Syntactic and semantic parsing for natural language understanding

2. Syntactic and semantic parsing with CCG

Hiroshi Noji

Topics

- In the last week, we focused on the grammatical property of CCG
 - Logical forms can be obtained through syntactic derivations
 - The number of rules is small, and much information is encoded in the lexicon
- ▶ Today's topic:
 - how to efficiently obtain CCG derivation on the input sentence
 = syntactic parsing
 - Application to semantic parsing in textual entailment and QA

Outline

- Efficient parsing techniques for CCG
- Bottom-up semantic parsing with CCG
 - application to textual entailment
 - issues in question answering
- ▶ Top-down semantic parsing with CCG for question answering

QA is moved to the next lecture (Thursday)

Goal of parsing: disambiguation

- What is the correct tree?
- correct tree is the one corresponding to human interpretation
- Parsing aims at finding a tree that corresponds to human interpretation
- ▶ Example: PP-attachment ambiguity

I ate some dessert with a fork

Statistical parsing

- Today most practical parsers are statistical parsers with supervised machine learning
 - Typically we use 10,000~30,000 trees to train a parser
- After training a parser, the essential problem is search
 - The parser can assign a score to each tree (structure)
 - How can we find the best tree for the model?
- The number of trees is exponential to the length of the sentence
- Our recent work (Yoshikawa et al., 2017) found that CCG parsing can be more efficient than phrase-structure parsing by exploiting the property of the grammar effectively

There are so many parses

Even for a very short sentence, the number of possible trees is large

- ▶ Problems:
 - Model: how to obtain the model that gives the highest score to the correct tree?
 - Search: how to find the best tree for the model?

Model and search

- Model and search are not independent
- Generally, more complex model gets more strong (higher expressive power), but the search becomes harder
- ▶ So one critical problem in parsing is to develop a model that best balances the tradeoff between the expressivity of the model and the difficulty of search

Simple model: PCFG

Rule:	Probability:
$S \rightarrow NP VP$	1.0
NP → Sam	0.7
NP → Sandy	0.3
$VP \rightarrow V NP$	1.0
V → likes	0.8
V → hates	0.2

$$P(Tree) = 1.0 \times 0.7 \times 1.0 \times 0.8 \times 0.3$$

- Each rule has a different probability
- ▶ The probability of a tree is the product of all rules on the tree
- ▶ Search: we can find the highest score tree $argmax_t P(t)$ with dynamic programming called CKY in O(n^3|G|)
 - |G| is the number of rules in the grammar

Learning is easy

- Learning a naive PCFG from the training data (= the collection of trees, called a treebank) is very simple
- Just maximum likelihood
 - Count the number of occurrences of each rule in the treebank
 - Normalize each score to get probability

PCFG parsing for CCG?

- It has been tried at the very beginning of CCG parsing
 - Hockenmaier (2001). Statistical Parsing for CCG with Simple Generative Models. ACL student research workshop.

Problem:

- The search space (= size of grammar) is quite huge
- $r = (S\NP)/NP \rightarrow (S\NP)/(S\NP) S\NP/NP ...$
- A number of occurrences of each rule is small = sparsity issue
- ▶ The popular parser (Clark and Curran, 2008) employs a loglinear model for scoring each rule
 - Score(r) = Score(top=(S\NP)/NP) + Score(Right= S\NP/NP) + ...
 - breaking independence assumption of each rule

Can we exploit the property of CCG?

- All structures differs in category assignments for words
 - In other words, if we find the correct category assignments, we can find the correct tree

 This is because each CCG category is syntactically highly informative ⇒ categories drastically reduce search space

Supertagging

- CCG categories are highly informative
 - When correct categories are given to all words, random choice from all grammatical trees achieves >95% accuracy

- So it is essential to assign correct category to every word
- In previous CCG parsing (e.g., Clark and Curran, 2008), the process of assigning categories is called supertagging
 - Before scoring a derivation (tree), supertagging restricts the possible categories to each word
 - This reduces the search space, and speeds up the search

Supertagging

- ▶ For longer sentences, this approach is quite effective
- Supertagger model can be trained by a standard machine learning technique (e.g., linear classifier, neural networks)

A* CCG parsing

Lewis et al., 2014. A* CCG Parsing with a Supertag-factored Model. In EMNLP.

