CSC3001 Discrete Mathematics

Mid-term Examination

June 29, 2022: 1:30pm - 4:00pm

Name:	Student ID:	

Answer ALL questions in the Answer Book.

Question	Points	Score
1	16	
2	16	
3	16	
4	16	
5	16	
6	16	
7	4	
Total:	100	

1. (16 points) Let $n \ge 1$ be an even integer and x_1, x_2, \ldots, x_n be statements. Suppose that $(x_1 \to x_2) \land (x_2 \to x_3) \land \cdots \land (x_{n-1} \to x_n) \land (x_n \to x_1)$ is true. Show that

$$x_1 \text{ xor } x_2 \text{ xor } \cdots \text{ xor } x_n = \text{false},$$

where xor denotes exclusive or.

Solution:

 $(x_1 \to x_2) \land (x_2 \to x_3) \land \cdots \land (x_{n-1} \to x_n) \land (x_n \to x_1)$ implies that x_1, x_2, \ldots, x_n are logically equivalent. Writing true as 1, false as 0, and xor as plus modulo 2, we have x_1 xor \cdots xor $x_n = n \cdot x_1 = 0$ modulo 2, which represents false.

2. (16 points) Let $n \geq 2$ be an integer. Show that

$$\sum_{i=1}^{n-1} \frac{1}{\sqrt{i} + \sqrt{i+1}} + 1 = \sqrt{n}.$$

Solution:

We prove this by induction. The base case, n=2, is true as $\frac{1}{1+\sqrt{2}}+1=\sqrt{2}$. Assume that the equality is true for n. Then for n+1,

$$\sum_{i=1}^{n+1-1} \frac{1}{\sqrt{i} + \sqrt{i+1}} + 1 = \sum_{i=1}^{n-1} \frac{1}{\sqrt{i} + \sqrt{i+1}} + 1 + \frac{1}{\sqrt{n} + \sqrt{n+1}}$$
$$= \sqrt{n} + \frac{1}{\sqrt{n} + \sqrt{n+1}}$$
$$= \sqrt{n+1}.$$

By induction, the equality holds for any $n \geq 2$.

3. (16 points) Let m > 3 be an integer with gcd(m, 3) = 1. Suppose we have infinitely many coins of values 3 and m. Let

$$S = \{3 \cdot a + m \cdot b \mid a, b \in \{0, 1, 2, \dots\}\}\$$

be the set of values expressible with those coins. Show that 2m-3 is the largest integer not in S.

Solution:

We first show that $2m-3 \notin S$. Otherwise 2m-3=3a+mb for some $a,b \geq 0$. For this to hold b is at most 1. Then $3 \nmid 2-b$. Subsequently $3 \nmid (2-b)m$. However (2-b)m=3(a+1). Contradiction.

We then show that any number at least 2m-2 is in S. In fact, $2m, m, 0 \in S$, and 2m, 2m-1, 2m-2 is a permutation of 2m, m, 0 modulo 3 and is no smaller in absolute value. Therefore they can be expressed by the expression of 2m, m, 0 plus 3-value coins. Set 2m, 2m-1, 2m-2 as the base case of the induction. The induction step is done by repeatedly adding 3-value coins. By induction, any number above 2m is also expressible. This concludes that 2m-3 is the largest integer not in S.

4. (16 points) For any number $x \in (0,1)$, we write x into a decimal number. For example, $\frac{1}{3} = 0.333...$, $\frac{1}{4} = 0.25$, and $\pi - 3 = 0.1415...$.

Let $A_0, \ldots, A_8 \subseteq (0,1)$ be sets. For $x \in (0,1)$, we define, for $i \in \{0,\ldots,8\}$, that $x \in A_i$ if and only if the first non-9 digit after the decimal point is i.

For example, $0.04 \in A_0$, $0.25 \in A_2$, $0.9985 \in A_8$, and $0.99 = 0.990 \in A_0$.

Show that (A_0, \ldots, A_8) is a partition of (0, 1).

Solution:

For $x \in (0,1)$, the first non-9 digit of x is unique. Hence A_0, \ldots, A_8 are pairwise disjoint. As this digit must not be 9, it must belong to $\{0,1,\ldots,8\}$, which indicates that x must belong to at least one of $\{A_0,\ldots,A_8\}$. As such, (A_0,\ldots,A_8) is a partition of (0,1).

