BEST AVAILABLE COPY

특 1999-0077891

引用例2の写し

(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(51) Int. CI.* HD4J 13/00

(11) 공개번호 특1999-0077891 (43) 공개일자 1999년10월25일

(21) 출원번호	10-1999-0008667
(22) 출원일자	1999년 03월 15일
(30) 우선권주장	1019980009389 1998년03월14일 대한민국(KR)
• •	1019980014878 1998년04월25일 대한민국(KR)
(71) 출원인	삼성전자 주식회사 요중용
	경기도 수원시 팔달구 매탄3동 416
(72) 발명자	김영기
	서울특별시 강남구 대치동 선경마파트 12동 1401호
	안재민
	서울특별시 강남구 일원본동 푸른삼호마파트 109동 303호
	윤순영
	서울특별시 송파구 가락동 165번지 가락한라이파트 3동 407호
	감희원
	서울특별시 중랑구 면목7동 1499번지 용마동아마파트 102동 902호
	미현석
	서울특별시 송파구 잠실3동 주공04단지 420동1 06호
	박진수
	지근다 서울특별시서초구반포4동70-1한신서래아파트3동306호
	김재열
	경기도군포시산본2동산본9단지백두미파트980동1401호
(74) 대리인	이건주

(54) 부호분할다중접속 통신시스템에서 서로 다른 프레임 길이를 갖는 메시지를 인터믹스하며 송수신하 는 장치 및 방법

ደኛ

부호분할다중접속 통신시스템의 승신장치가, 제2비트열의 제2데이타를 입력하여 부호화하고 제2프레임 길이를 가지는 제2프레임 메시지를 발생하는 제2메시지발생기와, 제2데이타의 입력 중 제2비트열 보다 작은 비트열의 제1데이타 입력시 제1데이타를 부호화하고 제2프레임 길이보다 짧은 제1프레임 길이를 가지는 제1프레임 메시지를 발생하는 제1메시지발생기와, 제1프레임 길이의 구간에 대응하는 제2프레임 메시지의 구간 중 일부를 제1프레임 메시지로 대체하는 멀티플렉서와, 멀티플렉서의 출력을 확산하여 송신하는 확사기로 표현되다. 산기를 포함한다.

四班도

*도8*6

4001

intermix, frame length, dedicated channel, frame message,

BANA

도면의 간단한 설명

도 18는 호 성립 과정을 도시하는 흐름도이고, 도 16는 호 해제 과정을 도시하는 흐름도

도 2a는 본 발명의 실시예에 따른 전용제어채널의 제1프레임 메시지의 구성을 도시하는 도면이고, 도 2b는 본 발명의 실시예에 따른 전용제어채널의 제2프레임 메시지의 구성을 도시하는 도면이며, 도 2c는 본 발명의 실시예에 따른 전용제어채널의 제2프레임 메시지의 구성을 도시하는 도면

도 3a는 본 발명의 실시예에 따른 이동통신 시스템의 전용제어채널에서 제2프레임 메시지를 사용하는 경 우의 전송 시간을 도시하는 도면이고, 도 3b는 본 발명의 실시예에 따른 이동통신 시스템의 전용제어채널 에서 제1프레임 메시지를 사용하는 경우의 전송시간을 도시하는 도면

도 4는 본 발명의 실시에에 따른 이동통신 시스템에서 역방향 전용제어채널 및 전용트래픽채널의 할당 및 해제 절차를 도시하는 호롱도

도 5는 본 발명의 실시 예에 따른 이동 통신 시스템에서 순방향 전용채널 송신기의 구성을 도시하는 도면

도 Ga - 도 Gc는 도 5에서 직교부호변조기 및 확산변조기의 구성을 도시하는 도면

도 7은 본 발명의 실시 예에 따른 이동 통신 시스템에서 역 방향 전용제어채널 승신기의 구성을 도시하는 도면

도 8a - 도 8b는 본 발명의 실시 예에 따라 제1프레임 및 제2프레임 메시지가 인터믹스되어 전송되는 특 성을 도시하는 도면

도 9a,도 9b,도 9c,도 9d는 본 발명에 [[다른 20ms프레임과 5ms프레임의 각각의 병합 경우를 도시하는 도면

도 10a,도 10b,도 10c,도 10d는 각각의 병합경우에 따른 프레임 전송 패턴을 도시한 도면.

도 11은 본 발명의 실시 예에 따른 다중길이 프레임 병합 시스템을 도시하는 도면.

도 12는 도 11의 구성 중 제2프레임 메시지 발생기의 인터리버 구조를 도시하는 도면.

도 13은 도 11의 구성 중 선택기의 구조를 도시하는 도면:

도 14a 및 도 14b는 천공행렬1과 2에 대응하는 인터리버를 사용할 경우, AWGN 채널 하에서 각각의 성능을 나타내는 그래프.

_15는 본 발명의 실시 예에 따른 부호분할다중접속 통신시스템에서 전용채널 수신기의 구성을 도시하는

_16은_본_발명의 실시_예에 따라 5ms 프레임 길이 및 20ms 프레임 길이를 갖는 프레임 메시지의 시뮬 레이션 결과를 도시하는 도면

발명의 상체관 설명

발명의 목적

발명이 속하는 기술분야 및 그 분야의 중래기술

분 발명은 부호분할다중접속 통신시스템의 통신장치 및 방법에 관한 것으로, 특히 다중 길이를 갖는 프레임 메시지를 통신하는 장치 및 방법에 관한 것이다.

현재 이동 통신 시스템은 부호 분할 다중 접속(Code Division Multiple Access: 이하 CDMA라 칭한다) 방 식을 사용하는 것이 일반화되는 추세이다. 증래의 TIA/EIA IS-95 표준(이하 IS-95라 청한다)에 따른 CDMA 이동 통신 시스템은 호 처리를 위한 제어 신호를 전송할 시, 음성정보를 전송하는 트래픽채널(traffic 이동 통신 시스템은 호 처리를 위한 제어 신호를 진송할 시, 음성자의 있다. 이때 상기 트래픽채널은 20ms channel)에 상기 제어 신호를 다중화하여 전송하는 방식을 사용하고 있다. 이때 상기 트래픽채널은 20ms 의 고정된 프레임 길이를 가지며, 제어 신호를 실은 신호 트래픽은 블랭크앤버스트(blank-and-burst)에 의해 프레임 전체를 제어메시지를 전송하거나 또는 딤앤버스트(dim-and-burst)에 의해 주 사용자 트래픽 기화에 프레임을 고요하여 제어시하를 전송하였다. 과 함께 프레임을 공유하여 제어신호를 전송하였다.

음성 트래픽 채널(voice traffic channel or fundamental channel)과 패킷 트래픽 채널(packet traffic channel or supplemental channel)을 구비하게 될 것이다.

따라서 상기와 같이 CDMA 이동통신 시스템이 상기 기본채널(음성 트래픽채널)과 부가채널(패킷 트래픽채널)로 데이터 서비스를 하게 될 경우, 증래의 CDMA 이동통신 시스템은 기지국과 이동국의 통신이 이루어 지지 않고 있는 상태에서도 제머신호의 전송을 위해 항상 기본채널을 유지하여야 하므로 채널의 낭비를 초래하는 동시에 무선 용량의 낭비가 초래하게 된다. 또한 종래의 CDMA 이동통신 시스템은 실제 전송되는 메시지의 크기에 상판없이 20ms의 고정된 단일 프레임 길이를 사용하므로, 처리량(throughput)이 저하되 고 트래픽 지연(delay)이 길머지는 문제를 야기시킬 수 있다.

발명이 이루고자 하는 기술적 과제

따라서 본 발명의 목적은 부호분할다중접속 통신시스템에서 프레임 길이가 다른 프레임 메시지들을 송수 신할 수 있는 장치 및 방법에 관한 것이다.

본 발명의 다른 목적은 부호분할다중접속 통신시스템에서 프레임 길이가 다른 프레임 메시지들을 인터믹 스하며 송신할 수 있는 장치 및 방법에 관한 것이다.

본 발명의 다른 목적은 부호분할다중접속 통신시스템에서 프레임 길이가 다른 프레임 메시지들이 병합된 메시지를 수신할 수 있는 장치 및 방법에 관한 것이다.

본 발명의 다른 목적은 부호분할다중접속 통신시스템에서 긴 프레임 메시지가 전송되고 있는 중에 짧은 길이의 프레임 메시지가 발생될 시 상기 긴 프레임 메시지를 상기 짧은 프레임 메시지 길이 만큼을 천공 하고, 천공된 구간에 상기 짧은 길이의 프레임 메시지를 인터믹스하여 송신할 수 있는 장치 및 방법을 제 공할에 있다.

본 발명의 또 다른 목적은 긴 프레임 메시지가 전송되고 있는 중에 짧은 길이의 프레임 메시지가 발생될 시 상기 긴 프레임 메시지를 상기 짧은 프레임 메시지 길이 만큼을 지연하고, 상기 지연되는 구간에 상기 짧은 길이의 프레임 메시지를 송신한 후 상기 긴 프레임 메시지의 나머지를 송신할 수 있는 장치 및 방법 을 제공함에 있다.

본 발명의 또 다른 목적은 긴 프레임 메시지가 전송되는 있는 중에 짧은 길이의 프레임 메시지가 발생될 상기 긴 프레임 메시지의 전송을 중단하고 상기 짧은 길이의 프레임 메시지를 송신할 수 있는 장치 및 방 법을 제공합에 있다.

부호분할다중접속 통신시스템에서 프레임 메시지를 승신하는 장치가, 제2비트열의 제2데이타를 입력하여 부호화하고 제2프레임 길이를 가지는 제2프레임 메시지를 발생하는 제2메시지발생기와, 상기 제2데이타의 입력 중 상기 제2비트열 보다 작은 비트열의 제1데이타 입력시 상기 제1데이타를 부호화하고 상기 제2프 레임 길이보다 짧은 제1프레임 길이를 가지는 제1프레임 메시지를 발생하는 제1메시지발생기와, 상기 제1 프레임 길이의 구간에 대응하는 상기 제2프레임 메시지의 구간 중 일부를 상기 제1프레임 메시지로 대체 하는 멀티플렉서와, 상기 멀티플렉서의 출력을 확산하며 승신하는 확산기를 포함한다.

부호분할다중접속 통신시스템에서 프레임 메시지를 송신하는 방법이, 제2비트열의 데이타를 부호회하여 제2프레임 메시지를 발생하는 과정과, 상기 제2비트열 보다 짧은 제1비트열의 데이타를 부호회하며 상기 제2프레임 메시지 길이 보다 짧은 제1프레임 메시지를 발생하는 과정과, 상기 제2프레임 구간 중에서 상기 제1프레임 메시지에 대응하는 프레임 구간을 상기 제1프레임 메시지로 대체하는 과정과, 상기 대체된 프레임 메시지를 전송하는 과정을 포함한다.

발명의 구성 및 작용

여기서 이하 본 발명의 바람직한 실시에 들의 상세한 설명이 첨부된 도면들을 참조하며 설명될 것이다. 도면들 중 동일한 부품들은 가능한 한 어느 곳에서든지 동일한 부호들을 나타내고 있음을 유의하여야 한 다.

하기 설명에서 각 채널들에서 전송되는 프레임들의 길이, 부호화율, 그리고 각 채널들의 블록에서 출력되는 데이타 및 삼볼들의 수 등과 같은 특정 상세들이 본 발명의 보다 전반적인 이해를 제공하기 위해 나타나 있다. 이들 특정 상세들 없이 또한 이들의 변형에 의해서도 본 발명이 용이하게 실시될 수 있다는 것은 이 기술분야에서 통상의 지식을 가진 자에게 자명할 것이다.

본 발명의 실시예에 따른 CDMA 이동통신 시스템은 음성 등을 통신하기 위한 기본채널, 데이터 등을 진송하기 위한 부가채널, 그리고 기지국과 통신 상태의 이동국이 전용으로 제머신호를 통신할 수 있는 전용제 대체널(Dedicated Control Channel: DCM)를 구비한다. 상기 기본채널 및 부가채널은 트래픽 채널이된다. 또한 상기 전용제어채널은 기지국과 암의의 이동국이 통신시 다른 이동국들과 독립적으로 제머신호를 통신하기 위해 전용으로 사용되는 제어채널로써, 트래픽 채널의 연결을 제어하는 신호물을 주고받기위한 채널을 의미한다.

상기 기본채널, 부가채널 및 전용제어채널은 전용채널이 된다. 본 발명의 실시예에 따라 전용채널을 사용하는 CDMA 이동통신 시스템은 상기 전용채널을 이용하며 프레임 메시지를 통신할 시, 프레임 메시지의 크기에 따라 각각의 다른 메시지 크기를 갖는 제 1길이 프레임 및 제2길이 프레임을 사용한다. 즉, 통신하고 자하는 메시지의 크기가 작은 경우에는 제1프레임 메시지를 생성하여 전송하고, 큰 경우에는 제2프레임 메시지를 생성하여 전송하다. 본 발명의 실시예에 따른 다른 길이를 갖는 복수의 프레임 메시지들을 송수신 방법은 상기와 같이 트래픽 채널 및 전용제어채널에 모두 적용할 수 있으며, 여기서는 전용제어채널을 예로들어 설명하기로 한다. 즉 채널의 증류에 관련없이 복수의 프레임 길이를 가질 수 있는 채널에 적용할수 있음은 자명하다.

상기 전용제어채널을 사용하는 CDMA 이동통신 시스템에서 통신하고자 하는 제어메시지의 유무를 검사한후, 전송할 제어신호가 없는 경우에는 전용제어채널의 출력을 차단하고 실제 전송할 제어메시지가 존재하는 경우에만 전용제어채널의 출력 통로를 형성한다.

상기와 같은 순서로 본 발명의 실시예에 따른 CDMA 이동통신 시스템의 동작을 살펴본다.

상기 전용제어채널은 기지국과 미동국 간에 트래픽 채널의 연결을 제어하는 메시지들을 주고 받기 위한 채널이다. 상기 전용제어채널의 구조를 설명하기 전에 본 발명의 실시예에 따른 CDMA 미동통신 시스템에 서 사용되는 채널을 및 용도는 다음과 같다. 먼저 순방향 링크(forward link: 기지국에서 송신하고 이동국에서 수신하는 RF 링크)의 채널들을 살펴보면, 공동 채널(common channel)들은 파일럿 채널(pilot channel), 동기 채널(sync channel), 호출 채널 (또는 공동제어채널: common control channel)들로 이루어진 채널 구조를 가지며, 사용자별 채널(user channel)들은 전용제어채널, 음성트래픽채널, 패킷트래픽채널로 이루어진 채널 구조를 가진다. 그리고 역 다음에 함께 함께 하는 마당 리의 채널들을 살펴보면, 공동 방향 링크(reverse link: 이동국에서 송신하고 기지국에서 수신하는 RF링크)의 채널들을 살펴보면, 공동 방향 링크(reverse channel, 또는 공동제어채널)이 있으며, 사용자별 채널들은 파일럿채널, 전용제 대체널, 음성트래픽채널, 패킷트래픽채널로 이루어진 채널 구조를 가진다.

따라서 상기 부호분할다중접속 통신 시스템에서 기지국 및 단말기의 채널 송수신장치는 채널 이득과 위상을 추정하며 셀 획득 및 핸드오프를 위해 사용되는 파일럿채널 송수신기와, 초기 동기 기능을 수행하는 동기채널 송수신기와, 미동국 호출메시지를 전송하고 기지국정보와 접근채널정보 및 인접 셀 정보를 제공 동기채널 송수신기와, 미동국 호출메시지 전송 및 호출응답 기능을 수행하는 접근채널 송수신기와, 음성 대하는 호출채널 송수신기와, 발호메시지 전송 및 호출응답 기능을 수행하는 접근채널 송수신기와, 음성 대이단를 송수신하는 전용기본채널 송수신기와, 상기 이단를 송수신하는 전용기본채널 및 전용부가채널의 설정 및 해제, 통신 상태 등에 관련된 제어메시지를 송수신하는 전용제 어채널 송수신기 등으로 구성된다.

