CS648A: Randomized Algorithms Last worked out problem

Randomized algorithm are ${f not}$ designed using random ideas

(Random bit-fixing protocol does NOT work)

Recall the bit fixing protocol we discussed for permutation routing on n-hypercube. We showed that this protocol will take $\Omega(2^n/n)$ rounds for the transpose permutation : $ab \to ba$, where a and b are any two binary strings of length n/2 each. Now suppose some one suggests the following randomized algorithm based on any arbitrary random thought: Instead of fixing the bits from left to right, a packet fixes its bits in a uniformly random order independent of other packets. Unfortunately, this randomized protocol will be useless: It can be shown that it will also take $2^{\Omega(n)}/n$ rounds for the transpose permutation. We provide a sketch of it as follows.

We shall bound the packets that pass through 0^n . For this we focus on all those packets that originate from address $a0^{n/2}$ where a is a binary string of length n/2.

1.	Let P be the set of packets with source address $a0^{n/2}$ for any binary string a of length $n/2$. What is $ P $?
	Answer:
2.	Let P_k be the subset of P consisting of those packets whose source address has exactly k 1's. What is $ P_k $?
	Answer:
3.	Consider any packet $p \in P_k$. State the necessary and sufficient condition for the packet p to pass though 0^n while executing the randomized protocol described above.
	Answer:
4.	What is the probability that a packet $p \in P_k$ passes though 0^n ?
	Answer:
5.	What is the expected number of packets from the set P that will pass though 0^n ?
	Answer:
6.	Show that the expected number of packets passing through 0^n will be $2^{\Omega(n)}$.
	Answer: