Math 2D

Chapter 10.1

Derivatives

- (fg)' = f'g + fg'• $(\frac{f}{g})' = \frac{f'g fg'}{g^2}$
- $\tan x' = \sec^2 x$
- $\sec x' = \sec x \tan x$
- $\csc x' = -\csc x \cos x$

Trigonometry

- $\bullet \quad \sin^2 x + \cos^2 x = 1$
- $\bullet \quad 1 + \cot^2 x = \csc^2 x$
- $\tan^2 x + 1 = \sec^2 x$
- $\bullet \quad \sin 2x = 2\sin x \cos x$
- $\cos 2x = \cos^2 x \sin^2 x = 2\cos^2 x 1 = 1 \sin^2 x$

Concavity Test

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$$

Chapter 10.2

$$rac{\mathrm{d} y}{\mathrm{d} x} = rac{rac{\mathrm{d} y}{\mathrm{d} t}}{rac{\mathrm{d} x}{\mathrm{d} t}}$$

$$rac{\mathrm{d}^2 y}{\mathrm{d}x^2} = rac{rac{\mathrm{d}}{\mathrm{d}t} (rac{\mathrm{d}y}{\mathrm{d}x})}{rac{\mathrm{d}x}{\mathrm{d}t}}$$

Cycloid

$$\left\{egin{aligned} x_p &= r(heta - \sin heta) \ y_p &= r(1 - \cos heta) \end{aligned}
ight.$$

Arc length

$$\int_a^b \sqrt{(\frac{\mathrm{d}x}{\mathrm{d}t})^2 + (\frac{\mathrm{d}y}{\mathrm{d}t})^2} \mathrm{d}t$$

Chapter 10.3

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$

$$\left\{egin{array}{l} x^2+y^2=r^2\ an heta=rac{y}{x} \end{array}
ight.$$

Symetric rules

- Unchanges when θ replaced by $-\theta$:
 - o symetric about x axis
- Unchanged when r replaced by -r or θ replaced by $\theta + \pi$:
 - o symetric about the pole(origin)
- Unchanged when θ replaced by $(\pi \theta)$:
 - o symetric about y axis

Tangents

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}r}{\mathrm{d}\theta}\sin\theta + r\cos\theta}{\frac{\mathrm{d}r}{\mathrm{d}\theta}\cos\theta - r\sin\theta}$$

Chapter 12.1-12.4

Right Hand Rule

Distance

$$P_1(x_1,y_1,z_1), P_2(x_2,y_2,z_2) \; P_1P_2 = l = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2}$$

Scalar

$$\vec{v} = < a, b, c > |\vec{v}| = \sqrt{a^2 + b^2 + c^2}$$

Unit Vector ($|ec{u}|=1$)

$$ec{m{u}} = rac{ec{m{v}}}{|ec{m{v}}|}$$

Dot product

$$\begin{split} \vec{a} = < a_1, a_2, a_3 >, \vec{b} = < b_1, b_2, b_3 > \\ \text{1. } \vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 = |\vec{a}| |\vec{b}| \cos \theta \\ \text{2. } \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \end{split}$$

2.
$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}}$$

Orthogonal=> perpendicular=> $heta=rac{\pi}{2}$

Projection

Scalar projection of $ec{b}$ onto $ec{a}$

$$Comp_{ec{a}}^{ec{b}} = rac{ec{a} \cdot ec{b}}{|ec{a}|}$$

Vector projection of \vec{b} onto \vec{a}

$$Proj_{ec{a}}^{ec{b}}=rac{ec{a}\cdotec{b}}{\leftert ec{a}
ightert ^{2}}\cdotec{a}% =rac{ec{a}\cdotec{b}}{\leftert ec{a}
ightert ^{2}}$$

Cross Product

$$ec{a} = < a_1, a_2, a_3 >, ec{b} = < b_1, b_2, b_3 >$$

$$\vec{a} \cdot \vec{b} = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = i \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} + j \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + k \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$$
 The vector $\vec{a} \times \vec{b}$ is orthogonal and \vec{b} is ortho

to both \vec{a} and \vec{b} $|\vec{a} \times \vec{b}| = |\vec{a}|\vec{b}|\sin\theta$

