

#### Bölüm 13

Basit Doğrusal Regresyon



## Öğrenme Hedefleri

#### Bu bölümde aşağıdaki konulara değinilecektir:

- Bağımsız bir değişkene dayalı olarak bağımlı bir değişkenin değerinin tahmini için regresyon analizi nasıl kullanılır
- b<sub>0</sub> ve b₁regresyon katsayılarının anlamı
- Regresyon analizinin varsayımlarının nasıl değerlendirileceği ve varsayımlar ihlal edildiğinde ne yapılması gerektiği
- Eğim ve korelasyon katsayısı ile ilgili çıkarımlar yapmak
- Ortalama değerlerin tahmin edilmesi ve bağımsız değerlerin kestirilmesi

## Korelasyon İle Regresyon İlişkisi

- İki değişkenin arasındaki ilişkinin gösterimi için bir serpme diyagramı kullanılabilir
- Korelasyon analizi iki değişkenin arasındaki birlikteliğin (doğrusal ilişki) gücünün ölçülmesi için kullanılır
  - Korelasyon sadece ilişkinin gücüyle ilgilenmektedir
  - Korelasyon ile hiçbir nedensel etki ifade edilmez
  - Serpme diyagramları ilk defa bölüm. 2'de gösterilmiştir
  - Korelasyon ilk defa bölüm. 3'te gösterilmiştir



### Regresyon Analizine Giriş

- Regresyon analizi :
  - En az bir bağımsız değişkenin değerine dayalı olarak bağımsız bir değişkenin değerini tahmin etmek,
  - Bağımsız bir değişkendeki değişimin bağımsız bir değişken üzerindeki etkisini açıklamak, için kullanılır

Bağımlı değişken: tahmin etmek veya açıklamak istediğimiz değişken

Bağımsız değişken: bağımlı değişkeni tahmin etmek veya açıklamak için kullanılan değişken



## Basit Doğrusal Regresyon Modeli

- Sadece bir bağımsız değişken, X
- X ve Y arasındaki ilişki bir doğrusal fonksiyon ile tanımlanır
- Y'deki değişimlerin X'deki değişimler ile bağlantılı olduğu varsayımı vardır

## İlişki Tipleri

#### Doğrusal İlişkiler





#### Eğrisel İlişkiler





## İlişki Tipleri

(devamı)

#### Kuvvetli İlişkiler







## İlişki Tipleri

(devamı)



X



## Basit Doğrusal Regresyon Modeli



## Basit Doğrusal Regresyon Modeli

(devamı)



# Basit Doğrusal Regresyon Denklemi (Tahmin Çizgisi)

Basit doğrusal regresyon denklemi popülasyon regresyon çizgisinin bir tahmininin yapılmasını sağlar





### En Küçük Kareler Yöntemi

 $b_0$  ve  $b_1$ , Y ve  $\hat{Y}$  arasındaki fark karelerinin toplamını en küçük yapan değerlerin bulunmasıyla elde edilir :

$$\min \sum (Y_i - \hat{Y}_i)^2 = \min \sum (Y_i - (b_0 + b_1 X_i))^2$$



#### En Küçük Kareler Denkleminin Bulunması

 b<sub>0</sub> ve b<sub>1</sub> katsayıları ve bu bölümdeki diğer regresyon sonuçları Excel kullanılarak bulunacaktır

İlgi duyanlar için formüller kitaptaki bölümde verilmiştir.



### Eğim ve Kesme noktasının Çıkarımı

 b<sub>0</sub>, X'in değeri sıfır olduğunda Y'nin beklenen ortalama değeridir

 b<sub>1</sub> ,X'in değerindeki bir birimlik artış sonucu olarak Y'nin ortalama değerindeki beklenen değişim miktarıdır



## Basit Doğrusal Regresyon Örnek

- Bir emlak acentesi bir evin satış fiyatı ile boyutu (feet-kare olarak ölçülmüştür) arasındaki ilişkiyi ölçmek istemektedir.
- Rassal olarak 10 evlik bir örnek seçilmiştir
  - Bağımlı değişken(Y) = \$1000 cinsinden ev fiyatı
  - Bağımsız değişken(X) = feet-kare (ev boyutu)





| \$1000 cinsinden ev<br>fiyatları<br>(Y) | Feet-kare (ev boyutu)<br>(X) |
|-----------------------------------------|------------------------------|
| 245                                     | 1400                         |
| 312                                     | 1600                         |
| 279                                     | 1700                         |
| 308                                     | 1875                         |
| 199                                     | 1100                         |
| 219                                     | 1550                         |
| 405                                     | 2350                         |
| 324                                     | 2450                         |
| 319                                     | 1425                         |
| 255                                     | 1700                         |





