International Olympiad in Informatics 2016

12-19th August 2016 Kazan, Russia dayl 1

molecules
Country: CHL

Detecting Molecules

Petr está trabajando para una compañía que ha construido una máquina para detectar moléculas. Cada molécula tiene un peso entero positivo. La máquina tiene un *rango de detección* [l, u] donde l y u son enteros positivos. La máquina puede detectar un conjunto de moléculas si y solo si este conjunto contiene un subconjunto con un peso total contenido en el rango de detección la máquina.

Formalmente, considere n moléculas con pesos $w_0, ..., w_{n-1}$. La detección es exitosa si hay un conjunto de índices distintos $I = \{i_1, ..., i_m\}$ tales que $l \le w_{i_1} + ... + w_{i_m} \le u$.

Debido a especificaciones de la máquina, se garantiza que la diferencia de peso entre u y l es mayor o igual a la diferencia entre la molécula más pesada y la más liviana. Formalmente, $u-l \ge w_{max}-w_{min}$, donde $w_{max}=\max (w_0,...,w_{n-1})$ y $w_{min}=\min (w_0,...,w_{n-1})$.

Tu tarea es escribir un programa que encuentre un subconjunto de moléculas con un peso total contenido en el rango de detección, o que determine que no existe tal subconjunto.

Detalles de implementación

Debes implementar una función (método):

- int[] solve(int I, int u, int[] w)
 - I y u: puntos extremos del rango de detección,
 - w: pesos de las moléculas.
 - si el subconjunto requerido existe, la función debe retornar un arreglo de índices de moléculas que formen un subconjunto válido. Si hay varias respuestas correctas, retorne cualquiera de ellas.
 - si el subconjunto requerido no existe, la función debe retornar un arreglo vacío.

Para el lenguaje C la firma de la función se ve un poco distinta:

- int solve(int I, int u, int[] w, int n, int[] result)
 - o n: número de elementos en w (es decir, número de moléculas),
 - los otros parámetros son los mismos de arriba.
 - en vez de retornar un arreglo de m índices (como arriba), la función debe escribir los índices a las primeras m posiciones del arreglo result y después retornar m.
 - si el subconjunto requerido no existe, la función no debería escribir nada en el arreglo result y debe retornar 0.

Tu programa puede escribir los índices en el arreglo retornado (o el arreglo result en

C) en cualquier orden.

Por favor usar los archivos de plantilla dados para ver detalles de implementación en tu lenguaje de programación.

Ejemplos

Ejemplo 1

solve(15, 17, [6, 8, 8, 7])

En este ejemplo tenemos cuatro moléculas con pesos 6, 8, 8 y 7. La máquina puede detectar subconjuntos de moléculas con un peso total entre 15 y 17, inclusive. Note que $17-15 \ge 8-6$. El peso total de las moléculas 1 y 3 es $w_1 + w_3 = 8+7 = 15$, así que la función puede retornar [1, 3]. Otras posibles respuestas correctas son [1, 2] $(w_1 + w_2 = 8+8 = 16)$ y [2, 3] $(w_2 + w_3 = 8+7 = 15)$.

Ejemplo 2

solve(14, 15, [5, 5, 6, 6])

En este ejemplo tenemos cuatro moléculas con pesos 5, 5, 6 y 6, y estamos buscando un subconjunto de ellas con un peso total entre 14 y 15, inclusive. Nuevamente, note que $15 - 14 \ge 6 - 5$. No hay un subconjunto de moléculas con un peso total entre 14 y 15. Por lo tanto la función debe retornar un arreglo vacío.

Ejemplo 3

solve(10, 20, [15, 17, 16, 18])

En este ejemplo tenemos cuatro moléculas con pesos 15, 17, 16 y 18, y estamos buscando un subconjunto con el peso total entre 10 y 20, inclusive. Nuevamente, note que $20 - 10 \ge 18 - 15$. Cualquier subconjunto consistente de exactamente un elemento satisface el requerimiento, por lo tanto las respuestas correctas son: [0], [1], [2] y [3].

Subtareas

- 1. (9 puntos): $1 \le n \le 100$, $1 \le w_i \le 100$, $1 \le u$, $l \le 1000$ y todos los w_i son iguales.
- 2. (10 puntos): $1 \le n \le 100, \ 1 \le w_i, \ u, \ l \le 1000, \ y \ \max (w_0, \dots, w_{n-1}) \min (w_0, \dots, w_{n-1}) \le 1.$
- 3. (12 puntos): $1 \le n \le 100 \text{ y } 1 \le w_i$, $u, l \le 1000$.
- 4. (15 puntos): $1 \le n \le 10000 \text{ y } 1 \le w_i$, $u, l \le 10000$.
- 5. (23 puntos): $1 \le n \le 10\,000 \text{ y } 1 \le w_i$, $u, l \le 500\,000$
- 6. (31 puntos): $1 \le n \le 200\,000\,\text{y}\,1 \le w_i$, $u, l < 2^{31}$.

Grader de ejemplo

El grader de ejemplo lee la entrada en el siguiente formato:

- ∘ línea 1: enteros n, l, u.
- línea 2: n enteros: $w_0, ..., w_{n-1}$.