

Solve multiband Eliashberg equations

This software provides three programs:
1. ebmb itself solves the multiband Eliashberg equations (Eqs. 1 or 4) on a cut-off imaginary axis and optionally continues the results to the real axis via Padé approximants. The normal-state equations (Eq. 7) can also be solved on the real axis.
A material is defined by nothing but an ELIASHBERG spectral function or, as fallback, an EINSTEIN phonon frequency and intra- and interband electron-phonon couplings, Coulomb pseudo-potentials and, if desired, the band densities of Bloch states, otherwise assumed to be constant.
2. critical finds the critical point via the bisection method varying a parameter of choice. Superconductivity is defined by the kernel of the linearized gap equation (Eq. 5 or 6) having an eigenvalue greater than or equal to unity.
 tc finds the critical temperature for each band separately via the bisection method. Su- perconductivity is defined by the order parameter exceeding a certain threshold. Usually, it is preferable to use critical.
—— Installation ————————————————————————————————————
The makefile is designed for the GNU or Intel Fortran compiler:
<pre>\$ make FC=gfortran FFLAGS='-03 -fopenmp' \$ python3 -m pip install -e .</pre>
—— Reference ————
ebmb is stored on <i>Zenodo:</i> https://doi.org/10.5281/zenodo.13341224. The theory is described here: https://scipost.org/theses/132/.
— Licence —
This program is free software: you can redistribute it and/or modify it under the terms of the

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see https://www.gnu.org/licenses/.

Copyright © 2016–2025 Jan Berges

– Outline —

Let $h = k_{\rm B} = 1$. Fermionic and bosonic Matsubara frequencies are defined as $\omega_n = (2n+1)\pi T$ and $\nu_n = 2n\pi T$, respectively. The quantity of interest is the Nambu self-energy matrix¹

$$\boldsymbol{\Sigma}_{i}(n) = \underbrace{\mathrm{i} \omega_{n}[1 - Z_{i}(n)]}_{(\boldsymbol{\delta}\omega_{n})_{i}} \mathbf{1} + \underbrace{Z_{i}(n) \Delta_{i}(n)}_{\boldsymbol{\phi}_{i}(n)} \boldsymbol{\sigma}_{1} + \chi_{i}(n) \boldsymbol{\sigma}_{3}$$

where the Pauli matrices are defined as usual and i is a band index. Renormalization $Z_i(n)$, order parameter $\phi_i(n)$ and energy shift $\chi_i(n)$ are determined by the Eliashberg equations²

$$Z_{i}(n) = 1 + \frac{T}{\omega_{n}} \sum_{j} \sum_{m=0}^{N-1} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\omega_{m} Z_{j}(m)}{\Theta_{j}(\varepsilon, m)} \Lambda_{ij}^{-}(n, m),$$

$$\phi_{i}(n) = T \sum_{j} \sum_{m=0}^{N-1} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\phi_{j}(m)}{\Theta_{j}(\varepsilon, m)} [\Lambda_{ij}^{+}(n, m) - U_{ij}^{*}(m)],$$

$$\chi_{i}(n) = \chi_{C_{i}} - T \sum_{j} \sum_{m=0}^{N-1} \int_{-\infty}^{\infty} \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\varepsilon - \mu + \chi_{j}(m)}{\Theta_{j}(\varepsilon, m)} \Lambda_{ij}^{+}(n, m),$$

$$\Theta_{i}(\varepsilon, n) = [\omega_{n} Z_{i}(n)]^{2} + \phi_{i}^{2}(n) + [\varepsilon - \mu + \chi_{i}(n)]^{2},$$

$$(1)$$

and may then be analytically continued to the real-axis ($i\omega_n \to \omega + i\eta$) by means of Padé approximants.³ The electron-phonon coupling matrices and the rescaled Coulomb pseudo-potential are connected to the corresponding input parameters via

