计算多个序列碰撞的概率

问题 1: 计算两个序列碰撞的概率

 $\{a\}$ 是一个长度为 n 的数列, $a_1,a_2,...,a_n$ 是 1,2,...,n 的某个排列。 $\{b\}$ 也是一个长度为 n 的数列, $b_1,b_2,...,b_n$ 是 1,2,...,n,...,m 的某个排列的前 n 项 $(n \le m)$,(1,2,...,n 的某个排列和 1,2,...,n,...,m 的某个排列都是从所有排列中等概率选取的)。若存在某个正整数 k 使得 $a_k = b_k$,则称 $\{a\}$ 与 $\{b\}$ 碰撞 i 次的概率 $p_{n,m,2}(i)$ $(0 \le i \le n)$ 。

解

先计算 $\{a\}$ 与 $\{b\}$ 碰撞 0 次的概率,并且假设 $n \le m \le 2n$,m > 2n 的情况可以很简单地从 $n \le m \le 2n$ 的结果推出。

显然可以固定数列 $\{a\}$,设 $a_k=k,1\leq k\leq n$ 。设 S_n 为 m=n 时, $\{a\}$ 与 $\{b\}$ 碰撞次数为 0 的个数。设数列 $\{c\}=(1,2,...,n,...,m)$,把 $\{c\}$ 分为两部分 $\{c_{left}\}$ 和 $\{c_{right}\}$, $\{c_{left}\}=(1,2,...,n)$, $\{c_{right}\}=(n+1,n+2,...,m)$ 。设 $\{b'\}$ 是 $\{c\}$ 的某个排列的前 n 项,且 $\{b'\}$ 中包含 $\{c_{right}\}$ 中的所有项,设 T_m^n 是 $\{a\}$ 与 $\{b'\}$ 碰撞次数为 0 的的个数,于是有 $S_n=T_n^n$ (如何用 T_m^n 计算概率)。下面先计算 S_n ,再计算 T_m^n 。 S_n 是 m=n 时, $\{a\}$ 与 $\{b\}$ 碰撞次数为 0 的个数, $\{b\}$ 可以由如下方式选取:

图 1: S_n 的递归计算

先选择 b_1 , 有 n-1 种可能,假设选择了 3, 然后选择 b_3 , 若 $b_3=1$, 则剩下 n-2 个数的无碰撞排列个数为 S_{n-2} ; 否则 b_3 有 n-2 中可能,假设选择了 4, 然后选择 b_4 , 若 $b_4=1$, 则剩下 n-3 个数的无碰撞排列个数为 S_{n-3} ; 否则 b_4 有 n-3 中可能, . . . 。以此类推。

$$S_n = (n-1)(S_{n-2} + (n-2)(S_{n-3} + (n-3)(S_{n-4} + \cdots + S_{n-1}))$$
$$S_{n-1} = (n-2)(S_{n-3} + (n-3)(S_{n-4} + \cdots + S_{n-1}))$$

于是有:

$$S_n = (n-1)(S_{n-1} + S_{n-2})$$
 $S_2 = 1, S_1 = 0$ (1)

 T_m^n 是 $\{a\}$ 与 $\{b^{'}\}$ 碰撞次数为 0 的的个数。设 $\{c^{'}\}$ 为 $\{c\}$ 的某个排列,且 $\{c^{'}\}$ 与 $\{c\}$ 的碰撞次数为 0。 $\{c^{'}\}$ 可分为两部分 $\{c^{'}_{left}\}$ 和 $\{c^{'}_{right}\}$ 。 S_m 可分为 m-n+1 个部分:

- $\{c^{'}\}$ 的个数, $\{c^{'}_{left}\}$ 包含 $\{c_{right}\}$ 中的某 0 项
- $\{c'\}$ 的个数, $\{c'_{left}\}$ 包含 $\{c_{right}\}$ 中的某 1 项
- $\{c^{'}\}$ 的个数, $\{c^{'}_{left}\}$ 包含 $\{c_{right}\}$ 中的某 2 项

 $\{c^{'}\}$ 的个数, $\{c^{'}_{left}\}$ 包含 $\{c_{right}\}$ 中的某 m-n 项

设 R_k 为 $\{c'\}$ 的个数, $\{c'_{left}\}$ 包含 $\{c_{right}\}$ 中的某 k 项 $(0 \le k \le m-n)$, 于是 $S_m = \sum_{k=0}^{m-n} R_k$ 。

