Comment déterminer la région critique dans un test relatif à une proportion dans le cas d'une loi binomiale approximable par une loi normale ?

- 1. On précise les paramètres de la loi normale utilisée.
- 2. On détermine l'intervalle de fluctuation / de la proportion étudiée.
- 3. On construit un test de validité : la région d'acceptation du test est l'intervalle *I*, la région critique est son complémentaire.

Exemple.

On reprend l'exemple de la fiche méthode 5 en interrogeant 100 personnes.

Un constructeur affirme que la probabilité qu'un de ses ordinateurs ait une panne dans les 5 ans suivant son achat est égale à 0,15. Sur les 100 personnes interrogées, 26 ont eu une panne dans les 5 ans suivant leur achat. Que peut-on penser de l'affirmation du constructeur au seuil de 5 % ?

On construit un test bilatéral permettant de vérifier l'affirmation du constructeur au seuil de 5 %.

L'hypothèse H_0 est p = 0,15, l'hypothèse alternative H_1 est $p \neq 0,15$.

L'enquête peut être assimilée à un tirage aléatoire avec remise.

On note X la variable aléatoire prenant pour valeur le nombre de personnes ayant eu une panne dans les 5 ans suivant leur achat. X suit la loi binomiale de paramètres n = 100 et p = 0,15.

n étant assez grand, on peut approcher la loi binomiale par une loi normale.

La région d'acceptation de H_0 est l'intervalle de fluctuation de la fréquence de panne au seuil de 95 %.

L'intervalle de fluctuation de la fréquence de panne au seuil $1 - \alpha$ est :

$$I = \left[p - u_{\alpha} \sqrt{\frac{p(1-p)}{n}} ; p + u_{\alpha} \sqrt{\frac{p(1-p)}{n}} \right].$$

 u_{α} est l'unique réel tel que u_{α} vérifie $P(-u_{\alpha} \leq Z \leq u_{\alpha}) = 1 - \alpha$, où Z suit la loi normale $\mathcal{N}(0, 1)$. Pour un seuil de 95%, on a $u_{\alpha} = 1,96$;

alors
$$I = \begin{bmatrix} 0.15 - 1.96 \sqrt{\frac{0.15 \times 0.85}{100}} \text{; } 0.15 + 1.96 \sqrt{\frac{0.15 \times 0.85}{100}} \end{bmatrix}$$
 soit $I = [0.08; 0.22]$.

La région d'acceptation du test est l'intervalle I = [0,08; 0,22].

L'enquête donne $f_e = \frac{26}{100}$, soit $f_e = 0.26$.

 $f_{\rm e} \not \in$ I, on rejette l'hypothèse H_0 , **au seuil de 5% l'affirmation du constructeur est erronée.**

Remarque : cette situation montre l'importance de la taille des échantillons dans les enquêtes statistiques ainsi que la méthode utilisée.