

3.INCE 2001

SINCE 2001

SINCE 2001

SINCE 2001

SINCE 2001

SINCE 2001

SINCE 2001

第一章 行列式

第一节 行列式的概念

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21} .$$

2.二元线性方程组

如果含有两个未知量两个方程的线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases}$$

SINCE 2001

的系数作成的二阶行列式 $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \neq 0$,那么方程组的解为

$$x_1 = egin{array}{c|ccc} b_1 & a_{12} \ b_2 & a_{22} \ \hline a_{11} & a_{12} \ a_{21} & a_{22} \ \hline a_{21} & a_{22} \ \hline a_{21} & a_{22} \ \hline \end{array}, x_2 = egin{array}{c|ccc} a_{11} & b_1 \ a_{21} & b_2 \ \hline a_{11} & a_{12} \ a_{21} & a_{22} \ \hline \end{array}$$

二、三阶行列式

1.三阶行列式

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

UATU. COM

2.三元线性方程组

如果含有三个未知量三个方程的线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$$

的系数作成的三阶行列式 $D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \neq 0$,那么方程组的解为

$$x_1 = \frac{D_1}{D}, x_2 = \frac{D_2}{D}, x_3 = \frac{D_3}{D}$$

三、n 阶行列式

1. n 阶行列式定义

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{j_1 j_2 \cdots j_n} (-1)^{\tau(j_1 j_2 \cdots j_n)} a_{1j_1} a_{2j_2} \cdots a_{nj_n},$$

SINCE 2001

这里 $\sum_{\substack{i_1i_2\cdots i_n}}$ 表示对所有 n 级排列求和。

2.对角行列式

形如
$$\begin{vmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{vmatrix}$$
 称为对角行列式, $\begin{vmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{vmatrix} = a_1 a_2 \cdots a_n$ 。

3.上(下)三角行列式

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11}a_{22}\cdots a_{nn} , \begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = a_{11}a_{22}\cdots a_{nn} .$$

4.余子式与代数余子式

在 n 阶行列式中,划去第 i 行,第 j 列,余下的元素按原次序排成的 n-1 阶行列式称为 (i,j) 元的余子式,记为 M_{ij} ,称 (i,j) 元的代数余子式定义为 $A_{ij} = (-1)^{i+j}M_{ij}$ 。

【例题】

$$1.在四阶行列式 $D = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + a_{23} \overset{\bullet}{\text{N}}$ 中 $a_{23} \overset{\bullet}{\text{N}}$ 的余子式和代数余子式分别是多少?$$

5. 范德蒙行列式

行列式
$$d = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_n \\ a_1^2 & a_2^2 & a_3^2 & \cdots & a_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{vmatrix}$$

,称为 n 级的范德蒙行列式。对于任

73

意的 $n(n \ge 2)$ 级范德蒙行列式等于 $a_1, a_2, a_3, \dots a_n$ 这 n 个数的所有可能的差 $a_i - a_j$ (1 $\le j < i \le n$) 的乘积。

(1)
$$\stackrel{\text{def}}{=} n = 2 \text{ pd}$$
, $\begin{vmatrix} 1 & 1 \\ a_1 & a_2 \end{vmatrix} = a_2 - a_1$;

(2)当为n级行列式时,

$$d = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_n \\ a_1^2 & a_2^2 & a_3^2 & \cdots & a_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1^{n-1} & a_2^{n-1} & a_3^{n-1} & \cdots & a_n^{n-1} \end{vmatrix} = \prod_{1 \le j \le n} (a_i - a_j)$$

范德蒙行列式为零的充分条件是 $a_1, a_2, a_3, \dots, a_n$ 这n 个数中至少有两个相等。

【例题】

$$1. 计算行列式 D = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 + 1 & x_2 + 1 & \cdots & x_n + 1 \\ x_1^2 + x_1 & x_2^2 + x_2 & \cdots & x_n^2 + x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} + x_1^{n-2} & x_2^{n-1} + x_2^{n-2} & \cdots & x_n^{n-1} + x_n^{n-2} \end{vmatrix}$$

6.行列式的展开

行列式 D 等于它的任意一行(列)的所有元素与它们的对应代数余子式的乘积的和。即

$$D = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} (i = 1, 2, \dots, n)$$

或 $D = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj} (j = 1, 2, \dots, n)$ 。

【例题】

第二节 行列式的性质

一、性质

性质1:行列互换,行列式不变。即

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}$$

性质 1 表明,在行列式中行与列的地位是对称的,因此,凡是有关行的性质,对列也同样成立。行列式 D=D'。

例如下三角形的行列式

$$\begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = a_{11}a_{22}\cdots a_{nn}$$

性质 2:对换行列式中两行的位置,行列式反号。

性质 3:一行的公因子可以提出去,或者说以一数乘行列式的一行相当于用这个数乘此行列式。令 k=0,就有如果行列式中一行为零,那么行列式为零。

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ ka_{i1} & ka_{i2} & \cdots & ka_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

结论:某一行全为0的行列式

$$\begin{vmatrix} \alpha_{11} & \cdots & \cdots & \alpha_{1n} \\ 0 & \cdots & \cdots & 0 \\ \vdots & & & \vdots \\ \alpha_{n1} & \alpha_{n2} & \cdots & \alpha_{nn} \end{vmatrix} = 0$$

性质 4: 行列式中若某行(列)是两组数的和,则该行列式可分解成两个行列式的和,除了相应那行(列)分别各是一个加数外,其余以数行(列)和原行列式一样。

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ b_{1} + c_{1} & b_{2} + c_{2} & \cdots & b_{n} + c_{n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ b_{1} & b_{2} & \cdots & b_{n} \\ \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

这就是说,如果某一行是两组数的和,那么这个行列式就等于两个行列式的和,而这两个行列式除这一行以外全与原来行列式的对应的行一样。

性质 5:如果行列式中有两行相同,那么行列式为零。所谓两行相同就是说两行的对应 元素都相等。

性质 6: 如果行列式中两行成比例,那么行列式为零。

性质 7:把一行的倍数加到另一行,行列式不变。

【例题】

1.行列式
$$D_1 = \begin{vmatrix} 1 & 3 & 1 \\ 2 & 2 & 3 \\ 3 & 1 & 5 \end{vmatrix}$$
 , $D_2 = \begin{vmatrix} \lambda & 0 & 1 \\ 0 & \lambda - 1 & 0 \end{vmatrix}$, 若 $D_1 = D_2$, 则 λ 的值为(
A. 0,1
C. 1, -1
D. 2, -1

二、行列式的计算

1.降阶法

降阶法是按某一行(或一列)展开行列式,这样可以降低一阶。为了使运算更加简便,往往是根据行列式的特点,先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。

【例题】

2.化为三角形行列式

若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。 因此化三角形是行列式计算中的一个重要方法。

化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。 这是计算行列式的基本方法重要方法之一。因为利用行列式的定义容易求得上(下)三角形 行列式或对角形行列式的性质将行列式化为三角形行列式计算。

原则上,每个行列式都可利用行列式的性质化为三角形行列式。但对于阶数高的行列式,在一般情况下,计算往往较繁。因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。

【例题】

$$1.计算行列式 D = \begin{vmatrix} 1 & -1 & 2 & -3 & 1 \\ -3 & 3 & -7 & 9 & -5 \\ 2 & 0 & 4 & -2 & 1 \\ 3 & -5 & 7 & -14 & 6 \\ 4 & -4 & 10 & -10 & 2 \end{vmatrix}$$

$$2.计算 n 阶行列式 D = \begin{vmatrix} 1+a_1 & a_2 & a_3 & \cdots & a_n \\ a_1 & 1+a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 & 1+a_3 & \cdots & a_n \\ \cdots & \cdots & \cdots & \cdots \\ a_1 & a_2 & a_3 & \cdots & 1+a_n \end{vmatrix}$$

3.加边法(升阶法)

SINCE 2001

加边法(又称升阶法)是在原行列式中增加一行一列,目保持原行列式不变的方法。

SINCE 2001

它要求:保持原行列式的值不变;新行列式的值容易计算。根据需要和原行列式的特点选取所加的行和列。加边法适用于某一行(列)有一个相同的字母外,也可用于其第几列(行)的元素分别为n-1个元素的倍数的情况。

$$1.$$
计算 n 阶行列式 $D_n = egin{bmatrix} x + a_1 & a_2 & \cdots & a_n \\ a_1 & x + a_2 & \cdots & a_n \\ a_1 & a_2 & \cdots & a_n \\ \cdots & \cdots & \cdots & \cdots \\ a_1 & a_2 & \cdots & x + a_n \end{bmatrix}$

4.递推公式法

递推法是根据行列式的构造特点,建立起 D_n 与 D_{n-1} 的递推关系式,逐步推下去,从而求出 D_n 的值。有时也可以找到 D_n 与 D_{n+1} , D_n 的递推关系,最后利用 D_1 , D_2 得到 D_n 的值。

用此方法一定要看行列式是否具有较低阶的相同结构,如果没有的话,即很难找出递推 关系式,从而不能使用此方法。

【例题】

$$1.$$
计算行列式 $D_n = egin{bmatrix} lpha + eta & lpha eta & 0 & \cdots & 0 & 0 \ 1 & lpha + eta & lpha eta & \cdots & 0 & 0 \ 0 & 1 & lpha + eta & \cdots & 0 & 0 \ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \ 0 & 0 & 0 & \cdots & lpha + eta & lpha eta \ 0 & 0 & 0 & \cdots & 1 & lpha + eta \ \end{pmatrix}$

5.数学归纳法

当 D_n 与 D_{n+1} 是同型的行列式时,可考虑用数学归纳法求之。一般是利用不完全归纳法寻找出行列式的猜想值,再用数学归纳法给出猜想的证明。因此,数学归纳法一般是用来证明行列式等式。因为给定一个行列式,要猜想其值是比较难的,所以是先给定其值,然后再去证明。

SINCE 2001

第三节 克莱姆法则

一、克莱姆法则

含有n个未知数 x_1, x_2, \dots, x_n 的线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b \end{cases}$$
(1)

利用上式的系数可以构成一个行列式

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

若线性方程组(1)的系数行列式 $D \neq 0$,则线性方程组(1)有唯一解,其解为

$$x_j = \frac{D_j}{D}(j=1,2,\cdots,n)$$

其中 D_j $(j=1,2,\cdots,n)$ 是把 $D\neq 0$ 中第j 列元素 a_{1j} , a_{2j} , \cdots , a_{nj} 对应地换成常数项 b_1,b_2 , \cdots , b_n 而其余各列保持不变所得到的行列式。

1.用克莱姆法则解下列方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 5 \\ x_1 + 2x_2 - x_3 + 4x_4 = -2 \\ 2x_1 - 3x_2 - x_3 - 5x_4 = -2 \\ 3x_1 + x_2 + 2x_3 + 11x_4 = 0 \end{cases}$$

第二章 矩阵

第一节 矩阵的概念

一、矩阵

由 $m \times n$ 个数 a_{ij} $(i=1,2,\cdots,m;j=1,2,\cdots,n)$ 排成的 m 行 n 列数表

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

称为 m 行 n 列的矩阵,简称 $m \times n$ 矩阵,记为:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \quad \overrightarrow{\mathbb{R}} \mathbf{A}_{m \times n} = \mathbf{A}_{mn} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

其中 a_{ij} ($i = 1, 2, \dots, m; j = 1, 2, \dots, n$) 称为矩阵的元素。

- 1. 方阵: 行数和列数都为 n 的矩阵 A 称为 n 阶方阵, 可简记为 A_n
- 2.行矩阵(行向量):行数为 1 的矩阵 $A = (a_1, a_2, \dots, a_n)$.

