

Análisis de la estructura del microsatélite

ESTRUCTURAS DE USO ESPACIAL

Autor: María Fuencisla Páez López

Andrés Pedraza Rodríguez

Profesor: Andrés García Pérez

Madrid, 7 de junio de 2021

https://github.com/temisAP/Practica2_EUE

Resumen

El objetivo del presente trabajo es el estudio estructural de un microsatélite completo construido a partir de las bandejas optimizadas anteriormente en [1] y [2] a las cuales se les han añadido cuatro vigas en forma de L en las esquinas y unos paneles de cierre. La estructura se analizará frente a cargas tanto estáticas como dinámicas para comprobar que la respuesta estructural es la adecuada.

Índice

Ín	adice de figuras	I
Ín	adice de tablas	III
1.	Introducción	1
2.	Metodología	2
3.	Modelo resultante	3
	3.1. Características de los nuevos elementos	3
	3.2. Modelo de elementos finitos	5
4.	Resultados	9
	4.1. Chequeos	9
	4.2. Modos propios	11
	4.3. Análisis estáticos	13
	4.4. Análisis de vibraciones sinusoidales	17
	4.5. Análisis de vibraciones aleatorias	21
	4.6. Análisis de tornillos	25
5.	Conclusiones	30
Re	eferencias	35

Índice de figuras

1.	Perfil en L	3
2.	Geometría de los rigidizadores verticales (izquierda) y visión de conjunto con las bandejas (derecha)	5
3.	Semilla de malla sobre las vigas en L (izquierda) y mallado resultante (derecha)	5
4.	Geometría de los paneles de cierre (izquierda) y visión de conjunto con las bandejas (derecha)	6
5.	Semilla de malla sobre los paneles de cierre (izquierda) y mallado resultante (derecha).	6
6.	Reubicación de los puntos de unión de los equipos a las bandejas. A la izquierda distribución inicial y a la derecha distribución final	7
7.	Modelo estructural completo del micro-satélite (a la derecha y abajo se ha ocultado un panel de cierre para una mejor visualización)	8
8.	Chequeo de carga gravitatoria.	10
9.	Chequeo de frecuencias como sólido rígido	10
10.	Chequeo de energía de deformación	11
11.	Análisis de modos propios de la estructura.	12
12.	Análisis estático en la dirección X, arriba esfuerzos sobre los elementos bidimensionales y abajo esfuerzos sobre elementos unidimensionales	14
13.	Análisis estático en la dirección Y, arriba esfuerzos sobre los elementos bidimensionales y abajo esfuerzos sobre elementos unidimensionales	15
14.	Análisis estático en la dirección Z, arriba esfuerzos sobre los elementos bidimensionales y abajo esfuerzos sobre elementos unidimensionales	16
15.	Análisis de vibraciones sinusoidales en la dirección X , arriba esfuerzos sobre los elementos bidimensionales y abajo esfuerzos sobre elementos unidimensionales	18
16.	Análisis de vibraciones sinusoidales en la dirección Y, arriba esfuerzos sobre los elementos bidimensionales y abajo esfuerzos sobre elementos unidimensionales	19
17.	Análisis de vibraciones sinusoidales en la dirección Z, arriba esfuerzos sobre los elementos bidimensionales y abajo esfuerzos sobre elementos unidimensionales	20
18.	Análisis de vibraciones aleatorias en la dirección X, arriba esfuerzos sobre los elementos bidimensionales y abajo esfuerzos sobre elementos unidimensionales	22

19.	Análisis de vibraciones aleatorias en la dirección Y, arriba esfuerzos sobre los elementos	
	bidimensionales y abajo esfuerzos sobre elementos unidimensionales	23
20.	Análisis de vibraciones aleatorias en la dirección Z, arriba esfuerzos sobre los elementos	
	bidimensionales y abajo esfuerzos sobre elementos unidimensionales	24
21.	Numeración de los elementos de tipo CBUSH que representan los tornillos de la interfaz.	26

Índice de tablas

1.	Materiales empleados en el modelo del microsatélite	4
2.	Configuración del laminado empleado en los paneles de cierre	4
3.	Propiedades elásticas del laminado empleado en los paneles de cierre	4
4.	Factores de seguridad asociados al cálculo de los márgenes de seguridad	9
5.	Especificaciones para el análisis estático	13
6.	Cargas máximas a tracción y compresión sobre los diferentes elementos de la estructura y cálculo de márgenes de seguridad para el análisis estático	13
7.	Especificaciones para el análisis de vibraciones sinusoidales	17
8.	Cargas máximas a tracción y compresión sobre los diferentes elementos de la estructura y cálculo de márgenes de seguridad para el análisis de vibraciones sinusoidales	17
9.	Especificaciones para el análisis de vibraciones aleatorias	21
10.	Cargas máximas a tracción y compresión sobre los diferentes elementos de la estructura y cálculo de márgenes de seguridad para el análisis de vibraciones aleatorias	21
11.	Propiedades de los tornillos relacionadas con su respuesta estructural	26
12.	Márgenes de seguridad de todos los tornillos para diferentes modos de fallo y los diferentes casos de carga cuasiestática	27
13.	Márgenes de seguridad de todos los tornillos para diferentes modos de fallo y los diferentes casos de carga dinámica sinusoidal	28
14.	Márgenes de seguridad de todos los tornillos para diferentes modos de fallo y los diferentes casos de carga dinámica aleatoria	29
15.	Cargas máximas a tracción y compresión sobre los diferentes elementos de la estructura y cálculo de márgenes de seguridad para el análisis estático	30
16.	Cargas máximas a tracción y compresión sobre los diferentes elementos de la estructura y cálculo de márgenes de seguridad para el análisis de vibraciones sinusoidales	30
17.	Cargas máximas a tracción y compresión sobre los diferentes elementos de la estructura y cálculo de márgenes de seguridad para el análisis de vibraciones aleatorias	31
18.	Márgenes de seguridad de todos los tornillos para diferentes modos de fallo y los diferentes casos de carga cuasiestática	31
19.	Márgenes de seguridad de todos los tornillos para diferentes modos de fallo y los diferentes casos de carga dinámica sinusoidal	32

20.	Márgenes de seguridad de todos los tornillos para diferentes modos de fallo y los dife-	
	rentes casos de carga dinámica aleatoria	33

1. Introducción

En el presente trabajo se estudia el comportamiento del modelo estructural de un satélite. El estudio se centra principalmente en la optimización de la estructura de acuerdo a una serie de restricciones impuestas por el lanzador y la propia integridad estructural del artefacto. Para el diseño completo se han hecho uso de las bandejas optimizadas en [1] y [2] y se han añadido los paneles de cierre y las vigas verticales en forma de L de acuerdo a los criterios de optimización establecidos.

Si bien es cierto que, aún se habría de refinar más el modelo para tener certeza de que los equipos alojados en el interior del satélite responderán de manera adecuada a las solicitaciones estructurales, este estudio permitirá conocer el comportamiento global de la estructura como conjunto y así se podrán determinar las condiciones en las que se encontrarán los elementos interiores.

2. Metodología

Para determinar la solución óptima se ha comenzado importando en PATRAN las bandejas inferior e intermedia y luego se han añadido, unos paneles de cierre y vigas en forma de L para terminar el diseño inicial. Después, se ha analizado la estructura por medio de NASTRAN y, tras una serie de modificaciones se ha determinado la configuración final.

En este caso, los parámetros de optimización versan sobre los nuevos elementos añadidos en materia de geometría y composición.

Este trabajo se ha realizado basándose en los siguientes estándares ECSS de la Agencia Espacial Europea (ESA):

- Space engineering structural factors of safety for spaceflight hardware: ECSS-E-ST-32-10C [3].
- Space engineering structural general requirements: ECSS-E-ST-32C [4].

Además se ha hecho uso de los siguientes documentos para el desarrollo práctico de los ejemplos estudiados:

- Manual de Cálculo Estructural, del Instituto Universitario de Microgravedad "Ignacio Da Riva", por Andrés García et al. [5].
- Spacecraft Structures, de Jacob J. Wijker [6].
- Ejemplo de placa, por Andrés García [7].
- Apuntes de las asignaturas: Resistencia de Materiales y elasticidad Estructuras Aeronáuticas, Método de los elementos finitos y Vibraciones; impartidas en la facultad ETSIAE-UPM.
- Apuntes de las asignaturas: Estructuras de uso espacial y Vibraciones y Aeroacústica; impartidas en el Máster Universitario de Sistemas Espaciales (IDR-UPM).

También se ha recurrido, para el desarrollo práctico a los videotutoriales facilitados por el profesor y en las clases grabadas a través de la plataforma *Microsoft Teams*.

3. Modelo resultante

El modelo resultante ha de ser tal que:

- La primera frecuencia lateral esté por encima de 45 Hz.
- La primera frecuencia longitudinal esté por encima de 90 Hz.

Para ello, se han dimensionado los rigidizadores verticales y los paneles de cierre de forma que se cumplan estos requisitos.

3.1. Características de los nuevos elementos

A cuatro de las bandejas definidas en los anteriores trabajos [1] y [2] cuyas características generales son:

- Forma en planta cuadrada de 600×600 mm.
- Rigidizadores en los cuatro bordes exteriores de sección rectangular.
- Rigidizadores interiores en configuración isogrid.
- Una masa de equipos de 10 kg excepto en la bandeja superior.
- Una condición de contorno de empotramiento por medio de unos elementos CBUSH en la bandeja inferior.

se han añadido unas vigas en sección de L en las esquinas, cuyo perfil se describe en la Figura 1 fabricadas en aluminio EN-AW-7075-T6 (véase Tabla 1); y unos paneles de cierre de espesor delgado hechas de un laminado de fibra de carbono (véase Tabla 1 para el material y Tablas 2 y 3 para el laminado). Estos elementos abarcan las cuatro bandejas y le confieren integridad al conjunto.

