

Human and Community Response to Military Noise

Results From Field-Laboratory Tests of Small Arms, 25 mm Cannons, Helicopters, and Blast Sounds

by Paul D. Schomer, L. Ray Wagner, and L. Jerome Benson

The study reported here utilized paired-comparison tests with listeners in real houses to evaluate human response to test sounds from one of four categories of military sources: (1) small arms fire, (2) 25 millimeter (mm) cannon fire, (3) helicopters, and (4) large blasts. The control sound sources were either a wheeled vehicle or white/pink noise. These tests, performed at Aberdeen Proving Ground, MD, compliment similar tests in Germany (Schomer et al. 1994). The Germany tests were performed at the German Military installation at Munster and used tracked vehicles, small arms and large blasts as the test sound sources. These tests substitute helicopters or 25 mm guns for the tracked vehicles used in Germany. Where comparable, the new results are similar to the Munster results. For wheeled-vehicle control sound, the maximum value of the small arms penalty was of the order of 10 dB for the additional annoyance of the impulsive sound; for the 25 mm weapon, the penalty was more like 15 dB. Surprisingly, the helicopter penalty was virtually zero. For the same A-weighted sound exposure level (ASEL) of control sound, the wheeled-vehicles and pink-noise control sounds yielded annoyance-penalty results which differed by about 10 dB. The relationship between the CSEL of a large-amplitude impulsive sound and the ASEL of its equivalently-annoying control sound was level dependent with a slope of the order of 1:2; i.e., a 1 dB change in blast-sound CSEL corresponded to about a 2 dB change in the ASEL of the equivalentlyannoying control sound. With outdoor acoustical measurements, the annoyance (indoor subjects) generated by a large-amplitude impulse sound and its equivalentlyannoying control sound were equal when the CSEL of the impulse sound and the ASEL of the control sound were each about 103 dB.

DTIC QUALITY INSPECTED 5

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

USER EVALUATION OF REPORT

REFERENCE: USACERL Technical Report 95/07, Human and Community Response to Military Noise

Please take a few minutes to answer the questions below, tear out this sheet, and return it to USACERL. As user of this report, your customer comments will provide USACERL with information essential for improving future reports.

1. repo	Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which ort will be used.)
2.	How, specifically, is the report being used? (Information source, design data or procedure, management cedure, source of ideas, etc.)
——	cedure, source or ideas, etc.)
3. ope	Has the information in this report led to any quantitative savings as far as manhours/contract dollars saved, trating costs avoided, efficiencies achieved, etc.? If so, please elaborate.
— 4.	What is your evaluation of this report in the following areas?
	a. Presentation:
	b. Completeness:
	c. Easy to Understand:
	d. Easy to Implement:
	e. Adequate Reference Material:
	f. Relates to Area of Interest:
	g. Did the report meet your expectations?
	h. Does the report raise unanswered questions?

of this type more responsive to your nee	45, 111010 454010,		
5. If you would like to be contacted by discuss the topic, please fill in the follows:	wing information	n.	
Name:			
Telephone Number:			
Organization Address:			
			
6. Please mail the completed form to:			
Department o	f the Army		

Department of the Army CONSTRUCTION ENGINEERING RESEARCH LABORATORIES ATTN: CECER-TR-I P.O. Box 9005 Champaign, IL 61826-9005

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

AGENCY USE ONLY (Leave Blank)	2. REPORT DATE June 1995	3. REPORT TYPE AND DAT Final	ES COVERED
	nse to Military Noise: Results From annons, Helicopters, and Blast Sou		5. FUNDING NUMBERS 4A162720 A896 TG5
7. PERFORMING ORGANIZATION NAME U.S. Army Construction Engine P.O. Box 9005 Champaign, IL 61826-9005	E(S) AND ADDRESS(ES) eering Research Laboratories (USA)	ACERL)	8. PERFORMING ORGANIZATION REPORT NUMBER TR 95/07
ATTN: DAIM-ED-C 1815 N. Fort Myer Drive, Suite Rosslyn, VA 22209	tallation Management (ACS(IM))		10. SPONSORING / MONITORING AGENCY REPORT NUMBER
,	National Technical Information Ser	vice, 5285 Port Royal Ro	oad, Springfield, VA 22161.
Approved for public release; di			12b. DISTRIBUTION CODE
from one of four categories of (4) large blasts. The control so Aberdeen Proving Ground, MI performed at the German Milit sound sources. These tests subthe new results are similar to the penalty was of the order of 10 more like 15 dB. Surprisingly (ASEL) of control sound, the way about 10 dB. The relations lently-annoying control sound corresponded to about a 2 dB coursements, the annoyance (index	military sources: (1) small arms fit ound sources were either a wheeled D, compliment similar tests in Gern ary installation at Munster and used estitute helicopters or 25 mm guns for Munster results. For wheeled-ved B for the additional annoyance of the helicopter penalty was virtually wheeled-vehicles and pink-noise comp between the CSEL of a large-ar was level dependent with a slope of	re, (2) 25 millimeter (mr vehicle or white/pink no nany (Schomer et al. 199 d tracked vehicles, small or the tracked vehicles us chicle control sound, the the impulsive sound; for y zero. For the same A- ntrol sounds yielded ann- nplitude impulsive sound f the order of 1:2; i.e., a ntly-annoying control so amplitude impulse sound	4). The Germany tests were arms and large blasts as the test sed in Germany. Where comparable, maximum value of the small arms the 25 mm weapon, the penalty was weighted sound exposure level oyance-penalty results which differed d and the ASEL of its equival dB change in blast-sound CSEL und. With outdoor acoustical meaand its equivalently-annoying

14. SUBJECT TERMS 15. NUMBER OF PAGES 236 military training noise assessment procedures blast noise Aberdeen Proving Ground, MD 16. PRICE CODE noise measurement 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF OF REPORT OF ABSTRACT ABSTRACT Unclassified Unclassified Unclassified SAR

Foreword

This study was conducted for the Assistant Chief of Staff for Installation Management (ACS(IM)) under Project 4A162720A896, "Environmental Quality Technology"; Work Unit TG5, "Human Response Noise Models." The study was a combined, leveraged effort with U.S. Army Europe and 7th Army reimbursable funds provided by Military Interdepartmental Purchase Requests (MIPRs) FE-57-90 and FE-58-91. The ACS(IM) technical monitor was Tim Julius, DAIM-ED-C. The USAREUR Deputy Chief of Staff, Engineer (AEAEN) point of contact was Armod LePage, Environmental Division.

The work was performed by the Planning and Mission Impact Division (LL-P) of the Land Management Laboratory (LL), U.S. Army Construction Engineering Research Laboratories (USACERL). The researchers are indebted to Tom Dieter, Dick Barnett and Tom Martin of the Combat Systems Test Activity, Aberdeen Proving Ground, MD, who were especially diligent and helpful in seeing to the preparation of the test site, repair of roads, and especially, provision of vehicles, drivers, and the firing of explosives and weapons. Without the cooperative, professional assistance of these individuals, it would not have been possible to execute this study. Robert M. Lacey is Acting Chief, CECER-LL-P; Dr. William D. Severinghaus is Operations Chief, CECER-LL; and William Goran is Chief, CECER-LL. The USACERL technical editor was Linda L. Wheatley, Technical Resources.

LTC David J. Rehbein is Commander and Acting Director of USACERL, and Dr. Michael J. O'Connor is Technical Director.

Acces	sion For	1
NTIS	GRA&I	বি
DTIC	TAB	
Unann	ounced	
Justi	fication	
Ву		
	ibution/	
Avel	lability	Codes
	Aveil an	d/or
Pist	Spec s	Ţ
A-1		

Contents

SF 29	98	1
Fore	word	3
List o	of Figures and Tables	6
1	Introduction Background Objective Approach Mode of Technology Transfer	9 11 12
2	General Study Concepts Study Design Test Site and Sound Sources Control Sound Sources Test Facility Structures Test Subjects Acoustical Data Collection Control Sound Conduct of The Test Test Conditions	14 17 21 29 35 35 36 36
3	Data Analysis Acoustical Data Subject Responses	44
4	Results Helicopter, Small Arms, and 25 mm Cannon Results—Wheeled-Vehicle Control Sounds Small Arms, 25 mm Cannon, and Helicopter Results; Pink Noise as a Control Sound Blast Sound Results	50 53
5	Conclusions	61

References	63
Appendix A:	USACERL Acoustic Test Facility at Aberdeen Proving Ground 67
Appendix B:	Measured Acoustical Data
Appendix C:	Nonblast Sound Transition Curves—Acoustical Measurements Near the Subjects
Appendix D:	Nonblast Sound Transition Curves—Free-field Measurements 153
Appendix E:	Blast Sound Transition Curves— Acoustical Measurements Near the Subjects
Appendix F:	Blast Sound Transition Curves— Pressure-doubled and Free-field Measurements
Acronyms	233
Distribution	

List of Figures and Tables

F	ia	ur	es

1	range of control sound levels	15
2	Map of the immediate test site area	18
3	Helicopter overflying the test facilities	19
4	Bradley fighting vehicle with 25 mm cannon	20
5	Control vehicle 1—10 ton tractor used as a tank retreival vehicle 2	22
6	Control vehicle 2—2 1/2 ton military type cargo truck	23
7	Control vehicle 3—5 ton civilian type cargo truck	24
8	Control vehicle 4—HUMM-V utility vehicle	25
9	Control vehicle 5—1 ton, 4-wheel drive pickup truck	26
10	(a) White-noise control sound amplitude envelope and (b) Pink-noise control sound amplitude envelope	27
11	The machine-readable subject response test form	30
12	The layout of one duplex	34
13	The instrument control room–data collection station	37
14	Schematic representation of the instrumentation	38
15	The instrument control room—test control station	39
16	A subject room showing the front wall, control lights, and loud speakers for generating the pink/white-noise control sound	41

17	Subjects seated in a test room	42
18	Data and regression line for indoor measured blast sound data at APG	57
19	Data and regression line for blast sounds for Munster, APG series 1, APG series 2, and Grafenwöhr	58
20	Data and regression line for blast sounds	60
Tables		
1	Test sounds and associated control sounds	28
2	Middle levels for the white/pink noise control sound by set	28
За	Order of the sound pairs for the first half of each test	31
3b	Order of the sound pairs for the second half of each test	32
4	Test conditions by measurement period	43
5a	Large-charge blast sound data by measurement set	45
5b	Small-charge blast sound data by measurement set	46
6a	All of the test sound source ASEL data used for the overall analysis	47
6b	All of the control source ASEL data used for the overall analysis	48
7a	Computed penalties for measurements made by the subjects	51
7b	Computed penalties for measurements made outdoors in a free field	52
8	All of the computed penalties (ASEL) using pink noise as the control and comparison with the corresponding penalty using vehicles as a control	54

1 Introduction

Background

Proper assessment of the annoyance generated by Army testing and training sounds remains a question that is not fully answered in 1994 (Schomer 1986; Schomer and Neathammer 1987; Schomer and Averbuch, August 1989; Schomer, Buchta, and Hirsch, April 1991; Schomer, Hoover, and Wagner, November 1991). The most difficult sounds to assess are the impulsive sounds generated by large weapons, small arms, and helicopters because, in contrast to more common transient sounds (e.g., aircraft and wheeled motor vehicles), the impulsive character of these sounds adds to the annoyance that they generate. The nature of this "addition" is not well understood. Currently, general community noise is assessed using the A-frequency weighting and some form of time-average sound level (American National Standard, 1988 and 1990). In the United States, the A-frequency-weighted day-night average sound level is used. For clearly impulsive sounds, adjustments or "penalties" may be added to the formulation to account for the increase in annoyance generated by the impulsive character of the sound (Sutherland and Burke, 1979; International Organization for Standardization, 1990). Adding an impulsive-sound penalty is current U.S. Army practice for the sound of small arms and helicopters (Air Installations Compatible Use Zones, November 1977; Army Regulation [AR] 200-1, April 1990).

In the mid-1980s, several European countries collaborated on a joint Council of European Communities (CEC) research project to develop improved penalties for assessing the sound of small arms, metal and wood hammering, and other impulsive, everyday sounds. Separate Nordic and Australian studies have also centered on the sound of small arms. The CEC studies specifically excluded helicopters, large blasts (e.g., mining, demolition, and artillery), and sonic booms. Rice (1989) provides a summary of the CEC results that involved teams from Italy, the United Kingdom, The Netherlands, and Germany. The CEC results suggested that a large impulse penalty should only be applied to "highly" impulsive sounds such as small-arms fire and metal and wood hammering, and that this penalty should be about 10 decibels (dB) at an outdoor measured A-weighted time-average sound level of 50 dB, decreasing by 1 dB for every 3 dB increase in outdoor measured sound level up to 80 dB. Vos (1990) and Buchta (1990) participated in the CEC studies, and both have published independent

analyses of their respective data. Both researchers found a similar level-dependent penalty, but suggested that the largest penalty was closer to 12 dB.

A report by Eystein (1984) for the Nordic countries and a report published jointly by the military construction institutes of three Nordic countries (Nordic Defense Institutes 1986) each provides summaries of research, guidance, and conclusions with respect to small arms sounds. Eystein (1984) concluded that a maximum A-frequency-weighted and impulse-time-weighted sound pressure level of 70 dB was a good approximate threshold of annoyance. The latter report proposed a form of an "equal-energy" measure that they termed "RSS." The RSS measure makes use of the so-called impulse time-weighting and "corrects" for the influence of long-term background sound. No specific guidance was given on the value for any penalty.

An Australian study (Hede and Bullen 1981) on the topic of small arms did not consider time-average sound-level descriptors. The study did find, however, that A-weighted sound exposure level (ASEL) or flat-weighted peak sound pressure level were the best descriptors out of the group they considered. Like Eystein (1984) and the Australian study made the point that more of the variance was explained by respondents' attitudes than by acoustical measures.

The study at Munster, Germany (Schomer et al. 1994) supports an equal energy model and suggests a penalty on the order of 10 dB. The study showed some indication of a level dependence as was found by the CEC, but this level dependence varies with the subject situation. The results differ for each condition: windows closed or open, subjects indoors, or subjects outdoors.

Blast sound, which is one type of high-energy impulsive sound, is assessed using the standardized C-frequency-weighting. In the United States, average C-weighted daynight sound level (CDNL) is currently used as the fundamental unit of assessment (American National Standard, 1986). Criterion CDNL values for various degrees of impact are provided in American National Standard S12.4 by estimates of the percent of a community "highly annoyed" in differing environments to the long-term day-night average C-weighted sound level. The U.S. Department of Defense (DoD) has established an average A-weighted day-night sound level (ADNL) of 65 dB as the start of impact and an ADNL of 75 dB as the start of severe impact. Information from American National Standard S12.4 can be used to establish the equivalent corresponding CDNL criterion levels for large-amplitude impulsive sound of 62 and 70 dB, respectively. Thus, based on information in American National Standard S12.4, the criterion levels for CDNL vary with respect to the ADNL criterion levels. This variation is, in effect, comparable to adding a level-dependent offset of as much as 5 dB (i.e., an ADNL for aircraft sounds of 75 dB is equivalent to a CDNL of 70 dB for

large-amplitude impulsive sounds in terms of the percent of the community that is "highly annoyed"). Precise values for these offsets remains a question.

Two studies (Bullen and Hede 1984; Buchta 1989) support the use of CDNL or C-weighted sound exposure level (CSEL) for the assessment of blast sound from firing ranges. Others (Levein and Åhrlin 1988), especially in the Nordic countries, have looked only at single-event descriptors such as maximum sound pressure level. These latter studies provide little guidance on the efficacy of CSEL and CDNL for blast sound assessment.

Over the last several years, the U.S. Army Construction Engineering Research Laboratories (USACERL) has performed a series of experiments that had two purposes: (1) to better determine penalties for impulsive sound sources like helicopters and small arms, and (2) to better understand human and community response to blast sound. These experiments differed from other research in that they used subjects placed in real houses, judging real test sounds generated during the experiment, outdoors and at realistic distances from the test houses. The experiments were performed as paired-comparison tests. Artificial sound generated through a loudspeaker in the test rooms was the control sound. Helicopter tests were performed in Champaign, IL (Schomer and Neathammer 1987) and Tustin, CA (Schomer, Hoover, and Wagner, 1991). Tests of blast sounds were performed in Grafenwöhr Training Area, Germany and tests of blast, vehicle, and small arms sound were performed in Munster, Germany (Schomer et al. 1994).

Objective

A major purpose of the present test was to replicate the Munster study in the United States. This new study, performed in several stages at Aberdeen Proving Ground (APG), MD, is identical to the study performed at Munster except that for about half of the new tests, two levels of helicopter sound have been substituted one-for-one with the two levels of tracked-vehicle sound used at Munster. For the other half of these new tests, two sound levels of 25 millimeter (mm) cannon fire from the Bradley Infantry Fighting Vehicle has been substituted for the tracked vehicle sounds used at Munster. So, this study concentrates on blast, 25 mm cannon, small arms, and helicopter sounds. A given test uses either helicopters or 25 mm cannon fire, but not both.

The overall purpose of these studies was to further define and develop offsets or "penalties" that can be added to measured levels of military sounds (e.g., tank or rifle fire and helicopter noise) so that the resulting assessments are equivalent, in terms

of annoyance, to assessments for common, normal transient urban sounds assessed by ASEL or by A-weighted time-average sound.

Approach

This test follows the paired-comparison methods developed and used by USACERL for the past several years, using real houses with real test sources of sound. Small arms are fired to create small arms sound; tanks drive by the houses to create tracked-vehicle sound; and plastic explosives are set off to create blast sound. But an innovation was added to this and the Munster test. Instead of using just control sounds that are electrically generated through loudspeakers in each test room, this test also used real, wheeled vehicles as a source of control sound. Six sizes of wheeled vehicles were used to create six levels of control sound. The subjects compared the sound of a truck driving by to a burst of small arms or 25 mm cannon fire, an explosive sound, or a helicopter flying by.

Measures such as time-average sound level or average day-night sound level are logarithmic transformations of the total sound exposure (Schomer, July 1992) occurring during the averaging time period. Total sound exposure is the sum of the sound exposures from the individual events, such as from cars on a highway, aircraft flybys, and gunfire. This study concentrated on examining the sound exposure from individual (1) small arms, (2) 25 mm cannon, (3) helicopters, and (4) blast events, the building blocks to total sound exposure and to any measure of time-average sound pressure level.

According to most noise regulations worldwide, most sounds, including that from helicopters, 25 mm guns, and small arms, are assessed using A-weighting. This study examined the penalties in A-weighted sound level needed to properly assess those three sound sources. However, since blast sound is assessed using C-weighting, this study also examined offsets between C-weighted and A-weighted levels to properly assess blast sound. (The latter assessment is termed an offset rather than a penalty because of the shift from C-weighting for blast sounds to A-weighting for other sounds.) Thus, the variable of interest in this study was ASEL or CSEL. This study did not differentiate between sounds having the same ASEL but differing spectra. Spectral content, while certainly important, cannot be part of the central analysis when the purpose is to develop offsets or penalties to be added to an A- or C-weighted sound exposure level.

In this report, the term "real" is used for sounds that propagate directly from the source to the subject. These sound signals are to be contrasted with recorded or

artificial sounds. Artificial sound was generated by an electronic device. In this test, one of the control sounds was "real" and the other was "artificial."

Real sounds are different from recorded sounds because the latter are colored, at least in some degree, by the recording and playback 'process. For example, the true sensation of vehicle motion can only be generated by an array of loudspeakers, and even then, as for stereophonic reproduction, the sense of realistic motion might be available only at one listening position. Some experiments have used monophonically recorded sound (e.g., moving vehicle sound) and have even varied the amplitude by adding or subtracting gain. Such sound signals are not considered to be "real" and hence are termed "recorded" (and electronically colored).

This study was performed at the USACERL's test facility at APG, MD. This facility was specially constructed to study human and community response to sound and the effect of structural changes on the extent of response.

Mode of Technology Transfer

These data will be used to help set joint North Atlantic Treaty Organization/Committee on the Challenges of Modern Society (NATO/CCMS) noise assessment procedures and criteria. They will be used in the United States to help reformulate National Academy of Science (NAS) recommendations. In turn, these data and NAS reports will influence American National Standards Institute (ANSI) Standards and Army policy.

2 General Study Concepts

Study Design

The study was designed as a paired comparison test where the subjects were presented pairs of sounds and asked, for each pair, which was more annoying, the first sound or the second sound. For this study, the test sound was one of four categories of military sounds that came from: (1) small arms fire, (2) 25 mm cannon fire, (3) helicopters, or (4) large blasts. The other sound in a pair was one of two control sounds, which were: (1) the sound of a wheeled vehicle passing by, or (2) a computer-generated white noise. Either the test sound or the control sound was presented first; the order was random, but balanced. This study used juries of subjects placed in adjacent rooms on the front side of the test house, and, during warm weather phases of the test, at an outdoor location that was in line with the other test rooms.

Figure 1 shows a hypothetical curve expected from the experiment for a single military source. The theoretical curve assumes a transitional shape in the general form of a sigmoid or Gaussian cumulative probability curve. When the control is very quiet, 100 percent of the subjects will find the test source to be more annoying; when the control is very loud, 100 percent of the subjects will find the control to be more annoying.

Many actual curves of the type indicated in Figure 1 were generated; each yields a pair of numbers: a military test sound exposure level (SEL) (A-weighted for all sounds except blast sound) and corresponding control sound ASEL. This pair of levels (point) occurs when 50 percent of the subjects perceived the test sound to be more annoying than the control sound and 50 percent perceived it to be less annoying. This 50 percent point is marked on Figure 1. This point is taken as the equivalency point, that is, the point where the test sound causes the same annoyance as the control sound. The number of decibels that the test sound differs from the control sound is the "offset" or "adjustment." This is the decibel difference between the test sound SEL and the control sound ASEL for equivalent annoyance. For the hypothetical example in Figure 1, the military test sound had a ASEL of 62 dB; the equivalent wheeled-vehicle control sound ASEL is 59 dB at the 50 percent point. So a -14 dB offset or "penalty" must be added to the test sound CSEL to make it equivalent to a control sound generating the same annoyance. In this example, the penalty is negative; it is a bonus.

Test Source: Leopard II

Condition: Windows Closed

Control Source: Vehicles Data Included: Sets 1-5

In this hypothetical example, the Leopard II is compared with wheeled-vehicle control sounds. The "equivalency" point is when the Leopard II had an indoor-measured ASEL of 62 and the equivalently-annoying control vehicle ASEL was 59. This indicates that in terms of decibels, the Leopard II creates 3 dB less annoyance than an equivalent wheeled vehicle; it has a "negative penalty."

Figure 1. Typical curve expected for a single test sound source and a range of control sound levels.

Wheeled-vehicle and artificial control sounds have their own separate advantages and disadvantages.

Vehicle noise as control sound

Advantages:

- Penalties or offsets can be related to the sound level of common traffic noise.
- Traffic noise is the most-common environmental sound.
- Most assessments of traffic noise use some form of A-weighted time-average sound pressure level.

Disadvantages:

- Spectrum of the sound from actual vehicles varies from one vehicle to another.
- The spectral variations may be part of the underlying reasons for differences in the reactions of subjects to the sounds.

Pink noise as control sound

Advantage:

There are no shifts in the spectrum with changes to the level of the control sound.

Disadvantage:

 Impulsive-sound penalties determined from such tests cannot be related to the level of commonly experienced sounds.

For the above reasons, the sound of wheeled vehicles was selected as the control sound for the purpose of determining the impulsive-noise penalties associated with impulsive military sounds.

