```
tarea2
Kevin Yavarí 8976525
Julián Galvis 8974868
Punto 1
void algoritmo1(int n){
    for(i = n * n; i > 0; i = i / 2){  box{log2}(n^{**2})+2 
        int suma = i + j;
        ++j;
    }
}
La complejidad de la función algoritmo1 es O(log2(n**2))
Punto 2
int algoritmo2(int n){
    int res = 1, i, j; ______ 3
    return res; ______ 1
}
La complejidad de la función algoritmo2 es O(n*(sqrt(n)))
Punto 3
void algoritmo3(int n){
    int i, j, k; ______ 3
    for(k = 1; k <= i; k++) \sum_{i=1}^{n-1} i + 1
```

```
printf("Vida cruel!!\n"); \longrightarrow \sum_{i=1}^{n-1} i
}
La complejidad de la función algoritmo3 es O(n**3) por sus 3 ciclos
Punto 4
int algoritmo4(int* valores, int n){
      int suma = 0, contador = 0; _______ 2
      int i, j, h, flag; _____ 4
      flag = 0; _______ n
             while(j < n && flag == 0){
                    if(valores[i] < valores[j]){</pre>
                          for(h = j; h < n; h++){
                                 suma += valores[i];
                          }
                   }
                    else{
                          contador++;
                          flag = 1;
                   }
                    ++j;
             }
      }
return contador;
}
```

```
void algoritmo5(int n){

int i = 0; \longrightarrow 1

while(i <= n){ \longrightarrow 7

printf("%d\n", i); \longrightarrow 6

i += n / 5; \longrightarrow 6

}
```

Es una función contante por lo tanto su complejidad es O(1)

Punto 6

Tamaño Entrada	Tiempo	Tamaño Entrada	Tiempo
5	0,155s	35	4,210s
10	0,192s	40	43,025s
15	0,200s	45	8m 16,166s
20	0,210s	50	Indefinido
25	0,280s	55	Indefinido
30	0,700	60	Indefinido

El valor mas alto que pudimos ejecutar fue el 45, se puede ver que aunque se aumente poco se puede ver como el tiempo se eleva exponencialmente, diría que la complejidad es $O(2^{**}n)$ ya que se usa la recursión y se van sumando los últimos 2 numeros

Punto 7

Tamaño de entrada	tiempo	Tamaño de entrada	tiempo
5	0,100s	45	0,150s
10	0,142s	50	0,178s
15	0,160s	100	0,135s
20	0,145s	200	0,145s
25	0,170s	500	0,140s
30	0,187s	1000	0,143s
35	0,189s	5000	0,210s

40	0.139s	10000	0,550s
	0,2000	10000	0,5555

La complejidad es O(n) ya que el ciclo for itera n veces

Punto 8

Tamaño Entrada	Tiempo Solución Propia	Tiempo Solución Profesores
100	0,375s	0,158s
1000	0,687s	0,486s
5000	0,454s	0,501s
10000	0,900s	0,313s
50000	12,123s	0,571s
100000	13,323s	1,903s
200000	13,780s	1,504s

A) La forma del profesor para encontrar los números primos es más eficiente

R)

```
def esPrimo(n):
    if n < 2: ans = False
    else:
        i, ans = 2, True
        while i * i <= n and ans:
            if n % i == 0: ans = False
            i += 1
        return ans

en el major caso la complejidad del programa es O(1)
    en el peor caso i*i seria mayor a n y saldría del ciclo</pre>
```