Записки по Логическо Програмиране

Искендер Чобанов

$30\ { m Mapt}\ 2022\ { m \Gamma}.$

Съдържание

1	Във	едение 3	
	1.1	Функции над съждения:	
	1.2	Съждителни формули	
	1.3	Еднозначен синтактичен анализ на съждителни функции 7	
	1.4	Семантика на съждителните формули	
	1.5	Изпълнимост	
	1.6	Логическо следване	
	1.7	Семантична дедукция	
2	Логически еквивалентни формули		
	2.1	Подформула	
	2.2	Теорема за еквивалентна замяна	
3	Съждителна резолюция 21		
	3.1	Конюнктивна нормална форма	
	3.2	Съждителни дизюнкти. Множества от съждителни дизюнкти 23	
	3.3	Правило за чистия литерал	
	3.4	Правило за едноелементния дизюнкт	
	3.5	Правило за разделяне (Недоказано в записки мое доказател-	
		ство)	
	3.6	Метод на съждителната резолюция	
	3.7	Важна лема	
	3.8	Резолютивна изводимост	
4	Трансферзали 38		
	4.1	Следва продължение	
5	Refe	erences 46	

Редакция:Новите дефиниции, важните твърдения, теореми и доказателс ва се заграждат в съответните кутии:
Дефинция:
Твърдение/Теорема/Лема
Доказателство:

1 Въведение

Започваме с основни дефиниции и техния смисъл:

Дефинция:

съждение - Някакво изказване, изречение от речта, което носи смисъл като истина или лъжа

преписва се вярностна стойност ,например:

" Днес вали дъжд " - може да му съотвества стойност истина или лъжа нека за удобство: истина ще записваме с Π , лъжа с Π

Дефинция:

Съжденията ги разделяме на елементарно съждение и съставно съждение.

При елементарните съждения, не се интересуваме от структурата на съждението , оставяме неговата вярност да бъде определена от някого. Например:

- "Днес вали дъжд" ние можем да проверим и да кажем дали е истина или лъжа
- " Има черна дупка на 3млн. светлинни години от нас " това е елементарно съждение, на което ние, не можем да определим неговата вярност и тя се определя от някого, нещо разполагащо с тази информация. Разбира се е въпрос на гледна точка и интерпретация на нещата понякога.

При съставните съждения имаме съждения, които са образувани от елементарни съждения свързани с подходящите съждителни връзки. съждителни връзки: отрицание, импликация, биимпликация, конюнкция, дизюнкция(има и още, но няма да представляват интерес за нас)

При използването на елементарни съждения и връзките образуваме съставни съждения, на които ще можем да разглеждаме вярност, без да сме ограничени от това кой разполага с информацията за конкретните елементарни съждения.

Например: "Утре ще вали или (съждителна връзка-дизюнкция) няма да вали " - това съставно съждение има стойност истина винаги.

1.1 Функции над съждения:

$$H_{\neg}: \{\Pi, \Pi\} \longrightarrow \{\Pi, \Pi\}$$

^{*} Отрицание:

$$H_{\neg}(a) = \Pi \iff^{def} a = \Pi$$

за а-съждение

сега защо функцията е от {И,Л} а взима съждения, защото сме се разбрали да разглеждаме съжденията като вярностни стойности , за да можем да дефинираме функции върху тях ,трябва да разполагаме с вярностните стойности, те в случая на елементарно съждение, не ни интересува конкретно стойността на съждение а, а това как, а се оценява от (някого който разполага с тази информация) и съответно спрямо тази оценка , каква оценка ни връща функцията.

* Конюнкция:

$$\begin{split} H_{\&}: \{\mathcal{H}, \Pi\}^2 &\longrightarrow \{\mathcal{H}, \Pi\} \\ H_{\&}(a,b) &= \mathcal{H} &\longleftrightarrow^{def} a = b = \mathcal{H} \end{split}$$

Най-често разглежданият смисъл в езика е : А и В , пример:

"Деро кара кола и кара бързо" - трябва и двете да са истина , има и случай обаче в който можем да разгледаме следните неща:

"Деро кара кола, а карането е бързо" - това също носи смисъла на конюнкция

"Деро кара кола, но бързо" - това също.

Но това ,че в езика използваме такива връзки , не означава че всички изречения с този тип връзки имат предвид конюнкция.Затова трябва да си избираме конкретни съждения и да разпознаваме структурите им. В езика има много моменти в които формалната логика се изкривява например:

"Мира се ожени и роди момче"

"Мира роди момче и се ожени"

От тук нататък се абстрахираме от съждителната логика в езика и философията и започваме да говорим само за формална логика.

* Дизюнкция:

$$H_ee : \{ \mathrm{ M}, \mathrm{ \Pi} \}^2 \longrightarrow \{ \mathrm{ M}, \mathrm{ \Pi} \}$$
 $H_ee (a,b) = \mathrm{ M} \ \longleftrightarrow^{def}$ поне едното а или $\mathrm{ b} = \mathrm{ M}$

 $\Pi \lor (a,b) = \Pi \longleftrightarrow$ поне едного а или $b = \Pi$

не изглежда много неформално нека го направим формално:

$$H_{\vee}(a,b) = \Pi \iff^{def} a = b = \Pi$$

* Импликация:

$$\begin{split} H_{\Rightarrow} : \{\mathbb{M}, \Pi\}^2 &\longrightarrow \{\mathbb{M}, \Pi\} \\ H_{\Rightarrow}(a,b) &= \Pi \iff^{def} a = \mathbb{M} \;, \, b = \Pi \end{split}$$

* Еквивалентност (Биимпликация):

$$H_{\Leftrightarrow}: \{\mathbb{M}, \mathbb{\Pi}\}^2 \longrightarrow \{\mathbb{M}, \mathbb{\Pi}\}$$

$$H_{\Leftrightarrow}(a,b) = \mathbb{M} \iff^{def} a = b$$

Така изчерпваме съждителните функции. Според теоремата на Бул ни бяха достатъчни две, примерно конюнкция и отрицание или дизюнкция и отрицание, но за по-интуитивна работа дефинираме тези горните.

1.2 Съждителни формули

Дефинция:

Азбука на съждителните променливи: PVAR - букви Азбуката е най-много изброимо безкрайна.

Пример за PVAR : $P_1, P_2, .., P_n, ...$

Ще искаме да фиксираме азбука която да не е празна т.е $PVAR \neq \emptyset$

Дефинция:

Азбука на съжидтелните връзки: $\neg, \&, \lor, \Rightarrow, \Leftrightarrow$

¬ -едноместна

 $\&, \lor, \Rightarrow, \Leftrightarrow$ - двуместни

Дефинция:

Азбука на помощните символи: (), лява и дясна скоба.

Дефинция:

Формална дума: наричаме крайна редица от букви от съответните азбуки.

Дефинция:

Индуктивна дефиниция на съждителните формули над съждителните променливи:

- PVAR са еднобуквени съждителни формули
- Ако ϕ е съждителна формула то $\neg \phi$ е съждителна формула
- Ако ϕ_1 и ϕ_2 са съждителни формули, а τ е двуместна съждителна връзка , то $(\phi_1\tau\phi_2)$ е съждителна формула
- For (PVAR) множеството на съждителните формули над PVAR

Забележка по-дефиниция, формално се пише винаги φ има св. \mathscr{P} със скобите, но за да се избегне претоварване на синтаксиса ще си позволяваме да третираме като верни изрази и без тях $(\phi\Rightarrow\varphi)\leftrightarrow\phi\Rightarrow\varphi$, ще внимаваме за приоритети за които ще поговорим по-късно. Но за сметка на това такива неща като

 $(\phi$

или

 ϕ)

са грешни. Друго важно е, че различваме двойните черти, символите и единичните черти като единичните черти, използваме за доказателства, а двойните са функции (връзки) в синтактичното представяне на съждителни формули.

Принцип:

Индуктивен принцип за доказване на свойства на съждителни формули:

Нека \mathscr{P} е свойство удволетворяващо следните условия:

- * Съждителните променливи има св. Э
- * ако φ има св. $\mathscr P$ то $\neg \varphi$ има св. $\mathscr P$
- * ако ϕ_1 и ϕ_2 имат св. \mathscr{P} то $(\phi_1 \tau \phi_2)$ има св. \mathscr{P} тогава всяка съждителна формула има св. \mathscr{P}

Наблюдение:

Ако ϕ е съждителна формула то е на лице един от тези три случая:

- $-\phi$ е съждителна променлива.
- $-\phi$ е $\neg \psi$ за ψ съждителна формула
- $-\phi$ е $(\phi_1 \tau \phi_2)$ за съждителни формули ϕ_1, ϕ_2 и τ съждителна връзка.

I. Не е взъможно две да са едновременно изпълнени:

Ако ϕ е съждителна променлива и е изпълнен и втория случай то имаме отрицание и съждителна формула , не може да е съждителна променлива и да започва с отрицание. Ако е съждителна променлива и е изпълнен третия случай , то ще започваме със скоба и по същата причина, не може

двата случая да са изпълнени аналогично е, ако е изпълнен втория случай започваме с отрицание не можем да сме съждителна променлива и не можем да започваме със скоба. Синтактично ги сравняваме и проверката е тривиална.

II. За всяка съждителна формула е изпълнен поне един от трите случая: Това се проверява с индукция отностно построението на ϕ

Във всяка съждителна формула броя на левите скоби е равен на броя на десните скоби.

Ако е необходимо ще бъде добавено доказателство,подробно като изображение.

1.3 Еднозначен синтактичен анализ на съждителни функции

Тук ще разгледаме, значението на записването на съждителните формули, ще подсигурим еднозначност, и чак тогава ще можем да продължим с останалите дефиниции.

Нека първо се запознаем с няколко нови символа:

Дефинция:

- графическо равно ,това е визуално равенство, две неща са графически равни когато изглеждат синтактично по един и същи начин.

Например 1+2 = 1+2, но $1+2 \neq 2+1$

Да не се заблуждава човек с означенията за формула, като кажем: φ =??? , φ е просто означение за синтактичния израз, не е как той изглежда спрямо азбуките.

Дефинция:

⇒ или :=- равнао по дефиниция, присвояващо равно.

Сега се спираме на графическото равенство и искаме да докажем следното твърдение:

Ако ϕ е съждителна променлива и $\phi = P$ то P е еднозначно определено. (P е буква от азбуката PVAR)

Ако $\phi=\neg\psi$, за ϕ,ψ -съждителни формули то ψ е еднозначно определено. Какво значи еднозначно определено , означава, че ако $\phi=\neg\psi$ и $\phi=\neg\psi_1$ то следва че $\psi=\psi_1$

Ако $\phi = (\phi_1 \tau \phi_2)$, за ϕ, ϕ_1, ϕ_2 - съждителни формули и τ -двуместна съждителна връзка , то ϕ_1, ϕ_2, τ са еднозначно определени.

Товя е валидно за всяка съждителна формула ϕ и зависимостите са изпълнени за единствени $\psi, \phi_1, \phi_2, \tau$

Дървовидно построение на съждителна формула:

Това е дърво за което са изпълнени следните ограничения:

- -дървото е крайно
- -индекс на разклонение ≤ 2
- -с наредба на преките наследници на всеки връх
- -етикетите са съждителни променливи или съжидтелни връзки
- -етикетите по листата са съждителни променливи
- -етикетите на върхове с един пряк наследник са ¬
- -етикетите на върхове с два преки наследника са двуместни съждителни връзки

Нека сега с тези ограничения разгледаме дърво и да помислим спрямо тези ограничения какво трябва да стои като етикет на всеки връх:

сложим:

При едноразклонените стои отрицание

При двойно разклонение слагаме някой двуместен съждителен символ (връзка)

и получаваме примерно дърво:

Линейно дървото се записва по следния начин:

$$\neg (P_1 \lor P_2) \Rightarrow ((\neg \neg P_3) \& (P_4 \Leftrightarrow P_5))$$

Пояснение/Твърдение:

На всяка съждителна формула съотвества дървовидно построение и на всяко дървовидно построение съотвества съждтелна формула (еднозначно). В дървото, етикета в корена се нарича главна съждителна връзка , в нашия случай: \Rightarrow

Еднозначен синтактичен анализ е важен , защото можем да дефинираме рекурсивно функции.

