# Chapter 1

## Vector Spaces

### 1.1 Fields

**Definition 1.1.1.** A field is a set F with two operations, called **addition** (denoted by +) and **multiplication** (denoted by  $\cdot$ ), which satisfy the following axioms.

- (A 1) If  $a \in F$  and  $b \in F$ , then  $a + b \in F$ .
- (A 2) a+b=b+a for all  $a,b \in F$ .
- (A 3) (a+b) + c = a + (b+c) for all  $a, b, c \in F$ .
- (A 4) There is an element  $0_F$  in F such that  $0_F + a = a$  for all  $a \in F$ .
- (A 5) For each  $a \in F$  there is an element -a in F such that  $a + (-a) = 0_F$ .
- (M 1) If  $a \in F$  and  $b \in F$ , then  $a \cdot b \in F$ .
- (M 2)  $a \cdot b = b \cdot a$  for all  $a, b \in F$ .
- (M 3)  $(a \cdot b) + c = a + (b \cdot c)$  for all  $a, b, c \in F$ .
- (M 4) There is an element  $1_F$  in  $F \setminus \{0_F\}$  such that  $1_F \cdot a = a$  for all  $a \in F$ .
- (M 5) For each  $a \in F \setminus \{0_F\}$  there is an element  $a^{-1}$  in F such that  $a \cdot a^{-1} = 1_F$ .
  - (D)  $a \cdot (b+c) = a \cdot b + a \cdot c$  for all  $a, b, c \in F$ .

#### Remark.

- For simplification, we usually write ab instead of  $a \cdot b$ .
- The axioms labeled with "A" and "M" are usually called the **axioms of addition** and the **axioms of multiplication**, respectively. The axiom labeld with "D" is the **distributive law**.
- The elements  $0_F$  and  $1_F$  are usually called the **additive identity** and the **multiplicative identity** of F, respectively. Also, -a and  $a^{-1}$  are called the **additive inverse** and the **multiplicative inverse** of a, respectively.
- Subtraction and division can be defined using additive and multiplicative inverses.

**Example.**  $\mathbb{Q}$ ,  $\mathbb{R}$  and  $\mathbb{C}$  are fields.

**Example.** Let  $\mathbb{B} = \{0, 1\}$  and the operations  $\oplus$  and  $\odot$  are defined as follows.

$$\begin{array}{c|ccccc} \oplus & 0 & 1 & & \odot & 0 & 1 \\ \hline 0 & 0 & 1 & & \hline 0 & 0 & 0 \\ 1 & 1 & 0 & & 1 & 0 & 1 \\ \end{array}$$

Then  $\mathbb{B}$  is a field with  $\oplus$  and  $\odot$  as addition and multiplication, respectively.

**Proposition 1.1.2.** Let F be a field with  $a, b, c \in F$ .

- (a) If a + b = a + c, then b = c.
- (b) If a + b = a, then  $b = 0_F$ .
- (c) If  $a + b = 0_F$ , then b = -a.
- (d) -(-a) = a.

Proof.

(a) It can be proved by

$$b = 0_F + b$$

$$= (-a + a) + b$$

$$= -a + (a + b)$$

$$= -a + (a + c)$$

$$= (-a + a) + c$$

$$= 0_F + c$$

$$= c.$$

- (b) By applying (a), it follows from  $a + b = a + 0_F$  that  $b = 0_F$ .
- (c) By applying (a), it follows from a + b = a + (-a) that b = -a.
- (d) Since  $-a + a = 0_F$ , we have a = -(-a) by (c).

**Proposition 1.1.3.** Let F be a field with  $a, b, c \in F$  and  $a \neq 0_F$ .

- (a) If  $a \cdot b = a \cdot c$ , then b = c.
- (b) If  $a \cdot b = a$ , then  $b = 1_F$ .
- (c) If  $a \cdot b = 1_F$ , then  $b = a^{-1}$ .
- (d)  $(a^{-1})^{-1} = a$ .

*Proof.* The proof is omitted since it is similar to that of Proposition 1.1.2.  $\Box$ 

**Proposition 1.1.4.** Let F be a field with  $a, b \in F$ .

(a)  $0_F \cdot a = 0_F$ .

(b)  $(-a) \cdot b = -(a \cdot b) = a \cdot (-b)$ .

(c) 
$$(-a) \cdot (-b) = a \cdot b$$
.

Proof.

(a) Since

$$0_F \cdot a + 0_F \cdot a = (0_F + 0_F) \cdot a = 0_F \cdot a,$$

we have  $0_F \cdot a = 0_F$  by Proposition 1.1.2 (b).

(b) Since

$$(-a) \cdot b + a \cdot b = (-a + a) \cdot b = 0_F \cdot b = 0_F,$$

we have  $(-a) \cdot b = -(a \cdot b)$  by Proposition 1.1.2 (c). The other half can be proved similarly.

(c) By applying (b) twice, we have

$$(-a) \cdot (-b) = -(a \cdot (-b)) = -(-(a \cdot b)) = a \cdot b.$$

### 1.2 Vector Spaces

**Definition 1.2.1.** A vector space over a field F is a set V with two operations, called addition (denoted by +) and scalar multiplication (denoted by ·), which satisfy the following axioms.

- (V 1) If  $x \in V$  and  $y \in V$ , then  $x + y \in V$ .
- (V 2) x + y = y + x for all  $x, y \in V$ .
- (V 3) (x+y) + z = x + (y+z) for all  $x, y, z \in V$ .
- (V 4) There is an element  $0_V$  in V such that  $0_V + x = x$  for all  $x \in V$ .
- (V 5) For each  $x \in V$  there is an element -x such that  $x + (-x) = 0_V$ .
- (V 6) If  $a \in F$  and  $x \in V$ , then  $a \cdot x \in V$ .
- (V 7)  $(a \cdot b) \cdot x = a \cdot (b \cdot x)$  for all  $a, b \in F$  and  $x \in V$ .
- (V 8)  $1_F \cdot x = x$  for all  $x \in V$ .
- (V 9)  $a \cdot (x + y) = a \cdot x + a \cdot y$  for all  $a \in F$  and  $x, y \in V$ .
- (V 10)  $(a+b) \cdot x = a \cdot x + b \cdot x$  for all  $a, b \in F$  and  $x \in V$ .