상기와 같은 순방향 링크 및 역방향 링크의 각 채널의 서비스별 사용 방법은 하기 <표 1>과 같다.

[# 1]

	[# I]	· · · · · · · · · · · · · · · · · · ·
서비스	순방향링크 채널	역방향링크 채널
음성	파일럿채널	파일럿채널
80	음성트래픽채널	음성트래픽채널
고품질 음성	파일럿채널	파일럿채널
E8E 00	음성트래픽채널	음성트래픽채널
	전용제어채널	전용제어채널
고속 패킷 데이타	파일럿채널	파일럿채널
	패킷트래픽채널	패킷트래픽채널
	전용제어채널	전용제머채널
멀티미디어	파일럿채널	파일럿채널
	음성트래픽채널	음성트래픽채널
	패킷트래픽채널	패킷트래픽채널
Ì	전용제머채널	전용제어채널
	호출채널(공동제어채널)	접근채널(공동제머채널)
짧은 메시지 서비스	파일럿채널	파일럿 채널
20 0 11 41 4 1 4 2 1	호출채널(공동제어채널)	접근채널(공동제어채널)

CDMA 이동통신 시스템은 서비스 상태에 따라 휴지 모드(ldle mode), 음성 모드 (음성트래픽채널 사용 모드), 패킷예약 모드 (패킷트래픽채널 사용 모드), 패킷경쟁 모드(공동제어채널 사용 모드), 그리고 이들 의 조합들이 있을 수 있다. 전용제어 채널은 이 중 패킷예약 모드 서비스 (즉 패킷트래픽채널을 사용하는 이 서비스)를 제공하는 호에서 무선적으로 사용된다. 이빠 전용제생널은 패킷데이터 서비스를 사용하는 이 동국별로 할당된다. 예외적인 경우로 (본 발명의 기업 ldea를 이용하여 이 분야의 통상의 지식을 가진 동국별로 할당된다. 예외적인 경우로 (본 발명의 기업 ldea를 이용하여 이 분야의 통상의 지식을 가진 자라면) 최선 모드 서비스인 고품질 음성 서비스에서도 전용제어채널을 음성트래픽채널과 함께 사용할 수 있으며, 이때는 전용제어채널을 여러 이동국이 공유하는 것도 가능하다.

상기 패킷데이터 서비스를 위한 호 처리는 IS-95 호처리방식과 호환성이 있다. 패킷데이터 서비스의 호 설정(call setup)에서는 IS-95의 발호 메시지와 채널할당 메시지를 패킷데이터 서비스를 지원하도록 수정 한 메시지를 사용하며, 호 해제(call release)에서는 IS-95 해제명령 메시지를 패킷데이터 서비스를 지원 히도록 수정한 메시지를 사용한다. 한 실행 예로 단말발 호설정 절차 및 단말발 호해제 절차는 도 la 및 도 lb와 같다. 상기 도 la 및 도 lb는 이동국에서 호 설정 및 호 해제하는 예를 도시하고 있다.

상기 도 1a를 참조하면, 이동국은 111단계에서 동기채널을 통해 기지국과 이동국 간의 시스템 동기를 맞 추며, 기지국은 113단계에서 호출 채널을 통해 시스템, 접근채널, 인접엘 파라미터 정보들을 이동국에 전 추마, 기지국은 113단계에서 호출 채널을 통해 보호 메시지를 출력하며, 기지국은 117단계에서 송한다. 그러면 단말기는 115단계에서 접근채널을 통해 발호 메시지를 출력하며, 기지국은 117단계에서 호출 채널을 통해 발호 메시지에 대한 응답을 하고, 119단계에서 통신을 위한 채널들을 활당한다. 상기와 호출 채널을 통해 발호 메시지에 대한 응답을 하고, 119단계에서 통신을 위한 채널들을 활당한다. 상기와 같이 기지국과 단말기 간에 통신을 위한 채널들이 활당되면, 121단계에서 호 성립 상태가 되며, 이때 순 방향 링크 및 역방향 링크의 전용제어채널도 활당된 상태가 된다.

상기 도 1b를 참조하면, 호 성립 상태에서 설정된 호를 해제하는 경우, 미동국은 151단계에서 역방향 전용제 다 하고 하지를 요구하는 제어메시지를 전송하며, 기지국은 153단계에서 호 해제를 위한 제 어머시지를 출력한다.

상기 도 1a 및 도 1b에 도시된 바와 같이, 패킷데이터서비스 호제어 절차에 사용되는 메시지의 IS-95 방 석의 메시지와의 차이점은 다음과 같다. 발호 메시지(도 1a의 I15단계: Origination (Modified))에서는 서비스 옵션에 패킷데이터모드가 추가되고, 채널할당 메시지(도 1a의 117단계: Channel Assignment(Modified))에서는 할당 모드에 패킷데이터 제어채널 할당이 추가되어 전용제어채널 할당 표시

자로 사용되며, 부가 기록 필드에는 전용제어채널 관련 정보(채널 식별자, 채널 피라미터 등)가 포함된다. 또한 상기 해제명령 메시자(도 Ib의 151단계 및 I53단계: Release Order(Modified))에서는 전 용제어채널 관련 정보가 부가 기록 필드에 포함된다. 상기와 같은 호 성립 과정에서 호 설정 관련 메시지 물은 전용제어채널이 설정되기 전이므로, 상기 IS-95 채널들(동기, 호출, 접근 채널)을 통해 전송되고, 이로 인해 전용제어채널(순방향 링크 및 역방향 링크)이 설정된 상태에서는 호제어 메시지들(예를 들어 해제명령 메시지)은 전용제어채널을 통해 전송된다.

상기 전용제머채널은 다음과 같은 특성을 지닌다. 먼저 데이터 율(rate)은 9.6 kbps 또는 14.4 kbps 이고, 프레임 제머메시지는 5ms(기본값) 또는 20ms를 사용하며, 프레임 별 CRC는 16bit(5ms 프레임일 때) 또는 12bit(20ms 프레임일 때)이며, 공유 모드가 아닌 전용 모드에서는 여러 개의 전용제어채널이 필요하며, 경쟁 모드가 아닌 예약 모드 전송인 경우에만 전용제어채널이 동작한다. 본 발명의 실시 예에서는 이하 상기 5ms의 프레임 메시지는 제1프레임 메시지라 청하며, 20ms의 프레임 메시지는 제2프레임 메시지라 청한다. 도 2a - 도 2c는 각각 상기 제1프레임 메시지 및 제2프레임 메시지의 구조를 도시하고 있다.

상기 도 2a는 5ms 주기의 제1프레임 릴미를 갖는 제어메시지 프레임 구성을 도시하는 도면으로, 211은 상위 계층의 고정길이 메시지 구조를 도시하며, 212는 물리계층에서 통신되는 제1프레임 길미를 갖는 제어메시지 프레임의 구조를 도시하고 있다. 상기 고정길이 메시지는 DMCH(Dedicated MAC Channel, MAC: Medium Access Control) 메시지, DSCH(Dedicated Signalling Channel) 메시지 등이 될 수 있다. 도 2b는 20ms 주기의 제2프레임 길이를 갖는 제어메시지 프레임 구성을 도시하는 도면으로, 221은 상위 계층의 가변길이 메시지 구조를 도시하며, 222는 물리계층에서 통신되는 제2프레임 길이를 갖는 제어메시지 프레임의 구조를 도시하고 있다. 상기 가변길이 메시지는 DSCH 메시지가 될 수 있다. 도 2c는 20ms 주기의 제2프레임 길미를 갖는 트래픽 프레임 구성을 도시하는 도면으로, 231은 상위 계층의 트래픽 구조를 도시하며, 232는 물리계층에서 통신되는 제2프레임 길이의 트래픽 프레임 구조를 도시하고 있다. 상기 트래픽은 DTCH(Dedicated Traffic Channel) 탈래픽이 될 수 있다. 제2 프레임 기조를 도시하고 있다. 상기 트래픽은 DTCH(Dedicated Traffic Channel) 탈래픽이 될 수 있다.

상기 전용제어채널의 기능은 패킷 데이터 서비스 관련 제어메시지 전달 (패킷트래픽채널할당메시지, 3계층 제어 메시지 등), IS-95 제어메시지의 캡슐화를 통한 효율적인 전달, 짧은 길이의 사용자 패킷 전달, 순방향 링크에서의 PCB(전력제어비트) 전송 등이 있다.

CDMA 이동통신 시스템의 처리량을 향상시키기 위해서는 전용제어채널의 프레임의 길이는 가변적이어야한다. 특히 기본 프레임 길이를 정수로 나는 길이의 프레임 길이를 사용해야 처리량이 향상된다. 예로서 기본 프레임 길이가 20ms인 경우 5ms 및 10ms의 프레임 길이를 사용할 수 있도록 지원하는 것이 보존되다. 본 발명의 실시예에서는 5ms인 경우로 가정한다. 따라서 상기 도 2a 와 같은 구조를 갖는 5ms 프레임을 사용할 경우, 도 2b와 같은 구조를 갖는 20ms의 프레임을 사용하는 것에 비해 처리량이 늘어나고 지연이 줄어드는 것을 볼 수 있다. 만일, 상기 트래픽 채널이 사용자의 트래픽 데이터로 사용된다면, 상기와 같이 프레임 길이가 다른 프레임 메시지를 사용하는 것은 트래픽 채널에서도 동일하게 적용할수 있으며, 이런 경우 상기와 같이 짧은 제어 메시지를 처리를 효율적으로 수행할 수 있다.

도 3b는 5ms의 제1프레임메시지 프레임을 전송하는 시간을 도시하고, 도 3a는 20ms의 제2프레임 메시지를 전송하는 시간을 도시하고 있다. [따라서 요구(request) 메시지를 보내고, 그에 대한 응답(acknowledge)을 받아 다음 행동을 취할 수 있을 때까지의 시간을 보면, 20ms 프레임을 사용할 경우 상기 도 2b에 도시된 바와 같이 80ms가 걸리는데 반해, 5ms의 프레임을 사용할 경우 상기 도 2a에 도시된 바와 같이 1/4인 20ms가 걸린다. 미것은 물론 각 메시지의 길이가 5ms 프레임에 실을 수 있도록 짧은, 즉 5ms 프레임으로 최대 미득을 얻을 수 있는 경우를 보여준 것이다. 여기서 상기와 같이 처리량이 늘어나는 것은 신호 전송을 효율적으로 함으로써 실제 사용자 데미터가 전송될 수 있는 시간을 늘며 주기 때문이라고 볼 수 있다.

또한 상기와 같이 프레임 길이가 다른 메시지를 전송하므로써 지연시간을 줄이는 방법 이외에, 상기 제2 프레임 메시지와 제1프레임 메시지를 인터믹스(intermix)하며 전송하므로써, 제어신호의 전송시간을 줄일수 있다. 도 84 및 도 85는 제1프레임 메시지가 상기 제2프레임 메시지와 인터믹스될 때, 시간에 따른 전력 크기를 도시하는 도면이다. 하기 설명에서, 상기 '인터믹스'이란 상기 긴 프레임 메시지가 경기 전에 나 상기 긴 프레임 메시지중 일치하는 일부를 영구적으로 대체시켜 상기 짧은 메시지가 상기 긴 메시지 프레임에 삽입되는 것을 의미한다. 상기 영구적인 대체란 상기 대체된 일부가 전송되지 않은 것을 의미한다. 또한, 상기 긴 프레임 메시지중 땐 마지막을 대체시킬 경우, 지연없이 메시지를 전송할수 있다. 여기서 설명의 편의를 위하여, 20ms 메시지 프레임 구간을 4개의 5ms 메시지 프레임 구간 1,2,3,4로 나누머설명한다.

알려한다.
상기 도 8a 및 도 8b를 참조하면, 프레임메시지를 인터믹스하며 전송할 시 5ms 프레임은 20ms 프레임을 4 개의 구간들로 나누었을 때, 그 중 한 구간에 삽입되어 송신될 수 있다. 이때 20ms 프레임의 데이타 중에 서 5ms 프레임의 데이타가 실리는 구간 만큼의 데이타는 손실된다. 즉, 상기 20ms 프레임 메시지지는 인터럽트(interrupt)되어 지고, 상기 5ms 프레임이 삽입된다. 이경우, 상기와 같이 송신 과정에서 20ms 프레임 메시지중 손실된(즉, 전송되지 않는) 5ms의 데이터는 수신 단에서 에러정정코드의 복호 기능을 통해복원된다. 이 때 20ms 프레임에 대한 올바른 수신 확률을 높이기 위해서 송신 측에서 손실된 5ms 이후의나머지 구간의 전력을 증가시켜줄 수 있다. 이것은 전파 매체(propagation medium)에서의 비트 메러를 돌려 있어다. 메로서 도 8a 에서와 같이 20ms 중 제1구간에 5ms 프레임이 인터믹스되어 전송되면 상기 제1구간에 연속되는 20ms 프레임의 나머지 2, 3, 4구간의 전력을 33% 증가시켜준다. 또한 도 8b에서와 같이 20ms 중 구간 2에 5ms 프레임이 인터믹스되어 전송되면, 상기 제2구간에 연속되는 20ms 프레임의 나머지 3, 4구간에 전력을 50% 증가시켜준다. 또한 상기 5ms 프레임과 20ms 프레임 메시지가 인터믹스되어 전송되는 경우, 20ms 프레임 중 손실된 5ms 구간의 영향을 최소화하기 위해서, 20ms 프레임에 대한 인터리버는 열 차환(row permutation) 등의 방법을 사용하여 이 잘려나가는 5ms에 해당하는 비트들이 분산되도록설계한다. 이와 같이 하면 5ms 프레임의 전송이 필요한 경우 20ms 프레임 전송이 시작되거나 진행중이라 문일 때까지 기다리지 않고 바로 전송의 주요의로 지연이 줄어드는 효과를 얻을 수 있다. 상기와같은 구체적인 방법은 후술하는 도 9a-도 14b를 참조하며 상세하게 살펴보기로 한다.

상기 도 8a - 도 8b는 제2프레임 메시지의 일부 구간에서 해당하는 구간의 제2프레임 메시지를 제거한 후 상기 제1프레임 메시지를 삽입하고, 삽입된 제1프레임 메시지 다음의 나머지의 제2프레임 데미터플을 연 숙하여 전승하는 인터믹스의 예를 도시하고 있다. 그러나 상기 제2프레임 메시지에 짧은 길미의 제1프레임 메시지가 인터믹스된 미후의 제2프레임 메시지는 삭제하여 전승할 수도 있다:

상기와 같이 본 발명의 실시예에서 사용되는 전용제어채널 및 트래픽채널은 패킷데이터 통신을 서비스하는 과정을 단계적으로 수행하는 상태를 중 제어유지상태(Control hold status)와 통신상태(Active status)에서 사용된다. 이 때 순방향 링크 및 역방향 링크의 논리채널 및 물리채널들의 관계는 하기 <표 2>와 같다.

[# 2]

		-					
	순빙	향 링크	역방향 링크				
	논리채널	물리채널	논리채널	물리채널			
Control hold	DMCH	전용제머채널	DMCH	전용제어채널			
status	DSCH		DSCH				
Active status	DMCH	전용제이채널	DMCH	전용제어채널			
11001110 010100	DSCH		DSCH				
	DTCH		отсн				
	DTCH	패킷트래픽채널	DTCH:	패킷트래픽채널			

상기 <표 2>에서 상기 전용매체접속제대채널(dedicated MAC channel : DMCH)은 매체접속제대 메시지를 전송하는데 필요한 순방향 채널 혹은 역방향 채널이다. 상기 전용매체접속제대채널은 패킷 서비스의 제대유지상태와 통신상태에서 할당되는 일대일 채널이다.

상기 전용신호채널(dedicated signalling channel : DSCH)은 3계층 신호 메시지를 전승하는데 필요한 순 방향 채널 혹은 역방향 채널이다. 상기 전용신호채널은 패킷 서비스의 제머유지상태와 통신상태에서 할당 되는 일대일 채널이다.

