# PEC2 - TFM - Master Bioinformática y Bioestadística - UOC

# Jordi Cabral 18/11/2019

## Contents

| Preparación del entorno                                                    |  |
|----------------------------------------------------------------------------|--|
| Cargar y leer los datos                                                    |  |
| Transformación de los datos                                                |  |
| Reproduciendo el modelo de regresión lineal del TFG Aina Rill de la biblio |  |
| que partimos de la base correcta                                           |  |
| Algoritmos Machine Learning                                                |  |
| Selección de datos para training y test                                    |  |
| Algoritmo k-NN                                                             |  |
| Transformación de los datos                                                |  |
| Entrenamiento del modelo                                                   |  |
| Realizar la predicción                                                     |  |
| Evaluar el rendimiento del modelo                                          |  |
| Realizar la predicción                                                     |  |
| Evaluar el rendimiento del modelo                                          |  |
| Mejorar el rendimiento del modelo                                          |  |
| Resumen resultados algoritmo knn:                                          |  |
| Algoritmo Artificial Neural Network                                        |  |
| Entrenamiento del modelo                                                   |  |
| Evaluar el rendimiento del modelo                                          |  |
| Mejorar el rendimiento del modelo                                          |  |
| Resumen resultados algoritmo Artificial Neural Networks                    |  |
| Algoritmo Support Vector Machine                                           |  |
| Entrenamiento del modelo                                                   |  |
| Evaluar el rendimiento del modelo                                          |  |
| Mejorar el rendimiento del modelo                                          |  |
| Resumen resultados algoritmo SVM:                                          |  |
| Algoritmo Árbol de Decisión                                                |  |
| Entrenamiento del Modelo                                                   |  |
| Evaluar el rendimiento del modelo                                          |  |
| Mejorar el rendimiento del modelo                                          |  |
| Resumen resultados algoritmo Arbol de decisión                             |  |
| Algoritmo Random Forest                                                    |  |
| Entrenamiento del Modelo                                                   |  |
| Evaluar el rendimiento del modelo                                          |  |
| Mejorar el rendimiento del modelo                                          |  |
| Resumen resultados algoritmo Random Forest                                 |  |
| Recapitulando el resumen de todos los modelos                              |  |

Predicciones de interacción genética mediante métodos de Machine Learning

El presente documento corresponde a la parte del código de programación de la PEC2 del TFM, con los primeros cálculos de los diferentes algoritmos

## Preparación del entorno

Empezamos cargando las librerías que vamos a necesitar

```
library(knitr)
library(ggplot2)
library(class)
library(gmodels)
library(kableExtra)
library(neuralnet)
library(reart)
library(rpart)
library(rpart.plot)
library(randomForest)
library(RColorBrewer)
```

#### Preparamos los directorios

```
workingDir <- getwd()
dataDir <- file.path(workingDir,"../Data/")</pre>
```

## Comprobamos los ficheros existentes en el directorio de datos

## Cargar y leer los datos

```
Cargamos los datos
```

```
SGA10 <- readRDS(paste0(dataDir, "SGA10_BremKruglyak2005_v1.rds"))
SGA16 <- readRDS(paste0(dataDir, "SGA16_BremKruglyak2005_v1.rds"))
allpaired <- readRDS(paste0(dataDir, "allpairsfeta.rds"))
```

# Exploramos y visualizamos superficialmente los datos, viendo su estructura, los primeros registros, y un resumen global

```
dim(SGA10)

[1] 227 5

head(SGA10)

GENE1 GENE2 SGAsco PCC NPC
YER114C_YPL045W YPL045W YER114C -0.0072 0.4946259 0.04637893
YLR085C_YMR167W YLR085C YMR167W -0.2766 0.4092974 0.04794095
YOR237W_YPL091W YPL091W YOR237W -0.0201 0.2745026 0.01513016
YHR031C_YPR120C YPR120C YHR031C -0.3233 0.2381275 0.01984171
YMR052W_Y0L009C Y0L009C YMR052W -0.3202 0.4037952 0.01966951
YDL088C_YDR524C YDR524C YDL088C -0.0812 0.4832784 0.02292296
summary(SGA10)
```

