Sentiment Classification of Amazon Data

By: Charles Wibonele, Habeeb Ajibola,

Tochukwu Nto Mbah

Introduction

Objective

- The purpose of this presentation is to demonstrate the use of sentiment classification on Amazon product reviews
- We will also present comparisons and evaluations of the models used.

Key Points addressed

- Growing reliance on online reviews for product and business decision insights
- Vast volume of data makes manual analysis impractical
- Traditional machine-based tools may fail to capture nuanced emotions and context in text

Introduction pt.2

What is Sentiment Classification?

- The process of automatically labeling text according to its emotional tone, typically as negative, neutral, or positive.
- Frequently used for customer feedback, product reviews, and social media posts to gauge overall sentiment.

Why Use BERT?

- Context-aware deep learning model for NLP tasks, capturing subtle language nuances that simpler models may miss.
- Particularly adept at understanding nuanced expressions, making it highly effective for sentiment classification.

Raw Data

								_							
id	asins	brand	categories c	colors dateAdded	d dateUpdated	d dimension	ean keys		reviews.rating	reviews.sourceURLs	reviews.text	reviews.title	reviews.userCity	reviews.userProvince	reviews.username
0 AVpe7AsMilAPnD_xQ78G	B00QJDU3KY	Amazon	Amazon Devices,mazon.co.uk	NaN 2016-03- 08T20:21:53Z	3- 2017-07- 3Z 18T23:52:58Z		NaN kindlepaperwhite/b00qjdu3ky		5.0	https://www.amazon.com/Kindle- Paperwhite-High	I initially had trouble deciding between the p	voyage, no	NaN	NaN .	N Cristina M
1 AVpe7AsMilAPnD_xQ78G	B00QJDU3KY	Amazon	Amazon n Devices,mazon.co.uk	NaN 2016-03- NaN 08T20:21:53Z	3- 2017-07- 3Z 18T23:52:58Z	7- 169 mm x 3Z 117 mm x 9.1 mm	NaN kindlepaperwhite/b00qjdu3ky .		5.0	https://www.amazon.com/Kindle- Paperwhite-High	Allow me to preface this with a little history	Could Not Ask	NaN	NaN	N Ricky
2 AVpe7AsMilAPnD_xQ78G	B00QJDU3KY	Amazon	Amazon Devices,mazon.co.uk	NaN 2016-03- 08T20:21:53Z			NaN kindlepaperwhite/b00qjdu3ky		4.0	https://www.amazon.com/Kindle- Paperwhite-High	I am enjoying it so far. Great for reading. Ha		NaN	∖ NaN	N Tedd Gardiner
3 AVpe7AsMilAPnD_xQ78G	B00QJDU3KY	Amazon	Amazon n Devices,mazon.co.uk	NaN 2016-03- 08T20:21:53Z			NaN kindlepaperwhite/b00qjdu3ky		5.0	https://www.amazon.com/Kindle- Paperwhite-High	I bought one of the first Paperwhites and have	Love / Hate relationship	NaN	NaN .	N Dougal
4 AVpe7AsMiiAPnD_xQ78G	B00QJDU3KY	Amazon	Amazon Devices,mazon.co.uk	NaN 2016-03- 08T20:21:53Z	3- 2017-07- 3Z 18T23:52:58Z		NaN kindlepaperwhite/b00qjdu3ky		5.0	https://www.amazon.com/Kindle- Paperwhite-High	I have to say upfront - I don't like coroporat	l LOVE IT	. NaN	NaN NaN	N Miljan David Tanic
1															,

Dataset Overview

Dataset: Amazon Reviews

Columns Used:

- reviews.text: The review text
- reviews.rating: The star rating (1-5)
- sentiment: Derived from the rating (Negative, Neutral, Positive)
- reviews.date: Timestamp of the review

Data Cleaning Steps:

- Removed punctuation and HTML tags
- Converted text to lowercase
- Removed stopwords

Cleaned Review text data preview

```
4. Cleaning the Review Text
 def clean_text(text):
     text = re.sub(r'<.*?>', '', str(text))
                                                       # Remove HTML tags
     text = re.sub(r'[^\w\s]', '', text)
                                                        # Remove punctuation
     text = text.lower()
                                                        # Lowercase
     stop_words = set(stopwords.words('english'))
     text = ' '.join(word for word in text.split()
                     if word not in stop_words)
                                                        # Remove stopwords
     return text
 df['cleaned_review'] = df['reviews.text'].apply(clean_text)
```

