Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Лабораторная работа №3 по дисциплине

«Методы машинного обучения»

Тема: «Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных»

	nenomini End.
	Макаров Д.А.
	Группа ИУ5-21М
""	2020 г.

исполнитель.

In [1]:

Цель лабораторной работы: изучение способов предварительной обработки данных для дальнейшего формир ования моделей.

Задание:

Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполне ния следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.)

Для выбранного датасета (датасетов) на основе материалов лекции решить следующие задачи:

обработку пропусков в данных;

кодирование категориальных признаков;

масштабирование данных.

File "<ipython-input-1-b57b1c6fc603>", line 1

Цель лабораторной работы: изучение способов предварительной обработки данных для дальнейшего ϕ ормирования моделей.

SyntaxError: invalid syntax

In [13]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")

companies = pd.read_csv('./acquisitions.csv', sep=',')
companies.head(10)
```

Out[13]:

	AcquisitionID	AcquisitionMonth	AcquisitionMonthDate	AcquisitionYear	Company	Business	Country	Value (USD)	Deri prodı
0	ACQ99	November	11.0	2015	bebop	Cloud software	USA	380000000.0	God Cl Platf
1	ACQ98	November	11.0	2015	Fly Labs	Video editing	USA	NaN	Go: Ph:
2	ACQ97	December	8.0	2015	Clearleap	Cloud-based video management	USA	NaN	1
3	ACQ96	December	18.0	2015	Metanautix	Big Data Analytics	USA	NaN	1
4	ACQ95	December	21.0	2015	Talko, Inc.	Mobile communications	USA	NaN	1
5	ACQ94	January	7.0	2016	Emotient	Emotion recognition	USA	NaN	Face Animoji[
6	ACQ93	January	15.0	2016	Iris Analytics	Real time transaction fraud detection	GER	NaN	1
7	ACQ92	January	19.0	2016	Teacher Gaming LLC	Education software	FIN	NaN	1
8	ACQ915	July	30.0	1987	Forethought, Inc.	Computer software	USA	14000000.0	1
9	ACQ914	March	2.0	1988	Network Innovations	Software	USA	NaN	1
4									Þ

In [14]:

```
companies.shape
```

Out[14]:

(916, 10)

```
In [15]:
companies.dtypes
Out[15]:
                       object
object
AcquisitionID
AcquisitionMonth
AcquisitionMonthDate float64
AcquisitionYear
                        int64
Company
                        object
Business
                        object
Country
                        object
Value (USD)
                       float64
Derived products
                        object
ParentCompany
                       object
dtype: object
In [16]:
# Проверка на пустые значения
companies.isnull().sum()
# for column in companies.columns:
    buf null = companies[companies[column].isnull()].shape[0]
     print ('{}-{}'.format(column, buf_null))
# acquisition - приобретение, овладение
# derived products - производные продукты
Out[16]:
AcquisitionID
                        0
AcquisitionMonth
                       33
AcquisitionMonthDate
AcquisitionYear
                         0
Company
                         0
                         Ω
Business
                        46
Country
Value (USD)
                       671
Derived products
                      515
ParentCompany
dtype: int64
In [17]:
#Вывод: по полям AcquisitionMont, AcquisitionMonthDate, Country-46 - пропуски данных небольшие,
# Это не сильно повлияет на анализ
# По полям Value (USD) и Derived products пропуски более 50% от dataset, сильное влияние
total count = companies.shape[0]
print('Bcero ctpok: {}'.format(total_count))
Всего строк: 916
In [18]:
#1. Обработка пропусков в данных
#1.1. Простые стратегии - удаление или заполнение нулями
# Удаление колонок, содержащих пустые значения
data new 1 = companies.dropna(axis=1, how='any')
(companies.shape, data new 1.shape)
Out[18]:
((916, 10), (916, 5))
In [19]:
data_new_1.head(5)
```

Out[19]:

	AcquisitionID	AcquisitionYear	Company	Business	ParentCompany
0	ACQ99	2015	bebop	Cloud software	Google
1	ACQ98	2015	Fly Labs	Video editing	Google
2	ACQ97	2015	Clearleap	Cloud-based video management	IBM
3	ACQ96	2015	Metanautix	Big Data Analytics	Microsoft
4	ACQ95	2015	Talko, Inc.	Mobile communications	Microsoft

In [10]:

```
data_new_1.shape
```

Out[10]:

(916, 5)

In [11]:

```
# Удаление строк, содержащих пустые значения data_new_2 = companies.dropna(axis=0, how='any') (companies.shape, data_new_2.shape)
```

Out[11]:

((916, 10), (114, 10))

In [12]:

data_new_2.head(5)

Out[12]:

	AcquisitionID	AcquisitionMonth	AcquisitionMonthDate	AcquisitionYear	Company	Business	Country	Value (USD)	Derived products	Pŧ
0	ACQ99	November	11.0	2015	bebop	Cloud software	USA	380000000.0	Google Cloud Platform	
38	ACQ889	February	7.0	1997	NeXT	Unix-like hardware and software platform	USA	404000000.0	Mac OS X, iOS, macOS, tvOS, watchOS	
47	ACQ880	October	8.0	1997	Four11	Web-based email	USA	92000000.0	Yahoo! Mail	
55	ACQ873	June	8.0	1998	Viaweb	Web application	USA	48600000.0	Yahoo! Store	
56	ACQ872	July	17.0	1998	Webcal	Calendaring software	USA	21000000.0	Yahoo Calendar	
4								1000		•

In [13]:

data_new_2.shape

Out[13]:

(114, 10)

In [14]:

```
# Заполнение всех пропущенных значений нулями # В данном случае это некорректно, так как нулями заполняются в том числе категориальные колонки data_{new_3} = companies.fillna(0) data_{new_3}.isnull().sum()
```

Out[14]:

AcquisitionID 0 AcquisitionMonth AcquisitionMonthDate 0 AcquisitionYear 0 Company Business 0 Country 0 Value (USD) 0 Derived products 0 ParentCompany dtype: int64

In [15]:

```
#1.2. "Внедрение значений" - импьютация (imputation)
#1.2.1. Обработка пропусков в числовых данных
# Импьютация - процесс замены пропущенных, некорректных или несостоятельных значений другими значе
# Выберем числовые колонки с пропущенными значениями
# Цикл по колонкам датасета
# Выберем числовые колонки с пропущенными значениями
# Цикл по колонкам датасета
num cols = []
for col in companies.columns:
   # Количество пустых значений
   temp null count = companies[companies[col].isnull()].shape[0]
   dt = str(companies[col].dtype)
   total_count = companies.shape[0]
if temp_null_count>0 and (dt=='float64' or dt=='int64'):
       num cols.append(col)
        temp perc = round((temp null count / total count) * 100.0, 2)
       print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col, dt, temp
_null_count, temp_perc))
4
                                                                                                   |
```

Колонка AcquisitionMonthDate. Тип данных float64. Количество пустых значений 33, 3.6%. Колонка Value (USD). Тип данных float64. Количество пустых значений 671, 73.25%.

In [16]:

