

Práctica de laboratorio: Identificación de direcciones IPv4

Objetivos

Parte 1: Identificar direcciones IPv4

- Identificar la porción de red y de host de una dirección IP.
- Identificar el rango de direcciones de host dado un par de máscara de red y prefijo.

Parte 2: Clasificar direcciones IPv4

- Identificar el tipo de dirección (red, host, multicast o broadcast).
- Identificar si una dirección es pública o privada.
- Determinar si una asignación de dirección es una dirección de host válida.

Información básica/Situación

El direccionamiento es una función importante de los protocolos de la capa de red, porque permite la comunicación de datos entre hosts en la misma red o en redes diferentes. En esta práctica de laboratorio, examinará la estructura de las direcciones del protocolo de Internet versión 4 (IPv4). Identificará los diversos tipos de direcciones IPv4 y los componentes que ayudan a formar la dirección, como la porción de red, la porción de host y la máscara de subred. Entre los tipos de direcciones que se abarcan, se incluyen las siguientes: pública, privada, unicast y multicast.

Recursos necesarios

	Dispositivo con acceso a		
Int	ernet □ Opcional:		
calculadora de direcciones			
ΙΡν	4		

Parte 1: Identificar direcciones IPv4

En la parte 1, se le proporcionarán varios ejemplos de direcciones IPv4, y deberá completar las tablas con la información apropiada.

Paso 1: Analizar la tabla que se muestra a continuación e identificar la porción de red y la porción de host de las direcciones IPv4 dadas

En las dos primeras filas, se muestran ejemplos de la forma en que debe completarse la tabla.

Referencias para la tabla:

N = los 8 bits de un octeto están en la porción de red de la dirección n = un bit en la porción de red de la dirección H = los 8 bits de un octeto están en la porción de host de la dirección h = un bit en la porción de host de la dirección

Dirección/prefijo IP	Red/host N, n = red H, h = host	Máscara de subred	Dirección de red
192.168.10.10/24	N.N.N.H	255.255.255.0	192.168.10.0
10.101.99.17/23	N.N.nnnnnnh.H	255.255.254.0	10.101.98.0
209.165.200.227/27	N.N.N.nnnhhhhh	255.255.255.224	209.165.200.224
172.31.45.252/24	N.N.N.H	255.255.255.0	172.31.45.0
10.1.8.200/26	N.N.N.nnhhhhhh	255.255.255.192	10.1.8.192
172.16.117.77/20	N.N.nnnnhhhh.H	255.255.240.0	172.16.112.0
10.1.1.101/25	N.N.N.nhhhhhhh	255.255.255.128	10.1.1.0
209.165.202.140/27	N.N.N.nnnhhhhh	255.255.255.224	209.165.202.128
192.168.28.45/28	N.N.N.nnnnhhhh	255.255.255.240	192.168.28.32

Paso 2: Analizar la tabla siguiente e indicar el rango de direcciones de host y de broadcast, dado un par de máscara de red y prefijo

En la primera fila, se muestra un ejemplo de cómo se debe completar.

Dirección/prefijo IP	Primera dirección de host	Última dirección de host	Dirección de broadcast
192.168.10.10/24	192.168.10.1	192.168.10.254	192.168.10.255
10.101.99.17/23	10.101.98.1	10.101.99.254	10.101.99.255
209.165.200.227/27	209.165.200.225	209.165.200.254	109.165.200.255
172.31.45.252/24	172.31.45.1	172.31.45.254	172.31.45.255
10.1.8.200/26	10.1.8.193	10.1.8.254	10.1.8.255
172.16.117.77/20	172.16.117.1	172.16.117.254	172.16.117.255
10.1.1.101/25	10.1.1.1	10.1.1.126	10.1.1.127

209.165.202.140/27	209.165.202.129	209.165.202.158	209.165.202.159
192.168.28.45/28	192.168.28.33	192.168.28.46	192.168.28.47

Parte 2: Clasificar direcciones IPv4

En la parte 2, identificará y clasificará varios ejemplos de direcciones IPv4.

Paso 1: Analizar la tabla siguiente e identificar el tipo de dirección (dirección de red, de host, multicast o broadcast)

En la primera fila, se muestra un ejemplo de cómo se debe completar.

Dirección IP	Máscara de subred	Tipo de dirección
10.1.1.1	255.255.255.252	direcciones
192.168.33.63	255.255.255.192	broadcast
239.192.1.100	255.252.0.0	multicast
172.25.12.52	255.255.255.0	direcciones
10.255.0.0	255.0.0.0	direcciones
172.16.128.48	255.255.255.240	red
209.165.202.159	255.255.255.224	broadcast
172.16.0.255	255.255.0.0	direcciones
224.10.1.11	255.255.255.0	multicast

Paso 2: Analizar la tabla siguiente e identificar la dirección como pública o privada

Dirección/prefijo IP	Pública o privada	
209.165.201.30/27	Pública	
192.168.255.253/24	Privada	
10.100.11.103/16	Privada	
172.30.1.100/28	Privada	
192.31.7.11/24	Pública	
172.20.18.150/22	Privada	
128.107.10.1/16	Pública	
192.135.250.10/24	Pública	

64.104.0.11/16	Pública
-	

Paso 3: Analizar la tabla siguiente e identificar si el par dirección/prefijo es una dirección de host válida

Dirección/prefijo IP	¿La dirección de host es válida?	Motivo
127.1.0.10/24	No	Loopback
172.16.255.0/16	Si	Dirección host
241.19.10.100/24	No	Reservado
192.168.0.254/24	Si	Dirección host
192.31.7.255/24	No	Broadcast
64.102.255.255/14	Si	Dirección host
224.0.0.5/16	No	Multicast
10.0.255.255/8	Si	Dirección host
198.133.219.8/24	Si	Dirección host

Reflexión

¿Por qué debemos seguir estudiando y aprendiendo sobre el direccionamiento IPv4 si el espacio de direcciones IPv4 disponible está agotado?

Debemos seguir estudiando y aprendiendo sobre el direccionamiento IPv4 ya que en la actualidad existen empresas o instituciones que utilización este protocolo. Sin embargo, el uso de la IPv6 esta en proceso para su implementación, lo cuál puede llevar un tiempo para su implementación total.