Notes – Linear Algebra

Zhijie Chen January 16, 2025

Contents

```
Vector Spaces 2
Linear Maps 2
Kernal and Image of Linear Maps 2
Products and Quotients of Vector Spaces 2
Duality 4
Polynomials 5
```

Vector Spaces

Definition 1. The complexification of V, denoted by $V_{\mathbb{C}}$, equals $V \times V$ with normal addition and real scalar multiplication for product space. But we write an element (u, v) of $V_{\mathbb{C}}$ as u + iv. Complex scalar multiplication is defined by

$$(a+bi)(u+iv) = (au-bv) + i(av+bu)$$

for all $a, b \in \mathbb{R}$ and all $u, v \in V$.

Lemma 2 (Linear dependence lemma). *Suppose* v_1, \ldots, v_m *is a linearly dependent set in* V. *Then there exists* $k \in \{1, 2, \ldots, m\}$ *such that*

$$v_k \in \operatorname{span}\{v_1,\ldots,v_m\}$$
.

Furthermore, removing the kth term from the list does not change the span.²

Theorem 3. Any two bases of a finite-dimensional vector space have the same length.³

Proof. Suppose V is finite-dimensional. Let \mathcal{B}_1 and \mathcal{B}_2 be two bases of V. Considering \mathcal{B}_1 as an independent set and \mathcal{B}_2 as a spanning set leads to $\#\mathcal{B}_1 \leq \#\mathcal{B}_2$. Interchanging the roles of \mathcal{B}_1 and \mathcal{B}_2 and we have $\#\mathcal{B}_2 \leq \#\mathcal{B}_1$. Thus $\#\mathcal{B}_1 = \#\mathcal{B}_2$. \square

¹ Think of V as a subset of $V_{\mathbb{C}}$ by identifying $u \in V$ with u + i0. The construction of $V_{\mathbb{C}}$ from V can then be thought of as generalizing the construction of \mathbb{C}^n from \mathbb{R}^n

² This lemma lays the foundation for a series of basic results for vector spaces.
³ This proposition ensures that *dimension* is well-defined.

Linear Maps

Kernal and Image of Linear Maps

Exercise 4. Suppose U and V are finite-dimensional and $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$. Prove that

$$\dim \ker ST < \dim \ker S + \dim \ker T$$
.

Proof. Restrict to $Z = \ker ST$. By the fundamental theorem of linear maps,

$$\begin{split} \dim Z &= \dim T(Z) + \dim \ker T|_Z \\ &\leq \dim T(Z) + \dim \ker T \\ &= \dim ST(Z) + \dim \ker S|_{T(Z)} + \dim \ker T \\ &\leq \dim \ker S + \dim \ker T. \end{split}$$

Corollary 5 (Sylvester's rank inequality). *Suppose* $A \in \mathbb{F}^{m,n}$ and $B \in \mathbb{F}^{n,p}$ are two matrices. Then⁴

$$\operatorname{rank} A + \operatorname{rank} B - n \leq \operatorname{rank}(AB)$$
.

⁴ There is a slicker proof for this inequality using block matrices. But the proof here using linear maps is more informative.

Products and Quotients of Vector Spaces

Lemma 6. Suppose V_1, \ldots, V_m are subspaces of $V^{.5}$ Define a linear map $\Gamma: V_1 \times \cdots \times V_m \to V_1 + \cdots + V_m$ by

$$\Gamma(v_1,\ldots,v_m)=v_1+\cdots+v_m.$$

Then $V_1 + \cdots + V_m$ is a direct sum if and only if Γ is injective.

⁵ Note that V does not have to be finite-dimensional. Recall that $V_1 + \cdots + V_m$ is a direct sum if and only if the only way to write 0 as a sum of $v_1 + \cdots + v_m$, where each $v_k \in V_k$, is by taking each v_k equal to 0

Theorem 7. Suppose V is finite-dimensional and V_1, \ldots, V_m are subspaces of V. Then $V_1 + \cdots + V_m$ is a direct sum if and only $\dim(V_1 + \cdots + V_m) = \dim V_1 + \cdots + \dim V_m$.

⁶ Recall Lemma 6.