3.列矩阵(列向量):列数为
$$1$$
 的矩阵 $\mathbf{A} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ since $\mathbf{A} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$

4.对角矩阵(对角阵)

形如
$$\mathbf{A} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$
 的方阵,简记为 $\mathbf{A} = diag(\lambda_1, \lambda_2, \cdots, \lambda_n)$ 。

注意: λ_i ($i = 1, 2, 3, \dots, n$) 不全为 0。

- 5.零矩阵:元素全为0的矩阵,简记为 $O_{m\times n}$ 或O。
- 注意:不同阶数的零矩阵是不相等的。

6.单位矩阵(单位阵):形如
$$\mathbf{E} = \mathbf{E}_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$
 的方阵。

- 7.同型矩阵:两个矩阵的行数相等、列数相等,称为同型矩阵。
- 8.矩阵相等:对应元素都相等的同型矩阵称为矩阵相等。
- 9.伴随矩阵:行列式 |A| 的各个元素的代数余子式 A_{ii} 所构成的如下的矩阵

$$m{A}^* = egin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \ A_{12} & A_{22} & \cdots & A_{n2} \ dots & dots & \ddots & dots \ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$
 ,

称为矩阵 A 的伴随矩阵。

第二节 矩阵的运算

一、矩阵的加法

矩阵 $\mathbf{A} = (a_{ij})_{m \times n}$ 和 $\mathbf{B} = (b_{ij})_{m \times n}$,则矩阵 \mathbf{A} 与 \mathbf{B} 的和记作 $\mathbf{A} + \mathbf{B}$,且

$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{pmatrix}$$

二、矩阵的数乘

常数 λ 与矩阵 A 的乘积记作 λA 或 $A\lambda$,且 $\lambda A = A\lambda = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \end{pmatrix}$

三、矩阵的乘法

1.矩阵的乘法

设矩阵 $\mathbf{A} = (a_{ij})_{m \times s}$ 与 $\mathbf{B} = (b_{ij})_{s \times n}$ 的乘积是 $\mathbf{C} = (c_{ij})_{m \times n}$,记作 $\mathbf{C} = \mathbf{A}\mathbf{B}$,其中 $c_{ij} =$

$$\sum_{k=1}^{s} a_{ik} b_{1j} + a_{i2} b_{2j} + \dots + a_{is} b_{sj} = \sum_{k=1}^{s} a_{ik} b_{kj} (i = 1, 2, \dots, m; j = 1, 2, \dots, n)$$

2.矩阵乘法的运算规律

矩阵的乘法虽不满足交换律,但仍满足下列结合律和分配律(假设运算都是可行的):

- (1) (AB)C = A(BC);
- (2) $\lambda (AB) = (\lambda A)B = A(\lambda B)$ (其中 λ 为数);
- (3) A(B+C) = AB + AC, (B+C)A = BA + CA.

3.可交换矩阵

如果 AB = BA, 称 A = BB 是可交换的矩阵。

注:

- (1)矩阵乘法一般不满足交换律,亦即 AB 与 BA 可以不相等,甚至两者可以不必皆有意义。
 - (2)存在 $A \neq O$, $B \neq O$, 有 AB = O。这表明两个非零矩阵的乘法可能是零矩阵。

(3)乘法的消去律不成立,即 $A \neq O$ 且AB = AC不能导出B = C。

【例题】

1.设A, B 均为n 阶矩阵, 一下结论正确的是(\mathbb{R}

A.
$$(A + B)^2 = A^2 + 2AB + B^2$$

$$B. \overrightarrow{A} (A + B) = (A + B) A$$

C.
$$A(A + E) = (A + E)A$$

D.
$$AB(A+E) = (A+E)BA$$

2.若
$$\mathbf{A} = (3 \ 1 \ 0)$$
 , $\mathbf{B} = \begin{pmatrix} 2 & 1 \\ -4 & 0 \\ -3 & 5 \end{pmatrix}$, 则 $\mathbf{AB} = \underline{\qquad}$

四、矩阵的幂

设 $A \in \mathbb{R}$ 阶方阵,定义 $A^1 = A$, $A^2 = A^1 A^1$, ..., $A^{k+1} = A^k A^1$, 其中 k 为正整数,这就是说 A^k 就是 k 个 A 连乘。显然只有方阵,它的幂才有意义。

五、矩阵的转置

1.矩阵的转置

将矩阵 $\mathbf{A} = (a_{ij})_{m \times n}$ 中行与列的元素互换,得到 \mathbf{A} 的转置矩阵 $\mathbf{A}^{\mathrm{T}} = \mathbf{A}' = (a_{ii})_{n \times m}$ 。

2.对称矩阵

HUATU. COM 设A 为n 阶方阵,如果满足 $A^{T} = A$,即 $a_{ii} = a_{ii} (i, j = 1, 2, \dots, n)$,那么A 称为对称矩 阵,也称对阵矩阵。对称的特点是:它的元素以对角线为对称轴对应相等。

六、逆矩阵

1. 定义

对于 n 阶矩阵 A ,如果有一个 n 阶矩阵 B ,使得 AB = BA = E (n 阶单位矩阵),则称矩 阵 A 是可逆的,把矩阵 B 称为 A 的逆矩阵,记为 $A^{-1} = B$ 。

当 |A|=0 时, A 称为奇异矩阵, 可逆矩阵就是非奇异矩阵。

2.定理 1:若矩阵 **A** 可逆,则 $|A| \neq 0$ 。

定理 2:若 $|A| \neq 0$,则矩阵 A 可逆,且 $A^{-1} = \frac{1}{|A|}A^*$,其中 A^* 为矩阵 A 的伴随矩阵。

- 3.逆矩阵满足下述运算规律:
- (1) 若 A 可逆,则 A^{-1} 亦可逆,且 $(A^{-1})^{-1} = A$;
- (2)若 \boldsymbol{A} 可逆,数 $\lambda \neq 0$,则 $\lambda \boldsymbol{A}$ 可逆,且 $(\lambda \boldsymbol{A})^{-1} = \frac{1}{\lambda} \boldsymbol{A}^{-1}$;

(3)若 $\mathbf{A} \cdot \mathbf{B}$ 为同阶矩阵且均可逆,则 $\mathbf{A}\mathbf{B}$ 亦可逆,且 $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$ 。

【例题】

1.求方阵
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{pmatrix}$$
 的逆阵。

SINCE 2001

一、分块矩阵的概念

我们将矩阵 A 用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为 A 的子块,以子块为元素的形式上的矩阵称为分块矩阵。

例如将
$$3 \times 4$$
 矩阵 $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{pmatrix}$ 分成子块的分法很多,下面举出两种分块

形式:(1)
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{pmatrix}$$
,(2) $\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{pmatrix}$ 。

分块(1)可记为
$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix}$$
,其中 $\mathbf{A}_{11} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, $\mathbf{A}_{12} = \begin{pmatrix} a_{13} & a_{14} \\ a_{23} & a_{24} \end{pmatrix}$, $\mathbf{A}_{21} = \begin{pmatrix} a_{12} & a_{23} \\ a_{24} & a_{24} \end{pmatrix}$

 $(a_{31} \ a_{32})$, $A_{22} = (a_{33} \ a_{34})$ 。即 A_{11} , A_{12} , A_{21} , A_{22} 为A 的子块,而A 形式上成为以这些子块为元素的分块矩阵。

设 A 为 n 阶矩阵, 若 A 的分块矩阵只有在对角线上有非零子块,其余子块都是零矩

阵,且在对角线上的子块都是方阵,即
$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_1 & & \mathbf{0} \\ & \mathbf{A}_2 & & \\ & & \ddots & \\ \mathbf{0} & & & \mathbf{A}_n \end{pmatrix}$$
 ,其中 \mathbf{A}_i $(i=1,2,\cdots,s)$ 都

是方阵,那么称 A 为分块对角矩阵。

分块矩阵的运算规则与普通矩阵的运算规则相似。

1.设
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ -1 & 2 & 0 & 1 \\ 1 & 0 & 4 & 1 \\ -1 & -1 & 2 & 0 \end{pmatrix}, 求 \mathbf{AB}$$
。

二、线性方程组的矩阵表示

1.线性方程组的概念

设 n 个未知数 m 个方程的线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n, \end{cases}$$

其中 a_{ij} 是第 i 个方程的第 j 个未知数的系数, b_i 是第 i 个方程的常数项,i=1, $2, \dots, m$; $j=1,2,\dots, n$,当常数项 b_1,b_2,\dots, b_m 不全为零时,上述线性方程组叫作 n 元非齐次线性方程组,当 b_1,b_2,\dots, b_m 全为零时,上式成为

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\ \dots & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0, \end{cases}$$

叫作 n 元齐次线性方程组。

2.线性方程组的矩阵表示

对于线性方程组
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
 , i.l. $\mathbf{A} = (a_{ij})$, $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}, \mathbf{B} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}, \mathbf{其中 A} 称为系数矩阵, \mathbf{x} 称为未知数向量, \mathbf{b} 称为$$

常数项向量, B 称为增广矩阵。

利用矩阵的乘法,此方程组可记作 Ax = b,方程以 x 为未知元,它的解称为方程组的解向量。

第四节 矩阵的初等变换

一、初等变换

下面三种变换称为矩阵的初等变换:

- (1)互换 \mathbf{A} 的 i 与 i 两行(列)所得的矩阵;
- (2)用非零常数 k 乘 A 的第 i 行(列)所得的矩阵;
- (3)把 A 的第 i 行(列)的 k 倍加到第 i 行(列)所得的矩阵

二、初等矩阵

n 阶单位阵 E 经过一次初等变换所得矩阵称为 n 阶初等矩阵。

三、矩阵的等价

如果矩阵 A 经有限次初等行变换变成矩阵 B,就称矩阵 A 与 B 行等价,记作 $A \sim B$;如果矩阵 A 经有限次初等列变换变成矩阵 B,就称矩阵 A 与 B 列等价,记作 $A \sim B$;如果矩阵 A 经有限次初等变换变成矩阵 B,就称矩阵 A 与 B 等价,记作 $A \sim B$ 。矩阵之间的等价关系具有下列性质:

- (1)反身性: $A \sim A$;
- (2)对称性:若 $A \sim B$,则 $B \sim A$;
- (3)传递性:若 $A \sim B$, $B \sim C$,则 $A \sim C$ 。

四、性质

对 $m \times n$ 矩阵 A 施行一次初等行(列)变换,相当于用一个相应的 m(n) 阶初等矩阵左 (右)乘 A 。

【例题】

1.设
$$\mathbf{A} = \begin{pmatrix} 0 & -2 & 1 \\ 3 & 0 & -2 \\ -2 & 3 & 0 \end{pmatrix}$$
,证明 \mathbf{A} 可逆,并求 \mathbf{A}^{-1} 。

2.求解矩阵方程
$$AX = B$$
,其中 $A = \begin{pmatrix} 2 & 1 & -3 \\ 1 & 2 & -2 \\ -1 & 3 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ -2 & 5 \end{pmatrix}$.

