Assignment 2 - Simple and Multiple Linear Regression (I)

B. Practical

Overview of the steps

- 1. Load the data and get an overview of the data
- 2. Perform simple linear regressions
- 3. Use the simple linear regression models
- 4. Perform multiple linear regressions
- 5. Use the multiple linear regression model

Steps in detail

Load the data and get an overview of the data

Load the data file Boston, rda or Boston, csv.

In R the dataframe comes with the MASS library. We save the dataframe ones in csv and rda files for later use.

```
In [1]: 1 library(MASS)
2 #write.csv(Boston,"../ISLR/data/Boston.csv", row.names = TRUE)
3 #save(Boston,file="../ISLR/data/Boston.rda")
```

Display the number of predictors (including the response medv) and their names:

14

'crim' 'zn' 'indus' 'chas' 'nox' 'rm' 'age' 'dis' 'rad' 'tax' 'ptratio' 'black' 'lstat' 'medv'

Print a statistic summary of the predictors and the response medv:

```
In [3]: 1 summary(Boston)
```

```
indus
     crim
                           zn
                                                              chas
Min.
       : 0.00632
                    Min.
                               0.00
                                       Min.
                                              : 0.46
                                                        Min.
                                                                :0.00000
                            :
1st Qu.: 0.08204
                    1st Qu.:
                               0.00
                                       1st Qu.: 5.19
                                                        1st Qu.:0.00000
                               0.00
Median : 0.25651
                    Median:
                                       Median : 9.69
                                                        Median :0.00000
Mean
         3.61352
                    Mean
                            : 11.36
                                       Mean
                                              :11.14
                                                        Mean
                                                                :0.06917
       :
3rd Qu.: 3.67708
                    3rd Qu.: 12.50
                                       3rd Qu.:18.10
                                                        3rd Qu.:0.00000
                                              :27.74
                                                        Max.
Max.
       :88.97620
                    Max.
                            :100.00
                                       Max.
                                                                :1.00000
                                                           dis
     nox
                         rm
                                         age
Min.
       :0.3850
                  Min.
                          :3.561
                                   Min.
                                              2.90
                                                      Min.
                                                             : 1.130
1st Qu.:0.4490
                  1st Qu.:5.886
                                   1st Qu.: 45.02
                                                      1st Qu.: 2.100
Median :0.5380
                  Median :6.208
                                   Median : 77.50
                                                      Median : 3.207
Mean
       :0.5547
                  Mean
                          :6.285
                                   Mean
                                           : 68.57
                                                      Mean
                                                              : 3.795
3rd Qu.:0.6240
                  3rd Qu.:6.623
                                   3rd Qu.: 94.08
                                                      3rd Qu.: 5.188
Max.
       :0.8710
                  Max.
                          :8.780
                                   Max.
                                           :100.00
                                                      Max.
                                                             :12.127
                                       ptratio
     rad
                        tax
                                                         black
Min.
       : 1.000
                  Min.
                          :187.0
                                           :12.60
                                                               0.32
                                   Min.
                                                     Min.
                                                            :
1st Qu.: 4.000
                  1st Qu.:279.0
                                   1st Qu.:17.40
                                                     1st Qu.:375.38
Median : 5.000
                  Median :330.0
                                   Median :19.05
                                                     Median :391.44
Mean
       : 9.549
                  Mean
                          :408.2
                                   Mean
                                           :18.46
                                                     Mean
                                                             :356.67
3rd Qu.:24.000
                  3rd Qu.:666.0
                                   3rd Qu.:20.20
                                                     3rd Qu.:396.23
Max.
       :24.000
                  Max.
                          :711.0
                                   Max.
                                           :22.00
                                                     Max.
                                                             :396.90
    lstat
                      medv
       : 1.73
                         : 5.00
Min.
                 Min.
1st Qu.: 6.95
                 1st Qu.:17.02
Median :11.36
                 Median :21.20
       :12.65
                 Mean
                         :22.53
Mean
3rd Qu.:16.95
                 3rd Qu.:25.00
       :37.97
                         :50.00
Max.
                 Max.
```

Display the number of data points:

```
In [4]: 1 dim(Boston)[1]
```

506

Display the data in a table (subset of rows is sufficient):

