Course code	ENGINEERING MECHANICS	L T P C			
		2 1 0 3			
Pre-requisite	NIL	Syllabus version			

Course Objectives:

- 1. To enable students to apply fundamental laws and basic concepts of rigid body mechanics to solve problems of bodies under rest or in motion.
- 2. To enable the students to apply conditions of static equilibrium to analyse physical systems.
- 3. To compute the properties of areas and bodies.

Course Outcome:

Upon successful completion of the course the students will be able to

- 1. Compute the resultant and analyse equilibrium (without and with friction) of system of forces acting on particles and rigid bodies in plane and space.
- 2. Predict the support-reactions and the internal forces of the members of trusses and frames.
- 3. Apply transfer theorems to determine properties of various sections.
- 4. Calculate motion parameters of particles and rigid bodies.

Module:1 | Statics of Particles

5 hours

Fundamental concepts and principles - Resolution of a force -Resultant of forces in a plane-Equilibrium of a particle in a plane; Addition of concurrent forces in space- Equilibrium of a particle in space.

Module:2 Statics of Rigid Bodies

7 hours

Equivalent systems of forces- Principle of Transmissibility - Moment of a force about a point and an axis- Couples and force-couple systems- Equilibrium of rigid bodies in two and three dimensions- Types of beams, supports and reactions; Principle of virtual work – System of connected rigid bodies.

Module:3 | Analysis of Structures

5 hours

Analysis of plane trusses - Method of joints and method of sections- Frames

Module:4 Friction

5 hours

The laws of dry friction – Coefficients of Friction- Angles of Friction- Types of Friction Problems - Wedges and Ladder friction- Belt friction.

Module:5 | Properties of Surfaces and Solids

7 hours

First moments of areas and lines- Centroids of composite areas and lines- - Theorems of Pappus-Guldinus- Second moment of area- Parallel axis theorem- Rectangular and Polar Moments of inertia of composite areas- Radius of Gyration- Product of Inertia- Principal Axes and Principal Moments of Inertia- Mass moments of inertia of thin plates.

Module:6 Dynamics of Particles 8 hours

Kinematics of Particles-Displacement, Velocity and Acceleration – Rectilinear motion – Curvilinear motion – Tangential and Normal components – Radial and Transverse components.

Kinetics of Particles- Newton's Second Law- Energy and Momentum Methods-Principle of Work and Energy-Principle of Impulse and Momentum- Direct Central Impact

Module:7 Dynamics of Rigid Bodies 8 hours

Kinematics of rigid bodies- Translation and fixed-axis rotation- General plane motion: velocity-Instantaneous centre of rotation- General plane motion: acceleration.

Kinetics of rigid bodies- Equations of motion -Angular momentum- Plane motion of a rigid body-Principle of work and energy for rigid bodies- Principle of impulse and momentum for rigid bodies.

	Total Lecture hours:	45 hours							
Tex	xt Book(s)								
1.	Beer, Johnston, Cornwell, David Mazurek, and Sanghi, Vector Mechanics for Engineers								
	Statics and Dynamics, 12 th Edition, McGraw-Companies, Inc., New York, 2019.								
Ref	ference Books								
1.	Russell C Hibbeler, Engineering Mechanics: Statics and Dynamics (14 th Edition), Pearson								
	Education Inc., Prentice Hall, 2016.								
2.	Meriam J.L and Kraige L.G., Engineering Mechanics, Volume I - Statics, Volume II								
	Dynamics, 9 th Edition, John Wiley & Sons, New York, 2018.								
Mo	de of Evaluation: CAT, Assignment, Quiz and FAT								
Rec	commended by Board of Studies								
Ap	proved by Academic Council Date								

Programme Articulation Matrix

	POs										PSOs				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Engineering															
Mechanics															

Syllabus short form

Engineering Mechanics

3 Credits (2-1-0)

Resultant of forces in a plane and space-Equilibrium of a particle; Moment of a force, force-couple systems, Equilibrium of rigid bodies; Virtual work; Analysis of plane trusses; Dry friction- wedges, ladder and belt friction; Centroids and second moment of composite areas; Dynamics of particles and rigid bodies.
