Д.В. Карпов

Теория графов. Глава 4. Связность.

Д.В.Карпов

2022

Теория графов.

Определение

- 1) Вершина $a \in V(G)$ называется точкой сочленения, если граф G - a несвязен.
- 2) Блоком называется любой максимальный по включению подграф графа G, не имеющий точек сочленения.
- В силу максимальности, блок графа *G* является индуцированным подграфом графа G на своем множестве вершин.
- ullet Любой подграф без точек сочленения H графа Gвходит хотя бы в один блок (так как H можно дополнить до максимального подграфа без точек сочленения).

Определение

Блоки и точки сочленения несвязного графа — это блоки и точки сочленения его компонент.

• Далее мы будем рассматривать только связные графы?

Пусть B_1 и B_2 — два разных блока графа G, причём $V(B_1) \cap V(B_2) \neq \varnothing$. Тогда $V(B_1) \cap V(B_2)$ состоит из точки сочленения а графа G, причем а — единственная точка сочленения, отделяющая B_1 от B_2 .

Доказательство. • Пусть $|V(B_1) \cap V(B_2)| \geq 2$. Тогда для любой вершины $x \in V(B_1 \cup B_2)$ граф $B_1 \cup B_2 - x$ связен (см. рис. а). Следовательно, $B_1 \cup B_2$ содержится в блоке B графа G, а B_1 является собственным подграфом B, что противоречит максимальности B_1 .

• Далее пусть $V(B_1) \cap V(B_2) = \{a\}$. Так как a — общая вершина блоков B_1 и B_2 , отделить B_1 от B_2 в графе G может только a.

- ullet Если a не отделяет B_1 от B_2 в графе G, то в G-a есть $V(B_1)V(B_2)$ -путь P (см. рис. b).
- Пусть $H = B_1 \cup B_2 \cup P$. Граф H x связен для любой вершины $x \in V(H)$. Поэтому H содержится в одном блоке B графа G, а блок B_1 собственный подграф B, противоречие.
- Итак, a единственная вершина, которая отделяет B_1 от B_2 в графе G. Следовательно, граф G a несвязен, то есть a точка сочленения G.

- По Лемме 1 любой подграф без точек сочленения H графа G с v(H)>1 входит ровно в один блок. В частности, любое ребро графа входит ровно в один блок.
- ullet Если у связного графа G хотя бы две вершины, то каждая его вершина смежна хотя бы с одной другой вершиной. Следовательно, любой блок графа G содержит хотя бы две вершины.

Определение

- Построим граф B(G), вершины которого соответствуют всем точкам сочленения a_1,\ldots,a_n графа G и всем его блокам B_1,\ldots,B_m (мы будем обозначать эти вершины так же, как и блоки). Вершины a_i и B_j будут смежны, если $a_i \in V(B_j)$. Других рёбер в этом графе нет.
- Граф B(G) называется деревом блоков и точек сочленения графа G.

Пусть B_1 и B_2 — два разных блока графа G, а P — путь между ними в графе B(G). Тогда точки сочленения графа G, отделяющие B_1 от B_2 — это в точности те точки сочленения, что лежат на пути P. Остальные точки сочленения не разделяют даже объединение блоков пути P.

Доказательство. • Пусть x — точка сочленения графа G, не лежащая на пути P, а H — объединение всех блоков пути P.

• Для любого блока B пути P граф B-x связен. Если B — не B_1 и не B_2 , то в нем можно пройти между двумя точками сочленения, входящими в P (эти точки отличны от x). Поэтому H-x — связный граф.

- ullet Пусть a точка сочленения, лежащая на P, и она входит в блоки B_1' и B_2' пути P (см. рисунок).
- Обозначим через H_1 объединение всех блоков, лежащих на пути P от B_1 до a, а через H_2 объединение всех блоков, лежащих на пути P от a до B_2 .
- \bullet По доказанному выше, a не разделяет ни один из графов H_1 и H_2 .
- С другой стороны, по Лемме 1 точка сочленения a отделяет блок B_1' от блока B_2' , а значит, a отделяет H_1 от H_2 и, в частности, B_1 от B_2 .

