Section 3 Apriori Algorithm

1. The Role of Apriori Algorithm

The Usefulness of Apriori Algorithm

We can quantify associations between items by using metrics.

 However, as the number of items increase, the number of rules increases exponentially.

We can use apriori algorithm for pruning.

Combination

From 3 different balls: 1 2 3

- Pick 1 ball: (2) (3) 3 patterns
- Pick 2 balls: 1 2 1 3 2 3 3 patterns
- Pick 3 balls: 1 2 3 1 pattern
- N of combination = 3 + 3 + 1 = 7

The Number of Combination

The number of combinations of k objects from n objects

$${}_{n}C_{k} = \frac{n!}{k!(n-k)!}$$

The number of combination: k=1, 2, ..., n

- Pick k from 3: 7 patterns
- Pick k from 4: 15 patterns
- Pick k from 10: 1013 patterns

2. Apriori Principle

Frequent Itemset

Definition: An itemset whose support value is greater than minsup

Minsup is an arbitorary number.

 The first step of pruning is to identify frequent itemsets.

Apriori Principle

"All subsets of a frequent itemset must be frequent."

Frequent: Support is greater than the threshold.

Keep frequent itemsets for further analysis.

Prune the itemsets that are found to be not frequent.

Support and Apriori Principle

• {bread, butter, ham} must contain {bread, butter}.

- → If {bread, butter, ham} is frequent, {bread, butter} must be frequent.
- {bread, butter, ham} cannot be more frequent than {bread, butter}.
 - \rightarrow Support(itemset) \leq Support(subset)

Anti-Monotone Property and Apriori Principle

Anti-monotone property of support.

$$\forall X, Y \colon (X \subseteq Y) \Rightarrow \underline{s(X)} \geq \underline{s(Y)}$$

For all X and Y If X is a subset of Y Support (X) ≥ Support (Y)

 Apriori principle is a result of anti-monotone property of support.

3. Apriori Algorithm: Phase 1 —Find Frequent Itemsets—

Steps for Finding Frequent Itemsets

- 1 Prepare data and set minsup
- 2 Create a list of frequent itemsets (support ≥ minsup) of length 1
- 3 Create a list of itemsets of length 2 by combining the frequent itemsets of length 1
- 4 Prune itemsets whose support is less than minsup
- 5 Create a list of itemsets of length 3 from the pruned list
- 6 Prune itemsets whose support is less than minsup
 - In the following, lengthen the itemsets and check whether "support ≥ minsup."
 - Stop the process when you cannot create a list of frequent itemset.

Step 1. Prepare data and set minsup

- We generate association rule by using frequent itemsets.
- Frequent itemset: Support ≥ minsup

The threshold of support (minsup) is an arbitrary number.

Here, minsup = 40%

ID	Item	
T1	bread, ham, cheese	
T2	bread, butter, ham, milk	
Т3	bread, ham, milk	
T4	butter, ham, milk	
T5	butter, milk	

Step 2. Create a list of frequent itemsets of length 1

ID	Item
T1	bread, ham, cheese
T2	bread, butter, ham, milk
T3	bread, ham, milk
T4	butter, ham, milk
T5	butter, milk

	Itemset	Support
	bread	60%
	butter	60%
	cheese	20%
	ham	80%
	milk	80%

Frequent Itemset	
bread	
butter	
ham	
milk	

Prune itemsets if Support < 40%

Step 3. Create a list of itemsets of length 2

Frequent Itemset
(length 1)
bread
butter
ham
milk

List of frequent itemsets created in Step 2

Itemset (length 2) bread, butter bread, ham bread, milk butter, ham butter, milk ham, milk

Create a list of itemsets of length 2 by combining the frequent itemsets of length 1

Step 4. Prune itemsets (Support < minsup)

ID	Item
T1	bread, ham, cheese
T2	bread, butter, ham, milk
T3	bread, ham, milk
T4	butter, ham, milk
T5	butter, milk

Itemsets (length 2)	Support
bread, butter	20%
bread, ham	60%
bread, milk	40%
butter, ham	40%
butter, milk	60%
ham, milk	60%

Prune itemsets if Support < 40%

Step 5. Create a list of itemsets of length 3

ID	Items	
T1	bread, ham, cheese	
T2	bread, butter, ham, milk	
T3	bread, ham, milk	
T4	butter, ham, milk	
T5	butter, milk	

