ITEM 1

Scenario 1	In a sports game at a certain sports club, many of the unfit players would get muscle sprains caused by accumulation of lactic acid in the muscles, during a vigorous exercise. This is further accompanied by excessive heat around the affected muscle area. The team doctor wishes to design a product from						
	Substance Q (Na ₂ CO ₃) or Substance X (KCl), to cool down the heat stabilize the players.	ated muscles and					
Task	Help the doctor to design an experiment that will help him to cho	ose a better salt					
	for using in the product.	<u></u>					
Experimental Aspect	Descriptions	Scoring Areas					
Aim/Title of	Experiment to investigate the nature of the solubility of salt X						
experiment	and Salt Q in water.						
Tools and materials	i. Beaker						
used	ii. Thermometer						
	iii. Water						
	iv. Salt X and Salt Q						
	v. Measuring cylinder						
	vi. Boiling tube						
	vii. Test tube						
	viii. Petri dish						
Variables	Independent; The mass of salts X and Q.						
	Dependent; The Temperatures of solution.						
- Am.	Controlled; The Volume of the water were kept constant.						
	The Mass of salt X and salt Q were kept constant.						
Hypothesis	The solubility of a salt in water depends on the type of salt X or						
	salt Q ; Dissolving endothermically or Exothermically.						
Procedure	 a) Measure about 100 cm³ of distilled water, using measuring cylinder. 						
	b) Transfer into a plastic beaker or coverable plastic						
	container of negligible heat capacity.						
	c) Note it's initial temperature, To (°C), using a						
	thermometer.						
	d) Weigh about 5 g of salt X using a weighing scale.						
	e) Add the 5 g of salt X to the water in plastic beaker						
	above and cover to avoid heat loss or gain from the surrounding.						

Page 1 of

• 142	f) Stir the mixture, using a thermometer and record the	
	g) Repeat the procedures (a) to (f) using salt Q . h) The results were entered in the table and later analyzed.	
k and Precautions	a) Breaking of thermometer, which can be mitigated by	
	putting the thermometer back into its case after use.	
	b) Cuts from broken glasses, mitigated by putting on closed	
	shoes and protective gears as gloves, laboratory coat.	
Results	Mass of dish + salt X =(g)	
	•	
	Mass of empty dish =(9)	
	Mass of salt X =(g)	
	Mass of salt Q =(g)	
	Volume of water =(cm³)	
	Salt Solution Initial temp (${}^{\circ}C$) of Final temp (${}^{\circ}C$) of	
	water only.	
	Water + salt X	
	Water + salt Q	
Data interpretation	Consider Salt X:	
and Analysis	Change in temperature, $\Delta T = (Final\ temp - initial\ temp)$ (°C).	
	$\Delta T = + \cdots \cdot \cdots ({}^{0}C).$	
	Then: salt X dissolves endothermically since, ΔT is a positive	
	value.	
	Consider Salt Q:	
	Change in temperature, $\Delta T = (Final\ temp - inital\ temp)$ (°C).	
	$\Delta T = -\cdots \cdot \ldots ({}^{0}C).$	
	Then: salt Q dissolves exothermically since, ΔT is a negative	
100000000000000000000000000000000000000	value.	
Conclusions	a) Salt X is less soluble in water than salt Q.	
	b) Salt X dissolves endothermically by cooling(decrease in	
	temperature) while salt Q dissolves exothermically(increase	
	in temperature)	
	c) Therefore, salt X can act as a better coolant for muscle	

