Konstruktives Projekt 4

Verfasser:

Jennifer Wozniak
Matrikelnummer: 10004257
Schaufelder Straße 33A
30167 Hannover

Studiengang:

B.Sc. Maschinenbau

Eingereicht am: 11. April 2018

Inhaltsverzeichnis

1	Anf	orderungsliste	1
2	Vora	auslegung	2
	2.1	Übersetzungen und Drehzahlen \hdots	2
	2.2	Torsionsmomente & Mindestdurchmesser $\dots \dots \dots \dots \dots$	4
	2.3	Zahnräder	11
		2.3.1 Stirnräder	11
		2.3.2 Planetengetriebe	13
		2.3.3 Kegelräder	14
	2.4	Endgültige Abmaße	16
	2.5	Auslegung der Kupplung	18
3	Ber	echnung der Schnittkräfte	21
	3.1	Berechnung der auf die Zahnräder wirkenden Kräfte	21
	3.2	Berechnung der Lagerreaktionen	23
	3.3	Berechnung der Schnittkraftverläufe	24
	3.4	Resultierende Momente	28
4	Dau	ierfestigkeitsberechnung für Welle I	29
	4.1	Werkstoffkennwerte	29
	4.2	Passfedernutberechnung	29
	4.3	Freistichberechnung	34
5	Lag	erlebensdauerberechnung	40
	5.1	Berechnung der Lagerkräfte im Gang 1	40
	5.2	Berechnung der äquivalenten dynamischen Lagerbelastung	42
	5.3	Bestimmung der Lastkollektive und der Lebensdauer	46
6	Sch	wachstellenberechnung	47
	6.1	Berechnung Welle-Nabe-Verbindungen	47
	6.2	Berechnung der Schraubenverbindungen	50
		6.2.1 Verschraubung Lagerdeckel	50
		6.2.2 Verschraubung Kupplung	55
7	Pass	sungsberechnung	61
8	Que	ellen	67

A Anhang 68

1 Anforderungsliste

		L											
	Anforderungsliste Drehmaschine					KPIII 2017/18					Jenr	Bearbeiter: Jennifer Wozniak, 10004257	57
Ŀ					Wert		1		Erstellung	Pu	L	Modifikation	
ż	Anrorderungen	ALL	variable	- Tolerant	exakt	+ Tolerant	EINNEIL	EINNEIL Queile/Initiator	Verantwortung Datum	Datum	Was	Wer	Wann
1	Geometrie								Jennifer Wozniak 25.09.17	25.09.17			
1.1	Achsabstand 1	ш	a ₁	175	200	225	mm	IMKT	1			1	
1.2	Achsabstand 2	ш	a ₂	142,5	150	157,5	mm	IMKT	1			:	1
2	Norm-/Zukaufteile								Jennifer Wozniak 25.09.17	25.09.17			
2.1	Stirnräder	ш	,	-	geradverzahnt	:	1	IMKT	1	-		1	1
2.2	Trapezgewinde Werkzeugschlitten	ш	1	1	Tr 20x4	:	1	IMKT	1			1	
2.3	Überlastkupplung	ш	-	-	ja		1	IMKT	-				-
3	Technische Voraussetzungen								Jennifer Wozniak 25.09.17	25.09.17			
3.1	Rotierendes Spannfutter	ш	,		eine Drehzahl	:	1	IMKT	1			:	1
3.2	Werkzeugschlitten Vorwärtsbewegung	F	-		zwei		-	ושונו					
3.3	Werkzeugschlitten Rückwärtsbewegung	ш	,	1	eine	:	1	IMKT	ı			1	1
3.4	Zul. Torsionsspannung	ш	T _{red}	1	44,00	:	N/mm ²	IMKT	1	:		:	1
3.5	Nennlastwert Zahnräder	F	B	1	4,00	-	N/mm ²	IMKT	ı		-		1
3.6	Geforderte Wälzlagerlebensdauer	ч	L _{10h}	-	10000,00		£	IMKT					-
3.7	Reibwert Gewinde	ь	п		0,20			IMKT					
4	Technische Daten								Jennifer Wozniak 25.09.17	25.09.17			
4.1	Vorschub Gang 1	Ł	f		0,15		n/ww	ושונו					
4.2	Vorschub Gang 2	ч	f ₂	-	0,45		n/ww	IMKT					-
4.3	Vorschub Gang R	F	f,		0,5		n/ww	ושונו					
4.4	Schnittgeschwindigkeit	ч	'n		46,00		m/min	IMKT					
4.5	Übersetzung Schneckenstufe	ч	10,11		10,00		m/min	IMKT					
4.6	Antriebsdrehzahl	ш	n		1200,00		1/min	IMKT					-
2	sonstiges								Jennifer Wozniak 25.09.17	25.09.17			
5.1	Stückzahl	ч			Kleinserie			IMKT					
5.2	Gehäuse	ч	9		Guss			IMKT					
5.3	Schmierung	Ь			Fett			IMKT					
Beme	semerkung:												
Bestätigt:	tigt:										Datun	Datum: 25.09.17	

2 Vorauslegung

2.1 Übersetzungen und Drehzahlen

Festlegen der Gänge:

Gang 1: Z1/Z2 und Z6/Z7

Gang 2: Z1/Z2 und Z4/Z5

Gang 3: Z1/Z3 und Z6/Z7

Gang 2: Z1/Z3 und Z4/Z5

Gegeben:

$$v_{c,1}=20\frac{\rm m}{\rm min}$$
, $v_{c,2}=40\frac{\rm m}{\rm min}$, $v_{c,3}=80\frac{\rm m}{\rm min}$, $v_{c,4}=160\frac{\rm m}{\rm min}$
$$D_{WZ,U}=120{\rm mm};\ D_{WZ,S}=120{\rm mm}$$

$$n_{an}=n_{\rm I}=1200\frac{1}{\rm min}$$

$$i_{1,2} = i_{1,3} = -3$$

Planetengetriebe: $i_0 = -3$

$$n_{10} = 0$$

Berechnungen:

Verwendete Formeln aus den Skripten KL ${\rm II^1~S.~34}$ und KL ${\rm III^2~S.~2}$ Mithilfe der Schnittgeschwindigkeiten werden die Abtriebsdrehzahlen der einzelnen Gänge bestimmt. Anschließend können dann die fehlenden Übersetzungen ermittelt werden.

 $^{^{1}}$ Vgl. [Den17]

²Vgl. [Pol17a]

• Gang 1:

$$\begin{split} n_{\mathrm{II},1} &= \frac{n_{an}}{i_{1,2}} = 400 \frac{1}{\mathrm{min}} \\ \text{Formel nach Willis: } n_9 &= \frac{n_8 - i_0 \cdot n_{10}}{1 - i_0} \\ n_{9,1} &= n_{\mathrm{III},1} = \frac{n_{8,1}}{1 - i_0} = \frac{400 \frac{1}{\mathrm{min}}}{1 - (-3)} = 100 \frac{1}{\mathrm{min}} \\ n_{\mathrm{IV},1} &= n_{ab,1} = \frac{v_{c,1}}{\pi \cdot D_{WZ}} = 53,05 \frac{1}{\mathrm{min}} \\ &\implies i_{6,7} = \frac{n_{\mathrm{III},1}}{n_{\mathrm{IV},1}} = -1,89 \end{split}$$

• Gang 2:

$$\begin{split} n_{\text{II},2} &= \frac{n_{an}}{i_{1,2}} = 400 \frac{1}{\text{min}} \\ n_{\text{IV},2} &= n_{ab,2} = \frac{v_{c,2}}{\pi \cdot D_{WZ}} = 106, 1 \frac{1}{\text{min}} \\ &\implies i_{4,5} = \frac{n_{\text{III},2}}{n_{\text{IV},2}} = 3,77 \end{split}$$

• Gang 3:

$$n_{\rm III,3} = \frac{n_{an}}{i_{1,3}} = 400 \frac{1}{\rm min}$$

$$n_{\rm IV,3} = \frac{n_{\rm III,3}}{i_{6.7}} = 212, 2 \frac{1}{\rm min}$$

Überprüfung der Abtriebsdrehzahl: $n_{\rm IV,3}=n_{ab,3}=\frac{v_{c,3}}{\pi\cdot D_{WZ}}=212,2\frac{1}{\rm min}$

• Gang 4:

$$n_{\text{III},4} = n_{9,4} = \frac{n_{an}}{i_{1,3}} = 400 \frac{1}{\text{min}}$$
Formel nach Willis: $n_8 = i_0 \cdot n_{10} + n_9 \cdot (1 - i_0)$

$$n_{8,4} = n_{\text{II},4} = n_{9,4} \cdot (1 - i_0) = 400 \frac{1}{\text{min}} \cdot (1 - (-3)) = 1600 \frac{1}{\text{min}}$$

$$n_{\text{IV},4} = \frac{n_{\text{II},4}}{i_{4,5}} = 424, 4 \frac{1}{\text{min}}$$

Überprüfung der Abtriebsdreh
zahl: $n_{{\rm IV},4}=n_{ab,4}=\frac{v_{c,4}}{\pi\cdot D_{WZ}}=424,4\frac{1}{\rm min}$

2.2 Torsionsmomente & Mindestdurchmesser

Um die wirkenden Torsionsmomente zu bestimmen, wird zunächst die benötigte Schnittleistung für das Umfangs- sowie das Stirnfräsen berechnet. Die verwendeten Formeln stammen aus dem Aufgabenblatt, welches vom IMKT ausgehändigt wurde.

Schnittleistung:

• Umfangsfräsen:

gegeben:

$$D_{WZ,U} = 120 \text{ mm}, \ a_e = 52 \text{ mm} \implies u_U = \frac{D_{WZ,U}}{2} - a_e = 8 \text{ mm}$$

$$z = 12 \ , \ a_p = b = 2 \text{ mm}, \ \kappa = 90^\circ$$

$$f_{z,1} = 0.06 \text{ mm}, \ f_{z,2} = 0.09 \text{ mm}, \ f_{z,3} = 0.12 \text{ mm}, \ f_{z,4} = 0.15 \text{ mm}$$

$$\mathbf{Rechnung:}$$

$$\varphi_s = \arccos\left(1 - \frac{2 \cdot (u_U + a_e)}{D_{WZ,U}}\right) - \arccos\left(1 - \frac{2 \cdot u_U}{D_{WZ,U}}\right) = 60,07^\circ$$

$$z_{iE} = \text{RUNDEN}\left(\frac{\varphi \cdot z}{360^\circ}\right) = 2$$

$$h_m = \frac{114,6^\circ}{\varphi_s} \cdot f_z \cdot \frac{a_e}{D_{WZ,U}} \cdot \sin(\kappa)$$

$$h_{m,1} = \frac{114,6^\circ}{60,07^\circ} \cdot 0.06 \text{ mm} \cdot \frac{52 \text{ mm}}{120 \text{ mm}} \cdot \sin(90^\circ) = 0.05 \text{ mm}$$

$$h_{m,2} = 0.074 \text{ mm}$$

$$h_{m,3} = 0.099 \text{ mm}$$

$$h_{m,4} = 0.12 \text{ mm}$$

$$F_{cz} = b \cdot h_m^{1-z} \cdot k_{c1.1} \cdot K_{V,c}$$

$$F_{cz,1} = 2 \text{ mm} \cdot 0.05 \text{ mm}^{0.7} \cdot 2500 \frac{N}{\text{mm}^2} \cdot 1.7 = 926,1 \text{ N}$$

$$F_{cz,2} = 1237,8 \text{ N}$$

$$F_{cz,3} = 1535, 3 \text{ N}$$

$$F_{cz,4} = 1770, 2 \text{ N}$$

$$\implies P_c = z_{iE} \cdot v_c \cdot F_{cz}$$

$$P_{c,1} = 2 \cdot 0,34 \frac{\text{m}}{\text{s}} \cdot 926,1 \text{ N} = 629,75 \text{ W}$$

$$P_{c,2} = 1658, 7 \text{ W}$$

$$P_{c,3} = 4114, 6 \text{ W}$$

$$P_{c,4} = 9452,87 \text{ W}$$

• Stirnfräsen:

gegeben:

$$D_{WZ,S} = 120 \text{ mm}, \ a_e = 120 \text{ mm} \implies u_S = \frac{D_{WZ,S}}{2} - a_e = 0 \text{ mm}$$

 $z = 6$, $a_p = b = 2 \text{ mm}, \ \kappa = 90^{\circ}$
 $f_{z,1} = 0,06 \text{ mm}, \ f_{z,2} = 0,09 \text{ mm}, \ f_{z,3} = 0,12 \text{ mm}, \ f_{z,4} = 0,15 \text{ mm}$

Rechnung:

$$\varphi_s = \arccos\left(1 - \frac{2 \cdot (u_S + a_e)}{D_{WZ,S}}\right) - \arccos\left(1 - \frac{2 \cdot u_S}{D_{WZ,S}}\right) = 180^{\circ}$$

$$z_{iE} = \text{RUNDEN}\left(\frac{\varphi \cdot z}{360^{\circ}}\right) = 3$$

$$h_m = \frac{114,6^{\circ}}{\varphi_s} \cdot f_z \cdot \frac{a_e}{D_{WZ,S}} \cdot \sin(\kappa)$$

$$h_{m,1} = \frac{114,6^{\circ}}{180^{\circ}} \cdot 0,06 \text{ mm} \cdot \frac{120 \text{ mm}}{120 \text{ mm}} \cdot \sin(90^{\circ}) = 0,038 \text{ mm}$$

$$h_{m,2} = 0,057 \text{ mm}$$

$$h_{m,3} = 0,0764 \text{ mm}$$

$$h_{m,4} = 0,0955 \text{ mm}$$

$$F_{cz} = b \cdot h_m^{1-z} \cdot k_{c1.1} \cdot K_{V,c}$$

$$F_{cz,1} = 2 \text{ mm } \cdot 0,038 \text{ mm}^{0,7} \cdot 2500 \frac{\text{N}}{\text{mm}^2} \cdot 1,7 = 755,9 \text{ N}$$

$$F_{cz,2} = 1020, 39 \text{ N}$$

$$F_{cz,3} = 1267,38 \text{ N}$$

$$F_{cz,4} = 1494, 93 \text{ N}$$

$$\implies P_c = z_{iE} \cdot v_c \cdot F_{cz}$$

$$P_{c,1} = 3 \cdot 0,34 \frac{\text{m}}{\text{s}} \cdot 755,9 \text{ N} = 771,02 \text{ W}$$

$$P_{c,2} = 2050, 98 \text{ W}$$

$$P_{c,3} = 5094,87 \text{ W}$$

$$P_{c,4} = 11974, 39 \text{ W}$$

Torsionsmomente:

Die verwendete Formel zur Berechnung der Torsionsmomente stammt aus dem Skript zur Konstruktionslehre III³ Seite 2.

$$T = \frac{P}{2\pi \cdot n}$$

³Vgl. [Pol17a]

• Umfangsfräsen:

