

BJT - Mach khuech dai su dung BJT

Điện tử tương tự (Trường Đại học Bách khoa Hà Nội)

Phân tích DC cho mạch DC (DC analysis)

- Để chuyển đổi một mạch KĐ sang mạch DC thì:.
 - 1. Cho các nguồn AC bằng ZERO.
 - 2. Loại bỏ các tụ.
 - 3. Ngắn mạch cuộn dây.
 - 4. Vẽ lại mạch.
- Dùng mạch biến đổi này (DC equivalent circuit) để tính các giá trị định thiên 1 chiều l_B & l_C và V_{CE}.

Mạch tương đương DC (cont'd)

KĐ CE

(voltage divider bias)

Mạch tương đương DC:

Phân tích 1 chiều của mạch KĐ CE

The purpose of the dc biasing circuit is to set up the initial dc values of I_B , I_C , and V_{CE}

- Có 2 vòng mạch:
 mạch đầu vào
 mạch đầu ra
- Mạch đầu vào gồm V_{BB}, R_B, V_{BE} và R_E
- $V_{BB} = V_{RB} + V_{BE} + V_{RE}$ $V_{BB} = R_B I_B + V_{BE} + R_E I_E$
- Mạch ra gồm V_{CC}, R_C, V_{CE} và R_E
- $V_{CC} = V_{RC} + V_{CE} + V_{RE}$ $V_{CC} = R_{C}I_{C} + V_{CE} + R_{E}I_{E}$

DC bias circuit of CE amplifier

DC biasing circuit (cont'd)

Since the transistor is operating in the active region, the emitter current can be expressed by:

$$I_{E} = I_{C} + I_{B} = \beta_{DC} I_{B} + I_{B} = (\beta_{DC} + 1) I_{B} \approx \beta_{DC} I_{B}$$

For β_{DC} is larger than (\geq)50, we usually assume that:

$$I_E = I_C = \beta_{DC} I_B$$

Substitute I_E into the biasing equation, we have:

$$V_{BB} = R_B I_B + V_{BE} + R_E (\beta_{DC} I_B)$$
$$V_{BB} - V_{BE} = (R_B + \beta_{DC} R_E) I_B$$

Or
$$I_B = (V_{BB} - V_{BE}) / (R_B + \beta_{DC} R_E)$$

This is the biasing base current.

$$I_{C} = \beta_{DC} I_{B}$$

--- Transistor operates in the active region

Applying KVL around the output circuit we obtain the dc load line equation:

$$V_{CC} = R_C I_C + V_{CE} + R_E I_E$$
 For $\beta_{DC} \ge 50$, assume $I_E = I_C$,

$$V_{CE} = V_{CC} - (R_C + R_E) I_C$$

This is the transistor collector-emitter voltage.

 \succ The operating point (Q point) of the transistor is at (V_{CE} , I_{C}).

Điểm Q (Q-point)

♣ I_C và V_{CE} xác định điểm làm việc Q (V_{CEQ}, I_{CQ}).

Các tên gọi khác:

- Biasing point
- Quiescent point
- Operating point (OP)
- DC point

Điếm Q chỉ ra dòng ra 1 chiều I_{C(DC)} và áp ra 1 chiều V_{CE(DC)} khi chưa đặt áp xoay chiều AC vào đầu vào.

VD

Đáp án

Step 1: Xác định I_B.

Áp dụng KVL cho mạch đầu vào:

$$V_{BB} = R_B I_B + V_{BE} + \beta_{DC} I_B R_E$$

$$10V = 10k\Omega I_B + 0.7V + 200 \times 680 I_B$$

$$I_B = (10V - 0.7V) / (10k\Omega + 200 \times 680) = 63.7\mu A$$

Step 2: Timl_C.

$$I_C = \beta_{DC} I_B = 200 \times 63.7 \mu A = 12.74 \text{ mA}$$

Step 3: Tim V_{CF}.

Áp dụng KVL cho mạch đầu ra

$$V_{CC} = R_C I_C + V_{CE} + R_E I_E$$

$$20V = 100\Omega I_{C} + V_{CE} + 680\Omega I_{E}$$

$$Vi \beta_{DC} I\acute{o}n, I_E = I_C$$

$$V_{CE} = 20V - 100xI_{C} - 680I_{E}$$

$$V_{CF} = 20V - 100x12.74mA - 680$$

$$x 12.74mA = 10.06V$$

Vậy điểm làm việc Q ($V_{CEQ} = 10.06V$, $I_{CQ} = 12.74mA$).

Thê tại các cực B, C, R

$$V_B = V_{BB} - V_{RB} = V_{BB} - I_B R_B$$

Or $V_B = V_{RE} + V_{BE} = I_E R_E + V_{BE}$

$$\begin{aligned} &V_E = I_E R_E \\ &\text{Or } V_E = V_{CC} - V_{RC} - V_{CE} = V_{CC} - I_C R_C - V_{CE} \\ &\text{Or } V_E = V_{BB} - V_{RB} - V_{BE} = V_{BB} - I_B R_B - V_{BE} \end{aligned}$$

$$V_C = V_{CC} - V_{RC} = V_{CC} - I_C R_C$$

Or $V_C = V_{RE} + V_{CE} = I_E R_E + V_{CE}$

BT 1

Tìm I_B, I_C, V_{CE} và xác định vùng làm việc và điểm Q của transistor.

