第三十三讲 正定二次型与正定矩阵

一、正定二次型

二、正定矩阵

三、n元二次型的分类

四、内容小结

一、正定二次型

1、定义: 实二次型 $f(x_1,x_2,...,x_n)$ 若对任意

一组不全为零的实数 $c_1, c_2, ..., c_n$ 都有

$$f(c_1,c_2,...,c_n) > 0.$$

则称f为正定二次型·

如,二次型 $f(x_1,x_2,...,x_n) = \sum_{i=1}^n x_i^2$ 是正定的;但二次型 $f(x_1,x_2,...,x_n) = \sum_{i=1}^{n-1} x_i^2$ 不是正定的.

2、正定性的判定

1) 实二次型 X'AX正定

$$\Leftrightarrow \forall X \in \mathbb{R}^n$$
, 若 $X \neq 0$, 则 $X'AX > 0$

2) 设实二次型

$$f(x_1, x_2, ..., x_n) = d_1 x_1^2 + d_2 x_2^2 + ... + d_n x_n^2$$

 f 正定 $\Leftrightarrow d_i > 0, i = 1, 2, ..., n$

证: 充分性显然.下证必要性, 若f正定, 取 $X_0 = (0,...,0,\frac{1}{i},0,...,0)', i = 1,2,...,n$

则
$$f(X_0) = d_i x_i^2 > 0$$
, $d_i > 0, i = 1, 2, \dots, n$

3) 非退化线性替换不改变二次型的正定性.

证明: 设正定二次型 $f(x_1, x_2, ..., x_n) = X'AX$

经过非退化线性替换 X=CY 化成

$$f(x_1, x_2,...,x_n) = Y'(C'AC)Y = g(y_1, y_2,...,y_n)$$

任取一组不全为零的数 k_1,k_2,\mathbf{K},k_n , 令

$$\mathbf{Y}_0 = \begin{pmatrix} k_1 \\ k_2 \\ \mathbf{M} \\ k_n \end{pmatrix}, \quad \boldsymbol{X}_0 = C \mathbf{Y}_0 = \begin{pmatrix} c_1 \\ c_2 \\ \mathbf{M} \\ c_n \end{pmatrix}$$

则,

$$f(c_1,c_2,...,c_n) = X'_0AX_0 = Y'_0(C'AC)Y_0 = g(k_1,k_2,...,k_n)$$

又由于C可逆, $Y_0 \neq 0$,所以 $X_0 \neq 0$,即 $c_1, c_2, ..., c_n$ 不全为0.

$$\therefore g(k_1,k_2,...,k_n) = f(c_1,c_2,...,c_n) > 0$$

 $\therefore g(y_1, y_2, \mathbf{K}, y_n)$ 正定.

反之,实二次型 $g(y_1, y_2, ..., y_n)$ 可经过非退化

线性替换 $Y = C^{-1}X$ 变到实二次型 $f(x_1, x_2, ..., x_n)$,

同理,若 g 正定,则 f 正定.

所以, 非退化线性替换不改变二次型的正定性.

4) (定理5) n元实二次型 $f(x_1, x_2, ..., x_n)$ 正定

 \Leftrightarrow 秩 f = n = p(f) 的正惯性指数).

证:设 $f(x_1,x_2,\mathbf{K},x_n)$ 经非退化线性替换 X = CY变成标准形

$$f(x_1, x_2,...,x_n) = d_1y_1^2 + d_2y_2^2 + \cdots + d_ny_n^2$$
.

由2),
$$f$$
正定 $\Leftrightarrow d_i > 0, i = 1, 2, \dots, n$,

即,f 的正惯性指数 $p = n = \mathcal{R}f$.

5) 正定二次型 $f(x_1,x_2,...,x_n)$ 的标准形为

$$d_1y_1^2 + d_2y_2^2 + \dots + d_ny_n^2$$
, $i > 0$, $i = 1, 2, \dots, n$

规范形为
$$z_1^2 + z_2^2 + \cdots + z_n^2$$

二、正定矩阵

1、定义:设A为实对称矩阵,若二次型 X'AX 是正定的,则称A为正定矩阵.

