Data_Analytics_Project

January 23, 2019

Table of Contents

- 1 Introduction: Data Analytics Project
- 1.1 Dataset
- 1.2 Python Library
- 2 Exploratory Data Loading
- 2.1 Data Loading
- 2.1.1 Read in data from csv files
- 2.2 Data Set Information
- 2.2.1 Describe for numeric columns
- 2.2.2 Histogram of columns
- 2.2.3 Value counts for destination column
- 3 Data Engineering
- 3.1 Generate Sample Data Set
- 3.1.1 Take samples
- 3.1.2 Combine three data sets
- 3.2 Create Columns based on Existing Ones
- 3.2.1 Calculate distance for every driving history record
- 3.2.2 Determine the directions of driving vehicle
- 3.2.3 Calculate how many stops during one driving history
- 3.2.4 Calculate how fuel was added and purchased
- 3.3 Extract Data Set for Machine Learning Use
- 3.3.1 Query data set
- 3.3.2 Data Set Profiling
- 3.4 Data Exploration for Trending
- 3.4.1 Column distributions
- 3.4.2 Column distributions by different countries
- 3.4.3 Numerical correlations
- 3.5 Generate Training and Testing Data Sets
- 3.5.1 Select most correlated 3 columns
- 3.5.2 Plots of Selected Columns Correlation Coefficient
- 4 Predictive Analytics with Machine Learning Approaches
- 4.1 Setup Metrics
- 4.2 Setup Baseline
- 4.3 Machine Learning Approaches
- 4.4 Visual Comparison of ML Approaches
- 4.5 Interpretable Formula with Ordinary Linear Regression
- 5 Conclusions

1 Introduction: Data Analytics Project

In this notebook, I will demonstrate how to implement a data analytics project, focusing on data profiling, data engineering and machine learning techniques. I will go through the entire data analytics process including loading & manipulating data, profiling the data, exploring it to find trends, generating traning & testing data to be ready for machine learning use, establishing a baseline model, evaluating and comparing several machine learning methods, interpreting the results, and presenting the results.

1.1 Dataset

I am using the data on Vehicle Management System (VMS) for three country projects, stored at csv format files. The data includes collected features of vehicle usage, such as date of vehicle use, destination, kilometer at beginning of a trip, kilometer at the end of a trip, fuel added and payment method (cash or other) to purchase fuel. The objective is to study what **top 3** vehicle usage factors or what patterns being specific to the country projects by using **supervised**, **regression technique**, which will be learning a mapping from the features in a set of training data with known labels to the target (the label) in this case the countries.

1.2 Python Library

I will use Python library pandas & numpy to read-in and process the data from a local machine, pandas_profiling to profile the data, matplotlib & seaborn to visualize the data and machine learning results, scipy for statistical analysis and scikit-learn for machine learning regression approaches. For the machine learning regression approaches, I will examine and evaluate Linear Regression, ElasticNet Regression, Random Forest, Extra Trees, SVM and Gradient Boosted approaches.

```
In [1]: # Pandas and numpy for data processing
        import pandas as pd
        import numpy as np
        # Make the random numbers predictable
        np.random.seed(42)
        # pandas-profiling for data profiling and quality assessment
        import pandas_profiling
In [2]: # Scipy for stats analysis
        import scipy
        from scipy import stats
In [3]: # Standard ML Models for comparison
        from sklearn.linear_model import LinearRegression
        from sklearn.linear_model import ElasticNet
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.ensemble import ExtraTreesRegressor
        from sklearn.ensemble import GradientBoostingRegressor
        from sklearn.svm import SVR
```

```
# Splitting data into training/testing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler

# Metrics
from sklearn.metrics import mean_squared_error, mean_absolute_error, median_absolute_er

In [4]: # Matplotlib and seaborn for visualization
import matplotlib.pyplot as plt
import matplotlib
import seaborn as sns

# Set up matplotlib environment
%matplotlib inline
matplotlib.rcParams['font.size'] = 16
matplotlib.rcParams['figure.figsize'] = (9, 9)

from IPython.core.pylabtools import figsize
```

2 Exploratory Data Loading

2.1 Data Loading

2.1.1 Read in data from csv files

The data dictionary for the columns is: * ID : Vehicle Usage History System ID (data type: non-null int64) * Date : Vehicle Usage Date (data type: non-null object) * Country : Vehicle Usage Location/Country ID (data type: non-null int64) * VehID : Vehicle System ID (data type: non-null int64) * Destination : Vehicle Driving Stops and Final Destination (data type: non-null object) * KmInit : Vehicle Usage Initial Kilometer Each Time (data type: non-null int64) * KmFinal : Vehicle Usage Final Kilometer Each Time (data type: non-null int64) * FuelBought : How Much Fuel Was Bought (data type: non-null float64) * AmountFuel : How Much Was Paid to Buy Fuel (data type: non-null float64) * AmountCash : How Much Cash Was Paid to Buy Fuel (data type: non-null float64) * FuelKm : How Many Kilometer (after initial kilometer) When Fuel Was Bought (data type: non-null int64) * DriverID : Driver System ID (data type: non-null int64)

```
In [6]: df1.head(10)
```

