STA 303/1002: Class 9- Case Study III Inference

Binary Logistic Regression Example

- ► Case Study III: The Donner Party Example
 - Confidence interval for Odds Ratio
 - ▶ Testing β 's \rightarrow Higher-order Models
- ▶ Joke: "I asked a statistician for her phone number... and she gave me an estimate." (www.workjoke.com)

Logistic Regression: Testing whether single β 's are zero

WALD CHI-SQUARE PROCEDURES

- ▶ Hypotheses: $H_0: \beta_j = 0$ (X_j has no effect on log-odds) $H_a: \beta_i \neq 0$
- ▶ Test Statistic: $z = \frac{\widehat{\beta}_j}{SE(\widehat{\beta}_j)}$

where

- $ightharpoonup \widehat{eta}_{jj}$ maximum likelihood (ML) estimate and
- ▶ $SE(\widehat{\beta}_j)$ estimated standard error from the numerical procedure that generated the MLE.
- ▶ By standard large-sample results, MLE's are normally distributed. Thus, for large n, under H_0 , z is an observation from an approx. $\mathcal{N}(0,1)$ distribution.
- ▶ 95% Confidence interval: $\widehat{\beta}_j \pm 1.96SE(\widehat{\beta}_j)$

Est t Zul SE (Est)

Examples: Testing whether single β 's are zero

Using R output ('Coefficients'):

		Age	Sex
	Test statistic	$(-0.078/0.0373)^2$	
	P-value	0.036	
95%	CI for β	$-0.078 \pm 1.96 (0.0373)$	
		=(-0.15, -0.0055)	
	CI for Odds ratio	$(e^{-0.15}, e^{-0.0055}) = (0.86, 0.995)$	
	Conclusion	For the same sex, the odds	
		ratio for a 1-year increase in	
		age is between .86 and 0.995.	

En Rontput

BIZY2 SE(Bi)

Recall relationship between $\mathcal{N}(0,1)$ and Chi-square distribution:

7

38

Examples: Testing whether β 's are zero

Using R output:

	Age	Sex
Test statistic	$(-0.078/0.0373)^2$	4.47 = 2.114 (Kefer to
P-value	0.036	4.47 = 2.114 (Refer to 0.0345
95% CI for β	$-0.078 \pm 1.96 (0.0373)$	model
	=(-0.15, -0.0055)	(0.117, 3.078)
CI for Odds ratio	$(e^{-0.15}, e^{-0.0055}) = (0.86, 0.995)$	(1.124, 21.72)
Conclusion	For the same sex, the odds	
	ratio for a 1-year increase in	
	age is between .86 and 0.995.	

▶ Note: Both marginal p-values are less that <u>0.05</u> and the confidence intervals for the odds ratios do not include 1.

▶ Hence, we have moderate evidence that both *Age* and *Sex* have an effect on survival over and above each other.

▶ Recall: If $Z \sim \mathcal{N}(0,1)$, then $Z^2 \sim \chi_1$.

Binary Logistic Regression

The Regression $2(1-p_{\text{norm}}(2\cdot114)) = P(\chi)$ The Regression $2(1-p_{\text{norm}}(2\cdot114)) = P(\chi)$

Additional CI Examples

Using R output:

- Q: Find a 95% CI for the change in odds of survival for a 40-yr old to 20-yr old of the same sex.
- ► A:
 - ▶ The log odds change by -0.078*(40-20)=-1.56.
 - ▶ 95% CI for the change in log odds is 20*(-0.15, -0.0055) =(-3.0, -0.11).
 - -(-3.0, -0.11). -0.11). -(-3.0, -0.11). -(-3.0, -0.11). -(-3.0, -0.11). -(-3.0, -0.11).
 - ▶ The odds of survival of a 40-yr old woman were $e^{-1.56} = 0.21$ times the odds of survival for a 20-yr old.
- Note that it is not appropriate to compute CI for π since $0 \le \pi \le 1$ and it is not normally distributed.

Model Assumptions for Binary Logistic Regression

- 2.) Observations are independent.
- 3. The form of the model is correct.
 - Linear relationship between logits and explanatory variables
 - ► All relevant variables are included; irrelevant ones excluded
- 4. Sample size is large enough for valid inference-tests and Cls. (Recall large-sample properties of MLEs.)

Binary Logistic Regression vs Linear Regression

- ▶ Both utilize MLE's for the β 's
- Less assumptions to check for than in linear (least squares) regression
 - ▶ No need to check for outliers since *Y* is either 0 or 1.
 - ▶ No residual plots; No meaning can be inferred from residuals
 - Variance is not constant

Case Study III: Testing model assumptions

Independence: We know that there were families within Donner's party, so we have concerns that the observations were not independent!

Form of the model: Test higher-order terms such as

- ▶ Age^2 non-linear (quadratic) in X
- ► Sex * Age interaction, and
- $Age^2 * Sex$ interaction.

Comparing models: Likelihood Ratio Test

▶ Idea: Compare likelihood of data under FULL (F) model, \mathcal{L}_F to likelihood under REDUCED (R) model, \mathcal{L}_R of same data.

Likelihood ratio : $\frac{\mathcal{L}_R}{\mathcal{L}_F}$, where $\mathcal{L}_R \leq \mathcal{L}_F$

Full

▶ Hypotheses: $H_0: \beta_1 = \cdots = \beta_k = 0$

(Reduced model is appropriate; fits data as well as Full model)

 H_a : at least one $\beta_1, \dots, \beta_k \neq 0$

(Full model is better)

► Test Statistic: Deviance (residual),

$$G^2 = -2 \log \mathcal{L}_R - (-2 \log \mathcal{L}_F) = -2 \log \left(\frac{\mathcal{L}_R}{\mathcal{L}_F}\right)$$

For large n, under H_0 , G^2 is an observation from a chi-square distribution with k df.

