IP CORE MANUAL

Hexadecimal Constant IP

px_consthex32

Pentek, Inc.
One Park Way
Upper Saddle River, NJ 07458
(201) 818-5900
http://www.pentek.com/

Copyright © 2016

Manual Part Number: 807.48337 Rev: 1.0 - December 09, 2016

Manual Revision History

Date	Version		Comments
12/09/16	1.0	Initial Release	

Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Pentek products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Pentek hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Pentek shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in conjunction with, the Materials (including your use of Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage and loss was reasonably foreseeable or Pentek had been advised of the possibility of the same. Pentek assumes no obligation to correct any error contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the materials without prior written consent. Certain products are subject to the terms and conditions of Pentek's limited warranty, please refer to Pentek's Ordering and Warranty information which can be viewed at http://www.pentek.com/contact/customerinfo.cfm; IP cores may be subject to warranty and support terms contained in a license issued to you by Pentek. Pentek products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for the use of Pentek products in such critical applications.

Copyright

Copyright © 2016, Pentek, Inc. All Rights Reserved. Contents of this publication may not be reproduced in any form without written permission.

Trademarks

Pentek, Jade, and Navigator are trademarks or registered trademarks of Pentek, Inc.

ARM and AMBA are registered trademarks of ARM Limited. PCI, PCI Express, PCIe, and PCI-SIG are trademarks or registered trademarks of PCI-SIG. Xilinx, Kintex UltraScale, Vivado, and Platform Cable USB are registered trademarks of Xilinx Inc., of San Jose, CA.

Table of Contents

		Page
	IP Facts	
	Description	5
	Features	5
	Table 1-1: IP Facts Table	5
	Chapter 1: Overview	
1.1	Functional Description	7
	Figure 1-1: Hexadecimal Constant Core Block Diagram	
1.2	Applications	
1.3	System Requirements	7
1.4	Licensing and Ordering Information	7
1.5	Contacting Technical Support	8
1.6	Documentation	8
	Chapter 2: General Product Specifications	
2.1	Standards	9
2.2	Performance	
2.3	Resource Utilization	9
2.4	Limitations and Unsupported Features	
2.5	Generic Parameters	9
	Table 2-1: Generic Parameters	9
	Chapter 3: Port Descriptions	
3.1	I/O Signals	11
	Table 3-1: I/O Signals	11
	Chapter 4: Designing with the Core	
4.1	General Design Guidelines	13
4.2	Clocking	13
4.3	Resets	13
4.4	Interrupts	13
4.5	Interface Operation	13
4.6	Programming Sequence	13
17	Timing Diagrams	12

Table of Contents

Page

Chapter 5: Design Flow Steps

	Figure 5-1: Hexadecimal Constant Core in Pentek IP Catalog	
	Figure 5-2: Hexadecimal Constant Core IP Symbol	16
5.2	User Parameters	16
5.3	Generating Output	16
5.4	Constraining the Core	17
	Simulation	
5.6	Synthesis and Implementation	17

IP Facts

Description

Pentek's NavigatorTM Hexadecimal Constant Core generates a constant 32-bit vector output from a generic parameter defined by the user.

This user manual defines the hardware interface, software interface, and parameterization options for the Hexadecimal Constant Core.

Features

• Copies the generic parameter into the output vector

Table 1-1: IP Facts Table		
Core Specifics		
Supported Design Family ^a	Kintex [®] Ultrascale	
Supported User Interfaces	N/A	
Resources	N/A	
Provided with the Cor	'e	
Design Files	VHDL	
Example Design	Not Provided	
Test Bench	Not Provided	
Constraints File	Not Provided ^b	
Simulation Model	N/A	
Supported S/W Driver	N/A	
Tested Design Flows		
Design Entry	Vivado [®] Design Suite 2016.3 or later	
Simulation	Vivado VSim	
Synthesis	Vivado Synthesis	
Support		
Provided by Pentek fpg	asupport@pentek.com	

a.For a complete list of supported devices, see the *Vivado Design Suite Release Notes*.

b.Clock constraints can be applied at the top level module of the user design.

Chapter 1: Overview

1.1 Functional Description

The Hexadecimal Constant core generates a constant 32-bit vector output from the input 32-bit generic parameter defined by the user. The generic parameter supports both binary string and hexadecimal format. Figure 1-1 is a top-level block diagram of the Pentek Hexadecimal Constant Core. The modules within the block diagram are explained in the later sections of this manual.

Figure 1-1: Hexadecimal Constant Core Block Diagram

1.2 Applications

The Hexadecimal Constant Core can be incorporated into any Kintex Ultrascale FPGA to generate a constant vector output.

1.3 System Requirements

For a list of system requirements, see the Vivado Design Suite Release Notes.

1.4 Licensing and Ordering Information

This core is included with all Pentek Navigator FPGA Design Kits for Pentek Jade series board products. Contact Pentek for Licensing and Ordering Information (www.pentek.com).

1.5 Contacting Technical Support

Technical Support for Pentek's Navigator FPGA Design Kits is available via e-mail (fpgasupport@pentek.com) or by phone (201-818-5900 ext. 238, 9 am to 5 pm EST).

