Introduction to Bayesian Inference

Rob W Rankin

Post-doc (Georgetown University), PhD (Murdoch University)

September 30, 2017

Outline

themes

see more themes in /usr/share/tex|ive/texmf-dist/tex/|atex/beamer/themes/theme

Why?

Why are you interested in Bayesianism?

Why? - some advantages

Things Ecologist say...

- small sample sizes: exact inference
- missing data: easy to impute
- integrate other information
- derived quantities
- lacktriangledown complex, hierarchical process models

multiple sources of variation (space,time) "honest" epistemology

Theoretical

- conditional on the observed data
- probabilistic statements
- evidential
- coherence, decision making
- good frequentist properties
- shrinkage, decision-theory
 - model selection

Why? - disadvantages

- what is probability (basing inference on something that doesn't exist!!!)?
- objective basis for science?
- misalignment: probability theory and human psychology
- bias (to prior)¹
- language dependence

Bayesian would claim that, if a prior exists, it would be irrational to believe in anything other than the posterior.

History

Neo Bayesian Revival (>1992)

Gelfand and Smith 1992 - Sampled based approximations of Bayesian posteriors

Revival (~1920s -)

Subjective Bayesian, Decision Theory

- Ramsey (1926)
- De Finetti (1937)
- Savage (1954)
- (Wald, 1939, 1954)

Hypothesis Testing, Logical/Objective Bayesism

- Jeffreys (1939)
- Jaynes (2003)

Hierarchical Bayesian

■ Good (1953,65)

Relationship to Compact Coding Theory

■ Rissasen (1978), Wallace (1968)

Prediction

History - Frequentism's Ascendency

Frequentist "lethal blow"³

Rallied against use of prior probabilities in statistical inference

■ Ronald A. Fisher (1925,1935,...)

Maximum likelihood, significance tesing, ANOVA, sufficiency, randomized experiments

Jerzy Neyman & Egon Pearson (1933)

Hypothesis testing, confidence intervals

Falsificationism

■ Karl Popper (1959,1963)

History - Hypotheses

Frequentism

Fisher's p-value

- continuous index of evidence against a hypothesis H
- NEVER prove a hypothesis *H*, only disprove

Neyman-Pearson lpha and eta

- long-run error rates of Type-I and Type-II
- **bound** Type-I at $\alpha \leq 0.05$ and hopefully maximize power $(1-\beta)$ with high n and most powerful tests
- never confirm a hypothesis: only act so as to "not be wrong too often"

Bayesians

Model probabilities

probabilistic confirmation of hypotheses

■ $p(H_k|Y)$ what is the probability of Hypothesis H_k given the data?

Bayes Factors

evidence in favour of one hypothesis over another

$$\blacksquare BF = \frac{p(Y|H_1)}{p(Y|H_2)}.$$

find hypothesis that is more likely to be true

History - Inverse Probability

from late 1700's to $^\sim$ 1920's: Method of Inverse Probability,the bread and butter of applied analyses

- Thomas Bayes (1778)
- Laplace (1774)

Bayes Theorem

conditional probability

$$\frac{posterior}{p(\theta|Y)} = \frac{\overbrace{p(\theta) \mathcal{L}(Y|\theta)}^{prior \ likelihood}}{\overbrace{f(Y)}_{marginal \ likelihood}}$$
(1)

- **Prior**: distribution of θ (before the data)
- **Likelihood**: joint probability density of the data (given θ)
- **Posterior**: distribution of θ (given the θ)
- $f(Y) \equiv \text{marginal likelihood } \int f(Y|\theta)p(\theta)d\theta$

...or more commonly,

$$\begin{split} \rho(\theta|Y) &\propto f(Y|\theta) p(\theta) \\ \text{where} \dots \\ \rho(\theta) &\equiv \text{prior information (before the data)} \\ f(Y|\theta) &\equiv \text{likelihood (information from the data)} \\ \rho(\theta|Y) &\equiv \text{distibuion of } \theta \text{ after the data} \\ f(Y) &= \text{margina} \vdash \text{ikelihood} \text{(often ignore)} \end{split}$$

posterior is a mixture of information in prior and likelihood

Bayesian Conditionalization

Prior Likelihood Posterior

What's in a Posterior

Mixture of information

- $m{\mathcal{L}}(Y| heta)$: Likelihood, specified by model. Similar between Bayesian and non-Bayesian analyses⁴
- lacksquare $p(\theta)$... where do they come from?

