MA4702. Programación Lineal Mixta 2020.

Profesor: José Soto.

Tarea 4.

Fecha entrega: Lunes 13 de Julio, 23:59. Por u-cursos.

Instrucciones:

- 1. Extensión máxima: Entregue su tarea en a lo más 6 planas.
- 2. Formato: La tarea debe entregarse en formato pdf, con fondo de un solo color (blanco de preferencia), letra legible en manuscrito y clara. (No se aceptarán documentos tipeados o generados por computador, pero si tiene alguna manera de escribir en manuscrito directamente de manera digital lo puede hacer). Si desarrolla su tarea en papel, entréguelo escaneados o en fotos de alta calidad, via ucursos.
- 3. Tiempo de dedicación: El tiempo estimado de desarrollo de la tarea es de 3 horas de dedicación. Esto no considera el tiempo de estudio previo, el tiempo dedicado en asistir a cátedras y auxiliares, ni el tiempo para ponerse al día. En particular, para la última parte se recomienda repasar la clase 19 del curso. Tendrá un plazo de 7 días para entregarlo. No espere hasta el último momento para escanear o fotografiar adecuadamente su tarea y cambiarla al formato solicitado (pdf). Entregue con suficiente anticipación a la hora límite.
- 4. Revisión: Se podrá descontar hasta 1 punto en la nota final por falta de formato o extensión.
- 5. Esta tarea está pensada para ser hecha en forma individual.

Definiciones para esta tarea

Sea N un conjunto finito. Decimos que dos conjuntos $A, B \in 2^N$ son intersectantes si los conjuntos $A \setminus B, B \setminus A$ y $A \cap B$ son todos no vacíos. Notamos que cuando dos conjuntos no son intersectantes entonces debemos tener que A y B son disjuntos, o bien uno contiene al otro.

Una familia $\mathcal{L} \subseteq 2^N$ de subconjuntos de N se dice **familia laminar sobre** N si no posee pares de conjuntos intersectantes, es decir, si para todo $A, B \in \mathcal{L}$.

$$(A\subseteq B)$$
o $(B\subseteq A)$ ó $(A\cap B=\emptyset)$

Ejercicios:

Parte I (30 puntos). Elija, resuelva y entregue 3 ejercicios de esta parte I. Si entrega más que 3 se calificarán los 3 peores ejercicios entregados.

(a) Demuestre la siguiente dirección del Teorema de Ghoulia-Houri: Si $A \in \{-1,0,1\}^{m \times n}$ es una matriz totalmente unimodular, entonces para todo $J \subseteq [n]$ existe una partición J_1, J_2 de J tal que

$$\sum_{j \in J_1} a_{ij} - \sum_{j \in J_2} a_{ij} \in \{0, 1, -1\}, \text{ para todo } i \in [m].$$

Indicación: Sea $B = A^J$. Demuestre que el poliedro $P = \{x \in \mathbb{R}^J : \lfloor \frac{1}{2}B1 \rfloor \leq Bx \leq \lceil \frac{1}{2}B1 \rceil, 0 \leq x \leq 1\}$ es no vacío, y concluya que tiene un punto $y \in \{0,1\}^J$ integral. Use ese punto y para determinar la partición pedida (el vector y tiene solo 2 tipos de valores).

Solución

P es un polítopo no vacío, en efecto, si tomamos $x=\frac{1}{2}$ tenemos que $\lfloor \frac{1}{2}B1 \rfloor \leq \lfloor \frac{1}{2}B1 \rfloor$, luego el poliedro anterior se puede escribir como $Cx \leq b$, con $C=[B\mid -B\mid I\mid -I]$ y $b=[\lfloor \frac{1}{2}B1 \rfloor\mid -\lceil \frac{1}{2}B1 \rceil\mid 1\mid 0]^T$. Como B es TU, C también lo es. Además, como $b\in \mathbb{Z}^{2m+2|J|}$ es entero, se tiene que P es entero y luego sus vértices son enteros. Además, usando que $B1=\lfloor \frac{1}{2}B1 \rfloor +\lceil \frac{1}{2}B1 \rceil$, se tiene que para todo $x\in P$, $\lfloor \frac{1}{2}B1 \rfloor \leq B1-Bx\leq \lceil \frac{1}{2}B1 \rceil$, es decir $1-x\in P$. Sea entonces $y^1\in \{0,1\}^J$ un vértice de P, $J_1=\{j\in J|y_j^1=1\}$ y $J_2=\{j\in J|y_j^1=0\}$. Por lo anterior $y^2:=1-y^1$ también es punto integral de P y luego para $k\in \{1,2\}$, e $i\in [m]$ se tiene $\sum_{j\in J_k}a_{ij}=(By^k)_i\in \{\lfloor \frac{1}{2}B1\rfloor_i,\lfloor \frac{1}{2}B1\rfloor_i\}$. Se concluye entonces que

$$\sum_{j \in J_1} a_{ij} - \sum_{j \in J_2} a_{ij} \in \{0, 1, -1\}, \text{ para todo } i \in [m].$$