GENE1 GENE2 SGAsco

```
Length: 227
                   Length: 227
                                      Min.
                                             :-0.92210
 Class : character
                   Class : character
                                      1st Qu.:-0.14750
                   Mode :character
 Mode :character
                                      Median :-0.06810
                                      Mean
                                            :-0.13711
                                       3rd Qu.:-0.03765
                                      Max. :-0.00720
     PCC
                        NPC
Min. :-0.04256
                   Min.
                          :0.01352
                   1st Qu.:0.02127
 1st Qu.: 0.19316
Median : 0.28407
                   Median: 0.02784
Mean
      : 0.34374
                   Mean
                          :0.03239
 3rd Qu.: 0.44519
                   3rd Qu.:0.03732
Max.
      : 0.93761
                   Max.
                          :0.13079
str(SGA10)
'data.frame':
                227 obs. of 5 variables:
 $ GENE1 : chr "YPL045W" "YLR085C" "YPL091W" "YPR120C" ...
 $ GENE2 : chr "YER114C" "YMR167W" "YOR237W" "YHR031C" ...
 $ SGAsco: num -0.0072 -0.2766 -0.0201 -0.3233 -0.3202 ...
 $ PCC
        : num 0.495 0.409 0.275 0.238 0.404 ...
 $ NPC
        : num 0.0464 0.0479 0.0151 0.0198 0.0197 ...
dim(SGA16)
[1] 757
head(SGA16)
                   GENE1
                                                 PCC
                             GENE2 SGAsco
                                                             NPC
YDR131C_YDR311W
                 YDR311W
                           YDR131C -0.0571 0.5847008 0.04834784
YDR108W_YIL039W
                 YIL039W
                           YDR108W -0.1693 0.4339379 0.03350580
YDR228C_YLR277C
                 YDR228C
                           YLR277C -0.1522 0.5943217 0.02597431
YJR093C_YPR114W
                           YPR114W -0.1016 0.2035627 0.02536385
                 YJR093C
YDL220C_YOR378W
                 YDL220C
                           YOR378W -0.1578 0.4063060 0.03295474
YMR075C.A_YNL148C YNL148C YMR075C.A -0.0814 0.2913731 0.02318996
str(SGA16)
'data.frame':
                757 obs. of 5 variables:
 $ GENE1 : chr
               "YDR311W" "YIL039W" "YDR228C" "YJR093C" ...
 $ GENE2 : chr
               "YDR131C" "YDR108W" "YLR277C" "YPR114W" ...
 $ SGAsco: num
               -0.0571 -0.1693 -0.1522 -0.1016 -0.1578 ...
 $ PCC
        : num 0.585 0.434 0.594 0.204 0.406 ...
 $ NPC
         : num 0.0483 0.0335 0.026 0.0254 0.033 ...
dim(allpaired)
[1] 17461095
                   14
head(allpaired)
              ۷1
                    V2 Homology PhysicalInt CommonReg Colocalization
Q0045_Q0050 Q0045 Q0050
                               1
                                          0
                                                    0
                                                                    0
Q0045_Q0055 Q0045 Q0055
                                          0
                                                    0
                                                                    0
                               1
Q0045 Q0060 Q0045 Q0060
                               1
                                          0
                                                    0
                                                                    0
Q0045 Q0065 Q0045 Q0065
                                          0
                                                    0
                                                                   0
                               1
Q0045 Q0070 Q0045 Q0070
                               1
                                          0
                                                    0
                                                                    0
Q0045_Q0075 Q0045 Q0075
                               0
                                          0
                                                    0
                                                                    0
```

```
Phenotype Ohnology Complexes SameFunction SameProtein
Q0045 Q0050
                    0
                                                     0
                             0
                                        0
Q0045 Q0055
                                        0
                                                     0
                                                                  0
                    0
                             0
Q0045_Q0060
                    0
                             0
                                        0
                                                     0
                                                                  0
Q0045_Q0065
                    0
                             0
                                        0
                                                     0
                                                                  0
Q0045 Q0070
                    0
                             0
                                        0
                                                     0
                                                                  0
Q0045 Q0075
                    0
                             0
                                        0
                                                     0
                                                                  0
                           fcCC
                 fcBP
                                      fcMF
Q0045 Q0050 0.2941176 0.3243243 0.4848485
Q0045_Q0055 0.3452381 0.4324324 0.8181818
Q0045_Q0060 0.3918919 0.4324324 0.8709677
Q0045_Q0065 0.3918919 0.4324324 0.8709677
Q0045_Q0070 0.3866667 0.4324324 0.8709677
Q0045_Q0075 0.1578947 0.3243243 0.1388889
tail(allpaired)
                     V1
                             V2 Homology PhysicalInt CommonReg
YPR201W_YPR202W YPR201W YPR202W
                                        0
                                                               0
                                                               0
YPR201W_YPR203W YPR201W YPR203W
                                        0
                                                    0
YPR201W_YPR204W YPR201W YPR204W
                                        0
                                                    0
                                                               0
YPR202W_YPR203W YPR202W YPR203W
                                        0
                                                    0
                                                               1
YPR202W YPR204W YPR202W YPR204W
                                        0
                                                    0
                                                               0
YPR203W_YPR204W YPR203W YPR204W
                                        0
                                                    0
                                                               0
                Colocalization Phenotype Ohnology Complexes SameFunction
YPR201W_YPR202W
                             0
                                        0
                                                 0
YPR201W YPR203W
                             0
                                        0
                                                 0
                                                           0
                                                                         0
YPR201W YPR204W
                             0
                                        0
                                                 0
                                                           0
                                                                         0
YPR202W_YPR203W
                             0
                                        0
                                                 0
                                                           0
                                                                         0
YPR202W YPR204W
                             0
                                        0
                                                 0
                                                            0
                                                                         0
YPR203W_YPR204W
                             0
                                                 0
                                                            0
                                                                         0
                                        Λ
                SameProtein
                                   fcBP
                                              fcCC
YPR201W_YPR202W
                          0 0.06250000 0.08333333 0.07692308
YPR201W_YPR203W
                          0 0.06250000 0.08333333 0.07692308
YPR201W_YPR204W
                          0 0.04166667 0.08333333 0.02564103
YPR202W YPR203W
                          0 1.00000000 1.00000000 1.00000000
YPR202W_YPR204W
                          0 0.11111111 1.00000000 0.03703704
YPR203W_YPR204W
                          0 0.11111111 1.00000000 0.03703704
str(allpaired)
'data.frame':
                17461095 obs. of 14 variables:
 $ V1
                        "Q0045" "Q0045" "Q0045" "Q0045" ...
                 : chr
                         "Q0050" "Q0055" "Q0060" "Q0065" ...
 $ V2
                 : chr
                        "1" "1" "1" "1" ...
 $ Homology
                 : chr
                        "0" "0" "0" "0" ...
 $ PhysicalInt
                 : chr
 $ CommonReg
                 : chr
                        "0" "0" "0" "0" ...
 $ Colocalization: chr
                        "0" "0" "0" "0" ...
                        "0" "0" "0" "0" ...
 $ Phenotype
                 : chr
                        "0" "0" "0" "0" ...
 $ Ohnology
                 : chr
                        "0" "0" "0" "0" ...
 $ Complexes
                 : chr
 $ SameFunction : chr
                         "0" "0" "0" "0" ...
                        "0" "0" "0" "0" ...
 $ SameProtein : chr
 $ fcBP
                 : num 0.294 0.345 0.392 0.392 0.387 ...
```

