A FORMULATION OF THE SIMPLE THEORY OF TYPES

[*Journal of Symbolic Logic*, 5(2):56-68, JUNE 1940]

Alonzo Church

발표: 이욱세 (한양대학교)

SIGPL 겨울학교 2005: 프로그래밍언어 분야의 고전들 2005년 2월 18일

HISTORY

From "A Challenge for Mechanized Deduction" [Benzmüller and Kerber 2001]

- Higher-order logic: a far more expressive language than first-order logic.
- Russell's paradox [Russell 1902, 1903]: no self-reference.

When
$$R = \{X \mid X \text{ in } X\}$$
, $R \text{ in } R$?

- A type can be a solution [Russell 1908] by differentiating between objects and sets (functions).
- Formalization with a typed λ -calculus [Church 1940]
 - A basis formalizm in modern higher-order theorem provers: TPS, HOL, PVS, LEO, Ω MEGA, λ CL^AM
 - Opens the propositions-as-types idea
 - Opens constructive type theory

Overview

- Logical formulas are represented by λ -terms.
- Rules of inference: λ -conversion + α .
- Axioms: propositional calculus, logical functional calculus, number theory
- Proof & Theorems
- Examples
 - Peano's arithmetic
 - Primitive recursion

Well-Formed Formulas

- *Type symbols*
 - o (propositions) and ι (individuals)
 - $-\alpha \rightarrow \beta$ for all α , β (functions)
 - * α , β , γ : variable or undetermined type symbols α' : $(\alpha \to \alpha) \to (\alpha \to \alpha)$
- A *formula* is a finite sequence of:
 - improper symbols: λ () .
 - constants: $\mathbf{N}_{o \to o}$ $\mathbf{A}_{o \to o \to o}$ $\Pi_{(\alpha \to o) \to o}$ $\iota_{(\alpha \to o) \to \alpha}$
 - variables: $x_{\alpha} y_{\alpha} \cdots$
- Well-formed formulas:
 - a single proper symbol (type: its subscript)
 - $-\lambda x_{\beta}.M_{\alpha}$ for all well-formed M_{α} (type: $\beta \rightarrow \alpha$)
 - $F_{\beta \to \alpha} A_{\beta}$ for all well-formed $F_{\beta \to \alpha}$, A_{β} (type: α)
 - * capital letters: variable or undetermined well-formed formulas

ABBREVIATIONS (I)

$$\neg A \longrightarrow \mathbf{N}_{o \to o} A_{o}
A_{o} \lor B_{o} \longrightarrow \mathbf{A}_{o \to o \to o} A_{o} B_{o}
A_{o} \land B_{o} \longrightarrow \neg (\neg A_{o} \lor \neg B_{o})
A_{o} \supset B_{o} \longrightarrow \neg A_{o} \lor B_{o}
A_{o} \equiv B_{o} \longrightarrow (A_{o} \supset B_{o}) \land (B_{o} \supset A_{o})
\forall x_{\alpha}. A_{o} \longrightarrow \Pi_{(\alpha \to o) \to o} \lambda x_{\alpha}. A_{o}
\exists x_{\alpha}. A_{o} \longrightarrow \neg (\forall x_{\alpha}. \neg A_{o})
\varepsilon x_{\alpha}. A_{o} \longrightarrow \iota_{(\alpha \to o) \to \alpha} \lambda x_{\alpha}. A_{o}
\mathbf{Q}_{\alpha \to \alpha \to o} \longrightarrow \lambda x_{\alpha}. \lambda y_{\alpha}. \forall f_{\alpha \to o}. f_{\alpha \to o} x_{\alpha} \supset f_{\alpha \to o} y_{\alpha}
A_{\alpha} = B_{\alpha} \longrightarrow \mathbf{Q}_{\alpha \to \alpha \to o} A_{\alpha} B_{\alpha}
A_{\alpha} \neq B_{\alpha} \longrightarrow \neg (A_{\alpha} = B_{\alpha})$$

ABBREVIATIONS (II)

