MA1200 CALCULUS AND BASIC LINEAR ALGEBRA I LECTURE: CG1

Chapter 5 Exponential and Logarithmic Functions

Dr. Emíly Chan Page 1

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 5

Exponential Functions

The **exponential function with base** b is defined by

$$f(x) = b^x$$
.

where the constant b (with b > 0 and $b \ne 1$) is called the **base**, and $x \in \mathbb{R}$ is called the **exponent**.

E.g. $f(x)=10^x$, $g(x)=\left(\frac{1}{2}\right)^x$, $h(x)=5^{3x+2}$ are examples of exponential functions. $k(x)=x^{10}$ is NOT an exponential function.

Graphs of exponential functions:

Note that:

- 1. The largest possible domain of $f(x) = b^x$ is $Dom(f) = \mathbb{R}$.
- 2. The largest possible range of $f(x) = b^x$ is $Ran(f) = (0, \infty)$.
- 3. For 0 < b < 1, $f(x) = b^x$ is a strictly decreasing function. $f(x) \to \infty \text{ as } x \to -\infty \text{ and } f(x) \to 0 \text{ as } x \to \infty$
- 4. For b > 1, $f(x) = b^x$ is a **strictly increasing** function. $f(x) \to 0 \text{ as } x \to -\infty \text{ and } f(x) \to \infty \text{ as } x \to \infty$
- 5. For any b (where b > 0 and $b \ne 1$), the graph of $f(x) = b^x$ always cuts the y-axis at y = 1, since $f(0) = b^0 = 1$ for all b > 0. However, it never touches the x-axis, since $f(x) = b^x$ is always positive.
- 6. Since the exponential function $f(x) = b^x$ is either strictly decreasing (for 0 < b < 1) or strictly increasing (for b > 1), $f(x) = b^x$ is a one-to-one function and its inverse $f^{-1}(x)$ exists.

Dr. Emily Chan Page 3

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 5

The graphs of exponential functions with different values of b are shown below.

Note that $y = 1^x$ is not an exponential function, since $y = 1^x = 1$ is a constant function.

Question 1: Compare the graphs of $y = \left(\frac{3}{2}\right)^x$ and $y = 10^x$. What do you observe?

Question 2: Compare the graphs of $y = \left(\frac{3}{2}\right)^x$ and $y = \left(\frac{2}{3}\right)^x$. What do you observe?

Laws of indices:

If a > 0, b > 0, x and y are real numbers, then

(1)
$$a^0 = 1$$

$$(2) \quad a^{x+y} = a^x \cdot a^y$$

$$a^{-x} = \frac{1}{a^x}$$

$$(4) a^{x-y} = \frac{a^x}{a^y}$$

$$(5) \quad (a^x)^y = a^{xy}$$

$$(6) (ab)^x = a^x \cdot b^x$$

(7)
$$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

Natural Base *e*

A special case, in which we consider b = e, where e is defined by the limit of the sequence

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 2.7182818 \dots$$

That is, the value of $\left(1+\frac{1}{n}\right)^n$ approaches the irrational number e=2.7182818... as ngets larger and larger (i.e. as $n \to \infty$). The number e is called the **natural base**. The exponential function with base e, $f(x) = e^x$, is called the **natural exponential function**.

Dr. Emíly Chan Page 5

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 5

Example 1

For each of the following functions, find its largest possible domain and largest possible range, and then sketch its graph.

(a)
$$f(x) = e^{x+1} - 5$$

(b)
$$g(x) = 3 + 2e^{-x}$$

$$f(x) = e^{x+1} - 5$$
 (b) $g(x) = 3 + 2e^{-x}$ (c) $h(x) = 1 - 3\left(\frac{1}{2}\right)^x$

Solution

- (a) Since e^{x+1} is well-defined for all real values of x, the function $f(x) = e^{x+1} 5$ is also well-defined for all real values of x. $\therefore Dom(f) = \mathbb{R}$ For any $x \in Dom(f) = \mathbb{R}$, e^{x+1} is always greater than 0, and thus $f(x) = e^{x+1} - 5$ is always greater than -5. $\therefore Ran(f) = (-5, \infty)$.
- (b) $g(x) = 3 + 2e^{-x}$ is well-defined for all real values of x, so $Dom(g) = \mathbb{R}$. For any $x \in Dom(g) = \mathbb{R}$, we have $e^{-x} > 0$ and thus $g(x) = 3 + 2e^{-x} > 3$. $\therefore Ran(f) = (3, \infty).$

(c) $h(x) = 1 - 3\left(\frac{1}{2}\right)^x$ is well-defined for all real values of x, so $Dom(h) = \mathbb{R}$.

