Análisis de modelos de machine learning. Regresión lineal y regresión logística.

Pablo Vargas Ibarra

Trabajo de fin de grado

Grado en Ingeniería Matemática

Tutor: Javier Yañez

Motivación

- Modelización
- Probabilidad / Estadística: F.coste y regularización.
- Investigación Operativa: Descenso del gradiente.
- Machine Learning: Uso de la librería de Python scikit-learn.
- Programación: Repositorio en GitHub.

Aprendizaje supervisado

$$Y = f(X)$$

Regresión

Clasificación

Evaluación

Métricas de éxito

Modelización

 $h_{ heta}(X)$

Optimización

Gradient descent

Función de coste

MSE LogLoss Regularización

Regresión Lineal

Regresión Logística

Clasificador lineal

Clasificador no lineal

Alto Sesgo

Alta Varianza

Regularización

$$R(\theta) = \frac{1}{2C} \sum_{j=1}^{n} \theta_j^2 \; ; \; C > 0$$

Underfitting

Underfitting

(-) Regularización

1 C

(+) $h_{\theta}(X)$

• 1 Degree

• **1** # Variables

Overfitting

(+)Regularización

· 1 C

(-) $h_{\theta}(X)$

Degree

• # Variables

Curvas de aprendizaje ¿# Datos?

Simulation

$$y = 1 - 2x + 3x^2 + \epsilon \; ; \; \epsilon \sim \mathcal{N}(0, \; \sigma^2 = 0.01) \quad x \in (0, \; 1)$$

$$h_1(x) = \theta_0 + \theta_1 x$$

$$h_2(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4 + \theta_4 x^5 + \theta_6 x^6 + \theta_7 x^7 + \theta_8 x^8$$

Metodología Propuesta

- 1. Entrenamiento/Validación/Test
- 2. Estandarizar (según muestra de entrenamiento)
- 3. Elegir distintos C y h.
- 4. Calcular los parámetros para cada C y h.
- 5. Elegir el major modelo en base a una métrica de éxito evaluada en el conjunto de validación.
- 6. Evaluar la capacidad de generalización en el conjunto de test.
- 7. Entrenar el modelo final con todos los datos. (h* y C*)

Breast Cancer Prediction

	С	Train Accuracy	Validation Accuracy	Test Accuracy	Test Recall	Test Precision
0	0.00001	0.935484	0.912281	0.947368	0.914894	0.955556
1	0.00010	0.938416	0.912281	0.947368	0.914894	0.955556
2	0.00100	0.944282	0.938596	0.947368	0.914894	0.955556
3	0.01000	0.976540	0.964912	0.938596	0.893617	0.954545
4	0.20000	0.988270	0.982456	0.947368	0.893617	0.976744

