Contents

Fo	orewo	ord	vi
Pı	reface	е	viii
\mathbf{A}	uthoi	rs' Profiles	xix
\mathbf{Li}	st of	Abbreviations	xx
\mathbf{Li}	st of	Tables	xxi
\mathbf{Li}	st of	Figures	xxii
1		roduction	1
	1.1 1.2	Competitive Programming	1 3
		1.2.1 Tip 1: Type Code Faster!	3 4
		1.2.3 Tip 3: Do Algorithm Analysis	
		1.2.5 Tip 5: Master the Art of Testing Code	13 15
		1.2.7 Tip 7: Team Work (for ICPC)	16
	1.3	Getting Started: The Easy Problems	16 16
		1.3.2 Typical Input/Output Routines	17 19
	1.4	The Ad Hoc Problems	21
	1.5 1.6	Solutions to Non-Starred Exercises	27 32
2	Dat	a Structures and Libraries	33
	2.1	Overview and Motivation	33
	2.2	Linear DS with Built-in Libraries	35
	2.3	Non-Linear DS with Built-in Libraries	43
	2.4	Data Structures with Our Own Libraries	49
		2.4.1 Graph	49
		2.4.2 Union-Find Disjoint Sets	52
		2.4.3 Segment Tree	55
		2.4.4 Binary Indexed (Fenwick) Tree	59
	2.5	Solution to Non-Starred Exercises	
	2.6	Chapter Notes	67

3	Pro	blem Solving Paradigms	69
	3.1	Overview and Motivation	69
	3.2	Complete Search	70
		3.2.1 Iterative Complete Search	71
		3.2.2 Recursive Complete Search	74
		3.2.3 Tips	76
	3.3	Divide and Conquer	84
		3.3.1 Interesting Usages of Binary Search	84
	3.4	Greedy	89
		3.4.1 Examples	89
	3.5	Dynamic Programming	95
		3.5.1 DP Illustration	95
		3.5.2 Classical Examples	103
		3.5.3 Non-Classical Examples	112
	3.6	Solution to Non-Starred Exercises	118
	3.7	Chapter Notes	120
	0.1		120
4	Gra	ph	121
	4.1	Overview and Motivation	121
	4.2	Graph Traversal	122
		4.2.1 Depth First Search (DFS)	122
		4.2.2 Breadth First Search (BFS)	123
		4.2.3 Finding Connected Components (Undirected Graph)	125
		4.2.4 Flood Fill - Labeling/Coloring the Connected Components	125
		4.2.5 Topological Sort (Directed Acyclic Graph)	126
		4.2.6 Bipartite Graph Check	128
		4.2.7 Graph Edges Property Check via DFS Spanning Tree	128
		4.2.8 Finding Articulation Points and Bridges (Undirected Graph)	130
		4.2.9 Finding Strongly Connected Components (Directed Graph)	133
	4.3	Minimum Spanning Tree	138
		4.3.1 Overview and Motivation	138
		4.3.2 Kruskal's Algorithm	138
		4.3.3 Prim's Algorithm	
		4.3.4 Other Applications	141
	4.4	Single-Source Shortest Paths	146
		4.4.1 Overview and Motivation	146
		4.4.2 SSSP on Unweighted Graph	146
		4.4.3 SSSP on Weighted Graph	148
		4.4.4 SSSP on Graph with Negative Weight Cycle	151
	4.5	All-Pairs Shortest Paths	155
	1.0	4.5.1 Overview and Motivation	155
		4.5.2 Explanation of Floyd Warshall's DP Solution	156
		4.5.3 Other Applications	158
	4.6	Network Flow	163
	4.0	4.6.1 Overview and Motivation	163
		4.6.2 Ford Fulkerson's Method	163
		4.6.3 Edmonds Karp's Algorithm	164
		4.6.4 Flow Graph Modeling - Part 1	166
		4.6.5 Other Applications	167
		4.6.6 Flow Graph Modeling - Part 2	168

