Λεξικό, Union – Find

Δημήτρης Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Διαχείριση Διαμερίσεων Συνόλου

- Στοιχεία σύμπαντος διαμερίζονται σε κλάσεις ισοδυναμίας που μεταβάλλονται δυναμικά με ένωση.
- Λειτουργίες:
 - Εὑρεση find(x): αντιπρόσωπο κλάσης όπου ανήκει x.
 - 'Ενωση union(x, y): ἐνωση κλάσεων όπου ανήκουν x και y.

Πρόβλημα Union – Find

- \square Στοιχεία $U = \{1, 2, ..., n\}$ αρχικά σε n κλάσεις.
 - Κάθε κλάση προσδιορίζεται από στοιχείο αντιπρόσωπο.
- find(x): αντιπρόσωπος κλάσης όπου ανήκει x.
 - Διατηρούμε μοναδικό αντιπρόσωπο για κάθε κλάση.
- union(x, y): αντικατάσταση (αντιπροσώπων) κλάσεων
 x και y με κλάση που προκύπτει από ένωση.
 - Ελέγχουμε αν x και y ανήκουν σε διαφορετική κλάση.
 - Νέος αντιπρόσωπος από τους αντιπροσώπους κλάσεων x, y
 - Πάντα διαμέριση του *U* σε κλάσεις.
 - $\leq n-1$ ενώσεις (μετά από n-1, μία μόνο κλάση).
- □ Δομή δεδομένων που ελαχιστοποιεί συνολικό χρόνο για ακολουθία *m* ευρέσεων και *n* − 1 ενώσεων.

Αναπαράσταση Δέντρου & Δάσους

- Πίνακας γονέων A[1...n] για δέντρο με ρίζα και n κόμβους:
 - A[i] = j ανν j πατέρας του i στο δέντρο.
 - A[ρiζας] = ρiζα (ἡ -1).
 - Όμοια για δάσος όπου κάθε δέντρο έχει ρίζα.

Αναπαράσταση με Δέντρα

- □ Κλάση: δέντρο με ρίζα το στοιχείο-αντιπρόσωπο.
 - Όνομα ρίζας.
 - Μέγεθος κλάσης.
- Στοιχείο: κόμβος δέντρου με πεδία
 - 'Ονομα στοιχείου.
 - Όνομα γονέα: ὁνομα προηγούμενου στοιχείου στο μονοπάτι προς τη ρίζα-αντιπρόσωπο.
- Αναπαράσταση με πίνακα γονέων:
 - Α[x]: γονέας στοιχείου x.
 - Piζa στοιχείο αντιπρόσωπος έχει<math>A[x] = x και επιπλέον πεδίο size.

Αναπαράσταση με Δέντρα

find(x): ακολουθούμεδείκτες σε γονέαμέχρι τη ρίζα.

```
elem find(elem x) {
 while (x != A[x])
 x = A[x];
 return(x); }
```

- □ union(x, y): x και y αντιπρόσωποι διαφορετικών συνόλων
 - **Συνένωση** δέντρων: ρίζα 1ου συν. γίνεται γονέας ρίζας 2ου συν.
 - Ενημέρωση μεγέθους

Ένωση


```
unionTree(elem x, elem y) {
if (x == y) return;
A[y] = x;
A[x].size += A[y].size; }
```

Απόδοση

- \square Χρόνος χ.π. για m finds και n unions: O(mn + n)
 - Union : O(1) χρόνος.
 - Find : Ο(ὑψος δέντρου)
 - \square Χειρότερη περίπτωση: ὑψος = n-1
 - union(n-1, n), union(n-2, n-1), union(n-3, n-2), union(n-4, n-3), ..., union(3, 2), union(1, 2).
- Απλή δομή, εὐκολη υλοποίηση, αλλά ακριβό find!

Βεβαρυμένη Ένωση

- «Δεύτερο» σύνολο αυτό με τα λιγότερα στοιχεία.
 - **Δ** Λογαριθμικό ὑψος δέντρου : $O(\log n)$.
 - Βεβαρυμένη ένωση: δέντρο ὑψους h έχει $\geq 2^h$ στοιχεία.
- Απόδειξη με επαγωγή:
 - Ισχύει για h = 0 (δέντρο ενός στοιχείου).
 - \blacksquare Ένωση δέντρων x και y με ὑψη h_x , h_y , και στοιχεία $s_x \ge s_y$
 - Επαγωγικά, υποθέτουμε $s \ge 2^h$ (για x και y)
 - \square Ύψος ένωσης = h_x : στοιχεία ένωσης $\ge 2^{\dot{\nu}\psi \circ \varsigma}$
 - \square Ύψος ένωσης = h_y + 1 : στοιχεία ένωσης $\ge 2 s_y \ge 2^{\dot{\upsilon}\psi o\varsigma}$
- \square Χρόνος χ.π. για m finds και n unions: $O(m \log n + n)$
 - Απλή υλοποίηση και αποδεκτή απόδοση.

