0.1 函数性态分析综合问题

0.1.1 齐次微分不等式问题

命题 0.1

设 $f \in D^s(0, +\infty) \cap C[0, +\infty), s \in \mathbb{N}$ 且满足

$$f^{(j)}(0) = 0, j = 0, 1, 2, \dots, s - 1.$$

若还存在
$$\lambda_1, \lambda_2, \dots, \lambda_s \ge 0, \sum_{i=1}^s \lambda_i = 1, C > 0, 满足$$

$$\left| f^{(s)}(x) \right| \le C \left| f(x) \right|^{\lambda_1} \left| f'(x) \right|^{\lambda_2} \cdots \left| f^{(s-1)}(x) \right|^{\lambda_s}, \forall x \ge 0.$$
 (1)

证明 $f(x) = 0, \forall x \ge 0.$

 $\widehat{\Sigma}$ 笔记 我们把下述证明中左右两边各项次数均相同的不等式: $x_1^{2\lambda_1}x_2^{2\lambda_2}\cdots x_n^{2\lambda_n}\leqslant K\left(x_1^2+x_2^2+\cdots+x_n^2\right), \forall x_1,x_2,\cdots,x_n\geqslant 0$ 称为齐次不等式.(虽然也可以直接利用幂平均不等式得到, 但这里我们旨在介绍如何利用**齐次化方法**证明**一般的齐次不等式**.)

证明 令 $g(x) = e^{-Mx} \left[f^2 + (f')^2 + (f'')^2 + \dots + (f^{(s-1)})^2 \right], M > 0$, 显然 $g(x) \ge 0$, $\forall x \ge 0$. 则利用均值不等式和条件 (1) 式可得, 对 $\forall x \ge 0$, 都有

$$g'(x) = e^{-Mx} \left[2ff' + 2f'f'' + 2f''f''' + \cdots + 2f^{(s-1)}f^{(s)} - Mf^2 - M(f')^2 - \cdots - M(f^{(s-1)})^2 \right]$$

$$\stackrel{\text{bis}}{\leqslant} e^{-Mx} \left[f^2 + (f')^2 + (f')^2 + (f'')^2 + \cdots + (f^{(s-1)})^2 + \left| f^{(s)} \right|^2 - Mf^2 - M(f')^2 - \cdots - M(f^{(s-1)})^2 \right]$$

$$\stackrel{\text{(1)}}{\leqslant} e^{-Mx} \left[(1 - M) f^2 + (2 - M) (f')^2 + \cdots + (2 - M) (f^{(s-1)})^2 + C^2 |f(x)|^{2\lambda_1} |f'(x)|^{2\lambda_2} \cdots \left| f^{(s-1)}(x) \right|^{2\lambda_s} \right].$$
(2)

我们先证明 $x_1^{2\lambda_1}x_2^{2\lambda_2}\cdots x_n^{2\lambda_n} \leq K(x_1^2+x_2^2+\cdots+x_n^2), \forall x_1, x_2, \cdots, x_n \geq 0.$

令 $S \triangleq \{(x_1, x_2, \dots, x_n) | x_1^2 + x_2^2 + \dots + x_n^2 = 1\}$, 则 $S \in \mathbb{R}^n$ 上的有界闭集, 从而 $S \in \mathbb{R}$ 集. 于是 $x_1^{2\lambda_1} x_2^{2\lambda_2} \dots x_n^{2\lambda_n}$ 为紧集 S 上的连续函数, 故一定存在 K > 0, 使得

$$x_1^{2\lambda_1} x_2^{2\lambda_2} \cdots x_n^{2\lambda_n} \leqslant K, \forall (x_1, x_2, \cdots, x_n) \in S.$$

$$(3)$$

0, 考虑 $(Lx_1, Lx_2, \cdots, Lx_n)$, 则此时 $(Lx_1)^2 + (Lx_2)^2 + \cdots + (Lx_n)^2 = 1$, 因此 $(Lx_1, Lx_2, \cdots, Lx_n) \in S$. 从而由(3)式可知

$$(Lx_1)^{2\lambda_1}(Lx_2)^{2\lambda_2}\cdots(Lx_n)^{2\lambda_n}\leqslant K.$$

于是

$$x_1^{2\lambda_1} x_2^{2\lambda_2} \cdots x_n^{2\lambda_n} \leqslant \frac{K}{L^{2\lambda_1 + 2\lambda_2 + \cdots + 2\lambda_n}} = \frac{K}{L^2} = K \left(x_1^2 + x_2^2 + \cdots + x_n^2 \right).$$

