Correction du DST n°1

Exercice 1

- Initialisation : Pour n=1 on a $\sin(a)=\sin(2a/2)=2\sin(a/2)\cos(a/2)$ d'où $\cos(a/2)=\frac{1}{2}\frac{\sin(a)}{\sin(a/2)}$. L'égalité 1. est vraie pour n=1.
 - Hérédité : Supposons que l'égalité soit vraie pour un certain entier $n \in \mathbb{N}^*$. Alors :

$$\begin{split} \prod_{k=1}^{n+1} \cos\left(\frac{a}{2^k}\right) &= \cos\left(\frac{a}{2^{n+1}}\right) \times \prod_{k=1}^n \cos\left(\frac{a}{2^k}\right) \\ &= \cos\left(\frac{a}{2^{n+1}}\right) \times \frac{1}{2^n} \frac{\sin a}{\sin\left(\frac{a}{2^n}\right)} \\ &= \frac{1}{2} \frac{\sin\left(\frac{a}{2^n}\right)}{\sin\left(\frac{a}{2^{n+1}}\right)} \times \frac{1}{2^n} \times \frac{\sin a}{\sin\left(\frac{a}{2^n}\right)} \\ &= \frac{1}{2^{n+1}} \frac{\sin a}{\sin\left(\frac{a}{2^{n+1}}\right)} \end{split}$$

la propriété est donc vraie pour l'entier n+1.

• Conclusion : Par principe de récurrence on en conclut que pour tout $n \in \mathbb{N}$ on a

$$\prod_{k=1}^{n} \cos\left(\frac{a}{2^k}\right) = \frac{1}{2^n} \frac{\sin(a)}{\sin\left(\frac{a}{2^n}\right)}$$

2. On sait que $\lim_{n \to +\infty} \frac{a}{2^n} = 0$ et que $\lim_{x \to 0} \frac{\sin x}{x} = 1$ d'après le cours, donc $\lim_{n \to +\infty} \frac{\sin \left(\frac{a}{2^n}\right)}{\underline{a}} = 1$.

On peut écrire :

$$\prod_{k=1}^{n} \cos\left(\frac{a}{2^k}\right) = \frac{\sin(a)}{a} \times \frac{\frac{a}{2^n}}{\sin\left(\frac{a}{2^n}\right)}$$

donc par inverse et produit de limites :
$$\boxed{ \lim_{n \to +\infty} \prod_{k=1}^{n} \cos \left(\frac{a}{2^{k}} \right) = \frac{\sin(a)}{a} }$$

Exercice 2

1. Pour tout $x \in \mathbb{R}$ on a :

$$2\cos(2x) + 2(\sqrt{2} - \sqrt{3})\cos(x) + 2 - \sqrt{6} = 0 \iff 2(2\cos^2(x) - 1) + 2(\sqrt{2} - \sqrt{3})\cos(x) + 2 - \sqrt{6} = 0$$
$$\iff 4\cos^2(x) + 2(\sqrt{2} - \sqrt{3})\cos(x) - \sqrt{6} = 0$$

- 2. $(2\sqrt{2} + 2\sqrt{3})^2 = 4 \times 2 + 4 \times 3 + 8\sqrt{6} = 20 + 8\sqrt{6}$. Or $2\sqrt{2} + 2\sqrt{3}$ est un réel positif donc $\sqrt{20 + 8\sqrt{6}} = 2\sqrt{2} + 2\sqrt{3}$.
- 3. On pose $X = \cos(x)$. L'équation $4X^2 + 2(\sqrt{2} \sqrt{3})X \sqrt{6}$ a deux solutions :

$$X_{1} = \frac{2(\sqrt{3} - \sqrt{2}) + 2(\sqrt{2} + \sqrt{3})}{8}$$

$$= \frac{\sqrt{3}}{2}$$

$$X_{2} = \frac{2(\sqrt{3} - \sqrt{2}) - 2(\sqrt{2} + \sqrt{3})}{8}$$

$$= \frac{-\sqrt{2}}{2}$$

$$x$$
 est solution de $(E) \iff \begin{cases} 4X^2 + 2(\sqrt{2} - \sqrt{3})X - \sqrt{6} = 0 \\ X = \cos(x) \end{cases}$

