PMATH 370 Winter 2024:

Lecture Notes

1 Iter	ation and Orbits									2
1.1	Orbits									2
1.2	Real analysis review									4
1.3	Orbits, revisited									
2 Gra	phical Analysis									11
2.1	Cobweb plots									11
3 Fixe	ed Points									14
3.1	Attracting/repelling fixed point the	orem	ıs							14
3.2	Neutral fixed points									17
4 Bifu	ircations									21
4.1	Quadratic family									21
Back N	Matter									23
List	of Named Results									23
Inde	x of Defined Terms									24
Lecture	notes taken, unless otherwise spec	ified	, by myself	during th	e Win	ter 202	24	offe	ring	g of
PMATI	H 370, taught by Blake Madill.									
Lectu	ıres		Lecture 4	Jan 15						9
			Lecture 5	Jan 17						12
Lecture	1 Jan 8	2	Lecture 6	Jan 19						17
Lecture	2 Jan 10	4	Lecture 7	Jan 22						19
Lecture	3 Jan 12	6								

Chapter 1

Iteration and Orbits

1.1 Orbits

Definition 1.1.1 (iteration)

Let $f: A \to \mathbb{R}$ such that $A \subseteq \mathbb{R}$ and $f(A) \subseteq A$. For $a \in A$ we may <u>iterate</u> the function at a:

Lecture 1

Jan 8

$$x_1 = a, x_2 = f(a), x_3 = \underbrace{f(f(a))}_{f^2(a)}, \dots, x_i = f^{i-1}(a), \dots \ .$$

The sequence $(x_n)_{n=1}^{\infty}$ is the <u>orbit of a under f</u> (abbreviated (x_n) without limits).

Example 1.1.2. Let $f(x) = x^4 + 2x^2 - 2$, a = -1. What is the orbit of a under f?

Solution. $a=-1,\ f(a)=1,\ f(f(a))=f(1)=1,$ so we have $-1,1,1,1,\ldots$ We call this eventually constant. \Box

Example 1.1.3. Let $f(x) = -x^2 - x + 1$, a = 0. What is the orbit of a under f?

Solution. Calculate: $0, 1, -1, 1, -1, 1, \dots$ We call this eventually periodic (with period 2).

Example 1.1.4. Let $f(x) = x^3 - 3x + 1$, a = 1. What is the orbit of a under f?

Solution. Calculate the first few terms: $1, -1, 3, 19, \dots$ (too big). This is a divergence to infinity. \square

Example 1.1.5. Let $f(x) = x^2 + 2x$, a = -0.5. What is the orbit of a under f?

Solution. Calculate: -0.5, -0.75, -0.9375, -0.9961... and we make an educated guess that this converges to -1 since f(-1) = -1, a fixed point.

Example 1.1.6. Let $f(x) = x^3 - 3x$, a = 0.75. What is the orbit of a under f?

Solution. Calculate: $0.75, -1.828, -0.625, 1.631, -0.552, \dots$ There is no clear pattern, so we call this chaotic. In fact, the orbit is dense in a neighbourhood of 0.

We can start to formalize the examples.

Definition 1.1.7 (fixed point)

Let $f: A \to \mathbb{R}$ such that $f(A) \subseteq A$. A point $a \in A$ is fixed if f(a) = a.

Then, the orbit of a under f is (a, a, a, ...) which is constant.

Example 1.1.8. Find all fixed points of $f(x) = x^2 + x - 4$.

Solution. We find points where f(x) = x, i.e., $x^2 + x - 4 = x$.

$$x^2 + x - 4 = x \iff x^2 = 4 \iff x = \pm 2$$

Example 1.1.9. How many fixed points does $f(x) = 2 \sin x$ have?

Solution. Consider where the curve $y = 2 \sin x$ meets y = x:

We can see there are three fixed points.

Example 1.1.10. Prove that $f(x) = x^4 - 3x + 1$ has a fixed point.

