REAL-TIME OBJECT DETECTION AND SEGMENTATION OF COMMON GROCERY ITEMS

Prepared by Ryan Roi Cayas

The Grocery Dataset

8,449
Images

24Grocery Items

Training Images: 7604 Validation Images: 845

Preprocessing: Duplicate bounding boxes were removed and HD images were resized.

Model Training

Ultralytics was used to train YOLO11 models of varying sizes (nano, small, and medium). The following training approaches were performed:

Training of all parameters

All model parameters were retrained on the grocery dataset.

For models: YOLO11s

Freezing Backbone Layers

The first 11 layer blocks which served as the YOLO backbone were freezed.

For model: YOLO11n

Training the last layer only

The first 23 layer blocks of the YOLO model were freezed.

For models: YOLO11n, YOLO11s, YOLO11m

Training Configuration: Epochs: 100, Patiance: 10, Batch Size: Auto (other config set to Ultralytics default values)

Inference: Gradio was used to build an interface for real-time inference.

EVALUATION RESULTS

- ▲ Higher mAP is desirable.
- Lower Inference Speed is better.

BEST DETECTION MODEL

YOLO11-small

93.24% Validation mAP (50-95)

A100 Inference Speed (ms/img)

YOLO11-small-seg

93.77%

1.47

Validation mAP (50-95) A100 Inference Speed (ms/img)

Remarks:

- Two classes in particular have low mAP (50-95)
 - o Canned tuna: 74.61% (Detection), 76.19% (Segmentation)
 - Soy Sauce: 76.87% (Detection), 77.70% (Segmentation)
- Real-time inference is poor for some items, notably for canned products.