Nhắc lại Giới hạn – Đạo hàm – Vi phân

1. Các giới hạn đặc biệt:

a)
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Hệ quả:
$$\lim_{x \to 0} \frac{x}{\sin x} = 1$$

$$\lim_{u(x)\to 0} \frac{\sin u(x)}{u(x)} = 1$$

$$\lim_{u(x)\to 0} \frac{u(x)}{\sin u(x)} = 1$$

b)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e, x \in R$$

Hệ quả:
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$
.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

2. Bảng đạo hàm các hàm số sơ cấp cơ bản và các hệ quả:

Dang dạo năm các năm số số cấp có bắn và các nộ qua.		
(c)' = 0 (c là hằng số)		
$(x^{\alpha})' = \alpha x^{\alpha-1}$	$(\mathbf{u}^{\alpha})' = \alpha \mathbf{u}^{\alpha - 1} \mathbf{u}'$	
$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$	$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$	
$\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$	$\left(\sqrt{\mathbf{u}}\right)' = \frac{\mathbf{u}'}{2\sqrt{\mathbf{u}}}$	
$(e^x)' = e^x$	$(e^{\mathrm{u}})' = \mathrm{u}'.e^{\mathrm{u}}$	
$(a^x)' = a^x . \ln a$	$(a^{\mathrm{u}})' = a^{\mathrm{u}}.\ln a \cdot \mathrm{u}'$	
$(\ln \mathbf{x})' = \frac{1}{\mathbf{x}}$	$(\ln \mathbf{u})' = \frac{\mathbf{u}'}{\mathbf{u}}$	
$(\log_{a} \mathbf{x} ') = \frac{1}{\mathbf{x}.\ln a}$	$(\log_{a} \mathbf{u})' = \frac{\mathbf{u}'}{\mathbf{u}.\ln a}$	
$(\sin x)' = \cos x$	(sinu)' = u'.cosu	
$(tgx)' = \frac{1}{\cos^2 x} = 1 + tg^2 x$	$(tgu)' = \frac{u'}{\cos^2 u} = (1 + tg^2 u).u'$	
$(\cot gx)' = \frac{-1}{\sin^2 x} = -(1 + \cot g^2 x)$	$(\cot gu)' = \frac{-u'}{\sin^2 u} = -(1 + \cot g^2 u).u'$	

3. Vi phân:

Cho hàm số y = f(x) xác định trên khoảng (a;b) và có đạo hàm tại $x \in (a;b)$. Cho số gia Δx tại x sao cho $x + \Delta x \in (a;b)$. Ta gọi tích $y'.\Delta x$ (hoặc $f'(x).\Delta x$) là vi phân của hàm số y = f(x) tại x, ký hiệu là dy (hoặc df(x)).

$$dy = y'.\Delta x$$
 (hoặc $df(x) = f'(x).\Delta x$

Áp dụng định nghĩa trên vào hàm số y = x, thì

$$dx = (x)'\Delta x = 1.\Delta x = \Delta x$$

Vì vậy ta có: dy = y'dx (hoặc df(x) = f'(x)dx)

NGUYÊN HÀM VÀ TÍCH PHÂN

§Bài 1: NGUYÊN HÂM

1. Định nghĩa:

Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên khoảng (a;b) nếu mọi x thuộc (a;b), ta có: F'(x) = f(x).

Nếu thay cho khoảng (a; b) là đoạn [a; b] thì phải có thêm:

$$F'(a^+) = f(x) \text{ và } F'(b^-) = f(b)$$

2. Định lý:

Nếu F(x) là một nguyên hàm của hàm số f(x) trên khoảng (a;b) thì:

a/ Với mọi hằng số C, F(x) + C cũng là một nguyên hàm của hàm số f(x) trên khoảng đó.

b/ Ngược lại, mọi nguyên hàm của hàm số f(x) trên khoảng (a;b) đều có thể viết dưới dạng: F(x) + C với C là một hằng số.

Người ta ký hiệu họ tất cả các nguyên hàm của hàm số f(x) là $\int f(x)dx$. Do đó viết:

$$\int f(x)dx = F(x) + C$$

 $\underline{B\mathring{o}}\,d\hat{e}$: Nếu F'(x) = 0 trên khoảng (a; b) thì F(x) không đổi trên khoảng đó.

3. Các tính chất của nguyên hàm:

- $\left(\int f(x)dx\right)' = f(x)$
- $\int af(x)dx = a \int f(x)dx \ (a \neq 0)$
- $\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$
- $\bullet \quad \int f(t)dt = F(t) + C \Rightarrow \int f\Big[u(x)\Big]u'(x)dx = F\Big[u(x)\Big] + C = F(u) + C \quad (u = u(x))$

4. Sự tồn tại nguyên hàm:

• **Dinh lý**: Mọi hàm số f(x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.

BẢNG CÁC NGUYÊN HÀM

Nguyên hàm của các hàm số sơ cấp thường gặp	Nguyên hàm của các hàm số hợp (dưới đây u = u(x))	
$\int dx = x + C$	$\int du = u + C$	
$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C \qquad (\alpha \neq -1)$	$\int u^{\alpha} du = \frac{u^{\alpha+1}}{\alpha+1} + C \qquad (\alpha \neq -1)$	
$\int \frac{\mathrm{dx}}{x} = \ln x + C \qquad (x \neq 0)$	$\int \frac{du}{u} = \ln u + C \qquad (u = u(x) \neq 0)$	
$\int e^x dx = e^x + C$	$\int e^{u} du = e^{u} + C$	
$\int a^{x} dx = \frac{a^{x}}{\ln a} + C \qquad (0 < a \neq 1)$	$\int a^{u} du = \frac{a^{u}}{\ln a} + C \qquad (0 < a \neq 1)$	
$\int \cos x dx = \sin x + C$	$\int \cos u du = \sin u + C$	
$\int \sin x dx = -\cos x + C$	$\int \sin u du = -\cos u + C$	
$\int \frac{dx}{\cos^2 x} = \int (1 + tg^2 x) dx = tgx + C$	$\int \frac{du}{\cos^2 u} = \int (1 + tg^2 u) du = tgu + C$	
$\int \frac{dx}{\sin^2 x} = \int (1 + \cot g^2 x) dx = -\cot gx + C$	$\int \frac{du}{\sin^2 u} = \int (1 + \cot g^2 u) du = -\cot gu + C$	
$\int \frac{\mathrm{dx}}{2\sqrt{x}} = \sqrt{x} + C \qquad (x > 0)$	$\int \frac{du}{2\sqrt{u}} = \sqrt{u} + C \qquad (u > 0)$	
$\int \cos(ax+b)dx = \frac{1}{a}\sin(ax+b) + C \qquad (a \neq 0)$		
$\int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b) + C \qquad (a \neq 0)$		
$\int \frac{\mathrm{dx}}{\mathrm{ax} + \mathrm{b}} = \frac{1}{\mathrm{a}} \ln \mathrm{ax} + \mathrm{b} + \mathrm{C}$		
$\int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + C \qquad (a \neq 0)$		
$\int \frac{\mathrm{dx}}{\sqrt{ax+b}} = \frac{2}{a}\sqrt{ax+b} + C \qquad (a \neq 0)$		

Vấn đề 1: XÁC ĐỊNH NGUYÊN HÀM BẰNG ĐỊNH NGHĨA

<u>Bài toán 1</u>: CMR F(x) là một nguyên hàm của hàm số f(x) trên (a; b)

PHƯƠNG PHÁP CHUNG

Ta thực hiện theo các bước sau:

+ Bước 1: Xác đinh F'(x) trên (a; b)

+ Bước 2: Chứng tỏ rằng F'(x) = f(x) với $\forall x \in (a; b)$

Chú ý: Nếu thay (a; b) bằng [a; b] thì phải thực hiện chi tiết hơn, như sau:

+ Bước 1: Xác định F'(x) trên (a; b)

Xác định F'(a⁺)

Xác đinh F'(b⁻)

+ Bước 2: Chứng tỏ rằng $\begin{cases} F'(x) = f(x), \ \forall x \in (a \ ; \ b) \\ F'(a^+) = f(a) \\ F'(b^-) = f(b) \end{cases}$

Ví dụ 1: CMR hàm số: $F(x) = \ln(x + \sqrt{x^2 + a})$ với a > 0

là một nguyên hàm của hàm số $f(x) = \frac{1}{\sqrt{x^2 + a}}$ trên R.

Giải:

Ta có: F'(x) =
$$[\ln(x + \sqrt{x^2 + a})]' = \frac{(x + \sqrt{x^2 + a})'}{x + \sqrt{x^2 + a}} = \frac{1 + \frac{2x}{2\sqrt{x^2 + a}}}{x + \sqrt{x^2 + a}}$$
$$= \frac{\sqrt{x^2 + a} + x}{\sqrt{x^2 + a}(x + \sqrt{x^2 + a})} = \frac{1}{\sqrt{x^2 + a}} = f(x)$$

Vậy F(x) với a > 0 là một nguyên hàm của hàm số f(x) trên R.

Ví dụ 2: CMR hàm số:
$$F(x) = \begin{cases} e^x & \text{khi } x \ge 0 \\ x^2 + x + 1 & \text{khi } x < 0 \end{cases}$$

Là một nguyên hàm của hàm số $f(x) = \begin{cases} e^x & khi \ x \ge 0 \\ 2x+1 & khi \ x < 0 \end{cases}$ trên R.

Giải:

Để tính đạo hàm của hàm số F(x) ta đi xét hai trường hợp:

a/ Với $x \neq 0$, ta có:

$$F'(x) = \begin{cases} e^x & \text{khi } x > 0\\ 2x + 1 & \text{khi } x < 0 \end{cases}$$

b/ $V \acute{\sigma} i x = 0$, ta có:

• Đạo hàm bên trái của hàm số tại điểm $x_0 = 0$.

$$F'(0^{-}) = \lim_{x \to 0^{-}} \frac{F(x) - F(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{x^{2} + x + 1 - e^{0}}{x} = 1.$$

• Đạo hàm bên phải của hàm số tại điểm $x_0 = 0$.

$$F'(0^+) = \lim_{x \to 0^+} \frac{F(x) - F(0)}{x - 0} = \lim_{x \to 0^+} \frac{e^x - e^0}{x} = 1.$$

Nhận xét rằng $F'(0^-) = F'(0^+) = 1 \implies F'(0) = 1$.

Tóm lại:
$$F'(x) = \begin{cases} e^x & \text{khi } x \ge 0 \\ 2x + 1 & \text{khi } x < 0 \end{cases} = f(x)$$

Vậy F(x) là một nguyên hàm của hàm số f(x) trên R.

<u>Bài toán 2</u>: Xác định các giá trị của tham số để F(x) là một nguyên hàm của hàm số f(x) trên (a;b).

PHƯƠNG PHÁP CHUNG

Ta thực hiện theo các bước sau:

- + Bước 1: Xác định F'(x) trên (a; b)
- + Bước 2: Để F(x) là một nguyên hàm của hàm số f(x) trên (a;b), điều kiện là:

$$F'(x) = f(x) \ v \circ i \ \forall x \in (a; b)$$

Dùng đồng nhất của hàm đa thức \Rightarrow giá trị tham số.

Chú ý: Nếu thay (a; b) bằng [a; b] thì phải thực hiện chi tiết hơn, như sau:

+ Bước 1: Xác định F'(x) trên (a; b)

Xác đinh F'(a⁺)

Xác đinh F'(b⁻)

+ Bước 2: Để F(x) là một nguyên hàm của hàm số f(x) trên (a;b), điều kiện là:

$$\begin{cases} F'(x) = f(x), \ \forall x \in (a;b) \\ F'(a^+) = f(a) & \Rightarrow \text{giá trị của tham số.} \\ F'(b^-) = f(b) \end{cases}$$

Bài toán 3: Tìm hằng số tích phân

PHƯƠNG PHÁP CHUNG

- Dùng công thức đã học, tìm nguyên hàm: F(x) = G(x) + C
- Dựa vào đề bài đã cho để tìm hằng số C.

Thay giá trị C vào (*), ta có nguyên hàm cần tìm.

$$\underline{\text{Ví dụ 3}} \colon \text{ Xác định a , b để hàm số: } F(x) = \begin{cases} x^2 & \text{khi } x \le 1 \\ ax + b & \text{khi } x > 1 \end{cases}$$

là một nguyên hàm của hàm số: $f(x) = \begin{cases} 2x & \text{khi } x \le 1 \\ 2 & \text{khi } x > 1 \end{cases}$ trên R.

Giải:

Để tính đạo hàm của hàm số F(x) ta đi xét hai trường hợp:

a/ Với
$$x \ne 1$$
, ta có: $F'(x) = \begin{cases} 2x & \text{khi } x < 1 \\ 2 & \text{khi } x > 1 \end{cases}$

b/ $V \acute{\sigma} i x = 1$, ta có:

Để hàm số F(x) có đạo hàm tại điểm x=1, trước hết F(x) phải liên tục tại x=1, do đó : $\lim_{x\to 1^-} F(x) = \lim_{x\to 1^+} F(x) = f(1) \iff a+b=1 \iff b=1-a \qquad (1)$

• Đạo hàm bên trái của hàm số y = F(x) tại điểm x = 1.

$$F'(1) = \lim_{x \to 1} \frac{f(x) - F(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{x^2 - 1}{x - 1} = 2.$$

• Đạo hàm bên phải của hàm số y = f(x) tại điểm $x_0 = 0$.

$$F'(1^+) = \lim_{x \to 1^+} \frac{F(x) - F(1)}{x - 1} = \lim_{x \to 1^+} \frac{ax + b - 1}{x - 1} = \lim_{x \to 1^+} \frac{ax + 1 - a - 1}{x - 1} = a.$$

Hàm số y = F(x) có đạo hàm tại điểm $x = 1 \Leftrightarrow F'(1^-) = F'(1^+) \Leftrightarrow a = 2.$ (2)

Thay (2) vào (1), ta được b = -1.

Vậy hàm số y = F(x) có đạo hàm tại điểm x = 1, nếu và chỉ nếu a = 2, b = -1.

Khi đó: F'(1) = 2 = f(1)

Tóm lại với a = 2, b = 1 thì F(x) là một nguyên hàm của hàm số f(x).

Ví dụ 4: Xác định a , b , c để hàm số: $F(x)=(ax^2+bx+c)e^{-2x}$ là một nguyên hàm của $F(x)=-(2x^2-8x+7)e^{-2x} \text{ trên } R.$

Giải:

Ta có:
$$F'(x) = (2ax + b)e^{-2x} - 2(ax^2 + bx + c)e^{-2x} = [-2ax^2 + 2(a - b)x + b - 2c]e^{-2x}$$

Do đó F(x) là một nguyên hàm của f(x) trên R

$$\Leftrightarrow$$
 F'(x) = f(x), \forall x \in R

$$\Leftrightarrow$$
 $-2ax^2 + 2(a - b)x + b - 2c = -2x^2 + 8x - 7, $\forall x \in R$$

$$\Leftrightarrow \begin{cases} a=1\\ a-b=4\\ b-2c=-7 \end{cases} \Leftrightarrow \begin{cases} a=1\\ b=-3\\ c=2 \end{cases}$$

Vậy
$$F(x) = (x^2 - 3x + 2)e^{-2x}$$
.

BÀI TẬP

<u>Bài 1</u>. Tính đạo hàm của hàm số $F(x) = \ln \left| tg \left(\frac{x}{2} + \frac{\pi}{4} \right) \right|$

Từ đó suy ra nguyên hàm của hàm số $f(x) = \frac{1}{\cos x}$.

 $\underline{\text{Bài 2}}. \text{ Chứng tổ rằng hàm số } F(x) = \begin{cases} \frac{\ln(x^2+1)}{x} \text{ , } x \neq 0 \\ 0 \text{ , } x = 0 \end{cases}$

là một nguyên hàm của hàm số $f(x) = \begin{cases} \frac{2}{x^2 + 1} - \frac{\ln(x^2 + 1)}{x^2}, & x \neq 0 \\ 1, & x = 0 \end{cases}$

<u>Bài 3</u>. Xác định a, b, c sao cho hàm số $F(x) = (ax^2 + bx + c).e^{-x}$ là một nguyên hàm của hàm số $f(x) = (2x^2 - 5x + 2)e^{-x}$ trên R.

<u>*DS*</u>: a = -2; b = 1; c = -1.

Bài 4. a/ Tính nguyên hàm F(x) của $f(x) = \frac{x^3 + 3x^2 + 3x - 7}{(x+1)^2}$ và F(0) = 8.

b/ Tìm nguyên hàm F(x) của $f(x) = \sin^2 \frac{x}{2}$ và $F\left(\frac{\pi}{2}\right) = \frac{\pi}{4}$.

<u>DS</u>: a/ $F(x) = \frac{x^2}{2} + x + \frac{8}{x+1}$; b/ $F(x) = \frac{1}{2}(x - \sin x + 1)$

Bài 5. a/ Xác định các hằng số a, b, c sao cho hàm số:

 $F(x) = (ax^2 + bx + c)\sqrt{2x - 3}$ là một nguyên hàm của hàm số:

$$f(x) = \frac{20x^2 - 30x + 7}{\sqrt{2x - 3}} \text{ trên khoảng}\left(\frac{3}{2}; +\infty\right)$$

b/ Tìm nguyên hàm G(x) của f(x) với G(2) = 0.

<u>BS</u>: a/ a = 4; b = -2; c = 1; b/ $G(x) = (4x^2 - 2x + 10)\sqrt{2x - 3} - 22$.

Vấn đề 2: XÁC ĐỊNH NGUYÊN HÀM BẰNG VIỆC SỬ DỤNG BẢNG CÁC NGUYÊN HÀM CƠ BẨN

$$\underline{\text{V\'i dụ 1}} \colon \text{ CMR , n\'eu } \int f(x) dx = F(x) + C \text{ thì } \int f(ax+b) dx = \frac{1}{a} F(ax+b) + C \text{ v\'ei } a \neq 0.$$

Giải:

Ta luôn có: $f(ax + b)dx = \frac{1}{a}f(ax + b)d(ax + b) với a \neq 0.$

Áp dụng tính chất 4, ta được: $\int f(ax+b)dx = \frac{1}{3}\int (ax+b)d(ax+b)\frac{1}{3}F(ax+b) + C \text{ (dpcm)}.$

Ghi chú: Công thức trên được áp dụng cho các hàm số hợp:

$$\int f(t)dt = F(t) + C \implies \int f(u)du = F(u) + C, \text{ v\'et } u = u(x)$$

Ví du 2: Tính các tích phân bất định sau:

a/
$$\int (2x+3)^3 dx$$

$$b/\int \cos^4 x \cdot \sin x dx$$

$$c/\int \frac{2e^x}{e^x + 1} dx$$

$$a/\int (2x+3)^3 dx \qquad b/\int cos^4 \ x. \sin x dx \qquad c/\int \frac{2e^x}{e^x+1} dx \qquad \qquad d/\int \frac{(2\ln x+1)^2}{x} dx$$

Giải:

a/ Ta có:
$$\int (2x+3)^3 dx = \frac{1}{2} \int (2x+3)^3 d(2x+3) = \frac{1}{2} \cdot \frac{(2x+3)^4}{4} + C = \frac{(2x+3)^4}{8} + C.$$

b/ Ta có:
$$\int \cos^4 x . \sin x dx = -\int \cos^4 x d(\cos x) = -\frac{\cos^5 x}{5} + C$$

c/ Ta có:
$$\int \frac{2e^x}{e^x + 1} dx = 2 \int \frac{d(e^x + 1)}{e^x + 1} = 2 \ln(e^x + 1) + C$$

d/ Ta có:
$$\int \frac{(2\ln x + 1)^2}{x} dx = \frac{1}{2} \int (2\ln x + 1)^2 d(2\ln x + 1) = \frac{1}{2} (2\ln x + 1)^3 + C.$$

Ví dụ 3: Tính các tích phân bất định sau:

a/
$$\int 2\sin^2\frac{x}{2}dx$$
 b/ $\int \cot g^2xdx$ c/ $\int tgxdx$

$$b/\int \cot g^2 x dx$$

$$d/\int \frac{tgx}{\cos^3 x} dx$$

a/ Ta có:
$$\int 2\sin^2 \frac{x}{2} dx = \int (1 - \cos x) dx = x - \sin x + C$$

b/ Ta có:
$$\int \cot g^2 x dx = \int \left(\frac{1}{\sin^2 x} - 1\right) dx = -\cot gx - x + C$$

c/ Ta có:
$$\int tgx dx = \int \frac{\sin x}{\cos x} dx = -\int \frac{d(\cos x)}{\cos x} = -\ln|\cos x| + C$$

d/ Ta có:
$$\int \frac{tgx}{\cos^3 x} dx = \int \frac{\sin x}{\cos^4 x} dx = -\int \frac{d(\cos x)}{\cos^4 x} = -\frac{1}{3} \cos^{-3} x + C = -\frac{1}{3 \cos^3 x} + C.$$

Ví du 4: Tính các tích phân bất định sau:

a/
$$\int \frac{x}{1+x^2} dx$$
 b/ $\int \frac{1}{x^2-3x+2} dx$

Giải

a/ Ta có:
$$\int \frac{x}{1+x^2} dx = \frac{1}{2} \int \frac{d(1+x^2)}{1+x^2} = \frac{1}{2} \ln(1+x^2) + C$$
b/ Ta có:
$$\int \frac{1}{x^2 - 3x + 2} dx = \int \frac{1}{(x-1)(x-2)} dx = \int \left(\frac{1}{x-2} - \frac{1}{x-1}\right) dx$$

$$= \ln|x-2| - \ln|x-1| + C = \ln\left|\frac{x-2}{x-1}\right| + C.$$

BÀI TẬP

Bài 6. Tìm nguyên hàm của các hàm số:

a/
$$f(x) = \cos^2 \frac{x}{2}$$
; b/ $f(x) \sin^3 x$.
 \underline{DS} : a/ $\frac{1}{2}(x + \sin x) + C$; b/ $-\cos x + \frac{1}{3}\cos^3 x + C$.

Bài 7. Tính các tích phân bất định:

a/
$$\int e^{x}(2-e^{-x})dx$$
; b/ $\int \frac{e^{x}}{2^{x}}dx$; c/ $\int \frac{2^{2x}.3^{x}.5^{x}}{10^{x}}dx$.

d/ $\int \frac{e^{2-5x}+1}{e^{x}}dx$; e/ $\int \frac{e^{x}}{e^{x}+2}dx$
 \underline{DS} : a/ $2e^{x}-x+C$; b/ $\frac{e^{x}}{(1-\ln 2)2^{x}}+C$; c/ $\frac{6^{x}}{\ln 6}+C$

d/ $-\frac{1}{6}e^{2-6x}-e^{-x}+C$; e/ $\ln(e^{x}+2)+C$.

Bài 8. Tính các tích phân bất định:

Vấn đề 3: XÁC ĐỊNH NGUYÊN HÀM BẰNG PHƯƠNG PHÁP PHÂN TÍCH

Phương pháp phân tích thực chất là việc sử dụng các đồng nhất thức để biến đổi biểu thức dưới dấu tích phân thành tổng các biểu thức mà nguyên hàm của mỗi biểu thức đó có thể nhận được từ bảng nguyên hàm hoặc chỉ bằng các phép biến đổi đơn giản đã biết.

Chú ý quan trọng: Điểm mấu chốt là phép phân tích là có thể rút ra ý tưởng cho riêng mình từ một vài minh hoạ sau:

• Với
$$f(x) = (x^3 - 2)^2$$
 thì viết lại $f(x) = x^6 - 4x^3 + 4$.

• Với
$$f(x) = \frac{x^2 - 4x + 5}{x - 1}$$
 thì viết lại $f(x) = x - 3 + \frac{2}{x - 1}$.

• Với
$$f(x) = \frac{1}{x^2 - 5x + 6}$$
 thì viết lại $f(x) = \frac{1}{x - 3} - \frac{1}{x - 2}$

• Với
$$f(x) = \frac{1}{\sqrt{2x+1} + \sqrt{3-2x}}$$
 thì viết lại $f(x) = \frac{1}{2}(\sqrt{3-2x} - \sqrt{2x+1})$

• Với
$$f(x) = (2^x - 3^x)^2$$
 thì viết lai $f(x) = 4^x - 2.6^x + 9^x$.

• Với
$$f(x) = 8\cos^3 x \cdot \sin x$$
 thì viết lại $f(x) = 2(\cos 3x + 3\cos x) \cdot \sin x$
= $2\cos 3x \cdot \sin x + 6\cos x \cdot \sin x = \sin 4x - \sin 2x + 3\sin 2x = \sin 4x + 2\sin 2x$.

$$\bullet \quad tg^2x = (1 + tg^2x) - 1$$

$$\cot g^2 x = (1 + \cot g^2 x) - 1$$

•
$$\frac{x^{n}(1+x^{2})+1}{1+x^{2}} = x^{n} + \frac{1}{1+x^{2}}$$
.

Đó chỉ là một vài minh hoạ mang tính điển hình.

<u>Ví dụ 1</u>: Tính tích phân bất định: $I = \int x(1-x)^{2002} dx$.

Giải:

Sử dụng đồng nhất thức : x = 1 - (1 - x)

ta được:
$$x(1-x)^{2002} = [1-(1-x)](1-x)^{2002} = (1-x)^{2002} - (1-x)^{2003}$$
.

Khi đó:

$$\begin{split} I &= \int (1-x)^{2002} dx - \int (1-x)^{2003} dx = -\int (1-x)^{2002} d(1-x) + \int (1-x)^{2003} d(1-x) \\ &= -\frac{(1-x)^{2003}}{2003} + \frac{(1-x)^{2004}}{2004} + C. \end{split}$$

Tổng quát: Tính tích phân bất định: $I = \int x(ax + b)^{\alpha} dx$, với $a \neq 0$

Sử dụng đồng nhất thức:
$$x = \frac{1}{a} .ax = \frac{1}{a} [(ax + b) - b]$$

Ta được:

$$x(ax+b)^{\alpha} = \frac{1}{a}[(ax+b)-b)(ax+b)^{\alpha} = \frac{1}{a}[\int (ax+b)^{\alpha+1}d(ax+b) - \int (ax+b)^{\alpha}d(ax+d)]$$

Ta xét ba trường hợp:

• Với $\alpha = 2$, ta được: $I = \frac{1}{a^2} [\int (ax + b)^{-1} d(ax + b) - \int (ax + b)^{-2} d(ax + b)]$ = $\frac{1}{a^2} [\ln|ax + b| + \frac{1}{ax + b}] + C$.

• Với $\alpha = -1$, ta được:

$$I = \frac{1}{a^2} \left[\int d(ax+b) - \int (ax+b)^{-1} d(ax+b) \right] = \frac{1}{a^2} [ax+b-\ln|ax+b|] + C.$$

 $\bullet \quad \text{V\'oi} \ \alpha \in R \setminus \{-2; -1\}, \ \text{ta d\'u\'oc}: \qquad \qquad I = \frac{1}{a^2} [\frac{(ax+b)^{\alpha+2}}{\alpha+2} + \frac{(ax+b)^{\alpha+1}}{\alpha+1}] + C.$

<u>Ví dụ 2</u>: Tính tích phân bất định: $I = \int \frac{dx}{x^2 - 4x + 3}$

Giải:

Ta có:
$$\frac{1}{x^2 - 4x + 3} = \frac{1}{(x - 3)(x - 1)} = \frac{1}{2} \cdot \frac{(x - 1) - (x - 3)}{(x - 3)(x - 1)} = \frac{1}{2} \cdot \left(\frac{1}{x - 3} - \frac{1}{x - 1}\right)$$

Khi đó:
$$I = \frac{1}{2} \cdot \left(\int \frac{dx}{x-3} - \int \frac{dx}{x-1} \right) = \frac{1}{2} \left[\int \frac{d(x-3)}{x-3} - \int \frac{d(x-1)}{x-1} \right] = \frac{1}{2} \cdot (\ln|x-3| - \ln|x-1|) + C$$

$$= \frac{1}{2} \ln \left| \frac{x-3}{x-1} \right| + C.$$

<u>Ví dụ 3</u>: Tính tích phân bất định: $I = \int \frac{dx}{\sqrt{x+2} + \sqrt{x-3}}$

Giải:

Khử tính vô tỉ ở mẫu số bằng cách trục căn thức, ta được:

$$I = \frac{1}{5} \int (\sqrt{x+2} + \sqrt{x-3}) dx = \frac{1}{5} \left[\int (x+2)^{\frac{1}{2}} d(x+2) + \int (x-3)^{\frac{1}{2}} d(x-3) \right]$$
$$= \frac{2}{15} \left[\sqrt{(x+2)^3} + \sqrt{(x-3)^3} \right] + C.$$

<u>Ví dụ 4</u>: Tính tích phân bất định: $I = \int \frac{dx}{\sin x \cdot \cos^2 x}$

Giải:

Sử dụng đồng nhất thức: $\sin^2 x + \cos^2 x = 1$,

Ta được:
$$\frac{1}{\sin x \cdot \cos^2 x} = \frac{\sin^2 x + \cos^2 x}{\sin x \cdot \sin^2 x} = \frac{\sin x}{\cos^2 x} + \frac{1}{\sin x} = \frac{\sin x}{\cos^2 x} + \frac{\frac{1}{2}}{\cos^2 \frac{x}{2}} \cdot \frac{1}{\tan \frac{x}{2}}$$

$$Suy \ ra: \quad I = \int \frac{\sin x}{\cos^2 x} dx + \int \frac{\frac{1}{2}}{\cos^2 \frac{x}{2} tg \frac{x}{2}} dx = -\int \frac{d(\cos x)}{\cos^2 x} + \int \frac{d\left(tg \frac{x}{2}\right)}{tg \frac{x}{2}} = \frac{1}{\cos x} + \ln\left|tg \frac{x}{2}\right| + C.$$

<u>Ví dụ 5</u>: Tính tích phân bất định: $I = \int \frac{dx}{\cos^4 x}$.

<u>Gi</u>ải:

Sử dụng kết quả:
$$\frac{dx}{\cos^2 x} = d(tgx)$$

ta được:
$$I = \int \frac{1}{\cos^2 x} \cdot \frac{dx}{\cos^2 x} = \int (1 + tg^2 x) d(tgx) = \int d(tgx) + \int tg^2 x d(tgx) = tgx + \frac{1}{3}tg^3 x + C.$$

BÀI TÂP

Bài 9. Tìm họ nguyên hàm của các hàm số:

a/
$$f(x) = (1-2x^2)^3$$
; b/ $f(x) = \frac{2\sqrt{x} - x^3 e^x - 3x^2}{x^3}$;
c/ $f(x) = \frac{(2+\sqrt{x})^2}{\sqrt{x}}$; d/ $f(x) = \frac{1}{\sqrt{3x+4} - \sqrt{3x+2}}$
 \underline{DS} : a/ $x - 2x^3 + \frac{12}{5}x^5 - \frac{8}{7}x^7 + C$; b/ $-\frac{4}{3x\sqrt{x}} - e^x + \ln|x| + C$;
c/ $6\sqrt[3]{x^2} + \frac{24}{7}x\sqrt[6]{x} + \frac{3}{5}x\sqrt[3]{x^2} + C$; d/ $\frac{1}{9}\left[\sqrt{(3x-4)^3} + \sqrt{(3x+2)^3}\right] + C$.

Bài 10. Tìm họ nguyên hàm của các hàm số:

a/
$$f(x) = \frac{1}{x^2 - 6x + 5};$$
 b/ $f(x) = \frac{4x^2 + 6x + 1}{2x + 1};$
c/ $f(x) = \frac{4x^3 + 4x^2 - 1}{2x + 1};$ d/ $f(x) = \frac{-4x^3 + 9x + 1}{9 - 4x^2};$
 \underline{DS} : a/ $\frac{1}{4} \ln \left| \frac{x - 5}{x - 1} \right| + C;$ b/ $x^2 + 2x - \frac{1}{2} \ln |2x + 1| + C;$
c/ $\frac{2}{3}x^3 + \frac{1}{2}x^2 - \frac{1}{2}x - \frac{1}{4} \ln |2x + 1| + C;$ d/ $\frac{x^2}{2} - \frac{1}{12} \ln \left| \frac{2x - 3}{2x + 3} \right| + C.$

Bài 11. Tìm họ nguyên hàm của các hàm số:

a/
$$(\sin x + \cos x)^2$$
; b/ $\cos \left(2x - \frac{\pi}{3}\right) \cdot \cos \left(2x + \frac{\pi}{4}\right)$; c/ $\cos^3 x$;
d/ $\cos^4 x$; e/ $\sin^4 x + \cos^4 x$; f/ $\sin^6 2x + \cos^6 2x$.
 \underline{DS} : a/ $x - \frac{1}{2}\cos 2x + C$; b/ $\frac{1}{10}\sin \left(5x + \frac{7\pi}{12}\right) + \frac{1}{2}\sin \left(x - \frac{\pi}{12}\right) + C$
c/ $\frac{3}{4}\sin x + \frac{1}{12}\sin 3x + C$; d/ $\frac{3}{8}x + \frac{1}{4}\sin 2x + \frac{1}{31}\sin 4x + C$;
e/ $\frac{3}{4}x + \frac{\sin 4x}{16} + C$; f/ $\frac{5}{8}x + \frac{3}{64}\sin 8x + C$.

<u>Vấn đề 4: XÁC ĐỊNH NGUYÊN HÀM BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ</u>

Phương pháp đổi biến số được sử dụng khá phổ biến trong việc tính các tích phân bất định. Phương pháp đổi biến số để xác định nguyên hàm có hai dạng dựa trên định lý sau: Định lý:

 $a/\ \ \text{N\'eu} \int f(x) dx = F(x) + C \ \text{và} \ u = \phi(x) \ \text{là hàm số có đạo hàm thì} \ \int f(u) du = F(u) + C \,.$

b/ Nếu hàm số f(x) liên tục thì khi đặt $x = \phi(t)$ trong đó $\phi(t)$ cùng với đạo hàm của nó $(\phi'(t)$ là những hàm số liên tục, ta sẽ được: $\int f(x) dx = \int f[\phi(t)].\phi'(t) dt.$

Từ đó ta trình bày hai bài toán về phương pháp đổi biến như sau:

<u>Bài toán 1</u>: Sử dụng phương pháp đổi biến số dạng 1 tích tích phân bất định $I = \int f(x)dx$.

PHƯƠNG PHÁP CHUNG

Ta thực hiện theo các bước:

- + Bước 1: Chọn $x = \varphi(t)$, trong đó $\varphi(t)$ là hàm số mà ta chọn cho thích hợp.
- + Bước 2: Lấy vi phân $dx = \phi'(t)dt$
- + Bước 3: Biểu thị f(x)dx theo t và dt. Giả sử rằng f(x)dx = g(t)dt
- + Bước 4: Khi đó $I = \int g(t)dt$.

<u>Lưu ý</u>: Các dấu hiệu dẫn tới việc lựa chọn ẩn phụ kiểu trên thông thường là:

Dấu hiệu	Cách chọn
$\sqrt{a^2-x^2}$	$\int x = a \sin t v \hat{\sigma} i - \frac{\pi}{2} \le t \le \frac{\pi}{2}$
$\sqrt{x^2-a^2}$	$\begin{bmatrix} x = \frac{ a }{\sin t} & \text{v\'oi } t \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right] \setminus \{0\} \\ x = \frac{ a }{\cos t} & \text{v\'oi } t \in [0; \pi] \setminus \{\frac{\pi}{2}\} \end{bmatrix}$
$\sqrt{a^2 + x^2}$	$\begin{bmatrix} x = a tgt \ v \circ i - \frac{\pi}{2} < t < \frac{\pi}{2} \\ x = a \cot gt \ v \circ i \ 0 < t < \pi \end{bmatrix}$
$\sqrt{\frac{a+x}{a-x}}$ hoặc $\sqrt{\frac{a-x}{a+x}}$	x = acos2t
$\sqrt{(x-a)(b-x)}$	$x = a + (b - a)\sin^2 t$

Ví dụ 1: Tính tích phân bất định:
$$I = \int \frac{dx}{\sqrt{(1-x^2)}}$$
.

Giải:

$$\text{D} \ddot{a} t \ \ x = \sin t; \ -\frac{\pi}{2} < t < \frac{\pi}{2}$$

Suy ra:
$$dx = \cos t dt & \frac{dx}{\sqrt{(1-x^2)^3}} = \frac{\cos t dt}{\cos^3 t} = \frac{dt}{\cos^2 t} = d(tgt)$$

Khi đó:
$$I = \int d(tdt) = tgt + C = \frac{x}{\sqrt{1-x^2}} + C.$$

<u>Chú ý</u>: Trong ví dụ trên sở dĩ ta có: $\sqrt{(1-x^2)^3} = \cos^3 t$ và $tgt = \frac{x}{\sqrt{1-x^2}}$

là bởi:
$$-\frac{\pi}{2} < t < \frac{\pi}{2} \Rightarrow \cos t > 0 \Rightarrow \begin{cases} \sqrt{\cos^2 t} = \cos t \\ \cos t = \sqrt{1 - \sin^2 t} = \sqrt{1 - x^2} \end{cases}$$

<u>Ví dụ 2</u>: Tính tích phân bất định: $I = \int \frac{x^2 dx}{\sqrt{x^2 - 1}}$

Giải:

Vì điều kiện |x| > 1, ta xét hai trường hợp :

Với x > 1

Dặt:
$$x = \frac{1}{\sin 2t}$$
; $0 < t < \frac{\pi}{4}$ Suy ra: $dx = \frac{2\cos 2tdt}{\sin^2 2t}$

$$\frac{x^2 dx}{\sqrt{x^2 - 1}} = -\frac{2dt}{\sin^3 2t} = -\frac{2(\cos^2 t + \sin^2 t)^2 dt}{8\sin^3 t \cos^3 t}$$

$$= -\frac{1}{4}(\cot gt. \frac{1}{\sin^2 t} + tgt. \frac{1}{\cos^2 t} + \frac{1}{\sin t \cos t})dt$$

$$= -\frac{1}{4}(\cot gt. \frac{1}{\sin^2 t} + tdt. \frac{1}{\cos^2 t} + \frac{2}{tgt} \frac{1}{\cos^2 t})$$

$$= -\frac{1}{4}[-\cot gt. d(\cot gt) + tgt. d(tgt) + 2\frac{d(tgt)}{tgt}].$$

Khi đó:
$$I = -\frac{1}{4} \left[-\int \cot gt. d(\cot gt) + \int tgt. d(tgt) + 2 \int \frac{d(tgt)}{tgt} \right]$$
$$= -\frac{1}{4} \left(-\frac{1}{2} \cot g^2 t + \frac{1}{2} tg^2 t + 2 \ln|tgt| \right) + C = \frac{1}{8} \left(\cot g^2 t - tg^2 t \right) - \frac{1}{2} \ln|tgt| + C$$
$$= \frac{1}{2} x \sqrt{x^2 - 1} - \frac{1}{2} \ln|x - x^2 - 1| + C.$$

• Với x < -1 Đề nghị bạn đọc tự làm

<u>Chú ý</u>: Trong ví dụ trên sở dĩ ta có: $\cot g^2 t - tg^2 t = 4x\sqrt{x^2-1}$ và $tgt = x - \sqrt{x^2-1}$

là bởi:
$$\cot g^2 t - tg^2 t = \frac{\cos^4 t - \sin^4 t}{\cos^2 t \cdot \sin^2 t} = \frac{4\cos 2t}{\sin^2 2t} = \frac{4\sqrt{1 - \sin^2 2t}}{\sin^2 2t} = \frac{4}{\sin 2t} \sqrt{\frac{1}{\sin^2 2t} - 1}$$

$$tgt = \frac{\sin t}{\cos t} = \frac{2\sin^2 t}{2\sin t \cdot \cos t} = \frac{1 - \cos 2t}{\sin 2t} = \frac{1}{\sin 2t} - \sqrt{\frac{\cos^2 2t}{\sin^2 2t}} = \frac{1}{\sin 2t} - \sqrt{\frac{1}{\sin^2 2t}} - 1$$

$$\underline{\text{Ví dụ 3}}$$
: Tính tích phân bất định: $I = \int \frac{dx}{(1+x^2)^3}$

Giải:

Đặt:
$$x = tgt$$
; $-\frac{\pi}{2} < t < \frac{\pi}{2}$. Suy ra: $dx = \frac{dt}{\cos^2 t} & \frac{dx}{\sqrt{(1+x^2)^3}} = \frac{\cos^3 t dt}{\cos^2 t} = \cos t dt$.

Khi đó:
$$I = \int \cos t dt = \sin t + C = \frac{x}{\sqrt{1+x^2}} + C$$

Chú ý:

1. Trong ví dụ trên sở dĩ ta có: $\frac{1}{\sqrt{1+x^2}} = \cos t$ và $\sin t = \frac{x}{\sqrt{1+x^2}}$

là bởi:
$$-\frac{\pi}{2} < t < \frac{\pi}{2} \Rightarrow \cos t > 0 \Rightarrow \begin{cases} \sqrt{\cos^2 t} = \cos t \\ \sin t = tgt. \cos t = \frac{x}{\sqrt{1+x^2}} \end{cases}$$

2. Phương pháp trên được áp dụng để giải bài toán tổng quát:

$$I = \int \frac{dx}{\sqrt{(a^2 + x^2)^{2k+1}}}, \text{ v\'et } k \in Z.$$

<u>Bài toán 2</u>: Sử dụng phương pháp đổi biến số dạng 2 tích tích phân $I = \int f(x)dx$.

PHƯƠNG PHÁP CHUNG

Ta thực hiện theo các bước:

- + Bước 1: Chọn $t = \psi(x)$, trong đó $\psi(x)$ là hàm số mà ta chọn cho thích hợp
- + Bước 2: Xác định vi phân $dt = \psi'(x)dx$.
- + Bước 3: Biểu thị f(x)dx theo t và dt. Giả sử rằng f(x)dx = g(t)dt
- + Bước 4: Khi đó $I = \int g(t)dt$.

Dấu hiệu	Cách chọn
Hàm số mẫu có	t là mẫu số
Hàm số $f(x, \sqrt{\varphi(x)})$	$t = \sqrt{\varphi(x)}$
Hàm $f(x) = \frac{a.\sin x + b.\cos x}{c.\sin x + d.\cos x + e}$	$t = tg\frac{x}{2} \left(v \acute{\sigma} i \cos \frac{x}{2} \neq 0 \right)$
Hàm $f(x) = \frac{1}{\sqrt{(x+a)(x+b)}}$	• Với $x + a > 0 & x + b > 0$, đặt: $t = \sqrt{x + a} + \sqrt{x + b}$ • Với $x + a < 0 & x + b < 0$, đặt: $t = \sqrt{x - a} + \sqrt{-x - b}$

Ví du 4: Tính tích phân bất định: $I = \int x^3 (2-3x^2)^8 dx$.

Giải:

Đặt: $t = 2 - 3x^2$. Suy ra: dt = 6xdx

$$x^{3}(2-3x^{2})^{8}dx = x^{2}(2-3x^{2})^{8}xdx = \frac{2-t}{3} = \frac{2-t}{3}.t^{8}.\left(-\frac{1}{6}dt\right) = \frac{1}{18}(t^{9}-2t^{8})dt.$$

Khi đó:
$$I = \frac{1}{18} \int (t^9 - 2t^8) dt = \frac{1}{18} \left(\frac{1}{10} t^{10} - \frac{2}{9} t^9 \right) + C = \frac{1}{180} t^{10} - \frac{1}{81} t^9 + C$$

<u>Ví dụ 5</u>: Tính tích phân bất định: $I = \int \frac{x^2 dx}{\sqrt{1-x}}$

Giải:

Đặt:
$$t = \sqrt{1-x} \Rightarrow x = 1-t^2$$

Suy ra:
$$dx = -2tdt & \frac{x^2dx}{\sqrt{1-x}} = \frac{(1-t^2)^2(-2tdt)}{t} = 2(t^4 - 2t^2 + 1)dt$$

Khi đó:
$$I = 2\int (t^4 - 2t^2 + 1)dt = -2\left(\frac{1}{5}t^5 - \frac{2}{3}t^3 + t\right) + C = -\frac{2}{15}(3t^4 - 10t^2 + 15)t + C$$

$$= -\frac{2}{15}[3(1-x)^2 - 10(1-x) + 15]\sqrt{1-x} + C = -\frac{2}{15}(3x^2 + 4x + 8)\sqrt{-1x} + C$$

<u>Ví dụ 6</u>: Tính tích phân bất định: $I = \int x^5 \sqrt[3]{(1-2x^2)^2} dx$.

Giải:

$$\begin{split} \text{D} \ddot{a}t: \ t &= \sqrt[3]{1-2x^2} \Rightarrow \ x^2 = \frac{1-t^3}{2}. \ \text{Suy ra:} \ \ 2x dx = -\frac{3}{2}t^2t dt, \\ x^5 \sqrt[3]{(1-2x^2)^2} \ dx &= x^2 \sqrt[3]{(1-2x^2)^2} \ x dx = \frac{1-t^3}{2}.t^2 \bigg(-\frac{3}{4}t^2 dt\bigg) = \frac{3}{8}(t^7-t^4) dt. \end{split}$$

Khi đó:
$$I = \frac{3}{8} \int (t^7 - t^4) dt = \frac{3}{8} \left(\frac{1}{8} t^8 - \frac{1}{5} t^5 \right) + C = \frac{3}{320} (5t^6 - 8t^3) t^2 + C$$

$$= \frac{3}{320} [5(1 - 2x^2)^2 - 8(1 - 2x^2)] \sqrt[3]{(1 - 2x^2)^2} + C$$

$$= \frac{3}{320} (20x^4 - 4x^2 - 3) \sqrt[3]{(1 - 2x^2)^2} + C.$$

<u>Ví dụ 7</u>: Tính tích phân bất định: $I = \int \sin^3 x \sqrt{\cos x} dx$.

Giải:

Đặt:
$$t = \sqrt{\cos x} \implies t^2 = \cos x$$

 $dt = \sin x dx$,

$$\sin^{3} x \sqrt{\cos x} dx = \sin^{2} x \sqrt{\cos x} \sin x dx = (1 - \cos^{2} x) \sqrt{\cos x} \sin x dx$$
$$= (1 - t^{4}).t.(2tdt) = 2(t^{6} - t^{2})dt.$$

Khi đó:
$$I = 2\int (t^6 - t^2)dt = 2\left(\frac{1}{7}t^7 - \frac{1}{3}t^3\right) + C = \frac{2}{21}(3t^6 - 7t^2)t + C$$
$$= \frac{2}{21}(\cos^3 x - 7\cos x)\sqrt{\cos x} + C.$$

<u>Ví dụ 8</u>: Tính tích phân bất định: $I = \int \frac{\cos x \cdot \sin^3 x dx}{1 + \sin^2 x}$

Giải:

Đặt:
$$t = \sqrt{1-x} \implies x = 1 - t^2 a t = 1 + \sin^2 x$$

Suy ra: $dt = 2 \sin x \cos x dx$,

$$\frac{\cos x \cdot \sin^3 x dx}{1 + \sin^2 x} = \frac{\sin^2 x \cdot \cos x \cdot \sin x dx}{1 + \sin^2 x} = \frac{(t - 1)dt}{2t} = \frac{1}{2} \left(1 - \frac{1}{t} \right) dt.$$

Khi đó:
$$I = \frac{1}{2} \int \left(1 - \frac{1}{t} \right) dt = f12(t - \ln|t| + C = \frac{1}{2} [1 + \sin^2 x - \ln(1 + \sin^2 x)] + C$$

<u>Ví dụ 9</u>: Tính tích phân bất định: $I = \int \frac{\cos^2 x dx}{\sin^8 x}$.

Giải:

Dăt: t = cotgx

Suy ra:
$$dt = -\frac{1}{\sin^2 x} dx$$
,

$$\frac{\cos^2 x dx}{\sin^8 x} = \frac{\cos^2 x}{\sin^6 x} \frac{dx}{\sin^2 x} = \cot g^2 x \frac{1}{\sin^4 x} \frac{dx}{\sin^2 x} = \cot g^2 x . (1 + \cot g^2 x)^2 \frac{dx}{\sin^2 x}$$
$$= t^2 . (1 + t^2)^2 dt.$$

Khi đó:
$$I = \int t^2 \cdot (1 + t^2) dt = \int (t^6 + 2t^4 + t^2) dt = \left(\frac{1}{7}t^7 + \frac{2}{5}t^5 + \frac{1}{3}t^3\right) + C$$

$$= \frac{1}{105} (15\cot g^7 x + 42\cot g^5 x + 35\cot g^3 x) + C.$$

Ví dụ 10: Tính tích phân bất định: $I = \int \frac{dx}{e^x - e^{x/2}}$

Giải:

$$\text{Dăt: } t = e^{-x/2}$$

Suy ra:
$$dt = -\frac{1}{2}e^{x/2}dx \Leftrightarrow -2dt = \frac{dx}{e^{x/2}}$$
,

$$\frac{dx}{e^{x} - e^{x/2}} = \frac{dx}{e^{x}(1 - e^{-x/2})} = \frac{e^{-x/2}dx}{e^{x/2}(1 - e^{-x/2})} = \frac{-2tdt}{1 - t} = 2(1 + \frac{1}{t - 1})dt$$

Khi đó:
$$I = 2\int \left(1 + \frac{1}{t-1}\right) dt = 2(e^{-x/2} + \ln|e^{-x/2} + 1|) + C.$$

<u>Chú ý</u>: Bài toán trên đã dùng tới kinh nghiệm để lựa chọn cho phép đổi biến $t = e^{-x/2}$, tuy nhiên với cách đặt $t = e^{x/2}$ chúng ta cũng có thể thực hiện được bài toán.

<u>Ví dụ 11</u>: Tính tích phân bất định: $I = \int \frac{dx}{\sqrt{1 + e^x}}$.

Giải:

Cách 1:

Đặt:
$$t = \sqrt{1 + e^x} \iff t^2 = 1 + e^x$$

Suy ra:
$$2tdt = e^{x}dx \iff dx = \frac{2tdt}{t^{2}-1} & \frac{dx}{\sqrt{1+e^{x}}} = \frac{2tdt}{t(t^{2}-1)} = \frac{2tdt}{t^{2}-1}.$$

Khi đó:
$$I = 2 \int \frac{dt}{t^2 - 1} = \ln \left| \frac{t - 1}{t + 1} \right| + C = \ln \left| \frac{\sqrt{1 + e^x} - 1}{\sqrt{1 + e^x} + 1} \right| + C$$

<u>Cách 2</u>:

$$Dăt: t = e^{-x/2}$$

Suy ra:
$$dt = \frac{1}{2}e^{-x/2}dx \Leftrightarrow -2dt = \frac{dx}{e^{x/2}},$$

$$\frac{dx}{\sqrt{1+e^x}} = \frac{dx}{\sqrt{e^x(e^{-x}+1)}} = \frac{dx}{e^{x/2}\sqrt{e^{-x}+1}} = \frac{-2dt}{\sqrt{t^2+1}}$$

Khi đó:
$$I = -2\int \frac{dt}{\sqrt{t^2 + 1}} = -2\ln\left|t + \sqrt{t^2 + 1}\right| + C = -2\ln\left|e^{-x/2} + \sqrt{e^{-x} + 1}\right| + C$$

Ví dụ 12: Tính tích phân bất định:
$$I = \int \frac{dx}{\sqrt{x^2 + a}}$$
, với $a \neq 0$.

Giải:

Đặt:
$$t = x + \sqrt{x^2 + a}$$

Suy ra:
$$dt = \left(1 + \frac{x}{\sqrt{x^2 + a}}\right) dx = \frac{\sqrt{x^2 + a} + x}{\sqrt{x^2 + a}} dx \Leftrightarrow \frac{dx}{\sqrt{x^2 + a}} = \frac{dt}{t}$$

Khi đó:
$$I = \int \frac{dt}{t} = \ln|t| + C = \ln|x + \sqrt{x^2 + a}| + C.$$

Ví dụ 13: Tính tích phân bất định:
$$I = \int \frac{dx}{\sqrt{(x+1)(x+2)}}$$
.

<u>Giải</u>:

Ta xét hai trường hợp:

•
$$V \hat{\sigma} i \begin{cases} x+1>0 \\ x+2>0 \end{cases} \Leftrightarrow x>-1$$

Đặt:
$$t = \sqrt{x+1} + \sqrt{x+2}$$

Suy ra:
$$dt = \left(\frac{1}{2\sqrt{x+1}} + \frac{1}{2\sqrt{x+2}}\right)dx = \frac{(\sqrt{x+1} + \sqrt{x+2})dx}{2\sqrt{(x+1)(x+2)}} \Leftrightarrow \frac{dx}{\sqrt{(x+1)(x+2)}} = \frac{2dt}{t}$$

Khi đó:
$$I = 2 \int \frac{dt}{t} = 2 \ln|t| + C = 2 \ln|\sqrt{x+1} + \sqrt{x+2}| + C$$

•
$$V \hat{\sigma} i \begin{cases} x+1 < 0 \\ x+2 < 0 \end{cases} \Leftrightarrow x < -2$$

$$D_{a}t: t = \sqrt{-(x+1)} + \sqrt{-(x+2)}$$

Suy ra:
$$dt = \left[-\frac{1}{2\sqrt{-(x+1)}} - \frac{1}{2\sqrt{-(x+2)}} \right] dx = \frac{\left[\sqrt{-(x+1)} + \sqrt{-(x+2)} \right] dx}{2\sqrt{(x+1)(x+2)}}$$

 $\Leftrightarrow \frac{dx}{\sqrt{(x+1)(x+2)}} = -\frac{2dt}{t}$

Khi đó:
$$I = -2\int \frac{dt}{t} = -2\ln|t| + C = -2\ln\left|\sqrt{-(x+1)} + \sqrt{-(x+2)}\right| + C$$

BÀI TÂP

Bài 12. Tìm họ nguyên hàm của các hàm số sau:

a/
$$f(x) = x^{2}(x-1)^{9}$$
; b/ $f(x) = \frac{x^{4}}{x^{10}-4}$; c/ $f(x) = \frac{x^{2}-x}{(x-2)^{3}}$; d/ $f(x) = \frac{x^{2}-1}{x^{4}+1}$;
BS: a/ $\frac{1}{12}(x-1)^{12} + \frac{2}{11}(x-1)^{11} + \frac{1}{10}(x-10)^{10} + C$. b/ $\frac{1}{20} \ln \left| \frac{x^{5}-2}{x^{5}+2} \right| + C$.
c/ $\ln |x-2| - \frac{2x-5}{(x-2)^{2}} + C$; d/ $\frac{1}{2\sqrt{2}} \ln \left| \frac{x^{2}-x\sqrt{2}+1}{x^{2}+x\sqrt{2}+1} \right| + C$.