Solution

Step 1: Determine I_B.

Apply KVL around the input circuit:

$$V_{BB} = R_B I_B + V_{BE} + \beta_{DC} I_B R_E$$

$$5V = 52k\Omega I_B + 0.7V + 100 \times 2.2K\Omega I_B$$

$$I_B = (5V - 0.7V)/(52k\Omega + 100 \times 2.2K\Omega)$$

$$= 15.8\mu A$$

Step 2: Determine the collector current I_C . $I_C = \beta_{DC} I_B = 100 \text{ x } 15.8 \mu\text{A} = 1.58 \text{ mA}$

Step 3: Determine V_{CE}.

Applying KVL around the output circuit

$$\begin{aligned} &V_{CC} = R_{C}I_{C} + V_{CE} + R_{E}I_{E} \\ &20V = 4.7K\Omega I_{C} + V_{CE} + 2.2K\Omega I_{E} \\ &\text{Since } \beta_{DC} \text{ is large, } I_{E} = I_{C} \\ &V_{CE} = 20V - 4.7K\Omega I_{C} - 2.2K\Omega I_{C} \\ &V_{CE} = 20V - 4.7K\Omega \times 1.58\text{mA} - 2.2K\Omega \times 1.58\text{mA} = 9.098V \end{aligned}$$

Because V_{BE}=0.7V>0 --BE forward biased
∴ V_{BC}=V_{BE}-V_{CE}=0.7-9.098=-8.398V<0
---BC reverse biased
∴this transistor is in active region

BT 2

Timf V_B , V_C , V_E .

Solution:

Step 1: find
$$I_B$$

 $I_B = (V_{BB} - V_{BE}) / (R_B + \beta_{DC} R_E)$
 $= (4-0.7)/(47KΩ+100×1.8KΩ)$
 $= 14.54μA$

Step 2: find
$$V_B$$

 $V_B = V_{BB} - I_B R_B = 4 - 14.5 \mu A \times 47 K \Omega = 3.32 V$

Step 3: find I_C

$$I_C = \beta_{DC}I_B = 100 \times 14.5 \mu A = 1.45 mA$$

Step 4: find V_C

$$V_C = V_{CC} - I_C R_C = 15 - 1.45 \text{ mA} \times 2.2 \text{ K}\Omega = 11.81 \text{ V}$$

Step 5: find V_F

Because
$$\beta_{DC}$$
>50, $I_E = I_C$

$$\therefore$$
V_F=I_FR_F=I_CR_F=1.45mA×1.8K Ω =2.61V

Các mạch định thiên cho BJT

1. Mạch định thiên/phân cực BJT

Forward bias $V_{BE} = V_{CC} - I_B R_B$

Reverse bias
$$V_{CB} = V_{CC} - I_C R_C - V_{BE}$$

2. Phân cực cố định cho BJT (Fixed bias circuit)

2.1. Cho npn-BJT

- Loại (CE)
- Nhược điểm
 - Không ổn định because it is too dependent on β and produce width change of Q-point
 - ≻Để tăng tính ổn định, thêm R_F.
- Solve the circuit using HVK
- 1st step: Locate capacitors and replace them with an open circuit
- 2nd step: Locate 2 main loops which;
 - ➢ BE loop
 - > CE loop

Fixed Bias Method

2.2 Loai pnp-BJT

So với nph-BJT chỉ có V_{cc} đảo chiều

2.3 Phân tích mạch phân cực cố định cho BJT

VD:

Mạch BJT có V_{cc} =9V, β =50 , R_B =100k Ω , R_c =1k Ω . Khi PCT V_{BE} =0.7V, tìm I_B , I_C , I_E , V_{CE} , và áp PCN V_{CB} .

$$9 = I_{B} \times 100k + 0.7 \Rightarrow I_{B} = \frac{9 - 0.7}{100k} = 0.083mA = \underbrace{83\mu A}_{IC}$$

$$I_{C} = \beta I_{B} = 50 \times 0.083mA = \underbrace{4.15mA}_{IC}$$

$$I_{E} = I_{C} + I_{B} = 4.15 + 0.083 = \underbrace{4.233mA}_{IC}$$

$$V_{CE} = 9 - (I_{C} \times 1k) = 9 - 4.15 = \underbrace{4.85V}_{IC}$$

$$V_{CF} = V_{CB} + 0.7 \Rightarrow V_{CB} = 4.85 - 0.7 = 4.15V$$

3. Mach phân cực E cho BJT (Emitter bias circuit)

3.1 npn-BJT

Thêm RE để cải thiện tính ổn định

Emitter bias npn-BJT has I_B obtained by R_B connected to V_{cc} and R_E connected to Emitter for better stabilization of I_c

3.2 pnp-BJT

pnp Emitter Bias Method

So với nph-BJT chỉ có V_{cc} đảo chiều

3.3 Phân tích mạch định thiên E cho BJT

VD:

Mạch KĐ BJT có V_{cc} =9V, β =50 , $R_{\rm B}$ =100k Ω , R_c =1k Ω . $R_{\rm E}$ =0.2k Ω . Khi PCT $V_{\rm BE}$ =0.7V, tìm $I_{\rm B}$, I_{c} , $I_{\rm E}$, $V_{c\rm E}$, và áp PCN $V_{c\rm B}$.

