Fundamentals of Data Visualization

Chapter 3

April 23, 2023

Coordinate systems and axes

Choice of axes

Choice of axes when both axes are the same quantity

• Linear changes in axes should not change the figure.

Logarithmic scales

- · Linear in multiplication
- Transform the data or the axis
- log(x) is ambiguous

- Usually preferable to label the axis
- Why 3.16?
- Ratios should be shown on log scales.

Texas counties, log scale

Texas counties, from most to least populous

Texas counties, linear scale

Log scales

- We can think of values greater than 1 as representing multiplications and values less than 1 divisions.
- The value 0 can never appear on a log scale: $\log(0) = -\infty$
- It takes infinite divisions to reach zero: $1/10/10/10/10/10/10\cdots = 0$
- On a log scale, the value 1 is the natural midpoint, similar to the value 0 on a linear scale.
- We can think of values greater than 1 as representing multiplications and values less than 1 divisions.

Log scales

Frequently used when there is a large range in the data:

• Harris: 4,092,459

Loving: 82

• What if there was a county with 0 inhabitants?

• This county could not be shown on a logarithmic scale.

Square root scale

- Can represent zero.
- Compresses large values and expands small values.
- But:
 - One step on square root scale does not correspond to addition or multiplication.
 - Hard to place tics.

Square root scale

- Natural axis for areas.
- Intuitively, the "breadth" of an area.

Curved axes: polar coordinate system

Curved axes: polar coordinate system

Useful for periodic data.

Curved axes: geospatial data

Axis transforms to straighten data