Unit 2: THE MOSFET transistor

Objectives

At the end of this chapter, the student should:

- Know the importance of MOSFET transistors in the development of computers, knowing their characteristics and their relationships with the success of the digital world.
- Know the operating principles
 of MOSFET transistors, their characteristic
 curves and operating regions.
- Solve simple DC circuits with one or more transistors.
- Understand MOSFET operation inside basic circuits and digital switching systems.
- Known protection techniques for MOSFETs inputs

Unit 2: Contents

- 2.1 Introduction
- 2.2 Basic principles of operation
 - Operating regions
 - Biasing
- 2.3 The MOSFET in switching mode
- 2.4 NMOS logic gates
- 2.5 The CMOS inverter
- 2.6 Protecting circuits for MOSFET transistors
- 2.7 Summary

Bibliography

THEORY:

- A.R.Hambley, "Electronics" (2^a Ed.)", Prentice Hall, 2002.
- M.H.Rashid, "Microelectronic circuits. Analysis and design", Thomson, 2002.
- N. R. Malik, "Electronic circuits: analysis, simulation and design", Prentice Hall, 2000.
- R. Boylestad, L. Nashelsky, "Electronics, circuit theory", Pearson, 2009.
- A.P. Malvino, D.J. Bates, "Electronic principles", Mc Graw Hill, 2007.

PROBLEMS:

 G. Benet, J. V. Benlloch, V. Busquets, D. Gil, P. Pérez: "Ejercicios resueltos de Tecnología de Computadores", 2006.916

2.1 Introduction

FET = Field Effect Transistor

Current controlled by an electric field

Unipolar device

JFET (Junction FET), Shockley, 1952 MOSFET (Metal-Oxide-Semiconductor FET) Kahn y Atalla, 1960

Deplexion
Enhancement

N Channel (NMOS Transistor)
P Channel (PMOS Transistor)

2.1 Introduction(2)

- Some advantages:
 - High integration density=> VLSI
 - Versatility: R, C, switch,
 - Low power
 - High input impedance
- Some drawbacks:
 - Slower than BJT
 - Less linearity

2.2 Basic principles of operation

Internal structure:

N-channel Enhancement MOSFET (NMOS transistor):

NMOS Transistor: cross section

Constants:

$$V_T$$
 (MA/ V^2)

Pspice:
$$K = (W/L) Kp / 2$$

Pspice: $V_T = vto$

Operating regions: channel formation

Channel formation:

 $V_{GS} > V_{T}$: a N-type channel is formed between S and D $V_{GS} \le V_{T}$: no channel is formed \rightarrow CUT-OFF

Operating regions: ohmic region

Conducting condition:

$$V_{DS} > 0 \rightarrow I_{DS} > 0$$

Working principles: linear region (2)

Condition:
$$V_{DS} \leq V_{GS} - V_{T}$$

V/I function:
$$I_D = K \left[2(V_{GS} - V_T)V_{DS} - V_{DS}^2 \right]$$

For small V_{DS}:

$$I_D \approx K [2 (V_{GS}-V_T) V_{DS}]$$

$$R_{DS(on)} = R_{ON} \approx \frac{1}{2 \cdot K(V_{GS} - V_{T})}$$

The MOSFET resistance decreases when K and V_{GS} increase

Operating regions: saturation region

The channel is pinched-off (small channel near D), and the current remains constant

Operating regions: saturation region(2)

Condition: $V_{DS} > V_{GS} - V_{T}$

V/I function: $I_{DS} = K (V_{GS} - V_T)^2$ (Saturation parable)

The channel is *pinched-off*

For a fixed VGS, the current $I_{DS} \approx$ constant, and indep. of V_{DS}

The Mosfet is equivalent to a current source (I_{DS}) controlled by voltage (V_{GS})

I-V curves of the NMOS

Example: NMOS Transistor: $V_T = 2V$

 $K = 0.5 \text{mA/V}^2$

I_{DS} versus V_{GS} in saturation region

Saturation parable:

$$I_{DS} = K \left(V_{GS} - V_T \right)^2$$

$$V_{GS}$$

$$V_T = 2V$$

$$V_{GS} \le V_T \rightarrow I_D = 0$$

PMOS Transistor: cross section

PMOS. Characteristic curves

All variables are negatives!

