Chương 3. Không gian véctơ §1. KHÁI NIỆM KHÔNG GIAN VÉCTƠ

1.1. Định nghĩa. Một tập $V \neq \emptyset$ được gọi là *không gian vécto* (*không gian tuyến tính*) trên \mathbb{R} (hay \mathbb{R} _không gian vécto) nếu:

- Có 2 phép toán:
- Phép cộng 2 vécto:

$$V \times V \rightarrow V$$
 (Phép cộng khép kín)
 $(x,y) \mapsto x + y$

• Phép nhân 1 số với véctơ (phép nhân vô hướng):

$$\mathbb{R} \times V \to V$$
 (Phép nhân vô hướng khép kín) $(\alpha, x) \mapsto \alpha x$

- Hai phép toán trên thỏa mãn 8 tiên đề sau: $\forall x, y, z \in V$; $\forall \alpha, \beta \in \mathbb{R}$
 - 1) Cộng kết hợp: (x + y) + z = x + (y + z)
 - 2) Cộng giao hoán: x + y = y + x
 - 3) Tồn tại phần tử $\theta \in V$ sao cho: $\theta + x = x$.

Phần tử θ được gọi là phần tử trung hòa.

4) Với $\forall x \in V, \exists -x \in V \text{ sao cho: } x + (-x) = \theta.$

Phần tử -x được gọi là phần tử đối của x.

- 5) $\alpha(x + y) = \alpha x + \alpha y$
- 6) $(\alpha + \beta)x = \alpha x + \beta x$
- 7) $(\alpha\beta)x = \alpha(\beta x)$
- 8) Tiên đề Unita: 1.x = x

Mỗi phần tử của V được gọi là một véctơ. Mỗi phần tử trong $\mathbb R$ được gọi là vô hướng.

VD1. Cho $V = x_1, x_2 \mid x_1, x_2 \in \mathbb{R}$. Xét xem V có phải là không gian véctơ trên \mathbb{R} với phép cộng và phép nhân vô hướng sau không?

a) +:
$$x_1, x_2 + y_1, y_2 = x_1 + y_1, x_2 + y_2$$

•: $\lambda x_1, x_2 = \lambda x_1, \lambda x_2 ; \forall \lambda \in \mathbb{R}$

b) +:
$$x_1, x_2 + y_1, y_2 = x_1 + y_1, x_2 + y_2$$

•: $\lambda x_1, x_2 = \lambda x_1, x_2 ; \forall \lambda \in \mathbb{R}$

<u>VD2.</u>

Tập gồm tất cả các bộ n số thực: $\mathbb{R}^n=\ (x_1,x_2,...,x_n) \ |\ x_i\in\mathbb{R}; i=\overline{1,n}$ là không gian véctơ trên \mathbb{R} với

- Phép cộng 2 véctơ: $x + y = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$ với $x = (x_1, x_2, ..., x_n); y = (y_1, y_2, ..., y_n)$
- Phép nhân vô hướng: $\alpha x = (\alpha x_1, \alpha x_2, ..., \alpha x_n)$

$$\Rightarrow \theta = (0,0,...,0); -x = (-x_1,-x_2,...,-x_n)$$

VD3. Ký hiệu: $P_n[x]$ là tập tất cả các đa thức với hệ số thực có bậc không quá n ($n \in \mathbb{N}^*$), tức:

$$P_{n} x = a_{o} + a_{1}x + a_{2}x^{2} + ... + a_{n}x^{n} | a_{i} \in \mathbb{R}; i = \overline{0,n}$$

với phép cộng 2 đa thức và phép nhân 1 số với đa thức thông thường. Khi đó $P_n[x]$ là không gian véctơ trên $\mathbb R$

$$\Rightarrow \theta = 0 + 0.x + 0.x^{2} + ... + 0.x^{n}$$
$$-p(x) = -a_{0} - a_{1}x - a_{2}x^{2} - ... - a_{n}x^{n}$$

 ${
m f VD4.}$ Ký hiệu: ${
m M_{m imes n}}$ ${
m \Bbb R}$ là tập tất cả các ma trận cỡ m ${
m imes n}$ trên ${
m \Bbb R}$ với phép toán cộng 2 ma trận và nhân 1 số với ma trận. Khi đó ${
m M_{m imes n}}$ ${
m \Bbb R}$ là không gian véctơ trên ${
m \Bbb R}$

VD5. Ký hiệu: R_2 là tập hợp tất cả các véctơ tự do trong mặt phẳng với phép cộng véctơ và phép nhân 1 số thực với véctơ được định nghĩa như ở phổ thông. Khi đó R_2 là không gian véctơ trên \mathbb{R}

$$\Rightarrow \theta = \vec{0}$$
; vécto đối của \vec{x} là $-\vec{x}$

Tương tự: R_3 là tất cả các véctơ tự do trong không gian với phép cộng và nhân vô hướng như trên cũng là không gian véctơ trên $\mathbb R$

