VLSI Circuit Design Lab 4

Yu-Chi Chu

Problem 1 – Pseudo-nMOS Inverter analysis 1A

Vout versus Vin (Vin as x-axis) with various widths of pMOS

1B

1	\$DATA1 SOURCE='P	rimeSim HSPICE'	VERSION='R-2020.	12-SP2 linux64'	PARAM_COUNT=1
2	.TITLE '.protect	1			
3		vil	vol	vih	
4		voh	nmh	nml	
4 5		temper	alter#		
6	5.000e-07	4.917e-01	1.597e-01	8.568e-01	
7 8 9		1.736e+00	8.794e-01	3.320e-01	
8		2.500e+01	1		
9	7.500e-07	5.222e-01	1.945e-01	9.392e-01	
10		1.729e+00	7.894e-01	3.277e-01	
11		2.500e+01	1		
12	1.000e-06	5.504e-01	2.246e-01	1.012e+00	
13		1.720e+00	7.073e-01	3.257e-01	
14		2.500e+01	1		
15	1.250e-06	5.787e-01	2.523e-01	1.080e+00	
16		1.709e+00	6.287e-01	3.264e-01	
17		2.500e+01	1		
18	1.500e-06	6.087e-01	2.781e-01	1.145e+00	
19		1.696e+00	5.511e-01	3.306e-01	
20		2.500e+01	1		
21	1.750e-06	6.417e-01	3.029e-01	1.206e+00	
22		1.680e+00	4.733e-01	3.388e-01	
23		2.500e+01	1		
24	2.000e-06	6.786e-01	3.267e-01	1.266e+00	
25		1.660e+00	3.941e-01	3.519e-01	
26		2.500e+01	1		

α	Vil(V)	Vih(V)	Vol(V)	Voh(V)	NMH(V)	NML(V)
0.5	0.4917	0.8568	0.1597	1.736	0.8794	0.3320
0.75	0.5222	0.9392	0.1945	1.729	0.7894	0.3277
1	0.5504	1.012	0.2246	1.720	0.7073	0.3257
1.25	0.5787	1.080	0.2523	1.709	0.6287	0.3264
1.5	0.6087	1.145	0.2781	1.696	0.5511	0.3306
1.75	0.6417	1.206	0.3029	1.680	0.4733	0.3388
2	0.6786	1.266	0.3267	1.660	0.3941	0.3519

Measurement

why noise NML is much smaller than NMH?

NML (Noise Margin Low) is related to the NMOS transistor's ability to pull the output voltage down to ground. NMH (Noise Margin High) is related to the PMOS transistor's ability to pull the output voltage up to VDD (supply voltage). Initially, when α (alpha/duty cycle) is small, the PMOS pull-up capability is weak, resulting in a larger NMH, significantly greater than NML. However, as α increases, NMH gradually decreases, and the difference between NMH and NML diminishes. Since the NMOS size remains unchanged, NML remains almost constant.

1C

```
1 $DATA1 SOURCE='PrimeSim HSPICE' VERSION='R-2020.12-SP2 linux64' PARAM COUNT=1
 2 .TITLE '.protect'
                   trise
 3 alpha
                                     temper
                                                       alter#
 4 5.000e-07
                    1.708e-09
                                      2.500e+01
                                                       1
                                      2.500e+01
                   1.177e-09
9.034e-10
7.314e-10
   7.500e-07
                                     2.500e+01
2.500e+01
                                                       1
    1.000e-06
                                                       1
    1.250e-06
                                       2.500e+01
                                                       1
                   6.155e-10
   1.500e-06
                                     2.500e+01
                                                       1
   1.750e-06
2.000e-06
                   5.297e-10 2.500e+01
4.656e-10 2.500e+01
9
                                       2.500e+01
                                                       1
10
```

Problem 2 – Gate Comparison

2B

In 2A, I have calculated the theoretically minimum delay size. In the simulation results, I used a sweep to adjust the size of 2A to minimize the delay as much as possible.

(1) Static

I fixed the NMOS size and multiplied the PMOS size by W1. I found that the minimum delay occurred when W1=1. Therefore, the PMOS size calculated in 2A was multiplied by 1.