Previous analyses and reports (Borsky 1965; Kryter et al. 1968; USEPA 1974; Schomer and Neathammer 1985; Army Regulation 200-1) of high-amplitude impulse sound have commented on how important vibration and rattle are in determining human reaction to impulsive sounds. This study, using real houses and standard 2- to 3-mm-thick single-glazed windows included natural rattles induced by the blast sounds. These sound-induced rattles are nonlinear reactions to the blast stimulus. In the past, attempts to correlate subject response with blast-sound-induced rattles have failed (Schomer and Neathammer 1987). Therefore, this study did not attempt to quantify

rattles. Rather, as in nearly all previous research, it relied primarily on correlations between outdoor-measured blast sound levels and the corresponding responses of the listeners.

Test Site and Sound Sources

Figure 2 shows a map of the test site including the test subject houses, vehicle roadways, helicopter flight tracks, and firing sites.

The helicopter was a standard UH-1H "Huey" flying at two distances from the test house; a "near" distance of about 60 meters (m) and a "far" distance of about 150 m. The distances were chosen so the ASELs of the helicopter flybys differed by about 10 dB between the near and the far distances. The helicopter flew equal operations in each direction. The line of flight for the helicopter is shown on the map of the test site in Figure 2. Figure 3 shows the helicopter overflying the test houses.

The small arms were American M-16 rifles fired from "near" and "far" distances, which were typically 100 and 400 m from the test house. These distances varied a little from day to day to achieve near constant received ASEL at the test house. Unlike the Munster study, live ammunition was used in the APG study. Firing rates and number of rounds varied at the near site. A rate of 60 shots in 30 seconds (s) was used at both sites throughout the entire study. In addition, a ten times slower rate of 6 shots in 30 s was used at the near site.

The 25 mm cannon also had "near" and "far" firing positions, which are shown in Figure 2. The typical distances for the "near" and "far" 25 mm cannon firing positions were 1,000 to 1,400 m and 1,800 to 2,500 m, respectively; the distances were varied in an effort to maintain nearly constant received levels. The 25 mm cannon fired a standard 8-shot training sequence in about 10 s. This sequence is: bang, bang-bang-bang, bang-bang-bang; 1-3-4. Figure 4 shows a Bradley with its 25 mm cannon.

The main blast site was located 1 km west of the test houses. An alternate blast site 1.8 km from the test houses was used, based on weather-related sound propagation conditions, to reduce the received level of the blast sounds. Nominally, large and small blast charge sizes of 2 kilograms (kg) and 500 grams (g) were used, but these were changed (e.g., up to 4 kg or down to 1 kg for the large blast) when needed to obtain received, flat-weighted peak sound pressure levels that were as close as possible to 124 and 119 dB for the large and small blasts, respectively.

This map shows the test houses, control "trailer," roads and staging area for the wheeled vehicles, helicopter lines-of-flight, and the near- and far-gun fire sites. The 25 mm cannon and blast sites were more distant.

Figure 2. Map of the immediate test site area.

Figure 3. Helicopter overflying the test facilities.

Figure 4. Bradley fighting vehicle with 25 mm cannon.

Control Sound Sources

The wheeled control-sound vehicles, except for the smallest, were supplied by the U.S. Army. These vehicles generated ASELs ranging from about 65 to 95 dB (in roughly 5 dB steps) at a microphone in line with the front face of the test houses, but sufficiently away so the reflected sound was negligible. The vehicles were designated V1 through V6 with V1 having the highest sound exposure level (SEL). Vehicle V1 was a tank retrieval truck, V2 was a 2-1/2 ton military-type cargo truck, V3 was a 5 ton civilian-type cargo truck, V4 was a HUMM-V utility vehicle, V5 was a 1 ton, four-wheel drive pickup truck, and V6 was a small rental car. Figures 5 through 9 show vehicles V1 through V5 (all except the rental car). The test house is in the background of some of these figures. All of the wheeled vehicles passed by the test house on a specially constructed gravel road at a distance of about 15 m. The direction of travel was dictated by the orientation of the exhaust; in one case to obtain the higher sound level (V2), and in another case to obtain a lower sound level (V3). The vehicles returned by looping back on an alternate hard road 170 m from the test house as shown in Figure 2.

The computer-generated control sound had a "haystack" shape for the time variation of the sound pressure level with the final shape determined by the time variation of the sound being tested. For the blast sounds, a 0.45 s, 200 to 1500-hertz (Hz) band of white noise was used; for the tracked-vehicle and small arms sounds, an octave band of pink noise with midband frequency of 500 Hz was used as the control sound. Figures 10(a) and 10(b) illustrate the temporal amplitude envelopes for the two computer-generated control sounds. The A-weighted temporal amplitude envelopes for a passby of vehicle V2 and a helicopter are also included in Figure 10(b). The two computer-generated sounds in Figures 10(a) and 10(b), respectively, are the same as used previously for testing blast (Schomer, Buchta, and Hirsch, April 1991) and helicopter (Schomer and Neathammer 1987; Schomer, Hoover, and Wagner, November 1991) sounds.

As shown in Table 1, the nine military test sounds were compared with wheeled-vehicle control sounds. The four military sources having the higher sound levels (i.e., large blast, near helicopter, near 25 mm cannon, and near small arms [60 shots]) were compared with the five larger control vehicles, V1 through V5. The other military sources (i.e., small blast, far helicopter, far 25 mm cannon, near small arms [6 shots], and far small arms) were compared with V2 through V6. The near helicopter, near 25 mm cannon, near small arms (60 shots), V2 and large blast sounds also were tested by pairing each with computer-regulated pink- or white-noise control sounds (see Table 1). There were five different levels of control sound for each source.

Figure 5. Control vehicle 1—10 ton tractor used as a tank retreival vehicle.

Figure 6. Control vehicle 2-2 1/2 ton military type cargo truck.

Figure 7. Control vehicle 3—5 ton civilian type cargo truck.

Figure 8. Control vehicle 4—HUMM-V utility vehicle.

Figure 9. Control vehicle 5-1 ton, 4-wheel drive pickup truck.

This sound was used as the control sound for the large blast test sound

(a)

This sound was used as the control sound for near Huey helicopter, near gun fire (60 shots), near 25 mm cannon, and control vehicle 2 sounds.

(b)

Figure 10. (a) White-noise control sound amplitude envelope and (b) Pink-noise control sound amplitude envelope.

Table 1. Test sounds and associated control sounds.

Test Sounds	Control Sound Source				
	Wheeled Vehicles	Loudspeaker Sound			
Large Blasts	V1-V5	White Noise			
Near Helicopter	V1-V5	Pink Noise			
Near 25 mm Cannon	V1-V5	Pink Noise			
Near Guns; 60 Shots	V1-V5	Pink Noise			
Small Blasts	V2-V6	* * *			
Far Helicopter	V2-V6	***			
Far 25 mm Cannon	V2-V6	***			
Near Guns; 6 Shots	V2-V6	***			
Far Guns; 60 Shots	V2-V6	***			
Vehicle 2	***	Pink Noise			

Together, the wheeled-vehicle and computer-regulated control sounds resulted in 55 comparisons that were presented to the subjects in seemingly random order (with consideration for the return time for the control vehicles) during each half of a test session. Each test session used either helicopters or 25 mm cannon, but not both. The order of test and control sound within each pair was also random. For the second half of a test session, each pair of sounds was presented in a different random order, but the order of presentation of sounds within each pair was reversed relative to the order in the first half. Table 2 lists these test pairings.

Table 2. Middle levels for the white/pink noise control sound by set.

Set Test Source	Jan 92	Jun 92	Aug 92	Nov 92	Jan 93
Large Blast	75/80*	80	80	70	75
Loud Helicopter/Near 25mm	70	80	80	75	80
Near Gun, 60 shots	75	85	85	80	80
Control Vehicle 2	75	85	85	80	85

^{*} For January 1992 a control sound level of 75 was used for the first two sessions and 80 was used for the others. The control sound levels at the tent for June and August 1992 were 10 dB above the indoor levels.

Note: These levels were adjusted in ± 5 dB steps depending on received test sound levels and the response data already collected. The goal was to have the equivalency point at the middle of the control range which was the sound level of V3 or V4 for the vehicles and the middle level for the white/pink noise control sounds. The most accurate estimate of a "penalty" possible is provided when the equivalency point lies in the middle of the analysis range.

The test subjects used the test form, Figure 11, to mark which sound was more bothersome or annoying. The first 11 lines in each of the two sections of each test form were used. Test form numbers 1 through 5 were used for the 110 pairs of sounds. Subjects marked the form after each pair of sounds was presented. The subjects were also to mark how difficult it was to decide on a scale of 1 to 5 with the endpoints anchored by the descriptions "very easy" and "very hard."

The white/pink-noise control sound levels were adjusted in ±5 dB steps; the absolute level depended on received test sound levels and the response data already collected. The goal was to have the equivalent-response point in the middle of the control sound level range produced by vehicles V3 or V4 for the control-sound vehicles and the middle of 5 sound levels for the white/pink-noise control sounds. These adjustments were needed because the most accurate estimate of an offset or penalty is determined when the equivalency point lies in the middle of the analysis range.

A desk top computer was used to regulate the artificial control sound that was played back from a 2-channel digital audio tape recording; one channel contained the white noise (200 to 1,500 Hz), the other channel contained the pink noise (500-Hz octave band). The amplitude envelope of either control sound was shaped with a programmable attenuator connected to the personal computer. This process regulated the ASEL and 10-dB down time of the artificial control sound.*

Two loudspeakers produced the computer-regulated control sound in each house. The outdoor control sound was the same as the indoor sound, except the outdoor level was 20 dB higher. This 20 dB gain had been found (Schomer, November 1991; Schomer, April 1991) to be the correct shift to obtain listener-response data so the 50 percent point lies in the middle of the control sound range. Table 3 contains the actual "base" levels by set.

Test Facility Structures

The test facility comprised two specially constructed "duplexes," identical on the inside, each containing two isolated spaces. One half of each duplex includes a test "living room" identical to the test room used in earlier tests at USACERL (Schomer 1989). The other half of each duplex includes a living room identical to the living room of the test house used in Grafenwöhr, Germany (Schomer 1991). So, one half is designated the American half and one half is designated the German half. The American half includes standard American windows, doors, and ceiling heights; the

^{* 10-}dB down time: time period when the sound level is within 10 dB of the maximum level.

!		c1= c8= c4= c	22 512 582 542	2 - 1 -	TEST #	PAGE #
•			43 553 563 573		SEQ #	DAY
			-3 = c4 = c5 = c6 = :		MONTH	POSITION
•			63 573 583 593		YEAR	
•			20 010 080 040		SUBJECT #	'
		THE MORE YING NOISE	HOW HARD W TO DECID			
	Trial First	Second	Very Easy	Very Ha	d	
	1. cF= 2. cF=	c\$=	c 1 = c 2 = c 3 = (and the second second		
•	3. cF=	cS3	c1= c2= c3=	c4= c5=	TEST	SUBJECT
	4. cF⊐ 5. cF⊐	ES⊐			DECDC	NSE SHEET
•	6. cF=	ES=	c1= c2= c3=		NESPU	MOE OUEE!
	7. cF=	cS⊃ San CSan San San San San San San San San San	c10 c20 c30 (1		
•	9. cF=	ES∃	c1> c2> c3>	1 1 2 1		
•	10. FF=	c\$=	c1= c2= c3=	. 1	A1434E	
	11. FP	cS= -cS=	c 1 = c 2 = c 3 = c		NAME	
Α.	13. FP	cS:	*=1= =2= =3= =			
	14. □F□ 15. □F□	c S ⊐	c10 c20 c30 (1		
•	16. □F⊃	ES3	c1> c2> c3>	-4º -5º		IMPORTANT
	17. cF=	c S >	c 1 = c 2 = c 3 = c		• USE #2 P	ENCIL
•	19. cF =	c S =	c1= c2= c3=		● MAKE <i>DA</i>	RK MARKS
	20. F= 21. F=	□S □ □S□	610 620 630 (610 620 630 (1	• EXAMPLE	:cAp cBp ••• cDp cEp
•	22. cF=	c\$=	c1= c2= c3= :	I	• ERASE C	OMPLETEY TO CHANGE
•	23. °F2 24. °F2	© \$ ⊃ © \$ ⊃	c10 c20 c30 i			
	MARK	THE MORE	HOW HARD W			
	Trial First	YING NOISE Second	TO DECID:	E? Very Hai	d	
•	1. cF3	E\$3	c13 c23 c33 c			
•	2. cF3	E S ⊐	c10 c20 c30 i			
•	4. cF	ES3	£13 £23 £33 £			
•	5. cF=	=S⊃ =S⊃	c 1 > c 2 > c 3 > c	- 1		
•	7. cF=	c\$:	c1> c2> c3> c			•
•	8. °F⊃	E S 3	c10 c20 c30 c			
•	9. F=	E\$3	c1= c2= c3= c			
	11. FF=	ES=	c 1 = c 2 = c 3 = 1			
В	12. cF=	cS:	c 10 c 20 c 30 c			
•	14. °F =	. ES⊐	c1= c2= c3= t			
	15. cF□ 16. cF□	cS=	610 620 630 6 610 620 630 6	. 1		
	17. □F□	ES⊒	c 1 > c 2 > c 3 > c	42 = 53		•
•	18. F=	ES3	c13 c23 c33 c			
•	20. F=	c\$=	c10 c20 c30 c			
	21. FP	ES3	c 1 = c 2 = c 3 = c	4 4 24 4		
•	22. F3 23. F3	c\$=	c1= c2= c3= c	**		
	24 F=	cS:	c12 c22 c32 c	43 653		

Figure 11. The machine-readable subject response test form.

Table 3a. Order of the sound pairs for the first half of each test.

FIRST HALF									
	1ST EVENT	2ND EVENT		1ST EVENT	2ND EVENT				
1	V2	+5 Pink Noise*	29	V1	Near Gun-60 shots				
2	+10 Pink Noise	Leo II	30	-10 Pink Noise	Near Gun-60 shots				
3	V5	Small Blast	31	+5 Pink Noise	Loud Helicopter**				
4	V3	Near Gun-60 shots	32	Large Blast	V3				
5	V6	Far Gun-60 shots	33	+10 Pink Noise	V2				
6	V2	Loud Helicopter**	34	Far Gun-60 shots	V5				
7	Small Blast	V4	35	-10 White Noise	Large Blast				
8	Large Blast	+10 White Noise	36	V4	Loud Helicopter*				
9	+10 Pink Noise	Near Gun-60 shots	37	Small Blast	V6				
10	Loud Helicopter**	-10 Pink Noise	38	Quiet Helicopter**	V2				
11	Near Gun-60 shots	V5	39	Far Gun-60 shots	V3				
12	Near Gun-6 shots	V2	40	Large Blast	+5 White Noise				
13	V3	Quiet Helicopter**	41	Near Gun-60 shots	-5 Pink Noise				
14	V4	Large Blast	42	V2	-10 Pink Noise				
15	Loud Helicopter**	V1	43	V5	Near Gun-6 shots				
16	-5 White Noise	Large Blast	44	V3	Small Blast				
17	Near Gun-60 shots	+5 Pink Noise	45	Large Blast	-0 White Noise				
18	Quiet Helicopter**	V5	46	V2	Far Gun-60 shots				
19	Large Blast	V2	47	Quiet Helicopter**	V4				
20	Near Gun-6 shots	V3	48	Loud Helicopter**	V3				
21	V4	Near Gun-60 shots	49	V5	Large Blast				
22	Loud Helicopter**	-0 Pink Noise	50	-0 Pink Noise	Near Gun-60 shots				
23	V1	Large Blast	51	-5 Pink Noise	V2				
24	Near Gun-60 shots	V2	52	V6	Quiet Helicopter**				
25	Near Gun-6 shots	V6.	53	-5 Pink Noise	Loud Helicopter**				
26	V5	Loud Helicopter*	54	V4	Far Gun-60 shots				
27	V4	Near Gun-6 shots	55	V2	Small Blast				
28	V2	-0 Pink Noise							

^{*} The designation "+5 Pink Noise" shows that the control sound level for that set and test sound was pink noise presented at 5 dB above the "base" sound level as given in Table 2.

^{**} During the last two test periods, the Loud Helicopter was replaced by the Near 25mm Cannon and the Quiet Helicopter was replaced by the Far 25mm Cannon.

Table 3b. Order of the sound pairs for the second half of each test.

SECOND HALF								
	1ST EVENT	2ND EVENT		1ST EVENT	2ND EVENT			
1	-0 Pink Noise*	Loud Helicopter**	29	Large Blast	-5 White Noise			
2	V2	Quiet Helicopter**	30	V5	Near Gun-60 shots			
3	Near Gun-60 shots	-10 Pink Noise	31	-0 Pink Noise	V2			
4	Large Blast	V5	32	Large Blast	V1			
5	Loud Helicopter**	+5 Pink Noise	33	V3	Large Blast			
6	Quiet Helicopter**	V3	34	Loud Helicopter**	-5 Pink Noise			
7	Near Gun-6 shots	V4	35	Quiet Helicopter**	V6			
8	V2	Near Gun-6 shots	36	Near Gun-6 shots	V5			
9	Far Gun-60 shots	V6	37	V3	Far Gun-60 shots			
10	V5	Quiet Helicopter**	38	V2	Near Gun-60 shots			
11	Loud Helicopter**	+10 Pink Noise	39	Near Gun-60 shots	V4			
12	-5 Pink Noise	Near Gun-60 shots	40	+10 White Noise	Large Blast			
13	V2	-5 Pink Noise	41	V3	Near Gun-6 shots			
14	V4	Small Blast	42	Far Gun-60 shots	V2			
15	V5	Far Gun-60 shots	43	Loud Helicopter**	V5			
16	Near Gun-60 shots	+10 Pink Noise	44	Large Blast	V4			
17	Small Blast	V3	45	+5 Pink Noise	Near Gun-60 shots			
18	V1	Loud Helicopter**	46	V2	+10 Pink Noise			
19	Small Blast	V2	47	Near Gun-60 shots	-0 Pink Noise			
20	-0 White Noise	Large Blast	48	V3	Loud Helicopter**			
21	V6	Small Blast	49	+5 White Noise	Large Blast			
22	Far Gun-60 shots	V4	50	V2	Large Blast			
23	Loud Helicopter**	V2	51	V6	Near Gun-6 shots			
24	Near Gun-60 shots	V3	52	Small Blast	V5			
25	Near Gun-60 shots	V1	53	-10 Pink Noise	Loud Helicopter**			
26	Large Blast	-10 White Noise	54	V4	Quiet Helicopter**			
27	-10 Pink Noise	V2	55	+5 Pink Noise	V2			
28	Loud Helicopter**	V4			1			

^{*} The designation "-0 Pink Noise" shows that the control sound level for that set and test sound was pink noise presented at 5 dB above the "base" sound level as given in Table 2.

^{**} During the last two test periods, the Loud Helicopter was replaced by the Near 25mm Cannon and the Quiet Helicopter was replaced by the Far 25mm Cannon.

German half includes windows and doors taken from Grafenwöhr and is constructed to the standard German ceiling height. Each room has one large window and door facing the vehicle road, and the small arms, 25 mm cannon, and blast firing sites. In each German room, the door is a glass patio door; in each American room, the door is wood and there is an additional, small window on the side of the room in addition to the large front window. Figure 12 shows the layout of one duplex. Appendix A describes the structures and the immediate site in more detail.

Each duplex half is separated from its other half by vibration isolation and triple walls with special acoustical treatment. Each half has its own heating, ventilating, and air conditioning (HVAC) and electrical systems so nothing penetrates from one half to the other. The construction of the two duplexes differed. One has typical American woodstud walls, a crawl space, and a trussed, asphalt-shingled roof. The other has 30 centimeter (cm) masonry walls and a poured concrete floor and ceiling. The latter mimics German construction, which typically has these features. Although the masonry wall at APG is heavier than a typical German masonry wall, the windows are the limiting factor in either case in terms of acoustical transmission. The American walls use nominal 2 inch (in.) x 6 in. (exact dimensions—4 cm x 14 cm) studs rather than the nominal 2 in. x 4 in. (exact dimensions—4 cm x 9 cm) studs in order to increase stiffness and improve low-frequency sound isolation performance.

The test facility is located within the main weapons test area of APG; an area that is several hundred square km in size. Because of its location, no problems occurred using live ammunition and no neighbors were near to be bothered by the test sounds. However, because of sound from other non-acoustical testing during the day at APG, it was necessary to perform these tests during the evenings and on Saturdays.

The subjects were placed in each of the four test living rooms. They sat on chairs and couches towards the rear of each room, as distant as possible from the wall containing the front windows and facing the road and firing sites. A test supervisor sat with each group. All windows were covered by closed drapery to prevent subjects from seeing the passing vehicles. (All other sound sources were obscured by trees.)

An outdoor group created when tests were performed during summer months (two of the five test periods) was located just northeast of the test house (Figure 12). The outdoor group faced the sound sources but were visually screened from the sound sources by being in a large tent. An absorbant barrier wall behind and to the side of the tent protected respondents from other extraneous sounds.

Figure 12. The layout of one duplex.

The control computer and measurement equipment were in the instrument "trailer," a permanent part of the test facility. This is also where the coordinator of the vehicles, blasts, small arms, and computer-generated sounds was located.

Test Subjects

The subjects—hired for the test by a local contractor—came from the local area and represented a reasonable cross section of the general public in terms of age and gender. Subjects participated in the experiment only once. Overall, about 350 subjects were used for this study. Because the paired-comparison methodology reduces the need to have subjects with perfect hearing and the desire was to have a cross-sectional representation of the community, subjects were not screened for perfect hearing acuity. The elderly, even with an age-related hearing loss, were used in this test to form the typical community cross section. However, subjects who could not communicate over the telephone were excluded.

Acoustical Data Collection

The acoustical measurement instruments consisted of eight indoor and four outdoor microphones. Two Brüel and Kjær (B&K) 4145 "1-inch" microphones were placed in each subject room at the subjects' ear height and located to obtain a good approximation to the stimuli heard by the subjects. Two B&K 4921 outdoor microphone systems were located about 80 to 100 mm (the thickness of the windscreen plus a small air space) from the southeast face of each test duplex. A third B&K 4921 microphone was located in a "free-field" setting midway between and about 50 cm forward of the line formed by the front faces of the test houses.* A fourth B&K 4921 microphone was located just behind the subjects in the outdoor group. The subject group microphone was at ear height, about 1 m. The other three outdoor microphones were at a height of about 2.5 m. Figure 12 shows the microphone positions near the eastern duplex.

To ensure more accurate measurement of both low-level (small arms and vehicles) and high-level (blast) sounds, a computer-controlled attenuator was developed. It was used during the June 1992 test. In general, the eight indoor microphones were used to measure the sound signals received by the subjects. With the exception of blast sounds, the free-field microphone was used to obtain the general outdoor sound levels

The term "free-field" is used without quotations to designate this microphone position for the remainder of this paper although a microphone at only a height of 2.5 m is not exactly in a free-field.

used for analysis; the microphones on the front (southeast) faces of the test houses were used to determine the blast sound levels.

The equipment room shown in Figure 13 housed all the equipment for analyzing and recording the signals taken from the houses and three outdoor microphones. Both the indoor and outdoor signals were recorded on Panasonic 3500 DAT recorders. Also, the microphone signals were amplified with a Tektronix AM502 amplifier and analyzed using a USACERL-developed integrating noise monitor and SEL meter (Model 380). Figure 14 shows the instrumentation.

