Tratabilidade

Prof^a Jerusa Marchi

Departamento de Informática e Estatística Universidade Federal de Santa Catarina e-mail: jerusa.marchi@ufsc.br

Teoria da Computação

- Não Computável
- Computável
 - Indecidível
 - Decidível
 - Intratável
 - Tratável

Dentre os problemas decidíveis, quais podem ser computados por Máquinas de Turing que rodam em *tempo polinomial* em relação ao tamanho da entrada

Tratabilidade

Considerações

- Os problemas solúveis em tempo polinomial em um computador típico são exatamente os mesmos problemas solúveis em tempo polinomial em uma Máquina de Turing
- A separação entre problemas que podem ser solucionados em tempo polinomial daqueles que requerem tempo exponencial ou mais é fundamental
 - problemas práticos identificados como requerendo tempo polinomial são quase sempre solúveis em um montante de tempo tolerável
 - Apenas instâncias pequenas dos problemas que requerem tempo exponencial podem ser resolvidas em tempo razoável

- Como verificar o desempenho?
 - A posteriori: envolve a execução propriamente dita do algoritmo, medindo-se o tempo de execução.
 - é dependente da arquitetura da máquina, da linguagem de programação, do código gerado pelo compilador
 - as medidas são feitas utilizando benchmarks e posteriormente condensadas através de análise estatística dos dados
 - A priori: feita de forma analítica (Análise de Algoritmos)
 - número de instruções executadas (passos do algoritmo)
 - entrada (há uma relação direta entre entrada e desempenho algoritmos de ordenação, p.e)

- Por que verificar o desempenho?
 - Dado um algoritmo A com complexidade quadrática. Como ele irá se comportar para uma entrada de tamanho 10^9 ?
 - Dados dois algoritmos A e B, que resolvem o mesmo problema computacional, como podemos decidir qual é o mais eficiente?
 - Dado uma algoritmo A, que resolve um problema Π , A é o melhor algoritmo para solucionar Π ?
 - Um algoritmo é ótimo quando seu custo de execução é igual ao menor custo possível para solucionar um problema

	Tempo de processamento			
tamanho da entrada	Alg. 1	Alg.2		
n	1 s	1 s		
2n	2 s	4s		
3n	3 s	9 s		
10n	10 s	100s (1.6min)		
100n	100s (1.6min)	10^4 s $(2,8h)$		
	linear	n^2		

- Análise de Algoritmos é o estudo teórico do desempenho de programas e do uso de recursos computacionais
 - Tempo
 - Espaço
- Tempo de execução de um algoritmo visto como uma função (T(n)) do tamanho n da sua entrada
- Além disso, não estamos interessados em analisar detalhadamente o algoritmo, queremos sim uma estimativa do esforço de computação quando a entrada tende ao infinito
 - Consideramos tempos constantes
 - Desconsideramos constantes multiplicadoras e termos de mais baixa ordem
- Essa taxa de crescimento do tempo de execução em função do tamanho da entrada constitui a Complexidade do algoritmo

- A diferença no desempenho de algoritmos é muito mais drástica do que a diferença de processamento de computadores
- Suponha dois computadores
 - C_1 : 10 bilhões de instruções/seg (10¹⁰)
 - C_2 : 10 milhões de instruções/seg (10⁷)
- Suponha dois algoritmos
 - Algoritmo A_1 $T_{A_1}(n) = 2n^2$
 - Algoritmo A_2 $T_{A_2}(n) = 50n \lg n$
- Suponha uma entrada n = 10 milhões de números (10^7)

 $ightharpoonup C_1$ executando A_1 :

$$Tempo = \frac{T_{A_1}(n)}{velocidade} = \frac{2(10^7)^2 \text{instruções}}{10^{10} \text{inst/seg}} = 20.000 \text{s} = 5,5 \text{h}$$

ullet C_2 executando A_2 :

$$Tempo = \frac{T_{A_2}(n)}{velocidade} = \frac{50 \times 10^7 \mathrm{lg} 10^7 \mathrm{instruções}}{10^7 \mathrm{inst/seg}} = 1162 \mathrm{s} = 19,36 \mathrm{min}$$

- A análise pode ser feita considerando:
 - Melhor Caso
 - Poucos algoritmos funcionam "sempre"no melhor caso
 - Caso Médio
 - depende de uma distribuição de probabilidade (difícil de se obter!)
 - Pior Caso
 - Mais fácil de se obter

- Encontrar uma função que descreve o comportamento do algoritmo: Medida de Complexidade
- A complexidade de tempo não representa tempo diretamente, mas o número de vezes que determinadas operações consideradas relevantes são executadas
 - Depende do tamanho da entrada (elementos de um vetor, total de bits utilizados para representar um número, número de vértices e arestas em um grafo,...)

