

HAMBURG UNIVERSITY OF TECHNOLOGY

PROBLEM-BASED LEARNING

Advanced System-on-Chip Design

author @tuhh.de

Documentation

Wintersemester 2016/2017 Dipl.-Ing. Wolfgang BRANDT

Contents

1	Cache Simulation - Results			
2	Design a Finite State Machine for the Cache	3		
	2.1 Finite State Machine - Write Allocate Policy	3		
	2.2 Finite State Machine - Example	6		
3	Appendix	8		

Table 1: Cache Simulation of Column Major

Placement (Policy)	Cache Block Size (Words)	Cache Hit Count	Cache Miss Count	Cache Hit Rate
Direct Mapping	2	0	256	0
Direct Mapping	4	0	256	0
Direct Mapping	8	0	256	0
Direct Mapping	16	0	256	0
2-Way Set Associative	2	0	256	0
2-Way Set Associative	4	0	256	0
2-Way Set Associative	8	0	512	0
2-Way Set Associative	16	0	256	0
4-Way Set Associative	2	0	256	0
4-Way Set Associative	4	0	256	0
4-Way Set Associative	8	0	256	0
4-Way Set Associative	16	0	256	0

Table 2: Cache Simulation of Row Major

Placement (Policy)	Cache Block Size (Words)	Cache Hit Count	Cache Miss Count	Cache Hit Rate
Direct Mapping	2	128	128	50
Direct Mapping	4	192	64	75
Direct Mapping	8	224	32	88
Direct Mapping	16	240	16	94
2-Way Set Associative	2	128	128	50
2-Way Set Associative	4	192	64	75
2-Way Set Associative	8	224	32	88
2-Way Set Associative	16	240	16	94
4-Way Set Associative	2	128	128	50
4-Way Set Associative	4	192	64	75
4-Way Set Associative	8	224	16	88
4-Way Set Associative	16	240	16	94

1 Cache Simulation - Results

The two assembler programs *row-major.asm* and *column-major.asm* has been used for the cache simulation. 1 contains the results regarding the file *column-major.asm* and 2 illustrates the results of *row-major.asm*.

TODO Interpretation

- 2 Design a Finite State Machine for the Cache
- 2.1 Finite State Machine Write Allocate Policy

Table 3: Overview - FSM States

Abbreviation	Name	CPU Request Mode	Description
IDLE	-	-	-
CW	COMPARE WRITE	Write Request	-
CMW	CACHE MISS WRITE	Write Request	-
WBW	WRITE BACK WRITE	Write Request	-
WCW	WRITE CACHE WRITE	Write Request	-
CR	COMPARE READ	Read Request	-
CMR	CACHE MISS READ	Read Request	-
WBR	WRITE BACK READ	Read Request	-
WCR	WRITE CACHE READ	Read Request	-

Figure 1: Sketch of Mealy Automata - Cache Controller

2.2 F	inite	State	Machine	-	Example
-------	--------------	-------	---------	---	----------------

Figure 2: Column Major, Direct Mapping, Cache Block Size 2

3 Appendix

Figure 3: Column Major, Direct Mapping, Cache Block Size 4

Figure 4: Column Major, Direct Mapping, Cache Block Size 8

Figure 5: Column Major, Direct Mapping, Cache Block Size 16

Figure 6: Column Major, 2-Way Associative, Cache Block Size 2

Figure 7: Column Major, 2-Way Associative, Cache Block Size 4

Figure 8: Column Major, 2-Way Associative, Cache Block Size 8

Figure 9: Column Major, 2-Way Associative, Cache Block Size 16

Figure 10: Column Major, 4-Way Associative, Cache Block Size 2

Figure 11: Column Major, 4-Way Associative, Cache Block Size 4

Figure 12: Column Major, 4-Way Associative, Cache Block Size 8

Figure 13: Column Major, 4-Way Associative, Cache Block Size 16

Figure 14: Row Major, Direct Mapping, Cache Block Size 2

Figure 15: Row Major, Direct Mapping, Cache Block Size 4

Figure 16: Row Major, Direct Mapping, Cache Block Size 8

Figure 17: Row Major, Direct Mapping, Cache Block Size 16

Figure 18: Row Major, 2-Way Associative, Cache Block Size 2

Figure 19: Row Major, 2-Way Associative, Cache Block Size 4

Figure 20: Row Major, 2-Way Associative, Cache Block Size 8

Figure 21: Row Major, 2-Way Associative, Cache Block Size 16

Figure 22: Row Major, 4-Way Associative, Cache Block Size 2

Figure 23: Row Major, 4-Way Associative, Cache Block Size 4

Figure 24: Row Major, 4-Way Associative, Cache Block Size 8

Figure 25: Row Major, 4-Way Associative, Cache Block Size 16