$$\begin{split} \mathbf{I}_{\alpha \to \alpha} & \longrightarrow \lambda x_{\alpha}.x_{\alpha} \\ \mathbf{K}_{\alpha \to \beta \to \alpha} & \longrightarrow \lambda x_{\alpha}.\lambda y_{\beta}.x_{\alpha} \\ \mathbf{0}_{\alpha'} & \longrightarrow \lambda f_{\alpha \to \alpha}.\lambda x_{\alpha}.x_{\alpha} \\ i_{\alpha'} & \longrightarrow \lambda f_{\alpha \to \alpha}.\lambda x_{\alpha}.f_{\alpha \to \alpha}^{i}x_{\alpha} \\ \mathbf{S}_{\alpha' \to \alpha'} & \longrightarrow \lambda n_{\alpha'}.\lambda f_{\alpha \to \alpha}.\lambda x_{\alpha}.f_{\alpha \to \alpha}(n_{\alpha'}f_{\alpha \to \alpha}x_{\alpha}) \\ \mathbf{N}_{\alpha' \to \alpha} & \longrightarrow \lambda n_{\alpha'}.\lambda f_{\alpha \to \alpha}.\lambda x_{\alpha}.f_{\alpha \to \alpha}(n_{\alpha'}f_{\alpha \to \alpha}x_{\alpha}) \\ \mathbf{P}_{\alpha' \to \alpha'} & \longrightarrow \lambda n_{\alpha'}.\mathbf{P}_{\alpha' \to \alpha''}(\mathbf{T}_{\alpha'' \to \alpha''}(\mathbf{T}_{\alpha' \to \alpha''}x_{\alpha'})) \\ \mathbf{T}_{\alpha' \to \alpha''} & \longrightarrow \lambda x_{\alpha'}.\mathbf{P}_{\alpha' \to \alpha''}(\mathbf{T}_{\alpha'' \to \alpha''}(\mathbf{T}_{\alpha' \to \alpha''}x_{\alpha'})) \\ \mathbf{T}_{\alpha' \to \alpha''} & \longrightarrow \lambda x_{\alpha'}.\varepsilon x_{\alpha''}.\mathbf{N}_{\alpha'' \to \alpha}x_{\alpha''} \wedge x_{\alpha''}\mathbf{S}_{\alpha' \to \alpha'}\mathbf{0}_{\alpha'} = x_{\alpha'} \\ \mathbf{P}_{\alpha''' \to \alpha''} & \longrightarrow \lambda x_{\alpha'}.\varepsilon x_{\alpha''}.\mathbf{N}_{\alpha'' \to \alpha}x_{\alpha''} \wedge x_{\alpha''}\mathbf{S}_{\alpha' \to \alpha'}\mathbf{0}_{\alpha'} = x_{\alpha'} \\ \mathbf{P}_{\alpha''' \to \alpha''} & \longrightarrow \lambda x_{\alpha'}.\varepsilon x_{\alpha''}.\mathbf{N}_{\alpha'' \to \alpha}x_{\alpha''} \wedge x_{\alpha''}\mathbf{S}_{\alpha' \to \alpha'}\mathbf{0}_{\alpha'}(\mathbf{K}_{\alpha' \to \alpha' \to \alpha'}\mathbf{I}_{\alpha' \to \alpha'})\mathbf{0}_{\alpha'}), \\ \mathbf{P}_{\alpha''' \to \alpha'} & \longrightarrow \lambda x_{\alpha'}.\varepsilon x_{\alpha''} - x_{\alpha''}\mathbf{0}_{\alpha'} \wedge \mathbf{I}_{\alpha' \to \alpha'} \mathbf{I}_{\alpha' \to \alpha'} \mathbf{0}_{\alpha'}) \\ \mathbf{V}_{\alpha' \to \alpha' \to \alpha''} & \longrightarrow \lambda x_{\alpha'}.\lambda x_{\alpha'}.\lambda x_{\alpha}. \end{split}$$

 $y_{\alpha'}(f_{\alpha \to \alpha}g_{\alpha'}h_{\alpha \to \alpha})(z_{\alpha'}(g_{\alpha'}h_{\alpha \to \alpha})x_{\alpha})$

Rules of Inference

I*. $M_{\alpha} \longrightarrow M_{\alpha}\{y_{\beta}/x_{\beta}\}$ when x_{β} is not a free variable of M_{α} and y_{β} does not occur in M_{α} . (α -conversion)

II*. $(\lambda x_{\beta}.M_{\alpha}) N_{\beta} \longrightarrow M_{\alpha}\{N_{\beta}/x_{\beta}\}$ when the bound variables of M_{α} are distinct both from x_{β} and from the free variables of N_{β} .

(β -conversion)

III*. $M_{\alpha}\{N_{\beta}/x_{\beta}\} \longrightarrow (\lambda x_{\beta}.M_{\alpha}) N_{\beta}$ when the bound variables of M_{α} are distinct both from x_{β} and from the free variables of N_{β} .

IV. $F_{\alpha \to o} x_{\alpha} \longrightarrow F_{\alpha \to o} A_{\alpha}$ when x_{α} is not a free variable of $F_{\alpha \to o}$. (substitution)

V. $A_o \supset B_o$ and $A_o \longrightarrow B_o$ (modus ponent) VI. $F_{\alpha \to o} x_{\alpha} \longrightarrow \Pi_{(\alpha \to o) \to o} F_{\alpha \to o}$ when x_{α} is not a free variable of $F_{\alpha \to o}$. (generalization)

* any part of a formula

Derived Rules

IV'. $M_o \longrightarrow M_o\{A_\alpha/\text{free } x_\alpha\}$ when the bound variables of M_o other than x_α are distinct from the free variables of A_α .

(by rule I–IV)

VI'.
$$M_o \longrightarrow \forall x_\alpha. M_o$$
 (by rule I, III and VI)

• A derivation of VI'

$$M_o \xrightarrow{\mathrm{I}} M'_o \xrightarrow{\mathrm{III}} (\lambda x_{\alpha}.M'_o) x_{\alpha}$$

$$\xrightarrow{\mathrm{VI}} \Pi_{(\alpha \to o) \to o}(\lambda x_{\alpha}.M'_o) \xrightarrow{\mathrm{I}} \Pi_{(\alpha \to o) \to o}(\lambda x_{\alpha}.M_o)$$

where M'_o is α -equivalent to M_o and x_α is not a bound variable of M_o .

