GATE - 2008 - EE

EE1030 : Matrix Theory Indian Institute of Technology Hyderabad

Satyanarayana Gajjarapu AI24BTECH11009

1 1 - 17

1) The number of chords in the graph of the given circuit will be

- a) 3
- b) 4
- c) 5
- d) 6
- 2) The Thevenin's equivalent of a circuit operating at $\omega = 5$ rad/s, has $V_{oc} = 3.71 \angle -15.9^{\circ}V$ and $Z_o = 2.38 j0.667\Omega$. At this frequency, the minimal realization of the Thevenin's impedance will have a
 - a) resistor and a capacitor and an inductor
 - b) resistor and a capacitor
 - c) resistor and an inductor
 - d) capacitor and an inductor
- 3) A signal $e^{-\alpha t} \sin{(\omega t)}$ is the input to a real Linear Time Invariant system. Given K and ϕ are constants, the output of the system will be of the form $Ke^{-\beta t} \sin{(vt + \phi)}$ where
 - a) β need not be equal to α but ν equal to ω
 - b) v need not be equal to ω but β equal to α
 - c) β equal to α and ν is equal to ω
 - d) β need not be equal to α and ν need not be equal to ω

1

- 4) X is a uniformly distributed random variable that takes values between 0 and 1. The value of $E\{X^3\}$ will be
 - a) 0

 - b) $\frac{1}{8}$ c) $\frac{1}{4}$ d) $\frac{1}{2}$
- 5) The characteristic equation of a (3×3) matrix **P** is defined as

$$\alpha(\lambda) = |\lambda \mathbf{I} - \mathbf{P}| = \lambda^3 + \lambda^2 + 2\lambda + 1 = 0$$

If I denotes identity matrix, then the inverse of matrix P will be

- a) $(P^2 + P + 2I)$
- b) $(\mathbf{P}^2 + \mathbf{P} + \mathbf{I})$
- c) $-(\mathbf{P}^2 + \mathbf{P} + \mathbf{I})$ d) $-(\mathbf{P}^2 + \mathbf{P} + 2\mathbf{I})$
- 6) If the rank of a (5×6) matrix **Q** is 4, then which one of the following statements is correct?
 - a) **Q** will have four linearly independent rows and four linearly independent columns
 - b) \mathbf{Q} will have four linearly independent rows and five linearly independent columns
 - c) $\mathbf{Q}\mathbf{Q}^{\mathsf{T}}$ will be invertible
 - d) $\mathbf{Q}^{\mathsf{T}}\mathbf{Q}$ will be invertible
- 7) A function y(t) satisfies the following differential equation:

$$\frac{dy(t)}{dt} + y(t) = \delta(t)$$

where $\delta(t)$ is the delta function. Assuming zero initial condition, and denoting the unit step function by u(t), y(t) can be of form

- a) e^t
- b) e^{-t}
- c) $e^t u(t)$
- d) $e^{-t}u(t)$
- 8) The equivalent circuits of a diode, during forward biased and reverse biased conditions, are shown in the figure

If such a diode is used in clipper circuit of figure given above, the output voltage (v_o) of the circuit will be

a)

b)

c)

d)

- 9) Two 8-bit ADCs, one of single slope integrating type and the other of successive approximation type, take T_A and T_B times to convert a 5 V analog input signal to an equivalent digital output. If the input analog signal is reduced to 2.5 V, the approximate time taken by the two ADCs will respectively, be
 - a) T_A, T_B
 - b) $\frac{T_A}{2}$, T_B

 - c) T_A , $\frac{T_B}{2}$ d) $\frac{T_A}{2}$, $\frac{T_B}{2}$
- 10) An input device is interfaced with Intel 8085A microprocessor as memory mapped I/O. The address of the device is 2500H. In order to input data from the device to accumulator, the sequence of instructions will be
 - a) LXI H, 2500H
 - MOV A, M
 - b) LXI H, 2500H MOV M, A
 - c) LHLD 2500H MOV A, M
 - d) LHLD 2500H MOV M, A
- 11) Distributed winding and short chording employed in AC machines will result in
 - a) increase in emf and reduction in harmonics.
 - b) reduction in emf and increase in harmonics.
 - c) increase in both emf and harmonics.
 - d) reduction in both emf and harmonics.
- 12) Three single-phase transformers are connected to form a 3-phase transformer bank. The transformers are connected in the following manner:

The transformer connection will be represented by

- a) Yd0
- b) Yd1
- c) Yd6
- d) Yd11

- 13) In a stepper motor, the detent torque means
 - a) minimum of the static torque with the phase winding excited.
 - b) maximum of the static torque with the phase winding excited.
 - c) minimum of the static torque with the phase winding unexcited.
 - d) maximum of the static torque with the phase winding unexcited.
- 14) A two machine power system is shown below. Transmission line XY has positive sequence impedance of $Z_1\Omega$ and zero sequence impedance of $Z_0\Omega$.

An 'a' phase to ground fault with zero fault impedance occurs at the centre of the transmission line. Bus voltage at X and line current from X to F for the phase 'a', are given by V_a Volts and I_a Amperes, respectively. Then, the impedance measured by the ground distance relay located at the terminal X of line XY will be given by

- a) $\frac{Z_1}{2}\Omega$ b) $\frac{Z_0}{2}\Omega$ c) $\frac{Z_0+Z_1}{I_a}\Omega$ d) $\frac{V_a}{I_a}\Omega$
- 15) An extra high voltage transmission line of length 300 km can be approximated by a lossless line having propagation constant $\beta = 0.00127$ radians per km. Then the percentage ratio of line length to wavelength will be given by
 - a) 24.24%
 - b) 12.12%
 - c) 19.05%
 - d) 6.06%
- 16) A 3-phase transmission line is shown in the figure:

Voltage drop across the transmission line is given by the following equation:

$$\begin{bmatrix} \Delta V_a \\ \Delta V_b \\ \Delta V_c \end{bmatrix} = \begin{bmatrix} Z_s & Z_m & Z_m \\ Z_m & Z_s & Z_m \\ Z_m & Z_m & Z_s \end{bmatrix} \begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix}$$

Shunt capacitance of the line can be neglected. If the line has positive sequence impedance of 15 Ω ans zero sequence impedance of 48 Ω , then the values of Z_s and Z_m will be

- a) $Z_s = 31.5 \Omega$; $Z_m = 16.5 \Omega$
- b) $Z_s = 26 \Omega$; $Z_m = 11 \Omega$
- c) $Z_s = 16.5 \Omega$; $Z_m = 31.5 \Omega$
- d) $Z_s = 11 \Omega$; $Z_m = 26 \Omega$
- 17) In the single phase voltage controller circuit shown in the figure, for what range of triggering angle (α) , the output voltage (v_0) is not controllable?

- a) $0^{\circ} < \alpha < 45^{\circ}$
- b) $45^{\circ} < \alpha < 135^{\circ}$
- c) $90^{\circ} < \alpha < 180^{\circ}$
- d) $135^{\circ} < \alpha < 180^{\circ}$