

Ve370 Introduction to Computer Organization

Homework 8

1. Assume that main memory accesses take 70 ns and that memory accesses are 36% of all instructions. The following table shows parameters for a two-level cache memory.

	Size	Miss Rate	Hit Time
L1	16 KB	7.3%	1.18 ns
L2	1 MB	1.5%	5.34 ns

- (1) What is the AMAT for the computer? (10 points)
- (2) Assuming the L1 hit time determines the cycle times and a base CPI is 1.0 without any memory stalls, what is the total CPI? (10 points)
- 2. In this exercise, we will examine how replacement policies impact miss rate. Assume a 2-way set associative cache with 4 blocks. Following table gives addresses for memory access.
 - (1) Assuming an LRU replacement policy, how many hits does this address sequence exhibit? (10 points)
 - (2) Assuming an MRU (most recently used) replacement policy, how many hits does this address sequence exhibit? (10 points)
 - (3) Simulate a random replacement policy by flipping a coin. For example, "heads" means to evict the first block in a set and "tails" means to evict the second block in a set. How many hits does this address sequence exhibit? Note: you should flip the coin yourself, not by computer. (10 points)

You may find following table is useful:

Block Address	Hit/Miss	Evicted	Contents of Cache			
of memory		Block	Set 0		Set 1	
1						
3						
5						
1						
3						
1						
3						
5						
3						

3. Virtual memory uses a page table to track the mapping of virtual addresses to physical addresses. The following is a stream of virtual byte addresses used to access memory. Virtual addresses (in decimal): 12948, 49419, 46814, 13975, 40004, 12707, 52236 Assume 4 KB pages, a 4-entry fully associative TLB, and LRU replacement. If pages must be brought in from disk, increment to the next largest page number.

TLB:

Valid	Tag	Physical Page Number		
1	11	12		
1	7	4		
1	3	6		
0	4	9		

Page Table:

Valid	Physical Page Number
1	5
0	Disk
0	Disk
1	6
1	9
1	11
0	Disk
1	4
0	Disk
0	Disk
1	3
1	12

- (1) Given the virtual address stream, and the initial TLB and page table states shown above, show the final state of the system. Also list for each reference if it is a hit in the TLB, a hit in the page table, or a page fault. (15 points)
- (2) Repeat question (1), but this time use 16 KB pages instead of 4 KB pages. (15 points)
- (3) What would be some of the advantages and disadvantages of having a larger page size? (5 points)
- (4) Show the final contents of the TLB if it is 2-way set associative. (15 points)