상기 전용트래픽채널(dedicated traffic chamel : DTCH)은 사용자 데미터를 전송하는데 필요한 순방향 채널 혹은 역방향 채널이다. 상기 전용트래픽채널은 패킷 서비스의 통신상태에서 할당되는 일대일 채널이 다

또한 상기 <표 2>에서 상기 제머유지상태는 순방향 및 역방향 링크에 전용매체접속제어채널 DMCH와 전용 신호채널 DSCH가 할당되었지만, 상기 전용트래픽채널 DTCH가 설정만된 상태로 사용자 데이터 패킷을 실은 RLP(Radio Link Protocol) 프레임을 주고 받을 수 없는 상태를 의미한다. 그리고 상기 통신 상태는 순방 향 및 역방향 링크에 상기 채널들 DMCH, DSCH, DTCH가 설정되어 사용자 데이터 패킷을 실은 RLP 프레임을 주고 받을 수 있는 상태를 말한다.

상기 도 2a - 도 2c를 참조하면, 상기 도면들은 상기 논리 채널 메시지 프레임 또는 데이터의 물리 채널 프레임으로의 매핑을 도시하는 도면이다. 여기서 참조부호 211, 221, 231은 논리 채널 메시지 프레임을 도시하고 있으며, 참조부호 212, 222, 232는 물리채널 메시지 프레임을 도시하고 있다.

상기 전용제어채널의 제1프레임 길이를 갖는 제어메시지 프레임 및 제2프레임 길이를 갖는 제어메시지 프레임의 구조 및 동작은 다음과 같다. 전용제어채널의 프레임 길이는 메시지 종류에 따라 동적으로 변화된다. 수신단에서는 매 5ms 마다 프레임 길이 결정이 이루어진다.

패킷채널연결제어모드는 도 2a에 도시된 바와 같이 5ms의 고정길이 메시지를 전송하는 모드로 5ms 요구/ 응답 메시지를 사용하여 순방향 및 역방향 패킷트래픽채널의 요구 및 할당이 이루어진다. 순방향과 역방 향 패킷트래픽채널 할당은 서로 독립적이며 역방향 패킷트래픽채널 할당은 이동국이 순방향 패킷트래픽채널 할 할당은 기지국이 시작한다. 상기 연결제어 메시지에는 패킷트래픽채널 요구 메시지, 패킷트래픽채널 할당 메시지, 패킷트래픽채널 응답 메시지 등이 있다. 상기 메시지들은 논리 채널 중 메어로 전송되는 메 함당 메시지, 패킷트래픽채널 응답 메시지 등이 있다. 상기 메시지들은 논리 채널 중 메어로 전송되는 메 시지에 해당한다. 하기의 <표 3>은 5ms 프레임으로 보낼 수 있는 제1프레임 길이를 갖는 제어메시지 프레 임의 한 예로 역방향 패킷트래픽채널 할당 메시지 필드들을 보여준다.

[# 3]

역방향 패킷트래픽채널 할당 메시지 (24)	비트)
FIELD	LENGTH(bits)
Header Information	5
Sequence	3
Start Time	2
Allocated Rate	4
Allocated Duration	3
Reserved Bits	7

상기 <표 3>에서 각 필드의 내용은 다음과 같다.

Header Information - 메시지 식별자, 방향, 종류(요청, 응답, 등)

BEST AVAILABLE COPY

Sequence - 메시지 순차번호

Start Time - 채널사용시작시간

Allocated Rate - 할당된 채널속도

Allocated Duration - 할당된 채널사용시간

상기 <표 3>과 같은 형태를 갖는 24비트 고정길이 메시지는 도 2d와 같이 전용제어채널의 5ms 프레임으로 전송된다.

도 4는 본 발명의 실시예에 [마라 상기 제어유지상태에서 통신상태로 천이한 후 제어유지상태로 천이하는 과정에서의 전용제어채널을 통한 패킷트래픽채널 할당 및 해제 절차를 도시하는 흐름도이다.

먼저 411단계에서 상기 기지국과 이동국이 전용제어채널이 면결된 제어유지상태를 유지하고 있다고 가정한다. 이런 상태에서 이동국이 413단계에서 전용매체접속제어채널 마(다를 통해 역방향 패킷트래픽채널의 할당을 요구하는 프레임 메시지를 생성한 후 물리채널을 통해 전송하면, 기지국은 415단계에서 역시 상기전용매체접속제어채널 마(다를 통해 역방향 패킷트래픽채널을 활당하는 프레임 메시지를 생성한 후 물리채널을 통해 전송한다. 그러면 상기 기지국과 이동국은 417단계에서 패킷 트래픽채널이 활당되어 패킷 데이터를 통신하는 통신상태로 천이하며, 이런 통신상태에서는 활당된 패킷 트래픽채널을 통해 패킷 데이터를 통신하는 통신상대로 천이하며, 이런 통신상태에서는 활당된 패킷 트래픽채널을 통해 패킷 데이터를 통신 서비스한다. 상기 통신상대가 되면, 이동국은 419단계에서 Teorie 타이터를 초기화시켜 패킷데이터의 전송이 중단되는 시간을 검사한다. 이때 상기 Teorie 타이머의 값이 소멸되기 전에서 패킷 데이터의 전송이 중단되는 시간을 검사한다. 이때 상기 Teorie 타이머의 값이 소멸되기 전에서 패킷 데이터의 지속에 무어지면 패킷 통신 상태를 유지하며, 419단계에서 상기 Teorie 타이머의 값을 초기화하는 과정을 반복 스행하다는

이때 상기 Tach. 타이더의 값이 소멸될 때 까지 패킷 데이타의 통신이 이루어지지 않으면 상기 이동국은 421단계에서 이클 감지하고, 421단계에서 상기 전용매체접속제어채널 메어를 통해 역방향 패킷 트래픽채 널의 해제를 요구하는 프레임 메시지를 생성한 후 물리채널을 통해 전송한다. 그러면 상기 기지국은 상기 프레임 메시지에 응답하며 423단계에서 상기 전용매체접속제어채널 메어를 통해 역방향 패킷 트래픽 채널 의 해제에 대한 응답용 프레임 메시지를 생성한 후 물리채널을 통해 전송한다. 이후 상기 기지국 및 이동 국은 427단계에서 역방향 트래픽채널을 해제한 후 제어유지상태로 천이하여 다음 상태에 대비한다.

상기 도 4에 도시된 바와 같이, 역방향 패킷트래픽채널의 요구 및 할당 과정에서는 이동국이 요구하는 채널 데이터 속도 등의 정보를 포함하는 역방향 패킷트래픽채널 요구 메시지를 생성하여 기지국으로 보내면, 기지국은 이 메시지를 받아 요구된 파라미터를 지원할 수 있는지 확인하고 응답으로 상기 (포장)과 같은 역방향 패킷채널할당용 프레임 메시지를 이동국으로 보낸다. 추가적인 협상이 필요할 경우, 상기와 같은 요구 및 응답 절차가 반복될 수도 있다. 그리고 패킷데이터의 통신을 수행하는 중에서 전승할 패킷 데이터가 없어지면, Tathe ENICH에 설정된 시간 만큼 기다린 후에 패킷트래픽채널 해제 절차로 돌어가다.

스기 가변길이를 갖는 프레임의 전송모드는 도 2b에 도시된 바와 같이 상기 IS-95 방식의 메시지 또는 다른 종류의 3계층 메시지가 될 수 있는 가변길이 메시지를 전용제어채널의 20ms 프레임들에 나누머 실어보내는 것을 말한다. 여기서 세부 전송모드로는 ACK/NACK 응답에 의한 오류 검출 및 정정이 없이 전송하는 모드, 한 가변길이메시지 전체가 수신되었을 때 ACK/NACK 응답이 일어나고, 재전송은 한 가변길이 메시지 전부에 대해 미루어지는 모드, 각 프레임 단위에대해 ACK/NACK 응답이 미루어지는 모드 등이 있을 수 있다.

사용자 데이터 전송모드에서는 상기 도 2c에 도시된 바와 같이 사용자 트래픽데이터를 실은 RLP 프레임들을 전용제머채널의 20ms 프레임들에 나누어 실어보낸다. 상기 사용자 데이타 전송모드는 전송할 데이터량이 작아 이를 전송하기 위한 패킷트래픽채널의 설정이 비효율적인 경우에 사용할 수 있다.

_ 상기와 같이 전용제어채널을 사용하는 CDMA 미동통신 시스템에서 전용 채널의 프레임을 전승하기 위한 물 리적 구현 장치를 살펴본다.

먼저 도 5를 순방향링크의 전용 채널에 대한 프레임 승신장치를 살펴본다. 상기 도 5는 멀티캐리어 (multicarrier)를 사용하는 CDMA 통신시스템의 전용 채널 승신기 구성을 도시하고 있다.

상기 도 5를 참조하면, 메시지 버퍼(message buffer)511은 전용채널을 통해 프레임 메시지를 통신할 시 통신되는 프레임메시지를 일시 저장하는 메모리이다. 상기 데이타 버퍼511의 크기는 20ms의 제2프레임 메 시지를 저장할 수 있어야 하며, 한 프레임 또는 그 이상의 프레임 메시지들을 저장할 수 있는 크기로 설 정할 수 있다. 상기 메시지 버퍼511은 상위 계층의 프로세서(도시하지, 않음)와 모뎀제어기513 간 또는 사 정할 수 있다. 상기 메시지 버퍼511은 상위 계층의 프로세서(도시하지, 않음)와 모뎀제어기513 간 또는 사 용자 데이타 발생기(도시하지 않음)와 모뎀제어기513 간에 프레임 메시지를 인터페이상하는 기능을 수행 한다. 이때 상기 상위계층의 프로세서는 상기 프레임 메시지 메시지버퍼511에 프레임메시지 를 저장하고 이를 표시(flag를 set)하며, 모뎀제어기513은 프레임 메시지를 리드(read)한 후 이를 표시(flag를 clear)하므로써 오버 라이트 및 오버 리드(over-write & over-read)를 방지한다.

모뎀제어기513은 상기 메시지 버퍼511에 저장된 프레임 메시지 를 리드한 후, 메시지의 헤더로 부터 메시지 형태(message type)을 분석하며, 분석된 프레임 의 메시지 형태에 따라 전용채널을 통해 전송하며 사지 형태(message type)을 분석하며, 분석된 프레임 의 메시지 형태에 따른 프레임 선택신호를 출한한다. 여기서 상기 프레임 데이터(or payload)를 출력하는 동시에 분석된 메시지 형태에 따른 프레임 선택신호를 출력한다. 여기서 상기 프레임 데이타의 의 형태는 상기한 바와 같이 도 2k와 같은 5ms의 제1프레임 데이타와 도 2b와 같은 20ms의 제2프레임 데이타 가 되며, 분석된 결과에 따라서 상기 모뎀제어기513에서 출력되는 프레임 데이타의 크기가 달라진다. 즉, 상기 모뎀제어기513은 5ms의 프레임 데이타 이면 제1출력단 541을 통해 상기 <표 3>같은 구조를 갖는 24비트의 제1프레임 데이타를 출력하고, 20ms의 프레임 데이타이면 제2출력단542을 통해 상기 모뎀제어기513은 192비트의 제2프레임 데이타를 출력한다. 또한 상기 모뎀제어기511은 상기 프레임 데이타의 유무를 판단하여 전용제어채널의 출력을 제어한다. 또한 상기 모뎀 데이타이 513은 5ms의 제1프레임 데이타이 데인타이 선택선호를 발생하며, 20ms의 제2프레임 데이타이

면 20ms 제2프레임이면 제2프레임 선택신호를 발생한다. 그리고 상기 모뎀제어기511은 전송할 프레임 메시지가 있는 경우에는 20ms 프레임 메시지 또는 5ms 프레임 메시지가 출력되는 경우에는 제1미득제어신호를 발생한다. 또한 20ms의 제1프레임 메시지와 5ms의 제1프레임 메시지가가 인터믹스(intermix)되어 출력되는 경우, 상기 제1프레임 메시지가 제2프레임 메시지에 인터믹스된 후 남은 20ms의 제2프레임 메시지 구간들에서는 경우 전력을 크게하기 위한 에서 제2미득제어신호를 발생한다. 그리고 상기 프레임 메시지 구간들에서는 경우 전력을 크게하기 위한 에서 제2미득제어신호를 발생한다. 그리고 상기 프레임 메시지 기업을 경우에는 점은 제임합니다. 지가 없는 경우에는 전용제어채널로 승신되는 신호를 제거하기 위한 제3미득제어신호를 발생한다.

에가 없는 항구에는 단당세이제로도 하는지는 단고로 제기하기 되는 제하기 제하는 본 글이번다.

[[[라서 상기 모뎀제어기513은 제1출력단541을 통해 5ms의 제1프레임 데이타를 출력하는 동시에 제1프레임 선택신호 및 제10[독제어신호를 발생한다. 또한 상기 모뎀제어기513은 제2출력단542을 통해 20ms의 제2프레임 데이타를 출력하는 동시에 제2프레임 선택신호 및 제10[독제어신호를 발생한다. 그리고 20ms의 제2프레임 데이타를 출력하는 중에 5ms의 제1프레임 메시지를 인터믹스하여 전승하는 경우(intermix transmission), 제2출력단 및 제2출력단을 통해 각각 제2프레임 데이타 및 제1프레임 데이타를 출력하며, 5ms의 제1 프레임 메시지가 출력되는 구간에서 상기 제1프레임 메시지를 선택하기 위한 제1프레임선택신호를 발생한다. 이후 상기 5ms의 제1프레임 메시지의 전승이 중로되면, 상기 20ms 프레임 주기의 나머지 구간에서 상기 제2프레임 데이타를 선택하기 위한 제2프레임 선택신호를 발생하고, 이때 승신되는 제2프레임 데이타의 송신 전력을 높이기 위하여 제20[독제어신호를 발생하다. 또한 상기 모뎀제어기513은 상기 프레임 메시지가 없는 경우 상기 제30[독제어신호를 발생하다 전용제어채널의 송신 경로를 차단한다.

예로서, 상기 제1프레임 데이터는 5ms의 제1비트열(본 발명의 실시예에서는 24비트)의 제1데이터를 의미하며, 제2프레임 데이터는 20ms의 제2비트열(본 발명의 실시예에서는 172비트)의 제2데이터를 의미한다.

제1CRC발생기515는 수신측에서 프레임의 품질(오류 여부)를 판단할 수 있도록 상기 모뎀제머기513에서 출력되는 24비트의 제1프레임 데이타에 CRC(Cyclic Redundancy Check)를 16비트를 부가하는 기능을 수행한다. 즉, 상기 제1CRC발생기515는 상기 모뎀제어기513의 제어하에 5ms의 프레임이면 16비트의 CRC를 생성하여 40비트의 제1프레임 데이타로 출력한다.

의 212와 같이 48비트로 출력한다.

제1부호기(encoder)519는 상기 제1테일비트 발생기517의 출력을 입력하며 부호화한다. 예를들어, 상기 제 1부호기519는 길쌈부호기(convolutional coder) 또는 터보부호기(turbo coder) 등을 사용할 수 있다. 본 발명의 실시예에서 상기 제1부호기519는 구속장이 9이며 부호화율(coding rate)이 1/3이고 길쌈부호기를 사용한다고 가정한다. 따라서 상기 제1부호기519는 114 심볼의 부호화된 심볼을 발생한다.

제1인터리버(interleaver)521은 상기 제1부호기519에서 출력되는 부호화된 5ms 프레임 메시지를 인터리빙하며 출력한다. 즉, 상기 인터리버521은 5ms의 제1프레임 단위로 프레임 내의 심볼 배열을 바꾸어 버스트 메러(burst error)에 대한 내성을 향상시킨다. 본 발명의 실시 예에서는 상기 인터리버521에서 인터리빙된 출력을 제1프레임 메시지라 청하기로 한다.

