Árvores Binárias

Algoritmos e Estruturas de Dados 2 2017-1

Flavio Figueiredo (http://flaviovdf.github.io)

Árvores

Raíz

Folhas

Nós Internos

Pais e Filhos

Descendentes

Ancestrais

Irmãos

Níveis

Caminhos

Árvores

- Utilizadas para gerenciar hierarquias
- Bastante comuns na computação
- Árvore de Decisão
- Compactação
- Busca de prefixos
- Jogos

Propriedade Interessantes

- Todo nó representa uma sub-árvore
- Raiz é o nó
- Recursividade facilita nossa vida!

Árvore Binária

Apenas 2 descendentes imediatos por nó

Árvore n-ária

- n >= 0 descendentes imediatos
- Exemplo: Trie (n\u00e3o veremos agora)

Árvore Binária de Pesquisa/Busca (Binary Search Tree - BST)

- Invariantes:
 - O filho da esquerda é menor ou igual ao nó
 - O filho da direita é maior do que o nó
- Consequências:
 - Todo elemento na esquerda é menor do que o nó
 - Todo elemento na direita é maior do que o nó

TAD

- Vamos focar mais nas funções destacadas
 - Inserir
 - Remover
 - Achar Elemento
- Criar e Free similar aos
 TADs anteriores
- Ver código
 - https://github.com/flaviovdf/AEDS2-2017-1/t
 ree/master/exemplos/arvores

```
#ifndef BST H
#define BST H
typedef struct node {
  int value;
  struct node *leftChild;
  struct node *rightChild;
} node t;
typedef struct {
 node t *root;
} bst t;
bst t *createTree();
void insertValue(bst t *tree, int value);
int hasValue(bst t *tree, int value);
int removeValue(bst t *tree, int value);
void bstFree(bst t *tree);
#endif
                                         17
```

Iniciando a Árvore

```
bst_t
                    *createTree()
   bst_t *tree = (bst_t *) malloc(sizeof(bst_t));
                                                           *root
              (tree == NULL)
      printf("Malloc error! Cannot create tree");
                                         exit(1);
               tree->root
                                            NULL;
                                                           NULL
                        return
                                            tree;
```


Iniciando de um nó raiz (node)

- 1. node->value == x?
 - Achamos o nó!
- 2. node->value < x?
 - Passo para a esquerda
- 3. node -> value < x?
 - Passo para a direita

```
Iniciando de um nó raiz (node)
1. node->value == x?
        Achamos o nó!
2. node->value < x?</pre>
         Passo para a esquerda
3. node->value < x?</pre>
         Passo para a direita
```

```
int hasValue(node_t *node, int value) {
  if (node == NULL)
    return 0;
  if (value == node->value)
    return 1;
  if (value < node->value) {
    return hasValue(node->leftChild, value);
  } else {
    return hasValue(node->rightChild, value);
```


Caso não exista? x=3?

Caso não exista? x=3?

Encontrando nó

- A ideia acima é essencial para o resto das operações
- Como inserir o nó x=3?

Encontrando nó

- A ideia acima é essencial para o resto das operações
- Como inserir o nó x=3?
- Caminhar até o ascendente imediato (pai)
- Inserir

Como inserir x=3.5? 6 **14** *parent *3.5*

- 1. Assumindo que o nó já foi alocado corretamente
 - a. Vocês já devem se acostumar com os mallocs

 Chamada já com novo nó alocado

```
void insertValueRecursive(node t *parent, node t *newNode) {
  //Caminha para esquerda
  if ((newNode->value <= parent->value)) {
    if (parent->leftChild == NULL) {
      parent->leftChild = newNode;
   } else {
      insertValueRecursive(parent->leftChild, newNode);
  //Caminha para direita
  if ((newNode->value > parent->value)) {
    if (parent->rightChild == NULL) {
      parent->rightChild = newNode;
    } else {
      insertValueRecursive(parent->rightChild, newNode);
```

- Chamada já com novo nó alocado
- Insere nó caso encontramos NULL

```
void insertValueRecursive(node t *parent, node t *newNode) {
  //Caminha para esquerda
  if ((newNode->value <= parent->value)) {
    if (parent->leftChild == NULL) {
      parent->leftChild = newNode;
   } else {
      insertValueRecursive(parent->leftChild, newNode);
  //Caminha para direita
  if ((newNode->value > parent->value)) {
    if (parent->rightChild == NULL) {
      parent->rightChild = newNode;
    } else {
      insertValueRecursive(parent->rightChild, newNode);
```

