

Behavior Analysis Technologies

Session 3

Representing Text

Applied Data Science 2024/2025

Question

How can text be encoded for machine interpretation?

Representing Text

- How to efficiently represent text for machine processing?
 - To measure the similarity between texts (text similarity);
 - To categorize documents (text classification);
 - To group documents together (text clustering);
 - To decide if a document is relevant to a search query (search).

 We need methematical representations for words (aka terms) and for sequences of words (aka documents).

Representing Words

Discrete (sparse) representation:

- Each word is assigned a unique term ID (an integer).
- The vocabulary V consists of a mapping between words (terms) and their corresponding IDs.

Vocabulary

ID	Term
1	each
2	word
3	assigned
4	unique
5	term
•••	•••

Representing Words

Continuous (dense) representation:

- Each word is represented as a real-valued vector within a lowerdimensional latent space, known as an embedding vector.
- Words with similar or related meanings are positioned close to each other within this embedding space.
- We will cover this later!

 $\vec{w} = \begin{bmatrix} 0.15 & 0.07 & 0.83 & 0.46 & \dots & 0.02 \end{bmatrix}$

Representing Documents

- Words are represented by their respective IDs in the vocabulary.
 - Some words may be out of vocabulary (OOV).
 - OOV words can be replaced by a special OOV token (if word position matters) or simply ignored.
- A document can be represented as a sequence of words or as a term vector:
 - oIn the term vector, each element corresponds to a word in the vocabulary.
 - The value of each element can indicate:
 - The **presence or absence** of a word (binary: 0/1)
 - The frequency of the word (integer)
 - The **importance** of the word (real-valued score).

Vocabulary

ID	Term
1	each
2	word
3	assigned
4	unique
5	term
•••	•••

d = "each word is unique"

$$d = [t1, t2, OOV, t4]$$

$$\vec{d} = \langle 1, 1, 0, 1, 0, \ldots \rangle$$

Representing a Collection of Documents

- Document-term matrix, where:
 - Rows correspond to documents
 - Columns correspond to terms in the vocabulary
- Generally, the obtained matrix is huge, but most of the values are zeros (sparse matrix).

	$\mid t_1 \mid$	t_2	t_3	 t_{m}
$\overline{d_1}$	1	0	2	0
d_2	0	1	0	2
d_1 d_2 d_3	0	0	1	0
d_n	0	1	0	0

Document-term matrix

One-Hot-Encoding

- Each word in the vocabulary is represented as a vector where all elements are zero except one (corresponding to the index of the word).
- Very sparse, high-dimensional, and lacks information about semantic relationships between words.

id	color
1	green
2	blue
3	red
4	red
5	green

id	green	blue	red
1	1	0	0
2	0	1	0
3	?	?	?
4	?	?	?
5	?	?	?

One-Hot-Encoding

- Each word in the vocabulary is represented as a vector where all elements are zero except one (corresponding to the index of the word).
- Very sparse, high-dimensional, and lacks information about semantic relationships between words.

id	color		
1	green		
2	blue		
3	red		
4	red		
5	green		

id	green	blue	red
1	1	0	0
2	0	1	0
3	0	0	1
4	0	0	1
5	1	0	0

One-Hot-Encoding

The Dummy Variable Trap:

- Occurs when two or more dummy variables created by one-hot encoding are highly correlated (multi-collinear);
- This means that one variable can be predicted from the others.

id	color		
1	green		
2	blue		
3	red		
4	red		
5	green		

id	green	blue
1	1	0
2	0	1
3	0	0
4	0	0
5	1	0

Exercise: One-Hot-Encoding

• Follow the instrunction in: https://github.com/LCDA-UCP/tac-hands-on

• Exercise: Implement One-Hot-Encoding with Python (using only the numpy library)

Use the one_hot_encoding.py script as base

• **Take-home assignment:** Add support for dealing with the dummy variable trap

- A simple, commonly used text representation method.
- Represents a document by counting the occurrences of each word, disregarding grammar and word order.
- How it works?
 - 1. Tokenization: Split text into individual words (tokens).
 - 2. Vocabulary Creation: Build a list of unique words (vocabulary) from the entire corpus.
 - 3. Vector Representation: Each document is represented as a vector of word counts.

