

Vision Transformers

Docentes:

Esp. Abraham Rodriguez - FIUBA

Mg. Oksana Bokhonok - FIUBA

Programa de la materia

- 1. Arquitectura de Transformers e imágenes como secuencias.
- 2. Arquitecturas de ViT y el mecanismo de Attention.
- 3. Ecosistema actual, Huggingface y modelos pre entrenados.
- 4. GPT en NLP e ImageGPT.
- 5. Modelos multimodales: combinación de visión y lenguaje
- 6. Segmentación con SAM y herramientas de auto etiquetado multimodales.
- 7. OCR y detección con modelos multimodales.
- 8. Presentación de proyectos.

Linear Self-Attention

Simplificación de la autoatención para reducir el tiempo de cálculo

Eficiencia escalable para procesar imágenes de alta resolución

FlashAttention (estándar)

Optimizaciones en GPU para reducir el costo computacional de la autoatención estándar Maneja eficientemente grandes secuencias con mejoras en velocidad y memoria

Window Multi-head Self Attention (Se usa en Swin Transformer)

Atención en ventanas locales para limitar el alcance y mejorar la eficiencia

Permite capturar características locales en cada ventana de la imagen

Cascaded Group Attention

Agrupa tokens en jerarquías para mejorar el enfoque local-global

Repaso de algunas de las arquitecturas ViT

- Swin Transfomer (Link-paper, Link-huggingface)
 - Mecanismo de atención jerárquica basado en ventanas deslizantes.
 - Divide la imagen en ventanas no superpuestas para aplicar self-attention local.
 - Usa ventanas deslizantes para capturar información a mayor escala.
 - Más eficiente en memoria y meior en la captura de detalles locales y globales que ViT clásico.
- Convolutional Vision Transformer (CvT) (<u>Link-paper</u>, <u>Link-huggingface</u>)
 - CvT promete incrementar el rendimiento y robustez de ViT mientras se conserva una alta eficiencia computacional. Introduce convolución. en dos partes de ViT:
 - Reemplaza la proyección lineal por proyección convolucional.
 - Utiliza una estructura jerárquica en múltiples etapas similar a CNNs.
- MobileViT (Link-paper, Link-huggingface)
 - combina CNNs y ViTs para tareas de visión en dispositivos móviles y de bajo consumo.
 - Sustituye el procesamiento local de las convoluciones con procesamiento global usando transformers.
- Pyramid ViT (<u>Link-paper</u>, <u>Link-huggingface</u>)
 A diferencia de ViT, PVT genera salidas de alta resolución con menores costos computacionales y de memoria.
 - Combina ventajas de CNNs y Transformers, convirtiéndose en un backbone unificado para diversas tareas de visión.
 - Utiliza una pirámide progresiva y atención con reducción espacial para mejorar la resolución bajo recursos limitados.

X

ViTs. Ejemplos de uso

Swin Transfomer (<u>Link</u>)

Clasificación de imagenes

Detección de objetos

<u>Detección de objetos semisupervisado</u>

Segmentación semantica

Reconocimiento de acciones en videos

Transformer-SSL: aprendizaje auto-supervisado contrastivo

Ecosistema actual

Donde estan los ViT?

ViT es bastante nuevo (Oct 2020), respecto a los transformers, el **foco** está en LLMs y Al generativa donde virtualmente no tienen competencia (para Mayo 2020, ya existía **GPT-3**), pero en Visión Artificial, ViT tiene competencia, siendo las CNNs.

Sin embargo hoy en día podemos encontrar ViT en:

Sistemas ADAS

Robótica

Sistemas Embebidos

OpenPilot

OpenPilot de comma.ai, es un proyecto que ha utilizado en su mayoria CNNs, hasta <u>recientemente</u>, donde sustituyeron EfficientNet (CNN) por FastViT (CNN + ViT) de Apple.

Website

<u>Video</u>

OpenPilot Hardware

Una de las razones por las cuales hay algo de escepticismo respecto a ViT, **es el alto requerimiento de hardware del Transformer**, pero que hardware utiliza OpenPilot?

Cameras: Three 1080p cameras with 140 dB dynamic range, including dual-cam 360° vision and a narrow cam for distant objects.

Processor: Qualcomm Snapdragon 845 (2017) Samsung galaxy S9, Pixel 3, y celulares de 5+ años!

CAN FD Enabled: Supports CAN FD vehicles without extra hardware.

Storage: 128GB built-in.

Connectivity: LTE, Wi-Fi, and High-Precision GPS.

Night Vision: IR LEDs for interior night-vision monitoring.

Display: 2160x1080 OLED.

Ports: OBD-C (USB-C with CAN) and USB 3.1 Gen 2.

Apple Products

Apple esta a la vanguardia con respecto a arquitecturas ViT con MobileViT, MobileCLIP y FastViT.

Deploying ViT to Apple Neural Engine

PathAl (patología)

PathAl es una empresa de analisis de patologia utilizando IA, en Mayo 2024, publicaron el paper "PLUTO: Pathology-Universal Transformer"

A. PLUTO framework for multi-resolution pathology tasks

Robotic Transformer 2

RT-2 es un modelo Vision-Language (ViT y LLM) aplicado a robótica, el cual permite instruir a un robot a realizar tareas sin necesidad de conocimiento previo sobre las mismas, solamente con un prompt y una cámara.