- Estamos interessados no comportamento do algoritmo para entradas grandes: comportamento assintótico
 - Notação Assintótica

Notação Assintótica

- As notações que utilizaremos para descrever o tempo de execução assintótico de um algoritmo são definidas em termos das funções, cujos domínios são conjuntos dos números naturais $\mathbb{N} = \{0, 1, 2, \cdots\}$
- Contudo
 - algumas vezes são feitos abusos de notação (dominío dos reais, p.ex.)
 - estas notações são aplicadas à funções, portanto algumas abstrações precisam ser feitas

Notação O

- Denota limite assintótico superior
- Consiste em determinar uma função que, dada uma constante multiplicativa, domina assintoticamente um conjunto de funções
- Dada uma função g(n), denota-se O(g(n)) o conjunto de funções

 $O(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais que}$ $0 \le f(n) \le cg(n) \text{ para todo } n \ge n_0 \}$

Notação O

- Apesar de O(g(n)) ser um conjunto, tipicamente escrevemos f(n) = O(g(n)) ao invés de $f(n) \in O(g(n))$
- **•** Exemplo 1: $f(n) = (n+1)^2 \notin O(n^2)$

- $f(n) = O(n^2) \text{ com } c = 2 \text{ e } n_0 = 3$
- $f(n) = O(n^2) \text{ com } c = 4 \text{ e } n_0 = 1$

Notação O

• Exemplo 2: $f(n) = 3n^3 + 2n^2 + n$ é $O(n^3)$

$$n$$
 $f(n)$ $g(n)$ $4g(n)$ $5g(n)$ 0 0 0 0 1 6 1 4 5 2 34 8 32 40 3 102 27 108 135 4 228 64 256 320

•
$$f(n) = O(n^3) \text{ com } c = 4 \text{ e } n_0 = 3$$

•
$$f(n) = O(n^2) \text{ com } c = 5 \text{ e } n_0 = 2$$

Notação Ω

- Denota limite assintótico inferior
- Dada uma função g(n), denota-se $\Omega(g(n))$ o conjunto de funções

 $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais que}$ $0 \le cg(n) \le f(n) \text{ para todo } n \ge n_0 \}$

Notação Ω

- ullet Exemplo: $f(n)=2n^2+4n+5$ é $\Omega(n^2)$
- Basta assumir c = 2 e $n_0 = 0$

Notação ⊖

- Denota limite assintótico firme
- Dada uma função g(n), denota-se $\Theta(g(n))$ o conjunto de funções

 $\Theta(g(n))=\{f(n): \text{ existem constantes positivas } c_1,c_2 \text{ e } n_0 \text{ tais que}$ $0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ para todo } n \geq n_0 \}$

Notação ⊖

• Exemplo 1: seja $f(n) = \frac{3n^2}{2} - 2n$, $f(n) \in \Theta(n^2)$, pois:

•
$$f(n) = \Theta(n^2) \text{ com } c_1 = 1, c_2 = 2 \text{ e } n_0 = 4$$

Notação Assintótica

- **Observe que para** $f(n) = 32n^2 + 17n + 32$
 - f(n) é $O(n^2)$, $O(n^3)$, $\Omega(n^2)$, $\Omega(n)$ e $\Theta(n^2)$
 - f(n) NÃO é O(n), $\Omega(n^3)$, $\Theta(n)$, ou $\Theta(n^3)$

Teorema: Para quaisquer duas funções f(n) e g(n), tem-se $f(n) = \Theta(g(n))$ se e somente se f(n) = O(g(n)) e $f(n) = \Omega(g(n))$.

Notação Assintótica

- Há ainda outras duas notações para denotar limites que não são assintoticamente justos
 - $2n^2 = O(n^2)$ é assintoticamente justo, enquanto que $2n = O(n^2)$ não é
 - $2n = \Omega(n)$ é assintoticamente justo, enquanto que $2n^2 = \Omega(n)$ não é

Notação o

Define-se o(g(n)) como o conjunto

$$o(g(n))=\{f(n): ext{ para qualquer constante positiva } c>0,$$
 existe uma constante $n_0>0$ tal que
$$0\leq f(n)< cg(n) ext{ para todo } n\geq n_0\}$$

• Exemplo: $2n = o(n^2)$ mas $2n^2 \neq o(n^2)$

Notação ω

Define-se $\omega(g(n))$ como o conjunto

 $\omega(g(n))=\{f(n): ext{ para qualquer constante positiva } c>0,$ existe uma constante $n_0>0$ tal que $0\leq cg(n)< f(n) ext{ para todo } n\geq n_0\}$