	2	32	1/14/	/2008		1	12			CRS - Wes	stlands ·	- CRS	67848	3
	3	33	1/17/	/2008		1	12	Nairob	i - 1	Machakos ·	- Within	Town	67850)
	4	34	1/19/	/2008		1	12			Machal	kos - Na:	irobi	68072	2
	5	36	1/22/	/2008		1	12			Nai	robi - Na	akuru	68186	3
	6	37	1/23/	/2008		1	12			Kakuru ·	- Within	Town	68418	3
	7	38		/2008		1	12			uru - Mog			68501	
	8	39		/2008		1		Nakuru	- ID	P Camps w			68737	
	9	74	1/6/	/2008		1	35			Nair	obi - na:	irobi	49180)
		KmF	inal	FuelBo	ught	Amo	untFuel	CashF	uel	AmountCas	sh Fuell	Km Dri	iverID	
	0	6	7429	0.00	0000		0.0		0.0	0	.0	0	1	
	1	6	7848	0.00	0000		0.0		0.0	0	. 0	0	1	
	2	6	7850	0.00	0000		0.0		0.0	0	.0	0	1	
	3	6	8072	0.00	0000		0.0		0.0	0	.0	0	1	
	4	6	8186	0.00	0000		0.0		0.0	0	.0	0	1	
	5	6	8418	110.22	0001		8500.0		0.0	0	.0 6819	90	1	
	6	6	8501	0.00	0000		0.0		0.0	0	.0	0	1	
	7	6	8737	0.00	0000		0.0		0.0	0	. 0	0	1	
	8	6	9389	0.00	0000		0.0		0.0	0	.0	0	1	
	9	4	9219	34.38	0001		3015.0		0.0	0	.0 4920	00	202	
In [7]:	df	2.he	ad(10))										
Out[7]:		ID		Date	Count	cry	VehID	Destina	tion	KmInit	KmFinal	FuelH	Bought	\
	0	4	7/27	7/2011		2	8		CEV		124542		000000	
	1	5	7/28	3/2011		2	8		CEV	124542	124765	0.0	00000	
	2	6	8/23	3/2011		2	8		CEV	124765	124777	41.8	349998	
	3	7	8/27	7/2011		2	8		CEV	124777	124931	0.0	00000	
	4	8	9/15	5/2011		2	8		CEV	124931	124943	0.0	00000	
	5	9	10/30	0/2011		2	8		CEV	125062	125132	0.0	00000	
	6	11	10/30	0/2011		2	8		CEV	125132	125152	0.0	00000	
	7	12	10/30	0/2011		2	8		CEV	125152	125163	0.0	00000	
	8	13	10/30)/2011		2	8		CEV	125163	125171	0.0	00000	
	9	15	10/25	5/2011		2	8		cev	124943	125062	0.0	000000	
		Amo	untFue	el Cas	hFuel	Am	ountCas	h Fuel	Km 1	DriverID				
	0			. 0	0.0		0.		0	3				
	1		0.	. 0	0.0		0.		0	1				
	2	1	29310		0.0		0.		73	1				
	3			. 0	0.0		0.		0	1				
	4			. 0	0.0		0.		0	1				
	5			. 0	0.0		0.		0	1				
	6			. 0	0.0		0.		0	1				
	7			. 0	0.0		0.		0	1				
	8			. 0	0.0		0.		0	1				
	9		0 .	. 0	0.0		0.	0	0	1				

In [8]: df3.head(10)

Out[8]:	ID	Dat	te Country	VehID	Des	tination	${\tt KmInit}$	KmFinal	\
0	4	2/1/200	08 3	1	Wuse	Austoma	148405	148462	
1	6	1/30/200	08 3	4		wuse	66768	66798	
2	7	1/30/200	08 3	4		wuse 2	66798	66813	
3	8	1/31/200	08 3	4		Air port	66813	66930	
4	9	1/31/200	08 3	4	wuse	personal	66930	66962	
5	10	1/31/200	08 3	4	wuse sc	hool run	66962	66991	
6	11	2/2/200	08 3	4	wuse	pick up	66991	67005	
7	12	2/2/200	08 3	4	wuse	pick up	67005	67020	
8	13	2/2/200	08 3	4	usaid a	so drive	67020	67033	
9	17	2/1/200	08 3	4	FUEL	AUSTOMA	67033	67043	
	Fue	lBought	AmountFuel	Ca	ashFuel	AmountCas	sh Fuel	Km Driv	erTD
0		.030001	1122.099976		.000000	0.00000		0	139
1		.000000	0.00000		.000000	0.00000		0	137
2		.000000	0.000000		.000000	0.00000		0	137
3	0	.000000	0.000000	0	.000000	0.00000	00	0	139
4	0	.000000	0.000000	0	.000000	0.00000	00	0	148
5	0	.000000	0.000000	0	.000000	0.00000	00	0	137
6	0	.000000	0.000000	0	.000000	0.00000	00	0	137
7	0	.000000	0.00000	0	.000000	0.00000	00	0	145
8	0	.000000	0.000000	0	.000000	0.00000	00	0	143
9	52	.980000	3708.600098	3708	.600098	3708.60009	98	10	143