Ev fiyatı Modeli: Serpme Diyagramı





## Basit Doğrusal Regresyon Örnek: Excel Veri Çözümleyici Fonksiyonu Kullanılarak



## Basit Doğrusal Regresyon Örnek: Excel Veri Çözümleyici Fonksiyonu Kullanılarak

(devamı)

#### Y aralığını ve X aralığını ve gerekli seçenekleri girin





# Basit Doğrusal Regresyon Örnek: PHStat Kullanarak

Eklentiler: PHStat: Regression: Simple Linear Regression





# Basit Doğrusal Regresyon Örnek: Excel Çıktısı

#### Regression Statistics

| Multiple R        | 0.76211  |
|-------------------|----------|
| R Square          | 0.58082  |
| Adjusted R Square | 0.52842  |
| Standard Error    | 41.33032 |

10

**Observations** 

#### Regresyon denklemi:

ev fiyatı = 98.24833 + 0.10977 (feet - kare)

| ANOVA      | /    |            |            |         |                |
|------------|------|------------|------------|---------|----------------|
|            | df / | SS         | MS         | F       | Significance F |
| Regression | 1/   | 18934.9348 | 18934.9348 | 11.0848 | 0.01039        |
| Residual   | 8    | 13665.5652 | 1708.1957  |         |                |
| Total      | 9    | 32600.5000 |            |         |                |

|             | Coefficients | Standard Error | t Stat  | P-value | Lower 95% | Upper 95% |
|-------------|--------------|----------------|---------|---------|-----------|-----------|
| Intercept   | 98.24833     | 58.03348       | 1.69296 | 0.12892 | -35.57720 | 232.07386 |
| Square Feet | 0.10977      | 0.03297        | 3.32938 | 0.01039 | 0.03374   | 0.18580   |





## Basit doğrusal Regresyon Örnek: Grafik Gösterim

Ev fiyatı modeli: Serpme diyagramı ve tahmin çizgisi





# Basit Doğrusal Regresyon Örnek: b<sub>o</sub>'ın yorumlanması

$$ev fiyati = 98.24833 + 0.10977 (feet - kare)$$

- b<sub>0</sub>, X'in değeri sıfır olduğunda Y'nin almış olduğu ortalama değerdir (Eğer X = 0 X'in alabileceği değer aralığında ise)
- Bir evin alanı sıfır olamayacağı için, b<sub>0</sub> 'ın pratiğe dönük bir uygulaması yoktur.





# Basit Doğrusal Regresyon Örnek: b<sub>1</sub>'in yorumlanması

Ev fiyatı = 
$$98.24833 + 0.10977$$
 (feet - kare)

- b<sub>1</sub>, X'deki bir birimlik artış sonucunda Y'nin ortalama değerindeki değişimi tahmin eder.
  - Burada,  $b_1 = 0.10977$ , bize ev alanındaki bir footkarelik artışın, bir evin ortalama fiyatının ortalama olarak .10977(\$1000) = \$109.77 artacağını söylemektedir.



### Basit Doğrusal Regresyon Örnek: Çıkarımların Yapılması

2000 feet-kare olan bir evin fiyatı hakkında çıkarım yapalım:

ev fiyatı = 
$$98.25 + 0.1098$$
 (feet - kare)  
=  $98.25 + 0.1098$ (2000)  
=  $317.85$ 

2000 feet-kare alana sahip bir evin tahmin edilen fiyatı 317.85(\$1,000s) = \$317,850'dır



## Basit Doğrusal Regresyon Örnek: Çıkarımların Yapılması

 Bir regresyon modeli çıkarım yapmak için kullanılırken, sadece verinin ilgili aralığı içerisinde kullanılmalıdır





## Değişim Ölçüleri

Toplam Değişim iki bölümden oluşmaktadır:

$$TKT = RKT + HKT$$

Toplam Kareler Toplamı

Regresyon Kareler Toplamı Hata Kareler toplamı

$$TKT = \sum (Y_i - \overline{Y})^2$$

$$RKT = \sum (\hat{Y_i} - \overline{Y})^2$$

$$\left| RKT = \sum_{i} (\hat{Y}_i - \overline{Y})^2 \right| \quad \left| HKT = \sum_{i} (Y_i - \hat{Y}_i)^2 \right|$$

Υ = Bağımlı değişkenin ortalama değeri

Y<sub>i</sub> = Bağımlı değişkenin gözlenen değeri

 $Y_i$  = Verilen  $X_i$  değerine göre Y'nin tahmin edilen değeri



## Değişim Ölçüleri

(devamı)