0.324 0.432 0.432 0.432 0.432 ...

\$ fcCC

: num

```
$ fcMF : num 0.485 0.818 0.871 0.871 0.871 ...
```

#### Transformación de los datos

Eliminamos las variables identificativas de los genes individuales

```
allpaired$V1 <- NULL
allpaired$V2 <- NULL
```

Convertimos a tipo numérico todas las variables del dataset allpaireid

```
allpaired[] <- lapply(allpaired, as.numeric)
str(allpaired)</pre>
```

```
'data.frame':
              17461095 obs. of 12 variables:
$ Homology
              : num 1 1 1 1 1 0 0 0 0 0 ...
$ PhysicalInt
                      0 0 0 0 0 0 1 1 1 0 ...
               : num
$ CommonReg
               : num
                      0 0 0 0 0 0 0 0 0 0 ...
$ Colocalization: num
                      0000000000...
$ Phenotype
                      0 0 0 0 0 0 0 0 0 0 ...
              : num
$ Ohnology
                      0 0 0 0 0 0 0 0 0 0 ...
               : num
$ Complexes
               : num
                      0 0 0 0 0 0 0 0 0 0 ...
                      0 0 0 0 0 0 0 0 0 0 ...
$ SameFunction : num
$ SameProtein
               : num 0000000000...
$ fcBP
                      0.294 0.345 0.392 0.392 0.387 ...
                : num
$ fcCC
               : num 0.324 0.432 0.432 0.432 0.432 ...
$ fcMF
                : num 0.485 0.818 0.871 0.871 0.871 ...
```

Generamos dos nuevos data frames filtrando sólo los pares existentes en los SGAs

```
allpaired_10 <- allpaired[row.names(allpaired) %in% row.names(SGA10), ]
dim(allpaired_10)</pre>
```

```
[1] 190 12
```

Vemos que en lugar de 227 registros hay 190, debido a que algunos genes han cambiado de identificador allpaired\_16 <- allpaired[row.names(allpaired) %in% row.names(SGA16), ] dim(allpaired\_16)

```
[1] 635 12
```

Vemos que en lugar de 757 registros, hay 635, debido a que algunos genes han cambiado de identificador

Generamos un nuevo dataset, uniendo los campos de SGA y allpaired, para cada uno de los experimientos

```
SGA10_full <- merge(SGA10, allpaired_10, by=0)
rownames(SGA10_full) <- SGA10_full$Row.names
SGA10_full$Row.names <- NULL
dim(SGA10_full)
```

```
[1] 190 17
```

```
head(SGA10_full)
```

```
YAL005C_YLL024C YAL005C YLL024C -0.6751 0.7712090 0.09606661 1
YAL010C_YJL100W YJL100W YAL010C -0.0360 0.2724282 0.02458174 0
```

```
YAL010C_YOR090C YOR090C YAL010C -0.1459 0.2136824 0.03680466
                                                                     0
YAL010C_YPR121W YAL010C YPR121W -0.0455 0.2723902 0.01942903
                                                                     0
YAL011W YPL213W YPL213W YAL011W -0.2238 0.1785020 0.02189094
                                                                     0
YAL024C_YHR077C YAL024C YHR077C -0.0531 0.4628442 0.05343258
                                                                     0
                PhysicalInt CommonReg Colocalization Phenotype Ohnology
YALOO5C YLLO24C
                          0
                                    1
                                                   1
                                                              0
YALO10C YJL100W
                          0
                                                    0
                                                              0
YALO10C_YORO90C
                          0
                                    0
                                                    0
                                                              0
                                                                       0
YALO10C YPR121W
                          0
                                    0
                                                    0
                                                              0
                                                                       0
YALO11W_YPL213W
                          0
                                    1
                                                    0
                                                              0
                                                                       0
YAL024C_YHR077C
                          0
                                    0
                                                    0
                                                              0
                                                                       0
                                                                     fcCC
                Complexes SameFunction SameProtein
                                                          fcBP
YALOO5C_YLLO24C
                                                 1 0.58015267 0.95000000
                        0
                                     1
                                     0
YALO10C_YJL100W
                        0
                                                 0 0.06329114 0.29032258
YALO10C_YORO90C
                        0
                                     0
                                                 0 0.02500000 0.39130435
YALO10C_YPR121W
                        0
                                     0
                                                 0 0.02222222 0.02380952
YALO11W_YPL213W
                        0
                                     0
                                                 0 0.22857143 0.34883721
                                     0
YALO24C_YHRO77C
                        0
                                                 0 0.03067485 0.31578947
                      fcMF
YAL005C YLL024C 1.00000000
YAL010C_YJL100W 0.03703704
YAL010C YOR090C 0.07142857
YAL010C_YPR121W 0.08333333
YAL011W YPL213W 0.12500000
YAL024C_YHR077C 0.14285714
SGA16_full <- merge(SGA16, allpaired_16, by=0)
rownames(SGA16_full) <- SGA16_full$Row.names</pre>
SGA16_full$Row.names <- NULL
dim(SGA16_full)
```