$$\Lambda_{ij}^{\pm}(n,m) = \lambda_{ij}(n-m) \pm \lambda_{ij}(n+m+1), \qquad \lambda_{ij}(n) = \int_{0}^{\infty} d\omega \frac{2\omega \alpha^{2} F_{ij}(\omega)}{\omega^{2} + \nu_{n}^{2}} \stackrel{=}{\underset{\text{Einstein}}} \frac{\lambda_{ij}}{1 + \left[\frac{\nu_{n}}{\omega_{E}}\right]^{2}}, \\
U_{ij}^{*}(m) = \begin{cases} 2\mu_{ij}^{*}(\omega_{N_{C}}) & \text{for } m < N_{C}, \\ 0 & \text{otherwise,} \end{cases} \frac{1}{\mu_{ij}^{*}(\omega_{N_{C}})} = \frac{1}{\mu_{ij}^{*}} + \ln \frac{\omega_{E}}{\omega_{N_{C}}} \tag{2}$$

with the Eliashberg spectral function $\alpha^2 F_{ij}(\omega)$ and $\mu_{ij}^* = \mu_{ij}^*(\omega_{\rm E})$ per definition. Alternatively, if the density of states $n_i(\varepsilon)$ per spin as a function of energy ε is given,

$$\frac{1}{\mu_{ij}^{*}(\omega_{N_{\mathbb{C}}})} = \frac{1}{\mu_{ij}} + \frac{1}{\pi} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \begin{cases} \frac{1}{\varepsilon - \mu_{0}} \arctan \frac{\varepsilon - \mu_{0}}{\omega_{N_{\mathbb{C}}}} & \text{for } \varepsilon \neq \mu_{0}, \\ \frac{1}{\omega_{N_{\mathbb{C}}}} & \text{otherwise,} \end{cases}$$
(3)

where D is the electronic bandwidth. μ_0 and μ are the chemical potentials for free and interacting particles, whose number n_0 , n (including a factor of 2 for the spin) is usually conserved:

$$\sum_{i} \int_{-\infty}^{\infty} d\varepsilon \frac{2n_{i}(\varepsilon)}{e^{(\varepsilon-\mu_{0})/T}+1} = n_{0} \stackrel{!}{=} n = \sum_{i} \int_{-\infty}^{\infty} d\varepsilon \, n_{i}(\varepsilon) \left[1 - 4T \sum_{n=0}^{N-1} \frac{\varepsilon - \mu + \chi_{i}(n)}{\Theta_{i}(\varepsilon, n)} - \frac{2}{\pi} \arctan \frac{\varepsilon - \mu + \chi_{C_{i}}}{\omega_{N}} \right].$$

It is unusual but possible to also consider the COULOMB contribution to the energy shift:

$$\chi_{C_i} = \sum_{j} \int_{-\infty}^{\infty} d\varepsilon \frac{n_j(\varepsilon)}{n_j(\mu_0)} \left[2T \sum_{m=0}^{N-1} \frac{\varepsilon - \mu + \chi_j(m)}{\Theta_j(\varepsilon, m)} + \frac{1}{\pi} \arctan \frac{\varepsilon - \mu + \chi_{C_j}}{\omega_N} \right] \mu_{ij}.$$

¹Y. Nambu, Phys. Rev. **117**, 648 (1960)

²G. M. ELIASHBERG, Soviet Phys. JETP **11**, 696 (1960).