2.2 Data Set Information

```
In [9]: print("First data set - df1: ", df1.shape)
       print("Second data set - df2: ", df2.shape)
       print("Third data set - df3: ", df3.shape)
       print("----")
       print(df1.info(verbose=True))
       print("----")
       print(df2.info(verbose=True))
       print("----")
       print(df3.info(verbose=True))
First data set - df1: (64544, 13)
Second data set - df2: (61199, 13)
Third data set - df3: (93447, 13)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 64544 entries, 0 to 64543
Data columns (total 13 columns):
ID
             64544 non-null int64
Date
             64544 non-null object
             64544 non-null int64
Country
             64544 non-null int64
VehID
           63601 non-null object
Destination
```

```
KmInit
               64544 non-null int64
KmFinal
               64544 non-null int64
FuelBought
               64544 non-null float64
AmountFuel
               64544 non-null float64
CashFuel
               64544 non-null float64
               64544 non-null float64
AmountCash
FuelKm
               64544 non-null int64
DriverID
               64544 non-null int64
dtypes: float64(4), int64(7), object(2)
memory usage: 6.4+ MB
None
_____
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 61199 entries, 0 to 61198
Data columns (total 13 columns):
ID
               61199 non-null int64
Date
               61199 non-null object
               61199 non-null int64
Country
VehID
               61199 non-null int64
Destination
               55021 non-null object
               61199 non-null int64
KmInit
KmFinal
               61199 non-null int64
FuelBought
               61199 non-null float64
AmountFuel
               61199 non-null float64
CashFuel
               61199 non-null float64
AmountCash
               61199 non-null float64
               61199 non-null int64
FuelKm
DriverID
               61199 non-null int64
dtypes: float64(4), int64(7), object(2)
memory usage: 6.1+ MB
None
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 93447 entries, 0 to 93446
Data columns (total 13 columns):
               93447 non-null int64
TD
               93447 non-null object
Date
Country
               93447 non-null int64
VehID
               93447 non-null int64
               93416 non-null object
Destination
KmInit
               93447 non-null int64
KmFinal
               93447 non-null int64
FuelBought
               93447 non-null float64
               93447 non-null float64
AmountFuel
               93447 non-null float64
CashFuel
AmountCash
               93447 non-null float64
FuelKm
               93447 non-null int64
```

DriverID

93447 non-null int64

dtypes: float64(4), int64(7), object(2)

memory usage: 9.3+ MB

None

2.2.1 Describe for numeric columns

In [10]: df1.describe()

in [10]: dil	.describe()								
Out[10]:	ID	Country		VehID		KmInit		KmFinal \	
cou	nt 64544.000000	64544.0	64544	.000000	6454	4.000000	645	44.000000	
mean	n 60476.359971	1.0	156	.237605	6886	0.702265	689	31.561152	
std	24608.652709	0.0	112	.221037	5339	8.297490	534	25.787428	
min	30.000000	1.0	1	.000000		0.000000		41.000000	
25%	45583.750000	1.0	53	.000000	2981	1.750000	298	67.750000	
50%	62757.500000	1.0	96	.000000	5467	6.500000	547	30.000000	
75%	80255.250000	1.0	243	.000000	9402	4.250000	941	10.250000	
max	97199.000000	1.0	336	.000000	28789	1.000000	2880	29.000000	
	FuelBought	Amoun	tFuel	Cas	hFuel	Amount	Cash	FuelKm	\
cou	nt 64544.000000	64544.0	00000	64544.0	00000	64544.00	0000	64544.000000	
mean	n 8.094475	786.3	38400	0.1	.07624	11.83	7927	10031.041801	
std	24.973910	2691.5	63365	2.7	76170	308.00	6551	34048.292617	
min	0.000000	0.0	00000	0.0	00000	0.00	0000	0.000000	
25%	0.000000	0.0	00000	0.0	00000	0.00	0000	0.000000	
50%	0.000000	0.0	00000	0.0	00000	0.00	0000	0.000000	
75%	0.000000	0.0	00000	0.0	00000	0.00	0000	0.000000	
max	244.429993	181930.0	00000	151.0	00000	18120.00	0000	379475.000000	
	DriverID								
cou	nt 64544.000000								
mean	n 460.762023								
std									
min									
25%									
50%									
75%									
max	1117.000000								

In [11]: df2.describe()

Out[11]:		ID	Country	VehID	KmInit	KmFinal	\
	count	61199.000000	61199.0	61199.000000	61199.000000	61199.000000	
	mean	31701.482246	2.0	33.191801	94926.993072	95007.556545	
	std	18386.230520	0.0	22.245209	71295.990304	71300.943003	
	min	4.000000	2.0	2.000000	0.000000	20.000000	
	25%	15793.500000	2.0	13.000000	31914.000000	31960.000000	
	50%	31461.000000	2.0	27.000000	80322.000000	80398.000000	
	75%	47662.500000	2.0	54.000000	150082.000000	150138.000000	

	max	63621.000000	2.0	88.000000	3203	76.000000	3203	390.000000	
		FuelBought	AmountFu	el Cash	ıFuel	Amount	Cash	FuelKm	\
	count	61199.000000	6.119900e+			61199.00		61199.000000	•
	mean	9.569300	2.677606e+		7249	1088.40		14385.406281	
	std	26.852828	7.483434e+		50899	15032.42		44156.859173	
	min	0.000000	0.000000e+		0000	0.00		0.000000	
	25%	0.000000	0.000000e+		0000	0.00		0.000000	
	50%	0.000000	0.000000e+		0000	0.00		0.000000	
	75%	0.000000	0.000000e+		0000	0.00		0.000000	
	max	529.750000	2.190091e+			508000.00		999939.000000	
		DriverID							
	count	61199.000000							
	mean	21.228435							
	std	25.715557							
	min	1.000000							
	25%	1.000000							
	50%	13.000000							
	75%	27.000000							
	max	97.000000							
In [12]:	df3.de	scribe()							
Out[12]:		ID	Country	VehID		KmInit		KmFinal \	
	count	93447.000000	•	3447.000000	934	47.00000	934	147.000000	
	mean	48834.597173	3.0	40.740837	704	18.718707	704	171.444423	
	std	28858.653297	0.0	37.015758	543	64.011870	543	367.940770	
	min	4.000000	3.0	1.000000		15.000000		25.000000	
	25%	23813.500000	3.0	18.000000	237	27.000000	237	769.000000	
	50%	48094.000000	3.0	26.000000	611	76.000000	612	217.000000	
	75%	73416.500000	3.0	54.000000	1047	33.500000	1048	311.500000	
	max	99632.000000	3.0	158.000000	2320	66.000000	2321	101.000000	
		Euol Douwh+	AmountFu	ol Co-1	ıFuel	AmountC	agh	FuelKm	\
	count	FuelBought 93447.000000	9.344700e+			93447.000		93447.000000	\
		6.186339	9.344700e+ 6.961235e+)1538	279.907		3257.298693	
	mean	224.156646	2.276397e+			1434.464		19505.136901	
	std	0.000000	2.276397e+ 0.000000e+		00000	0.000		0.000000	
	min 25%	0.000000			00000	0.000		0.00000	
			0.000000e+						
	50% 75%	0.000000	0.000000e+ 0.000000e+		00000	0.000		0.000000	
	max	68050.000000	6.762700e+	06 66015.00	10000	95566.898	44 U	312965.000000	
		DriverID							
	count	93447.00000							
	mean	373.89272							
	std	316.55336							

```
min 1.00000
25% 144.00000
50% 262.00000
75% 392.00000
max 2125.00000
```

