Вопрос №1

Асимптотические отношения на множестве функций одной переменной

функции одного порядка при $x \to x_0$

Определение. Функции f(x) и y(x) называются функциями одного порядка при $x \to x_0$, если одновременно f(x) = O(g(x)) и g(x) = O(f(x)) при $x \to x_0$. Функции f(x) и g(x) одного порядка называют также подобными при $x \to x_0$.

Справедливы следующие свойства:

- 1. $f(x) \approx f(x)$ при $x \to x_0$ (рефлексивность отношения)
- 2. $f(x) \asymp g(x)$ при $x \to x_0 \mapsto g(x) \asymp f(x)$ при $x \to x_0$ (симметричность отношения)
- 3. $f(x) \asymp g(x)$ и $g(x) \asymp h(x)$ при $x \to x_0 \mapsto f(x) \asymp h(x)$ (транзитивность отношения)

Эквивалентные функции при $x \to x_0$

Определение. Функция f(x) эквивалентна функции g(x) при $x \to x_0$, если f(x) - g(x) = O(g(x)) при $x \to x_0$.

Символьно отношение эквивалентности двух функций при $x \to x_0$ отражается в записи $f(x) \sim g(x)$ при $x \to x_0$.

Асимптотические равенства

Если $f(x) \sim g(x)$ при $x \to x_0$, то функции f(x) и g(x) называются асимптотически равными при $x \to x_0$. Соотношение же вида f(x) = g(x) + O(g(x)) при $x \to x_0$ называются асимптотическими равенствами.

Асимптотические разложения

Пусть функции f(x) и g(x) определены для любого x>a и пусть $g(x)\neq 0$ при x>a. Тогда отношение $f(x)\sim g(x)$ при $x\to +\infty$ указывает, что относительная погрешность $\frac{f(x)-g(x)}{g(x)}$ приближенного равенства $f(x)\approx$

g(x) стремится к нулю при $x \to +\infty$. Однако из отношения $f(x) \sim g(x)$ при $x \to +\infty$ не следует, что при $x \to +\infty$ абсолютная погрешность приближенного равенства $f(x) \approx g(x)$ уменьшается (с ростом x).

Пример. $f(x) = \frac{x^3}{x+1} \sim x^2$ при $x \to +\infty$, или: $f(x) = x^2 + \overset{=}{O}(x^2)$, при $x \to +\infty$. При этом $f(x) - x^2 = \frac{-x^2}{x+1} \Rightarrow |f(x) - x^2| = \frac{x^2}{|1+x|} \to +\infty$, при $x \to +\infty$. Кроме того $f(x) - x^2 \sim -x$ при $x \to +\infty$. Т.е. $f(x) - x^2 + x = \overset{=}{O}(x)$. Далее имеем $f(x) - x^2 + x = \frac{x}{x+1} = \frac{1}{1+\frac{1}{x}}$. Если $x \to +\infty$, $q = -\frac{1}{x}$ по модулю меньше. При этом $\frac{1}{1-q} = 1 + q + q^2 + \dots$ (сумма геометрической прогрессии).

Таким образом $f(x) = x^2 - x + 1 + O(1)$ при $x \to +\infty$.

Такого вида соотношения называются асимптотическими разложениями данной функции по степеням x при $x \to +\infty$.

Асимптоты графика функции

Определение. Пусть функция f(x) определена при x > a. Прямая l на плоскости Oxy называется асимптотой графика функции f(x) при $x \to +\infty$, если расстояние p(x,l) от точки графика с координатами (x,f(x)) до прямой l удовлетворяет асимптотическому равенству p(x,l) = O(l) при $x \to +\infty$.

Вопрос №2

Линейные пространства

Максимальные системы векторов

Линейно-независимая система векторов из X называется максимальной, если при добавлении к ней любого элемента ненулевого вектора из X она становится линейно-зависимой.

Если имеется две максимальные линейно-независимые системы векторов, то в каждой - одинаковое число элементов.

Доказательство. Системы эквивалентны, потому что по определению максимальной системы каждый вектор из первой представим линейной комбинацией векторов второй. И обратно. В обе стороны $s \le t, t \le s \Rightarrow t = s$.