```
# Фильтр по колонкам с пропущенными значениями
data_num = companies[num_cols]
data_num
```

Out[16]:

	AcquisitionMonthDate	te Value (USD)			
0	11.0	3.800000e+08			
1	11.0	NaN			
2	8.0	NaN			
3	18.0	NaN			
4	21.0	NaN			
5	7.0	NaN			
6	15.0	NaN			
7	19.0	NaN			
8	30.0	1.400000e+07			
9	2.0	NaN			
10	7.0	NaN			
11	27.0	NaN			
12	11.0	NaN			
13	3.0	NaN			
14	21.0	NaN			
15	31.0	NaN			

16	AcquisitionMonthDate	Value (USD)
17	28.0	NaN
18	27.0	NaN
19	1.0	NaN
20	15.0	NaN
21	23.0	NaN
22	10.0	NaN
23	17.0	NaN
24	6.0	NaN
25	28.0	NaN
26	16.0	NaN
27	12.0	NaN
28	16.0	1.330000e+08
29	6.0	NaN
886	23.0	NaN
887	31.0	1.600000e+08
888	3.0	NaN
889	6.0	1.000000e+09
890	NaN	NaN
891	5.0	NaN
892	NaN	NaN
893	NaN	NaN
894	3.0	NaN
895	10.0	NaN
896	11.0	NaN
897	21.0	NaN
898	28.0	NaN
899	28.0	NaN
900	30.0	NaN
901	2.0	NaN
902	9.0	NaN
903	3.0	NaN
904	17.0	NaN
905	21.0	NaN
906	21.0	NaN
907	28.0	NaN
908	NaN	NaN
909	3.0	NaN
910	5.0	NaN
911	6.0	1.309000e+09
912	9.0	NaN
913	11.0	NaN
914	18.0	NaN
915	4.0	7.500000e+09

916 rows × 2 columns

In [17]:

Гистограмма по признакам
for col in data_num:
 plt.hist(companies[col], 50)

```
plt.xlabel(col)
plt.show()
```

c:\users\uivan_000\anaconda3\lib\site-packages\numpy\lib\histograms.py:824: RuntimeWarning: invalid value encountered in greater equal

keep = (tmp_a >= first_edge)

c:\users\uivan_000\anaconda3\lib\site-packages\numpy\lib\histograms.py:825: RuntimeWarning:
invalid value encountered in less_equal

keep &= (tmp_a <= last_edge)</pre>

In [18]:

Фильтр по пустым значениям поля AcquisitionMonthDate companies[companies['AcquisitionMonthDate'].isnull()]

Out[18]:

	AcquisitionID	AcquisitionMonth	AcquisitionMonthDate	AcquisitionYear	Company	Business	Country	Value (USD)	Deriv produc
45	ACQ882	September	NaN	1997	Net Controls	Web search engine	USA	1400000.0	Yaho Sear
61	ACQ868	December	NaN	1998	Hyperparallel	Data analysis	USA	8100000.0	Yahc Sear
99	ACQ833	NaN	NaN	2000	SoundJam MP[note 2]	Software	USA	NaN	iTun
100	ACQ832	NaN	NaN	2001	Bluefish Labs	Productivity software	USA	NaN	iWc
144	ACQ793	February	NaN	2003	Pyra Labs	Weblog software	USA	NaN	Blogg
149	ACQ789	April	NaN	2003	Applied Semantics	Online advertising	USA	102000000.0	AdSens AdWor
150	ACQ788	April	NaN	2003	Neotonic Software	Customer relationship management	USA	NaN	Goog Group Gm
161	ACQ778	October	NaN	2003	Genius Labs	Blogging	USA	NaN	Blogç
		- · ·				Online			AdSens

162	ACQ777 AcquisitionID	October AcquisitionMonth	NaN AcquisitionMonthDate	2003 AcquisitionYear	Sprinks Company	advertising Business	USA Country	NaN Value (USD)	ApleViv
166	ACQ773	January	NaN	2004	3721 Internet Assistant	Browser Helper Object	CHN	120000000.0	Yahr Assista
182	ACQ759	September	NaN	2004	ZipDash	Traffic analysis	USA	NaN	Goog Ma
184	ACQ757	October	NaN	2004	Where2	Map analysis	AUS	NaN	Gooς Ma
198	ACQ744	March	NaN	2005	Schemasoft	Software	CAN	NaN	iWc
205	ACQ738	April	NaN	2005	FingerWorks	Gesture recognition company	USA	NaN	iC
218	ACQ726	July	NaN	2005	Reqwireless	Mobile browser	CAN	NaN	Goog Mob
233	ACQ712	November	NaN	2005	Skia Inc.	Graphics library	USA	NaN	SI
301	ACQ651	December	NaN	2006	Wretch	Virtual community	TWN	22000000.0	Wret
474	ACQ496	August	NaN	2010	Zetawire	Mobile payment, NFC	CAN	NaN	Andro Gooç Wall Gooç Checkc
571	ACQ408	NaN	NaN	2012	WIMM Labs	Android- powered smartwatches	USA	NaN	Andro We
629	ACQ356	NaN	NaN	2013	OttoCat	Search engine	USA	NaN	A Stc
630	ACQ355	NaN	NaN	2013	Novauris Technologies	Speech recognition	UK	NaN	٤
641	ACQ345	March	NaN	2013	osmeta	Mobile software	USA	NaN	Nŧ
713	ACQ280	December	NaN	2013	Acunu	Database analytics	USA	NaN	iClo
733	ACQ262	NaN	NaN	2014	Dryft	On-Screen Keyboard	USA	NaN	i(Keyboa
840	ACQ166	January	NaN	2015	Camel Audio	Audio plug- ins and sound libraries	UK	NaN	Logic F
858	ACQ15	October	NaN	2017	PowerbyProxi	Wireless charging	NZL	NaN	iPhor AirPow
862	ACQ146	April	NaN	2015	Coherent Navigation	GPS	USA	NaN	Apr Ma
869	ACQ14	October	NaN	2017	init.ai	Messaging assistant	USA	NaN	٤
872	ACQ137	Мау	NaN	2015	Metaio	Augmented reality	GER	NaN	AR
890	ACQ120	September	NaN	2015	Perceptio	Machine learning, Image recognition	USA	NaN	Face I Animo Phot
892	ACQ119	September	NaN	2015	VocalIQ	Speech technology	UK	NaN	٤
893	ACQ118	September	NaN	2015	Mapsense	Mapping visualization and data collection	USA	NaN	Apr Ma
908	ACQ104	November	NaN	2015	Faceshift	Realtime Motion Capture	SWI	NaN	Anim
4									Þ

In [19]:

