Section 9.4: Divergence and Integral Tests and Conceptual Questions

Warm-Up

Problem 1 Suppose $\sum_{k=1}^{\infty} a_k$ is an infinite series.

A. If
$$\lim_{k\to\infty} a_k = 0$$
, does $\sum_{k=1}^{\infty} a_k$ have to converge?

B. If
$$\sum_{k=1}^{\infty} a_k$$
 converges, does $\lim_{k\to\infty} a_k = 0$ necessarily?

Group Work

Problem 2 Suppose $\{a_n\}_{n\geq 1}$ is a sequence and $\sum_{n=1}^{\infty} a_n$ converges to L>0. Let

 $s_n = \sum_{k=1}^{n} a_k$. Circle all of the statements that MUST be true.

$$A. \lim_{n \to \infty} a_n = L$$

A.
$$\lim_{n \to \infty} a_n = L$$
 B. $\lim_{n \to \infty} a_n = 0$

$$C. \lim_{n \to \infty} s_n = 0$$

$$D. \lim_{n \to \infty} s_n = I$$

E.
$$\sum_{n=1}^{\infty} s_n$$
 MUST diverge

D.
$$\lim_{n \to \infty} s_n = L$$
 E. $\sum_{n=1}^{\infty} s_n$ MUST diverge. F. $\sum_{n=1}^{\infty} (a_n + 1) = L + 1$

G. The divergence test tells us $\sum_{n=1}^{\infty} a_n$ converges to L.

Learning outcomes:

Problem 3 For each of the following, answer True or False, and explain why.

- (a) If $\sum_{n=0}^{\infty} a_n$ converges, then $\sum_{n=0}^{\infty} (a_n + 0.001)$ converges.
- (b) Since $\int_{1}^{\infty} x \sin(\pi x) dx$ diverges then, by the Integral Test, $\sum_{n=0}^{\infty} n \sin(\pi n)$ diverges.
- (c) Since $\int_1^\infty \frac{1}{x^2} dx = 1$ then, by the Integral Test, $\sum_{k=1}^\infty \frac{1}{k^2} = 1$.

Problem 4 Assume $\sum_{k=0}^{\infty} a_k = L$ and $b_k = 8$ for all k.

- (a) What is $\lim_{k\to\infty} (a_k + b_k)$?
- (b) What is $\lim_{k\to\infty} \sum_{n=0}^k (a_n + b_n)$?
- (c) What is $\lim_{k\to\infty} \sum_{n=0}^{k} (a_{n+1} a_n)$?

Problem 5 Determine if the following series converge or diverge.

- (a) $\sum_{n=0}^{\infty} \frac{n^2 + 2n + 1}{3n^2 + 1}$
- (b) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$

Problem 6 For a sequence $\{a_n\}_{n\geq 1}$ let $s_n=\sum_{k=1}^n a_k$ denote its sequence of partial sums. Now, suppose that $\{a_n\}_{n\geq 1}$ is a sequence such that $s_n=\frac{4n^2+9}{1-2n}$.

- (a) Find $a_1 + a_2 + a_3$.
- (b) Find $a_8 + a_9 + a_{10}$.

- (c) Determine whether $\sum_{k=1}^{\infty} a_k$ converges or diverges. If it converges, find the value to which it converges, or state that there is not enough information to determine this.
- (d) Determine whether $\sum_{k=1}^{\infty} s_k$ converges or diverges. If it converges, find the value to which it converges, or state that there is not enough information to determine this.