Нека f е функция дефинирана за всички съждителни променливи (dom(f)=PVAR),

тогава f може да се разшири до функция с $\operatorname{dom}(f) = \mathscr{F}or(PVAR)$,те функция над всички съждителни формули над PVAR.

Нека разширението е \overline{f} и се дефинира:

$$\overline{f}(P) = f(P)$$

$$\overline{f}(\neg \varphi) = \overline{H}_{\neg}(\overline{f}(\varphi))$$

$$\overline{f}((\varphi_1 \tau \varphi_2)) = \overline{H}_{\tau}(\overline{f}(\varphi_1), \overline{f}(\varphi_2))$$

Това разширение е еднозначно дефинирано при зададени

$$\overline{H_{\neg}}, \overline{H_{\tau}}$$

Разбираме се да се абстрахираме от скоби тогава и само тогава когато знаем приоритетите на съждителните връзки:

Най-висок : \neg После : \lor , & Накрая: \Leftrightarrow , \Rightarrow

1.4 Семантика на съждителните формули

Оценка / Интерпретация на съждителни формули.

Оценката (или Интерпретарцията) е булева оценка която е изображение: $I: PVAR \longrightarrow \{ \Pi, \Pi \}$

Всяка булева оценка I , може еднозначно да се разшири, до функция \overline{I} на множество от съждителни променливи така че:

$$\overline{I}(P) = I(P)$$

$$\overline{I}(\neg \varphi) = H_{\neg}(\overline{I}(\varphi))$$

$$\overline{I}((\varphi_1 \tau \varphi_2)) = H_{\tau}(\overline{I}(\varphi_1), \overline{I}(\varphi_2))$$

 $\overline{I}(\varphi)$ се нарича стойност на φ при булева интерпретация, I записва се още $||\varphi||^I$

Нека I е булева интепретация ако $I(\varphi)=V$, ще казваме, че I е модел за φ или φ е вярна (съждителна формула) при I (булева интерпретация) Ако пък $I(\varphi)=J$, I не е модел за φ или φ не е вярна при I , или φ се опровергава при I. При модел имаме символа: \models

І |= φ - І е модел за φ

І $\not\models \varphi$ - І не е модел за φ

Имаме следствието което следва директно от дефиницията на H_{\neg}

$$I \models \neg \varphi \leftrightarrow I \not\models \varphi$$

идва от

$$H_{\neg}(I(\varphi)) = \Pi \leftrightarrow I(\varphi) = \Pi, I \not\models \varphi$$

1.5 Изпълнимост

Дефинция:

Съждителна формула φ - наричаме изпълнима, ако съществува булева интерпретация I , такава че $I \models \varphi$.

Ако φ няма модели , т.е за всяка булева интерпретация е изпълнено $\mathrm{I}(\varphi){=}\Pi$ или $(I\not\models\varphi)$ то съждителната формула не е изпълнима.

Съждителни формули, ще наричаме само формули вече:

формулите които са верни при всяка булева интерпретация се наричат съждителни тавтологии.

пример за такава е

$$\varphi \vee \neg \varphi$$

тавтологиите означаваме с $\models \varphi$

Твърдение:

Нека φ е формула , всеки път, когато I_1,I_2 са булеви интерпретации, такива че за всяка съждителна променлива Р участваща във φ е изпълнено $I_1(P)=I_2(P)$,то е в сила $I_1(\varphi)=I_2(\varphi)$

Доказателството е индукция по построението. Защо , защото сме казали ,че φ е формула , нека да се върнем на индуктивната дефиниция на съждителна формула, а също и наблюдението , следствие... Така доказвайки за всеки възможен случай за съждителна формула ,че е изпълнено твърдението доказваме и самото твърдение:

*Първи случай $\varphi = P \in PVAR$, формулата ни е само една съждителна променлива, Тогава нека $I_1(Q) = I_2(Q)$ за всяко $Q \in PVARS$ и участваща във φ , но единствената променлива участваща във φ е P, следователно е изпълнено $I_1(P) = I_2(P)$ от което следва $I_1(\varphi) = I_2(\varphi)$

*Втори случай $\varphi = \neg \varphi_1$ и приемаме , че твърдението е вярно за φ_1 . Нека имаме булевите интерпретации I_1 и I_2 и за всяка съждителна променлива Р участваща във φ имаме $I_1(P) = I_2(P)$. Тогава за всяка съждителна променлива Q участваща във φ_1 имаме $I_1(Q) = I_2(Q)$, но с какво се различават φ и φ_1 , с един символ, който не е съждителна променлива. Една стъпка ни дели от това което искаме. Използваме индуктивното предположение за φ_1 и получаваме $I_1(\varphi_1) = I_2(\varphi_1)$, Но сега ние помним дефиниция на H_{\neg} Следователно:

$$H_{\neg}(I_1(\varphi_1))$$

използваме $I_1(\varphi_1) = I_2(\varphi_1)$ от предположението и получаваме:

$$H_{\neg}(I_1(\varphi_1)) = H_{\neg}(I_2(\varphi_1))$$

от дефиниция на H_{\neg} получаваме:

$$I_1(\neg \varphi_1) = I_2(\neg \varphi_1)$$

заместваме $\varphi = \neg \varphi_1$ и накрая получаваме търсеното:

$$I_1(\varphi) = I_2(\varphi)$$

* Трети случай $\varphi=(\phi_1\tau\phi_2)$, τ -съждителна връзка , а ϕ_1 и ϕ_2 са съждителни формули, за които твърдението е изпълнено. Отново се сещаме вече как да продължим:

Нека I_1 и I_2 са булеви интерпретации, такива че за всяка съждителна променлива Q- участваща във φ е изъплнено $I_1(Q)=I_2(Q)$. Ако една съждителна променлива , участва във ϕ_1 или ϕ_2 ,то тя участва в $(\phi_1\tau\phi_2)$ значи и във φ , за всяка съждителна променлива която участва във ϕ_1 или ϕ_2 имаме изпълнено $I_1(Q)=I_2(Q)$, поради което имаме $I_1(\phi_1)=I_2(\phi_1)$ и $I_1(\phi_2)=I_2(\phi_2)$, отново разглеждаме този път третате дефиниция дефиниция на H_{τ} и получаваме

$$H_{\tau}(I_1(\phi_1), I_1(\phi_2)) = H_{\tau}(I_2(\phi_1), I_2(\phi_2))$$

от което получаваме и желаното:11

$$I_1(\varphi) = I_2(\varphi)$$

Сега припомняме си

$$I \models \neg \varphi \leftrightarrow I \not\models \varphi$$

Тогава можем ли да твърдим че:

$$\neg \varphi$$
 е неизпълномо $\leftrightarrow \models \varphi$

Т.е разпознаване на тавтологии, една съждителна формула φ е тавтология тогава и само тогава когато , не съществува модел за $\neg \varphi$

 \rightarrow

Ако $\neg \varphi$ е неизпълнимо , то за всяка булева интерпретация I, следва че $I(\neg \varphi) = \Pi$, което пък от своя страна означава, че $H_{\neg}(I(\varphi)) = \Pi$, от тук следва ,че $I(\varphi) = \Pi$, и това за всяка булева интерпретация I.Това разсъждение е приложимо и в обратната посока.

Дефинция:

Нека Δ - множество от съждителни формули, Δ е изпълнимо, ако има булева интерпретация I при която са верни всички съждителни формули от Δ .

Интерпретации при които са верни всички съждителни формули от Δ наричаме модели на $\Delta.$

Всяка формула от делта може да е изпълнима за интерпретация , но да не съществува конкретна която едновременно да изпълнява всички, например: $\Delta=\{P,\neg P\}$ няма интерпретация която едновременно да е модел за всяка формула от Δ

 φ е изпълнима / неизпълнима $\leftrightarrow \{\varphi\}$ е изпълномо / неизпълнимо

Ако $\Delta\subseteq\Delta_1$ и делта Δ_1 е изпълнимо тогава Δ е изпълнимо. вече ще записваме така:

$$I \models \Delta_1 \to I \models \Delta$$

Защото интерпретацията модел на Δ_1 е валидна интерпретация за модел за Δ , а такава съществува понеже Δ_1 е изпълнимо.

Аналогично ако Δ е неизпълнимо то, нямаме булева интерпретация която да е модел за Δ не можем да разширим никоя до модел на Δ_1

Нека Δ е крайно множество от съждителни формули. Тогава имаме следното разсъждение:

Ако делта е крайно множество от формули $\Delta = \{\phi_1,..,\phi_n\}$ за n-естествено число. Тогава формулата $\varphi_\Delta = \phi_1 \& (\phi_2 \&..\& (\phi_{n-1} \& \phi_n))$, конюнкция на всички формули, тогава:

$$I \models \Delta \leftrightarrow I \models \varphi_\Delta$$

В следствие Δ е изпълномо $\leftrightarrow \varphi_{\Delta}$ е изпълнимо.

1.6 Логическо следване

Нека Δ е множество от съждителни формули , казваме че φ логически следва от Δ , ако всеки модел на Δ е модел на φ . Означава се $\Delta \models \varphi$.

Тогава $\Delta \not\models \varphi$ ако съществува модел за Δ $(I \models \Delta)$,който не е модел за φ . $(I \not\models \varphi)$.

Твърдение

Ако Δ е неизпълнимо ,тогава за всяка формула φ следва че $\Delta \models \varphi$

Доказателство:

Нека делта е неизпълнимо, Допускаме , че $\Delta \not\models \varphi$, значи съществува булева интерпретация, $I_0 \models \Delta$ и I_0 не е модел за φ , но как ще съществува като Δ е неизпълнимо , противоречие.

Нека $\models \varphi$. Тогава всяко множество $\Delta \models \varphi$

Реално ако Δ е неизпълнимо, то няма какъв модел за Δ да покажем , такъв че да не е модел за φ

∅-празното множество има за модели всички булеви интерпретации.
Защо с празното множество се случват такива неща, ами по дефиницията за модел на множество от формули, избираме произволна булева интерпретация, тя дали е модел за всяка съждителна формула от празното множество. Това е въпрос от вида: Изпълнено ли е свойство Р за всеки елемент от множество М?

Нека го формулираме като съждение:

За всяко х принадлежащо на М е вярно свойство Р.

Нека приемем, че това е истина.

Отрицанието на това твърдение ще бъде:

Съществува х приаджлежащо на M за което свойство P не е вярно. Тоест понеже в празното множество не съществуват елементи, няма такова съществуващо х от M за което P да не е вярно, следователно отрицанието е Π което означава ,че оригиналното твърдение е M.

Нека сега разгледаме логическо следване на формули:

Твърдение

Нека от $\varphi \models \psi$, като φ е изпълнима , а $\not\models \psi$. Тогава имаме съждителна променлива P, която участва и във φ и във ψ

Това е логическо следване по нетривиални причини, при тавтология ψ всяка булева интерпретация е модел за ψ , при φ неизпълнима, означава че не съществува булева интерпретация която да е модел за φ което означава ,че не съществува интерпретация която да е модел за $\Delta = \{\varphi\}$, но ние имаме твърдението , от което следва ,че $\Delta \models \psi$. Така тези условия горе ни гарантират ,че не сме в тривиалните случаи.

