - (1) 画图法 (2) 逐步搜索法

画图法

- 画出y = f(x)的略图,从而看出曲线与x轴交点的大致位置。
- 也可将f(x) = 0分解为 $\varphi_1(x) = \varphi_2(x)$ 的形式, $\varphi_1(x)$ 与 $\varphi_2(x)$ 两曲线交点的横坐标所在的子区间即为含根区间。

例如 *xlogx-1*= 0

可以改写为logx=1/x

画出对数曲线y=logx,与双曲线y=1/x,它们交点的横坐标位于区间[2,3]内

画图法

搜索法

对于给定的f(x),设有根区间为[A, B],从 x_0 =A出发,以步长h=(B-A)/n(n是正整数),在[A, B]内取定节点: x_i = x_0 +ih (i=0,1,2,..., n),从左至右检查f (x_i)的符号,如发现 x_i 与端点 x_0 的函数值异号,则得到一个缩小的有根子区间 [x_{i-1} , x_i]。

例题

例7.1 方程 $f(x)=x^3-x-1=0$ 确定其有根区间

解:用试凑的方法,不难发现

$$f(0) < 0$$
 $f(2) > 0$

在区间(0, 2)内至少有一个实根设从x=0出发,取h=0.5为步长向右进行根的搜索,列表如下

可以看出,在[1.0,1.5]内必有一根

搜索法

- 用逐步搜索法进行实根隔离的关键是选取步长h
- 要选择适当h, 使之既能把根隔离开来, 工作量 又不太大。
- 为获取指定精度要求的初值,可在以上隔离根的 基础上采用对分法继续缩小该含根子区间

二分法可以看作是搜索法的一种改进。

设方程f(x)=0在区间[a,b]内有根,二分法就是逐步收缩有根区间,最后得出所求的根。具体过程如下

① 取有根区间[a,b]之中点,将它分为两半,分点 $x_0 = \frac{a+b}{2}$,这样就可缩小有根区间

- ② 对压缩了的有根区间 $[a_1,b_1]$ 施行同样的手法,即取中点 $x_1 = \frac{a_1 + b_1}{2}$,将区间 $[a_1,b_1]$ 再分为两半,然后再确定有根区间 $[a_2,b_2]$,其长度是 $[a_1,b_1]$ 的二分之一
- ③ 如此反复下去,若不出现 $f(x_k) = 0$,即可得出一系列有根区间序列:

 $[a,b] \supset [a_1,b_1] \supset [a_2,b_2] \supset \cdots \supset [a_k,b_k] \supset \cdots$ 上述每个区间都是前一个区间的一半,因此 $[a_k,b_k]$ 的长度

$$b_k - a_k = \frac{1}{2}(b_{k-1} - a_{k-1}) = \dots = \frac{1}{2^k}(b - a)$$

当k→∞时趋于零, 这些区间最终收敛于一点x* 即为所求的根。

每次二分后,取有根区间 $[a_k,b_k]$ 的中点 $x_k = \frac{1}{2}(a_k + b_k)$ 作为根的近似值,得到一个近似根的序列

 x_0 , x_1 , x_2 , … , x_k , … 该序列以根 x^* 为极限 只要二分足够多次(即k足够大), 便有 $\left|x^* - x_k\right| < \varepsilon$ 这里 ϵ 为给定精度, 由于 $x^* \in [a_k, b_k]$,则

$$\left|x^* - x_k\right| \le \frac{b_k - a_k}{2} = \frac{b - a}{2^{k+1}}$$

$$\therefore \frac{b_k - a_k}{2} = b_{k+1} - a_{k+1} = \frac{b - a}{2^{k+1}}$$

当给定精度 $\varepsilon > 0$ 后, 要想 $|x^* - x_k| < \varepsilon$ 成立, 只要 取k满足 $\frac{1}{2^{k+1}}(b-a) < \varepsilon$ 即可, 亦即当:

$$k \ge \frac{\lg(b-a) - \lg \varepsilon}{\lg 2} - 1 \tag{7.2}$$

时,做到第k+1次二分,计算得到的 x_k 就是满足精度要求的近似根。

时,做到第k+1次二分,计算得到的 X_k 就是满足精度要求的近似根。

在程序中通常用相邻的 x_k 与 x_{k-1} 的差的绝对值或 a_k 与 b_k 的差的绝对值是否小于 ε 来决定二分区间的次数。

二分法算法实现

例题

例7. 2 证明方程 $x^3-2x-5=0$ 在区间[2,3]内有一个根,使用二分法求误差不超过0.5×10⁻³ 的根要二分多少次?