第五节 矩阵的秩

一、矩阵的秩

k 阶子式:矩阵 A 的任意 k 行和 k 列交叉点上的元素构成 k 阶子矩阵,此子矩阵的行列 式即为k阶子式。

若矩阵 A 有一个非零 r 阶子式,且所有 r+1 阶子式全为零,则矩阵 A 的秩为 r ,记为 $R(\mathbf{A}) = r$

求法:通过初等行变换将给定矩阵化为行阶梯形矩阵,行阶梯形矩阵中非零行的行数即 为给定矩阵的秩。

【例题】

1.设A 与B 都是n 阶方阵,用R(A) 表示矩阵A 的秩,则有()

A.
$$R\begin{pmatrix} A & O \\ O & B \end{pmatrix} < R(A) + R(B)$$
 B. $R\begin{pmatrix} A & O \\ O & B \end{pmatrix} > R(A) + R(B)$

B.
$$R\begin{pmatrix} A & O \\ O & B \end{pmatrix} > R(A) + R(B)$$

C.
$$R\begin{pmatrix} A & O \\ O & B \end{pmatrix} = R(A) - R(B)$$
 D. $R\begin{pmatrix} A & O \\ O & B \end{pmatrix} = R(A) + R(B)$

D.
$$R\begin{pmatrix} A & O \\ O & B \end{pmatrix} = R(A) + R(B)$$

2.用初等行变换法求矩阵
$$\mathbf{B} = \begin{pmatrix} 2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 4 & -6 & 2 & -2 & 4 \\ 3 & 6 & -9 & 7 & 9 \end{pmatrix}$$
 的秩。

二、线性方程组解的判别准则

- 1. n 元线性方程组 Ax = b:
- (1)无解的充分必要条件是R(A) < R(A,b);
- (2)有唯一解的充分必要条件是 R(A) = R(A,b) = n;
- (3)有无限多解的充分必要条件是R(A) = R(A,b) < n。
- 2. n 元齐次线性方程组 Ax = 0 有非零解的充分必要条件是 R(A) < n 。
- 3.线性方程组 Ax = b 有解的充分必要条件是 R(A) = R(A,b)。
- 4.矩阵方程 AX = B 有解的充分必要条件是 R(A) = R(A,B) 。

【例题】

1. 齐次线性方程组 $\begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ -x_2 + x_3 - x_4 = 0 \end{cases}$ 的基础解析所含解向量的个数为(

- A. 1
- C. 3

- B. 2
- D. 4

2.求解齐次线性方程组 $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 0 \\ 2x_1 + x_2 - 2x_3 - 2x_4 = 0 \\ x_1 - x_2 - 4x_3 - 3x_4 = 0 \end{cases}$

第三章 向量

// 第一节 向量组及其线性相关性

一、n 维线性向量空间

- 1. n 维向量:由 n 个有序的数 a_1, a_2, \dots, a_n 所组成的数组称为 n 维向量,这 n 个数称为该向量的 n 个分量。第 i 个数 a_i 称为该向量的第 i 个分量。
- - 3. 零向量:可以由任意一组向量 $\alpha_1, \alpha_2, \cdots \alpha_s$ 线性表示,因为 0=0 α_1+0 $\alpha_2+\cdots+0$ α_s 。

4. n 维单位坐标向量: n 阶单位矩阵 $E = (e_1, e_2, \dots, e_n)$ 的列向量。

二、向量组的线性关系

- 1.矩阵的列向量组: $m \uparrow n$ 维列向量所组成的向量组 $\mathbf{A}: \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_m$ 构成一个 $\mathbf{n} \times \mathbf{m}$ 矩阵 $\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_m)$ 。
 - 2.矩阵的行向量: $m \uparrow n$ 维行向量所组成的向量组 $B: \beta_1^T, \beta_2^T, \dots, \beta_m^T$,构成一个 $m \times n$

- 3.线性组合:对于给定的向量组 $\alpha_1,\alpha_2,\cdots\alpha_s,\beta$,如果存在一组数 k_1,\cdots,k_s ,使得: $\beta=k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s$,则称向量 β 是向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 的一个线性组合,或称 β 可以由向量组: $\alpha_1,\alpha_2,\cdots\alpha_s$ 线性表示。
- 4.向量的线性表示: 给定向量组 $A:\alpha_1,\alpha_2,\cdots,\alpha_m$ 和向量 b,如果存在一组数 λ_1 , $\lambda_1,\cdots,\lambda_m$,使 $b=\lambda_1\alpha_1+\lambda_2\alpha_2+\cdots+\lambda_m\alpha_m$,则向量 b 是向量组 A 的线性组合, 这时称向量 b 能由向量组 A 线性表示。
- 5.向量线性表示的充要条件:向量 b 能由向量组 $A:\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性表示的充分必要条件是矩阵 $A=(\alpha_1,\alpha_2,\cdots,\alpha_m)$ 的秩等于矩阵 $B=(\alpha_1,\alpha_2,\cdots,\alpha_m,b)$ 的秩。

三、向量组的线性相关性

1.线性相关、线性无关的定义

设 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 是一组n维向量(当然是同型):

(1)如果存在一组不全为 0 的数 k_1, \dots, k_s ,使得: $k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_s \alpha_s = 0$,则称向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性相关。

任何一个包含零向量的向量组必线性相关。

- (2)如果不存在不全为 0 的数 k_1 , …, k_s , 使得: $k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_s \alpha_s = \mathbf{0}$, 则称向量组 α_1 , α_2 , … α_s 线性无关。
- 一向量组 α_1 , α_2 , …, α_s 线性无关, 如果 k_1 $\alpha_1 + k_2$ α_2 $+ \cdots + k_s$ $\alpha_s = 0$, 则必有 $k_1 = k_2 = \cdots = k_s = 0$ 。

2.向量组线性相关、无关的充要条件

向量组 $\alpha_1,\alpha_2,\dots,\alpha_m$ 线性相关的充分必要条件是它所构成的矩阵 $A=(\alpha_1,\alpha_2,\dots,\alpha_m)$ 的秩小于向量个数m;向量组线性无关的充要条件是R(A)=m。

3.向量组关系

(1) 若向量组 $A:\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性相关,则向量组 $B:\alpha_1,\alpha_2,\cdots,\alpha_m,\alpha_{m+1}$ 也线性相关。 反言之,若向量组 B 线性无关,则向量组称 A 也线性无关。

- (2) $m \land n$ 维向量组成的向量组,当维数 $n \land T$ 向量个数 m 时一定线性相关。特别地, $n+1 \land n$ 维向量一定线性相关。
- (3)设向量组 $A:\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关,而向量组 $B:\alpha_1,\alpha_2,\cdots,\alpha_m,b$ 线性相关,则向量 b 必能由向量组 A 线性表示,且表示式是唯一的。

1.已知
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 2 \\ 5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix}$, 试讨论向量组 α_1 , α_2 , α_3 及向量组 α_1 , α_2 的线性

相关性

第二节 向量组的秩

一、等价向量组

设 $\{\alpha_1,\alpha_2,\cdots,\alpha_r\}$ 和 $\{\beta_1,\beta_2,\cdots,\beta_s\}$ 是向量空间 V 的两个向量组,如果每一个 α_i 都可以由 $\beta_1,\beta_2,\cdots,\beta_s$ 线性表示,而每一个 β_i 也可以由 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 线性表示,那么就说这两个向量组等价。

二、极大无关组

1.极大线性无关组

设有向量组 A,如果在 A 中能选出 r 个向量 a_1, a_2, \dots, a_r ,满足:

- (1)向量组 $A_0: a_1, a_2, \cdots, a_r$ 线性无关;
- (2)向量组 \mathbf{A} 中任意r+1 个向量(如果 \mathbf{A} 中有r+1 个向量的话)都线性相关,那么称向量组 \mathbf{A} 。是向量组 \mathbf{A} 的一个极大线性无关向量组(简称极大无关组)。

2.极大线性无关组的等价定义

设向量组 $A_0:\alpha_1,\alpha_2,\cdots,\alpha_r$ 是向量组A的一个不分组,且满足:

- (1)向量组 A。线性无关;
- (2)向量组 \mathbf{A} 的任何一向量都能由向量组 \mathbf{A} 。线性表示,那么向量组 \mathbf{A} 。便是向量组 \mathbf{A} 的个最大无关组。

三、向量组的秩

向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 的极大线性无关组所含有的向量的个数称为向量组的秩。

四、矩阵组的秩

矩阵的秩等于它的列向量组的秩,也等于它的行向量的秩。

【例题】

 $1.设齐次线性方程组 \begin{cases} x_1 + 2x_2 + x_3 - 2x_4 = 0 \\ 2x_1 + 3x_2 - x_4 = 0 \end{cases}$ 的全体解向量构成的向量组为 \mathbf{S} ,求 \mathbf{S} $x_1 - x_2 - 5x_3 + 7x_4 = 0$

的秩。

第三节 向量空间

一、向量空间的概念

1.向量空间

定义:令 F 是一个数域。F 中的元素用小写拉丁文字母 a ,b ,c , \cdots 来表示。令 V 是一个非空集合。V 中元素用小写黑体希腊字母 α , β , γ \cdots 来表示。我们把 V 中的元素叫作向量而把 F 中的元素叫作标量。如果下列条件被满足,就称 V 是 F 上一个向量空间:

- (1) 在 V 中定义了一个加法。对于 V 中任意两个向量 α , β , α V 中一个唯一确定的向量与它们对应,这个向量叫作 α 与 β 的和,并且记作 α + β ;
- (2)有一个标量与向量的乘法。对于 F 中每一个数a 和 V 中每一个向量 α ,有 V 中唯一确定的向量与它们对应,这个向量叫作 a 与 α 的积,并记作 $a\alpha$;
 - (3)向量的加法和标量与向量的乘法满足下列算律:

 - $(2 (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) ;$
 - ③在V中存在一个零向量,记作0,它具有以下性质:对于V中每一个向量 α ,都有0+

④对于 V 中每一个向量 α , 在 V 中存在一个向量 α' , 使得 $\alpha'+\alpha=0$ 。这样的 α' 叫作 α的负向量; SINCE 2001

$$\bigcirc$$
 a $(\boldsymbol{\alpha} + \boldsymbol{\beta}) = a\boldsymbol{\alpha} + a\boldsymbol{\beta}$:

$$\textcircled{6} (a+b) \boldsymbol{\alpha} = a\boldsymbol{\alpha} + b\boldsymbol{\alpha}$$
;

$$\bigcirc$$
 $(ab)\alpha = a(b\alpha)$;

$$\otimes$$
 $1\alpha = \alpha$

这里 α , β , γ 是 V 中任意向量 , α , β 是 F 中任意数 。

2.运算的封闭性

设V 是数域F 上一个空间向量。W 是V 的一个非空子集。对于W 中任意两个向量 α , β , 它们的和 $\alpha + \beta$ 是V中一个向量。如果W中任意两个向量的仍在W内, 那么就说, W对于 V 的加法是封闭的。同样,如果对于 W 中任意向量 α 和数域 F 中任意数 a , $a\alpha$ 仍在 W内,那么就说,W对于标量与向量的乘法是封闭的。

3.子空间

令 W 是数域 F 上向量空间 V 的一个非空子集。如果 W 对于 V 的加法以及标量与向量 的乘法来说是封闭的,那么就称 $W \in V$ 的一个子空间。

一个向量空间 V 本身和零空间叫作 V 的平凡子空间。V 的非平凡子空间叫作 V 的真子 空间。

4.生成的子空间

设 V 是数域 F 上一个向量空间。 $\alpha_1,\alpha_2,\cdots,\alpha_n\in V$ 。设 $\alpha=a_1$ α_1+a_2 $\alpha_2+\cdots+a_n$ $a_n \boldsymbol{\alpha}_n$, $\boldsymbol{\beta} = b_1 \boldsymbol{\alpha}_1 + b_2 \boldsymbol{\alpha}_2 + \cdots + b_n \boldsymbol{\alpha}_n$,那么对于任意 $a, b \in \boldsymbol{F}$,

$$a\boldsymbol{\alpha} + b\boldsymbol{\beta} = (aa_1 + bb_1)\boldsymbol{\alpha}_1 + (aa_2 + bb_2)\boldsymbol{\alpha}_2 + \cdots + (aa_n + bb_n)\boldsymbol{\alpha}_n$$

仍是 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 的一个线性组合。因此, $\alpha_1,\alpha_2,\cdots,\alpha_n$ 的一切线性组合作成V的一 个线性空间。这个子空间叫作由 α_1 , α_2 ,…, α_n 所生成的子空间,并且用符号 $\beta(\alpha_1, \alpha_2, \cdots, \alpha_n)$ 表示。向量 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 叫作这个子空间的一组生成元。

二、向量空间的基与维数

1.基

设V是数域F上一个向量空间。V中满足下列两个条件的向量组 $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$ 叫作 V 的一个基:

- (1) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n$ 线性无关;
- (2) \mathbf{V} 的每一个向量都可以由 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性表示。

2.维

一个向量空间V的基所含向量的个数叫作V的维数。零空间的维数定义为0。空间V的维度记作 dimV。

这样,空间 V_2 的维度是 2; V_3 的维度是 3; F^n 的维度是n; F 上一切 $m \times n$ 矩阵所成的

向量空间的维度数是 mn。

3. n 维向量空间

定理 $1: \mathcal{U}(\alpha_1, \alpha_2, \dots, \alpha_n)$ 是向量空间 V 的一个基。那么 V 的每一个向量可以唯一地表 成基向量 $\alpha_1,\alpha_2,\dots,\alpha_n$ 的线性组合。

定理 2: n 维向量空间中任意多于 n 个向量一定线性相关。

定理 3.设W 和W 都是数域 F 上向量空间 V 的有限维子空间。那么 $W_1 + W_2$ 也是有 限维的,并且 $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$ 。

4.坐标

令 V 是数域 F 上一个n 维向量空间, $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$ 是 V 的一个基。于是 V 的每一个 向量 ξ 可以唯一地表成 $\xi = x_1 \alpha_1 + x_2 \alpha_2 + \cdots + x_n \alpha_n$ 。这样一来,取定V的一个基 $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$,并且规定基向量的顺序之后,对于 V 的每一个向量 ξ , 有唯一的 n 元数列 (x_1,x_2,\cdots,x_n) 与它对应。数 x_i 叫作向量 ξ 关于基 $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$ 的第 i 个坐标。一 般,我们总是同时考虑向量 ξ 的 n 个坐标 x_1,x_2,\dots,x_n ,所以把 n 元数列 (x_1,x_2,\cdots,x_n) 叫作向量 ξ 关于基 $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$ 的坐标。

特别地,在n维向量空间V中取单位坐标向量组 e_1,e_2,\cdots,e_n 为基,则以 x_1,x_2,\cdots,x_n 为分量的向量x,可表示为 $x = x_1 e_1 + x_2 e_2 + \cdots + x_n e_n$,可见向量在基 e_1, e_2, \cdots, e_n 中的 坐标就是该向量的分量。因此, e_1, e_2, \dots, e_n 叫作 V 中的自然基。

【例题】

【例题】
$$1.设 A = (a_1, a_2, a_3) = \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix}, B = (b_1, b_2) = \begin{pmatrix} 1 & 4 \\ 0 & 3 \\ -4 & 2 \end{pmatrix}$$
。验证 a_1, a_2, a_3 是的一个基,并求 b_1, b_2 在这个基中的坐标。

 \mathbf{R}^3 的一个基,并求 \mathbf{b}_1 , \mathbf{b}_2 在这个基中的坐标。

三、基变换和坐标变换

1.过渡矩阵与基变换

设 $\{\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n\}$ 和 $\{\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\cdots,\boldsymbol{\beta}_n\}$ 是 n 维向量空间 V 的两个基。那么向量 $\boldsymbol{\beta}_1,j=1$ $1,2,\dots,n$,可以由 $\alpha_1,\alpha_2,\dots,\alpha_n$ 线性表示。设

$$\boldsymbol{\beta}_1 = a_{11}\boldsymbol{\alpha}_1 + a_{21}\boldsymbol{\alpha}_2 + \dots + a_{n1}\boldsymbol{\alpha}_n$$
$$\boldsymbol{\beta}_2 = a_{12}\boldsymbol{\alpha}_1 + a_{22}\boldsymbol{\alpha}_2 + \dots + a_{n2}\boldsymbol{\alpha}_n$$

$$\boldsymbol{\beta}_n = a_{1n}\boldsymbol{\alpha}_1 + a_{2n}\boldsymbol{\alpha}_2 + \cdots + a_{nn}\boldsymbol{\alpha}_n$$

E 2001

这里 $(a_{1j}, a_{2j}, \dots, a_{nj})$ 就是 β_j 关于基 $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ 的坐标。以这 n 个坐标为列。 作为一个 n 阶矩阵

$$T = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

矩阵 T 叫作由基 $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ 到基 $\{\beta_1, \beta_2, \dots, \beta_n\}$ 的过渡矩阵。

定理:设n维向量空间V中由基 { $\alpha_1,\alpha_2,\cdots,\alpha_n$ } 到基 { $\beta_1,\beta_2,\cdots,\beta_n$ } 的过渡矩阵是 A,则A是一个可逆矩阵。反过来,任意一个n阶可逆矩阵A都可以作为n维向量空间中由 一个基到另一个基的过渡矩阵。如果由基 $\{oldsymbol{lpha}_1,oldsymbol{lpha}_2,\cdots,oldsymbol{lpha}_n\}$ 到基 $\{eta_1,eta_2,\cdots,eta_n\}$ 的过渡矩 阵是A,那么由 { β_1 , β_2 ,···, β_n } 到 { α_1 , α_2 ,···, α_n } 的过渡矩阵就是 A^{-1}

2.坐标变换

设 V_n 中元素 α 在基 $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$ 下的坐标为 $(x_1,x_2,\cdots,x_n)^{\mathsf{T}}$,在基 $\{\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\cdots,\boldsymbol{\beta}_n\}$ 下的坐标为 $(x_1',x_2',\cdots,x_n')^{\mathrm{T}}$,若两个基满足关系式 $(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\cdots,\boldsymbol{\beta}_n)=$

$$(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{n}) \boldsymbol{P}, 则有坐标变换公式 \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} = \boldsymbol{P} \begin{pmatrix} x'_{1} \\ x'_{2} \\ \vdots \\ x_{n}' \end{pmatrix}, 或 \begin{pmatrix} x_{1} \\ x_{2}' \\ \vdots \\ x_{n}' \end{pmatrix} = \boldsymbol{P}^{-1} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}$$

反之,若任一元素的两种坐标满足上述坐标变换公式,则两个基满足基变换公式

$$(oldsymbol{eta}_1\,,oldsymbol{eta}_2\,,\cdots,oldsymbol{eta}_n\,)=(oldsymbol{lpha}_1\,,oldsymbol{lpha}_2\,,\cdots,oldsymbol{lpha}_n\,)\,P$$
 .