$$\begin{split} 9 &= I_{B} \times 100 k + 0.7 + \left((50 + 1) I_{B} \right) \times 0.2 k \Rightarrow \left[\text{taking 1} << \beta \right] \\ I_{B} &= \frac{9 - 0.7}{110 k} = 0.0754 \text{mA} = \underline{75.4 \mu A} \\ I_{C} &= \beta I_{B} = 50 \times 0.0754 \text{mA} = \underline{3.77 \text{mA}} \\ I_{E} &= I_{C} + I_{B} = 3.77 + 0.0754 = \underline{3.84 \text{mA}} \\ V_{CE} &= 9 - \left((I_{C}) \times 1 k + 0.2 k \right) = \underline{4.476 V} \\ V_{CE} &= V_{CB} + 0.7 \Rightarrow V_{CB} = 4.476 - 0.7 = \underline{3.776 V} \end{split}$$

4. Mạch định thiên kiểu phân áp BJT (Voltage divider bias circuit)

4.1 npn-BJT

- Khi phân tích DC, hở mạch tụ
- \cdot Với mạch npn-BJT này, \mathbf{I}_{B} có được qua phân áp dùng R_1 và R_2 còn R_E để cải thiện sự ổn định của $\mathbf{I}_{\mathcal{C}}$

Mạch định thiên kiểu phân áp cho npn-BJT có tụ nhánh $C_{\rm E}$ (With Bypass Capacitor $C_{\rm E}$)

Đặc tính mạch định thiện kiểu phân áp

- Phổ biến hay dùng nhất vì có hskđ áp, dòng hay công suất It is the most commonly used biasing circuit because it can have voltage gain, current gain or power gain.
- - → Điểm Q ổn định.
 - \rightarrow 1 nguồn cấp V_{CC} .
- Nhược điểm
 - → Khá phức tạp

4.2 Phân tích một chiều cho mạch kiểu phân áp (by Thevenin's theorem)

4.3 Phân tích mạch định thiên kiểu phân áp

VD:

Cho mạch BJT có V_{cc} =9V, β =50 , R_1 =100k Ω , R_2 =22k Ω , R_c =1k Ω . R_E =0.2k Ω , V_{BE} =0.7V, tìm I_B , I_c , I_E , V_{cE} , và áp PCN V_{cB} .

4.4 Phân tích gần đúng mạch định thiên kiểu phân áp (approximate analysis)

Nếu chọn R2 nhỏ so với βR_E và nếu cho phép sai số 10%, nghĩa là $\beta R_E \ge 10 R_2$ Khi đó $I_{R2} \ge 10 I_B$ hay I_B =nhỏ có thể bỏ qua so với I_{R2} (approximate)

Then we can take
$$V_{R2} = V_B = V_{CC} \frac{R_2}{R_1 + R_2}$$

$$= V_{BE} + I_{ERE}$$

$$= V_{BE} + I_{CRE} [Approximate again that I_{E} = I_{C} \text{ if } \beta >> 1]$$

VD:

Sử dụng PP tính toán gần đúng, phân tích mạch BJT dưới với V_{cc} =9V, β =200 , R_1 =47k Ω , R_2 =10k Ω , R_c =1k Ω . R_E =1k Ω , cho V_{BE} =0.7V, tìm I_B , I_C , I_F , V_{CF} , và V_{CB} .

Check $10R_2 \le \beta R_E \Rightarrow 100 \text{k} \le 200 \times 1 \text{k} = 200 \text{k}$ OK for approximate method

$$V_{CC} \, \frac{R_2}{R_1 + R_2} = V_{BE} \, + \, I_C R_E \, = 9 \frac{10 k}{57 k} = 0.7 + \, I_C \times 1 k$$

$$\mathbf{I}_{\mathcal{C}} = \frac{0.879}{1 \text{k}} = \underline{0.879 \text{mA}} \Rightarrow \mathbf{I}_{B} = \frac{0.879}{200} = \underline{\frac{4.39 \mu \text{A}}{200}} \Rightarrow \mathbf{I}_{E} = 0.879 + 0.004 = \underline{0.883 \text{mA}}$$

Approximating $\beta >> 1$, $I_C = I_E$

$$V_{CE} = 9 - I_C \times 2k = \underline{7.242V} \Rightarrow V_{CB} = V_{CE} - V_{BE} = 7.242 - 0.7 = \underline{6.542V}$$

5. BJT Feedback bias circuit

Feedback bias has I_B obtained by R_B from collector voltage for better control on I_C and R_E connected to Emitter for very much better stabilization of I_C

Example:

Following BJT Feedback bias circuit has V_{cc} =9V, β =50, R_B =500k Ω , R_c =1k Ω . R_E =0.2k Ω If V_{BE} =0.7V, find Base current I_B , Collector current I_C , Emitter current I_E , V_{CE} , and reverse bias voltage V_{CB} .

