```
HW 3
```

1) Use that lim 1/2=0. + pEN to show that $\lim_{n \to \infty} \frac{1}{n} = 0 \quad \forall \quad d > 0$

Help. Using $a^r \cdot a^s = a^{r+s} + a > 0$, $r, s \in \mathbb{R}$ show that $t \mapsto at$ is an increasing function when a >1.

2) Suppose lin Xn = linyn=l. Let "Zn= max (kn, yn) and Wy= min (xn, yn) Show that linzy= l= lim wn

3) Suppose 2000 4 n and lim Xn=1. YKEN show that lim Kn /K = 1.

Help. Let th= xn/K. Then xn-1= th-1 $= (t_n-1)(t_n^{k-1}+t_n^{k-2}+\cdots+t_n^2+t_n+1)$

For all large n, xn is close to 1 and

 $\frac{\chi_{n-1}}{\sum_{i=0}^{n-1}} = t_{n-1}$ is clope to zero.etc]

4) If xn>0 + n and xn -> a flun + >0

shows that lim xn = qt.

L Hint. Use (2)1(3).

5) Suppose a >0. If xn>0 In and limxn=0 then show that lima in = a = 1.

[Help. We know lim a /n = 1. Also use that ti-> at

is increasing if a>1 and decreasing Mermise. 6) (i) Is a ER show that there is a segnere of xny of rational no.s with limxn=a. (ii) If S S R is bounded above then show that there is a sequence of elements $\{x_n\}$ of S with $\lim x_n = \sup S$. 7) 1) Let $\chi_{j=1}$ and $\chi_{n+1} = \frac{\eta}{n+1} \chi_n^2 + \chi_n > 1$. Show that lim 1/n=0 ii) Let $y_{j=1}$, $y_{n+1} = \frac{1}{3}(y_{n+1}) + h$ Show that limyn exists 8. Let {xin} be any sequence of real numbers Show that there is a subsequence { Ymk3 with him Ymk = l in HE>0 the set gn/ 1xn-l/< et is infinite. 9. Solve the problems and exercises mentioned in class. Complete the proffs of the theorems whole proof & were left as exercises. 10. Show that (i) lim (Jhti - Vn) = 0 (ii) $\lim_{n \to \infty} \frac{\eta_n^n}{\eta_n^n} = 0$ (iii) lim nR = 0 Ha>1, KER [Help. Let $t_n = \frac{\eta K}{a^n}$. Then $\frac{t_n}{t_{n+1}} = a(\frac{n}{n+1})^K$ $\Rightarrow t_{n+1} = t_n \cdot \frac{1}{a} \cdot (H_n)^{K}$ By (4) $\lim_{n \to \infty} (H_n)^{K} = 1$. Since a > 1 for all

large à tn+1 ≤ E tn for some E,
O<ε<1. Then th+2 ≤ εth
tn+K ≤ EK tn efe.
(iv) If $x_n = 1 + a + \frac{a^2}{2} + \dots + \frac{a^n}{n!} (a>0)$
then show that limix n expists
11. § xnz is called a Candry sequence if $\forall \Sigma > 0$ IN med that $ X_m - X_n < \Sigma + m > n > N$.
(i) Show that a Cauchy sequence is bounded. [Think. Xm-xn < 1 for all large min]
(ii) Show that a Candy sequence is convergent.
convergent.
[Hint. Apply Bolzano. Weierstrass thm]
[Hint. Apply Bolzano. Weierstrass thm] (ii) Show that convergent sequences are
Carchy. [Hint. 4E70 IN mich that
Canchy. [thing. HETO IN much that Xn-L <e 2="" hnyn="" l="lim" th="" where="" xn.]<=""></e>