1.2. Các tính chất.

Định lý. Trong không gian véctơ V ta có:

- Vécto θ là duy nhất
- lacktriangle Vécto đối của vécto $\mathbf{x} \in \mathbf{V}$ là duy nhất
- $\forall x \in V \text{ ta có } 0.x = \theta$
- $\forall x \in V \text{ ta co } -1 . x = -x$
- $\forall \mathbf{k} \in \mathbb{R} \text{ ta có } \mathbf{k}.\theta = \theta$
- Với $x \in V, k \in \mathbb{R}$ ta có $kx = \theta \Leftrightarrow \begin{vmatrix} k = 0 \\ x = \theta \end{vmatrix}$

Định nghĩa.

$$\forall x, y \in V : x - y = x + -y$$

1.3. Không gian véctơ con

1.3.1. Định nghĩa.

Cho không gian véctơ V. Tập con $\varnothing \neq A \subset V$ được gọi là *không gian vécto con* (hay *không gian con*) của V nếu A cũng là không gian vécto với hai phép toán trên V.

1.3.2. Đinh lý. (Tiêu chuẩn không gian con)

Cho không gian véctơ V. Tập con $\varnothing \neq A \subset V$ là không gian véctơ con

của V khi và chỉ khi:
$$\begin{cases} \bullet \ \forall a,b \in A \ \text{thì } a+b \in A \\ \bullet \ \forall \alpha \in \mathbb{R}, \forall a \in A \ \text{thì } \alpha a \in A \end{cases}$$

•
$$\forall \alpha \in \mathbb{R}, \forall a \in A \text{ thì } \alpha a \in A$$

<u>VD1.</u>

Cho V là một không gian véctơ. Khi đó

- V là không gian con của V.
- Tập θ_V là không gian con của V.

Hai không gian con θ_V và V là hai không gian con tầm thường của V

<u>VD2.</u>

Cho tập hợp $A = x = (x_1, x_2, x_3) \in \mathbb{R}^3 | 2x_1 + x_2 + x_3 = 0$.

Chứng minh rằng A là không gian véctơ con của \mathbb{R}^3

VD3. Xét xem W có là không gian con của \mathbb{R}^3 không?

$$W = x_1, x_2, x_3 \in \mathbb{R}^3 | x_1 + 3x_2 = 1$$

<u>VD4.</u>

Chứng minh rằng tập hợp $A=\begin{bmatrix}0&a\\b&0\end{bmatrix}$ $|a,b\in\mathbb{R}$ là không gian con của không gian vécto $M_2(\mathbb{R})$

§2. SỰ ĐỘC LẬP TUYẾN TÍNH VÀ PHỤ THUỘC TUYẾN TÍNH

- **2.1.** Định nghĩa. Cho không gian véctơ V và hệ véctơ $a_1, a_2, ..., a_n \in V$
- Một tổ hợp tuyến tính (thtt) của hệ véctơ đã cho là 1 tổng có dạng:

$$x = \sum_{i=1}^{n} \lambda_i a_i = \lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_n a_n \in V, \text{ trong $d\acute{o}$: $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{R}$}$$

Khi đó ta nói x biểu thị tuyến tính qua các véctơ a_i , i=1,nNhư vậy, véctơ θ là thtt của mọi hệ véctơ.

- Hệ véctơ a_1, \dots, a_n được gọi là phụ thuộc tuyến tính (pttt) nếu tồn tại các số $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R}$ không đồng thời bằng 0 sao cho thtt của hệ bằng θ tức $\lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_n a_n = \theta$.
- Hệ véctơ a_1 , ..., a_n được gọi là độc lập tuyến tính (đltt) nếu nó không pttt, tức là từ $\lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_n a_n = \theta$ suy ra $\lambda_i = 0$; $\forall i = \overline{1,n}$

VD 1. Hãy biểu diễn véctơ x thành tổ hợp tuyến tính của các véctơ u, v, w

- 1) x = 7,-2,15; u = 2,3,5; v = 3,7,8; w = 1,-6,1
- 2) $x = 5 + 9t + 5t^2$; $u = 2 + t + 4t^2$; $v = 1 t 3t^2$; $w = 3 + 2t + 5t^2$

<u>VD 2.</u>

Trong \mathbb{R}^2 : x = (1,-1); y = (2,3). Hê x,y đltt vì:

$$X\acute{e}t \ \lambda_{_{1}}x+\lambda_{_{2}}y=\theta \Leftrightarrow \ \lambda_{_{1}},-\lambda_{_{1}} \ + \ 2\lambda_{_{2}},3\lambda_{_{2}} \ = (0,0) \Leftrightarrow \begin{cases} \lambda_{_{1}}+2\lambda_{_{2}}=0 \\ -\lambda_{_{1}}+3\lambda_{_{2}}=0 \end{cases}$$

Gi ả i hệ suy ra $\lambda_1=\lambda_2=0$ (hoặc vì hệ phương trình tuyến tính thuần

nhất có
$$\begin{vmatrix} 1 & 2 \\ -1 & 3 \end{vmatrix} = 5 \neq 0$$
 nên hệ chỉ có nghiệm tầm thường).

