Comp5631/CSIT5710: Cryptography and Security 2019 Fall – Written Assignment Number 2

Handed out: on October 20, 2017

Due: on October 31 for COMP4631 and Nov. 1 for CSIT5710 at the beginning of the lecture

Assignments handed in during class will lose marks. No assignments will be accepted after class. No email submission will be accepted.

Q1. Let p be a prime and α be a primitive root modulo p. The ElGamal public-key cipher $(\mathcal{M}, \mathcal{C}, \mathcal{K}_e, \mathcal{K}_d, E_{k_e}, D_{k_d})$ is defined as follows:

•
$$\mathcal{M} = \mathbf{Z}_p^* = \{1, 2, 3, \dots, p-1\}, \ \mathcal{C} = \mathbf{Z}_p^* \times \mathbf{Z}_p^*, \ \mathcal{K}_e = \{p\} \times \{\alpha\} \times \mathbf{Z}_p^*, \ \mathcal{K}_d = \mathbf{Z}_{p-1}.$$

A user first chooses a random number u in \mathbf{Z}_{p-1} as his private key $k_d := u$, then publicizes his public key $k_e = (p, \alpha, \beta)$, where $\beta = \alpha^u \mod p$.

To encrypt a message x with a public key $k_e = (p, \alpha, \beta)$, one picks up a (secret) random number $v \in \mathbf{Z}_{p-1}$, and then does the encryption as follows:

$$E_{k_e}(x,v) = (y_1, y_2),$$

where $y_1 = \alpha^v \mod p$, and $y_2 = x\beta^v \mod p$.

When the receiver receives the ciphertext $(y_1, y_2) \in \mathbf{Z}_p^* \times \mathbf{Z}_p^*$, he does the decryption as follows:

$$D_{k_d}(y_1, y_2) = y_2 \left(y_1^{k_d}\right)^{-1} \mod p,$$

where $(y_1^{k_d})^{-1}$ denotes the multiplicative inverse of $y_1^{k_d}$ modulo p. Prove that the decryption process above is correct.

Q2. Consider the Paillier cipher introduced in Lecture 10. Suppose that the random integer g is chosen of the form

$$g = (1+n)^{\alpha} \beta^n \bmod n^2,$$

where α and β are in \mathbf{Z}_n^* . Prove that

$$m = L(c^{\lambda} \mod n^2) \mu \mod n = \frac{L(c^{\lambda} \mod n^2)}{L(g^{\lambda} \mod n^2)} \mod n.$$

This is to prove the correctness of the decryption process. You may use the following theorem:

Carmichael's theorem: For any $r \in \mathbf{Z}_{n^2}^*$, we have $r^{n\lambda} = 1 \mod n^2$. 20 marks

Q3. Suppose that RSA and a hash function f are used for digital signature. The standard approach is the following:

- 1. The signer computes a hash value f(m) of the message m.
- 2. The signer then uses his/her private key k_d to compute his digital signature $D_{k_d}(f(m))$.

A student suggests an alternative approach. His idea is that the signer computes $D_{k_d}(m)$ as the digital signature of the message m and then sends $m||D_{k_d}(m)$ to the receiver. Assume that the public-key cipher and the hash function f are well designed? Is the scheme proposed by the student secure? Justify your answer briefly.

Q4. The following is one method of constructing a hash function from a given block cipher.

Building block: A one-key block cipher $(\mathcal{M}, \mathcal{C}, \mathcal{K}, E_k, D_k)$, where E_k maps a block of n bits into a block of n bits, and the secret key k has also n bits.

Computing the hash value: Given a message m, divide it into blocks of length n, $m = m_1 m_2 m_3 \cdots m_t$ The hash value H is computed as follows:

$$H(m) = E_k(m_1) \oplus E_k(m_2) \oplus \cdots \oplus E_k(m_t),$$

where

$$k = m_1 \oplus m_2 \oplus \cdots \oplus m_t,$$

and \oplus denotes the bitwise exclusive-or operation.

Find a collision of this hash function H, i.e, two distinct messages m and m' such that H(m) = H(m').

Q5. Show that the Diffie-Hellman Key Agreement Protocol described in Lecture 6 is not secure with respect to active attacks. Hint: Consider an intruder-in-the-middle attack.