

QUARTERLY EXAMINATION, 2013 –14 SUBJECT: MATHEMATICS

CLASS: XI

learncbse.in...100

General Instruction:

- a. All questions are compulsory.
- b. The question paper consists of 29 questions divided in three sections A,B and C. Section A comprises of 10 questions of one mark each. Section B comprises of 12 question of four marks each and section C comprises of 7 questions of six marks each.
- c. There is no overall choice. However, internal choices have been provided in 4 questions of four marks and 2 questions of six marks each. You have to attempt only one of the alternatives in all such questions.

SECTION-A

- 1. If A and B are two sets such that (A) = 115, n(B) = 326, n(A B) = 47, then write $n(A \cap B)$.
- 2. Write the set $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots \right\}$ in the set builder form.
- 3. If $A = \{X, Y, Z\}$ and $B = \{a, b\}$. Write the total number of relations can be defined from A to B.
- 4. Write the range of the function. $f(x) = \frac{1}{\sqrt{x-5}}$.
- 5. Write the radian measure corresponding to 5° 37' 30".
- 6. Draw the rough sketch of graph of $y = \sin^2 x$, $x \in [0, 2\pi]$.
- 7. Find the real value of x and y, if (x + iy)(2 3i) = 4 + i.
- 8. If ${}^{n}C_{6} = {}^{n}C_{4}$, find ${}^{n}C_{8}$.
- 9. Write the 4th term from end in the expansion of $\left[\frac{4x}{5} \frac{5}{2x}\right]^9$.
- 10. Evaluate $\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x}$.

SECTION - B

- 11. If A,B and C are the sets such that $A \cup B = A \cup C$ and $A \cap B = A \cup C$. Show that B = C.
- 12. A college awarded 38 medals in Football, 15 in Basketball and 20 in Cricket. If these medals went to a total of 58 men and only three men got medals in all three sports. How many received medals in exactly two of the three sports?
- 13. If $A = \{1,2,3, \dots, 14\}$, define a relation on the set A by $R = \{(x,y): 3 \text{ } x-y=0; \text{ where } x,y \in A\}$. Depict this relationship using an arrow diagram. Write down its domain, domain, codomain and range.
- 14. If $A = \{12,13,14,15,16,17\}$ and $f: A \to N$ be a function given by f(x) = h least prime factor of x, write f as the set of ordered pair. Also find range of f.

15. Prove that: $\cos 2\theta \cos \frac{\theta}{2} - \cos 3\theta \cos \frac{9\theta}{2} = \sin 5\theta \sin \frac{5\theta}{2}$.

16. Find the square root of complex number $-11 - 60\sqrt{-1}$.

learncbse.in

Or

Find all values of θ such that $\frac{3+2i\sin\theta}{1-2i\sin\theta}$ is purely real.

- 17. If \propto and β are different complex members with $|\beta|$, find $\frac{\beta \infty}{1 \overline{\infty} \beta}$
- 18. If all the letters of the word 'AGAIN' be arranged as in a dictionary, what is the fiftieth word?

OR

If
$$^{n+2}C_8$$
: $^{n-2}P_4$ =57:16, find n.

19. Prove that the term independent of x in the expansion $(x + \frac{1}{x})^{2n}$ is:

$$\frac{1.3.5,....(2n-1).2^n}{n!}$$

20. Evaluate: $\lim_{x \to 1} \left\{ \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right\}$

OR

$$\lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$$

- 21. Suppose $f(x) = \begin{cases} a + bx, when & x < 1 \\ 4, & when & x = 1 \\ b ax & when & x > 1 \end{cases}$ and $\lim_{x \to 1} f(x) = f(1)$. What are possible values of a and b?
- 22. Differentiate with respect to x:

$$(x \sin x + \cos x)(x \cos x - \sin x)$$

Or

$$(ax+b)^m(cx+d)^n$$
.

SECTION -C

- 23. Find the domain and range of real valued function $f(x) = \sqrt{9 x^2}$.
- 24. Prove that : $\cos^2 x + \cos^2(x + \pi/3) + \cos^2(x \pi/3) = 3/2$.

If $\tan x = 3/4$, $\pi < x < 3\pi/2$, find the values of $\sin (x/2)$, $\cos (x/2)$ and $\tan (x/2)$.

25. Prove that:

(i)
$$\sin 20^{0} \sin 40^{0} \sin 60^{0} \sin 80^{0} = 3/16$$
.

(ii)
$$\tan 4x = \frac{4 \tan x (1 - \tan^2 x)}{1 - 6 \tan^2 x + \tan^4 x}$$
.

- 26. Find the modulus and argument of the complex number $z = \frac{i-1}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}$. Also convert in the "POLAR FORM".
- 27. A committee for "value development in students" has to be formed from student union of your school consists of 9 boys and 4 girls. In how many ways 7 committee members can be selected from union by taking:
 - (i) Exactly 3 girls
 - (ii) At least 3 girls
 - (iii) At most 3 girls. Discuss in brief about the "values" in the students. You like to develop.
- 28. Find the coefficient of x^5 in the expansion of the product $(1+2x)^6 (1-x)^7$.

OR

Find a, b and n in the expansion of $(a+b)^n$, if the first three terms in the expansion are 729, 7290 and 30375 respectively.

- 29. (i) Differentiate $(x \sin x)$ with respect to x from first principle.
 - (ii) Differentiate $\frac{x \sin x + \cos x}{\sin x x \cos x}$ with respect to.