Bài 13. Tìm họ nguyên hàm của các hàm số sau:

a/
$$f(x) = \frac{2x}{x + \sqrt{x^2 - 1}};$$
 b/ $f(x) = \frac{1}{\sqrt{(x^2 + a^2)^3}} (a > 0);$ c/ $f(x) = \frac{1}{\sqrt[3]{x^2} - \sqrt{x}}.$

$$\underline{DS}: \quad a/\frac{2}{3}x^3 - \frac{2}{3}\sqrt{(x^2 - 1)^3} + C; \quad b/\frac{x}{a^2\sqrt{x^2 + a^2}} + C;$$

$$c/6\left(\frac{\sqrt[3]{x}}{2} + \sqrt[6]{x} + \ln\left|\sqrt[6]{x - 1}\right|\right) + C.$$

Bài 14. Tìm họ nguyên hàm của các hàm số sau:

a/
$$f(x) = \frac{\cos^3 x}{\sqrt[3]{\sin x}};$$
 b/ $f(x) = \frac{1}{\cos x};$ c/ $f(x) = \frac{\sin x + \cos x}{\sqrt[3]{\sin x - \cos x}};$
d/ $f(x) = \frac{\cos^3 x}{\sin x};$ e/ $f(x) = \frac{1}{\sin^4 x}.$
$$\underline{DS}: \quad a/ \quad \frac{3}{2} \sqrt[3]{\sin^2 x} + \frac{3}{14} \sqrt[3]{\sin^{14} x} - \frac{3}{4} \sqrt[3]{\sin^8 x} + C;$$

b/
$$\ln \left| tg \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C;$$
 $c/ \frac{3}{2} \sqrt[3]{1 - \sin 2x} + C;$

d/
$$\ln|\sin x| - \frac{1}{2}\sin^2 x + C;$$
 e/ $-\frac{1}{3}\cot g^3 x - \cot gx + C.$

Bài 15. Tìm họ nguyên hàm của các hàm số sau:

a/
$$f(x) = \frac{1}{\sqrt{1 + e^{2x}}};$$
 b/ $f(x) = \frac{x + 1}{x(1 + xe^{x})};$

c/
$$f(x) = \frac{2^x . 3^x}{9^x - 4^x};$$
 $d/$ $f(x) = \frac{1}{x \ln x . \ln(\ln x)};$

$$\underline{DS}$$
: a/ $-\ln(e^{-x} + \sqrt{e^{-2x} + 1}) + C$; b/ $\ln\left|\frac{xe^x}{1 + xe^x}\right| + C$;

c/
$$\frac{1}{2(\ln 3 - \ln 2)}$$
, $\ln \left| \frac{3^x - 2^x}{3^x + 2^x} \right| + C$; d/ $\ln \left| \ln(\ln x) \right| + C$.

<u>Vấn đề 5</u>: XÁC ĐỊNH NGUYÊN HÀM BẰNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN

Công thức tính tích phân từng phần: $\int u dv = uv - \int v du.$

<u>Bài toán 1</u>: Sử dụng công thức tích phân từng phần xác định $I = \int f(x)dx$.

PHƯƠNG PHÁP CHUNG

Ta thực hiện theo các bước sau:

+ Bước 1: Biến đổi tích phân ban đầu về dạng: $I = \int f(x)dx = \int f_1(x).f_2(x)dx$.

+ Bước 2: Đặt:
$$\begin{cases} u = f_1(x) \\ dv = f_2(x) dx \end{cases} \Rightarrow \begin{cases} du \\ v \end{cases}$$

+ Bước 3: Khi đó: $I = uv - \int v du$.

<u>Ví dụ 1</u>: Tích tích phân bất định: $I = \int \frac{x \ln(x + \sqrt{x^2 + 1})}{\sqrt{x^2 + 1}}$.

Giải:

Viết lại I dưới dạng: $I = \int ln(x + \sqrt{x^2 + 1}) \frac{x}{\sqrt{x^2 + 1}} dx$.

$$\text{Đặt}: \begin{cases} u = \ln(x + \sqrt{x^2 + 1}) \\ dv = \frac{x}{\sqrt{x^2 + 1}} \end{cases} \Rightarrow \begin{cases} du = \frac{\frac{1 + x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}} = \frac{dx}{\sqrt{x^2 + 1}} \\ v = \sqrt{x^2 + 1} \end{cases}$$

Khi đó: $I = \sqrt{x^2 + 1} \ln(x + \sqrt{x^2 + 1}) - \int dx = \sqrt{x^2 + 1} \ln(x + \sqrt{x^2 + 1}) - x + C.$

<u>Ví dụ 2</u>: Tích tích phân bất định: $I = \int \cos(\ln x) dx$.

Giải:

Khi đó: $I = x \cos(\ln x) + \int \sin(\ln x) dx$. (1)

Xét $J = \int \sin(\ln x) dx$.

$$\text{D} \ddot{a} t \colon \begin{cases} u = \sin(\ln x) \\ dv = dx \end{cases} \Rightarrow \begin{cases} du = \frac{1}{x} \cos(\ln x) dx \\ v = x. \end{cases}$$

Khi đó: $J = x.\sin(\ln x) - \int \cos(\ln x) dx = x.\sin(\ln x) - I$ (2)

 $Thay (2) \ v\`{ao} (1), \ ta \ d\mathring{u} \'{c} : \ I = x. cos(ln \ x) + x. sin(ln \ x) - I \\ \Leftrightarrow I = \frac{x}{2} [cos(ln \ x) + sin(ln \ x)] + C.$

<u>Chú ý</u>: Nếu bài toán yêu cầu tính giá trị của một cặp tích phân:

$$I_1 = \int \sin(\ln x) dx \text{ và } I_2 = \int \cos(\ln x) dx$$

ta nên lựa chọn cách trình bày sau:

• Sử dụng tích phân từng phần cho I₁, như sau:

$$\mathrm{D} \ddot{a} t : \begin{cases} u = \sin(\ln x) \\ \mathrm{d} v = \mathrm{d} x \end{cases} \Rightarrow \begin{cases} \mathrm{d} u = \frac{1}{x} \cos(\ln x) \mathrm{d} x \\ v = x \end{cases}$$

Khi đó:
$$I_1 = x.\sin(\ln x) - \int \cos(\ln x) dx = x.\sin(\ln x) - I_2.$$
 (3)

• Sử dụng tích phân từng phần cho I₂, như sau:

$$\text{D} \check{a} t : \begin{cases} u = \cos(\ln x) \\ dv = dx \end{cases} \Rightarrow \begin{cases} du = -\frac{1}{x} \sin(\ln x) dx \\ v = x \end{cases}$$

Khi đó:
$$I_2 = x.\cos(\ln x) - \int \sin(\ln x) dx = x.\cos(\ln x) + I_1.$$
 (4)

• Từ hệ tạo bởi (3) và (4) ta nhận được:

$$I_1 = \frac{x}{2} [\sin(\ln x) - \cos(\ln x)] + C.$$
 $I_2 = \frac{x}{2} [\sin(\ln x) + \cos(\ln x)] + C.$

<u>Ví dụ 3</u>: Tích tích phân bất định: $I = \int \frac{\ln(\cos x)}{\cos^2 x} dx$.

Giải:

Khi đó:
$$I = \ln(\cos x).tgx + \int tg^2x dx = \ln(\cos x).tgx + \int \left(\frac{1}{\cos^2 x} - 1\right) dx$$

= $\ln(\cos x).tgx + tgx - x + C$.

<u>Bài toán 2</u>: Tính $I = \int P(x) \sin \alpha x dx$ (hoặc $\int P(x) \cos \alpha x dx$) với P là một đa thức thuộc R[X] và $\alpha \in R^*$.

PHƯƠNG PHÁP CHUNG

Ta lựa chọn một trong hai cách sau:

• <u>Cách 1</u>: (Sử dụng tích phân từng phần). Ta thực hiện theo các bước sau:

$$+ \quad \text{Bước 1: Đặt: } \begin{cases} u = P(x) \\ dv = \sin\alpha x dx \end{cases} \Rightarrow \begin{cases} du = P'(x) dx \\ v = -\frac{1}{\alpha} \cos\alpha x \end{cases}.$$

- + Bước 2: Khi đó: $I = -\frac{1}{\alpha}P(x)\cos\alpha + \frac{1}{\alpha}\int P'(x).\cos\alpha x.dx$.
- + Bước 3: Tiếp tục thủ tục trên ta sẽ "khử" được đa thức.
- <u>Cách 1</u>: (Sử dụng phương pháp hệ số bất định). Ta thực hiện theo các bước sau:
- + Bước 1: Ta có: $I = \int P(x)\cos\alpha x dx = A(x)\sin\alpha x + B(x)\cos\alpha x + C.$ (1)

trong đó A(x) và B(x) là các đa thức cùng bậc với P(x).

+ Bước 2: Lấy đạo hàm hai vế của (1), ta được:

$$P(x).\cos\alpha x = [A'(x) + B(x)].\sin\alpha + [A(x) + B'(x)].\cos x \tag{2}$$

Sử dụng phương pháp hệ số bất định ta xác định được các đa thức A(x) và B(x)

+ Bước 3: Kết luận.

<u>Nhận xét</u>: Nếu bậc của đa thức P(x) lớn hơn hoặc bằng 3 ta thấy ngay cách 1 tỏ ra quá cồng kềnh, vì khi đó ta cần thực hiện thủ tục lấy tích phân từng phần nhiều hơn ba lần. Do đó ta đi tới nhân đinh chung sau:

- Nếu bậc của P(x) nhỏ hơn hoặc bằng 2, ta lựa chọn cách 1.
- Nếu bậc của P(x) lớn hơn 2, ta lựa chọn cách 2.

$$\underline{\text{Vi du 4}}$$
: Tinh : $I = \int x.\sin^2 x dx$ (*DHL_1999*)

Giải:

Biến đổi I về dạng cơ bản:

$$I = \int x \left(\frac{1 - \cos 2x}{2} \right) dx = \frac{1}{2} \int x dx - \frac{1}{2} \int x \cos 2x dx = \frac{1}{4} x^2 - \frac{1}{2} \int x \cos 2x dx$$
 (1)

 $X \text{\'et } J = \int x \cos 2x dx.$

Khi đó:
$$J = \frac{x}{2} \sin 2x - \frac{1}{2} \int \sin 2x dx = \frac{x}{2} \sin 2x + \frac{1}{4} \cos 2x + C.$$
 (2)

Thay (2) vào (1) ta được:
$$I = \frac{1}{4}x^2 + \frac{x}{4}\sin 2x + \frac{1}{8}\cos 2x + C$$
.

<u>Ví dụ 5</u>: Tính : $I = \int (x^3 - x^2 + 2x - 3) \sin x dx$.

<u>Giải</u>:

Ta có:
$$I = \int (x^3 - x^2 + 2x - 3) \sin x dx$$

$$=(a_1x^3+b_1x^2+c_1x+d_1)\cos x+(a_2x^3+b_2x^2+c_2x+d_2)\sin x+C$$
 (1)

Lấy đạo hàm hai vế của (1), ta được:

$$(x^{3} - x^{2} + 2x - 3)\sin x = [a_{2}x^{3} + (3a_{1} + b_{2})x^{2} + (2b_{1} + c_{2})x + c_{1} + d_{2}].\cos x - -[a_{1}x^{3} - (3a_{2} - b_{1})x^{2} - (2b_{2} - c_{1})x + c_{2} - d_{1}].\sin x$$
 (2)

Đồng nhất đẳng thức, ta được:

$$\begin{cases} a_2 = 0 \\ 3a_1 + b_2 = 0 \\ 2b_1 + c_2 = 0 \end{cases} (I) \qquad \text{và} \begin{cases} -a_2 = 1 \\ 3a_2 - b_1 = -1 \\ 2b_2 - c_1 = 2 \\ -c_2 + d_1 = -3 \end{cases} (II)$$

Giải (I) và (II), ta được: $a_1 = -1$, $b_1 = 1$, $c_1 = 4$, $d_1 = 1$, $a_2 = 0$, $b_2 = 3$, $c_2 = -2$, $d_2 = -4$.

Khi đó: $I = (-x^3 + x^2 + 4x + 1)\cos x + (3x^2 - 2x + 4)\sin x + C$.

<u>Bài toán 3</u>: Tính $I = \int e^{ax} \cos(bx) dx \left(hoặc \int e^{ax} \sin(bx) \right) với a, b \neq 0.$

PHƯƠNG PHÁP CHUNG

Ta lựa chọn một trong hai cách sau:

• <u>Cách 1</u>: (Sử dụng tích phân từng phần). Ta thực hiện theo các bước sau:

+ Bước 1: Đặt :
$$\begin{cases} u = \cos(bx) \\ dv = e^{ax} dx \end{cases} \Rightarrow \begin{cases} du = -b\sin(bx)dx \\ v = \frac{1}{a}e^{ax} \end{cases}$$

Khi đó:
$$I = \frac{1}{a}e^{ax}\cos(bx) + \frac{b}{a}\int e^{ax}\sin(bx)dx$$
. (1)

+ Bước 2: Xét $J = \int e^{ax} \sin(bx) dx$.

$$\label{eq:definition} \begin{split} \text{B} \ddot{a} t \; \begin{cases} u = sin(bx) \\ dv = e^{ax} dx \end{cases} \Rightarrow \begin{cases} du = b \cos x(bx) dx \\ v = \frac{1}{a} e^{ax} \end{cases} \end{split}$$

Khi đó:
$$J = \frac{1}{a}e^{ax}\sin(bx) - \frac{b}{a}\int e^{ax}\cos(bx)dx = \frac{1}{a}e^{ax}\sin(bx) - \frac{b}{a}I$$
. (2)

+ Bước 3: Thay (2) vào (1), ta được: $I = \frac{1}{a}e^{\tilde{a}}\cos(bx) + \frac{b}{a}[\frac{1}{a}e^{ax}\sin(bx) - \frac{b}{a}I]$

$$\Leftrightarrow I = \frac{[a.\cos(bx) + b.\sin(bx)e^{ax}}{a^2 + b^2} + C.$$

- <u>Cách 2</u>: (Sử dụng phương pháp hằng số bất định). Ta thực hiện theo các bước :
- + Bước 1: Ta có: $I = \int e^{ax} \cos(bx) dx = [A\cos(bx) + B.\sin(bx)]e^{ax} + C.$ (3) trong đó A, B là các hằng số.

+ Bước 2: Lấy đạo hàm hai vế của (3), ta được:

$$e^{ax} \cdot \cos(bx) = b[-A\sin(bx) + B\cos(bx)]e^{ax} + a[A\cos(bx) + B\sin(bx)]e^{ax}$$

= $[(Aa + Bb) \cdot \cos(bx) + Ba - Ab)\sin(bx)]e^{ax}$.

Đồng nhất đẳng thức, ta được:
$$\begin{cases} Aa + Bb = 1 \\ Ba - Ab = 0 \end{cases} \Rightarrow \begin{cases} A = \frac{a}{a^2 + b^2} \\ B = \frac{b}{a^2 + b^2} \end{cases}$$

+ Bước 3: Vậy:
$$I = \frac{[a.\cos(bx) + b.\sin(bx)]e^{ax}}{a^2 + b^2} + C.$$

Chú ý:

1. Nếu bài toán yêu cầu tính giá trị của một cặp tích phân:

$$I_1 = \int e^{ax} \cos(bx) dx$$
 và $I_2 = \int e^{ax} \sin(bx) dx$.

ta nên lựa chọn cách trình bày sau:

Sử dụng tích phân từng phần cho I₁, như sau:

$$\text{D} \ddot{a} t \colon \begin{cases} u = \cos(bx) \\ dv = e^{ax} dx \end{cases} \Rightarrow \begin{cases} du = -b\sin(bx) dx \\ v = \frac{1}{a} e^{ax} \end{cases}$$

Khi đó:
$$I_1 = \frac{1}{a}e^{ax}\cos(bx) + \frac{b}{a}\int e^{ax}\sin(bx)dx = \frac{1}{a}e^{ax}\cos(bx) + \frac{b}{a}I_2.$$
 (3)

• Sử dụng tích phân từng phần cho I₁, như sau:

Khi đó:
$$I_2 = \frac{1}{a} e^{ax} \sin(bx) - \frac{b}{a} \int e^{ax} \cos(bx) dx = \frac{1}{a} e^{ax} \sin(bx) - \frac{b}{a} I_1.$$
 (4)

• Từ hệ tạo bởi (3) và (4) ta nhận được:

$$I_{1} = \frac{[a.\cos(bx) + b.\sin(bx)]e^{ax}}{a^{2} + b^{2}} + C.$$

$$I_{2} = \frac{[a.\sin(bx) - b.\cos(bx)]e^{ax}}{a^{2} + b^{2}} + C.$$

2. Phương pháp trên cũng được áp dụng cho các tích phân:

$$J_1 = \int e^{ax} \sin^2(bx) dx$$
 và $J_2 = \int e^{ax} \cos^2(bx) dx$.

<u>Ví dụ 6</u>: Tính tích phân bất định: $I = \int e^x .\cos^2 x dx$.

Giải:

Cách 1: Viết lại I dưới dạng:

$$I = \frac{1}{2} \int e^{x} \cdot (1 + \cos 2x) dx = \frac{1}{2} \left(\int e^{x} dx + \int e^{x} \cdot \cos 2x dx \right) = \frac{1}{2} \left(e^{x} + \int e^{x} \cdot \cos 2x dx \right)$$
 (1)

• $X \text{\'et } J = \int e^x .\cos 2x dx.$

$$\text{D} \ddot{\mathbf{a}} \mathbf{t} \colon \begin{cases} \mathbf{u} = \cos 2\mathbf{x} \\ \mathbf{d} \mathbf{v} = \mathbf{e}^{\mathbf{x}} \mathbf{d} \mathbf{x} \end{cases} \Rightarrow \begin{cases} \mathbf{d} \mathbf{u} = -2\sin 2\mathbf{x} \mathbf{d} \mathbf{x} \\ \mathbf{v} = \mathbf{e}^{\mathbf{x}} \end{cases}$$

Khi đó: $J = e^x \cos 2x + 2 \int e^x \sin 2x dx$ (2)

• $X\acute{e}t$: $K = \int e^x \sin 2x dx$.

$$\label{eq:definition} \begin{split} \text{B} \ddot{\mathbf{a}} \text{t:} \; \begin{cases} u = \sin 2x \\ dv = e^x dx \end{cases} \implies \begin{cases} du = 2\cos 2x dx \\ v = e^x \end{cases} \end{split}$$

Khi đó:
$$K = e^{x} \sin 2x - 2 \int e^{x} \cos 2x dx = e^{x} \sin 2x - 2J$$
 (3)

Thay (3) vào (2), ta được:

$$J = e^{x} \cos 2x + 2(e^{x} \sin 2x - 2J) \iff J = \frac{1}{5}(\cos 2x + 2\sin 2x)e^{x} + C$$
 (4)

Thay (4) vào (1), ta được:

$$I = \frac{1}{2} \left[e^{x} + \frac{1}{5} (\cos 2x + 2\sin 2x)e^{x} \right] + C = \frac{1}{10} (5 + \cos 2x + 2\sin 2x)e^{x} + C$$

Cách 2:
$$I = \frac{1}{2} \int e^{x} \cdot (1 + \cos 2x) dx = (a + b \cdot \cos 2x + c \cdot \sin 2x) e^{x} + C.$$
 (5)

Lấy đạo hàm hai vế của (5), ta được:

$$\frac{1}{2}e^{x}(1+\cos 2x) = (-b.\sin 2x + 2c.\cos 2x)e^{x} + (a+b.\cos 2x + c.\sin 2x)e^{x}$$

$$= [a + (2x + b)\cos 2x + (c - 2b)\sin 2x]e^{x}.$$
 (6)

Đồng nhất đẳng thức, ta được:
$$\begin{cases} 2a=1\\ 2(2c+b)=1 \Rightarrow \begin{cases} a=1/2\\ b=1/10.\\ c=1/5 \end{cases}$$

Vây:
$$I = \frac{1}{10}(5 + \cos 2x + 2\sin 2x)e^x + C.$$

<u>Bài toán 4:</u> Tính $I = \int P(x)e^{\alpha x}dx$ với P là một đa thức thuộc R[X] và $\alpha \in R^*$.

PHƯƠNG PHÁP CHUNG

Ta lựa chọn một trong hai cách sau:

- <u>Cách 1</u>: (Sử dụng tích phân từng phần). Ta thực hiện theo các bước sau:
- $+ \quad \text{Bước 1: Đặt : } \begin{cases} u = P(x) \\ dv = e^{\alpha x} dx \end{cases} \Rightarrow \begin{cases} du = P'(x) dx \\ v = \frac{1}{\alpha} e^{ax} \end{cases}.$
- + Bước 2: Khi đó: $I = \frac{1}{\alpha} P(x) e^{\alpha x} \frac{1}{\alpha} \int P'(x) . e^{\alpha x} . dx$
- + Bước 3: Tiếp tục thủ tục trên ta sẽ "khử" được đa thức.
- <u>Cách 2</u>: (Sử dụng phương pháp hệ số bất định). Ta thực hiện theo các bước :

+ Bước 1: Ta có: $I = \int P(x) \cdot e^{\alpha x} \cdot dx = A(x)e^{\alpha x} + C.$ (1)

trong đó A(x) là đa thức cùng bậc với P(x)

+ Bước 2: Lấy đạo hàm hai vế của (1), ta được:

$$P(x).e^{\alpha x} = [A'(x) + \alpha A(x)].e^{\alpha x}$$
 (2)

Sử dụng phương pháp hệ số bất định ta xác định được A(x).

+ Bước 3: Kết luận

<u>Nhận xét</u>: Nếu bậc của đa thức P(x) lớn hơn hoặc bằng 3 ta thấy ngay cách 1 tỏ ra quá cồng kềnh, vì khi đó ta cần thực hiện thủ tục lấy tích phân từng phần nhiều hơn ba lần. Do đó ta đi tới nhận định chung sau:

- Nếu bậc của P(x) nhỏ hơn hoặc bằng 2, ta lựa chọn cách 1.
- Nếu bậc của P(x) lớn hơn 2, ta lựa chọn cách 2.

 $\underline{\text{Vi du 7}}: \quad \text{Tinh}: \quad I = \int x e^{3x} dx.$

Giải:

$$\mbox{D} \ddot{a} t \colon \begin{cases} u = x \\ dv = e^{3x} dx \end{cases} \Rightarrow \begin{cases} du = dx \\ v = \frac{1}{3} e^{3x} \end{cases} . \quad \mbox{Khi $d\acute{o}$: } I = \frac{1}{3} x e^{3x} - \frac{1}{3} \int e^{3x} . dx = \frac{1}{3} x e^{3x} - \frac{1}{9} e^{3x} + C.$$

<u>Ví dụ 8</u>: Tính : $I = \int (2x^3 + 5x^2 - 2x + 4)e^{2x} dx$

Giải

Ta có:
$$I = \int (2x^3 + 5x^2 - 2x + 4)e^{2x} dx = (ax^3 + bx^2 + cx + d)e^{2x} + C.$$
 (1)

Lấy đao hàm hai vế của (1), ta được:

$$(2x^3 + 5x^2 - 2x + 4)e^{2x} = [2ax^3 + (3a + 2b)x^2 + (2b + 2c)x + c + 2d]e^{2x}$$
 (2)

 $\label{eq:definition} \text{Dồng nhất đẳng thức ta được:} \begin{cases} 2a=2\\ 3a+2b=5\\ 2b+2c=-2\\ c+2d=4 \end{cases} \Leftrightarrow \begin{cases} a=1\\ b=1\\ c=-2\\ d=3 \end{cases}$

Khi đó: $I = (x^3 + x^2 - 2x + 3)e^{2x} + C$.

<u>Bài toán 5</u>: Tính $I = \int x^{\alpha} . \ln x dx$, $v \dot{\sigma} i \alpha \in R \setminus \{-1\}$.

$$\mathrm{D} \ddot{a} t: \begin{cases} u = \ln x \\ dv = x^{\alpha} dx \end{cases} \Rightarrow \begin{cases} du = \frac{1}{x} dx \\ v = \frac{1}{\alpha + 1} x^{\alpha + 1} \end{cases}$$

Khi đó:
$$I = \frac{x^{\alpha+1}}{\alpha+1} \ln x - \int \frac{x^{\alpha}}{\alpha+1} dx = \frac{x^{\alpha+1}}{\alpha+1} \ln x - \frac{x^{\alpha+1}}{(\alpha+1)^2} + C.$$

 $\underline{\text{Vi du } 9}$: Tính $I = \int x^2 \ln 2x dx$.

$$\text{D} \ddot{a} t: \begin{cases} u = \ln 2x \\ dv = x^2 dx \end{cases} \Rightarrow \begin{cases} du = \frac{dx}{x} \\ v = \frac{1}{3}x^3 \end{cases}. \quad \text{Khi $d\acute{o}: } I = \frac{x^3}{3} \ln 2x \int x^2 dx = \frac{x^3}{3} \ln 2x - \frac{x^3}{9} + C.$$

BÀI TÂP

Bài 16. Tìm họ nguyên hàm của các hàm số sau:

a/
$$f(x) = \ln x$$
; b/ $f(x) = (x^2 + 1)e^{2x}$; c/ $f(x) = x^2 \sin x$;
d/ $f(x) = e^x \sin x$; e/ $f(x) = x \cdot \cos \sqrt{x}$; f/ $f(x) = e^x (1 + tgx + tg^2 x)$.
 \underline{DS} : a/ $x \ln x - x + C$ b/ $\frac{1}{4}(2x^2 - x + 3)e^{2x} + C$;
c/ $(2 - x)^2 \cos x + 2\sin x + C$; d/ $\frac{1}{2}e^x (\sin x - \cos x) + C$;
e/ $2\sqrt{x}(x - 6)\sin \sqrt{x} + 6(x - 2)\cos \sqrt{x} + C$; f/ $e^x tgx + C$.

Bài 17. Tìm họ nguyên hàm của các hàm số sau:

a/
$$f(x) = e^{\sqrt{x}};$$
 b/ $f(x) = \left(\frac{\ln x}{x}\right)^2;$ c/ $f(x) = (x+1)^2 \cos^2 x;$
d/ $f(x) = e^{-2x} \cdot \cos 3x;$ e/ $f(x) = \sin(\ln x);$ f/ $f(x) = \sqrt{x^2 + K}, (K \neq 0);$
 $\underline{DS}:$ a/ $2(\sqrt{x} - 1)e^{\sqrt{x}} + C;$ b/ $2\ln x - 2x - \frac{\ln^2 x}{x} + C;$
c/ $\frac{(x+1)^3}{6} + \frac{(x+1)^2 \sin 2x}{4} + \frac{(x+1)\cos 2x}{4} - \frac{\sin 2x}{8} + C;$
d/ $\frac{e^{-2x}}{13}(3\sin 3x - 2\cos 3x) + C;$ e/ $\frac{x}{2}[\sin(\ln x) + \cos(\ln x] + C;$
f/ $\frac{x}{2}\sqrt{x^2 + K} + \frac{K}{2}\ln|x + \sqrt{x^2 + K}| + C.$

Bài 18. Tìm họ nguyên hàm của các hàm số sau:

a/
$$f(x) = x^3 \ln x$$
 $(HVQY_1999)$ b/ $f(x) = (x^2 + 2)\sin 2x$ $(DHPD_2000)$
c/ $f(x) = x \sin \sqrt{x}$ $(DHMDC_1998)$
 \underline{DS} : a/ $\frac{1}{4}x^4 \ln x - \frac{1}{16}x^4 + C$; b/ $-\frac{1}{2}(x^2 + 2)\cos 2x + \frac{x}{2}\sin 2x + \frac{1}{4}\cos 2x + C$;
c/ $-2\sqrt{x^3}\cos \sqrt{x} + 6x\sin \sqrt{x} + 12\sqrt{x}\cos \sqrt{x} - 12\sin \sqrt{x} + C$.

<u>Vấn đề 6</u>: XÁC ĐỊNH NGUYÊN HÀM BẰNG PHƯƠNG PHÁP DÙNG NGUYÊN HÀM PHỤ

Ý tưởng chủ đạo của phương pháp xác định nguyên hàm của f(x) bằng kỹ thuật dùng hàm phụ là tìm kiếm một hàm g(x) sao cho nguyên hàm của các hàm số $f(x) \pm g(x)$ dễ xác định hơn so với hàm số f(x), từ đó suy ra nguyên hàm F(x) của hàm số f(x).

Ta thực hiện theo các bước sau:

- + Bước 1: Tìm kiếm hàm số g(x).
- + Bước 2: Xác định các nguyên hàm của các hàm số $f(x) \pm g(x)$, tức là:

$$\begin{cases} F(x) + G(x) = A(x) + C_1 \\ F(x) - G(x) = B(x) + C_2 \end{cases}$$
 (I)

+ Bước 3: Từ hệ (I), ta nhận được: $F(x) = \frac{1}{2}[A(x) + B(x)] + C$

là họ nguyên hàm của hàm số f(x).

<u>Ví dụ 1</u>: Tìm nguyên hàm hàm số: $f(x) = \frac{\sin x}{\sin x - \cos x}$

Giải:

Chọn hàm số phụ:
$$g(x) = \frac{\cos x}{\sin x - \cos x}$$

Gọi F(x) và G(x) theo thứ tự là nguyên hàm của các hàm số f(x), g(x). Ta có:

$$\begin{split} f(x) + g(x) &= \frac{\sin x + \cos x}{\sin x + \cos x} \\ \Rightarrow F(x) + G(x) &= \int \frac{\sin x + \cos x}{\sin x - \cos x} dx = \int \frac{d(\sin x - \cos x)}{\sin x - \cos x} = \ln \left| \sin x - \cos x \right| + C_1. \\ f(x) - g(x) &= \frac{\sin x - \cos x}{\sin x - \cos x} = 1 \Rightarrow F(x) - G(x) = \int dx = x + C_2. \end{split}$$

 $\text{Ta dw\'{o}c: } \begin{cases} F(x) + G(x) = \ln\left|\sin x - \cos x\right| + C_1 \\ F(x) - G(x) = x + C_2 \end{cases} \Rightarrow F(x) = \frac{1}{2}(\ln\left|\sin x - \cos x\right| + x) + C.$

Ví dụ 2: Tìm nguyên hàm hàm số:
$$f(x) = \frac{\cos^4 x}{\sin^4 x + \cos^4 x}$$

Giải:

Chọn hàm số phụ:
$$g(x) = \frac{\sin^4 x}{\sin^4 x + \cos^4 x}$$

Gọi F(x) và G(x) theo thứ tự là nguyên hàm của các hàm số f(x), g(x). Ta có:

$$f(x) + g(x) = \frac{\sin^4 x + \cos^4 x}{\sin^4 x + \cos^4 x} = 1 \implies F(x) + G(x) = \int dx = x + C_1$$

$$f(x) - g(x) = \frac{\cos^4 x - \sin^4 x}{\sin^4 x + \cos^4 x} = \frac{\cos^2 x - \sin^2 x}{(\cos^2 x + \sin^2 x)^2 - 2\cos^2 x \cdot \sin^2 x} = \frac{\cos 2x}{1 - \frac{1}{2}\sin^2 2x}$$

$$\Rightarrow F(x)-G(x)=\int \frac{2\cos 2x}{2-\sin 2x}\,dx=-\int \frac{d(\sin 2x)}{\sin^2 2x-2}=-\frac{1}{2\sqrt{2}}\ln\left|\frac{\sin 2x-\sqrt{2}}{\sin 2x+\sqrt{2}}\right|+C_2$$
 To divinc:
$$\begin{cases} F(x)+G(x)=x+C_1\\ F(x)-G(x)=\frac{1}{2\sqrt{2}}\ln\frac{\sqrt{2}+\sin 2x}{\sqrt{2}-\sin 2x}+C_2 \end{cases} \Rightarrow F(x)=\frac{1}{2}\left(x+\frac{1}{2\sqrt{2}}\ln\frac{\sqrt{2}+\sin 2x}{\sqrt{2}-\sin 2x}\right)+C.$$

<u>Ví dụ 3</u>: Tìm nguyên hàm hàm số: $f(x) = 2 \sin^2 x \cdot \sin 2x$.

Giải:

Chon hàm số phu: $g(x) = 2\cos^2 x \cdot \sin 2x$.

Gọi F(x) và G(x) theo thứ tự là nguyên hàm của các hàm số f(x), g(x). Ta có:

$$f(x) + g(x) = 2(\sin^2 x + \cos^2 x).\sin 2x = 2\sin 2x \Rightarrow F(x) + G(x) = 2\int \sin 2x dx = -\cos 2x + C_1 \sin 2x dx = -\cos 2x + C_2 \sin 2x dx = -\cos 2x + C_3 \sin 2x + C_3 \sin$$

$$f(x) - g(x) = 2(\sin^2 x - \cos^2 x) \cdot \sin 2x = -2\cos 2x \cdot \sin 2x = -\sin 4x$$

$$\Rightarrow F(x) - G(x) = -\int \sin 4x dx = \frac{1}{4}\cos 4x + C_2$$

$$\text{Ta dwoc: } \begin{cases} F(x) + G(x) = -\cos 2x + C_1 \\ F(x) - G(x) = \frac{1}{4}\cos 4x + + C_2 \end{cases} \Rightarrow F(x) = \frac{1}{2} \left(-\cos 2x + \frac{1}{4}\cos 4x \right) + C.$$

Ví dụ 2: Tìm nguyên hàm hàm số: $f(x) = \frac{e^x}{e^x - e^{-x}}$.

<u>Giải</u>:

Chọn hàm số phụ: $g(x) = \frac{e^{-x}}{e^x - e^{-x}}$.

Gọi F(x) và G(x) theo thứ tự là nguyên hàm của các hàm số f(x), g(x). Ta có:

$$f(x) + g(x) = \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}}$$

$$\Rightarrow F(x) + G(x) = \int \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}} dx = \int \frac{d(e^{x} - e^{-x})}{e^{x} - e^{-x}} = \ln \left| e^{x} - e^{-x} \right| + C_{1}$$

$$f(x) - g(x) = \frac{e^{x} - e^{-x}}{e^{x} - e^{-x}} = 1 \Rightarrow F(x) - G(x) = \int dx = x + C_{2}.$$

$$\text{Ta dwoc: } \begin{cases} F(x) + G(x) = \ln\left|e^x - e^{-x}\right| + C_1 \\ F(x) - G(x) = x + C_2 \end{cases} \Rightarrow F(x) = \frac{1}{2}(\ln\left|e^x - e^{-x}\right| + x) + C.$$

BÀI TẬP

Bài 19. Tìm nguyên hàm của các hàm số:

a/
$$f(x) = \frac{\sin x}{\sin x + \cos x}$$
; b/ $f(x) = \sin^2 x \cdot \cos 2x$. c/ $f(x) = \frac{e^x}{e^x + e^{-x}}$
 \underline{DS} : a/ $\frac{1}{2}(x - \ln|\sin x + \cos x| + C$; b/ $\frac{1}{4}(\sin 2x - \frac{1}{4}\sin 4x - x) + C$; c/ $\frac{1}{2}(x + \ln|e^x + e^{-x}|) + C$.

<u>Vấn đề 7: NGUYÊN HÀM CÁC HÀM SỐ HỮU TỈ</u>

Để xác định nguyên hàm số hữu tỉ ta cần linh hoạt lựa chọn một trong các phương pháp cơ bản sau:

- 1. Phương pháp tam thức bậc hai
- 2. Phương pháp phân tích
- 3. Phương pháp đổi biến
- 4. Phương pháp tích phân từng phần
- 5. Sử dụng các phương pháp khác nhau.

1. PHƯƠNG PHÁP TAM THỨC BÂC HAI

Bài toán 1: Xác định nguyên hàm các hàm hữu tỉ dựa trên tam thức bậc hai

PHƯƠNG PHÁP CHUNG

Trên cơ sở đưa tam thức bậc hai về dạng chính tắc và dùng các công thức sau:

1.
$$\int \frac{x dx}{x^2 + a} = \frac{1}{2} \ln |x^2 \pm a| + C$$
 (1)

2.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$
, với $a \neq 0$ (2)

Ví dụ 1: Tính tích phân bất định:
$$I = \int \frac{xdx}{x^4 - 2x^2 - 2}$$

Giái:

Ta có:
$$\int \frac{dx}{x^4 - 2x^2 - 2} = \int \frac{xdx}{(x^2 - 1)^2 - 3} = \frac{1}{2} \int \frac{d(x^2 - 1)}{(x^2 - 1)^2 - 3}$$
$$= \frac{1}{2} \cdot \frac{1}{\sqrt{3}} \ln \left| \frac{x^2 - 1 - \sqrt{3}}{x^2 - 1 + \sqrt{3}} \right| + C = \frac{1}{4\sqrt{3}} \ln \left| \frac{x^2 - 1 - \sqrt{3}}{x^2 - 1 + \sqrt{3}} \right| + C.$$

• <u>Chú ý</u>: Cũng có thể trình bày bài toán tường minh hơn bằng việc đổi biến số trước khi áp dụng các công thức (1), (2). Cụ thể:

Biến đổi tích phân ban đầu về dạng: $\int \frac{x dx}{x^4 - 2x^2 - 2} = \int \frac{x dx}{(x^2 - 1)^2 - 3}$

$$\mathbf{D}\mathbf{\ddot{a}t} \ t = \mathbf{x}^2 - \mathbf{1}$$

Suy ra: $dt = 2xdx & \frac{xdx}{(x^2-1)^2-3} = \frac{1}{2} \cdot \frac{dt}{t^2-3}$.

$$\text{Khi } \text{d\'o}: \ \ I = \frac{1}{2} \int \frac{dt}{t^2 - 3} = \frac{1}{2} \cdot \frac{1}{2\sqrt{3}} \ln \left| \frac{t - \sqrt{3}}{t + \sqrt{3}} \right| + C = \frac{1}{4\sqrt{3}} \ln \left| \frac{x^2 - 1 - \sqrt{3}}{x^2 - 1 + \sqrt{3}} \right| + C.$$

Ví dụ 2: Tính tích phân bất định:
$$I = \int \frac{x^3 dx}{x^4 - x^2 - 2}$$

Ta có: I =
$$\int \frac{x^3 dx}{\left(x^2 - \frac{1}{2}\right)^2 - \frac{9}{4}} = \frac{1}{2} \int \frac{\left(x^2 - \frac{1}{2}\right) + \frac{1}{2}}{\left(x^2 - \frac{1}{2}\right)^2 - \frac{9}{4}} d\left(x^2 - \frac{1}{2}\right)$$

$$= \frac{1}{2} \int \frac{\left(x^2 - \frac{1}{2}\right) d\left(x^2 - \frac{1}{2}\right)}{\left(x^2 - \frac{1}{2}\right)^2 - \frac{9}{4}} + \frac{1}{4} \int \frac{d\left(x^2 - \frac{1}{2}\right)}{\left(x^2 - \frac{1}{2}\right)^2 - \frac{9}{4}}$$

$$= \frac{1}{2} \cdot \frac{1}{2} \ln \left| \left(x^2 - \frac{1}{2}\right)^2 - \frac{9}{4} \right| + \frac{1}{4} \cdot \frac{1}{3} \ln \left| \frac{x^2 - \frac{1}{2} - \frac{3}{2}}{x^2 - \frac{1}{2} + \frac{3}{2}} \right| + C$$

$$= \frac{1}{4} \ln \left| x^4 - x^2 - 2 \right| + \frac{1}{2} \ln \left| \frac{x^2 - 2}{x^2 + 1} \right| + C.$$

2. PHƯƠNG PHÁP PHÂN TÍCH

Bài toán 2: Xác định nguyên hàm các hàm hữu tỉ bằng phương pháp phân tích

PHƯƠNG PHÁP CHUNG

Cần hiểu rằng thực chất nó là một dạng của phương pháp hệ số bất định, nhưng ở đây để phân tích $\frac{P(x)}{Q(x)}$ ta sử dụng các đồng nhất thức quen thuộc.

<u>Dang 1</u>: Tính tích phân bất định: $I = \int \frac{x^2}{(ax+b)^2} dx$, với $a \neq 0$.

PHƯƠNG PHÁP CHUNG

Sử dung đồng nhất thức:

$$x^{2} = \frac{1}{a^{2}} \cdot a^{2}x^{2} = \frac{1}{a^{2}} [(ax + b) - b]^{2} = \frac{1}{a^{2}} [(ax + b)^{2} - 2b(ax + b) + b^{2}]$$

$$x^{2} = \frac{1}{a^{2}} \cdot (ax + b)^{2} - 2b(ax + b) + b^{2}$$

Ta được:
$$\frac{x^2}{(ax+b)^{\alpha}} = \frac{1}{a^2} \cdot \frac{(ax+b)^2 - 2b(ax+b) + b^2}{(ax+b)^{\alpha}}$$

$$= \frac{1}{a^2} \cdot \left[\frac{1}{(ax+b)^{\alpha-2}} - \frac{2b}{(ax+b)^{\alpha-1}} + \frac{b^2}{(ax+b)^{\alpha}} \right]$$

Khi đó:
$$I = \frac{1}{a^2} \cdot \left[\int \frac{dx}{(ax+b)^{\alpha-2}} - \int \frac{2bdx}{(ax+b)^{\alpha-1}} + \int \frac{b^2dx}{(ax+b)^{\alpha}} \right]$$
$$= \frac{1}{a^3} \cdot \left[\int \frac{d(ax+b)}{(ax+b)^{\alpha-2}} - \int \frac{2bd(ax+b)}{(ax+b)^{\alpha-1}} + \int \frac{b^2d(ax+b)}{(ax+b)^{\alpha}} \right].$$

<u>Ví dụ 3</u>: Tính tích phân bất định: $I = \int \frac{x^2}{(1-x)^{39}} dx$.

Giải:

Sử dụng đồng nhất thức: $x^2 = (1-x)^2 - 2(1-x) + 1$

Ta được:
$$\frac{x^2}{(1-x)^{39}} = \frac{(1-x)^2 - 2(1-x) + 1}{(1-x)^{39}} = \frac{1}{(1-x)^{37}} - \frac{2}{(1-x)^{37}} + \frac{1}{(1-x)^{39}}.$$

Khi đó:
$$I = \int \frac{dx}{(1-x)^{37}} - \int \frac{2dx}{(1-x)^{38}} + \int \frac{dx}{(1-x)^{39}}$$
$$= \frac{1}{36(1-x)^{36}} - \frac{2}{37(1-x)^{37}} + \frac{1}{38(1-x)^{38}} + C.$$

<u>Chú ý</u>: Mở rộng tự nhiên của phương pháp giải trên ta đi xét ví dụ:

<u>Ví dụ 4</u>: Tính tích phân bất định: $I = \int \frac{x^3}{(x-1)^{10}} dx$.

Giải:

Sử dụng đồng nhất thức (công thức Taylo): $x^3 = 1 + 3(x - 1) + 3(x - 1)^2 + (x - 1)^3$.

Ta được:
$$\frac{x^3}{(x-1)^{10}} = \frac{1+3(x-1)+3(x-1)^2+(x-1)^3}{(x-1)^{10}}$$
$$= \frac{1}{(x-1)^{10}} + \frac{3}{(x-1)^9} + \frac{3}{(x-1)^8} + \frac{1}{(x-1)^7}.$$

Khi đó:
$$I = \int \left[\frac{1}{(x-1)^{10}} + \frac{3}{(x-1)^9} + \frac{3}{(x-1)^8} + \frac{1}{(x-1)^7} \right] dx$$

= $-\frac{1}{9(x-1)^9} - \frac{3}{8(x-1)^8} - \frac{3}{7(x-1)^7} - \frac{1}{6(x-1)^6} + C.$

<u>Dang 2</u>: Tính tích phân bất định: $I_n = \int \frac{dx}{(ax^2 + bx + c)^n}$, với $a \neq 0$ và n nguyên dương.

PHƯƠNG PHÁP CHUNG

Ta xét các trường hợp sau:

- Trường hợp 1: Nếu n = 1 Ta xét ba khả năng của $\Delta = b^2 - 4ac$
 - Khả năng 1: Nếu $\Delta > 0$

Khi đó:
$$\frac{1}{ax^2 + bx + c} = \frac{1}{a(x - x_1)(x - x_2)} = \frac{1}{a(x_1 - x_2)} \cdot \frac{(x - x_2) - (x - x_1)}{(x - x_1)(x - x_2)}$$
$$= \frac{1}{a(x_1 - x_2)} \left(\frac{1}{x - x_1} - \frac{1}{x - x_2} \right).$$

Do đó:
$$I_1 = \frac{1}{a(x_1 - x_2)} \int \left(\frac{1}{x - x_1} - \frac{1}{x - x_2} \right) dx = \frac{1}{a(x_1 - x_2)} [\ln|x - x_1| - \ln|x - x_2|] + C.$$

$$= \frac{1}{a(x_1 - x_2)} \cdot \ln\left| \frac{x - x_1}{x - x_2} \right| + C.$$

• Khả năng 2: Nếu $\Delta = 0$

Khi đó:
$$\frac{1}{ax^2 + bx + c} = \frac{1}{a(x - x_0)^2}$$

Do đó:
$$I = \frac{1}{a} \int \frac{dx}{(x - x_0)^2} = -\frac{1}{a(x - x_0)} + C.$$

• Khả năng 3: Nếu $\Delta < 0$

Khi đó thực hiện phép đổi biến $x = tgt \text{ với } t \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$.

<u>Trường hợp 2</u>: Nếu n > 1

Bằng phép đổi biến
$$t = x + \frac{b}{2a}$$
, ta được: $I_n = \frac{1}{a^n} \int \frac{dt}{(t^2 + k)^n}$

Sử dụng phương pháp tích phân từng phần với phép đặt:

$$\begin{cases} u = \frac{1}{(t^2 + k)^n} \implies \begin{cases} du = -\frac{2ntdt}{(t^2 + k)^{n+1}} \\ v = t \end{cases}$$

$$\begin{split} \text{Khi $d6$: } & I_n = \frac{1}{a^n} \Bigg[\frac{t}{(t^2 + k)^n} + 2n \int \frac{t^2 dt}{(t^2 + k)^{n+1}} \Bigg] = \frac{1}{a^n} \Bigg\{ \frac{t}{(t^2 + k)^n} + 2n \int \frac{[(t^2 + k) - k] dt}{(t^2 + k)^{n+1}} \Bigg\} \\ & = \frac{1}{a^n} \Bigg\{ \frac{t}{(t^2 + k)^n} + 2n \Bigg[\int \frac{dt}{(t^2 + k)^n} - k \int \frac{dt}{(t^2 + k)^{n+1}} \Bigg] \Bigg\} \\ & = \frac{1}{a^n} \Bigg[\frac{t}{(t^2 + k)^n} + 2n (I_n - kI_{n+1}) \Bigg] \Leftrightarrow 2nkI_{n+1} = \frac{t}{(t^2 + k)^n} + (2n - a^n)I_n \\ \Leftrightarrow 2(n - 1(kI_n = \frac{t}{(t^2 + k)^{n-1}} + (2n - 2 - a^{n-1})I_{n+1}) \end{split}$$

<u>Chú ý</u>: Vì công thức (1) không được trình bày trong phạm vi sách giáo khoa 12, do đó các em học sinh khi làm bài thi không được phép sử dụng nó, hoặc nếu trong trường hợp được sử dụng thì đó là một công thức quá cồng kềnh rất khó có thể nhớ được một cách chính xác, do vậy trong tường hợp n > 1 tốt nhất các em nên trình bày theo các bước sau:

- Bước 1: Xác định I₁.
- $-\quad \text{Bước 2: Xác định I_n theo I_{n-1} (chứng minh lại (1))}.$
- Bước 3: Biểu diễn truy hồi I_n theo I_1 ta được kết quả cần tìm.

Ví dụ 5: Cho hàm số
$$f(x) = \frac{1}{x^2 - (m+2)x + 2m}$$

Tính tích phân bất định $I = \int f(x)dx$ biết:

a/
$$m = 1$$
 b/ $m = 2$.

Giải

a/ Với m = 1:
$$I = \int f(x)dx = \int \frac{dx}{x^2 - 3x + 2} = \int \frac{dx}{x - 2} - \int \frac{dx}{x - 1} = \int \frac{d(x - 2)}{x - 2} - \int \frac{d(x - 1)}{x - 1} = \ln|x - 2| - \ln|x - 1| + C = \ln\left|\frac{x - 2}{x - 1}\right| + C.$$

b/ Với m = 2:
$$I = \int f(x) dx = \int \frac{dx}{(x-2)^2} = -\frac{1}{x-2} + C.$$

Ví dụ 6: Tính tích phân bất định:
$$I = \int \frac{dx}{(x^2 + 4x + 3)^3}$$

Giải:

Xét tích phân $J_n = \int \frac{dx}{(x^2 + 4x + 3)^n}$, ta lần lượt có:

• Với n = 1

$$J_{1} = \int \frac{dx}{x^{2} + 4x + 3} = \int \frac{dx}{(x+1)(x+3)} = \frac{1}{2} \int \left(\frac{1}{x+1} - \frac{1}{x+3} \right) dx = \frac{1}{3} \ln \left| \frac{x+1}{x+3} \right| + C.$$

• Với n > 1

Bằng phương pháp tích phân từng phần với phép đặt:

$$\begin{cases} u = \frac{1}{(t^2 - 1)^n} \implies \begin{cases} du = -\frac{2ntdt}{(t^2 - 1)^{n+1}} \\ v = t \end{cases}$$

$$\begin{aligned} &\text{Khi } \text{ d} \text{ \acute{o}: } \quad J_n = \frac{t}{(t^2-1)^n} + 2n \int \frac{t^2 dt}{(t^2-1)^{n+1}} = \frac{t}{(t^2-1)^n} + 2n \int \frac{[(t^2-1)+1] dt}{(t^2-1)^{n+1}} \\ &= \frac{t}{(t^2-1)^n} + 2n \left[\int \frac{dt}{(t^2-1)^n} + \int \frac{dt}{(t^2-1)^{n+1}} \right] = \frac{t}{(t^2-1)^n} + 2n (J_n + J_{n+1}) \\ &\Leftrightarrow 2n J_{n+1} = -\frac{t}{(t^2-1)^n} - (2n-1)J_n \Leftrightarrow 2(n-1)J_n = -\frac{t}{(t^2-1)^{n-1}} - (2n-3)J_{n-1} \\ &\Leftrightarrow J_n = -\frac{1}{2(n-1)^n} = \left[\frac{t}{(t^2-1)^{n-1}} + 2n-3 \right] J_{n-1} \end{aligned}$$

Do đó:
$$J_{2} = -\frac{1}{2} \left(\frac{t}{t^{2} - 1} + J_{1} \right)$$

$$I = J_{3} = -\frac{1}{4} \left[\frac{t}{(t^{2} - 1)^{2}} + 3J_{2} \right] = -\frac{1}{4} \left\{ \frac{t}{(t^{2} - 1)^{2}} + 3 \left\{ -\frac{1}{2} \left(\frac{t}{t^{2} - 1} + J_{1} \right) \right\} \right\}$$

$$= -\frac{x + 2}{4(x^{2} + 4x^{3} +)^{2}} + \frac{3(x + 2)}{8(x^{2} + 4x + 3)} + \frac{3}{16} \ln \left| \frac{x + 1}{x + 3} \right| + C.$$

<u>Dang 3</u>: Tính tích phân bất định: $I_n = \int \frac{(\lambda x + \mu) dx}{(ax^2 + bx + c)^n}$, với $a \neq 0$ và n nguyên dương.

PHƯƠNG PHÁP CHUNG

Phân tích:
$$\lambda x + \mu = \frac{\lambda}{2a}(2ax + b) + \mu - \frac{\lambda b}{2a}$$

Khi đó:
$$I_n = \frac{\lambda}{2a} \int \frac{(2ax+b)dx}{(ax^2+bx+c)^n} + (\mu - \frac{\lambda b}{2a}) \int \frac{dx}{(ax^2+bx+c)^n}$$

a/ Với
$$J_n = \frac{\lambda}{2a} \int \frac{(2ax+b)dx}{((ax^2+bx+c)^n)}$$
 thì:

• Nếu n = 1, ta được:

$$J_1 = \frac{\lambda}{2a} \int \frac{(2ax+b)dx}{ax^2 + bx + c} = \frac{\lambda}{2a} \ln \left| ax^2 + bx + c \right| + C.$$

• Nếu n > 1, ta được:

$$J_{n} = \frac{\lambda}{2a} \int \frac{(2ax+b)dx}{(ax^{2}+bx+c)^{n}} = -\frac{\lambda}{2a(n-1)} \cdot \frac{1}{(ax^{2}+bx+c)^{n-1}} + C.$$

b/ Với $K_n = \int \frac{dx}{(ax^2 + bx + c)^n}$, ta đã biết cách xác định trong dạng 2.

Tổng quát hẹp: Trong phạm vi phổ thông chúng thường gặp tích phân bất định sau:

$$I = \int \frac{P(x)dx}{ax^2 + bx + c}, \text{ với } a \neq 0 \text{ và bậc của } P(x) \text{ lớn hơn } 1.$$

Ta thực hiện theo các bước sau:

- $Bu\acute{\sigma}c$ 1: Thực hiện phép chia đa thức P(x) cho $ax^2 + bx + c$ ta được:

$$\frac{P(x)}{ax^2 + bx + c} = Q(x) + \frac{\lambda x + \mu}{ax^2 + bx + c}$$

$$= Q(x) + \frac{\lambda}{2a} \cdot \frac{2ax + b}{ax^2 + bx + c} + (\mu - \frac{\lambda b}{2a}) \cdot \frac{1}{ax^2 + bx + c}$$

- Bước 2: Khi đó:
$$I = \int Q(x)dx + \frac{\lambda}{2a} \int \frac{(2ax+b)dx}{ax^2 + bx + c} + (\mu - \frac{\lambda b}{2a}) \int \frac{dx}{ax^2 + bx + c}$$

<u>Chú ý</u>: Tuy nhiên trong trường hợp $ax^2 + bx + c$ có $\Delta = b^2 - 4ac > 0$

(ta được hai nghiệm x_1, x_2), chúng ta thực hiện phép phân tích:

$$\frac{\lambda x + \mu}{ax^2 + bx + c} = \frac{1}{a} \left(\frac{A}{x - x_1} + \frac{B}{x - x_2} \right).$$

Ví dụ 7: Tính tích phân bất định:
$$I = \int \frac{(2x^3 - 10x^2 + 16x - 1)dx}{x^2 - 5x + 6}$$

Giải:

Biến đổi:
$$\frac{2x^3 - 10x^2 + 16x - 1}{x^2 - 5x + 6} = 2x + \frac{4x - 1}{x^2 - 5x + 6} = 2 + \frac{A}{x - 3} + \frac{B}{x - 2}$$

Ta được hằng đẳng thức: 4x-1 = A(x-2) + B(x-3) (1)

Để xác định A, B trong (1) ta có thể lựa chọn một hai cách sau:

• <u>Cách 1</u>: Phương pháp đồng nhất hệ số

Khai triển vế phải của (1) và sắp xếp đa thức theo thứ tự bậc lùi dần, ta có:

$$4x-1 = (A + B)x + 2A - 3B$$
.

