```
In []:
[! pip install scikit-fuzzy
```

Fuzzy Logic: Grading Student Performance

Author: Satyajit Ghana

Fuzzy Logic Grading System

```
In [97]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import skfuzzy as fuzz

from skfuzzy import control as ctrl
from random import choice
from collections import defaultdict, namedtuple
from pprint import pprint

from IPython.display import display
sns.set()
```

Project Evaluation Attributes

```
In [33]:
```

```
project_features = dict(
    documentation=['excellent', 'good', 'satisfying', 'moderate', 'limited', 'bad'],
    presentation=['excellent', 'very_good', 'good', 'average', 'fair', 'bad'],
    security_auth=['excellent', 'very_good', 'good', 'average', 'fair', 'bad'],
    functionality=['excellent', 'very_good', 'good', 'average', 'fair', 'bad'],
    design_ui=['excellent', 'very_good', 'good', 'average', 'fair', 'bad'],
    modularity=['very_high', 'high', 'medium', 'low', 'very_low', 'nil']
)
```

Dataset

```
In [49]:

MAX_STUDENTS = 50

MAX_EVALUATORS = 3
```

```
In [58]:
```

```
dataset.keys()
Out[58]:
dict keys(['evaluator 00', 'evaluator 01', 'evaluator 02'])
In [68]:
for evaluator, data in dataset.items():
    print(f"Data for {evaluator}")
    display(data.info())
    print()
Data for evaluator 00
<class 'pandas.core.frame.DataFrame'>
Index: 50 entries, student 01 to student 50
Data columns (total 6 columns):
              Non-Null Count Dtype
 # Column
                     -----
 0
   documentation 50 non-null
                                     category
 1 presentation 50 non-null
                                      category
    security_auth 50 non-null
                                     category
    functionality 50 non-null design ui 50 non-null
                                     category
 4 design_ui
5 modularity
                                     category
                     50 non-null category
dtypes: category(6)
memory usage: 1.9+ KB
None
Data for evaluator 01
<class 'pandas.core.frame.DataFrame'>
Index: 50 entries, student 01 to student 50
Data columns (total 6 columns):
              Non-Null Count Dtype
 # Column
---
                     _____
   documentation 50 non-null presentation 50 non-null security_auth 50 non-null
 0
                                     category
   presentations presentation of the security auth 50 non-null category 50 non-null category 50 non-null category category
                                     category
 4
   design ui
 5 modularity
dtypes: category(6)
memory usage: 1.9+ KB
None
Data for evaluator 02
<class 'pandas.core.frame.DataFrame'>
Index: 50 entries, student 01 to student 50
Data columns (total 6 columns):
               Non-Null Count Dtype
 # Column
                     -----
   documentation 50 non-null
                                     category
   presentation 50 non-null
security_auth 50 non-null
 1
                                     category
 2
                                     category
3 functionality 50 non-null category 4 design_ui 50 non-null category 5 modularity 50 non-null category
dtypes: category(6)
memory usage: 1.9+ KB
None
In [67]:
for evaluator, data in dataset.items():
    print(f"Data for {evaluator}")
    display(data.head())
    print()
Data for evaluator 00
```

	documentation	presentation	security_auth	functionality	design_ui	modularity
student_01	bad	very_good	bad	bad	fair	high
student_02	satisfying	average	bad	fair	good	very_low
student_03	excellent	bad	excellent	good	good	medium
student_04	satisfying	good	average	very_good	bad	medium
student_05	moderate	average	bad	bad	bad	medium

Data for evaluator_01

	documentation	presentation	security_auth	functionality	design_ui	modularity
student_01	limited	fair	excellent	average	very_good	low
student_02	limited	excellent	bad	good	very_good	very_low
student_03	good	average	fair	average	good	very_low
student_04	good	fair	very_good	fair	good	medium
student_05	moderate	average	bad	average	good	low

Data for evaluator_02

	documentation	presentation	security_auth	functionality	design_ui	modularity
student_01	good	excellent	very_good	excellent	very_good	high
student_02	bad	fair	bad	bad	good	high
student_03	limited	excellent	fair	good	bad	high
student_04	bad	excellent	average	fair	excellent	nil
student_05	satisfying	average	very_good	excellent	average	low

