Kernels-2

Kernels
Support Vector Machines

Predict y=1 if $\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \geq 0$ Where to get $l^{(1)}, l^{(2)}, l^{(3)}, \dots$?

Predict y = 1 if $\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \ge 0$ \leftarrow Where to get $l^{(1)}, l^{(2)}, l^{(3)}, \dots$?

Predict
$$y=1$$
 if $\theta_0+\theta_1f_1+\theta_2f_2+\theta_3f_3\geq 0$ \longleftarrow

Where to get $l^{(1)}, l^{(2)}, l^{(3)}, \dots$?

Predict
$$y = 1$$
 if $\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \ge 0$

Where to get $l^{(1)}, l^{(2)}, l^{(3)}, \dots$?

Given $(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\dots,(x^{(m)},y^{(m)}),$ choose $l^{(1)}=x^{(1)},l^{(2)}=x^{(2)},\dots,l^{(m)}=x^{(m)}.$

Given example x:

$$f_1 = \text{similarity}(x, l^{(1)})$$

 $f_2 = \text{similarity}(x, l^{(2)})$
...

⇒ Given
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)}),$$

⇒ choose $l^{(1)} = x^{(1)}, l^{(2)} = x^{(2)}, \dots, l^{(m)} = x^{(m)}.$

The vector f calculates the proximity of the point x with m different landmarks:

Given example x:

$$\Rightarrow f_1 = \text{similarity}(x, l^{(1)})$$

$$\Rightarrow f_2 = \text{similarity}(x, l^{(2)})$$

$$= \begin{bmatrix} f_{n} \\ f_{1} \\ \vdots \\ f_{o} \end{bmatrix} \qquad f_{o} = [$$

Given example
$$x$$
:

en example
$$\underline{x}$$
:
$$f_1 = \text{similarity}(x, l^{(1)})$$

$$f_2 = \text{similarity}(x, l^{(2)})$$

$$t = \begin{bmatrix} f^{\mu} \\ f^{\tau} \\ f^{\nu} \end{bmatrix} \quad f^{\rho} = 1$$

For training example $(x^{(i)}, y^{(i)})$:

$$f_{i0}^{(i)} = \sin(x^{(i)}, x^{(i)})$$

Given example
$$x$$
:

$$\Rightarrow f_1 = \text{similarity}(x, l^{(1)})$$

$$\Rightarrow f_2 = \text{similarity}(x, l^{(2)})$$

$$t = \begin{bmatrix} \xi^{m} \\ \xi^{j} \\ \xi^{j} \end{bmatrix} \quad \xi^{o} = \begin{bmatrix} \xi^{m} \\ \xi^{j} \\ \xi^{o} \end{bmatrix}$$

For training example
$$(\underline{x}^{(i)}, \underline{y}^{(i)})$$
:

For training example
$$(x^{(i)}, y^{(i)})$$
:

$$f_{i}^{(i)} = \sin(x^{(i)}, y^{(i)})$$

$$(i) = \begin{bmatrix} f & & \\$$

Hypothesis: Given \underline{x} , compute features $f \in \mathbb{R}^{m+1}$ Predict "y=1" if $\theta^T f \geq 0$

Hypothesis: Given \underline{x} , compute features $f \in \mathbb{R}^{m+1}$

O ERMI

ightharpoonup Predict "y=1" if $\theta^T f \geq 0$

- 0.fo + 0,f, + ... + 0mfm

Hypothesis: Given \underline{x} , compute features $\underline{f} \in \mathbb{R}^{m+1}$ $\Theta \in \mathbb{R}^{m+1}$

 \rightarrow Predict "y=1" if $\theta^T f \ge 0$

Training:

$$\min_{\theta} C \sum_{i=1}^{m} y^{(i)} cost_1(\theta^T f^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T f^{(i)}) + \frac{1}{2} \sum_{j=1}^{n} \theta_j^2.$$

Hypothesis: Given \underline{x} , compute features $f \in \mathbb{R}^{m+1}$

 \rightarrow Predict "y=1" if $\theta^T f \geq 0$

Training:

$$\min_{\theta} C \sum_{i=1}^{m} y^{(i)} cost_1(\theta^T f^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T f^{(i)}) + \frac{1}{2} \sum_{j=1}^{n} \theta_j^2$$
WE used to make predictions by looking at an x.
Now, we calculate f^i 's for each x and

Now, we calculate fⁱ 's for each x and then predict using the fⁱ's.

Hypothesis: Given \underline{x} , compute features $f \in \mathbb{R}^{m+1}$

ightharpoonup Predict "y=1" if $\theta^T f \geq 0$

Training:

$$= \min_{\theta} C \sum_{i=1}^{m} y^{(i)} cost_1(\theta^T f^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T f^{(i)}) + \left(\frac{1}{2} \sum_{j=1}^{m} \theta_j^2\right)$$

Hypothesis: Given \underline{x} , compute features $f \in \mathbb{R}^{m+1}$

$$\rightarrow$$
 Predict "y=1" if $\theta^T f \geq 0$

Training:

$$\Rightarrow \min_{\theta} C \sum_{i=1}^{m} y^{(i)} cost_1(\theta^T f^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T f^{(i)}) + \left(\frac{1}{2} \sum_{j=1}^{m} \theta_j^2\right)$$

$$-\sum_{i} O_{i}^{2} = O^{T}O = O^{T}O = \begin{bmatrix} O_{i} \\ O_{i} \end{bmatrix}$$
 (ignor O_{i})

SVM parameters:

C (=
$$\frac{1}{\lambda}$$
). > Large C: Lower bias, high variance. (small λ) > Small C: Higher bias, low variance. (large λ)

Andrew Ng

SVM parameters:

C (=
$$\frac{1}{\lambda}$$
). > Large C: Lower bias, high variance. $\frac{|small | \lambda|}{|small | \lambda|}$ > Small C: Higher bias, low variance. $\frac{|small | \lambda|}{|small | \lambda|}$

Large σ^2 : Features f_i vary more smoothly.

Higher bias, lower variance.

SVM parameters:

- C ($=\frac{1}{\lambda}$). > Large C: Lower bias, high variance. > Small C: Higher bias, low variance.
- (small) (large X)
- Large σ^2 : Features f_i vary more smoothly.
 - -> Higher bias, lower variance.

Small σ^2 : Features f_i vary less smoothly. Lower bias, higher variance.

