EXPRESS MAIL LABEL NO. DATE OF DEPOSIT

EV225199194US January 26,22005

SEQUENCE LISTING

DT05 Rec'd PCT/PT0 2 6 JAN 2005

```
<110> Roslin Institute (Edinburgh)
      CXR Biosciences Limited
       Whitelaw, Christopher BA
       Clark, Anthony J
       Wolf, Charles R
<120> Multi-reporter gene model for toxicological screening
<130> P32590WO/NCB
<140> PCT/GB2003/003192
<141> 2003-07-25
<150> GB 0217402.7
<151> 2002-07-26
<160> 41
<170> PatentIn version 3.1
<210> 1
<211> 10
<212> PRT
<213> Unknown
<220>
<223> Epitope
<400> 1
Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu
<210> 2
<211> 14
<212> PRT
<213> Unknown
<220>
<223> Epitope
<400> 2
Gly Lys Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr
               5
<210> 3
<211> 9
<212> PRT
<213> Unknown
<220>
<223> Epitope
```

```
<400> 3
Tyr Pro Tyr Asp Val Pro Asp Tyr Ala
<210> 4
<211> 12
<212> PRT
<213> Unknown
<220>
<223> Epitope
<400> 4
Asn Val Arg Phe Ser Thr Ile Val Arg Arg Arg Ala
<210> 5
<211> 14
<212> PRT
<213> Unknown
<220>
<223> Epitope
<400> 5
Lys Gln Met Ser Asp Arg Arg Glu Asn Asp Met Ser Pro Ser
<210> 6
<211> 15
<212> PRT
<213> Unknown
<220>
<223> Epitope
<400> 6
Ser Gly Asn Glu Val Ser Arg Ala Val Leu Leu Pro Gln Ser Cys
<210> 7
<211> 17
<212> PRT
<213> Unknown
<220>
<223> Epitope
```

```
<400> 7
Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr Ser Ala Asn
               5
Leu
<210> 8
<211> 15
<212> PRT
<213> Unknown
<220>
<223> Epitope
<400> 8
Arg Ser Thr Leu Gln His Pro Asp Tyr Leu Gln Glu Tyr Ser Thr
                                  10
<210> 9
<211> 16
<212> PRT
<213> Unknown
<220>
<223> Epitope
<400> 9
Val Ser Thr Leu Leu Arg Trp Glu Arg Phe Pro Gly His Arg Gln Ala
<210> 10
<211> 20
<212> PRT
<213> Unknown
<220>
<223> Epitope
<400> 10
Lys Phe Gln Gln Leu Val Gln Cys Leu Thr Glu Phe His Ala Ala Leu
               5
Gly Ala Tyr Val
           20
```

<210> 11

```
<211> 20
<212> PRT
<213> Unknown
<220>
<223> Epitope
<400> 11
Gln Glu Gln Cys Gln Glu Val Trp Arg Lys Arg Val Ile Ser Ala Phe
                                   10
Leu Lys Ser Pro
            20
<210> 12
<211> 14
<212> PRT
<213> Unknown
<220>
<223> Epitope
<400> 12
Arg Leu Ser Asp Lys Thr Gly Pro Val Ala Gln Glu Lys Ser
                                   10
<210> 13
<211> 543
<212> DNA
<213> Mus musculus
<220>
<221> CDS
<222> (1)..(540)
<223>
<400> 13
atg aag atg ctg ctg ctg tgt ttg gga ctg acc cta gtc tgt gtc
                                                                     48
Met Lys Met Leu Leu Leu Cys Leu Gly Leu Thr Leu Val Cys Val
                                   10
                                                                     96
cat gca gaa gct agt tct acg gga agg aac ttt aat gta gaa aag
His Ala Glu Glu Ala Ser Ser Thr Gly Arg Asn Phe Asn Val Glu Lys
                                                   30
                                25
            20
att aat ggg gaa tgg cat act att atc ctg gcc tct gac aaa aga gaa
                                                                    144
Ile Asn Gly Glu Trp His Thr Ile Ile Leu Ala Ser Asp Lys Arg Glu
                            40
        35
                                                                    192
aag ata gaa gat aat ggc aac ttt aga ctt ttt ctg gag caa atc cat
Lys Ile Glu Asp Asn Gly Asn Phe Arg Leu Phe Leu Glu Gln Ile His
```

	50			55				60				
					ctt Leu							240
					gtt Val							288
_			_	_	gga Gly							336
	_	_			atg Met 120	_			_	_	_	384
					ggg Gly							432
					ttt Phe							480
					gac Asp							528

cag gcc cga gaa tga 543 Gln Ala Arg Glu 180

<210> 14 <211> 180 <212> PRT <213> Mus musculus

<400> 14

Met Lys Met Leu Leu Leu Cys Leu Gly Leu Thr Leu Val Cys Val 1 5 10 15

His Ala Glu Glu Ala Ser Ser Thr Gly Arg Asn Phe Asn Val Glu Lys 20 25 30

Ile Asn Gly Glu Trp His Thr Ile Ile Leu Ala Ser Asp Lys Arg Glu 35 40 45

Lys Ile Glu Asp Asn Gly Asn Phe Arg Leu Phe Leu Glu Gln Ile His 50 55 60

Val 65	Leu	Glu	Lys	Ser	Leu 70	Val	Leu	Lys	Phe	His 75	Thr	Val	Arg	Asp	Glu 80	
Glu	Cys	Ser	Glu	Leu 85	Ser	Met	Val	Ala	Asp 90	Lys	Thr	Glu	Lys	Ala 95	Gly	
Glu	Tyr	Ser	Val 100	Thr	Tyr	Asp	Gly	Phe 105	Asn	Thr	Phe	Thr	Ile 110	Pro	Lys	
Thr	Asp	Tyr 115	Asp	Asn	Phe	Leu	Met 120	Ala	His	Leu	Ile	Asn 125	Glu	Lys	Asp	
Gly	Glu 130	Thr	Phe	Gln	Leu	Met 135	Gly	Leu	Tyr	Gly	Arg 140	Glu	Pro	Asp	Leu	
Ser 145	Ser	Asp	Ile	Lys	Glu 150	Arg	Phe	Ala	Gln	Leu 155	Cys	Glu	Lys	His	Gly 160	
Ile	Leu	Arg	Glu	Asn 165	Ile	Ile	Asp	Leu	Ser 170	Asn	Ala	Asn	Arg	Cys 175	Leu	
Gln	Ala	Arg	Glu 180													
<210 <211 <211 <211	L> 5 2> I	L5 540 ONA Artif	ficia	al se	equer	ıce										
<220 <220		Recon	mbina	ant m	nMUP	repo	ortei	r mol	lecul	Le						
<220 <221 <221 <221	1> (2>	CDS (1).	. (531	7)												
<400		15														
ggg Gly 1	ccc Pro	ctg Leu	gga Gly	tcc Ser 5	atg Met	gag Glu	cag Gln	aaa Lys	ctc Leu 10	atc Ile	tct Ser	gaa Glu	gag Glu	gat Asp 15	ctg Leu	48
acc Thr	atg Met	gaa Glu	gct Ala 20	agt Ser	tct Ser	acg Thr	gga Gly	agg Arg 25	aac Asn	ttt Phe	aat Asn	gta Val	gaa Glu 30	aag Lys	att Ile	96
aat	qqq	gaa	tgg	cat	act	att	atc	ctg	gcc	tct	gac	aaa	aga	gaa	aag	144

