Отчет по лабараторной работе №4

Дисциплина:архитектура компьютера

Никуленков Степан Сергеевич

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабараторной работы 4.1 Создание программы Hello world! 4.2 Работа с транслятором NASM 4.3 Работа с расширенным синтаксисом командной строки NASM 4.4 Работа с компоновщиком LD 4.5 Запуск исполняемого файла	10 10 10 11 11 12
5	Выполнение заданий для самостоятельной работы.	13
6	Выводы	15
7	Список литературы	16

Список иллюстраций

4.1	Создание рабочего каталога	10
4.2	Создание файла hello.asm	10
4.3	Проверка правильности выполненных команд	11
4.4	Проверка	11
4.5	Проверка правильности выполненныйх команд	12
4.6	Запуск файла	12
5.1	Создание копии lab4.asm	13
5.2	Редактирование файла	13
5.3	Создание объектного файла	14
5.4	Проверка	14
5.5	Копирую lab4.asm	14
5.6	Копирую hello.asm	14

Список таблиц

1 Цель работы

Цель данной лабораторной работы - освоить процедуры компиляции и сборки программ, написанных на ассемблере NASM.

2 Задание

- 1. Создание программы Hello world!
- 2. Работа с транслятором NASM
- 3. Работа с расширенным синтаксисом командной строки NASM
- 4. Работа с компоновщиком LD
- 5. Запуск исполняемого файла
- 6. Выполнение заданий для самостоятельной работы.

3 Теоретическое введение

Основными функциональными элементами любой ЭВМ являются центральный процессор, память и периферийные устройства. Взаимодействие этих устройств осуществляется через общую шину, к которой они подключены. Физически шина представляет собой большое количество проводников, соединяющих устройства друг с другом. В современных компьютерах проводники выполнены в виде электропроводящих дорожек на материнской плате. Основной задачей процессора является обработка информации, а также организация координации всех узлов компьютера. В состав центрального процессора входят следующие устройства:

арифметико-логическое устройство (АЛУ) — выполняет логические и арифметические действия, необходимые для обработки информации, хранящейся в памяти; устройство управления (УУ) — обеспечивает управление и контроль всех устройств компьютера; регистры — сверхбыстрая оперативная память небольшого объёма, входящая в состав процессора, для временного хранения промежуточных результатов выполнения инструкций; регистры процессора делятся на два типа: регистры общего назначения и специальные регистры. Для того, чтобы писать программы на ассемблере, необходимо знать, какие регистры процессора существуют и как их можно использовать. Большинство команд в программах написанных на ассемблере используют регистры в каче- стве операндов. Практически все команды представляют собой преобразование данных хранящихся в регистрах процессора, это например пересылка данных между регистрами или между регистрами и памятью, преобразование (арифметические или логические

операции) данных хранящихся в регистрах. Доступ к регистрам осуществляется не по адресам, как к основной памяти, а по именам. Каждый регистр процессора архитектуры х86 имеет свое название, состоящее из 2 или 3 букв латинского алфавита. В качестве примера приведем названия основных регистров общего назначения (именно эти регистры чаще всего используются при написании программ): RAX, RCX, RDX, RBX, RSI, RDI — 64-битные EAX, ECX, EDX, EBX, ESI, EDI — 32-битные AX, CX, DX, BX, SI, DI — 16-битные AH, AL, CH, CL, DH, DL, BH, BL — 8-битные Другим важным узлом ЭВМ является оперативное запоминающее устройство (ОЗУ). ОЗУ — это быстродействующее энергозависимое запоминающее устройство, которое напрямую взаимодействует с узлами процессора, предназначенное для хранения программ и данных, с которыми процессор непосредственно работает в текущий момент. ОЗУ состоит из одинаковых пронумерованных ячеек памяти. Номер ячейки памяти — это адрес хранящихся в ней данных. Периферийные устройства в составе ЭВМ:

устройства внешней памяти, которые предназначены для долговременного хранения больших объёмов данных. устройства ввода-вывода, которые обеспечивают взаимодействие ЦП с внешней средой. В основе вычислительного процесса ЭВМ лежит принцип программного управления. Это означает, что компьютер решает поставленную задачу как последовательность действий, записанных в виде программы.