▶ Recently, the idea of supertagging was further promoted

New simpler model:

- The score of tree = The score of supertags
- Do not score the internal of derivation (applied rules) at all!
- Lewis et al. found that if the supertagger model is strong (with neural networks), this approach can achieve near state-of-the-art
- Advantage of simpler model: Search gets simpler as well
 - They found that efficient A* search can be applied to this model
 - A* search finds the derivation of a single connected tree that has the highest score

A* CCG parsing

Note: If we pick up the best supertag on each word, they do not (generally) realize the single connected tree

A* CCG parsing

▶ A* search finds the best supertag sequence that realizes a single connected tree

How A* search works?

- A* search expands the span, where the best internal structure (= supertag sequence) was found
 - Dynamic programming: solve the small problems first

true best score

Limitation

- ▶ For some supertag sequence, the derivation on that cannot be uniquely determined
 - Lewis et al. select the one using some heuristic rule

A* CCG + dependency parsing

Yoshikawa, Noji, and Matsumoto (2017 ACL)

- Problem: supertags cannot resolve all ambiguities
- Propose: joint model of supertag and word-to-word dependencies

A* search can still be applied

- We use a simpler dependency model for keeping A* search applicable
- We use bidirectional LSTMs to model both CCG supertags and dependencies (multi-task learning)
 - Bi-LSTMs are very powerful neural networks for sequence prediction tasks
 - Point: we cast the dependency prediction task as a sequence prediction task to enable A* search

depccg

- https://github.com/masashi-y/depccg
- Current state-of-the-art for English and Japanese CCG parsing

Outline

- ▶ Efficient parsing techniques for CCG
- Bottom-up semantic parsing with CCG
 - application to textual entailment
 - issues in question answering
- ▶ Top-down semantic parsing with CCG for question answering

QA is moved to the next lecture (Thursday)

ccg2lambda

- System for RTE using CCG parsers and logics
 - Developed mainly by researchers in NII, AIST, Ochanomizu univ.

Mineshima et al. (2015, 2016), Martínez-Gómez et al. (2016)

23

Recognizing textual entailment (RTE)

- ▶ Task: judge whether the input sentences (premise; 前提) semantically entail another sentence (hypothesis; 仮定)
 - Given P, H is true or false?
 - P Smoking in restaurants is prohibited by low in most cities in Japan
 - H Some cities does not allow smoking in public spaces
 - ⇒ true (entail), because most cities does not mean all cities
 - The best way of testing an NLP system's semantic capacity (Cooper, et al., 1994)
 - Applications: Summarization, QA on articles, etc.

Challenges

- P Smoking in restaurants is prohibited by low in most cities in Japan
- H Some cities does not allow smoking in public spaces
- Relationships between content words:
 - prohibited → not allowed, restaurants → public spaces
- Logical relations arose with function words:
 - most, some, not, etc.
 - Implicit logical relations: e.g.,
 - extensional complement: saw NP VP → NP VP(ed)
 - intentional complement: believe NP VP → NP VP(ed)
- We need to handle both (lexical and logical) aspects

Entailment as logical proof

- P Smoking in restaurants is prohibited by low in most cities in Japan
- H Some cities does not allow smoking in public spaces

```
CCG helps
```

- $P \exists x.(smoking(x) \land most(\lambda y.city(y), \lambda y.prohibited(x) \land in(x, y))$
- $H \exists x.(smoking(x) \land \exists y(city(y) \land \neg allowed(x) \land in(x, y)))$
- Approach:
 - try to prove the statement: P → H
 - We can use a prover system, which receives a logical form (P→H) and returns the following values:
 - yes (entail), no (contradict), and unknown
 - ccg2lambda uses Coq as a automatic theorem prover