<u>VD3.</u> Trong \mathbb{R}^3 : $\mathbf{x} = (-1,3,2)$; $\mathbf{y} = (2,0,1)$; $\mathbf{z} = (0,6,5)$.

Hệ
$$x,y,z$$
 pttt vì: Xét $\lambda_1 x + \lambda_2 y + \lambda_3 z = \theta$; $(*) \Leftrightarrow$
$$\begin{cases} -\lambda_1 + 2\lambda_2 = 0 \\ 3\lambda_1 + 6\lambda_3 = 0 \\ 2\lambda_1 + \lambda_2 + 5\lambda_3 = 0 \end{cases}$$

Đây là hệ phương trình tuyến tính thuần nhất có
$$\begin{vmatrix} -1 & 2 & 0 \\ 3 & 0 & 6 \\ 2 & 1 & 5 \end{vmatrix} = 0$$

nên hệ có nghiệm không tầm thường, tức tồn tại các số $\lambda_1, \lambda_2, \lambda_3$ không đồng thời bằng 0 để (*) đúng. Vậy hệ pttt.

VD4. Xét tính độc lập tuyến tính, phụ thuộc tuyến tính của các hệ véctơ sau

$$S = u = 2, -3, m ; v = 3, -1, 5 ; w = 1, -4, 3 trong \mathbb{R}^3$$

2.2. Định lý. Hệ véctơ a₁, a₂,..., a_n trong không gian véctơ V là pttt khi và chỉ khi có một trong các véctơ của hệ là thtt của các véctơ còn lại.

2.3. Hệ quả.

- Mọi hệ chứa véctơ không đều pttt
- Nếu có một hệ con của hệ pttt thì hệ đã cho cũng pttt
- ⇒ Như vậy, nếu hệ đltt thì mọi hệ con của hệ cũng đltt

§3. CƠ SỞ VÀ SỐ CHIỀU CỦA KHÔNG GIAN VÉCTƠ

3.1. Định nghĩa.

Cho không gian véctơ V. Hệ véctơ $E = \{e_1, e_2,...,e_n\}$ được gọi là co sở của V nếu

- Hệ E đltt.
- Hệ E là hệ sinh (hay tập sinh) của V, tức với $\forall x \in V$ thì x là thtt của hệ E, nghĩa là tồn tại các số $x_i \in \mathbb{R}$, $i = \overline{1,n}$ sao cho $x = x_1 e_1 + ... + x_n e_n$

Khi đó ta cũng nói E *sinh ra* V.

Bộ số $(x_1,x_2,...,x_n) \in \mathbb{R}^n$ được gọi là *tọa độ* của véctơ x đối với cơ sở E và ký hiệu là $x_E = (x_1,x_2,...,x_n)$

 $\underline{B\mathring{o}}$ đề. Với mỗi véctơ $\mathbf{x} \in V$ thì tọa độ đối với một cơ sở \mathbf{E} là duy nhất

<u>Dinh lý.</u> Nếu $x_E = (x_1, ..., x_n)$ và $y_E = (y_1, ..., y_n)$ thì

- $(x+y)_E = (x_1 + y_1, ..., x_n + y_n)$
- $(\lambda x)_{E} = (\lambda x_{1}, ..., \lambda x_{n}); \ \lambda \in \mathbb{R}$

<u>VD 1.</u>

Trong \mathbb{R}^2 : Xét hệ $F = \{e_1 = (1, -1); e_2 = (0, 1).$ Ta có

• Hệ F đltt vì: Xét $\lambda_1 e_1 + \lambda_2 e_2 = \theta \Leftrightarrow \lambda_1, -\lambda_1 + 0, \lambda_2 = (0,0)$

$$\Leftrightarrow \begin{cases} \lambda_1 = 0 \\ -\lambda_1 + \lambda_2 = 0 \end{cases} \Rightarrow \lambda_1 = \lambda_2 = 0.$$

• Hệ F là hệ sinh vì: Lấy bất kỳ $x = (x_1; x_2) \in \mathbb{R}^2$, tìm a, b sao cho $x = ae_1 + be_2 \Leftrightarrow (x_1; x_2) = a(1, -1) + b(0, 1) = (a, b - a)$

$$\Leftrightarrow \begin{cases} a = x_1 \\ b - a = x_2 \end{cases} \Rightarrow \begin{cases} a = x_1 \\ b = x_1 + x_2 \end{cases} \Rightarrow x = x_1 e_1 + (x_1 + x_2) e_2$$

 \Rightarrow x là một thtt của F.