여기서 상기 CRC발생기515, 테일비트발생기517, 부호기519 및 인터리버521은 제1프레임 데미타를 입력하 여 제1프레임 메시지로 발생하는 제1메시지발생기550이 된다.

제2CRC발생기516은 수신측에서 프레임의 품질(오류 여부)을 판단할 수 있도록 상기 모뎀제어기513에서 출력되는 192비트의 제1프레임 데이타에 16비트의 CRC비트를 생성하여 부가하는 기능을 수행한다. 즉, 상기 제2CRC발생기516은 상기 모뎀제어기513의 제어하에 20ms의 프레임 데이타이면 12비트의 CRC비트를 생성하 여 184비트의 프레임 데이타 로 출력한다.

제2테일비트발생기518은 오류 정정 부호를 증결하는데 필요한 테일비트를 생성하는 구성으로써, 20ms의 제2프레임 데미타 의 프레임 증료 시점에서 테일비트를 생성 및 부가하여 뒷단의 제2부호기520미 제2프레임 단위로 부호화 기능을 수행할 수 있도록 한다. 상기 제2테일비트발생기518은 8비트의 테일비트를 생성하여 상기 제2CRC발생기518의 출력에 부가하여 도 2b의 222와 같이 192비트로 출력한다.

제2부호기520은 상기 제2데일비트 발생기518의 출력을 압력하여 부호화한다. 예를들어 상기 제2부호기521은 길쌈부호기 또는 터보부호기 등을 사용할 수 있다. 본 발명의 실시예에서 상기 제2부호기520은 구속장이 9이며 부호화물이 1/3이고 길쌈부호기를 사용한다고 가정한다. [따라서 상기 제2부호기519는 576 심물 의 부호화된 데이타를 발생한다

제2인터리버522는 상기 제2부호기520에서 출력되는 부호화된 20ms의 제2프레임 메시지를 인터리빙하여 출력한다. 즉, 상기 인터리버522는 20ms 프레임 단위로 프레임 내의 심볼 배열을 바꾸어 버스트 에러(burst error)에 대한 내성을 항상시킨다. 본 발명의 실시예에서는 상기 제2인터리버522에서 인터리빙된 출력을 제2프레임 메시지라 청하기로 한다.

여기서 상기 CRC발생기516, 테일비트발생기518, 부호기520 및 인터리버522는 제2프레임 데이터를 입력하 여 제2프레임 메시지를 발생하는 제2메시지발생기550이 된다.

다중화기523은 상기 제1인터리버521과 제2인터리버522의 출력을 입력하며, 상기 모뎀제어기513에서 출력되는 프레임 선택신호SCTL에 의해 대응되는 인터리버의 출력을 선택한다. 즉, 상기 다중화기523은 5ms의 제1프레임 선택신호SCTL에 의해 대응되는 인터리버의 출력을 선택한다. 즉, 상기 다중화기523은 5ms의 제2프레임 메시지에 따른 제1프레임 선택신호 발생시 상기 제1인터리버521의 출력을 선택한다. 상기 다중 2프레임 메시지에 따른 제2 프레임 선택신호 발생시 상기 제2인터리버522의 출력을 선택한다. 상기 다중 2프레임 메시지에 따른 제2 프레임 선택신호 발생시 상기 제2인터리버522의 출력을 선택한다. 상기 다중화기는523은 멀티플렉서(multiplexer)를 사용할 수 있다. 이때 상기 모뎀제어기513과 상기 다중화기523은 항기는523은 멀티플렉서(multiplexer)를 사용할 수 있다. 이때 상기 모뎀제어기513과 상기 다중화기523은 상기 제2프레임 메시지를 전승하는 중에 상기 제1프레임 메시지가 발생하거나 또는 제1프레임 메시지와 제2프레임 메시지가 동시에 발생될 시 상기 제2프레임메시지에 상기 제1프레임 메시지를 인터믹스하는 삽입기 기능을 수행한다.

신호변환기(signal mapping block & MUX)525는 상기 다중화기당3에서 출력되는 프레임 메시지를 변환하고 제1채널 및 제2채널로 나누어 출력하는 기능을 수행한다. 즉, 상기 신호변환기525는 상기 제어신호가 1의 논리를 가지면 -1로 변환하고 0의 논리를 가지면 +1로 변환하며, 또한 상기 변환된 신호를 출력할 시 홀수번째 신호 및 작수번째 신호를 나누어 각각 제1채널 및 제2채널로 출력한다. 제0비트십입기(FCB puncture, PCB: Power Control Bit)531은 신호변환기525에서 출력되는 신호들을 입력하며, 상기 신호들에 각각 제0비트를 입력하며, 상기 신호들에 각각 제0비트를 입력하며, 상기 신호들에 한 전력제어비트은 이동국의 역방향 링크 전력을 제어하기 위한 전력제어비트 등이 될 수 있다. 제어비트 삽입기531은 상기 신호변환기525의 출력에 제어비트를 삽입한다.여기서 상기 십입되는 제어비트는 이동국의 역방향링크 전력을 제어하기 위한 전력제어비(PCB)라가정한다.

가장인다.
이득제어기527 및 528은 각각 상기 제어비트 삽입기531에서 출력되는 신호들을 입력하며, 상기 모뎀제어기513에서 출력되는 이득제어신호6CTL에 의해 입력 신호의 이득을 제어하여 출력한다. 즉, 상기 모뎀제어기513에서 제1이득제어신호 발생시 입력신호를 이득 조정 없이 그대로 출력하며, 제2이득제어신호 발생시이득제어신호 발생시 이득제어값에 따라 신호의 송신 전력을 높일 수 있도록 입력신호의 이득을 크게 출력하고, 제3이득제어신호 발생시 상기 입력신호의 이득을 0으로 하여 출력한다. 이때 이득이 0인 인 경우에는 출력되는 신호가 없는 상태이므로 결국 전용제어채널의 출력이 중단되는 상태가 된다. 따라서 상기 이득제어기527 및 528은 상기 모뎀제어기513에서 출력되는 이득제어신호에 따라 송신되는 전용제어채널의 프레임 메시지가 등으로 상태가 된다. 따라서 상기 이득제어시호에 따라 송신하고자 프레임 메시지가 있으면 전용제어채널의 통로를 청성하고 프레임 메시지가 없으면 전용제어채널의 통로를 청성하고 프레임 메시지가 없으면 전용제어 채널의 통로를 차단하는 0TX(Discontinuous Transmission) 모드의 기능을 수행한다. 또한 상기 이득제어기527 및 528은 상기 모뎀제어기513의 제어에 따라 20ms 프레임 메시지와 5ms 프레임 메시지가 다중화될 시 출력신호의 전력을 크게 하는 기능을 수행한다. 여기서 상기 이득제어기527 및 528은 신호의 송신전력을 제어하는 전력제어기가 된다.

직병렬 변환기529는 상기 미득제머기527 및 528에서 출력되는 제머신호를 멀티캐리어 신호를 통해 전승하도록 상기 입력신호를 차례로 여러 출력으로 나누어 출력한다. 직교변조기(orthosonal code modulator)533은 할당된 채널의 직교부호 변호 및 길미를 입력하여 직교부호를 발생하며, 상기 직교부호 와 상기 프레임 메시지를 곱하여 직교 변조한 후 출력한다. 여기서 직교부호(orthosonal code)는 월시부 호(♥ Naish code), 준직교부호(quasi-orthosonal code), m칩 레지스턴스 부호(m-chip resistance code) 등 적교부호 및 준직교부호(quasi-orthosonal code), m칩 레지스턴스 부호(m-chip resistance code) 등 직교부호 및 준직교부호를 모두 청하는 것으로 가정한다. 상기 직교변조기533은 전용 채널을 통해 출력되는 프레임 메시지의 채널을 활당한 직교부호와 곱하여 출력하는 기능을 수행한다. 확산변조기535는 상기 직교변조기533에서 출력되는 직교변조된 신호를 확산시퀀스와 혼합하여 확산 출력한다. 여기서 확산시퀀스는 PN시퀀스(Psuedo Random Noise sequence)를 사용할 수 있다.

상기 직교변조기533 및 확산변조기535의 구성은 도 6a - 도 6c와 같이 구성할 수 있다.

먼저 상기 도 6a를 참조하면, 월시부호발생기(Walsh code generator)615는 전용제대채널에 사용하기 위한 월시부호를 발생한다. 상기 월시부호는 가장 널리 사용되고 있는 직교부호이다. 곱셈기611 및 613은 상기 월시부호발생기615에서 출력되는 월시부호와 각각 대응되는 「채널 및 대채널의 신호를 혼합하며 직교 변조 신호를 발생한다. 확산변조기535는 도시하지 않은 확산시퀀스 발생기에서 출력되는 PN부호(Pseudo Random Noise sequence) PNi 및 PNg를 입력하며 각각 대응되는 「채널 및 0채널의 확산신호를 발생하며 출 력한다. 상기 확산변조기535는 복소PN확산기(complex PN spreader)를 사용할 수 있다.

그러나 상기와 같이 채널 구분을 위해 직교 부호를 사용함에 있어서 ,월시부호만으로 부호의 수가 모자란경우 직교부호의 수를 확대하기 위해 준직교부호(quasi-orthogonal code)를 사용할 수 있다. 즉, 정해진부호 길이에 따라 직교부호 집합(set)이 존재하는데, 예를 들어 부호 길이가 256인 경우 256×256 월시부부호 길이에 따라 직교부호 집합(set)이 존재하는데, 예를 들어 부호 길이가 256인 경우 256×256 월시부호 집합이 존재하고, 이로부터 수(N) (여기서 N은 1보다 큰 자연수) 개의 256×256 준직교부호 집합을 체호 집합은 생성시킬 수 있다. 이와 같이 생성된 준직교부호 집합은 준직교부호와 월시부호 채널간의 간섭이 최소화 되며 준직교부호간의 상관값이 고정된 값이 되는 것을 특성으로 한다.

도6b는 준직교부호를 생성하는 준직교부호 발생기 및 확산 방법을 도시하고 있다. 상기 도 6b를 참조하면, 월시부호 발생기615는 활당된 채널의 월시부호 번호 및 길이에 따른 월시부호를 발생한다. 준참조하면, 월시부호 발생한다. 한지로부호 마스크617은 준직교부호를 발생하기 위한 준직교부호 마스크신호를 발생한다. OR(EXCLUSIVE OR) 직교부호 마스크617은 준직교부호를 발생하기 위한 준직교부호 마스크신호를 발생한다. OR(EXCLUSIVE OR) 연산기619는 상기 월시부호 및 준직교부호 마스크 신호를 비트 별로 EXOR하여 출력하여 준직교부호를 생연한다. 곱셈기611 및 613은 상기 준직교부호 발생기621에서 출력되는 준직교부호와 각각 대응되는 1채널 성한다. 곱셈기611 및 613은 상기 준직교부호 발생기621에서 출력되는 전직교부호와 각각 대응되는 1채널 및 0채널의 신호를 환합하여 순방향 링크의 전용채널의 프레임 메시지로 확산 출력한다. 확산변조기535는 및 0채널의 신호를 환생하여 움직한다. 이용되는 1채널 및 0채널의 확산신호를 발생하여 움직한다.

가산기619는 상기 월시부호 및 준직교부호 마스크 신호를 가산하여 출력한다. 준직교부호 발생기621은 상 기 가산기619의 출력으로 부터 준직교부호를 생성한다. 곱셈기611 및 613은 상기 준직교부호 발생기621에 서 출력되는 준직교부호와 각각 대응되는 「채널 및 인채널의 신호를 혼합하여 순방향 링크의 전용 채널의 서 플러리에 메시지로 확산 출력한다. 확산변조기535는 도시하지 않은 확산시퀀스 발생기에서 출력되는 PN부호(Pseudo Random Noise sequence) PNI 및 PNq를 입력하여 각각 대응되는 「채널 및 Q채널의 확산신호를 말생하여 출력한다.

상기 도 6b를 참조하면, 상기 준직교부호는 월시코드와 준직교부호 마스크를 곱(데이터 값이 0.1로 표현될 경우 EXCLUSIVE OR)함으로써 얻어진다. 상기 준직교부호 발생기에 대한 상세한 구현 방법은 본원출원 인에 의해 선출원된 대한민국특허 출원번호 P1997-46402호(이동통신 시스템의 쿼시 직교부호 생성장치 및 방법)에 개시되어 있다.

상기 도 6a 및 도 6b를 참조하면, 직교부호의 확산은 월시(Walsh) 또는 준직교(Quasi-orthogonal) 확산이 미루머진다. 상기 준직교부호를 사용하면 코드 채널(Code channel)의 수를 수(N) 배로 확장할 수 있고, 따라서 많은 수의 트래픽 채널 사용자가 개별적인 전용제머채널을 쓰는 것이 가능하다. 도 6c는 상기 준직교부호 생성 과정의 다른 구현 방법으로 확산 PN부호를 기초로 한 준직교부호 생성 방법을 도시하고 있다. 상기 도 6a를 참조하면, 월시부호발생기(Walsh code generator)61은 전용 채널에 사용하기 위한 월시부호를 발생한다. 상기 월시부호는 가장 날리 사용되고 있는 직교부호이다. 곱셈기611 및 613은 상기 월시부호발생기615메서 출력되는 월시부호와 각각 대응되는 1채널 및 여채널의 산호를 흔함하여 직교 변조신호를 발생한다. PN마스크653은 PN마스크 신호를 발생하며, PNI 발생기655는 1채널의 PN 시퀀스를 발생한다. 논리곱기657은 상기 PN마스크 신호와 상기 PNI 시퀀스를 비트별로 논리곱하며 1채널의 확산신호를 발생한다. PN마스크654는 PN마스크 신호와 상기 PNI 시퀀스를 비트별로 논리곱하며 1채널 발생산시호를 발생한다. PN마스크654는 PN마스크 신호를 발생하다. PNI 발생기656은 0채널의 PN시퀀스를 발생한다. 논리곱기658은 상기 PNI마스크 신호와 상기 PNI 시퀀스를 비트별로 논리곱하며 0채널의 확산신호를 발생한다.

상기와 한 배와 같이 도 6c는 PNi 및 PNa 발생기의 출력 부호에 특정 PN 마스크를 적용하여 발생시킨 확산 PN부호를 사용한다. 이렇게 하면 각 PN 마스크 당 해나의 준직교부호 집합이 생성되며, 따라서 서로다른 수(N) 개의 PN 마스크를 사용하면 상기 준직교부호 발생기를 사용하며 수(N) 개의 준직교부호 집합을 생성하는 것과 유시한 부호채널 수 확장 효과를 얻을 수 있다.

또 다른 구현 방법으로 상기 PN 마스크를 사용하는 방법과 등가적으로 PN부호를 정해진 chip 수 만큼 쉬 프트(shift)해서 사용함으로써 상기 준직교부호 발생기를 사용하는 것과 유사한 부호채널 수 확장 효과를 얻을 수도 있다.

본글 구도 지나.

또한 전용제어채널의 순방향 링크 또는 역방향 링크에서는 프레임 스테거링(frame staggering)을 적용하는 것이 바람직하다. 상기 프레임 스테거링은 프레임 오프셋(offset)과 동등한 개념으로 각 데이터 채널의 프레임들을 시스템 시간을 기준으로 일정 시간 만큼씩 머긋나도록 전송하는 것을 말한다. 일반적으로 프레임 오프셋을 적용하는 이유는 이동국 또는 기지국의 송수신 데이터 처리 관점에서 프레임 처리 부하(load)를 시간상에 분산시키는 효과를 얻기 위해서 이다. 즉 데이터를 처리하는 공유자원(trunks)의 효율적인 사용을 위해 프레임 스테거링을 구현한다. 증래의 18-95 방식 시스템을 예로 들면, 트래픽 채널 프레임들이 전력제어 구간인 1.25ms의 정수 배 시간 만큼씩 머긋나게(skewing)되도록, 그리고 최대 프레임 오프셋은 18.75ms(1.25ms의 15배)이 되도록 구현할 수 있다. IS-95 방식에서 1.25ms 단위로 기지국 간 오프셋은 18.75ms(1.25ms의 15배)이 되도록 구현할 수 있다. IS-95 방식에서 1.25ms 단위로 기지국 간 오프셋은 주어도 전력제어비트의 균등 분포가 이루어지지 않을 수 있다. 전력제어비트가 균등분포를 이루지 않고 동시에 전송되면 전체 전력이 주기적으로 오르내리는 현상이 일어나게 된다. 따라서 이와 같은 건택변동(fluctuation)을 방지하기 위해 상기 전용 채널에서는 전력제어비트가 1.25ms 상에서 균급하게 분포되도록 하기 위해 1.25ms/12=0.104ms단위로 부호 비트 레벨 (coded bit level) 프레임 스테거링을 한다. 상기 부호비트 레벨 프레임 스테거링(coded bit level frame staggering)을 적용함으로써 전력제어비트 PCB 삽입에의한 전력 변동(fluctuation)을 방지할 수 있다.

