

Subject: Electronic Design Principles

Topic: Astable Multivibrator

Student: Minh Quan Tran

Table of Contents

1.	Obj	jectives4	
2.	The	eory and Design5	
	2.1	Theory	5
	2.2	Design and Calculation	5
3.	Res	sult 6	
	3.1	16 Hz	6
	3.1.	.1 Calculation for equipment	6
	3.1.	.2 Multisim Design	6
	3.1.	.3 Breadboard Design	7
	3.1.	.4 Result	8
	3.2	33 Hz	9
	3.2.	.1 Calculation for equipment	9
	3.2.	.2 Multisim Design	9
	3.2.	.3 Breadboard Design	10
	3.2.	.4 Result	11
	3.3	80 Hz	12
	3.3.	.1 Calculation for equipment	12
	3.3.	.2 Multisim Design	12
	3.3.	.3 Breadboard Design	13
	3.3.	.4 Result	14
	3.4	5 Hz	15
	3.4.	.1 Calculation for equipment	15
	3.4.	.2 Multisim Design	15
	3.4.	.3 Breadboard Design	16
	3.4.	.4 Result	17
	3.5	20 Hz (67% ON and 33% OFF)	18
	3.5.	.1 Calculation for equipment	18
	3.5.	2 Multisim Design	18
	3.5.	.3 Breadboard Design	20
	3.5.	.4 Result	21
1	CO	NCLUSION 22	

TABLE OF FIGURES

Figure 2-1: Astable Multivibrator Circuit	5
Figure 3-1: Circuit design with $R = 47k\Omega$ and $C = 1\mu F$	6
Figure 3-2: Circuit's output for 16 Hz	7
Figure 3-3: Breadboard's design for 16 Hz	7
Figure 3-4: Breadboard's output for 16 Hz	8
Figure 3-5: Circuit design with $R = 22k\Omega$ and $C = 1\mu F$	9
Figure 3-6: Circuit's output for 33 Hz	10
Figure 3-7: Breadboard's design for 33 Hz	10
Figure 3-8: Breadboard's output for 33 Hz	
Figure 3-9: Circuit design with $R_2 = 10k\Omega$ and $C_2 = 1\mu F$	12
Figure 3-10: Circuit's output for 80 Hz	13
Figure 3-11: Breadboard's design for 80 Hz	13
Figure 3-12: Breadboard's output for 80 Hz	
Figure 3-13: Circuit design with $R_2 = 220k\Omega$ and $C_2 = 1\mu F$	
Figure 3-14: Circuit's output for 5 Hz	
Figure 3-15: Breadboard's design for 5 Hz	16
Figure 3-16: Breadboard's output for 5 Hz	
Figure 3-17: Circuit design with $R_2 = 47k\Omega$, $C_2 = 1\mu F$ and $R_3 = 22k\Omega$, $C_1 = 1\mu F$	
Figure 3-18: Circuit's output of Chanel 1 for 20Hz (67% ON, 33% OFF time)	18
Figure 3-19: Circuit's output of Chanel 2 for 20Hz (33% ON, 67% OFF)	19
Figure 3-20: Breadboard's design for 20 Hz	
Figure 3-21: Breadboard's output for 20Hz (Channel 1)	
Figure 3-22: Breadboard's output for 20Hz (Channel 2)	21
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~
TABLE'S OF TABLE	
Table 3-1: Result for 16 Hz	8
Table 3-2: Result for 33 Hz	
Table 3-3: Result for 80 Hz	14
Table 3-4: Result for 5 Hz	17
Table 2.5: Deput for 20 Hz	

## 1. Objectives

To create a working Astable Multivibrator using 2 BJTs, LEDs and capacitors.

- Step 1: Design and calculate the equipment in the circuit.
- Step 2: Simulate the result in Multisim to test the theory.
- Step 3: Build the circuit based on theory and Multisim design.

## 2. Theory and Design

### 2.1 Theory

Astable-Multivibrator basically is used to generate the square waves at a desired frequency without any external intervention.

#### 2.2 Design and Calculation



Figure 2-1: Astable Multivibrator Circuit

For this design the following equipment are use:

- 4 Resistor
- 2 Capacitor
- 2 BJT Transistors
- Power Supply

Astable Multivibrator's Periodic time (for Output 1):

$$\begin{cases} T = t_1 + t_2 \\ t_1 = ln(2) \times R_2 \times C_2 \\ t_2 = ln(2) \times R_3 \times C_1 \end{cases}$$
 (2.1)

Equation 2-1: Astable Multivibrator's Periodic time formula

For this assignment, 5 sample frequencies will be tested.