Gang 1:

$$T_{\text{II},1,U} = \frac{P_{c,1,U}}{2\pi \cdot n_{an}} = \frac{629,75 \text{ W}}{2\pi \cdot 1200 \frac{1}{\text{min}}} = 5 \text{ Nm}$$

$$T_{\text{II},1,U} = \frac{P_{c,1,U}}{2\pi \cdot n_{\text{II},1}} = \frac{629,75 \text{ W}}{2\pi \cdot 400 \frac{1}{\text{min}}} = 15 \text{ Nm}$$

$$T_{\text{III},1,U} = \frac{P_{c,1,U}}{2\pi \cdot n_{\text{III},1}} = \frac{629,75 \text{ W}}{2\pi \cdot 100 \frac{1}{\text{min}}} = 60,14 \text{ Nm}$$

$$T_{\text{IV},1,U} = \frac{P_{c,1,U}}{2\pi \cdot n_{\text{IV},1}} = \frac{629,75 \text{ W}}{2\pi \cdot 53,05 \frac{1}{\text{min}}} = 112,36 \text{ Nm}$$

Gang 2:

$$T_{\text{I},2,U} = \frac{P_{c,2,U}}{2\pi \cdot n_{an}} = \frac{1658,7 \text{ W}}{2\pi \cdot 1200 \frac{1}{\text{min}}} = 13,2 \text{ Nm}$$

$$T_{\text{II},2,U} = \frac{P_{c,2,U}}{2\pi \cdot n_{\text{II},2}} = 39,6 \text{ Nm}$$

$$T_{\text{IV},2,U} = \frac{P_{c,2,U}}{2\pi \cdot n_{\text{IV},2}} = 149,29 \text{ Nm}$$

Gang 3:

$$\begin{split} T_{\mathrm{I},3,U} &= \frac{P_{c,3,U}}{2\pi \cdot n_{an}} = \frac{4114,6 \text{ W}}{2\pi \cdot 1200 \frac{1}{\mathrm{min}}} = 32,74 \text{ Nm} \\ T_{\mathrm{III},3,U} &= \frac{P_{c,3,U}}{2\pi \cdot n_{\mathrm{III},3}} = 98,23 \text{ Nm} \\ T_{\mathrm{IV},3,U} &= \frac{P_{c,3,U}}{2\pi \cdot n_{\mathrm{IV},3}} = 185,16 \text{ Nm} \end{split}$$

Gang 4:

$$\begin{split} T_{\mathrm{I},4,U} &= \frac{P_{c,4,U}}{2\pi \cdot n_{an}} = \frac{9452,87 \text{ W}}{2\pi \cdot 1200 \frac{1}{\mathrm{min}}} = 75,22 \text{ Nm} \\ T_{\mathrm{II},4,U} &= \frac{P_{c,4,U}}{2\pi \cdot n_{\mathrm{II},4}} = 56,42 \text{ Nm} \\ T_{\mathrm{III},4,U} &= \frac{P_{c,4,U}}{2\pi \cdot n_{\mathrm{III},4}} = 225,67 \text{ Nm} \\ T_{\mathrm{IV},4,U} &= \frac{P_{c,4,U}}{2\pi \cdot n_{\mathrm{IV},4}} = 212,35 \text{ Nm} \end{split}$$

• Stirnfräsen:

$$\begin{split} T_{\mathrm{II},1,S} &= \frac{P_{c,1,S}}{2\pi \cdot n_{an}} = \frac{771,02 \text{ W}}{2\pi \cdot 1200 \frac{1}{\mathrm{min}}} = 6,12 \text{ Nm} \\ T_{\mathrm{II},1,S} &= \frac{P_{c,1,S}}{2\pi \cdot n_{\mathrm{II},1}} = \frac{771,02 \text{ W}}{2\pi \cdot 400 \frac{1}{\mathrm{min}}} = 18,4 \text{ Nm} \\ T_{\mathrm{III},1,S} &= \frac{P_{c,1,S}}{2\pi \cdot n_{\mathrm{III},1}} = \frac{771,02 \text{ W}}{2\pi \cdot 100 \frac{1}{\mathrm{min}}} = 73,63 \text{ Nm} \\ T_{\mathrm{IV},1,S} &= \frac{P_{c,1,S}}{2\pi \cdot n_{\mathrm{IV},1}} = \frac{771,02 \text{ W}}{2\pi \cdot 53,05 \frac{1}{\mathrm{min}}} = 138,79 \text{ Nm} \end{split}$$

Gang 2:

$$\begin{split} T_{\mathrm{I},2,S} &= \frac{P_{c,2,S}}{2\pi \cdot n_{an}} = \frac{2050,98 \text{ W}}{2\pi \cdot 1200 \frac{1}{\mathrm{min}}} = 16,32 \text{ Nm} \\ T_{\mathrm{II},2,S} &= \frac{P_{c,2,S}}{2\pi \cdot n_{\mathrm{II},2}} = 48,96 \text{ Nm} \\ T_{\mathrm{IV},2,S} &= \frac{P_{c,2,S}}{2\pi \cdot n_{\mathrm{IV},2}} = 184,59 \text{ Nm} \end{split}$$

Gang 3:

$$\begin{split} T_{\mathrm{I},3,S} &= \frac{P_{c,3,S}}{2\pi \cdot n_{an}} = \frac{5094,87 \text{ W}}{2\pi \cdot 1200 \frac{1}{\mathrm{min}}} = 40,54 \text{ Nm} \\ T_{\mathrm{III},3,S} &= \frac{P_{c,3,S}}{2\pi \cdot n_{\mathrm{III},3}} = 121,63 \text{ Nm} \\ T_{\mathrm{IV},3,S} &= \frac{P_{c,3,S}}{2\pi \cdot n_{\mathrm{IV},3}} = 229,28 \text{ Nm} \end{split}$$

Gang 4:

$$\begin{split} T_{\mathrm{I},4,S} &= \frac{P_{c,4,S}}{2\pi \cdot n_{an}} = \frac{11974,39 \text{ W}}{2\pi \cdot 1200 \frac{1}{\mathrm{min}}} = 95,29 \text{ Nm} \\ T_{\mathrm{II},4,S} &= \frac{P_{c,4,S}}{2\pi \cdot n_{\mathrm{II},4}} = 71,47 \text{ Nm} \\ T_{\mathrm{III},4,S} &= \frac{P_{c,4,S}}{2\pi \cdot n_{\mathrm{III},4}} = 285,87 \text{ Nm} \\ T_{\mathrm{IV},4,S} &= \frac{P_{c,4,S}}{2\pi \cdot n_{\mathrm{IV},4}} = 268,99 \text{ Nm} \end{split}$$

Auf jeden Welle wirken im vierten Gang beim Stirnfräsen die höchsten Torsionsmomente. Im Folgenden wird das Getriebe deshalb auf Basis dieser Momente ausgelegt.

Mindestdurchmesser:

Mithilfe der berechneten Torsionsmomente kann nun auf die Mindestdurchmesser der jeweiligen Wellen geschlossen werden. Die verwendeten Formeln stammen aus dem Skript zur Konstruktionslehre III⁴ Seiten 150 - 153 und dem Roloff/Matek⁵ Seite 391

$$\begin{split} &\tau_t = \frac{M}{W_p} \implies W_p = \frac{M}{\tau_{zul}} \text{ mit } W_p = \frac{\pi \cdot d^3}{16} \\ &\tau_{zul} = 44 \frac{N}{mm^2} \text{ (Einsatzstahl) }, S = 2 \\ &d \geq \sqrt[3]{\frac{T \cdot S}{\tau_{zul}} \cdot \frac{16}{\pi}} \\ &d_I \geq \sqrt[3]{\frac{95290 \text{ Nmm} \cdot 2}{44 \frac{N}{mm^2}} \cdot \frac{16}{\pi}} = 28,05 \text{ mm} \implies d_I = 29 \text{ mm} \\ &d_{II} \geq \sqrt[3]{\frac{71470 \text{ Nmm} \cdot 2}{44 \frac{N}{mm^2}} \cdot \frac{16}{\pi}} = 25,48 \text{ mm} \implies d_{II} = 26 \text{ mm} \\ &d_{IV} \geq \sqrt[3]{\frac{268990 \text{ Nmm} \cdot 2}{44 \frac{N}{mm^2}} \cdot \frac{16}{\pi}} = 39,64 \text{ mm} \implies d_{IV} = 40 \text{ mm} \end{split}$$

Hohlwelle:

$$d_{a,\text{III}} \geq \sqrt[3]{\frac{16 \cdot T_{\text{III}}}{\pi \cdot (1 - k^4) \cdot \tau_{zul}}} = \sqrt[3]{\frac{16 \cdot 285870}{\pi \cdot (1 - 0, 8^4) \cdot 44 \frac{\text{N}}{\text{mm}^2}}} = 48,22 \text{ mm} \implies d_{a,\text{III}} = 49 \text{ mm}$$

$$d_{i,\text{III}} \leq k \cdot d_{a,\text{III}} = 0,8 \cdot 49 \text{ mm} = 39,2 \text{ mm} \implies d_{i,\text{III}} = 39 \text{ mm}$$

⁴Vgl. [Pol17a]

⁵Vgl. [WJV15]

2.3 Zahnräder

2.3.1 Stirnräder

verwendete Formeln:

Formeln aus dem Skript zur Konstruktionslehre III^6 Seiten 150 - 153:

$$b \cdot d^2 \ge \frac{2 \cdot M}{B_{zul}}$$

$$\frac{b}{d} = (0, 1...0, 5) + \frac{i}{20}$$

$$d \ge \sqrt[3]{\frac{2 \cdot M}{(\frac{b}{d}) \cdot 4\frac{N}{mm^2}}}$$

Formeln aus Roloff/Matek⁷ Seite 747:

$$d_a = m \cdot (z+2)$$

$$d_f = m \cdot (z - 2, 5)$$

⁶Vgl. [Pol17a] ⁷Vgl. [WJV15]

Breiten-/ Durchmesserverhältnisse:

• $Z_1/Z_2/Z_3$:

$$\begin{pmatrix} \frac{b}{d} \end{pmatrix}_{1,2} = (0, 1...0, 5) + \frac{i_{1,2}}{20} \text{ mit } i_{1,2} = i_{1,3} = 3$$

$$\begin{pmatrix} \frac{b}{d} \end{pmatrix}_{1,2} = \begin{pmatrix} \frac{b}{d} \end{pmatrix}_{1,3} = (0, 25...0, 65)$$

$$d_1 \geq \sqrt[3]{\frac{2 \cdot 95290 \text{ Nmm}}{(0, 25...0, 65) \cdot 4 \frac{N}{mm^2}}} = (41, 85...57, 55) \text{ mm}$$

$$d_2 \geq \sqrt[3]{\frac{2 \cdot 71470 \text{ Nmm}}{(0, 25...0, 65) \cdot 4 \frac{N}{mm^2}}} = (38, 02...52, 29) \text{ mm}$$

$$d_3 \geq \sqrt[3]{\frac{2 \cdot 285870 \text{ Nmm}}{(0, 25...0, 65) \cdot 4 \frac{N}{mm^2}}} = (60, 36...83) \text{ mm}$$

$$b_1 = \begin{pmatrix} \frac{b}{d} \end{pmatrix}_{1,2} \cdot d_1 = (10, 46...37, 4) \text{ mm}$$

$$b_2 = \begin{pmatrix} \frac{b}{d} \end{pmatrix}_{1,2} \cdot d_2 = (9, 5...33, 99) \text{ mm}$$

$$b_3 = \begin{pmatrix} \frac{b}{d} \end{pmatrix}_{1,3} \cdot d_3 = (15, 09...53, 95) \text{ mm}$$

• Z_4/Z_4 :

• Z_6/Z_7 :

2.3.2 Planetengetriebe

Um das Planetengetriebe auszulegen, werden zunächst die Einzelübersetzungen ermittelt (siehe Roloff/Matek⁸ Seite 884). Anschließend wird der Mindestdurchmesser des Sonnenrades (Z8) bestimmt. Damit lassen sich dann durch Übersetzungsverhältnisse die Durch-

⁸Vgl. [WJV15]

messer der Planetenräder bestimmen.

$$\begin{split} i_{8,9} &= 1 - i_0 = 4 \\ i_{9,8} &= \frac{1}{1 - i_0} = 0, 25 \\ \left(\frac{b}{d}\right)_{9,8} &= (0, 1...0, 5) + \frac{0, 25}{20} = (0, 11...0, 51) \end{split}$$

Sonnenrad:

$$d_8 \ge \sqrt[3]{\frac{2 \cdot 71470 \text{ Nmm}}{(0, 11...0, 51) \cdot 4\frac{\text{N}}{\text{mm}^2}}} = (41, 23...68, 74) \text{ mm}$$

$$b_8 = \left(\frac{b}{d}\right)_{9,8} \cdot d_8 = (4, 54...35, 1) \text{ mm}$$

wähle: $d_8 = 70 \text{ mm}, b_8 = 35 \text{ mm}$

Planetenräder:

$$d_9 = \frac{i_{8,9} \cdot d_8}{2} - d_8 = 70 \text{ mm}$$

Hohlrad:

$$d_{10} = d_8 + 2 \cdot d_9 = 210 \text{ mm}$$

wähle $b_9 = b_{10} = 30 \text{ mm}$

2.3.3 Kegelräder

Die Abmaße der Kegelräder werden mit den Formeln aus Roloff/Matek⁹ Seite 794 bis 797 ermittelt. Dabei werden zunächst Richtwerte ermittelt, auf deren Basis dann die endgültigen Abmaße bestimmt werden.