A comprehensive review is given by P. B. ALLEN and B. MITROVIĆ in Solid state physics 37 (1982)

³H. J. VIDBERG and J. W. SERENE, J. Low Temp. Phys. **29**, 179 (1977)

For a given scalar $\alpha^2 F(\omega)$, an effective phonon frequency can be calculated in different ways. We follow ALLEN and DYNES,⁴ who define the logarithmic and the second-moment average frequency and use the latter as $\omega_{\rm E}$ in Eqs. 2 and 3 for rescaling μ^* :

$$\omega_{\log} = \exp\left[\frac{2}{\lambda} \int_0^\infty \frac{\mathrm{d}\omega}{\omega} \alpha^2 F(\omega) \ln(\omega)\right], \qquad \overline{\omega}_2 = \sqrt{\frac{2}{\lambda} \int_0^\infty \mathrm{d}\omega \, \alpha^2 F(\omega) \, \omega}.$$

Approximating $n_i(\varepsilon) \approx n_i(\mu_0)$ yields $\chi_i(n) = 0$ and the constant-DOS ELIASHBERG equations

$$Z_{i}(n) = 1 + \frac{\pi T}{\omega_{n}} \sum_{j} \sum_{m=0}^{N-1} \frac{\omega_{m}}{\sqrt{\omega_{m}^{2} + \Delta_{j}^{2}(m)}} \Lambda_{ij}^{-}(n, m),$$

$$\Delta_{i}(n) = \frac{\pi T}{Z(n)} \sum_{j} \sum_{m=0}^{N-1} \frac{\Delta_{j}(m)}{\sqrt{\omega_{m}^{2} + \Delta_{j}^{2}(m)}} [\Lambda_{ij}^{+}(n, m) - U_{ij}^{*}(m)].$$
(4)

At the critical temperature, $\phi_i(m)$ is infinitesimal and negligible relative to ω_m . This yields

$$\phi_{i}(n) = \sum_{j} \sum_{m=0}^{N-1} K_{ij}(n, m) \,\phi_{j}(m),$$

$$K_{ij}(n, m) = T \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\Lambda_{ij}^{+}(n, m) - U_{ij}^{*}(m)}{\Theta_{j}(\varepsilon, m)},$$
(5)

where $\Theta_i(\varepsilon, m)$ is obtained from Eqs. 1 for $\phi_i(m) = 0$. Similarly, in the constant-DOS case,

$$\Delta_{i}(n) = \sum_{j} \sum_{m=0}^{N-1} K_{ij}(n, m) \Delta_{j}(m),$$

$$K_{ij}(n, m) = \frac{1}{2m+1} [\Lambda_{ij}^{+}(n, m) - \delta_{ij} \delta_{nm} D_{i}^{N}(n) - U_{ij}^{*}(m)],$$

$$D_{i}^{N}(n) = \sum_{j} \sum_{m=0}^{N-1} \Lambda_{ij}^{-}(n, m) \stackrel{N=\infty}{=} \sum_{j} [\lambda_{ij} + 2 \sum_{m=1}^{n} \lambda_{ij}(m)].$$
(6)

 $Z_i(n)$ is not biased by the cutoff if $D_i^{\infty}(n)$ is used in place of $D_i^N(n)$ in the kernel $K_{ij}(n,m)$.

The ELIASHBERG equations can also be solved on the real axis,⁵ which allows for exact analytic continuation without Padé approximants. They are implemented for the normal state:

$$\Sigma_{11i}(\omega) = \underbrace{\sum_{j} \int_{-\infty}^{\infty} d\varepsilon \frac{A_{j}(\varepsilon)}{n_{j}(\mu_{0})} \left[\mu_{ij} \left(\frac{1}{2} - f(\varepsilon) \right) + \int_{0}^{\infty} d\omega' \alpha^{2} F_{ij}(\omega') \sum_{\pm} \pm \frac{f(\varepsilon) + n(\pm \omega')}{\omega - \varepsilon \pm \omega'} \right]}_{\chi_{C_{i}}}$$
(7)

with the Fermi function $f(\varepsilon)=1/(\mathrm{e}^{\varepsilon/T}+1)$ and the Bose function $n(\omega)=1/(\mathrm{e}^{\omega/T}-1)$. The quasiparticle density of states $A_i(\omega)=-\frac{1}{\pi}\operatorname{Im} G_i(\omega+\mathrm{i}\eta)$ follows from the Green function

$$G_i(\omega) = -\int_{-\infty}^{\infty} d\varepsilon \, n_i(\varepsilon) \frac{\omega Z_i(\omega) + \varepsilon - \mu + \chi_i(\omega)}{\Theta_i(\varepsilon, \omega)} \stackrel{\phi=0}{=} \int_{-\infty}^{\infty} d\varepsilon \frac{n_i(\varepsilon)}{\omega - \varepsilon + \mu - \Sigma_{11i}(\omega)}.$$

