Tutorium

8. Kontextfreie Sprachen

Definition Grammatik

Eine Grammatik ist ein Tupel (N, T, S, P) und beschreibt eine Sprache.

N: Alphabet der nichtterminalen Symbole

T: Alphabet der terminalen Symbole (T \cap N= \emptyset)

S: Startsymbol ∈ N

P: Produktionsmenge \subset (N \cup T)⁺ \times (N \cup T)^{*}

Definition Chomsky Hierarchie

Typ 0: Allgemeine Grammatiken. Keine Bedingung

Typ 1: **Nichtverkürzende Grammatiken.** Für alle Produktionen $\alpha \to \beta$ gilt: α , $\beta \in (\mathbb{N} \cup \mathbb{T})^+$ und $|\alpha| \le |\beta|$ (d.h. linke Seite der Produktionen ist kleiner als die rechte Seite)

Typ 2: **Kontextfreie Grammatiken.** Für alle Produktionen $\alpha \to \beta$ gilt: $\beta \in (N \cup T)^+$ und $\alpha \in N$ (d.h. auf der linken Seite der Produktion stehen nur Nichtterminale)

Typ 3: **(Rechts-) lineare Grammatiken.** Für alle Produktionen $\alpha \to \beta$ gilt: $\alpha \in \mathbb{N}$ und $\beta = tB$, wobei $B \in \mathbb{N} \cup \{\epsilon\}$ und $\beta \neq \epsilon$ (d.h. die rechte Seite der Produktion besteht nur aus Terminalsymbolen und optional zusätzlich einem Nichtterminalsymbol rechts davon)

Sonderregel zum leeren Wort:

Zusätzliche Produktion $S_{neu} \rightarrow S \mid \epsilon$

Definition Normalformen

Тур	3	2	1	0
$A \rightarrow \epsilon$				X
$A \rightarrow t$	X	X	X	X
$A \rightarrow tB$	X			X
$A \rightarrow BC$		X	X	X
$AB \rightarrow CD$			X	X

Aufgabe 1

Geben Sie die Produktionen einer Grammatik G vom Typ 2 an mit L(G) =

- a) $\{a^m b^m c d^n \mid m, n \in \mathbb{N}_0\}$
- b) $\{x^i yzy x^i | i \in \mathbb{N}\}$
- c) $\{a^i b c^j d^k \mid i, j \in \mathbb{N}, k = i + j\}$
- d) $\{0^n \ 1^{2n} \mid n \in \mathbb{N}_0\}$
- e) $\{a^m b^n c^l d^{m+n+2l+k} e^k | l, m, n, k \in \mathbb{N} \}$
- f) {Alle Palindrome mit den Buchstaben {a, b}}

Aufgabe 2

Gegeben ist die Grammatik $G = (\{S, A, B\}, \{a, b, c\}, S, P)$

$$P = \{ S \rightarrow aAa,$$

$$A \rightarrow aAa|B$$
,

$$B \rightarrow BcB \mid bb$$

- a) Normalisieren Sie die Grammatik
- b) Geben Sie einen Syntaxbaum für das Wort "abbcbba" an
- c) Welche Sprache liefert L(G)?

Aufgabe 3

Gegeben Sei die Sprache L = $\{(ab)^n c^m d (ba)^n | m, n \in \mathbb{N}, m>n\}$

- a) Geben Sie eine Typ 2 Grammatik G an, mit L(G) = L
- b) Normalisieren Sie die Grammatik

Alexander Bleicher Tutorium

Aufgabe 4

Für ein Wort $w \in X^*$ mit w_0 , w_1 , ..., w_n sei $rev(w) = w_n$, w_{n-1} , ..., w_0 . Gegeben Sei die Sprache $L = \{a^i w \ b^j \ c^{i+j} \ rev(w) \ | \ i \in \mathbb{N}_0, \ j \in \mathbb{N}, \ w \in \{a,b\}^*\}$

- a) Geben Sie eine Typ 2 Grammatik G an mit L(G) = L
- b) Normalisieren Sie die Grammatik
- c) Zeichnen Sie einen Strukturbaum für alle Wörter x aus L mit |x|≤6