解:输出 y(t)的数学表达式为:

$$y(t) = \begin{cases} k1A\sin\omega t & 0 \le \omega t \le \varphi 1 \\ k1a + k2(A\sin\omega t - a) & \varphi 1 \le \omega t \le \pi/2 \end{cases}$$
 其中区间端点为

 $A\sin\varphi 1 = a \mathbb{P} \varphi 1 = \arcsin\frac{a}{A}$

由于 y(t)为奇对称函数所以 A1=0,则 B1= $\frac{1}{\pi}\int_{0}^{2\pi}y(t)\sin\omega td\omega t=$

$$\frac{4k1A}{\pi} \int_{0}^{\varphi 1} \sin^{2} \omega t d\omega t + \frac{4(k1-k2)a}{\pi} \int_{\varphi 1}^{\frac{\pi}{2}} \sin \omega t d\omega t + \frac{4k1A}{\pi} \int_{\varphi 1}^{\frac{\pi}{2}} \sin^{2} \omega t d\omega t =$$

$$A \left[k2 \frac{2(k1-k2)}{\pi} \left(\arcsin \frac{a}{A} + \frac{a}{A} \sqrt{1 - \left(\frac{a}{A}\right)^2} \right) \right]$$

则变量特性的描述函数为
$$N(A) = \frac{B1+jA1}{A} = k2 + \frac{2(k1-k2)}{\pi} \left(\arcsin\frac{a}{A} + \frac{a}{A}\sqrt{1-\left(\frac{a}{A}\right)^2}\right)$$

T8-8

解: (1) 自振分析①绘出 $-\frac{1}{N(A)}$ 曲线 如图

非线性环节的描述函数
$$N(A) = \frac{4M}{\pi A} = \frac{4}{\pi A}$$

$$-\frac{1}{N(A)}$$
分布在整个负实轴上,方向向左。

②绘出 $G(j\omega)$ 曲线,回路中线性部分的传递函数

$$G(s) = \frac{10}{s(s+2)^2}$$
 ⇒ $G(j\omega) = \frac{10}{j\omega(j\omega+2)^2}$ 最后可以整理得:

$$G(jw) = -\frac{10}{w[16w^2 + (w^2 - 4)^2]} \times (4w - (w^2 - 4)j)$$

可求得 $G(j\omega)$ 曲线与负实轴的交点处 $\omega=2$

③产生自振时
$$G(j\omega) = -\frac{1}{N(A)} = -\frac{5}{8}$$
 则有 $A = \frac{5}{2\pi}$,

因此自激振荡振幅为 $A = \frac{5}{2\pi}$, 频率为 $\omega = 2$

$$e(t) = \frac{5}{2\pi} \sin 2t$$
, $y(t) = -\frac{5}{4\pi} \sin 2t$

(2) 绘出波形:

T8-9

解: (2) 令 $\ddot{x} = f(\ddot{x}, x) = -x \cdot \dot{x} - x = 0$ 且 $\dot{x} = 0$ 在该点线性化有

$$x = \frac{\partial f(x,x)}{\partial x} \cdot x + \frac{\partial f(x,x)}{\partial x} \cdot x = -x$$
 则特征方程为 $s^2 + 1 = 0$ 。

 $s_{1,2} = \pm j$ 故奇点为中心点

T8-16

u

图 8-52 库仑摩擦非线性系统

解:

列写运动方程

$$u=\ddot{y}$$

$$u = \begin{cases} 1, & e > 0 \\ -1, & e < 0 \end{cases}, \quad \ddot{y} = \begin{cases} 1, & 1 - y > 0 \\ -1, & 1 - y < 0 \end{cases} \text{ for } \ddot{y} = \begin{cases} 1, & y \ge 1 \\ -1, & y \ge 1 \end{cases}$$

区域 1, 即 y<1

$$\begin{cases} \ddot{y} = 1 \\ \dot{y} = t + c_1 \\ y = \frac{1}{2}t^2 + c_1t + c_2 \end{cases}$$

代入初始条件 y(0) = -8, $\dot{y}(0) = 0$ 得到 c1 = 0, c2 = -8

$$\begin{cases} \dot{y} = t \\ y = \frac{1}{2}t^2 - 8 \end{cases}$$

从 A 点出发,当 y=1 时,求得 $t=3\sqrt{2}$,此时到达 $B=(3\sqrt{2},1)$

进入区域 2, 即 y>1

$$\begin{cases} \ddot{y} = -1 \\ \dot{y} = -t + c_3 \\ y = -\frac{1}{2}t^2 + c_3t + c_4 \end{cases}$$

代入初始条件 y(0) = 1, $\dot{y}(0) = 3\sqrt{2}$ 得到 $c3 = 3\sqrt{2}$, c4 = 1

$$\begin{cases} \dot{y} = -t + 3\sqrt{2} \\ y = -\frac{1}{2}t^2 + 3\sqrt{2}t + 1 \end{cases}$$

从 B 点出发,当 $\dot{y}=0$ 时 $t=3\sqrt{2}$,则 y=-9+18+1=10 ,到达 C=(10,0)

同样方法得到 $D = (1, -3\sqrt{2})$, A = (-8,0) ,总时间为 $t = 4 \times 3\sqrt{2} = 12\sqrt{2}$

因此周期运动 $T = 12\sqrt{2}s$,频率 $f = \frac{1}{T} = \frac{\sqrt{2}}{24}Hz$,振幅为 9