How to specify priors (HUGE topic)

- a previous posterior distribution
- elicitation from experts, previous studies
- Priors as degrees-of-beliefs: Subjectivist/personalist Bayesians}
- Default prior and reference priors: Objective/logical Bayesians
- adhoc

⁴ Frequentists reserve the term likelihood for a function of θ for fixed y, whereas Bayesians consider "joint probability density of the data" given θ .

Posterior Inference (for estimation θ)

- lacksquare Probabilistic statements about abstract quantity (heta) (only Bayesians can do)
- Posterior probability necesarily depends on a prior

"to make an Omelette, you must crack a few eggs" (Savage)

The joy of Posterior Inference

can make statements like...

- \blacksquare what is the probability that $\theta > 0$?
- what is the most probable value of θ ? (MAP)
- \blacksquare what is the expected value of θ ? (posterior mean)
- \blacksquare what is a *high probability region* of θ (Q% credibility interval)

Posterior Inference (estimation example)

Example 1:

- men's height, n=20 observations.
- $y_i \sim \mathcal{N}(175, 10^2)$

y <- c(183.46, 182.32, 178.31, 181.36, 165.12, 185.68, 170.47, 178.11, 174.86, 182.03, 180.09, 172.88, 177.94, 177.26, 182.58, 171, 173.74, 177.78, 180.02, 163.05)

- \blacksquare estimate $\theta = [\mu, \sigma^2]$: mean population height and variance
- priors: $p(\mu) = \mathcal{N}(0, 90^2), \ p(\sigma^2) = \mathcal{IG}(0.1, 0.1)$
- specify a likelihood: $\mathcal{L}(\mathbf{y}|\mu,\sigma^2) = \prod_i^n \mathcal{N}(y_i;\mu,\sigma^2)$

now run a Gibbs sampler to approximate the posterior $p(\mu, \sigma^2|\mathbf{y})...$

■ IS a probability distribution

■ easy to interpret

■ IS a probability distribution

- Posterior mode: most probable value
- lacksquare Posterior mean $\mathbb{E}[heta] = \int p(heta|Y) heta d heta$: expected value

■ IS a probability distribution

- Posterior mode: most probable value
- Posterior mean $\mathbb{E}[\theta] = \int p(\theta|Y)\theta d\theta$: expected value
- 95% CI of θ

■ IS a probability distribution

- Posterior mode: most probable value
- lacksquare Posterior mean $\mathbb{E}[heta] = \int p(heta|Y) heta d heta$: expected value
- What is the probability that $\theta > X$? Area of $p(\theta|Y) > X$

Bayesian vs. frequentist estimates: compare posteriors to maximum-likelihood method

method of maximum likelihood

- lacktriangle Choose heta such that we maximize the likelihood (\mathcal{L}) of seeing lacktriangle
- \blacksquare interpretation "It would be very (un)likely to see the data that I saw, if the value of θ were X"
- Most common method among Frequentists (single model estimation)
- lacksquare $\hat{ heta}_{\mathsf{MLE}}$ is NOT the "most probabilty value of heta
- optimality: unbaised, efficient 5

■ frequentist point estimates: glm(y~1)

MLE se 95CI-low 95CI-hi 172.3 1.48 169.4 175.17

■ compare to (approximate)⁶ Posterior descriptive statistics

E[θ] SD 95CI-low 95CI-hi 172.21 1.51 169.21 175.16

Posterior Inference (estimation example 2)