Доказателство:

Нека $\varphi \models \psi$, като φ е изпълнима, а $\not\models \psi$, допускаме че φ и ψ нямат общи променливи, тогава всеки път когато P -съждителна променлива участва във φ то следва ,че P не участва във ψ .Понеже φ е изпълнима изибираме си I_0 булева интерпретация , такава че $I_0 \models \varphi$ избираме булева интерпретация I_1 такава че $I_1 \not\models \psi$ понеже ψ не е тавтология имаме такава, дефинираме си интерпретация J

такава че:
$$J(Q)=\begin{cases} I_0(Q) & \text{ако }Q \text{ участва във }\varphi\\ I_1(Q) & \text{ако }Q \text{ не участва във }\varphi \end{cases}$$
 Нека P участва във φ , тогава $J(P){=}I_0(P)$ следователно

Пека Р участва във φ , тогава $J(P) = I_0(P)$ следователно $J(\varphi) = I_0(\varphi) = M$, защото избрахме $I_0 \models \varphi$ Нека Р участва във ψ , тогава Р не участва във φ , тогава $J(P) = I_1(P)$, значи е изпълнено $J(\psi) = I_1(\psi) = J$, защото избрахме $I_1 \not\models \psi$, така имаме че $\varphi \models \psi$ от приемането с нека, което ни казва ,че всяка интерпретация която е модел за φ е модел за ψ , но J е контрапример за интерпретация модел за φ която не е модел за ψ , следователно φ и ψ имат поне една обща съждителна променлива.

Имаме и следното твърдение:

$$\emptyset \models \varphi \leftrightarrow \models \varphi$$

Вече знаем, всяка булева интерпретация е модел за празното множество, от това следва , че празното множество е винаги изпълнимо от всички булеви интерпретации, тогава автоматично следва ,че всяка булева интерпретация е модел и за φ ,а от това ,че φ е тавтология следва , че за всяка булева интерпретация , тя е модел за φ , разбира се ние сме длъжни по дефиницията , ако някое множество от съждителни формули , има модел и имаме логическа изводимост на формула, то за всяка интерпретация която е модел на това множество трябва да е и модел за φ , но всички интерпретации са модел за φ което значи че можем да заключим че $\emptyset \models \varphi$.

$$\varphi \in \Delta \to \Delta \models \varphi$$

Твърдение

следва

 Δ, Γ множества от формули такива че всеки път когато, $\psi \in \Gamma$

$$\Delta \models \psi$$

Ако $\Gamma \models \varphi$ то $\Delta \models \varphi$

Доказателство:

Нека всеки път когато $\psi \in \Gamma$ имаме $\Delta \models \psi$, Нека $\Gamma \models \varphi$, тогава избираме булева интерпретация I която е модел за Δ , и така всеки път когато $\psi \in \Gamma$ имаме $I \models \psi$, защото $\Delta \models \psi$, следователно $I \models \Gamma$, но понеже $\Gamma \models \varphi$ следва че $I \models \varphi$. Така всяка булева интерпретация която е модел за Δ е модел и за φ Това свойство се нарича обобщена транзитивност:

1.7 Семантична дедукция

$$\Gamma \cup \{\varphi\} \models \psi \leftrightarrow \Gamma, \varphi \models \psi$$

Което е същото като:

$$\Gamma, \varphi \models \psi \leftrightarrow \Gamma \models \varphi \implies \psi$$

Забележка: това е нова формула

$$\varphi \implies \psi$$

 $\Gamma, \varphi \models \psi$

Нека I е произволен модел на Γ .

(1сл.) При $\mathrm{I}(\varphi)=\mathrm{I\!I}$, тогава $\mathrm{I\!I}$ е модел за $\Gamma\cup\{\varphi\}$ и тъй като $\Gamma,\varphi\models\psi$ имаме , че $I\models\psi$ тогава $H_{\Rightarrow}(I(\varphi),I(\psi))=\mathrm{I\!I}$ Тогава $I\models\varphi\Longrightarrow\psi$ (2сл.) $\mathrm{I}(\varphi)=\Pi$, тогава $H_{\Rightarrow}(\Pi,I(\psi))=\mathrm{I\!I}$, но това значи че предпоставката в импликация е лъжа т,е импликацията е истина: значи $I\models\varphi\Longrightarrow\psi$.

Така понеже и в двата възможни случая имаме истина , пък и I е произволен модел на Γ от което следва че $\Gamma \models \varphi \implies \psi$

 \leftarrow

Нека $\Gamma \models \varphi \implies \psi$, и нека I е модел на $\Gamma \cup \{\varphi\}$, тогава $I \models \Gamma$ и $I \models \{\varphi\}$, значи $I(\varphi) = \text{И.От I}$ модел за Γ и от $\Gamma \models \varphi \implies \psi$ получаваме че $I \models \varphi \implies \psi$, т.е $H_{\Rightarrow}(I(\varphi),I(\psi)) = \text{И} = I(\varphi \implies \psi)$ тогава $I(\psi) = \text{И}$, следователно $I \models \psi$, следователно $\Gamma, \varphi \models \psi$

 $\Gamma \models \varphi \leftrightarrow \Gamma \cup \{ \neg \varphi \}$ - неизпълнимо

Това е полезно за метода за логическа изводимост, с еизпълнимост ще решим проблема, кога можем да търсим решение (до безкрайност при необходимост) и кога няма решение изводимостта.

 \rightarrow

Нека $\Gamma \models \varphi$, да допуснем ,че $\Gamma \cup \{\neg \varphi\}$ е изпълнимо. Тогава нека I е модел за $\Gamma \cup \{\neg \varphi\}$ тогава значи $I \models \Gamma$ и $I \models \neg \varphi$ което е същото като $I \not\models \varphi$, от $\Gamma \models \varphi$ следва че $I \models \varphi$, но така получаваме противоречние значи $\Gamma \cup \{\neg \varphi\}$ е незипълнимо.

 \leftarrow

Нека $\Gamma \cup \{ \neg \varphi \}$ е неизпълнимо, нека I е произволен модел на Γ , тогава: (1сл.) Ако $I(\varphi) = \Pi$, тогава $I(\neg \varphi) = \Pi$, тогава значи $\Gamma \cup \{ \neg \varphi \}$ е изпълнимо, защото I става модел за $\Gamma \cup \{ \neg \varphi \}$ протвиоречие.

(2сл.) І $(\varphi)=$ И тогава $I\models\varphi$, тогава всеки модел на Γ е и модел за φ , което означава ,че $\Gamma\models\varphi$

_

2 Логически еквивалентни формули

Започваме с дефиниция за логическа еквивалентност:

Дефинция:

 ϕ, ψ са съждителни формули, казваме, че ϕ, ψ са логически еквивалентни (означава се $\phi \bowtie \psi$), ако за всяка булева интерпретация $I, I(\phi) = I(\psi)$.

Реално очевидно е следното и по-интуитивно като дефиниция:

$$\phi \models \psi \leftrightarrow \phi \models \psi, \psi \models \phi$$

още едно свойство

$$\phi \models \psi \leftrightarrow \models \phi \iff \psi$$

Това са условия, за да кажем ,че две формули са логически еквивалентни. Още няколко свойства:

$$- \phi \bowtie \psi \to \neg \phi \bowtie \neg \psi$$
$$- \phi_1 \bowtie \psi_1 \bowtie \phi_2 \bowtie \psi_2 \to$$
$$(\phi_1 \tau \phi_1) \bowtie (\psi_2 \tau \psi_2)$$

за au съждителна връзка.

За последното свойство ще се опитаме да го докажем, защото не е толкова очевидно.

Нека I е произволна булева интерпретация. Тогава от $\phi_1 \models \psi_1$ следва ,че $\mathrm{I}(\phi_1) = \mathrm{I}(\psi_1)$ и аналогично от $\phi_2 \models \psi_2$ следва ,че $\mathrm{I}(\phi_2) = \mathrm{I}(\psi_2)$. Така вече можем да разгледаме функцията на τ , а именно $I((\phi_1\tau\phi_1))) = H_\tau(I(\phi_1),I(\phi_2))$ което от своя страна чрез заместването с оценките получаваме $H_\tau(I(\psi_1),I(\psi_2))$ което е точно като оценката $I((\psi_2\tau\psi_2))$ така получаваме ,че всяка произволна булева интерпретация на $(\phi_1\tau\phi_1)$ дава същата оценка каквато и $(\psi_2\tau\psi_2)$.

Споменаваме ,че логическата еквивалентност е релация на еквивалентност в множеството от логически формули. Т.е рефлексивност , симетричност и транзитивност са изпълнени за нея.

Познати свойства от дискретната математика.

$$\begin{array}{ccc}
-\phi &\Longrightarrow \psi \boxminus \neg \phi \lor \psi \\
-\phi &\Longleftrightarrow \psi \boxminus (\phi &\Longrightarrow \psi) \& (\psi &\Longrightarrow \psi) \\
-\phi \lor \phi \boxminus \phi \\
-\phi \& \phi \boxminus \phi
\end{array}$$

$$\begin{aligned}
-\phi \lor \psi & \bowtie \psi \lor \phi \\
-\phi \& \psi & \bowtie \psi \& \phi \\
-\phi \lor (\psi \lor \chi) & \bowtie (\phi \lor \psi) \lor \chi \\
-\phi \& (\psi \& \chi) & \bowtie (\phi \& \psi) \& \chi \\
-\phi \& (\psi \lor \chi) & \bowtie (\phi \& \psi) \lor (\phi \& \chi) \\
-\phi \lor (\psi \& \chi) & \bowtie (\phi \lor \psi) \& (\phi \lor \chi) \\
-\phi \lor (\psi \& \chi) & \bowtie (\phi \lor \psi) \& (\phi \lor \chi) \\
-\neg (\phi \& \psi) & \bowtie \neg \phi \lor \neg \psi \\
-\neg (\phi \lor \psi) & \bowtie \neg \phi \& \neg \psi \\
-\neg \neg \phi & \bowtie \phi
\end{aligned}$$

Това е полезно после при съждителната резолюция, защото интересувайки се от логически еквивалентни формули, се абстрахираме от синткасиса , както в началото гледахме еднозначния синтактичен анализ на думите, отностно синтаксис има значение как са представени формулите , от гледна точка на логическа еквивалентност , ако две формули са логически еквивалентни няма.

При нужда от константите И и Π , не можем да използваме директно оценките, трябва да са под формата на логически формули , разбира се ние имаме примери вече за тавтологии и противоречия използваме примерно тях и ги номерираме, както ние си решим. Ето пример за константите:

$$P_0 \& \neg P_0 \bowtie f$$
$$P_0 \lor \neg P_0 \bowtie t$$

2.1 Подформула

Дефинция:

Подформула означава синтактичен (инфикс) ,една дума да е поддума на друга дума.

Нека ψ подформула на ϕ и гледаме специфично участие $\phi = \alpha \psi \beta$, Нека ϕ, ψ - са съждителни формули и $\phi = \alpha \psi \beta$. Нека ψ' е съжидтелна формула. Тогава думата $\alpha \psi' \beta$ също е формула.