Figura 1: Perfil en L.

Tabla 1: Materiales empleados en el modelo del microsatélite.

Material	Densidad $[kg/m^3]$	Módulo elá [Pa]	stico	Módulo de Poisson	Módulo de cortadura [Pa]	Coeficiente de expansión térmica $[m/(m\cdot K)]$		σ_y [Pa]	σ_u [Pa]	Referencia
Aluminio EN-AW-7075-T6	2810	$7.17 \cdot 10^{10}$		0.33	$2.69 \cdot 10^{10}$	$2.19 \cdot 10^{-5}$		$5.03 \cdot 10^8$	$5.72 \cdot 10^8$	[8]
CFRP		En la dirección longitudinal	$1.40 \cdot 10^{11}$			En la dirección longitudinal	$2.13 \cdot 10^{-5}$			
Fiber tape	1700	En la dirección transversal	$1.05 \cdot 10^{10}$	0.3	$7.10 \cdot 10^9$	En la dirección transversal	$6.76 \cdot 10^{-5}$	$1.50 \cdot 10^8$	1.60·10 ⁸	[9]

Tabla 2: Configuración del laminado empleado en los paneles de cierre.

Capa	Espesor [m]	Orientación [°]
1	$9.00 \cdot 10^{-5}$	0
2	$9.00 \cdot 10^{-5}$	45
3	$9.00 \cdot 10^{-5}$	90
4	$9.00 \cdot 10^{-5}$	-45
5	$9.00 \cdot 10^{-5}$	0
6	$9.00 \cdot 10^{-5}$	90
7	$9.00 \cdot 10^{-5}$	45
8	$9.00 \cdot 10^{-5}$	90
9	$9.00 \cdot 10^{-5}$	0
10	$9.00 \cdot 10^{-5}$	-45
11	$9.00 \cdot 10^{-5}$	90
12	$9.00 \cdot 10^{-5}$	45
13	$9.00 \cdot 10^{-5}$	0

Tabla 3: Propiedades elásticas del laminado empleado en los paneles de cierre.

Módulo elástico [GPa]	140 (en el plano)
Modulo elastico [Gi a]	10.5 (en la dirección normal)
Módulo de cortadura [GPa]	7.10

3.2. Modelo de elementos finitos

A la hora de realizar el modelo de elementos finitos se han creado los grupos de vigas en L y de paneles de cierre.

Vigas en L

En el grupo de las vigas se han creado unas curvas a lo largo de las esquinas de las bandejas y se han añadido a las curvas como propiedad tipo BEAM unos perfiles en L de aluminio 7075 (véase la Figura 1 para la sección y Tabla 1 para el material). En la Figura 2 se muestran las geometrías creadas y el conjunto completo.

Figura 2: Geometría de los rigidizadores verticales (izquierda) y visión de conjunto con las bandejas (derecha).

Luego, se han creado las semillas de malla sobre las curvas de manera que el equiespaciado sea tal que coincidan los futuros nodos con las bandejas lo que en este caso supone una separación de 0.04 m entre cada semilla. Después se ha creado la malla y el resultado es el que aparece en la Figura 3.

Figura 3: Semilla de malla sobre las vigas en L (izquierda) y mallado resultante (derecha).

Paneles de cierre

Después se han creado los paneles de cierre dispuestos de forma perimetral a las bandejas. En este caso, se ha hecho uso de las curvas de las vigas en L y se han añadido dos más para formar una superficie cuadrada a la cual se le adjudica como propiedad tipo PCOMP un laminado de fibra de carbono (véase Tablas 2 y 3 para las características del laminado y Tabla 1 para el material). En la Figura 4 se muestran las geometrías.

Figura 4: Geometría de los paneles de cierre (izquierda) y visión de conjunto con las bandejas (derecha).

Por último, se han creado las semillas de malla sobre las curvas de manera que coincidan los futuros nodos con las bandejas y las vigas en L lo que en este caso ha supuesto una semilla equiespaciada sobre las curvas verticales y una creada con el método TABULAR sobre las curvas horizontales de manera que los nodos de las bandejas coincidan con los futuros nodos de los paneles quedándose así las bandejas en una condición similar a la de simplemente apoyada que fue la que se empleó para la optimización de estos elementos de manera aislada. Después, se ha creado la malla y el resultado es el que aparece en la Figura 5.

Figura 5: Semilla de malla sobre los paneles de cierre (izquierda) y mallado resultante (derecha).

Estructura completa

Para cumplir con los requisitos se han reubicado los puntos de unión de los equipos (RBE2) a los cruces de nervios de las bandejas superiores ya que al estar alejadas del punto de unión del satélite con el lanzador suponen solicitaciones mayores de las previstas con el análisis individual de las bandejas. En la Figura 6 se muestra la comparativa entre las posiciones seleccionadas en un primer momento y la modificación realizada. Además los rigidizadores exteriores de las bandejas se han ampliado hasta el nivel de los interiores ya que a la hora de realizar el ensayo de conjuntos sí presentan cierta relevancia. Como consecuencia las bandejas intermedias han aumentado ligeramente su primera frecuencia natural y su peso. La estructura final tras todas las modificaciones llevadas a cabo se muestra en la Figura 7.

Figura 6: Reubicación de los puntos de unión de los equipos a las bandejas. A la izquierda distribución inicial y a la derecha distribución final

Figura 7: Modelo estructural completo del micro-satélite (a la derecha y abajo se ha ocultado un panel de cierre para una mejor visualización).

Resultados 4.

Una vez terminado el modelo de elementos finitos, se pasa al análisis de la estructura con el fin de comprobar que es capaz de resistir los casos de carga a los que va a ser expuesto durante el lanzamiento. A lo largo de esta sección se realizará un estudio del comportamiento de los materiales a través de los márgenes de seguridad. Estos márgenes de seguridad de límite elástico y carga última vienen definidos por:

$$MoS_y = \left(\frac{\sigma_Y}{\sigma_{VM \, \text{máx}} K_p K_M K_{LD} FOSY}\right) - 1, \qquad (1)$$

$$MoS_{y} = \left(\frac{\sigma_{Y}}{\sigma_{VM \max} K_{p} K_{M} K_{LD} FOSY}\right) - 1, \qquad (1)$$

$$MoS_{u} = \left(\frac{\sigma_{U}}{\sigma_{VM \max} K_{p} K_{M} K_{LD} FOSU}\right) - 1, \qquad (2)$$

donde los factores de seguridad son los que aparecen en la Tabla 4 y los valores de $\sigma_{VM\,{
m m\acute{a}x}}$ son los esfuerzos máximos de Von Mises para cada caso de carga.

Tabla 4: Factores de seguridad asociados al cálculo de los márgenes de seguridad.

K_p	K_m	K_{LD}	FOSY	FOSU
1.1	1.2	1.1	1.1	1.25

4.1. Chequeos

Antes de realizar los análisis es necesario comprobar que las estructura responde de forma adecuada a unos casos de carga sencillos. El primero de ellos es el análisis estático de carga gravitatoria. Para este caso se aplica una aceleración de 1 g en cada una de las tres principales direcciones. Se deben cumplir los siguientes requisitos:

- la resultante de fuerzas aplicadas es igual en módulo pero contraria en signo a la resultante de fuerzas de reacción.
- la resultante de fuerzas en cada dirección equivale a la masa del modelo multiplicada por la aceleración aplicada.
- los valores de desplazamiento sean del orden de 10⁻⁴ m, acordes con la carga aplicada.

En la Figura 8 se muestran los resultados de este chequeo. Como se puede observar, la fuerza resultante en cada eje coincide con la masa del modelo (47.31 Kg) multiplicada con la aceleración de valor 1g. Así mismo, la resultante de fuerzas aplicadas resulta de igual valor y signo opuesto a la resultante de fuerzas de reacción. Por último, se observa que los máximos desplazamientos no presentan valores elevados.

0					OLOAD R	ESULTANT		
9	SUBCASE/	LOAD						
[DAREA ID	TYPE	T1	T2	T3	R1	R2	R3
0	1	FX	4.731729E+01				1.276197E+01	6.449386E-04
		FY		4.731729E+01		-1.276197E+01		2.404870E-04
		FZ			4.731729E+01	-6.449386E-04	-2.404870E-04	
		MX				8.532778E+00		
		MY					-8.532778E+00	
		MZ						0.000000E+00
		TOTALS	4.731729E+01	4.731729E+01	4.731729E+01	-4.229833E+00	4.228947E+00	8.854256E-04
0					SPCFORCE F	RESULTANT		
	SUBCASE/	LOAD						
	DAREA ID	TYPE	T1	T2	T3	R1	R2	R3
0	1	FX	-4.731729E+01				9.463458E-01	-2.810173E-02
		FY		-4.731729E+01		-9.463458E-01		2.722031E-02
		FZ			-4.731729E+01	L 2.273355E+00	-2.784030E+00	
		MX				2.902823E+00		
		MY					-2.391263E+00	
		MZ						-4.000415E-06
		TOTALS	-4.731729E+01	-4.731729E+01	-4.731729E+01	L 4.229833E+00	-4.228947E+00	-8.854256E-04
0				•	MAYTMIM I	DISPLACEMENTS		
_	SUBCASE/				PIAKIPIOPI I	DISPLACEMENTS		
	DAREA ID	Т	1 .	Г2	тэ	R1	R2	R3
0	DANLA ID		_	-		5773113E-05 3.4		
1	_	وهوه.و ITY LOA/		33/36-00 3.49		JDENT EDITION*		
1	IG GKA	VIII LUA	D CHECK		**510	DOENT ENTITON.	JUNE 3, A	2021 MSC Nast

Figura 8: Chequeo de carga gravitatoria.