$$\iff \begin{cases} X = \frac{\sqrt{3}}{2} & \text{ou} \quad X = \frac{-\sqrt{2}}{2} \\ X = \cos x \end{cases}$$

$$\iff \cos x = \frac{\sqrt{3}}{2} & \text{ou} \quad \cos = \frac{-\sqrt{2}}{2}$$

Ces deux dernières équations ont pour ensemble de solutions respectives :

$$S_1 = \left\{ \frac{\pi}{6} + 2k\pi; -\frac{\pi}{6} + 2k\pi \mid k \in \mathbb{Z} \right\} \quad \text{et} \quad S_2 = \left\{ \frac{3\pi}{4} + 2k\pi; \frac{-3\pi}{4} + 2k\pi \mid k \in \mathbb{Z} \right\}$$

donc l'ensemble des solutions de E est $S = S_1 \cup S_2$.

Problème

Partie I

1. (a) g est dérivable sur $]0; +\infty[$ comme quotient de fonctions dérivables dont le dénominateur ne s'annule pas. Pour tout $x \in]0; +\infty[$,

$$g'(x) = \frac{\frac{1}{x} \times x - \ln(x)}{x^2}$$
$$= \frac{1 - \ln(x)}{x^2}$$

donc pour tout réel x strictement positif, g'(x) est du même signe que $1 - \ln(x)$: positif si $x \le e$ et négatif sinon. En outre on a $\lim_{x \to 0} g(x) = -\infty$ par quotient et $\lim_{x \to +\infty} g(x) = 0$ par croissance comparée. On en déduit le tableau suivant :

x	0			e		$+\infty$
g'(x)		+		0	_	
g	$-\infty$		g(e)) = e	g ⁻¹	~ ₀

La courbe représentative de g admet une asymptote verticale d'équation x=0 et une asymptote horizontale d'équation y=0:

- (b) On suppose $0 < a < \frac{1}{e}$. D'après le tableau de variation de g :
 - g est continue sur]0;e[(car dérivable sur cet intervalle)
 - g est strictement croissante sur]0; e[
 - $a \in \lim_{x \to 0} g(x); g(e)[$

donc d'après le corollaire du théorème des valeurs intermédiaires il existe un unique réel $u(a) \in]0$; ef tel que g(u(a)) = a.

De même:

- g est continue sur $]e; +\infty[$ (car dérivable sur cet intervalle)
- g est strictement décroissante sur e; $+\infty$
- $a \in \lim_{x \to +\infty} g(x); g(e)[$

donc d'après le corollaire du théorème des valeurs intermédiaires il existe un unique réel $v(a) \in]e; +\infty[$ tel que g(v(a)) = a.

 (E_a) possède donc exactement deux solutions, une sur]0; e[et une sur]e; $+\infty$ [.

De plus, g(a) = 0 < a donc on a bien 1 < u(a) < e < v(a).

- (c) D'après la courbe représentative de q et son tableau de variations :
 - Si $a > \frac{1}{e}$, (E_a) n'a aucune solution.
 - Si $a = \frac{1}{a}$, (E_a) admet e comme unique solution.
 - Si $0 < a < \frac{1}{e}$, (E_a) admet exactement deux solutions.
 - Si $a \leq 0$, (E_a) admet exactement une solution comprise entre 0 et 1.
- 2. (a) h_a est dérivable sur $]0; +\infty[$ comme somme de fonctions dérivables sur cet intervalle. Pour tout $x \in]0; +\infty($, on a:

$$h'_a(x) = \frac{2}{x} - a = \frac{2 - ax}{x}$$

donc $h'_a(x)$ est du même signe que 2-ax.