2.2.2 Histogram of columns

```
In [13]: df1.hist(figsize=(40, 30))
```



```
In [14]: df2.hist(figsize=(40, 30))
Out[14]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f0a3f486cc0>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x7f0a3de09080>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x7f0a3de275c0>],
                 [<matplotlib.axes._subplots.AxesSubplot object at 0x7f0a3ddcdb38>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x7f0a3dd810b8>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x7f0a3dda6630>],
                 [<matplotlib.axes._subplots.AxesSubplot object at 0x7f0a3dd4eba8>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x7f0a3dd00198>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x7f0a3dd001d0>],
                 [<matplotlib.axes._subplots.AxesSubplot object at 0x7f0a3dccfc50>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x7f0a3dc81208>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x7f0a3dca9780>]],
               dtype=object)
               Country
                               15000
    20000
                               4000
                               2000
    12000
                               10000
                               4000
```

In [15]: df3.hist(figsize=(40, 30))

[<matplotlib.axes._subplots.AxesSubplot object at 0x7f0a3d8fe550>,

2.2.3 Value counts for destination column

The column of Destination is the only non-numerical column. So, let us take a look at its values.

Column Name: Destination object

Personal 2521

DEDGOVAL	4075
PERSONAL	1375
personal and	1265
CRS-Home-CRS	1169
HOME-CRS-HOME	805
CRS-HOME-CRS	571
Home-Office-Home	555
CRS-Home	533
crs-hme-crs	516
errands	493
HOME-CRS	466
Home-CRS	441
Office-Home-Office	435
crs-home-crs	426
Home-Office	406
CRS-HOME	373
hme-crs	322
CRS-LORESHO	260
crs-westlands-crs	248
posting errands	246
crs-hme	242
CRS-Westlands-CRS	236
Office - Home - Office	234
Office-Home	226
crs-bank-crs	224
CRS-Loresho	222
home-crs	220
Home-CRS-Home	189
crs-total-crs	183
crs-home	176
	• • •
CRS Official	1
FENESI-CRS-AGA KHAN	1
Crs-Westlands-Crs	1
crs-home-crs for 8th- 9th and 10th Jan	1
CRS-Holiday Inn-CRS	1
WEST POKOT TARTAR	1
crs to Nbi hospital to CRS	1
h/bay-ndhiwa	1
CR-RESIDENCE-CRS-CR-RESIDENCE	1
crs-Gisellas's res-crs	1
Crs - Res - Crs - Res	1
H/bay-town-ksm	1
CRS-Hangarian embassy	1
NAIROBI CRS-NISONYO-NAIROBI CRS	1
Home-CRS-Home-SaritHome	1
MERU-MARIMANTI-MERU	1
Crs-res-crs	1
isiolo-field	1

CRS - PM- RESIDENT - BACK CRS OFFICE.	1
crs-Kenya leather-crs	1
CD of NakuruLantalinya primary	1
nbo-machkos-nbo	1
Diani-Mombasa	1
CRS-HILLVIEW-LAVINGTON-CRS-LORESHO-CRS	1
crs-msard-ind-town-crs	1
Mldi-Watamu	1
Home - CRS - Home - Loresho - CRS - Home	1
Home - CRS - Home - Loresho - Hill view - Home - CRS - Home	1
narok-naivashe-nbi	1
Migori Nairobi	1
Name: Destination, Length: 23305, dtype: int64	
T [47] " D : 4 / 1	
In [17]: # Print the value counts for specific columns	
col = "Destination"	
print('\nColumn Name:', col, df2[col].dtype)	
<pre>print(df2[col].value_counts())</pre>	
Column Name: Destination object	
CEV	3331
EV	2002
PERSO	950
cev	497
IVATO	434
ev	330
TANA	228
CEV ABV	187
FMR-CRS	184
CRS	174
CRS-FMR	172
ANNICK-CRS	166
PERSONAL	158
FNR	157
BMOI	156
HOME OFFICE	146
CRS- DOM- CRS	131
EV FNR	128
PERSONNEL	123
CRS-MAISON-CRS	116
FNR CEV	115
DOM FMR	115
CRS-ANNICK	113
CEV TNR	103
CRS-GALANA-CRS	103
HOME OFFICE/OFFICE HOME	98