Asn Gly Glu Trp His Thr	Ile Ile Leu Ala Ser 40	Asp Lys Arg Glu Lys 45
ata gaa gat aat ggc aac Ile Glu Asp Asn Gly Asn 50		
ttg gag aaa tcc tta gtt Leu Glu Lys Ser Leu Val 65 70		* · · · · · · · · · · · · · · · ·
tgc tcg gaa tta tct atg Cys Ser Glu Leu Ser Met 85		
tat tct gtg acg tat gat Tyr Ser Val Thr Tyr Asp 100		
gac tat gat aac ttt ctt Asp Tyr Asp Asn Phe Leu 115		
gaa acc ttc cag ctg atg Glu Thr Phe Gln Leu Met 130		
tca gac atc aag gaa agg Ser Asp Ile Lys Glu Arg 145 150		
ctt aga gaa aat atc att Leu Arg Glu Asn Ile Ile 165		
gcc cga gaa tga Ala Arg Glu		540
<210> 16 <211> 179 <212> PRT <213> Artificial sequen	nce	
<220> <223> Recombinant mMUP	reporter molecule	
<400> 16		
Gly Pro Leu Gly Ser Met 1 5	Glu Gln Lys Leu Ile 10	Ser Glu Glu Asp Leu 15
Thr Met Glu Ala Ser Ser 20	Thr Gly Arg Asn Phe 25	Asn Val Glu Lys Ile 30

Asn Gly Glu Trp His Thr Ile Ile Leu Ala Ser Asp Lys Arg Glu Lys 35 40 45

Ile Glu Asp Asn Gly Asn Phe Arg Leu Phe Leu Glu Gln Ile His Val 50 55 60

Leu Glu Lys Ser Leu Val Leu Lys Phe His Thr Val Arg Asp Glu Glu 65 70 75 80

Cys Ser Glu Leu Ser Met Val Ala Asp Lys Thr Glu Lys Ala Gly Glu 85 90 95

Tyr Ser Val Thr Tyr Asp Gly Phe Asn Thr Phe Thr Ile Pro Lys Thr 100 105 110

Asp Tyr Asp Asn Phe Leu Met Ala His Leu Ile Asn Glu Lys Asp Gly
115 120 125

Glu Thr Phe Gln Leu Met Gly Leu Tyr Gly Arg Glu Pro Asp Leu Ser 130 135 140

Ser Asp Ile Lys Glu Arg Phe Ala Gln Leu Cys Glu Lys His Gly Ile 145 150 155 160

Leu Arg Glu Asn Ile Ile Asp Leu Ser Asn Ala Asn Arg Cys Leu Gln 165 170 175

Ala Arg Glu

<210> 17

<211> 540

<212> DNA

<213> Artificial sequence

<220>

<223> Recombinant BLGm reporter molecule

<220>

<221> CDS

<222> (1)..(537)

<223>

<400> 17

ggg ccc ctg gga tcc atg gcc atc atc gtc acc cag acc atg aaa ggc

48

Gly Pro	o Leu	Gly	Ser 5	Met	Ala	Ile	Ile	Val 10	Thr	Gln	Thr	Met	Lys 15	Gly		
ctg gad Leu Asy																96
gcc age															1	44
tac gte Tyr Va 50	l Glu														1	92
ctg car Leu Gl: 65															2	40
gaa aa Glu Ly															2	88
aac aa Asn Ly															3	36
tgc at Cys Me															3	84
ctg gt Leu Va 13	l Arg	acc Thr	ccg Pro	gag Glu	gtg Val 135	gac Asp	aac Asn	gag Glu	gcc Ala	ctg Leu 140	gag Glu	aaa Lys	ttc Phe	gac Asp	4	32
aaa gc Lys Al 145															4	80
acc ca Thr Gl	g ctg n Leu	gag Glu	999 Gly 165	cag Gln	tgc Cys	cac His	gtc Val	gag Glu 170	cag Gln	aaa Lys	ctc Leu	atc Ile	tct Ser 175	gaa Glu	5	28
gag ga Glu As															5	40
<210><211><211><212><213>	18 179 PRT Arti	fici	al s	eque	nce											
<220> <223>	Reco	mbin	ant 1	BLGm	rep	orte	r mo	lecu	le							
<400>	18															

Gly Pro Leu Gly Ser Met Ala Ile Ile Val Thr Gln Thr Met Lys Gly 10 Leu Asp Ile Gln Lys Val Ala Gly Thr Trp His Ser Leu Ala Met Ala 25 20 Ala Ser Asp Ile Ser Leu Leu Asp Ala Gln Ser Ala Pro Leu Arg Val 35 40 Tyr Val Glu Glu Leu Lys Pro Thr Pro Glu Gly Asn Leu Glu Ile Leu 50 55 Leu Gln Lys Trp Glu Asn Gly Glu Cys Ala Gln Lys Lys Ile Ile Ala Glu Lys Thr Lys Ile Pro Ala Val Phe Lys Ile Asp Ala Leu Asn Glu Asn Lys Val Leu Val Leu Asp Thr Asp Tyr Lys Lys Tyr Leu Leu Phe 100 Cys Met Glu Asn Ser Ala Glu Pro Glu Gln Ser Leu Ala Cys Gln Cys 120 115 Leu Val Arg Thr Pro Glu Val Asp Asn Glu Ala Leu Glu Lys Phe Asp 135 130 Lys Ala Leu Lys Ala Leu Pro Met His Ile Arg Leu Ala Phe Asn Pro 155 160 145 150 Thr Gln Leu Glu Gly Gln Cys His Val Glu Gln Lys Leu Ile Ser Glu 165 Glu Asp Leu <210> 19 <211> 214 <212> PRT