Размерность линейного пространства

Пусть X - линейное пространство над полем k. Возможны два случая:

- 1. В пространстве X существуют независимые системы векторов с любым наперед заданным числом элементов. Пространство бесконечномерно, $\dim X = +\infty$
- 2. Все системы векторов в X линейно зависимы (или $\exists N \colon \{x_1, x_2, \dots, x_N\} \in X$ линейно зависимы)

Определение. Линейное пространство X, в котором существует n линейно независимых векторов, но любая система из n+1 векторов линейно зависима, называется n-мерным. $\dim X = n$.

Пространство $X = \{0\}$ считается нульмерным. Прямая (\mathbb{R}) – одномерное пространство, плоскость (\mathbb{R}^2) – двумерное, \mathbb{R}^3 – трехмерное.

Примеры:

- 1. Координатное пространство \mathbb{R}^n имеет размерность n.
- 2. Пространство квадратных матриц размера $n \times n$ имеет размерность n^2 (если расположить элементы в линейном порядке, получим, что их n^2 штук. Т.е. получится вектор длины n^2)
- 3. Пространство C[a,b] бесконечномерное.
- 4. Пространство P^n многочленов степени, меньшей n, от одной переменной имеет размерность n. Линейно независимыми векторами являются мономы: $1, t, t^2, t^3$.

Базис линейного конечномерного пространства

Определение. Пусть X - линейное пространство, $\dim X = n$. Любая система из n линейно независимых векторов $e_1, e_2, \ldots, e_n \in X$ называется базисом пространства X. Базис нульмерного пространства – пустое множество.

Теорема о свойствах базиса. Следствия

Пусть X - линейное пространство над полем k с базисом (e_1, e_2, \ldots, e_n) . Тогда

I каждый вектор v из X можно представить единственным образом в виде линейной комбинации базисных векторов.

Доказательство. Возьмем базис и дополнительный вектор v из X. В этом множестве n+1 элементов и по определению $\dim X$ это линейно зависимая система векторов, или $\exists a, a_1, a_2, \ldots, a_n \in k \colon av + a_1e_1 + a_2e_2 + \ldots + a_ne_n = 0$ (существует такой набор коэффициентов, при которых система сводится в ноль). Из неравенства нулю следует наличие обратного элемента, поэтому v представим в виде $v = -a^{-1}a_1e_1 - a^{-1}a_2e_2 - \ldots - a^{-1}a_ne_n$. То есть вектор представлен в виде линейной комбинации базиса.

Докажем, что такое представление единственное. Пусть $v = b_1 e_1 + b_2 e_2 + \ldots + b_n e_n$. $v = f_1 e_1 + f_2 e_2 + \ldots + f_n e_n$. Тогда $(b_1 - f_1)e_1 + (b_2 - f_2)e_2 + \ldots + (b_n - f_n)e_n = 0$. Так как базис линейно независим, такое возможно, только если все коэффициенты равны 0. Это означает, что разложения одинаковы.

II любую систему из $s \leq n$ линейно независимых векторов пространства X можно дополнить до базиса.

Доказательство. Пусть $1 \le s \le n$ и имеется система f_1, f_2, \ldots, f^s линейно независимых векторов из X. Рассмотрим следующее множество из s+n элементов:

$$f_1, f_2, \dots, f_s, e_1, e_2, \dots, e_n.$$
 (1)

Преобразуем это множество следующим образом: если вектор e_n линейно выражается через предыдущие векторы цепочки, то исключим его из нашего множества, иначе оставим и перейдем к e_{n-1} . Если выражается — снова убираем и так далее до e_1 .

Получили такое множество:

$$f_1, f_2, \dots, f_s, e_{i1}, e_{i2}, \dots, e_{it}$$
. (BCefo $t + s$). (2)

Предположим, что имеется такая нетривиальная (содержащая ненулевые элементы) линейная комбинация векторов, что $a_1f_1 + \ldots + a_sf_s + b_1e_{i1} + \ldots + b_{it}e_{it} = 0$. Среди b найдётся хотя бы один ненулевой элемент (иначе в силу линейно независимости f получим что все a равны 0, что будет противоречить нетривиальности комбинации).

