

Limite d'une suite(2)

Exercice 1

Soit $(u_n)_{n\geq 2}$ la suite définie par : $u_n = \frac{1}{n\sqrt{n}} \sum_{k=1}^{k=n} \sqrt{k}$

1. Soit $n \in \mathbb{N}^* - \{1\}$. Montrer que : $(\forall k \in \{1, 2, ..., n-1\})(\exists c \in]k, k+1[)$ tel que $(k+1)\sqrt{k} - k\sqrt{k} = \frac{3}{2}\sqrt{c}$

2. En déduire que $(\forall n \in \mathbb{N}^* - \{1\})$ $u_n - \frac{1}{n} < \frac{2}{3} - \frac{2}{3n\sqrt{n}} < u_n - \frac{1}{n\sqrt{n}}$

3. En déduire que (u_n) est convergente et calculer sa limite .

Exercice 2

Soient $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ les suites définies par :

 $u_n = \sum_{k=0}^{k=n} \frac{1}{1+k^2} - \arctan(n)$ et $v_n = \sum_{k=0}^{k=n} \frac{1}{1+k^2} - \arctan(n+1)$

1. Montrer , en appliquant TAF , que pour tout x>1 $\arctan(x+1)-\arctan(x)<\frac{1}{1+x^2}\quad\text{et}\quad\arctan(x)-\arctan(x-1)>\frac{1}{1+x^2}$

2. Montrer que (u_n) et (v_n) sont adjacentes.

Exercice 3

Partie I: Soit f la fonction définie sur [0,1] par $f(x) = \frac{2}{\pi} \arctan\left(\frac{1}{\sqrt{2-x}}\right)$

1. Montrer que $(\forall x \in]0,1[)$ $0 < f'(x) < \frac{1}{2\pi}$

2. Montrer que $(\exists!\alpha\in]0,1[)$ tel que $f(\alpha)=\alpha$

Partie II : Soit (u_n) la suite définie par : $\begin{cases} u_0 = \frac{1}{4} \\ u_{n+1} = f(u_n) \end{cases} \quad (\forall n \in \mathbb{N}) .$

1. Montrer que : $(\forall n \in \mathbb{N})$ $0 < u_n < 1$.

2. Etudier la monotonie de (u_n) .

3. (a) Montrer que $(\forall n \in \mathbb{N})$ $|u_n - \alpha| \le \left(\frac{1}{2\pi}\right)^n$.

(b) calculer $\lim u_n$

Exercice 4

Soit $n \in \mathbb{N}^*$ et f_n la fonction définie par : $f_n(x) = -1 + x + x^2 + \dots + x^n$

1

1. Montrer que : $(\exists!\alpha_n \in [0,1])$ tel que $f_n(\alpha_n) = 0$

2. (a) Calculer α_1 et α_2 .

(b) Etudier le signe de $f_{n+1}(x) - f_n(x)$.

(c) En déduire que (α_n) est décroissante .

3. (a) Montrer que $(\forall n \in \mathbb{N} * -\{1,2\})$ $2\alpha_n = 1 + \alpha_n^{n+1}$

(b) Calculer $\lim \alpha_n^{n+1}$ et déduire $\lim \alpha_n$

Exercice 5

Partie I : Soit f la fonction définie sur $]0, +\infty[$ par $f(x) = 1 + \frac{1}{x}$.

1. Étudier les variations de f et déterminer $f(]\frac{2}{3}, +\infty[)$

2. On pose
$$\varphi = \frac{1+\sqrt{5}}{2}$$
. Vérifier que $f(\varphi) = \varphi$.

3. Montrer que
$$\left(\forall x \in \left[\frac{2}{3}, +\infty\right]\right) |f'(x)| \le \frac{4}{9}$$

Partie II : Soit (u_n) la fonction définie par $u_0 = 2$, $u_{n+1} = f(u_n)$ $(\forall n \in \mathbb{N})$.

1. Montrer que
$$u_n \in \left[\frac{2}{3}, +\infty\right[\quad (\forall n \in \mathbb{N})$$

2. Montrer que
$$(\forall n \in \mathbb{N})$$
 $|u_{n+1} - \varphi| \le \frac{4}{9}|u_n - \varphi|$.

3. En déduire que (u_n) est convergente et calculer sa limite .

Exercice 6

Soit $\overline{n \in \mathbb{N}^* - \{1\}}$ et f_n la fonction définie sur $]\mathbb{R}$ par $f_n(x) = x - \cos(\frac{x}{n})$.

1. Montrer que : $(\exists!\alpha_n \in \mathbb{R})$ tel que $f_n(\alpha_n) = 0$ et que $\alpha_n \in]0.1[$.

2. Montrer que $(\forall x \in]0,1[)$ $f_{n+1}(x) < f_n(x)$

3. Montrer que (α_n) est croissante, et déduire qu'elle est convergente.

4. Calculer $\lim \alpha_n$

Exercice 7

Soient f la fonction définie par $f(x) = \frac{2+x}{1+x}$ $(\forall x \in I = [1, +\infty[)]$.

1. Montrer que f est continue et strictement décroissante sur I.

2. Montrer que $f(I) \subset I$.

3. Montrer que
$$|(f \circ f)'(x)| \le \frac{1}{25}$$
 $(\forall x \ge 1)$

4. Soit (u_n) la suite définie par $u_0=1$ et $u_{n+1}=f(u_n)$ $(\forall n\in\mathbb{N})$. Montrer que $u_n\geq 1$ $(\forall n\in\mathbb{N})$.

5. on pose $x_n = u_{2n}$ et $y_n = u_{2n+1}$ $(\forall n \in \mathbb{N})$.

(a) Vérifier $x_{n+1} = fof(x_n)$ et $y_{n+1} = fof(y_n)$ $(\forall n \in \mathbb{N})$.

(b) Montrer que $x_n < \sqrt{2} < y_n \quad (\forall n \in \mathbb{N})$.

(c) Montrer que (x_n) est croissante et que (y_n) est décroissante .

(d) Montrer que $|x_{n+1} - y_{n+1}| \le \frac{1}{25} |x_n - y_n|$ $(\forall n \in \mathbb{N})$.

(e) En déduire que (x_n) et (y_n) sont adjacentes et calculer leur limite commune .