iario 1	In lake katwe of Uganda, the locals mine to extract some salts for processing into	r processing into
and or make	different uses. They use crystallization method to precipitate the salt. The	salt. The
100.750 Dec	common salts in the lake are Substance Q (Na ₂ CO ₃) and Substance X (KCI). The	e X (KCI).The
	site chemist needs to know the salt that will precipitate (solidify) out first for	out first for
	collection, among these two.	
×	Help the chemist to design an experiment that will help him to choose a better	oose a better
	salt that will dissolve easily in the water. (Na=23,0=16, K=39,Cl=35.5)	5.5)
erimental Aspect	Descriptions	Scoring Areas
/Title of	Experiment to investigate the heat of solution (Enthalpy of	
eriment	solution) of salt X and Salt Q in water.	
ols and materials	i. Beaker	
ים	ii. Thermometer	
	iii. Water	
	iv. Salt X and Salt Q	
	v. Measuring cylinder	
	vi. Boiling tube	
	vii, Test tube	
	viii. Petri dish	
ıriables	Independent; The mass of salts X and Q.	
	The time take for the salts to di	
	Dependent; The Temperatures of solution.	
	Controlled; The Volume of the water were kept constant.	
	The Mass of salt X and salt Q were kept constant.	
ypothesis	The heat of solution depends on the solubility of salt X or salt	
	Q,in water and the nature of the salt.	
ocedure	a) Measure about 50 cm³ of distilled water, using measuring	
	cylinder.	
	b) Transfer into a plastic beaker or coverable plastic	
	container of negligible heat capacity.	
	c) Note it's initial temperature, T_0 (${}^{\circ}C$), using a	
	thermometer,	
	d) Weigh about 5 g of salt X using a weighing scale.	

¥ .≥

the alyzed.	closed	0.09
lastic b I from ' I from ' I fery 10 I fer an ed on s	ing the ing on tory co	20.0
or gair mer. neter v fter ev sing sal s and lc s plott	by putt use. by putt labora	0.0
the wat at loss ck or ti hermon (°C), a o (g) us ne table t time i	igated le after igated ligated le gloves,	(cm³) (cm³) (cm³)
r X to 1 void he he cloc ing a tl ure, T es (a) t ed in th agains	er, mit its cas es, miti ears as	20.0
ed to avied to aviented to aviente to avient	momet ck into n glass ctive ge	% = of water = 0 10.0 2
re 5 g cover g. e mixt the te r 1.0 r he pr he pr s were emper	f ther ter ba broke protea	t X = sh
above and covered to avoid heat loss or gain from the surrounding. f) I immediately started the clock or timer. g) Stirred the mixture, using a thermometer while recording the temperature, T (°C), after every 10 seconds for 1.0 minutes. h) Repeated the procedures (a) to (g) using salt Q. i) The results were entered in the table and later analyzed. j) Graph of temperatures against time is plotted on same axes for both salts.	 a) Breaking of thermometer, mitigated by putting the thermometer back into its case after use. b) Cuts from broken glasses, mitigated by putting on closed shoes and protective gears as gloves, laboratory coat. 	Mass of dish + salt X =
		Mass Mass Mass Mass Wolur Tem Tem (°C)
	Risk and Precautions	Results

A company is investigating an appropriate chemical method to generate heat for portable stoves. The idea involves using iron scrap material to displace copper(II) ions in a chemical reaction, offering an alternative to fossil fuels and charcoal stoves. The company aims at determining how much because

