字

Estimação do Espectro de Potência (métodos Clássicos)

- Noções básicas sobre estimação
 - Problema: Como caracterizar uma estimativa $\hat{\alpha}$ de um parâmetro α de um dado PE de que se conhece apenas um segmento x(0), x(1), ... x(N-1) de uma sua realização? Por outras palavras como saber se uma dada fórmula

$$\hat{\alpha} = F(x(0),...x(N-1))$$

é adequada para estimar α .

- Solução
 - Podemos considerar $\hat{\alpha}$ como uma v. a. à qual está associada uma f. d. p. $f_{\hat{\alpha}}\hat{\alpha}$

$$\hat{\alpha} = F(X_0, ... X_{N-1})$$

• A média e a var. de $\hat{\alpha}$ caracterizam o mérito de $\hat{\alpha}$ como estimativa de α .

57

21/02/17

Processamento Digital de Sinal Carlos Lima (DEI-Universidade do Minho)

Estimação do Espectro de Potência (métodos Clássicos)

- Diz-se que o estimador â de α terá um erro inferior a Δ com uma confiança de P.
- Dois possíveis critérios sobre um estimador
 - A média de $\hat{\alpha}$ ser igual a α
 - A var. de $\hat{\alpha}$ ser a menor possível
- Exemplos:

O estimador 2 não é polarizado $m_{\hat{\alpha}2} = \alpha$ mas tem uma var. superior à do estimador 1.

Qual será o melhor?

58

21/02/17

Processamento Digital de Sinal Carlos Lima (DEI-Universida

Uma resposta poderá ser: Aquele a que corresponder um erro quadrático médio mais pequeno

$$\begin{split} E.Q.M. &= E \Big[(\hat{\alpha} - \alpha)^2 \Big] = E \Big[\hat{\alpha}^2 + \alpha^2 - 2\hat{\alpha}\alpha \Big] \\ &= E \Big[\hat{\alpha}^2 + E^2 \Big[\hat{\alpha} \Big] - 2\hat{\alpha}E \Big[\hat{\alpha} \Big] + \alpha^2 - 2\hat{\alpha}\alpha - E^2 \Big[\hat{\alpha} \Big] + 2\hat{\alpha}E \Big[\hat{\alpha} \Big] \Big] \\ &= E \Big[(\hat{\alpha} - E \Big[\hat{\alpha} \Big])^2 + \alpha^2 - 2\hat{\alpha}\alpha - E^2 \Big[\hat{\alpha} \Big] + 2\hat{\alpha}E \Big[\hat{\alpha} \Big] \Big] \\ &= \sigma_{\hat{\alpha}}^2 + (\alpha - E \Big[\hat{\alpha} \Big])^2 \qquad \text{(polarização)}^2 \end{split}$$

- Estimativa de máxima verosimilhança
 - Dada uma sucessão de valores x(0) ... X(N-1) e um parâmetro α do PE, a estimativa de máxima verosimilhança MLE ("Maximum Likelihood Estimate") é a que maximiza a probabilidade de se obterem aqueles valores

$$\hat{\alpha}_{MLE}$$
: $\max_{\hat{\alpha}} = P[X_0 = x(0) \qquad e.... \qquad e \qquad X_{N-1} = x(N-1)]$

Estimação do Espectro de Potência (métodos Clássicos)

- Estimativa de MLE (cont.)
 - Estimativa da média
 - A estimativa MLE da média de um PE estacionário e ergódico, cujas v. a. se assumem estatísticamente independentes é

$$\hat{m}_{x} = \frac{1}{N} \sum_{n=0}^{N-1} x(n)$$

- A polarização deste estimador é nula \leftarrow $E[\hat{m}_x] = \frac{1}{N} \sum_{n=1}^{N-1} E[x(n)] = \frac{1}{N} \sum_{n=1}^{N-1} m_x$
- Quanto à variância do estimador

$$\sigma_{\hat{m}_x}^2 = \operatorname{var}[\hat{m}_x] = E[\hat{m}_x^2] - m_x^2$$

$$\begin{split} E\Big[\hat{m}_{x}^{2}\Big] &= \frac{1}{N^{2}} \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} E\Big[x(n).x(k)\Big] = \frac{1}{N^{2}} \left[\sum_{n=0}^{N-1} E\Big[x^{2}(n)\Big] + \sum_{n=0}^{N-1} \sum_{\substack{k=0\\k \neq n}}^{N-1} E\Big[x(n)\Big] E\Big[x(k)\Big] \right] \\ &= \frac{1}{N} E\Big[x^{2}(n)\Big] + \frac{N-1}{N} m_{x}^{2} \end{split}$$

$$\sigma_{\hat{m}_x}^2 = \text{var}[\hat{m}_x] = \frac{1}{N} \left\{ E[x^2(n)] - m_x^2 \right\} = \frac{1}{N} \sigma_x^2$$
• Logo a estimativa é consistente