For any
$$x \in Dom(h) = \mathbb{R}$$
, we have $\left(\frac{1}{2}\right)^x > 0 \implies -3\left(\frac{1}{2}\right)^x < 0$

$$\Rightarrow h(x) = 1 - 3\left(\frac{1}{2}\right)^x < 1. \text{ Thus, } Ran(f) = (-\infty, 1).$$

Graphs:

(a)
$$f(x) = e^{x+1} - 5$$

(b)
$$g(x) = 3 + 2e^{-x}$$

(c)
$$h(x) = 1 - 3\left(\frac{1}{2}\right)^x$$

Dr. Emily Chan Page 7

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 5

Inverse function of b^x

The exponential function $f(x) = b^x$ (with b > 0 and $b \ne 1$) is a one-to-one function and thus it has an inverse. Its inverse is

$$f^{-1}(x) = \log_h x,$$

which is called the logarithmic function with base b.

Logarithmic Functions

The **logarithmic function with base b** is defined as

$$f(x) = \log_b x$$

for x > 0. For $y = \log_b x$, the constant b (with b > 0 and $b \ne 1$) is called the base, and yis called the **exponent**.

$$y = \log_b x \quad \Leftrightarrow \quad x = b^y$$

Here, $y = \log_b x$ is the <u>logarithmic form</u> and $b^y = x$ is the <u>exponential form</u>.

Note that exponential function is the inverse function of logarithmic function.

Dr. Emily Chan

Write down each equation in its equivalent exponential form.

- (a) $2 = \log_5 x$
- (b) $3 = \log_b 64$
- (c) $\log_3 7 = y$

Solution

- (a) $2 = \log_5 x$ means $5^2 = x$.
- (b) $3 = \log_b 64$ means $b^3 = 64$.
- (c) $\log_3 7 = y$ means $3^y = 7$.

Example 3

Write down each equation in its equivalent logarithmic form.

- (a) $12^2 = r$
- (b) $b^3 = 8$
- (c) $e^a = 9$

Solution

- (a) $12^2 = r$ means $2 = \log_{12} r$.
- (b) $b^3 = 8$ means $3 = \log_b 8$.
- (c) $e^a = 9$ means $a = \log_e 9$.

Dr. Emíly Chan Page 9

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 5

Graphs of logarithmic functions:

Note that:

- 1. The logarithmic function $f(x) = \log_b x$ is only defined for positive values of x.
 - \therefore The largest possible domain of $f(x) = \log_b x$ is $Dom(f) = (0, \infty)$.
- 2. The largest possible range of $f(x) = \log_b x$ is $Ran(f) = \mathbb{R}$.
- 3. For 0 < b < 1, $f(x) = \log_b x$ is a **strictly decreasing** function.
- 4. For b > 1, $f(x) = \log_b x$ is a **strictly increasing** function.
- 5. For any b (where b>0 and $b\neq 1$), the graph of $f(x)=\log_b x$ always cuts the x-axis at x=1, i.e. $f(1)=\log_b 1=0$ for all b>0 and $b\neq 1$. However, it never cuts the y-axis, since $f(x)=\log_b x$ is not defined at zero or negative values of x.

Two commonly used logarithms:

- If the base b = 10, $\log_{10} x$ is called the **common logarithm**, usually denoted by $\log x$.
- If the base b=e (the natural number), $\log_e x$ is called the **natural logarithm**, usually denoted by $\ln x$.

The graphs of logarithmic functions with different values of b are shown below.

Dr. Emíly Chan Page 11

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 5

Properties of logarithms:

- (1) For any real number x, $\log_b b^x = x$.
- (2) For any real number x > 0, $b^{\log_b x} = x$.
- (3) For any real numbers x > 0 and n, $\log_b x^n = n \log_b x$.
- (4) For any real numbers x > 0 and y > 0, $\log_b(xy) = \log_b x + \log_b y$
- (5) For any real numbers x > 0 and y > 0, $\log_b \left(\frac{x}{y}\right) = \log_b x \log_b y$.
- (6) For any real numbers x > 0, a > 1 and b > 1, $\log_b x = \frac{\log_a x}{\log_a b}$.

