New Apartment... 9'5" 5'8" 10'5" Front Storage 57 sq ft Porch Walk-in Utilities Bedrm 3 78 sq ft Bedrm 4 Closet 11.1" 69 sq ft 78 sq ft Entry 72 sq ft Bathroom 1 48 sq ft Kitchen 9,8 85 sq ft Hallway 61 sq ft Bedroom 1 137 sq ft 14'10" Dining Room 257 sq ft Bathroom 2 83 sq ft 9'2" Sitting Room 145 sq ft 6,6 9,6 Balcony 15'1" 17'1" 17'1"

Wireability Graph

"Cost" of Wiring

MST: Kruskal's Algorithm (1956)

- Draw the graph without any edges (so just the vertices).
- Sort all the edges, by weight, in ascending order.
- While there are edges left and we don't yet have an MST...
 - Select the smallest edge
 - Check if adding this edge to the graph would create a cycle
 - o If no cycle, then add the edge to the graph
 - 。 Repeat for the next smallest edge

BC 2 DE 2 AC 3 CC 4 BELL SK2 BG6 BG6 BK2 AGG AGID AGA

Your turn...

- Draw the graph without any edges (so just the vertices).
- Sort all the edges, by weight, in ascending order.
- While there are edges left and we don't yet have an MST...
 - Select the smallest edge
 - o Check if adding this edge to the graph would create a cycle
 - If no cycle, then add the edge to the graph
 - Repeat for the next smallest edge

MST: Prim's Algorithm (1957)

- Draw the graph without any edges (so just the vertices).
- Choosing an arbitrary vertex, add its smallest edge.
- While we don't yet have an MST...
 - $\circ\,$ Add the edge with the shortest distance from vertices in the MST to a vertex that is not yet in the MST.

- Draw the graph without any edges (so just the vertices).
- Choosing an arbitrary vertex, add its smallest edge.
- While we don't yet have an MST...
 - $\circ~$ Add the edge with the shortest distance from vertices in the MST to a vertex that is not yet in the MST.

Shortest - Nath

Dijkstra's Algorithm

DOUS

Node	Cost) pre
A	0	
\mathcal{L}	3	A
B	5	C
G	7	_
F	8	\subset
D	1.1	3
E	13	D

Wol4

Node	Cost	pres
1		
	O	
B	\$1×5	AC
	$\sqrt{3}$	A
(A)	4 22 ll	4 B
	\$ 7513	AFO
F	V §	
10	\$ 7	C
0	7	

$$A-C-B-D-E$$

Your Turn...

Matrix: Advaconcy Matrix

ABCOEF6

ABCOEF6

ABCOEF6

BBCOEF6

ABCOEF6

ABCOEF6

ABCOEF6

ABCOEF6