Proof. We must show there is a solution to $x^4 - 3x + 1 \iff x^4 - 4x + 1 = 0$. Let $g(x) = x^4 - 4x + 1$. Since g(x) is continuous, g(0) = 1 > 0, and g(1) = -2 < 0, by the Intermediate Value Theorem, there must exist a root of g on the interval (0,1). That is, a fixed point of f.

Definition 1.1.11 (periodicity)

Let $f: A \to \mathbb{R}, f(A) \subseteq A$.

- 1. A point $a \in A$ is <u>periodic</u> for f if its orbit is <u>periodic</u>. An orbit is <u>periodic</u> if for some $n \in \mathbb{N}$, $f^n(a) = a$. The smallest n is the <u>period</u> of (the orbit of) a.
- 2. An orbit (of a point) is <u>eventually periodic</u> if there exists n < m such that $f^n(a) = f^m(a)$. The smallest difference m n is the period of the orbit.

Definition 1.1.12 (doubling function)

 $D:[0,1)\to[0,1):x\mapsto 2x-|2x|$ returns the fractional part of 2x.

Lecture 2 Jan 10

Example 1.1.13. D(0.4) = 0.8, D(0.6) = 0.2, D(0.8) = 0.6, D(0.5) = 0.

This is a nice function that gives lots of periodic orbits for funsies.

Example 1.1.14. Find the orbit of $a = \frac{1}{5}$ under D.

Solution. Double until we pass 1: $\frac{1}{5}, \frac{2}{5}, \frac{4}{5}, \frac{8}{5} \to \frac{3}{5}, \frac{6}{5} \to \frac{1}{5}$. The period is $\left| \left\{ \frac{1}{5}, \frac{2}{5}, \frac{4}{5}, \frac{3}{5} \right\} \right| = 4$.

Example 1.1.15. Find the orbit of $a = \frac{1}{20}$ under D.

Solution. Double: $\frac{1}{20}$, $\frac{1}{10}$, $\frac{1}{5}$ and we can stop because Example 1.1.14 showed $\frac{1}{5}$ is periodic.

So this is eventually periodic with period 4.

Problem 1.1.16

Given f and a, does $f^n(a)$ tend towards some limit L?

To solve this problem, we need to rigorously define "tend" and "limit".

1.2 Real analysis review

Notation. If $(x_n)_{n=1}^{\infty}$ is a sequence of real numbers, we write $(x_n) \subseteq \mathbb{R}$.

Definition 1.2.1 (convergence of a sequence)

Let $(x_n) \subseteq \mathbb{R}, x \in \mathbb{R}$.

We say (x_n) converges to x if for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $|x_n - x| < \varepsilon$ for all n > N.

Then, we write $x_n \to x$ or $\lim x_n = x$.

Example 1.2.2. Show that $\frac{1}{n} \to 0$.

Proof. Let $\varepsilon > 0$. Consider $N = \frac{2}{\varepsilon} > \frac{1}{\varepsilon}$. For $n \ge N$, we have

$$\left|\frac{1}{n} - 0\right| = \frac{1}{n} < \varepsilon$$

Therefore, $\frac{1}{n} \to 0$.

Example 1.2.3. Prove that $\frac{2n}{n+3} \to 2$.

Proof. Let $\varepsilon > 0$. Since we know $\frac{1}{n} \to 0$, let $N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{\varepsilon}{6}$.

For $n \geq N$,

$$\left| \frac{2n}{n+3} - 2 \right| = \left| \frac{2n}{n+3} - \frac{2n+6}{n+3} \right| = \left| \frac{-6}{n+3} \right| = \frac{6}{n+3} < \frac{6}{n} \le \frac{6}{N} < 6 \cdot \frac{\varepsilon}{6} = \varepsilon$$

Therefore, $\frac{2n}{n+3} \to 2$.

Definition 1.2.4 (bounded sequence)

A sequence (x_n) is <u>bounded</u> (by M) if there exists M > 0 such that $\forall n \in \mathbb{N}, |x_n| \leq M$.