In general,

- 1. $\log_b(x+y) \neq \log_b x + \log_b y.$
- $2. \qquad (\log_b x)^2 \neq \log_b(x^2).$
- 3. $\frac{\log_b x}{\log_b y} \neq \frac{x}{y}, \quad \frac{\log_b x}{\log_b y} \neq \log_b \left(\frac{x}{y}\right)$

Simplify each of the following:

- (a) $\log_3\left(\frac{1}{81}\right)$
- (b) $2\log_{10} 5 + \log_{10} 4 5^{\log_5 3} + \log_2 16$

Solution

(a)
$$\log_3\left(\frac{1}{81}\right) = \log_3\left(\frac{1}{3^4}\right) = \log_3(3^{-4}) = -4 \underbrace{\log_3 3}_{=1} = -4$$

(b)
$$2\log_{10} 5 + \log_{10} 4 - 5^{\log_5 3} + \log_2 16 =$$

Dr. Emíly Chan Page 13

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 5

Example 5

If
$$2^x = 3^y = 12^z$$
, show that $xy = z(x + 2y)$.

Solution

Natural logarithm

Logarithmic function with base e is called **natural logarithmic function**, denoted by $f(x) = \log_e x$ or $f(x) = \ln x$.

$$y = \ln x \iff x = e^y$$

Exponential function is the inverse function of logarithmic function, that is, the inverse function of $f(x) = \ln x$ is $f^{-1}(x) = e^x$.

Thus,
$$Dom(f) = Ran(f^{-1}) = (0, \infty)$$
 and $Ran(f) = Dom(f^{-1}) = \mathbb{R}$.

The graphs of $y = \ln x$ and $y = e^x$ are shown below.

Dr. Emíly Chan Page 15

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 5

Note that:

- (i) The graph of $y = \ln x$ is the reflection of the graph of $y = e^x$ about the line y = x.
- (ii) Both $y = \ln x$ and $y = e^x$ are strictly increasing functions.
- (iii) $\ln 1 = 0$ (i.e. the graph of $y = \ln x$ crosses the x-axis at x = 1.)
- (iv) $\ln x < 0$ for 0 < x < 1
- (v) $\ln x > 0$ for x > 1
- (vi) The value of $\ln x$ approaches to $-\infty$ as x tends to 0 from the right. That is,

$$\lim_{x \to 0^+} \ln x = -\infty$$

The value of $\ln x$ approaches to ∞ as x gets larger and larger. That is,

$$\lim_{x \to \infty} \ln x = \infty$$

(The limit of a function will be discussed in Chapter 6.)

For each of the following functions, find its largest possible domain and largest possible range, and then sketch its graph.

(a)
$$f(x) = 2 + \ln \frac{1}{x}$$

(b)
$$g(x) = 4 + \log \frac{x+1}{1000}$$

Solution

(a) $f(x) = 2 + \ln \frac{1}{x}$ is well-defined when $\frac{1}{x} > 0$ and $x \neq 0$, i.e. when x > 0. $\therefore Dom(f) = (0, \infty)$.

The function can be written as

$$f(x) = 2 + \ln \frac{1}{x} = 2 + \ln(x^{-1}) = 2 + (-1) \ln x = 2 - \ln x.$$

For any $x \in Dom(f) = (0, \infty)$, $\ln x$ can be any real number and thus $2 - \ln x$ can be any real number.

$$\therefore Ran(f) = \mathbb{R}.$$

Dr. Emíly Chan Page 17

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 5

(b) $g(x) = 4 + \log \frac{x+1}{1000}$ is well-defined when $\frac{x+1}{1000} > 0$, i.e. x > -1.

$$\therefore Dom(g) = (-1, \infty).$$

The function can be written as

$$g(x) = 4 + \log \frac{x+1}{1000} = 4 + \log(x+1) - \log 1000 = 4 + \log(x+1) - \log 10^3$$
$$= 4 + \log(x+1) - 3 = 1 + \log(x+1)$$

For any $x \in Dom(g) = (-1, \infty)$, $\log(x+1)$ can be any real number and thus $g(x) = 1 + \log(x+1)$ can be any real number. $\therefore Ran(f) = \mathbb{R}$.

Sketches

For each of the following functions, find its inverse function.

(a)
$$f(x) = e^{x+1} - 5$$

(b)
$$g(x) = 3 + 2e^{-x}$$

$$f(x) = e^{x+1} - 5$$
 (b) $g(x) = 3 + 2e^{-x}$ (c) $h(x) = 1 - 3\left(\frac{1}{2}\right)^x$

(d)
$$f(x) = 2 + \ln \frac{1}{x}$$

(d)
$$f(x) = 2 + \ln \frac{1}{x}$$
 (e) $g(x) = 4 + \log \frac{x+1}{1000}$

Solution

(a) Let
$$y = e^{x+1} - 5$$
.