Таким образом, множество номеров $\{j\colon b_j\neq 0\}\neq\emptyset$. Возьмем такой максимальный номер k. Тогда элемент b_k будет иметь обратный \Rightarrow значит мы можем выразить $e_k=-b^{-1k}a_1f_1+\ldots+b^{-1k}a_sf_s+\ldots$ Получается, что система линейно зависима, это противоречит ее построению. Следовательно, не существует нетривиальных линейных комбинаций $f_1,\ldots,f_s,e_{i1},\ldots,e_{it}$: из них можно составить ноль. Выходит, эта система линейно независима.

Но в соответствии с I, любой вектор выражается через базис, а значит и через систему 1. Но все векторы системы 1 линейно выражаются через векторы системы 2.

Таким образом, система 2 максимальна и линейно независима. То есть существует базис.

Следствия:

- 1. Любой вектор $v \in x, v \neq 0$ может быть включён в базис X
- 2. Пусть X_1, X_2 подпространства $X, \dim X_1 = M_1, \dim X_2 = M_2, X_1 \subset X_2, X_1 \neq X_2.$ Тогда $M_1 < M_2$

Координаты вектора в базисе

Определение. Пусть (e_1, e_2, \ldots, e_n) - базис X над полем k. Тогда, по теореме о свойствах базиса, $\forall \vec{v} \in X$ представим в виде $\vec{v} = \lambda_1 e_1 + \lambda_2 e_2 + \ldots + \lambda_n e_n$, где $\lambda_j \in k$. Скаляры $\lambda_1, \lambda_2, \ldots, \lambda_n$ называются координатами вектора v в базисе (e_1, e_2, \ldots, e_n) . При сложении векторов их координаты складываются. При умножении на скаляр координаты умножаются на скаляр.

Примеры:

- 1. В \mathbb{R}^n координаты вектора $x = (a_1, a_2, \dots, a_n)$ в базисе $e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1)$ это вещественные числа a_1, a_2, \dots, a_n .
- 2. В пространстве P_n , векторами которого являются многочлены из \mathbb{R} степени, меньшей n, базис образуют $e_0=1, e_1=t,\ldots,e_{n-1}=t^{n-1}$. Координаты коэффициенты перед t.

Матрица перехода от одного базиса к другому и ее свойства

Пусть X - векторное пространство над полем k и имеются 2 его базиса:

B:
$$e_1, e_2, \ldots, e_n$$

B':
$$e'_1, e'_2, \ldots, e'_n$$
.

Выразим каждый из векторов базиса B' через базис B:

$$e'_1 = a_{11}e_1 + a_{21}e_2 + \dots + a_{n1}e_n$$

 $e'_2 = a_{12}e_1 + a_{22}e_2 + \dots + a_{n2}e_n$
 $\vdots \vdots \cdot \vdots$
 $e'_n = a_{1n}e_1 + a_{2n}e_2 + \dots + a_{nn}e_n$

Коэффициенты a_{ij} этих разложений определяют матрицу:

$$A=(a_{ij})=egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ dots & dots & \ddots & dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 - матрица перехода от B к B' .

Координатами вектора e'_j в базисе B служат элементы столбца с номером j в матрице A.

Пусть вектор $v \in X$ имеет в (B) координаты $(\lambda_1, \lambda_2, ..., \lambda_n)$, а в (B') координаты $(\lambda'_1, \lambda'_2, ..., \lambda'_n)$, так что: $\lambda_1 e_1 + \lambda_2 e_2 + ... + \lambda_n e_n = v = \lambda'_1 e'_1 + \lambda'_2 e'_2 + ... + \lambda'_n e'_n$.

Подставим выражение e'_j через e_j :

