(Im)Possibility of Symmetric Encryption against Coordinated Algorithm Substitution Attacks and Key Exfiltration

<u>Simone Colombo</u> and Damian Vizàr LATINCRYPT 2025

Theorem 4. Let $\Pi = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be a unique ciphertext symmetric encryption scheme. Let $\widetilde{\Pi} = (\widetilde{\mathcal{K}}, \widetilde{\mathcal{E}}, \widetilde{\mathcal{D}})$ be a subversion of Π that obeys the decryptability condition relative to Π . Let \mathscr{B} be an adversary. Then $\mathbf{Adv}^{\mathrm{srv}}_{\Pi,\widetilde{\Pi}}(\mathscr{B}) = 0$.

Theorem 4. Let $\Pi = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be a unique ciphertext symmetric encryption scheme. Let $\widetilde{\Pi} = (\widetilde{\mathcal{K}}, \widetilde{\mathcal{E}}, \widetilde{\mathcal{D}})$ be a subversion of Π that obeys the decryptability condition relative to Π . Let \mathscr{B} be an adversary. Then $\mathbf{Adv}^{\mathrm{srv}}_{\Pi,\widetilde{\Pi}}(\mathscr{B}) = 0$.

1

Theorem 4. Let $\Pi = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be a unique ciphertext symmetric encryption scheme. Let $\widetilde{\Pi} = (\widetilde{\mathcal{K}}, \widetilde{\mathcal{E}}, \widetilde{\mathcal{D}})$ be a subversion of Π that obeys the decryptability condition relative to Π . Let \mathscr{B} be an adversary. Then $\mathbf{Adv}^{\mathrm{srv}}_{\Pi,\widetilde{\Pi}}(\mathscr{B}) = 0$.

Due to the correctness condition, any unique-ciphertext scheme is **deterministic**.

$$\mathsf{APT} \approx \mathsf{L} \leftarrow \mathsf{Lk}^{\mathsf{RO}}(\mathbf{K}), \text{ where } |\mathsf{L}| \leq \ell < k, \mathbf{K} \in \{0,1\}^k$$

$$\begin{array}{l} \text{Algorithm $\textbf{SE}.\mathsf{Enc^{RO}}(K,M)$} \\ R \leftarrow \{0,1\}^r; \ K \leftarrow \mathsf{KEY^{RO}}(K,R) \\ C \leftarrow \mathsf{SE}.\mathsf{Enc}(K,M) \ ; \ \overline{C} \leftarrow (R,C) \\ \mathsf{Return} \ \overline{C} \\ \end{array} \right. \\ \text{Return \overline{C}} \\ \begin{array}{l} \text{Algorithm $\textbf{SE}.\mathsf{Dec^{RO}}(K,\overline{C})$} \\ K \leftarrow \mathsf{KEY^{RO}}(K,R) \\ M \leftarrow \mathsf{SE}.\mathsf{Dec}(K,C) \\ \mathsf{Return M} \\ \end{array}$$

APT
$$\approx L \leftarrow \text{$Lk^{RO}(\textbf{\textit{K}})$, where } |L| \leq \ell < k, \textbf{\textit{K}} \in \{0,1\}^k$$

$$\begin{array}{l} \text{Algorithm $\textbf{SE}.$Enc}^{\text{RO}}(K,M) \\ \hline R \leftarrow \{0,1\}^r; & K \leftarrow \mathsf{KEY}^{\text{RO}}(K,R) \\ C \leftarrow \mathsf{SE}.\mathsf{Enc}(K,M) \; ; \; \overline{C} \leftarrow (R,C) \\ \text{Return } \overline{C} \\ \end{array} \right. \\ \begin{array}{l} \text{Algorithm $\textbf{SE}.$Dec}^{\text{RO}}(K,\overline{C}) \\ \hline (R,C) \leftarrow \overline{C} \\ K \leftarrow \mathsf{KEY}^{\text{RO}}(K,R) \\ M \leftarrow \mathsf{SE}.\mathsf{Dec}(K,C) \\ \text{Return } M \\ \end{array}$$

Resisting ASAs requires deterministic encryption [BPR14].

