Fonctions affines

Table des matières

I	Définition:
II	Variations
III	Signe d'une fonction affine
IV	Représentation graphique d'une fonction affine
V	Caractérisation d'une fonction affine
VI	Comment tracer graphiquement la représentation graphique d'une fonction affine?
	VI.1 À partir de deux points :
	VI.2 En utilisant le coefficient directeur
VII	Caractérisation d'une fonction affine

I Définition:

Une fonction f, définie sur \mathbb{R} , est affine s'il existe deux réels m et p tel que, pour tout x, f(x) = mx + p. m s'appelle le coefficient directeur et p est l'ordonnée à l'origine.

Exemples:

- $f: x \mapsto 2x + 3$ est une fonction affine car 2x + 3 = mx + p avec $\begin{cases} m = 2 \\ p = 3 \end{cases}$.
- $f: x \mapsto \frac{3x+5}{7}$ est une fonction affine car $\frac{3x+5}{7} = \frac{3}{7}x + \frac{5}{7} = mx + p$ avec $\begin{cases} m = \frac{3}{7} \\ p = \frac{5}{7} \end{cases}$.
- $f: x \mapsto 5x$ est une fonction affine car 5x = mx + p avec $\begin{cases} m = 5 \\ p = 0 \end{cases}$

On dit alors que f est linéaire (fonction affine dont l'ordonnée à l'origine est égale à 0)

• $f: x \mapsto 8$ est une fonction affine car 5x = mx + p avec $\begin{cases} m = 5 \\ p = 0 \end{cases}$

Cette fonction est une fonction constante.

• $f: x \mapsto 3x^2 + 7$ n'est pas une fonction affine car il n'existe pas de nombres m et p constants tels que $mx + p = 3x^2 + 7$ pour tout x. (à cause de x^2)

Remarque: l'ensemble de définition d'une fonction affine est $\mathcal{D} = \mathbb{R}$. En effet, on peut calculer mx + p pour tout x réel.

II Variations

Théorème

Soit *f* une fonction affine définie par : f(x) = mx + p.

- f est croissante si, et seulement si, m > 0.
 f est constante si, et seulement si, m = 0.
- f est décroissante si, et seulement si, m < 0.

Démonstration: Soient deux nombres quelconques x_1 et x_2 , avec $x_1 < x_2$.

 $f(x) = mx + p \text{ donc } f(x_1) = mx_1 + p \text{ et } f(x_2) = mx_2 + p$

$$f(x_2) - f(x_1) = (ax_1 + p) - (m_2 + p) = mx_1 + p - mx_2 - p = mx_1 - mx_2 = m(x_2 - x_1)$$

Comme $x_2 - x_1$ est positif, puisque, par hypothèse, $x_1 < x_2$, $f(x_2) - f(x_1)$ est du signe de m.

Si m > 0, $x_1 < x_2$ entraı̂ne que $f(x_1) < f(x_2)$, donc f respecte l'ordre et f est croissante.

Si m = 0, f est constante, car, pour tout x, f(x) = 0x + p = b.

Si m > 0, $x_1 < x_2$ entraîne que $f(x_1) > f(x_2)$, donc f renverse l'ordre et f est décroissante.

Remarque: Soit $f: x \mapsto mx + p$ une fonction affine, avec $m \neq 0$. $f(x) = 0 \Leftrightarrow mx + p = 0 \Leftrightarrow mx = -p \Leftrightarrow x = -\frac{p}{m}$. On en déduit les **tableaux de variations** possibles de f, selon le signe de m.

Pour m > 0:

x	$-\infty$	$-\frac{p}{m}$	+∞
f(x)		0	*

Pour m < 0:

III Signe d'une fonction affine

D'après les tableaux de variation d'une fonction affine, on en déduit les tableaux de signes suivants : Cas: m > 0Cas: m < 0

x	$-\infty$ $-\frac{p}{m}$ $+\infty$
f(x) = mx + p	- 0 +

Représentation graphique d'une fonction affine

Propriété (admise)

Soit $f: x \mapsto mx + p$ une fonction affine. La représentation graphique d'une fonction affine est une droite, sécante à l'axe des ordonnées. m est le coefficient directeur et p l'ordonnée à l'origine, c'est-à-dire que la droite passe par le point de coordonnées (0; p) (car f(0) = p)

Interprétation graphique de p :

Remarque: toute droite sécante à l'axe des ordonnées est la représentation graphique d'une fonction affine.

Caractérisation d'une fonction affine

Interprétation graphique de m:

Soit $f: x \mapsto mx + p$ une fonction affine dont la représentation graphique est la droite \mathcal{D} .

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points distincts de \mathcal{D} .

Par définition de f, on a $f(x_A) = y_A$ et $f(x_B) = y_B$.