2、正定矩阵的判定

- 1) 实对称矩阵A正定 ⇔ A与单位矩阵E合同.
- 以更定实济和的规范形式 $^2 + z_2^2 + \cdots + z_n^2 = Z'EZ$
 - \Leftrightarrow 存在可逆矩阵C,使 A = C'C . 可见,正定矩阵是可逆矩阵C,使 A = C'C .
- 以A3E客利称矩阵性玩逆矩阵与,任使压对角矩阵合同.

3) 实对称矩阵A正定 ⇔A与任一正对角矩阵合同.

以若
$$D = \begin{pmatrix} d_1 & & \\ & d_2 & \\ & & \ddots & \\ & & & d_n \end{pmatrix}, d_i > 0, i = 1, 2, \dots, n$$

为任一正对角矩阵,则

$$D = \begin{pmatrix} \sqrt{d_1} & & & \\ & \sqrt{d_2} & & \\ & & \ddots & \\ & & & \sqrt{d_n} \end{pmatrix} \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix} \begin{pmatrix} \sqrt{d_1} & & & \\ & \sqrt{d_2} & & \\ & & \ddots & \\ & & & \sqrt{d_n} \end{pmatrix}$$

即,D与E合同.

例1、设A为n阶正定矩阵,证明

- (1) A^{-1} 是正定矩阵;
- (2) kA(k > 0)是正定矩阵;
- (3) A^* 是正定矩阵;
- (4) A^m 是正定矩阵(m为任意整数);
- (5) 若 B 亦是正定矩阵,则 A+B 也是正定矩阵;

证: (1) 由于 A 正定,则存在可逆矩阵 P,使 P'AP = E,于是有,

$$(P'AP)^{-1} = P^{-1}A^{-1}(P^{-1})' = ((P^{-1})')'A^{-1}(P^{-1})' = E$$

$$\diamondsuit Q = (P^{-1})',$$

则 \mathbf{Q} 可 $\mathcal{Q}'A^{-1}Q=E$, 逆,目

即, A^{-1} 与单位矩阵E合同. 故, A^{-1} 正定.

(2) 由于A 正定, 对 $\forall X \in \mathbb{R}^n, X \neq 0$, 都有 X'AX > 0,

因此有 X'(kA)X = kX'AX > 0. 故,kA正定.

(3) A正定,则存在可逆矩阵C,使A = C'C,于是

$$|A| = |C'C| = |C|^2 > 0$$

又 $A^* = |A|A^{-1}$ 由(1)(2)即得 A^* 正定.

(4) 由于 A 正定,知 A^m 为n 阶可逆对称矩阵 ,

当
$$m=2k$$
 时, $A^m=A^{2k}=A^kA^k=(A^k)'EA^k$,

即,A'''与单位矩阵E合同,所以A'''正定.

当m=2k+1 时, $A^m=A^{2k+1}=A^kAA^k=(A^k)'AA^k$,即, A^m 与正定矩阵A合同,而 A与单位矩阵E合同,所以 与E合同,即 正定.

(5) 由于A、B正定,对 $\forall X \in \mathbb{R}^n, X \neq 0$,都有

$$X'AX > 0, \qquad X'BX > 0$$

因此有 X'(A+B)X = X'AX + X'BX > 0.

故,A+B正定.

3、正定矩阵的必要条件

1) 实对称矩阵 $A = (a_{ij})_{n \times n}$ 正定 $\Rightarrow a_{ii} > 0, i = 1, 2, L, n.$

证: 若A正定,则二次型 $f(x_1,x_2,\mathbf{K},x_n) = \mathbf{X}'\mathbf{A}\mathbf{X}$

正定. 取
$$X_i = (0,...,0,\frac{1}{\text{β}_{i}\text{β}_{\pm}},0,...,0)'$$

则
$$f(X_i) = X_i'AX_i = a_{ii} > 0, i = 1, 2, \dots, n.$$

注意

反之不然. 即, $A = (a_{ij})_{n \times n}$ 为对称矩阵,且

 $a_{ii} > 0$, $i = 1, 2, \dots, n$, 但A未必正定. 如

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix},$$

$$f(x_1,x_2) = X'AX = (x_1 - x_2)^2,$$

当 $x_1 = x_2 = 1$ 时,有 $f(x_1, x_2) = 0$.

所以A不是正定的.

