Problem 4.29. Let $C_{CFG} = \{ \langle G, k \rangle \mid G \text{ is a } CFG \text{ and } L(G) \text{ contains exactly } k \text{ strings where } k \geq 0 \text{ or } k = \infty \}$. Show that C_{CFG} is decidable.

Proof. We present a **TM** I that decides C_{CFG} .

I = "On input $\langle M \rangle$, where M is a PDA:

- 1. If k = 0:
- 2. Test $L(G) = \phi$ using the E_{CFG} decider R from Theorem 4.8.
- 3. If R accepts, accept; otherwise, reject.
- 4. If $k = \infty$:
- 5. Convert G to equivalent PDA P.
- 6. Test L(P) is infinite using the $INFINITE_{PDA}$ decider T from solution to Problem 4.11.
- 7. If T accepts, accept; otherwise, reject.
- 8. Generate all possible strings s_1, s_2, \dots, s_n in G.
- 9. If n = k, accept; otherwise, reject."