II. Rappels et compléments d'algèbre linéaire

10 août 2024

Table des matières

1	Produits et espaces vectoriels d'applications 1.1 Espaces vectoriels produits	4 4 5
2	Sommes d'espaces vectoriels 2.1 Rappels de première année : sommes, sommes directes, supplémentaires	5 5 7
3	Matrices par blocs 3.1 Définition	10 10 11
4	Matrices semblables	12
5	Trace d'un endomorphisme, trace d'une matrice 5.1 Définition	13 13 14 14 14 15 15
6	Sous-espaces vectoriels stables 6.1 Définitions et premières propriétés 6.2 Stabilité et matrices triangulaires par blocs	15 15 16
7	Déterminant 7.1 Déterminant d'une matrice carrée	17 17 18 19
8	Polynômes d'endomorphismes	19

9	Inter	rpolation de Lagrange	21
	9.1	Définition du problème	21
	9.2	Polynômes de Lagrange	22
	9.3	Lien avec le déterminant de Vandermonde	23
10	Exer	rcices classiques	23
	10.1	Image d'une base par un endomorphisme	23
	10.2	Expression et éléments caractéristiques d'un projecteur ou d'une symétrie	24
	10.3	Une caractérisation des homothéties	24
	10.4	« Inégalité triangulaire » du rang	24
	10.5	Noyaux itérés	24
	10.6	Endomorphismes nilpotents	24
	10.7	Endomorphismes de rang 1	25
	10.8	Matrice à diagonale dominante	25
	10.9	Une caractérisation de la trace	25

Programme officiel

Algèbre linéaire

Dans toute cette partie, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

A - Compléments sur les espaces vectoriels, les endomorphismes et les matrices

Le programme est organisé autour de trois objectifs :

- consolider les acquis de la classe de première année;
- introduire de nouveaux concepts préliminaires à la réduction des endomorphismes : somme de plusieurs sousespaces vectoriels, somme directe, sous-espaces stables, matrices par blocs, trace, polynômes d'endomorphismes et de matrices carrées, polynômes interpolateurs de Lagrange;
- passer du point de vue vectoriel au point de vue matriciel et inversement.

Le programme valorise les interprétations géométriques et préconise l'illustration des notions et résultats par de nombreuses figures.

Contenus

CAPACITÉS & COMMENTAIRES

a) Produit d'espaces vectoriels, somme de sous-espaces vectoriels

Produit d'un nombre fini d'espaces vectoriels; dimension dans le cas où ces espaces sont de dimension finie. Somme, somme directe d'une famille finie de sousespaces vectoriels.

En dimension finie, base adaptée à un sous-espace vectoriel, à une décomposition $E=\bigoplus E_i$.

Si $F_1, ..., F_p$ sont des sous-espaces de dimension finie,

$$\dim\Bigl(\sum_{i=1}^p F_i\Bigr) \leq \sum_{i=1}^p \dim(F_i)$$

avec égalité si et seulement si la somme est directe.

Décomposition en somme directe obtenue par partition d'une base.

b) Matrices par blocs et sous-espaces stables

Matrices définies par blocs, opérations par blocs de tailles compatibles (combinaison linéaire, produit, transposition)

Déterminant d'une matrice triangulaire par blocs. Sous-espace vectoriel stable par un endomorphisme, endomorphisme induit.

Si u et v commutent alors le noyau de u est stable par v.

Traduction matricielle de la stabilité d'un sous-espace vectoriel par un endomorphisme et interprétation en termes d'endomorphismes d'une matrice triangulaire ou diagonale par blocs.

c) Trace

Trace d'une matrice carrée.

Linéarité, trace d'une transposée.

Relation tr(AB) = tr(BA).

Invariance de la trace par similitude. Trace d'un endomorphisme d'un espace de dimension finie.

Notation tr(A).

d) Polynômes d'endomorphismes et de matrices carrées

Polynôme d'un endomorphisme, d'une matrice carrée. Polynôme annulateur.

Deux polynômes de l'endomorphisme u commutent. Adaptation de ces résultats aux matrices carrées.

Relation $(PQ)(u) = P(u) \circ Q(u)$. Application au calcul de l'inverse et des puissances. Le noyau de P(u) est stable par u.

e) Interpolation de Lagrange

Base de $\mathbb{K}_n[X]$ constituée des polynômes interpolateurs de Lagrange en n+1 points distincts de \mathbb{K} .

Déterminant de Vandermonde.

Expression d'un polynôme $P \in \mathbb{K}_n[X]$ dans cette base. La somme des polynômes interpolateurs de Lagrange en n+1 points est le polynôme constant égal à 1. Lien avec le problème d'interpolation de Lagrange.

Dans tout le chapitre, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

1 Produits et espaces vectoriels d'applications

1.1 Espaces vectoriels produits

Théorème 1.1.1 (Espace vectoriel produit). Soient $n \in \mathbb{N}^*$ et $(E_1, +_1, \cdot_1) \dots (E_n, +_n, \cdot_n)$ des \mathbb{K} ev. On considère l'ensemble produit $E = E_1 \times \ldots \times E_n$ que l'on munit des deux lois $+ : E \times E \to E$ et $\cdot : \mathbb{K} \times E \to E$ définies, par les relations suivantes pour toutes familles $(x_k)_{k \in [\![1,n]\!]}$ et $(y_k)_{k \in [\![1,n]\!]}$ et tout $\lambda \in \mathbb{K}$:

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 +_1 y_1, \dots, x_n +_n y_n)$$

 $\lambda \cdot (x_1, \dots, x_n) = (\lambda \cdot_1 x_1, \dots, \lambda \cdot_n x_n)$

Alors, $(E, +, \cdot)$ est un \mathbb{K} -ev appelé $espace\ vectoriel\ produit.$

Démonstration.

Il suffit de vérifier les 5 points de la définition d'espace vectoriel :

(i) La loi + est facilement une lci. Elle est associative : soit $(x_1, \ldots, x_n), (y_1, \ldots, y_n), (z_1, \ldots, z_n) \in E$:

$$[(x_1, \dots, x_n) + (y_1, \dots, y_n)] + (z_1, \dots, z_n)$$

$$=(x_1 +_1 y_1, \dots, x_n +_n y_n) + (z_1, \dots, z_n)$$

$$=((x_1 +_1 y_1) +_1 z_1, \dots, (x_n +_n y_n) +_n z_n)$$

$$=(x_1 +_1 (y_1 +_1 z_1), \dots, x_n +_n (y_n +_n z_n))$$

$$=(x_1 +_1 (y_1 +_1 z_1), \dots, x_n +_n (y_n +_n z_n))$$

$$=(x_1, \dots, x_n) + (y_1 +_1 z_1, \dots, y_n +_n z_n)$$

$$=(x_1, \dots, x_n) + [(y_1, \dots, y_n) + (z_1, \dots, z_n)]$$

On vérifie ensuite sans peine que le n-uplet $(0_1, \ldots, 0_n)$ est le neutre pour + et que $(-x_1, \ldots, -x_n)$ est l'inverse de (x_1, \ldots, x_n) pour +. Enfin, toutes les $+_i$ sont commutatives donc + aussi.

Ainsi (E, +) est un groupe commutatif.

- (ii) Soit $(x_1, \ldots, x_n) \in E$, on a $1 \cdot (x_1, \ldots, x_n) = (1 \cdot_1 x_1, \ldots, 1 \cdot_n x_n) = (x_1, \ldots, x_n)$.
- (iii) Soit $(\lambda, \mu) \in \mathbb{K}^2$, $(x_1, \dots, x_n) \in E$. En posant $z = (\lambda + \mu) \cdot (x_1, \dots, x_n)$

on a successivement :

$$z = ((\lambda + \mu) \cdot_1 x_1, \dots, (\lambda + \mu) \cdot_n x_n)$$

$$= (\lambda \cdot_1 x_1 + \mu \cdot_1 x_1, \dots, \lambda \cdot_n x_n + \mu \cdot_n x_n)$$

$$= (\lambda \cdot_1 x_1, \dots, \lambda \cdot_n x_n) + (\mu \cdot_1 x_1, \dots, \mu \cdot_n x_n)$$

$$= \lambda \cdot (x_1, \dots, x_n) + \mu \cdot (x_1, \dots, x_n).$$

(iv) Soit $\lambda \in \mathbb{K}$, $(x_1, \dots, x_n) \in E$ et $(y_1, \dots, y_n) \in E$. En posant

$$z = \lambda \cdot (x_1 +_1 y_1, \dots, x_n +_n y_n)$$

on a successivement :

$$z = (\lambda \cdot (x_1 +_1 y_1), \dots, \lambda \cdot (x_n +_n y_n))$$

$$= (\lambda \cdot_1 x_1 +_1 \lambda \cdot_1 y_1, \dots, \lambda \cdot_n x_n +_n \lambda \cdot_n y_n)$$

$$= (\lambda \cdot_1 x_1, \dots, \lambda \cdot_n x_n) + (\lambda \cdot_1 y_1, \dots, \lambda \cdot_n y_n)$$

$$= \lambda \cdot (x_1, \dots, x_n) + \lambda \cdot (y_1, \dots, y_n).$$

(v) Soit $(\lambda, \mu) \in \mathbb{K}^2$ et $(x_1, \dots, x_n) \in E$. On a successivement:

$$(\lambda \times \mu) \cdot (x_1, \dots, x_n) = ((\lambda \times \mu) \cdot_1 x_1, \dots, (\lambda \times \mu) \cdot_n x_n)$$

$$= (\lambda \cdot_1 (\mu \cdot_1 x_1), \dots, \lambda \cdot_n (\mu \cdot_n x_n))$$

$$= \lambda \cdot (\mu \cdot_1 x_1, \dots, \mu \cdot_n x_n)$$

$$= \lambda \cdot [\mu \cdot (x_1, \dots, x_n)].$$

Proposition 1.1.2 (Base d'un ev produit).

Si E et F sont de dimension finie, alors $E \times F$ aussi et sa dimension vaut dim E + dim F. Plus précisément, si (e_1, \ldots, e_n) est une base de E et (f_1, \ldots, f_p) une base de F, alors $\mathscr{B} = ((e_1, 0), \ldots, (e_n, 0), (0, f_1), \ldots, (0, f_p))$ est une base de $E \times F$.

Démonstration.

Soit $v \in E \times F$. Alors il existe $(\alpha_i)_{i \in [\![1,n]\!]}$ et $(\beta_j)_{j \in [\![1,p]\!]}$ tels que $v = \left(\sum_{i=1}^n \alpha_i e_i, \sum_{j=1}^p \beta_j f_j\right)$. Donc $v = \left(\sum_{i=1}^n \alpha_i e_i, 0\right) + \left(0, \sum_{j=1}^p \beta_j f_j\right)$ $= \sum_{i=1}^n \alpha_i (e_i, 0) + \sum_{j=1}^p \beta_j (0, f_j)$

donc \mathscr{B} engendre $E \times F$.

De plus, soit $(\alpha_i)_{i \in [\![1,n]\!]}$ et $(\beta_j)_{j \in [\![1,p]\!]}$ tels que $\sum_{i=1}^n \alpha_i(e_i,0) +$

$$\sum_{j=1}^{p}\beta_{j}(0,f_{j})=0. \text{ Par le même calcul on obtient}$$

$$\left(\sum_{i=1}^{n}\alpha_{i}e_{i},\sum_{j=1}^{p}\beta_{j}f_{j}\right)=0, \text{ donc }\sum_{i=1}^{n}\alpha_{i}e_{i}=0 \text{ et}$$

$$\sum_{j=1}^{p}\beta_{j}f_{j}=0. \text{ Par libert\'e de ces deux familles, tous les}$$

$$\alpha_{i} \text{ et les }\beta_{j} \text{ sont nuls, et } \mathscr{B} \text{ est libre}$$

Remarque 1.1.3.

