import libraries

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from astropy.constants import G,c
from astropy.cosmology import Planck18 as cosmo
import astropy.units as u
```

loading the dataset from csv file.

```
df = pd.read_csv('./Skyserver_SQL6_29_2025 4_28_50 PM.csv')
```

calculate the average spectroscopic Redshift (specz) for each object

calculating the average specz for each id

```
averaged df =
df.groupby('objid').agg({'specz':'mean','ra':'first','dec':'first','pr
oj_sep':'first','rmag': 'first'}).reset_index()
averaged df.describe()['specz']
count
        92.000000
mean
         0.080838
std
         0.008578
         0.069976
min
25%
         0.077224
50%
         0.080961
75%
         0.082797
         0.150886
max
Name: specz, dtype: float64
```

plot the distribution of redshift as histogram and a boxplot

```
plt.title("Distribution of RedShift for this Data")
plt.hist(averaged_df['specz'],bins=30)
plt.grid()
plt.show()
```

Distribution of RedShift for this Data

This cell computes the mean and standard deviation of the redshift values to analyze the data distribution. It defines redshift intervals corresponding to 1σ , 2σ , and 3σ deviations from the mean, using the 3σ range to identify potential cluster members. Finally, it visualizes the redshift distribution, highlighting the mean and each sigma boundary with vertical lines for clear interpretation.

```
### Identify Cluster Members Using 3-Sigma Cut
mean z = averaged df['specz'].mean()
std z = averaged df['specz'].std()
# 1-sigma cut (originally 3-sigma in the user code)
z \min 1 sigma = mean z - 1 * std z
z \max 1 sigma = mean z + 1 * std z
# 2-sigma cut
z \min 2sigma = mean z - 2 * std z
z \max 2sigma = mean z + 2 * std z
# 3-sigma cut
z \min 3sigma = mean z - 3 * std z
z \max 3sigma = mean z + 3 * std z
# Identify cluster members for 3 sigma cut
cluster members = averaged df[(averaged df['specz'] >= z min 3sigma) &
(averaged df['specz'] <= z max 3sigma)].copy()</pre>
# Plotting the distribution with different sigma cuts
plt.figure(figsize=(9, 4))
```

```
plt.hist(df['specz'], bins=50, label='All galaxies')
# Plot 1-sigma cut
plt.axvline(z min 1sigma, color='red', linestyle='--', label='1-sigma
cut')
plt.axvline(z max 1sigma, color='red', linestyle='--')
# Plot 2-sigma cut
plt.axvline(z min 2sigma, color='purple', linestyle='--', label='2-
sigma cut')
plt.axvline(z max 2sigma, color='purple', linestyle='--')
# Plot 3-sigma cut
plt.axvline(z min 3sigma, color='orange', linestyle='--', label='3-
sigma cut')
plt.axvline(z max 3sigma, color='orange', linestyle='--')
plt.axvline(mean z, color='black', linestyle='-', label='Mean')
plt.legend()
plt.title('Spectroscopic Redshift Distribution with Different Sigma
Cuts')
plt.xlabel('Redshift')
plt.ylabel('Galaxy Count')
plt.grid(True)
plt.show()
```


- 1. Calculating the peculiar velocities of identified cluster members based on their redshifts.
- 2. Displaying the cluster's average redshift, a sample of member velocities, and the computed velocity dispersion.
- 3. Visualizing the distribution of peculiar velocities through a detailed plot.

```
z = cluster_members['specz']
z_cluster = cluster_members['specz'].mean()
# Relativistic velocity calculation
```

```
numerator = (1 + z)**2 - (1 + z cluster)**2
denominator = (1 + z)**2 + (1 + z cluster)**2
cluster members['velocity'] = c.value * (numerator / denominator)
/1000
print(f"Cluster Redshift: {z cluster:.5f}\n")
print("Peculiar Velocity:\n", cluster_members[['specz',
'velocity']].head())
velocity dispersion = cluster members['velocity'].std()
print(f"\nVelocity Dispersion: {velocity dispersion:.4f} km/s\n")
plt.hist(cluster members['velocity'], bins=20, color='lightgreen',
edgecolor='black')
plt.axvline(velocity_dispersion, color='green', linestyle='--',
label='Velocity Dispersion')
plt.title("Peculiar Velocity Distribution")
plt.xlabel("Velocity (km/s)")
plt.ylabel("Number of Galaxies")
plt.legend()
plt.grid(True)
plt.show()
Cluster Redshift: 0.08007
Peculiar Velocity:
       specz
                 velocity
0 0.082457
              662,365302
1 0.081218 319.185348
2 0.079564 -139.779039
3 0.080842 214.746305
4 0.084575 1248.541035
Velocity Dispersion: 1218.4929 km/s
```

Peculiar Velocity Distribution

This cell estimates the angular diameter distance to the cluster using a Taylor expansion approximation within a specified cosmological model. Using this distance and the 90th percentile of the projected angular separations, it then calculates the cluster's physical radius.