Fuzzy Logic

In [3]:

```
def get tri vals(vals, x min=1, x max=6):
   start_val = vals[0]
   end val = vals[-1]
    \max point, \max x = \max(vals), vals.index(\max(vals))
    \max x += 1
    \# x = (y - y1)*(x2 - x1)/(y2 - y1) + x1
    # (x1 , y1
                       ), (x2 , y2
    # (x_min, start_val), (max_x, max_point)
    line_one_fun = lambda y: (y - start_val) * (max_x - x_min) / (max_point - start_val)
+ x_min
    # (x1 , y1 ), (x2 , y2 )
# (max_x, max_point), (x_max, end_val)
    line_two_fun = lambda y: (y - max_point) * (x_max - max_x) / (end_val - max_point) +
max x
    if max point == start val:
       x_{left} = x_{min}
    else:
       x left = line one fun(0)
    if end val == max point:
       x right = x max
    else:
        x_right = line_two_fun(0)
```

```
return [x_left, max_x, x_right]
In [4]:
get tri vals([1, 0.8, 0.6, 0.4, 0.2, 0])
Out[4]:
[1, 1, 6.0]
In [5]:
def get fuzzy set grid(val min, val max, grid size=6):
    init vals = np.linspace(val max, val min, grid size)
    grid vals = np.array([init vals])
    for val in np.linspace(val_max, val_min, grid_size)[1:]:
        init vals = init vals[:-1]
        init vals = np.concatenate((np.array([val]), init vals))
        grid vals = np.append(grid vals, np.array([init vals.copy()]), axis=0)
    return grid vals
In [6]:
get fuzzy set grid(0, 1, grid size=6)
Out[6]:
array([[1. , 0.8, 0.6, 0.4, 0.2, 0.],
       [0.8, 1., 0.8, 0.6, 0.4, 0.2],
[0.6, 0.8, 1., 0.8, 0.6, 0.4],
[0.4, 0.6, 0.8, 1., 0.8, 0.6],
       [0.2, 0.4, 0.6, 0.8, 1. , 0.8],
       [0., 0.2, 0.4, 0.6, 0.8, 1.]])
In [74]:
FuzzySet = namedtuple('FuzzySet', field names=['attrs', 'set'])
In [76]:
fuzzy sets = defaultdict(dict)
for proj feat, proj attrs in project features.items():
    num terms = len(proj attrs)
    fuzzy grid = get fuzzy set grid(0, 1, grid size=num terms)
    # create the fuzzy set
    proj set = ctrl.Antecedent(np.arange(1, num terms + 1, 1), proj feat)
    fuzzy sets[proj feat] = FuzzySet(proj attrs, proj set)
    # assign the membership function
    for idx, attr in enumerate(fuzzy_sets[proj_feat].attrs):
        fuzzy_sets[proj_feat].set[attr] = fuzz.trimf(fuzzy_sets[proj_feat].set.universe,
get_tri_vals(list(fuzzy_grid[idx, :])))
In [108]:
fuzzy_sets
Out[108]:
defaultdict (dict,
            {'design ui': FuzzySet(attrs=['excellent', 'very good', 'good', 'average', 'f
air', 'bad'], set=Antecedent: design_ui),
             'documentation': FuzzySet(attrs=['excellent', 'good', 'satisfying', 'moderat
e', 'limited', 'bad'], set=Antecedent: documentation),
             landar annual landar landaral
```

In [84]:

fuzzy_sets['documentation'].set.view()

In [85]:

fuzzy_sets['presentation'].set.view()

In [86]:

fuzzy sets['security auth'].set.view()

In [87]:

```
fuzzy sets['functionality'].set.view()
```


In [88]:

```
fuzzy_sets['design_ui'].set.view()
```


In [89]:

```
fuzzy sets['modularity'].set.view()
```


In [94]:

```
ideal_performance_sets = {
    'documentation': fuzzy_sets['documentation'].set['excellent'].mf,
    'presentation': fuzzy_sets['presentation'].set['excellent'].mf,
    'security_auth': fuzzy_sets['security_auth'].set['excellent'].mf,
    'functionality': fuzzy_sets['functionality'].set['excellent'].mf,
    'modularity': fuzzy_sets['modularity'].set['very_high'].mf,
```

```
'design ui': fuzzy sets['design ui'].set['excellent'].mf
In [106]:
pprint(ideal performance sets)
{'design ui': array([1. , 0.8, 0.6, 0.4, 0.2, 0. ]),
 'documentation': array([1. , 0.8, 0.6, 0.4, 0.2, 0. ]),
 'functionality': array([1. , 0.8, 0.6, 0.4, 0.2, 0.]),
 'modularity': array([1. , 0.8, 0.6, 0.4, 0.2, 0. ]),
 'presentation': array([1. , 0.8, 0.6, 0.4, 0.2, 0. ]),
 'security auth': array([1. , 0.8, 0.6, 0.4, 0.2, 0.])}
Evaluating Student Performance
In [110]:
dataset.keys()
Out[110]:
dict keys(['evaluator 00', 'evaluator 01', 'evaluator 02'])
Let's see how it works out for one student
In [170]:
def create student df(student idx, dataset):
    student remarks = pd.DataFrame([dataset[evaluator].iloc[student idx] for evaluator i
n dataset.keys()]).T
    student remarks.columns=dataset.keys()
    return student remarks
In [199]:
def evaluate student(student remarks, debug=False):
    performance metric = {'total dist': 0}
    for idx, evaluation in student remarks.iterrows():
        if debug:
            print(evaluation.name)
        overall_opinion = np.array(list(map(lambda x: fuzzy sets[evaluation.name].set[x]
.mf, evaluation.values))).min(axis=0)
        distance from ideal = np.abs(ideal performance sets[evaluation.name] - overall o
pinion).sum()
        performance metric[evaluation.name] = distance from ideal
        performance metric['total dist'] += distance from ideal
```

```
In [200]:
```