$$\lambda_1 e_1 + \lambda_2 e_2 + \ldots + \lambda_n e_n = \lambda'_1(a_{11}e_1 + a_{21}e_2 + \ldots + a_{n1}e_n) + \lambda'_2(a_{12}e_1 + a_{22}e_2 + \ldots + a_{n2}e_n) + \ldots + \lambda'_1(a_{1n}e_1 + a_{2n}e_1 + \ldots + a_{nn}e_n) + \lambda'_2(a_{12}e_1 + a_{22}e_2 + \ldots + a_{nn}e_n) + \ldots + \lambda'_1(a_{1n}e_1 + a_{2n}e_1 + \ldots + a_{nn}e_n) + \lambda'_2(a_{12}e_1 + a_{22}e_2 + \ldots + a_{nn}e_n) + \ldots + \lambda'_1(a_{1n}e_1 + a_{2n}e_1 + \ldots + a_{nn}e_n) + \lambda'_2(a_{12}e_1 + a_{22}e_2 + \ldots + a_{nn}e_n) + \lambda'_2(a_{12}e_1 + a_{22}e_2 + \ldots + a_{nn}e_n) + \ldots + \lambda'_1(a_{1n}e_1 + a_{2n}e_1 + \ldots + a_{nn}e_n) + \lambda'_2(a_{12}e_1 + a_{22}e_2 + \ldots + a_{nn}e_n) + \lambda'_2(a_{12}e_1 + a_{22}e_1 + \ldots + a_{nn}e_n) + \lambda'_2(a_{12}e_1 + a_{12}e_1 + \ldots + a_{nn}e_n) + \lambda'_2(a_{12}e_1 + a_{12}e_1 + \ldots + a_{nn}e_n) + \lambda'_2(a_{12}e_1 + a_{12}e_1 + \ldots + a_{nn}e_n) + \lambda'_2(a_{12}e_1 +$$

В матричном виде:

$$\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} \lambda'_1 \\ \lambda'_2 \\ \vdots \\ \lambda'_n \end{pmatrix}$$

Введём обозначения
$$\vec{\lambda}=\begin{pmatrix}\lambda_1\\\lambda_2\\\vdots\\\lambda_n\end{pmatrix}$$
 и $\vec{\lambda'}=\begin{pmatrix}\lambda'_1\\\lambda'_2\\\vdots\\\lambda'_n\end{pmatrix}$, тогда соотношение $(\lambda\lambda')$ перепишется:
$$\vec{\lambda}=A\vec{\lambda'}$$

Выражение координат - линейное преобразование переменных с матрицей A. Преобразования $(\lambda\lambda')$ и $(\lambda'\lambda)$ взаимно обратны. Это означает, что матрица A имеет обратную A', это значит, что она обратима, $\det A \neq 0$, $A' = A^{-1}$, $A^{-1}A = AA^{-1} = E$.

Система преобразований принимает вид:

$$\vec{\lambda'} = A'\vec{\lambda} \Leftrightarrow \vec{\lambda'} = A^{-1}\vec{\lambda}$$

1. Матрица перехода от одного базиса к другому определяется однозначно.

Лемма. Пусть A и B - две матрицы размера над полем K. Если для любого столбца $X \in K^n$ выполняется равенство AX = BX, тогда A = B.

Доказательство. Пусть A_1, A_2, \ldots, A_n - столбцы матрицы A, B_1, B_2, \ldots, B_n - столбцы матрицы $B, \{e_1, e_2, \ldots, e_n\}$ - канонический базис пространства столбцов K^n . Подставляем в равенство AX = BX вместо столбца X столбцы канонического базиса. Получаем $\forall k = 1, 2, \ldots, n$ равенство $Ae_k = Be_k$. Легко проверить, что $\forall k = 1, 2, \ldots, n$ верны равенства $Ae_k = A_k$ и $Be_k = B_k$. Отсюда, $\forall k = 1, 2, \ldots, n, A_k = B_k$ а значит и A = B.

- 2. Матрица перехода всегда невырождена (на основании матричного критерия линейной независимости).
- 3. Матрица перехода от базиса к этому же базису является единичной.

Теорема. Пусть $\{f_1, f_2, \dots, f_n\}$, $\{g_1, g_2, \dots, g_n\}$, $\{h_1, h_2, \dots, h_n\}$ - три базиса произвольного векторного пространства V. Тогда

$$gCh = gCf \cdot fCh \tag{3}$$

Доказательство. Пусть $x \in V$ - произвольный вектор, X_f , X_g и X_h - столбцы его координат относительно базисов $\{f_1, f_2, \ldots, f_n\}, \{g_1, g_2, \ldots, g_n\},$

 $\{h_1, h_2, \dots, h_n\}$ соответственно. Тогда по предыдущей теореме, справедливы равенства: $X_f = fCh \cdot X_h$, $X_g = gCf \cdot X_f$, $X_g = gCh \cdot X_h$.

