Informe del Prototipo V1.0: Sistema de Alarma IoT con Detección de Movimiento y Registro de Eventos

Fecha de Elaboración: 15 de octubre de 2025

1. Síntesis del Prototipo

La versión inicial de este prototipo de Alarma IoT presenta un sistema funcional cuyo principio de operación se fundamenta en la detección de movimiento a través de un sensor Infrarrojo Pasivo (PIR). El sistema ha sido diseñado para identificar posibles intrusiones, implementando una lógica de confirmación temporal para mitigar la incidencia de falsos positivos y activando subsecuentemente una alerta audiovisual. La arquitectura del software se basa en un modelo de ejecución no bloqueante, y cuenta con conectividad Wi-Fi para la sincronización de la hora a través de NTP (Network Time Protocol), permitiendo el registro de eventos con marcas de tiempo precisas (timestamp), garantizando así su escalabilidad futura para la integración con bases de datos y dashboards.

2. Componentes de Hardware Empleados

- Unidad de Microcontrolador: ESP32 DevKit
- Sensor Primario: Sensor de Movimiento Infrarrojo Pasivo PIR HC-SR-501
- Actuadores de Alerta:
 - o Diodo Emisor de Luz (LED) de color rojo para indicación de alarma confirmada.
 - Zumbador (Buzzer) pasivo con tres terminales (+, -, S).
- Componentes Pasivos:
 - Una resistencia de 220Ω para la limitación de corriente del LED.
- Infraestructura de Prototipado:
 - o Dos placas de pruebas (protoboards) de diseño modular.
 - o Cables de conexión Jumper.

3. Esquema de Interconexiones (Pinout)

Con el fin de asegurar la estabilidad operativa y prevenir conflictos de hardware, se ha realizado una selección estratégica de pines GPIO que carecen de funciones especiales conflictivas.

Sensor PIR (HC-SR-501)

- VCC → VIN del ESP32 (Alimentación de 5V)
- GND → GND del ESP32 (Referencia a tierra)
- OUT → GPIO 23 (Terminal de salida de señal de entrada)

LED Rojo (Indicador de Alarma)

- **Terminal Ánodo (+)** \rightarrow Resistencia 220 Ω \rightarrow **GPIO 22** (Terminal de salida de control)
- **Terminal Cátodo (-)** → **GND** del ESP32 (Referencia a tierra)

Zumbador Pasivo

- **Terminal +** → **VIN** del ESP32 (Alimentación de 5V)
- **Terminal -** → **GND** del ESP32 (Referencia a tierra)
- **Terminal S** → **GPIO 13** (Terminal de salida para generación de tono)

4. Calibración y Parametrización del Sensor

La fiabilidad operativa del sistema está intrínsecamente ligada a la calibración precisa de los parámetros físicos del sensor PIR.

- Modo de Disparo (Jumper): Se ha configurado en la posición 'H' (Modo Repetible)
 para mantener la señal activa mientras persista el movimiento.
- Sensibilidad (Sx): El nivel de sensibilidad ha sido ajustado a un valor medio-bajo, calibrado específicamente para cubrir el área de prueba designada sin incurrir en activaciones espurias.
- Tiempo de Retardo (Tx): Este parámetro se ha configurado a su valor mínimo, delegando la gestión de la temporización de la señal al software del microcontrolador para obtener un control más preciso y adaptable.

5. Lógica de Software y Parámetros Fundamentales

El software fue desarrollado con un enfoque en la robustez, la eficiencia y la conectividad.

- Conectividad y Sincronización Horaria: Al iniciar, el sistema se conecta a una red Wi-Fi
 y sincroniza su reloj interno con un servidor NTP. Todos los eventos de detección son
 registrados en el monitor serie con una marca de tiempo (timestamp) en formato
 YYYY-MM-DD HH:MM:SS.
- Bucle de Ejecución No Bloqueante: Se utiliza la función millis() para una gestión del tiempo eficiente que previene el bloqueo del procesador.
- Frecuencia de Muestreo (checkInterval): Establecido en 100 ms, permitiendo que el sistema verifique el sensor diez veces por segundo.
- Lógica de Confirmación de Detección (confirmationDelay): Se ha instituido un retardo de confirmación de 750 ms para validar la detección continua de movimiento antes de activar la alarma, constituyendo la principal estrategia para la supresión de falsos positivos.