1장. 컴퓨터 그래픽스

▶ 학습목표

- 분야별로 컴퓨터 그래픽스가 응용되는 사례를 이해한다. What it is good for.
- 컴퓨터 그래픽스의 발전 과정을 개략적으로 이해한다. Background of Computer Graphics
- 컴퓨터 그래픽스의 두 가지 구성요소를 이해한다.
 Two fundamental components (e.g. Modeling and Rendering)

Tip: 컴퓨터 그래픽스 cs 컴퓨터그래픽

Section 01 컴퓨터 그래픽스의 응용 - 컴퓨터 그래픽스

▶ 컴퓨터 그래픽스

- "컴퓨터를 사용하여 그림을 생성하는 기술"
- 수작업 대 컴퓨터 (e.g. Analog vs digital, sampling and quantization)
- 생성 = 창조 (cf. 영상처리)

▶ 응용분야

Cad

- **Solution** Computer-Aided Design
- ▲ 설계에 필요한 인력,시간, 노력, 비용 등을 단축함으로써 설계 효율을 향상
- https://www.youtube.com/watch?v=x1rxXm6sG9Y
- Computer-Aided Manufacturing
 - Numerical Control Machine
 - 자동생산에 따른 효율과 가공의 정밀도 향상

[그림 1-2] 기계부품 렌더링

[그림 1-3] 자동차 겉모습 렌더링

Human modeling

Jack

- Jack 인간의 <u>해부학</u> 구조를 반영한 모델
- 성별, 키, 몸무게 표현
- 산업기기조작, 자동차 충돌 등 시뮬레이션
- 모델 선택시 %로 표현

http://www.youtube.com/watch ?v=7bi9zEcrdLE

Presentation

- ▶ 막대 차트(Bar Chart), 선 그래 프(Line Chart), 파이 차트(Pie Chart), 입체 그래프(Surface Graph)
 - 백문(百聞)이 불여일견(不如 一見)
 - A picture is worthy of 1000 words.
 - 시선을 붙잡을 것 (e.g. 주식, 성장실적, 분포 등)

Virtual Reality (가상현실)

- **▶** Virtual Reality
- ♣ "존재하지 않는 가상의 환경을 구성하되 그것이 마치 현실과 똑같이 느껴지도록 만드는 데 주안점" (Immersion, Imagination, Interaction)
- ▶ 메타버스의 가속화(플랫폼, 장비/통신, 콘텐츠, 생태계, 보안)
- https://www.youtube.com/watch?v=844F6_D8MDQ
- ♬ 기술적 요소
 - 입체화면, 3차원 입체 음향, 데이터 장갑
 - 장면 데이터베이스, 그래픽 소프트웨어
- ▶ 인지과학, 전자공학, 기계공학, 음향학

[그림 1-6] HMD

[그림 1-7] 데이터 글로브

[그림 1-8] 데이터 글러브

https://www.youtube.com/watch?v=zOFuINFdZRM

Virtual Walkthrough

[그림 1-5] 레이 트레이싱에 의한 렌더링

Digital Character

▶ Digital Character

- Avatar, Character, Digital actor,
- Digital Human
- Modeling
- Texturing
- Animation
- Expression
- *Demo

미술

- ▶ 무선 스타일러스 펜
- ♪ 그래픽 소프트웨어(포토샵 vs 일러스트레이터)

[그림 1-9] 촬영 영상

[그림 1-10] 파스텔 처리

<u>How To Draw Hair • Procreate Tutorial • Foolproof Method! - YouTube</u>

애니메이션 및 게임

[그림 1-11] 애니메이션 I [그림 1-12] 애니메이션 II

Ants

소요 내역	햔
총 프레임(정지화면) 수	119,592 개
렌더링에 소요된 시간	275,000 시간
평균 정지 프레임 크기	6 MB
렌더링에 사용된 실리콘 그래픽 서버 수	270 대
프로세싱에 사용된 데스크 탑 컴퓨터 수	166 대
프로세서 당 평균 메모리 용량	156MB
1개의 프로세서로 제작할 경우의 소요시간	약 54년
영화 저장을 위한 보조기억 장치 용량	3.2 TB
매 순간 온 라인으로 공유된 프레임 수	75,000 개