FORMAL AXIOMS

- 1. $p \lor p \supset p$
- 2. $p \supset p \vee q$
- 3. $p \lor q \supset q \lor p$
- 4. $(p \supset q) \supset (r \lor p \supset r \lor q)$
- 5^{α} . $\Pi_{(\alpha \to o) \to o} f_{\alpha \to o} \supset f_{\alpha \to o} x_{\alpha}$
- 6^{α} . $(\forall x_{\alpha}.p \lor f_{\alpha \to o}x_{\alpha}) \supset p \lor \Pi_{(\alpha \to o) \to o}f_{\alpha \to o}$
 - 7. $\exists x_{\iota}.\exists y_{\iota}.x_{\iota} \neq y_{\iota}$
 - 8. $\mathbf{N}_{t' \to o} x_{t'} \supset \mathbf{N}_{t' \to o} y_{t'} \supset \mathbf{S}_{t' \to t'} x_{t'} = \mathbf{S}_{t' \to t'} y_{t'} \supset x_{t'} = y_{t'}$
- 9^{α} . $f_{\alpha \to o} x_{\alpha} \supset (\forall y_{\alpha}. f_{\alpha \to o} y_{\alpha} \supset x_{\alpha} = y_{\alpha}) \supset f_{\alpha \to o} (\iota_{(\alpha \to o) \to \alpha} f_{\alpha \to o})$
- $10^{\alpha\beta}. \ (\forall x_{\beta}.f_{\beta\to\alpha}x_{\beta} = g_{\beta\to\alpha}x_{\beta}) \supset f_{\alpha\beta} = g_{\alpha\beta}$
 - 11^{α} . $f_{\alpha \to o} x_{\alpha} \supset f_{\alpha \to o} (\iota_{(\alpha \to o) \to \alpha} f_{\alpha \to o})$
- * 1–4: propositional calculus, 1–6 $^{\alpha}$: logical functional calculus, 7–9 $^{\alpha}$: elementary number theory, $10^{\alpha\beta}$ – 11^{α} : classical real number theory

Proof

- A *proof* of a formula B_o on the assumption of the formulas $A_o^1, A_o^2, \dots, A_o^n$ is a finite sequence of formulas:
 - one of formulas $A_o^1, A_o^2, \cdots, A_o^n$,
 - a variant¹ of a formal axiom, or
 - obtainable from preceding formulas by a rule of inference, which ends with B_o .
- When B_o has a proof on the assumption $A_o^1, A_o^2, \dots, A_o^n$, we write:

$$A_o^1, A_o^2, \cdots, A_o^n \vdash B_o$$

Deduction theorem

VII. If $A_o^1, A_o^2, \dots, A_o^n \vdash B_o$, then $A_o^1, A_o^2, \dots, A_o^{n-1} \vdash A_o^n \supset B_o$.

¹A formal theorem obtained by alphabetically changing variables by rules I and IV'.

THEOREMS

$$12^{\alpha}. \quad (\forall x_{\alpha}. f_{\alpha \to o} x_{\alpha}) \supset f_{\alpha \to o} y_{\alpha}$$

$$13^{\alpha}. \quad f_{\alpha \to o} y_{\alpha} \supset \exists x_{\alpha}. f_{\alpha \to o} x_{\alpha}$$

$$14^{\alpha}. \quad (\forall x_{\alpha}. p \supset f_{\alpha \to o} x_{\alpha}) \supset p \supset \forall x_{\alpha}. f_{\alpha \to o} x_{\alpha}$$

$$15^{\alpha}. \quad (\forall x_{\alpha}. f_{\alpha \to o} x_{\alpha} \supset p) \supset (\exists x_{\alpha}. f_{\alpha \to o} x_{\alpha}) \supset p$$

$$16^{\alpha}. \quad x_{\alpha} = x_{\alpha}$$

$$17^{\alpha}. \quad x_{\alpha} = y_{\alpha} \supset f_{\alpha \to o} x_{\alpha} \supset f_{\alpha \to o} y_{\alpha}$$

$$18^{\beta \alpha}. \quad x_{\alpha} = y_{\alpha} \supset f_{\alpha \to \beta} x_{\alpha} = f_{\alpha \to \beta} y_{\alpha}$$

$$19^{\alpha}. \quad x_{\alpha} = y_{\alpha} \supset y_{\alpha} = x_{\alpha}$$

$$20^{\alpha}. \quad x_{\alpha} = y_{\alpha} \supset y_{\alpha} = z_{\alpha} \supset x_{\alpha} = z_{\alpha}$$

$$21^{\alpha \beta}. \quad f_{\beta \to \alpha} = \lambda x_{\beta}. f_{\beta \to \alpha} x_{\beta}$$

PEANO'S AXIOMS

http://mathworld.wolfram.com/PeanosAxioms.html

- 0 is a number.
- If a is a number, the successor of a is a number.
- 0 is not the successor of a number.
- Two numbers of which the successors are equal are themselves equal.
- (induction axiom) If a set *S* of numbers contains 0 and also the successor of every number in *S*, then every number is in *S*.

