Propositional Logic. Week 4 - Exercise Sheet

- 1. Give a formal proof of $p \wedge r$ from $(q \wedge r) \wedge q$ and $p \wedge p$.
- 2. Show the validity of the following sequents:
 - (a) $p \wedge q, r \vdash p \wedge (r \vee r');$
 - (b) $p \rightarrow (q \rightarrow r) \vdash p \land q \rightarrow r$;
 - (c) $p \land \neg r \rightarrow q, \neg q, p \vdash r;;$
- 3. Finish the game at https://profs.info.uaic.ro/~stefan.ciobaca/lnd.html. Do not cheat. It is considered cheating if you change the JavaScript source code, if someone else solves a level for you or if you prove the derived rules using the derived rules themselves.
- 4. Prove that the following inference rules are derivable:
 - (a) $\neg \neg i$;
 - (b) LEM (law of excluded middle): $\Gamma \vdash \varphi \lor \neg \varphi$;
 - (c) PBC (proof by contradiction): $PBC \frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi;}$
 - (d) MT (modus tollens): MT $\frac{\Gamma \vdash \varphi \to \varphi' \qquad \Gamma \vdash \neg \varphi'}{\Gamma \vdash \neg \varphi}.$
- 5. Prove the soundness theorem for natural deduction (by induction on the number of sequences in the formal proof).
- 6. Show that the rule $\neg \neg e$ is derivable using the LEM (i.e. you may use LEM in the derivation, but not $\neg \neg e$).
- 7. Prove, using the soundness and completeness theorems, that $\varphi_1 \dashv \vdash \varphi_2$ if and only if $\varphi_1 \equiv \varphi_2$.