<223> Modified MUP protein produced from the pSecTag vector

<220>

<213> Artificial sequence

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15

Gly Ser Thr Gly Asp Ala Ala Gln Pro Ala Arg Arg Ala Arg Arg Thr 20 25 30

Lys Leu Gly Thr Glu Leu Gly Ser Met Glu Gln Lys Leu Ile Ser Glu 35 40 45

Glu Asp Leu Thr Met Glu Ala Ser Ser Thr Gly Arg Asn Phe Asn Val 50 55 60

Glu Lys Ile Asn Gly Glu Trp His Thr Ile Ile Leu Ala Ser Asp Lys 65 70 75 80

Arg Glu Lys Ile Glu Asp Asn Gly Asn Phe Arg Leu Phe Leu Glu Gln 85 90 95

Ile His Val Leu Glu Lys Ser Leu Val Leu Lys Phe His Thr Val Arg
100 105 110

Asp Glu Glu Cys Ser Glu Leu Ser Met Val Ala Asp Lys Thr Glu Lys 115 120 125

Ala Gly Glu Tyr Ser Val Thr Tyr Asp Gly Phe Asn Thr Phe Thr Ile 130 135 140

Lys Asp Gly Glu Thr Phe Gln Leu Met Gly Leu Tyr Gly Arg Glu Pro 165 170 175

Asp Leu Ser Ser Asp Ile Lys Glu Arg Phe Ala Gln Leu Cys Glu Lys 180 185 190

His Gly Ile Leu Arg Glu Asn Ile Ile Asp Leu Ser Asn Ala Asn Arg 195 200 205

Cys Leu Gln Ala Arg Glu 210

<210 <211 <212 <213	L> ? ?>	20 243 PRT Artii	Eicia	al se	equer	nce									
<220 <223		Modi	fied	MUP	prot	ein	prod	luceo	d fro	om th	ne ps	SecTa	ag ve	ector	î
<400)>	20													
Met 1	Glu	Thr	Asp	Thr 5	Leu	Leu	Leu	Trp	Val 10	Leu	Leu	Leu	Trp	Val 15	Pro
Gly	Ser	Thr	Gly 20	Asp	Ala	Ala	Gln	Pro 25	Ala	Lys	Met	Leu	Leu 30	Leu	Leu
Cys	Leu	Gly 35	Leu	Thr	Leu	Val	Cys 40	Val	His	Ala	Glu	Glu 45	Ala	Ser	Ser
Thr	Gly 50	Arg	Asn	Phe	Asn	Val 55	Glu	Lys	Ile	Asn	Gly 60	Glu	Trp	His	Thr
Ile 65	Ile	Leu	Ala	Ser	Asp 70	Lys	Arg	Glu	Lys	Ile 75	Glu	Asp	Asn	Gly	Asn 80
Phe	Arg	Leu	Phe	Leu 85	Glu	Gln	Ile	His	Val 90	Leu	Glu	Lys	Ser	Leu 95	Val
Leu	Lys	Phe	His 100	Thr	Val	Arg	Asp	Glu 105	Glu	Cys	Ser	Glu	Leu 110	Ser	Met
Val	Ala	Asp 115	Lys	Thr	Glu	Lys	Ala 120	Gly	Glu	Tyr		Val 125	Thr	Tyr	Asp
Gly	Phe 130	Asn	Thr	Phe	Thr	Ile 135	Pro	Lys	Thr	Asp	Tyr 140	Asp	Asn	Phe	Leu
Met 145	Ala	His	Leu	Ile	Asn 150	Glu	Lys	Asp	Gly	Glu 155	Thr	Phe	Gln	Leu	Met 160
Gly	Leu	Tyr	Gly	Arg 165	Glu	Pro	Asp	Leu	Ser 170	Ser	Asp	Ile	Lys	Glu 175	Arg
Phe	Ala	Gln	Leu 180	Cys	Glu	Lys	His	Gly 185	Ile	Leu	Arg	Glu	Asn 190	Ile	Ile

