PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

C01B 31/00

A1

(11) International Publication Number:

WO 92/04279

(43) International Publication Date:

19 March 1992 (19.03.92)

(21) International Application Number:

PCT/US91/05983

(22) International Filing Date:

21 August 1991 (21.08.91)

(30) Priority data:

575,254 580,246 30 August 1990 (30.08.90) US 10 September 1990 (10.09.90) US

(71) Applicant: RESEARCH CORPORATION TECHNOLO-GIES, INC. [US/US]; 6840 East Broadway Boulevard, Tucson, AZ 85710 (US).

(72) Inventors: HUFFMAN, Donald, R.; 6633 E. Koralee, Tucson, AZ 85710 (US). KRATSCHMER, Wolfgang; Schwäbisch Hall Str. 9, D-6901 Gaiberg (DE).

(74) Agent: SCOTT, Anthony, C.; Scully, Scott, Murphy & Presser, 400 Garden City Plaza, Garden City, NY 11530 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, KR, LU (European patent), NL (European patent), SE (European patent).

Published

With international search report.

(54) Title: NEW FORM OF CARBON

(57) Abstract

 C_{60} and C_{70} carbon atom compounds are prepared by evaporating graphite in an inert quenching gas. The vapor of carbon is collected and is selectively extracted with an organic non-polar solvent.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	ES	Spain	MG	Madagascar
AU	Australia	Fl	Finland	ML	Mali
BB	Barbados	FR	France	MN	Mongolia
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GN	Guinca	NL	Netherlands
BJ	Benin	GR	Greece	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korea	SN	Senegal
CI	Côte d'Ivoire	KR	Republic of Korea	su+	Soviet Union
CM	Cameroon	Ll	Liechtenstein	TD	Chad
CS	Czechoslovakia	LK	Sri Lanka	TG	Togo
DE*	Germany	LU	Luxembourg	US	United States of America
DK	Denmark	MC	Monaco		

⁺ Any designation of "SU" has effect in the Russian Federation. It is not yet known whether any such designation has effect in other States of the former Soviet Union.

WO 92/04279 PCT/US91/05983

NEW FORM OF CARBON

1

15

20

25

30

This invention relates to new forms of carbon as well as methods for the production and recovery thereof from carbon sources.

of a highly stable molecule composed of 60 carbon atoms based solely on mass spectroscopic analysis of vaporized graphite (H.W. Kroto, et al., Nature, Vol. 318, 162, 14 November 1985). More specifically, all that was observed was a peak in the mass spectra of said carbon vapor. However, Kroto et al. did not isolate any of said compound.

A model for this compound was proposed in which 60 carbon atoms are placed at the vertices of a truncated icosahedron forming a perfect "soccerball" structure. Subsequent thereto, many publications have strengthened the evidence for the existence of this molecule. The 60 carbon atom compound (hereinafter C₆₀) was presumably produced in situ for the spectroscopic determination reported in these publications. Yet, to date, no one has been successful in verifying the existence of this molecule since no one has been successful in isolating the molecule in measurable amounts. Thus, no processes for producing recoverable amounts of this new compound have been described to the present time.

In the aforesaid publication by Kroto, et al., the authors proposed many uses for the new substance, $^{\rm C}_{60}$ if it could be produced in quantity such as $^{\rm C}_{60}$ transition metal compounds, e.g., $^{\rm C}_{60}{\rm Fe}$; or halogenated species like $^{\rm C}_{60}{\rm F}_{60}$ which might be a super lubricant; molecules including oxygen and lanthanum in the $^{\rm C}_{60}$ interior; $^{\rm C}_{60}$ would provide a topologically novel

aromatic nucleus for new branches of organic and inorganic chemistry; and C₆₀ being especially stable and symmetrical provides possible catalyst and/or intermediate in modelling prebiotic chemistry.

