FOUNDATIONS OF HIGHER MATHEMATICS HOMEWORK 11

Problem 67

 $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 3x^2 + 2$.

a)
$$f([2,3])$$

 $f(2) = 3(2)^2 + 2 = 14$ and $f(3) = 3(3)^2 + 2 = 29$. So, $f([2,3]) = [14,29]$.

b)
$$f^{-1}([55, 307]) = \{x \in \mathbb{R} | f(x) \in [55, 307]\}$$

$$55 = 3x^{2} + 2$$

$$53 = 3x^{2}$$

$$\frac{53}{3} = x^{2}$$

$$\pm \sqrt{\frac{53}{3}} = x$$

$$307 = 3x^{2} + 2$$

$$305 = 3x^{2}$$

$$\pm \sqrt{\frac{305}{3}} = x$$

So,
$$f^{-1}([55, 307]) = \left[-\sqrt{\frac{53}{2}}, \sqrt{\frac{305}{5}}\right]$$

c)
$$f^{-1}([1,2]) = \{x \in \mathbb{R} | f(x) \in [1,2] \}$$

$$1 \le 3x^2 + 2 \le 2$$
$$-1 \le 3x^2 \le 0$$

Since $3x^2 = -1$ has no solutions in \mathbb{R} , $f^{-1}([1,2]) = \{0\}$.

d)

$$f^{-1}(f(3)) = f^{-1}(3 \cdot (3)^{2} + 2)$$

$$= f^{-1}(29)$$

$$29 = 3x^{2} + 2$$

$$27 = 3x^{2}$$

$$x = \pm 3$$

e)
$$f(\{-1, -2, -3\}) = \{3(-1)^2 + 2, 3(-2)^2 + 2, 3(-2)^2 + 2\} = \{5, 14, 29\}$$

f) $f({1,2,3}) = {5,14,29}$, same work as last problem.

Problem 69

- a) $f(A) = \{mn | (m, n) \in \mathbb{N} \times \mathbb{N} : m = 1 \text{ and } n \text{ is even} \}$ = $1 \cdot n$ where n is even, so f(A) is all even numbers.
- b) $f(B) = \{mn | (m, n) \in \mathbb{N} \times \mathbb{N} : m \text{ and } n \text{ are even} \}$ If m and n are even then, m = 2j and n = 2k, so mn = 4jk. Thus, $f(B) = 4\mathbb{N}$.

c) $f(C) = \{mn | (m, n) \in \mathbb{N} \times \mathbb{N} : m \text{ is even or } n \text{ is even} \}$

Case 1: m even, b even

Same as part b, $mn = 4\mathbb{N}$.

Case 2: m even, b odd

 $2k \cdot 2j + 1 = 2(2jk + k)$ so mn is even.

Case 3: m odd, b even

mn is even.

Since all $4\mathbb{N}$ are in $2\mathbb{N}$, $f(C) = 2\mathbb{N}$

d)

$$f^{-1}(D) = \{m, n \in \mathbb{N} | f(m, n) \in D\}$$

$$= \{m, n \in \mathbb{N} | f(m, n) \in \{x \in \mathbb{N} | x \text{ is odd}\}$$

$$= \{m, n \in \mathbb{N} | m \cdot n \in \{x \in \mathbb{N} | x \text{ is odd}\}$$

 $m \cdot n$ is only odd when m is odd and n is odd. (m = 2k + 1, n = 2j + 1, mn = 4jk + 2j + 2k + 1 = 2(2jk + j + k) + 1). So, $f^{-1}(D) = (m, n)$ such that m is odd and n is odd.

e)

$$f^{-1}(E) = \{m, n \in \mathbb{N} | f(m, n) \in \{n \in \mathbb{N} | x \text{ is even}\}\$$
$$= \mathbb{N} \times \mathbb{N}$$

Because with even m and odd n, $m \cdot n$, similarly for odd m and even n. So, all pairs of N are in the set.

f)

$$f^{-1}(F) = \{m, n \in \mathbb{N} | f(m, n) = 14\}$$
$$= \{(1, 14), (14, 1), (2, 7), (7, 2)\}$$

Problem 70

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \lfloor x \rfloor$, and let $A = [3, 5] \cup (7, 9) \cup (11, 15)$.