#### Remark.

- For simplification, we usually write ax instead of  $a \cdot x$ .
- The elements  $0_V$  is usually called the **additive identity** of V, and -x is called the **additive inverse** of x in V.
- Subtraction can be defined using additive inverses.

#### Examples.

- A field is a vector space over itself, e.g.,  $\mathbb{R}$  is a vector space over  $\mathbb{R}$ .
- $\mathbb{C}$  is a vector space over  $\mathbb{R}$ .
- $\mathbb{R}$  is a vector space over  $\mathbb{Q}$ .

#### Examples.

• The set of **n-tuples** with elements from a field F is denoted by  $F^n$ . For  $x = (x_1, \ldots, x_n) \in F^n$ ,  $y = (y_1, \ldots, y_n) \in F^n$ , and  $c \in F$ , we define the operations of addition and scalar multiplication by

$$x + y = (x_1 + y_1, \dots, x_n + y_n)$$
 and  $c \cdot x = (c \cdot x_1, \dots, c \cdot x_n)$ .

Then  $F^n$  is a vector space over F.

• The set of all  $m \times n$  matrices with elements from a field F is denoted by  $F^{m \times n}$ . For  $A, B \in F^{m \times n}$  and  $c \in F$ , we define the operations of addition and scalar multiplication by

$$(A+B)_{ij} = A_{ij} + B_{ij}$$
 and  $(c \cdot A)_{ij} = c \cdot A_{ij}$ 

for  $i \in \{1, ..., m\}$  and  $j \in \{1, ..., n\}$ . Then  $F^{m \times n}$  is a vector space over F.

• The set of **functions** from a nonempty set S to a field F is denoted by  $\mathcal{F}(S, F)$ . For  $f, g \in \mathcal{F}(S, F)$  and  $c \in F$ , we define the operations of addition and scalar multiplication by

$$(f+g)(s) = f(s) + g(s)$$
 and  $(c \cdot f)(s) = c \cdot f(s)$ 

for all  $s \in S$ . Then  $\mathcal{F}(S, F)$  is a vector space over F.

• The set of **polynomials** with coefficients from a field F is denoted by  $\mathcal{P}(F)$ . For  $f, g \in \mathcal{P}(F)$  and  $c \in F$  with

$$f(t) = \sum_{i=0}^{n} a_i t^i$$
 and  $g(t) = \sum_{i=0}^{n} b_i t^i$ ,

we define the operations of addition and scalar multiplication by

$$(f+g)(t) = \sum_{i=0}^{n} (a_i + b_i)t^i$$
 and  $(c \cdot f)(t) = \sum_{i=0}^{n} (c \cdot a_i)t^i$ .

Then  $\mathcal{P}(F)$  is a vector space over F.

**Proposition 1.2.2.** Let V be a vector space with  $x, y, z \in F$ .

- (a) If x + y = x + z, then y = z.
- (b) If x + y = x, then  $y = 0_V$ .
- (c) If  $x + y = 0_V$ , then y = -x.
- (d) -(-x) = x.

*Proof.* The proof is omitted since it is similar to that of Proposition 1.1.2.  $\Box$ 

**Proposition 1.2.3.** Let V be a vector space over a field F with  $x \in V$  and  $a \in F$ .

- (a)  $0_F \cdot x = 0_V$ .
- (b)  $a \cdot 0_V = 0_V$ .
- (c)  $(-a) \cdot x = -(a \cdot x) = a \cdot (-x)$ .

*Proof.* The proof is omitted since it is similar to that of Proposition 1.1.4.  $\Box$ 

### 1.3 Subspaces

**Definition 1.3.1.** Let V be a vector space over a field F. Then a subset W of V is called a **subspace** of V if W is a vector space over F with the operations of addition and scalar multiplication defined on V.

**Theorem 1.3.2.** Let V be a vector space over a field F and  $W \subseteq V$ . Then W is a subspace of V if the following conditions hold.

- (a)  $0_V \in W$ .
- (b)  $x + y \in W$  for all  $x, y \in W$ .
- (c)  $ax \in W$  for all  $x \in W$  and  $a \in F$ .

*Proof.* Since a vector in W is also in V,  $(V\ 2)$ ,  $(V\ 3)$ ,  $(V\ 7)$ ,  $(V\ 8)$ ,  $(V\ 9)$  and  $(V\ 10)$  in Definition 1.2.1 hold trivially. Furthermore, (a) implies  $(V\ 4)$ , (b) implies  $(V\ 1)$ , (c) implies  $(V\ 6)$ , and  $(V\ 5)$  is also true since

$$-x = -(1_F x) = (-1_F)x \in W$$

holds for all  $x \in W$ . Thus, W is a vector space over F.

Corollary 1.3.3. Let V be a vector space over a field F and  $W \subseteq V$ . Then W is a subspace of V if and only if the following conditions hold.

- (a)  $0_V \in W$ .
- (b)  $ax + y \in W$  for all  $x, y \in W$  and  $a \in F$ .

*Proof.* ( $\Rightarrow$ ) Straightforward. ( $\Leftarrow$ ) For all  $x, y \in W$  and  $a \in F$ , we have

$$x + y = 1_F x + y \in W$$
 and  $ax = ax + 0_V \in W$ .

Thus, W is a subspace of V by Theorem 1.3.2.

**Example.** The set of polynomials in  $\mathcal{P}(F)$  with degree not greater than n is denoted by  $\mathcal{P}_n(F)$ , where the **degree** of a nonzero polynomial

$$f(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_m t^m$$

is defined to be the largest integer n such that  $a_n \neq 0_F$ , and the degree of zero polynomial is defined to be -1. Then one can verify that  $\mathcal{P}_n(F)$  is a subspace of  $\mathcal{P}(F)$ .