In [5]: 1 Boston

A data.frame: 506×14

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90
2	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90
3	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83
4	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63
5	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90
6	0.02985	0.0	2.18	0	0.458	6.430	58.7	6.0622	3	222	18.7	394.12
7	0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.60
8	0.14455	12.5	7.87	0	0.524	6.172	96.1	5.9505	5	311	15.2	396.90
9	0.21124	12.5	7.87	0	0.524	5.631	100.0	6.0821	5	311	15.2	386.63
10	0.17004	12.5	7.87	0	0.524	6.004	85.9	6.5921	5	311	15.2	386.71
11	0.22489	12.5	7.87	0	0.524	6.377	94.3	6.3467	5	311	15.2	392.52
12	0.11747	12.5	7.87	0	0.524	6.009	82.9	6.2267	5	311	15.2	396.90
13	0.09378	12.5	7.87	0	0.524	5.889	39.0	5.4509	5	311	15.2	390.50
14	0.62976	0.0	8.14	0	0.538	5.949	61.8	4.7075	4	307	21.0	396.90
15	0.63796	0.0	8.14	0	0.538	6.096	84.5	4.4619	4	307	21.0	380.02
16	0.62739	0.0	8.14	0	0.538	5.834	56.5	4.4986	4	307	21.0	395.62
17	1.05393	0.0	8.14	0	0.538	5.935	29.3	4.4986	4	307	21.0	386.85
18	0.78420	0.0	8.14	0	0.538	5.990	81.7	4.2579	4	307	21.0	386.75
19	0.80271	0.0	8.14	0	0.538	5.456	36.6	3.7965	4	307	21.0	288.99
20	0.72580	0.0	8.14	0	0.538	5.727	69.5	3.7965	4	307	21.0	390.95
21	1.25179	0.0	8.14	0	0.538	5.570	98.1	3.7979	4	307	21.0	376.57
22	0.85204	0.0	8.14	0	0.538	5.965	89.2	4.0123	4	307	21.0	392.53
23	1.23247	0.0	8.14	0	0.538	6.142	91.7	3.9769	4	307	21.0	396.90
24	0.98843	0.0	8.14	0	0.538	5.813	100.0	4.0952	4	307	21.0	394.54
25	0.75026	0.0	8.14	0	0.538	5.924	94.1	4.3996	4	307	21.0	394.33
26	0.84054	0.0	8.14	0	0.538	5.599	85.7	4.4546	4	307	21.0	303.42
27	0.67191	0.0	8.14	0	0.538	5.813	90.3	4.6820	4	307	21.0	376.88
28	0.95577	0.0	8.14	0	0.538	6.047	88.8	4.4534	4	307	21.0	306.38
29	0.77299	0.0	8.14	0	0.538	6.495	94.4	4.4547	4	307	21.0	387.94
30	1.00245	0.0	8.14	0	0.538	6.674	87.3	4.2390	4	307	21.0	380.23
÷	÷	:	:	÷	:	:	÷	:	:	:	:	÷
477	4.87141	0	18.10	0	0.614	6.484	93.6	2.3053	24	666	20.2	396.21
478	15.02340	0	18.10	0	0.614	5.304	97.3	2.1007	24	666	20.2	349.48
479	10.23300	0	18.10	0	0.614	6.185	96.7	2.1705	24	666	20.2	379.70
480	14.33370	0	18.10	0	0.614	6.229	88.0	1.9512	24	666	20.2	383.32

