

History: foundations

1901: Planck introduces quanta

4 > 1926: Schrödinger equation

2 1913: Bohr's model of the atom

1927: Heisenberg's Uncertainty Principle

1924: de Broglie introduces wave-particle duality

6 <u>1935</u>: Einstein, Podolsky and Rosen define entanglement as the subject of the EPR paradox.

Max Planck

1901

He started the revolution with

"<u>Ueber das Gesetz der</u> <u>Energieverteilung im</u> <u>Normalspectrum</u>"

or

"About the law of energy distribution in the normal spectrum"

Quantum mechanics...

What it will do to you.

Don't do it kids!

History: concepts

<u>1929</u>: Mott uses quantum decoherence; Bohm defines it in <u>1951</u>

1985: Deutsch defines quantum Turing machine & quantum parallelism

1980: Benioff defines the qubit

1993: Bennett et al. proposes quantum teleportation (demonstrated 600m in 2004, and 144km in 2006, by Ursin et al.)

1982: Wootters and Zurek prove non-cloning theorem

1995: QEC starts with <u>Shor</u> <u>Code</u> and <u>Steane Code</u> (1996)

History: algorithms

1985: Deutsch algorithm, upgraded to Deutsch-Josza algorithm in 1992, proves quantum can beat classical at least at 1 thing.

4 > 1996: Grover's algorithm for search problems

Quantum Fourier Transform: Deutsch suggests (1985), Shor defines (1994), Coppersmith improves (1994) 2014: Peruzzo et al. define Variational Quantum Eigensolver

1994: Shor's algorithm for factorization (demonstrated in 2001 by Vandersypen et al.)

6 <u>2014</u>: Farhi & Goldstone define QAOA (explored in 2000)

History: computers

1959: Feynman predicts a quantum computer in "There's plenty of room at the bottom" lecture. 1982: he actually suggests starting it.

4 <u>1997</u>: First quantum computer, done with nuclear magnetic resonance (NMR)

2 1995: First ever quantum logic gate demonstrated with a single trapped ion

2011: First sold computer - D-Wave One to Lockheed Martin

1996: Lloyd proves quantum computers to be able to simulate quantum systems

6 <u>2019</u>: Google claims quantum supremacy (...it wasn't)

First demo of logic gate

- Notice the high decoherence!
- Interesting presentation too...

My favorite abstract ever from Lloyd's 1996 paper:

"Feynman's 1982 conjecture, that quantum computers can be programmed to simulate any local quantum system, is shown to be correct."

Fig 1: CNOT table (Monroe et al. 1995)

What about quantum neural networks?

- Subhash Kak (1 March, 1995) "Quantum Neural Computing"
 - Proposes a quantum neural computer
- Independently, Ronald Chrisley also on 21 June, 1995 "Quantum Learning"
 - Proposes neural network learning algorithm
- Purushothaman and Karayiannis (<u>1996</u>)
 - Coins the term 'quantum neural network (QNN)'
- Kretzschmar et al. (2000)
 - Compares QNN with feedforward neural network (FFNN)

Nice overview

John Preskill also summarizes the history nicely in "Quantum computing 40 years later"

History: modern

LBM has largest ensemble of quantum computers globally, almost 80, most accessible via cloud

Oiskit (IBM) is the most adopted quantum SDK

D-Wave has largest quantum annealer (5000+ qubits)

IOM has sold the most quantum computers.

Quantinuum has highest Quantum Volume (2^{21})

Company modalities

- Growing interest in
 - Photonic
 - Neutral atom
- Superconducting taking most space still

Institute modalities

- Closely the same, since companies pair with institutes
- Not much for annealing
- Germany highly represented

Quantum Effort Worldwide (public funding)

Addressing the hype

"Quantum is here!"

Companies lengthen timelines for new tech. Realistically, 5-10 years till real change.

"Quantum will shape the future"

Probably, but we don't fully know yet in which areas and how much.

"Quantum is 'rocket science"

It need not be. Al is also complex at the core, but has become user-friendly.

