Machine Learning I: Fractal 2

Rajendra Nagar

Assistant Professor Department of Electircal Engineering Indian Institute of Technology Jodhpur These slides are prepared from the following book: Shalev-Shwartz, Shai, and Shai Ben-David. Understanding machine learning: From theory to algorithms. Cambridge university press, 2014.

Clustering

Input: A set of elements, \mathcal{X} , and a distance function to measure similarity. **Objective:** A partition of the input domain \mathcal{X} into groups $\{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_k\}$ of similar elements such that $\bigcup_{i=1}^k \mathcal{C}_i = \mathcal{X}$, and $\mathcal{C}_i \cap \mathcal{C}_j = \emptyset, \forall i \neq j$.

Spectral Clustering

$$\mathsf{RatioCut}(\mathcal{C}_1,\dots,\mathcal{C}_k) = \sum_{i=1}^k \frac{1}{|\mathcal{C}_i|} \sum_{r \in \mathcal{C}_i} \sum_{s \notin \mathcal{C}_i} \mathbf{W}_{r,s}.$$

0.8

 \mathbf{x}_2

0.1

$$\mathsf{RatioCut}(\mathcal{C}_1,\mathcal{C}_2) = 0.9$$

$$\mathsf{RatioCut}(\mathcal{C}_1,\mathcal{C}_2) = 1.0$$

$$\min_{\mathcal{C}_1,\ldots,\mathcal{C}_k} \mathsf{RatioCut}(\mathcal{C}_1,\ldots,\mathcal{C}_k)$$

Consider the Graph Laplacian matrix ${f L}$ of the graph constructed on ${\cal X}.$

Cluster Assignment Matrix

Let C_1, \ldots, C_k be the clustering and $\mathbf{H} \in \mathbb{R}^{n \times k}$ be a matrix such that

$$\mathbf{H}_{i,j} = rac{1}{\sqrt{|\mathcal{C}_j|}} \mathbb{1}_{[i \in \mathcal{C}_j]}.$$

$$\mathbf{H} = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} \end{bmatrix} \in \mathbb{R}^{n \times k}. \text{ Here, } k = 2.$$

Claim

The columns of the matrix \mathbf{H} are orthonormal to each other and

$$\mathsf{RatioCut}(\mathcal{C}_1,\ldots,\mathcal{C}_k) = \mathsf{trace}(\mathbf{H}^{\top}\mathbf{L}\mathbf{H}).$$

Problem Formulation

$$\min_{\mathcal{C}_1, \dots, \mathcal{C}_k} \mathsf{RatioCut}(\mathcal{C}_1, \dots, \mathcal{C}_k) \Leftrightarrow \min_{\mathbf{H} \in \mathbb{R}^{n \times k}, \mathbf{H}^\top \mathbf{H} = \mathbf{I}} \mathsf{trace}(\mathbf{H}^\top \mathbf{L} \mathbf{H}).$$

Rayleigh quotient

$$\mathbf{v}^{\star} = \underset{\mathbf{v} \in \mathbb{R}^{n}, \mathbf{v}^{\top} \mathbf{v} = 1}{\min} \mathbf{v}^{\top} \mathbf{L} \mathbf{v}$$

$$f(\mathbf{v}) = \mathbf{v}^{\top} \mathbf{L} \mathbf{v} + \lambda (1 - \mathbf{v}^{\top} \mathbf{v})$$

$$\nabla f = 2\mathbf{L} \mathbf{v} - 2\lambda \mathbf{v}$$

$$\mathbf{L} \mathbf{v} = \lambda \mathbf{v}$$

$$\mathbf{v}^{\top} \mathbf{L} \mathbf{v} = \lambda.$$

Therefore, we have to minimize λ such that $\mathbf{L}\mathbf{v} = \lambda_1\mathbf{v}$. Hence, $\mathbf{v}^* =$ eigenvector of the matrix \mathbf{L} corresponding to the smallest eigenvalue $= \mathbf{u}_1$.