PEANO'S AXIOMS

• 0 is a number.

$$22^{\alpha}$$
. $\mathbf{N}_{\alpha' \to o} \mathbf{0}_{\alpha'}$

 \bullet If a is a number, the successor of a is a number.

$$23^{\alpha}$$
. $\mathbf{N}_{\alpha' \to o} x_{\alpha'} \supset \mathbf{N}_{\alpha' \to o} (\mathbf{S}_{\alpha' \to \alpha'} x_{\alpha'})$

• 0 is not the successor of a number.

$$25^{\alpha}$$
. $\mathbf{N}_{\alpha' \to o} x_{\alpha'} \supset \mathbf{S}_{\alpha' \to \alpha'} x_{\alpha'} \neq \mathbf{0}_{\alpha'}$

• Two numbers of which the successors are equal are themselves equal.

$$26^{\alpha}. \mathbf{N}_{\alpha' \to o} x_{\alpha'} \supset \mathbf{N}_{\alpha' \to o} y_{\alpha'} \supset \mathbf{S}_{\alpha' \to \alpha'} x_{\alpha'} = \mathbf{S}_{\alpha' \to \alpha'} y_{\alpha'} \supset x_{\alpha'} = y_{\alpha'}$$

• (induction axiom) If a set S of numbers contains 0 and also the successor of every number in S, then every number is in S.

$$24^{\alpha}. \ f_{\alpha' \to o} \mathbf{0}_{\alpha'} \supset (\forall x_{\alpha'}. \mathbf{N}_{\alpha' \to o} x_{\alpha'} \supset f_{\alpha' \to o} x_{\alpha'} \supset f_{\alpha' \to o} (\mathbf{S}_{\alpha' \to \alpha'} x_{\alpha'})) \supset \mathbf{N}_{\alpha' \to o} x_{\alpha'} \supset f_{\alpha' \to o} x_{\alpha'}$$

INDUCTION THEOREM

From 24^{α} and the deduction theorem VII, we have

VIII. If

- 1. $x_{\alpha'}$ is not a free variable of $A_o^1, A_o^2, \dots, A_o^n, F_{\alpha' \to o'}$
- 2. $A_o^1, A_o^2, \dots, A_o^n \vdash F_{\alpha' \to o} \mathbf{0}_{\alpha'}$, and
- 3. $A_o^1, A_o^2, \dots, A_o^n, \mathbf{N}_{\alpha' \to o} x_{\alpha'}, F_{\alpha' \to o} x_{\alpha'} \vdash F_{\alpha' \to o} (\mathbf{S}_{\alpha' \to \alpha'} x_{\alpha'}),$

then $A_o^1, A_o^2, \dots, A_o^n \vdash \mathbf{N}_{\alpha' \to o} x_{\alpha'} \supset F_{\alpha' \to o} x_{\alpha'}$.

PROOFS OF 25^{α} AND 26^{α}

• For proving 25^{α} ,

$$25^{\alpha}$$
. $\mathbf{N}_{\alpha' \to o} x_{\alpha'} \supset \mathbf{S}_{\alpha' \to \alpha'} x_{\alpha'} \neq \mathbf{0}_{\alpha'}$

$$27^{\alpha}$$
. $\exists x_{\alpha} . \exists y_{\alpha} . x_{\alpha} \neq y_{\alpha}$

$$28^{\alpha}$$
. $\mathbf{S}_{\alpha' \to \alpha'} x_{\alpha'} \neq \mathbf{0}_{\alpha'}$

• For proving 26^{α} ,

26°.
$$\mathbf{N}_{\alpha' \to o} x_{\alpha'} \supset \mathbf{N}_{\alpha' \to o} y_{\alpha'} \supset \mathbf{S}_{\alpha' \to \alpha'} x_{\alpha'} = \mathbf{S}_{\alpha' \to \alpha'} y_{\alpha'} \supset x_{\alpha'} = y_{\alpha'}$$
 (only when α is either ι , ι' , ι'' , \cdots)

$$29^{\alpha}$$
. $\mathbf{N}_{\alpha''\to o}\supset \mathbf{N}_{\alpha'\to o}(n_{\alpha''}\mathbf{S}_{\alpha'\to\alpha'}\mathbf{0}_{\alpha'})$

