Wide Area Network (WAN)

WAN Topologies

WAN Operations

- Modern WAN standards are defined and managed by a number of recognized authorities including the following:
 - > TIA/EIA: Telecommunications Industry Association and Electronic Industries Alliance.
 - ► **ISO**: International Organization for Standardization.
 - ► IEEE: Institute of Electrical and Electronics Engineers.

Describes how data will be encapsulated into a frame.

HDLC, PPP, ISDN, Frame Relay, ATM, Metro Ethernet, MPLS, VSAT, Broadband (DSL, Cable Modem)

Describes the electrical, mechanical, and operational components to transmit bits

Common WAN Terminology

WAN Devices

- ☐ **Dialup modem**: legacy WAN technology that converts digital signals into voice frequencies to be transmitted over the analog lines of the public telephone network.
- Access server: legacy WAN technology that coordinates dial-in and dial-out user communications.
- ☐ Broadband modem: used with high-speed DSL or cable Internet service
- ☐ Channel Service Unit/Data Service Unit (CSU/DSU):

 used to convert digital, leased-line signals into frames
 that the LAN can interpret and vice versa.
- **WAN switch**: multiport internetworking device used in service provider networks
- **Router**: provides internetworking and WAN access interface ports to connect to the service provider network
- ☐ Core router/Multilayer switch: resides within the backbone of the WAN, supports multiple interfaces, and forwards IP packets at full line speed

Circuit-Switched Network

☐ Circuit-switched Networks establish a dedicated circuit between source and destination before the users may communicate, such as making a telephone call.

Public Switched Telephone Network (PSTN)

Packet-Switched Network

Packet-Switched Networks split traffic into packets that are routed over a shared network and do not require a dedicated circuit between source and destination.

Multiprotocol Label Switching (MPLS)

WAN Access Options

Private WAN Infrastructure: Service providers may offer dedicated leased lines, circuit-switched links, such as PSTN or ISDN, and packet switched links, such as Metro Ethernet, ATM, or Frame Relay.

Public WAN Infrastructure: Service providers provide Internet access using broadband services such as DSL, cable modem, and wireless (4G, 5G,...).

Leased Line

Line	Speed	Transmission Medium
T1	1.544 Mbps	2-Pair UTP
Т3	44.736 Mbps	Optical Fiber
E1	2.048 Mbps	2-Pair UTP
E3	34.368 Mbps	Optical Fiber

Dial-up Lines

Circuit Switching Technology

Speed 56 Kb/s

Integrated Services Digital Network (ISDN)

Circuit Switching Technology

The connection uses **bearer channels (B)** for carrying all types of digital information in full duplex mode and a **delta channel (D)** for carrying control signaling information for the B channels.

Type of Interface	Number of B channels	Number of D channels	Descriptive
BRI	2 (64 kbps)	1 (16 kbps)	2B+D (144 kb/s)
PRI (T1)	23 (64 kbps)	1 (64 kbps)	23B+D (1.544 Mb/s)
PRI (E1)	30 (64 kbps)	1 (64 kbps)	30B+D (2.048 Mb/s)

Frame Relay

Asynchronous Transfer Mode (ATM)

- ☐ ATM is a connection-oriented packet switching technology.
- ☐ It is built on a cell-based architecture rather than on a frame-based architecture.
- ☐ ATM cells are always a fixed length of 53 bytes.
- ☐ The ATM cell contains a 5-byte ATM header followed by 48 bytes of ATM payload.

Metro Ethernet (MetroE)

Name	Speed	Distance
100BASE-LX10	100 Mbps	10 Km
1000BASE-LX	1 Gbps	5 Km
1000BASE-LX10	1 Gbps	10 Km
1000BASE-ZX	1 Gbps	100 Km
10GBASE-LR	10 Gbps	10 Km
10GBASE-ER	10 Gbps	40 Km

Metro Ethernet (MetroE)

Ethernet Virtual Connection (EVC)

- An EVC is an association of two or more UNIs that limits the exchange of Service Frames to UNIs in the Ethernet Virtual Connection (EVC).
- ☐ A given UNI can support more than one EVC.
 - Point-to-Point EVC
 - Point-to-Multipoint EVC
 - Multipoint-to-Multipoint EVC

E-Line (Point-to-Point EVC)

- ☐ An E-Line is a service type for connecting exactly 2 UNIs where those 2 UNIs can communicate only with one another.
- ☐ **E-Lines** are used to create, among other solutions:
 - Private lines .
 - Ethernet Internet access.
 - Replacement for Frame Relay and ATM services.
- ☐ E-Lines are the most popular Carrier Ethernet service due to their simplicity.