Then
$$e^{x+1} = y + 5 \Rightarrow \underbrace{\ln(e^{x+1})}_{=x+1} = \ln(y+5) \Rightarrow x = \ln(y+5) - 1$$

$$\therefore f^{-1}(x) = \ln(x+5) - 1$$

(b) Let
$$y = 3 + 2e^{-x}$$
.

Then
$$e^{-x} = \frac{y-3}{2} \Rightarrow -x = \ln\left(\frac{y-3}{2}\right) \Rightarrow x = -\ln\left(\frac{y-3}{2}\right) = \ln\left(\frac{2}{y-3}\right)$$

$$\therefore g^{-1}(x) = \ln\left(\frac{2}{x-3}\right)$$

Dr. Emíly Chan Page 19

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 5

(c) Let
$$y = 1 - 3\left(\frac{1}{2}\right)^x$$
.

(d) Let
$$y = 2 + \ln \frac{1}{x}$$
.
Then $\ln \frac{1}{x} = y - 2 \implies \frac{1}{x} = e^{y-2} \implies x = \frac{1}{e^{y-2}} = e^{2-y}$
 $\therefore f^{-1}(x) = e^{2-x}$

(e) Let
$$y = 4 + \log \frac{x+1}{1000}$$
.

Dr. Emily Chan

Determine the largest possible domain and largest possible range of the function $f(x) = \ln\left(\frac{x+2}{x-1}\right)$.

Solution

The function $f(x) = \ln\left(\frac{x+2}{x-1}\right)$ is well-defined when $\frac{x+2}{x-1} > 0$ and $x-1 \neq 0$.

	x < -2	x = -2	-2 < x < 1	x=1	x > 1
Sign of $x + 2$	_	0	+		+
Sign of $x-1$	_	_	_		+
Sign of $\frac{x+2}{x-1}$	+	0	_		+

The largest possible domain of f(x) is $Dom(f) = (-\infty, -2) \cup (1, \infty)$.

Let
$$y = \ln\left(\frac{x+2}{x-1}\right)$$
. Then $e^y = \frac{x+2}{x-1} \Rightarrow e^y(x-1) = x+2 \Rightarrow x(e^y-1) = e^y+2$
 $\Rightarrow x = \frac{e^y+2}{e^y-1}$.

In the last expression, y can be any real number except when $e^y = 1$, i.e. $y = \ln 1 = 0$.

 \therefore The largest possible range of f(x) is $Ran(f) = \mathbb{R} \setminus \{0\}$.

Dr. Emily Chan Page 21

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 5

Example 9

Solve each of the following equations for x.

(a)
$$2^x = 16$$

(b)
$$3^{x-1} = 81$$

(c)
$$3^x = 17$$

(b)
$$3^{x-1} = 81$$
 (c) $3^x = 17$ (d) $3 \cdot 5^{2x-1} + 2 = 17$

Solution

(a)
$$2^x = 16 = 2^4 \implies x = 4$$

(b)
$$3^{x-1} = 81 = 3^4 \implies x - 1 = 4 \implies x = 5$$

(c)
$$3^x = 17$$

Take natural logarithm on both sides:

$$\ln 3^x = \ln 17 \implies x \ln 3 = \ln 17 \implies x = \frac{\ln 17}{\ln 3} \approx 2.5789$$

(d)
$$3 \cdot 5^{2x-1} + 2 = 17 \implies 3 \cdot 5^{2x-1} = 15 \implies 5^{2x-1} = 5 \implies 2x - 1 = 1 \implies x = 1$$

Solve each of the following equations for x.

