Aula 13-Implementação

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>Leonardo.costa@unifal-mg.edu.br</u>

Anuidade imediata vitalícia antecipada

$$\ddot{a}_{x} = \sum_{t=0}^{\omega} \ddot{a}_{\overline{t+1}|\ t} p_{x} q_{x+t}$$

```
AnuidAnt1<-function(i,idade,b){
v < -1/(1+i)
        <- 1-qx
рх
         <- c(1, cumprod(px[(idade+1):idademaxima]))
рхх
        <- (0:(length(pxx)-1))
        <-(1-v^{(t+1)})/(1-v)
         <- b*sum(a*pxx*qx[(idade+1):(idademaxima+1)])
ax
return(ax)
```

Anuidade imediata vitalícia antecipada

$$\ddot{a}_{x} = \sum_{t=0}^{\omega} v^{t} _{t} p_{x}$$

AnuiAnt2<-function(i,idade,b){

Anuidade imediata vitalícia postecipada

$$a_{x} = \sum_{t=0}^{\omega} a_{\overline{t}|\ t} p_{x} q_{x+t}$$

AnuidPost1<-function(i,idade,b){

Anuidade imediata vitalícia postecipada

$$a_x = \sum_{t=1}^{\omega} v^t \,_t \, p_x$$

Anuidade imediata Temporária

```
AnuiAntTemp<-function(i,idade,n,b){
                                                                    n-1
             <- 1/(1+i)
        px <- 1-qx
        pxx <- c(1, cumprod(px[(idade+1):(idade+n-1)]) )</pre>
            <- (0:(length(pxx)-1))
        ax <-b*sum(v^(t)*pxx)
        return(ax)
AnuiPostTemp<-function(i,idade,n,b){
             <-1/(1+i)
         px <- 1-qx
        pxx <- cumprod(px[(idade+1):(idade+n)])</pre>
        t <- 1:length(pxx)
         ax <-b*sum(v^(t)*pxx)
        return(ax)
```

EXEMPLO 13:

Seja uma pessoa de 25 anos, mostre que o prêmio puro único pago a um seguro vitalício para essa pessoa, corresponde ao prêmio puro único pago a compra de uma anuidade vitalícia imediata com pagamentos antecipados multiplicado pela função de desconto menos o prêmio puro único de uma anuidade vitalícia imediata com pagamento postecipado para essa mesma pessoa.

$$A_{25} = v\ddot{a}_{25} - a_{25}$$

Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a.

EXEMPLO 13:

$$A_{25} = v\ddot{a}_{25} - a_{25}$$

Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a.

$$A_{25} = v\ddot{a}_{25} - a_{25}$$

$$\sum_{t=0}^{\infty} \left(\frac{1}{1,05}\right)^{t+1} {}_{t} p_{25} q_{25+t} = \left(\frac{1}{1,05}\right) \sum_{t=0}^{\infty} \left(\frac{1}{1,05}\right)^{t} {}_{t} p_{25} - \sum_{t=1}^{\infty} \left(\frac{1}{1,05}\right)^{t} {}_{t} p_{25}$$

$$A_{25} = \sum_{t=0}^{\infty} \left(\frac{1}{1,05}\right)^{t+1} {}_{t} p_{25} q_{25+t} = 0,08320205$$

```
prêmio<-function(benefício,idade,i){
  fator.desconto <- 1/(1+i)
  v <- fator.desconto^(1:((idademaxima - idade)+1))
  pxx <- c(1, cumprod(px[(idade+1):idademaxima]))
  qxx <- c(qx[(idade+1):idademaxima],1)
  Ax <- benefício*sum(v*pxx*qxx)
  return(Ax)
}</pre>
```

$$\left(\frac{1}{1,05}\right)$$
19,25276 - 18,25276 = 0,08320205

$$\ddot{a}_{25} = \sum_{t=0}^{\infty} \left(\frac{1}{1,05}\right)^{t} {}_{t}p_{25} = 19,25276$$

$$a_{25} = \sum_{t=1}^{\infty} \left(\frac{1}{1,05}\right)^t t p_{25} = 18,25276$$

```
AnuiPost<-function(i,idade,b){
f.desconto <- 1/(1+i)
px <- 1-qx
pxx <- cumprod(px[(idade+1):idademaxima])
t <- (1:(length(pxx)))
bx <- b*sum(f.desconto^(t)*pxx)
return(bx)
```