Control Sound

A personal computer (Figure 15) was used to regulate the control sound that was compared with each test sound. The starting point in generating a control sound was playback of a DAT recording. One channel contained the white noise (200 to 1,500 Hz), the other channel contained the pink noise (500 Hz octave band). The amplitude envelope (Figure 10) of either control noise type was created with a programmable attenuator connected to the personal computer. By using the programmable attenuator, the computer regulated the SEL and 10-dB down time of the control sound.

The white/pink-noise control sounds were presented at 5-dB intervals. The levels were -10, -5, 0, +5, and +10 dB with respect to the base level ASEL (see Table 3). The control sound would gradually rise from inaudible to 10 dB below its maximum level, and then rise to the maximum at a different rate. The sound would then decay in approximately the same manner. (See Figure 3 for examples of the amplitude envelopes of the two control sounds.) The sound in each room was generated by two loudspeakers. The outdoor control sound was the same as the indoor sound, except the outdoor level was 20 dB higher. This 20 dB gain was used because the A-weighted attenuation of a typical American house from outdoors to indoors is about 20 to 25 dB (A-weighted). For the white/pink-noise control sound sources, the control levels were adjusted in ±5 dB steps depending on received test sound levels and the response data already collected. The goal was to have the equivalency point at the middle of the control sound range which was the middle level for the white/pink noise control sounds. Table 3 contains the actual "base" levels by set.

Conduct of The Test

Each test required approximately 3 hours to complete. Random groups of five or six subjects were taken to the test house by a supervisor who gave them information on

Figure 13. The instrument control room-data collection station.

Figure 14. Schematic representation of the instrumentation.

Figure 15. The instrument control room-test control station.

test conduct and remained with them throughout the test. (Figure 16 shows a typical indoor group of test subjects.) First, to train the subjects, a pretest used two pinknoise samples as the pair of sounds. Typically, three pairs of sounds were presented. For the first two pretest pairs, the ASEL of the two sounds in each pair clearly differed; their levels were 10 dB apart. In the first pair, the first sound had the higher level, and in the second pair, the second sound had the higher level. In the third pair, the ASELs of the two sounds were equal. Supervisors would check the participants' answers after each pretest run and use the first two pretest pairs to verify that everyone understood the instructions. If a test subject chose the "wrong" answer during the pretest, the supervisor would repeat the instructions to everyone. If necessary, more pretest pairs were run until everyone fully understood the instructions.

The subjects were told to mark which sound was more bothersome or annoying (Figure 11); the sound they would rather not hear again given the choice. The subjects were also told to mark how difficult it was to make this decision on a scale of 1 to 5 with the endpoints anchored by the descriptions "very easy" and "very hard." It is important to note that test participants were required to decide which sound of a pair was more annoying or bothersome for every pair of sounds. They could not say that the two sounds were of equal annoyance, but they could indicate that it was "very hard" to decide. The primary purpose for including the "degree of difficulty" scale was to ensure that the subjects made a choice as to which sound was more annoying in a pair.

Judgments of the annoyance of each pair of sounds were accomplished in four segments. First, a red light would light and subjects would concentrate on the first sound. Second, a yellow light would light and the participants would listen to the second sound. Third, a green light would light and the subjects would have approximately 5 s to mark the form. Finally all lights would be turned off and the subjects would wait until the red light was turned on again to signal the start of the next pair. The red and yellow light segments for the vehicles and small arms lasted for approximately 30 s; for the blasts, these lights were lit for 5 to 10 s. Figure 17 shows the signal lights and loudspeakers in a subject test room.

A computer controlled signal lights and generation of control sounds. The operator of the computer used a portable radio to contact supervisors at each of the test sound source sites (i.e., near and far small-arms sites) to ensure the arrival of each sound at its proper time.

Figure 16. Subjects seated in a test room.

Figure 17. A subject room showing the front wall, control lights, and loud speakers for generating the pink/white-noise control sound.

Test Conditions

Table 4 lists the three conditions tested. The subjects were located indoors with the windows in each room closed (like most previous research in this general subject) during: the first measurement period, which consisted of a pretest and six good test sessions; the fourth measurement period, which consisted of three test sessions; and the fifth measurement period, which consisted of two good test sessions. (Recording problems and high instrument noise floors rendered useless the data from two other test sessions during the fifth test period.) Second, during the second and third measurement periods, which together consisted of six test sessions, the windows were partially open (about 50 mm), enabling air flow but not allowing the subjects to see the test stimuli. Third, during the second and third measurement periods, subjects also occupied the outdoor area (see Figure 12).

Table 4. Test conditions by measurement period.

Condition	Test Sessions
subjects indoors; windows closed	Jan 92, Nov 92, Jan 93
subjects indoors; windows open	Jun 92, Aug 92
subjects outdoors	Jun 92, Aug 92

3 Data Analysis

Acoustical Data

The acoustical levels for the small arms, tracked-vehicle, and wheeled-vehicle sound were kept constant from test to test, so the resulting data could be aggregated based on test condition (windows closed, subjects indoors; windows open, subjects indoors; or subjects outdoors). The blast sound levels were not constant from day to day because of changes in sound propagation conditions. Table 5 lists the blast levels by test. For analysis, the blast data were grouped by like levels within a test time period as indicated in Table 5. Appendix B contains the measured average data for sound sources for each set.

Table 6 lists the ASELs for the small arms, helicopters, 25 mm cannon, and wheeled vehicles. The ASELs in Table 6 represent the average values of the measured sound exposures and were rounded to the nearest 0.5 dB. Because the levels for these four sounds were kept almost constant from one test session to another, the resulting data could be aggregated across test sessions within each of the three test conditions. These aggregated sound exposure levels (SELs) were used throughout the analysis.

Subject Responses

Responses of the subjects were analyzed to determine the test sound ASEL (CSEL for blast sounds) at which 50 percent of the subjects felt that the test sound was more annoying than the control. This analysis concentrated on group-pooled responses using the average SEL data (Tables 5 and 6).

Test-subject responses were analyzed for each test sound source paired with each of its five respective control sounds to find the percentage of subjects that were more annoyed by the test-sound source at each control sound level. The result of such an analysis should have the form of a transitional function.

However, it is not feasible to test with extremely high- or low-level control sounds. For example, control ASELs at or below 20 dB are virtually inaudible and unmeasurable (at a field test site), and control ASELs at or above 110 dB are well above recommended

Note: In January 1992, set 5 did not occur, and in August 1992, set 1 was a pretest.

Table 5a. Large-charge blast sound data by measurement set.

)	,						
Test Period	Test Set	Test Grouping	Free-field CSEL (dB)	Free-field Peak level (dB)	Pressure-doubled CSEL (dB)	Pressure-doubled CSEL (dB)	Indoor CSEL (dB)
January 1992	1	Α,	107	129	110	128	98
	2	В	101	125	107	130	93
	3	C	94	116	97	119	84
	4	8	102	120.5	105	127	88
	9	٧	106	127	108	128.5	93
	2	8	102	124	105	126	88
June 1992	-	۵	94	116	96	117	81
August 1992	2	Ш	100	122	103	123	95
)	ღ	ш	105	128	109	132	101
	4	ட	101	124	105	128	66
	5	10	100	123	104	127	66
November	-	g	103	123	105	123	06
1992	2	5	106	127.5	109	127	06
	3	5	105	127	108	130	06
January 1993	-	Ξ	86	119	101	119	85

Note: In January 1992, set 5 did not occur, and in August 1992, set 1 was a pretest.

Table 5b. Small-charge blast sound data by measurement set.

Test Period	Test Set	Data grouping	Free-field CSEL (dB)	Free-field Peak level (dB)	Pressure-doubled CSEL (dB)	Pressure-doubled CSEL (dB)	Indoor CSEL (dB)
January 1992	1	_	66	119	101.5	121	96
	2		96	117	103	124	88
	က	ſ	92.5	112	95	115	81
	4	ſ	93	113	96	116.5	80
	9	æ	66	120	102	123	06
	7	-	97	117	100	120	85
June 1992	1	· ¥	82	112	93	115	78
August 1992	2	٦	95.5	117	98	120	91
	3	L	66	121	103	125	93
	4	1	96	117	100	121	95
	5	Σ	95	117	98	120	95
November	F	z	94.5	115	66	119	85
1992	2	z	95	116	86	120	98
	ဧ	z	95	116	97	120	85
January 1993	1	0	92	112	96	116	83

Table 6a. All of the test sound source ASEL data used for the overall analysis.	test sound source	e ASEL data used	for the overall	analysis.			
Test Sound Source	Near Guns 60 shots	Near Guns 6 shots	Far Guns 60 shots	Near Helicopter	Far Helicopter	Neat 25 mm Cannon	Far 25 Cannol
			JTDOOR DATA	OUTDOOR DATA (Free-Field), ASEL (dB)*	1B)*	•	
Jan 92	85	76	75	88	78		
Jun 92	86	74	76	88	78		
Aug 92	85	75	75	88	78		
Nov 92	85	75	92			70	70
Jan 93	. 82	76	22			72.5	74
		 	TDOOR DATA	OUTDOOR DATA (Tent Group), ASEL (dB)	(dB)		
92 mil.	83	74	75	06	82		
A10 92	8	73	74	86	92		
	} -	INDOORS	AT SUBJECTS-	INDOORS AT SUBJECTS—WINDOWS CLOSED, ASEL (dB)), ASEL (dB)		
Jan 92	35	46	46	65	54		
Nov 92	5 45	45	46			51	49.5
Jan 93	52	44	42			51	50.5
		INDOORS	AT SUBJECTS	INDOORS AT SUBJECTS—WINDOWS OPEN, ASEL (dB)	ASEL (dB)		
Jun 92	29	28	58	02	65		
Aug 92	99	57	58	89	59		
*These data are e	*These data are energy averaged ASEL, rounded to the nearest 1/2 dB.	SEL, rounded to th	e nearest 1/2 dB			:	

blo 6h - All of the control course ASEL data need for the overall analysis	allalysis.
Overall	
d for the	
data neo	זמום חפם
ASEL	
COLLEGE	300
Control	5
I of the	
A 43	200
3	Š

	3					
Control Sound Source	Vehicle 1	Vehicle 2	Vehicle 3	Vehicle 4	Vehicle 5	Vehicle 6
		OUTDOOR DATA (Free-Field), ASEL (dB)	Free-Field), ASE	L (dB)		
Jan 92	97	93	88	81	75	70
Jun 92	96	06	85	79	73	69
Aug 92	86	06	87	80	72	67.5
Nov 92	86	35	88	80	76	72
Jan 93	96	92	89	81	92	71
	D	OUTDOOR DATA (Tent Group), ASEL (dB)	Fent Group), ASI	EL (dB)		
Jun 92	93	89	83	62	74	72
Aug 92	95	89	84	80	74	70
	INDOORS	INDOORS AT SUBJECTS—WINDOWS CLOSED, ASEL (dB)	WINDOWS CLOS	SED, ASEL (dB)		
Jan 92	29	63	59	55	51	48
Nov 92	89	64	61	59	56	49
Jan 93	68	63	09	57	51	50
	INDOOF	INDOORS AT SUBJECTS—WINDOWS OPEN, ASEL (dB)	-WINDOWS OPE	EN, ASEL (dB)		
Jun 92	77	72	99	62	59	50
Aug 92	9/	71	89	63	22	55
*These data are energy averaged ASEL, rounded to the nearest 1/2 dB.	ged ASEL, rounded	to the nearest 1/2 d	B.			

levels for hearing conservation. So, in this analysis, a transitional curve was fitted to the data, but constrained to be very near to 100 percent for control ASELs at or below 20 dB, and also constrained to be very near 0 percent for control ASELs at or above 110 dB. One of the following three transition functions was used to produce a plot for each test sound and corresponding set of five control sounds. Selection of the best-fit function was made on the basis of which yielded the smallest error. The curve having the largest F-statistic (i.e., minimum mean square residuals) was selected. Once the plots were generated, the SEL of the test sound source and the corresponding ASEL of the control sound for each equivalency point were determined by computer solution of the curve fitted to the data.

Each of the three potential transition functions has four independent parameters, a, b, c, and d. Each curve relates the percent of the judgments that found the test sound to be more annoying (%) to the ASEL of the control sound (L_{AE}) in decibels.

The Sigmoid function has the form:

$$\% = a + b/\{1 + \exp[-(L_{AF} - c)/d]\},\tag{1}$$

the Logistic Dose Response function has the form:

$$\% = a + b/[1 + (L_{AE}/c)^{d}], \tag{2}$$

and the Cumulative Distribution function has the form:

$$\% = a + (b/2)\{1 + \text{erf}[(L_{AE} - c)/(2^{1/2}d)]\}$$
(3)

where erf is the Error function.

Appendixes C, D, E, and F contain complete listings and transition curve figures for all of the data. The tables in these appendixes include the F-statistic and the corresponding standard error for each transition curve, type of curve fit, 90 percent confidence limits, t-value, and standard error for each of the four independent parameters.

4 Results

Helicopter, Small Arms, and 25 mm Cannon Results—Wheeled-Vehicle Control Sounds

As described in the Munster article (Schomer et al. 1994), the data were analyzed using both the free-field microphone and the indoor microphone. Both sets of results are discussed below.

Table 7 summarizes the results for the three test conditions of windows closed, windows open, and outdoors. This table includes consolidated data for the four indoor rooms together and for the outdoor group. In this table, the penalties are the amounts in decibels to be added to the test SELs to make them equivalent in terms of annoyance to their corresponding control SELs. The penalties in Table 7a are for acoustical measurements made near the subjects; those in Table 7b are for acoustical measurements made outdoors in a free field.

Environmental noise is normally measured and assessed on the basis of outdoor data. For example, airport or highway noise contours predict outdoor free-field sound levels; not the sound levels at the ears of residents inside houses. So, to assess military sounds compared with traffic sounds, it is **mandatory** that the penalties be based on outdoor-measured SELs—even though the judgments were made by subjects situated indoors. Table 7b lists these penalties.

Small arms results

The data gathered using the outdoor, free-field microphone indicate an average penalty of 12 dB for all indoor test conditions, windows open or closed, 60 shots or 6 shots, near or far position. With acoustical measurements indoors near the subjects, the results are much the same, but the scatter is a little greater and the penalty is about 10 dB. Sound level causes no apparent variation. This is in contrast to earlier results by Rice (1989), Vos (1990), and at Munster (Schomer et al. 1994) where there was some indication of a level dependence to the results. Here the penalty is fairly constant at 12 dB.

For subjects outdoors, the small arms penalty appears to be about 9 or 10 dB.

Table 7a. Computed penalties for measurements made near the subjects.

apie ra. compared penalice for in		coolers and annual controllers	an and care				
Test Sound Source	Near Guns 60 shots	Near Guns 6 shots	Far Guns 60 shots	Near Helicopter	Far Helicopter	Near 25 mm Cannon	Far 25 mm Cannon
		оптро	OUTDOOR (TENT) GROUP, ASEL (dB)*	UP, ASEL (dB)*			
Jun 92	10	8.5	10	2.5	-		
Aug 92	7.5	9.5	12.5	2	5		
AVERAGE	8.8	6	11.2	2.3	3		
		INDOORS	-WINDOWS CL	INDOORS—WINDOWS CLOSED, ASEL (dB)	(6		
Jan 92	11	8	9	-7	-1		
Nov 92	13	*	**			13	13
Jan 93	15	*	**			11	11
AVERAGE	13	8	9	<i>L</i> -	-1	12	12
		INDOOF	S—WINDOWS	INDOORS—WINDOWS OPEN, ASEL (dB)			
Jun 92	6	12	15.5	2	-3.5		
Aug 92	11	13	12	2	1.5		
AVERAGE	10	12.5	13.8	2	7		
			INDOOR AVERAGES	AGES			
AVERAGE							
*All of the computation between property of ACE		Bb () 1 sources at the behavior (et 1/0 dB				

*All of the computed penalties (ASEL) rounded to the nearest 1/2 dB. ** These low-level indoor data were inadvertently corrupted by HVAC noise.

ield.	
free	I
a _	
loors	
o Tic	
made	
ents	
easurem	
for m	
penalties	
able 7b. Computed penalties for measurements made outdoors in a free field.	
7b.	
aple	

lable / D. Collibated perialice for								Г
Test Sound Source	Near Guns 60 shots	Near Guns 6 shots	Far Guns 60 shots	Near Helicopter	Far Helicopter	Near 25 mm Cannon	Far 25 mm Cannon	
		È	CHITDOOD (TENT) CBOILD ASE! (48)*	*(ap) teel				
		100	On (IENI) and	יייייייייייייייייייייייייייייייייייייי				Т
Jun 92	6	æ	6	6.5	4.6			$\neg \neg$
Aug 92	9	7.5	12.5	1.5	ဇ			
AVERAGE	7.5	7.8	10.8	4	3.8			т-т
		INDOORS	S-WINDOWS CI	INDOORS—WINDOWS CLOSED, ASEL (4B)	3)			
Jan 92	15	12	12	2	3			
Nov 92	12	11	6			19	18	
Jan 93	12	10	8			12.5	15.5	
AVERAGE	13	11	9.7	2	ဗ	15.8	16.8	
		INDOON	SWOUNDOWS	INDOORS—WINDOWS OPEN, ASEL (dB)				
Jun 92	6	15	16	2.5	1			
Aug 92	12	14	14	1	0			
AVERAGE	10.5	14.5	15	1.8	0.5			
			INDOOR AVERAGES	RAGES				
AVERAGE	12.0	12.4	11.8	1.8	1.3	15.8	16.8	
*All of the computer	*All of the computed penalties (ASEL) rounded to the nearest 1/2 dB.	unded to the near	est 1/2 dB.					
								1

25 mm Cannon results

Penalties for the 25 mm cannon appear to be about the same as for small arms when measured indoors by the subjects—12 dB versus 10 or 11 dB for the small arms. However, because of the low frequencies present in the cannon spectrum, the outdoor, free-field computed penalties are larger—about 16 dB versus 12 dB for the small arms. So at the subjects' ears, the 25 mm cannon appears to be judged similarly to small arms in terms of annoyance, but it may need a larger penalty when it is compared to other sounds on the basis of outdoor, free-field measurements.

Helicopter results

The most surprising result was found for the helicopters. Although many have thought that helicopter sound should be penalized because of its "impulsive" character, little or no penalty was found. In fact, with acoustical measurements indoors at the subjects, the penalty is sometimes negative—a bonus. This result is considered to be particularly reliable because a penalty was clearly found by the same subjects in the same test for small arms sound.

Small Arms, 25 mm Cannon, and Helicopter Results; Pink Noise as a Control Sound

Loudspeakers produced the pink-noise signal near each group of subjects. Therefore, the following analysis is only for acoustical data measured by the microphones near the subjects. (The outdoor free-field microphone did not measure any loudspeaker sound.) Table 8 shows the results for the three test conditions of windows closed, windows open, and subjects outdoors for the three sources (nearby small arms [60 shots], nearby 25 mm cannon, and nearby helicopter) each of which had both wheeled-vehicle and pink noise as a control sound. Table 8 also includes the results for vehicle V2 with pink noise as a control sound.

As at Munster, the results using the pink-noise control sound were substantially different from the results using wheeled-vehicle control sounds. The difference both in this study and in the Munster study was of the order of 10 dB, and in both studies the results were internally consistent (as Table 8 demonstrates for this study). For each test condition, the value of the penalty found for vehicle V2 using pink noise as a control sound was quite similar to the difference in penalty found between using

Table 8. All of the computed penalties (ASEL) using pink noise as the control and comparison with the corresponding penalty using vehicles as a control.

Test Sound Source	Vehicle 2	Near (Near Gun-60	Near Helicopter	copter	Near 25 mm	5 mm
Control	Pink Noise	Pink Noise	Vehicles plus*	Pink Noise	Vehicles plus*	Pink Noise	Vehicles plus*
	OUTDOOR C	TDOOR COMPUTED PENALTY (Measurement near Tent Group), ASEL (dB)	TY (Measuremen	t near Tent Grou	p), ASEL (dB)		
Jun 92		outdoor pink no	outdoor pink noise was incorrect				3
Aug 92	6.5	15.5	14	12.5	8.5		
	PENALTIES COMPUTED INDOORS—WINDOWS CLOSED (Measurement near Subjects), ASEL (dB)	O INDOORS—WIN	DOWS CLOSED	Measurement ne	ar Subjects), /	ASEL (dB)	
Jan 92	6	24	20	2	2		
Nov 92	6	26	22			19	22
Jan 93	11.5	22.5	26.5			19.5	22.5
AVERAGE	9.6	24.2	22.8	2	2	19.5	22.3
	(0	COMPUTED INDOORS—WINDOWS OPEN (Measurement near Subjects), ASEL (dB)	NDOWS OPEN (A	feasurement nea	r Subjects), A	SEL (dB)	
Jun 92	5	20	14	4	7		
Aug 92	7	18.5	18	8.5	8		
AVERAGE	6.5	19.3	16.5	6.3	8		

*This column contains the corresponding penalty from Table 6 (where the control sound was vehicles) plus the penalty for V2 given in column 2 of this table.

wheeled-vehicle or pink-noise control sound for near small arms (60 shots), the near 25 mm cannon, or the near helicopter. Because of the internal consistency in each study and the replication of the results in both, this difference of about 10 dB between the penalty determined using the two different control sound sources is considered to be very reliable and real.

The 10-dB difference between the ASELs of equally annoying pink-noise and wheeled-vehicle sounds casts some doubt on testing methodologies that use artificial, machine-generated sounds as a control to develop *absolute* penalties. Since the goal of absolute penalties is to make assessment of some study sound equal to assessment of normal environmental sounds such as motor vehicle traffic, the large differences in penalties derived using the two different control sounds indicates that artificially-generated control sounds should not be used as a surrogate for real sounds when testing annoyance to determine *absolute* levels for penalties.

Blast Sound Results

In the following, results are given both for acoustical data gathered near the subjects' ears and for acoustical data collected outdoors, but with the subjects indoors.

Because sound propagation conditions and resulting received blast SELs changed greatly from day to day, the data were grouped by like levels within test sessions. On some occasions, for example, nearly all of the subjects found the blast more annoying for all control sound levels when the blast sound levels were especially high on one day, and conversely, the opposite occurred when the blast sound levels were very low on another day. In one case, no reliable transition curve could be developed for the data.

This problem was so acute because, as shown below, a 1 dB change in CSEL of a blast corresponded to about a 2 dB change in ASEL for an equivalently annoying control sound. Since the range of control SEL was about 20 dB, a shift of only 10 dB in the received blast SEL could shift the subject responses from one extreme to the other, from all finding the blast more annoying to none finding the blast more annoying than the control sound. Because of this problem, several sets of blast data points do not include the 50 percent point within the data range. In these cases, the 50 percent point was determined by extrapolation. However, the extrapolation was required to be small and the closest data point to 50 percent was at about 55 to 60 percent. One data set was excluded because it required what was considered to be too great an extrapolation (more than 10 percentage points from the nearest data point) to determine the 50-percent point.

Figure 18 shows the data and regression line for CSEL compared with both wheeled-vehicle and white-noise control SELs. The data were measured indoors near the subjects with the windows closed. The slope of the regression line is 0.33. Thus, in Figure 18, a 1-dB change in the CSEL of the blast sound corresponded in terms of annoyance to about a 3 dB change in control sound ASEL. However, the range of SELs for the control sounds was only about 30 dB, and the range of SELs for the blast sounds was only about 15 dB.