- Chamada já com novo nó alocado
- Insere nó caso encontramos NULL
- 3. Caminhamento

```
void insertValueRecursive(node t *parent, node t *newNode) {
  //Caminha para esquerda
  if ((newNode->value <= parent->value)) {
    if (parent->leftChild == NULL) {
      parent->leftChild = newNode;
    } else {
      insertValueRecursive(parent->leftChild, newNode);
  //Caminha para direita
  if ((newNode->value > parent->value)) {
    if (parent->rightChild == NULL) {
      parent->rightChild = newNode;
    } else {
      insertValueRecursive(parent->rightChild, newNode);
```

Maior -> Direita

insert({3,NULL,NULL},{8,3,10})

Maior -> Direita


```
insert({12,NULL,NULL},{10,NULL,14})
```

insert({12,NULL,NULL},{8,3,10})

insert(Node,Parent)

36

Menor <- Esquerda

insert({12,NULL,NULL},{14,13,NULL})

insert({12,NULL,NULL},{10,NULL,14})

insert({12,NULL,NULL},{8,3,10})

insert(Node,Parent)

37

Menor <- Esquerda (NULL! Achamos o local)


```
insert({12,NULL,NULL},{13,NULL,NULL})
insert({12,NULL,NULL},{14,13,NULL})
insert({12,NULL,NULL},{10,NULL,14})
insert({12,NULL,NULL},{8,3,10})
```

insert(Node,Parent)

38


```
insert({12,NULL,NULL},{13,NULL,NULL})
insert({12,NULL,NULL},{14,13,NULL})
insert({12,NULL,NULL},{10,NULL,14})
insert({12,NULL,NULL},{8,3,10})
insert(Node,Parent)
39
```


insert({12,NULL,NULL},{14,13,NULL})
insert({12,NULL,NULL},{10,NULL,14})
insert({12,NULL,NULL},{8,3,10})

insert(Node,Parent)

40

insert({12,NULL,NULL},{8,3,10})

insert(Node,Parent)

4

insert(Node,Parent)

insert(Node,Parent)

Recursão

- Como mencionar, árvores são "pratos cheio" para recusão
- Podemos fazer inserções sem recursão
 - Todo código recursivo pode ser feito iterativamente
 - o Como?
- Ver exemplo no site
 - https://github.com/flaviovdf/AEDS2-2017-1/tree/master/exemplos/arvores

- Remoção na BST é mais complicado
- Precisamos considerar 3 casos:
 - a. Quando o nó é folha
 - b. Quando o nó tem apenas 1 descendente imediato
 - c. Quando o nó tem 2 descendentes imediatos

- Remoção na BST é mais complicado
- Precisamos considerar 3 casos:
 - a. Quando o nó é folha
 - Simples, free e atualizar ponteiros
 - b. Quando o nó tem apenas 1 descendente imediato
 - Vamos deixar 1 sub-árvore órfã
 - c. Quando o nó tem 2 descendentes imediatos
 - Vamos deixar 2 sub-árvore órfãs

- Remoção na BST é mais complicado
- Precisamos considerar 3 casos:
 - a. Quando o nó é folha
 - Simples, free e atualizar ponteiros
 - b. Quando o nó tem apenas 1 descendente imediato
 - Vamos deixar 1 sub-árvore órfã
 - Parente imediato pode herdar
 - c. Quando o nó tem 2 descendentes imediatos
 - Vamos deixar 2 sub-árvore órfãs

- Remoção na BST é mais complicado
- Precisamos considerar 3 casos:
 - a. Quando o nó é folha
 - Simples, free e atualizar ponteiros
 - b. Quando o nó tem apenas 1 descendente imediato
 - Vamos deixar 1 sub-árvore órfã
 - Parente imediato pode herdar
 - c. Quando o nó tem 2 descendentes imediatos
 - Vamos deixar 2 sub-árvore órfãs]
 - Precisamos de cuidado para manter a invariante


```
//Assumindo que já achamos o nó, o pai e sabemos se é filho
//da esqueda/direita (1).
void removeCaso1(node t *parent, node t *toFree, int 1) {
  //Caso 1: Apenas Free!
  if (toFree->leftChild == NULL \
      && toFree->rightChild == NULL) {
    free(toFree);
   if (1 == 1)
      parent->leftChild = NULL;
    else
      parent->rightChild = NULL;
```

```
//Assumindo que já achamos o nó, o pai e sabemos se é filho
//da esqueda/direita (1).
void removeCaso1(node t *parent, node t *toFree, int 1) {
  //Caso 1: Apenas Free!
  if (toFree->leftChild == NULL \
      && toFree->rightChild == NULL) {
    free(toFree);
   if (1 == 1)
      parent->leftChild = NULL;
    else
      parent->rightChild = NULL;
```

```
//Assumindo que já achamos o nó, o pai e sabemos se é filho
//da esqueda/direita (1).
void removeCaso1(node t *parent, node t *toFree, int 1) {
  //Caso 1: Apenas Free!
  if (toFree->leftChild == NULL \
      && toFree->rightChild == NULL) {
    free(toFree);
    if (1 == 1)
      parent->leftChild = NULL;
                                                                                  NULL
    else
      parent->rightChild = NULL;
```



```
//Assumindo que já achamos o nó, o pai e sabemos se é filho
//da esqueda/direita (1).
void removeCaso2(node t *parent, node t *toFree, int 1) {
 //Caso 2: Quando esquerda é NULL
 if (toFree->leftChild == NULL) {
   if (1 == 1)
      parent->leftChild = toFree->rightChild; //Herda nó D
   else
      parent->rightChild = toFree->rightChild;
   free(toFree);
 //Caso 2: Quando direita é NULL
 if (toFree->rightChild == NULL) {
   if (1 == 1)
      parent->leftChild = toFree->leftChild; //Herda nó L
   else
      parent->rightChild = toFree->leftChild;
   free(toFree);
```

