실습 6: 순차회로의 이해

실습 6: 순차회로의 이해

■ 실습목표

- 직관적인 방법으로 순차회로를 설계한다.
- 순차회로에서의 '상태'의 의미를 이해하고 상태와 입력으로부터 출력을 정의할 수 있다.
- Moore model과 Mealy model의 차이를 이해한다.

■ 사전지식

- Shift register: 플립플롭을 직렬로 연결하고 공통의 클럭을 공유하도록 설계한 레지스터로 한번에 한 비트씩 데이터를 이동시킬 수 있음
- Moore machine: 출력을 상태의 함수로 표현하는 방식
- Mealy machine: 출력을 상태와 입력의 함수로 표현하는 방식

■ 예습문제

1. D 플립플롭을 이용하여 3 비트 shift register를 구현하려고 한다. 3개의 D 플립플롭을 연결하여 입력된 3 비트 정보를 순서대로 저장할 수 있도록 shift register를 설계하시오. 이때 입력은 X이고 출력은 각 플립플롭에 저장된 3 비트, Y₀, Y₁, Y₂ 이다.

2. 한 비트씩 주어지는 입력이 연속해서 세 개가 모두 1이면 1을, 그렇지 않으면 0을 출력하는 회로가 있다. 아래 입력에 대하여 예상되는 출력을 쓰시오.

011101111101

3. 문제 2와 같이 세 비트가 111이면 새로운 출력 Z 가 1이 되도록 앞에서의 shift register에 AND 게이트를 추가하여 다시 그리시오.

4. 두 개의 D 플립플롭만으로도 문제 3에서 제시된 기능을 구현할 수 있다. 아래에 보이시오. (힌트) 가장 마지막에 입력된 1을 저장하지 않아도 연속된 3개의 1을 탐지할 수 있다.

■ 실습과정

- 1. Mealy model 분석

③ 예습문제 4 에서의 논리도를 CircuitVerse 로 구현하고 111 을 탐지할 수 있음을 보이시오.

④ 예습문제 4 에서의 논리도를 분석하려고 한다. 다음상태방정식과 출력방정식을 작성하시오.

⑤ 다음상태표를 작성하시오

	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	() Z	0	1
Y.Y. 0 1	00 0 0	0	0	0
01 0 1	0100	01	0	0
11 0 1		//	Ø	1
10 0 1	10 / / / Y' = Yo	10	0	0
λ°, = Χ	11 = 10	Z =	 XYX =	

	위안.	기오는 물론	라이느와 같이 문사 8와 일던먼오들 :			소압아기도 안나.		, Marca			
	Yo	+ 4,+	_	己		Prosent		state	l	at	prt
1.5	1	x = 1	1			State	X=0	X=(X	0	-
00	· -		0	Ø		2.	So	53		0	O
0		10	0	O		S ₁	80	53		0	O
/ /	01	1 (0	1		22	2,	82		Ô	1
/ o	01	(1	0	0		\mathcal{S}_3	2	2		0	\supset
							, i				
- /		•					1				

- ① 예습문제 3 에서의 논리도에서 각 플립플롭이 저장하는 정보에 대하여 설명하시오. ()는 서 클릭 이건의 입적값, 시는 두 캠의 이건의 입적값, 시。는 한 클릭 이건의 입적값
- ② 주어진 입력에 대하여 출력이 결정되는 시점에 대하여 설명하시오. 상승 왕선왕 기사전 같이 글래티아

③ 2 개의 플립플롭만 사용하여 예습문제 3 과 동일한 기능을 구현하려고 한다. 우선 상태도로 표현하되, Moore model 임에 주의하시오.

④ 앞에서의 상태도를 상태표로 바꾸어 표현하시오.

