RECEIVED **CENTRAL FAX CENTER**

TO: USPTO

NOV 2 7 2006

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

> (Currently amended) A compound of formula I: 1.

$$A \longrightarrow (B) \xrightarrow{X} N \longrightarrow C \longrightarrow C \longrightarrow H_2 \longrightarrow C \longrightarrow E' \longrightarrow E$$

$$(G)_X \longrightarrow OR^7 \longrightarrow D'$$

$$(I)$$

or a pharmaccutically acceptable salt thereof, wherein:

E' is
$$[[-CO-or]]$$
 - SO_2 -;

A is selected from -R1-C1-C6 alkyl, which is optionally substituted with one or more groups independently selected from hydroxy, C1-C4 alkoxy, Ht, -O-Ht, -NR2-CO-N(R2)2, -SO2-R² or -CO-N(R²)₂; or -R¹-C₂-C₆ alkenyl, which is optionally substituted with one or more groups independently selected from hydroxy, C₁-C₄ alkoxy, Ht, -O-Ht, -NR²-CO-N(R²)₂ or -CO-N(R²)₂; or R⁷;

$$R^1$$
 is -O-C(O)-;

each Ht is independently selected from C3-C7 cycloalkyl; C5-C7 cycloalkenyl; C6-C14 aryl; or a 5-7 membered saturated or unsaturated heterocycle, containing one or more heteroatoms selected from N, O, or S; wherein said aryl or said heterocycle is optionally fused to Q; and wherein any member of said Ht is optionally substituted with one or more substituents independently selected from 0x0, $-OR^2$, SR^2 , $-R^2$, $-N(R^2)(R^2)$, $-R^2$ -OH, -CN, $-CO_2R^2, -C(O)-N(R^2)_2, -S(O)_2-N(R^2)_2, -N(R^2)-C(O)-R^2, -N(R^2)-C(O)O-R^2, -C(O)-R^2, -S(O)_n-C(O)O-R^2, -C(O)-R^2, -C(O)-R^$ R^2 , $-OCF_3$, $-S(O)_n$ -Q, methylenedioxy, $-N(R^2)$ - $S(O)_2(R^2)$, halo, $-CF_3$, $-NO_2$, Q, -OQ, $-OR^7$, $-CR^7$, $-CR^$ SR^7 , $-R^7$, $-N(R^2)(R^7)$ or $-N(R^7)_2$;

P.7/28

each Q is independently selected from a 3-7 membered saturated, partially saturated or unsaturated carbocyclic ring system; or a 5-7 membered saturated, partially saturated or unsaturated heterocyclic ring containing one or more heteroatoms selected from O, N, or S; wherein Q is optionally substituted with one or more groups selected from oxo, -OR2, -R2, - SO_2R^2 , $-SO_2-N(R^2)_2$, $-N(R^2)_2$, $-N(R^2)-C(O)-R^2$, $-R^2-OH$, -CN, $-CO_2R^2$, $-C(O)-N(R^2)_2$, halo, -CFa:

each R2 is independently selected from H, or C1-C4 alkyl,; and wherein said alkyl, when not a substituent of Q, is optionally substituted with Q or -OR3; wherein when said R2 is an -OR3 substituted moiety, said R3 in -OR3 may not be -OR2 substituted;

B is absent, when present, is N(R2)-C(R3)2-C(O);

each x is independently 0 or 1;

each R3 is independently selected from H, Ht, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C₃-C₆ cycloalkyl or C₅-C₆ cycloalkenyl; wherein any member of said R³, except H, is optionally substituted with one or more substituents selected from -OR2, -C(O)-NH-R2, -S(O)n- $N(R^2)(R^2)$, $-N(R^2)_2$, $-N(R^2)$ -C(O)- $O(R^2)$, $-N(R^2)$ -C(O)- $N(R^2)$, $-N(R^2)$ -C(O)- (R^2) , $+N(R^2)$ - (R^2) - (R^2) , $+N(R^2)$ - (R^2) -(R $-CO_2R^2$, or NR²-C(O)-R²;

each n is independently 1 or 2;