证明: 令 $f(x) = x^3 - 2x - 5$, f(2) = -1 < 0, f(3) = 16 > 0

且f(x)在[2,3]上连续,故方程f(x)=0在[2,3]内至少有一个根。又 $f'(x)=3x^2-2$ 当 $x \in [2,3]$ 时,f'(x)>0,故f(x)在[2,3]上是单调递增函数,从而f(x)在[2,3]上十有且仅有一根。

给定误差限 $\epsilon = 0.5 \times 10^{-3}$,使用二分法时

例题

误差限为
$$|x^* - x_k| \le \frac{1}{2^{k+1}}(b - a)$$
 只要取 k 满足

$$\frac{1}{2^{k+1}}(b-a) \le \frac{1}{2} \times 10^{-3}$$
 即可, 亦即

$$2^k \ge 10^3 \qquad k \ge \frac{3 \cdot \lg \cdot 10}{1 \cdot g \cdot 2} = 9 \cdot .97$$

所以需二分10次便可达到要求。

小结

二分法的优点是不管有根区间 [a,b] 多大,总能求出满足精度要求的根,且对函数f(x)的要求不高,只要连续即可,计算亦简单;它的局限性是只能用于求函数的实根,不能用于求复根及重根,它的收敛速度与比值为 $\frac{1}{2}$ 的等比级数相同。

§ 7.2 不动点迭代法及其收敛性

对于一般的非线性方程,没有通常所说的求根公式求其精确解,需要设计近似求解方法,即迭代法。它是一种逐次逼近的方法,用某个固定公式反复校正根的近似值,使之逐步精确化,最后得到满足精度要求的结果。

不动点迭代法的基本思想

为求解非线性方程f(x)=0的根,先将其写成便于 迭代的等价方程

$$x = \varphi(x) \tag{7.3}$$

其中 $\varphi(x)$ 为x的连续函数

即如果数 x^* 使f(x)=0, 则也有 $x^* = \varphi(x^*)$, 反之, 若 $x^* = \varphi(x^*)$, 则也有 $f(x^*) = 0$, 称 $\varphi(x)$ 为迭代函数。 任取一个初值 x_0 ,代入式 $x = \varphi(x)$ 的右端, 得

$$x_1 = \varphi(x_0)$$

不动点迭代法的基本思想

再将 x_1 代入式 $x = \varphi(x)$ 的右端,得到 $x_2 = \varphi(x_1)$,依此类推,得到一个数列 $x_3 = \varphi(x_2)$..., 其一般表示

$$x_{k+1} = \varphi(x_k)$$
 $(k = 0,1,2,\cdots)$ (7.4)

式(7.4)称为求解非线性方程的简单迭代法。

如果由迭代格式 $x_{k+1} = \varphi(x_k)$ 产生的序列 $\{x_n\}$ 收敛,

即

$$\lim_{n\to\infty} x_n = x^*$$

则称迭代法收敛。

迭代法的基本思想

实际计算中当然不可能也没必要无穷多步地做下去,对预先给定的精度要求 ε , 只要某个k满足

$$\left|x_{k} - x_{k-1}\right| < \varepsilon$$

即可结束计算并取 $x^* \approx x_k$

当然, 迭代函数 $\varphi(x)$

的构造方法是多种多样的。

"不动点"