• Exemplo: $\frac{n^2}{2} = \omega(n)$ mas $\frac{n^2}{2} \neq \omega(n^2)$

Propriedades

Transitividade

- Se f = O(g) e g = O(h), então f = O(h)
- Se $f = \Omega(g)$ e $g = \Omega(h)$, então $f = \Omega(h)$
- Se $f = \Theta(g)$ e $g = \Theta(h)$, então $f = \Theta(h)$

Reflexividade

- $f = \Theta(f)$
- \bullet f = O(f)
- $f = \Omega(f)$

Simetria

•
$$f = \Theta(g)$$
 sse $g = \Theta(f)$

Simetria Transposta

•
$$f = O(g)$$
 sse $g = \Omega(f)$

•
$$f = o(g)$$
 sse $g = \omega(f)$

Comportamento Assintótico

- Complexidade constante f(n) = O(1)
 - O uso destes algoritmos independe do tamanho da entrada e as instruções são executadas um número fixo de vezes
- Complexidade logarítmica $f(n) = O(\log n)$
 - Ocorre tipicamente em algoritmos que resolvem um problema transformando-o em problemas menores
 - \blacksquare Ex. $n = 1000, lg \ n = 10$
- Complexidade linear f(n) = O(n)
 - Em geral, um pequeno trabalho é realizado sobre cada um dos elementos de entrada

Comportamento Assintótico

- **●** Complexidade $n \log n f(n) = O(n \log n)$
 - Complexidade típica de algoritmos que quebram o problema em problemas menores, resolvendo-os e depois juntando as soluções
- Complexidade quadrática $f(n) = O(n^2)$
 - típica de algoritmos que processa elementos aos pares (2 loops aninhados)
- Complexidade cúbica $f(n) = O(n^3)$
 - Usados apenas para resolver pequenas instâncias (3 loops aninhados)

Comportamento Assintótico

- Complexidade exponencial $f(n) = O(2^n)$
 - Busca exaustiva (força bruta). Não úteis na prática
- Complexidade fatorial f(n) = O(n!)
 - Também dito exponencial apesar de crescer mais rapidamente

Complexidade de Tempo

função	n = 10	n=20	n = 30	n=40	n = 50	n = 60
n	.00001 s	.00002 s	.00003 s	.00004 s	.00005 s	.00006 s
n^2	.0001 s	.0004 s	.0009 s	.0016 s	.0025 s	.0036 s
n^3	.001 s	.008 s	.027 s	.064 s	.125 s	.216 s
n^5	.1s	3.2 s	24.3s	1.7	5.2	13.0
				min	min	min
2^n	.001s	1.0s	17.9	12.7	35.7	366
			min	dias	anos	séculos
3^n	.059 s	58	6.5	3855	2×10^8	1.3×10^{13}
		min	anos	séculos	séculos	séculos

Complexidade de Tempo

- A separação entre algoritmos eficientes em tempo polinomial e algoritmos ineficientes em tempo exponencial admite exceções quando as instâncias do problema de interesse são limitadas
 - No quadro, instâncias onde $n \le 20$ são executadas mais rápido por algoritmos em tempo exponencial (2^n) do que por um algoritmo em tempo polinomial (n^5)
- Porém, apenas alguns poucos algoritmos exponenciais são úteis na prática

- Considere a linguagem $L = \{0^n 1^n \mid n \ge 0\}$
- Seja MT M_1 que decide L, M_1 opera da seguinte forma:
 - $M_1 =$ sobre a entrada w:
 - 1. Faça uma varredura na fita e **rejeite** se algum 0 for encontrado à direita de algum 1
 - 2.Repita
 - 2.1. Faça uma varredura na fita cortanto um único 0 e um único 1
 - 3. Se sobrarem 0's ou 1's rejeite. Caso contrário, aceite.
- Qual é a complexidade de tempo deste algoritmo?

 $M_1 =$ sobre a entrada w:

2(n+1) 1. Faça uma varredura na fita e rejeite se algum 0 for encontrado à direita de algum 1

n/2 2.Repita

2(n/2) 2.1. Faça uma varredura na fita cortanto um único 0 e um único 1

(n/2) + 1 3. Se sobrarem 0's ou 1's rejeite. Caso contrário, aceite.