$$V_{CC} = I_{B}R_{B} + 0.7 + (I_{C} + I_{B})(R_{E} + R_{C})$$

$$9 = \frac{I_{C}}{50}500k + 0.7 + I_{C}(1 + 0.02)(0.2k + 1k)$$

$$I_{C} = \frac{9 - 0.7}{1.224k + 500k/50} = \frac{0.739mA}{1.224k + 500k/50}$$

$$I_{B} = \frac{I_{C}}{\beta} = \frac{739\mu A}{50} = \frac{14.78\mu A}{500} \Rightarrow I_{E} = 739 + 14.78 = \frac{753.78\mu A}{1.224k + 500k/50}$$

$$V_{CE} = 9 - ((I_{C} + I_{B}) \times 1k + 0.2k) = 9 - (753.78\mu \times 1.2k) = \frac{8.095V}{1.224k + 500k/50}$$

$$V_{CE} = V_{CB} + 0.7 \Rightarrow V_{CB} = 8.096 - 0.7 = 7.395V$$

Phân tích tín hiệu nhỏ cho BJT

(Small Signal Analysis)

- Drawing Equivalent circuit
- Analysis of Fixed bias amplifier
- Analysis of Emitter bias amplifier
- Analysis of Voltage divider bias amplifier
- Analysis of Feedback bias amplifier
- Analysis of Emitter Follower amplifier
- Analysis of Common Base amplifier

Mô hình BJT r_e/r_{π}

BJT dc Bias current I_b will produce I_c and BE junction behave as a diode

Điện trở động cực B: $r_e = 26 \text{mV/I}_c$ $(I_c = \beta I_B)$

 r_e là điện trở tiếp giáp pn tại cực B, tạo ra điện áp: V_{be} = $(I_b+\beta I_b)r_e\approx I_b\beta r_e$ Do đó trở kháng đầu vào: V_{be} / I_b = βr_e

· Trở kháng vào của BJT $R_i = \beta r_e$

Mô hình BJT r_e

• Trở kháng ra của BJT: $R_{out} = \infty // r_o = r_o$ (điện trở nguồn dòng βI_b là vô cùng)

Đưa tín hiệu (AC nhỏ) vào mạch bằng cách nào?

Ký hiệu về tín hiệu

Total signal a DC point Small signal or Δa

Mạch AC tương đương

Để chuyển mạch KĐ sang mạch xoay chiều AC tương đương thì cần:

To transform the amplifier circuit to its ac equivalent circuit, the following procedures should be followed.

- Ngắn mạch nguồn DC (ZERO).
- 2. Ngắn mạch tụ.
- 3. Hỏ mạch cuộn dây.
- 4. Vẽ lại mạch.

Mạch AC tương đương

- In order to better visualise the operation of a transistor in an amplifier circuit, it is often useful to represent the BJT by an equivalent circuit.
- An equivalent circuit uses various internal transistor parameters (usually specified by the manufacturer of the BJT) to represent the BJT's operation.
- We would limit ourselves to one type of BJT's model:
 - The Norton Equivalent of Eber Moll's model

Mạch AC và DC tương đương

Mạch định thiên

Mạch DC tương đương

Mạch AC tương đương

Phân tích AC của mạch KĐ tín hiệu lớn? AC Analysis of a Large-Signal Transistor Amplifier

Khi điện áp đỉnh-đỉnh của tín hiệu xoay chiều của dòng IE < 10% dòng điện tĩnh DC cực E thì sử dùng được sơ đồ tương đương AC tín hiệu nhỏ</p>

When the small-signal peak-peak ac emitter current is **less than 10% of the dc quiescent emitter current**, the Eber Moll's equivalent circuit can be used.

➤ Khi t/h nhỏ > 10%, sử dụng sơ đồ t/h lớn để phân tích BJT. T/h ra có thể bị méo When the small-signal does not satisfy the above 10% condition, large-signal analyzes will be used to determine the BJT amplifier performance. The out-put signal could be distorted.

So đổ tương đương t/l nhỏ Eber Moll's

1. Vẽ mạch AC tương đương

1. Cho mạch BJT

2.KD BJT (amplifier)

 $V_{\text{cc}} \leftarrow V_{\text{in}}$ và V_{o} được nối với KĐ và nguồn pin (battery) được thay bằng V_{cc}

3.50 đồ xoay chiều BJT tương đương

Trong sơ đồ AC tương đương, ngắn mạch tụ nối tầng Nối đất nguồn \mathbf{V}_{cc}

4. Mạch tương đương của bộ KĐ

Dùng sơ đồ re của BJT

Tìm A, Rin R A Từ sự đồ tương đương này của bộ KĐ

<u>VD:</u>

Vẽ mạch tương đương của bộ KĐ dưới

1. Cho mạch BJT dưới

2.KĐ BJT

3. Mạch xoay chiều BJT tương đương

4. Mạch tương đương của bộ KĐ

<u>VD:</u> Vẽ mạch tương đương của bộ KĐ dưới.

<u>VD:</u> Vẽ mạch tương đương của bộ KĐ dưới.

Vẽ mạch tương đương của bộ KĐ dưới.

