Deep processing of structured data

Łukasz Maziarka, Marek Śmieja, Aleksandra Nowak, Jacek Tabor, Łukasz Struski, Przemysław Spurek

> GMUM Group of Machine Learning Methods, Jagiellonian University, Kraków

- Typical machine learning models assume that data are represented as vectors of fixed size.
- In practice, raw data often do not have a vector form:
 - texts

Introduction

- images of varied sizes
- graphs
- sets with varied sizes
- data with missing attributes

Problem

Introduction

"Structured data" – data which are not given as vectors of fixed dimension.

Question

How to process structured data by neural networks?

In details:

- how to represent structured data?
- how to process these representations?

Introduction

- processing of sets
- application in processing of text, graphs, images
- Ł. Maziarka, et al., Deep processing of structured data, arXiv:1810.01868, 2018,
- M. Zaheer, et al. Deep sets, NIPS 2017

Processing sets by neural networks

Problem

- Data set X is a family of sets X_1, \ldots, X_N
- Every set $X_i \subset \mathbb{R}^D$ is an individual element of a data set.

Question

Typical networks process vectors one by one:

- how to feed the whole set to the network?
- how to obtain a single output for the whole set?

Examples of tasks

We are given a family of sets, where each one has label (X_i, y_i) . Possible tasks:

- Learning the number of clusters (centers of clusters) for the input set.
- Learning a decision boundary for a given set.
- Finding the entropy (or any other statistic) of set.

Structured data are usually represented as a set of features, so the set processing is essential.

Idea: projection

Cramer-Wold Theorem

Two sets are equal if they are equal on all one-dimensional projections.

Without loss of information, we can process sets X through their one-dimensional projections $v^T X$, where $v \in \mathbb{R}^D$

Step 1:

Pick some $v_1, \ldots, v_M \in \mathbb{R}^D$ and project X onto them.

Idea: aggregation

- Let $v^T X \subset \mathbb{R}$ be 1D set and let $b \in \mathbb{R}$ be a fixed bias
- We define aggregated ReLU:

$$\begin{aligned} \operatorname{ReLU}_{v,b}(X) &= \sum_{x \in X} \operatorname{ReLU}_{v,b}(x) \\ &= \sum_{x \in X} \max(v^{\mathsf{T}} x + b, 0) \in \mathbb{R}. \end{aligned}$$

Fact

We can reconstruct $v^T X \subset \mathbb{R}$ iff we know $\operatorname{ReLU}_{v,b}(X)$ for all $b \in \mathbb{R}$.

Step 2:

Pick some $b_1, \ldots, b_M \in \mathbb{R}$ and compute $\text{ReLU}_{v,b_i}(X)$, for all i.

Procedure

Take a neural network with M output neurons (each parameterized by v, b)

- Project $X \subset \mathbb{R}^D$ onto 1D by $v^T X$
- Apply ReLU for every element

$$ReLU_{v,b}(x) = max(v^T x + b, 0)$$

• Summarize the result:

$$ReLU_{v,b}(X) = \sum_{x \in X} ReLU_{v,b}(x)$$
$$= \sum_{x \in X} \max(v^{T}x + b, 0)$$

Representation:

Set aggregation network (SAN) with M output neurons gives M-dimensional representation of the set.

 $\label{processing} \mbox{Processing structured data by neural networks.}$

General view

Let X be structured data, e.g. text, image, graph, etc.

Processing pipeline

$$X = (x_i)_i \stackrel{\Psi}{\to} (\Psi x_i)_i \stackrel{\text{Pool}}{\to} \text{Pool} \{\Psi(x_i) : i\} \stackrel{\Phi}{\to} \mathbb{R}^N.$$

- \bullet Ψ feature extraction
- Pool set aggregation
- Φ final output

Recurrent network for extracting sequential patterns (e.g. for texts)

 $\boldsymbol{\psi}$ returns a sequence of vectors.

Convolutional networks for extracting local patterns (e.g. for images)

 ψ returns the image.

Step 2

Let $X \subset \mathbb{R}^K$ be a set of extracted features

- Typically, take max over each attribute to produce a fixed length vector
- Better idea is to replace pooling layer by set aggregation network (SAN) to preserve necessary information from a set.

Figure: Max-pooling for 1D-convolutions.

Step 3

Let $x \in \mathbb{R}^K$ be an aggregated vector.

• Use a classical (fully connected) neural network ϕ to produce a final output

Summary

Images

Table 3: Classification accuracy for images with varied resolutions.

		Trained on all resolutions		Trained only on original resolution		
Dataset	Image size	max-pooling	SAN	max-pooling	SAN	SAN-raw
Fashion MNIST	14x14	0.8788	0.8810	0.2519	0.2884	0.2148
	22x22	0.8969	0.9064	0.7380	0.8247	0.4563
	28x28	0.9023	0.9111	0.9062	0.9150	0.8114
	42x42	0.9020	0.9033	0.5548	0.6893	0.3946
	56x56	0.8913	0.8966	0.3274	0.4515	0.3605
CIFAR-10	16x16	0.5830	0.6167	0.3213	0.4145	0.4862
	26x26	0.6689	0.7037	0.5974	0.6706	0.4957
	32x32	0.6838	0.7292	0.6891	0.7302	0.4968
	48x48	0.6813	0.7080	0.5542	0.5921	0.4932
	64x64	0.6384	0.6413	0.3904	0.3658	0.4922

Images

Figure 4: Classification accuracy on images with a fixed resolution.

Text Cheminfortics

Cheminfortics

Table 1: AUC scores for classifying active chemical compounds .

	ECFP4	KlekFP	Mordred	JTVAE	set of atoms
Random Forest	0.726	0.604	0.493	0.527	-
Extra Trees	0.713	0.667	0.501	0.470	-
k-NN	0.532	0.569	0.546	0.521	-
Dense network	0.702	0.574	0.593	0.560	-
SAN	-	-	-	-	0.643

Text

Table 2: Accuracy scores obtained for text data.

dataset	CNN	SAN
MR imdb	0.7623 0.8959	0.7646 0.8480

Regularization

