

Computational Logic Exercises Module IV – The Logic of Descriptions (LOD)

Syntax of LOD

Which of the following symbols are used in LOD?

$$\sqcap \neg \top \lor \equiv \sqcup \sqsubseteq \rightarrow \leftrightarrow \bot \land \models$$

$$\sqcap \neg \top \equiv \sqcup \sqsubseteq \bot \models$$

Syntax of LOD

Which of the following is not a wff in LOD?

- 1. ¬ MonkeyLow ⊔ BananaHigh
- 2. ¬ ¬ MonkeyLow □ BananaHigh ⊑ ¬ GetBanana
- 3. MonkeyLow ¬ □ BananaHigh
- 4. MonkeyLow ∨ ¬ GetBanana

ANSWER:

2, 3, 4

Formalization of simple sentences in LOD

The set of games which are not legal	Game □ ¬Legal
Lakes are locations	Lake ⊑ Location
Lakes are locations made of water	Lake ⊑ Location □ ∃Madeof.Water
Persons can be distinguished into male and female	Person Male Female
Male and Female are disjoint	Male ⊑ ¬ Female
Persons have a birthplace	Person ⊑ ∃hasBirthPlace.T
The set of documents about "programming in Java" are a subset of the documents about "programming languages" and "computer science"	JavaProgramming ⊑ ProgrammingLanguage □ ComputerScience

Formalization of a problem in a LOD theory

Unicorns are mythical horses having a horn.

Unicorn ⊑ mythical □ horse □ ∃has.Horn

There are two kinds of students: master students and PhD students. All PhD students' task is research.

Venn Diagrams and LOD

Provide the Venn diagram for A ⊑ B □ ¬C

Define a plausible LOD domain D and a theory T for the Venn diagram

$$D = \langle E, \{C\}, \{P\} \rangle$$

$$E = \{0, ...9\}$$
 $C = \{A, B, C\}$ $P = \emptyset$

$$T = \{ C \equiv A \sqcap B \}$$

Define a plausible LOD domain D and a theory T for the database table

Employee				
Name	Role	Nationality	Supervises	
Fausto	Professor	Italian	Rui	
Rui	Student	Chinese	Bisu	
Bisu	Student	Indian	-	

```
D = <E, {C}, {P} >;
E = {Fausto, Rui, Bisu, Italian, Chinese, Indian}
C = {Employee, Professor, Student, Nationality} P = {hasNationality, hasSupervisor}
```

```
T = { Professor ⊑ Employee; Student ⊑ Employee; 
Employee ⊑ ∃hasNationality.Nationality □ ∃hasSupervisor.Employee }
```


Define a plausible theory T for the ER diagram

ANSWER:

Producer

Entity

(∃ProductType.

□ ∃Location.

□ ∃ProductValue.

□ ∃Transaction. Consumer)

Consumer ⊑ Entity □ (∃Gender. □ ∃Age. □ □ ∃AverageSpend. □)

Define a plausible LOD domain D for the knowledge graph

ANSWER (part I):

 $D = \langle E, \{C\}, \{P\} \rangle$

E = {Alice, Bob, The Mona Lisa, Leonardo Da Vinci, La Joconde à Washington, 14 July 1990}

C = {Entity, Person, Picture, File, Date}

P = {isFriendOf, interestedIn, isAbout, wasCreatedBy, isBornOn}

Define a plausible LOD theory T for the knowledge graph

ANSWER (part II):

The theory T can be as follows:

Person

Entity

(∃isFriendOf.Person

∃interestedIn.Picture

∃isBornOn.Date)

Picture ⊑ Entity □ ∃wasCreatedBy.Person

File ⊑ Entity □ ∃isAbout.Picture

Define a LOD + LOE theory

Define a LOD + LOE theory for the following knowledge graph

Person

∃Drives.Car

□ ∃HasHobby.SportCar ⊔ ∃HasHobby.Opera

Student

□ Person SportCar

□ Car

Student(Ralf) Opera(DonCarlos)

Define a LOD + LOE theory

Define a LOD + LOE theory for the following problem:

In a hospital patients, doctors and computers are equipped with proximity sensors able to detect whether doctors curated a patient or worked at their computer. The system detected that doctor Peter curated the patient Smith.

ANSWER:

Doctor $\sqsubseteq \forall$ cure.Patient $\sqcup \forall$ work.Computer

cure ⊑ detected

work ⊑ detected

Doctor (Peter)

Patient (Smith)

cure(Peter, Smith)

Suppose you have that $M \models A$ and $M \models B$. Does $M \models A \sqcap B$?