Después se analizan las frecuencias como solido rígido, debe cumplir que los primeros seis modos tengan una frecuencia inferior a $0.005~\rm Hz$ y que la relación entre el mayor modo como sólido rígido, que en este caso es el 6, y el modo 7 esté por debajo de $10^{-4}~\rm Hz$. En la Figura 9 se muestran los resultados del chequeo.

				REAL EIGEN	VALUES
	MODE	EXTRACTION	EIGENVALUE	RADIANS	CYCLES
	NO.	ORDER			
	1	1	-7.864405E-07	8.868148E-04	1.411410E-04
	2	2	-6.430801E-07	8.019227E-04	1.276300E-04
	3	3	-9.988526E-08	3.160463E-04	5.030033E-05
	4	4	3.378045E-08	1.837946E-04	2.925182E-05
	5	5	1.139979E-07	3.376357E-04	5.373640E-05
	6	6	4.789767E-07	6.920815E-04	1.101482E-04
	7	7	2.615914E+05	5.114600E+02	8.140139E+01
1	RIGID	BODY FREQUENCY	CHECK	**STUDENT	EDITION* JUNE

Figura 9: Chequeo de frecuencias como sólido rígido.

El último chequeo es el de energía de deformación donde se calcula la energía de deformación en cada una de las direcciones (traslación y rotación) para cada grupo e grados de libertad. Indica si el modelo pasa la prueba, ya que compara los resultados obtenidos con el límite establecido de valor 10^{-2} J. En la Figura 10 se muestran los resultados del chequeo.

	DY CHECKS OF MATRIX KGG SIX DIRECTIONS AGAINST STRAIN ENERGY	(G-SET) THE LIMIT OF PASS/FAIL			BODY CHECKS OF MATRIX KFF ALL SIX DIRECTIONS AGAINST STRAIN ENERGY	(F-SET) THE LIMIT OF PASS/FAIL	
1	1.139822E-06	PASS		1	1.442502E-06	PASS	
2	5.764887E-07	PASS		2	6.407499E-07	PASS	
3	6.095215E-07	PASS		3	7.229974E-07	PASS	
4	5.465976E-08	PASS		4	1.374587E-07	PASS	
5	6.793538E-08	PASS		5	7.826336E-08	PASS	
6	3.909660E-07	PASS		6	4.237109E-07	PASS	
RESULTS OF RIGID BOD	Y CHECKS OF MATRIX KNN	(N-SET)	FOLLOW:	RESULTS OF RIGID	BODY CHECKS OF MATRIX KAA1	(A-SET)	FOLLOW:
PRINT RESULTS IN ALL		(N-SET) THE LIMIT OF	FOLLOW: 1.000000E-02		BODY CHECKS OF MATRIX KAA1 ALL SIX DIRECTIONS AGAINST	(A-SET) THE LIMIT OF	FOLLOW: 1.000000E-02
PRINT RESULTS IN ALL	SIX DIRECTIONS AGAINST	THE LIMIT OF		PRINT RESULTS IN	ALL SIX DIRECTIONS AGAINST	THE LIMIT OF	
PRINT RESULTS IN ALL	SIX DIRECTIONS AGAINST	THE LIMIT OF		PRINT RESULTS IN	ALL SIX DIRECTIONS AGAINST	THE LIMIT OF	
PRINT RESULTS IN ALL	SIX DIRECTIONS AGAINST STRAIN ENERGY	THE LIMIT OF PASS/FAIL		PRINT RESULTS IN	ALL SIX DIRECTIONS AGAINST STRAIN ENERGY	THE LIMIT OF PASS/FAIL	
PRINT RESULTS IN ALL	SIX DIRECTIONS AGAINST STRAIN ENERGY 1.442502E-06	THE LIMIT OF PASS/FAIL PASS		PRINT RESULTS IN	ALL SIX DIRECTIONS AGAINST STRAIN ENERGY 	THE LIMIT OF PASS/FAIL PASS	
PRINT RESULTS IN ALL	SIX DIRECTIONS AGAINST STRAIN ENERGY 	THE LIMIT OF PASS/FAIL PASS PASS		PRINT RESULTS IN	ALL SIX DIRECTIONS AGAINST STRAIN ENERGY 	THE LIMIT OF PASS/FAIL PASS PASS	
PRINT RESULTS IN ALL	SIX DIRECTIONS AGAINST STRAIN ENERGY 	THE LIMIT OF PASS/FAIL PASS PASS PASS		PRINT RESULTS IN	ALL SIX DIRECTIONS AGAINST STRAIN ENERGY 	THE LIMIT OF PASS/FAIL PASS PASS PASS	

Figura 10: Chequeo de energía de deformación.

4.2. Modos propios

Para la aceptación del satélite es necesario que su primera frecuencia lateral esté por encima de 45 Hz y que su primera frecuencia longitudinal esté por encima de 90 Hz. En este caso se han cumplido ambos requisitos con bastante margen ya que se tiene una primera frecuencia lateral de 70.939 Hz y una longitudinal de 98.986 Hz. En la Figura 11 se representa la respuesta del satélite a ambas frecuencias.

Figura 11: Análisis de modos propios de la estructura.

4.3. Análisis estáticos

El lanzador impone sobre el vehículo las aceleraciones cuasiestáticas que aparecen en la Tabla 5. La respuesta estructural a la aceleración en cada una de las tres direcciones se puede visualizar en las Figuras 12 a 14 y los cálculos de márgenes de seguridad se plasman en la Tabla 6.

Tabla 5: Especificaciones para el análisis estático.

Análisis estático						
Aceleración en X [g] Aceleración en Y [g] Aceleración en Z						
6	6	13				

Tabla 6: Cargas máximas a tracción y compresión sobre los diferentes elementos de la estructura y cálculo de márgenes de seguridad para el análisis estático.

Tipo de elemento	Sentido	Carg	as	Material	MoS_y	MoS_u
	Tensor	$\sigma_{VMX}[Pa]$	$6.09 \cdot 10^6$	CFRP	14.42108	13.47525
2D	de tensiones	$\sigma_{VMY}[Pa]$	$6.80 \cdot 10^6$	CFRP	12.81093	11.96386
	de tensiones	$\sigma_{VMZ}[Pa]$	$1.82 \cdot 10^7$	CFRP	4.160129	3.843641
	Tracción Compresión	$\sigma_{VMX}[Pa]$	$1.12 \cdot 10^7$	CFRP	7.38521	6.870917
		$\sigma_{VMY}[Pa]$	$1.15 \cdot 10^7$	CFRP	7.166465	6.665589
1D		$\sigma_{VMZ}[Pa]$	$3.05 \cdot 10^7$	CFRP	2.079159	1.890304
		$\sigma_{VMX}[Pa]$	$7.18 \cdot 10^5$	CFRP	129.7999	121.7775
		$\sigma_{VMY}[Pa]$	$5.96 \cdot 10^5$	CFRP	156.5744	146.9098
		$\sigma_{VMZ}[Pa]$	$1.71 \cdot 10^6$	CFRP	53.92067	50.5522

14

Figura 12: Análisis estático en la dirección X, arriba esfuerzos sobre los elementos bidimensionales y abajo esfuerzos sobre elementos unidimensionales.

4.4. Análisis de vibraciones sinusoidales

Durante el lanzamiento, la combustión y el efecto POGO (si se presenta) se somete a la estructura a cargas sinusoidales que aparecen descritas en la Tabla 7. La respuesta estructural a la aceleración en cada una de las tres direcciones se puede visualizar en las Figuras 15 a 17 y los cálculos de márgenes de seguridad se plasman en la Tabla 8.

Tabla 7: Especificaciones para el análisis de vibraciones sinusoidales.

Eje	Rango de Frecuencia [Hz]	Aceleración
Longitudinal	4 - 6	25 mm
(Z)	6 - 100	3.75 g
Lateral	2 - 6	20 mm
(X, Y)	6 - 100	2.5 g

Tabla 8: Cargas máximas a tracción y compresión sobre los diferentes elementos de la estructura y cálculo de márgenes de seguridad para el análisis de vibraciones sinusoidales.

Tipo de elemento	Carg	as	Material	MoS_y	MoS_u
	σ_{VMX} [Pa]	$1.18 \cdot 10^7$	CFRP	6.958843	6.470701
2D	σ_{VMY} [Pa]	$9.50 \cdot 10^6$	CFRP	8.885721	8.279397
	σ_{VMZ} [Pa]	$3.63 \cdot 10^6$	CFRP	24.87172	23.28492
	σ_{VMX} [Pa]	$3.09 \cdot 10^7$	CFRP	2.039299	1.852889
1D	σ_{VMY} [Pa]	$7.64 \cdot 10^7$	CFRP	0.229245	0.153852
	σ_{VMZ} [Pa]	$9.16 \cdot 10^6$	CFRP	9.252658	8.623829

Figura 15: Análisis de vibraciones sinusoidales en la dirección X, arriba esfuerzos sobre los elementos bidimensionales y abajo esfuerzos sobre elementos unidimensionales.

Figura 16: Análisis de vibraciones sinusoidales en la dirección Y, arriba esfuerzos sobre los elementos bidimensionales y abajo esfuerzos sobre elementos unidimensionales.

Figura 17: Análisis de vibraciones sinusoidales en la dirección Z, arriba esfuerzos sobre los elementos bidimensionales y abajo esfuerzos sobre elementos unidimensionales.

4.5. Análisis de vibraciones aleatorias

Típicamente, las cargas acústicas y la capa turbulenta suponen una serie de vibraciones aleatorias las cuales pueden llegar a ser muy perjudiciales para la estructura. Las vibraciones aleatorias estudiadas se describen en la Tabla 9. La respuesta estructural a la aceleración en cada una de las tres direcciones se puede visualizar en las Figuras 18 a 20 y los cálculos de márgenes de seguridad se plasman en la Tabla 10.