- TKT = toplam kareler toplamı (Toplam değişim)
  - Y<sub>i</sub> değerlerinin, ortalama değerleri olan Y etrafındaki değişim miktarını ölçer
- RKT = regresyon kareler toplamı (Açıklanmış değişim)
  - X ve Y arasındaki ilişkiye atfedilen değişim
- HKT = hata kareler toplamı (Açıklanmamış değişim)
  - X'den başka diğer faktörlere atfedilen Y'deki değişim

## Değişim Ölçüleri

(devamı)





### Determinasyon Katsayısı, r<sup>2</sup>

- Determinasyon katsayısı, bağımlı değişkende toplam değişimin bağımsız değişkendeki değişim tarafından açıklanan kısmıdır
- Determinasyon katsayısı r-kare olarak da adlandırılır ve r² olarak gösterilir.

$$r^2 = \frac{RKT}{TKT} = \frac{\text{regresyon kareler toplamı}}{\text{toplam kareler toplamı}}$$

$$0 \le r^2 \le 1$$



### Yaklaşık r<sup>2</sup> Değerlerine Örnekler



$$r^2 = 1$$

X ve Y arasında kusursuz bir ilişki mevcuttur:

Y'deki değişimin %100'ü, X'deki değişim ile açıklanmaktadır

### Yaklaşık r<sup>2</sup> Değerlerine Örnekler





 $0 < r^2 < 1$ 

X ve Y arasında daha zayıf ilişkiler :

Y'deki bir kısım değişimler X'deki değişimlerle açıklanır fakat tüm değişimleri içermez



### Yaklaşık r<sup>2</sup> Değerlerine Örnekler



$$r^2 = 0$$

X ve Y arasında doğrusal bir ilişki yoktur:

Y'nin değeri X'e bağlı olarak açıklanamaz. (Y'deki değişimlerin hiçbiri X'deki değişimlerle açıklanamaz)

## Basit Doğrusal Regresyon Örnek: Excel'de Determinasyon Katsayısı, r<sup>2</sup>

#### Regression Statistics

Multiple R 0.76211

R Square 0.58082

Adjusted R Square 0.52842

Standard Error 41.33032

Observations 10

| $\mathbf{r}^2$ – | RKT | $=\frac{18934.9348}{0.58082}$ |
|------------------|-----|-------------------------------|
| _                | TKT | 32600.5000                    |

Ev fiyatlarındaki değişimin %58.08'i ev alanındaki (feet-kare) değişim ile açıklanmaktadır

| ANOVA      | df | SS         | MS         | F       | Significance F |
|------------|----|------------|------------|---------|----------------|
| Regression | 1  | 18934.9348 | 18934.9348 | 11.0848 | 0.01039        |
| Residual   | 8  | 13665.5652 | 1708.1957  |         |                |
| Total      | 9  | 32600.5000 |            |         |                |

|             | Coefficients | Standard Error | t Stat  | P-value | Lower 95% | Upper 95% |
|-------------|--------------|----------------|---------|---------|-----------|-----------|
| Intercept   | 98.24833     | 58.03348       | 1.69296 | 0.12892 | -35.57720 | 232.07386 |
| Square Feet | 0.10977      | 0.03297        | 3.32938 | 0.01039 | 0.03374   | 0.18580   |





#### **Tahminin Standart Hatası**

 Regresyon çizgisi etrafındaki gözlemlerin değişimlerinin standart sapması şöyle tahmin edilir:

$$S_{YX} = \sqrt{\frac{HKT}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n-2}}$$

HKT = Hata kareleri toplamı n = örnek büyüklüğü

## Basit Doğrusal Regresyon Örnek: Excel'de Standart Hata Tahmini

#### Regression Statistics

Multiple R 0.76211

R Square 0.58082

Adjusted R Square 0.52842

Standard Error 41.33032

Observations 10

$$S_{YX} = 41.33032$$

| ANOVA      |    |            |            |         |                |
|------------|----|------------|------------|---------|----------------|
|            | df | SS         | MS         | F       | Significance F |
| Regression | 1  | 18934.9348 | 18934.9348 | 11.0848 | 0.01039        |
| Residual   | 8  | 13665.5652 | 1708.1957  |         |                |
| Total      | 9  | 32600.5000 |            |         |                |

|             | Coefficients | Standard Error | t Stat  | P-value | Lower 95% | Upper 95% |
|-------------|--------------|----------------|---------|---------|-----------|-----------|
| Intercept   | 98.24833     | 58.03348       | 1.69296 | 0.12892 | -35.57720 | 232.07386 |
| Square Feet | 0.10977      | 0.03297        | 3.32938 | 0.01039 | 0.03374   | 0.18580   |





# Standart Hataların Karşılaştırılması

S<sub>YX</sub> gözlemlenen Y değerlerinin regresyon çizgisinden sapmasının bir ölçüsüdür



S<sub>YX</sub>'in büyüklüğü (şiddeti) örnek verisindeki Y değerlerinin boyutuyla ilişkili olarak değerlendirilmelidir

yani, \$200K - \$400K aralığındaki ev fiyatlarıyla bağlantılı olarak  $S_{YX} = $41.33K$  kısmen küçük bir değerdir.