ANSWER:

By using Venn Diagrams, we can easily observe that the fact that A and B are not empty does not imply that A \sqcap B is also not empty. Think to the case in which their extensions are disjoint.

Is the theory $T = \{C \sqsubseteq A, C \sqsubseteq B, \neg(A \sqcap B)\}$ satisfiable?

ANSWER: Yes. A case is described below with a Venn Diagram.

Given the theory $T=\{A\sqsubseteq B, B\sqsubseteq A\}$, does $T \vDash \neg(A\sqcap B)$?

ANSWER: No. In fact, we can find a counterexample in which I(A) = I(B) but the $I(\neg(A \sqcap B))$ is empty.

ΑB

Suppose we model the Monkey-Banana problem as follows:

"If the monkey is low in position then it cannot get the banana. If the monkey gets the banana it survives".

Theory T:
MonkeyLow ⊑ ¬GetBanana
GetBanana ⊑ Survive

ANSWER: Yes. It is enough to find one model for it, represented graphically with the Venn Diagram below.

Is T satisfiasble?

Suppose we model the Monkey-Banana problem as follows:

"If the monkey is low in position then it cannot get the banana. If the monkey gets the banana it survives".

Theory T:

MonkeyLow ⊑ ¬GetBanana GetBanana ⊑ Survive

Is it possible for a monkey to survive even if it does not get the banana?

ANSWER: We can restate the problem as follow: does T ⊨ ¬GetBanana □ Survive at least in one model?

Yes. We can find <u>a model</u> in which both all the assertions in T and ¬GetBanana □ Survive are not empty.

Suppose we describe students in a course as follows:

Undergraduate $\sqsubseteq \neg$ Teach

Bachelor **≡ Student** □ Undergraduate

 \equiv Student \sqcap \neg Undergraduate Master

PhD **■ Master □ Research**

Assistant ■ PhD □ Teach

Are all assistants also undergraduates?

ANSWER: We can restate the problem as follow:

does T ⊨ Assistant ⊑ Undergraduate?

We need to prove that this is true in all models (via the method of *unfolding*)

Assistant ≡ PhD ⊓ Teach

■ Master □ Research □ Teach

≡ Student □ ¬ Undergraduate □

Research

□ Teach

Answer is No. Assistants are actually students who are not undergraduate. 19

Homework

Answer to the following questions

- 1. What is the purpose of the Logic of Descriptions?
- 2. What are the key elements of the Logic of Descriptions?
- 3. What is the form of facts in a domain of the Logic of Descriptions?
- 4. Do we have negative facts in the Logic of Descriptions?
- 5. What is the form of assertions in a language of the Logic of Descriptions?
- 6. What is the form of a theory in the Logic of Descriptions?
- 7. What is the form of an interpretation function in the Logic of Descriptions?
- 8. What is entailment in the Logic of Descriptions?
- 9. What are the reasoning problems in the Logic of Descriptions?

Homework

Define a LOD + LOE theory for the following knowledge graph

Homework - Reasoning in LOD

Suppose we model the Monkey-Banana problem as follows:

"If the monkey is low in position then it cannot get the banana. If the monkey gets the banana it survives".

Theory T:

MonkeyLow ≡ ¬GetBanana ⊓ ¬ClimbBox GetBanana ≡ Survive

Is it possible for a monkey to climb the box and not survive?

ANSWER: We can restate the problem as follow: does $T \models ClimbBox \sqcap \neg Survive$ at least in one model? Yes. We can find <u>a model</u> in which both all the assertions in T and ClimbBox $\sqcap \neg Survive$ are not empty.

Homework - Reasoning in LOD

Suppose we describe students in a course as follows:

Undergraduate $\sqsubseteq \neg$ Teach

Bachelor ≡ Student □ Undergraduate

Master \equiv Student $\sqcap \neg$ Undergraduate

PhD ≡ Master □ Research

Assistant ≡ PhD □ Teach

Are bachelor and master disjoint?

ANSWER: We can restate the problem as follow:

does $T \models Bachelor \sqcap Master \sqsubseteq \bot$?

We need to prove that this is true in <u>all</u> models (via the method of expansion)

Bachelor □ Master

≡ (Student □ Undergraduate) □

(Student □ Undergraduate)

≡ Student □ (Undergraduate □ □

Undergraduate) ≡ ⊥

Answer is therefore Yes.