Porównanie wydajności złączeń i zagnieżdżeń dla schematów znormalizowanych i zdenormalizowanych w SQLServer i PostgreSQL.

Wiktoria Kania | 410509 | Bazy Danych

Wstęp

Świczenie ma na celu sprawozdanie i porównanie wydajności złączeń i zagnieżdżeń skorelowanych dla PostgreSQL i SQLServer. Do wykonania testów użyto wymiaru czasu na tabelach jednostek geologicznych, o dużej objętości danych. Tabele te zostały stworzone specjalnie w celach tego zadania w formie znormalizowanej jak i zdenormalizowanej.

Specyfikacja sprzętowa

Testy wykonano na komputerze o następujących parametrach technicznych:

- CPU: AMD Ryzen 7 7735HS 3.20 GHz
- GPU: NVIDIA® GeForce RTX™ 4050 + AMD Radeon™ Graphics 680M
- RAM: 32 GB
- SSD: 512 GB
- SO: Windows 11 Home
- Oprogramowanie:
 - PostgreSQL 16.2
 - SQLServer 19.3

Tabela geochronologiczna

Baza składa się z tabeli geochronologicznej, gdzie główną jednostką jest eon, a następnie pomniejsze jednostki, kolejno:

Eon -> Era -> Okres -> Epoka -> Piętro

Tabela została stworzona w dwóch wariantach:

• znormalizowanym (schemat płatka śniegu)

Stworzone zostało pięć tabel, w następstwie takim w jakim występują powyższe jednostki czasowe geologiczne.

• zdenormalizowanym (schemat gwiazdy):

GeoTabela								
PK	id pietro							
	nazwa_pietro id_epoka nazwa_epoka id_okres nazwa_okres id_era nazwa_era id_eon nazwa_eon							

Forma została otrzymana za pomocą złączenia naturalnego obejmującego wszystkie tabele ze schematu znormalizowanego:

```
CREATE TABLE GeoTabela AS (SELECT * FROM GeoPietro
NATURAL JOIN GeoEpoka
NATURAL JOIN GeoOkres
NATURAL JOIN GeoEra
NATURAL JOIN GeoEon );
```

*Dla TSQL (drugiego przypadku), konieczna była jednak modyfikacja zapytania, wprowadzając zamiast natural joina, bardziej rozbudowany inner join, ze względu na nieobsługiwalność.

Finalna tabela zawierała 77 rekordów, co wynikało z 77 pięter geologicznych, wziętych pod uwagę (od lochkowa do megalaju).

Pomocnicza tabela

Do zastosowania zapuytan testujących czas wykonywania operacji, potrzebna była tabela zawierająca liczby od o do 999999. Stworzona została za pomocą pomocniczej tabeli "Dziesięć", symulującej układ dziesiętny. Sześć kolumn tabeli "Milion zostało wypełnione po kolei każdą cyfrą z tej tabeli.

Testy wydajności

Wszystkie testy złączeń zostały przeprowadzone w pierwszej kolejności bez nałożonych indeksów na kolumny danych, jedynymi indeksami jakie w tym przypadku występowały, były klucze główne w poszczególnych tabelach.

Drugi etap został rozpoczęty od indeksowania wszystkich kolumn biorących udział w złączeniu, a następnie zrealizowano te same zapytania co w pierwszym etapie.

ZAPYTANIE 1:

Celem pierwszego zapytania było złączenie syntetycznej tablicy miliona wyników z tabelą geochronologiczną w postaci zdenormalizowanej, przy czym do warunku złączenia dodano operację modulo, dopasowującą zakresy wartości złączanych kolumn:

```
SELECT COUNT(*) FROM Milion
INNER JOIN GeoTabela ON (mod(Milion.liczba,77)=(GeoTabela.IdPietro));
```

*Przeprowadzenie operacji modulo spowodowało drobne zmiany dla tego i następnych zapytań w SQLServerze, przez drobne różnice w składniach rozwiązań. Złożoność zapytań dla obu nie zmieniła się jednak i nie powinna wpływać na ostateczne wyniki czasowe.