• Let's consider 3 documents (sentences):

• The cat in the hat.

The dog in the house.

• The bird in the sky.

Tokenization

The cat in the hat.

The cat in the hat

• The dog in the house.

The dog house

• The bird in the sky.

The bird in the sky

Vocabulary Creation

- The cat in the hat.
- The dog in the house.
- The bird in the sky.

Vocabulary

The cat in hat dog house bird sky

Vector Representation

Text	the	cat	in	hat	dog	house	bird	sky
The cat in the hat.	2	1	1	1	0	0	0	0
The dog in the house.	2	0	1	0	1	1	0	0
The bird in the sky.	2	0	1	0	0	0	1	1

Exercise: Bag of Words

- Exercise: Implement Bag of Words with Python (using only the numpy library)
 - Use the bag_of_words.py script as base
- Take-home assignment: explore scikit-learn and find out how can you create a bag of words with it.

N-gram

A contiguous sequence of N words in a text.

• Captures some word order and contextual relationships between words (unlike Bag of Words).

- Unigrams (N=1): Single words (["I", "love", "my", "dog"]).
- **Bigrams (N=2)**: Pairs of consecutive words (["I love", "love my", "my dog"]).
- **Trigrams (N=3)**: Triplets of consecutive words (["I love my", "love my dog"]).

Exercise: N-gram

- Exercise: Implement n-gram with Python
 - Use the n_grams.py script as base
- **Take-home assignment:** Extend the NGram class to include some preprocessing like converting text to lowercase, removing punctuation and stop words.

TF-IDF

• TF-IDF (Term Frequency - Inverse Document Frequency) is a numerical statistic that reflects the **importance of a word within a document relative to a collection of documents**, known as a **corpus**.

$$TF-IDF(t,d) = TF(t,d) * IDF(t)$$

- Term Frequency (TF)
 - Measures the frequency of a term (t) within a document (d).

$$TF(t,d) = \frac{\text{number of times } t \text{ appears in d}}{\text{total number of terms in } d}$$

TF-IDF

• TF-IDF (Term Frequency - Inverse Document Frequency) is a numerical statistic that reflects the **importance of a word within a document relative to a collection of documents**, known as a **corpus**.

$$TF-IDF(t,d) = TF(t,d) * IDF(t)$$

- Inverse Document Frequency (IDF)
 - Measures the rarity of a term across a collection of documents.

$$IDF(t, D) = \log \left(\frac{\text{Total number of documents in the corpus } N}{\text{Number of documents containing term } t} \right)$$

TF-IDF

 TF-IDF (Term Frequency - Inverse Document Frequency) is a numerical statistic that reflects the importance of a word within a document relative to a collection of documents, known as a corpus.

$$TF-IDF(t,d) = TF(t,d) * IDF(t)$$

$$\text{TF-IDF}(t,d) = \frac{\text{number of times } t \text{ appears in d}}{\text{total number of terms in } d} * \log \left(\frac{\text{Total number of documents in the corpus } N}{\text{Number of documents containing term } t} \right)$$

• Note: some libraries including sklearn use a slightly different formula for the IDF $IDF(t,d) = \log \left(\frac{\text{Total number of documents in the corpus } N}{\text{Number of documents containing term } t} \right) + 1$

Exercide: TF-IDF

• Exercise: Manualy calculate the TF-IDF

• Exercise: Implement TF-IDF with Python

Use the tf_idf.py script as base

• **Take-home assignment:** Extend the TFIDF class to include some preprocessing like converting text to lowercase, removing punctuation and stop words.

Vector Embedding of Words

To be covered in detail later!

- Mapping a word to a vector:
 - The semantic of the word is embedded in the vector.
- Word embeddings depeng on word similarity.
 - Similar words occur in similar contexts they are exchangable.

Transfer learning for text.

Word Embeddings

- Stores each word in as **a point in space**, where it is represented by a **dense vector** of fixed number of dimensions.
 - For example, "cat" might be represented as: , [0.4, -0.11, 0.55, ..., 0.1, 0.002]

• Unsupervised, built by processing large corpus.

Assumes dependence between words.