Graph Rectifiability Summer Research with Lisa Naples

Daily Report

Ву

Charles Zhang

 $Summer\ 2021$

Contents

1	May 25		
	1.1	Basic Set Theory	3
	1.2	Functions and Limits	4

1 May 25

1.1 Basic Set Theory

Definition 1.1 (Countable) An infinite set A is countable if its elements can be listed in the form $x_1, x_2, ...$ with every element of appearing at a specific place in the list; otherwise, the set is uncountable

Definition 1.2 (Open) $A \subset \mathbb{R}^n$ is open if, $\forall x \in A, \exists B(x,r) \in A$ where r > 0.

Definition 1.3 (Closed) $A \subset \mathbb{R}^n$ is closed if, whenever $\{x_k\} \in A$, $x_k \to x \in \mathbb{R}^n$, then $x \in A$.

Definition 1.4 (Closure) \bar{A} is the intersection of all the closed sets containing a set A.

Definition 1.5 (Interior) int(A) is the union of all open sets contained in A.

Definition 1.4 and 1.5 shows that The *closure* of A is thought of as the smallest closed set containing A, and the *interior* as the largest open set contained in A.

Definition 1.6 (Boundary) $\partial A = \bar{A} \setminus int(A)$

Theorem 1.1 $x \in \partial A \Leftrightarrow \forall r > 0, B(x,r) \cap A \neq \emptyset, B(x,r) \cap A^C \neq \emptyset$

Definition 1.7 (Dense) Set B is a dense in A if $A \subset B$, that is, if there are points of B arbitrarily close to each point of A.

Definition 1.8 (Compact) A is compact if any collection of open sets that covers A has a finite subcollection which also covers A.

Theorem 1.2 A compact subset of \mathbb{R}^n is both closed and bounded.

Theorem 1.3 The intersection of any collection of compact sets is compact.

Definition 1.9 (Connected) $A \subset \mathbb{R}^n$ is connected if there not exists open sets U and V s.t. $A \in U \cap V$ with disjoint and nonempty $A \cap U$ and $A \cap V$.

Definition 1.10 (Connected Component) The connected component of x is the largest connected subset of A containing a point x.

Definition 1.11 (Disconnect) The set A is totally disconnected if the connected component of each point consists of just that point.

The definition of disconnect also can be as: \exists open sets U and V s.t. $x \in U, y \in V$ and $A \subset U \cap V$.

Definition 1.12 (Borel Set) Borel Sets is the smallest collection fo subsets of \mathbb{R}^n with the following properties:

- 1. Every open set and every closed set is a Borel set.
- 2. The union of every finite or countable collection of Borel sets is a Borel set, and the intersection of every finite or countable collection of Borel sets is a Borel set.

In short, Any set that can be constructed using a sequence of countable unions or intersections starting with the open sets or closed sets will certainly be Borel.

1.2 Functions and Limits

Definition 1.13 (Congruence) The transformation $S : \mathbb{R}^n \to \mathbb{N}^n$ is congruence or isometry if it preserves distances i.e. if |S(x) - S(y)| = |x - y| for $x, y \in \mathbb{R}^n$

Special cases include translations, which are of the form S(x) = x + a and have the effect of shifting points parallel to the vector a, rotations which have a centre a such that |S(x) - a| = |x - a| for all x (for convenience, we also regard the identity transformation given by I(x) = x as a rotation) and reflections, which maps points to their mirror images in some (n-1)-dimensional plane. A congruence that may be achieved by a combination of a rotation and a translation, that is, does not involve reflection, is called a rigid motion or direct congruence. A transformation $S: \mathbb{R}^n \to \mathbb{R}^n$ is a similarity of ratio or scale c > 0 if |S(x) - S(y)| = c|x - y| for all x, y in \mathbb{R}^n . A similarity transforms sets into geometrically similar ones with all lengths multiplied by the factor c.

Definition 1.14