```
# Запоминаем индексы строк с пустыми значениями flt_index = companies['AcquisitionMonthDate'].isnull()].index flt_index
```

Out[19]:

```
205, 218, 233, 301, 474, 571, 629, 630, 641, 713, 733, 840, 858, 862, 869, 872, 890, 892, 893, 908], dtype='int64')
```

In [20]:

```
# Проверяем что выводятся нужные строки companies[companies.index.isin(flt_index)]
```

Out[20]:

	AcquisitionID	AcquisitionMonth	AcquisitionMonthDate	AcquisitionYear	Company	Business	Country	Value (USD)	Deriv produc
45	ACQ882	September	NaN	1997	Net Controls	Web search engine	USA	1400000.0	Yaho Sear
61	ACQ868	December	NaN	1998	Hyperparallel	Data analysis	USA	8100000.0	Yahc Sear
99	ACQ833	NaN	NaN	2000	SoundJam MP[note 2]	Software	USA	NaN	iTun
100	ACQ832	NaN	NaN	2001	Bluefish Labs	Productivity software	USA	NaN	iWc
144	ACQ793	February	NaN	2003	Pyra Labs	Weblog software	USA	NaN	Blogg
149	ACQ789	April	NaN	2003	Applied Semantics	Online advertising	USA	102000000.0	AdSens AdWor
150	ACQ788	April	NaN	2003	Neotonic Software	Customer relationship management	USA	NaN	Goog Group Gm
161	ACQ778	October	NaN	2003	Genius Labs	Blogging	USA	NaN	Blogg
162	ACQ777	October	NaN	2003	Sprinks	Online advertising	USA	NaN	AdSens AdWor
166	ACQ773	January	NaN	2004	3721 Internet Assistant	Browser Helper Object	CHN	120000000.0	Yahc Assista
182	ACQ759	September	NaN	2004	ZipDash	Traffic analysis	USA	NaN	Goog Ma
184	ACQ757	October	NaN	2004	Where2	Map analysis	AUS	NaN	Gooς Ma
198	ACQ744	March	NaN	2005	Schemasoft	Software	CAN	NaN	iWc
205	ACQ738	April	NaN	2005	FingerWorks	Gesture recognition company	USA	NaN	iC
218	ACQ726	July	NaN	2005	Reqwireless	Mobile browser	CAN	NaN	Goog Mob
233	ACQ712	November	NaN	2005	Skia Inc.	Graphics library	USA	NaN	SI
301	ACQ651	December	NaN	2006	Wretch	Virtual community	TWN	22000000.0	Wret
474	ACQ496	August	NaN	2010	Zetawire	Mobile payment, NFC	CAN	NaN	Andro Goog Wall Goog Checko
571	ACQ408	NaN	NaN	2012	WIMM Labs	Android- powered smartwatches	USA	NaN	Andro We
629	ACQ356	NaN	NaN	2013	OttoCat	Search engine	USA	NaN	A Stc
630	ACQ355	NaN	NaN	2013	Novauris Technologies	Speech recognition	UK	NaN	8
641	ACQ345	March	NaN	2013	osmeta	Mobile software	USA	NaN	Na
713	ACQ280	December	NaN	2013	Acunu	Database analytics	USA	NaN	iClo
733	ACQ262	NaN	NaN	2014	Dryft	On-Screen Keyboard	USA	NaN	i(Keyboa
040	ACO166	lonuon	NaNi	2015	Compl Audio	Audio plug-	ПИ	NoN	Logio E

040	AUQ 100	January	ivaiv	2010	Carrier Audio	ins and sound	UN	inain	Logic P
	AcquisitionID	AcquisitionMonth	AcquisitionMonthDate	AcquisitionYear	Company	Business	Country	Value (USD)	Deriv produc
858	ACQ15	October	NaN	2017	PowerbyProxi	Wireless charging	NZL	NaN	i Phor AirPow
862	ACQ146	April	NaN	2015	Coherent Navigation	GPS	USA	NaN	Apr Ma
869	ACQ14	October	NaN	2017	init.ai	Messaging assistant	USA	NaN	٤
872	ACQ137	May	NaN	2015	Metaio	Augmented reality	GER	NaN	AR
890	ACQ120	September	NaN	2015	Perceptio	Machine learning, Image recognition	USA	NaN	Face I Animo Phot
892	ACQ119	September	NaN	2015	VocalIQ	Speech technology	UK	NaN	ξ
893	ACQ118	September	NaN	2015	Mapsense	Mapping visualization and data collection	USA	NaN	Apr Ma
908	ACQ104	November	NaN	2015	Faceshift	Realtime Motion Capture	SWI	NaN	Anim
4							13)

In [21]:

```
# фильтр по колонке data_num[data_num.index.isin(flt_index)]['AcquisitionMonthDate']
```

```
Out[21]:
45
     NaN
61
     NaN
99
     NaN
100
     NaN
144
     NaN
149
     NaN
150
     NaN
161
     NaN
162
     NaN
166
     NaN
182
     NaN
184
     NaN
198
     NaN
205
     NaN
218
     NaN
233
     NaN
301
     NaN
474
     NaN
571
     NaN
629
     NaN
630
     NaN
641
     NaN
713
     NaN
733
     NaN
840
     NaN
858
     NaN
862
     NaN
869
     NaN
872
     NaN
890
     NaN
892
     NaN
893
     NaN
908
    NaN
Name: AcquisitionMonthDate, dtype: float64
```

In [22]:

```
#Будем использовать встроенные средства импьютации библиотеки scikit-learn - https://scikit-learn.org/stable/modules/impute.html#impute
data_num_AcquisitionMonthDate = data_num[['AcquisitionMonthDate']]
data_num_AcquisitionMonthDate.head()
```

Out[22]:

AcquisitionMonthDate

0	11.0
1	11.0
2	8.0
3	18.0
4	21.0

In [24]:

```
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
```

In [25]:

```
# Фильтр для проверки заполнения пустых значений indicator = MissingIndicator() mask_missing_values_only = indicator.fit_transform(data_num_AcquisitionMonthDate) mask_missing_values_only
```

Out[25]:

```
array([[False],
       [False],
       [ True],
```

[False], [False],

```
[False],
[ True],
[False],
[ True],
[True],
[False],
```

[False],

[False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [True], [False], [False], [False], [False], [True], [True], [False], [True], [True], [False], [False], [False], [True], [False], [True], [False], [True], [False], [True], [False], [False],

[False],

[False], [False], [False], [True], [False], [True], [False], [True], [False], [False],

[Falsel.

[False], [True], [False], [False],

[Falsel.

[False], [False],

[Falcol

```
[False],
[ True],
[False],
[La] ca]
```

[False], [False],

```
[raise],
[False],
[ True],
[False],
```

[[]]]]

```
[raise],
[False],
[ True],
[ True],
[False],
[ True],
[False],
```

```
[raise],
[False],
[ True],
[False],
[ True],
[False],
[False],
[False],
[False],
[False],
[False],
```

[False], [False],

```
[False],
[ True],
[False],
[ True],
[False],
[False],
[False],
[ True],
[False],
[False],
[False],
[False],
[False],
[False],
[ True],
[False],
[False],
[ True],
[False],
[ True],
[False],
[ True],
[ True],
```

```
[False],
       [False],
       [Falsel.
       [False],
       [False],
      [False],
      [False],
      [False],
       [False],
       [False],
       [False],
      [False],
      [False],
       [False],
       [ True],
       [False],
       [False],
      [False],
      [False],
       [False],
       [False],
       [False]])
In [26]:
#C помощью класса SimpleImputer можно проводить импьютацию различными показателями центра
распределения
strategies=['mean', 'median', 'most frequent']
In [27]:
def test num impute(strategy_param):
    imp num = SimpleImputer(strategy=strategy param)
    data_num_imp = imp_num.fit_transform(data_num_AcquisitionMonthDate)
    return data num imp[mask missing values only]
In [28]:
strategies[0], test num impute(strategies[0])
Out[28]:
('mean',
 array([14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.70215176,
        14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.70215176,
       14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.70215176,
       14.70215176, 14.70215176, 14.70215176, 14.70215176, 14.70215176,
       14.70215176, 14.70215176, 14.70215176]))
In [29]:
strategies[1], test num impute(strategies[1])
Out[29]:
('median',
In [30]:
strategies[2], test num impute(strategies[2])
Out[30]:
('most frequent',
```

```
In [31]:
# Более сложная функция, которая позволяет задавать колонку и вид импьютации
def test_num_impute_col(dataset, column, strategy_param):
    temp data = dataset[[column]]
    indicator = MissingIndicator()
    mask missing values only = indicator.fit transform(temp data)
    imp num = SimpleImputer(strategy=strategy_param)
    data num imp = imp num.fit transform(temp data)
    filled data = data num imp[mask missing values only]
    return column, strategy param, filled data.size, filled data[0], filled data[filled data.size-1
1
In [32]:
companies[['Value (USD)']].describe()
Out[32]:
       Value (USD)
count 2.450000e+02
 mean 7.584170e+08
  std 2.453624e+09
  min 2.000000e+05
 25% 3.000000e+07
  50% 1.020000e+08
 75% 4.500000e+08
  max 2.620000e+10
In [33]:
test_num_impute_col(companies, 'Value (USD)', strategies[0])
Out[33]:
('Value (USD)', 'mean', 671, 758416979.5918367, 758416979.5918367)
In [34]:
test num impute col(companies, 'Value (USD)', strategies[1])
Out[34]:
('Value (USD)', 'median', 671, 102000000.0, 102000000.0)
In [35]:
test_num_impute_col(companies, 'Value (USD)', strategies[2])
Out[35]:
('Value (USD)', 'most frequent', 671, 100000000.0, 100000000.0)
In [36]:
#1.2.2. Обработка пропусков в категориальных данных
```

cars = pd.read csv('Data/lab 3/Car sales.csv', sep=',')

cars.isnull().sum() Out[37]: Manufacturer 0 Model Ω Sales in thousands 4-year resale value 0 Vehicle type 0 Price in thousands 0 Engine size 0 Horsepower Wheelbase 0 Width 0 Length 0 Curb weight 0 Fuel capacity Fuel efficiency Latest Launch 0 dtype: int64

Вывод: пропусков в данных нет, значит, они хорошо подходят для построения модели

In [38]:

```
companies2 = pd.read_csv('Data/lab_3/acquisitions.csv', sep=',')
companies2.head(5)
#companies2.shape
```

Out[38]:

	AcquisitionID	AcquisitionMonth	AcquisitionMonthDate	AcquisitionYear	Company	Business	Country	Value (USD)	Derived products
0	ACQ99	November	11.0	2015	bebop	Cloud software	USA	380000000.0	Google Cloud Platform
1	ACQ98	November	11.0	2015	Fly Labs	Video editing	USA	NaN	Google Photos
2	ACQ97	December	8.0	2015	Clearleap	Cloud-based video management	USA	NaN	NaN
3	ACQ96	December	18.0	2015	Metanautix	Big Data Analytics	USA	NaN	NaN
4	ACQ95	December	21.0	2015	Talko, Inc.	Mobile communications	USA	NaN	NaN
4									Þ

In [39]:

```
# возьмем старый датасет companies
# Выберем категориальные колонки с пропущенными значениями
# Цикл по колонкам датасета
cat cols = []
for col in companies2.columns:
   # Количество пустых значений
   temp null count = companies2[companies2[col].isnull()].shape[0]
   dt = str(companies2[col].dtype)
    total count = companies2.shape[0]
    if temp_null_count>0 and (dt=='object'):
       cat cols.append(col)
       temp perc = round((temp null count / total count) * 100.0, 2)
       print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col, dt, temp
null count, temp perc))
4
                                                                                                •
```

Колонка AcquisitionMonth. Тип данных object. Количество пустых значений 6, 0.66%. Колонка Country. Тип данных object. Количество пустых значений 46, 5.02%. Колонка Derived products. Тип данных object. Количество пустых значений 515, 56.22%.

In [40]:

```
"most frequent" или "constant".
cat_temp_data = companies2[['Country']]
cat_temp_data.head(2)
Out[40]:
   Country
       USA
       USA
 1
In [41]:
cat_temp_data['Country']. unique()
Out[41]:
array(['USA', 'GER', 'FIN', 'CAN', 'UK', 'SWE', 'ISR', 'TWN', 'AUS', 'SGP', 'NOR', 'DEN', 'ROU', 'CHN', 'EU', 'IND', 'BLR', 'FRA', 'BRA', 'ITA', 'SWI', 'SUI', 'CHE', 'NED', 'ESP', 'THA', 'BEL', 'POR', nan, 'KOR', 'HKG', 'JOR', 'MYS', 'IRL', 'IDN', 'GRE', 'LUX',
         'UKR', 'AUT', 'JPN', 'NZL'], dtype=object)
In [42]:
cat_temp_data[cat_temp_data['Country'].isnull()].shape
Out[42]:
(46, 1)
In [43]:
# Импьютация наиболее частыми значениями
imp2 = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
data_imp2 = imp2.fit_transform(cat_temp_data)
data imp2
Out[43]:
array([['USA'],
        ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['GER'],
         ['FIN'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['CAN'],
         ['USA'],
         ['CAN'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['UK'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['GER'],
         ['USA'],
         ['USA'],
```

```
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['GER'],
['USA'],
['USA'],
['UK'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['UK'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['SWE'],
['CAN'],
['UK'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['ISR'],
['USA'],
['USA'],
['USA'],
['GER'],
['USA'],
['USA'],
['GER'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['TWN'],
['USA'],
['USA'],
['USA'],
['AUS'],
['CAN'],
['USA'],
['USA'],
['CAN'],
['USA'],
```

['CAN'],

```
['USA'],
['SGP'],
['USA'],
['USA'],
['NOR'],
['GER'],
['DEN'],
['USA'],
['USA'],
['USA'],
['USA'],
['UK'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['AUS'],
['USA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['ROU'],
['USA'],
['USA'],
['AUS'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['CHN'],
['EU'],
['USA'],
['IND'],
['BLR'],
['FRA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['UK'],
['USA'],
['USA'],
['AUS'],
['EU'],
```

['USA'], ['ISR'],

```
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['DEN'],
['USA'],
['USA'],
['FRA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['BRA'],
['USA'],
['USA'],
['USA'],
['USA'],
['CHN'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['CAN'],
['BRA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['ITA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['UK'],
['USA'],
['USA'],
['SWI'],
['UK'],
['IND'],
['USA'],
['AUS'],
['USA'],
['USA'],
['USA'],
['GER'],
['GER'],
['USA'],
['USA'],
['ISR'],
['UK'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['FRA'],
['USA'],
['USA'],
['USA'],
['UK'],
['USA'],
['USA'],
```

['USA'],

```
['USA'],
['UK'],
['AUS'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['UK'],
['SUI'],
['USA'],
['USA'],
['ISR'],
['FRA'],
['USA'],
['GER'],
['BRA'],
['ISR'],
['USA'],
['USA'],
['AUS'],
['USA'],
['EU'],
['TWN'],
['AUS'],
['USA'],
['CHE'],
['USA'],
['NED'],
['USA'],
['USA'],
['USA'],
['USA'],
['SWE'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['SWE'],
['SWI'],
['USA'],
['USA'],
['FRA'],
['USA'],
['USA'],
['USA'],
['USA'],
['ESP'],
['USA'],
```

['USA'],

```
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['FIN'],
['USA'],
['THA'],
['DEN'],
['FRA'],
['USA'],
['CAN'],
['UK'],
['ISR'],
['USA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['ISR'],
['USA'],
['USA'],
['USA'],
['CAN'],
['SWE'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['NOR'],
['USA'],
['USA'],
['USA'],
['BEL'],
['USA'],
['USA'],
['POR'],
['USA'],
['USA'],
['USA'],
['FRA'],
['USA'],
['USA'],
['KOR'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['HKG'],
['ISR'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
```

['JOR'],

```
['USA'],
['USA'],
['SGP'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['IND'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['MYS'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['UK'],
['USA'],
['IRL'],
['USA'],
['ISR'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['IDN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['IND'],
['USA'],
['USA'],
['CAN'],
['USA'],
['ISR'],
['UK'],
['USA'],
['SWE'],
['USA'],
['USA'],
['USA'],
```

['USA'l.

```
['GRE'],
['ISR'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['UK'],
['USA'],
['USA'],
['AUS'],
['USA'],
['USA'],
['GER'],
['USA'],
['USA'],
['UK'],
['USA'],
['IRL'],
['ISR'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['LUX'],
['USA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['NED'],
['USA'],
['USA'],
['FIN'],
['USA'],
['USA'],
['USA'],
['USA'],
['SWE'],
['USA'],
['USA'],
['USA'],
['UK'],
['CAN'],
['USA'],
['USA'],
['USA'],
['GER'],
['USA'],
['USA'],
['USA'],
['CAN'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['IRL'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
```

['TSR'].

```
['USA'],
['USA'],
['USA'],
['USA'],
['ISR'],
['USA'],
['USA'],
['USA'],
['USA'],
['SWE'],
['USA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['UK'],
['CAN'],
['USA'],
['ITA'],
['USA'],
['USA'],
['USA'],
['ISR'],
['USA'],
['USA'],
['USA'],
['FRA'],
['SWE'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['ESP'],
['USA'],
['UK'],
['USA'],
['USA'],
['UKR'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['AUS'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['UK'],
['USA'],
['CAN'],
['USA'],
['USA'],
['SWI'],
```

וימסיו

```
[ ONT ],
['USA'],
['USA'],
['UK'],
['USA'],
['CAN'],
['USA'],
['ISR'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['ISR'],
['UK'],
['CHN'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['ISR'],
['USA'],
['USA'],
['FIN'],
['USA'],
['SWE'],
['USA'],
['FIN'],
['USA'],
['USA'],
['UK'],
['USA'],
['IRL'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['AUT'],
['ISR'],
['FRA'],
['USA'],
['USA'],
['USA'],
['ISR'],
['USA'],
['USA'],
['JPN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
```

```
l oom l'
['GER'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['CHE'],
['USA'],
['ISR'],
['USA'],
['USA'],
['IND'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['UK'],
['USA'],
['GER'],
['USA'],
['USA'],
['USA'],
['ISR'],
['USA'],
['UK'],
['USA'],
['USA'],
['USA'],
['USA'],
['ISR'],
['USA'],
['UK'],
['UK'],
['FRA'],
['USA'],
['USA'],
['USA'],
['USA'],
['FIN'],
['FRA'],
['IND'],
['NZL'],
['UK'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['FRA'],
['USA'],
['ISR'],
['USA'],
['USA'],
['FIN'],
```

[| TTC7 |]