De la même manière on montre que si E_1, \ldots, E_n sont de dimension finie, alors $E_1 \times \ldots \times E_n$ aussi, on peut en donner une base, et $\dim(E_1 \times \ldots \times E_n) = \sum_{i=1}^n \dim E_i$.

1.2 Applications à valeurs dans un ev

Théorème 1.2.1 (Espaces d'applications). Soit X un ensemble non vide et E un \mathbb{K} -ev. On considère $\mathscr{F} = E^X$, que l'on munit de deux lois :

$$+: \left\{ \begin{array}{ccc} \mathscr{F} \times \mathscr{F} & \longrightarrow & \mathscr{F} \\ (f,g) & \longmapsto & \left\{ \begin{array}{ccc} X & \to & E \\ x & \mapsto & f(x) + g(x) \end{array} \right. \end{array} \right.$$

et

$$\cdot : \left\{ \begin{array}{ccc} K \times \mathscr{F} & \longrightarrow & \mathscr{F} \\ (\lambda, f) & \longmapsto & \left\{ \begin{array}{ccc} X & \to & E \\ x & \mapsto & \lambda \cdot (f(x)) \end{array} \right. \end{array} \right.$$

Alors $(\mathscr{F}, +, \cdot)$ est un \mathbb{K} -ev.

Démonstration.

Il suffit de vérifier les 5 points de la définition d'evce qui est laissé au lecteur. $\hfill\Box$

- **Exemple 1.2.2.** 1. Soit I un intervalle, alors $(\mathbb{R}^I, +, \times)$ est un \mathbb{R} -espace vectoriel, $(\mathbb{C}^I, +, \times)$ est à la fois un \mathbb{R} -espace vectoriel et un \mathbb{C} -espace vectoriel.
 - 2. L'ensemble des suites à valeurs réelles $\mathbb{R}^{\mathbb{N}}$ est un \mathbb{R} -espace vectoriel, celui des suites à valeurs complexes est à la fois un \mathbb{R} -espace vectoriel et un \mathbb{C} -espace vectoriel.

2 Sommes d'espaces vectoriels

2.1 Rappels de première année : sommes, sommes directes, supplémentaires

Définition 2.1.1 (Somme de deux sev). On appelle somme de F et G l'ensemble de E noté F+G défini par $F+G=\{x+y \mid x\in F, y\in G\}.$

Théorème 2.1.2.

- 1. F + G est un sev de E.
- 2. F + G est le plus petit sev qui contient F et G:

$$F + G = \text{Vect}(F \cup G).$$

Définition 2.1.3 (Somme directe).

Soit F, G deux sev de E, on dit que la somme F + G est directe si

$$\forall, x \in F + G, \ \exists ! (f, g) \in F \times G, \ x = f + g.$$

Dans ce cas, le sous-espace vectoriel F+G est noté

$$F \oplus G$$
.

Proposition 2.1.4 (Caractérisation d'une somme directe de deux sev).

Soit F, G deux sev de E. Les trois propositions suivantes sont équivalentes.

- 1. F + G est directe.
- 2. \forall , $f \in F$, \forall , $g \in G$, $f + g = 0_E \Rightarrow f = g = 0_E$.
- 3. $F \cap G = \{0_E\}.$

Définition 2.1.5 (Supplémentaire).

On dit que F est UN supplémentaire de G (ou

que F et G sont supplémentaires) si

$$E = F \oplus G$$
,

i.e. si les deux conditions suivantes sont remplies :

- 1. la somme F + G est directe;
- 2. E = F + G.

Proposition 2.1.6.

F et G sont supplémentaires si et seulement si tout élément de E s'écrit de manière unique comme somme d'un élément de F et d'un élément de G.

Théorème 2.1.7.

Soient F et G deux sous-espaces vectoriels de E.

- 1. Alors toute concaténation d'une famille génératrice de F et d'une famille génératrice de G est une famille génératrice de F + G.
- 2. F + G est directe si et seulement si toutes les concaténations d'une famille libre de F et d'une famille libre de G sont des familles libres de F + G.
- 3. Soit \mathscr{B} et \mathscr{B}' une base de F et de G respectivement.

F+G est directe si et seulement si la concaténation de \mathscr{B} et \mathscr{B}' est une base de F+G. Notamment, F et G sont supplémentaires si et seulement si la concaténation de \mathscr{B} et \mathscr{B}' est une base de E.

Théorème 2.1.8.

Soit E, F deux \mathbb{K} -ev, soit E_1, E_2 deux sev supplémentaires de E (*i.e.* $E = E_1 \oplus E_2$).

Soit $f_1 \in \mathcal{L}(E_1, F)$ et $f_2 \in \mathcal{L}(E_2, F)$.

Alors, il existe une unique $f \in \mathcal{L}(E, F)$ telle que $f_{|E_1} = f_1$ et $f_{|E_2} = f_2$.

Théorème 2.1.9 (Existence de supplémentaires). Soit E un \mathbb{K} -espace vectoriel et F un sous-espace vectoriel de E.

Alors F admet un supplémentaire S dans E.

Ne parlez jamais du supplémentaire : en effet tout sev non trivial admet en fait une infinité de supplémentaires !

Proposition 2.1.10 (Formule de Grassmann). Soit E un \mathbb{K} -espace vectoriel. Soit F et G deux sous-espaces de dimensions finies de E. Alors F + G est de dimension finie et

$$\dim (F + G) = \dim F + \dim G - \dim (F \cap G).$$

En particulier

$$\dim (F+G) \leq \dim F + \dim G$$

et l'égalité a lieu si et seulement si F et G sont en somme directe.

Proposition 2.1.11 (Caractérisation des supplémentaires).

Soit E un \mathbb{K} -espace vectoriel et F et G deux sous-espaces vectoriels de dimensions finies.

Alors si F et G sont supplémentaires, les trois propositions suivantes sont vraies :

- 1. $F \cap G = \{0\},\$
- 2. F + G = E,
- 3. $\dim E < +\infty$ et $\dim F + \dim G = \dim E$.

Réciproquement il suffit que deux de ces propositions soient vraies pour que F et G soient supplémentaires.

Corollaire 2.1.12.

Soit E un \mathbb{K} -espace vectoriel de dimension finie et F un sous-espace vectoriel de E. Alors tous les supplémentaires de F ont même dimension : $\dim E - \dim F$.

2.2 Généralisation à plus de deux sev

Dans la suite de cette partie, n désigne un entier naturel et F_1, \ldots, F_n des sous-espaces vectoriels de E.

Définition 2.2.1 (Somme de plusieurs sev).

La somme $F_1 + \ldots + F_n$ est l'ensemble des vecteurs x de E pouvant s'écrire au moins d'une façon sous la forme $x_1 + \ldots + x_n$ avec, pour tout $i \in [1, n]$, $x_i \in F_i$.

On dit que cette somme est **directe** si pour tout $x \in F_1 + \ldots + F_n$ l'écriture précédente est unique.

La somme $F_1 + \ldots + F_n$ est alors notée $\bigoplus_{i=1}^n F_i$.

Proposition 2.2.2 (Caractérisation d'une somme directe).

Les propositions suivantes sont équivalentes.

- (i) F_1, \ldots, F_n sont en somme directe.
- (ii) La seule décomposition possible du vecteur nul sous la forme $x_1 + \ldots + x_n$ avec $x_i \in F_i$ pour $i \in [1, n]$ est la décomposition triviale $0 + \ldots + 0$.
- (iii) Tout élément de E s'écrit au plus d'une façon sous la forme $x_1 + \ldots + x_n$ avec $x_i \in F_i$ pour $i \in [1, n]$.
- **Démonstration.(i)** \Rightarrow **(ii)** Supposons que F_1, \ldots, F_n sont en somme directe. Le vecteur nul appartient à $F_1 \oplus \ldots \oplus F_n$, donc se décompose d'une et une seule façon comme somme d'éléments de F_1, \ldots, F_n . Or il s'écrit sous la forme $0 + \ldots + 0$, qui est donc la seule décomposition possible de x.
- (ii) \Rightarrow (iii) Supposons que la seule décomposition du vecteur nul sous la forme d'une somme d'éléments de F_1, \ldots, F_n soit sous la forme $0 + \ldots + 0$.

Soit alors x un élément de E. Supposons que x s'écrive à la fois $x_1 + \ldots + x_n$ et sous la forme $y_1 + \ldots + y_n$ où, pour tout $i \in [1, n]$ $x_i \in F_i$ et $y_i \in F_i$. Alors on a

$$0 = x - x = (x_1 - y_1) + \ldots + (x_n - y_n).$$

Or pour tout $i \in [1, n]$, $x_i - y_i \in F_i$, donc on a trouvé une décomposition du vecteur nul. Or on sait

que cette décomposition est nécessairement la décomposition triviale, donc pour tout $i \in [\![1,n]\!]$, on a $x_i-y_i=0$.

On a donc $x_i = y_i$ pour tout $i \in [1, n]$, c'est-à-dire $(x_1, \ldots, x_n) = (y_1, \ldots, y_n)$.

Donc x se décompose d'au plus une façon.

Donc tout élément de E s'écrit au plus d'une façon sous la forme $x_1 + \ldots + x_n$ avec $x_i \in F_i$ pour $i \in [1, n]$.

(iii) \Rightarrow (i) Supposons (iii) et montrons (i). Soit $x \in F_1 + \ldots + F_n$. Alors x se décompose d'au moins une façon comme sous la forme $x_1 + \ldots + x_n$ avec, pour tout $i \in [\![1,n]\!], x_i \in F_i$.

De plus, d'après (iii), x se décompose au plus d'une façon sous cette forme.

Il se décompose donc de façon unique sous cette forme

Donc la somme $F_1 + \ldots + F_n$ est directe.

Remarque 2.2.3.

La somme $F_1 + \cdots + F_n$ est donc directe si et seulement si l'application $F_1 \times \ldots F_n \to E$, $(x_1, \ldots, x_n) \mapsto x_1 + \cdots + x_n$ est injective. C'est évidemment un morphisme (de groupes, mais aussi d'ev. comme nous le verrons plus tard). La proposition précédente revient à étudier le noyau de ce morphisme.

Remarque 2.2.4.

Le résultat 2.1.4 n'est valable que pour la somme de deux sous-espaces vectoriels, pas plus.

Exercice 2.2.5.

Trouver trois sous-espaces vectoriels F, G, H de \mathbb{R}^2 tels qu'on a $F \cap G \cap H = \{0\}$ (ou même tels que $F \cap G = G \cap H = H \cap F = \{0\}$) bien que F, G et H ne soient pas en somme directe.

En revanche, nous avons les résultats suivants :

Proposition 2.2.6 (Somme directe par paquets). Soit $n \in \mathbb{N}^*$ et $p \in [1, n[$, soit F_1, \ldots, F_n n sousespaces vectoriels de E. On pose $F = F_1 + \ldots + F_p$ et $G = F_{p+1} + \ldots + F_n$.

Alors la somme $F_1 + \ldots + F_n$ est directe si et seulement si les trois conditions suivantes sont vérifiées :

1. la somme $F_1 + \ldots + F_p$ est directe;

- 2. la somme $F_{p+1} + \ldots + F_n$ est directe;
- 3. la somme F + G est directe.

Démonstration.

Montrons la double implication.