Exemplo de Cálculo de seguros

PortalHalley

https://phalley.shinyapps.io/interface-atuarial/

AppCATU

https://repositorio.ufpb.br/jspui/handle/123456789/1992?locale=pt_BR

R (Lifecontingencies)

https://cran.r-project.org/web/packages/lifecontingencies/lifecontingencies.pdf

Aula 14-Relações entre Anuidade e seguro pago ao final do ano de morte

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>Leonardo.costa@unifal-mg.edu.br</u>

Consideramos um seguro de vida inteiro com tempo discreto (seguro pago no final do ano da morte):

$$A_{x} = \sum_{t=0}^{\infty} v^{t+1} t p_{x} q_{x+t}$$

Assim:

$$A_{x} = \sum_{t=0}^{\infty} v^{t+1} {}_{t} p_{x} - \sum_{t=0}^{\infty} v^{t+1} {}_{t} p_{x} p_{x+t}$$

$$A_{x} = \sum_{t=0}^{\infty} v^{t+1} {}_{t} p_{x} - \sum_{t=0}^{\infty} v^{t+1} {}_{t+1} p_{x}$$

$$A_{x} = \sum_{t=0}^{\infty} v^{t+1} {}_{t} p_{x} - \sum_{t=0}^{\infty} v^{t+1} {}_{t+1} p_{x} = v \sum_{t=0}^{\infty} v^{t} {}_{t} p_{x} - \sum_{t=1}^{\infty} v^{t} {}_{t} p_{x}$$

Lembrando que:

$$\ddot{a}_{x} = \sum_{t=0}^{\infty} v^{t} _{t} p_{x} \qquad a_{x} = \sum_{t=1}^{\infty} v^{t} _{t} p_{x}$$

$$A_{x} = v \sum_{t=0}^{\infty} v^{t} _{t} p_{x} - \sum_{t=1}^{\infty} v^{t} _{t} p_{x}$$

$$A_{x} = v\ddot{a}_{x} - a_{x}$$

$$A_{x} = v\ddot{a}_{x} - a_{x}$$

$$A_{x^1:\overline{n}|} = \nu \ddot{a}_{x:\overline{n}|} - a_{x:\overline{n}|}$$

$$A_{x:\overline{n}|} = \nu \ddot{a}_{x:\overline{n}|} - a_{x:\overline{n-1}|}$$

EXEMPLO 14 Mostre um exemplo que ilustre a relação $A_{x^1:\bar{n}|} = v\ddot{a}_{x:\bar{n}|} - a_{x:\bar{n}|}$

×		qx	рх	lx
3	:5	0,000792	0,999208	978890,5
3	6	0,000794	0,999206	978115,2
3	7	0,000823	0,999177	977338,6
3	8	0,000872	0,999128	976534,2
3	9	0,000945	0,999055	975682,7
4	Ю	0,001043	0,998957	974760,7
4	1	0,001168	0,998832	973744
4	2	0,001322	0,998678	972606,7
4	13	0,001505	0,998495	971320,9
4	4	0,001715	0,998285	969859
4	15	0,001948	0,998052	968195,7
4	16	0,002198	0,997802	966309,7
4	7	0,002463	0,997537	964185,7
4	8	0,00274	0,99726	961810,9
4	19	0,003028	0,996972	959175,6
	Ю	0,00333	0,99667	956271,2
.5	1	0,003647	0,996353	953086,8
.5	2	0,00398	0,99602	949610,9
.5	3	0,004331	0,995669	945831,5
.5	4	0,004698	0,995302	941735,1
5	5	0,005077	0,994923	937310,8

EXEMPLO 15

Determine a variância das seguintes variáveis aleatórias.

a)
$$\ddot{a}_{T_x+1|}$$

b)
$$a_{\overline{T_X}|}$$

c) $Y = \begin{cases} \ddot{a}_{\overline{T+1}|}, & 0 \le T < n \\ \ddot{a}_{\overline{n}|}, & T \ge n \end{cases}$

d)
$$Y = \begin{cases} a_{\overline{T|}} & 0 \le T < n \\ a_{\overline{n|}} & T \ge n \end{cases}$$