G is H, when present, is selected from H, R or C, C, alkyl, or, when G is C, C, alkyl, G and R are optionally bound to one another either directly or through a C1-C3 linker to form a heterocyclic ring; or

when G is not present, the nitrogen to which G is attached is bound directly to the R2 group in OR² with the concomitant displacement of one ZM group from R²;

D is selected from Q; C1-C6 alkyl optionally substituted with one or more groups selected from C₃-C₆-eyeloalkyl, -OR², -S-Ht, -R³, -O-Q-or Q; C₂-C₄ alkenyl optionally substituted with one or more groups selected from OR2, S Ht, R2, O Q or Q; C1 C4

TO: USPTO

eyeloalkyl optionally substituted with or fused to Q; or C5 C6 eyeloalkenyl-optionally substituted with or fused to Q;

D' is selected from C₁.C₁₅ alkyl, C₂.C₁₅ alkenyl or C₂.C₁₅ alkynyl, each of which contains one or more substituents selected from oxo, [[halo,]] -CF3, -OCF3, -NO2, azido, -SH, $[-SR^3,]-N(R^3)-N(R^3)_2$, $-O-N(R^3)_2$, $-(R^3)N-O-(R^3)$, $[[-N(R^3)_{2*}]-CN$, $-CO_2R^3$, $-C(O)-N(R^3)_2$, -C(O $S(O)_n-N(R^3)_2$, $-N(R^3)-C(O)-R^3$, $-N(R^3)-C(O)-N(R^3)_2$, $-N(R^3)-C(O)-S(R^3)$, $-C(O)-R^3$, [[-S(O)_n-N(R)₂], $-N(R^3)-C(O)-R^3$] \mathbb{R}^3 , $\mathbb{I} - \mathbb{N}(\mathbb{R}^3) - \mathbb{S}(O)_n(\mathbb{R}^3)$, $-\mathbb{N}(\mathbb{R}^3) - \mathbb{S}(O)_n - \mathbb{N}(\mathbb{R}^3)_2$, $-\mathbb{S} - \mathbb{N}\mathbb{R}^3 - \mathbb{C}(O)\mathbb{R}^3$, $-\mathbb{C}(S)\mathbb{N}(\mathbb{R}^3)_2$, $-\mathbb{C}(S)\mathbb{R}^3$, $-\mathbb{N}\mathbb{R}^3 - \mathbb{N}\mathbb{R}^3$ $C(O)OR^3$, $-O-C(O)OR^3$, $-O-C(O)N(R^3)_2$, $-NR^3-C(S)R^3$, =N-OH, $=N-OR^3$, $=N-N(R^3)_2$, $-NR^3$, $=NNR^3C(O)N(R^3)_2, =NNR^3C(O)OR^3, =NNR^3S(O)_n-N(R^3)_2, -NR^3-C(S)OR^3, -NR^3-C(S)N(R^3)_2, -NR^3-C(S)OR^3, -NR^3-C(S)OR^$ $-NR^3-C[=N(R^3)]-N(R^3)_2, -N(R^3)-C[=N-NO_2]-N(R^3)_2, -N(R^3)-C[=N-NO_2]-OR^3, -N(R^3)-C[-N($ $CN] - OR^3, -N(R^3) - C[=N-CN] - (R^3)_2, -OC(O)R^3, -OC(S)R^3, -OC(O)N(R^3)_2, -C(O)N(R^3) - N(R^3)_2, -OC(O)R^3, -OC(O)R^3, -OC(O)N(R^3)_2, -OC(O)N(R^3)_2$ $-O-C(O)N(R^3)-N(R^3)_2,\ O-C(O)N(OR^3)(R^3),\ N(R^3)-N(R^3)-N(R^3)-OC(O)R^3,\ N(R^3)-OC(O)R^3,\ N(R^$ OC(O)R³, N(R³)-OC(O)R³, -OC(S)N(R³)₂, -OC(S)N(R³)(R³), or PO₃-R³; with the proviso that when R2 is H, E' is -SO2, G is H or alkyl, and when B is present or when B is not present and R⁴ is -C(O) , D' may not be G₁-C₁₅ alkyl substituted with one substituent selected from N(R³)₂, -SR3-or-S(O)n-R3, or substituted with two -N(R2)2 substituents;

