Chapter 32 Even Answers

```
2. 1.36 \mu H
```

4.
$$7.80 \times 10^3 \text{ turns/m}$$

8.
$$19.2 \ \mu \text{T} \cdot \text{m}^2$$

$$-\frac{\text{El}}{\mu_0 N^2 A}$$

12. (a)
$$188 \mu T$$

(b)
$$3.33 \times 10^{-8} \text{ T} \cdot \text{m}^2$$

(c) 0.375 mH

(d)
$$B$$
 and Φ_B are proportional to current; L is independent of current.

16. 1.92
$$\Omega$$

26. (a)
$$1.00 \text{ k} \Omega$$

(b) 3.00 ms

(c) 7.62 ms

(d) Yes. See solution.

See solution

32. (a)
$$8.06 \times 10^6 \text{ J/m}^3$$

(b) 6.32 kJ

(b)

(b) 18.5 ms

(b) 4.00 W

(c) 11.0 W

38.
$$2.27 \times 10^{-3} \text{ T}$$

- **48.** 0.400 A
- **50.** 0.281 H
- **52.** 0.220 H
- **54.** (a) 503 Hz

(b) $12.0 \,\mu\text{C}$

(c) 37.9 mA

(d) $72.0 \,\mu\text{J}$

56. (a) 2.51 kHz

(b) 69.9Ω

- **60.** $9t^2 / \pi^2 C$
- **62.** (a) -LK

(b) $-Kt^2/2C$

(c) $2\sqrt{LC}$

64. (a) See solution

(b) $91.2 \mu H$

(c) $90.9 \,\mu\text{H}$

66. (a) 127

(b) 0.522Ω

(c) 76.8 mH

68. (a) 20.0 ms

(b) 37.9 V

(c) 3.04 mV

(d) 104 mA

- **70.** 95.6 mH
- 72. (a) $I_L = 0$, $I_C = \frac{\mathbb{E}_0}{R}$, $I_R = \frac{\mathbb{E}_0}{\mathbb{R}}$, $\Delta V_L = \mathbb{E}_0$, $\Delta V_C = 0$, $\Delta V_R = \mathbb{E}_0$
 - (b) $I_L = I_C = I_R = 0$, $\Delta V_L = 0$, $\Delta V_C = \mathbb{E}_0$, $\Delta V_R = 0$
- **74.** (a) $251 \,\mu\text{H}$

(b) $25.1 \,\mu\text{H}$

(c) 25.1 nC

- **76.** $3.97 \times 10^{-25} \Omega$
- **78.** (a) 50.0 mT

(b) 20.0 mT

(c) 2.29 MJ

(d) 318 Pa