Valori proprii. Polinomul caracteristic

Teorema lui Cayley-Hamilton

Definiția 1. Fie matricea $A \in \mathcal{M}_n(\mathbb{C})$. Polinomul $p_A \in \mathbb{C}[X]$, definit prin

$$p_A(t) := \det(tI_n - A) = (-1)^n \det(A - tI_n),$$

se numește polinomul caracteristic al matricei A. Explicit, avem

$$p_A(t) = t^n - E_1(A)t^{n-1} + E_2(A)t^{n-2} - \dots + (-1)^{n-1}E_{n-1}(A)t + (-1)^n E_n(A),$$

unde $E_k(A)$ este suma minorilor principali de ordinul k ai lui A, adică suma celor $\binom{n}{k}$ determinanți de ordin k formați cu liniile și coloanele de aceiași indici din A. În particular, $E_1(A) = a_{11} + \cdots + a_{nn} = \operatorname{tr} A$,

$$E_2(A) = \sum_{1 \le i \le j \le n} \left| \begin{array}{cc} a_{ii} & a_{ij} \\ a_{ji} & a_{jj} \end{array} \right|,$$

 $E_{n-1}(A)=\operatorname{tr}\left(\operatorname{adj}\left(A\right)\right)$ (unde adj $\left(A\right)$ reprezintă adjuncta clasică a lui A), iar $E_{n}(A)=\det A$.

Fie $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ valorile proprii ale lui A. Întrucât $\lambda_1, \ldots, \lambda_n$ sunt rădăcinile polinomului caracteristic p_A , în baza relațiilor lui Viète, avem

$$\lambda_1 + \dots + \lambda_n = E_1(A) = \operatorname{tr} A,$$

$$\sum_{1 \le i < j \le n} \lambda_i \lambda_j = E_2(A) = \sum_{1 \le i < j \le n} \begin{vmatrix} a_{ii} & a_{ij} \\ a_{ji} & a_{jj} \end{vmatrix},$$

$$\vdots$$

$$\lambda_1 \dots \lambda_n = E_n(A) = \det A.$$

Teorema 2 (teorema lui Arthur Cayley și William Rowan Hamilton). Pentru orice corp K și orice matrice $A \in \mathcal{M}_n(K)$ are loc egalitatea $p_A(A) = O_n$.

Teorema 3. Fiind date o matrice $A \in \mathcal{M}_n(\mathbb{C})$ și un polinom $f \in \mathbb{C}[X]$, următoarele afirmații sunt adevărate:

1° $Dacă f(A) = O_n$, atunci orice valoare proprie a lui A este rădăcină a lui f (Dacă matricea A anulează polinomul f, atunci orice valoare proprie a lui A îl anulează pe f).

2° Dacă $\lambda_1, \ldots, \lambda_m \in \mathbb{C}$ sunt valorile proprii distincte ale lui A, cu ordinele de multiplicitate $s_1, \ldots, s_m \in \mathbb{N}$, atunci valorile proprii ale matricei f(A) sunt $f(\lambda_1), \ldots, f(\lambda_m)$, cu exact aceleași ordine de multiplicitate, s_1, \ldots, s_m .

Teorema 4. Pentru orice corp K și orice matrice $A \in \mathcal{M}_n(K)$ există un unic polinom monic $m_A \in K[X]$, de grad minim (mai mic sau cel mult egal cu n) și cu proprietatea că $m_A(A) = O_n$.

Definiția 5. Unicul polinom m_A din teorema precedentă se numește polinomul minimal al matricei A. În baza teoremei împărțirii cu rest, rezultă imediat că dacă $f \in K[X]$ și $f(A) = O_n$, atunci $m_A \mid f$. În particular, avem $m_A \mid p_A$ (adică polinomul minimal divide polinomul caracteristic).

Teorema 6 (Ferdinand Georg Frobenius). Fiind date un corp K și o matrice $A \in \mathcal{M}_n(K)$, polinomul minimal m_A și polinomul caracteristic p_A au aceiași factori ireductibili în K[X].

Definiția 7. Fie $A \in \mathcal{M}_{m,n}(\mathbb{C})$. Matricea $A^* := \bar{A}^t \in \mathcal{M}_{n,m}(\mathbb{C})$, având elementele $a_{jk}^* = \bar{a}_{kj}$, se numește *adjuncta* (hermitiană) a lui A. Se constată ușor că pentru orice matrici $A \in \mathcal{M}_{m,n}(\mathbb{C})$ și respectiv $B \in \mathcal{M}_{n,p}(\mathbb{C})$ au loc următoarele egalități:

$$(AB)^* = B^*A^*$$
 și $(A^*)^* = A$.

Definiția 8. O matrice $A \in \mathcal{M}_n(\mathbb{C})$ se numește hermitiană, dacă $A = A^*$. Se spune că matricea A este strâmb hermitiană (sau antihermitiană), dacă $A = -A^*$.

O matrice $A \in \mathcal{M}_n(\mathbb{R})$ se numește simetrică (respectiv antisimetrică), dacă $A = A^t$ (respectiv $A = -A^t$).

Definiția 9. O matrice $U \in \mathcal{M}_n(\mathbb{C})$ se numește unitară, dacă $UU^* = I_n$. Evident, dacă U este unitară, atunci avem și $U^*U = I_n$.

O matrice $U \in \mathcal{M}_n(\mathbb{R})$ se numește ortogonală, dacă $UU^t = I_n$. Evident, dacă U este ortogonală, atunci avem și $U^tU = I_n$.

Se constată imediat că $U \in \mathcal{M}_n(\mathbb{C})$ este unitară dacă și numai dacă liniile (respectiv coloanele) lui U formează un sistem ortonormal în raport cu produsul scalar definit pe \mathbb{C}^n prin

$$\langle x, y \rangle := y^* x = x_1 \bar{y}_1 + \dots + x_n \bar{y}_n$$

oricare ar fi $x := (x_1, \dots, x_n), y := (y_1, \dots, y_n) \in \mathbb{C}^n$.

Definiția 10. O matrice $A \in \mathcal{M}_n(\mathbb{C})$ se numește *normală*, dacă ea comută cu adjuncta sa, adică $AA^* = A^*A$. Evident, orice matrice hermitiană, orice matrice strâmb hermitiană și orice matrice unitară este normală. De asemenea, orice matrice simetrică, orice matrice antisimetrică și orice matrice ortogonală este normală.

Probleme

1. Fie $A \in \mathcal{M}_2(\mathbb{C})$ o matrice cu proprietatea că $A^2 \neq O_2$ și fie $\lambda_1, \lambda_2 \in \mathbb{C}$ valorile proprii ale lui A. Atunci următoarele afirmații sunt adevărate: 1° Dacă $\lambda_1 \neq \lambda_2$, atunci

$$A^n = \frac{\lambda_1^n - \lambda_2^n}{\lambda_1 - \lambda_2} A - \frac{\lambda_1^n \lambda_2 - \lambda_1 \lambda_2^n}{\lambda_1 - \lambda_2} I_2 \quad \text{oricare ar fi } n \ge 0.$$

 2° Dacă $\lambda_1 = \lambda_2$, atunci

$$A^n = n\lambda_1^{n-1}A - (n-1)\lambda_1^n I_2$$
 oricare ar fi $n \ge 0$.

2. Fie $n \geq 2$ un număr întreg și fie $A, B \in \mathcal{M}_2(\mathbb{C})$ astfel încât $AB \neq BA$ și $(AB)^n = (BA)^n$. Să se demonstreze că există un număr complex a în așa fel încât $(AB)^n = aI_2$.

M. Andronache, Olimpiada locală București, 1996/2

- **3.** Fie $A, B \in \mathcal{M}_2(\mathbb{C})$ și fie $k \geq 2$ un număr natural.
 - a) Să se arate că dacă $(AB)^k = O_2$, atunci $(BA)^k = O_2$.
 - b) Să se arate că dacă $(AB)^k = I_2$, atunci $(BA)^k = I_2$.
 - c) Dacă $AB \neq BA$, să se afle toate matricile $C \in \mathcal{M}_2(\mathbb{C})$ cu proprietatea că $(AB)^k = C$ implică $(BA)^k = C$.

D. Mihet, Concursul Gr. Moisil, 2003/3

4. Fie $A \in \mathcal{M}_2(\mathbb{R})$ cu det $A \geq 1$ și fie $(a_n), (b_n), (c_n), (d_n)$ șiruri cu proprietatea că $A^n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$ oricare ar fi $n \geq 1$. Să se demonstreze că dacă toate cele patru șiruri sunt convergente, atunci $A = I_2$.

M. Andronache, Olimpiada locală București, 2001/4

5. Fie $a_1, b_1, c_1, d_1 \in \mathbb{R} \setminus \{0\}$ și fie matricea $A = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$. Pentru fiecare număr natural $n \geq 1$ notăm $A^n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$. Demonstrați că dacă unul dintre șirurile $(a_n), (b_n), (c_n), (d_n)$ este o progresie aritmetică, atunci și celelalte trei sunt progresii aritmetice.

C. Cocea, problema C:237, GM 8/1982

6. Fie S mulțimea tuturor matricilor $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$, cu proprietatea că a,b,c,d formează (în această ordine) o progresie aritmetică. Să se determine toate matricile $M \in S$ pentru care există un număr întreg k > 1 astfel încât $M^k \in S$.

Concursul William Lowell Putnam 2015, problema B3

- 7. Considerăm mulțimea $M = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{C}) \mid ab = cd \right\}.$
 - a) Dați exemplu de matrice $A\in M$ astfel încât $A^{2017}\in M,\,A^{2019}\in M,$ dar $A^{2018}\not\in M.$
 - b) Demonstrați că dacă $A \in M$ și există un număr întreg $k \geq 1$ așa încât matricile A^k , A^{k+1} și A^{k+2} să aparțină lui M, atunci $A^n \in M$ oricare ar fi $n \geq 1$.

Olimpiada județeană, 2018/2

- 8. a) Fie $A, B \in \mathcal{M}_2(\mathbb{R})$ matrici care nu comută. Demonstrați că dacă $A^3 = B^3$, atunci A^n și B^n au aceeași urmă pentru orice număr natural nenul n.
 - b) Dați exemplu de matrici $A, B \in \mathcal{M}_2(\mathbb{R})$ care nu comută, astfel încât pentru orice număr natural nenul matricile A^n și B^n să fie diferite, dar să aibă aceeasi urmă.

N. Papacu, Olimpiada județeană, 2017/3

9. Fie $t \in (0, \pi)$ și fie $n \ge 2$ un număr natural. Să se determine soluțiile $X \in \mathcal{M}_2(\mathbb{R})$ ale ecuației matriciale $X^n = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$.

V. Pop, Concursul Al. Papiu-Ilarian, 2010/1

10. Fie $A, B \in \mathcal{M}_2(\mathbb{C})$ astfel încât $\operatorname{tr} A = \operatorname{tr} B$ și $\operatorname{tr} (A^2) = \operatorname{tr} (B^2)$. Să se demonstreze că pentru orice polinom $f \in \mathbb{C}[X]$ are loc egalitatea $\det f(A) = \det f(B)$.

I. Savu, Olimpiada locală București, 1993/3

11. Fie $A, B \in \mathcal{M}_2(\mathbb{C})$ matrici cu proprietatea că $AB - BA = B^2$. Să se demonstreze că AB = BA.

Concursul Vojtěch Jarník, categoria I, 2010/2

- **12.** Fie $A, B \in \mathcal{M}_2(\mathbb{C})$ matrici cu proprietatea că $A^2 + B^2 = 2AB$.
 - a) Demonstrați că AB = BA.
 - b) Demonstrați că $\operatorname{tr} A = \operatorname{tr} B$.

N. Bourbăcuț, Olimpiada națională, 2011/4

- **13.** Fiind dată o matrice $A \in \mathcal{M}_2(\mathbb{C})$, $A \neq O_2$, să se demonstreze că următoarele afirmații sunt echivalente:
 - 1° Ecuația matricială $X^2=A$ are soluții în $\mathcal{M}_2(\mathbb{C})$.
 - $2^{\circ} A^2 \neq O_2.$
- L. Panaitopol, Olimpiada județeană București, 1994/1
- **14.** Fiind dată o matrice $A \in \mathcal{M}_2(\mathbb{C})$, $A \neq O_2$, să se demonstreze că următoarele afirmații sunt echivalente:
 - 1° Ecuația matricială $AX + XA = I_2$ are soluții în $\mathcal{M}_2(\mathbb{C})$.
 - 2° A este inversabilă sau $A^2 = O_2$.
 - M. Chiriță, M. Piticari, Olimpiada județeană București, 1995/1
- **15.** Fie $A \in \mathcal{M}_2(\mathbb{C})$. Să se arate că ecuația matricială AX XA = A are soluții în $\mathcal{M}_2(\mathbb{C})$ dacă și numai dacă $A^2 = O_2$.
 - V. Pop, Concursul Argument, Baia-Mare, 2011/2
- **16.** Fie $A \in \mathcal{M}_2(\mathbb{C})$ astfel ca det A = 1. Să se demonstreze că

$$\det (A^2 + A - I_2) + \det (A^2 + I_2) = 5.$$

V. Pop, Concursul Al. Papiu-Ilarian, 2012/2

17. Fie x>0 un număr real și fie $A\in\mathcal{M}_2(\mathbb{R})$ o matrice astfel încât

$$\det\left(A^2 + xI_2\right) = 0.$$

Să se demonstreze că det $(A^2 + A + xI_2) = x$.

V. Pop, Olimpiada județeană, 2006/1

18. Fie $A \in \mathcal{M}_2(\mathbb{R})$ cu det $A = d \neq 0$ și fie A_* adjuncta clasică a lui A. Demonstrați că dacă det $(A + dA_*) = 0$, atunci det $(A - dA_*) = 4$.

D. Jinga, Olimpiada judeţeană, 2001/1

19. Fie $A \in \mathcal{M}_2(\mathbb{C})$ astfel încât $\det(A^2 + A + I_2) = \det(A^2 - A + I_2) = 3$. Demonstrați că $A^2(A^2 + I_2) = 2I_2$.

Olimpiada județeană, 2016/1

20. Să se demonstreze că pentru orice matrici $A, B \in \mathcal{M}_2(\mathbb{C})$ și orice $x \in \mathbb{C}$ are loc egalitatea

$$\det(A + xB) = \det A + (\operatorname{tr} A \cdot \operatorname{tr} B - \operatorname{tr}(AB))x + (\det B)x^{2}.$$

21. Fie $A, B \in \mathcal{M}_2(\mathbb{C})$ matrici cu proprietatea că AB = BA și

$$\det(A + B) = \det(A + 2B) = \det(A + 3B) = 1.$$

Să se demonstreze că $B^2 = O_2$.

M. Andronache, I. Savu, Olimpiada județeană București, 2000/2

22. Fie $A = \begin{pmatrix} -1 & a & a \\ 1 & -1 & 0 \\ -1 & 0 & -1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{C})$. Determinați $A^n \ (n \in \mathbb{N})$.

Gh. Lobont, Concursul M. Țarină, 2009/2

- **23.** Fie $A \in \mathcal{M}_3(\mathbb{R})$. Să se arate că dacă $A^3 = I_3$, atunci $\det(A I_3) = 0$.
 - F. Vulpescu-Jalea, Olimpiada locală București, 1991/3
- **24.** Fie $A \in \mathcal{M}_3(\mathbb{C})$ o matrice inversabilă cu proprietatea că det A=1 și tr $A=\operatorname{tr}\left(A^{-1}\right)=0$. Să se demonstreze că $A^3=I_3$.

Iran 1988

- **25.** Există matrici $A, B \in \mathcal{M}_3(\mathbb{C})$ astfel încât $(AB BA)^{1993} = I_3$?

 Olimpiada natională, 1993/3
- **26.** Fie $A \in \mathcal{M}_n(\mathbb{C})$ o matrice cu proprietatea că există $k \geq 1$ număr întreg astfel ca $A^k = O_n$. Să se demonstreze că det $(xA + I_n) = 1$ oricare ar fi $x \in \mathbb{C}$.
 - L. Panaitopol, Olimpiada județeană București, 1991/3
- **27.** Fie $A, B \in \mathcal{M}_n(\mathbb{C})$ astfel încât AB = BA. Să se demonstreze că

$$\det(A + BX) = \det(A + XB)$$
 oricare ar fi $X \in \mathcal{M}_n(\mathbb{C})$.

I. Savu, Olimpiada județeană București, 1997/3

28. Fie $A = (a_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ astfel ca $A^n \neq O_n$ și $a_{ij}a_{ji} \leq 0$ pentru orice $i,j \in \{1,\ldots,n\}$. Demonstrați că A posedă cel puțin două valori proprii complexe nereale.

SEEMOUS 2011/2

- **29.** Să se demonstreze că pentru orice matrici $A, B \in \mathcal{M}_n(\mathbb{C})$ are loc egalitatea $p_{AB} = p_{BA}$ (adică matricile AB și BA au același polinom caracteristic).
- **30.** Fie $m, n \in \mathbb{N}$, $m \neq n$ și fie matricile $A \in \mathcal{M}_{m,n}(\mathbb{C})$ și $B \in \mathcal{M}_{n,m}(\mathbb{C})$. Să se demonstreze că dacă m < n, atunci

$$p_{BA}(t) = t^{n-m} p_{AB}(t)$$
 oricare ar fi $t \in \mathbb{C}$,

iar dacă m > n, atunci

$$p_{AB}(t) = t^{m-n} p_{BA}(t)$$
 oricare ar fi $t \in \mathbb{C}$.

