Solution Section 3.3 – Logarithmic Functions

Exercise

Write the equation in its equivalent logarithmic form $2^6 = 64$

$$6 = \log_2 64$$

Exercise

Write the equation in its equivalent logarithmic form $5^4 = 625$

Solution

$$4 = \log_5 625$$

Exercise

Write the equation in its equivalent logarithmic form $5^{-3} = \frac{1}{125}$

Solution

$$-3 = \log_5 \frac{1}{125}$$

Exercise

Write the equation in its equivalent logarithmic form $\sqrt[3]{64} = 4$

Solution

$$64^{1/3} = 4$$

$$\log_{64} = \frac{1}{3}$$

Exercise

Write the equation in its equivalent logarithmic form $b^3 = 343$

$$\log_b 343 = 3$$

Write the equation in its equivalent logarithmic form $8^y = 300$

Solution

$$\log_8 300 = y$$

Exercise

Write the equation in its equivalent logarithmic form: $\sqrt[n]{x} = y$

Solution

$$(x)^{1/n} = y$$

$$\log_x(y) = \frac{1}{n}$$

Exercise

Write the equation in its equivalent logarithmic form: $\left(\frac{2}{3}\right)^{-3} = \frac{27}{8}$

Solution

$$\log_{\frac{2}{3}}\left(\frac{27}{8}\right) = -3$$

Exercise

Write the equation in its equivalent logarithmic form: $\left(\frac{1}{2}\right)^{-5} = 32$

Solution

$$\log_{\frac{1}{2}}(32) = -5$$

Exercise

Write the equation in its equivalent logarithmic form: $e^{x-2} = 2y$

$$x - 2 = \ln |2y|$$

Write the equation in its equivalent logarithmic form: e = 3x

Solution

$$1 = \ln |3x|$$

Exercise

Write the equation in its equivalent logarithmic form: $\sqrt[3]{e^{2x}} = y$

Solution

$$e^{2x/3} = y$$

$$\frac{2x}{3} = \ln|y|$$

Exercise

Write the equation in its equivalent exponential form $\log_5 125 = y$

Solution

$$5^y = 125$$

Exercise

Write the equation in its equivalent exponential form $\log_4 16 = x$

Solution

$$16 = 4^{x}$$

Exercise

Write the equation in its equivalent exponential form $\log_5 \frac{1}{5} = x$

Solution

$$\frac{1}{5} = 5^{x}$$

Exercise

Write the equation in its equivalent exponential form $\log_2 \frac{1}{8} = x$

$$\frac{1}{8} = 2^x$$

Write the equation in its equivalent exponential form $\log_6 \sqrt{6} = x$

Solution

$$\sqrt{6} = 6^{x}$$

Exercise

Write the equation in its equivalent exponential form $\log_3 \frac{1}{\sqrt{3}} = x$

Solution

$$3^{-1/2} = 3^x$$

Exercise

Write the equation in its equivalent exponential form: $6 = \log_2 64$

Solution

$$6 = \log_2 \frac{64}{64} \iff 2^6 = \frac{64}{64}$$

Exercise

Write the equation in its equivalent exponential form: $2 = \log_9 x$

Solution

$$2 = \log_9 x \iff \underline{x = 2^9}$$

Exercise

Write the equation in its equivalent exponential form: $\log_{\sqrt{3}} 81 = 8$

$$\log_{\sqrt{3}} 81 = 8 \iff 81 = \left(\sqrt{3}\right)^8$$

Write the equation in its equivalent exponential form: $\log_4 \frac{1}{64} = -3$

