Genetic Insights from a Genetically Isolated Community

Alyssa Wheeler

About Myself

- Graduate student
- Bioinformatics
- Healthcare research

Introduction

- Plain people
 - Genetically isolated
 - Founder effect
- Broader society
 - Leaving Plain community
- Genetic databases
 - Healthcare providers

Project Goal

This study created a database from 210 Kish Valley Amish and Mennonite patient exomes. Then, exploratory data analysis was performed to identify meaningful gene variants with a focus on genes of interest identified by Dr. Morton.

Methods

Part 1: Database Creation

Part 2: Exploratory Data Analysis

Results

Database

gnomad	SNPid	Chr	Position	Ref	Alt	Func	Gene	GeneDetail	ExonicFunc	AAChange	C(HOM A1)	C(HET)	C(HOM A2
gnomad	1:69063:T:C	1	1 690	63 T	С	upstream	OR4F5	dist=28			0	1	. 0
gnomad	1:69081:G:C		1 690	81 G	С	upstream	OR4F5	dist=10		•	1	1	. 0
gnomad	1:69270:A:G	1	1 692	70 A	G	exonic	OR4F5		synonymous SNV	OR4F5:NM_00100	112	5	0
gnomad	1:69428:T:G	1	1 694	28 T	G	exonic	OR4F5		nonsynonymous	OR4F5:NM_00100	1	C	0
gnomad	1:69511:A:G	1	1 695	11 A	G	exonic	OR4F5		nonsynonymous	OR4F5:NM_00100	140	C	0
gnomad	1:69552:G:C	1	1 695	52 G	С	exonic	OR4F5		synonymous SNV	OR4F5:NM_00100	1	C	0
gnomad	1:69594:T:C	1	1 695	94 T	С	exonic	OR4F5		synonymous SNV	OR4F5:NM_00100	0	1	. 0
gnomad	1:69648:CAGGCT:C		1 696	48 AGGC	Γ-	exonic	OR4F5		frameshift deleti	OR4F5:NM_00100	0	1	. 0
gnomad	1:69657:T:C	1	1 696	57 T	С	exonic	OR4F5		synonymous SNV	OR4F5:NM_00100	0	1	. 0
gnomad	1:69682:GT:G	1	1 696	82 T	-	exonic	OR4F5		frameshift deleti	OR4F5:NM_00100	0	1	. 0

MAF_PLINI	MAF	MAF_%	NCHROBS AF	AF_nfe	SIFT_pre	e LRT_pre	MutationTaster_p	MutationAssessor_	FATHMM_pred	REVEL_score	CADD_raw	GERP++_NR	GERP++_RS	rsNum
0.75	0.002381	0.238095	4 .											
0.9786	0.002381	0.238095	234 0.0103	0.0262										
1	0.011905	1.190476	2 0.8380	0.9146										
1	0	0	280 0.0245	0.0417	D	N	N	M	T	0.055	3.839511	2.31	0.891	
1	0	0	2 0.9497	0.9726	T	N	P	N	T	0.053	0.804646	2.31	1.15	
0.5	0	0	2 1.234e-0	0										
0.5	0.002381	0.238095	2 0.0012	4.169e-05										
0.5	0.002381	0.238095	2.											
0.5	0.002381	0.238095	2.											
0.5	0.002381	0.238095	2 .											

MutationTaster Predictor Results

MutationTaster Predictions with Genes of Interest

PCCB had highest MAF

SNPid	Gene	Chr	MAF_percent	REVEL_score	CADD_raw	GERP++_NR
3:136048854:A:G	РССВ	3	3.571429	0.919	5.072618	5.3
19:41930487:T:A	BCKDHA	19	1.904762	0.953	5.097043	5.45
16:56919275:C:G	SLC12A3	16	1.428571	0.511	6.313977	5.4
12:103246653:C:T	PAH	12	0.714286	0.985	6.13065	5.72
1:155261636:C:T	PKLR	1	0.47619	0.947	5.750361	4.85
12:103234252:T:C	PAH	12	0.238095	0.982	4.988886	5.63
12:103249091:C:T	PAH	12	0.238095	0.89	5.048905	5.73

Discussion

Database

- Key genetic metrics
- Resource for healthcare and broader society

Pathogenicity

- Most likely disease causing: ACADM, BCKDHA, GCDH, PAH, PCCB, PKLR, RYR2, SLC12A3, and ZDHHC16
- Neutral or harmless: FLVCR1 and MTHFR

Filtering for Harmful Predictions

- Highest minor allele frequency: PCCB
- CADD scores

Conclusion

- Prioritize harmful gene variants
- Broader impacts
- Improved healthcare

Limitations

- Smalls sample size (210 individuals)
- Predictor tool errors
- Future research

Acknowledgements

Thank you to Dr. Lamendella, Dr. Morton, and Brittney McMullen for their help and guidance throughout this project