Đồng nhất đẳng thức, ta được:
$$\begin{cases} A+B=4 \\ -2A-3B=-1 \end{cases} \Leftrightarrow \begin{cases} A=11 \\ B=-7 \end{cases}$$

• <u>Cách 2</u>: Phương pháp trị số riêng:

Lần lượt thay
$$x = 2$$
, $x = 3$ vào hai vế của (1) ta được hệ:
$$\begin{cases} A = 11 \\ B = -7 \end{cases}$$

Từ đó suy ra:
$$\frac{2x^3 - 10x^2 + 16x - 1}{x^2 - 5x + 6} = 2x + \frac{11}{x - 3} - \frac{7}{x - 2}.$$

Do đó:
$$I = \int \left[2x + \frac{11}{x-3} - \frac{7}{x-2} \right] dx = x^2 + 11 \ln|x-3| - 7 \ln|x-2| + C.$$

Nhận xét: Trong ví dụ trên việc xác định các hệ số A, B bằng hai cách có độ phức tạp gần giống nhau, tuy nhiên với bài toán cần phần tích thành nhiều nhân tử thì cách 2 thường tỏ ra đơn giản hơn.

Dang 4: Tính tích phân bất định:
$$I_n = \int \frac{(a_1x^2 + b_1x + c_1)dx}{(x - \alpha)(ax^2 + bx + c)}$$
, với $a \neq 0$

PHƯƠNG PHÁP CHUNG

Ta xét ba khả năng của $\Delta = b^2 - 4ac$

• Khả năng 1: Nếu $\Delta > 0$, khi đó: $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Khi đó phân tích:
$$\frac{a_1 x^2 + b_1 x + c_1}{(x - \alpha)(ax^2 + bx + c)} = \frac{A}{x - \alpha} + \frac{B}{x - x_1} + \frac{C}{x - x_2}$$

Do đó:
$$I = \int \left(\frac{A}{x - \alpha} + \frac{B}{x - x_1} + \frac{C}{x - x_2} \right) dx = A \ln |x - \alpha| + B \ln |x - x_1| + C \ln |x - x_2| + C$$

• Khả năng 2: Nếu $\Delta = 0$, khi đó: $ax^2 + bx + c = a(x - x_0)^2$.

Khi đó phân tích:
$$\frac{a_1 x^2 + b_1 x + c_1}{(x - \alpha)(ax^2 + bx + c)} = \frac{A}{x - \alpha} + \frac{B}{x - x_0} + \frac{C}{(x - x_0)^2}$$

$$Do \ \texttt{d}\acute{o} \colon I = \int \left[\frac{A}{x-\alpha} + \frac{B}{x-x_0} + \frac{C}{\left(x-x_0\right)^2} \right] dx = A \ln \left| x-\alpha \right| + B \ln \left| x-x_0 \right| - \frac{C}{x-x_0} + C.$$

• *Khả năng 3*: Nếu Δ < 0

Khi đó phân tích:
$$\frac{a_1 x^2 + b_1 x + c_1}{(x - \alpha)(ax^2 + bx + c)} = \frac{A}{x - \alpha} + \frac{B(2x + b)}{ax^2 + bx + c} + \frac{C}{ax^2 + bx + c}$$

Do đó:
$$I = \int \left[\frac{A}{x - \alpha} + \frac{B(2ax + b)}{ax^2 + bx + c} + \frac{C}{ax^2 + bx + c} \right] dx$$

= $A \ln |x - \alpha| + B \ln |ax^2 + bx + c| + C \int \frac{dx}{ax^2 + bx + c}$

Trong đó tích phân $J = \int \frac{dx}{ax^2 + bx + c}$ được xác định bằng phép đổi biến x = tgt với $t \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$.

Tổng quát: Tính tích phân bất định:

$$I = \int \frac{P(x)dx}{(x-\alpha)(ax^2+bx+c)}, \text{ với } a \neq 0 \text{ và bậc của } P(x) \text{ lớn hơn } 2.$$

Ta thực hiện theo các bước sau:

- Bước 1: Thực hiện phép chia đa thức P(x) cho $(x-\alpha)(ax^2+bx+c)$ ta được:

$$\frac{P(x)}{(x-\alpha)(ax^2+bx+c)} = Q(x) + \frac{a_1x^2 + b_1x + c_1}{(x-\alpha)(ax^2+bx+c)}$$

- Bước 2: Khi đó:
$$I = \int Q(x)dx + \int \frac{(a_1x^2 + b_1x + c_1)dx}{(x - \alpha)(ax^2 + bx + c)}$$

$$\underline{\text{Ví dụ 8}}$$
: Tính tích phân bất định: $I = \int \frac{(x^2 + 2x - 2)dx}{x^3 + 1}$

Giải

Biến đổi:
$$\frac{x^2 + 2x - 2}{x^3 + 1} = \frac{x^2 + 2x - 2}{(x+1)(x^2 - x + 1)} = \frac{A}{x+1} + \frac{B(2x-1)}{x^2 - x + 1} + \frac{C}{x^2 - x + 1}$$
$$= \frac{(A+2B)x^2 - (A-B-C)x + A - B + C}{x^3 + 1}$$

Đồng nhất đẳng thức, ta được:
$$\begin{cases} A+2B=1\\ -A+B+C=2 \iff \begin{cases} A=-1\\ B=1\\ C=0 \end{cases}$$

Khi đó:
$$\frac{x^2 + 2x - 2}{x^3 + 1} = -\frac{1}{x + 1} + \frac{2x - 1}{x^2 - x + 1}$$

Do đó:
$$I = \int \left(-\frac{1}{x+1} + \frac{2x-1}{x^2-x+1} \right) dx = -\ln|x+1| + \ln|x^2-x+1| + C = \ln\left| \frac{x^2-x+1}{x+1} \right| + C$$

Dang 5: Tính tích phân bất định:
$$I = \int \frac{dx}{(x+a)^2(x+b)^2}$$
, với $a \neq b$

PHƯƠNG PHÁP CHUNG

Sử dụng đồng nhất thức:

$$\left[\frac{(x+a)-(x+b)}{a-b}\right] = 1,$$

$$\frac{1}{(x+a)^{2}(x+b)^{2}} = \left[\frac{(x+a)-(x+b)}{(a-b)(x+a)(x+b)}\right]^{2} = \frac{1}{(a-b)^{2}} \left[\frac{1}{x+b} - \frac{1}{x+a}\right]^{2}$$

$$= \frac{1}{(a-b)^{2}} \left[\frac{1}{(x-b)^{2}} - \frac{2}{(x+a)(x+b)} + \frac{1}{(x+a)^{2}}\right]$$

$$= \frac{1}{(a-b)^{2}} \left[\frac{1}{(x+b)^{2}} - \frac{2}{a-b} \cdot \frac{(x+a)-(x-b)}{(x+b)(x+a)} + \frac{1}{(x+a)^{2}}\right]$$

$$= \frac{1}{(a-b)^{2}} \left[\frac{1}{(x+b)^{2}} - \frac{2}{a-b} \left(\frac{1}{x+b} - \frac{1}{x+a}\right) + \frac{1}{(x+a)^{2}}\right]$$

ta được:

$$I = \frac{1}{(a-b)^2} \left[\int \frac{1}{(x+b)^2} - \frac{2}{a-b} \left(\int \frac{1}{x+b} - \int \frac{1}{x+a} + \int \frac{1}{(x+a)^2} \right) \right]$$

$$= \frac{1}{(a-b)^2} \left[-\frac{1}{x+a} - \frac{2}{a-b} (\ln|x+b| - \ln|x+a)| - \frac{1}{x+a} \right] + C$$

$$= \frac{1}{(a-b)^2} \left[\frac{2}{a-b} \ln\left|\frac{x+a}{x+b}\right| - \frac{2x+a+b}{(x+b)(x+a)} \right] + C.$$

Ví dụ 9: Tính tích phân bất định:
$$I = \int \frac{dx}{(x+3)^2(x+1)^2}$$

Giải

Sử dụng đồng nhất thức:

$$\begin{split} &\left[\frac{(x+3)-(x+1)}{2}\right] = 1, \\ &\frac{1}{(x+3)^2(x+1)^2} = \left[\frac{(x+3)-(x+1)}{2(x+3)(x+1)}\right]^2 = \frac{1}{4} \left[\frac{1}{x+1} - \frac{1}{x+3}\right]^2 \\ &= \frac{1}{4} \left[\frac{1}{(x+1)^2} - \frac{2}{(x+1)(x+3)} + \frac{1}{(x+3)^2}\right] = \frac{1}{4} \left[\frac{1}{(x+1)^2} - \frac{(x+3)-(x+1)}{(x+1)(x+3)} + \frac{1}{(x+3)^2}\right] \\ &= \frac{1}{4} \left[\int \frac{dx}{(x+1)^2} - \int \frac{dx}{x+1} + \int \frac{dx}{x+3} + \int \frac{dx}{(x+3)^2}\right] \\ &= \frac{1}{4} \left[-\frac{1}{x+1} - \ln|x+1| + \ln|x+3| - \frac{1}{x+3}\right] + C = \frac{1}{4} \left[\ln\left|\frac{x+3}{x+1}\right| - \frac{2x+4}{(x+1)(x+3)}\right] + C. \end{split}$$

Dang 6: Tính tích phân bất định:
$$I = \int \frac{P(x)}{Q(x)} dx$$

PHƯƠNG PHÁP CHUNG

Giả sử cần xác định: $I = \int \frac{P(x)}{O(x)}$ bằng phương pháp hệ số bất định.

Ta thực hiện theo các bước sau:

- Bước 1: Phân tích Q(x) thành các đa thức bất khả quy, giả sử là:

$$Q(x) = A^{n}(x).B^{m}(x).C^{k}(x), \text{ v\'oi } n, m, k \in N.$$

trong đó A(x), B(x), C(x) là đa thức bậc hai hoặc bậc nhất.

- Bước 2: Khi đó ta phân tích:

$$\begin{split} \frac{P(x)}{Q(x)} &= D(x) + \frac{E(x)}{A^n(x).B^m(x).C^k(x)} \\ &= D(x) + \sum_{i=1}^n \left[\frac{a_1^i.A'(x)}{A^i(x)} + \frac{a_2^i}{A^i(x)} \right] + \sum_{j=1}^m \left[\frac{b_1^j.B'(x)}{B^j(x)} + \frac{b_2^j}{B^j(x)} \right] + \sum_{t=1}^k \left[\frac{c_1^t.C'(x)}{C^t(x)} + \frac{c_2^t}{C^j(x)} \right] \end{split}$$

Xác định được các hệ số a_1^i , a_2^i , b_1^j , b_2^j , c_1^t , c_2^t bằng phương pháp hệ số bất định.

- Bước 3: Xác định:

$$I = \int D(x) dx + \sum_{i=1}^n \int \left[\frac{a_1^i.A'(x)}{A^i(x)} + \frac{a_2^i}{A^i(x)} \right] + \sum_{j=1}^m \int \left[\frac{b_1^j.B'(x)}{B^j(x)} + \frac{b_2^j}{B^j(x)} \right] + \sum_{t=1}^k \int \left[\frac{c_1^t.C'(x)}{C^t(x)} + \frac{c_2^t}{C^t(x)} \right] + \sum_{j=1}^k \int \left[\frac{a_1^j.A'(x)}{A^j(x)} + \frac{a_2^j}{A^j(x)} \right] + \sum_{j=1}^k \int \left[\frac{b_1^j.B'(x)}{B^j(x)} + \frac{b_2^j}{B^j(x)} \right] + \sum_{j=1}^k \int \left[\frac{c_1^t.C'(x)}{C^t(x)} + \frac{c_2^t}{C^t(x)} \right] + \sum_{j=1}^k \int \left[\frac{a_1^j.A'(x)}{B^j(x)} + \frac{a_2^j}{B^j(x)} \right] + \sum_{j=1}^k \int \left[\frac{a_1^j.A'(x)}{A^j(x)} + \frac{a_2^j}{A^j(x)} \right] + \sum_{j=1}^k \int \left[\frac{a_1^j.A'(x)}{B^j(x)} + \frac{a_2^j}{B^j(x)} \right] + \sum_{j=1}^k \int \left[\frac{a_1^j.A'(x)}{C^j(x)} + \frac{a_2^j}{C^j(x)} \right] + \sum_{j=1}^k \int \left[\frac{a_1^j.A'(x)}{B^j(x)} + \frac{a_2^j}{B^j(x)} \right] + \sum_{j=1}^k \int \left[\frac{a_1^j.A'(x)}{C^j(x)} + \frac{a_2^j}{C^j(x)} \right] + \sum_{j=1}^k \int \left[\frac{a_1^j.A'(x)}{C^j(x)} + \frac{a_2^j}{C^j(x)} \right] + \sum_{j=1}^k \int \left[\frac{a_1^j.A'(x)}{C^j(x)} + \frac{a_2^j}{C^j(x)} \right] + \sum_{j=1}^k \int \left[\frac{a_1^j.A'(x)}{C^j(x)} + \frac{a_2^j.A'(x)}{C^j(x)} \right] + \sum_{j$$

Ví dụ 10: Tính tích phân bất định:
$$I = \int \frac{x^3 - 3x^2 + x + 6}{x^3 - 5x^2 + 6x} dx$$
.

Giải:

Ta có:

$$\frac{x^3 - 3x^2 + x + 6}{x^3 - 5x^2 + 6x} = 1 + \frac{2x^2 - 5x + 6}{x^3 - 5x^2 + 6x} = 1 + \frac{2x^2 - 5x + 6}{x(x - 2)(x - 3)} = 1 + \frac{a}{x} + \frac{b}{x - 2} + \frac{c}{x - 3}.$$

Ta được hằng đẳng thức: $2x^2 - 5x + 6 = a(x-3)(x-2) + bx(x-3) + cx(x-2)$ (1)

Để xác định a, b, c trong (1) ta có thể lựa chọn một trong hai cách sau:

• <u>Cách 1</u>: Phương pháp đồng nhất hệ số

Khai triển vế phải của (1) và sắp xếp đa thức theo thứ tự bậc lùi dần, ta có:

$$2x^2 - 5x + 6 = (a + b + c)x^2 - (5a + 3b + 2c)x + 6a$$

Đồng nhất đẳng thức, ta được: $\begin{cases} a+b+c=2\\ 5a+3b+2c=5 \iff \begin{cases} a=1\\ b=-2\\ c=3 \end{cases}$

• <u>Cách 2</u>: Phương pháp trị số riêng:

Lần lượt thay x = 0, x = 2, x = 3 vào hai vế của (1) ta được hệ: $\begin{cases} a = 1 \\ b = -2 \\ c = 3 \end{cases}$

Khi đó:
$$\frac{x^3 - 3x^2 + x + 6}{x^3 - 5x^2 + 6x} = 1 + \frac{1}{x} - \frac{2}{x - 2} + \frac{3}{x - 3}$$
Do đó:
$$I = \int \left(1 + \frac{1}{x} - \frac{2}{x - 2} + \frac{3}{x - 3}\right) dx = x + \ln|x| - 2\ln|x - 2| + 3\ln|x + 3| + C.$$

Ví dụ 11: Tính tích phân bất định: $I = \int \frac{7x-4}{x^3-3x+2} dx$.

Giải:

Ta có: $\frac{7x-4}{x^3-3x+2} = \frac{7x-4}{(x+2)(x-1)^2} = \frac{a}{(x-1)^2} + \frac{b}{x-1} + \frac{c}{x+2}$ $= \frac{(b+c)x^2 + (a+b-2c)x + 2a-2b+c}{(x-2)(x-1)^2}$

Ta được hằng đẳng thức: $7x-4 = a(x+2) + b(x-1)(x+2) + c(x-1)^2$ (1)

Để xác đinh a, b, c trong (1) ta có thể lưa chon một trong hai cách sau:

• <u>Cách 1</u>: Phương pháp đồng nhất hệ số:

Khai triển vế phải của (1) và sắp xếp đa thức theo thứ tự bậc lùi dần, ta có:

$$7x-4 = (b+c)x^2 + (a+b-2c)x + 2a-2b+c.$$

Đồng nhất đẳng thức, ta được: $\begin{cases} b+c=0\\ a+b-2c=7\\ 2a-2b+c=-4 \end{cases} \Leftrightarrow \begin{cases} a=1\\ b=2\\ c=-2 \end{cases}$

• <u>Cách 2</u>: Phương pháp trị số riêng:

Lần lượt thay x = 0, x = 2, x = 3 vào hai vế của (1) ta được hệ: $\begin{cases} a = 1 \\ b = 2 \\ c = -2 \end{cases}$

Khi đó:
$$\frac{7x-4}{x^3-3x+2} = \frac{1}{(x-1)^2} + \frac{2}{x-1} - \frac{2}{x+2}$$
.

Do đó: $I = \int \left[\frac{1}{(x-1)^2} + \frac{2}{x-1} - \frac{2}{x+2} \right] dx = -\frac{1}{x-1} + 2 \ln|x+1| - 2 \ln|x+2| + C.$

Ví dụ 12: Tính tích phân bất định: $I = \int \frac{x^3 - x^2 - 4x - 1}{x^4 + x^3}$

Giải:

Ta có:
$$\frac{x^3 - x^2 - 4x - 1}{x^4 - x^3} = \frac{x^3 - x^2 - 4x - 1}{x^3(x+1)} = \frac{a}{x^3} + \frac{b}{x^2} + \frac{c}{x} + \frac{d}{x+1}$$
$$= \frac{(c+d)x^3 + (b-c)x^2 + (a+b)x + a}{x^3(x+1)}$$

Đồng nhất đẳng thức, ta được:
$$\begin{cases} c+d=1\\ b+c=-1\\ a+b=-4 \end{cases} \Leftrightarrow \begin{cases} a=-1\\ b=-3\\ c=2\\ d=-1 \end{cases}$$

Khi đó:
$$\frac{x^3 - x^2 - 4x - 1}{x^4 + x^3} = -\frac{1}{x^3} - \frac{3}{x^2} + \frac{2}{x} - \frac{1}{x+1}$$
.

Do đó:
$$I = \int \left(-\frac{1}{x^3} - \frac{3}{x^2} + \frac{2}{x} - \frac{1}{x+1} \right) dx = \frac{1}{2x^2} + \frac{3}{x} + 2 \ln|x| - \ln|x+1| + C.$$

3. PHƯƠNG PHÁP ĐỔI BIẾN

Bài toán 3: Xác định nguyên hàm các hàm hữu tỉ bằng phương pháp đổi biến

PHƯƠNG PHÁP CHUNG

Nếu tích phân cần xác định có dạng: $I = \int \frac{x^{k-1}.P(x^k)dx}{Q(x^k)}$.

Ta thực hiện theo các bước sau:

• $\underline{Bu\acute{o}c\ 1}$: Đặt $t = x^k$, suy ra : $dt = kx^{k-1}dx$,

Khi đó:
$$I = \frac{1}{k} \int \frac{P_1(t)dt}{Q_1(t)}$$
 (1)

Trong đó $P_1(x)$, $Q_1(x)$ là đa thức có bậc nhỏ hơn P(x) và (Q(x).

• <u>Bước 2</u>: Tính tích phân trong (1)

Chú ý: Ta nhận thấy sự mở rộng tự nhiên với dạng: $I = \int \frac{\phi'(x).P[\phi(x)]dx}{Q[\phi(x)]}$

trong đó $\phi(x)$ là một đa thức bậc k của x.

Khi đó đặt $t = \phi(x)$.

Ví dụ 13: Tính tích phân bất định:
$$I = \int \frac{x^3 dx}{(x^8 - 4)^2}$$
.

Giải:

$$\text{D}$$
ặt $t = x^4$

Suy ra: dt =
$$4x^3$$
dx & $\frac{x^3$ dx $(x^8-4)^2$ = $\frac{1}{4} \cdot \frac{dt}{(t^2-4)^2}$

Khi đó:
$$I = \frac{1}{4} \int \frac{dt}{(t^2 - 4)^2}$$

Sử dụng đồng nhất thức: $1 = \frac{1}{16}[(t+2) - (t-2)]^2$

$$Ta \ \text{divoc:} \ I = \frac{1}{64} \int \frac{\left[(t+2) - (t-2) \right]^2}{\left(t^2 - 4 \right)^2} dt = \frac{1}{64} \int \left[\frac{1}{\left(t-2 \right)^2} - \frac{2}{t^2 - 4} + \frac{1}{\left(t+2 \right)^2} \right] dt$$

$$\begin{split} &= \frac{1}{64} \left[-\frac{1}{t-2} - \frac{1}{2} \ln \left| \frac{t-2}{t+2} \right| - \frac{1}{t+2} \right] + C \\ &= -\frac{1}{64} \left(\frac{2t}{t^2 - 4} - \frac{1}{2} \ln \left| \frac{t-2}{t+2} \right| \right) + C = -\frac{1}{64} \left(\frac{2x^4}{x^8 - 4} - \frac{1}{2} \ln \left| \frac{x^4 - 2}{x^4 + 2} \right| \right) + C \end{split}$$

Ví dụ 14: Tính tích phân bất định:
$$I = \int \frac{(2x+1)dx}{x^4 + 2x^3 + 3x^2 + 2x - 3}$$

Giải:

Biến đổi I về dạng:
$$I = \int \frac{(2x+1)dx}{(x^2+x+1)^2-4}$$

Đặt
$$t = x^2 + x + 1$$
. Suy ra: $dt = (2x + 1)dx & \frac{(2x + 1)dx}{(x^2 + x + 1)^2 - 4} = \frac{dt}{t^2 - 4}$.

Khi đó:
$$I = \int \frac{dt}{t^2 - 4} = \ln \left| \frac{t - 2}{t + 2} \right| + C = \ln \left| \frac{x^2 + x - 1}{x^2 + x + 3} \right| + C.$$

Ví dụ 15: Tính tích phân bất định:
$$I = \int \frac{x^2 - 1}{x^4 + 1} dx$$
.

Giải:

Biến đổi I về dạng: I =
$$\int \frac{1 - \frac{1}{x^2}}{\frac{1}{x^2} + x^2} dx = \int \frac{1 - \frac{1}{x^2}}{\left(x + \frac{1}{x}\right)^2 - 2} dx$$
.

Đặt
$$t = x + \frac{1}{x}$$
. Suy ra: $dt = \left(1 - \frac{1}{x^2}\right) dx & \frac{1 - \frac{1}{x^2}}{\left(x + \frac{1}{x}\right)^2} = \frac{dt}{t^2 - 2}$

Khi đó:
$$I = \int \frac{dt}{t^2 - 2} = \frac{1}{2\sqrt{2}} \ln \left| \frac{t - 2}{t + \sqrt{2}} \right| + C = \frac{1}{2\sqrt{2}} \ln \left| \frac{x + \frac{1}{x} - \sqrt{2}}{x + \frac{1}{x} + \sqrt{1}} \right| + C$$
$$= \frac{1}{2\sqrt{2}} \ln \left| \frac{x^2 - x\sqrt{2} + 1}{x^2 + x\sqrt{2} + 1} \right| + C.$$

4. SỬ DỤNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN

Phương pháp này cho dù ít được sử dụng đối với các hàm số hữu tỉ, tuy nhiên trong những trường hợp riêng nó lại tỏ ra khá hiệu quả.

<u>Bài toán 4</u>: Xác định nguyên hàm các hàm hữu tỉ bằng phương pháp tích phân từng phần

PHƯƠNG PHÁP CHUNG

Nếu tích phân cần xác định có dạng: $I = \int \frac{P(x)Q'(x)dx}{Q^n(x)}$

Ta thực hiện theo các bước sau:

•
$$\underline{Bu\acute{o}c\ 1}$$
: Đặt $\begin{cases} u = P(x) \\ dv = \frac{Q'(x)dx}{Q^n(x)} \Rightarrow \begin{cases} du \\ v \end{cases}$

• $\underline{Bu\acute{o}c}$ 2: Khi đó: $I = uv - \int v du$.

Ví dụ 16: Tính tích phân bất định: $I = \int \frac{x^4 dx}{(x^2 - 1)^3}$

Giải:

Biến đổi I về dạng:
$$I = \int \frac{x^3 \cdot x dx}{(x^2 - 1)^3}$$

$$\text{D} \ddot{a} t: \begin{cases} u = x^3 \\ dv = \frac{x dx}{(x^2 - 1)^3} \Rightarrow \begin{cases} du = 3x^2 dx \\ v = \frac{1}{4(x^2 - 1)^3} \end{cases}$$

Khi đó:
$$I = \frac{x^3}{4(x^2 - 1)^3} + \frac{3}{4} \int \frac{x^2 dx}{(x^2 - 1)^2}$$
 (1)

Xét tích phân:

$$J = \int \frac{x^2 dx}{(x^2 - 1)^2} = \frac{1}{4} \int \frac{[(x+1) + (x-1)]^2 dx}{(x^2 - 1)^2} = \frac{1}{4} \int \left[\frac{1}{(x-2)^2} + \frac{2}{x^2 - 1} + \frac{1}{(x+1)^2} \right] dx$$
$$= \frac{1}{4} \left(-\frac{1}{x-1} + \ln \left| \frac{x-1}{x+1} \right| - \frac{1}{x+1} \right) + C = \frac{1}{4} \left(\ln \left| \frac{x-1}{x+1} \right| - \frac{2x}{x^2 - 1} \right) + C$$
(2)

Thay (2) vào (1), ta được:
$$I = -\frac{x^3}{4(x^2-1)^3} + \frac{3}{16} \left(\ln \left| \frac{x-1}{x+1} \right| - \frac{2x}{x^2-1} \right) + C.$$

Chú ý: Để xác định tích phân J chúng ta cũng có thể tiếp tục sử dụng tích phân từng phần như sau:

Khi đó:
$$J = -\frac{x}{2(x^2 - 1)} + \frac{1}{2} \int \frac{dx}{x^2 - 1} = -\frac{x}{2(x^2 - 1)} + \frac{1}{4} \ln \left| \frac{x - 1}{x + 1} \right|.$$

5. SỬ DỤNG CÁC PHƯƠNG PHÁP KHÁC NHAU

Trong phần này chúng ta sẽ đi xem xét một vài bài toán được giải bằng các phương pháp khác nhau và mục đích quan trọng nhất là cần học được phương pháp suy luận qua mỗi ví du.

Ví dụ 17: Tính tích phân bất định: $I = \int \frac{x^2 - 3}{x(x^4 + 3x^2 + 2)} dx$.

Giải:

Đặt
$$t = x^2$$
. Suy ra: $dt = 2xdx & x^3(2-3x^2)^8 dx = \frac{t-3}{t(t+1)(t+2)} dt$.

Khi đó:
$$I = \int \frac{t-3}{t(t-1)(t+2)} dt$$

Ta có:
$$\frac{t-3}{t(t+1)(t-2)} = \frac{a}{t} + \frac{b}{t+1} + \frac{c}{t+2} = \frac{(a+b+c)t^2 + (2a+2b+c)t + 2a}{t(t+1)(t+2)}$$

Đồng nhất đẳng thức, ta được:
$$\begin{cases} a+b+c=0\\ 3a+2b+c=1 \iff \begin{cases} a=-3/2\\ b=4\\ c=-5/2 \end{cases}$$

Khi đó:
$$\frac{t-3}{t(t+1)(t+2)} = -\frac{3}{2}\frac{1}{t} + \frac{4}{t+1} - \frac{5}{2}\frac{1}{t+2}$$

Do đó:
$$I = \int \left(-\frac{3}{2} \frac{1}{t} + \frac{4}{t+1} - \frac{5}{2} \frac{1}{t+2} \right) dt = -\frac{3}{2} \ln|t| + 4 \ln|t+1| - \frac{5}{2} \ln|t+2| + C$$

$$= -\frac{3}{2} \ln(x^2) + 4 \ln(x^2+1) - \frac{5}{2} \ln(x^2+2) + C.$$

Ví dụ 18: Tính tích phân bất định: $I = \int \frac{dx}{t(x^6 + 1)^2}$.

Giải

Đặt
$$t = x^3$$
. Suy ra: $dt = 3x^2 dx & \frac{dx}{x(x^6 + 1)^2} = \frac{1}{3} \cdot \frac{dt}{t(t^2 + 1)^2}$

Khi đó:
$$I = \frac{1}{3} \int \frac{dt}{t(t^2 + 1)^2}$$

Ta có:
$$\frac{1}{t(t^2+1)^2} = \frac{a}{t} + \frac{bt}{t^2+1} + \frac{ct}{(t^2+1)^2} = \frac{(a+b)t^4 + (2a+b+c)t^2 + a}{t(t^2+1)^2}$$

$$\label{eq:definition} \begin{split} \text{D\`ong nhất, ta được:} & \begin{cases} a+b=0 \\ 2a+b+c=0 \Leftrightarrow \begin{cases} a=1 \\ b=-1 \\ c=-1 \end{cases} \\ \Rightarrow \frac{dt}{t(t^2+1)^2} = \frac{1}{t} - \frac{t}{t^2+1} - \frac{t}{(t^2+1)^2}. \end{split}$$

Do đó:
$$I = \int \left[\frac{1}{t} - \frac{t}{t^2 + 1} - \frac{t}{(t^2 + 1)^2} \right] dt = \ln|t| - \frac{1}{2} \ln|t^2 + 1| + \frac{1}{2} \cdot \frac{1}{t^2 + 1} + C$$

$$= \frac{1}{2} \left(\ln \frac{t^2}{t^2 + 1} + \frac{1}{t^2 + 1} \right) + C = \frac{1}{2} \left(\ln \frac{x^6}{x^6 + 1} + \frac{1}{x^6 + 1} \right) + C.$$

 $\underline{\text{Ví dụ 19}}\text{: Tính tích phân bất định: }I = \int\!\frac{1\!-\!x^4}{x(1\!+\!x^4)}dx.$

Giải

Đặt
$$t = x^4$$
. Suy ra: $dt = 4x^3 dx & \frac{1-x^4}{x(1+x^4)} = \frac{1}{4} \cdot \frac{1-t}{t(1+t)}$

Khi đó:
$$I = \frac{1}{4} \int \frac{1-t}{t(1+t)} dt$$

Ta có:
$$\frac{1-t}{t(1+t)} = \frac{a}{t} + \frac{b}{t+1} = \frac{(a+b)t+a}{t(t^2+1)^2}$$

Đồng nhất đẳng thức, ta được:
$$\begin{cases} a+b=-1 \\ a=1 \end{cases} \Leftrightarrow \begin{cases} a=1 \\ b=-2 \end{cases} \Rightarrow \frac{1-t}{t(1+t)} = \frac{1}{t} - \frac{2}{t+1}$$

Do đó:
$$I = \int \left(\frac{1}{t} - \frac{2}{t+1}\right) dt = \ln|t| - 2\ln|t+1| + C = \ln\frac{|t|}{(t+1)^2} + C = \ln\frac{x^4}{(x^4+1)^2} + C.$$

Ví dụ 20: Tính tích phân bất định:
$$I = \int \frac{(x^3 - 1)dx}{x(x^3 - 4)(x^4 - 4x + 1)}$$
.

Giải:

Biến đổi I về dạng:
$$I = \int \frac{(x^3 - 1)dx}{(x^4 - 4x)(x^4 - 4x + 1)}$$

Sử dụng đồng nhất thức: $1 = (x^4 - 4x + 1)(-(x^4 - 4x))$

$$\begin{aligned} \text{Ta duợc: } I &= \int \frac{[(x^4 - 4x + 1) - (x^4 - 4x)](x^3 - 1) dx}{(x^4 - 4x)(x^4 - 4x + 1)} = \int \frac{(x^3 - 1) dx}{x^4 - 4x} - \int \frac{(x^3 - 1) dx}{x^4 - 4x + 1} \\ &= \frac{1}{4} (\ln|x^4 - 4x| - \ln|x^4 - 4x + 1|) + C = \frac{1}{4} \ln\left|\frac{x^4 - 4x}{x^4 - 4x + 1}\right| + C. \end{aligned}$$

Ví dụ 21: Tính tích phân bất định:
$$I = \int \frac{x^2 - 1}{x^4 + 2x^3 - x^2 + 2x + 1} dx$$
.

Giải

Chia cả tử và mẫu của biểu thức dưới dấu tích phân cho $x^2 \neq 0$, ta được:

$$I = \int \frac{1 - \frac{1}{x^2}}{x^2 + 2x - 1 + \frac{2}{x} + \frac{1}{x^2}} dx = \int \frac{d\left(x + \frac{1}{x}\right)}{\left(x + \frac{1}{x}\right)^2 + 2\left(x + \frac{1}{x}\right) - 3} = \int \frac{d\left(x + \frac{1}{x} + 1\right)}{\left(x + \frac{1}{x} + 1\right)^2 - 4}$$
$$= \frac{1}{4} \ln \left| \frac{x + \frac{1}{x} + 1 - 2}{x + \frac{1}{x} + 1 + 2} \right| + C = \frac{1}{4} \ln \left| \frac{x^2 - x + 1}{x^2 + 3x + 1} \right| + C.$$

BÀI TẬP

Bài 20. Tính tích phân sau:

a/
$$\int \frac{dx}{4x^2 + 8x + 3}$$
; b/ $\int \frac{dx}{x^2 - 7x + 10}$; c/ $\int \frac{dx}{3x^2 - 2x - 1}$.
 \underline{DS} : a/ $\frac{1}{4} \ln \left| \frac{2x + 1}{2x + 3} \right| + C$; b/ $\frac{1}{3} \ln \left| \frac{x - 5}{x - 2} \right| + C$; c/ $\frac{1}{4} \ln \left| \frac{3x + 3}{3x + 1} \right| + C$.

Bài 21. Tính các tích phân sau:

$$a/\int \frac{2x-7}{x^2-3x+2} dx; \quad b/\int \frac{5x-7}{x^2-3x+2} dx; \quad c/\int \frac{2x+7}{x^2+5x+6} dx; \quad d/\int \frac{2x+5}{9x^2-6x+1} dx;$$

$$\underline{DS}: \quad a/ \quad 5\ln|x-1|-3\ln|x-2|+C; \quad b/ \quad 5\ln|x+1|-\frac{9}{2}\ln\left|\frac{x-1}{x+1}\right|+C;$$

$$c/ \quad 3\ln|x+2|-\ln|x+3|+C; \quad d/ \quad \frac{2}{9}\ln|3x-1|-\frac{17}{9}\cdot\left(\frac{1}{3x-1}\right)+C.$$

Bài 22. Tính các tích phân sau:

$$a \int \frac{x dx}{(x+1)(2x+1)}; \ b \int \frac{2x^2 + 41x - 91}{(x-1)(x^2 - x - 12)} dx; \ c \int \frac{dx}{6x^3 - 7x^2 - 3x};$$

$$d \int \frac{x^3 - 1}{4x^3 - x} dx; \ e \int \frac{(x^3 - 3x + 2) dx}{x(x^2 + 2x + 1)}; \ f \int \frac{(x+2)^2 dx}{x(x^2 - 2x + 1)}.$$

$$\underline{BS}: \ a \int \ln|x + 1| - \frac{1}{2} \ln\left|x + \frac{1}{2}\right| + C; \ b \int 4 \ln|x - 1| + 5 \ln|x - 4| + 7 \ln|x + 3| + C;$$

$$c \int -\frac{1}{3} \ln|x| + \frac{2}{33} \ln\left|x - \frac{3}{2}\right| + \frac{3}{11} \ln\left|x + \frac{1}{3}\right| + C;$$

$$d \int \frac{1}{4} x + \ln|x| - \frac{7}{16} \ln\left|x - \frac{1}{2}\right| - \frac{9}{16} \ln\left|x + \frac{1}{2}\right| + C;$$

$$e \int x + 2 \ln|x| 4 \ln|x + 1| - \frac{4}{x + 1} + C; \ f \int 4 \ln|x| - 2 \ln|x - 1| - \frac{9}{x - 1} + C.$$

Bài 23. Tính các tích phân sau:

$$a/\int \frac{x dx}{x^4 - 3x^2 + 2}; \ b/\int \frac{x' dx}{(x^4 + 1)^2}; \ c/\int \frac{x dx}{x^4 - 2x^2 - 1}; \ d/\int \frac{x^3 dx}{x^6 - x^3 - 2}; \ e/\int \frac{2 dx}{x(x^2 + 1)};$$

$$f/\int \frac{x^5 dx}{x^6 - x^3 - 2}; \ g/\int \frac{dx}{x(x^{10} + 1)^2}; h/\int \frac{x^2 - 1}{x^4 + 1} dx; \ i/\int \frac{x^3}{(x^2 + 1)^2} dx; \ k/\int \frac{x^2 dx}{(1 - x)^{10}}.$$

$$\underline{BS}: \ a/\quad \frac{1}{2} \ln \left| \frac{x^2 - 2}{x^2 - 1} \right| + C; \ b/\quad \frac{1}{4} \left(\ln |x^4 - 1| + \frac{1}{x^4 + 1} \right) + C;$$

$$c/\quad \frac{1}{4\sqrt{2}} \ln \left| \frac{x^2 - (1 + \sqrt{2})}{x^2 - (1 - \sqrt{2})} \right| + C; \ d/\quad \frac{1}{6} \ln |x^6 - x^3 - 2| + \frac{1}{18} \ln \left| \frac{x^3 - 2}{x^3 + 1} \right| + C;$$

e/
$$\ln \left| \frac{x^2}{x^2 + 1} \right| + C;$$
 f/ $\frac{1}{8} \ln \left| \frac{x^2}{x^2 + 4} \right| + C;$ g/ $\frac{1}{9} \ln \left(\frac{x^{10}}{x^{10} + 1} \right) + \frac{9}{x^{10} + 1} + C;$ h/ $\frac{1}{2\sqrt{2}} \ln \left[\frac{x + \frac{1}{x} - \sqrt{2}}{x + \frac{1}{x} + \sqrt{2}} \right] + C;$ i/ $\frac{1}{2} \left[\ln(x^2 + 1) + \frac{1}{x^2 + 1} \right] + C;$ k/ $\frac{1}{7(x - 1)^7} - \frac{1}{4(x - 1)^8} - \frac{1}{9(x - 1)^9} + C.$

Bài 24. Cho hàm số $f(x) = \frac{2x^2 + 2x + 5}{x^2 - 3x + 2}$

a/ Tìm m, n, p để
$$f(x) = \frac{m}{(x-1)^2} + \frac{n}{x-1} + \frac{p}{x+2}$$

b/ Tìm họ nguyên hàm của f(x) (DHTM_1994)

DS: a/
$$m = 3$$
; $n = 1$; $p = 1$. b/ $\ln |(x-1)(x+2)| - \frac{3}{x-1} + C$.

Bài 25. Tìm họ nguyên hàm của các hàm số:

a/
$$f(x) = \frac{x^4 - 2}{x^3 - x};$$
 b/ $\frac{1}{2} \ln \left| \frac{x^2 - 1}{x^2} + C. \right|$ (DHTM_1994)

BS: a/
$$\frac{1}{2}x^2 + 2\ln|x| - \frac{1}{2}\ln|x^2 - 1| + C$$
; b/ $\frac{1}{2}\ln\left|\frac{x^2 - 1}{x^2}\right| + C$.

Bài 26. Cho hàm số $y = \frac{3x^2 + 3x + 3}{x^3 - 3x + 2}$.

a/ Xác định các hằng số a, b, c để
$$y = \frac{a}{(x-1)^2} + \frac{b}{x-1} + \frac{c}{x-2}$$
.

b/ Tìm họ nguyên hàm của y $(DHQG-Ha N \hat{o}i_1995)$

BS: a/ a = 3; b = 2; c = 1. b/
$$-\frac{3}{x-1} + 2\ln|x-1| + \ln|x+2| + C$$
.

Bài 27. Tìm họ nguyên hàm của hàm số:

$$a/f(x) = \frac{x^{2001}}{(1+x^2)^{1002}} \qquad b/f(x) = \frac{1}{x(x^{1999} + 2000)}$$

$$c/f(x) = \frac{x^2 - 1}{(x^2 + 5x + 1)(x^2 - 3x + 1)}$$

$$\underline{BS}: \quad a/\frac{1}{2002} \left(\frac{x^2}{1+x^2}\right)^{1001} + C; \qquad b/\frac{1}{1999 - 2000} \ln \left|\frac{x^{1999}}{x^{1999} + 2000}\right| + C;$$

$$c/\frac{1}{8} \ln \left|\frac{x^2 - 3x + 1}{x^2 - 5x + 1}\right| + C.$$

Vấn đề 8: NGUYÊN HÀM CÁC HÀM LƯỢNG GIÁC

Để xác định nguyên hàm các hàm lượng giác ta cần linh hoạt lựa chọn một trong các phương pháp cơ bản sau:

- 1. Sử dụng các dạng nguyên hàm cơ bản.
- 2. Sử dụng các phép biến đổi lượng giác đưa về các nguyên hàm cơ bản.
- 3. Phương pháp đổi biến.
- 4. Phương pháp tích phân từng phần.

1. SỬ DỤNG CÁC DẠNG NGUYÊN HÀM CƠ BẨN

Bài toán 1: Xác định nguyên hàm các hàm lượng giác bằng việc sử dụng các dạng nguyên hàm cơ bản.

Dang 1: Tính tích phân bất định:
$$I = \int \frac{dx}{\sin(x+a)\sin(x+b)}$$

PHƯƠNG PHÁP CHUNG

Ta thực hiện theo các bước sau:

• <u>Bước 1</u>: Sử dụng đồng nhất thức:

$$1 = \frac{\sin(a-b)}{\sin(a-b)} = \frac{\sin[(x+a)-(x+b)]}{\sin(a-b)}$$

• Buớc 2: Ta được:

$$\begin{split} I &= \int \frac{dx}{\sin(x+a)\sin(x+b)} dx = \frac{1}{\sin(a-b)} \int \frac{\sin[(x+a)-(x-b)]}{\sin(x+a)\sin(x+b)} dx \\ &= \frac{1}{\sin(a-b)} \int \frac{\sin(x+a).\cos(x+b) - \cos(x+a).\sin(x+b)}{\sin(x+a)\sin(x+b)} dx \\ &= \frac{1}{\sin(a-b)} \left[\int \frac{\cos(x+b)}{\sin(x+b)} dx - \int \frac{\cos(x+a)}{\sin(x+a)} dx \right] \\ &= \frac{1}{\sin(a-b)} [\ln|\sin(x+b)| - \ln|\sin(x+a)|] + C \\ &= \frac{1}{\sin(a-b)} \ln \left| \frac{\sin(x+b)}{\sin(x+a)} \right| + C. \end{split}$$

 ${\it Ch\'u}$ \acute{y} : Phương pháp trên cũng được áp dụng cho các dạng tích phân sau:

1.
$$I = \int \frac{dx}{\cos(x+a)\cos(x+b)}$$
, sử dụng đồng nhất thức $1 = \frac{\sin(a-b)}{\sin(a-b)}$.

2.
$$I = \int \frac{dx}{\sin(x+a)\cos(x+b)}, \text{ sử dụng đồng nhất thức } 1 = \frac{\cos(a-b)}{\cos(a-b)}.$$

Ví dụ 1: Tìm họ nguyên hàm của hàm số
$$f(x) = \frac{1}{\sin x \cdot \cos\left(x + \frac{\pi}{4}\right)}$$

Giải:

• Cách 1: Sử dụng phương pháp trong dạng toán cơ bản

Sử dụng đồng nhất thức:
$$1 = \frac{\cos\frac{\pi}{4}}{\cos\frac{\pi}{4}} = \frac{\cos\left[\left(x + \frac{\pi}{4}\right) - x\right]}{\frac{\sqrt{2}}{2}} = \sqrt{2}\cos\left[\left(x + \frac{\pi}{4}\right) - x\right].$$

$$Ta \ \text{divoc:} \quad F(x) = \sqrt{2} \int \frac{\cos \left[\left(x + \frac{\pi}{4} \right) - x \right]}{\sin x . \cos \left(x + \frac{\pi}{4} \right)} dx = \sqrt{2} \int \frac{\cos \left(x + \frac{\pi}{4} \right) \cos x + \sin \left(x + \frac{\pi}{4} \right) \sin x}{\sin x . \cos \left(x + \frac{\pi}{4} \right)}$$

$$= \sqrt{2} \left[\int \frac{\cos x}{\sin x} dx + \int \frac{\sin \left(x + \frac{\pi}{4}\right)}{\cos \left(x + \frac{\pi}{4}\right)} dx \right]$$

$$= \sqrt{2} \left[\ln|\sin x| - \ln\left|\cos\left(x + \frac{\pi}{4}\right)\right| \right] + C = \sqrt{2} \ln\left|\frac{\sin x}{\cos\left(x + \frac{\pi}{4}\right)}\right| + C$$

• <u>Cách 2</u>: Dựa trên đặc thù của hàm f(x)

Ta có:
$$F(x) = \sqrt{2} \int \frac{dx}{\sin x \cdot (\cos x - \sin x)} = \sqrt{2} \int \frac{dx}{\sin^2 x (\cot gx - 1)}$$

= $-\sqrt{2} \int \frac{d(\cot gx)}{\cot gx - 1} = -\sqrt{2} \int \frac{d(\cot gx - 1)}{\cot gx - 1} = -\sqrt{2} \ln |\cot gx - 1| + C.$

Dang 2: Tính tích phân bất định:
$$I = \int \frac{dx}{\sin x + \sin \alpha}$$

PHƯƠNG PHÁP CHUNG

Ta thực hiện theo các bước sau:

- <u>Bước 1</u>: Biến đổi I về dạng: $I = \int \frac{dx}{\sin x + \sin \alpha} = \frac{1}{2} \int \frac{dx}{\sin \frac{x + \alpha}{2} \cdot \cos \frac{x \alpha}{2}}$ (1)
- <u>Bước 2</u>: Áp dụng bài toán 1 để giải (1).

Chú ý: Phương pháp trên cũng được áp dụng cho các dạng tích phân sau:

1.
$$I = \int \frac{dx}{\sin x + m}$$
, $v \circ i \mid m \mid \le 1$

2.
$$I = \int \frac{dx}{\cos x + \cos \alpha} \quad \text{và} \quad I = \int \frac{dx}{\cos x + m}, \quad \text{với} \mid m \mid \le 1.$$

Ví dụ 2: Tìm họ nguyên hàm của hàm số $f(x) = \frac{1}{2 \sin x + 1}$

Giải:

Biến đổi f(x) về dạng:

$$f(x) = \frac{1}{2\left(\sin x + \frac{1}{2}\right)} = \frac{1}{2} \cdot \frac{1}{\sin x + \sin\frac{\pi}{6}} = \frac{1}{4} \cdot \frac{1}{\sin\frac{6x + \pi}{12} \cdot \cos\frac{6x - \pi}{12}}$$
(1)

Sử dụng đồng nhất thức: $1 = \frac{\cos\frac{\pi}{6}}{\cos\frac{\pi}{6}} = \frac{\cos\left(\frac{6x + \pi}{12} - \frac{6x - \pi}{12}\right)}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}}\cos\left(\frac{6x + \pi}{12} - \frac{6x - \pi}{12}\right)$

Ta được:
$$F(x) = \frac{1}{2\sqrt{3}} \int \frac{\cos\left(\frac{3x + \pi}{12} - \frac{6x - \pi}{12}\right)}{\sin\frac{6 + \pi}{12} \cdot \cos\frac{6x - \pi}{12}}$$

$$= \frac{1}{2\sqrt{3}} \int \frac{\cos\frac{6x + \pi}{12} \cdot \cos\frac{6x - \pi}{12} + \sin\frac{6x + \pi}{12} \cdot \sin\frac{6x - \pi}{12}}{\sin\frac{6x + \pi}{12} \cdot \cos\frac{6x - \pi}{12}}$$

$$= \frac{1}{2\sqrt{3}} \left[\int \frac{\cos\frac{6x + \pi}{12}}{\sin\frac{6x + \pi}{12}} dx + \int \frac{\sin\frac{6x - \pi}{12}}{\cos\frac{6x - \pi}{12}} dx \right]$$

 $= \frac{1}{2\sqrt{3}} \left[\ln \left| \sin \frac{6x + \pi}{12} \right| - \ln \left| \cos \frac{6x + \pi}{12} \right| \right] + C = \frac{1}{\sqrt{3}} \ln \left| \frac{\sin \frac{6x + \pi}{12}}{\cos \frac{6x - \pi}{12}} \right| + C.$

<u>Dang 3</u>: Tính tích phân bất định: $I = \int tgx.tg(x + \alpha)dx$.

PHƯƠNG PHÁP CHUNG

Ta thực hiện theo các bước sau:

• Bước 1: Biến đổi I về dạng:

$$I = \int tgx.tg(x+\alpha)dx = \int \frac{\sin x.\sin(x+\alpha)}{\cos x.\cos(x+\alpha)}dx$$

$$= \int \left(\frac{\cos x.\cos(x+\alpha) + \sin x.\sin(x+\alpha)}{\cos x.\cos(x+\alpha)} - 1\right)dx$$

$$= \int \frac{\cos \alpha dx}{\cos x.\cos(x+\alpha)} - \int dx = \cos \alpha \int \frac{dx}{\cos x.\cos(x+\alpha)} - x$$
 (1)

• <u>Bước 2</u>: Áp dụng bài toán 1 để giải (1).

Chú ý: Phương pháp trên cũng được áp dụng cho các dạng tích phân sau:

1. $I = \int tg(x + \alpha) \cdot \cot g(x + \beta) dx$.

2. $I = \int \cot g(x + \alpha) \cdot \cot g(x + \beta) dx$.

<u>Ví dụ 3</u>: Tìm họ nguyên hàm của hàm số $f(x) = tgx.tg\left(x + \frac{\pi}{4}\right)$.

Biến đổi f(x) về dạng: $f(x) = \frac{\sin x \cdot \sin\left(x + \frac{\pi}{4}\right)}{\cos x \cdot \cos\left(x + \frac{\pi}{4}\right)} = \frac{\cos x \cdot \cos\left(x + \frac{\pi}{4}\right) + \sin x \cdot \sin\left(x + \frac{\pi}{4}\right)}{\cos x \cdot \cos\left(x + \frac{\pi}{4}\right)} - 1$

$$= \frac{\cos\frac{\pi}{4}}{\cos x \cdot \cos\left(x + \frac{\pi}{4}\right)} - 1 = \frac{\sqrt{2}}{2} \cdot \frac{1}{\cos x \cdot \cos\left(x + \frac{\pi}{4}\right)} - 1.$$

Khi đó:
$$F(x) = \frac{\sqrt{2}}{2} \int \frac{dx}{\cos x \cdot \cos \left(x + \frac{\pi}{4}\right)} - \int dx = -x + \frac{\sqrt{2}}{2} \int \frac{dx}{\cos x \cdot \cos \left(x + \frac{\pi}{4}\right)}$$
(1)

Để đi xác định: $J = \int \frac{dx}{\cos x \cdot \cos \left(x + \frac{\pi}{4}\right)}$ ta lựa chọn một trong hai cách sau:

• <u>Cách 1</u>: Sử dụng phương pháp trong dạng toán cơ bản.

Sử dụng đồng nhất thức:
$$1 = \frac{\sin\frac{\pi}{4}}{\sin\frac{\pi}{4}} = \frac{\sin\left[\left(x + \frac{\pi}{4}\right) - x\right]}{\frac{\sqrt{2}}{2}} = \sqrt{2}\sin\left[\left(x + \frac{\pi}{4}\right) - x\right]$$

Ta được:

$$J = \sqrt{2} \int \frac{\sin\left[\left(x + \frac{\pi}{4}\right) - x\right]}{\cos x \cdot \cos\left(x + \frac{\pi}{4}\right)} dx = \sqrt{2} \int \frac{\sin\left(x + \frac{\pi}{4}\right) \cos x - \cos\left(x + \frac{\pi}{4}\right) \sin x}{\cos x \cdot \cos\left(x + \frac{\pi}{4}\right)} dx$$

$$= \sqrt{2} \left[\int \frac{\sin\left(x + \frac{\pi}{4}\right)}{\cos\left(x + \frac{\pi}{4}\right)} dx - \int \frac{\sin x}{\cos x} dx\right] = \sqrt{2} \left[-\ln\left|\cos x\left(x + \frac{\pi}{4}\right)\right| + \ln\left|\cos x\right|\right] + C$$

$$= \sqrt{2} \ln\left|\frac{\cos x}{\cos\left(x + \frac{\pi}{4}\right)}\right| + C = -\sqrt{2} \ln\left|1 - tgx\right| + C.$$

• <u>Cách 2</u>: Dựa trên đặc thù của hàm dưới dấu tích phân

Ta có:
$$J = \sqrt{2} \int \frac{dx}{\cos x \cdot (\cos x - \sin x)} = \sqrt{2} \int \frac{dx}{\cos^2 x (1 - tgx)}$$

$$= \sqrt{2} \int \frac{d(tgx)}{1 - tgx} = -\sqrt{2} \int \frac{d(1 - tgx)}{1 - tgx} = -\sqrt{2} \ln |1 - tgx| + C$$

Vậy ta được: $F(x) = -x - \ln|1 - tgx| + C$.

<u>Dang 4</u>: Tính tích phân bất định: $I = \int \frac{dx}{a \sin x + b \cos x}$

PHƯƠNG PHÁP CHUNG

Ta có thể lưa chon hai cách biến đổi:

• Cách 1: Ta có:

$$\begin{split} I &= \frac{1}{\sqrt{a^{2} + b^{2}}} \int \frac{dx}{\sin(x + \alpha)} = \frac{1}{\sqrt{a^{2} + b^{2}}} \int \frac{dx}{2 \sin \frac{x + \alpha}{2} \cos \frac{x + \alpha}{2}} \\ &= \frac{1}{\sqrt{a^{2} + b^{2}}} \int \frac{dx}{2 t g \frac{x + \alpha}{2} \cos^{2} \frac{x + \alpha}{2}} = \frac{1}{\sqrt{a^{2} + b^{2}}} \int \frac{d \left(t g \frac{x + \alpha}{2} \right)}{t g \frac{x + \alpha}{2}} \\ &= \frac{1}{\sqrt{a^{2} + b^{2}}} \ln \left| t g \frac{x + \alpha}{2} \right| + C. \end{split}$$

• *Cách 2*: Ta có:

$$\begin{split} I &= \frac{1}{\sqrt{a^2 + b^2}} \int \frac{dx}{\sin(x + \alpha)} = \frac{1}{\sqrt{a^2 + b^2}} \int \frac{\sin(x + \alpha)dx}{\sin^2(x + \alpha)} \\ &= -\frac{1}{\sqrt{a^2 + b^2}} \int \frac{d[\cos(x + \alpha)]}{\cos^2(x + \alpha) - 1} = -\frac{1}{2\sqrt{a^2 + b^2}} \ln \left| \frac{\cos(x + \alpha) - 1}{\cos(x + \alpha) + 1} \right| + C. \end{split}$$

Chú ý: Chúng ta cũng có thể thực hiện bằng phương pháp đại số hoá với việc đổi biến: $t = tg\frac{x}{2}.$

Ví dụ 4: Tìm họ nguyên hàm của hàm số
$$f(x) = \frac{2}{\sqrt{3}\sin x + \cos x}$$
.