As at Munster, the blast data exhibited no difference between using the wheeled-vehicle control sound or the white-noise control sound. But the white-noise sound was much different in spectrum and amplitude envelope from the pink-noise control sound. Given the difference in the earlier results for the two control sounds (pink noise and vehicles), the lack of difference between white noise and vehicles may be purely coincidental.

Figure 19 shows the data and regression line for earlier results from the Grafenwöhr Training Area and Munster along with these results from APG and eight earlier data points from a prior test at APG. All of the data are for a windows-closed test condition with acoustical measurements made indoors, near the subjects. The control sound in each case was white noise. At each site, the large-charge-size blast sound source was typically about 2 kg of explosives (known as C-4 or military TNT); the small blast sound source was about 500 g of explosives at a site about 1 km from the test houses, and the control sound was white noise. The most important features are the comparatively good agreement among the data sets and the 0.54 slope of the regression line. In Figure 19, a 1-dB change in CSEL corresponded to a change in equivalent control sound ASEL of about 1.8 dB. Also, in contrast to Figure 18, the SELs for the control sound shown in Figure 19 varied almost 50 dB and the SELs for the blast sounds varied about 25 dB.

In the Munster study (Schomer et al. 1994), it was found that for a combination of open- and closed-window data, the indoor measurements did not correlate well with indoor blast sound responses, but measurements of **outdoor** CSELs of blast sounds correlated well with judgments made indoors for both windows-open and closed test conditions, and even for subjects outdoors. The conclusion was that ASELs or CSELs measured indoors for blast sounds are not good predictors of annoyance judgments made indoors. So in this report only the outdoor measured acoustical data are used to analyze the responses to blast sounds when using wheeled-vehicles as the control sound source.

Figure 18. Data and regression line for indoor measured blast sound data at APG.

Munster = squares, APG series 1 = diamonds, APG series 2 = circles, and Grafenwöhr = stars. In each study, subjects were indoors with the windows closed, and identical acoustical measurements were made indoors near the subjects. At each test site, the large charge-size blast sound source was typically 2 kg (or 5 lb) of explosives (C-4 or military TNT), the small blast sound source was about 500 g of explosives, and the blast site was located about 1 km from the test house.

Figure 19. Data and regression line for blast sounds for Munster, APG series 1 and 2, and Grafenwöhr using white-noise control sounds.

Figure 20 shows the results of the indoor judgments of blast sounds for all wheeled-vehicle control sounds measured outdoors at the face of the test houses both in this study and in the Munster study. White-noise control sound data were not included because the loudspeakers were near the groups of subjects, and the microphone on the face of the test house did not measure the loudspeaker sound levels.

The most salient feature of the data in Figure 20 is its slope of about 0.50. A 1-dB change in CSEL of the blast sound corresponded to a change on the order of 2 dB in the ASEL of the equivalently annoying vehicle control sound. The point of subjective equality was at about 103 dB. Above 103 dB, the CSEL of the blast sounds should include a positive offset (in addition to measuring with C-weighting); below 103 dB, the offset becomes increasingly negative (indicating a reduction in the annoyance of blast sounds relative to the annoyance of the control sounds).

Figure 20 also includes the results from APG for the outdoor group. A regression line fit to these six data points shows a steeper slope than for the indoor subject; but it shows a slope that is less than one. These outdoor-subject data would seem to indicate that blast noise is less of a problem outdoors than indoors for the same outdoor-measured CSEL.

Figure 20. Data and regression line for blast sounds using wheeled-vehicle control sounds.

dB. The stars show outdoor data.

5 Conclusions

Measured near a subject's ears, the real sound of a passing vehicle did not compare in terms of annoyance with a computer-generated pink-noise sound producing the same ASEL. Equal annoyance responses differed by approximately 10 dB. This 10 dB difference replicated the result found in Munster. The large differences in penalties derived using two different control sounds indicated that artificial sounds should not be used as a surrogate for real sounds when testing annoyance to determine absolute levels for penalties, since the goal of such absolute penalties is to make the assessment of a military sound equivalent in terms of annoyance to the assessment of normal environmental sounds such as motor vehicle traffic.

The data in Table 7 further support a small arms penalty that is on the order of 10 dB. The variations from test to test and condition to condition suggest that this penalty is not a constant. It is some complicated function of many variables. However, for purposes of environmental noise assessment, the near maximum value of this penalty appears to be on the order of 10 dB. A penalty of 10 dB is in reasonably good agreement with other research on impulsive-sound penalties for small arms sounds. The data tend to support an equal-sound-exposure model for small arms since the penalty is constant when the rate of fire changes from 60 shots in 30 seconds to 6 shots in 30 seconds, for the same test condition and site.

For the 25 mm cannon, the outdoor-measured data support a penalty that is closer to 15 dB than to 10 dB. This result is strengthened by the fact that when measured indoors, the penalty for small arms is similar. The difference may lie in the building transmission from outdoors to indoors for the lower frequency 25 mm cannon sound as compared with small arms sound. Since this is the first set of data for this type of weapon, the results should be treated as very preliminary. Given the variation in small arms results from test to test and condition to condition, somewhat different results should be expected in any replication of the 25 mm cannon test.

The results for helicopter sound compared with wheeled-vehicle control sound show no penalty. This somewhat surprising result draws increased confidence on two different bases. First, results with the same subjects in the same test find penalties for small arms and 25 mm cannon sound when no penalty is found for helicopters. Second, the 10 dB "penalty" found in this test using the pink-noise control sound is

consistent with earlier studies at Tustin (Schomer 1991) and Champaign (Schomer 1989).

The relationship between the CSEL of a large-amplitude impulsive sound and the ASEL of its equivalently-annoying control sound was definitely level dependent with a slope on the order of 1:2 (i.e., a 1 dB change in the CSEL of blast sounds corresponded to about a 2 dB change in the ASEL of an equivalently annoying control sound). With outdoor acoustical measurements, the annoyance (indoor subjects) generated by a large-amplitude impulsive sound and its equivalently annoying control sound were equal when the CSEL of the impulsive sound and the ASEL of the control sound were each about 103 dB.

References

Air Installations Compatible Use Zones (AICUZ), U.S. Department of Defense [DOD] Instruction 4165.57, Washington, DC, 8 November 1977.

- American National Standard S12.4, Method for Assessment of High-Energy Impulsive Sounds with Respect to Residential Communities (Acoustical Society of America, New York, 1986).
- American National Standard S12.9, Quantities and Procedures for Description and Measurement of Environmental Sound. Part 1 (Acoustical Society of America, New York, 1988).
- American National Standard S12.40, Sound Level Descriptors for Determination of Compatible Land Use (Acoustical Society of America, New York, 1990).
- Army Regulation 200-1, "Environmental Protection and Enhancement," Chapter 7, Environmental Noise Abatement Program (Headquarters, Department of the Army, Washington, D.C., 23 April 1990).
- Borsky, P.N., Community reactions to sonic booms in the Oklahoma City area, AMRL-TR-65-37 (Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio, 1965).
- Buchta, Edmund, "Pilotprojekt für passive Schallschutzmassnahmen am Truppenübungsplatz Grafenwöhr," Bundesminister der Finanzen (Federal Ministry of Finance), (Bonn, Germany, 1989).
- Buchta, Edmund, "A field study on annoyance caused by sounds from small firearms," *Journal of the Acoustical Society of America*, Vol 88 (September 1990), pp 1459-1467.
- Bullen, R.B., and A.J. Hede, "Community response to impulsive noise: A survey around Holsworthy Army Range," Commonwealth Department of Health, Commissioned Report Number 3 (National Acoustic Laboratories, Canberra, Australia, 1984).
- Eystein, Arntzen, "Annoyance caused by shooting noise," Report Based on Investigations in the Nordic Countries (1984).
- Hede, A.J., and R.B. Bullen, "Community reaction to noise from Hornsby Rifle Range," Commonwealth Department of Health Report 84, Australian Government Publishing Service (National Acoustic Laboratories, Canberra, Australia, February 1981).
- Information on levels of environmental noise requisite to protect health and welfare with an adequate margin of safety, Office of Noise Abatement and Control Report 550/9-74-004 (U.S. Environmental Protection Agency [USEPA], Washington, DC, March 1974).

International Organization for Standardization, "Acoustics—Description and measurement of environmental noise—Part 2: Acquisition of data pertinent to land use," ISO R1996:1990/2 (International Organization for Standardization, Geneva, Switzerland, 1990).

- Kryter, K.D., P.J. Johnson, and J.P. Young, "Psychological experiments on sonic booms conducted at Edwards Air Force Base," USAF Contractor Report AF 49(638) (USAF National Sonic Boom Evaluation Office, Arlington, Virginia, 1968).
- Levein, B., and U. Åhrlin, "Annoyance caused by shooting range noise," *Journal of Sound and Vibration*, 127(3) (1988), pp 589-592.
- "Noise From Weapons—Small-arms ranges and general firing ranges," Denmark (Danish Defence Construction Service, Norway (Norwegian Defence Construction Service), and Sweden (Fortifications Administration) (Nordic Defense Institutes, 1986).
- Rice, Christopher G., "Annoyance due to Impulse Noise—CEC Studies: Final Report," ISVR Memorandum 690 (Institute of Sound and Vibration Research, Southampton, England, 1989).
- Schomer, Paul D., and Robert D. Neathammer, Community Reaction to Impulsive Noise: A Final 10-year Research Summary, Technical Report (TR) Number N-167(Revised)/ADA159455 (U.S. Army Construction Engineering Research Laboratory [USACERL], June 1985).
- Schomer, Paul D., "High-energy impulsive noise assessment," Journal of the Acoustical Society of America, Vol 79 (January 1986), pp 182-186.
- Schomer, Paul D., and Robert D. Neathammer, "The role of helicopter noise-induced vibration and rattle in human response," *Journal of the Acoustical Society of America*, Vol 81 (1987), pp 966-976.
- Schomer, Paul D., and Aaron Averbuch, "Indoor human response to blast sounds that generate rattles," Journal of the Acoustical Society of America, Vol 86(2) (August 1989), pp 665-673.
- Schomer, Paul D., Edmund Buchta, and Karl-Wilhelm Hirsch, "Decibel annoyance reduction of low-frequency blast attenuating windows," *Journal of the Acoustical Society of America*, Vol 89(4) (April 1991), pp 1708-1713.
- Schomer, Paul D., Brian D. Hoover, and Lee R. Wagner, *Human Response to Helicopter Noise: A Test of A-Weighting*, TR N-91/13/ADA243719 (USACERL, November 1991).
- Schomer, Paul D, "Time-average aircraft noise descriptors; Confusion with no benefit," Inter-Noise 92, Vol 2 (Noise Control Foundation, Poughkeepsie, NY, July 1992), pp 987-992.
- Schomer, Paul D., L. Ray Wagner, L. Jerome Benson, Edmon Buchta, Karl Wilhelm Hirsch, and Detlef Krahé, "Human and community response to military sounds: Results from field-laboratory tests of small arms, tracked-vehicle, and blast sounds," Noise Control Engineering Journal, Vol 42(2) (March-April 1994), pp 71-84.
- Sutherland, L.C., and R.E. Burke, "Annoyance, loudness, and measurement of repetitive type impulsive noise sources," EPA 550/9-79-103 (USEPA, Washington, DC, November 1979).

Vos, Joos "On the level-dependent penalty for impulse sound," Journal of the Acoustical Society of America, Vol 88 (August 1990), pp 883-893.

Appendix A: USACERL Acoustic Test Facility at Aberdeen Proving Ground

Introduction

The purpose of the test structures is to provide a field test site for fabrication methods to shield residents from blast noise of large Army weapons, and other generators of noise.

The two structures, each of which includes two strictly isolated areas, are built to the typical level of normal home construction of different continents. The halves are referred to as the "American" half (imperial measurement), and the "German" half (metric measurement).

Each half has completely separate HVAC and electrical systems to ensure sound separation.

No openings or puncture in the walls, floors, or ceilings, other than the doors required for passage, were allowed between the "American" and "German" half of each structure.

The work of the Contractor consisted, in general, of site preparation, construction of the wood framed building, and retrofit of a magazine which represents masonry construction.

The Architect was retained to prepare sufficient Drawings and Specifications for review by governmental agencies having jurisdiction, and to secure approvals for issuing required general building permit. The Architect was to also provide additional consulting services when and if so requested during the construction and modification phases of the work.

The various division's listed represent the entire spectrum of construction. Only those divisions with special requirements for the acoustic testing contain information, all other divisions are listed with the statement: "Not used at this time"

DIVISION 1 - GENERAL REQUIREMENTS

This project was designed to be executed in three phases:

- I. Initial construction and renovation, and test calibration.
- IIa. All remaining doors and windows placed.
- b. Windows modified
- III. siding removed from wooden house, replaced with brick.

I. Initial construction and renovation

WOODEN FACILITY

Scope: Fabrication of the wood frame field laboratory test site shall include rough openings for all future fenestration but no exterior windows of doors, to be installed, except the sliding door in the bedroom. The interior and exterior walls will be finished smoothly

BRICK FACILITY

Renovation of the magazine shall include:

- a. Installation of reinforcing beams within the existing brick of the structure to accomidate future openings.
- b. Provide rough framed openings for future exterior doors and windows, but interior walls finished smoothly for phase I.
- c. Provide in the space labled bedroom, a sliding door, fill brick around opening.
- d. Removing existing doors and non-essential columns, fill brick to match existing.
- e. Plumbing: No plumbing or water is required
- f. Electric: Will be two exterior electric panels, one on each structure having separate isolated feeds to each "side" of both buildings. Wire mold at base boards for interior distribution
- g. HVAC: Electric heat pumps with condenser units (2) per structure

h. Furnishings as required to give a "home like" feel.

II a. All remaining doors and windows placed

Scope: Placing of 12 windows (6 per structure) and 4 Doors (2 per structure) into existing framing of test facilities. Installing requires removal of existing interior chip board and exterior skins. Provisions will be made for eventual removal and replacement of the windows.

Major Requirements:

- a. Locate rough framing openings. Remove existing surfacing materials from areas of future openings. Remove existing temporary framing materials. Prepare openings to accept windows and doors.
- b. Place windows and Doors. Provide attachment of window and doors to allow for future removal (removal in part B).
- c. Finish work. Provide finish trim at all windows and doors. Leave site as found. Remove construction spoilage, verify procedure with security

II b. Windows modified

Scope: Removal of 4 Windows (2 per structure) in existing framing of test facilities and installing upgraded window. Provisions will be make for eventual removal and replacement of these windows.

Major Requirements:

- a. Remove existing American manufactured windows. Prepare openings to accept upgraded windows.
- b. Place windows. Provide attachment methods of window to allow for future removal.
- c. Finish work. Provide finish trim at all windows. Leave sight as found. Remove construction spoilage.

III. Siding removed from wooden house, replaced with brick.

Scope: Removal of existing wood siding of test facility. Installing of brick facing

Major Requirements:

- a. Removal of wood siding, (or if possible leave in place).
- b. Place brick siding
- c. Finish work. Provide finish trim at all windows and doors. Leave sight as found. Remove construction spoilage, verify procedure with security.

Frame Test Building

Brick Test Building

74 USACERL TR-95/07

Acoustic Test Facility Development

Acoustic Test Facility Development

North Elevation - Frame Bldg.

South Elevation - Brick Bldg.

North Elevation - Brick Bldg.

West Elevation - Brick Bldg.

East Elevation - Brick Bldg.

DIVISION 2 - SITE WORK

Site work requirements are preparation of site for test buildings, construction of road to circle buildings for use during future acoustic testing. Site must be in remote location and of adequate size for required blast defination and helicopter fly over. (figures 1 & 2)

figure 2

DIVISION 3 - CONCRETE

Not used at this time.

DIVISION 4 - MASONRY

Foundation of frame building must be constructed to accommodate the addition of a brick facade for phase III of Acoustic testing (figure 3).

DIVISION 5 - METALS
Not used at this time

figure 3

DIVISION 6 - WOOD AND PLASTICS

Frame building is to be constructed as solid walls for phase I of Acoustic testing. However, provisions maust be made during framing for the addition of doors and window at a later date for phase II of testing in both structures (figures 4 &5).

DOOR OPENING

WINDOW OPENING

figure 5

DIVISION 7 - THERMAL AND MOISTURE PROTECTION Not used at this time

DIVISION 8 - DOORS AND WINDOWS

In phase II part a. doors and windows are to be placed in the test rooms. These windows are to be market standards. Standard American windows and doors for the "American " rooms (figure 6 & 7) and window and doors from Germany for the "German" rooms (figures 8 - 11). These are to be installed by standard hard mounting.

For phase II part b. the windows will be replaced by higher grade acoustically designed windows. These are to be installed by an approved method of mounting to prevent sound transfer and rattling.

American:

figure 6

(NOTE: only major window of the south elevation is shown)

2*6 FRAME - DRYWALL 3/4" (19) Sheathing 1/2" (13) Drywall

figure 7

German:

DIVISION 9 - FINISHES

Not used at this time

DIVISION 10 - SPECIALTIES

To prevent sound transfer, test rooms are to be constructed as two independent and separate units. NO opening, or puncture in walls, floors or ceilings between the "American" and "German" half of each structure are to be made. Resilient Cushions, gaskets and caulking are used in the wall construction as well as batt insulation in the air space between the interior walls. (figure 12).

(NOTE: variation in floor levels is to accomodate different standards of construction. see Division 13)

DIVISION 11 - EQUIPMENT

Power and Phone lines are to be provided for each test building and sound equipment trailer (figure 13).

figure 13

DIVISION 12 - FURNISHINGS

Furniture layout must provide seating for six test subjects approximately equal distance from window, (facing blast location) and seating for a test supervisor in each room. Furniture, art work, plants and finishes must give appearance of a residential atmosphere as opposed to a sterile test environment. Space must be provided for sound speakers, microphones and test equipment. (figures 14 &15)

figure 15

Test subject positions 1 - 6
Supervisor position - 0

DIVISION 13 - SPECIAL CONSTRUCTION

Each of the test rooms in the two test houses must be constructed to replicate ech countries average room size and built to their standards of measurement (American = Imperial and German = metric). To accommodate the difference in standard ceiling heights, the ceiling in the brick building was lowered in the German room due to concrete floor. For ease of construction in the frame building, the floor level of the German room was raised (figure 16).

To Ensure sound integrity all eave vents and attic vents are not to be installed until all acoustic testing is complete. (figure 17)

DIVISION 14 - CONVEYING SYSTEMS

Not used at this time

DIVISION 15 - MECHANICAL

To ensure sound isolation, each test room must have separate hvac systems (figure 18).

DIVISION 16 - ELECTRICAL

To ensure sound isolation, each test room is to be wired separately with no connection between the rooms (figure 18).

figure 18

USACERL TR-95/07 101

Appendix B: Measured Acoustical Data

This appendix contains listings of the measured acoustical data by test time period and individual tests during that time period. The nonblast data are listed in a summary fashion for the entire test period; the blast data are listed by individual test.

In this appendix, "A", "B", "C", and "D" refer to indoor measurements in the four test rooms. "FF" denotes the free-field microphone, and "PD" denotes the pressure-doubling microphone. CSEL is C-weighted sound exposure level and FPEAK is the flat-weighted peak sound pressure level. Room A is brick construction, American design, Room B is brick construction, German design, Room C is wood frame construction, American design, and Room D is wood frame construction, German design.

102 USACERL TR-95/07

Jan92 NG-60 NG-6 FG-60 LH QH V1 V2 V3 V4 V5 V6	A 57.5 51 52.5 64 56 68 64.5 60 55 53 47.5	B 57.5 51 52.5 64 55 70 64.5 61 56 54 48	C 56 52 53 66 57 66.5 64 61 57.5 54.5	D 56.5 52 53 67 58 67 65 61 57.5 56	FF 84.5 75.5 76.5 89 80 96.5 92 86 79 74.5	PD 88 78.5 80.5 88.5 78 101 96 90 84 78 72
TEST 1	FF-CSEL F	FF-FPEAK	PD-CSEL	PD-FPEAK	Indoor CSEL	
HB LB	107 99	129 119	110 101.5	128 121	98 96	
TEST 2 HB LB	101 96	125 117	107 103	130 124	93 88	
TEST 3 HB LB	94 92.5	116 112	97 95	119 115	84 81	
TEST 4 HB LB	102 93	120.5 113	105 96	127 116.5	88 80	
TEST 6 HB LB	106 99	127 120	108 102	128.5 123	93 90	
TEST 7						
HB LB	102 97	124 117	105 100	126 120	89 85	

JUN92	Α	В	С	D	FF	PD	TENT
NG-60	68	66.5	73	71	86	89	83
NG-6	57	57	64	60	74	77.5	74
FG-60	57	55	57	59	76	78	75
LH	69	68	72.5	71	88	88.5	90
QH	59	58	61	65	78	79	82
V1	77	77	77.5	79	96	100	93
V2	72	72	74	73.5	90	95	89
V3	66	66	67	67	85	89.5	83
V4	61	61	62.5	65	79	83.5	79
V5	57.5	57	62	60	73	78	74
V6	49.5	50	55	52	69	72	72

FF-CSEL FF-FPEAK PD-CSEL PD-FPEAK Indoor CSEL

HB 94 116 96 117 81 LB 92 112 93 115 78

Aug92	Α	В	С	D	FF	PD	TENT
NG-60	66.5	65	65	66	85	88	82
NG-6	58	57.5	58	57	75	79.5	73
FG-60	59	58	58.5	56.5	75	79	74
LH	68	67	68.5	67.5	88	87	86
QH	60	59	60.5	58	78	76.5	76
V1	76	75	76	77	96	99	95
V2	71	71	71	72	90	95	89
V3	68	67	68	69	87	91	84
V4	63	62.5	63	64	81	85	80
V 5	57	56.5	56.5	58	76	79	74
V 6	56.5	55	55.5	54.5	71	74	72

TEST 2	FF-CSEL	FF-FPEAK	PD-CSEL	PD-FPEAK	Indoor CSEL
HB LB	100 95.5	122 117	103 98	123 120	95 91
TEST 3 HB LB	105 99	128 121	109 103	132 125	101 93
TEST 4 HB LB	101 96	124 117	105 100	128 121	99 95
TEST 5 HB LB	100 95	123 117	104 98	127 120	99 95

۸	R	C	D	FF	PD
• •		_			89.5
53					
48	52	53.5	48	77.5	81
50	52	53.5	47	73.5	78
52	48	51	51	70	74
51	49	47	47	70	74.5
66	68	69	68	98	101.5
63	65	64	64	92	97
59	60	61	62	88	92.5
57	58	58	59	80	84
54	56	56.5	57	76	80
47	50	47.5	47	72	75
	50 52 51 66 63 59 57 54	53 55 48 52 50 52 52 48 51 49 66 68 63 65 59 60 57 58 54 56	53 55 54 48 52 53.5 50 52 53.5 52 48 51 51 49 47 66 68 69 63 65 64 59 60 61 57 58 58 54 56 56.5	53 55 54 54 48 52 53.5 48 50 52 53.5 47 52 48 51 51 51 49 47 47 66 68 69 68 63 65 64 64 59 60 61 62 57 58 58 59 54 56 56.5 57	53 55 54 54 85.5 48 52 53.5 48 77.5 50 52 53.5 47 73.5 52 48 51 51 70 51 49 47 47 70 66 68 69 68 98 63 65 64 64 92 59 60 61 62 88 57 58 58 59 80 54 56 56.5 57 76

TEOT 4	FF-CSEL FF	-FPEAK	PD-CSEL PD	-FPEAK Indo	or CSEL
TEST 1 HB LB	103 94.5	123 115	105 99	123 119	90 85
TEST 2 HB LB	106 95	127.5 116	109 98	127 120	90 86
TEST 3 HB LB	105 95	127 116	108 97	130 120	90 85

jan93	Α	В	С	D	FF	PD
NG-60	51.5	52	52.5	53	84.5	88.5
NG-6	43.5	44	46	44	75.5	79
FG-60	*	*	*	*	76	80
N25	50	52	51	51	72.5	80
F25	50	50	51.5	51	74	77
V1	68.5	70	68	68	96	101
V2	62.5	64	65	63	92	96.5
V 3	60	62	60.5	60	88.5	92
V4	58	57	58	57	81	85
V 5	51	51.5	50.5	52	76	79
V6	46	51	49	46	71.5	73

THE COLL IN COLL I DE LEAR HIGH COLL	FF-CSEL	FF-FPEAK	PD-CSEL	PD-FPEAK Indoor CSE	L
--------------------------------------	---------	----------	---------	---------------------	---

HB	98	119	101	119	85
LB	92	112	96	116	83

Appendix C: Nonblast Sound Transition Curves—Acoustical Measurements Near the Subjects

This appendix contains the transition curves for the nonblast sound data for subjects indoors and outdoors with the **acoustical measurements made near the subjects**. As discussed in the text, only these data include the pink-noise control sounds because these could only be heard or measured by the subjects. Each curve represents an entire test period, so there are five sets of curves for the five test periods. Each curve represents an entire test period, so there are two sets of curves for the two test periods that included outdoor subjects.

NEAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.999206622 DF Adj r^2 =0.998809933 FitStdErr=1.42077823 Fstat=3778.3007 a=-0.10568014 b=100.03447

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9992066222	0.9988099333	1.4207782300	3778.3007040

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	-0.10568014	0.716923567	-0.14740782	-1.73233514	1.520974862
b	100.0344692	1.013792109	98.67355285	97.73423796	102.3347005
С	66.67618471	0.355711793	187.4444033	65.86909677	67.48327266
d	9.444094439	0.532603504	17 73194201	8 235650202	10 65253868

Date	Time	File Source
May 18, 1994	9:25:48 AM	c:\tcwin\noise.prn

NEAR GUNS, 6 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.999093741 DF Adj r^2 =0.998640611 FitStdErr=1.49963401 Fstat=3307.31034 a=0.086381203 b=100.18241

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value 3307.3103392
0.9990937406	0.9986406108	1.4996340118	3307.3103392

Parm	Value	Std Error	t-value	95% Confide	
а	0.086381203	0.751211240	0.114989232	-1.61807040	1.790832804
b	100 1824149	1.062921260	94.25196269	97.77071264	102.5941171
c	57 71604268	0.255064984	226.2797572	57.13731609	58.29476927
				8.410561265	

Date	Time	File Source	
May 18, 1994	9:30:29 AM	c:\tcwin\noise.prn	

FAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

 r^2 =0.99519534 DF Adj r^2 =0.992793009 FitStdErr=3.40627673 Fstat=621.393756 a=-0.050580551 b=100.39207

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9951953395	0.9927930093	3.4062767338	621.39375642

Par	m Value	Std Error	t-value	95% Confide	nce Limits
a	-0.05058055	1.739304800	-0.02908090	-3.99695501	3.895793907
b	100.3920699	2.457790665	40.84646889	94.81549573	105.9686442
C	58.43735115	0.753004854	77.60554378	56.72882995	60.14587235
٨	7 207559677	0.826103626	8 723814184	5 332977703	9 082141650

Date	Time	File Source
May 18 1994	9:33:02 AM	c:\tcwin\noise.prn

'LOUD' HELICOPTER-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

 r^2 =0.99575055 DF Adj r^2 =0.993625826 FitStdErr=3.20664597 Fstat=702.973783 a=0.019247732 b=99.973811

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9957505504	0.9936258256	3.2066459724	702.97378326

a	Value 0.019247732 99.97381110	2.285219213	43.74801793	94.78879078	3.649187074 105.1588314
C	59.14528279	0.585818911	100.9617165	57.81609610	60.47446948
٠,				-8 49718750	

Date Time File Source May 18, 1994 9:26:58 AM c:\tcwin\noise.prn

'QUIET' HELICOPTER-VEHICLE CONTROLS

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

r²=0.99808099 DF Adj r²=0.997121485 FitStdErr=2.25488889 Fstat=1560.30599

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9980809899	0.9971214848	2.2548888852	1560.3059943

_		0.15			
Parm	· Value	Std Error	t-value	95% Confide	nce Limits
а	0.680543360	1.098292780	0.619637471	-1.81141468	3.172501396
b	99.63074593	1.585195024	62.85078139	96.03403698	103.2274549
С	53.48556221	0.260659889	205.1929138	52.89414112	54.07698329
d	14 36906652	0.869918085	16 51772365	12 39527647	16 34285657

Date	Time	File Source
May 18, 1994	9:28:16 AM	c:\tcwin\noise.prn

NEAR GUN, 60 SHOT-NOISE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]
r²=0.993324604 DF Adj r²=0.989986907 FitStdErr=3.96372838 Fstat=446.411565
a=-1.0536828 b=101.21735

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9933246044 0.9899869065 3.9637283845 446.41156496

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	-1.05368276	2.243672429	-0.46962415	-6.14443601	4.037070495
b	101.2173493	3.214266333	31.49003187	93.92437879	108.5103197
c	79.17160562	1.338785980	59.13686487	76.13398346	82.20922777
d				-16.7557140	

Date Time File Source May 12, 1994 2:10:34 PM c:\tcwin\ngf.prn

VEHICLE 2-NOISE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid] $r^{2}=0.989799009 \ \ DF \ Adj \ r^{2}=0.984698513 \ \ FitStdErr=5.00464633 \ \ Fstat=291.08907 \\ a=-0.086668136 \ b=100.08735$

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9897990088	0.9846985133	5.0046463293	291.08906962

Parm	n Value	Std Error	t-value	95% Confide	nce Limits
а	-0.08666814	2.514090459	-0.03447296	-5.79098308	5.617646814
b	100.0873463	3.593609079	27.85148416	91.93367076	108.2410219
С	70.59367386	1.213314701	58.18249282	67.84073824	73.34660948
d	-8.82092484	1.414818486	-6.23466892	-12.0310600	-5.61078966

Date	Time	File Source
May 12, 1994	3:10:07 PM	c:\tcwin\ngf.prn

'LOUD' HELICOPTER-NOISE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.996100863 DF Adj r^2 =0.994151295 FitStdErr=3.05470135 Fstat=766.401112 a=-0.22674524 b=100.14767

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9961008634 0.9941512952 3.0547013464 766.40111179

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -0.22674524
 1.526146343
 -0.14857372
 -3.68947641
 3.235985927

 b
 100.1476664
 2.174486711
 46.05577305
 95.21389128
 105.0814416

 c
 66.31072479
 0.841916823
 78.76161035
 64.40046786
 68.22098172

 d
 -16.8752507
 1.697655493
 -9.94032698
 -20.7271255
 -13.0233759

Date Time File Source
May 12, 1994 2:11:55 PM c:\tcwin\ngf.pm

NEAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid] r^2 =0.991178513 DF Adj r^2 =0.98676777 FitStdErr=4.8831812 Fstat=337.078732 a=-0.13640097 b=98.829007 c=63.817665 d=-3.2118693

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9911785133 0.9867677700 4.8831812023 337.07873158

Pan	m Value	Std Error	t-value	95% Confide	nce Limits
а	-0.13640097	2.440972774	-0.05587976	-5.67481643	5.402014500
b	98.82900652	3.352444328	29.47968612	91.22251877	106.4354943
С	63.81766515	0.590072181	108.1523027	62.47882805	65.15650224
d	-3 21186932	0.720914425	-4 45527126	-4 84757933	-1.57615931

Date Time File Source
May 18, 1994 9:43:10 AM c:\tcwin\noise.prn

NEAR GUNS, 6 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

 r^2 =0.996017074 DF Adj r^2 =0.994025611 FitStdErr=3.11407086 Fstat=750.215117 a=-0.16676843 b=100.60381

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9960170741 0.9940256111 3.1140708642 750.21511743

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -0.16676843
 1.597767773
 -0.10437589
 -3.79200417
 3.458467311

 b
 100.6038088
 2.261855660
 44.47843888
 95.47179888
 105.7358186

 c
 59.77955779
 0.875041054
 68.31628929
 57.79414404
 61.76497154

 d
 7.213648477
 0.934676315
 7.717803862
 5.092926026
 9.334370927

Date Time File Source
May 18, 1994 10:20:27 AM c:\tcwin\noise.prn

FAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.990134561 DF Adj r^2 =0.985201842 FitStdErr=4.9686731 Fstat=301.091899 a=-0.70830494 b=101.33011

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
	0.9852018419	4.9686730962	301.09189928

Parm	Value	Std Error	t-value	95% Confide	ence Limits
а	-0.70830494	2.821181187	-0.25106680	-7.10938966	5.692779778
b	101.3301118	3.923392949	25.82716366	92.42817711	110.2320465
С	63.43519401	2.495060301	25.42431298	57.77405731	69.09633071
d	6 303270656	1.594935206	3.952054372	2.684461831	9.922079480

Date Time File Source
May 18, 1994 10:22:00 AM c:\tcwin\noise.prn

'LOUD' HELICOPTER-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.959643467 DF Adj r^2 =0.9394652 FitStdErr=10.1177909 Fstat=71.3374063 a=0.12893563 b=100.62643

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9596434669 0.9394652003 10.117790896 71.337406331

Parm	Value	Std Error	t-value	95% Confide	nce Limits
	0.128935633			-11.4233608	
b	100.6264274	7.203939595	13.96824974	84.28113632	116.9717184
C	60.83038591	1.941817811	31.32651558	56.42452202	65.23624980
d	8.950898961	2.988591328	2.995022731	2.169971040	15.73182688

Date Time File Source May 18, 1994 9:47:07 AM c:\tcwin\noise.prn

'QUIET' HELICOPTER-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.970476 DF Adj r^2 =0.955714 FitStdErr=8.91250147 Fstat=98.6122468 a=5.143339 b=93.466062

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

DF Adj r²

0.9557139996

r² Coef Det

d

0.9704759997

					•
Parm	value	Std Error	t-value	95% Confide	nce Limits
а	5.143339018	4.000837793	1.285565495	-3.93431320	14.22099123
b	93.46606240	5.741028975	16.28036765	80.44002458	106.4921002
С	53.34062037	0.448490716	118.9336109	52.32302281	54.35821792

Fit Std Err

8.9125014700

39.51191892 12.72117613 3.105995743 10.64836116 68.37547668

F-value

98.612246799

Date Time File Source
May 18, 1994 10:07:36 AM c:\tcwin\noise.prn

NEAR GUNS, 60 SHOT-NOISE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

 $\begin{array}{lll} r^2 = 0.997692571 & \text{DF Adj } r^2 = 0.996538856 & \text{FitStdErr} = 2.41615323 & \text{Fstat} = 1297.14811 \\ a = -0.015339109 & b = 100.05936 \end{array}$

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9976925706	0.9965388559	2.4161532347	1297.1481057

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	-0.01533911	1.211883430	-0.01265725	-2.76502727	2.734349051
b	100.0593627	1.717824714	58.24771406	96.16172525	103.9570002
С	86.72676821	0.450649340	192.4484527	85.70427288	87.74926355
d	-6 61335494	0.440531215	-15.0122278	-7.61289288	-5.61381700

Date	Time	File Source
May 12, 1994	3:14:49 PM	c:\tcwin\ngf.prn

VEHICLE 2-NOISE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.997474158 DF Adj r^2 =0.996211238 FitStdErr=2.54293132 Fstat=1184.72297 a=-0.31632428 b=100.29376

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9974741585	0.9962112377	2.5429313207	1184.7229739

Parm	ı Value	Std Error	t-value	95% Confide	nce Limits
a		1.253866474	-0.25227908	-3.16126936	2.528620797
b				96.23236196	
C.				78.03357440	
d				-13.4984686	

Date Time File Source May 12, 1994 3:13:31 PM c:\tcwin\ngf.prn

'LOUD' HELICOPTER-NOISE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.994162463 DF Adj r^2 =0.991243694 FitStdErr=3.82487477 Fstat=510.915337 a=-0.033916004 b=100.14324

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9941624626	0.9912436939	3.8248747714	510.91533709

Parm	Value	Std Error	t-value	95% Confide	nce Limits
		1,900338327	-0.01784735	-4.34566552	4.277833515
b	100.1432362	2.701259973	37.07278722	94.01424526	106.2722271
С	76.71508329	0.787645608	97.39797002	74.92796438	78.50220221
d	-12.2139773	1.303728629	-9.36849663	-15.1720565	-9.25589806

Date	Time	File Source
May 12, 1994	3:17:08 PM	c:\tcwin\ngf.prn

NEAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

 r^2 =0.999457403 DF Adj r^2 =0.999186104 FitStdErr=1.20448512 Fstat=5525.96303 a=0.00019146702 b=99.687746

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value	
0.9994574028	0.9991861042	1.2044851200	5525.9630282	

Parm	n Value	Std Error	t-value	95% Confide	ence Limits
а	0.000191467	0.602291099	0.000317898	-1.36636959	1.366752526
b	99.68774608	0.826006809	120.6863490	97.81358798	101.5619042
С	77.28211742	0.304268205	253.9934053	76.59175178	77.97248306
d	-5 38889101	0.309436520	-17.4151746	-6.09098323	-4.68679878

Date	Time	File Source
May 18, 1994	2:38:28 PM	c:\tcwin\noise.prn

NEAR GUNS, 6 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.997828532 DF Adj r^2 =0.996742797 FitStdErr=2.40065643 Fstat=1378.55362 a=0.019550265 b=99.793303

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9978285316	0.9967427974	2.4006564321	1378.5536228

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	0.019550265	1.201132245	0.016276530	-2.70574412	2.744844654
b	99.79330250	1.663205677	60.00057834	96.01959223	103.5670128
С	69.63023426	0.394203795	176.6351190	68.73581035	70.52465816
d	13.35502196	1.295114355	10.31184769	10.41648801	16.29355592

Date	Time	File Source
May 18, 1994	11:19:57 AM	c:\tcwin\noise.prn

FAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

 r^2 =0.996277073 DF Adj r^2 =0.99441561 FitStdErr=3.02921699 Fstat=802.817603 a=-0.97690187 b=101.16538

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9962770731	0.9944156097	3.0292169906	802.81760315

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	-0.97690187	1.715827287	-0.56934744	-4.87000731	2.916203572
b	101.1653772	2.395351447	42.23404347	95.73047364	106.6002807
С	70.54856655	1.061461037	66.46364218	68.14017745	72.95695565
d	6 924721321	0.824366465	8 400052184	5 054285064	8 795157577

Date	Time	File Source
May 18, 1994	10:30:30 AM	c:\tcwin\noise.prn

'LOUD' HELICOPTER-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.995666284 DF Adj r^2 =0.993499427 FitStdErr=3.27799393 Fstat=689.246619 a=-0.1160992 b=100.41358

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9956662844 0.9934994265 3.2779939313 689.24661874

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -0.11609920
 1.677279259
 -0.06921876
 -3.92174156
 3.689543164

 b
 100.4135774
 2.368856376
 42.38905254
 95.03878952
 105.7883652

 c
 69.91187157
 0.682899902
 102.3749913
 68.36241415
 71.46132899

 d
 8.988973412
 0.958260325
 9.380512976
 6.814740311
 11.16320651

Date Time File Source
May 18, 1994 11:32:18 AM c:\tcwin\noise.prn

'QUIET' HELICOPTER-VEHICLE CONTROLS

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative] r²=0.994614798 DF Adj r²=0.991922196 FitStdErr=3.74140621 Fstat=554.082118

a=-0 12016489 b=100.17068 c=60.547334 d=-9.0686161

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r2 Coef Det 0.9946147975 DF Adj r²

Fit Std Err

F-value 554.08211823

Parm Value

0.9919221963 Std Error

3.7414062063

t-value

95% Confidence Limits -0.12016489 1.855749323 -0.06475276 -4.33074473 4.090414951 100.1706846 2.641171027 37.92661802 94.17803179 106.1633375 60.54733446 0.600948116 100.7530148 59.18382055 61.91084838

С

Date May 18, 1994 Time 11:25:28 AM File Source c:\tcwin\noise.prn

NEAR GUNS, 60 SHOT-NOISE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.99169803 DF Adj r^2 =0.987547046 FitStdErr=4.5849297 Fstat=358.360033 a=-0.23579785 b=100.2077

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9916980304 0.9875470456 4.5849297004 358.36003313

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -0.23579785
 2.282925053
 -0.10328760
 -5.41561287
 4.944017160

 b
 100.2077048
 3.241065018
 30.91814086
 92.85392975
 107.5614798

 c
 84.57142095
 0.873480920
 96.82114292
 82.58954704
 86.55329485

 d
 -11.3715127
 1.362213968
 -8.34781683
 -14.4622915
 -8.28073388

Date Time File Source
May 12, 1994 4:06:44 PM c:\tcwin\augh.prn

VEHICLE 2-NOISE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.984393398 DF Adj r^2 =0.976590097 FitStdErr=6.41775324 Fstat=189.226342 a=-0.80426086 b=100.55427

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9843933981 0.9765900971 6.4177532369 189.22634176

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -0.80426086
 3.145779929
 -0.25566342
 -7.94183995
 6.333318220

 b
 100.5542718
 4.505069106
 22.32025070
 90.33255013
 110.7759936

 c
 78.24288422
 1.330091117
 58.82520619
 75.22499017
 81.26077828

 d
 -11.1035570
 2.233591558
 -4.97116716
 -16.1714374
 -6.03567662

Date Time File Source
May 12, 1994 4:08:19 PM c:\tcwin\augh.prn

'LOUD' HELICOPTER-NOISE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid] r²=0.989821496 DF Adj r²=0.984732245 FitStdErr=5.05548824 Fstat=291.738809 a=-0.026420239 b=99.874263

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -0.02642024
 2.515805127
 -0.01050170
 -5.73462566
 5.681785184

 b
 99.87426282
 3.584850722
 27.86008974
 91.74045940
 108.0080662

 c
 76.61090427
 1.024941404
 74.74661867
 74.28537595
 78.93643260

 d
 -7.27033896
 1.072345538
 -6.77984726
 -9.70342431
 -4.83725360

Date Time File Source
May 12, 1994 4:09:58 PM c:\tcwin\augh.prn

NEAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.997423169 DF Adj r^2 =0.996134753 FitStdErr=2.52958946 Fstat=1161.22055 a=-0.049453662 b=100.24812

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9974231687	0.9961347530	2.5295894609	1161.2205466
0.9914231001	0.9301341330	2.020004000	1 10 1.EE00 100

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	-0.04945366	1.273163675	-0.03884313	-2.93818289	2.839275563
b	100.2481208	1.803273598	55.59229664	96.15660510	104.3396365
C	67.64068360	0.611773987	110.5648247	66.25260646	69.02876074
d				7.831380621	

Date	Time	File Source
May 18, 1994	2:42:08 PM	c:\tcwin\noise.prn

NEAR GUNS, 6 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

 r^2 =0.995862153 DF Adj r^2 =0.993793229 FitStdErr=3.17653985 Fstat=722.014705 a=-0.21735266 b=99.374535

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9958621529	0.9937932293	3.1765398494	722.01470524

Parn	n Value	Std Error	t-value	95% Confide	nce Limits
а	-0.21735266	1.586560375	-0.13699615	-3.81715952	3.382454189
b	99.37453468	2.236647015	44.43013761	94.29972166	104.4493477
С	60.79553781	0.449956121	135.1143698	59.77461534	61.81646027
d	-5.29032629	0.592984408	-8.92152682	-6.63577105	-3.94488154

D-4-	T'	File Course
Date	Time	File Source
May 18, 1994	3:04:36 PM	c:\tcwin\noise.prn

FAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

 r^2 =0.999865818 DF Adj r^2 =0.999798727 FitStdErr=0.567415744 Fstat=22354.7267 a=-0.102962 b=100.15225

a=-0.102962 b=100.15225 c=61.155464 d=8.3938572

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9998658182 0.9997987273 0.5674157442 22354.726671

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -0.10296200
 0.286664274
 -0.35917277
 -0.75338542
 0.547461414

 b
 100.1522484
 0.405792866
 246.8063312
 99.23152961
 101.0729672

 c
 61.15546374
 0.109860162
 556.6664254
 60.90619786
 61.40472962

 d
 8.393857179
 0.184628700
 45.46344742
 7.974946138
 8.812768220

Date Time File Source
May 18, 1994 3:07:28 PM c:\tcwin\noise.prn

'LOUD' 25 mm-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.993553214 DF Adj r^2 =0.990329822 FitStdErr=3.9202788 Fstat=462.348188 a=0.16241069 b=100.10185

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9935532144 0.9903298216 3.9202788014 462.34818788

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	0.162410695	1.966067266	0.082606886	-4.29847370	4.623295089
b	100.1018465	2.781847258	35.98394780	93.79000802	106.4136850
С	62.36630382	0.613548648	101.6485066	60.97420008	63.75840755
d	10.16307992	1.325606411	7.666740176	7.155361393	13.17079846

Date Time File Source
May 18, 1994 2:43:57 PM c:\tcwin\noise.prn

'QUIET' 25 mm-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

 r^2 =0.993701056 DF Adj r^2 =0.990551584 FitStdErr=3.94083514 Fstat=473.270291 a=-0.055098659 b=99.504872

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9937010558	0.9905515837	3.9408351359	473.27029149

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	-0.05509866	1.969910428	-0.02797013	-4.52470295	4.414505631
b	99.50487224	2.771687373	35.90046742	93.21608591	105.7936586
С	63.22927162	0.732360697	86.33624369	61.56759073	64.89095251
d	-5.79529716	0.956784609	-6.05705516	-7.96618195	-3.62441236

Date	Time	File Source
May 18, 1994	2:48:09 PM	c:\tcwin\noise.prn

NEAR GUNS, 60 SHOT-NOISE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/(2^{0.5}d))) [Cumulative]

r²=0.996192564 DF Adj r²=0.994288846 FitStdErr=3.02202586 Fstat=784.93177 a=-0.10520513 b=100.08086

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9961925637 0.9942888456 3.0220258592 784.93177048

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -0.10520513
 1.514986337
 -0.06944296
 -3.54261494
 3.332204680

 b
 100.0808601
 2.143551556
 46.68927130
 95.21727490
 104.9444453

 c
 76.75785130
 0.791175512
 97.01747602
 74.96272325
 78.55297935

 d
 -16.2090246
 1.563871480
 -10.3646781
 -19.7573517
 -12.6606974

Date Time File Source
May 17, 1994 9:47:30 AM c:\tcwin\noise.prn

VEHICLE 2-NOISE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.987042467 DF Adj r^2 =0.9805637 FitStdErr=5.83236786 Fstat=228.52555 a=-0.49470747 b=100.36412

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9870424668	0.9805637002	5.8323678599	228.52554992

Parn	n Value	Std Error	t-value	95% Confide	ence Limits
а	-0.49470747	2.857527117	-0.17312433	-6.97825884	5.988843904
b	100.3641157	4.092106838	24.52626963	91.07937968	109.6488517
С	72.51606301	1.280440455	56.63368627	69.61082323	75.42130280
d	-11.3697460	2.172698621	-5.23300649	-16.2994641	-6.44002790

Date Time File Source
May 17, 1994 10:01:39 AM c:\tcwin\noise.prn

'LOUD' 25 mm-NOISE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.992574054 DF Adj r^2 =0.988861081 FitStdErr=4.24299803 Fstat=400.988924 a=-0.91015943 b=100.97932

