

EE 604 Digital Image Processing

JPEG Compression

- JPEG stands for Joint Photographic Experts Group
- JPEG is a compression algorithm, <u>NOT</u> a file format.
- JPEG is standardized, first issued in 1992.
- JPEG is a <u>lossy</u> compression.

JPEG Compression

Huffman Coding

Original

Compressed

Huffman Coding

- Introduced by Huffman in 1952
- Produces variable-length code to achieve compression
- Optimal for single symbol coding
- Uniquely decodable
- Prefix (free) code

Huffman Coding

Symbol	Probability		
a ₄	0.6		
a ₁	0.2		
a ₂	0.1		
a ₃	0.05		
a ₅	0.05		

Symbol	Probability	Assigned Code		
a ₄	0.6	0		
a ₁	0.2	10		
a ₂	0.1	110		
a ₃	0.05	1110		
a ₅	0.05	1111		

see class notes for details

Color space conversion

Color space conversion

- Convert RGB to YC_BC_R
 - Y: luminance channel C_{B_r} C_R : color channels
 - Separate brightness and color components
- Resolution of C_B and C_R are then reduced by a factor of 2 or more (downsampling). So, greater compression can be achieved.
- This takes advantage of the fact that humans are less sensitive to color details than intensity details.
- This step is skipped when highest quality is required.

JPEG Compression

Subimage size selection

- Image is split into 8x8 or 16x16 blocks or subimages
- Each subimage is called minimum coded unit or macroblock.

DCT Transform

Discrete Cosine Transform

Discrete Cosine Transfom

Authors: N. Ahmed Departments of Electrical Engineering and Computer Science,

Kansas State University

T. Natarajan K. R. Rao

Published in:

Journal

IEEE Transactions on Computers archive Volume 23 Issue 1, January 1974 Pages 90-93

IEEE Computer Society Washington, DC, USA

table of contents doi>10.1109/T-C.1974.223784

1974 Article

· orig-research

Bibliometrics

- · Downloads (6 Weeks): 0
- · Downloads (12 Months): 0
- Downloads (cumulative): 0
- · Citation Count: 189

1D DCT Basis

1D DCT Basis

1D DCT Basis

DCT Basis

see class notes for the mathematical details

DCT Basis (N = 4)

DCT Basis (N = 8)

DCT Transform

52	55	61	66	70	61	64	73
63	59	55	90	$\begin{array}{c} 109 \\ 144 \end{array}$	85	69	72
62	59	68	113	144	104	66	73
63	58	71	122	154	106	70	69
67	61	68	104	126	88	68	70
79	65	60	70	77	68	58	75
85	71	64	59	55	61	65	83
87	79	69	68	65	76	78	94

$$\begin{bmatrix} -415 & -30 & -61 & 27 & 56 & -20 & -2 & 0 \\ 4 & -22 & -61 & 10 & 13 & -7 & -9 & 5 \\ -47 & 7 & 77 & -25 & -29 & 10 & 5 & -6 \\ -49 & 12 & 34 & -15 & -10 & 6 & 2 & 2 \\ 12 & -7 & -13 & -4 & -2 & 2 & -3 & 3 \\ -8 & 3 & 2 & -6 & -2 & 1 & 4 & 2 \\ -1 & 0 & 0 & -2 & -1 & -3 & 4 & -1 \\ 0 & 0 & -1 & -4 & -1 & 0 & 1 & 2 \end{bmatrix}$$

Qunatization


```
Q_{50} = \begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \end{bmatrix}
```

```
Q_{90} = \begin{bmatrix} 3 & 2 & 2 & 3 & 5 & 8 & 10 & 12 \\ 2 & 2 & 3 & 4 & 5 & 12 & 12 & 11 \\ 3 & 3 & 3 & 5 & 8 & 11 & 14 & 11 \\ 3 & 3 & 4 & 6 & 10 & 17 & 16 & 12 \\ 4 & 4 & 7 & 11 & 14 & 22 & 21 & 15 \\ 5 & 7 & 11 & 13 & 16 & 12 & 23 & 18 \\ 10 & 13 & 16 & 17 & 21 & 24 & 24 & 21 \\ 14 & 18 & 19 & 20 & 22 & 20 & 20 & 20 \end{bmatrix}
```

$$Q_{10} = \begin{bmatrix} 55 & 60 & 70 & 95 & 130 & 255 & 255 & 255 \\ 70 & 65 & 80 & 120 & 200 & 255 & 255 & 255 \\ 70 & 85 & 110 & 145 & 255 & 255 & 255 & 255 \\ 90 & 110 & 185 & 255 & 255 & 255 & 255 \\ 120 & 175 & 255 & 255 & 255 & 255 & 255 \\ 245 & 255 & 255 & 255 & 255 & 255 & 255 \\ 255 & 255 & 255 & 255 & 255 & 255 & 255 \end{bmatrix}$$

60 50 80 120 200 255 255

$$\begin{bmatrix} -415 & -30 & -61 & 27 & 56 & -20 & -2 & 0 \\ 4 & -22 & -61 & 10 & 13 & -7 & -9 & 5 \\ -47 & 7 & 77 & -25 & -29 & 10 & 5 & -6 \\ -49 & 12 & 34 & -15 & -10 & 6 & 2 & 2 \\ 12 & -7 & -13 & -4 & -2 & 2 & -3 & 3 \\ -8 & 3 & 2 & -6 & -2 & 1 & 4 & 2 \\ -1 & 0 & 0 & -2 & -1 & -3 & 4 & -1 \\ 0 & 0 & -1 & -4 & -1 & 0 & 1 & 2 \\ \end{bmatrix}$$

DCT coefficients

JPEG quantization matrix

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

$$\begin{bmatrix} -415 & -30 & -61 & 27 & 56 & -20 & -2 & 0 \\ 4 & -22 & -61 & 10 & 13 & -7 & -9 & 5 \\ -47 & 7 & 77 & -25 & -29 & 10 & 5 & -6 \\ -49 & 12 & 34 & -15 & -10 & 6 & 2 & 2 \\ 12 & -7 & -13 & -4 & -2 & 2 & -3 & 3 \\ -8 & 3 & 2 & -6 & -2 & 1 & 4 & 2 \\ -1 & 0 & 0 & -2 & -1 & -3 & 4 & -1 \\ 0 & 0 & -1 & -4 & -1 & 0 & 1 & 2 \end{bmatrix}$$

DCT coefficients

Quantized DCT matrix

Coding

De-Compression

