MAS115

Prellberg

Lecture 9

MAS115 Calculus I Week 3

Thomas Prellberg

School of Mathematical Sciences Queen Mary, University of London

2007/08

Lecture 7
Lecture 8
Lecture 9

- Composition of functions Remember: $(f \circ g)(x)$ is different from $(f \cdot g)(x)$
- Scaling of functions: transform graph of

$$y = f(x)$$

to graph of

$$y = cf(ax + b) + d$$

- Trigonometric functions
 - Reading Assignment: Chapter 1.6

Lecture

DEFINITION Periodic Function

A function f(x) is **periodic** if there is a positive number p such that f(x + p) = f(x) for every value of x. The smallest such value of p is the **period** of f.

$$\sin(\theta + 2\pi) = \sin \theta$$
$$\cos(\theta + 2\pi) = \cos \theta$$
$$\tan(\theta + \pi) = \tan \theta$$

Prellberg

Graphs of trigonometric functions

Lecture 7 Lecture 8

Domain: $-\infty < x < \infty$ Range: $-1 \le y \le 1$

Period: 2π (a) $y = \sec x$

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$ Range: $y \le -1$ and $y \ge 1$

Period: $y \le$

(d)

Domain: $-\infty < x < \infty$ Range: $-1 \le y \le 1$

Period: 2π (b)

Domain: $x \neq 0, \pm \pi, \pm 2\pi, \dots$ Range: $y \leq -1$ and $y \geq 1$ Period: 2π

100. 211

(e)

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$

Range: $-\infty < y < \infty$ Period: π (c)

Domain: $x \neq 0, \pm \pi, \pm 2\pi, \dots$ Range: $-\infty < y < \infty$

Range: $-\infty < y < \infty$ Period: π

Period:

(f)

Lecture 7 Lecture 8

Read on your own:

- Symmetries
- Special values
- Addition formulae
- Double-angle and half-angle formulae
- Law of sines
- Law of cosines

Relevant for exercise class ...

Shifting and scaling of trigonometric functions

$$f(x) = A \sin \left[\frac{2\pi}{B} (x - C) \right] + D$$


```
MAS115
```

Prellberg

Lecture 7

. . .

Lecture 9

Limits

Average rate of change

Growth of a fruit fly population

- Average rate of change over 22 days (day 23 to day 45)?
- Growth rate on day 23?

Average rate of change

Lecture 7 Lecture 8

Growth of a fruit fly population

Q	Slope of $PQ = \Delta p / \Delta t$ (flies/day)	
(45, 340)	$\frac{340 - 150}{45 - 23} \approx 8.6$	
(40, 330)	$\frac{330 - 150}{40 - 23} \approx 10.6$	
(35, 310)	$\frac{310 - 150}{35 - 23} \approx 13.3$	
(30, 265)	$\frac{265 - 150}{30 - 23} \approx 16.4$	

Average rate of change

Lecture 7

DEFINITION Average Rate of Change over an Interval

The average rate of change of y = f(x) with respect to x over the interval $[x_1, x_2]$ is

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}, \qquad h \neq 0.$$

Animation!

Limits

Lecture 7 Lecture 8

To move from

average rates of change

to

 instantaneous rates of change we first of all need to consider

limits

Lecture

Lecture

Definition (Limit (informal))

Let f(x) be defined on an open interval about x_0 except possibly at x_0 itself. If f(x) gets arbitrarily close to L (as close to L as we like) for all x sufficiently close to x_0 , we say that f approaches the limit L as x approaches x_0 , and we write

$$\lim_{x\to x_0} f(x) = L \; ,$$

which is read "the limit of f(x) as x approaches x_0 ."

Why informal?

What does "arbitrarily close" and "sufficiently close" mean? We'll deal with that later ...