不动点,是一个函数术语,在数学中是指"被这个函数映射到其自身一个点"。

例如: 定义在实数上的函数f,

$$f(x) = x^2 - 3x + 4$$

则2是函数f的一个不动点,因为f(2) = 2。

例题

例7.3 用迭代法求方程 $x - e^{-x} = 0$ 在 $\left[\frac{1}{2}, \ln 2\right]$ 中的根。

解 将方程改写成如下等价形式

$$x = \varphi(x) = e^{-x}$$

相应地可得到迭代公式

$$x_{k+1} = \varphi(x_k) = e^{-x_k}$$

取初始值 $x_0 = 0.5$,用上述迭代公式迭代, 计算结果见表

例题

k	0	1	2	3	4
x_k	0.5	0.606531	0.545239	0.579703	0.560065
k	5	6	7	8	9
x_k	0.571172	0.564863	0.568438	0.566410	0.567560
k	10	11	12	13	14
x_k	0.566907	0.567278	0.567067	0.567187	0.567119

迭代法的几何意义

通常将方程f(x)=0化为与它同解的方程 $x=\varphi(x)$ 的方法不止一种,有的收敛,有的不收敛,这取决于 $\varphi(x)$ 的性态,方程 $x=\varphi(x)$ 的求根问题在几何上就是确定曲线 $y=\varphi(x)$ 与直线y=x的交点 P^* 的横坐标(如图所示)

(b)
$$-1 < \varphi'(x^*) < 0$$

迭代法的几何意义

$$\varphi'(x^*) < -1$$

$$(d)$$

对方程f(x)=0可以构造不同的迭代公式,但 迭代公式

$$x_{k+1} = \varphi(x_k)$$
 $(k = 0,1,2,\cdots)$

并非总是收敛。那么,当迭代函数 $\varphi(x)$ 满足什么条件时,相应的迭代公式才收敛呢?即使迭代收敛时,我们也不可能迭代很多次,而是迭代有限次后就停止,这就需要估计迭代值的误差,以便适时终止迭代

- 定理7.1 设函数 $\varphi(x)$ 在[a,b]上具有连续的一阶导数,且满足
 - (1) 对所有的 $x \in [a,b]$ 有 $\varphi(x) \in [a,b]$
 - (2) 存在 0 < L < 1,使所有的 $x \in [a,b]$ 有 $|\varphi'(x)| \le L$

则方程 $x = \varphi(x)$ 在[a,b]上的解 x^* 存在且唯一,对任意的 $x_0 \in [a,b]$, 迭代过程 $x_{k+1} = \varphi(x_k)$ 均收敛于 x^* 。并有误差估计式

$$\left| x^* - x_k \right| \le \frac{L}{1 - L} \left| x_k - x_{k-1} \right|$$

$$|x^* - x_k| \le \frac{L^k}{1 - L} |x_1 - x_0|$$

证: 构造函数 $\psi(x) = \varphi(x) - x$,由条件①对任意的 $x \in [a, b]$

$$\varphi(x) \in [a, b]$$
有

$$\psi(a) = \varphi(a) - a \ge 0$$

$$\psi(b) = \varphi(b) - b \le 0$$

由连续函数介值定理知, 必有 $x^* \in [a, b]$, 使

$$\psi(x^*) = \varphi(x^*) - x^* = 0$$
 所以有解存在,即 $x^* = \varphi(x^*)$

假设有两个解 x^* 和 $\tilde{\chi}$, x^* , $\tilde{\chi} \in [a, b]$,则,

$$\widetilde{x} = \varphi(\widetilde{x})$$

由微分中值定理有 $x^* - \widetilde{x} = \varphi(x^*) - \varphi(\widetilde{x}) = \varphi'(\xi)(x^* - \widetilde{x})$ 其中 ξ 是介于 x^* 和 \widetilde{x} 之间的点 从而有 $\xi \in [a,b]$,进而有 $(x^* - \widetilde{x})[1 - \varphi'(\xi)] = 0$ 由条件(2)有 $|\varphi'(x)| < 1$,所以 $x^* - \widetilde{x} = 0$,即 $x^* = \widetilde{x}$,解唯一。 按迭代过程 $x_k = \varphi(x_{k-1})$,有

$$x^* - x_k = \varphi(x^*) - \varphi(x_{k-1}) = \varphi'(\xi)(x^* - x_{k-1})$$

$$|x^* - x_k| = |\varphi'(\xi)(x^* - x_{k-1})| \le L|x^* - x_{k-1}|$$

$$|x^* - x_k| \le L|x^* - x_{k-1}| \le L^2|x^* - x_{k-2}| \le \dots \le L^k|x^* - x_0|$$