31. Fie $A \in \mathcal{M}_{3,2}(\mathbb{C})$ și $B \in \mathcal{M}_{2,3}(\mathbb{C})$ matrici cu proprietatea că

$$AB = \left(\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{array}\right).$$

Să se determine $\det(BA)$.

Gh. Eckstein, Olimpiada națională, 1995/3

- [32.] Fie $n \geq 2$ un număr natural și fie $A \in \mathcal{M}_{n,2}(\mathbb{C})$, $B \in \mathcal{M}_{2,n}(\mathbb{C})$ matrici cu proprietatea că există $k \geq 1$ așa încât $(AB)^k = O_n$. Să se demonstreze că:
 - a) $(AB)^3 = O_n$.
 - b) Dacă rang $(AB) \neq 2$, atunci $(AB)^2 = O_n$.

D. Mihet, Concursul Gr. Moisil, 2009/4

33. Fie $A, B \in \mathcal{M}_n(\mathbb{C})$ matrici inversabile cu proprietatea că există numere complexe α, β , cu $|\alpha| \neq |\beta|$, în așa fel încât $\alpha AB + \beta BA = I_n$. Să se demonstreze că det (AB - BA) = 0.

V. Pop, Olimpiada locală Cluj, 2006/2

34. Fie matricile $A, B \in \mathcal{M}_{2n+1}(\mathbb{C})$, cu proprietatea că $A^2 - B^2 = I_{2n+1}$. Să se demonstreze că det (AB - BA) = 0.

M. Opincariu, problema C.O:4937, GM 4/2008

 $\boxed{\textbf{35.}} \text{ Fie } A, B \in \mathcal{M}_n(\mathbb{R}) \text{ matrici cu proprietatea că } B^2 = I_n \text{ și } A^2 = AB + I_n.$ Să se demonstreze că det $A \leq \left(\frac{1+\sqrt{5}}{2}\right)^n$.

M. Cavachi, Olimpiada județeană, 2007/4

36. Fie numerele naturale $m, n \geq 2$ și fie matricile $A_1, \ldots, A_m \in \mathcal{M}_n(\mathbb{R})$, nu toate nilpotente. Să se demonstreze că există un număr întreg $k \geq 1$ astfel încât $A_1^k + \cdots + A_m^k \neq O_n$.

Olimpiada națională, 2013/2

- **37.** Fie $A \in \mathcal{M}_n(\mathbb{C})$ astfel ca $\operatorname{tr} A = \operatorname{tr} (A^2) = \cdots = \operatorname{tr} (A^n) = 0$. Să se demonstreze că $A^n = O_n$.
- **38.** Fie $A, B \in \mathcal{M}_n(\mathbb{C})$ astfel ca AB BA = aA, unde $a \in \mathbb{C} \setminus \{0\}$.
 - a) Să se demonstreze că $A^kB BA^k = akA^k$ pentru orice $n \in \mathbb{N}$.
 - b) Să se demonstreze că $A^n = O_n$.

IMC 1994

39. Fie $A, B \in \mathcal{M}_n(\mathbb{C})$ astfel ca $A^2B + BA^2 = 2ABA$. Să se demonstreze că există un număr natural k așa încât $(AB - BA)^k = O_n$.

IMC 2009

40. Fie matricile $A, B, C, D \in \mathcal{M}_n(\mathbb{C})$, dintre care A și C sunt inversabile. Să se demonstreze că dacă $A^kB = C^kD$ oricare ar fi $k = 1, 2, 3, \ldots$, atunci B = D.

M. Cavachi, Olimpiada națională, 1996/4

Pentru orice număr natural nenul n și orice matrice coloană de forma $X = \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix}^t \in \mathcal{M}_{n,1}(\mathbb{Z})$, notăm cu $\delta(X)$ cel mai mare divizor comun al numerelor x_1, x_2, \dots, x_n (care este un număr natural). Fie $n \geq 2$ un număr natural și fie $A \in \mathcal{M}_n(\mathbb{Z})$. Demonstrați că următoarele afirmații sunt echivalente:

 $1^{\circ} |\det A| = 1;$

 $2^{\circ} \delta(AX) = \delta(X)$ oricare ar fi $X \in \mathcal{M}_{n,1}(\mathbb{Z})$.

Olimpiada națională, 2018/1

42. Fie $A_1, \ldots, A_k \in \mathcal{M}_n(\mathbb{R})$ matrici simetrice. Demonstrați că următoarele afirmații sunt echivalente:

1° det $(A_1^2 + \dots + A_k^2) = 0$. 2° det $(A_1B_1 + \dots + A_kB_k) = 0$ oricare ar fi $B_1, \dots, B_k \in \mathcal{M}_n(\mathbb{R})$.

Olimpiada națională, 2017/2

- **43.** Să se demonstreze că toate valorile proprii ale unei matrice hermitiene $A \in \mathcal{M}_n(\mathbb{C})$ sunt reale. În particular, toate valorile proprii ale unei matrice simetrice $A \in \mathcal{M}_n(\mathbb{R})$ sunt reale.
- **44.** Fie $n, k \in \mathbb{N}$ și fie $A_1, \ldots, A_k \in \mathcal{M}_n(\mathbb{R})$. Să se demonstreze că

$$\det (A_1^t A_1 + \dots + A_k^t A_k) \ge 0.$$

M. Cavachi, Olimpiada națională, 1995/2

- a) Fiind dat un număr întreg impar $n \geq 3$, determinați toate matricile simetrice $A \in \mathcal{M}_n(\mathbb{R})$ cu proprietatea că tr $(A^{n-1}) = \det A < n^n$.
 - b) Fie $n \geq 3$ un număr întreg impar și fie $A \in \mathcal{M}_n(\mathbb{R})$ o matrice simetrică cu proprietatea că tr $(A^{n-1}) = \det A = n^n$. Demonstrați că $A^2 = n^2 I_n$.
 - c) Fiind dat un număr întreg par $n \geq 4$, demonstrați că există o matrice simetrică $A \in \mathcal{M}_n(\mathbb{R})$ astfel încât tr $\left(A^{n-1}\right) = \det A = n^n$ și $A^2 \neq n^2 I_n$.

Concursul Traian Lalescu, faza națională, secțiunea B, 2018/1

- **46.** Să se demonstreze că toate valorile proprii ale unei matrice strâmb hermitiene $A \in \mathcal{M}_n(\mathbb{C})$ sunt fie nule, fie pur imaginare. În particular, toate valorile proprii ale unei matrice antisimetrice $A \in \mathcal{M}_n(\mathbb{R})$ sunt fie nule, fie pur imaginare.
- **47.** Fie $A \in \mathcal{M}_n(\mathbb{R})$ o matrice antisimetrică. Să se demonstreze că dacă n este impar, atunci det A = 0, iar dacă n este par, atunci det $A \ge 0$.
- **48.** Fie $A \in \mathcal{M}_n(\mathbb{R})$ o matrice antisimetrică. Demonstrați că pentru orice $x, y \in [0, \infty)$ are loc inegalitatea

$$\det(A + xI_n)\det(A + yI_n) \ge \det(A + \sqrt{xy}\,I_n)^2.$$

O. Ganea, Olimpiada natională, 2008/4

49. Să se demonstreze că toate valorile proprii ale unei matrice unitare $U \in \mathcal{M}_n(\mathbb{C})$ au modulul egal cu 1. În particular, toate valorile proprii ale unei matrice ortogonale $U \in \mathcal{M}_n(\mathbb{R})$ au modulul egal cu 1.

- **50.** Fie $A \in \mathcal{M}_n(\mathbb{R})$ o matrice cu proprietatea că $AA^t = I_n$. Să se demonstreze că:
 - a) $|\operatorname{tr} A| \leq n$;
 - b) pentru n impar avem $\det (A^2 I_n) = 0$.

A. Gălățan, Olimpiada județeană, 2007/2

- **51.** Fie $A \in \mathcal{M}_n(\mathbb{R})$ o matrice ortogonală care nu are pe 1 ca valoare proprie și fie B matricea obținută din A prin schimbarea semnelor tuturor elementelor unei linii. Demonstrați că 1 este valoare proprie pentru B.
 - H. Liebeck, A. Osborne, Amer. Math. Monthly, probl. 10362 [1994]
- **52.** Fie $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ astfel încât

$$x_1 + \dots + x_n \neq 0$$
 și $x_1^2 + \dots + x_n^2 = 1$

și fie matricea $A = I_n - 2xx^t$.

- a) Să se demonstreze că A este ortogonală.
- b) Să se determine valorile proprii ale lui A, precum și o bază în raport cu care A are forma canonică Jordan.
- c) Să se determine x știind că (1, ..., 1) este vector propriu pentru A.

Concursul Traian Lalescu, faza națională, secțiunea B, 2017/1

- **53.** a) Să se demonstreze că dacă $A, B \in \mathcal{M}_n(\mathbb{R})$ și $(AB)^n = O_n$, atunci $(BA)^n = O_n$.
 - b) Să se arate că există $X,Y\in\mathcal{M}_n(\mathbb{R})$ astfel ca $(XY)^{n-1}=O_n$ și $(YX)^{n-1}\neq O_n.$

Concursul Traian Lalescu, UTCN, profil electric, anul I, 2012

54. Fie $n \geq 2$ număr întreg și fie $A, B \in \mathcal{M}_n(\mathbb{C})$. Dacă $(AB)^3 = O_n$, rezultă oare că $(BA)^3 = O_n$? Justificați răspunsul.

Olimpiada națională, 2017/3

55. Fie $n \geq 2$ un număr natural fixat. Vom numi o matrice $A \in \mathcal{M}_n(\mathbb{Q})$ radicală dacă există o infinitate de numere naturale k astfel încât ecuația $X^k = A$ să aibă soluții în $\mathcal{M}_n(\mathbb{Q})$.

- a) Demonstrați că dacă A este o matrice radicală, atunci det $A \in \{-1,0,1\}$ și că există o infinitate de matrici radicale care au determinantul 1.
- b) Demonstrați că există o infinitate de matrici care nu sunt radicale și au determinantul 0, precum și o infinitate de matrici care nu sunt radicale și au determinantul 1.

Olimpiada națională, 2005/1

- **56.** Fie matricile $A, B \in \mathcal{M}_n(\mathbb{C})$, dintre care cel puțin una este inversabilă. Demonstrați că polinoamele minimale ale matricilor AB și BA sunt egale. Rămâne adevărată această afirmație dacă niciuna dintre matricile A și B nu este inversabilă?
- **57.** Fie $p \geq 3$ un număr întreg și fie $A \in \mathcal{M}_n(\mathbb{C})$ o matrice astfel încât

$$A^p = pA - (p-1)I_n$$
 și $A^{3p} = 3pA - (3p-1)I_n$.

Să se demonstreze că egalitatea $A^r = rA - (r-1)I_n$ are loc pentru orice număr întreg $r \ge 1$.

V. Matrosenco, Olimpiada județeană București, 2000/4

- **58.** Fie n un număr întreg pozitiv, fie p > n+1 un număr prim cu proprietatea că $p \equiv 3 \pmod{4}$ și fie $A \in \mathcal{M}_n(\mathbb{Q}), A \neq I_n$. Să se demonstreze că $A^p + A \neq 2I_n$.
 - V. Matei, Amer. Math. Monthly, problema 11510 [2010, 558]
- **59.** Fie k un număr natural. Să se demonstreze că numărul natural minim n, pentru care există o matrice $A \in \mathcal{M}_n(\mathbb{Q})$ astfel încât $A^{2^k} = -I_n$, este 2^k .

Concursul Traian Lalescu, faza națională, secțiunea A, 2013/3

Rezolvări

1.] Rezolvarea 1. Demonstrăm mai întâi că pentru orice $n \geq 0$ este adevărată propoziția

$$P(n)$$
: " $\exists u_n, v_n \in \mathbb{C}$ a.i. $A^n = u_n A + v_n I_2$ "

cu convenția $A^0=I_2$. Evident, propozițiile P(0) și P(1) sunt adevărate (alegem $u_0=0,\ v_0=1$ și respectiv $u_1=1,\ v_1=0$). Presupunând P(n) adevărată pentru un $n\geq 0$ oarecare, să arătăm că și P(n+1) este adevărată. Notăm $\alpha:=\operatorname{tr} A=\lambda_1+\lambda_2$ și respectiv $\beta:=\det A=\lambda_1\lambda_2$. Atunci avem $p_A(t)=t^2-\alpha t+\beta$, deci $A^2=\alpha A-\beta I_2$, conform teoremei lui Cayley-Hamilton. Drept urmare

$$A^{n+1} = AA^n = A(u_nA + v_n)I_2 = u_nA^2 + v_nA = (\alpha u_n + v_n)A - \beta u_nI_2.$$

Rezultă de aici că definind

$$u_{n+1} := \alpha u_n + v_n$$
 si respectiv $v_{n+1} := -\beta u_n$,

avem $A^{n+1} = u_{n+1}A + v_{n+1}I_2$, deci P(n+1) este adevărată.

Se constată imediat că șirurile $(u_n)_{n\geq 0}$ și $(v_n)_{n\geq 0}$, definite mai sus, verifică ambele recurența de ordinul doi cu coeficienți constanți

$$u_{n+2} = \alpha u_{n+1} - \beta u_n$$
 și respectiv $v_{n+2} = \alpha v_{n+1} - \beta v_n$.

Ecuația caracteristică asociată celor două recurențe este $z^2 - \alpha z + \beta = 0$, cu rădăcinile λ_1 și λ_2 .

1° Dacă $\lambda_1 \neq \lambda_2$, atunci există $p,q,r,s \in \mathbb{C}$ în așa fel încât

$$u_n = p\lambda_1^n + q\lambda_2^n$$
 și respectiv $v_n = r\lambda_1^n + s\lambda_2^n$ oricare ar fi $n \ge 0$.

Din condițiile inițiale $u_0=0,\,u_1=1$ și respectiv $v_0=1,\,v_1=0,$ se obține

$$u_n = \frac{\lambda_1^n - \lambda_2^n}{\lambda_1 - \lambda_2}$$
, respectiv $v_n = -\frac{\lambda_1^n \lambda_2 - \lambda_1 \lambda_2^n}{\lambda_1 - \lambda_2}$.

2° Dacă $\lambda_1=\lambda_2\,(\neq0)$ (deoarece, în caz contrar, am avea $A^2=O_2$), atunci există $p,q,r,s\in\mathbb{C}$ în așa fel încât

$$u_n = \lambda_1^n(pn+q)$$
 și respectiv $v_n = \lambda_1^n(rn+s)$ oricare ar fi $n \ge 0$.

Din condițiile inițiale $u_0 = 0$, $u_1 = 1$ și respectiv $v_0 = 1$, $v_1 = 0$, se obține

$$u_n = n\lambda_1^{n-1}$$
, respectiv $v_n = -(n-1)\lambda_1^n$.

Rezolvarea 2. 1° Aplicând teorema împărțirii cu rest polinoamelor $f = X^n$ și $p_A = (X - \lambda_1)(X - \lambda_2)$, rezultă că există $q \in \mathbb{C}[X]$ și există $a, b \in \mathbb{C}$ astfel ca

$$X^{n} = (X - \lambda_{1})(X - \lambda_{2}) \cdot q + aX + b.$$

Obținem de aici sistemul

$$\begin{cases} a\lambda_1 + b = \lambda_1^n \\ a\lambda_2 + b = \lambda_2^n, \end{cases} \quad \text{cu soluțiile} \quad a = \frac{\lambda_1^n - \lambda_2^n}{\lambda_1 - \lambda_2}, \ b = -\frac{\lambda_1^n \lambda_2 - \lambda_1 \lambda_2^n}{\lambda_1 - \lambda_2}.$$

Întrucât $(A - \lambda_1 I_2)(A - \lambda_2 I_2) = p_A(A) = O_2$ (conform teoremei lui Cayley-Hamilton), deducem că $A^n = aA + bI_2 = \frac{\lambda_1^n - \lambda_2^n}{\lambda_1 - \lambda_2} A - \frac{\lambda_1^n \lambda_2 - \lambda_1 \lambda_2^n}{\lambda_1 - \lambda_2} I_2$.

2° Aplicând din nou teorema împărțirii cu rest polinoamelor $f=X^n$ și $p_A=(X-\lambda_1)^2$, rezultă că există $q\in\mathbb{C}[X]$ și există $a,b\in\mathbb{C}$ astfel ca

$$X^n = (X - \lambda_1)^2 \cdot q + aX + b.$$

Derivând ambii membri găsim

$$nX^{n-1} = 2(X - \lambda_1) \cdot q + (X - \lambda_1)^2 \cdot q' + a.$$

Din aceste două egalități obținem $a=n\lambda_1^{n-1}$ și $b=\lambda_1^n-a\lambda_1=-(n-1)\lambda_1^n$. Ca mai sus, avem $(A-\lambda_1I_2)^2=p_A(A)=O_2$ (conform teoremei lui Cayley-Hamilton), de unde $A^n=aA+bI_2=n\lambda_1^{n-1}A-(n-1)\lambda_1^nI_2$.

