Projektowanie obiektowe oprogramowania Wykład 1 - Unified Process Wiktor Zychla 2022

1 Unified Process

Rama organizacji procesu wytwarzania oprogramowania. Posiada wyodrębionie fazy inicjowania, projektowania, implementowania, testowania i wdrażania.

Na niemal wszystkie metodyki wytwarzania oprogramowania można patrzeć jak na warianty UP.

Iterative Development

Business value is delivered incrementally in time-boxed cross-discipline iterations.

Rysunek 1 http://upload.wikimedia.org/wikipedia/commons/0/05/Development-iterative.gif

Rysunek 2 Diagram procesowy UP

2 Faza rozpoczęcia (Business Modelling)

Definicja. Faza rozpoczęcia = określenie zakresu, wizji i uwarunkowań biznesowych.

Typowe artefakty:

Wizja i analiza biznesowa	Opis celów i uwarunkowań biznesowych	
Słowniczek	Podstawowa terminologia dziedzinowa	
Prototyp	Udowodnienie poprawności rozwiązań technicznych;	
	doprecyzowanie wizji	
Plan pierwszej iteracji		
Specyfikacja dodatkowa	Lista dodatkowych wymagań mających istotny wpływ na architekturę	
Plan zarządzania	(aktualizowane na bieżąco) scenariusze alternatywne –	
ryzykiem	biznesowe, technologiczne, organizacyjne	

3 Zbieranie wymagań (Requirements)

3.1 FURPS+ - obszary wymagań

Definicja. **Wymagania =** zdolności które system musi posiadać i ograniczenia do których musi się dostosować.

FURPS

Zwięzły opis

Przykładowy kwestionariusz wymagań FURPS

Functional	Funkcjonalności, możliwości, bezpieczeństwo
U sability	Czynnik ludzki, pomoc, dokumentacja
Reliability	Awaryjność, odzyskiwanie, przewidywalność
Performance	Czas reakcji, przepustowość, dokładność, dostępność, wykorzystanie
	zasobów
Supportability	Dostosowanie, utrzymanie, konfiguracja, lokalizacja
<i>D</i> esign	Wszelkie ograniczenia projektowe (np. relacyjna baza danych)
<i>I</i> mplementation	Narzędznia, sprzęt, zasoby, standardy
<i>I</i> nterface	Interfejsy zewnętrznych systemów
<i>P</i> hysical	

Typowe problemy:

- 1. Shopping cart mentality wszystko co tylko można bez świadomości kosztów
- 2. All are equal brak priorytetyzacji
- 3. Requirements can't be measured wymagania są niejasne albo niemierzalne

Przykłady wymagań narzuconych przez regulacje prawne:

- Rozporządzenie o Ochronie Danych Osobowych (RODO)
- Wymagania Krajowych Ram Interoperacyjności (KRI), w szczególności WCAG 2.0 http://www.dziennikustaw.gov.pl/du/2012/526/1 https://www.w3.org/TR/WCAG20/

Proszę z ciekawości prześledzić jak bardzo to jest szczegółowo rozpisane, np.:

https://www.w3.org/WAI/WCAG21/quickref/?showtechniques=131#info-and-relationships

i wymagania typu H63 (jedno z wielu!)

https://www.w3.org/TR/WCAG20-TECHS/H63.html

OPZ Opis przedmiotu zamówienia

Demo: zapytanie do wyszukiwarki "specyfikacja istotnych warunków zamówienia system informatyczny"

3.2 S.M.A.R.T. - kryteria oceny wymagań

Jak ocenić sformułowane wymagania? S.M.A.R.T

- Szczegółowy/prosty (Simple)
- Mierzalny (Measurable)
- Osiągalny/atrakcyjny (Achievable)
- Istotny/realistyczny (Relevant)
- Terminowy (Time-specific)

Specific - 5W

- What: What do I want to accomplish?
- Why: Specific reasons, purpose or benefits of accomplishing the goal.
- Who: Who is involved?
- Where: Identify a location.
- Which: Identify requirements and constraints.

Measuareble

- How much?
- How many?
- How will I know when it is accomplished?
- Indicators should be quantifiable

Achievable

• How: How can the goal be accomplished?

Relevant

- · Does this seem worthwhile?
- Is this the right time?
- Does this match our other efforts/needs?
- Are you the right person?
- Is it applicable in current socio- economic- technical environment?

Time-bound

- When?
- What can I do six months from now?
- What can I do six weeks from now?
- What can I do today?

