Optimization Theory and Methods

Prof. Xiaoe Ruan

Email: wruanxe@xjtu.edu.cn

Tel:13279321898

2019, Fall

Chapter7. Nonlinearly Constrained Optimizations

Feature of Methods and Assessment

Penalty Function Methods

Lagrange Function Methods

Feasible Point Method and Generalized Reduced Gradient

Methods*

Sequential Quadratic Programming Method*

Nonlinearly Constrained Optimization

$$\begin{cases} \min f(x), & \text{s. t.} \\ c_i(x) = 0, i \in E = \{1, 2, \dots, m_e\}, \\ c_i(x) \ge 0, i \in I = \{m_e + 1, \dots, m\}. \end{cases}$$

At least one of functions $c_i(x) \in R, i = 1, \dots, m$, is nonlinear.

$$D = \{x | c_i(x) = 0, i \in E, c_i(x) \ge 0, i \in I\}$$

-- Constraint Set, Constraint Domain or Feasible Domain.

Optimization Strategy:

Construct iterative sequence $x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}$. s.t.

(1)
$$f(x^{(k)} + \alpha_k d^{(k)}) < f(x^{(k)})$$
. (2) $x^{(k)} + \alpha_k d^{(k)} \in D$.

1. Features of Methods and Assessment

(1) Elimination Method

$$\min_{x \in D} f(x) \Longrightarrow$$

 $\min_{x \in D} f(x) \longrightarrow \min_{\hat{x} \in R^{n-m}} F(\hat{x}) \text{ Unconstrained optimization}$

Assessment:

Expectation index:

(2) Grid Method, Random Test Method

Generate test points and compare values of the objective function at the test points and testify constraint.

Motivational Problem:

"Maximize the following "peaks" function"

$$z = f(x,y)$$

$$= 3(1-x)^{2} e^{-x^{2}-(y+1)^{2}} -10\left(\frac{x}{5}-x^{3}-y^{5}\right) e^{-x^{2}-y^{2}} -\frac{1}{3}e^{-(x+1)^{2}-y^{2}}$$

Derivatives of the "peaks" function

- $dz/dx = -6*(1-x)*exp(-x^2-(y+1)^2) 6*(1-x)^2*x*exp(-x^2-(y+1)^2) 10*(1/5-3*x^2)*exp(-x^2-y^2) + 20*(1/5*x-x^3-y^5)*x*exp(-x^2-y^2) 1/3*(-2*x-2)*exp(-(x+1)^2-y^2)$
- dz/dy = 3*(1-x)^2*(-2*y-2)*exp(-x^2-(y+1)^2) +
 50*y^4*exp(-x^2-y^2) + 20*(1/5*x-x^3-y^5)*y*exp(-x^2-y^2) + 2/3*y*exp(-(x+1)^2-y^2)
- d(dz/dx)/dx = 36*x*exp(-x^2-(y+1)^2) 18*x^2*exp(-x^2-(y+1)^2) 24*x^3*exp(-x^2-(y+1)^2) + 12*x^4*exp(-x^2-(y+1)^2) + 72*x*exp(-x^2-y^2) 148*x^3*exp(-x^2-y^2) 20*y^5*exp(-x^2-y^2) + 40*x^5*exp(-x^2-y^2) + 40*x^2*exp(-x^2-y^2)*y^5 2/3*exp(-(x+1)^2-y^2) 4/3*exp(-(x+1)^2-y^2)*x^2 8/3*exp(-(x+1)^2-y^2)*x
- d(dz/dy)/dy = -6*(1-x)^2*exp(-x^2-(y+1)^2) + 3*(1-x)^2*(-2*y-2)^2*exp(-x^2-(y+1)^2) + 200*y^3*exp(-x^2-y^2)-200*y^5*exp(-x^2-y^2) + 20*(1/5*x-x^3-y^5)*exp(-x^2-y^2) 40*(1/5*x-x^3-y^5)*y^2*exp(-x^2-y^2) + 2/3*exp(-(x+1)^2-y^2)-4/3*y^2*exp(-(x+1)^2-y^2)
- → An analytic solution is not easily found in a reasonable time span.