Solution

$$\log_4 \frac{1}{64} = -3 \iff \frac{1}{64} = x^{-3}$$

Exercise

Write the equation in its equivalent exponential form: $\log_4 26 = y$

Solution

$$\log_4 26 = y \iff 26 = 4^y$$

Exercise

Write the equation in its equivalent exponential form: $\ln M = c$

Solution

$$\ln M = c \iff \underline{M = e^c}$$

Exercise

Evaluate the expression without using a calculator: $\log_4 16$

Solution

$$\log_4 16 = \log_4 4^2$$

$$\log_b b^x = x$$

$$= 2$$

Exercise

Evaluate the expression without using a calculator: $\log_2 \frac{1}{8}$

$$\log_2 \frac{1}{8} = \log_2 \frac{1}{2^3}$$

$$= \log_2 2^{-3}$$

$$= -3$$

Evaluate the expression without using a calculator: $\log_6 \sqrt{6}$

Solution

$$\log_6 \sqrt{6} = \log_6 6^{1/2}$$
$$= \frac{1}{2}$$

Exercise

Evaluate the expression without using a calculator: $\log_3 \frac{1}{\sqrt{3}}$

Solution

$$\log_3 \frac{1}{\sqrt{3}} = \log_3 \frac{1}{3^{1/2}}$$

$$= \log_3 3^{-1/2} \qquad \log_b b^x = x$$

$$= -\frac{1}{2}$$

Exercise

Evaluate the expression without using a calculator: $\log_3 \sqrt[7]{3}$

Solution

$$\log_3 3^{1/7} = x$$

$$3^{1/7} = 3^x$$

$$x = \frac{1}{7}$$

$$\log_3 \sqrt[7]{3} = \frac{1}{7}$$

Exercise

Evaluate the expression without using a calculator: $\log_3 \sqrt{9}$

$$\log_3 \sqrt{9} = \log_3 3 \qquad \log_b b^x = x$$

$$= 1$$

Evaluate the expression without using a calculator: $\log_{\frac{1}{2}} \sqrt{\frac{1}{2}}$

Solution

$$\log_{\frac{1}{2}} \sqrt{\frac{1}{2}} = \log_{\frac{1}{2}} \left(\frac{1}{2}\right)^{\frac{1}{2}} \qquad \log_b b^x = x$$