0r:	Original vs. Cleaned Review (first 5 rows):							
_	reviews.text	cleaned_review						
0	I initially had trouble deciding between the p	initially trouble deciding paperwhite voyage r						
1	Allow me to preface this with a little history	allow preface little history casual reader own						
2	I am enjoying it so far. Great for reading. Ha	enjoying far great reading original fire since						
3	I bought one of the first Paperwhites and have	bought one first paperwhites pleased constant						
4	I have to say upfront - I don't like coroporat	say upfront dont like coroporate hermetically						

Word cloud visual of 'cleaned_review' text column

Bar graph visual of the raw 'ratings' column

Bar graph visual of new Sentiment labeling

```
6. Mapping 'rating' column to Sentiment
    def rating_to_sentiment(rating):
        # Convert rating to numeric
        rating = pd.to_numeric(rating, errors='coerce')
        if rating >= 4:
            return 2 # Positive
        elif rating == 3:
            return 1 # Neutral
        else:
            return 0 # Negative
    df['reviews.rating'] = pd.to_numeric(df['reviews.rating'], errors='coerce')
    df['reviews.rating'].fillna(3, inplace=True) # default to neutral if missing
    df['sentiment'] = df['reviews.rating'].apply(rating_to_sentiment)
```


Sentiment Trend over time (before class weights)

Traditional ML for Sentiment Classification on Amazon Reviews

Data Preprocessing & Feature Extraction:

- Uses cleaned review & sentiment labels as columns
- Train-Test Split: 80/20
- Text Vectorization: CountVectorizer + TFIDFTransformer

Overall Performance:

 Both models achieve similar overall accuracy, indicating that traditional ML methods captures a poor general sentiment trend in the dataset.

Class Imbalance Effects:

- The negative class consistently shows much lower recall and F1-scores compared to neutral and positive classes.
- The performance drop for the negative class may lead to biased predictions favoring neutral or positive sentiments.

р	recision	recall	f1-score	support	Random Forest	precision		f1-score	support
0	0.50	0.27	0.35	11	0	0.67	0.18	0.29	11
1	0.60	0.69	0.64	107	1	0.64	0.64	0.64	107
2	0.81	0.77	0.79	202	2	0.78	0.81	0.80	202
accuracy			0.72	320	accumacy			0.73	320
macro avg	0.64	0.58	0.60	320	accuracy	0.60	0.54	0.73	
weighted avg	0.73	0.72	0.73	320	macro avg weighted avg	0.69 0.73	0.54 0.73	0.72	320 320
Confusion Matri [[3 4 4] [1 74 32] [2 45 155]]	x for SVM:				Confusion Mat [[2 1 8 [1 68 38 [0 38 164]]	om Forest	:	

Pre-trained Bert Model Overview

Epoch Training Loss Validation Loss 1 No log 0.623180 2 No log 0.624887 3 No log 0.624916

Pretrained BERT (bert-base-uncased)

Fine-tuned for sentiment classification (3 classes):

- 0 = Negative
- 1 = Neutral
- 2 = Positive

Initial Training:

- Imbalanced dataset affecting performance
- Overfitting to dominant classes

Initial Model Performance (Before Class Weighting)

Accuracy: 71%

F1-Score: 70%

Confusion Matrix Observations:

- The model **over-predicts positive sentiment**.
- Very poor recall for negative and neutral classes.
- Imbalance in training data affects classification.

Accuracy: 0.71 Precision: 0.69 Recall: 0.71 F1-Score: 0.70

Classification Report:

010331110001011	precision	recall	f1-score	support
0	0.00	0.00	0.00	11
1	0.60	0.65	0.62	107
2	0.78	0.78	0.78	202
accuracy			0.71	320
macro avg	0.46	0.48	0.47	320
weighted avg	0.69	0.71	0.70	320

Demo Test

```
\frac{1}{0} [22] # Ensure dataset has the necessary columns
        if "reviews.text" not in df.columns:
            raise ValueError("Dataset does not contain a 'review' column.")
        # Select a random review from the dataset
        random review = df.sample(1) # Pick a random row
        review text = random review["reviews.text"].values[0] # Extract review text
        # Display the randomly selected review
        print("\nRandomly Selected Review:")
        print(review text)
        # Tokenize and encode the selected review for BERT
        encoded input = tokenizer.encode plus(
            review text, return tensors="pt", max length=128, truncation=True, padding="max length"
        # Move tensors to GPU if available
        encoded_input = {k: v.cuda() for k, v in encoded_input.items()}
        # Get model output
        output = model(**encoded input)
        # Determine sentiment label
        sentiment label = torch.argmax(output.logits, dim=1).item()
        # Mapping of model output to sentiment labels
        sentiment mapping = {0: "Negative", 1: "Neutral", 2: "Positive"}
        # Display predicted sentiment
        print(f"\nPredicted Sentiment: {sentiment mapping[sentiment label]}")
```

Randomly Selected Review:
I love this handheld device especially all the items available for it. Games, books, music, etc. Glad I bought it. Thanks for having it available.

