

FIG. 1

FIG. 2A

FIG. 2B

FIG. 3

FIG. 4

FIG. 5

Radioimmunoprecipitation of gp75 from SKBR3 Supernatant

FIG. 6

Radioimmunoprecipitation of Supernatants From Various Cell Lines

FIG. 7

Comparison of Standards in Sandwich IRMA

FIG. 8

Analysis of Nude Mouse Sera In c-erbB-2 IRMA

FIG. 9

Analysis of Nude Mouse Sera in the c-erbB-2 IRMA
Treated vs. Untreated

FIG. 10

Analysis of Normal Human Sera in the c-erbB-2 IRMA

FIG. 11 Analysis of 20 Sera from Human Breast Cancer Patients
Serial Samples Assayed in the Sandwich IRMA

FIG. 12

FIG. 13

C-erbB-2 Competition ELISA Tab 251 Binding to NIH3T3t Lysate

FIG. 14

C-erbB-2 Competition ELISA Tab 251 Binding to NIH3T3t Lysate

FIG. 15

C-erbB-2 Competition ELISA Tab 251 Binding to NIH3T3t Lysate

1 AATTCTCGAGCTCGTCGACCGGTGACGAGCTCGAGGGTCGACGAGC
 1 10
 MetGluLeuAlaAlaLeuCysArgTrpGlyLeuLeuLeuAlaLeuLe
 151 ATGGAGCTGGCGGCCTTSTGCCGCTGGGGCTCCTCGCCCTCTT
 60 GlnGlyCysGlnValValGlnGlyAsnLeuGluLeuThrTyrLeuPr
 301 CAGGGCTGCCAGGTGGTGCAGGGAAACCTGGAACACTCACCTACCTGCC
 110 IleValArgGlyThrGlnLeuPheGluAspAsnTyrAlaLeuAlaVa
 451 ATTGTGCGAGGCACCCAGCTCTTGAGGACAACATGCCCTGGCCGT
 160 GlyGlyValLeuIleGlnArgAsnProGlnLeuCysTyrGlnAspTh
 601 GGAGGGGTCTTGATCCAGCGGAACCCCCAGCTTGCTACCAGGACAC
 210 GlySerArgCysTrpGlyGluSerSerGluAspCysGlnSerLeuTh
 751 GGCTCCCGCTTGCTGGGGAGAGAGTTCTGAGGATTGTCAGAGCCTGAC
 260 AspCysLeuAlaCysLeuHisPheAsnHisSerGlyIleCysGluLe
 901 GACTTGCTGGCCTTGCTCCACTCAACCACAGTGGCATTGTGAGCT
 310 TyrAsnTyrLeuSerThrAspValGlySerCysThrLeuValCysPr
 1051 TACAAC~~T~~AC~~T~~TTCTACGGACGTGGATTGCTACCCTCGTTGCTGGCC
 360 ArgGluValARgAlaValThrSerAlaAsnIleGlnGluPheAlaGl
 1201 CGAGAGGTGAGGGCAGTTACCAGTGCCAATATCCAGGAGTTGCTGG
 410 GluThrLeuGluGluIleThrGlyTyrLeuTyrIleSerAlaTrpPr
 1351 GAGACTCTGGAAGAGATCACAGGTTACCTATACTCAGCATGGCC
 460 SerTrpLeuGlyLeuArgSerLeuArgGluLeuGlySerGlyLeuAl
 1501 AGCTGGCTGGGGCTGCGCTCACTGAGGGACTGGCAGTGGACTGGC
 510 GluAspGluCysValGlyGluGlyLeuAlaCysHisGlnLeuCysAl
 1651 GAGGACGAGTGTGTGGCGAGGGCCTGGCTGCTACCAGCTGTGCGC
 560 ProArgGluTyrValAsnAlaArgHisCysLeuProCysHisProGl
 1801 CCCAGGGACTATGTGAATGCCAGGCACTGTTTGCCGTGCCACCCCTGA
 610 ProSerGlyValLysProAspLeuSerTyrMetProIleTrpLysPh
 1951 CCCAGCGGTGTGAAACCTGACCTCCTACATGCCCATCTGGAAGTT