2. Phân tích bộ KĐ định thiên cố định

(Fixed Bias Amplifier)

Dùng phân tích t/h nhỏ để tìm A_V , R_{in} , R_o , A_I từ mạch tương đương của bộ KĐ

<u>VD:</u>

Tìm A_V , R_{in} , R_o , A_{I} sơ đồ KĐ định thiên cố định hình dưới

Note that I_B in dc circuit is changed to ac I_b in ac equivalent circuit. I_B is the dc current due to BJT biasing and I_b is the ac current when V_{in} is present.

$$R_{in} = R_B //\beta r_e \qquad R_o = R_C //\infty = R_C$$

$$A_V = \frac{V_o}{V_{in}} = \frac{(-\beta I_b)R_C}{T_b \times \beta r_e} = -\frac{R_C}{r_e}$$

$$A_{I} = \frac{I_o}{I_{in}} = \frac{V_o / R_C}{V_{in} / R_{in}} = A_V \frac{R_{in}}{R_C} = \left(-\frac{R_C}{r_e}\right) \frac{R_B / / \beta r_e}{R_C} = -\frac{R_B / / \beta r_e}{r_e}$$

Tìm A_V , R_{in} , R_o , A_I sơ đồ dưới (có tính đến r_o)

$$R_{in} = R_B //\beta r_e$$
 $R_o = R_C //r_o$

$$R_0 = R_C // r_0$$

$$A_{V} = \frac{V_{o}}{V_{in}} = \frac{\left(-\beta I_{b}\right)\!\!\left(R_{\mathcal{C}} /\!/ r_{o}\right)}{I_{b} \times \beta r_{e}} = -\frac{R_{\mathcal{C}} /\!/ r_{o}}{r_{e}}$$

$$A_{I} = \frac{I_o}{I_{in}} = \frac{V_o / R_C}{V_{in} / R_{in}} = A_V \frac{R_{in}}{R_C} = \left(-\frac{R_C / / r_o}{r_e}\right) \frac{R_B / / \beta r_e}{R_C} = -\left(\frac{R_C / / r_o}{R_C}\right) \frac{R_B / / \beta r_e}{r_e}$$

 $\frac{\text{VD:}}{\text{Tim } A_{\text{V}}}$, R_{in} , R_{o} , A_{I} biết r_{o} =50k Ω

$$12 = I_{B} \times 470k + 0.7 \Rightarrow I_{B} = \frac{12 - 0.7}{470k} = 0.024mA$$

$$I_{C} = \beta I_{B} = 100 \times 0.024mA = \underline{2.4mA}$$

$$r_{e} = \frac{26mV}{2.4mA} = \underline{10.8\Omega} \Rightarrow \beta re = 100 \times 10.8 = 1080\Omega = \underline{1.08k\Omega}$$

$$R_{in} = R_{B} //\beta r_{e} = 470k //1.08k = \underline{1.078k\Omega}$$

$$R_{o} = R_{C} //r_{o} = 3k //50k = \underline{2.83k\Omega}$$

$$A_{V} = \frac{(-100I_{b}) \times (3k //50k)}{I_{b} \times 1.08k} = -\frac{283k}{1.08k} = \underline{-262}$$

$$A_{I} = \frac{I_{o}}{I_{in}} = \frac{V_{o} / R_{C}}{V_{in} / R_{in}} = A_{V} \frac{R_{in}}{R_{C}} = -262 \frac{1.08k}{3k} = \underline{-94.33}$$

3. Phân tích bộ KĐ định thiên cực E (Emitter Bias Amplifier)

Connecting R_E at the Emitter of the BJT will have different dc conditions and also different ac parameters compared to Fixed bias amplifier. R_E is very important to stabilize dc currents in BJT and will also stabilize ac parameter A_V (voltage gain of the amplifier).

Xem xét 3 sơ đồ dưới đây

Một điện trở R_E được sử dụng cho cả tính toán DC và AC

R_E được sử dụng để phân tích DC vì C_E bị ngắn mạch trong mạch tương đương AC. Cả R_{E1} và R_{E2} được sử dụng trong phân tích DC, nhưng chỉ R_{E1} được sử dụng cho phân tích AC (C_E bị ngắn mạch khi đó).

charge on

This document is available free of charge on

 $\frac{\text{VD:}}{\text{Tim } A_{\text{V}}}$, R_{in} , R_{o} , A_{I} (bỏ qua r_{o})

$$\begin{array}{lll} 2.2k\Omega & 20 = I_{B} \times 470k + 0.7 + \beta I_{B} \times (0.22k + 0.33k) \\ I_{C} & I_{B} = \frac{12 - 0.7}{470k + (140 \times 0.55k)} = 0.035mA \\ I_{C} & = \beta I_{B} = 140 \times 0.035mA = \underline{4.94mA} \\ I_{C} & = \frac{26mV}{4.94mA} = \underline{5.26\Omega} \Rightarrow \beta r_{e} = 140 \times 5.26 = 1080\Omega = \underline{0.737k\Omega} \\ \end{array}$$

VD: Tìm A_V , R_{in} , R_o , A_I (bỏ qua r_o)

$$\begin{array}{c} 20 = I_{\text{B}} \times 470 \text{k} + 0.7 + \beta I_{\text{B}} \times (0.22 \text{k} + 0.33 \text{k}) \\ I_{\text{C}} & \downarrow \\ I$$

$$V_{in} = I_{b} \times 0.737k + 140I_{b} \times 0.22k \Rightarrow I_{b} = \frac{V_{in}}{51.537k}$$

$$R_{in} = 470k //(V_{in} / I_{b}) = 470k //51.537k = \underline{48.3k\Omega}$$

$$R_{o} = R_{C} // r_{o} = R_{C} = \underline{2.2k} \Leftarrow (r_{o} \text{ neglected})$$

$$A_{V} = \frac{V_{o}}{V_{in}} = \frac{(-140I_{b}) \times 2.2k}{I_{b} \times 51.537k} = -\underline{283k} = \underline{-5.98}$$

$$A_{I} = \frac{I_{o}}{I_{in}} = \frac{V_{o} / R_{C}}{V_{in} / R_{in}} = A_{V} \frac{R_{in}}{R_{C}} = -5.98 \frac{48.3k}{2.2k} = \underline{-131.29}$$

4. Mạch định thiên chia áp

(Voltage divider Bias Amplifier)

Connecting R_1 and R_2 at the Base of the BJT will have more stabilized dc conditions than a single R_B. The input resistance R_{in} becomes lower but voltage gain of the amplifier is not affected.