Example 2:

```
■ survival [0 = \operatorname{died}, 1 = \operatorname{survived}], n = 30 \text{ observations.}

■ s_i \sim \operatorname{Bern}(0.9)

s <-
c(1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1)

■ estimate \theta = [\phi]: mean population survival

■ priors: p(\phi) = \operatorname{Beta}(1,1)

■ specify a likelihood: \mathcal{L}(\mathbf{s}|\phi, n_s) = \prod_s^n \operatorname{Bern}(s_i; \phi, n_s)

now run a Gibbs sampler to approximate the posterior p(\phi|\mathbf{s})
```


Posterior inference: cost functions

What if you have a "cost function" g(phi)? e.g., cost of conservation action conditional on the estimated values of ϕ ?

$$\mathbb{E}[\mathsf{COST}] = \int_0^1 g(\phi) p(\phi|s) d\phi$$
• full cost including all uncertainty in ϕ

How do Bayesian posterior estimates compared to more-familiar (frequentist) point-estimates based on maximum likelihood?

method of maximum likelihood

- Most common method among Frequentists (single model estimation)
- \blacksquare "It would be very (un)likely to have seen the data that I saw, if the value of θ were X"
- Choose θ : that which maximize's the likelihood of seeing y
- lacktriangle $\hat{ heta}_{\mathsf{MLE}}$ is NOT the "most probabilty value of heta
- optimality properties: unbaised, efficient ⁷

■ frequentist point estimates: glm(y~1)

MLE se 95CI-low 95CI-hi 172.3 1.48 169.4 175.17

■ compare to (approximate)⁸ Posterior descriptive statistics

E[θ] SD 95CI-low 95CI-hi 172.21 1.51 169.21 175.16

for n getting LARGE, and for WEAK priors

- lacksquare Posterior Mode $heta_{\mathsf{MAP}} o \hat{ heta}_{\mathsf{MLE}}$
- lacktriangle Posterior Confidence Intervals ightarrow Confidence Intervals

for low *n* and/or for STRONG priors

- lacksquare shrinkage: $heta o \mathsf{Prior}$ expectation.
- lacksquare Posterior mean $ar{ heta}$ is "biased" towards the priors

role of priors (from an estimation perspective)

- lacksquare Priors retard/accerlate rate of convergence of $ar{ heta}
 ightarrow$ truth
- At low samples-sizes, "sensible" priors induce shrinkage and have better estimation properties than MLEs
- Key POINTS: you must be a master of prior distributions.

Posteriors and Sample Size

Posteriors and Prior information

Posteriors and Prior information

Most Biologists are reluctant Bayesians

- Frequentist vs. Bayesian: often desire that point estimates are identical between posteriors and MLEs
- but, only for: i) weak priors, and ii) large-samples sizes
- key point: Be a Master of Priors!

Priors and Philosophy of Probabilities

Subjective Personalist Bayesians

Probabilities are your "degree of belief"

- priors: prior beliefs
- posteriors: bring your beliefs into alignment with posterior
- decision making

Objective Logical Bayesians

Probabilities are continuous extension of Aristolean logic, deductive

- Probabilities capture "degree of truth"
- Priors: non-informative, set by default (Jeffrey's Priors, reference priors, language-invariant priors)
- e.g., $p(\phi) = \mathsf{Beta}(0.5, 0.5)$ (Jeffrey's Prior)

■ Elicit priors from previous studies (posterior becomes new prior)

Priors and Philosophy of Probabilities

Instrumentalist

priors useful for good estimation properties

shrinkage, efficiency

Frequentist

Principal principle: "probabilities (p(Event)) should align with long-run frequencies of Event"

probabilities do not exist in reality

Other

- Quantum mechanics
- Propensities (Karl Popper)

Probability Distributions in JAGS/BUGS

■ you must express your prior information probabilitistically

Know the distributions and their parameters (JAGS Manual)