상기와 같은 구성을 참조하여 본 발명의 실시예에 따른 전용 채널 승신기의 동작을 살펴보면, 상기 도 5에서 전승할 프레임 메시지의 프레임 길이(5ms/20ms)의 결정은 모뎀제어기513에서 수행된다. 즉, 상기 모뎀제어기513은 상기 메시지 버퍼511에 저장된 프레임 메시지가 24비트의 고정길이를 갖는 프레임 메시지인지를 나타내는 1비트의 MSG Type 판별자를 보고 판별한다. 이때 상기 프레임 메시지가 24비트의 고정길이를 갖는 프레임 메시지를 나타내는 값(MSG Type=1)일 경우 5ms 프레임으로 판단하고, 그 외의 가변길이 메시지를 나타내는 값(MSG Type=1)일 경우 20ms 프레임으로 판단한다. 그리고 상기 모뎀제어기513은 판단된 결과에 따라 입력된 프레임 데이타 를 각각 대응되는 상기 제1프레임 메시지말생기(frame message signal generation block)550 및 제2프레임메시지말생기(50에 출력하며, 상기 제1프레임 메시지말생기(500에 조력하며, 상기 제1프레임 메시지말생기(500에 조력하다, 상기 제1프레임 메시지말생기(500에 조력하다) 위한 프레임 선택신호SCTL을 발생하고, 또한 상기 선택된 제어신호를 출력하거나 차단하기 위한 미득제어신호GCTL을 발생한다.

이때 상기 모뎀제어기513은 하기 <표 4>와 같은 제머신호를 발생한다.

[# 4]

프레임 메시지	SCTL	GCTL	비고
5ms	제1프레임 선 택신호	제1이득제머신호	5ms 프레임 메시지를 그대로 선택 출력
20ms	제2프레임 선 택신호	제1이득제어신호	20ms 프레임 메시지를 그대로 선택 출력
20ms+5ms	제1프레임 선 택신호 및 제2프레임 선 택신호	제1이득제머신호 및 제2이득제머신 호	20ms 프레임 메시지 입력시 20ms 프레임 메시지를 그대로 선택 출력하고, 5ms 프레임 메시지 입력 시점메서 5ms 메시지를 선택하여 조정 없이 그대로 출력하며, 5ms 메시지 종료 후 20ms 프레임 메시지를 선택한 후 제어신호를 크게 하여 출력
X	X	제3이득제머신호	전용 제어 채널의 출력 경로 차단

상기 <표 4>와 같은 동작 과정을 상세히 살펴보면, 상기 제1프레임 메시지발생기550의 각 서브블럭(sub-block) 515, 517, 519 및 521과 상기 제2프레임 메시지발생기560의 각 서브블럭 516, 518, 520 및 522에 표시된 숫자는 각각 5ms 프레임 및 20ms 프레임의 길이에 따른 비트 수를 의미한다.

또한 상기 모뎀제어기513은 전용 제머 채널을 DTX 모드로 제어한다. 즉, 본 발명의 실시예에서는 데이터 서비스를 위한 신호 및 MAC관련된 메시지들이 전용제어채널을 통해 송수신됨으로써 채널 용량의 효율적인 사용을 할 수 있다. 상기 IS-95와 같은 방식에서는 음성 트래픽과 신호 트래픽이 다중화되는 구조이므로, 데이터 서비스를 위해서 음성 및 신호 채널을 항상 열어논다. 그러나 전용 채널은 DTX로 동작하기 때문에 제머신호를 위해 항상 전용 제어 채널을 열어둘 필요가 없다. 보낼 신호정보가 없을 경우 DTX 미득제어부 에서 출력전력을 억제하며 효율적인 무선자원 사용을 할 수 있도록 한다.

상기 DTX 전송모드의 동작을 설명하면, 상기 모뎀제어기513은 상기 메시지 버퍼511에 전송할 제어메시지가 없는 것을 확인하면, 이득제어기525가 전용 제어 채널의 출력을 0로 만들기 위한 제2이득제어신호를 발생한다. 즉 상기 모뎀제어기513은 상기 메시지 버퍼511에 송신할 프레임 메시지가 있으면 제1이득제어신호(predefined gain) 또는 제2이득제어신호(5ms 프레임 메시지가 충력되는 위치에 따라 결정됨)를 발생한다. 송신할 프레임 메시지가 없으면 제3이득제어신호(GCTL = 0)를 출력한다. 상기 이득제어기527, 528 하고, 송신할 프레임 메시지가 없으면 제3이득제어신호(GCTL = 0)를 출력한다. 상기 이득제어기527, 528 수행한 다음에 위치시킬 수도 있다. 또한 본 발명의 실시 메에서는 이득제어 기527 및 528을 사용하여 전용 제어 채널의 DTX 모드를 수행하는 예를 가정하고 있으나, 멀티플렉서523을 미용하여 전용 제어 채널에 전송할 제머신호가 없을 시 신호의 경로를 차단하는 방법을 사용할 수도 있다.

있다. 또한 도 8a 및 도 8b에 도시된 바와 같이 20ms 프레임 메시지와 5ms 프레임 메시지를 인터믹스 전승할 수 있다. 즉, 도 8a 도시된 바와 같이 구간 1에서 5ms 프레임 메시지와 20ms 프레임 메시지가 동시에 입력된 경우, 상기 모뎀제어기513은 5ms 프레임 데이타를 제1프레임 메시지함생기550에 인가하고 20ms 프레임 데이타를 제2프레임 메시지발생기550에 인가하다. 그러면 구간에서 상기 제1인터리버521 및 제2인터리버522는 각각 제1 및 제2프레임 메시지를 출력한다. 미때 상기 멀티플렉서523은 상기 제1프레임 선택신호에 의해 상기 제1인터리버521의 출력을 선택 출력하게 되며, 이득제어기527 및 528은 상기 제1이득제어신호에 의해 출력되는 신호를 그대로 선택하여 출력한다. [마라서 구간 1에서 출력되는 프레임 메시지는 821과 같이 5ms 프레임 메시지가 출력되며, 이때의 출력신호는 본래의 압력신호 레벨로 출력된다. 미후 구간 1이 3파된 시점에서 상기 5ms 프레임 메시지는 중로되므로 상기 멀티플렉서523은 상기 제2프레임 선택신호에 의해 제2인터리버522의 출력을 선택하게 된다. 그리고 이득제어기527 및 528은 상기 제2미득제어신호에 의해 제2인터리버522의 출력을 선택하게 된다. 그리고 이득제어기527 및 528은 상기 제2미득제어신호에 의해 상기 멀티플렉서523에서 출력되는 20ms 프레임 메시지의 등신 전력을 크게 조정하여 출력하게 된다. 이때 상기 20ms의 남은 출력은 구간2, 3, 4를 남겨둔 상태이므로, 도 8a의 812에 도시된 바와 같이 입력신호의 전력레벨 보다 33% 크게 되도록 이득을 제어한다. 이 후 구간4의 시점이 되면, 상기 미득제어기 527 및 528은 이득이 0인 제3미득제어신호에 의해 출력을 차단하는 기능을 수행한다.

527 및 528은 미득미 마인 세3미독세대신포에 의해 출력을 자난하는 기능을 수행한다.

또한 도 8b 도시된 바와 같이 구간 1에서 20ms 프레임 메시지가 수신된 후, 구간 2에서 5ms 프레임 메시지와 20ms 프레임 메시지가 동시에 입력된 경우, 상기 모뎀제어기513은 먼저 구간 1에서 20ms 프레임 메시지를 제2프레임 메시지가 동시에 입력된 경우, 상기 모뎀제어기513은 먼저 구간 1에서 20ms 프레임 메시지를 제2프레임 메시지를 제2프레임 메시지를 제1프레임 메시지발생기550에 인가하고 20ms 프레임 메시지를 제2프레임 메시지를 제2프레임 메시지를 제2프레임 메시지를 제1프레임 메시지발생기550에 인가하고 20ms 프레임 메시지를 제2프레임 메시지를 제2프레임 메시지를 함생한다. 그러면 구간1에서 상기 멀티플렉서523 및 이득제어기527 및 528에 약해 상기 20ms 프레임 메시지가 원래의 신호 레벨로 출력된다. 그리고 구간 20에서는 상기 제1인터리버521 및 제2인터리버522에 각각 5ms 및 20ms의 프레임 메시지들이 출력되지만, 상기 멀티플렉서523은 상기 제1프레임 선택신호에 약해 상기 제1인터리버521의 출력을 선택출력되지만, 상기 멀티플렉서523은 상기 제1프레임 선택신호에 약해 중력되는 신호를 그대로 선택하여 출력한다. 따라서 구간 2에서 출력되는 프레임 메시지는 821과 같이 5ms 프레임 메시지가 출력되며, 이때 출력한다. 따라서 구간 2에서 출력되는 프레임 메시지는 821과 같이 5ms 프레임 메시지가 출력되며, 이때 출력한다. 따라서 구간 2에서 출력되는 프레임 메시지는 821과 같이 5ms 프레임 메시지가 출력되며, 이때 원리 중로되므로 상기 멀티플렉서523은 상기 제2프레임 선택신호에 약해 제2인터리버522의 출력을 선택하게 된다. 그리고 이득제어기527 및 528은 상기 제2프레임 전택신호에 약해 제2인터리버522의 출력을 선택하게 된다. 그리고 이득제어기527 및 528은 상기 제2프레임 전택신호에 약해 제2인터리버522의 출력을 선택하는 기능을 관계 조정하여 출력하게 된다. 이때 상기 20ms의 남은 출력은 구간3, 4를 나가는 상태이므로, 중폭도는 도 86의 822에 도시된 바와 같이 입력신호의 전력 레벨 보다 50% 더 커지도 당에 약해 출력을 차단하는 기능을 수행한다.

상기와 같이 20ms 프레임 메시지가 전송되는 중에 5ms의 프레임 메시지를 전송하거나 또는 5ms 및 20ms 프레임들이 동시에 발생되었을 때, 이 프레임들을 인터믹스하며 전송하는 방법을 구체적으로 살펴본다.

상기 킬미가 다른 프레임들을 인터믹스하여 전송하는 첫 번째 방법은 프레임 킬미가 긴 제2프레임 메시지가 전송되고 있을 때, 프레임 킬미가 짧은 제1프레임 메시지가 발생하면, 상기 제2프레임 메시지의 전송을 중단하여 지연시키고 이 구간에서 제1프레임 메시지를 완전히 전송한 후, 남아있는 제2프레임 메시지를 전송하는 방법이다. 상기와 같은 방법은 제1 및 제2프레임 메시지들이 전부 전송되어가 때문에 복호화할 때의 성능저하는 없다. 그러나, 만약 프레임을 보내는데 있어서 시간에 대한 프레임의 경계가 있다면, 상기와 같은 첫 번째 방법은 두 프레임의 합이 프레임의 시간 경계를 초과하게 된다.

두 번째의 방법은 제2프레임 메시지가 발생되고 있을 때 짧은 프레임 길이의 제1프레임 메시지가 발생하면, 상기 제2프레임 메시지 대신에 상기 제1프레임 메시지가 전송되고, 상기 대체된 제2프레임 메시지 부분은 전송되지 않는다. 제2프레임 메시지의 테일 끝은 지연되는 않는 방식으로 전송된다. 상기와 같은 방법은 프레임 길이가 다른 메시지를 간에 병합이 일어났을 때, 긴 길이의 프레임은 짧은 길이의 프레임의 프레임의 다음의 부분이 대체되므로, 대체된 부분의 정보가 없어진 상태로 전송되기 때문에 복호화의 성능 저길이 만큼의 부분이 대체되므로, 대체된 부분의 정보가 없어진 상태로 전송되기 때문에 복호화의 성능 지원가 이기될 수 있다. 그리고 천공된 프레임 메시지는 천공된 부분만큼의 신호 전력이 손실된다. 그러나 상기와 같은 문제점은 긴 길이의 프레임 메시지심볼 분배기를 어떻게 설계하느냐에 따라 이와 같은 성능 저하를 최소화 할 수 있다.

길쌈 부호의 경우, 한 프레임 구간에서 어느 위치에 있는 심불을 대체시키느냐에 따라 복호화 성능이 달라진다. 작은 프레임의 길이만큼의 수로 대체시켰을 때, 복호 성능이 가장 좋은 위치를 찾고, 이 위치를 인터믹스 과정에서 대체될 위치로 전부 옮겨질 수 있게 할 수 있다면, 상기와 같이 제1프레임 및 제2프레임의 인터믹스 과정에서 발생되는 문제를 개선할 수 있다.

이를 위해서는 먼저 긴 프레임 길이를 갖는 제2프레임 메시지를 작은 프레임의 길이를 제1프레임 메시지 만큼의 길이로 대체시켰을 때, 복호 성능이 가장 좋은 위치를 찾아야 한다. 이를 위해서는 대체 위치를 정하고 이에 대한 복호 성능을 판단해이하는데, 길쌈부호에 대해서는 복호 성능을 측정하는 촉도가 있다. 상기 촉도로서는 부호화 심물들 간의 최연기리를 나타내는 자유거리(d_m, free distance), 비트 오늘의 상한식을 나타내는 전달함수(Transfer function), 심볼들 간의 해밍거리의 분포등이 있다(참고 문

헌: 'Error Control Coding : Fundamentals and Application' - Shu Lin / Daniel J. Costello, Jr.).

각각의 천공위치에 대한 위의 촉도를 구하고 촉도의 성질이 좋은 대체위치를 찾는다. 상기 위치를 병합하는 과정에서 대체될 위치로 전부 옮겨 질수 있게 할 수 있다면 상기 병합 과정에서 야기되는 문제를 개선할 수 있다. 또 다른 한 가지의 원인인 천공된 부분만큼의 신호 전력의 손실은 긴 길이의 프레임에서 대해 위치 이후의 부분을 손실된 신호 전력만큼 큰 전력으로 보범으로서 어느 정도의 전력 손실을 보완할 수 있다.

상기에서의 대체위치를 찾을 때, 가장 좋은 촉도의 성질을 가지는 몇 가지의 위치경우에 대해 실제 실험을 통해서 성능을 판별한다. 이렇게 해서 찾은 위치의 심볼들을 병합(intermix)하는 과정에서 대체될 위치를 고려하여 심볼 분배기를 설계한다. 여기서 상기 심볼분배기는 인터리버가 될 수 있다.

본 실시예에서는 5ms의 프레임을 20ms프레임에 병합시키고, 상기 20ms프레임은 부호을 1/3인 길쌈부호로 정보비트 길이 192비트인 프레임을 부호화할 때를 예로 한다. 이 때,부호화 심볼 수는 576심볼이다. 이하 설명되는 5ms 프레임이라 함은 5ms의 프레임 길이를 가지는 제1프레임 메시지이고, 20ms 프레임이라 함은 20ms 프레임 길이를 가지는 제2프레임 메시지이다.

또한 상기 5ms 프레임미 상기 20ms 프레임에 민터믹스되어 전송되는 경우, 20ms 프레임 중 손실된 5ms 구 간의 영향을 최소화하기 위해서, 20ms 프레임에 대한 민터리버는 열 치환(row permutation)을 수행하며 제거되는 5ms에 해당하는 심불들이 분산되도록 설계한다.