### 3. Result

#### 3.1 16 Hz

#### 3.1.1 Calculation for equipment

Because  $R_2 = R_3$  and  $C_1 = C_2$  so,

$$t_1 = t_2 = ln(2) \times R_2 \times C_2$$

To design an Astable Multivibrator with frequency of 16Hz, the periodic time will be:

$$T = \frac{1}{f} = \frac{1}{16 \, Hz} = 62.5 \, (ms)$$

So  $t_1$  and  $t_2$  will be.

$$T = t_1 + t_2 = 2 \times t_1$$
  
 $t_1 = \frac{T}{2} = 31.25 (ms)$ 

From the result, choosing  $R_2 = 47k\Omega$  and  $C_2 = 1\mu F$  will give the closest time:

$$t_1 = ln(2) \times R_2 \times C_2 = 32.5 (ms)$$
  
 $f = \frac{1}{T} = \frac{1}{2 \times t_1} = 15.38 (Hz)$ 

### 3.1.2 Multisim Design



Figure 3-1: Circuit design with  $R = 47k\Omega$  and  $C = 1\mu F$ 



Figure 3-2: Circuit's output for 16 Hz

## 3.1.3 Breadboard Design



Figure 3-3: Breadboard's design for 16 Hz



Figure 3-4: Breadboard's output for 16 Hz

## **3.1.4** Result

Theory expected frequency (Hz)	Multisim's frequency (Hz)	Breadboard's frequency (Hz)
15.38Hz	18.2Hz	17.24Hz

Table 3-1: Result for 16 Hz

#### 3.2 33 Hz

### 3.2.1 Calculation for equipment

Because  $R_2 = R_3$  and  $C_1 = C_2$  so,

$$t_1 = t_2 = ln(2) \times R_2 \times C_2$$

$$t_1 = t_2 = ln(2) \times R_2 \times C_2$$
 To design an Astable Multivibrator with 33 Hz, the periodic time will be: 
$$T = \frac{1}{f} = \frac{1}{33 \, Hz} = 30.3 (ms)$$

So t₁ and t₂ will be.

$$T = t_1 + t_2 = 2 \times t_1$$
  
 $t_1 = \frac{T}{2} = 15.15 (ms)$ 

From the result, choosing  $R_2=22k\Omega$  and  $C_2=1\mu\overline{F}$  will be best:

$$t_1 = \ln(2) \times R_2 \times C_2 = 15.246(ms)$$

$$f = \frac{1}{T} = \frac{1}{2 \times t_1} = 32.79 \text{ (Hz)}$$

#### 3.2.2 Multisim Design



Figure 3-5: Circuit design with  $R = 22k\Omega$  and  $C = 1\mu F$ 



Figure 3-6: Circuit's output for 33 Hz

### 3.2.3 Breadboard Design



Figure 3-7: Breadboard's design for 33 Hz



Figure 3-8: Breadboard's output for 33 Hz

### **3.2.4** Result

Theory expected frequency (Hz)	Multisim expected frequency (Hz)	Breadboard expected frequency (Hz)
32.79 Hz	38.7 Hz	36.23 Hz

Table 3-2: Result for 33 Hz

#### 3.3 80 Hz

### 3.3.1 Calculation for equipment

Because  $R_2 = R_3$  and  $C_1 = C_2$  so,

$$t_1 = t_2 = ln(2) \times R_2 \times C_2$$

$$t_1 = t_2 = ln(2) \times R_2 \times C_2$$
 To design an Astable Multivibrator with 80 Hz, the periodic time will be: 
$$T = \frac{1}{f} = \frac{1}{80 \ Hz} = 12.5 \ (ms)$$

So t₁ and t₂ will be.

$$T = t_1 + t_2 = 2 \times t_1$$
  
 $t_1 = \frac{T}{2} = 6.25 (ms)$ 

From the result, choosing 
$$R_2 = 10k\Omega$$
 and  $C_2 = 1\mu F$  will be best:  

$$t_1 = ln(2) \times R_2 \times C_2 = 6.93 \ (ms)$$

$$f = \frac{1}{T} = \frac{1}{2 \times t_1} = 72.15 \ (Hz)$$

#### 3.3.2 Multisim Design



Figure 3-9: Circuit design with  $R_2 = 10k\Omega$  and  $C_2 = 1\mu F$ 



Figure 3-10: Circuit's output for 80 Hz

### 3.3.3 Breadboard Design



Figure 3-11: Breadboard's design for 80 Hz



Figure 3-12: Breadboard's output for 80 Hz

### **3.3.4** Result

Theory expected frequency (Hz)	Multisim expected frequency	Breadboard expected frequency
	(Hz)	(Hz)
72.15 Hz	85.3 Hz	81.97 Hz

Table 3-3: Result for 80 Hz

#### 3.4 5 Hz

### 3.4.1 Calculation for equipment

Because  $R_2 = R_3$  and  $C_1 = C_2$  so,

$$t_1 = t_2 = ln(2) \times R_2 \times C_2$$

 $t_1 = t_2 = ln(2) \times R_2 \times C_2$  To design an Astable Multivibrator with 5 Hz, the periodic time will be:  $T = \frac{1}{f} = \frac{1}{5 \, Hz} = 200 (ms)$ 

$$T = \frac{1}{f} = \frac{1}{5 \, Hz} = 200 (ms)$$

So t₁ and t₂ will be.