Ta có: $F(x) = \int \frac{2dx}{\sqrt{3}\sin x + \cos x} = \int \frac{dx}{\sin\left(x + \frac{\pi}{6}\right)} = \int \frac{dx}{2\sin\left(\frac{x}{2} + \frac{\pi}{12}\right)\cos\left(\frac{x}{2} + \frac{\pi}{12}\right)}$ $= \int \frac{dx}{2tg\left(\frac{x}{2} + \frac{\pi}{12}\right)\cos^2\left(\frac{x}{2} + \frac{\pi}{12}\right)} = \int \frac{d}{tg\left(\frac{x}{2} + \frac{\pi}{12}\right)} = \ln\left|tg\left|\frac{x}{2} + \frac{\pi}{12}\right| + C.\right|$

Dang 5: Tính tích phân bất định: $I = \int \frac{a_1 \sin x + b_1 \cos x}{a_2 \sin x + b_2 \cos x} dx.$

PHƯƠNG PHÁP CHUNG

• $\underline{B}\underline{w}\underline{o}c \ \underline{l}$: $\underline{B}\underline{i}\underline{e}$ n $\underline{d}\underline{o}$ i : $\underline{a}_1 \sin x + \underline{b}_1 \cos x = \underline{A}(\underline{a}_2 \sin x + \underline{b}_2 \cos x) + \underline{B}(\underline{a}_2 \cos x - \underline{b}_2 \sin x)$

• *Bước* 2: Khi đó:

$$\begin{split} I &= \int \frac{A(a_2 \sin x + b_2 \cos x) + B(a_2 \cos x - b_2 \sin x)}{a_2 \sin x + b_2 \cos x} dx \\ &= A \int dx + B \int \frac{a_2 \cos x - b_2 \sin x}{a_2 \sin x + b_2 \cos x} dx = Ax + B \ln |a_2 \sin x + b_2 \cos x| + C \end{split}$$

Ví dụ 5: Tìm họ nguyên hàm của hàm số $f(x) = \frac{4 \sin x + 3 \cos x}{\sin x + 2 \cos x}$.

Giải:

Biến đổi: $4\sin x + 3\cos x = a(\sin x + 2\cos x) + b(\cos x - 2\sin x)$

 $= (a-2b)\sin x + (2a+b)\cos x$

Đồng nhất đẳng thức, ta được:
$$\begin{cases} a-2b=4 \\ 2a+b=3 \end{cases} \Leftrightarrow \begin{cases} a=2 \\ b=-1 \end{cases}$$

Khi đó:
$$f(x) = \frac{2(\sin x + 2\cos x) - (\cos x - 2\sin x)}{\sin x + 2\cos x} = 2 - \frac{\cos x - 2\sin x}{\sin x + 2\cos x}$$

Do đó:
$$F(x) = \int \left(2 - \frac{\cos x - 2\sin x}{\sin x + 2\cos x}\right) dx = 2\int dx - \frac{d(\sin x + 2\cos x)}{\sin x + 2\cos x}$$

 $= 2x - \ln|\sin x + 2\cos x| + C$

Dang 6: Tính tích phân bất định:
$$I = \int \frac{a_1 \sin x + b_1 \cos x}{(a_2 \sin x + b_2 \cos x)^2} dx$$

PHƯƠNG PHÁP CHUNG

- $\underline{Bu\acute{\sigma}c\ 1}$: $\underline{Bi\acute{e}n}\ d\acute{\circ}i$: $\underline{a_1}\sin x + \underline{b_1}\cos x = \underline{A}(\underline{a_2}\sin x + \underline{b_2}\cos x) + \underline{B}(\underline{a_2}\cos x \underline{b_2}\sin x)$
- *Bước* 2: Khi đó:

$$\begin{split} I &= \int \frac{A(a_2 \sin x + b_2 \cos x) + B(a_2 \cos x - b_2 \sin x)}{(a_2 \sin x + b_2 \cos x)^2} dx \\ &= A \int \frac{dx}{a_2 \sin x + b_2 \cos x} + B \int \frac{a_2 \cos x - b_2 \sin x}{(a_2 \sin x + b_2 \cos x)^2} dx \\ &= \frac{A}{\sqrt{a_2^2 + b_2^2}} \int \frac{dx}{\sin(x + \alpha)} - \frac{B}{a_2 \sin x + b_2 \cos x} \\ &= \frac{A}{\sqrt{a_2^2 + b_2^2}} \ln |tg \frac{x + \alpha}{2}| - \frac{B}{a_2 \sin x + b_2 \cos x} + C \end{split}$$

Trong đó
$$\sin \alpha = \frac{b_2}{\sqrt{a_2^2 + b_2^2}}$$
 và $\cos \alpha = \frac{a_2}{\sqrt{a_2^2 + b_2^2}}$

Ví dụ 6: Tìm họ nguyên hàm của hàm số
$$f(x) = \frac{8\cos x}{2 + \sqrt{3}\sin 2x - \cos 2x}$$

Giải:

Biến đổi:
$$f(x) = \frac{8\cos x}{3\sin^2 x + 2\sqrt{3}\sin x \cos x + \cos^2 x} = \frac{8\cos x}{(\sqrt{3}\sin x + \cos x)^2}$$

Giả sử: $8\cos x = a(\sqrt{3}\sin x + \cos x) + b(\sqrt{3}\cos x - \sin x) = (a\sqrt{3} - b)\sin x + (a + b\sqrt{3})\cos x$

Đồng nhất đẳng thức, ta được:
$$\begin{cases} a\sqrt{3} - b = 0 \\ a + b\sqrt{3} = \end{cases} \Leftrightarrow \begin{cases} a = 2 \\ b = 2\sqrt{3} \end{cases}$$

Khi đó:
$$f(x) = \frac{2}{\sqrt{3}\sin x + \cos x} - \frac{2\sqrt{3}(\sqrt{3}\cos x - \sin x)}{(\sqrt{3}\sin x + \cos x)}$$

Do đó:
$$F(x) = \int \frac{2dx}{\sqrt{3}\sin x + \cos x} - 2\sqrt{3} \int \frac{d(\sqrt{3}\sin x + \cos x)}{(\sqrt{3}\sin x + \cos x)^2}$$

= $\frac{1}{2} \ln \left| tg \left(\frac{x}{2} + \frac{\pi}{12} \right) \right| - \frac{2\sqrt{3}}{\sqrt{3}\sin x + \cos x} + C.$

Chú ý: Trong lời giải trên ta đã tận dụng kết quả trong ví dụ 4 là:

$$\int \frac{2dx}{\sqrt{3}\sin x + \cos x} = \frac{1}{2} \ln \left| tg \left(\frac{x}{2} + \frac{\pi}{12} \right) \right| + C$$

Dang 7: Tính tích phân bất định:
$$I = \int \frac{dx}{a \sin x + b \cos x + c}$$

PHƯƠNG PHÁP CHUNG

Ta xét 3 khả năng sau:

1. Nếu
$$c = \sqrt{a^2 + b^2}$$

Ta thực hiện phép biến đổi:

$$\frac{1}{a\sin x + b\cos x + c} = \frac{1}{c[1 + \cos(x - \alpha)]} = \frac{1}{2c} \cdot \frac{1}{\cos^2 \frac{x - \alpha}{2}}$$

trong đó
$$\sin \alpha = \frac{a}{\sqrt{a^2 + b^2}}$$
 và $\cos \alpha = \frac{b}{\sqrt{a^2 + b^2}}$

Khi đó:
$$I = \frac{1}{2c} \int \frac{dx}{\cos^2 \frac{x - \alpha}{2}} = \frac{1}{c} \int \frac{d\left(\frac{x - \alpha}{2}\right)}{\cos^2 \frac{x - \alpha}{2}} = \frac{1}{2} tg \frac{x - \alpha}{2} + C.$$

2. Nếu
$$c = -\sqrt{a^2 + b^2}$$

Ta thực hiện phép biến đổi:

$$\frac{1}{a \sin x + b \cos x + c} = \frac{1}{c[1 - \cos(x - \alpha)]} = \frac{1}{2c} \cdot \frac{1}{\sin^2 \frac{x - \alpha}{2}}$$

trong đó
$$\sin \alpha = \frac{a}{\sqrt{a^2 + b^2}}$$
 và $\cos \alpha = \frac{b}{\sqrt{a^2 + b^2}}$

Khi đó:
$$I = \frac{1}{2c} \int \frac{dx}{\sin^2 \frac{x - \alpha}{2}} = \frac{1}{c} \int \frac{d\left(\frac{x - \alpha}{2}\right)}{\sin^2 \frac{x - \alpha}{2}} = \frac{1}{c} \cot g \frac{x - \alpha}{2} + C.$$

3. Nếu $c^2 \neq a^2 + b^2$

Ta thực hiện phép đổi biến $t = tg\frac{x}{2}$.

Khi đó:
$$dx = \frac{2dt}{1+t^2}$$
, $\sin x = \frac{2t}{1+t^2}$ & $\cos x = \frac{1-t^2}{1+t^2}$.

$$\underline{\text{Ví dụ 7}}\text{: Tính tích phân bất định } I = \int \frac{2 dx}{2 \sin x - \cos x + 1}.$$

Giải:

$$\mbox{D} \ddot{a}t \colon \ t = t \mbox{g} \frac{x}{2}, \ \ ta \ \ \mbox{d} u \mbox{o} \mbox{c} \colon \ \ dt = \frac{1}{2}. \\ \frac{1}{\cos^2 \frac{x}{2}} \mbox{d} x = \frac{1}{2} \bigg(1 + t \mbox{g}^2 \frac{x}{2} \bigg) \mbox{d} x = \frac{1}{2} (1 + t^2) \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x = \frac{1}{2} (1 + t^2) \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbox{d} x \\ \Rightarrow \mbox{d} x = \frac{2 \mbox{d} t}{1 + t^2} \mbo$$

$$\text{Khi $d\acute{o}$: } I = \int \frac{\frac{4dt}{1+t^2}}{\frac{4t}{1+t^2} - \frac{1-t^2}{1+t^2} + 1} = \int \frac{2dt}{t^2 + 2t} = 2\int \frac{d(t+1)}{(t+1)^2 - 1} = \ln \left| \frac{t-1}{t+1} \right| + C = \ln \left| \frac{tg\frac{x}{2} - 1}{tg\frac{x}{2} + 1} \right| + C \\ = \ln \left| tg\left(\frac{x}{2} - \frac{\pi}{4}\right) \right| + C.$$

Dang 8: Tính tích phân bất định:
$$I = \int \frac{a_1 \sin x + b_1 \cos x + c_1}{a_1 \sin x + b_2 \cos x + c_2} dx.$$

PHƯƠNG PHÁP CHUNG

- <u>Bước 1</u>: Biến đổi: $a_1 \sin x + b_1 \cos x + c_1 = A(a_2 \sin x + b_2 \cos x + c_2) + B(a_2 \cos x - b_2 \sin x) + C$
- *Bước* 2: Khi đó:

$$I = \int \frac{A(a_2 \sin x + b_2 \cos x + c_2) + B(a_2 \cos x - b_2 \sin x) + C}{a_2 \sin x + b_2 \cos x + c_2}$$

$$= A \int dx + B \int \frac{a_2 \cos x - b_2 \sin x}{a_2 \sin x + b_2 \cos x + c_2} dx + C \int \frac{dx}{a_2 \sin x + b_2 \cos x + c_2}$$

$$= Ax + B \ln |a_2 \sin x + b_2 \cos x + c_2| + C \int \frac{dx}{a_2 \sin x + b_2 \cos x + c_2}$$

$$= Ax + B \ln |a_2 \sin x + b_2 \cos x + c_2| + C \int \frac{dx}{a_2 \sin x + b_2 \cos x + c_2}$$

trong đó $\int \frac{dx}{a_2 \sin x + b_2 \cos x + c_2}$ được xác định nhờ dạng 4.

Ví dụ 8: Tìm họ nguyên hàm của hàm số
$$f(x) = \frac{5 \sin x}{2 \sin x - \cos x + 1}$$
..

Giải:

Giả sử: $5\sin x = a(2\sin x - \cos x + 1) + b(2\cos x + \sin x) + c$

$$= (2a + b)\sin x + (2b - a)\cos x + a + c.$$

Đồng nhất đẳng thức, ta được:
$$\begin{cases} 2a+b=5\\ 2b-a=0 \Leftrightarrow \begin{cases} a=2\\ b=1\\ c=-2 \end{cases}$$

Khi đó:
$$f(x) = \frac{2(2\sin x - \cos x + 1) + (2\cos x + \sin x) - 2}{2\sin x - \cos x + 1}$$

= $2 + \frac{2\cos x + \sin x}{2\sin x - \cos x + 1} - \frac{2}{2\sin x - \cos x + 1}$

Do đó:
$$F(x) = \int 2dx + \int \frac{2\cos x + \sin x}{2\sin x - \cos x + 1} dx - \int \frac{2}{2\sin x - \cos x + 1} dx$$

$$= 2\int dx + \frac{d(2\sin x - \cos x + 1)}{2\sin x - \cos x + 1} - \int \frac{2dx}{2\sin x - \cos x + 1}$$

$$= 2x + \ln|2\sin x - \cos x + 1| - \ln\left|tg\left(\frac{x}{2} - \frac{\pi}{2}\right)\right| + C.$$

Chú ý: Trong lời giải trên ta đã tận dụng kết quả trong ví dụ 7 là:

$$\int \frac{2dx}{2\sin x - \cos x + 1} = \ln \left| tg \left(\frac{x}{2} - \frac{\pi}{4} \right) \right| + C.$$

$$\underline{\textit{Dang 9}} \text{: } T \text{inh tích phân bất định: } I = \int \frac{a_1 \sin^2 x + b_1 \sin x \cos x + c_1 \cos^2 x}{a_2 \sin x + b_2 \cos x} dx.$$

PHƯƠNG PHÁP CHUNG

- <u>Bước 1</u>: Biến đổi: $a_1 \sin^2 x + b_1 \sin x \cdot \cos x + c_1 \cos^2 x$ = $(A \sin x + B \cos x)(a_2 \sin x + b_2 \cos x) + C(\sin^2 x + \cos^2 x)$
- *Bước* 2: Khi đó:

$$I = \int \frac{(A\sin x + B\cos x)(a_2 \sin x + b_2 \cos x) + C}{a_2 \sin x + b_2 \cos x} dx$$
$$= \int (A\sin x + B\cos x) dx + C \int \frac{dx}{a_2 \sin x + b_2 \cos x}$$

$$= -A\cos x + B\sin x + \frac{C}{\sqrt{a_2^2 + b_2^2}} \int \frac{dx}{\sin(x + \alpha)}$$

$$= -A\cos x + B\sin x + \frac{C}{\sqrt{a_2^2 + b_2^2}} \ln|tg\frac{x + \alpha}{1}| + C$$

trong đó
$$\sin\alpha = \frac{b_2}{\sqrt{a_2^2 + b_2^2}}$$
 và $\cos\alpha = \frac{a_2}{\sqrt{a_2^2 + b_2^2}}$.

Ví dụ 9: Tìm họ nguyên hàm của hàm số $f(x) = \frac{4\sin^2 x + 1}{\sqrt{3}\sin x + \cos x}$.

Giải:

Giả sử:
$$4\sin^2 x + 1 = 5\sin^2 x + \cos^2 x = (a\sin x + b\cos x)(\sqrt{3}\sin x + \cos x) + c(\sin^2 x + \cos^2 x)$$

= $(a\sqrt{3} + c)\sin^2 x + (a + b\sqrt{3})\sin x \cdot \cos x + (b + c)\cos^2 x$.

Đồng nhất đẳng thức, ta được:
$$\begin{cases} a\sqrt{3}+c=5\\ a+b\sqrt{3}=0\\ b+c=1 \end{cases} \Leftrightarrow \begin{cases} a=\sqrt{3}\\ b=-1\\ c=2 \end{cases}$$

Do đó:
$$F(x) = \int (\sqrt{3}\sin x - \cos x) dx - \int \frac{2dx}{\sqrt{3}\sin x + \cos x}$$
$$= -\sqrt{3}\cos x - \sin x - \frac{1}{2}\ln\left|tg\left(\frac{x}{2} + \frac{\pi}{12}\right)\right| + C.$$

Chú ý: Trong lời giải trên ta đã tận dụng kết quả trong ví dụ 4 là:

$$\int \frac{2dx}{\sqrt{3}\sin x + \cos x} = \frac{1}{2} \ln \left| tg \left(\frac{x}{2} + \frac{\pi}{12} \right) \right| + C.$$

Dạng 10: Tính tích phân bất định:
$$I = \int \frac{dx}{a \sin^2 x + b \sin x \cos x + c \cos^2 x}.$$

PHƯƠNG PHÁP CHUNG

- <u>Bước 1</u>: Biến đổi I về dạng: $I = \int \frac{dx}{(atg^2x + btgx + c)\cos^2 x}$
- $\underline{Bu\acute{o}c}$ 2: Thực hiện phép đổi biến: t = tgx

Suy ra:
$$dt = \frac{1}{\cos^2 x} dx & \frac{dx}{(atg^2x + btgx + c)\cos^2 x} = \frac{dt}{at^2 + bt + c}$$

Khi đó:
$$I = \int \frac{dt}{at^2 + bt + c}$$
.

Ví dụ 10: Tính tích phân bất định:
$$I = \int \frac{dx}{3\sin^2 x - 2\sin x \cos x - \cos^2 x}$$

Giải:

Sử dụng đẳng thức: $\frac{dx}{\cos^2 x} = d(tgx)$

Ta có:
$$I = \int \frac{dx}{(3tg^2x - 2tgx - 1)\cos^2 x} = \frac{1}{3} \int \frac{d(tgx)}{\left(tgx - \frac{1}{3}\right)^2 - \frac{4}{9}} = \frac{1}{3} \int \frac{d\left(tgx - \frac{1}{3}\right)}{\left(tgx - \frac{1}{3}\right)^2 - \frac{4}{9}}$$
$$= \frac{1}{4} \ln \left| \frac{tgx - \frac{1}{3} - \frac{2}{3}}{tgx - \frac{1}{3} + \frac{2}{3}} \right| + C = \frac{1}{4} \ln \left| \frac{tgx - 1}{3tgx + 1} \right| + C = \frac{1}{4} \ln \left| \frac{\sin x - \cos x}{3\sin x + \cos x} \right| + C.$$

2. SỬ DỤNG CÁC PHÉP BIẾN ĐỔI LƯỢNG GIÁC ĐƯA VỀ CÁC NGUYÊN HÀM CƠ BẢN

<u>Bài toán 2</u>: Xác định nguyên hàm các hàm lượng giác sử dụng các phép biến đổi lượng giác

PHƯƠNG PHÁP CHUNG

Sử dụng các phép biến đổi lượng giác đưa biểu thức dưới dấu tích phân về dạng quen thuộc. Các phép biến đổi thường dùng bao gồm:

- Phép biến đổi tích thành tổng (chúng ta đã thấy trong phương pháp phân tích)
- Hạ bậc
- Các kỹ thuật biến đổi khác.

Chúng ta sẽ lần lượt xem xét các ví dụ mẫu.

2.1. Sử dụng phép biến đổi tích thành tổng:

Ở đây chúng ta nhớ lại các công thức sau:

b/
$$\sin x . \sin y = \frac{1}{2} [\cos(x-y) - \cos(x+y)]$$
 d/ $\cos x . \sin y = \frac{1}{2} [\sin(x+y) - \sin(x-y)]$

<u>Ví dụ 11</u>: Tìm họ nguyên hàm của hàm số $f(x) = \cos 3x \cdot \cos 5x$. (*DHAN*–97)

Giải:

Sử dụng các phép biến đổi tích thành tổng, ta được: $f(x) = \frac{1}{2}(\cos 8x + \cos 2x)$

Khi đó:
$$F(x) = \frac{1}{2} \int (\cos 8x + \cos 2x) dx = \frac{1}{2} \left(\frac{1}{8} \sin 8x + \frac{1}{2} \sin 2x \right) + C.$$

Chú ý: Nếu hàm f(x) là tích của nhiều hơn 2 hàm số lượng giác ta thực hiện phép biến đổi dần, cụ thể ta đi xem xét ví dụ sau:

<u>Ví dụ 12</u>: Tìm họ nguyên hàm của hàm số $f(x) = tgxtg\left(\frac{\pi}{3} - x\right)tg\left(\frac{\pi}{3} + x\right)$

<u>Giải</u>

Ta có:
$$f(x) = \frac{\sin x \cdot \sin\left(\frac{\pi}{3} - x\right) \cdot \sin\left(\frac{\pi}{3} + x\right)}{\cos x \cdot \cos\left(\frac{\pi}{3} - x\right) \cdot \cos\left(\frac{\pi}{3} + x\right)}$$
 (1)

Sử dụng các phép biến đổi tích thành tổng, ta được:

$$\sin x. \sin\left(\frac{\pi}{3} - x\right). \sin\left(\frac{\pi}{3} + x\right) = \frac{1}{2}\sin x \left(\cos 2x - \cos\frac{2\pi}{3}\right)$$

$$\cos x. \cos\left(\frac{\pi}{3} - x\right). \cos\left(\frac{\pi}{3} + x\right) = \frac{1}{2}\cos\left(\cos\frac{2\pi}{3} + \cos 2x\right)$$

$$= -\frac{1}{4}\cos x + \frac{1}{2}\cos 2x. \cos x = -\frac{1}{4}\cos x + \frac{1}{4}(\cos 3x + \cos x) = \frac{1}{4}\cos 3x.$$

Suy ra: f(x) = tg3x

Khi đó:
$$F(x) = \frac{1}{4} \int tg3x dx = \frac{1}{4} \int \frac{\sin 3x}{\cos 3x} dx = -\frac{1}{12} \int \frac{d(\cos 3x)}{\cos 3x} = -\frac{1}{12} \ln|\cos 3x| + C.$$

2.2. Sử dụng phép hạ bậc:

Ở đây chúng ta nhớ lại các công thức sau:

được sử dụng trong các phép hạ bậc mang tính cục bộ, còn hằng đẳng thức:

$$\sin^2 x + \cos^2 x = 1.$$

được sử dụng trong các phép hạ bậc mang tính toàn cục cho các biểu thức, ví dụ như:

$$\sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cdot \cos^2 x = 1 - \frac{1}{2}\sin^2 2x = 1 - \frac{1}{4}(1 - \cos 4x)$$
$$= \frac{1}{4}\cos 4x + \frac{3}{4}$$

$$\sin^6 x + \cos^6 x = (\sin^2 x + \cos^2 x)^3 - 3\sin^2 x + \cos^2 x) = 1 - \frac{3}{4}\sin^2 2x$$
$$= 1 - \frac{3}{8}(1 - \cos 4x) = \frac{3}{8}\cos 4x + \frac{5}{8}.$$

Ví du 13: (HVQHQT_98): Tìm họ nguyên hàm của hàm số:

a/
$$f(x) = \sin^3 x \cdot \sin 3x$$

b/
$$f(x) = \sin^3 x \cdot \cos 3x + \cos^3 x \cdot \sin 3x$$
.

Giải:

a/ Biến đổi f(x) về dạng:

$$f(x) = \frac{3\sin x - \sin x}{4} \cdot \sin 3x = \frac{3}{4}\sin 3x \cdot \sin x - \frac{1}{4}\sin^2 3x.$$

$$= \frac{3}{8}(\cos 2x - \cos 4x)x - \frac{1}{8}(1 - \cos 6x) = \frac{1}{8}(3\cos 2x - 3\cos 4x + \cos 6x - 1).$$

Khi đó: $F(x) = \frac{1}{8} \int (3\cos 2x - 3\cos 4x + \cos 6x - 1) dx$

$$= \frac{1}{8} \left(\frac{3}{2} \sin 2x - \frac{3}{4} \sin 4x + \frac{1}{6} \sin 6x - x \right) + C.$$

b/ Biến đổi f(x) về dạng:

$$f(x) = \frac{3\sin x - \sin 3x}{4} \cdot \cos 3x + \frac{\cos 3x + 3\cos x}{4} \cdot \sin 3x$$
$$= \frac{3}{4}(\cos 3x \cdot \sin x + \sin 3x \cdot \cos x) = \frac{3}{4}\sin 4x.$$

Khi đó:
$$F(x) = \frac{3}{4} \int \sin 4x dx = -\frac{3}{16} \cos 4x + C.$$

2.3. Sử dụng các phép biến đổi lượng giác khác nhau

Ở đây ngoài việc vận dụng một cách linh hoạt các công thức biến đổi lượng giác các em học sinh còn cần thiết biết các định hướng trong phép biến đổi.

Ví dụ 14: (DHNT TP.HCM_99): Tìm họ nguyên hàm của hàm số:

a/
$$f(x) = \frac{\sin x - \cos x}{\sin x + \cos x};$$
 b/ $f(x) = \frac{\cos 2x}{\sin x + \cos x}.$

Giái

a/ Ta có:
$$F(x) = \int \frac{\sin x - \cos x}{\sin x + \cos x} = -\int \frac{d(\sin x + \cos x)}{\sin x + \cos x} = -\ln(\sin x + \cos x) + C$$

b/ Ta có:
$$F(x) = \int \frac{\cos 2x}{\sin x + \cos x} dx = \int \frac{\cos^2 x - \sin^2 x}{\sin x + \cos x} dx$$
$$= \int (\cos x - \sin x) dx = \sin x + \cos x + C.$$

Ví dụ 15: (ĐHNT HN_97): Tính tích phân bất định:
$$I = \int \frac{\sin 3x \cdot \sin 4x}{tgx + \cot g2x}$$

<u>Giai</u>:

Biến đổi biểu thức dưới dấu tích phân về dạng:

$$\frac{\sin 3x.\sin 4x}{\operatorname{tgx} + \cot g2x} = \frac{\sin 3x.\sin 4x}{\cos x} = \sin 4x.\sin 3x.\sin 2x = \frac{1}{2}(\cos x - \cos 7x)\sin 2x$$

$$= \frac{1}{2}(\sin 2x \cdot \cos x - \cos 7x \cdot \sin 2x) = \frac{1}{4}(\sin 3x + \sin x - \sin 9x + \sin 5x).$$

Khi đó: $I = \frac{1}{4} \int (\sin x + \sin 3x + \sin 5x - \sin 9x) dx$

$$= -\frac{1}{4}(\cos x + \frac{1}{3}\cos 3x + \frac{1}{5}\cos 5x - \frac{1}{9}\cos 9x) + C.$$

Tổng quát: Cách tính phân dạng: ∫sin^m x.cosⁿ xdx với m, n là những số nguyên được tính nhờ các phép biến đổi hoặc dùng công tức hạ bậc.

3. PHƯƠNG PHÁP ĐỔI BIẾN

Bài toán 3: Tính tích phân các hàm lượng giác bằng phương pháp đổi biến

PHƯƠNG PHÁP CHUNG

Tính tích phân bất định sau: $I = \int R(\sin x, \cos x) dx$ trong đó R là hàm hữu tỉ.

Ta lựa chọn một trong các hướng sau:

- $Hu\acute{o}ng \ 1$: Nếu $R(-\sin x, \cos x) = -R(\sin x, \cos x)$ thì sử dụng phép đổi biến tương ứng là $t = \cos x$
- $Hu\acute{o}ng 2$: Nếu $R(\sin x, -\cos x) = -R(\sin x, \cos x)$ thì sử dụng phép đổi biến tương ứng là $t = \sin x$
- $Hu\acute{o}ng \ 3$: Nếu $R(-\sin x, -\cos x) = -R(\sin x, \cos x)$ thì sử dụng phép đổi biến tương ứng là t = tgx(đôi khi có thể là $t = \cot gx$).

Do đó với các tích phân dạng:

- 1. $I = \int tg^n x dx$, với $n \in Z$ được xác định nhờ phép đổi biến t = tgx.
- 2. $I = \int \cot g^n x dx$, với $n \in Z$ được xác định nhờ phép đổi biến $t = \cot gx$.
- Hướng 4: Mọi trường hợp đều có thể đưa về tích phân các hàm hữu tỉ bằng phép đổi biến $t = tg\frac{x}{2}$.

Ví dụ 16: (*DHNT Tp.HCM_97*): Tính tích phân bất định:
$$I = \int \frac{\cos x + \sin x \cdot \cos x}{2 + \sin x} dx$$
.

Giải:

Biến đổi I về dạng:
$$I = \int \frac{(1+\sin x)\cos x}{2+\sin x}$$

Dăt t = sinx

Suy ra:
$$dt = \cos x dx$$
 & $\frac{(1+\sin x)\cos x}{2+\sin x} dx = \frac{1+t}{2+t} dt$

Khi đó:
$$I = \int \frac{1+t}{2+t} dt = \int \left(1 - \frac{1}{2+t}\right) dt = t - \ln|2+t| + C = \sin x - \ln|2 + \sin x| + C$$

Nhận xét: Trong bài toán trên sở dĩ ta định hướng được phép biến đổi như vậy là bởi nhận xét rằng: R(sinx, -cosx) = -R(sinx, cosx) do đó sử dụng phép đổi biến tương ứng là t = sinx.

Ví dụ 17: (*DHTCKT HN_96*): Tính tích phân bất định:
$$I = \int \frac{dx}{\sqrt[4]{\sin^3 x \cdot \cos^5 x}}$$
.

Giải:

Biến đổi I về dạng: I =
$$\int \frac{dx}{\sqrt[4]{tg^3x.\cos^8x}} = \frac{dx}{\cos^2x\sqrt[4]{tg^3x}}$$

Đặt: t = tgx

Suy ra:
$$dt = \frac{dx}{\cos^2 x} & \frac{dx}{\cos^2 x \sqrt[4]{tg^3 x}} = \frac{dt}{\sqrt[4]{t^3}}$$

Khi đó:
$$\int \frac{dt}{\sqrt[4]{t^3}} = 4\sqrt[4]{t} + C = 4\sqrt[4]{tgx} + C.$$

Chú ý: Như chúng ta đã thấy trong vấn đề 8 là $\sqrt{\frac{1}{t^2}} = \frac{1}{|t|}$ điều này rất quan trọng, khởi khi đó ta phải xét hai trường hợp t > 0 và t < 0.

$$\underline{\text{Ví dụ 18}}\text{: Tính tích phân bất định: I} = \int \frac{\sin x dx}{\cos x \sqrt{\sin^2 x + 1}}$$

Giải:

Đặt
$$t = \cos x \Rightarrow dt = -\sin x dx$$
 do đó: $I = -\int \frac{dt}{t\sqrt{2-t^2}}$

Ta cần xét hai trường hợp t > 0 và t < 0. Cụ thể:

• Với t > 0, ta được:

$$I = \int \frac{dt}{t^2 \sqrt{\frac{2}{t^2} - 1}} = \int \frac{d\left(\frac{1}{t}\right)}{\sqrt{\frac{2}{t^2} - 1}} = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{2}}{t^2} + \sqrt{\frac{2}{t^2} - 1} \right| + C = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{2} + \sqrt{2 - t^2}}{t} \right| + C.$$

• Với x < 0, ta được:

$$I = \int \frac{dt}{t^2 \sqrt{\frac{2}{t^2} - 1}} = -\int \frac{d\left(\frac{1}{t}\right)}{\sqrt{\frac{2}{t^2} - 1}} = -\frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{2}}{t} + \sqrt{\frac{2}{t^2} - 1} \right| + C$$

$$= -\frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{2} + \sqrt{2 - t^2}}{t} \right| + C = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{2} + \sqrt{1 + \sin^2 x}}{\cos x} \right| + C.$$

Tóm lai ta được:

$$I = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{2} + \sqrt{2 - t^2}}{t} \right| + C = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{2} + \sqrt{1 + \sin^2 x}}{\cos x} \right| + C.$$

4. PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN

Bài toán 3: Xác định nguyên hàm các hàm lượng giác bằng phương pháp tích phân từng phần.

PHƯƠNG PHÁP CHUNG

Chúng ta đã được biết trong vấn đề: Xác định nguyên hàm bằng phương pháp tích phân từng phần, đối với các dạng nguyên hàm:

<u>Dang 1</u>: Tính: $\int P(x)\sin\alpha x dx$ hoặc $\int P(x)\cos\alpha x dx$ với P là một đa thức thuộc R[x] và $\alpha \in R^*$.

$$Khi \text{ d\'o ta d\~at: } \begin{cases} u = P(x) \\ dv = \sin\alpha x dx \end{cases} \text{ ho\~ac } \begin{cases} u = P(x) \\ dv = \cos\alpha x dx \end{cases}$$

<u>Dang 2</u>: Tính: $\int e^{ax} \cos(bx)$ (hoặc $\int e^{ax} \sin(bx)$ với $a, b \neq 0$

$$\text{Khi d\'o ta d\~at: } \begin{cases} u = cos(bx) \\ dv = e^{ax} dx \end{cases} \text{ho\~ac } \begin{cases} u = sin(dx) \\ dv = e^{ax} dx \end{cases}$$

Ví dụ 19: Tính tích phân bất định: $I = \int \frac{x}{\cos^2 x} dx$

<u>Giải</u>

Sử dụng phương pháp tích phân từng phần, bằng cách đặt:

$$\begin{cases} u = x \\ dv = \frac{dx}{\cos^2 x} \end{cases} \Rightarrow \begin{cases} du = dx \\ v = tgx \end{cases}$$

 $\text{Khi $d\acute{o}$: } I = x.tgx - \int tgx dx = x.tgx - \int \frac{\sin x}{\cos x} dx = x.tgx + \int \frac{d(\cos x)}{\cos x} = x.tgx + \ln |\cos x| + C.$

<u>Ví dụ 20</u>: Tính tích phân bất định: $I = \int \frac{\cos^2 x dx}{\sin^3 x}$.

Giải:

Biến đổi I về dạng:
$$I = \int \frac{\cos x.d(\sin x)}{\sin^3 x}$$
.

$$\text{D} \ddot{a} t \colon \begin{cases} u = \cos x \\ dv = \frac{d(\sin x)}{\sin^3 x} \end{cases} \Rightarrow \begin{cases} du = -\sin x dx \\ v = -\frac{1}{\sin^2 x} \end{cases}$$

Khi đó:
$$I = -\frac{\cos x}{\sin^2 x} - \int \frac{dx}{\sin x} = -\frac{\cos x}{\sin^2 x} - \int d\left(\ln\left|tg\frac{x}{2}\right|\right) = -\frac{\cos x}{\sin^2 x} - \ln\left|tg\frac{x}{2}\right| + C.$$

BÀI TẬP

Bài 28. Tìm họ nguyên hàm của hàm số:

$$a' \quad f(x) = \frac{1}{\cos x \cos \left(x + \frac{\pi}{4}\right)} \qquad b' \quad f(x) = \frac{1}{\sqrt{2} + \sin x - \cos x}$$

$$c' \quad f(x) = \frac{\cos^2 x}{\sin x + \sqrt{3} \cos x} \qquad d' \quad f(x) = \frac{\sin x}{1 + \sin 2x} \quad e' \quad f(x) = \sin x . \sin 2x . \cos 5x$$

$$f' \quad f(x) = (\sin 4x + \cos 4x)(\sin 6x + \cos 6x) \qquad g' \quad f(x) = \sin \left(x - \frac{\pi}{4}\right) . (2 + \sin 2x)$$

$$\underline{BS}: \quad a' - \sqrt{2} \ln|1 - tgx| + C; \qquad b' - \frac{1}{\sqrt{2}} \cot g \left(\frac{x}{2} + \frac{\pi}{8}\right) + C;$$

$$c' \frac{1}{2} \sin \left(x + \frac{\pi}{6}\right) + \frac{1}{8} \ln\left|tg\left(\frac{x}{2} + \frac{\pi}{6}\right)\right| + C; \quad d' \frac{1}{2\sqrt{2}} \ln\left|tg\left(\frac{x}{2} + \frac{\pi}{8}\right)\right| + \frac{1}{2(\sin x + \cos x)} + C;$$

$$e' \frac{1}{4} \left(\frac{1}{2} \sin 2x + \frac{1}{4} \sin 4x - \frac{1}{8} \sin 8x\right) + C; \quad f' \frac{1}{64} (33x + 7 \sin 4x + \frac{3}{8} \sin 8x) + C;$$

$$g' \quad \frac{1}{2} \left[-4 \cos \left(x - \frac{\pi}{4}\right) + \sin \left(x + \frac{\pi}{4}\right) - \frac{1}{3} \sin \left(3x - \frac{\pi}{4}\right) \right] + C.$$

Bài 29. Tìm họ nguyên hàm của hàm số sau:

a/
$$f(x) = \frac{\sin^3 x}{3\sin 4x - \sin 6x - 3\sin 2x}$$
 (DHSP II Hà Nội _1999)
b/ $I = \int \cos 5x. t g x dx$ K = $\int \cos 3x. t g x dx$ (DHNT Tp.HCM- A_2000)
c/ $f(x) = \frac{1}{\sin 2x - 2\sin x}$ d/ $f(x) = \frac{x}{\sin^2 x}$ e/ $f(x) = \frac{\cot g x}{1 + \sin x}$
f/ $f(x) = t g \left(x + \frac{\pi}{3} \right) . \cot g \left(x + \frac{\pi}{6} \right)$ g/ $f(x) = (x^2 + 2)\sin 2x$
DS: a/ $-\frac{1}{48} \ln \left| \frac{\sin 3x - 1}{\sin 3x + 1} \right| + C;$
b/ $I = 2\sin x - 2\sin 3x + \sin 5x + C;$ K = $-\frac{1}{3}\cos 3x + 2\cos x + C;$
c/ $\frac{1}{8} \left(\frac{2}{1 - \cos x} + \ln \left| \frac{\cos x - 1}{\cos x - 1} \right| \right) + C;$ d/ $-x \cot g x + \ln \left| \sin x \right| + C;$
e/ $\ln \left| \frac{\sin x}{1 + \sin x} \right| + C;$ f/ $x + \frac{1}{\sqrt{3}} \ln \left| \frac{\cos \left(x - \frac{\pi}{3} \right)}{\cos \left(x + \frac{\pi}{3} \right)} \right| + C;$
g/ $-\frac{1}{2}x^2\cos 2x + \frac{1}{2}x\sin 2x - \frac{3}{4}\cos 2x + C.$

Vấn đề 9: NGUYÊN HÀM CÁC HÀM SỐ VÔ TỈ

Để xác định nguyên hàm của các hàm số vô tỉ ta cần linh hoạt lựa chọn một trong các phương pháp cơ bản sau:

- 1. Phương pháp đổi biến.
- 2. Phương pháp tích phân từng phần.
- 3. Sử dụng các phép biến đổi.

Hai công thức thường sử dụng:

1.
$$\int \frac{x dx}{\sqrt{x^2 \pm a}} = \sqrt{x^2 \pm a} + C$$

2.
$$\int \frac{\mathrm{dx}}{\sqrt{x^2 \pm a}} = \ln \left| x + \sqrt{x^2 \pm a} \right| + C.$$

1. PHƯƠNG PHÁP ĐỔI BIẾN

Bài toán 1: Xác định nguyên hàm các hàm số vô tỉ bằng phương pháp đổi biến

<u>Dang 1</u>: Tính tích phân bất định các hàm hữu tỉ đối với x và $\sqrt[n]{\frac{ax+b}{cx+d}}$ có dạng:

$$I = \int R\left(x, \sqrt[n]{\frac{axx + b}{cx + d}}\right) dx \text{ v\'oi ad} - bc \neq 0.$$

PHƯƠNG PHÁP CHUNG

Ta thực hiện theo các bước sau:

• <u>Bước 1</u>: Thực hiện phép đổi biến:

Đặt:
$$t = \sqrt[n]{\frac{ax+b}{cx+d}} \implies t^n = \frac{ax+b}{cx+d} \iff x = \frac{b-dt^n}{ct^n-a}$$

• Bước 2: Bài toán được chuyển về: $I = \int S(t)dt$.

 $\textit{Chú \'y:} \ \, \text{Với hai dạng đặc biệt:} \ \, I = \int R \Bigg(x, \sqrt{\frac{a+x}{a-x}} \Bigg) \! dx \ \, \text{hoặc I} = \int R \Bigg(x, \sqrt{\frac{a-x}{a+x}} \Bigg) \! dx \ \, \text{chúng ta}$ đã biết với phép đổi biến: x = a cos 2t.

Trường hợp đặc biệt, với $I = \int \sqrt{\frac{a+x}{a-x}} dx$, ta có thể xác định bằng cách:

Vì
$$\sqrt{\frac{a+x}{a-x}}$$
 có nghĩa khi $-a \le x < a$ nên $x+a > 0$, do đó $\sqrt{(a+x)^2} = a + x$.

Khi đó:
$$I = \int \sqrt{\frac{x+x}{a-x}} dx = \int \frac{a+x}{\sqrt{a^2-x^2}} dx = a \int \frac{dx}{\sqrt{a^2-x^2}} + \int \frac{x dx}{a^2-x^2}$$

Trong đó: $\int \frac{dx}{\sqrt{a^2 + b^2}}$ được xác định bằng phép đổi biến x = asint.

$$\int \frac{x dx}{\sqrt{a^2 - x^2}} = -a \sqrt{a^2 - x^2} + C.$$

Ví dụ 1: Tính tích phân bất định:
$$I = \int \frac{dx}{\sqrt[3]{x+1}[\sqrt[3]{x+1})^2 + 1]}$$

Giải.

$$D\tilde{a}t: \ t = \sqrt[3]{x+1} \Rightarrow t^3 = x+1. \ \text{Suy ra: } 3t^2dt = dx \ \& \frac{dx}{\sqrt[3]{x+1}[\sqrt[3]{(x+1)^2}+1]} = \frac{3t^2dt}{t(t^2+1)} = \frac{3tdt}{t^2+1}$$

Khi đó:
$$I = \int \frac{3tdt}{t^2 + 1} = \frac{3}{2} \int \frac{d(t^2)}{t^2 + 1} = \ln(t^2 + 1) + C = \ln[\sqrt[3]{(x+1)^2} + 1] + C.$$

Ví dụ 2: Tính tích phân bất định:
$$I = \int \frac{dx}{2x\sqrt{2x+1}}$$

Giải:

$$\text{Dặt: } t = \sqrt{2x + 1} \implies t^2 = 2x + 1. \quad \text{Suy ra: } 2tdt = 2dx \& \frac{dx}{2x\sqrt{2x + 1}} = \frac{tdt}{(t^2 - 1)t} = \frac{dt}{t^2 - 1}$$

Khi đó:
$$I = \int \frac{dt}{t^2 - 1} = \frac{1}{2} \ln \left| \frac{t - 1}{t + 1} \right| + C = \frac{1}{2} \ln \left| \frac{\sqrt{2x + 1} - 1}{\sqrt{2x + 1} + 1} \right| + C.$$

Ví dụ 3: Tính tích phân bất định:
$$I = \int \frac{\sqrt{x} dx}{\sqrt[3]{x^2} - \sqrt[4]{x}}$$

Giải:

Ta nhận xét: $\sqrt{x}=x^{\frac{1}{2}}, \sqrt[3]{x^2}=x^{\frac{2}{3}}$ và $\sqrt[4]{x}=x^{\frac{1}{4}}$, từ đó 12 là bội số chung nhỏ nhất của các mẫu số, do đó đặt $x=t^{12}$

Suy ra:
$$dx = 12t^{11}dt & \frac{\sqrt{x}dx}{\sqrt[3]{x^2} - \sqrt[4]{x}} = \frac{12t^{17}dt}{t^8 - t^3} = \frac{12t^{14}dt}{t^5 - 1} = 12\left(t^9 + t^4 + \frac{t^4}{t^5 - 1}\right)dt$$

Khi đó:
$$I = 12 \int \left(t^9 + t^4 + \frac{t^4}{t^5 - 1} \right) dt = 12 \left(\frac{t^{10}}{10} + \frac{t^5}{5} + \frac{1}{5} \ln|t^5 - 1| \right) + C.$$

Dang 2: Tính tích phân bất định
$$I = \int \frac{dx}{\sqrt{(x+a)(x+b)}}$$

PHƯƠNG PHÁP CHUNG

Ta xét hai trường hợp:

• Trường hợp 1: Với $\begin{cases} x+a>0\\ x+b>0 \end{cases}$

Đặt:
$$t = \sqrt{x+a} + \sqrt{x+b}$$

• Trường hợp 2: Với $\begin{cases} x + a < 0 \\ x + b < 0 \end{cases}$

Đặt:
$$t = \sqrt{-(x+a)} + \sqrt{-(x+b)}$$

Ví dụ 4: Tính tích phân bất định:
$$I = \int \frac{dx}{\sqrt{x^2 - 5x + 6}}$$

Giải:

Biến đổi I về dạng:
$$I = \int \frac{dx}{\sqrt{(x-2)(x-3)}}$$

Ta xét hai trường hợp:

• Với
$$\begin{cases} x-2>0 \\ x-3>0 \end{cases} \Leftrightarrow x>3.$$
 Đặt: $t=\sqrt{x-2}+\sqrt{x-3}$

suy ra :
$$dt = \left(\frac{1}{2\sqrt{x-2}} + \frac{1}{2\sqrt{x-3}}\right) dx = \frac{(\sqrt{x-2} + \sqrt{x-3}) dx}{2\sqrt{(x-2)(x+3)}} \Leftrightarrow \frac{dx}{\sqrt{(x-2)(x-3)}} = \frac{2dt}{t}$$

Khi đó:
$$I = 2 \int \frac{dt}{t} = 2 \ln |t| + C = 2 \ln |\sqrt{x-2} + \sqrt{x+3}| + C$$

• Với
$$\begin{cases} x-2<0 \\ x-3<0 \end{cases} \Leftrightarrow \ x<2 \,. \qquad \text{ Đặt: } \ t=\sqrt{x-2}+\sqrt{3-x}$$

suy ra :
$$dt = \left[\frac{1}{2\sqrt{2-x}} + \frac{1}{2\sqrt{3-x}}\right] dx = \frac{[\sqrt{2-x} + \sqrt{3-x}]dx}{2\sqrt{(x-2)(x-3)}} \Leftrightarrow \frac{dx}{\sqrt{(x-2)(x-3)}} = -\frac{2dt}{t}$$

Khi đó:
$$I = -2\int \frac{dt}{t} = -2 \ln |t| + C = -2 \ln |\sqrt{2-x}| + \sqrt{3-x} + C$$

<u>Dạng 3</u>: Tính tích phân bất định các hàm hữu tỉ đối với x và $\sqrt{a^2 - x^2}$ có dạng: $I = \int R(x, \sqrt{a^2 - x^2}) dx, \text{ với ad} - bc \neq 0.$

PHƯƠNG PHÁP CHUNG

Ta thực hiện theo các bước sau:

<u>Bước 1</u>: Thực hiện phép đổi biến:

• <u>Bước 2</u>: Bài toán được chuyển về: $I = \int S(\sin t, \cos t) dt$.

<u>Ví dụ 5</u>: Tính tích phân bất định: $I = \int \frac{x^3 dx}{\sqrt{1-x^2}}$.

Giải:

• Cách 1: Đặt:
$$x = \sin t$$
, $-\frac{\pi}{2} < t < \frac{\pi}{2}$

Suy ra:
$$dx = \cos t dt & \frac{x^3 dx}{\sqrt{1 - x^2}} = \frac{\sin^3 t \cdot \cos dt}{\cos t} = \sin^3 t dt = \frac{1}{4} (3 \sin t - \sin 3t) dt$$

Khi đó:
$$I = \frac{1}{4} \int (3\sin t - \sin 3t) dt = tgt + C = -\frac{3}{4} \cos t + \frac{1}{12} \cos 3t + C$$

$$= -\frac{3}{4}\cos t + \frac{1}{12}(4\cos^3 t - 3\cos xt) + C = \frac{1}{3}\cos^3 t - \cos t + C = \left(\frac{1}{3}\cos^2 t - 1\right)\cos t + C$$

$$= \left[\frac{1}{3} (1 - \sin^2 t) - 1 \right] + C = \left[\frac{1}{3} (1 - x^2) - 1 \right] \sqrt{1 - x^2} + C = -\frac{1}{3} (x^2 + 2) \sqrt{1 - x^2} + C$$

Chú ý: Trong cách giải trên sở dĩ ta có:

$$-\frac{\pi}{2} < t < \frac{\pi}{2} \Rightarrow \cos t > 0 \Rightarrow \begin{cases} \sqrt{\cos^2 t} = \cos t \\ \cos t = \sqrt{1 - \sin^2 t} = \sqrt{1 - x^2} \end{cases}$$

• $\underline{C\acute{a}ch\ 2}$: Đặt $t = \sqrt{1-x^2} \Rightarrow x^2 = 1-t^2$

Suy ra:
$$2xdx = 2tdt & \frac{x^3dx}{\sqrt{1-x^2}} = \frac{x^2.xdx}{\sqrt{1-x^2}} = \frac{x^2.xdx}{\sqrt{1-x^2}} = \frac{(1-t^2)(-tdt)}{t} = (t^2-1)dt$$

Khi đó:
$$I = \int (t^2 - 1)dt = \frac{1}{3}t^3 - t + C = \frac{1}{3}(t^2 - 3)t + C = -\frac{1}{3}(x^2 + 2)\sqrt{1 - x^2} + C$$

<u>Dạng 4</u>: Xác định nguyên hàm các hàm số hữu tỉ đối với x và $\sqrt{a^2 + x^2}$ có dạng:

$$I = \int R(x, \sqrt{a^2 + x^2}) dx, v \acute{\sigma} i \ ad - bc \neq 0.$$

PHƯƠNG PHÁP CHUNG

Ta thực hiện theo các bước sau:

• <u>Bước 1</u>: Thực hiện phép đổi biến:

• <u>Bước 2</u>: Bài toán được chuyển về: $I = \int S(\sin t, \cos t) dt$.

<u>Ví dụ 6</u>: Tính tích phân bất định: $I = \int \sqrt{1 + x^2} dx$.

Giải:

•
$$\underline{C\acute{a}ch\ 1}$$
: Đặt: $x = tgt$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$. Suy ra: $dx = \frac{dt}{\cos^2 t} \& \sqrt{1 + x^2} dx = \frac{dt}{\cos^3 t}$.

Khi đó:
$$I = \int \frac{dt}{\cos^3 t} = \int \frac{\cos t dt}{\cos^4 t} = \int \frac{\cos t dt}{(1 - \sin^2 t)^2}$$

Dặt:
$$u = sint$$
. Suy ra: $du = costdt & \frac{costdt}{(1 - sin^2 t)^2} = \frac{du}{(u+1)^2 (u-1)^2}$

$$\begin{aligned} & \text{Khi dó:} \quad I = \int \frac{du}{(u+1)^2(u-1)^2} = \frac{1}{4} \Bigg[\ln \left| \frac{u+1}{u-1} \right| - \frac{2u}{(u+1)(u-1)} \Bigg] + C \\ & = \frac{1}{4} \Bigg[\ln \left| \frac{\sin t + 1}{\sin t - 1} \right| - \frac{2\sin t}{(\sin t + 1)(\sin t - 1)} \right] + C \\ & = \frac{1}{4} \Bigg[\ln \left| \frac{\frac{x}{\sqrt{1+x^2}} + 1}{\frac{x}{\sqrt{1+x^2}}} \right| - \frac{2\frac{x}{\sqrt{1+x^2}}}{\left(\frac{x}{\sqrt{1+x^2}} + 1\right) \left(\frac{x}{\sqrt{1+x^2}} - 1\right)} \right] + C \\ & = \frac{1}{4} \Bigg(\ln \left| \frac{x + \sqrt{1+x^2}}{x - \sqrt{1+x^2}} \right| + 2x\sqrt{1+x^2} \Bigg) + C \\ & = \frac{1}{4} (2\ln |x + \sqrt{1+x^2}| + 2x\sqrt{1+x^2}) + C = \frac{1}{2} (\ln |x + \sqrt{1+x^2}| + x\sqrt{1+x^2}) + C. \end{aligned}$$

• Cách 2: Đặt:
$$t = x + \sqrt{1 + x^2} \Rightarrow t - x = \sqrt{1 + x^2} \Rightarrow (t - x)^2 = 1 + x^2 \Rightarrow x = \frac{t^2 - 1}{2t}$$

$$\Rightarrow \sqrt{1+x^2} = t - \frac{t^2 - 1}{2t} = \frac{t^2 + 1}{2t}$$

Suy ra:
$$dt = \left(1 + \frac{x}{\sqrt{1 + x^2}}\right) dx = \frac{x + \sqrt{1 + x^2}}{1 + x^2} dx = \frac{2t^2}{t^2 + 1} dx \iff dx = \frac{t^2 + 1}{2t^2} dt$$

$$\sqrt{1+x^2}dx = \frac{t^2+1}{2t} \cdot \frac{t^2+1}{2t^2}dt = \frac{1}{4} \frac{(t^2+1)^2}{t^3}dt = \frac{1}{4} \left(t + \frac{2}{t} + \frac{1}{t^3}\right)dt$$

$$\begin{split} \text{Khi $d6$: } & I = \frac{1}{4} \int \!\! \left(t + \frac{2}{t} + \frac{1}{t^3} \right) \! dt = \frac{1}{4} \! \left(\frac{1}{2} t^2 + 2 \ln |t| - \frac{1}{2t^2} \right) + C \\ & = \frac{1}{8} \! \left[\left(t^2 - \frac{1}{t^2} \right) + 4 \ln |t| \right] + C = \frac{1}{8} \! \left[4 x \sqrt{1 + x^2} + 4 \ln \left| x + \sqrt{1 + x^2} \right| + C \right] \\ & = \frac{1}{2} (\ln \left| x + \sqrt{1 + x^2} \right| + x \sqrt{1 + x^2}) + C. \end{split}$$

• <u>Cách 3</u>: Sử dụng phương pháp tích phân từng phần

$$Dat: \begin{cases} u = \sqrt{x^2 + 1} \\ dv = dx \end{cases} \Rightarrow \begin{cases} du = \frac{xdx}{\sqrt{x^2 + 1}} \\ v = x \end{cases}$$

Khi đó:
$$I = x\sqrt{x^2 + 1} - \int \frac{x^2 dx}{\sqrt{x^2 + 1}}$$

Với
$$J = \int \frac{x^2 dx}{x^2 + 1} = \int \frac{[(x^2 + 1) - 1]dx}{\sqrt{x^2 + 1}} = \int \sqrt{x^2 + 1} dx - \int \frac{dx}{\sqrt{x^2 + 1}}$$
$$= I - \ln|x + \sqrt{x^2 + 1}| + C \tag{2}$$

Thay (2) vào (1) ta được:

$$I = x\sqrt{x^2 + 1} - (I - a \ln |x + \sqrt{x^2 + 1}| + C \iff 2I = x\sqrt{x^2 + 1} + \ln |x + \sqrt{x^2 + 1}| + C$$
$$\iff I = \frac{x}{2}\sqrt{x^2 + 1} + \frac{1}{2}\ln |x + \sqrt{x^2 + 1}| + C.$$

Chú ý:

1. Trong cách giải thứ nhất sở dĩ ta có:

$$\sqrt{1+x^2} = \frac{1}{\cos t} \cos t \text{ và } \sin t = \frac{x}{\sqrt{1+x^2}}$$

là bởi:
$$-\frac{\pi}{2} < t < \frac{\pi}{2} \Rightarrow \cos t > 0 \Rightarrow \begin{cases} \sqrt{\cos^2 t} = \cos t \\ \sin t = tgt. \cos t = \frac{x}{\sqrt{1+x^2}} \end{cases}$$

2. Cả ba phương pháp trên (tốt nhất là phương pháp 2) được áp dụng để giải bài toán tổng quát:

$$\int \sqrt{x^2 + a} \, dx = \frac{a}{2} \ln \left| x + \sqrt{x^2 + a} \right| + \frac{x}{2} \sqrt{x^2 + a} + C; \int \frac{dx}{\sqrt{x^2 + a}} = \ln \left| x + \sqrt{x^2 + a} \right| + C.$$

3. Với tích phân bất định sau tốt nhất là sử dụng phương pháp 1:

$$\int \frac{dx}{\sqrt{(a^2 + x^2)^{2k+1}}}, \ v \acute{\sigma} i \ k \in Z.$$

4. Với tích phân bất định: $\int \sqrt{(x+a)(x+b)} dx$ ta có thể thực hiện như sau:

Đặt:
$$t = x + \frac{a+b}{2} & A = -\frac{(b-a)^2}{4}$$

suy ra:
$$dt = dx \& \sqrt{(x+a)(x+b)} dx = \sqrt{t^2 + A} dt$$

Khi đó:
$$I = \int \sqrt{t^2 + A} dt = \frac{A}{2} \ln \left| t + \sqrt{t^2 + A} \right| + \frac{t}{2} \sqrt{t^2 + A} + C$$

$$= \frac{(b-a)^2}{8} \ln \left| x + \frac{a+b}{2} + \sqrt{(x+a)(x-b)} \right| + \frac{2x+a+b}{4} \sqrt{(x+a)(x+b)} + C.$$

<u>Dạng 5</u>: Tính tích phân bất định các hàm hữu tỉ đối với x và $\sqrt{x^2 - a^2}$ có dạng:

$$I = \int R(x, \sqrt{x^2 - a^2}) dx, v \acute{\sigma} i \ ad - bc \neq 0.$$

PHƯƠNG PHÁP CHUNG

Ta thực hiện theo các bước sau:

• <u>Bước 1</u>: Thực hiện phép đổi biến:

$$\begin{bmatrix} x = \frac{|a|}{\sin t} & \text{v\'oi } t \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right] \setminus \{0\} \\ x = \frac{|a|}{\cos t} & \text{v\'oi } t \in [0; \pi] \setminus \{\frac{\pi}{2}\}. \end{bmatrix}$$
 (hoặc có thể $t = \sqrt{x^2 - a^2}$)

• <u>Bước 2</u>: Bài toán được chuyển về: $I = \int S(\sin t, \cos t) dt$.

Ví dụ 7: Tính tích phân bất định:
$$I = \int \frac{xdx}{2x^2 - 1 + 3\sqrt{x^2 - 1}}$$

Giải:

• Cách 1: Đặt:
$$t = \sqrt{x^2 - 1} \implies t^2 = x^2 - 1$$

Suy ra:
$$2tdt = 2xdx & \frac{xdx}{2x^2 - 1 + 3\sqrt{x^2 - 1}} = \frac{xdx}{2(x^2 - 1) + 3(\sqrt{x^2 - 1} + 1)} = \frac{tdt}{2t^2 + 3t + 1}$$

Khi đó:
$$I = \int \frac{tdt}{2t^2 + 3t + 1}$$

Ta có:
$$\frac{t}{2t^2 + 3t + 1} = \frac{t}{(2t+1)(t+1)} = \frac{a}{2t+1} + \frac{b}{t+1} = \frac{(a+2b)t + a + b}{(2t+1)(t+1)}$$

Đồng nhất đẳng thức, ta được:
$$\begin{cases} a+2b=1 \\ a+b=0 \end{cases} \Leftrightarrow \begin{cases} a=-1 \\ b=1 \end{cases}$$

Khi đó:
$$\frac{t}{2t^2 + 3t + 1} = -\frac{1}{2t + 1} + \frac{1}{t + 1}$$
.

Do dó:
$$I = \int \left(-\frac{1}{2t+1} + \frac{1}{t+1} \right) dt = -\frac{1}{2} \ln|2t+1| + \ln|t+1| + C = \frac{1}{2} \ln \frac{(t+1)^2}{|2t+1|} + C$$
$$= \frac{1}{2} \ln \frac{(\sqrt{x^2 - 1} + 1)^2}{2\sqrt{x^2 - 1} + 1}$$

- $\underline{C\acute{a}ch}\ 2$: Vì điều kiện |x| > 1, ta xét hai trường hợp:
- $-V\acute{\sigma}i \ x > 1$:

Đặt:
$$x = \frac{1}{\cos t}$$
, $t \in [0; \frac{\pi}{2})$. Suy ra: $dx = \frac{\sin t dt}{\cos^2 t}$,

$$\frac{xdx}{2x^2 - 1 + 3\sqrt{x^2 - 1}} = \frac{\frac{1}{\cos t} \cdot \frac{\sin t}{\cos^2 t} dt}{\frac{2}{\cos^2 t} - 1 + 3tgt} = \frac{(1 + tg^2 t)tgt.dt}{2(1 + tg^2 t) - 1 + 3tgt} = \frac{(1 + tg^2 t)tgt.dt}{2tg^2 t + 3tgt + 1}$$

Khi đó:
$$I = \int \frac{(1 + tg^2t)tgt.dt}{2tg^2t + 3tgt + 1}$$
.

Đặt:
$$u = tgt$$
. Suy ra: $du = \frac{dt}{\cos^2 t} = (1 + tg^2 t)dt & \frac{(1 + tg^2 t)tgt.dt}{2tg^2 t + 3tgt + 1} = \frac{u.du}{2u^2 + 3u + 1}$

$$\begin{split} \text{Khi $d\acute{o}$: } I &= \int \!\! \left(-\frac{1}{2u+1} + \frac{1}{u+1} \right) \! dt = -\frac{1}{2} \ln |2u+1| + \ln |u+1| + C = \frac{1}{2} \ln \frac{(u+1)^2}{|2u+1|} + C \\ &= \frac{1}{2} \ln \frac{(tgt+1)^2}{|2tgt+1|} + C = \frac{1}{2} \ln \frac{(\sqrt{x^2-1}+1)^2}{2\sqrt{x^2-1}+1} + C. \end{split}$$

- $V \acute{o} i x < -1$ (tự làm)

Dạng 6: Tính tích phân bất định các hàm hữu tỉ đối với x và $\sqrt{ax^2 + bx + c}$ có dạng:

$$I = \int R(x, \sqrt{ax^2 + bx + c}) dx$$
, với ad – bc $\neq 0$

PHƯƠNG PHÁP CHUNG

Ta có thể lựa chọn một trong hai cách sau:

• <u>Cách 1</u>: Đưa I về các dạng nguyên hàm cơ bản đã biết.

Ta xét các trường hợp sau:

• Trường hợp 1: Nếu a > 0 và Δ < 0.

- Bước 1: Ta có:
$$ax^2 + bx + c = -\frac{\Delta}{4a} \left[1 + \left(\frac{2ax + b}{\sqrt{-\Delta}} \right)^2 \right]$$

- Bước 2: Thực hiện phép đổi biến:
$$t = \frac{2ax + b}{\sqrt{-\Lambda}}$$

- Bước 3: Bài toán được chuyển về: $I = \int S(t, \sqrt{1+t^2}) dt$
- Trường hợp 2: Nếu a < 0 và Δ > 0.

- Bước 1: Ta có:
$$ax^2 + bx + c = -\frac{\Delta}{4a} \left[1 - \left(\frac{2ax + b}{\sqrt{\Delta}} \right)^2 \right]$$

- Bước 2: Thực hiện phép đổi biến:
$$t = \frac{2ax + b}{\sqrt{\Delta}}$$

- Bước 3: Bài toán được chuyển về: $I = \int S(t, \sqrt{1-t^2}) dt$
- Trường hợp 3: Nếu a > 0 và $\Delta > 0$.

- Bước 1: Ta có:
$$ax^2 + bx + c = \frac{\Delta}{4a} \left[\left(\frac{2ax + b}{\sqrt{\Delta}} \right)^2 - 1 \right]$$

- Bước 2: Thực hiện phép đổi biến:
$$t = \frac{2ax + b}{\sqrt{\Delta}}$$

- Bước 3: Bài toán được chuyển về: $I = \int S(t, \sqrt{t^2 1}) dt$
- <u>Cách 2</u>: Sử dụng phép thế Euler:

Ta xét các trường hợp sau:

- 1. Nếu a > 0, đặt $\sqrt{ax^2 + bx + c} = t x\sqrt{a}$ hoặc $t + x\sqrt{a}$.
- 2. Nếu c > 0, đặt $\sqrt{ax^2 + bx + c} = tx + \sqrt{c}$ hoặc $tx \sqrt{c}$.
- 3. Nếu tam thức $ax^2 + bx + c$ có biệt số $\Delta > 0$ thì $ax^2 + bx + c = a(x x_1)(x x_2).$ Khi đó đặt: $\sqrt{ax^2 + bx + c} = t(x x_1).$

 $\underline{\text{Ví dụ 8}}$: Tính tích phân bất định: $I = \int \sqrt{x^2 + 2x + 2} dx$.

Giải:

• $\underline{C\acute{a}ch\ 1}$: Sử dụng phép đổi biến: $t = x + 1 \Rightarrow dt = dx$.

Khi đó:
$$I = \int \sqrt{t^2 + 1} dt$$
.

Tích phân trên chúng ta đã biết cách xác định trong ví dụ 6.

<u>Cách 2</u>: Sử dụng phép đổi biến:

$$\sqrt{x^2 + 2x + 2} = t - x \Rightarrow x^2 + 2x + 2 = (t - x)^2 \Leftrightarrow x = \frac{t^2 - 2}{2(t + 1)} \Rightarrow dx = \frac{(t^2 + 2t + 2)dt}{2(t + 1)^2}$$

Khi đó:
$$I = \int \sqrt{x^2 + 2x + 2} dx = \int \left[t - \frac{t^2 - 2}{2(t+1)} \right] \cdot \frac{(t^2 + 2t + 2)dt}{2(t+1)^2} = \frac{1}{4} \int \frac{(t^4 + 4)dt}{(t+1)^3}.$$

Sử dụng đồng nhất thức:

$$t^4 + 4 = [(t+1)-1]^4 + 4 = (t+1)^4 - 4(t+1)^3 + 6(t+1)^2 - 4(t+1) + 5.$$

Do đó:
$$I = \frac{1}{4} \int [t+1-4+\frac{6}{t+1} - \frac{4}{(t+1)^2}] dt = \frac{1}{4} \left[\frac{t^2}{2} - 3t + 6\ln|t+1| + \frac{4}{t+1} \right] + C$$
$$= \frac{1}{4} \left[\frac{(\sqrt{x^2 + 2x + 2} + x)^2}{2} - 3(\sqrt{x^2 + 2x + 2} + x) + \frac{4}{\sqrt{x^2 + 2x + 2} + x + 1} \right] + C.$$

Dang 7: Tính tích phân bất định
$$I = \int \frac{dx}{(\lambda x + \mu)\sqrt{ax^2 + bx + c}}$$

PHƯƠNG PHÁP CHUNG

Ta thực hiện theo các bước sau:

- Bước 1: Thực hiện phép đổi biến: $t = \frac{1}{\lambda x + \mu}$
- Bước 2: Bài toán được chuyển về: $I = \int \frac{dt}{\sqrt{\alpha t^2 + \beta t + \gamma}}$

Chú ý: Phương pháp trên có thể được áp dụng cho dạng tổng quát hơn là:

$$I = \int \frac{(Ax + B)dx}{(\lambda x + \mu)^n \sqrt{ax^2 + bx + c}}$$

Ví dụ 9: Tính tích phân bất định:
$$I = \int \frac{dx}{(x+1)\sqrt{x^2 + 2x + 2}}$$

Giải:

$$D\check{a}t: t = \frac{1}{x+1} \Rightarrow x = \frac{1}{t} - 1$$

suy ra:
$$dx = -\frac{1}{t^2}dt$$
, $\frac{dx}{(x+1)\sqrt{x^2+2x+2}} = \frac{t(-\frac{1}{t^2})dt}{\sqrt{\frac{1}{t^2}+1}} = -\frac{dt}{t.\sqrt{\frac{1}{t^2}+1}} = \begin{cases} -\frac{dt}{\sqrt{1+t^2}} & \text{thi } t > 0 \\ \frac{dt}{\sqrt{1+t^2}} & \text{thi } t < 0 \end{cases}$

Khi đó:

• Với t > 0, ta được:

$$I = -\int \frac{dt}{\sqrt{1+t^2}} = -\ln\left|t + \sqrt{1+t^2}\right| + C = -\ln\left|\frac{1}{x+1} + \sqrt{1+\frac{1}{(x+1)^2}}\right| + C$$

$$= -\ln\left|\frac{1+\sqrt{x^2+2x+2}}{x+1}\right| + C = \ln\left|\frac{x+1}{1+\sqrt{x^2+2x+2}}\right| + C = \ln\left|\frac{1-\sqrt{x^2+2x+2}}{x+1}\right| + C.$$

• Với t < 0, ta được:

$$I = \int \frac{dt}{\sqrt{1+t^2}} = \ln\left|t + \sqrt{1+t^2}\right| + C = \ln\left|\frac{1}{x+1} + \sqrt{1+\frac{1}{(x+1)^2}}\right| + C = \ln\left|\frac{1-\sqrt{x^2+2x+2}}{x+1}\right| + C.$$

Tóm lại với $t \neq 0 \Leftrightarrow x \neq -1$ ta luôn có: $I = \ln \left| \frac{1 - \sqrt{x^2 + 2x + 2}}{x + 1} \right| + C.$

3. SỬ DUNG TÍCH PHÂN TỪNG PHẦN

Bài toán 3: Tính tích phân các hàm vô tỉ bằng phương pháp tích phân từng phần

PHƯƠNG PHÁP CHUNG

Với các hàm vô tỉ, trong phạm vi phổ thông phương pháp tích phân từng phần ít được sử dụng, tuy nhiên chúng ta cũng cần xem xét.

<u>Ví dụ 10</u>: Tính tích phân bất định: $I = \int \sqrt{x^2 + a} dx$

Giải:

$$\text{D} \check{a} \text{t: } \begin{cases} u = \sqrt{x^2 + a} \\ dv = dx \end{cases} \implies \begin{cases} du = \frac{x dx}{\sqrt{x^2 + a}} \\ v = x \end{cases}$$

Khi đó:
$$I = x\sqrt{x^2 + a} - \int \frac{x^2 dx}{\sqrt{x^2 + a}}$$
 (1)

Với
$$J = \int \frac{x^2 dx}{\sqrt{x^2 + a}} = \int \frac{[(x^2 + a) - a]dx}{\sqrt{x^2 + a}} = \int \sqrt{x^2 + a} dx - a \int \frac{dx}{\sqrt{x^2 + a}}$$
$$= I - a \ln|x + \sqrt{x^2 + a}| + C. \tag{2}$$

Thay (2) vào (1) ta được:

$$I = x\sqrt{x^2 + a} - (I - a \ln\left|x + \sqrt{x^2 + a}\right| + C) \Leftrightarrow I = \frac{x}{2}\sqrt{x^2 + a} + \frac{a}{2}\ln\left|x + \sqrt{x^2 + a}\right| + C.$$

4. SỬ DỤNG CÁC PHÉP BIẾN ĐỔI

Dang 1: Tính tích phân bất định
$$I = \int \sqrt{\frac{x-a}{x+a}} dx$$
, với $a > 0$

PHƯƠNG PHÁP CHUNG

Vì điều kiện
$$\begin{bmatrix} x \ge a \\ x < -a \end{bmatrix}$$

Ta xét hai trường hợp:

• Với
$$x \ge a$$
 thì:
$$\int \sqrt{\frac{x-a}{x+a}} dx = \int \frac{x-a}{\sqrt{x^2-a^2}} dx = \int \frac{2xdx}{2\sqrt{x^2-a^2}} - a \int \frac{dx}{\sqrt{x^2-a^2}}$$
$$= \sqrt{x^2-a^2} - \ln\left|x + \sqrt{x^2-a^2}\right| + C.$$

• Với x < -a thì:
$$\int \sqrt{\frac{x-a}{x+a}} dx = \int \frac{a-x}{\sqrt{x^2-a^2}} dx = a \int \frac{dx}{\sqrt{x^2-a^2}} - \int \frac{2xdx}{2\sqrt{x^2-a^2}}$$
$$= \ln|x+\sqrt{x^2-a^2}| - \sqrt{x^2-a^2} + C.$$

Ví dụ 11: Tính tích phân bất định:
$$I = \int \sqrt{\frac{x-1}{x+1}} dx$$

Giái:

Vì điều kiện $\begin{bmatrix} x \ge 1 \\ x < -1 \end{bmatrix}$. Ta xét hai trường hợp:

- Với $x \ge 1$. Ta có: $I = \int \frac{x-1}{\sqrt{x^2-1}} dx = \int \frac{2xdx}{2\sqrt{x^2-1}} \int \frac{dx}{\sqrt{x^2-1}} = \sqrt{x^2-1} \ln|x + \sqrt{x^2-1}| + C$
- Với x < −1. Ta có:

$$I = \int \frac{1-x}{\sqrt{x^2 - 1}} dx = \int \frac{dx}{\sqrt{x^2 - 1}} - \int \frac{2xdx}{2\sqrt{x^2 - 1}} = \ln\left|x + \sqrt{x^2 - 1}\right| - \sqrt{x^2 - 1} + C$$

Dạng 2: Tính tích phân bất định
$$I = \int \frac{dx}{\sqrt{ax+b} + \sqrt{ax+c}}$$
, với $a \neq 0$ vàb $-c \neq 0$.

PHƯƠNG PHÁP CHUNG

Khử tính vô tỉ ở mẫu số bằng cách trục căn thức, ta được:

$$I = \frac{1}{b-c} \int (\sqrt{ax+b} + \sqrt{ax+c}) dx = \frac{1}{a(b-c)} [\int (ax+b)^{1/2} d(ax+b) + \int (ax+c)^{1/2} d(ax+c)]$$
$$= \frac{2}{2a(b-c)} [\sqrt{(ax+b)^3} + \sqrt{(ax+c)^3}] + C$$

Ví dụ 12: Tính tích phân bất định: $I = \int \frac{dx}{\sqrt{x+1}} + \sqrt{x-1}$

<u>Giải</u>:

Khử tính vô tỉ ở mẫu số bằng cách trục căn thức, ta được:

$$I = \frac{1}{2} \int (\sqrt{x+1} + \sqrt{x-1}) dx = \frac{1}{2} \left[\int (x+1)^{1/2} d(x+1) + \int (x-1)^{1/2} d(x-1) \right]$$
$$= \frac{1}{3} \left[\sqrt{(x+1)^3} + \sqrt{(x-1)^3} \right] + C$$

Chú ý: Một phép biến đổi rất phổ biến đối với các hàm số vô tỉ là phương pháp phân tích, chúng ta sẽ đi xem xét các dạng cơ bản sau:

Dang 3: Tính tích phân bất định
$$I = \int \frac{v(x)dx}{\sqrt{u^2(x) \pm \alpha}}$$

PHƯƠNG PHÁP CHUNG

Ta thực hiện theo các bước sau:

• <u>Buốc 1</u>: Phân tích: $\frac{v(x)}{\sqrt{u^2(x) + \alpha}} = \frac{a[u^2(x) + \alpha]}{\sqrt{u^2(x) + \alpha}} + \frac{bu(x)}{\sqrt{u^2(x) + \alpha}} + \frac{c}{\sqrt{u^2(x) + \alpha}}$

Sử dụng phương pháp hằng số bất định ta xác định được a, b, c.

• <u>Bước 2</u>: Áp dụng các công thức:

$$1.\int \frac{xdx}{\sqrt{x^2 + a}} = \sqrt{x^2 \pm a} + C.$$

$$2.\int \frac{\mathrm{dx}}{\sqrt{x^2 + a}} = \ln \left| x + \sqrt{x^2 \pm a} \right| + C$$

$$3. \int \sqrt{x^2 \pm a} dx = \frac{x}{2} \sqrt{x^2 \pm a} \pm \frac{a}{2} \ln |x + \sqrt{x^2 \pm a}| + C.$$

Ví dụ 13: Tính tích phân bất định: $I = \int \frac{(2x^2 + 1)dx}{\sqrt{x^2 + 2x}}$

Giải:

Ta có:
$$\frac{2x^2+1}{\sqrt{x^2+2x}} = \frac{2x^2+1}{\sqrt{(x+1)^2-1}} = \frac{a[(x+1)^2-1]}{\sqrt{(x+1)^2-1}} + \frac{b(x+1)}{\sqrt{(x+1)^2-1}} + \frac{c}{\sqrt{(x+1)^2-1}}$$

$$= \frac{ax^2 + (2a+b)x + b + c}{\sqrt{x^2 + 2x}}$$

Đồng nhất đẳng thức, ta được: $\begin{cases} a=2\\ 2a+b=0 \iff \begin{cases} a=2\\ b=-4\\ c=5 \end{cases}$

Khi đó:
$$\frac{2x^2+1}{\sqrt{x^2+2x}} = 2\sqrt{(x+1)^2-1} - \frac{4(x+1)}{\sqrt{(x+1)^2-1}} + \frac{5}{\sqrt{(x+1)^2-1}}$$

Do đó:
$$I = \int [2\sqrt{(x+1)^2 - 1} - \frac{4(x+1)}{\sqrt{(x+1)^2 - 1}} + \frac{5}{\sqrt{(x+1)^2 - 1}}] dx$$

$$= (x+1)\sqrt{x^2 + 2x} - \ln|x+1 + \sqrt{x^2 + 2x}| - 4\sqrt{x^2 + 2x} + 5\ln|x+1 + \sqrt{x^2 + 2x}| + C$$

$$= (x+1)\sqrt{x^2 + 2x} + 4\ln|x+1 + \sqrt{x^2 + 2x}| - 4\sqrt{x^2 + 2x} + C.$$

BÀI TÂP

Bài 30. Tìm họ nguyên hàm của các hàm số sau:

$$a' \frac{x+1}{\sqrt[3]{3x+1}}; \ b' \frac{x}{\sqrt{2x+1}+1}; \ c' \frac{x^3}{\sqrt{x+2}}; \ d' \frac{x^3}{1+\sqrt[3]{x^4+1}}; \ e' \frac{1}{\sqrt[3]{x}+\sqrt{x}};$$

$$f' \frac{1}{\sqrt[3]{(2x+1)^2} - \sqrt{2x+1}}; \quad g' \frac{x}{\sqrt[10]{x+1}} \quad h' \ tgx + \frac{1}{\sqrt{2x+1} + \sqrt{2x-1}}$$

$$\underline{DS}: \quad a' \frac{1}{3} \left(\frac{1}{5}\sqrt[3]{(3x+1)^5} + \sqrt[3]{(3x+1)^2}\right) + C; \quad b' \frac{1}{6}\sqrt{(2x+1)^3} - \frac{1}{4}(2x+1) + C;$$

$$c' \frac{1}{3}\sqrt{(x^2+2)^3} - 2\sqrt{x^2+2} + C; \quad d' \frac{3}{8}\sqrt[3]{(x^4+1)^2} - \frac{3}{4}\sqrt[3]{x^4+1} + \frac{3}{4}\ln(\sqrt[3]{x^4+1+1}) + C;$$

$$e' 2\sqrt{x} - 3\sqrt[3]{x} - 6\sqrt[6]{x} + \ln(\sqrt[6]{x}+1) + C;$$

$$f' \frac{3}{2}\sqrt[6]{(2x+1)^2} + 3\sqrt[6]{2x+1} + 3\ln\left|\sqrt[6]{2x-1} - 1\right| + C;$$

$$g' \frac{10}{19}\sqrt[10]{(x+1)^{19}} - \frac{10}{9}\sqrt[10]{(x+1)^9} + C; \quad h' - \ln\left|\cos x\right| + \frac{1}{3}\left[\sqrt{(2x+1)^3} - \sqrt{(2x-1)^3}\right] + C.$$

<u>Bài 31</u>. Tìm họ nguyên hàm của các hàm số sau:

a/
$$\frac{x}{\sqrt{9x^2 - 6x}}$$
; b/ $\frac{1}{\sqrt{x^2 + 2x + 3}}$; c/ $\frac{1}{\sqrt{x^2 + 6x + 8}}$; d/ $\frac{1}{\sqrt{x^2 - x - 1}}$
e/ $\frac{4x + 5}{\sqrt{x^2 + 6x + 1}}$; f/ $\frac{2x}{x + \sqrt{x^2 - 1}}$; g/ $\frac{x^2 + 1}{|x|\sqrt{x^4 + 1}}$; h/ $\frac{x}{\sqrt{1 + x^2 + \sqrt{(1 + x^2)^3}}}$.
 \underline{DS} : a/ $\frac{1}{9}\sqrt{9x^2 - 6x} + \ln\left|3x - 1 + \sqrt{9x^2 - 6x}\right| + C$; b/ $\ln\left|x + 1 + \sqrt{x^2 + 2x + 3}\right| + C$;
c/ $\ln\left|x + 3 + \sqrt{x^2 + 6x + 8}\right| + C$; d/ $\ln\left|x - \frac{1}{2} + \sqrt{x^2 - x - 1}\right| + C$;

$$e/ 4\sqrt{x^2 + 6x + 1} - 7\ln\left|x + 3 + \sqrt{x^2 + 6x + 1}\right| + C; \qquad f/\frac{2}{3}x^2 - \frac{2}{3}\sqrt{(x^2 - 1)^3} + C;$$

$$g/\ln\left|x - \frac{1}{x} + \sqrt{\left(x - \frac{1}{2}\right)^2 + 2}\right| + C; \qquad h/2\sqrt{1 + \sqrt{1 + x^2}} + C.$$

Bài 32a/ Biết rằng
$$\int \frac{dx}{\sqrt{x^2 + 3}} = \ln(x + \sqrt{x^2 + 3}) + C.$$

Tìm nguyên hàm của $F(x) = \int \sqrt{x^2 + 3} dx$

b/ Tính
$$\int \sqrt{x^2 - 4x + 8} dx$$
.

BS: a/
$$\frac{1}{2}x\sqrt{x^2+3} + \frac{3}{2}\ln(x+\sqrt{x^2+3}) + C$$
.
b/ $\frac{1}{2}(x-2)\sqrt{x^2-4x+8} + 2\ln|x-2+\sqrt{x^2-4x+8}| + C$.

Bài 33. Tìm họ nguyên hàm của các hàm số sau:

a/
$$\frac{1}{\sqrt{(x^2+16)^3}}$$
; b/ $\frac{1}{\sqrt{(1-x^2)^3}}$.
 \underline{DS} : a/ $\frac{x}{16\sqrt{x^2+16}}$ + C; b/ $\frac{x}{\sqrt{1-x^2}}$ + C.

Bài 34. Tìm họ nguyên hàm của các hàm số sau:

$$a' \frac{1}{(x-1)\sqrt{1-x^2}}; \qquad b' \frac{x-1}{(x+1)\sqrt{x^2+1}}; \qquad c' \frac{1}{(x-1)\sqrt{-x^2+2x+3}};$$

$$d' \frac{1}{x+\sqrt{x^2+x+1}}; \qquad e' \frac{x^2}{\sqrt{x^2+x+1}}; \qquad f' \frac{1}{1+\sqrt{x}+\sqrt{1+x}}.$$

$$\underline{\textit{DS}} : a' -\sqrt{\frac{1+x}{1-x}} + C; \qquad b' \ln\left|x+\sqrt{x^2+1}\right| + \sqrt{2} \ln\left|\frac{1-x+\sqrt{2(x^2+1)}}{2(x+1)}\right| + C;$$

$$c' -\frac{1}{2} \ln\left|\frac{2+\sqrt{-x^2+2x+3}}{2(x-1)}\right| + C;$$

$$d' \frac{3}{2(1+2t)} + \frac{1}{2} \ln\frac{t^4}{\left|1+2t\right|^3} + C, \ v \text{\'oi} \ t = x+\sqrt{x^2+x+1}.$$

$$e' \frac{1}{4}(2x-3)\sqrt{x^2+x+1} - \frac{1}{8} \ln\left|x+\frac{1}{2}+\sqrt{x^2+x+1}\right| + C;$$

$$f' \sqrt{x} + \frac{1}{2}x - \frac{1}{2}x.t + \frac{1}{4} \ln\left|\frac{t-1}{t+1}\right| + C, \ v \text{\'oi} \ t = \sqrt{\frac{1+x}{x}}.$$

Vấn đề 10: NGUYÊN HÀM CÁC HÀM SỐ SIÊU VIỆT

Để xác định nguyên hàm của các hàm số siêu việt ta cần linh hoạt lựa chọn một trong các phương pháp cơ bản sau:

- 1. Sử dụng các dạng nguyên hàm cơ bản
- 2. Phương pháp phân tích
- 3. Phương pháp đổi biến
- 4. Phương pháp tích phân từng phần.

1. SỬ DỤNG CÁC DẠNG NGUYÊN HÀM CƠ BẨN

<u>Bài toán 1</u>: Xác định nguyên hàm các hàm siêu việt dựa trên các dạng nguyên hàm cơ bản

PHƯƠNG PHÁP CHUNG

Bằng các phép biến đổi đại số, ta biến đổi biểu thức dưới dấu tích phân về các dạng nguyên hàm cơ bản đã biết.

Ví dụ 1: Tính các tích phân bất định sau:

a/
$$I = \int \frac{dx}{e^x - e^{-x}}$$
 b/ $J = \frac{2^x \cdot e^x}{16^x - 9^x} dx$

Giải:

a/ Ta có:
$$I = \int \frac{d(e^x)}{e^{2x} - 1} = \frac{1}{2} \ln \left| \frac{e^x - 1}{e^x + 1} \right| + C$$

b/ Chia tử và mẫu số của biểu thức dưới dấu tích phân cho 4^x, ta được:

$$J = \int \frac{\left(\frac{4}{3}\right)^{x}}{\left(\frac{4}{3}\right)^{2x} - 1} dx = \frac{1}{\ln \frac{4}{3}} \int \frac{d\left[\left(\frac{4}{3}\right)^{x}\right]}{\left(\frac{4}{3}\right)^{2x} - 1} dx = \frac{1}{\ln \frac{4}{3}} \cdot \frac{1}{2} \ln \left| \frac{\left(\frac{4}{3}\right)^{x} - 1}{\left(\frac{4}{3}\right)^{x} + 1} \right| + C$$

$$= \frac{1}{2(\ln 4 - \ln 3)} \cdot \ln \left| \frac{4^{x} - 3^{x}}{4^{x} + 3^{x}} \right| + C.$$

2. PHƯƠNG PHÁP PHÂN TÍCH

Bài toán 2: Xác định nguyên hàm hàm siêu việt bằng phương pháp phân tích

PHƯƠNG PHÁP CHUNG

Cần hiểu rằng thực chất nó là một dạng của phương pháp hệ số bất định, nhưng ở đây ta sử dụng các đồng nhất thức quen thuộc.

$$\underline{\text{Ví dụ 2}}$$
: Tính tích phân bất định : $I = \int \frac{dx}{1 - e^x}$.

Giải:

Sử dụng đồng nhất thức: $1=1-e^x)+e^x$

Ta được:
$$\frac{1}{1-e^x} = \frac{(1-e^x)+e^x}{1-e^x} = 1 + \frac{e^x}{1-e^x}$$
.

Suy ra:
$$I = \int \left(1 + \frac{e^x}{1 - e^x}\right) dx = \int dx - \int \frac{d(1 - e^x)}{1 - e^x} = x - \ln|1 - e^x| + C.$$

3. PHƯƠNG PHÁP ĐỔI BIẾN

Bài toán 3: Xác định nguyên hàm hàm siêu việt bằng phương pháp đổi biến

PHƯƠNG PHÁP CHUNG

Phương pháp đổi biến được sử dụng cho các hàm số siêu việt với mục đích chủ đạo để chuyển biểu thức dưới dấu tích phân về các dạng hữu tỉ hoặc vô tỉ, tuy nhiên trong nhiều trường hợp cần tiếp thu những kinh nghiệm nhỏ đã được minh hoạ bằng các chú ý trong vấn đề 4.

Ví dụ 3: Tính tích phân bất định :
$$I = \int \frac{dx}{\sqrt{1 + e^{2x}}}$$
.

<u>Giải</u>:

• Cách 1: Đặt
$$t = \sqrt{1 + e^{2x}} \Leftrightarrow t^2 = 1 + e^{2x}$$

Suy ra:
$$2tdt = 2e^{2x}dx \iff dx = \frac{tdt}{t^2 - 1} & \frac{dx}{\sqrt{1 + e^{2x}}} = \frac{tdt}{t(t^2 - 1)} = \frac{dt}{t^2 - 1}$$

Khi đó:
$$I = \int \frac{dt}{t^2 - 1} = \frac{1}{2} \ln \left| \frac{t - 1}{t + 1} \right| + C = \frac{1}{2} \ln \left| \frac{\sqrt{1 + e^{2x}}}{\sqrt{1 + e^{2x}} + 1} \right| + C$$

• $\underline{C\acute{a}ch\ 2}$: Đặt: $t = e^x$

Suy ra:
$$dt = -e^{-x}dx \Leftrightarrow -dt = \frac{dx}{e^x}, \frac{dx}{\sqrt{1 + e^{2x}}} = \frac{dx}{\sqrt{e^{2x}(e^{-2x} + 1)}} = \frac{dx}{e^x \sqrt{e^{-2x} + 1}} = \frac{-dt}{\sqrt{t^2 + 1}}.$$

$$\text{Khi $d\acute{o}$: } \int \frac{dx}{\sqrt{1+e^{2x}}} = -\int \frac{dt}{\sqrt{t^2+1}} = -\ln\left|t+\sqrt{t^2+1}\right| + C = -\ln\left|e^{-x}+\sqrt{e^{-x}}\right| + 1 + C.$$

$$\underline{\text{Ví dụ 4}}$$
: Tính tích phân bất định : $I = \int \frac{dx}{e^x - e^{x/2}}$

Giải:

Đặt
$$t = e^{-x/2}$$
. Suy ra: $dt = \frac{1}{2}e^{-x/2}dx \Leftrightarrow -2dt = \frac{dx}{e^{x/2}}$,

$$\frac{dx}{e^{x} - e^{x/2}} = \frac{dx}{e^{x}(1 - e^{-x/2})} = \frac{e^{-x/2}dx}{e^{x/2}(1 - e^{-x/2})} = \frac{-2tdt}{1 - t} = 2\left(1 + \frac{1}{t - 1}\right)dt$$

Khi đó:
$$I = 2\int \left(1 + \frac{1}{t-1}\right) dt = 2(e^{-x/2} + \ln|e^{-x/2} + 1| + C.$$

4. PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN

<u>Bài toán 4</u>: Tìm nguyên hàm các hàm siêu việt bằng phương pháp tích phân từng phần

PHƯƠNG PHÁP CHUNG

<u>Bài toán 1</u>: Tính: $\int e^{ax} \cos(bx)$ (hoặc $\int e^{ax} \sin(bx) với a, b \neq 0$

Khi đó ta đặt:
$$\begin{cases} u = cos(bx) \\ dv = e^{ax} dx \end{cases} \text{ hoặc } \begin{cases} u = sin(bx) \\ dv = e^{ax} dx \end{cases}$$

Bài toán 2: Tính: $\int P(x)e^{\alpha x}dx$ với $\alpha \in \mathbb{R}^*$

Khi đó ta đặt:
$$\begin{cases} u = P(x) \\ dv = e^{\alpha x} dx \end{cases}$$

 $\underline{\text{Ví dụ 5}}$: Tìm họ nguyên hàm của hàm số $f(x) = (tg^2x + tgx + 1)e^x$.

Giải:

Ta có:
$$F(x) = \int (tg^2x + tgx + 1)e^x = \int (tg^2x + 1)e^x + \int e^x tgx dx$$
. (1)

Xét tích phân $J = e^x t g x dx$.

Khi đó: $J = e^x tgx - \int (tg^2x + 1)e^x$.

Thay (2) vào (1) ta được
$$F(x) = e^x tgx + C$$
.

5. SỬ DỤNG CÁC PHƯƠNG PHÁP KHÁC NHAU

<u>Ví dụ 6</u>: Tính tích phân bất định: $I = \int \frac{dx}{\sqrt{1 + e^{2x}}}$

Giải:

(2)

Ta có:
$$\frac{dx}{\sqrt{1+e^{2x}}} = \frac{dx}{e^x \sqrt{e^{-2x}+1}} = \frac{e^{-x} dx}{\sqrt{e^{-2x}+1}} = -\frac{d(e^{-x})}{\sqrt{e^{-2x}+1}}$$
 (1)

Khi đó:
$$I = \int \frac{d(e^{-x})}{\sqrt{e^{-x} + 1}} = -\ln(e^{-x} + \sqrt{e^{-2x} + 1}) + C$$

Chú ý: Ta có thể sử dụng phương pháp đổi biến để làm tường minh lời giải, bằng cách:

Đặt
$$t = e^{x}$$
. Suy ra: $dt = e^{x} dx & \frac{dt}{\sqrt{1 + e^{2x}}} = \frac{dt}{t\sqrt{1 + t^{2}}}$

$$\begin{split} \text{Khi $d\acute{o}$: } & I = \int \frac{dt}{t\sqrt{1+t^2}} = \int \frac{dt}{t^2\sqrt{\frac{1}{t^2}+1}} = -\int \frac{d\left(\frac{1}{t}\right)}{\sqrt{\frac{1}{t^2}+1}} = -\ln\left|\frac{1}{t} + \sqrt{\frac{1}{t^2}+1}\right| + C \\ & = -\ln(e^{-x} + \sqrt{e^{-2x}+1}) + C. \end{split}$$

Đương nhiên cũng có thể đặt $t = e^{-x}$ ta sẽ thu được lời giải giống như trên, xong sẽ thật khó giải thích với các em học sinh câu trả lời "Tại sao lại nghĩ ra cách đặt ẩn phụ như vậy?"

Chú ý: Nếu các em học sinh thấy khó hình dung một cách cặn kẽ cách biến đổi để đưa về dạng cơ bản trong bài toán trên thì thực hiện theo hai bước sau:

- Bước 1: Thực hiện phép đổi biến:

$$D$$
ặt $t = e^x$

Suy ra:
$$dt = e^x dx & e^x \sqrt{e^{2x} - 2e^x + 2} dx = \sqrt{t^2 - 2t + 2} dt = \sqrt{(t-1)^2 + 1} dt$$

Khi đó:
$$I = \int \sqrt{(t-1)^2 + 1} dt$$
.

- Bước 2: Thực hiện phép đổi biến:

$$D$$
ăt $u = t - 1$

Suy ra:
$$du = dt & \sqrt{(t-1)^2 + 1}dt = \sqrt{u^2 + 1}du$$

Khi đó:
$$I = \int \sqrt{u^2 + 1} du = \frac{u}{2} \sqrt{u^2 + 1} + \frac{1}{2} \ln \left| u + \sqrt{u^2 + 1} \right| + C$$

$$= \frac{t - 1}{2} \sqrt{(t - 1)^2 + 1} + \frac{1}{2} \ln \left| t - 1 + \sqrt{(t - 1)^2 + 1} \right| + C$$

$$= \frac{e^x - 1}{2} \sqrt{e^{2x} - 2e^x + 2} + \frac{1}{2} \ln \left| e^x - 1 + \sqrt{e^{2x} - e^x + 2} \right| + C$$

Ví dụ 8: Tìm nguyên hàm hàm số: $f(x) = \frac{e^x}{e^x + e^{-x}}$

Giải:

Chọn hàm số phụ:
$$g(x) = \frac{e^{-x}}{e^x + e^{-x}}$$

Gọi F(x) và G(x) theo thứ tự là nguyên hàm của các hàm số f(x), g(x). Ta có:

$$f(x) - g(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$\Rightarrow F(x) - G(x) = \int \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} dx = \int \frac{d(e^{x} + e^{-x})}{e^{x} + e^{-x}} = \ln |e^{x} + e^{-x}| + C_{1}$$

$$f(x) + g(x) = \frac{e^{x} + e^{-x}}{e^{x} + e^{-x}} = 1 \Rightarrow F(x) + G(x) = \int dx = x + C_{2}.$$

Ta được:
$$\begin{cases} F(x) + G(x) = \ln \left| e^x + e^{-x} \right| + C_1 \\ F(x) - G(x) = x + C_2 \end{cases} \Rightarrow F(x) = \frac{1}{2} (\ln \left| e^x + e^{-x} \right| + x) + C.$$

<u>BÀI TẬP</u>

Bài 35. Tìm họ nguyên hàm của các hàm số sau:

a/
$$2^{x}.e^{x}$$
; b/ $\frac{1}{1+e^{x}}$; c/ $\frac{1+x}{x(1+x.e^{x})}$; d/ $\frac{\sqrt{\ln x}}{x}$;
e/ $e^{x}.\sin(e^{x})$; f/ $\frac{e^{2x}}{e^{2x}+2}$; g/ $\frac{1}{x \ln x}$; h/ $x.e^{x^{2}}$.

$$\underline{DS}: \quad a / \frac{2^{x} \cdot e^{x}}{1 + \ln 2} + C; \quad b / \ln \frac{e^{x}}{1 + e^{x}} + C; \quad c / \ln \left| \frac{x e^{x}}{1 + x e^{x}} \right| + C;$$

$$d / \frac{2}{3} \ln x \cdot \sqrt{\ln x} + C; \quad e / -\cos(e^{x}) + C; \quad f / \frac{1}{2} \ln \left| e^{2x} + 1 \right| + C;$$

$$g / \ln \left| \ln x \right| + C; \quad h / \frac{1}{2} e^{x^{2}} + C.$$

Bài 36. Tìm họ nguyên hàm của các hàm số sau:

$$a' \frac{e^{2x} - 1}{e^{x}}; \qquad b' (1 + e^{3x})^{2} \cdot e^{3x}; \qquad c' \frac{e^{2x}}{\sqrt[4]{e^{x} + 1}}; \qquad d' \frac{1}{\sqrt{1 + e^{x}}}; \qquad e' \frac{\sqrt{e^{2x}}}{\sqrt[4]{e^{x} + 1}}$$

$$f' \frac{1}{\sqrt{x}} \cdot e^{\sqrt{x}}; \qquad g' \frac{\sin x}{e^{\cos x}}; \qquad h' \frac{1}{e^{x} (3 + e^{-x})}.$$

$$\underline{BS}: a' e^{x} + e^{-x} + C; \qquad b' \frac{1}{9} (1 + e^{3x})^{3} + C; \qquad c' \frac{4}{7} \sqrt[4]{(e^{x} + 1)^{7}} - \frac{4}{3} \sqrt[4]{(e^{x} + 1)^{3}} + C;$$

$$d' \ln \left| \frac{t - 1}{t + 1} \right| + C, \text{ v\'oi } t = \sqrt{e^{x} + 1}; \qquad e' 2t + \ln \left| \frac{t - 1}{t + 1} \right| + C, \text{ v\'oi } t = \sqrt{1 + \ln x};$$

$$f' 2e^{\sqrt{x}} + C; \qquad g' e^{-x} + C; \qquad h' \ln \left| \frac{3e^{x}}{3e^{x} + 1} \right| + C.$$

Bài 37. Tìm họ nguyên hàm của các hàm số sau:

a/
$$x^2e^{3x}$$
; b/ $e^{2x}.\cos 3x$; c/ $e^x.\sin x$; d/ $\left(\frac{\ln x}{x}\right)^3$; e/ $x^n.\ln x$, $n \neq -1$.
 \underline{BS} : a/ $\frac{1}{27}e^{3x}(9x^2-6x+2)+C$; b/ $\frac{1}{13}e^{2x}(2\cos 3x+3\sin 3x)+C$;
c/ $\frac{1}{2}e^x(\sin x-\cos x)+C$; d/ $-\frac{1}{2x^2}\left(\ln^3 x+\frac{3}{2}\ln^2 x+\frac{3}{2}\ln x+\frac{3}{4}\right)+C$;
e/ $\frac{x^{n+1}}{n+1}\ln x-\frac{x^{n+1}}{(n+1)^2}+C$;

Bài 38. Tìm họ nguyên hàm của các hàm số sau:

a/
$$\frac{x^2 e^x}{(x+2)^2}$$
; b/ $\frac{(1+\sin x)e^x}{1+\cos x}$ c/ $\sqrt{e^x + e^{-x} + 2}$; d/ $\frac{1}{1-x^2} \ln \frac{1+x}{1-x}$;
e/ $\ln(x+\sqrt{x^2-1})$; f/ $\frac{\ln x}{x\sqrt{1+\ln x}}$; g/ $\frac{x\ln(x+\sqrt{x^2+1})}{\sqrt{x^2+1}}$.
 \underline{DS} : a/ $-\frac{x-2}{x+2}.e^x + C$; b/ $\frac{e^x \sin x}{1+\cos x} + C$; c/ $\sqrt{e^x}(e^{3x} + e^{2x}) + C$;
d/ $\frac{1}{4} \left(\ln \frac{1+x}{1-x} \right)^2 + C$; e/ $x\ln(x+\sqrt{x^2-1}) - \sqrt{x^2-1} + C$;
f/ $\frac{2}{3}(1+\ln x)\sqrt{1+\ln x} - 2\sqrt{1+\ln x} + C$; g/ $\sqrt{x^2+1}.|\mathbf{n}|x+\sqrt{x^2+1}-x+C$.

§Bài 2: TÍCH PHÂN

1. Định nghĩa tích phân:

Ta có công thức Niutơn – Laipnit:

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = F(b) - F(a).$$

Chú ý: Tích phân $\int_a^b f(x)dx$ chỉ phụ thuộc vào f, a, b mà không phụ thuộc vào cách ký hiệu biến số tích phân. Vì vậy ta có thể viết:

$$F(b) - F(a) = \int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt = \int_{a}^{b} f(u)du = ...$$

2. Ý nghĩa hình học của tích phân:

Nếu hàm số f(x) liên tục và không âm trên [a;b] thì tích phân $\int_a^b f(x)dx$ là diện tích hình thang cong giới hạn bởi đồ thị của hàm số y = f(x, trục Ox) và hai đường thẳng x = a và x = b.

3. Các tính chất của tích phân:

Giả sử các hàm số f(x), g(x) liên tục trên khoảng K và a, b, c là ba điểm của K, dựa vào định nghĩa tích phân ta có các tính chất sau:

Tính chất 1. Ta có
$$\int_{a}^{a} f(x)dx = 0$$

Tính chất 2. Ta có
$$\int_a^b f(x)dx = -\int_b^a f(x)dx$$
.

Tính chất 3. Ta có
$$\int_a^b kf(x)dx = k \int_a^b f(x)dx$$
, với $k \in R$.

Tính chất 4. Ta có
$$\int_a^b [f(x) \pm g(x) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$
.

Tính chất 5. Ta có
$$\int_a^c f(x)dx = \int_a^b f(x)dx + \int_a^c f(x)dx$$
.

Tính chất 6. Nếu
$$f(x) \ge 0$$
, $\forall x \in [a; b]$ thì $\int_{a}^{b} f(x) dx \ge 0$

Tính chất 7. Nếu
$$f(x) \ge g(x)$$
, $\forall x \in [a; b]$ thì $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.

Tính chất 8. Nếu $m \le f(x) \le M$, $\forall x \in [a; b]$ thì $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$.

Tính chất 9. Cho t biến thiên trên đoạn [a; b] thì $G(t) = \int_a^t f(x) dx$ là nguyên hàm của f(t) và G(a) = 0.

Ví du 1: Tính các tích phân sau:

a/
$$I = \int_{1}^{2} \frac{x^2 - 2x}{x^3} dx;$$
 b/ $J = \int_{0}^{4} (3x - e^{\frac{x}{4}}) dx.$

Giải:

a/ Ta có:
$$I = \int_{1}^{2} \left(\frac{1}{x} - \frac{2}{x^2}\right) dx = \left(\ln|x| + \frac{2}{x}\right)\Big|_{1}^{2} = (\ln 2 + 1) - (\ln 1 + 2) = \ln 2 - 1.$$

b/ Ta có:
$$J = \left(\frac{3}{2}x^2 - 4e^{\frac{x}{4}}\right)\Big|_0^4 = (24 - 4e) - (0 - 4) = 28 - 4e.$$

Chú ý: Trong ví dụ trên ta đã sử dụng định nghĩa cùng các tính chất 1, 3 và 4 để tính tích phân Ví dụ sau đây sẽ sử dụng tính chất 5 để tính tích phân của hàm chứa dấu trị tuyệt đối.

Ví dụ 2: Tính tích phân sau: $J = \int_{-1}^{1} |e^x - 1| dx$.

<u>Giải</u>:

Xét dấu của hàm số $y = e^x - 1$

Ta có:
$$y = 0 \Leftrightarrow e^x - 1 = 0 \Leftrightarrow x = 0$$

Nhận xét rằng: $x > 0 \Rightarrow e^x > 1 \Rightarrow y > 0$

$$x<0 \Longrightarrow e^x<1 \Longrightarrow y<0$$

Ta có bảng xét dấu:

Do đó:
$$J = \int_{-1}^{0} (1 - e^x) dx + \int_{0}^{1} (e^x - 1) dx = (x - e)|_{-1}^{0} + (e^x - x)|_{0}^{1} = e + \frac{1}{2} - 2.$$

Chú ý: Sử dụng tính chất 6, 7, 8 ta sẽ đi chứng minh được các bất đẳng thức tích phân.

Ví dụ 3: Chứng minh rằng:
$$\frac{\pi}{4} \le \int_{\pi/4}^{3\pi/4} \frac{dx}{3 - 2\sin^2 x} \le \frac{\pi}{2}$$
.

Giải:

Trên đoạn
$$\left[\frac{\pi}{4}; \frac{3\pi}{4}\right]$$
 ta có:

$$\frac{\sqrt{2}}{2} \le \sin x \le 1 \implies \frac{1}{2} \le \sin^2 x \le 1 \iff 1 \le 3 - 2\sin^2 x \le 2 \iff \frac{1}{2} \le -\frac{1}{3 - 2\sin^2 x} \le 1.$$

Do đó:
$$\int_{\pi/4}^{3\pi/4} \frac{1}{2} dx \le \int_{\pi/4}^{3\pi/4} \frac{dx}{3 - 2\sin^2 x} \le \int_{\pi/4}^{3\pi/4} dx.$$
 (1)

trong đó:
$$\int_{\pi/4}^{3\pi/4} \frac{1}{2} dx = \frac{1}{2} x \Big|_{\pi/4}^{3\pi/4} = \frac{\pi}{4} \& \int_{\pi/4}^{3\pi/4} dx = x \Big|_{\pi/4}^{3\pi/4} = 2.$$
 (2)

Thay (2) vào (1) ta được:
$$\frac{\pi}{4} \le \int_{\pi/4}^{3\pi/4} \frac{dx}{3 - 2\sin^2 x} \le \frac{\pi}{2}$$
 (đpcm).

Ví dụ 4: Cho hàm số:
$$f(x) = \begin{cases} x + a & khi x < 0 \\ x^2 + 1 & khi x \ge 0 \end{cases}$$

a/ Xét tính liên tục của hàm số đã cho tại điểm $x_0 = 0$.

b/ Với a để hàm số liên tục tại x = 0, hãy xác định $\int_{-1}^{1} f(x).dx$.

Giải:

a/ Hàm số xác định với mọi $x \in R$.

Ta có:
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x^2 + 1) = 1 \text{ và } \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x + a) = a.$$

$$f(0) = 1.$$

Vây:

- Nếu a=1 thì $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x) = f(0) = 1 \Leftrightarrow \text{ hàm số liên tục tại } x_0 = 0$
- Nếu $a \neq 1$ thì $\lim_{x \to 0^+} f(x) \neq \lim_{x \to 0^-} f(x) \Leftrightarrow$ hàm số gián đoạn tại $x_0 = 0$

b/ Ta có:

$$\int_{-1}^{1} f(x) dx = \int_{-1}^{0} f(x) dx + \int_{-1}^{0} f(x) dx = \int_{-1}^{0} (x+1) dx + \int_{0}^{1} (x^{2}+1) dx = \frac{11}{6}.$$

Chú ý: Như vậy chúng ta sử dụng hầu hết các tính chất để giải các ví dụ về tích phân, duy còn tính chất thứ 9 ở đó có một dạng toán mà các học sinh cần quan tâm là "Đạo hàm của hàm số xác định bởi tích phân". Ta có các dạng sau:

Dạng 1: Với
$$F(x) = \int_a^x f(t)dt \Rightarrow F'(x) = f(x)$$
.
Với $F(x) = \int_x^a f(t)dt$ thì viết lại $F(x) = -\int_a^x f(t)dt \Rightarrow F'(x) = -f(x)$.

Dạng 2: Với
$$F(x) = \int_{0}^{u(x)} f(t)dt \Rightarrow F'(x) = u'(x)f[u(x)].$$

Dạng 3: Với $F(x) = \int_{0}^{\infty} f(t)dt$ thì viết lại:

$$F(x) = \int\limits_a^{u(x)} f(t)dt - \int\limits_a^{v(x)} f(t)dt \Longrightarrow F'(x) = u'(x)f[u(x)] - v'(x)f[v(x)]$$

minh hoạ bằng ví dụ sau:

Ví du 5: Tính đao hàm của các hàm số:

Tinh đạo hàm của các hàm số:
a/
$$F(x) = \int_{a}^{x} (e^{t} + \cos t^{2}) dt;$$
 b/ $G(x) = \int_{x^{2}}^{a} (t^{2} + \sqrt{2+1}) dt;$
c/ $H(x) = \int_{2x}^{x^{2}} (t^{3} + \sin t) dt.$

Giải:

a/ Ta có:
$$F(x) = [\int_{a}^{x} (e^{t} + \cos t^{2}) dt]' = e^{x} + \cos x^{2}.$$

b/ Ta có: $G(x) = [\int_{x^{2}}^{a} (t^{2} + \sqrt{t^{2} + 1}) dt]' = [-\int_{a}^{x^{2}} (t^{2} + \sqrt{t^{2} + 1}) dt]' = (u)'.(u^{2} + \sqrt{u^{2} + 1})$

trong đó: $u = x^{2}$, do đó: $G'(x) = (x^{2})'.(x^{4} + \sqrt{x^{4} + 1}) = 2x(x^{4} + \sqrt{x^{4} + 1}).$

c/ Ta có: $H'(x) = [\int_{2x}^{x^{2}} (t^{3} + \sin t) dt]' = [\int_{a}^{x^{2}} (t^{3} + \sin t) dt - \int_{a}^{2x} (t^{3} + \sin t) dt]'$
 $= (u)'.(u^{3} + \sin u) + (v)'.(v^{3} + \sin v), \text{ trong đó: } u = x^{2} \text{ và } v = 2x, \text{ do đó: }$

 $H'(x) = (x^2)'.(x^6 + \sin^2) + (2x)'.(8x + \sin 2x) = 2x(x^6 + \sin x^2) + 2(8x^3 + \sin 2x)$

TổNG KẾT CHUNG:

Để tính tích phân xác định ngoài các phương pháp cơ bản mà chúng ta đã biết để xác đinh nguyên hàm, cu thể có:

- 1. Phương pháp sử dụng bảng nguyên hàm cơ bản.
- 2. Phương pháp phân tích
- 3. Phương pháp đổi biến
- 4. Phương pháp tích phân từng phần.
- 5. Sử dụng các phép biến đổi.

còn có thêm một vài phương pháp khác ví dụ như phương pháp cho lớp tích phân đặt biệt.

