Assignment 3 Sample Answers

Exercise 1:

1. No. The start symbol S generates either the string "a" or strings ending with "+" or "-".

2.
$$\underline{S} => \underline{S}S+ => \underline{S}S+ => \underline{S}S-S+ => \underline{S}S+S-S+ => SS-S+S-S+ => a\underline{S}-S+S-S+ => aa-\underline{S}+S-S+ => aa-a+\underline{S}-S+ => aa-a+a-a+$$

3.
$$\underline{S} => S\underline{S} + => \underline{S}a + => S\underline{S} - a + => \underline{S}a - a + => S\underline{S} + a - a + => \underline{S}a + a - a + => S\underline{S} - a + a - a + => \underline{S}a - a + a - a + => aa - a + a - a +$$

4. A possible parse tree is as follows.

Exercise 2:

(1) We first compute the FIRST and FOLLOW sets.

$$FIRST(aB) = \{a\}$$

$$FIRST(S*B) = \{a\}$$

$$FIRST(\epsilon) = \{\epsilon\}$$

$$FOLLOW(S) = \{\$,*\}$$

$FOLLOW(B) = \{\$,*\}$

We can then construct the predictive parsing table based on the above information. We give the resulting table below.

Nonterminals		Input symbol			
Nonterminals	а	*	\$		
S	$s \rightarrow aB$	error	error		
В	$B \to S * B$	$B o \epsilon$	$B o \epsilon$		

- (2) Yes, the grammar is LL(1).
- (3) The parsing steps are listed in the table below:

Matched	Stack	Input	Action
	S\$	aaaa***\$	
	aB\$	aaaa***\$	Output $S \to aB$
а	B\$	aaa***\$	Match a
a	S * B\$	aaa***\$	Output $B \to S * B$
a	<i>aB</i> * <i>B</i> \$	aaa***\$	Output $S \to aB$
aa	B * B\$	aa***\$	Match a
aa	S * B * B\$	aa***\$	Output $B \to S * B$
aa	aB*B*B	aa***\$	Output $S \to aB$
aaa	B * B * B\$	a***\$	Match a
aaa	S * B * B * B\$	a***\$	Output $B \to S * B$
aaa	aB*B*B*B	a***\$	Output $S \to aB$

aaaa	B*B*B*B	***\$	Match a
aaaa	* B * B * B\$	***\$	Output $B \to \epsilon$
aaaa *	B * B * B\$	**\$	Match *
aaaa *	* B * B\$	**\$	Output $B \to \epsilon$
aaaa **	B * B\$	*\$	Match *
aaaa **	* B\$	*\$	Output $B \to \epsilon$
aaaa ***	B\$	\$	Match *
aaaa ***	\$	\$	Output $B \to \epsilon$

Exercise 3:

(1)

SLR: We compute the canonical LR(0) item sets for the following augmented grammar:

$$S' \rightarrow S$$

$$S \rightarrow aB$$

$$B \rightarrow S * B \mid \epsilon$$

$$I_0 = \text{CLOSURE}(\{[S' \rightarrow S]\}) = \{[S' \rightarrow S], [S \rightarrow aB]\}$$

$$I_1 = GOTO(I_0, S) = CLOSURE(\{[S' \rightarrow S \cdot]\}) = \{[S' \rightarrow S \cdot]\}$$

$$I_2 = GOTO(I_0, a) = CLOSURE(\{[S \rightarrow a \cdot B]\}) = \{[S \rightarrow a \cdot B], [B \rightarrow S * B], [B \rightarrow], [S \rightarrow aB]\}\}$$

$$I_3 = GOTO(I_2, S) = CLOSURE(\{[B \rightarrow S \cdot * B]\}) = \{[B \rightarrow S \cdot * B]\}\}$$

$$GOTO(I_2, a) = CLOSURE(\{[S \rightarrow a \cdot B]\}) = I_2$$

$$I_4 = GOTO(I_2, B) = CLOSURE(\{S \rightarrow aB \cdot\}) = \{S \rightarrow aB \cdot\}$$

$$I_5 = GOTO(I_3, *)$$

$$= CLOSURE(\{[B \rightarrow S * B]\})$$

$$= \{[B \rightarrow S * B], [B \rightarrow S * B], [B \rightarrow], [S \rightarrow aB]\}\}$$

$$GOTO(I_5, S) = CLOSURE(\{[B \rightarrow S \cdot * B]\}) = \{[B \rightarrow S \cdot * B]\} = I_3$$

$$GOTO(I_5, a) = CLOSURE(\{[S \rightarrow a \cdot B]\}) = I_2$$

$$I_6 = GOTO(I_5, B) = CLOSURE(\{[B \rightarrow S * B \cdot]\}) = \{[B \rightarrow S * B \cdot]\}\}$$

$$FOLLOW(S') = \{\$\}$$

 $FOLLOW(S) = \{\$,*\}$
 $FOLLOW(B) = FOLLOW(S) = \{\$,*\}$

The SLR(1) parsing table is as follows. The empty cells are errors.