CRS - MAISON - CRS		98
ANNICK- CRS		98
CRS-HOME		97
perso		90
BUREAU ANDRAMANERA	•	1
TMV-FEE- ANJAHABE-TMV		1
MANAKANA- MNJ		1
BNI Bazarkely ODDIT		1
CRS- BMOI- ANTSAHAVOLA- ANTANIMENA- CRS		1
HTL- NEPTUNE- ODDIT- NEPTUNE- MARIMAR- HTL	_	1
MIN COM USAID		1
LAZAN'ANDROY (3 FOIS)-ABSRK-BUREAU-TANJONA	A-ONN-LEILAH-BUREAU	1
CRS-INFINITHE-CRS		1
MASIABOAY - TANANTSOA		1
HTL VONDROZO.SAKELIRANO.HTL VONDROZO		1
FNR-ABE-TNR		1
LE DAUPHIN- TSIHOMBE		1
MNJ. AMBOHIMAHASOA SHELL		1
BRICKAVILLE-SAHAVALAINA-BRICKAVILLE GALANA	ı	1
ARTYONIMAMO ILARY		1
ARIVONIMAMO ILAFY TMV- BEFORONA -TMV		1 1
MANAKANA NORD-MANAKARA		1
CRS - HOME		1
MGH-SOFIA		1
CRS- TSIMBAZAZA- CRS		1
VGN- VOHIMENA-VGN		1
FARAFANGANA-TANGAINONY-MAROLAKA-FARAFANGAN	JA	1
ABV-TS/BE-F/D		1
ANJOHY-FARAVOHITRA-AMPEFILOHA-ANALAKELY		1
FNR APPRO-MNJR		1
BEFA SUD- ANTANIMEVA- ANKILIKASY- ANTANIME	EVA- MOROMBE	1
TAKE BEN END GABRIELLA FROM		1
CRS - ANDRAHARO - FUTURA - CRS		1
Name: Destination, Length: 28726, dtype: i	nt64	
- 57		
In [18]: # Print the value counts for spec	cific columns	
col = "Destination"		
<pre>print('\nColumn Name:', col, df3[print(df3[col].value_counts())</pre>	corl.acype)	
Column Name: Destination object		
COMMUTE	4532	
PERSONAL	3946	
SCHOOL RUN	3621	

WUSE	1944
AUSTOMA	1415
FUELING	1147
SCHOOL RUNS	1000
WUSE 2	807
COMMUTTE	775
COMMUTEE	657
OFFICE TO AIRPORT	584
BANKING	582
OFFICE TO HOME	578
WUSE II	565
MAITAMA	553
HOTEL	548
BANK	544
HOME TO OFFICE	504
AIRPORT	493
SCHOOL	483
OFFICE TO JABI	473
OFFICE - HOME	466
JABI	462
FUELLING	379
PERSONAL USE	361
HOME	359
CENTRAL AREA	327
wuse	322
OFFICE	320
WUSE TO OFFICE	311
TART CORTOR	
JABI OOFICE	1
OFFICE TO GWARINA	1
LAFIA OFFICE TO NNPC	1
WFE MEETING	1
EMBASSY AND JABI	1
AGU TO OLO H.C	1
OLD GUEST HOUSE TOOFFICE	1
CORNOIL	1
OANDO FUNTUA TO ABUJA OFFICE	1
EKA	1
gaduwe	1
OFFICE - EGYPT EMBASSY	1
DROP LETTERS CENTRAL AREA	1
OFFICE TO RIDERS WORKSHOP	1
OFFICE =- HOME	1
MURIPHA -ECWA EGBE 18/10/2017	1
OFFICE BWARI SITE VISIT	1
OFFICE O DIZ GENTER	1
OFFICE O BIZ CENTER	1
OFFICE TO VIO OFFICE AND ASOKORO	1

```
OFFICE TO OLD NEW HOUSE
                                                  1
ABIA -ABA
                                                  1
OFF TO AREA 2
                                                  1
OFFICE - DUTSE TO PICK UP CAR AT CORRONET
                                                  1
GBOKO TO VANDEKYA
V ANDTO GBOKO
GEROGE TOWN
                                                  1
OFFICE TO SAK FUEL STATION
PERSONSL
                                                  1
HOTEL TO DOGERE
                                                  1
Name: Destination, Length: 26566, dtype: int64
```

3 Data Engineering

After reading and exploring the three data sets, I will do some data manipulations so that I can have a data set ready for machine learning algorithms to use.

3.1 Generate Sample Data Set

3.1.1 Take samples

Python Scikit learn library will run machine learning algorithms on the local in-memory data set. So, I will take 10,000 records from data sets so that it can take acceptable time to produce output.

3.1.2 Combine three data sets

```
In [20]: df4 = pd.concat([df1, df2, df3])
         df4.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10000 entries, 35836 to 28502
Data columns (total 13 columns):
ID
               10000 non-null int64
Date
               10000 non-null object
               10000 non-null int64
Country
VehID
               10000 non-null int64
Destination
               9664 non-null object
               10000 non-null int64
KmInit
               10000 non-null int64
KmFinal
               10000 non-null float64
FuelBought
AmountFuel
               10000 non-null float64
CashFuel
               10000 non-null float64
AmountCash
               10000 non-null float64
```

```
FuelKm 10000 non-null int64
DriverID 10000 non-null int64
dtypes: float64(4), int64(7), object(2)
memory usage: 1.1+ MB
```

