Proposition 1

Let $K: T \times T \to \mathbb{C}$ be a covariance function such that the associated RKHS \mathcal{H}_K is separable where $T \subset \mathbb{R}$. Then there exists a family of vector functions

$$\Psi(t,x) = (\psi_n(t,x), n \ge 1) \forall t \in T \tag{1}$$

and a Borel measure μ on T such that $\psi_n(t,x) \in L^2(T,\mu)$ in terms of which K is representable as:

$$K(s,t) = \int_{T} \sum_{n=1}^{\infty} \psi_n(s,x) \overline{\psi_n(t,x)} d\mu(x)$$
 (2)

The vector functions $\Psi(s,.), s \in T$ and the measure μ may not be unique, but all such $(\Psi,.),.)$ determine K and its reproducing kernel Hilbert space (RKHS) H_K uniquely and the cardinality of the components determining K remains the same. [1,]

Remark 2. 1. If $\Psi(t, .)$ is a scalar, then we have

$$K(s,t) = \int_{T} \Psi(s,x) \overline{\Psi(t,x)} d\mu(x)$$
(3)

which includes the tri-diagonal triangular covariance with μ absolutely continuous relative to the Lebesgue measure.

2. The following notational simplification of (25) can be made. Let $n = R \times Z_+ = S \otimes P$, where P is the power set of integers Z, and let P = u @ o where o is the counting measure. Then

$$\Psi(t,n) = (\psi_n(t,x), n \in Z) \tag{4}$$

Hence

$$|\Psi^*(t)|_{L^2}^2 = \int_T |\psi_n(t,x)|^2 d\mu(x)$$
(5)

This content is adapted from MM Rao's book, *Stochastic Processes: Inference Theory*. Propisition 8

Bibliography

[1] Malempati M. Rao. Stochastic Processes: Inference Theory. Springer Monographs in Mathematics. Springer, 2nd edition, 2014.