# Базовые понятия теории формальных языков

Теория формальных языков  $2023 \ z$ .



### Формальные языки

#### Традиционный подход

Формальный язык — это множество  $\mathfrak{M}$  слов над алфавитом  $\Sigma$  (обозначается  $\mathfrak{M}\subseteq \Sigma^*$ , здесь знак  $^*$  — итерация Клини). Обычно подразумевает наличие формальных правил, определяющих корректность формы (т.е. синтаксиса) слов из  $\mathfrak{M}$ .

Важная характеристика классического формального языка — тот факт, что он является подмножеством свободного моноида, как правило, конечнопорождённого (над конечным  $\Sigma$ ).

Происхождение — входные языки вычислительных машин (лента). Сейчас существуют и формальные языки графовых и других неассоциативных структур.



### Перечислимость и разрешимость

- Язык М разрешимый ⇔ для любого слова w существует алгоритм проверки принадлежности w к М (всегда завершающийся и дающий точный, либо положительный, либо отрицательный ответ).
- Язык  $\mathcal{M}$  перечислимый  $\Leftrightarrow$  для любого слова w существует алгоритм, положительно отвечающий на вопрос принадлежности w к  $\mathcal{M}$  за конечное время (но, возможно, зацикливающийся, если  $w \notin \mathcal{M}$ ).

Перечислимый, но не разрешимый: язык программ, завершающихся на входе 0 (на любом достаточно мощном ЯП). Далее разрешимые языки можно классифицировать по минимально необходимой сложности разрешающего алгоритма (P-разрешимые, ExpTime-разрешимые...)



### Примеры формальных языков

- $\{\underbrace{\alpha\alpha...\alpha}_{n \text{ раз}} \underbrace{bb...b}_{n\cdot 3} \}$  (сокращаем до  $\{\alpha^n b^{3n}\}$ );
- палиндромы чётной длины в русском языке;
- правильно записанные арифметические выражения с ·,
   + над натуральными числами;
- правильные скобочные последовательности;
- язык тождественно истинных формул логики предикатов;
- язык правильно типизированных программ на ЯП со статическими типами;
- язык, описывающий все разрешимые за линейное время формальные языки.



# Представления формальных языков

- Свёртки множеств
- Системы переписывания термов
- Распознающие / порождающие машины
- Алгебраические выражения
- Алгебраические структуры
- Формулы логики предикатов

Представление с помощью распознающих машин позволяет оценить вычислительную сложность формального языка (свести к универсальным автоматам — машинам Тьюринга).



# Машины Тьюринга

- Потенциально не ограниченная лента (ограничения накладываются классом сложности по памяти);
- Доступные операции чтения (автоматически) и записи на ленту, а также сдвига пишущей головки влево или вправо;
- Конечное множество внутренних состояний машины и конечное число инструкций перехода.

Оценки времени и памяти для машин Тьюринга переносятся и на современные языки программирования с погрешностью  $O(\mathfrak{n}^p)$ , где  $\mathfrak{n}$  — длина входных данных. Для субполиномиальных алгоритмов МТ не так универсальны: (теорема Гуревича–Шелла)  $\mathfrak{n}$  log  $\mathfrak{n}$  алгоритмы эквивалентны во всех формализациях, кроме МТ!



# Кодирующие алгоритмы

Погрешность затрат от длины входных данных почти одинакова, зачем потребовалось создавать много языков?

Ключевая проблема теории формальных языков — нахождение короткой (легко анализируемой, легко преобразуемой) кодировки алгоритма.

Минимальный детерминированный автомат-распознаватель слов с n-ой с конца буквой  $\alpha$  имеет в  $O(2^n)$  раз больше состояний, чем минимальный недетерминированный. При этом оба допускают линейные по длине входных данных алгоритмы разбора слова.



### Примеры представления

Язык слов в алфавите  $\{a, b\}$  с чётным количеством букв a.

- Свёртка:  $\{w \in \{a, b\}^* \mid 2$  делит  $|w|_a\}$ .  $|w|_t$  количество вхождений терма t в слово w.
- Система переписывания термов:

$$S \rightarrow "a" ++T \quad S \rightarrow "b" ++S \quad S \rightarrow \varepsilon$$
  
 $T \rightarrow "a" ++S \quad T \rightarrow "b" ++T$ 

А можно и по-другому:

$$S \rightarrow "a" ++ S ++ "a"$$
  $S \rightarrow "b" ++ S$   
 $S \rightarrow S ++ "b"$   $S \rightarrow \varepsilon$ 

Здесь и далее  $\varepsilon$  — стандартное обозначения для пустого слова (строки нулевой длины). Поскольку структура данных — слова, то кавычки и знак конкатенации ++ дальше опускаются.