Xem xét 4 sơ đồ

No R_F used for both dc and ac calculations.

Single R_F used for only dc calculations as C_F is short in ac equivalent circuit.

both dc and ac calculations

Single R_F used for Both R_{F1} and R_{F2} are used for dc calculations and only R_{F1} for ac calculation as C_F is short in ac equivalent circuit.

Tìm A_V , R_{in} , R_o , A_I (bỏ qua r_o)

$$R_{th} = R_B = \frac{56k \times 8.2k}{64.2k} = 7.15k$$
 and

$$V_{th} = V_{BB} = \frac{22 \times 8.2k}{56k + 8.2k} = 2.8V$$

$$V_{\text{In}} = V_{\text{BB}} = \frac{I_{\text{C}}}{1.5 \text{k}\Omega} = \frac{I_{\text{C}}}{1.5 \text{k}$$

$$R_1//R_2 = R_B$$

$$V_{\text{in}} = I_{\text{b}} \times 1.759 \text{k} + 90 I_{\text{b}} \times 1.5 \text{k} \Rightarrow I_{\text{b}} = \frac{V_{\text{in}}}{136.76 \text{k}}$$

$$R_{\text{in}} = 7.15 \text{k} / / (V_{\text{in}} / I_{\text{b}}) = 7.15 \text{k} / / 136.76 \text{k} = \underline{6.79 \text{k}\Omega}$$

$$R_{\text{o}} = R_{\text{C}} / / r_{\text{o}} = R_{\text{C}} = \underline{6.8 \text{k}} \Leftarrow (r_{\text{o}} \text{ neglected})$$

$$A_{\text{V}} = \frac{V_{\text{o}}}{V_{\text{in}}} = \frac{(-90 I_{\text{b}}) \times 6.8 \text{k}}{I_{\text{b}} \times 136.76 \text{k}} = \underline{-4.475}$$

$$R_{\text{B}}$$

$$A_{\text{T}} = \frac{I_{\text{o}}}{I_{\text{c}}} = \frac{V_{\text{o}} / R_{\text{C}}}{V_{\text{in}} / R_{\text{in}}} = A_{\text{V}} \frac{R_{\text{in}}}{R_{\text{C}}} = -4.475 \frac{6.79 \text{k}}{6.8 \text{k}} = \underline{-4.475}$$
studiocti

5. Phân tích phân áp phản hồi

(Feedback Bias Amplifier)

Feedback from Collector to Base by $R_{\rm B}$ creates a low input resistance $R_{\rm in}$ but a very good dc and ac stabilization is an important part of this amplifier.

We can apply Miller's theorem to $R_{\rm B}$ to find $R_{\rm in}$ and also $R_{\rm o}$ amplifier.

$$A_{V} = \frac{V_{o}}{V_{in}} = \frac{-\beta I_{b} \times R_{\mathcal{C}}}{\left(I_{b} \times \beta r_{e}\right) + \left(\beta I_{b} \times R_{E}\right)} = -\frac{\beta R_{\mathcal{C}}}{\beta \left(r_{e} + R_{E}\right)} = -\frac{R_{\mathcal{C}}}{\left(r_{e} + R_{E}\right)}$$

$$\mathsf{R}_{M1} = \frac{\mathsf{R}_B}{1 + \frac{\mathsf{R}_C}{\mathsf{r}_e + \mathsf{R}_E}} \approx \frac{\mathsf{R}_B}{1 + \frac{\mathsf{R}_C}{\mathsf{R}_E}} \qquad \mathsf{R}_{M2} = \frac{\mathsf{R}_B}{1 - \frac{1}{\mathsf{A}_V}} = \frac{\mathsf{R}_B}{1 + \frac{\mathsf{R}_C}{\mathsf{R}_E}}$$

$$R_{in} = R_{M1} / / \frac{\left(I_b \times \beta r_e\right) + \left(\beta I_b \times R_E\right)}{I_b} = \frac{R_B}{1 + \frac{R_C}{R_E}} / / \left(\beta r_e + \beta R_E\right) = \frac{R_B}{1 + \frac{R_C}{R_E}} / / \left(R_E\right)$$

$$R_0 = R_C //R_{M2} = R_C //\frac{R_B}{1 - \frac{1}{A_V}} = R_C //\frac{R_B}{1 + \frac{R_C}{R_E}}$$

