Causes of ethnic segregation in a nineteenth century city

The case of Vyborg

Antti Härkönen

2024-09-26

Introduction

Vyborg, a Karelian city

Vyborg, a Karelian city

- castle founded in the late 13th century
- town privileges 1403

Sources

Estimating the size of Russian population

 $\bullet\,$ over 90% of Orthodox in Vyborg Russian

Poll tax records

Table 1: poll tax record columns in 1894

column	description
plot_number	Plot number
taxpayer_men	Men paying poll tax
taxpayer_women	Women paying poll tax
no_tax_men	Men exempt from poll tax
no_tax_women	Women exempt from poll tax
in_russia_men	Men legally residing in Russia proper
in_russia_women	Women legally residing in Russia proper
$total_men$	Total men
$total_women$	Total women
independent	Civil servants, entrepreneurs, and financially
	independent
white_collar	White collar workers
$worker_industry$	Workers in industry
$worker_other$	Other workers
servants	Servants
other	Other employment status
non_resident	Resident elsewhere
orthodox	Orthodox
other_christian	Non-Lutheran and non-Orthodox Christian
$other_religion$	Other religions
draftable	21-year-old males eligible for draft

Estimating the size of Lutheran population

$$P_{Lutheran} = (P_{total_men} + P_{total_women}) - (P_{Orthodox} + P_{other_Christian} + P_{other_religion})$$

Work flow

Sources

Table 2: Sources from the National archives of Finland

Signum	Original year	Digitization process
Town plan of Vyborg. Vyborg military engineer detachment's archive of plans for fortifications and	1878	Georeferenced using ground control points, vectorized manually into shapefile
buildings, 7, 11.		
Vyborg province poll tax registers	1880	Digitized manually into CSV
Financial office of the city of Vyborg, Municipal tax levies and payment registers	1880	Digitized manually into CSV

Population growth

Table 3: Population growth in key areas

District	1822	1880
Centre	1192	2506
St. Anna	244	117
Vyborg suburb	642	756
St Petersburg suburb	1512	2685

Population surface model

Population surface model

Based on Martin, Tate, and Langford (2000).

$$P_i = \sum_{j=1}^N P_j w_{ij}$$

Figure 1: Kernel function

Biweight kernel

Segregation

1700s

Explaining segregation

Regression model (1)

$$O_i \sim MvNormal(\mu, \mathbf{K})$$

$$\mu_i = \beta_{0,k[i]} + \beta_{1,k[i]} ln(W) + \beta_{2,k[i]} C_i$$

$$k \in {1, 2, 3, 4}$$
 $i, j \in {1, 2, 3, \dots 539}$

$$\beta_k \sim MvNormal\left(\theta, \begin{bmatrix} 0.1 & 0 & 0 \\ 0 & 0.1 & 0 \\ 0 & 0 & 0.1 \end{bmatrix}\right)$$

$$\theta \sim MvNormal\left(\begin{bmatrix}0\\0\\0\end{bmatrix},\begin{bmatrix}0.1&0&0\\0&0.1&0\\0&0&0.1\end{bmatrix}\right)$$

Regression model (2)

$$\begin{split} \mathbf{K}_{ij} &= \eta^2 exp(-75\rho^2 d_{ij}^2) + 0.01 \times I_{540} \\ &\qquad \qquad \eta^2 \sim Normal(1, 0.2) \\ &\qquad \qquad \rho^2 \sim Normal(1, 0.2) \end{split}$$

Multilevel Bayesian regression

Variable	Shape	Description
O	540	Normalized proportion of
		Russian Orthodox of the local
		population
W	540	Smoothed total income in a
		location in öre
C	540	Distance to nearest Orthodox
		church in 1799 in kilometres
d	540×540	Distance matrix holding
		pairwise distances between
		plots
	3	Hyperparameter for
	4×3	Linear regression coefficients
		for each district
2	1	Parameter for the covariance
		function
2	1	Parameter for the covariance
		function

Results

Variable	Mean	SD	HDI, 95%	
0	-0.027	0.096	-0.227	0.15
1	0.027	0.085	-0.142	0.193
2	-0.135	0.096	-0.309	0.067
0,0	-0.609	0.299	-1.162	-0.013
0,1	0.104	0.056	-0.009	0.209
0,2	-1.076	0.314	-1.702	-0.487
1,0	0.097	0.3	-0.46	0.743
1,1	0.142	0.14	-0.117	0.433
1,2	-0.037	0.316	-0.625	0.626
2,0	0.118	0.299	-0.509	0.677
2,1	0.119	0.074	-0.024	0.261
2,2	-0.287	0.312	-0.905	0.306
3,0	0.016	0.272	-0.54	0.515
3,1	0	0.069	-0.141	0.135

Variable	Mean	SD	HDI, 95%	
$3,2$ scaled 2	-0.496 0.93 1.0	0.248 0.04 0.099	0.852	-0.024 1.006 1.194

Spline model (1)

$$S_i \sim Normal(\mu_i, \sigma)$$

$$\mu_i = \alpha + \sum_{k=1}^K w_k B_{k,i}$$

 $\alpha \sim Normal(0.45, 0.01)$

 $\sigma \sim HalfNormal(0.05)$

Spline model (2)

$$B = \begin{bmatrix} 1 & 0.687 & 0.295 & 0.02 & 0 & 0 & 0 & 0 \\ 0 & 0.299 & 0.601 & 0.612 & 0.367 & 0.276 & 0.007 & 0 \\ 0 & 0.015 & 0.104 & 0.367 & 0.612 & 0.658 & 0.209 & 0 \\ 0 & 0 & 0 & 0 & 0.02 & 0.066 & 0.784 & 1 \end{bmatrix}$$

 $w_k \sim Normal(0, 0.1)$

Spline model code

```
import pymc as pm

with pm.Model() as model:
    a = pm.Normal("", _a, _a)
    w = pm.Normal("w", mu=_w, sigma=_w, shape=B.shape[1])
    = pm.Deterministic(
    "", a + pm.math.dot(np.asarray(B, order="F"), w.T
))
    = pm.HalfNormal('', _)
    S = pm.Normal("S", , , observed=regression_data['200'])
idata = pm.sample(1000, tune=1000, chains=2)
```


References

Martin, David, Nicholas J. Tate, and Mitchel Langford. 2000. "Refining Population Surface Models: Experiments with Northern Ireland Census Data." *Transactions in GIS* 4 (4): 343–60. https://doi.org/https://doi.org/10.1111/1467-9671.00060.