CCG and logical forms

- One attractive property of CCG is its transparency between syntax and semantics (among syntactic theories)
- By assigning a logical form to each word, the sentence logical form can be obtained automatically
 - some: λFλG.∃x.(Fx∧Gx)
 - woman: λx.woman(x)

```
\frac{Some}{NP/N} \frac{woman}{N} > \frac{Ordered}{(S \backslash NP)/NP} \frac{\lambda y. tea(y)}{NP} |_{lex}
\frac{\lambda F \lambda G. \exists x. (Fx \wedge Gx) \quad \lambda x. woman(x)}{NP} > \frac{\lambda Q_1 \lambda Q_2. Q_2 (\lambda x. Q_1 (\lambda y. order(x, y)))}{S \backslash NP} \frac{\lambda F. \exists y. (tea(y) \wedge F(y))}{\lambda F. \exists y. (tea(y) \wedge F(y))} > \frac{\lambda Q_2. Q_2 (\lambda x. \exists y. (tea(y) \wedge order(x, y)))}{S} < \frac{\exists x. (woman(x) \wedge \exists y. (tea(y) \wedge order(x, y)))}{S}
```

tea

Pipeline

- CCG parser does not output logical forms
- We first parse the CCG with a CCG parser, and then assign a logical form on each node
 - We only have to assign a logical form to each word
 - Logical forms on the internal nodes are calculated based on the definition of each rule
 - e.g, X/Y: f Y/Z: g \rightarrow X/Z: λ x.f(g x) (>B)

Templates for assigning logical forms

1. For closed words: lexical entries directly assigned to surface form: 100 entries (English) and 113 entires (Japanese)

Example

- category: NP/N
- semantics: $\lambda F \lambda G \lambda H. \forall x (Fx \wedge Gx \rightarrow H)$
- surf: every
- 2. For open words: semantic templates for syntactic categories: 129 entries (English) and 37 entries (Japanese)

Example

- category: N
- semantics: $\lambda x.E(x)$

"E" is a position in which a particular lexical item appears.

Adding lexical knowledge

- $P \exists x.(smoking(x) \land most(\lambda y.city(y), \lambda y.prohibited(x) \land in(x, y))$
- $H \exists x.(smoking(x) \land \exists y(city(y) \land \neg allowed(x) \land in(x, y)))$
- Logical relations (e.g., most, every) can well be handled by a theorem prover
- ▶ But a prover does not have any world knowledge (e.g., prohibited → ¬ allowed)
- ccg2lambda supports adding such lexical knowledge in a proof step:
 - Martínez-Gómez et al., On-demand injection of lexical knowledge for recognizing textual entailment. In EACL 2017.

Adding lexical knowledge

T: men are sawing logs.

$$\exists x.(\mathsf{man}\,(x) \land \exists y.(\mathsf{log}\,(y) \land \mathsf{saw}\,(x,y))$$

H: men are cutting wood.

$$\exists x. (\mathsf{man}(x) \land \exists y. (\mathsf{wood}(y) \land \mathsf{cut}(x, y))$$

Method: to inject lexical knowledge into the proof.

Word relations can be found in ontologies (e.g. WordNet, etc.)

$$\forall x \forall y. \mathsf{saw}(x, y) \rightarrow \mathsf{cut}(x, y)$$

 $\forall x. \mathsf{log}(x) \rightarrow \mathsf{wood}(x)$

SICK dataset

- ▶ The standard dataset for evaluating RTE system
 - ccg2lambda is an unsupervised system (does not use training data)
 - Size: 4,500/500/4,927 for training, dev. and testing.
 - Label distribution: .29/.15/.56 for yes/no/unk.
 - About 212, 000 running words.
 - Average premise and conclusion length: 10.6.

Examples:

Problem ID	T-H pairs	Entailment	
1412	T: Men are sawing logs.	Yes	
1412	H: Men are cutting wood.		
4114	T: There is no man eating food.	No	
	H: A man is eating a pizza.		
718	T: A few men in a competition are running outside.		
	H: A few men are running competitions outside.		