Przykłady:

- Oferowany system musi zapewnić dostęp do niego poprzez Internet z dowolnego komputera za pośrednictwem przeglądarki internetowej. Dostęp do systemu nie może być uzależniony od konieczności instalacji na jednostce lokalnej dodatkowego oprogramowania, które nie jest standardowym elementem przeglądarki internetowej.
- Oferowany system musi charakteryzować się dobrą wydajnością i pojemnością.
- System musi zapewniać mechanizmy kontroli dostępu użytkowników do gromadzonych danych oraz realizowanych operacji wraz z ich rejestracją i możliwością odtworzenia historii zmian.
- Średni czas odpowiedzi przy transakcjach bez zapisu informacji do bazy danych nie może przekraczać 5 sek. a czas maksymalny 20 sek.

4 Projektowanie analityczne – przypadki użycia (Analysis)

Definicja. **Przypadek użycia =** sekwencja prostych kroków opisująca interakcję między aktorem (użytkownikiem) a systemem.

Uwaga! Przypadki użycia należą do wymagań funkcjonalnych.

Uwaga! Przypadki użycia dokumentuje się w postaci tekstu, wspartego opcjonalnie diagramami przypadków użycia UML.

Aktor – byt charakteryzujący się zachowaniem (w tym sam system)

Aktor pierwszoplanowy – realizuje cele użytkownika (np. kasjer)

Aktor drugoplanowy – dostarcza informacji (np. system kart płatniczych) (opis zewnętrznych interfejsów i protokołów)

4.1 Dokumentacja:

Nieformalna (*brief*) – zwięzłe streszczenie o długości jednego akapitu, podstawowy scenariusz sukcesu

Obsłuż sprzedaż – klient staje przy kasie z produktami, które chce kupić. Kasjer korzysta z systemu kasowego w celu odnotowania każdego produktu. System wyświetla informacje na temat poszczególnych produktów oraz sumę do zapłaty. Klient podaje dane pozwalające określić sposób płatności. Kasjer przyjmuje zapłatę, system aktualizuje stan magazynu, klient otrzymuje paragon.

Pełna (fully dressed) – wszystkie kroki i warianty opisane szczegółowo

- Poziom cel użytkownika lub podprocedura
- Interesariusze i ich cele
- Warunki początkowe
- Warunki zakończenia (powodzenia)
- Główny scenariusz sukcesu brak obsługi błędów, wyrażeń warunkowych
- Rozszerzenia obsługa błędów i sytuacji nietypowych
- Kroki:
 - o **Zdarzenie** inicjujące przypadek użycia
 - o Interakcja między aktorami
 - o Walidacja
 - Zmiana stanu systemu (np. zapisanie danych)
- Dodatkowe wymagania
- Technologia i format danych

4.1.1 Przykład

https://jira.atlassian.com/secure/attachment/48985/Use+case+POS.pdf

4.1.2 Przykład – licytuj towar

Nazwa: Licytuj towar

Numer: 1

Twórca: Jan Kowalski

Poziom ważności: Wysoki

Typ przypadku użycia: Ogólny, niezbędny

Aktorzy: Uczestnik aukcji [kupujący] **Krótki opis:** Licytacja wskazanego towaru

Warunki wstępne: Uczestnik aukcji posiada niezablokowane konto **Warunki końcowe**: Oferta została zarejestrowana lub wyświetlony został

komunikat o błędzie a stan systemu nie uległ zmianie

Główny scenariusz sukcesu:

- 1) Uczestnik aukcji wskazuje aukcję, w której chce uczestniczyć
- 2) System wyświetla formularz do wpisania oferty
- 3) Uczestnik aukcji wpisuje ofertę, a następnie wybiera opcję licytuj
- 4a) System rejestruje oferte i informuje o tymUczestnika aukcji
- 5) Następuje rozszerzenie aukcji o przypadek Finalizuj transakcję

Alternatywne przepływy zdarzeń:

4b) Jeżeli w kroku 3) Uczestnik aukcji wprowadził kwotę niezgodną z regułami licytacji, system informuje o błędzie i następuje przejście do kroku 2)

Wyjatki w przepływach

4c) Jeżeli z powodu awarii technicznej lub zakończenia aukcji system nie może zarejestrować

oferty, informuje o tym Uczestnika aukcji i następuje zakończenie przypadku

Specjalne wymagania: brak

Notatki i kwestie: Po zakończeniu aukcji system informuje kupującego i sprzedającego o wyniku licytacji W dowolnym momencie Uczestnik aukcji może zrezygnować z licytacji i następuje zakończenie przypadku