Notation 8. Suppose $T \in \mathcal{L}(V, W)$. Define $\widetilde{T}: V + \ker V \to V$ by

$$\widetilde{T}(v + \ker T) = Tv.$$

Exercise 9. Suppose V_1, \ldots, V_m are vector spaces. Prove that $\mathcal{L}(V_1 \times \cdots \times V_m, W)$ and $\mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$ are isomorphic vector spaces.

Proof. We construct an isomorphism *T* between the two vector spaces.

For every $\Gamma \in \mathcal{L}(V_1 \times \cdots \times V_m, W)$, define $\varphi_i : V_i \to W$ for each $i \in \{1, \dots, m\}$ by

$$\varphi_i(v_i) = \Gamma(0,\ldots,v_i,\ldots,0)$$

with v_i in the i^{th} slot and 0 in all other slots. It can be verified that $\varphi_i \in \mathcal{L}(V_i, W)$.

Let $T(\Gamma) = (\varphi_1, \dots, \varphi_m)$. It can be verified that T is a linear map. We prove T is an isomorphism by constructing its inverse linear map S.

For every $(\varphi_1, \ldots, \varphi_m) \in \mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$, let

$$S(\varphi_1,\ldots,\varphi_m)(v_1,\ldots,v_m)=\varphi_1(v_1)+\cdots+\varphi_m(v_m).$$

It can be shown that S is a linear map, and that $S \circ T = I$ and $T \circ S = I$. That proves T is indeed an isomorphism between the two vector spaces.

Proposition 10. A nonempty subset A of V is a translate of some subspace of V if and only if $\lambda v + (1 - \lambda) w \in A$ for all $v, w \in A$ and all $\lambda \in \mathbb{F}$.

Exercise 11. Suppose $A_1 = v + U_1$ and $A_2 = w + U_2$ for some $v, w \in V$ and some subspaces U_1 , U_2 of V. Prove that $A_1 \cap A_2$ is either the empty set or a translate of some subspace of V.⁷

Proposition 12. Suppose U is a subspace of V and $v_1 + U, ..., v_m + U$ is a basis of V/U and $u_1, ..., u_n$ is a basis of U. Then $v_1, ..., v_m, u_1, ..., u_n$ is a basis of V. In other words, $V = \text{span}\{v_1, ..., v_m\} \oplus U$.

Exercise 13. Suppose U is a subspace of V such that V/U is finite-dimensional.

- (a) Prove that if W is a finite-dimensional subspace of V and V = U + W, then $\dim W \ge \dim V / U$.
- (b) Prove that there exists a finite-dimensional subspace W of V such that $V = U \oplus W$ and $\dim W = \dim V/U$.

Proof. Let $\overline{w}_1 + U, \ldots, \overline{w}_m + U$ be a basis of V/U. Then by Proposition 12, we have $V = \text{span}\{\overline{w}_1, \ldots, \overline{w}_m\} \oplus U$. Let $W_0 = \text{span}\{\overline{w}_1, \ldots, \overline{w}_m\}$, then $V = U \oplus W_0$, as desired.

Now we prove that for each subspace W of V such that V = U + W, we have $\dim W \ge m = \dim V/U$.

For each $\overline{w}_i \in V$ above, by definition we have $\overline{w}_i = u_i + w_i$ for some $u_i \in U$ and $w_i \in W$. It can be shown from the linear independence of $\overline{w}_1 + U, \dots, \overline{w}_m + U$ that $\overline{w}_1 - u_1, \dots, \overline{w}_m - u_m$ are independent vectors in W. Hence dim $W \geq m$.

⁷ Recall Proposition 10.

⁸ $V = \text{span}\{v_1, \dots, v_m\} \oplus U$ still holds without the hypothesis that U is finite-dimensional.

Duality

Theorem 14. Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Then

T is surjective \iff T' is injective and T is injective \iff T' is surjective.

Proposition 15. Suppose V is finite-dimensional and U is a subspace of V. Then

$$U = \left\{ v \in V : \varphi(v) = 0 \text{ for every } \varphi \in U^0 \right\}.$$

Exercise 16. Suppose V is finite-dimensional and U and W are subspaces of V.

