StreamFlow: A System for Summarizing and Learning Over Industrial Big Data Streams

Mariam BARRY, Saad El JAOUHARI, Albert BIFET, Jacob MONTIEL, Eric GUERIZEC, Raja CHIKY

Contributions

StreamFlow - proposed data pipeline

Use sliding windows to summarize high-velocity data.

StreamFlow result - feature vector for machine learning tasks.

System deployed in a banking system.

Speedups in training time with good predictive performance.

Data

- -network traffic data streams from BNP Paribas
- -telecommunication logs

Related work

	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	StreamFlow
Streams Aggregates					✓	√					~
Multiple Streams Fusion	✓	/	/			✓	✓		/		/
Categories Time-alignment					✓						
Real-world Industrial Data		\checkmark	\checkmark	✓	\checkmark	\checkmark		✓	✓	✓	~
Industrial Big Data summurization					\checkmark		\checkmark	\checkmark	✓	✓	~
Online Machine Learning Applications		/						/	✓		~

Challenges

+ Big Data Processing

Collect asynchronous events from multiple data sources to get a structured information

Collecting High-velocity streams & Finetuning Logs pipelines, windowing strategy

Dealing with ressources allocation across distributed platform computing partial tasks

+ Big Data Summarizing

Optimizing big data clusters & partitioning ressources AlOps & IT process in Real-time

Industrialization of a online learning model which process events summaries incrementally

Updating a model with asynchronous batch & streams events using big data summaries

+ Big Data Interoperability

Building & scaling automated Data Pipelines connecting Big Data tools (ELK, Kafka, Flink..)

Serving (MLOps) online models to continuously learn from incremental vectors

Set up real-time data pipelines from streams collection, storage, modeling to predictions

Predictive performance improvement of linear regression model.

Impact of number of features on time.

Impact of number of sources on time.

	Linear Regression			CART / Decision Trees			Random Forest			ARF	HT
	ROCAUC	F1	Time (s)	ROCAUC	F1	Time (s)	ROCAUC	F1	Time (s)	F1	F1
BEFORE - Raw big data[~1.5M]	0.500	84.53	1.70	0.987	99.23	4.22	0.987	99.23	245.61	93.84	96.33
AFTER - Minute (Week) [~90K]	0.922	88.86	1.18	0.981	96.59	0.30	0.983	97.31	6.73	98.23	96.17

0.992

97.99

0.06

0.995

98.58

1.57

94.20

97.42

AFTER - Second (Day) [~20K]

0.978

95.18

0.54