SOLUÇÃO (Letra a)

$$A_{x} = v\ddot{a}_{x} - a_{x}$$

$$A_{x} = v\ddot{a}_{x} - (\ddot{a}_{x} - 1)$$

$$\ddot{a}_{x} = \frac{1 - A_{x}}{1 - v}$$

$$\ddot{a}_{\overline{T_x+1|}} = \frac{1-Z_T}{1-v}$$

$$var(\ddot{a}_{T_x+1|}) = var\left(\frac{1-v^{T_x+1}}{1-v}\right) = \frac{var(v^{T_x+1})}{(1-v)^2}$$

$$var(\ddot{a}_{T_x+1|}) = \frac{{}^2A_x - (A_x)^2}{(1-v)^2}$$

SOLUÇÃO (Letra b)

$$1 + a_x = \frac{1 - A_x}{1 - v}$$

$$a_{x} = \frac{v - A_{x}}{1 - v}$$

$$a_{\overline{T_x|}} = \frac{v - Z_T}{1 - v}$$

$$var(a_{\overline{T_x|}}) = var\left(\frac{v - Z_T}{1 - v}\right) = \frac{var(v^{T_x + 1})}{(1 - v)^2}$$

$$var(a_{\overline{T_x|}}) = \frac{{}^2A_x - (A_x)^2}{(1-v)^2}$$

SOLUÇÃO (letra c)

$$A_{x:\bar{n}|} = v\ddot{a}_{x:\bar{n}|} - a_{x:\bar{n}-1|} = v\ddot{a}_{x:\bar{n}|} - (\ddot{a}_{x:\bar{n}|} - 1)$$
$$\ddot{a}_{x:\bar{n}|} = \frac{1 - A_{x:\bar{n}|}}{1 - v}$$

$$Y = \frac{1 - Z_{T_{\mathcal{X}}}}{1 - \nu}$$

$$var(Y) = var\left(\frac{1 - Z_{T_x}}{1 - v}\right) = \frac{1}{(1 - v)^2} var(Z_{T_x})$$

$$var(Y) = \frac{{}^{2}A_{x:\overline{n|}} - (A_{x:\overline{n}|})^{2}}{(1-v)^{2}}$$

SOLUÇÃO (letra c)

$$A_{x:\bar{n}|} = v\ddot{a}_{x:\bar{n}|} - a_{x:\bar{n}-1|} = v\ddot{a}_{x:\bar{n}|} - (\ddot{a}_{x:\bar{n}|} - 1)$$
$$\ddot{a}_{x:\bar{n}|} = \frac{1 - A_{x:\bar{n}|}}{1 - v}$$

$$Y = \frac{1 - Z_{T_{\mathcal{X}}}}{1 - \nu}$$

$$var(Y) = var\left(\frac{1 - Z_{T_x}}{1 - v}\right) = \frac{1}{(1 - v)^2} var(Z_{T_x})$$

$$var(Y) = \frac{{}^{2}A_{x:\overline{n|}} - (A_{x:\overline{n}|})^{2}}{(1-v)^{2}}$$

SOLUÇÃO (letra d)

$$Y = \begin{cases} a_{\overline{T|}} = v \frac{1 - v^T}{1 - v}, 0 \le T < n \\ a_{\overline{n|}} = v \frac{1 - v^n}{1 - v}, T \ge n \end{cases} \rightarrow Y = \begin{cases} a_{\overline{T|}} = \frac{1 - v^T}{i}, 0 \le T < n \\ a_{\overline{n|}} = \frac{1 - v^n}{i}, T \ge n \end{cases}$$

$$Z_{1} = \begin{cases} (1+i)v^{T+1}, & 0 \le T < n \\ 0, & T \ge n \end{cases} \qquad Z_{2} = \begin{cases} 0, & 0 \le T < n \\ v^{n}, & T \ge n \end{cases}$$

$$Y = \frac{(1 - Z_1 - Z_2)}{i}$$

SOLUÇÃO (letra d)

