```
In [1]:
    import scipy.stats as sps
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    import pandas as pd
    from tqdm.notebook import tqdm

    import datetime

    import plotly.graph_objects as go
    import plotly.express as px
    import plotly.offline

sns.set(font_scale=1.5)
```

Задача исследования групповых поездок.

Загрузим оба датасета с данными о поездках и станциях велопроката.

Out[2]:

	station_id	name	lat	long	install_date	install_dockcount	modification_date	current_dockcount	decommission_date
0	BT-01	3rd Ave & Broad St	47.618418	-122.350964	10/13/2014	18	NaN	18	NaN
1	BT-03	2nd Ave & Vine St	47.615829	-122.348564	10/13/2014	16	NaN	16	NaN
2	BT-04	6th Ave & Blanchard St	47.616094	-122.341102	10/13/2014	16	NaN	16	NaN
3	BT-05	2nd Ave & Blanchard St	47.613110	-122.344208	10/13/2014	14	NaN	14	NaN
4	CBD-03	7th Ave & Union St	47.610731	-122.332447	10/13/2014	20	NaN	20	NaN

b'Skipping line 50794: expected 12 fields, saw 20\n'

In [4]: 1 trips.head(5)

Out[4]:

	trip_id	starttime	stoptime	bikeid	tripduration	from_station_name	to_station_name	from_station_id	to_station_id	usertype	gender	birthyea
0	431	2014-10- 13 10:31:00	2014-10- 13 10:48:00	SEA00298	985.935	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	CBD-06	PS-04	Member	Male	1960.0
1	432	2014-10- 13 10:32:00	2014-10- 13 10:48:00	SEA00195	926.375	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	CBD-06	PS-04	Member	Male	1970.0
2	433	2014-10- 13 10:33:00	2014-10- 13 10:48:00	SEA00486	883.831	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	CBD-06	PS-04	Member	Female	1988.0
3	434	2014-10- 13 10:34:00	2014-10- 13 10:48:00	SEA00333	865.937	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	CBD-06	PS-04	Member	Female	1977.0
4	435	2014-10- 13 10:34:00	2014-10- 13 10:49:00	SEA00202	923.923	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	CBD-06	PS-04	Member	Male	1971.(

Предобработка данных

Упорядочим данные по времени начала поездки

```
In [5]: 1 sorted_by_time = trips.sort_values(by='starttime').reset_index(drop=True)
```

In [6]: 1 sorted_by_time.head()

Out[6]:

	trip_id	starttime	stoptime	bikeid	tripduration	from_station_name	to_station_name	from_station_id	to_station_id	usertype	gender	birthyeaı
0	431	2014-10- 13 10:31:00	2014-10- 13 10:48:00	SEA00298	985.935	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	CBD-06	PS-04	Member	Male	1960.(
1	431	2014-10- 13 10:31:00	2014-10- 13 10:48:00	SEA00298	985.935	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	CBD-06	PS-04	Member	Male	1960.(
2	432	2014-10- 13 10:32:00	2014-10- 13 10:48:00	SEA00195	926.375	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	CBD-06	PS-04	Member	Male	1970.(
3	432	2014-10- 13 10:32:00	2014-10- 13 10:48:00	SEA00195	926.375	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	CBD-06	PS-04	Member	Male	1970.(
4	433	2014-10- 13 10:33:00	2014-10- 13 10:48:00	SEA00486	883.831	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	CBD-06	PS-04	Member	Female	1988.(

Заметим, что у первых четырёх поездок совпадают маршруты и примерно совпадают времена начала поездки и окончания. Скорее всего это была групповая поездка.

Попробуем выделить схожие групповые поездки.

Заведём столбец group_id. Сначала для для всех поездок group_id = -1. Затем, для каждой поездки будем находить поездки, со схожими в пределах 5 минут временами начала и окончания поездки и совпадающим маршрутом.

Такие поездки будем считать за групповые поездки и присваивать группе уникальный group_id.

```
In [7]:
           1 sorted by time['group id'] = -1
           3 curr id = 0
           4 for i in tqdm(range(sorted by time.shape[0])):
                  if sorted by time.loc[i, :].group id == -1:
                      curr row = sorted by time.loc[i, :]
           6
           7
           8
                      sorted by time.loc[i, 'group id'] = curr id
           9
          10
                      starttime = sorted by time.loc[i, 'starttime'].to pydatetime()
                      delay = starttime + datetime.timedelta(minutes=5)
          11
          12
                      delta = 5 * 60
          13
          14
                      j = i + 1
          15
                      while (j < sorted by time.shape[0] and</pre>
          16
                             sorted by time.loc[j, 'starttime'].to pydatetime() <= delay):</pre>
          17
          18
                          obs row = sorted by time.loc[j, :]
          19
                          if (obs row.from station id == curr row.from station id and
          20
          21
                              obs row.to station id == curr row.to station id and
          22
                              obs row.tripduration >= curr row.tripduration - delta and
                              obs row.tripduration <= curr row.tripduration + delta):</pre>
          23
          24
          25
                              sorted by time.loc[j, 'group id'] = curr id
          26
          27
                          j += 1
          28
          29
                      curr id += 1
          30
```

100%

286857/286857 [09:52<00:00, 484.18it/s]

Полученный датафрейм.