Name	Usage	Density	Lower	Upper
Beta	dbeta(a,b)	$x^{a-1}(1-x)^{b-1}$	0	1
	a > 0, b > 0	$\beta(a,b)$		
Chi-square	dchisqr(k)	$\frac{x^{\frac{k}{2}-1}\exp(-x/2)}{2^{\frac{k}{2}}\Gamma(\frac{k}{2})}$	0	
	k > 0	$2^{\frac{k}{2}}\Gamma(\frac{k}{\pi})$		
Double	ddexp(mu,tau)	$\tau \exp(-\tau x-\mu)/2$		
exponential	$\tau > 0$	$r \exp(-r x-\mu)/2$		
Exponential	dexp(lambda)	$\lambda \exp(-\lambda x)$	0	
	$\lambda > 0$	*** **********************************		
F	df(n,m)	$\frac{\Gamma(\frac{n+m}{2})}{\Gamma(\frac{n}{2})\Gamma(\frac{m}{2})} \left(\frac{n}{m}\right)^{\frac{n}{2}} x^{\frac{n}{2}-1} \left\{1 + \frac{nx}{m}\right\}^{-\frac{(n+m)}{2}}$	0	
	n > 0, m > 0	- (2/- (2/		
Gamma	dgamma(r, lambda)	$\frac{\lambda^r x^{r-1} \exp(-\lambda x)}{\Gamma(r)}$	0	
	$\lambda > 0, r > 0$	1(1)	4.1	
Generalized	dgen.gamma(r,lambda,b)	$\frac{b\lambda^{br}x^{br-1}\exp\{-(\lambda x)^b\}}{\Gamma(r)}$	0	
gamma	$\lambda > 0, b > 0, r > 0$	- (.)		
Logistic	dlogis(mu, tau)	$\frac{\tau \exp\{(x-\mu)\tau\}}{[1+\exp\{(x-\mu)\tau\}]^2}$		
	$\tau > 0$	[- , L(/ L/),]]		
Log-normal	dlnorm(mu,tau)	$\left(\frac{\tau}{2\pi}\right)^{\frac{1}{2}}x^{-1}\exp\left\{-\tau(\log(x)-\mu)^2/2\right\}$	0	
**	$\tau > 0$	3242 - 1 3 - 3 1 2		
Noncentral	dnchisqr(k, delta)	$\sum_{r=0}^{\infty} \frac{\exp(-\frac{\delta}{2})(\frac{\delta}{2})^r}{r!} \frac{x^{(k/2+r-1)} \exp(-\frac{x}{2})}{2^{(k/2+r)}\Gamma(\frac{k}{2}+r)}$	0	
Chi-squre	$k > 0, \delta \ge 0$	$r: 2^{(\kappa/2+r)}\Gamma(\frac{\pi}{2}+r)$		
Normal Pareto	dnorm(mu,tau)	$\left(\frac{\tau}{3\pi}\right)^{\frac{1}{2}} \exp\{-\tau(x-\mu)^2/2\}$		
	$\tau > 0$	(2#/ 10 (7/7)		
	dpar(alpha, c)	$\alpha c^{\alpha} x^{-(\alpha+1)}$	c	
	$\alpha > 0, c > 0$			

Intuiting Probability Distributions

lacksquare easy to learn in f R e.g., $r \sim {\sf Beta}(a,b)$

Sample-based inference

Posteriors

often no 'analytical' solution to $(\theta|Y)$

Solution: Sampling

- it is a Probability Distribution!!!
- find a way to sample from posterior
- with enough samples: mean(samples) = Posterior Expectation

assuming
$$heta_j \sim p(heta|y)$$
 for $j=1,\ldots,J$

$$\begin{array}{lll} \text{Expected Value} & = \int \theta p(\theta|y) d\theta & \approx \frac{1}{J} \sum_{j}^{J} \theta_{j} \\ \text{Standard Error}(\theta) & = SE(\theta) & \approx SD(\theta_{j}) \\ \text{Probability } \theta > 0 & = \int \mathbb{I}[\theta > 0] p(\theta|y) d\theta & \approx \frac{1}{J} \sum_{j}^{J} \mathbb{I}[\theta_{j} > 0] \end{array}$$

Sampling Algorithms

MCMC; Gibbs Sampling; Metropolis-Hastings; Slice-Sampling; Importance Sampling; "Conjugate Priors";

Approximate the joint-posterior distribution"

