Lesson 25

Thursday 5/2/24

Chapter 9: Categorical Data

2 x 2 Contingency Table

	Recidivism=No	Recidivism=Yes	Total
Incarcerated = No	176	203	379
Incarcerated = Yes	157	246	403
Total	333	449	782

Calculating Marginal Probabilities from a 2x2 Contingency Table (pp. 267-268)

	Recidivism= No	Recidivism= Yes	Total
Incarcerated = No	176	203	379
Incarcerated = Yes	157	246	403
Total	333	449	782

```
p(recidivism=yes | incarcerated=no) = 203/379 = 0.536
p(recidivism=yes | incarcerated=yes) = 246/403 = 0.610
```

Difference Between 2 Conditional Probabilities (p. 268)

	Recidivism= No	Recidivism= Yes	Total
Incarcerated = No	176	203	379
Incarcerated = Yes	157	246	403
Total	333	449	782

```
p(recidivism=yes | incarcerated=no) = 203/379 = 0.536
p(recidivism=yes | incarcerated=yes) = 246/403 = 0.610
Difference = 0.610 - 0.536 = 0.074
Interpretation: Difference between recidivism probability between the 2 groups is 0.610-0.536 = 0.074 (or 7.4 percentage points difference).
```

Relative Risk Statistic (p. 268)

	Recidivism= No	Recidivism= Yes	Total
Incarcerated = No	176	203	379
Incarcerated = Yes	157	246	403
Total	333	449	782

p(recidivism=yes | incarcerated=no) = 203/379 = 0.536p(recidivism=yes | incarcerated=yes) = 246/403 = 0.610Relative risk = 0.610/0.536 = 1.138

Interpretation: risk of recidivism is 1.138 times greater in the incarcerated group compared to the non-incarcerated group.

	Recidivism = No	Recidivism = Yes	Total
Incarcerated = No	176 A	203 B	379
Incarcerated = Yes	157 C	246 D	403
Total	333	449	782

Chi-Square Test of Independence

Question: are the 2 variables statistically independent of each other? (Table 9.9 in book); testing the independence hypothesis.

cell	obs	exp	obs-exp	(obs-exp)^2	[(obs-exp)^2]/exp	
		333*379/782 = 161.39		213.452	1.323	
В	203	449*379/782 = 217.61	-14.61	213.452	0.981	
С	157	333*403/782 = 171.61	-14.61	213.452	1.244	
D	246	449*403/782 = 231.39	14.61	213.452	0.922	

Obtained Chi-Square Statistic = 1.323+0.981+1.244+0.922 = 4.47 degrees of freedom = (rows-1)*(columns-1) = (2-1)*(2-1) = 1 Conduct test at p < .05 significance level

Critical Value of Chi-Square with 1 degree of freedom = 3.841Note: this comes from Table B.4 on p. 537

Obtained Value of Chi-Square > Critical Value

Decision: reject independence hypothesis

Interpreting Correlations From a 2x2 Contingency Table

Dependent Variable

	Recidivism = No	Recidivism = Yes	Total
Incarcerated = No	176 A	203 B	379
Incarcerated = Yes	157 ^C	246 D	403
Total	333	449	782

Yule's Q = (AD-BC)/(AD+BC)

 $AD = 176 \times 246 = 43296$

 $BC = 203 \times 157 = 31871$

AD-BC = 43296-31871 = 11425

AD+BC = 43296+31871 = 75167

Q = 11425/75167 = 0.152

Then, a positive correlation means that "yes" on the independent variable tends to be paired with "yes" on the dependent variable.

And, a negative correlation means that "yes" on the independent variable tends to be paired with "no" on the dependent variable; and vice-versa.

A Weak Positive Relationship

Confidence Interval for Yule's Q: Overview

	Recidivism = No	Recidivism = Yes	Total
Incarcerated = No	176 A	203 B	379
Incarcerated = Yes	157 ^C	246 D	403
Total	333	449	782

Step 3: Calculate the Lower/ Upper Confidence Limit: Step 1: Decide on the precision of the confidence interval (i.e., 80%, 90%, 95%, 99%, etc.)

Step 2: Use Table B.3 on p. 536 to identify the appropriate two-tailed quantile of the normal distribution (for example, for a 95% confidence interval, we set $\alpha = 0.05$ and choose z = 1.96)

$$Q \pm z \times \sqrt{\frac{(1 - Q^2)^2(\frac{1}{A} + \frac{1}{B} + \frac{1}{C} + \frac{1}{D})}{4}}$$

<u>Source</u>: N. Davidson (1976). Causal inference for dichotomous variables. Monograph #9 in Concepts & Techniques in Modern Geography.

Step 4: Determine whether the confidence interval includes the number zero.

