Klasifikace a vlastnosti paralelních a distribuovaných architektur

Z FITwiki

Přehled architektur

Paralelní architektury

- von Neumann
 - **SISD** (single instruction, single data)
 - Konvenční
 - VLIW (podle slides)
 - **SIMD** (single instruction, multiple data)
 - Vektorové procesory
 - Asociativní procesory
 - Zřetězené SIMD
 - Multiple SIMD
 - Same Program Multiple Data
 - MISD
 - Zřetezené procesory
 - Rozdělení úlohy
 - MIMD
 - VLIW (podle wikipedie)
 - Zřetězené MIMD
 - Se společnou sběrnicí
 - Se propojovací sítí
 - Se pevnou sítí

Obsah

- 1 Přehled architektur
 - 1.1 Flynnova klasifikace
- 2 Paralelní architektury
 - **2.1 SISD**
 - 2.1.1 Very Long Instruction Word (VLIW)
 - 2.2 SIMD
 - 2.2.1 Vektorové procesory
 - 2.2.2 Multiple SIMD (MSIMD)
 - 2.2.3 Same Program, Multiple Data (SPMD)
 - 2.3 MISD
 - 2.3.1 Zřetezené procesory
 - 2.3.2 Rozdělení úlohy
 - 2.4 MIMD
 - 2.5 Data flow
 - 2.6 Redukční počítač
 - 2.7 Externí odkazy

■ Redukční

Data Flow - není von Neumannovská architektura (nemá program a PC), provádí interpretaci grafu toku dat

Flynnova klasifikace

 Flynnova klasifikace popisuje pouze Von-Neumannovské architektury (model architektury počítače využívající společnou paměť pro data i instrukce).

	Single Instruction	Multiple Instruction
Single Data	SISD	MISD
Multiple Data	SIMD	MIMD

■ **SISD** - konvenční procesory

- SIMD vektorové procesory
- MISD řetězové procesory
- MIMD více procesorů, který každý pracuje na vlastních datech

Paralelní architektury

SISD

Very Long Instruction Word (VLIW)

- Podle slides z PRL patří pod SISD podle Wikipedie patří pod MIMD
- Jedna velmi dlouhá instrukce (představuje několik menších instrukcí pro různé procesory)
- Jediný PC, který sekvenčně prochází program
- Tyto procesory mohou pracovat paralelně, pokud je to možné (nejsou kolize, nečeká se na mezivýsledek).

Výhody

- jednoduchá implementace
- škálovatelnost

Nevýhody

- problémy se skoky
- instrukce v jednom kroku nemohou používat své výsledky navzájem (může vést ke ztrátě paralelismu)
- problémy s operacemi jejichž délka nelze předem vědět (vstup)

VLIW a superskalární procesory

- VLIW se nachází někde mezi statickými a dynamickými superskaláry
- Statické superskalární procesory

zpracovávají sekvenční program na více procesorech **in-order**, takže paralelnost je jen za souběhu správných instrukcí.

Dynamické superskalární procesory

zpracovávají sekvenční program na více procesorech **out-of-order**, např. spekulativní výpočty za skokem.

SIMD

Výhody

- Jednoduchá implementace
- Menší nároky na paměť
- jednodušší synchronizace a rychlejší komunikace mezi procesory než u MIMD

Nevýhody

- Ne všechny problémy lze datově paralelizovat
- Podmíněné skoky výrazně zpomalují
- Nevhodné pro malý počet procesorů
- vyžadují speciální procesory

Vektorové procesory

- paralelně se provádí stejná instrukce na n procesorech a n částech vstupních dat
- MMX, SSE

Se společnou pamětí S oddělenou pamětí Data bus Control Unit Control bus P P P M M M Interconnecting Net

Multiple SIMD (MSIMD)

- více kontrolních jendotek
- procesory se dynamicky přidělují

Same Program, Multiple Data (SPMD)

procesory provádí stejný program, ale zcela nezávisle (žádná synchronizace)

MISD

Zřetezené procesory

- pipeline
- lineárně propojené procesory
- řeší proudové úlohy
- data prochází postupně jednotlivými procesory

Rozdělení úlohy

- data se předají několika procesorům
- každý procesor provede nějakou část výpočtu

Např.: Ověření prvočísla se provede tak, že se číslo předá x procesorům a každý z nich vyzkouší dělení určitou skupinou dělitelů.

MIMD

multiprocesory (komunikují sdílenou pamětí)

multicomputery a distribuované systémy (zasílání zpráv)

Data flow

- nemá program a PC (Program Counter)
- program převeden na graf toku dat, který se pak interpretuje
- Do uzlu vstupují operandy a vystupuje výsledek.
- Paralelismus spočívá v několika operačních jednotkách, které vybírají události a pouští je grafem.
- Potenciální problém: pokud se na jedné hraně objeví dvě události, mohlo by dojít k přehození pořadí

Graf toku dat

- orientovaný graf
- uzly operace
- hrany datové závislosti mezi instrukcemi

Dataflow procesor

Graf toku dat je uložen v paměti aktivit

Redukční počítač

- bere výraz a nahrazuje jeho části výsledkem dané operace (např. 2*3 na 6) možnost provádět paralelně
- Program se převede na strom a po zadání hodnot se strom redukuje až na jeden uzel výsledek.

Externí odkazy

- (en) Flynova klasifikace (http://en.wikipedia.org/wiki/Flynn's taxonomy)
- (cs) von Neumannova architektura (http://cs.wikipedia.org/wiki/Von_Neumannova_architektura)
- (en) Dataflow architektura (http://en.wikipedia.org/wiki/Dataflow architecture)

Citováno z ,,http://wiki. fituska.eu/index.php?
title=Klasifikace_a_vlastnosti_paraleln%C3%ADch_a_distribuovan%C3%BDch_architektur&oldid=10034"
Kategorie: Státnice 2011 | Paralelní a distribuované algoritmy

Stránka byla naposledy editována 16. 6. 2012 v 07:57.