Capítulo III

Autômatos Finitos e Conjuntos Regulares

Geradores X Reconhecedores

Gramáticas Tipo 0 → Máquinas de Turing
G. Sensíveis ao Contexto → Aut. Lim. Lineares
G. Livres de Contexto → Autômatos de Pilha
Gramáticas Regulares → Autômatos Finitos

Autômatos Finitos

- São reconhecedores de linguagens regulares
- Tipos de Autômatos Finitos:
 - Autômato Finito Determinístico (AFD)
 - Autômato Finito Não Determinístico(AFND)

III.1 – Autômatos Finitos Determinísticos (AFD)

Definição formal: $\mathbf{M} = (\mathbf{K}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \mathbf{q}_0, \mathbf{F})$, onde: $\mathbf{K} \rightarrow \acute{\mathbf{E}}$ um conjunto finito não vazio de **Estados**; $\boldsymbol{\Sigma} \rightarrow \acute{\mathbf{E}}$ um **Alfabeto**, finito, de entrada; $\boldsymbol{\delta} \rightarrow \mathbf{Função}$ de **Mapeamento** (ou de transição) definida em: $\mathbf{K} \times \boldsymbol{\Sigma} \rightarrow \mathbf{K}$ $\mathbf{q}_0 \rightarrow \in \mathbf{K}$, $\acute{\mathbf{e}}$ o **Estado Inicial** $\mathbf{F} \rightarrow \subseteq \mathbf{K}$, $\acute{\mathbf{e}}$ o conjunto de **Estados Finais** $\mathbf{Exemplo}$: Seja $\mathbf{M} = (\mathbf{K}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \mathbf{q}_0, \mathbf{F})$, onde: $\mathbf{K} = \{\mathbf{q}_0, \mathbf{q}_1\}$ $\boldsymbol{\Sigma} = \{\mathbf{a}, \mathbf{b}\}$ $\boldsymbol{\delta} = \{\delta(\mathbf{q}_0, \mathbf{a}) = \mathbf{q}_0, \delta(\mathbf{q}_0, \mathbf{b}) = \mathbf{q}_1, \delta(\mathbf{q}_1, \mathbf{b}) = \mathbf{q}_1, \delta(\mathbf{q}_1, \mathbf{a}) = -\}$ $\mathbf{q}_0 = \mathbf{q}_0$

- Que sentenças são aceitas (reconhecidas) por M?
- Qual a Linguagem aceita (reconhecida) por M?

Representações de AF

 $\mathbf{F} = \{\mathbf{q}_1\}$

- Alem da representação formal, um AF pode também ser representado por:
 - o Diagrama de Transição
 - o Tabela de Transições

Sentenças Aceitas (reconhecidas) por um A.F. M:

$$\delta(q_0, x) = p \mid p \in F$$

Linguagem Aceita por M:

$$T(M) = \{ x \mid \delta(q_0, x) = p \land p \in F \}$$

III.2 - A.F.N.D.

Definição: $M = (K, \Sigma, \delta, qo, F)$, onde:

 $K, \Sigma, q_0, F \rightarrow$ mesma definição dos A.F.D.

$$\delta \rightarrow K \times \Sigma = \rho(K)$$
, onde $\rho(K) \subseteq K$

	Vantagem	Desvantagem
AFD	Implementação Trivial / eficiência	Representação menos natural de algumas L.R.
AFND		Implementação complexa / ineficiência

Exemplos: Construa um AFND M |

a)
$$T(M) = \{ (a, b) *abb \}$$

b)
$$T(M) = \{ (0, 1)^* (00 | 11) (0, 1)^* \}$$

c) Construa AFD \equiv AFND dos itens a) e b)

III.3 – Transformação de AFND para AFD

<u>Teorema 3.1</u>: "Se \underline{L} é um conjunto aceito por um A.F.N.D., então \exists um A.F.D. que aceita \underline{L} "

Para provar o Teorema 3.1, precisamos:

- 1 Construir um AFD M' a partir de um dado AFND M
- 2 Mostrar que $M' \equiv M$

Prova:

1 – Dado um AFND M = (K, Σ , δ , qo, F), construir um A.F.D. M' = (K', Σ , δ ', qo', F') como segue:

$$1 - K' = {\rho(k)}$$

$$2 - qo' = [qo]$$

$$3 - F' = \{ \rho(K) \mid \rho(K) \cap F \neq \emptyset \}$$

4 – Para cada ρ(K) ⊂ K'faça δ'(ρ(K),a) = ρ'(K), onde $ρ'(K) = {p \mid para algum q ∈ ρ(K), δ(q, a) = p};$

2 – Para mostrar que $M' \equiv M$, basta mostrar que T(M') = T(M).