### Примеры представления

Язык слов в алфавите { a, b} с чётным количеством букв a.

• Распознающие машины:



А можно иначе:





### Примеры представления

Язык слов в алфавите  $\{a, b\}$  с чётным количеством букв a.

• Алгебраические выражения:

 $(b^*ab^*ab^*)^*$ 

А можно и так:

 $(b^*ab^*a)^*b^*$ 

- Алгебраические структуры: Класс эквивалентности слова  $\varepsilon$  в полугруппе с соотношениями  $\mathfrak{a}\mathfrak{a} \to \varepsilon$ ,  $\mathfrak{b} \to \varepsilon$ .
- Формулы логики предикатов: без введения считающих предикатов не выразима в логике предикатов первого порядка (но выразима в логике одноместных предикатов второго порядка).



### Обзор представлений

- Поиск алгоритмов конвертации между классами языков
- Поиск оптимального представления внутри класса





### Области применения





# Структура курса

- Два рубежных контроля × 15 баллов.
- Пять лабораторных работ  $\times$  8 баллов.
  - Java, Python, Go, JS без бонуса
  - C/C++, Kotlin, TypeScript, Lua бонус +1 балл
  - Rust, Dart, все лиспы, Scala, Julia бонус +2 балла
  - Haskell, Erlang бонус +3 балла
  - Рефал бонус +4 балла за первый раз и +3 за прочие
  - Agda, Idris (с доказательствами) 5 баллов за курс
- С момента выдачи лабораторной работы:
  - 0-14 дней сдача за полный балл
  - 15-21 день сдача со штрафом -1 балл
  - 22-28 дней сдача со штрафом -2 балла
  - 29-∞ сдача со штрафом -3 балла



### Система репутации

Все начинают с репутации 100 баллов (максимум).

- Сдача в последний день до смены штрафа: -2 балла.
- Сдача в последнюю ночь до смены штрафа: -5 баллов.
- Сдача в последнюю ночь до обнуления: -10 баллов.
- Очевидные артефакты чужого кода: -15 баллов.
- Неспособность объяснить свой код: -25 баллов.
- Сдача в последний день экзаменом: -35 баллов.
- Сдача в последнюю ночь перед экзаменом: -50 баллов.
- Сдача не своего варианта: -75 баллов.
- Прочие заслуги (нарушение порядка на биг-фарме, и т.п.): ситуативно.

Посылки проверяются в порядке убывания репутации.



### Анализ свойств языков

Проверить, действительно ли данная система переписывания термов порождает язык  $\{w \mid |w|_{\mathfrak{a}}$  делится на  $2\}$ , если начальным состоянием является S.

$$S \rightarrow a S a \quad S \rightarrow b S \quad S \rightarrow S b \quad S \rightarrow \epsilon$$

- Необходимо доказать, что все указанные слова порождаются системой (например, по индукции).
- А также что никакие другие не порождаются.

Предположим, что система порождает слова с нечётным числом букв  $\alpha$ . Выберем из них такое, которое выводится из S за самое малое число шагов. Покажем, что каким бы ни был предпоследний шаг вывода, его можно поменять на  $S \to \epsilon$  и получится слово с нечётным числом букв  $\alpha$ , вывод которого ещё короче.



# Проверка корректности рекурсивных доказательств

- Завершаемость индуктивные переходы должны завершаться за конечное число шагов. Соответствует фундированности множеств относительно выбранного упорядочения.
- Корректность способ доказательства «minimal bad sequence» пусть существуют элементы  $k_i \in M$ , которые не находятся рекурсивным алгоритмом. Выберем тот из них, до которого минимальный путь из S (варианты из которого минимальный путь до  $\Sigma^*$ ; до  $\varepsilon$ ). Покажем, что есть ещё какой-то с путём вывода ещё короче.



### Системы переписывания термов

#### Определение

Сигнатура — множество пар  $\langle f, n \rangle$  из имени конструктора f и его местности n.

#### Определение

Пусть V — множество переменных, F — множество конструкторов; множество термов  $\mathsf{T}(\mathsf{F})$  над F определяется рекурсивно:

- все элементы V термы;
- если  $\langle f, n \rangle$  конструктор и  $t_1, \ldots, t_n$  термы, то  $f(t_1, \ldots, t_n)$  терм;
- других термов нет.

15 / 29



# **Term Rewriting Systems**

Пусть V — множество переменных, F — множество конструкторов (сигнатура); T(F) — множество термов над множеством конструкторов F. TRS — набор правил переписывания вида  $\Phi_i \to \Psi_i$ , где  $\Phi_i, \Psi_i$  — термы в T(F). Правило переписывания  $\Phi_i \to \Psi_i$  применимо к терму t, если t содержит подтерм, который можно сопоставить (унифицировать) с  $\Phi_i$ .

