Série N°1: Constituants de l'atome

Exercice N°1

1. Un échantillon d'oxyde de cuivre CuO a une masse m = 1,59 g.

Combien y a-t-il _de moles et de molécules de CuO et d'atomes de Cu et de O dans cet échantillon ?

 $M(Cu) = 63,54 \text{ g.mol}^{-1}$; $M(O) = 16 \text{ g.mol}^{-1}$

2. Donner en uma et en gramme, les masses d'une molécule et d'une mole de molécules de méthanol (CH₃OH).

Exercice N°2

Un médicament qui lutte contre les vertiges contient 5,0 mg d'acétyl-leucine (principe actif du médicament) de formule brute C₈H₁₅O₃N.

- 1. Calculer la masse molaire de l'acétyl-leucine.
- 2. Déterminer la quantité de matière en acétyl-leucine dans ce médicament.

Exercice N° 3

Calculer les masses molaires moléculaires en uma et en g des espèces chimiques suivantes

Nom de l'espèce chimique	Formule brute	Masse molaires moléculaires	
		(uma)	(g)
Paracétamol	$C_8H_9O_2N$		
Acide ascorbique (vit C)	$C_6H_8O_6$		
Eosine	$C_{20}H_6O_5Br_4Na_2$		
Ibuprofène	$C_{13}H_{18}O_2$		

Exercice Nº 4

1. Compléter le tableau suivant :

Nucléides	Nombre de protons Z	Nombre de neutrons N	Nombre de masse A	Nombre d'électrons
₅ X			10	
₉ X ⁻		10		
X ⁺²	12		24	
X^{+}		6		4
	20	22		20
	13		27	10

2. Parmi ces nucléides y-a-t-il des isotopes ? Si oui lesquels ?

Exercice N°5

- 1. L'ion X^{2+} possède 18 électrons et a une masse atomique égale à 66,42 10^{-24} g. Déterminez le numéro atomique et le nombre de masse de cet élément.
- 2. L'élément Y a une masse atomique de 116,235 10⁻²⁴ g, son nombre de neutrons est plus grand de 8 unités par rapport à son nombre de protons. Déterminez son nombre de masse et son numéro atomique.

Exercice N°6

Le béryllium Be (Z= 4) ne possède qu'un seul isotope stable ⁹Be

- 1. Donner la composition d'un atome de cet isotope.
- 2. Déterminer la masse théorique d'un noyau de cet isotope en uma.
- 3. En déduire sa masse molaire en g.
- 4. Comparer à sa masse molaire réelle qui est de 9,012 g/mol.
- 5. A quoi est due la différence observée ?

Exercice N°7

Le potassium (Z=19) existe sous forme de 2 isotopes stables ³⁹K et ⁴¹K

- 1. Donner pour chaque isotope la composition du noyau.
- 2. Evaluer approximativement la masse molaire atomique de chacun des 2 isotopes en uma et en g.
- 3. La masse molaire du potassium naturel est de 39,10 g/mol, évaluez approximativement l'abondance naturelle de chacun des isotopes.

Exercice N°8

Le silicium ₁₄Si est un élément naturel de masse atomique moyenne égale à 28,085 uma, il est constitué de trois isotopes correspondants aux nucléides ²⁸Si, ²⁹Si et ³⁰Si. Compléter le tableau suivant en justifiant.

Nucléide	Masse atomique (uma)	Abondance relative (%)
²⁸ Si	27,977	
²⁹ Si	28,976	4,685
³⁰ Si	29,974	

Données pour tous les exercices

$$M(H) = 1$$
, $M(C) = 12$, $M(O) = 16$, $M(N) = 14$, $M(S) = 32,1$, $M(Br) = 79,9$, $M(Na) = 23$, Nombre d'Avogadro $N_A = 6,022$. 10^{23} mol⁻¹ mp = 1,6726. 10^{-24} g = 1,0073 uma mn = 1,6749. 10^{-24} g = 1,0087 uma