$$T = t_1 + t_2 = 2 \times t_1$$
  
 $t_1 = \frac{T}{2} = 100(ms)$ 

From the result, choosing 
$$R_2 = 220k\Omega$$
 and  $C_2 = 1\mu F$  will be best:  

$$t_1 = ln(2) \times R_2 \times C_2 = 152.46 \ (ms)$$

$$f = \frac{1}{T} = \frac{1}{2 \times t_1} = 6.56 \ (Hz)$$

#### 3.4.2 Multisim Design



Figure 3-13: Circuit design with  $R_2 = 220k\Omega$  and  $C_2 = 1\mu F$ 



Figure 3-14: Circuit's output for 5 Hz

### 3.4.3 Breadboard Design



Figure 3-15: Breadboard's design for 5 Hz



Figure 3-16: Breadboard's output for 5 Hz

#### **3.4.4** Result

Theory expected frequency (Hz)	Multisim expected frequency	Breadboard expected frequency
	(Hz)	(Hz)
6.56 Hz	7.78 Hz	5.682 Hz

Table 3-4: Result for 5 Hz

#### 3.5 20 Hz (67% ON and 33% OFF)

#### 3.5.1 Calculation for equipment

To design an Astable Multivibrator with 25 Hz, the periodic time will be:

$$T = \frac{1}{f} = \frac{1}{20 \, Hz} = 50 \, (ms)$$

Let  $t_1$  is the duration of ON time and  $t_2$  is the duration of OFF time,

$$T = t_1 + t_2 = 3 \times t_2$$
  
 $t_2 = \frac{T}{3} = 16.67 (ms)$   
 $t_1 = \frac{2 \times T}{3} = 33.33 (ms)$ 

From the result, choosing  $R_2 = 47k\Omega$ ,  $C_2 = 1\mu F$  and  $R_3 = 22k\Omega$ ,  $C_1 = 1\mu F$  will give the closest result:

$$t_1 = ln(2) \times R_2 \times C_2 = 32.571(ms)$$
  
 $t_2 = ln(2) \times R_3 \times C_1 = 15.247(ms)$   
 $f = \frac{1}{T} = \frac{1}{t_1 + t_2} = 20.91 (Hz)$ 

#### 3.5.2 Multisim Design



Figure 3-17: Circuit design with  $R_2 = 47k\Omega$ ,  $C_2 = 1\mu F$  and  $R_3 = 22k\Omega$ ,  $C_1 = 1\mu F$ 



Figure 3-18: Circuit's output of Chanel 1 for 20Hz (67% ON, 33% OFF time)

Time: 20ms/div

From figure 3-14, T taken up 2 squares with t₁ occupied 3/5 square and t₂ occupied 7/5 square so,

$$t_1 = \frac{3 \times T}{10} = 12 \text{ (ms) (ON time)}$$
  
 $t_1 = \frac{7 \times T}{10} = 28 \text{ (ms) (OFF time)}$ 



Figure 3-19: Circuit's output of Chanel 2 for 20Hz (33% ON, 67% OFF)

Time: 20ms/div

From figure 3-14, T taken up 2 squares with t₁ occupied 3/5 square and t₂ occupied 7/5 square so,

$$t_1 = \frac{7 \times T}{10} = 12 \text{ (ms) (ON time)}$$
  
 $t_1 = \frac{3 \times T}{10} = 28 \text{ (ms) (OFF time)}$ 

### 3.5.3 Breadboard Design



Figure 3-20: Breadboard's design for 20 Hz



Figure 3-21: Breadboard's output for 20Hz (Channel 1)

Time: 10ms/div

From figure 3-14, T taken up 4.2 squares with t₁ occupied 3 square and t₂ occupied 1.2 square so,

$$t_1 = \frac{3 \times T}{4.2} = 30.43 \text{ (ms) (ON time)}$$
 $t_1 = \frac{1.2 \times T}{4.2} = 12.17 \text{ (ms) (OFF time)}$ 



Figure 3-22: Breadboard's output for 20Hz (Channel 2)

Time: 10ms/div

From figure 3-14, T taken up 4.2 squares with t1 occupied 1.2 square and t2 occupied 3 square so,

$$t_1 = \frac{1.2 \times T}{4.2} = 12.17 \ (ms) \ (ON \ time)$$
  
 $t_1 = \frac{3 \times T}{4.2} = 30.43 \ (ms) \ (OFF \ time)$ 

### **3.5.4** Result

Theory expected frequency (Hz)	Multisim expected frequency	Breadboard expected frequency
	(Hz) (Channel 1)	(Hz) (Channel 1)
f = 20.91 Hz	f = 24.7 Hz	f = 23.47 Hz
$t_1 = 32.571 \text{ ms}$	$t_1 = 28 \text{ ms}$	$t_1 = 30.43 \text{ ms}$
$t_2 = 15.247 \text{ ms}$	$t_2 = 12 \text{ ms}$	$t_2 = 12.17 \text{ ms}$

Table 3-5: Result for 20 Hz

## 4. CONCLUSION

From the result of all 5 cases:

- All 5 cases have Multisim's result and Breadboard's result nearly the same.
- Although there is a slight big difference when comparing the error of Theory's with Multisim's and Multisim's with Breadboard's, the error is still acceptable.

# **REFERENCES**