Теорема 1

- 1) Дерево блоков и точек сочленения связного графа G это действительно дерево, все листья которого соответствуют блокам.
- 2) Точка сочленения а разделяет два блока B_1 и B_2 в графе G, если и только если а разделяет B_1 и B_2 в B(G).

Доказательство. 1) B(G) — связный граф.

- Для любых двух вершин B(G) (не важно, блоков или точек сочленения) рассмотрим путь Q в G между ними.
- ullet Путь Q перестраивается в путь в B(G) так:
- участок пути Q, проходящий по одному блоку графа G, заменяем на соответствующую блоку вершину в B(G);
- переход Q между различными блоками по лемме 1 осуществляется через их общую точку сочленения вершину $\mathcal{B}(G)$.

• Предположим, что в B(G) есть простой цикл Z и рассмотрим подграф H — объединение всех блоков этого цикла.

- Между любыми двумя входящими в Z блоками есть два независимых пути в B(G).
- По Лемме 2 граф H не имеет точек сочленения (они должны бы были лежать на двух путях без общих внутренних точек).
- Следовательно, существует блок B, содержащий H, а все (хотя бы два) блока цикла Z собственные подграфы B, что невозможно.
- \bullet Таким образом, B(G) дерево.
- Если лист B(G) соответствует точке сочленения a, то по Лемме 2 граф G-a связен, противоречие.
- 2) В дереве B(G) есть единственный путь между B_1 и B_2 . По лемме 2 в точности точки сочленения с этого пути отделяют B_1 от B_2 в графе G.

Определение

- 1) Назовем блок *В крайним*, если он соответствует висячей вершине дерева блоков и точек сочленения.
- 2) Внутренность $\operatorname{Int}(B)$ блока B это множество всех его вершин, не являющихся точками сочленения в графе G.
- Нетрудно понять, что блок недвусвязного графа G является крайним тогда и только тогда, когда он содержит ровно одну точку сочленения.
- Внутренность некрайнего блока может быть пустой. Внутренность крайнего блока всегда непуста.
- \bullet Если у связного графа G есть точки сочленения, то он имеет хотя бы два крайних блока.
- ullet Если B блок графа G, а $x\in \mathrm{Int}(B)$, то граф G-x связен.

Пусть B — крайний блок связного графа G, а $G'=G-\mathrm{Int}(B)$. Тогда граф G' связен, а блоки G' — это все блоки G, кроме B.

Доказательство.

- Пусть $a \in V(B)$ точка сочленения, отрезающая крайний блок B от остального графа. Тогда $\mathrm{Int}(B)$ это одна из компонент связности графа G-a, откуда очевидно следует связность графа G'.
- Все отличные от B блоки графа G являются подграфами G', не имеют точек сочленения и являются максимальными подграфами G' с таким свойством (они были максимальными даже в G). Следовательно, все они блоки графа G'.
- Пусть B' блок графа G'. Очевидно, $v(G') \ge 2$, поэтому B' содержит хотя бы одно ребро e, которое в графе G лежит в некотором блоке $B^* \ne B$. Теперь очевидно, что $B^* = B'$.

ullet Пусть U_1,\dots , U_k — все компоненты связности графа G-a, а $G_i=G(U_i\cup\{a\})$. Разрежем граф G на графы G_1,\dots , G_k .

Лемма 4

- 1) Пусть $b \in U_i$. Тогда b разделяет вершины $x, y \in U_i$ в G_i , если и только если b разделяет их в G.
- 2) Все точки сочленения графов G_1, \ldots, G_k это в точности все точки сочленения графа G, кроме a.

Доказательство. 1) \Leftarrow . Если в G-b нет xy-пути, то его, очевидно, нет и в G_i-b .

 \Rightarrow . Наоборот, пусть x и y лежат в разных компонентах связности графа G_i-b . Не умаляя общности можно считать, что компонента связности $W \ni x$ не содержит a. Тогда W — компонента связности графа G-b, то есть, и в этом графе нет xy-пути.

