

Algebraic Path Problems and GraphBLAS: a Way to High-Performance Network Analysis

Semyon Grigorev

Saint Petersburg State University

April 28, 2022

Agenda

- Algebraic Path Problems
- GraphBLAS API
- Our team

Algebraic Path Problems

- Semiring-like structures to specify constraints on paths
 - ► Reachability boolean semiring
 - ▶ Shortest paths tropical semiring

Algebraic Path Problems

- Semiring-like structures to specify constraints on paths
 - Reachability boolean semiring
 - ► Shortest paths tropical semiring
 - **.** . . .
- Linear algebra friendly algorithms
 - ► Transitive closure using matrix-matrix multiplication
 - ► APSP using matrix-matrix multiplication
 - ▶ BFS-like traversals using matrix-vector multiplication

Algebraic Path Problems

- Semiring-like structures to specify constraints on paths
 - Reachability boolean semiring
 - Shortest paths tropical semiring
 - **.**...
- Linear algebra friendly algorithms
 - ► Transitive closure using matrix-matrix multiplication
 - ► APSP using matrix-matrix multiplication
 - ▶ BFS-like traversals using matrix-vector multiplication
 - **.** . . .
- Compositionality
 - Having two semirings one can create a new one
 - Single solution for similar problems
 - ★ Generic solution
 - ★ Configurable solution

Expressivity of the Framework

- Semiring with typical associativity and distributivity laws
 - Path Problems in Networks¹
 - * Most reliable path
 - ★ *k*-shortest paths
 - * Reachability under edge failures
 - * ...
- Less restrictive structures
 - Without associativity and/or distributivity laws
 - ▶ Nonassociative, nonmonotonic, partially ordered, not antisymmetric
 - Negative cycles
 - ★ Unstructured path problems and the making of semirings²
 - ★ Efficient Algorithms for Path Problems with Gernal Cost Citeria³

https://www.morganclaypool.com/doi/abs/10.2200/S00245ED1V01Y201001CNT003

²https://link.springer.com/chapter/10.1007/BFb0028261

³https://www.semanticscholar.org/paper/

Efficient-Algorithms-for-Path-Problems-with-Gernal-Lengauer-Theune/3fd320d97db0a581952d2919587b112f8df57c0b

Why Associativity Matters

$$f(M_{n\times n})=M^n=\underbrace{M\cdot M\ldots \cdot M}_n$$

Repeated squaring

$$\underbrace{(\underbrace{(M \cdot \ldots)}_{\frac{n}{4}} \cdot \underbrace{(M \cdot \ldots)}_{\frac{n}{4}}) \cdot \underbrace{(\underbrace{(M \cdot \ldots)}_{\frac{n}{4}} \cdot \underbrace{(M \cdot \ldots)}_{\frac{n}{4}})}_{\frac{n}{2}}$$

$$O(n^3) \log n$$

No ways to optimize

$$(\dots((M\cdot M)\cdot M)\dots\cdot M)$$
$$O(n^4)$$

GraphBLAS API

- Graph-matrix duality
- Operations over matrices and vectors
 - Parametrized by semiring-like structures
 - Based on sparse data structures
 - ► Highly parallel

¹https://github.com/DrTimothyAldenDavis/GraphBLAS

²https://github.com/gunrock/graphblast

³https://gitee.com/CSL-ALP/graphblas

GraphBLAS API

- Graph-matrix duality
- Operations over matrices and vectors
 - Parametrized by semiring-like structures
 - Based on sparse data structures
 - Highly parallel

- High-performance implementations
 - SuiteSparse:GraphBLAS¹: pure C
 - GraphBLAST²: GPGPU, Cuda C
 - ► Huawei's GraphBLAS³: C++

¹https://github.com/DrTimothyAldenDavis/GraphBLAS

²https://github.com/gunrock/graphblast

³https://gitee.com/CSL-ALP/graphblas

GraphBLAS API

- Graph-matrix duality
- Operations over matrices and vectors
 - Parametrized by semiring-like structures
 - Based on sparse data structures
 - Highly parallel
- More information on GraphBLAS
 - Home page: https://graphblas.org/
 - ► GraphBLAS-related resources: https://graphblas.org/GraphBLAS-Pointers/
 - Introduction to GraphBLAS:

http://mit.bme.hu/~szarnyas/grb/graphblas-introduction.pdf

- SuiteSparse:GraphBLAS¹: pure C
- ► GraphBLAST²: GPGPU, Cuda C
- ► Huawei's GraphBLAS³: C++
- **.** . . .

High-performance implementations

https://github.com/DrTimothyAldenDavis/GraphBLAS

²https://github.com/gunrock/graphblast

³https://gitee.com/CSL-ALP/graphblas

GraphBLAS Applications

- BFS-like algorithms
 - ▶ BFS: levels, parents, multiple sources
 - SSSP
 - **.**...
- Graph clustering

- Transitive closure based algorithms
 - APSP
- Triangle counting
- . . .

