

GCoT: Chain-of-Thought Prompt Learning for Graphs

ACM SIGKDD Conference on Knowledge Discovery and Data Mining August 3-7, 2025

Xingtong Yu

Chang Zhou

Zhongwei Kuai

Xinming Zhang

Outline

Introduction

• Proposed method: GCoT

• Experiments

Conclusions

Chain-of-Thought Prompting

• Existing text-free graph learning methods produce a "final answer" in a single inference step.

• Would introducing additional inference steps in a CoT style enhance the ability of pre-trained graph models to refine their predictions?

Figure 1: Illustration of chain-of-thought in NLP, standard graph prompts and graph chain-of-thought prompting.

Chain-of-Thought Prompting

• CoT prompt in NLP could be handcrafted.

• (input, chain of thought, output).

• CoT prompt in NLP serves as an example to guide the model in generating intermediate thoughts that lead to the final answer.

Figure 1: Illustration of chain-of-thought in NLP, standard graph prompts and graph chain-of-thought prompting.

Chain-of-Thought Prompting

 What should be the inference steps and thoughts for a graph task?

 How can we leverage a "thought" to learn prompts and guide the next-step inference?

Figure 1: Illustration of chain-of-thought in NLP, standard graph prompts and graph chain-of-thought prompting.

Outline

Introduction

• Proposed method: GCoT

• Experiments

Conclusions

Figure 2: Overall framework of GCoT.

Figure 2: Overall framework of GCoT.

Prompt-based inference $\{\mathbf{H}_k^1, \mathbf{H}_k^2, \cdots, \mathbf{H}_k^L\} = \text{GraphEncoder}(\mathbf{X}_k, G; \Theta_0)$

(b) Thought-conditioned prompt learning

Figure 2: Overall framework of GCoT.

Figure 2: Overall framework of GCoT.

Yu, et al. "GCoT: Chain-of-Thought Prompt Learning for Graphs." SIGKDD'25.

Thought-conditioned prompt learning

 $P_k = CondNet(T_k; \phi)$ $X_{k+1} = P_k \odot X_k$

Figure 2: Overall framework of GCoT.

Yu, et al. "GCoT: Chain-of-Thought Prompt Learning for Graphs." SIGKDD'25.

Outline

Introduction

• Proposed method: GCoT

• Experiments

Conclusions

Experiment

Table 2: Accuracy (%) evaluation of node and graph classification.

Methods	Node classification				Graph classification			
	Cora	Citeseer	Pubmed	Photo	MUTAG	COX2	BZR	PROTEINS
GCN	32.50 ± 14.21	26.36 ± 9.03	52.18 ± 8.70	60.18 ± 12.04	$\begin{vmatrix} 43.44 \pm 15.14 \\ 37.33 \pm 10.81 \end{vmatrix}$	50.95 ± 23.48	47.25 ± 16.59	40.28 ± 0.03
GAT	31.00 ± 16.22	27.71 ± 8.74	50.02 ± 8.88	51.79 ± 12.85		50.58 ± 26.16	46.55 ± 16.57	40.39 ± 0.04
DGI/InfoGraph	54.11 ± 9.60	45.00 ± 9.19	47.46 ± 12.19	58.89 ± 10.97	53.17 ± 17.29	53.82 ± 14.19	49.33 ± 15.11	52.51 ± 10.29
GraphCL	51.96 ± 9.43	43.12 ± 9.61	46.80 ± 9.04	57.78 ± 11.31	54.92 ± 17.09	53.81 ± 14.21	49.73 ± 14.66	53.81 ± 8.97
ProG	50.59 ± 14.64	43.17 ± 8.49 43.11 ± 8.80 43.28 ± 8.82 $\underline{45.34} \pm 10.53$	63.07 ± 11.96	66.50 ± 9.46	51.99 ± 4.50	53.45 ± 15.01	53.52 ± 11.97	52.73 ± 6.57
GPF	57.60 ± 13.88		55.63 ± 10.96	65.29 ± 10.07	56.55 ± 13.95	54.16 ± 14.07	48.65 ± 13.96	53.05 ± 7.62
GPF+	57.42 ± 13.87		57.16 ± 10.99	65.07 ± 10.01	56.81 ± 12.93	55.24 ± 13.29	50.83 ± 19.74	54.58 ± 8.70
GraphPrompt	54.25 ± 9.38		63.11 ± 10.01	$\underline{66.62} \pm 9.90$	55.44 ± 12.56	54.34 ± 14.77	54.59 ± 10.52	53.80 ± 7.93
GCoT	59.67 ± 15.51	46.21 ± 8.78	64.43 ± 9.96	67.16 ± 10.46	58.75 ± 15.42	56.26 ± 15.52	58.03 ± 23.44	56.24 ± 8.60

Best results are **bolded** and runner-up results are <u>underlined</u>.