Asp Leu Ser Asn Ala Asn Arg Cys Leu Gln Ala Arg Glu Glu Gln Lys 195 200 205

Leu Ile Ser Glu Glu Asp Leu Ala Ala Ala Arg Gly Gly Pro Glu Gln 210 215 220

Lys Leu Ile Ser Glu Glu Asp Leu Asn Ser Ala Val Asp His His 225 230 235 240

His His His

<210> 21

<211> 253

<212> PRT

<213> Artificial sequence

<220>

<223> Modified MUP protein produced from the pSecTag vector

<400> 21

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro 1 5 10 15

Gly Ser Thr Gly Asp Ala Ala Gln Pro Ala Lys Met Leu Leu Leu Leu 20 25 30

Cys Leu Gly Leu Thr Leu Val Cys Val His Ala Glu Glu Ala Ser Ser 35 40 45

Thr Gly Arg Asn Phe Asn Val Glu Lys Ile Asn Gly Glu Trp His Thr 50 55 60

Ile Ile Leu Ala Ser Asp Lys Arg Glu Lys Ile Glu Asp Asn Gly Asn 65 70 75 80

Phe Arg Leu Phe Leu Glu Gln Ile His Val Leu Glu Lys Ser Leu Val 85 90 95

Leu Lys Phe His Thr Val Arg Asp Glu Glu Cys Ser Glu Leu Ser Met 100 105 110

Val Ala Asp Lys Thr Glu Lys Ala Gly Glu Tyr Ser Val Thr Tyr Asp

115 120 125

Gly Phe Asn Thr Phe Thr Ile Pro Lys Thr Asp Tyr Asp Lys Leu Gly
130 135 140

Thr Gly Ser Ser Ser Glu Phe Asn Phe Leu Met Ala His Leu Ile Asn 145 150 155 160

Glu Lys Asp Gly Glu Thr Phe Gln Leu Met Gly Leu Tyr Gly Arg Glu 165 170 175

Pro Asp Leu Ser Ser Asp Ile Lys Glu Arg Phe Ala Gln Leu Cys Glu 180 185 190

Lys His Gly Ile Leu Arg Glu Asn Ile Ile Asp Leu Ser Asn Ala Asn 195 200 205

Arg Cys Leu Gln Ala Arg Glu Glu Gln Lys Leu Ile Ser Glu Glu Asp 210 215 220

Leu Ala Ala Ala Arg Gly Gly Pro Glu Gln Lys Leu Ile Ser Glu Glu 225 230 235 240

Asp Leu Asn Ser Ala Val Asp His His His His His Ess 245 250

<210> 22

<211> 259

<212> PRT

<213> Artificial sequence

<220>

<223> Modified MUP protein produced from the pSecTag vector

<400> 22

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro 1 5 10 15

Gly Ser Thr Gly Asp Ala Ala Gln Pro Ala Lys Met Leu Leu Leu 20 25 30

Cys Leu Gly Leu Thr Leu Val Cys Val His Ala Glu Glu Ala Ser Ser 35 40 45

Thr Gly Arg Asn Phe Asn Val Glu Lys Ile Asn Gly Glu Trp His Thr Ile Ile Leu Ala Ser Asp Lys Arg Glu Lys Ile Glu Asp Asn Gly Asn Phe Arg Leu Phe Leu Glu Gln Ile His Val Leu Glu Lys Ser Leu Val Leu Lys Phe His Thr Val Arg Asp Glu Glu Cys Ser Glu Leu Ser Met 105 100 Val Ala Asp Lys Thr Glu Lys Ala Gly Glu Tyr Ser Val Thr Tyr Asp 120 115 Gly Phe Asn Thr Phe Thr Ile Pro Lys Thr Asp Tyr Asp Lys Leu Asn 140 130 135 Val Arg Phe Ser Thr Ile Val Arg Arg Arg Ala Glu Phe Asn Phe Leu 160 150 155 Met Ala His Leu Ile Asn Glu Lys Asp Gly Glu Thr Phe Gln Leu Met 170 175 165 Gly Leu Tyr Gly Arg Glu Pro Asp Leu Ser Ser Asp Ile Lys Glu Arg Phe Ala Gln Leu Cys Glu Lys His Gly Ile Leu Arg Glu Asn Ile Ile 205 Asp Leu Ser Asn Ala Asn Arg Cys Leu Gln Ala Arg Glu Glu Gln Lys 215 220 210 Leu Ile Ser Glu Glu Asp Leu Ala Ala Ala Arg Gly Gly Pro Glu Gln 240 230 235 225

Lys Leu Ile Ser Glu Glu Asp Leu Asn Ser Ala Val Asp His His His 245 250 255

His His His

<210> 23

<211> 7379

<212> DNA

<213> Ovis aries

<400> 23

gtgctcagca acacacccag caccagcatt cccgctgctc ctgaggtctg caggcagctc 60 120 gctgtagcct gagcggtgtg gagggaagtg tcctgggaga tttaaaatgt gagaggcggg aggtgggagg ttgggccctg tgggcctgcc catcccacgt gcctgcatta gccccagtgc 180 tgctcagccg tgcccccgcc gcaggggtca ggtcactttc ccgtcctggg gttattatga 240 ctcttgtcat tgccattgcc atttttgcta ccctaactgg gcagcaggtg cttgcagagc 300 360 cctcgatacc gaccaggtcc tccctcggag ctcgacctga accccatgtc acccttgccc 420 cagectgeag agggtgggtg actgeagaga tecetteace caaggeeacg gteacatggt ttggaggagc tggtgcccaa ggcagaggcc accctccagg acacacctgt ccccagtgct 480 540 ggctctgacc tgtccttgtc taagaggctg accccggaag tgttcctggc actggcagcc agcctggacc cagagtccag acacccacct gtgcccccgc ttctggggtc taccaggaac 600 cgtctaggcc cagaggggga cttcctgctt ggccttggat ggaagaaggc ctcctattgt 660 cctcgtagag gaagccaccc cggggcctga ggatgagcca agtgggattc cgggaaccgc 720 gtggctgggg gcccagcccg ggctggctgg cctgcatgcg cctcctgtat aaggccccaa 780 840 geotgeotgt eteageeete eacteeetge agageteaga ageaegaeee cagetgeage 900 catgaagtgc ctcctgcttg ccctgggcct ggccctcgcc tgtggcgtcc aggccatcat 960 cgtcacccag accatgaaag gcctggacat ccagaaggtt cgagggttgg ccgggtgggt 1020 gagttgcagg gcgggcaggg gagctgggcc tcagagagcc aagagaggct gtgacgttgg 1080 gttcccatca gtcagctagg gccacctgac aaatccccgc tggggcagct tcaaccaggc gttcactgtc ttgcattctg gaggctggaa gcccaagatc caggtgttgg cagggctggc 1140 1200 ttotoctgog geogetetet ggggageaga eggeegtett etecagteet etgegegeee 1260 tgatttcctc ttcctgtgag gccaccaggc ctgctggaaa cacgcctgcc tgcgcagctt 1320 cacacgacct ttgtcatctc tttaaaggcc atgtctccag agtcatgtgt tgaagttctg 1380 ggggttagtg ggacacagtt cagcccctaa aagagtctct ctgcccctca aattttcccc 1440 acctccagcc atgtctcccc aagatccaaa tgttgctaca tgtggggggg ctcatctggg 1500 tecetetttg ggtteagtgt gagtetgggg agageattee ceagggtgea gagttggggg 1560 gagtatetea gggetgeeca ggeeggggtg ggaeagagag eecaetgtgg ggetgggge

cccttcccac ccccagagtg caactcaagg tcc	ctctcca ggtggcgggg acttggcact 1620
ccttggctat ggcggccagc gacatetece tgc	tggatgc ccagagtgcc cccctgagag 1680
tgtacgtgga ggagctgaag cccacccccg agg	gcaacct ggagatcctg ctgcagaaat 1740
ggtgggcgtc tctccccaac atggaacccc cac	tececag ggetgtggae eeeeeggggg 1800
gtggggtgca ggagggacca gggccccagg gct	ggggaag agggctcaga gtttactggt 1860
acceggeget ceacceaagg etgeecacce agg	gcttttt tttttttaa acttttatta 1920
atttgatgct tcagaacatc atcaaacaaa tga	acataaa acattcattt ttgtttactt 1980
ggaaggggag ataaaatcct ctgaagtgga aat	gcatagc aaagatacat acaatgaggc 2040
aggtattctg aattccctgt tagtctgagg att	acaagtg tatttgagca acagagagac 2100
attttcatca tttctagtct gaacacctca gta	tctaaaa tgaacaagaa gtcctggaaa 2160
cgaagcagtg tggggatagg cccgtgtgaa ggc	tgctggg aggcagcaga cctgggtctt 2220
cgggctcaag cagttcccgc taccagccct gtc	cacctca gacggggtc agggtgcagg 2280
agagagctgg atgggtgtgg gggcagagat ggg	gacetga acceeaggge tgeettttgg 2340
gggtgcctgt ggtcaaggct ctccctgacc ttt	tetetet ggetteatet gaetteteet 2400
ggcccatcca cccggtcccc tgtggcctga ggt	gacagtg agtgcgccga ggctagttgg 2460
ccagctggct cctatgccca tgccaccccc ctc	cagecet eetgggeeag ettetgeece 2520
tggccctcag ttcatcctga tgaaaatggt cca	tgccaat ggctcagaaa gcagctgtct 2580
ttcagggaga acggcgagtg tgctcagaag aag	attattg cagaaaaaac caagatccct 2640
geggtgttca agategatgg tgagteeggg tee	ctggggg acacccacca cccccgcccc 2700
cggggactgt ggacaggttc agggggctgg cgt	cgggccc tgggatgcta agggactggt 2760
ggtgatgaag acactgcctt gacacctgct tca	cttgcct cccctgccac ctgcccgggg 2820
ccttggggcg gtggccatgg gcaggtcccg gct	ggcgggc taacccacca gggtgacacc 2880
cgagetetet ttgetggggg gegggeggtg ete	tgggccc tcaggctgag ctcaggaggt 2940
acctgtgccc tcccaggggt aaccgagagc cgt	tgcccac tccaggggcc caggtgcccc 3000
acgaceccag ecegetecae ageteettea tet	cctggag acaaactctg tccgccctcg 3060
ctcattcact tgttcgtcct aaatccgaga tga	taaagct tcgaggggg gttggggttc 3120
catcagggct gcccttccgc cgggcagcct ggg	ccacatc tgcccttggc cccctcagga 3180
ctcactctga ctggaggccc tgcactgact gac	gccaggg tgcccagccc agggtctctg 3240
gcgccatcca gctgcactgg gtttgggtgc tgg	tectgee eccaagetge eeggacacea 3300