#### Examples.

- An  $n \times n$  matrix A is called **diagonal** if  $A_{ij} = 0_F$  for all  $i, j \in \{1, ..., n\}$  with  $i \neq j$ . Then one can verify that the set of  $n \times n$  diagonal matrices is a subspace of  $F^{n \times n}$ .
- The **trace** of an  $n \times n$  matrix A, denoted by tr(A), is defined by

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii}.$$

Then one can verify that the set of  $n \times n$  matrices that have trace equal to  $0_F$  is a subspace of  $F^{n \times n}$ .

**Proposition 1.3.4.** Let V be a vector space and let  $W_1$  and  $W_2$  be subspaces of V. Then  $W_1 \cap W_2$  is a subspace of V.

*Proof.* Since  $W_1$  and  $W_2$  are subspaces of V, we have  $0_V \in W_1 \cap W_2$ . Furthermore, for each  $x, y \in W_1 \cap W_2$  and for each  $a \in F$ , we have  $ax + y \in W_1 \cap W_2$  by Corollary 1.3.3. Thus,  $W_1 \cap W_2$  is a subspace of V.

**Example.** Let  $W_1$  be the set of  $n \times n$  diagonal matrices. Let  $W_2$  be the set of  $n \times n$  matrices that have trace equal to  $0_F$ . Then since both  $W_1$  and  $W_2$  are subspaces of  $F^{n \times n}$ , we can conclude that  $W_1 \cap W_2$  is also a subspace of  $F^{n \times n}$ .

**Definition 1.3.5.** Let V be a vector space and let  $S_1, S_2 \subseteq V$ . Then the **sum** of  $S_1$  and  $S_2$ , denoted by  $S_1 + S_2$ , is the set

$$\{x + y : x \in S_1 \text{ and } y \in S_2\}.$$

**Proposition 1.3.6.** Let V be a vector space and let  $W_1$  and  $W_2$  be subspaces of V. Then the following statements are true.

- (a)  $W_1 + W_2$  is a subspace of V.
- (b) If U is a subspace of V with  $W_1 \cup W_2 \subseteq U$ , then  $W_1 + W_2 \subseteq U$ .

Proof.

(a) We have  $0_V = 0_V + 0_V \in W_1 + W_2$ . For each  $x, y \in W_1 + W_2$  and for each  $a \in F$ , by Definition 1.3.5 there exist  $x_1, y_1 \in W_1$  and  $x_2, y_2 \in W_2$  such that  $x = x_1 + x_2$  and  $y = y_1 + y_2$ . Thus,

$$ax + y = a(x_1 + x_2) + (y_1 + y_2)$$

$$= (ax_1 + ax_2) + (y_1 + y_2)$$

$$= (ax_1 + y_1) + (ax_2 + y_2)$$

$$\in W_1 + W_2.$$

(b) Let x be a vector in  $W_1 + W_2$ . Then by Definition 1.3.5 there exists  $x_1 \in W_1$  and  $x_2 \in W_2$  such that  $x = x_1 + x_2$ . We have  $x_1 \in U$  since  $W_1 \subseteq U$ . Also, we have  $x_2 \in U$  since  $W_2 \subseteq U$ . It follows that  $x = x_1 + x_2 \in U$ , and thus  $W_1 + W_2 \subseteq U$ .

### 1.4 Spanning Sets

**Definition 1.4.1.** Let V be a vector space over a field F and let  $S \subseteq V$ . Then a vector  $x \in V$  is called a **linear combination** of S if there exist scalars  $a_1, \ldots, a_n \in F$  and vectors  $x_1, \ldots, x_n \in S$  for some nonnegative integer n such that

$$x = \sum_{i=1}^{n} a_i x_i.$$

Remark.

- If n = 0, then the sum in the right hand side is  $0_V$  since nothing are added up. Thus,  $0_V$  is a linear combination of any subset of V.
- Note that n should be finite. Thus, in the vector space  $\mathbb{R}$  over the field  $\mathbb{Q}$ , e is not a linear combination of  $\mathbb{Q}$  even if we have

$$e = \sum_{i=0}^{\infty} \frac{1}{i!}.$$

**Definition 1.4.2.** Let V be a vector space over a field F and let  $S \subseteq V$ . Then the **span** of S, denoted span(S), is defined as the set of all linear combinations of S.

**Theorem 1.4.3.** Let V be a vector space over F and let  $S \subseteq V$ . Then the following statements are true.

- (a)  $\operatorname{span}(S)$  is a subspace of V.
- (b) If U is a subspace of V such that  $S \subseteq U$ , then  $\operatorname{span}(S) \subseteq U$ .

Proof.

(a) Let  $c \in F$  and  $x, y \in \text{span}(S)$ . Then there exist scalars  $a_1, \ldots, a_n \in F$  and vectors  $x_1, \ldots, x_n \in S$  such that

$$x = a_1 x_1 + \dots + a_n x_n.$$

Also, there exist scalars  $b_1, \ldots, b_n \in F$  and vectors  $y_1, \ldots, y_m \in S$  such that

$$y = b_1 y_1 + \dots + b_n y_m.$$

Thus, we have

$$cx + y = c(x_1 + \dots + x_n) + (y_1 + \dots + y_m)$$
  
=  $cx_1 + \dots + cx_n + y_1 + \dots + y_m$   
 $\in \operatorname{span}(S).$ 

Furthermore,  $0_V \in \text{span}(S)$ . Hence, span(S) is a subspace of V by Corollary 1.3.3.

(b) Let  $x \in \text{span}(S)$ . Then there exist scalars  $a_1, \ldots, a_n \in F$  and vectors  $x_1, \ldots, x_n \in S$  such that

$$x = a_1 x_1 + \dots + a_n x_n.$$

Since  $S \subseteq U$ , we have  $x_1, \ldots, x_n \in U$ , and it follows that  $x = a_1 x_1 + \cdots + a_n x_n \in U$  due to the closeness of U. Thus,  $\operatorname{span}(S) \subseteq U$ .