由于L<1, 所以有 $\lim_{k\to\infty} x_k \to x^*$, 可见L越小, 收敛越快 35

再证误差估计式

$$|x^* - x_k| \le \frac{L}{1 - L} |x_k - x_{k-1}|$$

$$|x^* - x_k| \le \frac{L^k}{1 - L} |x_1 - x_0|$$

$$|x^* - x_k| \le L|x^* - x_{k-1}| = L|x^* - x_k + x_k - x_{k-1}|$$

$$\le L(|x^* - x_k| + |x_k - x_{k-1}|)$$

$$(1-L)|x^*-x_k| \le L|x_k-x_{k-1}|$$

迭代法收敛的条件

$$|x_{k} - x_{k-1}| = |\varphi(x_{k-1}) - \varphi(x_{k-2})| = |\varphi'(\xi)(x_{k-1} - x_{k-2})| \le L|x_{k-1} - x_{k-2}|$$

$$\left|x^* - x_k\right| \le \frac{1}{1 - L} \left|x_k - x_{k-1}\right| \le \frac{L^2}{1 - L} \left|x_{k-1} - x_{k-2}\right| \le \dots \le \frac{L^k}{1 - L} \left|x_1 - x_0\right|$$

即②得证。

迭代法的算法框图

局部收敛性

当迭代函数较复杂时,通常只能设法使迭代过程在根的邻域(局部)收敛。

定理7. 2 设 $\varphi(x)$ 在 $x = \varphi(x)$ 的根 x^* 的邻域中有连续的一阶导数,且 $|\varphi'(x^*)| < 1$ 则迭代过程 $x_{k+1} = \varphi(x_k)$ 具有局部收敛性。

证:由于 $|\varphi'(x^*)| < 1$,存在充分小邻域 \triangle : $|x-x^*| < \delta$,使成立 $|\varphi'(x^*)| \le L < 1$ 这里L为某个定数,根据微分中值定理 $\varphi(x) - \varphi(x^*) = \varphi'(\xi)(x - x^*)$ 由于 $\varphi(x^*) = x^*$,又当 $x \in \Delta$ 时 $\xi \in \Delta$,故有 $|\varphi(x) - x^*| \le L|x - x^*| \le |x - x^*| < \delta$ 由定理7. 1知 $x_{k+1} = \varphi(x_k)$ 对于任意的 $x_0 \in \Delta$ 都收敛

例7.4 设 $\varphi(x) = x + \alpha(x^2 - 5)$,要使迭代过程 $x_{k+1} = \varphi(x_k)$ 局部收敛到 $x^* = \sqrt{5}$, 求 α 的取值范围。

$$\varphi(x) = x + \alpha(x^2 - 5)$$

$$\varphi'(x) = 1 + 2\alpha x$$

由在根 $x^* = \sqrt{5}$ 邻域具有局部收敛性时, 收敛条件

$$\left|\varphi'(x^*)\right| = \left|1 + 2a\sqrt{5}\right| < 1$$

$$-1 < 1 + 2a\sqrt{5} < 1$$

$$-2 < 2a\sqrt{5} < 0$$

所以
$$-\frac{1}{\sqrt{5}} < a < 0$$

例7. 5 已知方程 $x = \varphi(x)$ 在 [a,b]内有根 x^* , 且在 [a,b]

上满足 $|\varphi'(x)-3|<1$, 利用 $\varphi(x)$ 构造一个迭代函数 g(x)