print()

return performance_metric

```
student_evaluation = pd.DataFrame(data={eval_param: [] for eval_param in project_feature
s.keys()})
student_evaluation['total_dist'] = []
for student_idx in range(0, MAX_STUDENTS):
    student_remarks = create_student_df(student_idx, dataset)
    display(student_remarks)

print("\nEvaluation\n")
evaluation = evaluate_student(student_remarks, debug=True)
```

print('overall opinion: ', overall opinion)

print('distance from ideal: ', distance_from_ideal)

```
print(evaluation)
print()

student_evaluation.loc[f'student_{student_idx:02}'] = evaluation

break # do only for one student

display(student_evaluation)
```

```
evaluator_00 evaluator_01 evaluator_02
documentation
                          limited
                  bad
                                      good
                                   excellent
  presentation
              very_good
                             fair
 security_auth
                         excellent
                  bad
                                  very_good
  functionality
                  bad
                          average
                                   excellent
    design_ui
                  fair
                                  very_good
                        very_good
   modularity
                  high
                             low
                                      high
Evaluation
documentation
overall opinion: [0. 0.2 0.4 0.6 0.4 0.2]
distance from ideal: 2.4000000000000004
presentation
overall opinion: [0.2 0.4 0.6 0.4 0.2 0.]
distance from ideal: 1.2000000000000002
security auth
overall opinion: [0. 0.2 0.4 0.4 0.2 0.]
distance from ideal: 1.8
functionality
overall opinion: [0. 0.2 0.4 0.4 0.2 0.]
distance from ideal: 1.8
design ui
overall opinion: [0.2 0.4 0.6 0.6 0.4 0.2]
distance from ideal: 1.8
modularity
overall opinion: [0.4 0.6 0.8 0.6 0.4 0.2]
{'total dist': 10.6, 'documentation': 2.4000000000000, 'presentation': 1.200000000000
002, 'security auth': 1.8, 'functionality': 1.8, 'design ui': 1.8, 'modularity': 1.599999
999999999}
```

student_002.41.21.81.81.81.81.610.6

Now apply the same logic over all the student

```
In [201]:
```

```
student_evaluation = pd.DataFrame(data={eval_param: [] for eval_param in project_feature
s.keys()})
student_evaluation['total_dist'] = []
for student_idx in range(0, MAX_STUDENTS):
    student_remarks = create_student_df(student_idx, dataset)
    evaluation = evaluate_student(student_remarks)
    student_evaluation.loc[f'student_{student_idx:02}'] = evaluation
```

In [231]:

```
student_evaluation.describe().T
```

Out[231]:

	count	mean	std	min	25%	50%	75%	max
documentation	50.0	1.812	0.911970	0.0	1.20	1.8	2.40	3.6
presentation	50.0	1.752	0.874640	0.2	1.20	1.8	2.40	3.4
security_auth	50.0	1.936	0.794306	0.2	1.30	1.8	2.40	3.6
functionality	50.0	1.868	0.781009	0.2	1.35	1.8	2.40	3.4
design_ui	50.0	1.728	0.749160	0.2	1.20	1.8	2.40	3.4
modularity	50.0	1.912	0.919769	0.2	1.20	1.8	2.40	3.4
total_dist	50.0	11.008	2.179294	3.2	10.10	11.1	12.35	15.6

Display the ranking of students

In [203]:

student_evaluation.sort_values('total_dist', ascending=True)