Lecture

Consider

$$f(x) = \frac{x^2 - 1}{x - 1}$$

with $x_0 = 1$

- f(x) is not defined for $x_0 = 1$
- we can simplify for $x \neq 1$

$$f(x) = \frac{(x-1)(x+1)}{x-1} = x+1$$

• this suggests that

$$\lim_{x \to 1} f(x) = 1 + 1 = 2$$

Lecture 8 Lecture 9

TABLE 2.2 The closer x gets to 1, the closer $f(x) = (x^2 - 1)/(x - 1)$ seems to get to 2

Values of x below and above 1	$f(x) = \frac{x^2 - 1}{x - 1} = x + 1, x \neq 1$	
0.9	1.9	
1.1	2.1	
0.99	1.99	
1.01	2.01	
0.999	1.999	
1.001	2.001	
0.99999	1.999999	
1.000001	2.000001	

Example

Lecture 7

.

MAS115

Prellberg

Lecture 7

Lecture 9

Limits at every point

(a) Identity function

(b) Constant function

MAS115

Lecture 7

values that jump, become "larger", or oscillate rapidly

Revision

Lecture 8

Lecture '

- Periodic functions
- Average rate of change
- Limits

Lecture 8

Lecture

THEOREM 1 Limit Laws

If L, M, c and k are real numbers and

$$\lim_{x \to c} f(x) = L$$
 and $\lim_{x \to c} g(x) = M$, then

1. Sum Rule: $\lim (f(x) + g(x)) = L + M$

The limit of the sum of two functions is the sum of their limits.

2. Difference Rule: $\lim_{x \to a} (f(x) - g(x)) = L - M$

The limit of the difference of two functions is the difference of their limits.

3. Product Rule: $\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M$

The limit of a product of two functions is the product of their limits.

4. Constant Multiple Rule: $\lim_{x \to a} (k \cdot f(x)) = k \cdot L$

The limit of a constant times a function is the constant times the limit of the function.

5. Quotient Rule: $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0$

The limit of a quotient of two functions is the quotient of their limits, provided the limit of the denominator is not zero.

6. Power Rule: If r and s are integers with no common factor and $s \neq 0$, then

$$\lim_{x \to c} (f(x))^{r/s} = L^{r/s}$$

provided that $L^{r/s}$ is a real number. (If s is even, we assume that L > 0.)

The limit of a rational power of a function is that power of the limit of the function, provided the latter is a real number.

Lecture 8

Lecture

•
$$\lim_{x\to c} (x^3 - 4x - 2) = c^3 - 4c - 2$$

•
$$\lim_{x \to c} \frac{x^4 + x^2 - 1}{x^2 + 5} = \frac{c^4 + c^2 - 1}{c^2 + 5}$$

•
$$\lim_{x\to -2} \sqrt{4x^2-3} = \sqrt{4(-2)^2-3} = \sqrt{13}$$

So sometimes you can just "plug in the value of x"

Lecture 8

Lecture

If
$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$$
, then

$$\lim_{x\to c} P(x) = P(c) = a_n c^n + a_{n-1} c^{n-1} + \cdots + a_0.$$

THEOREM 3 Limits of Rational Functions Can Be Found by Substitution If the Limit of the Denominator Is Not Zero

If P(x) and Q(x) are polynomials and $Q(c) \neq 0$, then

$$\lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)}$$

Eliminating a common factor

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x}$$

- substitution of x = 1?
- algebraic simplification:

$$\frac{x^2 + x - 2}{x^2 - x} = \frac{(x+2)(x-1)}{x(x-1)} = \frac{x+2}{x}$$

therefore

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x} = \lim_{x \to 1} \frac{x + 2}{x} = 3$$