SICK results

System		Prec.	Rec.	Acc.
Baseline (majority)		_	_	56.69
MLN (Beltagy+ ACL14)			_	73.40
Nutcracker	logic-based	_	_	74.30
Nutcracker-WN	9	_	_	77.50
Nutcracker-WN-PPDB		_	_	78.60
MLN-WN-PPDB		<u> </u>	_	80.40
LangPro Hybrid-800 (Abzianidze, EMNLP2015)		97.95	58.11	81.35
The Meaning Factory (Bjerva+ SemEval14)		93.63	60.64	81.60
ccg2lambda, No axioms		98.90	46.48	76.65
ccg2lambda, Naïve		92.99	59.70	80.98
ccg2lambda, Abduction (WN, VerbOcean)		97.04	63.64	83.13
SemantiKLUE	supervised	85.40	69.63	82.32
UNAL-NLP	<u>-</u>	81.99	76.80	83.05
ECNU	machine	84.37	74.37	83.64
Illinois-LH	learning	81.56	81.87	84.57
MLN-eclassif (Beltagy+ CL2016)		_	_	85.10
Yin-Schutze (EACL2017)		_	_	87.10

Bottleneck in knowledge

- Logic-based system (including ccg2lambda) shows highprecision and low-recall
 - High-precision: If the system answers "yes" or "no", often that is correct
 - Low-recall: The system answers "unknown" too aggressively
 - Low-recall is essentially due to the lack of word knowledge
 - WordNet does not cover all relationships between the words
 - Relationships between more than one word (paraphrase, etc.)
 - P: A woman is sewing with a machine
 - H: A woman is using a machine made for sewing
 - Required knowledge: "sewing with a machine" → "using a machine made for sewing"

Alternative approach: deep learning

We train a neural-network model where an input sentence is encoded in a vector, and some classifier is applied

Deep learning can learn logics?

- ▶ DL methods use a very large corpus (<500K training pairs) to learn the classifier
- In other words, it only requires a training data (and machine resource = GPU)
- ▶ This indicates we may sidestep the complexity of most linguistic phenomena, including qualification (e.g., every, most), with machine learning?
 - like visual recognition on ImageNet?

FraCaS dataset

fracas-067			
Premise 1	All residents of the North American continent can travel freely within Europe.		
Premise 2	Every Canadian resident is a resident of the North American continent.		
Hypothesis	All Canadian residents can travel freely within Europe.		
Answer	Yes		
fracas-074	There are multi-premise problems		
Premise 1	Most Europeans can travel freely within Europe.		
Hypothesis	Most Europeans who are resident outside Europe can travel freely within Europe.		
Answer	Unknown		

quantifier section

- A dataset developed by a theoretical linguist
- Divided into sections by the relevant linguistic phenomena
 - Generalized quantifier, Plurals, Comparatives, etc.
 - A collection of logically difficult problems

Deep learning on FraCaS

Section	#	Ours	Nut	Bow16
Quantifiers	74	.77	.53	.64*
Plurals	33	.67	.52	.54*
Adjectives	22	.68	.32	.47*
Comparatives	31	.48	.45	.56*
Verbs	8	.62	.62	.62*
Attitudes	13	.77	.46	.67*
Total	181	.69	.50	

- Ours: ccg2lambda
- Nut: Previous logic-based system (Nutcracker)
- Bow16: A deep learning model learned with a huge amount of training data (called SNLI)
- Note (*): Single premise problems only (Bow16 cannot handle multipremises)

Discussion

- Currently deep learning models do not work well on FraCaS
- It is a very open problem whether a strong machine learning technique, and big data, are enough to be able to understand the language
- ▶ Advantage of bottom-up approach (ccg2lambda):
 - High interpretability of the results:
 - we can see the reason why the system fails (e.g., missing knowledge)
 - Extensibility: e.g., we can add more lexical knowledge, if we have
- Can we integrate these two very different approaches?