МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Институт информационных технологий, математики и механики
Кафедра дифференциальных уравнений, математического и численного
анализа

ОТЧЕТ

по учебной практике на тему:

«Численное решение начально-краевой задачи для интегро-дифференциального уравнения в частных производных»

Выполнила: студентка группы 3	81706-1
Кукушкина Ксения	
	(подпись)
Проверил:	
старший преп. каф.	ДУМЧА
Эгамов Альберт Ист	
or amob Anibocht He	
or amos rensocht fre	

Содержание

1.	Введение	3
	Теоретическое обоснование	
	Описание программы	
	3.1 Руководство программиста	
	3.2 Руководство пользователя	8
4.	Доказательство корректности	11
5.	Вычислительный эксперимент	14
6.	Вывод	15
7.	Список литературы	16
	оиложение	

1. Введение

Решение начально-краевой задачи для дифференциального уравнения состоит в нахождении его решения, удовлетворяющего некоторым начальным и граничным условиям (задают поведение дифференциального уравнения в начальный момент времени и на границе рассматриваемой области соответственно).

Рассмотрим в качестве примера управляемый процесс нагревания однородного стержня длины с теплоизолированными концами.

Задача: на множестве $Q = [0, l] \times [0, T], l > 0, T > 0$ найти непрерывно дифференцируемую по t и дважды непрерывно дифференцируемую по x функцию y(x, t) – температуру стержня, являющуюся решением уравнения

$$y_t'(x,t) = a^2 y_{xx}''(x,t) + u(x,t)$$
 (1)

и удовлетворяющую однородным граничным условиям второго рода

$$y_x'(0,t) = y_x'(l,t) = 0 (2)$$

и начальному условию

$$y(x,0) = \varphi(x),\tag{3}$$

где a – константа, $\varphi(x) > 0$ – дважды непрерывно дифференцируемая на отрезке функция, задающая начальное распределение температуры и удовлетворяющая условиям согласования (3) и условию

$$\int_0^l \varphi(x) \, dx = 1 \,, \tag{4}$$

непрерывная функция u(x,t) – управление с обратной связью, представляющаяся в виде

$$u(x,t) = b(x)y(x,t) \tag{5}$$

или

$$u(x,t) = b(x)y(x,t) - y(x,t) \int_0^l b(x)y(x,t) \, dx \,, \tag{6}$$

где b(x) – непрерывная на [0, l] управляющая функция.

2. Теоретическое обоснование

Определим нулевой слой будущей разностной схемы из (3). В качестве начальной функции берем

$$\varphi(x) = \frac{1}{l} + \varphi_1 \cos \frac{\pi x}{l} + \varphi_2 \cos \frac{2\pi x}{l}.$$

Перед вычислением каждого следующего слоя находим интеграл в (6) для значений последнего известного i слоя по формуле Симпсона:

$$I_j = \frac{h}{3}(y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_3 + \dots + 2y_{K-2} + 4y_{K-1} + y_K),$$

 $K = \frac{l}{h}$ – количество шагов по x, предполагается чётным.

Составим неявную разностную схему с погрешностью $O(\tau + h^2)$:

$$\frac{y_k^{n+1} - y_k^n}{\tau} = \frac{y_{k+1}^{n+1} - 2y_k^{n+1} + y_{k-1}^{n+1}}{h^2} + u_k^n.$$
 (7)

Необходимо проверить, что $\frac{\tau}{h^2} < \frac{1}{4}$ для обеспечения устойчивости разностной схемы.