- Estimativa de MLE (cont.)
 - Estimativas da variância
 - Se a média é conhecida (1) $\hat{\sigma}_x^2 = \frac{1}{N} \sum_{n=0}^{N-1} (x(n) m_x)^2$
 - Se a média é desconhecida (2) $\hat{\sigma}_x^2 = \frac{1}{N} \sum_{n=0}^{N-1} (x(n) \hat{m}_x)^2$
 - Problema: Mostre que a estimativa (1) tem polarização nula e que no caso da estimativa 2 a polarização é $B_2 = \frac{1}{N}\sigma_x^2$

Mostre também que as 2 estimativas são consistentes.

Estimativas da autocorrelação

$$C_{xx}(m) = \frac{1}{N - |m|} \sum_{n=0}^{N-|m|-1} x(n) x^*(n+m)$$

$$C_{xx}(m) = \frac{1}{N} \sum_{n=0}^{N-|m|-1} x(n) x^{*}(n+m)$$

Tira confiança aos valores obtidos para *m* elevado

61

21/02/17

Processamento Digital de Sinal Carlos Lima (DEI-Universidade do Minho)

Estimação do Espectro de Potência (métodos Clássicos)

- Problema: Mostre que:
 - $-1) \qquad E[C_{xx}(m)] = \phi_{xx}(m)$
 - $2) \qquad E[C_{xx}(m)] = \frac{N |m|}{N} \phi_{xx}(m)$
 - Pode-se mostrar que quando N>>|m|:

$$\operatorname{var}[C_{xx}(m)] \approx \frac{N}{(N-|m|)^2} \sum_{r=-\infty}^{+\infty} [\phi_{xx}^2(r) + \phi_{xx}(r-m) + \phi_{xx}(r+m)]$$

$$\operatorname{var}[C_{xx}(m)] \approx \frac{1}{N} \sum_{x=-\infty}^{+\infty} [\phi_{xx}^{2}(r) + \phi_{xx}(r-m) + \phi_{xx}(r+m)]$$

- Conclui-se que ambos os estimadores são consistentes

62

21/02/17

Processamento Digital de Sinal

Carlos Lima (DEI-Universidade do Minho

- O Periodograma (como estimador do espectro de potência)
 - Como o espectro de potência é a T. F. da autocorrelação
 - Como $C_{xx}(m)$ ou $C_{xx}(m)$ são estimativas consistentes da autocorrelação
 - Poder-se-ia pensar que a T. F. de $C_{xx}(m)$ ou $C_{xx}(m)$ seria uma estimativa consistente do espectro de potência.
 - Tal conclusão é errada!
 - O periodograma é a T. F. de $C_{xx}(m)$ $I_N(\Omega) = \sum_{m=-\infty}^{+\infty} C_{xx}(m)e^{-j\Omega m} = \sum_{m=-1}^{N-1} C_{xx}(m)e^{-j\Omega m}$

$$E[I_N(\Omega)] = \sum_{m=-(N-1)}^{N-1} \frac{N - |m|}{N} \phi_{xx}(m) e^{-j\Omega m}$$

$$\operatorname{var}[I_N(\Omega)] = \sigma_x^4 \left[1 + \left(\frac{\sin[\Omega N]}{N \sin \Omega} \right)^2 \right]$$

Como a var. do periodograma não tende para zero à medida que N→∞, o periodograma é uma estimativa inconsistente do espectro de potência $P_{xx}(\Omega)$

Estimação do Espectro de Potência (métodos Clássicos)

- O periodograma (cont.)
 - Todavia como o periodograma pode ser calculado por

$$I_N(\Omega) = \frac{1}{N} |X(\Omega)|^2$$

O que é muito eficiente utilizando o algoritmo FFT têm sido utilizados métodos baseados no periodograma para estimar $P_{xx}(\Omega)$

 $-\;\;$ Verifiquemos que a esperança matemática de $I_N(\Omega)$ pode ser vista como o resultado da multiplicação da seq. de autocorrelação por uma janela triangular ou seja

$$C_{xx}(m) = \phi_{xx}(m) \frac{N - |m|}{N}$$

$$C_{xx}(m) = \phi_{xx}(m) \frac{N - |m|}{N}$$
 \leftarrow T. F. $E[I_N(\Omega)] = P_{xx}(\Omega) * W_B(\Omega)$

$$W_{B}(\Omega) = T.F. \left\{ \frac{N - |m|}{N} \right\} = \frac{1}{N} \left(\frac{\sin\left(\Omega \frac{N}{2}\right)}{\sin\frac{\Omega}{2}} \right)^{2}$$