여기서 최적의 인터리버를 천공 행렬(delete matrix)를 통해 알아보면 하기와 같다.

먼저 20ms프레임의 대체부분의 길이가 1/4이므로 천공비트수는 576 / 4 = 144비트이다. 이 때, 576비트 중 어떤 위치의 144비트를 천공시킬 때 복호화 성능이 좋은지를 찾는다. 상기 천공 위치에 따른 경우수가 많으므로 본 실시예에서는 규칙적인 몇가지의 천공형태에 대한 성능 측도를 구해 비교해 본다.

하기 <수학식 1> - <수학식 4>는 각각 천공행렬1 - 천공행렬4의 천공형태를 나타낸 것이다.

$$\mathcal{D}_1 = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & \cdots & 1 \\ 1 & 0 & + & 1 & + & 0 & + & 1 & \cdots & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & \cdots & 1 \end{bmatrix}$$

$$\mathcal{D}_{2} = \begin{bmatrix} 1 & 1 & 0 & 1 & 7 & 1 & 0 & 1 & \cdots & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & \cdots & 1 \end{bmatrix}$$

$$\mathcal{D}_{3} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & \cdots & 1 \end{bmatrix}$$

$$\mathcal{D}_{1} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & \cdots & 1 \end{bmatrix}$$

상기 천공 행렬 1의 경우, 첫째열의 첫째행에 '0'이라 함은 첫 번째 정보비트를 첫 번째 생성다항식 (generator polynominal)으로 부호화한비트를 천공시키는 것을 의미하고, 두째열의 첫째행에 '1'이라 함은 두 번째 정보비트를 첫 번째 생성다항식으로 부호화한비트를 천공시키지 않음을 의미하고, 첫째열의 두째행에 '1'이라함은 첫 번째 생성나항식으로 부호화한 비트를 천공시키지 않음을 의미한다. 예로서 행렬 1에 따른 천공행태로 각각의 병합 경우에 대해 천공했을 때, 천공후의 부호화 심물들은 도 11과 같이 나타난다. 미때, 천공 행렬 1의 경우는 자유거리(dr...)가 11이고, 천공 행렬2의 경우는 자유거리가 12이고, 천공 행렬3의 경우는 자유거리가 10이고, 천공 행렬4의 경우는 자유거리가 10이다. 상기 자유거리는 부호화 심물들간의 최소 해밍거리(hamming distance)를 나타내는데, 이 해밍거리는 부호화 심물들간에 들린 비트의 개수이고, 이 거리가 클수록 목호화 성능이 좋다. 따라서, 상기 천공 행렬 1과 2는 천공 행렬 3과 4에 비해 자유거리 관점에서 좋은 성질들을 가진다. 여기서, 상기 천공

행렬2은 상기 천공 행렬 1보다 자유거리 면에서 좋은 성질을 갖지만 부호화 심불간 해밍거리의 분포관점 에서 천공 행렬101 천공 행렬2보다 좋은 성질을 가진다.

상기 천공 행렬 1에 따른 천공형태를 갖도록 설계한 인터리버는 하기 <표 5>와 같다. 여기서 하기 <표 5>는 부호화된 심볼들의 배열(32×18) 예를 나타내고 있다.

I# 51

	1 m 3)														
1 545	32	65	97	129	161	193	225	257	289	321	353	385	417	449 481	513.
5 5 549	37	69	101	133	165	197	229.	261	293.	325	357	.389	421	453 485	517 [.]
9 553	41	73	105	137	169	201	233	265	297	329	361	393	426	457 48	9 521
13 525	45 55'	77	109	141	173	205	237	269	231	333	365	397	428	3 461	493
17 529	49 56	81	. 113	145	181	209	241	273	235	337	369	401	433	465	497

		- 115	1.40	101	213	245	277	309	341	373	405	437	469	501
21 533	53 85 566	117	149	181	213	243	211	303	041					
25 537	57 89 569	121	153	185	217	249	281	313	345.	377	409	441	473 :	505
29 541	61 93 673	125	157	198	221	253	285	317	349	381	413	445	477	509
2 514	34 66 546	98	130	162	194	226	258	290	322	354	386	418	405	482
6 518	38 70 550	102	134	166	198	230	262	294	326	358	390	422	454	486
10 522	42 74 554	106	138	170	202	234	266	298	330	362	394	426	459	490
14 526	46 78 558	110	142	174	206	237	270	302	334	366	398	430	462	494

18 530	50 562	82.	114	146	1.78	210	.241	274	. 306	338	370	402	434	466	498
22 534	54 566	86	118	150	182	214	245	278	310	342	374	406	438	470	502
26 538	58 570	90	122	154	186	218	249	282	314	346	378	410	442	474	506
30 542	62 574	94	126	158	190	222	253	286	.318	350	.382	414	446	478	510
3 515	36 547	67	.99	131	163	195	.227	259	291	323	356	387	419	451	483
7 519	40 651	71	103	135·	167	199	231	263.	295	327	359	391	423	465	487

11 523	43 655	75	107	139	171	203	235	267	299	331	363	395	427	459	.491
15 527	47 659	79	111	143	175	207	239	271	303	335	370	399	.431	463	495
19 531	51 663	83 .	115	147	179	211	243	275	307	339	.374	403	.435	467	499
23 535	55 667	87	119	151	183	215	247	279	311	343	375	407	439	470	503
27 539	59 671	91	123	155	187	219	251	283	315	347	379	411	.443.	475	507
31 543	63. 675	95	127	159	191	223	255	287	319	351	383	415	447	479	511
4 516	36 548	68	100	132	164	196	228	260	292	324	356	388	420	452	484

8 520	40 552	72	104	136	168	200	232	264	296	328	360	392	424	456	488
12 524	44 556	76	108	140	172	204	236	268	300	332	. 364	396	428	460	492
16 528	48 560	80	112	144	176	208	240	272	304	336	368	400	432	464	496 ·
30 542	62 574	94	126	158	190	222	253	286	318	350	382	414	446	478	510
3 515	36 547	67	99	131	163	195	227	259	291	323	356	387	419	451	483
7 519	40 651	71	103	135	167	199	231	263	.295	327	359	391	423	465	487

20 532	52 564	84	116	148	180	212	244	276	308	340	372	404	436	468	500
24 536	56 568	88	120	152	184	216	248	280	:312	344	376	408	440	472	504
28 540	60 572	92	124	156	188	220	252	284	316	348	380	412	444	476	508
32 544	64 576	96	126	160	192	224	256	288	320	352	384	416	448	480	.512

또한 상기와 같이 천공 행렬 1에 해당하는 인터리버를 설계하였을 경우, 각각의 병합 경우에 대한 승신되는 20ms 프레임의 심불 형태를 살펴보면 도 10과 같다. 여기서 도 10a는 5ms 프레임이 20ms 프레임의 제1 구간에 병합되어 전송되는 경우를 나타낸 것으로, 천공 형태는 상기 천공 행렬 1에 따라 정보 비트 (information bit) 1, 2, 3, 4, 5에 대해 순서대로 첫 번째 심볼 데이터(Sw), 두 번째 심볼 데이터(Sw), 서 번째 심볼 데이터(Sw), Sw, Sw 순으로 천공시킨다. 이때의 심볼들의 전력은 도시된 바와 같이 균등하다. 또한 도 10b는 5ms 프레임이 20ms 프레임의 제2구간에 병합되어 전송되는 경우를 나타낸 것으로, 천공형태는 상기한 도 9a와 동일하나 각각의 심볼이 20ms 프레임 구간중 어느 구간에 속하느나에 따라 전력이 다른다. 즉, 제1구간에 속하는 심볼들은 원래의 전력으로 전송되며, 제3 및 4 구간에 속하는 심볼들은 원래의 전력으로 전송되며, 제3 및 4 구간에 속하는 심볼들은 원래의 전력으로 전송되며, 제3 및 4 구간에 속하는 심볼들은 원래의 전력으로 전송되다. 또한 도 10c는 5ms 프레임이 20ms 프레임의 제3구간에 병합되어 전송되는 경우를 나타낸 것으로, 천공 형태는 상기한 바와 동일하며, 각각의 심볼들이 어느 구간에 속하는 네일 등이 전송되는 경우를 나타낸 것으로, 천공 형태는 상기한 바와 동일하며, 지역으로, 도 10d는 5ms 프레임이 20ms 프레임의 제4구간에 역한도어 전략되는 임물을은 원래의 전력보다 약 100% 증가된 전력값을 갖는다. 마지막으로, 도 10d는 5ms 프레임이 20ms 프레임의 제4구간에 병합되어 전속되는 경우를 나타낸 것으로, 천공 형태는 상기한 바와 동일하고, 심볼들의 전력 또한 원래의 전력으로 송신된다.

도 11은 본 발명의 실시 예에 따른 다중 프레임 길이를 갖는 프레임 메시지들을 인터믹스하며 구성을 도 시하고 있다. 여기서 인터리버713은 상기 천공 행렬 1에 해당하는 상기 <표 5>와 같은 인터리버를 사용한 다. 따라서, 본 실시예는 상기 천공 행렬 1을 적용했을 때의 시스템에 대해서 설명한다. 상기 도 11을 참 조하면, 제1부호기711은 5ms의 부호화된 제1프레임 메시지를 생성하며 출력한다. 여기서 상기 제1부호기711의 출력은 도시하지 않은 인터리버를 통해 인터리방된다. 제2부호기712는 20ms의 부호화된 제2프레임 메시지를 생성하며 출력한다. 인터리버713은 상기 제2부호기712에서 출력되는 상기 20ms의 부호화된 프레임을 입력하며, 상기 천공 행렬 1에 따라 해당 심볼들이 천공되도록 상기 프레임 내의 심볼들의 위치를 섞어준다. 선택기714는 상기 제1부호기711 및 상기 인터리버713의 출력을 입력하며, 프레임 선택신호 대응되는 상기 제1부호기711 또는 상기 인터리버713의 출력을 선택한다. 즉, 상기 선택기714는 5ms 프레임에 따른 제1프레임 선택신호 발생시 상기 제1부호기711의 출력을 선택하며, 20ms 프레임에 따른 제2 프레임 선택신호 발생시 상기 엔터리버713의 출력을 선택하며, 20ms 프레임에 따른 제2 프레임 선택신호 발생시 상기 인터리버713의 출력을 선택한다. 상기 선택기714는 멀티플렉서(multiplexer)를 사용할 수 있다.

전력제어기715는 상기 선택기714의 출력을 입력하며, 이득제어신호에 의해 입력 신호의 이득을 제어하여 출력한다. 즉, 제1이득제어신호 발생시 입력신호를 이득 조정 없이 그대로 출력하며, 제2이득조정신호 발 생시 이득 제어값에 따라 출력 전력을 높일 수 있도록 입력신의 크기를 크게 출력하고, 제3이득조정신호 발생시 상기 입력 신호의 이득을 0으로 하여 출력한다. 이때 이득이 0인 경우에는 출력되는 신호가 없는 상태이므로 결국 채널의 출력이 차단되는 상태가 된다.

이하 5ms 프레임 메시지와 20ms 프레임 메시지를 인터믹스하며 전승하는 과정을 상기 도 11을 참조하며 설명한다.

제1프레임 데이타 발생시 제1부호기711은 이를 부호화하여 5ms의 제1프레임 메시지를 발생하여 선택기714에 출력한다. 그리고 제2부호기712는 제2프레잉 데이타를 입력하여 부호화한 후 제2프레임 메시지를 발생하여 인터리버713으로 출력한다. 그러면 상기 인터리버713에서는 상기 도 9의 각 경우로 병합될 때, 제2프레임 메시지에서 천공되는 심볼들이 상기 천공 행렬 1에 따라 천공되도록 프레임 내의 상기 제2프레임 메시지 내의 심볼들의 위치를 섞어준다. 도 12는 상기 인터리버713을 도시한 것으로, 32개의 지연기743,744,745,...,746을 가지고 있다.

(43, (44, (45,..., (45) / MET)[12] 제 10 전 기 제 10 지연기, 제

들은 선택기714로 입력되어, 또 다른 입력단으로 입력된 5ms 프레임과 인터믹스된다.

도 13은 상기 선택기714를 도시한 것으로, 만약 스위치755가 753과 754를 연결하여 20ms프레임의 제1구간이 출력되고 있을 때 5ms 프레임이 입력이 되면, 상기 5ms 프레임은 지연기731에 입력되어 지연된다. 그리고, 상기 20ms 프레임의 제1구간이 모두 출력되면, 스위치735가 732와 734를 연결하여 지연된다. 그리고, 상기 20ms 프레임의 제1구간이 모두 출력되면, 스위치735가 732와 734를 연결하여 지연된 5ms 프레임의 심불들을 모두 출력시킨다. 이 때, 20ms 프레임의 제2구간의 심불들은 버려지고, 5ms를 모두 출력되면, 다시 상기 스위치735가 733와 734를 연결하여 나머지 20ms 프레임의 심불들을 출력한다. 이렇 출력되면, 다시 상기 스위치735가 733와 734를 연결하여 나머지 20ms 프레임의 심불들을 출력한다. 이렇 출력되면, 다시 상기 스위치735가 733와 734를 연결하여 나머지 20ms 프레임의 심불들을 출력한다. 이렇 경험되는 전력 제어기715로 입력되고, 상기 입력된 심불들증 5ms프레임의 심불들이다 출력될 때까지 심불들을 바로 출력하다가, 5ms프레임의 심물들이다 출력된 역으로 시험되었다. 상기 전략 되면, 부호기2을 통해 출력된 부호화된 20ms 프레임의 상기 존화를 보고 함께 결업에 나타난 것처럼 천공되어진다. 상기한 바는 제2병합인 경우를 예를 들고 있으며, 이것을 보다 상세 결업하면, 먼저, 상기 선택기714는 제1선택신호에 의해 상기 인터리버713으로부터 출력되는 제1지면기, 제5지연기, 제3지연기, 제13지연기, 제17지연기, 제21지연기, 제25지연기, 제29지연기의 심불들을 순서대로 입력하여 전력제어기715로 출력하고, 제2선택신호에 의해 상기 지연기751에 지연되어 있는 5ms 프레임의 심불들을 상기 전력제어기715로 출력한다. 그리고 다시 상기 제1제어신호에 의해 상기 인터리버713의 제3자연기, 제1지연기, 제11지연기, 제15지연기, 제2지연기, 제27지연기, 제31지연기, 제31지연기, 제4지연기, 제8지연기, 제2지연기, 제31지연기, 제31지연기, 제4지연기, 제4지연기, 제2지연기, 제30지연기, 제30지연기, 제30지연기, 제30지연기, 제30지연기, 제10지연기, 제10지연기, 제10지연기, 제20지연기, 제20지연기, 제30지연기의 심물들을 순서대로 입력하여 상기 전략제어기715로 출력한다. 그리고 다시 상기 제1제어신호에 의해 상기 인터리버713의 제2지연기, 제30지연기, 제30지연기, 제10지연기, 제10지연기, 제15지연기, 제20지연기, 제20지연기, 제20지연기, 제30지연기, 제30지연기의 심물들의 천공된 셈이다.

상기와 같은 다중 프레임 병합 시스템은 부호기의 생성다항식(generator polynomial)과 인터리버에 의해 성능이 달라진다. 상기한 비와 같이 한 생성 다항식에 대해서 여러가지 형태의 천공행렬에 따른 천공이 이루어 질때, 각 경우에 대해서 성능 축도가 우수한 천공 행렬을 선택하고, 이에 따른 인터리버를 설계한

도 14는 상기 수학식 1의 천공 행렬 1과 수학식 2의 천공 행렬 2에서 각각의 병합 형태에 따른 성능을 그 래프로 도시한 도면이다. 여기서 도 14a는 상기 천공 행렬 1를 사용하여 인터리버를 디자인 했을 때, 각 각의 병합 형태(병합경우1,2,3)에 따른 성능을 그래프화한 도면이고, 도 14b는 상기 천공 행렬 2를 사용 하여 인터리버를 디자인 했을 때, 각각의 병합 형태(병합경우1,2,3)에 따른 성능을 그래프화한 도면이다.

