

CSC3100 Data Structures Lecture 9: Stack

Yixiang Fang
School of Data Science (SDS)
The Chinese University of Hong Kong, Shenzhen

- Stack
 - Examples and definitions
 - Last-In-First-Out (LIFO) property
- Stack implementations
 - Linked list
 - Array
- Stack applications
 - Balance symbol checking
 - Evaluation of expressions

Motivating examples

Plates and bowls

- Program codes
 - Call functions, e.g., recursive functions

```
public class test {
   public static void main(String[] args) {
        StringBuffer sb = new StringBuffer("Hello ");
        System.out.println("before change, sb is "+sb.toString());
        change(sb);
        System.out.println("after change, sb is "+sb.toString());
   }
   public static void change(StringBuffer stringBuffer){
        stringBuffer = new StringBuffer("Hi ");
        stringBuffer.append("world !");
   }
}
```


- A stack stores a set S of elements that have two constrained updates:
 - Push(e): add a new element to S
 - \circ Pop(): removes the most recently added element from S
- Stack follows: Last-In-First-Out (LIFO) property
 - We can only add/remove/examine from one end (called the "top")
 - Consider the trays/dishes in canteens

- Access from the top
- Basic operations
 - pop ()
 - push (i)
 - makeEmpty ()
 - top ()
 - isEmpty()
- Implementations
 - · Linked list
 - Arrays

Implementation of Stack using linked list

```
class Node {
     Node next;
     Object element;
}
class Stack {
     Node head;
}
```

```
Create an empty stack
public Stack() { //constructor
     this.head = null;
}
```

Push onto a stack
void push(Object x) {
 Node tmpNode = new Node();
 tmpNode.element = x;
 tmpNode.next = head.next;
 head.next = tmpNode;
}

Implementation of Stack using linked list

Pop from a stack

```
public Object pop() {
    Node firstNode = null;
    if (isEmpty()) {
        return null;
    } else {
        firstNode = head.next;
        head.next = firstNode.next;
        return firstNode.element;
    }
}
```

Return top element in a stack

Implementation of Stack using array

Stack class

```
class Stack {
    final static int MIN_STACK_SIZE = 5;
    int topOfStack = -1;
    Object[] array;
}
```

Construction method of Stack class

```
public Stack (int maxElements) {
  int capacity = maxElements;

if (maxElements < MIN_STACK_SIZE)
      capacity = MIN_STACK_SIZE;

array = new Object[capacity];
}</pre>
```


Implementation of Stack using array

Test for full stack

```
public boolean isFull() {
     return (topOfStack == array.length - 1);
}
```

Push an element onto the stack

```
public boolean push(Object x) {
  if (isFull())
            return false;
  else
            array[++topOfStack] = x;
  return true;
}
```


Implementation of Stack using array

Pop element from stack public Object pop() { if (!isEmpty()) return array[topOfStack--];

else return null:

}

Return top of stack

```
public Object top() {
    if (!isEmpty())
        return array[topOfStack];
    else
        return null;
}
```


Comparison of these two implementations

- Using list saves space
- Using array is faster. Why?
 - Two reasons:
 - Memory allocation
 - · Continuous memory can be loaded into cache

Applications of Stack (i)

Balanced symbol checking

- In programing languages, there are many instances when symbols must be balanced
 - E.g., { } , [] , ()
- Stack can be used for checking if the symbols are balanced
 - Balanced
 - (){[]}
 - · ({{}})
 - · ({[]})
 - Unbalanced
 - (]
 - · (){([])}]
 - ()[[]{}

C code example

```
int sum = 0;
for(int i=0; i<n; i++){
   sum += array[i];
}
return sum;</pre>
```


Balanced symbol checking

Observation

- If the next symbol is the opening symbol, e.g., (, [, {
 - It will not result in unbalanced symbols
- If the next symbol is the closing symbol, e.g.,),], }
 - It must match the last symbol
 - E.g., if the next symbol is), then the last symbol must be (

Balanced symbol checking algorithm

- Step 1: make an empty stack
- Step 2: read the symbols from the input text
 - If the symbol is an opening symbol, push it onto the stack
 - If it is a closing symbol
 - · If the stack is empty: return false
 - Otherwise, pop from the stack. If the symbol popped does not match the closing symbol, return false
- Step 3: at the end, if the stack is not empty, return false (unbalanced), else return true (balanced)

A running example

- Given an input symbol list: ({[]}),
 - check if the symbols are balanced: show the status of the stack after each symbol checking

A running example (cont.)