【例题】

CE 2001

HUATU.COM 1.考虑 \mathbb{R}^3 的向量 $\alpha_1 = (-2,1,3)$, $\alpha_2 = (-1,0,1)$, $\alpha_3 = (-2,-5,-1)$ 。证明 $\{\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3\}$ 构成 \mathbf{R}^3 的一个基,并且求出向量 $\boldsymbol{\xi}=(4,12,6)$ 关于这个基的坐标。

第四节 n 维欧几里得空间

一、向量的内积

1.向量内积

设有 n 维向量

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

令 $[x,y] = x_1y_1 + x_2y_2 + \cdots + x_ny_n$,则 [x,y] 称为向量x 与y 的内积。

向量的内积是两个向量之间的一种运算,其结果是一个实数,如果把向量看成是列矩阵 时,那么向量的内积可以表示为矩阵的乘积形式,即当 x 与 v 都是列向量时,有 $[x, y] = x^T y$

2.向量内积的性质 1.内积具有下列性质(其中 x, v, z 为 n 维向量, λ 为实数):

- (1) [x,y] = [y,x];
- (2) $[\lambda x, y] = \lambda [x, y]$;
- (3) [x + y, z] = [x, y] + [y, z];
- (4)当x = 0时,[x,x] = 0;当 $x \neq 0$ 时,[x,x] > 0。

这些性质可根据内积定义直接证明。

3.向量的长度

令 $\|x\| = \sqrt{[x,x]} = \sqrt{x_1^2 + x_1^2 + \dots + x_1^2}$, $\|x\|$ 称为 n 维向量x 的长度(也称模或 范数)。

- 4.向量的长度具有下列性质:
- (1) 非负性: $\exists x \neq 0$ 时, ||x|| > 0, $\exists x = 0$ 时, ||x|| = 0;
- (2) 齐次性: $\|\lambda x\| = |\lambda| \|x\|$:
- (3)三角不等式: $||x+y|| \leq ||x|| + ||y||$ 。

当 $\|x\| = 1$ 时,称 x 为单位向量。若 $\alpha \neq 0$,取 $x = \frac{\alpha}{\|\alpha\|}$,则 x 是一个单位向量。由 向量 α 得到x的过程称为把向量 α 单位化。

5.向量的夹角

当 $\|x\| \neq 0$, $\|y\| \neq 0$ 时, $\theta = \arccos \frac{[x,y]}{\|x\| \|y\|}$, 称为 n 维向量 x 与 y 的夹角。

6.向量的正交

当 [x,y]=0 时,称为向量 x 与 y 正交。显然,若 x=0,则 x 与任何向量都正交。 下面讨论正交向量组的性质。所谓正交向量组,是指一组两两正交的非零向量组。 定理:正交向量组必是线性无关向量组。 SINCE 2001

二、正交向量组

1.正交向量组的性质: 若 n 为向量 $\alpha_1, \alpha_2, \dots, \alpha_r$ 是一组两两正交的非零向量,则 α_1 , $\alpha_2, \cdots, \alpha_r$ 线性无关。

【例题】

1.已知 3 维向量空间 R³ 中两个向量

$$\boldsymbol{a}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \boldsymbol{a}_2 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

正交,试求一个非零向量 a_3 ,使 a_1 , a_2 , a_3 两两相交。

2.标准正交基

定义 1:设 n 维向量 e_1, e_2, \cdots, e_r 是向量空间 $V(V \in \mathbb{R}^n)$ 的一个基,如果 e_1, e_2, \cdots, e_r 两两正交,且都是单位向量,则称 e_1, e_2, \cdots, e_r 是 V 的一个标准正交基。

如:

$$e_{1} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{pmatrix}, e_{2} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{pmatrix}, e_{3} = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, e_{4} = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

就是 R^4 的一个标准正交基。

3.线性无关组的正交化方法

设 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 是向量空间V的一个基,要求V的一个标准正交基,这也就是要找一组两两正交的单位向量 e_1,e_2,\cdots,e_r ,使 e_1,e_2,\cdots,e_r ,与 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 等价。这样一个问题,称为把基 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 标准正交化。

我们可以用以下办法把 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 标准正交化;取

$$b_{1} = \alpha_{1}, b_{2} = \alpha_{2} - \frac{[b_{1}, \alpha_{2}]}{[b_{1}, b_{1}]} b_{1}, \dots$$

$$b_{r} = \alpha_{r} - \frac{[b_{1}, \alpha_{r}]}{[b_{1}, b_{1}]} b_{1} - \frac{[b_{2}, \alpha_{r}]}{[b_{2}, b_{2}]} b_{2} - \dots - \frac{[b_{r-1}, \alpha_{r}]}{[b_{r-1}, b_{2}]} b_{r-1}$$

容易验证 b_1, b_2, \dots, b_r 两两正交,且 b_1, b_2, \dots, b_r 与 $\alpha_1, \alpha_2, \dots, \alpha_r$ 等价。然后把它们单位化,即取 $e_1 = \frac{b_1}{\parallel b_1 \parallel}, e_2 = \frac{b_2}{\parallel b_2 \parallel}, \dots, e_r = \frac{b_r}{\parallel b_r \parallel}$ 就是 V 的一个标准正交基。

上述线性无关向量组 α_1 , α_2 , …, α_r 导出正交向量组 b_1 , b_2 , …, b_r 的过程称为施密特正交化。

注:与 α_1 , α_2 ,…, α_r 等价的单位正交向量组并不唯一,由于正交化过程所取向量次序不同,所得结果不同,而计算的难易程度也不同。

$$1.$$
设 $\boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$, $\boldsymbol{\alpha}_2 = \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix}$,试用施密特正交化过程把这组向量规范正

交化。

三、正交矩阵与正交变换

1.定义

定义 1. 如果 n 阶矩阵 A 满足 $A^{\mathsf{T}}A = \mathsf{E}(\mathbb{D}(A^{-1} = A^{\mathsf{T}}), \mathbb{D}(A^{\mathsf{T}}A = \mathcal{D}(A^{\mathsf{T}}A = \mathcal{D}(A = \mathcalD}(A = \mathcalD)(A = \mathcalD)(A$ 定义 2:若 P 是正交阵,则线性变换 y = Px 称为正交变换。

设 $\mathbf{v} = \mathbf{P}\mathbf{x}$ 为正交矩阵,则有 $\|\mathbf{v}\| = \sqrt{\mathbf{v}^{\mathsf{T}}\mathbf{v}} = \sqrt{\mathbf{x}^{\mathsf{T}}\mathbf{P}^{\mathsf{T}}\mathbf{P}\mathbf{x}} = \sqrt{\mathbf{x}^{\mathsf{T}}\mathbf{x}} = \|\mathbf{x}\|$ 。

由于 $\|x\|$ 表示向量的长度,相当于线段的长度,因此 $\|v\| = \|x\|$ 说明经正交变换 线段长度保持不变,这是正交变换的优良特性。

2.性质

正交矩阵具有下述性质:

- (1) 若 A 为正交矩阵,则 $A^{-1} = A^{T}$ 也是正交矩阵,且 $|A| = \pm 1$ 。
- (2) 若 A 和 B 都是正交矩阵,则 AB 也是正交矩阵。
- (3) A 是正交阵的充分必要条件是A 的 n 维列向量是单位正交向量组。

【例题】

A.AB 也是正交矩阵

B. $A^{-1}B$ 也是正交矩阵

 $C. A^{-1}B^{-1}$ 也是正交矩阵

D. A + B 也是正交矩阵

2.设
$$\mathbf{A} = \begin{pmatrix} -a & b \\ b & a \end{pmatrix}$$
, $a > b > 0$, $a^2 + b^2 = 1$,则 \mathbf{A} 为(如本)

A. 正定矩阵

B. 初等矩阵

C. 正交矩阵

D. 负定矩阵

第四章 线性方程组

第一节 线性方程组的基本概念

一、线性方程组的分类

设有 n 个未知数 m 个方程的线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m, \end{cases}$$

当常数项 b_1,b_2,\dots,b_m 不全为零时,上述线性方程组叫作 n 元非齐次线性方程组; 当 b_1,b_2,\dots,b_m 全为零时,上式成为

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

叫作n元齐次线性方程组。

二、线性方程组的表示与解

设有 n 个未知数 m 个方程的线性方程组

の 在 的 実 代 五 介 年 知

$$\left\{ a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \atop a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \atop \dots \dots \dots \atop a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m, \right.$$

它可以写成向量x为未知元的向量方程Ax = b。

线性方程组如果有解,就称它是相容的,如果无解,就称它是不相容。可利用系数矩阵 和增广矩阵的秩讨论线性方程组是否有解。

第二节 线性方程组的消元法

一、线性方程组的初等变换

用一非零的数乘某一方程;(倍乘变换) 把一个方程的倍数加到另一个方程;(倍加变换) 互换两个方程的位置。(对调变换)

二、化一般方程组为阶梯方程组

对方程组

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases} (1)$$

进行变换,最终得到一个阶梯方程组,不妨设所得的方程组为

唐考试专业科目
$$\blacktriangleright$$
数学组
$$\begin{cases} c_{11}x_1 + c_{12}x_2 + \cdots + c_{1r}x_r + \cdots + c_{1n}x_n = d_1, \\ c_{22}x_2 + \cdots + c_{2r}x_r \cdots + c_{2n}x_n = d_2, \\ \cdots \\ c_{rr}x_r \cdots + c_{rm}x_n = d_r, \\ 0 = d_{r+1}, \\ 0 = 0, \\ \cdots \\ 0 = 0 \end{cases}$$

现在考查(2)的解的情况

- 1. $d_{r+1} \neq 0,$ 这时(2)无解,因而(1)无解。
- 2.若 $d_{r+1} = 0$ 时分为两种情况:
- (1) r=n,这时阶梯方程为

$$\begin{cases}
c_{11}x_1 + c_{12}x_2 + \dots + c_{1n}x_n = d_1, \\
c_{22}x_2 + \dots + c_{2n}x_n = d_2, \\
\dots \\
c_{nn}x_n = d_n,
\end{cases} (3)$$

其中 $c_m \neq 0$, $i = 1, 2, \dots, n$, 此时方程组有唯一解。

(2) r < n,这是阶梯形方程组可改写为

$$\begin{cases} c_{11}x_1 + c_{12}x_2 + \dots + c_{1r}x_r = d_1 - c_{1r+1}x_{r+1} - \dots - c_{1n}x_n, \\ c_{22}x_2 + \dots + c_{2r}x_r = d_2 - c_{2r+1}x_{r+1} - \dots - c_{2n}x_n, \\ \dots \\ c_{rr}x_r = d_r - d_1 - c_{rr+1}x_{r+1} - \dots - c_{rn}x_n, \end{cases}$$

$$(4)$$

一般地,由(4)我们可以把 x_1,x_2,\cdots,x_r 通过 x_{r+1},\cdots,x_n 表示出来,这样一组表达式称 为方程组(1)一般解,而 x_{r+1},\dots,x_n 称为一组自由未知量。

首先用初等变换线性方程组为阶梯形方程组,把最后的一些恒等式"0=0"(如果出现的 话)去掉,如果剩下的方程中最后的一个等式是零等于一非零的数,那么方程组无解;在有解 的情况下,如果阶梯形方程组中方程的个数 r 等于未知量的个数,那么方程组有唯一解;如 果阶梯形方程组中方程的个数 r 小于未知数的个数,那么方程组就有无穷多个解。

定理:在齐次线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\ \dots \\ a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \end{cases}$$

中,如果s < n,那么它必有非零解。

1.
$$\begin{cases} 2x_1 - x_2 + 3x_3 = 1 \\ 4x_1 - 2x_2 + 5x_3 = 4 \\ 2x_1 - x_2 + 4x_3 = 0 \end{cases}$$

