Intervals, Transformations, and Slope Solution (version 150)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-8, -5) \cup (0, 5)$
Negative	$(-5,0) \cup (5,7)$
Increasing	$(-8, -7) \cup (-3, 3)$
Decreasing	$(-7, -3) \cup (3, 7)$
Domain	(-8,7)
Range	(-9,9)

Intervals, Transformations, and Slope Solution (version 150)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

 $y = f(-2 \cdot x)$

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=60$ and $x_2=81$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 15 & 60 \\ 43 & 81 \\ 60 & 43 \\ 81 & 15 \\ \hline \end{array}$$

$$\frac{g(81) - g(60)}{81 - 60} = \frac{15 - 43}{81 - 60} = \frac{-28}{21}$$

The greatest common factor of -28 and 21 is 7. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-4}{3}$$

2