Demostración.

Push the ketchup to the blue cube

Servicios Cloud

- Servicio de aprendizaje automático de AWS, lanzado en 2017.
- Proporciona herramientas para construir, entrenar y desplegar modelos de aprendizaje automático.
- Incluye <u>SageMaker Studio</u> (IDE) y <u>MLOps</u> entre otros <u>servicios</u>

SageMaker Studio Lab

My project

Hugging Face on Amazon SageMaker

Hugging Face Pretrained Model to Amazon SageMaker

Amazon SageMaker

Hugging Face — sagemaker 2.232.2 documentation

Veamos el entorno <u>SageMaker Studio Lab</u>

Hugging Face

<u>Hugging Face – The AI community building the future.</u> <u>Hugging Face - Documentation</u> <u>Pransformers Notebooks</u>

- Hugging Face fue fundada en 2016 por Clément Delangue, Julien Chaumond y Thomas Wolf.
- Comenzó como un chatbot dirigido a adolescentes.
- Se transformó en el repositorio de IA de código abierto más completo, conocido como el "GitHub de la IA".
- Democratizó el acceso a modelos y datasets de IA, facilitando el trabajo de investigadores, empresas y desarrolladores.
- Alberga más de 1M modelos y ≈250,000 datasets en áreas como NLP, visión por computadora, vision transformers.

Hugging Face on Google Cloud

Hugging Face on Amazon SageMaker

<u>Hugging Face on Azure – Huggingface Transformers | Microsoft Azure</u>

Hugging Face Hub documentation

Veamos el entorno <u>Hugging Face Hub documentation</u>

Hugging Face - Instalación

<u>Installation</u>

!pip install transformers datasets huggingface_hub

- transformers: para trabajar con modelos pre entrenados.
- datasets: para cargar y procesar datasets.
- huggingface_hub: para gestionar y autenticar en Hugging Face Hub.
 - https://huggingface.co/settings/tokens

from huggingface_hub import login login(token="tu_token_aqui")

Hugging Face - Clases

Processo básico	Ejemplo de clasificación: image_classification.ipynb - Colab Ejemplo: CEIA-VIT/TrabajosPracticos/TP3/TP3.ipynb at main · FIUBA-Posgrado-Inteligencia-Artificial/CEIA-VIT
Carga de datos Quickstart, quickstart.ipynb - Colab	from datasets import load_dataset ds = load_dataset('beans')
Procesamiento de imágenes, basado en tipo de modelo Image Processor Preprocess	from transformers import ViTImageProcessor model_name_or_path = 'google/vit-base-patch16-224-in21k' processor = ViTImageProcessor.from_pretrained(model_name_or_path)
Carga de modelo Transformers	from transformers import ViTForImageClassification labels = ds['train'].features['labels'].names model = ViTForImageClassification.from_pretrained(model_name_or_path,)
Entrenamiento/Finetuning Trainer, Fine-tune a pretrained model, Fine-Tune ViT for Image Classification with Transformers Fine-tune a pretrained model	from transformers import Trainer trainer = Trainer(model=model, args=training_args, data_collator=collate_fn,)
Evaluación	Evaluate

Hugging Face. Ejemplos de modelos

Multimodal. Generación de captions (texto a partir de imagen)	nlpconnect/vit-gpt2-image-captioning · Hugging Face
Multimodal. Generación de captions (texto a partir de imagen)	Salesforce/blip-image-captioning-large · Hugging Face
Multimodal. Clasificación y búsqueda de imágenes basado en texto	openai/clip-vit-large-patch14 · Hugging Face
Clasificación y detección de objetos en imágenes	microsoft/swin-base-patch4-window12-384 · Hugging Face
Clasificación de imágenes	microsoft/cvt-13 · Hugging Face
Clasificación de imágenes en dispositivos móviles	apple/mobilevit-small · Hugging Face
Aprendizaje de representaciones de imágenes sin etiquetas (clasificación y extracción de características)	facebook/dinov2-base · Hugging Face
Multimodal:Tareas de comprensión multimodal (texto e imagen)	facebook/flava-full · Hugging Face

Desafío de 30 min

Vamos a organizar grupos a través de Google Meet.

Tarea de Cada Grupo:

Crear una notebook que realice lo siguiente:

- Leer una imagen.
- Cargar un modelo pre entrenado de huggingface.
 Realizar una inferencia utilizando ese modelo.

¡Buena suerte con la tarea!

Ejemplo de fine-tuning

 $\underline{CEIA-ViT/TrabajosPracticos/TP3/ViT_fine_tuning.ipynb\ at\ main\ \cdot\ FIUBA-Posgrado-Inteligencia-Artificial/CEIA-ViT_fine_tuning.ipynb\ at\ main\ value of the posgrado-Inteligencia-Artificial/CEIA-ViT_fine_tuning.ipynb\ at\ main$

Bibliografia

•

Preguntas?