Out[203]:

	documentation	presentation	security_auth	functionality	design_ui	modularity	total_dist
student_41	1.2	0.2	0.2	0.2	1.2	0.2	3.2
student_49	0.8	2.2	1.2	2.4	0.2	0.2	7.0
student_27	1.8	0.2	1.8	0.8	1.8	1.2	7.6
student_33	1.2	1.2	1.2	2.4	0.8	0.8	7.6
student_08	1.2	1.2	1.2	1.8	1.2	1.2	7.8
student_44	1.2	2.4	1.8	0.4	0.8	1.8	8.4
student_16	2.4	1.2	1.8	1.8	0.4	1.2	8.8
student_14	2.4	1.8	2.8	0.8	0.8	0.4	9.0
student_26	0.4	0.4	2.4	1.8	2.4	1.8	9.2
student_17	0.8	1.2	1.6	2.8	1.2	1.8	9.4
student_23	0.0	1.2	1.8	2.4	1.8	2.4	9.6
student_05	1.8	0.8	1.8	1.2	1.8	2.4	9.8
student_36	1.2	2.8	1.8	1.8	1.2	1.2	10.0
student_46	2.4	0.4	2.8	1.8	1.2	1.8	10.4
student_39	1.2	2.4	2.4	1.8	0.8	1.8	10.4
student_37	1.8	0.4	1.2	2.4	2.8	1.8	10.4
student_24	1.8	1.2	3.4	0.4	1.8	1.8	10.4
student_06	2.4	2.4	1.2	0.8	2.4	1.2	10.4
student_48	2.4	0.8	2.8	2.2	1.2	1.2	10.6
student_00	2.4	1.2	1.8	1.8	1.8	1.6	10.6
student_38	2.4	1.8	0.4	1.8	2.4	1.8	10.6
student_02	1.2	1.8	1.2	2.2	2.8	1.8	11.0
student_31	3.2	0.4	2.4	1.8	8.0	2.4	11.0
student_42	1.8	1.2	2.4	2.8	2.4	0.4	11.0
student_11	2.2	2.8	0.4	2.4	0.8	2.4	11.0
student_35	1.8	2.8	1.2	1.2	0.8	3.4	11.2
student_19	0.4	1.8	1.6	3.4	1.8	2.4	11.4

student_34	documentation	presentatibn	security_auth	functionality	design ² ui	modularity	total_blist
student_13	1.6	0.8	2.4	1.8	1.6	3.2	11.4
student_03	2.4	1.2	1.6	1.8	1.8	2.8	11.6
student_10	1.2	1.8	2.4	1.8	2.4	2.4	12.0
student_12	2.4	2.4	1.8	1.8	1.8	1.8	12.0
student_28	0.2	2.8	2.4	2.4	1.8	2.4	12.0
student_45	2.4	3.4	2.4	1.2	1.8	0.8	12.0
student_21	1.8	2.8	1.8	1.8	0.8	3.2	12.2
student_29	1.2	2.8	1.8	0.8	2.8	2.8	12.2
student_07	1.2	2.8	1.2	2.8	1.8	2.4	12.2
student_30	1.8	2.4	3.2	3.4	1.2	0.4	12.4
student_20	1.2	1.2	3.2	1.2	2.4	3.2	12.4
student_22	0.4	1.8	2.4	1.8	3.2	2.8	12.4
student_40	3.2	1.2	1.2	1.8	2.4	2.8	12.6
student_09	3.4	1.8	2.4	3.2	1.2	0.8	12.8
student_15	2.4	2.2	2.8	0.8	1.8	2.8	12.8
student_32	1.8	3.4	1.6	2.4	3.4	0.4	13.0
student_01	2.8	1.2	3.6	2.8	1.2	1.8	13.4
student_43	0.2	2.4	2.8	3.4	2.2	2.4	13.4
student_18	2.8	2.8	1.8	1.8	2.4	1.8	13.4
student_04	2.2	2.8	2.4	1.8	2.8	2.2	14.2
student_47	3.4	1.8	2.4	2.4	1.8	3.4	15.2
student_25	3.6	2.4	2.4	1.8	2.0	3.4	15.6

In [208]:

```
[fuzzy_sets['documentation'].set['good'].mf,
fuzzy_sets['presentation'].set['very_good'].mf,
fuzzy_sets['security_auth'].set['very_good'].mf,
fuzzy_sets['functionality'].set['very_good'].mf,
fuzzy_sets['design_ui'].set['very_good'].mf,
fuzzy_sets['modularity'].set['high'].mf]
```

Out[208]:

```
[array([0.8, 1. , 0.8, 0.6, 0.4, 0.2]), array([0.8, 1. , 0.8, 0.6, 0.4, 0.2])]
```