Resisting key exfiltration with big keys requires randomized encryption [BKR16].

Resisting ASAs requires deterministic encryption [BPR14].

Resisting key exfiltration with big keys requires randomized encryption [BKR16].

"Whether any defense against ASAs is possible in the big-key setting remains open."

[BKR16]

Outline

- 1 Previous security definitions
- 2 Security model for simultaneous ASAs and key exfiltration: SURV-LIND
- 3 Impossibility: generic attack
- 4 Possibility: big-key encryption with sessions
- **5** Conclusion and future work

Previous security definitions

Surveillance security for ASAs [BPR14]

Game $SURV^{\mathscr{B}}_{\Pi,\tilde{\Pi}}$	Oracle Key(i)	Oracle $Enc(M, A, i)$
$b \leftarrow \$ \{0,1\}$	if $(K_i = \bot)$ then	if $(\mathcal{K}_i = \bot)$ then return \bot
$\tilde{\mathcal{K}} \leftarrow \mathfrak{s} \; \tilde{\mathcal{K}}$	$\mathcal{K}_i \leftarrow \mathfrak{s} \ \mathcal{K}$	$\textbf{if } (b=1) \textbf{ then } (\textit{C},\sigma_i) \leftarrow \$ \ \mathcal{E}(\textit{K}_i,\textit{M},\textit{A},\sigma_i)$
$b' \leftarrow \mathscr{B}^{\mathrm{Key},\mathrm{Enc}}(\tilde{K})$	$\sigma_i \leftarrow \varepsilon$	else $(C, \sigma_i) \leftarrow $ \$ $\tilde{\mathcal{E}}(\tilde{K}, K_i, M, A, \sigma_i, i)$
return $(b = b')$	return $arepsilon$	return C

Adversary ${\mathscr B}$ with master key \tilde{K} must distinguish between correct ${\mathcal E}$ and subverted $\tilde{{\mathcal E}}.$

Another SURV definition [this work]

Game $SURV^{\mathscr{B}}_{\Pi,\tilde{\Pi}}$	Oracle Key(i)	Oracle $Enc(M, A, i)$
$b \leftarrow \$ \{0,1\}$	if $(K_i = \bot)$ then	$\overline{if}\; (K_i = \bot) \; then \; return \; \bot$
$\tilde{\mathcal{K}} \leftarrow \mathfrak{s} \; \tilde{\mathcal{K}}$	$\mathcal{K}_i \leftarrow \mathfrak{s} \ \mathcal{K}$	$(C_0, \sigma_i) \leftarrow \$ \tilde{\mathcal{E}}(\tilde{K}, K_i, M, A, \sigma_i, i)$
$b' \leftarrow \mathscr{B}^{\mathrm{Key},\mathrm{Enc}}(\tilde{K})$	$\sigma_i \leftarrow \varepsilon$	$C_1 \leftarrow \$ \{0,1\}^{ C_0 }$
return $(b = b')$	return $arepsilon$	return C_b

 ${\mathscr B}$ with ${\tilde K}$ must distinguish between random C_1 and C_0 that the subverted ${\tilde {\mathcal E}}$ returns.

Another SURV definition [this work]

Game $SURV^{\mathscr{B}}_{\Pi,\tilde{\Pi}}$	Oracle Key(i)	Oracle $Enc(M, A, i)$
$b \leftarrow \$ \{0,1\}$	if $(K_i = \bot)$ then	$\overline{if}\; (K_i = \bot) \; then \; return \; \bot$
$\tilde{\mathcal{K}} \leftarrow \mathfrak{s} \; \tilde{\mathcal{K}}$	$K_i \leftarrow \mathfrak{s} \mathcal{K}$	$(C_0, \sigma_i) \leftarrow \$ \tilde{\mathcal{E}}(\tilde{K}, K_i, M, A, \sigma_i, i)$
$b' \leftarrow \mathscr{B}^{ ext{Key,Enc}}(ilde{K})$	$\sigma_i \leftarrow \varepsilon$	$C_1 \leftarrow \$ \{0,1\}^{ C_0 }$
$\mathbf{return}\ (b=b')$	return ε	return C_b

 \mathscr{B} with \widetilde{K} must distinguish between random C_1 and C_0 that the subverted $\widetilde{\mathcal{E}}$ returns. We prove that SURV\$ $\stackrel{\mathsf{IND\$-CPA}}{\Longleftrightarrow}$ SURV.