Confidence Interval for Yule's Q: How to Calculate

	Recidivism = No	Recidivism = Yes	Total
Incarcerated = No	176 A	203 B	379
Incarcerated = Yes	157 ^C	246 D	403
Total	333	449	782

Step 1: Decide on the precision of the confidence interval: 95%

Step 2: Set z = 1.96 for a 95% ($\alpha = 0.05$) confidence interval

Step 3: Calculate the Lower/
Upper Confidence Limits:

$$Q \pm z \times \sqrt{\frac{(1-Q^2)^2(\frac{1}{A} + \frac{1}{B} + \frac{1}{C} + \frac{1}{D})}{4}}$$

$$Q \pm 1.96 \times \sqrt{\frac{(1 - 0.152^2)^2(\frac{1}{176} + \frac{1}{203} + \frac{1}{157} + \frac{1}{246})}{4}}$$

Step 4: Determine whether the confidence interval includes - the number zero.

Confidence interval is
[0.013,0.291] which
does not include zero

Another 2x2 Table: Difference Between 2 Probabilities

Dependent Variable

	Delinq = No	Delinq = Yes	Total
Strain = Low	104 A	47 B	151
Strain = High	83 C	52 D	135
Total	187	99	286

Difference Between the Two Conditional Probabilities

$$0.385 - 0.311 = 0.074$$

Interpretation: the delinquency rate is 7.4 percentage points higher in the high strain group.

Another 2x2 Table: Relative Risk Statistic

Dependent Variable

	Delinq = No	Delinq = Yes	Total
Strain = Low	104 A	47 B	151
Strain = High	83 C	52 D	135
Total	187	99	286

Relative Risk Statistic

0.385/0.311 = 1.238

Interpretation: the probability of delinquency involvement is 1.238 times higher in the high strain group compared to the low strain group.

Chi-Square Test of Independence

	Delinq = No	Delinq = Yes	Total
Strain = Low	104 A	47 B	151
Strain = High	83 C	52 D	135
Total	187	99	286

Question: are the 2 variables statistically independent of each other? (Table 9.9 in book); testing the independence hypothesis.

cell	obs	exp	obs-exp	(obs-exp)^2	2 [(obs-exp)^2]/exp
А	104	187*151/286 = 98.	731 5.269	27.762	0.281
В	47	99*151/286 = 52.	269 - 5.269	27.762	0.531
С	83	187*135/286 = 88.	269 - 5.269	27.762	0.315
D	52	99*135/286 = 46.	731 5.269	27.762	0.594

Obtained Chi-Square Statistic = 0.281+0.531+0.315+0.594 = 1.721 degrees of freedom = (rows-1)*(columns-1) = (2-1)*(2-1) = 1 Conduct test at p < .01 significance level

Critical Value of Chi-Square with 1 degree of freedom = 6.635 Note: this comes from Table B.4 on page 537

Obtained Value of Chi-Square < Critical Value Decision: fail to reject independence hypothesis

Yule's Q Statistic

	Delinq = No	Delinq = Yes	Total
Strain = Low	104 A	47	151
Strain = High	83 C	52 D	135
Total	187	99	286

Yule's
$$Q = (AD-BC)/(AD+BC)$$

$$AD = 104 \times 52 = 5408$$

$$BC = 47 \times 83 = 3901$$

$$AD-BC = 5408-3901 = 1507$$

$$AD+BC = 5408+3901 = 9309$$

$$Q = 1507/9309 = 0.162$$

Then, a positive correlation means that "yes" on the independent variable tends to be paired with "yes" on the dependent variable.

And, a negative correlation means that "yes" on the independent variable tends to be paired with "no" on the dependent variable; and vice-versa.

A Weak Positive Relationship

Yule's O Statistic Confidence Interval

	Delinq = No	Delinq = Yes	Total
Strain = Low	104 A	47	151
Strain = High	83 C	52 D	135
Total	187	99	286

Step 1: Decide on the precision of the confidence interval: 99%

Step 2: Set z = 2.576 for a 99% ($\alpha = 0.01$) confidence interval

Step 3: Calculate the Lower/ Upper Confidence Limits:

$$Q \pm z \times \sqrt{\frac{(1 - Q^2)^2(\frac{1}{A} + \frac{1}{B} + \frac{1}{C} + \frac{1}{D})}{4}} \qquad Q \pm 2.576 \times \sqrt{\frac{(1 - 0.162^2)^2(\frac{1}{104} + \frac{1}{47} + \frac{1}{83} + \frac{1}{52})}{4}}$$

Step 4: Determine whether the confidence interval includes \longrightarrow [-0.153, 0.476] which the number zero.

Confidence interval is includes zero