• Complexidade: $T(n)n^2/2 + 5n/2 + 3 = O(n^2)$

lacksquare Considere agora M_2 que opera da seguinte forma:

$$M_2 =$$
 sobre a entrada w :

$$2(n+1) = O(n)$$
 1. Faça uma varredura na fita e rejeite se algum 0 for encontrado à direita de algum 1

$$lognO(lg n)$$
 2.Repita enquanto houverem 0's e 1's na fita

$$2(n+1) = O(n)$$
 2.1. Faça uma varredura na fita, verificando se o número to de símbolos remanecentes é par ou ímpar. Se ímpar, rejeit

$$2(n+1) = O(n)$$
 2.2. Faça uma varredura cortando alternadamente um 0 sin outro não. Faça o mesmo com 1 's.

$$n+1=O(n)$$
 2.3. Se nenhum 0 e nenhum 1 permanecerem, aceite. Caso contrário, rejeite

Complexidade: $O(n) + O(n \log n) = O(n \log n)$

• Considere agora a seguinte MT multifitas M_3 que decide $L = \{0^n 1^n \mid n \ge 0\}$

 $M_3 =$ sobre a entrada w:

- 1.Faça uma varredura na fita e **rejeite** se algum 0 for encontrado à direita de algum 1
- 2. Faça uma varredura nos 0's da 1^a fita, copiando-os para a 2^a fita
- 3. Faça uma varredura nos 1s até o final da entrada, cortando o 0 correspondente na 2^a fita
- 4. Se sobrarem 0's ou 1's rejeite. Caso contrário, aceite.
- **ightharpoonup** Complexidade : O(n)

Complexidade de Tempo

- Seja T(n) uma função, onde $T(n) \ge n$. Então, toda MT multifita de tempo T(n) tem uma MT fita única equivalente de tempo $O(T^2(n))$.
- **Prova**: Seja M uma MT de k fitas que roda em tempo T(n). A máquina S opera simulando M copiando inicialmente os conteúdos das k fitas. Para cada passo de M, S faz duas passagens sobre a porção ativa de sua fita (uma para leitura da posição dos cabeçotes e outra para atualização). O comprimento da porção ativa da fita de S determina quanto tempo S leva para varrê-la. Este comprimento é dado pela soma dos comprimentos das porções ativas das k fitas de M. Cada uma tem no máximo T(n) células. Assim, S usa k*T(n)passos para varrer a sua entrada, ou seja O(T(n)) passos. Para cada passo de M, S realiza duas varreduras e até k deslocamentos para a direita. Cada uma usa O(T(n)); logo o tempo total para S simular um dos passos de $M \in O(T(n))$. Como M roda em T(n)passos, S toma $T(n) * O(T(n)) = O(T^2(n))$ passos.

Complexidade de Tempo

- Seja T(n) uma função, onde $T(n) \ge n$. Então, para toda MT não determinística de uma única fita de tempo T(n) exitem uma MT determinística de fita única equivalente de tempo $2^{O(T(n))}$.
- **Prova**: Seja N uma MT não determinística rodando em tempo T(n). Uma máquina não determinística decide quando algum de seus ramos aceita ou todos os seus ramos falham. Sobre uma entrada de tamanho n cada ramo da árvore de computação de N tem um comprimento no máximo T(n). Todo nó na árvore pode ter no máximo b filhos, onde b é o número máximo de escolhas dado pela função de transição de N. Portanto o número máximo de folhas da árvore é $b^{T(n)}$. Para simular N, a máquina determinística multifitas D, examina os caminhos da árvore de N, sempre partindo da raíz. Ou seja, ela examina, no máximo $b^{T(n)}$ caminhos onde cada caminho tem tamanho T(n). Assim, o tempo de execução de D é de $O(T(n)b^{T(n)}) = 2^{O(T(n))}$.

Problemas de Decisão

- Um problema é dito tratável se é decidível por Máquinas de Turing em tempo polinomial em relação ao tamanho da entrada
 - Como vimos, MT decidem linguagens respondendo sim ou não
 - Vimos também que todo problema computacional pode ser visto como um problema de linguagem
 - É preciso então, dado um problema, modificar a sua formulação para se torne um Problema de Decisão

Problema de Decisão

- Um problema de decisão é um problema em que pode-se responder sim ou não
- Problemas computacionais podem ser modificados para problemas de decisão

Problema de Decisão

Exemplos:

- SAT dado um conjunto de cláusulas $W = \{C_1, ..., C_n\}$ onde C_i é uma disjunção de literais, há alguma atribuição de valores verdade que tornem a fórmula verdadeira?
- Problema da alcaçabilidade Dado um grafo orientado $G \subseteq V \times V$, onde $V = \{v_1, ... v_n\}$ é um conjunto finito, e dois vértices v_i e $v_j \in V$, existe um caminho de v_i para v_j ?