Proposition 1.2.5 (convergence implies boundedness)

If (x_n) is convergent, then (x_n) is bounded.

Proof. Suppose $x_n \to x$. Then, there exists $N \in \mathbb{N}$ such that if $n \geq N$, then $|x_n - x| < 1$.

For $n \ge N$, $|x_n| - |x| \le |x_n - x| < 1$. That is, $|x_n| < 1 + |x|$.

Let $M = \max\{|x_1|, \dots, |x_{n-1}|, 1+|x|\}$. Then, for both all n < N and $n \ge N$, we have $|x_n| \le M$. \square

Remark 1.2.6. The converse is not true. Notice that $x_n = (-1)^n$ is bounded by 1 but obviously not convergent.

Proposition 1.2.7 (limit laws)

Let $x_n \to x$ and $y_n \to y$. Then:

- $(1) \ x_n + y_n \to x + y$
- (2) $x_n y_n \to xy$

Proof. (1) Let $\varepsilon > 0$. Then, since $x_n \to x$ and $y_n \to y$, there exist $N_1, N_2 \in \mathbb{N}$ such that $n \ge N_1 \implies |x_n - x| < \frac{\varepsilon}{2}$ and $n \ge N_2 \implies |y_n - y| < \frac{\varepsilon}{2}$.

For $N = \max\{N_1, N_2\}$ and $n \ge N$,

$$\begin{split} |(x_n+y_n)-(x+y)| &= |(x_n-x)+(y_n-y)| \\ &\leq |x_n-x|+|y_n-y| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon \end{split}$$

That is, $x_n + y_n \to x + y$.

(2) Let $\varepsilon > 0$. Notice that:

$$|x_n y_n - xy| = |x_n y_n - x_n y + x_n y - xy| \le |x_n| \cdot |y_n - y| + |y| \cdot |x_n - x| \tag{*}$$

Since x_n is bounded, there exists M > 0 such that $|x_n| \leq M$ for all n.

Let $N_1, N_2 \in \mathbb{N}$ such that

$$n \ge N_1 \implies |x_n - x| \le \frac{\varepsilon}{2(|y| + 1)}$$
 and $n \ge N_2 \implies |y_n - y| < \frac{\varepsilon}{2M}$.

Then, for $n \geq N := \max\{N_1, N_2\}, \, |x_n y_n - xy| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ by (*).

Lecture 3 Jan 12

Definition 1.2.8 (Cauchy sequence)

We say $(x_n) \in \mathbb{R}$ is <u>Cauchy</u> if for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all n and m,

$$n, m \ge N \implies |x_n - x_m| < \varepsilon$$

Proposition 1.2.9

Every convergent sequence is Cauchy.

Proof. Intuitively: if the terms get arbitrarily close to some limit, they must get arbitrarily close to each other.

Formally: Let $x_n \to x$ be a convergent sequence and $\varepsilon > 0$. Since x_n converges, there exists $N \in \mathbb{N}$ such that $n \geq N \implies |x_n - x| < \frac{\varepsilon}{2}$.

Then, when $n, m \geq N$, we have:

$$\begin{aligned} |x_n-x_m| &= |x_n-x_m+x-x| \\ &= |(x_n-x)+(x-x_m)| \\ &\leq |x_n-x|+|x_m-x| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon \end{aligned}$$

as desired.

We take the following theorem from real analysis without proof.

Theorem 1.2.10 (completeness of \mathbb{R})

A sequence is Cauchy if and only if it is convergent.

The big idea here: To prove (x_n) is Cauchy, you do not have to guess the limit first. That is, if you must prove convergence but do not care about the limit's value, prove that it is Cauchy instead.

Definition 1.2.11 (continuity of a function)

Let $f: A \to \mathbb{R}, A \subseteq \mathbb{R}, a \in A$. We say f is <u>continuous at a</u> if for all $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(a)| < \varepsilon$ whenever $x \in A$ and $|x - a| < \delta$.

If f is continuous at all $a \in A$, we say it is continuous.