Indistinguishability in presence of leakage for key exfiltration [BKR16]

Classic left-or-right IND-CPA game, taking leakage $L \leftarrow \mathsf{Lk}^{\mathsf{RO}}(\mathbf{K})$ into account.

Another LIND definition [this work]

$$\begin{array}{ll} \text{Game LIND}\$_{\Pi}^{\mathscr{B}} & \text{Oracle Enc}(\textit{M}) \\ \hline (\mathsf{Lk},\sigma) \leftarrow \mathscr{B}^{\mathsf{RO}} & \hline & C_0 \leftarrow \$ \, \mathcal{E}^{\mathsf{RO}}(\textit{K},\textit{M}) \\ \textit{K} \leftarrow \$ \, \{0,1\}^k & \hline & C_1 \leftarrow \$ \, \{0,1\}^{|C_0|} \\ \textit{L} \leftarrow \mathsf{Lk}^{\mathsf{RO}}(\textit{K}) & \text{return } C_b \\ \textit{b} \leftarrow \$ \, \{0,1\} \\ \textit{b'} \leftarrow \mathscr{B}^{\mathsf{Enc},\mathsf{RO}}(\textit{L},\sigma) \\ \text{return } (\textit{b} = \textit{b'}) \\ \end{array}$$

Classic IND\$-CPA game, taking leakage $L \leftarrow \mathsf{Lk}^{\mathsf{RO}}(\mathbfilde{K})$ into account.

Another LIND definition [this work]

Classic IND\$-CPA game, taking leakage $L \leftarrow \mathsf{Lk}^{\mathsf{RO}}(\mathbfilde{K})$ into account.

We show that LIND $\$ \implies LIND$.

Security model for simultaneous ASAs and KE

$Game\ SURV\text{-}LIND^{\mathscr{B}}_{\Pi,\tilde{\Pi}}$	Oracle $\mathrm{Enc}(M,A,i)$	Oracle Leak(i)
$\widetilde{\mathcal{K}} \leftarrow \mathfrak{s} \widetilde{\mathcal{K}}$	$\overline{if\; (\pmb{\mathcal{K}}_i = \bot) \; then \; return \; \bot}$	if $(K_i = \bot)$ then
$(Lk,\sigma) \leftarrow \mathscr{B}^{RO}(ilde{K})$	$(C_0, \sigma_i) \leftarrow \mathfrak{\tilde{E}}^{RO}(\tilde{K}, \mathbf{K}_i, M, A, \sigma_i, i)$	$\boldsymbol{K}_i \leftarrow \$ \{0,1\}^k$
$b \leftarrow \$ \{0,1\}$	$C_1 \leftarrow \$ \{0,1\}^{ C_0 }$	$\sigma_i \leftarrow \varepsilon$
$b' \leftarrow \mathscr{B}^{ ext{Leak,Enc,RO}}(ilde{\mathcal{K}},\sigma)$	return C_b	$L \leftarrow $ \$ $Lk^{RO}(\mathbf{K}_i)$
$ \mathbf{return} \; (b = b') $		return L
		return \perp

As in SURV\$ (equiv. to SURV) distinguish between random C_1 and C_0 from $\tilde{\mathcal{E}}$, with leakage $L \leftarrow Lk^{RO}(K)$ as in LIND\$ (equiv. to LIND) through LEAK oracle.

