Factorization Machines

Sebastian Prillo

UBA - Seminario de Machin Lenin

Content-Based Filtering vs Collaborative Filtering

COLLABORATIVE FILTERING

CONTENT-BASED FILTERING

Content-Based Filtering: Ejemplo

Content-Based Filtering: Ejemplo

- Singer
- Composer
- Bitrate
- Length
- Instrument
- Genre
- Language
- Year
- Chord
- Subject
- ...

Content-Based Filtering: Ejemplo

$$S(O_i, O_j) = \omega_1 f(A_{1i}, A_{1j}) + \omega_2 f(A_{2i}, A_{2j}) + \dots + \omega_n f(A_{ni}, A_{nj})$$

Content-Based Filtering: Limitaciones

- Las representaciones de los items las construimos a mano.
- Que pasa si tenemos items de categorias distintas? ej: Televisores, libros, computadoras, Como defino su similitud?

Collaborative Filtering resuelve estos problemas (pero necesita mucha mas data)

Collaborative Filtering

Collaborative Filtering: Matrix Factorization

Low-Rank Matrix Factorization:

Iterate:

$$f[i] = \arg\min_{w \in \mathbb{R}^d} \sum_{j \in \text{Nbrs}(i)} (r_{ij} - w^T f[j])^2 + \lambda ||w||_2^2$$

Content-Based Filtering: Limitaciones (Revisited)

- Las representaciones de los items las construimos a mano.
 - ⇒ MF aprende solo las representaciones de los items y usarios! (son los vectores latentes que encuentra)
- Que pasa si tenemos items de categorias distintas? ej: Televisores, libros, computadoras, Como defino su similitud?
 - ⇒ Las representaciones son compatibles!

Matrix Factorization: Limitaciones

⇒ TIRE TODA MI METADATA ←

Factorization Machines

\bigcap	Feature vector x															ľ	Tarç	get y					
X ⁽¹⁾	1	0	0		1	0	0	0		0.3	0.3	0.3	0		13	0	0	0	0			5	y ⁽¹⁾
X ⁽²⁾	1	0	0		0	1	0	0		0.3	0.3	0.3	0		14	1	0	0	0			3	y ⁽²⁾
X ⁽³⁾	1	0	0		0	0	1	0		0.3	0.3	0.3	0		16	0	1	0	0			1	y ⁽²⁾
X ⁽⁴⁾	0	1	0		0	0	1	0		0	0	0.5	0.5		5	0	0	0	0			4	y ⁽³⁾
X ⁽⁵⁾	0	1	0		0	0	0	1		0	0	0.5	0.5		8	0	0	1	0			5	y ⁽⁴⁾
X ⁽⁶⁾	0	0	1		1	0	0	0		0.5	0	0.5	0		9	0	0	0	0			1	y ⁽⁵⁾
X ⁽⁷⁾	0	0	1		0	0	1	0		0.5	0	0.5	0		12	1	0	0	0			5	y ⁽⁶⁾
	Α	A B C User			п	TI NH SW ST . Movie				TI NH SW ST Other Movies rated						TI NH SW ST Last Movie rated					I		

$$\hat{y}(x) = w_0 + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle v_i, v_j \rangle x_i x_j$$

- Anda sobre cualquier dataset, no solo user-item.
- Cuando tengo solo user-item, es equivalente a MF.

Factorization Machines

Una forma elemental de pensarlo: FMs = modelo lineal + k hyperplanos al cuadrado.

$$\hat{y}(x) = w_0 + \sum_{i=1}^n w_i x_i + \frac{1}{2} \sum_{f=1}^k \left(\left(\sum_{i=1}^n v_{i,f} x_i \right)^2 - \sum_{i=1}^n v_{i,f}^2 x_i^2 \right)$$

O sea, FMs = un modelo lineal al que le sumamos una no-linealidad muy sencilla.

DEMO