			VERSION='R-2020.	12-SP2 linux64'	PARAM COUNT=1
2	.TITLE '.protect	t'			
3		trise	tfall	tdelay_avg	
4		temper	alter#		
5		1.545e-10	1.371e-10	1.458e-10	
6		2.500e+01	1		
7		1.492e-10	1.336e-10	1.414e-10	
8		2.500e+01	1		
9		1.457e-10	1.308e-10	1.382e-10	
10		2.500e+01	1		
11		1.431e-10	1.284e-10	1.358e-10	
12		2.500e+01	1		
13		1.413e-10	1.263e-10	1.338e-10	
14		2.500e+01	1		
15		1.402e-10	1.246e-10	1.324e-10	
16		2.500e+01	1	1 212 10	
17		1.393e-10	1.231e-10	1.312e-10	
18		2.500e+01	1	1 204- 10	
19 20		1.390e-10	1.217e-10 1	1.304e-10	
21		2.500e+01 1.390e-10	1.206e-10	1.298e-10	
22		2.500e+01	1.2000-10	1.2906-10	
23		1.393e-10	1.196e-10	1.295e-10	
24		2.500e+01	1.1506-10	1.2356-10	
25		1.398e-10	1.188e-10	1.293e-10	
26		2.500e+01	1	1.2336 10	
27		1.405e-10	1.181e-10	1.293e-10	
28		2.500e+01	1		
29	1.100e+00	1.415e-10	1.174e-10	1.294e-10	
30		2.500e+01	1		
31	1.150e+00	1.425e-10	1.168e-10	1.296e-10	
32		2.500e+01	1		
33	1.200e+00	1.436e-10	1.163e-10	1.300e-10	
34		2.500e+01	1		
35	1.250e+00	1.449e-10	1.159e-10	1.304e-10	
36		2.500e+01	1		
37		1.463e-10	1.156e-10	1.309e-10	
38		2.500e+01			
39		1.477e-10	1.153e-10	1.315e-10	
40		2.500e+01	1		

Whenever the input = 0, output = 0

Delay after size adjustment

```
1 $DATA1 SOURCE='PrimeSim HSPICE' VERSION='R-2020.12-SP2 linux64' PARAM_COUNT=0
2 .TITLE '.protect'
3 trise tfall tdelay_avg temper
4 alter#
5 1.398e-10 1.188e-10 1.293e-10 2.500e+01
6 1
```

(2) Pseudo nMOS

I fixed the PMOS size and multiplied the NMOS size by W1. I found that the minimum delay occurred when W1=0.5. Therefore, the NMOS size calculated in 2A was multiplied by 0.5.

2 3 4 5 6 7 8 9	\$DATA1 SOURCE= .TITLE '.protec w1 5.000e-01 5.500e-01 6.000e-01		VERSION='R-2020. tfall alter# 7.888e-11	L2-SP2 linux64' PARAM_COUNT= tdelay_avg	1
3 4 5 6 7 8 9	w1 5.000e-01 5.500e-01	trise temper 6.248e-11	alter#	tdelay_avg	
4 5 6 7 8 9	5.000e-01 5.500e-01	temper 6.248e-11	alter#	tdelay_avg	
5 6 7 8 9	5.500e-01	6.248e-11			
6 7 8 9 10	5.500e-01		7 888e-11		
7 8 9 10		2.500e+01		7.068e-11	
8 9 10			1		
9 10	6.000e-01	6.343e-11	8.067e-11	7.205e-11	
10	6.000e-01	2.500e+01	1		
		6.436e-11	8.276e-11	7.356e-11	
		2.500e+01	1		
11	6.500e-01	6.524e-11	8.499e-11	7.512e-11	
12		2.500e+01	1		
13	7.000e-01	6.614e-11	8.729e-11	7.672e-11	
14		2.500e+01	1		
15	7.500e-01	6.699e-11	8.978e-11	7.839e-11	
16		2.500e+01	1		
17	8.000e-01	6.790e-11	9.229e-11	8.009e-11	
18		2.500e+01	1		
19	8.500e-01	6.871e-11	9.483e-11	8.177e-11	
20		2.500e+01	1		
21	9.000e-01	6.959e-11	9.740e-11	8.349e-11	
22		2.500e+01	1		
23	9.500e-01	7.040e-11	1.000e-10	8.521e-11	
24		2.500e+01	1		
25	1.000e+00	7.123e-11	1.027e-10	8.695e-11	
26		2.500e+01	1		
27	1.050e+00	7.210e-11	1.053e-10	8.872e-11	
28		2.500e+01	1		
29	1.100e+00	7.295e-11	1.079e-10	9.045e-11	
30		2.500e+01	1		
31	1.150e+00	7.379e-11	1.106e-10	9.220e-11	
32		2.500e+01	1		
33	1.200e+00	7.463e-11	1.132e-10	9.394e-11	
34		2.500e+01	1		
35	1.250e+00	7.546e-11	1.159e-10	9.569e-11	
36		2.500e+01	1		
37	1.300e+00	7.627e-11	1.186e-10	9.741e-11	
38		2.500e+01	1		
39	1.350e+00	7.708e-11	1.212e-10	9.915e-11	
40		2.500e+01	1		
41	1.400e+00	7.789e-11	1.239e-10	1.009e-10	
42		2.500e+01	1		
43	1.450e+00	7.871e-11	1.265e-10	1.026e-10	
44		2.500e+01	1		