2. Se aplică rezultatul din problema 1, ținându-se seama că matricile AB și BA au aceleași valori proprii.

[3.] a) Dacă $(AB)^k = O_2$, atunci $p_{AB}(t) = t^2$, deci $p_{BA}(t) = t^2$. Teorema lui Cayley-Hamilton implică $(BA)^2 = O_2$, de unde $(BA)^k = O_2$.

- b) Egalitatea $(AB)^k = I_2$ garantează că A este inversabilă. Înmulțind această egalitate cu A^{-1} la stânga și cu A la dreapta, obținem $(BA)^k = I_2$.
- c) Problema precedentă și cele demonstrate la a) și b) arată că singurele matrici cu proprietatea din enunț sunt cele de forma $C = aI_2$, cu a număr complex arbitrar.

4. Fie $\alpha, \beta, \gamma, \delta$ limitele șirurilor $(a_n), (b_n), (c_n),$ respectiv (d_n) . Atunci există $\lim_{n\to\infty} \det(A^n) = \lim_{n\to\infty} (a_n d_n - b_n c_n) = \alpha \delta - \beta \gamma$, deci există

$$\lim_{n \to \infty} (\det A)^n = \alpha \delta - \beta \gamma.$$

Cum det $A \geq 1$, rezultă că în mod necesar avem det A=1, deci $\alpha\delta-\beta\gamma=1$. Fie $A=\begin{pmatrix}a&b\\c&d\end{pmatrix}$, cu $ad-bc=\det A=1$. Trecând la limită în relațiile de recurență

$$a_{n+1} = aa_n + bc_n,$$
 $c_{n+1} = ca_n + dc_n$
 $b_{n+1} = ab_n + bd_n,$ $d_{n+1} = cb_n + dd_n,$

deducem că $\alpha,\beta,\gamma,\delta$ sunt soluții ale sistemului

$$\begin{cases} (a-1)\alpha & +b\gamma & = 0\\ (a-1)\beta & +b\delta & = 0\\ c\alpha & +(d-1)\gamma & = 0\\ c\beta & +(d-1)\delta & = 0. \end{cases}$$

Cum $\alpha\delta-\beta\gamma=1$, rezultă că acest sistem omogen admite o soluție netrivială, deci determinantul său este nul. Un calcul simplu arată că determinantul sistemului este egal cu $\left((a-1)(d-1)-bc\right)^2$. Prin urmare, trebuie să avem (a-1)(d-1)-bc=0. Întrucât ad-bc=1, deducem de aici că a+d=2. Fie $\lambda_1,\lambda_2\in\mathbb{C}$ valorile proprii ale lui A. Cum $\lambda_1+\lambda_2=a+d=2$ și $\lambda_1\lambda_2=\det A=1$, rezultă că $\lambda_1=\lambda_2=1$. Conform problemei 1, avem

$$A^{n} = nA - (n-1)I_{2} = \begin{pmatrix} n(a-1) + 1 & nb \\ nc & n(d-1) + 1 \end{pmatrix},$$

de unde $a_n = n(a-1)+1$, $b_n = nb$, $c_n = nc$, $d_n = n(d-1)+1$. Convergența șirurilor (a_n) , (b_n) , (c_n) și (d_n) implică atunci a = d = 1 și b = c = 0, adică $A = I_2$.

5. Fie $\alpha := \operatorname{tr} A$, $\beta := \det A$ și fie $(u_n)_{n \geq 1}$, $(v_n)_{n \geq 1}$ șirurile definite recursiv prin $u_1 = 1$, $v_1 = 0$ și

$$u_{n+1} = \alpha u_n + v_n$$
, $v_{n+1} = -\beta u_n$ oricare ar fi $n \ge 1$.

Atunci pentru orice $n \geq 1$ avem (a se vedea problema 1)

$$u_{n+2} = \alpha u_{n+1} - \beta u_n, \quad v_{n+2} = \alpha v_{n+1} - \beta v_n,$$

precum și $A^n = u_n A + v_n I_2$. Rezultă de aici că

$$a_n = a_1 u_n + v_n$$
, $b_n = b_1 u_n$, $c_n = c_1 u_n$, $d_n = d_1 u_n + v_n$.

Vom dovedi că dacă șirul (a_n) este o progresie aritmetică, atunci și șirurile (b_n) , (c_n) și (d_n) sunt progresii aritmetice (celelalte trei posibilități se tratează analog). Avem

$$a_{n+2} = a_1 u_{n+2} + v_{n+2} = a_1 (\alpha u_{n+1} - \beta u_n) + \alpha v_{n+1} - \beta v_n$$

= $\alpha (a_1 u_{n+1} + v_{n+1}) - \beta (a_1 u_n + v_n),$

deci

$$a_{n+2} = \alpha a_{n+1} - \beta a_n,$$

precum și $a_{n+2} = 2a_{n+1} - a_n$. Scăzând membru cu membru cele două egalități, deducem că

$$(\alpha - 2)a_{n+1} = (\beta - 1)a_n$$
 oricare ar fi $n \ge 1$.

Cazul I. $\alpha = 2$.

Atunci, cum $a_1 \neq 0$, rezultă că $\beta = 1$. Prin urmare, valorile proprii ale lui A sunt $\lambda_1 = \lambda_2 = 1$. Aplicând rezultatul problemei **1**, găsim

$$A^{n} = nA - (n-1)I_{2} = \begin{pmatrix} 1 + n(a_{1} - 1) & nb_{1} \\ nc_{1} & 1 + n(d_{1} - 1) \end{pmatrix},$$

deci șirurile (b_n) , (c_n) și (d_n) sunt progresii aritmetice.

Cazul I. $\alpha \neq 2$.

Atunci $a_{n+1}=\frac{\beta-1}{\alpha-2}a_n$ oricare ar fi $n\geq 1$, deci șirul (a_n) este o progresie geometrică. Fiind simultan progresie aritmetică și progresie geometrică, șirul (a_n) trebuie să fie constant. Prin urmare, trebuie să avem $\beta-1=\alpha-2$, adică $\beta=\alpha-1$. Dar atunci $p_A(t)=t^2-\alpha t+\alpha-1$, iar valorile proprii ale lui A sunt $\lambda_1=1$ și $\lambda_2=\alpha-1\neq\lambda_1$. Conform problemei $\mathbf{1}$, avem

$$u_n = \frac{(\alpha - 1)^n - 1}{\alpha - 2}$$
 și $v_n = -\frac{(\alpha - 1)^n - (\alpha - 1)}{\alpha - 2}$,

deci

$$a_n = a_1 u_n + v_n = \frac{a_1 - 1}{\alpha - 2} (\alpha - 1)^n + \frac{\alpha - 1 - a_1}{\alpha - 2}.$$

Nu putem avea $a_1 = 1$. În adevăr, dacă $a_1 = 1$, atunci $d_1 = \operatorname{tr} A - a_1 = \alpha - 1$, deci $\alpha - 1 = \beta = a_1 d_1 - b_1 c_1 = \alpha - 1 - b_1 c_1$. Dar atunci $b_1 c_1 = 0$, în contradicție cu ipoteza. Cum $\alpha \neq 2$, avem și $\alpha - 1 \neq 1$. Prin urmare, șirul (a_n) fiind constant, trebuie să avem $\alpha - 1 = 0$, adică $\alpha = 1$ și $\beta = \alpha - 1 = 0$. Conform teoremei lui Cayley-Hamilton, avem $A^2 = A$, deci $A^n = A$ oricare ar fi $n \geq 1$. Cu alte cuvinte, în acest caz șirurile (a_n) , (b_n) , (c_n) și (d_n) sunt toate constante și concluzia din enunț are loc.

$$(1) M = \begin{pmatrix} m & m \\ m & m \end{pmatrix}$$

și se constată imediat că $M^2 \in S$. Deci orice matrice de forma (1) satisface cerinta din enunt.

Presupunem în continuare că $r \neq 0$. Fie λ_1 și λ_2 valorile proprii ale lui M. Acestea sunt rădăcinile ecuației de gradul al doilea $t^2 - 2mt - 8r^2 = 0$, care are discriminantul $\Delta = 4m^2 + 32r^2 > 0$. Cum $\lambda_1\lambda_2 = -8r^2 < 0$, deducem că λ_1 și λ_2 sunt reale, distincte, nenule și de semne contrare. Notăm pentru fiecare $k \geq 0$

$$u_k := \frac{\lambda_1^k - \lambda_2^k}{\lambda_1 - \lambda_2} \quad \text{si respectiv} \quad v_k := \frac{-\lambda_1^k \lambda_2 + \lambda_1 \lambda_2^k}{\lambda_1 - \lambda_2} \,.$$

Conform problemei 1, avem $M^k=u_kM+v_kI_2$ oricare ar fi $k\geq 0$. Se constată imediat că $M^k\in S$ dacă și numai dacă $v_k=0$, adică dacă și numai dacă $\lambda_1^{k-1}=\lambda_2^{k-1}$.

Dacă există k > 1 așa încât $M^k \in S$, atunci trebuie să avem $|\lambda_1| = |\lambda_2|$. Cum $\lambda_1 \lambda_2 < 0$, rezultă că $\lambda_2 = -\lambda_1$, deci $2m = \operatorname{tr} M = 0$. Prin urmare, M este de forma

(2)
$$M = \begin{pmatrix} -3r & -r \\ r & 3r \end{pmatrix}.$$

Reciproc, dacă M este de forma (2), atunci avem $\lambda_1 = -\lambda_2 = 2\sqrt{2}|r|$, deci $\lambda_1^{k-1} = \lambda_2^{k-1}$ oricare ar fi k impar. Prin urmare, $M^k \in S$ oricare ar fi k > 1 impar.

În concluzie, matricile $M \in S$ cu proprietatea din enunț sunt cele de forma (1) sau (2), cu $m, r \in \mathbb{R}$ arbitrare.

7. Fie $A \in \mathcal{M}_2(\mathbb{C})$, $\alpha := \operatorname{tr} A$, $\beta := \det A$ și fie $(u_n)_{n \geq 0}$, $(v_n)_{n \geq 0}$ șirurile definite recursiv prin $u_0 = 0$, $v_0 = 1$ și

$$u_{n+1} = \alpha u_n + v_n$$
, $v_{n+1} = -\beta u_n$ oricare ar fi $n \ge 0$.

Atunci avem $A^n = u_n A + v_n I_2$ oricare ar fi $n \ge 0$ (a se vedea rezolvarea problemei 1).

Observăm că dacă
$$A=\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\in M,$$
 atunci avem $ab=cd,$ deci

(3)
$$A^n \in M \Leftrightarrow (au_n + v_n)bu_n = cu_n(du_n + v_n) \Leftrightarrow (b - c)u_nv_n = 0.$$

b) Fie $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M$. Dacă b = c, atunci în baza lui (3) deducem că $A^n \in M$ oricare ar fi $n \ge 1$. Presupunem în continuare că $b \ne c$. Deoarece matricile A^k , A^{k+1} și A^{k+2} aparțin lui M, din (3) rezultă că

$$u_k v_k = u_{k+1} v_{k+1} = u_{k+2} v_{k+2} = 0.$$

Dacă $u_k = v_k = 0$, atunci $A^k = O_2$, deci valorile proprii ale lui A sunt $\lambda_1 = \lambda_2 = 0$ și prin urmare $\alpha = \beta = 0$. Din teorema lui Cayley-Hamilton rezultă că $A^2 = O_2$, deci $A^n = O_2$ oricare ar fi $n \geq 2$. În consecință, avem $A^n \in M$ oricare ar fi $n \geq 1$.

Dacă $u_k=0$ și $v_k\neq 0$, atunci $u_{k+1}=v_k, \ v_{k+1}=0$ și $u_{k+2}=\alpha v_k, \ v_{k+2}=-\beta v_k$. Cum $u_{k+2}v_{k+2}=0$, trebuie să avem $\alpha=0$ sau $\beta=0$. Dacă $\alpha=0$, atunci $A^2=\beta I_2$ (conform teoremei lui Cayley-Hamilton). Se demonstrează imediat că

$$A^{2k} = \beta^k I_2$$
 si $A^{2k-1} = \beta^{k-1} A$ oricare ar fi $k > 1$.

Dacă însă $\beta=0$, atunci $A^2=\alpha A$ (conform teoremei lui Cayley-Hamilton). Se demonstrează imediat că

$$A^n = \alpha^{n-1}A$$
 oricare ar fi $n > 2$.

Cum $A \in M$, rezultă în ambele situații că $A^n \in M$ oricare ar fi $n \ge 1$. Cazul $u_k \ne 0$, $v_k = 0$ se tratează similar.

a) Căutăm o matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M$, cu $b \neq c$, care să aibă valori proprii nenule distincte $\lambda_1 \neq \lambda_2$. Atunci avem (a se vedea rezolvarea problemei 1)

$$u_n = \frac{\lambda_1^n - \lambda_2^n}{\lambda_1 - \lambda_2}, \qquad v_n = -\frac{\lambda_1^n \lambda_2 - \lambda_1 \lambda_2^n}{\lambda_1 - \lambda_2}.$$

Condițiile $A^{2017} \in M, A^{2019} \in M, A^{2018} \not\in M$ sunt echivalente (conform lui (3)) cu

$$\begin{split} \left(\lambda_1^{2017} - \lambda_2^{2017}\right) \left(\lambda_1^{2016} - \lambda_2^{2016}\right) &= 0 \\ \left(\lambda_1^{2019} - \lambda_2^{2019}\right) \left(\lambda_1^{2018} - \lambda_2^{2018}\right) &= 0 \\ \left(\lambda_1^{2018} - \lambda_2^{2018}\right) \left(\lambda_1^{2017} - \lambda_2^{2017}\right) &\neq 0. \end{split}$$

Aceste condiții sunt îndeplinite, de exemplu, dacă $\lambda_1=\varepsilon$ și $\lambda_2=\bar{\varepsilon}=\varepsilon^2$, unde $\varepsilon=\cos\frac{2\pi}{3}+\mathrm{i}\sin\frac{2\pi}{3}$. În adevăr, atunci se constată ușor că au loc următoarele relații: $\lambda_1^{2016}=\lambda_2^{2016}=1,\ \lambda_1^{2019}=\lambda_2^{2019}=1,\ \mathrm{dar}\ \lambda_1^{2017}\neq\lambda_2^{2017}$ și $\lambda_1^{2018}\neq\lambda_2^{2018}$.

Prin urmare, este suficient să găsim o matrice $A \in M$ care să aibă valorile proprii ε și ε^2 , adică să aibă polinomul caracteristic $p_A(t) = t^2 + t + 1$. Un exemplu de astfel de matrice este $A = \begin{pmatrix} 1 & \sqrt{6} \\ -\frac{\sqrt{6}}{2} & -2 \end{pmatrix}$.

8. a) Din $A^3 = B^3$ rezultă că $(\det A)^3 = (\det B)^3$. Deducem de aici că $\det A = \det B =: \beta$, deoarece $\det A$ și $\det B$ sunt numere reale. Fie $\alpha := \operatorname{tr} A$ și $\gamma := \operatorname{tr} B$. Atunci, în baza teoremei lui Cayley-Hamilton, avem

$$A^2 = \alpha A - \beta I_2$$
 și $B^2 = \gamma B - \beta I_2$.

Din aceste egalități rezultă că

$$A^3 = (\alpha^2 - \beta)A - \alpha\beta I_2$$
 și $B^3 = (\gamma^2 - \beta)B - \gamma\beta I_2$

deci

$$(\alpha^2 - \beta)A - \alpha\beta I_2 = (\gamma^2 - \beta)B - \gamma\beta I_2.$$

Dacă $\alpha^2 - \beta \neq 0$, atunci am avea

$$A = \frac{\gamma^2 - \beta}{\alpha^2 - \beta} B + \frac{\beta(\alpha - \gamma)}{\alpha^2 - \beta} I_2.$$

Dar atunci am avea AB=BA, în contradicție cu ipoteza. Contradicția obținută arată că $\alpha^2-\beta=0$. Urmează apoi imediat că $\gamma^2-\beta=0$ și că $\alpha\beta=\gamma\beta$. Deducem că $\alpha^2=\gamma^2$, deci $\gamma=\alpha$ sau $\gamma=-\alpha$.

Dacă $\gamma=\alpha,$ atunci A și B au același polinom caracteristic, deci au aceleași valori proprii λ_1 și λ_2 și prin urmare

$$\operatorname{tr}(A^n) = \lambda_1^n + \lambda_2^n = \operatorname{tr}(B^n)$$
 oricare ar fi $n \in \mathbb{N}$.

Dacă $\gamma = -\alpha \neq \alpha$, atunci $\alpha \neq 0$ și $2\alpha\beta = 0$, deci $\beta = 0$. În acest caz avem $A^3 = \alpha^2 A$ și $B^3 = \gamma^2 B = \alpha^2 B$. Cum $A^3 = B^3$, rezultă că A = B, deci tr $(A^n) = \operatorname{tr}(B^n)$ oricare ar fi $n \in \mathbb{N}$.

b) Matricile $A=\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$ și $B=\left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right)$ îndeplinesc cerințele din enunt.