Genetic Algorithms

Substitution

GA: Operators Example

Operators Example

The Problem is to Maximize $f(x) = x^2$

Number	String	Fitness	% of the Total
1	01101	169	14.4
2	11000	576	49.2
3	01000	64	5.5
4	10011	361	30.9
Total		1170	100.0

1.- Roulette Wheel Selection

2.- One-Point Crossover (SPX)

P_c ∈ [0.6..1.0]
parents offspring
01|101(169) 01000(64)
11|000(576) 11101(841)

3.- Mutation

 $P_{\mathbf{m}} \in \left[0.001 \; ... \; 0.1\right]$

Mutate the first allele

Apply a Genetic Algorithm

GA process: Start with multiple feasible solutions and apply GA repeatedly to obtain a solution.

Initial population

5th generation

10th generation

(3) Generalized Reduced Gradient Method Rosen Gradient Method

$$\begin{cases} \min f(x), & \text{s. t.} \\ c_i(x) = 0, i \in E = \{1, 2, \dots, m_e\}, \\ c_i(x) \ge 0, i \in I = \{m_e + 1, \dots, m\}. \end{cases}$$

Assessment:

Feasibility:

Accuracy:

Convergence:

Elimination Method

Reduced Gradient Method

Projected Gradient Method

Active Set Method

(4) Penalty Function Method

$$\begin{cases} \min f(x), & \text{s. t.} \\ c_i(x) = 0, i \in E = \{1, 2, \dots, m_e\}, \\ c_i(x) \ge 0, i \in I = \{m_e + 1, \dots, m\}. \end{cases}$$

Feasibility:

Accuracy:

Convergence:

$$\min_{x \in R^n} p(x,\sigma) = f(x) + \sigma \overline{p}(x),$$

where

$$\overline{p}(x) = \sum_{i=1}^{m_e} |c_i(x)|^2 + \sum_{i=m_e+1}^{m} |min(0, c_i(x))|^2$$
 --Penalty Function

(5) Sequential Linear Programming Method, **Sequential Quadratic Programming Method**

$$\begin{cases} \min f(x), & \text{s. t.} \\ c_i(x) = 0, i \in E = \{1, 2, \cdots, m_e\}, \\ c_i(x) \geq 0, i \in I = \{m_e + 1, \cdots, m\}. \end{cases}$$
 Feasibility:

Assessment:

Feasibility:

Convergence:

$$\begin{cases} \min \ d^{\mathsf{T}} \nabla f\left(x^{(k)}\right) + \frac{1}{2} d^{\mathsf{T}} W\left(x^{(k)}, \lambda^{(k)}\right) d, & \text{s. t.} \\ c_{i}\left(x^{(k)}\right) + d^{\mathsf{T}} \nabla c_{i}\left(x^{(k)}\right) = 0, i \in E = \{1, 2, \dots, m_{e}\}, \\ c_{i}\left(x^{(k)}\right) + d^{\mathsf{T}} \nabla c_{i}\left(x^{(k)}\right) \ge 0, i \in I = \{m_{e} + 1, \dots, m\}. \end{cases}$$

2. Penalty Function Method

$$\begin{cases} \min \ f(x), & \text{s. t.} \end{cases} & \text{If } x \text{ is feasible point,} \\ c_i(x) = 0, i \in E = \{1, 2, \cdots, m_e\}, & \text{then } c_i(x) = 0, i \in E, \\ c_i(x) \geq 0, i \in I = \{m_e + 1, \cdots, m\}. & c_i(x) \geq 0, i \in I. \end{cases}$$

Otherwise, there exists at least an index i or J,

s.t.
$$c_i(x) \neq 0, i \in E$$
, or $c_j(x) < 0, j \in I$.

Denote
$$\bar{p}(x) = \sum_{i=1}^{m_e} |c_i(x)|^2 + \sum_{i=m_e+1}^{m} |min(0, c_i(x))|^2$$
.

