MSMS 206 : Practical 01

Ananda Biswas

March 7, 2025

Question

Fit a multiple linear regression model for the following data-set and obtain the following results.

- (a) estimate of the regression coefficients and σ ,
- (b) confidence interval of the regression coefficients,
- (c) coefficient of determination,
- (d) adjusted coefficient of determination.

y	x_1	x_2
16.68	7	560
11.5	3	220
12.03	3	340
14.88	4	80
13.75	6	150
18.11	7	330
8	2	110
17.83	7	210
79.2	30	1460
21	10	215
13.5	4	255
19.75	6	462
24	9	448
29	10	776
15.35	6	220
19	7	132
9.5	3	36
35.1	17	770
17.9	10	140
52.32	26	810
18.75	9	450
19.83	8	635
10.75	4	150
21.5	5	605
40.33	16	688

 Θ We fit a multiple linear regression model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$.

raw_data <- read.csv('https://raw.githubusercontent.com/sakunisgithub/data_sets/refs/heads/master/msc_semester_2/tripti_madam_practical_01_data.csv')

```
dim(raw_data)
## [1] 25 3

names(raw_data)
## [1] "Y" "X_1" "X_2"
```

```
model1 <- lm(Y ~ X_1 + X_2, data = raw_data)
model_summary <- summary(model1)</pre>
```

```
model_summary
##
## Call:
## lm(formula = Y ~ X_1 + X_2, data = raw_data)
## Residuals:
## Min 1Q Median 3Q Max
## -5.776 -0.659 0.164 1.173 7.387
## Coefficients:
           Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.326534 1.096063 2.123 0.045279 *
## X 1
           ## X 2
           ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.254 on 22 degrees of freedom
## Multiple R-squared: 0.9597, Adjusted R-squared: 0.956
## F-statistic: 261.9 on 2 and 22 DF, p-value: 4.561e-16
```

🖎 Estimates of педперыют соеввісіенть апе

riangle Estimate of еннон standard deviation σ is

```
sigma_hat <- model_summary$sigma
sigma_hat
## [1] 3.254133</pre>
```

Now we shall calculate the confidence intervals of the regression coefficients and the intercept. $100(1-\alpha)\%$ confidence interval for $\beta_j \ \forall j=0(1)2$ is given by

$$\left(\hat{\beta}_j - t_{\frac{\alpha}{2}, n-p} \cdot \operatorname{se}(\hat{\beta}_j), \hat{\beta}_j + t_{\frac{\alpha}{2}, n-p} \cdot \operatorname{se}(\hat{\beta}_j)\right).$$

where n is total number of observations and p is total number of parameters in the model.

```
std_errors <- model_summary$coefficients[, 'Std. Error']

t_tabulated <- qt(0.025, 22, lower.tail = FALSE)

CI_lower <- estimates - t_tabulated * std_errors
CI_upper <- estimates + t_tabulated * std_errors</pre>
```

95% confidence interval for eta_0 is

```
CI_lower[1]; CI_upper[1]

## (Intercept)
## 0.0534379
## (Intercept)
## 4.59963
```

95% confidence interval for eta_1 is

```
CI_lower[2]; CI_upper[2]

## X_1

## 1.260978

## X_1

## 1.968475
```

\ref{eq} 95% confidence interval for eta_2 is

Now we shall calculate the confidence interval of the error variance σ^2 . $100(1-\alpha)\%$ confidence interval for σ^2 is given by

$$\left(\frac{\text{RSS}}{\chi^2_{\frac{\alpha}{2},n-p}}, \frac{\text{RSS}}{\chi^2_{1-\frac{\alpha}{2},n-p}}\right).$$

RSS <- sum(model_summary\$residuals^2) # Residual Sum of Squares

```
RSS / qchisq(0.025, 22, lower.tail = FALSE) # lower bound

## [1] 6.333929

RSS / qchisq(1-0.025, 22, lower.tail = FALSE) # upper bound

## [1] 21.21286
```

 $^{\circ}$ 95% confidence interval for σ is

```
sqrt(RSS / qchisq(0.025, 22, lower.tail = FALSE)) # lower bound
## [1] 2.51673
sqrt(RSS / qchisq(1-0.025, 22, lower.tail = FALSE)) # upper bound
## [1] 4.605742
```

```
model_summary$r.squared
## [1] 0.9596944
```

riangle Adjusted R^2 for the model is

```
model_summary$adj.r.squared
## [1] 0.9560302
```