Составим трехточечные разностные производные первого порядка для краевых условий с погрешностью второго порядка. В виде разностных производных краевые условия выглядят следующим образом:

$$\frac{y_1^{n+1} - y_0^{n+1}}{h} = \frac{y_K^{n+1} - y_{K-1}^{n+1}}{h} = 0$$

Уравнение (1) преобразуем к виду

$$\frac{\partial^2 y}{\partial x^2} = \frac{\partial y}{\partial \tau} - u(x, \tau)$$

и, подставив вторую производную в выражение

$$\frac{y_1 - y_0}{h} = \frac{\partial y(o, \tau)}{\partial x} + \frac{h}{2} \left(\frac{\partial^2 y}{\partial x^2} \right)_{x = 0} + O(h^2),$$

получаем

$$\frac{y_1^{n+1} - y_0^{n+1}}{h} - \frac{h}{2} \frac{y_0^{n+1} - y_0^n}{\tau} + \frac{h}{2} u_0^n = 0.$$
 (8)

Для правой границы аналогично получаем

$$\frac{y_K^{n+1} - y_{K-1}^{n+1}}{h} + \frac{h}{2} \frac{y_K^{n+1} - y_K^n}{\tau} - \frac{h}{2} u_0^n = 0.$$
 (9)

(7)-(9) представляют собой систему из K+1 уравнения. Теперь нужно привести эту систему к трехдиагональному виду.

Для части А:

$$\begin{cases} (2\tau + h^2)y_0^{n+1} + (-2\tau)y_1^{n+1} = h^2y_k^n(1 + \tau b_k) \\ (-\tau)y_{k-1}^{n+1} + (2\tau + h^2)y_k^{n+1} + (-\tau)y_{k+1}^{n+1} = h^2y_k^n(1 + \tau b_k), & k = \overline{1, K-1} \\ (-2\tau)y_{K-1}^{n+1} + (2\tau + h^2)y_K^{n+1} = h^2y_k^n(1 + \tau b_k) \end{cases}$$

Для части В:

$$\begin{cases} (2\tau+h^2)y_0^{n+1}+(-2\tau)y_1^{n+1}=h^2y_k^n\left(1+\tau(b_k-I_n)\right)\\ (-\tau)y_{k-1}^{n+1}+(2\tau+h^2)y_k^{n+1}+(-\tau)y_{k+1}^{n+1}=h^2y_k^n\left(1+\tau(b_k-I_n)\right), & k=\overline{1,K-1}\\ (-2\tau)y_{K-1}^{n+1}+(2\tau+h^2)y_K^{n+1}=h^2y_k^n\left(1+\tau(b_k-I_n)\right) \end{cases}$$

Осталось решить систему методом прогонки:

Представим систему в виде $A_k y_{k-1}^{n+1} + B_k y_k^{n+1} + C_k y_{k+1}^{n+1} = F_k$. Для удобства записи опустим верхние индексы (решаем систему для фиксированного слоя).

Идея метода прогонки – следующее предположение:

$$y_k = \alpha_{k+1} y_{k+1} + \beta_{k+1}, \ k = \overline{K - 1, 0}$$
 (10)

Выразив y_k и y_{k-1} через y_{k+1} и подставив в исходный вид системы, получаем

$$(A_k \alpha_k \alpha_{k+1} + B_k \alpha_{k+1} + C_k) y_{k+1} + A_k \alpha_k \beta_{k+1} + A_k \beta_k + B_k \beta_{k+1} - F_k = 0,$$

что будет выполняться независимо от у в случае

$$\begin{cases} A_{k}\alpha_{k}\alpha_{k+1} + B_{k}\alpha_{k+1} + C_{k} = 0 \\ A_{k}\alpha_{k}\beta_{k+1} + A_{k}\beta_{k} + B_{k}\beta_{k+1} - F_{k} = 0 \end{cases} \Rightarrow \begin{cases} \alpha_{k+1} = \frac{-C_{k}}{A_{k}\alpha_{k} + B_{k}} \\ \beta_{k+1} = \frac{F_{k} - A_{k}\beta_{k}}{A_{k}\alpha_{k} + B_{k}} \end{cases}$$

Так как $A_0 = 0$,

$$\begin{cases} \alpha_1 = \frac{-C_0}{B_0} \\ \beta_1 = \frac{F_0}{B_0} \end{cases}$$

Теперь можно найти все прогоночные коэффициенты.

Последняя компонента решения:

$$y_K = \frac{F_K - A_K \beta_K}{B_K + A_K \alpha_K}$$

Остальные находим из (10).

