Неорганични полимери – стъкла, ситали, керамика.

Някои неметали (B, C, P, S, Si, As, Se, Te) и нетипични метали (Ge, Sn, Sb) проявяват свойството да се свързват във вериги, слоеве или мрежа и могат да образуват хомо- или хетероверижни неорганични полимери. Неорганичните полимери като стъкло и глина се използват от дълбока древност. Днес в техниката широко се използват такива неорганични полимери като керамика, изкуствени диаманти и др., като непрекъснато се разработват и прилагат нови материали.

1. Природни силикати

Силикатите и алумосиликатите, както и техните продукти на изветряване (пясък, глина и т.н.) изграждат по-голямата част от земната кора. Основният компонент на силикатите е SiO₂, а при алумосиликатите част от силициевите атоми са заместени с алуминий. Силицият играе същата роля за минералите както въглерода за животинските и растителни тъкани. За разлика от органичните съединения обаче, силикатите представляват хетероверижни съединения на Si и O. Те варират в състава си от сравнително прости минерали като циркон $ZrSiO_4$, който съдържа само отделни $[SiO_4]^{4-}$ -аниони, до далеч покомплексни структури, в които силикатните аниони образуват пръстени или удължени едно-, дву- или тримерни структури.

Всички силикати имат в основата си тетраедъра на [SiO₄]⁴-(фиг.1-а, б). В неговия център е разположен малкият атом на Si, а по върховете му – четирите кислородни аниона. В някои случаи атомите Si могат частично да бъдат заместени от Al (алумосиликати), В и Ве. Силициево-кислородните тетраедри се свързват помежду си посредством общи атоми кислород като се осъществява връзките –О-Si-O-. Тези формации образуват силикатния скелет, зареден отрицателно, а компенсиращият брой положителни заряди - металните катиони (Al, Fe, Cr, Ca, Mg, Na и др.) се разполагат между макроверигите. Между положителните и отрицателните заряди съществува силно електростатично взаимодействие, което е и основната разлика между неорганичние и органичните полимери.

Силикатите могат да имат различна структура в зависимост от съотношението между кислорода и силиция (брой общи кислородни атоми).

- верижни силикати (фиг.1-в) при O/Si=3 тетраедрите се свързват с два общи върха. Получените влакнести минерали са известни под общото наименование азбест, използват се за изработка на шнурове, тъкани, хартия с работна температура 500-700°С. Използват се главно за устойчиви на висока температура електро- и топлоизолации.
- слоести силикати (фиг.1-г) при O/Si=2,5 тетраедрите се свързват с три общи върха. Най-известните слоести силикати са слюда, талк, каолинит. В електрониката естествените и синтетичните слюди се използват като диелектрици на кондензатори и като изолационни екрани в електровакуумните лампи.
- силикати с пространствана решетка при O/Si=2 тетраедрите са свързани с всичките си върхове в пространствена решетка – природен кварц, пясък. Кварцът и кварцовото стъкло намират приложение в електрониката, радиотехниката, оптиката и др.

Природните силикати се използват широко както в естествено състояние като слюдата, азбестовите материали, скъпоценни камъни, кварц, така и след допълнителна преработка под форма на стъкло, керамика, абразивни материали, пълнители на органични полимери и т.н.

2. Неорганични стъкла

а) определение

Стъкла се наричат всички аморфни (некристални) вещества независимо от техния химичен състав, получени в твърдо състояние чрез преохлаждане на техни стопилки. Добре изразена склонност към стъклообразно състояние имат силикатите, боратите, фосфатите и някои други вещества. Най-широко разпространени са силикатните стъкла, съставени от SiO₂ и други оксиди. Силициевите тетраедри образуват неправилна пространствена мрежа, в която се включват катиони на К, Na, Ca, Mg. Присъствието на различно построени аниони със сравнително голяма дължина на веригата затрудняват кристализационните процеси и при изстиване се образува стъкловидната маса.