Note that the code can replace $\Sigma_{11i}(\omega + i\eta)$ by $\text{Re}\,\Sigma_{11i}(\omega + i\eta) + i\,\text{Im}\,\Sigma_{11i}(\omega + i0^+)$.

⁴P. B. Allen and R. C. Dynes, Phys. Rev. B **12**, 905 (1975)

⁵D. J. Scalapino, J. R. Schrieffer and J. W. Wilkins, Phys. Rev. **148**, 263 (1966). See also L. X. Benedict, C. D. Spataru and S. G. Louie, Phys. Rev. B **66**, 085116 (2002)

• Parameters are defined on the command line:

```
\ \langle program \rangle \langle key 1 \rangle = \langle value 1 \rangle \langle key 2 \rangle = \langle value 2 \rangle \dots
```

The available keys and default values are listed in Table 1.

- The columns ebmb, tc and critical show which keys are used by these programs.
- The rightmost column indicates which parameters may be chosen as variable for critical. The variable is marked with a negative sign; its absolute value is used as initial guess. If no parameter is negative, the critical temperature is searched for.
- lambda, muStar, and muC expect flattened square matrices of equal size the elements
 of which are separated by commas. It is impossible to vary more than one element
 at once. If diag, the off-diagonal elements shall be omitted.
- dos has lines $\varepsilon/\text{eV} \ n_1/\text{eV}^{-1} \ n_2/\text{eV}^{-1} \dots$ with ε increasing.
- a2F has lines ω/eV $\alpha^2 F_{1,1}$ $\alpha^2 F_{2,1}$... with ω increasing. If diag, the off-diagonal elements shall be omitted.
- The relative change in the sample spacing of the real-axis frequencies between $\omega=0$ and $\omega=x$ is logscale $\cdot |x|$. Thus, logscale =0 corresponds to equidistant sampling.
- Unless tell=false, the results are printed to standard output.
- Unless file=none, a binary output file is created. For critical and tc it simply contains
 one or more double precision floating point numbers, for ebmb the format defined in
 Tables 2 and 3 is used.
- The provided *Python* wrapper functions load the results into *NumPy* arrays:

 $\langle replace \rangle$ decides whether an existing $\langle file \rangle$ is used or overwritten.

—— Acknowledgment ———

Parts of the program are inspired by the EPW code⁶ and work of Malte Rösner.

— Contact —

Any feedback may be directed to jan.berges@uni-bremen.de.

⁶See F. Giustino, M. L. Cohen and S. G. Louie, Phys. Rev. B **76**, 165108 (2007) for a methodology review. Results related to Eliashberg theory are given by E. R. Margine and F. Giustino, Phys. Rev. B **87**, 024505 (2013)