ZAPYTANIE 2:

Celem miało być złączenie syntetycznej tablicy miliona wyników z tabelą geochronologiczną w postaci znormalizowanej, reprezentowaną przez złączenia pięciu tabel:

```
SELECT COUNT(*) FROM Milion
INNER JOIN GeoPietro ON (mod(Milion.liczba,77)=GeoPietro.IdPietro)
NATURAL JOIN GeoEpoka
NATURAL JOIN GeoChres
NATURAL JOIN GeoEra
NATURAL JOIN GeoEon;
```

ZAPYTANIE 3:

Dla złączenia syntetycznej tablicy miliona wyników z tabelą geochronologiczną w postaci zdenormalizowanej, przy czym złączenie jest wykonywane poprzez zagnieżdżenie skorelowane:

```
SELECT COUNT(*) FROM Milion
WHERE mod(Milion.liczba,77) = (SELECT IdPietro FROM GeoTabela
WHERE mod(Milion.liczba,77) = (IdPietro));
```

ZAPYTANIE 4:

Złączenie syntetycznej tablicy miliona wyników z tabelą geochronologiczną w postaci znormalizowanej, przy czym złączenie jest wykonywane poprzez zagnieżdżenie skorelowane, a zapytanie wewnętrzne jest złączeniem tabel poszczególnych jednostek geochronologicznych:

```
SELECT COUNT(*) FROM Milion
WHERE mod(Milion.liczba,77)=(SELECT GeoPietro.IdPietro FROM GeoPietro
NATURAL JOIN GeoEpoka
NATURAL JOIN GeoChres
NATURAL JOIN GeoEra
NATURAL JOIN GeoEon;
```

Wyniki testów

Każdy test został przeprowadzony po dwanaście razy dla każdego z zapytań. Wyniki skrajne zostały pominięte w obliczeniach. Średnie i minimalne wartości otrzymanych wyników zostały przedstawione w postaci wykresów i tabeli poniżej.

Czas[msec]	c] 1ZL		2ZL		3ZL		4ZL	
Bez indeksów	Min	Śr	Min	Śr	Min	Śr	Min	Śr
PostgreSql	158	163	559	566	7094	7204	158	168
SqlServer	42	48	49	53	39	47	44	49
Z indeksami								
PostgreSql	153	163	351	367	7074	7131	144	163
SqlServer	33	38	39	43	35	38	25	38

Dla lepszego zobrazowania dane zobrazowano w formie wykresów, obrazujących występowanie różnic:

1. Zależność średnich czasów wykonywania poleceń w PostgreSql.

2. Zależność średnich czasów wykonywania poleceń w SqlServerze.

3. Zależność minimalnych czasów wykonywania poleceń w PostgreSql.

4. Zależność minimalnych czasów wykonywania poleceń w SqlServerze.

5. Porównanie średnich czasów między rozwiązaniami.

Wnioski

Porównując wyniki na przestrzeni SqlServera i PostgreSql można dojść do następujących wniosków:

 Czas wykonywania zapytań w MSSQL, był standardowo 3-4 krotnie mniejszy niż w PostgreSql, w przypadku trzeciego zapytania aż 153-krotnie. Skalę pokazują dwa ostatnie wykresy, na których wyniki SS są wręcz niewidoczne w porównaniu do Postgresa.

- Trzecie zapytanie dla PostgreSql, które wykorzystywało zagnieżdżenie skorelowanie, wykonywało się średnio nawet 45 razy dłużej niż reszta kwerend, co pokazuje po
- SqlServer nie wykazuje różnic w realizacji każdego z typów zapytań, jedynie pierwsze wykonane zapytanie wykazywało się większym pochłanianiem czasu, lecz było to nieznaczne lub było usuwane z obliczeń jako błąd statystyczny.
- Dla każdego z rozwiązań bazodanowych widać pozytywny wpływ wprowadzenia indeksów, choć nie jest on bardzo znaczący, ze względu na skalę bardziej odczuwalny jest dla MSSQL, gdyż operujemy tam na znacznie mniejszych czasach.

Żaden z testów nie wykazał większej wrażliwości zapytań zagnieżdżonych lub łączonych na indeksowanie, w każdym przypadku działanie to wywierało stosunkowo podobne wpływy na każdym z nich.