## Regresyon Çizgisinin Varsayımları

- Doğrusallık
  - X ve Y arasındaki ilişki doğrusaldır
- Hataların bağımsızlığı
  - Hata değerleri istatistiksel olarak bağımsızdır
- Hatanın normalitesi
  - Hata değerleri verilen bir X değeri için normal dağılmıştır
- Eşit Sapma (homosedastisite olarak da adlandırılır)
  - Hata değerlerinin olasılık dağılımı sabit varyansa sahiptir



## Artık Değer (Residual) Analizi

$$e_{\scriptscriptstyle i} = Y_{\scriptscriptstyle i} - \hat{Y}_{\scriptscriptstyle i}$$

- i gözlemi için artık değeri, e<sub>i</sub>, gözlenen değer ile tahmin değeri arasındaki farktır.
- Artık değerlerini test ederek regresyon varsayımlarını kontrol edin
  - Doğrusal varsayımını test edin
  - Bağımsızlık varsayımını değerlendirin
  - Normal dağılım varsayımını değerlendirin
  - X'in tüm seviyeleri için sabit değişimi (homosedastisite) sorgulayın
- Artık Değerlerin Grafik Analizi
  - X'e karşılık artık değerlerin çizimi

## Doğrusallık İçin Artık Değer Analizi











#### Normalitenin Kontrolü

- Artık değerler için Kök ve Yaprak gösteriminin incelenmesi
- Artık değerlerin kutu diyagramının incelenmesi
- Artık değerlerin histogramının incelenmesi
- Artık değerlerin bir normal olasılık diyagramının oluşturulması



## Normalite için Artık Değer Analizi

Normal olasılık grafiği kullanılırken, normal hatalar yaklaşık olarak doğru bir çizgi üzerinde olacaktır

#### Yüzde











# Basit Doğrusal Regresyon Örnek: Excel Artık değer Çıktısı

| ARTI | ARTIK DEĞER ÇIKTISI |           |  |  |  |  |
|------|---------------------|-----------|--|--|--|--|
|      | Tahmini Ev          | Artık     |  |  |  |  |
|      | Fiyatı              | Değerler  |  |  |  |  |
| 1    | 251.92316           | -6.923162 |  |  |  |  |
| 2    | 273.87671           | 38.12329  |  |  |  |  |
| 3    | 284.85348           | -5.853484 |  |  |  |  |
| 4    | 304.06284           | 3.937162  |  |  |  |  |
| 5    | 218.99284           | -19.99284 |  |  |  |  |
| 6    | 268.38832           | -49.38832 |  |  |  |  |
| 7    | 356.20251           | 48.79749  |  |  |  |  |
| 8    | 367.17929           | -43.17929 |  |  |  |  |
| 9    | 254.6674            | 64.33264  |  |  |  |  |
| 10   | 284.85348           | -29.85348 |  |  |  |  |



Herhangi bir regresyon varsayımını ihlal ettiği görülmemektedir



## Otokorelasyonun Ölçümü: Durbin-Watson İstatistiği

- Veriler zamanla toplandığında otokorelasyon olup olmadığını tespit etmek için kullanılır
- Bir zaman periyodundaki artık değerler başka bir periyottaki artık değerlerle ilgili ise, otokorelasyon mevcuttur



## Otokorelasyon

 Otokorelasyon, zamana göre hataların (artık değerlerin) korelasyonudur

Zaman (t) Artık değer çizimi

 Burada artık değerler, rassal değil, döngüsel bir model gösterirler. Çevrimsel modeller pozitif bir otokorelasyonun işaretidir



 Artık değerlerin rassal ve bağımsız olduğu regresyon varsayımını ihlal eder



## Durbin-Watson İstatistiği

 Durbin-Watson istatistiği, otokorelasyonu test etmek için kullanılır

H₀: artık değerler ilişkili değildir

H₁: pozitif otokorelasyon mevcuttur

$$D = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$$

- Mümkün aralık 0 ≤ D ≤ 4
- H<sub>0</sub> doğru ise D 2'ye yakın olmalıdır
- 2'den küçük D değeri pozitif otokorelasyonun işaretidir, 2'den büyük D değeri negatif otokorelasyonun işaretidir.