**Definition 1.4.4.** Let V be a vector space and let  $S \subseteq V$ . If  $\operatorname{span}(S) = V$ , then S is called a **spanning set** of V, and we also say S **spans** V.

**Example.**  $\{(0,1,1),(1,0,1),(1,1,0)\}$  is a spanning set of  $\mathbb{R}^3$  since for any  $x,y,z\in\mathbb{R}$ ,

$$(x,y,z) = \frac{-x+y+z}{2} \cdot (0,1,1) + \frac{x-y+z}{2} \cdot (1,0,1) + \frac{x+y-z}{2} \cdot (1,1,0).$$

**Proposition 1.4.5.** Let V be a vector space and let  $R, S \subseteq V$ .

- (a)  $S \subseteq \operatorname{span}(S)$ .
- (b) If  $R \subseteq S$ , then  $\operatorname{span}(R) \subseteq \operatorname{span}(S)$ .
- (c) S = span(S) if and only if S is a subspace of V.
- (d)  $\operatorname{span}(R \cup S) = \operatorname{span}(R) + \operatorname{span}(S)$ .

Proof.

- (a) Straightforward.
- (b) It is true since a linear combination of a subset of S is also a linear combination of S.
- (c)  $(\Rightarrow)$  Straightforward from Theorem 1.4.3 (a).
  - $(\Leftarrow)$  Note that any linear combination of S is in S due to closeness of addition and scalar multiplication in S. Thus,  $\operatorname{span}(S) \subseteq S$ , and it follows that  $S = \operatorname{span}(S)$ .
- (d) Since  $R \subseteq \operatorname{span}(R)$  and  $S \subseteq \operatorname{span}(S)$ , we have  $R \cup S \subseteq \operatorname{span}(R) + \operatorname{span}(S)$ . Thus, by Theorem 1.4.3, we have  $\operatorname{span}(R \cup S) \subseteq \operatorname{span}(R) + \operatorname{span}(S)$ . On the other side, since

$$\operatorname{span}(R) \subseteq \operatorname{span}(R \cup S)$$
 and  $\operatorname{span}(S) \subseteq \operatorname{span}(R \cup S)$ ,

we can conclude that  $\operatorname{span}(R) \cup \operatorname{span}(S) \subseteq \operatorname{span}(R \cup S)$ . Thus,  $\operatorname{span}(R) + \operatorname{span}(S) \subseteq \operatorname{span}(R \cup S)$  by Proposition 1.3.6.

### 1.5 Linearly Independent Sets

**Definition 1.5.1.** Let V be a vector space over a field F and let  $S \subseteq V$ .

• S is linearly dependent if there exist scalars  $a_1, a_2, \ldots, a_n \in F \setminus \{0_F\}$  and distinct vectors  $x_1, x_2, \ldots, x_n \in S$  for some positive integer n such that

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = 0_V.$$

• S is **linearly independent** if it is not linearly dependent.

#### Remark.

• Note that  $\varnothing$  is linearly independent.

**Theorem 1.5.2.** Let V be a vector space over a field F and let  $S \subseteq V$ . Then the following statements are equivalent.

- (a) S is linearly dependent.
- (b) There exists  $x \in S$  with  $x \in \text{span}(S \setminus \{x\})$ .
- (c) There exists  $x \in S$  with  $\operatorname{span}(S) = \operatorname{span}(S \setminus \{x\})$ .

Proof.

(i) First we assume (a) and prove (b). Suppose that

$$a_0x_0 + a_1x_1 + \cdots + a_nx_n = 0_V$$

where  $a_0, a_1, \ldots, a_n$  are nonzero scalars and  $x_0, x_1, \ldots, x_n$  are distinct vectors. Then

$$x_0 = (-a_0)^{-1}(a_1x_1 + \dots + a_nx_n)$$
  
=  $((-a_0)^{-1}a_1)x_1 + \dots + ((-a_0)^{-1}a_n)x_n$   
 $\in \operatorname{span}(S \setminus \{x_0\}).$ 

(ii) Then we assume (b) and prove (c). Since

$$x \in \operatorname{span}(S \setminus \{x\})$$
 and  $S \setminus \{x\} \subset \operatorname{span}(S \setminus \{x\})$ ,

we have  $S \subseteq \operatorname{span}(S \setminus \{x\})$ . Thus,  $\operatorname{span}(S) \subseteq \operatorname{span}(S \setminus \{x\})$  by Theorem 1.4.3, and we can conclude that  $\operatorname{span}(S) = \operatorname{span}(S \setminus \{x\})$ .

- (iii) Then we assume (c) and prove (b). It is straightforward since  $x \in S \subseteq \text{span}(S) = \text{span}(S \setminus \{x\})$ .
- (iv) Finally we assume (b) and prove (a). Without loss of generality, let  $a_1, \ldots, a_n \in F$  be nonzero scalars and  $x_1, \ldots, x_n \in S \setminus \{x\}$  be distinct vectors such that  $x = a_1x_1 + \cdots + a_nx_n$ . Then we have

$$(-1_F)x + a_1x_1 + \dots + a_nx_n = 0_V,$$

which completes the proof.

**Example.** Let  $S = \{(0,1,1), (1,0,1), (1,1,0)\}$  be a subset of  $\mathbb{R}^3$ . Suppose that  $a_1, a_2, a_3 \in \mathbb{R}$  are scalars such that

$$a_1(0,1,1) + a_2(1,0,1) + a_3(1,1,0) = (0,0,0).$$

Then we have the following system of equations.

$$a_2 + a_3 = 0$$

$$a_1 + a_3 = 0$$

$$a_1 + a_2 = 0$$

Since the only solution to this system of equations is  $a_1 = a_2 = a_3 = 0$ , we can conclude that S is linearly independent by Definition 1.5.1.

