Linguagens Livres de Contexto

Introdução

Hierarquia de Chomsky

Linguagens Livres de Contexto

- Formalização sintática das linguagens de programação de alto nível
- Representação de construções aninhadas
 - na construção de expressões aritméticas
 - na estruturação do fluxo de controle
 - na estruturação do programa

Definição

- Quádrupla (V, Σ, P, S) com os seguintes componentes
 - V: conjunto (finito e não-vazio) dos símbolos terminais e nãoterminais
 - Σ: conjunto (finito e não-vazio) dos símbolos terminais; corresponde ao alfabeto da linguagem definida pela gramática
 - P: conjunto (finito e não-vazio) das regras de produção, todas no formato $\alpha \rightarrow \beta$, com $\alpha \in (V \Sigma)$ e $\beta \in V^*$;
 - S: raiz da gramática, $S \in (V \Sigma)$

- Melhor visualização da estrutura das sentenças da linguagem
 - facilitando a análise das mesmas
- Facilita a representação interna
 - nos compiladores e interpretadores

Exemplo:

```
- Sentença: a * (a + a)
```

```
\{E \rightarrow T+E, \ E \rightarrow T, \ T \rightarrow F*T, \ T \rightarrow F, \ F \rightarrow (E), \ F \rightarrow a\}
```

- Exemplo:
 - Sentença: a * (a + a)

$$\{E \rightarrow T+E, \ E \rightarrow T, \ T \rightarrow F*T, \ T \rightarrow F, \ F \rightarrow (E), \ F \rightarrow a\}$$

- Árvores de derivação não contêm informação sobre a sequência em que foram aplicadas as produções
 - elas informam apenas quais foram as produções aplicadas, mas não em que ordem

Gramática não-ambígua

 Se para toda e qualquer cadeia pertencente à linguagem, existir uma única sequência de derivações mais à esquerda e uma única sequência de derivações mais à direita que a geram

 Linguagem das expressões aritméticas sobre {a, +, *, (,)} com apenas um símbolo não-terminal E

```
\begin{cases}
E & \rightarrow & E + E, \\
E & \rightarrow & E * E, \\
E & \rightarrow & a, \\
E & \rightarrow & (E)
\end{cases}
```

Cadeia: a + a * a

Aplicando-se inicialmente: E → E + E

-
$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E * E \Rightarrow a + a * E \Rightarrow$$

 $a + a * a$

- Aplicando-se inicialmente: E → E * E
 - $E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow a + E * E \Rightarrow a + a * E \Rightarrow a + a * a$

Ambiguidade

```
if \langle exp \rangle then if \langle exp \rangle then \langle com \rangle else \langle com \rangle if \langle exp \rangle then if \langle exp \rangle then \langle com \rangle else \langle com \rangle
```

Linguagens Sensíveis ao Contexto

Gramática

- Gramática sensível ao contexto G = (V, Σ, P, S)
- Conjunto P obedecem ao formato $\alpha \rightarrow \beta$, onde:
 - $-\alpha \in V^*NV^*$
 - β ∈ V*
 - $|\beta| >= |\alpha|$

Definição

 Definição é estendida para qualquer linguagem L que contenha a cadeia vazia, desde que L – { ε } possa ser gerada por uma gramática sensível ao contexto;

- {Programa → Declaracoes Comandos,
- Declarações → Declarações Declaração | ε,
- Declaracao → "%"Identificador,
- Comandos → Comandos Comando | ε ,
- Comando → "#"Identificador" = "Expressao,
- Expressao → Expressao + "Expressao
 - | Expressao" * "Expressao
 - | Identificador,
- Identificador → "a" | "b" | "c"}

• Exemplo que pertence a linguagem:

```
%a
%b
#a = a + b
#b = b * b
```

• Exemplo de sentença não pertencente a esta linguagem:

```
%a
%c
#a = a + b
#b = b * b
```

Formalização

- Possível, mas trabalhosa;
- Produz especificações longas, complexas e com baixa legibilidade;
- Difícil utilização prática;
- Por isso, adota-se a representação "livre de contexto" na formalização gramatical, deixando para processamento posterior a verificação das dependências de contexto que a linguagem porventura exiba.

Linguagens

• Reconhecedores:

Tipo	Classe de linguagens	Modelo de gramática	Modelo de reconhecedor
0	Recursivamente enumeráveis	Irrestrita	Máquina de Tu- ring
1	Sensíveis ao contexto	Sensível ao contexto	Máquina de Turing com fita Iimitada
2	Livres de contexto	Livre de contexto	Autômato de pilha
3	Regulares	Linear (direita ou esquerda)	Autômato finito

• Hierarquia de Inclusão

Tipo (Hierarquia de Chomsky)	Classe de linguagens	Gramática	Reconhecedor	Reconhecedor determinístico ≡ não- determinístico?	Estruturas sintáticas típicas da classe de linguagens
3	Regular	Regular	Autômato finito	Sim	Repetição, união e concatenação de termos
	Livre de contexto determinística descendente	LL(k)	Autômato de pilha determinístico	N.A.	Aninhamento de construções sintáticas
2	Livre de contexto determinística ascendente	LR (k)	Autômato de pilha determinístico	N.A.	?
	Livre de contexto não-ambígua	Livre de contexto não-ambígua	Autômato de pilha	Não	?
	Livre de contexto	Livre de Contexto	Autômato de pilha	Não	?
1	Sensível ao contexto	Sensível ao contexto	Máquina de Turing com fita limitada	?	Dependência entre termos
0	Recursiva	?	Máquina de Turing que sempre pára	Sim	?
0	Recursiva- mente enumerável	Irrestrita	Máquina de Turing	Sim	?
N.A	Não- gramaticais	N.A.	?	N.A.	?