State		ACTION		GOTO		
State	а	*	\$	S	В	
0	s2			1		
1			accept			
2	s2	reduce	reduce 3		4	
	32	$B \to \epsilon$	$B \rightarrow \epsilon$	3	7	
3		s5				
4		reduce	reduce			
7		$S \rightarrow aB$	$S \rightarrow aB$			
5	s2	reduce	reduce	3	6	
3	$B \to \epsilon$		$B \to \epsilon$	5		
6		reduce	reduce			
0		$B \to S * B$	$B \to S * B$			

CLR: Construct the LR(1) item sets

$$I_{0} = CLOSURE(\{[S' \to S, \$]\})$$

$$= \{[S' \to S, \$], [S \to aB, \$]\}$$

$$I_{1} = GOTO(I_{0}, S) = CLOSURE(\{[S' \to S \cdot, \$]\}) = \{[S' \to S \cdot, \$]\}$$

$$I_{2} = GOTO(I_{0}, a)$$

$$= CLOSURE(\{[S \to a \cdot B, \$]\})$$

$$= \{[S \to a \cdot B, \$], [B \to S * B, \$], [B \to \$, \$], [S \to aB, *]\}$$

$$I_{3} = GOTO(I_{2}, S) = CLOSURE(\{[B \to S \cdot * B, \$]\}) = \{[B \to S \cdot * B, \$]\}$$

$$I_{4} = GOTO(I_{2}, a)$$

$$= CLOSURE(\{[S \to a \cdot B, *]\})$$

$$= \{[S \to a \cdot B, *], [B \to S * B, *], [B \to \$, *], [S \to aB, *]\}$$

$$\begin{split} I_5 &= GOTO(I_2, B) = CLOSURE(\{[S \to aB \cdot, \$]\}) = \{[S \to aB \cdot, \$]\} \\ I_6 &= GOTO(I_3, *) \\ &= CLOSURE(\{[B \to S * \cdot B, \$]\}) \\ &= \{[B \to S * \cdot B, \$], [B \to \cdot S * B, \$], [B \to \cdot, \$], [S \to \cdot aB, *]\} \\ I_7 &= GOTO(I_4, S) = CLOSURE(\{[B \to S \cdot * B, *]\}) = \{[B \to S \cdot * B, *]\} \} \\ GOTO(I_4, a) &= CLOSURE(\{[S \to a \cdot B, *]\}) = I_4 \\ I_8 &= GOTO(I_4, B) = CLOSURE(\{[S \to aB \cdot, *]\}) = I_3 \\ GOTO(I_6, S) &= CLOSURE(\{[S \to a \cdot B, *]\}) = I_4 \\ I_9 &= GOTO(I_6, B) = CLOSURE(\{[B \to S \cdot * B, *]\}) = \{[B \to S \cdot * B \cdot, \$]\} \} \\ &= \{[B \to S \cdot * B, *], [B \to S \cdot * B, *], [B \to \cdot, *], [S \to \cdot aB, *]\} \} \\ &= \{[B \to S \cdot * B, *], [B \to S \cdot * B, *], [B \to \cdot, *], [S \to \cdot aB, *]\} \} \\ GOTO(I_{10}, S) &= CLOSURE(\{[B \to S \cdot * B, *]\}) = I_7 \\ GOTO(I_{10}, a) &= CLOSURE(\{[S \to a \cdot B, *]\}) = I_4 \\ I_{11} &= GOTO(I_{10}, B) = CLOSURE(\{[B \to S \cdot * B, *]\}) = \{[B \to S \cdot * B \cdot, *]\} \} \} \\ &= \{[B \to S \cdot * B, *], [B \to CLOSURE(\{[B \to S \cdot * B, *]\}) = \{[B \to S \cdot * B \cdot, *]\} \} \} \} \\ &= \{[B \to S \cdot * B, *], [B \to CLOSURE(\{[B \to S \cdot * B, *]\}) = I_7 \} \} \\ &= \{[B \to S \cdot * B, *], [B \to CLOSURE(\{[B \to S \cdot * B, *]\}) = \{[B \to S \cdot * B \cdot, *]\} \} \} \} \\ &= \{[B \to S \cdot * B, *], [B \to CLOSURE(\{[B \to S \cdot * B, *]\}) = \{[B \to S \cdot * B \cdot, *]\} \} \} \} \} \\ &= \{[B \to S \cdot * B, *], [B \to CLOSURE(\{[B \to S \cdot * B, *]\}) = \{[B \to S \cdot * B \cdot, *]\} \} \} \} \}$$

The CLR(1) parsing table is as follows. The empty cells are errors.