Tabla 9: Especificaciones para el análisis de vibraciones aleatorias.

Eje	Rango de Frecuencia [Hz]	Aceleración
Longitudinal (Z)	20 - 2000	$0.0727 \text{ g}^2/\text{Hz}$
Lateral (X, Y)	20 - 2000	$0.0727 \text{ g}^2/\text{Hz}$

Tabla 10: Cargas máximas a tracción y compresión sobre los diferentes elementos de la estructura y cálculo de márgenes de seguridad para el análisis de vibraciones aleatorias.

Tipo de elemento	Carg	as	Material	MoSy	MoSu
	σ_{VM}_X [Pa]	$2,\!58\mathrm{E}{+07}$	CFRP	2,640091	2,416832
2D	σ_{VM}_{Y} [Pa]	$1{,}39\mathrm{E}{+}07$	CFRP	5,756428	5,342034
	$\sigma_{VM}^{-}_{Z}$ [Pa]	$2{,}11\mathrm{E}{+}07$	CFRP	3,450917	3,177927
1D	σ_{VM}_X [Pa]	4,02E+07	CFRP	1,336178	1,192892
	σ_{VM}_{Y} [Pa]	$3,\!84\mathrm{E}\!+\!07$	CFRP	1,445686	1,295684
	σ_{VM}_{Z} [Pa]	$4,\!67\mathrm{E}\!+\!07$	CFRP	1,011014	0,887672

Figura 18: Análisis de vibraciones aleatorias en la dirección X, arriba esfuerzos sobre los elementos bidimensionales y abajo esfuerzos sobre elementos unidimensionales.

Figura 19: Análisis de vibraciones aleatorias en la dirección Y, arriba esfuerzos sobre los elementos bidimensionales y abajo esfuerzos sobre elementos unidimensionales.

Figura 20: Análisis de vibraciones aleatorias en la dirección Z, arriba esfuerzos sobre los elementos bidimensionales y abajo esfuerzos sobre elementos unidimensionales.

Análisis de tornillos 4.6.

Por último, no deben olvidarse los esfuerzos a los que se ven sometidos los tornillos de la base del satélite que hacen de interfaz con el adaptador del lanzador. Es por ello que se han calculado las cargas axiales y de cortadura sobre estos elementos con el fin de determinar si alguno de los pernos es susceptible a fallo. Para los tornillos existen los siguientes casos de fallo:

Tracción

$$MoS_{\text{tot },y} = \frac{A_s \sigma_y}{F_{V,\text{máx}} + \Phi_n F_A s f_y} - 1,$$
 (3)

$$MoS_{\text{tot },u} = \frac{A_s \sigma_u}{F_{V,\text{máx}} + \Phi_n F_A s f_u} - 1, \qquad (4)$$

Gapping

$$MoS_g = \frac{F_{V,\text{min}}}{(1 - \Phi_n) F_A s f_g} - 1,$$
 (5)

Sliding

$$MoS_{slip} = \frac{\left(F_{V,\text{min}} - \left(1 - \Phi_n\right) F_A\right) \mu_s}{F_Q s f_{ult}} - 1, \qquad (6)$$

Cortadura

$$MoS_{\text{comb },y} = \frac{1}{\sqrt{\left(\frac{F_Q s f_y}{\tau_y A_s}\right)^2 + \left(\frac{F_{V,\text{máx}} + \Phi_n F_A s f_y}{A_s \sigma_y}\right)^2}} - 1,$$

$$MOS_{\text{comb },u} = \frac{1}{\sqrt{\left(\frac{F_Q s f_u}{\tau_u A_s}\right)^2 + \left(\frac{F_{V,\text{máx}} + \Phi_n F_A s f_u}{A_s \sigma_u}\right)^2}} - 1,$$
(8)

$$MOS_{\text{comb },u} = \frac{1}{\sqrt{\left(\frac{F_Q s f_u}{\tau_u A_s}\right)^2 + \left(\frac{F_{V,\text{máx}} + \Phi_n F_A s f_u}{A_s \sigma_u}\right)^2}} - 1, \qquad (8)$$

los parámetros empleados para el cálculo se recogen en la Tabla 11 y los márgenes de seguridad para los distintos casos de fallo y los distintos casos de carga se recogen en la Tabla 12 a 14 y la numeración correspondiente a cada elemento se muestra en la Figura 21.

Tabla 11: Propiedades de los tornillos relacionadas con su respuesta estructural.

Material	Acero A286	$As [m^2]$	$3.66 \cdot 10^{-5}$
Métrica	M8	Φ_n	0.038
σ_y [Mpa]	950	sfy	1
σ_u [Mpa]	1100	sfu = sfg	1.4
τ_y [Mpa]	548	μs	0.2
τ_u [Mpa]	655	$F_{V,\text{max}}$ [N]	21972.1
Mapp [Nm]	33.5	$F_{V,\min}$ [N]	13241.4
F_A	Fuerza axial	F_Q	Fuerza lateral

K1 (tracción) $[N/m]$	10^{9}
K2 (tracción) $[N/m]$	10^{9}
K3 (tracción) $[N/m]$	10^{9}
K4 (torsión) [N/m]	100
K5 (flexión) $[N/m]$	10^{7}
K6 (flexión) $[N/m]$	10^{7}

Figura 21: Numeración de los elementos de tipo CBUSH que representan los tornillos de la interfaz.

Tabla 12: Márgenes de seguridad de todos los tornillos para diferentes modos de fallo y los diferentes casos de carga cuasiestática.

Caso de carga	Elemento	$F_A[N]$	$F_Q[N]$	$MoS_{tot y}$	$MoS_{tot u}$	MoS_g	MoS_{slip}	$MoS_{comb y}$	$MoS_{comb u}$
	40230	$1.20 \cdot 10^2$	$4.24 \cdot 10^2$	0.582566	0.832293	81.0942494	3.4213056	0.58168104	0.830410087
	40240	$1.01 \cdot 10^{1}$	$4.40 \cdot 10^2$	0.5828662	0.83278	974.531681	3.2974777	0.58191391	0.830753058
	40250	$1.19 \cdot 10^2$	$4.10 \cdot 10^2$	0.5825678	0.832296	81.560077	3.5786588	0.58174254	0.830539916
	40360	$3.17 \cdot 10^2$	$8.31 \cdot 10^{1}$	0.582025953	0.831417901	29.99795671	21.23135678	0.581991965	0.831345563
Cuasi-estático X	40390	$8.97 \cdot 10^{1}$	$2.12 \cdot 10^2$	0.5826482	0.832426	108.603003	7.8746367	0.58242745	0.831956308
Cuasi-estatico A	40710	$8.96 \cdot 10^{1}$	$2.12 \cdot 10^2$	0.5826486	0.832427	108.775605	7.8829308	0.58242824	0.8319578
	40740	$3.17 \cdot 10^2$	$8.30 \cdot 10^{1}$	0.5820253	0.831417	29.9731859	21.258502	0.58199136	0.831344618
	40750	$1.19 \cdot 10^2$	$4.10 \cdot 10^2$	0.5825676	0.832296	81.5049772	3.5780873	0.58174212	0.830539147
	40760	9.95	$4.40 \cdot 10^2$	0.5828665	0.83278	986.652505	3.2971853	0.5819141	0.830753293
	40770	$1.20 \cdot 10^2$	$4.24 \cdot 10^2$	0.582566497	0.832293887	81.22558462	3.421051073	0.581681436	0.830410663

Caso de carga	Elemento	$F_A[N]$	$F_Q[N]$	$MoS_{tot y}$	$MoS_{tot u}$	MoS_g	MoS_{slip}	$MoS_{comb y}$	$MoS_{comb u}$
	40230	$2.53 \cdot 10^2$	$1.66 \cdot 10^2$	0.5822019	0.831703	37.8831708	10.162476	0.58206572	0.831413176
	40240	$1.17 \cdot 10^2$	$1.52 \cdot 10^2$	0.5825722	0.832303	82.6945847	11.340458	0.58245852	0.832061084
	40250	$2.41 \cdot 10^2$	$2.49 \cdot 10^2$	0.5822353	0.831757	39.8573129	6.4672696	0.58193054	0.831108544
	40360	$1.28 \cdot 10^{1}$	$5.82 \cdot 10^2$	0.582858725	0.83276756	767.1994009	2.249896671	0.581195406	0.829229771
Cuasi-estático Y	40390	$6.83 \cdot 10^{1}$	$4.10 \cdot 10^2$	0.5827067	0.832521	142.866688	3.5926871	0.58188012	0.830762075
Cuasi-estatico i	40710	$6.82 \cdot 10^{1}$	$4.10 \cdot 10^2$	0.5827071	0.832522	143.168965	3.5917208	0.58188015	0.830761933
	40740	$1.22 \cdot 10^{1}$	$5.82 \cdot 10^2$	0.5828603	0.83277	802.457811	2.2500567	0.58119697	0.829232308
	40750	$2.41 \cdot 10^2$	$2.49 \cdot 10^2$	0.5822354	0.831757	39.8628606	6.4676026	0.58193066	0.831108744
	40760	$1.17 \cdot 10^2$	$1.52 \cdot 10^2$	0.582573	0.832304	82.8880592	11.354301	0.58245952	0.832062818
	40770	$2.52 \cdot 10^2$	$1.66 \cdot 10^2$	0.582202959	0.831704724	37.9449767	10.15803301	0.582066702	0.831414706