상기 6a 및 6b 모두 상기 병합 경우 1에서 가장 좋은 성능을 보여주고, 상기 병합 경우 3에서 가장 나쁜 성능을 보여준다. 예를 들어 0.01(1%)의 에러율(error probability)을 가질 때의 각각의 병합형태에 따른 신호대잡음비(Eb/No)를 살펴보면 하기 <표 6가과 같다.

[# 8]

		1		
	에러율이 0.01	일 경우에 신호대	잡음비(Eb/No)	비고
	병합 경우 1	병합 경우 2	병합 경우 3	
천공 행렬 1	2.5 dB	2.6 dB	2.7 dB	0.5 dB
처공 핸럘 2	2.6 dB	2.7.dB	2.8:dB	0.6 d8

상기 <표 6·에서도 알 수 있듯이, 전체적으로 천공 행렬 1을 사용할 경우가 상기 천공 행렬 2를 사용할 경우보다 성능이 좋다. 그리고 병합 경우 1이 병합 경우 2보다 성능이 좋고, 상기 병합 경우 2가 상기 병 합 경우 3보다 성능이 좋다. 상기 <표 6·에서, 상기 비고란은 1995를 포함하며 성능이 가장 좋은 경우와 성능이 가장 나쁜 경우와의 신호대잡음비 차이를 나타낸 것이다. 성능이 좋은 시스템일수록 성능 차이가 작게 나타나므로, 이것을 고려해 볼 때 상기 천공 행렬 1를 사용하는 것이 상기 천공 행렬 2를 사용하는 것보다 더 나은 시스템을 기대할 수 있다.

상술한 바와 같이 본 발명은 다중 프레임을 병합하여 전승하기 위한 다중 프레임 병합시스템의 가장 바람 직한 실시 예로서 상기 천공 행렬 1에 따르는 심볼분배기를 설계하였다.

상기한 비와 같이 5ms 및 20ms 프레임 메시지가 동시에 출력되는 경우, 전용 제머 채널 승신기는 해당 시점에 5ms 프레임 메시지를 선택 출력하고, 이후의 20ms 프레임 메시지의 승신전력을 크게하며 전승한다. 이때 상기 송신되는 프레임 메시지는 부호화 과정에서 1/3 부호화율로 부호화되었으므로, 수신축에서는 이때 상기 송신되는 프레임 메시지는 부호화 과정에서 1/3 부호화율로 부호화되었으므로, 수신축에서는 5ms 주기의 손실에 대한 오류 정정미 가능하다. 따라서 이런 오류 정정 능력을 향상시키기 위하며 제2인 터리버522는 상기한 바와 같이 부호화된 데이타가 골고루 분산되며 인터리빙될 수 있도록 설계하는 것이 바람작하다. 또한 상기 도 8a 및 도 8b는 5ms 프레임 메시지 및 20ms 프레임 메시지가 다중화되는 예를 들었지만, 5ms 프레임 메시지와 20ms 프레임 메시지가 연속하며 출력되는 경우에도 프레임 메시지의 전송 능력이 양호함을 알 수 있다.

상기 도 5는 순방향 링크(기지국→이동국)의 전용 채널 송신장치 구성을 도시하고 있다. 상기 순방향 링 크의 전용 채널 송신장치는 이동국의 송신 전력을 제어하기 위한 전력제어비트를 삽입하기 위한 동작을 수행하여야 한다. 그러나 역방향 링크(이동국→기지국)의 전용 제어 채널 송신장치는 전력제머비트 삽입 기능을 수행하지 않아도 된다.

따라서 상기 역방향 링크의 전용 제어 채널 승신장치는 역방향 링크의 전용 제어 채널 승신장치의 구성은 전력제머비트를 삽입하는 구성, 직렬병렬신호 변환부, 확산부 구조, 길쌈부호화기 레미트(1/3 대신 1/4) 을 제외하면 상기 순방향 링크의 전용 채널 승신장치의 구성과 동일한 구성을 갖는다.

상기 역방향 링크의 전용 채널 승신장치도 상기 순방향 링크의 전용 채널 승신장치와 같이 상기 역방향 전용 채널을 이용하며 프레임 메시지를 통신할 시, 프레임 메시지의 크기에 따라 각각의 다른 메시지 크 기를 판단하고, 판단 결과에 따라 대응되는 프레임을 전송하기 위한 동작을 제어한다. 또한 상기 역방향 전용 채널로 전송하여야 할 프레임 메시지의 유무를 검사한 후, 전송할 제어신호가 없는 경우에는 역방향 전용 채널의 출력을 차단하고 실제 전송할 프레임 메시지가 존재하는 경우에만 상기 역방향 전용 채널의 출력 통로를 형성한다.

상기 도 5는 멀티캐리어 방식을 사용하는 순방향 링크의 전용 채널 송신기 구조를 도시하고 있으며, 도 7 은 싱글캐리어 방식을 사용하는 역방향 링크의 전용 채널 송신기 구조를 도시하고 있다. 따라서 싱글캐리 어 방식을 사용하는 순방향 링크의 전용 채널 송신기 및 멀티캐리어 방식을 사용하는 역방향 전용 채널 송신기를 구성할 수 있음을 알 수 있다.

상기와 같이 역방향 전용 채널 또는 순방향 전용 채널을 통해 승신되는 제어신호들을 수신하는 장치는 프 레임 메시지의 프레임 길이를 판단하며 제어신호를 처리하여야 한다. 이때 상기 순방향 링크 및 역방향 링크의 전용 채널 수신장치는 도 15와 같이 구성할 수 있다.

상기 도 15를 참조하면, 역확산기(despreader)911은 PN확산시퀀스 및 직교부호를 이용하여 수신신호를 역 확산하여 전용 채널의 신호를 수신한다. 결합기(diversity combiner)913은 상기 역확산기911에서 출력되는 여러 경로의 수신신호를 결합하여 출력한다. 결정기(soft decision generator)915는 수신신호를 디코는 여러 경로의 수신신호를 결합하여 출력한다. 결정기(soft decision generator)917은 5ms 프레딩하기 위하여 디지를 값으로 양자화하는 기능을 수행한다. 제1역인터리버(derleaver)917은 5ms 프레임 메시지를 처리하기 위한 크기로 구비되며, 승신시 인터리방된 5ms 프레임 메시지를 원래의 비트 배열로 변환하여 출력한다. 제2역인터리버(deinterleaver)918은 20ms 프레임 메시지를 처리하기 위한 크기로 로 변환하여 출력한다.

구미되며, 등단시 인디디딩인 20mS 프미금 메시시를 전대다 미드 메일도 면관하여 울덕한다. EHOITH919는 일정 시간 주기로 전용 채널로 수신되는 데이타를 디코딩하기 위한 제머신호를 발생한다. 며기서 상기 타이대919는 5ms 프레임 길이를 디코딩할 수 있는 시간 값으로 세트할 수 있다. 이런 경우 상기 타이대919는 5ms 타이대가 된다. 제1복호기921은 상기 타이대919의 출력에 의해 활성화되어 상기 제1적인터리배917에서 울력되는 프레임 메시지를 디코딩한다. 상기 제1복호기921은 5ms의 제1프레임 메시지역인터리배917에서 출력되는 프레임 메시지를 디코딩한다. 상기 제1복호기921은 5ms의 제2프레임 메시지를 복호하기 위한 디코더이다. 제2복호기923은 상기 타이대919의 출력에 의해 활성화되어 상기 제2적인터리배9187에서 출력되는 프레임 메시지를 디코딩한다. 상기 제2복호기923은 20ms의 제2프레임 메시지를 리배9187에서 출력되는 프레임 메시지를 디코딩한다. 상기 제2복호기923은 20ms의 제2프레임 메시지를 리배918가에서 출력되는 프레임 메시지를 디코딩한다. 상기 제1복호기921의 출력을 입력하며, 5ms 프레임에 대한 CRC 검사를 하여 그 결과신호를 출력한다. 제2CRC검출기921의 출력을 입력하며, 5ms 프레임에 대한 CRC 검사를 하여 그 결과신호를 출력한다. 제2대검출기927은 상기 제2복호기927의 출력을 입력하며, 20ms 프레임에 대한 CRC 검사를 하여 그 결과신호를 출력한다. 이때 상기 CRC검출기925 및 927에서 출력되는 결과신호는 참신호(true, 1)과 가짓신호(false, 0)로 출력된다. 본 발명의 실시예에서는 CRC네트를 되는 결과신호는 참신호(true, 1)과 가짓신호(false, 0)로 출력된다. 본 발명의 실시예에서는 CRC네트를 되는 결과신호는 참신호(true, 1)과 가짓신호(false, 0)로 출력된다. 본 발명의 실시예에서는 CRC네트를 되는 결과신호는 참신호(true, 1)과 가짓신호(false, 0)로 출력된다. 본 발명의 실시예에서는 CRC네트를 되는 결과신호는 참신호(true, 1)과 가짓신호(false, 0)로 출력된다. 본 발명의 실시예에서는 CRC네트를 되는 결과인호는 전호의 메시지의 길이를 판단함으로 메시지의 길이를 판단함 때 이용할수 있으로 레임임 메시지 구간에서 각각 수신되는 신호의 메니지를 구하여 프레임 길이를 판단할 때 이용할수 있으로 매임임 유무를 판단할 때에도 이용할수 있다. 프레임길이 결정기(frame length decision block)929는 상기 제1CRC검출기925 및 제2CRC검출기927에서 출력되는 결과신호를 분석하여 전용 채널로 수신되는 프레임 메시지의 프레임 길이를 판정한다. 상기 프레임길이 판정기929는 상기 제1CRC검출기925에서 참신호(true)를 출력하면 상기 제1복호기921의 출력 선택신호를 발생하고, 상기 제2CRC검출기927에서 참신호를 출력하면 상기 제2복호기923의 출력 선택신호를 발생하며, 상기 제1CRC검출기925 및 제2CRC검출기927이 거짓신호(false)를 발생하면 프레임 메러 또는 프레임이 없는 것으로서 상기 복호기921 및 923의 출력을 차단하기 위한 선택신호를 발생한다.

선택기931은 상기 제1복호기921 및 제2복호기923의 출력을 입력하며, 상기 프레임길이 결정기929의 출력 신호에 따라 대응되는 복호데이타를 선택 출력한다. 즉, 상기 선택기931은 상기 프레임길이 결정기929의 출력에 의해 5ms 프레임이면 상기 제1복호기921의 출력을 선택 출력하고, 20ms 프레임이면 상기 제2복호 기923의 출력을 선택 출력하며, 프레임 메시지가 수신되는 않는 주기이면 상기 복호기921 및 923의 출력 을 차단한다.

고덤제머기933은 상기 선택기931의 출력을 입력하며, 복호 데이타 수신시 수신된 프레임 메시지를 메시지 버퍼935에 저장한다. 그러면 상위계층의 프로세서는 상기 메시지 버퍼935에 저장된 제어 메시지를 읽어 처리한다. 또한 상기 모뎀제머기933은 상기 프레임 결정기929의 출력sell 및 sel2를 입력하며, 인터믹스 된 다중 길이의 프레임 메시지가 수신되는 경우 수신되는 제2프레임 메시지 구간에서 상기 제1프레임 메 시지가 삽입된 구간의 메시지를 분리 입력하여 메시지 버퍼935에 출력하는 기능을 수행한다.

상기 도 15를 참조하여 전용 채널 수신장치의 동작을 살펴보면, 역확산기911은 전용 채널의 직교부호를 통해 전용 채널을 통해 수신되는 제머신호를 발생하며, PN시퀀스를 통해 확산된신호를 역확산한다. 상기 와 같은 전용 채널을 통해 수신되는 제머신호물은 승신시의 역과정으로 통해 프레임 메시지 형태로 복원 된다. 미때 상기 제1역인터리버917은 5ms 프레임 메시지를 역민터리빙하기 위한 크기를 가지며, 제2역인 터리버918은 20ms 프레임 메시지를 처리하기 위한 크기를 갖는다.

이후 상기 기지국과 미동국은 상기 프레임 메시지를 처리하기 위하며, 5ms 주기로 상기 제1복호기921은 5ms 프레임의 복호 기능을 수행하며, 상기 제2복호기923은 20ms 프레임의 복호 기능을 수행한다. 그리고 상기 CRC검출기925 및 927은 각각 대응되는 복호기921 및 923에서 출력되는 복호 데이타의 CRC 검사 (decoding & CRC check)을 수행하며 그 결과 값을 프레임길이 결정기929에 출력한다. 그러면 상기 프레 임길이 결정기929는 상기 CRC 검사의 결과에 따라 수신된 프레임 메시지의 프레임 길이를 판명한다.

이때 수신되는 신호가 제1프레임 메시지와 제2프레임 메시지가 인터믹스되어 수신되는 경우, 상기 제1CRC 검출기925는 5ms주기에서 제2CRC검출기925는 20ms 주기에서 각각 참/거짓신호를 발생하게 된다. 이런 경우 상기 프레임 결정기929는 각각 해당하는 참신호가 검출되는 신호에서 sell 및 sel2신호를 발생하게 된다. 그러면 상기 선택기931은 상기 선택신호 sell 및 sel2에 의해 해당하는 복호기921 및 923의 출력을 다. 그러면 상기 선택기931은 상기 선택신호 sell 및 sel2에 의해 해당하는 복호기921 및 923의 출력을 단백한다. 미때 상기 모뎀제어기933도 역시 상기 프레임 결정기929의 선택신호sell 및 sel2를 입력한다. 이런 경우 상기 모뎀 제어기933은 상기 프레임길이 결정기929의 출력에 의해 상기 선택기931에서 출력되는 제1프레임 메시지 및 제2프레임 메시지를 보리하여 메시지 버퍼93에 인가한다. 상기 전용채널 수신장치는 인터믹스된 프레임 메시지가 수신되는 경우 프레임 길이를 결정한 후, 제1프레임 메시지 및 제2프레임 메시지로 분리하여 메시지를 처리한다.

여기서 CRC5가 5ms 프레임 CRC check 결과라 하고, CRC20이 20ms 프레임 CRC check 결과라 하면, 상기 프레임길이 결정기929는 하기 <표 7>과 같은 선택신호를 발생하게 된다.

			1. · · · ·	
CRCZ	출기	프레임길이검출기	선택기	판정 결과
CRC5	CRC20			
true	false	sell	제1복호기 선택	5ms 프레임으로 결정
false	true	sel2	제2복호기 선택	20ms 프레임으로 결정
false	false	disable	복호기 출력 차단	no frame으로 결정
true	true	X	X	X

[# T]

상기 <표 7>에서 상기 CRC5와 CRC20이 동시에 CRC를 검출하는 경우가 발생될 수 있다. 이런 경우 상기 <표 7>에서는 해당 상태를 결정하지 않았지만, 이런 경우는 크게 두가지로 고려하는 것이 바람직하다. 즉, 두 CRC 결과 참(true)으로 검출되는 경우에는 첫 번째 방법은 5ms의 프레임으로을 결정하는 방법이고, 나머지 한 방법은 두 수신 프레임을 모두 선택하는 방법이다.

도 16은 본 발명의 실시에에 따라 전용 채널을 통해 가변적인 프레임 길이를 갖는 프레임 메시지를 처리하는 시뮬레이션(simulation) 결과를 설명하는 도면이다. 상기 도 8을 참조하면, 전용 채널에서 5ms 프레임과 20ms 프레임을 사용했을 때의 처리량(Throughput) 네교 결과를 표시하고 있다. 여기서 순방향 패킷 트래픽 채널(Forward Packet Traffic Channel)은 307.2kbps이며, 20ms(fixed) frame, 1% FER (frame error rate)이다.