```
['USA'],
['BLR'],
['USA'],
['ITA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['ISR'],
['TWN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['IND'],
['NED'],
['USA'],
['CAN'],
['USA'],
['UK'],
['USA'],
['USA'],
['SWE'],
['USA'],
['ISR'],
['USA'],
['USA'],
['USA'],
['USA'],
['GER'],
['GER'],
['USA'],
['UK'],
['USA'],
['USA'],
['ISR'],
['IND'],
['UK'],
['USA'],
['FRA'],
['USA'],
['USA'],
['USA'],
['USA'],
['ISR'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['NZL'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['ISR'],
['USA'],
['USA'],
['IRL'],
['USA'],
['GER'],
['USA'],
['UK'],
['USA'],
['GER'],
['USA'],
F | TT | 7 | 1 |
```

```
['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['ISR'],
         ['ISR'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['AUS'],
         ['UK'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['CAN'],
         ['USA'],
         ['USA'],
         ['IRL'],
         ['USA'],
         ['USA'],
         ['POR'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['SWI'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['ISR'],
         ['USA'],
         ['USA'],
         ['USA']], dtype=object)
In [44]:
# Пустые значения отсутствуют
np.unique(data imp2)
Out[44]:
array(['AUS', 'AUT', 'BEL', 'BLR', 'BRA', 'CAN', 'CHE', 'CHN', 'DEN', 'ESP', 'EU', 'FIN', 'FRA', 'GER', 'GRE', 'HKG', 'IDN', 'IND', 'IRL', 'ISR', 'ITA', 'JOR', 'JPN', 'KOR', 'LUX', 'MYS', 'NED', 'NOR', 'NZL', 'POR', 'ROU', 'SGP', 'SUI', 'SWE', 'SWI', 'THA',
         'TWN', 'UK', 'UKR', 'USA'], dtype=object)
In [45]:
# Импьютация константой
imp3 = SimpleImputer(missing_values=np.nan, strategy='constant', fill_value='!!!')
data_imp3 = imp3.fit_transform(cat_temp_data)
data imp3
Out[45]:
array([['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['GER'],
         ['FIN'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
         ['USA'],
```

```
['USA'],
['CAN'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['UK'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['GER'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['GER'],
['USA'],
['USA'],
['UK'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['UK'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['SWE'],
['CAN'],
['UK'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['ISR'],
['USA'],
['USA'],
['USA'],
['GER'],
```

['USA'],

```
['USA'],
['GER'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['TWN'],
['USA'],
['USA'],
['USA'],
['AUS'],
['CAN'],
['USA'],
['USA'],
['CAN'],
['USA'],
['CAN'],
['USA'],
['ISR'],
['USA'],
['SGP'],
['USA'],
['USA'],
['NOR'],
['GER'],
['DEN'],
['USA'],
['USA'],
['USA'],
['USA'],
['UK'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['AUS'],
['USA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['ROU'],
['USA'],
['USA'],
['AUS'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['CHN'],
```

['EU'],

```
['USA'],
['IND'],
['BLR'],
['FRA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['UK'],
['USA'],
['USA'],
['AUS'],
['EU'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['DEN'],
['USA'],
['USA'],
['FRA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['BRA'],
['USA'],
['USA'],
['USA'],
['USA'],
['CHN'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['CAN'],
['BRA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['ITA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['UK'],
['USA'],
['USA'],
['SWI'],
['UK'],
['IND'],
['USA'],
['AUS'],
['USA'],
['USA'],
['USA'],
['GER'],
```

['GER'].

```
['USA'],
['USA'],
['ISR'],
['UK'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['FRA'],
['USA'],
['USA'],
['USA'],
['UK'],
['USA'],
['USA'],
['USA'],
['USA'],
['UK'],
['AUS'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['UK'],
['SUI'],
['USA'],
['USA'],
['ISR'],
['FRA'],
['USA'],
['GER'],
['BRA'],
['ISR'],
['USA'],
['USA'],
['AUS'],
['USA'],
['EU'],
['TWN'],
['AUS'],
['USA'],
['CHE'],
['USA'],
['NED'],
['USA'],
['USA'],
['USA'],
['USA'],
['SWE'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['SWE'],
['SWI'],
['USA'],
['USA'],
```

['FRA'].

```
['USA'],
['USA'],
['USA'],
['USA'],
['ESP'],
['USA'],
['CAN'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['FIN'],
['USA'],
['THA'],
['DEN'],
['FRA'],
['USA'],
['CAN'],
['UK'],
['ISR'],
['USA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['ISR'],
['USA'],
['USA'],
['USA'],
['CAN'],
['SWE'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['NOR'],
['USA'],
['USA'],
['USA'],
['BEL'],
['USA'],
['USA'],
['POR'],
['USA'],
['USA'],
['!!!'],
['FRA'],
['USA'],
['USA'],
```

['KUB']

```
[ 1.01. ],
['USA'],
['USA'],
['USA'],
['!!!'],
['USA'],
['HKG'],
['ISR'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['JOR'],
['USA'],
['USA'],
['SGP'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['IND'],
['USA'],
['USA'],
['CAN'],
['USA'],
['!!!'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['MYS'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['!!!'],
['UK'],
['USA'],
['IRL'],
['!!!!'],
['ISR'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['!!!'],
['USA'],
['USA'],
['USA'],
['IDN'],
['USA'],
['USA'],
['!!!'],
['USA'],
['USA'],
['USA'],
['!!!'],
['USA'],
['CAN'],
['USA'],
['USA'],
['CAN'],
```

[I K S I I

```
[ UDA ],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['IND'],
['USA'],
['USA'],
['CAN'],
['USA'],
['ISR'],
['UK'],
['USA'],
['SWE'],
['USA'],
['USA'],
['USA'],
['USA'],
['GRE'],
['ISR'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['UK'],
['!!!'],
['USA'],
['AUS'],
['USA'],
['USA'],
['GER'],
['USA'],
['USA'],
['UK'],
['USA'],
['IRL'],
['ISR'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['LUX'],
['!!!!'],
['USA'],
['!!!'],
['!!!'],
['CAN'],
['USA'],
['USA'],
['USA'],
['NED'],
['USA'],
['!!!'],
['FIN'],
['USA'],
['USA'],
['USA'],
['USA'],
['SWE'],
['USA'],
['!!!'],
['USA'],
['UK'],
['CAN'],
['USA'],
['USA'],
['USA'],
['GER'],
['!!!'],
```

```
['USA'],
['USA'],
['CAN'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['!!!!'],
['USA'],
['IRL'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['ISR'],
['USA'],
['USA'],
['!!!'],
['!!!'],
['ISR'],
['USA'],
['USA'],
['!!!'],
['USA'],
['SWE'],
['USA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['!!!!'],
['USA'],
['USA'],
['USA'],
['!!!'],
['UK'],
['CAN'],
['USA'],
['ITA'],
['USA'],
['!!!'],
['USA'],
['ISR'],
['USA'],
['USA'],
['USA'],
['FRA'],
['SWE'],
['CAN'],
['USA'],
['USA'],
['!!!'],
['USA'],
['USA'],
['USA'],
['ESP'],
['USA'],
['UK'],
['USA'],
['USA'],
['UKR'],
['USA'],
['!!!'],
['USA'],
['!!!'],
['USA'],
['USA'],
['AUS'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
```

F | TT | 7 | 1 |