### Pozitif Otokorelasyon İçin Test Etme

H<sub>0</sub>: pozitif otokorelasyon yoktur

H₁: pozitif otokorelasyon mevcuttur

- Durbin-Watson test istatistiğini = D hesapla
   (Durbin-Watson İstatistiği Excel veya Minitab kullanılarak hesaplanabilir)
- Durbin-Watson tablosundan d<sub>L</sub> ve d<sub>U</sub> değerlerini bulun (n örnek boyutu için ve k bağımsız değişken sayısı için)





## Pozitif Otokorelasyon İçin Test Etme (devamı)

Elimizde şu zaman seri tablosu olduğunu düşünelim:



Otokorelasyon var midir?

## Pozitif Otokorelasyon İçin Test Etme

(devamı)

n = 25 büyüklüklü örnek:

#### Excel/PHStat çıktısı:

| <b>Durbin-Watson Calculations</b>         |         |  |  |
|-------------------------------------------|---------|--|--|
| Sum of Squared<br>Difference of Residuals | 3296.18 |  |  |
| Sum of Squared<br>Residuals               | 3279.98 |  |  |
| Durbin-Watson<br>Statistic                | 1.00494 |  |  |
|                                           |         |  |  |



$$D = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2} = \frac{3296.18}{3279.98} = 1.00494$$

## Ĺ

## Pozitif Otokorelasyon İçin Test Etme (devamı)

- Burada, n = 25 ve k = 1 olmak üzere bir bağımsız değişken vardır
- Durbin-Watson tablosunu kullanarak, d<sub>L</sub>=1.29 ve d<sub>U</sub>=1.45 elde edilir
- D =  $1.00494 < d_L = 1.29$ ,  $H_0$  reddedilir ve önemli bir pozitif otokorelasyon olduğu yorumu yapılır





## Eğimle İlgili Çıkarımlar

Regresyon eğimi katsayısı (b<sub>1</sub>) standart hata tahmini şu formülle yapılır:

$$S_{b_1} = \frac{S_{YX}}{\sqrt{XKT}} = \frac{S_{YX}}{\sqrt{\sum (X_i - \overline{X})^2}}$$

$$S_{b_1}$$
 = Eğimin standart hata tahmini

$$S_{YX} = \sqrt{\frac{HKT}{n-2}}$$
 = Tahminin standart hatası

# Eğimle İlgili Çıkarımla: t Testi

- Bir popülasyon eğimi için t testi
  - X ve Y arasında doğrusal bir ilişki var mıdır?
- Sıfır ve alternatif hipotezler
  - $H_0$ :  $β_1 = 0$  (doğrusal ilişki yok)
  - $H_1$ :  $\beta_1 \neq 0$  (doğrusal bir ilişki mevcut)
- Test istatistiği

$$t_{STAT} = \frac{b_1 - \beta_1}{S_{b_1}}$$

$$s.d. = n - 2$$

$$\beta_1$$
 = hipotezle belirlenmiş eğim

$$S_{b1}$$
 = eğimin standart hatası



# Eğimle İlgili Çıkarımlar: t Testi Örneği

| Ev Fiyatları<br>\$1000<br>(y) | Feet-Kare<br>(x) |
|-------------------------------|------------------|
| 245                           | 1400             |
| 312                           | 1600             |
| 279                           | 1700             |
| 308                           | 1875             |
| 199                           | 1100             |
| 219                           | 1550             |
| 405                           | 2350             |
| 324                           | 2450             |
| 319                           | 1425             |
| 255                           | 1700             |

#### Beklenen Regresyon Denklemi:

ev fiyatı = 98.25 + 0.1098 (feet - kare)

Bu modelin eğimi 0.1098'dir

Evin alanı (feet-kare) ile satış fiyatı arasında doğrusal bir ilişki var mıdır?

# Eğim İle İlgili Çıkarımlar: t Testi Örneği

 $H_0$ :  $\beta_1 = 0$ 

#### **Excel Çıktısından:**

 $H_1$ :  $\beta_1 \neq 0$ 

|             | Coefficients | cients Standard Error t Stat P-value |                            | P-value                        |                                      |
|-------------|--------------|--------------------------------------|----------------------------|--------------------------------|--------------------------------------|
| Intercept   | 98.24833     | 58.03348                             | 1.69296                    | 0.12892                        |                                      |
| Square Feet | 0.10977      | 0.03297                              | 3.32938                    | 0.01039                        |                                      |
|             |              | b <sub>1</sub>                       | S <sub>b<sub>1</sub></sub> |                                |                                      |
|             |              |                                      | t <sub>STAT</sub>          | $=\frac{b_1-\beta_1}{S_{b_1}}$ | $=\frac{0.10977-0}{0.03297}=3.32938$ |



