Pressure

Pressure tells us whether a force is focused or spread out over an area.

When you push **drawing pin** with your thumb, the small area of the point has a very high pressure. This enables it to go into the wall. The flat bit you push has a larger area. The force is more spread out. There is less pressure which is why it doesn't go into your thumb.

- 1 Do you want a high or low pressure? How did you decide?
 - (a) Cat's claws when it climbs a tree
 - (b) Standing on soft snow when you don't want to sink in
 - (c) A tractor's wheels in a muddy field
 - (d) Scissor blades cutting paper

- Fill in the gaps to complete the explanation:

 A bar of chocolate has six chunks joined with thinner pieces of chocolate. When you try to bend the bar, the ______ is greatest where the bar is ______. This helps you break off one chunk of chocolate at a time.
- A chef is chopping carrots with a sharp knife. Complete the table to compare the force, pressure and area of the knife handle compared with its blade. Choose from the words larger, smaller and equal.

	On handle compared to blade edge,
Area	area is
Pressure	pressure is
Force	force is

A pressure of 30 N/cm^2 means that there is a force of 30 N on each square centimetre. If this pressure is on a 4 cm^2 area, then the force will be $30 \times 4 = 120 \text{ N}$.

- 4 Calculate the force on these areas if the pressure is 20 N/cm².
 - (a) 2 cm^2 ,

(c) 30 cm^2 ,

(b) 4 cm^2 ,

(d) 0.04 cm^2 .

If there is a force of 60 N spread over an area of 4 cm², then the force on each square centimetre is $60 \div 4 = 15$ N. The pressure is 15 N/cm².

- 5 Calculate the pressure for these forces and areas.
 - (a) $20 \text{ N over } 2 \text{ cm}^2$,

(c) $60 \text{ N over } 12 \text{ cm}^2$,

(b) $20 \text{ N over } 0.2 \text{ cm}^2$,

(d) $60 \text{ N over } 3 \text{ cm}^2$.

If there is a pressure of 60 N/cm^2 then the force on each square centimetre is 60 N. If the force is 240 N the area must be $240 \div 60 = 4 \text{ cm}^2$.

- 6 A force is 300 N. Calculate the area to make these pressures.
 - (a) 150 N/cm^2 ,

(c) 15 N/cm^2 ,

(b) 30 N/cm^2 ,

- (d) 600 N/cm^2 .
- 7 Complete the word equations using **Force**, **Pressure** and **Area**.
 - (a) Force =

(b) Pressure =

- (c) Area =
- 8 Rewrite your word equations using symbols. F is the force, P is the pressure and A is the area.

(a)
$$F =$$

(b)
$$P =$$

(c)
$$A =$$

- 9 Use your understanding of pressure, or the formulae, to calculate
 - (a) the pressure when a 48 N force squeezes a 1.2 cm² stamp,
 - (b) the force when a 20 N/cm² pressure fluid pushes a 5 cm² piston,

(c) the area if a 900 N force makes a 90 N/cm² pressure.

Areas can also be measured in square metres. $1 \text{ m}^2 = 100 \text{ cm} \times 100 \text{ cm} = \frac{10000}{1000} \text{ cm}^2$.

A pressure of $50\,000\,\text{N/m}^2$ can also be written as $50\,000\,\text{Pa}$ (pascals) or $50\,\text{kPa}$ (kilopascals).

- 10 A van with weight $25\,000$ N is supported by tyres with total area $0.25\,\mathrm{m}^2$. Calculate the
 - (a) pressure in kPa,
- (b) area in cm²,
- (c) pressure in N/cm^2 .