- Given an input symbol list: ({[]}),
 - check if the symbols are balanced: Show the status of the stack after each symbol checking

After checking all symbols, the stack is empty: return true

- Given an input symbol list: {(][])},
 - Check if the symbols are balanced
 - Show the status of the stack after each symbol checking
- Given an input symbol list: () [[]{},
 - Check if the symbols are balanced
 - Show the status of the stack after each symbol checking

- Check if the symbol list { (] []) } is balanced
 - Show the status of the stack after each symbol checking

- Check if the symbol list () [[]{} is balanced
 - Show the status of the stack after each symbol checking

Practice (Cont.)

- Check if the symbol list () [[] {} is balanced
 - Show the status of the stack after each symbol checking

Finally, the stack is not empty, so return false

Application of Stack (ii)

- Evaluation of expressions
 - The representation and evaluation of expressions are of great interest to computer scientists
 - How we usually write expressions
 - a/b c+d*e a*c
 - Examining the above expression, we see that they have:
 - operators: +, -, *, /
 - · operands: a, b, c, d, e
 - How the expressions are interpreted?
 - Precedence rule + associative rule

Expressions: what we learnt

- Precedence of operators: the order in which the operators are performed:
 - · Precedence:
 - * and / have the same precedence; + and have the same precedence
 - * and / have higher prededence than + and -
 - (((a / b) c) + (d * e)) (a * c)
- Associative rule of operators:
 - +, -, * and / are left-associative (from left to right)
- Parentheses can be used to override precedence:
 - Expressions are always evaluated from the innermost parenthesized expression, e.g., a * (b + c)

Representations of expressions

- Consider the four binary operators +, -, * and /
- The standard way (when we write expressions): Infix Expressions
 - A binary operator is placed in-between its two operands
 - Con: need to use parentheses and precedence rules to evaluate expressions
- When a program executes an expression: Postfix Expressions
 - Each operator appears after its operands
 - Pro: precedence has been considered when the postfix expression is generated, so no parentheses

We leave a space here to distinguish two operands 2 and 3 and one operand 23

Infix	Postfix
2 + 3 * 4	234*+
2 * 3 + 4	23*4+
2 * 3 * 4	23*4*
(2+3)*4	23+4*
a / b - c + d * e - a * c	a b / c - d e * + a c * -

How to derive the postfix?

- 7/(2+3)*4
 - According to the definition, operator should appear after operands
 7/(2+3) and 4 should be put before *, so the postfix L for the
 expression is:
 - L: "Postfix for 7/(2+3)" 4 *
 - We got a smaller problem. What is the postfix L' for 7/(2+3)?
 - 7 and postfix of (2+3) should appear before /
 - L': 7 "postfix for (2+3)" /
 - What is the postfix L" for (2+3)?
 - 23+
 - => Postfix for L' is: 7 2 3 + /
 - Postfix for L is: 7 2 3 + / 4 *

- What is the postfix expression for the following expression?
 - · 2*(3+2*4)
 - Hint: operator should appear after operand. 2 and (3+2*4) are the operand of *, so they should appear before *

Answer: The operand of * is 2 and (3+2*4), let's first denote the postfix expression of (3+2*4) as x. Then, the postfix expression will be 2 x *. Now consider 3+2*4. The operand of + is 3 and 2*4.

Let's denote the postfix of 2*4 as y, and the postfix expression of 3+2*4 becomes 3y + . Now consider the postfix expression of 2*4, we know it is 24* according to its definition. So y=24*. As x=3y+, putting y to the equation, we have x=324*+.

Putting back x to the postfix expression, we have the postfix expression of 2*(3+2*4) is: 2 3 2 4 * + *

Evaluating postfix expression

- We can use the previous recursive idea to derive the postfix expression
- Given a postfix expression
 - How to evaluate the postfix expression?

Postfix evaluation algorithm

- Here, we only consider four binary operators +, -, * and /
 - Create a stack
 - Scan the postfix expression from left-to-right
 - · If an operand is encountered, push to the stack
 - If an operator is encountered
 - pop the stack for the right hand operand
 - pop the stack for the left hand operand
 - apply the operator to the two operands
 - push the result onto the stack
 - When the postfix expression has been scanned, the result is kept on the top of the stack

A running example

Infix expression: (6/2-3) + (4*2)

Evaluate the postfix expression: 6 2 / 3 - 4 2 * +

A running example (cont.)

Evaluate the postfix expression: 6 2 / 3 - 4 2 * +

Return 8 as the answer

Evaluate the postfix expression: 2 3 2 4 * + *

4	Operator *		Operator +		Operator *		
2	2 * 4	8	3 + 8		2 * 11 Pan night and		
3	Pop right and left operands	3	Pop right and left operands		Pop right and left operands	I I	
2		2		2		22	

Recommended reading

- Reading
 - Chapter 10, textbook
- Next lectures
 - Queue: chapter 10, textbook