Доказательство пункта 2 леммы 4 • Так как $G_i - a$ — компонента графа G - a, вершина a не является точкой сочленения ни в одном из графов G_1, \ldots, G_k .

- Любая другая точка сочленения графа G лежит ровно в одном из графов $G_1,\ldots,\ G_k$ и является в нем точкой сочленения по пункту 1.
- Также из пункта 1 следует, что других точек сочленения в графах G_1, \ldots, G_k нет.

Алгоритм разбиения связного графа на блоки

- Выберем точку сочленения a и разрежем по ней G заменим граф G на полученные при этом графы G_1, \ldots, G_k .
- Каждым следующим шагом мы будем брать один из имеющихся графов, выбирать в нем точку сочленения и разрезать его по ней.
- И так далее, пока хотя бы один из полученных графов имеет точку сочленения.

Теорема 2

В результате описанного выше алгоритма разрезания графа по точкам сочленения вне зависимости от порядка действий получатся блоки графа G.

Доказательство.

- ullet По Лемме 4 мы вне зависимости от порядка действий проведем разрезы по всем точкам сочленения графа G и только по ним.
- ullet Пусть B блок графа G. Тогда в графе G множество V(B) не было разделено ни одной из точек сочленения. Значит, по пункту 1 Леммы 4 множество V(B) не было разрезано при нашем алгоритме.
- ullet Так как в результате алгоритма получились индуцированные подграфы графа G, один из них скажем, H является надграфом B.
- Если $H \neq B$, то рассмотрим вершину $c \in V(H) \setminus V(B)$. В графе G существует точка сочленения a, отделяющая c от V(B). Тогда в силу Леммы 4 при разрезе по a вершина c была отделена от блока B, противоречие.

 Блок связного графа, имеющий более двух вершин двусвязный граф.

Теорема 3

Пусть G — двусвязный граф, $n_1, n_2 \in \mathbb{N}$, $v(G) = n_1 + n_2$. Тогда $G = G_1 \cup G_2$, где $v(G_1) = n_1$, $v(G_2) = n_2$ и оба графа G_1 и G_2 связные.

Доказательство. \bullet Индукция по n_1 .

- База $n_1=1$ очевидна: пусть G_1 состоит из одной вершины v_1 , тогда граф $G_2:=G-v_1$ связен, так как G не имеет точек сочленения.
- Переход $n_1 \to n_1 + 1$. В этом случае $n_2 := \nu(G_2) \ge 2$.
- Пусть B крайний блок G_2 , а a единственная входящая в B точка сочленения. (если G_2 не имеет точек сочленения, то $B = G_2$, a любая вершина B).

- В B-a есть вершина x, смежная с $V(G_1)$ (иначе a отделяет G_1 от B-a в графе G, то есть, является точкой сочленения, которых нет).
- ullet Тогда x не точка сочленения графа G_2 . Значит, $G_2':=G_2-x$ связен и $v(G_2')=n_2-1$.
- \bullet Так как x смежна с G_1 , граф G_1' , полученный из G_1 добавлением x и всех ребер графа G от x к G_1 , связен.

•
$$v(G_1') = n_1 + 1$$
.

Разделяющие множества

Определение. Пусть $X,Y\subset V(G),\,R\subset V(G)\cup E(G)$.

- 1) Назовем множество R разделяющим, если граф G-R несвязен.
- 2) Пусть $X \not\subset R$, $Y \not\subset R$. Будем говорить, что R разделяет множества X и Y (или, что то же самое, отделяет множества X и Y друг от друга), если никакие две вершины $v_x \in X$ и $v_y \in Y$ не лежат в одной компоненте связности графа G-R.
- Любой неполный граф имеет *вершинное* разделяющее множество (состоящее только из вершин).
- Любой граф более чем из одной вершины имеет *реберное* разделяющее множество (состоящее только из ребер).
- Определение. Граф G является k-связным, если $v(G) \ge k+1$ и минимальное вершинное разделяющее множество в графе G содержит хотя бы k вершин.