2) 实对称矩阵A正定 \Rightarrow det A = |A| > 0

证: 若A正定,则存在可逆矩阵C,使 A = C'C,

从而
$$|A| = |C'C| = |C|^2 > 0.$$

注意

反之不然. 即实对称矩阵A, 且 |A| > 0, A未必正定.

如
$$A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
, $|A| = 1 > 0$

但 $X'AX = -x_1^2 - x_2^2$ 不是正定二次型.

4、顺序主子式、主子式、

设矩阵 $A = (a_{ij}) \in \mathbb{R}^{n \times n}$

1)
$$A(1,2,\dots,k) = \begin{pmatrix} a_{11} & \dots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{kk} \end{pmatrix} \in \mathbb{R}^{k \times k}$$

称为A为第k阶顺序主子矩阵;

2)
$$P_k = \det A(1, 2, \dots, k) = \begin{vmatrix} a_{11} & \dots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{kk} \end{vmatrix}$$

称为A的第k阶顺序主子式.

3) k级行列式

$$|Q_k| = \begin{vmatrix} a_{i_1i_1} & a_{i_1i_2} & \cdots & a_{i_1i_k} \\ a_{i_2i_1} & a_{i_2i_2} & \cdots & a_{i_2i_k} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i_ki_1} & a_{i_ki_2} & \cdots & a_{i_ki_k} \end{vmatrix}$$

即行指标与 列指标相同的 於阶子式

称为A的一个k 阶主子式.

5、(定理6)

实二次型
$$f(x_1, x_2, ..., x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j = X'AX$$
 正定

 \Leftrightarrow A的顺序主子式 P_k 全大于零.

证:必要性. 设 $f(x_1,x_2,...,x_n)$ 正定,对每一个k

 $k(1 \le k \le n)$, \diamondsuit

$$f_{k}(x_{1}, x_{2}, \dots, x_{k}) = \sum_{i=1}^{k} \sum_{j=1}^{k} a_{ij} x_{i} x_{j}$$

$$= (x_{1}, x_{2}, \dots, x_{k}) A(1, 2, \dots, k) \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{k} \end{pmatrix}$$

对任意一不全为零的数 $c_1,c_2,...,c_k$,有

$$f_k(c_1,c_2,...,c_k) = f(c_1,c_2,...,c_k,0,...,0) > 0$$

 $\therefore f_k(x_1,x_2,...,x_n)$ 是正定的,从而A(1,2,L,k)正定.

$$P_k = \det A \quad (1, 2, \dots, k) > 0, \quad k = 1, 2, \dots, n$$

充分性: 对n作数学归纳法.

$$n=1$$
时, $a_{11}=|a_{11}|>0$. : $f(x_i)=a_{11}x_1^2$ 正定. 结论成立.

假设对于n-1元二次型结论成立,下证n元的情形.

设
$$A=(a_{ij})_{n\times n}$$
.

则
$$A = \begin{pmatrix} A_1 & \alpha \\ \alpha' & a_{nn} \end{pmatrix}$$

又A的顺序主子式全大于零,所以 A_1 的顺序主子式也全大于零。

由归纳假设, A_1 正定,即存在可逆矩阵G,使 $G'A_1G=E_{n-1}$.

$$\Leftrightarrow C_1 = \begin{pmatrix} G & 0 \\ 0 & 1 \end{pmatrix},$$

则
$$C_1'AC_1 = \begin{pmatrix} G' & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A_1 & \alpha \\ \alpha' & 1 \end{pmatrix} \begin{pmatrix} G & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} E_{n-1} & G'\alpha \\ \alpha'G & a_{nn} \end{pmatrix}$$

再令
$$C_2 = \begin{pmatrix} E_{n-1} & -G'\alpha \\ 0 & 1 \end{pmatrix}$$
,则

$$C_{2}'(C_{1}'AC_{1})C_{2} = \begin{pmatrix} E_{n-1} & 0 \\ -\alpha'G & 1 \end{pmatrix} \begin{pmatrix} E_{n-1} & G'\alpha \\ \alpha'G & a_{nn} \end{pmatrix} \begin{pmatrix} E_{n-1} & -G'\alpha \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} E_{n-1} & 0 \\ 0 & a_{nn} - \alpha' G G' \alpha \end{pmatrix}$$

再令
$$C = C_1C_2$$
, $a = a_{nn} - \alpha'GG'\alpha$

则有
$$C'AC = \begin{pmatrix} E_{n-1} & 0 \\ 0 & a \end{pmatrix}$$

两边取行列式,得 $|C|^2|A|=a$

$$|X| > 0$$
, $\therefore a > 0$

即
$$\binom{E_{n-1}}{a}$$
 为正对角矩阵.

