1. Axioma del continuo (o de Dedekind)

Con esto se prueba el principio de los intervalos encajados

Si
$$\varnothing \not\subset A, B$$
 $a \le b$ $\forall a \in A$ $\forall b \in B$ \Rightarrow $\exists x \in \mathbb{R} : a \le x \le b$

2. Teorema de la existencia de supremo e ínfimo

Si A es un conjunto de números reales no vacío y mayorado, entonces el conjunto de los mayorantes de A tiene mínimo, que recibe el nombre de supremo del conjunto A y se representa por sup(A).

Análogamente, si A es un conjunto de números reales no vacío y minorado, entonces el conjunto de los minorantes de A tiene máximo, que recibe el nombre de ínfimo del conjunto A y se representa por inf(A).

3. Densidad de \mathbb{Q} y $\mathbb{R} \setminus \mathbb{Q}$ en \mathbb{R}

 $\forall \ x,y \in \mathbb{R} \quad \text{con} \quad x < y \quad \exists \ r \in \mathbb{Q} \quad \text{y} \quad \exists \ \beta \in \mathbb{R} \backslash \mathbb{Q} \quad \text{verificando que } x < r < \beta < y$

4. Principio de los intervalos encajados

Con esto se prueba que $\mathbb R$ NO es numerable

$$\forall n \in \mathbb{N} \quad \exists J_n = [a_n, b_n] \quad \text{con } a_n \leq b_n \quad \text{y} \quad J_{n+1} \subset J_n$$

 $\Rightarrow \cap_{n \in \mathbb{N}} J_n \neq \emptyset$, es decir, $\exists x \in \mathbb{R} : x \in J_n \quad \forall n \in \mathbb{N}$

5. Sucesiones monótonas y acotadas

Toda sucesión monótona y acotada es convergente. De hecho:

- 1. Si $\{x_n\}$ es creciente y mayorada, se tiene $\lim\{x_n\}=\sup\{x_k:k\in\mathbb{N}\}$
- 2. Si $\{x_n\}$ es decreciente y minorada, entonces $\lim\{x_n\}=\inf\{x_k:k\in\mathbb{N}\}$

6. Teorema de Bolzano-Weierstrass

Toda sucesión acotada de números reales admite una sucesión parcial convergente.

7. Sucesiones de Cauchy y Teorema de complitud de \mathbb{R}

 $\{x_n\} \text{ es una sucesión de Cauchy cuando} \ \ \forall \varepsilon > 0 \quad \exists \ \delta \in \mathbb{N} : p,q \geq \delta \Rightarrow |x_p - x_q| < \varepsilon$

Es decir, toda sucesión convergente es una sucesión de Cauchy.

El teorema de complitud dice que toda sucesión de Cauchy de números reales es convergente

En definitiva tenemos:

 $\{x_n\}$ es una sucesión de Cauchy $\Leftrightarrow \{x_n\}$ es una sucesión convergente

8. Series convergentes. Criterio de comparación (desigualdad y paso al límite)

8.1. Criterio de desigualdad 1

Si $0 \le a_n \le b_n \quad \forall n \in \mathbb{N}$ y la serie $\sum_{n \ge 1} b_n$ converge, entonces la serie $\sum_{n \ge 1} a_n$ también es convergente y se verifica que:

$$\sum_{n\geq 1}^{\infty} a_n \leq \sum_{n\geq 1}^{\infty} b_n$$

8.2. Criterio de desigualdad 2

Sean $\sum_{n\geq 1} a_n$ y $\sum_{n\geq 1} b_n$ dos series de números reales. Supongamos que existe $p\in\mathbb{N}$ tal que, para k>p se tiene $0\leq a_k\leq b_k$, y que la serie $\sum_{n\geq 1} b_n$ es convergente. Entonces la serie $\sum_{n\geq 1} a_n$ también es convergente.

8.3. Criterio de paso al límite

Sean $a_n \ge 0$ y $b_n > 0$ $\forall n \in \mathbb{N}$, y supongamos que la sucesión $\{a_n/b_n\}$ converge a un límite $L \in \mathbb{R}$, que obviamente verifica $L \ge 0$.

- 1. Si L>0, la convergencia de la serie $\sum_{n\geq 1}a_n$ equivale a la de la serie $\sum_{n\geq 1}b_n$
- 2. Si L=0, y la serie $\sum_{n\geq 1}b_n$ converge, entonces la serie $\sum_{n\geq 1}a_n$ también es convergente.

9. Criterio de la raíz para series (criterio de Cauchy)

Sea $a_n \geq 0$ para todo $n \in \mathbb{N}$.