Rayleigh quotient

$$\mathbf{v}^{\star} = \underset{\mathbf{v}^{\top}\mathbf{u}_{1}=0, \mathbf{v}^{\top}\mathbf{v}=1}{\arg\min} \mathbf{v}^{\top} \mathbf{L} \mathbf{v}$$

Rayleigh quotient

$$\mathbf{v}^{\star} = \operatorname*{arg\,min}_{\mathbf{v}^{\top}\mathbf{u}_{i} = 0, \forall i < k, \mathbf{v}^{\top}\mathbf{v} = 1} \mathbf{v}^{\top}\mathbf{L}\mathbf{v}$$

Solution

$$f(\mathbf{v}) = \mathbf{v}^{\top} \mathbf{L} \mathbf{v} + \lambda (1 - \mathbf{v}^{\top} \mathbf{v})$$

$$\nabla f = 2\mathbf{L} \mathbf{v} - 2\lambda \mathbf{v}$$

$$\mathbf{L} \mathbf{v} = \lambda \mathbf{v}$$

$$\mathbf{v}^{\top} \mathbf{L} \mathbf{v} = \lambda$$

Therefore, we have to minimize λ such that $\mathbf{L}\mathbf{v} = \lambda\mathbf{v}$ and $\mathbf{v}^{\top}\mathbf{u}_1 = 0$. $\mathbf{v}^{\star} = \text{eigenvector of the matrix } \mathbf{L}$ corresponding to the second smallest eigenvalue $= \mathbf{u}_2$.

Solution

$$f(\mathbf{v}) = \mathbf{v}^{\top} \mathbf{L} \mathbf{v} + \lambda (1 - \mathbf{v}^{\top} \mathbf{v})$$

$$\nabla f = 2\mathbf{L} \mathbf{v} - 2\lambda \mathbf{v}$$

$$\mathbf{L} \mathbf{v} = \lambda \mathbf{v}$$

$$\mathbf{v}^{\top} \mathbf{L} \mathbf{v} = \lambda$$

We have to minimize λ such that $\mathbf{L}\mathbf{v} = \lambda\mathbf{v}$ and $\mathbf{v}^{\top}\mathbf{u}_i = 0, \forall i < k$. $\mathbf{v}^{\star} = \text{eigenvector of the matrix } \mathbf{L}$ corresponding to the k^{th} smallest eigenvalue $= \mathbf{u}_k$.

Rayleigh quotient

$$\underset{\mathbf{v}_{i}^{\top}\mathbf{v}_{j}=\delta_{ij}}{\arg\min} \sum_{i=1}^{k} \mathbf{v}_{i}^{\top} \mathbf{L} \mathbf{v}_{i}$$

Here, $\delta_{ij} = 1$, if i = j and $\delta_{ij} = 0$, if $i \neq j$.

Solution

$$f(\mathbf{v}_1, \dots, \mathbf{v}_k) = \sum_{i=1}^k \mathbf{v}_i^\top \mathbf{L} \mathbf{v}_i + \sum_{i=1}^k \lambda_i (1 - \mathbf{v}_i^\top \mathbf{v}_i)$$

$$\nabla_{\mathbf{v}_i} f = 2\mathbf{L} \mathbf{v}_i - 2\lambda \mathbf{v}_i$$

$$\mathbf{L} \mathbf{v}_i = \lambda_i \mathbf{v}_i$$

$$\mathbf{v}_i^\top \mathbf{L} \mathbf{v}_i = \lambda_i$$

Therefore, we have to minimize $\sum_{i=1}^k \lambda_i$ such that $\mathbf{L}\mathbf{v}_i = \lambda \mathbf{v}_i$ and $\mathbf{v}_i^{\top}\mathbf{v}_j = 0$ if $i \neq j$. Hence, $\mathbf{v}_i^{\star} = \text{eigenvector of the matrix } \mathbf{L}$ corresponding to the i^{th} smallest eigenvalue $= \mathbf{u}_i$.