```
['USA'],
['UK'],
['USA'],
['USA'],
['!!!'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['SWI'],
['USA'],
['USA'],
['USA'],
['UK'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['!!!'],
['USA'],
['USA'],
['USA'],
['USA'],
['!!!'],
['USA'],
['USA'],
['USA'],
['CAN'],
['USA'],
['ISR'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['ISR'],
['UK'],
['CHN'],
['USA'],
['USA'],
['CAN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['!!!'],
['ISR'],
['USA'],
['USA'],
['FIN'],
['USA'],
['SWE'],
['!!!'],
['FIN'],
['!!!'],
['USA'],
['UK'],
['USA'],
['IRL'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
```

```
['AUT'],
['ISR'],
['FRA'],
['USA'],
['USA'],
['USA'],
['ISR'],
['USA'],
['USA'],
['JPN'],
['USA'],
['!!!'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['GER'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['CHE'],
['USA'],
['ISR'],
['USA'],
['USA'],
['IND'],
['USA'],
['USA'],
['USA'],
['USA'],
['!!!'],
['UK'],
['USA'],
['GER'],
['USA'],
['USA'],
['USA'],
['ISR'],
['USA'],
['UK'],
['USA'],
['USA'],
['USA'],
['USA'],
['ISR'],
['USA'],
['UK'],
['UK'],
['FRA'],
['!!!'],
['USA'],
['USA'],
['!!!'],
['FIN'],
['FRA'],
['IND'],
['NZL'],
['UK'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['!!!'],
['!!!'],
```

```
['USA'],
['USA'],
['USA'],
['USA'],
['CAN'],
['!!!'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['FRA'],
['USA'],
['ISR'],
['USA'],
['USA'],
['FIN'],
['!!!'],
['BLR'],
['USA'],
['ITA'],
['CAN'],
['USA'],
['!!!'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['ISR'],
['TWN'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['USA'],
['IND'],
['NED'],
['USA'],
['CAN'],
['USA'],
['UK'],
['USA'],
['!!!'],
['SWE'],
['USA'],
['ISR'],
['USA'],
['USA'],
['USA'],
['USA'],
['GER'],
['GER'],
['USA'],
['UK'],
['USA'],
['USA'],
['ISR'],
['IND'],
['UK'],
['USA'],
['FRA'],
['USA'],
['USA'],
['USA'],
['!!!'],
['ISR'],
['USA'],
['USA'],
['USA'],
['!!!'],
['USA'],
['NZL'],
['USA'],
```

```
['USA'],
          ['USA'],
          ['USA'],
          ['!!!'],
          ['USA'],
          ['USA'],
          ['CAN'],
          ['ISR'],
          ['USA'],
          ['USA'],
          ['IRL'],
          ['!!!'],
          ['GER'],
          ['USA'],
          ['UK'],
          ['USA'],
          ['GER'],
          ['USA'],
          ['USA'],
          ['USA'],
          ['USA'],
          ['USA'],
          ['USA'],
          ['ISR'],
          ['ISR'],
          ['USA'],
          ['USA'],
          ['USA'],
          ['USA'],
          ['USA'],
          ['USA'],
          ['AUS'],
          ['UK'],
          ['USA'],
          ['USA'],
          ['USA'],
          ['USA'],
          ['USA'],
          ['CAN'],
          ['USA'],
          ['USA'],
          ['IRL'],
          ['USA'],
          ['USA'],
          ['POR'],
          ['USA'],
          ['!!!'],
          ['USA'],
          ['SWI'],
          ['USA'],
          ['USA'],
          ['USA'],
          ['ISR'],
          ['USA'],
          ['USA'],
          ['USA']], dtype=object)
In [46]:
np.unique(data_imp3)
Out[46]:
array(['!!!', 'AUS', 'AUT', 'BEL', 'BLR', 'BRA', 'CAN', 'CHE', 'CHN', 'DEN', 'ESP', 'EU', 'FIN', 'FRA', 'GER', 'GRE', 'HKG', 'IDN', 'IND', 'IRL', 'ISR', 'ITA', 'JOR', 'JPN', 'KOR', 'LUX', 'MYS', 'NED', 'NOR', 'NZL', 'POR', 'ROU', 'SGP', 'SUI', 'SWE', 'SWI', 'THA', 'TWN', 'UK', 'UKR', 'USA'], dtype=object)
In [47]:
data_imp3[data_imp3=='!!!'].size
Out[47]:
```

In [48]:

```
#2. Преобразование категориальных признаков cat_enc = pd.DataFrame({'c1':data_imp2.T[0]}) cat_enc
```

Out[48]:

с1

- 0 USA
- 1 USA
- 2 USA
- 3 USA
- 4 USA
- 5 USA
- 6 GER
- 7 FIN
- 8 USA
- 9 USA
- USA
- USA
- USA
- USA
- USA
- 15 CAN
- USA
- CAN
- USA
- USA
- USA
- USA
- UK
- USA
- USA
- USA
- USA
- USA
- USA
- GER
-
- USA
- USA
- 888 USA889 USA
- USA
- AUS
- UK
- USA
- USA
- USA

```
896 USA
897 USA
 898 CAN
 899 USA
 900 USA
     IRL
 901
 902 USA
 903 USA
 904 POR
 905 USA
 906 USA
 907 USA
 908 SWI
 909 USA
 910 USA
 911 USA
 912 ISR
 913 USA
 914 USA
 915 USA
916 rows × 1 columns
In [49]:
# 2.1. Кодирование категорий целочисленными значениями - label encoding
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
In [50]:
le = LabelEncoder()
cat_enc_le = le.fit_transform(cat_enc['c1'])
In [51]:
cat enc['c1'].unique()
Out[51]:
array(['USA', 'GER', 'FIN', 'CAN', 'UK', 'SWE', 'ISR', 'TWN', 'AUS', 'SGP', 'NOR', 'DEN', 'ROU', 'CHN', 'EU', 'IND', 'BLR', 'FRA', 'BRA', 'ITA', 'SWI', 'SUI', 'CHE', 'NED', 'ESP', 'THA', 'BEL',
         'POR', 'KOR', 'HKG', 'JOR', 'MYS', 'IRL', 'IDN', 'GRE', 'LUX', 'UKR', 'AUT', 'JPN', 'NZL'], dtype=object)
In [52]:
np.unique(cat enc le)
Out[52]:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
         34, 35, 36, 37, 38, 39])
In [53]:
le.inverse_transform([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
          34, 35, 36, 37, 38, 39])
```