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
481	5.82401	0	18.10	0	0.532	6.242	64.7	3.4242	24	666	20.2	396.90
482	5.70818	0	18.10	0	0.532	6.750	74.9	3.3317	24	666	20.2	393.07
483	5.73116	0	18.10	0	0.532	7.061	77.0	3.4106	24	666	20.2	395.28
484	2.81838	0	18.10	0	0.532	5.762	40.3	4.0983	24	666	20.2	392.92
485	2.37857	0	18.10	0	0.583	5.871	41.9	3.7240	24	666	20.2	370.73
486	3.67367	0	18.10	0	0.583	6.312	51.9	3.9917	24	666	20.2	388.62
487	5.69175	0	18.10	0	0.583	6.114	79.8	3.5459	24	666	20.2	392.68
488	4.83567	0	18.10	0	0.583	5.905	53.2	3.1523	24	666	20.2	388.22
489	0.15086	0	27.74	0	0.609	5.454	92.7	1.8209	4	711	20.1	395.09
490	0.18337	0	27.74	0	0.609	5.414	98.3	1.7554	4	711	20.1	344.05
491	0.20746	0	27.74	0	0.609	5.093	98.0	1.8226	4	711	20.1	318.43
492	0.10574	0	27.74	0	0.609	5.983	98.8	1.8681	4	711	20.1	390.11
493	0.11132	0	27.74	0	0.609	5.983	83.5	2.1099	4	711	20.1	396.90
494	0.17331	0	9.69	0	0.585	5.707	54.0	2.3817	6	391	19.2	396.90
495	0.27957	0	9.69	0	0.585	5.926	42.6	2.3817	6	391	19.2	396.90
496	0.17899	0	9.69	0	0.585	5.670	28.8	2.7986	6	391	19.2	393.29
497	0.28960	0	9.69	0	0.585	5.390	72.9	2.7986	6	391	19.2	396.90
498	0.26838	0	9.69	0	0.585	5.794	70.6	2.8927	6	391	19.2	396.90
499	0.23912	0	9.69	0	0.585	6.019	65.3	2.4091	6	391	19.2	396.90
500	0.17783	0	9.69	0	0.585	5.569	73.5	2.3999	6	391	19.2	395.77
501	0.22438	0	9.69	0	0.585	6.027	79.7	2.4982	6	391	19.2	396.90
502	0.06263	0	11.93	0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99
503	0.04527	0	11.93	0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90
504	0.06076	0	11.93	0	0.573	6.976	91.0	2.1675	1	273	21.0	396.90
505	0.10959	0	11.93	0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45
506	0.04741	0	11.93	0	0.573	6.030	80.8	2.5050	1	273	21.0	396.90

Plot some predictors (at least two) against the response values. We choose $\,$ lstat , $\,$ rm , and $\,$ age .

In R, we need to download and install a library first.

There is a binary version available but the source version is late

```
In [6]: 1 install.packages("ggpubr")
2 library("ggpubr")
```

binary source needs_compilation
ggpubr 0.4.0 0.5.0 FALSE

installing the source package 'ggpubr'

Loading required package: ggplot2

Warning message:
"replacing previous import 'ellipsis::check_dots_unnamed' by 'rlan g::check_dots_unnamed' when loading 'tibble'"

Warning message:
"replacing previous import 'ellipsis::check_dots_used' by 'rlang::ch
eck_dots_used' when loading 'tibble'"
Warning message:

"replacing previous import 'ellipsis::check_dots_empty' by 'rlang::check_dots_empty' when loading 'tibble'"

The R function ggscatter even displays a regression line, confidence intervals, the Pearson coefficient of correlation, and the p value. This is not necessary at this stage.

"The following aesthetics were dropped during statistical transformation:

colour, fill

i This can happen when ggplot fails to infer the correct grouping st ructure in

the data.

i Did you forget to specify a `group` aesthetic or to convert a nume rical

variable into a factor?"

[`]geom_smooth()` using formula = 'y \sim x' Warning message:

"The following aesthetics were dropped during statistical transformation:

colour, fill

i This can happen when ggplot fails to infer the correct grouping st ructure in

the data.

i Did you forget to specify a `group` aesthetic or to convert a nume rical

variable into a factor?"

[`]geom_smooth()` using formula = 'y \sim x' Warning message:

"The following aesthetics were dropped during statistical transformation:

colour, fill

i This can happen when ggplot fails to infer the correct grouping st ructure in

the data.

i Did you forget to specify a `group` aesthetic or to convert a nume rical

variable into a factor?"

Perform simple linear regressions

Fit a simple linear regression model, with medv as the response and some (at least two) predictors individually. We choose lstat, rm, and age.