caggcagccg	gggctgccca	ctggcctcgg	tcagggtgag	ccccagctgc	ccccgctcag	3360
ggettgeece	gacaatgacc	ccatcctcag	gacgcacccc	ccttcccttg	ctgggcagtg	3420
tccagcccca	cccgagatcg	ggggaagccc	tatttcttga	caactccagt	ccctggggga	3480
gggggcctca	gactgagtgg	tgagtgttcc	caagtccagg	aggtggtgga	gggtcctggc	3540
ggatccagag	ttgacagtga	gggcttcctg	ggccccatgc	gcctggcagt	ggcagcaggg	3600
aagaggaagc	accatttcag	gggtgggga	tgccagaggc	gctccccacc	ccgtcttcgc	3660
cgggtggtga	ccccggggga	gccccgctgg	tcgtggaggg	tgctgggggc	tgactagcaa	3720
ccctcccc	cccgttggaa	ctcacttttc	tcccgtcttg	accgcgtcca	gccttgaatg	3780
agaacaaagt	ccttgtgctg	gacaccgact	acaaaaagta	cctgctcttc	tgcatggaaa	3840
acagtgctga	gcccgagcaa	agcctggcct	gccagtgcct	gggtgggtgc	caaccctggc	3900
tgcccaggga	gaccagctgc	gtggtccttg	ctgcaacagg	gggtggggg	tgggagcttg	3960
atccccagga	ggaggagggg	tggggggtcc	ctgagtcccg	ccaggagaga	gtggtcgcat	4020
accgggagcc	agtctgctgt	gggcctgtgg	gtggctgggg	acgggggcca	gacacacagg	4080
ccgggagacg	ggtgggctgc	agaactgtga	ctggtgtgac	cgtcgcgatg	gggccggtgg	4140
tcactgaatc	taacagcctt	tgttaccggg	gagtttcaat	tatttcccaa	aataagaact	4200
caggtacaaa	gccatctttc	aactatcaca	tcctgaaaac	aaatggcagg	tgacattttc	4260
tgtgccgtag	cagtcccact	gggcattttc	agggcccctg	tgccaggggg	gcgcgggcat	4320
cggcgagtgg	aggctcctgg	ctgtgtcagc	cggcccaggg	ggaggaaggg	acccggacag	4380
ccagaggtgg	ggggcaggct	ttccccctgt	gacctgcaga	cccactgcac	tgccctggga	4440
ggaagggagg	ggaactaggc	caagggggaa	gggcaggtgc	tctggagggc	aagggcagac	4500
ctgcagacca	ccctggggag	cagggactga	ccccgtccc	tgccccatag	tcaggacccc	4560
ggaggtggac	aacgaggccc	tggagaaatt	cgacaaagcc	ctcaaggccc	tgcccatgca	4620
catccggctt	gccttcaacc	cgacccagct	ggagggtgag	cacccaggcc	ccgcccttcc	4680
ccagggcagg	agccacccgg	ccccgggacg	acctcctccc	atggtgaccc	ccagctcccc	4740
aggcctccca	ggaggaaggg	gtggggtgca	gcaccccgtg	ggggccccct	ccccaccccc	4800
tgccaggcct	ctcttcccga	ggtgtccagt	cccatcctga	ccccccatg	actctccctc	4860
ccccacaggg	cagtgccacg	tctaggtgag	cccctgccgg	tgcctctggg	gtaagctgcc	4920
tgccctgccc	cacgtcctgg	gcacacacat	ggggtagggg	gtcttggtgg	ggcctgggac	4980

cccacatcag	gccctggggt	ccccctgtg	agaatggctg	gaagctgggg	tccctcctgg	5040
cgactgcaga	gctggctggc	cgcgtgccac	tcttgtgggt	gacctgtgtc	ctggcctcac	5100
acactgacct	cctccagctc	cttccagcag	agctaaggct	aagtgagcca	gaatggtacc	5160
taaggggagg	ctagcggtcc	ttctcccgag	gaggggctgt	cctggaacca	ccagccatgg	5220
agaggctggc	aagggtctgg	caggtgcccc	aggaatcaca	ggggggcccc	atgtccattt	5280
cagggcccgg	gagccttgga	ctcctctggg	gacagacgac	gtcaccaccg	cccccccc	5340
atcaggggga	ctagaaggga	ccaggactgc	agtcaccctt	cctgggaccc	aggcccctcc	5400
aggcccctcc	tggggctcct	gctctgggca	gcttctcctt	caccaataaa	ggcataaacc	5460
tgtgctctcc	cttctgagtc	tttgctggac	gacgggcagg	gggtggagaa	gtggtgggga	5520
gggagtctgg	ctcagaggat	gacagcgggg	ctgggatcca	gggcgtctgc	atcacagtct	5580
tgtgacaact	gggggcccac	acacatcact	geggetettt	gaaactttca	ggaaccaggg	5640
agggactcgg	cagagacatc	tgccagttca	cttggagtgt	tcagtcaaca	cccaaactcg	5700
acaaaggaca	gaaagtggaa	aatggctgtc	tcttagtcta	ataaatattg	atatgaaact	5760
caagttgctc	atggatcaat	atgcctttat	gatccagcca	gccactactg	tcgtatcaac	5820
tcatgtaccc	aaacgcactg	atctgtctgg	ctaatgatga	gagattccca	gtagagagct	5880
ggcaagaggt	cacagtgaga	actgtctgca	cacacagcag	agtccaccag	tcatcctaag	5940
gagatcagtc	ctggtgttca	ttggaggact	gatgttgaag	ctgaaactcc	aatgctttgg	6000
ccacctgatg	tgaagagctg	actcatttga	aaagaccctg	atgctgggaa	agattgaggg	6060
caggaggaga	aggggacgac	agaggatgag	atggttggat	ggcatcacca	acacaatgga	6120
catgggtttg	ggtggactcc	aggagttggt	gatggacagg	gaggcctggc	gtgctacgga	6180
agcggtttat	ggggtcacaa	agactgagtg	actgaactga	gctgaactga	atggaaatga	6240
ggtatacagc	aaagtgggga	ttttttagat	aataagaata	tacacataac	atagtgtata	6300
ctcatatttt	tatgcatacc	tgaatgctca	gtcactcagt	cgtatctgac	tctgtgacct	6360
atggaccgta	gccttccagg	tttcttctgt	ccacagaatt	ctccaaggca	agaatactgg	6420
agtgggtagc	catttcctcc	tccaggggat	cctcccgacc	cagggattga	accggcatct	6480
cctgtattgg	caggtggatt	ctttaccact	gtgccaccag	ggaagcccgt	gttactctct	6540
atgtcccact	taattaccaa	agctgctcca	agaaaaagcc	cctgtgccct	ctgagcttcc	6600
cggcctgcag	agggtggtgg	gggtagactg	tgacctggga	acaccctccc	gcttcaggac	6660
tcccgggcca	cgtgacccac	agtcctgcag	acagccgggt	agctctgctc	ttcaaggctc	6720