Sens direct Supposons que la somme $F_1 + \ldots + F_n$ est directe. Alors

> 1. Montrons que la somme $F_1 + \ldots + F_p$ est directe. Considérons une décomposition du vecteur nul sous la forme $x_1 + \ldots + x_p$ où $x_i \in F_i$ pour $i \in$ [1, p]. En posant, pour $i \in [p + 1, n]$, $x_i = 0_E$,

$$0_E = x_1 + \ldots + x_p + x_{p+1} + \ldots + x_n.$$

Or la somme $F_1 + \ldots + F_n$ est directe, donc pour tout $i \in [1, n]$, $x_i = 0$, donc pour tout $i \in [1, p], x_i = 0.$

- 2. De même, la somme $F_{p+1} + \ldots + F_n$ est directe.
- 3. Montrons que la somme F+G est directe. Supposons que 0_E s'écrive sous la forme x + yavec $x \in F$ et $y \in G$. On a $x \in F$, donc xs'écrit sous la forme $x_1 + \ldots + x_p$ où pour tout $i \in [1, p], x_i \in F_i$. De même y s'écrit sous la forme $x_{p+1} + \ldots + x_n$ où pour tout $i \in [p+1, n]$, $x_i \in F_i$.

On a donc

$$0_E = x_1 + \ldots + x_p + x_{p+1} + \ldots + x_n.$$

Or la somme $F_1 + \ldots + F_n$ est directe, donc pour tout $i \in [1, n]$, $x_i = 0$. Ainsi, x = 0 et y = 0.

La seule décomposition de 0_E comme somme d'un élément de F et d'un élément de G est donc la décomposition triviale. Donc la somme F + G est directe.

Sens indirect Supposons que les trois conditions sont vérifiées et montrons que la somme $F_1 + \ldots + F_n$ est directe.

Considérons une décomposition de 0_E sous la forme

$$0_E = x_1 + \ldots + x_p + x_{p+1} + \ldots + x_n,$$

où $x_i \in F_i$ pour tout $i \in [1, n]$.

Alors, en posant $x = x_1 + \ldots + x_p$ et $y = x_{p+1} + \ldots + x_n$, on a $0_E = x + y$ et $x \in F$ et $y \in G$. Or F et G sont en somme directe donc $x = 0_E$ et $y = 0_E$. On a donc

$$0_E = x_1 + \ldots + x_p.$$

Or F_1, \ldots, F_p sont en somme directe donc pour tout $i \in [1, p], x_i = 0_E$. De même pour tout $i \in [p+1, n]$, $x_i = 0_E$.

Donc 0_E admet la décomposition triviale pour seule décomposition comme somme d'éléments de $F_1, \ldots,$ F_n . Donc la somme $F_1 + \ldots + F_n$ est directe.

On peut donc mettre en place de nombreuses stratégies pour montrer qu'une somme de n sousespaces vectoriels est directe. En pratique, on raisonne de proche en proche en ajoutant les sousespaces vectoriels le plus souvent un à un, en utilisant le résultat suivant.

Corollaire 2.2.7 (Somme directe « par récurrence »).

Soit $n \in \mathbb{N}^*$ et F_1, \ldots, F_{n+1} n+1 sous-espaces vectoriels de E. Alors les trois conditions suivantes sont équivalentes :

- 1. la somme $F_1 + \ldots + F_{n+1}$ est directe ;
- 2. la somme $F_1 + \ldots + F_n$ est directe et la somme de $F_1 \oplus \ldots \oplus F_n$ et de F_{n+1} est directe ;
- 3. la somme $F_1 + \ldots + F_n$ est directe et

$$(F_1 \oplus \ldots \oplus F_n) \cap F_{n+1} = \{ 0_E \}.$$

Démonstration.

L'équivalence des deux premiers points découle de la propriété précédente (avec p = n). Celle des deux derniers, de la caractérisation de la somme directe de deux sous-espaces vectoriels.

Proposition 2.2.8 (Grassmann faible générali-

Soit $n \in \mathbb{N}$ et F_1, \ldots, F_n , n sous-espaces vectoriels de dimension finie. Alors

$$\dim\left(\sum_{k=1}^n F_k\right) \leqslant \sum_{k=1}^n \dim F_k$$

et on a l'égalité si et seulement si la somme des F_k pour $k = 1, \ldots, n$ est directe.

Démonstration.

L'inégalité se déduit directement de la formule de Grassmann par récurrence, en utilisant que $\sum_{k=1}^{n+1} F_k =$

$$\left(\sum_{k=1}^{n} F_k\right) + F_{n+1}.$$
Montropy to see do 1/4 mil

Notons, pour $n \in \mathbb{N}$, P(n) l'assertion « Soit F_1, \ldots, F_n des sous-espaces vectoriels de dimension finie. Alors

$$\dim\left(\sum_{k=1}^{n} F_k\right) = \sum_{k=1}^{n} \dim F_k$$

si et seulement si les F_i sont en somme directe » et montrons $\forall, n \in \mathbb{N} \quad P(n).$

On pourrait montrer P(0) ou P(1): le plus long est de comprendre ce que dit l'énoncé dans ces cas, qui ne sont pas intéressants, et que l'on laisse de côté.

La propriété P(2) est déjà connue depuis la première année, grâce à la formule de Grassmann.

Soit $n \in \mathbb{N} \setminus \{0, 1\}$. Supposons P(n) et montrons P(n + 1). Soit F_1, \ldots, F_{n+1} des sous-espaces vectoriels de dimension

• S'ils vérifient

$$\dim\left(\sum_{k=1}^{n+1} F_k\right) = \sum_{k=1}^{n+1} \dim F_k,\tag{1}$$

on a

$$\dim\left(\sum_{k=1}^{n+1} F_k\right) \leqslant \dim\left(\sum_{k=1}^n F_k\right) + \dim F_{n+1}$$
 et
$$\dim\left(\sum_{k=1}^n F_k\right) \leqslant \sum_{k=1}^n \dim F_k.$$

Si l'une au moins de ces inégalités était stricte, on ne pourrait avoir l'égalité (1). On a donc

$$\dim \sum_{k=1}^{n} F_k = \sum_{k=1}^{n} \dim F_k.$$

D'après l'hypothèse de récurrence, les F_k pour $k \in [1, n]$ sont en somme directe. De plus

$$\dim\left(\bigoplus_{k=1}^{n} F_k + F_{n+1}\right) = \dim\bigoplus_{k=1}^{n} F_k + \dim F_{n+1},$$

donc $\bigoplus_{k=1}^{n} F_k$ et F_{n+1} sont en somme directe, donc F_1 , \dots , F_{n+1} sont en somme directe.

• Réciproquement, supposons les F_i en somme directe.

Alors $\sum F_k$ et F_{n+1} sont en somme directe, donc

$$\dim\left(\sum_{k=1}^{n+1}F_k\right)=\dim\left(\sum_{k=1}^nF_k\right)+\dim F_{n+1}.$$
 Mais F_1,\ldots,F_n sont en somme directe, donc par

hypothèse de récurrence dim $\left(\sum_{k=1}^{n} F_{k}\right) = \sum_{k=1}^{n} \dim F_{k}$.

Finalement nous avons bien dim $\left(\sum_{k=1}^{n+1} F_k\right) = \sum_{k=1}^{n+1} \dim F_k$.

On a donc
$$P(n+1)$$
.
On a donc \forall , $n \in \mathbb{N}$ $P(n)$.

Le théorème suivant prouve que décomposer un K-ev en sev en somme directe ou découper une base, cela revient au même.

Théorème 2.2.9 (Base adaptée à une somme directe de n sev). Soit E un \mathbb{K} -ev.

- 1. Soit F_1, \ldots, F_n des sev de E tels que $\bigoplus F_i =$ E. Si pour chaque i la famille \mathcal{B}_i est une base de F_i , alors la concaténation de $\mathscr{B}_1, \ldots, \mathscr{B}_n$ est une base de E, dite **adaptée** à la somme directe des F_i .
- 2. Réciproquement, si une base \mathscr{B} de E est découpée en n parties notées $\mathscr{B}_1, \ldots, \mathscr{B}_n$, et si l'on note pour chaque $i \in [1, n], F_i =$ Vect \mathcal{B}_i , alors $\bigoplus_{i=1}^n F_i = E$.

Démonstration. 1. Avec la proposition **2.2.8**, si n_i est la dimension de F_i , alors dim $E = \sum_{i=1}^{n} n_i$, qui est aussi le cardinal de la concaténation des bases \mathcal{B}_i . Il suffit donc de montrer que cette concaténation est une famille génératrice de E. Or tout élément xde E s'écrit comme une somme d'éléments des F_i , et chaque élément de ${\cal F}_i$ s'écrit comme combinaison linéaire d'éléments de \mathcal{B}_i . Ainsi x est une combinaison linéaire des éléments de la concaténation des \mathcal{B}_i , d'où le résultat.

- 2. Là encore, $\dim E$ est égale à la somme des dimension des F_i , car $\operatorname{Card} \mathscr{B} = \sum \operatorname{Card} \mathscr{B}_i$. Toujours avec
 - **2.2.8**, il suffit de montrer que $E = \sum_{i=1}^{n} F_{i}$. Pour cela,

si $x \in E$, il s'écrit comme une combinaison linéaire des vecteurs de \mathcal{B} . Dans cette combinaison linéaire, on regroupe les vecteurs appartenant à \mathcal{B}_i , et on note x_i la valeur de cette sous-combinaison linéaire. Alors

$$x = \sum_{i=1}^{n} x_i$$
, ce qui est le résultat voulu.

Finissons cette partie avec dernier résultat analogue à celui sur deux sev :

Proposition 2.2.10 (Décomposition d'une application linéaire suivant des sev supplémentaires). Soit E, F deux \mathbb{K} -ev. Soit E_1, \ldots, E_n des sev de E tels que $\bigoplus_{i=1}^{n} E_i = E$. Pour chaque $i \in [1, n]$, introduisons $u_i \in \mathcal{L}(E_i, F)$. Alors il existe un unique $u \in \mathcal{L}(E, F)$ tel que pour tout $i \in [1, n]$, $u|_{E_i} = u_i$.

Démonstration.

• Analyse : soit u une telle application. Soit $x \in E$, qui s'écrit de manière unique $x=\sum_{i=1}^{n}x_{i}$, où pour chaque i

nous avons $x_i \in E_i$.

Alors $u(x) = \sum_{i=1}^n u(x_i) = \sum_{i=1}^n u(x_i)$, d'où l'unicité de u sous réserve d'existence, grâce à l'unicité des x_i .

 \bullet Synthèse : Soit $x \in E,$ qui s'écrit de manière unique $x = \sum_{i=1}^{n} x_i$, où pour chaque i nous avons $x_i \in E_i$. Posons $u(x) = \sum_{i=1}^{n} u(x_i)$.

$$u(x) = \sum_{i=1}^{n} u(x_i).$$

Soit $i \in [1, n]$. Si $x \in E_i$, alors $x = x_i$ donc $u(x) = u_i(x_i) = u_i(x)$. Ceci étant vérifié pour tout i, nous avons

Montrons enfin que u est linéaire : soit $y = \sum_{i=1}^{n} y_i$ avec $y_i \in E_i$, et $\lambda \in \mathbb{K}$.

$$u(x + \lambda y) = u \left(\sum_{i=1}^{n} x_i + \lambda y_i \right)$$

$$= \sum_{i=1}^{n} u_i (x_i + \lambda y_i)$$

$$= \sum_{i=1}^{n} u_i (x_i) + \lambda u_i (y_i)$$

$$= \sum_{i=1}^{n} u_i (x_i) + \lambda \sum_{i=1}^{n} u_i (y_i)$$

$$= u(x) + \lambda u(y).$$

3 Matrices par blocs

3.1 Définition

Définition 3.1.1 (Écriture par blocs). Soit $M \in \mathcal{M}_{n,p}(\mathbb{K})$. On peut écrire la matrice sous la forme

$$M = \begin{pmatrix} m_{11} & m_{12} & \cdots & m_{1p} \\ m_{21} & m_{22} & \cdots & m_{2p} \\ \vdots & \vdots & & \vdots \\ m_{n1} & m_{n2} & \cdots & m_{np} \end{pmatrix}.$$

En traçant q-1 lignes horizontales distinctes et r-1 lignes verticales distinctes dans le tableau représentant M, on peut décomposer M en $q \times r$ matrices extraites M_{ij} pour $(i,j) \in [1,q] \times [1,r]$:

$$M = \begin{pmatrix} M_{11} & M_{12} & \cdots & M_{1r} \\ M_{21} & M_{22} & \cdots & M_{2r} \\ \vdots & \vdots & & \vdots \\ M_{q1} & M_{q2} & \cdots & M_{qr} \end{pmatrix}.$$

Cette décomposition est appelée décomposition par blocs de M en $q \times r$ blocs.

