

AReS & MaRS - Adversarial and MMD-Minimizing Regression for SDEs

Gabriele Abbati^{*1}, Philippe Wenk^{*23}, Michael A Osborne¹, Andreas Krause², Bernhard Schölkopf⁴, Stefan Bauer⁴ ¹University of Oxford, ²ETH Zürich, ³Max Planck ETH Center for Learning Systems, ⁴Max Planck Institute for Intelligent Systems

Abstract

Stochastic differential equations (SDEs) are an important modeling class in many disciplines.

We propose a novel, probabilistic model for estimating the drift and diffusion given noisy observations of the underlying stochastic system. Using state-of-the-art adversarial and moment matching inference techniques, we avoid the classical expensive discretization schemes. We achieve significant improvements in parameter inference accuracy and robustness given random initial guesses.

Gradient Matching

$$\mathbf{y}=\mathbf{x}+\epsilon$$
 with $\epsilon\sim\mathcal{N}(\mathbf{0},\sigma_{\mathbf{y}})$ Integration-based methods Integral $\frac{30}{25}$

parameters → **trajectory**

Given f and y, **infer x** and heta

Models

(1) Gaussian Process prior on states

$$egin{aligned} p(\mathbf{x} \mid \phi) &= \mathcal{N}(\mathbf{x} \mid oldsymbol{\mu_y}, \mathbf{C}_\phi) \ p(\dot{\mathbf{x}} \mid \mathbf{x}, \phi) &= \mathcal{N}(\dot{\mathbf{x}} \mid \mathbf{Dx}, \mathbf{A}) \end{aligned}$$

(2) ODE Model

$$p(\dot{\mathbf{x}} \mid \mathbf{x}, \boldsymbol{ heta}, \gamma) = \mathcal{N}(\dot{\mathbf{x}} \mid \mathbf{f}(\mathbf{x}, \boldsymbol{ heta}), \gamma \mathbf{I})$$

(3) Observational Error

$$\dot{\mathbf{x}}$$
 $\dot{\mathbf{x}}$ $\dot{\mathbf{y}}$

 $(\mathbf{x}) \rightarrow (\dot{\mathbf{x}})$

Inference

 $p(\mathbf{y} \mid \mathbf{x}, \sigma) = \mathcal{N}(\mathbf{y} \mid \mathbf{x}, \sigma^2 \mathbf{I})$

- ► Calderhead et al.[1], Dondelinger et al.[2]: Product of Experts $p(\dot{\mathbf{x}}) \propto p_{\mathsf{data}}(\dot{\mathbf{x}}) p_{\mathsf{ODE}}(\dot{\mathbf{x}})$
- ► Wenk et al.[3]: Forced equality $m{p}(\dot{\mathbf{x}}) \propto m{p}_{\mathsf{data}}(\dot{\mathbf{x}}_{\mathsf{data}}) m{p}_{ODE}(\dot{\mathbf{x}}_{\mathsf{ODE}}) \delta(\dot{\mathbf{x}}_{\mathsf{data}} - \dot{\mathbf{x}}) \delta(\dot{\mathbf{x}}_{\mathsf{ODE}} - \dot{\mathbf{x}})$
- ► Wenk, Abbati et al.[4]: **ODEs as constraints**

Stochastic Gradient Matching

 $d\mathbf{x} = \mathbf{f}(\mathbf{x}, \boldsymbol{\theta}) dt + \mathbf{G}d\mathbf{W}$ General **SDE Problem** $\mathbf{y} = \mathbf{x} + \boldsymbol{\epsilon}$ with $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma_{\mathbf{v}})$

Problems:

- ► Both observation and process noise
- Stochastic sample paths
- Paths are not differentiable

Given f and y,

infer x, G and θ

Doss-Sussmann Transformation

Definition (Ornstein-Uhlenbeck) The Ornstein-Uhlenbeck process is the stochastic process **o** defined by the equation: $d\mathbf{o} = -\mathbf{o}dt + \mathbf{G}d\mathbf{W}$. We introduce the latent variable

$$\mathbf{z} = \mathbf{x} - \mathbf{o}$$

to get the stochastic gradients

$$d\mathbf{z}(t) = \{\mathbf{f}(\mathbf{z}(t) + \mathbf{o}(t), \boldsymbol{\theta}) + \mathbf{o}(t)\} dt$$