E is selected from Ht; O-Ht; Ht-Ht; Ht fused with Ht; -O-R³; -N(R²)(R³); C₁-C₆ alkyl optionally substituted with one or more groups selected from R4 or Ht; C2-C6 alkenyl optionally substituted with one or more groups selected from R4 or Ht; C3-C6 saturated carbocycle optionally substituted with one or more groups selected from R⁴ or Ht; or C₅-C₆ unsaturated carbocycle optionally substituted with one or more groups selected from R4 or Ht;

each R⁴ is independently selected from -OR², -OR³, -SR², -SOR², -SO₂R², -CO₂R², - $C(O)-NHR^2$, $-C(O)-N(R^2)_2$, $-C(O)-NR^2(OR^2)$, $-S(O)_2-NHR^2$, halo, $-NR^2-C(O)-R^2$, $-N(R^2)_2$ or $-R^2-R^2$, and $-R^2-R^2$, $-R^2-R^2$, $-R^2-R^2$, $-R^2-R^2$, $-R^2-R^2$, and $-R^2-R^2$, $-R^2$, $-R^2-R^2$, $-R^2-R^2$, $-R^2-R^2$, $-R^2-R^2$, $-R^2-R^2$, $-R^2$, CN; and

each R7 is independently selected from hydrogen. [],

211751_1

wherein each M is independently selected from H, Li, Na, K, Mg, Ca, Ba, -N(R2)4, C1-C12alkyl, C2-C12-alkenyl, or R6; wherein 1 to 4 CH2 radicals of the alkyl-or alkenyl group, other than the CII2 that is bound to Z, is optionally replaced by a heteroatom-group selected from O, S(O), S(O)2, or N(R2); and wherein any hydrogen in said alkyl, alkenyl or R6 is optionally replaced with a substituent selected from oxo, $-OR^2$, $-R^2$, $N(R^2)_2$, $N(R^2)_3$, R^2OH , -CN, $-CO_2R^2$, $-C(\Theta)-N(R^2)_2$, $S(\Theta)_2-N(R^2)_2$, $N(R^2)-C(\Theta)-R^2$, $C(\Theta)-R^2$, $C(\Theta)_n-R^2$, C(S(O) (R2), halo, -CF1, or NO2;

650 6174053

M' is II, C1-C12 alkyl, C2-C12 alkenyl, or R6; wherein I to 4 -GH2 radicals of the alkyl or alkenyl group is optionally replaced by a heteroatom group selected from O, S, S(O), S(O)2, or N(R2); and wherein any hydrogen in said-alkyl, alkenyl or R6 is optionally replaced with a substituent selected from oxo, OR2, R2, N(R2)2, N(R2)3, R2OH, CN, CO2R2, C(O) N(R2)2, $-\frac{S(O)_2-N(\mathbb{R}^2)_2,-N(\mathbb{R}^2)-C(O)-\mathbb{R}_2,-C(O)\mathbb{R}^2,-S(O)_n-\mathbb{R}^2,-OCF_3,-S(O)_n-\mathbb{R}^6,-N(\mathbb{R}^2)-S(O)_2(\mathbb{R}^2),-S(O)_2(\mathbb{R}^2)_2,-S(O)_2(\mathbb{R}^2)_$ halo, -CF3, or-NO2;

Z is O. S. N(R2), or, when M is not present, H.

Y is P or S:

X is O or S:

R⁹ is C(R²)2, O or N(R²); and wherein when Y is S, Z is not S;

R⁶ is a 5-6 membered saturated, partially saturated or unsaturated earbocyclic or heterocyclic ring system, or an 8-10 membered saturated, partially saturated or unsaturated bicyclic-ring system; wherein any of said heterocyclic ring systems contains one or more hoterontoms selected from O, N, S, S(O), or N(R2); and wherein any of said ring systems optionally contains 1 to 4 substituents independently selected from OH, C1-G4-alkyl, -O-C1-G4 alkyl or O-C(O)-C1-C4 alkyl; and

each R5 is independently selected from hydrogen, C1-C8-alkyl, C2-C8 alkenyl, C2-C8 alkynyl or Ht, wherein any R5, except for hydrogen, is optionally substituted with CF3,-PO3R3, azido or halo.

