Machine Learning in Scientific Computing

CECAM/CSM/IRTG SCHOOL 2018

Lecture 3.1.2

Markov Random Fields

Markov Random Fields and Graphical Models

Reducing dependencies

Problem:

- $p(x_1, x_2, ..., x_n)$ is to high-dimensional
- k States, n variables: $O(k^n)$ density entries

General dependencies often infeasible

Reduction of Dependencies

- Parametric models (Gauss etc.)
- Markov Random Fields (MRFs)
- Deep Networks

• ...

Factorize Models

Pairwise models:

$$p(x_1, ..., x_n)$$

$$= \frac{1}{Z} \prod_{i=1}^{n} p_i^{(1)}(x_i) \prod_{i,j \in E} p_{i,j}^{(2)}(x_i, x_j)$$

- Model complexity:
 - $O(nk^2)$ parameters
- Higher order models:
 - Triplets, quadruples as factors
 - Local neighborhoods

Markov Random fields

Factorize density in local "cliques"

Graphical model

- Connect variables that are directly dependent
- Formal model: Conditional independence

Conditional Independence $p_i^{(1)}(x_i)$

- A node is conditionally independent of all others given the values of its direct neighbors
- I.e. set these values to constants, x₇ is independent of all others

Formally

$$p(x_i|x_1,...,x_{i-1},x_{i+1},...,x_n) = p(x_i|\{x_j|j\in N(i)\})$$

Theorem (Hammersley–Clifford):

• Assuming positive densities $p(x_i) > 0$

The therorem

- Given conditional independence as graph, density factors over cliques in the graph.
- And vice versa.

Example: Texture Synthesis

original

region selected

completion

Texture Synthesis

Idea

- One or more images as examples
- Learn image statistics
- Use knowledge:
 - Specify boundary conditions
 - Fill in texture

The Basic Idea

Markov Random Field Model

- Image statistics
- How pixels are colored depends on local neighborhood only (Markov Random Field)
- Predict color from neighborhood

A Little Bit of Theory...

Image statistics:

- An image of $n \times m$ pixels
- Random variable: $\mathbf{x} = [x_{11},...,x_{nm}] \in [0, 1, ..., 255]^{n \times m}$
- Probability distribution:

Impossible to learn full images from examples!

Simplification

Problem:

- Statistical dependencies
- Simple modell can express dependencies on all kinds of combinations

Markov Random Field:

- Each pixel is conditionally independent of the rest of the image given a small neighborhood
- In English: likelihood only depends on neighborhood, not rest of the image

Markov Random Field

Example:

- Red pixel depends on light red region
- Not on black region
- If region is known, probability is fixed and independent of the rest

However:

- Regions overlap
- Indirect global dependency

Texture Synthesis

Use for Texture Synthesis

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{i=1}^{n} \prod_{j=1}^{m} p_{i,j}(N_{i,j})$$

$$p_{i,j} = p_{i,j}(N_{i,j})$$

= $p_{i,j}(x_{i-k,j-k},...,x_{i+k,j+k})$

Inference

Inference Problem

- Computing p(x) is trivial for known x.
- Finding the x that maximizes p(x) is very complicated.
- In general: NP-hard
- No efficient solution known (not even for images)

In practice

 Different approximation strategies ("heuristics", strict approximation is also NP-hard)

Simple Practical Algorithm

Here is the short story:

- Unknown pixels: consider known neighborhood
- Match to all of the known data
- Copy the pixel with the best matching neighborhood
- Region growing, outside in

Approximation only

Can run into bad local minima

Image Analogies (Siggraph 2001)

CRF Image Segmentation

Reference (Image)

X. He, R.S. Zemel, M.A. Carreira-Perpinan: Multiscale Conditional Random Fields for Image Labeling,

IEEE CVPR 2004.

