PCB DESIGN WORKSHOP WEDNESDAY 15TH JUNE 2015 SYDNEY UNI MAKER CLUB CALLA KLAFAS

### **TODAY'S TIMELINE**

- Part 1: The Design Process
  - Finding a Design
  - Sourcing Components
- Part 2: Schematic Design
  - Components
  - Placing Components
- Part 3: PCB Layout Design

PART 1 Process

## **SOFTWARE (EDA TOOLS)**

#### **Professional Leading**

- Altium Designer (by Altium)
- OrCAD (by Cadence)

#### Maker Friendly – Free

- Eagle-CAD (by cadsoft)
  - Free with size and layer restrictions
- CircuitMaker (by Altium)
  - Came out in May '15. Derived from Altium. All projects are clouded and made openhardware.









- 1) Research/design/draft a circuit you would like to build
- 2) Source components
- 3) Place components into schematic
- 4) Check your manufacturer's specifications
- 5) Set Design Rules
- 6) Import components into PCB
- 7) Route board
- 8) Run Design Rule Check







# 1. RESEARCH/DESIGN/DRAFT A CIRCUIT YOU WOULD LIKE TO BUILD

#### **Open Source Hardware**

- It has never been more easy to have access to many different design files and tutorials:
  - Adafruit
  - Sparkfun
  - SeeedStudio
  - Pololu
- Today we'll be taking an open source design by Limor Fried (Lady Ada from Adafruit)



### Why?

Because we don't want to use one of these:



Just to get a bit of power to this:



And sometimes your handy Arduino is engaged with another project...







We'll be using this as our reference:



#### Mise en place approach:

- Collect all your component datasheets in one folder. (these are your maps if you get lost!)
- Find out who stocks your component, or otherwise whether there are similar alternatives
   in stock
- Many components come with a few packaging options. You'll need to decide which suite your needs.



#### **Datasheets**

Priceless information (google model numbers)



Paul Horowitz's databook collection

#### Supplier catalogues:

- Element14
- RS Components
- DigiKey
- Mouser

Ask our uni on how to get academic discounts. Student discounts are available as well.

- eBay: affordable Chinese grey market, susceptible to counterfeit chips
- Sometimes Adafruit and Sparkfun have sourced some unique components and products that are exclusive.
- Catalogue reading helps you learn a great skill at interpreting specifications, and filtering out important details

## Which packaging?



### Which packaging?

- What can you solder?
  - Through-hole
  - Surface mount



- How small do you want your circuit?
- How hot will your component get?
  - Certain cases provide thermal relief
- How many of PCBs do you want made?
  - Pick and place machines make SMD faster

#### Online component databases and libraries

- A recent progression
- Most EDA software have a online portal to component databases with live stock information from popular suppliers.
- Seeedstudio have a similar service

# 3. PLACE YOUR COMPONENTS INTO A SCHEMATIC

- 1. Open up a new Project
- 2. Open a new schematic
- 3. Save these files into your desired folder
- 4. Get familiar with you workspace:
- Handy workspace panels:
  - Project
  - Inspector ← very useful
  - List
- 5. Learn some shortcuts so you looks like a LoL or Dota gamer

# 3. PLACE YOUR COMPONENTS INTO A SCHEMATIC

P Place

P, P Place Part

P, W Place Wire

P, N Place Net Label

P, T Place Text

Spacebar Rotate 90 deg while moving object

**X or Y** Flip horizontally, vertically

http://www.altium.com/files/learningguides/gu0104%20shortcut% 20keys.pdf

## **COMPONENTS**

### What are they, actually?

Entry in a database consisting of fields like:

 Designator (Unique Reference)

- Value (e.g. resistance)
- Component Manufacturer
  - Part Number
  - Order Codes
    - Pointers

Schematic Symbol 3D model

Footprint model

PART 3
PPCB Layout

## **UNITS**

## **USA** origins:

- 1 mil (pronounces "thou") = 0.001 inch, = 0.0254mm
- OZ

In Altium or Circuitmaker, press Q to switch between mil and mm.