			\sigma^2	S		_		iscal all
key file form tell	default none F16.12 true	unit - -	Syntro - -	description output file number edit descriptor use standard output?	ebrit + + +	+ + +	رن ^ک + + +	vaiiahl
Т	10	K	T	temperature	+	+	+	+
omegaE cutoff cutoffC	0.02 15 ω _N	eV ω_{E}	$\omega_{ extsf{E}} \ \omega_{N} \ \omega_{N_{ extsf{C}}}$	EINSTEIN frequency overall cutoff frequency Coulomb cutoff frequency	+ + +	+ + +	+ + +	+ - -
lambda, lamda muStar, mu* muC	1 0 0	1 1 1	$\lambda_{ij} \ \mu_{ij}^* \ \mu_{ij}$	electron-phonon coupling rescaled Соигомв potential unscaled Соигомв parameter	+ + +	+ + +	+ + +	+ + +
bands diag	1 false	1 -	- -	number of bands only diagonal coupling given?	++	++	++	
dos, DOS a2f, a2F	none none	_ _	- -	file with density of states file with Eliashberg function	++	++	++	_ _
n mu conserve chi chiC Sigma	- 0 true true false false	1 eV - - -	n ₀ μ ₀ - - -	initial occupancy number initial chemical potential conserve particle number? consider energy shift $\chi_i(n)$? consider Coulomb part χ_{C_i} ? calculate Σ_{11i} ?	+ + + + + +	+ + + + -	+ + + + + -	- - - -
steps	250000	1	_	maximum number of iterations	+	+	+	_
epsilon toln error zero rate	$10^{-13} 10^{-10} 10^{-5} 10^{-10} 10^{-1}$	a.u. 1 a.u. eV 1	- - - -	negligible float difference tolerance for occupancy number bisection error negligible gap at \mathcal{T}_c (threshold) growth rate for bound search	+ + - -	+ + + +	+ + + - +	_ _ _ _
lower upper points logscale eta, 0+ measurable	$0 \ \omega_N \ 0 \ 1 \ 10^{-3} \ { m false}$	eV eV 1 1/eV eV	- - - η -	minimum real-axis frequency maximum real-axis frequency number of real-axis frequencies scaling of logarithmic sampling broadening of retarded objects find measurable gap?	+ + + + + +	_ _ _ _ _	_ _ _ _ _	- - - -
unscale rescale imitate	true true false	- - -	- - -	estimate missing muC from mu*? use μ_{ij}^* rescaled for cutoff? use $Z_i(n)$ biased by cutoff?	+ + -	+ + -	+ + +	_ _ _
divdos stable normal realgw etaIm0 noZchi	true false false false true false	- - - -	- - - -	divide by $n_j(\mu_0)$ in Eqs. 1, 3? calculate $A_i(\omega)$ differently? enforce normal state? do real-axis GW_0 calculation? send $\eta \to 0^+$ in $Im \Sigma_{11i}(\omega + i\eta)$? skip Z and χ for realgw?	+ + + + + +	+ - - - -	+	- - - -
power	true	_	_	power method for single band?	_	_	+	_

Table 1: Input parameters.

 $\begin{array}{c} \text{\langle CHARACTERS key \rangle:} \langle n_1 \times \ldots \times n_r \text{ NUMBERS value} \rangle \\ \text{associate key with value} \end{array}$

DIM: $\langle \text{INTEGER } r \rangle \langle r \text{ INTEGERS } n_1 \dots n_r \rangle$ define shape (column-major)

