Exercícios de Física Computacional

Escola de Ciências da Universidade do Minho

Física e Engenharia Física

ano letivo 2019/2020, 1º semestre

Folha 6

- 1. Calcule $\int_0^{\pi} \sin(x) dx$ e $\int_0^{2.5} e^x dx$ usando
 - (a) o método dos retângulos.
 - (b) o método do trapésio.
 - (c) o método de Simpson.
 - (d) um método de Monte Carlo.
- 2. O período de um pêndulo de comprimento ℓ que oscila a um ângulo grande, α , é dado por

$$T = T_0 \frac{\sqrt{2}}{\pi} \int_0^\alpha \frac{d\theta}{\sqrt{\cos \theta - \cos \alpha}}$$

em que $T_0 = 2\pi \sqrt{\frac{\ell}{g}}$. Calcule o integral de T/T_0 entre 0° e 90° . Sugestão: use a mudança de variável $\sin(\theta/2) = \sin(\alpha/2)\sin\phi$ e lembre-se que $\cos\theta = 1 - 2\sin^2(\theta/2)$.

- 3. O movimento Browniano é um processo estocástico em que a posição em função do tempo é dada por $X(t+dt)=X(t)+N(0,(\delta)^2dt;t,t+dt)$, sendo δ uma constante e $N(a,b;t_0,t_1)$ uma distribuição normal de valores aleatórios com média a e variância b em que os parâmetros t_0 e t_1 denotam a independencia estatística de N em diferentes intervalos de tempo (i.e. se $[t_0,t_1]$ e $[t_2,t_3]$ são intervalos de tempo dijuntos, então $N(a,b;t_0,t_1)$ e $N(a,b;t_2,t_3)$ são independentes).
 - (a) Implemente uma função correspondente ao movimento Browniano a uma dimensão (processo de Wiener) e represente diversas sequências temporais da posição.
 - (b) Implemente uma função correspondente ao movimento Browniano a duas dimensões e represente um trajeto obtido com essa função.

Para casa:

4. No início do sec. XX, Ernest Rutherford e os seus colaboradores mostraram que quando uma partícula α (i.e. um núcleo de hélio com dois protões e dois neutrões) passa perto de um núcleo atómico N é dispersada como mostrado na figura seguinte:

Esta dispersão obedece à seguinte relação:

$$\tan(\frac{1}{2}\theta) = \frac{Ze^2}{2\pi\varepsilon_0 Eb}$$

em que Z é o número atómico do núcleo, $\varepsilon=8,854\times10^{-12}\mathrm{A^2s^4kg^{-1}m^{-3}}$ é a constante de permissividade do vácuo, E é a energia cinética da partícula α e b é o parâmetro de impacto.

Considere um feixe de partículas α com energia cinética de 7,7 MeV que tem uma distribuição Gaussiana em x e em y com um desvio padrão de $\sigma=a_0/100$, onde $a_0=5.292\times 10^{-11}$ m é o raio de Bohr, e que é disparado contra uma folha fina de ouro (Z=79). Calcule numericamente, usando Monte Carlo, qual a probabilidade de uma partícula ser dispersa a um ângulo maior que 90° .