TEORÍA DE STURM

Se trata de obtener información sobre el mumero de cerso de las soluciones de ecuaciones lineales de segundo orden homogéneas del tipo

con a, b e C(I), I intervalo abrerto de IR.

OBSERVACION- Por unicided, si (911) es una solución no trivial de (11) ((11)), los cerco de (11) si eccioten, son sumples.

En efecto, si $to \in I$ es tal que (lto) = 0 = (l'lto), la unicidad de solución del p.v.i. para (E) mos aseguraria que (q=0).

Dada la ecuación (E), definimos (fyado to EI)

plt) = e la cuación (E), definimos (fyado to EI)

PE $C^1(I)$, P(E) > 0, $\forall E \in I$ y $q \in C(I)$. Además, multiplicando (E) por P(E) (observar que · · · $P(E) \neq 0$, $\forall E \in I$),

(E) N p(t) y" + at) p(t) y' + b(t) p(t) y = 0

(p(±)y') + q(±)y = 0 (E*)

es decir, la ecuación de partida es equivalente a (E*).

La ecuación (E*) se dice de está en forma autoadjunta o en forma de Sturm-Liouville.

Reciprocamente, si tenemos una ecuación en forma autoadjunta con $PEC^{1}(I)$, P(E)>0, EEI y qEC(I),

(E*) N P(+) y" + p'(+) y' + q(+) y = 0.

Como pH+0, teI,

 (E^*) N $y'' + \frac{P(1)}{P(1)}y' + \frac{q(1)}{P(1)}y = 0$.

Definiendo alt) = PIt) y blt) = qlt , a, b ∈ C(I) y (E*) eo equiva_ lente a (E).

Co Toda ecuación diferencial lineal de segundo orden admite una forma autoadjunta.

Vamos a trabajar con la ecuación en esa forma.

TEOREMA 1 - (DE COMPARACIÓN DE STURM). Seam PE C1(I), Plt)>0, teI y q1, q2 ∈ C(I) con q1t) ∠q2tt), t∈I. Consideramos las ecuaciones (1) (plt) y1)+ q1(t) y = 0,

(2) (p|t)y') + 92(t)y=0.

Entonces, entre cada dos ceros consecuturos de cualquier solución de (1) se amula toda solución de la ecuación (2).

Supongamos que texte son des ceres consecuturos de una solución metrura (9, (+) de la ecuación (1). Cambiando, se es mecesario, 4, por - 4, podemos

4, (t) = 9,(t2) = 0 y 4, (t) >0, te (t1, t2)

Sea (92/t) una solución de (2) y supongamos que (92/t) +0, para todo t E (t1, t2). Como antes, cambrando de signo 42 se es mecesario, podemos suponer (2(t)>0, te (t1, t2).

(Pilt) es solución de la ecuación (i). luego (pH) (pH) + qi H) + qi H) = 0, teI, C=1,2. Multiplicando la primera ecuación por (2/t), la segunda por (2/t), restando entre L, y t2, queda

$$\int_{t_{1}}^{t_{2}} (\rho|t) \varphi_{1}^{l}|t) \varphi_{2}|t| dt - \int_{t_{1}}^{t_{2}} (\rho|t) \varphi_{2}^{l}|t|) \varphi_{1}|t| dt = \int_{t_{1}}^{t_{2}} (q_{2}|t) - q_{1}|t|) \varphi_{1}|t| \varphi_{2}|t| dt$$

$$||t| + ||t|| +$$

Ahona bien, $p(t_3), p(t_2) > 0$, $\varphi_2(t_3), \varphi_2(t_2) \ge 0$ y $\varphi_1'(t_2) < 0$, $\varphi_1'(t_3) > 0$ ya que $\varphi_1(t_1) = \varphi_1(t_2) = 0$, $\varphi_1(t) > 0$, $t \in (t_1, t_2)$ y los cerco de φ_1 som sumples.

$$\Rightarrow \int_{t_1}^{t_2} (q_2|t) - q_1|t) (q_1|t) (q_2|t) dt \leq 0 \quad \text{if } (q_2|t) - q_1|t) > 0, \ t \in (t_1, t_2)$$

$$(q_2|t) - q_1|t) > 0, \ t \in (t_1, t_2)$$

Por tambo, excepte t*E(tzitz) tal que 92(t*)=0.