$$var(Y) = var\left(\frac{1 - Z_1 - Z_2}{i}\right) = \frac{var(Z_1 + Z_2)}{i^2}$$

$$var(Y) = \frac{var(Z_1) + var(Z_2) + 2var(Z_1Z_2)}{i^2}$$

• • •

$$var(Y) = \frac{(1+i)^2 \left[{}^2A_{x^1:\overline{n}|} - \left(A_{x^1:\overline{n}|} \right)^2 \right] - 2(1+i)A_{x^1:\overline{n}|}A_{x:\overline{n}|}A_{x:\overline{n}|^1} + \left[v^{2n}_n p_x (1-_n p_x) \right]}{i^2}$$

Variância (Anuidade Vitalícia)

$$var(a_{\overline{T_x|}}) = var(\ddot{a}_{\overline{T_x+1|}})$$

$$var(a_{\overline{T_x|}}) = \frac{{}^2A_x - (A_x)^2}{(1-v)^2}$$

Variância (Anuidade Temporária)

$$Y = \begin{cases} \ddot{a}_{\overline{T+1|}}, & 0 \le T < n \\ \ddot{a}_{\overline{n|}}, & T \ge n \end{cases}$$

$$var(Y) = \frac{{}^{2}A_{x:\overline{n}|} - (A_{x:\overline{n}|})^{2}}{(1-v)^{2}}$$

$$Y = \begin{cases} a_{\overline{T|}} & 0 \le T < n \\ a_{\overline{n|}} & T \ge n \end{cases}$$

$$var(Y) = \frac{(1+i)^2 \left[{}^2A_{x^1:\overline{n}|} - \left(A_{x^1:\overline{n}|}\right)^2 \right] - 2(1+i)A_{x^1:\overline{n}|}A_{x:\overline{n}|}A_{x:\overline{n}|^1} + \left[v^{2n}_n p_x (1-_n p_x) \right]}{i^2}$$

(letra d) continuação

$$E(Y) = a_{x:\overline{n|}} = E\left(\frac{1 - Z_1 - Z_2}{i}\right)$$

$$a_{x:\overline{n|}} = \frac{1 - (1+i)A_{x^1:\overline{n}|} - A_{x:\overline{n}|^1}}{i}$$

$$A_{x^1:\overline{n}|} + A_{x:\overline{n}|^1} + iA_{x^1:\overline{n}|} + i = 1$$

$$A_{x} = v\ddot{a}_{x} - a_{x}$$

$$A_{x^1:\overline{n}|} = \nu \ddot{a}_{x:\overline{n}|} - a_{x:\overline{n}|}$$

$$A_{x:\overline{n}|} = v\ddot{a}_{x:\overline{n}|} - a_{x:\overline{n-1}|}$$

$$A_{x^1:\overline{n}|} + A_{x:\overline{n}|^1} + iA_{x^1:\overline{n}|} + i = 1$$

Aula 15-Anuidades fracionadas

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>Leonardo.costa@unifal-mg.edu.br</u>

Anuidades fracionadas

$$\ddot{a}_{\bar{n}|}^{(m)} = \frac{1}{m} \sum_{t=0}^{n-1} \sum_{k=0}^{m-1} v^{t+\frac{k}{m}} = \frac{1}{m} \sum_{t=0}^{m-1} v^{\frac{t}{m}}$$

$$\ddot{a}_{\bar{n}|}^{(m)} = \frac{1}{m} \left(1 + v^{\frac{1}{m}} + v^{\frac{2}{m}} + \dots + v + \dots + v^{1 + \frac{1}{m}} + \dots + v^{n - \frac{1}{m}} \right) = \frac{1}{m} \left(\frac{1 - \left(v^{\frac{1}{m}}\right)^{mn}}{1 - v^{\frac{1}{m}}} \right)$$

$$a_{\bar{n}|}^{(m)} = \frac{1}{m} \sum_{t=0}^{m-1} \sum_{k=1}^{m} v^{t+\frac{k}{m}} = \frac{1}{m} \sum_{t=1}^{m} v^{\frac{t}{m}}$$

$$a_{\bar{n}|}^{(m)} = \frac{v^{\frac{1}{m}}}{m} \left(1 + v^{\frac{1}{m}} + \dots + v + \dots + v^{1 + \frac{1}{m}} + \dots + v^{n - \frac{1}{m}} \right) = \frac{v^{\frac{1}{m}}}{m} \left(\frac{1 - \left(v^{\frac{1}{m}}\right)^{mn}}{1 - v^{\frac{1}{m}}} \right)$$

