FlowNet: Learning Optical Flow with Convolutional Networks

Introduction

Classical application

Per-Pixel Prediction

Handwritten Zip Code Recognition

Fully convolutional networks for semantic segmentation

Other applications

Depth Estimation from Single Image

Edge detection

Key Point prediction

Motivation

Two simple solutions

- Sliding Window
- Works well
- Drawbacks:
 - High Computational cost (re-use feature map)
 - Global OutputProperty(SharpEdge)

- Upsample feature map to full resolution
- Stack all feature maps together
- Concatenated per-pixel feature vector to predict the value of interest

Motivation

Two simple solutions

Fully Convolutional Networks for Semantic Segmentation

"Upconvolution"

Allowing refine feature maps to original size

Depth Map Prediction from a Single Image Using a Multi-Scale Deep Network

"Concatenation"

Concatenate coarse features with flow

Architecture

- FlowNetSimple
 - Generic network
 - Convolutinal layer only

Drawbacks: Optimal point is not guaranteed

- FlowNetCorr
 - first produce meaningful representations of the two images separately
 - and then combine them on a higher level.

Architecture

FlowNet Simple

Contractive Part:

- Overlay two input images
- 9 Convolutional layers (ReLu function each layer)
- Not fully connected network
- 6 layers have stride 2, double feature maps number
- 3 filters: 7*7, 5*5, 3*3

FlowNet Corr

Contractive Part:

- Same architecture configuration as simple net
- First two layers are duplicated for each input
- Add in one more correlation layer at conv3

Correlation layer

$$c(x_1, x_2) = \sum_{o \in [-k, k] \times [-k, k]} \langle f_1(x_1 + o), f_2(x_2 + o) \rangle$$

Correlation

Corr Image

Correlation

Correlation layer

- Computing one patch $c(x_1, x_2)$ involves $c \times K^2$ where K = 2k + 1
 - Computing all patches combination:

$$cw^2h^2K^2$$

 Limiting maximum displacement d at each x, therefore neighborhood window size:

$$D = 2d + 1$$

- Output size: $w \times h \times D^2$
- Computing expenses: $cw^2h^2K^2D^2$
- In practice, k=0, d = 20, s1= 1, s2 = 2

Refinement

- Upconvolution = unpooling + convolution
- Cat(Upconvolution(feature map L), feature map (L-1), upsampled flow map)
- Refinement rate: 5x, 4 hidden layers
- Last layer is bilinear upsampling without refinement

Unpooling

Alternative

At last layer, use variational optical flow approach rather than bilinear upsampling Steps:

- 1. At 4 times downsampled resolution feature map
- 2. Use coarse to fine scheme 20 iterations
- 3. Run 5 iterations at full resolution
- 4. Compute image boundary

This method computationally expensive but more accurate than bilinear upsample

Training Data Set

Middlebury

- 8 image pairs,
- Displacement small, below 10 pixels

KITTI

- 194 training pairs,
- only special motion types: moving observer,
- lack ground truth of distant object

MPI Sintel

- 1041 training image pairs
- Dense ground truth for small and large displacement

Flying Chair

- 22872 image pairs
- With calculated flow fields

Data Augmentation

Affine Transformation: Translation, Rotation, Scaling,

Noise: Gaussian noise

Illumination: Brightness change, Contrast change, Gamma change, Color change

Results

Method	Sintel Clean		Sintel Final		KITTI		Middlebury train		Middlebury test		Chairs	Time (sec)	
- 10 - 10 - 10 - 10 - 10	train	test	train	test	train	test	AEE	AAE	AEE	AAE	test	CPU	GPU
EpicFlow [30]	2.40	4.12	3.70	6.29	3.47	3.8	0.31	3.24	0.39	3.55	2.94	16	-
DeepFlow [35]	3.31	5.38	4.56	7.21	4.58	5.8	0.21	3.04	0.42	4.22	3.53	17	-
EPPM [3]	-	6.49	-	8.38	-	9.2	-	-	0.33	3.36	-	-	0.2
LDOF [6]	4.29	7.56	6.42	9.12	13.73	12.4	0.45	4.97	0.56	4.55	3.47	65	2.5
FlowNetS	4.50	7.42	5.45	8.43	8.26		1.09	13.28	-	=0	2.71	-	0.08
FlowNetS+v	3.66	6.45	4.76	7.67	6.50	-3	0.33	3.87	-		2.86	-	1.05
FlowNetS+ft	(3.66)	6.96	(4.44)	7.76	7.52	9.1	0.98	15.20	-	- 6	3.04	-	0.08
FlowNetS+ft+v	(2.97)	6.16	(4.07)	7.22	6.07	7.6	0.32	3.84	0.47	4.58	3.03	-	1.05
FlowNetC	4.31	7.28	5.87	8.81	9.35	-	1.15	15.64	-	-	2.19	-	0.15
FlowNetC+v	3.57	6.27	5.25	8.01	7.45	-	0.34	3.92	1.7	-	2.61	-	1.12
FlowNetC+ft	(3.78)	6.85	(5.28)	8.51	8.79	-	0.93	12.33	-	-	2.27	-	0.15
FlowNetC+ft+v	(3.20)	6.08	(4.83)	7.88	7.31	-	0.33	3.81	0.50	4.52	2.67	-	1.12

Notes:

- 1. Before fine tuning, FlowNet outperforms LDOF, after fine tuning on Sintel, it outperforms EPPM
- 2. Generally performance is lower than EpicFlow or DeepFlow on existing data set, but for the chairs data set, it outperforms all the other methods

Analysis

Problems

- FlowNetS is better at generalization compared to FlowNetC. FlowNetC slightly more over-fits to training data
- The network can not understand the training samples, it somehow adapts more to the training data.
- FlowNetC is more sensitive to large displacement

Potential Solutions

- Data Augmentation is necessary!
 It helps to reduce end point error. Better training data will make FlowNet an advantage
- Maximum displacement of the correlation does not allow very large motion predictions. Increase maximum displacement at cost of computational efficiency

Q&A

Video

https://www.youtube.com/watch?v=k_wkDLJ8lJE

