

Bayesian Model Averaging

Donald E. Brown

School of Data Science University of Virginia Charlottesville, VA 22904

Averaging and Ensembles

BMA 2/4 D.E. Brow

- Rather than select, combine models
- Ensembles have demonstrated advantages
 - Improved accuracy
 - Reduced variance
 - Explicitly account for uncertainty in the choice of model
- Problems
 - Interpretability
 - Choice of method for combination
 - Cost to build

Bayesian Model Averaging

BMA 3/4 D.E. Brown

- Let y be a target variable, \mathcal{D} be the data, and $M_k, k = 1, \dots, K$ be the models with parameters θ .
- Then an averaged estimate for the target is

$$p(y|\mathcal{D}) = \sum_{k=1}^{K} p(y|M_k, \mathcal{D}) p(M_k|\mathcal{D})$$

• The posterior probability for a model, M_k is

$$p(M_k|\mathcal{D}) = \frac{p(\mathcal{D}|M_k)p(M_k)}{\sum_{i=1}^{I} p(\mathcal{D}|M_i)p(M_i)}$$

• The likelihood, $p(\mathfrak{D}|M_k)$ is

$$p(\mathfrak{D}|M_k) = \int p(\mathfrak{D}|M_k, \boldsymbol{\theta}) p(\boldsymbol{\theta}|M_k) d\boldsymbol{\theta}$$

Pseudo -Bayesian Model Averaging

BMA 4/4 D.E. Brown

- Rather than weight from the model posterior, use weights from information or other criteria
- WAIC weights: Let $\Delta_k = \text{WAIC}_k \text{WAIC}^*$ where WAIC* is the lowest WAIC score. Then use weights:

$$w_k = \frac{exp(-\frac{1}{2}\Delta_k)}{\sum_{i=1}^K exp(-\frac{1}{2}\Delta_i)}$$

Then the BMA is

$$p(y|\mathcal{D}) = \sum_{k=1}^{K} p(y|M_k, \mathcal{D})w_k$$