Hybrid quantum-classical algorithm for computing imaginarytime correlation functions

Rihito Sakurai

(Ph.D. student of the Graduate School of Science & Engineering, Saitama University)

セミナー@産総研 Date: 2021.12.24

New preprint

Today's talk is based on

Hybrid quantum-classical algorithm for computing imaginarytime correlation functions

https://arxiv.org/abs/2112.02764

collaborator

Wataru Mizukami (QIQB, Oska Univ.), Hiroshi Shinaoka (Saitama Univ.)

Computational materials science

R. Sakurai, W. Mizukami, H. Shinaoka, arXiv:2112.02764

Density functional theory (DFT)

- Approximates the electronic quantum state with a single slater determinant.
- Success: Many semiconductors and metals
- Strong : Low computational cost $\sim O(N^3)$ (N: #of orbitals).
- Weakness: strongly correlated electron systems
 (e.g. cuprate high-temperature superconductivity)

Quantum embedding theory (Dynamical mean field theory)

- effective bath parameters are determined from the self-consistent condition:
- Physical quantities described by response functions are important. (single-particle excitation spectral functions or lattice spin susceptibility)
- In the field of quantum chemistry, density matrix embedding theory (DMET) are used.
- Why are multi-orbital and multi-atomic important?
 - -->quantitative description of unconventional superconductivity

Dynamical mean-field theory (DMFT)

- The biggest bottle neck: quantum impurity problem (Computing Green's function)
- Single impurity with few orbitals are the limit by classical methods: Quantum Monte Carlo,
 MPS/Tensor network
- Solving impurity models wit multi-orbital and multi impurity sites is a challenging task.

	$G(t)/G(\omega)$ (Real)	$G(au)/G(i\omega)$ (Imaginary)
Pros	Accurate description of spectral functions	Fewer bath sites
Cons	Many bath sites	Inaccurate description of spectral functions at high frequencies

Solving impurity problems with Quantum computer

Foult-tolerant quantum computer

- Algorithm based on Quantum phase estimation algorithm (~2015)
- Too much hardware resources

Quantum devices with limited hardware resources

- e.g.) Noisy Intermediate Scale Devices (NISQ)
 noisy quantum devices with ~100 qubits, about 100 depth (# of time steps)
- Need to calculate expectation value of the square of the Hamiltonian (H. Chen et al., arXiv:2105.01703v2)
- Efficient methods for computing imaginary-time Green's functions need to be explored
- Our work: new algorithm to compute the imaginary-time Green's function

Imaginary-time Green's function

Hamiltonian

$$H = \sum_{ij}^N t_{ij} \hat{c}_i^\dagger \hat{c}_j + rac{1}{4} \sum_{ijkl} U_{ikjl} \hat{c}_i^\dagger \hat{c}_j^\dagger \hat{c}_l \hat{c}_k - \mu \sum_i \hat{c}_i^\dagger \hat{c}_i,$$

 c_i/c_i^\dagger : the creation and annihilation operators for the spin orbital i

Imaginary-time Green's function (GF)

$$G_{ab}(au) = - heta(au) \left\langle \hat{c}_a(au) \hat{c}_b^\dagger(0)
ight
angle + heta(au) \left\langle \hat{c}_b^\dagger(0) \hat{c}_a(au)
ight
angle, au = it, \hbar = k_{
m B} = 1,$$

ullet At sufficiently low temperature T

$$G_{ab}(au) \mathop{=}\limits_{T o 0} \mp \left\langle \Psi_{
m G} \left| \hat{A}_{\pm} e^{\mp (\mathcal{H} - E_{
m G}) au} \hat{B}_{\pm}
ight| \Psi_{
m G}
ight
angle, \left| \Psi_{
m G}
ight
angle : {
m ground state}$$

$$A_+=\hat{c}_a ext{ and } B_+=\hat{c}_b^\dagger ext{ for } 0< au<rac{eta}{2},$$

$$A_- = \hat{c}_b^\dagger ext{ and } B_+ = \hat{c}_a ext{ for } -rac{eta}{2} < au < 0$$

$$(\beta = 1/T)$$

Outline of our algorithm

- Introduce a fine mesh of τ in $[-\beta / 2, \beta / 2]$
- Then, compute $G_{ij}(au)$

For τ >0,

$$egin{aligned} G_{ij}(au) &= -\operatorname{Tr}\left[e^{-eta\hat{H}}c_i(au)c_j^\dagger(0)
ight]/\operatorname{Tr}\left(e^{-eta\mathcal{H}}
ight) \ &\simeq -igl\langle \Phi_G(0)|e^{-(eta- au)\hat{H}}c_i(0)e^{- au\hat{H}}c_j^\dagger(0)|\Phi_G(0)igr
angle/\left(e^{-eta E_G}
ight) \ &&\langle \Phi_C'
ight| \end{aligned}$$