Vậy F là một cơ sở của \mathbb{R}^2 .

VD 2.

Trong \mathbb{R}^2 : Xét $e_1 = (1,0)$; $e_2 = (0,1)$. Hệ $E = \{e_1,e_2\}$ là một cơ sở của \mathbb{R}^2 và được gọi là cơ sở chính tắc của \mathbb{R}^2 . Thật vậy:

- E dltt vi: Xét $\lambda_1 e_1 + \lambda_2 e_2 = \theta \Leftrightarrow \lambda_1, 0 + 0, \lambda_2 = (0,0)$
- $\Leftrightarrow (\lambda_1, \lambda_2) = 0, 0 \Rightarrow \lambda_1 = \lambda_2 = 0.$
- E là hệ sinh vì: $\forall x \in \mathbb{R}^2$ ta có

$$x = (x_1; x_2) = x_1(1,0) + x_2(0,1) = x_1e_1 + x_2e_2$$
. Vậy x là một thtt của E.

Nhân xét. Một không gian véctơ có thể có nhiều cơ sở.

<u>VD 3.</u>

Hoàn toàn tương tự, trong \mathbb{R}^n : Xét hệ véctor $\mathbf{e}_1 = (1,0,...,0)$

$$e_2 = (0,1,...,0)$$

$$e_n = (0,0,...,1)$$

 \Rightarrow Hệ $E = \{e_1, e_2, ..., e_n\}$ là một cơ sở của \mathbb{R}^n và được gọi là cơ sở chính tắc của \mathbb{R}^n .

3.2. Hạng của hệ véctơ

Trong không gian véctơ V cho hệ véctơ $S = \{a_1, a_2, ..., a_m\}$. Giả sử không gian véctơ V có cơ sở $E = \{e_1, e_2, ..., e_n\}$. Biểu diễn mỗi véctơ của hệ S theo cơ sở E ta có

$$a_{1} = a_{11}e_{1} + a_{12}e_{2} + ... + a_{1n}e_{n}$$

$$a_{2} = a_{21}e_{1} + a_{22}e_{2} + ... + a_{2n}e_{n}$$

$$a_{m} = a_{m1}e_{1} + a_{m2}e_{2} + ... + a_{mn}e_{n}$$

$$\text{Ma trận A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \text{ dược gọi là } \textit{ma trận tọa độ} \\ \textit{của hệ vécto'} S đối với cơ sở E}$$

Dinh nghĩa. Hạng của hệ véctơ S (ký hiệu: r(S)) là số r sao cho:

- Có r vécto của S đltt.
- Mọi véctơ của hệ S đều là thtt của r véctơ đó.

Nhân xét.

- Hạng của hệ véctơ S là số r khi và chỉ khi tồn tại r véctơ của hệ S đltt và mọi hệ gồm (r + 1) véctơ của S đều pttt.
- Hạng của hệ véctơ S là số tối đa các véctơ đltt của hệ.
- Có thể xét sự đ
ltt hay pttt của hệ S gồm m véctơ thông qua xét hạng của hệ, nếu r(S) = m thì hệ S đ
ltt, nếu r(S) < m thì hệ S pttt

Đinh lý 1. Nếu V là không gian véctơ có một cơ sở hữu hạn thì hạng của một hệ véctơ trong V bằng hạng của ma trận tọa độ của hệ đó đối với một cơ sở bất kỳ của V.

Nhân xét. Xét hệ S có m véctơ. Khi đó:

- Nếu r(A) = m thì hệ S đltt.
- Nếu r(A) < m thì hệ S pttt

VD. Tìm hạng của hệ véctơ $S = \{a_1, a_2, a_3, a_4\} \subset \mathbb{R}^3$ với $a_1 = (1,3,0), a_2 = (0,2,4), a_3 = (1,5,4), a_4 = (1,1,-4).$

Định lý 2. Nếu trong không gian véctơ V có một cơ sở gồm n véctơ thì mọi hệ gồm (n+1) véctơ trong V đều pttt.

Hê quả. Nếu không gian véctơ V có một cơ sở gồm n véctơ thì số véctơ của một cơ sở bất kỳ của V cũng bằng n.