## **PADS AND VIAS**

PADS VIAS





## LAYERS AND STACKING

| CAD Layer (conductive and nonconductive) | CAD Layer description                          |
|------------------------------------------|------------------------------------------------|
| 1                                        | Top silkscreen/overlay ( nonconductive )       |
| 2                                        | Top soldermask ( nonconductive ) (inverted)    |
| 3                                        | Top paste mask ( nonconductive )               |
| 4                                        | Layer 1 ( conductive )                         |
| 5                                        | Sustrate ( nonconductive )                     |
| 6                                        | Layer 2 ( conductive )                         |
|                                          |                                                |
| n-1                                      | Sustrate ( nonconductive )                     |
| n                                        | Layer n ( conductive )                         |
| n+1                                      | Bottom paste mask ( nonconductive )            |
| n+2                                      | Bottom solder mask ( nonconductive )(inverted) |
| n+3                                      | Bottom silkscreen/overlay ( nonconductive )    |



http://www.pcb.electrosoft-engineering.com/04-articles-custom-system-design-and-pcb/01-printed-circuit-board-concepts/printed-circuit-board-pcb-concepts.html

## **MECHANICAL & KEEP OUT LAYERS**

- These layers are auxillary
- Sometimes mechanial layers can be used to indicate:
  - Outlines
  - Dimensions
  - Sections
  - area of custom components etc.
  - Keep out areas

#### RESEARCH YOUR MANUFACTURER

- Manufacturers will list their limitations on their website.
- It helps to check these and add them to your Design Rules
- What's the minimum trace width
- What's the copper thickness
- What's the minimum silk screen width
- Get to know what values are practical or ridiculous



https://www.adafruit.com/products/1554

#### **TIPS**

- Keep all signal traces the same size
- If using high power thicker traces for lower resistance.
- Try to have top and bottom traces run orthogonal to avoid crosstalk.
- AVOID as many vias expensive and cause inductances
- Auto-route ain't cool
- Typical through-hole header spacing (and breadboards) are
   2.54mm pitch (or 100mil)
- Rooms can be annoying. You can remove these first.
- Avoid right angles when routing (45 degrees!)

#### **HOTKEYS - PCB**

Shift + S Hightlights current layer

S, Y Selects all objects on the current la<u>Y</u>er

P, T Place Interactive RouTing or (Trace)

+ or - While in interactive routing to trace through layers

Shift + Space Different routing angles (stick to 45 deg)

A, ... Align components

V, F View, Fit to window

Ctrl + M Measure

R, P Measure primitives

P, D Place Dimension

Ctrl + Click Find all with the same Net Name

http://techdocs.altium.com/display/ADRR/PCB+Editor+Shortcuts

#### IMPORT FROM SCHEMATIC TO PCB DESIGN

In the schematic window

Design > Update PCB

Select, Validate, Execute (this is where you could leave out rooms)

If you want to add/delete components:

Go back to your schematic, make the changes and Update PCB.

## **GETTING THE RIGHT FORM FACTOR**







#### GETTING THE RIGHT FORM FACTOR

- Create a closed line shape on a spare Mechanical layer
- Select All on the layer (S, Y)
- Then define board shape from selection (D,S,D)
- Ways to setup precise measurements.
- Set the origin (E,O), and calculate precise coordinates
- Use the inspector to write coordinates.
- Measure centre distances between components, Ctrl+M
- Measure smallest distances between components (measure primitives) (R, P)

## **EXPORTING YOUR FILES**

Run Design Rule Check (DRC) to check for any errors:
e.g. Overlapping components, Silk screen overlap with pads,
trace width too smal.

Export Gerber Files

Select which layers to pick,

**Export NC Drill files** 

A text file to tell where to drill holes.

Sometimes manufacturers will accept the original Altium project file, especially if it is a prototyping shared panel service.

## PLACES TO GET YOUR PCB (SHORT REVIEW)

- Breadboard Killer: www.breadboardkiller.com
  - Cheapest. Lead Time 8-12 business days.
- PCB Zone: <u>www.pcbzone.net</u>
  - Fastest. A quick as 1 day fabricaition. Up to 5 working days.
     Boutique in NZ.
- PCB cart: <u>www.pcbcart.com</u>
  - Longest: cost effective for large quantities. Also do assembly run. Quality may be of compromise
- Entech: www.entechelectronics.com.au
  - Best professional quality. Good for commercial production.
     Certified for various production standards. Also do assembly.

## WHAT WE DIDN'T GET TO COVER

- How PCBs are manufactured
- Test points
- Fiducials
- Bypass capacitors
- Power planes
- How to make more than 2-layer PCBs
- Making your own footprints and component libraries
- Making your own parts
- How to prepare your own panel

#### WHAT NEXT?

- If you are an owner Altium, or would like to have a students license (~130AUD), you can save your project and continue learning how to make some of the topics covered previously.
- If you want to make PCBs, and don't mind publishing your circuits open source, download circuitmaker @ circuitmaker.com. The environment is very similar. Some shortcuts may be missing, but all capabilities mentioned are available.p