4.1.3 Przykład – finalizuj transakcję

Nazwa: Finalizuj transakcję

Numer: 2

Twórca: Jan Kowalski Poziom ważności: Wysoki

Typ przypadku użycia: Ogólny, niezbędny

Aktorzy: Uczestnik aukcji [kupujący], oraz Uczestnik aukcji [sprzedający]

Krótki opis: Finalizacja rozstrzygniętych aukcji

Warunki wstępne:

- 1) Uczestnik aukcji posiada niezablokowane konto
- 2) Uczestnik aukcji [sprzedający] był oferentem aukcji
- 3) Uczestnik aukcji [kupujący] wygrał licytację

Warunki końcowe:

Transakcja została zakończona lub aukcja została unieważniona

Główny scenariusz sukcesu:

- 1) System informuje Uczestników aukcji o zakończeniu licytacji
- 2a) Kupujący określa sposób płatności oraz wybiera formę dostarczenia towaru
- 3) System wysyła do sprzedającego informację o sposobie płatności oraz wybranej przez kupującego formie dostarczenia towaru
- 4) Sprzedający wystawia ocenę kupującemu
- 5) W przypadku negatywnej oceny system wysyła informację do Administratora
- 6) Kupujący wystawia ocenę sprzedającemu
- 7) W przypadku negatywnej oceny system wysyła informację do administratora
- 8) Administrator w przypadku uzasadnionych skarg uczestników transakcji i (lub) naruszenia regulaminu może unieważnić transakcję

Alternatywne przepływy zdarzeń:

2b) Jeżeli w ciągu 3 dni od zawarcia transakcji nie poinformował sprzedawcy o wyborze sposobu

płatności, sprzedawca może unieważnić transakcję

Specjalne wymagania: brak

Notatki i kwestie: Pomiędzy kolejnymi zdarzeniami mogą wystąpić kilkudniowe odstępy czasowe

Kroki 6) i 7) mogą wystąpić przed krokami 4) i 5)

4.2 Poszukiwanie przypadków użycia

Najbardziej oczywiste - określenie aktorów i celów.

Kasjer	 Przetwarzanie sprzedaży Wkładanie pieniędzy do kasy Wypłacanie pieniędzy z kasy
Kierownik	Uruchamianie systemuWyłączanie systemu
Administrator systemu	 Zarządzanie użytkownikami Określanie zasad bezpieczeństwa

Dodatkowe przypadki użycia:

- 1. Kto uruchamia i zatrzymuje system
- 2. Kto administruje systemem
- 3. Kto zarządza użytkownikami
- 4. Czy działanie systemu samoistnie zmienia się z upływem czasu
- 5. Kto ocenia działanie i wydajność
- 6. Jak obsługuje się aktualizacje
- 7. Itd... wynikają wprost z wymagań

4.3 Kryteria oceny przypadków użycia

Test EBP (Elementary Business Process) – Zadanie wykonywane przez jedną osobę w jednym miejscu i określonym czasie w odpowiedzi na pewne zdarzenie biznesowe. Zadanie prowadzi do uzyskania mierzalnej wartości biznesowej. Po jego wykonaniu dane są w spójnym stanie.

Test rozmiaru – intuicyjnie zbyt mały lub zbyt duży

- 1. Negocjuj umowę z dostawcą nie przechodzi testu rozmiaru (za duży)
- 2. Obsłuż zwroty ok
- 3. Zaloguj się nie przechodzi testu rozmiaru (za mały)
- 4. Przesuń pionek na planszy nie przechodzi testu rozmiaru (za mały)

5 Projektowanie analityczne – modele pojęciowe (Analysis)

Definicja. Model dziedziny (model pojęciowy, konceptualny) = przedstawienie pojęć reprezentujących byty ze świata rzeczywistego ("użytkownik", "drukarka", "faktura", "ocena"), istotnych dla danej dziedziny oraz **relacji** między nimi ("ma", "zjada", "lubi", "rozpoczyna").

W podejściu <u>Domain Drive Design</u> (DDD), *model dziedziny* jest osią dookoła której zorientowany jest cały proces projektowania. DDD ma cztery podstawowe kategorie konceptualne:

Context

The setting in which a word or statement appears that determines its meaning;

Domain

A sphere of knowledge (<u>ontology</u>), influence, or activity. The subject area to which the user applies a program is the domain of the software

Model

A system of abstractions that describes selected aspects of a domain and can be used to solve problems related to that domain

Ubiquitous Language

A language structured around the <u>domain model</u> and used by all team members to connect all the activities of the team with the software.