Enfin, par somme $\lim_{x\to 0} h_a(x) = -\infty$ et par croissance comparée $\lim_{x\to +\infty} h_a(x) = -\infty$ d'où le tableau suivant :

	x	0		$\frac{2}{a}$		$+\infty$
h	$\mathcal{L}'_a(x)$		+	0	_	
	h_a	$-\infty$	<i></i>	$h_a(2/a)$	ı)	$-\infty$

(b) On a : $h_a(2/a) = 2\ln(2/a) + \ln a - 2 = 2\ln(2) - \ln a - 2$

Si $0 < a < \frac{4}{e^2}$, alors $0 < a e^2 < 4$ donc par stricte croissance du logarithme on a $\ln(a) + 2\ln(e) < \ln(4)$ d'où $\ln(a) + 2 < 2\ln(2)$. On en déduit que dans ce cas $h_a(2/a) > 0$.

- h_a est continue sur]0; 2/a[et sur $]2/a; +\infty[$ (car dérivable)
- h_a est strictement monotone sur ces deux intervalles.
- $0 \in \lim_{x \to 0} h_a(x); h_a(2/a)[\text{ et } 0 \in \lim_{x \to +\infty} h_a(x); h_a(2/a)[$

donc d'après le corollaire du théorème des valeurs intermédiaires appliqué à ces deux intervalles il existe exactement deux valeurs de x dans $]0; +\infty[$ pour lesquelles $h_a(x) = 0$, l'une entre 0 et $\frac{2}{a}$ et l'autre entre $\frac{2}{a}$ et $+\infty$.

(c) Si $0 < a < \frac{4}{e^2}$ on a déjà montré que (F_a) avait exactement deux solutions.

Si
$$a = \frac{4}{e^2}$$
, alors (F_a) admet pour unique solution $x = \frac{2}{a}$

Si $a > \frac{4}{e^2}$, alors pour tout $x \in]0; +\infty[$, $h_a(x) < 0$ donc (F_a) n'admet aucune solution.

3. Soient a et b deux réels tels que 0 < a < b et $x \in]0; +\infty[$

Alors:
$$0 > -ax > -bx$$

donc:
$$1 > e^{-ax} > e^{-bx} > 0$$

donc:
$$-1 < -e^{-ax} < -e^{-bx} < 0$$

donc:
$$\frac{1}{x} - 1 < \frac{1}{x} - e^{-ax} < \frac{1}{x} - e^{-bx} < \frac{1}{x}$$

donc:
$$-1 < -e^{-ax} < -e^{-bx} < 0$$

donc: $\frac{1}{x} - 1 < \frac{1}{x} - e^{-ax} < \frac{1}{x} - e^{-bx} < \frac{1}{x}$
d'où: $\boxed{\frac{1}{x} - 1 < f_a(x) < f_b(x) < \frac{1}{x}}$

4. (a)
$$\lim_{x\to 0} \frac{1}{x} = +\infty$$
 et $\lim_{x\to 0} e^{-ax} = e^0 = 1$ donc par somme $\lim_{x\to 0} f_a(x) = +\infty$.

4. (a)
$$\lim_{x\to 0} \frac{1}{x} = +\infty$$
 et $\lim_{x\to 0} e^{-ax} = e^0 = 1$ donc par somme $\lim_{x\to 0} f_a(x) = +\infty$.
(b) $\lim_{x\to +\infty} -ax = -\infty$ et $\lim_{X\to -\infty} e^X = 0$ donc $\lim_{x\to +\infty} e^{-ax} = 0$ et par somme $\lim_{x\to +\infty} f_a(x) = 0$.

5. (a) Pour tout
$$x \in]0; +\infty[$$
 on a :

$$f_a(x) \ge 0 \Longleftrightarrow \frac{1}{x} \ge e^{-ax}$$

$$\iff -\ln(x) \ge -ax$$

$$\iff \frac{\ln x}{x} \le a \qquad \text{car } -x < 0$$

$$\iff a - g(x) \ge 0$$

donc $f_a(x)$ et g(x) ont le même signe pour tout réel x > 0.