$$30^{\alpha}. \mathbf{N}_{\alpha'' \to o} m_{\alpha''} \supset \mathbf{N}_{\alpha'' \to o} n_{\alpha''} \supset m_{\alpha''} \mathbf{S}_{\alpha' \to \alpha'} \mathbf{0}_{\alpha'} = n_{\alpha''} \mathbf{S}_{\alpha' \to \alpha'} \mathbf{0}_{\alpha'} \supset m_{\alpha''} \supset m_{\alpha''} = n_{\alpha''} \mathbf{S}_{\alpha' \to \alpha'} \mathbf{0}_{\alpha'} \supset m_{\alpha''} \supset m_{\alpha''} = n_{\alpha''} \mathbf{S}_{\alpha' \to \alpha'} \mathbf{0}_{\alpha'} \supset m_{\alpha''} \supset m_{\alpha''} \supset m_{\alpha''} \mathbf{S}_{\alpha' \to \alpha'} \mathbf{0}_{\alpha'} \supset m_{\alpha''} \supset m_{\alpha''} \supset m_{\alpha''} \mathbf{S}_{\alpha' \to \alpha'} \mathbf{0}_{\alpha'} \supset m_{\alpha''} \supset m_{\alpha''} \supset m_{\alpha''} \mathbf{S}_{\alpha' \to \alpha'} \mathbf{0}_{\alpha'} \supset m_{\alpha''} \supset m_{\alpha''} \mathbf{0}_{\alpha'} \supset m_{\alpha''} \mathbf{0}_{\alpha'} \supset m_{\alpha''} \subset m_{\alpha''$$

(only when α is either ι , ι' , ι'' , \cdots)

$$\begin{array}{c|c}
17^{o}: x = y \supset f_{o \to o}x \supset f_{o \to o}y & \{M/x, \neg M/y, \lambda z. \neg (M \supset \neg z)/f_{o \to o}\} \\
 & \text{where } M = p \lor \neg p
\end{array}$$

$$\begin{array}{c|c}
(M = \neg M) \supset \neg (M \supset \neg M) \supset \neg (M \supset \neg \neg M) \\
 & \text{Rule V} & (q \supset r \supset s) \supset (r \supset q \supset s)
\end{array}$$

$$\begin{array}{c|c}
\neg (M \supset \neg M) \supset (M = \neg M) \supset \neg (M \supset \neg \neg M)
\end{array}$$

$$\begin{array}{c|c}
(M = \neg M) \supset \neg (M \supset \neg M)
\end{array}$$

$$\begin{array}{c|c}
(M = \neg M) \supset \neg (M \supset \neg M)
\end{array}$$

$$\begin{array}{c|c}
(M \supset \neg \neg M) \supset (M \neq \neg M)
\end{array}$$

$$\begin{array}{c|c}
(M \supset \neg \neg M) \supset (M \neq \neg M)
\end{array}$$

$$\begin{array}{c|c}
(M \supset \neg \neg M) \supset (M \neq \neg M)
\end{array}$$

$$\begin{array}{c|c}
(M \neq \neg M)
\end{array}$$

$$\begin{array}{c|c}
(N \neq \neg M)$$

$$\begin{array}{c|c}
(N \neq \neg M)
\end{array}$$

$$\begin{array}{c|c}
(N \neq \neg M)$$

$$\begin{array}{c|c}
(N \neq \neg M)
\end{array}$$

$$\begin{array}{c|c}
(N \neq \neg M)$$

$$\begin{array}{c|c}
(N \neq \neg M)
\end{array}$$

$$\begin{array}{c|c}
(N \neq \neg M)$$

$$\begin{array}{c|c}
(N \neq \neg M)$$

$$\begin{array}{c|c}
(N \neq \neg M)
\end{array}$$

$$\begin{array}{c|c}
(N \neq \neg M)$$

$$\begin{array}{c|c}
(N \neq \neg M)$$

$$\begin{array}{c|c}
(N \neq \neg M)$$

$$\begin{array}{c|c}
(N \neq \neg M)
\end{array}$$

$$\begin{array}{c|c}
(N \neq \neg M)$$

$$\begin{array}{c|c}
(N \neq \neg M)$$

$$\begin{array}{c|c}
(N \neq \neg M)
\end{array}$$

$$\begin{array}{c|c}
(N \neq \neg M)$$

$$z_{\alpha} \neq t_{\alpha} \vdash \mathbf{S}_{\alpha' \to \alpha'} x_{\alpha'} (\mathbf{K}_{\alpha \to \alpha \to \alpha} z_{\alpha}) t_{\alpha} \neq \mathbf{0}_{\alpha'} (\mathbf{K}_{\alpha \to \alpha \to \alpha} z_{\alpha}) t_{\alpha}$$

$$17^{\alpha} : x_{\alpha} = y_{\alpha} \supset f_{\alpha \to \alpha} x_{\alpha} \supset f_{\alpha \to \alpha} y_{\alpha}$$

$$\mathbf{S}_{\alpha' \to \alpha'} x_{\alpha'} = \mathbf{0}_{\alpha'} \vdash \mathbf{S}_{\alpha' \to \alpha'} x_{\alpha'} (\mathbf{K}_{\alpha \to \alpha \to \alpha} z_{\alpha}) t_{\alpha} \neq \mathbf{0}_{\alpha'} (\mathbf{K}_{\alpha \to \alpha \to \alpha} z_{\alpha}) t_{\alpha}$$