Formellement, une décomposition par bloc de M est la donnée de $q \times r$ matrices M_{ij} pour $(i, j) \in$ $[1,q] \times [1,r]$ telles que

- 1. Pour tout $i \in [1, q]$, les matrices $M_{i1}, ..., M_{ir}$ ont un même nombre de lignes n_i (toutes les matrices d'une même ligne ont même nombre de lignes).
- 2. Pour tout $j \in [1, r]$, les matrices M_{1j}, \ldots , M_{qj} ont un même nombre de colonnes p_j (toutes les matrices d'une même colonne ont même nombre de colonnes).
- 3. En notant a_{hk}^{ij} le coefficient de la ligne h, colonne k de la matrice M_{ij} pour $(i,j) \in$ $[1, q] \times [1, r]$ et $(h, k) \in [1, n_i] \times [1, p_j]$, on a $a_{hk}^{ij} = m_{(s+h)(t+k)}$ où $s = n_1 + \ldots + n_{i-1}$ et $t = p_1 + \ldots + p_{i-1}.$

On dira que la décomposition précédente est triangulaire supérieure par blocs si n = p etque:

- 1. pour tout $i \in [1, q]$, M_{ii} est carrée;
- 2. pour tout $(i, j) \in [1, q]^2$ avec i > j, M_{ij} est nulle.

On définit de même les décompositions *triangulaires inférieures par blocs*.

Enfin, les décompositions **diagonales par blocs** sont celles dont tous les blocs M_{ij} tels $i \neq j$ sont nuls et tous les blocs M_{ii} sont carrés.

Exemple 3.1.2.

En posant

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 7 & 8 & 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 & 17 & 18 \\ 19 & 20 & 21 & 22 & 23 & 24 \\ 25 & 26 & 27 & 28 & 29 & 30 \\ 31 & 32 & 33 & 34 & 35 & 36 \end{pmatrix},$$

A peut se décomposer par bloc en

$$\begin{pmatrix} B & C & D \\ E & F & G \\ H & I & J \end{pmatrix},$$

οù

$$B = \begin{pmatrix} 1 & 2 \\ 7 & 8 \end{pmatrix}, \qquad C = \begin{pmatrix} 3 \\ 9 \end{pmatrix},$$

$$D = \begin{pmatrix} 4 & 5 & 6 \\ 10 & 11 & 12 \end{pmatrix}, \qquad E = \begin{pmatrix} 13 & 14 \end{pmatrix},$$

$$F = \begin{pmatrix} 15 \end{pmatrix}, \qquad G = \begin{pmatrix} 16 & 17 & 18 \end{pmatrix},$$

$$H = \begin{pmatrix} 19 & 20 \\ 25 & 26 \\ 31 & 32 \end{pmatrix}, \qquad I = \begin{pmatrix} 21 \\ 27 \\ 33 \end{pmatrix},$$

$$J = \begin{pmatrix} 22 & 23 & 24 \\ 28 & 29 & 30 \\ 34 & 35 & 36 \end{pmatrix}.$$

Remarque 3.1.3.

Lorsqu'on parle de décomposition triangulaire supérieure (resp. triangulaire inférieure, diagonale) par bloc, c'est bien la décomposition

qui est triangulaire supérieure (resp. triangulaire inférieure, diagonale). Toute matrice carrée admet en effet une décomposition (triviale) triangulaire supérieure (resp. triangulaire inférieure, diagonale) par bloc.

3.2 Opérations par blocs

Proposition 3.2.1 (Combinaison linéaire par blocs).

Soit $(A, B) \in \mathcal{M}_{n,p}(\mathbb{K})^2$, admettant des décompositions par blocs

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1r} \\ A_{21} & A_{22} & \cdots & A_{2r} \\ \vdots & \vdots & & \vdots \\ A_{q1} & A_{q2} & \cdots & A_{qr} \end{pmatrix},$$

$$B = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1r} \\ B_{21} & B_{22} & \cdots & B_{2r} \\ \vdots & \vdots & & \vdots \\ B_{q1} & B_{q2} & \cdots & B_{qr} \end{pmatrix},$$

où pour tout $(i, j) \in [1, q] \times [1, r]$, A_{ij} et B_{ij} sont de même taille. Soit $\lambda \in \mathbb{K}$.

Alors $A + \lambda B$ vaut

$$\begin{pmatrix} A_{11} + \lambda B_{11} & A_{12} + \lambda B_{12} & \cdots & A_{1r} + \lambda B_{1r} \\ A_{21} + \lambda B_{21} & A_{22} + \lambda B_{22} & \cdots & A_{2r} + \lambda B_{2r} \\ \vdots & \vdots & & \vdots \\ A_{q1} + \lambda B_{q1} & A_{q2} + \lambda B_{q2} & \cdots & A_{qr} + \lambda B_{qr} \end{pmatrix}.$$

Démonstration.

Notons, pour tout $i \in [\![1,q]\!]$ (resp. pour tout $j \in [\![1,r]\!]$), n_i (resp. p_j) le nombre de lignes (resp. de colonnes) des matrices de la ligne i (resp. de la colonne j) de ces décompositions par bloc.

Posons $C = A + \lambda B$ et pour tout $(i, j) \in [1, q] \times [1, r]$, $C_{ij} = A_{ij} + \lambda B_{ij}$.

Notons a_{ij} pour $(i,j) \in [\![1,n]\!] \times [\![1,p]\!]$ les coefficients de la matrice A, b_{ij} ceux de B, c_{ij} ceux de C et pour tout $(i,j) \in [\![1,q]\!] \times [\![1,r]\!]$ et tout $(k,h) \in [\![1,n_i]\!] \times [\![1,p_j]\!]$, a_{hk}^{ij} (resp. b_{hk}^{ij} , resp. c_{hk}^{ij}) ceux de A_{ij} (resp. B_{ij} , resp. C_{ij}). On a alors, en posant $s = n_1 + \ldots + n_{i-1} + h$ et $t = p_1 + \ldots + p_{j-1} + k$.

$$c_{st} = a_{st} + \lambda b_{st} = a_{hk}^{ij} + \lambda b_{hk}^{ij} = c_{hk}^{ij}$$

On a donc

$$C = \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1r} \\ C_{21} & C_{22} & \cdots & C_{2r} \\ \vdots & \vdots & & \vdots \\ C_{q1} & C_{q2} & \cdots & C_{qr} \end{pmatrix}$$

D'où le résultat.

Proposition 3.2.2 (Transposition par blocs). Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})^2$, admettant une décomposition par blocs

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1r} \\ A_{21} & A_{22} & \cdots & A_{2r} \\ \vdots & \vdots & & \vdots \\ A_{q1} & A_{q2} & \cdots & A_{qr} \end{pmatrix}.$$

Alors A^{\top} vaut

$$\begin{pmatrix} A_{11}^{\top} & A_{21}^{\top} & \cdots & A_{r1}^{\top} \\ A_{12}^{\top} & A_{22}^{\top} & \cdots & A_{r2}^{\top} \\ \vdots & \vdots & & \vdots \\ A_{1q}^{\top} & A_{2q}^{\top} & \cdots & A_{rq}^{\top} \end{pmatrix}.$$

Démonstration.

Laissée au lecteur.

Proposition 3.2.3 (Multiplication par blocs). Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,q}(\mathbb{K})$.

On considère des décompositions de A en $r \times s$ blocs et de B en $s \times t$ blocs,

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1s} \\ A_{21} & A_{22} & \cdots & A_{2s} \\ \vdots & \vdots & & \vdots \\ A_{r1} & A_{r2} & \cdots & A_{rs} \end{pmatrix},$$

$$B = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1t} \\ B_{21} & B_{22} & \cdots & B_{2t} \\ \vdots & \vdots & & \vdots \\ B_{s1} & B_{s2} & \cdots & B_{st} \end{pmatrix},$$

telles que pour tout pour tout $(i, k, j) \in [1, r] \times [1, s] \times [1, t]$, les matrices A_{ik} et B_{kj} aient des tailles compatibles par la multiplication.

Alors le produit $A \times B$ s'écrit par blocs :

$$C = \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1t} \\ C_{21} & C_{22} & \cdots & C_{2t} \\ \vdots & \vdots & & \vdots \\ C_{r1} & C_{r2} & \cdots & C_{rt} \end{pmatrix},$$

où pour tout $(i, j) \in [1, r] \times [1, t]$, on a

$$C_{ij} = \sum_{k=1}^{s} A_{ik} \times B_{kj}$$

Démonstration.

Technique et pénible, sans intérêt.

Remarque 3.2.4.

Comme toujours avec le produit matriciel, il convient de toujours s'assurer que les blocs ont les tailles adéquates pour pouvoir être mulitpliés entre eux.

Exercice 3.2.5.

Calculer A^2 , avec

$$A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}.$$

4 Matrices semblables

Proposition 4.0.1 (Une formule de changement de base).

Soit E un \mathbb{K} -ev de dimension finie, \mathscr{B} et \mathscr{B}' deux bases de E et $u \in \mathscr{L}(E)$. Alors,

$$\operatorname{Mat}_{\mathscr{B}'}(u) = \operatorname{Mat}_{\mathscr{B}}(\mathscr{B}')^{-1} \operatorname{Mat}_{\mathscr{B}}(u) \operatorname{Mat}_{\mathscr{B}}(\mathscr{B}').$$

Démonstration.

C'est une conséquence immédiate de la formule de changement de base dans le cas où $F=E,\,\mathscr{C}=\mathscr{B}$ et $\mathscr{C}'=\mathscr{B}'$ (théorème ??).

Définition 4.0.2 (Matrices semblables).

Soit A et B deux matrices carrées de taille n. Deux matrices A et B sont dites semblables si et seulement s'il existe $P \in GL_n(\mathbb{K})$ vérifiant $A = P^{-1}BP$.

La relation « A est semblable à B » est appelée relation de $\boldsymbol{similitude}$.

Proposition 4.0.3 (Caractérisation de la similitude par des endomorphismes).

Soit A et B deux matrices carrées de taille n. A et B sont semblables si et seulement si ce sont les matrices d'un même endomorphisme u exprimées dans deux bases différentes.

Plus exactement, A et B sont semblables si et seulement s'il existe un espace vectoriel E de dimension n, deux bases \mathcal{B} et \mathcal{B}' et un endomorphisme u tel que $\mathrm{Mat}_{\mathcal{B}}(u) = A$ et $\mathrm{Mat}_{\mathcal{B}'}(u) = B$.

Remarque 4.0.4.

Deux matrices semblables ont donc même rang et même déterminant.

Proposition 4.0.5.

Considérons deux matrices A et B semblables de taille n. Alors pour tout $k \in \mathbb{N}$, A^k et B^k sont des matrices semblables.

Démonstration.

Ce résultat peut être démontré au moins des deux manières suivantes :

Par le calcul On montre par récurrence sur k que pour tout k, on a $A^k = P^{-1}B^kP$. Pour montrer que ce prédicat est héréditaire, il suffit de constater que pour tout $k \in \mathbb{N}$ tel que le prédicat est vérifié, on a également $A^{k+1} = A^kA = P^{-1}B^kPP^{-1}BP$.

