RoboCupJunior に最適化した 軽量低コスト駆動用アクチュエーターの開発

齋藤淳平(慶應義塾志木高等学校2年)

目標

誰もが思い描いたものを自由に形にできる世界を作る。

→今回は僕の考えた最強のロボットに必要なモーターを開発!

RoboCupJunior とは

概要

世界数十カ国で開催されていて、国内では毎年数千人が 参加する、19歳までの学生を対象にした世界的なロボコン 主なルール

- ・各チーム2台の自律型ロボット
- ・専用フィールドで試合
- ゴールに入れたら得点
- ・重量は 1100g まで
- 直径 22cm、高さ 22cm 以内

最強のロボットとは、RoboCup で優勝できるロボット

強くなるにはお金が必要?

中学生の頃から RoboCupJunior に参加し続けてきたこと で、以下の負のループが生まれていることに気づいた。

高性能なモーターを持っている機体には勝ちにくい モーターは改良がむずかしい(分解して性能上げたりできない)

上位を目指すにつれ、高性能なモーターを買う

仮説:モーターを自由に誰でも自作できる ようになれば平等に戦えるのでは

開発のコンセプト

自作モーターで、高性能なモーターを超すために3つの コンセプトを定めた。

最低限の強度

何年も使い続けるわけではない

3D プリンタ部品を活用し軽量低コスト化を実現

完全オーダメイド

他のユニットを考慮した部品配置

ブラシレス方式を採用

ブラシによる損失をなくし効率化

今回のプロトタイプ

使用部品

3D プリンタで構造部品を製作 銅線、ボルト、ベアリング、磁 石は市販品を使用

大径になったが、126gから 123g へ軽量化

薄く小型化したため、マシン内 の部品配置の自由度の向上

今回の課題

回り始めにくい 脱調しやすい 低速回転ができない

ブラシレス MD を開発しフィー ドバック制御をかける。

MDの開発が完了したら、回転 数、トルク、消費電力などのデー タもとる。

オープンソース化

開発の経過から公開

Twitter やブログへ定期的に投稿しフィードバックをもら う。私自身ずっと独学で、ネットの情報に助けれてきた ので、誰かの助けになれるように。

部品性能からスキル対決に

性能の高い既製品を使えば勝てるという今の競技会の定 石を覆す。そして、真のエンジニアリング能力が評価さ れる競技会へ。