-- Degree of constraint violation (Constraint Violation Function)

Target: With the processing of iteration, it forces the iterative point approaching to feasible domain and eventually satisfies constraints and thus achieves the minimizer.

Let
$$p(x,\sigma)=f(x)+\sigma \overline{p}(x)$$
 --Penalty Fcn, σ --Penalty factor

For
$$\sigma >> 1$$
, if $p(x^*(\sigma)) = \min_{x \in R^n} p(x, \sigma)$ and $x^*(\sigma) \in D$, then

$$\overline{p}(x^*(\sigma)) = 0$$
. Thus $x^*(\sigma)$ is the minimizer of the original pbm.

i.e.
$$f(x^*(\sigma)) = p(x^*(\sigma)) = \min_{x \in \mathbb{R}^n} p(x, \sigma) \le f(x), \quad \forall x \in \mathbb{D}.$$

In usual, choose
$$\sigma_1 < \sigma_2 < \cdots < \sigma_k \rightarrow \infty$$
.

Solve
$$\min_{x \in R^n} p(x, \sigma_k) = f(x) + \sigma_k \overline{p}(x)$$
.

---Sequential Unconstrained Minimization Technique (SUMT)

As
$$\sigma_k \overline{p}(x) \rightarrow \infty, (\overline{p}(x) \neq 0, k \rightarrow \infty)$$
, thus

if
$$p(x^*(\sigma_k)) = \min_{x \in R^n} p(x, \sigma_k)$$
, then $\bar{p}(x^*(\sigma_k)) \to 0, (k \to \infty)$.

This implies
$$\lim_{k \to \infty} x^* (\sigma_{k_i}) = x^*$$
 is the minimizer of the original pbm.

Th.1. Given
$$p(x,\sigma)=f(x)+\sigma \overline{p}(x)$$
 and $\sigma_{k+1}>\sigma_k>0$.

If
$$p(x^*(\sigma_k)) = \min_{x \in R^n} p(x, \sigma_k), p(x^*(\sigma_{k+1})) = \min_{x \in R^n} p(x, \sigma_{k+1}),$$

then
$$p(x^*(\sigma_{k+1}), \sigma_{k+1}) \ge p(x^*(\sigma_k), \sigma_k)$$
 --Penalty fcn increasing

$$\overline{p}(x^*(\sigma_{k+1})) \le \overline{p}(x^*(\sigma_k))$$
 --Constraint violation descending

$$f(x^*(\sigma_{k+1})) \ge f(x^*(\sigma_k))$$
 --Objective fcn increasing

From discussion above, if
$$\overline{p}(x^{(0)}) > 0$$
 then $x^*(\sigma_k) \notin D$,

but
$$\|x^*(\sigma_k) - D\| \to 0$$
, and $\lim_{k_i \to \infty} x^*(\sigma_{k_i}) = x^*$. Therefore

$$p(x,\sigma)=f(x)+\sigma \overline{p}(x)$$
 ---Exterior Point Penalty Fcn

SUMT is Exterior Point Penalty SUMT or

Exterior Point Penalty Function Method

Comment on Exterior Point SUMT

Feasibility:

Accuracy:

 $\lim_{k_i \to \infty} x^* \left(\sigma_{k_i}\right) = x^*$ is theoretically the minimizer of the original pbm.

But for finite iteration index,

 $x^*(\sigma_k)$ dose not rigorously guarantee the constraints.

Convergence: Linearly convergent.

Drawbacks: 1. Optimization of unconstrained penalty fcn method possibly has no bounded minimizer.

2. While σ_k is increasing, the unconstrained optimization may become ill.

Generalization: $\overline{p}(x) = \sum_{i=1}^{m_e} |c_i(x)|^{\alpha} + \sum_{i=m_e+1}^{m} |min(0,c_i(x))|^{\beta}$, $\alpha \ge 1, \beta \ge 1$.

Forms of violation fcns and SUMT are diverse.