$$\mathbf{H}^{\star} = \operatorname*{arg\,min}_{\mathbf{H} \in \mathbb{R}^{n \times k}, \mathbf{H}^{\top}\mathbf{H} = \mathbf{I}} \mathsf{trace}(\mathbf{H}^{\top}\mathbf{L}\mathbf{H}).$$

Solution

Let $\mathbf{L}\mathbf{u}_i = \lambda_i \mathbf{u}_i, \forall i \in \{1, 2, \dots, n\}$ be the EVD of the matrix \mathbf{L} . Here, we assume that the eigenvalues are such that $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. Then, the solution to the above problem is $\mathbf{H}^* = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_k \end{bmatrix}$.

$$\mathbf{H} = \begin{bmatrix} 1 & 0.5 \\ 1 & 0.5 \\ \vdots & \vdots \\ 1 & 0.5 \\ 1 & -0.5 \\ 1 & -0.5 \\ \vdots & \vdots \\ 1 & -0.5 \end{bmatrix}$$

Spectral Clustering

Algorithm 1 Spectral Clustering

- 1: **Input:** $\mathbf{W} \in \mathbb{R}^{n \times n}$, Number of clusters k.
- 2: Initialize: Compute the graph Laplacian L.
- 3: $\mathbf{H} \leftarrow$ matrix whose columns are the eigenvectors of \mathbf{L} corresponding to the k-smallest eigenvalues.
- 4: $\mathbf{r}_1, \dots, \mathbf{r}_n$ be the rows of \mathbf{H} .
- 5: Cluster the points $\mathbf{r}_1, \dots, \mathbf{r}_n$ using k-means algorithm.
- 6: **Output:** Clusters C_1, \ldots, C_k of the k-means algorithm.

Rajendra Nagar Fractal 2 10 / 16

Dimensionality Reduction

- Dimensionality reduction is the process of mapping it into a new space whose dimensionality is much smaller.
- High dimensional data impose computational challenges.
- Dimensionality reduction can be used for interpretability of the data, for finding meaningful structure of the data, and for illustration purposes.

Dimensionality Reduction

- Let $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ be the input data points where each data point $\mathbf{x}_i \in \mathbb{R}^d$.
- We would like to reduce the dimensionality of these vectors using a linear transformation.
- A matrix $\mathbf{W} \in \mathbb{R}^{k \times d}$, where k < d, induces a mapping $\mathbf{x} \mapsto \mathbf{W}\mathbf{x}$, where $\mathbf{W}\mathbf{x} \in \mathbb{R}^k$ is the lower dimensionality representation of \mathbf{x} .
- Then, a second matrix $\mathbf{U} \in \mathbb{R}^{d \times k}$ can be used to recover the each original vector \mathbf{x} from its compressed version.

Principal Component Analysis

In PCA, we find the compression matrix W and the recovering matrix U so that the total squared distance between the original and recovered vectors is as minimum as possible, i.e.,

$$\underset{\mathbf{W} \in \mathbb{R}^{k \times d}, \mathbf{U} \in \mathbb{R}^{d \times k}}{\operatorname{argmin}} \sum_{i=1}^{n} \|\mathbf{x}_i - \mathbf{U}\mathbf{W}\mathbf{x}_i\|_2^2.$$

Claim:

Let (\mathbf{U},\mathbf{W}) be a solution. Then the columns of \mathbf{U} are orthonormal and $\mathbf{W}=\mathbf{U}^{\top}.$

Rajendra Nagar Fractal 2 13 / 16

Subspace Projection

Let \mathcal{R} be a k dimensional subspace of \mathbb{R}^d . Let $\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_k \end{bmatrix} \in \mathbb{R}^{d \times k}$ be the orthonormal matrix containing the basis vectors of \mathcal{R} . Let $\mathbf{x} \in \mathbb{R}^d$ a vector. Then, the closest vector $\mathbf{x}^* \in \mathcal{R}$ to the vector \mathbf{x} can be found by solving the below optimization problem.