Если к терму t не применимо ни одно правило переписывания TRS, терм называется нормализованным.

Имея правила переписывания вида  $f(g(x)) \to g(g(f(x)))$  и  $g(g(x)) \to f(x)$ , каждое из них можно применить к терму f(g(g(f(g(g(Z)))))))) тремя разными способами.



### Конфлюэнтность

#### Определение

TRS называется конфлюэнтной, если для любых двух термов t, s, которые получаются переписыванием одного и того же терма u, существует терм v такой, что t, s оба переписываются в v.

Формально:

$$\forall u, t, s(u \rightarrow^* t \& u \rightarrow^* s \Rightarrow \exists v(t \rightarrow^* v \& s \rightarrow^* v))$$

Конфлюэнтные системы поддаются распараллеливанию и легко оптимизируются.

- $\rightarrow$  переписывание за 1 шаг;
- $\to^*$  переписывание за произвольное число шагов, начиная с 0.



# Особенности TRS

- Недетерминированные.
- Нет ограничений на порядок применения правил.
- Не обязательно конфлюэнтны.
- Могут порождать бесконечные цепочки.



#### Фундированность

#### Определение

Частичный порядок  $\leq$  является фундированным (wfo) на множестве M, если в M не существует бесконечных нисходящих цепочек относительно  $\leq$  (говоря о множестве термов, иногда такой  $\leq$  называют нётеровым).

Частичный порядок  $\preceq$  является монотонным в алгебре A, если  $\forall f, t_1, ..., t_n, s, s' (s <math>\preceq s' \Rightarrow f(t_1, ..., s, ..., t_n) \preceq f(t_1, ..., s', ..., t_n))$  (строго монотонным, если при этом неверно обратное).



### Завершаемость

#### Определение

Фундированная монотонная алгебра (ФуМА) над множеством функциональных символов F — это фундированное множество  $\langle A, > \rangle$  такое, что для каждого функционального символа  $f \in F$  существует функция  $f_A : A^n \to A$ , строго монотонная по каждому из аргументов.

Определим расширение произвольного отображения о из множества переменных в A следующим образом:

- $[x, \sigma] = \sigma(x)$ ;
- $[f(t_1,\ldots,t_n),\sigma]=f_A([t_1,\sigma],\ldots,[t_n,\sigma]).$

20 / 29



### Завершаемостн

#### Совместность

TRS  $\{l_i \to r_i\}$  совместна с ФуМА  $A \Leftrightarrow$  для всех i и для всех  $\sigma$  выполняется условие  $[l_i, \sigma] > [r_i, \sigma]$ .

#### Теорема

TRS не порождает бесконечных вычислений (завершается), если и только если существует совместная с ней ФуМА.



# ФуМА, совместные с TRS

#### Стандартные способы определения f<sub>A</sub>:

- лексикографический порядок на множестве имён F + отношение подтерма;
- построение монотонно возрастающей (по каждому аргументу) числовой функции на  $\mathbb{N}$ , соответствующей  $f_A$ .

Оба случая подразумевают, что в построенной модели целое больше части, т.е. всегда выполняется f(t) > t.



### **Лексикографический порядок** > lo

#### Определение

 $f(t_1,\ldots,t_n)>_{lo}g(\mathfrak{u}_1,\ldots,\mathfrak{u}_m)$  (этот порядок также называют порядком Кнута–Бендикса) если и только если выполнено одно из условий:

- $\exists i (1 \leqslant i \leqslant n \& t_i = g(u_1, \ldots, u_m));$
- $\exists i (1 \leqslant i \leqslant n \& t_i >_{lo} g(u_1, \ldots, u_m));$
- $\label{eq:state_equation} \textbf{3} \ (f>g) \ \& \ \forall i (1\leqslant i\leqslant m \Rightarrow f(t_1,\ldots,t_n)>_{lo} u_i);$
- (f = g) &  $\forall i (1 \leqslant i \leqslant n \Rightarrow f(t_1, \ldots, t_n) >_{lo} u_i)$  и n-ка  $(t_1, \ldots, t_n)$  лексикографически больше, чем  $(u_1, \ldots, u_n)$  (т.е. первый её не совпадающий с  $u_i$  элемент  $t_i$  удовлетворяет условию  $t_i >_{lo} u_i$ ).

#### Примеры

Проверить завершаемость TRS методом  $>_{lo}$ :

$$f(g(x)) \to g(h(x, x))$$
$$g(f(x)) \to h(g(x), x)$$

- Первое правило переписывания вынуждает либо  $g(x)>_{lo}g(h(x,x))$  (по условию 1 или 2) что невозможно, потому что x должно лексикографически оказаться больше h(x,x) (по условию 4); либо f>g и f(g(x))>h(x,x) (по условию 3). В этом случае можно взять также f>h. Неравенство f(g(x))>x выполняется тривиально.
- Второе правило переписывания удовлетворяет условию завершаемости по условию 2, например, если показать, что  $f(x) >_{lo} h(g(x), x)$ . Уже имеем f > h, поэтому достаточно показать  $f(x) >_{lo} g(x)$  и  $f(x) >_{lo} x$ . Оба условия тривиально выполняются из допущений выше.

