Compte-rendu de réunion

Luc Sapin

May 28, 2018

Vendredi 23 mars 2018

Correction des objectifs & de leur priorité :

- Changement $EMB \rightarrow L_2$ pour l'aller, le retour et l'aller-retour. Lancer optimisation du modèle impulsionnel sur quelques astéroïdes en temps min seulement;
- Construire algorithme de classification sur la base de données des 4000+ astéroïdes;
- Étude de la phase de parking dans la sphère de Hill : modifier dynamique et résoudre problème de conso min.

Vendredi 6 avril 2018

Priorité semaine prochaine

- rendre aller & aller-retour fonctionnels pour le point L2 (au départ et à l'arrivée avant de comparer les dynamiques dans la sphère de hill.
- Regarder BOCOP avec l'interface graphique, comprendre les commandes matlab qui appellent BOCOP pour la phase parking (user guide sur bocop.org) avant d'entamer la phase parking en temps min.

Priorité plus long terme

- comparaison des solutions entre les points L2 et EMB : tableau comparatif sur une dizaine d'astéroïdes
- comparaison des solutions avec critères initial et critère sans le "max".
- Étude de la phase de parking dans la sphère de Hill : modifier dynamique et résoudre problème de conso min en contrôle optimal. Idée : impulsionnel sur la phase parking : comparer avec la solution en contrôle optimal. Si solutions proches, voir optimisation globale en impulsionnel ?
- Construire algorithme de classification sur la base de données des 4000+ astéroïdes;

Vendredi 13 avril 2018

Priorité semaine prochaine

- · Affichage trajectoires avec la dynamique 3 corps modifiés
- comparer pour une dynamique donnée les résultats entre EMB et L2
- tableau comparatif sur une dizaine d'astéroïdes : les résultats de l'impulsionnelle (deltaV, date arrivée, date départ,...) et les résultats de Bocop sur temps min (solution, données de convergence,...)

Vendredi 20 avril 2018

- Essayer de prolonger l'intégration jusqu'au bout (→ dist = 0) & comparer résultats avec dist = 0.01;
- convertir positions & trajectoires dans repère tournant;
- regarder incohérence temps départs < temps arrivé;
- faire pareil avec les résultats de Bocop en temps min : trajectoires & résultats (graphes comparatifs);
- enlever le max et comparer ΔV : L2 avec / sans le max;
- impulsionnelle sur phase parking : poser le problème;
- optimiser tout ensemble si ça marche bien;
- le faire sur tout les astéroïdes.

Jeudi 26 avril 2018

- Propager la dynamique 2 corps jusqu'au bout et comparer résultats
- observer les trajectoires des résultats de BOCOP
- poser le problème : impulsionnel sur la phase parking vers le point L2. Attention : il faut intégrer pour avoir la position du spacecraft.
- optimiser tout ensemble si ça marche bien
- le faire sur tous les astéroïdes

Jeudi 28 mai 2018

Suite au skype avec Thomas le Jeudi 24 mai les objectifs suivants ont été fixés :

- Changer le critère sur la phase impulsionnelle : enlever le max et garder $F_{sol} = \min \sum_{i=1}^{nbImpulse} \delta V_i$. Relancer les optimisations aller, retour et aller-retour. Enlever aussi les variables de poids, clarifier stockage des résultats.
- Se concentrer davantage sur la résolution via Bocop multiphase). Réécrire le problème différemment pour qu'on puisse le poser dans Bocop (= forme de Mayer, dimension des états multipliée par le nombre d'arc, rajouter les contraintes aux extrémités de chaque arc, modification des dynamiques sur chaque arc, ...).

Attention : la dynamique 3 corps perturbés n'est pas autonome.

Depuis jeudi 24 mai, les algorithmes d'optimisation ont tous été modifiés. Il subsiste une erreur pour l'optimisation du retour : les trajectoires ne converge pas vers L2 mais entre L2 et la Lune pour les astéroïdes 1, 3, 7 et 10. Ne pas oublier de corriger cela.

Priorité pour le Vendredi 1er juin : Écrire le problème de contrôle optimal en multiphase pour l'implémenter dans Bocop