Това твърдение ще го покажа по-скоро със синтактично дърво и идеята зад него преди да продължим нататък:

Тогава какво правим, избираме си частича, която да е също съждителна формула. Например:

 $\psi = (P_1 \vee P_2),$ ами това е тази част от дървото: \vee Нека сега си

$$P_1$$
 P_2

 $\overbrace{P_1} P_2$ направим собствена съждителна формула: $\psi' = (P_8 \Leftrightarrow P_9)$ тя изглежда ⇔ Сега изрязваме старата и слепваме новата и получаваме:

$$\begin{array}{c|c}
\widehat{P_8} & \widehat{P_9} \\
\neg(P_8 \Leftrightarrow P_9) \Rightarrow ((\neg \neg P_3) \& (P_4 \Leftrightarrow P_5)) \\
\Rightarrow \\
\downarrow \\
\downarrow \\
P_8 & P_9 & \neg & \Leftrightarrow \\
\downarrow \\
P_8 & P_9 & \neg & P_4 & P_5 \\
\downarrow \\
P_9 & \neg & P_4 & P_5
\end{matrix}$$

Нека ϕ' е получена от ϕ при заместване на някое участие ψ във ϕ със ψ' . По друг начин изразени ϕ и ϕ'

$$\phi = \alpha \psi \beta$$

$$\phi' = \alpha \psi' \beta$$

Нека I е булева интерпретация , ако $I(\psi) = I(\psi')$, то $I(\phi) = I(\phi')$

Индукция отностно построението (благодарение на еднозначния синтактичен анализ знаем, че имаме точно 3 случая на структуриране на формула.)

$$* \phi = P$$

тогава структурата е $\alpha=\beta=\epsilon$, и $\psi=P$, това значи ,че $\phi'=\alpha\psi'\beta=\psi'$, Тъй като $I(\psi)=I(\psi')=I(\phi')$ тогава значи $I(\phi)=I(P)=I(\psi)=I(\psi')=I(\phi')$ от което автоматично се вижда че $I(\phi)=I(\phi')$

$$* \phi = \neg \phi_1$$

Приемаме ,че твърдението е вярно за ϕ_1

(1сл.) $\alpha=\beta=\epsilon$ и така понеже е съждителна формула ψ , значи $\phi=\psi$, а тогава заместването $\phi'=\psi'$ и значи пак имаме $I(\phi)=I(\psi)=I(\psi')=I(\phi')$

(2сл.) $\phi = \neg \alpha_1 \psi \beta$ Тогава вида на ϕ_1 е $\phi_1 = \alpha_1 \psi \beta$, и от индуктивното предположение имаме $I(\phi_1) = I(\phi_1')$ които разложени изглеждат така: $I(\alpha_1 \psi \beta) = I(\alpha_1 \psi' \beta)$, което значи че при $I(\phi) = H_{\neg}(I(\phi_1)) = H_{\neg}(I(\alpha_1 \psi \beta)) = I(\phi_1')$

В това доказателство използваме $\alpha = \neg \alpha_1$ фактически покриваме множество от случаи с това доказателство...

Например два случая да разгледаме $\alpha_1 = \epsilon$ и $\beta = \epsilon$ тогава вида ще бъде: $\phi = \neg \psi$, но в случая когато α_1 е част от дума например

$$\alpha_1 = (P \vee$$

И

$$\beta =$$

имаме израз от вида $\phi = \neg (P \lor \psi)$

$$\phi = (\phi_1 \tau \phi_2)$$

(1сл.) $\alpha = \beta = \epsilon$ разбира се получаваме структурата $\phi = \psi$ този случай вече е поркит.

(2сл.) $\alpha \neq \epsilon$ трябва α да поеме определен брой (поне 1) символи , което понеже искаме ψ също да е формула принуждава $\beta \neq \epsilon$ защото алфа ще изяде минимум 1 скоба, която бета трябва да изплюе после. тогава разглеждайки случая когато $\alpha = (\alpha_1 \ , \ \beta = \beta_1 \tau \phi_2)$

$$\phi_1 = \alpha_1 \psi \beta_1$$

нали от структурата имаме:

$$\phi = (\phi_1 \tau \phi_2)$$

тогава по заместване във ϕ_1 срещането на ψ със ψ' получаваме:

$$\phi' = (\alpha_1 \psi' \beta_1 \tau \phi_2)$$

и от предположението имаме:

$$I(\alpha_1 \psi \beta_1) = I(\alpha_1 \psi' \beta)$$

така

$$I(\phi) = H_{\tau}(I(\alpha_1 \psi \beta_1), I(\phi_2)) = H_{\tau}(I(\alpha_1 \psi' \beta_1), I(\phi_2)) = I((\alpha_1 \psi' \beta_1 \tau \phi_2)) = I(\phi')$$

Още един случай вече в който $\alpha=(\phi_1\tau\alpha_1,\beta=\beta_1)$ така разглеждаме $\phi_2=\alpha_1\psi\beta_1,$ отново правим същото:

$$I(\alpha_1 \psi \beta_1) = I(\alpha_1 \psi' \beta)$$

така

$$I(\phi) = H_{\tau}(I(\phi_1), I(\alpha_1 \psi \beta_1)) = H_{\tau}(I(\phi_1), I(\alpha_1 \psi' \beta_1),) = I((\phi_1 \tau \alpha_1 \psi' \beta_1)) = I(\phi')$$

2.2 Теорема за еквивалентна замяна

Нека ϕ' е получена от ϕ при заместване на някое участие ψ във ϕ със ψ' , Ако $\psi \models \psi'$ то следва $\phi \models \phi'$ Съгласно предното твърдение, имаме директно доказателство за теоремата.

За всяка съждителна формула ϕ алгоритмично можем да намерим формула ϕ' такава че $\phi \models \phi'$ и във ϕ' не се срещат импликации и еквивалентности:

Идеята е да използваме , факта ,че можем да заместим формула с формула и да използваме следните твърдения от еквивалентността , а именно:

3 Съждителна резолюция

Дефинция:

Нека дефинираме литерал (ще записваме L): Литерал наричаме съждителна променлива P или отрицание на съждителна променлива $\neg P$

Поради тази дефиниция, трябва да внимаваме:

- * Ако L=P (т.е литералът е съждителна променлива) , то $\neg L = \neg P$ отрицанието му също е литерал.
- * Ако $L = \neg P$ (т.е литералът е отрицание на съждителна променлива), то $\neg L = \neg (\neg P)$, това вече е отрицане на съждителна формула, не на променлива и следователно не отговаря на дефиницията за литерал.

Дефинция:

Въвеждаме понятието: Дуален литерал и го означаваме L^{δ} Дуалният литерал се дефинира по следния начин: $L^{\delta}=\begin{cases} \neg P & \text{, ako } L=P\\ P & \text{, ako } L=\neg P \end{cases}$

Както виждаме L и L^{δ} са взаимно противоположни, и се наричат контрерна двойка.

Дефинция:

Елементарна дизюнкция:

Формула от вида $L_1 \vee L_2 \vee ... \vee L_n, \ n \geq 1,$ където $L_1, L_2, ..., L_n$ - са литерали.

Индуктивната дефиниция е следната:

- ако L е литерал, то L е елементарна дизюнкция \mid както в нашия случай покриваме с $n{=}1$
- -ако E е елементарна дизюнкция, а L е литерал ,то (E \vee L) е елементарна дизюнкция.

с втората част градим елементарната дизюнкиця , стъпка по стъпка. Формално дали $(E_1 \vee E_2)$ е елементарна дизюнкция ако E_1, E_2 са елементарни дизюнкции, ами формално синтактично не са, но логически са еквивалентни на елементарна дизюнкция с цялостно абстрахиране от структурата със скобите.

Нека I е булева интерпретация, а $L_1 \vee L_2 \vee ... \vee L_n$ е елементарна дизюнкция. Тогава:

$$I \models L_1 \lor L_2 \lor \dots \lor L_n \leftrightarrow$$
 за някое $i, 1 \le i \le n, I \models L_i$

Разбира се дизюнкцията логически се интересува от поне една стойност която да е истина (при конкретната булева интерпретация) , тогава понеже всеки литерал е свързан с дизюнкция , поне един за който I е

модел , ще направи логически стойността на цялата формула истина при тази интерпретация.

Дефинция:

Конюнкция на елементарни дизюнкции: Дефиницията е аналогична структура като тази на елементарната дизюнкция. Тук градивните елементи са елементарни дизюнкции (E).

Формула от вида $E_1\&E_2\&...\&E_k, k \ge 1$, наричаме конюнкция на елементарни дизюнкции и индуктивната дефиниция:

- ако E е елементарна дизюнкция , то E е конюнкция на елементарни дизюнкции.
- ако K е конюнкция на елементарни дизюнкции, и E е елементарна дизюнкция , то (K&E) е конюнкция на елементарни дизюнктии

Щом твърдението за дизюнкция изискваше поне един литерал, тук при конюнкция изискваме всички елементарни дизюнкции да бъдат верни при булевата интерпретация:

Нека I е булева интерпретация, а $E_1\&E_2\&...\&E_k$ е конюнкция на елементарни дизюнкции. Тогава:

$$I \models E_1 \& E_2 \& ... \& E_k \leftrightarrow$$
 за всяко $i, 1 \leq i \leq k, I \models E_i$

3.1 Конюнктивна нормална форма

За една съждителна формула ψ казваме ,че е във конюнктивна нормална форма ако е представена като конюнкция от елементарни дизюнкции.

В дискретната математика:

Конюнктивна нормална форма е конюнкция от елементарни дизюнкции. Елементарна дизюнкция е дизюнкция , чиито членове са оделни променливи или техните отрицания.

-Цитат от записки по дискретна математика / математическа логика (док. Д. Кралчев).

Двете дефиниции са еквивалентни логически , в нашия случай сме малко по-ограничени от към специфика в синтактиса поради индуктивните дефиниции.

3.2 Съждителни дизюнкти. Множества от съждителни дизюнкти

Тук вече поради проблемите с които се срещаме заради синтаксис , структури , повторения на литерали и т.н. Ще се опитаме да сведем разглеждането на елементарни дизюнкции и конюнкции от елементарни дизюнкции до множества,

Дефинция:

Дизюнкт (D) - наричаме крайно множество от литерали. На всеки елементарен дизюнкт съответства елементарна дизюнкция. Ако елементарната дизюнкция е изградена от n на брой литерали , тогава дизюнкта който съответства ще има $\leq n$ на брой литерали, защото елеменинира повторенията, едно от готините свойства на множество. Другото готино свойство е , че вече синтаксиса не е от значение , при положение ,че нямаме наредба в множеството. Обратно на всеки непразен дизюнкт съотвества елементарна дизюнкция. Като за структура можем да изберем конкретна пермутация на разместване на литералите от дизюнкта. Хайде примерче: Нека $E = L_1 \vee L_2 \vee ... \vee L_n$, $n \geq 1$ тогава съотвества дизюнкт $D = \{L_1, L_2, ..., L_n\}$ съотвества $E = L_{i_1} \vee L_{i_2} \vee ... \vee L_{i_n}$, $i_1, ..., i_n$ е пермутация на 1,2,...,n. Така вече за целите ни, понеже се интересуваме от вярността на елементарна дизюнкция можем да използваме дизюнкт.

