HỌC VIỆN C<u>ÔNG NGHỆ BƯU CHÍNH V</u>IỄN THÔNG

BÁO CÁO HÀNG TUẦN HỌC PHẦN: THỰC TẬP CƠ SỞ

ĐỀ TÀI: NGHIÊN CỨU ƯỚC LƯỢNG KHOẢNG CÁCH BẰNG CAMERA 2D

Giảng viên hướng dẫn: TS. Kim Ngọc Bách

Sinh viên thực hiện:

B22DCCN634 Trần Hữu Phúc

26/04-03/05/2025

A. BÁO CÁO TIẾN ĐỘ

1.1. Kết quả

Thử nghiệm với 3 video ở các môi trường khác nhau để đánh giá khả năng ứng dụng của mô hình trong các điều kiện thực tế khác nhau, thử nghiệm được thực hiện với 3 môi trường:

Person1 - Đầy đủ ánh sáng: Trong phòng, ánh sáng đồng đều.

Person2 - Thiếu sáng: Trong phòng tối, ánh sáng hạn chế.

Person3 - Ngoài trời: Ánh sáng tự nhiên thay đổi tùy thời điểm và góc quay.

Person1 Person2 Person3

Kết quả trả về của mô hình:

Khoảng cách	Person1	Person2	Person3	Khoảng cách	Person1	Person2	Person3
thực tế (cm)	(cm)	(cm)	(cm)	thực tế (cm)	(cm)	(cm)	(cm)
30	22.71	25.46	22.72	70	71.40	76.68	75.47
35	28.00	33.09	29.53	75	78.49	85.09	80.33
40	34.52	41.83	36.67	80	81.27	87.04	84.28
45	41.83	47.34	42.96	85	85.08	93.07	88.02
50	48.43	55.41	50.79	90	90.02	97.24	92.36

55	54.36	63.21	56.38	95	93.07	99.37	94.10
60	62.43	67.89	64.59	100	95.74	101.53	98.30
65	65.59	74.00	69.03				

Dựa vào bảng kết quả so sánh giữa khoảng cách thực tế và khoảng cách đo được của mô hình cho ba tình huống ánh sáng khác nhau (Person1, Person2, Person3), em có nhận xét như sau:

Person1 (Đầy đủ ánh sáng):

- Kết quả đo của mô hình khá chính xác khi ánh sáng đều, với sai số nhỏ so với khoảng cách thực tế.
- Sai số thường dao động dưới 10% và ổn định, cho thấy mô hình hoạt động tốt trong điều kiện ánh sáng lý tưởng.

Person2 (Thiếu sáng):

- Sai số lớn hơn đáng kể so với điều kiện ánh sáng đầy đủ.
- Mô hình gặp khó khăn trong việc đo chính xác khi ánh sáng hạn chế, đặc biệt ở các khoảng cách từ 55 cm đến 90 cm, có thể do ảnh hưởng của nhiễu ánh sáng.

Person3 (Ngoài trời):

- Kết quả khá tốt nhưng không ổn định bằng điều kiện đầy đủ ánh sáng trong nhà.
- Ở các khoảng cách xa (trên 80 cm), sai số nhỏ. Tuy nhiên, ở khoảng cách gần hơn (dưới 40 cm), sai số tăng.

Kết quả trả về của mô hình hồi quy tuyến tính:

Khoảng cách	Person1	Person2	Person3	Khoảng cách	Person1	Person2	Person3
thực tế (cm)	(cm)	(cm)	(cm)	thực tế (cm)	(cm)	(cm)	(cm)
30	28.28	35.68	27.94	70	77.14	80.11	79.38
35	39.71	47.71	42.07	75	80.60	84.06	81.40
40	48.45	54.51	51.14	80	82.58	85.55	83.75
45	56.19	61.90	57.53	85	84.56	89.52	86.04
50	62.30	67.62	62.91	90	87.53	90.50	88.12
55	66.26	72.19	67.95	95	88.52	90.99	89.01
60	71.70	75.01	72.00	100	89.51	92.47	90.81
65	74.67	78.13	75.35				

Đánh giá sai số của mô hình hồi quy phi tuyến tính (HQPTT) và mô hình hồi quy tuyến tính (HQTT):