Eliminating a common factor

Lecture

Lecture 8

Creating and cancelling a common factor

Lecture 8

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 100} - 10}{x^2}$$

- substitution of x = 0?
- algebraic simplification (trick):

$$\frac{\sqrt{x^2 + 100} - 10}{x^2} = \frac{\sqrt{x^2 + 100} - 10}{x^2} \frac{\sqrt{x^2 + 100} + 10}{\sqrt{x^2 + 100} + 10}$$
$$= \frac{(x^2 + 100) - 100}{x^2(\sqrt{x^2 + 100} + 10)}$$
$$= \frac{1}{\sqrt{x^2 + 100} + 10}$$

therefore

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 100} - 10}{x^2} = \lim_{x \to 0} \frac{1}{\sqrt{x^2 + 100} + 10} = \frac{1}{20}$$

Lecture 8

Lecture

THEOREM 4 The Sandwich Theorem

Suppose that $g(x) \le f(x) \le h(x)$ for all x in some open interval containing c, except possibly at x = c itself. Suppose also that

$$\lim_{x\to c}g(x)=\lim_{x\to c}h(x)=L.$$

Then $\lim_{x\to c} f(x) = L$.

Show that $\lim_{\theta\to 0}\sin\theta=0$

• From the definition of $\sin \theta$ it follows that

$$-|\theta| \le \sin \theta \le |\theta|$$

- We have $\lim_{\theta\to 0}(-|\theta|)=\lim_{\theta\to 0}|\theta|=0$
- Using the sandwich theorem, we therefore conclude

$$\lim_{\theta \to 0} \sin \theta = 0$$

Lecture 7 Lecture 8

- We have used informal phrases such as "sufficiently close"
 what do they mean?
- A picture might help . . .

$$\begin{array}{c|c}
\delta & \delta \\
\hline
x_0 - \delta & x_0 & x_0 + \delta
\end{array}$$

• Let's be precise: instead of

"For
$$x$$
 sufficiently close to $x_0 \dots$ "

write

"There is a $\delta > 0$ such that for all $0 < |x - x_0| < \delta \dots$ "

Let f(x) be defined on an open interval about x_0 except possibly at x_0 itself. If f(x) gets arbitrarily close to L for all x sufficiently close to x_0 , we say that f approaches the limit L as x approaches x_0 , and we write

$$\lim_{x \to x_0} f(x) = L$$

Lecture

DEFINITION Limit of a Function

Let f(x) be defined on an open interval about x_0 , except possibly at x_0 itself. We say that the **limit of** f(x) as x approaches x_0 is the number L, and write

$$\lim_{x \to x_0} f(x) = L,$$

if, for every number $\epsilon>0$, there exists a corresponding number $\delta>0$ such that for all x,

$$0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon$$
.

Animation!

Revision

I ------

- Limit laws
- Some useful "tricks"
- \bullet $\epsilon \delta$ definition of limit

Lecture 9

DEFINITION Limit of a Function

Let f(x) be defined on an open interval about x_0 , except possibly at x_0 itself. We say that the **limit of** f(x) as x approaches x_0 is the number L, and write

$$\lim_{x \to x_0} f(x) = L,$$

if, for every number $\epsilon>0$, there exists a corresponding number $\delta>0$ such that for all x,

$$0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon$$
.

Animation!

Lecture 9

How to Find Algebraically a δ for a Given f, L, x_0 , and $\epsilon > 0$

The process of finding a $\delta > 0$ such that for all x

$$0 < |x - x_0| < \delta$$
 \Rightarrow $|f(x) - L| < \epsilon$

can be accomplished in two steps.

- 1. Solve the inequality $|f(x) L| < \epsilon$ to find an open interval (a, b) containing x_0 on which the inequality holds for all $x \neq x_0$.
- Find a value of δ > 0 that places the open interval (x₀ − δ, x₀ + δ) centered at x₀ inside the interval (a, b). The inequality |f(x) − L| < ε will hold for all x ≠ x₀ in this δ-interval.