# Eğimle İlgili Çıkarımlar: t Testi Örneği

Test İstatistiği: 
$$\mathbf{t_{STAT}} = 3.329$$

$$\mathbf{H_0: } \beta_1 = 0$$

$$\mathbf{H_1: } \beta_1 \neq 0$$



Karar: H<sub>0</sub><sup>1</sup> Reddet

Ev alanının (feet-kare) ev fiyatlarını etkilediği yönünde yeterli kanıt mevcuttur



# Eğimle İlgili Çıkarımlar: t Testi Örneği

$$H_0$$
:  $\beta_1 = 0$ 

$$H_1$$
:  $\beta_1 \neq 0$ 

#### **Excel Çıktısından:**

|             | Coefficients | Standard Error | t Stat  | P-value |
|-------------|--------------|----------------|---------|---------|
| Intercept   | 98.24833     | 58.03348       | 1.69296 | 0.12892 |
| Square Feet | 0.10977      | 0.03297        | 3.32938 | 0.01039 |

Karar: p-değeri  $< \alpha$  olduğundan  $H_0$ 'ı reddet

p-değeri

Ev alanının (feet-kare) ev fiyatlarını etkilediği yönünde yeterli kanıt mevcuttur.



## Anlamlılık İçin F Testi

• F Test istatistiği: 
$$F_{STAT} = \frac{MSR}{MSE}$$

$$MSR = \frac{RKT}{k}$$

$$MSH = \frac{HKT}{n-k-1}$$

 $F_{STAT}$ , k pay ve (n - k - 1) payda serbestlik derecesine sahip F dağılımına uymaktadır

(k = regresyon modelindeki bağımsız değişkenlerin sayısı)



## Anlamlılık İçin F Testi Excel Çıktısı

| Regression | <b>Statistics</b> |
|------------|-------------------|
|------------|-------------------|

| Multiple R        | 0.76211  | Λ                     | <b>ISR</b> 18 | 3934.9  | 348          |              |
|-------------------|----------|-----------------------|---------------|---------|--------------|--------------|
| R Square          | 0.58082  | $F_{\text{CTAT}} = -$ | = _           |         | =1           | 1.0848       |
| Adjusted R Square | 0.52842  | $\mathbf{N}$          | ISH 1         | 708.19  | 957          |              |
| Standard Error    | 41.33032 |                       |               |         |              |              |
| Observations      | 10       | 1 ve 8 serbestlik     |               |         |              | F testi için |
|                   |          | dereceleriy           | /le           |         |              | p-değeri     |
| ANOVA             |          |                       |               |         |              | 1            |
|                   | df /     | SS                    | MS            | F/      | Significance | e <i>F</i> / |
| Regression        | 1        | 18934.9348            | 18934.9348    | 11.0848 | 0.010        | 039          |
| Residual          | 8        | 13665.5652            | 1708.1957     |         |              |              |
| Total             | 9        | 32600.5000            |               |         |              |              |

## Anlamlılık İçin F Testi

(devamı)



$$H_1$$
:  $\beta_1 \neq 0$ 

$$\alpha = .05$$





#### Test İstatistiği:

$$F_{STAT} = \frac{MSR}{MSH} = 11.08$$

#### **Karar:**

 $\alpha = 0.05$  düzeyinde  $H_0$  reddedilir

#### Çıkarım:

Ev boyutlarının satış fiyatlarını etkilediği yönünde yeterli kanıt mevcuttur.



## Eğim İçin Güven Aralığı Tahmini

#### Eğimin Güven Aralığı Tahmini:

$$\mathbf{b}_1 \pm t_{\alpha/2} \mathbf{S}_{\mathbf{b}_1}$$

s.d. = n - 2

#### Ev fiyatları İçin Excel Çıktısı:

|             | Coefficients | cients Standard Error |         | P-value | Lower 95% | Upper 95% |
|-------------|--------------|-----------------------|---------|---------|-----------|-----------|
| Intercept   | 98.24833     | 58.03348              | 1.69296 | 0.12892 | -35.57720 | 232.07386 |
| Square Feet | 0.10977      | 0.03297               | 3.32938 | 0.01039 | 0.03374   | 0.18580   |

%95 güven düzeyinde, eğim için güven aralığı (0.0337, 0.1858) olacaktır



## Eğim İçin Güven Aralığı Tahmini

|             | Coefficients | Standard Error | t Stat  | P-value | Lower 95% | Upper 95% |
|-------------|--------------|----------------|---------|---------|-----------|-----------|
| Intercept   | 98.24833     | 58.03348       | 1.69296 | 0.12892 | -35.57720 | 232.07386 |
| Square Feet | 0.10977      | 0.03297        | 3.32938 | 0.01039 | 0.03374   | 0.18580   |
|             |              |                | •       | -       |           |           |

Ev fiyatı değişkeninin birimi \$1000 olduğundan, satış fiyatları üzerindeki ortalama etkinin ev boyutunun herbir foot-karesi için \$33.74 ve \$185.80 arasında olduğunu %95 güven düzeyinde söyleyebiliriz

Bu %95 güven aralığı 0 içermeyecektir.

