Analysis I

Übungsblatt 01

Bitte auch Seite 2 beachten!

Aufgabe 1 Beweisen Sie die folgenden Äquivalenzen.

- (a) $\neg (A \land B)$ ist äquivalent zu $\neg A \lor \neg B$.
- (b) $A \Rightarrow B$ ist äquivalent zu $\neg B \Rightarrow \neg A$.
- (c) $A \vee (B \wedge C)$ ist äquivalent zu $(A \vee B) \wedge (A \vee C)$.

Aufgabe 2 Sei M eine Menge. Für jedes Element $x \in M$ bezeichne A(x) eine gegebene Aussage. Zeigen Sie:

- (a) $\neg (\forall x \in M : A(x)) \Leftrightarrow \exists x \in M : \neg A(x).$
- (b) $\neg(\exists x \in M : A(x)) \Leftrightarrow \forall x \in M : \neg A(x)$.

Hinweis zu (b): Mit Hilfe von Aufgabe 1(b) können Sie folgern, dass (b) direkt aus (a) folgt.

Aufgabe 3

(a) Gegeben seien die folgenden Mengen:

$$X = \{n \in \mathbb{N} \mid 1 \le n \le 100\},\$$

 $A = \{n \in X \mid 2(n-13)(n-3) < 0\},\$
 $B = \{n \in X \mid \text{es gibt ein } m \in \mathbb{N} \text{ mit } m^2 = n\},\$
 $C = \{n \in X \mid n \text{ ist durch 2 teilbar}\}.$

Bestimmen Sie die Mengen $(A \cup B) - C, A \cup (B - C), (B \cap A) - C$ und $B \cap (A - C)$.

- (b) Seien X, Y, Z Mengen. Beweisen Sie die De Morgansche Regeln:
 - (i) $X \setminus (Y \cap Z) = (X \setminus Y) \cup (X \setminus Z)$,
 - (ii) $X \setminus (Y \cup Z) = (X \setminus Y) \cap (X \setminus Z)$.

Aufgabe 4

Seien X, Y Mengen und $f: X \to Y$ eine Abbildung.

- (i) Für $A \subseteq X$ setzen wir $f(A) := \{f(a) \mid a \in A\}$.
- (ii) Für $B \subseteq Y$ setzen wir $f^{-1}(B) := \{x \in X \mid f(x) \in B\}.$

Welche der folgenden Aussagen sind wahr? Begründen oder widerlegen Sie.

- (a) Für alle $A, B \subseteq Y$ gilt $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$
- (b) Für alle $A, B \subseteq Y$ gilt $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$
- (c) Für alle $A, B \subseteq X$ gilt $f(A \cap B) = f(A) \cap f(B)$
- (d) Für alle $A, B \subseteq X$ gilt $f(A \cup B) = f(A) \cup f(B)$

Die Abgabe der Lösungen erfolgt bis Donnerstag 17.10.2023 08:00

Bitte beachten Sie auch die Angebote des Learning Centers Mathematik. Es handelt sich hierbei um eine Anlaufstelle inbesondere für Studienanfängerinnen und -anfänger, um den Einstieg ins Mathematikstudium zu erleichtern:

