CS F364 Design & Analysis of Algorithms

ANALYSIS – PROBLEMS – LOWER BOUNDS

Analysis of Problems

- Analysis of Comparison-Based Sorting
- Lower Bound for (Comparison-Based) Sorting
 - Performance of Sorting Algorithms
- Decision Tree Model
 - Lower Bound for Searching

QuickSort

Sundar B

ivietric Aigo.			
Worst Case Time	O(N*N)	O(NlogN)	O(N*N) w. low prob.
Average Case Time	O(N*N)	O(NlogN)	O(NlogN) w. high prob.
Performance on	Extremely good	Not good	Not good
small lists		γ Why?	
Space	O(1)	O(N)	O(logN)
Online/Offline	Online	Partly Online	Offline
Memory access	Seq. Read (find) Random Write (insert)	Seq. Read Seq. Write	Random Read Random Write

SORTING — COMPARATIVE PERFORMANCE OF ALGORTHMS

Insertion Sort | Merge Sort

SORTING - SORTING MODEL

- Is this the best we can do for Sorting?
 - Algorithm Complexity vs. Problem Complexity
- Caveats / Simplification:
 - 1. We are considering only comparison based sorting algorithms:

This is more of a restriction on the problem rather than on the solution – Why?

- 2. We are counting only the number of comparisons Are there scenarios where other operations dominate comparison operations?
- (Comparison) Sorting
 - Can be solved in polynomial time in particular in O(NlogN) time (worst case)
 - Witness: Merge Sort

SORTING - LOWER BOUND

- Is this the best we can do for Sorting?
 - Algorithm Complexity vs. Problem Complexity
- Sorting
 - Is there a lower bound (on *worst case time complexity*) for sorting?
 - oi.e. is there a (lower) limit for the time taken in the worst case for sorting a list of N elements using any sorting algorithm (that must compare values)?

SORTING - LOWER BOUND - EXAMPLE

The problem of sorting can be depicted as a a Decision Tree: (given a list of 3 unique values)

Internal Nodes (Decision Nodes)

External Nodes (Results)

How many decisions are necessary?

6 permutations of input values

SORTING - LOWER BOUND - GENERAL SCENARIO

Decision Tree for Sorting (a list of N unique values)

Internal Nodes (Decision Nodes)

External Nodes (Results)

How many decisions are necessary?

N! permutations of input values

3/17/2015

Sundar B

CSIS, BITS, Pilan

SORTING - LOWER BOUND

- Minimum number of decisions necessary
 - is the same as the minimum depth of a (binary) tree with N! nodes.
- Depth of a tree is the length of the longest path from root to an external node:
 - the number of nodes can grow geometrically
 - in the best case at every level there are two branches
 - oi.e. # nodes at each level is the sequence: 1, 2, 4, ...
- Thus if the total number of nodes in the tree is M the longest path would be at least log₂M
 - In our case, the depth is log₂(N!)
 - and so the minimum number of decisions is log(N!)

o log(N!) can be simplified by Stirling's approximation:

$$n! = (\sqrt{(2\pi n)})(n/e)^n(1+\Theta(1/n))$$

i.e. log(n!) = (1/2)log(n) + nlog(n) - nlog(e) + O(1)

- This is the minimum number of comparisons required for sorting a list of N items
 - i.e. this is the lower bound on the (worst case) number of comparisons for sorting that requires comparison.

SORTING ALGORITHMS

- Question:
 - How close are the actual algorithms to the lower bound?
- Insertion Sorting (if binary search is used for location):
 - Number of comparisons in the worst case is given by
 - $\Sigma_{i=1 \text{ to } n-1} 2*\log_2 i = 2*\log (n-1)!$
 - Exercise: Plot this against the lower bound.

SORTING ALGORITHMS

- Question:
 - How close are the actual algorithms to the lower bound?
- Merge Sorting (bottom up implementation):
 - In step j (= 0 to ceil(log₂N))
 - o for each i (= 0 to ceil(N/k)-1)
 - lists A[i .. i+k-1] and A[i+k .. i+2*k-1] are merged, where k=2^j
 - Each merger of lists of size m each requires 2*m 1 comparisons:
 - Number of comparisons:
 - $o \Sigma_{j=1 \text{ to logN}} (N/k)*(k-1)$
 - Exercise: Simplify the expressions and plot it against the lower bound.

SEARCHING - LOWER BOUND

• Exercise:

- Can this technique be applied for searching?
 - oi.e. Can you use a decision tree to carry out analysis of searching algorithms?
 - a) assuming that the list is sorted and
 - b) not assuming that that list is sorted