Préparation TP 5

Pilotage, en mode I2C d'un module moteur à courant continu

a) Etude du bus I2C

Question 1 : Comment appelle-t-on le périphérique qui génère le signal d'horloge SCL ?

→ Le périphérique qui génère le signal d'horloge est appelé maître.

Question 2 : Quelle est la structure de la trame I2C (Les éléments qui constituent la trame) ? Expliquez, dans un tableau récapitulatif, le nom, la taille en bits et la signification de chaque élément de cette trame.

→ Une trame I2C débute par une condition de départ (broche de données SDA à 0 puis broche d'horloge SCL à 0) et se termine par une condition de fin (broche d'horloge SCL à 1 puis broche de données SDA à 1). Entre ces conditions, on envoie d'abord l'adresse de l'esclave sur 7 bits et le mode lecture ou écriture sur 1 bit suivis d'un bit d'accusé de réception. On envoie ensuite les bits de données par tranche de 8 bits suivis d'un bit d'accusé de réception tant qu'on a des données à envoyer.

Nom	Signification	Taille	
Start	Condition de départ de 1 bit l'envoi de la trame		
Adresse	Adresse de l'esclave à qui envoyer	7 bits	
R/W	Mode lecture ou écriture	1 bit	
ACK	Accusé de réception	1 bit	
Data	Données	8 bits	
ACK	Accusé de réception 1 bit		
Stop	Condition de fin de l'envoi de la trame	1 bit	

Question 3 : Comment un périphérique peut-il communiquer avec un autre en lecture comme en écriture (Expliquez la différence entre lecture et écriture) ?

→ Un périphérique peut communiquer avec un autre en lecture ou en écriture en modifiant la valeur du bit R/W. Le mode lecture demande à l'esclave des données tandis que le mode écriture permet d'envoyer à l'esclave des données.

Question 4 : Dessinez les chronogrammes I2C (SCL et SDA) pour la transmission en écriture de l'octet \$27 à l'adresse \$B0 (On supposera la présence du ACK)

 \rightarrow On envoie les bits de poids fort en premier, ce qui donne : Start 1011 0001 ACK 0010 0111 ACK Stop

Question 5 : D'après le schéma électrique ci-dessous représentant un exemple de mise en œuvre du bus I2C. Quel est le rôle joué par les résistances de « pull-up » connectées sur SDA et SCL ?

→ Les résistances pull-up permettent de maintenir à l'état haut les broches SDA et SCL au repos.

b) Interface USB/I2C

Question 6 : D'après la documentation, quelle serait la trame permettant de lire tous les registres du contrôleur MD22 ? Détaillez tous les champs de la trame.

→ La trame serait :

Trame	0x55	0xB1	0x00	0x08
Description	Commande I2C_AD1 pour les périphériques avec adresse d'un octet	7 bits d'adresse de l'esclave et 1 bit de lecture (lecture = 1)	Commence au registre 0	Nombre d'octets à lire. Il y a 8 registres, soit 8 octets

c) Contrôleur MD22

Question 7 : Quel est le rôle d'un pont en H (H bridge) appliquée à la commande de moteur ? (Explications avec un graphique)

→ Avec un pont en H, on peut inverser le sens du courant dans le circuit en pilotant les interrupteurs S1 et S3 d'une part et S2 et S4 d'autre part :

Question 8 : Quels sont les registres internes du MD22 et quels sont leurs rôles respectifs ? (Tableau récapitulatif)

→ Le module MD22 a 8 registres internes de contrôle :

Adresse	Nom	Valeurs	Description
\$0	Mode	0 ou 1	Mode de fonctionnement
\$1	Vitesse 1	Si mode à 0 : Valeurs de 0 à 255. 128 → Arrêt 0 → Vitesse max inversée 255 → Vitesse max Si mode à 1 : 0 → Arrêt -128 → Vitesse max	Vitesse du moteur gauche

		inversée 127 → Vitesse max	
\$2	Vitesse 2	ldem	Vitesse du moteur droit
\$3	Accélération	0 à 255	Période d'accélération des moteurs
\$4	Inutilisé	/	/
\$5	Inutilisé	/	/
\$6	Inutilisé	/	/
\$7	Révision du logiciel	/	Utilisé par le logiciel

Question 9 : Comment peut-on modifier l'adresse I2C du module MD22 ? Quel paramétrage permet-il de configurer l'adresse 0xB0 ?

[→] On peut modifier l'adresse I2C du module MD22 sur 0xB0 en changeant la position des 4 commutateurs de mode à 1 (activé).