Exemplo: Seja M um A.F.N.D. definido por:

δ	a	b
→qo	qo,q1	qo
q1		q2
q2		q3
*q3		

III.4 - Relação entre GR e AF

Teorema 3.2: "Se
$$G = (Vn, V_T, P, S)$$
 é uma $G.R.$, então \exists um $A.F.$ $M = (K, \Sigma, \delta, qo, F) | T(M) = L(G)$ ".

Prova:
$$a - Mostrar que M existe$$

 $b - Mostrar que T(M) = L(G)$

a) Defina M, como segue:

$$1 - K = Vn \cup \{A\}$$
, onde A é um símbolo novo

$$2 - \Sigma = V_T$$

$$3 - qo = S$$

$$4 - F = \{A, S\} \text{ se } S \rightarrow \epsilon \in P$$

 $\{A\} \text{ se } S \rightarrow \epsilon \notin P$

5 – Construa δ de acordo com as regras a, b e c.

a) Se B
$$\rightarrow$$
 a \in P \Rightarrow δ (B, a) = A

b) Se B
$$\rightarrow$$
 a C \in P \Rightarrow δ (B, a) = C

- c) Para todo $a \in VT$, $\delta(A, a) = -$ (indefinido)
- **b)** Para mostrar que T(M)=L(G), deve-se mostrar:

$$1 - L(G) \subseteq T(M)$$

$$2 - T(M) \subseteq L(G)$$

Exemplos:

1)
$$S \rightarrow a S \mid b B$$

 $B \rightarrow b B \mid c$
2) $S \rightarrow b A \mid a B \mid b \mid \epsilon$
 $A \rightarrow b A \mid a B \mid b$
 $B \rightarrow b B \mid a C$
 $C \rightarrow b C \mid a A \mid a$

Teorema 3.3: "Se M =
$$(K, \Sigma, \delta, qo, F)$$
 é um A. F., então \exists uma G.R. G = $(Vn, Vt, P, S) \mid L(G) = T(M)$ "

a) Seja
$$M = (K, \Sigma, \delta, qo, F)$$
 um A.F.D..
Construa uma G.R. $G=(Vn, V_T, P, S)$, como segue:

$$1 - Vn = K$$

$$2 - Vt = \Sigma$$

$$3 - S = q_0$$

4 – Defina P, como segue:

- a) Se $\delta(B, a) = C$ então adicione $B \rightarrow aC$ em P
- b) Se $\delta(B, a) = C \wedge C \in F$, adicione $B \rightarrow a$ em P
- c) Se qo ∈ F,
 então ε ∈ T(M).
 Neste caso, L(G) = T(M) {ε}, portanto,
 construa uma GR G₁ | L(G₁) = L(G) U {ε}
 Senão ε ∉ T(M) e L(G) = T(M)

b) Para mostrar que
$$L(G) = T(M)$$
, devemos mostrar que:

$$1 - T(M) \subseteq L(G)$$

$$2 - L(G) \subseteq T(M)$$

Exemplos:

δ	a	b
*→S	A	В
A	S	C
В	C	S
C	В	A

δ	a	b	b
→S	S	B	-
В	-	В	A
*A	-	-	-

III.5 - Minimização de Autômatos Finitos

<u>Definição</u>: Um AFD M = (K, Σ , δ , qo, F) é <u>mínimo</u> se:

- 1 Não possui estados inacessíveis (inalcançáveis);
- 2 Não possui estados mortos;
- 3 Não possui estados <u>equivalentes</u>.

Algoritmo para construção do A.F. Mínimo

Entrada: Um A.F.D. $M = (K, \Sigma, \delta, qo, F)$; Saída: Um AFD Mínimo $M' = (K', \Sigma, \delta', qo', F') \mid M' \equiv M$; Método:

- 1 Elimine os estados Inacessíveis;
- 2 Elimine os estados Mortos;
- 3 Construa todas as CE de M como segue:
 - 3.1 Crie, um estado φ para representar as indefinições;
 - 3.2 Divida K em duas CE : F e K-F;
 - 3.3 Aplique a lei de formação de CE, até que nenhuma nova CE seja formada : q₁ ≡ q₂ ⇔ δ(q₁, a) ≡ δ(q₂, a), p/todo a ∈ Σ
- 4 Construa M', como segue:
 - a) $K' = \{ CE \}$
 - b) qo' = CE que contiver qo;
 - c) $F' = \{ [q] | \exists p \in F \text{ em } [q] \}$
 - d) $\delta' = \delta'([p], a) = [q] \Leftrightarrow \delta(p_1, a) = q_1 \text{ está em}$ $M \land p_1 \in [p] \land q_1 \in [q]$

Exemplo: Minimize o seguinte A.F.D.

