TASK 1:

```
CREATE TABLE STUDENT (
 Name VARCHAR(50),
 Student number INT PRIMARY KEY,
 Class VARCHAR(50),
 Major VARCHAR(50)
);
CREATE TABLE COURSE (
  Course name VARCHAR(50),
 Course_number VARCHAR(50) PRIMARY KEY,
 Credit_hours INT,
 Department VARCHAR(50)
);
CREATE TABLE SECTION (
  Section identifier INT PRIMARY KEY,
 Course_number VARCHAR(50),
  Semester VARCHAR(50),
  Year INT,
 Instructor VARCHAR(50),
 FOREIGN KEY (Course_number) REFERENCES COURSE(Course_number)
);
CREATE TABLE GRADE REPORT (
  Student_number INT,
 Section identifier INT,
  Grade VARCHAR(5),
 PRIMARY KEY (Student number, Section identifier),
 FOREIGN KEY (Student_number) REFERENCES
STUDENT(Student number),
 FOREIGN KEY (Section identifier) REFERENCES Section(Section identifier)
);
CREATE TABLE PREREQUISITE (
  Course number VARCHAR(50),
 Prerequisite_number VARCHAR(50),
 PRIMARY KEY (Course number, Prerequisite number),
 FOREIGN KEY (Course_number) REFERENCES COURSE(Course_number),
 FOREIGN KEY (Prerequisite number) REFERENCES
COURSE(Course_number)
);
# add data
```

```
-- Insert data into STUDENT table
INSERT INTO STUDENT (Name, Student_number, Class, Major) VALUES
('Smith', 17, '1', 'CS'),
('Brown', 8, '2', 'CS');
INSERT INTO COURSE (Course_name, Course_number, Credit_hours,
Department) VALUES
('Intro to Computer Science', 'CS1310', 4, 'CS'),
('Data Structures', 'CS3320', 4, 'CS'),
('Discrete Mathematics', 'MATH2410', 3, 'MATH'),
('Database', 'CS3380', 3, 'CS')
INSERT INTO SECTION (Section_identifier, Course_number, Semester, Year,
Instructor) VALUES
(85, 'MATH2410', 'Fall', 07, 'King'),
(92, 'CS1310', 'Fall', 07, 'Anderson'),
(102, 'CS3320', 'Spring', 08, 'Knuth'),
(112, 'MATH2410', 'Fall', 08, 'Chang'),
(119, 'CS1310', 'Fall', 08, 'Anderson'),
(135, 'CS3380', 'Fall', 08, 'Stone')
INSERT INTO GRADE REPORT (Student number, Section identifier, Grade)
VALUES
(17, 112, 'B'),
(17, 119, 'C'),
(8, 85, 'A'),
(8, 92, 'A'),
(8, 102, 'B'),
(8, 135, 'A')
INSERT INTO PREREQUISITE (Course number, Prerequisite number)
VALUES
('CS3380', 'CS3320'),
('CS3380', 'MATH2410'),
('CS3320', 'CS1310')
# a
SELECT DISTINCT Course_name, Instructor
FROM COURSE JOIN SECTION
ON COURSE.Course_number = SECTION.Course_number;
```

Result

CPU Time: 0.00 sec(s), Memory: 4424 kilobyte(s)

Discrete Mathematics|King
Intro to Computer Science|Anderson
Data Structures|Knuth
Discrete Mathematics|Chang
Database|Stone

Note: Please check our documentation, or Youtube channel. for more details

h

SELECT SECTION.Section_identifier, Student_number,
SECTION.Course_number, Semester, Year
FROM COURSE JOIN SECTION
ON COURSE.Course_number = SECTION.Course_number
JOIN GRADE_REPORT
ON SECTION.Section_identifier = GRADE_REPORT.Section_identifier;

Result CPU Time: 0.00 sec(s), Memory: 4332 kilobyte(s) 85 | 8 | MATH2410 | Fall | 7 92 | 8 | CS3130 | Fall | 7 102 | 8 | CS3380 | Fall | 8 135 | 8 | CS3380 | Fall | 8 112 | 17 | MATH2410 | Fall | 8 119 | 17 | CS1310 | Fall | 8

с

SELECT Name, STUDENT.Student_number, Major,
COUNT(GRADE_REPORT.section_identifier) AS Number_of_sections
FROM STUDENT JOIN GRADE_REPORT
ON STUDENT.Student_number = GRADE_REPORT.Student_number
GROUP BY Name, STUDENT.Student_number, Major

Result CPU Time: 0.00 sec(s), Memory: 4380 kilobyte(s) Brown | 8 | CS | 4

HAVING COUNT(Section_identifier) > 2;

TASK 2:

There are several steps to convert the **Entity Relation Diagram** to **Relational Schema**. First, we must look for strong entities, primary key (PK) constraints, and weak entities.

Strong Entities

• Bank Entity

	Code (PK)	Name	Address
--	-----------	------	---------

• Loan Entity

Loan Number (PK)	Amount	Type	
------------------	--------	------	--

Account Entity

Account Number (DV)	Poloneo	Typo
Account Number ($\Gamma I \Lambda)$	Balance	Type

Customer Entity

SSN (PK)	Name	Address	Phone

Weak Entities

• Bank_Branch Entity

Branch Number (PK))	Address

Now, we have to look for the relationships between the entities, 1:1, 1:N, M:N, and Multi-Valued Attributes. Since there are no 1:1 and Multi-Valued Attributes, so we only convert 1:N and M:N binary relationships into relations.

Conversion of 1:N

As Bank and Bank_Branch have a 1:N relation, add the Primary Key (PK) of the Bank entity into the Bank_Branch entity, which is Foreign Key(FK) for Bank_Branch. A similar goes for Bank_Branch and Account entities as well as for Bank_Branch and Loan entities

• Bank_Branch Entity

• Account Entity

Account Number (PK)	Balance	Type	Branch Number (FK)

Loan Entity

Loan Number (PK)	Amount	Type	Branch Number (FK)
\ /		J 1	\ /

Conversion of M:N

Converting M:N Relationship means creating a new Entity with the relationship name and adding primary keys of both entities along with descriptive attributes if had.

• Customers_Account Entity

Account Number (FK refers from Account)	Customer SSN (SSN refers from Customer)
---	---

• Customers_loan Entity

Final Relational Schema

• Bank Entity

Code (PK)	Name	Address
C G G C (1 11)	1 (dille	11441655

• Bank_Branch Entity

Account Entity

Account Number (PK)	Balance	Type	Branch Number (FK)

Loan Entity

Customer Entity

SSN (PK) Name	Address	Phone	
---------------	---------	-------	--

• Customers_Account Entity

Customers_loan Entity

Loan Number (FK refers from Loan)	Customer SSN (SSN refers from Customer)