故由 x_1, x_2, \cdots, x_n 的任意性可得

$$x_1^{2\lambda_1} x_2^{2\lambda_2} \cdots x_n^{2\lambda_n} \leqslant K\left(x_1^2 + x_2^2 + \dots + x_n^2\right), \forall x_1, x_2, \dots, x_n \geqslant 0.$$
(4)

因此由(2)(4)式可得,对 $\forall x \geq 0$,都有

$$\begin{split} g'\left(x\right) &\leqslant e^{-Mx} \left[\left(1-M\right) f^2 + \left(2-M\right) \left(f'\right)^2 + \dots + \left(2-M\right) \left(f^{(s-1)}\right)^2 + C^2 \left| f(x) \right|^{2\lambda_1} \left| f'(x) \right|^{2\lambda_2} \dots \left| f^{(s-1)}(x) \right|^{2\lambda_s} \right] \\ &\leqslant e^{-Mx} \left[\left(1-M\right) f^2 + \left(2-M\right) \left(f'\right)^2 + \dots + \left(2-M\right) \left(f^{(s-1)}\right)^2 + KC^2 \left(f^2 + \left(f'\right)^2 + \left(f'\right)^2 + \left(f''\right)^2 + \dots + \left(f^{(s-1)}\right)^2\right) \right] \\ &= e^{-Mx} \left[\left(KC^2 + 1 - M\right) f^2 + \left(KC^2 + 2 - M\right) \left(f'\right)^2 + \dots + \left(KC^2 + 2 - M\right) \left(f^{(s-1)}\right)^2 \right]. \end{split}$$

于是任取 $M > KC^2 + 2$, 利用上式就有 $g'(x) \le 0$, $\forall x \ge 0$. 故 g(x) 在 $[0, +\infty)$ 上单调递减, 因此 $g(x) \le g(0) = 0$. 又 因为 $g(x) \ge 0$, $\forall x \ge 0$, 所以 g(x) = 0, $\forall x \ge 0$. 故 $f(x) = f'(x) = \cdots = f^{(s-1)}(x) = 0$, $\forall x \ge 0$.

命题 0.2

设 $f \in D^s(0, +\infty) \cap C[0, +\infty), s \in \mathbb{N}$ 且满足

$$f^{(j)}(0) = 0, j = 0, 1, 2, \dots, s - 1.$$

若还存在 $\lambda_1, \lambda_2, \cdots, \lambda_s \geq 0$, 满足

$$\left| f^{(s)}(x) \right| \le \lambda_1 |f(x)| + \lambda_2 |f'(x)| + \dots + \lambda_s \left| f^{(s-1)}(x) \right|, \forall x \ge 0.$$
 (5)

证明 $f(x) = 0, \forall x \ge 0.$

证明 令 $g(x) = e^{-Mx} \left[f^2 + (f')^2 + (f'')^2 + \dots + (f^{(s-1)})^2 \right], M > 0$, 显然 $g(x) \ge 0, \forall x \ge 0$. 则利用均值不等式和条件(5) 式可得, 对 $\forall x \ge 0$, 都有

$$g'(x) = e^{-Mx} \left[2ff' + 2f'f'' + 2f''f''' + \dots + 2f^{(s-1)}f^{(s)} - Mf^2 - M(f')^2 - \dots - M(f^{(s-1)})^2 \right]$$

$$\stackrel{\text{id}}{\leqslant} e^{-Mx} \left[f^2 + (f')^2 + (f')^2 + (f'')^2 + \dots + (f^{(s-1)})^2 + \left| f^{(s)} \right|^2 - Mf^2 - M(f')^2 - \dots - M(f^{(s-1)})^2 \right]$$

$$\stackrel{(5)\sharp}{\leqslant} e^{-Mx} \left[(1 - M) f^2 + (2 - M) (f')^2 + \dots + (2 - M) (f^{(s-1)})^2 + (\lambda_1 |f| + \lambda_2 |f'| + \dots + \lambda_s |f^{(s-1)}|)^2 \right]. \quad (6)$$

