The group G is isomorphic to the group labelled by [10, 2] in the Small Groups library. Ordinary character table of $G \cong C10$:

	1 <i>a</i>	5a	5b	5c	5d	2a	10a	10b	10c	10d
χ_1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	-1	-1	-1	-1	-1
χ_3	1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{4}$	1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^4$
χ_4	1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{4}$	-1	-E(5)	$-E(5)^2$	$-E(5)^{3}$	$-E(5)^4$
χ_5	1	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^{3}$	1	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^3$
χ_6	1	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^{3}$	-1	$-E(5)^2$	$-E(5)^4$	-E(5)	$-E(5)^3$
χ_7	1	$E(5)^{3}$	E(5)	$E(5)^{4}$	$E(5)^{2}$	1	$E(5)^{3}$	E(5)	$E(5)^{4}$	$E(5)^2$
χ_8	1	$E(5)^{3}$	E(5)	$E(5)^{4}$	$E(5)^{2}$	-1	$-E(5)^{3}$	-E(5)	$-E(5)^4$	$-E(5)^2$
χ_9	1	$E(5)^{4}$	$E(5)^{3}$	$E(5)^{2}$	E(5)	1	$E(5)^4$	$E(5)^{3}$	$E(5)^{2}$	E(5)
χ_{10}	1	$E(5)^4$	$E(5)^{3}$	$E(5)^{2}$	E(5)	-1	$-E(5)^4$	$-E(5)^{3}$	$-E(5)^2$	-E(5)

Trivial source character table of $G \cong C10$ at p = 5:

N_1		N_2	
P_1		P_2	
1a	2a	1a	2a
5	5	0	0
5	-5	0	0
1	1	1	1
1	-1	1	-1
	5	5 5 5 -5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

$$P_1 = Group([()]) \cong 1$$

 $P_2 = Group([(3, 4, 5, 6, 7)]) \cong C5$

$$N_1 = Group([(1, 2), (3, 4, 5, 6, 7)]) \cong C10$$

 $N_2 = Group([(1, 2), (3, 4, 5, 6, 7)]) \cong C10$