[표 1-1] Ants의 제작에 소요된 재원

교육 및 훈련

▶ CAI(Computer Aided Instruction)

- 학습 보조도구로서 컴퓨터를 활용
- 컴퓨터에 내재하는 추론 기능과 지식 데이터베이스
- 텍스트 + 시각 정보를 활용
- Ex. Exploded View

[그림 1-14] 기계부품의 폭발 조망

교육및 훈련

♬ 시뮬레이션

[그림 1-15] 운전 시뮬레이션

[그림 1-16] 비행 시뮬레이션

과학분야 가시화

SCI VIS(Scientific Visualization)

- 대용량 정보분석
- 자연현상을 시각화. 현상 내부의 패턴이나 추세를 직관적으로 파악

[그림 1-17] 기류 분석

[그림 1-18] 분자 구조 |

[그림 1-21] 3차원 렌더링

그래픽 사용자 인터페이스

- **♣** GUI(Graphic User Interface)
- ▶ 메뉴, 스크롤바, 아이콘, ...
- 🔈 사용자 편의를 고려

[그림 1-22] 3D 스튜디오 맥스

Section 02 그래픽스 기술의 변천-그래픽 히스토리 '60

1960	William Fetter	"컴퓨터 그래픽"이란 용어를 최초로 사용
1963	Ivan Sutherland	컴퓨터 그래픽의 제반개념을 확립
1963	Douglas Englebart	최초의 마우스 프로토타입
1965	Jack Bresenham	선분 그리기 알고리즘을 개발

[표 1-2] 1960년대 사건

▶ 이반서더런드(Ivan Sutherland)

- 컴퓨터 그래픽의 창시자
- 대화형 컴퓨터 그래픽 개념: 라이트 펜으로 의사전달
- 스케치패드 프로젝트
- 직선, 원호 등 기본적 그래픽 요소를 사용하여 물체를 표현하는 방법
- 기본물체를 조합하여 큰 물체를 모델링한다는 계층구조 모델링
- 물체를 선택하여 이동하는 방법
- 팝업 메뉴에 의한 사용자 입력

그래픽 히스토리 '70

▶ 그래픽 알고리즘의 시기

1971	Gouraud	구로 셰이딩 알고리즘
1973	John Whitney Jr.	컴퓨터 그래픽에 의한 최초의 영화 "West World"
1974	Edwin Catmuff	텍스쳐 매핑, 지-버퍼 알고리즘
1974	Bui-Tong Phong	전반사에 의한 하이라이트 알고리즘
1975	Martin Newell	베지어 표면 메쉬를 사용한 차 주전자 모델
1975	Benoit Mandelbrot	프랙탈 이론
1976	Jim Blinn	주변 매핑, 범프 매핑 이론
1977	Steve Wozniak	컬러 그래픽 PC: Apple II
1977	Frank Crow	앤티 에일리어싱 알고리즘
1979	Kay, Greenberg	최초로 투명한 물체 면을 그려냄

[표 1-3] 1970년대 사건

그래픽 이스토리 '80

- ▶ PC의 시대,
- ▶ 래스터 그래픽 하드웨어
- ♬ 기하 엔진 출현

[그림 1-25] Tin Toy

1980	Turner, Whitted	광선 추적 알고리즘
1982	Steven Lisberger	3차원 그래픽 애니메이션 "Tron"
1982	John Walkner, Dan Drake	"AutoCAD"
1983	Jaron Lanier	데이터 장갑을 사용한 가상현실 영화
1985	Pixar	"Luxo Junior"
1985	NES	가정용게임 ''Nintendo''
1986	Steve Jobs	Lucasfilm사의 Pixar 그래픽 그룹을 인수
1987	IBM	VGA 그래픽 카드
1989	IBM	SVGA 그래픽 카드
1989	Pixar	''Tin Toy'' 아카데미상 수상