3.3. Định nghĩa. Một không gian véctơ V được gọi là *không gian véctơ hữu hạn chiều* nếu tồn tại một cơ sở trong V gồm một số hữu hạn véctơ. Số véctơ trong cơ sở của V gọi là *số chiều của V* và ký hiệu là: dimV

<u>VD.</u> 1) \mathbb{R}^n là không gian véctơ hữu hạn chiều, dim \mathbb{R}^n = n

- 2) Trong $P_n[x]$: Hệ véctơ $\{1, x, x^2, ..., x^n\}$ là cơ sở chính tắc của $P_n[x]$, do đó $P_n[x]$ là không gian véctơ hữu hạn chiều, dim $P_n[x] = n + 1$.
- 3) Trong không gian vécto $M_{m\times n}(\mathbb{R})$:

Xét hệ véctơ $\{e_{ij}\}$ mà e_{ij} , $1 \le i \le m$, $1 \le j \le n$ là ma trận cỡ m×n mà phần tử ở vị trí (i,j) bằng 1 và các phần tử ở vị trí khác bằng 0, tức

$$e_{11} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}; \ e_{12} = \begin{pmatrix} 0 & 1 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}; \dots; \ e_{mn} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Hệ E = { e_{11} , e_{12} ,..., e_{mn} } là cơ sở chính tắc của $M_{m\times n}(\mathbb{R})$. Vậy $M_{m\times n}(\mathbb{R})$ là không gian véctơ hữu hạn chiều, dim $M_{m\times n}(\mathbb{R})$ = m.n

Đinh lý. Nếu V là không gian véctơ n chiều thì mọi hệ gồm n véctơ đltt trong V đều là cơ sở của V.

 $rac{ extbf{VD.}}{ extbf{S}}$ Hệ $extbf{S}=a_1=1,1,2$, $a_2=1,-1,0$, $a_3=2,0,1$ có là cơ sở của \mathbb{R}^3 không?

3.4. Không gian con sinh bởi hệ véctơ.

Định nghĩa 1. Cho không gian véctơ V và $S = \{a_1, a_2, ..., a_n\}$ là một hệ véctơ của V. Ta gọi tập tất cả các thtt của hệ S là *bao tuyến tính* của S, ký hiệu là spanS. Như vậy

$$SpanS = \lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_n a_n | \lambda_i \in \mathbb{R}; a_i \in V$$

Định lý 1. SpanS là một không gian con của V

Định nghĩa 2. SpanS được gọi là không gian véctơ con sinh bởi hệ véctơ S và ký hiệu là $\langle S \rangle = \langle a_1, a_2, ..., a_n \rangle = \text{SpanS}$

<u>VD.</u>

Xét $A = x = (x_1, x_2, x_3) \in \mathbb{R}^3 | 2x_1 + x_2 + x_3 = 0$ là không gian con của \mathbb{R}^3 .

Ta có: $\forall x = x_1, x_2, x_3 \in A \Leftrightarrow 2x_1 + x_2 + x_3 = 0 \Leftrightarrow x_3 = -2x_1 - x_2$

Do đó: $x = x_1, x_2, -2x_1 - x_2 = x_1, 1, 0, -2 + x_2, 0, 1, -1$

Suy ra $A = \langle S \rangle$ với $S = \{(1,0,-2); (0,1,-1)\}$. Vậy S là hệ sinh của A.

Kiểm tra thấy S đltt. Do đó S là cơ sở của A. Vậy $\dim A = 2$

Định lý 2. Nếu S là không gian véctơ con của không gian véctơ hữu hạn chiều V thì S là không gian véctơ hữu hạn chiều và dim $S \le \dim V$. Dấu "=" xảy ra khi và chỉ khi S = V.

Mệnh đề. Nếu $\{e_1, \dots, e_k\}$ là cơ sở của không gian véctơ con S của không gian véctơ n chiều V thì tồn tại các véctơ e_{k+1}, \dots, e_n thuộc V sao cho $\{e_1, \dots, e_k, e_{k+1}, \dots, e_n\}$ là cơ sở của V.

Định lý 3.

- 1) < S > là không gian con nhỏ nhất chứa S.
- 2) $\dim < S > = r(S)$.