Géométriquement A et B sont deux matrices d'un même endomorphisme u, donc A^k et B^k sont deux matrices de u^k .

5 Trace d'un endomorphisme, trace d'une matrice

5.1 Définition.

Définition 5.1.1 (Trace d'une matrice).

Soit A une matrice carrée de taille n. Alors la **trace de** A, notée $\operatorname{tr}(A)$ (ou $\operatorname{Tr}(A)$), est la somme des éléments diagonaux de A.

En notant $(a_{ij})_{(i,j)\in [\![1,n]\!]\times [\![1,n]\!]}$ les coefficients de A :

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

Remarque 5.1.2.

Pour tout $A \in \mathcal{M}_n(\mathbb{K})$, on a

$$\operatorname{tr}\left(A^{\top}\right) = \operatorname{tr}\left(A\right).$$

Démonstration.

Les matrices A^{\top} et A ont les mêmes éléments diagonaux.

5.2 Linéarité.

Proposition 5.2.1.

Pour tout $n \in \mathbb{N}^*$, l'application trace est une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$.

Démonstration.

Soit $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$ et $\lambda \in \mathbb{K}$. Posons $C = \lambda A + B$ et montrons $\operatorname{tr}(\lambda A + B) = \lambda \operatorname{tr}(A) + \operatorname{tr}(B)$. Notons $(a_{ij}), (b_{ij})$ et c_{ij} les coefficients respectivement de A, de B et de C. Alors, on a

$$\operatorname{tr}(C) = \sum_{i=1}^{n} c_{ii}$$

$$= \sum_{i=1}^{n} (\lambda a_{ii} + b_{ii})$$

$$= \lambda \sum_{i=1}^{n} a_{ii} + \sum_{i=1}^{n} b_{ii}$$

$$= \lambda \operatorname{tr}(A) + \operatorname{tr}(B).$$

5.3 Propriété fondamentale de la trace.

Proposition 5.3.1.

Soit $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$, alors,

$$\operatorname{tr}(AB) = \operatorname{tr}(BA).$$

 $\operatorname{\mathbf{L}} \operatorname{tr}(A \times B) \neq \operatorname{tr} A \times \operatorname{tr} B$; par exemple, dans $\mathcal{M}_2(\mathbb{K})$, 0 = tr $(E_{11} \times E_{22}) \neq 1$ = $\operatorname{tr}(E_{11}) \times \operatorname{tr}(E_{22}).$

Démonstration.

Posons C = AB et D = BA. Notons $(a_{ij}), (b_{ij}), (c_{ij})$ et (d_{ij}) les coefficients respectifs de A, B, C et D.

On a, pour tout $(i, j) \in [1, n]^2$:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj},$$

$$d_{ij} = \sum_{k=1}^{n} b_{ik} a_{kj}.$$

D'où, pour tout $i \in [1, n]$

$$c_{ii} = \sum_{k=1}^{n} a_{ik} b_{ki},$$

$$d_{ii} = \sum_{k=1}^{n} b_{ik} a_{ki}.$$

D'où :

$$\operatorname{tr}(C) = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki},$$
$$\operatorname{tr}(D) = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ki} b_{ik}.$$

Ainsi,

$$\operatorname{tr}(C) = \sum_{1 \leqslant \alpha, \beta \leqslant n} a_{\alpha\beta} b_{\beta\alpha},$$
$$\operatorname{tr}(D) = \sum_{1 \leqslant \alpha, \beta \leqslant n} a_{\alpha\beta} b_{\beta\alpha},$$

d'où l'égalité recherchée.

Remarque 5.3.2. 1. On peut déduire de cette égalité que la trace d'un produit de matrices est invariant par permutations circulaires: pour toutes matrices A_1, \ldots, A_k de taille n,

$$\operatorname{tr}(A_1 A_2 \dots A_{k-1} A_k) = \operatorname{tr}(A_2 \dots A_k A_1)$$
$$= \operatorname{tr}(A_3 \dots A_k A_1 A_2)$$

2. En revanche, la trace d'un produit de matrice n'est **pas** invariant par n'importe quelle permutation. Par exemple, dans $\mathcal{M}_2(\mathbb{K})$, en notant (E_{ij}) les matrices de la base canonique:

$$\operatorname{tr}(E_{21}E_{11}E_{12}) = 1 \neq 0 = \operatorname{tr}(E_{11}E_{21}E_{12}).$$

5.4 Invariance par similitude.

Proposition 5.4.1.

Deux matrices semblables ont même trace (on dit que la trace est un *invariant de similitude*) : soit $A, B \in \mathcal{M}_n(\mathbb{K})$, deux matrices semblables. Alors $\operatorname{tr}(A) = \operatorname{tr}(B)$.

Démonstration.

Il existe $P \in GL_n(\mathbb{K})$ vérifiant $A = P^{-1}BP$. Alors on a

$$\operatorname{tr}(A) = \operatorname{tr}\left(P^{-1}(BP)\right)$$
$$= \operatorname{tr}\left((BP)P^{-1}\right)$$
$$= \operatorname{tr}(B).$$

Remarque 5.4.2.

La réciproque de ce résultat est fausse. Par exemple, montrez que $A = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$ et I_2 ne sont pas semblables.

5.5 Trace d'un endomorphisme en dimension finie.

Définition 5.5.1 (Trace d'un endomorphisme). Soit E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. La **trace de l'endomorphisme** u et on note tr(u) (ou Tr(u)) est le scalaire défini par

$$\operatorname{tr}(u) = \operatorname{tr}(\operatorname{Mat}_{\mathscr{B}}(u)),$$

où \mathcal{B} est une base quelconque de E. Cette valeur ne dépend pas du choix de la base \mathcal{B} .

Démonstration.

On a vu d'une part que deux matrices d'un même endomorphisme sont nécessairement semblables et d'autre part que la trace de matrices est un invariant de similitude. La valeur de $\operatorname{tr}(u)$ ne dépend donc pas du choix de la base

Exemple 5.5.2.

L'endomorphisme Id_E a pour trace $\dim(E)$.

Exercice 5.5.3.

Déterminer la trace de l'endomorphisme de dérivation dans $\mathbb{K}_n[X]$.

5.6 Propriétés.

Proposition 5.6.1.

Soit E un espace vectoriel de dimension finie. La trace est une forme linéaire sur $\mathcal{L}(E)$.

Démonstration.

Il suffit de choisir une base de \mathcal{B} de E et constater que pour tous endomorphismes u et v, de matrices respectives A et B, et pour tout scalaire λ , on a

$$tr (\lambda u + v) = tr (\lambda A + B)$$
$$= \lambda tr (A) + tr (B)$$
$$= \lambda tr (u) + tr (v).$$

Proposition 5.6.2.

Soit E un espace vectoriel de dimension finie et v et u deux endomorphismes de E. Alors,

$$\operatorname{tr}(v \circ u) = \operatorname{tr}(u \circ v).$$

Démonstration.

Il suffit de choisir une base \mathcal{B} de E. En notant A et B les matrices respectives de u et v, la matrice de $v \circ u$ est BA, celle de $u \circ v$ est AB et on sait que $\operatorname{tr}(AB) = \operatorname{tr}(BA)$, d'où le résultat.

Exemple 5.6.3.

Vérifier ce résultat sur deux endomorphismes de \mathbb{R}^3 .

5.7 Trace d'un projecteur.

Ce résultat hors-programme est tout de même à connaître.

Proposition 5.7.1.

Soit E un espace vectoriel de dimension finie et p un projecteur. Alors, la trace de p est la dimension de ${\rm Im}\,p$

$$\operatorname{tr}(p) = \operatorname{rg} p.$$

Démonstration.

Notons n la dimension de E, q celle de $\operatorname{Im} p$. p étant un projecteur, on a $E = \operatorname{Im} p \oplus \operatorname{Ker} p$. Soit (e_1, \ldots, e_q) une base de $\operatorname{Im} p$. On a dim $\operatorname{Ker} p = n - q$, donc on peut trouver une base (e_{q+1}, \ldots, e_n) de $\operatorname{Ker} p$. La famille (e_1, \ldots, e_n) est alors une base \mathscr{B} de E et relativement à cette base, la matrice de p est une matrice diagonale dont les q premiers coefficients valent 1 et tous les autres sont nuls. Sa trace est donc q.

Remarque 5.7.2.

Ce résultat est faux pour d'autres endomorphismes que les projecteurs. Considérer par exemple un endomorphisme de matrice E_{12} .

6 Sous-espaces vectoriels stables

Dans cette section, E est un \mathbb{K} -ev, et $u \in \mathcal{L}(E)$.

6.1 Définitions et premières propriétés

Définition 6.1.1 (Sev stable par une application linéaire).

On dit qu'un sev F de E est stable par u si $u(F) \subset F$, i.e. pour tout $x \in F$, $u(x) \in F$.

Proposition 6.1.2 (Endomorphisme induit). Si F est stable par u, soit $u_F : F \to F$, $x \mapsto u(x)$. Alors u_F est un endomorphisme de F. On l'appelle endomorphisme induit par u sur F.

Démonstration.

 u_F est bien une application définie sur F, et par stabilité de F, elle est à valeurs dans F.

La linéarité est directe puisque u est linéaire.

Proposition 6.1.3.

Si F et G sont deux sev stables par u, alors F+G et $F \cap G$ le sont aussi.

Démonstration.

Direct.

Théorème 6.1.4 (Commutativité et stabilité). Soit $u, v \in \mathcal{L}(E)$ tels que u et v commutent. Alors Ker u et Im u sont stables par v.

Démonstration.

- Soit $x \in \text{Ker } u$. Alors $u(v(x)) = u \circ v(x) = v \circ u(x) = v(0) = 0$, donc $v(x) \in \text{Ker } u$.
- Soit $y \in \text{Im } u$. Il existe alors $x \in E$ tel que y = u(x). Alors $v(x) = v \circ u(x) = u \circ v(x) = u(v(x)) \in \text{Im } u$. \square

Lemme 6.1.5 (Matrices triangulaires et stabilité).

Soit E un espace vectoriel de dimension n et $\mathcal{B} = (e_1, \ldots, e_n)$ une base de E. Pour $k \in [1, n]$, on pose $E_k = \text{Vect}(e_1, \ldots, e_k)$. Soit $u \in \mathcal{L}(E)$ et $M = \text{Mat}_{\mathcal{B}}(u)$.

Alors M est triangulaire supérieure si et seulement si pour tout $k \in [1, n]$, E_k est stable par u.

Démonstration.

Soit $k \in [1, n]$. Pour que E_k soit stable par u, il faut que $u(e_k) \in E_k$, c'est-à-dire que seuls les k premières lignes de la matrice colonne des coordonnées de $u(e_k)$ dans $\mathscr B$ soient non nulles.

Or la matrice M de u est la matrice formée de ces colonnes. Pour que tous les E_k , pour $k \in [1, n]$ soient stables par u, il est donc nécessaire qu'elle soit triangulaire supérieure.

Réciproquement, supposons que cette matrice soit triangulaire supérieure. Alors pour tout $k \in [\![1,n]\!]$ et tout $i \in [\![1,k]\!]$, on a $u(e_i) \in E_i \subset E_k$. Donc pour tout $k \in [\![1,k]\!]$, $u(E_k) \subset \operatorname{Vect} u(e_1), \ldots, u(e_k) \subset E_k$.

Remarque 6.1.6.

Ce résultat permet de démontrer le théorème ??. Il s'adapte aux matrices triangulaires inférieures, en posant $E_1 = \text{Vect}(e_k), E_2 = \text{Vect}(e_{k-1}, e_k),$

6.2 Stabilité et matrices triangulaires par blocs

Proposition 6.2.1 (Stabilité et écriture par blocs).