FIG. 16A

TCGAGGGCGCGCCGGCCCCACCCCTCGCAGCACCCCGCGCCCCCGC
20 30
uProProGlyAlaAlaSerThrGlnValCysThrGlyThrAspMetLysLe
GCCCCCCCGGAGCCGAGCACCCAAAGTGTGCACCAGCACAGACATGAAGCT
70 80
oThrAsnAlaSerLeuSerPheLeuGlnAspIleGlnGluValGlnGlyTy
CACCAATGCCAGCCTGTCCTCCTGCAGGATATCCAGGAGGTGCAGGGCTA
120 130
lLeuAspAsnGlyAspProLeuAsnAsnThrThrProValThrGlyAlaSe
GCTAGACAATGGAGACCCGCTGAACAATACCACCCCTGTCACAGGGGCCTC
170 180
rIleLeuTrpLysAspIlePheHisLysAsnAsnGlnLeuAlaLeuThrLe
GATTTGTGGAAGGACATCTTCCACAAGAACAAACCAGCTGGCTCTCACACT
220 230
rArgThrValCysAlaGlyGlyCysAlaArgCysLysGlyProLeuProTh
GCGCACTGTCTGTGCCGGTGGCTGTGCCCGCTGCAAGGGGCCACTGCCAC
270 280
uHisCysProAlaLeuValThrTyrAsnThrAspThrPheGluSerMetPr
GCACTGCCAGCCCTGGTCACCTACAACACAGACACGTTGAGTCCATGCC
320 330
oLeuHisAsnGlnGluValThrAlaGluAspGlyThrGlnArgCysGluLy
CCTGCACAACCAAGAGGTGACAGCAGAGGATGGAACACAGCGGTGTGAGAA
370 380
yCysLysLysIlePheGlySerLeuAlaPheLeuProGluSerPheAspGl
CTGCAAGAAGATCTTGGAGCCTGGCATTTCTGCCGGAGAGCTTGATGG
420 430
oAspSerLeuProAspLeuSerValPheGlnAsnLeuGlnValIleArgGl
GGACAGCCTGCCTGACCTCAGCGTCTCCAGAACCTGCAAGTAATCCGGGG
470 480
aLeuIleHisHisAsnThrHisLeuCysPheValHisThrValProTrpAs
CCTCATCCACCATAACACCCACCTTGCTTCGCACACGGTCCCCTGGGA
520 530
aArgArgAlaLeuLeuGlySerGlyProThrGlnCysValAsnCysSerGl
CCGCAGGGCACTGCTGGGTCAAGGGCCCACCCAGTGTGTCAACTTGCAGGCCA
570 580
uCysGlnProGlnAsnGlySerValThrCysPheGlyProGluAlaAspGl
GTGTCAAGCCCCAGAATGGCTCAGTGACCTGTTTGGACCGGAGGCTGACCA
620 630
eProAspGluGluGlyAlaCysGlnProCysProIleAsnCysThrHisSe
TCCAGATGAGGAGGGCGCATGCCAGCCTTGCCCCATCAACTTGCAACCCACTC