2. (Currently amended) The compound according to claim 1, having the formula IA:

$$A \xrightarrow{(B)} \xrightarrow{N} \xrightarrow{C} \xrightarrow{H} \xrightarrow{C} \xrightarrow{H_2} \xrightarrow{D'} \xrightarrow{E'} \xrightarrow{E}$$

$$(G)_X \xrightarrow{OR} \xrightarrow{7} \xrightarrow{D'} \xrightarrow{OR} \xrightarrow{(IA)}$$

wherein:

D' is selected from C_{1-15} alkyl, C_{2-15} alkenyl or C_2 . C_{15} alkynyl; each of which is substituted with one to two –CN groups and each of which is optionally substituted with C_3 . C_8 eycloalkyl.

3. (Currently amended) The compound according to claim 2 wherein:

D' is selected from C_{1-15} alkyl or C_{2-15} alkenyl; each of which is substituted with one to two -CN groups and each of which is optionally substituted with C_3 Cycloalkyl.

4. (Currently amended) The compound according to claim 2 wherein:

D' is $C_2.C_{15}$ alkynyl which is substituted with one to two -CN groups and each of which is optionally substituted with $C_3.C_8$ cycloalkyl.

formula IB:

(Currently amended) The compound according to claim 1 having the 5.

$$A \longrightarrow (B)_{X} \longrightarrow N \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow H_{2} \longrightarrow N \longrightarrow SO_{2} \longrightarrow E$$

$$(G)_{X} \longrightarrow OR^{7} \longrightarrow D'$$

$$(IB)$$

wherein:

D' is selected from C1-C15 alkyl, C2-C15 alkenyl or C2-C15 alkynyl, each of which contains one or more substituents selected from oxo, [[halo,]] -CF3, -OCF3, -NO2, azido, -SH, $[[-SR^3,]] - N(R^3) - N(R^3)_2, -O-N(R^3)_2, -(R^3)N-O-(R^3), [[-N(R^3)_2,]] - CO_2R^3, -C(O)-N(R^3)_2, -S(O)_{n-1}(R^3)_2, -(R^3)N-O-(R^3)_2, -(R^3)_2, -(R^3)_2, -(R^3)_2, -(R^3)_2,$ $N(R^3)_2$, $-N(R^3)-C(O)-R^3$, $-N(R^3)-C(O)-N(R^3)_2$, $-N(R^3)-C(O)-S(R^3)$, $-C(O)-R^3$, [[-S(O)a-R³,|] $C(O)OR^3$, $-O-C(O)OR^3$, $-O-C(O)N(R^3)_2$, $-NR^3-C(S)R^3$, =N-OII, $=N-OR^3$, $=N-N(R^3)_2$, $=NR^3$, $=NNR^3C(O)N(R^3)_2, =NNR^3C(O)OR^3, =NNR^3S(O)_n-N(R^3)_2, -NR^3-C(S)OR^3, -NR^3-C(S)N(R^3)_2, -NR^3-C(S)OR^3, -NR^3-C(S)OR^$ $-NR^3-C[=N(R^3)]-N(R^3)_2, -N(R^3)-C[=N-NO_2]-N(R^3)_2, -N(R^3)-C[=N-NO_2]-OR^3, -N(R^3)-C[-NO_2]-OR^3, -N(R^3) CN]-OR^3$, $-N(R^3)-C[=N-CN]-(R^3)_2$, $-OC(O)R^3$, $-OC(S)R^3$, $-OC(O)N(R^3)_2$, $-C(O)N(R^3)-N(R^3)_2$, $-O-C(O)N(R^3)-N(R^3)_2$, $O-C(O)N(OR^3)(R^3)$, $N(R^3)-N(R^3)C(O)R^3$, $N(R^3)-OC(O)R^3$, $N(R^3)-OC(O)R^3$ $OC(O)R^3$, $N(R^3)$ - $OC(O)R^3$, $-OC(S)N(R^3)_2$, $-OC(S)N(R^3)(R^3)$, or PO_3 - R^3 ; with the proviso that when R2 is H, E' is SO2 , G is H or alkyl, and when B is present or when B is not present and R1 is -C(O), D' may not be C1 -C15 alkyl substituted with one substituent selected from -N(R3)27 -SR3 or -S(O), R3, or substituted with two -N(R3)2 substituents.