Soit E un espace vectoriel de dimension n, F un sous-espace vectoriel de dimension p. Soit $\mathscr{B} = (e_1, \ldots, e_p, e_{p+1}, \ldots, e_n)$ une base de E adaptée à F. Soit enfin $u \in \mathscr{L}(E)$. On a la caractérisation suivante : F est stable par u si et seulement si la matrice de u dans \mathscr{B} est triangulaire supérieure par blocs :

$$\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right)$$

où $A \in \mathscr{M}_p(\mathbb{K})$ est la matrice de l'endormophisme induit u_F .

Démonstration.

 \bullet Supposons que F est stable par u.

u a de toutes façons une décompositon de la forme $\begin{pmatrix} A & B \\ D & C \end{pmatrix}$, où A est carrée d'ordre p et C carrée d'ordre n-p.

Puisque F est stable par u, alors pour tout $i \in [\![1,p]\!]$, $u(e_i) \in F$, et donc les composantes de $u(e_i)$ sur e_{p+1}, \ldots, e_n sont nulles. Ceci assure par définition que D=0. De plus, $u|_F$ est une application linéaire de F dans E. Si l'on note $\mathscr{B}'=(e_1,\ldots,e_p)$, alors $\mathscr{M}_{\mathscr{B}',\mathscr{B}}(()u|_F)=\binom{A}{0}$. Mais on voit facilement qu'en considérant u_F , qui n'est autre que $u|_F$ pour laquelle l'ensemble d'arrivée est F, alors $\mathscr{M}_{\mathscr{B}'}(()u_F)$ n'est autre que $\mathscr{M}_{\mathscr{B}',\mathscr{B}}(()u|_F)$ à laquelle on a ôté toutes les coordonnées que (e_{p+1},\ldots,e_n) ,

qui sont nulles : c'est exactement A.

• Réciproquement, suppposons que $\mathcal{M}_{\mathscr{B}}(()u) = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$. Alors cela signifie que pour tout $i \in \llbracket 1, p \rrbracket, \ u(e_i) \in F$, les coordonnées de $u(e_i)$ sur (e_{p+1}, \ldots, e_n) sont nulles, et donc $u(e_i) \in \operatorname{Vect}(e_1, \ldots, e_p)$, i.e. $u(e_i) \in F$. Par linéarité, on a

Proposition 6.2.2 (Stabilité de sev supplémentaires et écriture par blocs).

donc $u(\operatorname{Vect}(e_1,\ldots,e_p)) \subset F$, donc $u(F) \subset F$.

Soit E un espace vectoriel de dimension finie, F_1, \ldots, F_p des sous-espaces vectoriels tels que $E = \bigoplus_{i=1}^p F_i$. Soit $u \in \mathcal{L}(E)$. Les F_i sont tous

stables par u si et seulement si la matrice de u dans une base $\mathscr{B} = (\mathscr{B}_1, \dots, \mathscr{B}_p)$ adaptée à la somme directe est diagonale par blocs :

$$\begin{pmatrix}
A_1 & 0 & \cdots & 0 \\
0 & A_2 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & A_p
\end{pmatrix}$$

où $A_i \in \mathcal{M}_{n_i}(\mathbb{K})$ est la matrice de l'endomorphisme induit u_{F_i} .

Démonstration.

On remarque que dans la proposition précédente, en appliquant exactement le même rainsonnement que pour F, $G = \mathrm{Vect}(e_{p+1}, \dots, e_n)$ est stable par u si et seulement si B = 0. Or G est un supplémentaire de F. Nous avons donc exactement montré le résultat voulu dans le cas p = 2. Le cas général se démontre de la manier, par récurrence en écrivant que $E = \bigoplus_{i=1}^{p+1} F_i = \left(\bigoplus_{i=1}^p F_i\right) \oplus F_{p+1}$. \square

Corollaire 6.2.3.

Soit E un espace de dimension finie n, de base $\mathscr{B} = (e_1, \ldots, e_n)$. Soit $u \in \mathscr{L}(E)$ un endomorphisme laissant stable les n droites vectorielles $F_i = \mathrm{Vect}\,(e_i)$. Alors, la matrice de u dans la base \mathscr{B} est diagonale :

$$\begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_n
\end{pmatrix}$$

où chaque $\lambda_i \in \mathbb{K}$.

7 Déterminant

7.1 Déterminant d'une matrice carrée

Définition 7.1.1.

L'application déterminant est l'unique application det $: \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ vérifiant :

- 1. det est linéaire par rapport aux colonnes de sa variable ;
- 2. det est alternée par rapport aux colonnes de sa variable ;
- 3. $\det I_n = 1$.

Lorsque
$$A = (a_{ij})_{ij}$$
, on note $\det A = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}$.

Théorème 7.1.2 (Règles de calcul). Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- 1. Ajouter à une ligne ou une colonne de A une combinaison linéaire des autres lignes ou colonnes ne change pas le déterminant de A;
- 2. Multiplier une ligne ou une colonne de A par une constante $\lambda \in \mathbb{K}$, change le déterminant de A en $\lambda \det A$;
- 3. Échanger deux lignes ou deux colonnes de A change le déterminant de A en $-\det A$;
- 4. Si A a une ligne ou une colonne nulle, ou combinaison linéaire des autres, alors det A=0.

Théorème 7.1.3 (Déterminant d'une matrice triangulaire).

Soit $A = (a_{i,j})$ une matrice triangulaire. Alors,

$$\det A = \prod_{i=1}^{n} a_{i,i}.$$

Remarque 7.1.4.

Avec ce résultat on retrouve facilement qu'une matrice triangulaire est inversible si et seulement si elle n'a pas de zéro sur la diagonale. **Définition 7.1.5** (Mineur et cofacteur). Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$.

- 1. On appelle **mineur d'ordre** (i, j) de A le scalaire $\Delta_{i,j} = \det A_{i,j}$ où $A_{i,j}$ est la matrice de $\mathcal{M}_{n-1}(\mathbb{K})$ obtenue à partir de A en supprimant la i^{e} ligne et la j^{e} colonne.
- 2. On appelle **cofacteur d'ordre** (i, j) de A le scalaire $(-1)^{i+j}\Delta_{i,j}$.

Théorème 7.1.6 (Développement par rapport à une ligne ou une colonne).

Soit $A \in \mathcal{M}_n(\mathbb{K})$, $A = (a_{i,j})$, soit $i, j \in [1, n]$.

1. Développement par rapport à la i^{e} ligne :

$$\det A = \sum_{k=1}^{n} (-1)^{i+k} a_{i,k} \Delta_{i,k}.$$

2. Développement par rapport à la j^e colonne :

$$\det A = \sum_{k=1}^{n} (-1)^{k+j} a_{k,j} \Delta_{k,j}.$$

Remarque 7.1.7.

Le résultat **7.1.2** est le plus important, car il permet de calculer des déterminants par pivot de Gauss, ce qui est la méthode la plus efficace. Pour plus d'efficacité, on combinera pivot de Gauss et développement : grâce à un pivot, on annule tous les coefficients d'une ligne ou d'une colonne sauf un (deux au pire), puis on développe par rapport à cette ligne ou cette colonne. On obtient alors un déterminant dont la dimension a diminué de un. Puis on réitère jusqu'à obtenir une matrice 2×2 , ou une matrice triangulaire.

Tout développement par rapport à une ligne ou une colonne contenant deux ou plus coefficients non nuls est tout à fait inefficace et devra être évité. **Proposition 7.1.8** (Propriétés du déterminant d'une matrice).

Soit $A, B \in \mathcal{M}_n(\mathbb{K})$.

- 1. $\det\left(A^{\top}\right) = \det A$;
- 2. $det(AB) = det A \times det B$;
- 3. A est inversible si et seulement si $\det A \neq 0$, et dans ce cas, $\det (A^{-1}) = \frac{1}{\det A}$.

Remarque 7.1.9.

On définit aussi le déterminant d'un endomorphisme (resp. d'une famille de vecteurs) comme étant le déterminant d'une matrice représentant cet endomorphisme (resp. cette famille de vecteurs). Il est bien indépendant du choix de la base.

7.2 Déterminant « par blocs »

Proposition 7.2.1 (Déterminant par blocs).

Soit
$$M = \begin{pmatrix} A & B \\ 0 & \mathbf{I}_p \end{pmatrix}$$
 une matrice par blocs de $\mathcal{M}_{n+p}(\mathbb{K})$, avec $A \in \mathcal{M}_n(\mathbb{K})$ et $B \in \mathcal{M}_{n,p}(\mathbb{K})$. Alors

$$\det M = \det A$$
.

Démonstration.

Considérons l'application $f: (\mathcal{M}_{n,1}(\mathbb{K}))^n \to \mathbb{K}$ telle que $f(x_1,\ldots,x_n) = \det M$, avec $M = \begin{pmatrix} A & B \\ 0_n & \mathrm{Id}_p \end{pmatrix}$ et B fixée, où A est la matrice de (x_1,\ldots,x_n) dans la base canonique. Avec un léger abus de notation, on notera ceci f(A). Cette application est n-linéaire alternée, donc il existe $k \in \mathbb{K}$ telle que pour tout $A \in \mathcal{M}_n(\mathbb{K})$, $f(A) = k \det A$. Or pour $A = \mathrm{I}_p$, M est une matrice triangulaire de déterminant 1, donc k = 1, et le résultat est démontré. \square

Remarque 7.2.2.

Nous avons bien sûr de la même manière $\det\begin{pmatrix} \mathbf{I}_n & B \\ 0 & C \end{pmatrix} = \det C.$

Théorème 7.2.3.

[Déterminant d'une matrice triangulaire par blocs] Soit $M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ une matrice triangulaire par blocs. Alors,

$$\det M = \det A \times \det C$$
.

Démonstration.

Il suffit d'écrire

$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = \begin{pmatrix} \mathbf{I}_n & 0 \\ 0 & C \end{pmatrix} \begin{pmatrix} A & B \\ 0 & \mathbf{I}_p \end{pmatrix}.$$

Remarque 7.2.4.

Le résultat s'adapte évidemment dans le cas des matrices triangulaire inférieures par blocs, ainsi que dans le cas de matrices triangulaires par blocs avec plus de deux blocs sur la diagonale.

La formule ne se généralise pas aux matrices par blocs non triangulaires. Ainsi, $|0 \ 0 \ 1 \ 0|$ $\begin{vmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \neq \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} \cdot \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} - \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} \cdot \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix}.$

7.3 Déterminant de Vandermonde

Proposition 7.3.1 (Déterminant de Vandermonde).

Soit $n \in \mathbb{N}^*$ et x_0, \dots, x_n n+1 scalaires. On définit le déterminant de Vandermonde par :

$$V(x_0, x_1, \dots, x_n) = \begin{vmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{vmatrix}.$$

Alors,

$$V(x_0,\ldots,x_n) = \prod_{0 \le i < j \le n} (x_j - x_i).$$

Démonstration.

Ce déterminant est un classique parmi les classiques. Il est possible de le calculer directement par pivot de Gauss. Ici, on le démontre par récurrence.