б) влияние на състава и структурата върху свойствата на стъклото

- кварцово стъкло съдържа само SiO₂ пропуска UV-лъчи, нисък коефициент на линейно разширение, висока химична и термична устойчивост, висока температура на омекване, добри електроизолационни свойства.
- добавянето на алкални оксиди понижава температурата на топене на стъклото, влошават химичната устойчивост и електроизолационните свойства. Този ефект се дължи на прекъсването на дългите полисилициеви вериги от алкалните катиони. Разтворимото във вода водно стъкло е изградено изцяло от силикати на Na^+ , K^+ и NH_4^+ .
- добавянето на оксиди (CaO, MgO, BaO, PbO, Al₂O₃), които осигуряват напречни връзки между отделните силициеви вериги, подобрява химичната устойчивост на стъклото.
- в) свойства чрез подбор на компонентите може силно да се изменят свойствата на стъклата в едно или друго направление.
- **химични** устойчиви на всички киселини (с изключение на HF), неустойчиви на основи.

$$SiO_2 + 6HF \rightarrow SiF_6^{2-} + 2H_2O + 2H^+$$

 $SiO_2 + 4NaOH \rightarrow Na_4SiO_4 + 2H_2O$

Подобряват се с добавяне на CaO, B₂O₃, MgO, BaO, PbO, Al₂O₃ и други.

- механични – висока якост на опън, ниска якост на натиск. Подобряват се с добавяне на СаО, В2О3, АІ2О3 и други, както и чрез закаляване (по-равномерно разпределяне и частично премахване на вътрешните напрежения).

- *оптични* – пропускат UV-льчите (кварцовото стъкло 100%, прозрачните стъкла 50%); съдържащите FeO стъкла поглъщат инфрачервените лъчи; стъклата с оксиди на тежки метали (PbO и SnO) поглъщат рентгеновите лъчи, а тези с оксиди на леки елементи (B2O3) са прозрачни за тях.

Стъкла за оптични влакна – сърцевината и обвивката на оптичните кабели са направени от много чисти стъкла, за да се намали колкото е възможно затихването на светлинния лъч. Основните изисквания към тези стъкла са към коефициента им на пречупване на светлината и якостните им характеристики.

- *електрически* йонни проводници поради съдържащите се в стъклата йони (проводници втори род). С увеличаване съдържанието на алкални оксиди (Na₂O и K₂O) проводимостта расте. Някои стъкла със специален състав са полупроводници (кислород-бариевите, оловнованадиевите стъкла, безкислородни арсен-селенидни стъкла и др.). Поради извършващи се хидролизни процеси адсорбирания слой влага върху стъклата се получава силициева киселина, която е причина за повърхностна електропроводимост. Тя може да се намали значително чрез замяна на SiO_2 с B_2O_3 и Al_2O_3 , както и чрез обработка на повърхността до получаване на хидрофобен слой.
- **г) приложение на стъклото** за високоволтови изолации, катодни лампи, оптични прибори и апаратура, пропускащи UV-льчи, апаратури за производство на киселини, форми за прецизно леене на метали и т.н. Стъклото получено във вид на влакна, служи за топло-, звуко- и електроизолация самостоятелно във вид на прежда или по-често в композиция с пластмаси – стъклопласти. Полупроводникови стъкла се използват като тиристори, фотосъпротивления и др.

3. Стъклокристални полимери (ситали)

Ситалите са поликристални материали, получени чрез стимулирана пълна или частична кристализация на стъкла. Заемат междинно място между стъклата и керамиката. Характеризират се с микрокристална структура, която им придава по-голяма плътност, повисока механична якост и топлопроводност в сравнение със стъклата и керамиките. Те са изградени от малки (до 2µm), равномерно разпределени в стъкловидната фаза кристалчета, сраснали се помежду си или съединени с тънък слой стъкло. Ситалите се получават чрез допълнително термично третиране (термоситали) или облъчване с UV-светлина (фотоситали) на готово стъклено изделие с подходящ състав. В сравнение с изходното стъкло, ситалите притежават по-висока температура на омекване, якостни показатели, повишена якост на опън и на огъване, повишена микротвърдост, висока термична и химична устойчивост, електроизолационни свойства. Тези материали високовъглеродната стомана, а по химична устойчивост отстъпват само на благородните метали. Използват се при работа при особено тежки условия, абразиви, самосмазващи се лагери, тръби за химическата промишленост, за топлоустойчиви покрития върху метали и др. От тях се изработват редица детайли в електротехниката и електрониката. Поради високата топлопроводимост, някои ситали се използват като подложки на хибридни тънкослойни интегрални схеми.

