

DÍODOS

■ Princípios de física dos semicondutores

Funcionamento do díodo semicondutor – junção P-N

Átomo de silício

Cristal de silício (estrutura)

■ Princípios de Física dos Semicondutores

Funcionamento do díodo semicondutor – junção P-N

Semicondutor tipo-N

Resultado da dopagem: electrões extra

Semicondutor tipo-P

Resultado da dopagem: lacunas (ausênçia de um

Fósforo

■ Princípios de Física dos Semicondutores

Funcionamento da junção P-N

■ Princípios de Física dos Semicondutores

Funcionamento da junção P-N

Junção inversamente polarizada

Junção directamente polarizada

■ Comportamento do Díodo Ideal

Característica *v-i* do díodo

Directamente polarizado

Inversamente polarizado

Comportamento do Díodo Ideal

Característica v-i do díodo

Comportamento do Díodo Ideal

 Análise de circuitos com díodos (exemplo)

$$V_i = V_m sen(\omega t)$$

 $i_D = ?$

$$V_{i}(t) = V_{R} + V_{D}$$

$$\downarrow \qquad ?$$

$$V_{i}(t) = R_{L}i_{D} + V_{D}$$

$$i_D = \frac{V_i - V_D}{R_L}$$

Comportamento do Díodo Ideal

Exemplo

Para $v_i > 0$:

$$i_D = \frac{V_i}{R_i} = \frac{V_m}{R_i} sen(\omega t)$$

$$V_R = R_L i_D$$

Para
$$v_i \le 0$$
: $i_D = 0$

Característica v-i do Díodo Ideal

Característica V-I do Díodo Semicondutor

■ Característica *V-I* do Díodo Semicondutor

$$p = v \cdot i = v \cdot 0A = 0 W$$

Inversamente polarizado

$$-\frac{i_D \approx 0}{}$$

$$p_D = V_D \cdot i_D \approx V_D \cdot 0A = 0 \text{ W}$$

Ligado
$$v = 0$$
Interruptor ideal

$$p = v \cdot i = 0 \text{V} \cdot i = 0 \text{ W}$$

Directamente polarizado

+
$$\frac{V_D = 0.7 \text{ V}}{\rho_D = V_D \cdot i_D \approx 0.7 \text{V} \cdot i_D}$$

■ Polarização do Díodo Semicondutor

$$V_{CC} = R_L I_D + V_D \longrightarrow \text{Recta de carga}$$

■ Polarização do Díodo Semicondutor

$$R_1 < R_2 < R_3$$

■ Comportamento do Díodo Semicondutor

■ Tipos de Díodos

Pequenos Sinais

Díodo de Potência

Emissor de Luz (LED)

Fotodíodo

Díodo de Zener

■ Limites de Operação dos Díodos

Comportamento do Díodo Ideal

Exemplo

■ Comportamento do Díodo Ideal

Bloco Rectificador

■ Comportamento do Díodo Ideal

Detector de Pico

■ Comportamento do Díodo Ideal

Detector de Pico

■ Comportamento do Díodo Ideal

Detector de Pico

Comportamento do Díodo Ideal

Detector de Pico (com carga)

Sentido da corrente de descarga do condensador

Admitindo que
$$i_D \approx cte = \frac{V_m}{R_L}$$

$$i_D \approx C \frac{\Delta V_L}{\Delta t} \longrightarrow \Delta V_L = \frac{i_D}{C} \Delta t \approx \frac{V_m}{f \cdot R_L C}$$

O valor médio da tensão de saída é:

$$\rightarrow V_L \approx V_m - \frac{1}{2} \Delta V_L = V_m \left(1 - \frac{1}{2f \cdot R_L C} \right)$$

Circuitos Limitadores

Característica de transferência

$$egin{aligned} V_{entrada} &< 0.7 \ V
ightarrow V_{saída} = V_{entrada} \ V_{entrada} &\geq 0.7 \ V
ightarrow V_{saída} = 0.7 \ V \end{aligned}$$

Circuitos Limitadores

$$V_{entrada} < 0.7 \text{ V} \rightarrow V_{saída} = V_{entrada}$$
 $V_{entrada} \ge 0.7 \text{ V} \rightarrow V_{saída} = 0.7 \text{ V}$

Limitadores Polarizados

$$V_{entrada} < V_{REF} + 0.7 \text{ V} \rightarrow V_{saída} = V_{entrada}$$
 $V_{entrada} \ge V_{REF} + 0.7 \text{ V} \rightarrow V_{saída} = V_{REF} + 0.7 \text{ V}$

Característica de transferência

Limitação a 2 níveis

Característica de transferência

Exemplo

■ Considere o seguinte circuito:

- Desenhe a curva caraterística (Vs x Ve)
- Desenhe a tensão de saída, considerando uma entrada sinusoidal, com 10V_D.

Solução

Solução

Circuitos Fixadores (ou Clamping)

Circuitos Fixadores

Fixador – formas de onda admitindo díodo ideal

Circuitos Fixadores

Fixador – formas de onda no caso do díodo real

Circuitos Fixadores (caso geral)

$$V_{entrada} > \frac{\pi}{2}$$
 (díodo não conduz)

Circuitos Fixadores (caso geral)

Fixador – formas de onda no caso do díodo real

Detector Pico-a-Pico (ou duplicador de tensão)

Duplicador – formas de onda admitindo díodo ideal (reg. permanente)

■ Multiplicador de tensão

