### **Problem 1**

A 12 V car battery dies not so much because its voltage drops but because chemical reactions increase its internal resistance. A good battery connected with jumpers cables can both start the engine and recharge the dead battery. Consider the automotive circuit below.

- a. How much current could the good battery alone drive through the starter motor?
- b. How much current is the dead battery alone able to drive through the starter cable?
- c. With the jumper cables attached, how much current passes through the starter motor?
- d. With the jumper cables attached, how much current passes through the dead battery, and in which direction?



**Problem 2** Use mesh analysis, find the mesh currents  $i_1$  and  $i_2$  for the circuit below.



### **Problem 3**

Use mesh current analysis, find the voltage v across  $R_4$  in the circuit below. Let  $V_{SI}$ =12V;  $V_{S2}$  =5V;  $R_1$  = 50 $\Omega$ ;  $R_2$  =  $R_3$  = 20 $\Omega$ ;  $R_4$  = 10 $\Omega$ ;  $R_5$  = 15  $\Omega$ .



## Problem 4

Use mesh current analysis, find the currents  $I_1$ ,  $I_2$ , and  $I_3$  in the circuit below. Assume polarity according to  $I_2$ .



### Problem 5

Find the Thevenin equivalent circuit as seen by the 3  $\Omega$  resistor for the circuit in the Figure below.



# Problem 6

Find the Norton equivalent of the circuit to the left of the 2  $\Omega$  resistor in the figure below.