Experiment

Table 2: Accuracy (%) evaluation of node and graph classification.

Methods	Node classification				Graph classification			
	Cora	Citeseer	Pubmed	Photo	MUTAG	COX2	BZR	PROTEINS
GCN GAT	$\begin{array}{c c} 32.50 \pm 14.21 \\ 31.00 \pm 16.22 \end{array}$	26.36 ± 9.03 27.71 ± 8.74	52.18 ± 8.70 50.02 ± 8.88	60.18 ± 12.04 51.79 ± 12.85	$\begin{vmatrix} 43.44 \pm 15.14 \\ 37.33 \pm 10.81 \end{vmatrix}$	50.95 ± 23.48 50.58 ± 26.16	47.25 ± 16.59 46.55 ± 16.57	40.28 ± 0.03 40.39 ± 0.04
DGI/InfoGraph GraphCL	54.11 ± 9.60 51.96 ± 9.43	45.00 ± 9.19 43.12 ± 9.61	47.46 ± 12.19 46.80 ± 9.04	58.89 ± 10.97 57.78 ± 11.31	53.17 ± 17.29 54.92 ± 17.09	53.82 ± 14.19 53.81 ± 14.21	49.33 ± 15.11 49.73 ± 14.66	52.51 ± 10.29 53.81 ± 8.97
ProG GPF GPF+ GraphPrompt	50.59 ± 14.64 57.60 ± 13.88 57.42 ± 13.87 54.25 ± 9.38	43.17 ± 8.49 43.11 ± 8.80 43.28 ± 8.82 $\underline{45.34} \pm 10.53$	63.07 ± 11.96 55.63 ± 10.96 57.16 ± 10.99 $\underline{63.11} \pm 10.01$	66.50 ± 9.46 65.29 ± 10.07 65.07 ± 10.01 $\underline{66.62} \pm 9.90$	51.99 ± 4.50 56.55 ± 13.95 $\underline{56.81} \pm 12.93$ 55.44 ± 12.56	53.45 ± 15.01 54.16 ± 14.07 55.24 ± 13.29 54.34 ± 14.77	53.52 ± 11.97 48.65 ± 13.96 50.83 ± 19.74 $\underline{54.59} \pm 10.52$	52.73 ± 6.57 53.05 ± 7.62 54.58 ± 8.70 53.80 ± 7.93
GCoT	59.67 ± 15.51	46.21 ± 8.78	64.43 ± 9.96	67.16 ± 10.46	58.75 ± 15.42	56.26 ± 15.52	58.03 ± 23.44	56.24 ± 8.60

Best results are **bolded** and runner-up results are <u>underlined</u>.

Experiment

Figure 3: Impact of labeled data size (number of shots) on node and graph classification.

Table 3: Ablation study on the effects of key components.

Methods	Node clas Cora	sification Pubmed	Graph classification MUTAG PROTEINS		
	Cora	r ubilieu	MOTAG	FROTEINS	
GCoT\CoT	56.65±13.97	62.80±10.08	56.49±16.61	53.40±6.66	
GCoT-L1	57.18±14.34	63.31 ± 10.05	56.54±14.12	54.71±8.57	
GCoT-L2	57.00±14.48	63.20 ± 10.08	57.68±13.84	54.77±8.81	
GCoT-L3	57.01±14.66	63.33 ± 10.05	57.85±16.10	56.22 ± 8.45	
GCoT	59.67 ±15.51	64.43 ± 9.96	58.75 ±15.42	56.24 ±8.60	

Yu, et al. "GCoT: Chain-of-Thought Prompt Learning for Graphs." SIGKDD'25.

Conclusions

• We hypothesized that multi-step inference could be useful to graph prompt learning

• We proposed GCoT, a CoT-style prompt learning framework that mimics CoT in NLP.

• Experiments showed promising results compared to traditional single-step prompt methods on graphs.

Thank you! Questions?

• GCoT paper & github repo:

GCoT: Chain-of-Thought Prompt Learning for Graphs

Xingtong Yu, Chang Zhou, Zhongwei Kuai, Xinming Zhang, Yuan Fang

https://arxiv.org/pdf/2502.08092

Introduction

We provide the code (in pytorch) and datasets for our paper "GCoT: Chain-of-Thought Prompt Learning for Graphs" accepted by SIGKDD 2025.

https://github.com/Eric-Kuai/GCoT/tree/python