In [213]:

```
grading_dists = {
    'Ex': 6 * np.abs(fuzzy_grid[0, :] - fuzzy_grid[0, :]).sum(),
    'A+': 6 * np.abs(fuzzy_grid[0, :] - fuzzy_grid[1, :]).sum(),
    'A': 6 * np.abs(fuzzy_grid[0, :] - fuzzy_grid[2, :]).sum(),
    'B+': 6 * np.abs(fuzzy_grid[0, :] - fuzzy_grid[3, :]).sum(),
    'B': 6 * np.abs(fuzzy_grid[0, :] - fuzzy_grid[4, :]).sum(),
    'C': 6 * np.abs(fuzzy_grid[0, :] - fuzzy_grid[5, :]).sum()
}
```

In [216]:

```
sorted_grading_dists = sorted(grading_dists.items(), key=lambda x: x[1])
sorted_grading_dists
```

Out[216]:

student_00 10.6 A+ student_01 13.4 Α student_02 11.0 A+ student_03 11.6 A+ student_04 14.2 Α student_05 9.8 A+ student_06 10.4 A+ Α student_07 12.2 student_08 7.8 A+ student_09 12.8 Α student_10 12.0 Α student_11 11.0 A+ student_12 12.0 Α student_13 11.4 A+ student_14 9.0 A+ student_15 12.8 Α student_16 8.8 A+ student_17 9.4 A+ student_18 13.4 Α student_19 11.4 A+ student_20 12.4 Α student_21 12.2 Α student_22 12.4 Α student_23 9.6 A+ student_24 10.4 A+ student_25 Α 15.6 student_26 9.2 A+ student_27 7.6 A+

student_28

etudent 20

12.0

199

Α

Λ

Student_43	total dist	arada
-student_30	12.4	grade A
student_31	11.0	A+
student_32	13.0	Α
student_33	7.6	A+
student_34	11.4	A+
student_35	11.2	A+
student_36	10.0	A+
student_37	10.4	A+
student_38	10.6	A+
student_39	10.4	A+
student_40	12.6	Α
student_41	3.2	Ex
student_42	11.0	A+
student_43	13.4	Α
student_44	8.4	A+
student_45	12.0	Α
student_46	10.4	A+
student_47	15.2	Α
student_48	10.6	A+
student_49	7.0	Ex

Display sorted Grades

In [232]:

student_evaluation.sort_values('total_dist', ascending=True)[['total_dist', 'grade']]

Out[232]:

	total_dist	grade
student_41	3.2	Ex
student_49	7.0	Ex
student_27	7.6	A +
student_33	7.6	A +
student_08	7.8	A +
student_44	8.4	A+
student_16	8.8	A+
student_14	9.0	A +
student_26	9.2	A +
student_17	9.4	A +
student_23	9.6	A +
student_05	9.8	A +
student_36	10.0	A +
student_46	10.4	A +
student_39	10.4	A +
student_37	10.4	A +
student_24	10.4	A +

student_06	10.4 total_dist	A+ grade
student_48	10.6	A+
student_00	10.6	A +
student_38	10.6	A +
student_02	11.0	A +
student_31	11.0	A+
student_42	11.0	A+
student_11	11.0	A+
student_35	11.2	A+
student_19	11.4	A+
student_34	11.4	A+
student_13	11.4	A+
student_03	11.6	A+
student_10	12.0	Α
student_12	12.0	Α
student_28	12.0	Α
student_45	12.0	Α
student_21	12.2	Α
student_29	12.2	Α
student_07	12.2	Α
student_30	12.4	Α
student_20	12.4	Α
student_22	12.4	Α
student_40	12.6	Α
student_09	12.8	Α
student_15	12.8	Α
student_32	13.0	Α
student_01	13.4	Α
student_43	13.4	Α
student_18	13.4	Α
student_04	14.2	Α
student_47	15.2	Α
student_25	15.6	Α

Convert this notebook to pdf

```
In [233]:
```

```
%%capture
! apt update
! apt install texlive-xetex texlive-fonts-recommended texlive-generic-recommended
```

```
In [234]:
```

```
import subprocess
import shlex
```

Convert to pdf

```
s = subprocess.Popen(shlex.split(
    f'jupyter nbconvert /content/fuzzy-logic-grading-system.ipynb --to pdf'
    ), shell = False, stdout = subprocess.PIPE, stderr = subprocess.PIPE)
s.wait()
s.stdout.read()

Out[235]:
b''

In []:
```