Çıkarım: .05 önem seviyesinde ev fiyatları ile ev boyutu arasında önemli bir ilişki mevcuttur.



## Korelasyon Katsayısı için t Testi

#### Hipotezler

 $H_0$ :  $\rho = 0$  (X ve Y arasında korelasyon yoktur)

 $H_1$ :  $\rho \neq 0$  (korelasyon mevcuttur)

#### Test istatistiği

$$t_{STAT} = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

(n – 2 serbestlik derecesiyle)

$$\begin{vmatrix} r = +\sqrt{r^2} & \text{if } b_1 > 0 \\ r = -\sqrt{r^2} & \text{if } b_1 < 0 \end{vmatrix}$$



## Korelasyon Katsayısı için t Testi

(devamı)

.05 önem seviyesinde ev boyutu (feet-kare)ile satış fiyatı arasında bir doğrusal ilişki olduğuna dair bir kanıt var mıdır?

$$H_0$$
:  $\rho = 0$  (korelasyon yok)  
 $H_1$ :  $\rho \neq 0$  (korelasyon mevcut)  
 $\alpha = .05$ ,  $sd = 10 - 2 = 8$ 

$$t_{\text{STAT}} = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}} = \frac{.762 - 0}{\sqrt{\frac{1 - .762^2}{10 - 2}}} = 3.329$$

## Korelasyon Katsayısı için t Testi

(devamı)



#### **Karar:**

H₀'ı reddet

#### **Conclusion:**

%5 önem seviyesinde bir doğrusal etkileşim olduğuna dair kanıt vardır



# Ortalama Değerlerinin Tahmini ve Bağımsız Değerlerin Çıkarımı



 $\overset{\wedge}{Y} = b_0 + b_1 X_i$ 

X<sub>i</sub> verildiğinde, bağımsız bir Y değerinin tahmin aralığı



## X Verildiğinde Ortalama Y Değeri İçin Güven Aralığı

Belirli bir X<sub>i</sub> verildiğinde **Y'nin ortalama** değeri için güven aralığı tahmini

$$\mu_{\rm Y|X=X_i}$$
için Güven aralıra :  $\hat{Y} \pm t_{\alpha/2} S_{\rm YX} \sqrt{h_i}$ 

$$\hat{Y} \pm t_{\alpha/2} S_{YX} \sqrt{h_i}$$

Aralığın boyutu Ortalamadan  $\overline{X}$ , olan uzaklığa göre değişir

$$h_i = \frac{1}{n} + \frac{(X_i - \overline{X})^2}{SSX} = \frac{1}{n} + \frac{(X_i - \overline{X})^2}{\sum (X_i - \overline{X})^2}$$

## X Verildiğinde Bağımsız Y Değeri İçin Güven Aralığı

Belirli bir X<sub>i</sub> verildiğinde **Y'nin bağımsız bir değeri** için güven aralığı tahmini

$$Y_{X=X_i}$$
 icin guven araligi:  
 $\hat{Y} \pm t_{\alpha/2} S_{YX} \sqrt{1 + h_i}$ 

Bu fazladan terim, aralık genişliğine, tek bir bağımsız değer için eklenmiş belirsizliği yansıtacak şekilde eklenir



## Ortalama Değerlerin Tahmini: Örnek

 $\mu_{Y|X=X_i}$ için Güven aralığı

2,000 feet-kare evlerin ortalama fiyatlarının %95 güven aralığında tahmini değerini bulunuz

Tahmini Fiyat  $Y_i = 317.85 (\$1,000s)$ 

$$\hat{Y} \pm t_{0.025} S_{YX} \sqrt{\frac{1}{n} + \frac{(X_i - \overline{X})^2}{\sum (X_i - \overline{X})^2}} = 317.85 \pm 37.12$$

Güven aralığı uç noktaları( Excel'den) 280.66 ve 354.90'dır, veya \$280,660'dan \$354,900'a değer alır



### Bağımsız tek Değerlerin Tahmini: Örnek

Y<sub>X=X</sub> için kestirim aralığı tahmini

2,000 feet-kare olan bir bağımsız evin %95 güven düzeyinde kestirim aralığını bulunuz

Tahmini Fiyat  $Y_i = 317.85 (\$1,000s)$ 

$$\hat{Y} \pm t_{0.025} S_{YX} \sqrt{1 + \frac{1}{n} + \frac{(X_i - \overline{X})^2}{\sum (X_i - \overline{X})^2}} = 317.85 \pm 102.28$$