Khoảng cách	Sai số mô	Sai số mô	Khoảng cách	Sai số mô	Sai số mô
thực tế (cm)	hình HQPTT	hình HQTT	thực tế (cm)	hình HQPTT	hình HQTT
30	24.3%	5.73%	70	2%	10.2%
35	20%	13.46%	75	4.65%	7.47%
40	13.7%	21.13%	80	1.59%	3.22%
45	07.04%	24.87%	85	0.09%	0.52%
50	3.14%	24.6%	90	0.02%	2.74%
55	1.16%	20.47%	95	02.03%	6.82%
60	04.05%	19.5%	100	4.26%	10.49%
65	0.91%	14.88%			

Mô hình hồi quy tuyến tính có sai số thấp ở các khoảng cách gần, đạt mức cao nhất là 24.87% ở khoảng cách 45 cm, nhưng sai số giảm khi khoảng cách thực tế lớn hơn. Ngược lại, mô hình hồi quy phi tuyến tính cho thấy sai số cao ở các khoảng cách ngắn, giảm dần khi khoảng cách thực tế tăng lên, đạt mức thấp nhất là 0.02% ở khoảng cách 90 cm. Nhìn chung, mô hình hồi quy phi tuyến tính cho kết quả chính xác hơn ở hầu hết các mốc khoảng cách, đặc biệt là ở các khoảng cách lớn, trong khi mô hình hồi quy tuyến tính cho kết quả ổn định hơn nhưng sai số cao ở hầu hết các mốc.

1.2. Đánh giá

Ưu điểm:

- Thuật toán đơn giản, dễ triển khai: Mô hình được xây dựng với thuật toán hồi quy bậc hai của hồi quy phi tuyến, đảm bảo khả năng tính toán nhanh và yêu cầu tài nguyên thấp.
- Khả năng hoạt động trên cấu hình phổ thông: Mô hình có thể triển khai trên các hệ thống máy tính không yêu cầu cấu hình cao.
- Độ chính xác tương đối cao: Mô hình đạt sai số ở mức chấp nhận được trong hầu hết các môi trường thử nghiệm, ngay cả trong điều kiện thiếu sáng hoặc ánh sáng thay đổi.

Nhược điểm:

- Quy trình thu thập dữ liệu tốn thời gian: Yêu cầu thực hiện thủ công và nhiều
 lần lặp lại để đảm bảo độ chính xác.
- Giới hạn ứng dụng: Hiện tại mô hình chỉ hiệu quả với các đối tượng có bounding box rõ ràng.
- Nhạy cảm với điều kiện ánh sáng: Hiệu suất suy giảm khi ánh sáng yếu hoặc không ổn định.

1.3. Kết luận

Trong đề tài này, em đã tiến hành nghiên cứu và phát triển mô hình dựa trên mô hình bình phương của hồi quy phi tuyến tính nhằm ước lượng khoảng cách từ bàn tay đến camera trong không gian 3D. Các kết quả đạt được có thể tổng kết như sau:

- Thành công trong ước lượng khoảng cách: Em đã triển khai mô hình ước lượng khoảng cách bàn tay với độ chính xác tương đối cao, phù hợp với các điều kiện sử dụng thực tế. Mô hình đã được vận hành thành công

- trên dữ liệu thực nghiệm và hoạt động ổn định trong môi trường xử lý thời gian thực.
- Nền tảng phát triển: Hệ thống được xây dựng và phát triển trên ngôn ngữ lập trình Python, sử dụng các thư viện phổ biến như MediaPipe và NumPy. Mã nguồn của hệ thống được triển khai trên máy chủ sử dụng hệ điều hành Windows, với khả năng mở rộng dễ dàng sang các nền tảng khác nếu cần.

- Kiến thức đạt được:

- + Qua quá trình thực hiện, em đã nắm vững hơn về ngôn ngữ lập trình Python, đặc biệt trong các ứng dụng liên quan đến xử lý ảnh và trí tuệ nhân tạo.
- + Đề tài giúp em hiểu rõ hơn về các nguyên tắc và ứng dụng của thị giác máy tính, bao gồm phát hiện và phân tích điểm mốc, cũng như các thuật toán hồi quy phi tuyến tính trong việc giải quyết bài toán không gian 2D và 3D.
- + Ngoài ra, em còn có cái nhìn sâu sắc hơn về các ứng dụng thực tế của hồi quy phi tuyến, chẳng hạn như trong việc phát hiện, đo lường khoảng cách hoặc định vị các đối tượng trong không gian ảnh.
- + Tóm lại, đề tài không chỉ giúp em hoàn thành mục tiêu ban đầu, mà còn mở ra cơ hội để áp dụng kiến thức này vào các dự án lớn hơn trong tương lai, góp phần giải quyết các bài toán thực tế trong lĩnh vực trí tuệ nhân tạo và khoa học máy tính.