δ	a	b
$* \rightarrow A$	G	В
B	${f F}$	${f E}$
\mathbf{C}	\mathbf{C}	\mathbf{G}
* D	A	H
\mathbf{E}	${f E}$	A
\mathbf{F}	B	\mathbf{C}
* G	G	\mathbf{F}
H	\mathbf{H}	D

Exercícios:

1)			
δ	a	b	c
* > S	A	B,F	S,F
A	S,F	C	A
В	A	-	B,S,F
C	S,F	-	A,C
*T			

2)		
δ	0	1
→s	A,D	E
A	A , B	\mathbf{C} , \mathbf{E}
В	B	-
C	A , B	-
D	B,D	C
*E	E	E

3)		
δ	a	b
\rightarrow q0	q1	q2
q1	q3	_
q2	-	q4
q2 *q3 *q4	q3	q3
*q4	q4	q4

4)			
δ	a	b	c
* → S	A,C	A,D	B, C
*A	A	A	В
*B	A	A	-
*C	C	D	C
*D	C	-	C

III.6 – Conjuntos e Expressões Regulares

Conjuntos Regulares (C.R.)

```
 1-(* definição matemática (primitiva)*)  Seja \Sigma um alfabeto qualquer. Definimos um C.R. sobre \Sigma, como segue: a-\varphi é um C.R. sobre \Sigma; b-\{\epsilon\} é um C.R. sobre \Sigma; c-\{a\}, para todo a \in \Sigma, é um C.R. sobre \Sigma; d-Se P e Q são C.R. sobre \Sigma, então: 1-P \cup Q (união), 2-P.Q (ou PQ) (concatenação), 3-P* (fechamento). Também são C.R. sobre \Sigma; e-Nada mais é C.R.
```

- 2 Linguagens geradas por Gramáticas Regulares.
- 3 Linguagens reconhecidas por Autômatos Finitos.
- 4 Linguagens denotados por Expressões Regulares.

Expressões Regulares (E.R.)

Definição:

```
1 - φ é uma E.R. e denota o C.R. φ
2 - ε é uma E.R. e denota o C.R. {ε}
3 - a ∈ Σ, é uma E.R. e denota o C.R. { a }
4 - Se p e q são E.R. denotando P e Q, então:
a - (p | q) é uma E.R. denotando P ∪ Q
b - (p.q) ou (pq) é uma E.R. denotando PQ
c - (p)* é uma E.R. denotando P*
```

5 – Nada mais é E.R..

Observações:

```
1 – ordem de precedência: 1) * 2) . 3) | 2 – abreviaturas usuais:
```

$$\mathbf{p}^+ = \mathbf{p}\mathbf{p}^*$$
$$\mathbf{p}^? = \mathbf{p} \mid \mathbf{\epsilon}$$

Relação entre E.R. e C.R.

- 1 Para todo C.R. 3 uma E.R. que o denota
- 2 Para toda E.R. é possível construir seu C.R.
- $3 E1 = E2 \Leftrightarrow elas denotam o mesmo C.R.$

III.6.1 – Autômatos Finitos com ε-transições

AFND-ε: $M = (K, \Sigma, \delta, qo, F)$, onde:

 $K, \Sigma, qo, F \rightarrow mesma definição dos A.F.D.$

 $\delta \rightarrow K \times \Sigma \cup \{\epsilon\} = \rho(K)$, onde $\rho(K) \subseteq K$

Observações:

- ε-transições permitem movimentos independentes da entrada;
- O uso de ε-transições não incrementa a expressividade dos AF;
- Todo AFND-ε possui um AFND equivalente;

III.6.2 – Correspondência entre ER e AF

Para mostrarmos que toda ER possui um AF correspondente, é suficiente mostrarmos que toda ER básica (Φ , ϵ , a, ($\alpha \mid \beta$), ($\alpha \cdot \beta$) e α^* - onde α , β são ERs quaisquer) possui um AF correspondente:

1 - AF representando a ER " ϕ " (M|T(M) = ϕ)

2 – AF representando a ER " ϵ " (M|T(M) = { ϵ })

3 - AF representando a ER "a" $(M|T(M) = \{a\})$

4 – AF representando a ER " $\alpha \mid \beta$ " (M|T(M) = { $\alpha \mid \beta$ })

5 – AF representando a ER "α.β" (M|T(M) = $\{\alpha.\beta\}$)

5 – AF representando a ER " α *" (M|T(M) = { α *})

OBS. Figuras extraídas de J.L.M.Rangel Neto (COPPE/UFRJ-PUC/RJ)

III.6.3 - Transformação de ER para AF

Principais métodos (estratégias):