EJEMPLOS -

1. (1)
$$y'' + n^2y = 0$$

(2) $y'' + m^2y = 0$
 $n < m$ $p! = 1$
 $q_1! = n$ $T = \mathbb{R}$
 $q_2! = m$

Entre cada dos ceres consecutivos de cualquier solución de (1) se anula toda solución de (2).

Por ejemplo, n=1, m=2, A=0, B=1, A=1, B=0,

2. Jea $q \in C(I)$, con q(t) < 0, $t \in I$. Toda solución de (*) y'' + q(t) y = 0 se anula a la suma una vez.

En efecto, supongamos que uma solución de (*) admite dos censos. Sean £, < £, dos ceros consecutivos de esta solución. Por el terrema anterior, toda solución de la ecuación

(**) A, =0 (d(f)<0)

detre anularse en el intervals (t1, t2). Pero y (t) = A, A \in \in \text{R} es solución de (**) y mo se anula.

3. Toda solucion de la ecuación

time infinites ceros. $y'' + \frac{t^2}{t^2 + 1} y = 0$

on efecto, $q_2(t) = \frac{t^2}{t^2+1} \rightarrow 1$, $t \rightarrow +\infty$, per tanto, excete T>0 to $q_2(t)>\frac{1}{2}$, $t \in [T_1+\infty)$.

Tomamos $I = (T_1 + \infty)$ y $q_1(t) = \frac{1}{4}$. La función $q_1(t) = \sec \frac{t}{2}$ tiene infinites ceras en $(T_1 + \infty) = 0$ toda solución de la ecuación de partida se anula infinitas veces en $(T_1 + \infty)$.

TEOREM 2- (DE SEPARACIÓN DE STURM). Lean pe C¹(I), plt)>0, teI y qe C(I) y seam 4, 1/2 dos soluciones linealmente independientes de la ecuación

Entonces, entre cools des ceros consecutives de (91t) se anula (92tt) y viceversa.

-D-

Sean t_1 y t_2 des ceres consecutives de f_1 . Como en el caso anterior podemos suponea que $f_1(t) > 0$, $t \in (t_1, t_2)$.

Supongamos que (2|1) no se anula en (t_1,t_2) , por ejemple, que (2|1)>0, $t\in(t_1,t_2)$.

Ahora 4, y 42 cumplen respectivamente

Trabajando como en la demostración anteren se obliene

$$\int_{t_{2}}^{t_{2}} (p(t) \varphi_{2}^{l}(t))^{l} \varphi_{2}(t) dt - \int_{t_{2}}^{t_{2}} (p(t) \varphi_{2}^{l}(t))^{l} \varphi_{2}(t) dt = 0,$$

e integrando por partes como antes,

luego, como (filtz) = (fitz) = 0

P(tz) (filtz) (fitz) - p(tz) (filtz) (filtz) = 0, esto es,

pt2) 41(t2) 42(t2) = pt1) 41(t1) 42(t1) y como pt1)>0, teI

 $\varphi_1^1(t_2)$ LO y $\varphi_2^1(t_3)$ > 0, al ser $\varphi_2(t)$ > 0, $t \in (t_2, t_2)$, mecesar amente

 $(Q_1|Q_2) = (Q_2|Q_2) = 0$, le que es imposible puesto que (Q_1, Q_2) son l.i, luego $W(Q_1, Q_2)|Q_1 \neq 0$, l.i.

Para demostrar el recipioco basta intercambiar 4, con 62.

1- $(9,1\pm) = 5431 \cos \pm -10^7 \text{ sent}$ y $(9,1\pm) = \text{ sent}$ sen des soluciones l.i de $(4,1\pm) = 0$, per taunto, $(4,1\pm) = 0$ tiene un cero en ada intervalo $(4,1\pm) = 0$ k $\in \mathbb{Z}$.

2- da ecuación

$$(H_n)$$
 $y'' - 2 + y' + 2ny = 0$

se llama ecuación de Hermite de indice n.

