Descriptive Statistics: Part 1/2 (Ch 3)

Dason Kurkiewicz

What is descriptive

Tabular Displays

Descriptive Statistics: Part 1/2 (Ch 3)

Dason Kurkiewicz

Iowa State University

May 28, 2013

What is descriptive statistics?

- Descriptive statistics: the use of plots and numerical summaries to describe data without drawing any formal conclusions.
- Descriptive statistics seeks to find the following features of datasets:
 - Center: the point that the data are closest to on average
 - Spread: how wide the data look, how varied the points are
 - Shape (more on that when we get to plots)
 - Outliers: points that lie way beyond the rest of the data.

Graphical and Tabular Displays

Tabular Displays Dot diagrams

Gears hung

Portraying Bullet Penetration Depths

Sale and Thom compared penetration depths for several types of .45 caliber bullets fired into oak wood from a distance of 15 feet. Table 3.1 gives the penetration depths (in mm from the target surface to the back of the bullets) for two bullet types. Figure 3.2 presents a corresponding pair of dot diagrams.

Table 3.1 Bullet Penetration Depths (mm)

230 Grain Jacketed Bullets	200 Grain Jacketed Bullets
40.50, 38.35, 56.00, 42.55,	63.80, 64.65, 59.50, 60.70,
38.35, 27.75, 49.85, 43.60,	61.30, 61.50, 59.80, 59.10,
38.75, 51.25, 47.90, 48.15,	62.95, 63.55, 58.65, 71.70,
42.90, 43.85, 37.35, 47.30,	63.30, 62.65, 67.75, 62.30,
41.15, 51.60, 39.75, 41.00	70.40, 64.05, 65.00, 58.00

Tabular Displays Dot diagrams

200 Grain jacketed bullets


```
Graphical and
Tabular Displays
Dot diagrams
Stem and leaf plots
Frequency tables
Histograms
Bar plots
```

Back to back stem and leaf plots

Laid runouts

Statistics: Part 1/2 (Ch 3) Dason Kurkiewicz

Descriptive

What is descriptive

Tabular Displays Stem and leaf plots

```
Hung runouts
2
  7
     7 8
3 6
```

Frequency Table for Laid Gear Thrust Face Runouts

Runout (.0001 in.)	Tally	Frequency	Relative Frequency	Cumulative Relative Frequency
5-8	III	3	.079	.079
9 - 12	## ## ## III	18	.474	.553
13-16	HH HH II	12	.316	.868
17-20	1111	4	.105	.974
21-24		0	0	.974
25–28	I	1	.026	1.000
		38	1.000	

Frequency Table: bullet data, 200 grain

Frequency Table for 200 Grain Penetration Depths

Penetration Depth (mm)	Tally	Frequency	Relative Frequency	Cumulative Relative Frequency
58.00-59.99	Ш	5	.25	.25
60.00-61.99		3	.15	.40
62.00-63.99	HH 1	6	.30	.70
64.00-65.99		3	.15	.85
66.00-67.99		1	.05	.90
68.00-69.99		0	0	.90
70.00-71.99		2	.10	1.00
		20	1.00	

Descriptive Statistics: Part 1/2 (Ch 3)

Dason Kurkiewicz

What is descriptive

Tabular Displays Frequency tables

Histogram: bullet data, 200 grain

Descriptive Statistics: Part 1/2 (Ch 3)

Dason Kurkiewicz

Tabular Displays Histograms

- 1. (continue to) use intervals of equal length,
- 2. show the entire vertical axis beginning at zero,
- avoid breaking either axis,
- keep a uniform scale across a given axis, and
- 5. center bars of appropriate heights at the midpoints of the (penetration depth) intervals.
- Also: histograms are for continuous data only. The equivalent plot for discrete and categorical data is called a bar plot, featured next.

	mpg	cyl	
Mazda RX4	21	6	
Mazda RX4 Wag	21	6	
Datsun 710	22.8	4	
Hornet 4 Drive	21.4	6	
Hornet Sportabout	18.7	8	
Valiant	18.1	6	
Duster 360	14.3	8	
Merc 240D	24.4	4	
Merc 230	22.8	4	
Merc 280	19.2	6	
Merc 280C	17.8	6	
Merc 450SE	16.4	8	
Merc 450SL	17.3	8	
Merc 450SLC	15.2	8	
Cadillac Fleetwood	10.4	8	

Discrete data frequency table: cars data

Cylinders	Freq.	Relative Freq.	Cumulative Rel. Freq.
4	11	0.344	0.344
6	7	0.219	0.563
8	14	0.4375	1

Descriptive Statistics: Part 1/2 (Ch 3)

Dason Kurkiewicz

Tabular Displays Bar plots

Number of cylinders

	mpg	wt
Mazda RX4	21	2.62
Mazda RX4 Wag	21	2.875
Datsun 710	22.8	2.32
Hornet 4 Drive	21.4	3.215
Hornet Sportabout	18.7	3.44
Valiant	18.1	3.46
Duster 360	14.3	3.57
Merc 240D	24.4	3.19
Merc 230	22.8	3.15
Merc 280	19.2	3.44
Merc 280C	17.8	3.44
Merc 450SE	16.4	4.07
Merc 450SL	17.3	3.73
Merc 450SLC	15.2	3.78
Cadillac Fleetwood	10.4	5.25

Descriptive Statistics: Part 1/2 (Ch 3)

Dason Kurkiewicz

Tabular Displays

Scatterplots

. . .