$$\supset \mathbf{0}_{\alpha'} (\mathbf{K}_{\alpha \to \alpha \to \alpha} z_{\alpha}) t_{\alpha} \neq \mathbf{0}_{\alpha'} (\mathbf{K}_{\alpha \to \alpha \to \alpha} z_{\alpha}) t_{\alpha}$$

$$z_{\alpha} \neq t_{\alpha} \vdash \mathbf{S}_{\alpha' \to \alpha'} x_{\alpha'} = \mathbf{0}_{\alpha'} \supset \mathbf{0}_{\alpha'} (\mathbf{K}_{\alpha \to \alpha \to \alpha} z_{\alpha}) t_{\alpha} \neq \mathbf{0}_{\alpha'} (\mathbf{K}_{\alpha \to \alpha \to \alpha} z_{\alpha}) t_{\alpha}$$

$$z_{\alpha} \neq t_{\alpha} \vdash \mathbf{0}_{\alpha'} (\mathbf{K}_{\alpha \to \alpha \to \alpha} z_{\alpha}) t_{\alpha} \supset \mathbf{0}_{\alpha'} (\mathbf{K}_{\alpha \to \alpha \to \alpha} z_{\alpha}) t_{\alpha} \supset \mathbf{S}_{\alpha' \to \alpha'} x_{\alpha'} \neq \mathbf{0}_{\alpha'}$$

$$z_{\alpha} \neq t_{\alpha} \vdash \mathbf{S}_{\alpha' \to \alpha'} x_{\alpha'} \neq \mathbf{0}_{\alpha'}$$

$$\exists z_{\alpha} \exists t_{\alpha} . z_{\alpha} \neq t_{\alpha} \supset \mathbf{S}_{\alpha' \to \alpha'} x_{\alpha'} \neq \mathbf{0}_{\alpha'}$$

$$\mathbf{S}_{\alpha' \to \alpha'} x_{\alpha'} \neq \mathbf{0}_{\alpha'}$$

Proof of 28^a and 25^a

Properties of $\mathbf{T}_{lpha' ightarrow lpha''}$

• Theorems

31°.
$$\mathbf{N}_{\alpha'\to o}x_{\alpha'} \supset \mathbf{N}_{\alpha''\to o}(\mathbf{T}_{\alpha'\to \alpha''}x_{\alpha'})$$

32°. $\mathbf{N}_{\alpha'\to o}x_{\alpha'} \supset \mathbf{T}_{\alpha'\to \alpha''}x_{\alpha'}\mathbf{S}_{\alpha'\to \alpha'}\mathbf{0}_{\alpha'} = x_{\alpha'}$
33°. $\mathbf{N}_{\alpha'\to o}x_{\alpha'} \supset \exists x_{\alpha''}.\mathbf{N}_{\alpha''\to o}x_{\alpha''} \land x_{\alpha''}\mathbf{S}_{\alpha'\to \alpha'}\mathbf{0}_{\alpha'} = x_{\alpha'}$
34°. $\mathbf{N}_{\alpha'\to o}x_{\alpha'} \supset \mathbf{T}_{\alpha'\to \alpha''}(\mathbf{S}_{\alpha'\to \alpha'}x_{\alpha'}) = \mathbf{S}_{\alpha''\to \alpha''}(\mathbf{T}_{\alpha'\to \alpha''}x_{\alpha'})$
35°. $\mathbf{T}_{\alpha'\to \alpha''}\mathbf{0}_{\alpha'} = \mathbf{0}_{\alpha''}$
(31,32,34,35 only when α is either $\iota, \iota', \iota'', \iota'', \cdots$)

$$F_{\alpha'\to o} = \lambda w_{\alpha'}.\exists x_{\alpha''}.\mathbf{N}_{\alpha''\to o}x_{\alpha''} \wedge x_{\alpha''}\mathbf{S}_{\alpha'\to \alpha'}\mathbf{0}_{\alpha'} = w_{\alpha'}$$

$$\begin{bmatrix}
\mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha''} \wedge \mathbf{0}_{\alpha''}\mathbf{S}_{\alpha'\to \alpha'}\mathbf{0}_{\alpha'} = \mathbf{0}_{\alpha'}\\
\exists x_{\alpha''}.\mathbf{N}_{\alpha''\to o}x_{\alpha''} \wedge x_{\alpha''}\mathbf{S}_{\alpha'\to \alpha'}\mathbf{0}_{\alpha'} = \mathbf{0}_{\alpha'}\\
\exists x_{\alpha''}.\mathbf{N}_{\alpha''\to o}x_{\alpha''} \wedge x_{\alpha''}\mathbf{S}_{\alpha'\to \alpha'}\mathbf{0}_{\alpha'} = \mathbf{0}_{\alpha'}\\
\end{bmatrix}$$