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9925740538 0.9888610808 4.2429980288 400.98892426

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -0.91015943
 2.561605096
 -0.35530825
 -6.72228214
 4.901963275

 b
 100.9793185
 3.357861378
 30.07250959
 93.36053980
 108.5980972

 c
 66.43078585
 1.392148924
 47.71816053
 63.27208649
 69.58948521

 d
 6.234983694
 1.154905987
 5.398693714
 3.614573810
 8.855393578

Date Time File Source C:\tcwin\noise.prn

NEAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.996649366 DF Adj r^2 =0.994974049 FitStdErr=2.86369495 Fstat=892.352887 a=0.094279034 b=100.17085

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9966493658	0.9949740487	2.8636949541	892.35288672

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	0.094279034	1.436851513	0.065615015	-3.16584772	3.354405786
b	100.1708505	2.030417003	49.33511214	95.56396060	104.7777405
С	62.09828971	0.480198482	129.317.9634	61.00874921	63.18783022
d	9.776006826	0.950204027	10.28832392	7.620052963	11.93196069

Date	Time	File Source
May 18, 1994	3:28:48 PM	c:\tcwin\noise.prn

NEAR GUNS, 6 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r²=0.9952131 DF Adj r²=0.992819651 FitStdErr=3.53141561 Fstat=623.710454 a=0.41061382 b=99.863164

125 100 75 25 0 0 50 100 150

CONTROL ASEL

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

 ho^2 Coef Det DF Adj ho^2 Fit Std Err F-value 0.9952131004 0.9928196507 3.5314156091 623.71045431

a b c	99.86316430 55.18107489	2.493679681 0.445061069	40.04650840 123.9854004	95% Confide -3.55512058 94.20516014 54.17125899	4.376348220 105.5211685 56.19089078
d	13.34704105	1.170549900	11.40236828	10.69113610	16.00294600

Date Time File Source May 18, 1994 3:12:48 PM c:\tcwin\noise.prn

FAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

 $\begin{array}{lll} r^2 = 0.972780406 & \text{DF Adj } r^2 = 0.959170609 & \text{FitStdErr} = 8.32377713 & \text{Fstat} = 107.214724 \\ & a = 0.55645584 & b = 99.685312 \end{array}$

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9727804063	0.9591706094	8.3237771310	107.21472358

Parm	n Value	Std Error	t-value	95% Confide	nce Limits
а	0.556455842	4.142220259	0.134337579	-8.84198440	9.954896085
b	99.68531198	5.880739988	16.95115108	86.34227856	113.0283454
С	52.76463244	1.222007413	43.17865168	49.99197359	55.53729129
d	10 19302036	2 467464811	4 130968885	4 594496108	15 79154461

Date	Time	File Source
May 18, 1994	3:10:16 PM	c:\tcwin\noise.prn

'LOUD' 25 mm-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

 r^2 =0.99437682 DF Adj r^2 =0.991565229 FitStdErr=3.75752431 Fstat=530.505914 a=0.26454236 b=100.35415

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

Parn	n Value	Std Error	t-value	95% Confide	nce Limits
а	0.264542356	1.876018331	0.141012671	-3.99202660	4.521111316
b	100.3541530	2.652932013	37.82763844	94.33481521	106.3734908
С	60.50763781	0.530472824	114.0635958	59.30402796	61.71124767
d	11.46226690	1.315057898	8.716169010	8.478482285	14.44605151

Date Time File Source
May 18, 1994 3:19:53 PM c:\tcwin\noise.prn

'QUIET' 25 mm-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.995633287 DF Adj r^2 =0.99344993 FitStdErr=3.34207346 Fstat=684.015593 a=0.13347714 b=100.41766

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9956332869	0.9934499303	3.3420734559	684.01559335

Parm	. Value	Std Error	t-value	95% Confide	nce Limits
а	0.133477137	1.670029151	0.079925034	-3.65571518	3.922669454
b	100.4176647	2.360348589	42.54357394	95.06218054	105.7731489
С	59.33698896	0.485229307	122.2864903	58.23603383	60.43794409
d	11.44525713	1.171062754	9.773393521	8.788188547	14.10232571

Date	Time	File Source
May 18, 1994	3:17:03 PM	c:\tcwin\noise.prn

NEAR GUNS, 60 SHOT-NOISE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

 r^{2} =0.996259268 DF Adj r^{2} =0.994596721 FitStdErr=2.97436212 Fstat=887.757974 a=-0.23751017 b=100.36096

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9962592685		2.9743621213	887.75797369

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	-0.23751017	1.521935870	-0.15605794	-3.63714000	3.162119657
b	100.3609616	2.146834174	46.74835292	95.56546292	105.1564603
С	75.44561826	0.624816133	120.7485119	74.04993293	76.84130359
d	10 00775533	0.863788160	11.58589083	8.078265357	11.93724529

Date Time File Source
May 17, 1994 2:42:38 PM c:\tcwin\noise.prn

VEHICLE 2-NOISE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.993742782 DF Adj r^2 =0.990614172 FitStdErr=4.0111587 Fstat=476.446271 a=0.095508648 b=99.864954

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9937427817	0.9906141725	4.0111586989	476.44627052

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	0.095508648	1.974296684	0.048376036	-4.38404778	4.575065079
b	99.86495430	2.818566121	35.43111994	93.46980300	106.2601056
С	70.74609833	1.103338485	64.12003145	68.24269191	73.24950476
d	-12 7641551	1 873112226	-6.81441023	-17 0141303	-8 51417993

Date	Time	File Source
May 17, 1994	2:45:33 PM	c:\tcwin\noise.prn

'LOUD' 25 mm-NOISE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

 r^2 =0.991255962 DF Adj r^2 =0.986883943 FitStdErr=4.73300409 Fstat=340.090928 a=-0.03066213 b=100.04364

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9912559623	0.9868839435	4.7330040867	340.09092817

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	-0.03066213	2.378976796	-0.01288879	-5.42841258	5.367088317
b	100.0436357	3.370387169	29.68312859	92.39643678	107.6908347
С	72.81264898	0.975796230	74.61870286	70.59862800	75.02666996
d	10.88013017	1.726381293	6.302275295	6.963078350	14.79718200

Date Time File Source
May 17, 1994 2:44:17 PM c:\tcwin\noise.prn

NEAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid] r^2 =0.991086051 DF Adj r^2 =0.986629077 FitStdErr=4.86276632 Fstat=333.551187 a=-0.06776779 b=99.453464

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

DF Adj r²

r² Coef Det

0.991	0860514 0	.9866290770 4	.8627663244	333.55118715	5
Parm) Value	Std Error	t-value	95% Confide	nce Limits
а	-0.0677677	9 2.434210935	-0.02783974	-5.59084107	5.455305485
b	99.4534636	3 3.384229160	29.38733133	91.77485807	107.1320692
С	90.8915923	5 0.812533650	111.8619424	89.04800401	92.73518068
d	-5.2061001	0.898341535	-5.79523478	-7.24438120	-3.16781902

Fit Std Err

F-value

Date Time File Source 4:34:56 PM Sep 1, 1994 c:\tcwin\augh.prn

NEAR GUNS, 6 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.953041103 DF Adj r^2 =0.929561654 FitStdErr=11.3642332 Fstat=60.8856572 a=-0.11114089 b=100.85121

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9530411029	0.9295616544	11.364233226	60.885657185

Parm	· Value	Std Error	t-value	95% Confide	nce Limits
а	-0.11114089	5.650980723	-0.01966754	-12.9328648	12.71058305
b	100.8512130	8.030177466	12.55902668	82.63123960	119.0711865
С	81.04412501	1.745490099	46.43058419	77.08371649	85.00453352
d ·	-8 68160894	2 487675543	-3 48984777	-14 3259901	-3 03722779

Date	Time	File Source
Sep 1, 1994	4:53:52 PM	c:\tcwin\augh.prn

FAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.966348483 DF Adj r^2 =0.949522724 FitStdErr=9.21628344 Fstat=86.149027 a=-0.27159751 b=101.23639

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9663484830	0.9495227245	9.2162834363	86.149027037

Parm	ı Value	Std Error	t-value	95% Confide	nce Limits
a ·	-0.27159751	5.052078724	-0.05375956	-11.7344500	11.19125502
b	101.2363870	7.013416562	14.43467475	85.32338084	117.1493931
С	83.38961163	2.292140573	36.38067082	78.18888718	88.59033609
d	9.703095491	2.914608404	3.329124927	3.090030226	16.31616076

Date Time File Source Sep 1, 1994 4:55:43 PM c:\tcwin\augh.prn

LOUD HELICOPTER-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid] r^2 =0.981432169 DF Adj r^2 =0.970821979 FitStdErr=7.13027701 Fstat=140.950894 a=-0.85235376 b=100.3029

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9814321685 0.9708219791 7.1302770058 140.95089408

Darm	Value	Std Error	t-value	95% Confide	nco Limite
ı amı	Value	Sid Lifti	i-value	9370 Cornide	HICE LITTLES
а	-0.85235376	3.781604142	-0.22539476	-9.60319379	7.898486273
b	100.3028981	5.324766817	18.83704987	87.98109473	112.6247014
С	88.48260468	1.982799433	44.62509077	83.89429771	93.07091166
d	-9.22906853	2.277847498	-4.05166217	-14.5001330	-3.95800410

Date Time File Source Sep 1, 1994 4:41:42 PM c:\tcwin\augh.prn

QUIET HELICOPTER-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r²=0.972089998 DF Adj r²=0.958134997 FitStdErr=8.5550622 Fstat=104.488349

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

			,
r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9720899983	0.9581349975	8 5550621996	104 48834889

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	1.131732272	4.279779171	0.264437072	-8.57882059	10.84228513
b	99.85203449	6.079609766	16.42408614	86.05777791	113.6462911
С	81.17170178	1.388242381	58.47084264	78.02186613	84.32153743
d	14.64535769	3.423307641	4.278130751	6.878085483	22.41262990

Date	Time	File Source
Sep 1, 1994	4:58:43 PM	c:\tcwin\augh.prn

USACERL TR-95/07 153

Appendix D: Nonblast Sound Transition Curves—Free-field Measurements

This appendix contains the transition curves for the nonblast sound data for subjects indoors and outdoors with the **acoustical measurements made outdoors with the free-field microphone.** Each curve represents an entire test period, so there are two sets of curves for the two test periods that included outdoor subjects.

NEAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

 $r^2 = 0.998814017 \;\; \text{DF Adj } \\ r^2 = 0.998221025 \;\; \text{FitStdErr} \\ = 1.73710293 \;\; \text{Fstat} \\ = 2526.54667$

a=-1.7132184 b=101.45769

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9988140167 0.9982210251 1.7371029337 2526.5466670

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -1.71321844
 1.085632010
 -1.57808394
 -4.17644997
 0.750013098

 b
 101.4576867
 1.484513392
 68.34406967
 98.08941808
 104.8259553

 c
 100.8779860
 0.578711673
 174.3147593
 99.56492518
 102.1910468

 d
 -8.66379177
 0.601341776
 -14.4074337
 -10.0281989
 -7.29938466

Date Time File Source
May 12, 1994 1:32:58 PM c:\tcwin\augh.prn

NEAR GUN, 6 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

 $r^2 = 0.999336475 \;\; \text{DF Adj} \; r^2 = 0.999004713 \;\; \text{FitStdErr} = 1.28200806 \;\; \text{Fstat} = 4518.30963$

a=-2.2178241 b=102.38316

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9993364754 0.9990047132 1.2820080635 4518,3096256

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -2.21782414
 0.832008440
 -2.66562698
 -4.10559956
 -0.33004872

 b
 102.3831589
 1.103243877
 92.80192803
 99.87996710
 104.8863506

 c
 88.95280821
 0.385413468
 230.7983907
 88.07832901
 89.82728741

 d
 8.782459625
 0.357978751
 24.53346627
 7.970228094
 9.594691156

Date Time File Source
May 12, 1994 1:37:49 PM c:\tcwin\ngf.prn

FAR GUN, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

 $r^2 = 0.996239524 \;\; \text{DF Adj} \; r^2 = 0.994359285 \;\; \text{FitStdErr} = 3.01349176 \;\; \text{Fstat} = 794.771268$

a=-5.50639 b=105.71835

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9962395236 0.9943592855 3.0134917607 794.77126845

Parm	Value	Std Error	t-value	95% Confide	nce Limits
a	-5.50639002	2.960445727	-1.85998681	-12.2234573	1.210677284
b	105.7183543	3.505268312	30.15984653	97.76511847	113.6715902
С	90.68393388	1.394982754	65.00720788	87.51880474	93.84906302
d	6.946524201	0.761577554	9.121230223	5.218552079	8.674496323

Date Time File Source
May 12, 1994 1:39:03 PM c:\tcwin\ngf.prn

'LOUD' HELICOPTER-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid] r²=0.996407886 DF Adj r²=0.994611829 FitStdErr=2.94821895 Fstat=832.162788 a=-1.1821248 b=101.02866

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9964078859	0.9946118289	2.9482189523	832.16278793

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	-1.18212477	1.673421870	-0.70641169	-4.97901496	2.614765411
b	101.0286647	2.293523589	44.04954245	95.82480229	106.2325272
С	90.64182725	0.801194297	113.1333905	88.82396720	92.45968729
d	-10.1663035	0.928001881	-10.9550462	-12.2718821	-8.06072492

Date	Time	File Source
May 12, 1994	1:35:16 PM	c:\tcwin\ngf.prn

'QUIET' HELICOPTER-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.998051896 DF Adj r^2 =0.997077844 FitStdErr=2.27191753 Fstat=1536.959 a=0.34041946 b=99.842347

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9980518962	0.9970778443	2.2719175329	1536.9590014

Parm	n Value	Std Error	t-value	95% Confide	nce Limits
а	0.340419464	1.133398250	0.300352912	-2.23119070	2.912029630
b	99.84234726	1.621524571	61.57313251	96.16320882	103.5214857
С	81.71756858	0.432839261	188.7942616	80.73548321	82.69965396
d	13.29558238	0.820905441	16.19624101	11.43299897	15.15816579

Date	Time	File Source
May 12, 1994	1:36:36 PM	c:\tcwin\ngf.prn

NEAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid] r²=0.98914483 DF Adj r²=0.983717245 FitStdErrr=5.41689306 Fstat=273.36601 a=-0.15271455 b=98.053097

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9891448301 0.9837172451 5.4168930621 273.36600991

Darm	Value	Std Error	t-value	95% Confide	nce limits
Palli		J			
а	-0.15271455	2.708674457	-0.05637981	-6.29852849	5.993099395
b	98.05309711	3.601196214	27.22792408	89.88220679	106.2239874
С	97.99652563	0.740936648	132.2603301	96.31538644	99.67766482
d	-3.49346561	1.011360399	-3.45422424	-5.78817948	-1.19875174

Date Time File Source
May 12, 1994 3:21:51 PM c:\tcwin\ngf.prn

NEAR GUNS, 6 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.9949954 DF Adj r^2 =0.9924931 FitStdErr=3.49069631 Fstat=596.448499 a=-1.7892208 b=102.0455

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9949953999		3.4906963085	596.44849878

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	-1.78922076	2.496256268	-0.71676165	-7.45307104	3.874629514
b	102.0455035	3.182915505	32.06038720	94.82366612	109.2673409
С	93.55556023	1.682449414	55.60675969	89.73818711	97.37293335
d	-20.4763751	2.741014601	-7.47036339	-26.6955669	-14.2571834

Date	Time	File Source
Sep 28, 1994	5:19:59 PM	c:\tcwin\augl.prn

FAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/(2^{0.5}d))) [Cumulative] r²=0.990104197 DF Adj r²=0.985156295 FitStdErr=4.9763137 Fstat=300.158814 a=-3.0697515 b=103.39682

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

0.99	01041967	0.985	1562950	4.9763136978	300.15881448	3
Par	m Value		Std Error	t-value	95% Confide	
а	-3.069751	45 4.	.59197109	7 -0.66850409	-13.4886484	7.349145482
b	103.39681	191 5.	.49207586	5 18.82654603	90.93564038	115.8579978
С	98.016233	376 3.	.09474031	5 31.67187673	90.99446039	105.0380071
d				9 -5.00130504		

Fit Std Err

F-value

Date Time File Source May 12, 1994 3:26:03 PM c:\tcwin\ngf.prn

DF Adj r²

r² Coef Det

'LOUD' HELICOPTER-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

 r^2 =0.970273563 DF Adj r^2 =0.955410345 FitStdErr=8.68360781 Fstat=97.9202698 a=-1.9711465 b=102.90892

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9702735634	0.9554103451	8.6836078052	97.920269789

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	-1.97114654	5.639728021	-0.34951092	-14.7673388	10.82504572
b	102.9089225	7.478673830	13.76031698	85.94027653	119.8775685
С	94.21208792	2.420447162	38.92342266	88.72024379	99.70393205
d	10 25194331	3.005608653	3 410937517	3 432404142	17 07148249

Date	Time	File Source
May 12, 1994	3:19:37 PM	c:\tcwin\ngf.prn

'QUIET' HELICOPTER-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

 r^2 =0.976873357 DF Adj r^2 =0.965310035 FitStdErr=7.88802565 Fstat=126.720512 a=2.4804777 b=97.841537

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9768733568	0.9653100353	7.8880256476	126.72051235

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	2.480477685	3.823148055	0.648805029	-6.19400756	11.15496293
b	97.84153717	5.519653823	17.72602781	85.31778581	110.3652885
С	83.00392282	1.111701140	74.66388209	80.48154205	85.52630359
d	18.93755279	4.559122884	4.153771082	8.593186415	29.28191917

Date	Time	File Source
May 12, 1994	3:27:34 PM	c:\tcwin\ngf.prn

NEAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid] r^2 =0.999092269 DF Adj r^2 =0.998638403 FitStdErr=1.56007077 Fstat=3301.94381 a=-0.36757173 b=100.04235

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9990922690 0.9986384035 1.5600707716 3301.9438088

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -0.36757173
 0.811908208
 -0.45272572
 -2.20974098
 1.474597518

 b
 100.0423521
 1.127053151
 88.76453786
 97.48513860
 102.5995657

 c
 101.3968106
 0.453692106
 223.4925607
 100.3674115
 102.4262098

 d
 -6.06383068
 0.445530510
 -13.6103601
 -7.07471170
 -5.05294965

Date Time File Source
May 12, 1994 3:58:39 PM c:\tcwin\ngf.pm

NEAR GUNS, 6 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

 r^2 =0.998184543 DF Adj r^2 =0.997276814 FitStdErr=2.19505932 Fstat=1649.47632 a=-0.040308045 b=99.667746

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9981845428	0.9972768142	2.1950593202	1649.4763212

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	-0.04030805	1.102069191	-0.03657488	-2.54083452	2.460218432
b	99.66774644	1.522585218	65.45955211	96.21309524	103.1223976
С	92.66076098	0.391833659	236.4798402	91.77171477	93.54980719
d	-5.65839521	0.520205430	-10.8772321	-6.83870899	-4.47808143

Date	Time	File Source
May 12, 1994	3:56:03 PM	c:\tcwin\ngf.prn

FAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.997363912 DF Adj r^2 =0.996045868 FitStdErr=2.54898975 Fstat=1135.04999 a=-1.0996007 b=101.18113

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9973639119 0.9960458679 2.5489897494 1135.0499932

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -1.09960074
 1.554613479
 -0.70731455
 -4.62692207
 2.427720595

 b
 101.1811321
 2.102179316
 48.13154202
 96.41141791
 105.9508463

 c
 93.66718102
 1.021847341
 91.66455423
 91.34867293
 95.98568911

 d
 -18.5161690
 1.729089428
 -10.7086243
 -22.4393654
 -14.5929726

Date Time File Source May 12, 1994 3:54:18 PM c:\tcwin\ngf.prn

'LOUD' HELICOPTER-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r²=0.996175614 DF Adj r²=0.994263421 FitStdErr=3.0793482 Fstat=781.439644 a=-1.8705391 b=102.06828

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9961756140 0.9942634210 3.0793481994 781.43964391

Parm	n Value	Std Error	t-value	95% Confide	nce Limits
а	-1.87053910	1.949944134	-0.95927830	-6.29484111	2.553762911
b	102.0682778	2.608995894	39.12167051	96.14862827	107.9879272
С	93.29439634	0.794992031	117.3526183	91.49060885	95.09818384
d	10.27516982	1.083509522	9.483229832	7.816754080	12.73358557

Date Time File Source
May 12, 1994 4:00:00 PM c:\tcwin\ngf.prn

'QUIET' HELICOPTER-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.995946566 DF Adj r^2 =0.993919848 FitStdErr=3.24597687 Fstat=737.113118 a=-0.18133318 b=100.21125

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det 0.9959465656	DF Adj r ²	Fit Std Err	F-value
0.9959465656	0.9939198483	3.2459768689	737.11311750

Parm	n Value	Std Error	t-value	95% Confide	ence Limits
а	-0.18133318	1.612827002	-0.11243188	-3.84073738	3.478071018
b					105.4138292
С	81.26406800	0.681055080	119.3208456	79.71879636	82.80933963
d	-11.7735135				

Date	Time	File Source
May 12, 1994	3:52:55 PM	c:\tcwin\ngf.prn

NEAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.999257129 DF Adj r^2 =0.998885694 FitStdErr=1.35819966 Fstat=4035.38866 a=-1.6470348 b=101.59143

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9992571295 0.9988856942 1.3581996564 4035.3886577

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -1.64703480
 0.918101037
 -1.79395811
 -3.73014898
 0.436079369

 b
 101.5914326
 1.203215271
 84.43329724
 98.86141198
 104.3214533

 c
 97.95055569
 0.587650410
 166.6816767
 96.61721344
 99.28389793

 d
 -17.8641744
 0.897891238
 -19.8956996
 -19.9014338
 -15.8269150

Date Time File Source
May 12, 1994 4:51:02 PM c:\tcwin\augh.prn

NEAR GUNS, 6 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.997111357 DF Adj r^2 =0.995667036 FitStdErr=2.65407997 Fstat=1035.55003 a=-0.11310643 b=100.12069

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9971113573	0.9956670359	2.6540799674	1035.5500311

Parm	า Value	Std Error	t-value	95% Confide	ence Limits
а	-0.11310643	1.341445430	-0.08431683	-3.15676271	2.930549850
b	100.1206854	1.894115270	52.85881329	95.82305562	104.4183152
С	85.67939478	0.688174950	124.5023446	84.11796860	87.24082096
d	-15.3709999	1.202078315	-12.7870204	-18.0984409	-12.6435590

Date Time File Source May 12, 1994 4:52:45 PM c:\tcwin\augh.prn

FAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.992252992 DF Adj r^2 =0.988379488 FitStdErr=4.31143232 Fstat=384.246286 a=-4.6101843 b=104.85116

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9922529922 0.9883794883 4.3114323181 384.24628580

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	-4.61018426	3.950284962	-1.16705106	-13.5731352	4.352766728
b	104.8511620	4.719991156	22.21427085	94.14179549	115.5605285
С	87.76978914	1.966192232	44.63947509	83.30862121	92.23095708
d	6.856735238	1.117422233	6.136207994	4.321373663	9.392096813

Date Time File Source C:\tcwin\augh.prn

'LOUD' 25 mm-VEHICLE CONTROLS

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

r²=0.997047124 DF Adj r²=0.995570686 FitStdErr=2.65318747 Fstat=1012.95872 a=-3.9931161 b=104.1233