 $f(x_B) = f(x_A) = (mx_A + p) - (mx_B + p) = mx_A + p - mx_B - p = m(x_B - x_A).$

On en déduit : $m = \frac{y_B - y_A}{m}$

Symboliquement, on note $m=\frac{\Delta y}{\Delta x}$ où Δ signifie « différence », donc il faut comprendre Δx comme « différence des abscisses » et Δy comme différence des ordonnées.

Si l'on prend $\Delta_x = 1$, on a $\Delta_y = m$

On en déduit que si l'on se déplace de 1 unité parallèlement à l'axe des abscisses, on se déplace en même temps de la valeur de m parallèlement à l'axe des ordonnées.

Remarque : si l'on se déplace de k unités parallèlement à l'axe des abscisses, on se déplace dans le même temps de km unités parallèlement à l'axe des ordonnées. C'est lié au **théorème de Thalès**!

VI Comment tracer graphiquement la représentation graphique d'une fonction affine?

VI.1 À partir de deux points :

Exemple: on veut représenter graphiquement la fonction affine $f: x \mapsto \frac{2}{3}x + 1$. On sait que la représentation graphique de f est une droite. Pour tracer une droite, il suffit de connaître deux points de celle-ci. On calcule alors les coordonnées de deux points de cette droite, en essayant d'avoir des coordonnées entières, pour qu'elles soient faciles à placer. L'ordonnée à l'origine vaut 1, donc la droite passe par le point de coordonnées (0; 1). On remarque qu'il suffit de prendre x multiple de x multipl

X	0	9
$y = \frac{2}{3}x + 1$	1	$\frac{2}{3} \times 9 + 1 = 7$

VI.2 En utilisant le coefficient directeur

Exemple: représenter graphiquement la fonction affine $x \mapsto 2x + 3$. L'ordonnée à l'origine est 3, donc la droite passe par le point A de coordonnées (0; 3). Le coefficient directeur est 2, donc $2 = \frac{\Delta y}{\Delta x}$, c'est-à-dire $\Delta y = 2\Delta x$. On choisit par exemple $\Delta x = 1$; on obtient alors $\Delta y = 2 \times 1 = 2$. En partant de A, on se déplace de 1 en abscisses, et alors de 2 en ordonnées.

Remarque : La représentation graphique d'une fonction affine $f \mapsto ax + b$ est une droite (sécante à l'axe de l'axe des ordonnées (Oy)); on dit que cette droite a pour **équation réduite** y = ax + b.

Exemple: La droite d'équation y = 2x + 3 est la représentation graphique de la fonction $f \mapsto 2x + 3$.

Exemple: Trouver l'équation de la droite passant par les points A(2; 5) et B(7; -1). C'est la même chose que de chercher la fonction affine f vérifiant f(2) = 5 et f(7) = -1. Notons m le coefficient directeur et p l'ordonnée à l'origine. $m = \frac{\Delta y}{\Delta x} = \frac{y_B - y_A}{x_B - x_A} = \frac{-1 - 5}{7 - 2} = -\frac{6}{5}$. L'équation de la droite est alors $y = -\frac{6}{5}x + p$. A appartient à la droite (AB) donc ses coordonnées vérifient cette équation : $y_A = -\frac{6}{5}x_A + p$ donc $5 = -\frac{6}{5} \times 2 + p$.

D'où
$$-\frac{12}{5} + p = 5$$
 et $p = 5 + \frac{12}{5} = \frac{25 + 12}{5} = \frac{37}{5}$.

L'équation de la droite (AB) est $y = -\frac{6}{5}x + \frac{37}{5}$

Caractérisation d'une fonction affine

f est une fonction affine si, et seulement si, l'accroissement Δy de l'image est proportionnel à l'accrois-

Autrement dit, x_1 et x_2 étant deux réels distincts, $\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = m$ où m est un nombre constant.

Démonstration : Si f est une fonction affine, $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = m$.

Réciproque : Soit f une fonction telle que, pour tous x_1 et x_2 , $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = m$. Alors, en particulier, pour x et 0, on a : $\frac{f(x) - f(0)}{x} = p$ d'où, en posant f(0) = p, f(x) = mx + p.

Application: on connaît les images de deux nombres par une fonction affine et l'on veut l'image d'un troisième nombre, sans trouver l'expression de la fonction affine :

х	2	4	7
f(x)	-1	5	

Puisque f est affine, on a : $\frac{f(4) - f(2)}{4 - 2} = \frac{f(7) - f(2)}{7 - 2}$ donc $\frac{5 - (-1)}{4 - 2} = \frac{f(7) - (-1)}{7 - 2}$, soit $\frac{6}{2} = \frac{f(7) + 1}{5}$.

Par conséquent : $3 = \frac{f(7) + 1}{5}$ donc $f(7) + 1 = 3 \times 5 = 15$ d'où f(7) = 15 - 1 = 14 : $\boxed{f(7) = 14}$.