5.1 Tworzenie modelu pojęciowego

5.1.1 Metoda "fraz rzeczownikowych"

Wykorzystuje się przypadki użycia, np.

Główny scenariusz sukcesu:

- 1) Uczestnik aukcji wskazuje aukcję, w której chce uczestniczyć
- 2) System wyświetla formularz do wpisania oferty
- 3) Uczestnik aukcji wpisuje ofertę, a następnie wybiera opcję licytuj
- 4a) System rejestruje ofertę i informuje o tymUczestnika aukcji
- 5) Następuje rozszerzenie aukcji o przypadek Finalizuj transakcję

Główny scenariusz sukcesu:

- 1) System informuje Uczestników aukcji o zakończeniu licytacji
- 2a) Kupujący określa sposób płatności oraz wybiera formę dostarczenia towaru
- 3) System wysyła do sprzedającego **powiadomienie** o sposobie płatności oraz wybranej przez kupującego formie dostarczenia towaru
- 4) Sprzedający wystawia **ocenę** kupującemu
- 5) W przypadku negatywnej oceny system wysyła informację do Administratora
- 6) Kupujący wystawia ocenę sprzedającemu
- 7) W przypadku negatywnej oceny system wysyła informację do administratora
- 8) Administrator w przypadku uzasadnionych **skarg** uczestników transakcji i (lub) naruszenia regulaminu może unieważnić transakcję

5.1.2 Metoda "lista kategorii"

Transakcje biznesowe	Sale
	Payment

	Reservation
Przedmioty transakcji	SalesItem
Produkt lub usługa związane z	Item
transakcją lub przedmiotem transakcji	Flight
	Seat
	Meal
Gdzie odnotowywana jest transakcja	Register
	Ledger
	FlightManifest
Role osób i organizacji związanych z	Cashier
transakcją, aktorzy przypadków użycia	Customer
	Store
	Passenger
	Player
Miejsce transakcji lub usługi	Store
Ważne zdarzenia które trzeba pamiętać	Sale
	Payment
	Game
Obiekty fizyczne	Board
	Piece
	Die
	Airplane
	Item
	Register
Opisy	ProductDescription
	FlightDescription
Katalogi	ProductCatalog
D : 11:	FlightCatalog
Pojemniki	Store
	Board
D 1 : (: : : : : : : : : : : : : : : : :	Airplane
Przedmioty w pojemnikach	Item
	Square
Cyctomy wan flows avis as	Passenger
Systemy współpracujące	CreditAuthorizationSystem
Dokumenty (finansowe, pracownicze,	Receipt
umowy)	Log
	Cash Check
	Ticket
Harmonogramy rozkłady instrukcja	Schedule
Harmonogramy, rozkłady, instrukcje	Julieuule

5.1.3 Użyj istniejącego modelu Fowler - Analysis Patterns

5.2 Wskazówki

5.2.1 Atrybuty a pojęcia

Jeżeli o X myślimy inaczej niż jako o zmiennej **typu prostego** to prawdopodobnie X jest pojęciem a nie atrybutem.

Pytania pomocnicze:

- 1. Czy dane wewnątrz atrybutu składają się z rozłącznych sekcji (dane osobowe, adres)?
- 2. Czy z atrybutem wiążą się jakieś operacje? (walidacja)
- 3. Czy atrybut sam ma atrybuty? (cena promocyjna od-do)

5.3 Asocjacje

A jest transakcją związaną z	CashPayment – Sale (płatność – sprzedaż)
inna transakcja B	Cancellation – Reservation
A jest składnikiem transakcji B	SalesLineItem – Sale (skasowany produkt – sprzedaż)
A jest produktem lub usługą	Flight – Reservation
sprzedawaną w transakcji B	
A jest rolą związaną z transakcją	Customer – Payment
В	Passenger – Ticket
A jest fizyczną lub logiczną	Square – Board
częścią B	Seat – Airplane
A jest fizyczne lub logicznie	Passenger – Plane
zawarte w B	Register – Store (kasa – sklep)
A jest opisem B	FlightDescription – Flight
A jest	Sale – Register (sprzedaż – kasa)
zapisane/znane/odnotowane w B	
A jest członkiem B	Player – Game
	Pilot – Airline
A jest organizacyjną	Department – Store
podjednostką B	
A	Player – Piece
wykorzystuje/zarządza/posiada B	
A jest obok B	Square – Square

5.4 Przykład z podręcznika

Do reprezentacji modelu pojęciowego używa się diagramów klas UML (będziemy o tym mówić na kolejnym wykładzie).