$$V_{GS} < 0, V_{DS} < 0,$$

$$I_{DS} < 0 \rightarrow I_{SD} > 0$$

Conduction: $V_{GS} < -V_{T}$

The PMOS transistor: summary

- Cut-off: $V_{GS} \ge -V_T$
- Saturation:

$$V_{DS} < V_{GS} + V_{T}$$
 $I_{SD} = K (V_{GS} + V_{T})^{2}$

Ohmic:

$$R_{ON} \approx \frac{1}{2 \cdot K(V_{GS} + V_{T})}$$

(considering K and V_T as absolute values, $V_{GS} < 0$, $V_{DS} < 0$)

- Less use than N-channel MOSFETS, as holes mobility is smaller than electrons mobility:
 - Slower than the NMOS
 - ◆ They need more W/L→ bigger than NMOS (more space occupied)

MOSFET: Summary of some formulas

V			<u> </u>
	NMOS		PMOS
	$V_{GS} > V_{T}$	CONDUCTS	$V_{GS} < -V_{T}$
	$V_{DS} > V_{GS} - V_{T}$	SATURATION condition	$V_{DS} < V_{GS} + V_{T}$
	$I_{DS} = K (V_{GS} - V_T)^2$	SATURATION	$I_{SD} = K (V_{GS} + V_T)^2$
	$I_{DS} = K \left[2(V_{GS} - V_T)V_{DS} - V_{DS}^2 \right]$ $R_{ON} \approx \frac{1}{2 \cdot K(V_{GS} - V_T)}$	OHMIC or LINEAR	$I_{SD} = K \left[2(V_{GS} + V_T)V_{DS} - V_{DS}^2 \right]$ $R_{ON} \approx \left \frac{1}{2 \cdot K(V_{GS} + V_T)} \right $

(Taking the absolute value of V_T and K in all formulas)

Summary NMOS regions

NMOS		Equation	Check
CUT-OF	F	$I_{DS} = 0$	$V_{GS} < V_{T}$
SATURATI	ON	$I_{DS} = K (V_{GS} - V_T)^2$	$V_{DS} > V_{GS} - V_{T}$
OHMIC or LIN	NEAR	$I_{DS} = K \left[2(V_{GS} - V_T)V_{DS} - V_{DS}^2 \right]$ $R_{ON} \approx \frac{1}{2 \cdot K(V_{GS} - V_T)}$	$V_{DS} < V_{GS} - V_{T}$

(Taking the absolute value of V_T and K in all formulas)

Equivalences and differences between Mosfet-BJTs

Terminals

MOSFEI	ВЛ	
DRAIN	COLLECTOR	
SOURCE	EMITTER	
GATE	BASE	

BJT: $I_B > 0$ for conducting

Mosfet: $I_G = 0$ always!

Working regions

MOSFET	BJT
CUT-OFF REGION	CUT-OFF REGION
SATURATION REGION	ACTIVE REGION
OHMIC \ LINEAR REGIN	SATURATION REGION

Mosfet's Saturation: maximum I_{DS} for a given V_{GS}

BJT's saturation: maximum I_C for a given biass circuit

Enhancement MOSFET Biassing (1)

Equations to analyze the Mosfets biassing circuits

- 1.- Input loop: G-S → loop equation with V_{GS}
- 2.- Assuming saturation \rightarrow saturation equation NMOS: $I_{DS} = K (V_{GS} - V_T)^2$ PMOS: $I_{SD} = K (V_{GS} + V_T)^2$ (With VGS, checkout if MOSFET is conducting)
- 3.- Output loop D-S \rightarrow loop equation with V_{DS}
- 4.- Checkout of saturation NMOS: $V_{DS} > V_{GS} V_{T}$ PMOS: $V_{DS} < V_{GS} + V_{T}$ (If not satisfied, return to step 2, using the equation of the linear region, and redo the calculations)

Enhancement MOSFET. Biassing (2)

Enhancement MOSFET. Biassing (3)

Biassing with resistor divider

2 solutions for $I_{DS} \rightarrow you$ choose the one for which $V_{GS} > V_{T}$

The load line

Load line: $V_{DS} = V_{DD} - I_{DS} \times R_{D}$

The quiescent point (Q) is determined by intersecting the characteristic curve of MOSFET and the load line.

