## Semantic Segmentation of Roofs from Aerial Imagery using Deep Learning

Universität Münster

### Elaheh Torabidashti, Ayesha Tariq

Analysis of High-Resolution Remote Sensing Imagery Course, Institute of Geoinformatics, University of Münster



# Study Area: Christchurch City, New Zealand

Christchurch, the largest city in the South Island of New Zealand, serves as the study area for this research. The city was selected due to the availability of very-high-resolution orthorectified aerial imagery and accurately labelled rooftop data, which are critical for training and evaluating deep learning models for semantic segmentation.

|   | THE RESERVE AND ADDRESS OF THE PARTY. |                                           |
|---|---------------------------------------|-------------------------------------------|
|   | Feature                               | Details                                   |
|   | Coverage                              | ~457 km² of orthorectified aerial imagery |
|   | Spatial Resolution                    | Very high – 0.075 meters per pixel        |
| 7 | Labelled Roof<br>Structures           | Over 220,000                              |
|   | Image Patch Size                      | 128 × 128 pixels                          |
|   | Training Set                          | 857 images (RGB + Mask)                   |
|   | Validation Set                        | 94 images (RGB + Mask)                    |
|   | Test Set                              | 95 images (RGB + Mask)                    |



#### Results



### Conclusion

This project aimed to develop a U-Net-based semantic segmentation model for rooftop detection using high-resolution aerial imagery. Despite the high-quality data, the model produced blurry predictions due to down sampling to 128×128 resolution, class imbalance from many empty masks, and potentially imprecise ground truth labels. Future improvements include using larger image sizes, enhancing label quality, addressing class imbalance, and adopting advanced architectures like U-Net++ or DeepLabV3+.

0.9278

0.9301

0.0023

0.0022

**Training** 

Validation