Example Sheet 2 (of 3)

 $TBB/Mich\ 2017$

Comments and corrections to t.berrett@statslab.cam.ac.uk. Starred* questions will be marked for the examples class.

- 1. Let $X_1, \ldots, X_n \overset{i.i.d.}{\sim} \Gamma(3, \lambda)$. For a bounded, non-negative second order kernel K, compute the AMISE optimal bandwidth h_{AMISE} and, for a general estimator $\hat{\lambda}$ of λ , compare it with the normal scale bandwidth, \hat{h}_{NS} . Now let $\hat{\lambda}^2 = 3n/\sum_{i=1}^n (X_i \bar{X}_n)^2$, where $\bar{X}_n = n^{-1}\sum_{i=1}^n X_i$. Determine the asymptotic distribution of $n^{1/2}(\hat{\lambda}^{-1} \lambda^{-1})$. For this estimator $\hat{\lambda}$, describe the large-sample behaviour of $(\hat{h}_{NS} h_{AMISE})/h_{AMISE}$.
- 2. [In this question you may assume any required regularity conditions are satisfied.]

A natural kernel estimator of the rth derivative, $f^{(r)}(x)$ of a density f(x) is

$$\hat{f}_h^{(r)}(x) = \frac{1}{nh^{r+1}} \sum_{i=1}^n K^{(r)} \left(\frac{x - X_i}{h}\right).$$

Show that $K_h^{(r)} * f = K_h * f^{(r)}$, and hence that

$$MSE(\hat{f}_h^{(r)}(x)) = \frac{1}{nh^{2r+1}}R(K^{(r)})f(x) + \frac{1}{4}\mu_2(K)^2f^{(r+2)}(x)^2h^4 + o\left(\frac{1}{nh^{2r+1}} + h^4\right).$$

Deduce that the optimal MSE is of order $n^{-4/(2r+5)}$ and argue informally that the optimal MISE is of the same order.

3. Recall that the Epanechnikov kernel is a second-order kernel defined by

$$K_E(x) = \frac{3}{4\sqrt{5}} \left(1 - \frac{x^2}{5}\right) \mathbb{1}_{\{|x| \le \sqrt{5}\}},$$

and that $\mu_2(K_E) = 1$. Let K_0 be another non-negative second-order kernel with $\mu_2(K_0) = 1$. By considering $e(x) = K_0(x) - K_E(x)$, or otherwise, show that $R(K_0) \ge R(K_E)$.

4.* Let K be a symmetric kth order kernel. Explain why k must be even. Now suppose f has a bounded, continuous, square-integrable kth derivative $f^{(k)}(x)$, and that $h = h_n$ satisfies $h \to 0$ as $n \to \infty$ and $nh \to \infty$ as $n \to \infty$. Show that

$$\mathbb{E}\{\hat{f}_h(x)\} = f(x) + \frac{\mu_k(K)}{k!} f^{(k)}(x) h^k + o(h^k)$$

as $n \to \infty$, for each $x \in \mathbb{R}$. Assuming that term-by-term integration of this asymptotic expansion, and the corresponding expansion for $\operatorname{Var}(\hat{f}_h(x))$, is valid, find the asymptotically optimal bandwidth. Deduce that

$$\inf_{h>0} AMISE(\hat{f}_h) = \frac{2k+1}{2k} \left\{ \frac{2k}{(k!)^2} \mu_k(K)^2 R(K)^{2k} R(f^{(k)}) \right\}^{1/(2k+1)} n^{-2k/(2k+1)}.$$

5. Suppose X_1, \ldots, X_n taking values in \mathbb{R}^d are i.i.d. with density function f, write P_X for the measure on \mathbb{R}^d defined by $P_X(A) = \mathbb{P}(X_1 \in A)$ and write $B_x(r)$ for the closed Euclidean ball of radius r centred at $x \in \mathbb{R}^d$. Recalling the definition of the k-nearest neighbour distance $\rho_{(k)}(x)$ from lectures, show that the real random variable defined by $P = P_X\{B_x(\rho_{(k)}(x))\}$ satisfies

$$\mathbb{P}(P \le p) = \sum_{j=k}^{n} \binom{n}{j} p^{j} (1-p)^{n-j}.$$

Deduce that $P \stackrel{d}{=} B \sim \text{Beta}(k, n+1-k)$. Show that $\mathbb{E}B = k/(n+1)$ and that in the asymptotic regime in which $k \to \infty$ and $k/n \to 0$ as $n \to \infty$ we have that the standard deviation $\text{sd}(B) := \sqrt{\text{Var}B} = o(k/n)$. Hence argue informally that

$$k/(n+1) \approx V_d \rho_{(k)}^d(x) f(x),$$

where $V_d = \pi^{d/2}/\Gamma(1+d/2)$ is the Lebesgue measure of $B_0(1)$.