(b) Sea \mathcal{I} una familia de intervalos cerrados, todos subconjuntos de [0,n] y cada uno con sus extremos enteros. El minimum hitting set problem consiste en encontrar el conjunto $H \subseteq [0,n] \cap \mathbb{Z}$ de menor cardinalidad tal que cada intervalo $J \in \mathcal{I}$ contiene al menos un punto de H. Encuentre un programa lineal puro que permita resolver este problema. Indicación: Demuestre primero que el programa lineal entero natural, tiene conjunto factible integral.

Solución

 $H \subseteq \{0, 1, ..., n\} = [n]_0$, sea $x_i = 1$ si H contiene el elemento i, 0 si no, luego el minimum hitting set problem se puede escribir como un PLE como sigue:

$$\begin{split} \min \sum_{i \in [n]_0} x_i \\ \sum_{i \in [n]_0 \mid l \le i \le u} x_i \ge 1 \quad \forall [l, u] \in \mathcal{L} \\ 0 \le x_i \le 1 \quad \forall i \in [n]_0. \\ x \in \mathbb{Z}^{[n]_0} \end{split}$$

La primera restricción obliga a que H contenga al menos un punto de cada intervalo cerrado [l,u] de \mathcal{L} . El poliedro asociado a la relajación del PLE anterior se puede como escribir como $P=\{x\,|\,Mx\geq 1,0\leq x\leq 1\}$, con $M\in\{0,1\}^{[n]_0\times\mathcal{L}}$, donde $M_{i,[l,u]}=1$ si $l\leq i\leq u$. Notar que de un intervalo $[l,u]\in\mathcal{L}$ solo nos interesa la parte entera, es decir, $\{l,l+1,\ldots,u-1,u\}$. Si enumeramos las filas desde el 0 se tiene que $M_{l,[l,u]}=M_{l+1,[l,u]}=\ldots,M_{u-1,[l,u]}=M_{u,[l,u]}=1$ y $M_{i,[l,u]}=0$ $\forall i\notin\{l,l+1,\ldots,u-1,u\}$. Por ende, la matriz M tiene la propiedad de los 1's consecutivos a nivel columna, por lo que M es TU, además, como el lado derecho es entero se tiene que P es integral. Por último, se tiene que P es no vacío $(x=1\in P)$, y es un polítopo $(0\leq x\leq 1)$, por tanto, alcanza su óptimo en un vértice x^* y como P es integral el vértice es entero, por lo que $H=\{i\in[n]|x_i^*=1\}$ es el minimum hitting set.

(c) Sea $A \in \mathbb{R}^{m \times n}$, con $m \leq n$. Demuestre que A es totalmente unimodular si y solo si [A|I] es unimodular.

Solución

 (\Longrightarrow) Si A es TU se tiene que toda submatriz cuadrada de A tiene determinante en $\{-1,0,1\}$. Sea B una submatriz cuadrada maximal de [A|I] con J el subconjunto de columnas asociadas, con |J|=m, si todas las columnas pertenecen a A o I se tiene que B es TU ya que ambas lo son, si tiene columnas de A e I podemos construir B' a partir de B, donde B' tiene todas las columnas de A a la izquierda y todas las de I a la derecha seguido de una permutación de filas tal que:

$$B' = \left[\begin{array}{cc} B_2 & 0 \\ B_1 & I_B \end{array} \right],$$

donde B_1 y B_2 son submatrices de A y B_2 es cuadrada, luego se tiene que $det(B') = det(B_2) \in \{-1, 0, 1\}$, se concluye que toda submatriz maximal de [A|I] tiene determinante en $\{-1, 0, 1\}$ por lo que [A|I] es UNI.

