

School of Computer Science and Engineering

Winter Semester 2024-2025

Laboratory Mid-Term Assessment Test

SLOT L47+L48

Programme Name & Branch: B.Tech & Computer Science and Engineering

Course Name & code: Cryptography and Network Security Lab & BCSE309P

Class Number (s): VL2024250504969
Faculty Name (s): Dr.V.ILAYARAJA

Exam Duration: 1hour and 30 Mins Maximum Marks: 20 Date: 12.03.25

Instructions:

- Duration 1 hour 30 minutes (05:45 PM to 07:15 PM). Complete your Exam before 7.15 PM, because next LAB slot students will be waiting outside to write their exams. But, You have to be there in the Lab at 05.35 pm. Don't bring your cell phone, all electronic items and bags to the Lab.
- 2. Wear your ID card. Switch off your mobile and put it in your bag.
- 3. Question number is given in the top right hand side corner of the Answer paper distributed.
- 4. A. Evaluation components (20 Marks):
 - a. Algorithm (5 marks) :
 - b. Code (10 marks) :
 - c. Output (5 marks) : Total (20 marks) :

Write this in the first page of your answer sheet.

- 5. Take screenshot of
 - a. Your complete source code

- b. Output (Given input and output must be in a same screenshot)
- 6. Align all these 2 components (a & b) in the word document and File name must be your reg. no. (Full reg. no with capital). Inside this document also, should have your register no, name, Slot name, Q.no, Question and followed by above said contents (a & b). (Note: Convert into pdf and you can upload the pdf)
- 7. Now, you can upload your pdf document in the given upload folder.
- 8. Screenshot must be readable one.
- 9. You have to write only "Algorithm steps & Output" in the Answer sheet. **No need to write program.**
- 10. If you end up with error also, you have to take a screenshot of error program and the error information.
- 11. Documents uploaded after 07.15 PM will not be evaluated.
- 12. Upload only once. If multiple uploads are found, then your file becomes invalid for evaluation.
- 13. If any kind of malpractice is identified, mark will be 0.
- 14. Don't ask any doubts in a Question Paper during your exam time. Other than login issue, don't ask anything. Otherwise your time will be wasted. Treat this as FAT theory.
- 15. You can use any language to implement an experiment, but you should not use any of the library functions. You have to write only code for each operation.

Questions List

- 1. Use the RSA algorithm to find n, $\phi(n)$, d if p=7, q=11, e=13 and encrypt the plaintext "5" and "63" and also decrypt it.
- 2. Decrypt the message "gatlmzclrqtx" using playfair cipher with the key "monarchy".

3. In DES, Show the results of the following hexadecimal data after passing it through the initial permutation box. Show the results in hexadecimal.

0110 1023

Initial Permutation
58 50 42 34 26 18 10 02
60 52 44 36 28 20 12 04
62 54 46 38 30 22 14 06
64 56 48 40 32 24 16 08
57 49 41 33 25 17 09 01
59 51 43 35 27 19 11 03
61 53 45 37 29 21 13 05
63 55 47 39 31 23 15 07

- 4. Answer the following questions about S-boxes in DES:
 - a. Show the result of passing 110111 through S-box 3.
 - b. Show the result of passing 001100 through S-box 4. Show these results in both binary and decimal.

Table	6.5	S-box	3													
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	10	00	09	14	06	03	15	05	01	13	12	07	11	04	02	08
1	13	07	00	09	03	04	06	10	02	08	05	14	12	11	15	01
2	13	06	04	09	08	15	03	00	11	01	02	12	05	10	14	07
3	01	10	13	00	06	09	08	07	04	15	14	03	11	05	02	12
Table	6.6	S-box	4													
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0 07	1 13	2	3 03	4 00	5	6 09	7	8	9 02	10 08	11 05	12 11	13 12	14 04	15 15
0		_			-			,		-						
	07	13	14	03	00	6	09	10	1	02	08	05	11	12	04	15

5. Use a Hill cipher to decrypt the message "apadjtftwlfj" using the key. (Key should be 2 X 2 matrix)

Key:

7 8

11 11

6. Find the 10th round key of AES 128 using the following 9th round key which is given in hexadecimal, S-Box table and round constant 36. (Note: No need to declare all the values of S-box, manually find the answer for sub word and proceed further)

9th Round Key

BF	45	A1	F7
E2	59	64	F1
BF	FA	80	CB
90	B2	B4	D8

S-Box Table

										Υ				200			
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	CO
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	B3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	DO	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
X	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
^	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4D	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

7.

Alice and Bob use the Diffie-Hellman key exchange technique with a common prime q = 71 and its primitive root=7

- i. If Bob has public key $Y_B = 4$, what is Bob's pvt key X_B ?
- ii. If Alice has public key $Y_A = 51$, what is the shared key K with Bob.
- 8. Use the RSA algorithm to find n, $\phi(n)$, d if p=109, q=127, e=17 and Encrypt the message "math is fun" using 00 to 25 for letters A to Z and 26 for the space and also decrypt it.
- 9. Encrypt the plaintext "MATRIX" using the Vigenère cipher with the key "CODE". Refer the following table for this question.

а	b	С	d	e	f	g	h	i	j	k	1	m			
0	1	2	3	4	5	6	7	8	9	10	11	12			
n	Т	0	р		q	r		s	t	u	v	w	×	У	Z

10.

Alice and Bob use the Diffie – Hellman key exchange technique with a common prime P = 227 and primitive root g = 14.

- a) If Alice has a private key X_a = 227, find her public key Y_a?
- b) If Bob has a private key $X_b = 170$, find her public key Y_b ?
- c) What is the shared secret key between Alice and Bob?

