Unit 11 - Week 9

Course outline

course work?

Week 0

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

DQN and Fitted Q-Iteration

O Policy Gradient Approach

O REINFORCE (cont'd)

Ouiz: Assignment 9

DOWNLOAD VIDEOS

Assignment Solutions

False

NPTEL Resources

Reinforcement Learning:
 Week 9 Feedback form

Approximation

Week 10

Week 11

Week 12

Actor Critic and REINFORCE

O Policy Gradient with Function

How does an NPTEL online

NPTEL » Reinforcement Learning

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.	Due on 2020-04-01, 23:5	9 IST.
Statement: DQN is implemented with current and target network. Reason: Using target network helps in avoiding chasing a non-stationary target		1 poir
Both Assertion and Reason are true, and Reason is correct explanation for Assertion Both Assertion and Reason are true, but Reason is not correct explanation for assertion		
Assertion is true, Reason is false Both Assertion and Reason are false		
No, the answer is incorrect. Score: 0		
Accepted Answers: Both Assertion and Reason are true, and Reason is correct explanation for Assertion		
2) Which of the following is true about DQN?		1 poir
It may converge to non-optimal policy It is an off-policy technique		
It can be efficiently used for very large state spaces		
It can be efficiently used for continuous action spaces No, the answer is incorrect.		
Score: 0 Accepted Answers:		
t may converge to non-optimal policy		
t can be efficiently used for very large state spaces		
Policy gradient methods can be used for continuous action spaces True		1 poir
False		
No, the answer is incorrect. Score: 0		
Accepted Answers: True		
Assertion: Actor-critic updates have lesser variance than REINFORCE updates		1 poi
Reason: Actor-critic methods use TD target instead of G_t Both Assertion and Reason are true, and Reason is correct explanation for Assertion		
Both Assertion and Reason are true, but Reason is not correct explanation for assertion		
Assertion is true, Reason is false Both Assertion and Reason are false		
No, the answer is incorrect. Score: 0		
Accepted Answers: Both Assertion and Reason are true, and Reason is correct explanation for Assertion		
5) Policy Gradient Theorem does not hold for average reward formulation		1 poi
○ True		
O False No, the answer is incorrect.		
Score: 0 Accepted Answers:		
False		
Why is an experience replay buffer used instead of direct updates to network in DQN?		1 poi
Random sampling from experience replay buffer breaks correlations among transitions If not, the off-policy nature of Q-Learning is lost		
It guarantees convergence to the optimal policy None of the above		
No, the answer is incorrect.		
Score: 0 Accepted Answers: Random sampling from experience replay buffer breaks correlations among transitions		
7) Which of the following is the correct definition of average reward formulation?		1 poi
		i pon
$\rho(\pi) = \lim_{N \to \infty} \mathbb{E}[r_1 + r_2 + \ldots + r_N]$		
$\rho(\pi) = \lim_{N \to \infty} \mathbb{E}[r_1 + r_2 + \ldots + r_N \pi]$		
$\rho(\pi) = \lim_{N \to \infty} \frac{1}{N} \mathbb{E}[r_1 + r_2 + \dots + r_N]$		
$\rho(\pi) = \lim_{N \to \infty} \frac{1}{N} \mathbb{E}[r_1 + r_2 + \dots + r_N \pi]$		
No, the answer is incorrect. Score: 0		
Accepted Answers: $\rho(\pi) = \lim_{N \to \infty} \frac{1}{N} \mathbb{E}[r_1 + r_2 + \ldots + r_N \pi]$		
3) Choose the correct statement for Policy Gradient Theorem for average reward formulation:		1 poi
		,
$\frac{\partial \rho(\pi)}{\partial \theta} = \sum_{s} d^{\pi}(s) \sum_{a} \frac{\partial \pi(s, a)}{\partial \theta}$		
$\frac{\partial \rho(\pi)}{\partial \theta} = \sum_{s} v^{\pi}(s) \sum_{a} \frac{\partial \pi(s, a)}{\partial \theta} q^{\pi}(s, a)$		
$\frac{\partial \rho(\pi)}{\partial \theta} = \sum_{s} d^{\pi}(s) \sum_{a} \frac{\partial \pi(s,a)}{\partial \theta} q^{\pi}(s,a)$ None of the above		
No, the answer is incorrect. Score: 0		
Accepted Answers: $\frac{\partial \rho(\pi)}{\partial \theta} = \sum_s d^{\pi}(s) \sum_a \frac{\partial \pi(s,a)}{\partial \theta} q^{\pi}(s,a)$		
In Actor-critic algorithm, suppose that Q^{π} is approximated and the approximation is compatible with the parameter function approximators, which of the following can be concluded?	eterization of the actor. Assuming	1 poi
Convergence to globally optimal policy		
Convergence to locally optimal policy Cannot comment on the convergence		
Opes not converge at all		
No, the answer is incorrect. Score: 0 Accepted Answers:		
Accepted Answers: Convergence to locally optimal policy		
10) Using similar parameterizations to represent policies, Monte Carlo policy gradient methods would converge to a for critic method in which approximation in critic is compatible with actor parameterization?	locally optimal policy faster than	1 poir
True True		
False		
No, the answer is incorrect.		