9. Fie $X \in \mathcal{M}_2(\mathbb{C})$ o soluție a ecuației matriciale din enunț. Există atunci $u, v \in \mathbb{R}$ (a se vedea rezolvarea problemei 1) astfel ca $X^n = uX + vI_2$. Întrucât $\sin t \neq 0$, nu putem avea u = 0, deci

$$X = \frac{1}{u} (X^n - vI_2) = \begin{pmatrix} \frac{-v + \cos t}{u} & -\frac{\sin t}{u} \\ \frac{\sin t}{u} & \frac{-v + \cos t}{u} \end{pmatrix}.$$

Drept urmare, orice soluție a ecuației matriciale din enunț este de forma $X = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, cu $a, b \in \mathbb{R}$. Mai mult, deoarece avem

$$1 = \begin{vmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{vmatrix} = \det X^n = (a^2 + b^2)^n,$$

rezultă că $a^2 + b^2 = 1$. Drept urmare, există un unic $\alpha \in [0, 2\pi)$ în așa fel încât $X = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$. Dar atunci se știe că

$$X^n = \left(\begin{array}{cc} \cos n\alpha & -\sin n\alpha \\ \sin n\alpha & \cos n\alpha \end{array} \right).$$

Deci X este soluție a ecuației din enunț dacă și numai dacă $\cos n\alpha = \cos t$ și $\sin n\alpha = \sin t$, adică dacă și numai dacă

$$\cos t + i \sin t = \cos n\alpha + i \sin n\alpha = (\cos \alpha + i \sin \alpha)^{n}.$$

În concluzie, soluțiile ecuației date sunt toate matricile de forma

$$X = \begin{pmatrix} \cos \alpha_k & -\sin \alpha_k \\ \sin \alpha_k & \cos \alpha_k \end{pmatrix},$$

unde $\alpha_k = \frac{t+2k\pi}{n}$, iar $k = 0, 1, \dots, n-1$.

10. Conform teoremei lui Cayley-Hamilton, avem

$$A^{2} - (\operatorname{tr} A)A + (\det A)I_{2} = O_{2}$$
 și $B^{2} - (\operatorname{tr} B)B + (\det B)I_{2} = O_{2}$,

deci

$$\operatorname{tr}(A^2) = (\operatorname{tr} A)^2 - 2 \det A$$
 și $\operatorname{tr}(B^2) = (\operatorname{tr} B)^2 - 2 \det B$.

Deoarece tr A= tr B și tr $(A^2)=$ tr (B^2) , deducem de aici că det A= det B. Drept urmare, avem $p_A=p_B=$: p (matricile A și B au același polinom caracteristic). Fie $f\in\mathbb{C}[X]$ și fie $g,h\in\mathbb{C}[X]$ polinoame cu proprietatea că f=pg+h, polinomul h având gradul cel mult 1. Cum $p(A)=p(B)=O_2$, rezultă că f(A)=h(A) și f(B)=h(B). Dacă $h=b\in\mathbb{C}$, atunci avem

$$\det f(A) = \det h(A) = \det (bI_2) = b^2$$

și analog det $f(B) = b^2$. Dacă h = aX + b, cu $a, b \in \mathbb{C}$, $a \neq 0$, atunci avem

$$\det f(A) = \det h(A) = \det (aA + bI_2) = a^2 \det \left(A + \frac{b}{a}I_2\right) = a^2 p\left(-\frac{b}{a}\right)$$

și analog det $f(B) = a^2 p\left(-\frac{b}{a}\right)$. În ambele cazuri avem det $f(A) = \det f(B)$.

11. Rezolvarea 1. Fie $\alpha := \operatorname{tr} B$ și $\beta := \det B$. Conform teoremei lui Cayley-Hamilton, avem

$$B^2 = \alpha B - \beta I_2.$$

Înmulțind relația din enunț $AB - BA = B^2$ mai întâi de la stânga cu B, iar apoi de la dreapta cu B, obținem

$$BAB - B^2A = B^3$$
 și $AB^2 - BAB = B^3$.

Adunând membru cu membru aceste egalități, găsim

$$2B^3 = AB^2 - B^2A = A(\alpha B - \beta I_2) - (\alpha B - \beta I_2)A$$
$$= \alpha(AB - BA) = \alpha B^2.$$

Cum $2B^3 = 2BB^2 = 2B(\alpha B - \beta I_2) = 2\alpha B^2 - 2\beta B$, deducem că

$$\alpha B^2 - 2\beta B = O_2$$
 \Leftrightarrow $(\alpha^2 - 2\beta)B - \alpha\beta I_2 = O_2.$

Dacă $\alpha^2 - 2\beta \neq 0$, atunci $B = \frac{\alpha\beta}{\alpha^2 - 2\beta} I_2$, deci AB = BA. Dacă însă $\alpha^2 - 2\beta = 0$, atunci trebuie să avem și $\alpha\beta = 0$, deci $\alpha = \beta = 0$. Dar atunci $B^2 = O_2$, deci AB = BA.

Rezolvarea 2. Înmulțind egalitatea $B^2 = AB - BA$ la dreapta cu B, găsim $B^3 = AB^2 - BAB = AB^2 - B(B^2 + BA) = AB^2 - B^2A - B^3$, de unde $2B^3 = AB^2 - B^2A$. Fie $\lambda_1, \lambda_2 \in \mathbb{C}$ valorile proprii ale lui B. Avem

$$\lambda_1^2 + \lambda_2^2 = \operatorname{tr}(B^2) = \operatorname{tr}(AB - BA) = 0,$$

$$\lambda_1^3 + \lambda_2^3 = \operatorname{tr}(B^3) = \frac{1}{2}\operatorname{tr}(AB^2 - B^2A) = 0.$$

Se constată ușor că aceste două egalități implică $\lambda_1 = \lambda_2 = 0$, deci polinomul caracteristic al lui B este $p_B(t) = t^2$. Drept urmare, $B^2 = O_2$ (conform teoremei lui Cayley-Hamilton), de unde AB = BA.

12. Fie $\sigma(A)$ și $\sigma(B)$ mulțimea valorilor proprii ale (spectrul) lui A și respectiv B. Fie apoi $\lambda \in \sigma(B)$ și fie $v \in \mathbb{C}^2$, $v \neq 0_2$ un vector propriu asociat. Avem $Bv = \lambda v$ și $B^2v = \lambda^2 v$, de unde

$$0_2 = (A^2 + B^2 - 2AB)v = A^2v + \lambda^2v - 2\lambda Av$$

= $(A^2 - 2\lambda A + \lambda^2 I_2)v = (\lambda I_2 - A)^2v$.

Rezultă de aici că matricea $\lambda I_2 - A$ este singulară, deci $\lambda \in \sigma(A)$. Am dovedit astfel că $\sigma(B) \subseteq \sigma(A)$.

Întrucât matricile A și A^t au același polinom caracteristic, are loc egalitatea $\sigma(A) = \sigma(A^t)$. Transpunând egalitatea din enunț, obținem

$$(A^t)^2 + (B^t)^2 = 2B^t A^t.$$

Pornind de la această egalitate, se arată exact ca mai sus că $\sigma(A^t) \subseteq \sigma(B^t)$. În consecință, avem $\sigma(B) \subseteq \sigma(A) = \sigma(A^t) \subseteq \sigma(B^t) = \sigma(B)$, de unde $\sigma(A) = \sigma(B)$ și prin urmare tr $A = \operatorname{tr} B$ (ultima implicație are loc doar din cauză că A și B sunt de tipul 2×2 !).

Din tr $A={\rm tr}\,B,$ rezultă că tr(A-B)=0. Aplicând teorema lui Cayley-Hamilton matricei A-B, deducem că

(1)
$$(A - B)^2 + \det(A - B)I_2 = O_2.$$

Dar

(2)
$$(A - B)^2 = A^2 + B^2 - AB - BA = AB - BA,$$

de unde tr $((A - B)^2) = 0$. Trecând acum la urme în relația (1), găsim det (A - B) = 0, deci $(A - B)^2 = O_2$. Această egalitate împreună cu (2) implică AB = BA.

13. $1^{\circ} \Rightarrow 2^{\circ}$ Presupunem, prin absurd, că există $X \in \mathcal{M}_2(\mathbb{C})$ astfel încât $X^2 = A$, dar $A^2 = O_2$. Atunci avem $X^4 = A^2 = O_2$, deci valorile proprii ale lui X sunt $\lambda_1 = \lambda_2 = 0$. Prin urmare, polinomul caracteristic al lui X este $p_X(t) = t^2$. Conform teoremei lui Cayley-Hamilton, avem $A = X^2 = O_2$, în contradicție cu ipoteza.

 $\boxed{2^{\circ} \Rightarrow 1^{\circ}}$ Vom da două demonstrații pentru această implicație.

Rezolvarea~1. Fie $\alpha:=\operatorname{tr} A$ și $\beta:=\det A.$ Dacă $\beta=0,$ atunci conform teoremei lui Cayley-Hamilton avem $A^2=\alpha A$ și $\alpha\neq 0.$ Fie $x\in\mathbb{C}$ astfel ca $x^2=1/\alpha.$ Avem $A=\frac{1}{\alpha}A^2=(xA)^2,$ deci X:=xA este soluție a ecuației matriciale $X^2=A.$

Presupunem în continuare că $\beta \neq 0$. Căutăm o soluție a ecuației $X^2 = A$ de forma $X = xA + yI_2$. Cum $A^2 = \alpha A - \beta I_2$, avem

$$X^{2} = x^{2}A^{2} + 2xyA + y^{2}I_{2} = x^{2}(\alpha A - \beta I_{2}) + 2xyA + y^{2}I_{2}$$
$$= (\alpha x^{2} + 2xy)A + (y^{2} - \beta x^{2})I_{2}.$$

Rezolvarea va fi încheiată de îndată ce vom dovedi că există $x,y\in\mathbb{C}$ așa încât $y^2-\beta x^2=0$ și $\alpha x^2+2xy=1$. Fie $\gamma\in\mathbb{C}\setminus\{0\}$ în așa fel încât $\gamma^2=\beta$. Alegând $y=\pm\gamma x$, avem $y^2-\beta x^2=0$ și

$$\alpha x^2 + 2xy = 1 \quad \Leftrightarrow \quad x^2(\alpha \pm 2\gamma) = 1.$$

Nu putem avea simultan $\alpha + 2\gamma = 0$ și $\alpha - 2\gamma = 0$, deoarece, în caz contrar, am avea $\gamma = 0$. Prin urmare, este suficient să alegem $\varepsilon \in \{-1,1\}$ astfel ca $\alpha + 2\varepsilon\gamma \neq 0$, apoi să alegem $x \in \mathbb{C}$ astfel ca $x^2 = 1/(\alpha + 2\varepsilon\gamma)$ și în fine să alegem $y = \varepsilon\gamma x$. Matricea $X = xA + yI_2$ va fi soluție a ecuației $X^2 = A$.

Rezolvarea 2. Fie J matricea Jordan a lui A și fie $S \in \mathcal{M}_2(\mathbb{C})$ o matrice nesingulară astfel încât $A = SJS^{-1}$.

Dacă $J=\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, atunci alegem $x,y\in\mathbb{C}$ astfel ca $x^2=\lambda_1$ și $y^2=\lambda_2$. Matricea $X:=S\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}S^{-1}$ satisface $X^2=A$.

Dacă $J=\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$, atunci $\lambda \neq 0$ (altfel am avea $A^2=O_2$). Matricea $X:=S\begin{pmatrix} x & y \\ 0 & x \end{pmatrix}S^{-1}$ este soluție a ecuației matriciale $X^2=A$ dacă și numai dacă $x^2=\lambda$ și 2xy=1. Or, este simplu de văzut că există numere complexe x și y care să satisfacă simultan aceste două egalități.

14. $1^{\circ} \Rightarrow 2^{\circ}$ Presupunem, prin absurd, că există $X \in \mathcal{M}_2(\mathbb{C})$ astfel încât $AX + XA = I_2$, dar A nu este inversabilă și $A^2 \neq O_2$. Atunci det A = 0 și $\alpha := \operatorname{tr} A \neq 0$. Conform teoremei lui Cayley-Hamilton, avem $A^2 = \alpha A$. Din $AX + XA = I_2$ rezultă $\operatorname{tr}(AX) + \operatorname{tr}(XA) = 2$, deci $\operatorname{tr}(AX) = \operatorname{tr}(XA) = 1$. Cum det $(AX) = \det A \det X = 0$, în baza teoremei lui Cayley-Hamilton deducem că $(AX)^2 = AX$. Înmulțind egalitatea $AX + XA = I_2$ la dreapta cu AX, obținem $(AX)^2 + XA^2X = AX$, deci $AX + \alpha XAX = AX$, de unde $XAX = O_2$. Înmulțind această egalitate la stânga cu A, găsim $(AX)^2 = O_2$, adică $AX = O_2$. Analog se arată că și $XA = O_2$, de unde contradicția $I_2 = AX + XA = O_2 + O_2 = O_2$.

 $2^{\circ} \Rightarrow 1^{\circ}$ Dacă A este inversabilă, atunci ecuația $AX + XA = I_2$ are, evident, soluția $X = \frac{1}{2}A^{-1}$. Rămâne așadar să arătăm că dacă $A \neq O_2$ și $A^2 = O_2$, atunci există $X \in \mathcal{M}_2(\mathbb{C})$ astfel ca $AX + XA = I_2$. Vom da două demonstrații pentru această afirmație.

Rezolvarea 1. Deoarece $A^2 = O_2$, rezultă că valorile proprii ale lui A sunt $\lambda_1 = \lambda_2 = 0$, deci tr $A = \det A = 0$. Prin urmare, A este de forma $A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$, cu $a^2 + bc = 0$. Întrucât $A \neq O_2$, rezultă că sau $b \neq 0$, sau $c \neq 0$. Presupunem, pentru fixarea ideilor, că $b \neq 0$ (cazul $c \neq 0$ se tratează similar). Atunci avem $A = \begin{pmatrix} a & b \\ -a^2/b & -a \end{pmatrix}$. Căutând o soluție de forma $X = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ a ecuației $AX + XA = I_2$, după efectuarea unor calcule de rutină pe care nu le mai reproducem, se constată că matricea $X = \begin{pmatrix} 0 & 0 \\ 1/b & 0 \end{pmatrix}$ este soluție.

Rezolvarea 2. Deoarece $A^2 = O_2$, rezultă că valorile proprii ale lui A sunt $\lambda_1 = \lambda_2 = 0$. Cum $A \neq O_2$, matricea Jordan a lui A este $J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Este suficient să dovedim că ecuația $JY + YJ = I_2$ are soluție în $\mathcal{M}_2(\mathbb{C})$. În adevăr, dacă $S \in \mathcal{M}_2(\mathbb{C})$ este o matrice nesingulară cu proprietatea că $A = SJS^{-1}$, atunci notând $X := SYS^{-1}$, avem

$$AX + XA = SJYS^{-1} + SYJS^{-1} = S(JY + YJ)S^{-1} = I_2.$$

Or, se constată imediat că $Y:=\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right)$ verifică $JY+YJ=I_2.$

15. Necesitatea. Admitem că există $X \in \mathcal{M}_2(\mathbb{C})$ astfel ca AX - XA = A. Atunci avem tr A = 0. Notând $\beta := \det A$, din teorema lui Cayley-Hamilton rezultă că $A^2 = \beta I_2$. Ținând seama de aceasta, prin adunarea membru cu membru a egalităților

$$A^2 = AXA - XA^2 \quad \text{si} \quad A^2 = A^2X - AXA,$$

obtinem $2A^2 = A^2X - XA^2 = O_2$, de unde $A^2 = O_2$.

Suficiența. Presupunând că $A^2 = O_2$, vom arăta că există $X \in \mathcal{M}_2(\mathbb{C})$ astfel ca AX - XA = A. Dacă $A = O_2$, atunci se poate alege $X = O_2$, sau $X = I_2$, sau X = A. Admitem în continuare că $A \neq O_2$. Atunci matricea Jordan a lui A este $J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Este suficient să dovedim că

ecuația JY - YJ = J are soluție în $\mathcal{M}_2(\mathbb{C})$. În adevăr, dacă $S \in \mathcal{M}_2(\mathbb{C})$ este o matrice nesingulară cu proprietatea că $A = SJS^{-1}$, atunci notând $X := SYS^{-1}$, avem

$$AX - XA = SJYS^{-1} - SYJS^{-1} = S(JY - YJ)S^{-1} = SJS^{-1} = A.$$

Or, se constată imediat că $Y:=\left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)$ verifică JY-YJ=J.