Чтобы получить из решения части A решение части B, нужно разделить полученную функцию на ее интеграл от 0 до l, вычисленный по формуле Симпсона [1, c. 7 - 8].

3. Описание программы

3.1 Руководство программиста

Каждая функция, производящая вычисления, имеет доступ у следующим полям, считанным из формы:

- double L длина стержня
- double T время наблюдения
- int hnum количество шагов по х
- int tnum количество шагов по времени
- double b0, b1, b2 параметры управляющей функции
- double phi1, phi2 параметры начального распределения температуры и рассчитываемым программно:
 - double t размер шага по времени
 - double h размер шага по х
 - double[,] res сеточная функция, результат вычислений

Основные функции:

 $\underline{double\ phi(double\ x)}$ — рассчитывает значение начального распределения в заданной точке;

 $\underline{double\ b(double\ x)}$ — рассчитывает значение управляющей функции в заданной точке; $\underline{double\ F(int\ tstep,\ int\ k)}$ — рассчитывает значение правой части k-того уравнения на tstep слое;

double Simpson(int tstep) – рассчитывает интеграл по формуле Симпсона:

void Triagonal() – получение решения:

3.2 Руководство пользователя

После запуска программы пользователю предлагается ввести длину стержня, время изменения температуры, количество точек, в которых производятся расчеты, а также параметры начального распределения температуры и управления с обратной связью. Переход к следующему полю ввода может осуществляться с помощью мыши или посредством нажатия клавиш *Tab* и *Enter*. Внутри полей предусмотрен ввод цифр, запятой (для полей, принимающих дробные значения; точка автоматически преобразуется в запятую), а также удаление символов.

Рисунок 3. 1. Стартовый экран

Когда все параметры заданы, можно приступить к решению задачи. Для этого нужно нажать кнопку "*Paccчитать*". Прогресс вычисления выводится в нижней части формы.

Рисунок 3. 2. Начало расчетов

В результате выполнения программы строится график начального (*"Входные данные"*) и конечного (*"Часть В"*) распределения температуры и выводится время выполнения программы в миллисекундах.

Рисунок 3. 3. Решение части ${\rm B}$

По нажатию клавиши Space начинается решение с использованием части А. График решения ("Часть A") совпадает с графиком "Часть B", время выполнения так же выводится под графиком.

Рисунок 3. 4. Решение с использованием части А

4. Доказательство корректности

Проведем доказательство корректности согласно [2, с. 11].

Для примера возьмем следующие случаи:

Рисунок 4. 1. Пример 1

Рисунок 4. 2. Пример 2

На концах отрезка график решения имеет горизонтальные касательные (в силу краевых условий); площадь фигуры между графиками, в которой $y(x) > \varphi(x)$, равна площади фигуры, в которой $y(x) < \varphi(x)$.

Проверим, что при изменении b_0 график не изменится:

Рисунок 4. 3. Пример 1. Изменение b0

Рисунок 4. 4. Пример 2. Изменение b0

И, наконец, проверим совпадение решения части В и решения с использованием результата части А:

Рисунок 4. 5. Пример 1. Совпадение графиков

Рисунок 4. б. Пример 2. Совпадение графиков

5. Вычислительный эксперимент

Рассмотрим время работы программы на тех же данных, что и в главе 4. Будем изменять количество шагов по времени и по пространству и замерять затраченное время в миллисекундах.

Таблица 1. Пример 1. Время работы

шагов по t	Время выполнения, мс				
шагов по х	200		500		
100	69	218	165	1971	
500	320	3938	931	12949	
1000	1888	21082	5667	21254	
2000	неустойчиво		3885	42014	

Таблица 2. Пример 2. Время работы

шагов по t	Время выполнения, мс				
шагов по х	200		500		
100	54	358	165	1975	
500	268 1751		893	10369	
1000	521	3581	1797	20773	
2000	неустойчиво		4182	42202	

Решение части A занимает гораздо меньше времени – получаем ускорение более чем в 10 раз.

6. Вывод

Разработан алгоритм численного решения начально-краевой задачи для интегродифференциального уравнения, описывающего управляемый процесс нагревания тонкого однородного стержня с теплоизолированными концами. Корректность полученного решения подтверждена экспериментально.