(Currently amended) The compound according to claim 5 wherein: 6.

D' is selected from C1.C15 alkyl or C2.C15 alkenyl, each of which contains one or more substituents selected from oxo, [[halo,]] -CF₃, -OCF₃, -NO₂, azido, -N(\mathbb{R}^3)-N(\mathbb{R}^3)₂, -O-N(\mathbb{R}^3)₂, $-(R^3)N-O-(R^3), [[-N(R^3)_{23}]]-N(R^3)-C(O)-N(R^3)_2, -N(R^3)-C(O)-S(R^3), -C(O)-R^3, [[-S(O)_n-R^3,]]$

 $C(O)OR^3$, $-O-C(O)OR^3$, $-O-C(O)N(R^3)_2$, $-NR^3-C(S)R^3$, =N-OH, $=N-OR^3$, $=N-N(R^3)_2$, $=NR^3$, $=NNR^3C(O)N(R^3)_2, =NNR^3C(O)OR^3, =NNR^3S(O)_n-N(R^3)_2, -NR^3-C(S)OR^3, -NR^3-C(S)N(R^3)_2, -NR^3-C(S$ $-NR^3-C[=N(R^3)]-N(R^3)_2, -N(R^3)-C[=N-NO_2]-N(R^3)_2, -N(R^3)-C[=N-NO_2]-OR^3, -N(R^3)-C[-NO_2]-OR^3, -N$ $CN]-OR^3, -N(R^3)-C[=N-CN]-(R^3)_2, -OC(O)R^3, -OC(S)R^3, -OC(O)N(R^3)_2, -C(O)N(R^3)-N(R^3)_2, -OC(O)R^3, -OC(O)N(R^3)_2, -O-C(O)N(R^3)-N(R^3)_2,\ O-C(O)N(OR^3)(R^3),\ N(R^3)-N(R^3)C(O)R^3,\ N(R^3)-OC(O)R^3,\ N(R^3)-OC(O)R$ $OC(O)R^3$, $N(R^3)$ - $OC(O)R^3$, - $OC(S)N(R^3)_2$, - $OC(S)N(R^3)(R^3)$, or PO_3 - R^3 ; C_2 - C_{15} alkynyl which contains one or more substituents selected from oxo, [[halo,]] -CF3, -OCF3, -NO2, azido, -SH, $[-SR^3,]-N(R^3)-N(R^3)_2$, $-O-N(R^3)_2$, $-(R^3)N-O-(R^3)$, $[-N(R^3)_2,]-CO_2R^3$, $-C(O)-N(R^3)_2$, -C(O)-N(C)-N(C $S(O)_n-N(R^3)_2$, $-N(R^3)-C(O)-R^3$, $-N(R^3)-C(O)-N(R^3)_2$, $-N(R^3)-C(O)-S(R^3)$, $-C(O)-R^3$, [[-S(O)_n-N(R³)-C(O)-S(R³)] $R^3,]] -N(R^3) - S(O)_n(R^3), -N(R^3) - S(O)_n - N(R^3)_2, -S - NR^3 - C(O)R^3, -C(S)N(R^3)_2, -C(S)R^3, -NR^3 - NR^3 - NR^3$ $C(O)OR^3$, $-O-C(O)OR^3$, $-O-C(O)N(R^3)_2$, $-NR^3-C(S)R^3$, =N-OII, $=N-OR^3$, $=N-N(R^3)_2$, $=NR^3$, $= NNR^3C(O)N(R^3)_2, = NNR^3C(O)OR^3, = NNR^3S(O)_n - N(R^3)_2, -NR^3 - C(S)OR^3, -NR^3 - C(S)N(R^3)_2, -NR^3 - C(S)OR^3, -NR^3 - C(S)OR$ $-NR^3-C[=N(R^3)]-N(R^3)_2, -N(R^3)-C[=N-NO_2]-N(R^3)_2, -N(R^3)-C[=N-NO_2]-OR^3, -N(R^3)-C[-NO_2]-OR^3, -N(R^3$ $CN] - OR^3, -N(R^3) - C[=N-CN] - (R^3)_2, -OC(O)R^3, -OC(S)R^3, -OC(O)N(R^3)_2, -C(O)N(R^3) - N(R^3)_2, -OC(O)R^3, -OC(O)R^3, -OC(O)N(R^3)_2, -OC(O)N(R^3)_2, -OC(O)R^3, -OC(O)N(R^3)_2, -OC$ $-O-C(O)N(R^3)-N(R^3)_2, O-C(O)N(OR^3)(R^3)-N(R^3)-N(R^3)-C(O)R^3, N(R^3)-OC(O)R^3, N(R^3)$ $OC(O)R^3$, $N(R^3)$ - $OC(O)R^3$, - $OC(S)N(R^3)_2$, - $OC(S)N(R^3)(R^3)$, or PO_3 - R^3 ; with the proviso-that when R3 is H, E' is SO2, G is H or alkyl, and when B is present or when B is not present and R+ is G(0), D' may not be C1 G15 alkyl substituted with one substituent selected from N(R3)2 or S(O), R3, or substituted with two N(R3)2 substituents.