Определение

- 1) Пусть $x,y\in V(G)$ несмежные вершины. Обозначим через $\kappa_G(x,y)$ размер минимального множества $R\subset V(G)$ такого, что R разделяет x и y. Если x и y смежны, то положим $\kappa_G(x,y)=+\infty$. Назовем $\kappa_G(x,y)$ связностью вершин x и y.
- 2) Пусть $X,Y\subset V(G)$. Обозначим через $\kappa_G(X,Y)$ размер минимального множества $R\subset V(G)$ такого, что R разделяет X и Y. Если такого множества нет, то положим $\kappa_G(X,Y)=+\infty$.
- В k-связном графе G для любых двух множеств вершин $X,Y\subset V(G)$ выполнено $\kappa_G(X,Y)\geq k$.

Теорема Менгера

- Это, безусловно, самое известное утверждение о связности графов. Мы докажем теорему Менгера и некоторые родственные ей факты. Возможно, это не совсем справедливо, но на все эти утверждения, как правило, ссылаются одинаково как на теорему Менгера.
- Мы докажем теорему Менгера в чуть более общей формулировке Гёринга (2000 г.).

Теорема 4

(K. Menger, 1927.) Пусть $X, Y \subset V(G)$, $\kappa_G(X, Y) \geq k$, $|X| \geq k$, $|Y| \geq k$. Тогда в графе G существуют k непересекающихся XY-путей.

Доказательство. • Индукция по количеству вершин в графе. Доказывая утверждение для графа G и пары множеств X, Y, мы будем считать утверждение уже доказанным для всех меньших графов.

• Рассмотрим два случая.

Случай 1: существует множество R из k вершин, разделяющее X и Y

- Никакой XR-путь не содержит вершины из $Y \setminus R$ (иначе существовал бы XY-путь, не содержащий ни одной вершины множества R, см. рис а).
- Следовательно, любое множество S, отделяющее X от R в графе $G_X = G (Y \setminus R)$, отделяет X от R и в графе G. Но тогда S отделяет X от Y в графе G, следовательно, $|S| \ge k$.

- По индукционному предположению существует k непересекающихся XR-путей в графе G_x , а следовательно, и в графе G.
- Аналогично, существует k непересекающихся RY-путей в графе G.
- Никакой XR-путь не пересекает никакой RY-путь (иначе существовал бы XY-путь, не содержащий ни одной вершины множества R, см. рис. b).
- Так как |R| = k, то мы можем состыковать XR-пути и RY-пути по вершинам множества R, получив k непересекающихся XY-путей (см. рис. с).

- \bullet Случай, когда в графе G нет рёбер, очевиден.
- Далее $E(G) \neq \varnothing$. Пусть $xy \in E(G)$. Если условие теоремы выполняется в меньшем графе G-xy, то по индукционному предположению выполняется утверждение теоремы для графа G-xy, а следовательно, и для графа G.
- ullet Остается рассмотреть случай, когда существует множество $T\subset V(G), \ |T|\leq k-1,$ разделяющее X и Y в графе G-xy.
- Множества $X'=X\setminus T$ и $Y'=Y\setminus T$ непусты. Как мы знаем, $T^*=T\cup\{xy\}$ разделяет X и Y в графе G, а $T_x=T\cup\{x\}$ не разделяет (так как $|T_x|\le k$). Отсюда следует, что одно из множеств X' и Y' лежит в T_x .
- НУО $X' \subset T_x$. Тогда $X' = \{x\}$. Аналогично, $Y' = \{y\}$.
- ullet Таким образом, $T\supset X\setminus\{x\}$ и $T\supset Y\setminus\{y\}$.
- ullet Учитывая $|T| \leq k-1$, $|X| \geq k$ и $|Y| \geq k$, мы получаем $X \setminus \{x\} = Y \setminus \{y\} = T$ и |T| = k-1.
- ullet В этом случае легко увидеть искомые пути это ребро xy и k-1 вершина из $T=X\cap Y$.

ullet Это и есть исходная формулировка теоремы Менгера, опубликованная им в 1927 году.