- (a) Prove that $W^0 \subseteq U^0$ if and only if $U \subseteq W$.
- (b) Prove that $W^0 = U^0$ if and only if $U = W^{10}$

Exercise 17. Suppose V is finite-dimensional and U and W are subspaces of V.

- (a) Prove that $(U + W)^0 = U^0 \cap W^0$.
- (b) Prove that $(U \cap W)^0 = U^0 + W^0$.

Proposition 18. Suppose V is finite-dimensional and v_1, \ldots, v_n is a basis of V. Then $\varphi_1, \ldots, \varphi_n \in V'$ is the dual basis of v_1, \ldots, v_n if and only if

$$\begin{bmatrix} \mathcal{M}(\varphi_1, (v_1, \dots, v_n)) \\ \vdots \\ \mathcal{M}(\varphi_n, (v_1, \dots, v_n)) \end{bmatrix} = I.$$

Exercise 19. Suppose V is finite-dimensional and $\varphi_1, \ldots, \varphi_n$ is a basis of V'. Prove that there exists a basis of V whose dual basis is $\varphi_1, \ldots, \varphi_n$.

Proof. We start from an arbitrary basis u_1, \ldots, u_n of V. Let ψ_1, \ldots, ψ_n be its dual basis. In this proof, we take standard basis e_1, \ldots, e_n as the basis of \mathbb{F}^n .

Define $S, T \in \mathcal{L}(V, \mathbb{F}^n)$ by

$$T(v) = (\varphi_1(v), \dots, \varphi_n(v)), \quad S(v) = (\psi_1(v), \dots, \psi_n(v)).$$

Then by Lemma 18, $\mathcal{M}(S,(u_1,\ldots,u_n))=I$.

Let *A* be the change of basis matrix from ψ 's to φ 's, i.e.,

$$\begin{bmatrix} \varphi_1 & \cdots & \varphi_n \end{bmatrix} = \begin{bmatrix} \psi_1 & \cdots & \psi_n \end{bmatrix} A.$$

Then by the definition of change of basis matrix, we have

$$\mathcal{M}(T,(u_1,\ldots,u_n)) = \begin{bmatrix} \mathcal{M}(\varphi_1,(u_1,\ldots,u_n)) \\ \vdots \\ \mathcal{M}(\varphi_n,(u_1,\ldots,u_n)) \end{bmatrix} = A^t \begin{bmatrix} \mathcal{M}(\psi_1,(u_1,\ldots,u_n)) \\ \vdots \\ \mathcal{M}(\psi_n,(u_1,\ldots,u_n)) \end{bmatrix}$$

$$= A^t \cdot \mathcal{M}(S, (u_1, \ldots, u_n)) = A^t.$$

⁹ This result can be useful because sometimes it is easier to verify that T' is injective (surjective) than to show directly that T is surjective (injective).

10 Recall Proposition 15.

Consider basis v_1, \ldots, v_n of V such that the change of basis matrix from u's to v's is $(A^t)^{-1}$. Thus

$$\mathcal{M}(T,(v_1,\ldots,v_n))=\mathcal{M}(T,(u_1,\ldots,u_n))\cdot\mathcal{M}(I,(v_1,\ldots,v_n),(u_1,\ldots,u_n))=I.$$

Then by Proposition 18, the dual basis of v_1, \ldots, v_n is precisely $\varphi_1, \ldots, \varphi_n$, as desired.

¹¹ The change of basis for $V' \to V'$ corresponds to the transpose of $V \leftarrow V$, where transpose and inverse both come from duality. That gives the idea of considering $(A^t)^{-1}$.

Polynomials

Theorem 20. Suppose $p \in \mathcal{P}(\mathbb{F})$ is a nonconstant polynomial of degree m. Then $\lambda \in \mathbb{F}$ is a zero of p if and only if there exists a polynomial $q \in \mathcal{P}(\mathbb{F})$ of degree m-1 such that $p(z) = (z - \lambda)q(z)$ for every $z \in \mathbb{F}$.