$$= \frac{1}{2}$$

Exercise

Simplify $\log_5 1$

Solution

$$\frac{\log_5 1 = 0}{5}$$

Exercise

Simplify $\log_7 7^2$

Solution

$$\log_7 7^2 = 2$$

Exercise

Simplify $3^{\log_3 8}$

Solution

$$3^{\log_3 8} = 8$$

Exercise

Simplify $10^{\log 3}$

$$10^{\log 3} = 3$$

 $e^{2+\ln 3}$ Simplify

Solution

$$e^{2+\ln 3} = e^2 e^{\ln 3}$$
$$= 3e^2$$

Exercise

 $\ln e^{-3}$ Simplify

Solution

$$\ln e^{-3} = -3$$

Exercise

 $\ln e^{x-5}$ Simplify

Solution

$$\ln e^{x-5} = x-5$$

Exercise

 $\log_b b^n$ Simplify

Solution

$$\log_b b^n = n$$

Exercise

Simplify

In position in
$$e^{x^2 + 3x}$$

$$\ln e^{x^2 + 3x} = x^2 + 3x$$

Find the domain of $f(x) = \log_5(x+4)$

Solution

Domain: x > -4

Exercise

Find the domain of $f(x) = \log_5 (x+6)$

Solution

Domain: x > -6

Exercise

Find the domain of $f(x) = \log(2 - x)$

Solution

Domain: x < 2

Exercise

Find the domain of $f(x) = \log(7 - x)$

Solution

Domain: x < 7

Exercise

Find the domain of $f(x) = \ln(x-2)^2$

Solution

Domain: $\frac{\mathbb{R}-\{2\}}{}$

 $(-\infty, 2) \cup (2, \infty)$

Exercise

Find the domain of $f(x) = \ln(x-7)^2$

Domain:
$$\mathbb{R} - \{7\}$$
 $(-\infty, 7) \cup (7, \infty)$

Find the domain of $f(x) = \log(x^2 - 4x - 12)$

Solution

$$x^{2} - 4x - 12 > 0$$

$$x = \frac{4 \pm \sqrt{16 + 48}}{2}$$

$$= \begin{cases} \frac{4 - 8}{2} = -2\\ \frac{4 + 8}{2} = 6 \end{cases}$$

Domain: x < -2 x > 6 $(-\infty, -2) \cup (6, \infty)$

Exercise

Find the domain of $f(x) = \log\left(\frac{x-2}{x+5}\right)$

Solution

$$\begin{cases} x \neq 2 \\ x \neq -5 \end{cases}$$

Domain: x < -5 x > 2 $(-\infty, -5) \cup (2, \infty)$

	-5	0	2		
+		_		+	

Exercise

Find the domain of $f(x) = \log\left(\frac{3-x}{x-2}\right)$

Solution

$$\begin{cases} x \neq 3 \\ x \neq 2 \end{cases}$$

Domain: 2 < x < 3

Find the domain of $f(x) = \ln(x^2 - 9)$

Solution

$$x^2 - 9 > 0$$

Domain: x < -3 x > 3

Exercise

Find the domain of $f(x) = \ln\left(\frac{x^2}{x-4}\right)$

Solution

$$\frac{x^2}{x-4} > 0$$

$$x^2 \to \mathbb{R}$$

x > 4

Domain: x > 4

Exercise

Find the domain of $f(x) = \log_3(x^3 - x)$

Solution

$$x^3 - x > 0$$

$$x = 0, 0, 1$$

Domain: $\underline{x > 1}$

0,0 1 <u>2</u> - | - | +

Exercise

Find the domain of $f(x) = \log \sqrt{2x-5}$

Solution

$$2x - 5 > 0$$

Domain: $x > \frac{5}{2}$

Find the domain of $f(x) = 3\ln(5x - 6)$

Solution

$$5x - 6 > 0$$

Domain:
$$x > \frac{6}{5}$$

Exercise

Find the domain of $f(x) = \log\left(\frac{x}{x-2}\right)$

Solution

$$\frac{x}{x-2} > 0$$

$$x = 0, 2$$

Domain: x < 0 x > 2

Exercise

Find the domain of $f(x) = \log(4 - x^2)$

Solution

$$4 - x^2 > 0$$

$$4 - x^2 = 0 \quad \rightarrow \quad x = \pm 2$$

Domain: -2 < x < 2

Exercise

Find the domain of $f(x) = \ln(x^2 + 4)$

Solution

 $x^2 + 4$ always positive.

Domain: R

Find the domain of $f(x) = \ln |4x - 8|$

Solution

$$4x - 8 = 0 \rightarrow x = 2$$

Domain:
$$\mathbb{R}-\{2\}$$

Exercise

Find the domain of $f(x) = \ln |5 - x|$

Solution

$$5 - x = 0 \quad \rightarrow \quad x = 5$$

Domain:
$$\mathbb{R}-\{5\}$$

Exercise

Find the domain of $f(x) = \ln(x-4)^2$

Solution

$$x-4=0 \rightarrow x=4$$

Domain:
$$\mathbb{R}-\{4\}$$

Exercise

Find the domain of $f(x) = \ln(x^2 - 4)$

Solution

$$x^2 - 4 > 0$$

$$x^2 - 4 = 0 \quad \to \quad x = \pm 2$$

Domain:
$$x < -2$$
 $x > 2$

Exercise

Find the domain of $f(x) = \ln(x^2 - 4x + 3)$

$$x^2 - 4x + 3 = 0 \rightarrow x = 1, 3$$

$$x^2 - 4x + 3 > 0$$

Domain: x < 1 x > 3

Exercise

Find the domain of $f(x) = \ln(2x^2 - 5x + 3)$

Solution

$$2x^2 - 5x + 3 = 0 \rightarrow x = 1, \frac{3}{2}$$

$$2x^2 - 5x + 3 > 0$$

Domain: x < 1 $x > \frac{3}{2}$

Exercise

Find the domain of $f(x) = \log(x^2 + 4x + 3)$

Solution

$$x^2 + 4x + 3 = 0 \rightarrow x = -1, -3$$

$$x^2 + 4x + 3 > 0$$

Domain: x < -3 x > -1

Exercise

Find the domain of $f(x) = \ln(x^4 - x^2)$

Solution

$$x^4 - x^2 = 0$$
$$x^2 \left(x^2 - 1\right) = 0$$

$$x = 0, 0, \pm 1$$

$$x^4 - x^2 > 0$$

Domain: x < -1 x > 1

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = \log_{4}(x-2)$

Solution

Asymptote: x = 2

Domain: $(2, \infty)$

Range: $(-\infty, \infty)$

x	f(x)
-2-	
3	0
4	.5

Exercise

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = \log_{A} |x|$

Solution

Asymptote: x = 0

Domain: $(-\infty, 0) \cup (0, \infty)$

Range: $(-\infty, \infty)$

x	f(x)
-0-	
±1	0
±4	1

Exercise

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = (\log_4 x) - 2$

Solution

Asymptote: x = 0

Domain: $(0, \infty)$

Range: $(-\infty, \infty)$

x	f(x)
-0- -	
1	0
4	-1

Find the asymptote, domain, and range of the given function. Then, sketch the graph