$$\begin{array}{lll} & \operatorname{Game} \ \operatorname{SURV-LIND}_{\Pi,\tilde{\Pi}}^{\mathscr{B}} & \operatorname{Oracle} \ \operatorname{Enc}(M,A,i) \\ & \widetilde{K} \leftarrow \$ \ \widetilde{K} & \operatorname{if} \ (\textbf{\textit{K}}_i = \bot) \ \operatorname{then} \ \operatorname{return} \ \bot & \operatorname{if} \ (\textbf{\textit{K}}_i = \bot) \ \operatorname{then} \\ & (\operatorname{Lk},\sigma) \leftarrow \mathscr{B}^{\operatorname{RO}}(\tilde{K}) & (C_0,\sigma_i) \leftarrow \$ \ \widetilde{\mathcal{E}}^{\operatorname{RO}}(\tilde{K},\textbf{\textit{K}}_i,M,A,\sigma_i,i) & \textbf{\textit{K}}_i \leftarrow \$ \ \{0,1\}^k \\ & b \leftarrow \$ \ \{0,1\} & C_1 \leftarrow \$ \ \{0,1\}^{|C_0|} & \sigma_i \leftarrow \varepsilon \\ & b' \leftarrow \mathscr{B}^{\operatorname{LEAK},\operatorname{Enc},\operatorname{RO}}(\tilde{K},\sigma) & \operatorname{return} \ C_b & L \leftarrow \$ \ \operatorname{Lk}^{\operatorname{RO}}(\textbf{\textit{K}}_i) \\ & \operatorname{return} \ L & \operatorname{return} \ L & \end{array}$$

As in SURV\$ (equiv. to SURV) distinguish between random C_1 and C_0 from $\tilde{\mathcal{E}}$, with leakage $L \leftarrow Lk^{RO}(K)$ as in LIND\$ (equiv. to LIND) through Leak oracle.

Game SURV-LIND $_{\Pi,\tilde{\Pi}}^{\mathscr{B}}$	Oracle $Enc(M, A, i)$	Oracle Leak (i)
$\tilde{\mathcal{K}} \leftarrow \$ \tilde{\mathcal{K}}$	if $(K_i = \bot)$ then return \bot	if $(K_i = \bot)$ then
$(Lk,\sigma) \leftarrow \mathscr{B}^{RO}(\tilde{K})$	$(C_0, \sigma_i) \leftarrow \mathfrak{\tilde{E}}^{RO}(\tilde{K}, \boldsymbol{K}_i, M, A, \sigma_i, i)$	$\boldsymbol{K}_i \leftarrow \$ \{0,1\}^k$
$b \leftarrow \$ \{0,1\}$	$C_1 \leftarrow \$ \{0,1\}^{ C_0 }$	$\sigma_i \leftarrow \varepsilon$
$b' \leftarrow \mathscr{B}^{ ext{Leak,Enc,RO}}(ilde{K},\sigma)$	return C_b	$L \leftarrow $ \$ $Lk^{RO}(\mathbf{K}_i)$
return $(b = b')$		return L
		return \perp

As in SURV\$ (equiv. to SURV) distinguish between random C_1 and C_0 from $\tilde{\mathcal{E}}$, with leakage $L \leftarrow$ \$ Lk^{RO}(\boldsymbol{K}) as in LIND\$ (equiv. to LIND) through LEAK oracle.

We show that SURV-LIND \Rightarrow LIND\$ and SURV-LIND \Rightarrow SURV\$.

Summary of security notions

Solid: proved. Dashed: by transitivity.

Impossibility: generic attack

Generic attack: leakage function

Algorithm
$$\mathsf{Lk}^{\mathsf{RO}}_{i,\tilde{K},M}(\mathbf{K}_i)$$

state management

 $r \leftarrow \mathsf{RO}(\langle i, \tilde{K}, 0 \rangle, |r|)$
 $(C, \sigma') \leftarrow \mathcal{E}^{\mathsf{RO}}(\mathbf{K}_i, M, \varepsilon, \sigma; r)$

return $\mathsf{RO}(\langle C \rangle, \ell)$

Returns the ℓ -bits "hash" of the ciphertext from the encryption of M with coins r.