6. Let $x_1 < \ldots < x_n$ be known real numbers, let $Y = (Y_1, \ldots, Y_n)^T$ denote a random vector with independent components and let K_h denote a scaled kernel. Show that the weighted least squares estimator $\hat{\beta}$ of $\beta = (\beta_0, \ldots, \beta_p)^T$, which minimises

$$\sum_{i=1}^{n} \{Y_i - \beta_0 - \beta_1(x_i - x) - \dots - \beta_p(x_i - x)^p\}^2 K_h(x_i - x),$$

is of the form $\hat{\beta} = (X^T W X)^{-1} X^T W Y$, where X and W are matrices that you should specify.

7. In the random design nonparametric regression model for independent and identically distributed pairs $(X_1, Y_1), \ldots, (X_n, Y_n)$, observe that the regression function m may be expressed as

$$m(x) = \int_{-\infty}^{\infty} y \frac{f_{X,Y}(x,y)}{f_X(x)} dy,$$

where $f_{X,Y}$ is the joint density of (X_1, Y_1) and f_X is the marginal density of X_1 . Find the estimator of m(x) that results from estimating f_X and $f_{X,Y}$ using kernel density estimators with symmetric kernel K (and the corresponding product kernel in the latter case) and a common bandwidth.

8.* Consider the random design nonparametric regression model for independent and identically distributed pairs $(X_1, Y_1), \ldots, (X_n, Y_n)$, where X_1 has marginal density f supported and continuous on [0, 1], and continuously differentiable on (0, 1). Assume the standard conditions on the regression function m, variance function v, kernel K and bandwidth h from lectures. For $r \in \mathbb{N}_0$ and $x \in (0, 1)$, write

$$\hat{s}_{r,h}(x) = \frac{1}{n} \sum_{i=1}^{n} (X_i - x)^r K_h(X_i - x).$$

Show that $\hat{s}_{r,h}(x)$ has the same distribution as $\frac{h^{r-1}}{n} \sum_{i=1}^{N} Y_{ni}^{r} K(Y_{ni})$, where Y_{n1}, Y_{n2}, \ldots are, for each n, independent and identically distributed random variables, with density supported

on [-1,1] that you should specify, and are independent of N, whose distribution you should also specify. Use the tower rule of conditional expectation, the conditional variance formula $Var(S) = \mathbb{E}\{Var(S|N)\} + Var\{\mathbb{E}(S|N)\}$ and Chebychev's inequality to deduce that

$$\hat{s}_{r,h}(x) = \begin{cases} h^r \mu_r(K) f(x) + o_p(h^r) & \text{if } r \text{ is even} \\ o_p(h^r) & \text{if } r \text{ is odd.} \end{cases}$$

9. (Continuation) Deduce expressions for the conditional mean squared error of $\hat{m}_h(x;1)$ given X_1, \ldots, X_n , and the conditional weighted mean integrated squared error, defined by

$$CWMISE\{\hat{m}_h(\cdot;1)\} = \mathbb{E}\left(\int_{-\infty}^{\infty} \{\hat{m}_h(x;1) - m(x)\}^2 f(x) dx \mid X_1, \dots, X_n\right).$$

- 10. In the random design nonparametric regression model, compute the bias of the local constant estimator at an interior point, and contrast its order with that of the bias at a sequence of boundary points.
- 11. Consider the truncated power series representation for cubic splines with N interior knots. Let

$$g(x) = \sum_{j=0}^{3} \beta_j x^j + \sum_{k=1}^{N} \theta_k (x - \eta_k)_+^3.$$

Prove that the natural boundary conditions for natural cubic splines imply the following linear constraints on the coefficients:

$$\beta_2 = \beta_3 = 0, \quad \sum_{k=1}^{N} \theta_k = 0, \quad \sum_{k=1}^{N} \eta_k \theta_k = 0.$$

Hence derive the reduced basis

$$N_1(x) = 1$$
, $N_2(x) = x$, $N_{k+2}(x) = d_k(x) - d_{N-1}(x)$, $k = 1, ..., N-2$

where

$$d_k(x) = \frac{(x - \eta_k)_+^3 - (x - \eta_N)_+^3}{\eta_N - \eta_k}.$$

12. Let $a \leq x_1 < \ldots < x_n \leq b$, and let $h_i = x_{i+1} - x_i$ for $i = 1, \ldots, n-1$. Given $\mathbf{g} = (g_1, \ldots, g_n)^T$ and $\gamma = (\gamma_2, \ldots, \gamma_{n-1})^T$, show that if there is a natural cubic spline g with $g(x_i) = g_i$ for $i = 1, \ldots, n$ and $g''(x_i) = \gamma_i$ for $i = 2, \ldots, n-1$ then

$$g(x) = \frac{(x-x_i)g_{i+1} + (x_{i+1}-x)g_i}{h_i} - \frac{1}{6}(x-x_i)(x_{i+1}-x)\left\{\left(1 + \frac{x-x_i}{h_i}\right)\gamma_{i+1} + \left(1 + \frac{x_{i+1}-x}{h_i}\right)\gamma_i\right)\right\}$$

for $x \in [x_i, x_{i+1}]$ and i = 1, ..., n-1. Find the corresponding expressions for g on $[a, x_1]$ and $[x_n, b]$.