,使
$$x_{k+1} = g(x_k)$$
 $(k = 0,1,2,\cdots)$ 局部收敛于 x^* 。

解:由 $x = \varphi(x)$ 可得, $x - 3x = \varphi(x) - 3x$

$$x = -\frac{1}{2}(\varphi(x) - 3x) = g(x)$$

$$|g'(x)| = \left| -\frac{1}{2}(\varphi'(x) - 3) \right| = \frac{1}{2} |\varphi'(x) - 3| < \frac{1}{2} < 1 \qquad x \in [a, b]$$

故 $\left|g'(x^*)\right| < 1$,迭代公式

$$x_{k+1} = g(x_k) = -\frac{1}{2}(\varphi(x_k) - 3x_k)$$
 局部收敛 42

收敛速度

一种迭代法具有实用价值,首先要求它是 收敛的,其次还要求它收敛得比较快。

定义7. 2 设迭代过程 $x_{k+1} = \varphi(x_k)$ 收敛于 $x = \varphi(x)$ 的根 x^* ,记迭代误差 $e_k = x^* - x_k$

若存在常数p(p≥1)和c(c>0),使

$$\lim_{k \to \infty} \frac{\left| e_{k+1} \right|}{\left| e_{k} \right|^{p}} = c$$

则称序列 $\{x_k\}$ 是 p 阶收敛的, c称渐近误差常数。特别地, p=1时称为线性收敛, p=2时称为平方收敛。 1 时称为超线性收敛。

收敛速度

数p的大小反映了迭代法收敛的速度的快慢, p愈大,则收敛的速度愈快,故迭代法的收敛阶 是对迭代法收敛速度的一种度量。

收敛阶数

定理**7.3** 设迭代过程 $x_{k+1} = \varphi(x_k)$, 若 $\varphi^{(p)}(x)$ 在所求根 x^* 的邻域连续且

$$\varphi'(x^*) = \varphi''(x^*) = \dots = \varphi^{(p-1)}(x^*) = 0, \varphi^{(p)}(x^*) \neq 0$$

则迭代过程在 x^* 邻域是p阶收敛的。

证: 由于 $\varphi'(x^*) = 0$ 即在 x^* 邻域 $|\varphi'(x^*)| < 1$,所以 $x_{k+1} = \varphi(x_k)$ 有局部收敛性,将 $\varphi(x_k)$ 在 x^* 处泰勒展开

$$\varphi(x_k) = \varphi(x^*) + \varphi'(x^*)(x_k - x^*) + \frac{1}{2!}\varphi''(x^*)(x_k - x^*)^2 + \dots + \frac{1}{p!}\varphi^{(p)}(\xi)(x_k - x^*)^p$$

根据已知条件得
$$\varphi(x_k) - \varphi(x^*) = \frac{1}{p!} \varphi^{(p)}(\xi) (x_k - x^*)^p$$

收敛阶数

由迭代公式
$$x_{k+1} = \varphi(x_k)$$
 及 $x^* = \varphi(x^*)$ 有

$$x_{k+1} - x^* = \frac{\varphi^{(p)}(\xi)}{p!} (x_k - x^*)^p \implies \lim_{k \to \infty} \frac{e_{k+1}}{e_k^p} = \frac{\varphi^{(p)}(x^*)}{p!} \neq 0$$

例7.6 已知迭代公式 $x_{k+1} = \frac{2}{3}x_k + \frac{1}{x_k^2}$ 收敛于 $x^* = \sqrt[3]{3}$ 证明该迭代公式平方收敛。

证: 迭代公式相应的迭代函数为 $\varphi(x) = \frac{2}{3}x + \frac{1}{x^2}$

$$\varphi'(x) = \frac{2}{3} - \frac{2}{x^3}, \quad \varphi''(x) = \frac{6}{x^4}$$

将
$$x^* = \sqrt[3]{3}$$
 代入, $\varphi'(x^*) = 0$, $\varphi''(x^*) = \frac{6}{3\sqrt[3]{3}} = \frac{2}{\sqrt[3]{3}} \neq 0$

