Week 3 Homework

Ben Arancibia

September 12, 2015

2.5.1

What is the communication cost of each of the following algorithms, as a function of the size of the relations, matrices, or vectors to which they are applied?

(a) The matrix-vector multiplication algorithm

Communication cost: O(r * c)

The matrix-vector multiplication algorithm $(M \cdot v)$ produces a key value pair for each entry in the matrix M. The communication cost is O(r * c) where r and c are the number of rows and columns of M.

(b) The union algorithm

Communication cost: O(r+s)

In the union of R and S, the mapper funtion passes key value pairs for each entry in R and S. The communication cost is the total number of entries in R plus the total number of entries in S or O(r+s).

(c) The aggregation algorithm

Communication cost: Number of tuples (a, b, c)

The communication cost of grouping relation R(A, B, C) is just the number of tuples (a, b, c) in the relation R.

2.6.1

Describe the graphs that model the following problems.

- (a) The multiplication of an $n \times n$ matrix by a vector of length n.
- (b) The natural join of R(A,B) and S(B,C), where A, B, and C have do- mains of sizes a, b, and c, respectively.
- (c) The grouping and aggregation on the relation R(A,B), where A is the grouping attribute and B is aggregated by the MAX operation. Assume A and B have domains of size a and b, respectively.