Interior Point Penalty Function Method

$$\min_{x \in D} f(x), \quad D = \{x | c_i(x) \ge 0, i = 1, \dots, m\}. \quad \text{Denote}$$

$$D^0 = \{x | c_i(x) > 0, i = 1, \dots, m\}$$
 --Interior of Constraint Domain

Interior Point Penalty fcn:
$$p_I(x,\sigma)=f(x)+\sigma(t)\overline{p}_I(x)$$
,

satisfying (1)
$$\overline{p}_I(x), x \in D^0$$
 is continuous.

(2) If
$$\left\{x^{(k)}\right\} \in D^0$$
, $\lim_{k \to \infty} x^{(k)} = x_B$ and at least there exists i , s.t. $c_i\left(x_B\right) = 0$ makes $\bar{p}_I\left(x^{(k)}\right) \to +\infty(k \to \infty)$.

(3) $\sigma(t)$ is strictly monotonously increasing and

$$\lim_{k\to\infty}t_k=0 \text{ induces } \lim_{k\to\infty}\sigma(t_k)=0.$$

e.g.
$$p_{I}(x,\sigma) = f(x) + \sigma \sum_{i=1}^{m} \ln c_{i}(x)$$
. or $p_{I}(x,\sigma) = f(x) + \sigma \sum_{i=1}^{m} \frac{1}{c_{i}(x)}$

IPP-SUMT:

$$D = \left\{ x \middle| c_i(x) \ge 0, i = 1, \dots, m \right\}$$

$$D^{0} = \{x | c_{i}(x) > 0, i = 1, \dots, m\}$$

$$\forall x^{(0)} \in D^0, t_1 > 0, \ x^*(t_1) = \arg\min_{x \in D} p_I(x, \sigma(t_1))$$

$$0 < t_2 < t_1, x^{(0)} = x^*(t_1), \ x^*(t_2) = \arg\min_{x \in D} p_I(x, \sigma(t_2))$$

$$0 < t_{k+1} < t_k, x^{(0)} = x^*(t_k), \quad x^*(t_{k+1}) = \arg\min_{x \in D} p_I(x, \sigma(t_{k+1}))$$

$$\lim_{k_{i}\to\infty}x^{*}\left(t_{k_{i}}\right)=x^{*},s.t.f\left(x^{*}\right)=\min_{x\in D}f\left(x\right)$$

Th.2 Assume (a) f(x), $c_i(x)$, $i = 1, \dots, m$. continuous;

(b) IPP fcn:
$$p_I(x,\sigma(t))=f(x)+\sigma(t)\overline{p}_I(x)$$
,

(c)
$$A^* = \left\{ x^* \middle| f(x^*) = \min_{x \in D} f(x) \right\} \neq \emptyset$$
 is isolately compact;

(d)
$$A^* \cap D \neq \emptyset$$
. (e) $0 \leftarrow t_{k+1} < t_k < \cdots < t_1$. Then

(1) Exists a compact set S s.t. $A^* \subset S^0$, $\forall x \in D \cap S \setminus A^*$, $f(x) > f(x^*)$.

For properly small t_k , $x^*(t_k) = arg \min_{x \in S^0 \cap D^0} p_I(x, \sigma(t_k))$,

$$\lim_{k_i\to\infty}x^*\left(t_{k_i}\right)=x^*\in A^*.\qquad \text{If}\quad A^*\quad \text{bounded, then}\quad \lim_{k\to\infty}x^*\left(t_k\right)=x^*\in A^*.$$

(2)
$$\lim_{k\to\infty} \sigma(t_k) \overline{p}_I(x^*(t_k)) = 0.$$
 (3) $\lim_{k\to\infty} f(x^*(t_k)) = f(x^*).$

$$\lim_{k\to\infty} p_I\left(x^*\left(t_k\right),\sigma\left(t_k\right)\right) = f\left(x^*\right).$$

(5)
$$f(x^*(t_{k+1})) \le f(x^*(t_k))$$
. (6) $\overline{p}_I(x^*(t_{k+1})) \ge \overline{p}_I(x^*(t_k))$.