We also take this theorem from MATH 137 without proof.

Theorem 1.2.12

A function $f:A\to\mathbb{R}$ is continuous at $a\in A$ if and only if for all sequences $(x_n)\subseteq A$ with $x_n\to a$, we have $f(x_n)\to a$.

1.3 Orbits, revisited

Proposition 1.3.1

If $f:[a,b]\to [a,b]$ is continuous, then f(x) has a fixed point.

Proof. We know by the domain and codomain that $f(a) \ge a$ and $f(b) \le b$. This means $f(a) - a \ge 0$ and $f(b) - b \le 0$. By the IVT on the continuous function g(x) = f(x) - x, we know there exists an $x \in [a,b]$ such that $g(x) = f(x) - x = 0 \iff f(x) = x$, i.e., x is a fixed point. \square

Definition 1.3.2 (contraction)

Let $f: A \to \mathbb{R}, A \subseteq \mathbb{R}$. We say f is a <u>contraction</u> if there exists $C \in [0,1)$ such that for all $x, a \in A$,

$$|f(x) - f(y)| \le C|x - y|$$

This is just a Lipschitz function with Lipschitz constant less than 1.

Proposition 1.3.3

Contractions are continuous.

Proof. Let $\varepsilon > 0$. Suppose f is a contraction such that $|f(x) - f(y)| \le C|x - y|$.

Consider $y \in A$. Let $\delta = \frac{\varepsilon}{C+1}$ and assume that $x \in A$ and $|x-y| < \delta$. But we have:

$$|f(x) - f(y)| \le C|x - y| \le C\delta < \varepsilon$$

as desired. \Box

Definition 1.3.4 (closure of an interval)

We say $A \in \mathbb{R}$ is <u>closed</u> if whenever $(x_n) \subseteq A$ with $x_n \to x$, then $x \in A$.

Example 1.3.5. [a,b] is closed but (0,1] is not because $\frac{1}{n} \to 0 \notin (0,1]$.

Theorem 1.3.6 (Banach contraction mapping theorem)

Suppose $A \subseteq \mathbb{R}$ is closed and $f: A \to A$ is a contraction. Then, there exists a unique fixed point $a \in A$ for f.

Moreover, for all $x \in A$, $f^n(x) \to a$.

Example 1.3.7. Analyze the orbit of $f:[0,1] \to [0,1], f(x) = \frac{1}{3-x}$.

Solution. We can observe that $\frac{1}{3} \le \frac{1}{3-x} \le \frac{1}{2}$.

Also, $f'(x) = \frac{1}{(3-x)^2}$. Notice that $\frac{1}{9} \le |f'(x)| \le \frac{1}{4}$. So by the mean value theorem, for all $x, y \in [0, 1]$, there exists $c \in (0, 1)$ such that:

$$\begin{split} f(x) - f(y) &= f'(c)(x - y) \\ |f(x) - f(y)| &= |f'(c)| \cdot |x - y| \\ &\leq \frac{1}{4}|x - y| \end{split}$$

Then, identifying $C = \frac{1}{4}$, f is a contraction. Now,

$$\frac{1}{3-x} = x \iff 1 = 3x - x^2 \iff x^2 - 3x + 1 = 0 \iff x = \frac{3 \pm \sqrt{9-4}}{2} \iff x = \frac{3 - \sqrt{5}}{2}$$

where we pick the negative root because we need $x \in [0,1]$.

Therefore, by the Banach contraction mapping theorem, for all $x \in [0,1]$, $f^n(x) \to \frac{3-\sqrt{5}}{2}$.

Lecture 4 Jan 15

Definition 1.3.8

A sequence $(a_n) \subseteq \mathbb{R}$ is strongly-Cauchy if there exists $(\varepsilon_n) \subseteq [0, \infty)$ such that $\sum_{n=1}^{\infty} \varepsilon_n < \infty$ and for all n, $|a_n - a_{n+1}| < \varepsilon_n$.