根据定理7.3可知,迭代公式平方收敛。

§ 7.3 迭代收敛的加速方法

略

§ 7.4 牛顿法

用迭代法可逐步精确方程 f(x) = 0 根的近似值,但必须要找到 f(x) = 0的等价方程 $x = \varphi(x)$,如果 $\varphi(x)$ 选得不合适,不仅影响收敛速度,而且有可能造成迭代格式发散。能否找到一种迭代方法,既结构简单,收敛速度快,又不存在发散的问题。这就是本节要介绍的牛顿迭代法。

牛顿迭代法一种重要和常用的迭代法,它的基本思想是将非线性函数f(x)逐步线性化,从而将非线性方程 f(x)=0近似地转化为线性方程求解。

牛顿迭代公式

对于方程 f(x) = 0 ,设其近似根为 x_k ,函数f(x)可在 x_k 附近作泰勒展开

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2 + \cdots$$

忽略高次项,用其线性部分作为函数f(x)的近似,

$$f(x) \approx f(x_k) + f'(x_k)(x - x_k)$$

设 f(x) = 0 的根 x^* , 则有 $f(x^*) = 0$,即 $f(x_k) + f'(x_k)(x^* - x_k) \approx 0$ $x^* \approx x - \frac{f(x_k)}{x^*}$

$$x^* \approx x_k - \frac{f(x_k)}{f'(x_k)}$$

将左端取为 x_{k+1} ,即 x_{k+1} 是比 x_k 更接近于 x^* 的近似值

牛顿迭代公式
$$x_{k+1} \approx x_k - \frac{f(x_k)}{f'(x_k)}$$
 $(k = 0,1,2 \cdots)$ 50

方程f(x)=0的根x*是曲线y=f(x)与x轴交点的横坐标,设 x_k 是根x*的某个近似值,过曲线y=f(x)的横坐标为 x_k 的点 P_k = $(x_k, f(x_k))$ 引切线交x轴于 x_{k+1} ,并将其作为x*

新的近似值, 重复上述过程, 可见一次次用切线方程来 求解方程f(x)=0的根, 所以亦称为牛顿切线法。

定理7.4 设 x^* 是方程 f(x) = 0的单根,且f(x)在 x^* 的某邻域内有连续的二阶导数,则牛顿法在 x^* 附近局部收敛,且至少二阶收敛,有

$$\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|} = \lim_{k \to \infty} \frac{|x^* - x_{k+1}|}{|x^* - x_k|^2} = \frac{|f''(x^*)|}{2|f'(x^*)|}$$

证: 牛顿迭代公式对应的迭代函数为 $\varphi(x) = x - \frac{f(x)}{f'(x)}$ 若 x^* 是方程 f(x) = 0 的单根,则有 $f(x^*) = 0$, $f'(x^*) \neq 0$ 从而 $\varphi'(x^*) = \frac{f(x^*)f''(x^*)}{\lceil f'(x^*) \rceil^2} = 0$

由定理7.2知,牛顿迭代法在 x^* 附近局部收敛。又由定理7.3知, 迭代公式至少具有二阶收敛速度。

利用泰勒公式

$$0 = f(x^*) = f(x_k) + f'(x_k)(x^* - x_k) + \frac{f''(\xi)}{2}(x^* - x_k)^2, \quad \xi \in [x^*, x_k]$$
$$x_k - x^* = \frac{f(x_k)}{f'(x_k)} + \frac{f''(\xi)}{2f'(x_k)}(x^* - x_k)^2$$

$$x_k - \frac{f(x_k)}{f'(x_k)} - x^* = \frac{f''(\xi)}{2f'(x_k)} (x^* - x_k)^2$$

牛顿迭代法的收敛性

$$x_{k+1} - x^* = \frac{f''(\xi)}{2f'(x_k)} (x^* - x_k)^2$$

所以
$$\lim_{k \to \infty} \frac{\left| x^* - x_{k+1} \right|}{\left| x^* - x_k \right|^2} = \frac{\left| f''(x^*) \right|}{2 \left| f'(x^*) \right|}$$

