Informations Visualisierung SoSe 19

Benedikt Lüken-Winkels

April 25, 2019

Contents

1	1. L	.ecture	
	1.1	Orga	
		Visualisation-Basics	
2		ecture	
	2.1	Diagrams	
	2.2	Metaphors and Symbols	
	2.3	Symbols	
		Infographics	
3	3. Lecture		
	3.1	Visual Memory	
		Visula Information Processing	
		Color Perception	
		Motion recognition	

1 1. Lecture

1.1 Orga

- Website: st.uni-trier.de/lectures/S19/IV/
- Tutorial: TBD (beginning: 22.-26.04.)
- Final exam: Do, 11.07. (elfths of July) 12-14 (H12)

1.2 Visualisation-Basics

- Combine different kinds of information in one graphic (geographical, temporal, historical, numeric, etc.)
- Sharing and visualising abstract data, without physical representation
- Visualisation is not:
 - scientific visualisation (non-abstract data)
 - computer graphics
 - graphic design

• Example Treemap

- representation of a hierarchy of a filesystem
- no border used for a square (compression)
- light effect shows curvature, indicating where the squares/areas end
- \Rightarrow only 4 pixels needed instead of 9
- Several drawbacks (alternative: tree view)

Abstract Data

- Text, table
- Hierarchy
- Composed data (Multivariate data): Example Napoleon (Slide 1)
- Time series: multivariate data with time as a dimension

Definition: Visualisation comprehend and extract data, visualisation produced automatically (not manually by humans)

Visualisation process

- graphical user interface
- interaction to create and manipulate the visualisation (Visual steering)

2 2. Lecture

2.1 Diagrams

Pie charts

- applicable to part-whole relation
- Several issues
 - hard to compare values
 - hard to compare different pie charts

Other Diagrams

- Timelines
- Sparklines: Reduction to show trend and the change of values over time

2.2 Metaphors and Symbols

Make constructs/concepts more accessible/imaginable

2.3 Symbols

highly simplified representation of objects and acitvities

Isotype Present quantity/value by number of pictograms

2.4 Infographics

- Eyecatcher to get people interested in the presented data
- Contain few text
- Self-explanatory
- Should tell a **story** \Rightarrow express an opinion

3 3. Lecture

3.1 Visual Memory

- The brain fills empty gaps
- Distraction by environment (contrast/structure)
- \Rightarrow visual perception is selective

3.2 Visula Information Processing

- 3 Phases of processing
 - 1. Simple patterns and colors are recognized
 - 2. Action system: reflexes
 - 3. Visual working meomry/visual query

Human Eye

Usage of the properties of visual perception (Anticipation, pattern recognition)

• Eye Tracking (works by measuring the reflection form the eye's curvature)

3.3 Color Perception

3-Color-Theory

• Each color consists of rgb

Opponent-Color-Theory

- After image effect: color-receptors are getting exhausted, so white cannot be 'produced'
- three chemical processes with two opponent colors each
- Color is perceived by the difference between the opponent colors
- \Rightarrow Color and brightness are relative

Design Recommendations

- Emphasize with color
- differences brightness
- coding of categories: max 6 to 12 different colors
- Color scales should vary in color and brighntess
- Color perception depends on culture

Preattentive vision

- detect patterns before an eye movement
- Motion is preattentive
- \Rightarrow Use preattentive patterns to encode information (spot an outlier)

Pattern Recognition

- ullet Edge detection
- Simple patterns (detect small distortions)
- Complex patterns
- Object recognition (compare observation with learned patterns to recognise an object)

3.4 Motion recognition

Different elements perform similar motions

- Recognize patterns to identify object
- Recognize change after each frame