Informally, "far enough along the sequence, the *neighbours* must get close". This is distinct from Cauchy, which is "far enough along the sequence, the *terms* must get close".

Remark 1.3.9 (assignment hint!). Let $\sum_{n=1}^{\infty} a_n = L$. This means that $\sum_{k=1}^{n} a_k \xrightarrow{n \to \infty} L$.

That is, for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $n \ge N$ implies $\left| \sum_{k=1}^n a_k - L \right| < \varepsilon$.

But
$$\left| \sum_{k=1}^{n} a_k - L \right| = \left| \sum_{k=1}^{\infty} a_k - \sum_{k=1}^{n} a_k \right| = \left| \sum_{k=n+1}^{\infty} a_k \right| < \varepsilon$$
.

We can now prove the Banach contraction mapping theorem.

Proof. Let $A \subseteq \mathbb{R}$ be closed and suppose there exists $f: A \to A$ and $C \in [0,1)$ such that $|f(x) - f(y)| \leq C|x - y|$ for all x and y in A.

Fix $x_0 \in A$ and construct the orbit $x_1 = f(x_0), x_2 = f(x_1), \dots, x_n = f(x_{n-1}) = f^n(x_0).$

For $n \in \mathbb{N}$, since f is a contraction,

$$\begin{split} |x_{n+1} - x_n| &= |f(x_n) - f(x_{n-1})| \\ &\leq C|x_n - x_{n-1}| \\ &= C|f(x_{n-1}) - f(x_{n-2})| \\ &\leq C^2|x_{n-1} - x_{n-2}| \\ &\vdots \\ &\leq C^n|x_1 - x_0| \end{split}$$

Since $\sum_{n=1}^{\infty} C^n |x_1 - x_0| = |x_1 - x_0| \sum_{n=1}^{\infty} C^n$ is a convergent geometric series, we have that the sequence (x_n) is strongly-Cauchy.

Hence, by Assignment 1, $x_n \to a$ for some limit point $a \in A$ since A is closed.

Since f is continuous (Proposition 1.3.3), we have that $f(x_n) \to f(a)$. By definition, $f(x_n) = x_{n+1}$, so $x_n \to f(a)$. But we already know $x_n \to a$, so a = f(a). That is, a is a fixed point of f.

It remains to show uniqueness.

Suppose $a, b \in A$ such that f(a) = a and f(b) = b.

$$|f(a)-f(b)| \leq C|a-b|$$

$$|a-b| \leq C|a-b|$$

Since C < 1, we must have |a - b| = 0, that is, a = b.

Chapter 2

Graphical Analysis

2.1 Cobweb plots

Recall Example 1.1.9. To visualize the orbit of a under f, we can:

- 1. Superimpose y = f(x) over the line y = x.
- 2. Connect a vertical line (a, a) (a, f(a))
- 3. Connect a horizontal line (a, f(a)) (f(a), f(a))
- 4. Connect a vertical line (f(a), f(a)) (f(a), f(f(a)))
- 5. Connect a horizontal line (f(a),f(f(a)))-(f(f(a)),f(f(a))) etc.

This is sometimes called a <u>cobweb plot</u>. We will be using https://marksmath.org/visualization/cobwebs/ to make cobweb plots.

Within these lecture notes, I use a LATEX macro to draw plots defined here.

Example 2.1.1. Conduct a complete orbit analysis of
$$f(x) = x^2 - x + 1$$

Solution. Playing around, we find that there is one fixed point x = 1.

When $x \in [0,1]$, $f^n(x) \to 1$. Otherwise, $f^n(x) \to \infty$.

 \downarrow Lectures 5 and 6 adapted from Rosie \downarrow

Lecture 5 Jan 17

Example 2.1.2. Conduct a complete orbit analysis of $f(x) = -\frac{3}{2}x^2 + \frac{5}{2}x + 1$.

Solution. At x=0, we can see there is a cycle going from $0\to 1\to 2\to 0$:

At points near 0, like x = -0.3 or x = 0.3, the graph becomes chaotic:

It appears that the cobweb densely covers the graph.