5. (16 points) Let a, b, c be positive integers. There are a white, b black, and c red chips on a table. In one step, you may choose two chips of different colors and replace them by a chip of the third color. The game ends when no more steps can be done. Suppose that some sequence of moves ended the game with 1 remaining red chip. Prove that any sequence of steps will end with at least 1 red chips remaining.

Solution:

Each step the number of chips of each color changes its parity, and therefore colors of different parity will never reach same parity throughout the game. A game ends when two of the colors had 0 chips remaining. If only one red chip remained in the end, it means that c had parity different from a and b. It follows that in any ending red chips must have parity different from white and black ones. Hence there cannot be 0 remaining red chips.

6. (16 points) Let $n, k \in \mathbb{N}^+$. Let P(x) be a polynomial of degree n that takes integer values for $x = 0, 1, 2, \ldots, n$.

Let $C_k(x)$ be a polynomial of degree k defined as

$$C_k(x) = \frac{x(x-1)(x-2)\cdot\cdots\cdot(x-k+1)}{1\cdot 2\cdot 3\cdot\cdots\cdot k}.$$

For example, $C_0(x) = 1$, $C_1(x) = x$, $C_2(x) = \frac{x(x-1)}{2}$, $C_3(x) = \frac{x(x-1)(x-2)}{6}$. In the second half of the semester, we will show that whenever x is an integer, $C_k(x)$ is an integer. You could use this fact without proof.

(a) (8 points) Show that $C_k(k) = 1$ and

$$C_k(0) = C_k(1) = \cdots = C_k(k-1) = 0.$$

(b) (4 points) Prove that we can form a linear combination,

$$Q(x) = a_0 C_0(x) + a_1 C_1(x) + \dots + a_n C_n(x),$$

in such a way that a_0, a_1, \ldots, a_n are integers and that P(m) = Q(m) for $m = 0, 1, \ldots, n$.

(c) (4 points) Assume the following lemma: If two polynomials F(x) and G(x), $x \in \mathbb{R}$, of degree at most n satisfy F(x) = G(x) for at least n+1 distinct x values, then they have to coincide F(x) = G(x) for all $x \in \mathbb{R}$. Show that $P(x) \in \mathbb{Z}$ for any $x \in \mathbb{Z}$.

Solution:

Part (a). $C_k(k) = \frac{k \cdot (k-1) \cdot \dots \cdot 1}{1 \cdot 2 \cdot 3 \cdot \dots \cdot k} = 1$. Since $C_k(x)$ is a multiple of (x-a) for $a = 0, 1, \dots, k-1$, $C_k(x) = 0$ for $x = 0, 1, \dots, k-1$.

Part (b). Set $Q_0(x) = P(0)C_0(x) = P(0)$. Then update it as

$$Q_{k+1}(x) = Q_k(x) + (P_k(k+1) - Q_k(k+1))C_{k+1}(x).$$

By induction on k we see that $Q_k(m) = P_k(m)$ for m = 0, 1, ..., k.

Part (c). As P and Q coincide for n+1 points $0, 1, \ldots, n$, by the lemma P(x) = Q(x) for all $x \in \mathbb{Z}$. As Q(x) is a sum of integer-valued polynomials with integer coefficients, $Q(x) \in \mathbb{Z}$ for $x \in \mathbb{Z}$. Hence $P(x) = Q(x) \in \mathbb{Z}$ for $x \in \mathbb{Z}$.

7. (4 points) Let $a, b \in \mathbb{N}^+$. Show that $3ab = a^2 + b^2 + 1$ if and only if $ab \mid a^2 + b^2 + 1$.

Solution:

The only if statement is trivial. We prove the if statement. When a = b or a = 1 or b = 1, the statement follows immediately.

Without loss of generality assume that $a>b\geq 2$. If $kab=a^2+b^2+1$ for an integer k, then with $a'=\frac{b^2+1}{a}< b,\ a'\in\mathbb{N}^+,$ we have $ka'b=a'^2+b^2+1$. Repeat this process until one of the two numbers is 1. The statement follows.