(\Leftarrow) Sea B_2 una submatriz cuadrada de A, supongamos que no es maximal, luego B_2 la podemos completar con una submatriz B_1 de A y columnas de I para formar la misma matriz maximal B' de [A|I] del punto anterior,

por ende, se tiene que $\det(B') \in \{-1,0,1\}$ ya que [A|I] es UNI, luego $\det(B') = \det(B_2) \det(I) = \det(B_2)$, se concluye que toda submatriz cuadrada de A tiene determinante en $\{-1,0,1\}$, por tanto, A es TU.

(d) Sea G = (V, E) un digrafo, y sean s, t dos nodos distintos de V. Encuentre un programa lineal puro que permita resolver el problema del s-t camino de largo (número de aristas) mínimo.

Indicación: Escriba primero este problema como un flujo de costo mínimo con restricciones adicionales y argumente que esta versión del problema es integral.

Solución

Sea x_e la variable binaria que denota si un arco $e \in E$ está presente o no, luego el problema del s-t camino de largo mínimo se puede escribir como un problema de flujo a costo mínimo:

$$\min \sum_{e \in E} x_e$$

$$x(\delta^+(v)) - x(\delta^-(v)) = 0, \forall v \in V \setminus \{s, t\}$$

$$x(\delta^+(t)) - x(\delta^-(t)) = -1,$$

$$0 \le x_e \le 1 \ \forall e \in E$$

El problema anterior se puede escribir como $P = \{x \in \mathbb{R}^E, Ax = b, l \leq x \leq u\}$, con A matriz de incidencia del digrafo dirigido G(V', E), con $V' = V \cup \{s\}$, $b = [0, \dots, 0, 1]$, l = 0, u = 1, además, se tiene que las matrices de incidencias de un digrafo son TU y el lado derecho de P es entero, por tanto P es integral. Como P es politopo $(0 \leq x \leq 1)$, si es factible alcanza su óptimo en un vértice y como P es integral y puntiagudo sus vértices son enteros y por las restricciones de flujo forma un s-t camino.

(e) Sea \mathcal{L} una familia laminar sobre un conjunto V y sea G = (V, E) un digrafo. Se define la matriz de corte de entrada de G respecto a \mathcal{L} como la matriz $M \in \{0, 1\}^{E, \mathcal{L}}$ tal que $M_{e, A} = 1$ si y solo si $e \in \delta^-(A)$. Demuestre que la matriz M es totalmente unimodular.

Indicación: Puede usar sin demostrar que cualquier subfamilia \mathcal{F} de \mathcal{L} también es laminar. Apóyese en un dibujo ¿puede ponerle signos a los conjuntos adecuados de modo que el número de conjuntos positivos que cada arco e entre difiera poco del número de conjuntos negativos con esta propiedad? Use Ghoulia-Houri.

Solución

Sea \mathcal{F} a una subfamilia de \mathcal{L} . Por enunciado se tiene que \mathcal{F} es una familia laminar. Podemos colorear con +1 los $A \in \mathcal{F}$ que están contenidos en un conjunto par de conjuntos de \mathcal{F} y con -1 si no. En un dibujo:

Para cualquier $e \in E$, los conjuntos $A \in \mathcal{F}$ tales que $e = (s, t) \in \delta^-(A)$ forman una cadena. En efecto si A, B son dos de estos conjuntos, entonces $t \in A \cap B \neq \emptyset$ y como \mathcal{F} es una familia laminar queda que $A \subseteq B$ o $B \subseteq A$ (si no serían conjuntos intersectantes). Luego para cada e, los conjuntos A tales que $e \in \delta^-(A)$ se pueden enumerar tal que $A_1 \subseteq A_2 \subseteq \ldots A_k$ y los signos de A_1, A_2, \ldots, A_k se alternan por definición. Llamando \mathcal{F}_+ y \mathcal{F}_- a los conjuntos de \mathcal{F} positivos y negativos se se tiene:

$$\sum_{A \in \mathcal{F}} \operatorname{signo}(A) M_{e,A} = \sum_{A \in \mathcal{F}_+} M_{e,A} - \sum_{A \in \mathcal{F}_+} M_{e,A} \in \{-1,0,1\}, \ \forall e \in E.$$

Luego por Ghoulia-Houri se tiene que la matriz M es TU.