Achsenwinkel
$$\sum=\delta_{11}+\delta_{12}=90^\circ$$

$$\delta_{11}=\delta_{12}=45^\circ \ , \ da \ die \ \ddot{U}bersetzung \ i_{11,12}=1$$

Nach Tabelle 22-1 aus Roloff/Matek Tabellenbuch¹⁰: $z_{11} = z_{12} = 30$ mittlerer Modul:

⁹Vgl. [WJV15] ¹⁰Vgl. [Wit+15]

aus Roloff/Matek¹¹ Seite 802

$$m'_m \ge \frac{(2, 4...2, 6) \cdot d_{sh}}{z}$$

$$m'_m \ge \frac{(2, 4...2, 6) \cdot d_{IV}}{z_{11}} = \frac{(2, 4...2, 6) \cdot 40 \text{ mm}}{30} = (3, 2...3, 5) \text{mm}$$

Breitenverhältnis:

$$\frac{b}{d} = \frac{\left((0, 1...0, 5) + \frac{i}{10}\right) \cdot i}{\sqrt{i^2 + 1}} \text{ mit } i_{11,12} = 1$$

$$\frac{b}{d} = (0, 14...0, 42)$$

$$F_t \ge B_{zul} \cdot d \cdot b$$

$$T = \frac{d}{2} \cdot F_t$$

$$b \cdot d^2 \ge \frac{2 \cdot T}{B_{zul}}$$

$$\implies d^3 \ge \frac{2 \cdot T}{(0, 19...0, 51) \cdot B_{zul}} \text{ mit } T_{\text{IV}} = 268, 99 \text{ Nm und } B_{zul} = 4 \frac{\text{N}}{\text{mm}^2}$$

$$d_{11} \ge \sqrt[3]{\frac{2 \cdot 268990 \text{ Nmm}}{(0, 14...0, 42) \cdot 4 \frac{\text{N}}{\text{mm}^2}}} = (68, 42...98, 67) \text{ mm}$$

$$b_{11} = (68, 42 \cdot 0, 14...98, 67 \cdot 0, 42) \text{ mm} = (9, 58...41, 44) \text{ mm}$$

äußerer Teilkreisdurchmesser:

$$d_{e,min} = d_{m,min} + b_{min} \cdot \sin \delta_{11} = 68,42 \text{ mm} + 9,58 \text{ mm} \cdot \sin 45^{\circ} = 75,2 \text{ mm}$$

$$d_{e,max} = d_{m,max} + b_{max} \cdot \sin \delta_{11} = 98,67 \text{ mm} + 41,44 \text{ mm} \cdot \sin 45^{\circ} = 128 \text{ mm}$$

äußere Teilkegellänge:

$$R_{e,min} = \frac{d_{e,min}}{2 \cdot \sin \delta_{11}} = 53,17 \text{ mm}$$

$$R_{e,max} = \frac{d_{e,max}}{2 \cdot \sin \delta_{11}} = 90,5 \text{ mm}$$

äußerer Modul:

$$m_e = \frac{d_e}{z_{11}} = \frac{(75, 2...128)}{30} = (2, 5...4, 3) \text{ mm}$$

¹¹Vgl. [WJV15]

endgültige Abmaße:

$$b = 15 \text{ mm}$$

$$m_e = 4 \text{ mm}$$

$$d_{e,11} = d_{e,12} = z_{11} \cdot m_e = 30 \cdot 4 \text{ mm} = 120 \text{ mm}$$

$$R_e \ge 3 \cdot b = 45 \text{ mm}$$

$$R_e = \frac{d_{e,11}}{2 \cdot \sin \delta_{11}} = 84,85 \text{ mm}$$

• Zahnkopf-, Zahnfuß-, und Zahnhöhe:

$$h_{ae} = m_e = 4$$
 mm; $h_{fe} = 1,25 \cdot m_e = 5$ mm; $h_e = 2,25 \cdot m_e = 9$ mm

• äußerer Kopfkreisdurchmesser:

$$d_{ae,11} = m_e \cdot (z_{11} + 2 \cdot \cos \delta_{11}) = 125,66 \text{ mm}$$

$$d_{ae,12} = m_e \cdot (z_{12} + 2 \cdot \cos \delta_{12}) = 125,66 \text{ mm}$$

2.4 Endgültige Abmaße

Bei der Konstruktion haben sich aufgrund der vorgegebenen Achsabstände und anderen konstruktiven Gründen einige Änderungen in den endgültigen Abmaßen der Zahnräder verändert. Deshalb werden im Folgenden alle endgültigen Werte dargestellt.

Stirnräder:

$d_1 = 128 \text{ mm}$	$b_1 = 34 \text{ mm}$
$d_2 = 64 \text{ mm}$	$b_2 = 32 \text{ mm}$
$d_3=140,2~\mathrm{mm}$	$b_3 = 30 \text{ mm}$
$d_4 = 85 \text{ mm}$	$b_5=40~\mathrm{mm}$
$d_5=310,25~\mathrm{mm}$	$b_2 = 38 \text{ mm}$
$d_6 = 178 \text{ mm}$	$b_3 = 30 \text{ mm}$
$d_7=217,1~\mathrm{mm}$	$b_3 = 28 \text{ mm}$

Kegelräder:

siehe Formeln von Seite 9 bis 10

$$\begin{array}{l} \delta_8=36,13^\circ\ ,\ \delta_9=53,87^\circ\\ z_8=30\ ,\ z_9=41\\ d_8\geq (55,43...39,9)\ \mathrm{mm}\ \Longrightarrow\ \mathrm{w\"{a}hle}\ d_{e,8}=124\ \mathrm{mm}\\ b_8=(23,56...63,24)\ \mathrm{mm}\ \Longrightarrow\ \mathrm{w\"{a}hle}\ b_8=30\ \mathrm{mm}\\ m_e=4\ \mathrm{mm}\\ d_{e,9}=164\ \mathrm{mm}\\ R_e=105,15\ \mathrm{mm}\\ h_{ae}=4\ \mathrm{mm},\ h_{fe}=5\ \mathrm{mm},\ h_e=9\ \mathrm{mm}\\ d_{ae,8}=126,46\ \mathrm{mm},\ d_{ae,9}=168,72\ \mathrm{mm} \end{array}$$

Schneckenrad/ Schnecke:

$$d_{m,10} = 80 \text{ mm}$$
 $d_{11} = 320 \text{ mm}$ $b_{10} = 130 \text{ mm}$ $b_{11} = 57,6 \text{ mm}$ $z_{10} = 4$ $z_{11} = 40$ $m = 8 \text{ mm}$

Überprüfung der Gesamtübersetzung:

• geforderte Gesamtübersetzung:

$$\begin{split} i_{ges} &= \frac{n_{an}}{n_{\text{II}}} = \frac{1200 \frac{1}{\text{min}}}{876, 78 \frac{1}{\text{min}}} = 1,37 \\ i_{ges,1} &= \frac{n_{an}}{n_{\text{V},1}} = \frac{1200 \frac{1}{\text{min}}}{32, 88 \frac{1}{\text{min}}} = 36,5 \\ i_{ges,2} &= \frac{n_{an}}{n_{\text{V},2}} = \frac{1200 \frac{1}{\text{min}}}{98, 64 \frac{1}{\text{min}}} = 12,165 \\ i_{ges,R} &= \frac{n_{an}}{n_{\text{V},R}} = \frac{1200 \frac{1}{\text{min}}}{109, 6 \frac{1}{\text{min}}} = 10,95 \end{split}$$

• tatsächliche Gesamtübersetzung:

$$\begin{split} i_{g\tilde{e}s} &= \frac{z_9}{z_8} = \frac{41}{30} = 1,37 \\ i_{g\tilde{e}s,1} &= i_{4,5} \cdot i_{10,11} = \frac{z_5}{z_4} \cdot \frac{z_{11}}{z_{10}} = \frac{78}{21} \cdot \frac{40}{4} = 37,1 \\ i_{g\tilde{e}s,2} &= i_{6,7} \cdot i_{10,11} = \frac{z_7}{z_6} \cdot \frac{z_{11}}{z_{10}} = \frac{54}{44} \cdot \frac{40}{4} = 12,3 \\ i_{g\tilde{e}s,R} &= i_{1,3} \cdot i_{10,11} = \frac{z_3}{z_1} \cdot \frac{z_{11}}{z_{10}} = \frac{35}{32} \cdot \frac{40}{4} = 10,9 \end{split}$$

maximale Abweichung im Gang 1: $\frac{37,1}{35,6} = 1,016 \implies 1,6\%$ Abweichung Diese Abweichung liegt innerhalb der maximal erlaubten Abweichung von 5 Prozent.

2.5 Auslegung der Kupplung

Im Folgenden wird die Sicherheitskupplung so ausgelegt, dass sie bei dem 1,5 fachen Wert des Momentes der Welle I durch rutscht. Dafür wird die Kraft berechnet, die auf die Kupplung durch zwei in Reihe geschaltete Tellerfedern aufgebracht werden muss. Anschließend wird der Weg berechnet, und den die Federn zusammengedrückt werden müssen, um die nötige Kraft aufzubringen. Bei der Sicherheitskupplung handelt es sich um eine Konuskupplung. Die verwendeten Formlen stammen aus dem Skript KL III ¹² Seite 91 und 108

¹²Vgl. [Pol17a]

$$\begin{split} M_{\mathrm{I},max} &= 60,17Nm,\, S = 1,5 \implies M = M_{\mathrm{I},max} \cdot S = 90,255 \text{ Nm} \\ \alpha &= 20^{\circ},\, \mu = 0,43 \text{ (siehe Abb. 2.1, Datenblatt)} \\ M &= \mu \cdot \frac{F}{\sin\alpha} \cdot r_{eff} \\ r_{eff} &= \frac{2}{3} \cdot \left(\frac{r_a^3 - r_i^3}{r_a^2 - r_i^2}\right) \text{ mit } r_a = 35 \text{ mm, } r_i = 31,57 \text{ mm} \\ &\implies r_{eff} = 33,31 \text{ mm} \\ F &= \frac{M \cdot \sin\alpha}{\mu \cdot r_{eff}} = 2155,16 \text{ N} \end{split}$$

Wähle zwei Tellerfedern nach DIN 2093 - B 40

 $\implies F_{max} = 2,62$ kN bei $s_{max} = 0,86$ mm (Tabellenbuch Metall 13 Seite 247)

$$\begin{split} c_{einzel} &= \frac{F_{max}}{s_{max}} = 3,05 \frac{\text{kN}}{\text{mm}} \\ &\frac{1}{c_{ges}} = 2 \cdot \frac{1}{c_{einzel}} \implies c_{ges} = 1,52 \frac{\text{kN}}{\text{mm}} \\ s &= \frac{F}{c_{ges}} = \frac{2,1552 \text{ kN}}{1,52 \text{ kN/mm}} = 1,428 \text{ mm} \end{split}$$

¹³Vgl. [Fis14]

Technik Werkstoffe | Zubehör Verkauf Home Produkte Reibbelag LR353 - Technische Daten | Reibwerkstoff: Bremsbelag - Kupplungsbelag Asbestfreier, massegepresster, homogener Reibbelag, zähhart, metallhaltig, Farbe dunkelgrau. Basisstoffe: Kurzgeschn. Fasern, Synthesekautschuk, Kunstharz, eingestreute Cu/Ms-Späne, Graphit. Hohes Reibwertniveau, stabiles und weiches Reibverhalten, sehr gutes Verschleißverhalten. Trockenschmierend, geringe Arbeitsgeräusche. Allgemeiner Bremsenbau, Drehmomentbegrenzer, Rutsch-, Sicherheits-und Überlastkupplungen. Sehr gutes Klebeverhalten. Bei Öleinfluss (nicht erprobt) reduzierte Reibung beachten Plattenware, beidseitig geschliffen. Dicke mm: 1,6 - 2 - 2,5 - 3 - 4 - 5 - 6 - 8 - 10 - 12 > auf Anfrage Br x Lä mm: bei Dicke <= 2,5 500 x 500, <= 12 650 x 650, <= 25 500 x 500, > 25 400 x 400 Platten, Zuschnitte, Ringe, Ringsegmente, Rohlinge, einbaufertige Teile nach Kundenzeichnung. Mit Belagträger verklebte Reibbeläge als einbaufertige Maschinenelemente. Zugfestigkeit 12 N/mm² Dichte 1,87 g/cm³ Druckfestigkeit 105 N/mm² Scherfestigkeit 9 N/mm² Härte Shore (D) 79 0,43 260 °C Reibungszahl Temperatur dauer 2 N/mm² 360 °C Flächenpressung Temperatur kurz 0,06 cm³/kWh Gleitgeschwindigkeit 25 m/s Spez. Verschleiß LR353 1 N/mm³ 7m/s GG25 LR353 1 N/mm² 7m/s GG25 0,70 0,50 0.4c cm3km 0.30 0.10 0.11 0,60 0,50 0,40 0,30 Spez. 0,00 250 300 350 Temperatur *C 100 150 200 250 300 350 Temperatur *C 50 100 150 200 50 Als Gegenmaterial sollte GG25, bzw. Stahl HB30 > 180 oder hochwertiger eingesetzt werden * Die Daten verstehen sich als Orientierungshilfe und ersetzen nicht die anwendungsspezifische Erprobung Eine Gewähr können wir bei den vielfältigen Einsatzmöglichkeiten daher nicht übernehmen. Die Betriebswerte sind maximale Werte und dürfen nicht gleichzeitig auftreten. Sicherheiten beachten! Die kurzfristig zulässige Temperatur - gemessen an der Trommel - darf nur einige Sekunden auftreten. Bei besonderen Einsatzfällen empfehlen wir eine Rücksprache mit unseren Anwendungstechnikern. LEICHT GMBH | Schulze-Delitzsch-Str. 6 | D - 46359 Heiden | Tel +49 2867 908920 | Fax + 49 2867 908931 | info@leicht-gmbh.de

Abbildung 2.1: Datenblatt Reibbelag ¹⁴

¹⁴Vgl. [Gmb]

3 Berechnung der Schnittkräfte

3.1 Berechnung der auf die Zahnräder wirkenden Kräfte

Da im Gang 2 das höchste Moment auf die Welle I wirkt, wird auch für diesen Gang der Schnittkräfteverlauf berechnet. Hierfür muss zuerst berechnet werden, welches Moment auf das jeweilige Zahnrad wirkt. Hierfür wird die folgende Beziehung genutzt:

$$M = \frac{P}{2\pi \cdot n_c}$$

Als Leistung wird hierbei die jeweils übertragene Leistung angenommen, d.h. auf Zahnrad 8 wirkt die Schnittleistung (die Leistung der Welle II) und auf Zahnrad 6 die Leistung der Welle IV.

$$M_8 = \frac{P_c}{2\pi \cdot n_{an}} = \frac{7466,91 \text{ W}}{2\pi \cdot 1200 \frac{1}{60 \text{ s}}} = 59,42 \text{ Nm}$$
$$M_6 = \frac{P_{\text{IV},2}}{2\pi \cdot n_{an}} = \frac{94,31 \text{ W}}{2\pi \cdot 1200 \frac{1}{60 \text{s}}} = 0,75 \text{ Nm}$$

Stirnrad 6

Gegebene Werte:
$$M_6=0,75$$
 Nm, $\alpha=20^\circ, d_6=178$ mm
$$F_{\rm t,6}=\frac{2\cdot M_6}{d_6}=\frac{2\cdot 0,75}{0,178}\frac{\rm Nm}{\rm m}=8,43$$
 N
$$F_{\rm r,6}=F_{\rm t,6}\cdot \tan\alpha=8,43$$
 N· $\tan{(20^\circ)}=3,07$ N
$$F_{\rm a,6}=0$$
 N

Kegelrad 8

Formel aus Roloff/Matek¹⁵ Seite 795

Gegebene Werte:
$$M_8=59,42$$
 Nm, $\delta_8=36,13^\circ, d_8=124$ mm, $\alpha=20^\circ$

$$d_{\text{m,8}} = d_8 - b_8 \cdot \sin \delta_8 = 124 \text{ mm} - 30 \text{mm} \cdot \sin (36, 13^\circ) = 106, 31 \text{ mm}$$

$$F_{\rm tm,8} = \frac{2 \cdot M_8}{d_{\rm m,8}} = \frac{2 \cdot 59,42~{\rm Nm}}{0,10631~{\rm m}} = 1117,86~{\rm N}$$

$$F_{\mathrm{r,8}} = F_{\mathrm{tm,8}} \cdot \tan \alpha \cdot \cos \delta_8 = 328,62 \text{ N}$$

$$\boldsymbol{F}_{\mathrm{a,8}} = \boldsymbol{F}_{\mathrm{tm,8}} \cdot \tan \alpha \cdot \sin \delta_8 = 239,9 \ \mathrm{N}$$

¹⁵Vgl. [WJV15]

3.2 Berechnung der Lagerreaktionen

Gegebene Werte:

$$l_1 = 409 \text{ mm}, \qquad l_2 = 60,7 \text{ mm}, \qquad l_3 = 366,5 \text{ mm}, \qquad l_{\text{ges}} = 808,2 \text{ mm}, \qquad F_K = 2318,49 \text{ N}$$

$$\sum F_z \stackrel{!}{=} 0 = A_z + F_{a,8} - F_K \implies A_z = -F_{a,8} + F_K = 2078, 59 \text{ N}$$

$$\sum F_y \stackrel{!}{=} 0 = -A_y - B_y - F_{t,6} + F_{t,8}$$

$$\sum F_x \stackrel{!}{=} 0 = A_x + B_x - F_{r,8} + F_{r,6}$$

$$\sum M_{y}^{(A)} \stackrel{!}{=} 0 = l_{1} \cdot F_{r,8} - (l_{1} + l_{2}) \cdot F_{r,6} + \frac{d_{m,8}}{2} \cdot F_{a,8} - l_{ges} \cdot B_{x}$$

$$\implies B_{x} = \frac{F_{r,8} \cdot l_{1} + F_{a,8} \cdot \frac{d_{m,8}}{2} - F_{r,6} \cdot (l_{1} + l_{2})}{l_{ges}} = 180, 11 \text{ N}$$

$$\implies A_{x} = F_{r,8} - F_{r,6} - B_{x} = 145, 44 \text{ N}$$

$$\sum M_{x}^{(A)} \stackrel{!}{=} 0 = l_{ges} \cdot B_{y} - l_{1} \cdot F_{t,8} + (l_{1} + l_{2}) \cdot F_{t,6}$$

$$\implies B_{y} = \frac{l_{1} \cdot F_{t,8} - (l_{1} + l_{2}) \cdot F_{t,6}}{l_{ges}} = 560, 8 \text{ N}$$

$$\implies A_{y} = F_{t,8} - B_{y} - F_{t,6} = 548, 63 \text{ N}$$

$$A_x = \underline{145,44 \text{ N}}$$
 $B_x = \underline{180,11 \text{ N}}$ $A_y = \underline{548,63 \text{ N}}$ $B_y = \underline{560,8 \text{ N}}$ $A_z = 2078,59 \text{ N}$

3.3 Berechnung der Schnittkraftverläufe

i) Bereich I: $0 \le z_1 \le l_1$

ii) Bereich II: $0 \le z_2 \le l_2$

$$\sum F_x \stackrel{!}{=} 0 = A_x - F_{r,8} + Q_{x,II}$$

$$\implies Q_{x,II} = F_{r,8} - A_x = 183, 18 \text{ N}$$

$$\sum F_y \stackrel{!}{=} 0 = -A_y + F_{t,8} + Q_{y,II}$$

$$\implies Q_{y,II} = A_y - F_{t,8} = -569, 23 \text{ N}$$

$$\sum F_z \stackrel{!}{=} 0 = A_z + F_{a,8} + N_{II}$$

$$\implies N_{II} = -A_z - F_{a,8} = -2318,49 \text{ N}$$

$$\sum M_{x}^{(P)} \stackrel{!}{=} 0 = M_{x,II} - (z_2 + l_1) \cdot A_y + z_2 \cdot F_{t,8}$$

$$\implies M_{x,II} = (z_2 + l_1) \cdot A_y - z_2 \cdot F_{t,8} = -569, 23 \text{ N} \cdot z_2 + 224, 39 \text{ Nm}$$

$$\sum M_{y}^{(P)} \stackrel{!}{=} 0 = M_{y,II} - (z_{2} + l_{1}) \cdot A_{x} + z_{2} \cdot F_{r,8} - \frac{d_{m,8}}{2} \cdot F_{a,8}$$

$$\implies M_{y,II} = (z_{2} + l_{1}) \cdot A_{x} - z_{2} \cdot F_{r,8} + \frac{d_{m,8}}{2} \cdot F_{a,8} = 72,23 \text{ Nm} - 183,18 \text{ N} \cdot z_{2}$$

$$\sum M_{z}^{(P)} \stackrel{!}{=} 0 = M_{z,II} + \frac{d_{m,8}}{2} \cdot F_{t,8}$$

$$\implies M_{z,II} = -\frac{d_{m,8}}{2} \cdot F_{t,8} = -59,42 \text{ N}$$

iii) Bereich III: $0 \le z_3 \le l_3$

$$\sum F_x \stackrel{!}{=} 0 = B_x - Q_{x,\text{III}} \implies Q_{x,\text{III}} = B_x = 180, 11 \text{ N}$$

$$\sum F_y \stackrel{!}{=} 0 = -B_y - Q_{y,\text{III}} \implies Q_{y,\text{III}} = -B_y = -560, 8 \text{ N}$$

$$\sum F_z \stackrel{!}{=} 0 = -N_{\text{III}} - F_K \implies N_{\text{III}} = -F_K = -2318, 49 \text{ N}$$

$$\sum M_x^{(P)} \stackrel{!}{=} 0 = -M_{x,\text{III}} + (l_3 - z_3) \cdot B_y$$

$$\implies M_{x,\text{III}} = (l_3 - z_3) \cdot B_y = 205, 5 \text{ Nm} - 560, 8 \text{ N} \cdot z_3$$

$$\sum M_y^{(P)} \stackrel{!}{=} 0 = -M_{y,\text{III}} + B_x \cdot (l_3 - z_3)$$

$$\implies M_{y,\text{III}} = (l_3 - z_3) \cdot B_x = 66 \text{ Nm} - 180, 11 \text{ N} \cdot z_3$$

$$\sum M_z^{(P)} \stackrel{!}{=} 0 = -M_{z,\text{III}} - M_{\text{an}} \implies M_{z,\text{III}} = -M_{\text{an}} = -60, 17 \text{ N}$$

Eckwerte:

Bereich i)

$$\begin{split} N_{\rm I}(0) &= N_{\rm I}(l_1) = -2078, 59 \text{ N} \\ Q_{x,\rm I}(0) &= Q_{x,\rm I}(l_1) = -145, 44 \text{ N} \\ Q_{y,\rm I}(0) &= Q_{y,\rm I}(l_1) = 548, 63 \text{ N} \\ M_{x,\rm I}(0) &= 0 \text{ Nm} & M_{x,\rm I}(l_1) = 224, 39 \text{ Nm} \\ M_{y,\rm I}(0) &= 0 \text{ Nm} & M_{y,\rm I}(l_1) = 59, 48 \text{ Nm} \\ M_{z,\rm I}(0) &= M_{z,\rm I}(l_1) = 0 \text{ Nm} \end{split}$$

Bereich ii)

$$\begin{split} N_{\mathrm{II}}(0) &= N_{\mathrm{II}}(l_2) = -2318,49 \text{ N} \\ Q_{x,\mathrm{II}}(0) &= Q_{x,\mathrm{II}}(l_2) = 183,18 \text{ N} \\ Q_{y,\mathrm{II}}(0) &= Q_{y,\mathrm{II}}(l_2) = -569,23 \text{ N} \\ M_{x,\mathrm{II}}(0) &= 224,39 \text{ Nm} \\ M_{y,\mathrm{II}}(0) &= 72,23 \text{ Nm} \\ M_{z,\mathrm{II}}(0) &= 72,23 \text{ Nm} \\ M_{z,\mathrm{II}}(l_2) &= 61,11 \text{ Nm} \\ M_{z,\mathrm{II}}(0) &= M_{z,\mathrm{II}}(l_2) = -59,42 \text{ Nm} \end{split}$$

Bereich iii)

$$\begin{split} N_{\rm III}(0) &= N_{\rm III}(l_3) = -2318,49 \text{ N} \\ Q_{x,\rm III}(0) &= Q_{x,\rm III}(l_3) = 180,11 \text{ N} \\ Q_{y,\rm III}(0) &= Q_{y,\rm III}(l_3) = -560,8 \text{ N} \\ M_{x,\rm III}(0) &= 205,5 \text{ Nm} & M_{x,\rm III}(l_3) = 0 \text{ Nm} \\ M_{y,\rm III}(0) &= 66 \text{ Nm} & M_{y,\rm III}(l_3) = 0 \text{ Nm} \\ M_{z,\rm III}(0) &= M_{z,\rm III}(l_3) = -61,11 \text{ Nm} \end{split}$$

3.4 Resultierende Momente

$$|M_{b,res}(z)| = \sqrt{(M_{by}(z))^2 + (M_{bx}(z))^2}$$

Bereich i)

$$|M_{b,res}(z=0)| = 0 \text{ Nm}$$

 $|M_{b,res}(z=l_1)| = 232, 14 \text{ Nm}$

Bereich ii)

$$|M_{b,res}(z=l_1)| = 235,73 \text{ Nm}$$

 $|M_{b,res}(z=l_1+l_2)| = 199,42 \text{ Nm}$

Bereich iii)

$$|M_{b,res}(z=l_1+l_2)| = 199,42 \text{ Nm} |M_{b,res}(z=l_{ges})| = 0 \text{ Nm}$$

4 Dauerfestigkeitsberechnung für Welle I

In diesem Kapitel werden die beiden am meisten gefährdeten Querschnitte der Welle I auf Dauerfestigkeit und bleibende Verformung untersucht. Der Sicherheitsfaktor sollte dabei nach DIN 743 mindestens $S_{min} = 1, 2$ betragen.

4.1 Werkstoffkennwerte

Als Werkstoff wurde der Vergütungsstahl 34CrMo4 gewählt. Die folgenden Festigkeitswerte stammen aus der Tabelle A.4 der DIN 743 - 3.

$$R_{p0,2} = 800 \frac{N}{mm^2} = \sigma_S$$

$$R_m = 1000 \frac{N}{mm^2} = \sigma_B$$

$$\sigma_{zdW} = 400 \frac{N}{mm^2}$$

$$\sigma_{bW} = 500 \frac{N}{mm^2}$$

$$\tau_{tW} = 300 \frac{N}{mm^2}$$

4.2 Passfedernutberechnung

Der Durchmesser des gefährdeten Absatzes ist d=40 mm. Die Sicherheit der Passfederverbindung wird bei Umlaufbiegung und statischer Torsion berechnet. Da hier die Dauerfestigkeit betrachtet wird, wird mit dem im Betrieb wirksamen Torsionsmoment gerechnet anstatt den Sicherheitsfaktor der Kupplung mit einzubeziehen.

Als Bezugsdurchmesser wird $d_{BK} = 40 \text{ mm}$ verwendet.

Wirkende Spannungen (nach DIN 743 - 1 Tabelle 1)

$$\sigma_{zda} = \frac{F_{zda}}{A} = \frac{N}{\frac{\pi \cdot d^2}{4}} = \frac{2318,49 \text{ N}}{1256,6 \text{ mm}^2} = 1,85 \frac{N}{\text{mm}^2}$$

$$\sigma_{ba} = \frac{M_{ba}}{A} = \frac{|M_{b,res}(z = 409 \text{ mm})|}{\frac{\pi \cdot d^3}{32}} = \frac{235730 \text{ Nmm}}{6283,19 \text{ mm}^3} = 37,52 \frac{N}{\text{mm}^2}$$

$$\tau_{ta} = \frac{M_{ta}}{A} = \frac{M_{I}}{\frac{\pi \cdot d^3}{16}} = \frac{60170 \text{ Nmm}}{12566,37 \text{ mm}^3} = 4,79 \frac{N}{\text{mm}^2}$$

Gesamteinflussfaktor für Biegung

Die folgenden Formeln stammen, soweit nichts anderes vermerkt, aus der DIN 743 - 2.

 \bullet Technologischer Größeneinflussfaktor $K_1(d_{eff})$

mit
$$d_{eff} = 40$$
 mm und $d_B = 16$ mm

Streckgrenze Vergütungsstahl:
$$K_{1,Re}(d_{eff}) = 1 - 0.34 \lg \left(\frac{d_{eff}}{d_B}\right) = 0.865$$
 (14)

Zugfestigkeit Vergütungsstahl:
$$K_{1,Rm}(d_{eff}) = 1 - 26 \lg \left(\frac{d_{eff}}{d_B}\right) = 0,897$$
 (12)

• Kerbwirkungszahl $\beta_{\sigma}(d_{BK})$

$$\sigma_B(d) = \sigma_B \cdot K_{1,Rm}(d_{eff} = 40 \text{ mm}) = 897 \frac{\text{N}}{\text{mm}^2}$$

$$\implies \beta_{\sigma}(d_{BK}) = 2,89$$
 (Tabelle 1)

• Geometrischer Größeneinflussfaktor $K_3(d)$ (17)

$$K_3(d) = 1 - 0, 2 \cdot \lg(\beta_{\sigma}(d_{BK})) \cdot \frac{\lg(d/7, 5 \text{ mm})}{lg20}$$

$$= 0,949$$

$$K_3(d_{BK}) = 1 - 0, 2 \cdot \lg(\beta_{\sigma}(d_{BK})) \cdot \frac{\lg(d_{BK}/7, 5 \text{ mm})}{lg20}$$

$$= 0,949$$

• Kerbwirkungszahl β_{σ} für d

$$\beta_{\sigma} = \beta_{\sigma}(d_{BK}) \cdot \frac{K_3(d_{BK})}{K_3(d)} = 2,89$$

(3)

(23)

(6)

• Geometrischer Größeneinflussfaktor $K_2(d)$ (16)

$$K_2(d) = 1 - 0, 2 \cdot \frac{\lg(d/7, 5 \text{ mm})}{\lg 20} = 0,888$$

• Einflussfaktor der Oberflächenrauheit (aus KL III ¹⁶ Abb. 6.4.9)

$$K_{F\sigma} = 0,88 \text{ mit } R_z = 6,3$$

 \bullet Einflussfaktor der Oberflächenverfestigung (aus KL III 17 Seite 172)

$$K_V = 1$$

• Gesamteinflussfaktor K_{σ} aus DIN 743 - 1 (8)

$$K_{\sigma} = \left(\frac{\beta_{\sigma}}{K_{2}(d)} + \frac{1}{K_{F\sigma}} - 1\right) \cdot \frac{1}{K_{V}} = 3,39$$

Vorhandene Sicherheitszahl für Dauerfestigkeitsnachweis nach Belastungsfall 1

verwendete Formeln aus der DIN 743 - 1

• Vergleichsmittelspannung

$$\begin{split} \sigma_{mv} &= \sqrt{\sigma_{bm}^2 + 3 \cdot \tau_{tm}^2} \\ \sigma_{bm} &= 0 \text{ (da Umlaufbiegung vorliegt)} \\ \tau_{tm} &= \tau_{ta} = 4,79 \frac{\text{N}}{\text{mm}^2} \\ &\implies \sigma_{mv} = 8,3 \frac{\text{N}}{\text{mm}^2} \end{split}$$

• Bauteilwecheselfestigkeit σ_{bWK}

$$\begin{split} \sigma_{bWK} &= \frac{\sigma_{bW} \cdot K_{1,Rm}(d_{eff})}{K_{\sigma}} \\ &= \frac{500 \frac{\text{N}}{\text{mm}^2} \cdot 0,897}{3.39} = 132, 3 \frac{\text{N}}{\text{mm}^2} \end{split}$$

¹⁶Vgl. [Pol17a]

¹⁷Vgl. [Pol17a]

• Einflussfaktor der Mittelspannungsempfindlichkeit $\Psi_{b\sigma K}$ (21)

$$\begin{split} \Psi_{b\sigma K} &= \frac{\sigma_{bWK}}{2 \cdot K_{1,Rm}(d_{eff}) \cdot \sigma_{B}(d_{B}) - \sigma_{bWK}} \\ &= \frac{132, 3 \frac{N}{mm^{2}}}{2 \cdot 0,897 \cdot 1000 \frac{N}{mm^{2}} - 132, 3 \frac{N}{mm^{2}}} = 0,08 \end{split}$$

• Spannungsamplitude der Bauteildauerfestigkeit σ_{bADK} (11)

$$\sigma_{bADK} = \sigma_{bWK} - \Psi_{b\sigma K} \cdot \sigma_{mv}$$

$$= 132, 3 \frac{N}{mm^2} - 0,08 \cdot 8, 3 \frac{N}{mm^2} = 131, 6 \frac{N}{mm^2}$$

• vorhandene Sicherheitszahl S (3)

$$S = \frac{\sigma_{bADK}}{\sigma_{ba}} = \frac{131, 6 \frac{N}{mm^2}}{37, 52 \frac{N}{mm^2}} = 3, 5$$

Vorhandene Sicherheitszahl S für Nachweis gegen Überschreiten der Fließgrenze

verwendete Formeln aus der DIN 743 - 1

 \bullet Statische Stützwirkung K_{2F} für Biegung und Torsion nach Tabelle 3

$$K_{2F\sigma} = 1, 2$$
$$K_{2F\tau} = 1, 2$$

 \bullet Erhöhungsfaktor der Fließgrenze $\gamma_{F\sigma}$ nach Tabelle 2

$$\gamma_{F\sigma}=1,1$$
 (Beanspruchung Biegung bei $\beta_{\sigma}=2,86)$
$$\gamma_{F\tau}=1$$

• Bauteilfließgrenze

$$\sigma_{bFK} = K_{1,Re}(d_{eff}) \cdot K_{2F} \cdot \gamma_{F\sigma} \cdot \sigma_{S}(d_{B})$$

$$= 0,865 \cdot 1,2 \cdot 1,1 \cdot 800 \frac{N}{mm^{2}}$$

$$= 913,44 \frac{N}{mm^{2}}$$

$$\tau_{tFK} = K_{1,Re}(d_{eff}) \cdot K_{2F} \cdot \gamma_{F\tau} \cdot \sigma_{S}(d_{B})/\sqrt{3}$$

$$= 0,865 \cdot 1,2 \cdot 1 \cdot 800 \frac{N}{mm^{2}}/\sqrt{3}$$

$$= 479,43 \frac{N}{mm^{2}}$$
(31)

 Vorhandene Sicherheitszahl S Hier wird eine stoßartige Belastung der Passfeder angenommen, da es aufgrund der wirkenden Schnittkräfte an Welle II zu leichten Stößen kommen kann.

$$\sigma_{bmax} = 1, 5 \cdot \sigma_{ba} = 56, 28 \frac{N}{mm^2}$$

$$\tau_{tmax} = 1, 5 \cdot \tau_m = 7, 19 \frac{N}{mm^2}$$

$$S = \frac{1}{\sqrt{\left(\frac{\sigma_{bmax}}{\sigma_{bFK}}\right)^2 + \left(\frac{\tau_{tmax}}{\tau_{tFK}}\right)^2}}$$

$$= 15, 8$$
(25)

Die Berechnung zeigt, dass die Passfedernut gegen Dauerbruch und bleibende Verformung ausreichend ausgelegt wurde und somit der Belastung stand hält.

4.3 Freistichberechnung

Abmessungen:

$$D = 50 \text{ mm} \qquad \frac{r}{t} = 0, 15$$

$$d = 39, 4 \text{ mm} \qquad \frac{r}{d} = 0, 02$$

$$r = 0, 8 \text{ mm} \qquad \frac{d}{D} = 0, 788$$

$$t = \frac{D - d}{2} = 5, 3 \text{ mm}$$

Wirkende Spannungen (nach DIN 743 - 1 Tabelle 1)

$$\sigma_{zda} = \frac{F_{zda}}{A} = \frac{N}{\frac{\pi \cdot d^2}{4}} = \frac{2318,49 \text{ N}}{1219,22 \text{ mm}^2} = 1,9 \frac{N}{\text{mm}^2}$$

$$\sigma_{ba} = \frac{M_{ba}}{A} = \frac{|M_{b,res}(z = 409 \text{ mm})|}{\frac{\pi \cdot d^3}{32}} = \frac{235730 \text{ Nmm}}{6004,66 \text{ mm}^3} = 39,26 \frac{N}{\text{mm}^2}$$

$$\tau_{ta} = \frac{M_{ta}}{A} = \frac{M_{I}}{\frac{\pi \cdot d^3}{16}} = \frac{60170 \text{ Nmm}}{12009,32 \text{ mm}^3} = 5,01 \frac{N}{\text{mm}^2}$$

Gesamteinflussfaktor

Die folgenden Formeln stammen, soweit nichts anderes vermerkt, aus der DIN 743 - 2.

• Bezogenes Spannungsgefälle G' (Tabelle 2)

Hilfsgröße
$$\Phi = \frac{1}{4 \cdot \sqrt{\frac{t}{r}} + 2} = 0,08$$

$$G'_{ZD} = \frac{2,3 \cdot (1+\Phi)}{r} = 3,12 \frac{1}{\text{mm}}$$

$$G'_{B} = G'_{ZD} = 3,12 \frac{1}{\text{mm}}$$

$$G'_{T} = \frac{1,15}{r} = 1,44 \frac{1}{\text{mm}}$$

(4)

• Technologischer Größeneinflussfaktor $K_1(d_{eff})$

zur Vereinfachung wird angenommen
$$d_{eff}=D=50~\mathrm{mm}$$
 und $d_B=16~\mathrm{mm}$

Streckgrenze Vergütungsstahl:
$$K_{1,Re}(d_{eff}) = 1 - 0.34 \lg\left(\frac{d_{eff}}{d_B}\right) = 0.83$$
 (14)

Zugfestigkeit Vergütungsstahl:
$$K_{1,Rm}(d_{eff}) = 1 - 26 \lg \left(\frac{d_{eff}}{d_B}\right) = 0,87$$
 (12)

• Formzahl α

$$\alpha_{\sigma ZD} = 1 + \frac{1}{\sqrt{0,62 \cdot \frac{r}{t} + 7 \cdot \frac{r}{d}(1 + 2 \cdot \frac{r}{d})^2}} = 3,02$$
 (Bild 8)

$$\alpha_{\sigma B} = 1 + \frac{1}{\sqrt{0,62 \cdot \frac{r}{t} + 11,6 \cdot \frac{r}{d}(1 + 2 \cdot \frac{r}{d})^2 + 0,2 \cdot \left(\frac{r}{t}\right)^3 \cdot \frac{d}{D}}} = 2,7 \qquad \text{(Bild 9)}$$

$$\alpha_{\tau} = 1 + \frac{1}{\sqrt{3, 4 \cdot \frac{r}{t} + 38 \cdot \frac{r}{d} (1 + 2 \cdot \frac{r}{d})^2 + (\frac{r}{t})^2 \cdot \frac{d}{D}}} = 1,86$$
 (Bild 10)

• Stützziffer n (5)

$$\begin{split} n &= 1 + \sqrt{G' \cdot \text{mm}} \cdot 10^{-\left(0,33 + \frac{\sigma_S(d)}{712 \frac{\text{N}}{\text{mm}^2}}\right)} \\ \text{mit } \sigma_S(d) &= K_{1,Re}(d_{eff}) \cdot \sigma_S(d_B) \\ &= 0,83 \cdot 800 \frac{\text{N}}{\text{mm}^2} = 664 \frac{\text{N}}{\text{mm}^2} \\ n_{ZD} &= n_B = 1 + \sqrt{3,12} \cdot 10^{-\left(0,33 + \frac{664}{712}\right)} \\ &= 1,1 \\ n_\tau &= 1 + \sqrt{1,44} \cdot 10^{-\left(0,33 + \frac{664}{712}\right)} \\ &= 1,07 \end{split}$$

Formel für σ_S aus Skript KL III 18 S.168

- Kerbwirkungszahl β

$$\beta_{\sigma ZD} = \frac{\alpha_{\sigma ZD}}{n_{ZD}} = 2,75$$

$$\beta_{\sigma B} = \frac{\alpha_{\sigma B}}{n_B} = 2,45$$

$$\beta_{\tau} = \frac{\alpha_{\sigma \tau}}{n_{\tau}} = 1,74$$

¹⁸Vgl. [Pol17a]

• Geometrischer Größeneinflussfaktor $K_2(d)$

$$Zug/Druck: K_{2ZD}(d) = 1$$
(15)

Biegung/Torsion:
$$K_{2B,\tau}(d) = 1 - 0.2 \cdot \frac{\lg(d/7, 5 \text{ mm})}{\lg 20} = 0.89$$
 (16)

• Einflussfaktor der Oberflächenrauheit $K_{F\sigma,\tau}$ (Skript KL III ¹⁹ S.171)

Zug/Druck & Biegung:
$$K_{F\sigma} = 1 - 0, 22 \cdot \lg \left(\frac{Rz}{\mu m}\right) \cdot \left(\lg \left(\frac{\sigma_B(d)}{20} \frac{N}{mm^2}\right) - 1\right)$$
 (18)
mit $\sigma_B(d) = K_{1,Re}(d_{eff}) \cdot \sigma_B(d_B)$
 $= 0, 83 \cdot 1000 \frac{N}{mm^2} = 830 \frac{N}{mm^2}$
 $\implies K_{F\sigma} = 0, 89$
Torsion: $K_{F\tau} = 0, 575 \cdot K_{F\sigma} + 0, 425 = 0, 937$ (19)

 \bullet Einflussfaktor der Oberflächenverfestigung (aus KL III 20 Seite 172)

$$K_V = 1$$

• Gesamteinflussfaktor K_{σ} nach DIN 743 - 1

Zug/Druck:
$$K_{\sigma ZD} = \left(\frac{\beta_{\sigma ZD}}{K_{2ZD}(d)} + \frac{1}{K_{F\sigma}} - 1\right) \cdot \frac{1}{K_V}$$
 (8)
= $\left(\frac{2,75}{1} + \frac{1}{0,89} - 1\right) \cdot \frac{1}{1}$
= 2.87

Biegung:
$$K_{\sigma B} = \left(\frac{\beta_{\sigma B}}{K_{2B}(d)} + \frac{1}{K_{F\sigma}} - 1\right) \cdot \frac{1}{K_V}$$
 (8)
= $\left(\frac{2,45}{0,89} + \frac{1}{0,89} - 1\right) \cdot \frac{1}{1}$

Torsion:
$$K_{\tau} = \left(\frac{\beta_{\tau}}{K_{2\tau}(d)} + \frac{1}{K_{F\tau}} - 1\right) \cdot \frac{1}{K_{V}}$$
 (9)
= $\left(\frac{1,74}{0,89} + \frac{1}{0,937} - 1\right) \cdot \frac{1}{1}$

= 2,02

¹⁹Vgl. [Pol17a]

²⁰Vgl. [Pol17a]

Vorhandene Sicherheitszahl für Dauerfestigkeitsnachweis nach Belastungsfall 1

verwendete Formeln aus der DIN 743 - 1

• Vergleichsmittelspannung

$$\sigma_{mv} = \sqrt{(\sigma_{zdm} + \sigma_{bm})^2 + 3 \cdot \tau_{tm}^2}$$

$$= \sqrt{(1, 9 \frac{N}{mm^2} + 0)^2 + 3 \cdot (5, 01 \frac{N}{mm^2})^2}$$

$$= 8, 88 \frac{N}{mm^2}$$

$$\tau_{mv} = \frac{\sigma_{mv}}{\sqrt{3}} = 5, 13 \frac{N}{mm^2}$$
(24)

• Bauteilwecheselfestigkeit σ_{WK}

$$\sigma_{zdWK} = \frac{\sigma_{zdW} \cdot K_{1,Rm}(d_{eff})}{K_{\sigma ZD}}$$

$$= \frac{400 \frac{N}{mm^2} \cdot 0,87}{2,87} = 121,25 \frac{N}{mm^2}$$

$$\sigma_{bWK} = \frac{\sigma_{bW} \cdot K_{1,Rm}(d_{eff})}{K_{\sigma B}}$$

$$= \frac{500 \frac{N}{mm^2} \cdot 0,87}{2,88} = 135,4 \frac{N}{mm^2}$$

$$\tau_{tWK} = \frac{\tau_{tW} \cdot K_{1,Rm}(d_{eff})}{K_{\tau}}$$

$$= \frac{300 \frac{N}{mm^2} \cdot 0,87}{2,02} = 129,2 \frac{N}{mm^2}$$

$$(5)$$

 \bullet Einflussfaktor der Mittelspannungsempfindlichkeit Ψ_K

$$\Psi_{zd\sigma K} = \frac{\sigma_{zdWK}}{2 \cdot K_{1,Rm}(d_{eff}) \cdot \sigma_{B}(d_{B}) - \sigma_{zdWK}}$$

$$= \frac{121, 25 \frac{N}{mm^{2}}}{2 \cdot 0, 87 \cdot 1000 \frac{N}{mm^{2}} - 121, 25 \frac{N}{mm^{2}}} = 0,075$$

$$\Psi_{b\sigma K} = \frac{\sigma_{bWK}}{2 \cdot K_{1,Rm}(d_{eff}) \cdot \sigma_{B}(d_{B}) - \sigma_{bWK}}$$

$$= \frac{135, 4 \frac{N}{mm^{2}}}{2 \cdot 0, 87 \cdot 1000 \frac{N}{mm^{2}} - 135, 4 \frac{N}{mm^{2}}} = 0,08$$

$$\Psi_{\tau K} = \frac{\tau_{tWK}}{2 \cdot K_{1,Rm}(d_{eff}) \cdot \sigma_{B}(d_{B}) - \tau_{tWK}}$$

$$= \frac{129, 2 \frac{N}{mm^{2}}}{2 \cdot 0, 87 \cdot 1000 \frac{N}{mm^{2}} - 129, 2 \frac{N}{mm^{2}}} = 0,08$$
(22)

• Spannungsamplitude der Bauteildauerfestigkeit

$$\sigma_{zdADK} = \sigma_{zdWK} - \Psi_{zd\sigma K} \cdot \sigma_{mv}$$

$$= 121, 25 \frac{N}{mm^2} - 0,075 \cdot 8,88 \frac{N}{mm^2} = 120,58 \frac{N}{mm^2}$$

$$\sigma_{bADK} = \sigma_{bWK} - \Psi_{b\sigma K} \cdot \sigma_{mv}$$

$$= 135, 4 \frac{N}{mm^2} - 0,08 \cdot 8,88 \frac{N}{mm^2} = 134,69 \frac{N}{mm^2}$$

$$\tau_{tADK} = \tau_{tWK} - \Psi_{\tau K} \cdot \tau_{mv}$$

$$= 129, 2 \frac{N}{mm^2} - 0,08 \cdot 5,13 \frac{N}{mm^2} = 128,79 \frac{N}{mm^2}$$

$$(12)$$

• vorhandene Sicherheitszahl S

$$S = \frac{1}{\sqrt{\left(\frac{\sigma_{zda}}{\sigma_{zdADK}} + \frac{\sigma_{ba}}{\sigma_{bADK}}\right)^2 + \left(\frac{\tau_{ta}}{\tau_{tADK}}\right)^2}}$$

$$S = 3.23$$
(2)

Vorhandene Sicherheitszahl S für Nachweis gegen Überschreiten der Fließgrenze

verwendete Formeln aus der DIN 743 - 1

• Statische Stützwirkung K_{2F} nach Tabelle 3

$$K_{2F\sigma zd} = 1$$

$$K_{2F\sigma b} = 1, 2$$

$$K_{2F\tau} = 1, 2$$

 \bullet Erhöhungsfaktor der Fließgrenze γ_F nach Tabelle 2

$$\gamma_{F\sigma} = 1, 1 \text{ (Für } \beta_{\sigma} = 2, 0 \text{ bis } 3, 0)$$

 $\gamma_{F\tau} = 1$

• Bauteilfließgrenze

$$\sigma_{zd,bFK} = K_{1,Re}(d_{eff}) \cdot K_{2F\sigma} \cdot \gamma_{F\sigma} \cdot \sigma_{S}(d_{B})$$

$$\sigma_{zdFK} = 0, 83 \cdot 1 \cdot 1, 1 \cdot 800 \frac{N}{mm^{2}}$$

$$= 730 \frac{N}{mm^{2}}$$

$$\sigma_{bFK} = 0, 83 \cdot 1, 2 \cdot 1, 1 \cdot 800 \frac{N}{mm^{2}}$$

$$= 876, 48 \frac{N}{mm^{2}}$$

$$\tau_{tFK} = K_{1,Re}(d_{eff}) \cdot K_{2F\tau} \cdot \gamma_{F\tau} \cdot \sigma_{S}(d_{B}) / \sqrt{3}$$

$$= 0, 83 \cdot 1, 2 \cdot 1 \cdot 800 \frac{N}{mm^{2}} / \sqrt{3}$$

$$= 460 \frac{N}{mm^{2}}$$
(31)

 Vorhandene Sicherheitszahl S Für diesen Fall wird mit den wirkenden Spannungsamplituden als maximale Spannungen gerechnet, da keine stoßartige Belastung angenommen wird.

$$S = \frac{1}{\sqrt{\left(\frac{\sigma_{zdmax}}{\sigma_{zdFK}} + \frac{\sigma_{bmax}}{\sigma_{bFK}}\right)^2 + \left(\frac{\tau_{tmax}}{\tau_{tFK}}\right)^2}}$$

$$= 20,56$$
(25)

Die Schwachstelle 2, also der Freistich, ist ebenfalls gegen Dauerbruch und plastische Verformung ausreichend ausgelegt.

5 Lagerlebensdauerberechnung

5.1 Berechnung der Lagerkräfte im Gang 1

Der folgende Rechenweg entspricht dem aus den Kapiteln 3.1 und 3.2. Anstelle des Zahnrades 6 wird nun Zahnrad 4 betrachtet, da dieses im 1. Gang im Eingriff ist.

• Auf die Zahnräder wirkende Kräfte:

$$\begin{split} M_8 &= \frac{P_{c,1}}{2\pi \cdot n_{an}} = \frac{3311,85 \text{ W}}{2\pi \cdot 1200\frac{1}{60 \text{ s}}} = 26,35 \text{ Nm} \\ d_{\text{m,8}} &= d_8 - b_8 \cdot \sin \delta_8 = 124 \text{ mm} - 30 \text{mm} \cdot \sin \left(36,13^\circ\right) = 106,31 \text{ mm} \\ F_{\text{tm,8}} &= \frac{2 \cdot M_8}{d_{\text{m,8}}} = \frac{2 \cdot 26,35 \text{ Nm}}{0,10631 \text{ m}} = 495,72 \text{ N} \\ F_{\text{r,8}} &= F_{\text{tm,8}} \cdot \tan \alpha \cdot \cos \delta_8 = 145,73 \text{ N} \\ F_{\text{a,8}} &= F_{\text{tm,8}} \cdot \tan \alpha \cdot \sin \delta_8 = 106,38 \text{ N} \end{split}$$

$$\begin{split} M_4 &= \frac{P_{\text{IV},1}}{2\pi \cdot n_{an}} = \frac{21,89 \text{ W}}{2\pi \cdot 1200 \frac{1}{60\text{s}}} = 0,17 \text{ Nm} \\ F_{\text{t},4} &= \frac{2 \cdot M_4}{d_4} = \frac{2 \cdot 0,17 \text{ Nm}}{0,085 \text{ m}} = 4 \text{ N} \\ F_{\text{r},4} &= F_{\text{t},6} \cdot \tan \alpha = 4 \text{ N} \cdot \tan (20^\circ) = 1,46 \text{ N} \\ F_{\text{a},4} &= 0 \text{ N} \end{split}$$

• Berechnung der Lagerkräfte:

Gegebene Werte:

$$l_1 = 409 \text{ mm}, \qquad l_2 = 205 \text{ mm}, \qquad l_3 = 194, 2 \text{ mm}$$

$$l_{\text{ges}} = 808, 2 \text{ mm}, \qquad F_K = 2318, 49 \text{ N}$$

$$\sum F_z \stackrel{!}{=} 0 = A_z + F_{\text{a},8} - F_K \implies A_z = -F_{\text{a},8} + F_K = 2212, 11 \text{ N}$$

$$\sum F_y \stackrel{!}{=} 0 = -A_y - B_y - F_{\text{t},4} + F_{\text{t},8}$$

$$\sum F_x \stackrel{!}{=} 0 = A_x + B_x - F_{\text{r},8} + F_{\text{r},6}$$

$$\sum M_{y}^{(A)} \stackrel{!}{=} 0 = l_{1} \cdot F_{r,4} - (l_{1} + l_{2}) \cdot F_{r,6} + \frac{d_{m,8}}{2} \cdot F_{a,8} - l_{ges} \cdot B_{x}$$

$$\implies B_{x} = \frac{F_{r,8} \cdot l_{1} + F_{a,8} \cdot \frac{d_{m,8}}{2} - F_{r,4} \cdot (l_{1} + l_{2})}{l_{ges}} = 79,64 \text{ N}$$

$$\implies A_{x} = F_{r,8} - F_{r,4} - B_{x} = 64,63 \text{ N}$$

$$\sum {M_{\rm x}}^{\rm (A)} \stackrel{!}{=} 0 = l_{\rm ges} \cdot B_y - l_1 \cdot F_{\rm t,8} + (l_1 + l_2) \cdot F_{\rm t,4}$$

$$\Longrightarrow B_y = \frac{l_1 \cdot F_{\rm t,8} - (l_1 + l_2) \cdot F_{\rm t,4}}{l_{\rm ges}} = 247,83 \text{ N}$$

$$\Longrightarrow A_y = F_{\rm t,8} - B_y - F_{\rm t,4} = 243,89 \text{ N}$$

$$A_x = \underline{64,63 \text{ N}}$$
 $B_x = \underline{79,64 \text{ N}}$ $A_y = \underline{243,89 \text{ N}}$ $B_y = \underline{247,83 \text{ N}}$ $A_z = \underline{2212,11 \text{ N}}$

5.2 Berechnung der äquivalenten dynamischen Lagerbelastung

Die Formeln für die Berechnung stammen aus dem Skript KL III²¹ Seite 73 bis 74. Die Werte für die statische und dynamisch Tragzahl stammen aus dem Tabellenbuch Roloff/-Matek ²² Seite 152.

Gang 1, Festlager:

- 2 Schrägkugellager in X-Anordnung, DIN 628-7205B
 - gegebene Werte:

$$n_{an}$$
 $= 1200 \frac{1}{\mathrm{min}}$ $= 9300 \ \mathrm{N}$ statische Tragzahl Einzellager $C_{0,Einzel}$ $= 9300 \ \mathrm{N}$ statische Tragzahl C_0 $= 2 \cdot C_{0,Einzel} = 18600 \ \mathrm{N}$ dynamische Tragzahl Einzellager C_{Einzel} $= 14600 \ \mathrm{N}$ dynamische Tragzahl C $= 1,62 \cdot C_{Einzel} = 23652 \ \mathrm{N}$ Lebensdauerexponent p $= 3$ (für Wälzlager) $= 64,63 \ \mathrm{N}$ $= 243,89 \ \mathrm{N}$ $= 243,89 \ \mathrm{N}$ $= 2212,11 \ \mathrm{N}$

• Berechnung der äquivalenten dynamischen Belastung

dynamische radiale Lagerkraft
$$F_r$$
 = $\sqrt{F_{Ax}^2 + F_{Ay}^2} = 252, 3 \text{ N}$
dynamische axiale Lagerkraft F_a = $F_{Az} = 2212, 11 \text{ N}$
Belastungsfaktor e = 1,14 (für Schrägkugellager)

$$\frac{F_a}{F_r} = 8,77 \implies \frac{F_a}{F_r} > e$$

²¹Vgl. [Pol17a] ²²Vgl. [Wit+15]

Deshalb folgt aus Tabelle 2.9 im Skript KL III $^{23}: X=0,\!57$, $\ Y=0,\!93$ Die äquivalente dynamische Belastung ergibt sich zu:

$$P = X \cdot F_r + Y \cdot F_a = 2201, 1 \text{ N}$$

Gang 1, Loslager:

Rillenkugellager, DIN 625-6007

• gegebene Werte:

n_{an}	$= 1200 \frac{1}{\min}$
statische Tragzahl C_0	$=10200~\mathrm{N}$
dynamische Tragzahl ${\cal C}$	$=16000~\mathrm{N}$
Lebensdauer exponent \boldsymbol{p}	=3
F_{Bx}	$=79,64~\mathrm{N}$
F_{By}	= 247,83 N

• Berechnung der äquivalenten dynamischen Belastung

dynamische radiale Lagerkraft
$$F_r$$

$$= \sqrt{F_{Bx}^2 + F_{By}^2} = 260, 31 \text{ N}$$
dynamische axiale Lagerkraft F_a
$$= F_{Bz} = 0 \text{ N}$$

Da es sich um eine reine Radialbelastung handelt, ergeben sich der Radial- und Axialfaktor zu: X=1 und Y=0

Daraus ergibt sich die äquivalente dynamische Lagerbelastung zu:

$$P = X \cdot F_r = 260, 31 \text{ N}$$

²³Vgl. [Pol17a]

Gang 2, Festlager:

2 Schrägkugellager in X-Anordnung, DIN 628-7205B

• gegebene Werte:

n_{an}	$=1200\frac{1}{\min}$
statische Tragzahl Einzellager $C_{0,Einzel}$	= 9300 N
statische Tragzahl C_0	$= 2 \cdot C_{0, \text{Einzel}} = 18600 \text{ N}$
dynamische Tragzahl Einzellager C_{Einzel}	= 14600 N
dynamische Tragzahl ${\cal C}$	$=1,62\cdot C_{\rm Einzel}=23652~{\rm N}$
Lebensdauer exponent p	=3
F_{Ax}	= 145, 44 N
F_{Ay}	= 548, 63 N
F_{Az}	= 2078, 59 N

• Berechnung der äquivalenten dynamischen Belastung

dynamische radiale Lagerkraft
$$F_r$$
 = $\sqrt{F_{Ax}^2 + F_{Ay}^2} = 567,58$ N dynamische axiale Lagerkraft F_a = $F_{Az} = 2078,59$ N Belastungsfaktor e = 1,14 (für Schrägkugellager)

$$\frac{F_a}{F_r} = 3,66 \implies \frac{F_a}{F_r} > e$$

Deshalb folgt aus Tabelle 2.9 im Skript KL III 24 : X= 0,57 , Y= 0,93 Die äquivalente dynamische Belastung ergibt sich zu:

$$P = X \cdot F_r + Y \cdot F_a = 2256, 6 \text{ N}$$

²⁴Vgl. [Pol17a]

Gang 2, Loslager:

Rillenkugellager, DIN 625-6007

• gegebene Werte:

n_{an}	$= 1200 \frac{1}{\min}$
statische Tragzahl C_0	$= 10200~\mathrm{N}$
dynamische Tragzahl ${\cal C}$	$=16000~\mathrm{N}$
Lebensdauer exponent \boldsymbol{p}	=3
F_{Bx}	= 180, 11 N
F_{By}	= 560, 8 N

• Berechnung der äquivalenten dynamischen Belastung

dynamische radiale Lagerkraft
$$F_r$$

$$= \sqrt{F_{Bx}^2 + F_{By}^2} = 589 \text{ N}$$
 dynamische axiale Lagerkraft F_a
$$= F_{Bz} = 0 \text{ N}$$

Da es sich um eine reine Radialbelastung handelt, ergeben sich der Radial- und Axialfaktor zu: X=1 und Y=0

Daraus ergibt sich die äquivalente dynamische Lagerbelastung zu:

$$P = X \cdot F_r = 589 \text{ N}$$

5.3 Bestimmung der Lastkollektive und der Lebensdauer

Die Formeln für die Berechnung stammen aus dem Skript KL III^{25} Seite 76

Lastkollektiv Festlager

$$n_m = 1200 \frac{1}{min}, \text{ da die Drehzahl in beiden Gängen gleich ist}$$

$$P_{\text{aq}} = \sqrt[p]{P_1^p \cdot \frac{n_1}{n_m} \cdot \frac{q_1}{100\%} + P_2^p \cdot \frac{n_2}{n_m} \cdot \frac{q_2}{100\%}} \text{ mit } q_1 = 70 \text{ und } q_2 = 30$$

$$= \sqrt[3]{(2201, 1 \text{ N})^3 \cdot \frac{1200}{1200} \cdot \frac{70\%}{100\%} + (2256, 6 \text{ N})^3 \cdot \frac{1200}{1200} \cdot \frac{30\%}{100\%}} = 2218, 04 \text{ N}$$

Lastkollektiv Loslager

$$\begin{split} n_m &= 1200 \frac{1}{min}, \text{ da die Drehzahl in beiden Gängen gleich ist} \\ P_{\text{äq}} &= \sqrt[p]{P_1^p \cdot \frac{n_1}{n_m} \cdot \frac{q_1}{100\%} + P_2^p \cdot \frac{n_2}{n_m} \cdot \frac{q_2}{100\%}} \text{ mit } q_1 = 70 \text{ und } q_2 = 30 \\ &= \sqrt[3]{(260, 31 \text{ N})^3 \cdot \frac{1200}{1200} \cdot \frac{70\%}{100\%} + (589 \text{ N})^3 \cdot \frac{1200}{1200} \cdot \frac{30\%}{100\%}} = 419, 17 \text{ N} \end{split}$$

Lebensdauer Festlager

$$L_{10h} = \left(\frac{C}{P_{\rm aq}}\right)^p \cdot \frac{10^6}{n \cdot 60} = \left(\frac{23652 \text{ N}}{2218,04 \text{ N}}\right)^3 \cdot \frac{10^6}{1200 \frac{1}{\min} \cdot 60} = 16840, 81 \text{ h} = 1,92 \text{ a}$$

Lebensdauer Festlager

$$L_{10h} = \left(\frac{C}{P_{\rm \bar{a}q}}\right)^p \cdot \frac{10^6}{n \cdot 60} = \left(\frac{16000~\rm N}{419,17~\rm N}\right)^3 \cdot \frac{10^6}{1200\frac{1}{\rm min} \cdot 60} = 772425,98~\rm h = 88,18~a$$

²⁵Vgl. [Pol17a]

6 Schwachstellenberechnung

6.1 Berechnung Welle-Nabe-Verbindungen

In diesem Kapitel wird die maximale Flächenpressung für jede Passfederverbindung berechnet. Dieses wird anschließend mit der durch den Werkstoff vorgegebenen zulässigen Pressung verglichen.

Da hier die maximale Pressung bestimmt wird, muss für die Berechnung der 1,5 fache Wert des maximalen Momentes verwendet werden, da die Kupplung erst bei diesem Moment durch rutscht.

• Zulässige Flächenpressung

(Skript KL IV 26 S. 56)

Werkstoff C45:
$$R_{e,min}=430\frac{\mathrm{N}}{\mathrm{mm}^2}$$
 bei $d\leq 40~\mathrm{mm}$
$$R_{e,min}=370\frac{\mathrm{N}}{\mathrm{mm}^2} \text{ bei } d>40~\mathrm{mm}$$

$$p_{zul}=0,9\cdot R_{e,min}$$

$$p_{zul}=387\frac{\mathrm{N}}{\mathrm{mm}^2} \text{ für } d\leq 40~\mathrm{mm}$$

$$p_{zul}=330\frac{\mathrm{N}}{\mathrm{mm}^2} \text{ für } d>40~\mathrm{mm}$$

• maximale Flächenpressung

(Skript KL IV²⁷ S. 55 - 56)

$$p_m = \frac{2 \cdot c_B \cdot T}{d \cdot h' \cdot l' \cdot n \cdot \phi}$$
 für alle Passfedern gilt:
$$n = 1$$

 $\phi = 1$

 $c_B = 1$ (leichte Stöße, Tabelle 3.2 aus Skript KL IV)

$$l' = l - b$$
 wenn $l' \le 1, 2 \cdot d$ \Longrightarrow sonst setze $l' = 1, 2 \cdot d$ $h' = 0, 45 \cdot h$

²⁶Vgl. [Pol17b]

²⁷Vgl. [Pol17b]

Als Beispiel wird Passfeder 1 (Positionsnummer 19) auf Welle II berechnet:

$$M = 1, 5 \cdot M_{\rm II} = 121, 98 \text{ Nm}$$

$$d = 40 \text{ mm}$$

$$l=28~\mathrm{mm}$$

$$h = 8 \text{ mm}$$

$$b = 12 \text{ mm}$$

$$l' = 16 \text{ mm}$$

$$h' = 3,6 \text{ mm}$$

$$\implies p_m = \frac{2 \cdot 1, 1 \cdot 121980 \text{ Nmm}}{40 \text{ mm} \cdot 3, 6 \text{ mm} \cdot 16 \text{ mm} \cdot 1 \cdot 1} = 116, 47 \frac{\text{N}}{\text{mm}^2}$$

$$p_m < p_{zul} = 387 \frac{\text{N}}{\text{mm}^2}$$

Als weiteres Beispiel wird die Passfeder 10 (Positionsnummer 94) an der Schaltvorrichtung berechnet, da hier je nachdem, welche Zahnräder im Eingriff sind, unterschiedliche Längen der Passfeder beansprucht werden:

$$d = 70 \text{ mm}$$

$$h = 12 \text{ mm}$$

$$b = 20 \text{ mm}$$

$$h' = 5, 4 \text{ mm}$$

Gang 1:
$$l_1 = 63 \text{ mm}, l_1' = 43 \text{ mm}$$
 $M_1 = 1, 5 \cdot M_{\text{IV},1} = 0, 96 \text{ Nm}$ $\implies p_{m,1} = 0, 13 \frac{\text{N}}{\text{mm}^2}$

Gang 2:
$$l_2 = 30, 8 \text{ mm}, l_2' = 10, 8 \text{ mm}$$
 $M_2 = 1, 5 \cdot M_{\text{IV},2} = 1, 37 \text{ Nm}$ $\implies p_{m,2} = 0, 74 \frac{\text{N}}{\text{mm}^2}$

Alle weiteren Werte der Passfederberechnung sind in der folgenden Tabelle dargestellt. Alle Längen werden in der Einheit Millimeter angegeben.

Passfeder	Pos. Nr.	Welle	d	1	b	h	l'	h'	T(Nm)	$p_m(\frac{\mathrm{N}}{\mathrm{mm}^2})$
1 , bei z_9	19	II	40	28	12	8	16	3,6	121,98	116,47
2 , bei z_8	19	I	40	28	12	8	16	3,6	90,26	86,19
3 , bei z_6	25	I	50	40	14	9	26	4,05	90,26	37,72
4 , bei z_4	26	I	50	36	14	9	22	4,05	90,26	44,57
5 , bei z_1	19	I	40	28	12	8	16	3,6	90,26	86,19
6, bei Kupplung	35	I	20	20	6	6	14	2,7	90,26	262,66
7, bei z_{10}	105	IV	30	70	10	8	36	3,6	1,37	0,78
8, bei Schaltung	94	IV	40	140	12	8	48	3,6	1,37	0,44
9, bei z_{11}	103	V	35	32	10	8	22	3,6	13,7	10,87
10, bei Schaltung	91	Gang 1	70	63	20	12	43	5,4	0,96	0,13
10, bei Schaltung	91	Gang 2	70	30,8	20	12	10,8	5,4	1,37	0,74

Da bei allen Passfedern gilt $p_m < p_z u l$ halten die Passfedern der Belastung stand.

6.2 Berechnung der Schraubenverbindungen

6.2.1 Verschraubung Lagerdeckel

Da an allen Festlagern dieselben Schrauben verwendet wurden, muss nur die Schraubenverbindung mit der höchsten Belastung berechnet werden. Diese ergibt sich durch die Axialkraft, die auf die jeweilige Welle wirkt. Wegen der Kupplungskraft, die aufgrund der Konuskupplung als Normalkraft in die Welle eingeleitet wird, ist die Welle I am höchsten belastet. Da das Loslager keine Axialkräfte aufnehmen kann, muss die Schraubenverbindung an diesem Lagerdeckel nicht berechnet werden. Aus diesen Gründen wird im Folgenden die Schraubenverbindung des Lagerdeckels am Festlager der Welle I berechnet.

Kräfte

$$F_A = F_K - F_{a,8} = 2078,59 \text{ N}$$

Betriebskraft pro Schraube: $F_B = \frac{F_A}{Z} = \frac{2078,59 \text{ N}}{4} = 519,65 \text{ N}$ Vorspannungsverhältnis soll im Bereich $\frac{F_V}{F_B} = 2,5...3,5$ liegen (siehe Skript KL IV ²⁸ Seite 37).

Wähle Faktor 2,5 $\implies F_V = 2, 5 \cdot F_B = 1299, 12 \text{ N}$

²⁸Vgl. [Pol17b]

Schraubendaten

Sechskantschraube M5x25 nach DIN EN ISO 4014, Festigkeitsklasse 8.8

$$\begin{split} R_m &= 800 \frac{\rm N}{\rm mm^2} \\ R_e &= 8 \cdot 8 \cdot 10 \frac{\rm N}{\rm mm^2} = 640 \frac{\rm N}{\rm mm^2} \end{split}$$

Nenndurchmesser: d = 5 mm

Nennquerschnitt: $A_N = \frac{\pi \cdot d^2}{4} = 19,63 \text{ mm}^2$

Steigung: P = 0.8 mm

Flankendurchmesser: $d_2 = 4,48 \text{ mm}$

Kerndurchmesser: $d_3 = 4,02 \text{ mm}$

Flankenwinkel: $\beta = 60^{\circ}$

Kernquerschnitt: $A_3 = \frac{\pi \cdot d_3^2}{4} = 12,69 \text{ mm}^2$

Spannungsquerschnitt: $A_S = 14, 2 \text{ mm}^2$

Schlüsselweite: $S=8~\mathrm{mm}$

Durchmesser Durchgangsbohrung: $D_B = 5,5$ mm (DIN EN 20273)

Vorspannen

Formeln aus dem Skript KL IV 29 Seite 37 bis 39, Reibwerte aus dem Anhang A.1.5 und A.1.6

Anzugsmoment

• Bestimmung Gewindereibmoment:

$$M_{RG} = F_U \cdot \frac{d_2}{2} = F_V \cdot \frac{d_2}{2} \cdot \tan(\phi + p')$$

$$\tan(\phi) = \frac{P}{d_2 \cdot \pi} \implies \phi = 3,25^{\circ}$$

$$\tan(p') = \frac{\mu_G}{\cos(\frac{\beta}{2})} \text{ mit } \mu_G = 0,14 \implies p' = 9,18^{\circ}$$

 \implies einsetzen liefert: $M_{RG}=0,6414~\mathrm{Nm}=641,4~\mathrm{Nmm}$

• Bestimmung Kopfreibmoment:

$$M_{RK} = F_V \cdot \mu_K \cdot \frac{d_R}{2} \text{ mit } \mu_K = 0, 14$$

$$d_R = \frac{S + D_B}{2} = 6,75 \text{ mm}$$

 \implies einsetzen liefert: $M_{RK}=0,6138~\mathrm{Nm}=613,8~\mathrm{Nmm}$

 $[\]overline{^{29}}$ Vgl. [Pol17b]

Spannungen beim Vorspannen

• maximale Schubspannung:

$$\tau_{t,V} = \frac{M_{RG}}{W_p}$$

$$W_p = \frac{\pi \cdot d_3^3}{16} = 12,76 \text{ mm}^3$$

$$\implies \tau_{t,V} = 48, 1 \frac{N}{\text{mm}^2}$$

• Bestimmung Zugspannung:

$$\sigma_{Z,V} = \frac{F_V}{A_S} = 91,49 \frac{\mathrm{N}}{\mathrm{mm}^2}$$

• Berechnung der resultierenden Vergleichsspannung:

$$\sigma_{v,V} = \sqrt{\sigma_{Z,V}^2 + 3 \cdot \tau_{t,V}^2} = 123,74 \frac{N}{mm}^2$$

Die Sicherheit der Schraubenverbindung gegen plastische Verformung beträgt:

$$S_F = \frac{R_{p0,2}}{\sigma_{v,V}} = 5,12$$

unter Betriebslast

Formeln aus dem Skript KL IV 30 Seite 41 bis 43

Kräfte

• Nachgiebigkeit der Schraube:

$$\delta_S = \frac{1}{E} \cdot \left(\frac{1}{d} + \frac{l_1}{A_N} + \frac{l_2}{A_S}\right)$$
mit $E = 2, 1 \cdot 10^5 \frac{\text{N}}{\text{mm}^2}$, $l_1 = 9 \text{ mm}$, $l_2 = 16 \text{ mm}$

$$\implies \delta_S = 8, 5 \cdot 10^{-6} \frac{\text{mm}}{\text{N}}$$

• Bestimmung der Nachgiebigkeit der verspannten Elemente nach Fall b)

$$\alpha=0,1$$
 für Stahl, $D_A=14$ mm, $l_K=25$ mm

$$\begin{split} \delta_H &= \frac{l_K}{E \cdot A_{ers}} \\ \text{mit } A_{ers} &= \frac{\pi}{4} \cdot \left(d_K^2 - D_B^2 \right) + \frac{\pi}{8} \cdot \left(\frac{D_A}{d_K} - 1 \right) \cdot \left(\frac{d_K \cdot l_K}{5} + \alpha^2 \cdot l_K^2 \right) = 40,12 \text{ mm}^2 \\ &\implies \delta_H = 2,97 \cdot 10^{-6} \frac{\text{mm}}{\text{N}} \end{split}$$

Damit ergibt sich die Schraubenkraft unter Betriebslast zu:

$$F_S = F_V + \frac{F_B}{1 + \frac{\delta_S}{\delta_H}} = 1433,68 \text{ N}$$

Die verbleibende Klemmkraft beträgt dann $F_{Kl}=F_S-F_B=914,03~\mathrm{N}$

 $[\]overline{}^{30}$ Vgl. [Pol17b]

Spannungen

- Zugspannung: $\sigma_{Z,B} = \frac{F_S}{A_S} = 100,96 \frac{\text{N}}{\text{mm}^2}$
- Torsionsspannung:

Das Torsionsmoment im Betrieb hat die Größe des kleineren Wertes von M_{RK} und M_{RG} , also:

$$\tau_{t,B} = \frac{M_{RK}}{W_p} = 48, 1 \frac{\mathrm{N}}{\mathrm{mm}^2}$$

• resultierende Vergleichsspannung: $\sigma_{v,B} = \sqrt{\sigma_{Z,B}^2 + 3 \cdot \tau_{t,B}^2} = 130, 9 \frac{N^{-2}}{mm}$

Daraus ergibt sich die Sicherheit der Verbindung gegen plastische Verformung zu:

$$S_F = \frac{R_{p0,2}}{\sigma_{v,B}} = 4,89$$

Die Schraubenverbindung hält der Belastung also stand.

6.2.2 Verschraubung Kupplung

Da an allen Festlagern dieselben Schrauben verwendet wurden, muss nur die Schraubenverbindung mit der höchsten Belastung berechnet werden. Diese ergibt sich durch die Axialkraft, die auf die jeweilige Welle wirkt. Wegen der Kupplungskraft, die aufgrund der Konuskupplung als Normalkraft in die Welle eingeleitet wird, ist die Welle I am höchsten belastet. Da das Loslager keine Axialkräfte aufnehmen kann, muss die Schraubenverbindung an diesem Lagerdeckel nicht berechnet werden. Aus diesen Gründen wird im Folgenden die Schraubenverbindung des Lagerdeckels am Festlager der Welle I berechnet.

Kräfte

$$F_A = F_K = 2318,49 \text{ N}$$

Betriebskraft pro Schraube: $F_B = \frac{F_A}{Z} = \frac{2318,49 \text{ N}}{8} = 289,8 \text{ N}$ Vorspannungsverhältnis soll im Bereich $\frac{F_V}{F_B} = 2,5...3,5$ liegen (siehe Skript KL IV ³¹ Seite 37).