- Qubits

- basic quantum information container
- (quantum) state (vector) of a qubit is a \mathbb{C}^2 vector $|\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ which is unitary $\rightarrow |\alpha|^2 + |\beta|^2 = 1$
- The computational basis states of a qubit are $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow |\psi\rangle = \alpha |0\rangle + \beta |1\rangle$
- Tensor products combine states $\rightarrow \begin{bmatrix} \alpha_1 \\ \beta_1 \end{bmatrix} \otimes \begin{bmatrix} \alpha_2 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} \alpha_1 \alpha_2 & \alpha_1 \beta_2 & \beta_1 \alpha_2 & \beta_1 \beta_2 \end{bmatrix}^T = |\psi_1 \psi_2 \rangle$
- The state of n qubits is still unitary $\rightarrow \langle \phi | \phi \rangle = \left[\begin{array}{ccc} \alpha_1^* & ... & \alpha_{2^n}^* \end{array} \right]^T \left[\begin{array}{ccc} \alpha_1 & ... & \alpha_{2^n} \end{array} \right] = 1$

- Gates
 - (Quantum logic) gates ${\it U}$ are linear matrix operations, to transform states.
 - Gates are unitary $\rightarrow U^\dagger = U^{-1}$ and $U^\dagger U = I = U U^\dagger$
 - Ex1) $H|0\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle = |+\rangle$ Ex2) $CNOT|+0\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}^T$

Gate	Symbol	Matrix
Pauli-X (NOT)	-[x]-	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Pauli-Y	- <u>Y</u> -	$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$
Pauli-Z (Phase flip)	_ z _	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
S	-s-	$\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$
Т	-[т]-	$\begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$
Hadamard	-[н]-	$\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$
Rotation Z	$-R_z(\theta)$	$\begin{pmatrix} e^{-\frac{i\theta}{2}} & 0 \\ 0 & e^{\frac{i\theta}{2}} \end{pmatrix}$
Rotation Y	$R_y(\theta)$	$\begin{pmatrix} \cos\left(\frac{\theta}{2}\right) & -\sin\left(\frac{\theta}{2}\right) \\ \sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) \end{pmatrix}$
Rotation X	$R_x(\theta)$	$\begin{pmatrix} \cos\left(\frac{\theta}{2}\right) & -i\sin\left(\frac{\theta}{2}\right) \\ -i\sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) \end{pmatrix}$
CNOT	<u> </u>	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$
Swap	- *-	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Credit: ResearchGate

- Circuits

- Represent quantum operations
- Contain quantum & classical registers,
 gates and measurements
- Measurements collapse to comp. bases
 by probability distribution
- If $|\psi
 angle=\left[egin{array}{c}lpha\eta\end{array}
 ight]$, then $\left.\mathbb{P}_{|\psi
 angle}(|0
 angle)=|lpha|^2$

- Phase

- The z-rotation of the state of a qubit
- Change in (relative) phase does not affect (immediate)
 measurement probability distribution
- Important to know for quantum Fourier transform (QFT)
- Phase gate -> $P(\phi) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{bmatrix}$
- Global phase is something else and irrelevant to us...

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} i \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1+i}{\sqrt{2}} \\ 0 \end{bmatrix}$$

- Entanglement
 - When the measurement of one qubit affects the measurement of another
 - Hard to simulate classically; part of what gives quantum its potential

$$CNOT(I \otimes H) |00\rangle = CNOT[\frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)] = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

- Different states

Mixed	Pure	
Only described by state density matrix	Described by state density matrix or statevector	
ρ	$ \psi angle$	
Mixed if $trace(\rho^2) < 1$	Pure if $\rho^2 = \rho \text{ OR } trace(\rho^2) = 1$	
$\left[\begin{array}{cc} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{array}\right]$	$\left[egin{array}{cc} rac{1}{2} & rac{1}{2} \ rac{1}{2} & rac{1}{2} \end{array} ight] \sim \left[egin{array}{c} rac{1}{\sqrt{2}} \ rac{1}{\sqrt{2}} \end{array} ight] = \ket{+}$	
$ \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} \end{bmatrix} = \frac{1}{2} 00\rangle\langle00 + \frac{1}{2} 11\rangle\langle11 $	$\begin{bmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \end{bmatrix} \sim \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \frac{1}{\sqrt{2}} (00\rangle + 11\rangle)$	
Inside unit sphere	On unit sphere	

- QASM
 - Full name: OpenQASM 3
 - Current industry standard for quantum intermediate
 representation (QIR)
 - Use to recompile among
 quantum SDKs e.g. Qiskit,
 Cirq, Qulacs, Pennylane, etc.

Credit: Cross et al. (OpenQASM 3 paper)

Quantum

Limitations

- Storage size

Acknowledgements

Credit to Quantum Zeitgeist for history research

Credit to Qureca for statistics research

Time to get down to business