 $I \models D \leftrightarrow^{def}$ има литерал $L, L \in D$, и Какво се случва с празния дизюнкт? Ами за него не съществува булева интерпретация I която да е модел за празния дизюнкт, защо поради същата причина поради която, всяка булева интерпретация е модел за празното множество от съждителни формули, Ние искаме да съществува литерал , който да е верен при булева интепретация I , но в празния дизюнкт нямаме литерали, и не можем да вземем такъв. Поради което този специален дизюнкт ще го бележим \blacksquare

И ще разгледаме следното твърдение:

D е изпълним $\leftrightarrow D \neq \blacksquare$

и да това означава ,че само празният дизюнкт е неизпълним. \smile . Тавтологичен дизюнкт наричаме дизюнкт който е верен при всяка булева интерпретация. Което разбира се се получава ако вземем литерал и неговия дуален в един и същи дизюнкт , поради изискването на дизюнкцията поне един да е верен , с контрерната двойка вътре винаги ще си гарантираме , че или $I \models L$ или $I \models L^\delta$, ще видим и че това е това е необходимо и достътъчно условие един дизюнкт да е тавтологичен. Сега основно ни интересува, логически да се направим работата по-лесна и приятна, това ще стане като се интересуваме основно от изпълнимост/неизпълнимост на множества от съждителни формули. Най-често тези множества ще ги означаваме с Δ както по-горе. Нека за всяка съждителна формула $\phi \in \Delta$ с $\mathrm{KH}\Phi(\phi)$ означаваме същата формула във конюнктивна нормална форма, както знаем: $\phi \models \mathrm{KH}\Phi(\phi)$. Цялото множество от формули трансформирани в техните $\mathrm{KH}\Phi$ ще бележим $\mathrm{KH}\Phi(\Delta)$.

$$I \models \Delta \leftrightarrow I \models \mathrm{KH}\Phi(\Delta)$$

Това все още, не ни помага особено , но ако разгледаме множеството от всички елементарни дизюнкции които се срещат в някоя формула от Δ , и нека означим това множество $\overline{\Delta}$, тогава :

$$I \models \Delta \leftrightarrow I \models \overline{\Delta}$$

, т.е на нас са ни необходими вече само елементарни дизюнкции и тъй като е множество много от повторенията на тези елементарни дизюнкции ще бъдат изчистени , ще остане едно минимизирано множество от елементарни дизюнкции което ще ни поакже изпълнимост и неизпълнимост, още по минимизиращо множество можем да разгледаме като си припомним как всяка елементарна дизюнкция има съотвестващ елементарен дизюнкт. Така за множество от формули Δ имаме съотвестващо множество от елементарни дизюнкти $S_{\Delta} = \{D_E | E \in \Delta\}$. Кога едно такова множество е изпълнимо при булева интерпретация, изобщо кога дадена булева интерпретация е модел за такова множество ами точно когато, за всеки дизюнкт от S тази интерпретация е модел за този дизюнкт:

$$I \models S \leftrightarrow 3$$
а всеки $D \in S, I \models D$

. Така защо тука писах само S а не S_{Δ} , ами не всяко множество S е от вида S_{Δ} може просто множество от дизюнкти да разглеждаме без то да е от някакво множество със съждителни формули. Например какво ще е това множество. Което в себе си включва \blacksquare дизюнкта, нямаме формула за това нямаме и елементарна дизюнкция E която да образува $D_E = \blacksquare$. Но в случая на множество от съждителни формули продължава да бъде валидно наблюдението:

$$I \models S_{\Delta} \leftrightarrow I \models \Delta$$

Понеже този дизюнкт \blacksquare е неизпълним при всяка булева интерпретация тогава означава , че от $\blacksquare \in S \to I \not\models S$. В същия момент е възможно $I \not\models S$ за всяко I без S да съдържа празния дизюнкт и това е например както знаем, едноелементен дизюнкт с литерал и съответно друг съдържащ дуалния му.Визуално $S = \{ \{ \neg P \}, \{ P \} \}$. Ако пък $S = \emptyset$, тогава отново влизаме като случая на конюнкция , имаме че за всеки дизюнкт в S , булевата интерпретация I е модел, тогава не можем да примем че съществува дизюнкт принадлежащ на S който да не е изпълнен при булева интерпратация I.Какво правим с тавтологичните дизюнкти? Ами премахваме ми ги , те не ни даваът никаква информация отностно вярност /изпълнимост/неизпълнимост затова:

$$I \models S \leftrightarrow I \models S \setminus \{D\}$$

. Разбира се говорих за изпълнимост и неизпълнимост на множеството S , формално не го казах, но едно множество от дизюнкти S е изпълнимо

когато съществува булева интерпреатация I която е модел на S. Което пък определя и неизпълнимост на S, като за всяка булева интерпратация I съществува поне 1 дизюнкт от S за който I не е модел. Освен горе определените неща, че ако празния дизюнкт се съдържа в S то S е винаги неизпълнимо , ако S е празното множество ,то е винаги изпълнимо. Имаме още някои очевидни наблюдения , например ако: $S' \subset S$ и S - изпълнимо следва ,че S' е изпълнимо, ако пък S'-неизпълнимо то S е неизпълнимо.

3.3 Правило за чистия литерал

Нека L е литерал, такъв че принадлежи поне на един дизюнкт от S и никой дизюнкт от S не съдържа неговия дуален L^{delta} , Нека $S'=\{D|D\in S, L\not\in D\}$. Тогава S е изпълнимо \leftrightarrow S' е изпълнимо

Доказателство:

Понеже S' се състои от дизюнкти на S със специално ограничение то е подмножество на S, Други наблюдения са, че понеже специалното ограничение изключва дизюнктите които съдържат L, имаме че $D \in S \setminus S' \to L \in D$ и също така $D \in S' \to L \not\in D$ и $L^\delta \not\in D$, понеже никой дизюнкт от S, не съдържа L^δ . Така само от факта че S' е подмножество на S следва, че ако S е изпълнимо то S' е изпълнимо. Сега остава само на обратно да докажем. Нека произволна булева интерпретация I е модел за S' тогава дефинираме $I^L \models L$ по този начин за L и за всяка променлива P която не участва във L се държи по същия начин като I, т.е $I^L[P] = I[P]$, Така покриваме всички абсолютно всички литерали от S', това значи ,че можем да разширим всяка булева интерпратация модел за S' до интерпретация която е модел за S.

3.4 Правило за едноелементния дизюнкт

Нека L е литерал и $\{L\} \in S$. Нека:

$$S_1 = \{D | D \in S, L \notin D, L^{\delta} \notin D\}$$

$$S_2 = \{D \setminus \{L^{\delta}\} | D \in S, L \notin D, L^{\delta} \in D\}$$

$$S' = S_1 \cup S_2$$

Тогава S е изпълнимо \leftrightarrow S' е изпълнимо.

Нека $I \models S$. Тогава за всеки D от S имаме $I \models D$, в частност $I \models \{L\}$,от което значи ,че $I \models L \to I \not\models L^\delta$. Ако един дизюнкт от S е от S' то има два случая:

$$D \in S_1$$

В този случай $D \in S$ и значи $I \models D$, другия случай е:

$$D \in S_2$$

Тогава вида на D е $D_1\setminus\{L^\delta\}$ където $D_1\in S, L\not\in D_1, L^\delta\in D_1$. От първото ,че $D_1\in S$ следва $I\models D_1$. Избираме си литерал $M\in D_1$ такъв , че $I\models M$, знаем че съществува поне един такъв, и този литерал не е L^δ защото $I\not\models L^\delta$. Значи $M\in D_1\setminus\{L^\delta\}$, и това е поне един литерал който е верен при I , което значи ,че $I\models D_1\setminus\{L^\delta\}$ което е $I\models D$. Токазано , че за всеки произволен литерал от S' и в двата случая булевата интерпретация модел за S е модел и за дизюнкта. Следвателно $I\models S\to I\models S'$.

Обратната посока: Дефинираме си интерпреатция I^L която как лейства:

ако променлива Q не участва във L , то $I^L[Q] = I[Q]$, като I произволна булева интерпреатация модел за S', разбира се $I^L \models S'$, остава да покажем ,че $I^L \models S$. Ами нека за $D \in S$ разгледаме следното:

$$L \in D$$
 и $L^\delta \not\in D$

Тогава $I^L \models D \leftrightarrow I \models D$, значи $I^L \models D$, следващия вариант:

$$L \not\in D$$
 и $L^\delta \in D$

Тогава $D\setminus\{L^\delta\}\in S_2\subset S'$ и $I^L\models D\setminus\{L^\delta\}\leftrightarrow I\models D\setminus\{L^\delta\}$. Следователно $I^L\models D\setminus\{L^\delta\}$ и $I\models D$.Последен случай:

$$L \in D$$

Тогава да $I^L \models L$ и значи $I^L \models D$. Така покривайки всички случаи за дизюнкт от S , получаваме ,че $I^L \models S$

3.5 Правило за разделяне (Недоказано в записки мое доказателство)

Нека L е литерал има дизюнкт $D_1\in S$, такъв че $L\in D_1$ и $L^\delta\not\in D_1$, има и дизюнкт $D_2\in S$, такъв че $L^\delta\in D_2$ и $L\not\in D_2$. Нека:

$$S_1 = \{D | D \in S, L \notin D, L^{\delta} \notin D\}$$

$$S_2^+ = \{D \setminus \{L^{\delta}\} | D \in S, L \notin D, L^{\delta} \in D\}$$

$$S_2^- = \{D \setminus \{L\} | D \in S, L \in D, L^{\delta} \notin D\}$$

$$S^+ = S_1 \cup S_2^+$$

$$S^- = S_1 \cup S_2^-$$

Тогава S е изпълнимо \leftrightarrow поне едно S^+, S^- е изпълнимо. Нека S е изпълнимо , т.е съществува булева интерпретация I модел за S.

Нека дефинираме I^L такова ,че за всяка променлива Q която не участва в L имаме $I^L[Q] = I[Q]$, а за L имаме $I^L \models L$. Тогава да докажем ,че поне едно от S^+ или S^- има тази булева интерпретация за модел. Защото $I^L \models S$, нека проверим дали $I^L \models S^+$. Нека $D \in S^+$ тогава имаме два случая:

$$D \in S_1$$

От този случай понеже S_1 са дизюнкти от S с ограничения имаме че $S_1 \subset S$ от това ,че $I^L \models S$ следва че $I^L \models S'$. Следващия случай:

$$D \in S_2^+$$

тогава D има вида $D_1\setminus\{L^\delta\}$ за $D_1\in S$ от това , че $D_1\in S$ следва , че $I^L\models D_1$, т.е съществува поне един литерал $M\in D_1$ за който $I^L\models M$, но по дефиниция $I^L\models L$, значи $I^L\not\models L^\delta$, от това имаме че $M\not\equiv L^\delta$, което значи че $M\in D_1\setminus\{L^\delta\}$ от там следва че $I^L\models D$. Абсолютно пълен аналог с дефиниране на I^{L^δ} за S^- . Нека S^+ е изпълнимо тогава имаме интерпретация I която е модел

Нека S^+ е изпълнимо тогава имаме интерпретация I която е модел за S^+ от което следва че $I \models S_1$ и $I \models S_2^+$, сега можем отново да използваме разширението I^L със същата дефиниция но този път да е булева интерпреатация която е модел за S^+ и разширява новото I което избрахме. Така автоматично ако имаме $D \in S$ то за него пак имаме S^+ случая:

$$L \in D$$
 и $L^\delta \not \in D$

В този случай понеже $I^L \models L$ имаме директно следствие $I^L \models D$

$$L \not\in D$$
 и $L^\delta \in D$

В този случай имаме $I^L \models S_2^+$ и тъй като това значи ,че $I^L \models D_1 \setminus \{L^\delta\}$ всяко такова то нашето D можем да го представим като $D = D_1 \setminus \{L^\delta\} \cup \{L^\delta\}$ имаме поне един литерал $M \in D_1 \setminus \{L^\delta\}$ от което следва ,че $I^L \models D$ Последния случай:

$$L \not\in D$$
 и $L^\delta \not\in D$

Ни казва директно че $D \in S_1$ което понеже $I^L \models S_1$ следва че $I^L \models D$. Така за всеки дизюнкт от S имаме че $I^\models D$, значи $I^L \models S$.

Абсолютно пълен аналог с дефиниране на $I^{L^{\delta}}$ за S^{-} .