#### [1] 635 17

## head(SGA16\_full)

|                 | ~====    | ~=       | ~~.      | 200                 |              |            |
|-----------------|----------|----------|----------|---------------------|--------------|------------|
|                 |          |          |          | PCC                 |              | Homology   |
| YALOO1C_YMR308C | YALO01C  | YMR308C  | -0.1404  | 0.57943228          | 0.03871764   | 0          |
| YALOO5C_YLLO24C | YAL005C  | YLL024C  | -0.7370  | 0.77120903          | 0.09606661   | 1          |
| YALO10C_YDR367W | YAL010C  | YDR367W  | -0.1024  | 0.09345734          | 0.01553714   | 0          |
| YALO10C_YJL100W | YJL100W  | YAL010C  | -0.0419  | 0.27242823          | 0.02458174   | 0          |
| YALO11W_YPL213W | YPL213W  | YALO11W  | -0.4322  | 0.17850196          | 0.02189094   | 0          |
| YAL013W_YPL055C | YAL013W  | YPL055C  | -0.1845  | 0.54066298          | 0.02274498   | 0          |
|                 | Physical | Int Comm | nonReg C | olocalizati         | on Phenotype | e Ohnology |
| YALOO1C_YMR308C |          | 0        | 0        |                     | 1 (          | 0          |
| YALOO5C_YLLO24C |          | 0        | 1        |                     | 1 (          | 0          |
| YAL010C_YDR367W |          | 0        | 0        |                     | 0 (          | 0          |
| YALO10C_YJL100W |          | 0        | 0        |                     | 0 (          | 0          |
| YALO11W_YPL213W |          | 0        | 1        |                     | 0 (          | 0          |
| YAL013W_YPL055C |          | 0        | 0        |                     | 0 (          | 0          |
|                 | Complexe | s SameFu | unction  | ${\tt SameProtein}$ | fcBP         | fcCC       |
| YALOO1C_YMR308C |          | 0        | 0        | 0                   | 0.18248175   | 0.3829787  |
| YALOO5C_YLLO24C |          | 0        | 1        | 1                   | 0.58015267   | 0.9500000  |
| YAL010C_YDR367W |          | 0        | 0        | 0                   | 0.02631579   | 0.3962264  |
| YALO10C_YJL100W |          | 0        | 0        | 0                   | 0.06329114   | 0.2903226  |
| YALO11W_YPL213W |          | 0        | 0        | 0                   | 0.22857143   | 0.3488372  |

```
YAL013W_YPL055C
                        0
                                     0
                                                 0 0.25196850 0.2941176
                      fcMF
YAL001C YMR308C 0.06451613
YAL005C_YLL024C 1.00000000
YAL010C_YDR367W 0.25000000
YAL010C YJL100W 0.03703704
YAL011W YPL213W 0.12500000
YAL013W_YPL055C 0.07692308
Eliminamos las variables "descriptivas" de los genes
SGA10_full$GENE1 <- NULL
SGA10_full$GENE2 <- NULL
SGA16_full$GENE1 <- NULL
SGA16_full$GENE2 <- NULL
Reproduciendo el modelo de regresión lineal del TFG Aina Rill de la bibliografía, para verificar
que partimos de la base correcta
Modelo 1 (Tabla 1)
mod1 <- lm(SGAsco ~. -NPC -fcMF , SGA10_full)</pre>
summary(mod1)
Call:
lm(formula = SGAsco ~ . - NPC - fcMF, data = SGA10_full)
Residuals:
    Min
                   Median
               1Q
                                3Q
                                         Max
-0.49977 -0.04257 0.02682 0.06667 0.41775
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
              -0.06514
                          0.02438 -2.671 0.008261 **
PCC
               0.06176
                           0.05360
                                   1.152 0.250823
Homology
               0.04954
                          0.06646
                                   0.745 0.457038
PhysicalInt
               0.05644
                          0.08797
                                    0.642 0.521982
CommonReg
              -0.01943
                           0.03538 -0.549 0.583582
Colocalization -0.11032
                           0.04828
                                   -2.285 0.023504 *
                          0.06928 -0.982 0.327226
Phenotype
              -0.06806
Ohnology
              -0.20133
                           0.08714 -2.310 0.022018 *
               0.15479
                           0.08802
                                   1.759 0.080385 .
Complexes
SameFunction
              -0.15191
                          0.04264 -3.563 0.000472 ***
SameProtein
              -0.28151
                          0.07911 -3.559 0.000479 ***
fcBP
              -0.16859
                           0.07486 -2.252 0.025549 *
fcCC
                           0.05058 -2.173 0.031071 *
              -0.10993
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1271 on 177 degrees of freedom
Multiple R-squared: 0.5301,
                               Adjusted R-squared: 0.4982
```