Следствие 1

Пусть вершины $x,y\in V(G)$ несмежны, $\kappa_G(x,y)\geq k$. Тогда существует k независимых путей из x в y.

Доказательство.

- ullet Пусть $X=\mathrm{N}_G(x)$ и $Y=\mathrm{N}_G(y)$.
- Так как x и y несмежны, множество X отделяет вершину x от вершины y. Значит, $|X| \geq k$ и (аналогично) $|Y| \geq k$.
- Любой xy-путь идёт из x в X, далее в Y и затем в y. Поэтому, множество вершин R, отделяющее X от Y, отделяет вершину x от вершины y. Следовательно, $|R| \geq k$.
- По теореме 4 существует k непересекающихся XY-путей. Значит, есть и k независимых xy-путей.

Следствие 2

Пусть $x \in V(G)$, $Y \subset V(G)$, $x \notin Y$, $k = \min(|Y|, \kappa_G(x, Y))$. Тогда существуют k путей от x до различных вершин множества Y, не имеющих общих внутренних вершин.

Доказательство.

- ullet Пусть $X=\operatorname{N}_G(x)$. Очевидно, $|\operatorname{N}_G(x)|\geq k$.
- Так как $x \not\in Y$, любое множество вершин R, отделяющее X от Y, отделяет вершину x от множества Y. Следовательно, $|R| \geq k$.
- Так как и $|Y| \ge k$, по Теореме 4 существует k непересекающихся XY-путей в графе G, а следовательно, и k непересекающихся путей от x до различных вершин множества Y.

Теорема 5

(H. Whitney, 1932.) Пусть G - k-связный граф. Тогда для любых двух вершин $x, y \in V(G)$ существует k независимых xy-путей.

Доказательство. • Индукция по k, база для k=1 очевидна. Докажем утверждение для k-связного графа, считая, что оно доказано для графов меньшей связности.

- Если вершины x и y несмежны, то утверждение следует из Следствия 1. Далее вершины x и y смежны.
- ullet Если G-xy-(k-1)-связный граф, то по индукционному предположению существует k-1 независимых xy-путей в графе G-xy, а еще один путь это ребро xy.

- Пусть в G-xy существует разделяющее множество T, $|T| \leq k-2$. Так как T не является разделяющим множеством в G, легко понять, что в графе $G-(T\cup\{xy\})$ ровно две компоненты связности: $U_x\ni x$ и $U_y\ni y$ (возвращение ребра xy дает связный граф G-T).
- Пусть $T_x=T\cup\{x\}$. Если $U_x\neq\{x\}$, то T_x отделяет $U_x\setminus\{x\}$ от U_y в G, что невозможно (так как $|T_x|\leq k-1$).
- Тогда $U_x = \{x\}$. Аналогично, $U_y = \{y\}$. Таким образом, в графе G не более k вершин: это вершины множества T, x и y. Противоречие с определением k-связного графа.

Теорема 6

(G. A. Dirac.) Пусть k > 2. В k-связном графе для любых k вершин существует простой цикл, содержащий все эти вершины.

Доказательство. • Докажем теорему индукцией по k. База для k=2 следует из теоремы Уитни (Теоремы 5).

Переход $k-1 \to k$. • Пусть k > 2. Рассмотрим k-связный граф G и его вершины $v_1, \ldots, v_{k-1}, v_k$. Так как Gявляется (k-1)-связным графом, по индукционному предположению существует простой цикл Z, содержащий вершины v_1, \ldots, v_{k-1} .

Рассмотрим два случая.

Случай 1. v(Z) < k.