$$f(x) = \log(3 - x)$$

Solution

Asymptote: x = 3

Domain: $(-\infty, 3)$

Range: $(-\infty, \infty)$

x	f(x)
-3-	
2	0

Exercise

Find the asymptote, domain, and range of the given function. Then, sketch the graph

$$f(x) = 2 - \log(x+2)$$

Solution

Asymptote: x = -2

Domain: $(-2, \infty)$

Range: $(-\infty, \infty)$

x	f(x)
2	
-1	2

Exercise

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = \ln(x-2)$

Solution

Asymptote: x = 2

Domain: $(2, \infty)$

Range: $(-\infty, \infty)$

x	f(x)
-2-	
3	0

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = \ln(3-x)$

Solution

Asymptote: x = 3

Domain: $(-\infty, 3)$

Range: $(-\infty, \infty)$

x	f(x)
-3-	
2	0

Exercise

Find the *asymptote*, *domain*, and *range* of the given function.

Then, sketch the graph $f(x) = 2 + \ln(x+1)$

Solution

Asymptote: x = -1

Domain: $(-1, \infty)$

Range: $(-\infty, \infty)$

x	f(x)
1	
0	2

Exercise

Find the asymptote, domain, and range of the given function.

Then, sketch the graph $f(x) = 1 - \ln(x - 2)$

Solution

Asymptote: x = 2

Domain: $(2, \infty)$

Range: $(-\infty, \infty)$

x	f(x)
-2-	
3	1

On a study by psychologists Bornstein and Bornstein, it was found that the average walking speed w, in feet per second, of a person living in a city of population P, in *thousands*, is given by the function

$$w(P) = 0.37 \ln P + 0.05$$

- a) The population is 124,848. Find the average walking speed of people living in Hartford.
- b) The population is 1,236,249. Find the average walking speed of people living in San Antonio.

Solution

$$124,848 = 124.848$$
 thousand

a)
$$w(124.848) = 0.37 \ln (124.848) + 0.05$$

 $\approx 1.8 \text{ ft/sec}$

b)
$$w(1, 236.249) = 0.37 \ln(1, 236.249) + 0.05$$

 $\approx 2.7 \text{ ft/sec}$

Exercise

The loudness of sounds is measured in a unit called a decibel. To measure with this unit, we first assign an intensity of I_0 to a very faint sound, called the threshold sound. If a particular sound has intensity I, then the decibel rating of this louder sound is

$$d = 10\log \frac{I}{I_0}$$

Find the exact decibel rating of a sound with intensity $10,000I_0$

$$d = 10\log \frac{10000I_0}{I_0}$$
= 10\log 10000
= 40 \ db \ \]

Students in an accounting class took a final exam and then took equivalent forms of the exam at monthly intervals thereafter. The average score S(t), as a percent, after t months was found to be given by the function

$$S(t) = 78 - 15 \log(t+1); t \ge 0$$

- a) What was the average score when the students initially took the test, t = 0?
- b) What was the average score after 4 months? 24 months?

Solution

a)
$$S(0) = 78 - 15 \log(1)$$

 $\approx 78\%$

b) After 4 months

$$S(4) = 78 - 15 \log(5)$$

$$\approx 67.5\%$$

After 24 months

$$S(24) = 78 - 15 \log(25)$$

$$\approx 57\%$$

Exercise

A model for advertising response is given by the function

$$N(a) = 1,000 + 200 \ln a, \quad a \ge 1$$

Where N(a) is the number of units sold when a is the amount spent on advertising, in *thousands* of *dollars*.

- a) N(1)
- b) N(5)

a)
$$N(1) = 1,000 + 200 \ln(1)$$

= 1,000 units

b)
$$N(5) = 1,000 + 200 \ln(5)$$

= 1,322 units