F-statistic: 16.64 on 12 and 177 DF, p-value: < 2.2e-16

```
(RMSE.lm1 <- sqrt(mean(mod1$residuals^2)))</pre>
[1] 0.1226716
Modelo 2 (Tabla 2)
mod2 <- lm(SGAsco ~ Ohnology + Complexes + SameProtein +
              SameFunction + fcBP + fcCC + NPC, SGA10_full)
summary(mod2)
Call:
lm(formula = SGAsco ~ Ohnology + Complexes + SameProtein + SameFunction +
   fcBP + fcCC + NPC, data = SGA10_full)
Residuals:
             1Q
                  Median
    Min
                              3Q
                                     Max
-0.52410 -0.03507 0.02359 0.06385 0.35944
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                0.138 0.890296
            0.003326 0.024082
(Intercept)
           Ohnology
Complexes
            SameProtein -0.253821
                      0.070119 -3.620 0.000382 ***
                      0.041052 -2.801 0.005645 **
SameFunction -0.114987
fcBP
           -0.118014 0.061202 -1.928 0.055379 .
fcCC
           -0.124799
                      0.048765 -2.559 0.011305 *
NPC
           -1.754990
                      0.579212 -3.030 0.002802 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1251 on 182 degrees of freedom
Multiple R-squared: 0.5321,
                             Adjusted R-squared: 0.5141
F-statistic: 29.57 on 7 and 182 DF, p-value: < 2.2e-16
(RMSE.lm2 <- sqrt(mean(mod2$residuals^2)))</pre>
```

Los resultados, si bien no son idénticos, son muy parecidos.

Tomaremos estos valoes de RMSE como referencia para evaluar el rendimiento de los modelos basados en machine learning.

# Algoritmos Machine Learning

Prepararemos los datos tanto para el dataset SGA10 como SGA16, pero inicialmente realizaremos los cálculos sólo sobre los datos de SGA10, para simplificar la comparación, ya que es sobre el que tenemos la referencia de regresión lineal.

Selección de datos para training y test

Dividimos los dataset en dos, para entrenamiento y validación.

```
bound_10 <- floor(nrow(SGA10_full)*0.67)
bound_16 <- floor(nrow(SGA16_full)*0.67)

seed <- c(12345)

set.seed(seed)
row_train_10 <- sample(seq_len(nrow(SGA10_full)), size = bound_10)

set.seed(seed)
row_train_16 <- sample(seq_len(nrow(SGA16_full)), size = bound_16)

SGA10_train <- SGA10_full[row_train_10, ]
SGA10_test <- SGA10_full[-row_train_10, ]

SGA16_train <- SGA16_full[row_train_16, ]
SGA16_test <- SGA16_full[-row_train_16, ]</pre>
```

## Algoritmo k-NN

Empezaremos por el algoritmo k-NN (Nearest Neighbors), que aunque se usa habitualmente en modelos de clasificación, también puede ofrecer buenos resulados de regresión.

#### Transformación de los datos

No es necesario, al disponer ya de los datos normalizados y en datasets de *training* y *test* de pasos anteriores.

#### Entrenamiento del modelo

#### Para el coeficiente PCC:

```
set.seed(seed)
knn_model_PCC_1 <- train(SGAsco~. -NPC, data=SGA10_train, method="knn")
plot(knn_model_PCC_1)</pre>
```



```
k_PCC_1 <- rownames(knn_model_PCC_1$bestTune)
knn_model_PCC_1$results[k_PCC_1,]</pre>
```

k RMSE Rsquared MAE RMSESD RsquaredSD MAESD 3 9 0.1520582 0.2686059 0.09507469 0.02505281 0.1068463 0.01175275

## Realizar la predicción

```
pred_PCC_1 <- knn_model_PCC_1 %>% predict(SGA10_test)
```

## Evaluar el rendimiento del modelo

Generamos una tabla para poder visualizar un resumen de las diferentes combinaciones:

```
tabla_knn <- data.frame(Option = c("Default", "Param"), PCC = NA, NPC = NA)
(tabla_knn[1,2] <- RMSE(pred_PCC_1, SGA10_test$SGAsco))</pre>
```

[1] 0.1465124

#### Para la variable NPC

```
set.seed(seed)
knn_model_NPC_1 <- train(SGAsco~. -PCC, data=SGA10_train, method="knn")
plot(knn_model_NPC_1)</pre>
```



```
k_NPC_1 <- rownames(knn_model_NPC_1$bestTune)
knn_model_NPC_1$results[k_NPC_1,]</pre>
```

k RMSE Rsquared MAE RMSESD RsquaredSD MAESD 3 9 0.1471818 0.3067904 0.09299212 0.02663945 0.1221129 0.01359124