[`]geom_smooth()` using formula = 'y \sim x' Warning message:

```
In [10]:
            lm.fit=lm(medv~lstat ,data=Boston)
          1
          2
             summary(lm.fit)
         Call:
         lm(formula = medv ~ lstat, data = Boston)
         Residuals:
            Min
                     10 Median
                                     30
                                            Max
         -15.168 -3.990 -1.318
                                  2.034 24.500
         Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
                                                  <2e-16 ***
         (Intercept) 34.55384
                                0.56263
                                          61.41
                                0.03873 -24.53
         lstat
                    -0.95005
                                                  <2e-16 ***
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 6.216 on 504 degrees of freedom
        Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432
         F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16
In [11]:
         1 | lm.fit=lm(medv~rm ,data=Boston)
            summary(lm.fit)
         Call:
         lm(formula = medv ~ rm, data = Boston)
         Residuals:
            Min
                     10 Median
                                     30
                                            Max
         -23.346 -2.547
                          0.090
                                  2.986
                                        39.433
         Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
         (Intercept) -34.671
                                  2.650 -13.08
                                                  <2e-16 ***
                       9.102
                                  0.419
                                          21.72
                                                  <2e-16 ***
         Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 6.616 on 504 degrees of freedom
        Multiple R-squared: 0.4835, Adjusted R-squared: 0.4825
         F-statistic: 471.8 on 1 and 504 DF, p-value: < 2.2e-16
```

```
(2024)Assignment2-R - Jupyter Notebook
In [12]:
               lm.fit=lm(medv~age ,data=Boston)
            1
            2
               summary(lm.fit)
          Call:
          lm(formula = medv ~ age, data = Boston)
          Residuals:
                         10 Median
              Min
                                           30
                                                   Max
          -15.097 -5.138 -1.958
                                       2.397
                                               31.338
          Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
                                                         <2e-16 ***
          (Intercept) 30.97868
                                     0.99911
                                               31.006
                        -0.12316
                                     0.01348
                                               -9.137
                                                         <2e-16 ***
          age
          Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
          Residual standard error: 8.527 on 504 degrees of freedom
          Multiple R-squared: 0.1421,
                                              Adjusted R-squared: 0.1404
          F-statistic: 83.48 on 1 and 504 DF, p-value: < 2.2e-16
          Interprete the results. Your interpretation of the results goes here!
          Obtain a confidence interval for the coefficient estimates for the individual models.
In [13]:
               lm.fit=lm(medv~lstat ,data=Boston)
            2
               confint(lm.fit)
          A matrix: 2 × 2 of type dbl
                        2.5 %
                                 97.5 %
           (Intercept) 33.448457 35.6592247
               Istat -1.026148 -0.8739505
```

In [14]: lm.fit=lm(medv~rm ,data=Boston) 1 confint(lm.fit)

A matrix: 2 × 2 of type dbl

2.5 % 97.5 % -39.876641 -29.464601 (Intercept) 8.278855 9.925363 rm

In [15]: lm.fit=lm(medv~age ,data=Boston) confint(lm.fit)

A matrix: 2 × 2 of type dbl

2.5 % 97.5 % (Intercept) 29.0157516 32.94160395 -0.1496469 -0.09667852 age

Interprete the results. Your interpretation of the results goes here!

Use the simple linear regression models

Predict the medv response values for some selected predictor values. Calculate the prediction intervals for these values.

```
In [16]: 1 lm.fit=lm(medv~lstat,data=Boston)
2 predict(lm.fit,data.frame(lstat=c(5,10,15)), interval ="prediction")
```

A matrix: 3 × 3 of type dbl

	fit	lwr	upr
1	29.80359	17.565675	42.04151
2	25.05335	12.827626	37.27907
3	20.30310	8.077742	32.52846

```
In [17]: 1 lm.fit=lm(medv~rm,data=Boston)
2 predict(lm.fit,data.frame(rm=c(5,6.5,8)), interval ="prediction")
```

A matrix: 3×3 of type dbl

	fit	lwr	upr
1	10.83992	-2.214474	23.89432
2	24.49309	11.480391	37.50578
3	38.14625	25.058353	51.23415

```
In [18]: 1 lm.fit=lm(medv~age,data=Boston)
    predict(lm.fit,data.frame(age=c(25,50,75)), interval ="prediction"
```

A matrix: 3 × 3 of type dbl

	fit	lwr	upr
1	27.89961	11.090368	44.70885
2	24.82054	8.043748	41.59734
3	21.74147	4.971031	38.51192

Interprete the results. Your interpretation of the results goes here!

Perform multiple linear regressions

Fit medv as response with the predictors selected before altogether.

```
In [19]:
             lm.fit=lm(medv~lstat+rm+age ,data=Boston)
           1
           2
             summary(lm.fit)
         Call:
         lm(formula = medv ~ lstat + rm + age, data = Boston)
         Residuals:
             Min
                      10 Median
                                       30
                                              Max
         -18.210 \quad -3.467 \quad -1.053
                                    1.957 27.500
         Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
         (Intercept) -1.175311
                                 3.181924 -0.369
                                                      0.712
                                 0.054357 -12.298
                                                     <2e-16 ***
         lstat
                     -0.668513
                                 0.454306 11.048
                                                     <2e-16 ***
         rm
                      5.019133
         age
                      0.009091
                                 0.011215
                                            0.811
                                                      0.418
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 5.542 on 502 degrees of freedom
```

Adjusted R-squared: 0.6369

Interprete the results. Your interpretation of the results goes here!