Коды команд представляют собой многоразрядные двоичные комбинации из 0 и 1. В коде машинной команды можно выделить две части: операционную и адресную. В операционной части хранится код команды, которую необходимо выполнить. В адресной части хранятся данные или адреса данных, которые участвуют в выполнении данной операции. При выполнении каждой команды процессор выполняет определённую последовательность стандартных действий, которая называется командным циклом процессора. Он заключается в следующем:

формирование адреса в памяти очередной команды; считывание кода коман-

ды из памяти и её дешифрация; выполнение команды; переход к следующей команде. Язык ассемблера (assembly language, сокращённо asm) — машинноориентированный язык низкого уровня. NASM — это открытый проект ассемблера, версии которого доступны под различные операционные системы и который позволяет получать объектные файлы для этих систем. В NASM используется Intel-синтаксис и поддерживаются инструкции х86-64.

4 Выполнение лабараторной работы

4.1 Создание программы Hello world!

Создаю новый каталог с помощью команды mkdir.

```
root@vbox:/home/ssnikulenkov/work# mkdir -p ~/work/arch-pc/lab04
```

Рис. 4.1: Создание рабочего каталога

Создаю в текущем каталоге пустой текстовый файл hello.asm с помощью утилиты touch

```
root@vbox:~# cd /home/ssnikulenkov/work/arch-pc/lab04/
root@vbox:/home/ssnikulenkov/work/arch-pc/lab04# touch hello.asm
root@vbox:/home/ssnikulenkov/work/arch-pc/lab04#
```

Рис. 4.2: Создание файла hello.asm

Открываю файл в текстовом редакторе mousepad.

4.2 Работа с транслятором NASM

Превращаю текст программы для вывода "Hello world!" в объектный код с помощью транслятора NASM, используя команду nasm -f elf hello.asm, ключ -f указывает транслятору nasm, что требуется создать бинарный файл в формате ELF (рис. 4.3). Далее проверяю правильность выполнения команды с помощью утилиты ls: действительно, создан файл "hello.o".

```
cot@vbox:/home/ssnikulenkov/work/arch-pc/lab04# ld -m elf_i386 hello.o -o hello
cot@vbox:/home/ssnikulenkov/work/arch-pc/lab04# ls
ello hello.asm hello.o list.lst obj.o
cot@vbox:/home/ssnikulenkov/work/arch-pc/lab04# ld -m elf_i386 obj.o -o main
cot@vbox:/home/ssnikulenkov/work/arch-pc/lab04# ls
ello hello.asm hello.o list.lst main obj.o
cot@vbox:/home/ssnikulenkov/work/arch-pc/lab04#
```

Рис. 4.3: Проверка правильности выполненных команд

4.3 Работа с расширенным синтаксисом командной строки NASM

Ввожу команду, которая скомпилирует файл hello.asm в файл obj.o, при этом в файл будут включены символы для отладки (ключ -g), также с помощью ключа -l будет создан файл листинга list.lst (рис. 4.4). Далее проверяю с помощью утилиты ls правильность выполнения команды.

```
root@vbox:/home/ssnikulenkov/work/arch-pc/lab04# nasm -o obj.o -f elf -g -l list
.lst hello.asm
root@vbox:/home/ssnikulenkov/work/arch-pc/lab04# ls
hello.asm hello.o list.lst obj.o
```

