

On model selection of coloured Gaussian graphical models for paired data

Dung Ngoc NGUYEN & Alberto ROVERATO

IMS International Conference on Statistics and Data Science (ICSDS) — Poster Session: December 13-16, 2022

Paired data

Paired data problem: every variable is uniquely associated with a homologous, or twin, variable.

Figure 1. Example of ROI locations on the brain. Every ROI on the left hemisphere is associated with an ROI on the right hemisphere, which gives the pairs $(L_i, R_i)_{i=1,\dots,35}$. Different colors correspond to distinct brain regions.

Hence, for paired data, \mathbf{Y}_V can be partitioned as $(\mathbf{Y}_L,\mathbf{Y}_R)^T$, and we consider and assume, w.l.g., that $L = \{1, \ldots, q\}$ and $R = \{1', \ldots, q'\}$ where i' = q + i and q = p/2 so that Y_i is homologous to $Y_{i'}$ with $1 \le i \le q$.

Gaussian graphical models (GGMs)

Let G = (V, E) be an undirected graph with the vertex set V and the edge set E. Then, \mathbf{Y}_V is said to satisfy the Gaussian graphical model if $\mathbf{Y}_V \sim \mathcal{N}(\mu, \Sigma)$ and \mathbf{Y}_V is Markov w.r.t G, that is $(i,j) \notin E$ implies $\theta_{ij} = 0$ where $\Theta = (\theta_{ij})_{i,j \in V} = \Sigma^{-1}$.

Coloured GGMs for paired data

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a coloured version of G where \mathcal{V} is a partition of V into vertex colour classes; similarly, \mathcal{E} is a partition of E into edge colour classes.

Coloured graphs for paired data (PD-CGs)

The PD-CG \mathcal{G} contains two types of color classes:

- atomic class that is a color class of cardinality one;
- twin-pairing class that is a color class containing a pair of twin vertices or a pair of twin edges.

Consider the PD-CG $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with

$$\mathcal{V} = \{\underbrace{\{1,1'\}}_{twin-nairing}, \underbrace{\{2\},\{2'\}\}}_{atomic}\}, \quad \mathcal{E} = \{\underbrace{\{(1,2),(1',2')\}}_{twin-nairing}, \underbrace{\{(1,1')\},\{(2',1')\}}_{atomic}\}.$$

RCON models for paired data (PD-RCONs)

PD-RCON models are Gaussian graphical models with additional equality constraints on the concentration matrix implied by a PD-CG $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.

Challenges

Learning the graphical models for paired data requires:

- 1. learning the structure of the network;
- 2. learning the symmetries of the vertices;
- 3. learning the symmetries of the edges both between and across parts of the network.

Difficulties

Dimension of the search space: highly increases, e.g.,

complete graph complete graphs on p vertices for paired data

- 2. The exploration of the space: considerably complex • the structure of the search space behaves like a partition lattice
 - → non-distributive,
 - the neighbors of a model cannot be efficiently specified.

Structure of model spaces of PD-CGMs

Gehrmann (2011) investigated and showed that the search space of coloured GGMs is naturally embedded with the model inclusion: a model is "larger" than any of its submodels.

Consider two PD-RCONs characterized by $\mathcal{G} = (\mathcal{V}_{\mathcal{G}}, \mathcal{E}_{\mathcal{G}})$ and $\mathcal{H} = (\mathcal{V}_{\mathcal{H}}, \mathcal{E}_{\mathcal{H}})$. Then, $\mathcal{G} \leq_s \mathcal{H}$ if and only if

• $E_{\mathcal{H}} \supseteq E_{\mathcal{G}}$, • $\mathcal{V}_{\mathcal{H}} \preceq_f \mathcal{V}_{\mathcal{G}}$, • $\mathcal{E}_{\mathcal{H}} \preceq_f \mathcal{E}_{\mathcal{G}} \cup \{\{E_{\mathcal{H}} \setminus E_{\mathcal{G}}\}\}$, where \leq_f is the refinement order and $E_{\mathcal{G}}, E_{\mathcal{H}}$ are the sets of uncoloured edges of \mathcal{G}, \mathcal{H} , respectively.

Figure 2. A part of Hasse diagram of lattice structure of PD-CGs with 4 vertices based on the model inclusion. The highlighted graphs are the neighbours of the model on the top. The circled graphs form the so-called diamond structure.

The family of PD-RCONs, under the model inclusion, forms a complete, non-distributive lattice, see Roverato and Nguyen (2022).

Novel partial order for PD-CGs

The twin correspondence $\tau(\cdot)$ is a function of $i \in V$ that is i+q if $i\in L$, and i-q if $i\in R$. Moreover, for i, j \in V, $\tau((i,j)) = (\tau(i), \tau(j)).$

We say i, j are twin vertices i, j if $\tau(i) = j$ or $i = \tau(j)$, and (i,j),(k,l) are twin edges if $\tau(i,j)=(k,l)$ or $(i,j)=\tau(k,l)$.

- $\mathbb{L} = \{i \in V \text{ s.t. } \{i\}, \{\tau(i)\} \in \mathcal{V}\},$ e.g. $\mathbb{L} = \{2\}$.
- $\mathbb{E} = \{(i,j) \in E \text{ s.t. } \{(i,j)\}, \{\tau(i,j)\} \in \mathcal{E}\},$ e.g. $\mathbb{E} = \{(1, 2')\}.$

An alternative and equivalent representation of PD-CGs.

Twin order

For two PD-CGs \mathcal{G} and \mathcal{H} , we say $\mathcal{G} \leq_{\tau} \mathcal{H}$ if and only if • $E_{\mathcal{G}} \subseteq E_{\mathcal{H}}$, • $\mathbb{L}_{\mathcal{G}} \subseteq \mathbb{L}_{\mathcal{H}}$, • $\mathbb{E}_{\mathcal{G}} \subseteq \mathbb{E}_{\mathcal{H}}$.

Figure 3. A part of Hasse diagram of the lattice structure of PD-CGs with 4 vertices based on the twin order. The highlighted graphs are the neighbours of the model on the top.

Theorem. The family of PD-CGs under the twin order forms a complete and distributive lattice.

Proposition. For two PD-CGs \mathcal{G} , \mathcal{H} , if $\mathcal{G} \leq_s \mathcal{H}$ then $\mathcal{G} \leq_\tau \mathcal{H}$.

Backward elimination stepwise procedure with coherent steps

Numerical experiment

 We generate 100 independent samples with different numbers of variables p varying in $\{8, 12, 16, 20\}$. Figure 1 summarizes the average results over all 20 repetitions of the simulated data.

Recorded results

Figure 4. Computational time from the stepwise procedures on the twin lattice \preceq_{τ} (illustrated in red) and the model inclusion lattice \preceq_{s} (illustrated in blue) of two scenarios A (on the left) and B (on the right).

Table 1. Performance measures of the stepwise procedures for the structures of the lattices equipped by the partial orders \leq_{τ} and \leq_{s} .