牛顿迭代法的收敛性

不满足迭代条件时,可能导致迭代值远离 根的情况而找不到根或死循环的情况

牛顿迭代法的算法实现

例7.7 用牛顿迭代法求 x e^x-1 =0的根,ε=10⁻⁴

解: 因 $f(x_k)=x e^x-1, f'(x_k)=e^x(x+1)$

建立迭代公式

$$x_{n+1} = x_n - \frac{x_n e^{x_n} - 1}{e^{x_n} (1 + x_n)} = x_n - \frac{x_n - e^{-x_n}}{1 + x_n}$$

 $\mathbf{p} \mathbf{x}_0 = 0.5, \mathbf{逐次计算得}$

$$x_1 = 0.57102,$$

$$x_2 = 0.56716$$
,

$$x_3 = 0.56714$$

§ 7.5 弦截法

牛顿迭代法虽然具有收敛速度快的优点,但 每迭代一次都要计算导数 $f'(x_k)$ 当 f(x) 比较复 杂时,不仅每次计算f'(xi)带来很多不便,而且 还可能十分麻烦,如果用不计算导数的迭代 方法,往往只有线性收敛的速度。本节介绍 的弦截法便是一种不必进行导数运算的求根 方法。弦截法在迭代过程中不仅用到前一步 处的函数值 x_k . 而且还使用 x_{k-1} 处的函数值 来构造迭代函数。这样做能提高迭代的收敛 速度。

弦截迭代公式

为避免计算函数的导数 $f'(x_k)$, 使用差商

$$\frac{f(x_{k}) - f(x_{k-1})}{(x_{k} - x_{k-1})}$$

替代牛顿公式中的导数 $f'(x_k)$,便得到迭代公式

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1}) \qquad (k = 1, 2, \dots)$$

称为弦截迭代公式, 相应的迭代法称为弦截法。

弦截法几何意义

弦截法也称割线法, 其几何意义是用过曲线上两点 $P_0(x_0,f(x_0))$ 、 $P_1(x_1,f(x_1))$ 的割线来代替曲线, 用割线与**x**轴交点的横座标作为方程的近似根 x_2 再过

 P_1 点和点 $P_2(x_2, f(x_2))$ 作割线求出 x_3 ,再 过 P_2 点和点 $P_3(x_3, f(x_3))$ 作割线求出 x_4 ,余 此类推,当收敛时 可求出满足精度要 求的 x_4

可以证明, 弦截法具有超线性收敛, 收敛 的阶约为1.618,它与前面介绍的一般迭代法 一样都是线性化方法,但也有区别。即一般迭 代法在计算 x_{k+1} 时只用到前一步的值 x_k ,故称 之为单点迭代法;而弦截法在求 x_{k+1} 时要用到前 两步的结果 x_{k-1} 和 x_k ,使用这种方法必须给出 两个初始近似根 x_0, x_1 , 这种方法称为多点迭 代法。

例7.8 用弦截法求方程 $x^3 - x - 1 = 0$ 在区间(1,

2) 内的实根。初始值取 $x_0=1,x_1=2$,

要求
$$|x_{k+1} - x_k| < 0.0001$$

解: 取 $x_0 = 1$, $x_1 = 2$, 令 $f(x) = x^3 - x - 1 = 0$ 利用弦截迭代公式

$$x_{k+1} = x_k - \frac{(x_k^3 - x_k - 1)}{(x_k^3 - x_k - 1) - (x_{k-1}^3 - x_{k-1} - 1)} (x_k - x_{k-1})$$

计算结果见表

k	\boldsymbol{x}_k	$f(x_k)$
0	1	-1
1	2	5
2	1.166666667	-0.57870369
3	1.253112023	-0.28536302
4	1.337206444	0.053880579
5	1.323850096	-0.0036981168
6	1.324707936	-4.273521×10^{-5}
7	1.324717965	3.79×10 ⁻⁸

随堂测验

 $\dot{\chi}$ 、(15 分)<u>用弦截</u>法求立方根 $\sqrt[3]{d}$ 。(1)给出迭代公式;(2)用此迭代公式计算 $\sqrt[3]{3}$,取初始值为

$$x_0 = 1$$
, $x_1 = 2$, $\Re |x_{k+1} - x_k| < 10^{-2}$.

弦截法算法实现

本章习题

