

Block-Jacobi preconditioning in Ginkgo

Goran Flegar

Introduction

- I'm assuming we are all familiar with:
 - Iterative solution of linear systems
 - Why it's useful
 - Operations within Krylov solvers (BLAS 1, SpMV, preconditioning)
 - Preconditioning
 - Replacing the original system with the preconditioned system
 - Changes needed within the Krylov solver to incorporate preconditioning

- Improve performance for problems with inherent block structure
 - Usually blocks are smaller than 30x30 (blocks can be of different sizes!)

- Improve performance for problems with inherent block structure
 - Usually blocks are smaller than 30x30 (blocks can be of different sizes!)

- Block-Jacobi preconditioning
 - Use only diagonal blocks for approximation

$$\operatorname{diag}(A) = [D_1, \dots, D_k]$$
$$M := \operatorname{diag}(D_1, \dots, D_k)$$

Benefits of block-Jacobi

- 56 matrices from SuiteSparse
- MAGMA-sparse open source library
 - IDR solver
 - Scalar Jacobi preconditioner
 - Supervariable agglomeration
 - Detects block structure of the matrix

M. Goetz and H. Anzt, "Machine Learning-Aided Numerical Linear Algebra: Convolutional Neural Networks for the Efficient Preconditioner Generation," 2018 IEEE/ACM 9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (scalA), Dalla, TX, USA, 2018, pp. 49-56.

Benefits of block-Jacobi

- 56 matrices from SuiteSparse
- MAGMA-sparse open source library
 - IDR solver
 - Scalar Jacobi preconditioner
 - Supervariable agglomeration
 - Detects block structure of the matrix
- Improves the robustness of the solver

M. Goetz and H. Anzt, "Machine Learning-Aided Numerical Linear Algebra: Convolutional Neural Networks for the Efficient Preconditioner Generation," 2018 IEEE/ACM 9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (scalA), Dalla, TX, USA, 2018, pp. 49-56.

Benefits of block-Jacobi

- 56 matrices from SuiteSparse
- MAGMA-sparse open source library
 - IDR solver
 - Scalar Jacobi preconditioner
 - Supervariable agglomeration
 - Detects block structure of the matrix
- Improves the robustness of the solver
- Improves convergence of the solver

M. Goetz and H. Anzt, "Machine Learning-Aided Numerical Linear Algebra: Convolutional Neural Networks for the Efficient Preconditioner Generation," 2018 IEEE/ACM 9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (scalA), Dalla, TX, USA, 2018, pp. 49-56.

- Improve performance for problems with inherent block structure
 - Usually blocks are smaller than 30x30 (blocks can be of different sizes!)

- Block-Jacobi preconditioning
 - Use only diagonal blocks for approximation

$$\operatorname{diag}(A) = [D_1, \dots, D_k]$$

$$M := \operatorname{diag}(D_1, \dots, D_k)$$

$$y := M^{-1}z \longrightarrow y_i := D_i^{-1}z_i, \ \forall i$$

- Improve performance for problems with inherent block structure
 - Usually blocks are smaller than 30x30 (blocks can be of different sizes!)

- Block-Jacobi preconditioning
 - Use only diagonal blocks for approximation

$$\operatorname{diag}(A) = [D_1, \dots, D_k]$$
$$M := \operatorname{diag}(D_1, \dots, D_k)$$

$$y := M^{-1}z \longrightarrow y_i := D_i^{-1}z_i, \ \forall i$$

$$\widetilde{D}_i := \operatorname{inv}(D_i)$$

$$y_i := \widetilde{D}_i z_i$$

inv = Gauss-Jordan elimination

- Improve performance for problems with inherent block structure
 - Usually blocks are smaller than 30x30 (blocks can be of different sizes!)

- · Block-Jacobi preconditioning
 - Use only diagonal blocks for approximation

$$\operatorname{diag}(A) = [D_1, \dots, D_k]$$
$$M := \operatorname{diag}(D_1, \dots, D_k)$$

$$y := M^{-1}z \longrightarrow y_i := D_i^{-1}z_i, \ \forall i$$

$$\widetilde{D}_i := \operatorname{inv}(D_i)$$

Setup

Application

Inversion-based block-Jacobi

inv = Gauss-Jordan elimination

- Current focus: improve performance for problems with inherent block structure
 - Usually blocks are smaller than 30x30 (blocks can be of different sizes!)