Caso de carga	Elemento	$F_A[N]$	$F_Q[N]$	$MoS_{tot y}$	$MoS_{tot u}$	MoS_g	MoS_{slip}	$MoS_{comb y}$	$MoS_{comb u}$
	40230	$6.02 \cdot 10^2$	$3.64 \cdot 10^2$	0.581248	0.830158	15.3371389	3.9704335	0.58059788	0.828775404
	40240	$4.37 \cdot 10^2$	$2.83 \cdot 10^2$	0.5816984	0.830887	21.4995184	5.4671289	0.58130428	0.830048811
	40250	$7.05 \cdot 10^2$	$3.97 \cdot 10^2$	0.580967	0.829702	12.9520479	3.5171806	0.58019263	0.828056649
	40360	$1.12 \cdot 10^3$	$5.16 \cdot 10^2$	0.579836505	0.827872208	7.786647862	2.36533725	0.578531906	0.825102952
Cuasi-estático Z	40390	$4.56 \cdot 10^2$	$2.46 \cdot 10^2$	0.5816456	0.830802	20.546828	6.430827	0.58134794	0.830168442
Cuasi-estatico Z	40710	$4.56 \cdot 10^2$	$2.46 \cdot 10^2$	0.5816465	0.830803	20.5626772	6.42819	0.58134863	0.830169444
	40740	$1.12 \cdot 10^3$	$5.17 \cdot 10^2$	0.5798374	0.827874	7.7891795	2.3645116	0.57853208	0.825102871
	40750	$7.05 \cdot 10^2$	$3.97 \cdot 10^2$	0.5809661	0.829701	12.9458763	3.515827	0.58019135	0.828054366
	40760	$4.37 \cdot 10^2$	$2.83 \cdot 10^2$	0.5816974	0.830886	21.4808377	5.4663363	0.58130321	0.830047046
	40770	$6.02 \cdot 10^2$	$3.64 \cdot 10^2$	0.581246921	0.830155852	15.32643156	3.968365797	0.580596301	0.828772595

Tabla 13: Márgenes de seguridad de todos los tornillos para diferentes modos de fallo y los diferentes casos de carga dinámica sinusoidal.

Caso de carga	Elemento	$F_A[N]$	$F_Q[N]$	$MoS_{tot y}$	$MoS_{tot u}$	MoS_g	MoS_{slip}	$MoS_{comb y}$	$MoS_{comb u}$
	40230	$2.68 \cdot 10^2$	$6.92 \cdot 10^2$	0.5821614	0.831637	35.7345381	1.6809717	0.57981164	0.826644923
	40240	$7.19 \cdot 10^{1}$	$7.70 \cdot 10^2$	0.5826969	0.832505	135.673987	1.4436364	0.57978446	0.826317569
	40250	$1.15 \cdot 10^2$	$1.08 \cdot 10^3$	0.5825784	0.832313	84.3408681	0.7387571	0.5768788	$8.20 \cdot 10^{-1}$
	40360	$2.76 \cdot 10^2$	$1.04 \cdot 10^3$	0.582137782	0.831599107	34.58585755	0.784961609	0.576858601	0.820408771
Seno X	40390	$1.22 \cdot 10^2$	$4.35 \cdot 10^2$	0.582559	0.832282	79.3897903	3.3128078	0.5816294	0.830303821
Scho A	40710	$1.22 \cdot 10^2$	$4.35 \cdot 10^2$	0.5825592	0.832282	79.4380462	3.3123069	0.58162938	0.830303665
	40740	$2.76 \cdot 10^2$	$1.04 \cdot 10^3$	0.5821377	0.831599	34.5811543	0.7863507	0.5768667	0.82042591
	40750	$1.15 \cdot 10^2$	$1.08 \cdot 10^3$	0.5825786	0.832314	84.3855451	0.738083	0.57687452	0.820222518
	40760	$7.18 \cdot 10^{1}$	$7.70 \cdot 10^2$	0.5826973	0.832506	135.957573	1.4430668	0.57978345	0.826315218
	40770	$2.67 \cdot 10^2$	$6.92 \cdot 10^2$	0.582162125	0.831638553	35.77043021	1.680262552	0.579811021	0.826643247

Caso de carga	Elemento	$F_A[N]$	$F_Q[N]$	$MoS_{tot y}$	$MoS_{tot u}$	MoS_g	MoS_{slip}	$MoS_{comb y}$	$MoS_{comb u}$
	40230	$3.13 \cdot 10^2$	$5.23 \cdot 10^2$	0.5820368	0.831435	30.3898342	2.5327959	0.58069171	0.828575605
	40240	$1.22 \cdot 10^2$	$5.83 \cdot 10^2$	0.5825599	0.832283	79.5958055	2.216795	0.58088996	0.828732164
	40250	$2.29 \cdot 10^2$	$8.58 \cdot 10^2$	0.5822658	0.831807	41.8425079	1.1690585	0.57865927	0.824150922
	40360	$1.39 \cdot 10^2$	$9.47 \cdot 10^2$	0.582512638	0.832206595	69.60340979	0.977677809	0.578117553	0.822881134
Seno Y	40390	$1.07 \cdot 10^2$	$4.58 \cdot 10^2$	0.5825999	0.832348	90.5780631	3.0993846	0.58156874	0.830154129
Sello 1	40710	$1.07 \cdot 10^2$	$4.58 \cdot 10^2$	0.5826003	0.832349	90.6844027	3.0985298	0.58156863	0.830153726
	40740	$1.39 \cdot 10^2$	$9.46 \cdot 10^2$	0.5825128	0.832207	69.6381168	0.9788775	0.578123	0.822892558
	40750	$2.29 \cdot 10^2$	$8.58 \cdot 10^2$	0.5822658	0.831807	41.8432472	1.1682507	0.5786566	0.824145266
	40760	$1.22 \cdot 10^2$	$5.83 \cdot 10^2$	0.5825605	0.832284	79.7484943	2.2161308	0.58088985	0.828731598
	40770	$3.13 \cdot 10^2$	$5.23 \cdot 10^2$	0.582037641	0.83143684	30.42137247	2.531484599	0.580691504	0.828574739

Caso de carga	Elemento	$F_A[N]$	$F_Q[N]$	$MoS_{tot y}$	$MoS_{tot u}$	MoS_g	MoS_{slip}	$MoS_{comb y}$	$MoS_{comb u}$
	40230	$1.56 \cdot 10^2$	$1.06 \cdot 10^2$	0.5824662	0.832131	61.9362019	16.694842	0.58241123	0.832014297
	40240	$1.00 \cdot 10^2$	$8.43 \cdot 10^{1}$	0.58262	0.832381	97.2999016	21.270183	0.58258499	0.832306058
	40250	$1.85 \cdot 10^2$	$1.15 \cdot 10^2$	0.5823885	0.832005	52.2480015	15.195034	0.5823231	0.831866195
	40360	$3.01 \cdot 10^2$	$1.47 \cdot 10^2$	0.582070929	0.831490778	31.69320911	11.55151904	0.581964039	0.831263284
Seno Z	40390	$1.06 \cdot 10^2$	$7.45 \cdot 10^{1}$	0.5826027	0.832353	91.4706769	24.202066	0.58257544	0.832294485
Selio Z	40710	$1.06 \cdot 10^2$	$7.45 \cdot 10^{1}$	0.5826031	0.832353	91.5905999	24.182162	0.58257577	0.832295003
	40740	$3.01 \cdot 10^2$	$1.47 \cdot 10^2$	0.5820714	0.831492	31.7121743	11.549705	0.58196448	0.831263985
	40750	$1.85 \cdot 10^2$	$1.15 \cdot 10^2$	0.5823875	0.832004	52.1478201	15.195924	0.58232216	0.831864674
	40760	$1.00 \cdot 10^2$	$8.43 \cdot 10^{1}$	0.5826195	0.83238	97.1072162	21.281453	0.58258449	0.832305265
	40770	$1.57 \cdot 10^2$	$1.06 \cdot 10^2$	0.582465355	0.832129962	61.80905007	16.68768269	0.582410327	0.832012806

Tabla 14: Márgenes de seguridad de todos los tornillos para diferentes modos de fallo y los diferentes casos de carga dinámica aleatoria.

Caso de carga	Elemento	$F_A[N]$	$F_Q[N]$	$MoS_{tot y}$	$MoS_{tot u}$	MoS_g	MoS_{slip}	$MoS_{comb y}$	$MoS_{comb u}$
	40230	$7.57 \cdot 10^2$	$6.36 \cdot 10^{1}$	0.5808231	0.829469	11.9810725	27.110215	0.58080322	0.829427212
	40240	$5.48 \cdot 10^{1}$	$6.25 \cdot 10^3$	0.5827439	0.832581	178.552016	-0.6987549	0.41936624	0.523039424
	40250	$1.40 \cdot 10^2$	$9.48 \cdot 10^3$	0.5825098	0.832202	69.0869225	-0.8025474	0.26723519	0.286305356
	40360	$8.07 \cdot 10^2$	$1.12 \cdot 10^4$	0.580686558	0.829248358	11.17717173	-0.840632543	0.186444114	0.174933133
Random X	40390	$1.58 \cdot 10^2$	$1.69 \cdot 10^3$	0.5824613	0.832123	61.2240365	0.1070579	0.56860091	0.802933424
Italidolli A	40710	$1.58 \cdot 10^2$	$1.69 \cdot 10^3$	0.5824619	0.832124	61.3040628	0.1062247	0.56858043	0.80289049
	40740	$8.08 \cdot 10^2$	$1.12 \cdot 10^4$	0.5806859	0.829247	11.1736921	-0.8403772	0.18728201	0.176050038
	40750	$1.40 \cdot 10^2$	$9.49 \cdot 10^3$	0.5825103	0.832203	69.1652711	-0.8026685	0.26695103	0.285897628
	40760	$5.45 \cdot 10^{1}$	$6.26 \cdot 10^3$	0.5827445	0.832582	179.291739	-0.698891	0.41923655	0.522819429
	40770	$7.56 \cdot 10^2$	$5.00 \cdot 10^3$	0.580827083	0.82947591	12.00631873	-0.642487674	0.47077436	0.613725083

