ECE2-Colle 19

16/03/22

1 Fonctions numériques de deux variables réelles

Généralités : fonctions numériques de deux variables, exemple des fonctions polynomiales. Applications partielles. Représentation graphique, ligne de niveau.

À partir de maintenant, toutes les fonctions seront définies sur \mathbb{R}^2 .

Continuité : distance euclidienne, propriétés de la distance euclidienne. Continuité en un point, continuité sur \mathbb{R}^2 , opérations sur les fonctions continues, composition avec une fonction continue d'une variable réelle. Exemple de référence : les fonctions polynomiales de deux variables sont continues sur \mathbb{R}^2 .

Fonction de classe C^1 sur \mathbb{R}^2 : dérivées partielles d'ordre 1 en un point, fonctions dérivées partielles d'ordre 1. Fonction de classe C^1 sur \mathbb{R}^2 , opérations sur les fonctions de classe C^1 sur \mathbb{R}^2 , composition avec une fonction de classe C^1 d'une variable réelle. Exemple de référence : les fonctions polynomiales de deux variables sont de classe C^1 sur \mathbb{R}^2 . Classe C^1 sur \mathbb{R}^2 implique continue sur \mathbb{R}^2 . Gradient, DL d'ordre 1 au voisinage d'un point.

Fonction de classe C^2 sur \mathbb{R}^2 : dérivées partielles d'ordre 2 en un point, fonctions dérivées partielles d'ordre 2. Fonction de classe C^2 sur \mathbb{R}^2 , opérations sur les fonctions de classe C^2 sur \mathbb{R}^2 , composition avec une fonction de classe C^2 d'une variable réelle. Exemple de référence : les fonctions polynomiales de deux variables sont de classe C^2 sur \mathbb{R}^2 . Classe C^2 sur \mathbb{R}^2 implique classe C^1 sur \mathbb{R}^2 . Lemme de Schwarz, Hessienne, DL d'ordre 2 au voisinage d'un point.

Topologie de \mathbb{R}^2 : boules ouvertes/fermées, ensembles ouverts/fermés. Exemples d'ensembles ouverts : boules ouvertes, \mathbb{R}^2 , \emptyset , $[a,b] \times [c,d]$. Ensemble borné. Exemple d'ensembles bornés : les boules sont bornées.

La détermination de la nature topologique d'un ensemble n'est pas un objectif du programme.

Fonctions définies sur une partie de \mathbb{R}^2 : fonction continue sur une partie de \mathbb{R}^2 ; fonction de classe C^1/C^2 sur un ouvert de \mathbb{R}^2 . Extension des résultats des parties précédentes à ces fonctions.

Extrema : minimum/maximum local/global. Une fonction continue sur une partie fermée et bornée admet un maximum et un minimum sur cette partie. Condition nécessaire d'existence d'un extremum sur un ouvert : le gradient s'annule. Définition de point critique. Condition suffisante d'existence d'un extremum en un point critique sur un ouvert : étude des valeurs propres de la hessienne. Définition de point selle.

2 Méthodes à maîtriser

- 1. Savoir justifier la continuité, le caractère C^1 ou C^2 d'une fonction de deux variables définie sur \mathbb{R}^2 .
- 2. Savoir calculer les dérivées partielles d'ordre 1, le gradient d'une fonction de deux variables.
- 3. Savoir calculer les dérivées partielles d'ordre 2, la hessienne d'une fonction de deux variables.
- 4. Savoir déterminer les points critiques.
- 5. Savoir déterminer la nature des points critiques (minimum/maximum local, point selle, indéterminé) en étudiant le spectre de la matrice hessienne.

3 Questions de cours

- Définitions : gradient, hessienne, minimum/maximum local ou global.
- Propositions : théorème de Schwarz, condition nécessaire d'existence d'un extremum, condition suffisante d'existence d'un extremum.