我们先证明 $(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_s x_s)^2 \leq K(x_1^2 + x_2^2 + \dots + x_n^2), \forall x_1, x_2, \dots, x_n \geq 0.$

令 $S \triangleq \{(x_1, x_2, \dots, x_n) | x_1^2 + x_2^2 + \dots + x_n^2 = 1\}$, 则 $S \in \mathbb{R}^n$ 上的有界闭集, 从而 $S \in \mathbb{R}$ 是紧集. 于是 $(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_s x_s)^2$ 为紧集 S 上的连续函数, 故一定存在 K > 0, 使得

$$x_1^2 + x_2^2 + \dots + x_n^2 \leqslant K, \forall (x_1, x_2, \dots, x_n) \in S.$$
 (7)

对 $\forall x_1, x_2, \cdots, x_n \geqslant 0$, 固定 x_1, x_2, \cdots, x_n . 不妨设 x_1, x_2, \cdots, x_n 不全为零, 否则结论显然成立. 取 $L = \frac{1}{\sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}} > 0$, 考虑 $(Lx_1, Lx_2, \cdots, Lx_n)$, 则此时 $(Lx_1)^2 + (Lx_2)^2 + \cdots + (Lx_n)^2 = 1$, 因此 $(Lx_1, Lx_2, \cdots, Lx_n) \in S$. 从而由 (7) 式可知

$$(\lambda_1 L x_1 + \lambda_2 L x_2 + \dots + \lambda_s L x_s)^2 \leq K.$$

于是

$$(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_s x_s)^2 \leq \frac{K}{L^2} = K (x_1^2 + x_2^2 + \dots + x_n^2).$$

故由 x_1, x_2, \cdots, x_n 的任意性可得

$$(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_s x_s)^2 \le K (x_1^2 + x_2^2 + \dots + x_n^2), \forall x_1, x_2, \dots, x_n \ge 0.$$
 (8)

因此由 (6) (8)式可得, 对 $\forall x \ge 0$, 都有

$$g'(x) \leq e^{-Mx} \left[(1-M) f^2 + (2-M) (f')^2 + \dots + (2-M) (f^{(s-1)})^2 + (\lambda_1 |f| + \lambda_2 |f'| + \dots + \lambda_s |f^{(s-1)}|)^2 \right]$$

$$\leq e^{-Mx} \left[(1-M) f^2 + (2-M) (f')^2 + \dots + (2-M) (f^{(s-1)})^2 + K (f^2 + (f')^2 + \dots + (f^{(s-1)})^2) \right]$$

$$= e^{-Mx} \left[(K+1-M) f^2 + (K+2-M) (f')^2 + \dots + (K+2-M) (f^{(s-1)})^2 \right].$$

于是任取 M > K + 2,利用上式就有 $g'(x) \le 0$, $\forall x \ge 0$. 故 g(x) 在 $[0, +\infty)$ 上单调递减,因此 $g(x) \le g(0) = 0$. 又因为 $g(x) \ge 0$, $\forall x \ge 0$,所以 g(x) = 0, $\forall x \ge 0$. 故 $f(x) = f'(x) = \cdots = f^{(s-1)}(x) = 0$, $\forall x \ge 0$.

0.1.2 其他

命题 0.3

设 f' 在 $[0, +\infty)$ 一致连续且 $\lim_{x \to +\infty} f(x)$ 存在, 证明 $\lim_{x \to +\infty} f'(x) = 0$.

笔记 本题也有积分版本: 设 f 在 $[0,+\infty)$ 一致连续且 $\int_0^\infty f(x) dx$ 收敛, 则 $\lim_{x\to+\infty} f(x) = 0$.(令 $F = \int_0^x f(x) dx$ 就可 以将这个积分版本转化为上述命题)

证明 反证, 若 $\lim_{n \to \infty} f'(x) \neq 0$, 则可以不妨设存在 $\delta > 0$, $\{x_n\}_{n=1}^{\infty}$, 使得

$$x_n \to +\infty \, \mathbb{E} f'(x_n) \geqslant \delta, \forall n \in \mathbb{N}.$$