Example: Weak Formulations of Differential Equations

Differential Equations

Example equation

$$\frac{d}{dt}f(t) = F(f(t), t)$$

Discretization

$$\frac{y_i - y_{i-1}}{h} = F(y_i, t_i)$$

Weak formulation (variational approach)

$$\left(\frac{y_i - y_{i-1}}{h} - F(y_i, t_i)\right)^2 \to min$$

$$\arg\max_{\mathbf{y}} \frac{1}{Z} \prod_{i=1}^{n-1} \exp\left(\frac{y_i - y_{i-1}}{h} - F(y_i, t_i)\right)^2$$

Ordinary Differential Equations

Causal Chain

Structure of PDE

f(1,1)	f(2,1)	f(3,1)	f(4,1)	•••	f(m,1)
f(1,1)	f(2,1)	f(3,1)	f(4,1)	•••	f(m,1)
f(1,2)	f(2,2)	f(3,2)	f(4,2)	•••	f(m,2)
f(1,3)	f(2,3)	f(3,3)	f(4,3)		f(m,3)
:	:	•	F	$\mathbf{x}, f(\mathbf{x})$:
f(1,n)	f(2,n)	f(3,n)	f(4,n)		f(m,n)

Structure of PDE

f(1,1)	f(2,1)	f(3,1)	f(4,1)	•••	f(m, 1)
f(1,1)	f(2,1)	f(3,1)	f(4,1)	•••	f(m,1)
f(1,2)	f(2,2)	f(3,2)	f(4,2)	•••	f(m,2)
f(1,3)	f(2,3)	f(3,3)	f(4,3)	•••	f(m,3)
:	:	:	:		:
f(1,n)	f(2,n)	f(3,n)	f(4,n)	•••	f(m,n)

Boundary Value Problem

Inference in MRFs

Inference

Model

$$p(x_1, ..., x_n) = \frac{1}{Z} \prod_{i=1}^n \underline{p_i^{(1)}(x_i)} \prod_{i,j \in E} \underline{p_{i,j}^{(2)}(x_i, x_j)}$$

Inference

- Try all combinations of $(x_1, ..., x_n)$
- Compute probability $p(x_1, ..., x_n)$
- Determine maximum (or marginalize)

Inference

Complexity

- Brute-force-search / -integration:
 - Infeasible for large dimensions
 - Only toy-models
- Analytic maximization / integration
 - Special models only
 - Example: Gaussians
- Numerical maximization
 - All convex log-likelihoods
 - Gaussians (L₂-error)
 - L₁-errors
 - etc.

$$p(x_1, \dots, x_n) = \frac{1}{Z} \prod_{i=1}^n \underline{p_i^{(1)}(x_i)} \prod_{i,j \in E} \underline{p_{i,j}^{(2)}(x_i, x_j)}$$

Example: Image Reconstruction

Image Reconstruction Model

Problem statement

- Measured 2D pixel image
- Distorted by noise
- Want to remove noise

Bayesian problem modeling

- Model of measurement process
- Prior distribution on images (this is Bayesian)

Inference: Maximum-a-posteriori

Image

- $m_{i,j}$ with i = 1 ... w, j = 1, ..., h
- (continuous analogue: $f: [1, w] \times [1, h] \rightarrow \mathbb{R}$)

Probability space

 $\Omega = \mathbb{R}^{w \times h}$

Bayes rule

$$P(M|D) \sim P(D|M) \cdot P(M)$$

Likelihood

$$P(D|M) = \prod_{i=1}^{w} \prod_{j=1}^{h} P(d_i|m_i) \text{ (i.i.d. noise)}$$

$$= \prod_{i=1}^{w} \prod_{j=1}^{h} \mathcal{N}_{d_i,\sigma_D}(m_i) \text{ (Gaussian noise)}$$

$$= \prod_{i=1}^{w} \prod_{j=1}^{h} \left[\frac{1}{\sigma_D \sqrt{2\pi}} e^{-\frac{(m_i - d_i)^2}{2\sigma_D^2}} \right]$$
(Gaussian distribution)