Problema de Decisão

Exemplos:

- Caminho Hamiltoniano Dado um grafo G, existe algum caminho que passa por cada um dos vértices de G exatamente uma vez?
- Problema do Caixeiro Viajante (e problemas de otimização em geral) - fornece-se um limite para a função custo
 - ▶ Dado um grafo G com $n \ge 2$ vértices e uma matriz $n \times n$ de adjacências representando a distância entre cidades e um inteiro L, há alguma permutação π de $\{1, 2, ..., n\}$ tal que custo $(\pi) \le L$?

lacksquare Classe $\mathcal P$

- Uma máquina de Turing $M=(K,\Sigma,\Gamma,\delta,q_0,q_{accept},q_{reject})$ é dita polinomialmente limitada se há um polinômio p(n) tal que, para qualquer entrada x, não há configuração C tal que $(q_0,\rhd x)\vdash_M^{p(|x|)+1}C$
 - Ou seja, a máquina sempre pára após p(n) passos, onde n é o comprimento da cadeia de entrada

- Exemplos
 - Todas as Linguagens Regulares
 - Todas as Linguagens Livres de Contexto
 - 2SAT

- Exemplos Árvore Geradora Mínima
 - Deseja-se conectar um conjunto de n localidades através de uma rede de comunicação. Qual é a forma mais econômica (menor quantidade de cabos) para conectar as n localidades?
 - Modelar as n localidades como um grafo não directionado G=(V,E), onde os vértices representam as localidades e as arestas assumem um valor p(u,v) que representa o custo (quantidade de cabos) para realizar a conexão
 - Encontrar um subconjunto $T \subseteq E$ que conecta todos os vértices de G e cujo custo total

$$p(T) = \sum_{(u,v)\in T} p(u,v)$$

seja mínimo

- Exemplos Árvore Geradora Mínima
 - A definição do subconjunto de arestas permite a obtenção um grafo G'=(V,T)
 - G' será acíclico e T forma uma árvore chamada de árvore geradora de G.
 - Algoritmo simples para resolução: Algoritmo de Kruskal
 - Utiliza uma estratégia gulosa
 - Uma solução ótima globalmente pode ser obtida fazendo escolhas localmente ótimas
 - Essa abordagem é utilizada em áreas como Projeto e Análise de Algoritmos e Inteligência Artificial para resolver problemas complexos de forma aproximada

- Exemplos Árvore Geradora Mínima (Algoritmo de Kruskal)
 - Ideia: Ver cada vértice como uma árvore e ligar árvores com arestas leves, até que haja somente uma árvore (a árvore geradora mínima)
 - Uma aresta é uma aresta leve se seu peso for menor do que o de qualquer outra aresta

- Exemplos Árvore Geradora Mínima (Algoritmo de Kruskal)
 - Algoritmo
 - Ordena as arestas por peso
 - Seleciona sempre a aresta com menor peso
 - ullet O conjunto A formado pelas arestas escolhidas é uma floresta
 - A idéia do algoritmo é escolher arestas leves que conectem árvores na floresta
 - ullet Inicialmente, cada vértice v é uma árvore
 - Complexidade do algoritmo $O(E \ lg \ V)$ em uma implementação eficiente. (Heap Binário)

Exemplos - Árvore Geradora Mínima (Algoritmo de Kruskal)

- Exemplos Árvore Geradora Mínima (Algoritmo de Kruskal)
 - Para tornar o problema da AGM um problema de decisão:
 - Dado um grafo G e um limite W, G possui uma árvore geradora de peso W ou menor?
 - Transformando as entradas para computação em MT
 - $\Sigma = \{0, 1, (,), ,\}$
 - Atribua valores de 1 a m para os vértices
 - Inicie a codificação com o valor de m em binário e o limite W em binário, separados por vírgula
 - Se há uma aresta que conecta dois nodos v_i e v_j com peso w, coloque (i, j, w) em binário no código

- Exemplos Árvore Geradora Mínima (Algoritmo de Kruskal)
 - Considerando W = 40

```
100, 101000(1, 10, 1111)(1, 11, 1010)(10, 11, 1100)
(10, 100, 10100)(11, 100, 10010)
```

- Em uma Máquina de Turing multifitas
 - uma fita para armazenar a entrada
 - uma fita para armazenar os nós e a qual árvore eles pertencem (tabela)
 - uma fita para armazenar a soma dos pesos já computados
 - uma fita para armazenar a última aresta leve encontrada
 - ullet uma fita para armazenar os nós i e j conectados pela aresta leve
 - uma fita para auxiliar na soma

- Exemplos Árvore Geradora Mínima (Algoritmo de Kruskal)
 - Funcionamento da MT multifitas
 - ullet Copia w para a fita 1
 - Constrói a tabela de nós e árvores na fita 2
 - Busca a aresta leve e grava na fita 4, colocando os vértices i e j na fita 5
 - Soma fita 4 com a fita 3, armazenando na fita 6 (compara o valor com o valor de W na fita 1. Se maior, pára e rejeita).
 - Copia fita 6 para fita 3
 - atualiza fita 2 fazendo com que todos os vértices pertencentes a árvore a qual i pertence, pertençam a árvore a qual o vértice j pertence. Se todos pertencerem a uma mesma árvore, pára e aceita.