由 f' 在 $[0,+\infty)$ 上一致连续可知, 存在 $\eta > 0$, 使得对 $\forall n \in \mathbb{N}$, 都有

$$f'(x) \ge f'(x_n) - \frac{\delta}{2} \ge \frac{\delta}{2}, \forall x \in [x_n - \eta, x_n + \eta].$$

从而对 $\forall n \in \mathbb{N}$, 都有

$$f(x_n + \eta) - f(x_n) = \int_{x_n}^{x_n + \eta} f'(x) dx \geqslant \int_{x_n}^{x_n + \eta} \frac{\delta}{2} dx = \frac{\delta \eta}{2} > 0, \forall x \in [x_n - \eta, x_n + \eta].$$

令 $n \to \infty$, 由 $\lim_{x \to +\infty} f(x)$ 存在可得 $0 \ge \frac{\delta \eta}{2} > 0$, 矛盾! 故 $\lim_{x \to +\infty} f'(x) = 0$. 例题 0.1 时滞方程 设 f 在 \mathbb{R} 上可微且满足

 $\lim_{x \to +\infty} f'(x) = 1, \quad f(x+1) - f(x) = f'(x), \forall x \in \mathbb{R}.$

证明存在常数 $C \in \mathbb{R}$ 使得 $f(x) = x + C, \forall x \in \mathbb{R}$.

证明 由 $f(x+1) - f(x) = f'(x), \forall x \in \mathbb{R}$ 及 $f \in D(\mathbb{R})$ 可知 $f' \in C(\mathbb{R})$. 对 $\forall x_1 \in \mathbb{R}$, 固定 x_1 , 记

$$A = \{z > x_1 \mid f'(z) = f'(x_1)\}.$$

由 Lagrange 中值定理及 $f(x+1) - f(x) = f'(x), \forall x \in \mathbb{R}$ 可知

$$\exists x_2 \in (x_1, x_1 + 1) \text{ s.t. } f'(x_1) = f(x_1 + 1) - f(x_1) = f'(x_2).$$

故 $x_2 \in A$, 从而 A 非空. 现在考虑 $y \triangleq \sup A \in (x_1, +\infty)$, 下证 $y = +\infty$. 若 $y < +\infty$, 则存在 $\{z'_n\}_{n=1}^{\infty}$, 使得

$$z'_n \rightarrow y \coprod f'(z'_n) = f'(x_1).$$

两边同时令 $n \to \infty$, 由 $f' \in C(\mathbb{R})$ 可得

$$f'(x_1) = \lim_{n \to \infty} f'(z'_n) = f'(y).$$

又由 Lagrange 中值定理及 $f(x+1) - f(x) = f'(x), \forall x \in \mathbb{R}$ 可得

$$\exists y' \in (y, y+1) \text{ s.t. } f'(y) = f(y+1) - f(y) = f'(y').$$

从而 $y' \in A$ 且 y' > y, 这与 $y = \sup A$ 矛盾! 故 $y = +\infty$. 于是存在 $\{z_n\}_{n=1}^{\infty}$, 使得

$$z_n \to +\infty \coprod f'(z_n) = f'(x_1).$$

两边同时令 $n \to \infty$, 由 $f' \in C(\mathbb{R})$ 及 $\lim_{x \to \infty} f'(x) = 1$ 可得

$$f'(x_1) = \lim_{n \to \infty} f'(z_n) = \lim_{x \to +\infty} f'(x) = 1.$$

因此由 x_1 的任意性得,存在C为常数,使得 $f(x) = x + C, \forall x \in \mathbb{R}$.

例题 **0.2** 设 $f \in C^2(\mathbb{R})$ 满足 $f(1) \leq 0$ 以及

$$\lim_{x \to \infty} [f(x) - |x|] = 0. \tag{12.27}$$

证明: (1): 存在 $\xi \in (1, +\infty)$, 使得 $f'(\xi) > 1$.

(2): 存在 $\eta \in \mathbb{R}$, 使得 $f''(\eta) = 0$.

证明 (1) 如果对任何 $x \in (1, +\infty)$, 都有 $f'(x) \le 1$, 那么 $[f(x) - x]' \le 0$ 知 f(x) - x 在 $[1, +\infty)$ 单调递减. 从而

$$-1 \ge f(1) - 1 \ge \lim_{x \to +\infty} [f(x) - x] = \lim_{x \to +\infty} [f(x) - |x|] = 0,$$

这就是一个矛盾! 于是我们证明了 (1).