Generic attack: subversion

Algorithm
$$\tilde{\mathcal{E}}^{\text{RO}}(\tilde{K}, \mathbf{K}_i, M, A, \sigma, i)$$

state management where σ parses as $\tilde{\sigma}, \bar{\sigma}$
 $r \leftarrow \text{RO}(\langle i, \tilde{K}, \tilde{\sigma} \rangle, |r|)$
 $(C, \bar{\sigma}) \leftarrow \mathcal{E}^{\text{RO}}(\mathbf{K}_i, M, A, \sigma; r)$

return $C, \langle \tilde{\sigma}, \bar{\sigma} \rangle$

Returns the ciphertext of M under the same coins r used by the leakage function.

Generic attack

Algorithm $\mathscr{B}_{drnd}(\tilde{K}, au)$	Algorithm $\tilde{\boldsymbol{\mathcal{E}}}^{RO}(\tilde{K}, \boldsymbol{K}_i, M, A, \sigma, i)$
$\overline{ ext{if } (au=ot) ext{ then}}$	$/\!\!/$ state management where σ parses as $ ilde{\sigma}, ar{\sigma}$
$M \leftarrow \$ \{0,1\}^{ u}$	$r \leftarrow RO(\langle i, ilde{\mathcal{K}}, ilde{\sigma} angle, r)$
return $(Lk_{i,\tilde{K},M},M)$	$(C,\bar{\sigma}) \leftarrow \mathcal{E}^{RO}(\mathbf{K}_i, M, A, \sigma; r)$
else	return $C,\langle ilde{\sigma},ar{\sigma} angle$
$M \leftarrow \tau$	
$i \leftarrow $ \$ \mathcal{I} ; $A \leftarrow \varepsilon$	Algorithm $Lk^{RO}_{i, \widetilde{K}, M}(oldsymbol{K}_i)$
$L \leftarrow \text{Leak}(i)$	// state management
$C \leftarrow \text{Enc}(M, A, i)$	$r \leftarrow RO(\langle i, \tilde{K}, 0 \rangle, r)$
$b' \leftarrow (L \neq RO(\langle C \rangle, \ell))$	$(C, \sigma') \leftarrow \mathcal{E}^{RO}(K_i, M, \varepsilon, \sigma; r)$
return b'	return $RO(\langle C \rangle, \ell)$

Generic attack: informal summary

The subversion's control of random coins lets the leakage precompute the ciphertext.

Possibility: big-key encryption with sessions

Motivation

Problem: ASA \Longrightarrow force usage of predefined coins KE \Longrightarrow leakage can precompute ciphertext. \Longrightarrow complete control.

Motivation

Problem: ASA \implies force usage of predefined coins

 $\mathsf{KE} \implies \mathsf{leakage} \ \mathsf{can} \ \mathsf{precompute} \ \mathsf{ciphertext}.$

 \implies complete control.

Solution: Secure randomness generation.

Game $RESIST^{\mathscr{B}}_{\Pi,\tilde{\Pi}}$	Oracle $Enc(M, A, i)$	Proc. Generate()
$\overrightarrow{\mathbf{K}}_i, \sigma_i \leftarrow \bot$ everywhere	if $(\sigma_i = \bot)$ then return \bot	$R \leftarrow \mathcal{R}$
$ ilde{\mathcal{K}} \leftarrow $ \$ $ ilde{\mathcal{K}}$	$C_0, \sigma_i \leftarrow $ \$ $\tilde{\mathcal{E}}$.Enc ^{RO} $(\tilde{K}, \mathbf{K}_i, M, A, \sigma_i, i)$	return R
$(Lk, au) \leftarrow \$ \mathscr{B}^{RO}(ilde{\mathcal{K}})$	$C_1 \leftarrow \$ \{0,1\}^{ C_0 }$	
$b \leftarrow \$ \{0,1\}$	return C_b	
$b' \leftarrow \mathcal{B}^{\mathrm{Leak},\mathrm{Init},\mathrm{Enc},RO}(ilde{\mathcal{K}}, au)$	Oracle Init(i)	
return $(b = b')$	$\overline{if\; (oldsymbol{\mathcal{K}}_i = oldsymbol{\perp}) \; then\; return\; oldsymbol{\perp}}$	
Oracle LEAK(i)	$R \leftarrow $ \$ Generate()	
if $(K_i \neq \bot)$ then return \bot	if $R = \bot$ then abort	
$\mathbf{K}_i \leftarrow \mathfrak{K}; \ L \leftarrow \mathfrak{k}^{RO}(\mathbf{K}_i)$	$\sigma_i \leftarrow \$ \tilde{\mathcal{E}}.Init^{RO}(\tilde{K}, \mathbf{K}_i, R, \sigma_i, i)$	
return L	return R	