$$\mathbf{x}^{\star} = \underset{\hat{\mathbf{x}} \in \mathcal{R}}{\mathsf{argmin}} \|\mathbf{x} - \hat{\mathbf{x}}\|_2^2$$

Since we know that $\hat{\mathbf{x}} = \mathbf{V}\mathbf{y}$ for some $\mathbf{y} \in \mathbb{R}^k$, we have

$$\mathbf{y}^{\star} = \operatorname*{argmin} \lVert \mathbf{x} - \mathbf{V} \mathbf{y}
Vert_2^2$$

Then, $\mathbf{y}^{\star} = \mathbf{V}^{\top} \mathbf{x} \Rightarrow \mathbf{x}^{\star} = \mathbf{V} \mathbf{V}^{\top} \mathbf{x}$.

Principal Component Analysis

$$\underset{\mathbf{U} \in \mathbb{R}^{d \times k}, \mathbf{U}^{\top}\mathbf{U} = \mathbf{I}}{\operatorname{argmin}} \sum_{i=1}^{n} \|\mathbf{x}_i - \mathbf{U}\mathbf{U}^{\top}\mathbf{x}_i\|_2^2.$$

$$\begin{aligned} \|\mathbf{x}_i - \mathbf{U}\mathbf{U}^{\top}\mathbf{x}_i\|_2^2 &= (\mathbf{x}_i - \mathbf{U}\mathbf{U}^{\top}\mathbf{x}_i)^{\top}(\mathbf{x}_i - \mathbf{U}\mathbf{U}^{\top}\mathbf{x}_i) \\ &= (\mathbf{x}_i^{\top} - \mathbf{x}_i^{\top}\mathbf{U}\mathbf{U}^{\top})(\mathbf{x}_i - \mathbf{U}\mathbf{U}^{\top}\mathbf{x}_i) \\ &= \mathbf{x}_i^{\top}\mathbf{x}_i - 2\mathbf{x}_i^{\top}\mathbf{U}\mathbf{U}^{\top}\mathbf{x}_i + \mathbf{x}_i^{\top}\mathbf{U}\mathbf{U}^{\top}\mathbf{U}\mathbf{U}^{\top}\mathbf{x}_i \\ &= \mathbf{x}_i^{\top}\mathbf{x}_i - \mathbf{x}_i^{\top}\mathbf{U}\mathbf{U}^{\top}\mathbf{x}_i \end{aligned}$$

$$\max_{\mathbf{U} \in \mathbb{R}^{d \times k}, \mathbf{U}^{\top}\mathbf{U} = \mathbf{I}} \sum_{i=1}^{n} \mathbf{x}_{i}^{\top}\mathbf{U}\mathbf{U}^{\top}\mathbf{x}_{i} \Leftrightarrow \max_{\mathbf{U} \in \mathbb{R}^{d \times k}, \mathbf{U}^{\top}\mathbf{U} = \mathbf{I}} \mathsf{Trace}(\mathbf{X}^{\top}\mathbf{U}\mathbf{U}^{\top}\mathbf{X})$$

Rajendra Nagar Fractal 2 15/16

Principal Component Analysis

Problem

$$\underset{\mathbf{U} \in \mathbb{R}^{d \times k}, \mathbf{U}^{\top}\mathbf{U} = \mathbf{I}}{\mathsf{Trace}}(\mathbf{U}^{\top}\mathbf{X}\mathbf{X}^{\top}\mathbf{U})$$

Solution

Let $\mathbf{X}\mathbf{X}^{\top}\mathbf{u}_{i} = \lambda_{i}\mathbf{u}_{i}, \forall i \in \{1, 2, \dots, n\}$ be the EVD of the matrix $\mathbf{X}\mathbf{X}^{\top}$. Here, we assume that the eigenvalues are such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Then, the solution to the above problem is $\mathbf{U}^{\star} = \begin{bmatrix} \mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{k} \end{bmatrix}$.

Rajendra Nagar Fractal 2 16 / 16