セミナー@産総研 Date: 2021.12.24

Preparation

• The hamiltonian need to be transformed to the qubit representation e.g.) Jordan-Wigner transformation

$$H o \sum_p h_p S_p, S_p \in \{X,Y,Z,I\}^{\otimes m}$$

Variational Quantum Eigensolver (VQE) ----->

Optimization: parameter-shift rule

https://arxiv.org/pdf/1803.00745.pdf

$$egin{aligned} rac{\partial \langle H(heta)
angle}{\partial heta_i} &= rac{1}{2} \left(H\left(heta + rac{\pi}{2} e_i
ight)
ight) - \left\langle H\left(heta - rac{\pi}{2} e_i
ight)
ight
angle
ight) \ \left(U(oldsymbol{ heta}) &= \prod_k e^{-i heta_k P_k/2}
ight) \end{aligned}$$

STAGE2: Single-particle excitation

For
$$au>0$$
, $\hat{c}_a^\dagger\ket{\Psi_{ ext{GS}}}\simeq c_1\ket{\phi_{ ext{EX}}\left(ec{ heta}_{ ext{EX}}
ight)}$

1. single-particel excited state

$$\ket{c_a^\dagger\ket{\Psi_G}}=rac{X_a-iY_a}{2}Z_{a-1}\dots Z_1\ket{\Psi_G}$$

- 2. Prepare $\left|\phi_{\mathrm{EX}}\left(\vec{ heta}_{\mathrm{EX}}
 ight)
 ight>$ and measure $\left\langle\phi_{\mathrm{EX}}\left(\vec{ heta}_{\mathrm{EX}}
 ight)\left|\hat{c}_{a}^{\dagger}\right|\Psi_{\mathrm{G}}
 ight>$
- 3. Minimize cost function:

$$|1-\langle\Psi_{EX}(ec{ heta})|c_a^\dagger\ket{\Psi_G}|^2$$

4. Measure

$$c_1 = \left\langle \phi_{ ext{EX}} \left(ec{ heta}_{ ext{EX}}^*
ight) \left| c_a^\dagger
ight| \Psi_{ ext{G}}
ight
angle$$

STAGE3: Imaginary-time evolution

R. Sakurai, W. Mizukami, H. Shinaoka, arXiv:2112.02764

The time-dependent Schrödinger equation

$$egin{aligned} rac{\mathrm{d}}{\mathrm{d} au} | ilde{\Psi}(au)
angle &= -\left(H-E_{ au}
ight)| ilde{\Psi}(au)
angle \ | ilde{\Psi}(au)
angle &= |\Psi(au)
angle/\sqrt{\langle\Psi(au)\mid\Psi(au)
angle}, E_{ au} \equiv \langle ilde{\Psi}(au)|H| ilde{\Psi}(au)
angle \end{aligned}$$

• Prepare the following state on a quantum computer

$$egin{aligned} | ilde{\Psi}(au)
angle &= |\phi(ec{ heta}(au))
angle \ |\Psi(au)
angle &= e^{\eta(au)}|\phi(ec{ heta}(au))
angle - (1) \end{aligned}$$

- Introduce Norm $e^{\eta(au)}$: $rac{\mathrm{d}}{\mathrm{d} au}|\Psi(au)
 angle = -H|\Psi(au)
 angle (2)$
- $egin{aligned} ullet & ext{From (1) and (2),} \ rac{d\eta(au)}{d au} = -E_ au, (\eta \in \mathbb{R} ext{ and } rac{\mathrm{d}\langle\Psi|\Psi
 angle}{\mathrm{d} au} = 0) \end{aligned}$

Question: How do we determine $\vec{\theta}(\tau)$ on a discrete mesh of τ ? **McLachlan's variational principal** (A. McLachlan, Mol. Phys 8, 39-44 (1996)) $\min \delta \left\| \left(\frac{\mathrm{d}}{\mathrm{d}\tau} + H - E_\tau \right) \mid \phi(\vec{\theta}(\tau)) \rangle \right\|$

STAGE3: Imaginary-time evolution

R. Sakurai, W. Mizukami, H. Shinaoka, arXiv:2112.02764

Varuational Quantum Simulation (VQS)

$$egin{aligned} \min \delta \left\| \left(rac{\mathrm{d}}{\mathrm{d} au} + H - E_ au
ight) \mid \phi(ec{ heta}(au))
angle
ight\| \ & \sum_j A_{ij} \dot{ heta}_j = C_i \ & A_{ij} \equiv \mathcal{R} rac{\partial \langle \phi(ec{ heta}) \mid}{\partial heta_i} rac{\partial |\phi(ec{ heta})
angle}{\partial heta_j}, C_i & \equiv -\mathcal{R} \langle \phi(au) | \mathcal{H} rac{\partial |\phi(ec{ heta})
angle}{\partial heta_i} \end{aligned}$$

$$ec{ heta}(au+\Delta au)\simeqec{ heta}(au)+A^{-1}ec{C}\Delta au$$

Direct VQS

$$egin{aligned} heta(au+\Delta au) \ &\simeq \mathop{
m argmin}_{ec{ heta}} \lVert \ket{\phi(ec{ heta})} - \ket{\Psi(au)} + \Delta au\left(\mathcal{H} - E_ au
ight)\ket{\Psi(au)}
Vert \ &= \mathop{
m argmin}_{ec{ heta}} \operatorname{Re} \mid \Delta au raket{\phi(ec{ heta})} \lVert H ert \Psi(au)
angle - \left(\Delta au E_ au + 1
ight) raket{\phi(ec{ heta})} \lVert \Psi(au)
angle \end{aligned}$$