E-LAN (Multipoint-to-Multipoint EVC)

- An E-LAN is a multipoint-to-multipoint service that connects a number of UNIs (2 or more) providing full mesh connectivity for those sites.
- ☐ Each UNI can communicate with any other UNI that is connected to that Ethernet service.

E-Tree (Point-to-Multipoint)

- ☐ An E-Tree is a rooted multipoint service that connects a number of UNIs providing sites with hub and spoke multipoint connectivity
- ☐ Each UNI is designated as either root or leaf.
- ☐ A root UNI can communicate with any leaf UNI, while a leaf UNI can communicate only with a root UNI.
 - Provides traffic separation between users (Leaf UNIs).

Committed Information Rate (CIR)

Multiprotocol Label Switching (MPLS)

Multiprotocol Label Switching (MPLS)

Layer 3 with MPLS VPN

CE1# show ip ospf neighbor

Neighbor ID Pri State Dead Time Address Interface 192.168.1.1 1 FULL/DR 00:00:36 192.168.1.1 FastEthernet0/0

CE1# show ip route ospf

O IA **10.5.5.0/24** [110/3] via 192.168.1.1, 00:02:30, FastEthernet0/0 O IA **192.168.2.0/24** [110/2] via 192.168.1.1, 00:04:37, FastEthernet0/0

CE2# show ip ospf neighbor

Neighbor ID Pri State Dead Time Address Interface 192.168.2.1 1 FULL/DR 00:00:38 192.168.2.1 FastEthernet0/0

CE2# show ip route ospf

O IA **10.4.4.0/24** [110/3] via 192.168.2.1, 00:10:48, FastEthernet0/0 O IA **192.168.1.0/24** [110/2] via 192.168.2.1, 00:10:48, FastEthernet0/0

Digital Subscriber Line (DSL)

Digital Subscriber Line (DSL)

DSL Technologies

□ Symmetric Digital Subscriber line (**SDSL**):

- Asymmetric digital subscriber line (ADSL), up to 8 Mbit/s and 800 kbit/s
- Asymmetric digital subscriber line 2 (ADSL2), up to 12 Mbit/s and 3.5 Mbit/s
- Asymmetric digital subscriber line 2 plus (ADSL2+), up to 24 Mbit/s and 3.5 Mbit/s
- Very-high-bit-rate digital subscriber line (VDSL), up to 54 Mbit/s and 16 Mbit/s

Cable Modem

Cable Modem

Data Over Cable Service Interface Specification (DOCSIS).

Fiber Optic Internet

WiMAX

3G/4G/5G (Cellular Network)

Internet VPNs

Cisco HDLC

Flag	Address	Control	Protocol	Data	FCS	Flag
0x7E = 126	0x0F (unicast), 0x8F (broadcast)	0x00	IPv4 : 0x0800 IPv6 : 0x86dd CDP : 0x2000			0x7E = 126

Point-to-Point Protocol (PPP)

- ☐ PPP is a protocol that is able to handle authentication, compression, and error detection; monitor link quality; and logically bundle multiple serial connections together to share the load.
- **□ PPP** components:
 - 1. Frame format (encapsulation).
 - 2. Link Control Protocol (LCP).
 - Authentication method used (PPP Authentication Procedure [PAP] or
 Challenge-Handshake Authentication Protocol [CHAP]), if any.
 - Compression.
 - Callback phone.
 - Multilink.
 - Error detection.
 - 3. Family of Network Control Protocols (NCPs).
 - IPCP: controls IPv4.
 - IPv6CP: Controls IPv6.
 - CDPCP: Controls Cisco Discovery Protocol (CDP).

PPP Encapsulation

PPP General Frame Format

Flag	Address	Control	Protocol	Data	FCS	Flag
0x7E = 126	0xFF = 255	0x03	IPv4 : 0x0021 IPv6 : 0x0057 CDP : 0x0207			0x7E = 126

PPP Authentication Protocols

- ☐ Password Authentication Protocol (PAP):
- ☐ Challenge Handshake Authentication Protocol (CHAP):

PPP Authentication Protocols

PPP Authentication Protocols