Whenever the input = 0, output = 0

Delay after size adjustment

```
1 $DATA1 SOURCE='PrimeSim HSPICE' VERSION='R-2020.12-SP2 linux64' PARAM_COUNT=0
2 .TITLE '.protect'
3 trise tfall tdelay_avg temper
4 alter#
5 6.248e-11 7.888e-11 7.068e-11 2.500e+01
6 1
```

(3) Domino

In the domino circuit, I only adjusted the size of the input NMOS, excluding the high skew inverter. I found that the minimum delay occurred when W1=2. Therefore, the NMOS size calculated in 2A was multiplied by 2.

```
1 $DATA1 SOURCE='PrimeSim HSPICE' VERSION='R-2020.12-SP2 linux64' PARAM COUNT=1
 2 .TITLE '.protect'
 3 w1
                                      temper
                                                      alter#
 4
    1.500e+00
                     1.086e-10
                                      2.500e+01
                                                      1
5
    1.550e+00
                     1.083e-10
                                      2.500e+01
                                                      1
                     1.080e-10
                                      2.500e+01
6
    1.600e+00
                                                      1
 7
    1.650e+00
                     1.078e-10
                                      2.500e+01
                                                      1
8
    1.700e+00
                     1.076e-10
                                      2.500e+01
                                                      1
9
    1.750e+00
                     1.074e-10
                                      2.500e+01
                                                      1
10
    1.800e+00
                     1.073e-10
                                      2.500e+01
                                                      1
11
    1.850e+00
                     1.072e-10
                                      2.500e+01
                                                      1
12
    1.900e+00
                     1.071e-10
                                      2.500e+01
                                                      1
13
    1.950e+00
                     1.071e-10
                                      2.500e+01
                                                      1
14 2.000e+00
                                      2.500e+01
                     1.070e-10
    2.050e+00
                                      2.500e+01
15
                     1.070e-10
                                                      1
                                      2.500e+01
16
    2.100e+00
                     1.070e-10
                                                      1
17
                                      2.500e+01
    2.150e+00
                     1.070e-10
                                                      1
                                      2.500e+01
18
    2.200e+00
                     1.070e-10
                                                      1
                                      2.500e+01
19
    2.250e+00
                     1.071e-10
                                                      1
    2.300e+00
                     1.071e-10
                                      2.500e+01
                                                      1
21
    2.350e+00
                     1.072e-10
                                      2.500e+01
                                                      1
22
    2.400e+00
                     1.073e-10
                                      2.500e+01
                                                      1
                                      2.500e+01
23
    2.450e+00
                     1.074e-10
                                                      1
24
    2.500e+00
                     1.075e-10
                                      2.500e+01
                                                      1
```

At abcd = 0 or clk = 0, output = 0

Delay after size adjustment

```
1 $DATA1 SOURCE='PrimeSim HSPICE' VERSION='R-2020.12-SP2 linux64' PARAM_COUNT=0
2 .TITLE '.protect'
3 trise temper alter#
4 1.070e-10 2.500e+01 1
```

2C (1) Static layout

DRC

LVS

Simulation


```
1 $DATA1 SOURCE='PrimeSim HSPICE' VERSION='R-2020.12-SP2 linux64' PARAM_COUNT=0
2 .TITLE '.protect'
3 trise tfall tdelay_avg temper
4 alter#
5 1.521e-10 1.237e-10 1.379e-10 2.500e+01
6 1
```

(2) Pseudo nMOS Layout

DRC

LVS

Simulation

1 \$DATA1 SOURCE='PrimeSim HSPICE' VERSION='R-2020.12-SP2 linux64' PARAM_COUNT=0
2 .TITLE '.protect'
3 trise tfall tdelay_avg temper
4 alter#
5 6.474e-11 8.091e-11 7.283e-11 2.500e+01
6 1

(3) Domino Layout

DRC

LVS

Simulation

1 \$DATA1 SOURCE='PrimeSim HSPICE' VERSION='R-2020.12-SP2 linux64' PARAM_COUNT=0
2 .TITLE '.protect'
3 trise temper alter#
4 1.162e-10 2.500e+01 1