As an aside, note that we cannot actually hit every point in the interval because the orbit is countable (i.e., has the same size as the naturals) but the interval is uncountable. We will later show that the points are dense (as the rationals are).

Chapter 3

Fixed Points

3.1 Attracting/repelling fixed point theorems

Remark 3.1.1. If f(x) is continuous and $f^n(a) \to L$, then $f^{n+1}(a) \to f(L)$. Therefore, f(L) = L is a fixed point.

Example 3.1.2. The function $f(x) = x^3$ has three fixed points: $0, \pm 1$. For $x \in (-1, 1)$, we see that $f^n(x) \to 0$:

It looks like point 0 is <u>attracting</u> the orbit. For $x \in (-\infty, -1) \cup (1, \infty)$, we see $f^n(x) \to \infty$:

Example 3.1.3. The function $f(x) = x^3 - 3x$ also has three fixed points: $0, \pm 2$. To the right (left) of ± 2 , orbits go to infinity:

The point 0 is repelling (in a different sense) since we get chaos:

At $x_0=\pm 1,$ the orbit is eventually constant, jumping to the fixed point $\mp 2:$

Definition 3.1.4

Let a be a fixed point of f(x).

- 1. If |f'(a)| > 1, we call a a repelling fixed point
- 2. If |f'(a)| < 1, we call a a <u>attracting</u> fixed point
- 3. If |f'(a)| = 1, we call a a <u>neutral</u> fixed point

Neutral fixed points can be a lot of different things.

Theorem 3.1.5 (attracting fixed point theorem)

Suppose a is an attracting fixed point of f(x). Then, there exists an open interval I containing a such that

- 1. for all $x \in I$, $n \in \mathbb{N}$, $f^n(x) \in I$
- 2. for all $x \in I$, $f^n(x) \to a$

Recall the ε - δ definition of a limit.

Definition 3.1.6 (limit of a function at a point)

Let $f: A \to \mathbb{R}, A \subseteq \mathbb{R}$.

We say a point $a \in A$ is <u>non-isolated</u> if for each $\varepsilon > 0$ there exists $b \in A$, $b \neq a$ with $b \in (a - \varepsilon, a + \varepsilon)$.

Suppose a is non-isolated. We say $\lim_{x\to a} f(x) = L$ if for all $\varepsilon > 0$, there exists a $\delta > 0$ such that $|f(x) - L| < \varepsilon$ whenever $a \in A$ and $0 < |x - a| < \delta$.

It is important to define non-isolation. If a is isolated, we can choose a δ where $|x-a| < \delta$ is false. Then, every point is vacuously a limit point.

We now give the proof of the attracting fixed point theorem:

Proof. Assume |f'(a)| < 1. Then, there exists $c \in \mathbb{R}$ such that |f'(a)| < c < 1. By definition of the

derivative, this means we can write

$$\lim_{x \to a} \frac{|f(x) - f(a)|}{x - a} < c$$

and by the definition of the limit, we know there exists $\delta > 0$ such that

$$\frac{|f(x)-f(a)|}{|x-a|} \leq c, \quad \forall x \in (a-\delta,a+\delta)$$

Hence, for $x \in I := (a - \delta, a + \delta)$, we have $|f(x) - f(a)| \le c|x - a|$ and f is a contraction.

In particular, for $x \in I$, we have

Lecture 6 Jan 19

$$|f(x)-a|=|f(x)-f(a)| \qquad \qquad (a \text{ is a fixed point})$$

$$\leq c|x-a|\leq |x-a| \qquad \qquad (c\in(0,1))$$

$$<\delta$$

That is, $f(x) \in (a - \delta, a + \delta) = I$. Continuing for the rest of the orbit, for all $n \in \mathbb{N}$,

$$|f^n(x) - a| \le c^n |x - a| \le |x - a| < \delta$$

so we also have $f^n(x) \in I$.