그래픽 히스토리 '90

♪ 사실적(Photo-realistic) 그래픽 영상에 주력

[그림 1-26] NVIDIA GeForce 256

1990	Pixar: Hanrahan, Lawson	렌더링 소프트웨어 ''Renderman'' 개발
1990	Gary Yost	3-D Studio 개발
1991	Disney and Pixar	"Beauty and the Beast"
1992	Silicon Graphics	openGL 사양 발표
1993	Steven Spielberg	"Jurassic Park"
1995	Pixar	"Toy Story"
1995	Microsoft	DirectX API 사양 발표
1996	John Carmack, Michael Abrash	Quake 그래픽 엔진 개발
1999	NVIDIA	GeForce 256 GPU

[표 1-5] 1990년대 사건

그래픽 히스토리 '2000

▶ 영화, 게임 응용의 시기

[그림 1-27] Doom

2001	Square	"Final Fantasy: The Spirits Within"
2003	Timothy Purcell	광선추적 기법을 GPU에 적용
2004	Id Software	Doom Engine 발표
2004	DirectX, openGL	New Version 발표

[표 1-6] 2000년대 사건

Section 03 그래픽 구성 요소-그래픽 이론

▶ 2가지 구성요소

[그림 1-28] 그래픽스 구성요소

🔈 모델링

- 3차원 물체를 컴퓨터로 그려 형상화하는 작업.
- 대표적 방식으로 와이어프레임 모델, 서피스 모델
- 장면 내부 물체를 정의하는 작업

ၨႌ 렌더링

- 모델링된 물체를 색상, 조명, 그림자 등의 효과를 적용하여 최종적으로 그 려내는 작업.
- 와이어 프레임 렌더링, 서피스 렌더링, 솔리드 렌더링

레스터 그래픽 장치- 래스터 그래픽 장비

- ♪ 화소 = Picture Element = Pixel = Raster
- ▶ 인점(Phosphor Dots) : 한 화소의 색상은 RGB인점의 밝기로 결정 그림(a)의 하나의 점
- ♣ 종횡비(Aspect Ratio)
 - 4:3 TV
 - 16:9 HDTV 100만화소, (FHD: 200만화소, 4K UHD(FHD의 4배, 8K UHD 3,300만 화소)
- ♣ 해상도(Resolution) : 화소수 (1024 * 768)
- ▶ 도트 피치(Dot Pitch) : 그림(a)의 화살표 (0.27-0.44 mm)
- ♪ 트라이어드 방식, 스트라이프 방식 (LCD)

비트 평면

- - R, G, B 각각에 대해 256 회색도(Gray Level)
 - 총 몇 컬러? (16,777,216), 사람이 인지 가능한 색? : 35만 정도
- ▶ 프레임 버퍼 용량은? 해상도와 한 픽셀의 크기 곱

EX) N*M인 해상도와 8비트/픽셀인 경우 프레임 버퍼의 용량은? EX) 1280 by 1024, 한 픽셀이 512 컬러를 표현 가능한 경우

프레임버퍼의 용량은?

[그림 2-12] 프레임 버퍼의 비트 평면

CLASS LAB 팀별 발표

▶ CLASS LAB 0314_15, 컴퓨터 그래픽스의 응용분야 중에서 최신 응용 사례를 아래 내용을 포함하여 조사하기(제출 없고 각자 해보기)

1. 응용사례 제목, 2. 핵심 내용 및 기술. 3. 장단점. 4. 느낀점 및 개 선요구사항

퀴즈0314_15

▶ Q1) 모델링과 렌더링을 각각 정의하시오.

♣ Q2) 한 픽셀을 구성하는 색상 R, G, B채널 각 각의 깊이가 8비트인 경우, 한 픽셀의 용량을 계산하시오.

▶ Q3) 화면의 해상도가 1280*1024이고 한 픽셀을 이루는 R, G, B 채널, 각 각의 깊이가 8비트인 경우, 프래임버퍼(frame buffer) 의 용량을 계산하시오.

Thank you