**Example.** Let  $S = \{(1,1,1), (0,1,1), (1,0,1), (1,1,0)\}$  be a subset of  $\mathbb{R}^3$ . We can conclude that S is linearly dependent since

$$(1,1,1) = \frac{1}{2} \cdot (0,1,1) + \frac{1}{2} \cdot (1,0,1) + \frac{1}{2} \cdot (1,1,0).$$

**Proposition 1.5.3.** Let V be a vector space and let R, S be subsets of V with  $R \subseteq S$ .

- (a) If R is linearly dependent, then so is S.
- (b) If S is linearly independent, then so is R.

Proof.

(a) Suppose that R is linearly dependent. Then by Definition 1.5.1 there exists  $x \in R$  such that  $x \in \text{span}(R \setminus \{x\})$ . Also, we have  $R \setminus \{x\} \subseteq S \setminus \{x\}$  since  $R \subseteq S$ . Thus,  $x \in \text{span } S \setminus \{x\}$ , and it follows that S is linearly dependent.

(b) Straightforward from (a).

### 1.6 Bases and Dimension

**Definition 1.6.1.** A basis for a vector space V is a linearly independent subset of V that spans V.

#### Examples.

- $\varnothing$  is a basis for  $\{0_V\}$ .
- $\{e_1, \ldots, e_n\}$  is a basis for  $F^n$ , where  $e_i$  is the *n*-tuple whose *i*-th component is  $1_F$  and the other components are all  $0_F$ .
- $\{E_{ij}: 1 \leq i \leq m \text{ and } 1 \leq j \leq n\}$  is a basis for  $F^{m \times n}$ , where  $E_{ij}$  is the matrix whose (i, j)-entry is  $1_F$  and the other entries are all  $0_F$ .
- $\{t^0, t^1, t^2, \dots, t^n\}$  is a basis for  $\mathcal{P}_n(F)$ .
- $\{t^0, t^1, t^2, \dots\}$  is a basis for  $\mathcal{P}(F)$ .

**Proposition 1.6.2.** Let V be a vector space. If there exists a finite set S that spans V, then there is a subset Q of S that is a finite basis of V.

*Proof.* The proof is by induction on |S|. For the induction basis, suppose that |S| = 0, i.e.,  $S = \emptyset$ . Then the proposition holds since one can choose  $Q = \emptyset$  as a basis for V.

Now assume the induction hypothesis that the proposition holds for |S| = n with  $n \geq 0$ . If S is linearly independent, then we can choose Q = S as a basis for V. Otherwise, there exists  $x \in S$  with  $\operatorname{span}(S \setminus \{x\}) = \operatorname{span}(S)$ , i.e.,  $S \setminus \{x\}$  spans V. Thus, by induction hypothesis there is a subset Q of  $S \setminus \{x\}$  that is a basis for V, which completes the proof.

**Theorem 1.6.3** (Replacement Theorem). Let V be a vector space over a field F. Let S be a finite set that spans V, and let  $Q \subseteq V$  be a finite linearly independent set. Then  $|Q| \leq |S|$ , and there exists  $R \subseteq S \setminus Q$  such that both  $|Q \cup R| = |S|$  and  $\operatorname{span}(Q \cup R) = V$  hold.

*Proof.* The proof is based on induction on |Q|. The theorem holds for |Q| = 0, i.e.,  $Q = \emptyset$ , since we have  $|\emptyset| \le |S|$ ,  $|\emptyset \cup S| = |S|$  and  $\operatorname{span}(\emptyset \cup S) = V$ .

Now suppose that the theorem is true for |Q| = m with  $m \ge 0$ , and we prove that the theorem holds for |Q| = m + 1. Let  $Q = \{x_1, \ldots, x_{m+1}\}$  and let  $Q' = \{x_1, \ldots, x_m\}$ . By induction hypothesis, there exists  $R' = \{y_1, \ldots, y_k\} \subseteq S \setminus Q'$  such that |Q'| + |R'| = |S| and span $(Q' \cup R') = V$ . Since  $Q' \cup R'$  spans V, there exists  $a_1, \ldots, a_m, b_1, \ldots, b_k \in F$  such that

$$x_{m+1} = \sum_{i=1}^{m} a_i x_i + \sum_{j=1}^{k} b_j y_j.$$

If  $b_j = 0_F$  for all  $j \in \{1, ..., k\}$ , then  $x_{m+1} \in \text{span}(Q') = \text{span}(Q \setminus \{x_{m+1}\})$ , implying that Q is linearly dependent, contradiction. Thus, there must exist some  $j \in \{1, ..., k\}$  such that  $b_j \neq 0_F$ .s Without loss of generality, suppose that  $b_k \neq 0_F$  with  $k \geq 1$ . Also, let  $R = \{y_1, ..., y_{k-1}\}$ . Then  $|Q \cup R| = (m+1) + (k-1) = |S|$ , and we have  $|Q| \leq |S|$ . It follows that

$$Q' \cup R' \subseteq Q \cup R \cup \{y_k\} \subseteq \operatorname{span}(Q \cup R),$$

where the second inclusion holds because

$$y_k = (-b_k)^{-1} \left( \sum_{i=1}^m a_i x_i + (-1_F) x_{m+1} + \sum_{j=1}^{k-1} b_j y_j \right) \in \operatorname{span}(Q \cup R).$$

Then, we have

$$V = \operatorname{span}(Q' \cup R') \subseteq \operatorname{span}(Q \cup R) \subseteq V.$$

by Theorem 1.4.3. Thus,  $\operatorname{span}(Q \cup R) = V$ , which completes the proof.

Corollary 1.6.4. Let V be a vector space and Q be a linearly independent subset of V that is infinite. Then each spanning set of V is infinite.

