Sporadic torsion

David Zureick-Brown Anastassia Etropolski (Emory University) Jackson Morrow (Emory University)

Emory University Slides available at http://www.mathcs.emory.edu/~dzb/slides/

SERMON XXIX, Harrisonburg, VA

April 2-3, 2016

Theorem (Mazur, 1978)

Let E/\mathbb{Q} be an elliptic curve. Then $E(\mathbb{Q})_{tors}$ is isomorphic to one of the following groups.

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \leq N \leq 10$ or $N = 12$,

$$\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$$
, for $1 \leq N \leq 4$.

Theorem (Mazur, 1978)

Let E/\mathbb{Q} be an elliptic curve. Then $E(\mathbb{Q})_{tors}$ is isomorphic to one of the following groups.

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \leq N \leq 10$ or $N = 12$,

$$\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$$
, for $1 \leq N \leq 4$.

More precisely, let

• $Y_1(N)$ be the curve paramaterizing (E, P), where P is a point of exact order N on E, and let

Theorem (Mazur, 1978)

Let E/\mathbb{Q} be an elliptic curve. Then $E(\mathbb{Q})_{tors}$ is isomorphic to one of the following groups.

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \leq N \leq 10$ or $N = 12$,

$$\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$$
, for $1 \leq N \leq 4$.

More precisely, let

- $Y_1(N)$ be the curve paramaterizing (E, P), where P is a point of exact order N on E, and let
- $Y_1(M, N)$ (with $M \mid N$) be the curve paramaterizing E/K such that $E(K)_{tors}$ contains $\mathbb{Z}/M\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}$.

Theorem (Mazur, 1978)

Let E/\mathbb{Q} be an elliptic curve. Then $E(\mathbb{Q})_{tors}$ is isomorphic to one of the following groups.

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \leq N \leq 10$ or $N = 12$,

$$\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$$
, for $1 \leq N \leq 4$.

More precisely, let

- $Y_1(N)$ be the curve paramaterizing (E, P), where P is a point of exact order N on E, and let
- $Y_1(M, N)$ (with $M \mid N$) be the curve paramaterizing E/K such that $E(K)_{tors}$ contains $\mathbb{Z}/M\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}$.

Then $Y_1(N)(\mathbb{Q}) \neq \emptyset$ and $Y_1(2,2N)(\mathbb{Q}) \neq \emptyset$ iff N are as above.

Modular curves

Example (N = 9)

 $E(K) \cong \mathbb{Z}/9\mathbb{Z}$ if and only if there exists $t \in K$ such that E is isomorphic to

$$y^{2} + (t - rt + 1)xy + (rt - r^{2}t)y = x^{3} + (rt - r^{2}t)x^{2}$$

where r is $t^2 - t + 1$. The torsion point is (0,0).

Modular curves

Example (N = 9)

 $E(K)\cong \mathbb{Z}/9\mathbb{Z}$ if and only if there exists $t\in K$ such that E is isomorphic to

$$y^{2} + (t - rt + 1)xy + (rt - r^{2}t)y = x^{3} + (rt - r^{2}t)x^{2}$$

where r is $t^2 - t + 1$. The torsion point is (0,0).

Example (N = 11)

 $E(K) \cong \mathbb{Z}/11\mathbb{Z}$ correspond to $a, b \in K$ such that

$$a^2 + (b^2 + 1)a + b$$
;

in which case E is isomorphic to

$$y^2 + (s - rs + 1)xy + (rs - r^2s)y = x^3 + (rs - r^2s)x^2$$

where r is ba + 1 and s is -b + 1.

Let $X_1(N)$ and $X_1(M, N)$ be the smooth compactifications of $Y_1(N)$ and $Y_1(M, N)$.

Let $X_1(N)$ and $X_1(M, N)$ be the smooth compactifications of $Y_1(N)$ and $Y_1(M, N)$. We can restate the results of Mazur's Theorem as follows.

Let $X_1(N)$ and $X_1(M, N)$ be the smooth compactifications of $Y_1(N)$ and $Y_1(M, N)$. We can restate the results of Mazur's Theorem as follows.

• $X_1(N)$ and $X_1(2,2N)$ have genus 0 for **exactly** the N appearing in Mazur's Theorem. (So in particular, there are **infinitely many** E/\mathbb{Q} with such torsion structure.)

Let $X_1(N)$ and $X_1(M, N)$ be the smooth compactifications of $Y_1(N)$ and $Y_1(M, N)$. We can restate the results of Mazur's Theorem as follows.

- $X_1(N)$ and $X_1(2,2N)$ have genus 0 for **exactly** the N appearing in Mazur's Theorem. (So in particular, there are **infinitely many** E/\mathbb{Q} with such torsion structure.)
- If $g(X_1(N))$ (resp. $g(X_1(2,2N))$) is greater than 0, then $X_1(N)(\mathbb{Q})$ (resp. $X_1(2,2N)(\mathbb{Q})$) consists only of cusps.

Let $X_1(N)$ and $X_1(M, N)$ be the smooth compactifications of $Y_1(N)$ and $Y_1(M, N)$. We can restate the results of Mazur's Theorem as follows.

- $X_1(N)$ and $X_1(2,2N)$ have genus 0 for **exactly** the N appearing in Mazur's Theorem. (So in particular, there are **infinitely many** E/\mathbb{Q} with such torsion structure.)
- If $g(X_1(N))$ (resp. $g(X_1(2,2N))$) is greater than 0, then $X_1(N)(\mathbb{Q})$ (resp. $X_1(2,2N)(\mathbb{Q})$) consists only of cusps.

So, in a sense, the simplest thing that could happen does happen for these modular curves.

Higher Degree Torsion Points

Theorem (Merel, 1996)

For every integer $d \ge 1$, there is a constant N(d) such that for all K/\mathbb{Q} of degree at most d and all E/K,

$$\#E(K)_{tors} \leq N(d)$$
.

Higher Degree Torsion Points

Theorem (Merel, 1996)

For every integer $d \ge 1$, there is a constant N(d) such that for all K/\mathbb{Q} of degree at most d and all E/K,

$$\#E(K)_{tors} \leq N(d)$$
.

Problem

Fix $d \ge 1$. Classify all groups which can occur as $E(K)_{tors}$ for K/\mathbb{Q} of degree d. Which of these occur infinitely often?

The Quadratic Case

Theorem (Kamienny-Kenku-Momose, 1980's)

Let E be an elliptic curve over a quadratic number field K. Then $E(K)_{tors}$ is one of the following groups.

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \leq N \leq 16$ or $N = 18$,

$$\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$$
, for $1 \le N \le 6$,

$$\mathbb{Z}/3\mathbb{Z}\oplus\mathbb{Z}/3N\mathbb{Z}$$
, for $1\leq N\leq 2$, or

$$\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$$
.

The Quadratic Case

Theorem (Kamienny-Kenku-Momose, 1980's)

Let E be an elliptic curve over a quadratic number field K. Then $E(K)_{tors}$ is one of the following groups.

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \leq N \leq 16$ or $N = 18$, $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$, for $1 \leq N \leq 6$, $\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3N\mathbb{Z}$, for $1 \leq N \leq 2$, or $\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$.

In particular, the corresponding curves $X_1(M, N)$ all have $g \le 2$, which guarantees that they have infinitely many quadratic points.

Modular curves

Example (N = 9)

 $E(K) \cong \mathbb{Z}/9\mathbb{Z}$ if and only if there exists $t \in K$ such that E is isomorphic to

$$y^{2} + (t - rt + 1)xy + (rt - r^{2}t)y = x^{3} + (rt - r^{2}t)x^{2}$$

where r is $t^2 - t + 1$. The torsion point is (0,0).

Modular curves

Example (N = 9)

 $E(K)\cong \mathbb{Z}/9\mathbb{Z}$ if and only if there exists $t\in K$ such that E is isomorphic to

$$y^{2} + (t - rt + 1)xy + (rt - r^{2}t)y = x^{3} + (rt - r^{2}t)x^{2}$$

where r is $t^2 - t + 1$. The torsion point is (0,0).

Example (N = 11)

 $E(K) \cong \mathbb{Z}/11\mathbb{Z}$ correspond to $a, b \in K$ such that

$$a^2 + (b^2 + 1)a + b$$
;

in which case E is isomorphic to

$$y^2 + (s - rs + 1)xy + (rs - r^2s)y = x^3 + (rs - r^2s)x^2$$

where r is ba + 1 and s is -b + 1.

Let X/\mathbb{Q} be a curve.

• If X admits a degree $d = [K \colon \mathbb{Q}]$ map to $\mathbb{P}^1_{\mathbb{Q}}$, then X(K) is infinite.

Let X/\mathbb{Q} be a curve.

- If X admits a degree $d = [K : \mathbb{Q}]$ map to $\mathbb{P}^1_{\mathbb{Q}}$, then X(K) is infinite.
- More precisely, if D is a divisor of degree d on X and dim $|D| \ge 1$, then D paramaterizes an infinite family of effective degree d divisors.

Let X/\mathbb{Q} be a curve.

- If X admits a degree $d = [K : \mathbb{Q}]$ map to $\mathbb{P}^1_{\mathbb{Q}}$, then X(K) is infinite.
- More precisely, if D is a divisor of degree d on X and dim $|D| \ge 1$, then D paramaterizes an infinite family of effective degree d divisors.

Question

If $Y_1(M, N)(K) \neq \emptyset$, are all of the points coming from the existence of such divisors?

Let X/\mathbb{Q} be a curve.

- If X admits a degree $d = [K : \mathbb{Q}]$ map to $\mathbb{P}^1_{\mathbb{Q}}$, then X(K) is infinite.
- More precisely, if D is a divisor of degree d on X and dim $|D| \ge 1$, then D paramaterizes an infinite family of effective degree d divisors.

Question

If $Y_1(M, N)(K) \neq \emptyset$, are all of the points coming from the existence of such divisors?

If not, we call these outliers **sporadic** points.

Sporadic Cubic Points

Theorem (Jeon-Kim-Schweizer, 2004)

Let E be an elliptic curve over a cubic number field K. Then the subgroups which arise as $E(K)_{tors}$ infinitely often are exactly the following.

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \leq N \leq 20$, $N \neq 17, 19$, or

 $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$, for $1 \leq N \leq 7$.

Sporadic Cubic Points

Theorem (Jeon-Kim-Schweizer, 2004)

Let E be an elliptic curve over a cubic number field K. Then the subgroups which arise as $E(K)_{tors}$ infinitely often are exactly the following.

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \leq N \leq 20$, $N \neq 17, 19$, or

 $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$, for $1 \leq N \leq 7$.

Theorem (Najman, 2014)

There is an elliptic curve E/\mathbb{Q} whose torsion subgroup over a cubic field is $\mathbb{Z}/21\mathbb{Z}$.

Sporadic Cubic Points

Classification of Cubic Torsion

Theorem (Etropolski–Morrow–ZB, Derickx)

The only torsion subgroups which appear for an elliptic curve over a cubic field are

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \leq N \leq 21$, $N \neq 17, 19$, and

$$\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$$
, for $1 \leq N \leq 7$.

Classification of Cubic Torsion

Theorem (Etropolski–Morrow–ZB, Derickx)

The only torsion subgroups which appear for an elliptic curve over a cubic field are

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \leq N \leq 21$, $N \neq 17, 19$, and

$$\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{N}\mathbb{Z}$$
, for $1 \leq N \leq 7$.

In other words, there is only one cubic sporadic point.

Classification of Cubic Torsion

Theorem (Etropolski–Morrow–ZB, Derickx)

The only torsion subgroups which appear for an elliptic curve over a cubic field are

$$\mathbb{Z}/N\mathbb{Z}$$
, for $1 \leq N \leq 21$, $N \neq 17, 19$, and

$$\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$$
, for $1 \leq N \leq 7$.

In other words, there is only one cubic sporadic point.

Remark

Parent showed that the largest prime that can divide $E(K)_{\text{tors}}$ in the cubic case is p=13.

Get lucky

• Let X be either of $X_1(N)$ or $X_1(2,2N)$.

Get lucky

- Let X be either of $X_1(N)$ or $X_1(2,2N)$.
- For almost all N we need to consider, $\operatorname{rk} J_X(\mathbb{Q}) = 0$.

Get lucky

- Let X be either of $X_1(N)$ or $X_1(2,2N)$.
- For almost all N we need to consider, $\operatorname{rk} J_X(\mathbb{Q}) = 0$.

The Mordell-Weil Sieve

Let $X^{(d)} := X^d/S_d$ denote the dth symmetric power of X. Note that degree d points of X are \mathbb{Q} -points of $X^{(d)}$.

The Mordell-Weil Sieve

Let $X^{(d)} := X^d/S_d$ denote the dth symmetric power of X. Note that degree d points of X are \mathbb{Q} -points of $X^{(d)}$.

For a finite set S of primes of good reduction, we have the following commutative diagram.

The Mordell-Weil Sieve

Let $X^{(d)} := X^d/S_d$ denote the dth symmetric power of X. Note that degree d points of X are \mathbb{Q} -points of $X^{(d)}$.

For a finite set S of primes of good reduction, we have the following commutative diagram.

We want to choose S so that, once we remove any known rational points, the images of α and β are disjoint.

• Let $Y = X_1(33)$. Then g(Y) = 21 and $\gamma_Y = 10$.

- Let $Y = X_1(33)$. Then g(Y) = 21 and $\gamma_Y = 10$.
- $J_Y(\mathbb{Q})$ contains a subgroup of order $2 \cdot 3 \cdot 5 \cdot 11 \cdot 61 \cdot 421$.

- Let $Y = X_1(33)$. Then g(Y) = 21 and $\gamma_Y = 10$.
- $J_Y(\mathbb{Q})$ contains a subgroup of order $2 \cdot 3 \cdot 5 \cdot 11 \cdot 61 \cdot 421$.
- We sieve using the map $f: X_1(33) \rightarrow X_0(33)$.

- Let $Y = X_1(33)$. Then g(Y) = 21 and $\gamma_Y = 10$.
- $J_Y(\mathbb{Q})$ contains a subgroup of order $2 \cdot 3 \cdot 5 \cdot 11 \cdot 61 \cdot 421$.
- We sieve using the map $f: X_1(33) \rightarrow X_0(33)$.
- $g(X_0(33)) = 2$ and $J_0(33)(\mathbb{Q}) \simeq \mathbb{Z}/10 \times \mathbb{Z}/10 = \langle D_1, D_2 \rangle$.

- Let $Y = X_1(33)$. Then g(Y) = 21 and $\gamma_Y = 10$.
- $J_Y(\mathbb{Q})$ contains a subgroup of order $2 \cdot 3 \cdot 5 \cdot 11 \cdot 61 \cdot 421$.
- We sieve using the map $f: X_1(33) \rightarrow X_0(33)$.
- $g(X_0(33)) = 2$ and $J_0(33)(\mathbb{Q}) \simeq \mathbb{Z}/10 \times \mathbb{Z}/10 = \langle D_1, D_2 \rangle$.
- Write $P 3Q = mD_1 + nD_2$ in $J_0(33)$.

- Let $Y = X_1(33)$. Then g(Y) = 21 and $\gamma_Y = 10$.
- $J_Y(\mathbb{Q})$ contains a subgroup of order $2 \cdot 3 \cdot 5 \cdot 11 \cdot 61 \cdot 421$.
- We sieve using the map $f: X_1(33) \rightarrow X_0(33)$.
- $g(X_0(33)) = 2$ and $J_0(33)(\mathbb{Q}) \simeq \mathbb{Z}/10 \times \mathbb{Z}/10 = \langle D_1, D_2 \rangle$.
- Write $P 3Q = mD_1 + nD_2$ in $J_0(33)$.
- mod 7: (m, n) is either (0,3), (2,2), (5,8), or (7,7).

- Let $Y = X_1(33)$. Then g(Y) = 21 and $\gamma_Y = 10$.
- $J_Y(\mathbb{Q})$ contains a subgroup of order $2 \cdot 3 \cdot 5 \cdot 11 \cdot 61 \cdot 421$.
- We sieve using the map $f: X_1(33) \rightarrow X_0(33)$.
- $g(X_0(33)) = 2$ and $J_0(33)(\mathbb{Q}) \simeq \mathbb{Z}/10 \times \mathbb{Z}/10 = \langle D_1, D_2 \rangle$.
- Write $P 3Q = mD_1 + nD_2$ in $J_0(33)$.
- mod 7: (m, n) is either (0,3), (2,2), (5,8), or (7,7).
- mod 13: (m, n) is either (1, 1), (1, 4), (3, 3), (4, 7), (6, 6), (6, 9) (8, 8), or (9, 2).

- Let $Y = X_1(33)$. Then g(Y) = 21 and $\gamma_Y = 10$.
- $J_Y(\mathbb{Q})$ contains a subgroup of order $2 \cdot 3 \cdot 5 \cdot 11 \cdot 61 \cdot 421$.
- We sieve using the map $f: X_1(33) \rightarrow X_0(33)$.
- $g(X_0(33)) = 2$ and $J_0(33)(\mathbb{Q}) \simeq \mathbb{Z}/10 \times \mathbb{Z}/10 = \langle D_1, D_2 \rangle$.
- Write $P 3Q = mD_1 + nD_2$ in $J_0(33)$.
- mod 7: (m, n) is either (0,3), (2,2), (5,8), or (7,7).
- mod 13: (m, n) is either (1, 1), (1, 4), (3, 3), (4, 7), (6, 6), (6, 9) (8, 8), or (9, 2).