Terceiro Caso

Terceiro Caso: Qual valor pode substituir 8?

Terceiro Caso: Qual valor pode substituir 8?

Olhe para os nós de forma ordenadas 1, 3, 4, 6, 7, 8, 10, 13, 14

Terceiro Caso: 7 ou 10

Olhe para os nós de forma ordenadas 1, 3, 4, 6, **7**, 8, **10**, 13, 14

Terceiro Caso: 7 ou 10

- Os elementos vizinhos quando pensamos em ordem
- Não quebram a invariante
 - o 7 é maior do que 3 e menor do que 10
 - o 10 é maior do que 3 e menor do que 14
- Como procedemos?

Terceiro Caso: 7 ou 10

- Os elementos vizinhos quando pensamos em ordem
- Não quebram a invariante
 - o 7 é maior do que 3 e menor do que 10
 - o 10 é maior do que 3 e menor do que 14
- Como procedemos?
 - o Trocar 8 por um deles

- Trocando 8 com 7
- Vamos trocar o valor!

- Trocando 8 com 7
- Vamos trocar o valor!

- Trocando 8 com 7
- Vamos trocar o valor!
- Remover o antigo 7

- Trocando 8 com 7
- Vamos trocar o valor!
- Remover o antigo 7
 - Caso 1 sem descendentes

- Trocando 8 com 7
- Vamos trocar o valor!
- Remover o antigo 7
 - Caso 1 sem descendentes
- Fazemos uso da função de remove

- Trocando 8 com 7
- Vamos trocar o valor!

- Trocando 8 com 7
- Vamos trocar o valor!
- Remover 10

- Trocando 8 com 7
- Vamos trocar o valor!
- Remover 10
 - o Caso 2
 - 1 descendente

- Trocando 8 com 7
- Vamos trocar o valor!
- Remover 10
 - o Caso 2
 - 1 descendente

- Trocando 8 com 7
- Vamos trocar o valor!
- Remover 10
 - o Caso 2
 - 1 descendente

Como achamos o 7 ou 10?

- Menor elemento da árvore
 - Sempre caminhar para esquerda
- Maior elemento da árvore
 - Sempre caminhar para direita
- 7 é o maior elemento entre os menores do que 8
 - 1 passo para direita
 - Acha menor indo para esquerda
- 10 é o menor elemento entre os maiores do que 8
 - 1 passo para esquerda
 - Acha menor indo para direita

Substituímos e fazemos uso do Caso 1 ou 2

```
void removeCaso3(node_t *toFree) {
  node_t *replacement = findMin(toFree->rightChild);
  toFree->value = replacement->value;
  if (toFree->leftChild == NULL && toFree->rightChild == NULL)
    removeCaso1(replacement);
  else
    removeCaso2(replacement);
}
```

Inserção e Remoção

- Pode ser feito recursivamente ou iterativamente
- Vários pequenos detalhes
 - Cuidar dos NULLs
 - Frees
 - Herança
- Slides mostram a ideia
- Olhar o código exemplo
 - Veja como tem vários ifs, cuidar de tudo
 - Foque no essencial!

Liberando a Árvore Toda

- Podemos reutilizar todo aquele remove que fizemos
- Free no bst_tree
- Simples!
- Podemos usar caminhamentos também
 - Slides futuros

```
void bstFree(bst_t *tree) {
  while(tree->root != NULL)
    //Caso 1, 2 e 3 dentro de 1 remove
    removeValue(tree, tree->root->value);
  free(tree);
}
```

Pior Caso (inserimos na ordem)

Vira uma lista

Custos

- Inserir?
- Remover?
- Achar valor?

Custos: Pior Caso

- Inserir?
 - o O(n)
- Remover?
 - o O(n)
- Achar valor?
 - o O(n)

Custos: Assumindo que a árvore é balanceada

Elementos inseridos de forma uniforme causam balanceamento na média

- Inserir?
 - O(log n)
- Remover?
 - O(log n)
- Achar valor?
 - O(log n)
- Melhor do que a lista para achar valores
- Podemos garantir que a árvore sempre vai ser balanceada
 - Aulas futuras

Caminhamento: Como imprimir os nós?