Theorem 21. Suppose $p \in \mathcal{P}(\mathbb{F})$ is a nonconstant polynomial of degree m. Then p has at most m zeros in $\mathbb{F}^{12,13}$

Theorem 22 (Division algorithm for polynomials). *Suppose that* $p, s \in \mathcal{P}(\mathbb{F})$, with $s \neq 0$. Then there exist unique polynomials $q, r \in \mathcal{P}(\mathbb{F})$ such that p = sq + r.

Proof. Let $n = \deg p$ and $m = \deg s$. The case where n < m is trivial. Thus we now assume that $n \ge m$.

The list

$$1, z, \ldots, z^{m-1}, s, zs, \ldots, z^{n-m}s$$

is linearly independent in $\mathcal{P}_n(\mathbb{F})$. And it also has length n+1. Hence the list is a basis of $\mathcal{P}_n(\mathbb{F})$.

Because $p \in \mathcal{P}_n(\mathbb{F})$, there exist unique constants $a_0, \ldots, a_{m-1}, b_0, \ldots, b_{n-m} \in \mathbb{F}$ such that

$$p = a_0 + a_1 z + \dots + a_{m-1} z^{m-1} + b_0 s + b_1 z s + \dots + b_{n-m} z^{n-m} s$$

= $(a_0 + a_1 z + \dots + a_{m-1} z^{m-1}) + s(b_0 + b_1 z + \dots + b_{n-m} z^{n-m}).$

Theorem 23 (Fundamental theorem of algebra, first version). *Every nonconstant polynomial with complex coefficients has a zero in* \mathbb{C} .

Proof. Suppose $p \in \mathcal{P}(\mathbb{C})$ is a nonconstant polynomial with highest-order nonzero term $c_m z^m$. Then $|p(z)| \to \infty$ as $|z| \to \infty$. Thus the continuous function $z \mapsto |p(z)|$ has a global minimum at some $\zeta \in \mathbb{C}$. Assume that $p(\zeta) \neq 0$.

Consider polynomial $q = p(z + \zeta)/p(\zeta)$. The function $z \mapsto |q(z)|$ has a global minimum at z = 0. Write

$$q(z) = 1 + a_k z_k + \dots + a_m z^m$$

where k is the smallest positive integer such that the coefficient of z_k is nonzero.

Let β be the k^{th} root of $-1/a_k$. There is a constant c > 1 such that if $t \in (0,1)$, then

$$|q(t\beta)| \leq \left|1 + a_k t^k \beta^k\right| + c t^{k+1} = 1 - t^k (1 - tc).$$

Thus taking t to be 1/(2c) leads to $|q(t\beta)| < 1$. The contradiction implies that $p(\zeta) = 0$, as desired.

¹² This theorem indicates that when a polynomial p has too many zeros, p = 0.

¹³ This theorem implies that the coefficients of a polynomial are uniquely determined. In particular, the *degree* of a polynomial is well-defined.

Theorem 24 (Fundamental theorem of algebra, second version). *If* $p \in \mathcal{P}(\mathbb{C})$ *is a nonconstant polynomial, then p has a unique factorization of the form*

$$p(z) = c(z - \lambda_1) \cdots (z - \lambda_m),$$

where $c, \lambda_1, \ldots, \lambda_m \in \mathbb{C}$.

Theorem 25 (Factorization of a polynomial over \mathbb{R}). *If* $p \in \mathcal{P}(\mathbb{R})$ *is a nonconstant polynomial, then p has a unique factorization of the form*

$$p(x) = c(x - \lambda_1) \cdots (x - \lambda_m)(x^2 + b_1 x + c_1) \cdots (x^2 + b_M x + c_M),$$

where $m, M \in \mathbb{N}$ and $c, \lambda_1, \ldots, \lambda_m, b_1, \ldots, b_M, c_1, \ldots, c_M \in \mathbb{R}$, with $b_k^2 < 4c_k$ for each k.

Exercise 26. Suppose $p, q \in \mathcal{P}(\mathbb{C})$ are nonconstant polynomials with no zeros in common. Let $m = \deg p$ and $n = \deg q$. Prove that there exist $r \in \mathcal{P}_{n-1}(\mathbb{C})$ and $s \in \mathcal{P}_{m-1}(\mathbb{C})$ such that rp + sq = 1.

Proof.