attatettta aaaaaaactq aqqtetattt tqtqacttcq ctqccqtaac ttctqaacat 6780 ccagtgcgat ggacaggacc tcctccccag gcctcagggg cttcagggag ccagccttca 6840 cctatgagtc accagacact cgggggtggc cccgccttca gggtgctcac agtcttccca 6900 6960 tegtectqat caaagagcaa gaccaatgac ttettaggag caagcagaca cecacaggac actgaggttc accagagctg agctgtcctt ttgaacctaa agacacacag ctctcgaagg 7020 ttttctcttt aatctggatt taaggcctac ttgcccctca agagggaaga cagtcctgca 7080 tgtccccagg acagccactc ggtggcatcc gaggccactt agtattatct gaccgcaccc 7140 7200 tggaattaat cggtccaaac tggacaaaaa ccttggtggg aagtttcatc ccagaggcct caaccatcct gctttgacca ccctgcatct ttttttcttt tatgtgtatg catgtatata 7260 tatatatata ttttttttt tttcattttt tggctgtgct ggctgttcgt tgcagttcgg 7320 tgcgcaggct tctctctagt ttctctctag tcttctctta tcacagagca gtctctaga 7379

<210> 24

<211> 180

<212> PRT

<213> Ovis aries

<400> 24

Met Lys Cys Leu Leu Leu Ala Leu Gly Leu Ala Leu Ala Cys Gly Val 1 5 10 15

Gln Ala Ile Ile Val Thr Gln Thr Met Lys Gly Leu Asp Ile Gln Lys 20 25 30

Val Ala Gly Thr Trp His Ser Leu Ala Met Ala Ala Ser Asp Ile Ser 35 40 45

Leu Leu Asp Ala Gln Ser Ala Pro Leu Arg Val Tyr Val Glu Glu Leu 50 55 60

Lys Pro Thr Pro Glu Gly Asn Leu Glu Ile Leu Leu Gln Lys Trp Glu 65 70 75 80

Asn Gly Glu Cys Ala Gln Lys Lys Ile Ile Ala Glu Lys Thr Lys Ile 85 90 95

Pro Ala Val Phe Lys Ile Asp Ala Leu Asn Glu Asn Lys Val Leu Val 100 105 110 Leu Asp Thr Asp Tyr Lys Lys Tyr Leu Leu Phe Cys Met Glu Asn Ser 115 120 125

Ala Glu Pro Glu Gln Ser Leu Ala Cys Gln Cys Leu Val Arg Thr Pro 130 135 140

Glu Val Asp Asn Glu Ala Leu Glu Lys Phe Asp Lys Ala Leu Lys Ala 145 150 155 160

Leu Pro Met His Ile Arg Leu Ala Phe Asn Pro Thr Gln Leu Glu Gly
165 170 175

Gln Cys His Val 180

<210> 25

<211> 925

<212> DNA

<213> Mus musculus

<400> 25 60 tcacaagaaa gacgtggtcc tgacagacag acaatcctat tccctaccaa aatgaagatg 120 180 ctgctgctgc tgtgtttggg actgacccta gtctgtgtcc atgcagaaga agctagttct 240 acgggaagga actttaatgt agaaaagatt aatggggaat ggcatactat tatcctggcc 300 tctqacaaaa qaqaaaaqat aqaaqataat qgcaacttta gactttttct ggagcaaatc catgtcttgg agaattcctt agttcttaaa ttccatactg taagagatga agagtgctcg 360 420 qaattatcta tqqttqctqa caaaacaqaa aaqgctggtg aatattctgt gacgtatgat ggattcaata catttactat acctaagaca gactatgata actttcttat ggctcatctc 480 540 attaacqaaa aggatgggga aaccttccag ctgatggggc tctatggccg agaaccagat 600 ttqaqttcaq acatcaagga aaggtttgca caactatgtg agaagcatgg aatccttaga 660 gaaaatatca ttgacctatc caatgccaat cgctgcctcc aggcccgaga atgaagaatg gcctgagcct ccagtgttga gtggagactt ctcaccagga ctccaccatc atcccttcct 720 780 atccatacag catccccagt ataaattctg tgatctgcat tccatcctgt ctcactgaga 840 agtccaattc cagtctatcc acatgttacc taggatacct catcaagaat caaagacttc 900 tttaaatttt tctttqatat acccatgaca atttttcatg aatttcttcc tcttcctgtt