Predicted Sentiment: Positive

Heatmap for Basic BERT-Model

Addressing Class Imbalance

Techniques Applied:

- Class Weighting: Adjusted loss function to penalize misclassification of minority classes.
- Random Oversampling: Increased representation of negative and neutral classes.
- **Balanced CrossEntropyLoss**: Weighted losses based on class frequency.

```
# Extract unique sentiment labels from the dataset
classes = np.unique(df["sentiment"].values) # Ensure all present labels are included
# Compute class weights
class weights = compute class weight(class weight="balanced", classes=classes, y=df["sentiment"].values)
# Convert to tensor
class weights = torch.tensor(class weights, dtype=torch.float)
boost factor = 5 # Increase weight impact
class weights = class weights * boost factor
# Apply weighted CrossEntropyLoss
loss fn = torch.nn.CrossEntropyLoss(weight=class weights)
# Move to GPU if available
device = torch.device("cuda" if torch.cuda.is available() else "cpu")
class weights = class weights.to(device)
print("Class Weights:", class weights)
```

Transfer Class Weights: tensor([5.3663, 21.4651, 2.7243], device='cuda:0')

Improved Model Performance (After Class Weight)

Accuracy: 66.8% (Decreased from 71%)

F1-Score: 66% (Improved from 48%)

Confusion Matrix Improvements:

- Better prediction across all classes.
- Negative and neutral sentiment detection improved.
- More balanced classification.

Accuracy: 0.66875

Classifica	tion	Report:			
		precision	recall	f1-score	support
	0	0.49	0.78	0.60	92
	1	0.45	0.58	0.51	26
	2	0.91	0.63	0.74	202
accura	су			0.67	320
macro a	vg	0.62	0.66	0.62	320
weighted a	vg	0.75	0.67	0.68	320

HeatMap
(After Class Weight)

Sentiment Distribution (Before vs After)

Before Class Weighting:

- Majority of predictions were classified in the positive sentiment.
- The Negative sentiment was under represented.

After Class Weighting:

• More balanced distribution across all sentiment labels.

Why does this matter?

- Businesses can capture a broader range of feedback.
- A more even distribution of predictions shows that negative & neutral sentiments are no longer overshadowed by the positive sentiments.

Sentiment Distribution After Class Weights

Model Comparisons

			Report:	ifier	SVM Class
support	f1-score	recall	recision		
11	0.35	0.27	0.50	0	
107	0.64	0.69	0.60	1	
202	0.79	0.77	0.81	2	
320	0.72			acy	accur
320	0.60	0.58	0.64	avg	macro
320	0.73	0.72	0.73	ave	weighted

Confusion Matrix for SVM:

[[3 4 4] [1 74 32] [2 45 155]]

Accuracy: 0.71 Precision: 0.69 Recall: 0.71 F1-Score: 0.70

Classification	Report:			
	precision	recall	f1-score	support
0	0.00	0.00	0.00	11
1	0.60	0.65	0.62	107
2	0.78	0.78	0.78	202
accuracy			0.71	320
macro avg	0.46	0.48	0.47	320
weighted ava	0 60	Q 71	0.70	220

Random Fo	orest	Classifier precision		f1-score	support
	0	0.67	0.18	0.29	11
	1	0.64	0.64	0.64	107
	2	0.78	0.81	0.80	202
accur	acy			0.73	320
macro	avg	0.69	0.54	0.57	320
weighted	avg	0.73	0.73	0.72	320

Confusion Matrix for Random Forest: [[2 1 8]

[1 68 38] [0 38 164]]

Accuracy: 0.66875

Classification Report:

	precision	recall	f1-score	support
0	0.49	0.78	0.60	92
1	0.45	0.58	0.51	26
2	0.91	0.63	0.74	202
accuracy			0.67	320
macro avg	0.62	0.66	0.62	320
weighted avg	0.75	0.67	0.68	320

Conclusion

Conclusion:

- The pre-trained BERT model, is capable of understanding nuanced sentiment, but over-predicts positive sentiment due to their being an imbalance.
- The traditional ML models established a baseline but struggled with class imbalance also.
- Incorporating class weighting and oversampling led to more balanced performance with improved F1-scores for negative and neutral labels.