(2) 若对任何 $x \in \mathbb{R}$, 我们有 $f''(x) \neq 0$. 从而 f''(x) 要么恒大于零, 要么恒小于零, 否则由零点存在定理可得矛盾! 任取 $\xi \in \mathbb{R}$.

当 $f''(x) > 0, \forall x \in \mathbb{R}$, 我们知道 f 在 \mathbb{R} 上是下凸函数. 由 (1) 和下凸函数切线总是在函数下方, 我们知道

$$f(x) \geqslant f(\xi) + f'(\xi)(x - \xi), \forall x > \xi.$$

于是

$$0 = \lim_{x \to +\infty} [f(x) - x] \geqslant \lim_{x \to +\infty} [f(\xi) - f'(\xi)\xi + (f'(\xi) - 1)x] = +\infty,$$

这就是一个矛盾!

当 f''(x) < 0, $\forall x$ ∈ \mathbb{R} , 我们知道 f 在 \mathbb{R} 上是上凸函数. 由 (1) 和上凸函数切线总是在函数上方, 我们有

$$f(x) \leqslant f(\xi) + f'(\xi)(x - \xi), \forall x < \xi.$$

于是

$$0 = \lim_{x \to -\infty} [f(x) + x] \leqslant \lim_{x \to -\infty} [f(\xi) - f'(\xi)\xi + (f'(\xi) + 1)x] = -\infty,$$

这就是一个矛盾! 因此我们证明了 (2).

例题 0.3 设 f 在 [a,b] 上每一个点极限都存在,证明:f 在 [a,b] 有界.

笔记 极限存在必然局部有界,本题就是说局部有界可以推出在紧集上有界.在大量问题中会有一个公共现象:即 局部的性质等价于在所有紧集上的性质.证明的想法就是有限覆盖.

证明 对 $\forall c \in [a,b]$, 由 $\lim_{x \to c} f(x)$ 存在可知, 存在 c 的邻域 U_c 和 M > 0, 使得

$$\sup_{x \in U_c \cap [a,b]} |f(x)| \leqslant M_c.$$

注意 [a,b] $\subset \bigcup_{c \in [a,b]} U_c$, 由有限覆盖定理得, 存在 $c_1, c_2, \cdots, c_n \in [a,b]$, 使得

$$[a,b]\subset\bigcup_{k=1}^n U_{c_k}.$$

故 $\sup_{x \in [a,b]} |f(x)| \leq \max_{1 \leq k \leq n} M_k$.

例题 0.4 设 f 是 $(a, +\infty)$ 有界连续函数, 证明对任何实数 T, 存在数列 $\lim x_n = +\infty$ 使得

$$\lim_{n \to \infty} [f(x_n + T) - f(x_n)] = 0.$$

注 因为 $|f(x+T)-f(x)| \ge 0$, 所以

$$0 \leqslant \lim_{x \to +\infty} |f(x+T) - f(x)| < \overline{\lim}_{x \to +\infty} |f(x+T) - f(x)|$$

原结论的反面只用考虑 $\varliminf_{x \to +\infty} |f(x+T) - f(x)|$ 即可. 若 $\varliminf_{x \to +\infty} |f(x+T) - f(x)| = 0$,则一定存在子列 $x_n \to +\infty$,使得结论成立. 故原结论的反面就是 $\varliminf_{x \to +\infty} |f(x+T) - f(x)| > 0$.

 $^{\circ}$ 笔记 考虑反证法之后, 再进行定性分析 (画 f(x) 的大致走势图), 就容易找到矛盾.

