Chapitre 10. Polynômes

Dans tout ce chapitre, on fixe un corps K. Les éléments de K sont appelés des scalaires.

1 Généralités

1.1 Idée

Un polynôme à coefficients dans K est une expression de la forme $\sum_{k=0}^d a_k X^k$ où $a_0, \dots, a_d \in K$

On dit que *X* est l'indéterminée.

L'ensemble de ces polynômes est noté K[X]

1.2 Définition formelle

On va "encoder" un polynôme par la "liste" de ses coefficients.

Définition 1.1. Une suite $(a_n)_{n\in\mathbb{N}}\in K^{\mathbb{N}}$ est dite <u>presque nulle</u> si $\exists d\in\mathbb{N}: \forall n>d$, $a_n=0$ On note $K^{(\mathbb{N})}$ l'ensemble des suites presque nulles.

Définition 1.2. Un polynôme à coefficients dans K est une suite presque nulle $(a_n)_{n\in\mathbb{N}}\in K^{(\mathbb{N})}$

Notation: On note:

$$\overline{1 = 1_{K[X]}} = X^0 = (1, 0, 0, 0, ...)$$

X = (0, 1, 0, 0, ...) et pour tout $k \in \mathbb{N}$, $X^k = (0, 0, ..., 0, 1, 0, 0, ...)$ (position numéro k)

Plus précisément, $X^k = (\delta_{n,k})_{n \in \mathbb{N}}$

On peut maintenant écrire $\sum\limits_{k=0}^d a_k X^k$ le polynôme $(a_0,a_1,a_2,\ldots,a_d,0,0,\ldots)$

On note K[X] l'ensemble de tous les polynômes à coefficients dans K

On note coeff_k : $K[X] \to K$ la fonction qui associe à tout polynôme $P = (a_n)_{n \in \mathbb{N}}$ son coefficient a_k (le coefficient devant X^k)

1.3 Opérations algébriques

Définition 1.3. Soit $P, Q \in K[X]$

On définit P + Q et $PQ \in K[X]$ par l'assertion suivante :

$$\forall n \in \mathbb{N}, \begin{cases} \operatorname{coeff}_n(P+Q) = \operatorname{coeff}_n(P) + \operatorname{coeff}_n(Q) \\ \operatorname{coeff}_n(PQ) = \sum_{k=0}^n \operatorname{coeff}_k(P) \operatorname{coeff}_{n-k}(Q) \end{cases}$$

1

Théorème 1.4. Muni de ces deux opérations, K[X] est un anneau commutatif.

1.4 Évaluation, fonction polynômiale

Définition 1.5. Soit $P \in K[X]$ et $z \in K$

On définit <u>l'évaluation de P en z</u>: $ev_z(P) = P(z) = \sum_{k=0}^{d} a_k z^k$

où l'on a noté $P = \sum_{k=0}^{d} a_k X^k$

Proposition 1.6. Soit $z \in K$

Alors $\operatorname{ev}_z: K[X] \to K$ est un morphisme d'anneaux.

Définition 1.7. La fonction polynômiale associée à P est \widehat{P} : $\begin{cases} K \to K \\ z \mapsto P(z) \end{cases}$

1.5 Composition

Définition 1.8. Soit
$$P = \sum_{k=0}^{d} a_k X^k$$
 et $Q \in K[X]$

On définit la composée
$$P \circ Q = P(Q) = \sum_{k=0}^{d} a_k Q^k \in K[X]$$

Proposition 1.9.

* La composition est associative.

* On a
$$\forall P, Q, R \in K[X]$$
,
$$\begin{cases} (P+Q) \circ R = P \circ R + Q \circ R \\ (PQ) \circ R = (P \circ R)(Q \circ R) \end{cases}$$

1.6 Degré

Définition 1.10. Soit $P \in K[X]$ un polynôme non nul.