(f) Sea G = (V, E) un digrafo. Demuestre que para todo par de conjuntos $A, B \subseteq V$ y todo arco $e = (s, t) \in E$, se tiene la siguiente desigualdad

$$\llbracket e \in \delta^-(A \cup B) \rrbracket + \llbracket e \in \delta^-(A \cap B) \rrbracket - \llbracket e \in \delta^-(A) \rrbracket - \llbracket e \in \delta^-(B) \rrbracket \leq 0$$

donde $[\![p]\!]=1$ si p es verdadero, y $[\![p]\!]=0$ en otro caso. Concluya que para toda función $w\colon E\to\mathbb{R}_+$, la función $f\colon 2^V\to\mathbb{R}$ dada por $f(X)=w(\delta^-(X))=\sum_{e\in\delta^-(X)}w_e$ es submodular.

Solución

Para demostrar la desigualdad anterior basta con ver los casos desfavorables, es decir, en donde el lado positivo se activa ya que de esta manera la expresión podría llegar a ser estrictamente positiva. Si $e = (s,t) \in \delta^-(A \cap B)$ para $A, B \subseteq V$ se tiene que $s \notin A \cap B$ y $t \in A \cap B$, esto implica que $t \in A$ y $t \in B$, además, se cumple solo uno de los siguientes casos, $s \in A \setminus B$, $s \in B \setminus A$ o $s \notin A \cup B$. Si se cumple alguno de los primeros dos casos entonces $e \notin \delta^-(A \cup B)$ y se activa un término negativo por lo que la suma es 0. Si se cumple el tercer caso se tiene $e \in \delta^-(A \cup B)$, $e \in \delta^-(A)$, $e \in \delta^-(B)$ por lo que todos los elementos de la desigualdad se activan y la suma es 0.

Por otro lado, si $e \notin \delta^-(A \cap B)$ pero $e \in \delta^-(A \cup B)$, se tiene que $s \notin A \cup B$ y se cumple solo uno de los siguientes casos $t \in A \setminus B$, $t \in B \setminus A$. En ambos casos, se activa un término positivo y un término negativo por lo que la suma es 0.

Por último nos queda demostrar que f es una función submodular, en efecto para cualquier $A, B \subseteq V$,

$$f(A \cup B) + f(A \cap B) - f(A) - f(B)$$

$$= \sum_{e \in \delta^{-}(A \cup B)} w_e + \sum_{e \in \delta^{-}(A \cap B)} w_e - \sum_{e \in \delta^{-}(A)} w_e - \sum_{e \in \delta^{-}(B)} w_e$$

$$= \sum_{e \in E} w_e \underbrace{\left(\left[e \in \delta^{-}(A \cup B) \right] + \left[e \in \delta^{-}(A \cap B) \right] - \left[e \in \delta^{-}(A) \right] - \left[e \in \delta^{-}(B) \right] \right)}_{\leq 0} \leq 0,$$

se concluye que f es submodular.

Parte II (30 puntos).

Nota: para hacer esta parte recomiendo basarse en las clases 19/20 del curso.

Sea G=(V,E) un digrafo y sea $r\in V$ un nodo raiz. Un r-conector es cualquier subconjunto F de arcos de E tal que para cada nodo $v\in V$ existe un r-v camino dirigido en F. Supongamos para evitar conjuntos vacíos que el conjunto E en si mismo es r-conector. Defina

$$Q = \{ x \in \mathbb{R}^E \colon x(\delta^-(S)) \ge 1, \forall \emptyset \ne S \subseteq V \setminus \{r\}, x \ge 0 \}$$

El objetivo de este problema es demostrar que $Q = \text{conv}\{\chi^F : F \text{ es } r\text{-conector}\} + \mathbb{R}_+^E$. Es fácil ver (no lo demuestre) que demostrar la igualdad anterior equivale a demostrar que Q es un poliedro entero. Para hacerlo, demostraremos que el sistema que define a Q es TDI (eso es suficiente pues el vector lado derecho es entero).

Sea $c \in \mathbb{Z}^E$ tal que el problema $(P) = \min\{c^T x : x \in Q\}$ tenga solución finita.

(a) (5 puntos) Escriba el dual (D) del problema (P), en variables $(y_S: \emptyset \neq S \subseteq V \setminus \{r\})$.