1.6 **Documentation**

This user manual is the main document for this IP core. The following documents provide supplemental material:

- 1) Vivado Design Suite User Guide: Designing with IP
- 2) Vivado Design Suite User Guide: Programming and Debugging

Chapter 2: General Product Specifications

2.1 Standards

This section is not applicable to this IP core.

2.2 Performance

This section is not applicable to this IP core.

2.3 Resource Utilization

This IP core utilizes only the I/O resources of the FPGA it is incorporated into.

2.4 Limitations and Unsupported Features

This section is not applicable to this IP core.

2.5 Generic Parameters

The generic parameters of the Hexadecimal Constant Core are described in Table 2-1. These parameters can be set as required by the user application while customizing the core.

Table 2-1: Generic Parameters				
Port/Signal Name	Туре	Description		
const_value[31:0]	std_logic_ vector	Constant Value: This is the 32-bit parameter defined by the user based on the requirement, which is the output constant vector of this IP core. It can take the values defined in hexadecimal and double quoted binary string formats. Eg. 0xFFF or "01111".		

Chapter 3: Port Descriptions

This chapter provides details about the port descriptions for the following interface types:

• I/O Signals

3.1 I/O Signals

The I/O port/signal description of the top level module of the Hexadecimal Constant Core is discussed in Table 3-1.

Table 3-1: I/O Signals				
Port/ Signal Name	Туре	Direction	Description	
constant_data[31:0]	std_logic _vector	Output	Constant Data Output: This is the constant 32-bit vector output of the core which takes the value of the generic parameter defined by the user.	

Chapter 4: Designing with the Core

This chapter includes guidelines and additional information to facilitate designing with the Hexadecimal Constant Core.

4.1 General Design Guidelines

The Hexadecimal Constant core generates a vector output equivalent to the value of the generic parameter.

4.2 Clocking

This section is not applicable to this IP core.

4.3 Resets

This section is not applicable to this IP core.

4.4 Interrupts

This section is not applicable to this IP core.

4.5 Interface Operation

This section is not applicable to this IP core.

4.6 Programming Sequence

This section is not applicable to this IP core.

4.7 Timing Diagrams

This section is not applicable to this IP core.

Chapter 5: Design Flow Steps

5.1 Pentek IP Catalog

This chapter describes customization and generation of the Pentek Hexadecimal Constant Core. It also includes simulation, synthesis, and implementation steps that are specific to this IP core. This core can be generated from the Vivado IP Catalog when the Pentek IP Repository has been installed. It will appear in the IP Catalog list as **px consthex32 v1 0** as shown in Figure 5-1.

IP Catalog ? _ 🗆 🗗 X Search: Q-Interfaces Cores Name ^1 AXI4 Status Licensi Production Include ^ px_axispdti_8mux_v1_0 AXI4, AXI4-Stream px_axispdti_gatesub_v1_0 AXI4, AXI4-Stream Production Include px_axisrq2ddrctlr_v1_0 AXI4, AXI4-Stream Production Include 丞 px_brd_info_regs_v1_0 Include AXI4 Production 国主 px_cdc_clk_intrfc_v1_0 AXI4 Production Include Production Include px_consthex32_v1_0 X px_dac5688_intrfc_v1_0 AXI4, AXI4-Stream Production Include px_dec8fir_48_v1_0 AXI4-Stream Production Include px_dma_pcie2pd_v1_0 AXI4, AXI4-Stream Production Include px_dma_ppkt2pcie_v0_01 AXI4, AXI4-Stream Production Include V Details Name: px_consthex32_v1_0 1.0 (Rev. 11) Version: 32-bit hexidecimal constant Description: Status: Production Included License: Change Log: View Change Log Vendor: Pentek, Inc.

Figure 5-1: Hexadecimal Constant Core in Pentek IP Catalog

5.1 Pentek IP Catalog (continued)

When you select the **px_consthex32_v1_0** core, a screen appears that shows the core's symbol and the core's parameters (see Figure 5-2). The core's symbol is the box on the left side.

Figure 5-2: Hexadecimal Constant Core IP Symbol

5.2 User Parameters

The user parameters of this core are described in Section 2.5 of this user manual.

5.3 Generating Output

For more details about generating and using IP in the Vivado Design Suite, refer to the *Vivado Design Suite User Guide - Designing with IP*.

5.4 Constraining the Core

This section contains information about constraining the Hexadecimal Constant Core in Vivado Design Suite.

Required Constraints

The XDC constraints are not provided with the Hexadecimal Constant Core. Clock constraints can be applied in the top-level module of the user design.

Device, Package, and Speed Grade Selections

This IP works for the Kintex Ultrascale FPGAs.

Clock Frequencies

This section is not applicable to this IP core.

Clock Management

This section is not applicable for this IP core.

Clock Placement

This section is not applicable for this IP core.

Banking and Placement

This section is not applicable for this IP core.

Transceiver Placement

This section is not applicable for this IP core.

I/O Standard and Placement

This section is not applicable for this IP core.

5.5 Simulation

This section is not applicable to this IP core.

5.6 Synthesis and Implementation

For details about synthesis and implementation see the *Vivado Design Suite User Guide - Designing with IP*.