INFO-0012: Computation Structures

 β -machine - Report

Maxime Goffart 180521 Olivier Joris 182113

Academic year 2020 - 2021

Control logic

bla bla

Instruction memory

The instructions we implemented in order to test the instructions ADDC, AND, CMPLEC, LD, and BNE¹:

Instruction	Hexadecimal	Effect
ADDC(R31, 5, R0)	C01F0005	R0 is 5
ADDC(R31, -5, R1)	C03FFFFB	R1 is -5
ADDC(R0, 5, R2)	C0400005	R2 is 10
ADDC(R1, -5, R28)	C0610005	R3 is 0
ADDC(R31, 12, R0)	C01F000C	R0 is 12
ADDC(R31, 10, R1)	C03F000A	R1 is 10
AND(R0, R1, R2)	A0400800	R2 is 8
ADDC(R31, 5, R0)	C01F0005	R0 is 5
ADDC(R31, -5, R1)	C03FFFFB	R1 is -5
CMPLEC(R0, 10, R30)	DBC0000A	R30 is 1
CMPLEC(R0, 5, R29)	DBA00005	R29 is 1
CMPLEC(R0, 2, R28)	DB800002	R28 is 0
CMPLEC(R1, -6, R30)	DBC1FFFA	R30 is 0
CMPLEC(R1, -5, R29)	DBA1FFFB	R29 is 1
CMPLEC(R1, -4, R28)	DB81FFFC	R28 is 1
ADDC(R31, 0, R0)	C01F0000	R0 is 0
ADDC(R31, 21, R30)	C3DF0015	R30 is 21
ST(R30, 0, R0)	67C00000	Stores R30 at address contained in R0
LD(R0, 0, R1)	60200000	Loads content at address R0 in R1
ADDC(R31, 4, R0)	C01F0004	R0 is 4
ADDC(R31, 7, R2)	C05F0007	R2 is 7
ST(R2, 0, R0)	64400000	Stores R2 at address contained in R0

The first 4 lines are testing the ADD instruction.

The following 3 lines are testing the AND instruction. In the same instruction we are testing every possibility (1&1, 1&0, 0&1, and 0&0).

The following 8 lines are testing the CMPLEC instruction. The first 2 ADDC are used to put desired values inside the register file.

The following 7 lines are testing the LD instruction. We are using R0 as a memory pointer. Then, we are storing 21 at address 0 in memory and loading the content at address 0 in R1. Finally, we are increasing R0 by 4, storing 7 at address given by R0, and loading the content at the address given by R0 in R2.

¹Instructions associated to the lowest student id (20180521) of our group.