Chapter 12.5

Line:

$$ec{r} = ec{r}_0 + t \cdot ec{v} < x, y, z> = < x_0, y_0, z_0 > + t \cdot < a, b, c > \left\{egin{array}{l} x = x_0 + at \ y = y_0 + bt \ z = z_0 + ct \end{array}
ight. rac{x - x_0}{a} = rac{y - y_0}{b} = rac{z - z_0}{c}$$

Skew Lines:

Neither intersect nor parallel

Plane

 \vec{n} =>Normal Vector A plane through $P(x_0, y_0, z_0)$ with $\vec{n} = < a, b, c >$ is

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$

Find Angles between two planes:

Find the angle between normal vectors

Find plane pass through P_1 P_2 and P_3

$$ec{n} = \overrightarrow{P_1P_2} imes \overrightarrow{P_2P_3}$$
 and with P_1

Distance from $P(x_1,y_1,z_1)$ to plane ax+by+cz=0

$$D = rac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Find the distance between two lines:

- 1. Find normal vector
- 2. Establish a plane
- 3. Use formula

Chapter 13.3

Arc Length in 3D

$$l = \int_a^b \sqrt{(rac{\mathrm{d}x}{\mathrm{d}t})^2 + (rac{\mathrm{d}y}{\mathrm{d}t})^2 + (rac{\mathrm{d}z}{\mathrm{d}t})} \mathrm{d}t$$

if we assume
$$\overrightarrow{r(t)} = < f(t), g(t), h(t)> => \overrightarrow{r'(t)} = < f'(t), g'(t), h'(t)>$$

$$l = \int_a^b |\overrightarrow{r'(t)}| \mathrm{d}t$$

Tangent Vector

$$\overrightarrow{T(t)} = rac{\overrightarrow{r'(t)}}{\overrightarrow{|r'(t)|}} |\overrightarrow{T(t)}| = 1$$

Normal Vector

$$\stackrel{
ightarrow}{N(t)}=rac{\stackrel{
ightarrow}{T'(t)}}{\stackrel{
ightarrow}{T'(t)|}}$$

Binomal Vector

$$\overrightarrow{B(t)} = \overrightarrow{T(t)} \times \overrightarrow{N(t)}$$

Normal Plane

Normal plane: The normal plane consists of all lines that are orthogonal to the tangent vector.

The normal vector of the normal plane is the tangent vector

$$ec{n}=ec{T}$$

Osculating plane

The plane that comes the closest to containing the part of the curve near point P.

The normal vector of the osculating plane is the binomal vecotr

$$ec{n}=ec{B}$$

Chapter 13.4

Velocity

$$\overset{\rightarrow}{v(t)}=\overset{\rightarrow}{r'(t)}$$

Speed

$$Speed = |\overrightarrow{v(t)}| = |\overrightarrow{r'(t)}|$$

Chapter 14.1

Level Curves / Contour Map

The level curves of a function f of two variables are the curve with equations f(x,y) = k, where k is a constant (in the range of f).

Functions of Three or more variables

Chapter 14.2

Limit of multi-var functions

Prove the limit does not exist

Pick two different paths and show that the height or the value if the function is different if we transverse along these different paths.

Tips

- Make sure the path you choose contains the point (a,b)
- It is highly recommended that one of the paths you choose is either by forcing x=0 and moving along y axis or forcing y=0 and moving along x axis.
- It is helpful to choose a path that makes the degree of the numerator and the denominator equal.

Continuity

Sometimes we can use the concept of continuity for proving that the limit exist.

- If we have a region (two dimensional region in xy-plane) that the function is defined in that region, the function is continuous in that region. In other words, a function is continuous at any point inside its domain.
- Polynomials are continuous everywhere.
- Rational functions are continuous everywhere except where the denominator is zero.