# Numerical integration of stochastic differential equations

Gerasimos Angelatos and Zachary Hervieux-Moore

# Outline

- Introduction
  - Background
- SDE integration algorithms
- 3 Convergence
- Results

## Motivation

## Stochastic differential equations (SDEs)

- physics (quantum to astro), chemistry (molecular dynamics etc), probability theory, finance (Black-Scholes...)
- Anything that evolves continuously and with some non-deterministic component
- Solution very different then for ODEs



# Brownian motion: the Weiner process

- White noise  $\zeta(t)$ :  $\langle \zeta(t) \rangle = 0$ , uncorrelated  $\langle \zeta(t)\zeta(t') \rangle = \delta(t-t')$
- Weiner process:  $W(t) = \int_0^t ds \zeta(s)$

$$p(W,t|0,t_0) = [(2\pi)(t-t_0)]^{-\frac{1}{2}}e^{\frac{-W^2}{2(t-t_0)}}$$

- $\langle W(t) \rangle = 0, \langle W(t)^2 \rangle = t t_0$
- Continuous
- non-differentiable



# Stochastic differential equations

- Langavin equation:  $\frac{dx}{dt} = A(x,t) + B(x,t)\zeta(t)$
- SDE:  $x(t) = x(t_0) + \int_{t_0}^t A(x(s), s) + \int_{t_0}^t B(x(s), s) dW(s)$
- $dW(t) = W(t + dt) W(t) = \zeta(t)dt$
- How to evaluate  $S = \int f(t')dW(t')$ ?
- $\lim_{n\to\infty} S_n$ ,  $S_n = \sum_{i=1}^n f(\tau_i) (W(t_i) W(t_{i-1}))$ ,

## Ito Calculus

- $S_n = \sum_{i=1}^n f(\tau_i) (W(t_i) W(t_{i-1}))$
- $S_n$  depends on choice of  $\tau_i$  in interval
- Ito:  $\tau = t_{i-1}$
- $dW(t)^2 = dt$
- Ito SDE:

$$d\mathbf{x}(t) = \mathbf{A}(\mathbf{x}, t)dt + \mathbf{B}(\mathbf{x}, t)d\mathbf{W}$$

# **Explicit Euler**

- Discretize  $x(t_{k+1}) = x(t_k) + \int_{t_k}^{t_{k+1}} A(x(s), s) ds + \int_{t_k}^{t_{k+1}} B(x(s), s) dW(s)$
- $\int_{t_k}^{t_{k+1}} dW(s) = W(t_{k+1}) W(t_k) = \Delta W_k = \sqrt{\Delta t} \mathcal{N}(0, 1)$

#### Explicit Euler algorithm

$$x_{k+1} = x_k + A(x_k, t_k)\Delta t + B(x_k, t_k)\Delta W_k$$

# Milstein

- Explicit Euler discards a term of order  $\Delta t$
- Inclusion gives Milstein:

#### Milstein algorithm

$$C(x,t) = \frac{1}{2}B(x,t)\partial_x B(x,t)$$

$$x_{k+1} = x_k + A(x_k, t_k)\Delta t + B(x_k, t_k)\Delta W_k + C(x_k, t_k)(\Delta W_k^2 - \Delta t)$$

# Semi-Implicit Euler

- Implicit algorithms have far better stability
- Stratonovich formulation:  $S_n = \sum_{i=1}^n f(\frac{t_i + t_{i-1}}{2}) \left( W(t_i) W(t_{i-1}) \right)$
- Transform  $\mathbf{A}^{\text{strat}}(x,t) = \mathbf{A}^{\text{Ito}}(x,t) C(x,t)$

#### Semi-Implicit Euler algorithm

$$x_{k+1} = x_k + A^{\text{Strat}}(\frac{x_{k+1} + x_k}{2}, \frac{t_{k+1} + t_k}{2})\Delta t + B(\frac{x_{k+1} + x_k}{2}, \frac{t_{k+1} + t_k}{2})\Delta W_k$$

# Semi-Implicit Euler

#### Semi-Implicit Euler code

```
x[:, 0]=x0
Weiners = local_state.normal(size=(m, N-1))
for k in range (N-1):
    xtemp = x[:, k]
    for I in range (Niters):
        xtemp = x[:, k]
        + Dt * Af(xtemp, tspan[k] + Dt/2)/2
        + np. sqrt(Dt) * Bf(xtemp, tspan[k]+Dt/2) \
       @ Weiners[:, k]/2
    x[:, k+1] = 2*xtemp-x[:, k]
```

# Weak & Strong Convergence

There are two notions of convergence when it comes to SDE's. This is related to the different notions of convergence for probabilities.

#### Weak Convergence:

$$\left| \mathbb{E}\left[ X_T \right] - \mathbb{E}\left[ X_T^{\delta t} \right] \right| \leq O(\delta t)^{\gamma}$$

#### **Strong Convergence:**

$$\mathbb{E}\left[\left|X_T - X_T^{\delta t}\right|\right] \leq O(\delta t)^{\gamma}$$

Where  $\gamma$  is the rate of convergence of the different types.

# Weak & Strong Convergence Differences

#### Weak Convergence:

- Similar to convergence in distribution
- Statement about the distribution's moments
- Useful for applications where we only care about the state of the system at the end point

#### **Strong Convergence:**

- ullet Analogous to convergence in the  $L^1$  norm
- Strong statement about the paths themselves
- Important for applications where path matters such as Exotic Options pricing

## Geometric Brownian Motion

Geometric Brownian Motion is a famous model used in finance.

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

This process has multiplication noise and so it tends to be unstable. Furthermore, we know the solution of this SDE is **Solution:** 

$$S_t = S_0 e^{(\mu - \frac{\sigma^2}{2})t + \sigma W_t}$$

## Geometric Brownian Motion - Euler Scheme

Expected Rate of Convergence: 1 Realized Rate of Convergence: 1



# Geometric Brownian Motion - Semi Implicit Euler Scheme

Expected Rate of Convergence: 1 Realized Rate of Convergence: 1



## Geometric Brownian Motion - Milstein Scheme

Expected Rate of Convergence: 1 Realized Rate of Convergence: 1



## **Ornstein-Uhlenbeck Process**

The Ornstein-Uhlenbeck process is used to model biological systems as it is mean reverting.

$$dX_t = \mu(\theta - X_t)dt + \sigma dW_t$$

This process differs from GBM in that the noise is only additive. Intuitively, this process tends towards  $\theta$  as time goes on. The rate at which it tends there is dictated by  $\mu$ . The solution of the OU process is given by

$$X_t = X_0 e^{-\mu t} + \theta (1 - e^{-\mu T}) + \sqrt{\frac{\sigma}{\mu} (1 - e^{-2\mu t})} W_t$$

Useful for us to consider because  $|X_T - X_T^{\delta t}|$  has a closed form.



## Ornstein-Uhlenbeck - Euler Scheme

#### **Weak Convergence**



Theoretical Rate: 1
Realized Rate: 1

#### **Strong Convergence**



Theoretical Rate: 1/2

Realized Rate: 1

# Ornstein-Uhlenbeck - Semi Implicit Euler Scheme

#### **Weak Convergence**



Theoretical Rate: 1
Realized Rate: 2

### **Strong Convergence**



Theoretical Rate: 1/2

Realized Rate: 1

## Ornstein-Uhlenbeck - Milstein Scheme

#### **Weak Convergence**



Theoretical Rate: 1
Realized Rate: 1

#### **Strong Convergence**



Theoretical Rate: 1
Realized Rate: 1