Comments on IPP SUMT:

Feasibility:

Accuracy: Sequence by IPP SUMT belongs to feasible domain.

Thus
$$\lim_{k_i \to \infty} x^* (\sigma_{k_i}) = x^*$$
 is the minimizer.

Convergence: Linearly convergent.

Drawbacks: 1.While $\sigma(t_k) \rightarrow 0$ optimization possibly becomes ill.

2. Unfeasible for equality constraint optimization.

Solvable strategies:

Hybrid Algorithm of combining IPP-SUMT with EPP-SUMT or Lagrange Fcn Method, etc.

3. Lagrange Function Method

Recall

NOEC:
$$\begin{cases} \min f(x), \text{ s. t.} \\ c_i(x) = 0, i = 1, \dots, m. \end{cases}$$

Let

$$L(x,\lambda) = f(x) - \sum_{i=1}^{m} \lambda_i c_i(x)$$

1-st-order Kuhn-Tucker Necessity Conditions:

Given x^* is the local minimizer of NOEC. $c_i(x)(i=1,\cdots,m)$

and f(x) are 1st-order continuously differentiable at x^*

If $SFD(x^*,d) = LFD(x^*,d)$, Then there exists

$$\lambda^* = \left(\lambda_1^*, \lambda_2^*, \cdots, \lambda_m^*
ight)^{\! \mathrm{T}}$$
 , s.t.

$$\nabla_{x}L(x^{*},\lambda^{*}) = \nabla f(x^{*}) - \sum_{i=1}^{m} \lambda_{i}^{*} \nabla c_{i}(x^{*}) = 0, i = 1, \dots, m.$$

Question: $L(x^*, \lambda^*)$ $\min_{x \in \mathbb{R}^n} L(x, \lambda^*)$

If
$$\nabla^2_{xx}L(x^*,\lambda^*)>0$$
, then $L(x^*,\lambda^*)=\lim_{x\in R^n}L(x,\lambda^*)$.

Construct
$$p(x, \lambda, \sigma) = f(x) - \sum_{i=1}^{m} \lambda_i c_i(x) + \frac{1}{2} \sigma \sum_{i=1}^{m} c_i(x)^2$$

Penalty Lagrange Fcn or Augmented Lagrange Fcn.

If χ^* is the local minimizer of NOEC, then

$$\nabla_{x}L(x^{*},\lambda^{*}) = \nabla f(x^{*}) - \sum_{i=1}^{m} \lambda_{i}^{*} \nabla c_{i}(x^{*}) = 0, \quad c_{i}(x^{*}) = 0, \quad i = 1,\dots, m.$$

Thus
$$\nabla_x p(x^*, \lambda^*, \sigma) = \nabla f(x^*) - \sum_{i=1}^m \lambda_i^* \nabla c_i(x^*) + \sigma \sum_{i=1}^m c_i(x^*) \nabla c_i(x^*) = 0.$$

$$\nabla_{xx}^{2} p\left(x^{*}, \lambda^{*}, \sigma\right) = \nabla^{2} f\left(x^{*}\right) - \sum_{i=1}^{m} \lambda_{i}^{*} \nabla^{2} c_{i}\left(x^{*}\right) + \sigma A\left(x^{*}\right) A\left(x^{*}\right)^{T}$$
$$= \nabla_{xx}^{2} L\left(x^{*}, \lambda^{*}\right) + \sigma A\left(x^{*}\right) A\left(x^{*}\right)^{T}$$

where
$$A(x^*) = \left[\nabla c_1(x^*) / \nabla c_2(x^*) / \cdots / \nabla c_m(x^*) \right].$$

$$\nabla_{x} p\left(x^{*}, \lambda^{*}, \sigma\right) = 0, \quad \nabla_{xx}^{2} p\left(x^{*}, \lambda^{*}, \sigma\right) = \nabla_{xx}^{2} L\left(x^{*}, \lambda^{*}\right) + \sigma A\left(x^{*}\right) A\left(x^{*}\right)^{T}.$$

(1) If
$$\forall 0 \neq d \in \mathbb{R}^n$$
, $A(x^*)^T d \neq 0$. then $A(x^*)A(x^*)^T$ PD.