Caso de carga	Elemento	$F_A[N]$	$F_Q[N]$	$MoS_{tot y}$	$MoS_{tot u}$	MoS_g	MoS_{slip}	$MoS_{comb y}$	$MoS_{comb u}$
	40230	$1.04 \cdot 10^3$	$2.83 \cdot 10^3$	0.580059	0.828232	8.47777381	-0.3822174	0.54218565	0.750067571
	40240	$1.57 \cdot 10^2$	$3.53 \cdot 10^3$	0.5824646	0.832129	61.7014513	-0.4708402	0.52434716	0.713767363
	40250	$5.57 \cdot 10^2$	$5.87 \cdot 10^3$	0.5813698	0.830355	16.643929	-0.6910128	0.43500879	0.550235465
	40360	$2.05 \cdot 10^2$	$9.34 \cdot 10^3$	0.582332602	0.831914816	46.9462811	-0.800386193	0.274206884	0.296374686
Random Y	40390	$1.22 \cdot 10^2$	$2.06 \cdot 10^3$	0.5825603	0.832284	79.7013226	-0.0905195	0.56204196	0.789291914
Ttandom 1	40710	$1.22 \cdot 10^2$	$2.06 \cdot 10^3$	0.5825611	0.832285	79.8797271	-0.091124	0.5620151	0.789236179
	40740	$2.05 \cdot 10^2$	$9.32 \cdot 10^3$	0.5823332	0.831916	46.9940135	-0.8001387	0.27475514	0.297166914
	40750	$5.57 \cdot 10^2$	$5.88 \cdot 10^3$	0.5813699	0.830355	16.645176	-0.69122	0.43483805	0.549940147
	40760	$1.56 \cdot 10^2$	$3.54 \cdot 10^3$	0.5824663	0.832131	61.9484355	-0.4710887	0.52429204	0.713659216
	40770	$1.04 \cdot 10^3$	$2.83 \cdot 10^3$	0.580064789	0.828241719	8.497059103	-0.382644649	0.542128325	0.749950091

Caso de carga	Elemento	$F_A[N]$	$F_Q[N]$	$MoS_{tot y}$	$MoS_{tot u}$	MoS_g	MoS_{slip}	$MoS_{comb y}$	$MoS_{comb u}$
	40230	$4.72 \cdot 10^4$	$3.37 \cdot 10^4$	0.4633254	0.644682	-0.7919022	-1.1366267	-0.4482562	-0.51411071
	40240	$6.71 \cdot 10^3$	$2.63 \cdot 10^4$	0.5647485	0.803544	0.46630683	-0.9630576	-0.3135008	-0.38665088
	40250	$7.18 \cdot 10^4$	$4.26 \cdot 10^4$	0.4081088	0.561474	-0.8630143	-1.1873262	-0.5529595	-0.61025455
	40360	$8.82 \cdot 10^3$	$1.70 \cdot 10^4$	0.559124378	0.794522993	0.115335903	-0.959946459	-0.058393045	-0.120748176
Random Z	40390	$9.22 \cdot 10^3$	$1.69 \cdot 10^4$	0.5580406	0.792787	0.06595553	-0.9631393	-0.0568156	-0.11892233
Trandom Z	40710	$8.82 \cdot 10^3$	$1.70 \cdot 10^4$	0.5591244	0.794523	0.1153359	-0.9599465	-0.058393	-0.12074818
	40740	$2.18 \cdot 10^5$	$6.87 \cdot 10^4$	0.1501349	0.200455	-0.9548097	-1.4076553	-0.7169714	-0.75590497
	40750	$6.80 \cdot 10^4$	$4.11 \cdot 10^4$	0.4163768	0.573791	-0.8553684	-1.1810955	-0.5389173	-0.59751606
	40760	$6.46 \cdot 10^3$	$2.60 \cdot 10^4$	0.5654018	0.804594	0.52170768	-0.9614159	-0.3081762	-0.38144826
	40770	$4.72 \cdot 10^4$	$3.40 \cdot 10^4$	0.46341741	0.644823016	-0.791728859	-1.135227431	-0.452556134	-0.518137688

Como se puede observar en la Tabla 14 las solicitaciones producidas por vibraciones aleatorias son las que más comprometen las integridad de los tornillos. Es por ello que se ha de aumentar el tamaño de estos hasta M9 con el fin de aumentar su resistencia y cumplir así con los márgenes de seguridad.

5. Conclusiones

A la vista del desarrollo de este trabajo se han extraído las siguientes conclusiones:

• En primer lugar, cabe destacar la importancia del cumplimiento de la metodología implantada. La consecución del objetivo del trabajo pasa por realizar de manera rigurosa y organizada los pasos establecidos. A razón de esto, se recalca la necesidad de ir realizando los pertinentes chequeos y verificaciones, que nos ayudan a asegurar un correcto resultado final. Después se han realizado los análisis pertinentes y los resultados obtenidos se recogen en las Tablas 15 a 17 para los elementos unidimensionales y bidimensionales y en las Tablas 18 a 20 para los elementos de interfaz. Gracias a los análisis realizados se ha podido determinar si la estructura es capaz de cumplir con los requisitos establecidos por el lanzador.

Tabla 15: Cargas máximas a tracción y compresión sobre los diferentes elementos de la estructura y cálculo de márgenes de seguridad para el análisis estático.

Tipo de elemento	Sentido	Cargas		Material	MoS_y	MoS_u
	Tensor	$\sigma_{VMX}[Pa]$	$6.09 \cdot 10^6$	CFRP	14.42108	13.47525
2D	de tensiones	$\sigma_{VMY}[Pa]$	$6.80 \cdot 10^6$	CFRP	12.81093	11.96386
		$\sigma_{VMZ}[Pa]$	$1.82 \cdot 10^7$	CFRP	4.160129	3.843641
		$\sigma_{VMX}[Pa]$	$1.12 \cdot 10^7$	CFRP	7.38521	6.870917
	Tracción	$\sigma_{VMY}[Pa]$	$1.15 \cdot 10^7$	CFRP	7.166465	6.665589
1D		$\sigma_{VMZ}[Pa]$	$3.05 \cdot 10^7$	CFRP	2.079159	1.890304
		$\sigma_{VMX}[Pa]$	$7.18 \cdot 10^5$	CFRP	129.7999	121.7775
	Compresión	$\sigma_{VMY}[Pa]$	$5.96 \cdot 10^5$	CFRP	156.5744	146.9098
		$\sigma_{VMZ}[Pa]$	$1.71 \cdot 10^6$	CFRP	53.92067	50.5522

Tabla 16: Cargas máximas a tracción y compresión sobre los diferentes elementos de la estructura y cálculo de márgenes de seguridad para el análisis de vibraciones sinusoidales.

Tipo de elemento	Carga	as	Material	MoS_y	MoS_u
	σ_{VMX} [Pa]	$1.18 \cdot 10^7$	CFRP	6.958843	6.470701
2D	σ_{VMY} [Pa]	$9.50 \cdot 10^6$	CFRP	8.885721	8.279397
	σ_{VMZ} [Pa]	$3.63 \cdot 10^6$	CFRP	24.87172	23.28492
	σ_{VMX} [Pa]	$3.09 \cdot 10^7$	CFRP	2.039299	1.852889
1D	σ_{VMY} [Pa]	$7.64 \cdot 10^7$	CFRP	0.229245	0.153852
	σ_{VMZ} [Pa]	$9.16 \cdot 10^6$	CFRP	9.252658	8.623829

Tabla 17: Cargas máximas a tracción y compresión sobre los diferentes elementos de la estructura y cálculo de márgenes de seguridad para el análisis de vibraciones aleatorias.

Tipo de elemento	Carg	as	Material	MoSy	MoSu
	σ_{VM_X} [Pa]	$2,\!58\mathrm{E}{+07}$	CFRP	2,640091	2,416832
2D	$\sigma_{VM}^{-}_{Y}$ [Pa]		CFRP	5,756428	5,342034
	$\sigma_{VM}^{-}_{Z}$ [Pa]	$2{,}11\mathrm{E}{+}07$	CFRP	3,450917	3,177927
	σ_{VM}_{X} [Pa]	$4{,}02E{+}07$	CFRP	1,336178	1,192892
1D	σ_{VM}_{Y} [Pa]	$3,\!84\mathrm{E}{+07}$	CFRP	1,445686	1,295684
	$\sigma_{VM}^{-}_{Z}$ [Pa]	$4,\!67\mathrm{E}{+07}$	CFRP	1,011014	0,887672

Tabla 18: Márgenes de seguridad de todos los tornillos para diferentes modos de fallo y los diferentes casos de carga cuasiestática.