Nhân xét. Nếu dim< S>= k thì mọi hệ gồm k véctơ đltt của S đều là cơ sở của < S>

VD. Cho hệ véctơ $S = \{a_1, a_2, a_3, a_4\} \subset \mathbb{R}^3$ với $a_1 = (1,3,0), a_2 = (0,2,4), a_3 = (1,5,4), a_4 = (1,1,-4).$ Tìm dim< S > và một cơ sở của < S >

3.5. Không gian nghiệm của hệ phương trình tuyến tính thuần nhất

Xét hệ phương trình tuyến tính thuần nhất m phương trình, n ẩn:

$$AX = O \qquad (1)$$

Ký hiệu: *Tập hợp nghiệm* của hệ (1) là N

Định lý 1. N là một không gian con của \mathbb{R}^n , nó được gọi là *không gian* nghiệm của hệ phương trình tuyến tính thuần nhất (1) và dimN = n — r; với r = r(A)

Định nghĩa. Mỗi cơ sở của không gian nghiệm của hệ phương trình tuyến tính thuần nhất (1) được gọi là một *hệ nghiệm cơ bản* của hệ phương trình đó.

Nếu $\beta_1, \beta_2, ..., \beta_{n-r}$ là một hệ nghiệm cơ bản của hệ (1) thì $c_1\beta_1 + c_2\beta_2 + ... + c_{n-r}\beta_{n-r}$; với $c_i \in \mathbb{R}$; $i = \overline{1, n-r}$ được gọi là một *nghiệm tổng quát* của (1). Do đó

$$N = c_1\beta_1 + c_2\beta_2 + ... + c_{n-r}\beta_{n-r}; \text{ v\'oi } c_i \in \mathbb{R}; i = 1, n-r$$

Nhân xét. Nếu (1) là hệ phương tình Cramer thì hệ chỉ có duy nhất nghiệm tầm thường. Tức $N = \{(0,0,...,0)\}$, do đó dimN = 0

VD1. Tìm một hệ nghiệm cơ bản của hệ phương trình sau và giải hệ phương trình đó

$$\begin{cases} x_1 + 7x_2 - 8x_3 + 9x_4 = 0 \\ 2x_1 - 3x_2 + 3x_3 - 2x_4 = 0 \\ 5x_1 + x_2 - 2x_3 + 5x_4 = 0 \\ 3x_1 - 13x_2 + 14x_3 - 13x_4 = 0 \end{cases}$$

Dựa vào mối liên hệ giữa nghiệm của hệ phương trình tuyến tính tổng quát và nghiệm của hệ phương trình tuyến tính thuần nhất tương ứng ta suy ra: Nếu biết một nghiệm λ nào đó của hệ phương trình tuyến tính tổng quát và tập hợp N các nghiệm của hệ phương trình tuyến tính thuần nhất tương ứng thì ta suy ra tập tất cả các nghiệm của hệ phương trình tuyến tính tổng quát là:

$$\lambda + N = \lambda + u | u \in N$$

$$\begin{array}{l} \textbf{\underline{VD2.}} \text{ Giải hệ phương trình sau:} \left\{ \begin{array}{l} x_1 & +7x_2 & -8x_3 & +9x_4 = 3 \\ 2x_1 & -3x_2 & +3x_3 & -2x_4 = 5 \\ 5x_1 & +x_2 & -2x_3 & +5x_4 = 13 \\ 3x_1 - 13x_2 + 14x_3 - 13x_4 = 7 \end{array} \right. \end{array}$$

3.6. Đổi cơ sở và phép biến đổi tọa độ.

Cho V là không gian véctơ n chiều có các cơ sở là

$$E = e_1, e_2, ..., e_n$$
; $E' = e'_1, e'_2, ..., e'_n$

Giả sử biểu diễn các phần tử của cơ sở E' qua cơ sở E ta được:

$$e'_1 = a_{11}e_1 + a_{21}e_2 + ... + a_{n1}e_n$$

 $e'_2 = a_{12}e_1 + a_{22}e_2 + ... + a_{n2}e_n$

$$e'_{n} = a_{1n}e_{1} + a_{2n}e_{2} + ... + a_{nn}e_{n}$$

Ma trận

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \dots & \mathbf{a}_{1n} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \dots & \mathbf{a}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{n1} & \mathbf{a}_{n2} & \dots & \mathbf{a}_{nn} \end{pmatrix} \quad \text{dược gọi là } \textit{ma trận chuyển cơ sở từ cơ} \\ \mathbf{sở E sang cơ sở E' và ký hiệu là } \mathbf{A}_{E \rightarrow E'}$$

Khi đó A⁻¹ được gọi là ma trận chuyển từ cơ sở E' sang cơ sở E.