INT: take NUMBERS as INTEGERS
REAL: take NUMBERS as DOUBLES

Table 2: Statements allowed in binary output. The data types CHARACTER, INTEGER and DOUBLE take 1, 4 and 8 bytes of storage, respectively.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Delta gap $Z_i(n)$ $Z_i(n)$ chi energy shift $(*)$ sigma=true $Z_i(n)$ chic COULOMB part of energy shift $(*)$ phiC COULOMB part of order parameter status status (steps until convergence or -1) $-$ cccupancy results $Z_i(n)$ states integral of density of states inspect integral of spectral function $Z_i(n)$ $Z_i(n) = Re \Sigma_{11i}(n)$ chocupancy results $Z_i(n) = Im \Sigma_{11i}(n)$ cocupancy results results $Z_i(n) = Im \Sigma_{11i}(n)$ cocupancy results results $Z_i(n) = Im \Sigma_{11i}(n)$ cocupancy results $Z_i(n) = Im \Sigma_{11i}(n)$ cocupancy results results $Z_i(n) = Im \Sigma_{11i}(n)$ cocupancy results results $Z_i(n) = Im \Sigma_{11i}(n)$ cocupancy results results results $Z_i(n) = Im \Sigma_{11i}(n)$ cocupancy results $Z_i(n) = Im \Sigma_{11i}(n)$ cocupancy results results results $Z_i(n) = Im \Sigma_{11i}(n)$ cocupancy results resu
The renormalization $Z_i(n)$ chi energy shift (*) $Z_i(n) = \text{Re } \Sigma_{11i}(n)$ domega frequency shift (#) Sigma=true $(\delta \omega_n)_i = \text{Im } \Sigma_{11i}(n)$ chic Coulomb part of energy shift (*) phic Coulomb part of order parameter status status (steps until convergence or -1) $-$ occupancy results (*) DOS given states integral of density of states inspect integral of spectral function (**) $\sum_i \int d\varepsilon n_i(\varepsilon)$ initial n initial n final n cocupancy number n
chi energy shift (*) $\chi_i(n) = \text{Re } \Sigma_{11i}(n)$ domega frequency shift (#) Sigma=true $(\delta \omega_n)_i = \text{Im } \Sigma_{11i}(n)$ chiC COULOMB part of energy shift (*) phiC COULOMB part of order parameter status status (steps until convergence or -1) $-$ occupancy results (*) DOS given states integral of density of states inspect integral of spectral function (**) $\sum_i \int d\varepsilon n_i(\varepsilon)$ initial n final coccupancy number n n_0 initial mu final chemical potential μ effective parameters μ a2F given lambda electron-phonon coupling omegaE EINSTEIN frequency ω omegaLog logarithmic average frequency ω omega2nd second-moment average frequency ω real-axis results ω
domega frequency shift (#) Sigma=true $(\delta \omega_n)_i = \operatorname{Im} \Sigma_{11i}(n)$ chic COULOMB part of energy shift (*) χ_{Ci} phic Status status (steps until convergence or -1) - $\frac{\nabla_{Ci}}{\nabla_{Ci}}$ status status (steps until convergence or -1) - $\frac{\nabla_{Ci}}{\nabla_{Ci}}$ status integral of density of states integral of spectral function (**) $\sum_i \int d\varepsilon n_i(\varepsilon)$ initial $\nabla_{Ci} \cap \nabla_{Ci} \cap \nabla_{C$
chic Coulomb part of energy shift (*) χ_{C_i} phic Coulomb part of order parameter status status (steps until convergence or -1) $-$ occupancy results (*) DOS given states integral of density of states inspect integral of spectral function (**) $\sum_i \int d\varepsilon n_i(\varepsilon)$ inspect initial noccupancy number not final noccupancy number not final chemical potential not final noccupancy number not not final not
phic COULOMB part of order parameter status status (steps until convergence or -1) $ -$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
occupancy results(*) DOS givenstatesintegral of density of states $\sum_{i} \int d\varepsilon n_{i}(\varepsilon)$ inspectintegral of spectral function (**) $\sum_{i} \int d\omega A_{i}(\omega)$ n0initial noccupancy number n_{0} mu0initial final number μ_{0} mufinal final number μ_{0} effective parametersa2F givenlambdaelectron-phonon coupling omegaE λ_{ij} omegaEEINSTEIN frequency ω_{E} omegaLoglogarithmic average frequency ω_{log} omega2ndsecond-moment average frequency $\overline{\omega}_{2}$ real-axis results(**) points > 0omegafrequency ω Re[Delta]real $\frac{1}{2}$ gap