Uwaga! To nie jest jeszcze diagram klas tylko właśnie diagram modelu pojęciowego. Diagram modelu pojęciowego próbuje jedynie uchwycić pojęcia i relacje między nimi, nie bardzo przejmując się tym czy i jak z **pojęć** powstaną **klasy** (obiekty).

Diagram klas z kolei jest elementem projektu architektury i stanowi część prac implementacyjnych i byłby o wiele bardziej szczegółowy. Obejmowałby m.in. kwalifikatory dostępu i akcesory, relacje dziedziczenia i implementowania interfejsów. Z kolei asocjacje na diagramie klas mają inne znaczenie niż na diagramie pojęć: na diagramie pojęć asocjacja określa związek (jakiś) między pojęciami. Na diagramie klas asocjacja oznacza istnienie relacji między klasami (klasa ma pole typu takiego jak klasa na którą wskazuje asocjacja).

5.5 Przykład z życia

Demo: Fragment rzeczywistego dokumentu analitycznego.

Cechy samego oddziału (nie dziedziczone z grupy oddziałów):

- rok szkolny otwarcia oddziału można to pamiętać jako zwykły rok np. dla roku szkolnego 2007/2008 pamiętać 2007.
- **poziom początkowy** ze słownika (domyślnie 1 w szkołach, w przedszkolach bez domyślnego).
 - dwulatki
 - trzylatki
 - czterolatki
 - pięciolatki
 - 0
 - 1
 - 2
 - 3

- 4
- 5
- 6
- 7
- 8
- 9 (bo mamy 9-letnią szkołę baletową)

nie przewidujemy poziomu mieszanego (tak jest teraz w arkuszu) ponieważ będziemy mieli mechanizm "częściowych" oddziałów. Jak ktoś będzie chciał koniecznie opisać oddział mieszany, to opisze 0.5 oddziału 3-latków i 0.5 oddziału 4-latków.

- **Poziom końcowy** z tego samego słownika, co powyżej (w podstawówce to będzie najczęściej 6, w trzyletniej, semestralnej szkole dla dorosłych również 6, które jednak w SP oznaczają 6 lat, a w szkole dla dorosłych 6 semestrów, czyli trzy lata)
- "trwanie poziomów" rzadko, ale zdarza się, że oddziały nie zmieniają poziomu z biegiem czasu. Tak się zdarza np. w oddziałach specjalnych, w których uczniowie są 2 lata w jednej klasie, po czym dopiero uzyskują promocję do następnej klasy. Aby w takich sytuacjach nie mieć kłopotu z wyznaczeniem poziomu oddziału i móc zapamiętać, że oddział pozostaje np. na poziomie 1 przez dwa lata należy zapamiętać dla każdego poziomu liczbę okresów jego trwania. Domyślnie okres trwania dla każdego poziomu to 1, ale należy umożliwić dowolną tego zmianę. Wpisanie okresu trwania 100 na poziomie 1 oznacza w praktyce, że oddział nie zmienia nigdy poziomu. Trwanie poziomów inne niż 1 będzie się w praktyce zdarzało bardzo rzadko. Wprowadzanie i modyfikacja tych danych powinna być zatem dość głęboko ukryta, aby nie przeszkadzała typowym użytkownikom (np. po wciśnięciu dodatkowego przycisku umieszczonego przy liście typowych atrybutów oddziału).
- poziom (klasa) Pole wyliczane na życzenie lub automatycznie 1 IX i 1 II (nie ma możliwości, aby poziom oddziału/semestru zmienił się innego dnia). Wykorzystywany na zestawieniach i w budowie widocznego identyfikatora oddziału. Poziom nieokreślony mógłby być wyróżnikiem oddziału archiwalnego.

status

- projektowany
- istniejący
- archiwalny

Pole wyliczane równocześnie z poziomem. Oddział, którego data założenia jest późniejsza od bieżącej, jest projektowany. Oddział, którego poziom jest większy od maksymalnego jest archiwalny

Itd..

6 Projektowanie analityczne – mapy procesów (Analysis)

6.1 Diagramy czynności i sekwencji jako uzupełnienie przypadków użycia

Systemowy Diagram Sekwencji - zdarzenia systemowe w jednym, głównym scenariuszu przypadku użycia.

Demo: przykład procesu biznesowego z rzeczywistego dokumentu projektowego

7 Dalsze etapy UP (Design, Implementation, Test, Deployment)

Etapowi projektowania architektury poświęcimy praktycznie cały pozostały czas wykładu. Pozostałymi elementami UP nie będziemy się zajmować.