Тогда $V(Z) = \{v_1, \dots, v_{k-1}\}$ и по Следствию 2 существуют непересекающиеся пути от V_k до всех вершин цикла Z. В этом случае легко вставить v_k в цикл Zмежду его соседними вершинами и получить искомый цикл. 4D > 4P > 4E > 4E > 900

- По Следствию 2 существует k непересекающихся путей от v_k до цикла Z.
- Пусть $x_1, \ldots, x_k \in V(Z)$ концы этих путей в порядке их следования по циклу (нумерация циклическая). Они делят цикл на k дуг и внутренность одной из этих дуг.
- Одна их этих дуг (скажем, дуга L с концами x_i и x_{i+1}) не содержит ни одной из вершин v_1, \ldots, v_{k-1} . Тогда заменим дугу L на путь от x_i до v_k и путь от v_k до x_{i+1} , в результате получится искомый цикл.

Пусть G-k-связный граф, $S\subset V(G)$ — разделяющее множество, |S|=k, а U- компонента связности графа G-S. Тогда для любой вершины $a\in S$ существует вершина $x\in U$, смежная c a.

Доказательство. • Предположим противное, пусть такой вершины в U нет.

- ullet Пусть W отличная от U компонента связности графа G-S
- ullet Тогда никакой путь в графе G из U в W не проходит через a.
- ullet Пусть $S' = S \setminus \{a\}$. Тогда в графе G S' нет пути из U в W, то есть, этот граф несвязен.
- ullet Так как |S'|=k-1, получаем противоречие с k-связностью G.

Д.В. Карпов

Пусть G — двусвязный граф, $v(G) \ge 4$, $a \in V(G)$. Тогда существует такое ребро $ab \in E(G)$, что граф $G \cdot ab$ двусвязен.

Доказательство. • Предположим, что это неверно.

Утверждение

Для любого ребра $ax \in E(G)$ множество $\{a,x\}$ — разделяющее в графе G.

Доказательство. • Тогда граф $G \cdot ax$ имеет точку сочленения — скажем, w.

- ullet Если $w=a\cdot x$, то граф $G-\{a,x\}=G\cdot ax-a\cdot x$ несвязен, что нам и нужно.
- Пусть $w \neq a \cdot x$. Тогда пусть A компонента связности G w, содержащая вершину $a \cdot x$, а B другая компонента G w.
- Пусть $A' = (A \setminus a \cdot x) \cup \{a, x\}$). Тогда в графе G w нет пути из A' в B, что противоречит двусвязности G.

- Выберем из них минимальную компоненту H. Пусть $ab \in E(G)$, а H компонента графа $G \{a, b\}$.
- По Лемме 5, существует вершина $c \in H$, смежная с a. Тогда по Утверждению граф $G \{a, c\}$ несвязен.
- ullet Пусть W_1,\ldots,W_k все отличные от H компоненты $G-\{a,c\}.$
- Так как по Лемме 5 в каждой компоненте W_i есть вершина, смежная с b, множество $\binom{k}{\bigcup_{i=1}^k W_i} \cup \{b\}$ связано в графе $G \{a, c\}$, то есть, лежит в одной компоненте связности W этого графа.
- Следовательно, любая другая компонента H' графа $G \{a,c\}$ подмножество $H \setminus \{c\}$, противоречие с минимальностью H.

Зависимые и независимые разделяющие множества Определение

Пусть G-k-связный граф. Через $\mathfrak{R}_k(G)$ обозначим множество всех k-вершинных разделяющих множеств G. Назовем различные множества $S,T\in\mathfrak{R}_k(G)$ независимыми, если S не разделяет T и T не разделяет S. В противном случае мы будем называть эти множества зависимыми.

- К сожалению, разделяющие множества, состоящие из $k \geq 2$ вершин, могут быть зависимыми. Именно с этим связаны основные трудности в изучении k-связных графов при $k \geq 2$.
- Через $\operatorname{Comp}(H)$ обозначим множество всех компонент связности графа H.

Лемма 6

Пусть $S,T\in\mathfrak{R}_k(G)$ и компонента $A\in\mathrm{Comp}(G-S)$ таковы, что $T\cap A=\varnothing$. Тогда T не разделяет $A\cup S$.