4. Керамика

а) определение

Керамичните материали са всички неорганични, неметални вещества, получени чрез спичане без стапяне на прахообразни смеси. Те са многофазни системи, състоящи се обикновено от кристална, стъкловидна и газообразна фаза. Кристалната фаза обуславя високите механични показатели на керамиката, а стъкловидната фаза подпомага формоването на изделието. За повишаване на влагоустойчивостта, по-трудното замърсяване и за по-лесното почистване на керамичните повърхности, те се глазират чрез стапяне на леснотопими стъкловидни смеси. Керамичните материали се характеризират с високи якостни и термични показатели, добри

диелектрични свойства, устойчиви са на голям брой химични вещества, плесени, радиация. Керамичните изделия не стареят.

Газовата фаза предизвиква намаляване на механичната и електрическата якост и увеличаване на диелектричните загуби при по-високи напрежения. По тези причини газовата фаза е нежелана, освен в някои специални порести керамики, които се използват за изработване на основи за резистори.

б) класификация:

- според структурата груба (тухли, керемиди, огнеупорни изделия) и фина (порцелан, фаянс и др.).
- според областта на приложение строителна, битова, огнеупорна и техническа. Техническата керамика е електро-, радио- и други видове.

в) технически порцелан

Порцеланът е керамично изделие, което се характеризира с плътен спечен череп, непроницаем за газове и течности, покрит с полупрозрачен тънък слой. Порцеланът има много добри електроизолационни свойства и се използва за изолатори за високо напрежение и открит монтаж. Намира широко приложение и за детайли, работещи при ниско напрежение и ниска честота на тока. Във високочестотно поле обикновеният порцелан има значителни диелектрични загуби и не се използва в електротехниката.

Порцеланите се получават от около 50% глинесто вещество (хидратирани алумосиликати - каолинит), 25% фелдшпат (алумосиликат) и 25% кварц. По-високото съдържание на фелдшпад повишава степента на спичане (липса на пори), което осигурява по-добри електроизолационни свойства. Поради значителното съдържание на алкални вещества, при високи температури се увеличава йонната проводимост на порцелана.

г) специална керамика за технически цели – материали с плътна спечена поликристална структура, която се получава при твърдофазно спичане на високодисперсни прахове при високи температури. Кристалната фаза е най-често на основата на чисти метални огнеупорни оксиди (Al₂O₃ – корунд, ZrO₂, BeO, ThO₂). Тя се характеризира с подобрени диелектрични свойства, висока топлоустойчивост. Корундовата керамика има извънредно високи механични якостни и забележителни диелектрични характеристики, отлична химична устойчивост спрямо много химични агенти (включително НF). Използва се за детайли в радиотехниката, вакуумната техника и микроелектрониката, за свещи в двигатели с вътрешно горене, абразивни материали и др.

Радиопорцелан се произвежда на основата на системата BaO.Al₂O₃.SiO₂. Тъй като изходната маса е с голяма пластичност, от него може да се изработват малогабаритни детайли със сложна геометрична структура.

Алуминооксидната керамика съдържа висок процент Al_2O_3 (85-99%) – има отлични електрични, механични и топлинни свойства и се прилага в електрониката, за подложки на хибридни интегрални схеми и други.

Берилиевооксидна керамика - изключително висока топлопроводимост и много високо изолационно съпротивление, поради което се използва за основа на интегрални схеми и печатни платки, нуждаещи се от бързо охлаждане. Има висока цена, която ограничава приложението и.

Керамики с висока диелектрична проницаемост се използват като кондензаторни керамики. Една от тези керамики е на основата на бариев титанат (BaTiO₃).

Освен керамиката на основа на различни оксиди, съществува и керамика на базата на труднотопими безкислородни съединения (карбиди, нитриди, силициди).