Data Link Layer: CSMA/CD

Kameswari Chebrolu

Recap

listen before talk

- We covered the ideas behind CSMA (Carrier Sense Multiple Access) class of protocols
- Ethernet MAC: 1-persistent CSMA/CD

- Applicable for Bus or Star topology in shared mode

Ethernet MAC

- CSMA/CD: Carrier Sense Multiple Access (1-persistent) with Collision Detection
 - 'Listen before talk'
 - Simultaneous talking, stop talking → reduces wastage of resource
- Following explanation applicable to 10Mbps Ethernet

Collision Detection

- Cases under which collision occurs?
 - Two stations waiting for channel to become idle
 - Two stations attempting transmission at same time on an idle channel
 - Two stations attempting transmission at slightly different times on an idle channel
 - Effect of propagation delay

t = time taken by signal to propagate distance x

Collision Detection

- Collision detection done by hardware
- Propagation delay affects efficiency
 - Longer the propagation delay, higher chances of collision
- . Worst case delay of detecting collision? Land L
 - One RTT

Collision Detection

- On detecting collision send a jam<u>ming signal of</u> 32 bits
- Why jamming signal?
 - Runt Frame is 96 bits (64 bits preamble + 32 jamming)
 - Jamming extends the frame to allow collision detection

Frame Size

- Minimum frame size is 64 bytes (512 bits)

 46 bytes of payload (18 byte header)
- Why this restriction?
 - A host must transmit for one RTT to detect all collisions
 - This RTT for 2500m long cable with 4 repeaters is about 51.2us (10Mbps -> 512 bits)
 - Maximum number of hosts: 1024 in a collision

CSMA/CD

- Adaptor has a frame to send:
 - 1. If channel idle (for <u>96 bit time</u>), start transmission. If busy, wait until channel idle (+96 bits time) and then transmit.
 - 2. If no collision detected, done
 - 3. If collision detected, stop transmission, send jamming signal. Enter exponential backoff (For 10Mbps, bit time is 0.1us)

Exponential Backoff

- When transmitting a frame after nth collision
 - Wait for K*512 bit times and return to step 1
 - K chosen at random from $\{0,1,2,...,2^{m}-1\}$ m = min (n,10)
 - 1st collision: choose K from {0,1} 51.2 PS
 - 2nd collision: choose K from $\{0,1,2,3\}$
 - After 10th collisions, choose K from {0,1,2,3,4,...,1023}
 - Maximum number of transmissions of a frame: 16 (15 retransmissions)
 - Size of k grows exponentially after each collision

Exponential Backoff

- Why exponential backoff?
- low, small value of K / high > 10 model K= {0,19

- Adapts to current load
- Not very fair (Capture effect)
- Why 512 bit time?

 B K = 1

 B 10 51.2 PS
 - Ensures that if a node chose a lower value of K than any other node, it can transmit without collision

Efficiency

- Long run fraction of 'useful' time on the channel
 - Large number of nodes with large number of frames to transmit
- Efficiency = $1/[1+5(T_{prop}/T_{tx})]$ max dist \angle few hundred mt. fevre # personent \angle 200 Holds
 - T_{prop} max prop time between 2 nodes in LAN $^{\text{EK} > 85^{\circ}/.}$
 - T_{tx} = time to transmit a frame $T_{tx} \rightarrow 0$, ? $C \rightarrow 1$
 - As T_{prop} approaches 0 or T_{tx} becomes large, efficiency approaches 1

Summary

- CSMA family of protocols improve upon Aloha
 - Persistent and non-persistent tradeoffs
- Ethernet MAC adds another feature 'CD' to improve performance further
 - Requires additional functionality and adds some restrictions (length and number of hosts)
 - Overall performance is quite good
- Ahead: Ethernet Switching