Scatterplots

Scatterplots

- ▶ The p'th percentile of a dataset: a number greater than p % of the data and less than the rest.
 - "You scored at the 90'th percentile on the SAT" means that your score was higher than 90% of the students who took the test and lower than the other 10%
 - "Zorbit was positioned at the 80th percentile of the list of fastest growing companies compiled by INC magazine." means Zorbit was growing faster than 80% of the companies in the list and below the other 20%.
- ▶ The *p* quantile of a dataset: a percentile, except with *p* expressed as a decimal number, not a percentage.
 - "You scored at the 0.9 quantile on the SAT"
 - "Zorbit was positioned at the 0.8 quantile of the list compiled by INC magazine."

- Given:
 - \triangleright $x_1, \ldots x_n$, an ordered list of numbers. This is the dataset.
 - p, a number between 0 and 1.
- ▶ Goal: calculate Q(p), the p quantile of the dataset.
- Notation:
 - Q(p) is called the quantile function.
 - ▶ |x| is called the **floor function**.
 - ► [x] is called the **ceiling function**.

- Let $p_i = \frac{i .5}{n}, i = 1, ..., n$
- Define $Q(p_i) = x_i$ for $i = 1, \dots n$.
 - If $p = p_j$ for some index j, then $Q(p) = Q(p_i)$.
 - Otherwise, linearly interpolate Q(p):
 - i. Let i' = np + .5 (Solve $p = \frac{i' .5}{2}$ for i').
 - ii. Take $Q(p) = (\lceil i' \rceil i')x_{\lfloor i' \rfloor} + \ddot{(i' \lfloor i' \rfloor)}x_{\lceil i' \rceil}$

Example: breaking strength (g) of towels

test	strength
1	8577
2	9471
3	9011
4	7583
5	8572
6	10688
7	9614
8	9614
9	8527
10	9165

Descriptive Statistics: Part 1/2 (Ch 3)

Dason Kurkiewicz

What is descriptive

Tabular Displays

test	$\frac{i5}{10}$	<i>i</i> 'th smallest data point, $x_i = Q(\frac{i5}{10})$
1	0.05	7583
2	0.15	8527
3	0.25	8572
4	0.35	8577
5	0.45	9011
6	0.55	9165
7	0.65	9471
8	0.75	9614
9	0.85	9614
10	0.95	10688

test	$\frac{i5}{10}$	i 'th smallest data point, $x_i = Q(\frac{i5}{10})$
1	0.05	7583
2	0.15	8527
3	0.25	8572
4	0.35	8577
5	0.45	9011
6	0.55	9165
7	0.65	9471
8	0.75	9614
9	0.85	9614
10	0.95	10688

Case 1. De	efine $Q(p_i)$ =	$= x_i$ for i	$=1,\ldots n$.
------------	------------------	-----------------	-----------------

Case 2. If $p \neq p_i$ for any i, linearly interpolate Q(p):

a. Let
$$i' = np + .5$$
 (Solve $p = \frac{i' - .5}{n}$ for i')

b. Take
$$Q(p) = (\lceil i' \rceil - i')x_{\lceil i' \rceil} + (i' - \lfloor i' \rfloor)x_{\lceil i' \rceil}$$

Descriptive Statistics: Part 1/2 (Ch 3)

Dason Kurkiewicz

What is descriptive

Tabular Displays
Dot diagrams
Stem and leaf plots
Frequency tables

Bar plots Scatterplots

$$i' = np + .5$$

= $10 \cdot 0.5 + 0.5 = 5.5$

$$Q(0.5) = (\lceil i' \rceil - i')x_{\lfloor i' \rfloor} + (i' - \lfloor i' \rfloor)x_{\lceil i' \rceil}$$

$$= (\lceil 5.5 \rceil - 5.5)x_{\lfloor 5.5 \rfloor} + (5.5 - \lfloor 5.5 \rfloor)x_{\lceil 5.5 \rceil}$$

$$= (6 - 5.5)x_5 + (5.5 - 5)x_6$$

$$= (0.5)9011 + (0.5)9165$$

$$= 9088$$

$$Q(0.18) = (\lceil i' \rceil - i')x_{\lfloor i' \rfloor} + (i' - \lfloor i' \rfloor)x_{\lceil i' \rceil}$$

$$= (\lceil 2.3 \rceil - 2.3)x_{\lfloor 2.3 \rfloor} + (2.3 - \lfloor 2.3 \rfloor)x_{\lceil 2.3 \rceil}$$

$$= (3 - 2.3)x_2 + (2.3 - 2)x_3$$

$$= (0.7)8527 + (0.3)8572$$

$$= 8540.5$$

$$i' = np + .5$$

= $10 \cdot 0.94 + 0.5 = 9.9$

$$Q(0.94) = (\lceil i' \rceil - i') x_{\lfloor i' \rfloor} + (i' - \lfloor i' \rfloor) x_{\lceil i' \rceil}$$

$$= (\lceil 9.9 \rceil - 9.9) x_{\lfloor 9.9 \rfloor} + (9.9 - \lfloor 9.9 \rfloor) x_{\lceil 9.9 \rceil}$$

$$= (10 - 9.9) x_9 + (9.9 - 9) x_{10}$$

$$= (0.1)9614 + (0.9)10688$$

$$= 10580.6$$

- Special quantiles:
 - ► Minimum: $Q\left(\frac{1-.5}{n}\right)$
 - Lower Quartile: Q(0.25)
 - ► **Median**: *Q*(0.5)
 - Upper Quartile: Q(0.75)
 - ▶ Maximum: $Q\left(\frac{n-.5}{n}\right)$
- ▶ Interquartile Range (IQR): Q(0.75) Q(0.25)
 - ▶ Most points should be below $Q(0.75) + 1.5 \cdot IQR$ and above $Q(0.25) 1.5 \cdot IQR$.
 - ▶ **Outlier**: a point above $Q(0.75) + 1.5 \cdot IQR$ or below $Q(0.25) 1.5 \cdot IQR$.