$Game\;RESIST^{\mathscr{B}}_{\Pi,\tilde{\Pi}}$	Oracle $Enc(M, A, i)$	Proc. Generate()
$\overrightarrow{\mathbf{K}}_i, \sigma_i \leftarrow \bot$ everywhere	$ \overline{if \ (\sigma_i = \bot) \ then \ return \ \bot } $	$R \leftarrow \mathcal{R}$
$\tilde{\mathcal{K}} \leftarrow \$ \ \tilde{\mathcal{K}}$	$C_0, \sigma_i \leftarrow $ \$ $\tilde{\mathcal{E}}$.Enc ^{RO} $(\tilde{K}, \mathbf{K}_i, M, A, \sigma_i, i)$	return R
$(Lk, au) \leftarrow \$ \mathscr{B}^{RO}(ilde{\mathcal{K}})$	$C_1 \leftarrow \$ \{0,1\}^{ C_0 }$	
$b \leftarrow \$ \{0,1\}$	return C_b	
$b' \leftarrow \mathcal{B}^{\mathrm{Leak},\mathrm{Init},\mathrm{Enc},RO}(ilde{\mathcal{K}}, au)$	Oracle Init(i)	
return $(b = b')$	$\overline{if\; (oldsymbol{\mathcal{K}}_i = oldsymbol{\perp}) \; then \; return \; oldsymbol{\perp}}$	
Oracle Leak(i)	$R \leftarrow $ \$ Generate()	
if $(K_i \neq \bot)$ then return \bot	if $R = \bot$ then abort	
$\mathbf{K}_i \leftarrow \mathfrak{K}; \ L \leftarrow \mathfrak{k}^{RO}(\mathbf{K}_i)$	$\sigma_i \leftarrow \$ \tilde{\mathcal{E}}.Init^{RO}(\tilde{K}, \mathbf{K}_i, R, \sigma_i, i)$	
return L	return R	

$Game\;RESIST^{\mathscr{B}}_{\Pi,\tilde{\Pi}}$	Oracle $Enc(M, A, i)$	Proc. Generate()
$\overrightarrow{\mathbf{K}}_i, \sigma_i \leftarrow \bot$ everywhere	if $(\sigma_i = \bot)$ then return \bot	$R \leftarrow \mathcal{R}$
$\tilde{\mathcal{K}} \leftarrow \$ \ \tilde{\mathcal{K}}$	$C_0, \sigma_i \leftarrow $ \$ $\tilde{\mathcal{E}}$.Enc ^{RO} $(\tilde{K}, \mathbf{K}_i, M, A, \sigma_i, i)$	return R
$(Lk, au) \leftarrow \$ \mathscr{B}^{RO}(ilde{\mathcal{K}})$	$C_1 \leftarrow \$ \{0,1\}^{ C_0 }$	
$b \leftarrow \$ \{0,1\}$	return C_b	
$b' \leftarrow \mathscr{B}^{\mathrm{Leak},\mathrm{Init},\mathrm{Enc},RO}(ilde{\mathcal{K}}, au)$	Oracle Init(i)	
return $(b = b')$	$if\; (\pmb{K}_i = \bot) \; then \; return \; \bot$	
Oracle Leak(i)	$R \leftarrow $ \$ Generate()	
if $(K_i \neq \bot)$ then return \bot	if $R = \bot$ then abort	
$K_i \leftarrow $ \$ K ; $L \leftarrow $ \$ $Lk^{RO}(K_i)$	$\sigma_i \leftarrow \$ \tilde{\mathcal{E}}. Init^{RO} (\tilde{K}, oldsymbol{K}_i, R, \sigma_i, i)$	
return L	return R	