states integral of density of states inspect integral of spectral function (**) $\sum_{i}\int d\omega A_{i}(\omega)$ no initial noccupancy number noccupancy noccupancy number noccupancy noccupancy noccupancy number noccupancy noccupanc
states integral of density of states inspect integral of spectral function (**) $\sum_{i}\int d\omega A_{i}(\omega)$ no initial noccupancy number noccupancy noccupancy number noccupancy noccupancy noccupancy number noccupancy noccupanc
inspect integral of spectral function (**) $\sum_{i}\int d\omega A_{i}(\omega)$ no initial n final occupancy number n n muo initial mu final final chemical potential pu perfective parameters a2F given lambda electron-phonon coupling omegaE EINSTEIN frequency omegaLog logarithmic average frequency omega2nd second-moment average frequency $\overline{\omega}_{2}$ real-axis results (**) points > 0 omega frequency ω Re[Delta] real approximate function (**) $\sum_{i}\int d\omega A_{i}(\omega)$
no initial n final occupancy number n n muo initial mu final chemical potential mu final chemical potential μ_0 mu final chemical potential μ_0 mu final chemical potential μ_0 effective parameters a2F given lambda electron-phonon coupling λ_{ij} omegaE EINSTEIN frequency $\omega_{\rm log}$ omegaLog logarithmic average frequency $\omega_{\rm log}$ omega2nd second-moment average frequency $\overline{\omega}_2$ real-axis results $\omega_{\rm log}$ omega frequency $\omega_{\rm log}$ omega frequency $\omega_{\rm log}$ omega frequency $\omega_{\rm log}$ omega $\omega_{\rm log}$ $\omega_{\rm log}$
mu0 initial mu0 final chemical potential mu0 final chemical potential mu final chemical potential mu0 final chemical potential mu0 final chemical potential mu0 pu
mu final chemical potential μ effective parameters a2F given lambda electron-phonon coupling omegaE λ_{ij} omegaE EINSTEIN frequency ω_E omegaLog logarithmic average frequency ω_{log} omega2nd second-moment average frequency $\overline{\omega}_2$ real-axis results (**) points > 0 omega frequency ω Re[Delta] real app
effective parameters lambda electron-phonon coupling omegaE EINSTEIN frequency omegaLog logarithmic average frequency omega2nd second-moment average frequency $\overline{\omega}_2$ real-axis results omega frequency Re[Delta] real approximately μ a2F given ω_{ij} ω_{ij} ω_{log} ω_{log} ω_{log} ω_{log} ω_{log}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
lambda electron-phonon coupling omegaE EINSTEIN frequency $\omega_{\rm E}$ omegaLog logarithmic average frequency omega2nd second-moment average frequency $\overline{\omega}_2$ real-axis results (**) points > 0 omega frequency ω Re[Delta] real ω
omegaE EINSTEIN frequency ω_{E} omegaLog logarithmic average frequency omega2nd second-moment average frequency $\overline{\omega}_2$ real-axis results ω_{E} (**) points > 0 omega frequency ω_{E} frequency ω_{E} frequency ω_{E} frequency ω_{E}
omega2nd second-moment average frequency $\overline{\omega}_2$ real-axis results (**) points > 0 omega frequency ω Re[Delta] real α
omega2nd second-moment average frequency $\overline{\omega}_2$ real-axis results (**) points > 0 omega frequency ω Re[Delta] real α
omega frequency ω Re[Delta] real α
Re[Delta] real] app
$\Delta_i(\omega)$
Im[Delta] imaginary $\int_{0}^{\infty} g^{ap}$
Re[Z] real]
Im[Z] imaginary $Im[Z]$ renormalization $Im[Z]$ renormalization
Re[chi] real] (1)
$Im[chi]$ imaginary $energy shift (*)$ $\chi_i(\omega)$
Re[Sigma] real](#)
Im[Sigma] imaginary $normal$ self-energy (#) $normal$ self-energy $matheral$
DOS quasiparticle density of states (*) $A_i(\omega)$
measurable results measurable=true
Delta0 measurable gap $\Delta_{0i} = \text{Re}[\Delta_i(\Delta_{0i})]$

Table 3: Keys used in binary output.