FIG. 16B

CCTCCCAGCCGGGTCCAGCCGGAGCCATGGGGCCGGAGCCGCAGTGAGCACC
 40 50
 uArgLeuProAlaSerProGluThrHisLeuAspMetLeuArgHisLeuTyr
 GCGGCTCCCTGCCAGTCCCAGACCCACCTGGACATGCTCCGCCACCTCTAC
 90 100
 rValLeuIleAlaHisAsnGlnValArgGlnValProLeuGlnArgLeuArg
 CGTGCTCATCGCTCACAAACCAAGTGAGGCAGGTCCCCTGCAGAGGCTGCGG
 140 150
 rProGlyGlyLeuArgGluLeuGlnLeuArgSerLeuThrGluIleLeuLys
 CCCAGGAGGCCTGCGGGAGCTGCAGCTTCGAAGCCTCACAGAGATCTTGAAA
 190 200
 uIleAspThrAsnArgSerArgAlaCysHisProCysSerProMetCysLys
 GATAGACACCAACCGCTCTCGGGCCTGCCACCCCTGTTCTCCGATGTGTAAG
 240 250
 rAspCysCysHisGluGlnCysAlaAlaGlyCysThrGlyProLysHisSer
 TGACTGCTGCCATGAGCAGTGTGCTGCCGGCTGCCACGGGCCCAAGCACTCT
 290 300
 oAsnProGluGlyArgTyrThrPheGlyAlaSerCysValThrAlaCysPro
 CAATCCCGAGGGCCGGTATACATTGGCGCCAGCTGTGTGACTGCCGTCCC
 340 350
 sCysSerLysProCysAlaArgValCysTyrGlyLeuGlyMetGluHisLeu
 GTGCAGCAAGCCCTGTGCCCGAGTGTGCTATGGTCTGGCATGGAGCACTTG
 390 400
 yAspProAlaSerAsnThrAlaProLeuGlnProGluGlnLeuGlnValPhe
 GGACCCAGCCTCCAACACTGCCCGCTCCAGCCAGAGCAGCTCCAAGTGT
 440 450
 yArgIleLeuHisAsnGlyAlaTyrSerLeuThrLeuGlnGlyLeuGlyIle
 ACGAATTCTGCACAATGGCGCCTACTCGCTGACCCCTGCAAGGGCTGGC
 490 500
 pGlnLeuPheArgAsnProHisGlnAlaLeuLeuHisThrAlaAsnArgPro
 CCAGCTTTCGGAACCCGCACCAAGCTCTGCTCCACACTGCCAACCGGCCA
 540 550
 nPheLeuArgGlyGlnGluCysValGluGluCysArgValLeuGlnGlyLeu
 GTTCCTTCGGGAGGAGTGGCTGGAGGAATGCCGAGTACTGCAGGGGCTC
 590 600
 nCysValAlaCysAlaHisTyrLysAspProProPheCysValAlaArgCys
 GTGTGTGGCCTGTGCCACTATAAGGACCCCTCCCTCTGGCTGGCCCGCTGC
 640 650
 rCysValAspLeuAspAspLysGlyCysProAlaGluGlnArgAlaSerPro
 CTGTGTGGACCTGGATGACAAGGGCTGCCCGCCGAGCAGAGGCCAGCCCT

FIG. 16C

660

LeuThrSerIleValSerAlaValValGlyIleLeuLeuValValVa
 2101 CTGACGTCCATCGTCTCTGCGGTGGCATTCTGCTGGTCGTGGT

710

ThrProSerGlyAlaMetProAsnGlnAlaGlnMetArgIleLeuLy
 2251 ACACCTAGCGGAGCGATGCCAACCAACCAGGCGCAGATGCGGATCCTGAA

760

AlaIleLysValLeuArgGluAsnThrSerProLysAlaAsnLysGl
 2401 GCCATCAAAGTGGTGGAGGGAAAACACATCCCCAAAGCCAACAAAGA

810

MetProTyrGlyCysLeuLeuAspHisValArgGluAsnArgGlyAr
 2551 ATGCCCTATGGCTGCCTTAGACCATGTCCGGGAAAACCGCGGACG

860

ValLeuValLysSerProAsnHisValLysIleThrAspPheGlyLe
 2701 GTGCTGGTCAAGAGTCCAACCATGTCAAAATTACAGACTTCGGGCT

910

HisGlnSerAspValTrpSerTyrGlyValThrValTrpGluLeuMe
 2851 CACCAGAGTGATGTGTGGAGTTATGGTGTGACTGTGTGGAGCTGAT

△

ValTyrMetIleMetValLysCysTrpMetIleAspSerGluCysAr
 3001 GTCTACATGATCATGGTCAAATGTGGATGATTGACTCTGAATGTCG

1010

AspSerThrPheTyrArgSerLeuLeuGluAspAspAspMetGlyAs
 3151 GACAGCACCTTCTACCGCTCACTGCTGGAGGACGATGACATGGGGGA

1060

SerThrArgSerGlyGlyAspLeuThrLeuGlyLeuGluProSe
 3301 TCTACCAGGAGTGGCGGTGGGACCTGACACTAGGGCTGGAGCCCTC

1110

LeuProThrHisAspProSerProLeuGlnArgTyrSerGluAspPr
 3451 CTCCCCACACATGACCCCAGCCCTCTACAGCGGTACAGTGAGGACCC

1160

SerProArgGluGlyProLeuProAlaAlaArgProAlaGlyAlaTh
 3601 TCGCCCCGAGAGGGCCCTCTGCCTGCTGCCGACCTGCTGGTGCCAC