Excel'den elde edilen kestirim aralığı uç noktaları 215.50 ve 420.07, veya \$215,500'dan \$420,070'a olacaktır



### Excel'de Güven ve Kestirim Aralıklarının Bulunması

Excel'de

PHStat | regression | simple linear regression ... sıralamasını kullan

"X için güven ve kestirim aralığı =" "confidence and prediction interval for X=" kutucuğunu işaretle ve X-değerini ve istenen güven seviyesini gir



## Excel'de Güven ve Kestirim Aralıklarının Bulunması

(devamı)

|    | Α                               | В         |                                                 |
|----|---------------------------------|-----------|-------------------------------------------------|
| 1  | Confidence Interval Estimate    |           |                                                 |
| 2  |                                 |           |                                                 |
| 3  | Data                            |           |                                                 |
| 4  | X Value                         | 200       | Girdi değerleri                                 |
| 5  | Confidence Level                | 95%       | Ondi degenen                                    |
| 6  |                                 | V         |                                                 |
| 7  | Intermediate Calculations       |           |                                                 |
| 8  | Sample Size                     | 10        |                                                 |
| 9  | Degrees of Freedom              | 8         |                                                 |
| 10 | t Value                         | 2.306006  |                                                 |
| 11 | Sample Mean                     | 1715      |                                                 |
| 12 | Sum of Squared Difference       | 1571500   |                                                 |
| 13 | Standard Error of the Estimate  | 41.33032  | $\wedge$                                        |
| 14 | h Statistic                     | 0.151686  |                                                 |
| 15 | Average Predicted Y (YHat)      | 317.7838  | <b>←</b> Y                                      |
| 16 |                                 |           |                                                 |
| 17 | For Average Predicted Y (Y      |           |                                                 |
| 18 | Interval Half Width             | 37.11952  |                                                 |
| 19 | Confidence Interval Lower Limit | 280,66 13 | μ <sub>ΥΙΧ=Χi</sub> için güven aralığı tahmini  |
| 20 | Confidence Interval Upper Limit | 354 90 33 |                                                 |
| 21 |                                 |           |                                                 |
| 22 | For Individual Response         | Υ         |                                                 |
| 23 | Interval Half Width             | 102,2813  | V jaja kaatinina analyšų talansiai              |
| 24 | Prediction Interval Lower Limit | 215,5025  | Y <sub>X=Xi</sub> için kestirim aralığı tahmini |
| 25 | Prediction Interval Upper Limit | 420 0651  |                                                 |
|    |                                 |           |                                                 |



## Regresyon Analizinde Düşülebilecek Hatalar

- En küçük kareler regresyonunun altında yatan varsayımların farkında olmamak
- Varsayımların nasıl değerlendireceğini bilmemek
- Belli bir varsayım ihlal edilirse, en küçük kareler regresyonunun alternatiflerini bilmemek
- Konu bilgisi olmaksızın bir regresyon modeli kullanılması
- İlgili alanın dışında ekstrapolasyon yapmak



## Regresyonda Karşılaşılabilecek Hataların Önlenmesi İçin Stratejiler

- Olası ilişkinin gözlemlenmesi için X ve Y'nin bir serpme diyagramı ile başlanır
- Varsayımları kontrol etmek için artık değer analizi yapılmalıdır
  - Homosedastisite gibi varsayımların ihlalini kontrol etmek içinX ve Artık değerlerin diyagramı çizilir
  - Olası normal olmayanlığı ortaya çıkarmak için artık değerlerin histogramı, kök ve yaprak diyagramı, kutu diyagramı veya artık değerlerin normal olasılık grafiği kullanılır



## Regresyonda Karşılaşılabilecek Hataların Önlenmesi İçin Stratejiler

(devamı)

- Herhangi bir varsayımın ihlali mevcutsa, alternatif metot veya modeller kullanılır
- Varsayım ihlali ile ilgili kanıt yoksa, regresyon katsayılarının önem derecesi için test edilir ve güven aralığı ve kestirim aralıkları oluşturulur
- Kestirim yapılması önlenir veya ilgili aralık dışında tahmin yapılır



## Bölüm Özeti

Bu bölümde aşağıdaki konulara değinilmiştir;

- Regresyon modellerinin tipleri
- Regresyon ve korelasyonun varsayımları
- Basit doğrusal regresyonun elde edilmesi
- Değişim ölçüleri
- Artık değer (Residual) analizi
- Otokorelasyonun ölçümü



### Bölüm Özeti

(devamı)

- Eğim ile ilgili çıkarımlar yapmak
- Korelasyon birlikteliğin gücünü ölçmek
- Ortalama değerlerin tahmini ve bağımsız değerlerin kestirimi
- Regresyondaki olası tuzaklar ve bunların önlenmesi için önerilen stratejiler