Σύμπτυξη Μονοπατιών

- Find ακριβό γιατί στοιχεία μακριά από ρίζα.
- Σύμπτυξη μονοπατιού όταν find(x):
 - Όλοι οι πρόγονοι του x (και το x) γίνονται παιδιά ρίζας.
 - Δέντρο «κονταίνει» (όχι επιβάρυνση ασυμπτωτικού χρόνου).
 - Στο μέλλον, θα βρίσκουμε σύνολο των στοιχείων γρήγορα.

Σύμπτυξη Μονοπατιών

```
elem findTreePathCompression(elem x) {
if (x != A[x])
     A[x] = findTreePathCompression(A[x]);
return(A[x]); }
```

- Ανεβαίνουμε μέχρι ρίζα.
- Επιστρέφοντας μέχρι x, όλοι οι δείκτες γονέων τίθενται να δείχνουν στη ρίζα.

Απόδοση

- Δέντρα, βεβαρυμένη ένωση, και σύμπτυξη μονοπατιών.
- Χρόνος χ.π. για $m \ge n$ finds και n unions: O(m a(n, m))
 - a(n, m): αντίστροφη συνάρτηση Ackermann.
 - Μεγαλώνει εξαιρετικά αργά!
 - Στην πράξη, μπορεί να θεωρηθεί σταθερά.
- Απλή δομή, εὐκολη υλοποίηση, και ουσιαστικά γραμμικός χρόνος!

Πρόβλημα (ADT) Λεξικού

- Δυναμικά μεταβαλλόμενη συλλογή αντικειμένων που αναγνωρίζονται με «κλειδί» (π.χ. κατάλογοι, πίνακες ΒΔ).
- **Λεξικό**: συλλογή αντικειμένων με μοναδικό «κλειδί».
 - «Κλειδί»: αριθμός ή τύπος δεδομένων με ολική διάταξη.
 - Γενίκευση και για μη-μοναδικά κλειδιά.
- ΑDΤ λεξικού υποστηρίζει ακολουθίες λειτουργιών:
 - Αναζήτηση στοιχείου με κλειδί χ
 - member(x): ελέγχει ὑπαρξη στοιχείου με κλειδί x
 - search(x): επιστρέψει δείκτη σε θέσεις x
 - Εισαγωγή στοιχείου με κλειδί χ
 - Διαγραφή στοιχείου με κλειδί χ

Λειτουργίες Λεξικού

- Λεξικό υποστηρίζει λειτουργίες:
 - Αναζήτηση/εισαγωγή/διαγραφή στοιχείου με κλειδί χ
 - Εκτύπωση στοιχείων σε αύξουσα / φθίνουσα σειρά
 - Προηγούμενο και επόμενο στοιχείο.
 - Μέγιστο και ελάχιστο στοιχείο.
 - k-οστό μικρότερο στοιχείο
 - Βοηθητικές λειτουργίες ...

Υλοποιήσεις Λεξικού

- Μη-ταξινομημένη διασυνδεδεμένη λίστα:
 - Εισαγωγή: Ο(1)
 - Αναζήτηση / τυχαία διαγραφή: O(n)
 - Κατάλληλη όταν συχνές εισαγωγές, σπάνιες αναζητήσεις / διαγραφές μεμονωμένες ή στο τέλος (π.χ. log file).
- Ταξινομημένος πίνακας:
 - (Δυαδική) αναζήτηση: O(log n)
 - Στατική συλλογή: «εισαγωγή» O(log n) / στοιχείο Χρόνος ταξινόμησης : $O(n \log n)$
 - Δ υναμική συλλογή : εισαγωγή / διαγραφή O(n)
 - Κατάλληλη όταν συχνές αναζητήσεις και δεδομένα μεταβάλλονται σπάνια (π.χ. αγγλο-ελληνικό λεξικό).

Υλοποιήσεις Λεξικού

- Ζυγισμένο (Δυαδικό) Δέντρο Αναζήτησης:
 - Αναζήτηση / εισαγωγή / διαγραφή: O(log n)
 - Μέγιστο / ελάχιστο / προηγούμενο / επόμενο / k-οστό: $O(\log n)$
 - Range queries σε γραμμικό χρόνο.
 - Πλήρως δυναμική επιπλέον χώρος για δείκτες!
- Πίνακας Κατακερματισμού (hashing):
 - Αναζήτηση / διαγραφή : O(1)
 - Εισαγωγή: O(1) expected amortized, $O(\log n)$ (ακόμη και O(1)) whp., O(n) χ.π.
 - Δεν υποστηρίζει αποδοτικά άλλες λειτουργίες.
 - Δυναμική επιπλέον χώρος στον πίνακα (util ≈ 50%)