```
# Cluster redshift
z = cluster members['specz'].mean()
# Hubble constant
H0 = cosmo.H(0) # Hubble constant in (km/s)/Mpc
H0 si = H0.to('1/s').value # Convert to 1/s
# Deceleration parameter
q0 = -0.534
# Speed of light in m/s
c val = c.value
# Co-moving distance using Taylor expansion
r = (c.value * z / H0 si) * (1 - (z / 2) * (1 + q0)) # in meters
# Angular diameter distance
D A = r / (1 + z)
# Convert to Mpc
D A Mpc = D A / 3.0857e22
print(f"Angular Diameter Distance: {D A Mpc:.2f} Mpc")
angular_radius_arcmin = cluster_members['proj_sep'].quantile(0.9)
theta rad = angular radius arcmin * np.pi / (180 * 60)
# Physical cluster radius
```

```
r_mpc = D_A_Mpc * theta_rad
print(f"Estimated Physical Cluster Radius: {r_mpc:.2f} Mpc")
Angular Diameter Distance: 322.34 Mpc
Estimated Physical Cluster Radius: 0.87 Mpc
```

Visualizing the distribution of projected angular separations among cluster members to analyze their spatial spread.

```
plt.hist(cluster_members['proj_sep'], bins=20, color='brown',
edgecolor='black')
plt.axvline(angular_radius_arcmin, color='purple', linestyle='--',
label='90th Percentile')
plt.title("Projected Angular Separation of Cluster Members")
plt.xlabel("Separation (arcmin)")
plt.ylabel("Number of Galaxies")
plt.legend()
plt.grid(True)
plt.show()
```


Estimating the cluster's dynamical mass using the virial theorem, followed by converting the result into solar mass units for astrophysical interpretation.

```
### Estimate Dynamical Mass
sigma_m_per_s = velocity_dispersion * 1000 # km/s to m/s
R_m = r_mpc * 3.0857e22 # Mpc to meters
# Virial mass estimate in kg
mass_kg = (3 * sigma_m_per_s**2 * R_m) / G.value
# Convert to solar masses
solar_mass_kg = 2*10**30
mass_solar = mass_kg / solar_mass_kg
print(f"Dynamical Mass of Cluster: {mass_solar:.2e} Mo")
Dynamical Mass of Cluster: 8.99e+14 Mo
```

Computing the luminous mass of the cluster using its total luminosity and an assumed mass-to-light ratio. Comparing the luminous mass with the dynamical mass to evaluate the cluster's mass composition and possible dark matter presence.

```
# Get luminosity distance in parsecs
z cluster = cluster members['specz'].mean()
D L pc = cosmo.luminosity distance(z cluster).to('pc').value
# Convert apparent to absolute magnitude
m r = cluster members['rmag']
Mr = mr - 5* np.log10(DL pc / 10)
# Compute luminosity relative to Sun
M r sun = 4.67
\overline{\text{luminosities}} = \frac{10}{10} ** (-0.4 * (M r - M r sun))
# Estimate luminous mass with M/L = 10
M L ratio = 10
luminous mass = np.sum(luminosities) * M L ratio
print(f"Luminous Mass Estimate: {luminous_mass:.2e} Mo")
print("Mass ratio Mdyn/Mlum = ", mass solar/luminous mass)
Luminous Mass Estimate: 2.36e+13 Mo
Mass ratio Mdyn/Mlum = 38.155046259236066
```

Dynamical Mass (M₍dyn₎): 9.00 × 10¹⁴ M⊙ Luminous Mass (M₍lum₎): 2.36 × 10¹³ M⊙

Fraction of Luminous Mass: $f(lum) = M(lum) / M(dyn) = (2.36 \times 10^{13}) / (9.00 \times 10^{14}) \approx 0.0262$

Interpretation: Only 2.62% of the cluster's total mass is in the form of luminous matter. The remaining 97.38% is invisible, likely composed of non-luminous hot gas or dark matter.