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9970471241	0.9955706862	2.6531874673	1012.9587172

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	-3.99311609	2.192689108	-1.82110454	-8.96819135	0.981959178
b	104.1232969	2.671747961	38.97197582	98.06126693	110.1853270
С	89.33371873	0.961212991	92.93852615	87.15278621	91.51465125
d	7.458888010	0.600883730	10.65732564	5.870806227	0.046881610

Date	Time	File Source
May 17, 1994	10:03:56 AM	c:\tcwin\noise.prn

'QUIET' 25 mm-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/(2^{0.5}d))) [Cumulative]

 r^2 =0.998850873 DF Adj r^2 =0.99827631 FitStdErr=1.68321017 Fstat=2607.67813 a=-0.31487208 b=100.29985

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9988508733 0.9982763099 1.6832101734 2607,6781277

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -0.31487208
 0.881841763
 -0.35706188
 -2.31571621
 1.685972057

 b
 100.2998502
 1.241007023
 80.82133969
 97.48408241
 103.1156180

 c
 90.05697500
 0.559809516
 160.8707470
 88.78680202
 91.32714799

 d
 -16.5435075
 0.953291307
 -17.3540946
 -18.7064663
 -14.3805488

Date Time File Source
May 17, 1994 10:06:01 AM c:\tcwin\noise.prn

NEAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

 $r^2 = 0.996472569 \ \ DF \ Adj \ r^2 = 0.994708854 \ \ FitStdErr = 2.93827527 \ \ Fstat = 847.477418$

a=-2.6545308 b=102.92168

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9964725695 0.9947088542 2.9382752714 847.47741775

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -2.65453078
 2.058128495
 -1.28977894
 -7.32429638
 2.015234816

 b
 102.9216847
 2.674179726
 38.48719803
 96.85413714
 108.9892322

 c
 94.54797609
 0.849235065
 111.3331043
 92.62111452
 96.47483765

 d
 9.682271648
 0.990328833
 9.776824950
 7.435277094
 11.92926620

Date Time File Source
May 17, 1994 2:31:27 PM c:\tcwin\noise.pm

NEAR GUNS, 6 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9986841880 0.9980262820 1.8514781845 2276.9609329

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 0.099604715
 0.948218170
 0.105044090
 -2.05184336
 2.251052792

 b
 100.1218793
 1.339857997
 74.72573928
 97.08182483
 103.1619338

 c
 82.89289498
 0.385701873
 214.9144217
 82.01776141
 83.76802855

 d
 12.06689450
 0.589364435
 20.47441917
 10.72966324
 13.40412576

Date Time File Source
May 17, 1994 2:32:47 PM c:\tcwin\noise.prn

fAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r²=0.9878441 DF Adj r²=0.98176615 FitStdErr=5.56254052 Fstat=243.793733 a=0.6612727 b=99.836412

CONTROL ASEL

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9878440997	0.9817661496	5.5625405235	243.79373289

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	0.661272700	2.934705404	0.225328477	-5.99739141	7.319936808
b	99.83641198	4.084164798	24.44475600	90.56969597	109.1031280
С	78.62260432	1.300087262	60.47486705	75.67278715	81.57242149
d	9.933264919	1.633166910	6 082210494	6 227710735	13 63881910

Date	Time	File Source
May 17, 1994	2:34:27 PM	c:\tcwin\noise prn

'LOUD' 25 mm-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.994294327 DF Adj r^2 =0.991441491 FitStdErr=3.78498544 Fstat=522.792527 a=-0.5480703 b=101.09746

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9942943274 0.9914414911 3.7849854442 522.79252650

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -0.54807030
 2.041556784
 -0.26845705
 -5.18023572
 4.084095114

 b
 101.0974610
 2.851188182
 35.45801068
 94.62829228
 107.5666297

 c
 88.54249677
 0.806415443
 109.7976205
 86.71279026
 90.37220327

 d
 11.34006095
 1.268175664
 8.942026940
 8.462649211
 14.21747268

Date Time File Source
May 18, 1994 3:35:12 PM c:\tcwin\noise.prn

'QUIET' 25 mm-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r²=0.98707708 DF Adj r²=0.980615619 FitStdErr=5.74935328 Fstat=229.145669

a=-0.87841339 b=101,55483

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r² Coef Det DF Adj r²

b

Fit Std Err F-value

0.9870770796 0.9806156194 5.7493532810 229.14566885 Parm Value Std Error t-value 95% Confidence Limits -0.87841339 3.192812806 -0.27512211 а -8.12270715 6.365880364

101.5548272 4.443558346 22.85439264 91.47266954 111.6369848 87.01750840 1.429638396 60.86679586 83.77374776 90.26126903 С d 10.17263858 1.776520220 5.726159752 6.141824650 14.20345251

Date Time File Source May 18, 1994 3:38:24 PM c:\tcwin\noise.prn

150

179

0

NEAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r²=0.9930127 DF Adj r²=0.98951905 FitStdErr=4.30529613 Fstat=426.350399 a=-0.066110666 b=99.567172

125 100 75 50 25

CONTROL ASEL

100

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r ² Coef Det 0.9930127001	DF Adj r ²	Fit Std Err	F-value
0.9930127001	0.9895190502	4.3052961260	426.35039917

50

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	-0.06611067	2.167949774	-0.03049456	-4.98505392	4.852832588
b	99.56717221	3.009795679	33.08104032	92.73813293	106.3962115
С	93.00128619	0.843048768	110.3154287	91.08846095	94.91411143
d	-6.00578263	0.894685205	-6 71273270	8 03576774	2 07570752

Date	Time	File Source
Sep 21, 1994	11:30:55 AM	c:\tcwin\augl.prn

NEAR GUNS, 6 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.947116139 DF Adj r^2 =0.920674209 FitStdErr=12.059874 Fstat=53.7280821 a=-0.05221579 b=100.92623

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9471161391	0.9206742087	12.059874019	53.728082084

Parm	Value	Std Error	t-value	95% Confide	ence l imits
а	-0.05221579	6.012349162	-0.00868476	-13.6938622	
				81.59967869	
				76.05354725	
				-18:8884328	

Date	Time	File Source
Sep 21, 1994	1:35:06 PM	c:\tcwin\augl.prn

FAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

r²=0.973568796 DF Adj r²=0.960353193 FitStdErr=8.1679294 Fstat=110.502206 a=-1.3473294 b=102.12103

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9735687956	0.9603531934	8.1679294028	110.50220587

Parm	Value	Std Error	t-value	95% Confide	nce Limits
a .	-1.34732936	5.015212377	-0.26864852	-12.7265344	10.03187573
b	102.1210258	6.760799961	15.10487316	86.78119105	117.4608606
С	84.30628101	2.454514786	34.34743254	78.73713956	89.87542246
d	8.332401198	2.233810329	3.730129228	3 264024440	13 40077796

Date	Time	File Source
Sep 21, 1994	1:40:36 PM	c:\tcwin\augl.prn

182

LOUD HELICOPTER-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid] r^2 =0.984731723 DF Adj r^2 =0.976006993 FitStdErr=6.46577857 Fstat=171.987397 a=-1.6103103 b=100.99982

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9847317228	0.9760069929	6.4657785743	171.98739710

Parm	Value	Std Error	t-value	95% Confide	ence Limits
а	-1.61031027	3.746190030	-0.42985280	-10.2792001	7.058579560
b	100.9998244	5.170365257	19.53436930	89.03531472	112.9643340
С	90.19822399	2.143079555	42.08813610	85.23902000	95.15742798
d	-10.6110348	2.371035632	-4.47527428	-16.0977417	-5.12432789

Date	Time	File Source
Sep 21, 1994	1:27:11 PM	c:\tcwin\augl.prn

QUIET HELICOPTER-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.981141778 DF Adj r^2 =0.971712666 FitStdErr=7.0322389 Fstat=156.081802 a=0.45850256 b=100.00578

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9811417776	0.9717126664	7.0322389049	156.08180193

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	0.458502561	3.578236620	0.128136457	-7.66029387	8.577298990
b	100.0057811	5.056718914	19.77681235	88.53240024	111.4791619
С	81.97916242	1.383846987	59.24004835	78.83929964	85.11902520
d	12.27210728	2.390737437	5.133189070	6.847672672	17.69654189

Date	Time	File Source
Sep 21, 1994	1:50:50 PM	c:\tcwin\augl.prn

NEAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r²=0.997901392 DF Adj r²=0.996852088 FitStdErr=2.45413719 Fstat=1426.51909 a=0.35798552 b=99.920516

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9979013921	0.9968520882	2.4541371862	1426.5190879

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	0.357985524	1.218530447	0.293784636	-2.40678430	3.122755352
b	99.92051607	1.644453434	60.76214382	96.18935346	103.6516787
С	90.56585455	0.268055637	337.8621528	89.95765297	91.17405612
d	28.98797345	2.362905504	12.26793598	23 62668776	34 34925913

Date Time File Source Sep 21, 1994 10:54:36 AM c:\tcwin\aug!.prn

NEAR GUNS, 6 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.99126362 DF Adj r^2 =0.98689543 FitStdErr=5.00749971 Fstat=340.391657

a=0.56236996 b=100.97423 c=83.612532 d=20.797909

125
100
75
25
0
0
CONTROL ASEL

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9912636200	0.9868954300	5.0074997085	340.39165660
0.0012000200	0.3000334300	5.00/499/065	340.39 100000

_					
Parn	n Value	Std Error	t-value	95% Confide	ence Limits
а	0.562369964	2.490027138	0.225848930		6.212086733
b	100.9742319	3.463499178	29.15382009	93 11576760	108.8326962
С					85.13981755
d					27 28793523

Date	Time	File Source
Sep 21, 1994	11:03:27 AM	c:\tcwin\augl.prn

FAR GUNS, 60 SHOT-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r²=0.992113841 DF Adj r²=0.988170762 FitStdErr=4.54445047 Fstat=377.413337 a=-0.12886824 b=100.60487

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9921138412	0.9881707617	4.5444504748	
0.9921130412	0.9001707617	4.5444504/48	377.41333697

Parm	ı Value	Std Error	t-value	95% Confide	ence Limits
а	-0.12886824	2.330115047	-0.05530553	-5.41575442	5.158017938
b	100.6048691	3.286370340	30.61276078	93.14829907	108.0614390
С	87.63879186	0.900568177	97.31499969	85.59545866	89.68212507
d	13.31719994	2.112672897	6.303484063	8.523676480	18.11072339

Date	Time	File Source
	Time	File Source
Sep 21, 1994	11:09:15 AM	c:\tcwin\augl.nm

LOUD HELICOPTER-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

 r^2 =0.978063257 DF Adj r^2 =0.967094885 FitStdErr=7.77106275 Fstat=133.756855 a=0.5245968 b=99.278455

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9780632569 0.9670948854 7.7710627544 133.75685523

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 0.524596798
 3.863849656
 0.135770499
 -8.24223785
 9.291431449

 b
 99.27845475
 5.396207325
 18.39782068
 87.03479581
 111.5221137

 c
 89.33978899
 1.033160121
 86.47235526
 86.99561291
 91.68396507

 d
 21.00863195
 5.169883952
 4.063656389
 9.278486683
 32.73877723

Date Time File Source Sep 21, 1994 10:56:45 AM c:\tcwin\augl.prn

QUIET HELICOPTER-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.994043868 DF Adj r^2 =0.991065801 FitStdErr=4.03171719 Fstat=500.682558 a=-0.035277261 b=100.6518

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9940438676	0.9910658014	4.0317171857	500.68255805

P	arm Value	Std Error	t-value	95% Confide	ence Limits
а	-0.03527726	2.005002810	-0.01759462	-4.58450398	4.513949463
b	100.6517972	2.837885069	35.46718588	94.21281246	107.0907820
C	82.21728009	0.609018094	134.9997329	80.83545590	83.59910429
d				-9 93743058	

Date Time File Source Sep 21, 1994 11:12:32 AM c:\tcwin\augl.prn

Appendix E: Blast Sound Transition Curves— Acoustical Measurements Near the Subjects

This appendix contains the transition curves for the blast sound data for subjects indoors and outdoors with the **acoustical measurements made near to the subjects.** Each curve represents the grouping of data indicated on the curve. As discussed in the text, only these data include the white-noise control sounds because these could only be heard or measured by the subjects. Because of the problems cited in the text, only indoor measured acoustical data for the windows-closed test periods are included. Each curve represents an entire test period, so there are two sets of curves for the two test periods that included outdoor subjects.

BLAST, SETS 2,4&7L, 6S-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.994568912 DF Adj r^2 =0.991853369 FitStdErr=3.75448166 Fstat=549.37555 a=0.027545468 b=100.39177

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9945689124	0.9918533686	3.7544816636	549.37554982

Parn	n Value	Std Error	t-value	95% Confide	ence Limits
а	0.027545468	1.877137555	0.014674187		4.286653878
b	100.3917673	2.649335370	37.89318954	94.38059009	106.4029446
С	65.21544339	0.959570132	67.96318606	63.03823842	67.39264836
d	- 9.92614709				

Date	Time	File Source
Sep 28, 1994	9:33:44 AM	c:\tcwin\augl.prn

SMALL BLAST, SETS 1,2&7-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

 r^2 =0.995063385 DF Adj r^2 =0.992595078 FitStdErr=3.51635376 Fstat=604.703863 a=-0.37519018 b=100.71335

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

	_		
r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9950633850	0.9925950775	3.5163537635	604.70386283
0.0000000	0.002000770	0.0100001000	007.70000200

_					
Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	-0.37519018	1.852062916	-0.20257961	-4.57740579	3.827025434
b	100.7133467	2.625731673	38.35629806	94.75572477	106.6709686
С	62.93477334	1.484674919	42.38959824	59.56613825	66.30340843
d	7.057136285	1.199715143	5.882343260	4.335057213	9.779215357

Date	Time	File Source
Sep 28, 1994	9:36:37 AM	c:\tcwin\augl.prn

SMALL BLAST, SETS 3&4-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r²=0.998426409 DF Adj r²=0.997639613 FitStdErr=1.92301658 Fstat=1903.46738 a=-0.015400384 b=100.30582

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9984264089 0.9976396134 1.9230165797 1903.4673759

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -0.01540038
 0.959539546
 -0.01604976
 -2.19253596
 2.161735191

 b
 100.3058173
 1.399155255
 71.69026948
 97.13122101
 103.4804136

 c
 52.07842544
 0.373898707
 139.2848504
 51.23007252
 52.92677836

 d
 -7.45832886
 0.530653110
 -14.0549989
 -8.66234777
 -6.25430994

Date Time File Source Sep 28, 1994 9:38:35 AM c:\tcwin\augl.prn

LARGE BLAST, SET 3-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r²=0.987539373 DF Adj r²=0.98130906 FitStdErr=5.60318365 Fstat=237.758358

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

DF Adj r²

r² Coef Det

		5.6031836467	237.75835802	2
b 99.633847 c 54.197342	Std Error 2.767329202 47 3.948238907 56 0.646092083 28 2.417919946	25.23500979 83.88485781	95% Confide -5.62966500 90.67553885 52.73139979 7.574504244	6.928130823 108.5921561 55.66328533

Fit Std Err

F-value

Date	Time	File Source
Sep 28, 1994	9:40:05 AM	c:\tcwin\aud nm

LARGE BLAST, SETS 1&6-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.995803124 DF Adj r^2 =0.993704687 FitStdErr=3.35880343 Fstat=711.81746 a=0.032955016 b=100.55269

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9958031243	0.9937046865	3.3588034305	711.81745997

Parm	Value	Std Error	t-value	95% Confide	ence Limits
а	0.032955016	1.679334820	0.019623851	-3.77735128	3.843261316
b	100.5526851	2.362754781	42.55739355	95.19174140	105.9136288
С	66.18972302	0.911003725	72.65582041	64.12271221	68.25673383
d	-8.89125404	1.359406590	-6.54054063	-11.9756631	-5.80684500

Date Time File Source Sep 28, 1994 9:41:55 AM c:\tcwin\augl.prn

SMALL BLAST-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

 r^2 =0.98802275 DF Adj r^2 =0.982034125 FitStdErr=5.29608035 Fstat=247.474861 a=-3.355854 b=103.72916

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9880227501	0.9820341252	5.2960803482	247.47486138

Parm	n Value	Std Error	t-value	95% Confide	ence Limits
а	-3.35585400	4.541762510	-0.73888804	-13.6608308	6.949122770
b	103.7291620	5.516728635	18.80265804	91.21204772	116.2462763
С	63.22129993	2.257724685	28.00221849	58.09866298	68.34393687
d	4.280111535	1.007265980	4.249236666	1.994687649	6.565535421

Date Time File Source Sep 28, 1994 10:04:41 AM c:\tcwin\augl.prn

LARGE BLAST-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r²=0.978010953 DF Adj r²=0.96701643 FitStdErr=7.40230193 Fstat=133.431561 a=0.17584759 b=100.17226

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9780109530	0.9670164296	7.4023019304	133.43156089

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	0.175847589	3.777154292	0.046555575	-8.39428067	8.745975849
b	100.1722581	5.324602601	18.81309566	88.09106580	112.2534503
С	67.37852602	1.510363982	44.61078709	63.95160405	70.80544800
d	8.864889480	1.891500923	4.686695824	4.573191481	13 15658748

Date	Time	File Source
Sep 28, 1994	10:05:37 AM	c:\tcwin\augl.prn

LARGE BLAST, SETS 3&4-VEHICLE CONTROLS

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

 $r^2 = 0.990180416 \;\; \text{DF Adj} \;\; r^2 = 0.985270624 \;\; \text{FitStdErr} = 5.11470533 \;\; \text{Fstat} = 302.511929$

a=-0.45965424 b=100.84928

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9901804162 0.9852706242 5.1147053319 302.51192888

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а	-0.45965424	2.743315050	-0.16755430	-6.68406554	5.764757050
b	100.8492831	3.883440286	25.96905724	92.03799850	109.6605676
С	78.87953744	2.214407870	35.62105180	73.85518366	83.90389123
d				3 883628535	

Date Time File Source Sep 28, 1994 9:53:26 AM c:\tcwin\augl.prn

LARGE BLAST, SETS 2,5&6-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r²=0.99957987 DF Adj r²=0.999369805 FitStdErr=1.03832115 Fstat=7137.64844 a=-0.078075591 b=99.964895

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9995798701	0.9993698051	1.0383211487	7137.6484387

Parm	า Value	Std Error	t-value	95% Confide	ence Limits
а	-0.07807559	0.522209368	-0.14951013		1.106784999
b		0.739759745			101 6433639
С	78.20758521	0.391980090	199.5192795	77.31820676	79 09696367
d	-8.02155756	0.403708148	-19.8696945	-8.93754625	-7 10556887

Date	Time	File Source
Sep 28, 1994	9:55:32 AM	c:\tcwin\augl.prn

SMALL BLAST, SETS 2,3&4-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r²=0.999246505 DF Adj r²=0.998869757 FitStdErr=1.3837228 Fstat=3978.44638 a=-0.060656238 b=99.914534

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

DF Adj r²

r² Coef Det

0.999	2465050 0.	9988697575	1.3837228029	3978.4463781	1
Parm	า Value	Std Error	t-value	95% Confide	ence Limits
а	-0.06065624	0.694066937	-0.08739249	-1.63545097	1.514138490
b ·	99.91453387	7 0.989730036	100.9513001	97.66889795	102.1601698
С	73.20532916	0.482899410	151.5953998	72.10966042	74.30099790
d		0.524839188			

Fit Std Err

F-value

Date Time File Source Sep 28, 1994 9:57:03 AM c:\text{c:\text{cwin\augl.pm}}

SMALL BLAST, SETS 5&6-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid] r^2 =0.97662012 DF Adj r^2 =0.96493018 FitStdErr=7.90596045 Fstat=125.315458 a=-0.080489795 b=99.861471

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r ² Coef Det 0.9766201201	DF Adj r ² 0.9649301801	Fit Std Err	F-value
0.9700201201	0.9649301801	7.9059604503	125.31545792

a b c	99.86147094 75.30323228	3.603797329	17.71409486 20.89552364	87.07055665 67.12644019	8.913596451 112.6523852 83.48002437
ď	-7.75057708	3.459332013	-2.24048373	-15.5995863	0.098432189

Date Time File Source Sep 28, 1994 9:58:14 AM c:\tcwin\augl.prn

LARGE BLAST-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.998708682 DF Adj r^2 =0.998063023 FitStdErr=1.83273197 Fstat=2320.20725 a=-0.00020532856 b=100.12723

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9987086817 0.9980630226 1.8327319737 2320.2072481

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -0.00020533
 0.917282509
 -0.00022384
 -2.08146231
 2.081051657

 b
 100.1272314
 1.298781179
 77.09322636
 97.18037766
 103.0740852

 c
 75.96227098
 1.581558923
 48.02999742
 72.37381212
 79.55072985

 d
 -15.4120793
 1.927134452
 -7.99740741
 -19.7846276
 -11.0395311

Date Time File Source Sep 28, 1994 10:08:14 AM c:\tcwin\augl.prn

SMALL BLAST-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid] r^2 =0.999746981 DF Adj r^2 =0.999620471 FitStdErr=0.787746995 Fstat=11853.8169

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9997469810	0.9996204715	0.7877469945	11853.816873
0.9997469810	0.9996204/15	0.7877469945	11853.816

Parn	n Value	Std Error	t-value	95% Confide	ence Limits
a	-0.01511781	0.393904135	-0.03837942	-0.90886180	
b	99.91768765	0.557525273	179.2164276	98.65269747	101 1826778
С	64.35980642	0.193973524	331.7968608	63.91969255	64 79992028
d				-7 37630016	

Date	Time	File Source
Sep 28, 1994	10:09:13 AM	c:\tcwin\augl.prn

LARGE BLAST-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r²=0.990179309 DF Adj r²=0.985268963 FitStdErr=4.97760108 Fstat=302.477482 a=-0.43624229 b=101.09275

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9901793089	0.9852689633	4.9776010826	302.47748216

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а		2.665042203		-6.48305736	
b	101.0927521	3.776755175	26.76709171	92.52352945	109.6619748
С				63.61248949	
				3.341744295	

Date	Time	File Source
Sep 28, 1994	10:59:36 AM	c:\tcwin\augl.prn

SMALL BLAST-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r²=0.99898316 DF Adj r²=0.998474741 FitStdErr=1.60874927 Fstat=2947.31764 a=-0.25031825 b=100.38432

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det 0.9989831603	DF Adj r ² 0.9984747405	Fit Std Err	F-value
0.0000001000	0.9904/4/403	1.6087492727	2947.3176374

-					
Parm	· Value	Std Error	t-value	95% Confide	nce l imite
_	0.05004005			oo /o ooimide	HOC LITTIES
а	-0.25031825	0.826051341	-0.30302989	-2.12457739	1.623940887
b	100 2042242	4 404505500	04.05700077		1.0200 10007
D	100.3043213	1.181585536	84.95/30375	97.70337714	103 0652654
C	65 62610752	0.644704545	407.0700004		100.0002004
C	03.02019733	0.611781545	107.2706394	64 23810324	67 01420182
d	0.404004000	0.000000100		01.20010024	01.01423102
u	0.124004382	0.639203162	12 71061356	6 674352147	0.574076647
			12.7 100 1000	0.017002141	3.3749700 L

Date	Time	File Source
Sep 28, 1994	10:58:12 AM	c:\tcwin\augl.prn

LARGE BLAST-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid] r^2 =0.99924898 DF Adj r^2 =0.998873471 FitStdErr=1.4949 Fstat=3991.56988 a=-0.66461403 b=100.23173