State		ACTION		GC	TO
State	а	*	\$	S	В
0	s2			1	
1			accept		
2	s4		reduce by $B \to \epsilon$	3	5
3		s6			
4	s4	reduce by $B \to \epsilon$		7	8
5			reduce by $S \rightarrow aB$		
6	s4		reduce by $B \rightarrow \epsilon$	3	9
7		s10			
8		reduce by $S \rightarrow aB$			

9			reduce by $B \rightarrow S * B$		
10	s4	reduce by $B \to \epsilon$		7	11
11		reduce by $B \rightarrow S * B$			

LALR: From the LR(1) item sets computed above, we can observe that the following item sets have the same core

 I_2 and I_4

 I_3 and I_7

 I_5 and I_8

 I_6 and I_{10}

 I_9 and I_{11}

We can merge them to get the new item sets

$$I_0 = \{ [S' \rightarrow S, \$], [S \rightarrow aB, \$] \}$$

$$I_1 = \{ [S' \rightarrow S; \$] \}$$

$$I_{24} = \{ [S \to a \cdot B, \$/*], [B \to S * B, \$/*], [B \to \$, \$/*], [S \to aB, *] \}$$

$$I_{37} = \{ [B \to S \cdot * B, \$/*] \}$$

$$I_{58} = \{ [S \rightarrow aB \cdot, \$/*] \}$$

$$I_{610} = \{ [B \to S * B, \$/*], [B \to S * B, \$/*], [B \to \$, \$/*], [S \to \alpha B, *] \}$$

$$I_{911} = \{ [B \rightarrow S * B \cdot, \$/*] \}$$

$$GOTO(I_0, S) = I_1$$

$$GOTO(I_0, \alpha) = I_{24}$$

$$GOTO(I_{24},S) = I_{37} \\$$

$$GOTO(I_{24},\alpha) = I_{24}$$

$$GOTO(I_{24}, B) = I_{58}$$

$$GOTO(I_{37}, \ast) = I_{610}$$

$$GOTO(I_{610},S) = I_{37} \label{eq:GOTO}$$

$$GOTO(I_{610},a) = I_{24} \\$$

$$GOTO(I_{610}, B) = I_{911}$$

The LALR(1) parsing table is as follows. The empty cells are errors.

State		ACTION			GOTO	
State	а	*	\$	S	В	
0	s24			1		
1			accept			
24	s24	reduce by $B \to \epsilon$	reduce by $B \to \epsilon$	37	58	
37		s610				
58		reduce by $S \rightarrow aB$	reduce by $S \rightarrow aB$			
610	s24	reduce by $B \to \epsilon$	reduce by $B \to \epsilon$	37	911	
911		reduce by $B \rightarrow S * B$	reduce by $B \rightarrow S * B$			

(2) Yes, the grammar is SLR(1), LR(1), and LALR(1)

(3) Parsing of aaaa***

Line	Stack	Symbols	Input	Action
(1)	0	\$	aaaa***\$	shift to 24
(2)	0(24)	\$a	aaa***\$	shift to 24
(3)	0(24)(24)	\$aa	aa***\$	shift to 24
(4)	0(24)(24)(24)	\$aaa	a***\$	shift to 24
(5)	0(24)(24)(24)	\$aaaa	***\$	reduce by $B \to \epsilon$
(6)	0(24)(24)(24)(58)	\$aaaaB	***\$	reduce by $S \rightarrow aB$
(7)	0(24)(24)(24)(37)	\$aaaS	***\$	shift to 610
(8)	0(24)(24)(24)(37)(610)	\$aaaS*	**\$	reduce by $B \to \epsilon$
(9)	0(24)(24)(24)(37)(610)(911)	\$aaaS*B	**\$	reduce by $B \rightarrow S * B$
(10)	0(24)(24)(24)(58)	\$aaaB	**\$	reduce by $S \rightarrow aB$
(11)	0(24)(24)(37)	\$aaS	**\$	shift to 610

(12)	0(24)(24)(37)(610)	\$aaS*	*\$	reduce by $B \to \epsilon$
(13)	0(24)(24)(37)(610)(911)	\$aaS*B	*\$	reduce by $B \rightarrow S * B$
(14)	0(24)(24)(58)	\$aaB	*\$	reduce by $S \rightarrow aB$
(15)	0(24)(37)	\$aS	*\$	shift to 610
(16)	0(24)(37)(610)	\$aS*	\$	reduce by $B \to \epsilon$
(17)	0(24)(37)(610)(911)	\$aS*B	\$	reduce by $B \rightarrow S * B$
(18)	0(24)(58)	\$aB	\$	reduce by $S \rightarrow aB$
(19)	01	\$S	\$	accept

Optional Exercise 1:

The grammar is ambiguous. We can find multiple parse tree for the sentence "Tom like Jerry hate mouse".

Optional Exercise 2:

There might be multiple answers. One possible grammar is:

$$S' \rightarrow S+S' \mid S-S' \mid \epsilon$$