Jose's Method Integration by Part

Evaluate
$$\int e^{ax} \cos bx \ dx$$

$$\int e^{ax} \cos bx \, dx = \frac{1}{b} e^{ax} \sin bx + \frac{a}{b^2} e^{ax} \cos bx - \frac{a^2}{b^2} \int e^{ax} \cos bx \, dx$$

$$\left(1 + \frac{a^2}{b^2}\right) \int e^{ax} \cos bx \, dx = \frac{e^{ax}}{b^2} (b \sin bx + a \cos bx)$$

$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} (b \sin bx + a \cos bx) + C$$

		$\int \cos bx \ dx$
+	e^{ax}	$\frac{1}{b}\sin bx$
•	ae ^{ax}	$-\frac{1}{b^2}\cos bx$
+	a^2e^{ax}	$-\frac{1}{b^2}\int \cos bx \ dx$

Proof

Find
$$\int e^{ax} \cos bx \ dx$$

Solution

$$\int e^{ax} \cos bx \, dx = \frac{1}{b} e^{ax} \sin bx - \frac{a}{b} \int e^{ax} \sin bx \, dx$$

$$\int u dv = u v - \int v du$$

Let:
$$u = e^{ax} dv = \sin bx dx$$
$$du = ae^{ax} dx v = \int \sin bx dx = -\frac{1}{b} \cos bx$$

$$\int e^{ax} \cos bx \, dx = \frac{1}{b} e^{ax} \sin bx - \frac{a}{b} \left[-\frac{1}{b} e^{ax} \cos bx + \frac{a}{b} \int e^{ax} \cos bx \, dx \right]$$
$$= \frac{1}{b} e^{ax} \sin bx + \frac{a}{b^2} e^{ax} \cos bx - \frac{a^2}{b^2} \int e^{ax} \cos bx \, dx$$

$$\int e^{ax} \cos bx \, dx + \frac{a^2}{b^2} \int e^{ax} \cos bx \, dx = \frac{1}{b} e^{ax} \sin bx + \frac{a}{b^2} e^{ax} \cos bx + C_1$$

$$\frac{a^2 + b^2}{b^2} \int e^{ax} \cos bx \, dx = \frac{1}{b^2} e^{ax} \left(b \sin bx + a \cos bx \right) + C_1$$

$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} (b \sin bx + a \cos bx) + C$$