- Exemplos Árvore Geradora Mínima (Algoritmo de Kruskal)
 - A execução desta codificação em uma máquina de Turing multifitas toma $O(n^2)$
 - Tudo o que uma MT multifitas processa em s passos, uma MT fita única processa em s^2 passos
 - Logo, uma MT fita única processa instâncias de problema da AGM em $O((n^2)^2) = O(n^4)$, ou seja em tempo polinomial.

- lacksquare Propriedade
 - ullet A classe $\mathcal P$ é fechada com relação à operação de complementação
 - Se uma linguagem L é decidível por uma máquina de Turing M polinomialmente limitada, então seu complemento é decidido pela versão de M que inverte as saídas q_{accept} e q_{reject}
 - Obviamente o limite polinomial não é afetado por essa inversão

- Uma classe fundamental para o estudo da tratabilidade de problemas é aquela formada por problemas cuja solução pode ser obtida em tempo polinomial por uma MT não determinística
 - Será que tudo o que pode ser computado em tempo polinomial por uma MT não determinística pode ser computado em tempo polinomial por uma MT determinística, talvez com um polinômio de mais alta ordem?
 - Outras extensões de MT comprovadamente podem
- Esta classe é de especial interesse por conter uma infinidade de problemas práticos para os quais, até o momento não se encontrou solução em tempo polinomial

- Classe \mathcal{NP}
 - Uma máquina de Turing não Determinística $M=(K,\Sigma,\Gamma,\delta,q_0,q_{accept},q_{reject}) \text{ \'e dita polinomialmente limitada se há um polinômio } p(n) \text{ tal que, para qualquer entrada } x, não há configuração <math>C$ tal que $(q_0,\rhd x)\vdash^{p(|x|)+1}_M C$
 - Ou seja, nenhuma computação nessa máquina dura mais do que um número polinomial de passos

- Recordando: Uma MT não determinística decide uma linguagem L se:
 - Para cada sentença de entrada que não pertença à linguagem L, todas as computações possíveis da MT devem rejeitar tal entrada
 - Para cada sentença de entrada pertencente a L, exige-se que haja pelo menos uma computação que aceite tal entrada
- a computação não deteminística forma uma árvore, onde:
 - os vértices representam configurações e arestas representam os passos
 - escolhas não deteminísticas representam mais de uma aresta partindo de um vértice
 - a altura da árvore corresponde ao tempo (número de passos)

Toda MT determinística é um caso particular de uma MT não determinística que não possui múltiplas escolhas em seus movimentos, portanto

$$\mathcal{P} \subseteq \mathcal{NP}$$

- Contudo, aparentemente \mathcal{NP} contém muitos problemas que não estão em \mathcal{P}
 - Uma MT não determinística executando em tempo polinomial tem a habilidade de chutar um número exponencial de possíveis soluções para um problema e verificar tais soluções em "paralelo"

- ullet O que caracteriza a classe \mathcal{NP} é que uma solução para um problema em \mathcal{NP} pode ser verificada em tempo polinomial ao tamanho da entrada
 - a cadeia que apresenta esta propriedade denomina-se certificado
 - ullet somente os problemas \mathcal{NP} possuem certificados

- Definição alternativa (baseada na ideia de certificados):
 - Seja Σ um alfabeto e ";" um símbolo que não pertence a Σ . Seja $L' \subseteq \Sigma^*; \Sigma^*$. Dizemos que L' é **polinomialmente equilibrada** se nela existe um polinômio p(n), tal que, se $x; y \in L'$, então $|y| \leq p(|x|)$
 - Seja $L\subseteq \Sigma^*$ uma linguagem onde ";" $\not\in \Sigma$ e $|\Sigma|\geq 2$. Então, $L\in \mathcal{NP}$ se e somente se existir uma linguagem polinomialmente equilibrada $L'\subseteq \Sigma^*; \Sigma^*$, tal que $L'\in \mathcal{P}$ e $L=\{x: \text{há um } y\in \Sigma^*, \text{tal que } x; y\in L'\}$

- Exemplo de certificado: Números Compostos
 - Um número é dito composto quando pode ser representado pelo produto de dois números naturais, maiores do que 1. São compostos: 4, 6, 8, 10, 12
 - Dado um número natural, por exemplo 4.294.967.297 ele é composto?
 - não há um modo claro e eficiente de responder a esta pergunta, contudo, considerando um conjunto C de números compostos, cada número em C tem um certificado
 - O certificado para 4.294.967.297 é o par 6.700.417 e 641
 - m extstyle extstyle
 - Curiosidade: a fatoração desde número foi descoberta por Leornard Euler em 1732, 92 anos depois de Pierre de Fermat ter conjecturado que não existiria tal fatoração