*Proof.* Suppose that there is a finite set S that spans V. Let Q' be a subset of Q with |Q'| = |S| + 1. By Proposition 1.5.3, we can conclude that Q' is also linearly independent. Thus, we have  $|Q'| \leq |S|$  by replacement theorem (Theorem 1.6.3), contradiction.

Corollary 1.6.5. Let V be a vector space. If V has a finite basis, then each basis for V has the same size.

*Proof.* Let S be a finite basis for V and Q an arbitrary basis for V. Since  $V = \operatorname{span}(S)$  and Q is linearly independent, it follows that Q is finite by Corollary 1.6.4, and thus we have  $|Q| \leq |S|$ . Also, since  $V = \operatorname{span}(Q)$  and S is linearly independent, we have  $|S| \leq |Q|$ . Thus, |Q| = |S|.

**Definition 1.6.6.** Let V be a vector space.

- V is **finite-dimensional** if it has a finite basis. In this case, the number of vectors in each basis for V is called the **dimension** of V, denoted by  $\dim(V)$ .
- V is **infinite-dimensional** if it is not finite-dimensional.

#### Remark.

• If a vector space has a linearly independent subset that is infinite, we can conclude that it is infinite-dimensional by Corollary 1.6.4.

**Examples.** One can find the dimension of a vector space by any basis it admits.

- $\dim(\{0_V\}) = 0.$
- $\dim(F^n) = n$ .
- $\dim(F^{m \times n}) = mn$ .
- $\dim(\mathcal{P}_n(F)) = n + 1$ .
- $\mathcal{P}(F)$  is infinite-dimensional.

**Examples.** Note that the dimension of a vector space depends on its field of scalars.

• Let  $V = \mathbb{C}$  be a vector space over  $\mathbb{R}$ . Then we have  $\dim(V) = 2$  since  $\{1, i\}$  is a basis for V.

• Let  $W = \mathbb{C}$  be a vector space over  $\mathbb{C}$ . Then we have  $\dim(W) = 1$  since  $\{1\}$  is a basis for V.

**Proposition 1.6.7.** Let V be a vector space. Then a subset of V of  $n = \dim(V)$  vectors is linearly independent if and only if it is a spanning set of V.

*Proof.* ( $\Rightarrow$ ) Suppose that Q is linearly independent with |Q| = n. By replacement theorem (Theorem 1.6.3), there exists  $R \subseteq S \setminus Q$  such that  $|Q \cup R| = |S|$  and  $\operatorname{span}(Q \cup R) = V$ . Since |Q| = |S|, we have |R| = 0, i.e.,  $R = \emptyset$ . Thus,  $\operatorname{span}(Q) = V$ .

 $(\Leftarrow)$  Suppose that S spans V with |S|=n. By Proposition 1.6.2, there is a subset Q of S that is a basis of V. Then we have |Q|=n, implying Q=S. Thus, S is a basis for V.

**Proposition 1.6.8.** Let V be a finite-dimensional vector space. Let V' be a subspace of V. Then the following statements are true.

- (a)  $\dim(V') \leq \dim(V)$ .
- (b) If  $\dim(V') = \dim(V)$ , then V' = V.

*Proof.* Let S and S' be bases for V and V', respectively.

- (a) Since S' is linearly independent and V = span(S), we have  $|S'| \leq |S|$  by replacement theorem (Theorem 1.6.3). Thus,  $\dim(V') \leq \dim(V)$ .
- (b) Since S' is linearly independent and  $|S'| = \dim(V)$ , we have  $\operatorname{span}(S') = V$  by Proposition 1.6.7. Thus,  $V' = \operatorname{span}(S') = V$ .

**Example.** Let W be the set of  $n \times n$  diagonal matrices, which is a subspace of  $F^{n \times n}$ . Then one can verify that  $\{E_{ii} : 1 \leq i \leq n\}$  is a basis for W, where  $E_{ij}$  is the matrix whose (i, j)-entry is  $1_F$  and the other entries are  $0_F$ . Thus,  $\dim(W) = n$ .

## Chapter 2

## Linear Transformations

### 2.1 Linear Transformations, Null Spaces and Ranges

**Definition 2.1.1.** Let  $f: X \to Y$  be a function.

- f is **injective** (i.e., f is an **injection**) if T(x) = T(x') implies x = x' for  $x, x' \in X$ .
- f is surjective (i.e., f is a surjection) if for each  $y \in Y$ , there exists some  $x \in X$  with T(x) = y.
- f is **bijective** (i.e., f is a **bijection**) if f is injective and surjective.

**Remark.** If both domain and codomain of a function are vector spaces, then the function is usually said to be a **transformation**. Furthermore, it is said to be an **operator** if its domain and codomain are the same.

**Definition 2.1.2.** Let V and W be vector spaces over F. A transformation  $T:V\to W$  is **linear** if the following statements hold.

- (a) T(x+y) = T(x) + T(y) for all  $x, y \in V$ .
- (b) T(ax) = aT(x) for all  $a \in F$  and  $x \in V$ .

The set of all linear transformations from V to W is denoted by  $\mathcal{L}(V, W)$ . In the case that V = W, we write  $\mathcal{L}(V)$  for short.

**Example.** The **zero transformation** from V to W is the transformation  $O_{V,W}: V \to W$  that satisfies  $O_{V,W}(x) = 0_W$  for all  $x \in V$ . It is clear that  $O_{V,W} \in \mathcal{L}(V,W)$ .

**Example.** The identity transformation on V is the transformation  $I_V: V \to V$  that satisfies  $I_V(x) = x$  for all  $x \in V$ . It is clear that  $I_V \in \mathcal{L}(V)$ .

**Example.** Recall that  $\mathcal{P}(F)$  is the set of polynomials with coefficients in F.

- The differential operator  $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$  with D(f) = f' for  $f \in \mathcal{P}(\mathbb{R})$ , where f' is the derivative of f, is linear.
- The operator  $T: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$  such that for  $f \in \mathcal{P}(\mathbb{R})$ ,

$$(T(f))(x) = \int_0^x f(t)dt$$

for all  $x \in \mathbb{R}$ , is linear.