SET-A

1. Write a C/C++/JAVA /Python program to implement the following: A person wants to share a plaintext "123456ABCD132536to his friend in the opposite side through social network. He/she uses Data Encryption Standard (DES) algorithm for session encryption during his communication and assume that he/she uses, the key as "AABB 0918 2736 CCDD". Show the key generated for the first two rounds.

Parity Drop Table

57	49	41	33	25	17	09	01
58	50	42	34	26	18	10	02
59	51	43	35	27	19	11	03
60	52	44	36	63	55	47	39
31	23	15	07	62	54	46	38
30	22	14	06	61	53	45	37
29	21	13	05	28	20	12	04

Compression Box Table

14	17	11	24	01	05	03	28
15	06	21	10	23	19	12	04
26	08	16	07	27	20	13	02
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

2. Suppose you are asked to implement a cryptography application that requires converting Hexadecimal numbers to binary and binary to decimal. Write a C/C++/JAVA/Python program for this purpose.

1. Write a C/C++/JAVA/Python code to implement the following:

Find the third round key of AES 128 using the following second round key which is given in hexadecimal, S-Box table and round constant 04.

Second Round Key

56	C7	76	A0
08	1A	43	3A
20	B1	55	F7
07	8F	69	FA

S-Box Table

										Υ							
		0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	B3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	30	9F	A8
v	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
X	8	CD	00	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	Α	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4D	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	CT	1D	9E
	E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

b. Find GCD, variables S and T by construct a table for the following inputs using Extended Euclidean Algorithm. 291, 41.

- 1. Write a C/C++/JAVA/Python code to implement the following: Consider the ElGamal signature scheme with p = 467, $\alpha = 2$ and Xa = 127. Perform detailed signing and verification procedures for the hash of the message h(M) = 100 and K = 213.
- 2. Suppose you are asked to implement a cryptography application that requires converting decimal number to binary and binary to hexadecimal. Write a C/C++/JAVA/Python program for this purpose.

Questions List

- 1. In a Diffie-Hellman Key Exchange, Alice and Bob have chosen prime value q = 17 and primitive root = 5. If Alice's private key is 4 and Bob's private key is 6, what is the public key of both users and secret key they exchanged?
- 2. Jennifer creates a pair of keys for herself. She chooses p=397, q=401. Find her n and $\phi(n)$. She then chooses e=343 and find d value. Show how Ted can send a message "NO" to Jennifer if he knows e and n values. Do the encryption and decryption process using RSA

(Note: He has to change each character to a number, Use 00 to A.....25 to Z format. So, each character coded as two digits and he then concatenates these two digits and then gets a four digit number and do the further process)

- 3. Encipher the message "instruments" using playfair cipher with the key "monarchy".
- 4. In DES, Show the results of the following hexadecimal data after passing it through the final permutation box. Show the results in hexadecimal. 1066 0099

Final Permutation
40 08 48 16 56 24 64 32
39 07 47 15 55 23 63 31
38 06 46 14 54 22 62 30
37 05 45 13 53 21 61 29
36 04 44 12 52 20 60 28
35 03 43 11 51 19 59 27
34 02 42 10 50 18 58 26
33 01 41 09 49 17 57 25

- 5. Answer the following questions about S-boxes in DES:
 - a. Show the result of passing 000000 through S-box 7.
 - b. Show the result of passing 111111 through S-box 2.

Show these results in both binary and decimal.

Table	6.9	S-box	7													
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	4	11	2	14	15	00	08	13	03	12	09	07	05	10	06	01
1	13	00	11	07	04	09	01	10	14	03	05	12	02	15	08	06
2	01	04	11	13	12	03	07	14	10	15	06	08	00	05	09	02
3	06	11	13	08	01	04	10	07	09	05	00	15	14	02	03	12

Table 6.4 S-box 2

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	15	01	08	14	06	11	03	04	09	07	02	13	12	00	05	10
1	03	13	04	07	15	02	08	14	12	00	01	10	06	09	11	05
2	00	14	07	11	10	04	13	01	05	08	12	06	09	03	02	15
3	13	08	10	01	03	15	04	02	11	06	07	12	00	05	14	09

6. Use a Hill cipher to encipher the message "shortexample" using the key. (Key should be $2 \times 2 \text{ matrix}$)

Key:

7 8 11 11

7. Find the 9th round key of AES 128 using the following 8th round key which is given in hexadecimal, S-Box table and round constant 1B. (Note: No need to declare all the values of S-box, manually find the answer for sub word and proceed further)

8th Round Key

8E	FA	E4	56
51	BB	3D	95
EF	45	7A	4B
21	22	06	6C

S-Box Table

			Υ														
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	90	A4	72	CO
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	B3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
X	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
٨	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	Α	E0	32	ЗА	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4D	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

- 8. Alice and Bob use the Diffie–Hellman key exchange technique with a common prime q = 29 and a primitive root a = 10.
 - i. If Alice has a private key A = 15, find his public key A.
 - **X**. If Bob has a private key $_{\rm B}$ ¥ 27, find his public key $_{\rm B}$.
 - Xi. Find the shared secret key Netween Alice and Bob?
- 9. Use the RSA algorithm to find n, ϕ (n), d if p=107, q=113, e=13 and Encrypt the message "this is tough" using 00 to 25 for letters A to Z and 26 for the space and also decrypt it.
- 10. Encrypt the plaintext "SECRET" using the Vigenère cipher with the key "CODE". Refer the following table for this question.

										k		
0	1	2	3	4	5	6	7	8	9	10	11	12

n	0	р	q	r	s	t	u	v	w	×	У	z
13	14	15	16	17	18	19	20	21	22	23	24	25