In [8]: 1 sorted_by_time.head()

Out[8]:

	trip_id	starttime	stoptime	bikeid	tripduration	from_station_name	to_station_name	from_station_id	to_station_id	usertype	gender	birthyeaı
0	431	2014-10- 13 10:31:00	2014-10- 13 10:48:00	SEA00298	985.935	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	CBD-06	PS-04	Member	Male	1960.0
1	431	2014-10- 13 10:31:00	2014-10- 13 10:48:00	SEA00298	985.935	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	CBD-06	PS-04	Member	Male	1960.0
2	432	2014-10- 13 10:32:00	2014-10- 13 10:48:00	SEA00195	926.375	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	CBD-06	PS-04	Member	Male	1970.0
3	432	2014-10- 13 10:32:00	2014-10- 13 10:48:00	SEA00195	926.375	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	CBD-06	PS-04	Member	Male	1970.0
4	433	2014-10- 13 10:33:00	2014-10- 13 10:48:00	SEA00486	883.831	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	CBD-06	PS-04	Member	Female	1988.0

Некоторые исследования групповых поездок

Среднее число участников групповых поездок.

```
In [9]: 1 sorted_by_time.shape[0] / np.unique(sorted_by_time.group_id).shape[0]
```

Out[9]: 1.4360010212203582

Подсчитаем количество участников каждой группы.

Отношение количества групповых поездок ко всем остальным: 0.3477805978143882

Промежуточный вывод:

Можно видеть, что примерно 35% всех поездок - групповые. Это значит, что предполагаемой компании владельцу станций велопроката стоит разделять тарифные планы для одиночных поездок и групповых.

Исследуем, в какое время дня, в какой день недели, в какой месяц наиболее часто совершаются групповые поездки.

Визуализируем гистограммы.

```
In [12]:
            group trips = sorted by time.copy()
              group trips = group trips.merge(group count,
            3
                                               how='left', on='group id')
            5 group trips = group trips[group trips.members num > 1]
In [13]:
               group unique trips = group trips.drop duplicates(subset=['group id']).copy()
               group unique times = group unique trips.loc[:, 'starttime'].copy()
            3
               group unique trips['month'] = group unique times.dt.month name()
            5 group unique trips['day'] = group unique times.dt.day name()
            6 group_unique_trips['time_of_day'] = ((group_unique_times.dt.hour.values >= 6).astype('int') +
                                            (group unique times.dt.hour.values >= 12).astype('int') +
            8
                                            (group unique times.dt.hour.values >= 18).astype("int"))
```

```
In [15]:
             1 plt.figure(figsize=(15, 12))
             3 plt.subplot(3, 1, 1)
               plt.title('Количество групповых поездок в зависимости от месяца')
               plt.bar(list(counts month.keys()), list(counts month.values()))
               plt.subplot(3, 1, 2)
              plt.title('Количество групповых поездок в зависимости от дня недели')
               plt.bar(list(counts day.keys()), list(counts day.values()))
            10
            11 plt.subplot(3, 1, 3)
         ▼ 12 plt.title('Количество групповых поездок в зависимости от времени суток\
            13 (раннее утро, утро, день, вечер) ')
            plt.bar(list(counts_day_time.keys()), list(counts_day_time.values()))
           15 plt.xticks([0, 1, 2, 3])
            16
            17 plt.tight layout()
```


Количество групповых поездок в зависимости от дня недели

По гистограммам можно видеть, что наибольшее число поездок совершается весной, по субботам и в вечернее время суток.

Это также можно учесть в тарификации поездок.

Построим график зависимости длительности поездки от ведичины группы.

In [17]:

1 unique_trips

Out[17]:

	trip_id	starttime	stoptime	bikeid	tripduration	from_station_name	to_station_name	from_station_id	to_station_id	usertype	gender bi
0	431	2014-10- 13 10:31:00	2014-10- 13 10:48:00	SEA00298	985.935	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	CBD-06	PS-04	Member	Male
12	440	2014-10- 13 11:35:00	2014-10- 13 11:45:00	SEA00434	587.634	Occidental Park / Occidental Ave S & S Washing	King Street Station Plaza / 2nd Ave Extension	PS-04	PS-05	Member	Male
36	450	2014-10- 13 11:40:00	2014-10- 13 11:49:00	SEA00107	499.734	Occidental Park / Occidental Ave S & S Washing	City Hall / 4th Ave & James St	PS-04	CBD-07	Member	Female
38	453	2014-10- 13 11:41:00	2014-10- 13 11:51:00	SEA00178	571.807	Occidental Park / Occidental Ave S & S Washing	1st Ave & Marion St	PS-04	CBD-05	Member	Male
58	463	2014-10- 13 11:44:00	2014-10- 13 12:00:00	SEA00296	920.055	Occidental Park / Occidental Ave S & S Washing	2nd Ave & Spring St	PS-04	CBD-06	Member	Female
286847	255236	2016-08- 31 22:13:00	2016-08- 31 22:25:00	SEA00254	674.993	3rd Ave & Broad St	Occidental Park / Occidental Ave S & S Washing	BT-01	PS-04	Member	Male
286848	255237	2016-08- 31 22:37:00	2016-08- 31 22:39:00	SEA00330	144.477	Summit Ave & E Denny Way	Summit Ave E & E Republican St	CH-01	CH-03	Member	Male
286849	255238	2016-08- 31 22:44:00	2016-08- 31 23:03:00	SEA00336	1106.063	Pier 69 / Alaskan Way & Clay St	2nd Ave & Blanchard St	WF-01	BT-05	Short- Term Pass Holder	NaN
286852	255241	2016-08- 31 23:34:00	2016-08- 31 23:45:00	SEA00201	679.532	Harvard Ave & E Pine St	2nd Ave & Spring St	CH-09	CBD-06	Short- Term Pass Holder	NaN
286853	255243	2016-08- 31 23:47:00	2016-09- 01 00:20:00	SEA00300	1951.173	Cal Anderson Park / 11th Ave & Pine St	6th Ave S & S King St	CH-08	ID-04	Short- Term Pass Holder	NaN

```
In [18]:

1 plt.figure(figsize=(15, 6))

2 plt.title('Зависимость длительности поездки от размера группы')
4 plt.scatter(unique_trips.members_num, unique_trips.tripduration)

5 plt.xlabel('Размер группы')
7 plt.ylabel('Длительность поездки (c)')
8 plt.show()
```


Наблюдается тенденция к уменьшению длительности при увеличении размера группы.

Проверим, есть ли зависимость, статистическими методами с помощью корреляций.

Коэффициент корреляции Спирмена. Он подходит для выборок большого размера способен выявлять нелинейные зависимости.

```
In [19]: 1 sps.spearmanr(unique_trips.members_num, unique_trips.tripduration)
```

Out[19]: SpearmanrResult(correlation=0.20887796587249194, pvalue=0.0)

p_value < 0.05 гипотеза о независимости выборок отверглась. Следовательно, можно сказать, что есть тенденция к уменьшению длительности поездки при увеличении размера группы.

Данный факт также может повлиять на тарификацию компании.

Визуализация

Визуализируем, теперь, наиболее популярные групповые маршруты.

Воспользуемся функциями из ноутбука по визуализации данных.

```
In [20]: ▼
               def most popular(trip):
                   d = \{\}
             2
             3
                   for route in trip.values:
             4
                       from to = (route[7], route[8])
             5
            6
                       if from to in d:
             7
                           d[from to] += 1
            8
                       else:
             9
                           d[from to] = 1
           10
                   d = {k: v for k, v in sorted(d.items(), key=lambda item: item[1])[::-1]}
           11
           12
           13
                   return d
```

```
In [21]: ▼
           1 def plot popular(popular dict, n=10):
                  px.set mapbox access token(open("public key").read())
                  fig = px.scatter mapbox(stations, lat="lat", lon="long",
            3
                                           zoom=11)
                  top = list(popular dict.keys())[:n]
            7
                  for route in top:
            8
                      st from = route[0]
            9
                      st to = route[1]
           10
                      from lon = stations[stations.station id == st from].long.values[0]
                      from lat = stations[stations.station id == st from].lat.values[0]
           11
           12
                      to lon = stations[stations.station id == st to].long.values[0]
           13
                      to lat = stations[stations.station id == st to].lat.values[0]
           14
          15
                      fig.add trace(go.Scattermapbox(mode = "markers+lines",
           16
                                                      lon = [from lon, to lon],
           17
                                                     lat = [from lat, to lat],
           18
                                                     marker = {'size': 10}))
           19
           20
                  fig.show()
```

20 Наиболее популярных маршрутов у групп

```
In [22]: 1 groups_popular = most_popular(unique_trips[unique_trips.members_num > 1])
2 plot_popular(groups_popular, 20)
```



```
In [23]: 1 solo_popular = most_popular(unique_trips[unique_trips.members_num == 1])
2 plot_popular(solo_popular, 20)
```


Наблюдение

Видно отличие среди популярных маршрутов групповых и одиночных поездок. Достаточно много одинчных поездок сосредоточено в районе Capitol Hill с большим количеством баров и клубов.

Большинство же групповых поездок пролегают в районе Belltown. Это может быть связано как с густотой населения этого района, как и с обилием (судя по описанию) культурных достопримечательностей. Такие групповые поездки могут быть экскурсионными.

Также, много групповых поездок сосредоточено поблизости района Laurelhurst. Это может быть связано с тем, что в данном районе много парков и частных домов (семейные поездки/отдых на природе).

В данном вопросе достаточно много вопросов для исследования. Таких, как сравнение распределений одиночных и групповых поездок в зависимости от погодных условий, выявление зависимости параметров от полового состава группы.

Планируется продожение работы над групповыми поездками...

In []:

1