- O periodograma (cont.)
 - O método de Bartlett (média de periodogramas)
 - Dividir os dados em k segmentos de M pontos
 - Calcular k periodogramas de M pontos $I_M^i(\Omega) = \frac{1}{M} |X^i(\Omega)|^2 \quad 1 \le i \le k$
 - Calcular a média dos k periodogramas $B_{xx}(\Omega) = \frac{1}{k} \sum_{i=1}^{k} I_{M}^{i}(\Omega)$ $E[B_{xx}(\Omega)] = E[I_M^i(\Omega)] \quad var[B_{xx}(\Omega)] = \frac{1}{k} var[I_M^i(\Omega)]$
 - A polarização de $B_{xx}(\Omega)$ é maior que a de $I_N(\Omega)$ já que $E[B_{xx}(\Omega)]$ pode ser vista como a T. F. $\{\phi_{xx}$ -janela $\}$
 - No caso de $B_{xx}(\Omega)$ $janela = \frac{N/k |m|}{N/k}$
 - Como a janela no caso de Bartlett é mais curta o lobo principal da sua T. F. É mais largo, o que se traduz numa diminuição da resolução espectral
 - Resumindo: O método de Bartlett
 - Aumenta a polarização
 - Diminui a resolução
 - Diminui a variância

Estimação do Espectro de Potência (métodos Clássicos)

- O periodograma (cont.)
 - O método das janelas
 - Para diminuir a variância inerente ao periodograma um método consiste em aplicar uma janela à estimativa da autocorrelação, C_{xx}(m) antes da T. F.. A ideia é diminuir a influência dos termos de $C_{xx}(m)$ para m próximo de N, pois são estes termos que introduzem a variância elevada no periodograma. Obtém-se deste modo o chamado espectro alisado

$$\begin{split} S_{xx}(\Omega) &= \sum_{m=-(N-1)}^{N-1} C_{xx}(m) w(m) e^{-j\Omega m} \\ E[S_{xx}(\Omega)] &= \sum_{m=-(N-1)}^{N-1} E[C_{xx}(m)] w(m) e^{-j\Omega m} = \sum_{m=-\infty}^{+\infty} \phi_{xx}(m) w_B(m) w(m) e^{-j\Omega m} \\ &= P_{xx}(\Omega) * W_B(\Omega) * W(\Omega) \approx P_{xx}(\Omega) * W(\Omega) \end{split}$$
N grande

- Prova-se que $\operatorname{var}\left[S_{xx}(\Omega)\right] \approx \left(\frac{1}{N} \sum_{m=-(M-1)}^{M-1} w^{2}(m)\right) P_{xx}^{2}(\Omega)$
- Idealmente:
 - Se N $\rightarrow \infty$ mais depressa do que M $\rightarrow \infty$ então $var[S_{xx}(\Omega)] \rightarrow 0$
 - Se N>>M então $E[S_{xx}(\Omega)]=P_{xx}(\Omega)*W(\Omega)$
 - Se M $\to \infty$ então W (Ω) \to impulso e E[S $_{xx}(\Omega)$] \to P $_{xx}$ (Ω)

- O periodograma (cont.)
 - - Aplicar uma janela aos dados, o que equivale a reduzir o valor dos produtos x(n)x(n+m) muito afastados, logo de $C_{xx}(m)$ com m grande.
 - Método de Welch
 - É uma combinação do método anterior e do método de Bartlett
 - Resumo dos métodos Clássicos

Estimação do Espectro de Potência (métodos Clássicos)

- Exercícios
 1- Mostre que $I_N(\Omega) = \frac{1}{N} |X(\Omega)|^2$ onde $C_{xx}(m) = \frac{1}{N} \sum_{n=0}^{N-|m|-1} x(n) x^*(n+m)$
 - 2- Idem para $E[S_{xx}(\Omega)] = \frac{1}{2\pi} \int_{-\pi}^{\pi} E[I_N(\theta)]W(\Omega \theta)d\theta$
 - 3- Prove que no método de Welch $E\left[B_{xx}^{W}(\Omega)\right] = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_{xx}(\theta) W(\Omega \theta) d\theta \quad \text{onde}$ $W(\Omega) = \frac{1}{MU} \left| \sum_{n=0}^{M-1} w(n) e^{-j\Omega n} \right| \qquad U = \frac{1}{M} \sum_{n=0}^{M-1} w^{2}(n)$
 - 4- Faça os projectos 1 e 2 do capítulo 6 (parte de estimação espectral) do livro de exercícios com Matlab.