Likelihood

$$P(D|M) = \prod_{i=1}^{w} \prod_{j=1}^{h} \left[\frac{1}{\sigma_D \sqrt{2\pi}} e^{-\frac{(m_i - d_i)^2}{2\sigma_D^2}} \right]$$

Neg-log-likelihood

$$E(D|M) := -\ln P(D|M) = \sum_{i=1}^{w} \sum_{j=1}^{h} \frac{(m_i - d_i)^2}{2\sigma_D^2} + \frac{wh}{\sigma_D \sqrt{2\pi}}$$
independent of m_i

Prior

- Assumption: Large image gradients are unlikely
- Gaussian distribution on Gradients
- Neg-log-likelihood: $\frac{1}{2\sigma^2} \|\nabla f\|^2$
- Discreet:

$$E(M) := -\ln P(M) = \sum_{i=1}^{W-1} \sum_{j=1}^{h-1} \frac{\left(m_{i+1,j} - m_{i,j}\right)^2 + \left(m_{i,j+1} - m_{i,j}\right)^2}{2\sigma_M^2} + \frac{wh}{\sigma_X \sqrt{2\pi}}$$

independent of m_i

Minimization Problem

Minimize

$$E(D|M) + E(M)$$

$$= \sum_{i=1}^{w} \sum_{j=1}^{h} \frac{(m_{i,j} - d_{i,j})^{2}}{2\sigma_{D}^{2}} + \sum_{i=1}^{w-1} \sum_{j=1}^{h-1} \frac{(m_{i+1,j} - m_{i,j})^{2} + (m_{i,j+1} - m_{i,j})^{2}}{2\sigma_{M}^{2}}$$

Equivalent minimization objective

$$\sum_{i=1}^{w} \sum_{j=1}^{h} \left(m_{i,j} - d_{i,j} \right)^2 + \frac{\sigma_D^2}{\sigma_M^2} \sum_{i=1}^{w-1} \sum_{j=1}^{h-1} \left(m_{i+1,j} - m_{i,j} \right)^2 + \left(m_{i,j+1} - m_{i,j} \right)^2$$

Continuous

$$\int_{\Omega} \left(m(\mathbf{x}) - d(\mathbf{x}) \right)^2 d\mathbf{x} + \frac{\sigma_M^2}{\sigma_D^2} \int_{\Omega} \|\nabla m(\mathbf{x})\|^2 d\mathbf{x}$$

Numerical Solution

Looks familiar?

Solution via linear system

Variant

• Penalize l_1 norm instead of l_2 norm of gradients

$$\int_{\Omega} \left(m(\mathbf{x}) - d(\mathbf{x}) \right)^2 d\mathbf{x} + \frac{\sigma_D^2}{\sigma_M^2} \int_{\Omega} \|\nabla m(\mathbf{x})\|^1 d\mathbf{x}$$

- Laplace distribution (single exponential)
- Yields sharper images (natural image statistics)

Technical Remark

Image prior

$$-\ln P(M) = \sum_{i=1}^{w-1} \sum_{j=1}^{h-1} \frac{\left(m_{i+1,j} - m_{i,j}\right)^2 + \left(m_{i,j+1} - m_{i,j}\right)^2}{2\sigma_M^2} + \frac{wh}{\sigma_M \sqrt{2\pi}}$$

- This is an "improper prior"
 - Does not integrate to one!
 - Infinite subspaces without penalty
- Formal fix
 - Assume broader prior on function value itself: $f \sim N_{0,\sigma_{very\ large}}$
- For MAP estimation, this does not matter
 - We just find a point of maximum density
 - Integration not required

Fancy Inference Schemes

Belief Propagation

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{i=1}^{n} \underline{p_i^{(1)}(x_i)} \prod_{i,j \in E} \underline{p_{i,j}^{(2)}(x_i, x_j)}$$