Game $RESIST^{\mathscr{B}}_{\Pi,\tilde{\Pi}}$	Oracle $Enc(M, A, i)$	Proc. Generate()
$\overrightarrow{\mathbf{K}}_i, \sigma_i \leftarrow \bot$ everywhere	if $(\sigma_i = \bot)$ then return \bot	$R \leftarrow \mathcal{R}$
$\tilde{\mathcal{K}} \leftarrow \$ \ \tilde{\mathcal{K}}$	$C_0, \sigma_i \leftarrow $ \$ $\tilde{\mathcal{E}}$.Enc ^{RO} $(\tilde{K}, \mathbf{K}_i, M, A, \sigma_i, i)$	return R
$(Lk, au) \leftarrow \$ \mathscr{B}^{RO}(ilde{\mathcal{K}})$	$C_1 \leftarrow \$ \{0,1\}^{ C_0 }$	
$b \leftarrow \$ \{0,1\}$	return C_b	
$b' \leftarrow \mathcal{B}^{\mathrm{Leak},\mathrm{Init},\mathrm{Enc},RO}(ilde{\mathcal{K}}, au)$	Oracle Init(i)	
return $(b = b')$	if $(K_i = \bot)$ then return \bot	
Oracle LEAK(i)	$R \leftarrow $ \$ GENERATE()	
if $(K_i \neq \bot)$ then return \bot	if $R = \bot$ then abort	
$\mathbf{K}_i \leftarrow \mathfrak{K}; \ L \leftarrow \mathfrak{k}^{RO}(\mathbf{K}_i)$	$\sigma_i \leftarrow \$ \ ilde{\mathcal{E}}. Init^{RO} (ilde{K}, extbf{\textit{K}}_i, R, \sigma_i, i)$	
return L	return R	

Game $RESIST^{\mathscr{B}}_{\Pi,\tilde{\Pi}}$	Oracle $Enc(M, A, i)$	Proc. Generate()
$\overrightarrow{\mathbf{K}}_i, \sigma_i \leftarrow \bot$ everywhere	if $(\sigma_i = \bot)$ then return \bot	$R \leftarrow \mathcal{R}$
$ ilde{\mathcal{K}} \leftarrow \mathfrak{s} ilde{\mathcal{K}}$	$C_0, \sigma_i \leftarrow \$ \tilde{\mathcal{E}}.Enc^{RO}(\tilde{K}, \mathbf{K}_i, M, A, \sigma_i, i)$	return R
$(Lk, au) \leftarrow \$ \mathscr{B}^{RO}(ilde{K})$	$C_1 \leftarrow \$ \{0,1\}^{ C_0 }$	
$b \leftarrow \$ \{0,1\}$	return C_b	
$b' \leftarrow \mathscr{B}^{\mathrm{Leak},\mathrm{Init},\mathrm{Enc},RO}(ilde{\mathcal{K}}, au)$	Oracle Init(i)	
return $(b = b')$	if $(K_i = \bot)$ then return \bot	
Oracle LEAK(i)	$R \leftarrow $ \$ GENERATE()	
if $(K_i \neq \bot)$ then return \bot	if $R = \bot$ then abort	
$\mathbf{K}_i \leftarrow \mathfrak{K}; \ L \leftarrow \mathfrak{k}^{RO}(\mathbf{K}_i)$	$\sigma_i \leftarrow \$ \ ilde{\mathcal{E}}. Init^{RO} (ilde{K}, extbf{\textit{K}}_i, R, \sigma_i, i)$	
return L	return R	

