Missing Data Imputation

Applying multiple imputation to survey data harmonized ex-post

Stef van Buuren, University of Utrecht & TNO

December 19, 2019; Building Multi-Source Databases for Comparative Analyses

Two problems in combining datasets

- 1. Different number of categories
- 2. Uncollected variables

1. Different number of categories

Trust in government

Control variables	Source trust in parliament scale length	C_TR_PARLI_SRC_SCALE_ LENGTH	2 = 2-point scale 4 = 4-point scale 5 = 5-point scale 7 = 7-point scale 10 = 10-point scale 11 = 11-point scale -2 (.b) = not applicable
	Source trust in parliament scale direction	C_TR_PARLI_SRC_ASCEND	0 = descending 1 = ascending -2 (.b) = not applicable
	Source trust in parliament polarity	C_TR_PARLI_SRC_UNIPOL AR	0 = bipolar 1 = unipolar -2 (.b) = not applicable

Method 1: Stretch to finer scale

Figure 2. Transformation of source values into the target 0-10 scale

Method 2: Align ranges

Figure 3. Transformation of source values into the target 0-1 scale

Method 3: Cohortwise transform to uniform

Table 22. Distribution-based transformation; example: TRUST IN PARLIAMENT, LITS/2/PL

Source value k	Distribution X_k	Cumulative distribution $\sum_{i=1}^{k} X_i$	$\sum_{i=1}^{k-1} X_i$	$\sum_{i=1}^{k-1} X_i + \frac{X_k}{2}$	Target value (rounded to integer)
1	10.68	10.68	0	= 10.68/2 = 5.340	5
2	32.75	43.44	10.68	= 10.68 + 32.75/2 = 27.055	27
3	32.11	75.55	43.44	= 43.44 + 32.11/2 = 59.495	59
4	21.69	97.23	75.55	= 75.55 + 21.69/2 = 86.395	86
5	2.77	100	97.23	= 97.23 + 2.77/2 = 98.615	99

factor(C_TR_PARLI_SRC_SCALE_LENGTH)

- 2-POINT SCALE
- 4-POINT SCALE
- 5-POINT SCALE
- 7-POINT SCALE
 10-POINT SCALE
- 10-POINT SCALE
 11-POINT SCALE

factor(C_TR_PARLI_SRC_SCALE_LENGTH)

- 2-POINT SCALE
- 4-POINT SCALE
- 5-POINT SCALE
 7-POINT SCALE
- 10-POINT SCALE
- 11-POINT SCALE

Comments

- Untested assumptions
 - ▶ 1/2: equal distance between categories
 - ▶ 3: same percentile distribution over cohorts
- Arbitrary, not obvious which to choose
- ▶ Does not account for response behaviors
- Impact on conclusions

Levels of equivalence

- construct inequivalence: no equivalent concepts across cohorts
- construct equivalence: same concept is measured, but scales differ
- procedural equivalence: common procedure to measure objects, but there is no underlying unit or ordering in the numbers
- 4. unit equivalence: same units but different anchors
- 5. scalar equivalence: same ratio scale across cohort

Idea

- ► Generalize transformation one -> many
- Learn relations from the data

Crisp coding

Figure 2. Transformation of source values into the target 0-10 scale

Fuzzy coding

Figure 2. Transformation of source values into the target 0-10 scale

Trust parlement: 0-10 scale, 0-1 scale

0-10	no	yes	no	yes
0	3	0	.02	.00
1	0	0	.00	.00
2	6	1	.05	.01
3	10	0	.08	.00
4	12	1	.09	.01
5	30	8	.24	.05
6	32	12	.25	.07
7	25	54	.20	.33
8	8	44	.06	.27
9	0	33	.00	.20
10	1	8	.01	.05
	127	161	1.00	1.00

Example: Walking disability in two countries

Uses the walking data in mice

Item HAQ8 measured in Antonia

Are you able to walk outdoors on flat ground?

Cat	Label	Count
0	Without any difficulty	242
1	With some difficulty	43
2	With much difficulty	15
3	Unable to do	0
NA	Missing	6
	Total	306

Antonia statistic (Mean disability):
$$(242 \times 0 + 43 \times 1 + 15 \times 2)/300 = 0.243$$

Item GARS9 measured in Belmark

Can you, fully independently, walk outdoors (if necessary with a cane)?

Label	Count
Yes, no difficulty	145
Yes, with some difficulty	110
Yes, with much difficulty	29
No, only with help from others	8
Missing	0
Total	292
	Yes, with some difficulty Yes, with much difficulty No, only with help from others Missing

Belmark statistic: proportion no difficulty (PND): 145/292 = 0.50

Problem

- We want to compare walking problems between Antonia and Belmark
- ► What to do?

The easy way: Equate all categories

Country	Mean	PND
Antonia	.24	.80
Belmark	.66	.50
Difference	42	.30

- Both Mean and PND indicate more walking problems in Belmark
- Differences are large
- ► Assumes that we can perfectly map *HAQ8* into *GARS9*, and vice versa.
- ▶ That is, the correlation is 1.0: Is that realistic?

A third country: Citrus

	<i>GARS9</i>				
HAQ8	0	1	2	3	Total
0	256	90	6	4	356
1	26	90	20	0	136
2	6	40	28	10	84
3	0	0	2	2	4
NA	2	0	2	0	4
Total	290	220	58	16	584

- ▶ Not symmetric: *HAQ8* appears more difficult than *GARS9*
- Kendall's $\tau = 0.57$, not 1.00
- Are there consequences for the comparison?

How to impute: data structure

How to impute: Kendall's au for imputed HAQ8 and GARS9

Result: Proportion No difficulty (PND) in Antonia

Results: equating $\langle - \rangle$ MI $\langle - \rangle$ MI + age + sex

Country	Mean	PND	Mean	PND	Mean	PND
Antonia	.24	.80	.24	.59	.24	.53
Belmark	.66	.50	.45	.50	.45	.50
Difference	42	.30	22	.09	22	.03

- Antonia is still doing better, but the effects are much smaller
- Correction has more effect on "proportion of no difficulty" (PND) (10 times smaller!)

Conclusions

- ➤ Simple equating exaggerates differences between countries, e.g., +30 percent points instead of +3 percent points
- Overstated differences may spur inappropriate interventions, sometimes with substantial financial consequences
- Worse problems exist for the different number of categories, popular crisp recoding
- Advised remedy: multiple imputation, including covariates
- More detail: https://stefvanbuuren.name/fimd/sec-codingsystems.html
- Code: https://github.com/stefvanbuuren/fimdbook/blob/ master/R/fimd.R

2. Uncollected variables

Analysis of individual patient data (IPD) is very popular. It has many advantages over meta-analysis of aggregate data, e.g.,

- Consistent inclusion/exclusion criteria
- Missing data can be treated at the patient level
- Verifies original analysis
- Removal of duplicate subjects
- Consistent correction for confounders

Problem: Studies collect different variables

Missing data in IPD

- ► Systematically missing: Not collected, missing for all in study
- ► **Sporadically missing**: Collected, but missing for some in study
- ► Can be at level-1 or level-2 of the analysis

Imputation of IPD data

- ▶ In general, we need multilevel imputation models
- Historically, most techniques were suited only for sporadically missing
- Wish to preserve between-study heterogeneity in errors: mice::mice.impute.21.norm()
- ▶ More recently, two types of models, level-1:
 - generalization to systematically missing: mice::mice.impute.21.lmer() (Jolani, 2016)
 - 2-stage models: micemd::mice.impute.21.2stage.norm()
 (Resche-Rigon 2016)

brandsma data

- ▶ Brandsma and Knuver, Int J Ed Res, 1989.
- Extensively discussed in Snijders and Bosker (2012), 2nd ed.
- ▶ 4106 pupils, 216 schools, about 4% missing values

```
library(mice)
head(brandsma[, c(1:6, 9:10, 13)], 3)
```

```
## sch pup iqv iqp sex ses lpr lpo den

## 1 1 1 -1.35 -3.72 1 -17.67 33 NA 1

## 2 1 2 2.15 3.28 1 NA 44 50 1

## 3 1 3 3.15 1.27 0 -4.67 36 46 1
```

brandsma data subset

```
d <- brandsma[, c("sch", "lpo", "sex", "den")]
head(d, 2)
## sch lpo sex den</pre>
```

- ## 1 1 NA 1 1 ## 2 1 50 1 1
 - **sch**: School number, cluster variable, C = 216;
 - lpo: Language test post, outcome at pupil level;
 - sex: Sex of pupil, predictor at pupil level (0-1);
 - den: School denomination, predictor at school level (1-4).

