3.11 Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante et minorée. Désignons par m sa borne inférieure, c'est-à-dire son plus grand minorant.

Soit $\varepsilon > 0$.

Il existe $n_0 \in \mathbb{N}$ tel que $m + \varepsilon > u_{n_0}$:

dans le cas contraire, $m + \varepsilon \leq u_n$ pour tout $n \in \mathbb{N}$, ce qui signifie que $m + \varepsilon$ est un minorant de la suite, qui est plus grand que m, contredisant la définition de la borne inférieure.

Étant donné que la suite est décroissante, on a $m + \varepsilon > u_{n_0} \ge u_n \ge m$ pour tout $n \ge n_0$. En d'autres termes, pour tout $n \ge n_0$, on a $|u_n - m| < \varepsilon$.

On a ainsi montré qu'une suite décroissante et minorée converge vers sa borne inférieure.