Finally, notice that $0 \le |f^n(x) - a| \le c^n |x - a|$ and $c^n |x - a| \to 0$ since $c \in (0, 1)$. By the squeeze theorem, $|f^n(x) - a| \to 0$.

Theorem 3.1.7 (repelling fixed point theorem)

Suppose a is a repelling fixed point for f(x). Then, there exists an open interval I containing a such that for all $x \in I$, $x \neq a$, there exists $n \in \mathbb{N}$ such that $f^n(x) \notin I$.

Proof. Say |f'(a)| > c > 1. Then, as above, there exists a δ such that

$$\lim_{x \to a} \frac{|f(x) - f(a)|}{x - a} > c \implies |f(x) - f(a)| \ge c|x - a|$$

for all $x \in I := (a - \delta, a + \delta)$.

Since a is a fixed point, |f(x) - f(a)| = |f(x) - a|. Suppose for a contradiction that for all n, $f^n(x) \in I$. But since c > 1, $|f(n) - a| \ge c^n |x - a| \to \infty$. That is, δ must be arbitrarily large, which it is not.

3.2 Neutral fixed points

Neutral fixed points can exhibit a lot of different behaviours.

Example 3.2.1. For f(x) = -x, 0 is a fixed point with |f'(0)| = 1. The orbit bounces:

Example 3.2.2. For $f(x) = x - x^2$, |f'(1)| = 1 is a neutral fixed point. It is attracting from the right and repelling from the left:

Example 3.2.3. For $f(x) = x - x^3$, |f'(0)| = 1 is a neutral fixed point. It is <u>weakly attracting</u>, attracting but too slowly.

Example 3.2.4. For $f(x) = x + x^3$, |f'(0)| = 1 is a neutral fixed point. It is <u>weakly repelling</u>, repelling but too slowly:

Example 3.2.5. Consider $f(x) = x^2 - 1$. The orbit at a = 0 is periodic (0, -1, 0, -1, ...) with period 2. Near 0, the orbit tends to the (0, -1)-cycle:

We will call 0 an <u>attracting periodic point</u> because 0 is an attracting point of $f^2(x)$.

↑ Lectures 5 and 6 adapted from Rosie ↑

Lecture 7 Jan 22

Definition 3.2.6

Let a be a periodic point for f(x) with period n.

We say a is an <u>attracting/repelling/neutral periodic point</u> if a is an attracting/repelling/neutral fixed point of f^n

Finding a closed form expression for something like $f^{10}(x)$ is a nightmare, so we need a better way.

Proposition 3.2.7

Let f(x) be a differentiable function. Then, $(f^n)'(x) = f'(x) \cdot f'(f(x)) \cdots f'(f^{n-1}(x))$.

Proof. Proceed by induction on n.

If n = 1, we have f'(x) = f'(x) and we are done.

Suppose $(f^n)'(x) = \prod_{k=0}^{n-1} f'(f^k(x))$ for some $n \ge 1$. Consider f^{n+1} :

$$\frac{\mathrm{d}}{\mathrm{d}x}f^{n+1}(x) = \frac{\mathrm{d}}{\mathrm{d}x}f(f^n(x)) = f'(f^n(x))\cdot (f^n)'(x)$$

by the chain rule. Then,

$$\begin{split} (f^{n+1})'(x) &= f'(f^n(x)) \cdot (f^n)'(x) \\ &= f'(f^n(x)) \cdot \prod_{k=0}^{n-1} f'(f^k(x)) \\ &= \prod_{k=0}^n f'(f^k(x)) \end{split}$$

completing the proof.

Example 3.2.8. Analyze the periodic point $f(x) = -\frac{3}{2}x^2 + \frac{5}{2}x + 1$, a = 0

Solution. The orbit is (0, 1, 2, 0, 1, 2, ...) with period 3.

We have
$$f'(x) = -3x + \frac{5}{2}$$
. Then, $(f^3)'(0) = f'(0)f'(1)f'(2) = (-\frac{7}{2})(-\frac{1}{2})(\frac{5}{2}) = \frac{35}{8} > 1$.