Thus $\exists \sigma^* > 0$, s.t. for $\forall \sigma \geq \sigma^*$, $\nabla^2_{xx} p(x^*, \lambda^*, \sigma)$ PD.

(2) If
$$0 \neq d \in \mathbb{R}^n$$
, $A(x^*)^T d = 0$ and $d^T \nabla^2_{xx} L(x^*, \lambda^*) d > 0$, then $\nabla^2_{xx} p(x^*, \lambda^*, \sigma)$ PD.

From 2nd-order sufficiency, (1) and (2) guarantees

 x^* is the minimizer of multiplier penalty fcn $p(x,\lambda,\sigma)$

and
$$\begin{cases} p(x^*, \lambda^*, \sigma) = \min_{x \in R^n} p(x, \lambda, \sigma) \\ c_i(x^*) = 0, i = 1, \dots, m. \end{cases}$$

$$f(x^*) = \min_{x \in D} f(x)$$

$$\nabla L(x^*, \lambda^*) = 0, \nabla_{xx}^2 L(x^*, \lambda^*) > 0;$$

$$\nabla^2_{xx} p(x^*, \lambda^*, \sigma) = 0,$$

$$\nabla^2_{xx} p(x^*, \lambda^*, \sigma) > 0, \sigma \ge \sigma^*.$$

$$\nabla_{xx}^{2} p(x^{*}, \lambda^{*}, \sigma) = 0,$$

$$\nabla_{xx}^{2} p(x^{*}, \lambda^{*}, \sigma) > 0, \sigma \ge \sigma^{*}.$$

For NOIC: min
$$f(x)$$
, s. t. $c_i(x) \ge 0$, $i = 1, \dots, m$.

$$\Rightarrow$$
 min $f(x)$, s. t. $c_i(x) - z_i^2 = 0$, $i = 1, \dots, m$.

Let
$$\tilde{p}(x,\lambda,z,\sigma) = f(x) - \sum_{i=1}^{m} \lambda_i (c_i(x) - z_i^2) + \frac{1}{2} \sigma \sum_{i=1}^{m} (c_i(x) - z_i^2)^2$$

$$\frac{\partial \tilde{p}(x,\lambda,z,\sigma)}{\partial z_i} = 0 \quad \Longrightarrow \quad z_i^2 = \frac{1}{\sigma} \max\{0,\sigma c_i(x) - \lambda_i\}.$$
 Augmented Lagrange Function

$$p_{I}(x,\lambda,\sigma) = f(x) + \frac{1}{2\sigma} \sum_{i=1}^{m} \left[\left(\max\left\{0,\sigma c_{i}(x) - \lambda_{i}\right\}\right)^{2} - \lambda_{i}^{2} \right]$$

For NOEIC: min
$$f(x)$$
, s. t. $c_i(x) = 0$, $i \in E$, $c_i(x) \ge 0$, $i \in I$.

Augmented Lagrange Function

$$p_{I}(x,\lambda,\sigma) = f(x) - \sum_{i=1}^{m_{e}} \lambda_{i} c_{i}(x) + \frac{1}{2} \sigma \sum_{i=1}^{m} c_{i}(x)^{2} + \frac{1}{2\sigma} \sum_{i=m_{e}+1}^{m} \left[\left(\max\{0, \sigma c_{i}(x) - \lambda_{i}\}\right)^{2} - \lambda_{i}^{2} \right]$$

Set of Graduate Students

Truly successful

Truly unsuccessful

Not-failed but also not-successful

Success Story is often personal whereas Failure Story is almost surely universal

Block Diagram of Reinforcement Learning System

- ◆ Immediate rewards: pleasure, fun or pain
- Long-term return: goal achievement=long term accumulation of rewards(+ or -)
- Value Function(state), optimal control policy