```
Out[53]:
array(['AUS', 'AUT', 'BEL', 'BLR', 'BRA', 'CAN', 'CHE', 'CHN', 'DEN',
    'ESP', 'EU', 'FIN', 'FRA', 'GER', 'GRE', 'HKG', 'IDN', 'IND', 'IRL', 'ISR', 'ITA', 'JOR', 'JPN', 'KOR', 'LUX', 'MYS', 'NED', 'NOR', 'NZL', 'POR', 'ROU', 'SGP', 'SUI', 'SWE', 'SWI', 'THA',
    'TWN', 'UK', 'UKR', 'USA'], dtype=object)
In [54]:
# можно вывести часть значений
le.inverse transform([0, 1, 2, 3, 4, 5])
Out[54]:
array(['AUS', 'AUT', 'BEL', 'BLR', 'BRA', 'CAN'], dtype=object)
In [55]:
# 2.2. Кодирование категорий наборами бинарных значений - one-hot encoding
ohe = OneHotEncoder()
cat enc ohe = ohe.fit transform(cat enc[['c1']])
cat_enc.shape
Out[55]:
(916, 1)
In [56]:
cat enc ohe.shape
Out[56]:
(916, 40)
In [57]:
cat enc ohe
Out [57]:
<916x40 sparse matrix of type '<class 'numpy.float64'>'
with 916 stored elements in Compressed Sparse Row format>
In [58]:
cat enc ohe.todense()[0:10]
Out[58]:
0., 0., 0., 0., 0., 0., 1.],
     0., 0., 0., 0., 0., 0., 0., 1.],
     0., 0., 0., 0., 0., 0., 1.],
     0., 0., 0., 0., 0., 0., 1.],
     0., 0., 0., 0., 0., 0., 1.],
```

```
0., 0., 0., 0., 0., 0., 0., 0.],
      0., 0., 0., 0., 0., 0., 1.]])
In [59]:
cat enc.head(10)
Out[59]:
In [60]:
# 2.3. Pandas get_dummies - быстрый вариант one-hot кодирования
pd.get_dummies(cat_enc).head(10)
# единицы проставляются там, где совпадение значения
Out[60]:
  c1_AUS c1_AUT c1_BEL c1_BRA c1_CAN c1_CHE c1_CHN c1_DEN c1_ESP ... c1_ROU c1_SGP c1_SUI c1_SWE
          0
               0
                    0
                          0
                               0
                                    0
                                         0
                                                   0 ...
                                                                    0
     0
          0
               0
                          0
                               0
                                    0
                                                   0 ...
                                                           0
                                                                0
                                                                    0
                                                                         0
     0
          0
               0
                     0
                               0
                                    0
                                                   0 ...
                                                           0
                                                                         0
                          0
                                                                    0
                          0
                                                   0 ...
          0
               0
                                                                0
                                                                    0
     0
          0
               0
                     0
                          0
                               0
                                    0
                                         0
                                                   0 ...
                                                           0
                                                                0
                                                                    0
                                                                         0
     0
          0
               0
                     0
                          0
                               0
                                    0
                                         0
                                                   0 ...
                                                          0
                                                                0
                                                                    0
                                                                         0
                               0
                                                   0 ...
     0
          0
               0
                     0
                          0
                                    0
                                         0
                                                           0
                                                                0
                                                                    0
                                                                         0
     0
          0
               0
                     0
                          0
                               0
                                    0
                                         0
                                              0
                                                   0 ...
                                                           0
                                                                0
                                                                    0
                                                                         0
                                                   0 ...
                                                                    0
                                                   0 ...
     0
          0
               0
                     0
                          0
                               0
                                    0
                                         0
                                                           0
                                                                0
                                                                    0
                                                                         0
10 rows × 40 columns
In [61]:
pd.get_dummies(cat_temp_data, dummy_na=True).head()
Out[61]:
  Country_AUS Country_AUT Country_BEL Country_BLR Country_BRA Country_CAN Country_CHE Country_CHN Country_DEN
                  0 0 0 0 0 0
```

0., 0., 0., 0., 0., 0., 0., 0.],

с1 USA 1 USA 2 USA 3 USA 4 USA 5 USA GER FIN 8 USA 9 USA

1	Country_AUS	Country_AUT	Country_BEL	Country_BLR	Country_BRA	Country_CAN	Country_CHE	Country_CHN	Country_DEN
2	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0

5 rows × 41 columns

· ·

In [62]:

```
# попробуем для другого датасета
cat_temp_data2 = companies2[['ParentCompany']]
```

In [63]:

```
pd.get_dummies(cat_temp_data2, dummy_na=True).head(8)
```

Out[63]:

	ParentCompany_Apple	ParentCompany_Facebook	ParentCompany_Google	ParentCompany_IBM	ParentCompany_Microsoft	ParentC-
0	0	0	1	0	0	
1	0	0	1	0	0	
2	0	0	0	1	0	
3	0	0	0	0	1	
4	0	0	0	0	1	
5	1	0	0	0	0	
6	0	0	0	1	0	
7	0	0	0	0	1	
4						Þ

In [64]:

3. Масштабирование данных

Термины "масштабирование" и "нормализация" часто используются как синонимы. Масштабирование предполагает изменение диапазона измерения величины, а нормализация - изменение распределения этой величины.

from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer

3.1. МіпМах масштабирование

In [65]:

```
#возьмем датасет car_sales
cars.head()
cars.shape
```

Out[65]:

(157, 15)

In [66]:

```
sc2 = StandardScaler()
#cars.dtypes
sc2_data = sc2.fit_transform(cars[['Sales in thousands']])
plt.hist(cars['Sales in thousands'], 157)
plt.show()
```


In [67]:

```
plt.hist(sc2_data, 157)
plt.show()
```


In [68]:

```
#3.2. Масштабирование данных на основе Z-оценки - StandardScaler
sc2 = StandardScaler()
sc2_data = sc2.fit_transform(cars[['Sales in thousands']])
plt.hist(sc2_data, 157)
plt.show()
# Масштабирование на основе z-оценки похоже на масштабирование MinMax
```


In [69]:

```
# 3.3. Нормализация данных sc3 = Normalizer() sc3_data = sc3.fit_transform(cars[['Sales in thousands']]) plt.hist(sc3_data, 157) plt.show()
```