STAGE4: Transition amplitude

transition amplitude

$$\langle \Psi_{
m G} \ket{A_{\pm}} \Psi_{
m IM}
angle$$

-->
$$G(au) = -c_1 e^{\eta(au)} e^{ au E_{
m G}} ra{\Psi_{
m G}|A_{\pm}|\Psi_{
m IM}}$$

Ansatz

- Unitary coupled cluster with generalized singles and doubles (UCCGSD) (M. Nooijen, Phys. Rev. Lett. **84**, 2108 (2000),
 - J. Lee, et al., Journal of chemical theory and computation 15, 311 (2019))

•
$$U(m{ heta}) = \prod_{i,j,a,b=1}^n \left\{ e^{ heta_{ij}^{ab} a_a^\dagger a_b^\dagger a_j a_i - heta_{ij}^{ab} a_i^\dagger a_j^\dagger a_b a_a}
ight\} \prod_{a,i=1}^n \left\{ e^{ heta_i^a a_a^\dagger a_i - heta_i^a a_i^\dagger a_a}
ight\}$$

• N_p : # of the parameters ~ $O\left(n^4\right)$

Optimization

A quasi-Newton method (BFGS method)

Non-uniform mesh of au in [-eta/2,eta/2] (eta=1000)

A sparse mesh generated according to the intermediate-representation (IR) basis.
 (J. Li et al., PRB 101, 035144 (2020))

Results: Dimer model

R. Sakurai, W. Mizukami, H. Shinaoka, arXiv:2112.02764

$$\mathcal{H} = U \hat{n}_{1\dagger} \hat{n}_{1\downarrow} - \mu \sum_{\sigma=\uparrow,\downarrow} \hat{n}_{1\sigma} - V \sum_{\sigma=\uparrow,\downarrow} \left(\hat{c}^{\dagger}_{1\sigma} \hat{c}_{2\sigma} + \hat{c}^{\dagger}_{2\sigma} \hat{c}_{1\sigma}
ight) + \epsilon_b \sum_{\sigma=\uparrow,\downarrow} \hat{n}_{2\sigma}$$

- $U=1, \mu=1/2, V=1, \epsilon_b=1$
- At half-filling
- #of parameters: 104
- 79 sparse sampling points
- Non-diagonal componet also can be computed

Results: Four-site model

R. Sakurai, W. Mizukami, H. Shinaoka, arXiv:2112.02764

$$H = U \hat{n}_{0\uparrow} \hat{n}_{0\downarrow} - \mu \sum_{\sigma=\uparrow,\downarrow} \hat{n}_{0\sigma} - \sum_{k=1}^3 \sum_{\sigma=\uparrow,\downarrow} V_k \left(\hat{c}_{0\sigma}^\dagger \hat{c}_{k\sigma} + \hat{c}_{k\sigma}^\dagger \hat{c}_{0\sigma}
ight) + \epsilon_k \sum_{k=1}^3 \sum_{\sigma=\uparrow,\downarrow} \hat{n}_{k\sigma}$$

- value of parametes is obtained by DMFT calculation
- At half-filling
- #of parameters: 1568
- 70 sparse sampling points + adaptive construction of the mesh

Results: Fourier-transformed Green's function akurai, W. Mizukami, H. Shinaoka, arXiv:2112.02764

- We use a library called <code>\[irbasis_ \] (N. Chikano et al., Comput. Phys. Commun. **240**, 181 (2019))</code>
- Fourier-transformed Green's function (Matsubara Green's function) $G_{ab}(\mathrm{i}
 u) = \int_0^\beta \mathrm{d} au e^{\mathrm{i}
 u au} G_{ab}(au)$

Conclution

- New hybrid quantum classical algorithm for computing imaginary-time Green's functions by applying the VQS
- Out algorithms efficiently computes GF using non-uniform mesh based on IRbasis
- No need to calculate expectation value of the square of the Hamiltonian (H. Chen et al., arXiv:2105.01703v2)
- The hardware cost for transition amplitude may be high for NISQ devices 😢

future plan

- 1 Simulation under realistic noise model: 2 qubit error
- 2 Ansatz for impurity models: tensor decomposition, topology of impurity models