Vấn đề 1: TÍNH TÍCH PHÂN BĂNG PHƯƠNG PHÁP PHÂN TÍCH

Bằng việc sử dụng các đồng nhất thức để biến đổi biểu thức dưới dấu tích phân thành tổng các biểu thức mà nguyên hàm của mỗi biểu thức đó có thể nhân được từ bảng nguyên hàm hoặc chỉ bằng các phép biến đổi đơn giản đã biết, từ đó ta xác định được giá trị của tích phân.

$$\underline{\text{Ví dụ 1}} \text{: } (DHTM \ HN_95) \text{ Tính tích phân: } I = \int_0^1 \frac{x^5}{x^2 + 1} dx.$$

Giải:

Sử dụng đồng nhất thức: $x^5 = x^5 + x^3 - x^3 - x + x = x^3(x^2 + 1) - x(x^2 + 1) + x$.

$$\text{Ta được: } I = \int\limits_0^1 \!\! \left(x^3 - x + \frac{x}{x^2 + 1} \right) \!\! dx = \! \left[\frac{1}{4} x^4 - \frac{1}{2} x^2 + \frac{1}{2} \ln(x^2 + 1) \right] \bigg|_0^1 = \frac{1}{2} \ln 2 - \frac{1}{4}.$$

$$\underline{\text{Ví dụ 2}}: (D\hat{e} 91) \text{ Cho } f(x) = \frac{\sin x}{\cos x + \sin x}$$

a/ Tìm hai số A, B sao cho
$$f(x) = A + B\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right)$$

b/ Tính
$$\int_{0}^{\pi/2} f(x) dx.$$

Giải

a/ Ta có:
$$\frac{\sin x}{\cos x + \sin x} = A + B \left(\frac{\cos x - \sin x}{\cos x + \sin x} \right) = \frac{(A+B)\cos x + (A-B)\sin x}{\cos x + \sin x}$$

Đồng nhất đẳng thức, ta được:
$$\begin{cases} A+B=0 \\ A-B=1 \end{cases} \Leftrightarrow A=B=-\frac{1}{2}.$$

b/ Với kết quả ở câu a/ ta được:

$$\int_{0}^{\pi/2} f(x) dx = \int_{0}^{\pi/2} \left[-\frac{1}{2} - \frac{\cos x - \sin x}{2(\cos x + \sin x)} \right] dx = \left[-\frac{1}{2} x - \ln(\cos x + \sin x) \right]_{0}^{\pi/2} = -\frac{\pi}{4}.$$

BÀI TẬP

Bài 1. Tính các tích phân:

a/
$$\int_{0}^{4} \frac{dx}{\sqrt{x}}$$
; b/ $\int_{0}^{1} x \sqrt{1-x} dx$; c/ $\int_{0}^{1} \frac{x^{2}-2x-3}{2-x} dx$; d/ $\int_{1}^{2} \frac{dx}{\sqrt{x+1}+\sqrt{x-1}}$
 \underline{DS} : a/ 4 b/ $\frac{4}{5}$ c/ $\frac{1}{2}-\ln 2$ d/ $\frac{1}{3}(3\sqrt{3}-2\sqrt{2}-1)$

Bài 2. Tính các tích phân:

$$a / \int_{0}^{\frac{\pi}{2}} \frac{4 \sin^{3} x}{1 + \cos x}; \qquad b / \int_{0}^{\frac{\pi}{8}} t g^{2} 2x (1 + t g^{2} 2x) dx; \qquad c / \int_{0}^{\frac{e^{x}}{(e^{x} + 1)^{2}}} dx; \qquad d / \int_{1}^{e^{3}} \frac{dx}{x \sqrt{1 + \ln x}}$$

$$\underline{BS}: a / 2 \qquad \qquad b / \frac{1}{6} \qquad c / \frac{1}{6} \qquad d / 2$$

<u>Bài 3</u>. Tìm các giá trị của a để có đẳng thức: $\int_{1}^{2} [a^{2} + (4-4a)x + 4x^{3}] dx = 12.$

$$\underline{DS}$$
: $a = 3$

<u>Bài 4</u>. Cho hai hàm số $f(x) = 4\cos x + 3\sin x$ và $g(x) = \cos x + 2\sin x$.

a/ Tìm các số A, B sao cho g(x) = A.f(x) + B.f'(x)

b/ Tính
$$\int_0^{\frac{\pi}{4}} \frac{g(x)}{f(x)} dx$$
.

BS: a/
$$A = \frac{2}{5}$$
; $B = -\frac{1}{5}$; b/ $\frac{\pi}{10} - \frac{1}{5} \ln \frac{7}{4\sqrt{2}}$

<u>Bài 5</u>. Tìm các hằng số A, B để hàm số $f(x) = A\sin\pi x + B$ thoả mãn đồng thời các điều kiện: f'(1) = 2 và $\int_0^2 f(x) dx = 4$.

$$\underline{\mathit{DS}}\colon \ A=-\frac{2}{\pi}; \ B=2.$$

<u>Vấn đề 2: TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ</u>

Phương pháp đổi biến số để tính tích phân xác định có hai dạng cơ bản (ngoài ra còn dạng 3) dựa trên định lý sau:

Định lý:

a. Nếu $\int f(x)dx = F(x) + C$ và $u = \phi(x)$ là hàm số có đạo hàm trong [a ; b] thì:

$$\int_{\varphi(a)}^{\varphi(b)} f(u) du = F(u) \Big|_{\varphi(a)}^{\varphi(b)}$$

- b. Nếu hàm số f(x) xác định và liên tục trên đoạn [a;b], hàm số $x = \phi(t)$ xác định và
 - (i) Tồn tại đạo hàm $\varphi'(t)$ liên tục trên đoạn $[\alpha; \beta]$
 - (ii) $\varphi(\alpha) = a \quad va \quad \varphi(\beta) = b$.
 - (iii) Khi t biến đổi từ α đến β thì x biến thiên trong đoạn [a; b]

Khi đó:
$$\int_a^b f(x)dx = \int_a^\beta f[\phi(t)]\phi'(t)dt.$$

<u>Bài toán 1</u>: Sử dụng phương pháp đổi biến số *dạng 1* tính tsch phân $I = \int_a^b f(x) dx$.

Giải:

Ta thực hiện theo các bước sau:

- Bước 1: Chọn $x=\phi(t)$, trong đó $\phi(t)$ là hàm số mà ta chọn cho thích hợp.
- Bước 2: Lấy vi phân dx = φ'(t)dt
- Buớc 3: Tính các cận α và β tương ứng theo a và b
- $Bu\acute{o}c$ 4: Biểu thị f(x)dx theo t và dt. Giả sử rằng f(x)dx = g(t)dt
- *Bước 5:* Khi đó: $I = \int_{\alpha}^{\beta} g(t) dt$.
- Lưu ý: Chúng ta cần nhớ lại các dấu hiệu dẫn tới việc lựa chọn ẩn phụ kiểu trên thông thường là:

Dấu hiệu	Cách chọn
$\sqrt{a^2-x^2}$	$\begin{bmatrix} x = a \sin t \ v \dot{\sigma} i - \pi/2 \le t \le \pi/2 \\ x = a \cos t \ v \dot{\sigma} i \ 0 \le t \le \pi \end{bmatrix}$
$\sqrt{x^2-a^2}$	$\begin{bmatrix} x = \frac{ a }{\sin t} & \text{v\'oi } t \in [-\frac{\pi}{2}; \frac{\pi}{2}] \setminus \{0\} \\ x = \frac{ a }{\cos t} & \text{v\'oi } t \in [0; \pi] \setminus \{\frac{\pi}{2}\} \end{bmatrix}$
$\sqrt{a^2 + x^2}$	$\begin{bmatrix} x = a tgt & v \circ i - \pi/2 < t < \pi/2 \\ x = a \cot gt & v \circ i & 0 < t < \pi \end{bmatrix}$

Dấu hiệu	Cách chọn
$\sqrt{\frac{a+x}{a-x}}$ hoặc $\sqrt{\frac{a-x}{a+x}}$	x = acos2t
$\sqrt{(x-a)(b-x)}$	$x = a + (b - a)\sin^2 t$

Ví dụ 1: (*DHTCKT*_97) Tính tích phân :
$$I = \int_0^{\frac{\sqrt{2}}{2}} \frac{x^2}{\sqrt{1-x^2}} dx$$
.

Giải:

Đặt x = sint, khi đó: dx = costdt

Đổi cận: với
$$x = 0 \Rightarrow t = 0; x = \frac{\sqrt{2}}{2} \Rightarrow t = \frac{\pi}{4}.$$

Ta có:
$$\frac{x^2 dx}{\sqrt{1-x^2}} = \frac{\sin^2 t \cdot \cos t dt}{\sqrt{1-\sin^2 t}} = \frac{\sin^2 t \cdot \cos t dt}{|\cos t|} = \frac{\sin^2 t \cos t dt}{\cos t} = \frac{1}{2}(1-\cos 2t)dt.$$

Khi đó:
$$I = \frac{1}{2} \int_{0}^{\pi/4} (1 - \cos 2t) dt = \frac{1}{2} \left(t - \frac{1}{2} \sin 2t \right) \Big|_{0}^{\pi/4} = \frac{\pi}{8} - \frac{1}{4}.$$

Ví dụ 2: Tính tích phân :
$$I = \int_{2}^{2/\sqrt{3}} \frac{dx}{x\sqrt{x^2 - 1}}$$

Giải:

Đặt
$$x = \frac{1}{\sin t}$$
, khi đó: $dx = -\frac{\cos t}{\sin^2 t} dt$

Đổi cận: với
$$x = 1 \Rightarrow t = \pi/2$$
; $x = \frac{2}{\sqrt{3}} \Rightarrow t = \frac{\pi}{3}$.

Khi đó:
$$\int_{\pi/3}^{\pi/2} \frac{-\frac{1}{\sin^2 t} \cos t dt}{1} = \int_{\pi/3}^{\pi/2} dt = t \Big|_{\pi/3}^{\pi/2} = \frac{\pi}{6}$$

$$\sin t \sqrt{\frac{1}{\sin^2 t} - 1}$$

Chú ý: Cũng có thể sử dụng phép đổi:
$$I = \int_{2}^{2/\sqrt{3}} \frac{dx}{x^2 \sqrt{1 - \frac{1}{x^2}}}$$
.

Từ đó sử dụng phép đổi biến
$$t=\frac{1}{x}$$
, ta sẽ nhận được: $I=\int\limits_{1/2}^{\sqrt{3}/2}\frac{dt}{\sqrt{1-t^2}}.$

Rồi tiếp tục sử dụng phép đổi biến t = sinu, ta được
$$I = \int_{\pi/3}^{\pi/3} du = u|_{\pi/6}^{\pi/3} = \frac{\pi}{6}$$
.

Đó chính là lời giải có thể bổ sung (để phù hợp với hạn chế chương trình của Bộ

GD&ĐT) hầu hết các tài liệu tham khảo trước đây.

$$\underline{\text{V\'i dụ 3}} \colon \text{ T\'inh t\'ich phân} \colon I = \int\limits_{a}^{0} \sqrt{\frac{a+x}{a-x}} dx, \, (a>0)$$

Giải:

Đặt $x = a.\cos 2t$, khi đó: $dx = -2a.\sin 2t dt$.

Đổi cận: với
$$x = -a \Rightarrow t = \frac{\pi}{2}$$
; $x = 0 \Rightarrow t = \frac{\pi}{4}$

Ta có:
$$\sqrt{\frac{a+x}{a-x}} dx = \sqrt{\frac{a+a.\cos 2t}{a-a.\cos 2t}} (-2a.\sin 2t dt) = |\cot gt| (-2a.\sin 2t dt)$$

$$= -4a.\cos^2 t.dt = -2a(1+\cos 2t)dt.$$

Khi đó:
$$I = -2a \int_{\pi/4}^{\pi/2} (1 + \cos 2t) dt = -2a \left(t - \frac{1}{2} \sin 2t \right) \Big|_{\pi/4}^{\pi/2} = a \left(1 - \frac{\pi}{4} \right).$$

<u>Bài toán 2</u>: Sử dụng phương pháp đổi biến số *dạng 2* tính tích phân $I = \int_a^b f(x) dx$.

Giải:

Ta thực hiện theo các bước sau:

 $Bu\acute{\sigma}c$ 1: Chọn x = φ(t), trong đó φ(t) là hàm số mà ta chọn cho thích hợp, rồi xác định x = ψ(x) (nếu có thể).

 $Bu\acute{o}c$ 2: Xác định vi phân dx = φ'(t)dt

Bước 3: Tính các cận α và β tương ứng theo a và b

 $Bu\acute{o}c$ 4: Biểu thị f(x)dx theo t và dt. Giả sử rằng f(x)dx = g(t)dt

Bước 5: Khi đó: $I = \int_{\alpha}^{\beta} g(t) dt$.

Lưu ý: Các dấu hiệu dẫn tới việc lựa chọn ẩn phụ kiểu trên thông thường là:

Dấu hiệu	Cách chọn
Hàm có mẫu số	t là mẫu số
Hàm $f(x, \sqrt{\varphi(x)})$	$t = \sqrt{\varphi(x)}$
Hàm $f(x) = \frac{a.\sin x + b.\cos x}{c.\sin x + d.\cos x + e}$	$t = tg\frac{x}{2} (v \sigma i \cos \frac{x}{2} \neq 0)$
Hàm $f(x) = \frac{1}{\sqrt{(x+a)(x+b)}}$	• Với $x + a > 0 & x + b > 0$, đặt: $t = \sqrt{x + a} + \sqrt{x + b}$ • Với $x + a < 0 & x + b < 0$, đặt: $t = \sqrt{-x - a} + \sqrt{-x - b}$

Ví dụ 4: Tính tích phân :
$$I = \int_{\pi/6}^{\pi/3} \frac{\cos dx}{\sin^2 x - 5\sin x + 6}$$

Giải:

Đặt x = sint, khi đó: dt = cosxdx

Đổi cận: với
$$x = \frac{\pi}{6} \Rightarrow t = \frac{1}{2}; x = \frac{\pi}{3} \Rightarrow t = \frac{\sqrt{3}}{2}$$

Ta có:
$$\frac{\cos dx}{\sin^2 x - 5\sin x + 6} = \frac{dt}{t^2 - 5t + 6} = \frac{dt}{(t - 2)(t - 3)}$$

$$= \left(\frac{A}{t-3} + \frac{B}{t-2}\right) dt = \frac{[(A+B)t - 2A - 3B]dt}{(t-2)(t-3)}$$

Từ đó:
$$\begin{cases} A + B = 0 \\ -2A - 3B = 1 \end{cases} \Leftrightarrow \begin{cases} A = 1 \\ B = -1 \end{cases}$$

Suy ra:
$$\frac{\cos x dx}{\sin^2 x - 5\sin x + 6} = \left(\frac{1}{t - 3} - \frac{1}{t - 2}\right) dt$$
.

Khi đó:
$$I = \int_{1/2}^{\sqrt{3}/2} \left(\frac{1}{t-3} - \frac{1}{t-2} \right) dt = \ln \left| \frac{t-3}{t-2} \right|_{1/2}^{\sqrt{3}/2} = \ln \frac{3(6-\sqrt{3})}{5(4-\sqrt{3})}$$

Ví dụ 5: Tính tích phân :
$$I = \int_{0}^{\sqrt{7}} \frac{x^3 dx}{\sqrt[3]{1+x^2}}$$

Giải:

Đặt
$$t = \sqrt[3]{x^2 + 1} \Rightarrow t^3 = x^2 + 1$$
, khi đó: $3t^2dt = 2xdx \Rightarrow dx = \frac{3t^2dt}{2x}$.

Đổi cận: với
$$x = 0 \Rightarrow t = 1$$
; $x = \sqrt{7} \Rightarrow t = 2$.

Ta có:
$$\frac{x^3 dx}{\sqrt[3]{1+x^2}} = \frac{x^3 \cdot 3t^2 dt}{2xt} = 3t(t^3 - 1)dt = 3(t^4 - t)dt.$$

Khi đó:
$$I = 3 \int_{1}^{2} (t^4 - t) dt = 3 \left(\frac{t^5}{5} - \frac{t^2}{2} \right) \Big|_{1}^{2} = \frac{141}{10}.$$

<u>Bài toán 3</u>: Sử dụng phương pháp đổi biến số *dạng 3* tính tích phân $I = \int_a^b f(x) dx$.

<u>Giải</u>:

Dựa vào việc đánh giá cận của tích phân và tính chất của hàm số dưới dấu tích phân ta có thể lựa chọn phép đặt ẩn phụ, thông thường:

- Với $I = \int_{a}^{a} f(x)dx = 0$ có thể lựa chọn việc đặt x = -t
- Với $I = \int_{0}^{\pi/2} f(x) dx$ có thể lựa chọn việc đặt $t = \frac{\pi}{2} x$.

• Với $I = \int_{0}^{\pi} f(x) dx$ có thể lựa chọn việc đặt $t = \pi - x$

• Với $I = \int_{0}^{2\pi} f(x) dx$ có thể lựa chọn việc đặt $t = 2\pi - x$

• Với $I = \int_{a}^{b} f(x)dx$ có thể lựa chọn việc đặt x = a + b + t

Ghi chú: Xem vấn đề 6

Ví dụ 6: Tính tích phân : $I = \int_{-1}^{1} x^{2004} \sin x dx$

Giải:

Viết lại I về dưới dạng: $I = \int_{-1}^{0} x^{2004} \sin x dx + \int_{0}^{1} x^{2004} \sin x dx.$ (1)

Xét tích phân $J = \int_{-1}^{0} x^{2004} \sin x dx$.

Đặt $x = -t \Rightarrow dx = -dt$ khi đó: $3t^2dt = 2xdx \Rightarrow dx = \frac{3t^2dt}{2x}$.

Đổi cận: $x = -1 \Rightarrow t = 1$; $x = 0 \Rightarrow t = 0$

Khi đó: $I = -\int_{0}^{0} (-t)^{2004} \sin(-t) dt = -\int_{0}^{1} x^{2004} \sin x dx$.

Thay (2) vào (1) ta được I = 0.

(2)

 $\underline{\text{Ví dụ 7}}\text{: }(DHGT\ Tp.HCM_99)\ \text{Tính tích phân}:\ I = \int\limits_0^{\pi/2} \frac{\cos^4 x}{\cos^4 x + \sin^4 x} dx.$

<u>Giải</u>:

 $D \check{a}t \ t = \frac{\pi}{2} - x \implies dx = -dt$

Đổi cận: $với x = 0 \Rightarrow t = \frac{\pi}{2}; x = \frac{\pi}{2} \Rightarrow t = 0.$

Khi đó: $I = \int_{\pi/2}^{0} \frac{\cos^4(\frac{\pi}{2} - t)(-dt)}{\cos^4(\frac{\pi}{2} - t) + \sin^4(\frac{\pi}{2} - t)} = \int_{0}^{\pi/2} \frac{\sin^4 t dt}{\cos^4 t + \sin^4 t} = \int_{0}^{\pi/2} \frac{\sin^4 x}{\cos^4 x + \sin^4 x} dx.$

Do đó: $2I = \int_{0}^{\pi/2} \frac{\cos^4 x + \sin^4 x}{\cos^4 x + \sin^4 x} dx = \int_{0}^{\pi/2} dx = \frac{\pi}{2} \Rightarrow I = \frac{\pi}{4}.$

<u>BÀI TẬP</u>

Bài 6. Tính các tích phân sau:

$$a/\int_0^1 x^5 (1-x^3)^6 dx; \quad b/\int_0^1 \frac{x \, dx}{x^4+x^2+1} \qquad \quad c/\int_0^{\sqrt{3}} x^5 \sqrt{1-x^2} dx; \quad d/\int_0^{\frac{\pi}{2}} \frac{\sin x. \cos^3 x}{1+\cos^2 x} dx$$

BS: a/
$$\frac{1}{168}$$
; b/ $\frac{\pi\sqrt{3}}{18}$ c/ $\frac{848}{105}$; d/ $\frac{1}{2} - \frac{1}{2} \ln 2$.

Bài 7. Tính các tích phân sau:

a/
$$\int_0^{\frac{\pi}{6}} \frac{\cos x . dx}{6 - 5\sin x + \sin^2 x};$$
 b/ $\int_0^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{7 + \cos 2x}} dx;$

c/
$$\int_{-1}^{1} \frac{\cos x . dx}{e^{x} + 1}$$
; d/ $\int_{0}^{\pi} x . \sin x . \cos^{2} x dx$

$$\underline{DS}$$
: a/ $\ln \frac{10}{9}$; b/ $\frac{\pi\sqrt{2}}{12}$; c/ $\sin 1$; d/ $\frac{\pi}{3}$;

Vấn đề 3: TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN

Công thức:
$$\int_{a}^{b} u dv = uv|_{a}^{b} - \int_{a}^{b} v du$$

<u>Bài toán1</u>: Sử dụng công thức tích phân từng phần xác định $I = \int_{a}^{b} f(x) dx$.

PHƯƠNG PHÁP GIẢI

Ta thực hiện theo các bước sau:

Bước 1: Biến đổi tích phân ban đầu về dạng: $I = \int_a^b f(x) dx = \int_a^b f_1(x) . f_2(x) dx$.

$$\textit{Bu\'oc 2: } \text{ \bigoplus} \text{ $d :$ } \begin{cases} u = f_1(x) \\ dv = f_2(x_2) dx \end{cases} \Rightarrow \begin{cases} du \\ v \end{cases}$$

Bước 3: Khi đó:
$$I = uv|_a^b - \int_a^b v du$$
.

Chúng ta cần nhớ lại các dạng cơ bản:

Dạng 1: $I = \int P(x) \sin \alpha x dx$ (hoặc $\int P(x) \cos \alpha x dx$) với P là một đa thức thuộc R[x] và $\alpha \in R^*$ khi đó đặt u = P(x).

Dạng 2: $I = \int e^{ax} \cos(bx)$ (hoặc $\int e^{ax} \sin(bx)$) với $a, b \neq 0$ khi đó đặt $u = \cos(bx)$ hoặc $u = \sin(bx)$).

Dạng 3: $I = \int P(x)e^{\alpha x}dx$ (hoặc $I = \int P(x)e^{\alpha x}dx$) với P là một đa thức thuộc R[x] và $\alpha \in R^*$ khi đó ta đặt u = P(x).

Dạng 4: $I = \int x^{\alpha} . \ln x dx$, với $\alpha \in R \setminus \{-1\}$ khi đó đặt $u = \ln x$.

Ví dụ 1: Tính tích phân:
$$I = \int_{0}^{\pi/2} (x^2 + 1) \sin x dx$$
.

Giải:

Đặt:
$$\begin{cases} u = (x^2 + 1) \\ dv = \sin x dx \end{cases} \Leftrightarrow \begin{cases} du = 2x dx \\ v = -\cos x \end{cases}$$

Khi đó:
$$I = -(x^2 + 1)\cos x\Big|_0^{\pi/2} + 2\int_0^{\pi/2} x\cos x dx = 1 + 2\int_0^{\pi/2} x\cos x dx$$
 (1)

Xét tích phân
$$J = \int_{0}^{\pi/2} x \cos x dx$$
.

$$\label{eq:definition} \begin{split} \text{D} \ddot{\mathbf{a}} t \colon & \begin{cases} \mathbf{u} = \mathbf{x} \\ \mathbf{d} \mathbf{v} = \cos \mathbf{x} \mathbf{d} \mathbf{x} \end{cases} \Leftrightarrow \begin{cases} \mathbf{d} \mathbf{u} = \mathbf{d} \mathbf{x} \\ \mathbf{v} = \sin \mathbf{x} \end{cases} \end{split}$$

Khi đó:
$$J = x \sin x \Big|_0^{\pi/2} - \int_0^{\pi/2} \sin x dx = \frac{\pi}{2} + \cos x \Big|_0^{\pi/2} = \frac{\pi}{2} - 1$$
 (2)

Thay (2) vào (1) ta được: $I = 1 + 2\left(\frac{\pi}{2} - 1\right) = \pi - 1$.

Ví dụ 2: (Đề 37). Tính tích phân: $I = \int_{0}^{\pi} e^{2x} \sin^2 x dx$.

<u>Giải</u>:

Biến đổi I về dạng:
$$I = \int_{0}^{\pi} e^{2x} \sin^{2} x dx = \frac{1}{2} \int_{0}^{\pi} e^{2x} (1 - \cos 2x) dx$$
 (1)

• Xét tích phân:
$$I_1 = \int_0^{\pi} e^{2x} dx = \frac{1}{2} e^{2x} \Big|_0^{\pi} = \frac{e^{2\pi}}{2} - \frac{1}{2}$$
 (2)

• Xét tích phân: $I_2 = \int_0^{\pi} e^{2x} \cos 2x dx$

$$D \ddot{a} t: \begin{cases} u = \cos 2x \\ dv = e^{2x} dx \end{cases} \Leftrightarrow \begin{cases} du = -2\sin 2x dx \\ v = \frac{1}{2}e^{2x} \end{cases}$$

Khi đó:
$$I_2 = \frac{1}{2}e^{2x}\cos 2x\Big|_0^\pi + \int_0^\pi e^{2x}\sin 2x dx = \frac{e^{2\pi}}{2} - \frac{1}{2} + \int_0^\pi e^{2x}\sin 2x dx$$
 (3)

• Xét tích phân: $I_{2,1} = \int_{0}^{\pi} e^{2x} \sin 2x dx$

$$\text{D} \ddot{a} t: \begin{cases} u = \sin 2x \\ dv = e^{2x} dx \end{cases} \Leftrightarrow \begin{cases} du = 2\cos 2x dx \\ v = \frac{1}{2}e^{2x} \end{cases}$$

Khi đó:
$$I_{2,1} = \frac{1}{2} e^{2x} \sin \Big|_{0}^{\pi} - \int_{0}^{\pi} e^{2x} \cos 2x dx = -I_{2}.$$
 (4)

Thay (4) vào (3), ta được:
$$I_2 = \frac{e^{2\pi}}{2} - \frac{1}{2} - I_2 \iff I_2 = \frac{e^{2\pi}}{4} - \frac{1}{4}$$
. (5)

Thay (2), (5) vào (1), ta được:
$$I = \frac{1}{2} \left[\frac{e^{2\pi}}{2} - \frac{1}{2} - (\frac{e^{2\pi}}{4} - \frac{1}{4}) \right] = \frac{1}{8} (e^{2\pi} - 1).$$

Ví du 3: (DHHH Tp.HCM_2000) Tính tích phân:
$$I = \int_{1}^{2} \frac{\ln(1+x)}{x^2} dx$$
.

Giải:

$$\text{D} \check{\mathbf{a}} t \colon \begin{cases} \mathbf{u} = \ln(1+\mathbf{x}) \\ \mathrm{d} \mathbf{v} = \frac{\mathrm{d} \mathbf{x}}{\mathbf{x}^2} \end{cases} \iff \begin{cases} \mathrm{d} \mathbf{u} = \frac{1}{1+\mathbf{x}} \mathrm{d} \mathbf{x} \\ \mathbf{v} = \frac{1}{\mathbf{x}} \end{cases}$$

Khi đó:
$$I = -\frac{1}{x} \ln(x+1) \Big|_{1}^{2} + \int_{1}^{2} \frac{1}{x(x+1)} dx = -\frac{1}{2} \ln 3 + \ln 2 + \int_{1}^{2} \left(\frac{1}{x} + \frac{1}{1+x} \right) dx$$

$$= -\frac{1}{2} \ln 3 + \ln 2 + (\ln |x| - \ln(x+1)) \Big|_{1}^{2} = -\frac{3}{2} \ln 3 + 3 \ln 2.$$

<u>BÀI TẬP</u>

Bài 8. Tính các tích phân sau:

a/
$$\int_0^{\frac{\pi}{2}} e^x . \sin 3x \, dx;$$
 b/ $\int_0^1 (x+1)^2 e^x dx;$ c/ $\int_1^e (x . \ln x)^2 dx;$

d/
$$\int_0^1 x \ln(x^2 + 1) dx$$
 $e/\int_0^{\frac{\pi}{2}} \cos x . \ln(1 + \cos x) dx$; $f/\int_0^e \frac{\ln x}{(x+1)^2} dx$.

$$\underline{\textit{DS}}\!\!: \text{a/} \quad \frac{3-2e^x}{13}; \qquad \text{b/} \frac{5e^2-1}{4}; \qquad \text{c/} \ \frac{7e^3-1}{27} \qquad \text{d/} \ \ln 2 - \frac{1}{2}; \qquad \text{e/} \frac{\pi}{2} - 1; \qquad \text{f/} \ \frac{2e}{e+1}.$$

Vấn đề 4: TÍNH TÍCH PHÂN CÁC HÀM CHỨA DẤU TRỊ TUYỆT ĐỐI

<u>Bài toán</u>: **Tính tích phân**: $I = \int_a^b |f(x, m)| dx$.

PHƯƠNG PHÁP GIẢI

Ta thực hiện theo các bước sau:

Bước 1: Xét dấu biểu thức f(x, m) trên [a, b]

Từ đó phân được đoạn [a, b] thành các đoạn nhỏ, giả sử:

$$[a, b] = [a, c_1] \cup [c_1, c_2] \cup ... \cup [c_k, b].$$

mà trên mỗi đoạn f(x, m) có một dấu.

Bước 2: Khi đó:
$$I = \int_{a}^{c_1} |f(x, m)| dx + \int_{c_1}^{c_2} |f(x, m)| dx + ... + \int_{c_k}^{b} |f(x, m)| dx.$$

Ví dụ 1: Tính tích phân: $I = \int_{-1}^{4} |x^2 - 3x + 2| dx$

Giải:

Ta đi xét dấu hàm số $f(x) = x^2 - 3x + 2$ trên [-1, 4], ta được:

$$= \left(\frac{1}{3}x^3 - \frac{3}{2}x^2 + 2x\right)\Big|_{-1}^{1} - \left(\frac{1}{3}x^3 - \frac{3}{2}x^2 + 2x\right)\Big|_{1}^{2} + \left(\frac{1}{3}x^3 - \frac{3}{2}x^2 + 2x\right)\Big|_{2}^{4} = \frac{19}{2}.$$

Chú ý: Với các bài toán chứa tham số cần chỉ ra được các trường hợp riêng biệt của tham số để khéo léo chia được khoảng cho tích phân, ta xét hai dạng thường gặp trong phạm vi phổ thông sau:

<u>Dang 1</u>: Với tích phân: $I = \int_{a}^{b} |x - \alpha| dx$.

PHƯƠNG PHÁP GIẢI

Khi đó với $x \in [a,b]$ cần xét các trường hợp:

Trường hợp 1: Nếu $\alpha \ge b$ thì:

$$I = \int_{a}^{b} (\alpha - x) dx = \left(\alpha x - \frac{x^{2}}{2}\right) \Big|_{a}^{b} = \frac{1}{2}(a - b)(a + b - 2\alpha)$$

Trường hợp 2: Nếu a $< \alpha < b$ thì:

$$I = \int_{a}^{\alpha} (\alpha - x) dx + \int_{\alpha}^{b} (x - \alpha) dx = (\alpha x - \frac{x^{2}}{2}) \Big|_{a}^{\alpha} + (\frac{x^{2}}{2} - \alpha x) \Big|_{\alpha}^{b}$$
$$= \alpha^{2} + (a + b)\alpha + \frac{1}{2} (a^{2} + b^{2}).$$

Trường hợp 3: Nếu $\alpha \le a$ thì:

$$I = \int_{a}^{b} (x - \alpha) dx = \left(\frac{x^{2}}{2} - \alpha x\right) \Big|_{a}^{b} = \frac{1}{2} (a - b)(2\alpha - a - b).$$

<u>Dang 2</u>: Với tích phân: $I = \int_{a}^{b} |x^2 - \alpha x + \beta| dx$.

PHƯƠNG PHÁP GIẢI

Khi đó với $x \in [a,b]$ cần xét các trường hợp:

Trường hợp 1: Nếu
$$\Delta = \alpha^2 - 4\beta \le 0$$
 thì: $I = \int_a^b (x^2 + \alpha x + \beta) dx$

Trường hợp 2: Nếu $\Delta > 0$ thì $x^2 + \alpha x + \beta = 0$ có hai nghiệm phân biệt $x_1 < x_2$.

• Nếu
$$x_1 < x_2 \le a \text{ hoặc } b \le x_1 < x_2 \text{ thì: } I = \int_a^b (x^2 + \alpha x + \beta) dx.$$

• Nếu
$$x_1 \le a < b \le x_2$$
 thì: $I = \int_a^b (x^2 + \alpha x + \beta) dx$.

• Nếu
$$x_1 \le a < x_2 < b$$
 thì: $I = -\int_a^{x_2} (x^2 + \alpha x + \beta) dx + \int_{x_2}^b (x^2 + \alpha x + \beta) dx$.

• Nếu
$$a \le x_1 < b \le x_2$$
 thì: $I = \int_a^{x_1} (x^2 + \alpha x + \beta) dx - \int_{x_1}^b (x^2 + \alpha x + \beta) dx$.

• Nếu
$$a \le x_1 \le x_2 \le b$$
 thì: $I = \int_a^{x_1} (x^2 + \alpha x + \beta) dx - \int_{x_1}^{x_2} (x^2 + \alpha x + \beta) dx + \int_{x_2}^b (x^2 + \alpha x + \beta) dx$.

Chú ý: Với bài toán cụ thể thường thì các nghiệm x_1 , x_2 có thể được so sánh tự nhiên với các cận a, b để giảm bớt các trường hợp cần xét và đây là điều các em học sinh cần lưu tâm.

Ví dụ 2: (DHYD TP.HCM_96) Tính tích phân:
$$I = \int_{0}^{1} x \cdot |x - a| dx$$
 (a > 0)

Giải:

Ta đi xét các trường hợp sau:

Trường hợp 1: Nếu a ≥ 1

Khi đó:
$$I = -\int_{0}^{1} x \cdot (x - a) dx = -\int_{0}^{1} (x^{2} - ax) dx = -\left(\frac{x^{3}}{3} - \frac{ax^{2}}{2}\right)\Big|_{0}^{1} = \frac{a}{2} - \frac{1}{3}.$$

Trường hợp 2: Nếu 0 < a < 1

Khi đó:
$$I = -\int_0^a x.(x-a)dx + \int_a^1 x.(x-a)dx = -\int_0^a (x^2 - ax)dx + \int_0^1 (x^2 - ax)dx$$
$$= -\left(\frac{x^3}{3} - \frac{ax^2}{2}\right)\Big|_0^a + \left(\frac{x^3}{3} - \frac{ax^2}{2}\right)\Big|_a^1 = \frac{a^3}{3} - \frac{a}{2} + \frac{1}{3}.$$

BÀI TẬP

Bài 9. Tính các tích phân sau:

a/
$$\int_{-3}^{5} (|x+2|-|x-2| dx;$$
 b/ $\int_{-1}^{1} (|2x-1|-(x|^{2}) dx;$ c/ $\int_{-1}^{1} \frac{|x| dx}{x^{4}-x^{2}-12};$
d/ $\int_{1}^{4} \sqrt{x^{2}-6x+9} dx;$ e/ $\int_{-1}^{1} \sqrt{4-|x|} dx;$ f/ $\int_{-1}^{1} \sqrt{|x|-x} dx$
g/ $\int_{0}^{3} |2^{x}-4| dx;$ h/ $\int_{0}^{3} \sqrt{x^{3}-2x^{2}+x} dx.$
 \underline{BS} : a/ 8; b/ $\frac{3}{2}$ c/ $\frac{2}{7} \ln \frac{3}{4};$ d/ $\frac{5}{2};$
e/ $2(5-\sqrt{3});$ f/ $\frac{2\sqrt{2}}{3};$ g/ $4+\frac{1}{\ln 2};$ h/ $\frac{24\sqrt{3}+8}{15}$.

Bài 10. Tính các tích phân sau:

a/
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\sin x| dx$$
; b/ $\int_{0}^{\pi} \sqrt{2 + 2\cos 2x} dx$
c/ $\int_{0}^{\pi} \sqrt{1 - \sin 2x} dx$; d/ $\int_{0}^{2\pi} \sqrt{1 + \sin x} . dx$.
 \underline{DS} : a/ 2; b/ 4; c/ $2\sqrt{2}$; d/ $4\sqrt{2}$.

<u>Bài 11</u>. Cho $I(t) = \int_0^1 |e^x - t| dx$, $t \in R$

a/ Tính I(t).

b/ Tìm giá trị nhỏ nhất của I(t), với $t \in R$.

$$\underline{DS}: a/\begin{cases} t+1-e, \ t \ge e \\ 2t. \ln t - 3t + e + 1, \ 1 < t < e \\ e - t - 1, \ t \le 1 \end{cases} \quad \min I(t) = (\sqrt{3-1})^2, \ t = \sqrt{e}.$$

Bài 12. Tính các tích phân sau: $a/\int_0^1 |x-m| dx; \qquad b/\int_1^2 |x^2-(a+1)x+a| dx.$

$$\underline{DS}: a/\begin{cases} \frac{1}{2} - m, \ m \le 0 \\ m^2 - m + \frac{1}{2}, \ 0 < m \le 1. \end{cases} \qquad b/\begin{cases} \frac{3a - 5}{6}, \ a \ge 2 \\ \frac{(a - 1)^3}{3} - \frac{3a - 5}{6}, \ 1 < a < 2 \\ \frac{5 - 3a}{6}, \ a \le 1 \end{cases}$$

$\underline{\underline{Van}}$ \underline{de} 5: **CÁCH TÍNH:** $\int_{a}^{b} \max[f(x), g(x)] dx$, $\int_{a}^{b} \min[f(x), g(x)] dx$.

Phương pháp:

Ta tìm $\max[f(x), g(x)], \min[f(x), g(x)]$ bằng cách xét hiệu:

$$f(x) - g(x)$$
 trên đoạn [a; b]

Giả sử ta có bảng xét dấu:

Từ bảng xét dấu ta có:

- $v \dot{\sigma} i \ x \in [a; c]$ thì max[f(x), g(x)] = f(x)
- $v \dot{\sigma} i x \in [c; b]$ thì max[f(x), g(x)] = g(x).
- Từ đó: $\int_{a}^{b} \max[f(x), g(x) dx = \int_{a}^{c} [f(x), g(x)] dx + \int_{c}^{b} \max[f(x), g(x)] dx$ $=\int_{a}^{c} f(x).dx + \int_{a}^{b} g(x).dx$
- Cách tìm min[f(x), g(x)] thực hiện tương tự.

Ví dụ: Tính tích phân: $I = \int_0^2 max[f(x), g(x)]dx$, trong đó $f(x) = x^2$ và g(x) = 3x - 2.

Xét hiệu: $f(x) - g(x) = x^2 - 3x + 2$ trên đoạn [0; 2]:

Do đó:

- Với $x \in [0; 1]$ thì $max[f(x); g(x)] = x^2$
- Với $x \in [1; 2]$ thì max[f(x); g(x)] = 3x 2

Ta có: $I = \int_0^1 \max[f(x); g(x)] dx + \int_1^2 \max[f(x); g(x)] dx$ $= \int_0^1 x^2 dx + \int_1^2 (3x - 2) dx = \frac{x^3}{3} \bigg|_1^1 + \left(\frac{3}{2} x^2 - 2x \right) \bigg|_2^2$

$$=\frac{1}{3}+6-4-\frac{3}{2}+2=\frac{17}{6}.$$

BÀI TẬP

Bài 13. Tính các tích phân sau:

a/
$$\int_0^2 \max(x; x^2) dx;$$
 b/ $\int_1^2 \min(1; x^2) dx;$

c/
$$\int_0^2 \min(x; x^3) dx;$$
 d/ $\int_0^{\frac{\pi}{2}} (\sin x, \cos x) dx$

c/
$$\int_0^2 \min(\mathbf{x}; \mathbf{x}^3) d\mathbf{x};$$
 d/ $\int_0^{\frac{\pi}{2}} (\sin \mathbf{x}, \cos \mathbf{x}) d\mathbf{x}.$
 \underline{DS} : a/ $\frac{55}{6}$; b/ $\frac{4}{3}$; c/ $\frac{7}{4}$; d/ $2 - \sqrt{2}.$

Vấn đề 6: LỚP CÁC TÍCH PHÂN ĐẶC BIỆT

Trong vấn đề này ta đi chứng minh rồi áp dụng một số tính chất cho những lớp tích phân đặc biệt.

<u>Tính chất 1</u>: Nếu f(x) liên tục và là hàm lẻ trên [-a; a] thì: $I = \int_{-a}^{a} f(x) dx = 0$.

PHƯƠNG PHÁP GIẢI

Biến đổi I về dạng:
$$I = \int_{-a}^{a} f(x)dx = \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx$$
 (1)

Xét tính phân $J = \int_{-a}^{0} f(x)dx$.

Đặt
$$x = -t \Rightarrow dx = -dt$$

Đổi cân:
$$x = -a \Rightarrow t = a$$
; $x = 0 \Rightarrow t = 0$

Mặt khác vì f(x) là hàm lẻ \Rightarrow f(-t) = -f(t).

Khi đó:
$$J = -\int_{a}^{0} f(-t)dt = -\int_{0}^{a} f(t)dt = -\int_{0}^{a} f(x)dx$$
.

Thay (2) vào (1) ta được I = 0 (đpcm).

Áp dụng:

$$\underline{\text{V\'i dụ 1}}\text{: T\'inh t\'ich phân: } I = \int\limits_{-1/2}^{1/2} \cos x. \ln\!\left(\frac{1-x}{1+x}\right)\!dx.$$

Giải:

Nhận xét rằng: hàm số $f(x) = \cos x \cdot \ln \left(\frac{1-x}{1+x} \right)$ có:

- Liên tục trên $\left[-\frac{1}{2}; \frac{1}{2}\right]$
- $f(x) + f(-x) = \cos x \cdot \ln\left(\frac{1-x}{1+x}\right) + \cos(-x) \cdot \ln\left(\frac{1-x}{1+x}\right)$

$$= \left[\ln \left(\frac{1-x}{1+x} \right) + \ln \left(\frac{1+x}{1-x} \right) \right] \cos x = \ln 1 \cdot \cos x = 0.$$

$$\Rightarrow f(-x) = -f(x)$$
.

Vậy, f(x) là hàm lẻ trên $\left[-\frac{1}{2}; \frac{1}{2}\right]$, do đó theo tính chất 1 ta được I=0.

Chú ý quan trọng:

1. Khi gặp dạng tích phân trên thông thường học sinh nghĩ ngay tới phương pháp tích

phân từng phần, xong đó lại không phải ý kiến hay. Điều đó cho thấy việc nhìn nhận tính chất cận và đặc tính của hàm số dưới dấu tích phân để từ đó định hướng việc lựa chọn phương pháp giải rất quan trọng.

2. Tuy nhiên với một bài thi thì vì tính chất 1 không được trình bày trong phạm vi kiến thức của sách giáo khoa do đó các em học sinh lên trình bày như sau:

$$I = \int_{-1/2}^{0} \cos x \cdot \ln \left(\frac{1-x}{1+x} \right) dx + \int_{0}^{1/2} \cos x \cdot \ln \left(\frac{1-x}{1+x} \right) dx.$$
 (1)

Xét tính chất
$$J = \int_{-1/2}^{0} \cos x . \ln \left(\frac{1-x}{1+x} \right) dx$$

Đặt x = -t ⇒ dx = -dt

Đổi cận:
$$x = -\frac{1}{2} \Rightarrow t = \frac{1}{2}$$
. $x = 0 \Rightarrow t = 0$.

Khi đó:

$$I = -\int_{1/2}^{0} \cos(-t) \cdot \ln\left(\frac{1+t}{1-t}\right) dt = -\int_{0}^{1/2} \cos t \cdot \ln\left(\frac{1-t}{1+t}\right) dt = -\int_{0}^{1/2} \cos x \cdot \ln\left(\frac{1-x}{1+x}\right) dx$$
 (2)

Thay (2) vào (1) ta được I = 0.

3. Vậy kể từ đây trở đi chúng ta sẽ đi áp dụng ý tưởng trong phương pháp chứng minh tính chất để giải ví dụ trong mục áp dụng.

<u>Tính chất 2</u>: Nếu f(x) liên tục và là hàm chẳn trên đoạn [-a; a] thì:

$$I = \int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx.$$

PHƯƠNG PHÁP GIẢI

Biến đổi I về dạng:
$$I = \int_{-a}^{a} f(x)dx = \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx$$
 (1)

Xét tính phân $J = \int_{-a}^{0} f(x)dx$.

Đặt
$$x = -t \Rightarrow dx = -dt$$

Đổi cận:
$$x = -a \Rightarrow t = a$$
; $x = 0 \Rightarrow t = 0$

Mặt khác vì f(x) là hàm chấn \Longrightarrow f(-t) = f(t)

Khi đó:
$$J = -\int_{a}^{0} f(-t)dt = \int_{0}^{a} f(t)dt = \int_{0}^{a} f(t)dt = \int_{0}^{a} f(x)dx$$
 (2)

Thay (2) vào (1) ta được $I = 2 \int_{0}^{a} f(x) dx$ đpcm.

Chú ý quan trọng:

1. Trong phạm vi phổ thông tính chất trên không mang nhiều ý nghĩa ứng dụng, do đó khi gặp các bài toán kiểu này chúng ta tốt nhất cứ xác định: $I = \int\limits_{a}^{a} f(x) dx$

bằng cách thông thường, thí dụ với tích phân: $I = \int_{-1}^{1} x^2 dx$.

Ta không nên sử dụng phép biến đổi: $I = 2 \int_0^1 x^2 dx = \frac{2x^3}{3} \Big|_0^1 = \frac{2}{3}$.

bởi khi đó ta nhất thiết cần đi chứng minh lại tính chất 2, điều này khiến bài toán trở nên cồng kềnh hơn nhiều so với cách làm thông thường, cụ thể: $I = \frac{x^3}{3} \Big|_{-1}^{1} = \frac{2}{3}$.

2. Tuy nhiên không thể phủ nhận sự tiện lợi của nó trong một vài trường hợp rất đặc biệt.

Tính chất 3: Nếu f(x) liên tục và là chẩn trên R thì:

$$I = \int\limits_{-\alpha}^{\alpha} \frac{f(x) dx}{a^x + 1} = \int\limits_{0}^{\alpha} f(x) dx \ v \ \ \forall \alpha \in R^+ \ \ v \ \ \ a > 0.$$

PHƯƠNG PHÁP GIẢI

Biến đổi I về dạng:
$$I = \int_{-\alpha}^{\alpha} \frac{f(x)dx}{a^x + 1} = \int_{-\alpha}^{0} \frac{f(x)dx}{a^x + 1} + \int_{0}^{\alpha} \frac{f(x)dx}{a^x + 1}$$

Xét tính phân $I_1 = \int_{-\alpha}^{0} \frac{f(x)dx}{a^x + 1}$

Dăt $x = -t \Rightarrow dx = -dt$

Đổi cận: $x = 0 \Rightarrow t = 0$; $x = -\alpha \Rightarrow t = \alpha$.

Mặt khác vì f(x) là hàm chấn \Rightarrow f)-t) = f(t).

Khi đó:
$$I_1 = \int_{\alpha}^{0} \frac{f(-t)dt}{a^{-t}+1} = \int_{0}^{\alpha} \frac{a^{t}f(t)dt}{a^{t}+1} = \int_{0}^{\alpha} \frac{a^{t}f(t)dt}{a^{t}+1}$$

$$V\hat{a}y \colon \ I = \int_{0}^{\alpha} \frac{a^{t}f(t)dt}{a^{t}+1} = \int_{0}^{\alpha} \frac{f(x)dx}{a^{x}+1} = \int_{0}^{\alpha} \frac{(a^{x}+1)f(x)dx}{a^{x}+1} = \int_{0}^{\alpha} f(x)dx.$$

Áp dụng:

 $\underline{\text{Ví dụ 2}}\text{: Tính tích phân: } I = \int\limits_{-1}^{1} \frac{x^4 dx}{2^x + 1}$

Giải:

Biến đổi I về dạng:
$$I = \int_{1}^{0} \frac{x^4 dx}{2^x + 1} + \int_{0}^{1} \frac{x^4 dx}{2^x + 1}$$
 (1)

Xét tích phân $J = \int_{-1}^{0} \frac{x^4 dx}{2^x + 1}$

Đặt $x = -t \Rightarrow dx = -dt$

Đổi cận: $x = -1 \Rightarrow t = 1$, $x = 0 \Rightarrow t = 0$.

Khi đó:
$$J = -\int_{1}^{0} \frac{(-t)^4 dt}{2^{-t} + 1} = \int_{0}^{1} \frac{t^4 \cdot 2^t \cdot dt}{2^t + 1} = \int_{0}^{1} \frac{x^4 \cdot 2^x \cdot dx}{2^x + 1}$$
 (2)

Thay (2) vào (1) ta được:
$$I = \int_0^1 \frac{x^4 \cdot 2^x \cdot dx}{2^x + 1} + \int_0^1 \frac{x^4 dx}{2^x + 1} = \int_0^1 \frac{x^4 (2^x + 1) dx}{2^x + 1} = \int_0^1 x^4 dx = \frac{1}{5}.$$

Tính chất 4: Nếu f(x) liên tục trên
$$\left[0; \frac{\pi}{2}\right]$$
 thì:
$$\int_{0}^{\pi/2} f(\sin x) dx = \int_{0}^{\pi/2} f(\cos x) dx.$$

CHỨNG MINH

$$D \ddot{a}t \ t = \frac{\pi}{2} - x \implies dx = -dt$$

Đổi cận:
$$x = 0 \Rightarrow t = \frac{\pi}{2}, \quad x = \frac{\pi}{2} \Rightarrow t = 0.$$

Khi đó:
$$\int_{0}^{\pi/2} f(\sin x) dx = -\int_{\pi/2}^{0} f(\sin(\frac{\pi}{2} - t)) dt = \int_{0}^{\pi/2} f(\cos t) dt = \int_{0}^{\pi/2} f(\cos x) dx$$
 đpcm.

Chú ý quan trọng:

Như vậy việc áp dụng tính chất 4 để tính tích phân:

$$I = \int_{0}^{\pi/2} f(\sin x) dx \quad (\text{hoặc } I = \int_{0}^{\pi/2} f(\cos x) dx).$$

thường được thực hiện theo các bước sau:

<u>Bước 1</u>: Bằng phép đổi biến $t = \frac{\pi}{2} - x$ như trong phần chứng minh tính chất,

ta thu được
$$I = \int_{0}^{\pi/2} f(\cos x) dx$$
.

<u>Bước 2</u>: Đi xác định kI (nó được phân tích kI = $\alpha \int_{0}^{\pi/2} f(\sin x) dx + \beta \int_{0}^{\pi/2} f(\cos x) dx$)),

thường là:
$$2I = \int_{0}^{\pi/2} f(\sin x) dx + \int_{0}^{\pi/2} f(\cos x) dx = \int_{0}^{\pi/2} [f(\sin x) + f(\cos x)] dx$$
.

Từ đó suy ra giá trị của I.

Áp dụng:

Ví dụ 3: Tính tích phân:
$$I = \int_{0}^{\pi/2} \frac{\cos^{n} x dx}{\cos^{n} x + \sin^{n} x}$$

Giải:

$$D \ddot{a}t \ t = \frac{\pi}{2} - x \implies dx = -dt$$

Đổi cận:
$$x = 0 \Rightarrow t = \frac{\pi}{2}, \quad x = \frac{\pi}{2} \Rightarrow t = 0.$$

Khi đó:
$$I = \int_{\pi/2}^{0} \frac{\cos^{n}\left(\frac{\pi}{2} - t\right)(-dt)}{\cos^{n}\left(\frac{\pi}{2} - t\right) + \sin^{n}\left(\frac{\pi}{2} - t\right)} = \int_{0}^{\pi/2} \frac{\sin^{n}tdt}{\cos^{n}t + \sin^{n}t} = \int_{0}^{\pi/2} \frac{\sin^{n}x}{\cos^{n}x + \sin^{n}x} dx.$$

Do đó:
$$2I = \int_{0}^{\pi/2} \frac{\cos^{n} x + \sin^{n} x}{\cos^{n} x + \sin^{n} x} dx = \int_{0}^{\pi/2} dx = \frac{\pi}{2} \Rightarrow I = \frac{\pi}{4}.$$

<u>Tính chất 5</u>: Nếu f(x) liên tục và f(a+b-x)=f(x) thì $I=\int_a^b x f(x) dx=\frac{a+b}{2}\int_a^b f(x) dx$.

CHÚNG MINH

Đặt $x = a + b - t \Rightarrow dx = -dt$

Đổi cân: $x = a \Rightarrow t = b$; $x = b \Rightarrow t = a$

Khi đó:
$$I = \int_{b}^{a} (a+b-t)f(a+b-t)(-dt) - \int_{a}^{b} (a+b-t)f(t)dt$$
$$= \int_{a}^{b} (a+b)f(t)dt - \int_{a}^{b} tf(t)dt = (a+b)\int_{a}^{b} f(t)dt - \int_{a}^{b} xf(x)dx = (a+b)\int_{a}^{b} f(t)dt - I$$
$$\Leftrightarrow 2I = (a+b)\int_{a}^{b} f(t)dt \Leftrightarrow I = \frac{a+b}{2}\int_{a}^{b} f(x)dx.$$

Hệ quả 1: Nếu f(x) liên tục trên [0; 1] thì: $I = \int_{\alpha}^{\pi-\alpha} x f(\sin x) dx = \frac{\pi}{2} \int_{\alpha}^{\pi-\alpha} f(\sin x) dx$

Hướng dẫn chứng minh: Đặt $x = \pi - t \Rightarrow dx = -dt$.

Áp dụng:

<u>Ví dụ 4</u>: Tính tích phân: $I = \int_{0}^{\pi} \frac{x \sin x dx}{4 - \cos^{2} x}.$

Giải:

Biến đổi I về dạng:
$$I = \int_{0}^{\pi} \frac{x \sin x dx}{4 - (1 - \sin^{2} x)} = \int_{0}^{\pi} \frac{x \sin x dx}{3 + \sin^{2} x} = \int_{0}^{\pi} x f(\sin x) dx.$$

Đặt $x = \pi - t \Rightarrow dx = -dt$

Đổi cận:
$$x = \pi \Rightarrow t = 0;$$
 $x = 0 \Rightarrow t = \pi.$

Khi đớ:
$$I = -\int_{\pi}^{0} \frac{(\pi - t)\sin(\pi - t)dt}{4 - \cos^{2}(\pi - t)} = \int_{0}^{\pi} \frac{(\pi - t)\sin tdt}{4 - \cos^{2}t} = \int_{0}^{\pi} \frac{\pi \sin tdt}{4 - \cos^{2}t} - \int_{0}^{\pi} \frac{t \sin tdt}{4 - \cos^{2}t}$$
$$= -\pi \int_{0}^{\pi} \frac{d(\cos t)}{4 - \cos^{2}t} - I \Leftrightarrow 2I = -\pi \int_{0}^{\pi} \frac{d(\cos t)}{4 - \cos^{2}t} = \pi \int_{0}^{\pi} \frac{d(\cos t)}{\cos^{2}t - 4}$$
$$\Leftrightarrow I = \frac{\pi}{2} \int_{0}^{\pi} \frac{d(\cos t)}{\cos^{2}t - 4} = \frac{\pi}{2} \cdot \frac{1}{4} \ln \left| \frac{\cos t - 2}{\cos t + 2} \right|_{0}^{\pi} = \frac{\pi \ln 9}{8}.$$

 $\emph{Hệ quả 2:} \ \text{Nếu } f(x) \ \text{liên tục trên } [0\ ;\ 1] \ \text{thì:} \ \ I = \int\limits_{\alpha}^{2\pi-\alpha} x f(\cos x) dx = \pi \int\limits_{\alpha}^{2\pi-\alpha} f(\cos x) dx.$

Hướng dẫn chứng minh: Đặt $x = 2\pi - t \Rightarrow dx = -dt$.