## Realizar la predicción

```
pred_NPC_1 <- knn_model_NPC_1 %>% predict(SGA10_test)
```

## Evaluar el rendimiento del modelo

```
(tabla_knn[1,3] <- RMSE(pred_NPC_1, SGA10_test$SGAsco))</pre>
```

[1] 0.1417423

## Mejorar el rendimiento del modelo

Podemos probar cambiando alguno de los parámetros por defecto



```
k_PCC_2 <- rownames(knn_model_PCC_2$bestTune)
knn_model_PCC_2$results[k_PCC_2,]</pre>
```

```
k RMSE Rsquared MAE RMSESD RsquaredSD MAESD
3 9 0.135496 0.5182416 0.09255648 0.05163305 0.2710733 0.02537471

pred_PCC_2 <- knn_model_PCC_2 %>% predict(SGA10_test)

(tabla_knn[2,2] <- RMSE(pred_PCC_2, SGA10_test$SGAsco))
```



```
k_NPC_2 <- rownames(knn_model_NPC_2$bestTune)
knn_model_NPC_2$results[k_NPC_2,]</pre>
```

```
k RMSE Rsquared MAE RMSESD RsquaredSD MAESD
3 9 0.1340918 0.5420777 0.09006229 0.0497747 0.30274 0.02297983

pred_NPC_2 <- knn_model_NPC_2 %>% predict(SGA10_test)
(tabla_knn[2,3] <- RMSE(pred_NPC_2, SGA10_test$SGAsco))
```

## Resumen resultados algoritmo knn:

```
kable(tabla_knn) %>%
kable_styling(full_width = F, position = "left")
```

| Option  | PCC       | NPC       |
|---------|-----------|-----------|
| Default | 0.1465124 | 0.1417423 |
| Param   | 0.1488071 | 0.1522432 |

## Algoritmo Artificial Neural Network

## Entrenamiento del modelo

```
set.seed(seed)
ann_model_1_PCC <- neuralnet(SGAsco ~. -NPC, data=SGA10_train)
plot(ann_model_1_PCC, rep="best")</pre>
```





#### Evaluar el rendimiento del modelo

```
tabla_ann <- data.frame(hidden = c(1,2,3), PCC = NA, NPC = NA)
ann_results_1_PCC <- compute(ann_model_1_PCC, SGA10_test)
ann_pred_1_PCC <- ann_results_1_PCC$net.result
(tabla_ann[1,2] <- RMSE(ann_pred_1_PCC, SGA10_test$SGAsco))

[1] 0.2053081
ann_results_1_NPC <- compute(ann_model_1_NPC, SGA10_test)
ann_pred_1_NPC <- ann_results_1_NPC$net.result
(tabla_ann[1,3] <- RMSE(ann_pred_1_NPC, SGA10_test$SGAsco))</pre>
```

[1] 0.2159961

## Mejorar el rendimiento del modelo

Podemos intentar mejorar el rendimiento incrementando el número de hidden nodes.

## 2 Hidden nodes

```
set.seed(seed)
ann_model_2_PCC <- neuralnet(SGAsco ~. -NPC, data=SGA10_train, hidden = 2)
plot(ann_model_2_PCC, rep="best")</pre>
```



```
16
```



```
ann_results_2_NPC <- compute(ann_model_2_NPC, SGA10_test)
ann_pred_2_NPC <- ann_results_2_NPC$net.result
(tabla_ann[2,3] <- RMSE(ann_pred_2_NPC, SGA10_test$SGAsco))</pre>
```

## 3 Hidden nodes

```
set.seed(seed)
ann_model_3_PCC <- neuralnet(SGAsco ~. -NPC, data=SGA10_train, hidden = 3)
plot(ann_model_3_PCC, rep="best")</pre>
```



ann\_model\_3\_NPC <- neuralnet(SGAsco ~. -PCC, data=SGA10\_train, hidden = 3)</pre>

set.seed(seed)

plot(ann\_model\_3\_NPC, rep="best")



```
ann_results_3_NPC <- compute(ann_model_3_NPC, SGA10_test)
ann_pred_3_NPC <- ann_results_3_NPC$net.result
(tabla_ann[3,3] <- RMSE(ann_pred_3_NPC, SGA10_test$SGAsco))</pre>
```

## Resumen resultados algoritmo Artificial Neural Networks

```
kable(tabla_ann) %>%
kable_styling(full_width = F, position = "left")
```

| hidden | PCC       | NPC       |
|--------|-----------|-----------|
| 1      | 0.2053081 | 0.2159961 |
| 2      | 0.1745996 | 0.1867948 |
| 3      | 0.1942752 | 0.2170448 |

## Algoritmo Support Vector Machine

### Entrenamiento del modelo

Empezamos entrenando el modelo con el kernel lineal (vanilladot)

```
set.seed(seed)
svm_model_PCC_1 <- ksvm(SGAsco ~. -NPC, data=SGA10_train, kernel = "vanilladot")

Setting default kernel parameters
set.seed(seed)
svm_model_NPC_1 <- ksvm(SGAsco ~. -PCC, data=SGA10_train, kernel = "vanilladot")</pre>
```

```
Setting default kernel parameters
```