- · Block-Jacobi preconditioning
 - Use only diagonal blocks for approximation

$$\operatorname{diag}(A) = [D_1, \dots, D_k]$$
$$M := \operatorname{diag}(D_1, \dots, D_k)$$

$$y := M^{-1}z \longrightarrow y_i := D_i^{-1}z_i, \ \forall i$$

$$\longrightarrow D_i y_i = z_i$$

- Current focus: improve performance for problems with inherent block structure
 - Usually blocks are smaller than 30x30 (blocks can be of different sizes!)

- · Block-Jacobi preconditioning
 - Use only diagonal blocks for approximation

$$\operatorname{diag}(A) = [D_1, \dots, D_k]$$
$$M := \operatorname{diag}(D_1, \dots, D_k)$$

$$y := M^{-1}z \longrightarrow y_i := D_i^{-1}z_i, \ \forall i$$

$$D_i = L_iU_i$$

$$D_iy_i = z_i \longrightarrow U_iy_i = w_i$$

$$L_iw_i = z_i$$

- Current focus: improve performance for problems with inherent block structure
 - Usually blocks are smaller than 30x30 (blocks can be of different sizes!)

- Block-Jacobi preconditioning
 - Use only diagonal blocks for approximation

$$\operatorname{diag}(A) = [D_1, \dots, D_k]$$

$$M := \operatorname{diag}(D_1, \dots, D_k)$$

$$y := M^{-1}z \longrightarrow y_i := D_i^{-1}z_i, \ \forall i$$

$$D_i = L_iU_i \text{ Setup}$$

$$D_iy_i = z_i \longrightarrow \underbrace{U_iy_i = w_i}_{L_iw_i = z_i} \text{ Application}$$

Decomposition-based block-Jacobi

- Current focus: improve performance for problems with inherent block structure
 - Usually blocks are smaller than 30x30 (blocks can be of different sizes!)

- Block-Jacobi preconditioning
 - Use only diagonal blocks for approximation

$$\operatorname{diag}(A) = [D_1, \dots, D_k]$$
$$M := \operatorname{diag}(D_1, \dots, D_k)$$

$$y := M^{-1}z \longrightarrow y_i := D_i^{-1}z_i, \ \forall i$$

$$D_i y_i = z_i \longrightarrow \sum_{z_i := \operatorname{gh}_a(\widetilde{D}_i, y_i)}^{\widetilde{D}_i := \operatorname{gh}_a(D_i)}$$

gh = Gauss-Huard decomposition / application

- Current focus: improve performance for problems with inherent block structure
 - Usually blocks are smaller than 30x30 (blocks can be of different sizes!)

- Block-Jacobi preconditioning
 - Use only diagonal blocks for approximation

$$\operatorname{diag}(A) = [D_1, \dots, D_k]$$

$$M := \operatorname{diag}(D_1, \dots, D_k)$$

$$y := M^{-1}z \longrightarrow y_i := D_i^{-1}z_i, \ \forall i$$

$$D_i y_i = z_i$$

$$\widetilde{D}_i := \operatorname{gh}_d(D_i)$$

$$z_i := gh_a(\widetilde{D}_i, y_i)$$

Application

Setup

Decomposition-based block-Jacobi

LU factorization

H. Anzt et al. "Variable-Size Batched Gauss-Huard for Block-Jacobi Preconditioning", ICCS'17

H. Anzt et al. "Flexible-Size Batched LU for Small Matrices and its Integration into Block-Jacobi Preconditioning", ICPP'17

- read

graphics processors", ParCo'19

Triangular solves

- Use "eager" triangular solves
 - Cast solution vector updates in terms of axpy, not in terms of dot product!

"Eager" triangular solve

No signs of instability in practice

Batched inversion and decomposition

- Assign one warp to each problem
 - hardware SIMD unit, represented as a group of 32 threads in CUDA

Batched inversion and decomposition

- Assign one warp to each problem
 - hardware SIMD unit, represented as a group of 32 threads in CUDA

- Process each row (column) by a single thread
 - Able to support problems of size up to 32-by-32
 - Keep the entire row (column) in thread's registers
 - Communicate data between rows via warp-shuffles
 - Current implementation: use padding for problems of smaller sizes
 - Future work: multiple smaller problems per warp

Batched inversion and decomposition

- Assign one warp to each problem
 - hardware SIMD unit, represented as a group of 32 threads in CUDA

