Departamento de Computación, FCEyN, UBA

Procesamiento del Habla

Agustín Gravano

1er Cuatrimestre 2017

Acústica

¿Qué es el sonido?

Sonido

- Fluctuaciones de presión en el aire causadas por fuentes como instrumentos musicales, bocinas de autos, voces, etc.
 - 1) Las ondas se propagan por el aire y llegan al oído.
 - 2) El sistema auditivo las traduce a impulsos neuronales.
 - 3) El cerebro los interpreta como sonido.

Propagación del Sonido: Analogías

Sonidos

- Sonidos periódicos
 - Ondas periódicas simples
 - Ondas periódicas complejas (o compuestas)
- Sonidos aperiódicos
 - Ruido blanco, sonido transitorio.

Ondas Periódicas Simples

- Ondas senoidales.
- Ciclo: Cada repetición del patrón senoidal.
- Período (T): Duración del ciclo.
- Frecuencia (f): Cantidad de ciclos por segundo.

En otras palabras: Cantidad de veces que el patrón senoidal

se repite por segundo.

- Se mide en hertz (Hz).
- 1 Hz = 1 ciclo por segundo.
- f = 1/T
- Ej: T=0.01s, f=100Hz

Figure 1.3 A 100 Hz sine wave with the duration of one cycle (the period) and the peak amplitude labeled.

Ondas Periódicas Simples

- Amplitud: Desviación máxima de fluctuación de la presión por sobre la presión atmosférica normal.
- Fase: Timing de la forma de onda relativo a algún punto de referencia.

Ejercicio en Python: ej1-acustica.py

Figure 1.3 A 100 Hz sine wave with the duration of one cycle (the period) and the peak amplitude labeled.

Figure 1.4 Two sine waves with identical frequency and amplitude, but 90° out of phase.

Ondas Periódicas Complejas

- Ondas periódicas complejas: Ondas cíclicas formadas por múltiples ondas senoidales.
 - Ej: onda formada por senoidales de 100 y 1000Hz.

Figure 1.5 A complex periodic wave composed of a 100 Hz sine wave and a 1,000 Hz sine wave. One cycle of the fundamental frequency (F_0) is labeled.

Ondas Periódicas Complejas

Ejemplo: onda compleja formada por 4 senoidales

Figure 1.6 A complex periodic wave that approximates the "sawtooth" wave shape, and the four lowest sine waves of the set that were combined to produce the complex wave.

Sonidos Aperiódicos

No tienen un patrón que se repita regularmente.

Ejemplos:

- Ruido blanco: Fluctuación aleatoria de presión.
 - Espectro plano: igual amplitud para todas las frecuencias.
 - Estática de radio, viento entre los árboles, [s], [f].
- Ondas transitorias: Fluctuaciones súbitas de presión que no se sostienen ni se repiten.
 - Portazos, disparos, mouse clicks, [p], [t].

Análisis de Fourier

- Cualquier función puede descomponerse en una suma de ondas senoidales.
- Espectro energético:

- Fast Fourier Transform (FFT)
 - Algoritmo eficiente para computar el espectro de una señal a partir de un número de muestras.

Visualizaciones

• Al agregar una dimensión temporal al espectro energético, obtenemos un espectrograma.

Ruido blanco

Onda transitoria

Ejercicio en Python: ej2-acustica.py

Procesamiento Digital de Señales

- Señal analógica (continua): La línea de tiempo tiene valores de amplitud con precisión infinita en todos los puntos.
- Señal digital (discreta): La línea de tiempo tiene sólo una secuencia de valores de amplitud con precisión finita.

Procesamiento Digital de Señales

- Un micrófono convierte oscilaciones de presión en el aire (sonido) en oscilaciones de voltaje.
 - Los dispositivos analógicos (discos de vinilo, cassettes) las guardan como señales continuas.
 - Los dispositivos digitales (computadoras, CDs) las convierten y guardan como señales discretas.
- Conversión Analógica-Digital (Digitalización)
 - 1) Muestreo: Discretización del tiempo.
 - Tasa de muestreo. Ej: 8 kHz (teléfono), 44.1 kHz (CD), 16 kHz.
 - 2) Cuantización: Discretización de la amplitud.
 - Precisión de las muestras. Ej: 16 bits.

Acústica - Resumen

- Sonidos periódicos y aperiódicos.
 - Ondas periódicas simples y complejas.
 - Ruido blanco; ondas transitorias.
 - Análisis de Fourier. FFT. Espectrograma.
- Procesamiento digital de señales.
 - Tasa de muestreo; precisión.
- Herramientas: sox y Python.