

BFS: Shortest Reach in a Graph 🌣

Your BFS: Shortest Reach in a Graph submission got 13.24 points.

Share

Tweet

X

Problem

Submissions

Leaderboard

Editorial 🖰

Consider an undirected graph consisting of n nodes where each node is labeled from 1 to n and the edge between any two nodes is always of length n. We define node n to be the starting position for a BFS. Given a graph, determine the distances from the start node to each of its descendants and return the list in node number order, ascending. If a node is disconnected, it's distance should be n.

For example, there are n=6 nodes in the graph with a starting node s=1. The list of edges=[[1,2],[2,3],[3,4],[1,5]], and each has a weight of 6.

Starting from node ${\bf 1}$ and creating a list of distances, for nodes ${\bf 2}$ through ${\bf 6}$ we have ${\it distances}=[6,12,18,6,-1]$.

Function Description

Define a Graph class with the required methods to return a list of distances.

Input Format

The first line contains an integer, \boldsymbol{q} , the number of queries.

Each of the following q sets of lines is as follows:

- The first line contains two space-separated integers, n and m, the number of nodes and the number of edges.
- Each of the next m lines contains two space-separated integers, u and v, describing an edge connecting node u to node v.
- The last line contains a single integer, **s**, the index of the starting node.

Constraints

- $1 \le q \le 10$
- $2 \le n \le 1000$
- $1 \le m \le \frac{n \cdot (n-1)}{2}$
- $1 \leq u, v, s \leq n$

Output Format

For each of the q queries, print a single line of n-1 space-separated integers denoting the shortest distances to each of the n-1 other nodes from starting position s. These distances should be listed sequentially by node number (i.e., $1, 2, \ldots, n$), but should not include node s. If some node is unreachable from s, print s as the distance to that node.

Sample Input

- 2
- 4 2
- 1 2
- 1 3
- 1
- 3 1
- 2 3
- 2

Sample Output

Explanation

We perform the following two queries:

1. The given graph can be represented as:

where our start node, \mathbf{s} , is node $\mathbf{1}$. The shortest distances from \mathbf{s} to the other nodes are one edge to node $\mathbf{2}$, one edge to node $\mathbf{3}$, and there is no connection to node $\mathbf{4}$.

2. The given graph can be represented as:

where our start node, \boldsymbol{s} , is node $\boldsymbol{2}$. There is only one edge here, so node $\boldsymbol{1}$ is unreachable from node $\boldsymbol{2}$ and node $\boldsymbol{3}$ has one edge

connecting it to node $\mathbf{2}$. We then print node $\mathbf{2}$'s distance to nodes $\mathbf{1}$ and $\mathbf{3}$ (respectively) as a single line of space-separated integers: -1 6.

Note: Recall that the actual length of each edge is 6, and we print -1 as the distance to any node that's unreachable from s.

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature

