- e) Repita los incisos b) y c) para v y w de su elección.
- f) (Lápiz y papel) Explique de qué forma ilustra este problema el teorema 6.1.7 de esta sección, donde H es gen {v}.
- **4.** *a*) Sea **v** un vector longitud 1 en la dirección de $\binom{2}{1}$ (divida el vector entre su longitud). Sea $\mathbf{w} = \binom{3}{5}$, encuentre **p**, el vector proyección de **w** sobre **v** y calcule $|\mathbf{w} \mathbf{p}|$.
 - b) Elija cualquier valor escalar para c; haga $\mathbf{z} = c\mathbf{v}$ y verifique que $|\mathbf{w} \mathbf{z}| \ge |\mathbf{w} \mathbf{p}|$. Repita para otros tres valores de c. Explique la relación entre esto y el teorema 6.1.8, donde H es gen $\{\mathbf{v}\}$.
 - c) Repita los incisos a) y b) con $\mathbf{w} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$.
 - d) Repita los incisos a) y b) para vectores v y w arbitrarios.
 - e) (Lápiz y papel) En el siguiente diagrama esquemático etiquete con p al vector proyección de w sobre v, y localice w p y w z. Explique la manera en que estos diagramas ilustran la geometría del teorema 6.1.8, donde H es el subespacio gen [v].

5. Proyección sobre un plano en \mathbb{R}^3 .

a) Sea
$$\mathbf{v}_1 = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} \mathbf{v} \, \mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$
.

Encuentre una base ortonormal $\{z_1, z_2\}$ para el plano dado por el gen $\{v_1, v_2\}$, usando el proceso de Gram-Schmidt.

b) (*Lápiz y papel*) Verifique que $\mathbf{z} = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$ es perpendicular tanto a \mathbf{v}_1 como a \mathbf{v}_2 y, por

tanto, es perpendicular a $H = \text{gen } \{\mathbf{v}_1, \mathbf{v}_2\}$. Sea $\mathbf{n} = \frac{\mathbf{z}}{|\mathbf{z}|}$. Explique por qué \mathbf{n} es una base ortonormal para H^{\perp} .

c) La definición 6.1.4 dice que la proyección de un vector \mathbf{w} sobre H está dada por proy $_H \mathbf{w} = (\mathbf{w} \cdot \mathbf{z}_1)\mathbf{z}_1 + (\mathbf{w} \cdot \mathbf{z}_2)\mathbf{z}_2$. El teorema 6.1.7 dice que $\mathbf{w} = \text{proy}_H \mathbf{w} + \text{proy}_{H^{\perp}} \mathbf{w}$, que puede reexpresarse como $\text{proy}_H \mathbf{w} = \mathbf{w} - \text{proy}_{H^{\perp}} \mathbf{w}$.

Para cuatro vectores \mathbf{w} de 3×1 arbitrarios, calcule $\operatorname{proy}_H \mathbf{w}$ de las dos maneras y compare los resultados. (Nota. Como H^{\perp} es de dimensión uno, $\operatorname{proy}_{H^{\perp}} \mathbf{w}$ es igual al vector proyección de \mathbf{w} sobre \mathbf{n} .)

d) (Lápiz y papel) El siguiente diagrama ilustra la geometría de $proy_H \mathbf{w} = \mathbf{w} - proy_{H^{\perp}} \mathbf{w}$. En el diagrama, localice $\mathbf{h} = proy_{H^{\perp}} \mathbf{w}$, bosqueje $\mathbf{w} - \mathbf{h}$ y verifique que es paralela a \mathbf{p} , la proyección de \mathbf{w} sobre el plano.