

Thapar Institute of Engineering & Technology (Deemed to be University)

Bhadson Road, Patiala, Punjab, Pin-147004 Contact No.: +91-175-2393201

Email: info@thapar.edu



### Procedure when plane is given

- 1. Choose origin
- 2. Find intercepts on the respective axis
- 3. Take reciprocal
- 4. Clear fractions
- 5. Enclose in ()



#### Remember

- Atom is in 0-D
- Direction is in 1-D
- Plane is in 2-D
- Crystal is in 3-D

- A plane cannot pass through the origin
- If such as case arises, either shift the plane or shift the origin



|   | Z |            |  |
|---|---|------------|--|
|   |   | <b>→</b> ∨ |  |
|   |   | Y          |  |
| X |   |            |  |



| 1 | Choose origin                          | Υ     |
|---|----------------------------------------|-------|
| 2 | Find intercepts on the respective axis | 1,∞,∞ |
| 3 | Take reciprocal                        | 1,0,0 |
| 4 | Clear fractions                        |       |
| 5 | Enclose in ()                          | (100) |







| 1 | Choose origin                          | Υ     |
|---|----------------------------------------|-------|
| 2 | Find intercepts on the respective axis | 1,1,∞ |
| 3 | Take reciprocal                        | 1,1,0 |
| 4 | Clear fractions                        |       |
| 5 | Enclose in ()                          | (110) |





| 1 | Choose origin                          | Y     |
|---|----------------------------------------|-------|
| 2 | Find intercepts on the respective axis | 1,1,1 |
| 3 | Take reciprocal                        | 1,1,1 |
| 4 | Clear fractions                        |       |
| 5 | Enclose in ()                          | (111) |



| 1 | Choose origin                          | Υ        |
|---|----------------------------------------|----------|
| 2 | Find intercepts on the respective axis | -1,-1, ∞ |
| 3 | Take reciprocal                        | -1,-1, 0 |
| 4 | Clear fractions                        |          |
| 5 | Enclose in ()                          | (110)    |









| 1 | Choose origin                          | Υ       |
|---|----------------------------------------|---------|
| 2 | Find intercepts on the respective axis | ∞,1/2,∞ |
| 3 | Take reciprocal                        | 0,2,0   |
| 4 | Clear fractions                        |         |
| 5 | Enclose in ()                          | (020)   |



### Procedure when MI is given

- 1. Choose origin
- 2. Take reciprocal of the MI given
- 3. Mark the intercepts on respective axis
- 4. Join the intercepts



Draw (112) plane





| 1 | Choose origin                          | Υ         |
|---|----------------------------------------|-----------|
| 2 | Take reciprocal of the MI given        | 1, 1, 1/2 |
| 3 | Mark the intercepts on respective axis | Y         |
| 4 | Join the intercepts                    |           |



### Practice yourself





## Set of identical parallel planes











### Distance between the planes

d-spacing (distance

Two parallel planes are identical and the distance can by calculated by

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$
 d-spacing (distance between two planes) Miller indices for that plane



## Family of directions and planes

- In a unit cell we can identify certain planes as a group of equivalent planes.
- e.g. (110) is equivalent to (101)
- These are set of crystallographically equivalent planes
- These equivalent group of planes are called as family of planes.
- e.g. {100} family of plane consists following planes
   (100), (010), (001), (100), (010), (001)

Similarly, find out planes and directions in other family of plane and directions.



### Summary

- 1. In cubic system the direction [uvw] is always perpendicular to the plane(hkl).
- 2. Identical planes are parallel to each other.
- 3. A family of planes have same magnitude and identical planes but in opposite directions.



## **Assignments**

- 1. Draw (100) plane and [100] direction in a single unit cell. Similarly, try for (110) and [110],(111) plane and [111] directions and plans as well.

  Comment on the result.
- 2. Find out the direction and planes in <100>, <110> and <111> family of directions.
- 3. Find out the direction and planes in {100}, {110} and {111} family of planes.
- 4. Draw cubic unit cell and show the following planes in it
- (a)  $(21\overline{2})$  (b)  $(1\overline{2}0)$  (c)  $(12\overline{2})$  (d)  $(20\overline{3})$  (e)  $(\overline{3}1\overline{2})$  (f)  $(2\overline{2}3)$
- 5. Draw the following crystallographic planes in cubic unit cell:
- (a) (101) (b)  $(1\overline{1}0)$  (c) (221) (d) (210) (e)  $(0\overline{1}2)$