Áp dụng:

<u>Ví dụ 5</u>: Tính tích phân: $I = \int_{0}^{2\pi} x \cdot \cos^{3} x dx$

Giải:

Đặt
$$x = 2\pi - t \Rightarrow dx = -dt$$

Đổi cận:
$$x = 2\pi \Rightarrow t = 0$$
; $x = 0 \Rightarrow t = 2\pi$.

Khi đó:
$$I = \int_{2\pi}^{0} (2\pi - t) \cdot \cos^{3}(2\pi - t)(-dt) = \int_{0}^{2\pi} (2\pi - t) \cdot \cos^{3}t dt$$

$$= 2\pi \int_{0}^{2\pi} \cos^{3}t dt - \int_{0}^{2\pi} t \cos^{3}t dt = \frac{\pi}{2} \int_{0}^{2\pi} (\cos 3t + 3\cos t) dt - I$$

 $\Leftrightarrow 2I = \frac{\pi}{2} \left(\frac{1}{3} \sin 3t + 3\sin t \right) \Big|_{0}^{2\pi} = 0 \Leftrightarrow I = 0.$

<u>Tính chất 6</u>: Nếu f(x) liên tục và f(a+b-x)=-f(x) thì $I=\int\limits_a^b f(x)dx=0$.

CHỨNG MINH

$$D x = a + b - t \Rightarrow dx = -dt$$

Đổi cận:
$$x = a \Rightarrow t = b$$
; $x = b \Rightarrow t = a$

Khi đó:
$$I = \int_{b}^{a} f(a+b-t)(-dt) = -\int_{a}^{b} f(t)dt = -\int_{a}^{b} f(x)dx = -I \iff 2I = 0 \iff I = 0.$$

Áp dụng:

$$\underline{\text{Ví dụ 6}}\text{: } (\text{CDSPKT_2000}) \text{ Tính tích phân: } I = \int\limits_{0}^{\pi/2} \ln \left(\frac{1 + \sin x}{1 + \cos x} \right) dx.$$

Giải:

$$D\ddot{a}t \ t = \frac{\pi}{2} - x \Rightarrow dx = -dt$$

Đổi cận:
$$x = 0 \Rightarrow t = \frac{\pi}{2}, \quad x = \frac{\pi}{2} \Rightarrow t = 0.$$

Khi đó:
$$I = \int_{\pi/2}^{0} \ln \left(\frac{1 + \sin\left(\frac{\pi}{2} - t\right)}{1 + \cos\left(\frac{\pi}{2} - t\right)} \right) (-dt) = \int_{0}^{\pi} \ln \left(\frac{1 + \cos t}{1 + \sin t} \right) dt = -\int_{0}^{\pi/2} \ln \left(\frac{1 + \sin t}{1 + \cos t} \right) dt$$
$$= -\int_{0}^{\pi/2} \ln \left(\frac{1 + \sin x}{1 + \cos x} \right) dx = -I \Leftrightarrow 2I = 0 \Leftrightarrow I = 0.$$

Chú ý: Nếu ta phát biểu lại tính chất 6 dưới dạng:

"Giả sử
$$f(x)$$
 lên tục trên [a; b], khi đó:
$$\int_a^b f(x) dx = \int_b^a f(a+b-x) dx$$
"

Điều đó sẽ giúp chúng ta có được một phương pháp đổi biến mới, cụ thể ta xét ví dụ sau:

$$\underline{\text{Ví dụ 7}}\text{: Tính tích phân: } I = \int\limits_0^{\pi/4} \ln(1+tgx) dx.$$

Giải:

Đặt
$$t = \frac{\pi}{4} - x \implies dx = -dt$$

Đổi cận:
$$x = 0 \Rightarrow t = \frac{\pi}{4}, \quad x = \frac{\pi}{4} \Rightarrow t = 0$$

Khi đớ:
$$I = -\int_{\pi/4}^{0} \ln[1 + tg(\frac{\pi}{4} - t)dt] = \int_{0}^{\pi/4} \ln(1 + \frac{1 - tgt}{1 + tgt})dt = \int_{0}^{\pi/4} \ln\frac{2}{1 + tgt}dt$$

$$= \int_{0}^{\pi/4} [\ln 2 - \ln(1 + tgt)]dt = \ln 2 \int_{0}^{\pi/4} dt - \int_{0}^{\pi/4} \ln(1 + tgt)dt = \ln 2 \cdot t|_{0}^{\pi/4} - I$$

$$\Leftrightarrow 2I = \frac{\pi \ln 2}{4} \Leftrightarrow I = \frac{\pi \ln 2}{8}.$$

<u>Tính chất 7</u>: Nếu f(x) liên tục trên đoạn [0; 2a] với a > 0 thì

$$\int_{a}^{2a} f(x)dx = \int_{0}^{a} [f(x) + f(2a - x)]dx.$$

CHÍNG MINH

Ta có:
$$\int_{a}^{2a} f(x)dx = \int_{0}^{a} f(x)dx + \int_{a}^{2a} f(x)dx$$
 (1)

Xét tích phân $I_2 = \int_a^{2a} f(x)dx$.

Đặt $x = 2a - t \Rightarrow dx = -dt$

Đổi cận: $x = a \Rightarrow t = a$; $x = 2a \Rightarrow t = 0$.

Khi đó:
$$I_2 = -\int_a^0 f(2a-t)dt = \int_0^a f(2a-t)dt = \int_0^a f(2a-x)dx$$
 (2)

Thay (2) vào (1), ta được:

$$\int_{a}^{2a} f(x)dx = \int_{0}^{a} f(x)dx + \int_{0}^{a} f(2a - x)dx = \int_{0}^{a} [f(x) + f(2a - x)]dx. \quad (dpcm)$$

Áp dụng:

Ví dụ 8: Tính tích phân: $I = \int_{0}^{3\pi} \sin x \cdot \sin 2x \cdot \sin 3x \cdot \cos 5x dx$.

Giải:

Viết lại I dưới dạng:

$$I = \int_{0}^{3\pi/2} \sin x \cdot \sin 2x \cdot \sin 3x \cdot \cos 5x dx + \int_{3\pi/2}^{3\pi} \sin x \cdot \sin 2x \cdot \sin 3x \cdot \cos 5x dx.$$
 (1)

Xét tích phân $J = \int_{3\pi/2}^{3\pi} \sin x \cdot \sin 2x \cdot \sin 3x \cdot \cos 5x dx$.

Đặt $x = 3\pi - t \Rightarrow dx = -dt$

Đổi cận:
$$x = \frac{3\pi}{2} \Rightarrow t = \frac{3\pi}{2}, \quad x = 3\pi \Rightarrow t = 0.$$

Khi đó:
$$J = -\int_{3\pi/2}^{0} \sin(3\pi - t) \cdot \sin 2(3\pi - t) \cdot \sin 3(3\pi - t) \cdot \cos 5(3\pi - t) dt$$

$$= -\int_{0}^{3\pi/2} \sin t \cdot \sin 2t \cdot \sin 3t \cdot \cos 5t dt = -\int_{0}^{3\pi/2} \sin x \cdot \sin 2x \cdot \sin 3x \cdot \cos 5x dx. \quad (2)$$

Thay (2) vào (1), ta được: I = 0.

<u>Tính chất 8:</u> Nếu f(x) liên tục trên R và tuần hoàn với chu kỳ T thì : $\int_{a}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx.$

CHÚNG MINH

Ta có:
$$\int_{0}^{T} f(x)dx = \int_{0}^{a} f(x)dx + \int_{a}^{a+T} f(x)dx + \int_{a+T}^{T} f(x)dx$$
 (1)

Xét tích phân $I_3 = \int_{a+T}^{T} f(x)dx$.

Đặt $t = x - T \Rightarrow dx = dt$

Đổi cận:
$$x = a + T \Rightarrow t = a$$
; $x = T \Rightarrow t = 0$.

Khi đó:
$$I_3 = \int_a^0 f(t+T)dt = -\int_0^a f(t)dt = -\int_0^a f(x)dx.$$
 (2)

Thay (2) vào (1), ta được: $\int_0^T f(x)dx = \int_a^{a+T} f(x)dx.$ (đpcm)

Áp dụng:

Ví dụ 8: Tính tích phân:
$$I = \int_{0}^{2004\pi} \sqrt{1 - \cos 2x} dx$$
.

Giải:

Viết lại I dưới dạng:

$$I = \sqrt{2} \int_{0}^{2004\pi} |\sin x| dx = \sqrt{2} \left(\int_{0}^{2\pi} |\sin x| dx + \int_{2\pi}^{4\pi} |\sin x| dx + \dots + \int_{2002\pi}^{2004\pi} |\sin x| dx \right)$$
(1)

Theo tính chất 8, ta được:

$$\int_{0}^{2\pi} |\sin x| dx = \int_{2\pi}^{4\pi} |\sin x| dx = 1002 (\int_{0}^{\pi} \sin x dx - \int_{\pi}^{2\pi} \sin x dx)$$
$$= 1002 \sqrt{2} (\cos x|_{0}^{\pi} + \cos x|_{\pi}^{2\pi}) = 4008 \sqrt{2}.$$

Nhận xét: Như vậy nếu bài thi yêu cầu tính tích phân dạng trên thì các em học sinh nhất thiết phải phát biểu và chứng minh được tính chất 8, từ đó áp dụng cho tích phân cần tìm.

BÀI TẬP

Bài 14. Tính các tích phân sau:

$$a/\int_{1-}^{1} \frac{\sqrt{1-x^{2}}}{1+2^{x}} dx; \quad b/\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x+\cos x}{4-\sin^{2} x} dx; \quad c/\int_{0}^{\pi} x.\sin^{3} x.dx; \quad d/\int_{-\pi}^{\pi} \frac{\sin^{2} x}{3^{x}+1} dx;$$

$$e/\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^{2} |\sin^{2} x|}{1+2^{x}} dx; \quad f/\int_{-1}^{1} \frac{x^{4} + \sin x}{x^{2}+1} dx; \quad g/\int_{-1}^{1} (e^{x^{2}}.\sin x + e^{2}.x^{2}) dx;$$

$$h/\int_{-1}^{1} \left| \ln^{3}(x+\sqrt{x^{2}+1}) \right| dx; \quad i/\int_{-1}^{1} \frac{dx}{(e^{x}+1)(x^{2}+1)}; \quad k/\int_{0}^{\frac{\pi}{2}} \frac{\sin^{7} x}{\sin^{7} x + \cos^{7} x} dx.$$

$$\underline{BS}: \quad a/\frac{\pi}{4}; \quad b/\frac{1}{2} \ln 9; \quad c/\frac{3\pi}{4}; \quad d/\frac{\pi}{2}; \quad e/\pi + 2;$$

$$f/\frac{\pi}{2} - \frac{4}{3}; \quad g/\frac{2}{3}e^{2}; \quad h/0; \quad i/\frac{\pi}{4}; \quad k/\frac{\pi}{4}.$$

<u>Bài 15</u>. Cho liên tục trên R và thoả mãn: $f(x) + f(-x) = \sqrt{2 - 2\cos 2x}$, $\forall x \in R$

Tính tích phân
$$I = \int_{-\frac{3\pi}{2}}^{\frac{3\pi}{2}} f(x) dx$$
. BS: 6.

<u>Bài 16</u>. Chứng minh rằng: $\int_{\frac{1}{e}}^{tg\alpha} \frac{x.dx}{x^2 + 1} + \int_{\frac{1}{e}}^{\cot g\alpha} \frac{dx}{x(x^2 + 1)} = 1$, $(tg\alpha > 0)$.

Bài 17. Cho hàm số f(x) liên tục trên đoạn $[0;+\infty)$ thỏa mãn $f(t) = f\left(\frac{1}{t}\right)$, với $\forall t > 0$ và hàm số.

$$g(x) = \begin{cases} f(tgx), \text{n\'eu } 0 \le x \le \frac{\pi}{2} \\ f(0), \text{n\'eu } x = \frac{\pi}{2} \end{cases}$$

Chứng minh rằng:

a/
$$g(x)$$
 liên tục trên $\left[0; \frac{\pi}{2}\right]$; b/ $\int_0^{\frac{\pi}{4}} g(x).dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} g(x).dx$.

<u>Vấn đề 7</u>: **TÍCH PHÂN CÁC HÀM SỐ HỮU TỈ**

(xem lại vấn đề 7 của bài học 1)

BÀI TẬP

Bài 18. Tính các tích phân sau:

$$a/\int_{0}^{3} \frac{x^{4} - 1}{x^{2} + 9} dx; \qquad b/\int_{-1}^{1} \frac{x . dx}{(x + 2)^{2}}; \qquad c/\int_{1}^{5} \frac{(2x^{2} + 18) dx}{(x^{2} - 6x + 13)^{2}}; d/\int_{0}^{5\sqrt{2}} \frac{x^{9} . dx}{(x^{5} + 1)^{3}};$$

$$e/\int_{0}^{4\sqrt{2}} \frac{x^{15} . dx}{\sqrt[4]{(x^{8} + 1)^{2}}}; \qquad f/\int_{0}^{1} (1 + x)^{n} dx; \qquad g/\int_{0}^{1} x (1 - x^{2})^{n} dx;$$

$$\underline{BS}: a/\frac{20\pi}{3} - 18; \qquad b/\ln 3 - \frac{4}{3}; \qquad c/\frac{11\pi}{8} + \frac{7}{4}; \qquad d/\frac{2}{45};$$

$$e/\frac{35}{192}.\sqrt[5]{125} + \frac{25}{192}; \qquad f/\frac{2^{n+1} - 1}{n+1}; \qquad g/\frac{1}{2(n+1)}.$$

Bài 19. Tính các tích phân sau:

$$\begin{split} &a/\int_{1}^{2}\frac{x^{3}.dx}{x^{8}+1}; \qquad b/\int_{0}^{\frac{1}{2}}\frac{x^{3}.dx}{x^{2}-3x+2}; \qquad c/\int_{0}^{2}\frac{dx}{x(x^{4}+1)}; \\ &d/\int_{\frac{1}{e}}^{tga}\frac{x.dx}{1+x^{2}}+\int_{\frac{1}{e}}^{cot\,ga}\frac{dx}{x(1+x^{2})}, (tga>0) \quad e/\int_{0}^{b}\frac{(a-x^{2})dx}{(a+x^{2})^{2}}, (a,b>0); \\ &f/\int_{1}^{\frac{\sqrt{2}+\sqrt{6}}{2}}\frac{x^{2}+1}{x^{4}+1}dx; \quad g/\int_{1}^{\frac{1+\sqrt{5}}{2}}\frac{(x^{2}+1)dx}{x^{4}-x^{2}+1}. \\ &\underline{\textit{DS}}: \qquad a/\frac{\pi}{16}; \qquad b/\frac{1}{4}\ln\frac{21}{2}+\frac{3}{4}\ln\frac{7}{2}; \qquad c/\frac{1}{4}\ln\frac{32}{17}; \quad d/1; \\ &e/\frac{b}{a+b^{2}}; \quad f/\frac{\pi}{8}; \qquad g/\frac{\pi}{4}. \end{split}$$

Vấn đề 8: TÍCH PHÂN CÁC HÀM LƯỢNG GIÁC

(xem lại vấn đề 8 của bài học 1)

BÀI TÂP

Bài 20. Tính các tích phân sau:

$$a / \int_{0}^{\frac{\pi}{8}} \frac{\cos 2x . dx}{\sin 2x + \cos 2x}; \qquad b / \int_{0}^{\frac{\pi}{4}} \frac{4 \sin^{3} x . dx}{1 + \cos^{4} x}; \qquad c / \int_{0}^{\frac{\pi}{4}} \frac{dx}{\sin^{2} x + 2 \sin x \cos x - 8 \cos^{2} x};$$

$$d / \int_{0}^{\frac{\pi}{4}} \frac{\sin x . dx}{\sin^{6} x + \cos^{6} x}; \qquad e / \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sin^{6} x + \cos^{6} x}{6^{x} + 1} dx; \qquad f / \int_{0}^{\frac{\pi}{4}} \frac{\cos 2x . dx}{(\sin x + \cos x + 2)^{3}};$$

$$g / \int_{0}^{\frac{\pi}{2}} \frac{\sin x + 7 \cos x + 6}{4 \sin x + 3 \cos x + 5} dx; \qquad h / \int_{0}^{\frac{\pi}{2}} \frac{\sin x . \cos x \ dx}{\sqrt{a^{2} . \cos^{2} x + b^{2} . \sin^{2} x}} dx \ (a, b \neq 0)$$

$$\underline{DS}: \qquad a / \frac{\pi}{16} + \frac{1}{8} \ln 2; \qquad b / \sqrt{2} \ln \frac{3 + 2\sqrt{2}}{2}; \qquad c / \frac{1}{6} \ln \frac{2}{5}; \qquad d / \frac{2}{3} \ln 4;$$

$$e / \frac{5\pi}{32}; \qquad f / \frac{8}{27} - \frac{5 + 8\sqrt{2}}{(2 + \sqrt{2})^{2}}; \qquad g / \frac{\pi}{2} + \ln \frac{9}{8} + \frac{1}{6}; \qquad h / \frac{1}{|b| + |a|}.$$

Bài 21. Tính các tích phân sau:

a/
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos^3 x. dx}{\sqrt{\sin x}};$$
 b/ $\int_{0}^{\frac{\pi}{4}} \frac{\cos x - \sin x}{\sqrt{2 + \sin 2x}} dx;$ c/ $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\cot g. \sqrt[3]{\sin^3 x} - \sin x. dx}{\sin^3 x};$
d/ $\int_{0}^{\pi} x. \sin x. \cos^3 x. dx;$ e/ $\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{x. \sin x. dx}{\cos^2 x};$ f/ $\int_{0}^{\pi} x - \cos^4 x. \sin^3 x. dx.$
$$\underline{DS}: \quad a/\ln(\sqrt{2} + 1); \quad b/\ln\left(\frac{\sqrt{3} + \sqrt{2}}{\sqrt{2} + 1}\right); \quad c/ -\frac{\sqrt[3]{9}}{24};$$

$$d/\frac{\pi}{3}; \quad e/\frac{4\pi}{3} - 2\ln(2 + \sqrt{3}); \quad f/\frac{4\pi}{35}.$$

<u>Bài 22</u>. Tìm hai số A, B để hàm số $f(x) = \frac{\sin 2x}{(2 + \sin x)^2}$ có thể biểu diễn dưới dạng:

$$f(x) = \frac{A.\cos x}{(2+\sin)^2} + \frac{B.\cos x}{2+\sin x}.$$

Từ đó tính: $\int_{-\frac{\pi}{2}}^{0} f(x).dx$.

 \underline{DS} : A = -4; B = 2; $\ln 4 - 2$.

Bài 23. Tính các tích phân sau:

a/
$$\int_0^{\frac{\pi}{2}} x^2 \cdot \cos x \cdot dx$$
; b/ $\int_{\frac{\pi^2}{4}}^{\frac{\pi^2}{2}} \cos^2(\sqrt{x}) \cdot dx$; c/ $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{x \cdot dx}{\sin^2 x}$;

Bài 24. Tính các tích phân sau:

a/
$$\int_0^{\pi} \sin^{n-1} x \cdot \cos(n+1) \cdot dx$$
, $(n \in \mathbb{N}, n \ge 1)$; b/ $\int_0^{\pi} \cos^{n-1} x \cdot \sin(n-1) x \cdot dx$;
c/ $\int_0^{\frac{\pi}{2}} \cos^n x \cdot \sin(n+1) x \cdot dx$; d/ $\int_0^{\frac{\pi}{2}} \cos^n x \cdot \sin(n+2) x \cdot dx$.
BS: a/ 0; b/0; c/0; d/ $\frac{1}{n+1}$.

Bài 25. Tính các tích phân sau:

$$a/ \quad I = \int_0^{\frac{\pi}{2}} (\sqrt{\cos x} - \sqrt{\sin x}) dx; \qquad b/ \quad I = \int_0^{\frac{\pi}{2}} \frac{\cos^n x . dx}{\cos^n x + \sin^n x};$$

$$c/ \quad I = \int_0^{\frac{\pi}{2}} \frac{5 \cos x - 4 \sin x}{(\cos x + \sin x)^3}; \qquad d/ \quad I = \int_0^{\frac{\pi}{2}} \frac{3 \sin x + 4 \cos x}{3 \sin^2 x + 4 \cos^2 x} dx.$$

$$\underline{BS} : a/ \quad 0; \qquad b/ \frac{\pi}{4}; \qquad c/ \frac{1}{2}; \qquad d/ \frac{\pi}{2\sqrt{3}} + \ln 3.$$

<u>Bài 26</u>. Đặt: $I = \int_0^{\frac{\pi}{6}} \frac{\sin^2 x. dx}{\sin x + \sqrt{3} \cos x}$ và $J = \int_0^{\frac{\pi}{6}} \frac{\cos^2 x. dx}{\sin x + \sqrt{3} \cos x}$.

a/ Tính: I - 3J và I + J.

b/ Từ các kết quả trên hãy tính các giá trị của I, J và K : $K = \int_{\frac{3\pi}{2}}^{\frac{5\pi}{3}} \frac{\cos 2x. dx}{\cos x - \sqrt{3} \sin x}$.

BS: a/
$$I-3J=1-\sqrt{3}$$
; $I+J=\frac{1}{4}\ln 3$; b/ $K=\frac{1}{8}\ln 3-\frac{\sqrt{3}-1}{2}$.

<u>Bài 27</u>.a/ Chứng minh rằng: $\int_0^{\frac{\pi}{2}} \cos^6 x \cdot \cos 6x \cdot dx = \int_0^{\frac{\pi}{2}} \cos^5 x \cdot \sin x \sin 6x \cdot dx$

b/ Tính:
$$J = \int_0^{\frac{\pi}{2}} \cos^5 x . \cos^7 x . dx$$
.

 \underline{DS} : b/ J = 0.

Vấn đề 9: TÍCH PHÂN CÁC HÀM SỐ VÔ TỈ

(xem lại vấn đề 9 của bài học 1)

BÀI TẬP

Bài 28. Tính các tích phân sau:

$$a \int_{2}^{3} \sqrt[3]{\left(\frac{x-1}{x+1}\right)} \cdot \frac{dx}{(x-1)^{2}}; \quad b \int_{4}^{6} \sqrt{\frac{x-4}{x+2}} \cdot \frac{dx}{x+2}; \quad c \int_{0}^{1} \sqrt{\frac{x}{4-x}} \cdot (x-2) \cdot dx;$$

$$d \int_{0}^{\frac{\sqrt{2}}{2}} \sqrt{\frac{1+x}{1-x}} \cdot dx; \qquad e \int_{0}^{1} \frac{dx}{(1+x^{m}) \cdot \sqrt[m]{1+x^{m}}}, m \in \mathbb{N}^{*}.$$

$$\underline{DS}: \quad a \int_{2}^{3} (\sqrt[3]{3} - \sqrt[3]{2}); \qquad b \int_{2}^{3} \ln 3 - 1; \qquad c \int_{2}^{3} \pi - 4;$$

$$d \int_{2}^{3} \sqrt{\frac{x-1}{x+1}} \cdot \frac{dx}{x+2} \cdot \frac{dx}{x+2}; \quad c \int_{0}^{1} \sqrt{\frac{x}{4-x}} \cdot (x-2) \cdot dx;$$

$$e \int_{0}^{1} \frac{dx}{(1+x^{m}) \cdot \sqrt[m]{1+x^{m}}}, m \in \mathbb{N}^{*}.$$

Bài 29. Tính các tích phân sau:

a/
$$\int_{2}^{4} \frac{dx}{x\sqrt{16-x^{2}}};$$
 b/ $\int_{2\sqrt{3}}^{6} \frac{dx}{x\sqrt{x^{2}-9}};$ c/ $\int_{0}^{1} x^{3}.\sqrt{1+x^{2}}dx;$
d/ $\int_{-1}^{\sqrt{2}} x^{2}\sqrt{4-x^{2}}.dx;$ e/ $\int_{0}^{2} x\sqrt{(x^{2}+4)^{3}}.dx;$ f/ $\int_{0}^{\frac{\sqrt{3}}{2}} x^{2}.\sqrt{(3-x^{2})^{3}}.$
 \underline{DS} : a/ $-\frac{1}{4}\ln\left(tg\frac{\pi}{12}\right);$ b/ $\frac{\pi}{18};$ c/ $\frac{2}{15}(\sqrt{2}-1);$
d/ $\frac{5\pi}{6}-\frac{\sqrt{3}}{4};$ e/ $\frac{32}{5}(4\sqrt{2}-1);$ f/ $\frac{9}{64}(4\pi+9\sqrt{3}).$

Bài 30. Tính các tích phân sau:

$$a / \int_{\frac{4\sqrt{3}}{3}}^{4} \frac{\sqrt{x^2 - 4}}{x} dx; \qquad b / \int_{\frac{\sqrt{2}}{2}}^{1} \frac{\sqrt{1 - x^2}}{x^2} . dx; \qquad c / \int_{\frac{1}{4}}^{\frac{1}{2}} \frac{dx}{\sqrt{x - x^2}}; \qquad d / \int_{0}^{1} \frac{x^2 . dx}{\sqrt{2x - x^2}}; \\ e / \int_{0}^{a} x^2 \sqrt{x^2 - x^2} . dx; \qquad f / \int_{0}^{2a} x \sqrt{2ax - x^2} . dx; \quad g / \int_{0}^{\sqrt{a}} \frac{x^{n-1} . dx}{\sqrt{a^2 - x^{2n}}} \ (a > 0; \ n \ge 2). \\ \underline{\textit{DS}} : a / \frac{1}{3} (4\sqrt{3} - \pi); \qquad b / \frac{1}{4} (4 - \pi); \quad c / \frac{\pi}{6}; \qquad d / \frac{1}{4} (3\pi - 8); \\ e / \frac{\pi a^4}{16}; \qquad f / \frac{\pi a^3}{2}; \qquad g / \frac{\pi}{6n}.$$

Bài 31. Tính các tích phân sau:

a/
$$\int_0^{\frac{\pi}{2}} \frac{dx}{\sqrt{x+3} + \sqrt{x+1}};$$
 b/ $\int_{-1}^1 \frac{dx}{1 + x + \sqrt{1+x^2}};$

$$\begin{array}{ll} c/\int_{1}^{2}\frac{dx}{x^{2}(\sqrt{x^{2}+1}+x)}; & d/\int_{4}^{8}\frac{(2x+1)dx}{\sqrt{x^{2}-4x}+x+2};\\ \\ \underline{\textit{DS}}\text{: a/} & \frac{19}{6}-\sqrt{3}-\sqrt{2}; & b/1;\\ \\ c/\ln\frac{(2+\sqrt{5})(\sqrt{2}-1)}{2}+\frac{2\sqrt{2}-\sqrt{5}}{2}; & d/8-3\sqrt{2}-\frac{1}{2}\ln(3+2\sqrt{2}). \end{array}$$

Bài 32. Cho
$$I = \int_0^a \frac{x^n . dx}{\sqrt{x^3 + a^3}}; (a > 0, n \in N)$$

a/ Với giá trị nào của n thì I không phụ thuộc vào a.

b/ Tính I với n tìm được.

$$\underline{DS}$$
: a/ $n = \frac{1}{2}$; b/ $\frac{2}{3} \ln(1 + \sqrt{2})$.

Vấn đề 10: TÍCH PHÂN CÁC HÀM SIÊU VIỆT

(xem lại vấn đề 10 của bài học 1)

BÀI TẬP

Bài 33. Tính các tích phân sau:

$$a/\int_{0}^{\ln 2} \sqrt{1 - e^{2x}} \, . dx; \quad b/\int_{0}^{\ln 5} \frac{e^{x} . \sqrt{e^{x} - 1}}{e^{x} + 3} dx; \qquad c/\int_{1}^{\sqrt{e}} \frac{dx}{x\sqrt{1 - \ln^{2} x}};$$

$$d/\int_{1}^{e} \frac{dx}{x(1 + \ln^{2} x)}; \quad e/\int_{1}^{e} \frac{\sqrt{1 + \ln^{2} x}}{x} dx; \qquad f/\int_{1}^{e} \frac{\ln x \sqrt[3]{1 + \ln^{2} x}}{x};$$

$$\underline{BS}: a/\frac{1}{2} \left(\sqrt{3} + \ln \frac{2 - \sqrt{3}}{2 + \sqrt{3}}\right); \qquad b/4 - \pi; \qquad c/\frac{\pi}{6};$$

$$d/\frac{\pi}{4}; \qquad e/\frac{\sqrt{2}}{2} + \frac{1}{2} \ln(1 + \sqrt{2}); \qquad f/\frac{3}{8} (\sqrt[3]{16} - 1).$$

Bài 34. Tính các tích phân sau:

a/
$$\int_{0}^{2} \frac{\ln x}{x^{2}} dx;$$
 b/ $\int_{e}^{e^{2}} \left(\frac{1}{\ln^{2} x} - \frac{1}{\ln x}\right) dx;$ c/ $\int_{e^{2}}^{e^{3}} \frac{\ln(\ln x) . dx}{x};$
d/ $\int_{0}^{1} \frac{\ln(x+1) . dx}{\sqrt{x+1}};$ e/ $\int_{1}^{e} \frac{\ln x . dx}{(x+1)^{2}};$ f/ $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\ln(\sin x) . dx}{\cos^{2} x}.$
BS: a/ $\frac{1}{2}(1-2\ln\sqrt{2});$ b/ $\frac{1}{2}(2e-e^{2});$ c/ $\ln\frac{27}{4e};$
d/ $\sqrt{2}\ln 4 - 4\sqrt{2} + 4;$ e/ 0; f/ $\frac{\sqrt{3}}{2}\ln\frac{3\sqrt{3}}{2} - \frac{\pi}{6}.$

Bài 35. Tính các tích phân sau:

$$a/\int_0^{\frac{\pi}{2}} \log_2(1+tgx).dx; \qquad b/\int_0^{\frac{\pi}{4}} \ln(1+tgx)dx;$$

$$c/\int_0^{\frac{\pi}{2}} \ln\frac{(1+\sin x)^{1+\cos x}}{1+\cos x}dx; \qquad d/\int_0^1 \frac{x.e^x dx}{(1+e^x)^3};$$

$$\underline{DS} : a/\frac{\pi}{8}; \quad b/\frac{\pi}{8}\ln 2; \qquad c/2\ln 2-1; \quad d/\frac{e^2+4e+1}{4(e+1)^2} - \frac{1}{2}\ln\left(\frac{e+1}{2}\right).$$

Vấn đề 11: PHƯƠNG TRÌNH BẤT PHƯƠNG TRÌNH TÍCH PHÂN

Để giải phương trình, bất phương trình tích phân thông thường trước tiên ta cần đi xác định tích phân trong phương trình, bất phương trình đó, sau đó sẽ thu được một phương trình, bất phương trình đại số quen thuộc.

BÀI TÂP

<u>Bài 36</u>. Giải và biện luận phương trình sau với ẩn x: $2\int_{0}^{x} (mt - m + 2)dt = 3 - m$

 \underline{DS} : • m > 4 : vô nghiệm

•
$$m = 4 : x_1 = x_2 = \frac{1}{2}$$

•
$$m = 0 : x = \frac{3}{4}$$

•
$$0 \neq m < 4 : x_{1,2} = \frac{m - 2 \pm \sqrt{4 - m}}{m}$$

<u>Bài 37</u>. Biện luận theo m số nghiệm của phương trình: $\int_{1}^{x} (t - \frac{1}{t}) dt = m - \frac{1}{2}$

$$\underline{DS}$$
: • m < $\frac{1}{2}$: vô nghiệm

•
$$m = \frac{1}{2} : x = 1$$

•
$$m > \frac{1}{2} : 2$$
 nghiệm

Bài 38. Cho
$$I(x) = \int_{0}^{x} (e^{2t} + e^{-2t}) dt$$
.

a/ Tính I(x) khi x = ln2

b/ Giải và biện luận phương trình: I(x) = m.

$$\underline{\textit{DS}}$$
: a/ $\frac{15}{8}$; b/ $x = \ln \sqrt{m + \sqrt{1 + m^2}}$, $\forall m$

<u>Bài 39</u>. Giải các phương trình sau với ẩn x (x > 0):

a/
$$\int_{\frac{1}{e}}^{x} \frac{1 + \ln t}{t} dt = 18;$$
 b/ $\int_{\sqrt{2}}^{x} \frac{dt}{t\sqrt{t^2 - 1}} = \frac{\pi}{2};$ c/ $\int_{0}^{x} \sqrt{e^t - 1} . dt = 2 - \frac{\pi}{2};$

$$d/\int\limits_0^x (2^{t-1}.\ln 2 - 2t + 2) dt = 2^{x^2-x} + \frac{1}{2}. \qquad e/\int\limits_0^x 7^{t-1}.\ln 7 dt = 6\log_7(6x - 5), \ v \text{\acute{o}i $x \geq 1$}.$$

$$f' \int_{\frac{\sqrt{3}}{2}}^{x} \frac{tdt}{\sqrt{1-t^2} \cdot \sqrt{1+\sqrt{1-t^2}}} = \sqrt{6} - 2x(1+2\sqrt{1-x^2})$$

$$\underline{DS}: a/ \quad x = e^5; x = e^{-7}; \quad b/ \quad x = 2; \quad c/ \quad x = \ln 2;$$

$$d/ \quad x = 1; \quad e/ \quad x = 1; \quad x = 2; \quad f/ \quad x = \frac{1}{2}.$$

Bài 40. Tìm m để phương trình: $x^3 + \int_{1}^{x} [3t^2 + 4(6m - 1)t - 3(2m - 1)]dt = 1$

có 3 nghiệm phân biệt có tổng bình phương bằng 27.

 \underline{DS} : m = 1.

Bài 41. Giải các phương trình sau:

$$a/\int_{0}^{x} (4\sin^{4}t - \frac{3}{2})dt = 0; \qquad b/\int_{0}^{x} \cos(t - x^{2})dt = \sin x;$$

$$c/\int_{0}^{x} \frac{dt}{\sqrt{(1 - t^{2})^{3}}} = tgx \ v \ \vec{\sigma} i \ \ x \in [0; 1).$$

Vấn đề 12: THIẾT LẬP CÔNG THỨC TRUY HỒI

1. Nhận xét:

Trong những trường hợp hàm dưới dấu tích phân phụ thuộc vào tham số n ($n \in N$), khi đó người ta thường ký hiệu In để chỉ tích phân phải tính.

- Hoặc là đòi hỏi thiết lập một công thức truy hồi, tức là công thức biểu diễn I_n theo các I_{n+K} , ở đây $1 \le K \le n$.
- Hoặc là chứng minh một công thức truy hồi cho trước.
- Hoặc sau khi có công thức truy hồi đòi hỏi tính một giá trị I_{n_0} cụ thể nào 3. đó.

2. Một số dạng thường gặp:

Dang 1:
$$I_n = \int_0^{\pi/2} \sin^n x. dx \ (n \in N)$$

• Đặt: $u = \sin^{n-1} x \Rightarrow du = (n-1) \cdot \sin^{n-2} x \cdot dx$ $dv = \sin x. dx \implies v = -\cos x.$

$$\Rightarrow I_{n} = \left[-\sin^{n-1} x . \cos x \right]_{0}^{\pi/2} + (n-1) . (I_{1-2} - I_{n})$$

$$\underline{Dang \ 2} : \quad I_{n} = \int_{0}^{\pi/2} \cos^{n} x . dx \quad (n \in N)$$

• Đặt: $u = \cos^{n-1} x \Rightarrow du = -(n-1).\cos^{n-2} x.dx$ $dv = \cos x. dx \implies v = \sin x.$ $\Rightarrow I_{n} = \left[\cos^{n-1} x . \sin x\right]_{0}^{\pi/2} + (n-1).(I_{n-2} - I_{n})$

Dang 3:
$$I_n = \int_0^{\pi/4} tg^n x.dx$$
.

• Phân tích: $tg^{n+2}x = tg^nx.tg^2x = tg^nx.\left(\frac{1}{\cos^2 x} - 1\right) = tg^nx(1 + tg^2x - 1)$

Suy ra:
$$I_{n+2} + I_n = \frac{1}{n+1}$$
 (không dùng tích phân từng phần)

Dạng 4: $I_n = \int_0^{\pi/2} x^n .\cos x. dx$ và $J_n = \int_0^{\pi/2} x^n .\sin x. dx$.

• Đặt: $u = x^n \implies du = n.x^{n-1}.dx$. $dv = \cos x. dx \implies v = \sin x$

$$\Rightarrow I_{n} = \left(\frac{\pi}{2}\right)^{2} - nJ_{n} - 1 \tag{1}$$

• Tương tự: $J_n = 0 + nI_{n-1}$

• Từ (1) và (2) \Rightarrow $I_n + n(n-1)I_{n-2} = \left(\frac{\pi}{2}\right)^n$.

Dang 5:
$$I_n = \int_0^1 x^n . e^x . dx$$

• Đặt: $u = x^n \implies du = nx^{n-1}.dx$ $dv = e^x.dx \implies v = e^x.$

$$I_n = [x^n.e^x]_0^1 - nI_{n-1}$$

Dang 6:
$$I_n = \int_0^1 \frac{x^n}{e^x} dx$$
 hay $I_n = \int_0^1 x^n . e^{-x} . dx$

$$\begin{split} \bullet \ & \text{D} \Breve{a} \text{t:} \qquad u = x^n \ \, \Longrightarrow du = n x^{n-1}.dx \\ & dv = e^{-x}.dx \ \, \Longrightarrow v = -e^{-x}. \\ & \Longrightarrow I_n = [-x^x.e^{-x}]_0^1 + n I_{n-1} \end{split}$$

Dang 7:
$$I_n = \int_1^e ln^n x.dx \quad (n \in Z^*)$$

$$\begin{split} \bullet \ & \text{D} \Breve{a}t \colon \quad u = l n^n \ x \ \Rightarrow d u = n. l n^{n-1} \ x, \frac{1}{x} d x \\ & d v = d x \ \Rightarrow \ v = x. \\ & \Rightarrow I_n = [x. l n^n \ x]_1^e - n. I_{n-1} \ \Leftrightarrow I_n = e - n I_{n-1}. \end{split}$$

BÀI TÂP

<u>Bài 42</u>. Cho $I_n = \int \sin^n x. dx$ và $J_n = \int \cos^n x. dx$, với $n \in \mathbb{N}$, $n \ge 2$.

Chứng minh các công thức truy hồi sau:

$$I_{n} = -\frac{1}{n} \sin^{n-1} x. \cos x + \frac{n-1}{n} I_{n-2}. \qquad \qquad J_{n} = \frac{1}{n} \sin x. \cos^{n-1} x + \frac{n-1}{n} J_{n-2}.$$

Áp dụng ta tính I₃ và J₄.

 $\underline{DS}: \bullet I_3 = -\frac{1}{3}\sin^2 x \cdot \cos x - \frac{2}{3}\cos x + C.$

•
$$J_4 = \frac{1}{4}\sin x \cdot \cos^3 x + \frac{3}{8}x + \frac{3}{16}\sin 2x + C$$
.

<u>Bài 43</u>. Cho $I_n = \int x^n . \sin x . dx$ và $J_n = \int x^n . \cos x . dx$, với $n \in \mathbb{N}$, $n \ge 2$.

Chứng minh rằng:

$$I_n = -x^n .\cos x = nx^{n-1} .\sin x - n(n-1).I_{n-2}$$

$$J_n = x^n . \sin x + n.x^{n-1} . \cos x - n(n-1).J_{n-2}.$$

Áp dụng ta tính I_2 và J_2 .

$$\underline{DS}: \bullet I_2 = -x^2 - \cos x + 2x \cdot \sin x + 2\cos x + C.$$

•
$$J_4 = x^2 \sin x + 2x \cos x - 2 \sin x + C$$
.

Bài 44. Cho
$$I_n = \int x^n dx$$
, $n \in \mathbb{N}$, $n \ge 1$.

Chứng minh rằng: $I_n = x^n.e^x - n.I_{n-1}$.

Áp dụng tính I₅.

BS:
$$I_5 = e^x(x^5 - 5x^4 + 20x^3 - 60x^2 + 120x - 120) + C$$
.

Bài 45. Cho
$$I_n = \int_0^{\pi/2} \sin^n x. dx$$
, $(n \in N)$

- a/ Thiết lập công thức liên hệ giữa I_{n} và $I_{n+2}.$
- b/ Tính I_n.
- c/ Chứng minh rằng hàm số f: $N \rightarrow R$ với $f(n) = (n+1)I_n I_{n+1}$.

d/ Suy ra
$$J_n = \int_0^{\pi/4} \cos^n x.dx$$
.

$$\underline{\textit{DS}}\text{: b/} \qquad I(n) = \begin{cases} \frac{(n-1)(n-3)(n-5)...1}{n(n-2)(n-4)...2}.\frac{\pi}{2}, \text{ n chắn} \\ \frac{(n-1)(n-3)(n-5)...2}{n(n-2)(n-4)...3}, \text{ n lễ} \end{cases}$$

$$c/ \qquad f(n) = f(0) = I_{_0}.I_{_1} = \frac{\pi}{2}. \qquad d/ \qquad J_{_n} = I_{_n}. \label{eq:condition}$$

Bài 46. Đặt;
$$I_n = \int_0^{\pi/4} tg^n x.dx, (n \in N)$$

Tìm hệ thức liên hệ giữa I_n và I_{n+2} .

$$\underline{DS}: \ \ I_n + I_{n+2} = \frac{1}{n+1}.$$

Bài 47. Cho
$$I_n = \int_0^1 \frac{x^n}{\sqrt{1-x}} dx, (n \in N^*)$$

Chứng minh rằng: $(2n+1)I_n + 2n.I_{n-1} = 2\sqrt{2}$.

Bài 48. Cho
$$I_n = \int_0^1 \frac{e^{-nx}}{1 - e^{-x}} dx, (n \in N^*)$$

- a/ Tính I₁.
- b/ Tìm hệ thức giữa I_n và I_{n-1} .

BS: a/
$$I_1 = \ln \frac{2e}{1+e}$$
; b/ $I_{n+I_{n-1}} = \frac{1}{1-n}(e^{1-n}) - 1$)

<u>Vấn đề 13: BẤT ĐẳNG THỰC TÍCH PHÂN</u>

Cho hai hàm số f(x) và g(x) liên tục trên [a; b]

Dạng 1: Nếu
$$f(x) \ge 0$$
, $\forall x \in [a; b]$ thì : $\int_a^b f(x) \ge 0$ dấu "=" xảy ra khi $f(x) = 0$, $\forall x \in [a; b]$

Dạng 2: Để chứng minh: $\int f(x).dx \le \int g(x).dx$.

- ta cần chứng minh: $f(x) \le g(x), \forall x \in [a; b]$
- dấu "=" xảy ra khi $f(x) = g(x), \forall x \in [a;b]$
- rồi lấy tích phân 2 vế.

Dạng 3: Để chứng minh: $|f(x).dx \le B|$ (B là hằng số).

 $f(x) \le g(x), \forall x \in [a; b]$ ■ ta tìm một hàm số g(x) thỏa các điều kiện: $\int g(x).dx = B$

Dạng 4: Để chứng minh: $A \le |f(x).dx \le B$.

■ ta tìm 2 hàm số h(x) và g(x) thỏa điều kiện:

$$\begin{cases} h(x) \le f(x) \le g(x), \ \forall x \in [a; b] \\ \int_a^b h(x).dx = A, \quad \int_a^b g(x).dx = B \end{cases}$$

■ Hoặc ta chứng minh: $m \le f(x) \le M$, với $m = \min f(x)$, $M = \max f(x)$

sao cho:
$$\int_{a}^{b} m.dx = m(b-a) = A$$
, $\int_{a}^{b} M.dx = M(b-a) = B$.

Dang 5: $\left| \int f(x) dx \right| \le \int |f(x)| dx$.

dấu "=" xảy ra khi $f(x) \ge 0, \forall x \in [a;b]$

■ BĐT (5) được suy ra từ BĐT dạng 2 với nhận xét sau: $\forall x \in [a; b]$, ta luôn có: $-|f(x)| \le f(x) \le |f(x)|$

$$\Leftrightarrow -\int_{a}^{b} |f(x)| dx \le \int_{a}^{b} f(x) . d(x) \le \int_{a}^{b} |f(x)| dx \qquad (lấy tích phân 2 vế)$$

$$\Leftrightarrow \left| \int_{a}^{b} f(x) . dx \right| \le \int_{a}^{b} |f(x)| . dx.$$

$$\Leftrightarrow \left| \int_{a}^{b} f(x).dx \right| \leq \int_{a}^{b} |f(x)|.dx.$$

Ghi chú:

1. Thực chất chứng minh bất đẳng thức tích phân chính là chứng minh: $f(x) \le g(x), \ \forall x \in [a;b].$ Nếu dấu "=" xảy ra trong bất đẳng thức $f(x) \le g(x)$ chỉ tại một số hữu han điểm $x \in [a;b]$ thì ta có thể bỏ dấu "=" trong bất đẳng thức tích phân.

2. Do BĐT là một dạng toán phức tạp, nên mỗi dạng trên có nhiều kỹ thuật giải, vì vậy trong phần bài tập này, không đi theo từng dạng trên mà đi theo từng kỹ thuật giải.

Kỹ thuật 1: Dùng phương pháp biến đổi tương đương hoặc chặn trên, chặn dưới

BÀI TÂP

Bài 49. Chứng minh các bất đẳng thức:

$$a' \quad \frac{1}{20\sqrt[3]{2}} < \int_{0}^{1} \frac{x^{19} \cdot dx}{\sqrt[3]{1+x^6}} < \frac{1}{20} \qquad \qquad b' \qquad \frac{\pi}{6} < \int_{0}^{1} \frac{dx}{\sqrt{4-x^2-x^3}} < \frac{\pi\sqrt{2}}{8}.$$

$$c' \quad \frac{1}{50} < \int_{0}^{1/2} \frac{dx}{(3+2\cos x)^2} < \frac{1}{2(3+\sqrt{3})^2}. \qquad d' \qquad \int_{100\pi}^{200\pi} \frac{\cos x \cdot dx}{x} < \frac{1}{200\pi}$$

Bài 50. Chứng minh các bất đẳng thức:

$$a/ \frac{\pi}{2} < \int_{0}^{\pi/2} e^{\sin^{2}x} . dx < \frac{e.\pi}{2} \qquad b/ \qquad 1 - \frac{1}{e} \le \int_{0}^{1} e^{-x^{2}} . dx \le 1.$$

$$c/ \qquad 0 < \int_{1}^{\sqrt{3}} \frac{e^{-x} . \sin x}{x^{2} + 1} dx < \frac{\pi}{12e}$$

 $\underline{\text{Bài 51}}. \text{ Cho } I(t) = \int\limits_0^t \frac{tg^4x}{\cos 2x} dx, \text{v\'oi } 0 < t < \frac{\pi}{4}. \text{ Chứng minh rằng: } tg(t + \frac{\pi}{4}) > e^{\frac{2}{3}(tg^3t + 3tgt)}$

Bài 52. Đặt:
$$J(t) = \int_{1}^{t} \left(\frac{\ln x}{x}\right)^{2} dx$$
, với $t > 1$.

Tính J(t) theo t, từ đó suy ra: J(t) < 2, $\forall t > 1$.

Kỹ thuật 2: Dùng bất đẳng thức Côsi hay Bu Nhia Cốp Ski

<u>BÀI TẬP</u>

Bài 53. Chứng minh các bất đẳng thức:

a/
$$\int_{0}^{\pi/2} \sqrt{\sin x} (2 + 3\sqrt{\sin x}) (7 - 4\sqrt{\sin x}) dx < \frac{27\pi}{2}$$
b/
$$\int_{\pi/4}^{\pi/3} \sqrt{\cos x} (5 + 7\sqrt{\cos x} - 6\cos x) dx < \frac{2\pi}{3}.$$
c/
$$\int_{1}^{e} \sqrt{\ln x} (9 - 3\sqrt{\ln x} - 2\ln x) dx \le 8(e - 1)$$

Bài 54. Chứng minh các bất đẳng thức:

a/
$$\int_{0}^{\pi/3} (\sqrt{8\cos^2 x + \sin^2 x} + \sqrt{8\sin^2 x + \cos^2 x}) dx \le \pi \sqrt{2}$$

b/
$$\int_{1}^{e} (\sqrt{3+2\ln^2 x} + \sqrt{5-2\ln^2 x}) dx \le 4(e-1)$$

Bài 55. Sử dụng bất đẳng thức dạng 5 chứng minh:

$$a/\left|\int_{0}^{1} \frac{\sin x \sqrt{x} \cdot dx}{1+x^{2}}\right| < \frac{\pi}{4}; \quad b/\left|\int \frac{3\cos x - 4\sin x}{x^{2} + 1}\right| \le \frac{5\pi}{4}.$$

<u>Kỹ thuật 3</u>: Sử dụng GTLN – GTNN của hàm số trên miền lấy tích phân bằng bảng biến thiên.

<u>BÀI TẬP</u>

Bài 56. Chứng minh các bất đẳng thức:

$$a' \quad \frac{2}{5} < \int_{1}^{2} \frac{x.dx}{x^{2} + 1} < \frac{1}{2}; \qquad b' \qquad 0 < \int_{0}^{1} x(1 - x)^{2}.dx < \frac{4}{27};$$

$$c' \quad 54\sqrt{2} \le \int_{-7}^{11} (\sqrt{x + 7} + \sqrt{11 - x}).dx \le 108;$$

$$d' \quad 2.e^{-1/4} \le \int_{-7}^{2} e^{x^{2} - x}.dx \le 2e^{2}; \qquad e' \qquad \frac{\pi\sqrt{3}}{3} < \int_{-\sqrt{\cos^{2} x + \cos x + 1}}^{\pi} < \frac{2\pi\sqrt{3}}{3}.$$

<u>Kỹ thuật 4</u>: Sử dụng tính chất đồng biến, nghịch biến của hàm số bằng cách tính đạo hàm

BÀI TẬP

Bài 57. Chứng minh các bất đẳng thức:

a/
$$\frac{\sqrt{3}}{4} < \int_{\pi/4}^{\pi/3} \frac{\sin x. dx}{x} < \frac{1}{2};$$

b/
$$2\pi\sqrt{7} \le \int_{0}^{2\pi} \sqrt{(2+\sin x)(6-\sin x)}.dx \le 2\pi\sqrt{15}.$$

c/
$$e^x > 1 + x$$
, $\forall x \neq 0$. Suy ra: $\int_{0}^{1} e^{\frac{1}{1+x^2}} dx > \frac{\pi + 4}{4}$

d/
$$e^x \ge x$$
, $\forall x$. Suy ra: $\int_{100}^{200} e^{-x^2} . dx \le 0,01$.

e/
$$1 < \ln x < \frac{x}{e}$$
, với $x > e$. Suy ra: $0.92 < \int_{3}^{4} \frac{dx}{\sqrt[3]{\ln x}} < 1$.

<u>Kỹ thuật 5</u>: Sử dụng bất đẳng thức Bu Nhia Cốp Ski trong tích phân bài tập 9.16

BÀI TẬP

<u>Bài 58</u>. Chứng minh rằng nếu f(x), g(x) là hai hàm số liên tục trên [a; b] thì ta có:

$$\left(\int\limits_a^b f(x).g(x).dx\right)^2 \leq \int\limits_a^b f^2(x).dx.\int\limits_a^b g^2(x).dx.$$

(BĐT trên gọi là BĐT Bua Nhia Côp Ski trong tích phân)

Bài 59. Chứng minh rằng:

$$\left(\int_{0}^{1} f(x).g(x).dx\right)^{2} \leq \int_{0}^{1} f(x).dx.\int_{0}^{1} g(x).dx$$

Bài 60. Cho f(x) là hàm số xác định liên tục trên [0; 1] và $|f(x)| \le 1$, $\forall x \in [0; 1]$.

Chứng minh rằng:

$$\int_{0}^{1} \sqrt{1 - f^{2}(x)} . dx \le \sqrt{1 - \left(\int_{0}^{1} f(x) . dx\right)^{2}}.$$

<u>Bài 61</u>. Biết $\ln 2 = \int_0^1 \frac{dx}{x+1}$. Chứng min h: $\text{Ln2} > \frac{2}{3}$.

Vấn đề 14: TÍNH GIỚI HẠN CỦA TÍCH PHÂN

• Trong bài toán tìm giới hạn của tích phân thường có 2 dạng sau:

Dang 1: Tim
$$\lim_{t\to\infty}\int_a^t f(x).dx$$
, $(t>a)$

Ta tính tích phân $\int_a^t f(x).dx$ phụ thuộc vào t, sau đó dùng định lý về giới hạn để tìm kết quả.

Dang 2: Tîm
$$\lim_{n\to\infty} \int_{a}^{b} f(x, n).dx$$
, $(n \in N)$

• Dùng BĐT tích phân đem tích phân về dạng: $A \leq \int\limits_a^b f(x,n).d(x) \leq B$

$$\Rightarrow \lim_{n \to \infty} A \leq \lim_{n \to \infty} \int\limits_{a}^{b} f(x,n).dx \leq \lim_{n \to \infty} B$$

• Sau đó, nếu:
$$\lim_{n\to\infty} A = \lim_{n\to\infty} B = 1$$
 thì $\lim_{n\to\infty} \int_a^b f(x, n).dx = 1$

* Nhắc lại định lý hàm kẹp:

"Cho ba dãy số a_n , b_n , c_n cùng thoả mãn các điều kiện sau:

$$\begin{cases} \forall n \in N^*, \, a_n \leq b_n \leq C_n \\ \lim_{n \to \infty} a_n = \lim_{n \to \infty} C_n = 1 \end{cases} \text{. Khi d\'o} \colon \lim_{n \to \infty} b_n = 1\text{''}$$

BÀI TẬP

Bài 62. a/ Tính
$$I(x) = \int_{1}^{x} \frac{dt}{t(t+1)}$$
, $(x > 1)$ b/ Tìm $\lim_{x \to +\infty} I(x)$

$$\underline{DS}$$
: a/ $\ln \frac{2x}{x+1}$; b/ $\ln 2$

$$\underline{\text{Bài 63}}. \ \ a / \quad \text{Tính } I(b) = \int\limits_{b}^{\ln 10} \frac{e^{x}.dx}{\sqrt[3]{e^{x}-2}}; \qquad b / \qquad \text{Tìm } \lim_{b \to \ln 2} I(b)$$

DS: a/
$$\frac{3}{2} \left[6 - \frac{1}{2} (e^b - 2)^{2/3} \right]$$
 b/ 6.