Рис. 4.4: Проверка

4.4 Работа с компоновщиком LD

Передаю объектный файл hello.o на обработку компоновщику LD, чтобы получить исполняемый файл hello (рис. 4.5). Ключ -о задает имя создаваемого исполняемого файла. Далее проверяю с помощью утилиты ls правильность выполнения команды.Выполняю следующую команду Исполняемый файл будет иметь имя main, т.к. после ключа -о было задано значение main. Объектный файл, из которого собран этот исполняемый файл, имеет имя obj.o

```
cot@vbox:/home/ssnikulenkov/work/arch-pc/lab04# ld -m elf_i386 hello.o -o hello
cot@vbox:/home/ssnikulenkov/work/arch-pc/lab04# ls
ello hello.asm hello.o list.lst obj.o
cot@vbox:/home/ssnikulenkov/work/arch-pc/lab04# ld -m elf_i386 obj.o -o main
cot@vbox:/home/ssnikulenkov/work/arch-pc/lab04# ls
ello hello.asm hello.o list.lst main obj.o
cot@vbox:/home/ssnikulenkov/work/arch-pc/lab04#
```

Рис. 4.5: Проверка правильности выполненныйх команд

4.5 Запуск исполняемого файла

Запускаю на выполнение созданный исполняемый файл hello

```
root@vbox:/home/ssnikulenkov/work/arch-pc/lab04# ./hello
Hello world!
```

Рис. 4.6: Запуск файла

5 Выполнение заданий для самостоятельной работы.

С помощью утилиты ср создаю в текущем каталоге копию файла hello.asm с именем lab4.asm

```
root@vbox:/home/ssnikulenkov/work/arch-pc/lab04# cp hello.asm lab4.asm
root@vbox:/home/ssnikulenkov/work/arch-pc/lab04# pwd
```

Рис. 5.1: Создание копии lab4.asm

Изменяю файл.

```
; hello.asm
SECTION .data
                                     ; Начало секции данных
   hello:
           DB 'Степан Никуленков',10 ; 'Степан Никуленков' плюс
; символ перевода строки
helloLen: EQU $-hello ; Длина строки hello
SECTION .text ; Начало секции кода
GLOBAL _start
_start: ; Точка входа в программу
mov eax,4 ; Системный вызов для записи (sys_write)
mov ebx,1; Описатель файла '1' - стандартный вывод
mov ecx, hello ; Адрес строки hello в есх
mov edx, helloLen ; Размер строки hello
int 80h ; Вызов ядра
mov eax,1 ; Системный вызов для выхода (sys_exit)
тоу ерх,0 ; Выход с кодом возврата '0' (без ошибок)
int 80h ; Вызов ядра
```

Рис. 5.2: Редактирование файла

Компилирую текст программы в объектный файл.

root@vbox:/home/ssnikulenkov/work/arch-pc/lab04# nasm -f elf lab4.asm

Рис. 5.3: Создание объектного файла

Передаю объектный файл на обработку LD,чтобы получить исполняемый фыйл lab4.Открываю созданный файл.

root@vbox:/home/ssnikulenkov/work/arch-pc/lab04# ld -m elf_i386 lab4.o -o lab4 root@vbox:/home/ssnikulenkov/work/arch-pc/lab04# ./lab4 Степан Никуленков

Рис. 5.4: Проверка

Копирую файлы в нужную директорию.

root@vbox:/home/ssnikulenkov# cp /home/ssnikulenkov/work/arch-pc/lab04/lab4.asm /home/ssnikulenkov/work/study/2024-2025/"Архитектура компьютера"/arch-pc/labs/la b04

Рис. 5.5: Копирую lab4.asm

root@vbox:~# cp /home/ssnikulenkov/work/arch-pc/lab04/hello.asm /home/ssnikulenk ov/work/study/2024-2025/"Архитектура компьютера"/arch-pc/labs/lab04

Рис. 5.6: Копирую hello.asm

Отправляю файлы на GitHub

6 Выводы

При выполнении данной лабораторной работы я освоил процедуры компиляции и сборки программ, написанных на ассемблере NASM.

7 Список литературы

Архитектура ЭВМ