3.2 Create Columns based on Existing Ones

3.2.1 Calculate distance for every driving history record

```
In [21]: df4['Distance'] = abs(df4['KmFinal'] - df4['KmInit'])
```

3.2.2 Determine the directions of driving vehicle

```
In [22]: def usage_type(x):
             if isinstance(x, str):
                 x = x.lower()
                 result = None
                 if '-' in x:
                     wordList = x.strip().split('-')
                 elif (',') in x:
                     wordList = x.strip().split(',')
                 elif ('/') in x:
                     wordList = x.strip().split('/')
                 elif ('.') in x:
                     wordList = x.strip().split('.')
                 elif ('to') in x:
                     wordList = x.strip().split('to')
                 else:
                     wordList = x.strip().split()
                 first_word = wordList[0].strip()
                 last_word = wordList[len(wordList) - 1].strip()
                 #print(first_word, last_word)
                 if (first_word == last_word) and len(wordList) > 1:
                     result = 2
                 elif 'commute' in x:
                     result = 2
                 elif 'person' in x:
                     result = 1
                 else:
                     result = 1
                 return result
             else:
                 return 0
         df4['Directions'] = df4['Destination'].apply(usage_type)
```

3.2.3 Calculate how many stops during one driving history

```
In [23]: def get_stops(x):
             if isinstance(x, str):
                 x = x.lower()
                 result = None
                 if '-' in x:
                     wordList = x.strip().split('-')
                 elif (',') in x:
                     wordList = x.strip().split(',')
                 elif ('/') in x:
                     wordList = x.strip().split('/')
                 elif ('.') in x:
                     wordList = x.strip().split('.')
                 elif ('to') in x:
                     wordList = x.strip().split('to')
                 else:
                     wordList = x.strip().split()
                 result = len(set(wordList))
                 return result
             else:
                 return 0
         df4['Stops'] = df4['Destination'].apply(get_stops)
```

3.2.4 Calculate how fuel was added and purchased

3.3 Extract Data Set for Machine Learning Use

10000 non-null int64

10000 non-null int64

3.3.1 Query data set

is_Cash_Paid

When_Fuel_Added

```
dtypes: int64(7) memory usage: 625.0 KB
```

3.3.2 Data Set Profiling

```
In [26]: pandas_profiling.ProfileReport(df)

/usr/local/lib/python3.6/dist-packages/matplotlib/font_manager.py:1241: UserWarning: findfont:
    (prop.get_family(), self.defaultFamily[fontext]))

/usr/local/lib/python3.6/dist-packages/matplotlib/font_manager.py:1241: UserWarning: findfont:
    (prop.get_family(), self.defaultFamily[fontext]))
```

Out[26]: <pandas_profiling.ProfileReport at 0x7f0a3f93b518>

3.4 Data Exploration for Trending

3.4.1 Column distributions

```
In [27]: # Bar plot of Stops
         plt.bar(df['Stops'].value_counts().index, df['Stops'].value_counts().values,
                 fill = 'blue', edgecolor = 'r', width = 1)
         plt.xlabel('Stops')
         plt.ylabel('Count')
         plt.title('Distribution of Stops')
         plt.xticks(list(range(0, 15)))
Out[27]: ([<matplotlib.axis.XTick at 0x7f0a39b46438>,
           <matplotlib.axis.XTick at 0x7f0a39b42c88>,
           <matplotlib.axis.XTick at 0x7f0a39b429b0>,
           <matplotlib.axis.XTick at 0x7f0a39af8eb8>,
           <matplotlib.axis.XTick at 0x7f0a39ae5358>,
           <matplotlib.axis.XTick at 0x7f0a39b03748>,
           <matplotlib.axis.XTick at 0x7f0a39b03c88>,
           <matplotlib.axis.XTick at 0x7f0a39b0d208>,
           <matplotlib.axis.XTick at 0x7f0a39b0d748>,
           <matplotlib.axis.XTick at 0x7f0a39b0dc88>,
           <matplotlib.axis.XTick at 0x7f0a39a94208>,
           <matplotlib.axis.XTick at 0x7f0a39a94748>,
           <matplotlib.axis.XTick at 0x7f0a39b0d668>,
           <matplotlib.axis.XTick at 0x7f0a39b03668>,
           <matplotlib.axis.XTick at 0x7f0a39a94e10>],
          <a list of 15 Text xticklabel objects>)
```



```
In [28]: # Bar plot of Directions
         plt.bar(df['Directions'].value_counts().index, df['Directions'].value_counts().values
                 fill = 'blue', edgecolor = 'r', width = 1)
         plt.xlabel('Directions')
         plt.ylabel('Count')
         plt.title('Distribution of Directions')
         plt.xticks(list(range(0, 15)))
Out[28]: ([<matplotlib.axis.XTick at 0x7f0a39a1ab70>,
           <matplotlib.axis.XTick at 0x7f0a39a1a400>,
           <matplotlib.axis.XTick at 0x7f0a39a1a2b0>,
           <matplotlib.axis.XTick at 0x7f0a39a3a7f0>,
           <matplotlib.axis.XTick at 0x7f0a39a3ac88>,
           <matplotlib.axis.XTick at 0x7f0a39a44208>,
           <matplotlib.axis.XTick at 0x7f0a39a44748>,
           <matplotlib.axis.XTick at 0x7f0a39a44c88>,
           <matplotlib.axis.XTick at 0x7f0a39a4b208>,
           <matplotlib.axis.XTick at 0x7f0a39a4b748>,
           <matplotlib.axis.XTick at 0x7f0a39a446d8>,
           <matplotlib.axis.XTick at 0x7f0a39a3a780>,
           <matplotlib.axis.XTick at 0x7f0a39a4b550>,
           <matplotlib.axis.XTick at 0x7f0a399d3358>,
```

<matplotlib.axis.XTick at 0x7f0a399d3898>],
<a list of 15 Text xticklabel objects>)


```
In [29]: # Bar plot of is_Fuel_Added
         plt.bar(df['is_Fuel_Added'].value_counts().index, df['is_Fuel_Added'].value_counts().
                 fill = 'blue', edgecolor = 'r', width = 1)
         plt.xlabel('is_Fuel_Added')
         plt.ylabel('Count')
         plt.title('Distribution of is_Fuel_Added')
         plt.xticks(list(range(0, 15)))
Out[29]: ([<matplotlib.axis.XTick at 0x7f0a3999e5c0>,
           <matplotlib.axis.XTick at 0x7f0a39993e10>,
           <matplotlib.axis.XTick at 0x7f0a39993b38>,
           <matplotlib.axis.XTick at 0x7f0a399b9ef0>,
           <matplotlib.axis.XTick at 0x7f0a399c1400>,
           <matplotlib.axis.XTick at 0x7f0a399c1940>,
           <matplotlib.axis.XTick at 0x7f0a399c1e80>,
           <matplotlib.axis.XTick at 0x7f0a399ca400>,
           <matplotlib.axis.XTick at 0x7f0a399ca940>,
           <matplotlib.axis.XTick at 0x7f0a399cae80>,
           <matplotlib.axis.XTick at 0x7f0a39951400>,
```

```
<matplotlib.axis.XTick at 0x7f0a399ca8d0>,
<matplotlib.axis.XTick at 0x7f0a399b9fd0>,
<matplotlib.axis.XTick at 0x7f0a39951940>,
<matplotlib.axis.XTick at 0x7f0a39951e80>],
<a list of 15 Text xticklabel objects>)
```



```
<matplotlib.axis.XTick at 0x7f0a39947978>,
<matplotlib.axis.XTick at 0x7f0a3994c5f8>,
<matplotlib.axis.XTick at 0x7f0a3994cb38>,
<matplotlib.axis.XTick at 0x7f0a399476a0>,
<matplotlib.axis.XTick at 0x7f0a39947c88>,
<matplotlib.axis.XTick at 0x7f0a3994ce48>,
<matplotlib.axis.XTick at 0x7f0a3994ce48>,
<matplotlib.axis.XTick at 0x7f0a398d65f8>],
<a list of 15 Text xticklabel objects>)
```


3.4.2 Column distributions by different countries

3.4.3 Numerical correlations

3.5 Generate Training and Testing Data Sets

3.5.1 Select most correlated 3 columns

```
# df = pd.get_dummies(df)
             # Find correlations with the country
             most_correlated = df.corr().abs()['Country'].sort_values(ascending=False)
             # Maintain the top 3 most correlation columns with country
             most_correlated = most_correlated[:4]
             df = df.loc[:, most_correlated.index]
             # Split into training/testing sets with 25% split
             X_train, X_test, y_train, y_test = train_test_split(df, labels,
                                                                  test_size = 0.25,
                                                                  random_state=42)
             return X_train, X_test, y_train, y_test
In [38]: X_train, X_test, y_train, y_test = ML_DataSet(df)
         X_train.head()
Out[38]:
                Country Directions is_Cash_Paid Stops
         29384
                      2
                                  1
         14827
                      2
                                  1
                                                 0
                                                        1
                                                 0
         2548
                      3
                                  1
                                                        1
                      3
                                                 0
                                                        2
         43820
         49827
                                                        3
In [39]: X_train.head()
Out [39]:
                Country Directions is_Cash_Paid Stops
         29384
                      2
                                  1
                                                 0
                                                        2
         14827
                      2
                                  1
                                                 0
                                                        1
                      3
                                  1
                                                 0
                                                        1
         2548
         43820
                      3
                                  1
                                                 0
                                                        2
         49827
                                                        3
In [40]: print(X_train.shape)
         print(X_test.shape)
(7500, 4)
(2500, 4)
3.5.2 Plots of Selected Columns Correlation Coefficient
In [41]: # Calculate correlation coefficient
         def COEFF(x, y, **kws):
             r, tmp = stats.pearsonr(x, y)
```

 $p.annotate("r = {:.2f}".format(r), xy=(.1, .6), xycoords=p.transAxes, size = 24)$

p = plt.gca()

Visualize the results cmap = sns.cubehelix_palette(light=1, dark=0.1, hue=0.5, as_cmap=True) sns.set_context(font_scale=2) g = sns.PairGrid(X_train) g.map_upper(plt.scatter, s=10, color = 'blue') g.map_diag(sns.distplot, kde=False, color = 'blue') g.map_lower(sns.kdeplot, cmap = cmap) g.map_lower(COEFF); 3.0 2.5 Country 0.2 1.5 1.0 2.0 -Directions 1.0 0.5 r = -0.280.0 1.0 0.8 0.6 0.4 0.2 r = 0.14r = -0.060.0 10 r = 0.30r = -0.02r = -0.104 0.0 0.5 2 10 Country Directions is_Cash_Paid Stops

4 Predictive Analytics with Machine Learning Approaches

4.1 Setup Metrics

For this data analytics project, I will use two standard metrics (wiki definitions) from :

- Mean Absolute Error (MAE): is an interpretable & scale-dependent accuracy measure of difference between two continuous variables and is average vertical distance between each point and the identity line.
- Root Mean Squared Error (RMSE): is a frequently used & scale-dependent measure of the differences between values (sample or population values) predicted by a model or an estimator and the values observed. It represents the square root of the second sample moment of the differences between predicted values and observed values or the quadratic mean of these differences. RMSE is always non-negative, and a value of 0 (almost never achieved in practice) would indicate a perfect fit to the data. In general, a lower RMSE is better than a higher one.