(a)
$$ln(x^3) = 2 ln 5$$

(b)
$$5^{2x-1} = 12 \cdot 3^x$$

(c)
$$\log_2(x+5) + \log_2(x-2) = 3$$

(d)
$$e^x - 8e^{-x} = 7$$

Solution

(a)
$$\ln(x^3) = 2 \ln 5$$

Taking natural exponential on both sides, we get

$$e^{\ln(x^3)} = e^{2\ln 5} \implies x^3 = e^{\ln(5^2)} \implies x^3 = 5^2 \implies x = 5^{\frac{2}{3}}$$

(b)
$$5^{2x-1} = 12 \cdot 3^x$$

Taking natural logarithm on both sides, we get

$$\ln(5^{2x-1}) = \ln(12 \cdot 3^x) \quad \Rightarrow \quad (2x-1)\ln 5 = \ln 12 + \underbrace{\ln 3^x}_{=x \ln 3}$$

$$\Rightarrow \quad x(2\ln 5 - \ln 3) = \ln 12 + \ln 5$$

$$\Rightarrow \quad \boxed{x = \frac{\ln 12 + \ln 5}{2\ln 5 - \ln 3}}$$

Dr. Emily Chan Page 23

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 5

(c)
$$\log_2(x+5) + \log_2(x-2) = 3 \implies \log_2[(x+5)(x-2)] = 3$$

Taking exponential with base 2 on both sides, we get

$$2^{\log_2[(x+5)(x-2)]} = 2^3$$

$$\Rightarrow (x+5)(x-2) = 8$$

$$\Rightarrow x^2 + 3x - 10 = 8$$

$$\Rightarrow x^2 + 3x - 18 = 0$$

$$\Rightarrow (x-3)(x+6) = 0$$

$$\Rightarrow x-3 = 0 \quad \text{or} \quad x+6 = 0$$

$$\Rightarrow x = 3 \quad \text{or} \quad x = -6 \text{ (rejected since } \log_2(x+5) \text{ and } \log_2(x-2)$$

$$\text{are not defined when } x = -6)$$

$$\therefore$$
 $x = 3$

(d)
$$e^x - 8e^{-x} = 7$$

Dr. Emily Chan Page 25

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 5

Hyperbolic functions

For any real value x, the **hyperbolic sine** function ($\sinh x$) and the **hyperbolic cosine** function ($\cosh x$) are defined as

$$\left[\sinh x = \frac{1}{2}(e^x - e^{-x})\right]$$
 and $\left[\cosh x = \frac{1}{2}(e^x + e^{-x})\right]$, respectively.

Note that $\sinh x \neq \sin(hx)$, $\cosh x \neq \cos(hx)$.

Remark:

Recall that cosine and sine are called **circular functions** because, for any $t \in \mathbb{R}$, the point $(\cos t \, , \sin t)$ lies on the circle with equation $x^2 + y^2 = 1$. Similarly, hyperbolic cosine and hyperbolic sine are called **hyperbolic functions** because, for any $t \in \mathbb{R}$, the point $(\cosh t \, , \sinh t)$ lies on the hyperbola with equation $x^2 - y^2 = 1$ (see Example 11(a)).

Prove the following:

- (a) $\cosh^2 x \sinh^2 x = 1$
- (b) $\cosh^2 x + \sinh^2 x = \cosh(2x)$

Solution

(a)
$$\cosh^2 x - \sinh^2 x = \left[\frac{1}{2}(e^x + e^{-x})\right]^2 - \left[\frac{1}{2}(e^x - e^{-x})\right]^2$$

$$= \left[\frac{1}{4}\left(e^{2x} + 2\underbrace{e^x \cdot e^{-x}}_{=1} + e^{-2x}\right)\right] - \left[\frac{1}{4}\left(e^{2x} - 2\underbrace{e^x \cdot e^{-x}}_{=1} + e^{-2x}\right)\right]$$

$$= \frac{4}{4}$$

$$= 1$$

 $\therefore \cosh^2 x - \sinh^2 x = 1.$

Dr. Emíly Chan Page 27

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 5

(b)
$$\cosh^2 x + \sinh^2 x = \left[\frac{1}{2}(e^x + e^{-x})\right]^2 + \left[\frac{1}{2}(e^x - e^{-x})\right]^2$$

$$= \left[\frac{1}{4}\left(e^{2x} + 2\underbrace{e^x \cdot e^{-x}}_{=1} + e^{-2x}\right)\right] + \left[\frac{1}{4}\left(e^{2x} - 2\underbrace{e^x \cdot e^{-x}}_{=1} + e^{-2x}\right)\right]$$

$$= \frac{1}{2}(e^{2x} + e^{-2x})$$

$$= \cosh(2x)$$

 $\therefore \cosh^2 x + \sinh^2 x = \cosh(2x)$

Other identities

- ho $\cosh(x+y) = \frac{\cosh x \cosh y + \sinh x \sinh y}{\cosh x \cosh y + \sinh x \sinh y}$
- $ightharpoonup \sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$
- $> \cosh(2x) = \cosh^2 x + \sinh^2 x = 1 + 2\sinh^2 x = 2\cosh^2 x 1$
- $ightharpoonup \sinh(2x) = 2\sinh x \cosh x$

Exercise: Prove each of the above identities by using the definitions of $\sinh x$ and $\cosh x$.

