Fundamentals of Deep Learning

Activation Functions

Function	Graph	Characteristics
Sigmoid Function $\sigma(z)=rac{1}{1+e^{-z}}$	Sigmoid Function 1 Sigmoid(x) 0.5	 Values between 0 and 1 Suitable for outputs with binary classification or probabilities Suffers from vanishing gradient problem
Hyperbolic Tangent Function $tanh(z) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	Hyperbolic Tangent (tanh) Function 1 tanh(x) 1 x	 Values between -1 and +1 Convergence is a bit faster Suffers from vanishing gradient problem Smooth and differentiable

Rectified Linear Unit (ReLU)

$$\phi(x) = \begin{cases} 0 & x \le 0 \\ x & x > 0 \end{cases}$$

- Values can range
 from 0 to ∞
- Some nodes with little information may be zeroed out (Spare activation)
- Avoids vanishing gradient problem for positive inputs
- 4. Can suffer from dying ReLU problem due to high learning rates, biases etc.
- 5. Useful to capture large effects

Leaky Rectified Linear Unit (Leaky ReLU)

$$\phi(x) = \begin{cases} \alpha x & x \le 0 \\ x & x > 0 \end{cases}$$

- Similar to ReLU but allows negative outcomes
- Values can range
 from -∞ to +∞
- 3. Outputs are scaled by a factor α (learning rate)
- 4. Fixed Dying ReLU problem
- 5. No nodes are zeroed out*

Parametric Rectified Linear Unit (PReLU)

$$ext{PReLU}(x) = egin{cases} x & ext{if } x > 0 \ lpha \cdot x & ext{if } x \leq 0 \end{cases}$$

- 1. Extension of Leaky
 ReLU
- 2. Learns optimal slope of negative values in training using parameter α
- Used in Convolutional Neural Networks

Softmax Function

$$s(x_i) = \frac{e^{z_i}}{\sum_{j=1}^n e^{z_j}}$$

- 1. Returns a vector of probabilities
- 2. Each element represents the probability of the corresponding class
- 3. Suitable for multiclass classification tasks, often in output layer
- 4. Outputs are scaled down
- 5. Smooth and differentiable