Solution Bank

1

Exercise 8F

$$\int_{a}^{b} y \, dx = \frac{1}{2} h \left(y_0 + 2 \left(y_1 + y_2 + \dots + y_{n-1} \right) + y_n \right)$$

$$\int_{1}^{3} \left(\frac{1}{x^2 + 1} \right) dx = \frac{1}{2} (0.5) \left(0.5 + 2 \left(0.308 + 0.2 + 0.138 \right) + 0.1 \right)$$

$$= 0.473 (3 \text{ s.f.})$$

$$\int_{1}^{a} \sqrt{2x-1} \, dx = \frac{1}{2} (0.25) (1 + 2(1.225 + 1.414 + 1.581 + 1.732 + 1.871) + 2)$$

$$= 2.33 (3 \text{ s.f.})$$

$$\int_{a}^{b} y \, dx = \frac{1}{2} h \left(y_0 + 2 \left(y_1 + y_2 + \dots + y_{n-1} \right) + y_n \right)$$

$$\int_{1}^{3} \sqrt{x^3 + 1} \, dx = \frac{1}{2} (0.5) \left(1 + 2 \left(1.061 + 1.414 + 2.092 \right) + 3 \right)$$

$$= 3.28 \, (3 \text{ s.f.})$$

Solution Bank

4
$$\int_{1}^{3} \frac{1}{\sqrt{x^2+1}} dx$$

1	$\forall \lambda \top 1$							
	x	1	$\frac{4}{3}$	$\frac{5}{3}$	2	$\frac{7}{3}$	$\frac{8}{3}$	3
	$\frac{1}{\sqrt{x^2+1}}$	0.707	0.601	0.514	0.447	0.394	0.351	0.316

$$\int_{a}^{b} y \, dx = \frac{1}{2} h \left(y_0 + 2 \left(y_1 + y_2 + \dots + y_{n-1} \right) + y_n \right)$$

$$\int_{1}^{3} \frac{1}{\sqrt{x^2 + 1}} \, dx = \frac{1}{2} \left(\frac{1}{3} \right) \left(0.707 + 2 \left(0.601 + 0.514 + 0.447 + 0.394 + 0.351 \right) + 0.316 \right)$$

5 a
$$\int_{-1}^{1} \left(\frac{1}{x+2} \right) dx$$

x	-1	-0.6	-0.2	0.2	0.6	1
$\frac{1}{x+2}$	1	0.714	0.556	0.455	0.385	0.333

$$\int_{a}^{b} y \, dx = \frac{1}{2} h \left(y_0 + 2 \left(y_1 + y_2 + \dots + y_{n-1} \right) + y_n \right)$$

$$\int_{-1}^{1} \left(\frac{1}{x+2} \right) dx = \frac{1}{2} (0.4) \left(1 + 2 \left(0.714 + 0.556 + 0.445 + 0.385 \right) + 0.333 \right)$$

$$= 1.11 \, (3 \text{ s.f.})$$

b Overestimate as the curve is convex

= 0.940 (3 s.f.)

6 a

Solution Bank

6 b
$$\int_{-1}^{1} (x^{3} + 1) dx$$

$$\frac{x}{x^{3} + 1} = \frac{-1}{0} = \frac{-0.5}{0} = \frac{0.5}{1} = \frac{1}{2}$$

$$\int_{a}^{b} y dx = \frac{1}{2} h(y_{0} + 2(y_{1} + y_{2} + \dots + y_{n-1}) + y_{n})$$

$$\int_{-1}^{1} (x^{3} + 1) dx = \frac{1}{2} (0.5)(0 + 2(0.875 + 1 + 1.125) + 2)$$

$$\mathbf{c} \quad A = \int_{-1}^{1} (x^{3} + 1) \, dx$$

$$A = \left[\frac{1}{4} x^{4} + x \right]_{-1}^{1}$$

$$= \left(\frac{1}{4} (1)^{4} + (1) \right) - \left(\frac{1}{4} (-1)^{4} + (-1) \right)$$

$$= \frac{5}{4} + \frac{3}{4}$$

$$= 2$$

d Same; the trapezium rule gives an underestimate of the area between x = -1 and x = 0, and an overestimate between x = 0 and x = 1, and these cancel out.