For each of the hyperbolic functions $\sinh x$ and $\cosh x$, determine whether it is an even function, odd function, or neither of them.

Solution

Let $f_1(x) = \sinh x$, then

$$f_1(-x) = \sinh(-x) = \frac{1}{2} (e^{-x} - e^{-(-x)}) = -\frac{1}{2} (e^x - e^{-x}) = -\sinh x = -f_1(x).$$

 $f_1(x) = \sinh x$ is an **odd** function.

Let $f_2(x) = \cosh x$, then

$$f_2(-x) = \cosh(-x) = \frac{1}{2}(e^{-x} + e^{-(-x)}) = \cosh x = f_2(x).$$

 $\therefore f_2(x) = \cosh x$ is an **even** function.

Dr. Emily Chan Page 29

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 5

Graphs of hyperbolic sine and hyperbolic cosine functions

$$y = \sinh x = \frac{1}{2}(e^x - e^{-x})$$

y = co

$$y = \cosh x = \frac{1}{2}(e^x + e^{-x})$$

Domain = \mathbb{R}

Domain = \mathbb{R}

Range = \mathbb{R}

Range = $[1, \infty)$

Odd function

Even function

$$sinh(-x) = - sinh x$$

 $\cosh(-x) = \cosh x$

Solve each of the following equations for x.

- $\cosh 3x = 2$
- (b) $4 \sinh x = 3 \cosh x$
- (c) $\cosh 2x = 3 \sinh x$

Solution

(a)
$$\cosh 3x = 2$$
 $\Rightarrow \frac{1}{2}(e^{3x} + e^{-3x}) = 2$
 $\Rightarrow e^{3x} + e^{-3x} = 4$
 $\Rightarrow e^{6x} + 1 = 4e^{3x}$
 $\Rightarrow e^{6x} - 4e^{3x} + 1 = 0$

Let $y = e^{3x}$. Then we have $y^2 - 4y + 1 = 0$. By the quadratic equation formula,

$$y = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(1)}}{2(1)} = \frac{4 \pm \sqrt{12}}{2} = \frac{4 \pm 2\sqrt{3}}{2} = 2 \pm \sqrt{3}$$

$$\therefore e^{3x} = 2 + \sqrt{3}$$

$$e^{3x} = 2 + \sqrt{3}$$
 or $e^{3x} = 2 - \sqrt{3}$

$$\Rightarrow$$
 $3x = \ln(2 + \sqrt{3})$

$$\Rightarrow$$
 $3x = \ln(2 + \sqrt{3})$ or $3x = \ln(2 - \sqrt{3})$

$$\Rightarrow x = \frac{1}{3}\ln(2+\sqrt{3}) \quad \text{or} \quad x = \frac{1}{3}\ln(2-\sqrt{3})$$

Dr. Emily Chan Page 31

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 5

(b)
$$4 \sinh x = 3 \cosh x \implies \frac{\sinh x}{\cosh x} = \frac{3}{4}$$

$$\Rightarrow \frac{1}{\cosh x} = \frac{1}{4}$$

$$\Rightarrow \frac{\frac{1}{2}(e^x - e^{-x})}{\frac{1}{2}(e^x + e^{-x})} = \frac{3}{4}$$

$$\Rightarrow 4(e^x - e^{-x}) = 3(e^x + e^{-x})$$

$$\Rightarrow e^x - 7e^{-x} = 0$$

$$\Rightarrow e^{2x} - 7 = 0$$

$$\Rightarrow e^{2x} = 7$$

$$\Rightarrow 2x = \ln 7$$

$$\Rightarrow \left[x = \frac{1}{2} \ln 7 \right]$$

(c) $\cosh 2x = 3 \sinh x$

Dr. Emily Chan Page 33

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 5

Other hyperbolic functions (for your reference)

The hyperbolic tangent $(\tanh x)$, hyperbolic secant $(\operatorname{sech} x)$, hyperbolic cosecant $(\operatorname{csch} x)$, and hyperbolic cotangent $(\operatorname{coth} x)$ functions are defined as follows:

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$\operatorname{csch} x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}$$

$$\operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}$$

$$\coth x = \frac{1}{\tanh x} = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$