Доказательство. • Граф G(A) связен.

- ullet По Лемме 5 любая вершина $x \in S \setminus T$ смежна хотя бы с одной из вершин A.
- ullet Следовательно, граф $G(A \cup (S \setminus T))$ связен, откуда следует, что T не разделяет $A \cup S$.

Пусть $S, T \in \mathfrak{R}_k(G)$ таковы, что множество S не разделяет множество T. Тогда множество T не разделяет множество S (то есть, эти множества независимы).

Доказательство. • Так как S не разделяет T, множество T может пересекать внутренность не более, чем одной из компонент $\mathrm{Comp}(G-S)$.

- ullet Тогда существует такая компонента $A\in \mathrm{Comp}(G-S)$, что $A\cap T=\varnothing$.
- \bullet По Лемме 6 T не разделяет S.

• Мы установили, что возможен один из двух случаев: либо множества S и T разделяют друг друга (тогда они зависимы), либо множества S и T не разделяют друг друга (тогда они независимы).

Пусть множества $S,T\in\mathfrak{R}_k(G)$ независимы, а компонента $A\in\mathrm{Comp}(G-S)$ такова, что $T\subset A\cup S$ (такая, очевидно, есть).

- 1) Тогда существует такая компонента $B \in \operatorname{Comp}(G T)$, что B содержит $S \setminus T$ и все отличные от A компоненты из $\operatorname{Comp}(G S)$.
- ullet 2) Все отличные от В компоненты из $\mathrm{Comp}(G-T)$ подмножества A.

Доказательство. • 1) Множество T не пересекает отличных от A компонент из $\mathrm{Comp}(G-S)$.

- По Лемме 7 тогда множество T не разделяет никакой отличной от A компоненты из $\mathrm{Comp}(G-S)$.
- Поскольку $S \setminus T \neq \emptyset$, существует такая компонента $B \in \operatorname{Comp}(G T)$, что B содержит $S \setminus T$ и все отличные от A компоненты из $\operatorname{Comp}(G S)$.
- 2) Прямое следствие пункта 1.

Д. В. Карпов

Доказательство. • Предположим, что это неверно.

Утверждение

Для любого ребра $ab \in E(G)$ существует такое множество $T_{ab} \in \mathfrak{R}_3(G)$, что $T_{ab} \ni a, b$.

Доказательство. • Пусть $ab \in E(G)$. Тогда граф $G \cdot ab$ нетрёхсвязен, а значит, имеет двухвершинное разделяющее множество S.

- Пусть $w = a \cdot b$. Предположим, что $w \notin S$.
- \bullet Так как $ab \in E(G)$, вершины a,b лежат в одной компоненте Comp(G - S).
- ullet Пусть $U \in \mathrm{Comp}(G \cdot ab S)$ другая компонента. Тогда в $G \cdot ab$ нет пути из U в w.
- ullet Значит, в G-S нет пути из U в $\{a,b\}$ противоречие с трёхсвязностью G.
- Остается случай, когда $w \in S$. Пусть $S = \{w, x\}$.
- Тогда $T_{a,b} = \{a, b, x\}$ нам подходит: граф

ullet Рассмотрим минимальную компоненту связности H, отделяемую в графе G множеством, содержащим две вершины одного ребра.

- Пусть $ab \in E(G)$, $T_{ab} = \{a, b, c\}$, $H \in \text{Comp}(G T_{ab})$.
- ullet Существует вершина $d \in H$, смежная с c. Рассмотрим множество $T_{cd} \in \mathfrak{R}_3(G)$.
- ullet Так как $T_{ab}\setminus T_{cd}\subset \{a,b\}$, а эти две вершины смежны, T_{cd} не разделяет T_{ab} .
- ullet Тогда T_{ab} и T_{cd} независимы по Лемме 7.
- По Лемме 8 существует такая компонента $H' \in \mathrm{Comp}(G T_{cd})$, что $H' \subsetneq H$.
- \bullet Противоречие с минимальностью H.