2.3 The MOSFET in switching mode

The transistor operates between cut-off and linear regions

$$Ve < V_T \rightarrow Mosfet = open circuit (OFF)$$

Ve = V_{DD} → Mosfet ≈ R_{on} (very low resistance - ideally a closed switch-ON)

The MOSFET in switching mode (2)

$$Ve = V_{GS}$$

Two state:

•Ve
$$<$$
 $V_T \rightarrow$ Cut-off \rightarrow $V_{OH} = V_{DD} = "1"$

$$R_{\text{ON}} \approx \frac{1}{2 \cdot K(V_{\text{GS}} - V_{\text{T}})}; V_{\text{OL}} = V_{\text{DD}} \times \frac{R_{\text{ON}}}{R_{\text{D}} + R_{\text{ON}}}$$

if
$$R_{on} << R_D \rightarrow V_{OL} \approx 0V = "0"$$

There is static power consumption (I > 0)

The MOSFET in switching mode (3)

The MOSFET in switching mode (4)

Ve

Example:

Design an NMOS inverter with pull-up resistor

Data:

Power consumption at low level = 0.25 mW

$$V_{OL} = 0.5V, V_{OH} = V_{DD} = 5V$$

Transistor: $V_T = 1V$

Find out R_{on} and K

Active loads. Pseudo-NMOS Logic

- PMOS trasistor always conducting
- Saving Silicon area (no Rpull-up necessary)
- Used in ROM, PLA and FLASH

Active loads. Pseudo-NMOS Logic

Transference curve versus channel size (W/L)

The MOSFET in switching mode. Applications

Switch pushed → VGS = VDD → Mosfet On (closed switch) → LED ON

Switch released \rightarrow VGS = 0 \rightarrow Mosfet off (open switch) \rightarrow LED OFF

2.4 NMOS logic gates

Let's assume:

"0" =
$$0V$$

Tr	an	sis	stc	rs	in
	р	ar	all	el	

Va	Vb	M1(OFF/ON)	M2 (OFF/ON)	Vo
0	0			
0	1			
1	0			
1	1			

2.4 NMOS logic gates

Let's assume:

$$0" = 0V$$

T	ra	ns	ist	ors	s ii	ገ
		se	rie	es		

Va	Vb	M1(OFF/ON) M2 (OFF/O	N) Vo
0	0		
0	1		
1	0		
1	1		

2.5. The CMOS inverter

Digital input: $V_I = 0V = "0"$; $V_I = V_{DD} = "1"$

2.5. The CMOS inverter (2)

$$V_{GS1} = V_{DD} - V_{DD} = 0V > -V_{T} \Rightarrow PMOS \text{ cut-off}$$

 $V_{GS2} = V_{DD} - 0V = V_{DD} > V_{T} \Rightarrow NMOS \text{ conducts}$

The static consumption is = 0

2.5. The CMOS inverter (3)

$$V_{GS1} = 0V - V_{DD} = -V_{DD} < -V_{T} \Rightarrow PMOS \text{ conducs}$$

 $V_{GS2} = 0V - 0V = 0V < V_{T} \Rightarrow NMOS \text{ cut-off}$

The static consumption is = 0

2.5. The CMOS inverter (4)

Transference curve:

2.6. Protection of MOSFET transistors (1)

- MOSFET are sensitive to:
 - Overvoltages
 - Overcurrents
 - High electrostatic potentials
 - Radiations
- thinox layer: very thin, < 40Å in VLSI (1Å = 0.1 nm)

Thinox layer breakdown caused by electrostatic potentials at the gate

2.6. Protection of MOSFET transistors (2)

- Precautions when handling MOSFETs:
 - Storage in conducting material
 - * Careful human manipulation
 - * In operation, connect unused inputs to ground or to V_{DD}.
- Clamping circuits

Latest developments: FinFET, tri-gate

- Higher speed
- Less consuption
- New material for isolators and semiconductors
 - Isolators: HfO₂, ZrO₂, Si₃N₄
 - More mobility in channel, using different materials than Si: InGaAS,

2.7 Summary

- We have introduced the features that have made the MOSFET transistor the most important device of the digital age. We have assessed the importance and applications of this transistor.
- We have studied the internal functionement of enhancement MOSFETs, their structure, equations, curves and operating regions.
- We have learn how to solve DC circuits based on one or more MOSFET transistors.
- We know the switching mode of the MOSFETs, the states and the conditions of the transistor in this mode.
- We have introduced the main logic gates based on MOSFETs
- We have studied the basic techniques to protect these devices.