- Exemplo: Problema da Satisfazibilidade Booleana
 - Para demonstrar que o SAT pertence a \mathcal{NP} , deve-se projetar uma MT não determinística M que decide em tempo polinomial quaisquer codificações satisfazíveis de fórmulas booleanas em CNF
 - M opera da seguinte forma:
 - Dada a entrada w verifica se w codifica uma fórmula booleana em CNF, se não rejeita a entrada, nesta verificação, M também conta o número de variáveis, armazenando-as em uma 2^a fita
 - Ao termino desse passo, a 2^a fita de M contém a cadeia $\triangleright I^n$ onde n é o número de variáveis

- Exemplo: Problema da Satisfazibilidade Booleana
 - M entra em uma fase não determinística, substituindo os símbolos I da 2^a fita por valores verdade \top e \bot . Para isto, basta adicionar um novo estado q a K em M e incluir novas transições $(q,I,q,\top), (q,I,q,\bot), (q,\top,q,\rightarrow), (q,\bot,q,\rightarrow), (q,\sqcup,q',\sqcup)$ onde q' é o estado a partir do qual a computação prosseguirá
 - Em sua fase final, M opera de modo determinístico, interpretando a cadeia sobre $\{\top,\bot\}^n$ contida da 2^a fita, verificando se cada cláusula da fórmula contém um literal que é \top
 - Se todas as cláusulas apresentam um literal \top , M aceita a entrada, caso contrário, rejeita.

- Exemplo: Problema da Caixeiro Viajante
 - Assim com o problema SAT, pode-se "testar" em paralelo todas as permutações possíveis, em tempo polinomial
- m Diversos outros problemas aparente difíceis também podem ser facilmente solucionados com MT não deteminísticas e portanto pertencem a classe \mathcal{NP}

- Conforme visto, é possível simular uma MT não determinística em uma MT determinística, contudo essa simulação recorre ao exame exaustivo de todas as possíveis computações
- Ou seja, é necessário um número de passos exponencial em n em uma máquina determinística para simular uma computação de n passos de uma máquina não determinística
- lacktriangle A classe \mathcal{NP} não é fechada para o complemento.

• Classe \mathcal{EXP}

- Uma máquina de Turing $M=(K,\Sigma,\Gamma,\delta,q_0,q_{accept},q_{reject})$ é dita exponencialmente limitada se há um polinômio p(n) tal que, para qualquer entrada x, não há configuração C tal que $(q_0,\rhd x)\vdash_M^{2^{p(|x|)}+1}C$
 - Ou seja, tal máquina sempre pára após, no máximo, um número exponencial de passos

$$\mathcal{P} \subseteq \mathcal{NP} \subseteq \mathcal{EXP}$$

- Considerações
 - Determinar se $\mathcal{P} = \mathcal{NP}$ é um problema em aberto
 - Determinar se $\mathcal{NP} = \mathcal{EXP}$ é um problema em aberto
 - O que se sabe, seguramente, é que $\mathcal{P} \subset \mathcal{EXP}$
 - Suspeita-se que ambas as inclusões acima são próprias

Satisfazibilidade Booleana

- Problema da Satisfazibilidade (Satisfação) Booleana
 - Tão importante para o estudo da tratabilidade quanto é o problema da parada para o estudo da decidibilidade

- Descreve proposições simples
 - Está chovendo.
 - O carro é branco.
- Uso de conectivos lógicos para construir proposições compostas
 - A vassoura não está no canto ou está chovendo

- As proposições simples podem ser representadas por meio de variáveis lógicas, como p, q, r,... ou ainda p_1 , p_2 ,...
- A sintaxe da lógica booleana é a seguinte:
 - Símbolos proposicionais: $p_1, p_2, ..., p_n$ (alfabeto infinito, mas contável)
 - Constantes: verdadeiro (⊤) e falso (⊥)
 - **●** Conectivos lógicos: o conectivo pode ser unário negação (\neg) ou binários e (\land) , ou (\lor) e implicação (\rightarrow)
 - Parênteses.

A sintaxe da lógica proposicional é definida em linguagem formal BNF (Backus-Naur Formalism) como:

- A lógica booleana lida com dois valores: verdadeiro ou falso
- A semântica da lógica booleana é dada pela interpretação da fórmula de acordo com o valor verdade dos símbolos proposicionais e com a aplicação dos conectivos lógicos
 - Tabelas Verdade

p_1	$\neg p_1$	p_2	$p_1 \wedge p_2$	$p_1 \vee p_2$	$p_1 \to p_2$
$oxed{F}$	V	F	F	F	V
$\mid F \mid$	V	$\mid V \mid$	F	ig V	V
V	ig F	$\mid F \mid$	F	ig V	F
V	F	$\mid V \mid$	ig V	igg V	ig V

- A construção da tabela verdade apresenta o conjunto de interpretações possíveis para uma dada fórmula ou proposição complexa
- Se para todas as interpretações, o valor da fórmula é verdadeiro, diz-se que esta fórmula é teorema ou uma tautologia
- Se há pelo menos uma interpretação que torne a fórmula verdadeira, então a fórmula é dita válida ou satisfazível (do inglês satisfiable)
- Se não existe uma atribuição de valores verdade que tornem a fórmula verdadeira, então esta fórmula é insatisfazível ou uma contradição.

