VE216 Recitation Class 1 Chapter 1

MA, Anlin

UM-SJTU Joint Institute

May 2023

Table of Contents

Signals

Singularity Functions

System Characteristics

Definition of Signals & Systems

- Signal is a function of time: x(t)
- System is a function of time AND the input x(t): F(t,x(t))

Examples

Amplifier applied at t=1 on a singer's voice which starts at t=0.

Time-Transformation

CHANGE OF VARIABLES!

- Folding/ Reflection/ Time-reversal y(t) = x(-t)
- Time-scaling y(t) = x(at)
- Time-shifting $y(t) = x(t t_0)$

$$y(t) = x(at - b) = x(\frac{t - t_0}{w})$$

Example

$$x(t) = t, t > 0$$

- y(t)=x(-t)
- y(t)=x(2t)
- y(t)=x(t-2)

Amplitude-Transformation

- Amplitude-reversal y(t) = -x(t)
- Amplitude-scaling y(t) = ax(t)
- Amplitude-shifting y(t) = x(t) + b

Calculus

- Differentiator $y = \frac{d}{dt}x(t)$
- Integrator y= $\int_{-\infty}^{t} x(\tau) d\tau$

Two-Signal Operations

- Sum $y(t)=x_1(t) + x_2(t)$
- Product $y(t)=x_1(t) \cdot x_2(t)$

Signal Characteristics

- Period T: x(t+T) = x(t), T > 0, for any t
 - Fundamental period T₀: smallest period
 - ▶ Sum of two periodic signals is periodic $\Leftrightarrow \frac{T_1}{T_2}$ is rational
- Even/Odd Symmetry: x(t)=x(-t)/x(t)=-x(-t)
- Average value: $A = \lim_{x \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) dt$
- Energy: $E = \int_{-\infty}^{\infty} |x(t)|^2 dt$
 - ▶ Energy signal: $E < \infty$
- Average power: $P = \lim_{x \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$
 - ▶ Power signal: $E=\infty \& P < \infty \& P \neq 0$

Examples

- x(t)=sin(t)
- $x(t)=u(t)\cdot e^{-t+1}$

Table of Contents

Signals

Singularity Functions

System Characteristics

Unit Step Function

$$u(t) = \begin{cases} 1, t > 0 \\ 0, t < 0 \end{cases}$$

Caution

EDGE DOES NOT MATTER

Rect(angle) Function

• rect(t)=
$$\begin{cases} 1, -\frac{1}{2} < t < \frac{1}{2} \\ 0, otherwise \end{cases}$$

- ► rect(t)=u(t+ $\frac{1}{2}$)-u(t- $\frac{1}{2}$)
- ▶ $rect(\frac{t-t_0}{T})$: centered at t_0 with width T

Examples

- $rect(\frac{t-1}{2})$
- $\operatorname{rect}(\frac{t}{4} \frac{3}{2})$

Unit Impulse function

- $\delta(t)$: zero width & infinite height
 - ► Sampling: $x(t) \cdot \delta(t t_0) = x(t_0) \cdot \delta(t t_0)$
 - ► Convolution: $x(t) * \delta(t t_0) = \int_{-\infty}^{\infty} x(t \tau) \cdot \delta(\tau t_0) d\tau = x(t t_0)$
 - ▶ Shifting: $\int_{-\infty}^{\infty} x(t) \cdot \delta(t t_0) dt = x(t_0)$
 - $\delta(t) = \frac{d}{dt}u(t), \ u(t) = \int_{-\infty}^{t} \delta(\tau)d\tau$
 - ▶ Unit Area: $\int_{-\infty}^{\infty} \delta(t-t_0)dt = 1$, for any t_0
 - ► Scaling: $\delta(at + b) = \frac{1}{|a|} \delta(t + \frac{b}{a})$, for any $a \neq 0$
 - Symmetry: $\delta(t) = \delta(-t)$
 - Algebaic: $t \cdot \delta(t) = 0$

Examples

Evaluate the following

- $\int_{-\infty}^{\infty} \sin(t) \cdot \delta(t-\pi) dt$
- $\bullet \ \frac{d}{dt}[e^{-3t} \cdot u(t)]|_{t=2}$

Table of Contents

Signals

Singularity Functions

System Characteristics

Linearity

$$T[a_1x_1(t) + a_2x_2(t)] = a_1T[x_1(t)] + a_2T[x_2(t)]$$

Skill

- 1. $x_1(t) \to y_1(t) \& x_2(t) \to y_2(t)$
- 2. $a_1x_1(t) + a_2x_2(t) \rightarrow y(t)$
- 3. y(t) vs. $a_1y_1(t) + a_2y_2(t)$

Example

$$y(t) = \frac{x(t+1)}{x(t-1)}$$

Stability

Skill

- 1. Assume there exists M_x s.t. $|x(t)| <= M_x < \infty$
- 2. Substitute in y to see whether y is bounded

Example

$$y(t) = \int_{t}^{t+T} x(\tau) d\tau$$

Causality & Memory

- Causal:Depends only on present and past
- Memory: Depends only on present
 - $\blacktriangleright \ \mathsf{Memoryless} \to \mathsf{Causal}$

Example

• $y=x(cos(t+\frac{\pi}{4}))$

Time-Invariance

Skill

- 1. Find $y(t-t_0)$ by replacing every t in y with t- t_0
- 2. Find the output y_d when input is $x_d = x(t t_0)$
- 3. $y(t t_0)$ vs. y_d

Examples

- $y(t)=(t-2)\cdot x(t)$
- $y(t)=2 \cdot x(3t)$
- $y(t)=5 \cdot x(t-1)$