Подставляя второе из этих равенств в первое, получаем: $X_g = gCf \cdot (fCh \cdot X_h) = (gCf \cdot fCh) \cdot X_h$ откуда следует, что $gCh \cdot X_h = (gCf \cdot fCh) \cdot X_h$.

Так как мы взяли произвольный вектор $x \in V$, то столбец его координат X_h может быть любым столбцом из пространства столбцов K^n . Применяя лемму, получаем равенство $gCh = gCf \cdot fCh$.

Следствие. Матрица перехода является обратимой.

Доказательство. Пусть $\{f_1, f_2, \ldots, f_n\}$, $\{g_1, g_2, \ldots, g_n\}$ - произвольные базисы векторного пространства V. По формуле 3 находим: $gCg = gCf \cdot fCg$, где вместо базиса $\{h_1, h_2, \ldots, h_n\}$ мы взяли базис $\{g_1, g_2, \ldots, g_n\}$. Из определения матрицы перехода легко заметить, что матрица перехода от базиса $\{g_1, g_2, \ldots, g_n\}$ к этому же базису $\{g_1, g_2, \ldots, g_n\}$ является единичной, т.е. gCg = E и мы имеем: $gCf \cdot fCg = E$. Аналогично получаем $fCg \cdot gCf = fCf = E$. Отсюда следует, что $fCg = gC^{-1}f$, а $gCf = fC^{-1}g$.

Изоморфизм линейных пространств

Определение. Линейные пространства X и Y над полем k называются изоморфными, если существует биективное отображение $f \colon X \to Y$, для которых справедливо:

$$f(au + bv) = af(u) + bf(v), \ \forall a, b \in k; \ \forall u, v \in X$$
 (L_f)

Отображение f при этом называется изоморфизмом векторных пространств X и Y.

Равенство L_f формулируют так: f - это изоморфизм аддитивных групп (значит выполняется f(a)+f(b)=f(a+b)) векторных пространств X и Y, обладающий дополнительным свойством f(av)=af(v), $\forall a \in k$, $\forall v \in X$. f - линейное отображение над полем k.

Если изоморфизм, то существует обратное отображение, f^{-1} : $y \to x$ (следует из биективности)

Пусть y - изоморфизм X и Z, f - изоморфизм X и Y, Z \overrightarrow{y} X \overrightarrow{f} Y. Тогда композиция $f \circ y$ - это изоморфизм Y и Z.

Инвариантность размерности при изоморфизме

Размерность векторного пространства является инвариантом изоморфизма: если (e_1, e_2, \ldots, e_n) - базис линейного пространства X, то $(f(e_1), f(e_2), \ldots, f(e_n))$ - это базис линейного пространства Y и обратно. Если X и Y изоморфны, то их размерности совпадают.

Теорема об изоморфности векторных пространств одинаковой размерности

Теорема. Все векторные пространства одинаковой размерности изоморфны между собой.

Доказательство. Пусть X - линейное пространство, $\dim X = n$. Возьмём базис (e_1, e_2, \ldots, e_n) пространства X. В этом базисе однозначно определены координаты (a_1, a_2, \ldots, a_n) произвольного вектора $x \in X$, $x = a_1e_1 + a_2e_2 + \ldots + a_ne_n$.

Рассмотрим отображение $f: x \in X \to (a_1, a_2, \dots, a_n) \in k^n$, это отображение биективно (из единственности разложения по базису). При этом, если $y = b_1 e_1 + b_2 e_2 + \dots + b_n e_n$, то $ax + by = (aa_1 + bb_1, aa_2 + bb_2, \dots, aa_n + bb_n) = a(a_1, a_2, \dots, a_n) + b(b_1, b_2, \dots, b_n)$. То есть работает правило f(ax + by) = af(x) + bf(y)

Таким образом f - это изоморфизм пространства X и координатного пространства k^n .

Следствие. Любое n-мерное линейное пространство X изоморфно k^n .

Соответственно, изоморфизм между двумя векторными пространствами X и Y, если он существует, определён не единственным образом, за исключением двух частных случаев:

a
$$X = Y = \{0\}$$

1. $\dim X = \dim Y = 1$, k - поле из двух элементов.