Лабораторный практикум по курсу «Математическая статистика»

Лабораторная работа № 3 «Однофакторный дисперсионный анализ»

студента	Васильев	группы_	Б21 - 524	Дата с	дачи:_28.11.2023	
Ведущий п	реподаватель	: <u>Tpod</u>	римов А.Г.	_ оценка:		
подпись:						
		Вария	ант №6_			

Цель работы: изучение функций Statistics and Machine Learning ToolboxTM MATLAB / Python SciPy.stats для проведения однофакторного дисперсионного анализа (*One-Way ANOVA*).

1. Исходные данные

Характеристики наблюдаемых случайных величин:

СВ	Распределение	Параметры	Математическое ожидание, <i>m</i> _i	Дисперсия, σ_i^2	Объем выборки, <i>n</i> _i
X_1	$\chi^{2}(2)$	n	2	4	100
X_2	<i>N</i> (3, 1)	$N(m, \sigma)$	3	1	150
X_3	R(-2, 2)	R(a,b)	0	1.33	200
X_4	<i>N</i> (5, 1)	$N(m, \sigma)$	5	1	100

Количество случайных величин $k = ___4__$

Примечание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

СВ	Среднее, \overline{x}_i	Оценка дисперсии, s_i^2	Оценка с.к.о., s_i
X_1	2.175	4.194	2.038
X_2	3.197	0.959	0.976
X_3	-0.975	0.333	0.575
X_4	4.902	0.956	0.973
Pooled	1.804	1.317	0.658

2. Визуальное представление выборок

Диаграммы Box-and-Whisker:

Примечание: для построения диаграмм использовать функции **boxplot**, **vartestn** (**matplotlib.pyplot.boxplot**)

3. Проверка условия применимости дисперсионного анализа

Статистическая гипотеза: $H_0: \sigma_1^2 = ... = \sigma_k^2$

Критерий Бартлетта:

Aphrephi Bapineria.						
Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = _0.05$	Ошибка стат. решения			
237.251351	3.7401339313747 56e-51	Н ₀ принимается	2 рода			

Примечание: для проверки гипотезы использовать функцию vartestn (scipy.stats.bartlett)

4. Однофакторный дисперсионный анализ

Таблица дисперсионного анализа:

Источник вариации	Показатель вариации	Число степеней свободы	Несмещённая оценка
Группировочный признак	$D_{b=5.109}^{*}$	K - 1 = 3	$\frac{n}{K-1}D_{b=936.661}^{*}$
Остаточные признаки	$D_{w}^{*}=1.307$	n - K = 546	$\frac{n}{n-K}D_{w}^{*}=1.317$
Все признаки	$D_{X=6.416}^{*}$	n - 1 = 549	$\frac{n}{n-1}D_{X}^{*}=6.428$

Эмпирический коэффициент детерминации $\eta^2 = 0.796$

Эмпирическое корреляционное отношение $\eta = 0.892$

Статистическая гипотеза: $H_0: m_1 = ... = m_k$

Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = _0.05$	Ошибка стат. решения
711.3621236866518	3.8979669699705 42e-188	H ₀ принимается	нет

Примечание: при расчетах использовать функцию anoval (scipy.stats.f_oneway)

5. Метод линейных контрастов

Доверительные интервалы для $m_1,..., m_k$:

Попарные сравнения m_i и m_j :

Гипотеза	Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = _0.05_$	Ошибка стат. решения
H_0 : $m_1 = m_2$	-1.7672	0	H_0 принимается	нет

Лабораторный практикум по курсу «Математическая статистика»

H_0 : $m_1 = m_3$	-0.2057	0.8917	<i>Н₀ принимается</i>	нет
H_0 : $m_1 = m_4$	1.0216	0.012	$H_{\it 0}$ принимается	нет
H_0 : $m_2 = m_3$	1.5615	0	<i>Н₀ принимается</i>	нет
H_0 : $m_2 = m_4$	2.7887	0	<i>Н</i> ₀ принимается	нет
H_0 : $m_3 = m_4$	1.2273	0.0001	<i>Н</i> ₀ принимается	нет

Примечание: при расчетах использовать функцию multcompare (statsmodels.stats.multicomp.pairwise_tukeyhsd)