Cho $x \in V$. Giả sử $x_E = x_1, x_2, ..., x_n$ và $x_{E'} = x_1', x_2', ..., x_n'$ Khi đó ta có công thức chuyển từ tọa độ $x_1', x_2', ..., x_n'$ sang tọa độ $x_1, x_2, ..., x_n$ là $x_E = A x_{E'}$

Trong đó: x E và x E là các ma trận cột tọa độ

$$\mathbf{x}_{E} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{n} \end{bmatrix} = \mathbf{x}_{1} \quad \mathbf{x}_{2} \quad \dots \quad \mathbf{x}_{n}^{T}; \ \mathbf{x}_{E'} = \begin{bmatrix} \mathbf{x}_{1}' \\ \mathbf{x}_{2}' \\ \vdots \\ \mathbf{x}_{n}' \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{1}' & \mathbf{x}_{2}' & \dots & \mathbf{x}_{n}' \end{bmatrix}^{T}$$

Vì ma trận chuyển từ cơ sở E' sang cơ sở E là A^{-1} nên công thức chuyển từ tọa độ $x_1, x_2, ..., x_n$ sang tọa độ $x_1', x_2', ..., x_n'$ là $x_{E'} = A^{-1} \ x_E$

Nhân xét. Cho $E=e_i$, $E'=e_i'$, $E''=e_i''$ là các cơ sở của không gian véctơ n chiều V

Nếu A là ma trận chuyển từ cơ sở E sang cơ sở E'

B là ma trận chuyển từ cơ sở E' sang cơ sở E' thì AB là ma trận chuyển từ cơ sở E sang cơ sở E'

VD1. Trong
$$\mathbb{R}^2$$
, cho các cơ sở $E = e_1 = (1,0); e_2 = (0,1)$

$$E' = e_1' = (1,1); e_2' = (2,1)$$

- a) Tìm ma trận chuyển cơ sở $A_{E
 ightarrow E'}$
- b) Tìm $X_{E'}$ nếu $X_{E} = (7,2)$

VD2. Trong
$$\mathbb{R}^2$$
, cho các cơ sở $E = e_1 = (1,0); e_2 = (0,-1)$

$$E' = e_1' = (2,-1); e_2' = (1,1)$$

Tîm X_E biết $X_{E'} = (1,2)$

§4. KHÔNG GIAN EUCLIDE

4.1. Định nghĩa. Cho không gian véctơ V trên \mathbb{R} , lấy bất kỳ x, y \in V.

Tích vô hướng của x và y là một số thực, ký hiệu là <x,y> thỏa mãn

các tính chất sau: 1)
$$\langle x, x \rangle \ge 0$$
 và $\langle x, x \rangle = 0 \Leftrightarrow x = \theta$

$$2) \langle x, y \rangle = \langle y, x \rangle$$

3)
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle; \forall z \in V$$

4)
$$\langle \lambda x, y \rangle = \lambda \langle x, y \rangle; \forall \lambda \in \mathbb{R}$$

- Không gian véctơ V hữu hạn chiều trên \mathbb{R} cùng với một tích vô hướng đã cho trên V được gọi là một *không gian Euclide*.
- $\overline{\mathbf{VD}}$. Không gian vécto \mathbb{R}^n là không gian Euclide với tích vô hướng thông thường (tích vô hướng Euclide) tương tự như trong \mathbb{R}^2 và \mathbb{R}^3

$$\langle x, y \rangle = \langle x_1, ..., x_n, y_1, ..., y_n \rangle = x_1 y_1 + ... + x_n y_n$$

4.2. Độ dài của véctơ

Định nghĩa. Cho không gian Euclide V và $x \in V$. Độ dài (hay *chuẩn*) của véctơ x, ký hiệu ||x|| là số thực được xác định bởi $||x|| = \sqrt{\langle x, x \rangle}$

- Nếu $\|\mathbf{x}\| = 1$ thì x được gọi là *vécto đơn vị*.
- d(x,y) = ||x-y|| được gọi là *khoảng cách* giữa x và y.
- Việc chia một véctơ khác θ cho độ dài của nó được gọi là *chuẩn* hóa véctơ đó. Khi đó ta sẽ được véctơ đơn vị. Tức $\frac{x}{\|x\|} = y \Rightarrow \|y\| = 1$

<u>VD.</u> Trong không gian Euclide \mathbb{R}^n , cho $x = x_1, ..., x_n$ ta có $\|x\| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + ... + x_n^2}$ gọi là độ dài Euclide của $x \in \mathbb{R}^n$

Tính chất.