- Método de Thompson
 - **Ο Variação de Thompson sem ε-transições**
- Método De Simone (Adap. de De Remer/AHO)

III.6.3.1 - Método de Thompson

- Consiste em:
 - 1 Decompor uma ER em sub-expressões básicas;
 - 2 Construir o AFNDε de cada subexpressão;
 - 3 Compor o AFNDε final (usando ε-transições)
- Exemplo método de Thompson

• Exemplo variação de Thompson

III.6.3.2 - Método de De Simone: ER -> AFD

- 1 Construa uma árvore binária costurada correspondente a ER, onde os nodos internos representam os operadores e os nodos folhas representam os operandos;
- 2 Numere os nodos folha de 1 a n;
- 3 Defina o Estado Inicial do AFD M, como sendo o estado composto pelos números dos nodos folhas alcançados no percurso da Árvore, de acordo com as rotinas "Descer" e "Subir", a partir do nodo raiz;
- OBS.: Caso o percurso atinja o final da Árvore, inclua "λ" na composição do estado;
- 4 Defina as transições de cada estado "q" de M, como segue:
- 4.1 Se "a" é label de algum nodo que compõe "q", crie a transição

$$\delta(q, a) = p$$

- onde "p" é o estado composto pelos nodos alcançados percorrendo a árvore (de acordo com as rotinas Descer e Subir) a partir da <u>costura</u> dos nodos com label "a" que compõe "q".
- Obs.: 1 Caso o percurso atinja o final da Árvore, inclua "λ" na composição do estado "p";
- 2 Estados com a mesma composição devem ser considerados estados equivalentes;
- 4.2 Se "a" não é label de nenhum nodo que compõe "q", crie a transição

$$\delta(\mathbf{q},\mathbf{a}) = -$$

- 5 Repita o passo 4 para todos os estados novos criados na definição das transições;
- 6 Defina como Finais, os estados que contenham "λ" em sua composição.

• Exemplos:

Rotinas Descer:

Rotinas Subir:

III.7 – Lema do Bombeamento para Linguagens Regulares - "Pumping Lemma"

Objetivo: demonstrar que algumas linguagens não são regulares.

Lema do Bombeamento: Se L é uma LR, então existe uma constante $n \ge 1$ | para todo $w \in L$, $|w| \ge n$, podemos escrever w como x y z onde:

- $|xy| \leq n$
- y ≠ ε
- $xy^iz \in L$ para qualquer $i \ge 0$

Idéia geral: O "Lema do Bombeamento", ou "Pumping Lemma", nos diz que qualquer sentença w de uma linguagem regular pode ser decomposta em três partes: w = xyz, de maneira que a repetição (o bombeamento) de y, qualquer número de vezes, resulta em sentenças xyⁱz que também pertencem à linguagem; ou seja, as sequências xz, xyz, xyyz, ..., também serão sentenças da linguagem em questão.

Para mostrar que uma linguagem **não é regular**, basta encontrar uma sentença w qualquer pertencente à linguagem, que não satisfaça o lema do bombeamento – isto é, não possa ser decomposta em xyz de forma que seja possível *bombear* y e continuar na linguagem.

Exemplos:

III.8 – Propriedades e Prob. de Decisão de CR

Propriedades Básicas de C.R.

- 1 União
- 2 Concatenação
- 3 Fechamento
- 4 Complemento: Se $L_1 \subseteq \Sigma^*$ é CR ⇒ Σ^* L_1 também é CR
- 5 Intersecção: Se L1 e L2 são CR ⇒L1 ∩ L2 também é CR

Problemas de Decisão sobre C.R.

- $1 Membership : x \in T(M)$?
- $2 \text{Emptiness} : T(M) = \varphi$?
- 3 Finiteness : T(M) é finita?
- $4 Containment : T(M1) \subseteq T(M2)$?
- 5 Equivalencia : T(M1) = T(M2)?
- 6 Intersecção Vazia : T(M1) ∩ $T(M2) = \varphi$?

III.9 – Implementação de Autômatos Finitos

Formas básicas para implementação de A.F.:

- Implementação Específica
- Implementação Geral (ou genérica);

III.10 - AF com saída

A funcionalidade dos AF pode ser estendida (sem alterar a classe de linguagens reconhecida), atribuindo-se ações (significados):

- Às Transições (Máquinas de Mealy);
- Aos estados (Máquinas de Moore)

III.11 – Aplicações de A.F. e E.R.

- 1 Compiladores Análise Léxica
- 2 Editores de texto busca/substituição
- 3 Reconhecimento de padrões
- 4 Outras: S.O, Redes, Hipertexto, Robótica, Criptografia, ...