$$\textbf{\textit{A}}_{\textbf{\textit{V}}} = \frac{\textbf{\textit{V}}_{\textbf{o}}}{\textbf{\textit{V}}_{\textbf{in}}} = \frac{-\beta \textbf{\textit{I}}_{\textbf{b}} \times \textbf{\textit{R}}_{\textbf{\textit{C}}}}{\left(\textbf{\textit{I}}_{\textbf{b}} \times \beta \textbf{\textit{r}}_{\textbf{e}}\right) + \left(\beta \textbf{\textit{I}}_{\textbf{b}} \times \textbf{\textit{R}}_{\textbf{E}}\right)} = -\frac{\beta \textbf{\textit{R}}_{\textbf{\textit{C}}}}{\beta \left(\textbf{\textit{r}}_{\textbf{e}} + \textbf{\textit{R}}_{\textbf{E}}\right)} = -\frac{\textbf{\textit{R}}_{\textbf{\textit{C}}}}{\left(\textbf{\textit{r}}_{\textbf{e}} + \textbf{\textit{R}}_{\textbf{E}}\right)}$$

$$A_{I} = \frac{I_{o}}{I_{in}} = \frac{V_{o}/R_{\mathcal{C}}}{V_{in}/R_{in}} = A_{V} \frac{R_{in}}{R_{\mathcal{C}}} = -\left[\frac{R_{\mathcal{C}}}{(r_{e} + R_{E})}\right] \frac{\frac{R_{B}}{1 + \frac{R_{\mathcal{C}}}{R_{E}}}}{R_{\mathcal{C}}} / (R_{E})$$

Example:

Find the A_V , R_{in} , R_o , A_I of the given Feedback Bias amplifier. Take $I_B << I_C$ and neglect the BJT output resistance r_o

$$9 = \frac{I_C}{200}180k + 0.7 + (I_C)2.7k \iff (I_B \ll I_C)$$

$$I_C = \frac{9 - 0.7}{3.6k} = \underbrace{2.3mA}_{\text{Rin}} \Rightarrow r_e = \underbrace{\frac{26mV}{2.3mA}}_{\text{Rin}} = \underbrace{\frac{11.3\Omega}{1.30}}_{\text{Rin}}$$

$$A_V = \frac{V_o}{V_{in}} = \frac{-\beta I_b \times R_C}{\left(I_b \times \beta r_e\right)} = -\frac{R_C}{\left(r_e\right)} = -\frac{2.7k}{11.3\Omega} = \underline{-238.9}$$

$$R_{in} = R_{M1} / / \beta r_e = \frac{R_B}{1 - A_V} = \frac{180k}{1 - (-238.9)} / / 200 \times 11.3 = \underline{0.563k\Omega}$$

$$R_{o} = R_{M2} //R_{C} = \frac{R_{B}}{1 - \frac{1}{A_{V}}} //2.7 k\Omega = \frac{180 k\Omega}{1 - \frac{1}{(-238.9)}} //2.7 k\Omega = \underline{\underline{2.66 k\Omega}}$$

$$\textbf{A}_{I} = \frac{\textbf{I}_{o}}{\textbf{I}_{in}} = \textbf{A}_{V} \, \frac{\textbf{R}_{in}}{\textbf{R}_{C}} = -238.9 \frac{0.56 k\Omega}{2.7 k\Omega} = -\underline{\underline{49.55}}$$

6. Phân tích KĐ bám cực E

(Emitter Follower Amplifier)

Áp ra lấy tai cực E của BJT

(Taking the output voltage at the Emitter instead of Collector of the BJT will create different ac parameters compared to Fixed bias and Emitter bias amplifier especially in voltage gain which will now unity. The output resistance will become very small. Input resistance is the same as Emitter bias amplifier).

$$\begin{split} V_{in} &= \left(I_b \times \beta r_e\right) + \left(\beta I_b \times R_E\right) \\ R_{in} &= R_B \, / / \, \frac{V_{in}}{I_b} = R_B \, / / \, \beta \big(r_e + R_E\big) \\ A_V &= \frac{V_o}{V_{in}} = \frac{\beta I_b \times R_E}{\left(I_b \times \beta r_e\right) + \left(\beta I_b \times R_E\right)} = \frac{R_E}{r_e + R_E} = 1 \Leftarrow \left[r_e \ll R_E\right] \\ A_I &= A_V \, \frac{R_{in}}{R_E} = 1 \times \frac{R_B \, / / \, \beta \big(r_e + R_E\big)}{R_E} \end{split}$$

To find
$$R_o \Rightarrow$$
 short V_{in} and find $R_o = (V_o / I_o) // R_E$

$$\frac{V_o}{I_o} = \frac{I_b \times \beta r_e}{I_b + \beta I_b} \approx r_e \Rightarrow \therefore R_o = (V_o / I_o) // R_E = r_e // R_E$$

$$A_I = A_V \frac{R_{in}}{R_o} = 1 \times \frac{R_B // \beta (r_e + R_E)}{R_o}$$

Tìm A_V , R_{in} , R_o , A_I . Lấy $I_B << I_C$ và bỏ qua trở kháng ra r_a

dc analysis

$$\begin{aligned} &16 = \frac{\textbf{I}_{\mathcal{C}}}{110}270\textbf{k} + 0.7 + \left(\textbf{I}_{\mathcal{C}}\right)2.7\textbf{k} \Leftarrow \left(\textbf{I}_{B} << \textbf{I}_{\mathcal{C}}\right) \\ &\textbf{I}_{\mathcal{C}} = \frac{16 - 0.7}{5.15\textbf{k}} = \underline{\underline{2.97\text{mA}}} \Rightarrow \textbf{r}_{e} = \frac{26\text{mV}}{2.97\text{mA}} = \underline{\underline{8.75\Omega}} \end{aligned}$$