<210> 26

<211> 180

<212> PRT

<213> Mus musculus

<400> 26

Met Lys Met Leu Leu Leu Cys Leu Gly Leu Thr Leu Val Cys Val 1 5 10 15

His Ala Glu Glu Ala Ser Ser Thr Gly Arg Asn Phe Asn Val Glu Lys
20 25 30

Ile Asn Gly Glu Trp His Thr Ile Ile Leu Ala Ser Asp Lys Arg Glu 35 40 45

Lys Ile Glu Asp Asn Gly Asn Phe Arg Leu Phe Leu Glu Gln Ile His 50 55 60

Val Leu Glu Asn Ser Leu Val Leu Lys Phe His Thr Val Arg Asp Glu 65 70 75 80

Glu Cys Ser Glu Leu Ser Met Val Ala Asp Lys Thr Glu Lys Ala Gly 85 90 95

Glu Tyr Ser Val Thr Tyr Asp Gly Phe Asn Thr Phe Thr Ile Pro Lys 100 105 110

Thr Asp Tyr Asp Asn Phe Leu Met Ala His Leu Ile Asn Glu Lys Asp 115 120 125

Gly Glu Thr Phe Gln Leu Met Gly Leu Tyr Gly Arg Glu Pro Asp Leu 130 135 140

Ser Ser Asp Ile Lys Glu Arg Phe Ala Gln Leu Cys Glu Lys His Gly 145 150 155 160

Ile Leu Arg Glu Asn Ile Ile Asp Leu Ser Asn Ala Asn Arg Cys Leu 165 170 175

Gln Ala Arg Glu

180

<210> 27 <211> 813 <212> DNA <213> Rattus norvegicus <400> 27 ctgctgctgc tgtgtctgcg cctgacactg gtctgtggcc atgcagaaga agctagttcc acaagaggga acctcgatgt ggctaagctc aatggggatt ggttttctat tgtcgtggcc tctaacaaaa gagaaaagat agaagagaat ggcagcatga gagtttttat gcagcacatc qatqtcttqq aqaattcctt aggcttcaag ttccgtatta aggaaaatgg agagtgcagg gaactatact tggtttccta caaaacgcca gaggatggtg aatattttgt tgagtatgac ggagggaata catttactat acttaagaca gactactaca tatacgtcat gtttcatctc attaatttca agaacgggga aaccttccag ctgatggtgc tctacggcag aacaaaggat ctgagttcag acatcaagga aaagtttgca aaactatgtg aggcgcatgg aatcactagg gacaatatca ttgatctaac caagactgat cgctgtctcc aggcccgagg atgaagaaag gcctgagcct ccagtgctga gtggagactt ctcaccagga ctctagcatc accatttcct gtccatggag catcctgaga caaattctgc gatctgattt ccatcctctg tcacagaaaa gtgcaatcct ggtctctcca gcatcttccc tagttaccca ggacaacaca tcgagaatta aaagctttct taaatttctc ttggccccac ccatgatcat tccgcacaaa tatcttgctc

60

120

180

240

300

360

420

480

540

600

660

720

780

813

<210> 28

<211> 735

<212> DNA

<213> Artificial sequence

ttgcagttca ataaatgatt acccttgcac ttt

<220>

<223> GST coding sequence derived from pGEX6p-1

<400> 28

atgtcccta tactaggtta ttggaaaatt aagggccttg tgcaacccac tcgacttctt 60
ttggaatatc ttgaagaaaa atatgaagag catttgtatg agcgcgatga aggtgataaa 120
tggcgaaaca aaaagtttga attgggtttg gagtttccca atcttcctta ttatattgat 180
ggtgatgtta aattaacaca gtctatggcc atcatacgtt atatagctga caagcacaac 240
atgttgggtg gttgtccaaa agagcgtgca gagatttcaa tgcttgaagg agcggttttg 300
gatattagat acggtgttc gagaattgca tatagtaaag actttgaaac tctcaaagtt 360

gattttctta gcaagctacc tgaaatgctg aaaatgttcg aagatcgttt atgtcataaa	420									
acatatttaa atggtgatca tgtaacccat cctgacttca tgttgtatga cgctcttgat	480									
gttgttttat acatggaccc aatgtgcctg gatgcgttcc caaaattagt ttgttttaaa	540									
aaacgtattg aagctatccc acaaattgat aagtacttga aatccagcaa gtatatagca	600									
tggcctttgc agggctggca agccacgttt ggtggtggcg accatectec aaaateggat	660									
ctggaagttc tgttccaggg gcccctggga tccccggaat tcccgggtcg actcgagcgg	720									
ccgcatcgtg actga	735									
<pre> <210> 29 <211> 687 <212> DNA <213> Artificial sequence <220> <223> GST coding sequence derived from pGEX6p-1 <220> <221> CDS <222> (1)(687) <223></pre>										
<400> 29	48									
<pre><400> 29 atg tcc cct ata cta ggt tat tgg aaa att aag ggc ctt gtg caa ccc Met Ser Pro Ile Leu Gly Tyr Trp Lys Ile Lys Gly Leu Val Gln Pro 1 5 10 15</pre>	48									
atg tcc cct ata cta ggt tat tgg aaa att aag ggc ctt gtg caa ccc Met Ser Pro Ile Leu Gly Tyr Trp Lys Ile Lys Gly Leu Val Gln Pro 1 5 10 15 act cga ctt ctt ttg gaa tat ctt gaa gaa aaa tat gaa gag cat ttg	48 96									
atg tcc cct ata cta ggt tat tgg aaa att aag ggc ctt gtg caa ccc Met Ser Pro Ile Leu Gly Tyr Trp Lys Ile Lys Gly Leu Val Gln Pro 1 5 10 15										
atg tcc cct ata cta ggt tat tgg aaa att aag ggc ctt gtg caa ccc Met Ser Pro Ile Leu Gly Tyr Trp Lys Ile Lys Gly Leu Val Gln Pro 1 5 10 15 act cga ctt ctt ttg gaa tat ctt gaa gaa aaa tat gaa gag cat ttg Thr Arg Leu Leu Glu Tyr Leu Glu Glu Lys Tyr Glu Glu His Leu										
atg tcc cct ata cta ggt tat tgg aaa att aag ggc ctt gtg caa ccc Met Ser Pro Ile Leu Gly Tyr Trp Lys Ile Lys Gly Leu Val Gln Pro 1 5 10 15 act cga ctt ctt ttg gaa tat ctt gaa gaa aaa tat gaa gag cat ttg Thr Arg Leu Leu Glu Tyr Leu Glu Glu Lys Tyr Glu Glu His Leu 20 25 30 tat gag cgc gat gaa ggt gat aaa tgg cga aac aaa aag ttt gaa ttg Tyr Glu Arg Asp Glu Gly Asp Lys Trp Arg Asn Lys Lys Phe Glu Leu	96									
atg tcc cct ata cta ggt tat tgg aaa att aag ggc ctt gtg caa ccc Met Ser Pro Ile Leu Gly Tyr Trp Lys Ile Lys Gly Leu Val Gln Pro 1 5 10 15 act cga ctt ctt ttg gaa tat ctt gaa gaa aaa tat gaa gag cat ttg Thr Arg Leu Leu Leu Glu Tyr Leu Glu Glu Lys Tyr Glu Glu His Leu 20 25 30 tat gag cgc gat gaa ggt gat aaa tgg cga aac aaa aag ttt gaa ttg Tyr Glu Arg Asp Glu Gly Asp Lys Trp Arg Asn Lys Lys Phe Glu Leu 35 40 45 ggt ttg gag ttt ccc aat ctt cct tat tat att gat ggt gat gtt aaa Gly Leu Glu Phe Pro Asn Leu Pro Tyr Tyr Ile Asp Gly Asp Val Lys	96 144									
atg tcc cct ata cta ggt tat tgg aaa att aag ggc ctt gtg caa ccc Met Ser Pro Ile Leu Gly Tyr Trp Lys Ile Lys Gly Leu Val Gln Pro 1	96 144 192									