- * Le degré de P est deg $P = \max\{n \in \mathbb{N} \mid \operatorname{coeff}_n(P) \neq 0\}$
- * Le coefficient dominant de P est coeff $_{\deg P}(P)$
- * Le $\underline{\text{terme dominant}}$ de P est $\text{coeff}_{\deg P}(P)X^{\deg P}$
- * *P* est dit unitaire si son coefficient dominant vaut 1.
- * On étend cette définition en posant $deg(0) = -\infty$ Le polynôme nul n'a ni coefficient dominant, ni terme dominant. Il n'est pas unitaire.

Définition 1.11. Pour tout $n \in \mathbb{N}$, on note

$$K_n[X] = \{ P \in K[X] \mid \deg P \le n \} = \left\{ \sum_{k=0}^n a_k X^k \mid a_0, \dots, a_n \in K \right\}$$

Théorème 1.12 (Degré d'une somme). Soit $P, Q \in K[X]$

- * On a $deg(P + Q) \le max(deg P, deg Q)$
- * Si deg $P \neq \deg Q$, on a deg $(P + Q) = \max(\deg P, \deg Q)$

Corollaire 1.13. Pour tout $n \in \mathbb{N}$, $K_n[X]$ est stable par somme.

Corollaire 1.14. Soit $r \in \mathbb{N}^*$ et $P_1, \dots, P_r \in K[X]$ de degrés tous différents.

Alors
$$\deg(\sum_{i=1}^r P_i) = \max(\deg P_1, \dots, \deg P_r)$$

Théorème 1.15 (Degré d'un produit). Soit $P, Q \in K[X]$

On a
$$deg(PQ) = deg(P) + deg(Q)$$

Corollaire 1.16. Soit $P \in K[X]$ et $\lambda \in K$

On a
$$deg(\lambda P) = \begin{cases} -\infty & \text{si } \lambda = 0 \\ deg P & \text{si } \lambda \neq 0 \end{cases}$$

Corollaire 1.17 (du corollaire). $K_n[X]$ est stable par multiplication par un scalaire, en plus d'être stable par somme. $K_n[X]$ est donc stable par combinaison linéaire.

Corollaire 1.18. L'anneau K[X] est intègre.

Corollaire 1.19. $K[X]^{\times} = \{P \in K[X] \mid \deg P = 0\}$ est l'ensemble des polynômes constants non nuls.

Théorème 1.20 (Degré d'une composition). Soit $P, Q \in K[X]$

On suppose Q non constant, càd deg $Q \ge 1$

Alors $deg(P \circ Q) = deg(P) deg(Q)$

1.7 Division euclidienne

Théorème 1.21. Soit $A, B \in K[X]$

On suppose $B \neq 0$

Il existe un unique couple $(Q, R) \in K[X]^2$ tel que A = BQ + R et deg $R < \deg B$

2 Racines

2.1 Définition

Définition 2.1. Soit $P \in K[X]$ et $z \in K$

On dit que z est racine de P si P(z) = 0

Théorème 2.2. Soit $P \in \mathbb{R}[X]$. Soit $z \in \mathbb{C}$ une racine complexe de P

Alors \bar{z} est une racine de P

2.2 Racines et factorisation

Théorème 2.3. Soit $P \in K[X]$ et $z \in K$

- * Alors $\exists Q \in K[X] : P = (X z)Q + P(z)$
- * (théorème de factorisation) : si z est racine de P, $\exists Q \in K[X] : P = (X z)Q$

2.3 Nombre de racines, critère radical de nullité

Proposition 2.4. Soit $P \in K[X]$. Soit $z_1, ..., z_r \in K$ des racines distincts.

Alors
$$\exists Q \in K[X] : P = (X - z_1)...(X - z_r)Q$$

Théorème 2.5 (Critère radical de nullité).

- * Si un polynôme $P \in K[X]$ possède r racines distincts et que $r > \deg P$, alors P = 0
- * Si $P \in K_n[X]$ possède (au moins) n + 1 racines, alors P = 0

Corollaire 2.6. Si $P \in K[X]$ possède une infinité de racines, alors P = 0

Corollaire 2.7 (Rigidité des polynômes).