16. Fie $\alpha := \operatorname{tr} A$. Deoarece det A = 1, rezultă că polinomul caracteristic al lui A este de forma $p_A(t) = t^2 - \alpha t + 1$. Fie t_1 și t_2 rădăcinile ecuației $t^2 + t - 1 = 0$. Avem

$$\det (A^{2} + A - I_{2}) + \det (A^{2} + I_{2})$$

$$= \det ((t_{1}I_{2} - A)(t_{2}I_{2} - A)) + \det ((iI_{2} - A)(-iI_{2} - A))$$

$$= p_{A}(t_{1})p_{A}(t_{2}) + p_{A}(i)p_{A}(-i)$$

$$= (t_{1}^{2} - \alpha t_{1} + 1)(t_{2}^{2} - \alpha t_{2} + 1) + (-\alpha i)(\alpha i).$$

Întrucât $t_1^2 = 1 - t_1$, $t_2^2 = 1 - t_2$, $t_1 + t_2 = -1$ și $t_1 t_2 = -1$, deducem că $\det (A^2 + A - I_2) + \det (A^2 + I_2)$

$$= (2 - (\alpha + 1)t_1)(2 - (\alpha + 1)t_2) + \alpha^2$$

$$= 4 - 2(\alpha + 1)(t_1 + t_2) + (\alpha + 1)^2 t_1 t_2 + \alpha^2$$

$$= 2 + 2(\alpha + 1) - (\alpha + 1)^2 + \alpha^2 = 5.$$

17. Fie $p_A \in \mathbb{R}[X]$ polinomul caracteristic al lui A, $p_A(t) = \det(tI_2 - A)$. Avem

$$0 = \det(A^2 + xI_2) = \det((i\sqrt{x}I_2 - A)(-i\sqrt{x}I_2 - A))$$

= \det(i\sqrt{x}I_2 - A)\det(-i\sqrt{x}I_2 - A) = p_A(i\sqrt{x})p_A(-i\sqrt{x}),

deci unul dintre numerele complexe nereale $i\sqrt{x}$ și $-i\sqrt{x}$ este rădăcină a lui p_A . Cum $p_A \in \mathbb{R}[X]$, rezultă că ambele numere complexe sunt rădăcini ale lui p_A , deci $p_A(t) = (t - i\sqrt{x})(t + i\sqrt{x}) = t^2 + x^2$. Fie

$$t_{1,2} = \frac{-1 \pm \sqrt{1 - 4x}}{2}$$

rădăcinile ecuației $t^2 + t + x = 0$. Atunci $A^2 + A + xI_2 = (t_1I_2 - A)(t_2I_2 - A)$, de unde

$$\det (A^2 + A + xI_2) = p_A(t_1)p_A(t_2) = (t_1^2 + x)(t_2^2 + x)$$

$$= (t_1t_2)^2 + (t_1^2 + t_2^2)x + x^2$$

$$= x^2 + (1 - 2x)x + x^2 = x.$$

18. Fie $p_A \in \mathbb{R}[X]$ polinomul caracteristic al lui A, $p_A(t) = \det(tI_2 - A)$. Tinând seama că $AA_* = dI_2$, avem

$$0 = d \det (A + dA_*) = \det A \det (A + dA_*) = \det (A^2 + d^2 I_2)$$

= \det (idI_2 - A) \det (-idI_2 - A) = p_A(id) p_A(-id),

deci unul dintre numerele complexe nereale id și -id este rădăcină a lui p_A . Cum $p_A \in \mathbb{R}[X]$, rezultă că ambele numere complexe sunt rădăcini ale lui p_A . Pe de altă parte, produsul celor două rădăcini ale lui p_A este egal cu det A = d. Drept urmare, avem $d^2 = d$, de unde d = 1 și $p_A(t) = t^2 + 1$. Deducem de aici că

$$\det(A - dA_*) = \det(A - A_*) = \det A \det(A - A_*) = \det(A^2 - I_2)$$
$$= \det(I_2 - A) \det(-I_2 - A) = p_A(1) p_A(-1) = 4.$$

19. Fie $\alpha := \operatorname{tr} A$, $\beta := \det A$ și $p_A(t) := t^2 - \alpha t + \beta = \det(A - tI_2)$ polinomul caracteristic al lui A. Fie apoi $\varepsilon := \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$ și $\omega := \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$. Avem

$$A^{2} + A + I_{2} = (A - \varepsilon I_{2})(A - \bar{\varepsilon}I_{2})$$
 și $A^{2} - A + I_{2} = (A - \omega I_{2})(A - \bar{\omega}I_{2}).$

Deducem de aici că

$$3 = \det(A^2 + A + I_2) = p_A(\varepsilon)p_A(\bar{\varepsilon}) = (\varepsilon^2 - \alpha\varepsilon + \beta)(\bar{\varepsilon}^2 - \alpha\bar{\varepsilon} + \beta)$$
$$= \alpha^2 + \beta^2 + \alpha\beta + \alpha - \beta + 1.$$

de unde

(1)
$$\alpha^2 + \beta^2 + \alpha\beta + \alpha - \beta = 2.$$

Analog, $3 = \det(A^2 - A + I_2) = p_A(\omega)p_A(\bar{\omega}) = \alpha^2 + \beta^2 - \alpha\beta - \alpha - \beta + 1$, de unde

(2)
$$\alpha^2 + \beta^2 - \alpha\beta - \alpha - \beta = 2.$$

Se constată imediat că sistemul format cu ecuațiile (1) și (2) are doar soluțiile ($\alpha=0, \beta=-1$) și ($\alpha=0, \beta=2$). În primul caz, avem $A^2=I_2$ (conform teoremei lui Cayley-Hamilton), de unde $A^4=I_2$, deci $A^4+A^2=2I_2$. Analog, în cel de-al doilea caz avem $A^2=-2I_2$, de unde $A^4=4I_2$, deci $A^4+A^2=2I_2$.

20. Se verifică prin calcul direct.

21.] Fie funcția polinomială definită prin $f(x) := \det(A + xB)$. Conform problemei **20**, avem

$$f(x) = \det A + (\operatorname{tr} A \cdot \operatorname{tr} B - \operatorname{tr} (AB))x + (\det B)x^2$$
 oricare ar fi $x \in \mathbb{C}$.

Conform ipotezei, avem f(1) = f(2) = f(3) = 1. Întrucât f este polinom de grad cel mult 2, rezultă că f(x) = 1 pentru orice $x \in \mathbb{C}$, deci det A = 1, det B = 0 și $\operatorname{tr}(AB) = \alpha\beta$, unde $\alpha := \operatorname{tr} A$ și $\beta := \operatorname{tr} B$. Conform teoremei lui Cayley-Hamilton, avem $A^2 = \alpha A - I_2$ și $B^2 = \beta B$. Cum A și B comută, avem $(AB)^2 = A^2B^2$. Teorema lui Cayley-Hamilton aplicată matricei AB implică $A^2B^2 = \alpha\beta AB$, deoarece det (AB) = 0. Drept urmare, avem

$$\alpha \beta AB = A^2 B^2 = (\alpha A - I_2)\beta B = \alpha \beta AB - \beta B,$$

de unde $\beta = 0$ sau $B = O_2$. În ambele situații rezultă că $B^2 = O_2$.

22. Un calcul simplu arată că polinomul caracteristic al lui A este dat de $p_A(t) = (t+1)^3$. Aplicând teorema împărțirii cu rest polinoamelor $f = X^n$ și $p_A = (X+1)^3$, rezultă că există $q \in \mathbb{C}[X]$ și există $b, c, d \in \mathbb{C}$ astfel ca

$$X^{n} = (X+1)^{3} \cdot q + bX^{2} + cX + d.$$

Derivând de două ori această egalitate, găsim

$$nX^{n-1} = ((X+1)^3 \cdot q)' + 2bX + c$$

și

$$n(n-1)X^{n-2} = \left((X+1)^3 \cdot q \right)'' + 2b.$$

Evaluând polinoamele de mai sus pentru x = -1 obținem

$$b = \frac{(-1)^n n(n-1)}{2}$$
, $c = (-1)^n n(n-2)$, $d = \frac{(-1)^n (n-1)(n-2)}{2}$.

Întrucât $(A + I_3)^3 = p_A(A) = O_3$ (conform teoremei lui Cayley-Hamilton), deducem că

$$A^{n} = bA^{2} + cA + dI_{3}$$

$$= (-1)^{n} \left(\frac{n(n-1)}{2} A^{2} + n(n-2)A + \frac{(n-1)(n-2)}{2} I_{3} \right).$$

23. Fie $p_A \in \mathbb{R}[X]$ polinomul caracteristic al lui A. Cum p_A are gradul 3, rezultă că el are cel puțin o rădăcină reală. Pe de altă parte, rădăcinile lui

 p_A (adică valorile proprii ale lui A) sunt rădăcini de ordinul 3 ale unității (conform teoremei 3). Întrucât singura rădăcină reală de ordinul 3 a unității este 1, deducem că 1 este rădăcină pentru polinomul p_A . Drept urmare, avem $0 = p_A(1) = \det(I_3 - A)$, de unde concluzia.

24. Deoarece $E_1(A) = \text{tr } A = 0, E_3(A) = \det A = 1$ și

$$E_2(A) = \text{tr}(\text{adj}(A)) = \frac{1}{\det A} \text{tr}(A^{-1}) = 0,$$

rezultă că polinomul caracteristic al lui A are forma $p_A(t) = t^3 - 1$. Aplicând teorema lui Cayley-Hamilton, deducem că $A^3 = I_3$.

25. Răspunsul este NU. Presupunem, prin absurd, că există $A, B \in \mathcal{M}_3(\mathbb{C})$ în așa fel încât $(AB - BA)^{1993} = I_3$. Fie $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{C}$ valorile proprii ale matricei C := AB - BA. Conform teoremei 3 a), avem

$$\lambda_1^{1993} = \lambda_2^{1993} = \lambda_3^{1993} = 1,$$

deci $|\lambda_1| = |\lambda_2| = |\lambda_3| = 1$. Pe de altă parte, avem și $\lambda_1 + \lambda_2 + \lambda_3 = \operatorname{tr} C = 0$. Drept urmare, λ_1 , λ_2 și λ_3 sunt afixele vârfurilor unui triunghi echilateral, deci polinomul caracteristic al lui C are forma $p_C(t) = t^3 - \alpha$, cu $\alpha \in \mathbb{C}$. Aplicând teorema lui Cayley–Hamilton, deducem că $C^3 = \alpha I_3$, de unde

$$I_3 = C^{1993} = (C^3)^{664}C = \alpha^{664}C,$$

deci $C = \beta I_3$, unde $\beta = 1/\alpha^{664}$. Dar atunci avem $\lambda_1 = \lambda_2 = \lambda_3 = \beta$, ceea ce este absurd.

26. Deoarece matricea A este nilpotentă, rezultă că toate valorile sale proprii sunt nule, deci polinomul său caracteristic este $p_A(t) = t^n$. Dacă x = 0, atunci afirmația din enunț este evidentă, iar dacă $x \neq 0$, atunci avem

$$\det(xA + I_n) = (-x)^n \det\left(-\frac{1}{x}I_n - A\right) = (-x)^n p_A\left(-\frac{1}{x}\right) = 1.$$

27. Vom rezolva mai întâi problema în ipoteza suplimentară că B este inversabilă. Atunci pentru orice $X \in \mathcal{M}_n(\mathbb{C})$ avem

$$\det(A + BX) = \det(B^{-1}(A + BX)B) = \det(B^{-1}AB + XB)$$

=
$$\det(B^{-1}BA + XB) = \det(A + XB).$$

Renunțăm acum la ipoteza inversabilității lui B. Fie r cel mai mic modul al unei valori proprii nenule a lui B ($r = \infty$ dacă toate valorile proprii ale lui B sunt nule). Atunci pentru orice $\varepsilon \in (0, r)$ avem

$$\det\left(\varepsilon I_n + B\right) = (-1)^n \det\left(-\varepsilon I_n - B\right) = (-1)^n p_B(-\varepsilon) \neq 0.$$

Prin urmare, matricea perturbată $B_{\varepsilon} := \varepsilon I_n + B$ este nesingulară pentru orice $\varepsilon \in (0, r)$. Mai mult, avem $AB_{\varepsilon} = \varepsilon A + AB = \varepsilon A + BA = B_{\varepsilon}A$. În baza celor demonstrate mai sus, deducem că

$$\det(A + B_{\varepsilon}X) = \det(A + XB_{\varepsilon})$$
 oricare ar fi $\varepsilon \in (0, r)$.

Făcând $\varepsilon \searrow 0$ și ținând seama că determinanții din egalitatea precedentă sunt funcții polinomiale de grad cel mult n în variabila ε , rezultă că și în acest caz avem det $(A+BX)=\det{(A+XB)}$.

28. Pentru i = j, condiția $a_{ij}a_{ji} \le 0$ din enunț implică $a_{ii} = 0$ oricare ar fi $i \in \{1, ..., n\}$. Prin urmare, avem $E_1(A) = \operatorname{tr} A = 0$ și

$$E_2(A) = \sum_{1 \le i \le j \le n} \begin{vmatrix} 0 & a_{ij} \\ a_{ji} & 0 \end{vmatrix} = -\sum_{1 \le i \le j \le n} a_{ij} a_{ji} \ge 0.$$

Fie $\lambda_1,\ldots,\lambda_n\in\mathbb{C}$ valorile proprii ale lui A. În baza relațiilor lui Viète, avem

(1)
$$\lambda_1^2 + \dots + \lambda_n^2 = E_1(A)^2 - 2E_2(A) \le 0.$$

Vom dovedi că A are cel puțin o valoare proprie complexă nereală λ_j . Aceasta va încheia demonstrația, deoarece atunci și $\bar{\lambda}_j \neq \lambda_j$ este valoare proprie complexă nereală a lui A.

Presupunem, prin absurd, că toate valorile proprii ale lui A sunt reale. Din (1) rezultă atunci că $\lambda_1 = \cdots = \lambda_n = 0$. Dar atunci polinomul caracteristic al lui A are forma $p_A(t) = t^n$ și conform teoremei lui Cayley–Hamilton ar trebui să avem $A^n = O_n$, în contradicție cu ipoteza.

29. Presupunem mai întâi că una dintre matricile A și B, spre exemplu A, este inversabilă. Atunci pentru orice $t \in \mathbb{C}$ avem

$$p_{AB}(t) = \det(tI_n - AB) = \det(A^{-1}(tI_n - AB)A) = \det(tI_n - BA)$$

= $p_{BA}(t)$.

Presupunem acum că A și B sunt singulare. Fie $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ valorile proprii ale lui A și fie $r := \min\{|\lambda_k| \mid k \in \{1, \ldots, n\}, \lambda_k \neq 0\}$ (cu convenția

 $r=\infty$ dacă A nu are nici o valoare proprie nenulă). Atunci pentru orice $\varepsilon \in (0,r)$ avem $\det(A-\varepsilon I_n) \neq 0$, adică matricea $A-\varepsilon I_n$ este nesingulară. Conform celor demonstrate mai sus, avem

$$\det(tI_n - (A - \varepsilon I_n)B) = \det(tI_n - B(A - \varepsilon I_n))$$

pentru orice $\varepsilon \in (0, r)$ și orice $t \in \mathbb{C}$. Făcând $\varepsilon \searrow 0$, obținem

$$p_{AB}(t) = p_{BA}(t)$$
 oricare ar fi $t \in \mathbb{C}$.

30. Presupunem, pentru fixarea ideilor, că m < n (cazul m > n se tratează analog). Fie $C \in \mathcal{M}_n(\mathbb{C})$ matricea obținută prin completarea lui A cu n-m linii nule, iar $D \in \mathcal{M}_n(\mathbb{C})$ matricea obținută prin completarea lui B cu n-m coloane nule. Atunci avem

$$CD = \begin{pmatrix} A \\ O_{n-m,n} \end{pmatrix} \begin{pmatrix} B & O_{n,n-m} \end{pmatrix} = \begin{pmatrix} AB & O_{m,n-m} \\ O_{n-m,m} & O_{n-m} \end{pmatrix}$$

și DC = BA, deci $p_{CD}(t) = t^{n-m}p_{AB}(t)$ și $p_{DC}(t) = p_{BA}(t)$ oricare ar fi $t \in \mathbb{C}$. Întrucât $p_{CD} = p_{DC}$ (a se vedea problema **29**), rezultă că pentru orice $t \in \mathbb{C}$ avem $p_{BA}(t) = t^{n-m}p_{AB}(t)$.

- **31.** Polinomul caracteristic al matricei AB este $p_{AB}(t) = t^3 3t^2 + 2t$. Conform problemei **30**, avem $p_{AB}(t) = tp_{BA}(t)$ oricare ar fi $t \in \mathbb{C}$, deci $p_{BA}(t) = t^2 3t + 2$. Valorile proprii ale lui BA sunt rădăcinile ecuației $p_{BA}(t) = 0$, adică 1 și 2. Drept urmare, avem $\det(BA) = 1 \cdot 2 = 2$.
- [32.] a) Matricea AB fiind nilpotentă, are toate valorile proprii nule, deci polinomul său caracteristic este $p_{AB}(t) = t^n$. Conform problemei 30, avem $p_{AB}(t) = t^{n-2}p_{BA}(t)$ oricare ar fi $t \in \mathbb{C}$, deci $p_{BA}(t) = t^2$. Aplicând teorema lui Cayley-Hamilton, deducem că $(BA)^2 = O_2$, de unde

$$(AB)^3 = A(BA)^2 B = O_n.$$

- b) Avem rang $(AB) \leq \operatorname{rang} A \leq 2$. Prin urmare, dacă rang $(AB) \neq 2$, atunci rang $(AB) \leq 1$. Deducem de aici că $(AB)^2 = (\operatorname{tr}(AB))AB = O_n$, deoarece AB are toate valorile proprii nule, deci $\operatorname{tr}(AB) = 0$.
- **33.** Vom demonstra afirmația din enunț fără ipoteza că A și B sunt inversabile. Deoarece $|\alpha| \neq |\beta|$, trebuie să avem $\alpha + \beta \neq 0$. Din egalitatea $\alpha AB + \beta BA = I_n$ rezultă

$$\alpha(AB - BA) = I_n - (\alpha + \beta)BA = (\alpha + \beta)\left(\frac{1}{\alpha + \beta}I_n - BA\right),$$

de unde

(1)
$$\alpha^n \det (AB - BA) = (\alpha + \beta)^n p_{BA} \left(\frac{1}{\alpha + \beta} \right).$$

Similar, avem

$$-\beta(AB - BA) = I_n - (\alpha + \beta)AB = (\alpha + \beta)\left(\frac{1}{\alpha + \beta}I_n - AB\right),$$

de unde

(2)
$$(-\beta)^n \det (AB - BA) = (\alpha + \beta)^n p_{AB} \left(\frac{1}{\alpha + \beta}\right).$$

Întrucât $p_{AB} = p_{BA}$ (a se vedea problema **29**), din (1) și (2) deducem că $\alpha^n \det (AB - BA) = (-\beta)^n \det (AB - BA)$. Dacă $\det (AB - BA) \neq 0$, atunci trebuie să avem $\alpha^n = (-\beta)^n$, de unde $|\alpha| = |\beta|$, în contradicție cu ipoteza. Drept urmare, $\det (AB - BA) = 0$.