Para cada n, esta ecuación admite una solución que es un polinamio de grado n (polinamios de Hermite) Por ejempo

$$n=1 \rightarrow y(t) = a+bt$$

 $y'(t) = b, y''(t) = 0$

Sustituyendo en (H_1) : a=0, $b\in\mathbb{R}$, n> $(P_1(\pm)=\pm$ es solución de (H_1) . Como solo se anula en $\pm =0$, par el resultado anterior, toda solución de (H_1) turcose dos de (H_1) turcose a lo sumo 2 ceras y si una solución de (H_1) turcose dos ceros, necesariamente uno soria megativo y el oto pesitivo.

$$n=2 \Rightarrow y(t) = a + bt + ct^2$$

 $y'(t) = b + 2ct, y''(t) = 2c$

Sustituyendo en (H_2) : b=0, c=-2a n_1 $(p_2|t)=1-2t^2$ es una solución de (H_2) que se anula en $\pm \frac{\sqrt{2}}{2}$. Si una solución x|t de (H_2) es l.i. On $(p_2|t)$, mecesariamente se anula en $(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$ y liene exactamente un cero en este intervalo; de anularse más veces debe ser a lo sumo una antes de $-\frac{\sqrt{2}}{2}$ y a lo sumo otra después de $\frac{\sqrt{2}}{2}$.

Les blamades polinomies de Hermite de grado 1 y 2 son milliples apropriade de las funciones 1/2 y 1/2 antériores.

In general, para calcular el polinomio de Hermite de quodo n: $y(t) = \sum_{k=0}^{n} a_k t^k$, $y'(t) = \sum_{k=1}^{n} k a_k t^{k-1}$, $y''(t) = \sum_{k=2}^{n} k (k-1) a_k t^{k-2}$

Sustituyendo en (Hn):

$$\frac{2}{\sum_{k=2}^{n} k[k-1]} a_k = \frac{1}{2} - 2 + \sum_{k=1}^{n} k a_k = \frac{1}{2} + 2n \sum_{k=0}^{n} a_k = 0,$$

0, reagrupando términos del mismo grado,

$$2 \cdot 1 a_{2} + 2 n a_{0} + \sum_{k=1}^{n-2} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \left(-2(n-1) + 2n \right) a_{n-1} + \left(-2n + 2n \right) a_{n} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{k} \right\} + \sum_{k=1}^{n-1} \left\{ (k+2)(k+1) a_{k+2} - 2(k-n) a_{$$

$$\rightarrow$$
 $Q_2 = -\eta Q_0$

$$a_{k+2} = 2 \frac{(k-n)}{(k+2)(k+1)} a_k , k=1,...n-2$$

Par tanto, as n'es par, n=2m, $m\in\mathbb{N}$, $a_{2m-1}=0$ y todos los términos de grado impar son 0, es decir, $a_1=a_3=\cdots=a_{2m-1}=0$

Fyado
$$a_0 \rightarrow a_2 = 2ma_0$$
, $a_4 = \frac{2(2-2m)}{4\cdot 3} a_2 = -\frac{2^2(m-1)}{4\cdot 3} a_2 = \frac{2^3 m(m-1)}{4\cdot 3} a_0 = \frac{2^4 m(m-1)}{4!} a_0$

$$a_6 = \frac{2(4-2m)}{6.5}a_4 = -\frac{2^6m(m-1)(m-2)}{6!}a_0$$

Cp
$$Q_{2k} = (-1)^k 2^{2k} \frac{m(m-1)...(m-k+1)}{(2k)!} a_0 , k=1,...,m 2.$$

El polinomio de Hermite de grado 21 n de define con una apropriada elección del orificiente ao

De manera sumilar se calcularian les de grado impar.

 \propto forma autoadjunta de (Hn) es (Hn): $(e^{\frac{1}{2}}y')' + 2ne^{\frac{1}{2}}y = 0$

Alamando $q_n(t) = 2ne^{t^2}$, ai $n \times m \Rightarrow q_n(t) \times q_m(t)$, $t \in \mathbb{R}$ El pumer teorema demostrado permite asequiar que entre cada dos ceras Consecutivos de Un polinomio de Hermite de quado n se anula todo polinomio de Hermite de quado superior.

Por ejemplo, el polinamio de Hermite de quado 3 debe anularse entre $-\frac{\sqrt{2}}{2}$ y $\frac{\sqrt{2}}{2}$. (De hecho se anula en cero porque al ser de grado impar, todos los términos pares se anulan) Tambrén cualquier otra solución de (+1) con n>2 debe anularse en el intervalo $(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$.