- * Soit $P, Q \in K_n[X]$
 - Si P et Q coïncident en n+1 points, alors P=Q
- * Soit $P, Q \in K[X]$
 - Si P et Q coïncident sur un ensemble infini, alors P = Q

Corollaire 2.8 (Identification polynômes / fonction polynomiales). Supposons le corps *K* infini.

3

Si P et $Q \in K[X]$ définissent la même fonction polynomiale $K \to K$, alors P = Q

3 Dérivation

3.1 Définition

Définition 3.1. Soit $P = \sum_{k=0}^{n} a_k X^k \in K[X]$

On définit son <u>polynôme dérivé</u> : $P' = \sum_{k=1}^{n} k a_k X^{k-1}$

3.2 Premières propriétés

Proposition 3.2.

- * On a $\forall P \in K[X]$, $\deg P' \leq \deg P 1$
- * On suppose que *K* est de caractéristique nulle.

Alors
$$\forall P \in K[X]$$
, $\deg P' = \begin{cases} \deg P - 1 & \text{si } \deg P \ge 1 \\ -\infty & \text{si } \deg P \le 0 \end{cases}$

Corollaire 3.3. Supposons K de caractéristique nulle. Soit $P \in K[X]$ Alors P' = 0 ssi P est constant.

Proposition 3.4. Soit $P, Q \in K[X], \lambda \in K$

On a

$$* (P+Q)' = P' + Q'$$

$$* (\lambda P)' = \lambda P'$$

$$* (PQ)' = P'Q + PQ'$$

$$* (P \circ Q)' = (P' \circ Q)Q'$$

3.3 Dérivées supérieures

Définition 3.5. Soit $P \in K[X]$

On définit la dérivée r-ième $p^{(r)}$ pour tout $r \in \mathbb{N}$ par récurrence :

$$* p^{(0)} = p$$

* Pour tout
$$l \in \mathbb{N}$$
, $p^{(l+1)} = (p')^{(l)}$

Proposition 3.6. Soit $P \in K[X]$ et $r \in \mathbb{N}$

* On a
$$deg(P^{(r)}) \le deg P - r$$

$$*$$
 Si K est de caractéristique nulle :

$$\deg(p^{(r)}) = \begin{cases} \deg P - r & \text{si } \deg P \ge r \\ -\infty & \text{si } \deg P < r \end{cases}$$

Corollaire 3.7. Si K est de caractéristique nulle, $\forall P \in K[X], p^{(r)} = 0 \iff \deg P < r$

Théorème 3.8 (Formule de Leibniz). Soit $P,Q \in K[X]$ et $r \in \mathbb{N}$

On a
$$(PQ)^{(r)} = \sum_{j=0}^{r} {r \choose j} P^{(j)} Q^{(r-j)}$$

Théorème 3.9 (Formule de Taylor pour les polynômes).

Supposons K de caractéristique nulle. Soit $P \in K_n[X]$. Soit $z \in K$

On a

$$P(X) = \sum_{k=0}^{n} \frac{P^{(k)}(z)}{k!} (X - z)^{k}$$

3.4 Polynômes à dérivées prescrites

Théorème 3.10. On suppose *K* de caractéristique nulle.

Soit $z \in K$ et $b_0, b_1, \dots, b_n \in K$

Alors il existe un unique $P \in K_n[X]$ tel que $\forall j \in [0,n]$, $P^{(j)}(z) = b_j$ Il s'agit de

$$P = \sum_{k=0}^{n} \frac{b_k}{k!} (X - z)^k$$

3.5 Interpolation de Lagrange

Théorème 3.11. Soit $n \in \mathbb{N}$, $a_0, a_1, \dots, a_n \in K$ tous distincts, $b_0, b_1, \dots, b_n \in K$ Alors il existe un unique $P \in K_n[X]$ tel que $\forall j \in \llbracket 0, n \rrbracket$, $P(a_j) = b_j$ Il s'agit de

$$P = \sum_{j=0}^{n} b_j \frac{\prod\limits_{\substack{0 \leq k \leq n \\ k \neq j}} (X - a_k)}{\prod\limits_{\substack{0 \leq k \leq n \\ k \neq j}} (a_j - a_k)}$$