34. Notăm C := A + B, D := A - B, X := AB - BA și $I := I_{2n+1}$. Avem

$$CD = (A+B)(A-B) = A^2 - B^2 + BA - AB = I - X,$$

 $DC = (A-B)(A+B) = A^2 - B^2 + AB - BA = I + X,$

de unde X = I - CD = DC - I. Ținând seama că, în baza rezultatului din problema **29** avem det $(I - CD) = p_{CD}(1) = p_{DC}(1) = \det(I - DC)$, deducem că.

$$\det X = \det (I - CD) = \det (I - DC) = (-1)^{2n+1} \det (DC - I) = -\det X.$$

Drept urmare, avem $\det X = 0$.

35. Dacă det A = 0, atunci nu e nimic de demonstrat. Presupunem în continuare că A are determinantul nenul, deci A este inversabilă. Din egalitatea $A^2 - I_n = AB$ rezultă că $A - A^{-1} = B$, de unde

$$I_n = B^2 = (A - A^{-1})^2 = A^2 - 2I_n + (A^{-1})^2$$

adică $A^2 - 3I_n + (A^{-1})^2 = O_n$. Înmulțind cu A^2 , deducem că

$$A^4 - 3A^2 + I_n = O_n.$$

Prin urmare, matricea A anulează polinomul $f := X^4 - 3X^2 + 1$. Conform teoremei 3, orice valoare proprie λ a lui A este rădăcină a lui f, adică

 $\lambda^4 - 3\lambda^2 + 1 = 0$, de unde $\lambda^2 = \frac{3 \pm \sqrt{5}}{2}$. Prin urmare, toate valorile proprii $\lambda_1, \ldots, \lambda_n$ ale lui A sunt reale și verifică

$$|\lambda_k| \le \sqrt{\frac{3+\sqrt{5}}{2}} = \frac{1+\sqrt{5}}{2}$$
 oricare ar fi $k \in \{1,\ldots,n\}$.

Rezultă atunci că det $A = \lambda_1 \cdots \lambda_n \le |\lambda_1| \cdots |\lambda_n| \le \left(\frac{1+\sqrt{5}}{2}\right)^n$.

36. Vom folosi următoarea

Lemă. Dacă z_1, \ldots, z_r sunt numere complexe cu proprietatea că

$$z_1^k + \dots + z_r^k = 0$$
 oricare ar fi $k \in \{1, \dots, r\},$

atunci $z_1 = \cdots = z_r = 0$.

Demonstrația lemei. Notăm $p_k := z_1^k + \dots + z_r^k \ (k \geq 1)$ și

$$e_1 = z_1 + \dots + z_r$$

$$e_2 = \sum_{1 \le i < j \le r} z_i z_j,$$

$$\vdots$$

$$e_r = z_1 \dots z_r,$$

polinoamele simetrice elementare în variabilele z_1, \ldots, z_r . În baza ipotezei și a relațiilor lui Newton (a se vedea rezolvarea problemei următoare), deducem că $e_1 = e_2 = \cdots = e_r = 0$. Prin urmare, z_1, \ldots, z_r sunt rădăcinile ecuației $z^r - e_1 z^{r-1} + e_2 z^{r-2} - \cdots + (-1)^r e_r = 0$, adică ale ecuației $z^r = 0$. Rezultă astfel că $z_1 = \cdots = z_r = 0$.

Trecând la rezolvarea problemei, să presupunem că $A_1^k+\cdots+A_m^k=O_n$ pentru orice $k\geq 1$. Atunci

(1)
$$\operatorname{tr}(A_1^k) + \dots + \operatorname{tr}(A_m^k) = 0 \quad \text{oricare ar fi} \ k \ge 1.$$

Fie $\lambda_{i1}, \ldots, \lambda_{in} \in \mathbb{C}$ valorile proprii ale lui A_i (incluzând multiplicitățile), $i = 1, \ldots, m$. Atunci $\lambda_{i1}^k, \ldots, \lambda_{in}^k$ sunt valorile proprii ale lui A_i^k , deci

$$\operatorname{tr}(A_i^k) = \lambda_{i1}^k + \dots + \lambda_{in}^k.$$

Ținând seama de (1), rezultă că

$$\sum_{i=1}^{m} \left(\lambda_{i1}^{k} + \dots + \lambda_{in}^{k} \right) = 0 \quad \text{oricare ar fi } k \ge 1.$$

În baza lemei, deducem că $\lambda_{i1} = \cdots = \lambda_{in} = 0$, deci $A_i^n = O_n$ oricare ar fi $i = 1 \dots, m$. Dar această concluzie este în contradicție cu ipoteza că măcar una dintre matricile A_i nu este nilpotentă.

37. Fie $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ valorile proprii ale lui A (incluzând multiplicitățile). Atunci valorile proprii ale lui A^k sunt $\lambda_1^k, \ldots, \lambda_n^k$, pentru orice $k \geq 1$, deci $\operatorname{tr}(A^k) = \lambda_1^k + \cdots + \lambda_n^k$. Pentru fiecare $k \geq 1$ notăm

$$p_k := \lambda_1^k + \dots + \lambda_n^k$$
.

Notăm de asemenea

$$e_1 = \lambda_1 + \dots + \lambda_n$$

$$e_2 = \sum_{1 \le i < j \le n} \lambda_i \lambda_j,$$

$$\vdots$$

$$e_n = \lambda_1 \dots \lambda_n,$$

polinoamele simetrice elementare în variabilele $\lambda_1,\ldots,\lambda_n$. Ținând seama că $p_1=p_2=\cdots=p_n=0$, în baza identităților lui Newton

$$e_{1} = p_{1},$$

$$2e_{2} = e_{1}p_{1} - p_{2},$$

$$3e_{3} = e_{2}p_{1} - e_{1}p_{2} + p_{3},$$

$$4e_{4} = e_{3}p_{1} - e_{2}p_{2} + e_{1}p_{3} - p_{4},$$

$$\vdots$$

$$ne_{n} = e_{n-1}p_{1} - e_{n-2}p_{2} + \dots + (-1)^{n-2}e_{1}p_{n-1} + (-1)^{n-1}p_{n},$$

deducem că $e_1=e_2=\cdots=e_n=0$. Prin urmare, polinomul caracteristic al lui A este $p_A(t)=t^n-e_1t^{n-1}+e_2t^{n-2}-\cdots+(-1)^ne_n=t^n$. Teorema lui Cayley-Hamilton garantează acum că $A^n=O_n$.

 $\fbox{\textbf{38.}}$ a) Procedăm prin inducție după k. Pentru k=1 egalitatea din enunț are loc în baza ipotezei. Presupunem că egalitatea $A^kB-BA^k=akA^k$ are

loc pentru un număr natural k și dovedim că ea are loc și pentru k+1. Înmulțind la stânga cu A, obținem

$$akA^{k+1} = A^{k+1}B - ABA^k = A^{k+1}B - (BA + aA)A^k$$

= $A^{k+1}B - BA^{k+1} - aA^{k+1}$.

de unde $A^{k+1}B - BA^{k+1} = a(k+1)A^{k+1}$.

b) Trecând la urme în egalitatea $akA^k = A^kB - BA^k$, deducem că $\operatorname{tr}(A^k) = 0$ oricare ar fi $k \geq 1$. Conform problemei **37**, rezultă că $A^n = O_n$.

39. Notăm C := AB - BA. Se constată imediat că egalitatea din enunț este echivalentă cu AC = CA. Pentru orice $r \ge 0$ avem atunci $AC^r = C^rA$, deci $C^{r+1} = C^r(AB - BA) = C^rAB - C^rBA = A(C^rB) - (C^rB)A$. Rezultă de aici că tr $(C^{r+1}) = 0$ oricare ar fi $r \ge 0$. În particular, avem

$$\operatorname{tr} C = \operatorname{tr} (C^2) = \dots = \operatorname{tr} (C^n) = 0.$$

În baza rezultatului din problema 37, deducem că $C^n = O_n$.

40. Fie $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ valorile proprii ale lui A și fie

$$f(\lambda) = (\lambda - \lambda_1) \cdots (\lambda - \lambda_n) = \det(\lambda I_n - A)$$

polinomul caracteristic al lui A. Fie apoi $\mu_1, \ldots, \mu_n \in \mathbb{C}$ valorile proprii ale lui C și fie

$$g(\lambda) = (\lambda - \mu_1) \cdots (\lambda - \mu_n) = \det(\lambda I_n - C)$$

polinomul caracteristic al lui C. Deoarece det $A \neq 0 \neq \det C$ și determinantul unei matrici este egal cu produsul tuturor valorilor sale proprii, rezultă că $\lambda_1, \ldots, \lambda_n, \mu_1, \ldots, \mu_n \in \mathbb{C} \setminus \{0\}$. Fie polinomul h := fg, fie $\alpha := h(0)$ și fie polinomul $h^*(\lambda) := h(\lambda) - \alpha$. Avem $\alpha = f(0)g(0) = \lambda_1 \cdots \lambda_n \mu_1 \cdots \mu_n \neq 0$. De asemenea, deoarece $f(A) = O_n = g(C)$ (conform teoremei lui Cayley-Hamilton) și h se divide atât cu f cât și cu g, rezultă că $h(A) = h(C) = O_n$. Conform ipotezei (în h^* termenul liber este egal cu 0), avem și

$$h^*(A)B = h^*(C)D.$$

Tinând seama de aceste observații, avem

$$O_n = h(A)B = (h^*(A) + \alpha I_n)B = h^*(A)B + \alpha B$$

= $h^*(C)D + \alpha B = (h(C) - \alpha I_n)D + \alpha B$
= $h(C)D + \alpha (B - D)$
= $\alpha (B - D)$,

de unde B = D, deoarece $\alpha \neq 0$.

41. Vom nota cu 0_n matricea coloană nulă din $\mathcal{M}_{n,1}(\mathbb{Z})$. În rezolvare vor fi folosite următoarele afirmații evidente:

A1. Dacă $X \in \mathcal{M}_{n,1}(\mathbb{Z})$ și $d \in \mathbb{N}$ sunt astfel încât $d \mid \delta(X)$, atunci $d \mid \delta(AX)$.

A2. Dacă $X_1, \ldots, X_k \in \mathcal{M}_{n,1}(\mathbb{Z}), \ a_1, \ldots, a_k \in \mathbb{Z}$ și $d \in \mathbb{N}$ sunt astfel încât $d \mid \delta(X_1), \ldots, d \mid \delta(X_k)$, atunci $d \mid \delta(a_1X_1 + \cdots + a_kX_k)$.

$$1^{\circ} \Rightarrow 2^{\circ}$$
 Presupunem că det $A = \pm 1$.

Demonstrăm mai întâi că pentru orice $X \in \mathcal{M}_{n,1}(\mathbb{Z})$ cu $\delta(X) = 1$, avem $\delta(AX) = 1$. Presupunem, prin absurd, că există o matrice $X \in \mathcal{M}_{n,1}(\mathbb{Z})$ așa încât $\delta(X) = 1$, dar $\delta(AX) \neq 1$. Nu putem avea $\delta(AX) = 0$, decarece, în caz contrar, am avea $AX = 0_n$, deci $X = 0_n$ întrucât A este inversabilă. Dar atunci $\delta(X) = 0$, ceea ce ar fi absurd. Prin urmare, $\delta(AX) =: d \geq 2$. Cum $d \mid \delta(AX)$, din **A1** rezultă succesiv $d \mid \delta(A^2X)$, $d \mid \delta(A^3X)$ ș.a.m.d. Fie $p_A(t) = t^n + a_{n-1}t^{n-1} + \cdots + a_1t + (-1)^n$ det A polinomul caracteristic al lui A. Din teorema lui Cayley-Hamilton rezultă că

$$A^{n} + a_{n-1}A^{n-1} + \dots + a_{1}A = (-1)^{n+1}(\det A)I_{n} = \pm I_{n}.$$

Înmulțind ambii membri ai egalității precedente la dreapta cu X, obținem

$$A^{n}X + a_{n-1}A^{n-1}X + \dots + a_{1}AX = \pm X.$$

În baza afirmației A2, deducem de aici că

$$d \mid \delta(A^n X + a_{n-1} A^{n-1} X + \dots + a_1 A X) = \delta(\pm X) = 1.$$

ceea ce este absurd. Contradicția obținută arată că $\delta(AX) = 1$.

Fie acum $X \in \mathcal{M}_{n,1}(\mathbb{Z})$ arbitrar și fie $d := \delta(X)$. Dacă d = 0, atunci $X = 0_n$, de unde $AX = 0_n$, deci $\delta(AX) = 0$. Dacă $d \ge 1$, atunci X = dY cu $Y \in \mathcal{M}_{n,1}(\mathbb{Z})$ și $\delta(Y) = 1$. Cum AX = dAY și $\delta(AY) = 1$ (conform celor demonstrate mai sus), deducem că $\delta(AX) = d$.

 $2^{\circ} \Rightarrow 1^{\circ}$ Admitem acum că $\delta(AX) = \delta(X)$ oricare ar fi $X \in \mathcal{M}_{n,1}(\mathbb{Z})$, dar $d := \det A \neq \pm 1$.

Dacă d=0, atunci există $X \in \mathcal{M}_{n,1}(\mathbb{Z})$ nenulă așa încât $AX=0_n$. Dar atunci am avea $0=\delta(AX)=\delta(X)$, contradicție (dacă X este nenulă, atunci $\delta(X)>0$).

Presupunem în continuare că $|d| \geq 2$. Sistemul

$$AX = (d \ 0 \ 0 \ \dots \ 0)^t$$

are soluție unică și pentru orice $i \in \{1, ..., n\}$ avem

$$x_{i} = \frac{1}{d} \cdot \det \begin{pmatrix} a_{11} & \dots & a_{1,i-1} & d & a_{1,i+1} & \dots & a_{1n} \\ a_{21} & \dots & a_{2,i-1} & 0 & a_{2,i+1} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{n,i-1} & 0 & a_{n,i+1} & \dots & a_{nn} \end{pmatrix} = A_{1i},$$

unde A_{1i} este complementul algebric al elementului a_{1i} din matricea A. Așadar, notând $X = (A_{11} \ A_{12} \ \dots \ A_{1n})^t$, avem $AX = (d\ 0 \ \dots \ 0)^t$. Conform ipotezei, avem $d = \delta(AX) = \delta(X)$, deci d divide fiecare dintre numerele $A_{11}, A_{12}, \dots, A_{1n}$. Analog, considerând sistemele

$$AX = (0 \ d \ 0 \ \dots \ 0)^t, \ \dots, \ AX = (0 \ 0 \ \dots \ 0 \ d)^t,$$

se ajunge la concluzia că $d \mid A_{ij}$ oricare ar fi $i, j \in \{1, ..., n\}$. Rezultă de aici că $d^n \mid \det(\operatorname{adj}(A))$, unde adj (A) reprezintă adjuncta clasică a lui A (în adevăr, d divide toate elementele de pe fiecare coloană din adj (A)). Cum $A \cdot \operatorname{adj}(A) = dI_n$, deducem că $d^{n+1} \mid d \cdot \det(\operatorname{adj}(A)) = d^n$, ceea ce este absurd. Contradicția obținută arată că $d = \det A = \pm 1$.

42. Implicația $2^{\circ} \Rightarrow 1^{\circ}$ fiind evidentă, vom dovedi că $1^{\circ} \Rightarrow 2^{\circ}$. Presupunând că det $(A_1^2 + \dots + A_k^2) = 0$, rezultă că 0 este valoare proprie a matricei $A_1^2 + \dots + A_k^2$, deci există $x \in \mathbb{R}^n$, $x \neq 0_n$ astfel ca $(A_1^2 + \dots + A_k^2)x = 0_n$. Înmulțind această egalitate la stânga cu x^t , obținem

$$x^{t} A_{1}^{t} A_{1} x + \dots + x^{t} A_{k}^{t} A_{k} x = 0 \quad \Leftrightarrow \quad ||A_{1} x||^{2} + \dots + ||A_{k} x||^{2} = 0,$$

de unde $A_1x = \cdots = A_kx = 0_n$.

