Presentation · May 2019				
CITATIONS		READS		
0		156		
1 author:				
	Alaa Tharwat			
	Fachhochschule Bielefeld			
	120 PUBLICATIONS 6,195 CITATIONS			
	SEE DDOEILE			

Alaa Tharwat

- Review of Lecture 6
- Mathematical proof $(d_{VC} = d + 1)$

- Review of Lecture 6
- Mathematical proof $(d_{VC} = d + 1)$

$$B(N,k) \le B(N-1,k) + B(N-1,k-1)$$

$$\le 1 + \sum_{i=1}^{k-1} {N-1+1 \choose i} = \sum_{i=0}^{k-1} {N \choose i}$$

 $m_H(N) \le \sum_{i=0}^{k-1} \binom{N}{i}$

$$P[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2m_H(N)e^{-2\epsilon^2 N}$$

$$P[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 4m_H(2N)e^{-\frac{1}{8}\epsilon^2 N}$$

This is called, the Vapnik-

Chervonenkis inequality

- Review of Lecture 6
- Mathematical proof $(d_{VC} = d + 1)$

Alaa Tharwat 5 / 16

- The VC dimension is denoted by $d_{VC}(H)$, and it is the largest value of N or the most points that H can shatter, $m_H(N)=2^N$
- If $N \leq d_{VC}(H) \Rightarrow H$ can shatter N points
- ullet If $k>d_{VC}(H)\Rightarrow k$ is a break point for H

$$m_H(N) \le \sum_{i=0}^{k-1} \binom{N}{i}$$

In terms of VC dimension:

$$m_H(N) \le \sum_{i=0}^{d_{VC}} \binom{N}{i}$$

Hence, the maximum power is $N^{d_{VC}}$

Alaa Tharwat 6 / 16

- d_{VC}(H) is finite
- VC-dimension is independent of the learning algorithm
- VC-dimension is independent of the input distribution
- VC-dimension is independent of the target function

Alaa Tharwat 7 / 16

- In positive rays example: $d_{VC} = k 1 = 1$
- In positive intervals example: $d_{VC}=2$
- In 2D perceptrons example: $d_{VC}=3$

We can say, $d_{VC} = d + 1$ (the proof next slides)

Alaa Tharwat 8 / 16

To prove that $d_{VC} = d + 1$, we prove two different directions:

- $d_{VC} \ge d + 1$
- $d_{VC} \le d + 1$
- ullet First direction: $d_{VC} \geq d+1$
 - \bullet Given a set of N=d+1 points in \mathbb{R}^d to be shattered by the perceptron

$$X = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_{d+1}^T \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \dots & 0 & 1 \end{bmatrix}$$

- In X, we select the samples to be shattered and X is then invertible. The y for each sample can be ± 1 .
- What **w** that satisfies $sign(\mathbf{w}X) = y \to X\mathbf{w} = y \to \mathbf{w} = X^{-1}y$. So, it can shatter d+1 points.
- Hence $d_{VC} \ge d+1$ and we cannot shatter any set of d+2 points.

Alaa Tharwat 9 / 16

To prove that $d_{VC} = d + 1$, we prove two different directions:

- $d_{VC} \ge d + 1$
- $d_{VC} \le d + 1$
- Second direction: $d_{VC} \leq d+1$
 - ullet We need to prove that we cannot shatter any set with d+2 points
 - Given d+2 points, $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{d+1}, \mathbf{x}_{d+2}$ (more points than the dimensions)
 - Hence, there is at least one sample which linearly dependent to the others (linear combination of the rest), $\mathbf{x}_j = \sum_{i \neq j} a_i \mathbf{x}_i$ where not all a's are zeros
 - Consider the following dichotomy: \mathbf{x}_i 's with non-zero a_i get $y_i = \mathrm{sign}(a_i)$, and \mathbf{x}_j gets $y_i = -1$ (No perceptron can implement this dichotomy, why?)
 - Answer: $\mathbf{x}_j = \sum_{i \neq j} a_i \mathbf{x}_i \xrightarrow{\mathbf{x}_{\mathbf{w}}} \rightarrow \mathbf{w}^T \mathbf{x}_j = \sum_{i \neq j} a_i \mathbf{w}^T y_i$, and if $y_i = \operatorname{sign}(\mathbf{w}^T \mathbf{x}_i) = \operatorname{sign}(a_i) \Rightarrow a_i \mathbf{w}^T \mathbf{x}_i > 0$. Thus, $\mathbf{w}^T \mathbf{x}_j = \sum_{i \neq j} a_i \mathbf{w}^T x_i > 0$; therefore, $y_i = \operatorname{sign}(\mathbf{w}^T \mathbf{x}_j) = +1$

Alaa Tharwat 10 / 16

- $d_{VC} \ge d + 1$
- $d_{VC} \le d+1$

$$\Rightarrow d_{VC} = d + 1$$

• In a 2D perceptron, d+1 is the number of parameters w_0, w_1, \ldots, w_d

11 / 16

- Parameters create degrees of freedom
- $d_{VC} \equiv \text{binary degrees of freedom}$

Alaa Tharwat 12 / 16

- In positive rays example: $d_{VC}=k-1=1$, and there is only one parameter
- In positive intervals example: $d_{VC}=2$, and there are two parameters

- Parameters may not contribute the degrees for freedom
- ullet d_{VC} measures the effective number of parameters

Alaa Tharwat 13 / 16

From Lecture 4:

$$P[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

From Lecture 6:

$$P[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 4m_H(2N)e^{-\frac{1}{8}\epsilon^2 N}$$

• Let $\delta = 4m_H(2N)e^{-\frac{1}{8}\epsilon^2N}$

$$E_{out} \le E_{in} + \epsilon$$

$$E_{out} \le E_{in} + \sqrt{\frac{ln\frac{2M}{\delta}}{2N}}$$

14 / 16

From Lecture 4:

$$P[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

From Lecture 6:

$$P[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 4m_H(2N)e^{-\frac{1}{8}\epsilon^2 N}$$

• Let $\delta = 4m_H(2N)e^{-\frac{1}{8}\epsilon^2N}$

•
$$\epsilon = \sqrt{\frac{8ln\frac{4m_H(2N)}{\delta}}{N}} \Rightarrow \Omega(N, H, \delta)$$

$$E_{out} \le E_{in} + \Omega(N, H, \delta)$$

15 / 16

- We can consider this term like that $4m_H(2N)e^{-\frac{1}{8}\epsilon^2N} \Rightarrow N^de^{-N}$
- ullet N^de^{-N} decreases (goes to zero) when N is very large
- How does N affects d?
- Rule of thumb: $N \ge 10 d_{VC}$ (the number of samples to reach to the comfort zone of the VC-inequality)

Alade THABIRADE stats 16 / 16