Wähle Faktor 2,5
$$\implies F_V = 2, 5 \cdot F_B = 724, 5 \text{ N}$$

³¹Vgl. [Pol17b]

Schraubendaten

Sechskantschraube M3x20 nach DIN EN ISO 4014, Festigkeitsklasse 8.8

$$\begin{split} R_m &= 800 \frac{\rm N}{\rm mm^2} \\ R_e &= 8 \cdot 8 \cdot 10 \frac{\rm N}{\rm mm^2} = 640 \frac{\rm N}{\rm mm^2} \end{split}$$

Nenndurchmesser: d = 3 mm

Nennquerschnitt: $A_N = \frac{\pi \cdot d^2}{4} = 7,07 \text{ mm}^2$

Steigung: P = 0, 5 mm

Flankendurchmesser: $d_2 = 2,68 \text{ mm}$

Kerndurchmesser: $d_3 = 2,39 \text{ mm}$

Flankenwinkel: $\beta = 60^{\circ}$

Kernquerschnitt: $A_3 = \frac{\pi \cdot d_3^2}{4} = 4,49 \text{ mm}^2$

Spannungsquerschnitt: $A_S = 5,03 \text{ mm}^2$

Schlüsselweite: $S=5,5~\mathrm{mm}$

Durchmesser Durchgangsbohrung: $D_B=3,4~\mathrm{mm}$ (DIN EN 20273)

Vorspannen

Formeln aus dem Skript KL IV 32 Seite 37 bis 39, Reibwerte aus dem Anhang A.1.5 und A.1.6

Anzugsmoment

• Bestimmung Gewindereibmoment:

$$M_{RG} = F_U \cdot \frac{d_2}{2} = F_V \cdot \frac{d_2}{2} \cdot \tan(\phi + p')$$

$$\tan(\phi) = \frac{P}{d_2 \cdot \pi} \implies \phi = 3, 4^{\circ}$$

$$\tan(p') = \frac{\mu_G}{\cos(\frac{\beta}{2})} \text{ mit } \mu_G = 0, 14 \implies p' = 9, 18^{\circ}$$

 \implies einsetzen liefert: $M_{RG}=0,2167~\mathrm{Nm}=216,65~\mathrm{Nmm}$

• Bestimmung Kopfreibmoment:

$$M_{RK} = F_V \cdot \mu_K \cdot \frac{d_R}{2} \text{ mit } \mu_K = 0,14$$

$$d_R = \frac{S + D_B}{2} = 4,45 \text{ mm}$$

 \implies einsetzen liefert: $M_{RK}=0,2257~\mathrm{Nm}=225,68~\mathrm{Nmm}$

 $[\]overline{^{32}}$ Vgl. [Pol17b]

Spannungen beim Vorspannen

• maximale Schubspannung:

$$\tau_{t,V} = \frac{M_{RG}}{W_p}$$

$$W_p = \frac{\pi \cdot d_3^3}{16} = 2,68 \text{ mm}^3$$

$$\implies \tau_{t,V} = 80,84 \frac{\text{N}}{\text{mm}^2}$$

• Bestimmung Zugspannung:

$$\sigma_{Z,V} = \frac{F_V}{A_S} = 144 \frac{\text{N}}{\text{mm}^2}$$

• Berechnung der resultierenden Vergleichsspannung:

$$\sigma_{v,V} = \sqrt{\sigma_{Z,V}^2 + 3 \cdot \tau_{t,V}^2} = 200,85 \frac{N}{mm}^2$$

Die Sicherheit der Schraubenverbindung gegen plastische Verformung beträgt:

$$S_F = \frac{R_{p0,2}}{\sigma_{v,V}} = 3,19$$

unter Betriebslast

Formeln aus dem Skript KL IV 33 Seite 41 bis 43

Kräfte

• Nachgiebigkeit der Schraube:

$$\delta_S = \frac{1}{E} \cdot \left(\frac{1}{d} + \frac{l_1}{A_N} + \frac{l_2}{A_S}\right)$$
mit $E = 2, 1 \cdot 10^5 \frac{\text{N}}{\text{mm}^2}$, $l_1 = 8 \text{ mm}$, $l_2 = 12 \text{ mm}$

$$\implies \delta_S = 1,97 \cdot 10^{-5} \frac{\text{mm}}{\text{N}}$$

• Bestimmung der Nachgiebigkeit der verspannten Elemente nach Fall b)

$$\alpha=0,1$$
 für Stahl, $D_A=7,5$ mm, $l_K=20$ mm, $d_K=4,6$ mm

$$\delta_H = \frac{l_K}{E \cdot A_{ers}}$$
mit $A_{ers} = \frac{\pi}{4} \cdot \left(d_K^2 - D_B^2 \right) + \frac{\pi}{8} \cdot \left(\frac{D_A}{d_K} - 1 \right) \cdot \left(\frac{d_K \cdot l_K}{5} + \alpha^2 \cdot l_K^2 \right) = 13,09 \text{ mm}^2$

$$\implies \delta_H = 7,27 \cdot 10^{-6} \frac{\text{mm}}{\text{N}}$$

Damit ergibt sich die Schraubenkraft unter Betriebslast zu:

$$F_S = F_V + \frac{F_B}{1 + \frac{\delta_S}{\delta_H}} = 802,62 \text{ N}$$

Die verbleibende Klemmkraft beträgt dann $F_{Kl}=F_S-F_B=512,82~\mathrm{N}$

 $[\]overline{^{33}}$ Vgl. [Pol17b]

Spannungen

- Zugspannung: $\sigma_{Z,B} = \frac{F_S}{A_S} = 159,57 \frac{\text{N}}{\text{mm}^2}$
- Torsionsspannung:

Das Torsionsmoment im Betrieb hat die Größe des kleineren Wertes von M_{RK} und M_{RG} , also:

$$\tau_{t,B} = \frac{M_{RG}}{W_p} = 80,84 \frac{N}{\text{mm}^2}$$

 \bullet resultierende Vergleichsspannung: $\sigma_{v,B}=\sqrt{\sigma_{Z,B}^2+3\cdot\tau_{t,B}^2}=212,29\frac{N}{mm}^2$

Daraus ergibt sich die Sicherheit der Verbindung gegen plastische Verformung zu:

$$S_F = \frac{R_{p0,2}}{\sigma_{v,B}} = 3,01$$

Die Schraubenverbindung hält der Belastung also stand.

7 Passungsberechnung

In diesem Kapitel werden 5 verschiedene Passungen ausgewählt und berechnet. Bei den Toleranzen der Wälzlager wird die Genauigkeitsklasse P0 aus dem LFD Produktkatalog³⁴ Seite 27 berücksichtigt.

- N: Nennmaß
- $T: \mathbf{Grundtoleranz}$
- A_U : unteres Abmaß
- A_O : oberes Abmaß
- $G_U: \mathbf{Mindestma}$
- G_O : Höchstmaß
- P_U : Mindestpassung
- P_O : Höchstpassung

Die verwendeten Formeln stammen aus dem Skript KL $\rm I^{35}$ S. 39

$$A_U + T = A_O$$

$$G_O = N + A_O$$

$$G_U = N - A_U$$

$$P_O = G_{oB} - G_{uW}$$

$$P_U = G_{uB} - G_{oW}$$

Die jeweiligen Werte von T, A_O und A_U stammen aus dem Tabellenbuch Metall³⁶ Seite 103 bis 105.

 $[\]overline{^{34}}$ Vgl. [Wäl]

³⁵Vgl. [Lac16]

 $^{^{36}}$ Vgl. [Fis14]

Passung 1: Schalthülse und Welle IV

An dieser Stelle wird eine lose Passung gewählt, da die Schaltung per Hand erfolgen soll und somit Spiel zwischen der Schalthülse und der Welle sein muss. Passung: h9/F8

• Toleranz Welle: 40 h9

Toleranzgrad 9
$$\implies$$
 Grundtoleranz $T=52\mu\mathrm{m}$ oberes Abmaß $A_o=0\mu\mathrm{m}$ \implies Höchstmaß $G_O=N$ $A_o=0$ mm
$$A_u=-0,052$$
 mm
$$G_o=N=40$$
 mm
$$G_u=39,948$$
 mm

• Toleranz Bohrung: 40 F6

Toleranzgrad 6
$$\implies$$
 Grundtoleranz $T=16\mu\mathrm{m}$ unteres Abmaß $A_u=+25\mu\mathrm{m}$
$$A_u=+0,025~\mathrm{mm}$$

$$A_o=+0,041~\mathrm{mm}$$

$$G_u=40,025~\mathrm{mm}$$

$$G_o=40,041~\mathrm{mm}$$

$$P_o=40,041 \text{ mm}-39,948 \text{ mm}=+0,093 \text{ mm}$$

$$P_u=40,025 \text{ mm}-40 \text{ mm}=+0,025 \text{ mm}$$
 \Longrightarrow es liegt in jeden Fall eine Spielpassung vor

Passung 2: Lagerinnenring Schrägkugellager (Festlager) und Welle IV

Bei dieser Passung wird eine Übermaßpassung gewählt. Es handelt sich um ein Festlager, bei dem der Innenring auf Umfangslast beansprucht wird. Deshalb ist eine feste Passung notwendig.

Passung: k6 (Empfehlung Produktkatalog³⁷ Seite 21)

• Toleranz Welle: 15 k6

Toleranzgrad 6
$$\implies$$
 Grundtoleranz $T=11\mu\mathrm{m}$ unteres Abmaß $A_u=+35\mu\mathrm{m}$
$$A_u=+0,035~\mathrm{mm}$$

$$A_o=+0,046~\mathrm{mm}$$

$$G_u=15,035~\mathrm{mm}$$

$$G_o=15,046~\mathrm{mm}$$

• Toleranz Bohrung: 15 P0

oberes Abmaß
$$A_o=0\mu\mathrm{m}$$
 unteres Abmaß $A_u=-8\mu\mathrm{m}$ $G_o=15~\mathrm{mm}$ $G_u=14,992~\mathrm{mm}$

$$\begin{split} P_o &= 15 \text{ mm} - 15,035 \text{ mm} = -0,035 \text{ mm} \\ P_u &= 14,992 \text{ mm} - 15,046 \text{ mm} = -0,053 \text{ mm} \\ \Longrightarrow \text{ es liegt in jedem Fall ein Übermaß vor} \end{split}$$

³⁷Vgl. [Wäl]

Passung 3: Lageraußenring Schrägkugellager (Festlager, Welle I) und Lagertopf

Bei dieser Passung wird eine Spielpassung gewählt. Es handelt sich zwar um ein Festlager, der Außenring wird allerdings nur auf Punktlast beansprucht, weshalb keine feste Passung notwendig ist. Außerdem darf nur ein Ring des Lagers fest angepasst werden (das wäre in diesem Fall der Innenring), da das Lager ansonsten nicht mehr zu montieren wäre.

Passung: J6 (Empfehlung Produktkatalog³⁸ Seite 21)

• Toleranz Außenring ("Welle"): 52 P0

oberes Abmaß
$$A_o=0\mu\mathrm{m}$$
 unteres Abmaß $A_u=-13\mu\mathrm{m}$ $G_o=52~\mathrm{mm}$ $G_u=51,987~\mathrm{mm}$

• Toleranz Lagertop ("Bohrung"): 52 J6

Toleranzgrad 6
$$\implies$$
 Grundtoleranz $T=19\mu\mathrm{m}$ oberes Abmaß $A_o=+28\mu\mathrm{m}$
$$A_o=+0,028~\mathrm{mm}$$

$$A_u=+0,009~\mathrm{mm}$$

$$G_o=52,028~\mathrm{mm}$$

$$G_u=52,009~\mathrm{mm}$$

$$P_o = 52,028 \text{ mm} - 51,987 \text{ mm} = +0,051 \text{ mm}$$

 $P_u = 52,009 \text{ mm} - 52 \text{ mm} = +0,009 \text{ mm}$
 \implies Es liegt in jedem Fall Spiel vor.

 $[\]overline{^{38}}$ Vgl. [Wäl]

Passung 4: Schnecke und Welle IV

Da die Schnecke per Hand auf die Welle aufgeschoben wird, wird für diese Passung ein geringes Passungsspiel gewählt.

Passung: H7/h6

• Toleranz Welle: 30 h6

Toleranzgrad 6
$$\implies$$
 Grundtoleranz $T=13\mu\mathrm{m}$ oberes Abmaß $A_o=0\mu\mathrm{m}$ \implies $G_o=N$
$$A_o=0\ \mathrm{mm}$$

$$A_u=-0,013\ \mathrm{mm}$$

$$G_o=30\ \mathrm{mm}$$

$$G_u=29,987\ \mathrm{mm}$$

• Toleranz Bohrung: 30 H7

Toleranzgrad 7
$$\implies$$
 Grundtoleranz $T=21\mu\mathrm{m}$ unteres Abmaß $A_u=0\mu\mathrm{m}$ \implies $G_u=N$
$$A_u=0\ \mathrm{mm}$$

$$A_o=0,021\ \mathrm{mm}$$

$$G_u=30\ \mathrm{mm}$$

$$G_o=30,021\ \mathrm{mm}$$

$$P_o=30,021~{\rm mm}-29,987~{\rm mm}=0,034~{\rm mm}$$

$$P_u=30~{\rm mm}-30~{\rm mm}=0~{\rm mm}$$
 \Longrightarrow ein Verschieben der Schnecke per Hand ist gerade noch möglich

Passung 5: Gleitlagerbuchse (Festlager, Welle VI) und Lagertopf

An dem Außenring der Gleitlagerbuchse ist eine feste Passung notwendig, das das Lager über eine Presspassung im Gehäuse montiert wird.

Passung: H7/s6

• Toleranz Welle: 21 s6

Toleranzgrad 6 \implies Grundtoleranz $T=13\mu\mathrm{m}$ unteres Abmaß $A_u=+43\mu\mathrm{m}$

 $A_u = +0,043 \text{ mm}$

 $A_o = +0,056 \text{ mm}$

 $G_u = 21,043 \text{ mm}$

 $G_o = 21,056 \text{ mm}$

• Toleranz Bohrung: 21 H7

Toleranzgrad 7 \implies Grundtoleranz $T=21\mu\mathrm{m}$ unteres Abmaß $A_u=0\mu\mathrm{m}$ \implies $G_u=N$

 $A_u = 0 \text{ mm}$

 $A_o = 0,021 \text{ mm}$

 $G_u = 21 \text{ mm}$

 $G_o = 21,021 \text{ mm}$

• Passungsart

 $P_o = 21,021 \text{ mm} - 21,043 \text{ mm} = -0,022 \text{ mm}$

 $P_u = 21 \text{ mm} - 21,056 \text{ mm} = -0,056 \text{ mm}$

 \implies es liegt in jedem Fall ein Übermaß vor

8 Quellen

8.1 Literatur

- [Den17] Prof. Dr. Berend Denkena. Konstruktion, Gestaltung und Herstellung von Produkten II. Script. Institut f\u00fcr Fertigungstechnik und Werkzeugmaschinen, 2017.
- [Fis14] Ulrich Fischer. *Tabellenbuch Metall*. Europa Lehrmittel, 2014. ISBN: 978-3-8085-1676-8.
- [Lac16] Prof. Dr. Roland Lachmayer. Konstruktion, Gestaltung und Herstellung von Produkten I. Script. Institut für Produktentwicklung und Gerätebau, 2016.
- [Pol17a] Prof. Dr.-Ing Gerhard Poll. Konstruktionslehre III. Script. Institut für Maschinenkonstruktion und Tribologie, 2017.
- [Pol17b] Prof. Dr.-Ing Gerhard Poll. Konstruktionslehre IV. Script. Institut f\u00fcr Maschinenkonstruktion und Tribologie, 2017.
- [Wit+15] Herbert Wittel u. a. Roloff/Matek Maschinenelemente. Tabellenbuch. Springer Vieweg, 2015. ISBN: 978-3-658-09081-4.
- [WJV15] Herbert Wittel, Dieter Jannasch und Joachim Voßkiek. Roloff/Matek Maschinenelemente. Normung Berechnung Gestaltung. Springer Vieweg, 2015. ISBN: 978-3-658-09081-4.

8.2 Internet

- [Gmb] LEICHT GmbH. Reibbelag LR353-Technische Daten Reibwerkstoff:
 Bremsbelag-Kupplungsbelag. URL:
 http://www.leicht-gmbh.de/cms/Werkstoffe/LR353/index1-a-45.html
 (besucht am 25.11.2017).
- [Wäl] LFD Wälzlager. Produktkatalog Rillenkugellager. URL: http://www.kugellager-katalog.de/media/files/lfd-kugellagerkatalog-de.pdf (besucht am 10.12.2017).

A Anhang