$$\begin{bmatrix}
\mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha''} \wedge \mathbf{0}_{\alpha''}\mathbf{S}_{\alpha'\to \alpha'}\mathbf{0}_{\alpha'} = \mathbf{0}_{\alpha'}\\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha'} = x_{\alpha'} + \mathbf{S}_{\alpha'\to \alpha'}(x_{\alpha''}\mathbf{S}_{\alpha'\to \alpha'}\mathbf{0}_{\alpha'}) = \mathbf{S}_{\alpha'\to \alpha'}x_{\alpha'}\\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha'} = x_{\alpha'} + \mathbf{S}_{\alpha'\to \alpha'}(x_{\alpha''}\mathbf{S}_{\alpha'\to \alpha'}\mathbf{0}_{\alpha'}) = \mathbf{S}_{\alpha'\to \alpha'}x_{\alpha'}\\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha'} \wedge \mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha'} = \mathbf{N}_{\alpha'\to \alpha'}\mathbf{0}_{\alpha'} = \mathbf{S}_{\alpha'\to \alpha'}x_{\alpha'}\\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha'} \wedge \mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha'} = \mathbf{N}_{\alpha'\to \alpha'}\mathbf{0}_{\alpha'} = \mathbf{S}_{\alpha'\to \alpha'}x_{\alpha'}\\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha'} \wedge \mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha'} = \mathbf{N}_{\alpha'\to \alpha'}\mathbf{0}_{\alpha'} = \mathbf{N}_{\alpha'\to \alpha'}\mathbf{0}_{\alpha'}\\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha'} \wedge \mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha'} = \mathbf{N}_{\alpha'\to \alpha'}\mathbf{0}_{\alpha'} = \mathbf{N}_{\alpha'\to \alpha'}\mathbf{0}_{\alpha'}\\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha'} \wedge \mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha'} = \mathbf{N}_{\alpha'\to \alpha'}\mathbf{N}_{\alpha'}\\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha'} \wedge \mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha'} = \mathbf{N}_{\alpha'\to \alpha'}\mathbf{N}_{\alpha'}\\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha'} \wedge \mathbf{N}_{\alpha''\to o}\mathbf{N}_{\alpha''}\mathbf{N}_{\alpha'}\\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha'} \wedge \mathbf{N}_{\alpha''\to o}\mathbf{N}_{\alpha''\to o}\mathbf{N}_{\alpha''}\mathbf{N}_{\alpha'}\\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha'} \wedge \mathbf{N}_{\alpha''\to o}\mathbf{N}_{\alpha''\to o}\mathbf{N}_{\alpha''\to o}\mathbf{N}_{\alpha''}\mathbf{N}_{\alpha'}\\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{N}_{\alpha''\to o}\mathbf{0}_{\alpha'} \wedge \mathbf{N}_{\alpha''\to o}\mathbf{N}_{\alpha''\to o}\mathbf{N}_{\alpha''\to o}\mathbf{N}_{\alpha''\to o}\mathbf{N}_{\alpha''\to o}\mathbf{N}_{\alpha''\to o}\mathbf{N}_{\alpha'}\\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{N}_{\alpha''\to o}\mathbf{N}_{\alpha''\to o}\mathbf{N}_{\alpha''\to o}\mathbf{N}_{\alpha''\to o}\mathbf{N}_{\alpha''\to o}\mathbf{N}_{\alpha'}\\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{N}_{\alpha''\to o}\mathbf{N}_{\alpha''\to o}\mathbf{N}_{\alpha'\to o}\mathbf{N}_{\alpha'\to o}\mathbf{N}_{\alpha'\to o}\mathbf{N}_{\alpha'\to o}\mathbf{N}_{\alpha'\to o}\mathbf{N}_{\alpha'\to o}\mathbf{N}_{\alpha'\to o}\mathbf{N}_{\alpha'\to o}\mathbf{N}_{\alpha'\to o}\mathbf{N}_{\alpha'\to$$

 $\mathbf{N}_{\alpha'\to\alpha}x\supset F_{\alpha'\to\alpha}x_{\alpha'}$

Proof of 33a

23°: $\mathbf{N}_{\alpha' \to o} x_{\alpha'} \supset \mathbf{N}_{\alpha' \to o} (\mathbf{S}_{\alpha' \to \alpha'} x_{\alpha'})$

Proof of 34a

31°:
$$\mathbf{N}_{\alpha' \to o} x_{\alpha'} \supset \mathbf{N}_{\alpha'' \to o} (\mathbf{T}_{\alpha' \to \alpha''} x_{\alpha'})$$

32°:
$$\mathbf{N}_{\alpha' \to o} x_{\alpha'} \supset \mathbf{T}_{\alpha' \to \alpha''} x_{\alpha'} \mathbf{S}_{\alpha' \to \alpha'} \mathbf{0}_{\alpha'} = x_{\alpha'}$$

30°:
$$\mathbf{N}_{\alpha''\to o}m_{\alpha''}\supset \mathbf{N}_{\alpha''\to o}n_{\alpha''}\supset m_{\alpha''}\mathbf{S}_{\alpha'\to\alpha'}\mathbf{0}_{\alpha'}=n_{\alpha''}\mathbf{S}_{\alpha'\to\alpha'}\mathbf{0}_{\alpha'}\supset m_{\alpha''}=n_{\alpha''}$$

Proof of 35a

31°:
$$\mathbf{N}_{\alpha' \to o} x_{\alpha'} \supset \mathbf{N}_{\alpha'' \to o} (\mathbf{T}_{\alpha' \to \alpha''} x_{\alpha'})$$