Caso de carga	Elemento	$F_A[N]$	$F_Q[N]$	$MoS_{tot y}$	$MoS_{tot u}$	MoS_g	MoS_{slip}	$MoS_{comb y}$	$MoS_{comb u}$
	40230	$1.20 \cdot 10^2$	$4.24 \cdot 10^2$	0.582566	0.832293	81.0942494	3.4213056	0.58168104	0.830410087
	40240	$1.01 \cdot 10^{1}$	$4.40 \cdot 10^2$	0.5828662	0.83278	974.531681	3.2974777	0.58191391	0.830753058
	40250	$1.19 \cdot 10^2$	$4.10 \cdot 10^2$	0.5825678	0.832296	81.560077	3.5786588	0.58174254	0.830539916
	40360	$3.17 \cdot 10^2$	$8.31 \cdot 10^{1}$	0.582025953	0.831417901	29.99795671	21.23135678	0.581991965	0.831345563
Cuasi-estático X	40390	$8.97 \cdot 10^{1}$	$2.12 \cdot 10^2$	0.5826482	0.832426	108.603003	7.8746367	0.58242745	0.831956308
Cuasi-estatico A	40710	$8.96 \cdot 10^{1}$	$2.12 \cdot 10^2$	0.5826486	0.832427	108.775605	7.8829308	0.58242824	0.8319578
	40740	$3.17 \cdot 10^2$	$8.30 \cdot 10^{1}$	0.5820253	0.831417	29.9731859	21.258502	0.58199136	0.831344618
	40750	$1.19 \cdot 10^2$	$4.10 \cdot 10^2$	0.5825676	0.832296	81.5049772	3.5780873	0.58174212	0.830539147
	40760	9.95	$4.40 \cdot 10^2$	0.5828665	0.83278	986.652505	3.2971853	0.5819141	0.830753293
	40770	$1.20 \cdot 10^2$	$4.24 \cdot 10^2$	0.582566497	0.832293887	81.22558462	3.421051073	0.581681436	0.830410663

Caso de carga	Elemento	$F_A[N]$	$F_Q[N]$	$MoS_{tot y}$	$MoS_{tot u}$	MoS_g	MoS_{slip}	$MoS_{comb y}$	$MoS_{comb u}$
	40230	$2.53 \cdot 10^2$	$1.66 \cdot 10^2$	0.5822019	0.831703	37.8831708	10.162476	0.58206572	0.831413176
	40240	$1.17 \cdot 10^2$	$1.52 \cdot 10^2$	0.5825722	0.832303	82.6945847	11.340458	0.58245852	0.832061084
	40250	$2.41 \cdot 10^2$	$2.49 \cdot 10^2$	0.5822353	0.831757	39.8573129	6.4672696	0.58193054	0.831108544
	40360	$1.28 \cdot 10^{1}$	$5.82 \cdot 10^2$	0.582858725	0.83276756	767.1994009	2.249896671	0.581195406	0.829229771
Cuasi-estático Y	40390	$6.83 \cdot 10^{1}$	$4.10 \cdot 10^2$	0.5827067	0.832521	142.866688	3.5926871	0.58188012	0.830762075
Cuasi-estatico i	40710	$6.82 \cdot 10^{1}$	$4.10 \cdot 10^{2}$	0.5827071	0.832522	143.168965	3.5917208	0.58188015	0.830761933
	40740	$1.22 \cdot 10^{1}$	$5.82 \cdot 10^{2}$	0.5828603	0.83277	802.457811	2.2500567	0.58119697	0.829232308
	40750	$2.41 \cdot 10^2$	$2.49 \cdot 10^2$	0.5822354	0.831757	39.8628606	6.4676026	0.58193066	0.831108744
	40760	$1.17 \cdot 10^2$	$1.52 \cdot 10^2$	0.582573	0.832304	82.8880592	11.354301	0.58245952	0.832062818
	40770	$2.52 \cdot 10^2$	$1.66 \cdot 10^2$	0.582202959	0.831704724	37.9449767	10.15803301	0.582066702	0.831414706

Caso de carga	Elemento	$F_A[N]$	$F_Q[N]$	$MoS_{tot y}$	$MoS_{tot u}$	MoS_g	MoS_{slip}	$MoS_{comb y}$	$MoS_{comb u}$
	40230	$6.02 \cdot 10^2$	$3.64 \cdot 10^2$	0.581248	0.830158	15.3371389	3.9704335	0.58059788	0.828775404
	40240	$4.37 \cdot 10^2$	$2.83 \cdot 10^2$	0.5816984	0.830887	21.4995184	5.4671289	0.58130428	0.830048811
	40250	$7.05 \cdot 10^2$	$3.97 \cdot 10^2$	0.580967	0.829702	12.9520479	3.5171806	0.58019263	0.828056649
	40360	$1.12 \cdot 10^3$	$5.16 \cdot 10^2$	0.579836505	0.827872208	7.786647862	2.36533725	0.578531906	0.825102952
Cuasi-estático Z	40390	$4.56 \cdot 10^2$	$2.46 \cdot 10^2$	0.5816456	0.830802	20.546828	6.430827	0.58134794	0.830168442
Cuasi-estatico Z	40710	$4.56 \cdot 10^2$	$2.46 \cdot 10^2$	0.5816465	0.830803	20.5626772	6.42819	0.58134863	0.830169444
	40740	$1.12 \cdot 10^3$	$5.17 \cdot 10^2$	0.5798374	0.827874	7.7891795	2.3645116	0.57853208	0.825102871
	40750	$7.05 \cdot 10^2$	$3.97 \cdot 10^2$	0.5809661	0.829701	12.9458763	3.515827	0.58019135	0.828054366
	40760	$4.37 \cdot 10^2$	$2.83 \cdot 10^2$	0.5816974	0.830886	21.4808377	5.4663363	0.58130321	0.830047046
	40770	$6.02 \cdot 10^2$	$3.64 \cdot 10^2$	0.581246921	0.830155852	15.32643156	3.968365797	0.580596301	0.828772595

Tabla 19: Márgenes de seguridad de todos los tornillos para diferentes modos de fallo y los diferentes casos de carga dinámica sinusoidal.

Caso de carga	Elemento	$F_A[N]$	$F_Q[N]$	$MoS_{tot y}$	$MoS_{tot u}$	MoS_g	MoS_{slip}	$MoS_{comb y}$	$MoS_{comb u}$
	40230	$2.68 \cdot 10^2$	$6.92 \cdot 10^2$	0.5821614	0.831637	35.7345381	1.6809717	0.57981164	0.826644923
	40240	$7.19 \cdot 10^{1}$	$7.70 \cdot 10^2$	0.5826969	0.832505	135.673987	1.4436364	0.57978446	0.826317569
	40250	$1.15 \cdot 10^2$	$1.08 \cdot 10^3$	0.5825784	0.832313	84.3408681	0.7387571	0.5768788	$8.20 \cdot 10^{-1}$
	40360	$2.76 \cdot 10^2$	$1.04 \cdot 10^3$	0.582137782	0.831599107	34.58585755	0.784961609	0.576858601	0.820408771
Seno X	40390	$1.22 \cdot 10^2$	$4.35 \cdot 10^2$	0.582559	0.832282	79.3897903	3.3128078	0.5816294	0.830303821
Scho A	40710	$1.22 \cdot 10^2$	$4.35 \cdot 10^2$	0.5825592	0.832282	79.4380462	3.3123069	0.58162938	0.830303665
	40740	$2.76 \cdot 10^2$	$1.04 \cdot 10^3$	0.5821377	0.831599	34.5811543	0.7863507	0.5768667	0.82042591
	40750	$1.15 \cdot 10^2$	$1.08 \cdot 10^3$	0.5825786	0.832314	84.3855451	0.738083	0.57687452	0.820222518
	40760	$7.18 \cdot 10^{1}$	$7.70 \cdot 10^2$	0.5826973	0.832506	135.957573	1.4430668	0.57978345	0.826315218
	40770	$2.67 \cdot 10^2$	$6.92 \cdot 10^2$	0.582162125	0.831638553	35.77043021	1.680262552	0.579811021	0.826643247

Caso de carga	Elemento	$F_A[N]$	$F_Q[N]$	$MoS_{tot y}$	$MoS_{tot u}$	MoS_g	MoS_{slip}	$MoS_{comb y}$	$MoS_{comb u}$
	40230	$3.13 \cdot 10^2$	$5.23 \cdot 10^2$	0.5820368	0.831435	30.3898342	2.5327959	0.58069171	0.828575605
	40240	$1.22 \cdot 10^2$	$5.83 \cdot 10^2$	0.5825599	0.832283	79.5958055	2.216795	0.58088996	0.828732164
	40250	$2.29 \cdot 10^2$	$8.58 \cdot 10^2$	0.5822658	0.831807	41.8425079	1.1690585	0.57865927	0.824150922
	40360	$1.39 \cdot 10^2$	$9.47 \cdot 10^2$	0.582512638	0.832206595	69.60340979	0.977677809	0.578117553	0.822881134
Seno Y	40390	$1.07 \cdot 10^2$	$4.58 \cdot 10^2$	0.5825999	0.832348	90.5780631	3.0993846	0.58156874	0.830154129
Sello 1	40710	$1.07 \cdot 10^2$	$4.58 \cdot 10^2$	0.5826003	0.832349	90.6844027	3.0985298	0.58156863	0.830153726
	40740	$1.39 \cdot 10^2$	$9.46 \cdot 10^2$	0.5825128	0.832207	69.6381168	0.9788775	0.578123	0.822892558
	40750	$2.29 \cdot 10^2$	$8.58 \cdot 10^2$	0.5822658	0.831807	41.8432472	1.1682507	0.5786566	0.824145266
	40760	$1.22 \cdot 10^2$	$5.83 \cdot 10^2$	0.5825605	0.832284	79.7484943	2.2161308	0.58088985	0.828731598
	40770	$3.13 \cdot 10^2$	$5.23 \cdot 10^2$	0.582037641	0.83143684	30.42137247	2.531484599	0.580691504	0.828574739

Caso de carga	Elemento	$F_A[N]$	$F_Q[N]$	$MoS_{tot y}$	$MoS_{tot u}$	MoS_g	MoS_{slip}	$MoS_{comb y}$	$MoS_{comb u}$
	40230	$1.56 \cdot 10^2$	$1.06 \cdot 10^2$	0.5824662	0.832131	61.9362019	16.694842	0.58241123	0.832014297
	40240	$1.00 \cdot 10^2$	$8.43 \cdot 10^{1}$	0.58262	0.832381	97.2999016	21.270183	0.58258499	0.832306058
	40250	$1.85 \cdot 10^2$	$1.15 \cdot 10^2$	0.5823885	0.832005	52.2480015	15.195034	0.5823231	0.831866195
Seno Z	40360	$3.01 \cdot 10^2$	$1.47 \cdot 10^2$	0.582070929	0.831490778	31.69320911	11.55151904	0.581964039	0.831263284
	40390	$1.06 \cdot 10^2$	$7.45 \cdot 10^{1}$	0.5826027	0.832353	91.4706769	24.202066	0.58257544	0.832294485
Sello Z	40710	$1.06 \cdot 10^2$	$7.45 \cdot 10^{1}$	0.5826031	0.832353	91.5905999	24.182162	0.58257577	0.832295003
	40740	$3.01 \cdot 10^2$	$1.47 \cdot 10^2$	0.5820714	0.831492	31.7121743	11.549705	0.58196448	0.831263985
	40750	$1.85 \cdot 10^2$	$1.15 \cdot 10^2$	0.5823875	0.832004	52.1478201	15.195924	0.58232216	0.831864674
	40760	$1.00 \cdot 10^2$	$8.43 \cdot 10^{1}$	0.5826195	0.83238	97.1072162	21.281453	0.58258449	0.832305265
	40770	$1.57 \cdot 10^2$	$1.06 \cdot 10^2$	0.582465355	0.832129962	61.80905007	16.68768269	0.582410327	0.832012806

Tabla 20: Márgenes de seguridad de todos los tornillos para diferentes modos de fallo y los diferentes casos de carga dinámica aleatoria.