Therefore, the point is repelling.

Chapter 4

Bifurcations

In general, bifurcation theory is the study of how a family of curves can change when a defining parameter is changed.

4.1 Quadratic family

Consider the quadratic family:

$$Q_C(x) = x^2 + C$$

defined by the parameter $C \in \mathbb{R}$.

Problem 4.1.1

How does the behaviour (fixed points, orbits, etc.) of Q_C change based on C?

First, we can find the fixed points (if they exist) by solving

$$Q_C(x) = x \iff x^2 - x + C = 0 \iff x = \frac{1 \pm \sqrt{1 - 4C}}{2}$$

and note that $Q_C(x)$ has 2 fixed points when $C < \frac{1}{4}$, 1 fixed point when $C = \frac{1}{4}$, and no fixed points when $C > \frac{1}{4}$.

Suppose $C > \frac{1}{4}$. Then, we must have $Q_C^n(x) \to \infty$ for all x.

Instead, if $C = \frac{1}{4}$, $Q_C(x)$ has the unique fixed point $p = \frac{1}{2}$. Since $Q'_C(x) = 2x$ and $Q'_C(p) = 1$, this is a neutral fixed point. In fact, it attracts to one side and repels from the other.

Finally, if $C<\frac{1}{4},\ Q_C(x)$ has two fixed points $p_+=\frac{1+\sqrt{1-4C}}{2}$ and $p_-=\frac{1-\sqrt{1-4C}}{2}$. Then, $Q_C'(p_+)=\frac{1+\sqrt{1-4C}}{2}$

 $1 + \sqrt{1 - 4C} > 1$ is repelling. Next,

$$\begin{split} &-1 < Q_C'(p_-) < 1\\ &\iff -1 < 1 - \sqrt{1 - 4C} < 1\\ &\iff -2 < -\sqrt{1 - 4C} < 0\\ &\iff 0 < \sqrt{1 - 4C} < 2\\ &\iff -\frac{3}{4} < C < \frac{1}{4} \end{split}$$

and in fact if $C<-\frac{3}{4},$ $Q_C'(p_-)<-1$ and if $C=-\frac{3}{4},$ $Q_C'(p_-)=-1.$

Theorem 4.1.2

For the family

$$Q_C(x) = x^2 + C,$$

depending on C:

- 1. All orbits tend to ∞ if $C > \frac{1}{4}$.
- 2. When $C = \frac{1}{4}, \ Q_C(x)$ has a unique fixed point $\frac{1}{2}$ and it is neutral.
- 3. If $C<\frac{1}{4},\,Q_C(x)$ has two fixed points p_+ and p_- . The point p_+ is repelling. Moreover,
 - (a) if $-\frac{3}{4} < C < \frac{1}{4}$, p_{-} is attracting; (b) if $C = -\frac{3}{4}$, p_{-} is neutral; and (c) if $C < -\frac{3}{4}$, p_{-} is repelling.

List of Named Results

1.2.5	Proposition (convergence implies boundedness)
1.2.7	Proposition (limit laws)
1.2.10	Theorem (completeness of \mathbb{R})
1.3.6	Theorem (Banach contraction mapping theorem)
3.1.5	Theorem (attracting fixed point theorem)
3.1.7	Theorem (repelling fixed point theorem)

Index of Defined Terms

cobweb plot, 11	interval	attracting, 19			
contraction, 8	closure, 8	neutral, 19			
doubling function 4	iteration, 2	repelling, 19			
doubling function, 4 fixed point, 3	non-isolated, 16	periodicity, 4			
attracting, 16 weakly, 18	orbit, 2	quadratic family, 21			
neutral, 16 repelling, 16 weakly, 19	constant, 3 eventually periodic, 4 periodic, 4	sequence bounded, 5 Cauchy, 6			
function	period, 4	convergence, 5			
continuity, 7	periodic point, 4	strongly-Cauchy, 9			