#### Evaluar el rendimiento del modelo

```
tabla_svm <- data.frame(kernel = c("vanilladot", "rbfdot", "laplacedot" ), PCC = NA, NPC = NA)
svm_pred_PCC_1 <- predict(svm_model_PCC_1, SGA10_test)
(tabla_svm[1,2] <- RMSE(svm_pred_PCC_1, SGA10_test$SGAsco))
[1] 0.1653479
svm_pred_NPC_1 <- predict(svm_model_NPC_1, SGA10_test)
(tabla_svm[1,3] <- RMSE(svm_pred_NPC_1, SGA10_test$SGAsco))
[1] 0.1654833</pre>
```

## Mejorar el rendimiento del modelo

Podemos intentar mejorar el rendimiento cambiando el tipo de kernel que utiliza el modelo.

## Con el kernel rbfdot (Radial Basis kernel "Gaussian")

```
set.seed(seed)
svm_model_PCC_2 <- ksvm(SGAsco ~. -NPC, data=SGA10_train, kernel = "rbfdot")
svm_pred_PCC_2 <- predict(svm_model_PCC_2, SGA10_test)
(tabla_svm[2,2] <- RMSE(svm_pred_PCC_2, SGA10_test$SGAsco))

[1] 0.1832892
set.seed(seed)
svm_model_NPC_2 <- ksvm(SGAsco ~. -PCC, data=SGA10_train, kernel = "rbfdot")
svm_pred_NPC_2 <- predict(svm_model_NPC_2, SGA10_test)
(tabla_svm[2,3] <- RMSE(svm_pred_NPC_2, SGA10_test$SGAsco))</pre>
```

## [1] 0.1861551

#### Con el kernel laplacedot (Laplacian kernel)

```
set.seed(seed)
svm_model_PCC_3 <- ksvm(SGAsco~. -NPC, data=SGA10_train, kernel = "laplacedot")
svm_pred_PCC_3 <- predict(svm_model_PCC_3, SGA10_test)
(tabla_svm[3,2] <- RMSE(svm_pred_PCC_3, SGA10_test$SGAsco))</pre>
```

```
[1] 0.1691735
set.seed(seed)
svm_model_NPC_3 <- ksvm(SGAsco ~. -PCC, data=SGA10_train, kernel = "laplacedot")
svm_pred_NPC_3 <- predict(svm_model_NPC_3, SGA10_test)
(tabla_svm[3,3] <- RMSE(svm_pred_NPC_3, SGA10_test$SGAsco))</pre>
```

#### [1] 0.1790633

#### Resumen resultados algoritmo SVM:

```
kable(tabla_svm) %>%
kable_styling(full_width = F, position = "left")
```

| kernel     | PCC       | NPC       |
|------------|-----------|-----------|
| vanilladot | 0.1653479 | 0.1654833 |
| rbfdot     | 0.1832892 | 0.1861551 |
| laplacedot | 0.1691735 | 0.1790633 |

# Algoritmo Árbol de Decisión

## Entrenamiento del Modelo

```
set.seed(seed)
ad_model_PCC_1 <- rpart(SGAsco ~. -NPC, data=SGA10_train,)</pre>
set.seed(seed)
ad_model_NPC_1 <- rpart(SGAsco ~. -PCC, data=SGA10_train)</pre>
```

## Mostramos un gráfico del modelo

fancyRpartPlot(ad\_model\_PCC\_1, caption = NULL) 1 -0.14n=127 100% yes | fcBP >= 0.48 | no 3



fancyRpartPlot(ad\_model\_NPC\_1, caption = NULL)



#### Evaluar el rendimiento del modelo

```
tabla_ad <- data.frame(Option = c("Default", "Param"), PCC = NA, NPC = NA)

ad_pred_PCC_1 <- predict(ad_model_PCC_1, SGA10_test)
(tabla_ad[1,2] <- RMSE(ad_pred_PCC_1, SGA10_test$SGAsco))

[1] 0.165828

ad_pred_NPC_1 <- predict(ad_model_NPC_1, SGA10_test)
(tabla_ad[1,3] <- RMSE(ad_pred_NPC_1, SGA10_test$SGAsco))

[1] 0.1667751</pre>
```

## Mejorar el rendimiento del modelo

Podemos probar a cambiar algún parámetro por defecto para comprobar si mejora el rendimiento del modelo



```
ad_pred_PCC_2 <- predict(ad_model_PCC_2, SGA10_test)</pre>
(tabla_ad[2,2] <- RMSE(ad_pred_PCC_2, SGA10_test$SGAsco))</pre>
```

```
set.seed(seed)
ad_model_NPC_2 <- rpart(SGAsco ~. -PCC, data=SGA10_train,</pre>
                         minsplit = 2, minbucket = 1)
fancyRpartPlot(ad_model_NPC_2, caption = NULL)
```