(Currently amended) The compound according to claim 5 wherein: 7.

D' is selected from C₁.C₁₅ alkyl or C₂.C₁₅ alkenyl, each of which contains one or more substituents selected from -SH, [[-SR³,]] -CO₂R³, -C(O)-N(R³)₂, -S(O)_n-N(R³)₂ or -N(R³)-C(O)-R3; with the provise that when R3 is H, E1 is -8O2; G is H-or alkyl, and when B is-present or when B is not present and R1 is -C(O), D' may not be C1 C15 alkyl substituted with one substituent selected from -SR3.

- 8. (Canceled)
- 9. (Withdrawn) The compound according to any one of claims 1 to 7,

wherein at least one R^7 is selected from:

O, -(L)-lysine, -PO₃Na₂, ONMe₂, NHAc, -(L)-tyrosine,

ONH, -PO3Mg, -PO3(NH4)2, -CH2-OPO3Na2, ONH2, -(I_)-serine, -SO3Na2,

 $0 \longrightarrow N_{\text{Me}} \text{NMe}_{2, -SO_3\text{Mg}, -SO_3(\text{NH}_4)_2, -CH_2\text{-OSO}_3\text{Na}_2, -CH_2\text{-OSO}_3(\text{NH}_4)_2,}$

 H_2 , H_2 ,

NON, acetyl, Non,

(L)-aspartic acid, -(L)-γ-t-butyl-aspartic acid, , ,

-(L)-(L)-3-pyridylalanine, -(L)-histidine, -CHO, CF₃,

O H H O O NH₃ +

 $\begin{array}{c} O \\ P \\ O \\ O \end{array}, \begin{array}{c} O \\ P \\ O \\ O \end{array}, \begin{array}{c} O \\ P \\ O \\ O \end{array}, \begin{array}{c} O \\ P \\ O \\ O \end{array}, \begin{array}{c} O \\ P \\ O \\ O \end{array}, \begin{array}{c} O \\ P \\ O \\ O \end{array}, \begin{array}{c} O \\ P \\ O \\ O \end{array}$

211751_1

PO₃-spermine, PO₃-(spermidine)₂ or PO₃-(meglamine)₂.

10. (Currently amended) The compound according to claim [[8]] 1, having the formula II:

$$A \xrightarrow{N} \underbrace{\begin{array}{c} OR^7 & D' \\ N \\ N \\ N \end{array}}_{N-SO_2-E}$$
(11).

- 11. (Canceled)
- 12. (Original) The compound according to claim 10, wherein:

D' is -CH2-R''; and

R" is selected from

wherein m is 0 to 3.