32°:
$$\mathbf{N}_{\alpha' \to o} x_{\alpha'} \supset \mathbf{T}_{\alpha' \to \alpha''} x_{\alpha'} \mathbf{S}_{\alpha' \to \alpha'} \mathbf{0}_{\alpha'} = x_{\alpha'}$$

$$30^{\alpha}: \mathbf{N}_{\alpha'' \to o} m_{\alpha''} \supset \mathbf{N}_{\alpha'' \to o} n_{\alpha''} \supset m_{\alpha''} \mathbf{S}_{\alpha' \to \alpha'} \mathbf{0}_{\alpha'} = n_{\alpha''} \mathbf{S}_{\alpha' \to \alpha'} \mathbf{0}_{\alpha'} \supset m_{\alpha''} = n_{\alpha''}$$

PRIMITIVE RECURSION

• Given formulas $A_{\alpha'}$ and $B_{\alpha' \to \alpha' \to \alpha'}$, there exists $F_{\alpha' \to \alpha'}$ such that

$$F_{\alpha' \to \alpha'} \mathbf{0}_{\alpha'} = A_{\alpha'}$$

$$\mathbf{N}_{\alpha' \to \alpha} x_{\alpha'} \supset F_{\alpha' \to \alpha'} (\mathbf{S}_{\alpha' \to \alpha'} x_{\alpha'}) = B_{\alpha' \to \alpha' \to \alpha'} x_{\alpha'} (F_{\alpha' \to \alpha'} x_{\alpha'})$$

where $x_{\alpha'}$ is not a free variable of $A_{\alpha'}$, $B_{\alpha' \to \alpha' \to \alpha'}$, or $F_{\alpha' \to \alpha'}$.

• $F_{\alpha' \to \alpha'}$ is:

$$\lambda x_{\alpha'} \cdot \mathbf{T}_{\alpha'' \to \alpha'''} (\mathbf{T}_{\alpha' \to \alpha''} x_{\alpha'})
\left(\lambda y_{\alpha''} \cdot \left\langle \mathbf{S}_{\alpha' \to \alpha'} (y_{\alpha''} (\mathbf{K}_{\alpha' \to \alpha' \to \alpha'} \mathbf{I}_{\alpha' \to \alpha'}) \mathbf{0}_{\alpha'}), \right.
\left(\lambda y_{\alpha''} \cdot \left\langle \mathbf{S}_{\alpha' \to \alpha'} (y_{\alpha''} (\mathbf{K}_{\alpha' \to \alpha' \to \alpha'} \mathbf{I}_{\alpha' \to \alpha'}) \mathbf{0}_{\alpha'}) (y_{\alpha''} (\mathbf{K}_{\alpha' \to \alpha' \to \alpha'} \mathbf{0}_{\alpha'}) \mathbf{I}_{\alpha' \to \alpha'}) \right\rangle \right)
\left\langle \mathbf{0}_{\alpha'}, A_{\alpha'} \right\rangle (\mathbf{K}_{\alpha' \to \alpha' \to \alpha'} \mathbf{0}_{\alpha'})$$

• $\mathbf{P}_{\alpha' \to \alpha'}$ is a primitive recursive function for the case that $A_{\alpha'} = \mathbf{0}_{\alpha'}$ and $B_{\alpha' \to \alpha' \to \alpha'} = \lambda y_{\alpha'} \cdot \lambda z_{\alpha'} \cdot y_{\alpha'}$:

Proof for $\mathbf{P}_{\alpha' o \alpha'}$

$$\mathbf{P}_{\alpha'''\to\alpha'} \to \begin{array}{c} \lambda n_{\alpha'''}.n_{\alpha'''} \end{array} \begin{pmatrix} \mathbf{S}_{\alpha'\to\alpha'}(p_{\alpha''}(\mathbf{K}_{\alpha'\to\alpha'\to\alpha'}\mathbf{I}_{\alpha'\to\alpha'})\mathbf{0}_{\alpha'}), \\ p_{\alpha''}(\mathbf{K}_{\alpha'\to\alpha'\to\alpha'}\mathbf{I}_{\alpha'\to\alpha'})\mathbf{0}_{\alpha'} \end{pmatrix} \\ \langle \mathbf{0}_{\alpha'}, \mathbf{0}_{\alpha'} \rangle (\mathbf{K}_{\alpha'\to\alpha'\to\alpha'}\mathbf{0}_{\alpha'}) \ \mathbf{I}_{\alpha'\to\alpha'} \end{array}$$

 43^{α} . $\mathbf{N}_{\alpha' \to \alpha} n_{\alpha'} \supset \mathbf{P}_{\alpha' \to \alpha'} (\mathbf{S}_{\alpha' \to \alpha'} n_{\alpha'}) = n_{\alpha'}$

SUMMARY

- A typed higher-order logic system which incorporates λ -calculus.
 - Peano's arithmetic
 - Primitive recursion
- A basis formalizm in modern higher-order theorem provers.