(b) On distingue trois cas:

• Cas où $0 < a < \frac{1}{\mathrm{e}}$: l'équation g(x) = a admet exactement deux solutions : u(a) et v(a). Comme $a - g(x) \ge 0 \Longleftrightarrow g(x) \le a$, on en déduit le tableau suivant d'après le tableau de variations de g:

x	0		u(a)		v(a)		$+\infty$
a - g(x)		+	0	_	0	+	
$f_a(x)$		+	0	_	0	+	

• Cas où $a = \frac{1}{e}$: l'équation g(x) = a admet exactement une solution, donc a - g(x) est de signe constant et s'annule exactement une fois en x = e. On en déduit le tableau suivant :

x	0		e		$+\infty$
a-g(x)		+	0	+	
$f_a(x)$		+	0	+	

• Cas où $a > \frac{1}{e}$: l'équation g(x) = a n'admet aucune solution et a - g(x) > 0 pour tout réel x > 0 donc f_a est strictement positive sur $]0; +\infty[$.

6. (a) Dérivabilité de f_a :

- $x \mapsto -ax$ est dérivable sur $]0; +\infty$
- $x \mapsto e^x$ est dérivable sur \mathbb{R}
- Par composition $x \mapsto e^{-ax}$ est dérivable sur \mathbb{R} .
- $x \mapsto \frac{1}{x}$ est dérivable sur $]0; +\infty[$
- Par somme f_a est dérivable sur $]0; +\infty[$.

Pour tout $x \in]0; +\infty[$,

$$f_a'(x) = -\frac{1}{x^2} + a e^{-ax}$$

donc

$$f_a'(x) \ge 0 \Longleftrightarrow a \, \mathrm{e}^{-ax} \ge \frac{1}{x^2}$$

$$\iff \ln(a) - ax \ge -\ln(x^2) \qquad \text{car ln est strictement croissante}$$

$$\iff 2\ln(x) + \ln(a) - ax \ge 0$$

$$\iff h_a(x) \ge 0$$

donc $f'_a(x)$ est du même signe que $h_a(x)$ quel que soit $x \in]0; +\infty[$.

- (b) Distinguons deux cas:
 - Si $a \ge \frac{4}{e^2}$, alors $h_a(x) \le 0$ pour tout $x \in]0; +\infty[$ donc f_a est décroissante sur $]0; +\infty[$
 - Si $0 < a < \frac{4}{e^2}$, alors $h_a(x)$ est négative hors de l'intervalle]r(a); s(a)[et positive dans cet intervalle. On a donc :

x	0		r(a)		s(a)		$+\infty$
$f_a'(x)$		_	0	+	0	_	
f_a	$+\infty$	\	$f_a(r(a))$	~	$f_a(s(a))$		• 0

7. (a) Supposons que $0 < a < \frac{1}{e}$. u(a) et v(a) vérifient f(u(a)) = f(v(a)) = 0 d'après la question 5.b).

D'après le tableau de variation de f_a et sa limite en $+\infty$, $f_a(x)$ est strictement positive sur $]s(a); +\infty[$. Elle est strictement monotone sur]0; r(a)[et sur]r(a); s(a)[donc elle s'annule au plus une fois sur chacun de ces intervalles.

On en déduit que $u(a) \in]0; r(a)[$ et $v(a) \in]r(a); s(a)[$, donc que u(a) < r(a) < v(a) < s(a)[.

De plus, on a alors $f_a(r(a)) < f_a(u(a)) = 0$ donc $f_a(r(a))$ est le minimum de f_a sur $]0; +\infty[$.