Anuidades fracionadas

$$\left| \ddot{a} \frac{(m)}{T + \frac{1}{m}} \right| = \frac{1}{m} \left(\frac{1 - v^{T + \frac{1}{m}}}{1 - v^{\frac{1}{m}}} \right), T \ge 0$$
 $a_{\overline{T}|}^{(m)} = \frac{v^{\frac{1}{m}}}{m} \left(\frac{1 - v^{T}}{1 - v^{\frac{1}{m}}} \right), T \ge 1$

$$\ddot{a}_{x}^{(m)} = \frac{1}{m} \sum_{t=0}^{\infty} v^{\frac{t}{m}} \frac{t}{m} p_{x}$$

$$a_{x}^{(m)} = \frac{1}{m} \sum_{t=1}^{\infty} v^{\frac{t}{m}} \frac{t}{m} p_{x}$$

$$\ddot{a}_{\chi}^{(m)} \approx \ddot{a}_{\chi} - \frac{m-1}{2m}$$

$$a_{\chi}^{(m)} \approx a_{\chi} + \frac{m-1}{2m}$$

Anuidades vitalícias fracionadas

Relação 1.

$$\ddot{a}_{x}^{(m)} \approx \ddot{a}_{x} - \frac{m-1}{2m}$$

$$\ddot{a}_{x} = \sum_{t=0}^{\infty} v^{t} {}_{t} p_{x} = \sum_{t=0}^{\infty} \frac{1-v^{t+1}}{1-v} {}_{t} p_{x} q_{x+t}$$

Relação 2.

$$\boldsymbol{a}_{x}^{(m)} \approx \boldsymbol{a}_{x} + \frac{m-1}{2m}$$

$$\boldsymbol{a}_{x} = \sum_{t=1}^{\infty} v^{t} _{t} p_{x} = \sum_{t=1}^{\infty} v \left(\frac{1-v^{t}}{1-v}\right) _{t} p_{x} q_{x+t}$$

 $\ddot{a}_{x}^{(m)}=\frac{1}{m}+a_{x}^{(m)}$

EXEMPLO 15

Seja uma pessoa de 40 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **Antecipado e postecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro fracionado em pagamentos mensais, a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$\ddot{a}_{40} = R$17,67$$

$$\ddot{a}_{40}^{(12)} \approx 17,67 - \frac{12-1}{2 \times 12} = R\$ 17,21$$

Como $\ddot{a}_x = a_x + 1$

$$a_{40} = R$16,67$$

$$a_{40}^{(12)} \approx 16,67 + \frac{12-1}{2 \times 12} = R$17,12$$

Anuidades temporárias fracionadas

Anuidades vitalícias fracionadas

$$\ddot{a}_{x:\bar{n}|}^{(m)} \approx \ddot{a}_{x:\bar{n}|} - (1 -_n p_x v^n) \left(\frac{m-1}{2m}\right)$$

$$\ddot{a}_{x}^{(m)} \approx \ddot{a}_{x} - \frac{m-1}{2m}$$

$$a_{x:\bar{n}|}^{(m)} \approx a_{x:\bar{n}|} + (1 -_n p_x v^n) \left(\frac{m-1}{2m}\right)$$

$$a_x^{(m)} \approx a_x + \frac{m-1}{2m}$$

$$\ddot{a}_{x}^{(m)} = \frac{1}{m} + a_{x}^{(m)}$$

Anuidades vitalícias diferidas fracionadas

$$_{k|}\ddot{a}_{x}^{(m)} \approx _{k}p_{x}v^{k}\left(\ddot{a}_{x+k} - \frac{m-1}{2m}\right)$$

De forma idêntica

$$a_k|a_x^{(m)} \approx {}_k p_x v^k \left(a_{x+k} + \frac{m-1}{2m}\right)$$