SINCE 2001

第三节 线性方程组解的结构

一、齐次线性方程组解的结构

齐次方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0, \end{cases}$$
(1)

SINCE 2001

1.基础解系

齐次线性方程组(1)的一组解 $\eta_1, \eta_2, \dots, \eta_\ell$ 称为(1)的基础解系,如果:

- (1) 齐次线性方程组(1) 的任一个解都能表成 $\eta_1, \eta_2, \dots, \eta_L$ 的线性组合;
- (2) $\eta_1, \eta_2, \dots, \eta_t$ 线性无关;

任意一个解 η 都能表成 $\eta_1, \eta_2, \dots, \eta_t$ 的线性组合。

【例题】

1.求解齐次线性方程组
$$\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 0 \\ 2x_1 + x_2 - 2x_3 - 2x_4 = 0 \\ x_1 - x_2 - 4x_3 - 3x_4 = 0 \end{cases}$$

二、非齐次线性方程组解的结构

下面来看一般线性方程组的解的结构,如果把一般线性方程组

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\
\dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m,
\end{cases} (1)$$

的常数项换为0,记得到齐次方程组

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\
\dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0,
\end{cases} (2)$$

方程组(2)称为方程组(1)的导出方程组,则(2)可写成向量方程 Ax = 0。

若 $x_1 = \xi_{11}, x_2 = \xi_{21}, \dots, x_n = \xi_{n1}$ 为(2)的解,则

$$x = \xi_1 = \begin{cases} \xi_{11} \\ \xi_{21} \\ \vdots \\ \xi_{n1} \end{cases}$$

称为方程组(2)的解向量,它也就是向量方程组Ax = 0的解。

定理:设 λ 。是方程组(1)的一个特解,那么方程组(1)的任一个解 γ 都可以表示为 $\gamma = \gamma_0 + \eta$,称为方程组(1)的通解,其中 η 为方程组(2)的基础解系。

SINCE 2001

【例题】

1.求解非齐次线性方程组 $\begin{cases} x_1 + x_2 - 3x_3 - x_4 = 1\\ 3x_1 - x_2 - 3x_3 + 4x_4 = 4\\ x_1 + 5x_2 - 9x_3 - 8x_4 = 0 \end{cases}$

第五章 矩阵的相似化简

第一节 特征值与特征向量

一、矩阵特征值与特征向量

1.特征值与特征向量

A 是一个n 阶方阵,如果存在一个数 λ 和一个n 维非零列向量 α ,使得 $A\alpha = \lambda\alpha$ 成立,则称 λ 为矩阵 A 的特征值,非零列向量 α 称为矩阵 A 的属于特征值 λ 的特征向量。

2.特征多项式与特征方程

A 为 n 阶方阵, λ 为未知量,则矩阵

$$\lambda \mathbf{E} - \mathbf{A} = \begin{pmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{pmatrix}$$

称为矩阵 A 的特征矩阵,其行列式 $f(\lambda) = |\lambda E - A|$ 为 λ 的 n 次特征多项式,称为矩阵 A 的特征多项式, $|\lambda E - A| = 0$ 称为矩阵 A 的特征方程。

二、特征值、特征向量的基本性质

1. 如果 α 是 A 的属于特征值 λ 。的特征向量,则 α 一定是非零向量,且对于任意非零常数 k, $k\alpha$ 也是 A 的属于特征值 λ 。的特征向量。

2. 如果 α_1 , α_2 是 A 的属于特征值 λ_0 的特征向量,则当 $k_1\alpha_1 + k_2\alpha_2 \neq 0$ 时, $k_1\alpha_1 + k_2\alpha_2$ 也是A的属于特征值 λ 。的特征向量。

3.n 阶矩阵 A 与它的转置矩阵 A^{T} 有相同的特征值。

4.矩阵的迹:矩阵主对角线元素之和 $\lambda_1 + \lambda_2 + \cdots + \lambda_n = \operatorname{tr}(\mathbf{A}) = a_{11} + a_{22} + \cdots + a_{nn}$

$$5. \lambda_1 \lambda_2 \cdots \lambda_n = |\mathbf{A}|.$$

6.设 λ 是 A 的特征值,且 α 是 A 属于 λ 的特征向量,则

(1) $c\lambda^k$ 是 cA^k 的特征值, $cA^k\alpha = c\lambda^k\alpha$;

(2)若 \mathbf{A} 可逆,则 $\lambda \neq 0$ 且 $\frac{1}{\lambda}$ 是 \mathbf{A}^{-1} 的特征值, $\mathbf{A}^{-1}\alpha = \frac{1}{\lambda}\alpha$

上述结果在某种意义上可以说: f(A) 的特征值是 $f(\lambda)$,其中 λ 是 A 的特征值。

7.设 $\lambda_1, \lambda_2, \dots, \lambda_m$ 为 n 阶矩 阵 A 的 不 同 特 征 值。 $\alpha_1, \alpha_2, \dots, \alpha_m$ 分 别 是 属 于 λ_1, \dots $λ_2, \cdots, λ_m$ 的特征向量,则 $α_1, α_2, \cdots, α_m$ 线性无关。

三、求解方法

确定矩阵 A 的特征值和特征向量的传统方法可以分为以下几步:

(1) 求出矩阵 A 特征多项式 $f(\lambda) = |\lambda E - A|$ 的全部特征根;

(2)把所求得的特征根 λ_i ($i=1,2,\dots,n$) 逐个代入线性方程组 ($\lambda_i E - A$) X=0,

对于每一个特征值,解方程组 $(\lambda_i E - A)X = 0$,求出一组基础解系,这样,我们也就求出 了对应于每个特征值的全部线性无关的特征向量。

【例题】

1.矩阵
$$\mathbf{A} = \begin{pmatrix} -2 & 1 & 3 \\ 0 & 2 & 0 \\ 4 & 1 & -3 \end{pmatrix}$$
 的特征值是()

A.
$$-1, -6, -2$$

$$B. -1.6, -2$$

D.
$$1, -6, 2$$

2.已知矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
,求矩阵 \mathbf{A} 的特征值和特征向量。

3.设 2 是可逆矩阵 A 的一个特征值,则 $\begin{pmatrix} 1\\3 \end{pmatrix}$ -特征值为(

A.
$$\frac{2}{3}$$

B.
$$\frac{4}{3}$$
 (2001

C.
$$\frac{3}{4}$$

,则 \mathbf{A} 的对应于特征值 $\lambda = 2$ 的特征向量 α 为(

A.
$$(0,0,0)^T$$

B.
$$(1, -1, 0)^T$$

C.
$$(1,1,2)^T$$

D.
$$(1,0,1)^T$$

5.设A为n阶矩阵,下述结论中正确的是(

- A. 矩阵 A 有 n 个不同的特征根
- B. 矩阵 \mathbf{A} 与 \mathbf{A}^{T} 有相同的特征值和特征向量
- C. 矩阵 A 的特征向量 α_1 , α_2 的线性组合 $c_1\alpha_1 + c_2\alpha_2$ 仍是 A 的特征向量
- D. 矩阵 A 对应于不同特征值的特征向量线性无关。
- 6.如果 n 阶矩阵 A 任意一行的 n 个元素之和都是 a ,则 A 有一个特征值(

$$B_{\cdot} - a$$

D.
$$a^{-1}$$

矩阵的相似对角化 第二节

一、相似矩阵

1.定义:设A,B 都是n 阶矩阵,若有可逆矩阵P,使得 $P^{-}AP = B$,则称B 是A 的相似 矩阵,或称 A 与 B 相似,对 A 进行运算 $P^{-1}AP$ 称为对方阵 A 进行相似变换,可逆矩阵 P 称为 把A变为B的相似变换矩阵。

2.定理: \overline{A} n 阶矩阵 A 与 B 相似,则 A 与 B 有相同的特征多项式,从而 A 与 B 有相同的 特征值。

说明由A,B有相同的特征值推不出A与B相似,若增加条件:A,B均是对称矩阵,则 结论成立。

3.推论:若 n 阶矩阵 A 与对角矩阵

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & & \\ & & \lambda_n \end{pmatrix}$$

相似,则 $\lambda_1,\lambda_2,\cdots,\lambda_n$ 是A的特征值。

证:因为
$$\lambda_1,\lambda_2,\cdots,\lambda_n$$
是对角阵 $\Lambda=egin{pmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{pmatrix}$ 的特征值,所以 $\lambda_1,\lambda_2,\cdots,\lambda_n$ 也

是A 的特征值。

4.说明(1)推论表明,如果
$$A$$
 能与对角阵相似,那么 $\Lambda = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$ 的对角线上

元素必然是A的特征值。

(2)对角矩阵的幂 若有可逆阵 P,使

$$m{P}^{-1}m{A}m{P}=m{\Lambda}=egin{pmatrix} \lambda_1 & & & & & \ & \lambda_2 & & & & \ & & \ddots & & \ & & & \lambda_n \end{pmatrix}$$
 ,

则

$$\mathbf{A} = \mathbf{P} \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} \mathbf{P}^{-1} = \mathbf{P} \mathbf{A} \mathbf{P}^{-1} .$$

从而

$$\mathbf{A}^{k} = \mathbf{A}\mathbf{A} \cdots \mathbf{A}$$

$$= (\mathbf{P}\mathbf{\Lambda}\mathbf{P}^{-1}) (\mathbf{P}\mathbf{\Lambda}\mathbf{P}^{-1}) \cdots (\mathbf{P}\mathbf{\Lambda}\mathbf{P}^{-1})$$

$$= \mathbf{P}\mathbf{A}^{k}\mathbf{P}^{-1}$$

$$= \mathbf{P}\begin{pmatrix} \lambda_{1}^{k} & & & \\ & \lambda_{2}^{k} & & \\ & & \ddots & \\ & & & \lambda_{n}^{k} \end{pmatrix} \mathbf{P}^{-1}$$

上式为我们提供了计算 A^k 的一个简便方法。

(3)同上理可证:若

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$$

则对于矩阵 A 多项式 $\varphi(A)$ 有

(4)哈密尔顿一凯莱定理:设 $f(\lambda) = |A - \lambda E|$ 是A 的特征多项式,则f(A) = 0(若A为对角矩阵,则易证该定理)。

二、矩阵的对角化

1.可对角化

设 A 为 n 阶矩阵, 若 A 与对角矩阵相似,即有可逆矩阵 P,使得 $P^{-1}AP = \Lambda$ 为对角阵,则称 A 可对角化,下面讨论对给定 n 阶矩阵 A,能否找到可逆阵 P,使得 $P^{-1}AP = \Lambda$ 为对角阵。

