9 Первинні недвійкові коди

Недвійкові первинні коди використовуються у телекомунікаційних системах та мережах і системах телемеханіки. Далі наведені вирази для розрахунку кількості *N*₀ кодових комбінацій, які можна отримати при побудові таких первинних кодів (вони пов'язані з відповідним розділом математики, який називається комбінаторикою).

Код на перестановки:

$$N_0 = q!, q = n;$$

тут і далі q – потужність алфавіту коду, n – довжина кодової ком-бінації.

Код на певне число розміщень:

$$N_0 = \frac{A_q^n}{q} = q! / (q - n)!, q > n.$$

Код на певне число сполучень:

$$N_0 = \frac{C_q^n}{q} = q! / [(q - n)! n!], q > n.$$

Код на всі сполучення:

$$N_0 = q^n, \quad q \ge n$$
.

Змінно-якісний код:

$$N_0 = q(q-1)^{n-1}$$
.

Недвійкові коди, що виявляють помилки, можуть бути побудовані або введенням додаткових перевірочних елементів, які одержують як результат операцій над елементами первинної кодової комбінації, або збільшенням надмірності за рахунок зменшення кількості дозволених кодових комбінацій коду. В обох випадках досягається збільшення кодової відстані до значення, що дозволяє виявити ту чи іншу кількість помилок у кодовій комбінації.

Код з простим повторенням є аналогом двійкового коду з простим повторенням (див. розділ 7), в основу якого покладено просте повторення первинної кодової комбінації. Алгоритм побудови коду має вигляд:

$$b_i = a_i, i \in [1,k],$$

де a_i — інформаційний елемент, що знаходиться на i-ій позиції інфор-маційної частини кодової комбінації; b_i — перевірочний елемент, що знаходиться на i-ій позиції перевірочної частини кодової комбінації; k — кількість інформаційних елементів.

Надмірність коду R = 0.5. Код дозволяє виявити всі помилки, за винятком деяких помилок на однакових позиціях в інформаційній та перевірочній частинах коду.

Незвідний змінно-позиційний код НЗЗПК задовольняє таким умовам:

кожна кодова комбінація містить однакову кількість елементів, які передаються послідовно;

кожний елемент кодової комбінації містить m позицій алфаві-ту потужністю q;

сусідні елементи кодової комбінації повинні відрізнятися хоча б однією позицією;

останній елемент кодової комбінації не може збігатися з першим елементом комбінації, тобто для першого і останнього елементів кодової комбінації вибирають різні багатопозиційні сполучення.

Виконання останньої умови забезпечує незвідність коду, що дозволяє виконувати передавання елементів коду без пауз і у деяких випадках відмовитися від синхронізації, а також спрощує процедуру декодування.

Послідовність побудови НЗЗПК:

береться m символів з q позицій алфавіту;

визначається кількість сполучень позицій за заданим числом позицій у кожному сполученні;

вся кількість сполучень позицій розбивається на n груп, де n – кількість елементів кодової комбінації (довжина коду), і кожна група взаємно однозначно закріплюється за елементом кодової комбінації;

утворюються кодові комбінації з *п* елементами за правилом: для кожного елемента беруться сполучення позицій із закріпленої за даним елементом групи сполучень позицій.

За методом побудови кодових комбінацій багатопозиційні НЗЗПК поділяють на такі класи:

без розділення алфавіту коду на групи;

з розділенням алфавіту коду на v груп, кожна з котрих має q_i символів.

Останній клас, у свою чергу, поділяють на НЗЗПК, кожний елемент якого містить m позицій, які беруться з різних груп сполучень, і НЗЗПК, кожний елемент якого містить m позицій, які беруться з однієї групи сполучень.

Кількість N_0 кодових комбінацій для $H33\Pi K$ без розділення алфавіту коду на групи

у разі, коли всі сполучення позицій розподілені між п групами сполучень порівну

$$N_0 = (\frac{C_q^m}{n}/n)^n;$$

 у разі, коли вся кількість сполучень розподіляється між групами сполучень не нарівно через остачу деякої кількості сполучень

$$N_0 = (C_q^m - Q)^{n-Q} \times (C_q^m - Q + n)^{Q}/n^n,$$

де Q — остача від ділення C_q^m/n , що є цілим додатним числом.

Для $H33\Pi K$ з розділенням алфавіту коду на v груп з однако-вою кількістю I=q/v позицій у кожній групі та за умов, що кожний кодовий елемент містить m позицій, які вибираються з різних груп ($v \ge m$) кількість кодових комбінацій

$$N_0 = (C_v^m I^m / n)^n;$$

якщо ж для кожного кодового елемента m різних позицій вибираються із однієї групи ($I \ge m, \ v = n$), то

$$N_0 = (C_l^m)^n$$
.