证明 反证, 假设 $\underline{\lim} |f(x+T)-f(x)|>0$, 则存在 $\varepsilon_0>0$, X>0, 使得

$$|f(x+T) - f(x)| \ge \varepsilon_0, \quad \forall x \ge X$$
 (9)

令 $g(x) \triangleq f(x+T) - f(x)$,则若存在 $x_1, x_2 \ge X$,使得 $g(x_1) = f(x_1+T) - f(x_1) \ge \varepsilon_0 > 0$, $g(x_2) = f(x_2+T) - f(x_2) \le -\varepsilon_0 < 0$. 不妨设 $x_1 < x_2$,由 g 连续及介值定理可知,存在 $x_3 \in (x_1, x_2)$,使得

$$g(x_3) = f(x_3 + T) - f(x_3) = 0$$

与(9) 式矛盾! 故 $g(x) \triangleq f(x+T) - f(x)$ 在 $[X, +\infty)$ 上要么恒大于 ε_0 , 要么恒小于 ε_0 . 于是不妨设

$$f(x+T) - f(x) \geqslant \varepsilon_0, \quad \forall x \geqslant X$$
 (10)

从而对 $\forall k \in \mathbb{N}$, 存在 $X_k \geqslant X$, 使得当 $x \geqslant X_1$ 时, 有 x + (k-1)T > X. 于是由(9)式可得

$$f(x+kT) - f(x+(k-1)T) \geqslant \varepsilon_0, \quad \forall x \geqslant X_k \tag{11}$$

因此对 $\forall n \in \mathbb{N}$, 取 $K_n = \max\{X_1, X_2, \dots, X_k\}$, 则由(11)式可知 f(x+kT)-f(x+(k-1)T), $\forall x \geq K_n$, $\forall k \in \{1, 2, \dots, n\}$ 进而对上式求和可得, 对 $\forall n \in \mathbb{N}$, 都有

$$\sum_{k=1}^{n} [f(x+kT) - f(x+(k-1)T)] = f(x+nT) - f(x) \geqslant n\varepsilon_0, \quad \forall x \geqslant K_n$$

任取 $x_0 \ge K_n$,则 $f(x_0 + nT) - f(x_0) \ge n\varepsilon_0$, $\forall n \in \mathbb{N}$. 令 $n \to \infty$,得 $\lim_{x \to +\infty} f(x) = +\infty$. 这与 f 在 $(a, +\infty)$ 上有界矛盾!

命题 0.4

1. 设 $f_n \in C[a,b]$ 且关于 [a,b] 一致的有

$$\lim_{n\to\infty} f_n(x) = f(x).$$

证明: 对 $\{x_n\} \subset [a,b]$, $\lim_{n \to \infty} x_n = c$, 有

$$\lim_{n\to\infty} f_n(x_n) = f(c).$$

2. 设 $f_n(x): \mathbb{R} \to \mathbb{R}$ 满足对任何 $x_0 \in \mathbb{R}$ 和 $\{x_n\}_{n=1}^{\infty} \subset \mathbb{R}$, $\lim_{n \to \infty} x_n = x_0$, 都有

$$\lim_{n \to \infty} f_n(x_n) = f(x_0),$$

证明: $f \in C(\mathbb{R})$.

证明

1. 由 f_n 一致收敛到 f(x) 可知, 对 $\forall \varepsilon > 0$, 存在 $N_0 \in \mathbb{N}$, 使得对 $\forall N \geq N_0$, 当 $n \geq N$ 时, 对 $\forall x \in [a,b]$, 都有

$$|f_n(x)-f_N(x)|<\varepsilon.$$

从而由上式可得

$$|f_n(x_n) - f(c)| \le |f_n(x_n) - f_N(x_n)| + |f_N(x_n) - f_N(c)| + |f_N(c) - f(c)|$$

$$\le \varepsilon + |f_N(x_n) - f_N(c)| + |f_N(c) - f(c)|.$$

$$\overline{\lim_{n\to\infty}}|f_n(x_n)-f(c)|\leqslant \varepsilon+|f_N(c)-f(c)|.$$

再令 $N \to +\infty$, 由 $\lim_{n \to \infty} f_n(x) = f(x), \forall x \in [a, b]$ 可知

$$\overline{\lim_{n\to\infty}}|f_n(x_n)-f(c)|\leqslant \varepsilon.$$

2. 反证, 若 f 在 $x_0 \in \mathbb{R}$ 处不连续, 则存在 $\varepsilon_0 > 0$, 使得 $\forall m \in \mathbb{N}$, 存在 $y_m \in (x_0 - \frac{1}{m}, x_0 + \frac{1}{m})$, 使得

