

A. Riaditelia karnevalov

Problem Name	Carnival General
Time Limit	1 second
Memory Limit	1 gigabyte

Každé štyri roky organizujú študenti v Lunde karneval. Na pár dní sa celý miestny park zaplní stanmi plnými atrakcií od výmyslu sveta. Každý karneval má na starosti iný riaditeľ.

Doteraz bolo N karnevalov, a teda aj N riaditeľov. Očíslujeme si ich od 0 po N-1 v chronologickom poradí.

Každý riaditeľ má svoj názor na to, ako dobrú prácu odviedli všetci jeho predchodcovia. Tento svoj názor každý riaditeľ aj zverejnil. Presnejšie, zverejnil permutáciu čísel predchádzajúcich riaditeľov v poradí od toho, ktorého považuje za najlepšieho, po toho, ktorého považuje za najhoršieho.

Najbližší karneval bude v roku 2026. V rámci jeho propagácie by sme chceli spraviť skupinovú fotografiu, na ktorej bude stáť v rade vedľa seba všetkých N doterajších riaditeľov. Hlavným problémom však je rozhodnúť, v akom poradí majú riaditelia stáť. Je totiž politicky nekorektné dať vedľa seba riaditeľov i a j (kde i < j) takých, že riaditeľ i sa nachádza **ostro v druhej polovici** poradia zverejneného riaditeľom j.

Napríklad:

- Ak riaditeľ 4 zverejnil poradie 3 2 1 0, tak ho môžeme postaviť vedľa riaditeľov 3 a 2, ale nesmieme ho postaviť vedľa 1 ani 0.
- Ak riaditeľ 5 zverejnil poradie 4 3 2 1 0, tak ho môžeme postaviť vedľa riaditeľov 4, 3 aj 2, ale nie vedľa 1 ani 0.

(Keď sme vyššie použili slovo "ostro", mysleli sme ním to, že riaditeľ presne v strede poradia nepárnej dĺžky sa ešte neráta do druhej polovice.)

Nasledujúci obrázok zodpovedá nižšie uvedenému prvému príkladu vstupu a výstupu. Zvýraznený riaditeľ 5 stojí vedľa povolených riaditeľov 2 a 3. Všimni si tiež napríklad to, že riaditeľ 4 má len jedného suseda v rade: riaditeľa 2.

Na vstupe dostaneš všetky poradia zverejnené riaditeľmi. Tvojou úlohou je usporiadať ich do ľubovoľného spoločensky akceptovateľného poradia – teda takého, v ktorom žiadny riaditeľ j nestojí vedľa iného riaditeľa i, ktorého dal do druhej polovice svojho poradia.

Input

V prvom riadku vstupu je celé číslo N: počet riaditeľov.

Zvyšok vstupu tvorí N-1 riadkov: postupne pre každého riaditeľa od 1 po N-1 jeden riadok s jeho preferenciami. (Riaditeľ 0 nemá svoj riadok, keďže nemá žiadneho predchodcu.)

Preferencie riaditeľa i tvorí zoznam i celých čísel $p_{i,0}, p_{i,1}, \ldots, p_{i,i-1}$. V tomto zozname sa práve raz nachádza každé z čísel od 0 po i-1. Prvé číslo v zozname $(p_{i,0})$ je ten skorší riaditeľ, ktorého riaditeľ i považuje za najlepšieho.

Output

Vypíš jeden riadok a v ňom N medzerou oddelených čísel: permutáciu čísel od 0 do N-1 v ktorej každá dvojica susediacich čísel spĺňa vyššie definovanú podmienku.

Dá sa dokázať, že riešenie vždy existuje. Ak ich existuje viac, môžete vypísať ľubovoľné z nich.

Constraints and Scoring

Vo všetkých vstupoch platí:

- $2 \le N \le 1000$.
- $0 \le p_{i,0}, p_{i,1}, \dots, p_{i,i-1} \le i-1$ pre $i = 0, 1, \dots, N-1$.

Existuje niekoľko podúloh, v ktorých platia rôzne dodatočné obmedzenia. Body za podúlohy a tieto obmedzenia nájdeš v nasledujúcej tabuľke.

Group	Score	Limits
1	11	Pre každé i je poradie riaditeľa i klesajúce: $i-1,\dots,1,0.$
2	23	Pre každé i je poradie riaditeľa i rastúce: $0,1,\ldots,i-1$.
3	29	$N \leq 8$
4	37	Bez ďalších obmedzení.

Example

Prvý príklad vstupu by mohol byť súčasťou prvej podúlohy – poradia v ňom spĺňajú dodatočnú podmienku pre túto podúlohu. V tomto príklade ani riaditeľ 2 ani riaditeľ 3 nemôže stáť vedľa riaditeľa 0, a ďalej riaditeľ 4 a riaditeľ 5 nemôžú stáť vedľa žiadneho z riaditeľov 0 a 1. (Pripomíname, že ukážkový výstup pre tento príklad zodpovedá obrázku zo zadania.)

Druhý príklad vstupu by mohol byť súčasťou druhej podúlohy. V tomto príklade riaditeľ 2 nemôže stáť vedľa riaditeľa 1, riaditeľ 3 vedľa riaditeľa 2, a riaditeľ 4 nemôže stáť vedľa riaditeľov 3 a 2.

Tretí príklad vstupu by nemohol byť v prvých dvoch podúlohách ale mohol by byť v tretej. V tomto príklade existujú len dva páry riaditeľov, ktorí nesmú susediť: (2,0) a (3,1). Okrem ukážkového príkladu 3 0 1 2 je platným riešením napr. aj postupnosť 0 1 2 3.

Input	Output
6 0 1 0 2 1 0 3 2 1 0 4 3 2 1 0	4 2 5 3 1 0
5 0 0 1 0 1 2 0 1 2 3	2 0 4 1 3
4 0 1 0 0 2 1	3 0 1 2