图 2: c 的某个排列

根据 T_m^n 的定义, $R_k = C_{m-n}^k T_{n+k}^{m-n} \frac{T_{m-n+k}^{m-n}}{C_{m-n}^k} = T_{n+k}^n T_{m-n+k}^{m-n}$ 。其中 $C_{m-n}^k T_{n+k}^n$ 表示从 $\{c_{right}\}$ 中选出的 k 项放入 $\{c_{left}'\}$ 能产生多少个与 $\{c_{left}\}$ 碰撞 0 次的 $\{c_{left}'\}$; **在此基础上**, $\{c_{left}\}$ 中确定的 k 项会被放入 $\{c_{right}'\}$,因此 $\frac{T_{m-n+k}^{m-n}}{C_{m-n}^k}$ 的分子中有 T_{m-n+k}^{m-n} 而没有 C_{m-n}^k 。分母中的 C_{m-n}^k 表示 $C_{m-n}^k T_{n+k}^n T_{m-n+k}^{m-n}$ 计算重复了,因为每一个被放入 $\{c_{right}'\}$ 的 k 项都对应着从 $\{c_{right}\}$ 中选出的 k 项的 C_{m-n}^k 个组合。于是:

$$T_m^m = S_m = \sum_{k=0}^{m-n} R_k = \sum_{k=0}^{m-n} T_{n+k}^n T_{m-n+k}^{m-n} \qquad T_0^0 = 1$$
 (2)

图 3: R_{m-n} 重复计算的部分

因为 R_k 表示的是 $\{c_{left}\}$ 与 $\{c_{left}'\}$ 碰撞次数为 0 且 $\{c_{right}\}$ 与 $\{c_{right}'\}$ 碰撞次数为 0 的个数, $\{c_{left}'\}$ 包含 $\{c_{right}\}$ 中的某 m-n 项,而需要计算的只是 $\{c_{left}\}$ 与 $\{c_{left}'\}$ 碰撞次数为 0 的个数。如图 3所示,每一个被放入 $\{c_{right}'\}$ 的 m-n 项不论如何排列都不会与 $\{c_{right}\}$ 碰撞,而这 (m-n)! 个排列都对应同一个 $\{c_{left}'\}$,所以有:

$$T_m^n = \frac{R_{m-n}}{(m-n)!} = \frac{T_m^m - \sum_{k=0}^{m-n-1} T_m^n T_{m-n+k}^{m-n}}{(m-n)!} \qquad T_0^0 = 1$$
 (3)

使用公式 (1)和公式 (3)能递归地计算任意的 T_m^n

现在可以计算 $\{a\}$ 与 $\{b\}$ 碰撞 0 次的概率了。因为 T_{n+k}^n 表示的是 $\{a\}$ 与 $\{b'\}$ 碰撞次数为 0 的个数,而 $\{b'\}$ 中有 k 项来自 $\{c_{right}\}$,这 k 项共有 C_{m-n}^k 种组合,因此 $\{a\}$ 与 $\{b'\}$ 碰撞次数为 0 的个数为: $C_{m-n}^k T_{n+k}^n$,对 k 求和可得 $\{a\}$ 与 $\{b\}$ 碰撞 0 次的个数: $\sum_{k=0}^{m-n} C_{m-n}^k T_{n+k}^n$,碰撞 0 次的概率为:

$$p_{n,m,2}(0) = \frac{\sum_{k=0}^{m-n} C_{m-n}^k T_{n+k}^n}{\frac{m!}{(m-n)!}}$$
(4)

然后计算碰撞 i 次的概率 $(0 \le i \le n)$ 。当 $\{a\}$ 与 $\{b\}$ 碰撞 i 次时,发生碰撞的 i 项一定是 $\{a\}$ 中的某 i 项,这就有 C_n^i 种可能。