**Theorem 2.1.3.** If V and W are vector spaces over F, then  $\mathcal{L}(V, W)$  is also a vector space over F.

*Proof.*  $\mathcal{L}(V,W)$  is a vector space because it is a subspace of  $\mathcal{F}(V,W)$ , which is proved as follows.

(a) If  $T_1, T_2 \in \mathcal{L}(V, W)$ , then  $T_1 + T_2$  is linear because

$$(T_1 + T_2)(x + y) = T_1(x + y) + T_2(x + y)$$

$$= T_1(x) + T_1(y) + T_2(x) + T_2(y)$$

$$= T_1(x) + T_2(x) + T_1(y) + T_2(y)$$

$$= (T_1 + T_2)(x) + (T_1 + T_2)(y)$$

and

$$(T_1 + T_2)(cx) = T_1(cx) + T_2(cx)$$

$$= cT_1(x) + cT_2(x)$$

$$= c(T_1(x) + T_2(x))$$

$$= c(T_1 + T_2)(x)$$

hold for  $x, y \in V$  and  $c \in F$ .

(b) If  $T \in \mathcal{L}(V, W)$  and  $a \in F$ , then aT is linear because

$$(aT)(x + y) = aT(x + y)$$

$$= a(T(x) + T(y))$$

$$= aT(x) + aT(y)$$

$$= (aT)(x) + (aT)(y)$$

and

$$(aT)(cx) = aT(cx) = a(cT(x)) = c(aT(x)) = c(aT)(x)$$

hold for  $x, y \in V$  and  $c \in F$ .

(c) It is clear that  $O_{V,W} \in \mathcal{L}(V,W)$ .

**Theorem 2.1.4.** Let V and W be vector spaces over F, and let  $T:V\to W$  be linear. Let S be a subset of V and let U be a subspace of V. Then the following statements are true.

(a) If n is a nonnegative integer, then for  $a_1, \ldots, a_n \in F$  and  $x_1, \ldots, x_n \in V$ , we have

$$T\left(\sum_{i=1}^{n} a_i x_i\right) = a_i \sum_{i=1}^{n} T(x_i).$$

(b) If S spans U, then T(S) spans T(U).

Proof.

(a) The proof is by induction on n. For n = 0, it holds trivially. If the statement is true for some n > 0, then we have

$$T(a_1x_1 + \dots + a_nx_n + a_{n+1}x_{n+1}) = T(a_1x_1 + \dots + a_nx_n) + T(a_{n+1}x_{n+1})$$
  
=  $a_1T(x_1) + \dots + a_nT(x_n) + a_{n+1}T(x_{n+1}).$ 

Thus, the statement is true for nonnegative integer n.

(b) We prove that  $\operatorname{span}(T(S)) = T(U)$ . If  $y \in \operatorname{span}(T(S))$ , then there exist  $a_i \in F$ ,  $x_i \in S$  for  $i \in \{1, \ldots, n\}$  such that

$$y = \sum_{i=1}^{n} a_i T(x_i) = T\left(\sum_{i=1}^{n} a_i x_i\right) \in T(U),$$

so span $(T(S)) \subseteq T(U)$ .

If  $y \in T(U)$ , then there exist  $a_i \in F$ ,  $x_i \in S$  for  $i \in \{1, ..., n\}$  such that

$$y = T\left(\sum_{i=1}^{n} a_i x_i\right) = \sum_{i=1}^{n} a_i T(x_i) \in \operatorname{span}(T(S)),$$

so 
$$T(U) \subseteq \operatorname{span}(T(S))$$
. Thus,  $\operatorname{span}(T(S)) = T(U)$ .

**Definition 2.1.5.** Let V and W be vector spaces over F, and let  $T:V\to W$  be linear.

• The null space  $\mathcal{N}(T)$  of T is the set of vectors  $x \in V$  with  $T(x) = 0_W$ ; that is,

$$\mathcal{N}(T) = \{ x \in V : T(x) = 0_W \}.$$

• The range  $\mathcal{R}(T)$  of T is the image of V under T; that is,

$$\mathcal{R}(T) = \{ T(x) : x \in V \}.$$

**Example.** Let  $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$  be the differential operator. Then

$$\mathcal{N}(D) = \{a_0 : a_0 \in \mathbb{R}\} \text{ and } \mathcal{R}(D) = \mathcal{P}(\mathbb{R}).$$

**Theorem 2.1.6.** Let V and W be vector spaces over F, and let  $T: V \to W$  be linear. Then  $\mathcal{N}(T)$  and  $\mathcal{R}(T)$  are subspaces of V and W, respectively.

Proof.

- (a) Let  $x, x' \in \mathcal{N}(T)$  and  $a \in F$ . Then we have  $T(x+x') = T(x) + T(x') = 0_W + 0_W = 0_W$ ,  $T(ax) = aT(x) = a0_W = 0_W$  and  $T(0_V) = 0_W$ . Thus,  $\mathcal{N}(T)$  is a subspace of V.
- (b) Let  $y, y' \in \mathcal{R}(T)$  and  $a \in F$ . There exist  $x, x' \in V$  with y = T(x) and y' = T(x'). Then we have y + y' = T(x) + T(x') = T(x + x'), ay = aT(x) = T(ax) and  $0_W = T(0_V)$ . Thus,  $\mathcal{R}(T)$  is a subspace of W.

**Definition 2.1.7.** Let V and W be vector spaces over F, and let  $T:V\to W$  be linear.

- The **nullity** of T, denoted by  $\operatorname{nullity}(T)$ , is the dimension of  $\mathcal{N}(T)$ .
- The rank of T, denoted by rank(T), is the dimension of  $\mathcal{R}(T)$ .

**Theorem 2.1.8** (Rank-nullity Theorem). Let V and W be vector spaces over F, and let  $T:V\to W$  be linear. If V is finite-dimensional, then  $\operatorname{nullity}(T)+\operatorname{rank}(T)=\dim(V)$ .