Present state	Next X=0	state x=1	Present output
So	So	5,	0
,2	2。	S_2	0
\mathcal{S}^{τ}	20	23	0
S_3	2	S_3	

⑤ 슬라이드 14-7 에서와 같이 상태를 적절한 이진수 조합으로 바꿔서 표현해야 다음 단계로 진행할 수 있다. 편의상 상태가 도출되는 순서대로 이진수를

⑥ 다음상태방정식과 출력방정식을 유도하시오.

	ABX	0		AR	0		
_	00	Ó	O	00	0	1	
	01	0	 [0 /	O	0	
		0	\ \ \	1]	0		
	O	0	11	10	O		
$A^{+} = XA + XB$ $= X(A + B)$				$B^{+} = XB^{+} XA$ $= X(A+B^{\prime})$			

⑦ 논리도로 바꿔서 도시하시오. ③에서 의도한 것처럼 2 개의 플립플롭을

 ⑧ 예습문제 3에서의 논리도와 ⑦번에서의 논리도를 모두 CircuitVerse로 구현하고

 111 을 탐지할 수 있음을 보이시오.

■ 정리 및 심화

- 1. Moore model과 Mealy model 비교
 - ① 실습과정 1 에서의 회로와 실습과정 2 에서의 회로에 대하여, 출력이 결정되는 시점을 기준으로 비교하시오.

설습 1 (일2) 위신) 에서의 회원 생동호자 이후 X의 값이 전했다. 시장에서 현재이 현재인 설립 2 에서의 회원 상승 오래 이후 현재이 전했다.

② 상태표에서의 출력 부분을 기준으로 비교하시오. 실습 | 에서의 최강는 입정값 (현재값에 직접적으로 당향을 구기만) 설급 2메시와 최각는 입정값 () 결정값이 직접적으로 당향은 구기 있습니다.

③ 출력에 영향을 미치는 요인에 대하여 비교하시오.(힌트) 일반적으로 순차회로의 출력은 상태와 입력의 함수이다.

2. 축소된 상태도

① 실습과정 1 에서의 상태도에는 불필요한 상태가 포함되어 있다. 정확하게 표현하면, 서로 동일한 상태가 중복되어 있다. 서로 상태가 다르더라도 각 상태 이후에 예상되는 출력이 같으면, 그 두 상태는 동일하다고 볼 수 있다. Mealy model 의 경우 두 상태에 대하여 모든 입력에 대하여 출력이 같고, 다음 상태도 같다면, 두 상태 이후의 출력이 반드시 같게 된다. 동일한 상태를 선택하고 앞에서의 설명을 인용하여 이유를 설명하시오.

② 각 상태가 기억하는 정보를 기준으로 ①에서의 두 상태가 동일한 이유를 다시설명하시오.(힌트) 연속된 1의 값을 탐지하려면 0 이전에 입력된 1에 대해서는 기억할 필요가 없다. 즉, 순서대로 0,0이 입력된 경우와 1,0이 입력된 경우는 기억할 1이 없다는 점에서 동일한 조건에 해당된다.

③ 위에서 불필요한 상태를 제거하고 상태의 개수를 축소해서 다시 상태도를

④ 예습문제 3 에서의 논리도에서는 2³ 개의 상태가 존재한다. 세 개의 flip-flop 에 저장된 값들을 이진수로 옮기면 000, 001, …, 111 과 같이 되므로, 각 상태의 이름을 순서대로 S₀, S₁, …, S₇으로 바꾸어 표현하기로 한다. 8 개의 상태간의 전이를 포함하여 상태도를 도시하시오.

⑤ 위에서의 상태도와 실습과정 2에서의 상태도가 동일함을 설명하시오.

Present	Next	state '	7	Present	Next	state '	7
State	X=0	XFI	4	State	X=0	XH	4
.2	S.	4	0	٥2	S.	2,	0
S4	2°	Se	0	S,	2°	Z^{2}	0
26	20	\mathcal{L}_{η}	0	S ₂	2°	$\mathcal{L}_{\mathcal{L}}$	0
Sg	2	72	1	S_3	2	23	1

到 经时间 经期间