- Process each row (column) by a single thread
 - Able to support problems of size up to 32-by-32
 - Keep the entire row (column) in thread's registers
 - Communicate data between rows via warp-shuffles
 - Current implementation: use padding for problems of smaller sizes
 - Future work: multiple smaller problems per warp

- Use implicit pivoting
 - Do not explicitly swap rows (column), "re-assign" the threads instead

Batched routines performance

Batched routines performance

MAGMA-sparse routines can also:

- Handle problems of different sizes
- Integrate diagonal block extraction and diagonal block decomposition / inversion into a single kernel

Batched routines performance

Complete solver runtime

nd24k

G3_circuit

bcsstk38

ship_003

Flexible-size batched routines

- Problems can be to small to effectively use one warp
 - Solution: assign multiple problems per warp

Flexible-size batched routines

- Problems can be to small to effectively use one warp
 - Solution: assign multiple problems per warp

- Allow batches where problems are of different sizes (flexible-size)
 - How to combine this with multiple problems per warp?
 - Remember: entire warp executes the same instruction!
 - Current solution: padding

Preconditioner is an approximation of the system matrix

- Applying a preconditioner inherently carries an error
- For block-Jacobi the relative error of z is usually around 0.01-0.1

$$z := M^{-1}y \approx A^{-1}y$$

Anzt, et al. "Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers." Concurrency and Computation: Practice and Experience 31.6 (2019): e4460.

Preconditioner is an approximation of the system matrix

- Applying a preconditioner inherently carries an error
- For block-Jacobi the relative error of z is usually around 0.01-0.1

$$z := M^{-1}y \approx A^{-1}y$$

Preconditioner application is memory bounded

- Most of the cost comes from reading the matrix from memory
- Idea: use lower precision to store the matrix

Anzt, et al. "Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers." Concurrency and Computation: Practice and Experience 31.6 (2019): e4460.

Preconditioner is an approximation of the system matrix

- Applying a preconditioner inherently carries an error
- For block-Jacobi the relative error of z is usually around 0.01-0.1

$$z := M^{-1}y \approx A^{-1}y$$

Preconditioner application is memory bounded

- Most of the cost comes from reading the matrix from memory
- Idea: use lower precision to store the matrix

Adaptive precision in inversion-based block-Jacobi:

- All computation is done in double precision
- Preconditioner matrix is stored in lower precision, with roundoff error "u"
- Error bound:

$$\frac{||\delta z_i||}{||z_i||} \lesssim (c_i \kappa(D_i) u_d + u) \kappa(D_i)$$

Anzt, et al. "Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers." Concurrency and Computation: Practice and Experience 31.6 (2019): e4460.

Preconditioner is an approximation of the system matrix

- Applying a preconditioner inherently carries an error
- For block-Jacobi the relative error of z is usually around 0.01-0.1

$$z := M^{-1}y \approx A^{-1}y$$

Preconditioner application is memory bounded

- Most of the cost comes from reading the matrix from memory
- Idea: use lower precision to store the matrix

Adaptive precision in inversion-based block-Jacobi:

- All computation is done in double precision
- Preconditioner matrix is stored in lower precision, with roundoff error "u"
- Error bound:

$$\frac{||\delta z_i||}{||z_i||} \lesssim (c_i \kappa(D_i) u_d + u) \kappa(D_i)$$

Assuming the preconditioner block is relatively well conditioned

- The error is determined by the product of u, and the condition number
- Choose the precision for each block independently, such that at least 1 digit of the result is correct

Experimental results

Determining the precision:

$$\begin{cases} \text{fp16} & \text{if } 0 < \kappa_1(D_i) \le 10^2, \\ \text{fp32} & \text{if } 10^2 < \kappa_1(D_i) \le 10^6, \text{ and} \\ \text{fp64} & \text{otherwise,} \end{cases}$$

Experimental results

Determining the precision:

$$\begin{cases} \text{fp16} & \text{if } 0 < \kappa_1(D_i) \le 10^2, \\ \text{fp32} & \text{if } 10^2 < \kappa_1(D_i) \le 10^6, \text{ and} \\ \text{fp64} & \text{otherwise,} \end{cases}$$

% of diagonal blocks stored in each precision *:

* Prototype implementation in MATLAB, Results on 63 matrices from SuiteSparse

Experimental results

Determining the precision:

$$\begin{cases}
fp16 & \text{if } 0 < \kappa_1(D_i) \le 10^2, \\
fp32 & \text{if } 10^2 < \kappa_1(D_i) \le 10^6, \text{ and} \\
fp64 & \text{otherwise,}
\end{cases}$$