Les cas n = 0 ou n = 1 sont évidents : $V(x_0) = 1$ et $V(x_0, x_1) = x_1 - x_0.$

Soit $n \in \mathbb{N}$ tel que le résultat soit vrai au rang n. Considérons le polynôme $V(x_0, \ldots, x_n, X)$. En le développant par rapport à la dernière ligne, on voit qu'il est de degré au plus n+1, et que le terme en X^{n+1} a pour coefficient $V(x_0,\ldots,x_n)$. Or il est aisé de voir qu'il a pour racines x_0, \ldots, x_n . Il existe donc un scalaire $k \in \mathbb{K}$ tel que

$$V(x_0,...,x_n,X) = k \prod_{i=0}^{n} (X - x_i).$$

Ce scalaire k est le coefficient dominant $V(x_0,\ldots,x_n,X)$, c'est donc en développant sur la dernière ligne : $V(x_0, \ldots, x_n)$. Ainsi, en évaluant ce polynôme en x_{n+1} , il vient :

$$V(x_0, ..., x_n, x_{n+1}) = V(x_0, ..., x_n) \prod_{i=0}^{n} (x_{n+1} - x_i)$$

ce qui, en utilisant l'hypothèse de récurrence, est bien le résultat recherché.

8 Polynômes d'endomorphismes

Dans toute cette section, E est un \mathbb{K} -ev, $P,Q \in$ $\mathbb{K}[X], u, v \in \mathcal{L}(E), n \in \mathbb{N} \text{ et } A, B \in \mathcal{M}_n(\mathbb{K}).$ Le point important de cette section est celui-ci : puisque $u \in \mathcal{L}(E)$, on peut composer u avec elle-même, et donc définir u^k pour tout $k \in \mathbb{N}$ (avec la convention $u^0 = \mathrm{Id}_E$). Comme $\mathscr{L}(E)$ est stable par combinaisons linéaires, alors toute combinaison linéaire de puissances de u est encore un endomorphisme de E.

Le même raisonnement s'applique aux matrices de $\mathcal{M}_n(\mathbb{K})$.

Définition 8.0.1 (Polynôme d'endomorphisme).

Soit
$$P \in \mathbb{K}[X]$$
, que l'on écrit $\sum_{k=0}^{n} a_k X^k$

Soit $P \in \mathbb{K}[X]$, que l'on écrit $\sum_{k=0}^{n} a_k X^k$. On note alors $P(u) = \sum_{k=0}^{n} a_k u^k$. C'est un endomorphimse, et l'on dit que c'est un polynôme de l'endomorphimse u.

L'ensemble des polynômes en u est noté $\mathbb{K}[u]$.

De même, si $A \in \mathcal{M}_n(\mathbb{K})$, on note $P(A) = \sum_{k=0}^n a_k A^k$, qui est une matrice de $\mathcal{M}_n(\mathbb{K})$. C'est un polynôme de la matrice A. L'ensemble des polynômes en A est noté $\mathbb{K}[A]$.

Remarque 8.0.2.

Attention aux termes constants : si P = X + 1, $P(u) = u + \mathrm{Id}_E$, et $P(A) = A + \mathrm{I}_n$. Les expressions u + 1 et A + 1 ne sont pas homogènes et n'ont pas de sens.

Proposition 8.0.3.

Soit $\lambda, \mu \in \mathbb{K}$. Alors :

1.
$$(\lambda P + \mu Q)(u) = \lambda P(u) + \mu Q(u)$$
;

2.
$$(P \times Q)(u) = P(u) \circ Q(u)$$
;

3. Comme PQ = QP, les polynômes de l'endomorphisme u commutent entre eux.

Démonstration. 1. Simple écriture de la définition.

2. On procède pr étapes :

• Si
$$P=X^n$$
 et $Q=X^m$, alors $(PQ)(u)=(X^{n+m})(u)=u^{n+m}$ et $P(u)\circ Q(u)=u^n\circ u^m=u^{n+m}$.

• Si
$$P = X^n$$
 et $Q = \sum_{k=0}^m b_k X^k$, alors $PQ =$

$$\sum_{k=0}^{m} b_k X^{k+n} \text{ donc}$$

$$(PQ)(u) = \sum_{k=0}^{m} b_k u^{n+k}$$

$$= \sum_{k=0}^{m} b_k (u^n \circ u^k)$$

$$= u^n \circ \left(\sum_{k=0}^{m} b_k u^k\right)$$

$$= P(u) \circ Q(u).$$

• Si
$$P = \sum_{k=0}^{n} a_k X^k$$
:

$$\begin{split} (PQ)(u) &= \sum_{k=0}^n a_k \left[(X^k Q)(u) \right] \\ &= \sum_{k=0}^n a_k \left[u^k \circ Q(u) \right] \text{ avec le point précédent} \\ &= \left[\sum_{k=0}^n a_k u^k \right] \circ Q(u) \text{ par linéarité} \\ &= P(u) \circ Q(u). \end{split}$$

$$P(u) \circ Q(u) = (PQ)(u) = (QP(u) = Q(u) \circ P(u).$$

Remarque 8.0.4.

Les polynômes PQ et $P \circ Q$ n'ont rien à voir. De même, ne confondez pas $P(u) \circ Q(u) = (PQ)(u)$, et $(P \circ Q)(u) = P(Q(u))$.

Exercice 8.0.5.

Soit $x \in E$. Parmi les expressions suivantes, lesquelles ont un sens ?

1.
$$u^2(x)$$
 6. $P(Q(u))(x)$

2.
$$(u(x))^2$$
 7. $P(u) \circ Q(u)(x)$

3.
$$P(u(x))$$
 8. $P(u)(Q(u)(x))$

4.
$$(P(u))(x)$$
 9. $(PQ)(u)(x)$

5.
$$(P \circ u)(x)$$
 10. $P(u)(x)Q(u)(x)$.

Proposition 8.0.6.

Si u et v commutent, alors P(u) et Q(v) aussi. De plus, Ker P(u) et Im P(u) sont stables par Q(v).

Démonstration.

Avec le premier point, le second est direct grâce à **6.1.4**. La démonstration du premier point est pénible, donnons-en les étapes :

- on montre par récurrence sur n que pour tout $n \in \mathbb{N}$, $u \circ v^n = v^n \circ u$;
- on en déduit par inversion des rôles que pour tout $n, m \in \mathbb{N}, u^m \circ v^n = v^n \circ u^m$, ce qui signifie que $(X^m)(u)$ et $(X^n)(v)$ commutent ;
- par linéarité on en déduit que P(u) et v^n commutent ;
- par inversion des rôles on en déduit que P(u) et Q(v) commutent.

Proposition 8.0.7 (Matrice d'un polynôme d'endomorphisme).

Soit \mathscr{B} une base de E. Alors $\operatorname{Mat}_{\mathscr{B}}(P(u)) = P(\operatorname{Mat}_{\mathscr{B}}(u))$.

Démonstration.

C'est une simple conséquence des théorèmes ?? et ??. Ils impliquent que pour tout $k \in \mathbb{N}$, $\operatorname{Mat}_{\mathscr{B}}(u^k) = (\operatorname{Mat}_{\mathscr{B}}(u))^k$, et ensuite par linéarité $\operatorname{Mat}_{\mathscr{B}}\left(\sum_{k=0}^n a_k u^k\right) =$

$$\sum_{k=0}^{n} a_k \operatorname{Mat}_{\mathscr{B}}(u^k) = \sum_{k=0}^{n} a_k (\operatorname{Mat}_{\mathscr{B}}(u))^k.$$

Cela permet de montrer que les polynômes de matrices vérifient les mêmes propriétés que les polynômes d'endomorphisme : les propositions **8.0.3** et **8.0.6** sont valables en remplaçant u et v par deux matrices A et B de $\mathcal{M}_n(\mathbb{K})$.

Corollaire 8.0.8.

Si deux matrices A et B sont semblables, alors P(A) et P(B) aussi.

Démonstration.

Soit $A, M, B \in \mathcal{M}_n(\mathbb{K})$ telles que M est inversible et $A = MBM^{-1}$. Alors pour tout $k \in \mathbb{N}$, $A^k = MB^kM^{-1}$. Ainsi, par une simple factorisation, pour tout

$$a_0, \dots, a_n \in \mathbb{K}, \sum_{k=0}^n a_k A^k = M \left(\sum_{k=0}^n a_k A^k \right) M^{-1}, \text{ donc}$$

 $P(A) = MP(B)M^{-1}.$

Définition 8.0.9 (Polynôme annulateur). On dit que P annule ou est un polynôme annulateur de u (resp. A) si P(u) = 0 (resp. P(A) = 0).

Exercice 8.0.10.

Soit p un projecteur et s une symétrie. Trouvez des polynômes annulateurs de p et s.

Exercice 8.0.11.

On considère la matrice $A = \begin{pmatrix} -2 & -1 & 2 \\ 1 & -4 & 2 \\ 1 & -1 & -1 \end{pmatrix}$.

- 1. Déterminer un polynôme annulateur de A de degré 2
- 2. Montrer que A est inversible, et déterminer A^{-1} .
- 3. Calculer, pour tout $n \in \mathbb{N}, A^n$.

Proposition 8.0.12.

En dimension finie, tout endomorphisme possède un polynôme annulateur non nul.

De même, toute matrice possède un polynôme annulateur non nul.

Démonstration.

Montrons-le pour un endomorphimse $u \in \mathcal{L}(E)$ avec $\dim E = n$, la démonstration étant similaire pour une matrice.

Nous savons que $\dim \mathcal{L}(E) = n^2$. Or la famille $(\mathrm{Id}_E, u, u^2, \dots, u^{n^2})$ est de cardinal $n^2 + 1$ donc elle est liée. Ainsi il existe a_0, \dots, a_{n^2} non tout nuls tels que

$$\sum_{k=0}^{n^2} a_k u^k = 0.$$

9 Interpolation de Lagrange

9.1 Définition du problème

Dans cette partie, on considère un entier n et $(x_0, y_0), \ldots, (x_n, y_n)$ des couples d'éléments de \mathbb{K} .

On aimerait savoir s'il existe un polynôme P vérifiant

$$\forall, i \in [0, n] \quad P(x_i) = y_i, \tag{2}$$

dit autrement, on cherche s'il existe une fonction polynomiale dont le graphe passe par tous les points (x_i, y_i) pour $i \in [0, n]$.

Il est bien évident que s'il existe i et j distincts tels que $x_i = x_j$ et $y_i = y_j$, on peut supprimer le couple (x_j, y_j) de la liste des couples considérés sans changer le problème.

Il est évident également que s'il existe i et j distincts tels que $x_i = x_j$ et $y_i \neq y_j$, il n'existe pas de solution.

C'est pourquoi, par la suite, on suppose que x_0, \ldots, x_n sont deux à deux distincts.

9.2 Polynômes de Lagrange

Définition 9.2.1 (Base de Lagrange).

On appelle base de Lagrange associée aux points x_0, \ldots, x_n le (n+1)-uplet (L_0, \ldots, L_n) vérifiant pour tout $i \in [0, n]$:

$$L_i = \frac{1}{\alpha_i} \prod_{\substack{j \in [0, n] \\ j \neq i}} (X - x_j)$$

οù

$$\alpha_i = \prod_{\substack{j \in [0,n]\\ i \neq i}} (x_i - x_j).$$

Proposition 9.2.2.

Pour tout $(i,j) \in [0,n]^2$, on a $L_i(x_i) = 1$ et $L_i(x_j) = 0$ si $j \neq i$.

Autrement dit, dans tous les cas, on a

$$L_i(x_j) = \delta_{i,j}$$
.

Corollaire 9.2.3 (Expression d'un polynôme dans la base de Lagrange).

Soit $(\lambda_0, \dots, \lambda_n) \in \mathbb{K}^{n+1}$. Alors, en posant

$$P = \sum_{i=0}^{n} \lambda_i L_i,$$

on a pour tout $i \in [0, n]$:

$$P(x_i) = \lambda_i$$
.

Théorème 9.2.4.

(Résolution du problème de Lagrange dans $\mathbb{K}_n[X]$).

