discrete time algebraic riccati equation

LQR problem

discrete-time system:

$$x_{t+1} = Ax_t + Bu_t, x_0 = x^{init}$$

problem: choose u_0, u_1, \dots so that:

- x_0, x_1, \dots is 'small', i.e. we get good regulation or control
- u_0, u_1, \dots is 'small', using small input effort or actuator authority
- there are usually competing objectives, e.g. a large u can drive x to zero fast
- LQR theory addresses this question

we define quadratic cost function:

$$J(U) = \sum_{\tau=0}^{N-1} (x_{\tau}^T Q x_{\tau} + u_{\tau}^T R u_{\tau}) + x_N^T Q_f x_N$$

where $U=(u_0,...,u_{N-1})$ and $Q=Q^T\geq 0, Q_f=Q_f^T\geq 0, R=R^T>0$ are given state cost, final state cost, and input cost matrices. Later, we'll see why we require R.0.

- N is called time horizon
- first term measures state deviation
- second term measures input size or actuator authority
- last term measures final state deviation

Let us consider a simpler scalar example,

$$J = \frac{1}{2} \int_0^\infty (qx^2 + ru^2) dt$$

- the factor 1/2 is introduced for numerical convenience.
- the weighing factors q and r express the relative importance of keeping x and u near zero.
- if we place more importance on x, then we select q to be large relative to r. In this case, the state x will converge to 0 faster, but the control effort will be bigger, and energy cost higher.
- If we care more about the energy cost rather than the response speed, then we should set higher r.

• Although we are interested in minimizing J, the actual value of J is usually not of interest. This also means that we can set either q or r to unity for convenience because it is their relative weight that is important.

it turns out that feedback-control law that minimizes J is a linear state feedback

$$u = -Kx$$

Assume a simple plant, and r = 1

$$\dot{x} = x + u$$

$$J = \frac{1}{2} \int_0^\infty (qx^2 + u^2) dt$$

plug in the control law, we have the closed loop system:

$$\dot{x} = x - Kx = -(K - 1)x$$

and for constant K,

$$x = x(0)e^{-(K-1)t}$$

substituting x(t) into J gives,

$$J = \frac{1}{2}(q + K^2)x^2(0)\int_0^\infty e^{-2(K-1)t}dt = \frac{q + K^2}{4(K-1)}x^2(0)$$

now we can compute $\frac{dJ}{dK}=0$ we will have $K^2-2K-q=0$. its roots are $K_1=1+\sqrt{1+q}, K_2=1-\sqrt{1+q}$. To ensure the system to be stable we require K > 1. K_1 will satisfy this condi-

Lets have more insights by considering other sample problems.

1. Consider a state space plant:

$$\dot{x}_1 = x_1$$

$$\dot{x}_2 = x_2 + u$$

the performance index:

$$J = \frac{1}{2} \int_0^\infty x_1^2 + u^2 dt$$

no minimum for J will exist because the state variable x_1 is uncontrollable and of an unstable mode. The response of x_1 will be $x_1(t) = x_1(0)e^t$ regardless of what u and x_2 do, i.e. $x_1(t) \to \infty$ no matter what u(t) does. Hence, we assume that the system, (A, B), is controllable.

2. Consider a state space plant:

$$\dot{x} = x + u$$

$$J = \frac{1}{2} \int_{0}^{\infty} (u^{2}) dt$$

to minimize J, u(t) = 0. but then $x \to \infty$. The system is unstable. We need the performance index to know all the state variables. Therefore, we assume that the system pair (A,H) is completely observabl, where H is any matrix such that $H^TH = Q$.

3. Consider the cost functions:

$$J = \frac{1}{2} \int_0^\infty x^2 - u^2 dt$$

$$J = \frac{1}{2} \int_0^\infty -x^2 + u^2 dt$$

J maybe made as negative as one wishes (when u or $x \to \infty$) therefore we impose the conditions the weighing matrices Q to be semi-positive definite and R to be positive definite respectively.