A Novel Noise Model

New Error Model
Y = Z + O + E **Previous Error Model** Y = X + E

Resulting observation marginal distribution:

SDE-based model

 $p(\dot{\mathbf{z}} \mid \mathbf{o}, \mathbf{z}, \boldsymbol{\theta}) = \delta(\dot{\mathbf{z}} - \mathbf{f}(\mathbf{z} + \mathbf{o}, \boldsymbol{\theta}) - \mathbf{o})$

Data-based model

 $p(\dot{\mathbf{z}} \mid \mathbf{z}, \phi) = \mathcal{N}\left(\dot{\mathbf{z}} \mid \mathbf{Dz}, \mathbf{A}\right)$

AReS & MaRS: Inference and Results

(1) AReS (WGAN[5]) $\theta \leftarrow -\nabla_{\theta} \left[\frac{1}{M} \sum_{i=1}^{M} f_{\omega}(\dot{\mathbf{z}}_{SDE}^{(i)}) \right]$

 $oldsymbol{ heta} \leftarrow
abla_{oldsymbol{ heta}} extstyle extstyle MMD_{oldsymbol{\mu}}^2 \left[\dot{ extstyle z}_{ extstyle extstyle DE}, \dot{ extstyle z}_{ extstyle extstyle data}
ight]$ (2) MaRS (MMD[6])

Samples after training

DW, GT	NPSDE[7]	VGPA[8]	ESGF[9]	AReS	MaRS
$\theta_0 = 0.1$	0.09 ± 7.00	0.05 ± 0.04	0.01 ± 0.03	0.09 ± 0.04	$\textbf{0.10} \pm \textbf{0.05}$
$\theta_1 = 4$	3.36 ± 248.82	1.11 ± 0.66	0.11 ± 0.16	3.68 ± 1.34	3.85 ± 1.10
H = 0.25	0.00 ± 0.02	/	0.20 ± 0.05	0.21 =	± 0.09

LV, GT	NPSDE[7]	ESGF[9]	AReS	MaRS
$\theta_0 = 2$	1.58 ± 0.71	2.04 ± 0.09	2.36 ± 0.18	2.00 ± 0.09
$\theta_1 = 1$	0.74 ± 0.31	1.02 ± 0.05	1.18 ± 0.9	1.00 ± 0.04
$\theta_2 = 4$	2.26 ± 1.51	3.87 ± 0.59	$\textbf{3.97} \pm \textbf{0.63}$	3.70 ± 0.51
$\theta_3 = 1$	0.49 ± 0.35	0.96 ± 0.14	$\textbf{0.98} \pm \textbf{0.18}$	0.91 ± 0.14
$\mathbf{H}_{1,1} = 0.05$	/	0.01 ± 0.03	0.03 ± 0.004	
$\mathbf{H}_{1,2} = 0.03$	/	0.01 ± 0.01	0.02 \pm 0.01	
$\mathbf{H}_{2,1} = 0.03$	/	0.01 ± 0.01	0.02 \pm 0.01	
$\mathbf{H}_{2,2} = 0.09$	/	0.03 ± 0.02	0.09 =	 0.03

References

- [1] Calderhead et al., Accelerating Bayesian inference over nonlinear differential equations with Gaussian processes, NIPS, 2009.
- [2] Dondelinger et al., ODE parameter inference using adaptive gradient matching with Gaussian processes, AISTATS, 2013.
- [3] Wenk et al., Fast Gaussian Process Based Gradient Matching for Parameter Identification in Systems of Nonlinear ODEs, AISTATS, 2019.
- [4] Wenk*, Abbati* et al., Odin: Ode-informed regression for parameter and state inference in timecontinuous dynamical systems, arXiv preprint 1902.06278, 2019.
- [5] Arjovsky and Chintala, Wasserstein gan, arXiv preprint 1701.07875, 2017.
- [6] Gretton et al., A kernel two-sample test, JMLR, 2012.
- [7] Yildiz et al., Learning stochastic differential equations with gaussian processes without gradient matching, IEEE 28th International Workshop on Machine Learning for Signal Processing, 2012.
- [8] Vrettas et al., Variational mean-field algorithm for efficient inference in large systems of stochastic differential equations, Physical Review E, 2015.
- [9] Särkkä et al., Posterior inference on parameters of stochastic differential equations via non-linear Gaussian filtering and adaptive MCMC, Statistics and Computing, 2015.

