4.1: Relative Efficiency of Estimators

Textbook: 9.2

Objectives

Be able to compute and interpret the <u>relative efficiency</u> of estimates

Motivation

Back in the 3.1 notes, we talked about how a point estimator, $\hat{\theta}$, can be used to estimate an unknown population parameter θ . The "goodness" of an estimator $\hat{\theta}$ can be assessed by calculating either the bias $B(\hat{\theta})$ or the mean squared error (MSE) $MSE[\hat{\theta}]$.

These values, in addition to being used to evaluate the "goodness" of a single estimator, can also be used to compare the "goodness" of two competing estimators. In this set of notes, we will discuss the idea of relative efficiency as a way to compare two estimators, $\hat{\theta}_1$ and $\hat{\theta}_2$, of some parameter θ .

Relative Efficiency

The <u>efficiency</u> of an estimator is a measure of its quality in terms of how many observations the estimator needs in order to achieve a given performance. A more efficient estimator will require fewer observations than a less efficient estimator in order to achieve the same level of performance. Put more plainly, a more efficient estimator requires a smaller sample size to achieve the same level of performance of a less efficient estimator.

If we have two estimators $\hat{\theta}_1$ and $\hat{\theta}_2$ that are both used to estimate the unknown target parameter θ , then assessing the relative efficiency of these estimators can help us determine which estimator to choose.

The <u>relative efficiency of $\hat{\theta}_1$ with respect to $\hat{\theta}_2$ is the ratio of the estimators' MSE values.</u>

$$RE(\hat{\theta}_1, \hat{\theta}_2) = \frac{MSE[\hat{\theta}_1]}{MSE[\hat{\theta}_2]} = \frac{VAR[\hat{\theta}_1] + B(\hat{\theta}_1)^2}{VAR[\hat{\theta}_2] + B(\hat{\theta}_2)^2}$$

When $RE(\hat{\theta}_1, \hat{\theta}_2) < 1$, then $\hat{\theta}_1$ is considered to be the more efficient estimator.

Similarly, when $RE(\hat{\theta}_1, \hat{\theta}_2) > 1$, then $\hat{\theta}_2$ is considered to be the more efficient estimator.

Note that if both $\hat{\theta}_1$ and $\hat{\theta}_2$ are unbiased estimators of θ , then we prefer the estimator with the smallest variance.

$$RE(\hat{\theta}_1, \hat{\theta}_2) = \frac{VAR[\hat{\theta}_1]}{VAR[\hat{\theta}_2]}$$

Example 4.1.1

Let $X_1, X_2, ..., X_n$ represent a random sample of student UCID numbers. Assume $X_i \sim Uniform(0, N)$ where N is the total number of U of C students. We are interested in estimating N. Consider the following related quantities to help with calculations:

$$E[X_{(n)}] = \frac{Nn}{n+1}, 0 < X_{(n)} < N$$
 $VAR\left[\left(\frac{n+1}{n}\right)X_{(n)}\right] = \frac{N^2}{n(n+2)}$

1. Find the relative efficiency of the estimators $\hat{\theta}_1 = 2\bar{x}$ and $\hat{\theta}_2 = \left(\frac{n+1}{n}\right) X_{(n)}$. Then, assuming n = 43, compute the relative efficiency and interpret its meaning.

Example 4.1.2

Let $X_1, X_2, ..., X_n$ represent a random sample taken from a population of values that is modeled by the following probability cumulative distribution function and probability distribution functions for x > 0:

$$F_X(x) = 1 - e^{-\frac{X}{\theta}}$$
 $f_X(x) = \frac{e^{-\frac{X}{\theta}}}{\theta}$

Find the relative efficiency of the estimators $\hat{\theta}_1 = nX_{(1)}$ and $\hat{\theta}_2 = \bar{x}$ and interpret the meaning.