Bài 64. Cho
$$I_n = \int_0^1 \frac{e^{-nx}.dx}{1 + e^{-x}} \ (n \in N^*)$$

 $Tinh \ I_n + I_{n-1}, \ từ \ d\'o \ tìm \ \lim_{x \to +\infty} I_n.$

BS: a/
$$\ln 4 + \ln \frac{t^2 + 1}{(t+2)^2}$$
 b/ $\ln 4$.

$$\underline{B\grave{a}i~65}.~~a/~~\text{Tình}~~I(x)=\int\limits_{0}^{x}(t^{2}+2t).e^{t}.dt.~~\text{Tìm}~\lim_{x\to -\infty}I(x)$$

b/ Tính
$$I(x) = \int_{1}^{x} \frac{2t \cdot \ln t \cdot dt}{(1+t^2)^2}$$
, $(x > 1)$. Tìm $\lim_{x \to +\infty} I(x)$.

b/
$$\ln \sqrt{2}$$
.

Bài 66. a/ Tính theo m và
$$x > 0$$
 tích phân: $I_m(x) = \int_{x}^{e^m} t.(m-\ln t).dt$.

b/ Tìm
$$\lim_{x\to 0^-} I_m(x)$$
. Tìm m
 để giới hạn này bằng 1.

$$\underline{\textit{DS}} \colon a / \ \frac{1}{4} \Big[e^{2m} + 2x^2 \ln x - (2m+1)x^2 \Big] \qquad \qquad b / \qquad \frac{1}{4} e^{2m}; \ m = \ln 2.$$

b/
$$\frac{1}{4}e^{2m}$$
; m = ln 2.

ỨNG DỤNG CỦA TÍCH PHÂN

§Bài 1: DIỆN TÍCH HÌNH PHẨNG

Vấn đề 1: DIỆN TÍCH HÌNH THANG CONG

1. Diện tích hình thang cong giới hạn bởi 4 đường:

$$\begin{cases} (c): y = f(x) \\ y = 0 \text{ (trục hoành Ox)} \\ x = a \\ x = b \text{ (a < b)} \end{cases} \text{được tính bởi công thức: } S = \int_{a}^{b} |f(x)| dx \tag{1}$$

2. Phương pháp giải toán:

 \int * Ta cần phải tìm đầy đủ 4 đường như trên

* và vì cần phải bỏ dấu giá trị tuyệt đối nên ta có 2 cách giải sau:

Cách 1. Phương pháp đồ thị:

* Vẽ đồ thị (C) : y = f(x) với $x \in [a; b]$

al Trường hợp 1:

Nếu đồ thị (C) nằm hoàn toàn trên trục hoành Ox (hình a) thì:

$$(1) \Leftrightarrow S = \int_{a}^{b} f(x).dx$$

b/ Trường hợp 2:

Nếu đồ thị (C) nằm hoàn toàn dưới truc hoành Ox (hình b) thì:

$$(1) \iff S = -\int_{a}^{b} f(x).dx$$

c/ Trường hợp 3:

Nếu đồ thị (C) cắt trục hoành Ox tại một điểm có hoành độ $x = x_0$ (như hình c) thì:

(1)
$$\Leftrightarrow$$
 $S = \int_{a}^{x_0} f(x).dx + \int_{a}^{b} \left| -f(x) \right|.dx$

* Ghi chú: Nếu f(x) không đổi dấu trên đoạn [a; b] thì ta dùng công thức sau:

$$S = \left| \int_{a}^{b} f(x) dx \right|$$

Cách 2. Phương pháp đại số:

- Giải phương trình hoành độ giao điểm: f(x) = 0 (*)
- Giải (*) để tìm nghiệm x trên đoạn [a; b].
- Nếu (*) vô nghiệm trên khoảng (a; b) thì ta xét dấu f(x) trên đoạn [a; b] để bỏ dấu giá trị tuyệt đối hoặc ta sử dụng trực tiếp công thức sau:

$$S = \left| \int_{a}^{b} f(x) dx \right|$$

Nếu (*) có nghiệm x = x₀ và f(x)
 có bảng xét dấu như hình bên thì:

$$S = \int_{a}^{x_0} f(x)dx - \int_{x_0}^{b} f(x)dx.$$

Ghi chú:

- (1) Diện tích S luôn là một giá trị dương (không có giá trị $S \le 0$).
- (2) Với câu hỏi: "Tính diện tích giới hạn bởi (C): y = f(x) và trục hoành" thì ta phải tìm thêm hai đường x = a, x = b để làm cận tích phân, hai đường này chính là giao điểm của (C) và trục Ox, là 2 nghiệm của phương trình f(x) = 0 (theo phương pháp đại số).
 Với câu hỏi đơn giản hơn như: "Tính diện tích giới hạn bởi đường (C) : y = f(x) thì ta phải hiểu đó là sự giới hạn bởi (C) và trục hoành.
- (3) Một số hàm có tính đối xứng như: parabol, đường tròn, elip, hàm giá trị tuyệt đối, một số hàm căn thức; lợi dụng tính đối xứng ta tính một phần S rồi đem nhân hai, nhân ba, ... (cũng có thể sử dụng tổng hoặc hiệu diện tích).
- (4) Phần lớn dạng toán loại này ta nên dùng phương pháp đồ thị hiệu quả hơn; một số ít phải dùng phương pháp đại số như hàm lượng giác vì vẽ đồ thị khó.

<u>Vấn đề 2: DIỆN TÍCH HÌNH PHẨNG GIỚI HẠN BỞI HAI ĐƯỜNG (C1), (C2)</u>

1. Diện tích hình phẳng giới hạn bởi hai đường (C_1) , (C_2)

$$\begin{cases} (C_1): y = f(x) \\ (C_2): y = g(x) \end{cases}$$
$$\begin{cases} x = a \\ x = b \ (a < b) \end{cases}$$

được tính bởi công thức:

$$S = \int_{a}^{b} |f(x) - g(x)| dx$$

2. Phương pháp giải toán:

Cách 1. Phương pháp đồ thị:

- * Trên cùng mặt phẳng toạ độ ta vẽ 2 đồ thị: $(C_1):y=f(x)$ và $(C_2):y=g(x)$.
- a/ Trường hợp 1: (C₁) không cắt (C₂)
- Xác định vị trí: Trên đoạn [a; b] thì (C₁) nằm trên (C₂) hay (C₂) nằm trên (C₁) bằng cách vẽ một đường thẳng song song với trục tung Oy cắt hai đồ thị tại M và N.

Khi đó nếu M ở trên N thì đồ thị chứa M sẽ nằm trên đồ thị chứa N.

- Nếu (C_1) nằm trên (C_2) thì: $S = \int_a^b [f(x) g(x)] dx$. (h.2a)
- Nếu (C₂) nằm trên (C₁) thì: $S = \int_a^b [g(x) f(x)] dx$. (h.2b)
- Trong trường hợp 1, ta có thể dùng trực tiếp công thức sau:

$$S = \left| \int_{a}^{b} [f(x) - g(x)] dx \right|.$$

b/ Trường hợp 2: (C_1) cắt (C_2) tại điểm I có hoành độ x_0 .

$$S = \int_{a}^{x_0} |g(x) - f(x)| dx + \int_{x_0}^{b} |f(x) - g(x)| dx$$

Hoặc dùng công thức sau:

Cách 2. Phương pháp đại số:

- Lập phương trình hoành độ giao điểm: f(x) = g(x) (*)
- Nếu (*) vô nghiệm trên khoảng (a ; b) thì ta xét hiệu f(x) g(x) để bỏ dấu "| |".
- Nếu (*) có một nghiệm x₀ thuộc khoảng (a; b) thì:

$$S = \int_{a}^{x_0} |f(x) - g(x)| dx + \int_{a}^{b} |f(x) - g(x)| dx$$

rồi xét lại từ đầu trên các đoạn $[a; x_0]$ và $[x_0; b]$.

Ghi chú:

- (1) Trong thực hành ta nên dùng phương pháp đồ thị.
- (2) Khi giao điểm của (C_1) và (C_2) không chắc chắn như số hữu tỉ hoặc số vô tỉ, ta nên thực hiện thêm việc giải phương trình hoành độ f(x) = g(x) cho chính xác.
- (3) Hoành độ giao điểm của (C_1) và (C_2) là các cận của tích phân.
- (4) Trên đây khi tính diện tích ta đã coi x là biến, y là hàm. Tuy nhiên trong một số trường hợp ta coi y là biến của hàm x (nghĩa là x = f(y)), khi đó việc tính diện tích sẽ đơn giản hơn.

<u>Vấn đề 3: DIỆN TÍCH HÌNH PHẨNG GIỚI HẠN BỞI NHIỀU ĐƯỜNG</u>

- Xét đại diện 4 đường (C_1) , (C_2) , (C_3) , (C_4) .
- Ta dùng phương pháp đồ thị (duy nhất)
- Vẽ 4 đường trên cùng một mặt phẳng và xác định hoành độ giao điểm giữa chúng (x₁, x₂, x₃, x₄)

$$\Leftrightarrow S = \int_{x_1}^{x_1} [(C_1) - (C_3)] dx + \int_{x_2}^{x_3} [(C_4) - (C_3)] dx + \int_{x_3}^{x_4} [(C_4) - (C_2)] dx.$$

Vấn đề 4: DIỆN TÍCH LỚN NHẤT VÀ DIỆN TÍCH NHỎ NHẤT

Tìm diện tích lớn nhất và nhỏ nhất của hình phẳng S.

Phương pháp:

- Thiết lập công thức tính S theo một hoặc nhiều tham số của giả thiết (giả sử là m), tức là, ta có: S = g(m).
- Tìm giá trị lớn nhất, giá trị nhỏ nhất của g(m) bằng một trong các phương pháp:
 - + Tam thức bậc hai
 - + Bất đẳng thức Côsi hoặc Bu Nhia Côp Ski.
 - + Sử dụng đạo hàm

Chú ý: Các cận α , β thường lấy từ nghiệm x_1 , x_2 là hoành độ giao điểm của (C) và (d).

<u>Ví dụ 1</u>: (*Vấn đề 1*): Tính diện tích của miền kín giới hạn bởi đường cong $y = x\sqrt{1+x^2}$, trục Ox và đường thẳng x = 1.

Giải:

- * Đường cong (C): $y = x\sqrt{1+x^2}$ cắt trục hoành Ox khi: $x\sqrt{1+x^2} = 0 \Leftrightarrow x = 0$.
- * Ta có: $x\sqrt{1+x^2} \ge 0$, với mọi $x \in [0; 1]$. Do đó diện tích S cần tìm là:

$$S = \int_{0}^{1} x \sqrt{1 + x^2} . dx.$$

- * Đặt: $u\sqrt{1+x^2} \Rightarrow u^2 = 1 + x^2 \Rightarrow 2u.du = 2xdx \Rightarrow u.du = xdx$.
- * Đổi cận: $x = 0 \Rightarrow u = 1$; $x = 1 \Rightarrow u = \sqrt{2}$.
- * Ta có: $S = \int_{0}^{\sqrt{2}} u^2 du = \left(\frac{u^3}{3}\right) \Big|_{0}^{\sqrt{2}} = \frac{1}{3} (2\sqrt{2} 1)$ (đvdt)

Ví dụ 2: (vấn đề 1): Tính diện hình phẳng giới hạn bởi các đường

$$y = \frac{\sqrt{1 + \ln x}}{x}$$
; $x = 1$, $x = e$.

Giải:

- * Diện tích hình phẳng S cần tìm: $S = \left| \int_{1}^{e} \frac{\sqrt{1 + \ln x}}{x} dx \right|$
- * Đặt: $u = \sqrt{1 + \ln x} \implies u^2 = 1 + \ln x \implies 2u.du = \frac{1}{x}dx$.
- * Đổi cận: $x = 1 \Rightarrow u = 1$; $x = e \Rightarrow u = \sqrt{2}$.
- * Ta có: $S = \left| \int_{1}^{\sqrt{2}} 2u^2 . du \right| = \left| \left(\frac{2}{3} u^3 \right) \right|_{1}^{\sqrt{2}} = \left| \frac{2}{3} (2\sqrt{2} 1) \right| = \frac{2}{3} (2\sqrt{2} 1)$ (đvdt)

Ví dụ 3 (vấn đề 2): Tính diện tích hình phẳng giới hạn bởi các đường:

$$y = x^2 - 2x$$
 và $y = -x^2 + 4x$.

<u>Giải</u>:

* Phương trình hoành độ giao điểm của 2 đường:

$$x^{2}-2x = -x^{2} + 4x$$

$$\Leftrightarrow 2x^{2} - 6x = 0 \Leftrightarrow x = 0 \text{ hay } x = 3.$$

* Đồ thị (P_1) : $y = x^2 - 2x$ và (P_2) : $y = -x^2 + 4x$

như trên hình vẽ. Hai đồ thị cắt nhau tai 2 điểm O(0; 0) và A(3; 3).

$$S = \int_{0}^{3} \left[-x^{2} + 4x \right] - (x^{2} - 2x) dx = \int_{0}^{3} (-2x^{2} + 6x) dx = \left(-\frac{2x^{3}}{3} + 3x^{2} \right)^{3} = 9 \quad (\text{d}vdt)$$

<u>Ví dụ 4</u> (vấn đề 2): Parabol $y^2 = 2x$ chia hình phẳng giới hạn bởi đường tròn $x^2 + y^2 = 8$ thành hai phần. tính diện tích mỗi phần đó

Giải:

* Phương trình hoành độ giao điểm của (P): $y^2 = 2x$ và (C): $x^2 + y^2 = 8$;

$$x^{2} + 2x = 8 \text{ (v\'oi } x \ge 0) \Leftrightarrow x^{2} + 2x - 8 = 0 \Leftrightarrow \begin{bmatrix} x = 2 \Rightarrow y = \pm 2 \\ x = -4 \text{ (loại)} \end{bmatrix}$$

Tọa độ giao điểm B(2; 2), C(2; -2).

* Ta tính diện tích tam giác cong OAB;

Đặt:
$$S_1 = S_{OAB} = \int_0^2 \sqrt{2x} . dx + \int_2^{2\sqrt{2}} \sqrt{8 - x^2} . dx$$

với:
$$\int_{0}^{2} \sqrt{2x} \cdot dx = \left(\sqrt{2} \cdot \frac{2}{3} \sqrt{x^3} \right) \Big|_{0}^{2} = \frac{8}{3}.$$

Tính:
$$\int_{2}^{2\sqrt{2}} \sqrt{8-x^2} . dx = I.$$

Đổi cận:
$$x = 2 \Rightarrow t = \pi/4$$
; $x = 2\sqrt{2} \Rightarrow t = \pi/2$

$$\Rightarrow I = \int_{\pi/4}^{\pi/2} 2\sqrt{2} \cdot \cos t \cdot 2\sqrt{2} \cdot \cos t \cdot dt = 8 \int_{\pi/4}^{\pi/2} \cos^2 t \cdot dt = 8 \int_{\pi/4}^{\pi/2} \frac{1 + \cos 2t}{2} dt$$

$$=4\left(t+\frac{\sin 2t}{2}\right)\Big|_{\pi/4}^{\pi/2}=\pi-2.$$

- * Do đó: $S_1 = \frac{8}{3} + \pi 2 = \pi + \frac{2}{3}$.
- * Do tính đối xứng nên: $S_{OBAC} = 2.S_{OAB} = 2\pi + \frac{4}{3}$.

- * Gọi S là diện tích hình tròn (C) \Rightarrow S = π .R² = 8π
- * Gọi S_2 là phần diện tích hình tròn còn lại $\Rightarrow S_2 = S S_{OBAC} = 8\pi \left(2\pi + \frac{4}{3}\right)$

$$\Leftrightarrow$$
 S₂ = $6\pi - \frac{4}{3}$.

<u>Ví dụ 5</u> (vấn đề 4): Chứng minh rằng khi m thay đổi thì Parabol (P): $y = x^2 + 1$ luôn cắt đường thẳng (d): y = mx + 2 tại hai điểm phân biệt. Hãy xác định m sao cho phần diện tích hình phẳng giới hạn bởi đường thẳng và parabol là nhỏ nhất.

Giải:

* Phương trình hoành độ giao điểm của (P) và (d):

$$x^{2} + 1 = mx + 2 \Leftrightarrow x^{2} - mx - 1 = 0$$
 (1)
 $\Delta = m^{2} + 4 > 0, \forall m$

- Vậy (d): luôn cắt (P) tại 2 điểm phân biệt
 A, B có hoành độ x₁, x₂ là nghiệm của (1).
- * Diện tích hình phẳng S là:

Vậy: $\min S = \frac{4}{3}$ khi m = 0.

Ví dụ 6 (vấn đề 3): Tính diện tích hình phẳng giới hạn bởi các đường:

$$y = x^2$$
, $y = \frac{x^2}{8}$, $y = \frac{27}{x}$.

Giải:

- * Đồ thị (P_1) : $y = x^2$, (P_2) : $y = \frac{x^2}{8}$, (H): $y = \frac{27}{x}$ như trên hình vẽ.
- Phương trình hoành độ giao điểm của
 (P₁) và (H):

$$x^2 = \frac{27}{x} \Leftrightarrow x^3 = 27 \Leftrightarrow x = 3 \Rightarrow toạ độ A(3, 9).$$

* Phương trình hoành độ giao điểm của (P2) và (H):

$$\frac{x^2}{8} = \frac{27}{x} \Leftrightarrow x = 6 \Rightarrow \text{ toạ } d\hat{0} B \left(6, \frac{9}{2}\right).$$

* Diện tích hình phẳng S cần tìm:

$$S = S_1 + S_2 = \int_0^3 (x^2 - \frac{x^2}{8}) dx + \int_3^6 \left(\frac{27}{x} - \frac{x^2}{8}\right) dx = \dots = 27 \ln 2 \text{ (dvdt)}.$$

<u>Ví dụ 7</u> (vấn đề 3): Tính diện tích hình phẳng giới hạn bởi các đường: parabol (P): $y = 4x - x^2$ và các đường tiếp tuyến với parabol này, biết rằng các tiếp tuyến đó đi qua M(5/2, 6).

<u>Giải</u>:

* Phương trình đường thẳng (d) qua M hệ số góc K:

$$y = K\left(x - \frac{5}{2}\right) + 6$$

* (d) tiếp xúc (P) khi hệ sau có nghiệm:

$$\begin{cases} 4x - x^2 = K\left(x - \frac{5}{2}\right) + 6 & (1) \\ 4 - 2x = K & (2) \end{cases}$$

$$4x - x^{2} = (4 - 2x)(x - \frac{5}{2}) + 6$$

$$\Leftrightarrow x^{2} - 5x + 4 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \Rightarrow K = 1 \\ x = 4 \Rightarrow K = -4 \end{bmatrix}$$

- * Vậy có 2 phương trình tiếp tuyến là: $(d_1): y = 2x + 1$; $(d_2): y = -4x + 16$
- * Diện tích hình phẳng S cần tìm:

$$S = S_1 + S_2 = \int_{1}^{5/2} (2x + 1 - 4x + x^2) dx + \int_{5/2}^{4} (-4x + 16 - 4x + x^2) dx = \dots = \frac{9}{4} \text{ (dvdt)}.$$

<u>Ví dụ 8</u> (*vấn đề 3*): Tính diện tích giới hạn bởi các đường: $y = |x^2 - 4x + 3|$ và y = 3.

- * Vẽ đồ thị (C): $y = f(x) = x^2 4x + 3$
- * Xét đồ thị (C'): $y = |f(x)| = \begin{cases} f(x), f(x) \ge 0 \\ -f(x), f(x) < 0 \end{cases}$

* Đồ thị (C') là hợp của 2 phần trên

- * Đường thẳng y = 3 cắt (C') tại A(0; 3), B(4; 3).
- * Gọi S là diện tích hình phẳng cần tìm.
- * Do tính đối xứng nên ta có:

$$S = 2(S_1 + S_2)$$

$$=2.\int\limits_{0}^{2}(3-\left|x^{2}-4x+3\right|)dx=2\left[\int\limits_{0}^{1}[3-(x^{2}-4x+3)]dx+\int\limits_{1}^{2}[3-(-x^{2}+4x-3)]dx\right]$$

.....

= 8 (dvdt)

Bảng xét dấu:

BÀI TẬP

<u>Bài 1</u>. Cho Parabol (P): $y = x^2 - 4x + 3$ và đường thẳng (d): y = x - 1.

Tính diện tích giới hạn bởi:

a/ (P) và truc Ox;

- b/ (P), truc Ox và truc Oy;
- c/ (P), trục Ox, x = 2 và x = 4; d/ (P) và (d);
- e/ (P), (d), x = 0 và x = 2.
- \underline{DS} : a/ $\frac{4}{2}$;
- c/ 2;
- $d/\frac{9}{2}$;

e/3.

Bài 2. Tính diện tích giới hạn bởi các đường:

- a/ (C): $y = x + \frac{1}{2v^2}$, tiệm cận xiên của (C), x = 1 và x = 3;
- b/ $y = x(x+1)^5$, truc Ox, truc Oy và x = 1;
- $c/ 2(y-1)^2 = x \text{ và } (y-1)^2 = x-1;$
- d/ $y = x^2 2x + 2$, $y = x^2 + 4x + 5$ $y = x^2 4x + 3$ và y = 1;
- e/ $y = \frac{x^2}{8}$, $y = \frac{1}{x}$, $y = \frac{8}{x}$ (với x > 0).
- \underline{DS} : a/ $\frac{1}{2}$;
- b/ $\frac{418}{35}$; c/ $\frac{4}{3}$; d/ $\frac{9}{4}$;

e/7ln2.

Bài 3. Tính diện tích giới hạn bởi:

- a/ (C): $y = x^2 2x$ và tiếp tuyến với (C) tại O(0; 0) và A(3; 3) trên (C).
- b/ (C) : $y = x^3 2x^2 + 4x 3$, y = 0 và tiếp tuyến với (C) tại tiếp điểm có hoành đô x = 2.
- \underline{DS} : a/ $\frac{9}{4}$; b/ $\frac{5}{48}$.
- <u>Bài 4</u>. Cho Parabol (P): $y^2 = x$ và đường tròn (C): $x^2 + y^2 4x + \frac{9}{4} = 0$.
 - a/ Chứng tỏ (P) và (C) tiếp xúc nhau tại A và B.
 - b/ Tính diện tích hình phẳng giới hạn bởi (P) và các tiếp tuyến chung tại A và B.

$$\underline{\mathit{DS}} \colon \mathsf{a} / \quad \mathsf{A} \bigg(\frac{3}{2}; \frac{\sqrt{6}}{2} \bigg); \, \mathsf{y} = \frac{\sqrt{6}}{6} \, \mathsf{x} + \frac{\sqrt{6}}{4}; \, \mathsf{B} \bigg(\frac{3}{2}; -\frac{\sqrt{6}}{2} \bigg); \, \mathsf{y} = -\frac{\sqrt{6}}{6} \, \mathsf{x} - \frac{\sqrt{6}}{4}. \qquad \mathsf{b} / \, \frac{\sqrt{6}}{2}.$$

<u>Bài 5</u>. Đường thẳng (d): x - 3y + 5 = 0 chia đường tròn (C): $x^2 + y^2 = 5$ thành hai phần, tính diện tích mỗi phần.

BS:
$$S_1 = \frac{5\pi}{4} - \frac{5}{2}$$
; $S_2 = \frac{15\pi}{4} + \frac{5}{2}$.

Bài 6. Tính diện tích hình phẳng giới hạn bởi các đường

- a/ $y = x^2$, $y = \sqrt{x}$. b/ $x y^3 + 1 = 0$; x + y 1 = 0.
- $c/x^2 + y^2 = 8$; $y^2 = 2x$. $d/y = 2 x^2$; $y^3 = x^2$.

e/
$$y = \frac{x}{\sqrt{1-x^4}}$$
; $x = 0$; $x = \frac{1}{\sqrt{2}}$.

$$\underline{DS}$$
: a/ $\frac{1}{3}$;

$$b/\frac{5}{4};$$

c/
$$2\pi + \frac{4}{3}$$
; d/ $\frac{32}{15}$; e/ $\frac{\pi}{12}$.

$$d/\frac{32}{15}$$
;

$$e/\frac{\pi}{12}$$
.

Bài 7. Tính diện tích hình phẳng giới hạn bởi các đường:

a/
$$y = x.e^x$$
; $y = 0$; $x = -1$; $x = 2$.

a/
$$y = x.e^x$$
; $y = 0$; $x = -1$; $x = 2$. b/ $y = x.ln^2 x$; $y = 0$; $x = 1$; $x = e$.

c/
$$y = e^{x}$$
; $y = e^{-x}$; $x = 1$

c/
$$y = e^x$$
; $y = e^{-x}$; $x = 1$. d/ $y = 5^{x-2}$; $y = 0$; $x = 0$; $y = 3 - x$.

e/
$$y = (x+1)^5$$
; $y = e^x$; $x = 1$.

BS: a/
$$e^2 - \frac{2}{3} + 2$$
; b/ $\frac{1}{4}(e^2 - 1)$; c/ $e + \frac{1}{2} - 2$;

b/
$$\frac{1}{4}(e^2-1)$$
;

$$c/e + \frac{1}{2} - 2$$

d/
$$\frac{24}{25 \ln 5} + \frac{1}{2}$$
; e/ $\frac{23}{2} - e$.

$$e/\frac{23}{2} - e$$
.

Bài 8. Tính diện tích hình phẳng giới hạn bởi các đường:

a/
$$y = \left| \frac{x^2}{2} + 2x \right|$$
 và $y = x + 4$

a/
$$y = \left| \frac{x^2}{2} + 2x \right|$$
 và $y = x + 4$; b/ $y = -x^2 + 2|x| + 3$ và $3x + 5y - 9 = 0$;

c/
$$y = \frac{x}{|x|+1}$$
 và $y = 0$; $x = 1$; $x = 2$; d/ $y = |\ln x|$; $y = 0$; $x = \frac{1}{e}$ và $x = e$.

d/
$$y = |\ln x|; y = 0; x = \frac{1}{e} \text{ và } x = e$$

$$\underline{DS}$$
: a/ $\frac{26}{3}$;

$$b/\frac{55}{6}$$
;

b/
$$\frac{55}{6}$$
; c/ $1-\ln\frac{2}{3}$; d/ $2-\frac{2}{6}$.

$$d/2 - \frac{2}{e}$$

Bài 9. Tính diện tích hình phẳng giới hạn bởi các đường:

a/
$$y = \sin x + \cos^2 x$$
, các trục toạ độ và $x = \pi$;

b/
$$y = \sin^2 x + \sin x + 1$$
, các trục toạ độ và $x = \frac{\pi}{2}$.

c/
$$y = x + \sin x$$
; $y = x$; $x = 0$; $x = 2\pi$.

d/
$$y = x + \sin^2 x$$
; $y = \pi$; $x = 0$; $x = \pi$.

BS: a/
$$2 + \frac{\pi}{2}$$
; b/ $1 + \frac{3\pi}{2}$; c/ 4; d/ $\frac{\pi}{2}$.

b/
$$1 + \frac{3\pi}{2}$$

$$d/\frac{\pi}{2}$$

<u>Bài 10</u>. Diện tích giới hạn bởi các đường thẳng x = -1; x = 2; y = 0 và Parabol (P) bằng 15. Tìm phương trình của (P), biết (P) có đỉnh là I(1; 2).

$$DS$$
: $y = 3x^2 - 6x + 5$.

Bài 11. Tính diện tích hình phẳng giới hạn bởi (C): $y = \frac{x^2 + 2x - 3}{x + 2}$, tiện cận xiên x = 0 và x = m > 0. Tìm giới hạn của diện tích này khi $m \rightarrow +\infty$.

$$\underline{DS}$$
: $S = 3 \ln \left(\frac{m+2}{2} \right)$; $\lim_{m \to +\infty} S = +\infty$.

Bài 12. Cho (H):
$$y = \frac{2x}{x-1}$$
.

a/ Chứng minh rằng hình phẳng được giới hạn bởi (H), tiệm cận ngang và các đường thẳng x = a + 1; x = 2a + 1 có diện tích không phụ thuộc vào tham số a dương.

b/ Lập phương trình tiếp tuyến (d) của (H) tại gốc toạ độ. Tính diện tích hình phẳng giới hạn bởi (H), (d) và đường thẳng x = 2.

<u>DS</u>: a/ 2ln2; b/ 2ln3.

<u>Bài 13</u>. Cho Parabol (P) : $y = x^2$. Hai điểm A và B di động trên (P) sao cho AB = 2.

a/ Tìm tập hợp trung điểm I của AB

b/ Xác định vị trí của A, B sao cho diện tích của phần mặt phẳng giới hạn bởi (P) và cát tuyến AB đạt giá trị lớn nhất.

DS: a/
$$y = x^2 + \frac{1}{1 + 4x^2}$$
; b/ $\max S = 1$; A(-1; 1); B(1; 1).

Bài 14. Đường thẳng (D) đi qua điểm $M\left(\frac{1}{2};1\right)$ và các bán kính trục dương Ox, Oy lập thành một tam giác. Xác định (D) để diện tích tam giác có giá trị nhỏ nhất và tính giá trị đó.

<u>DS</u>: (D): y = -2x + 2.

Bài 15. Cho Parabol (P): y = x². Viết phương trình đường thẳng (d) đi qua I(1; 3) sao cho diện tích hình phẳng giới hạn bởi (d) và (P) đạt giá trị nhỏ nhất.

 $\underline{DS}: \quad y = 2x + 1.$

<u>Bài 16</u>. Trên Parabol (P) : $y = x^2$ lấy hai điểm A(-1; 1) và B(3; 3). Tìm điểm M trên cung \widehat{AB} của (P) sao cho tam giác MAB có diện tích lớn nhất.

$$\underline{DS}$$
: $M\left(\frac{1}{3}; \frac{1}{9}\right)$

Bài 17. Xét hình (H) giới hạn bởi đường tròn (C): $y = x^2 + 1$ và các đường thẳng y = 0; x = 0; x = 1. Tiếp tuyến tại điểm nào của (C) sẽ cắt từ (H) ra một hình thang có diện tích lớn nhất.

$$\underline{DS}: \max S = \frac{5}{4}; M\left(\frac{1}{2}; \frac{5}{4}\right).$$

<u>§Bài 2</u>: THỂ TÍCH VẬT TRÒN XOAY

Chú ý: Khi tìm thể tích của vật thể tròn xoay ta cần xác định:

- * Miền hình phẳng (H) sinh ra. ((H) giới hạn bởi 4 đường: x = ..., x = ..., y = ..., y = ...
- * (H) quay quanh trục Ox hoặc trục Oy để ta dùng công thức thích hợp.
 Nếu (H) quay quanh trục Ox thì hàm dưới dấu tích phân là y = f(x), biến x và hai cận là x. Nếu (H) quay quanh trục Oy thì hàm dưới dấu tích phân là x = f(y), biến y và hai cận là y.

<u>Vấn đề 1</u>: Thể tích vật tròn xoay do hình phẳng (H) giới hạn bởi 4 đường: (C): y = f(x); y = 0; x = a; x = b (a < b) sinh ra khi quay quanh trục Ox được tính bởi công thức:

$$V = \pi \int_{a}^{b} y^{2}.dx = \pi \int_{a}^{b} [d(x)]^{2}.dx$$

Diện tích: $S = \int_{a}^{b} |f(x)| dx$

Thể tích:
$$V = \pi \int_{a}^{b} [f(x)]^2 dx$$

Vấn đề 2: Thể tích vật tròn xoay do hình phẳng (H) giới hạn bởi 4 đường: (C): x = f(y), x = 0, y = a, y = b (a < b) sinh ra khi quay quanh trục Oy được tính bởi công thức:

$$V = \pi \int_{a}^{b} x^{2}.dy = \pi \int_{a}^{b} [f(y)]^{2}.dy$$

Diện tích: $S = \int_{a}^{b} |f(y)| dy$.

Thể tích: $V = \pi \int_{a}^{b} [f(y)]^2 dy$

Vấn đề 3: Thể tích vật tròn xoay do hình phẳng (H) giới hạn bởi 4 đường: (C_1) : y = f(x), (C_2) : y = g(x), x = a, x = b (a < b) với f(x) và g(x) cùng dấu) sinh ra khi quay quanh trục Ox được tính bởi:

$$V = \pi \int_{a}^{b} |f^{2}(x) - g^{2}(x)| dx$$
 (3)

- * f(x) và g(x) cùng dấu có nghĩa là hai phần đồ thị cùng nằm một phía đối với trục Ox, với moi $x \in doan [a; b]$.
- * Để bỏ dấu "l l" trong công thức (3) ta chú ý các trường hợp sau:

<u>TH1</u>: $(C_1) \cap (C_2) = \emptyset$ và $f(x) > g(x) \ge 0$, $\forall x \in [a; b]$:

(3)
$$\Leftrightarrow$$
 V = $\pi \int_{a}^{b} [f^{2}(x) - g^{2}(x)].dx$

 $\underline{TH2} \hbox{:} \quad (C_1) \cap (C_2) = \varnothing \ \ v \hbox{à} \ \ f(x) < g(x) \le 0, \ \forall x \in [a;\,b] \hbox{:}$

(3)
$$\Leftrightarrow$$
 V = $\pi \int_{a}^{b} [f^{2}(x) - g^{2}(x)].dx$

$$x = a$$
, $x = b$ và $d(x) > g(x) \ge 0$, $\forall x \in [a; b]$:

(3)
$$\Leftrightarrow$$
 V = $\pi \int_{a}^{b} [f^{2}(x) - g^{2}(x)].dx$

 $\underline{\text{TH4}}$: (C_1) cắt (C_2) tại 2 điểm A, B có hoành độ

 $x = a \text{ và } f(x) < g(x) \le 0, \ \forall x \in [a; b]$:

(3)
$$\Leftrightarrow$$
 V = $\pi \int_{a}^{b} [f^{2}(x) - g^{2}(x)].dx$

 $\underline{\text{TH5}}$: (C_1) cắt (C_2) tại 3 điểm A, B, C, trong đó $x_A = a$

 $x_B = b$, $x_C = c$ với a < c < b như hình bên:

$$(3) \Leftrightarrow V = V_1 + V_2$$

$$= \pi \int_{a}^{c} [f^{2}(x) - g^{2}(x)] dx + \pi \int_{c}^{b} [g^{2}(x) - f^{2}(x)] dx.$$

Vấn đề 4: Thể tích vật tròn xoay do hình phẳng (H) giới hạn bởi 4 đường: (C_1) : x = f(y), (C_2) : x = g(y), y = a, y = b (a < b) với f(y) và g(y) cùng dấu) sinh ra khi quay quanh trục Oy được tính bởi:

$$V = \pi \int_{a}^{b} |f^{2}(y) - g^{2}(x)| .dy$$
 (4)

<u>TH1</u>: $(C_1) \cap (C_2) = \emptyset$ và $x_1 = f(y) > x_2 = g(y) \ge 0$, với moi $y \in [a; b]$.

(4)
$$\Leftrightarrow$$
 V = $\pi \int_{a}^{b} [f^{2}(y) - g^{2}(y)].dy$

 $y_A = a < y_B = b \text{ và } x_1 = f(y) > x_2 = g(y) \ge 0,$

với mọi $y \in [a; b]$.

(4)
$$\Leftrightarrow$$
 V = $\pi \int_{a}^{b} [f^{2}(y) - g^{2}(y)].dy$

* Các TH2, TH4 và TH5 thực hiện tương tự như vấn đề 3.

<u>Ví dụ 1</u>: Xét hình phẳng giới hạn bởi (P): $y^2 = 8x$ và đường thẳng x = 2. Tính thể tích khối tròn xoay khi quay hình phẳng nói trên:

a/ quanh trục hoành

b/ quanh truc tung.

Giải:

a/ (P):
$$y^2 = 8x \Leftrightarrow (P)$$
: $y = \pm \sqrt{8x}$ ($x \ge 0$)

Thể tích V khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi (P) và x = 2 quanh truc Ox là:

$$V = \pi \int_{0}^{2} y^{2}.dx = \pi \int_{0}^{2} 8x.dx = 16\pi \quad (\text{dvtt}).$$

b/ (P):
$$y^2 = 8x \iff x = \frac{1}{8}y^2$$

Thể tích V khối ... quanh trục tung là:

$$V = \pi \int_{-1}^{4} \left| 2^2 - \left(\frac{1}{8} y^2 \right)^2 \right| du = \pi \int_{-4}^{4} \left(2^2 - \frac{1}{64} y^4 \right) dy = \dots = \frac{899\pi}{32}$$
 (đvtt). -

- <u>Ví dụ 2</u>: Gọi (H) là hình phẳng giới hạn bởi trục hoành và parabol (p) : $y = 2x x^2$. Tính thể tích của khối tròn xoay khi cho (H)
 - a/ quay quanh trục hoành
 - b/ quay quanh truc tung.

Giải:

a/ Thể tích V khối tròn xoay khi quay (H) quanh trục hoành là:

$$V = \pi \int_{0}^{2} y^{2}.dx = \pi \int_{0}^{2} (2x - x^{2})^{2} dx = ... = \frac{16\pi}{15} \text{ (dvtt)}.$$

b/ (P):
$$y = 2x - x^2 \Leftrightarrow x^2 - 2x + y = 0$$
 (1)

$$\Delta' = 1 - y \ge 0 \iff 0 \le y \le 1$$

(1)
$$\Leftrightarrow$$

$$\begin{bmatrix} x_1 = 1 - \sqrt{1 - y}, (0 \le x_1 \le 1) \\ x_2 = 1 + \sqrt{1 - y}, (1 \le x_2 \le 2) \end{bmatrix}$$

Thể tích V khối tròn xoay khi quay (H) quanh trục tung là:

$$V = \pi \int_{0}^{1} (x_{2}^{2} - x_{1}^{2}) dy = \pi \int_{0}^{1} (x_{2} + x_{1})(x_{2} - x_{1}) dy = \pi \int_{0}^{1} 2(2\sqrt{1 - y}) dy = \dots = \frac{8\pi}{3}.$$

<u>Ví dụ 3</u>: Cho hình giới hạn elip: $\frac{x^2}{4} + y^2 = 1$ quay quanh trục hoành. Tính thể tích của khối tròn xoay được tạo nên.

Giải.

(E):
$$\frac{x^2}{4} + y^2 = 1 \iff y^2 = 1 - \frac{x^2}{4} \iff y = \pm \frac{1}{2} \sqrt{4 - x^2}$$
, $(|x| \le 2)$

Thể tích V khối tròn xoay cần tìm là:

$$V = \pi \int_{-2}^{2} y^{2}.dx = \frac{\pi}{4} \int_{-2}^{2} (4 - x^{2}).dx = ... = \frac{8\pi}{3} \text{ (dvtt)}.$$

Ví dụ 4: Gọi (D) là miền kín giới hạn bởi các đường: $y = \sqrt{x}$, y = 2 - x và y = 0.

Tính thể tích vật thể tròn xoay khi quay (D) quanh trục Oy.

<u>Giải</u>:

- $y = \sqrt{x} \iff x = x_1 = 2$
- $y = 2 x \Leftrightarrow x = x_2 = 2 y$.
- Thể tích vật thể tròn xoay khi quay (D) quanh trục Oy là:

$$V = \pi \int_{0}^{1} (x_{2}^{2} - x_{1}^{2}) dy = \pi \int_{0}^{1} [(2 - y)^{2} - (y^{2})^{2}]$$
$$= \frac{32\pi}{15} \text{ (dvtt)}.$$

BÀI TẬP

Bài 18. Tính vật thể tròn xoay sinh ra bởi phép quay quanh trục Ox của miền (D) giới hạn bởi các đường:

a/
$$y = \ln x$$
; $y = 0$; $x = 2$.

b/
$$x^2 + y - 5 = 0$$
; $x + y - 3 = 0$.

c/
$$y = x^2$$
; $y = \sqrt{x}$.

d/
$$y = x^2 - 4x + 6$$
; $y = -x^2 - 2x + 6$.

e/
$$y = x(x-1)^2$$
.

f/
$$y = x.e^x$$
; $x = 1$; $y = 0$ ($0 \le x \le 1$)

h/ y =
$$x\sqrt{\ln(1+x^3)}$$
; x = 1.

i/ (P):
$$y = x^2$$
 (x > 0), $y = -3x + 10$; $y = 1$ (miền (D)) nằm ngoài (P)).

k/
$$y = \sqrt{\cos^4 x + \sin^4 x}$$
; $y = 0$; $x = \frac{\pi}{2}$; $x = \pi$.

DS: a/
$$2\pi(\ln 2 - 1)^2$$
; b/ $\frac{153\pi}{5}$; c/ $\frac{3\pi}{10}$;

b/
$$\frac{153\pi}{5}$$

c/
$$\frac{3\pi}{10}$$

$$e/\frac{\pi}{105}$$

$$e/\frac{\pi}{105}$$
. $f/\frac{\pi(e^2-1)}{4}$;

$$g/\pi(e^2-1)^2$$

g/
$$\pi(e^2-1)^2$$
; h/ $\frac{\pi}{3}(2\ln 2-1)$. i/ $\frac{56\pi}{5}$. k/ $\frac{3\pi^2}{8}$.

i/
$$\frac{56\pi}{5}$$
.

$$k/\frac{3\pi^2}{8}$$

Bài 19. Tính thể tích khối tròn xoay được tạo thành do quay xung quanh trục oy hình phẳng giới hạn bởi các đường:

a/
$$y = x^2$$
; $y = 1$; $y = 2$...

b/
$$y = x^2$$
; $x = y^2$.

c/ Đường tròn tâm I(3; 0), bán kính R = 2.

$$\underline{DS}$$
: a/ $\frac{3\pi}{2}$;

$$b/\frac{3\pi}{10}$$
;

b/
$$\frac{3\pi}{10}$$
; c/ $24\pi^2$.

- Bài 20. Xét hình (H) giới hạn bởi đường cong $y = \frac{1}{x}$; trục Ox; x = 1 và x = t
 - Tính diện tích S(t) của (H) và thể tích V(t) sinh bởi (H) khi quay quanh Ox.
 - b/ Tính: $\lim_{t\to +\infty} S(t)$ và $\lim_{t\to +\infty} V(t)$.

BS: a/
$$S(t) = \ln t$$
; $V(t) = \pi - \frac{\pi}{t}$;

b/
$$\lim_{t\to +\infty} S(t) = +\infty$$
; $\lim_{t\to +\infty} V(t) = \pi$

<u>Bài 21</u>. Cho miền (D) giới hạn bởi đường tròn (C): $x^2 + y^2 = 8$ và parabol (p): $y^2 = 2x$.

a/ Tính diên tích S của (D).

Tính thể tích V sinh bởi (D) khi quay quanh Ox.

$$\underline{DS}$$
: a/ $\frac{4}{3}$ -2 π .

DS: a/
$$\frac{4}{3}$$
 - 2 π . b/ $\frac{4\pi}{3}$ (8 $\sqrt{2}$ - 7).

Bài 22. Tính thể tích vật thể giới hạn bởi các mặt tạo nên khi quay các đường:

a/
$$y = b \left(\frac{x}{a}\right)^{2/3}$$
 $(0 \le x \le a)$ quanh trục Ox.

b/
$$y = \sin x; y = 0 \ (0 \le x \le \pi)$$

α/ quanh trục Ox

β/ quanh truc Oy.

c/
$$y = b \left(\frac{x}{a}\right)^2$$
; $y = b \left|\frac{x}{a}\right|$

α/ quanh truc Ox.

β/ Quanh truc Oy.

d/ $y = e^{-x}$; y = 0 $(0 \le x < +\infty)$ quanh trục Ox và Oy.

$$\underline{DS}$$
: a/ $\frac{3}{7}\pi ab^2$;

b/
$$\alpha$$
/ $V_x = \frac{\pi^2}{2}$; β / $V_y = 2\pi^2$.

$$\beta / V_y = 2\pi^2.$$

c/
$$\alpha / V_x = \frac{4}{15} \pi a b^2$$
; $\beta / V_y = \frac{\pi a b^2}{6}$.

$$\beta / V_y = \frac{\pi a b^2}{6}$$

d/
$$\alpha$$
/ $V_x = \frac{\pi}{2}$;

$$\beta / V_y = 2\pi$$
.

ÔN TẬP TÍCH PHÂN

Bài 1. Tính các tích phân sau:

$$a / \int_{-2}^{2} \sqrt{2 + |x|} dx; \qquad b / \int_{0}^{1} \frac{x^{2} dx}{\sqrt{4 - x^{2}}};$$

$$c / \int_{1}^{2} \frac{\sqrt{x^{2} - 1}}{x} dx; \qquad d / \int_{0}^{1} \frac{dx}{\sqrt{(1 + x^{2})^{3}}};$$

$$e / \int_{0}^{1} \frac{x^{2} dx}{(x^{2} + 1)^{2}}; \qquad f / \int_{0}^{\pi / 4} \frac{x}{\cos^{2} x} dx;$$

$$g / \int_{0}^{\pi / 2} e^{x} .\cos x dx; \qquad h / \int_{-\pi / 4}^{\pi / 4} \frac{\sin^{4} x + \cos^{4} x}{3^{x} + 1} dx;$$

$$i / \int_{0}^{\pi} \frac{\cos 2x . dx}{\sin x + \cos x + 2}; \qquad k / \int_{\pi / 12}^{5\pi / 12} \frac{dx}{\sin 2x + 2\sqrt{3} \cos^{2} x + 2 - \sqrt{3}};$$

$$E / \int_{0}^{\pi / 4} \frac{\sin^{4} x + \cos^{4} x}{3^{x} + 1} dx; \qquad k / \int_{\pi / 12}^{5\pi / 12} \frac{dx}{\sin 2x + 2\sqrt{3} \cos^{2} x + 2 - \sqrt{3}};$$

$$E / \int_{0}^{\pi / 4} \frac{\sin^{4} x + \cos^{4} x}{3^{x} + 1} dx; \qquad k / \int_{\pi / 12}^{5\pi / 12} \frac{dx}{\sin 2x + 2\sqrt{3} \cos^{2} x + 2 - \sqrt{3}};$$

$$E / \int_{0}^{\pi / 4} \frac{\sin^{4} x + \cos^{4} x}{3^{x} + 1} dx; \qquad k / \int_{\pi / 12}^{5\pi / 12} \frac{dx}{\sin 2x + 2\sqrt{3} \cos^{2} x + 2 - \sqrt{3}};$$

$$E / \int_{0}^{\pi / 4} \frac{\sin^{4} x + \cos^{4} x}{3^{x} + 1} dx; \qquad k / \int_{\pi / 12}^{5\pi / 12} \frac{dx}{\sin 2x + 2\sqrt{3} \cos^{2} x + 2 - \sqrt{3}};$$

$$E / \int_{0}^{\pi / 4} \frac{\sin^{4} x + \cos^{4} x}{3^{x} + 1} dx; \qquad k / \int_{\pi / 12}^{5\pi / 12} \frac{dx}{\sin 2x + 2\sqrt{3} \cos^{2} x + 2 - \sqrt{3}};$$

$$E / \int_{0}^{\pi / 4} \frac{\sin^{4} x + \cos^{4} x}{3^{x} + 1} dx; \qquad k / \int_{\pi / 12}^{5\pi / 12} \frac{dx}{\sin 2x + 2\sqrt{3} \cos^{2} x + 2 - \sqrt{3}};$$

$$E / \int_{0}^{\pi / 4} \frac{\sin^{4} x + \cos^{4} x}{3^{x} + 1} dx; \qquad k / \int_{\pi / 12}^{5\pi / 12} \frac{dx}{\sin 2x + 2\sqrt{3} \cos^{2} x + 2 - \sqrt{3}};$$

$$E / \int_{0}^{\pi / 4} \frac{\sin^{4} x + \cos^{4} x}{3^{x} + 1} dx; \qquad k / \int_{\pi / 12}^{5\pi / 12} \frac{dx}{\sin 2x + 2\sqrt{3} \cos^{2} x + 2 - \sqrt{3}}; \qquad k / \int_{\pi / 12}^{5\pi / 12} \frac{dx}{\sin 2x + 2\sqrt{3} \cos^{2} x + 2 - \sqrt{3}}; \qquad k / \int_{\pi / 12}^{5\pi / 12} \frac{dx}{\sin 2x + 2\sqrt{3} \cos^{2} x + 2 - \sqrt{3}}; \qquad k / \int_{\pi / 12}^{5\pi / 12} \frac{dx}{\sin 2x + 2\sqrt{3} \cos^{2} x + 2 - \sqrt{3}}; \qquad k / \int_{\pi / 12}^{5\pi / 12} \frac{dx}{\sin 2x + 2\sqrt{3} \cos^{2} x + 2 - \sqrt{3}}; \qquad k / \int_{\pi / 12}^{5\pi / 12} \frac{dx}{\sin 2x + 2\sqrt{3} \cos^{2} x + 2 - \sqrt{3}}; \qquad k / \int_{\pi / 12}^{5\pi / 12} \frac{dx}{\sin 2x + 2\sqrt{3} \cos^{2} x + 2 - \sqrt{3}; \qquad k / \int_{\pi / 12}^{5\pi / 12} \frac{dx}{\sin 2x + 2\sqrt{3} \cos^{2} x + 2 - \sqrt{3}; \qquad k / \int_{\pi / 12}^{5\pi / 12} \frac{dx}{\sin 2x + 2\sqrt{3} \cos^{2} x + 2 - \sqrt{3}; \qquad k / \int_{\pi / 12}^{5\pi / 12} \frac{dx}{\sin 2x + 2} dx + 2 - \sqrt{3}; \qquad k / \int_{\pi$$

 $\underline{\text{Bài 2}}. \quad \text{Biết } f(x) = \begin{cases} -2)x + 1, \ x \le 0 \\ K(1 - x^2), \ x > 0 \end{cases}. \quad \text{Tìm giá trị } K \, \text{để} \, \int\limits_{-1}^{1} f(x). dx = 1.$ $\underline{\text{BS}}: \, K = 3.$

 $\underline{B\grave{a}i\ 3}.\quad \text{a/}\quad \text{Cho hàm số}\ f(x)=\int\limits_{e^x}^{e^{2x}}t.\ln t.dt.\ \text{Tìm hoành độ điểm cực đại }x.$

b/ Tìm giá trị $x \in \left(0; \frac{3\pi}{2}\right)$ để hàm số $f(x) = \int_{x}^{2x} \frac{\sin t}{t} dt$ đạt cực đại.

$$\underline{DS}$$
: a/ x = -ln 2. b/ x = $\frac{\pi}{3}$.

<u>Bài 4</u>. Cho hàm số $f(x) = \int_{0}^{x} \frac{2t+1}{t^2-2t+2} dt, -1 \le x \le 1.$

Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f.

$$\underline{DS}$$
: a/ min f = f $\left(-\frac{1}{2}\right)$; b/ max f = f(1).

<u>Bài 5</u>. Cho hàm số $f(x) = \int_{0}^{x} (t-1)(t-2)^{2} dt$. Tìm điểm cực trị và điểm uốn của đồ thị f.

$$\underline{DS}$$
: CT: $\left(1; -\frac{17}{12}\right)$; D.Uốn: $\left(2; -\frac{4}{3}\right)$; $\left(\frac{4}{3}; \frac{112}{81}\right)$

<u>Bài 6</u>. Đường thẳng (D): x - 3y + 5 = 0 chia đường tròn (C) : $x^2 + y^2 = 5$ thành 2 phần, tính diện tích của mỗi phần.

DS:
$$S_1 = \frac{5\pi}{4} - \frac{5}{2}$$
; $S_2 = \frac{15\pi}{4} + \frac{5}{2}$.

<u>Bài 7</u>. Xét hình phẳng (H) giới hạn bởi đường cong (C): $y = \frac{1}{x}$; y = 0; x = 1; x = 2. Tìm toạ độ điểm M trên (C) mà tiếp tuyến tại M sẽ cắt từ (H) ra một hình thang có diện tích lớn nhất.

$$\underline{DS}$$
: $M\left(\frac{3}{2}; \frac{2}{3}\right)$.

Bài 8. Cho điểm A thuộc (P): $y = x^2$, (A khác gốc O); (Δ) là pháp tuyến tại A của (P) ((Δ) vuông góc với tiếp tuyến tại A với (P)). Định vị trí của A để diện tích giới hạn đỉnh bởi (P) và (Δ) là nhỏ nhất.

BS: min S =
$$\frac{4}{3}$$
; A $\left(\frac{1}{2}; \frac{1}{4}\right)$ hay A $\left(-\frac{1}{2}; \frac{1}{4}\right)$.

Bài 9. Cho hình (H) giới hạn bởi: $\begin{cases} \frac{x^2}{16} - \frac{y^2}{4} = 1\\ x = 4\sqrt{2} \end{cases}$

Tính thể tích sinh ra khi (H) quay quanh Oy.

$$\underline{DS}$$
: $\frac{128\pi}{3}$.

Bài 10. Cho hình (H) giới hạn bởi: $\begin{cases} y = ax^2, \ a > 0 \\ y = -bx, \ b > 0 \end{cases}$

Quay hình (H) ở góc phần tư thứ hai của hệ toạ độ quanh trục Ox. Tìm hệ thức giữa a và b để thể tích khối tròn xoay sinh ra là hằng số, không phụ thuộc vào a và b.

 \underline{DS} : $b^5 = K.a^3$, với K là hằng số dương bất kỳ.

Bài 11. Tính diện tích hình phẳng giới hạn bởi các đường:

$$y = |x^2 - 4x + 3|, y = x + 3.$$
 (Dê thi chung của Bộ GDĐT-khối A_2002)

$$\underline{DS}$$
: $\frac{109}{6}$ ($\mathrm{d}v\mathrm{d}t$).

Bài 12. Tính diện tích hình phẳng giới hạn bởi các đường:

$$y = \sqrt{4 - \frac{x^2}{4}}$$
 và $y = \frac{x^2}{4\sqrt{2}}$. (Đề thi chung của Bộ GDĐT – khối B _ 2002)

DS:
$$2\pi + \frac{4}{3}$$
 (đvdt).

Bài 14. Tính tích phân $I = \int_{-\infty}^{2\sqrt{3}} \frac{dx}{x\sqrt{x^2+4}}$.

(Đề thi..... khối A_2003)

 \underline{DS} : $\frac{1}{4} \ln \frac{5}{3}$.

Bài 15. Tính tích phân $I = \int_0^{\pi/2} \frac{1 - 2\sin^2 x}{1 + \sin 2x} dx$.

(Đề thi..... khối B_2003)

 \underline{DS} : $\frac{1}{2}\ln 2$.

Bài 16. Tính tích phân $I = \int_{0}^{2} |x^{2} - x| dx$.

(Đề thi..... khối D_2003)

ĐS: 1.

Bài 17. Tính tích phân $I = \int_{1}^{2} \frac{x}{1 + \sqrt{x+1}} dx$.

(Đề thi..... khối A_2004)

 \underline{DS} : $\frac{11}{3} - 4 \ln 2$.

Bài 18. Tính tích phân $I = \int_{1}^{e} \frac{\sqrt{1+3 \ln x} \cdot \ln x}{x} dx$

(Đề thi..... khối B_2004)

 \underline{DS} : $\frac{116}{135}$.

Bài 19. Tính tích phân $I = \int_{2}^{3} \ln(x^2 - x) dx$.

 $(D\hat{e}\ thi......kh\acute{o}i\ D_2004)$

 \underline{DS} : $3\ln 3 - 2$.