$$7 \int_{0}^{2} \sqrt{3^{x} - 1} \, dx$$

$$\boxed{x \quad 0 \quad 0.5 \quad 1 \quad 1.5 \quad 2}$$

$$\boxed{\sqrt{3^{x} - 1} \quad 0 \quad 0.856 \quad 1.414 \quad 2.048 \quad 2.828}$$

$$\int_{a}^{b} y \, dx = \frac{1}{2} h \left(y_{0} + 2 \left(y_{1} + y_{2} + \dots + y_{n-1} \right) + y_{n} \right)$$

$$\int_{0}^{2} \sqrt{3^{x} - 1} \, dx = \frac{1}{2} (0.5) \left(0 + 2 \left(0.856 + 1.414 + 2.048 \right) + 2.828 \right)$$

$$= 2.87 \, (3 \text{ s.f.})$$

Solution Bank

8 a
$$\int_{1}^{3} \left(\frac{x}{x+1}\right) dx$$

1 ' '									
	x	1	$\frac{4}{3}$	$\frac{5}{3}$	2	$\frac{7}{3}$	$\frac{8}{3}$	3	
	$\frac{x}{x+1}$	0.5	0.571	0.625	0.667	0.700	0.727	0.75	

$$\int_{a}^{b} y \, dx = \frac{1}{2} h \left(y_0 + 2 \left(y_1 + y_2 + \dots + y_{n-1} \right) + y_n \right)$$

$$\int_{1}^{3} \left(\frac{x}{x+1} \right) dx = \frac{1}{2} \left(\frac{1}{3} \right) \left(0.5 + 2 \left(0.571 + 0.625 + 0.667 + 0.7 + 0.727 \right) + 0.75 \right)$$

$$= 1.31 \, (3 \text{ s.f.})$$

b Underestimate as the curve is convex.

9 a
$$\int_{0}^{2} \sqrt{x} \, dx$$

i Four strips

1 our surps	Our Strips										
x	0	0.5	1	1.5	2						
\sqrt{x}	0	0.707	1	1.225	1.414						

$$\int_{a}^{b} y \, dx = \frac{1}{2} h \left(y_0 + 2 \left(y_1 + y_2 + \dots + y_{n-1} \right) + y_n \right)$$

$$\int_{1}^{3} \sqrt{x} \, dx = \frac{1}{2} (0.5) \left(0 + 2 \left(0.707 + 1 + 1.225 \right) + 1.414 \right)$$

$$= 1.82 \, (3 \text{ s.f.})$$

ii Six strips

х	0	$\frac{1}{3}$	$\frac{2}{3}$	1	$\frac{4}{3}$	$\frac{5}{3}$	2
\sqrt{x}	0	0.577	0.816	1	1.155	1.291	1.414

$$\int_{a}^{b} y \, dx = \frac{1}{2} h \left(y_0 + 2 \left(y_1 + y_2 + \dots + y_{n-1} \right) + y_n \right)$$

$$\int_{0}^{2} \sqrt{x} \, dx = \frac{1}{2} \left(\frac{1}{3} \right) \left(0 + 2 \left(0.577 + 0.816 + 1 + 1.155 + 1.291 \right) + 1.414 \right)$$

$$= 1.85 \, (3 \, \text{s.f.})$$

Solution Bank

9 **b**
$$A = \int_{0}^{2} \sqrt{x} \, dx$$

$$= \left[\frac{2}{3} x^{\frac{3}{2}} \right]_{0}^{2}$$

$$= \frac{2}{3} (2)^{\frac{3}{2}}$$

$$= \frac{4\sqrt{2}}{3}$$

$$\mathbf{i} \quad \frac{\frac{4\sqrt{2}}{3} - 1.82}{\frac{4\sqrt{2}}{3}} \times 100 = 3.5\%$$

ii
$$\frac{4\sqrt{2}}{3} - 1.85 \times 100 = 1.89\%$$

10 a
$$\int_{0}^{2} 2^{x} dx$$

x	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2
2 ^x	1	1.189	1.414	1.682	2	2.378	2.828	3.364	4

$$\int_{a}^{b} y \, dx = \frac{1}{2} h \left(y_0 + 2 \left(y_1 + y_2 + \dots + y_{n-1} \right) + y_n \right)$$

$$\int_{0}^{2} \sqrt{x} \, dx = \frac{1}{2} (0.25) \left(1 + 2 \left(1.189 + 1.414 + 1.682 + 2 + 2.378 + 2.828 + 3.364 \right) + 4 \right)$$

$$= 4.34 \, (3 \text{ s.f.})$$

b Overestimate because the curve is convex.