Task_1

NAME	ID
محمد ابراهيم عبدالحميد محمد	20201700651
عبدالمجيد حاتم عبدالمجيد عبد ربه	20201700467
فتحي ناصر فتحي عبدالحميد	20201700575
محمد محمود فوزي خليل	20201700736
عبدالله ماجد محمد عوض	20201700463
يوسف أحمد بسيم علي غيط	20201700994

Perceptron:

Different Features:

Hyperparameters

Class = Bombay, C2 = Cali, eta = 0.001, epochs = 150, b = False

Features

F1 = Area, F2 = Perimeter F1 = Area, F2 = MajorAxisLength F1 = Area, F2 = MinorAxisLength

Visualization

Correct: 20 From 20 Incorrect 0

Correct: 20 From 20 Incorrect 0

accuracy: 100.0

Correct: 20 From 20 Incorrect 0

Correct: 20 From 20 Incorrect 0

accuracy: 100.0

Correct: 20 From 20 Incorrect 0

Correct: 20 From 20 Incorrect 0

accuracy: 100.0

Analysis

Perceptron algorithm managed to discriminate between different features all in one epoch with an accuracy of 100% as all of them are linearly separable as none of them took all the epochs.

Different Classes:

Hyperparameters

F1 = Area, F2 = Perimeter, eta = 0.001, epochs = 150, b = True

Classes

C1 = Bombay, C2 = Cali

C1 = Bombay, C2 = Sira

C1 = **Sira**, **C2** = **Cali**

Visualization

Correct: 20 From 20 Incorrect 0

Correct: 20 From 20 Incorrect 0

accuracy: 100.0

Correct: 20 From 20 Incorrect 0

Correct: 20 From 20 Incorrect 0

accuracy: 100.0

Correct: 20 From 20 Incorrect 0

Correct: 19 From 20 Incorrect 1

accuracy: 97.5

Analysis

The second case shows that the accuracy is 97.5% and it took all the epochs which means the model needs more epochs to discriminate well or these features with these classes are not linearly separable.

Different eta:

Hyperparameters

F1 = Area, F2 = Perimeter, C1 = Bombay, C2 = Cali, m = 150, b = True

Eta

Eta = 0.2 Eta = 0.5

Eta = 20

Visualization

Correct: 20 From 20 Incorrect 0

Correct: 20 From 20 Incorrect 0

accuracy: 100.0

Correct: 20 From 20 Incorrect 0

Correct: 20 From 20 Incorrect 0

accuracy: 100.0

Correct: 20 From 20 Incorrect 0

Correct: 20 From 20 Incorrect 0

accuracy: 100.0

Analysis

Changing the learning rate affects how fast the model reaches the local minimum as shown when the eta is too small it takes more epochs to reach the local minimum.

Different epochs:

Hyperparameters

F1 = Area, F2 = Perimeter, C1 = Bombay, C2 = Cali, eta = 0.001, b = True

Epochs

M = 10 M = 100

Visualization

Correct: 20 From 20 Incorrect 0

Correct: 20 From 20 Incorrect 0

accuracy: 100.0

Correct: 20 From 20 Incorrect 0

Correct: 20 From 20 Incorrect 0

accuracy: 100.0

Correct: 20 From 20 Incorrect 0

M = 1000

Correct: 20 From 20 Incorrect 0

accuracy: 100.0

Analysis

Changing the number of epochs affects the accuracy if it's too small the model may need more epochs to be well-trained.

Different bias:

Hyperparameters

F1 = Area, F2 = Perimeter, C1 = Bombay, C2 = Cali, eta = 0.01, m = 150

Bias

B = False B = True

Visualization

Correct: 20 From 20 Incorrect 0

Correct: 20 From 20 Incorrect 0

accuracy: 100.0

Correct: 20 From 20 Incorrect 0

Correct: 20 From 20 Incorrect 0

accuracy: 100.0

Analysis

Adding bias to the model affects the accuracy. Sometime the model train better with bias.

Adaline:

Different Features:

Hyperparameters

C1 = Bombay, C2 = Cali, eta = 0.01, m = 150, b = 0, MSE = 0.01

Features

F1 = Area, F2 = Perimeter F1 = Area, F2 = MajorAxisLength F1 = MinorAxisLength, F2 = Perimeter

Visualization

Analysis

Adaline algorithm managed to discriminate between different features all in one epoch with an accuracy of 100% as all of them are linearly separable.

Different Classes:

Hyperparameters

F1 = Area, F2 = Perimeter, eta = 0.01, m = 150, b = True, MSE = 0.01

Classes

C1 = Bombay, C2 = Cali

C1 = Bombay, C2 = Sira

C1 = Cali, C2 = Sira

Visualization

Analysis

The second case shows that the accuracy is 98% and it took all the epochs which means the model needs more epochs to learn or these two classes aren't linearly separable.

Different eta:

Hyperparameters

F1 = Area, F2 = Perimeter, C1 = Bombay, C2 = Cali, m = 150, b = True, MSE = 0.01

Eta

Eta = 0.1 Eta = 0.01 Eta = 0.00001

Visualization

Analysis

Changing the learning rate affects how fast the model reaches the local minimum as shown when the eta is too small it takes more epochs to reach the local minimum.

Different epochs:

Hyperparameters

F1 = Area, F2 = Perimeter, C1 = Bombay, C2 = Cali, eta = 0.01, b = True, MSE = 0.01

Epochs

M = 10 M = 100 M = 1000

Visualization

Analysis

Every time the model takes all the epochs because of 2 outliers from the given classes or they aren't linearly separable.

Different bias:

Hyperparameters

F1 = Area, F2 = Perimeter, C1 = Bombay, C2 = Cali, eta = 0.01, m = 150, MSE = 0.01

Bias

B = False B = True

Visualization

Analysis

Adding bias to the model affects the accuracy. Sometimes the model trains better with bias, in this case it didn't affect the accuracy but it took less epochs (faster convergence).

Different MSE:

Hyperparameters

F1 = Area, F2 = Perimeter, C1 = Bombay, C2 = Cali, m = 150, b = True, eta = 0.01

MSE

Visualization

Analysis

Achieving lower MSE requires more training epochs.

Conclusion

In general, Adaline is an improvement as it solves the problem of cost function by using Mean Square Error while Perceptron doesn't have a cost function to stop and might lead to an infinite loop in case of non-linearly separable data because it stops only in case of zero error.