Big Brother is defeated

Theorem

Let $\Pi = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be an encryption scheme with unique ciphertexts and $\mathcal{K} = \{0,1\}^{\kappa}$. Let k, P, h be positive integers. Let $\Pi = \mathsf{SES}[\Pi, k, P]$ and let $\tilde{\Pi} = (\tilde{\mathcal{K}}, \tilde{\boldsymbol{\mathcal{E}}}, \tilde{\mathcal{D}})$ be a subversion of Π that meets the decryptability condition. Let \mathscr{B} be an adversary. Then

$$\mathbf{Adv}^{\text{resist}}_{\Pi,\tilde{\Pi},h,p,\ell}(\mathscr{B}) \leq \Delta_1 + \Delta_2 + \Delta_3,$$

with
$$\Delta_1 = 0$$
, $\Delta_2 = 2 \cdot q_K \cdot \mathbf{Adv}_{\mathsf{XKEY}}^{\mathsf{ukey}}(\mathscr{A})$, $\Delta_3 = 2 \cdot q_I \cdot \mathbf{Adv}_{\mathsf{\Pi}}^{\mathsf{ind\$}}(\mathscr{A}')$.

We show how to instantiate $\operatorname{Generate}$ with the unicorn protocol [LW17]:

We show how to instantiate $\operatorname{Generate}$ with the unicorn protocol [LW17]:

provably uncontestable randomness generation;

We show how to instantiate $\operatorname{GENERATE}$ with the unicorn protocol [LW17]:

- provably uncontestable randomness generation;
- interactive protocol for joint random sampling by any number of parties;

We show how to instantiate $\operatorname{GENERATE}$ with the unicorn protocol [LW17]:

- provably uncontestable randomness generation;
- interactive protocol for joint random sampling by any number of parties;
- each participant can verify that no tampering occurred, without trusting others.

We show how to instantiate $\operatorname{GENERATE}$ with the unicorn protocol [LW17]:

- provably uncontestable randomness generation;
- interactive protocol for joint random sampling by any number of parties;
- each participant can verify that no tampering occurred, without trusting others.

We prove security of our construction with unicorn, by bounding Adv_{XKEY}.

Coordinated ASAs and key exfiltration attacks break standalone symmetric encryption: relying on secure external randomness restores security against both attack vectors.

Coordinated ASAs and key exfiltration attacks break standalone symmetric encryption: relying on secure external randomness restores security against both attack vectors.

Coordinated ASAs and key exfiltration attacks break standalone symmetric encryption: relying on secure external randomness restores security against both attack vectors.

Future work:

more realistic leakage models;

Coordinated ASAs and key exfiltration attacks break standalone symmetric encryption: relying on secure external randomness restores security against both attack vectors.

- more realistic leakage models;
- relaxing decryptability for stronger subversions;

Coordinated ASAs and key exfiltration attacks break standalone symmetric encryption: relying on secure external randomness restores security against both attack vectors.

- more realistic leakage models;
- relaxing decryptability for stronger subversions;
- faster sources of secure randomness (VDF-based or distributed random beacons);

Coordinated ASAs and key exfiltration attacks break standalone symmetric encryption: relying on secure external randomness restores security against both attack vectors.

- more realistic leakage models;
- relaxing decryptability for stronger subversions;
- faster sources of secure randomness (VDF-based or distributed random beacons);
- consider advantages of secure randomness more generally.

References i

Mihir Bellare, Daniel Kane, and Phillip Rogaway.

Big-key symmetric encryption: Resisting key exfiltration.

In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 373-402. Springer, Berlin, Heidelberg, August 2016.

Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway.

Security of symmetric encryption against mass surveillance.

In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I. volume 8616 of LNCS, pages 1–19. Springer, Berlin, Heidelberg, August 2014.

Arjen K. Lenstra and Benjamin Wesolowski.

Trustworthy public randomness with sloth, unicorn, and trx.

Int. J. Appl. Cryptogr., 3(4):330–343, 2017.