Il existe un unique polynôme P de degré au plus n vérifiant l'équation (2). Il s'agit du polynôme

$$\sum_{i=0}^{n} y_i L_i.$$

Démonstration. Unicité sous réserve d'existence Soit

P et Q deux polynômes de degré au plus n vérifiant la propriété demandée. Alors P et Q coïncident en n+1 points distincts et sont de degré au plus n donc P et Q sont égaux.

П

Existence Le polynôme donné dans l'énoncé vérifie évidemment l'équation (2). Par ailleurs, il s'agit d'une combinaison linéaire de polynômes qui sont tous de degré n. Il est donc de degré au plus n.

Exercice 9.2.5.

Montrer que pour tout $P \in \mathbb{K}_n[X]$, il existe un existe un unique $(\lambda_0, \dots, \lambda_n) \in \mathbb{K}^{n+1}$ tel que $P = \sum_{i=0}^n \lambda_i L_i$.

Exercice 9.2.6.

Déterminer l'unique polynôme P de degré au plus 3 vérifiant P(-1) = -9, P(0) = -1, P(1) = 5 et P(2) = 21.

Corollaire 9.2.7.

(Résolution du problème de Lagrange dans $\mathbb{K}[X]$). L'ensemble des polynômes vérifiant l'équation (2) est

$$\{P \times D + P_0 \mid P \in \mathbb{K}[X]\}$$

οù

$$D = \prod_{i=0}^{n} (X - x_i),$$
$$P_0 = \sum_{i=0}^{n} y_i L_i.$$

Démonstration.

Remarquons tout d'abord que pour tout $i \in [0, n]$, on a $D(x_i) = 0$.

Analyse Soit Q un polynôme vérifiant l'équation (2). En effectuant la division euclidienne de Q par D, on peut écrire Q sous la forme $P \times D + R$ où $P \in \mathbb{K}[X]$ et $R \in \mathbb{K}[X]$ avec deg R < n + 1. On a donc deg $R \le n$. De plus, pour tout $i \in [0, n]$, on a $R(x_i) = Q(x_i) - P(x_i)D(x_i) = y_i - P(x_i) \times 0 = y_i$. Donc R est nécessairement le polynôme P_0 et P s'écrit sous la forme $P \times D + P_0$.

Synthèse Réciproquement, soit P un polynôme. Posons $Q = P \times D + P_0$. Alors pour tout $i \in [0, n]$, on a $Q(x_i) = P(x_i) \times 0 + P_0(x_i) = y_i$. Donc Q vérifie l'équation (2).

Conclusion L'ensemble des polynômes vérifiant l'équation (2) est

$$\{ P \times D + P_0 \mid P \in \mathbb{K}[X] \}.$$

Remarque 9.2.8.

En exprimant l'équation (2) sous la forme

$$(P(x_0), \dots, P(x_n)) = (y_0, \dots, y_n),$$

cet ensemble de solutions est encore un ensemble de la forme solution particulière plus l'ensemble des solutions de l'équation homogène associée.

9.3 Lien avec le déterminant de Vandermonde

L'existence et l'unicité d'une solution de degré inférieur ou égal à n au problème posé aurait aussi pu être vue de la manière suivante :

Soit
$$P = \sum_{k=0}^{n} a_k X^k$$
.

L'équation $P(x_i) = y_i$ s'écrit alors $\sum_{k=0}^{n} a_k x_i^k = y_i$.

On peut la mettre sous forme matricielle, ce qui donne

$$\begin{pmatrix} 1 & x_i & x_i^2 & \cdots & x_i^n \end{pmatrix} \times \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = y_i.$$

Ainsi P est solution si et seulement si les a_k sont solution de l'équation matricielle suivante :

$$M \times \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}$$

avec
$$M = \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix}$$
.

Mais $\det M$ est un déterminant de Vandermonde, et il est non nul car les x_i sont distincts. La matrice M est donc inversible,

et donc
$$\begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = M^{-1} \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}$$
 est l'unique solution.

Cette méthode a l'inconvénient de ne pas donner d'expression exacte exploitable de la solution, car on ne sait pas calculer M^{-1} de manière exacte. Elle se prêt par contre a des calculs approchés.

La base de Lagrange n'est pas idéale non plus : si on change un des x_i , ou si l'on rajoute un point, tous les polynômes de Lagrange changent.

Il existe aussi la base de Newton, qui contourne ce problème. Ses vecteurs sont les

$$\left(\prod_{i=1}^{k} (x - x_i)\right)_{k \in \llbracket 1, n \rrbracket}.$$

Exercice 9.3.1.

Calculer le polynôme d'interpolation de Lagrange P vérifiant P(0) = 2, P(1) = -1, P(2) = 3 et P(-1) = -2, sans utiliser les polynômes de Lagrange. On cherchera une solution sous la forme a+bX+cX(X-1)+dX(X-1)(X-2)+eX(X-1)(X-2)(X+1). Cette méthode est appelée $m\acute{e}thode$ d'interpolation de Newton.

10 Exercices classiques

10.1 Image d'une base par un endomorphisme

Soit F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E de dimension finie.

- 1. Déterminer une condition nécessaire et suffisante pour qu'il existe un endomorphisme utel que Ker(u) = F et Im(u) = G.
- 2. Construire un tel endomorphisme u avec $E = \mathbb{R}^3$, $F = \{ (x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0 \}$ dans \mathbb{R}^3 et $G = \{ \lambda(2, -1, -1) \mid \lambda \in \mathbb{R} \}$.

10.2 Expression et éléments caractéristiques d'un projecteur ou d'une symétrie

1. Donner les éléments caractéristiques de l'application f définie sur \mathbb{R}^3 par :

$$f: \left\{ \begin{array}{cccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ \begin{pmatrix} x \\ y \\ z \end{pmatrix} & \longmapsto & \frac{1}{4} \begin{pmatrix} 3x & - & y & + & 2z \\ -x & + & 3y & + & 2z \\ x & + & y & + & 2z \end{pmatrix} \right.$$

2. Donner l'expression de la symétrie par rapport à Vect(1,0,-1) et parallèlement à Vect((1,2,0),(1,1,-1)).

10.3 Une caractérisation des homothéties

Soit $f \in \mathcal{L}(E)$, où E est un \mathbb{K} -espace vectoriel.

1. Déterminer l'ensemble des endomorphismes de E laissant stables tous les sev de dimension 1.

Cette question est archi-classique, et n'est pas toujours présentée sous cette forme. On pourra se demander le lien entre

$$\forall x \in E, \exists \lambda \in \mathbb{K}, f(x) = \lambda x$$

et

$$\exists \lambda \in \mathbb{K}, \forall x \in E, f(x) = \lambda x.$$

- 2. Déterminer l'ensemble des endomorphismes de E laissant stables tous les sev de dimension 2.
- 3. Si E est de dimension finie, en déduire le "centre" de $\mathcal{L}(E)$, c'est-à-dire l'ensemble endomorphismes qui commutent avec tous les endomorphismes (on pourra remarquer qu'un tel endomorphisme commute nécessairement avec les projections sur toutes les droites vectorielles).
- 4. Quel est le centre de $\mathcal{M}_n(\mathbb{K})$?
- 5. Retrouver le résultat précédent en utilisant la base canonique de $\mathcal{M}_n(\mathbb{K})$.

10.4 « Inégalité triangulaire » du rang

Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions finies et $u, v \in \mathcal{L}(E, F)$.

- 1. Montrer que $rg(u+v) \leq rg(u) + rg(v)$.
- 2. En déduire que $|rg(u) rg(v)| \le rg(u+v)$.
- 3. On suppose que E = F, et dim E = n. Montrer l'encadrement :

$$rg(f)+rg(g)-n \le rg(f \circ g) \le inf(rg(f), rg(g)).$$

10.5 Noyaux itérés

Soit f un endomorphisme d'un espace de dimension finie n non nulle. On définit, pour tout entier naturel $p\,$:

$$F_p = \operatorname{Ker}(f^p)$$
 et $G_p = \operatorname{Im}(f^p)$

(f^p désigne l'itérée d'ordre p de $f: f^0 = \mathrm{Id}$ et, $f^{p+1} = f \circ f^p$).

- 1. Démontrer que, des deux suites de s.e.v. (F_p) et (G_p) , l'une est croissante et l'autre décroissante (pour l'inclusion).
- 2. Démontrer qu'il existe un plus petit entier naturel r tel que $F_r = F_{r+1}$, et démontrer qu'alors, pour tout entier naturel p supérieur ou égal à r, $F_p = F_{p+1}$.
- 3. Démontrer qu'il existe un plus petit entier naturel s tel que $G_s = G_{s+1}$, et démontrer qu'alors, pour tout entier naturel p supérieur ou égal à s, $G_p = G_{p+1}$. Y-a-t-il un lien entre r et s?
- 4. Démontrer que G_s et F_r sont supplémentaires dans E.
- 5. Soit H_{k+1} un supplémentaire dans F_{k+2} de F_{k+1} . Démontrer que la restriction de f à H_{k+1} est injective, que $f(H_{k+1})$ est un sousespace vectoriel de F_{k+1} et qu'il est en somme directe avec F_k . En déduire que la suite (α_k) , où $\alpha_k = \dim F_{k+1} \dim F_k$, est décroissante.

10.6 Endomorphismes nilpotents

Soit E un \mathbb{K} -espace vectoriel de dimension $n \ge 1$. On dit que $f \in \mathcal{L}(E)$ est nilpotent lorsqu'il existe $k \ge 1$ tel que $f^k = 0$.

1. Montrer qu'il existe un unique entier $p \in \mathbb{N}^*$ tel que $f^{p-1} \neq 0$ et $f^p = 0$. Cet entier est appelé indice de nilpotence de f.

Dans cet énoncé, on considère $f \in \mathcal{L}(E)$ nilpotent d'indice p.

- 2. Montrer que $p \leq n$ (on pourra appliquer les deux premières questions de l'exercice sur les noyaux itérés).
- 3. Montrer qu'il existe $x \in E$ tel que $(x, f(x), \dots, f^{p-1}(x))$ est une famille libre.
- 4. Montrer quil existe une base dans laquelle la matrice de f est triangulaire supérieure à diagonale nulle.
- 5. On suppose p = n, déterminer rg(f).
- 6. Donner un exemple d'espace vectoriel E de dimension n et d'endomorphisme $f \in \mathcal{L}(E)$ nilpotent d'indice n.

10.7 Endomorphismes de rang 1

Soit $A \in \mathcal{M}_n(\mathbb{C})$ de rang 1.

1. Montrer qu'il existe $C \in \mathcal{M}_{n,1}(\mathbb{C})$ et $L \in \mathcal{M}_{1,n}(\mathbb{C})$ vérifiant A = CL.

- 2. Montrer qu'il existe $\alpha \in \mathbb{K}$ tel que pour tout entier naturel non nul n, $A^n = \alpha^{n-1}A$.
- 3. Montrer que $A^2 = \operatorname{tr}(A)A$.
- 4. Déterminer une condition nécessaire et suffisante pour que $A + I_n$ soit inversible. Le cas échéant, déterminer $(A + I_n)^{-1}$.

10.8 Matrice à diagonale dominante

Soit $n \in \mathbb{N}^*$.

Soit A une matrice de $\mathcal{M}_n(\mathbb{C})$ à coefficients diagonaux dominants, c'est-à-dire telle que :

$$\forall i \in [1, n] \quad |a_{i,i}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{i,j}|.$$

Montrer que A est inversible.

10.9 Une caractérisation de la trace

Trouver toutes les formes linéaires f sur $\mathcal{M}_n(\mathbb{K})$ vérifiant :

$$\forall A, B \in \mathscr{M}_n(\mathbb{K}), \ f(AB) = f(BA).$$

Indication : pour deux matrices élémentaires $E_{i,j}$ et $E_{k,\ell}$, calculer le produit $E_{i,j}E_{k,\ell}$.