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9992489805	0.9988734707	1.4949000012	3991.5698832

Parm	Value	Std Error	t-value	95% Confide	ence Limits
а	-0.66461403	0.649441567	-1.02336232		
b		0.999008878			
С		0.142365257			
d	-2.65254092	0.135334900	-19.5998291	-2.95960739	-2.34547444

Date	Time	File Source
Sep 7, 1994	8:50:06 AM	c:\tcwin\augh.prn

SMALL BLAST-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid] r^2 =0.949626282 DF Adj r^2 =0.924439423 FitStdErr=11.8179313 Fstat=56.5548656

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9496262821	0.9244394231	11.817931330	
0.3430202021	0.9244394231	11.81/931330	56.554865596

_					
	Value	Std Error	t-value	95% Confide	ence Limits
а	1.965723436	5.328337012	0.368918751	-10 1239420	14.05538885
b	90.29806350	7.306980884	12 35778017	73 71807815	106.8771488
С	80.70573457	0.908037969	88 87925098	78.64545207	82.76601627
d	-1 41993101	0.630184021	2 25240720	0.04040207	0.009919395
-	1.11000101	0.000104921	-2.20019738	-2.849/8142	0.009919395

Date	Time	File Source
Sep 7, 1994	8:52:38 AM	c:\tcwin\augh.prn

LARGE BLAST, SET 3&4-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.975104411 DF Adj r^2 =0.962656616 FitStdErr=8.18341516 Fstat=117.503274 a=-0.38132377 b=101.82195

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9751044109	0.9626566163	8.1834151592	117.50327400

Parm	Value	Std Error	t-value	95% Confide	nce Limits
a	-0.38132377	4.431665597	-0.08604525	-10.4364975	9.673849947
b	101.8219535	6.209747832	16.39711568	87.73242178	115.9114853
C	91.88120079	1.959156214	46.89835354	87.43599714	96.32640444
					20.17785026

Date	Time	File Source
Sep 7, 1994	9:32:04 AM	c:\tcwin\augh.prn

LARGE BLAST, SET 2,5&6-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid] r^2 =0.994576386 DF Adj r^2 =0.991864579 FitStdErr=3.7377859 Fstat=550.136741 a=-0.60494564 b=99.898075

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

Parm	Value	Std Error	t-value	95% Confide	ence Limits
а	-0.60494564	1.866612890	-0.32408736	-4.84017424	3.630282959
b	99.89807510	2.645014575	37.76844031	93.89670147	105.8994487
С	86.73534500	0.662735838	130.8746865	85.23163859	88.23905141
d	-6.10304154	0.637001136	-9.58089586	-7.54835752	-4.65772557

Date Time File Source Sep 7, 1994 9:36:29 AM c:\tcwin\augh.prn

SMALL BLAST, SET 5&6-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.986215807 DF Adj r^2 =0.979323711 FitStdErr=5.80065234 Fstat=214.640604 a=-0.25393225 b=100.0547

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det DF Adj r ² Fit Std 0.9862158074 0.9793237111 5.80065	
---	--

Parm	Value	Std Error	t-value	95% Confide	ence Limits
		2.899996787			6.325980162
b	100.0546965	4.104347093	24.37773762	90.74218813	109.3672049
С	81.46743128	1.235188882	65.95544413	78.66486450	84.26999806
d	-13.2503698	2.257435029	-5.86965719	-18.3723495	-8.12839002

Date	Time	File Source
Sep 7, 1994	9:53:51 AM	c:\tcwin\augh.prn

SMALL BLAST, SET 2,3&4-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid] r²=0.99901909 DF Adj r²=0.998528635 FitStdErr=1.58997328 Fstat=3055.38413 a=-0.092752295 b=99.632623

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9990190899 0.9985286348 1.5899732780 3055.3841276

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -0.09275230
 0.797583300
 -0.11629167
 -1.90241922
 1.716914626

 b
 99.63262319
 1.121561314
 88.83386220
 97.08787030
 102.1773761

 c
 87.85638802
 0.338982635
 259.1766628
 87.08725750
 88.62551855

 d
 -6.18008343
 0.366615160
 -16.8571410
 -7.01191044
 -5.34825643

Date Time File Source Sep 7, 1994 9:57:37 AM c:\tcwin\augh.prn

USACERL TR-95/07 211

Appendix F: Blast Sound Transition Curves— Pressure-doubled and Free-field Measurements

This appendix contains the transition curves for the blast sound data for subjects indoors and outdoors with the **control sound measured using the outdoor, free-field microphone and the blast sound measured using the outdoor, pressure-doubling microphone**. Each curve represents the grouping of data indicated on the curve. Each curve represents an entire test period, so there are two sets of curves for the two test periods that included outdoor subjects.

BLAST, SETS 2,4&7L, 6S-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.998628507 DF Adj r^2 =0.99794276 FitStdErr=1.88563971 Fstat=2184.39693 a=-0.89387998 b=101.22168

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9986285068	0.9979427602	1.8856397122	2184.3969340

Parm	value	Std Error	t-value	95% Confide	ence Limits
а	-0.89387998	1.124819821	-0.79468725		1.658266268
b	101.2216838	1.546084011	65.46971772	97.71371527	104.7296523
С	99.52538427	0.763454476	130.3619107	97.79315353	101.2576150
	-15.2588756				

Date Time File Source Apr 20, 1994 10:59:59 PM c:\tcwin\augh.prn

SMALL BLAST, SETS 1,2&7-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.99394122 DF Adj r^2 =0.990911831 FitStdErr=3.89556549 Fstat=492.14922 a=-2.748436 b=102.79298

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9939412204	0.9909118306	3.8955654901	492.14921967

		,			
Parm	Value	Std Error	t-value	95% Confide	ence Limits
а	-2.74843595	3.386049236	-0.81169403	-10.4311712	4.934299248
b	102.7929835	4.134322237	24.86332164	93.41246340	112.1735036
С	96.33552784	2.453752405	39.26049248	90.76811618	101.9029395
d	-20.8893286	3.272385161	-6.38351772	-28.3141671	-13 4644902

Date	Time	File Source
Apr 20, 1994	10:56:54 PM	c:\tcwin\augh.prn

SMALL BLAST, SETS 3&4-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.999603369 DF Adj r^2 =0.999405053 FitStdErr=0.965451667 Fstat=7560.70116 a=-0.82787907 b=100.90619

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9996033688	0.9994050532	0.9654516671	7560.7011572

a b	100.9061858	0.766780559	131.5972147	99.16640837	0.451023266 102.6459632
С	80.88726964	0.351308087	230.2459651	80.09017343	81.68436585
d	-22.9488054	0.806787897	-28.4446575	-24.7793570	-21 1182538

Date	Time	File Source
Apr 20, 1994	10:44:38 PM	c:\tcwin\augh.prn

LARGE BLAST, SET 3-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r^2 =0.994665869 DF Adj r^2 =0.991998803 FitStdErr=3.66603631 Fstat=559.415864 a=-0.29156645 b=100.44142

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9946658688	0.9919988032	3.6660363119	559.41586352
			000.11000002

Parr	m Value	Std Error	t-value	95% Confide	ence Limits
а	-0.29156645		-0.14995793		
b	100.4414217	2.696090270	37.25447281	94.32416047	106.5586829
C	81.23871833	0.808557859	100.4735993	79.40415082	83.07328585
d	10.43797139	1.177461723	8.864807393	7.766383944	13 10955884

Date	Time	File Source
Apr 20, 1994	10:39:38 PM	c:\tcwin\augh.prn

LARGE BLAST, SETS 1&6-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.99688891 DF Adj r^2 =0.995333365 FitStdErr=2.89186377 Fstat=961.29223 a=-0.86665787 b=101.4336

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

 $\begin{array}{lll} r^2 \ \text{Coef Det} & \ \text{DF Adj } r^2 & \ \text{Fit Std Err} & \ \text{F-value} \\ 0.9968889099 & 0.9953333649 & 2.8918637704 & 961.29222989 \end{array}$

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -0.86665787
 1.746213560
 -0.49630692
 -4.82870787
 3.095392134

 b
 101.4336009
 2.396213111
 42.33079288
 95.99674232
 106.8704595

 c
 101.2754512
 1.303859467
 77.67359427
 98.31707517
 104.2338273

 d
 -14.4189498
 1.821840276
 -7.91449721
 -18.5525921
 -10.2853075

Date Time File Source Apr 20, 1994 10:36:09 PM c:\tcwin\augh.pm

LARGE BLAST, VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp] r²=0.980965479 DF Adj r²=0.971448218 FitStdErr=6.88707116 Fstat=154.608377 a=-0.76551909 b=100.97779

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9809654788	0.9714482182	6.8870711597	154.60837747
		0.00.01.1001	101.00001141

Parm	Value	Std Error	t-value	95% Confide	nce Limits
а				-9.36224430	
b	100.9777903	5.224717554	19.32693764	89.12323102	112.8323496
С	89.86835673	1.472200785	61.04354627	86.52802468	93.20868878
d	11.38927672	2.307066690	4.936691589	6.154685837	16 62386761

Date	Time	File Source
Apr 19, 1994	9:35:07 PM	c:\tcwin\augh.prn

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r²=0.982117108 DF Adj r²=0.973175661 FitStdErr=6.47135005 Fstat=164.758097 a=-8.4059096 b=108.65033

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9821171076	0.9731756614	6.4713500456	164.75809709

a b	Value -8.40590961 108.6503261 87.30294510	10.48508021	10.36237434	95% Confide -30.4004773 84.86033101	13.58865808
C	87.30294510	4.225948557	20.65878084	77.71453055	96.89135964
ď	5.375314135	1.651116733	3.255562753	1 629032920	9 121505350

Date	Time	File Source
Apr 20, 1994	9:09:00 PM	c:\tcwin\augl.prn

LARGE BLAST, SET 3&4-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.989136366 DF Adj r^2 =0.983704549 FitStdErr=5.3797444 Fstat=273.150684 a=-0.94757914 b=101.05857

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9891363659	0.9837045488	5.3797444021	273.15068445

Parm	า Value	Std Error	t-value	95% Confide	ence Limits
а	-0.94757914	3.324317123	-0.28504475	-8.49024802	6.595089736
b	101.0585659	4.473224952	22.59188102	90.90909660	111.2080352
С	103.0515531	2.361975536	43.62939053	97.69237744	108.4107287
d				-21.3759953	

Data		
Date	Time	File Source
Apr 13, 1994	2:20:11 AM	c:\tcwin\augh prn

LARGE BLAST, SET 2,5&6-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.996998448 DF Adj r^2 =0.995497672 FitStdErr=2.77531856 Fstat=996.482904 a=-2.6137034 b=102.63203

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9969984479	0.9954976719	2.7753185641	996.48290414

Parn	n Value	Std Error	t-value	95% Confide	ence Limits
а	-2.61370341	2.281573523	-1.14557054	-7.79045189	2.563045065
b	102.6320261	2.833943009	36.21527525	96.20198560	109.0620666
С	97.47196945	1.691943902	57.60945700	93.63305393	101.3108850
d	-20.0581054	2.060173711	-9.73612337	-24.7325115	-15.3836993

Date Time File Source Apr 19, 1994 8:49:55 PM c:\tcwin\augh.prn

SMALL BLAST, SET 2,3&4-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

 $r^2 = 0.998322252 \;\; \text{DF Adj} \; r^2 = 0.997483378 \;\; \text{FitStdErr} = 2.0647726 \;\; \text{Fstat} = 1785.11155$

a=-1.8058807 b=101.31548 c=97.210659 d=-9.6897816

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9983222523 0.9974833785 2.0647726017 1785.1115539

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -1.80588073
 1.372851446
 -1.31542326
 -4.92079531
 1.309033850

 b
 101.3154757
 1.870219355
 54.17304414
 97.07206421
 105.5588871

 c
 97.21065857
 0.951144788
 102.2038493
 95.05257018
 99.36874696

 d
 -9.68978162
 0.937430163
 -10.3365371
 -11.8167524
 -7.56281086

Date Time File Source Apr 18, 1994 9:24:37 PM c:\tcwin\augl.prn

SMALL BLAST, SET 5&6-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid] r²=0.977000575 DF Adj r²=0.965500862 FitStdErr=7.84137081 Fstat=127.438042 a=-0.93716983 b=100.9765

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -0.93716983
 4.586712621
 -0.20432277
 -11.3441356
 9.469795952

 b
 100.9764986
 6.474508344
 15.59601027
 86.28624169
 115.6667555

 c
 94.99797129
 4.168436405
 22.78983342
 85.54004824
 104.4558943

 d
 -8.70224364
 3.710138157
 -2.34553089
 -17.1203165
 -0.28417082

Date Time File Source Sep 9, 1994 8:49:53 AM c:\tcwin\augl.prn

LARGE BLAST-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid] r²=0.998067397 DF Adj r²=0.997101096 FitStdErr=2.24209296 Fstat=1549.31065 a=-4.2889235 b=103.63086

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9980673971	0.9971010957	2.2420929594	1549.3106509

Parm	Value	Std Error	t-value	95% Confide	ence Limits
а	-4.28892350	2.437113573	-1.75983735	-9.81858268	1.240735677
b	103.6308632	2.883913160	35.93411363	97.08744352	110.1742828
С	104.5913716	1.691512704	61.83303939	100.7534345	108.4293088
d	-10.1652480	1 133154883	-8 97074898	-12 7363060	-7 50410004

Date	Time	File Source
Apr 20, 1994	10:02:46 PM	c:\tcwin\augh.prn

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.99816624 DF Adj r^2 =0.99724936 FitStdErr=2.12071085 Fstat=1632.9827 a=-1.301846 b=101.36886

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9981662398 0.9972493597 2.1207108482 1632.9826974

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -1.30184605
 1.368087886
 -0.95158071
 -4.40595240
 1.802260314

 b
 101.3688639
 1.808422667
 56.05374549
 97.26566532
 105.4720625

 c
 92.59861535
 1.014948315
 91.23480868
 90.29576072
 94.90146998

 d
 -19.5492345
 1.594971093
 -12.2567955
 -23.1681247
 -15.9303442

Date Time File Source Apr 20, 1994 10:04:39 PM c:\tcwin\augh.prn

LARGE BLAST-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.988995942 DF Adj r^2 =0.983493913 FitStdErr=5.26896722 Fstat=269.6267 a=-1.7948291 b=102.14127

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

_	·		
r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9889959421	0.9834939131	5.2689672156	269.62669966

Parm	Value	Std Error	t-value	95% Confide	ence Limits
а	-1.79482915	3.853508881	-0.46576489	-10.5382012	6.948542929
b	102.1412677	4.940012266	20.67631865	90.93268702	113.3498484
С	98.82026978	2.597730694	38.04099864	92.92618034	104.7143592
d	-17.8592090	3.865459704	-4.62020313	-26.6296968	-9.08872127

Date	Time	File Source
Apr 20, 1994	10:11:49 PM	c:\tcwin\augh.prn

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.998210231 DF Adj r^2 =0.997315347 FitStdErr=2.13432508 Fstat=1673.19433

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det 0.9982102314	DF Adj r ²	Fit Std Err	F-value
0.9982102314	0.9973153471	2.1343250812	1673.1943283

а	Value -1.35933101 101.4468858	Std Error 1.426112702 1.890482456	t-value -0.95317222 53.66190280	95% Confide -4.59509207 97.15749866	1.876430050
C	96.08306802	1.140333689	84.25872967	93.49572178	98.67041426
d	-18.0535987	1.603797871	-11 2567793	-21 6025164	14 4146010

Date	Time	File Source
Apr 20, 1994		
Apr 20, 1994	10:07:35 PM	c:\tcwin\augh prn

LARGE BLAST-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.999074241 DF Adj r^2 =0.998611362 FitStdErr=1.65972255 Fstat=3237.58428 a=-0.63901363 b=100.4406

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9990742410	0.9986113615	1.6597225463	3237.5842771

Parm	ı Value	Std Error	t-value	95% Confide	ence Limits
а	-0.63901363	0.736789367	-0.86729487	-2.31074290	1.032715632
b	100.4406025	1.119077326	89.75304939	97.90148565	102.9797194
С	85.31172636	0.211520479	403.3260825	84.83179954	85.79165318
d	-5.82716462	0.278666970	-20.9108550	-6.45944265	-5.19488659

Date	Time	File Source
Sep 7, 1994	8:50:57 AM	c:\tcwin\augh.prn

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r²=0.966272012 DF Adj r²=0.949408018 FitStdErr=9.6701826 Fstat=85.9469015 a=-0.72185836 b=99.531914

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9662720123 0.9494080184 9.6701825966 85.946901460

Parm	Value	Std Error	t-value	95% Confide	ence Limits
а	-0.72185836	4.764372573	-0.15151174	-11.5319235	10.08820680
b	99.53191437	6.801090947	14.63469834	84.10066184	114.9631669
С	84.49811901	1.637881052	51.58989959	80.78186873	88.21436929
d	-5 34226032	1 406552434	-3 79812383	-8 53364035	-2 15088030

Date Time File Source Sep 7, 1994 8:51:58 AM c:\tcwin\augh.prn

LARGE BLAST, SET 3&4-VEHICLE CONTROLS

Rank 1 Eqn 8013 $y=a+b/(1+(x/c)^d)$ [LogisticDoseRsp]

r²=0.980656063 DF Adj r²=0.970984095 FitStdErr=7.21349625 Fstat=152.087357 a=-0.2485151 b=101.20838

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

DF Adj r²

r² Coef Det

0.980	06560634	0.97	709840951	7.2134962541	152.08735668	3
Parr	n Value		Std Error	t-value	95% Confide	nce Limits
а	-0.24851	510	3.786375713	3 -0.06563403	-8.83956619	8.342535988
b	101.2083	3796	5.304724197	7 19.07891453	89.17229018	113.2444690

Fit Std Err

F-value

b 101.2083796 5.304724197 19.07891453 89.17229018 113.2444690 c 96.88911173 1.378430238 70.28945614 93.76153922 100.0166842 15.77975070 4.267778962 3.697415175 6.096425567 25.46307584

Date Time File Source Sep 7, 1994 9:33:04 AM c:\tcwin\augh.prn

LARGE BLAST, SET 2,5&6-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid] r²=0.985573421 DF Adj r²=0.978360132 FitStdErr=6.09609494 Fstat=204.949512 a=-0.79626349 b=99.626422

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9855734213	0.9783601319	6.0960949408	204.94951190

Dans	1/-1	0.15			
Parm	Value	Std Error	t-value	95% Confide	ence Limits
	-0.79626349	3.063999011	-0.25987720	-7.74828676	6.155759772
b	99.62642174	4.327746373	23.02039287	89.80703428	109.4458092
С	92.57162818	1.042107755	88.83114794	90.20715047	94.93610589
d	-5.97859539	1.061087937	-5.63440143	-8.38613795	-3.57105283

Date	Time	File Source
Sep 7, 1994	9:39:27 AM	c:\tcwin\augh prn

SMALL BLAST, SET 5&6-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.9853126 DF Adj r^2 =0.9779689 FitStdErr=5.98768067 Fstat=201.256711 a=-0.35503077 b=100.20929

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9853126001 0.9779689001 5.9876806705 201.25671090

 Parm
 Value
 Std Error
 t-value
 95% Confidence Limits

 a
 -0.35503077
 3.064193928
 -0.11586433
 -7.30749629
 6.597434747

 b
 100.2092875
 4.311333994
 23.24322070
 90.42713875
 109.9914363

 c
 86.86901606
 1.561557821
 55.62971469
 83.32593844
 90.41209367

 d
 -16.2091941
 2.908608740
 -5.57283416
 -22.8086465
 -9.60974173

Date Time File Source Sep 7, 1994 9:51:53 AM c:\tcwin\augh.prn

SMALL BLAST, SET 2,3&4-VEHICLE CONTROLS

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r²=0.997797659 DF Adj r²=0.996696488 FitStdErr=2.38241559 Fstat=1359.18671 a=-0.32656934 b=99.472635

Rank 1 Eqn 8011 y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9977976587	0.9966964881	2.3824155868	1359.1867084

Parm	Value	Std Error	t-value	95% Confide	ence Limits
а	-0.32656934	1.216762396	-0.26839204	-3.08732757	
b	99.47263489	1.718812468	57.87288417	95.57275626	103.3725135
С	94.39166734	0.568437916	166.0544884	93.10191705	95.68141764
d	-6.84099171	0.657476032	-10 4040204	_8 33276305	-5 3/02/0/7

Date	Time	File Source
Sep 7, 1994	10:02:40 AM	c:\tcwin\augh.prn

Acronyms

ADNL A-weighted day-night sound level

ANSI American National Standards Institute

APG Aberdeen Proving Ground, MD

ASEL A-weighted sound exposure level

B&K Brüel and Kjær

CCMS Command Control and Monitor System

CDNL C-weighted day-night sound level

CEC Council of European Communities

CSEL C-weighted sound exposure level

DoD Department of Defense

HVAC heating, ventilating, and air conditioning

NATO North Atlantic Treaty Organization

SEL sound exposure level

USACERL U.S. Army Construction Engineering Research Laboratories

DISTRIBUTION

Chief of Engineers

ATTN: CEHEC-IM-LH (2)

ATTN: CEHEC-IM-LP (2)

ATTN: CECC-R

ATTN: CEMP-EI (2)

ATTN: CEMP-EA

ATTN: CEMP-CE

ATTN: CEMP-ZM (2)

ATTN: CERD-ZA

ATTN: CERD-L

ATTN: ENVR-E

HQ USAF/LEEEU 20332

US Army Europe

ATTN: AEAEN-EH 09014

ATTN: AEAEN-ODCS 09014

US Army Materiel Command (AMC)

Alexandria, VA 22333-0001

ATTN: AMCEN-F

Fort Belvoir 22060

ATTN: Water Resources Support Ctr

ATTN: NACEC-FB

CEWES 39180

ATTN: WESSEN-B

ATTN: Soils & Pavements Lab

ATTN: C/Structures

US Military Academy 10996

ATTN: MAEN-A

ATTN: Facilities Engineer

ATTN: Geography & Envr Engrg

Naval Air Systems Command 20360

ATTN: Library

Little Rock AFB 72099

ATTN: 314/DEEE

Aberdeen Proving Ground, MD 21010

ATTN: Safety Office, Range Safety Div.

ATTN: U.S. Army Ballistic Res Lab (2)

ATTN: ARNG Operating Activity Ctr

ATTN: Human Engineer Lab

Picatinny Arsenal 07801

ATTN: Library

Edgewood Arsenal, MD 21010

ATTN: HSHB-MO-B

NAVFAC 22332

ATTN: Code 2003

Naval Survey Weapons Center 22448

ATTN: N-43

Fort McPherson, GA 30330

ATTN: AFEN-FEB

U.S. Army Aeromedical Res Lab 36362

ATTN: SGRD-UAS-AS

Wright-Patterson AFB, OH 45433

ATTN: AAMRL/BB

ATTN: AAMRL/BBE

Fort Monmouth, NJ 07703

ATTN: AMSEL-EW-MD

WASH DC 20410

ATTN: Housing & Urban Dev (2)

Nat'l Institute of Standards & Tech

ATTN: Library 20899

Department of Transportation

ATTN: Library 20590

Naval Undersea Center, Code 401 92132

Bureau of National Affairs 20037

Building Research Board 20418

Transportation Research Board 20418

Federal Aviation Administration 20591

AVSCOM 63120-1798

ATTN: SFAE-AV-ASH

Defense Tech Info Center 22304

ATTN: DTIC-FAB (2)

54

+47

12/94