2.n 阶矩阵A 与对角阵相似的充要条件

n 阶矩阵 A 与对角阵相似的充要条件是 A 有 n 个线性无关的特征向量。

证:先证必要性。设A可与对角阵相似,则存在可逆矩阵P,使得

于是

$$\mathbf{AP} = \mathbf{P} \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} \circ$$

$$(\boldsymbol{A}\boldsymbol{p}_{1},\boldsymbol{A}\boldsymbol{p}_{2},\cdots,\boldsymbol{A}\boldsymbol{p}_{n}) = \boldsymbol{A}(\boldsymbol{p}_{1},\boldsymbol{p}_{2},\cdots,\boldsymbol{p}_{n})$$

$$= (\boldsymbol{p}_{1},\boldsymbol{p}_{2},\cdots,\boldsymbol{p}_{n}) \begin{pmatrix} \lambda_{1} & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{pmatrix}$$

$$= (\lambda_{1}\boldsymbol{p}_{1},\lambda_{2}\boldsymbol{p}_{2},\cdots,\lambda_{n}\boldsymbol{p}_{n}) ,$$

可得

$$A \mathbf{p}_i = \lambda_i \mathbf{p}_i, i = 1, 2, \dots, n$$

由此知 p_i 是 A 的与 λ_i 对应的特征向量。因为 P 可逆,所以 p_1,p_2,\cdots,p_n 线性无关。 再证充分性。设 A 有 n 个线性无关的特征向量 p_1,p_2,\cdots,p_n ,与之对应的特征值为 $\lambda_1,\lambda_2,\cdots,\lambda_n$ 则有

$$\mathbf{A} \mathbf{p}_i = \lambda_i \mathbf{p}_i, i = 1, 2, \dots, n$$

以 p_1, p_2, \dots, p_n 为列向量作矩阵 P,即 $P = (p_1, p_2, \dots, p_n)$ 。 因为 p_1, p_2, \dots, p_n 线性 无关,所以 P 可逆。又因为

$$egin{aligned} oldsymbol{AP} &= oldsymbol{A} \left(oldsymbol{p}_1 \,, oldsymbol{p}_2 \,, \cdots, oldsymbol{p}_n
ight) = \left(oldsymbol{A}_1 \, oldsymbol{p}_1 \,, oldsymbol{A}_2 \, oldsymbol{p}_2 \,, \cdots, oldsymbol{\lambda}_n \, oldsymbol{p}_n \,
ight) \ &= \left(oldsymbol{\lambda}_1 \, oldsymbol{p}_1 \,, oldsymbol{\lambda}_2 \, oldsymbol{p}_2 \,, \cdots, oldsymbol{\lambda}_n \, oldsymbol{p}_n \,
ight) \end{aligned}$$

$$=(oldsymbol{p}_1,oldsymbol{p}_2,\cdots,oldsymbol{p}_n)egin{pmatrix} \lambda_1 & & & & & \\ & \lambda_2 & & & & \\ & & & \ddots & & \\ & & & & \lambda_n \end{pmatrix}$$

$$=$$
 $m{P}egin{pmatrix} \lambda_1 & & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & & \lambda_n \end{pmatrix}$

由此得

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$$

即A与对角阵相似。

3. n 阶矩阵 A 与对角阵相似的充分条件

4.可对角化矩阵的多项式

$$f(\lambda) = |\mathbf{A} - \lambda \mathbf{E}|.$$

5.相似对角化的步骤

(1)写出可对角化矩阵的多项式

$$f(\lambda) = |A - \lambda E|_{\circ}$$

- (2)令 $f(\lambda) = |\mathbf{A} \lambda \mathbf{E}| = 0$,求出特征值。
- (3)对应每个特征值下,解 $(A \lambda E)P = 0$ 得出特征向量。
- (4)由所以特征向量组成可逆矩阵 P。

$$(5) \mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$$

【例题】

1.设
$$\mathbf{A} = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$$
,问 \mathbf{A} 能否与对角阵相似。若能,试求可逆矩阵 \mathbf{P} ,使得 $\mathbf{P}^{-1}\mathbf{AP}$

为对角阵。

$$2.设 \mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & k \\ 1 & 0 & 0 \end{pmatrix}, 向 k 为何值时矩阵 A 可对角化?$$

第三节 实对阵矩阵的对角化

一、实对称矩阵的特征值与特征向量的性质

所有元素都为实数的对称矩阵称为实对称矩阵,为了研究实对称矩阵的对角化问题,我 们先研究实对称矩阵的特征值与特征向量的一些性质。

1.实对称矩阵的特征值必为实数。

当特征值 λ , 为实数时,齐次方程组 $(A-\lambda_i E)X=0$ 是实系数方程组,由 $|A-\lambda_i E|=0$ 知必有实的基础解系,所以对应的特征向量可以取实向量。

2.设 λ_1,λ_2 是实对称矩阵 A 的两个不同的特征值 $,p_1,p_2$ 为对应的特征向量,则 p_1,p_2 正交。

3. 若 A 为 n 阶实对称矩阵,则必有正交矩阵 P ,使得

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{P}^{T}\mathbf{A}\mathbf{P} = \begin{pmatrix} \lambda_{1} & & & & \\ & \lambda_{2} & & & \\ & & \ddots & & \\ & & & \lambda_{n} \end{pmatrix},$$

其中 $\lambda_1,\lambda_2,\dots,\lambda_n$ 为A的特征值。

设 A 的互不相等的特征值为 λ_1 , λ_2 , \cdots , λ_s , 他们的重数依次为 r_1 , r_2 , \cdots , r_s , 则

$$r_1 + r_2 + \cdots + r_s = n$$

4.设A 为n 阶实对称矩阵, λ 是A 的特征方程r 重根,则 $R(A-\lambda E)=n-r$,从而与 λ 对应的线性无关的特征向量有 r 个。

二、实对称矩阵的相似正交对角化

1.对应于特征值 $\lambda_1(i=1,2,\cdots s)$,恰好有 r_1 线性无关的特征向量,把他们正交化并单位 化,即得 r_i 个单位正交的特征向量,由 $r_1+r_2+\cdots r_n=n$ 知,这样的特征向量共有n个。又 因为对应于不同特征值的特征向量正交,所以这n个单位特征向量两两正交,于是以它们为 列向量构成正交矩阵P,并有

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{P}^{T}\mathbf{A}\mathbf{P} = \begin{pmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{pmatrix}$$

其中 $\lambda_1,\lambda_2,\dots,\lambda_n$ 为A的特征值。

【例题】

1.设
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
,求一个正交矩阵 \mathbf{P} ,使得 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{\Lambda}$ 为对角阵。

GINCE 2001

UATU.COM

第六章 二次型

第一节 二次型及其矩阵表示

一、二次型的概念

将 n 元二次齐次式

$$f(x_1, x_2, \dots x_n) = a_{11}x_1^2 + a_{22}x_2^2 + \dots + a_{nn}x_n^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + \dots + 2a_{11}x_1^2 + a_{n-1,n}x_{n-1}x_n$$

称为n元二次型。

二次型依其系数是实数或复数而分别称为实二次型或复二次型。我们仅讨论实二次型。

取
$$a_{ij} = a_{ji}$$
 ,则 $2a_{ij}x_ix_j = a_{ij}x_ix_j + a_{ji}x_jx_i$

$$f(x_1, x_2, \cdots x_n) = \sum_{j=1}^n a_{ij} x_i x_j$$

$$f(x_1, x_2, \dots, x_n) = a_{11}x_1^2 + a_{12}x_1x_2 + \dots + a_{1n}x_1x_n + a_{21}x_2x_1 + a_{22}x_2^2 + \dots + a_{2n}x_2x_n + \dots + a_{n1}x_nx_1 + a_{n1}x_nx_1 + \dots + a_{nn}x_n^2$$

$$= (x_{1}, x_{2}, \dots, x_{n}) \begin{pmatrix} a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} \\ a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} \\ \vdots \\ a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} \end{pmatrix}$$

$$= (x_{1}, x_{2}, \dots, x_{n}) \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}$$

 $= x^{\mathrm{T}} A x$

其中,
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

对称阵 A 的秩也叫做二次型 f 的秩。线性变换与矩阵之间存在着一一对应关系。

对于二次型,我们讨论的主要问题是:寻求可逆的线性变换使二次型只含平方项,这种 只含有平方项的二次型,称为二次型的标准形(或法式)。

如果标准形的系数只在1,-1,0三个数中取值,则称这种二次型的规范形。

设 A 和 B 是 n 阶矩阵, 若有可逆矩阵 C, 使 $B = C^{T}AC$, 则称 A 和 B 合同。

显然, 若 A 为对称阵,则 $B = C^{T}AC$ 也为对称阵,且 R(B) = R(A) 。事实上,

$$\mathbf{B}^{\mathrm{T}} = (\mathbf{C}^{\mathrm{T}} \mathbf{A} \mathbf{C})^{\mathrm{T}} = \mathbf{C}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{C} = \mathbf{C}^{\mathrm{T}} \mathbf{A} \mathbf{C} = \mathbf{B}$$
,

即 B 为对称阵。又因 $B = C^{T}AC$, 而 C 可逆, 从而 C^{T} 也可逆, 由矩阵秩的性质即知,

R(B) = R(A)。由此可知,经可逆变换 x = Cy 后,二次型 f 的矩阵由 A 变为与 A 合同的矩阵 $C^{T}AC$,且二次型的秩不变。

任给二次型 $f = \sum_{i,j=1}^{n} a_{ij} x_i x_j (a_{ij} = a_{ji})$,总有正交变换 $\mathbf{x} = \mathbf{P}\mathbf{y}$,使 f 化为标准形

$$f = \lambda_1 y_1^2 + \lambda_1 y_2^2 + \cdots + \lambda_n y_n^2,$$

其中, λ_1 , λ_2 ,…, λ_n 是 f 的矩阵 $\mathbf{A} = (a_{ii})$ 的特征值。

任给n元二次型 $f(x) = x^{T}Ax(A^{T} = A)$,总有可逆变换x = Cz,使f(Cz) 为规范形。

第二节 二次型的标准形

一、正交变换法

根据二次型的标准形的定义,可以采用正交变换化二次型成标准形。下面举例来说明 这种方法。

【例题】

1.求一个正交变换 x = Py,把二次型 $f = -2x_1x_2 + 2x_1x_3 + 2x_2x_3$ 化为标准形。

【解析】二次型的矩阵为
$$\mathbf{A} = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
,即是求一个正交阵 \mathbf{P} ,使 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{\Lambda}$ 为对

角阵。由

$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} -\lambda & -1 & 1 \\ -1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} \begin{vmatrix} 1 - \lambda & \lambda - 1 & 0 \\ -1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} \begin{vmatrix} 1 - \lambda & \lambda - 1 & 0 \\ -1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} \begin{vmatrix} 1 - \lambda & 0 & 0 \\ -1 & -1 - \lambda & 1 \\ 1 & 2 & -\lambda \end{vmatrix}$$

$$= (1 - \lambda)(\lambda^2 + \lambda - 2) = -(\lambda - 1)^2(\lambda + 2)$$

求得 \mathbf{A} 的特征值为 $\lambda_1 = -2$, $\lambda_2 = \lambda_3 = 1$.