Gibbs Sampling

break-down joint posterior into (simpler) conditional distributions

- difficult: sampling $P(\beta_0, \beta_1, \beta_2, \sigma^2 | Y)$
- \blacksquare easy: sampling $P(\beta_0, \beta_1, \beta_2, |\sigma^2, Y)$ then $P(\sigma^2 | \beta_0, \beta_1, \beta_2, Y)$ then repeat approximates the joint posterior

algorithm

■ initialize:
$$\beta_0^{(0)}, \beta_1^{(0)}, \beta_2^{(0)}, \sigma^{2(0)}$$

$$\{\beta_0^{(1)}, \beta_1^{(1)}, \beta_2^{(1)}\} \sim P(\beta|\sigma^{2(0)}, Y)$$

$$\sigma^{2(1)} \sim P(\sigma^2|\beta_0^{(1)}, \beta_1^{(1)}, \beta_2^{(1)}, Y)$$

$$\{\beta_0^{(2)}, \beta_1^{(2)}, \beta_2^{(2)}\} \sim P(\beta|\sigma^{2(1)}, Y)$$

$$\sigma^{2(2)} \sim P(\sigma^2|\beta_0^{(2)}, \beta_1^{(2)}, \beta_2^{(2)}, Y)$$
(3)

repeat 1000's or 1000000 's times

BUGS to the rescue

Previously, Bayesian analysis demanded custom-coding MCMC algorithms

WinBUGS & OpenBUGS & JAGS

automatically use appropriate sampling techniques; so we don't have to worry

BUT you must: Monitor the MCMC!

- give reasonable initial values
- ensure convergence: no trend; independent chains give same answer
- ensure adequate mixing: independent samples

MCMC: Good mixing

MCMC: Poor convergence

MCMC parameters in JAGS

- n.chains: num. of MCMC chains; more is better
- n.adapt: discard first samples; let algorithm 'adapt'
- n.burn: discard extra samples; allow algorithm to reach stationary distribution
- n.iter: total number of sample; more is better
- thin: take every k^{th} iteration for a sample; decorrelates one sample from the next; higher is better
- total samples: number of samples to approximate your Posterior; target at least 2000 to 5000

MCMC: what to do with bad mixing

- run |onger chains
- ensure long enough adaption phase
- misspecified priors
- bad initial values?

Bayesian Analysis Example

Time to open up R and JAGS

■ go to website: colugos.blogspot.com

'JAGS: Just Another Gibbs Sampler'

Uses BUGS-like syntax (similar to OpenBUGS, WinBUGS)

- rjags Package: R friendly JAGS interface
- easy easy Bayesian estimation
- not so easy for model selection

Don't worry about 'samplers': JAGS does the hard work

specify likelihood (how the data arose) and the priors

Bayesian Analysis Example

```
example model: height of 20 Australian y <- c(183.46, 182.32, 178.31, 181.36, 165.12, 185.68, 170.47, 178.11, 174.86, 182.03, 180.09, 172.88, 177.94, 177.26, 182.58, 171, 173.74, 177.78, 180.02, 163.05)
```

lets estimate the mean height (mu) and the dispersion (sigma) JAGS we estimate the 'precision' (tau): $\tau = \frac{1}{\sigma^2}$

Figure: Prof Mike Jordan lecture notes

Bayesian Analysis Example 1

- \blacksquare open up R and rjags
- download and open the R file:

Jags model syntax: specify priors and likelihood

```
model.txt<-'model{
 # Normal priors on mean height
 m_{11}0 < -100
 sigma0 <- 35
 tau0 <- pow(sigma0,-2)
 mu ~ dnorm(mu0,tau0) T(0,) # truncated normal
 # Gamma prior on precision
 alpha0 <- 0.1
 beta0 < -0.1
 tau ~ dgamma(alpha0,beta0)
 # Likelihood: how the data arose
 for(i in 1:length(y)){
   y[i] ~ dnorm(mu,tau) T(0,) # truncated normal
 sigma <- pow(tau, -0.5)
},
```