L1,L2 정규화 엘라스틱 넷 Stacking Blending

프로젝트2팀 송태인 김준호 백성민 서승수 최영현 한형진

Contents

001 L1L2 엘라스틱 넷 002 L1L2 엘라스틱 넷 적용 003 앙상블 모델 004 앙상블 적용

• L1

L2

■ 엘라스틱넷

L1

L2

■ 엘라스틱넷

stacking

blending

stacking

blending

001

L1 / L2 정규화 엘라스틱 넷

L1 정규화 (Lasso)

L2 정규화 (Ridge)

엘라스틱 넷 (Elastic Net)

정규화 방식의 차이점

	L1	L2	Elastic Net
특징 1	변수 상관관계가 높을 때	변수 상관관계가 높아도	변수상관관계를 반영한
	성능↓	좋은 성능	정규화
특징 2	비중요 변수를 우선적	중요 변수를 우선적	상관관계가 큰 변수를
	줄임	줄임	선택/배제
특징 3	특성 선택에 유리	다중공산성 문제 해결	수행시간이 상대적 오래 걸림

overfitting을 방지하고 일반화 성능을 향상시키기 위함

002

L1 / L2 정규화 엘라스틱 넷 적용하기

from sklearn.linear_model import Lasso lasso = Lasso(alpha = 0.1)

Lasso 객체 형성

Alpha 값에 따른 가중치 변화

시각화

	alpha:0	alpha:0.01	alpha:0.02	alpha:0.03	alpha:0.04
RM	3.809865	3.814186	3.820592	3.825939	3.831277
CHAS	2.686734	2.504190	2.316725	2.131692	1.946662
RAD	0.306049	0.298526	0.292030	0.285037	0.278040
ZN	0.046420	0.046860	0.047382	0.047863	0.048345
INDUS	0.020559	0.006474	-0.004214	-0.016592	-0.028973
В	0.009312	0.009485	0.009664	0.009840	0.010017
AGE	0.000692	-0.001818	-0.004329	-0.006839	-0.009348
TAX	-0.012335	-0.012627	-0.013011	-0.013351	-0.013689
CRIM	-0.108011	-0.106228	-0.104380	-0.102566	-0.100752
LSTAT	-0.524758	-0.530481	-0.536422	-0.542254	-0.548088
PTRATIO	-0.952747	-0.916369	-0.880927	-0.845025	-0.809118
DIS	-1.475567	-1.422155	-1.366426	-1.311850	-1.257277
NOX	-17.766611	-14.394478	-11.078060	-7.733933	-4.389675

from sklearn.linear_model import Ridge ridge=Ridge(alpha=10)

Ridge 객체 생성

Alpha 값에 따른 가중치 변화

시각화

4.F	alpha=0	alpha=0.1	alpha=1	alpha=10	alpha=100
RM	3.809865	3.818233	3.854000	3.702272	2.334536
CHAS	2.686734	2.670019	2.552393	1.952021	0.638335
RAD	0.306049	0.303515	0.290142	0.279596	0.315358
ZN	0.046420	0.046572	0.047443	0.049579	0.054496
INDUS	0.020559	0.015999	-0.008805	-0.042962	-0.052826
В	0.009312	0.009368	0.009673	0.010037	0.009393
AGE	0.000692	-0.000269	-0.005415	-0.010707	0.001212
TAX	-0.012335	-0.012421	-0.012912	-0.013993	-0.015856
CRIM	-0.108011	-0.107474	-0.104595	-0.101435	-0.102202
LSTAT	-0.524758	-0.525966	-0.533343	-0.559366	-0.660764
PTRATIO	-0.952747	-0.940759	-0.876074	-0.797945	-0.829218
DIS	-1.475567	-1.459626	-1.372654	-1.248808	-1.153390
NOX	-17.766611	-16.684645	-10.777015	-2.371619	-0.262847

Elastic Net적용

Elastic Net적용

from sklearn.linear_model import ElasticNet
elasticnet = ElasticNet(alpha=0.1, l1_ratio=0.5)

Elastic Net 객체 생성

Alpha 값과 I1_ratio 값에 따른 가중치 변화

시각화

	alpha:0.02_11_ratio:0.01	alpha:0.02_11_ratio:0.05	alpha=0.02_11_ratio=0.1	alpha:0.02_11_ratio:0.3	alpha=0.02_11_ratio=0.4	alpha:0.02_11_ratio:0.5
CRIM	-0.101427	-0.101397	-0.101362	-0.101253	-0.101229	-0.101239
ZN	0.049583	0.049537	0.049478	0.049226	0.049088	0.048940
INDUS	-0.042985	-0.042693	-0.042307	-0.040447	-0.039237	-0.037723
CHAS	1.948669	1.958244	1.970517	2.023370	2.052409	2.083567
NOX	-2.358846	-2.407572	-2.473684	-2.815644	-3.054769	-3.367187
RM	3.701381	3.708794	3.718069	3.755066	3.773289	3.791043
AGE	-0.010704	-0.010719	-0.010733	-0.010725	-0.010664	-0.010538
DIS	-1.248508	-1.248843	-1.249334	-1.252379	-1.254868	-1.258412
RAD	0.279599	0.279391	0.279139	0.278278	0.277986	0.277856
TAX	-0.013996	-0.013981	-0.013961	-0.013873	-0.013822	-0.013766
PTRATIO	-0.797853	-0.797854	-0.797906	-0.798909	-0.800125	-0.802131
В	0.010037	0.010038	0.010039	0.010039	0.010035	0.010028
LSTAT	-0.559464	-0.558857	-0.558089	-0.554885	-0.553184	-0.551390

003

모델 앙상블

모델 앙상블 - Stacking

스태킹(Stacking)

▲ 원리)

1가지 데이터를 가지고 n개의 모델을 학습 시킨 후 n개의 예측값을 새로운 모델(Meta Model) 학습데이터로 새로운 예측값을 확인

▲특징

- 1. 사이킷 런에서 모듈을 제공
- 2. 개별 모델에 대한 약점을 보안
- 3. 기존 학습 모델과 최종 모델을 선택
- 4. 모델의 복잡성이 증가
- 5. 다양한 모델을 사용할 수 있기에 섬세한 조정 필요
- 6. 계산 비용 증가(메모리사용량, 연산량...etc)

모델 앙상블 - Blending

004

모델 앙상블 사용하기

Sklearn 유방암 데이터 셋

Target	종양의 악성, 양성 여부
1 2 3	의심세포의 질감, 크기,너비 등 질감,크기,너비 오차 암 세포들의 최대 크기,넓이,질감

총 30개의 독립변수와 Target의 관계를 확인한다.

모델 앙상블 Stacking 사용하기

Stacking 적용

1개 모델의 RMSE

- 2. 기존 학습한 모델을 stack models에 저장
- 3. stacking 모듈에 기본모델 + 새로운 모델 입력

RMSE 비교

모델 앙상블 Blending 사용하기

Blending 적용

SVC RMSE: 0.22941573387056177

LightGBM RMSE: 0.1873171623163388

LogisticRegression RMSE: 0.24779731389167603

데이터 셋 분리

전체 데이터의 72% train

전체 데이터의 20% test

전체 데이터의 8% Valid

3개 모델의 RMSE

Train – Train Data set

Predict - Test / Valid

RMSE 비교

Blending을 적용한 모델의 RMSE: 0.18

LGBM RMSE: 0.18

SVC RMSE: 0.24

Lr RMSE: 0.29

QnA

Thanks