For more information and discussions around those two metrices, here is a discussion.

```
In [42]: # Function to calculate mae and rmse
    def evaluate_predictions(predictions, real):
        mae = np.mean(abs(predictions - real))
        rmse = np.sqrt(np.mean((predictions - real) ** 2))
        return mae, rmse
```

4.2 Setup Baseline

For a regression machine learning approach, a simple baseline is to guess the median value on the training set for all testing cases. I will evaluate if machine learning approach can be better than the simple baseline.

4.3 Machine Learning Approaches

```
'Extra Trees', 'SVM', 'Gradient Boosted', 'Baseline']
             X_train = X_train.drop(columns='Country')
             X_test = X_test.drop(columns='Country')
             # Call ML approaches
             model1 = LinearRegression()
             model2 = ElasticNet(alpha=1.0, l1_ratio=0.5)
             model3 = RandomForestRegressor(n_estimators=50)
             model4 = ExtraTreesRegressor(n_estimators=50)
             model5 = SVR(kernel='rbf', degree=3, C=1.0, gamma='auto')
             model6 = GradientBoostingRegressor(n_estimators=20)
             # Create a dataframe for results
             results = pd.DataFrame(columns=['mae', 'rmse'], index = model_name_list)
             # Train and predict with each model
             for i, model in enumerate([model1, model2, model3, model4, model5, model6]):
                 model.fit(X_train, y_train)
                 predictions = model.predict(X_test)
                 # calculate metrics
                 mae = np.mean(abs(predictions - y_test))
                 rmse = np.sqrt(np.mean((predictions - y_test) ** 2))
                 # put results into the dataframe
                 model_name = model_name_list[i]
                 results.loc[model_name, :] = [mae, rmse]
             # calculate baseline
             baseline = np.median(y_train)
             baseline_mae = np.mean(abs(baseline - y_test))
             baseline_rmse = np.sqrt(np.mean((baseline - y_test) ** 2))
             # fill dataframe for results
             results.loc['Baseline', :] = [baseline_mae, baseline_rmse]
             return results
In [46]: # run ML approach and evaluation
         results = evaluate(X_train, X_test, y_train, y_test)
4.4 Visual Comparison of ML Approaches
In [47]: figsize(12, 8)
         matplotlib.rcParams['font.size'] = 16
         # MAE plot
         ax = plt.subplot(1, 2, 1)
         results.sort_values('mae', ascending = True).plot.bar(y = 'mae', color = 'navy', ax =
```

model_name_list = ['Linear Regression', 'ElasticNet Regression', 'Random Forest',

```
plt.title('Model Mean Absolute Error')
plt.ylabel('MAE')

# RMSE plot
ax = plt.subplot(1, 2, 2)
results.sort_values('rmse', ascending = True).plot.bar(y = 'rmse', color = 'g', ax = plt.title('Model Root Mean Squared Error')
plt.ylabel('RMSE')
plt.tight_layout()
```


In [48]: # show quantitative results
 results

```
Out [48]:
                                                rmse
                                      mae
         Linear Regression
                                 0.698025
                                            0.786011
         ElasticNet Regression 0.715794
                                            0.827868
         Random Forest
                                 0.614889
                                            0.721275
         Extra Trees
                                 0.615302
                                           0.721358
         SVM
                                 0.591881
                                            0.837453
         Gradient Boosted
                                 0.624126
                                            0.724332
         Baseline
                                   0.6948
                                            0.833547
```

The Random Forest is 11.50% better on MAE than the baseline. The Random Forest is 13.47% better on RMSE than the baseline.

4.5 Interpretable Formula with Ordinary Linear Regression

```
In [50]: lr = LinearRegression()
    lr.fit(X_train.drop(columns='Country'), y_train)

formula = 'Country = %0.2f +' % lr.intercept_
    for i, col in enumerate(X_train.columns[1:]):
        formula += ' %0.2f * %s +' % (lr.coef_[i], col)

print(' '.join(formula.split(' ')[:-1]))

Country = 2.70 + -0.50 * Directions + 0.66 * is_Cash_Paid + -0.02 * Stops
```

5 Conclusions

In this notebook I went through major steps to demonstrate how a data analytic project can be implemented. At the end, several machine learning approaches were evaluated and compared based on two standard metrics, such as MAE and RMSE.

During this project implementation, one of limitations is the performance of data manipulation and machine learning training processes. When combining the whole three data sets as a training set, it takes a long time (more than half day) to manipulate and train the data. This is a known issue with pandas and scikit-learn libraries running on a local machine. That is, the running time can be an exponential growth on the size of training data set. That is why I only take 10,000 records from the whole three data sets as the training data set. During this project implementation, one of limitations is the performance of data manipulation and machine learning training processes. When combining the whole three data sets as a training set, it takes a long time (more than half day) to manipulate and train the data. This is a known issue with pandas and scikit-learn libraries running on a local machine. That is, the running time can be an exponential growth on the size of training data set. That is why I only take 10,000 records from the whole three data sets as the training data set.

A scalable solution for this problem is to use Spark (with pyspark library) on a Hadoop cluster (a group of multiple servers). In another notebook, I will demonstrate this solution for the same VMS data sets.