

MemPool Software

- Bare-metal kernels:
 - BLAS (sensible subset throughout all levels)
 - 2D convolution
 - DCT
 - Debayering
- OpenMP/Halide kernels
 - Histogram equalization
 - Image aligning (gaussian pyramid)
 - HDR pipeline (image merging)
 - NN (only one layer?)

AXI Interconnect

- First version is merged to GitHub
 - Backend implementation running (complex hierarchy)
- The whole tree has a constant width
 - Reduced bandwidth at each mux
 - → Make the width a parameter at each stage
- L2 memory is currently a bottleneck
 - Implemented a multi-banked L2

Multibanked L2 interface

Now:

- Single crossbar
- Multiple separate `adapters` (axi to memory slaves)
- Memories can easily be spread out
- Hard to take advantage of in software

Next:

- Dedicated adapter for each group/axi channel
- Crossbar after adapter allows interleaved memory
- Distributing memory?
- Easy to have parallel accesses

DMA

- MemPool is a single cluster: We only want one DMA
 - But: access to all tiles without adding another interconnect
- Idea:
 - Have one DMA frontend
 - Have one DMA backend per tile
- Each backend is responsible for its memory region
 - 64 backends will choke at the L2
 - Max TCDM ports might also be limiting at full AXI bandwidth
 - But we don't need both interfaces to work at full speed
 - Can we reduce the number of backends?

DMA

- Have one DMA backend per N tiles
 - Similar interfaces
 - Balance the bandwidths