3.6 Метод на съждителната резолюция

Тук ще се запознаем с правилото за съждителната резолюция. И резолвента.

Дефинция:

Нека D_1 и D_2 са дизюнкти, а L е литерал. Казваме ,че правилото за съждителната резолюция е приложимо към D_1, D_2 относно L , ако $L \in D_1, L^\delta \in D_2$. Означава се $!R_L(D_1, D_2)$. Добре, но понеже сме с контрерната двойка можем и да го разглеждаме относно L^δ тогава казваме че $!R_{L^\delta}(D_2, D_1)$.

Разбира се това означава че:

$$!R_L(D_1,D_2) \leftrightarrow !R_{L^{\delta}}(D_2,D_1)$$

Нека $!R_L(D_1,D_2)$ Тогава дизюнктът $(D_!\setminus\{L\})\cup(D_2\setminus\{L^\delta\})$ наричаме резолвента на D_1,D_2 отностно L.

Аналогично дефинирано:

Дизюнктът D е резолвента на D_1, D_2 , ако има литерал L, такъв че $!R_L(D_1, D_2)$ и D= $R_L(D_1, D_2)$

3.7 Важна лема

Важна Лема:

Нека D е резолвента на D_1, D_2 нека I е булева интерпретация.

Ако $I \models \{D_1, D_2\}$, то $I \models D$

Тоест ако булева интерпретация е модел и за двата дизюнкта то тя е модел и за тяхната резолвента спрямо литерал.

L е литерал за който $D=R_L(D_1,D_2)$. Което значи че вида на D е $D=(D_1\setminus\{L\})\cup(D_2\setminus\{L^\delta\})$. От това че $I\models\{D_1,D_2\}$ следва че $I\models D_1$ и $I\models D_2$. Имаме литерал от D_1 който е верен при I и летрал от D_2 който е верен при I. Нека тези литерали ги означим съответно $M_1\in D_1, I\models M_1$ и $M_2\in D_2, I\models M_2$.

За интерпретацията I имаме следните варианти:

Вариант 1. $I \models L$ от което автоматично следва $I \not\models L^{\delta}$ Следователно $M_2 \neq L^{\delta}$, поради което $M_2 \in D_2 \setminus \{L^{\delta} \subseteq D$. Следователно $I \models D$ защото този литерал е от D и е верен при интепретацията I.

Вариант 2. $I \not\models L$, тогава $M_1 \neq L$ така аналогично $M_1 \in D_1 \setminus \{L\} \subseteq D$, така намерихме друг литерал от D който е верен при I от което заключваме че $I \models D$

Нека $L_1, L_2 \in D_1$, а $L_1^{\delta}, L_2^{\delta} \in D_2$ ако искаме да приложим двукратно правилото, не получаваме $(D_1 \setminus \{L_1, L_2\}) \cup (D_2 \setminus \{L_1^{\delta}, L_2^{\delta}\})$, а какво получаваме и защо?

Ами приоритетите ни са следните за да приложим веднъж правилото получаваме:

$$D = (D_1 \setminus \{L_1\}) \cup (D_2 \setminus \{L_1^{\delta}\})$$

следващата резолвента ще можем да направим примерно тъй като $!R_{L_2}(D,D_2)$,разглеждаме резолвентата:

$$R_{L_2}(D, D_2) = D' = (D \setminus \{L_2\}) \cup (D_2 \setminus \{L_2^{\delta}\})$$

Така имаме за финал: D което включва всички литерали от D_1 без L_1 обединено с D_2 без дуалния литерал на L_1 , за D' имаме премахваме също L_2 от D но запазваме L_2^δ обединяваме това с D_2 без L_2^δ т.е в нашия случай все още фигурира L_2^δ докато в горния не фигурира.Всъщностъ дори не премахваме от D_2 дуалното на L_1 и то също си остава.

За множества от дизюнкти се дефинира \mathcal{R} : Нека S е произволно множество от дизюнкти.

Дефинция:

 $\mathscr{R}(S) \rightleftharpoons S \cup \{D | \text{съществува } D_1, D_2 \in S, D \text{ е резолвента на } D_1, D_2 \}$

Лема 1

 Лема 1. Нека S е множество от дизюнкти , а I е булева интерпретация, Тогава $I\models S\leftrightarrow I\models \mathscr{R}(S)$

Доказателство:

Нека $I \models S$, тогава за произволен дизюнкт $\mathrm{D} \in \mathscr{R}(S)$ имаме следните два случая:

(1сл) $D \in S$ тогава е ясно , че понеже $I \models S \to I \models D$

(2сл) D е резолвента на два дизюнкта $D_1, D_2 \in S$, тези два дизюнкта от S за тях е изпълнено ,че $I \models D_1$, $I \models D_2$ което значи , че $I \models \{D_1, D_2\}$ което от важната лема следва че $I \models D$.

това е за всеки произволен дизюнкт от $\mathscr{R}(S)$, което значи, че $I \models \mathscr{R}(S)$.

Другата посока сега: Ами какво да се чудим $S\subseteq \mathscr{R}(S)$. Тогава автоматично следва, че всеки модел за $\mathscr{R}(S)$ е модел и за S.

Дефинция:

За всяко множество от дизюнкти S , дефинираме S^* , което се дефинира така:

дефинираме редицата $S_0, S_1, S_2, ..., S_n, ...$, индуктивно по следния начин:

$$S_0 = S$$

$$S_{n+1} = \mathscr{R}(Sn)$$

и полагаме

$$S^* = \bigcup_{n=0}^{\infty} S_n$$

Лема 2

Нека S е множество от дизюнкти , I е булева интерпретация тогава: $I \models S \leftrightarrow I \models S^*$

Доказателство:

Нека $I \models S$, тогава ако покажем ,че за всяко n, $I \models S_n$, тогава ще получим, точно $I \models \bigcup_{n=0}^\infty S_n = S^*.$

Правим го чрез индукция относно n.

База n=0 , $S_0=S$, значи $I\models S_0$

Нека за някое n е изпълнено ,че $I \models S_n$. За $S_{n+1} = R(S_n)$, от Лема 1, следва че $I \models R(S_n)$ което означава ,че от $S_{n+1} = R(S_n)$, следва че $I \models S_{n+1}$. За пълнота на доказателството нека си изберем произволен дизюнкт $D \in S^*$, тогава заради структурата на S^* , съществува някое n за което $D \in S_n$ и понеже $I \models S_n$ за всяко n, то $I \models D$, и това беше за произволен дизюнкт, значи сме готови напълно с тази посока.

Другата посока разбира се $S=S_0$, $S_0\subseteq S^*$, значи $I\models S^*\to I\models S$ винаги.

Сега може да изглежда, че дефинираме тези неща напразно и просто си играем с измислени дефиниции, но всяко твърдение ни бута една стъпка напред към истинската резолюция. Нещо интересно как да разберем дали едно множество S е неизпълнимо, като използваме , новите дефиниции, ами можем да твърдим следното:

Критерии за неизпълнимост на множество от дизюнкти:

Ако $\blacksquare \in S^*$, то S е неизпълнимо.

Доказателство:

Нека $\blacksquare \in S^*$,допускаме че S е изпълнимо, ми S е изпълнимо т.е има поне един модел, нека го означим I , $I \models S$ от Лема 2. следва автоматично $I \models S^*$, от което следва че всички дизюнкти от S^* са верни при I, в частност, $I \models \blacksquare$ противоречие.

Сега веднага се чудим дали ако S е неизпълнимо, следва че $\blacksquare \in S^*$. За жалост още нямаме знанията да го докажем , но се очаква да е така. Друго интересно нещо е, знаем че ако имаме $\blacksquare \in S^*$, то съществува някое n , за което $\blacksquare \in S_n$, сега дали трябва да изчислим всичките предходни S_k за $0 \le k < n$, за да решим ,че $\blacksquare \in S_n$. За по-лесно проследяване на пътя до \blacksquare ще дефинираме още нещо малко по-късно. Сега се спираме на следното:

Дефинция:

За множество от дизюнкти S , казваме че е затворено относно правилото за резолюцията, ако за всеки два дизюнкта от S ,е вярно че и тяхната резолвента е от S , иначе записано:

$$S = \mathcal{R}(S)$$

(S е неподвижна точка за \mathscr{R})

Твърдение 1:

За всяко множество от дизюнкти S , S^* е затворено относно правилото за резолюциите.

Доказателство:

Трябва да покажем следните две неща:

 $S^* \subseteq \mathcal{R}(S^*)$ и $\mathcal{R}(S^*) \subseteq S^*$.

Първото следва директно от дефиницията за \mathcal{R} .

Второто. Взимаме си произволен дизюнкт от $\mathscr{R}(S^*)$ за него знаем че има два случая:

Първи случай $D \in S^*$, тогава е ясно.

Втори случай D е резолвента на $D_1,D_2\in S^*$, т.е има n_1,n_2 , такива че $D_1\in S_{n_1},D_2\in S_{n_2}$, полагаме m=max $\{n_1,n_2\}$, което е по-голямо от двете , така отново заради наблюдението за подмножества се оказва , че $D_1,D_2\in S_m$, но ние знаем, че D е резолвента на D_1,D_2 следователно $D\in \mathscr{R}(S_m)$, което пък е $D\in S_{m+1}$, така всеки произволен дизюнкт от $\mathscr{R}(S^*)$ е изпълнено ,че $D\in S^*$, и заключваме че: $\mathscr{R}(S^*)\subseteq S^*$

Твърдение 2:

- 1. Всеки път когато, X е множество от дизюнкти и е изпълнено $S \subset X, X = \mathscr{R}(X)$, е в сила $S^* \subset X$.
- 2. $S^* = \bigcap \{X \mid S \subseteq X, X = \mathcal{R}(X)\}\$

Доказателство 1:

Нека $S\subseteq X, X=\mathscr{R}(X)$, използваме индукция относно n, и се стремим да покажем ,че за всяко n е изпълнено $S_n\subseteq X$: База: $S_0=S$, значи $S_0\subseteq X$.

Предположение: Нека за някое n , е изпълнено $S_n\subseteq X$, тогава за S_{n+1} имаме следното $S_{n+1}=\mathscr{R}(S_n)$, разбира се $S_n\subseteq\mathscr{R}(S_n)$, и щом $S_n\subseteq X\to\mathscr{R}(S_n)\subseteq\mathscr{R}(X)=X$, така се оказва че $S_{n+1}\subseteq X$, така и обеднинието на всички S_n е подмножество на X.

Доказателство 2:

Тук се изискват две посоки първата посока я имаме: $S^*\subseteq \bigcap\{X\mid S\subseteq X, X=\mathscr{R}(X)\}$ идва от първата част, и факта че всяко $X\in\{X\mid S\subseteq X, X=\mathscr{R}(X)\}$. Изпълняват първата част. В другата посока имаме твърдение 1 и $S\subseteq S^*$ автоматично следва че: $S^*\in\{X\mid S\subseteq X, X=\mathscr{R}(X)\}$, сечението чисти елементи само, така че е валидно , че $\bigcap\{X\mid S\subseteq X, X=\mathscr{R}(X)\}\subseteq S^*$

3.8 Резолютивна изводимост

Дефинция:

Нека S е множество от дизюнкти.

Дефинираме резолютивен извод като крайна редица дизюнкти: $D_1, D_2, ..., D_n$, за n естествено, като всеки дизюнкт е от S или резолвента на два предходни дизюнкта в редицата които са от S, иначе казано за $D_1, D_2, ..., D_n$ за всяко $1 \le k \le n$ е изпълнено $D_k \in S$ или съществуват $1 \le i, j < k$ такива че D_k е резолвента на D_i, D_j .

