Model

Model: Setting

Goal: Start with the simplest, direct translation of (Thomas and Worrall, 1988), and update one aspect a meeting.

What to change?

- Shocks to water, not spot-market prices (add or switch?)
- Add upstream suppliers who also have contracts with downstream
- Upstream chooses a fraction of water to send
- Downstream not risk neutral
- Add covariance between upstream, downstream shocks (iid \rightarrow perfect correlation (which is like a line))
- Renegotiation (apparently straightforward)

Setting

- Two towns $i \in \{u, d\}$ (upstream, downstream).
- Infinite horizon $t = 1, 2, ..., \infty$, discount factor δ .
- In each period, u is endowed with 1 unit of water that it can transfer downstream in return for ρ or keep to produce 1 unit of cassava which can be sold for spot-market price p(s)
- Finite set of states $s_t \in \{1, 2, ..., S\}$, $S \ge 2$ at each date. The state (i.i.d for now) determines the value of the cassava u could sell or d could buy on the spot market.
- Agents can either negotiate a contract (without commitment) at t=0 or move to the spot market.

Assumption: Reneging puts an agent on the spot market forever.

Preferences:

- Upstream is risk averse, and gets utility $u = u(\rho) : [a, b] \to \mathbb{R}$ (differentiable, strictly increasing, strictly concave) from transfer ρ received.
- Downstream is risk-neutral.

States:

- The state s is identified by the spot-market price for the produced good, p(s)
- States are iid such that $a < p(1) < p(S) < b \le 1$
- Probability of state s is π_s , for $\sum_{s=1}^{S} \pi_s = 1$

Because 1 unit of water produces 1 unit of cassava and $b \le 1$, downstream always (weakly) wants water (check)

Expected spot price:

$$p^* := \sum_{s=1}^S \pi_s p(s)$$

Certainty-equivalent spot price:

$$p_* := u^{-1} \left(\sum_{s=1}^S \pi_s u\left(p(s)
ight)
ight)$$

Because utility is concave, $p^*>p_*$

5

Setting: Timing

Timing:

- 1) State *s* is observed by both parties
- 2) Upstream and downstream simultaneously decide whether to honor the contract (upstream transfers water, downstream pays transfer ρ) or renege (and take/pay spot-market prices p(s))

For s_t the state in time t, define

- Contract $\mathcal{P}(\cdot)$ for each t and $\overline{\operatorname{each}}$ history $h_t = (s_1, s_t, \ldots, s_t)$
- The contract defines the transfer $\rho(h_t)$ from downstream to upstream as an infinite sequence $(\rho(h_t))_{t=1}^{\infty}$, for $\rho(h_t) \geq 0$ the transfer paid at date t, after history h_t

Define $U_t(h_t)$ as the expected utility gain of honoring vs. one-time reneging for upstream under contract \mathcal{P} , history h_t , and analogously $V_t(h_t)$ for downstream.

$$egin{aligned} U_t(h_t;\mathcal{P}) &= \\ u\left(
ho(h_t)
ight) - u\left(p(s_t)
ight) + & ext{(SR gain)} \\ \mathbb{E}\left\{\sum_{j=t+1}^{\infty} \delta^{j-t} \left[u\left(
ho(h_j)
ight) - u(p(s_j))\right] \middle| h_t
ight\} & ext{(LR gain)} \end{aligned}$$

If $u(\rho(h_t)) < u(p(s_t))$, upstream has a short-term incentive to renege

$$egin{aligned} V_t(h_t; \mathcal{P}) &= \\ p(s_t) -
ho(h_t) + \quad & ext{(SR incentive)} \\ \mathbb{E}\left\{\sum_{j=t+1}^{\infty} \delta^{j-t} \left[p(s_j) -
ho(s_j)\right] \middle| h_t
ight\} \quad & ext{(LR incentive)} \end{aligned}$$

If $\rho(h_t) > p(s_t)$, downstream has short-term incentive to renege and just buy cassava

The contract is self-enforcing if for all histories h_t the participation constraints hold for both up- and downstream.

$$U_t(h_t) \ge 0 \tag{2}$$

$$V_t(h_t) \ge 0 \tag{3}$$

Define $\Lambda(s_t)$ the set of contracts which satisfy (2) and (3) after history (h_{t-1}, s_t) .

Constrained efficient contracts: Contracts which are self-enforcing and not Pareto dominated by other self-enforcing contracts.

Efficient contract \mathcal{P} : solves

$$\sup_{\mathcal{P} \in \Lambda(s_1)} \left\{ V_1(s_1; \mathcal{P}) | U_1(s_1; \mathcal{P}) \ge \hat{U}_1 \right\} \tag{4}$$

Varying \hat{U}_1 traces out the constrained Pareto frontier.

Proposition

An efficient contract has an interval of payments $[\rho_s, \overline{\rho}_s]$ for each state s. For any history (h_t, s) , the contract wage at t+1 satisfies:

$$\rho(h_t, s) = \begin{cases} \overline{\rho}_s, & \text{if } \rho(h_t) > \rho_s \\ \rho(h_t) & \text{if } \rho(h_t) \in [\underline{\rho}_s, \overline{\rho}_s] \\ \underline{\rho}_s, & \text{if } \rho(h_t) < \underline{\rho}_s \end{cases}$$

For any states k > s, $\rho_k > \rho_s$ and $\varrho_k > \varrho_s$.

Furthermore, $p(s) \in [\underline{\rho}_s, \overline{\rho}_s]$ for all $s \in \{1, 2, \dots, S\}$ with $\underline{\rho}_1 = p(1)$ and $\rho_S = p(S)$

 $\label{eq:Figure 1} Figure \ 1$ Example with 3 states where the intervals do not overlap.

- 1) **History Dependence:** Payments depend on the states (e.g. if $s_{t-1}=1$ and $s_t=2$, payment will be at B, ϱ_2 . If $s_{t-1}=3$ and $s_t=2$, payment will be C, ϱ_2)
- 2) Amnesiac: Once a constraint is hit, there's amnesia and the prior history is forgotten
- 3) **Convergence:** Eventually, ρ lands in a finite ergodic set (in Figure 1, A B C and D)
- 4) Back-loading

Re [.]	ter	en	ces	Ш
10	·Ci	CII	CCS	

Thomas, J. and Worrall, T. (1988). Self-Enforcing Wage Contracts. *The Review of Economic Studies*, 55(4):541–553.