MAT157: Analysis I — Tutorial 20

Topics: Sequences of functions and uniform convergence.

Question 1. Explain briefly why uniform convergence implies pointwise convergence. Conversely, for each $n \in \mathbb{N}$, consider $f_n : [0,1] \to \mathbb{R}$ defined by $f_n(x) = x^n$, and $f : [0,1] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0 & x \neq 1 \\ 1 & x = 1 \end{cases}$$

Prove that $(f_n) \to f$ pointwise, and that the convergence in *not* uniform.

Question 2. Given a sequence of functions (f_n) on $I \subseteq \mathbb{R}$, we will say that (f_n) converges to f supremely on I if the sequence (b_n) defined by

$$b_n = \sup_{x \in I} |f_n(x) - f(x)|$$

converges to 0. Prove that $(f_n) \to f$ uniformly on I if and only if $(f_n) \to f$ supremely on I.

Question 3. Provide an example showing that integrability is *not* preserved by pointwise convergence. *Hint:* Construct a sequence of functions on [0,1] each with finitely many discontinuities that converges to the characteristic function of $\mathbb{Q} \cap [0,1]$.

Question 4. Let (f_n) be a sequence of C^1 functions on [a,b], and $f,g:[a,b] \to \mathbb{R}$. Prove if $(f_n) \to f$ pointwise and $(f'_n) \to g$ uniformly, then f is C^1 on [a,b] and f'=g. Note: On the assignment, you're proving a stronger version of this result, where we are not assuming f is C^1 , only that f is differentiable.

Bonus Problem. Recall we say that a function $f: S \to \mathbb{R}$ is *Lipshcitz* on S if there is M > 0 for which $|f(x) - f(y)| \le M|x - y|$ for all $x, y \in S$

- (a) Prove that Lipschitz functions are uniformly continuous, and provide an example showing that the converse is not true.
- (b) Prove that uniform convergence preserves uniform continuity.
- (c) More generally, Suppose (f_n) is a sequence of Lipschitz functions on [a, b], each with factor $M_n > 0$, and $(f_n) \to f$ uniformly. If $\sup_n M_n$ exists, prove that f is Lipschitz. (Note that this is still true if we only assume pointwise convergence)
- (d) Can the same be said if we no longer assume $\sup_n M_n$ exists? Prove the result or provide a counterexample. *Note:* This is tricky \odot