(b) Allure du graphe:

8. (a) r(a) est solution de $h_a(x) = 0$ donc $2\ln(r(a)) + \ln(a) - ar(a) = 0$ d'où :

$$\ln(r(a)) = \frac{ar(a)}{2} - \frac{1}{2}\ln(a)$$
$$= \frac{ar(a)}{2} - \ln(\sqrt{a})$$

d'où en composant par exp:

$$r(a) = \frac{e^{ar(a)/2}}{\sqrt{a}}$$

(b) En multipliant par a dans l'égalité précédente on obtient :

$$ar(a) = \sqrt{a} e^{ar(a)/2}$$

D'après la question 2.b), $0 < r(a) < \frac{2}{a}$ donc 0 < ar(a)/2 < 1. Ainsi, $1 < e^{ar(a)/2} < e$, et finalement :

5

$$\sqrt{a} < \sqrt{a} e^{ar(a)/2} < e \sqrt{a}$$

Puisque $\lim_{a\to 0} \sqrt{a} = \lim_{a\to 0} \mathrm{e} \sqrt{a}$ on en déduit d'après le théorème des gendarmes que :

$$\lim_{a \to 0} ar(a) = \lim_{a \to 0} \sqrt{a} e^{ar(a)/2} = 0$$

On écrit ensuite $\sqrt{a}r(a)=\mathrm{e}^{ar(a)/2}$ et $\lim_{a\to 0}\mathrm{e}^{ar(a)/2}=\mathrm{e}^0=1$ par continuité de la fonction exponentielle.

Ainsi,
$$\lim_{a\to 0} \sqrt{ar(a)} = 1$$
.

(c) On a, pour tout $a \in]0; \frac{1}{e}[$,

$$m(a) = f_a(r(a))$$
$$= \frac{1}{r(a)} - e^{-ar(a)}$$

or $\lim_{a\to 0} \sqrt{a} r(a) = 1$ donc $\lim_{a\to 0} r(a) = +\infty$ et $\lim_{a\to 0} a r(a) = 0$ donc $\lim_{a\to 0} \mathrm{e}^{-a r(a)} = 1$, d'où par somme de limites :

$$\lim_{a \to 0} m(a) = -1$$

Partie II

- 1. (a) On doit d'abord tester chacun des n groupes, donc effectuer n tests. Pour chacun des X groupes positifs on effectue ℓ tests supplémentaires. Ainsi, $T = n + \ell X$.
 - (b) Pour tout $i \in [1, n]$, H_i est négatif si et seulement si tous les prélèvement du groupe i sont négatif. La probabilité que ℓ prélèvements indépendants soient tous négatifs est $(1-p)^{\ell}$ donc :

$$\boxed{\mathbb{P}(\text{``est de } H_i \text{ est n\'egatif'}) = (1-p)^{\ell}}$$

(c) X compte le nombre de groupes testés positivement, donc X compte le nombre de succès dans la répétition identique et indépendante d'une même expérience de succès « le groupe est positif », dont la probabilité de succès est $q = 1 - (1 - p)^{\ell}$ d'après la question précédente.

Ainsi,
$$X$$
 suit la loi binomiale de paramètres $(n, 1 - (1-p)^{\ell})$.

D'après le rappel,
$$E(X) = n(1 - (1 - p)^{\ell})$$

(d) Par linéarité de l'espérance,

$$E(T) = n + \ell E(X)$$

$$= n + n\ell (1 - (1 - p)^{\ell})$$

$$= \frac{N}{\ell} + N(1 - e^{\ell \ln(1 - p)})$$

$$= \frac{N}{\ell} + N(1 - e^{-a\ell})$$

$$= N\left(1 + \frac{1}{\ell} - e^{-a\ell}\right)$$

$$= N(1 + f_a(\ell))$$

2. Calculons:

$$f_a(3) = \frac{1}{3} - e^{-3a}$$
$$= \frac{1}{3} - e^{3\ln(1-p)}$$
$$= \frac{1}{3} - (1-p)^3$$

Or
$$1 - p > \frac{1}{\sqrt[3]{3}}$$
 donc $(1 - p)^3 > \frac{1}{3}$ donc $f_a(3) < 0$.