p	Order	Graph structure				Symmetries				Time	-#models
p		#edges	ePPV _%	eTPR _%	eTNR _%	#sym	sPPV _%	sTPR _%	$sTNR_\%$	Time(s)	#models
8	\preceq_s	7(2) 7(2)	76.68 75.41	100.00 100.00	91.52 91.30	2(1) 2(1)	41.67 46.67	95.00 95.00	89.44 85.56	4 17	273 580
12	\preceq_s^t	$17(3) \\ 17(3)$	$71.22 \\ 70.23$	97.92 98.75	90.37 90.00	$6(1) \\ 5(1)$	$15.99 \\ 17.34$	90.00 90.00	87.61 83.91	19 109	$1300 \\ 2985$
16	$\preceq_s t$	$27(4) \\ 28(4)$	74.83 70.98	$88.64 \\ 87.05$	$92.70 \\ 91.48$	$9(1) \\ 8(1)$	18.53 19.32	$85.00 \\ 77.50$	$89.43 \\ 84.77$	89 532	$4245 \\ 10554$
20	$\preceq_s t$	$44(8) \\ 46(7)$	$64.24 \\ 60.11$	$82.21 \\ 78.97$	89.49 88.04	16(3) 13(3)	$13.47 \\ 11.97$	$70.00 \\ 51.67$	86.18 80.00	$\begin{array}{c} 379 \\ 2102 \end{array}$	10212 27356
8	\preceq_s^t	11(2) 11(2)	84.54 83.59	89.50 89.00	89.72 89.44	5(1) 4(1)	64.08 64.83	93.33 85.00	92.50 85.83	3 15	264 486
12	$\preceq_s t$	23(4) $23(4)$	$81.78 \\ 81.25$	$80.00 \\ 78.48$	$89.65 \\ 89.53$	$9(2) \\ 7(2)$	$56.28 \\ 63.26$	79.17 73.33	87.35 83.53	$19\\102$	$1230 \\ 2729$
16	\preceq_s^t	$34(5) \\ 31(4)$	$72.49 \\ 74.50$	$57.86 \\ 55.24$	87.63 89.49	$12(2) \\ 9(2)$	$52.38 \\ 63.36$	$64.00 \\ 54.00$	$86.09 \\ 82.97$	96 523	$4259 \\ 10247$
20	\preceq_s^t	$51(9) \\ 48(7)$	$69.74 \\ 67.81$	$53.41 \\ 48.64$	$87.02 \\ 87.22$	$18(2) \\ 12(2)$	$48.17 \\ 52.97$	$54.38 \\ 39.38$	$84.07 \\ 78.98$	$452 \\ 2226$	$10300 \\ 26960$
	12 16 20 8 12 16	$ \begin{array}{cccc} 12 & \stackrel{\preceq}{\preceq} t \\ & \stackrel{\preceq}{\preceq} s \\ 16 & \stackrel{\preceq}{\preceq} t \\ & \stackrel{\preceq}{\preceq} s \\ 20 & \stackrel{\preceq}{\preceq} t \\ & \stackrel{\preceq}{\preceq} s \\ 12 & \stackrel{\preceq}{\preceq} t \\ & \stackrel{\preceq}{=} t \\ & \stackrel{\widetilde}{=} t \\ &$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 \exists_s $7(2)$ 75.41 100.00 12 \exists_s $17(3)$ 71.22 97.92 $2s$ $17(3)$ 70.23 98.75 16 \exists_s $27(4)$ 74.83 88.64 $28(4)$ 70.98 87.05 20 \exists_s $44(8)$ 64.24 82.21 20 \exists_s $46(7)$ 60.11 78.97 8 \exists_s $11(2)$ 84.54 89.50 8 \exists_s $11(2)$ 83.59 89.00 12 \exists_s $23(4)$ 81.78 80.00 12 \exists_s $23(4)$ 81.78 80.00 16 \exists_s $34(5)$ 72.49 57.86 $31(4)$ 74.50 55.24 20 \exists_s $51(9)$ 69.74 53.41	8 \exists_s $7(2)$ 75.41 100.00 91.30 12 \exists_t $17(3)$ 71.22 97.92 90.37 16 \exists_s $17(3)$ 70.23 98.75 90.00 16 \exists_t $27(4)$ 74.83 88.64 92.70 $28(4)$ 70.98 87.05 91.48 20 \exists_t $44(8)$ 64.24 82.21 89.49 8 \exists_s $46(7)$ 60.11 78.97 88.04 8 \exists_s $11(2)$ 84.54 89.50 89.72 88.00 89.44 88.00 89.44 88.00 89.40 88.00 89.65 88.00 89.65 88.00 89.65 88.00 89.65 88.00 89.65 88.00 89.65 88.00 89.65 88.00 89.65 88.00 89.65 88.00 89.65 88.00 </td <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Concluding remarks:

- Accuracy: The two procedures have similar behaviour in terms of the identification of zeros.
- The procedure with the twin order tends to perform better when many symmetries are present.
- Efficiency: The computational time required by the procedure on the twin lattice is 15 - 20% of the time required by the procedure on the model inclusion lattice.
- With p=36, the procedure with the twin order ≈ 7 hours whereas the existing procedure is infeasible.

Application to fMRI data

Figure 5. Coloured graphical representations for 36 brain regions in anterior temporal and frontal lobes between two hemispheres.

References

- [1] Davey, B. A. and Priestley, H. A. (2002) Introduction to lattices and order. Cambridge University Press.
- [2] Gehrmann, H. (2011) Lattices of graphical Gaussian models with symmetries. Symmetry, **3(3)**, 653 – 679.
- [3] Hojsgaard, S. and Lauritzen, S. L. (2008) Graphical Gaussian models with edge and vertex symmetries. Journal of the Royal Statistical Society: Series B (Statistical Methodology), **70(5)**, 1005 – 1027.
- [4] Ranciati, S., Roverato, A. and Luati, A. (2021) Fused graphical lasso for brain networks with symmetries. Journal of the Royal Statistical Society: Series C (Applied Statistics), **70(5)**, 1299 – 1322.
- [5] Roverato, A. and Nguyen, D. N. (2022) Model inclusion lattice of coloured Gaussian graphical models for paired data. Proceedings of The 11th International Conference on Probabilistic Graphical Models, PMLR 186, 133 – 144.
- [6] Roverato, A. and Nguyen, D. N. Stepwise model search for multiple Gaussian graphical models for paired data (working paper).

Contact information

- **Dung Ngoc NGUYEN**, Postdoctoral Research Fellow.
- median Department of Statistical Sciences, University of Padova.
- ngocdung.nguyen@unipd.it
- @ https://ngocdung-nguyen.github.io/
- https://github.com/NgocDung-NGUYEN