Show that $\lim_{x\to 1} (5x-3) = 2$:

Show that $\lim_{x\to 1} (5x-3) = 2$:

1.
$$|f(x) - L| < \epsilon$$
:

$$|(5x-3)-2| < \epsilon \quad \Leftrightarrow \quad |5x-5| < \epsilon$$

 $\Leftrightarrow \quad |x-1| < \frac{1}{5}\epsilon$

Therefore

$$(a,b)=(1-\frac{\epsilon}{5},1+\frac{\epsilon}{5})$$

2. Find δ : Choose $\delta = \frac{1}{5}\epsilon$. Then

$$(1-\delta,1+\delta)=(1-\frac{\epsilon}{5},1+\frac{\epsilon}{5})$$

l - -+..... (

Lecture (

Lecture 9

Find a $\delta > 0$ such that $|\sqrt{x-1}-2| < 1$ for all $0 < |x-5| < \delta$:

Prellberg

Lecture i

Lecture 9

Find a $\delta > 0$ such that $|\sqrt{x-1}-2| < 1$ for all $0 < |x-5| < \delta$:

1.
$$|f(x) - L| < \epsilon$$
:

$$|\sqrt{x-1}-2| < \epsilon \quad \Leftrightarrow \quad 1 < \sqrt{x-1} < 3$$

 $\Leftrightarrow \quad 2 < x < 10$

Therefore

$$(a,b)=(2,10)$$

2. Find δ : Choose $\delta = 3$. Then

$$(5 - \delta, 5 + \delta) = (2, 8) \subset (2, 10)$$

- To have a *limit* L as $x \to c$, a function f must be defined on both sides of c (two-sided limit)
- If f fails to have a limit as x → c, it may still have a one-sided limit if the approach is only from the right (right-hand limit) or from the left (left-hand limit)
- We write

$$\lim_{x \to c^+} f(x) = L \quad \text{or} \quad \lim_{x \to c^-} f(x) = M$$

 The symbol x → c⁺ means that we only consider values of x greater than c. The symbol x → c⁻ means that we only consider values of x less than c. _____

. . .

$$f(x) = \frac{x}{|x|}$$

- $\lim_{x\to 0^+} f(x) = 1$
- $\lim_{x\to 0^-} f(x) = -1$
- $\lim_{x\to 0} f(x)$ does not exist

. . .

$$f(x) = \sqrt{4 - x^2}$$

- $\bullet \ \lim_{x\to 2^-} f(x) = 0$
- $\lim_{x\to 2^+} f(x)$ does not exist
- $\lim_{x \to -2^-} f(x)$ does not exist
- $\lim_{x\to -2^+} f(x) = 0$

Lecture

Lecture 9

THEOREM 6

A function f(x) has a limit as x approaches c if and only if it has left-hand and right-hand limits there and these one-sided limits are equal:

$$\lim_{x \to c} f(x) = L \qquad \Longleftrightarrow \qquad \lim_{x \to c^{-}} f(x) = L \qquad \text{and} \qquad \lim_{x \to c^{+}} f(x) = L.$$

Example

С	$\lim_{x\to c} f(x)$	$\lim_{x\to c^-} f(x)$	$\lim_{x\to c^+} f(x)$
0	n.a.	n.a.	1
1	n.a.	0	1
2	1	1	1
3	2	2	2
4	n.a.	1	n.a.

DEFINITIONS Right-Hand, Left-Hand Limits

We say that f(x) has **right-hand limit** L at x_0 , and write

$$\lim_{x \to x_0^+} f(x) = L$$

if for every number $\epsilon > 0$ there exists a corresponding number $\delta > 0$ such that for all x

$$x_0 < x < x_0 + \delta \implies |f(x) - L| < \epsilon$$
.

We say that f has **left-hand limit** L at x_0 , and write

$$\lim_{x \to x_0^-} f(x) = L$$

if for every number $\epsilon > 0$ there exists a corresponding number $\delta > 0$ such that for all x

$$x_0 - \delta < x < x_0 \implies |f(x) - L| < \epsilon$$
.

Limit laws, theorems for limits of polynomials and rational functions, and the sandwich theorem all hold for one-sided limits.