ปัญหา <u>ทำเลร้าน 2</u> (Location2) [เวลาคำนวณ 1 วินาที, หน่วยความจำ **3 MB**]

ร้านคอมพิวเตอร์ Advoce ต้องการขยายฐานลูกค้าไปยังเมืองใหม่ โดยเมืองดังกล่าวมีการวางผังเมืองเป็นพื้นที่ \vec{a} เหลี่ยมย่อยจำนวน $M \times N$ พื้นที่ (M แถว N หลัก) และจากการสำรวจสำมะโนประชากรทำให้ทราบจำนวน ประชากรในแต่ละพื้นที่ (ดูภาพประกอบด้านล่าง)

เนื่องจากร้าน Advoce ต้องการเปิดศูนย์บริการลูกค้าเพียงร้านเดียวในเมืองนี้ ยิ่งไปกว่านั้นพื้นที่บริการที่ ร้านให้บริการลูกค้าได้จะครอบคลุมบริเวณที่ประกอบด้วยสี่เหลี่ยมย่อยจำนวน $K \times K$ พื้นที่ (K แถว K หลัก) เท่านั้น ทางร้านจึงพยายามหาพื้นที่บริการที่ดีที่สุด ซึ่งในที่นี้หมายถึงพื้นที่บริการที่มีประชากรรวมกันมากที่สุด

5	9	2	9	1	2	8	9	1	6
9	1	3	9	8	4	2	1	5	7
2	7	9	3	8	5	2	7	6	8
1	6	2	1	7	7	1	9	4	1
8	5	2	3	9	8	5	6	3	3

ภาพประกอบตัวอย่างใจทย์ แสดงผลการหาทำเลตั้งศูนย์บริการลูกค้าในพื้นที่ขนาด 2×2 (K = 2) ของผัง เมืองขนาด 5×10 ในที่นี้บริเวณที่ถูกเน้นคือพื้นที่บริการที่ดีที่สุด

จงเขียนโปรแกรมที่มีประสิทธิภาพในการหาจำนวนประชากรรวมในทำเลพื้นที่บริการที่ดีที่สุด

ข้อมูลนำเข้า

- 1. บรรทัดแรกเป็นเลขจำนวนเต็มบวกสองตัวบอกจำนวนแถว (M) และจำนวนหลัก (N) ตามลำดับ โดยที่ $2 \le M, N \le 1,000$
- 2. บรรทัดที่สองระบุขนาดพื้นที่บริการของร้าน (K) โดยที่ 0 < K < M และ 0 < K < N และ K <= 300
- 3. บรรทัดที่สามถึง M+2 ระบุจำนวนประชากรในแถวที่ 1 ถึง M ตามลำดับ ข้อมูลแต่ละบรรทัด ประกอบด้วยตัวเลขจำนวนเต็มบวก N จำนวน ซึ่งระบุจำนวนประชากรของพื้นที่สี่เหลี่ยมย่อย N หลัก เรียงจากซ้ายไปขวาในแถวนั้น ๆ แต่ละจำนวนถูกคั่นด้วยช่องว่าง โดยประชากรในแต่ละพื้นที่ สี่เหลี่ยมย่อยมีจำนวนไม่เกิน 2,000 คน

ผลลัพธ์

จำนวนประชากรภายในพื้นที่บริการที่ดีที่สุด ตามด้วยจำนวนพื้นที่ที่แตกต่างกันที่มีจำนวนประชากรมากที่สุด (พื้นที่ 2 อันที่แตกต่างกันเพียงเล็กน้อยแม้แต่ช่องเดียวก็ให้นับเป็นพื้นที่ใหม่อีกอันในคำตอบนี้)

หมายเหตุ ในข้อมูลเข้ามีอยู่ 40% ที่ M, N มีค่าไม่เกิน 100

ตัวอย่างข้อมูลเข้าอยู่ในหน้าถัดไป

ตัวอย่างที่ 1

ข้อ	າມູຄ	นำเ	ข้า							ข้อมูลส่งออก
5	1()								31 1
2										
5	9	2	9	1	2	8	9	1	6	
9	1	3	9	8	4	2	1	5	7	
2	7	9	3	8	5	2	7	6	8	
1	6	2	1	7	7	1	9	4	1	
8	5	2	3	9	8	5	6	3	3	

ตัวอย่างที่ 2

ข้อมูลนำเข้า	ข้อมูลส่งออก
6 4	55 2
3	
7 8 5 1	
0 3 5 2	
3 3 2 9	
9 7 8 9	
4 3 5 9	
8 6 5 2	

ตัวอย่าง 3

ข้อมูลนำเข้า	ข้อมูลส่งออก
6 4	9 8
3	
1 1 1 1	
1 1 1 1	
1 1 1 1	
1 1 1 1	
1 1 1 1	
1 1 1 1	