Gowers Limit Problem

ImpartialDerivatives

December 26, 2022

Problem

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Suppose that for every $\theta > 0$, the sequence $f(\theta), f(2\theta), f(3\theta), \ldots$ tends to 0. Prove that f(x) tends to 0 as $x \to \infty$.

Proof

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Suppose that f(x) does not tend to 0 as $x \to \infty$. That is, there exists $\varepsilon > 0$ s.t. for all $y \in \mathbb{R}$, there exists x > y s.t. $|f(x)| \ge \varepsilon$. Fix this ε . We can construct (using transfinite recursion with choice) a sequence x_1, x_2, x_3, \ldots of positive reals such that for any $i \in \mathbb{Z}^+$, $|f(x_i)| \ge \varepsilon$ and $x_{i+1} \ge x_i + 1$. (The last condition ensures that the sequence tends to ∞ .) Because f is continuous, for any x_i there exists some $\delta > 0$ s.t. for all x with $|x - x_i| < \delta$, $|f(x) - f(x_i)| < \varepsilon/2$. For such an x, $|f(x) - f(x_i)| < \varepsilon/2$ implies $|f(x)| > \varepsilon/2$. So for any x in the closed interval $[x_i - \delta/2, x_i + \delta/2]$, $|f(x)| > \varepsilon/2$. This means we can construct (using the axiom of choice) a sequence $\delta_1, \delta_2, \delta_3, \ldots$ of positive reals such that for any $i \in \mathbb{Z}^+$ and any $x \in [x_i - \delta_i, x_i + \delta_i]$, $|f(x)| > \varepsilon/2$. We have constructed a set of closed intervals within which $|f(x)| > \varepsilon/2$ and which contain arbitrarily large x. (It's not hard to get rid of the axiom of choice here, but it would be a little annoying to write.)

Consider any real a, b with 0 < a < b. For any integer n greater than a/(b-a), $n > a/(b-a) \Rightarrow n(b-a) > a \Rightarrow nb > na+a \Rightarrow nb > (n+1)a$, so the open intervals (na, nb) and ((n+1)a, (n+1)b) overlap. That means that for any integer N > a/(b-a), $\bigcup_{n=N}^{\infty} (na, nb)$ is just the open interval (Na, ∞) . The sequence x_1, x_2, x_3, \ldots tends to ∞ , so (Na, ∞) contains some x_j . This means

there is some integer $n \geq N$ where $x_j \in (na, nb)$. So we have that for any reals a, b with 0 < a < b and integer N > a/(b-a), there exists some integer $n \geq N$ and some x_j s.t. $x_j \in (na, nb)$. This is actually true for any positive integer N because lowering N just weakens the condition on n. Thus, for any reals a, b with 0 < a < b and positive integer N, there exists some integer $n \geq N$ and some x_j s.t. $x_j \in (na, nb)$.

We construct the sequences a_0, a_1, a_2, \ldots and b_0, b_1, b_2, \ldots of real numbers and N_0, N_1, N_2, \ldots of positive integers inductively as follows. We will construct the sequence so we always have $0 < a_i < b_i$. Start with $a_0 = 1$, $b_0 = 2$, $N_0 = 1$. Now suppose we have constructed $a_{i-1}, b_{i-1}, N_{i-1}$ for some $i \in \mathbb{Z}^+$. By the previous paragraph, there is some integer $n \geq N_{i-1} + 1$ and some x_j s.t. $x_j \in (na_{i-1}, nb_{i-1})$. Let N_i be the smallest integer greater than N_{i-1} s.t. for some $x_j, x_j \in (N_i a_{i-1}, N_i b_{i-1})$. Let x_j be the smallest member of x_1, x_2, x_3, \ldots which is contained in $(N_i a_{i-1}, N_i b_{i-1})$. Because $N_i a_{i-1} < x_j < N_i b_{i-1}$, the intersection of the closed intervals $[N_i a_{i-1}, N_i b_{i-1}]$ and $[x_j - \delta_j, x_j + \delta_j]$ is neither empty nor a single point. (It's also clearly a closed interval.) The same must then be true of $[\frac{N_i a_{i-1}}{N_i}, \frac{N_i b_{i-1}}{N_i}] \cap [\frac{x_j - \delta_j}{N_i}, \frac{x_j + \delta_j}{N_i}]$, which equals $[a_{i-1}, b_{i-1}] \cap [\frac{x_j - \delta_j}{N_i}, \frac{x_j + \delta_j}{N_i}]$. Now define a_i, b_i by

$$[a_i,b_i] := [a_{i-1},b_{i-1}] \cap \left[\frac{x_j - \delta_j}{N_i}, \frac{x_j + \delta_j}{N_i}\right].$$

We have $0 < a_i < b_i$ as required. Note that for any $x \in [a_i, b_i], x \in [a_i, b_i] \Rightarrow x \in \left[\frac{x_j - \delta_j}{N_i}, \frac{x_j + \delta_j}{N_i}\right] \Rightarrow N_i x \in [x_j - \delta_j, x_j + \delta_j] \Rightarrow |f(N_i x)| > \varepsilon/2.$

The sequence a_0, a_1, a_2, \ldots is nondecreasing and bounded above, so $\lim_{n \to \infty} a_n$ exists. b_0, b_1, b_2, \ldots is nonincreasing and bounded below, so $\lim_{n \to \infty} b_n$ exists. $a_i < b_i$ for all i, so $\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$. Pick any θ with $\lim_{n \to \infty} a_n \le \theta \le \lim_{n \to \infty} b_n$. For any $i \in \mathbb{Z}^+$, $\theta \in [a_i, b_i]$, so $|f(N_i\theta)| > \varepsilon/2$. N_i tends to ∞ as $i \to \infty$, so there is no $N \in \mathbb{Z}^+$ s.t. for all integers $n \ge N$, $|f(n\theta)| < \varepsilon/2$. Thus, the sequence $f(\theta), f(2\theta), f(3\theta), \ldots$ does not tend to 0.