黑罗马 豆基

상술한 바와 같이 본 발명의 실시예에 따른 CDMA 이동통신 시스템은 먼저 전용 채널 상에 전송되는 프레임 메시지의 길이를 크기에 따라 다른 길이를 갖는 프레임들로 발생하여 전송하므로써 전용 채널 사용에 의한 처리량 증대 및 지면 감소를 꾀할 수 있다. 두 번째로 프레임 메시지 유무에 따라 전용 채널의 사용 을 불연속적으로 제어하므로써, DTX 모드 전송에 의해 무선용량효율 증대시킬 수 있다. 세 번째로 복수의 프레임 메시지 발생시 다중화하여 전송할 수 있으므로, 프레임 메시지를 신속하게 송수신할 수 있어 패 킷데미터 연결제어 메시지의 처리 효율을 향상시킬 수 있다. 또한 본 발명의 실시예에 따른 미동통신시스 템은 먼저, 채널상에 전송되는 메시지의 길미를 크기에 따라 다른 길미를 갖는 프레임들로 발생하며 전송 하므로써 채널 사용에 의한 처리량 및 지연 감소를 꽤할 수 있다. 세 번째로 길미가 다른 메시지들을 병합하여 전송할 수 있으므로, 메시지 송신을 신속하게 할 수 있어 시호템 성능을 꽤할 수 있다.

(57) 경구의 병위

청구한 1

부호분할다중접속 통신시스템의 승신기에 있어서,

제2비트열의 제2네이타를 입력하여 부호화하고 제2프레임 길이를 가지는 제2프레임 메시지를 발생하는 제 2메시지발생기와;

상기 제2데이타의 입력 중 상기 제2비트열 보다 작은 비트열의 제1데이타 입력시 상기 제1데이타를 부호 화하고 상기 제2프레임 길이보다 짧은 제1프레임 길이를 가지는 제1프레임 메시지를 발생하는 제1메시지 발생기와,

<u>상기, 제1프레임 길미의 구간에 대용하는 상기 제2프레임 메시지의 구간 중 일부를 상기 제1프레임 메시지</u> 로 대체하는 멀티플렉서와,

상기 멀티플렉서의 출력을 확신하여 승신하는 확산기를 포함함을 특징으로 하는 부호분할다중접속 통신시 스템의 송신장치

청구항 2

제1항에 있어서, 상기 멀티플렉서가 제2프레임 메시지가 발생되는 중에 상기 제1프레임 메시지가 발생될 때 상기 멀티플렉싱을 수행하는 것을 특징으로 하는 부호분할다중접속 통신시스템의 송신장치.

청구항 3

제1항에 있어서, 상기 멀티플렉서가, 제2프레임 메시지의 일부와 상기 대체된 제1프레임 메시지 및 나머지의 상기 제2프레임 메시지 순서로 프레임 메시지를 인터믹스하여 출력함을 특징으로 하는 부호분할다중 접속 통신시스템의 승신장치.

청구항 4

제1항에 있어서, 상기 멀티플렉서가, 상기 대체된 제1프레임 메시지 및 상기 제1프레임 메시지 구간이 제 외된 나머지의 상기 제2프레임 메시지 순서로 프레임 메시지를 인터믹스하여 출력함을 특징으로 하는 부 호분할다중접속 통신시스템의 승신장치.

청구함 5

제3항 또는 제4항에 있어서, 상기 멀티플렉서에서 출력되는 인터믹스된 프레임 메시지 중 대체된 제1프레임 메시지 다음에 위치된 제2프레임 메시지의 송신전력을 상기 제1프레임 메시지보다 더 크게 하는 전력 제어기를 더 구비함을 특징으로 하는 부호분할다중접속 통신시스템의 송신장치.

청구항 6

제1항에 있어서, 상기 승신장치가, 제2프레임 메시지중 일부와, 상기 대체된 제1프레임 메시지를 승신하며, 남아있는 제2프레임 메시지는 승신하지 않는 것을 특징으로 하는 부호분할다중접속 통신시스템의 송

청구항 7

제1항에 있어서, 상기 제1프레임 메시지가 5ms 프레임 길이를 가지며 상기 제2프레임 메시지가 20ms 프레임 길이를 갖는 것을 특징으로 하는 부호분할다중접속 통신시스템의 송신장치.

청구항 8

제1항에 있어서, 상기 제2프레임의 메시지 발생기가,

제2 프레임 길이로 입력되는 제2입력데이트에 따른 CRC비트들을 생성하여 부가하는 CRC발생기와,

상기 CRC 발생기의 출력에 테일비트를 생성하여 부가하는 테일비트 생성기와,

상기 테일비트가 부가된 제2프레임 데이터를 설정된 부호화율로 부호화하는 채널부호기와,

상기 제2프레임 길이 단위로 상기 부호화된 메시지를 인터리빙하는 인터리버로 구성된 것을 특징으로 하는 부호분할다중접속 통신시스템의 승신장치.

청구항 9

제8항에 있어서, 상기 인터리버가 한 데이타를 부효화하여 생성되는 심볼들이 전체 프레임의 각 구간들에 걸쳐 균등하게 분포될 수 있도록 심볼을 분배하는 것을 특징으로 하는 부호분할다중접속 통신시스템의 송 신장치

청구항 10

제9항에 있어서, 상기 인터리버가 하기 <수학식 11>과 같은 천공행렬에 의해 구성되는 것을 특징으로 하는 부호분할다중접속 통신시스템의 송신장치.

$$\mathcal{D}_1 = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & \cdots & \cdots \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & \cdots & \cdots \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & \cdots & \cdots \end{bmatrix}$$

청구항 11

제 항에 있어서, 상기 확산기가,

상기 경로제머기에서 출력되는 메시지 프레임을 전용제머채널의 직교부호로 확산하는 직교확산기와, 상기 직교확산 신호를 피엔시퀀스로 확산하는 피엔확산기로 구성된 것을 특징으로 하는 특징으로 하는 부 호분할다중접속 통신시스템의 승신장치.

청구항 12

제1항에 있어서, 상기 확산기가,

상기 경로제머기에서 출력되는 메시지 프레임을 트래픽채널의 직교부호로 확산하는 직교확산기와,

상기 직교확산 신호를 피엔시퀀스로 확산하는 피엔확산기로 구성된 것을 특징으로 하는 특징으로 하는 부호분할다중접속 통신시스템의 승신장치.

청구함 13

제12항에 있어서, 상기 트래픽 채널이 기본채널임을 특징으로 하는 특징으로 하는 부호분할다중접속 통신시스템의 송신장치

청구항 14

부호분할다중접속 통신시스템의 승신기에서 데미터 전승방법에 있어서.

제2비트열의 데이타를 부호화하며 제2프레임 메시지를 발생하는 과정과,

상기 제2베트열 보다 짧은 제1베트열의 입력 데이타를 부호화하며 상기 제2프레임 메시지 길이 보다 짧은 제1프레임 메시지를 발생하는 과정과,

상기 제2프레임 구간 중에서 상기 제1프레임 메시지에 대응하는 프레임 구간을 상기 제1프레임 메시지로 대체하는 과정과,

상기 대체된 프레임 메시지를 전송하는 과정을 포함함을 특징으로 하는 부호분할다중접속 통신시스템의 송신방법.

청구함 15

제14항에 있어서, 상기 대체과정이, 상기 제2프레임 메시지가 발생되는 중에 상기 제1프레임 메시지가 발생될 때 멀티플렉싱을 수행함을 특징으로 하는 부호분할다중접속 통신시스템의 승신방법.

청구항 16

제14항에 있어서, 상기 대체 과정이, 제2프레임 메시지중 일부와 대체된 제1프레임 메시지 및 남아있는 제2프레임 메시지 순서로 인터믹스함을 특징으로 하는 부호분할다중접속 통신시스템의 송신방법.

청구항 17

제14항에 있어서, 상기 대체 과정이, 대체된 제1프레임 메시지 및 상기 제1프레임 메시지의 발생 구간의 메시지가 제외된 나머지의 상기 제2프레임 메시지 순서로 프레임 메시지를 인터믹스함을 특징으로 하는 부호분할다중접속 통신시스템의 승신방법.

청구항 18

제16항 또는 제17항에 있어서, 상기 인터믹스된 프레임 메시지 중 대체된 제1프레임 메시지 다음에 위치된 제2프레임 메시지의 송신전력을 더 크게 하여 출력하는 과정을 더 구비함을 특징으로 하는 부호분함다 중접속 통신시스템의 송신병법.

청구항 19

제14항에 있어서, 상기 대체과정이, 상기 제2프레임 메시지중 일부와 대체된 제1프레임 메시지를 출력하 대 178배 쓰이건 용기 테레크 8이 용기 레트트레 배경(18) 로포크 테레트 레크트레 배경(18) 결국하다 다 남아있는 상기 제2프레임 메시지는 출력하지 않음을 특징으로 하는 부호분할다중접속 통신시스템의

제14항에 있어서, 상기 제1프레임 메시지의 길이가 5ms이며, 상기 제2프레임 메시지의 길이가 20ms임을 특징으로 하는 부호분할다중접속 통신시스템의 송신방법.

청구항 21

제20항에 있머서, 상기 삽입과정이 제2구간의 상기 제2프레임 메시지를 제거하고 상기 제1프레임 메시지 를 삽입하고, 제3구간 및 제4구간에서 제2프레임 메시지가 출력되도록 인터믹스함을 특징으로 하는 부호 분할다중접속 통신시스템의 송신방법

청구항 22

제20항에 있어서, 상기 삽입과정이 제1구간의 제2프레임 메시지를 제거하고 상기 제1프레임 메시지를 삽입하고 제2구간에서 제4구간까지 제2프레임 메시지가 출력되도록 민터믹스함을 특징으로 하는 부호분할다 중접속 통신시스템의 승신방법

제21항 또는 제22항에 있어서, 상기 삽입된 제1프레임 메시지 이후에 인터믹스된 제2프레임 메시지들의 승신전력을 크게 하는 과정을 더 구비함을 특징으로 하는 부호분할다중접속 통신시스템의 승신방법.

제 14항에 있어서, 상기 제2프레임메시지를 발생하는 과정이,

- 상기 제2프레임 길이에 따라 압력되는 제2데이타의 CRCHI트를 생성하는 과정과,
- 상기 CRCHI트가 부가된 제2데이타에 테일비트를 생성하며 부가하는 과정과,
- 상기 테일비트가 부가된 제2데이타를 부호화하며 부호화된 심볼을 출력하는 과정과,
- 상기 제2프레임 길이에 따른 프레임 단위로 상기 부호화된 심볼을 인터리빙하는 과정으로 이루어짐을 특 징으로 하는 부호분할다중접속 통신시스템의 송신방법.

청구항 25

제24항에 있어서, 상기 인터리빙 과정미,

상기 부호화 과정에서 임의 데이타의 부호회에 의해 생성되는 심불들이 전 프레임 구간에 걸쳐 균등하게 분포될 수 있도록 심볼을 분배함을 특징으로 하는 부호분할다중접속 통신시스템의 송신방법.

청구항 26

제25항에 있어서, 상기 심볼 분배과정이 하기 <수학식 12·와 같은 천공행렬에 의해 미루어짐을 특징으로 하는 부호분할다중접속 통신시스템의 송신방법

$$\mathcal{D}_{1} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & \cdots \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & \cdots \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & \cdots \end{bmatrix}$$

청구항 27

제14항에 있어서, 상기 전송과정이,

상기 프레임 메시지를 전용제어채널의 직교부호로 확산하는 과정과,

상기 직교확산 신호를 피엔시퀀스로 확산하는 과정으로 미루어짐을 특징으로 하는 부호분할다중접속 통신 시스템의 송신방법

청구항 28

제14항에 있어서, 상기 전송과정이,

상기 프레임 메시지를 트래픽채널의 직교부호로 확산하는 과정과,

상기 직교확산 신호를 피엔시퀀스로 확산하는 과정으로 미루머짐을 특징으로 하는 부호분할다중접속 통신 시스템의 송신방법

청구항 29

제28항에 있어서, 상기 트래픽 채널이 기본채널임을 특징으로 하는 특징으로 하는 부호분할다중접속 통신 시스템의 송신방법

청구항 30

송신장치가,

제2비트열의 제2네이타를 입력하여 부호화하고 제2프레임 길이를 가지는 제2프레임 메시지를 발생하는 제 2메시지발생기와,

상기 제2비트열 보다 작은 비트열의 제1데이타 입력시 상기 제1데이터를 부호화하고 상기 제2프레임 길이 보다 짧은 제1프레임 길이를 가지는 제1프레임 메시지를 발생하는 제1메시지발생기와,

상기 제2프레임메시지 중 상기 제1프레임 길이의 구간에 대응하는 상기 제2프레임 메시지의 구간을 상기 제1프레임 메시지로 대체하는 멀티플렉서와,

상기 멀티플렉서의 출력을 확산하며 송신하는 확산기를 포함하며,

수신장치가,

수신된 신호를 역확산하는 역확산기와,

상기 역확산된 신호를 제1프레임 길이로 역인터리빙하고 복호하여 제1프레임 메시지를 발생하는 제1메시지 수신기와,

상기 역확산된 신호를 제2프레임 길이로 역인터리빙하고 복호하며 제2프레임 메시지를 발생하는 제2메시 지 수신기로 구성된 것을 특징으로 하는 부호분할다중접속 통신시스템의 송수신장치.

청구항 31

제30항에 있어서,

상기 제1프레임 메시지가 상기 제2프레임 메시지 전송시에 발생할 경우 제1프레임 메시지와 제2프레임 메 시지를 다중화하는 멀티플렉서를 더 포함함을 특징으로 하는 부호분할다중접속 통신시스템의 송수신장치.

청구항 32

부호분할다중접속 통신시스템의 송수신 방법에 있어서,

제2비트열의 제2데이타를 입력하며 부호화하고 제2프레임 길이를 가지는 제2프레임 메시지를 발생하는 과정과.

상기 제2HI트열 보다 작은 비트열의 제1데이타 입력시 상기 제1데이타를 부호화하고 상기 제2프레임 길이 보다 짧은 제1프레임 길이를 가지는 제1프레임 메시지를 발생하는 과정과,

상기 제2프레임메시지 중 상기 제1프레임 길이의 구간에 대응하는 상기 제2프레임 메시지의 구간을 상기 제1프레임 메시지로 대체하여 출력하는 과정과,

상기 출력을 확신하며 승신하는 괴정과,

상기 승신 신호를 역확산하는 과정과,

상기 역확산된 신호를 제1프레임 길이로 역인터리빙하고 복호하며 제1프레임 메시지를 복원하는 과정과, 상기 역확산된 신호를 제2프레임 길이로 역인터리빙하고 복호하며 제2프레임 메시지를 복원과정으로 이루 머지는 것을 특징으로 하는 부호분할다중접속 통신시스템의 승수신 방법

⊊₽

<u> 도만1</u>

*도면1*6

*⊊₽3*b

<u>584</u>

<u> 50</u>5

*⊊216*s

<u>SB7</u> **BEST AVAILABLE COPY** 6 (문학료) 유왕기 유왕기 대대 대대 적2적이대시지 제1제이대시지 ₽, 519 144 제이 되시지 바마 -- 560 모담제이기 SCTL /--- |/ |/대 |주당 재머비트 삽입기

*⊊⊵8*8 _1_1_1_2_1_3_1_4__; 5ms blank blank blank zextra power 20ms *도만8*b blank 5ms blank blank extra power 20ms *⊊₽!8*a 20msec

42-32

BEST AVAILABLE CUP 1

⊊⊵!9₀

⊊£/6d

⊊⊵10₀

<u> 5011</u>

<u> 5012</u>

도말13

BEST AVAILABLE COPY

*⊊⊵14*8

PERFORMANCE OF PUNCTURED FRAME USING MATRIX1 IN AWGN CHANNEL

*⊊⊵14*b

PERFORMANCE OF PUNCTURED FRAME USING MATRIX1 IN AWGN CHANNEL

BEST AVAILABLE CO.

⊊⊵!15

AVAILABLE COPY

