I Olimpiada Femenil de Matemáticas, CARMA 2015 - Etapa Final - Problema 3

Sea el $\triangle ABC$ isósceles con AB = AC y el $\angle BAC = 20^\circ$. Se toma un punto D sobre AC tal que AD = BC. ¿Cuánto mide el $\angle BDC$?

Solución.

Sea E un punto en la paralela a BC que pasa por D tal que ED = AB y ED cruza a AB. Como ED = AB, $\angle ADE = \angle ACB = \angle CBA = \frac{180^{\circ} - \angle BAC}{2} = \frac{180^{\circ} - 20^{\circ}}{2} = 80^{\circ}$ por ser correspondientes entre las paralelas BC y ED y ser el $\triangle ABC$ isósceles con AB = AC (lo que hace que el $\angle BAC = 20^{\circ}$ sea el ángulo desigual), respectivamente y AD = BC se tiene por el criterio de congruencia LAL que $\triangle ABC \cong \triangle EDA$, por lo que el $\angle EAD = 80^{\circ}$ y EA = AB obteniendo que $\angle EAB = \angle EAD - \angle BAC = 80^{\circ} - 20^{\circ} = 60^{\circ}$ y el $\triangle EAB$ es isósceles con $\angle ABE = \angle BEA = \frac{180^{\circ} - \angle EAB}{2} = \frac{180^{\circ} - 60^{\circ}}{2} = 60^{\circ}$, concluyendo que el $\triangle EAB$ es equilátero y EA = AB = BE = ED. Como el $\angle BEA = 60^{\circ}$, $\angle DEA = 20^{\circ}$ y ED = BE se tiene que $\angle BED = \angle BEA - \angle DEA = 60^{\circ} - 20^{\circ} = 40^{\circ}$ y el $\triangle BED$ es isósceles con $\angle EDB = \angle DBE = \frac{180^{\circ} - \angle BED}{2} = \frac{180^{\circ} - 40^{\circ}}{2} = 70^{\circ}$. Finalmente se sabe que $\angle ADC = 180^{\circ} = \angle ADE + \angle EDB + \angle BDC = 80^{\circ} + 70^{\circ} + \angle BDC$ por ser D un punto de AC, obteniendo que $\angle BDC = 180^{\circ} - 80^{\circ} - 70^{\circ} = 30^{\circ}$

 \therefore Queda demostrado que el $\angle BDC = 30^{\circ}$.

Página 1-1