- $f(A) = \{f(a) | a \in A\} = [3, 5] \cup [7, 8] \cup [11, 14]$
- $f^{-1}(A) = \{x \in \mathbb{R} | f(x) \in A\} = [3, 6) \cup [8, 9) \cup [12, 15).$
- $f(f^{-1}(A)) = f([3,6) \cup [8,9) \cup [12,15)) = [3,5] \cup \{8\} \cup [12,14)$
- $f^{-1}(f(A)) = \{x \in \mathbb{R} | f(x) \in f(A)\} = [3, 6] \cup [7, 9) \cup [11, 15)$

Problem 72

Proof. Assume $A, B \in \mathcal{P}(X)$ such that $A \neq B$. That is, there exists an $x \in A$ and $x \notin B$, or $x \notin A$ and $x \in B$. Assume $x \in A$ and $a \notin B$. (Identical argument follows for $x \notin A$, $x \in B$) Since, $x \in A$, $x \notin X - A$. It follows that since $x \in A$ and $A \subseteq X$, that $x \in X$. Now take $C_X(B) = X - B$. Since $x \in X$, and $x \notin B$, $x \in X - B$. Since there exists $x \in X - A$ and $x \notin X - B$, then $X - A \neq X - B$ and thus, $C_x(A) \neq C_x(B)$. Therefore, we have shown that C_x is injective.

$$C_X^{-1}(A) = \{ B \in \mathcal{P}(X) | C_x(B) = A \}$$

= $\{ B \in \mathcal{P}(X) | X - B = A \}$

So C_X^{-1} is just the set that is the complement of A.

Problem 75

 (\Leftarrow) Assume $f(A) \cap f(B) = f(A \cap B)$. Let $x_1, x_2 \in X$ such that $f(x_1) = f(x_2)$. Want to show that $x_1 = x_2$. Since A and B are sets, represent x_1 and x_2 as one element sets, $\{x_1\}$ and $\{x_2\}$. It follows that $f(\{x_1\}) \cap f(\{x_2\}) = f(\{x_1\} \cap \{x_2\})$. Since $f(x_1) = f(x_2)$, and the intersection of two identical sets is itself, $f(\{x_1\}) = f(\{x_1\} \cap \{x_2\})$. It follows that:

$$f({x_1}) = {f(x) | x \in {x_1} \text{ and } x \in {x_2}}$$

It follows that $x_1 = x_2$. Therefore, f is injective.

- (\Rightarrow) Assume f is *injective*. We want to show, $f(A) \cap f(B) = f(A \cap B)$.
- (\subseteq) Assume an arbitrary $y \in f(A) \cap f(B)$. It follows that $y \in f(A)$ and $y \in f(B)$. By definition, $y \in \{f(a) | a \in A\}$ and $y \in \{f(b) | b \in B\}$. We can see that $y \in Im(f)$ because A and B are subsets of X. It follows that there is an unique element, call it x, such that f(x) = y. Since $y \in f(A)$ and $y \in f(B)$, this unique $f(x) \in f(A)$ and $f(x) \in f(B)$. Since x is unique, $x \in A$ and $x \in B$. So, $x \in A \cap B$. It follows that $f(x) \in f(A \cap B)$. Finally, $y \in f(A \cap B)$.
- (\supseteq) Assume an arbitrary $y \in f(A \cap B)$. Since $y \in Im(f)$, there is a unique element, x, such that f(x) = y. So, $x \in A \cap B$. It follows that $x \in A$, and $x \in B$. Thus, $f(x) \in f(A)$ and $f(x) \in f(B)$. Therefore, since f(x) = y, $y \in f(A) \cap f(B)$.

Proving both subsets, we can conclude that $f(A) \cap f(B) = f(A \cap B)$.