Model of scientific interest

Predict 1po from the

- ▶ level-1 predictor sex
- ▶ level-2 predictor den

Level notation - Bryk and Raudenbush (1992)

$$1po_{ic} = \beta_{0c} + \beta_{1c}sex_{ic} + \epsilon_{ic}$$
 (1)

$$\beta_{0c} = \gamma_{00} + \gamma_{01} \operatorname{den}_c + u_{0c} \tag{2}$$

$$\beta_{1c} = \gamma_{10} \tag{3}$$

- ▶ lpo_{ic} is the test score of pupil i in school c
- sex_{ic} is the sex of pupil i in school c
- den_c is the religious denomination of school c
- β_{0c} is a random intercept that varies by cluster
- \triangleright β_{1c} is a sex effect, assumed to be the same across schools.
- ullet $\epsilon_{ic}\sim N(0,\sigma_{\epsilon}^2)$ is the within-cluster random residual at the pupil level

Level 2 equations: interpretation

The first level-2 model

$$\beta_{0c} = \gamma_{00} + \gamma_{01} \operatorname{den}_c + u_{0c},$$

describes the variation in the mean test score between schools as a function of

- ▶ the grand mean γ_{00} ,
- \triangleright a school-level effect γ_{01} of denomination, and a
- school-level random residual $u_{0c} \sim N(0, \sigma_{u_0}^2)$

The second level 2 model

$$\beta_{1c} = \gamma_{10}$$
,

specifies β_{1c} as a fixed effect equal in value to γ_{10}

Unknown parameters

$$1po_{ic} = \beta_{0c} + \beta_{1c} sex_{ic} + \epsilon_{ic}$$
 (4)

$$\beta_{0c} = \gamma_{00} + \gamma_{01} den_c + u_{0c}$$
 (5)

$$\beta_{1c} = \gamma_{10} \tag{6}$$

The unknowns to be estimated are the fixed parameters:

- $\sim \gamma_{00}$
- $ightharpoonup \gamma_{01}$, and
- $ightharpoonup \gamma_{10}$,

and the variance components:

- σ_{ϵ}^2 and $\sigma_{\mu_0}^2$.

Where are the missings?

In single level data, missingness may be in the outcome and/or in the predictors $% \left(1\right) =\left(1\right) \left(1\right)$

With multilevel data, missingness may be in:

- 1. the outcome variable;
- 2. the level-1 predictors;
- 3. the level-2 predictors;
- 4. the class variable.

Univariate missing, level-1 outcome

Univariate missing, level-1 predictor, sporadically missing

Univariate missing, level-1 predictor, systematically missing

Univariate missing, level-2 predictor

Multivariate missing

Nine challenges in multilevel imputation (1 of 3)

- For small clusters the within-cluster mean and variance are unreliable estimates, so the choice of the prior distribution becomes critical.
- 2. For a small number of clusters, it is difficult to estimate the between-cluster variance of the random effects.
- In applications with systematically missing data, there are no observed values in the cluster, so the cluster location cannot be estimated.

Nine challenges in multilevel imputation (2 of 3)

- 4. The variation of the random slopes can be large, and some methods have difficulty handling this.
- 5. The error variance σ_{ϵ}^2 may differ across clusters (heteroscedasticity), whereas the standard model assumes equal error variances.
- The residual error distributions can be far from normal, e.g., for categorical data.

Nine challenges in multilevel imputation (3 of 3)

- The model may contain aggregates of the level-1 variables, such as cluster means, which need to be taken in account during imputation.
- 8. The model may contain interactions, or other nonlinear terms.
- It may not be possible to fit the multilevel model, or there are convergence problems.

See Van Buuren (2018)

Ad hoc solutions

- 1. Listwise deletion: Generally not recommended
- 2. Single-level imputation: Biases ICC downwards.
- Conducting multiple imputation with the wrong model (e.g., single-level methods) can be more hazardous than listwise deletion.
- 3. Include dummy per cluster: Fixed effects generally unbiased, but the random effects are not. Biases ICC upwards.

Three general strategies

- Monotone data imputation
- Joint modeling
- ► Fully conditional specification (FCS)

Fully conditional specification

$$\dot{\text{lpo}}_{ic} \sim N(\beta_0 + \beta_1 \text{den}_c + \beta_2 \text{sex}_{ic} + u_{0c}, \sigma_{\epsilon}^2)$$

$$\dot{\text{sex}}_{ic} \sim N(\beta_0 + \beta_1 \text{den}_c + \beta_2 \text{lpo}_{ic} + u_{0c}, \sigma_{\epsilon}^2)$$
(8)

Theoretical problem with FCS

Conditional expectation of sex_{ic} in a random effects model depends on

- ▶ lpo_{ic},
- ▶ $\overline{1po}_i$, the mean of cluster i, and
- \triangleright n_i , the size of cluster i.