Case Study III Exercise: Comparing models

Using R output,

Q: Determine whether a model with the 3 higher-order polynomial terms and/or interaction terms is an improvement over the additive model.

- ► Hypotheses:
- ► Test Statistic:
- ▶ Distribution of TS:
- ► P-value:
- ► Conclusion:

Case Study 3: Higher Order Model with 3 higher order/interaction terms

```
fitfull<-glm(Status~Age+sex+Age:sex+I(Age^2)+I(Age^2):sex, family=binomial, date
summary(fitfull)</pre>
```

```
##
## Call:
## glm(formula = Status ~ Age + sex + Age:sex + I(Age^2) + I(Age^2):sex,
      family = binomial, data = donner)
##
##
## Deviance Residuals:
      Min
                1Q Median
                                 3Q
                                         Max
## -2.3396 -0.9757 -0.3438 0.5269
                                      1.5901
##
## Coefficients:
                     Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                     -3.318484 3.940184 -0.842
                                                   0.400
                     0.183031 0.226632 0.808
                                                  0.419
## Age
## sexFemale
                     0.265286 10.455222 0.025
                                                  0.980
## I(Age^2)
                     -0.002803 0.002985 -0.939
                                                  0.348
## Age:sexFemale
                     0.299877 0.696050
                                          0.431
                                                  0.667
## sexFemale:I(Age^2) -0.007356
                              0.010689 -0.688
                                                   0.491
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 61.827 on 44 degrees of freedom
## Residual deviance: 45.361 on 39 degrees of freedom
## AIC: 57.361
```

Testing β 's: Wald versus LRT test

	Wald	LRT
Testing whether a single $\beta{=}0$		
Comparing nested models		
Small to moderate sample sizes β near boundary of parameter space		

Case Study III Exercise: Comparing models

Using R output,

Q: Determine whether the effect of *Age* on the odds of survival differ with Sex.

Ho: logit (n) = \beta + \beta Age + \beta 1_F

Ha: logit (n) = \beta + \beta Age + \beta 1_F + \beta 3 (Age x 1_F)

12 - -Hypotheses:

- ► Test Statistic: $G^2 = D_0 D_A = 51.256 47.346 = 3.91$
- ► P-value: P(x7>3.71) = 0.048
- Conclusion:

Suggestive but not conclusive evidence of interaction

Case Study 3: Interaction Model, Age*Sex

```
fitas<-glm(Status~Age*sex, family=binomial, data=donner)
summary(fitas)</pre>
```

```
##
## Call:
## glm(formula = Status ~ Age * sex, family = binomial, data = donner)
## Deviance Residuals:
                                 3Q
                                        Max
      Min
                1Q
                   Median
## -2.2279 -0.9388 -0.5550 0.7794
                                     1.6998
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
              0.31834
                                           0.7784
                           1.13103 0.281
## Age
                -0.03248
                           0.03527 - 0.921
                                           0.3571
## sexFemale
                6.92805
                           3.39887 2.038 0.0415 *
                           0.09426 -1.714 0.0865 .
## Age:sexFemale -0.16160
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 61.827 on 44 degrees of freedom
##
## Residual deviance: 47.346
                            on 41 degrees of freedom
## AIC: 55.346
##
```

Comparing models: 'Global' LRT

- ▶ Idea: Compares Fitted model to NULL [logit(π) = β_0] model
- ▶ Hypotheses: $H_0: \beta_1 = \cdots = \beta_p = 0$

(NULL model is appropriate)

 H_a : at least one $\beta_1, \dots, \beta_p \neq 0$

(Fitted model is better)

Case Study III Exercise: 'Global' LRT

Using R output,

Q: Determine whether or not the additive model fits better than the Null model.

Hypotheses: H_{s} : (Null) $\beta_1 = \beta_2 = 0$ V5 H_{o} : (Mull) $\beta_1 = \beta_2 = 0$ V5 H_{o} : (Model) at least Test Statistic: $G^2 = D_H - D_A = G(.827 - S1.2SG)$ is Defleu β_s not β

Survival

► Conclusion:

The additive model is better. IOW, Agrand Sex are relesant for the Ingodds of

logit(x) = Pot B. Age + B21=

Addition Case Study 3: Additive model for Survived fitasf<-glm(Status~Age+sex, family=binomial, data=donner)</pre> summary(fitasf) ## ## Call: ## glm(formula = Status ~ Age + sex, family = binomial, data = donner) ## ## Deviance Residuals: 3Q ## Min 1Q Median ## -1.7445 -1.0441 -0.3029 0.8877 2.0472 ## ## Coefficients: Estimate Std. Error z value Pr(>|z|)## ## (Intercept) 1.63312 1.11018 1.471 0.1413 ## Age -0.07820 0.03728 -2.0970.0359 * ## sexFemale 1.59729 0.75547 2.114 0.0345 * ## ---## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1 ## R: Deviance=-2log l F: Periance =-2log l 2 Deviance - Deviance = 61.827 - 51.256 ## (Dispersion parameter for binomial family taken to be 1) ## Null deviance: 61.827 on 44 degrees of freedom ## ## Residual deviance: 51.256 on 42 degrees of freedom ## AIC: 57.256 ## ## Number of Fisher Scoring iterations: 4

Week 4 R functions

- ► Create factor: as.factor()
- ► Cross Tabulations: xtabs()
- ► Specifying the reference level: relevel()
- ► Generalized Linear Models: glm()
- ► Find deviance: deviance()