Transformation d'un respirateur artificiel fonctionnant en circuit ouvert en un respirateur en circuit fermé

Numéro de candidat: 22560

Sommaire

Introduction: présentation du projet

I: Fonctionnement du Makair

II: Fermeture du circuit respiratoire du Makair

III: Etude de l'asservissement en pression à l'aide d'une maquette

IV: Annexes

Introduction: présentation du projet

I: Fonctionnement du Makair

Poumon artificiel

Intérieur du Makair

régulateur de pression: moteur avec excentrique

Devanture du Makair

I: Fonctionnement du Makair

I: Fonctionnement du Makair

II: Fermeture du Makair

Embouts coniques

II: Fermeture du Makair

Ballon réservoir

turbine

Signal PWM du préactionneur

Capteur de pression

III: Etude de l'asservissement

avec une maquette

moteur - codeur

interrupteur

Valve anti-retour

1)

Pression de plateau selon la vitesse de rotation de la turbine

Pression de plateau en fonction du pulse width

Cycles respiratoires

Pression mesurée dans le poumon pour un cycle respiratoire "normal".

Avec étranglement à la sortie variable et étranglement à l'entrée fixe

Conclusion

Approche d'un modèle théorique Mesure de résistance

Approche d'un modèle théorique Mesure de résistance

Diamètre de l'étranglement

Approche d'un modèle théorique

Mesure de compliance

$$C_{stat} = rac{V_T}{P_{plat} - ext{PEEP}}$$

Vt = volume courant
PEEP = pression expiratoire positive
Pplat = pression de plateau

Approche d'un modèle théorique Mesure de compliance

Expérience me	sure complianc			
PEP	pression platea	Vcourant	Compliance	
3	15	165	13,75	
3	20	265	15,58823529	
3	25	344	15,63636364	
0	20	283	14,15	
5	20	259	17,26666667	
10	20	220	22	
Valeur moyenr	ne		16,39854427	ml/cmH20

PEP(cm H20)	PLATEA U(cmH 20)	T1(s)			Section	Pulse width(ms)	Vitesse (m/s)		Compli ance
0	25	6,85	9,36	2,51	0,0018	1,5	15000	67,77	2,7108
0	20	5,23	8,29	3,06	0,0018	1,41	12500	68,85	3,4425
0	15	4,6	8,3	3,7	0,0018	1,32	10000	66,6	4,44

Approche d'un modèle théorique Mesure de compliance

Expérience me	sure complianc			
PEP	pression platea	Vcourant	Compliance	
3	15	165	13,75	
3	20	265	15,58823529	
3	25	344	15,63636364	
0	20	283	14,15	
5	20	259	17,26666667	
10	20	220	22	
Valeur moyenr	ne		16,39854427	ml/cmH20

PEP(cm	•	T1(s)		DELTA_ T(s)	Section	Pulse width(ms)	Vitesse (m/s)		Compli ance
0	25	6,85	9,36	2,51	0,0018	1,5	15000	67,77	2,7108
0	20	5,23	8,29	3,06	0,0018	1,41	12500	68,85	3,4425
0	15	4,6	8,3	3,7	0,0018	1,32	10000	66,6	4,44

Avant étanchéisation

Après étanchéisation