Fie $B_1, \ldots, B_k \in \mathcal{M}_n(\mathbb{R})$ arbitrar alese. Deoarece

$$(A_1B_1 + \dots + A_kB_k)^t x = B_1^t A_1 x + \dots + B_k^t A_k x = 0_n,$$

rezultă că 0 este valoare proprie pentru $(A_1B_1 + \cdots + A_kB_k)^t$, cu x vector propriu asociat. Prin urmare, avem $\det (A_1B_1 + \cdots + A_kB_k)^t = 0$, adică $\det (A_1B_1 + \cdots + A_kB_k) = 0$ (s-a folosit faptul că determinantul unei matrice este egal cu produsul tuturor valorilor proprii ale acelei matrice).

[43.] Fie $A \in \mathcal{M}_n(\mathbb{C})$ o matrice hermitiană, fie $\lambda \in \mathbb{C}$ o valoare proprie a lui A și fie $x \in \mathbb{C}^n$, $x \neq 0_n$ un vector propriu asociat lui λ . Atunci avem

$$Ax = \lambda x \quad \Rightarrow \quad x^*Ax = \lambda x^*x = \lambda \|x\|^2 \quad \Rightarrow \quad \lambda = \frac{x^*Ax}{\|x\|^2}.$$

Pe de altă parte, $Ax = \lambda x \Rightarrow x^*A^* = \bar{\lambda}x^*$, adică $x^*A = \bar{\lambda}x^*$, întrucât $A^* = A$. Înmulțind la dreapta cu x, găsim $x^*Ax = \bar{\lambda}x^*x = \bar{\lambda}\|x\|^2$, de unde $\bar{\lambda} = \frac{x^*Ax}{\|x\|^2}$. Drept urmare, avem $\bar{\lambda} = \lambda$, deci $\lambda \in \mathbb{R}$.

Fie $A := A_1^t A_1 + \cdots + A_k^t A_k \in \mathcal{M}_n(\mathbb{R})$. Atunci avem $A^t = A$, deci A este matrice simetrică și prin urmare are toate valorile proprii reale (conform problemei 43). Cum det A este egal cu produsul tuturor valorilor proprii ale lui A, este suficient să arătăm că toate valorile proprii ale lui A sunt nenegative. Fie $\lambda \in \mathbb{R}$ o valoare proprie oarecare a lui A și fie $x \in \mathbb{R}^n$, $x \neq 0_n$ un vector propriu corespunzător. Din egalitatea $Ax = \lambda x$ deducem că

$$\lambda x^{t} x = x^{t} A x = x^{t} \left(A_{1}^{t} A_{1} + \dots + A_{k}^{t} A_{k} \right) x$$

$$= x^{t} A_{1}^{t} A_{1} x + \dots + x^{t} A_{k}^{t} A_{k} x$$

$$= (A_{1} x)^{t} (A_{1} x) + \dots + (A_{k} x)^{t} (A_{k} x),$$

adică

$$\lambda ||x||^2 = ||A_1 x||^2 + \dots + ||A_k x||^2 \quad \Rightarrow \quad \lambda = \frac{||A_1 x||^2 + \dots + ||A_k x||^2}{||x||^2} \ge 0.$$

45. a) Fie $A \in \mathcal{M}_n(\mathbb{R})$ o matrice simetrică astfel încât

(1)
$$\operatorname{tr}(A^{n-1}) = \det A < n^n.$$

Conform problemei **43**, toate valorile proprii ale lui A sunt reale. Fie $\lambda_1, \ldots, \lambda_n$ aceste valori proprii. Atunci $\lambda_1^{n-1}, \ldots, \lambda_n^{n-1}$ sunt valorile proprii ale matricei A^{n-1} , iar relația (1) este echivalentă cu

(2)
$$\lambda_1^{n-1} + \dots + \lambda_n^{n-1} = \lambda_1 \dots \lambda_n < n^n.$$

Pe de altă parte, n fiind impar, inegalitatea mediilor aplicată numerelor reale nenegative $\lambda_1^{n-1},\dots,\lambda_n^{n-1}$ implică

(3)
$$\left(\frac{\lambda_1^{n-1} + \dots + \lambda_n^{n-1}}{n}\right)^n \ge \lambda_1^{n-1} \dots \lambda_n^{n-1}.$$

Din (2) si (3) deducem că

$$\frac{\left(\lambda_1^{n-1} + \dots + \lambda_n^{n-1}\right)^n}{n^n} \ge (\lambda_1 \cdots \lambda_n)^{n-1} = \left(\lambda_1^{n-1} + \dots + \lambda_n^{n-1}\right)^{n-1},$$

de unde

$$(\lambda_1^{n-1} + \dots + \lambda_n^{n-1})^{n-1} \left(\frac{\lambda_1^{n-1} + \dots + \lambda_n^{n-1}}{n^n} - 1 \right) \ge 0.$$

Ținând seama că n este impar, în baza relației (2) conchidem că

$$\lambda_1^{n-1} + \dots + \lambda_n^{n-1} \le 0,$$

deci $\lambda_1 = \cdots = \lambda_n = 0$. Cum A este ortogonal diagonalizabilă, rezultă de aici că $A = O_n$. Deci singura matrice simetrică $A \in \mathcal{M}_n(\mathbb{R})$ care satisface (1) este $A = O_n$.

b) Fie $A \in \mathcal{M}_n(\mathbb{R})$ o matrice simetrică astfel încât

(4)
$$\operatorname{tr}(A^{n-1}) = \det A = n^n$$

și fie $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ valorile proprii ale lui A. Atunci avem

(5)
$$\lambda_1^{n-1} + \dots + \lambda_n^{n-1} = \lambda_1 \dots \lambda_n = n^n,$$

deci în inegalitatea mediilor (3) avem egalitate, ambii membri fiind egali cu n^{n^2-n} (conform lui (4)). Ținând seama de această observație, deducem că

$$\lambda_1^{n-1} = \dots = \lambda_n^{n-1} = n^{n-1},$$

de unde $|\lambda_1| = \cdots = |\lambda_n| = n$, întrucât n este impar.

Fie $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ și fie $U \in \mathcal{M}_n(\mathbb{R})$ o matrice ortogonală cu proprietatea că $A = U^t DU$. Atunci avem

$$A^2 = U^t D^2 U = U^t \cdot n^2 I_n \cdot U = n^2 I_n.$$

c) Fie $n \geq 4$ un număr întreg par, fie

$$\lambda_1 := n \sqrt[n-1]{2 + \sqrt{5}}, \qquad \lambda_3 = \dots = \lambda_{n-1} = n,$$

$$\lambda_2 := n \sqrt[n-1]{2 - \sqrt{5}}, \qquad \lambda_n = -n$$

și fie $A := \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Atunci A este simetrică și se verifică imediat că relația (5) are loc, deci A satisface (4). Pe de altă parte, este clar că $A^2 \neq n^2 I_n$.

46. Fie $A \in \mathcal{M}_n(\mathbb{C})$ o matrice strâmb hermitiană, fie $\lambda \in \mathbb{C}$ o valoare proprie a lui A și fie $x \in \mathbb{C}^n$, $x \neq 0_n$ un vector propriu asociat lui λ . Atunci avem

$$Ax = \lambda x \quad \Rightarrow \quad x^*Ax = \lambda x^*x = \lambda \|x\|^2 \quad \Rightarrow \quad \lambda = \frac{x^*Ax}{\|x\|^2}.$$

Pe de altă parte, $Ax = \lambda x \Rightarrow x^*A^* = \bar{\lambda}x^*$, adică $-x^*A = \bar{\lambda}x^*$, întrucât $A^* = -A$. Înmulțind la dreapta cu x, găsim $-x^*Ax = \bar{\lambda}x^*x = \bar{\lambda}\|x\|^2$, de unde $\bar{\lambda} = -\frac{x^*Ax}{\|x\|^2}$. Drept urmare, avem $\bar{\lambda} = -\lambda$, deci fie $\lambda = 0$, fie $\lambda = \mathrm{i}b$, cu $b \in \mathbb{R} \setminus \{0\}$.

47. Fie $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ valorile proprii ale lui A, adică rădăcinile polinomului caracteristic $p_A \in \mathbb{R}[X]$ al lui A. Dacă n este impar, atunci p_A are cel puțin o rădăcină reală. Conform problemei precedente, aceasta trebuie să fie 0, deci det $A = \lambda_1 \cdots \lambda_n = 0$. Presupunem în continuare că n este par. Dacă A are valoarea proprie 0, atunci det A = 0 (ca mai sus). Dacă 0 nu este valoare proprie pentru A, atunci valorile proprii sunt toate de forma ib, cu $b \in \mathbb{R} \setminus \{0\}$. Cum $p_A \in \mathbb{R}[X]$, orice rădăcină a lui p_A apare în pereche cu conjugata ei. Ținând seama de această observație, precum și de faptul că $ib(-ib) = b^2$, deducem că det A > 0.

48. Fie $p_A \in \mathbb{R}[X]$ polinomul caracteristic al lui A,

$$p_A(t) = t^n - E_1(A)t^{n-1} + E_2(A)t^{n-2} - \dots + (-1)^n E_n(A),$$

unde $E_k(A)$ este suma minorilor principali de ordinul k ai lui A. Întrucât orice minor principal de ordinul k al lui A este determinantul unei matrice antisimetrice din $\mathcal{M}_k(\mathbb{R})$, în baza rezultatului din problema precedentă deducem că $E_k(A)=0$ pentru k impar și $E_k(A)\geq 0$ pentru k par. Prin urmare, p_A este un polinom cu toți coeficienții nenegativi, de forma

$$p_A(t) = t^n + \alpha_2 t^{n-2} + \alpha_4 t^{n-4} + \cdots,$$

deci sau $p_A(-t) = p_A(t)$ oricare ar fi $t \in \mathbb{R}$, sau $p_A(-t) = -p_A(t)$ oricare ar fi $t \in \mathbb{R}$. Ținând seama de această observație, avem

$$\det(A + xI_n) \det(A + yI_n) \ge \det(A + \sqrt{xy} I_n)^2$$

$$\Leftrightarrow (-1)^n p_A(-x)(-1)^n p_A(-y) \ge \left((-1)^n p_A(-\sqrt{xy})\right)^2$$

$$\Leftrightarrow p_A(x) p_A(y) \ge p_A^2(\sqrt{xy}).$$

Am redus astfel problema la a demonstra că dacă $P \in \mathbb{R}[X]$ este un polinom cu coeficienți nenegativi, atunci are loc inegalitatea

$$P(x) P(y) \ge P^2(\sqrt{xy})$$
 oricare ar fi $x, y \in [0, \infty)$.

Fie $P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_0$ și fie $x, y \in [0, \infty)$. Conform inegalității lui Cauchy-Bunyakovsky-Schwarz, avem

$$P^{2}(\sqrt{xy}) = (a_{n}\sqrt{x^{n}y^{n}} + a_{n-1}\sqrt{x^{n-1}y^{n-1}} + \dots + a_{1}\sqrt{xy} + a_{0})^{2}$$

$$= (\sqrt{a_{n}x^{n}}\sqrt{a_{n}y^{n}} + \dots + \sqrt{a_{1}x}\sqrt{a_{1}y} + \sqrt{a_{0}}\sqrt{a_{0}})^{2}$$

$$\leq (a_{n}x^{n} + \dots + a_{1}x + a_{0})(a_{n}y^{n} + \dots + a_{1}y + a_{0})$$

$$= P(x) P(y).$$

49. Fie $U \in \mathcal{M}_n(\mathbb{C})$ o matrice unitară, fie $\lambda \in \mathbb{C}$ o valoare proprie a lui U și fie $x \in \mathbb{C}^n$, $x \neq 0_n$ un vector propriu asociat lui λ . Atunci avem $Ux = \lambda x$, deci $x^*U^* = \bar{\lambda}x^*$. Prin înmulțirea celor două egalități, găsim

$$(x^*U^*)(Ux) = (\bar{\lambda}x^*)(\lambda x) \quad \Leftrightarrow \quad x^*(U^*U)x = |\lambda|^2 x^*x$$
$$\Leftrightarrow \quad ||x||^2 = |\lambda|^2 ||x||^2,$$

deci $|\lambda| = 1$, deoarece $||x||^2 > 0$.

50. a) Fie $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ valorile proprii ale matricei A, care este ortogonală. Conform problemei **49**, avem $|\lambda_1| = \cdots = |\lambda_n| = 1$, deci

$$|\operatorname{tr} A| = |\lambda_1 + \dots + \lambda_n| \le |\lambda_1| + \dots + |\lambda_n| = n.$$

b) **Rezolvarea 1**. Dacă n este impar, atunci polinomul $p_A \in \mathbb{R}[X]$, de grad n, are cel puțin o rădăcină reală. Conform problemei **49**, această rădăcină are modulul 1, deci este sau 1 sau -1. Prin urmare, avem

$$0 = p_A(1) p_A(-1) = \det(I_n - A) \det(-I_n - A)$$

= \det((I_n - A)(-I_n - A)) = \det(A^2 - I_n).

Rezolvarea 2. Avem

$$\det(A^{2} - I_{n}) = \det((A - I_{n})(A + I_{n})) = \det(A - I_{n})\det(A + I_{n})$$

$$= \det(A - I_{n})\det(A^{t} + I_{n}) = \det((A - I_{n})(A^{t} + I_{n}))$$

$$= \det(AA^{t} + A - A^{t} - I_{n}) = \det(A - A^{t}) = 0,$$

de
oarece n este impar, iar matricea $A-A^t$ este antisimetrică.

51. Presupunem, prin absurd, că 1 nu este valoare proprie pentru B. Din problema **49** rezultă că valorile proprii ale lui A sunt -1 și perechi $(\lambda, \bar{\lambda})$, cu $|\lambda| = 1$. Fie ℓ ordinul de multiplicitate al valorii proprii -1. Deoarece

valorile proprii complexe nereale apar în pereche cu conjugatele lor, rezultă că ℓ are aceeași paritate ca și n. Ținând seama că $\lambda\bar{\lambda}=|\lambda|^2=1$ oricare ar fi λ valoare proprie complexă nereală a lui A și că determinantul lui A este egal cu produsul tuturor valorilor proprii ale lui A, deducem că det $A=(-1)^{\ell}=(-1)^n$. Întrucât și B este matrice ortogonală care nu are pe 1 ca valoare proprie, raționamentul de mai sus este valabil și pentru B, deci det $B=(-1)^n=\det A$. Dar această egalitate este în contradicție cu faptul că det $B=-\det A$.

52. a) Avem

$$AA^{t} = (I_{n} - 2xx^{t})(I_{n} - 2xx^{t}) = I_{n} - 4xx^{t} + 4x(x^{t}x)x^{t} = I_{n},$$

deoarece $x^t x = x_1^2 + \dots + x_n^2 = 1$. Drept urmare, matricea A este ortogonală. b) Fie $\lambda_1, \dots, \lambda_n$ valorile proprii ale lui A. Deoarece $A = A^t$, rezultă că toate valorile proprii λ_j sunt reale (conform problemei **43**). Pe de altă parte, matricea A fiind ortogonală, în baza rezultatului din problema **49** rezultă că $|\lambda_j| = 1$, deci $\lambda_j = \pm 1$ oricare ar fi $j = 1, \dots, n$. Întrucât

$$\lambda_1 + \dots + \lambda_n = \operatorname{tr} A = (1 - 2x_1^2) + \dots + (1 - 2x_n^2) = n - 2,$$

deducem că valoarea proprie +1 are ordinul de multiplicitate n-1, iar valoarea proprie -1 are ordinul de multiplicitate 1. Cu alte cuvinte, valorile proprii ale lui A sunt $\lambda_1 = \cdots = \lambda_{n-1} = 1$ și $\lambda_n = -1$.

Fiind o matrice simetrică reală, A este otogonal diagonalizabilă (adică există o bază ortonormală în \mathbb{R}^n , formată din vectori proprii ai lui A). Vom demonstra că $y \in \mathbb{R}^n \setminus \{0_n\}$ este vector propriu corespunzător valorii proprii +1 dacă și numai dacă $y \perp x$, adică $x^t y = 0$. În adevăr, y este vector propriu al lui A corespunzător valorii proprii +1 dacă și numai dacă

$$Ay = y \quad \Leftrightarrow \quad y - 2xx^ty = y \quad \Leftrightarrow \quad xx^ty = 0_n.$$

Dacă $x^ty=0$, atunci ultima egalitate de mai sus este evidentă. Reciproc, dacă $xx^ty=0_n$, atunci avem

$$0 = y^t 0_n = y^t x x^t y = (x^t y)^t (x^t y) = (x^t y)^2,$$

de unde $x^t y = 0$.