ac analysis

$$V_{in} = (I_b \times \beta r_e) + (\beta I_b \times R_E) \Rightarrow \frac{V_{in}}{I_b} = \beta (r_e + R_E)$$

$$R_{in} = R_B / / \frac{V_{in}}{I_h} = 270 k / / 110 (8.75 + 2700) = 270 k / / 298 k = \underline{141.65 k \Omega}$$

$$\textit{A}_{\textit{V}} = \frac{\textit{V}_{\textit{o}}}{\textit{V}_{\textit{in}}} = \frac{\beta \textit{I}_{\textit{b}} \times \textit{R}_{\textit{E}}}{\left(\textit{I}_{\textit{b}} \times \beta \textit{r}_{\textit{e}}\right) + \left(\beta \textit{I}_{\textit{b}} \times \textit{R}_{\textit{E}}\right)} = \frac{\textit{R}_{\textit{E}}}{\textit{r}_{\textit{e}} + \textit{R}_{\textit{E}}} = \frac{2700}{8.75 + 2700} \underline{\approx 1}$$

To find
$$R_o \Rightarrow$$
 short V_{in} and find $R_o = (V_o / I_o) / / R_E$

$$\frac{V_o}{I_o} = \frac{I_b \times \beta r_e}{I_b + \beta I_b} \approx r_e \implies \therefore R_o = (V_o / I_o) / / R_E = r_e / / R_E = 8.75 / / 2700 \approx 8.75 \Omega$$

$$A_{I} = A_{V} \frac{R_{in}}{R_{E}} = 1 \times \frac{R_{B} // \beta (r_{e} + R_{E})}{R_{E}} = 1 \times \frac{141.65 k}{2.7 k} = \underline{52.46}$$

7. Phân tích KĐ B-C

(Common Base Amplifier)

Áp vào đưa vào cực E còn áp ra lấy tại cực C

Connecting the input voltage at the Emitter and taking the output voltage at the Collector of the BJT is called Common Base amplifier. It will create the <u>input resistance to become very small</u> The Output resistance is the same as Emitter bias amplifier.

 V_{in} nối với cực E còn V_o nối với cực C Cực B trở thành cực chung cho cả V_{in} và V_o

 $V_{\rm in}$ is at the Emitter and $V_{\rm o}$ is at the Collector $\qquad \qquad \Longrightarrow$ in NPN BJT biased by a single battery Common Base amplifier

KĐ B-C

Mạch tương đương AC Mạch tương đương AC của BJT

$$\begin{split} R_{o} &= R_{\mathcal{C}} \\ R_{in} &= R_{E} / / \frac{V_{in}}{-\beta I_{b}} = R_{E} / / \frac{-I_{b} \times \beta r_{e}}{-\beta I_{b}} = R_{E} / / r_{e} \\ V_{in} &= -(I_{b} \times \beta r_{e}) \\ A_{V} &= \frac{V_{o}}{V_{in}} = \frac{-\beta I_{b} \times R_{\mathcal{C}}}{-(I_{b} \times \beta r_{e})} = \frac{R_{\mathcal{C}}}{r_{e}} \\ A_{I} &= \frac{I_{o}}{I_{in}} = A_{V} \frac{R_{in}}{R_{\mathcal{C}}} = \frac{R_{\mathcal{C}}}{r_{e}} \times \frac{R_{E} / / r_{e}}{R_{\mathcal{C}}} = \frac{R_{E} / / r_{e}}{r_{e}} \end{split}$$

Tìm A_V , R_{in} , R_o , A_I . Lấy $I_B < < I_C$ và bỏ qua r_o

$$\begin{aligned} &14 = \frac{\textbf{I}_{\mathcal{C}}}{140} 470 \textbf{k} + 0.7 + \big(\textbf{I}_{\mathcal{C}}\big) \textbf{1}.2 \textbf{k} \Leftarrow \big(\textbf{I}_{B} << \textbf{I}_{\mathcal{C}}\big) \\ &\textbf{I}_{\mathcal{C}} = \frac{14 - 0.7}{4.56 \textbf{k}} = \underline{\underbrace{2.92 \text{mA}}} \Rightarrow r_{e} = \frac{26 \text{mV}}{2.92 \text{mA}} = \underline{\underbrace{8.9 \Omega}} \end{aligned}$$

$$R_o = R_C = \underline{2.2k\Omega}$$

$$R_{in} = R_E / / \frac{V_{in}}{-\beta I_b} = R_E / / \frac{-I_b \times \beta r_e}{-\beta I_b} = R_E / / r_e = 1.2k / / 8.9 = \underline{\underline{8.9\Omega}}$$

$$\begin{split} &V_{in} = - \! \left(I_b \times \beta r_e \right) \\ &A_V = \frac{V_o}{V_{in}} = \frac{-\beta I_b \times R_C}{-\left(I_b \times \beta r_e \right)} = \frac{R_C}{r_e} = \frac{2.2k}{8.9} = \underline{\frac{247.2}{8.9}} \\ &A_I = \frac{I_o}{I_{in}} = A_V \frac{R_{in}}{R_C} = \frac{R_C}{r_e} \times \frac{R_E /\!\!/ r_e}{R_C} = \frac{R_E /\!\!/ r_e}{r_e} = \frac{r_e}{r_e} \underline{=} \underline{1} \Leftarrow \left(R_E >> r_e \right) \end{split}$$