Frequent Itemsets (Length 2) bread, ham

bread, milk

butter, ham

butter, milk

ham, milk

Itemsets (Length 3)

bread, butter, ham

bread, butter, milk

bread, ham, milk

butter, ham, milk

$${}_{n}C_{k} = \frac{n!}{k! (n-k)!}$$

$$_{n}C_{k} = \frac{n!}{k! (n-k)!}$$
 $_{4}C_{3} = \frac{4!}{3! (4-3)!} = \frac{4!}{3!} = 4$

Step 6. Prune itemsets (Support < minsup)

ID	Items	
T1	bread, ham, cheese	
T2	bread, butter, <u>ham, milk</u>	
T3	bread, ham, milk	
T4	butter, ham, milk	
T5	butter, milk	

Apriori Principle

Itemsets	Support	
bread, butter	20%	

Step 7. Create a list of itemsets of length 4, and check Support

ID	Item
T1	bread, ham, cheese
T2	bread, butter, ham, milk
T3	bread, ham, milk
T4	butter, ham, milk
T5	butter, milk

Frequent Itemset (Length 3)	
bread, ham, milk	
butter, ham, milk	

Itemset (Length 4)	Support
bread, butter, ham, milk	20%

Prune itemsets: Support < minsup (40%)

There are no frequent itemsets of length 4.

Terminate the process.

4. Apriori Algorithm: Phase 2 —Association Rule Selection—

Rule Selection by Confidence

- Support tends to be high when itemsets is purchased very frequently.
 - → We use Confidence as a metric

$$Confidence(X \to Y) = \frac{freq(X,Y)}{freq(X)}$$

• Selection criterion: minconf = 0.6

Step 1. Generate rules from frequent itemsets

Frequent Itemset (Length 3)

bread, ham, milk

butter, ham, milk

Rule

bread \rightarrow ham, milk

ham \rightarrow bread, milk

 $milk \rightarrow bread, ham$

bread, ham \rightarrow milk

bread, milk \rightarrow ham

ham, milk \rightarrow bread

Step 2. Select rules: Confidence ≥ minconf

Rule	Formula of Confidence	Confidence
bread → ham, milk	Support(bread, ham, milk) / Support(bread)	67%
ham → bread, milk	Support(bread, ham, milk) / Support(ham)	50%
milk → bread, ham	Support(bread, ham, milk) / Support(milk)	50%
bread, ham → milk	Support(bread, ham, milk) / Support(bread, ham)	67%
bread, milk → ham	Support(bread, ham, milk) / Support(bread, milk)	100%
ham, milk → bread	Support(bread, ham, milk) / Support(ham, milk)	67%

However, Confidence depends on the frequency of the consequent.

Recap: Lift

$$Lift(X \to Y) = \frac{freq(X,Y)}{freq(X)} \cdot \frac{1}{Support(Y)}$$

$$= Confidence(X \to Y) \cdot \frac{1}{Support(Y)}$$

$$= \frac{Confidence(X \to Y)}{Support(Y)}$$

Recap: Meaning of Lift

$$Lift(X \to Y) = \frac{Confidence(X \to Y)}{Support(Y)} = \frac{P(Y|X)}{P(Y)}$$

$$Lift(X \to Y) > 1$$
 $P(Y|X) > P(Y)$

The occurrence of X increased the probability of occurrence of Y

Step 3. Select rules: Lift > 1.0

Rule	Confidence	Support(consequent)	Lift
bread→ham, milk	67%	60%	67 / 60 = 1.1
bread, ham→milk	67%	80%	67 / 80 = 0.8
bread, milk→ham	100%	80%	100 / 80 = 1.3
ham, milk→bread	67%	60%	67 / 60 = 1.1

$$Lift(X \to Y) = \frac{Confidence(X \to Y)}{Support(Y)}$$

Similar but Different!

All of these rules consist of bread, ham, and milk.

- Bread → ham, milk
- Ham → bread, milk
- Bread, ham → milk

Rule	Confidence	
bread → ham, milk	67%	
ham → bread, milk	50%	

Rule	Lift
bread → ham, milk	1.1
bread, ham → milk	0.8

6. Summary

Summary

• The threshold (minsup, minconf) are arbitrary values.

The result depends on what value we choose.

Rules consisting of the same items are not the same.

 $\{X \rightarrow Y\}$ is not same as $\{Y \rightarrow X\}$