PREDICTING CUSTOMER BEHAVIOR ON RETAIL SALES

OPTIMIZING RETURNS BASED ON MARKDOWN SUCCESS

By

Angus Ogubuike

Objectives

- Evaluate Impact of
 - Holiday on sales
 - Major events that happen once a year (called markdowns) on sales
- Predict future performance based on these factors
- Optimize sales in different departments based on the features
- Answer Environmental Questions

Highlights

- The performance of the promos is dependent on the size of the stores
 - The bigger the store, the more successful the promo (Markdown).
- Success of the sales are more pronounced during routine holidays and weekends more than ordinary week days.
- While promo sales tends to behave independently from each other, sales during MarkDown 1 and MarkDown 4 have strong positive correlation
- The MarkDowns (promos) have more effect on sales of kids items and fashion items (for teens and adults) than other items.
- It is recommended that retailers pay more attention on these items (kids and fashion) during promos

Study Strategy

- Data Set Review
- Data Wrangling
- Data Exploration
- Hypothesis Testing
- Unsupervised Learning Anomaly Detection
- Test of Multicollinearity Variance Inflation Factor
- Clustering
- Dimensionality
- Regression
- Classification

DATASET - General

- Historical sales data for <u>45 stores</u> located in <u>different</u> regions in the United States
 - Features include
 - Departments
 - Promotional Markdowns: They precede prominent holidays. The five largest of which are the Super Bowl, Easter, Mother's Day, Thanksgiving, and Christmas
 - Environmental Variables: These are additional data related to the store, department, and regional activity for the given dates

Statistical Overview

- The dataset has 8190 sales record and 95 features
- 7% of the total period of sales are holidays
- Missing values less than 2% of data set.
- Missing Values handled using interpolation method
- Promotions are generally more successful (more sales are recorded) during holidays than during non-holidays

Anomaly Detection

OBJECTIVE: To detect patterns in the data set that do not conform to an established normal behavior

^{*} Anomalies < 2% of data set were removed from the data set prior to further analysis

Multicollinearity - Variance Inflation Factor

- Out of 92 Features, 29 ~ 30% have VIF
 < 5.
- Group features with VIF > 5 into 8
 Categories to create new target features

<u>NEW TARGET FEATURES</u>

- Home-items
- Electronic-items
- Health-items
- Kids-items
- Office-items
- Auto-items
- Wears-items
- Food-items

<u>Clustering</u>

- MarkDown Success
 Used as Target Variable
- Used k-means clustering

Three Clusters distinguishable based on Store Size

Hypothesis Testing

- Markdown/ other sales are more successful during Holidays
- Irrespective of the the Store type, Store size does affect markdown success
- MarkDown 1 and MarkDown4 have strong positive correlation

Dimensionality - PCA

- Using KNeighborsClassifier
 - A group of three features can explain much of the variations in the dataset

Regression

- Studied effect of MarkDown on sales of:
 - Health-items
 - Kids-Items
 - Office-Items
 - Transport (Auto)-Items
 - Fashion (Wears)-Items and
 - Food-Items
- These Target Features generated using the VIF results

Target Feature	Score
Health Care Items	75%
Kids-items	83%
Office Items	55%
Auto Care Items	66%
Fashion Items	78%
Food Items	55%

As Expected, 83% and 78% of the variation in the sales for Kids' and Fashion items are accounted for by the markdowns

Classification

Classification Method	Model Accuracy		
	Training Set	Test Set	
KNeighborsClassifier (K = 6)	0.93	0.93	
svm.LinearSVC		0.92	
DecisionTreeClassifier		0.93	
Gaussian Naive Bayes		0.61	
Neural Network		0.96	

- X sales from 82 departments
- y Holiday Indicator (IsHoliday)

Overfitting/ Underfitting

K = 6 (Optimal K)

