Contents

1. Basic theory	 2
1.1. Absolute values	 2

1. Basic theory

Example. Let $f(x_1,...,x_r) \in \mathbb{Z}[x_1,...,x_r]$, a Diophantine equation asks to solve $f(x_1,...,x_r)=0$. Easier questions are when is $f(x_1,...,x_r)\equiv 0 (\operatorname{mod} p)$ and $f(x_1,...,x_r) \equiv 0 \pmod{p^n}$. Local fields "package" all this information together for all

1.1. Absolute values

Definition. Let K be a field. An absolute value on K is a function $|\cdot|: K \to \mathbb{R}_{\geq 0}$ such that $\forall x, y \in K$:

- $|x| = 0 \iff x = 0$.
- $|xy| = |x| \cdot |y|$ (multiplicative).
- $|x+y| \le |x| + |y|$ (triangle inequality).

 $(K, |\cdot|)$ is a valued field.

Example.

- $K = \mathbb{Q}, \mathbb{R}$ or \mathbb{C} with usual absolute value $|a+ib| = \sqrt{a^2 + b^2}$. We write $|\cdot|_{\infty}$ for this absolute value.
- The **trivial** absolute value is |x| = 0 if x = 0 and |x| = 1 otherwise.

Definition. Let $K = \mathbb{Q}$, p be prime. For $0 \neq x \in \mathbb{Q}$, write $x = p^n \frac{a}{b}$ where $p \nmid a, b$. The *p*-adic absolute value $|\cdot|_p$ is defined as

$$|x|_p = \begin{cases} 0 & \text{if } x = 0\\ p^{-n} & \text{if } x = p^n \frac{a}{b}. \end{cases}$$

Proposition. The *p*-adic absolute value is an absolute value.

Proof.

- The first axiom is trivial.
- Let $y = p^m \frac{c}{d}$.
- $|xy|_p = |p^{m+n} \frac{ac}{bd}|_p = p^{-m-n} = |x|_p \cdot |y|_p$. WLOG, assume that $m \ge n$. $|x+y|_p = |p^n \frac{ad+p^{m-n}bc}{bd}|_p \le p^{-n} = \max\{|x|_p, |y|_p\}$.

Proposition. An absolute value $|\cdot|$ on K induces a metric d(x,y) = |x-y| (and hence a topology) on K.

Definition. Two absolute values on K are equivalent if they induce the same topology.

A **place** is an equivalence class of absolute values.

Proposition. Let $|\cdot|$ and $|\cdot|'$ be non-trivial absolute values on K. Then TFAE:

- 1. $|\cdot|$ and $|\cdot|'$ are equivalent.
- 2. |x| < 1 iff |x|' < 1 for all $x \in K$.
- 3. There exists c > 0 such that $|x|^c = |x|'$ for all $x \in K$.

Proof.

- $(1 \Rightarrow 2)$:
 - $|x| < 1 \text{ iff } x^n \to 0 \text{ w.r.t } |\cdot| \text{ iff } x^n \to 0 \text{ w.r.t } |\cdot|' \text{ iff } |x|' < 1.$
- $(2 \Rightarrow 3)$:
 - Note $|x|^c = |x|'$ iff $c \log |x| = \log |x|'$.
 - Let $a \in K^{\times}$ such that |a| > 1 (this exists since $|\cdot|$ is non-trivial).
 - We show that $\log |x| / \log |a| = \log |x|' / \log |a|'$ for all $x \in K^{\times}$.
 - Assume not, then $\log |x| / \log |a| < \log |x|' / \log |a|'$.
 - Choose $m,n\in\mathbb{Z}$ such that $\log |x|/\log |a|<\frac{m}{n}<\log |x|/\log |a|.$
 - ▶ Then $n \log |x| < m \log |a|$ and $n \log |x|' > m \log |a|'$, so $\left|\frac{x^n}{a^m}\right| < 1$ but $\left|\frac{x^n}{a^m}\right|' > 1$: contradiction.
 - Similarly for $\log |x| / \log |a| > \log |x|' / \log |a|'$.
- $(3 \Rightarrow 1)$:
 - Trivial, as open balls they define are the same.

Remark. $|\cdot|_{\infty}^2$ on \mathbb{C} is not an absolute value by out definition since it violates the triangle inequality. Note some authors replace the triangle inequality axiom with $|x+y|^{\beta} \leq |x|^{\beta} + |y|^{\beta}$ for some fixed $\beta > 0$.

Definition. An absolute value $|\cdot|$ on K is **non-Archimedean** if it satisfies the **ultrametric inequality**:

$$|x+y| \le \max\{|x|, |y|\}.$$

Otherwise, it is **Archimedean**.

Example.

- $|\cdot|_{\infty}$ on \mathbb{R} is Archimedean.
- $|\cdot|_p$ on \mathbb{Q} is non-Archimedean.

Lemma. Let $(K, |\cdot|)$ be non-Archimedean and $x, y \in K$. If |x| < |y|, then |x - y| = |y| (i.e. all triangles are isosceles).

Proof. For \leq , use ultrametric inequality. For \geq , use that |y|=|x-y-x|.

Proposition. Let $(K, |\cdot|)$ be non-Archimedean. Let (x_n) be a sequence in K. If $|x_n - x_{n+1}| \to 0$, then x_n is Cauchy. In particular, if K is complete with respect to $|\cdot|$, then (x_n) converges.

Proof.

- For $\varepsilon > 0$, choose N such that $|x_n x_{n+1}| < \varepsilon$ for all n > N.
- Then for $N < n < m, \, |x_n x_m| = |(x_n x_{n+1}) + (x_{n+1} x_{n+2}) + \dots + (x_{m-1} x_m)| < \varepsilon.$

Example. Let p = 5 and consider the sequence (x_n) in \mathbb{Z} satisfying:

- $x_n^2 + 1 \equiv 0 \operatorname{mod} 5^n.$
- $x_n \equiv x_{n+1} \mod 5^n$.

3

Take $x_1=2$. Suppose we have constructed $x_1,...,x_n$. Then write $x_n^2+1=a5^n$ and set $x_{n+1}=x_n+b5^n$. Then $x_{n+1}^2+1=x_n^2+2bx_n5^n+b^25^{2n}+1=a5^n+2bx_n5^n+b^25^{2n}$. We choose b such that $a+2bx_n\equiv 0 \bmod 5$ (this congruence is solvable). Then we have $x_{n+1}^2+1=0 \bmod 5^{n+1}$.

Hence (x_n) is Cauchy. Suppose $x_n \to l \in \mathbb{Q}$. Then $x_n^2 \to l^2 \in \mathbb{Q}$. But the first condition implies that $x_n^2 \to -1 = l^2$, contradiction. So (x_n) doesn't converge in \mathbb{Q} . So $(\mathbb{Q}, |\cdot|_5)$ is not complete.

Definition. The set of *p*-adic numbers \mathbb{Q}_p is the completion of \mathbb{Q} with respect to $|\cdot|_p$.

Remark. There is an analogy with the construction of \mathbb{R} with respect to $|\cdot|_{\infty}$.