APPENDIX

DREIPHASTIGE WICKLUNG IN STERN-DREIECK-MISCHSHALTUNG FÜR EINE ELECTRICHE MACHINE

DE 3202 958 A1 LAID OPEN: August 11, 1983

A delta-connection winding and a star-connection are connected in parallel.

BUNDESREPUBLIK
DEUTSCHLAND

© Offeniegungsschrift
© DE 3202958 A1

(i) Int. CI i H 02 K 3/00 H 02 K 17/12

DEUTSCHES PATENTAMT

(1) Aktenzeichen: P 32 02 958 6 (2) Annieldetag: 29, 1, 82

Offenlegungstag: 11. 8.83

(71) Anmelder:

Siemens AG, 1000 Berlin und 8000 München, DE

(72) Erfinder:

Auinger, Herbert, Dipl.-Ing. Dr., 8500 Nürnberg, DE

Dreiphasige Wicklung in Stern-Dreieck-Mischschaltung für eine elektrische Maschine

Bei einer gesehnten dreiphasigen Wicklung in Stern-Dreieck-Mischschaltung für Ständer oder Schleitringlaufer einer elektrischen Maschine sind zur Verringerung der Oberwellenanteile und der Kupterverluste die inneren Wicklungsabschnitte durch Ausgleichsleiter in Dreieckschaltung verbunden, an die jeweils zwei parallele, gegenüber den Dreiecksabschnitten um 30" el versetzte, mit den Klemmen verbundene äußere Wicklungsabschnitte siernförmig angeschlossen sind. Die räumliche Aufteilung der Wicklungsabschnitte ist dabei so vorgenommen, daß sich innerhalb jeden Polpaares eine zwöltzonige Wicklungsanordnung ergibt. (32 02 958)

Tabelle I: Vergleichende Übersicht von herkömmlichen sechszonigen Zweischichtwicklungen in Dreieckschaltung mit äquivalenten Υ/Δ -Mischschaltungen für N/p = 36 Nuten je Polpaar

							*
Δ-Schaltung	Schmung	vor- und rückwärts laufende Stab- Wellenwicklung mit verschiedenen Spulengruppierungen		€ · 10 ³ V _{CU} / P _N	V _{CU} / P _N	aquivalente Y/A -Schaltung Fig. 10 Gruppierung Verlustmin der Spulen gemäß Gl.	-Schaltung Verlustminderung ହୁଙ୍ଗଶିଧି ଥି (4)
12 Spaten, Strang	5	¢ + .c	0,9561	5,16	3 001	0 - 12 - 0 reine A-Schaltumg (Fig.10 rechts?	F/T (kether
	17/18 8/9 5/6 7/9 13/18	3 + 4 3 + 4 10 + 2 11 + 1 12 + 0	0,9525 0,9416° 0,9236 0,8985 0,8666	4,46 5,49 5,11 5,11 5,16	100,8 % 105,1 % 107,2 % 113,2 % 121,7 % 153,3 %	1 - 10 - 1 2 - 8 - 2 3 - 6 - 5 4 - 4 - 4 5 - 2 - 5 6 - 0 - 6 reine Poppel- Y-Schaltung (Fig.10 links)	25/24 11/12 7/8 5/6 19/24 3/4

 $\frac{\text{Tabelle II:}}{Y/\Delta \text{-Mischschaltungen}} \bei N/p = 36 \begin{tabular}{ll} Wicklungseigenschaften möglicher transportungen bei N/p = 36 \begin{tabular}{ll} Nuten je Polpaur transportungen transpor$

		·		7		
	Spulenauf- teilung	Spulen- schritt	٤	€0 · 10 ⁻³	relative verluste	Kupfer-
				*	٨	В
	1 - 10 - 1	1 - 19	0,9525	4,46	96,7	95,8(23/24)
	51111111111111111111111111111111111111	1 18	0,9189	4,05	97,5	96,6
	10	1 - 17	0,9380	3,28	99,7	° 98,8
		1 - 16	0,9200	2,73	103,7	102,7
1		1 - 15	0,8951	2,86	109,5	108,5
	2 - 8 - 2	1 _ 19 -	0,9416	3,49	94,5	91,7(211/12)
	2 1	1 - 18	0,9380	3,24	95,2	92,4
	8	1 - 17	0,9273	2,96	97,5	94,5
		1 - 16	0,9095	2,66	101,3	98,25
		1 - 15	0,8848	2,68	107,0	103,8
	3 - 6 - 3	1 - 19	0,9236	2,95	93,8	87,5(2 7/8)
	3	1 - 18	0,9200	2,73	94,5	88,2
	6	1 - 17	0,9095	2,66	96,7	90,2
1		1 - 16	0,8921	2,77	100,5	93,8
T	4 - 4 - 4	1 - 19	0,8985	3,11	94,4	83,3(\$5/6)
	4	1 - 18	0,8951	2,86	95,1	84,0
4	4	1 - 17	0,8848	2,68	97,3	85,9
		1 - 16	0,8679	2,66	101,1	89,3