- Podemos representar as fórmulas em lógica proposicional em uma forma normalizada utilizando unicamente os operadores $\{\neg, \lor, \land\}$
- Formas Normais Canônicas:
 - Simplificar fórmulas complexas
 - Em geral, primeira etapa dos procedimentos de demonstração automática de teoremas

- Forma normal conjuntiva (ou forma clausal) CNF
 - conjunção de disjunções

$$(p \lor q) \land (\neg q \lor r)$$

- Formalmente
 - a fórmula está na forma

$$C_1 \wedge C_2 \wedge \dots C_n$$

 $oldsymbol{\mathfrak{D}}$ onde cada cláusula C_i é uma disjunção de literais

$$L_1 \vee L_2 \vee \dots L_n$$

 $oldsymbol{\mathfrak{S}}$ onde cada literal L_i é um símbolo de predicado ou sua negação

- ightharpoonup Forma normal disjuntiva (ou forma clausal dual) DNF
 - disjunção de conjunções

$$(r \land \neg p) \lor (q \land r)$$

- Formalmente
 - a fórmula esta na forma

$$D_1 \vee D_2 \vee \dots D_n$$

 $oldsymbol{\wp}$ onde cada cláusula D_i é uma conjunção de literais

$$L_1 \wedge L_2 \wedge \dots L_n$$

As fórmulas são transformadas utilizando as relações de equivalência

$$A \to B \equiv \neg A \vee B \text{ (eliminação da implicação)}$$

$$\neg (A \vee B) \equiv \neg A \wedge \neg B \text{ (lei de De Morgan)}$$

$$\neg (A \wedge B) \equiv \neg A \vee \neg B \text{ (lei de De Morgan dual)}$$

$$A \vee (B \wedge C) \Leftrightarrow (A \vee B) \wedge (A \vee C) \text{ (distributividade)}$$

$$A \wedge (B \vee C) \Leftrightarrow (A \wedge B) \vee (A \wedge C) \text{ (distributividade)}$$

As representações em formas normais são equivalentes às fórmulas originais

$$W \equiv CNF_W \equiv DNF_W$$

- Algoritmo Forma Normal Conjuntiva
 - Eliminar todas as ocorrências de $A \rightarrow B$ em W, substituindo-as por $\neg A \lor B$.
 - Reduzir o escopo das negações de maneira que só restem negações aplicadas a fórmulas atômicas. Para isto usar as regras:

$$\neg(A \lor B) \Rightarrow (\neg A \land \neg B)$$
$$\neg(A \land B) \Rightarrow (\neg A \lor \neg B)$$
$$\neg(\neg(A)) \Rightarrow A$$

Converter a fórmula para a forma de uma conjunção de disjunções usando a propriedade distributiva do operador \times sobre o operador \times:

$$A \lor (B \land C) \Rightarrow (A \lor B) \land (A \lor C).$$

Forma normal conjuntiva

Exemplo:

"Se chove então eu não saio. Mas, se não chove, eu saio e eu tomo sorvete. Eu saio e tomo sorvete."

representamos como:

$$c \rightarrow \neg s$$

$$\neg c \rightarrow s \wedge t$$

$$s \wedge t$$

transformando em CNF:

$$\neg c \lor \neg s$$

$$c \vee s$$

$$c \vee t$$

S

t

Problema da Satisfazibilidade Booleana

O problema da satisfazibilidade ou satisfação (SAT) em formas normais conjuntivas consiste em determinar se a fórmula

$$W_{CNF} = C_1 \wedge C_2 \wedge, ..., C_n$$

é satisfazível (do inglês "satisfiable"), ou seja, se há uma combinação de valores para as variáveis tal que a fórmula seja avaliada como *verdadeira*.

Problema da Satisfazibilidade Booleana

Exemplo 1: Dada a fórmula:

$$W = \{(\neg c \lor \neg s), (c \lor s), (c \lor t), (s), (t)\}$$

W é satisfazível fazendo-se $c=\bot$, $s=\top$, $t=\top$

Problema da Satisfazibilidade Booleana

Exemplo 2: Dada a fórmula:

$$W = \{ (p_1 \lor p_2 \lor p_3), (\neg p_1 \lor p_2), (\neg p_2 \lor p_3), (\neg p_3 \lor p_1), (\neg p_1 \lor \neg p_2 \lor \neg p_3) \}$$

W é satisfazível?