	4.7	Special Graphs
		4.7.1 Directed Acyclic Graph
		4.7.2 Tree
		4.7.3 Eulerian Graph
		4.7.4 Bipartite Graph
	4.8	Solution to Non-Starred Exercises
	4.9	Chapter Notes
		•
5	Mat	thematics 191
	5.1	Overview and Motivation
	5.2	Ad Hoc Mathematics Problems
	5.3	Java BigInteger Class
		5.3.1 Basic Features
		5.3.2 Bonus Features
	5.4	Combinatorics
		5.4.1 Fibonacci Numbers
		5.4.2 Binomial Coefficients
		5.4.3 Catalan Numbers
		5.4.4 Remarks about Combinatorics in Programming Contests 206
	5.5	Number Theory
		5.5.1 Prime Numbers
		5.5.2 Greatest Common Divisor & Least Common Multiple 211
		5.5.3 Factorial
		5.5.4 Finding Prime Factors with Optimized Trial Divisions
		5.5.5 Working with Prime Factors
		5.5.6 Functions Involving Prime Factors
		5.5.7 Modified Sieve
		5.5.8 Modulo Arithmetic
		5.5.9 Extended Euclid: Solving Linear Diophantine Equation 217
		5.5.10 Remarks about Number Theory in Programming Contests 217
	5.6	Probability Theory
	5.7	Cycle-Finding
		5.7.1 Solution(s) using Efficient Data Structure
		5.7.2 Floyd's Cycle-Finding Algorithm
	5.8	Game Theory
		5.8.1 Decision Tree
		5.8.2 Mathematical Insights to Speed-up the Solution
		5.8.3 Nim Game
	5.9	Solution to Non-Starred Exercises
	5.10	Chapter Notes
		•
6	Stri	ng Processing 233
	6.1	Overview and Motivation
	6.2	Basic String Processing Skills
	6.3	Ad Hoc String Processing Problems
	6.4	String Matching
		6.4.1 Library Solutions
		6.4.2 Knuth-Morris-Pratt's (KMP) Algorithm
		6.4.3 String Matching in a 2D Grid
	6.5	String Processing with Dynamic Programming

		6.5.1 String Alignment (Edit Distance)				 245
		6.5.2 Longest Common Subsequence				 247
		6.5.3 Non Classical String Processing with DP				
	6.6	Suffix Trie/Tree/Array				
		6.6.1 Suffix Trie and Applications				
		6.6.2 Suffix Tree				
		6.6.3 Applications of Suffix Tree				
		6.6.4 Suffix Array				
		6.6.5 Applications of Suffix Array				
	6.7	Solution to Non-Starred Exercises				
	6.8	Chapter Notes				
	0.0		•	•	•	 201
7	(Co	mputational) Geometry				269
	7.1	Overview and Motivation				 269
	7.2	Basic Geometry Objects with Libraries				 271
		7.2.1 0D Objects: Points				 271
		7.2.2 1D Objects: Lines				
		7.2.3 2D Objects: Circles				
		7.2.4 2D Objects: Triangles				
		7.2.5 2D Objects: Quadrilaterals				
	7.3	Algorithm on Polygon with Libraries				
		7.3.1 Polygon Representation				
		7.3.2 Perimeter of a Polygon				
		7.3.3 Area of a Polygon				
		7.3.4 Checking if a Polygon is Convex				
		7.3.5 Checking if a Point is Inside a Polygon				
		7.3.6 Cutting Polygon with a Straight Line				
		7.3.7 Finding the Convex Hull of a Set of Points				
	7.4	Solution to Non-Starred Exercises				
	7.5	Chapter Notes				
8		re Advanced Topics				299
		Overview and Motivation				
	8.2	More Advanced Search Techniques				
		8.2.1 Backtracking with Bitmask				
		8.2.2 Backtracking with Heavy Pruning				
		8.2.3 State-Space Search with BFS or Dijkstra's				
		8.2.4 Meet in the Middle (Bidirectional Search)				
		8.2.5 Informed Search: A^* and IDA^*				
	8.3	More Advanced DP Techniques				
		8.3.1 DP with Bitmask				
		8.3.2 Compilation of Common (DP) Parameters				
		8.3.3 Handling Negative Parameter Values with Offset Technique .				
		8.3.4 MLE? Consider Using Balanced BST as Memo Table				
		8.3.5 MLE/TLE? Use Better State Representation				
		8.3.6 $$ MLE/TLE? Drop One Parameter, Recover It from Others $$.				
	8.4	Problem Decomposition				
		8.4.1 $$ Two Components: Binary Search the Answer and Other $$				
		8.4.2 Two Components: Involving 1D Static RSQ/RMQ \dots				
		8.4.3 Two Components: Graph Preprocessing and DP				322