Resche-Rigon & White (2018) suggest the imputation model

- should incorporate the cluster means of level-1 predictors
- be heteroscedastic if cluster sizes vary

Methods for multilevel imputation in mice

Table 7.2: Overview of methods to perform univariate multilevel imputation of continuous data. Each of the methods is available as a function called <code>mice.impute.[method]</code> in the specified R package.

Package	Method	Description
Continuous		
mice	2l.lmer	normal, lmer
mice	21.pan	normal, pan
miceadds	21.continuous	normal, lmer , blme
micemd	21.jomo	normal, jomo
micemd	2l.glm.norm	normal, lmer
mice	21.norm	normal, heteroscedastic
micemd	21.2stage.norm	normal, heteroscedastic
Generic		
miceadds	21.pmm	pmm, homoscedastic, lmer
micemd	21.2stage.pmm	pmm, heteroscedastic, mvmeta

Methods for multilevel imputation in mice

Table 7.3: Methods to perform univariate multilevel imputation of missing discrete outcomes. Each of the methods is available as a function called <code>mice.impute.[method]</code> in the specified R package.

Package	Method	Description
Binary		
mice	2l.bin	logistic, glmer
miceadds	21.binary	logistic, glmer
micemd	2l.2stage.bin	logistic, mvmeta
micemd	2l.glm.bin	logistic, glmer
Count		
micemd	2l.2stage.pois	Poisson, mvmeta
micemd	2l.glm.pois	Poisson, glmer
countimp	2l.poisson	Poisson, glmmPQL
countimp	21.nb2	negative binomial, glmmadmb
countimp	2l.zihnb	zero-infl neg bin, glmmadmb

Methods for multilevel imputation in mice

Table 7.4: Overview of mice.impute. [method] functions to perform univariate multilevel imputation.

Package	Method	Description
Level-2		
mice	2lonly.mean	level-2 manifest class mean
miceadds	21.groupmean	level-2 manifest class mean
miceadds	2l.latentgroupmean	level-2 latent class mean
mice	2lonly.norm	level-2 class normal
mice	2lonly.pmm	level-2 class pmm
miceadds	2lonly.function	level-2 class, generic
miceadds	ml.lmer	≥ 2 levels, generic

In practice: start simple, empty model

Analysis

```
## Loading required package: Matrix
fit <- with(imp, lmer(lpo ~ (1 | sch), REML = FALSE))
summary(pool(fit))

## estimate std.error statistic df p.value
## (Intercept) 40.9 0.322 127 3368 0</pre>
```

Variance components

ICC|sch

```
library(mitml)

## *** This is beta software. Please report any bugs!

## *** See the NEWS file for recent changes.

testEstimates(as.mitml.result(fit), var.comp = TRUE)$var.com

## Estimate

## Intercept~~Intercept|sch 18.021

## Residual~~Residual 63.306
```

0.222

Now start adding model terms

https://stefvanbuuren.name/fimd/sec-mlguidelines.html

Recipe: Missing level-1

Recipe for a level-1 target

- 1. Define the most general analytic model to be applied to imputed da
- 2. Select a 21 method that imputes close to the data
- 3. Include all level-1 variables
- 4. Include the disaggregated cluster means of all level-1 variables
- 5. Include all level-1 interactions implied by the analytic model
- 6. Include all level-2 predictors
- 7. Include all level-2 interactions implied by the analytic model
- 8. Include all cross-level interactions implied by the analytic model
- 9. Include predictors related to the missingness and the target
- 10. Exclude any terms involving the target

Uncollected variables: conclusion

- No need restrict analysis to least common denominator
- Impute systematically missing data with multilevel imputation model
 - ► Either 2-stage or generalized multilevel
- ► Technically still challenging, but doable (in Stata or R)
- More detail: https://stefvanbuuren.name/fimd/ch-multilevel.html

Wrap up

- 1. Different number of categories
- 2. Uncollected variables
- ▶ I believe multiple imputation provides substantial progress over
 - ad-hoc recoding strategies
 - restriction to observed data
- Of course, we always need MAR assumptions, but these are often natural for combined data
- ▶ Still experimental, more experience is needed
- Long-term vision: data-combination as a information translation service for distributed data