Solución

El primal y dual respectivamente:

$$(P(c)) \min c^T x$$

$$(D(c)) \max \sum_{\emptyset \neq S \subseteq V \setminus \{r\}} y_S$$

$$x(\delta^-(S)) \ge 1 \ \forall \emptyset \neq S \subseteq V \setminus \{r\}$$

$$\sum_{S: e \in \delta^-(S)} y_S \le c_e \ \forall e \in E$$

$$x_e \ge 0 \ \forall e \in E$$

$$y_S \ge 0 \ \forall \emptyset \neq S \subseteq V \setminus \{r\}$$

(b) (15 puntos) Llame y^* a una solución óptima de (D) que minimice el potencial $\Psi(y) = \sum_S y_S |S| |V \setminus S|$. (Existe pues (P) tiene solución finita, y hay un número finito de vértices en el poliedro dual). Demuestre que y^* tiene soporte laminar (es decir, que los conjuntos asociados a coordenadas no nulas de y^* son una familia laminar). **Indicación:** Al hacer el descruce, considere un par de conjuntos A y B intersectantes y asegúrese que $A \cap B$ y $A \cup B$ indiquen coordenadas del vector y. Use (aunque no la haya hecho) el ejercicio (f) de la parte I.

Solución

Consideremos una solución dual óptima y^* que minimiza el potencial $\Psi(y) = \sum_S y_S |S| |V \setminus S|$ y sea \mathcal{L} su soporte, es decir, $\mathcal{L} = \{S : y_S^* > 0\}$. Para probar que \mathcal{L} es laminar utilizaremos la técnica del descruce para construir una solución dual óptima \hat{y} con mejor potencial, lo que nos llevará a una contradicción.

Supondremos que \mathcal{L} no es una familia laminar, esto significa que existen $A,B\in\mathcal{L}$ que son intersectantes, es

$$\text{decir, } A \setminus B, B \setminus A, A \cap B \text{ son todos no vacíos, luego, consideremos } \hat{y} = \begin{cases} y_S^* & S \notin \{A, B, A \cup B, A \cap B\} \\ y_S^* - \epsilon & S \in \{A, B\} \\ y_S^* + \epsilon & S \in \{A \cup B, A \cap B\} \end{cases},$$

con $0 < \epsilon \le \min\{y_A^*, y_B^*\}$, de esta manera \hat{y} es no negativo.

Paso 1: Veamos que \hat{y} es dual factible. Si la resta del lado izquierdo de la primera restricción entre \hat{y} e y^* es no positiva entonces \hat{y} es factible, en efecto:

$$\sum_{S: e \in \delta^{-}(S)} \hat{y}_{S} - y_{S}^{*} = \epsilon \bigg([\![e \in \delta^{-}(A \cup B)]\!] + [\![e \in \delta^{-}(A \cap B)]\!] - [\![e \in \delta^{-}(A)]\!] - [\![e \in \delta^{-}(B)]\!] \bigg).$$

Por P1.f se tiene que la expresión anterior es no positiva, por tanto \hat{y} es dual factible.

Paso 2: Veamos que \hat{y} es dual óptimo, en efecto, como la función objetivo es sumar sobre las componentes de un vector, donde a dos de estos componentes le sumamos ϵ y a otros dos le restamos ϵ se tiene que la suma sobre \hat{y} es igual a la suma sobre y^* .

Paso 3: Veamos que \hat{y} tiene menor potencial que y^* . En efecto:

$$\begin{split} \Psi(\hat{y}) - \Psi(y^*) &= \epsilon \bigg(|A \cup B| |V \setminus A \cup B| + |A \cap B| |V \setminus A \cap B| - |A| |V \setminus A| - |B| |V \setminus B| \bigg) \\ &= -2\epsilon |A \setminus B| |B \setminus A| \end{split}$$

y esto es menor que 0 pues $A \setminus B$ y $B \setminus A$ son no vacíos, por ende \mathcal{L} debe ser una familia laminar.

(c) (10 puntos) Concluya que el sistema que define a Q es totalmente dual integral.

Indicación: Use el resultado del ejercicio (e) de la parte I, aunque no lo haya hecho en su tarea.

Solución

El dual restrigido D'(c) al soporte de y se puede escribir de la siguiente forma:

$$(D'(c))$$
 $\max \sum_{S \in \mathcal{L}} y_S$
$$My \le c$$

$$y_S \ge 0 \ \forall S \in \mathcal{L},$$

donde $M \in \{0,1\}^{E \times \mathcal{L}}$ es tal que $M_{e,S} = 1$ si y solo si $e \in \delta^-(S)$. Por P1.e se sabe que M es TU, por lo que si consideramos $c \in \mathbb{Z}^E$ se tiene que el área factible de D'(c) es poliedro integral. Así que cuando P(c) tiene óptimo finito, D(c) y D'(c) también y este se alcanza en un vértice \bar{y} de D'(c) que es entero. Como el óptimo de D(c) es factible en D'(c) se concluye que \bar{y} es óptimo en D(c), y luego el sistema original es TDI.