F-statistic: 296.2 on 3 and 502 DF, p-value: < 2.2e-16

Fit medv as response with all available predictors altogether.

Multiple R-squared: 0.639,

```
In [20]:
             lm.fit=lm(medv~. ,data=Boston)
          1
          2
             summary(lm.fit)
         Call:
         lm(formula = medv \sim ., data = Boston)
         Residuals:
                         Median
             Min
                      10
                                      30
                                             Max
         -15.595 \quad -2.730 \quad -0.518
                                   1.777
                                          26.199
         Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
         (Intercept)
                      3.646e+01 5.103e+00
                                             7.144 3.28e-12 ***
         crim
                     -1.080e-01
                                 3.286e-02
                                            -3.287 0.001087 **
         zn
                      4.642e-02
                                1.373e-02
                                             3.382 0.000778 ***
         indus
                      2.056e-02
                                6.150e-02
                                             0.334 0.738288
                                 8.616e-01
                      2.687e+00
                                             3.118 0.001925 **
         chas
         nox
                     -1.777e+01
                                 3.820e+00
                                            -4.651 4.25e-06 ***
                      3.810e+00 4.179e-01
                                             9.116
                                                    < 2e-16 ***
         rm
                                             0.052 0.958229
         age
                      6.922e-04
                                 1.321e-02
                     -1.476e+00
                                 1.995e-01
                                            -7.398 6.01e-13 ***
         dis
         rad
                      3.060e-01
                                 6.635e-02
                                             4.613 5.07e-06 ***
         tax
                     -1.233e-02 3.760e-03
                                            -3.280 0.001112 **
                     -9.527e-01
                                1.308e-01
                                            -7.283 1.31e-12 ***
         ptratio
         black
                      9.312e-03
                                 2.686e-03
                                             3.467 0.000573 ***
         lstat
                     -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
         Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 4.745 on 492 degrees of freedom
         Multiple R-squared: 0.7406,
                                         Adjusted R-squared:
         F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16
```

Interprete the results. Your interpretation of the results goes here!

There is a binary version available but the source version is late r:

```
binary source needs_compilation corrplot 0.89 0.92 FALSE
```

installing the source package 'corrplot'

Check the correlation between the predictors.

In R, we need to download and install a library and an external function first.

In [22]: 1 rquery.cormat(Boston)