*Proof.* Let S be a basis for V and Q a basis for  $\mathcal{N}(T)$ . By corollary to replacement theorem (Theorem 1.6.3), there is  $R \subseteq S \setminus Q$  such that  $Q \cup R$  is a basis for V. Since  $|R| = |Q \cup R| - |Q| = \dim(V) - \text{nullity}(T)$ , the theorem holds if  $|R| = \dim(\mathcal{R}(T))$ .

If there exist different  $x, x' \in R$  with T(x) = T(x'), then we have  $T(x-x') = T(x) - T(x') = 0_W$ , and thus  $x - x' \in \mathcal{N}(T) = \operatorname{span}(Q)$ . It follows that  $x \in \operatorname{span}(Q \cup \{x'\})$ , contradiction to the fact that S is linearly independent. Thus, |R| = |T(R)|. We claim that T(R) is a basis for  $\mathcal{R}(T)$ .

First we prove that T(R) spans  $\mathcal{R}(T)$ . By Theorem 2.1.4 (b) and the fact that  $T(Q) = \{0_V\}$ , we have

$$\mathcal{R}(T) = T(\operatorname{span}(Q \cup R))$$

$$= \operatorname{span}(T(Q \cup R))$$

$$= \operatorname{span}(T(Q)) + \operatorname{span}(T(R))$$

$$= \operatorname{span}(T(R)).$$

Then we prove that T(R) is linearly independent. Suppose that

$$a_1T(x_1) + \cdots + a_nT(x_n) = 0_W$$

holds for some  $a_1, \ldots, a_n \in F$  and some different  $x_1, \ldots, x_n \in R$  with  $n \geq 1$ . Then by Theorem 2.1.4 we have  $T(a_1x_1 + \cdots + a_nx_n) = 0_W$ , and thus  $a_1x_1 + \cdots + a_nx_n \in \mathcal{N}(T)$ . Hence, there exist some  $b_1, \ldots, b_m \in F$  and some different  $y_1, \ldots, y_m \in Q$  such that

$$a_1x_1 + \cdots + a_nx_n = b_1y_1 + \cdots + b_my_m.$$

That is,

$$a_1x_1 + \dots + a_nx_n + (-b_1)y_1 + \dots + (-b_m)y_m = 0_V.$$

Since  $Q \cup R$  is linearly independent, we have  $a_1 = \cdots = a_n = b_1 = \cdots = b_m = 0_F$ , implying that T(R) is linearly independent.

Thus, T(R) is a basis for  $\mathcal{R}(T)$ , and we can conclude that  $\operatorname{rank}(T) = |T(R)| = |R| = |Q \cup R| - |Q|$ , which completes the proof.

### 2.2 Invertibility and Isomorphisms

**Definition 2.2.1.** Let X and Y be sets and let  $f: X \to Y$  be a function.

- A function  $g: Y \to X$  is a **left inverse** of f if  $g \circ f = I_X$ . We say that f is **left invertible** if it has a left inverse.
- A function  $g: Y \to X$  is a **right inverse** of f if  $f \circ g = I_Y$ . We say that f is **right invertible** if it has a right inverse.
- A function  $g: R \to S$  is an **inverse** of f if it is a left inverse and a right inverse of f. We say that f is **invertible** if it has an inverse.

**Proposition 2.2.2.** The following statements are true.

- (a) A function is left invertible if and only if it is injective.
- (b) A function is right invertible if and only if it is surjective.
- (c) A function is invertible if and only if it is bijective.

Proof.

- (a) ( $\Rightarrow$ ) Suppose that  $f: X \to Y$  is left invertible. Let  $g: Y \to X$  be an left inverse of f. Then for each  $x, x' \in X$  that satisfy f(x) = f(x'), we have x = g(f(x)) = g(f(x')) = x'.
  - ( $\Leftarrow$ ) Suppose that  $f: X \to Y$  is injective. Then there exists a function  $g: Y \to X$  such that g(f(x)) = x holds for all  $x \in X$ , implying g is a left inverse of f.
- (b) ( $\Rightarrow$ ) Suppose that  $f: X \to Y$  is right invertible. Let  $g: Y \to X$  be an right inverse of f. Then y = f(g(y)) for all  $y \in Y$ , and thus f is surjective.
  - ( $\Leftarrow$ ) Suppose that  $f: X \to Y$  is surjective. Then there exists a function  $g: Y \to X$  such that f(g(y)) = y for all  $y \in Y$ , implying g is a right inverse of g.

(c) Straightforward from (a) and (b).

**Definition 2.2.3.** Let V and W be vector spaces over F.

- A linear transformation  $T: V \to W$  is called an **isomorphism** from V onto W if it is invertible.
- We say that V is **isomorphic** to W, denoted by  $V \cong W$ , if there is an isomorphism from V onto W.

**Proposition 2.2.4.** Let V and W be vector spaces over F. Then  $V \cong W$  if and only if  $W \cong V$ .

*Proof.* If  $V \cong W$ , then there exists  $T \in \mathcal{L}(V, W)$  that is invertible. Because  $T^{-1}$  is linear and invertible, it is an isomorphism from W onto V, and thus  $W \cong V$ . The other side can be proved similarly.

**Theorem 2.2.5.** Let V and W be finite-dimensional vector spaces over F. Then  $V \cong W$  if and only if  $\dim(V) = \dim(W)$ .

*Proof.* ( $\Rightarrow$ ) Let T be an isomorphism from V onto W. Since T is invertible, we have  $\operatorname{nullity}(T)=0$ . Thus, by rank-nullity theorem (Theorem 2.1.8) we have  $\operatorname{rank}(T)=\dim(V)$ . Furthermore, we have  $\mathcal{R}(T)=W$  since T is bijective by Proposition 2.2.2. Therefore,  $\dim(V)=\dim(W)$ .

 $(\Leftarrow)$  To be completed.