BUSCA EM PROFUNDIDADE E BUSCA EM LARGURA DCE529 - Algoritmos e Estruturas de Dados III

Atualizado em: 26 de março de 2024

Iago Carvalho

Departamento de Ciência da Computação

BUSCA EM GRAFOS

Como vimos na última aula, grafos são estruturas muito úteis em computação

- Representar um conjunto de elementos
- Representar as conexões ou relacionamentos entre estes elementos

Por diversas vezes, estamos interessados em inferir algo sobre os dados armazenados em um grafo

A coisa mais simples que podemos fazer é uma busca!

- O Saber se existe um caminho entre dois vértices quaisquer
- O Descobrir se o grafo é conexo ou não

BUSCA EM PROFUNDIDADE

É um algoritmo para se caminhar em grafos

A estratégia é buscar o mais *profundo* no grafo sempre que possível

As arestas são exploradas a partir do vértice mais recentemente descoberto

BUSCA EM PROFUNDIDADE

Quando todas as arestas adjacentes a um vértice v já tiverem sido exploradas, o algoritmo anda para trás

 \bigcirc Tenta explorar outros vértices adjacentes ao vértice pai de v

Algoritmo com diversas aplicações

- Ordenação topológica
- Componentes conectados
- Verificação de ciclos

BUSCA EM PROFUNDIDADE

Para acompanhar o algoritmo, utilizam-se vértices de diferentes cores

O Branco, cinza e preto

Inicialmente, todos os vértices são brancos

- Quando eles são descobertos, são pintados de cinza
- O QUando eles são fechados, são pintados de preto

Também utilizamos marcadores de tempo para denotar o tempo de abertura e fechamento dos vértices

PSEUDOCÓDIGO

DFS(G)

- 1 para cada vértice $u \leftarrow V[G]$
- $2 \quad cor[u] \leftarrow BRANCO$
- 3 tempo ← 0
- 4 para cada vértice $u \in V[G]$
- 5 $se\ cor[u] = BRANCO$
- 6 DFS-VISIT(u)

DFS-VISIT(u)

- $1 cor[u] \leftarrow CINZA$
- $2 tempo \leftarrow tempo + 1$
- $3 \ d[u] \leftarrow tempo$
- 4 para cada vértice $v \in Adj(u)$
- $5 \quad se\ cor[v] = BRANCO$
- 6 DFS VISIT(v)
- $7 cor[u] \leftarrow PRETO$
- $8 \ f[u] \leftarrow tempo \leftarrow (tempo + 1)$

COMPLEXIDADE

A função DFS tem complexidade $\mathcal{O}(|V|)$

Toda chamada de DFS-VISIT realiza um máximo de adj[v] operações

$$\bigcirc \sum_{v \in V} adj[v] = \Theta(|E|)$$

A complexidade final do algoritmo é de $\mathcal{O}(|V| + |E|)$

BUSCA EM LARGURA

Ideia contrária a busca em profundidade

 Aqui tentamos explorar todos os vértices que estão a uma mesma profundidade de uma só vez

Não aprofunda em um único caminho

- Ao invés disso, faz uma busca ampla ou larga
- Expande a fronteira de busca de maneira uniforme a partir de um vértice raiz

BUSCA EM LARGURA

Algoritmo base para outros

- Algoritmo de Prim para Árvore Geradora Mínima
- O Algoritmo de Dijkstra para Caminho Mínimo

No fim, ele produz uma árvore de níveis

BUSCA EM LARGURA

Utiliza os mesmos conceitos de cores que a busca em profundidade

Vértices brancos, cinzas e pretos

Também utiliza uma fila Q, uma medida de nível d e um vetor de antecessores π

- Fila *Q* armazena os vértices a serem visitados
- O Medida de nível d guarda a distância do vértice até a raiz
- \bigcirc Vetor de antecessores π guarda o vértice pai de outro vértice

PSEUDOCÓDIGO

BFS(G,s)		
1 para cada vértice $u \leftarrow V[G] - \{s\}$	10 ε	enquanto ! $vazia(Q)$
$2 cor[u] \leftarrow BRANCO$	11	$u \leftarrow DESENFILEIRA(Q)$
$3 d[u] \leftarrow \infty$	12	$para\ cada\ v \leftarrow Adj[u]$
$4 \qquad \pi[u] \leftarrow NULL$	13	$se\ cor[v] = BRANCO$
$5 cor[s] \leftarrow CINZA$	14	$cor[v] \leftarrow CINZA$
$6 d[s] \leftarrow 0$	15	d[v] = d[u] + 1
$7 \pi[s] \leftarrow NULL$	16	$\pi[v] \leftarrow u$
$8 \ Q \leftarrow novaFila()$	17	ENFILEIRA(Q, v)
9 $ENFILEIRA(Q,s)$	18	$cor[u] \leftarrow PRETO$

Fila Q	r	t	x
Nível	ı	2	2

Fila Q	r	t	x
Nível	Ι	2	2

Fila Q	t	x	٧
Nível	2	2	2

COMPLEXIDADE

A complexidade da busca em largura é a mesma do algoritmo de busca em profundidade

$$\bigcirc$$
 $\mathcal{O}(|V| + |E|)$

PROPRIEDADES

Ambos os algoritmos funcionam bem em grafos direcionados e não direcionados

Entretanto, não consideram o peso das arestas (ou dos arcos)

A complexidade dos algoritmos depende da estrutura de dados utilizada para representar o grafo

 A complexidade apresentada é obtida utilizando uma lista de adjacência

Existe uma versão iterativa e uma recursiva para o algoritmo de busca em profundidade