interpretation	Consider Salt X:	
Analysis	Change in temperature, $\Delta T_X = (Final\ temp - inital\ temp)$ (°C).	
	Total mass of solution, $m = (mass of X + volume of water)(g)$	
	m = (5 + 50) = 55 g	
	$\Delta H = +(mC\Delta T_X)(Joules, J).$	
	$\Delta H = +(55x4.2\Delta T_X)$ Joules	
	Then: salt X dissolves endothermically since, ΔT_X is a positive	
	value.	
	Molar mass of X (KCI) = 39 +35.5 =74.5g	
	5g of KCl gives $+(55x4.2\Delta T_X)$ Joules of heat energy.	
	74.59 gives $\left[\frac{74.5x55x4.2\Delta T_X}{5}\right]$ foules of heat energy	
5 25 3	Then: enthalpy/heat of solution is $+\left[\frac{74.5x55x4.2ATx}{5}\right]$ /mol ⁻¹	
	Consider Salt Q:	
	Change in temperature, $\Delta T_Q = (Final\ temp - initial\ temp)$ (°C).	
	Total mass of solution,M = (mass of Q + volume of water) (g)	
	M = (5 + 50) = 55 g	
	$\Delta H = -(MC\Delta T_Q) \dots (Joules, J).$	
	$\Delta H = -(55X4.2\Delta T_X)$ four less	
	Then: salt Q dissolves exothermically since, ΔT_Q is a negative	
	value.	
	Molar mass of Q (Na_2CO_3) = (2x23)+(1x12)+(3x16) = 1069	
	5g of KCI gives $+(55x4.2\Delta T_x)$ foules of heat energy.	
	106g gives $\left[\frac{106x55x4.2\Delta Tx}{5}\right]$ Joules of heat energy	
	Then: enthalpy/heat of solution is $-\left[\frac{106x55x42AT_X}{c}\right]$ /mol ⁻¹	
Conclusions	a) Salt X dissolves endothermically by cooling	
	(decrease in temperature) while salt Q dissolves	
	exothermically (increase in temperature)	
	b) Therefore, salt X is less soluble in water than salt Q.	
	c) Hence, salt X will easily precipitate (solidify out of water)	
	due to a positive heat of solution while salt Q will easily	
	dissolve (more soluble or less solidifies out of water) due to	
	negative heat of solution.	

A company is investigating an appropriate chemical method to generate heat for portable stoves. The idea involves using iron scrap material to displace copper(II) ions in a chemical reaction, offering an alternative to fossil fiels and charcoal stoves. The company aims at determining how --- Here is the sketch of the temperature vs. time graph for sodium carbonate (exothermic) and potassium chloride (endothermic) solutions.

The graph shows how the temperature changes over time for both solutions, with the sodium carbonate curve rising and the potassium chloride curve falling.

Expected Behavior:

Sodium carbonate (exothermic): The temperature of the solution will increase as sodium carbonate dissolves because heat is released during the process. Potassium chloride (endothermic): The temperature of the solution will decrease as potassium chloride dissolves because heat is absorbed from the surroundings.

Temperature vs. Time for Sodium Carbonate and Potassium Chloride Solutions

alternative to fossil fuels and charcoal stoves. The company aims at determining how much heat is generated by the reaction for every 25 cm³ of copper(II) sulphate solution used, so that they make it a A company is investigating an appropriate chemical method to generate heat for portable stoves. The idea involves using iron scrap material to displace copper(II) ions in a chemical reaction, offering an viable option for outdoor cooking

$$Fe(s) + Cu^{2+} \rightarrow Fe^{2+} + Cu(s)$$

You are provided with;

- Solid A (6.0 g) which is iron fillings
- Solid B (6.0 g) which is copper(II) sulphate. Dissolve solid B in distilled water to make 100 cm3 of solution. Label this solution
 - Some apparatus that may be required for the investigation

Tasks

pa
ŏ
a)
-
-
0
\sim
>
-
a)
_
-
_
CO
(1)
=
$\overline{}$
-
4
_
0
_
-
=
_
-
_
-
_
_
=
ಹ
43
•
_
-
-
O
~
-
_
_
-
-
4)
-
a
_
$\boldsymbol{\sigma}$
_
_
0
-
$\overline{}$
_
a)
70
0,
_
_
a)
~
æ
-
U
-
Ħ
at
lat
hat
that
that
t that
nt that
int that
ent that
ent that
nent that
ment that
iment that
riment that
riment that
eriment that
periment that
periment that
xperiment that
xperiment that
experiment that
experiment that
experiment that
n experiment that
in experiment that
an experiment that
an experiment that
an experiment that
n an experiment that
gn an experiment that
gn an experiment that
ign an experiment that
sign an experiment that
ssign an experiment that
esign an experiment that
esign an experiment that
Design an experiment that
Design an experiment that
Design an experiment that
.) Design an experiment that
a) Design an experiment that
a) Design an experiment that
a) Design an experiment that can be used to determine the amount of heat evolved

				dings
				(b) Carry out the experiment and record your findings
				(b) Carry out the experi