Messages

- Maximum a posteriori inference?
- Use "max-marginal":

$$m_{j,i}(x_i) = \max_{x_j = 1...k} p_i^{(1)}(x_j) p_{i,j}^{(2)}(x_i, x_j) \prod_{q \in N(j) \setminus x_i} m_{q,j}(x_q)$$

$$b_{i}(\mathbf{x}_{i}) = \frac{1}{z_{i}} p_{i}^{(1)}(\mathbf{x}_{i}) \prod_{q \in N(i)} m_{q,i} \left(x_{q}\right)$$

most likely state = $\underset{x_i}{\text{arg max }} b_i(x_i)$

Loopy BP

Loopy BP

- Loops? Which loops?
- Just run BP on loopy graph
- Arbitrary order

Result

- No guarantees (results can be wrong)
- Most often, results will be wrong
- Frequently still a reasonable approximation
 - Problem dependent, but worth a try. Popular 10-20 years ago.

Graph Cut

Pairwise MRF

Pairwise MRF

$$p(x_1, ..., x_n) = \frac{1}{Z} \prod_{i=1}^{n} \underline{p_i^{(1)}(x_i)} \prod_{i,j \in E} \underline{p_{i,j}^{(2)}(x_i, x_j)}$$

Neg-Log Likelihood

Pairwise MRF

$$-\log(p(x_1, ..., x_n)) = \sum_{i=1}^{n} \left[-\log(p_i^{(1)}(x_i)) \right] \sum_{i,j \in E} \left[-\log(p_{i,j}^{(2)}(x_i, x_j)) \right]$$

Pairwise MRF Inference

Example Application

"Grab-Cut"

 Rother, Kolmogorov, Blake Siggraph 2004

Probabilistic Model

- Per pixel: "Gaussian Mixture" of pixel colors
 - Foreground (red box) and background (rest)
- Pairwise: Neighboring Pixels
 - Different Label (f/b) incur fixed cost
- Graph-Cut Inference

MCMC

More General Tools

MCMC (Markov Chain Monte Carlo)

- Gibbs Sampling
- Metropolis algorithm
- Many variants

Idea

Naiive Sampling

Infeasible (exponential)

Gibbs Sampling

- Random initialization
- Select random node
 - Fix neighbors
 - Compute local distribution
 - Sample
- Repeat

Convergence: Mixing times (hard to estimate)

Literature

S. Geman & D Geman:

Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images.

In: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 6(6), Nov. 1984.

Learning MRF-Models from training data

Learning

Maximum Likelihood:

Maximize

$$p(x_1, ..., x_n) = \frac{1}{Z} \prod_{i=1}^n p_i^{(1)}(x_i) \prod_{i,j \in E} p_{i,j}^{(2)}(x_i, x_j)$$

$$= \frac{\prod_{i=1}^{n} p_i^{(1)}(x_i) \prod_{i,j \in E} p_{i,j}^{(2)}(x_i, x_j)}{\int_{x_1, \dots, x_n} \prod_{i=1}^{n} p_i^{(1)}(x_i) \prod_{i,j \in E} p_{i,j}^{(2)}(x_i, x_j) dx_1 \cdots dx_n}$$

$$=\frac{P_X^{(1)}(\theta)P_X^{(2)}(\theta)}{Z(\theta)} \quad ($$

 $= \frac{P_X^{(1)}(\theta)P_X^{(2)}(\theta)}{Z(\theta)} \quad \text{(θ denoting set of learnable parameters,}} X \text{ denoting training data)}$

 $Z(\theta)$ is numerically intractable for high dimensions, general distributions

In Practice

Learning MRFs in practice

- Tractable models, e.g. Gaussian
 - Often too simple
- Ignore Z
 - kind of wrong
 - but easy to implement
- Approximate Z
 - Mean-field theory; general: Variational Bayes
 - Replace integral by maximum (convex Z; still kind of wrong)
- Direct discriminative learning (ignore Bayes rule)