对应
$$\lambda_1 = -2$$
,解方程 $(\mathbf{A} + 2\mathbf{E})\mathbf{x} = \mathbf{0}$,由 $\mathbf{A} + 2\mathbf{E} = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$,

得基础解系
$$\boldsymbol{\xi}_1 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$
,将 $\boldsymbol{\xi}_1$ 单位化,得 $\boldsymbol{p}_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$ 。

对应
$$\lambda_2 = \lambda_3 = 1$$
,解 方程 $(\mathbf{A} - \mathbf{E})\mathbf{x} = \mathbf{0}$,由 $\mathbf{A} \stackrel{\mathbf{F}}{\rightleftharpoons} \mathbf{E} = \begin{pmatrix} -1 & -1 & 1 \\ -1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, 得基础解系 \xi_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \xi_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

将
$$\boldsymbol{\xi}_{2}$$
, $\boldsymbol{\xi}_{3}$ 正交化:取 $\boldsymbol{\eta}_{2} = \boldsymbol{\xi}_{2}$, $\boldsymbol{\eta}_{3} = \boldsymbol{\xi}_{3} - \frac{[\boldsymbol{\eta}_{2}, \boldsymbol{\xi}_{3}]}{\parallel \boldsymbol{\eta}_{2} \parallel} \boldsymbol{\eta}_{2} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$.

再将
$$\boldsymbol{\eta}_2$$
, $\boldsymbol{\eta}_3$ 单位化, 得 $\boldsymbol{p}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1\\0 \end{pmatrix}$, $\boldsymbol{p}_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\1\\2 \end{pmatrix}$.

将
$$p_1, p_2, p_3$$
,构成正交矩阵 $P = (p_1, p_2, p_3) = \begin{pmatrix} -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix}$,于是有正交变换

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

把二次型 f 化为标准形 $f = -2y_1^2 + y_2^2 + y_3^2$ 。

如果要把二次型
$$f$$
 化成规范形,只需令
$$\begin{cases} y_1 = \frac{1}{\sqrt{2}}z_1 \\ y_2 = z_2 \\ y_3 = z_3 \end{cases}$$

即得 f 的规范形 $f = -z_1^2 + z_2^2 + z_3^2$ 。

二、配方法

● 用正交变换化二次型成标准形,具有保持几何形状不变的优点。如果不限于用正交变换,那么还可以有多种方法(对应有多个可逆的线性变换)把二次型化成标准形。这里只介绍拉格朗日配方法。下面举例来说明这种方法。

【例题】

1.化二次型 $f=x_1^2+2x_2^2+5x_3^2+2x_1x_2+2x_1x_3+6x_2x_3$ 成标准形,并求所用的变换矩阵。

【解析】由于 f 中含变量 x_1 的平方项,故把含 x_1 的项归并起来,配方可得

$$f = x_{1}^{2} + 2x_{2}^{2} + 5x_{3}^{2} + 2x_{1}x_{2} + 2x_{1}x_{3} + 6x_{2}x_{3}$$

$$= (x_{1} + x_{2} + x_{3})^{2} - x_{2}^{2} - x_{3}^{2} - 2x_{2}x_{3} + 2x_{2}^{2} + 5x_{2}^{2} + 6x_{2}x_{3}$$

$$= (x_{1} + x_{2} + x_{3})^{2} + x_{2}^{2} + 4x_{2}x_{3} + 4x_{3}^{2}$$

上式右端第一项外已不再含 x_1 的。继续配方,可得

$$f = (x_1 + x_2 + x_3)^2 + (x_2 + 2x_3)^2$$

令
$$\begin{cases} y_1 = x_1 + x_2 + x_3 \\ y_2 = x_2 + 2x_3 \\ y_3 = x_3 \end{cases}$$
,即
$$\begin{cases} x_1 = y_1 - y_2 + y_3 \\ x_2 = y_2 - 2y_3 \\ x_3 = y_3 \end{cases}$$
,就把 f 化成标准形(规范形) $f = y_1^2 + y_3$

ν², 所用变换矩阵为

$$C = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} (|C| = 1 \neq 0)$$
.

2.化二次型 $f = 2x_1x_2 + 2x_1x_3 - 6x_2x_3$ 成规范形,并求所用的变换矩阵。

【解析】在 f 中不含平方项。由于含有 x_1x_2 乘积项,故令

$$\begin{cases} x_1 = y_1 + y_2 \\ x_2 = y_1 - y_2 \\ x_3 = y_3 \end{cases}$$

代入可得 $f = 2y_1^2 - 2y_2^2 - 4y_1y_3 + 8y_2y_3$ 。 再配方,得 $f = 2(y_1 - y_3)^2 - 2(y_2 - 2y_3)^2 + 6y_3^2$ 。

$$\begin{cases} z_{1} = \sqrt{2} (y_{1} - y_{3}) \\ z_{2} = \sqrt{2} (y_{2} - 2y_{3}) \end{cases} \mathbb{P} \begin{cases} y_{1} = \frac{1}{\sqrt{2}} z_{1} + \frac{1}{\sqrt{6}} z_{3} \\ y_{2} = \frac{1}{\sqrt{2}} z_{2} + \frac{2}{\sqrt{6}} z_{3} \\ y_{3} = \frac{1}{\sqrt{6}} z_{3} \end{cases}$$

就把 f 化成规范形 $f = z_1^2 - z_2^2 + z_3^2$,所用变换矩阵为:

$$\mathbf{C} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{2}{\sqrt{6}} \\ 0 & 0 & \frac{1}{\sqrt{6}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{3}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ 0 & 0 & \frac{1}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} |\mathbf{C}| = -\frac{1}{\sqrt{6}} \neq 0 \end{pmatrix}$$

一般的,任何二次型都可用上面两例的方法找到可逆变换,把二次型化成标准形(或规 范形)。

三、惯性定律

实数域 $R \perp n$ 元二次型都与如下形式的一个二次型等价:

$$x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_r^2$$
 (1)

这里r是所给二次型的秩。

二次型(1)叫作实二次型的典范形式,实数域上每一个二次型都与一个典范形式等价。

在典范形式里,平方项的个数r等于二次型的秩,因而是唯一确定的。我们还要进一步证明,在典范形式(1)中,系数1的项的个数p也是唯一确定的(因而系数是-1的项的个数也是唯一确定的)。这就是实二次型的惯性定律。

惯性定律:设实数域 $R \perp n$ 元二次型 $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j$ 等价于两个典范形式

$$y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_r^2$$
 (2)

$$z_1^2 + \cdots + z_p^2 - z_{p+1}^2 - \cdots - z_r^2$$
 (3)

那么p = p'。

由这个定理,实数域上每一个二次型 $q(x_1,x_1,\cdots,x_n)$ 都与唯一的典范形式(1)等价。在(1)中,正平方项的个数 p 叫作所给二次型的正惯性指数,负平方项的个数 r-p 叫作所给的二次型的负惯性指数。正平方项的个数 p 与负平方项的个数 r-p 的差

$$s = p - (r - p) = 2p - r$$

叫作所给的二次型的符号差。一个实二次型的秩,惯性指数和符号差都是唯一确定的。

第三节 正定二次型

一、二次型有定性

定义 1:具有对称矩阵 A 之二次型 $f = X^T A X$:

- (1)如果对任何非零向量 X,都有 $X^{T}AX > 0$ (或 $X^{T}AX < 0$)成立,则称 $f = X^{T}AX$ 为正定(负定)二次型,矩阵 A 称为正定矩阵(负定矩阵)。
- (2)如果对任何非零向量 X,都有 $X^{T}AX \ge 0$ (或 $X^{T}AX \le 0$)成立,且有非零向量 X_0 ,使 $X_0^{T}AX = 0$,则称 $f = X^{T}AX$ 为半正定(半负定)二次型,矩阵 A 称为半正定矩阵(半负定矩阵)。

注:二次型的正定(负定)、半正定(半负定)统称为二次型及其矩阵的有定性。不具备有定性的二次型及其矩阵称为不定的。

二次型的有定性与其矩阵的有定性之间具有一一对应关系。因此,二次型的正定性判别可转化为对称矩阵的正定性判别。

二、矩阵正(负)定性的一些判别方法

1.正定的

设 A 为实对称矩阵,则以 3 个命题等价:

(1) $f = X^T A X$ 为正定的;

- (2) A 的特征值λ 都大于零;
- (3)矩阵 A 左上角各阶子式(称为 A 的顺序主子式)恒大于零。即:

$$\begin{vmatrix} a_{11} > 0, & \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, \dots, \begin{vmatrix} a_{11} & a_{11} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} > 0$$

2.负定的

设 A 为实对称矩阵,则以 3 个命题等价:

- (1) $f = \mathbf{X}^{\mathsf{T}} \mathbf{A} \mathbf{X}$ 为负定的;
- (2) \mathbf{A} 的特征值 λ 都小于零;
- (3)矩阵 A 左上角各阶子式(称为 A 的顺序主子式)负正相间。即

$$\begin{vmatrix} a_{11} < 0, \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, \dots, (-1)^n \begin{vmatrix} a_{11} & a_{11} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} > 0$$

【例题】

1.写出 $f(x_1, x_2, x_3, x_4) = x_1^2 + 2x_2^2 - 3x_4^2 + 2x_1x_2 + 6x_2x_3 - 4x_3x_4$ 的矩阵及矩阵表示形式。

SINCE 2001

2.判定下列二次型的正定性 $f = 3x_1^2 + 4x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_2x_3$ 。

3.已知二次型 $f(x_1,x_2,x_3,x_4) = t(x_1^2 + x_2^2 + x_3^2) + 2x_1x_2 - 2x_2x_3 + 2x_1x_3 + x_4^2$,问 t 为何值时,二次型 $f(x_1,x_2,x_3,x_4)$ 是正定的。

SINCE 2001

- (1) $f = -2x_1^2 6x_2^2 4x_3^2 + 2x_1x_2 + 2x_1x_3$;
- (2) $f = x_1^2 + 3x_2^2 + 9x_3^2 2x_1x_2 + 4x_1x_3 + 2x_1x_4 6x_2x_4 12x_3x_4$.

附录

讲义使用说明:

- (1)第一篇第六章(常微分方程),数学2考纲有,数3考纲没有。
- (2)第二篇第五章(矩阵的相似化简)和第六章(二次型),数学2考纲有,数3考纲没有。