Similar se demonstrează că $y \in \mathbb{R}^n \setminus \{0_n\}$ este vector propriu corespunzător valorii proprii -1 dacă și numai dacă $y \in \langle x \rangle$. În concluzie, o bază în raport cu care A are forma canonică Jordan, adică diag $(1, \ldots, 1, -1)$,

este formată din vectorii unei baze ortonormale în $\langle x \rangle^{\perp}$, la care se adaugă vectorul x.

c) Admitem că $y=(1,\ldots,1)$ este vector propriu al lui A. Conform celor demonstrate mai sus, trebuie să avem fie $y\perp x$, fie $y=\alpha x$, cu $\alpha\in\mathbb{R}$. Cum $x^ty=x_1+\cdots+x_n\neq 0$, nu putem avea $y\perp x$. Rămâne posibilitatea $y=\alpha x$, de unde $x=\frac{1}{\alpha}y$. Cum $x_1^2+\cdots+x_n^2=1$, rezultă că $\alpha=\pm\sqrt{n}$, deci

$$x = \pm \left(\frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}\right).$$

- **53.** a) Cum AB anulează polinomul X^n , rezultă că toate valorile proprii ale lui AB sunt rădăcini ale acestui polinom, deci sunt egale cu 0. Prin urmare, polinomul caracteristic al matricei AB este $p_{AB} = X^n$. Conform problemei **29**, avem și $p_{BA} = X^n$, iar conform teoremei lui Cayley-Hamilton $(BA)^n = O_n$.
- b) Fie $\{e_1,\ldots,e_n\}$ baza canonică a lui \mathbb{R}^n și fie $X,Y\in\mathcal{M}_n(\mathbb{R})$ matricile cu proprietatea că aplicațiile liniare $\varphi_X,\varphi_Y\in L(\mathbb{R}^n,\mathbb{R}^n)$ asociate lor acționează asupra bazei canonice după cum urmează:

Atunci $\varphi_{XY}=\varphi_X\circ\varphi_Y$ și $\varphi_{YX}=\varphi_Y\circ\varphi_X$ acționează asupra bazei canonice după cum urmează:

De aici rezultă apoi succesiv

:

deci $\varphi_{(XY)^{n-1}} = \theta$, adică $(XY)^{n-1} = O_n$. Prodedând analog, se obține

deci $\varphi_{(YX)^{n-1}} \neq \theta$, adică $(YX)^{n-1} \neq O_n$.

54. Răspunsul este DA pentru $n \in \{2,3\}$ și NU pentru $n \geq 4$.

a) Fie mai întâi $n \in \{2,3\}$. Dacă $(AB)^3 = O_n$, atunci AB este nilpotentă, deci are toate valorile proprii egale cu 0. Prin urmare, polinomul caracteristic al matricei AB este $p_{AB}(t) = t^n$. Dar atunci $p_{BA}(t) = p_{AB}(t) = t^n$ și, conform teoremei lui Cayley-Hamilton, avem $(BA)^n = O_n$.

b) Dăm exemplu de matrici $A, B \in \mathcal{M}_4(\mathbb{C})$ așa încât $(AB)^3 = O_4$, dar $(BA)^3 \neq O_4$. Fie (a se vedea și rezolvarea problemei precedente)

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \qquad \frac{x \quad | e_1 \quad e_2 \quad e_3 \quad e_4}{\varphi_A(x) \quad | 0_4 \quad e_3 \quad e_4 \quad e_1}$$

și respectiv

$$B = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad \frac{x \mid e_1 \quad e_2 \quad e_3 \quad e_4}{\varphi_B(x) \mid e_3 \quad 0_4 \quad e_1 \quad e_2 \,.}$$

Atunci avem

și respectiv

$$BA = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad \frac{x \quad | e_1 \quad e_2 \quad e_3 \quad e_4}{\varphi_{BA}(x) \mid 0_4 \quad e_1 \quad e_2 \quad e_3.}$$

Se verifică imediat că $(AB)^3 = O_4$, dar $(BA)^3 \neq O_4$.

c) Fie n > 4 arbitrar și fie $A_4, B_4 \in \mathcal{M}_4(\mathbb{C})$ matricile de la punctul b). Atunci matricile de blocuri

$$A = \begin{pmatrix} A_4 & O_{4,n-4} \\ O_{n-4,4} & O_{n-4,n-4} \end{pmatrix} \quad \text{si} \quad B = \begin{pmatrix} B_4 & O_{4,n-4} \\ O_{n-4,4} & O_{n-4,n-4} \end{pmatrix}$$

verifică

$$(AB)^3 = \begin{pmatrix} (A_4B_4)^3 & O_{4,n-4} \\ O_{n-4,4} & O_{n-4,n-4} \end{pmatrix} = O_n$$

și

$$(BA)^3 = \begin{pmatrix} (B_4A_4)^3 & O_{4,n-4} \\ O_{n-4,4} & O_{n-4,n-4} \end{pmatrix} \neq O_n.$$

55. a) Dacă $A \in \mathcal{M}_n(\mathbb{Q})$ este radicală, atunci numărul $d := \det A$ are proprietatea că $\sqrt[k]{d} \in \mathbb{Q}$ pentru o infinitate de numere naturale $k \geq 2$. Or, este evident că acest lucru este posibil doar dacă $d \in \{-1, 0, 1\}$.

Vom demonstra că pentru orice $a \in \mathbb{Q}$ matricea

$$A := \left(\begin{array}{cccccccccc} 1 & a & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots & 1 \end{array}\right)$$

este radicală. În adevăr, matricea

$$X(x) := \left(\begin{array}{cccccccc} 1 & x & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots & 1 \end{array}\right)$$

satisface $X(x)^k = X(kx)$, deci $X(a/k)^k = A$ pentru orice număr natural k.

b) Vom dovedi că pentru orice $a \in \mathbb{Q} \setminus \{0\}$ matricea

$$A := \left(\begin{array}{cccccccccc} 0 & a & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & a & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & a & 0 & \dots & 0 & 0 \\ \dots & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots & 0 & a \\ 0 & 0 & 0 & 0 & 0 & \dots & 0 & 0 \end{array}\right)$$

nu este radicală. Se verifică prin calcul că

 $A^2 = \text{matricea}$ care are a^2 pe diagonala situată cu două unități deasupra diagonalei principale și 0 în rest;

 A^3 = matricea care are a^3 pe diagonala situată cu trei unități deasupra diagonalei principale și 0 în rest;

:

 A^{n-1} = matricea care are a^{n-1} în colțul NE și 0 în rest;

$$A^n = O_n$$
.

Demonstrăm că pentru $k \geq n$ nu există $X \in \mathcal{M}_n(\mathbb{Q})$ astfel încât $X^k = A$. Presupunând contrarul, ar rezulta că $X^{nk} = A^n = O_n$. Drept urmare, matricea X este nilpotentă, deci are toate valorile proprii egale cu 0 și polinomul caracteristic $p_X(t) = t^n$. Din teorema lui Cayley-Hamilton rezultă că $X^n = O_n$, de unde $X^k = O_n \neq A$, contradicție.

În fine, vom dovedi că pentru orice număr natural prim p, matricea $A:=\operatorname{diag}\left(p,\frac{1}{p},1,1,\ldots,1\right)$ nu este radicală. În acest scop, este suficient să demonstrăm că pentru k>n nu există $X\in\mathcal{M}_n(\mathbb{Q})$ astfel încât $X^k=A$. Presupunând contrarul, fie $\lambda_1,\ldots,\lambda_n\in\mathbb{C}$ valorile proprii ale lui X. Atunci, se știe, valorile proprii ale lui X^k sunt $\lambda_1^k,\ldots,\lambda_n^k$, iar acestea trebuie să coincidă cu valorile proprii ale lui A, care sunt $p,\frac{1}{p}$ și 1 cu multiplicitatea algebrică n-2. Rezultă că există $i\in\{1,\ldots,n\}$ așa încât $\lambda_i^k=p$, adică $\lambda_i=\sqrt[k]{p}$. Fie p_X polinomul caracteristic al lui X și fie m polinomul minimal al lui $\sqrt[k]{p}$ peste corpul \mathbb{Q} , adică polinomul monic de grad minim din $\mathbb{Q}[t]$ care are pe $\sqrt[k]{p}$ drept rădăcină. Cum $p_X(\sqrt[k]{p})=0$, rezultă că deg $m\leq n$ și m divide orice polinom monic din $\mathbb{Q}[t]$ care are pe $\sqrt[k]{p}$ drept rădăcină. În particular, m divide polinomul $f(t):=t^k-p$. Pe de altă parte, criteriul de ireductibilitate al lui Eisenstein asigură că f este ireductibil în $\mathbb{Q}[t]$. Contradicția obținută arată că, într-adevăr, matricea A nu este radicală.

56. Presupunem, pentru fixarea ideilor, că A este inversabilă. Fie

$$m_{AB}(t) = t^k + a_1 t^{k-1} + \dots + a_{k-1} t + a_k$$

polinomul minimal al lui AB. Înmulțind egalitatea

$$(AB)^k + a_1(AB)^{k-1} + \dots + a_{k-1}AB + a_kI_n = O_n$$

la dreapta cu A, deducem că

$$A((BA)^k + a_1(BA)^{k-1} + \dots + a_{k-1}BA + a_kI_n) = O_n.$$

Înmulțind această egalitate la stânga cu A^{-1} , găsim $m_{AB}(BA) = O_n$. Cu alte cuvinte, matricea BA anulează polinomul m_{AB} . Rezultă de aici că $m_{BA} \mid m_{AB}$.

Fie acum $m_{BA}(t)=t^q+b_1t^{q-1}+\cdots+b_{q-1}t+b_q$ polinomul minimal al lui BA. Înmulțind egalitatea

$$(BA)^{q} + b_{1}(BA)^{q-1} + \dots + b_{q-1}BA + b_{q}I_{n} = O_{n}$$

la stânga cu A, deducem că

$$((AB)^{q} + b_{1}(AB)^{q-1} + \dots + b_{q-1}AB + b_{q}I_{n})A = O_{n}.$$

Înmulțind această egalitate la dreapta cu A^{-1} , găsim $m_{BA}(AB) = O_n$. Ca mai sus, urmează de aici că $m_{AB} \mid m_{BA}$. Întrucât m_{AB} și m_{BA} sunt polinoame monice și fiecare se divide cu celălalt, rezultă că ele sunt egale.

Egalitatea $m_{AB} = m_{BA}$ nu rămâne adevărată dacă niciuna dintre matricile A și B nu este inversabilă, după cum arată următorul contraexemplu:

$$A = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 1 & 1 & 1 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}.$$

Atunci $AB = O_n$, deci $m_{AB}(t) = t$, pe când $BA \neq O_n$ și $(BA)^2 = O_n$, de unde $m_{BA}(t) = t^2$.

[57.] Fie $m_A \in \mathbb{C}[X]$ polinomul minimal al matricei A și fie polinoamele $f,g \in \mathbb{C}[X], f = X^p - pX + (p-1)$ și respectiv $g = X^{3p} - 3pX + (3p-1)$. Atunci m_A divide pe f și pe g, deci orice rădăcină a lui m_A este rădăcină atât pentru f cât și pentru g. Fie $\lambda \in \mathbb{C}$ o rădăcină arbitrară a lui m_A . Atunci avem

$$\lambda^p = p(\lambda - 1) + 1$$
 și $\lambda^{3p} = 3p(\lambda - 1) + 1$.

Ridicând prima egalitate la cub și ținând seama de cea de-a doua, găsim

$$p^{3}(\lambda - 1)^{3} + 3p^{2}(\lambda - 1)^{2} = 0 \quad \Leftrightarrow \quad p^{2}(\lambda - 1)^{2}(p\lambda - p + 3) = 0,$$

de unde $\lambda = 1$ sau $\lambda = \frac{p-3}{p}$. Dacă $\lambda = \frac{p-3}{p}$, atunci am obține

$$-2 = p(\lambda - 1) + 1 = \lambda^p = \left(\frac{p-3}{p}\right)^p,$$

ceea ce ar fi absurd, întrucât $p \geq 3$. Prin urmare, singura rădăcină complexă a lui m_A este 1. Cum f și g admit pe 1 ca rădăcină cu ordinul de multiplicitate 2, deducem că $m_A = X - 1$, sau $m_A = (X - 1)^2$.

Fie acum $r \ge 1$ un număr întreg și fie polinomul $h = X^r - rX + (r-1)$. Dacă r = 1, atunci nu avem ce demonstra, iar dacă $r \ge 2$, atunci h admite pe 1 ca rădăcină cu ordinul de multiplicitate 2. Urmează de aici că m_A divide pe h, deci $h(A) = O_n$.

58. Vom demonstra că dacă p este un număr întreg arbitrar (nu neapărat prim), cu proprietatea că p > n + 1, iar $A \in \mathcal{M}_n(\mathbb{Q}), A \neq I_n$, atunci avem $A^p + A \neq 2I_n$.

Presupunem, prin absurd, că există o matrice $A \neq I_n$ din $\mathcal{M}_n(\mathbb{Q})$, astfel ca $A^p + A = 2I_n$. Fie polinomul $\phi := X^p + X - 2 \in \mathbb{Z}[X]$ și fie $m_A \in \mathbb{Q}[X]$ polinomul minimal al lui A. Cum $\phi(A) = O_n$, rezultă că m_A divide pe ϕ . Avem

$$\phi = (X - 1)(X^{p-1} + X^{p-2} + \dots + X + 2).$$

Vom demonstra că polinomul $f := X^{p-1} + X^{p-2} + \cdots + X + 2$ este ireductibil în $\mathbb{Q}[X]$. Cum $A \neq I_n$, nu putem avea $m_A = X - 1$. Atunci ireductibilitatea lui f implică $m_A = f$ sau $m_A = \phi$. Întrucât m_A divide polinomul caracteristic al lui A, am avea atunci

$$n \ge \operatorname{grad} m_A \ge p - 1 > n$$
,

ceea ce ar fi absurd.

Rămâne așadar să dovedim ireductibilitatea lui f în $\mathbb{Q}[X]$. Conform lemei lui Gauss, aceasta este echivalentă cu ireductibilitatea lui f în $\mathbb{Z}[X]$.

Demonstrăm mai întâi că dacă $\alpha \in \mathbb{C}$ este o rădăcină a lui f, atunci $|\alpha| > 1$. În adevăr, dacă α este o rădăcină a lui f, atunci avem

$$\alpha^p + \alpha - 2 = \phi(\alpha) = 0.$$

Presupunem că $|\alpha| \leq 1$. Atunci avem

$$1 \ge |\alpha^p| = |2 - \alpha| \ge 2 - |\alpha| \ge 1$$
,

deci cele trei inegalități de mai sus trebuie să aibă loc cu egalitate. Dar acest lucru este posibil doar dacă $\alpha=1$, iar 1 nu este rădăcină a lui f. Contradicția obținută arată că toate rădăcinile lui f au modulul strict mai mic decât 1.

Presupunem, prin absurd, că există polinoame neconstante $g,h\in\mathbb{Z}[X]$ în așa fel încât f=gh. Fie $\alpha_1,\ldots,\alpha_k\in\mathbb{C}$ rădăcinile lui g și respectiv $\beta_1,\ldots,\beta_m\in\mathbb{C}$ rădăcinile lui h. Conform celor demonstrate mai sus, avem $|\alpha_j|>1$ oricare ar fi $j\in\{1,\ldots,k\}$ și $|\beta_j|>1$ oricare ar fi $j\in\{1,\ldots,m\}$. Deoarece

$$g = \prod_{j=1}^{k} (X - \alpha_j)$$
 și $h = \prod_{j=1}^{m} (X - \beta_j),$

rezultă că $|g(0)| = \prod_{j=1}^k |\alpha_j| > 1$ și $|h(0)| = \prod_{j=1}^k |\beta_j| > 1$. Pe de altă parte,

|g(0)| și |h(0)| sunt numere întregi pozitive cu proprietatea că $|g(0)| \cdot |h(0)| = |f(0)| = 2$, deci unul dintre ele este egal cu 1. Contradicția obținută arată că f este ireductibil în $\mathbb{Z}[X]$.

59. Fie n un număr natural cu proprietatea că există o matrice $A \in \mathcal{M}_n(\mathbb{Q})$ astfel încât $A^{2^k} + I_n = O_n$. Fie $f := X^{2^k} + 1$, fie $p_A \in \mathbb{Q}[X]$ polinomul caracteristic al lui A și fie $m_A \in \mathbb{Q}[X]$ polinomul minimal al lui A. Deoarece $f(A) = O_n$, rezultă că m_A divide f. Pe de altă parte, polinomul f este ireductibil în inelul $\mathbb{Q}[X]$ (aceasta fiind o consecință a criteriului de ireductibilitate al lui Eisenstein). Drept urmare, avem $m_A = f$. Conform teoremei lui Frobenius, polinoamele p_A și $m_A = f$ au aceiași factori ireductibili în $\mathbb{Q}[X]$, deci există un număr natural r în așa fel încât $p_A = f^r$. Deducem de aici că $n = \operatorname{grad}(p_A) = r \cdot \operatorname{grad}(f) = r \cdot 2^k \geq 2^k$.

Pentru a încheia rezolvarea, rămâne să mai dovedim că pentru $n=2^k$ există o matrice $A \in \mathcal{M}_n(\mathbb{Q})$ așa încât $A^n = -I_n$. Fie $\{e_1, \ldots, e_n\}$ baza canonică a lui \mathbb{R}^n și fie $A \in \mathcal{M}_n(\mathbb{Q})$ matricea cu proprietatea că aplicația liniară $\varphi_A \in L(\mathbb{R}^n, \mathbb{R}^n)$ asociată ei acționează asupra bazei canonice după cum urmează:

De aici rezultă apoi succesiv