Pour $\ell = 3$, on aura donc $f_a(\ell) < 0$ donc E(T) < N d'après la question 1.d). Le nombre moyen de test effectué sera plus petit avec la méthode de poolage qu'avec la première méthode.

- 3. On a $1-p > \frac{1}{\sqrt[3]{3}}$ donc $\ln(1-p) > -\ln(3^{1/3}) = -\frac{\ln(3)}{3}$ et donc $a < \frac{\ln(3)}{3}$
- 4. (a) La suite $(f_a(n))_{n\in\mathbb{N}^*}$ est strictement négative en n=3, et strictement positive lorsque n>v(a). Ainsi le minimum de cette suite est atteint pour au moins une valeur de n comprise entre 1 et $\lfloor v(a) \rfloor$.

Supposons que ℓ est un entier vérifiant la propriété (MIN). D'après les variations de f, $(f_a(n))_{n \in \mathbb{N}^*}$ est décroissante pour $1 \le n \le \lfloor r(a) \rfloor$ et croissante pour $\lfloor r(a) \rfloor + 1 \le n \le \lfloor v(a) \rfloor$.

On en déduit que $\ell \ge \lfloor r(a) \rfloor$ et $\ell \le \lfloor r(a) \rfloor + 1$, d'où :

$$\ell = \lfloor r(a) \rfloor$$
 ou $\ell = \lfloor r(a) \rfloor + 1$

- (b) Puisqu'on a déjà $f_a(3) < 0$, on a nécessairement $f_a(\ell_0) \le f_a(3) < 0$. Comme $f_a(1) = 1 - e^{-a} > 0$, on a $\boxed{\ell_0 \ge 2}$.
- (c) Suivant l'indication de l'énoncé on pose $\varphi(a) = f_a(2) f_a(3)$. φ est définie et dérivable sur $]0; \frac{\ln(3)}{3}[$ et :

$$\forall a \in]0; \frac{\ln(3)}{3}[, \quad \varphi(a) = \frac{1}{6} - e^{-2a} + e^{-3a}$$

$$\forall a \in]0; \frac{1}{e}[, \quad \varphi'(a) = 2e^{-2a} - 3e^{-3a}$$

$$\varphi'(a) \ge 0 \Longleftrightarrow 2 e^{-2a} \ge 3 e^{-3a} \Longleftrightarrow e^a \ge \frac{3}{2} \Longleftrightarrow \frac{1}{1-p} \ge \frac{3}{2}.$$

Or $1 - p > \frac{1}{\sqrt[3]{3}}$ donc $\frac{1}{1 - p} < \sqrt[3]{3}$. Comparons $\frac{3}{2}$ et $\sqrt[3]{3}$:

$$\left(\frac{3}{2}\right)^3 = \frac{27}{8} > 3$$

donc

$$\frac{3}{2} > \sqrt[3]{3}$$

Ainsi on a $\varphi'(a) < 0$ pour tout $a \in]0; \frac{\ln(3)}{3}[$ donc φ est strictement décroissante sur cet intervalle. On a :

$$\varphi\left(\frac{\ln(3)}{3}\right) = \frac{1}{6} + e^{-\ln(3)} - e^{-2/3\ln(3)} = \frac{1}{2} - \frac{1}{3^{2/3}}$$

 $\left(\frac{1}{2}\right)^3 = \frac{1}{8} \text{ tandis que } \left(\frac{1}{3^{2/3}}\right)^3 = \frac{1}{3^2} = \frac{1}{9}, \text{ d'où } \frac{1}{3^{2/3}} < \frac{1}{2}. \text{ Ainsi, } \varphi\left(\frac{\ln(3)}{3}\right) > 0 \text{ donc } \varphi \text{ est strictement positive sur }]0; \frac{\ln(3)}{3}[. \text{ On en conclut finalement que } \boxed{f_a(3) < f_a(2) \text{ d'où } \ell_0 \geq 3.}$