Реализована программа с дружественным интерфейсом, позволяющая задавать длину стержня, время воздействия, параметры начального распределения температур и управляющей функции с обратной связью, а также количество шагов по времени и количество точек измерения температуры.

Проведен вычислительный эксперимент, который показал десятикратное ускорение при решении задачи через линейное уравнение по сравнению с нелинейным. Так как численно решения близки, целесообразнее решать линейную задачу.

.

7. Список литературы

- 1. Самарский А.А.. Введение в численные методы. СПб.: Лань, 2005. 288с.
- 2. Эгамов А.И. Лабораторная работа «Численное решение начально-краевой задачи для интегро-дифференциального уравнения в частных производных»: учебно-мет. пособие. Нижний Новгород: Изд-во ННГУ, 2019. 15с.

Приложение

```
// Расчет начального распределения температур
double phi(double x)
  return (1.0 / L) + phi1 * Math.Cos((Math.PI * x) / L) + phi2 * Math.Cos((2 * Math.PI * x) / L);
}
// Расчет значения управляющей функции
double phi(double x)
{
  return part * b0 + b1 * Math.Cos((Math.PI * x) / L) + b2 * Math.Cos((2 * Math.PI * x) / L);
}
// Расчет значения правой части k-того уравнения на tstep слое
double F(int tstep, int k)
{
  if (Часть В)
    return h * h * result[i, tstep] * (t * (b(h * i) - Simpson(tstep)) + 1);
  else
    return h * h * result[i, tstep] * (t * (b(h * i) + 1);
}
// Расчет интеграла по формуле Симпсона
double Simpson(int tstep)
{
   double I;
   double tmp;
   double xcur = h;
   if (Часть В)
     I = b(0) * res[0, tstep];
     for (int i = 1; i < hnum - 1; ++i)</pre>
       tmp = b(xcur) * coeff * res [i, tstep];
       if (i % 2 == 0) tmp *= 2;
       else tmp* = 4;
       I += tmp;
       xcur += h;
     I += b(xcur) * res[hnum - 1, tstep];
   }
   else
     I = res[0, tstep];
     for (int i = 1; i < hnum - 1; i++)
       tmp = res[i, tstep];
```

```
if (i % 2 == 0) tmp *= 2;
       else tmp* = 4;
       I += tmp;
       xcur += h;
     }
     I += res[hnum - 1, tstep];
   return I * h / 3;
}
// Метод прогонки
 void Triagonal()
   double[] alpha = new double[hnum];
   double[] beta = new double[hnum];
   double xcur = 0;
   // Заполнение нулевого слоя
   for (int i = 0; i < hnum; k++)</pre>
   {
     res [k, 0] = phi(xcur);
     xcur += h;
   }
   // Для каждого слоя
   for (int tstep = 0; tstep < tnum - 1; tstep++)</pre>
     // Вычислить прогоночные коэффициенты
     alpha[0] = -t * (-2 * t / h * h + 2 * t);
     beta[0] = F(tstep, 0) / h * h + 2 * t;
     for (int i = 1; i < hnum - 1; i++)</pre>
       alpha[i] = t / (-t * alpha[k - 1] + B);
       beta[i] = (F(tstep, i) + t * beta[i - 1]) / (-t * alpha[i - 1] + h * h + 2 * t);
     }
     // Вычислить решение
     res[hnum - 1, tstep + 1] = (F(tstep, hnum - 1) + 2 * t * beta[hnum - 2]) / (-2 * t *
alpha[hnum - 2] + h * h + 2 * t);
     for (int i = hnum - 1; i > 0; i--)
       res[i - 1, tstep + 1] = alpha[i - 1] * res[i, tstep + 1] + beta[i - 1];
     }
   }
```

```
if (часть A)
{
    // разделить каждую компоненту на интеграл
    double I = Simpson(tnum - 1);
    for (int i = 0; i < hnum; i++)
        res[i, tnum - 1] /= I;
}</pre>
```