Дефинция:

Един дизюнкт е резолютивно изводим от S , пише се: $S \vdash^r D$, ако има резолютивен извод от S, чийто последен член е D

Добре е да се упоменат следните наблюдения:

Две наблюдения:

- 1. Нека $D_1, D_2, ..., D_n$ е резолютивен извод от S, тогава за всяко $k \leq n$, $D_1, D_2, ..., D_k$ е също резолютивен извод от S
- 2. Нека имаме два резолютивни извода от s:

$$D_1, D_2, ..., D_n$$

$$D_1', D_2', ..., D_n'$$

тогава $D_1, D_2, ..., D_n, D_1', D_2', ..., D_n'$ също е резолютивен извод от S.

Компактност на резолютивна изводимост:

 $S \vdash^r \mathbf{D} \leftrightarrow$ съществува крайно S_0 , $S_0 \subseteq S$, $S_0 \vdash^r \mathbf{D}$

Доказателство:

В дясната поска: Нека $S \vdash^r D$, тогава имаме резолютивен извод на D от S, нека вземем редицата (рез. извод на D от S) $D_1, D_2, ..., D_n$. Дефинираме си

 $S_0=\{D_k|1\leq k\leq n,D_k\in S\}$, така сме взели всички дизюнкти от горната редица(извод) които са от S, понеже редицата е крайна, това множество S_0 е крайно, и разбира се тогава редицата $D_1,D_2,..,D_n$ е резолютивен извод и от S_0 на D, защото както споменах в дефиницията на S_0 взимаме само дизюнктите които са от S. Дефиницията е спазена и следователно $S_0 \vdash^T D$.

В лявата посока: Нека вземем подмножество на S, някое S_0 за което е изпълнено, че е крайно и $S_0 \vdash^r D$, тогава разглеждаме един резолютивен изовд от S_0 на D, нека е $D_1, D_2, ..., D_n$, тогава понеже е подмножество, следва директно, че е резолютивен извод на D от S. $S \vdash^r D$.

И реално всяко подмножество щеше да свърши работа независимо дали безкрайно или крайно , просто в нашия случай се изискваше крайно.

Твърдение 3:

Нека S е множество от дизюнкти. Тогава:

$$D \in S^* \leftrightarrow S \stackrel{r}{\vdash} D$$

Дясната посока , ще докажем , като искаме да покажем , че ако $D \in S_n$ то $S \vdash^r D$. за всяко n. Щом показваме за всяко n , използваме индукция относно n.

База: $D \in S_0$, едночленна редица D, е резолютивен извод, и тъй като $S_0 = S$ се оказва че $S \vdash^{r} D$.

Предположение: Нека за някое n е в сила,

че за всяко $D \in S_n$ е изпълнено $S \vdash^r D$. Тогава за $D \in S_{n+1}$, имаме $S_{n+1} = \mathcal{R}(S_{n+1})$, имаме два случая за D:

- 1. $D \in S_n$ тогава от преположението имаме $S \vdash^r D$.
- 2. D е резолвента на два дизюнкта D', D'' като $D', D'' \in S_n$. Тогава от хипотезата имаме $S \vdash^T D', S \vdash^T D$ ", неква вземем съответно резолютивен извод на D' от S : $D_1', D_2', ..., D_n'$ и резолютвен извод на D" от S : $D_1'', D_2'', ..., D_m''$

Тогава знаем че $D_1', D_2', ..., D_n', D_1'', D_2'', ..., D_m'', D$ е резолютивен извод на D от S , т.е доказахме ,че $S \vdash^r D$. Отново за пълнота взимаме произволен дизюнкт $D \in S*$, тогава този дизюнкт принадлежи за някое n , на S_n и така получаваме , че за всеки произволен дизюнкт е изпълнено $S \vdash^r D$.

Продължаваме с лявата посока: Малко по интересна , нека $S \vdash^T D$, тогава един резолютивен извод на D от S е $D_1, D_2, ..., D_n$, като $D_n = D$. Твърдим ,че за всяко k , $1 \le k \le n$ то $D_k \in S^*$. Доказваме с противоречие, нека има такова $k, 1 \le k \le n$ то $D_k \not\in S^*$, за да докажем , ще се ограничим до най-малкото такова $k_0, 1 \le k_0 \le n$ то $D_{k_0} \not\in S^*$, Тогава имаме два случая: $D_{k_0} \in S$, в който случай, не можем да бъде защото $S = S_0 \subseteq S^*$.

Втори случай: D_{k_0} е резолвента на два дизюнкта $D_i, D_j \in S^*$, те са от S^* от това , че $i,j < k_0$ а k_0 е минималния индекс за който $D_{k_0} \notin S^*$, обаче имаме от твърдение 1 че S^* е затворено множество отностно правилото за резолюцията и всяка резолвента е елемент на S^* така опровергахме $D_{k_0} \notin S^*$.

Така отиваме на важната теорема за коректност:

Теорема за коректност резолютивната изводимост:

tcorrect Нека S е множество от дизюнкти.

Ако $S \vdash^r \blacksquare$, то S е неизпълнимо.

Нека $S \vdash^r \blacksquare$, тогава съгласно последното твърдение 3 имаме ,че $\blacksquare \in S^*$ и съгласно критерия за неизпълнимост, заключваме че S е неизпълнимо.

4 Трансферзали

Дефинция:

Нека M е множество, с елементи, които също са множества. За едно множество Y, ще ще казваме , че Y е трансферзала за M ако $(\forall x \in M)(Y \cap x \neq \emptyset)$.

Забележка:

Едно множество има трансферзала тогава и само тогава когато не съдържа празното множество като елемент. Макар и тривиално твърдение , нека го запишем и да го докажем.

Твърдение:

Нека M е множество от множества. M има трансферзала $\leftrightarrow (\forall x \in M)(x \neq \emptyset)$

Доказателство (Дясна посока 1):

Нека М има трансферзала , допускаме че М съдържа празното множество като елемент. Тогава нека Y е трансферзала за М , поради което е изпълнено: $(\forall x \in M)(Y \cap x \neq \emptyset)$, в часност $(Y \cap \emptyset) \neq \emptyset$ което е абсурдно.

(понеже резултата от сечение на всяко множество с празното множестово винаги връща празното множество.)

Доказателство (Дясна посока 2):

Нека М има трансферзала и нека Y е трансферзала за М. Взимаме произволен елемент $x\in M$, тогава от Y трансферзала, имаме че $(Y\cap x)\neq\emptyset$, но $(Y\cap x)\subseteq x$,поради което $x\neq\emptyset$.

Лявата посока:

Нека $(\forall x \in M)(x \neq \emptyset)$. Тогава дефинираме множеството $Y \rightleftharpoons \bigcup_{x \in M} x$. Това множество е трансферзала за M, защото за всяко $x \in M$ е вярно ,че $x \subseteq Y$, от това имаме че е вярно винаги $(Y \cap x = x)$, но никое x не е празното множество, следователно е винаги изпълнено $(\forall x \in M)(Y \cap x \neq \emptyset)$.

Дефинция:

Нека M е множество от множества, ще казваме че Y е минимална трансферзала ако са изпълнени следните 2 условия:

 \cdot Y- е трансферзала

 \cdot всеки път когато $Y'\subseteq Y, Y'\neq Y,$ следва че Y' не е трансферзала.

T.евсяко собствено подмножество на Y не е трансферзала за $M,\!a$ Y е трансферзала за M.

Малко твърдение:

Нек M е множество от множества, Y е трансферзала за M: Y - минимална $\leftrightarrow (\forall a \in Y)(\exists x \in M)((Y \setminus \{a\}) \cap x = \emptyset)$

Което иначе казано е тривиално твърдение, че една трансферзала е

минимална тогава и само тогава когато , който и елемент да премахнем спира да е трансферзала.(за някое \mathbf{M})

Доказателство:

Едната посока: Нека Y е минимална трансферзала , ами тогава $Y\setminus\{a\}\subseteq Y$ и $Y\setminus\{a\}\neq Y.$ Y е минимална, а $Y\setminus\{a\}$ е собствено подмножество на Y, няма как да е трансферзала.

Другата посока:

Нека Y е трансферзала , избираме си произволно собствено подмножество Y' т.е $Y'\subseteq Y, Y'\neq Y$ тогава $Y\setminus Y'$, понеже има поне един елемент по който се различават Y и Y', нека $a\in Y\setminus Y'$. Така $Y'\subseteq Y\setminus \{a\}\subseteq Y$ и $Y\setminus \{a\}\neq Y$. Тогава $(\exists x\in M)((Y\setminus \{a\})\cap x=\emptyset)$ понеже сме в лявата посока твърдението е изъплнено. Но като вземем такова конкретно x нека го означим x_0 , за което $(Y\setminus \{a\})\cap x_0=\emptyset$. Тогава имаме следното $Y'\cap x_0\subseteq (Y\setminus \{a\})\cap x_0$,понеже знаем , че $(Y\setminus \{a\})\cap x_0=\emptyset$, следва че $Y'\cap x_0=\emptyset$. Тогава Y' не е трансферзала за Y'0, а това беше произволно собствено подмножество на Y0, което значи че Y1 е минимална трансферзала за Y3.

Твърдение1. Няколко еквивалентности:

Нека У е трансферзала за множество от множества М.

$$(I) \ \forall Y'(Y' \subseteq Y \ \mathtt{M} \ Y' \neq Y \to (\exists x \in M)(Y' \cap x = \emptyset));$$

$$(II) \ (\forall a \in Y)(\exists x \in M)((Y \setminus \{a\}) \cap x = \emptyset);$$

$$(III) \ (\forall a \in Y)(\exists x \in M)(Y \cap x = \{a\})$$

Твърденията са еквивалентни.

(I)->(II) и (II)->(I):

С предходното твърдение доказахме еквивалентността на двете твърдения. (I) е дефиниция за минимална трансферзала, а (II) беше изпълнено тогава и само тогава когато (I) е изпълнено.

(II)->(III):

Нека приемем че (II) е в сила. Тогава нека вземем произволно $a \in Y$. От (II) следва че $(\exists x \in M)((Y \setminus \{a\}) \cap x = \emptyset)$. Взимаме отново конкретно x_0 за което $(Y \setminus \{a\}) \cap x_0 = \emptyset$. Щом Y е трансферзала за М. $Y \cap x_0 \neq \emptyset$. Т.е има поне един елемент нека $b \in Y \cap x_0$. Тогава $b \in Y$ и $b \in x_0$, той е общ, щом е в сечението. Също така избрахме x_0 да е такова че $(Y \setminus \{a\}) \cap x_0 = \emptyset$, тогава $b \notin (Y \setminus \{a\}) \cap x_0$. но $b \in x_0$, тогава $b \notin (Y \setminus \{a\})$, но пък $b \in Y$, какво значи това. Значи че $b \in \{a\}$. Но вътре има само елемента а, следователно b=а. Това беше обаче за някое произволно b което е във $Y \cap x_0$ тогава всеки произволен елемент на това множество е и елемент на $\{a\}$. Което преведено в езика на множества е $Y \cap x_0 \subseteq \{a\}$, възможни са две подмножества само на $\{a\}$, \emptyset и $\{a\}$, но Y е трансферзала за M, значи от $Y \cap x_0 \neq \emptyset$, остава $Y \cap x_0 = \{a\}$.