Diferentes formas de visitar todos os nós

Caminhamento: Como imprimir os nós?

- Diferentes formas de visitar todos os nós
- Central (em ordem, in order)
 - Visitar esquerda
 - Imprimir nó
 - Visitar direita
- Pré ordem (pre order)
 - Imprimir nó
 - Visitar esquerda
 - Visitar direita
- Pós ordem (pre order)
 - Visitar esquerda
 - Visitar direita
 - o Imprimir

Em Ordem

Em Ordem: 1, 3, 4, 6, 7, 8, 10, 13, 14


```
void printInOrder(node_t *node) {
  if (node == NULL) {
    return;
  }
  printInOrder(node->leftChild);
  printf("%d ", node->value);
  printInOrder(node->rightChild);
}
```

Em Ordem

- Essencialmente imprime os nós ordenados
- Como caminhamos para a esquerda até o fim
 - Imprime menor
 - Imprime seguinte
 - 0

Pre Ordem: 8, 3, 1, 6, 4, 7, 10, 14, 13


```
void printPreOrder(node_t *node) {
  if (node == NULL) {
    return;
  }
  printf("%d ", node->value);
  printInOrder(node->leftChild);
  printInOrder(node->rightChild);
}
```

Caminhamento Pré Ordem

Pode ser utilizado para duplicar uma árvore

- Como fazer?
 - Cria uma nova árvore
 - Caminha pré ordem
 - Insere os nós (ao invés de print) na novas
- Também pode usado para expressões resolver expressões

```
void duplicate(bst_t *tree, node_t *node) {
  if (node == NULL) {
    return;
  }
  insertValue(tree, node->value);
  duplicate(node->leftChild);
  duplicate(node->rightChild);
}
```

Resolvendo Expressões Pré Ordem

5 * ((9+8)*4*6 + 7)

Leia o valor do nó

Coloque em uma pilha

Utilize o algoritmo de notação polonesa na pilha

Pos Ordem: 1, 4, 7, 6, 3, 13, 14, 10, 8


```
void printPosOrder(node_t *node) {
  if (node == NULL) {
    return;
  }
  printInOrder(node->leftChild);
  printInOrder(node->rightChild);
  printf("%d ", node->value);
}
```

Caminhamento Pós Ordem

- Pode ser utilizado para liberar a árvore
- Sempre estamos com um nó sem descendentes
- Melhor do que o código anterior

```
void bstFree(node_t *node) {
   if (node == NULL) {
     return;
   }
   bstFree(node->leftChild);
   bstFree(node->rightChild);
   free(node);
}
```

Resolvendo Expressões Pós Ordem

5 * ((9+8)*4*6 + 7)

Leia o valor do nó

Coloque em uma pilha

Utilize o algoritmo de notação polonesa **reversa** na pilha

Caminhamento

• Qual o custo?

Caminhamento

- Qual o custo?
 - o O(n)
 - Visitamos todos os nós

Caminhamento

- Qual o custo?
 - O(n)
 - Visitamos todos os nós
 - Podemos aplicar o teorema mestre também

Teorema Mestre

- $\bullet \quad T(n) = a * T(n/b) + f(n)$
- Se $f(n) = O(n^{\log_b a \varepsilon})$ para uma constante $\varepsilon > 0$ • temos que $T(n) = \Theta(n^{\log_b a})$
- Se $f(n) = \Theta(n^{\log_b a})$, ou seja, $\varepsilon = 0$ • temos que $T(n) = \Theta(n^{\log_b a} \log n)$

• Se $f(n) = \Omega(n^{\log_b a - \varepsilon})$, com $\varepsilon > 0$ e se $a * f(n/b) \le c * f(n/b)$, com c < 1• temos que $T(n) = \Theta(f(n))$

Teorema Mestre

• T(n) = 2 * T(n/2) + O(1) $c = 0, \epsilon = 1$

- $Se f(n) = O(n^{\log_b a \varepsilon})$ para uma constante $\varepsilon > 0$
 - temos que $T(n) = \Theta(n^{\log_b a})$
- $Se f(n) = \Theta(n^{\log_b a})$, ou seja, $\varepsilon = 0$
 - temos que $T(n) = \Theta(n^{\log_b a} \log n)$
- $Se f(n) = \Omega(n^{\log_b a \varepsilon})$, $com \varepsilon > 0$ e se $a * f(n/b) \le c * f(n/b)$, com c < 1
 - \circ temos que $T(n) = \Theta(f(n))$

Notas Finais

- Código aqui são pequenos trechos de um código completo de árvore
- Tentem implementar do 0