## Resumen resultados algoritmo Arbol de decisión

```
kable(tabla_ad) %>%
kable_styling(full_width = F, position = "left")
```

| Option  | PCC       | NPC       |
|---------|-----------|-----------|
| Default | 0.1658280 | 0.1667751 |
| Param   | 0.1418558 | 0.1376482 |

# Algoritmo Random Forest

## Entrenamiento del Modelo

```
set.seed(seed)
rf_model_PCC_1<- randomForest(SGAsco ~. -NPC, data=SGA10_train)
set.seed(seed)
rf_model_NPC_1<- randomForest(SGAsco ~. -PCC, data=SGA10_train)</pre>
```

## Mostramos un gráfico del modelo

```
plot(rf_model_PCC_1)
```

# rf\_model\_PCC\_1



rf\_model\_NPC\_1



Observamos que el comportamiento es bastante estable a partir de 100 árboles aproximádamente.

varImpPlot(rf\_model\_PCC\_1)

# rf\_model\_PCC\_1



varImpPlot(rf\_model\_NPC\_1)

# rf\_model\_NPC\_1



Observamos por ejemplo que la variable NPC gana importancia respecto PCC.

#### Evaluar el rendimiento del modelo

```
tabla_rf <- data.frame(Option = c("Default", "Param"), PCC = NA, NPC = NA)

rf_pred_PCC_1 <- predict(rf_model_PCC_1, SGA10_test)
(tabla_rf[1,2] <- RMSE(rf_pred_PCC_1, SGA10_test$SGAsco))

[1] 0.1420198

rf_pred_NPC_1 <- predict(rf_model_NPC_1, SGA10_test)
(tabla_rf[1,3] <- RMSE(rf_pred_NPC_1, SGA10_test$SGAsco))

[1] 0.1431044</pre>
```

#### Mejorar el rendimiento del modelo

Podemos intentar mejorar el rendimiento incrementando el número de árboles.

```
set.seed(seed)
rf_model_PCC_1000 <- randomForest(SGAsco ~. -NPC, data=SGA10_train, ntree=1000)
rf_pred_PCC_1000 <- predict(rf_model_PCC_1000, SGA10_test)
(tabla_rf[2,2] <- RMSE(rf_pred_PCC_1000, SGA10_test$SGAsco))

[1] 0.1432169
set.seed(seed)
rf_model_NPC_1000 <- randomForest(SGAsco ~. -PCC, data=SGA10_train, ntree=1000)
rf_pred_NPC_1000 <- predict(rf_model_NPC_1000, SGA10_test)
(tabla_rf[2,3] <- RMSE(rf_pred_NPC_1000, SGA10_test$SGAsco))</pre>
```

[1] 0.1425534

Vemos que el modelo no ha mejorado aumentando el número de árboles del bosque a 1.000, como se intuía en el gráfico anterior.

## Resumen resultados algoritmo Random Forest

```
kable(tabla_rf) %>%
kable_styling(full_width = F, position = "left")
```

| Option  | PCC       | NPC       |
|---------|-----------|-----------|
| Default | 0.1420198 | 0.1431044 |
| Param   | 0.1432169 | 0.1425534 |

## Recapitulando el resumen de todos los modelos

## Regresión lineal

```
RMSE.lm1
[1] 0.1226716
Algoritmo k-nn
kable(tabla_knn) %>%
   kable_styling(full_width = F, position = "left")
```

| Option  | PCC       | NPC       |
|---------|-----------|-----------|
| Default | 0.1465124 | 0.1417423 |
| Param   | 0.1488071 | 0.1522432 |

Algoritmo Artificial Neural Networks

```
kable(tabla_ann) %>%
kable_styling(full_width = F, position = "left")
```

| hidden | PCC       | NPC       |
|--------|-----------|-----------|
| 1      | 0.2053081 | 0.2159961 |
| 2      | 0.1745996 | 0.1867948 |
| 3      | 0.1942752 | 0.2170448 |

Algoritmo Support Vector Machine

```
kable(tabla_svm) %>%
kable_styling(full_width = F, position = "left")
```

| kernel     | PCC       | NPC       |
|------------|-----------|-----------|
| vanilladot | 0.1653479 | 0.1654833 |
| rbfdot     | 0.1832892 | 0.1861551 |
| laplacedot | 0.1691735 | 0.1790633 |

Algoritmo Árbol de decisión

```
kable(tabla_ad) %>%
kable_styling(full_width = F, position = "left")
```

| Option  | PCC       | NPC       |
|---------|-----------|-----------|
| Default | 0.1658280 | 0.1667751 |
| Param   | 0.1418558 | 0.1376482 |

Algoritmo Random Forest

```
kable(tabla_rf) %>%
kable_styling(full_width = F, position = "left")
```

| Option  | PCC       | NPC       |
|---------|-----------|-----------|
| Default | 0.1420198 | 0.1431044 |
| Param   | 0.1432169 | 0.1425534 |

Vemos que ninguno mejora el valor del modelo de regresión lineal.

El que ha obtenido el mejor valor es el algoritmo Arbol de Decisión, parametrizado, y con la variable NPC.

Podemos realizar los cálculos con el dataset SGA16 y esos parámetros:



[1] 0.1561926

Vemos que aunque incrementemos el número de observaciones, la predicción no mejora.