Usually < 5% iteration increase

% of diagonal blocks stored in each precision *:

* Prototype implementation in MATLAB, Results on 63 matrices from SuiteSparse

Overflow and underflow

- Storing the block in lower precision can cause underflow or overflow in some values.
- This is not accounted for by the numerical analysis shown in the previous slides

Overflow and underflow

- Storing the block in lower precision can cause underflow or overflow in some values.
- This is not accounted for by the numerical analysis shown in the previous slides
- Two possible solutions:
 - 1. Check the condition number of the low precision block to verify there were no catastrophic overflows or underflows.

Overflow and underflow

- Storing the block in lower precision can cause underflow or overflow in some values.
- This is not accounted for by the numerical analysis shown in the previous slides
- Two possible solutions:
 - 1. Check the condition number of the low precision block to verify there were no catastrophic overflows or underflows.
 - 2. Use a custom storage format that preserves the number of exponent bits:

Adaptive BJ preconditioner generation

Preconditioner application performance

Time-to-solution, adaptive- vs full-precision BJ

Summary

- Employ inherently parallel preconditioning schemes on accelerator hardware
- Trade more computation for better access patterns
- Take advantage of large register field of NVIDIA GPUs
- Avoid data exchange by "renaming" CUDA threads
- Take advantage of low precision to accelerate preconditioner application
- Independently select precision for each subproblem to preserve preconditioner quality

Linear systems, Ginkgo

Sources of linear systems

- Real-world problem transformed into a linear system via:
 - PDE discretizations, graph representations
 - Large number of unknowns (1M+, full matrix 8TB)
 - Most matrix elements are zero
- Possible approach: iterative methods
 - Krylov-subspace based linear solvers
 - SpMV
 - BLAS-1 operations
 - Sparse matrix formats & SpMV
 - accelerate each iteration of the solver
 - Preconditioners
 - reduce the number of iterations

Sources of linear systems

- Real-world problem transformed into a linear system via:
 - PDE discretizations, graph representations
 - Large number of unknowns (1M+, full matrix 8TB)
 - Most matrix elements are zero
- Possible approach: iterative methods
 - Krylov-subspace based linear solvers
 - SpMV
 - BLAS-1 operations
 - Sparse matrix formats & SpMV
 - accelerate each iteration of the solver
 - Preconditioners
 - reduce the number of iterations
 - Special hardware (e.g. GPUs)
 - Probably not a good idea to implement everything from scratch...

Sources of linear systems

- Real-world problem transformed into a linear system via:
 - PDE discretizations, graph representations
 - Large number of unknowns (1M+, full matrix 8TB)
 - Most matrix elements are zero
- Possible approach: iterative methods
 - Krylov-subspace based linear solvers
 - SpMV
 - BLAS-1 operations
 - Sparse matrix formats & SpMV
 - accelerate each iteration of the solver
 - Preconditioners
 - reduce the number of iterations
 - Special hardware (e.g. GPUs)
 - Probably not a good idea to implement everything from scratch...
 - Use a library instead:

$$Ax = b, \ A \in \mathbb{R}^{n \times n}$$

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$\longrightarrow M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$
 M^{-1} easy to compute

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$

$$M \approx A$$
 M^{-1} easy to compute

Do not compute the preconditioned system matrix explicitly!

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$

$$M^{-1}$$
 easy to compute

$$y := (M^{-1}A)x$$

Do not compute the preconditioned system matrix explicitly!

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$

 M^{-1} easy to compute

Do not compute the preconditioned system matrix explicitly!

$$y := (M^{-1}A)x$$

$$z := Ax$$

$$x := M^{-1}x$$

Preconditioner application

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$

$$M^{-1}$$
 easy to compute

Do not compute the preconditioned system matrix explicitly!

Generate the preconditioner matrix, and store it in a form suitable for application

$$A \leadsto M$$

Preconditioner setup

$$z := Ax$$

$$y := M^{-1}z$$

Preconditioner application

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$

$$M^{-1}$$
 easy to compute

$$y := (M^{-1}A)x$$

Do not compute the preconditioned system matrix explicitly!

Generate the preconditioner matrix, and store it in a form suitable for application

$$A \leadsto M$$

Preconditioner setup

Preconditioner application

Trade-off:

faster convergence, but more work per iteration