#### Примеры

Проверить завершаемость TRS методом построения монотонной функции:

$$f(g(x,y)) \rightarrow g(h(y),x)$$
  
 $h(f(x)) \rightarrow f(x).$ 

- Завершаемость по второму правилу переписывания автоматически выполняется по свойству подтерма. Поэтому то, что функция f стоит на двух его сторонах, не дает никаких указаний относительно того, стоит ли делать f<sub>A</sub> быстро растущей или медленно. Все подсказки содержатся только в первом правиле переписывания.
- По первому правилу переписывания видно, что  $f_A$  надо делать большой (f стоит только слева), а  $h_A$  нет (h есть только справа). Положим  $f_A(x) = 10 \cdot (x+1)$ ,  $h_A(x) = x+1$ . Тогда должно выполняться  $10 \cdot (g_A(x,y)+1) > g_A(y+1,x)$ . Этому неравенству удовлетворяет, например,  $g_A(x,y) = x+y$ .



## Общие комментарии

- Не обязательно добиваться выполнения неравенства на образах  $f_A$  на всём множестве  $\mathbb{N}$ . Поскольку любой отрезок  $\mathbb{N}$  от k и до бесконечности фундирован, а все образы  $f_A$  монотонны, они замкнуты на этом отрезке. Поэтому, если неравенство не выполняется для нескольких первых чисел натурального ряда, этим можно пренебречь.
- Если не получается применить  $>_{lo}$  или подобрать числовую функцию, это ещё не значит, что TRS не завершается. См. пример Зантемы:  $f(g(x)) \rightarrow g(f(f(x)))$ .



### Терминалы и нетерминалы

Если TRS определена над алфавитом  $\Sigma$ , а нас интересует порождаемый ею язык в  $\Sigma' \subset \Sigma$ , то элементы  $\Sigma'$  обычно называются терминалами, а элементы  $\Sigma \setminus \Sigma'$  — нетерминалами.

В этом случае значащие (порождающие) нетерминалы обязательно должны встречаться хотя бы в одной левой части правила переписывания (иначе такой нетерминал не сможет быть переписан в слово над  $\Sigma'$ ).

Терминалы также могут встречаться в левых частях правил (это не так только для некоторых классов систем переписывания термов).



#### Грамматики

#### Определение

Грамматика — это четвёрка  $G = \langle N, \Sigma, P, S \rangle$ , где:

- N алфавит нетерминалов;
- Σ алфавит терминалов;
- Р множество правил переписывания  $\alpha \to \beta$  типа  $\langle (N \cup \Sigma)^+ \times (N \cup \Sigma)^* \rangle;$
- $\bullet$   $S \in N$  начальный символ.

$$\alpha \Rightarrow \beta$$
, если  $\alpha = \gamma_1 \alpha' \gamma_2$ ,  $\beta = \gamma_1 \beta' \gamma_2$ , и  $\alpha' \to \beta' \in P$ .  $\Rightarrow^*$  — рефлексивное транзитивное замыкание  $\Rightarrow$ .

#### Определение

Язык L(G), порождаемый G — множество  $\{u \mid u \in \Sigma^* \& S \Rightarrow^* u\}$ .



# α-преобразование

#### По-разному воспринимают переименовку:

- Переменные vs конструкторы в TRS;
- Нетерминалы vs терминалы в грамматиках.



#### α-преобразование

По-разному воспринимают переименовку:

- Переменные vs конструкторы в TRS;
- Нетерминалы vs терминалы в грамматиках.

Для любой инъективной переименовки  $\sigma$  применение  $\sigma$  к правилам грамматики/trs для переменных и нетерминалов также называется  $\alpha$ -преобразованием.

- α-преобразование не меняет терминальный язык;
- обычно термы различаются с точностью до  $\alpha$ -преобразования.



#### α-преобразование

По-разному воспринимают переименовку:

- Переменные vs конструкторы в TRS;
- Нетерминалы vs терминалы в грамматиках.

Для любой инъективной переименовки  $\sigma$  применение  $\sigma$  к правилам грамматики/trs для переменных и нетерминалов также называется  $\alpha$ -преобразованием.

- α-преобразование не меняет терминальный язык;
- обычно термы различаются с точностью до  $\alpha$ -преобразования.

Неформально: контейнеры определяются не именем, а содержимым (см. экстенсиональность в логике).