GraphBLAS Applications

- BFS-like algorithms
 - ▶ BFS: levels, parents, multiple sources
 - SSSP
- Graph clustering

- Transitive closure based algorithms
 - APSP
- Triangle counting
- . . .
- LAGraph: collection of GraphBLAS-based algorithms
 - ► GitHub: https://github.com/GraphBLAS/LAGraph
 - Latest report: https://arxiv.org/pdf/2104.01661.pdf

Shortest Paths

Shortest Paths

Shortest Paths

Team

- Semyon Grigorev (Lead)
 - ▶ PhD (2016)
 - Associate professor (2016, SPbSU)
 - s.v.grigoriev@spbu.ru
- Ekaterina Shemetova
 - ▶ PhD student
 - Path problems with constraints
- Rustam Azimov
 - PhD student
 - Linear algebra based graph analysis

- ▶ High-performance graph analysis
- Graph databases
- dblp: https://dblp.org/pid/181/9903.html

- Fine-grained complexity
- Dynamic graph problems

- GraphBLAS API
- Algebraic path problem

Team: Master Students

- Alexandra Istomina
 - Master student
 - Fine-grained complexity
- Egor Orachev
 - Master student
 - Linear algebra based graph analysis
- Vladimir Kutuev
 - Master student
 - Linear algebra based graph analysis
- Julia Susanina
 - Master student
 - ► Linear algebra based graph analysis

- ▶ Path problems with constraints
- Algebraic path problem

- GraphBLAS API
- ► GPGPU programming

- GraphBLAS API
- Parallel programming

- Probabilistic graph analysis
- GPGPU programming

Research areas

- Linear algebra based algorithms for graph analysis
 - ► GraphBLAS-based algorithms design, implementation and evaluation
 - ▶ Portable multi-GPGPU implementation of GraphBALS-like API
 - GraphBLAS API analysis

Research areas

- Linear algebra based algorithms for graph analysis
 - GraphBLAS-based algorithms design, implementation and evaluation
 - ▶ Portable multi-GPGPU implementation of GraphBALS-like API
 - GraphBLAS API analysis
- Path problems with constraints
 - Formal Language Constrained Path Querying
 - ★ New algorithms development
 - ★ Complexity analysis
 - ★ New classes of languages investigation
 - * High performance algorithms implementation and evaluation

Formal Language Constrained Path Querying

- Particular case of algebraic path problem
 - Multiplication is not associative
 - Multiplication is not commutative
 - **•** . . .

Formal Language Constrained Path Querying

- Particular case of algebraic path problem
 - Multiplication is not associative
 - Multiplication is not commutative
- Examples
 - Regular path querying (RPQ)
 - Context-free path querying (CFPQ)

Formal Language Constrained Path Querying

- Particular case of algebraic path problem
 - Multiplication is not associative
 - Multiplication is not commutative
 - **.** . . .
- Examples
 - Regular path querying (RPQ)
 - Context-free path querying (CFPQ)
- Applications
 - Graph analysis
 - Interprocedural static code analysis
 - Graph database querying

- Tools
 - ▶ Spla: sparse linear algebra framework for multi-GPU computations based on OpenCL
 - ► SPbLA: library of GPGPU-powered sparse boolean linear algebra operations

- Tools
 - Spla: sparse linear algebra framework for multi-GPU computations based on OpenCL
 - ▶ SPbLA: library of GPGPU-powered sparse boolean linear algebra operations
 - CFPQ_PyAlgo: set of GraphBLAS-based FLPQ algorithms
 - ▶ LDBC Graphalytics extension for evaluation of formal language constrained path querying

Tools

- Spla: sparse linear algebra framework for multi-GPU computations based on OpenCL
- ▶ SPbLA: library of GPGPU-powered sparse boolean linear algebra operations
- CFPQ_PyAlgo: set of GraphBLAS-based FLPQ algorithms
- LDBC Graphalytics extension for evaluation of formal language constrained path querying
- GLL4Graph: CFPQ for Neo4j
- CFPQ for RedisGraph

Tools

- Spla: sparse linear algebra framework for multi-GPU computations based on OpenCL
- ▶ SPbLA: library of GPGPU-powered sparse boolean linear algebra operations
- CFPQ_PyAlgo: set of GraphBLAS-based FLPQ algorithms
- ▶ LDBC Graphalytics extension for evaluation of formal language constrained path querying
- GLL4Graph: CFPQ for Neo4j
- CFPQ for RedisGraph
- Papers (> 10)
 - SPbLA: The Library of GPGPU-Powered Sparse Boolean Linear Algebra Operations (GrAPL@IPDPS)
 - Evaluation of the context-free path querying algorithm based on matrix multiplication (GRADES-NDA@SIGMOD)
 - ▶ Multiple-Source Context-Free Path Querying in Terms of Linear Algebra (EDBT, Core A)
 - Context-free path querying by matrix multiplication (GRADES-NDA@SIGMOD)

Possible Ways for Collaboration

- Algebraic Path Problem framework applicability for network analysis
 - ▶ Which constraints can be specified in terms of semirings?
 - ★ Length minimality
 - ★ Nodes to visit
 - * ...
 - Is it flexible enough?
- High-performance network analysis
 - GraphBLAS-based solution
 - Algorithms development and analysis
 - Algorithms implementation and evaluation