(III)->(II):

Нека (III) е в сила. Нека отново вземем произволно $a \in Y$. От (III) имаме:

 $(\exists x \in M)(Y \cap x = \{a\})$. Нека вземем конкретно $x_0 \in M$ такова че $Y \cap x_0 = \{a\}$. Допускаме , че $(Y \setminus \{a\}) \cap x_0 \neq \emptyset$, ще се опитаме да стигнем до противоречие. Нека $b \in (Y \setminus \{a\}) \cap x_0$. защото сме допуснали че $(Y \setminus \{a\}) \cap x_0 \neq \emptyset$ ще имаме такъв елемент b. Тогава $b \in Y \setminus \{a\}$ и $b \in x_0$. Щом $b \in Y \setminus \{a\}$, имаме че и $b \in Y$ и също $b \notin \{a\}$. Така вторто можем да го гледаме като $b \neq a$. От $b \in Y$ и $b \in x_0$ следва че $b \in Y \cap x_0$, но от (III) имаме $Y \cap x_0 = \{a\}$, тогава $b \in \{a\}$ което е като да кажем b = a. Противоречеие и това беше за произволно $a \in Y$. Готови сме.

Твърдение 2

Нека M е крайно множество от непразни множества. Тогава M има минимална трансферзала.

Има доста начина да се докаже, но единия начин ни дава ориентация за едно по-голямо твърдение и ще използваме само него;

Доказателство:

Първо БОО (Без ограничение на общността) ,можем да смятаме че $M \neq \emptyset$, защото в този случай имаме трансферзала която е $Y = \emptyset$, защо е трансферзала защото не можем да намерим контрапример за $x \in M$, за да покажем че не е. А защо е минамална , ами защото празното множество няма собствени подмножества.

Започваме доказателството, като си дефинираме едно крайно множество Y_0 което е трансферзала за М.Дефинираме го по следния начин:

По условията всяко $x\in M$ е непразно значи има поне един елемент. Трансферзалата $Y_0 \rightleftharpoons \{a_0,a_1,.,a_{t-1}\}$ като за крайното множество \mathbf{M} , елементите ги означаваме с $x_0,x_1,.,x_{t-1}$ и $a_0\in x_0,a_1\in x_1,.,a_{t-1}\in x_{t-1}$. Това е трансферзала за \mathbf{M} , защото сечение със всяко множество ще даде точно конкретния елемент който сме взели по дефиницията на Y_0 . Сега дефинираме индуктивно редицата: $Y_0\supseteq Y_1\supseteq...\supseteq Y_t$, като:

 $-Y_0$ е дефинирано. (по-горе).

-Нека $n \leq t-1$ и Y_n е дефинирано и е трансферзала за М: Дефинираме Y_{n+1}

$$Y_{n+1}
ightleftharpoons egin{cases} Y_n \setminus \{a_n\} &= \mathrm{кo}\ Y_n \setminus \{a_n\}\ \mathrm{e}\ \mathrm{трансферзала}\ \mathrm{sa}\ \mathrm{M} \ Y_n &= \mathrm{ko}\ Y_n \setminus \{a_n\}\ \mathrm{he}\ \mathrm{e}\ \mathrm{трансферзалa}\ \mathrm{sa}\ \mathrm{M} \end{cases}$$

Тогава редциата $Y_0 \supseteq Y_1 \supseteq ... \supseteq Y_t$ е вярна и всяко едно е трансферзала за М.

За минимална трансферзала твърдим че Y_t е такава. Нека $a \in Y_t$, тогава $a = a_n$ за някое $n \le t-1$. Тъй като $Y_{n+1} \supseteq Y_t$ има $a_n \in Y_{n+1}$. От дефиницията за Y_{n+1} заключваме че $Y_{n+1} \ne Y_n \setminus \{a_n\}$ защото $a_n \in Y_{n+1}$ поради което влизаме в случая $Y_{n+1} = Y_n$ и $Y_n \setminus \{a_n\}$ не е трансферзала за М.Тогава за някое $x \in M$ имаме $(Y_n \setminus \{a_n\}) \cap x = \emptyset$, тогава от $Y_t \setminus \{a_n\} \subseteq Y_n \setminus \{a_n\}$ следва че $(Y_t \setminus \{a_n\}) \cap x = \emptyset$ и това е за $a = a_n$, значи $(Y_t \setminus \{a\}) \cap x = \emptyset$, и какво е това ами това (твърдение 1 / дефиниция (II)) за минимална трансферзала.

Твърдение 2

Нека M е фамилия от непразни крайни множества. М е най-много изброимо безкрайно множество. Тогава M има минимална трансферзала.

Доказателство:

Нека М е крайно , тогава използваме горното твърдение и следователно съществува минимална трансферзала за М.Ако пък М е изброимо безкрайно, използваме факта ,че елементите на М са крайни множества. Тогава $Y_0 = \bigcup_{x \in M} x$ е изброимо (безкрайно) множество. Понеже вече знаем че Y_0 е трансферзала за М. Това е вече разглеждано. Нека $a_0, a_1, ..., a_n, ..$ е редица от всички елементи на Y_0 и елементите са два по два различни т.е $n_1 \neq n_2, a_{n_1} \neq a_{n_2}$. Отново индуктивно ще дефинираме редицата: $Y_0, Y_1, ..., Y_n, Y_{n+1}, ..$ по следния начин:

 Y_0 е дефинирано (видяхме го) Нека за някое n, Y_n е дефинирано. Дефинираме Y_{n+1} отново така:

$$Y_{n+1}
ightleftharpoons egin{cases} Y_n \setminus \{a_n\} &= ext{ ко } Y_n \setminus \{a_n\} \text{ е трансферзала за M} \ Y_n &= ext{ ко } Y_n \setminus \{a_n\} \text{ не е трансферзала за M} \end{cases}$$

Доказателство (Продължение):

Така с индукция относно n, и поради дефиницията на Y_{n+1} , заключваме че:

* за всяко
п , Y_n е трансферзала за М

* за всяко n, $Y_n \supseteq Y_{n+1}$

Точно както беше в горното доказателство, сега за произволни п и k , ако $n \leq k$, то $Y_n \supseteq Y_k$. Очевидно с нарастване на индекса в редицата или ще запазим трансферзалата или ще я намалим с 1 елемент. Така дефинирахме монотонно намаляваща редица:

$$Y_0 \supseteq Y_1 \supseteq ... \supseteq Y_n \supseteq ...$$

. Сега търсейки нещо минимално и чисто (както по висша) търсим сечение на нещата, дефинираме:

$$Y \rightleftharpoons \bigcap_{n=0}^{\infty} Y_n$$

Сега за да докажем, че наистина е минимална трансферзала за М. Първо да се убедим че е трансферзала за М.Нека х е произволен елемент от М.Тогава следва че $x \in Y_0$, заради дефиницията на Y_0 и значи взимайки по-горе редицата на елементи на Y_0 : $a_0, a_1, ., a_n, .$, там елементите на х , ще се срещат точно по веднъж. Това означава ,че понеже х е крайно множество елементите са краен брой и в редицата ще се случи момент в който , от даден индекс нататък не можем да имаме повече елемент от х. С други думи: Съществува естествено число n_x , такова че $a_{n_x} \in x$, и за всяко $n > n_x$, $a_n \not\in x$. Сега важното от тези заключения е следното: В редицата

$$Y_0 \supseteq Y_1 \supseteq ... \supseteq Y_n \supseteq ...$$

Спираме се на елемента Y_{n_x} , щом направим само още една стъпка по дефиницията за Y_{n_x+1} , ще получим:

$$\begin{cases} Y_{n_x} \setminus \{a_{n_x}\} & \text{ ако } Y_{n_x} \setminus \{a_{n_x}\} \text{ е трансферзала за M} \\ Y_{n_x} & \text{ ако } Y_{n_x} \setminus \{a_{n_x}\} \text{ не е трансферзала за M} \end{cases}$$

Доказателство (Продължение 2):

И вече ако го махнем този елемент, привършваме елементите на х. Ако не го махнем, продължаваме и повече няма как да се опитаме да махнем елемент от х.

Така за всяко $n > n_x + 1$ е валидно че: $Y_n \cap x = Y_{n_x + 1} \cap x$. Защото както показахме, от там нагоре, няма какво да премахваме като елемент от х и затова се запазва сечението с повишаване на индекса, реално можем да махаме по 1 елемент да чистим постепенно от трансферзалите, но сме сигурни вече, че няма да махнем елемент на х. Така от това че редицата

$$Y_0 \supseteq Y_1 \supseteq ... \supseteq Y_n \supseteq ..$$

е монотонно намаляваща, можем да заключим следното:

$$\bigcap_{n=0}^{n_x+1} Y_n = Y_{n_x+1}$$

. Очевидно по-малките елементи по индекс, на редицата от трансферзали пазят повече непремахнати елементи от х,докато не стигнат Y_{n_x+1} където за последен път се опитваме да махнем елемент от х.Така можем да заключим следното

$$Y\cap x=(\bigcap_{n=0}^\infty Y_n)\cap x=$$

$$(\bigcap_{n=0}^{n_X+1}Y_n\cap\bigcap_{n=n_X+2}^\infty Y_n)\cap x=$$

$$(Y_{n_X+1}\cap\bigcap_{n=n_X+2}^\infty Y_n)\cap x=$$

$$(Y_{n_X+1}\cap\bigcap_{n=n_X+2}^\infty Y_n)\cap x=$$

$$(Y_{n_X+1}\cap x)\cap\bigcap_{n=n_X+2}^\infty (Y_n\cap x)=$$
 припомняме си "за всяко $n>n_X+1$ е валидно че: $Y_n\cap x=Y_{n_X+1}\cap x$ "

$$(Y_{n_x+1}\cap x)\cap \bigcap_{n=n_x+2}^{\infty}(Y_{n_x+1}\cap x)=$$

 $(Y_{n_x+1}\cap x)\cap (Y_{n_x+1}\cap x)=Y_{n_x+1}\cap x.$ Тогава понеже за всяко n , Y_n е трансферзала за M, и за произволно $x\in M$ имаме $Y_{n_x+1}\cap x\neq 0$ \emptyset точно от гаранцията че Y_{n_x+1} е трансферзала. Заключваме че $Y \cap x \neq \emptyset$. Т.е Y е трансферзала за М.

Доказателство (Продължение 3):

Сега дали е минимална тази трансферзала?,Нека а е произволен елемент на Y, тогава този елемент а се среща веднъж в редицата $a_0, a_1, .$ Той е някой от тези , нека $a = a_n$. Понеже $Y \subseteq Y_{n+1}$, имаме $a_n \in Y_{n+1}$. Тогава сме във случая в който не сме махнали a_n , т.е $Y_{n+1} \neq Y_n \setminus \{a_n\}$. Следователно $Y_n + 1 = Y_n$, тогава $Y_n \setminus \{a_n\}$ не е трансферзала за М. Което означава от твърдение 1 (II). Съществува, нека вземем конкретно $x_0 \in M$, за което $(Y_n \setminus \{a_n\}) \cap x_0 = \emptyset$. Но $Y \subseteq Y_n$ тогава $Y \setminus \{a_n\} \subseteq Y_n \setminus \{a_n\}$, което значи че: $(Y \setminus \{a_n\}) \cap x_0 \subseteq (Y_n \setminus \{a_n\}) \cap x_0$, така $(Y \setminus \{a_n\}) \cap x_0 \subseteq \emptyset$ от което следва: $(Y \setminus \{a_n\}) \cap x_0 = \emptyset$, обаче понеже $a = a_n$, успяваме да стигнем до $(Y \setminus \{a\}) \cap x_0 = \emptyset$, това е за произволно а следователно имаме точно твърдение 1 (II) изпълнено , което значи че Y е минимална трансферзала за М.

4.1 Следва продължение..

5 References

^{*}Лекции на проф. Тинко Тинчев (Информатика)

^{*}https://github.com/YanaRGeorgieva/Logic-programming