- 1. Si la sucesión $\sqrt[n]{a_n}$ no está acotada, o bien está acotada con $\lim \sup \{\sqrt[n]{a_n}\} > 1$, entonces $\{a_n\}$ no converge a cero, luego la serie $\sum_{n>1} a_n$ diverge.
- 2. Si $\sqrt[n]{a_n}$ está acotada con $\lim \sup\{\sqrt[n]{a_n}\} < 1$ entonces la serie $\sum_{n \geq 1} a_n$ converge.

10. Criterio del cociente (criterio de D'Alembert)

Sea $a_n > 0$ para todo $n \in \mathbb{N}$ y supongamos que la sucesión $\{a_{n+1}/a_n\}$ está acotada.

- 1. Si $\lim\inf\{a_{n+1}/a_n\}>1$, la sucesión $\{a_n\}$ no converge a cero y la serie $\sum_{n\geq 1}a_n$ diverge.
- 2. Si $\lim \sup\{a_{n+1}/a_n\} < 1$, la serie $\sum_{n>1} a_n$ es convergente.

11. Criterio de condensación de Cauchy

Si $\{a_n\}$ es una sucesión decreciente de números reales positivos, la convergencia de la serie $\sum_{n\geq 1} a_n$ equivale a la de $\sum_{n\geq 0} 2^n a_{2^n}$.

12. Convergencia de series absolutas

Toda serie absolutamente convergente es convergente. Más concretamente, dada una sucesión $\{x_n\}$ de números reales, si la serie $\sum_{n\geq 1}|x_n|$ es convergente, entonces $\sum_{n\geq 1}x_n$ también es convergente y se verifica que

$$\left| \sum_{n=1}^{\infty} x_n \right| \le \sum_{n=1}^{\infty} |x_n|$$

13. Funciones continuas. Carácter local de la continuidad. Caracterización de la continuidad

Sea $f: A \to R$ una función y $x \in A$. Se dice que f es continua en el punto x cuando, para toda sucesión $\{x_n\}$ de puntos de A que converja a x, se tiene que la sucesión $\{f(x_n)\}$ converge a f(x). Simbólicamente:

$$x_n \in A \quad \forall n \in \mathbb{N}, \quad \{x_n\} \to x \quad \Rightarrow \quad \{f(x_n)\} \to f(x)$$

13.1. Carácter local de la continuidad

Dada una función $f:A\to R$, para cualquier $x\in A$, siempre podemos tomar en el resultado anterior $B=]x-\delta, x+\delta[\cap A,$ donde $\delta>0$ se puede elegir con total libertad. Obtenemos que f es continua en x si, y sólo si, $f_{|B}$ es continua en x. Al pasar de f a $f_{|B}$, lo que hacemos es olvidar los valores de f en los puntos de $A\backslash B$, es decir, considerar solamente los valores de f en puntos suficientemente próximos a f0 arbitrariamente fijado. Por tanto, vemos que la continuidad de una función en cada punto f1 sólo depende de los valores de la función en puntos suficientemente próximos a f2. A esto nos referimos al hablar del carácter local de la continuidad.

13.2. Caracterización $(\epsilon - \delta)$ de la continuidad.

Sea $f:A\to R$ una función y fijemos $x\in A$. Las siguientes afirmaciones son equivalentes:

- 1. La función f es continua en el punto x.
- 2. Para toda sucesión $\{x_n\}$ de puntos de A, que sea monótona y converja a x, se tiene que $\{f(x_n)\} \to f(x)$.
- 3. Para cada $\varepsilon>0$ puede encontrarse $\delta>0$ tal que, si $y\in A$ verifica que $|y-x|<\delta$, entonces $|f(y)-f(x)|<\varepsilon$. Simbólicamente:

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad : \quad y \in A, \ |y - x| < \delta \Rightarrow |f(y) - f(x)| < \varepsilon$$

14. Teorema del valor intermedio

Si f es una función continua en el intervalo cerrado $[a,b], \ \forall k \in \mathbb{R} : f(a) < k < f(b) \ o \ f(b) < k < f(a),$ existe al menos un $c \in \mathbb{R}$ perteneciente al intervalo (a,b) tal que f(c) = k.

15. Teorema de Weierstrass

Si una función f es continua en un intervalo compacto (cerrado y acotado) [a, b] entonces hay al menos dos puntos x_1, x_2 pertenecientes a [a, b] donde f alcanza valores extremos absolutos, es decir $f(x_1) \leq f(x) \leq f(x_2)$, para cualquier $x \in [a, b]$.

16. Resultados que relacionan continuidad y monotonía

16.1. De la continuidad a la monotonía

Sea I un intervalo y $f:I\to R$ una función continua e inyectiva. Entonces f es estrictamente monótona.

16.2. De la monotonía a la continuidad

Si $f: A \to R$ es una función monótona, y f(A) es un intervalo, entonces f es continua.