A im Vergleich mit der Normalausführung, ungesehrt

€ 100 %

B im Vergleich mit der Normalausführung, Aquivalente Schnung

€ 100 t

Tabelle III: Wicklungseigenschaften bei identischen und angepaßten Spulen

		einheitliche Spulen	angepaßte Spulen
	ılen- ndungszahl	WY = MQ	wy = 2/V3.wabei V-Schaltung
77.1	iduigs zanii		$w_{Y} = 1/\sqrt{3} \cdot w_{\Delta}$ beiSchaltung
	iter- erschnitte	$q_Y = q_{\dot{\Delta}}$	$q_{\gamma} = \sqrt{3}/2 \ q_{\Delta} bei \ -Schaltung$ $q_{\gamma} = \sqrt{3} \ q_{\Delta} beiSchaltung$
	Wicklungs-	$W_{gcs} = (2 + \sqrt{3}) W_{\Delta} $ (Fig. 20)	
. *	faktor	$\xi = \frac{2 + \sqrt{5}}{4} \cdot \xi_2 = 0,9330 \xi_2^*$	$\xi = \frac{2}{1+2/\sqrt{3}} \cdot z = 0,9282 \xi^{*}_{z}$
*	effektive Windungs- zahl w · {	$\frac{(2 + \sqrt{3})^{2}}{4} \xi_{Z} ^{W}_{\Delta}$ = 3,4821 $W_{\Delta} \xi_{Z}^{*}$	$\frac{8}{1+4\sqrt{3}} \xi_{Z} w_{\Delta} = \frac{8\sqrt{3}}{2+\sqrt{3}} \xi_{Z}^{W} \Delta$ = 3,7128 w _{\Delta} \cdot \xi_{Z}
Fig. 20, 21	Kupfer-	unterschiedliche Kupferverlustaufteilung	gleiche Kupferverlust- aufteilung wegen erhöhter effektiver Windungszahl nur $\frac{(2+\sqrt{3})^3}{3} = 0,9378$ facher Strom
gemäß Fi	verluste	$V_{\Delta} = (4/7) V_{ges} = 57,14 \%$	$V_{\Delta} = 0,9378^{2} \cdot 57,14 = 50,26$
1 gen	, desperative	$V_Y = (3/7) V_{ges} = \frac{42,86 \text{ t}}{100,00 \text{ s}}$	$V_Y = 0.9378^2 \left(\frac{2}{\sqrt{3}}\right)^2 \cdot 42.86 =$
C-I	E)		50,26 % 100,52 %
ng 1 -	Durchflutungs- polygon	ungleichseitiges Zwölfeck (Fig. 4)	gleichseitiges Zwölfeck
teilu	bei $\frac{W}{T} = 1$	ſ:1I = 2:√3	
Spul enaufteilu	bei $\frac{W}{T} = \frac{11}{12}$	umgleichseitiges Vier- umdzwanzigeck (Fig. 8)	ungleichseitiges Vier- undzwanzigeck
Spu		1:2:111 = 2: $\sqrt{13/2}:\sqrt{3}$ = 2:1,803:1,732	1: II = 2: 2.cos15 = 2: 1,932
·	·		1

^{*)} ξ_{z} Zonenfaktor

Tab	oelle IV: Vergleich verschiedener	Wicklungsaus	Tabelle IV: Vergleich verschiedener Wicklungsausführungen für N/p = 24 Nuten pro Polpaar			
Spulen	Wicklungsart	Sehnumg	Durchflutungspolygon	u	5.103	
	<pre>Einschicht- oder Zweischicht- wicklung A-Schaltung 6zonig (Fig. 1)</pre>	1/1	gleichseitiges Sechseck (Fig. 2) Seitenlänge: 4 x 2	7.750,0	8,900	
	Zweischichtwicklung A-Schaltung 6zonig (Fig. 3)	9/9	ungleichseitiges Zwölfeck (Fig. 1)	0,9250	6,240	
	Einschicht- und 2weischicht- wicklung λ-Δ-Mischschaltung 12zonig (Fig. 6)	1/1	Seitenlängen: (2×2) : (2×3)		-	
einheitli (Pig. 20)	Sweischichtwicklung 12zonig (Fig. 7)	11/13	ungleichseitiges Vierundzwanzigeck (Fig. 3) I II : III Seitenlängen: $2:\sqrt{13}/2:\sqrt{3}$	1 E	(n)	
	Einschicht- und Zweischicht- wicklungλ-Δ-Wischschaltung [Zzonig (Fig. 6)	1/1	gleichseitiges 2wölfeck Seitenlänge: 2 : 2	0,9263	6,033	
$\frac{2}{\xi \sqrt{1 - \chi^{W}}} = \chi^{W}$	_weischichtwicklung Α - Δ -Mischschaltung Pronig (Fig. 7)	11/12	<pre>umgleichseitiges Vierumdzwanzigeck</pre>	#216°C	3,736	
Aphasige	Aphasige Käfigwicklung	1/1	gleichseitiges Vierundzwanzigeck			
reiphase pgestuft	reiphasenwicklung mit sinusförmig ubgestuften Spulenwindungszahlen	**		0,7899	, c	

32 02 958 H 02 K 3/00 29. Januar 1982 11. August 1983

FIG 10

30

5/10

82 P 3 O 1 5 DE