Caso de carga	Elemento	$F_A[N]$	$F_Q[N]$	$MoS_{tot y}$	$MoS_{tot u}$	MoS_g	MoS_{slip}	$MoS_{comb y}$	$MoS_{comb u}$
	40230	$7.57 \cdot 10^2$	$6.36 \cdot 10^{1}$	0.5808231	0.829469	11.9810725	27.110215	0.58080322	0.829427212
	40240	$5.48 \cdot 10^{1}$	$6.25 \cdot 10^3$	0.5827439	0.832581	178.552016	-0.6987549	0.41936624	0.523039424
	40250	$1.40 \cdot 10^2$	$9.48 \cdot 10^{3}$	0.5825098	0.832202	69.0869225	-0.8025474	0.26723519	0.286305356
	40360	$8.07 \cdot 10^2$	$1.12 \cdot 10^4$	0.580686558	0.829248358	11.17717173	-0.840632543	0.186444114	0.174933133
Random X	40390	$1.58 \cdot 10^2$	$1.69 \cdot 10^3$	0.5824613	0.832123	61.2240365	0.1070579	0.56860091	0.802933424
Italidolli A	40710	$1.58 \cdot 10^2$	$1.69 \cdot 10^3$	0.5824619	0.832124	61.3040628	0.1062247	0.56858043	0.80289049
	40740	$8.08 \cdot 10^2$	$1.12 \cdot 10^4$	0.5806859	0.829247	11.1736921	-0.8403772	0.18728201	0.176050038
	40750	$1.40 \cdot 10^2$	$9.49 \cdot 10^{3}$	0.5825103	0.832203	69.1652711	-0.8026685	0.26695103	0.285897628
	40760	$5.45 \cdot 10^{1}$	$6.26 \cdot 10^3$	0.5827445	0.832582	179.291739	-0.698891	0.41923655	0.522819429
	40770	$7.56 \cdot 10^2$	$5.00 \cdot 10^3$	0.580827083	0.82947591	12.00631873	-0.642487674	0.47077436	0.613725083

Caso de carga	Elemento	$F_A[N]$	$F_Q[N]$	$MoS_{tot y}$	$MoS_{tot u}$	MoS_g	MoS_{slip}	$MoS_{comb y}$	$MoS_{comb u}$
	40230	$1.04 \cdot 10^3$	$2.83 \cdot 10^3$	0.580059	0.828232	8.47777381	-0.3822174	0.54218565	0.750067571
	40240	$1.57 \cdot 10^2$	$3.53 \cdot 10^3$	0.5824646	0.832129	61.7014513	-0.4708402	0.52434716	0.713767363
	40250	$5.57 \cdot 10^2$	$5.87 \cdot 10^3$	0.5813698	0.830355	16.643929	-0.6910128	0.43500879	0.550235465
	40360	$2.05 \cdot 10^2$	$9.34 \cdot 10^3$	0.582332602	0.831914816	46.9462811	-0.800386193	0.274206884	0.296374686
Random Y	40390	$1.22 \cdot 10^2$	$2.06 \cdot 10^3$	0.5825603	0.832284	79.7013226	-0.0905195	0.56204196	0.789291914
Ttandom 1	40710	$1.22 \cdot 10^2$	$2.06 \cdot 10^3$	0.5825611	0.832285	79.8797271	-0.091124	0.5620151	0.789236179
	40740	$2.05 \cdot 10^2$	$9.32 \cdot 10^3$	0.5823332	0.831916	46.9940135	-0.8001387	0.27475514	0.297166914
	40750	$5.57 \cdot 10^2$	$5.88 \cdot 10^3$	0.5813699	0.830355	16.645176	-0.69122	0.43483805	0.549940147
	40760	$1.56 \cdot 10^2$	$3.54 \cdot 10^3$	0.5824663	0.832131	61.9484355	-0.4710887	0.52429204	0.713659216
	40770	$1.04 \cdot 10^3$	$2.83 \cdot 10^3$	0.580064789	0.828241719	8.497059103	-0.382644649	0.542128325	0.749950091

Caso de carga	Elemento	$F_A[N]$	$F_Q[N]$	$MoS_{tot y}$	$MoS_{tot u}$	MoS_g	MoS_{slip}	$MoS_{comb y}$	$MoS_{comb u}$
	40230	$4.72 \cdot 10^4$	$3.37 \cdot 10^4$	0.4633254	0.644682	-0.7919022	-1.1366267	-0.4482562	-0.51411071
	40240	$6.71 \cdot 10^3$	$2.63 \cdot 10^4$	0.5647485	0.803544	0.46630683	-0.9630576	-0.3135008	-0.38665088
	40250	$7.18 \cdot 10^4$	$4.26 \cdot 10^4$	0.4081088	0.561474	-0.8630143	-1.1873262	-0.5529595	-0.61025455
	40360	$8.82 \cdot 10^3$	$1.70 \cdot 10^4$	0.559124378	0.794522993	0.115335903	-0.959946459	-0.058393045	-0.120748176
Random Z	40390	$9.22 \cdot 10^3$	$1.69 \cdot 10^4$	0.5580406	0.792787	0.06595553	-0.9631393	-0.0568156	-0.11892233
Italidolli Z	40710	$8.82 \cdot 10^3$	$1.70 \cdot 10^4$	0.5591244	0.794523	0.1153359	-0.9599465	-0.058393	-0.12074818
	40740	$2.18 \cdot 10^5$	$6.87 \cdot 10^4$	0.1501349	0.200455	-0.9548097	-1.4076553	-0.7169714	-0.75590497
	40750	$6.80 \cdot 10^4$	$4.11 \cdot 10^4$	0.4163768	0.573791	-0.8553684	-1.1810955	-0.5389173	-0.59751606
	40760	$6.46 \cdot 10^3$	$2.60 \cdot 10^4$	0.5654018	0.804594	0.52170768	-0.9614159	-0.3081762	-0.38144826
	40770	$4.72 \cdot 10^4$	$3.40 \cdot 10^4$	0.46341741	0.644823016	-0.791728859	-1.135227431	-0.452556134	-0.518137688

- En este caso la estructura inicialmente planteada es capaz de resistir las solicitaciones estructurales a excepción de la carga dinámica aleatoria en el eje longitudinal donde los tornillos son susceptibles de fallo por cortadura. Es por ello que el diseño definitivo se han de incluir tornillos de mayor métrica (M9).
- Tras el montaje de los distintos elementos que conforman el satélite, y una vez se ha verificado que la estructura cumple con los requisitos impuestos por el lanzador, se realiza una serie de análisis. Al obtener los modos propios de la estructura, a pesar del correcto comportamiento de las bandejas de manera individual, se ha comprobado que la respuesta del conjunto no es la esperada. Tal y como se puede observar en la 15, el primer modo propio se da en la bandeja interior y lo cual representa aparentemente una falta de rigidez. Una vez revisadas las propiedades de los rigidizadores empleados y de la bandeja, pero no parecen existir indicios que conduzcan a pensar que se ha cometido algún fallo.

En futuros trabajos se habrá de comprobar si efectivamente la estructura está correctamente modelizada ya que el uso de materiales compuestos (como ha sido el caso) supone una serie de condicionamientos al modelo algo más avanzados que los que los materiales metálicos suelen presentar por su naturaleza isotrópica. Además los márgenes de seguridad han de tratarse con especial cuidado pues siempre existe una alta incertidumbre respecto al comportamiento de estos materiales.

Referencias

- [1] M. F. Páez, Práctica 2: DISEÑO Y MODELIZACIÓN DE LA ESTRUCTURA DE UN MICRO-SATÉLITE.
- [2] A. Pedraza, Práctica 2.
- [3] ESA, ECSS-E-ST-32-10C: Space engineering structural factors of safety for spaceflight hardware (2009).
- [4] ESA, ECSS-E-ST-32C: Space engineering structural general requirements (2008).
- [5] A. García, J. J. F. de Toro, Manual de cálculo estructural.
- [6] J. Wijker, Spacecraft Structures.doi:10.1007/978-3-540-75553-1.
- [7] A. G. Pérez, Modelización de una placa (2021).
- [8] Aluminum 7075-T6; 7075-T651.

 URL http://www.matweb.com/search/DataSheet.aspx?MatGUID=
 4f19a42be94546b686bbf43f79c51b7d
- [9] Overview of materials for Epoxy/Carbon Fiber Composite.
 URL http://www.matweb.com/search/datasheet.aspx?matguid=
 39e40851fc164b6c9bda29d798bf3726