由判定充要条件3). 知A正定,所以XAX正定.

例2、判定下面二次型是否正定.

1)
$$f(x_1, x_2, x_3) = 5x_1^2 + x_2^2 + 5x_3^2 + 4x_1x_2 - 8x_1x_3 - 4x_2x_3$$

解:
$$f(x_1, x_2, x_3)$$
的矩阵 $A = \begin{pmatrix} 5 & 2 & -4 \\ 2 & 1 & 2 \\ -4 & -2 & 5 \end{pmatrix}$

其顺序主子式

$$P_1 = |5| > 0$$
, $P_2 = \begin{vmatrix} 5 & 2 \\ 2 & 1 \end{vmatrix} = 1 > 0$, $P_3 = |A| > 0$.

二 f 正定

2)
$$f(x_1, x_2, ..., x_n) = \sum_{i=1}^{n} x_i^2 + \sum_{1 \le i < j \le n} x_i x_j$$
 (习题7)

解:
$$f(x_1, x_2, K, x_n)$$
的矩阵 $A = \begin{bmatrix} 1 & \frac{1}{2} & \cdots & \frac{1}{2} \\ \frac{1}{2} & 1 & \cdots & \frac{1}{2} \\ \cdots & \cdots & \cdots \\ \frac{1}{2} & \frac{1}{2} & \cdots & 1 \end{bmatrix}$

A的第k阶顺序主子式Pk

$$P_{k} = \begin{vmatrix} 1 & \frac{1}{2} & \cdots & \frac{1}{2} \\ \frac{1}{2} & 1 & \cdots & \frac{1}{2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{2} & \frac{1}{2} & \cdots & 1 \end{vmatrix}_{k} = \frac{k+1}{2} \begin{vmatrix} \frac{1}{2} & 1 & \cdots & \frac{1}{2} \\ \frac{1}{2} & 1 & \cdots & \frac{1}{2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{2} & \frac{1}{2} & \cdots & 1 \end{vmatrix}_{k}$$

$$= \frac{k+1}{2} \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & \frac{1}{2} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{vmatrix}_{k} = \frac{k+1}{2} (\frac{1}{2})^{k-1} = \frac{k+1}{2^{k}} > 0$$

$$k = 1, 2, \dots, n$$
. ∴ f 正定

例3、证明: 若实对称矩阵A正定,则A的任意一个

k 阶主子式

$$|Q_{k}| = \begin{vmatrix} a_{i_{1}i_{1}} & a_{i_{1}i_{2}} & \cdots & a_{i_{1}i_{k}} \\ a_{i_{2}i_{1}} & a_{i_{2}i_{2}} & \cdots & a_{i_{2}i_{k}} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i_{k}i_{1}} & a_{i_{k}i_{2}} & \cdots & a_{i_{k}i_{k}} \end{vmatrix} > 0$$
 (习题9)

证: 作二次型

$$g(x_{i_1}, x_{i_2}, \dots, x_{i_k}) = \sum_{s=1}^k \sum_{t=1}^k a_{i_s i_t} x_{i_s} x_{i_t}$$

$$= (x_{i_1}, x_{i_2}, \dots, x_{i_k}) Q_k \begin{pmatrix} x_{i_1} \\ x_{i_2} \\ \vdots \\ x_{i_k} \end{pmatrix}$$

对任意一不全为零的数 c_{i_1} , c_{i_2} , \mathbf{K} , c_{i_k} ,有

$$X_0 = (c_1, c_2, \dots, c_n)' \neq 0,$$

由于A正定,有 $f(x_1,x_2,...,x_n) = X'AX$ 正定,即有 $X'_0AX_0 > 0$,从而,

$$g(c_{i_1}, c_{i_2}, \dots, c_{i_k}) = f(0, \dots, 0, c_{i_1}, 0, \dots, c_{i_2}, 0, \dots, c_{i_k}, 0, \dots, 0)$$
$$= X'_0 A X_0 > 0$$

即, $g(x_{i_1}, x_{i_2}, ..., x_{i_k})$ 是正定二次型,因此其矩阵的行列式大于零,即 $|Q_k| > 0$.