- $\|\mathbf{x}\| \ge 0$ và $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \theta$
- $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|; \forall \lambda \in \mathbb{R}$
- $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$; (bất đẳng thức tam giác)
- Bất đẳng thức Cauchy-Schwartz: $|\langle x,y \rangle| \le ||x|| ||y||$

<u>VD.</u>

Trong không gian Euclide \mathbb{R}^n với tích vô hướng thông thường, bất đẳng thức C-S là:

$$\left|\sum_{i=1}^n x_i y_i\right| \leq \sqrt{\sum_{i=1}^n x_i^2} \sqrt{\sum_{i=1}^n y_i^2}$$

4.3. Vécto trực giao

Định nghĩa. Trong một không gian Euclide V, hai véctơ $x, y \neq \theta$ được gọi là *trực giao* (hay *vuông góc*) nếu $\langle x,y \rangle = 0$ và ký hiệu $x \perp y$

VD. Trong \mathbb{R}^2 với tích vô hướng Euclide cho

$$x = 2, -1, y = 2, 4$$

Khi đó:
$$\langle x, y \rangle = 2.2 + -1.4 = 0$$

Vậy x, y là hai vécto trực giao

Nhân xét. Vécto θ được coi là trực giao với mọi vécto của V

4.4. Hệ véctơ trực giao, trực chuẩn

Định nghĩa 1.

- Một hệ véctơ trong không gian Euclide được gọi là *hệ trực giao* nếu các véctơ của hệ trực giao từng đôi một.
- Một hệ véctơ trong không gian Euclide được gọi là *hệ trực chuẩn* nếu hệ này trực giao và mọi véctơ của hệ đều có chuẩn bằng 1.

VD1. Trong \mathbb{R}^3 với tích vô hướng thông thường

• 1,1,0; -1,1,2; 1,-1,1: hệ véctơ trực giao

•
$$\left\{ \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right); \left(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}} \right); \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \right\}$$
: hệ véctơ trực chuẩn

Định lý. Trong không gian Euclide nếu $u_1, u_2, ..., u_k$ là một hệ véctơ trực giao và các véctơ $u_i \neq \theta, i = \overline{1,k}$ thì hệ véctơ này đltt.

Nhân xét. Trong một không gian Euclide n chiều, mọi hệ gồm n véctơ khác θ trực giao đều là một cơ sở của không gian đó.

Định nghĩa 2. Cơ sở trong Nhận xét trên được gọi là *cơ sở trực giao* của không gian Euclide. Nếu độ dài của mỗi véctơ trong cơ sở trực giao bằng 1 thì ta gọi nó là một *cơ sở trực chuẩn* của không gian Euclide.

 $\overline{ extbf{VD2.}}$ Hệ các véctơ trong $\overline{ extbf{VD1}}$ cho ta một cơ sở trực giao và một cơ sở trực chuẩn trong \mathbb{R}^3

4.5. Quá trình trực giao hóa Gram - Schmidt

Dùng để xây dựng cơ sở trực giao và cơ sở trực chuẩn của không gian Euclide từ một cơ sở cho trước.

Thuật toán.

B1. Chọn {e₁, ...,e_n} là một cơ sở bất kỳ của không gian Euclide n chiều V.

B2. Xây dựng cơ sở trực giao $\{u_1, ..., u_n\}$ của V như sau:

Đặt $u_1 = e_1$

$$u_{2} = e_{2} - \frac{\langle e_{2}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1}$$

$$u_{3} = e_{3} - \frac{\langle e_{3}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1} - \frac{\langle e_{3}, u_{2} \rangle}{\|u_{2}\|^{2}} u_{2}$$

$$u_{n} = e_{n} - \sum_{i=1}^{n-1} \frac{\left\langle e_{n}, u_{i} \right\rangle}{\left\| u_{i} \right\|^{2}} u_{i}$$

<u>B3.</u> Xây dựng cơ sở trực chuẩn $\{v_1, ..., v_n\}$ của V bằng việc chuẩn hóa các véctơ ở B2. Tức: $v_1 = \frac{u_1}{\|u_1\|}, v_2 = \frac{u_2}{\|u_2\|}, ..., v_n = \frac{u_n}{\|u_n\|} \Rightarrow \|v_i\| = 1; \forall i = \overline{1,n}$

VD1. Trong không gian Euclide \mathbb{R}^3 , hãy trực chuẩn hóa cơ sở $E = \{e_1 = (1,-1,0); e_2 = (0,1,-1); e_3 = (1,1,-1)\}$

VD2. Hãy tìm một cơ sở trực chuẩn của không gian con của \mathbb{R}^3 sau

$$A = x_1, x_2, x_3 \in \mathbb{R}^3 | 2x_1 + x_2 + x_3 = 0$$

Định lý 1. Mọi không gian Euclide n chiều đều tồn tại cơ sở trực chuẩn

Định lý 2. Nếu $E = \{e_1, ..., e_n\}$ là cơ sở trực chuẩn của không gian Euclide n chiều V thì mọi $x \in V$, x có thể biểu diễn duy nhất dưới dạng

$$x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i$$

VD 3. Xét cơ sở trực chuẩn của \mathbb{R}^3 đã tìm được ở VD1. Hãy biểu diễn x = (1,2,3) thành một thtt của các véctơ của cơ sở trực chuẩn đó