LINEAR ALGEBRA AND DESCRIPTIVE STATISTICS

LINEAR ALGEBRA

• Linear Algebra is a branch of mathematics which deals with linear equations:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

Represented in the form of vectors and matrices.

LINEAR ALGEBRA IN PYTHON

• The main package for linear algebra in python is 'SCIPY' which builds on 'NUMPY' therefore both of the libraries are imported.

import numpy as np import scipy.linalg as la

• The 'numpy' library is used to create the arrays and perform the array operations of python while the 'scipy' library is use to perform linear algebraic operations

CREATING AND OPERATING ON I-D ARRAY

CREATING AND OPERATING ON 2-D ARRAY

ADVANCED MATRIX OPERATIONS(1/2)

```
Jupyter Untitled (unsaved changes)
                                                                                       Logout
                                                                        Trusted
                Insert
                               Kernel
                                        Widgets
                                                                                   Python 3 O
                                                         In [1]: import numpy as np
         import scipy.linalg as le
         M = np.array([[1,2],[3,7]])
        print(M)
         [[1 2]
          [3 7]]
         Matrix operations using numpy
In [7]: from numpy.linalg import matrix_power as mpow
         print('square ')
         print(mpow(M,2))
        print('cube ')
        print(mpow(M,2))
         print('transpose')
         print(M.T)
         print('inverse')
         print(le.inv(M))
        print('determinant')
        print(le.det(M))
         square
         [[ 7 16]
          [24 55]]
         [[ 7 16]
          [24 55]]
         transpose
         [[1 3]
          [2 7]]
         inverse
         [[ 7. -2.]
          [-3. 1.]]
         determinant
         1.0
```

DESCRIPTIVE STATISTICS

- **Descriptive statistics** uses tools like mean and standard deviation on a sample to summarize data.
- **Central** tendency is described by median, mode, and the means.
- Dispersion is the degree to which data is distributed around this central tendency, and is represented by range, deviation, variance, standard deviation and standard error.

DESCRIPTIVE STATISTICS IN PYTHON(1/2)

DESCRIPTIVE STATISTICS IN PYTHON(2/2)

KSI MICROSOFT AEP mentorrbuddy.com

THANKYOU