Ciąg różnicowy

. Dostępna pamięć: 64 MB.

Bartek dostał na urodziny ciąg liczb całkowitych x_1, x_2, \ldots, x_n . Oznaczył go przez A_0 i zaczął z niego tworzyć nowe ciągi. Ciąg A_1 tworzy biorąc różnice wszystkich sąsiednich par elementów, czyli $A_1 = (x_2 - x_1, x_3 - x_2, \ldots, x_n - x_{n-1})$. Ciąg A_2 tworzy podobnie, tylko bierze różnice elementów ciągu A_1 zamiast A_0 . Analogicznie tworzy wszystkie ciągi aż do A_{n-1} . Zadanie polega na wypisaniu wszystkich pierwszych elementów ciągów $A_0, A_1, \ldots, A_{n-1}$.

Wejście

W pierwszym wierszu standardowego wejścia znajduje się jedna liczba całkowita n ($1 \le n \le 50$). W drugim wierszu znajduje się ciąg x_1, x_2, \ldots, x_n liczb z przedziału [-100; 100].

Wyjście

W pierwszym wierszu standardowego wyjścia należy wypisać n liczb całkowitych – kolejno pierwszy wyraz A_0 , pierwszy wyraz A_1 i tak aż do A_{n-1} .

Przykłady

Wejście:	Wejście:	Wejście:	
4	5	4	
1 2 4 8	1 -2 4 3 0	4 3 2 1	
Wyjście:	Wyjście:	Wyjście:	
1 1 1 1	1 -3 9 -16 21	4 -1 0 0	

Wyjaśnienie do II przykładu:

Kolejne ciągi jakie uzyskuje Bartek to:

$$A_0 = (1, -2, 4, 3, 0)$$

$$A_1 = (-3, 6, -1, -3)$$

$$A_2 = (9, -7, -2)$$

$$A_3 = (-16, 5)$$

$$A_4 = (21)$$

Ciąg różnicowy

Człowiek-najlepsza inwestycja