1210

GlyGlyAlaAlaProGlnProHisProProProAlaPheSerProAl
 3751 GGAGGAGCTGCCCTCAGCCCCACCCCTCCTGCCTTCAGCCCAGC

1255

LeuAspValProValEND

3901 CTGGACGTGCCAGTGTGAACCAGAAGGCCAAGTCCGCAGAACCCCTG

4051 CTAAGGAACCTCCTCCTGCTTGAGTTCCCAGATGGCTGGAAGGGG

4201 CCCTTCCCTCCAGATCCTGGGTACTGAAAGCCTTAGGAAAGCTGGC

4351 ATGGTGTCACTATCCAGGCTTGTACAGAGTGCTTTCTGTTAGTT

4501 TTGTCCATTGCAAATATTTGGAAAACAAAAAA

FIG. 16D

670 680
 1 LeuGlyValValPheGlyIleLeuIleLysArgArgGlnGlnLysIleAr
 CTTGGGGGTGGTCTTGGGATCCTCATCAAGCGACGGCAGCAGAAGATCCG
 720 730
 sGluThrGluLeuArgLysValLysValLeuGlySerGlyAlaPheGlyTh
 AGAGACGGAGCTGAGGAAGGTGAAGGTGCTTGGATCTGGCGCTTTGGCAC
 770 780
 uIleLeuAspGluAlaTyrValMetAlaGlyValGlySerProTyrValSe
 AATCTTAGACGAAGCATACTGATGGCTGGTGTGGCTCCCCATATGTCTC
 ▲ 830
 gLeuGlySerGlnAspLeuLeuAsnTrpCysMetGlnIleAlaLysGlyMe
 CCTGGGCTCCCAGGACCTGCTGA~~ACTGGTGT~~ATGCAGATTGCCAAGGGGAT
 870 880 ▲
 uAlaArgLeuLeuAspIleAspGluThrGluTyrHisAlaAspGlyGlyLy
 GGCTCGGCTGCTGGACATTGACGAGACAGAGTACCATGCAGATGGGGCAA
 920 930
 tThrPheGlyAlaLysProTyrAspGlyIleProAlaArgGluIleProAs
 GACTTTGGGCCAACCTTACGATGGGATCCCAGCCCAGGAGATCCCTGA
 970 980
 gProArgPheArgGluLeuValSerGluPheSerArgMetAlaArgAspPr
 GCCAAGATTCCGGAGTTGGTGTCTGAATTCTCCGCATGCCAGGGACCC
 1020 1030
 pLeuValAspAlaGluGluTyrLeuValProGlnGlnGlyPhePheCysPr
 CCTGGTGGATGCTGAGGAGTATCTGGTACCCAGCAGGGCTTCTCTGTCC
 1070 1080
 rGluGluGluAlaProArgSerProLeuAlaProSerGluGlyAlaGlySe
 TGAAGAGGAGGCCAGGTCTCCACTGGCACCCCTCCGAAGGGCTGGCTC
 1120 1130
 oThrValProLeuProSerGluThrAspGlyTyrValAlaProLeuThrCy
 CACAGTACCCCTGCCCTCTGAGACTGATGGCTACGTTGCCCTGACCTG
 1170 1180
 rLeuGluArgAlaLysThrLeuSerProGlyLysAsnGlyValValLysAs
 TCTGGAAAGGGCCAAGACTCTCCCCAGGGAGAATGGGGTCGTCAAAGA
 1220 1230
 aPheAspAsnLeuTyrTyrTrpAspGlnAspProProGluArgGlyAlaPr
 CTTCGACAACCTCTATTACTGGGACCAGGACCCACCAGAGCAGGGGGCTCC

ATGTGTCCTCAGGGAGCAGGGAAAGGCCTGACTCTGCTGGCATCAAGAGGT
TCCAGCCTCGTTGGAAGAGGAACAGCACTGGGGAGTCTTGTGGATTCTGA
CTGAGAGGGGAAGCGGCCCTAAGGGAGTGTCTAAGAACAAAAGCGACCCAT
TTTACTTTTTTTGTTTGTGTTTTAAAGACGAAATAAGACCCAGGGGAG

FIG. 16E