CHANDIGARH UNIVERSITY UNIVERSITY INSTITUTE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Submitted By: Rajiv Paul	Submitted To: Parveen Badoni
Subject Name	Machine Learning Lab
Subject Code	20CSP-317
Branch	BE-CSE
Semester	5th

LAB INDEX

Sr. No	Program	Date	Evaluatio n			atio	Sign
			L W (12	V V (8)	F W (10	Tot al (30	
1.1							
1.2							
1.3							
2.1							
2.2							
2.3							
2.4							
3.1	To Implement K-means clustering algorithm (cluster some sample data set into disjoint clusters using K-means).	26/10/22					
3.2							

2.2				
3.3				

EXPERIMENT - 8

Student Name: Rajiv Paul UID: 20BCS1812

Branch: CSE Section/Group: 20BCS_WM-702A Semester: 5th Date of Performance: 26/10/2022

Subject Name: Machine Learning Lab Subject Code: 20CSP-317

1. AIM OF THE EXPERIMENT:

To Implement K-means clustering algorithm (cluster some sample data set into disjoint clusters using K-means).

2. TASK TO BE DONE:

We will train a model using K-means and check its accuracy by plotting its graph.

3. PROGRAM CODE & OUTPUT:

i) Importing libraries

- import numpy as np
- import pandas as pd
- import matplotlib.pyplot as plt
- from sklearn.cluster import KMeans
- import warnings
- warnings.filterwarnings('ignore')

ii) Creating our own data points to get a dataset.

- x = [4, 5, 10, 40, 30, 11, 4, 6, 1, 12, 21, 41, 22, 32, 19]
- y = [21, 19, 24, 17, 16, 25, 24, 2, 21, 21, 28, 35, 41, 20, 18]
- plt.scatter(x, y)
- plt.show()

iii) Visualizing our dataset by plotting a graph.

- data = list(zip(x, y))
- inertias = []
- for i in range(1,11):
- kmeans = KMeans(n_clusters=i)
- kmeans.fit(data)
- inertias.append(kmeans.inertia_)

•

- plt.plot(range(1,11), inertias, marker='o')
- plt.title('Elbow method')
- plt.xlabel('Number of clusters')
- plt.ylabel('Inertia')
- plt.show()

iv) Fitting our training data in Kmeans to train the model and generating predictions.

- kmeans = KMeans(n clusters=3)
- kmeans.fit(data)
- print(kmeans.labels)

v) Score values of Kmeans.

• print(kmeans.cluster_centers_)

```
print(kmeans.cluster_centers_)

[ [ 4.4 19. ]
       [11.4 23. ]]
```

vi) Visualizing predictions by plotting a graph.

• plt.scatter(x, y, c=kmeans.labels)

• plt.show()