4. But why do we require R > 0 Consider:

$$\dot{x} = -x + u$$

$$J = \frac{1}{2} \int_0^\infty x^2 dt$$

has Q=1 and R=0 (not positive definite). In this case, $K \to \infty$. Which implies the input is infinity. u(t) must be finite due to physical limitations.

this section, considers only linear discrete-time time-invariant systems

$$x(k+1) = Ax(k) + Bu(k)$$

and quadratic cost functions

$$J(x_0, U) = x_N^T P X_N + \sum_{i=0}^{N-1} (x_i^T Q x_i + u_i^T R U_i)$$

are considered, and we consider only the problem of regulating the state to the origin, without state or input constraints.

Recursive approach

using the concept from dynamic programming, the recursive solution relies on Bellman's principle of optimality cf. Bellman's equation in RL,

$$q_*(s, a) = \sum_{r} \sum_{s'} P(s', r|s, a) [r(s, a, s') + \gamma \max_{a'} q_*(s', a')]$$

. It states, "For any solution for steps j to N with $j \geq 0$, taken from the 0 to N solution, must itself be optimal for the j-to-N problem". Therefore, we have for any j=0,...,N

$$J_j^*(x_j) = \min_{\mathbf{u}_j} J(x_i, u_i) + J_{j+1}^*(x_{j+1})$$

subj. to $x_{j+1} = Ax_j + Bu_j$

Define the "j-step optimal cost-to-go" as the **optimal** cost attainable for the step j problem:

$$J_{j}^{*}(x(j)) = \min_{U_{j} \to N} x_{N}^{T} P x_{N} + \sum_{i=j}^{N-1} (x_{i}^{T} Q x_{i} + u_{i}^{T} R u_{i})$$
subj. to $x_{i+1} = A x_{i} + B u_{i}, i = j, ..., N-1$

$$x_{i} = x(j)$$

where the final state cost $J(x(j)) = x(j)^T Px(j)$ is an assumed Lyapunov function, $P_{k+1} = P_{k+1}^T \ge 0$. This is the minimum cost attainable for the remainder of the horizon after step j.

• Consider the 1-step problem (solved at time N-1)

$$J_{N-1}^*(x_{N-1}) = \min_{U_{N-1}} x_{N-1}^T Q x_{N-1} + u_{N-1}^T R u_{N-1} + x_N^T P_N x_N$$
 (1)

s.t.
$$x_N = Ax_{N-1} + Bu_{N-1}$$
 (2)
 $P_N = P$

• Substituting (2) into (1)

$$J_{N-1}^{*}(x_{N-1}) = \min_{u_{N-1}} \{ x_{N-1}^{T} (A^{T} P_{N} A + Q) x_{N-1}$$

$$u_{N-1}^{T} (B^{T} P_{N} B + R) u_{N-1}$$

$$+2x_{N-1}^{T} A^{T} P_{N} B u_{N-1} \}$$

 \bullet Solving again by setting the gradient to zero leads to the following optimality condition for u_{N-1}

$$2(B^T P_N B + R)u_{N-1} + 2B^T P_N Ax_{N-1} = 0$$

Optimal 1-step input:

$$u_{N-1}^* = -(B^T P_N B + R)^{-1} B^T P_N A x_{N-1} = F_{N-1} x_{N-1}$$

1-step cost-to-go:

$$J_{N-1}^*(x_{N-1}) = x_{N-1}^T P_{N-1} x_{N-1} \ ,$$

where

$$P_{N-1} = A^T P_N A + Q - A^T P_N B (B^T P_N B + R)^{-1} B^T P_N A.$$

 \bullet We can obtain the solution for any given time step i in the horizon

$$u_t^* = -(B^T P_{t+1} B + R)^{-1} B^T P_{t+1} A x_t$$

$$K_t = -(B^T P_{t+1} B + R)^{-1} B^T P_{t+1} A$$

where we can find any P_t by recursive evaulation from $P_N = P$, using

$$P_t = Q + A^T P_{t+1} A - A^T P_{t+1} B (B^T P_{t+1} B + R)^{-1} B^T P_{t+1} A$$

which can be initialized with $P_N = P$, the given terminal weight. This is called the **Discrete Time Riccati equation** or **Riccati Difference equation** (**RDE**)

• The optimal cost-to-go is

$$J_i^*(x_i) = x_I^T P_i x_i$$

, evaluating down to P_0 , we obtain

$$x(0)^T P_0 x(0)$$

references:

- 1. ee363
- 2. Model Predictive Control, Melanie Zeilinger