$$|f(y_m) - f(x_0)| \geqslant \varepsilon_0. \tag{12}$$

对 $\forall m \in \mathbb{N}$, 令条件中的 $x_0 = y_m$, $x_n \equiv y_m$, $\forall n \in \mathbb{N}$, 从而由条件可知 $\lim_{n \to \infty} |f_n(y_m) - f(y_m)| = 0$, $m = 1, 2, \dots$, 故 对 $\forall m \in \mathbb{N}$, 存在严格递增的数列 $n_m \to +\infty$, 使得

$$|f_{n_m}(y_m) - f(y_m)| < \frac{\varepsilon_0}{2}. \tag{13}$$

从而由(12)(13)式可知,对 $\forall m \in \mathbb{N}$,都有

$$|f(y_{n_m}) - f(x_0)| \geqslant \varepsilon_0, \tag{14}$$

$$|f_{n_m}(y_{n_m}) - f(y_{n_m})| < \frac{\varepsilon_0}{2}. \tag{15}$$

因此由(14)(15)式可得,对 $\forall m \in \mathbb{N}$,都有

$$|f_{n_m}(y_{n_m}) - f(x_0)| \ge |f(y_{n_m}) - f(x_0)| - |f_{n_m}(y_{n_m}) - f(y_{n_m})| \ge \varepsilon_0 - \frac{\varepsilon_0}{2} = \frac{\varepsilon_0}{2}.$$
 (16)

注意到 $y_m \to x_0$,于是 $y_{n_m} \to x_0$. 从而由已知条件可知 $\lim_{m \to \infty} f_{n_m}(y_{n_m}) = f(x_0)$. 这与(16)式矛盾! 故 $f \in C(\mathbb{R})$.

例题 0.5 设 $g \in C(\mathbb{R})$ 且以 T > 0 为周期, 且有

$$f(f(x)) = -x^3 + g(x). (17)$$

证明: 不存在 $f \in C(\mathbb{R})$, 使得(17)式成立.

证明 由连续的周期函数的基本性质可知, 存在 M>0, 使得 $|g(x)| \leq M$. 反证, 假设存在 $f \in C(\mathbb{R})$, 使得(17)式成立. 则

$$\lim_{x \to +\infty} f(f(x)) = \lim_{x \to +\infty} \left(-x^3 + g(x) \right) = -\infty, \tag{18}$$

$$\lim_{x \to -\infty} f(f(x)) = \lim_{x \to -\infty} \left(-x^3 + g(x) \right) = +\infty. \tag{19}$$

假设 $\lim_{x\to +\infty} f(x) = A \in \mathbb{R}$, 则存在 $x_n \to +\infty$, 使得 $f(x_n) \to A$. 从而由(17)式可得

$$f(A) = \lim_{n \to \infty} f(f(x_n)) = \lim_{n \to \infty} (-x_n^3 + g(x_n)) = -\infty.$$

上式显然矛盾! 又因为 $f \in C(\mathbb{R})$, 所以 $\lim_{x \to +\infty} f(x) = +\infty$ 或 $-\infty$. 否则, 当 $x \to +\infty$ 时, f(x) 振荡, 则由零点存在定理可知, 存在 $y_n \to +\infty$, 使得 $f(y_n) = 0$, $n = 1, 2, \cdots$. 从而由(18)式可知

$$-\infty = \lim_{x \to +\infty} f(f(x)) = \lim_{n \to \infty} f(f(y_n)) = f(0).$$

显然矛盾!

(i) 若
$$\lim_{x \to +\infty} f(x) = +\infty$$
, 则

$$+\infty = \lim_{x \to +\infty} f(x) = f(+\infty) = \lim_{x \to +\infty} f(f(x)) = \lim_{x \to +\infty} [-x^3 + g(x)] = -\infty.$$

显然矛盾!

(ii) 若
$$\lim_{x \to +\infty} f(x) = -\infty$$
, 则

$$f(-\infty) = \lim_{x \to +\infty} f(f(x)) = \lim_{x \to +\infty} [-x^3 + g(x)] = -\infty.$$
 (20)

从而对上式两边同时作用 f 可得

$$f(-\infty) = f(f(-\infty)) = \lim_{x \to -\infty} [-x^3 + g(x)] = +\infty.$$
(21)

于是(20)式与(21)式显然矛盾!

综上,
$$f ∈ C(\mathbb{R})$$
的解不存在.