100		105	110
		gat ttt ctt agc aag Asp Phe Leu Ser Lys 125	
		tta tgt cat aaa aca Leu Cys His Lys Thr 140	
		ttc atg ttg tat gac Phe Met Leu Tyr Asp 155	
Val Val Leu Tyr		tgc ctg gat gcg ttc Cys Leu Asp Ala Phe 170	
		gct atc cca caa att Ala Ile Pro Gln Ile 185	
		tgg cct ttg cag ggc Trp Pro Leu Gln Gly 205	
		cca aaa tcg gat ctg Pro Lys Ser Asp Leu 220	
ttc cag ggg ccc Phe Gln Gly Pro 225	_		687
<210> 30 <211> 229 <212> PRT <213> Artificia	l sequence		
<220> <223> GST codin	g sequence deri	ved from pGEX6p-1	
<400> 30			
Met Ser Pro Ile 1	Leu Gly Tyr Trp 5	Lys Ile Lys Gly Leu 10	Val Gln Pro 15
Thr Arg Leu Leu 20	Leu Glu Tyr Leu	Glu Glu Lys Tyr Glu 25	Glu His Leu 30
Tyr Glu Arg Asp 35	Glu Gly Asp Lys 40	Trp Arg Asn Lys Lys	Phe Glu Leu

Gly Leu Glu Phe Pro Asn Leu Pro Tyr Tyr Ile Asp Gly Asp Val Lys Leu Thr Gln Ser Met Ala Ile Ile Arg Tyr Ile Ala Asp Lys His Asn Met Leu Gly Gly Cys Pro Lys Glu Arg Ala Glu Ile Ser Met Leu Glu Gly Ala Val Leu Asp Ile Arg Tyr Gly Val Ser Arg Ile Ala Tyr Ser 105 100 Lys Asp Phe Glu Thr Leu Lys Val Asp Phe Leu Ser Lys Leu Pro Glu 115 120 125 Met Leu Lys Met Phe Glu Asp Arg Leu Cys His Lys Thr Tyr Leu Asn 135 140 130 Gly Asp His Val Thr His Pro Asp Phe Met Leu Tyr Asp Ala Leu Asp 160 145 150 155 Val Val Leu Tyr Met Asp Pro Met Cys Leu Asp Ala Phe Pro Lys Leu 170 175 165 Val Cys Phe Lys Lys Arg Ile Glu Ala Ile Pro Gln Ile Asp Lys Tyr Leu Lys Ser Ser Lys Tyr Ile Ala Trp Pro Leu Gln Gly Trp Gln Ala 195 Thr Phe Gly Gly Gly Asp His Pro Pro Lys Ser Asp Leu Glu Val Leu 215 210 Phe Gln Gly Pro Leu 225 <210> 31

<210> 31 <211> 24 <212> DNA <213> Artificial sequence <220> <223> Protease cleavage site

<220>

```
<221> CDS
<222> (1)..(24)
<223>
<400> 31
ctg gaa gtt ctg ttc cag ggg ccc
                                                                     24
Leu Glu Val Leu Phe Gln Gly Pro
<210> 32
<211> 8
<212> PRT
<213> Artificial sequence
<220>
<223> Protease cleavage site
<400> 32
Leu Glu Val Leu Phe Gln Gly Pro
<210> 33
<211> 32
<212> DNA
<213> Artificial sequence
<223> Contains a Kozak signal, start codon and NcoI-KpnI-XbaI-PstI link
      er
<400> 33
                                                                     32
gatgcggtac caccatggtg tctagactgc ag
<210> 34
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> Contains an AvrII-ApaI-SbfI linker
<400> 34
                                                                     21
tgcctagggc cctgcagggt a
<210> 35
<211> 31
<212> DNA
<213> Artificial sequence
<220>
<223> Contains an SpeI-EcoRI-NsiI-NheI linker and stop codon
```

```
<400> 35
                                                                     31
actagtgaat tcatgcattg agctagccat c
<210> 36
<211> 19
<212> DNA
<213> Artificial sequence
<220>
<223> General form of double stranded oligonucleotide linker
<220>
<221> misc_feature
<222> (5)..(15)
<223> n is a or g or c or t
<220>
<221> misc_feature
<222> (6) ... (14)
<223> Represents (nnn)x where x is a multiple of 3
<400> 36
                                                                     19
ctagnnnnn nnnnntgca
<210> 37
<211> 18
<212> DNA
<213> Artificial sequence
<220>
<223> Contains HindIII-BamHI sites
<400> 37
                                                                     18
aagcttggaa ccggatcc
<210> 38
<211> 18
<212> DNA
<213> Artificial sequence
<220>
<223> Contains BamHI and EcoRI restriction sites
<400> 38
                                                                     18
ggatcctctt cagaattc
<210> 39
<211> 39
<212> DNA
<213> Artificial sequence
```

```
<220>
<223> Contains c-myc epitope tag, stop codon and NheI restriction site
gagcagaaac tcatctctga agaggatctg tgagctagc
                                                                     39
<210> 40
<211> 15
<212> DNA
<213> Artificial sequence
<220>
<223> General form of double stranded oligonucleotide linker
<220>
<221> misc feature
<222> (6)..(14)
<223> n is a or g or c or t
<220>
<221> misc_feature
<222> (6)..(14)
<223> Represents (nnn)x where x is a multiple of 3
<400> 40
                                                                     15
agcttnnnnn nnnng
<210> 41
<211> 15
<212> DNA
<213> Artificial sequence
<220>
<223> General form of double stranded oligonucleotide linker
<220>
<221> misc_feature
<222> (6)..(14)
<223> n is a or g or c or t
<220>
<221> misc_feature
<222> (6)..(14)
<223> Represents (nnn)x where x is a multiple of 3
<400> 41
                                                                      15
aattcnnnnn nnnna
```

US1DOCS 4935166v1