图 4: a 与 b 的碰撞

因为碰撞 i 次,所以 $\{a\}$ 中剩下的 n-i 项与 $\{b\}$ 中剩下的 n-i 项碰撞次数为 0,这就相当于 $n^{'}=n-i,m^{'}=m-i$ 时计算碰撞次数为 0 的个数,因此 $\{a\}$ 与 $\{b\}$ 碰撞 i 次的个数为:

$$C_n^i \sum_{k=0}^{m^{'}-n^{'}} C_{m^{'}-n^{'}}^k T_{n^{'}+k}^{n^{'}} = C_n^i \sum_{k=0}^{m-n} C_{m-n}^k T_{n-i+k}^{n-i},$$
 碰撞 i 次的概率为:

$$p_{n,m,2}(i) = \frac{C_n^i \sum_{k=0}^{m-n} C_{m-n}^k T_{n-i+k}^{n-i}}{\frac{m!}{(m-n)!}}$$
(5)

问题 2: 计算多个序列碰撞的概率

 $\{a\}$ 是一个长度为 n 的数列, $a_1,a_2,...,a_n$ 是 1,2,...,n 的某个排列。 $\{b^1\},\{b^2\},...,\{b^t\}$ 也都是长度为 n 的数列, $b_1^j,b_2^j,...,b_n^j$ 是 1,2,...,n,...,m 的某个排列的前 n 项 $(1 \le j \le t,n \le m)$,(1,2,...,n 的某个排列 和 1,2,...,n,...,m 的某个排列都是从所有排列中独立、等概率选取的)。若存在某个正整数 k 使得 $a_k = b_k^1$ 或 $a_k = b_k^2 \ldots$ 或 $a_k = b_k^t$,则称这 t+1 个序列碰撞了一次。求这 t+1 个序列碰撞 i 次的概率 $p_{n,m,t+1}(i)$ $(0 \le i \le n)$ 。

解

显然 $\{a\}$ 仍然可以是固定的,设 $a_k = k, 1 \le k \le n$ 。若 t+1 个序列碰撞了 i 次,则发生碰撞的 i 项一定是 $\{a\}$ 中的某 i 项(有 C_n^i 种可能),且 a 与 b^i 的碰撞位于这 i 项内,a 与 b^i 的碰撞次数小于等于 i。要计算 t+1 条数列碰撞 i 次的概率,先确定碰撞的是哪 i 项,这样把 a 与 b^i ($1 \le j \le t$) 的碰撞就限制在这 i 项中,**在此限制下**,先计算 t+1 条数列碰撞次数小于等于 i 次的概率,再从中减去碰撞 $0,1,\ldots,i-1$ 次的概率。最后乘以 C_n^i 得到 t+1 条数列碰撞 i 次的概率。

记碰撞限制在某i项中时,t+1条数列碰撞次数小于等于i次的概率为 $q_{n,m,t+1}(i)$,由公式(5)可得a

与 b^j 碰撞次数小于等于 i 次的概率为: $\sum_{z=0}^i \frac{C_i^z \sum\limits_{k=0}^{m-n} C_{m-n}^k T_{n-z+k}^{n-z}}{\frac{m!}{(m-n)!}},\; (C_0^0=1).\;\;t+1\;$ 条数列碰撞次数小于等于

i 次的概率为:

$$q_{n,m,t+1}(i) = \left(\sum_{z=0}^{i} \frac{C_i^z \sum_{k=0}^{m-n} C_{m-n}^k T_{n-z+k}^{n-z}}{\frac{m!}{(m-n)!}}\right)^t$$
(6)

记 t+1 条数列碰撞次数等于 z,且碰撞在固定的 $z(0 \le z \le n)$ 项中的概率为 $w_{n,m,t+1}(z)$,则有:

$$q_{n,m,t+1}(i) = \sum_{z=0}^{i} C_i^z w_{n,m,t+1}(z)$$

$$w_{n,m,t+1}(i) = q_{n,m,t+1}(i) - \sum_{z=0}^{i-1} C_i^z w_{n,m,t+1}(z), \ w_{n,m,t+1}(0) = q_{n,m,t+1}(0)$$
 (7)

使用公式 (6)和公式 (7)能递归地计算任意的 $w_{n,m,t+1}(i)$ 。

最后乘以 C_n^i 得到 t+1 条数列碰撞 i 次的概率:

$$p_{n,m,t+1}(i) = C_n^i w_{n,m,t+1}(i) \tag{8}$$

以上公式的实现和碰撞概率的仿真代码在:

https://github.com/piggypiggy/collision-probability