		8.4.4 Two Components: Involving Graph		. 324
		8.4.5 Two Components: Involving Mathematics		. 324
		8.4.6 Two Components: Complete Search and Geometry		. 324
		8.4.7 Two Components: Involving Efficient Data Structure		. 324
		8.4.8 Three Components		. 325
	8.5	Solution to Non-Starred Exercises		. 332
	8.6	Chapter Notes		. 333
9	Rar	e Topics		335
	9.1	2-SAT Problem		
	9.2	Art Gallery Problem		
	9.3	Bitonic Traveling Salesman Problem		
	9.4	Bracket Matching		
	9.5	Chinese Postman Problem		
	9.6	Closest Pair Problem		. 343
	9.7	Dinic's Algorithm		. 344
	9.8	Formulas or Theorems		. 345
	9.9	Gaussian Elimination Algorithm		. 346
	9.10	Graph Matching		. 349
	9.11	Great-Circle Distance		. 352
	9.12	Hopcroft Karp's Algorithm		. 353
	9.13	Independent and Edge-Disjoint Paths		. 354
	9.14	Inversion Index		. 355
		Josephus Problem		
		Knight Moves		
		Kosaraju's Algorithm		
		Lowest Common Ancestor		
		Magic Square Construction (Odd Size)		
		Matrix Chain Multiplication		
		Matrix Power		
		Max Weighted Independent Set		
		Min Cost (Max) Flow		
		Min Path Cover on DAG		
		Pancake Sorting		
		Pollard's rho Integer Factoring Algorithm		
		Postfix Calculator and Conversion		
		Roman Numerals		
		Selection Problem		
		Shortest Path Faster Algorithm		
		Sliding Window		
		Sorting in Linear Time		
		Sparse Table Data Structure		
		-		
		Tower of Hanoi		
	9.33	Chapter Notes	٠	. 391
\mathbf{A}	uHu	int		393
D	Cra	dita		90 <i>e</i>
D	Cred	uns		396
Bi	bliog	raphy		398

Foreword

A long time ago (on the 11th of November in 2003, Tuesday, 3:55:57 UTC), I received an e-mail with the following message:

"I should say in a simple word that with the UVa Site, you have given birth to a new CIVILIZATION and with the books you write (he meant "Programming Challenges: The Programming Contest Training Manual" [60], coauthored with Steven Skiena), you inspire the soldiers to carry on marching. May you live long to serve the humanity by producing super-human programmers."

Although that was clearly an exaggeration, it did cause me to think. I had a dream: to create a community around the project I had started as a part of my teaching job at UVa, with people from all around the world working together towards the same ideal. With a little searching, I quickly found a whole online community running a web-ring of sites with excellent tools that cover and provide whatever the UVa site lacked.

To me, 'Methods to Solve' by Steven Halim, a very young student from Indonesia, was one of the more impressive websites. I was inspired to believe that the dream would become real one day, because in this website lay the result of the hard work of a genius of algorithms and informatics. Moreover, his declared objectives matched the core of my dream: to serve humanity. Even better, he has a brother with similar interests and capabilities, Felix Halim.

It's a pity that it takes so much time to start a real collaboration, but life is like that. Fortunately, all of us have continued working together in a parallel fashion towards the realization of that dream—the book that you have in your hands now is proof of that.

I can't imagine a better complement for the UVa Online Judge. This book uses lots of examples from UVa carefully selected and categorized both by problem type and solving technique, providing incredibly useful help for the users of the site. By mastering and practicing most programming exercises in this book, a reader can easily solve at least 500 problems in the UVa Online Judge, which will place them in the top 400-500 amongst ≈ 100000 UVa OJ users.

It's clear that the book "Competitive Programming: Increasing the Lower Bound of Programming Contests" is suitable for programmers who want to improve their ranks in upcoming ICPC regionals and IOIs. The two authors have gone through these contests (ICPC and IOI) themselves as contestants and now as coaches. But it's also an essential colleague for newcomers—as Steven and Felix say in the introduction 'the book is not meant to be read once, but several times'.

Moreover, it contains practical C++ source code to implement given algorithms. Understanding a problem is one thing, but knowing the algorithm to solve it is another, and implementing the solution well in short and efficient code is tricky. After you have read this extraordinary book three times you will realize that you are a much better programmer and, more importantly, a happier person.