corrplot 0.92 loaded

```
$r
                                                                       cha
        ptratio
                  lstat
                           age indus
                                        nox
                                               crim
                                                         rad
                                                                 tax
s black
ptratio
               1
lstat
            0.37
                       1
            0.26
                     0.6
                              1
age
                          0.64
indus
            0.38
                     0.6
                                    1
            0.19
                    0.59
                          0.73
                                 0.76
nox
                                           1
crim
            0.29
                    0.46
                          0.35
                                 0.41
                                       0.42
                                                  1
                                       0.61
rad
            0.46
                    0.49
                          0.46
                                  0.6
                                               0.63
                          0.51
            0.46
                    0.54
                                 0.72
                                       0.67
                                               0.58
                                                        0.91
                                                                   1
tax
chas
           -0.12 -0.054 0.087 0.063 0.091 -0.056 -0.0074 -0.036
1
black
           -0.18
                  -0.37 - 0.27 - 0.36 - 0.38
                                              -0.39
                                                       -0.44
                                                               -0.44
                                                                      0.04
9
      1
           -0.36
                  -0.61 - 0.24 - 0.39 - 0.3
                                              -0.22
                                                       -0.21
                                                               -0.29
                                                                      0.09
rm
1
   0.13
medv
           -0.51
                  -0.74 - 0.38 - 0.48 - 0.43
                                              -0.39
                                                       -0.38
                                                               -0.47
                                                                       0.1
8
   0.33
zn
           -0.39
                  -0.41 - 0.57 - 0.53 - 0.52
                                               -0.2
                                                       -0.31
                                                               -0.31 - 0.04
3
   0.18
dis
           -0.23
                    -0.5 - 0.75 - 0.71 - 0.77
                                              -0.38
                                                       -0.49
                                                              -0.53 - 0.09
9
   0.29
           rm medv
                      zn dis
ptratio
lstat
age
indus
nox
crim
rad
tax
chas
black
rm
            1
medv
          0.7
                 1
zn
         0.31 0.36
                       1
         0.21 0.25 0.66
                           1
dis
$p
        ptratio
                    lstat
                               age
                                     indus
                                                 nox
                                                         crim
                                                                    rad
tax
ptratio
               0
lstat
           3e-18
                        0
         2.3e-09 2.8e-51
age
                                 0
        3.8e-19 1.4e-51 8.4e-61
indus
        1.9e-05
                   6e-49 7.5e-86 7.9e-98
nox
        2.9e-11 2.7e-27 2.9e-16 1.5e-21
                                             3.8e-23
crim
         1.8e-28 9.9e-32 2.4e-27 8.4e-50
                                             3.3e-53 2.7e-56
rad
        5.7e-28 2.6e-40 2.6e-34
                                     3e-82
                                             1.1e-66 2.4e-47 4.1e-195
tax
0
chas
          0.0062
                     0.23
                            0.052
                                      0.16
                                                0.04
                                                         0.21
                                                                   0.87
0.42
           6e-05 1.7e-17 3.9e-10 1.2e-16
                                             7.8e-19 2.5e-19
                                                                6.6e-26 1.
black
4e-25
         1.6e-16
                    1e-53 4.5e-08 5.3e-20
                                             3.8e-12 6.3e-07
rm
                                                                1.9e-06 2.
1e-11
medv
        1.6e-34 5.1e-88 1.6e-18 4.9e-31
                                             7.1e-24 1.2e-19
                                                                5.5e-19 5.
6e-29
zn
        5.3e-20 2.9e-22 7.6e-45 1.3e-38
                                             7.2e-36 5.5e-06
                                                                  7e-13 4.
4e-13
```

```
dis
        1.2e-07 6.4e-33 9.9e-92 3.6e-78 4.2e-100 8.5e-19 1.4e-32
1e-38
           chas
                   black
                               rm
                                     medv
                                                zn dis
ptratio
lstat
age
indus
nox
crim
rad
tax
chas
               0
black
           0.27
rm
           0.04
                 0.0039
        7.4e-05 1.3e-14 2.5e-74
medv
           0.34 7.2e-05 6.9e-13 5.7e-17
zn
          0.026 2.3e-11 3.2e-06 1.2e-08 9.7e-66
dis
$sym
        ptratio lstat age indus nox crim rad tax chas black rm medv
zn dis
ptratio 1
lstat
                 1
age
                       1
indus
                           1
nox
                                  1
crim
                                      1
rad
                                           1
tax
                                                1
                                           *
                                                    1
chas
black
                                                         1
                                                                1
rm
medv
                                                                   1
zn
1
dis
   1
attr(,"legend")
[1] 0 ' ' 0.3 '.' 0.6 ',' 0.8 '+' 0.9 '*' 0.95 'B' 1
```


Interprete the results. Your interpretation of the results goes here!

Use the multiple linear regression model

Select some predictor values.

```
In [23]:
```

- 1 | lstatC=c(5,10,15)
- 2 rmC=c(5,6.5,8)
- 3 selected_predictor_values = expand.grid(lstat = lstatC, rm = rmC)
- 4 selected_predictor_values

A data.frame: 9

× 2

Istat	rm
<dbl></dbl>	<dbl></dbl>
5	5.0
10	5.0
15	5.0
5	6.5
10	6.5
15	6.5
5	8.0
10	8.0
15	8.0

Predict the medv response values for some selected predictor values. Calculate the prediction intervals for these values.

In [24]:

- 1 | lm.fit=lm(medv~lstat+rm ,data=Boston)
- 2 predict(lm.fit, selected_predictor_values, interval ="prediction")

A matrix: 9 × 3 of type dbl

	fit	lwr	upr
1	20.90388	9.889729	31.91802
2	17.69208	6.722152	28.66202
3	14.48029	3.537875	25.42271
4	28.54606	17.635923	39.45619
5	25.33427	14.437027	36.23150
6	22.12247	11.221204	33.02374
7	36.18824	25.225479	47.15100
8	32.97645	21.995024	43.95787
9	29.76466	18.747835	40.78148

Interprete the results. Your interpretation of the results goes here!