诚信应考,考试作弊将带来严重后果!

考试中心填写:

年]	日
考	试	用	

湖南大学课程考试试卷

课程名称: <u>高等数学 A(2)</u>; 课程编码: <u>GE03026</u> 试卷编号: <u>A</u>; 考试时间: 120 分钟

题 号	1~7	8~10	11~12	13~14	15~16	17~18			总分
应得分	21	21	14	14	14	16			100
实得分									
评卷人									

一、填空题(每题3分,共21分)

- 1. 已知 $\|\vec{a}\| = 2$, $\|\vec{b}\| = 1$, $\|\vec{c}\| = \sqrt{2}$,且 $\vec{a} \perp \vec{b}$, $\vec{a} \perp \vec{c}$, \vec{b} 与 \vec{c} 的夹角为 $\frac{\pi}{4}$,则 $\|\vec{a} + 2\vec{b} 3\vec{c}\| = \underline{\qquad}$
- 2. 直线 $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{2}$ 与平面 2x + y + z 6 = 0 的夹角等于______.
- 3. 过曲线 $\begin{cases} 2x^2 + y^2 + z^2 = 16, \\ x^2 + z^2 y^2 = 0 \end{cases}$ 且母线平行于x轴的柱面方程为______.
- 4. 函数 f(x,y) 在点 P(1,2) 沿 $\vec{i} + \vec{j}$ 方向的方向导数是 $2\sqrt{2}$,沿 $-2\vec{j}$ 方向的方向导数是-3,则函数 f(x,y) 沿 $-\vec{i} 2\vec{j}$ 方向的方向导数为
- 5. 曲面 $\cos \pi x x^2 y + e^{xz} + yz = 4$ 在点 P(0,1,2) 处的切平面方程为_____.
- 7. 将函数 $f(x) = x (-\pi < x < \pi)$ 展开成傅里叶级数时,其系数 $b_n = _____$. ($n = 1, 2, 3, \cdots$)
- 二、计算题(每题7分,共70分)
 - 8. 计算 $\lim_{\substack{x\to 0\\y\to 0}} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)(e^{|x|+|y|}-1)}.$

沿船

并 允:

9. 已知 $z = f(x^2y, \ln(xy)), f$ 具有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$.

10. 计算
$$I = \int_0^2 dx \int_0^{\sqrt{2x-x^2}} \frac{x+y}{x^2+y^2} dy$$
.

11. 一个密度为 1 的物体所占有的闭区域 Ω 由曲面 $z = x^2 + y^2$ 和平面 z = 0, |x| = 1, |y| = 1 所围成,求该物体关于 z 轴的转动惯量.

12. 设 Σ 为球面 $x^2 + y^2 + z^2 = a^2(a > 0)$,若 $\iint_{\Sigma} (3x + 4z)^2 ds = 300\pi$,求a的值.

13. 计算曲线积分 $I = \int_{\Gamma} \sqrt{2y^2 + z^2} ds$, Γ 为球面 $x^2 + y^2 + z^2 = 1$ 与平面 x = y 相交的 圆周.

14. 设 $f(\pi) = 1$,试求 f(x),使得曲线积分 $I = \int_{\mathbb{R}_B} [\sin x - f(x)] \frac{y}{x} dx + f(x) dy$ 与路径 无关,并求当 A,B 两点坐标分别为 (1,0)与 (π,π) 时曲线积分的值.

15. 计算 $I = \iint_{\Sigma} (x^3 + az^2) dy dz + (y^3 + ax^2) dz dx + (z^3 + ay^2) dx dy$,其中 Σ 为上半球面 $z = \sqrt{a^2 - x^2 - y^2}$ 的下侧.

装订线(题目不得超过此线

16. 求级数 $\sum_{n=1}^{\infty} \frac{2n-1}{2^n} x^{2n-2}$ 的和函数.

17. 将函数 $f(x) = \ln(1 + x^2 + x^4)$ 展开成 x 的幂级数.

三、应用题(9分)