三、n元实二次型的分类

1. 定义

设n元二次型 $f(x_1,x_2,...,x_n) = X'AX,A' = A \in \mathbb{R}^{n \times n}$,若对任意一组不全为零的实数 $c_1,c_2,...,c_n$,都有

- ① $f(c_1,c_2,...,c_n) < 0$, 则 f 称为负定二次型.
- ② $f(c_1,c_2,...,c_n) \ge 0$, 则 f 称为半正定二次型.
- ③ $f(c_1,c_2,...,c_n) \leq 0$ 则 f 称为半负定二次型.
- ④ *f* 既不是半正定,也不是半负定,则 *f* 称为 不定二次型.

注: 相应于此,n 级实对称矩阵可分类为:

- ①正定矩阵 ②负定矩阵 ③半正定矩阵
- ④半负定矩阵
- ⑤不定矩阵

- 2、判定
- 1) 实二次型 $f(x_1, x_2, ..., x_n)$ 正定 $\Leftrightarrow -f(x_1, x_2, ..., x_n)$ 负定:

实对称矩阵A正定 \Leftrightarrow -A负定.

2) 实二次型 $f(x_1, x_2, ..., x_n)$ 半正定 $\Leftrightarrow -f(x_1, x_2, ..., x_n)$ 半负定;

实对称矩阵A半正定 $\Leftrightarrow -A$ 半负定.

3) (定理7)设n元实二次型 $f(x_1, x_2, ..., x_n) = X'AX$,

 $A' = A \in \mathbb{R}^{n \times n}$.则下列条件等价:

- ① $f(x_1, x_2, ..., x_n)$ 半正定;
- ② A半正定;
- ③ 秩f=秩(A)=p(正惯性指数); (见习题14)
- ④ A合同于非负对角阵,即存在可逆阵C,使

$$C'AC = \begin{pmatrix} d_1 \\ \ddots \\ d_n \end{pmatrix}, d_i \ge 0, i = 1, 2, \dots, n$$

⑤ 存在 $C \in R^{n \times n}$, 使 $A = C'C$; $A \ne \mathbb{E}$ $\Rightarrow |A| \ge 0$

- ⑥ A的所有主子式皆大于或等于零. (补充题9)

四、小结

基本概念

- 1、正定(负定、半正定、半负定、不定)二次型; 正定(负定、半正定、半负定、不定)矩阵;
- 2、顺序主子式、主子式

基本结论

1、非退化线性替换保持实二次型的正定(负定、 半正定、半负定、不定)性不变.

- 2、实二次型 $f(x_1, x_2, \mathbf{K}, x_n)$ 正定(半正定) $\Leftrightarrow -f(x_1, x_2, \mathbf{K}, x_n)$ 负定(半负定).
- 3、实二次型 $f(x_1,x_2,...,x_n)=X'AX$ 正定 $\Leftrightarrow A$ 与单位矩阵 E 合同,即存在可逆矩阵C,使 A=C'C
 - ⇔ A 的各级顺序主子式全大于零
 - \Leftrightarrow f的正惯性指数 p 等于 n
- 4、实对称矩阵 A 正定 $\Rightarrow |A| > 0$ 实对称矩阵 A 半正定 $\Rightarrow |A| \ge 0$

5、实二次型 $f(x_1,x_2,...,x_n)=X'AX$ 半正定

 \Leftrightarrow 秩f = 秩(A) = p (正惯性指数)

⇔A与非负对角阵合同,即存在可逆矩阵C,使

$$C'AC = \begin{pmatrix} d_1 & & \\ & O & \\ & & d_n \end{pmatrix}, d_i \ge 0, i = 1, 2, L, n$$

 \Leftrightarrow 存在 $C \in \mathbb{R}^{n \times n}$ 使 A = C'C

⇔ A的所有主子式全大于或等于零.