13. (Original) The compound according to claim 10, wherein E is selected from

650 6174053

- (Withdrawn) The compound according to claim 10, wherein R7 is -PO32-14.
- (Previously presented) The compound according to claim 1, having the 15. formula III:

$$Ht - (CH_2)x \xrightarrow{O} N \xrightarrow{H} OR^7 \xrightarrow{D'} SO_2 - E$$

$$R^3 \qquad (III),$$

wherein x = 1.

(Withdrawn) The compound according to claim 1, having the formula 16.

IV:

(IV);

wherein R3' is selected from H, Ht, C1-C6 alkyl, C2-C6 alkenyl, C3-C6 cycloalkyl or C5-C6 cycloalkenyl; wherein any member of said R3, except H, is optionally substituted with one or $O(R^2)$, $-N(R^2)-C(O)-N(R^2)$, $-N(R^2)-C(O)-(R^2)$, $-N(R^2-OR^2)_2$, -C(O)-Ht, Ht, -CN, $-SR^2$, $-CO_2R^2$, $-CO_2$ or NR^2 -C(O)- R^2 .

650 6174053

(Currently amended) The compound according to claim 1, wherein said 17. compound is selected from any one of compound numbers: 1, 2, 3, 4, 5, 6, 22, 127, 203, 234, 277, 278, 279, 363, and 364:

wherein R⁷ is H; and

Compound	R'	R"	E
1	<u></u> -0	CN	OMe
2	<u>></u> 0	CN	OMe
3	<u>>-</u> 0	CN	OMe

211751_1

Compound	R'	R''	E
4	<u></u> -0	× CN	OMe
5	<u>>-</u> 0	× CN	NH ₂
6	<u>>-</u> 0	CN	
22	0 5	<u></u> ✓ CN	OMe
127	 0	<u>≻ CN</u>	NH ₂
203	<u>>-</u> 0	N ₃	ОМе
234	<u>→</u> •	O H ₂ N	ОМе
277	<u>></u> °	ж	ОМе
278	<u>></u> °	<u></u>	

TO: USPTO

Compound	<u>R'</u>	<u>È</u>	ū	R
363	MeO THE		<u>3</u>	ОМе
<u>364</u>	MeO THE	<u>\(\)</u>	3	Y ^{SO₂Me}

18-22. (Canceled)

(Currently amended) A composition comprising a compound according 23. to any one of claims 1-10 and 12-17 1-7, 10, 12, 13, 15, and 17 or a pharmaceutically acceptable salt thereof in a therapcutically effective amount an-amount sufficient to detectably inhibit aspartyl protease activity in a patient, and a pharmaceutically acceptable carrier.

NOV-27-2006 18;11 FROM:FISH & NEAVE

P.19/28

(Original) The composition according to claim 23, further comprising an 24. additional antiviral agent other than a compound of formula (f).

650 6174053

- (Original) The composition according to claim 23, wherein said 25. composition is formulated as a pharmaceutically acceptable, orally available tablet or capsule.
- (Currently amended) A method of treating an HIV virus infection in a 26. human comprising the step of administering to said human a composition according to any one of claims 23 to 25 claim 23.
- (Currently amended) The method according to claim 26, further 27. comprising the step of

administering to said patient an additional antiviral agent other than a compound of formula I, wherein said additional antiviral agent is administered prior to, simultaneously with or following administration of said composition.

- (New) A method of treating an HIV virus infection in a human 28. comprising the step of administering to said human a composition according to claim 24.
- (New) The method according to claim 28, further comprising the step of 29. administering to said patient a second additional antiviral agent other than a compound of formula I, wherein said second additional antiviral agent is administered prior to, simultaneously with or following administration of said composition.

TO: USPTO

- (New) A method of treating an HIV virus infection in a human 30. comprising the step of administering to said human a composition according to claim 25.
- (New) The method according to claim 30, further comprising the step of 31. administering to said patient an additional antiviral agent other than a compound of formula I, wherein said additional antiviral agent is administered prior to, simultaneously with or following administration of said composition.