ZADANIE 1-----

W przypadku Example 1, jeśli α 2 reprezentuje [2, 2], to musimy sprawdzić, czy jest ono bezpieczne w kontekście systemu decyzyjnego. "Bezpieczność" odnosi się do tego, czy zbiór atrybutów α 2 jest wystarczający do reprezentowania wszystkich reguł decyzyjnych w systemie.

Aby sprawdzić, czy KB \mid = α 2 jest bezpieczne, musimy zbadać, czy wszystkie reguły decyzyjne w KB są pokryte przez atrybuty w α 2. Jeśli tak, to α 2 jest bezpieczne.

Na podstawie podanych informacji o Example 1:

Mamy następujące reguły decyzyjne:

 $\alpha 1 = [1, 2] -> dec = tak$

 $\alpha 1 = [2, 2] -> dec = nie$

 $\alpha 1 = [3, 1] -> dec = nie$

Atrybuty w $\alpha 2 = [2, 2]$ to a2 = 2, a3 = 2.

Analizując reguły decyzyjne, możemy zauważyć, że reguła 2, która ma $\alpha 1 = [2, 2]$, jest pokryta przez $\alpha 2 = [2, 2]$. Jednak reguły 1 i 3 nie są pokryte przez $\alpha 2$, ponieważ mają różne wartości a1.

Odpowiedź: $\alpha 2 = [2, 2]$ nie jest bezpieczne, ponieważ nie pokrywa wszystkich reguł decyzyjnych w systemie.

ZADANIE 2-----

Aby sprawdzić, czy zdania są logicznie równoważne, możemy skonstruować tabele prawdy dla obu wyrażeń i porównać wartości logiczne dla wszystkich możliwych wartości zmiennych (p i q).

Tabela prawdy dla $\neg(p \lor (\neg p \land q))$:

p, q, $\neg p$, $\neg p \land \neg q$, $p \lor (\neg p \land q)$, $\neg (p \lor (\neg p \land q))$

T, T, F, F, T, F

T, F, F, F, T, F

F, T, T, F, F, T

F, F, T, T, T, F

Tabela prawdy dla ¬p∧¬q:

p, q, ¬p, ¬q, ¬p∧¬q

T, T, F, F, F

T, F, F, T, F

F, T, T, F, F

F, F, T, T, T

Porównując wartości logiczne dla obu wyrażeń, widzimy, że dla wszystkich kombinacji wartości zmiennych p i q, wyniki są zgodne. Oznacza to, że zdania $\neg(p\lor(\neg p\land q))$ i $\neg p\land \neg q$ są logicznie równoważne.

ZADANIE 3-----

(i)
$$(p \Rightarrow q) \Rightarrow (\neg p \Rightarrow \neg q)$$
 (ii) $(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow q)$

Aby sprawdzić, czy zdanie jest spełnialne, musimy sprawdzić, czy istnieją wartości zmiennych (p, q, r), dla których zdanie jest prawdziwe.

(i)
$$(p \Rightarrow q) \Rightarrow (\neg p \Rightarrow \neg q)$$
:

Zdanie jest spełnialne, ponieważ możemy przyjąć p = prawda, q = prawda, r = prawda, co powoduje, że zdanie jest prawdziwe.

(ii)
$$(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow q)$$
:

Zdanie jest zawsze prawdziwe, niezależnie od wartości zmiennych p, q i r, ponieważ implicacja ($p \Rightarrow q$) jest prawdziwa, gdy p jest fałszywe lub q jest prawdziwe.

ZADANIE 4-----

$$(p \Rightarrow q) \mid = ((p \land r) \Rightarrow q)$$

Tabela prawdy dla $(p \Rightarrow q)$ oraz $((p \land r) \Rightarrow q)$:

$$p, q, r, p \Rightarrow q, (p \land r), (p \land r) \Rightarrow q$$

T, T, T, T, T, T

T, T, F, T, F, T

T, F, T, F, T, F

T, F, F, F, T

F, T, T, T, F, T

F, T, F, T, F, T

F, F, T, T, F, T

F, F, F, T, F, T

Z tabeli prawdy widzimy, że dla wszystkich kombinacji wartości zmiennych p, q i r, wynik (p \Rightarrow q) jest zawsze taki sam jak wynik ((p \land r) \Rightarrow q). Oznacza to, że (p \Rightarrow q) |= ((p \land r) \Rightarrow q), czyli implicacja jest spełniona dla wszystkich możliwych wartości zmiennych.

ZADANIE 5------

(i)
$$(p \Rightarrow q) \Rightarrow (\neg p \Rightarrow \neg q)$$
:

CNF (Forma normalna koniunkcyjna): $(p \lor \neg q) \land (q \lor \neg p)$

DNF (Forma normalna dysjunkcyjna): (¬p ∨ q) ∧ (p ∨ ¬q)

(ii)
$$(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow q)$$
:

CNF (Forma normalna koniunkcyjna): (¬p V q V r)

DNF (Forma normalna dysjunkcyjna): $(p \land \neg q) \lor (\neg p \lor q) \lor (\neg p \lor r)$

Zauważ, że w przypadku zdania (ii), istnieje tylko jedna klauzula w CNF i DNF, ponieważ implicacja (p ⇒ q) jest równoważna z ¬p V q.