Another form of carbon containing 70 carbon atoms (C₇₀) has also been postulated (Kroto, <u>Chemistry in Britain</u>, 40-45 (1990), Kroto, <u>Science</u>, 1139-1145 (1988)). Like the (C₆₀) to date, no one has been successful in verifying the existence of the C₇₀. Heretofore, no one has been successful in obtaining the molecule in any appreciable amounts.

A process has now been developed for the production of recoverable amounts of C_{60} and C_{70} . The present invention relates to a method of producing C_{60} and 15 c_{70} compounds which comprises evaporating graphite in an atmosphere of an inert quenching gas at effective pressures in an evacuated reactor, collecting the quenched carbon product produced therefrom and contacting the quenched carbon 20 product with an extracting non-polar organic solvent under effective conditions to separate the C_{60} and C_{70} .compounds therefrom. The present new process is accomplished by evaporating carbon rods in an atmosphere of an inert quenching gas maintained at reduced pressure in a reactor 25 This process produces a sooty carbon product which is graphitic carbon including a few percent of $^{\rm C}_{60}$ and low levels of c_{70} which are recoverable from the product. However, an increase in the fraction of C_{70} 30 molecules can be produced if the pressure is raised to greater than atmospheric pressures.

The recovery process is preferably accomplished by selective extraction of c_{60} and c_{70} with non-polar organic solvents from the sooty graphitic carbon.

5

10

25

30

35

The processes of the present invention produces C_{60} and C_{70} in recoverable amounts and permits realization of the proposed uses described hereinbefore.

In the accompanying figures, Fig. 1 is a micrograph of typical crystals of the 98% C_{60} , 2% C_{70} material showing thin platelets, rods and stars of hexagonal symmetry.

Fig. 2 is a x-ray diffraction of a microcrystalline powder of the 98% C₆₀, 2% C₇₀ solid material. Inset at upper left is a single crystal electron diffraction pattern indexed with Miller indices compatible with the x-ray pattern, taken on a thin platelet as in Figure 1 with the electron beam perpendicular to the flat face.

Fig. 3 is an infrared absorption spectrum of an approximately 2 micrometer thick coating of the 98% C₆₀, 2% C₇₀ material on a silicon substrate, referenced to a clean silicon substrate. Absorption is given as optical density = log₁₀ 1/T, where T is transmission. Apparent negative absorptions are due to the coating acting in part as a non-reflecting layer.

Fig. 4 is a visible-ultraviolet absorption spectrum of an approximately 0.1 micrometer thick coating of the 98% C_{60} , 2% C_{70} material on quartz. Shown at the bottom are positions and relative oscillator strengths for allowed transitions calculated for the C_{60} molecule by Larsson, et al.

The first step in the production of C₆₀ and C₇₀ molecules is vaporizing carbon from any source containing carbon in its various forms; e.g., graphite, amorphous and glassy carbon. It is preferred that this vaporization takes place in an evacuated reactor (e.g., a bell jar). The carbon is vaporized by heating in the presence of an inert quenching gas. The carbon vapor is nucleated in the presence of the inert quenching gas to form smoke particles.

In the production of C₆₀ and C₇₀, any procedure for vaporizing carbon can be used, although the preferred method relies on the use of a high intensity electrical current with graphite rods as electrodes. These rods are constructed to permit vaporization of carbon at the tip of the rod to produce a high density vapor of carbon. For best results, the end of one of the rods is reduced in diameter so that the vaporization occurs at the reduced tip. The rods can be prepared using any of the various forms of carbon, such as graphite, amorphous and glassy carbon.

The inert quenching gas can be any of the usual inert gases such as the noble gas. Argon and helium are preferred, the latter being most preferred. Other inert gases commonly employed to provide a non-reactive atmosphere can also be used as quenching gas.

The amount of C₆₀ and C₇₀ produced from this carbon source is dependent upon the pressure of the quenching gas. At lower pressures relatively pure C₆₀ molecules can be produced in high yield with minor concentrations of C₇₀. For the production of predominantly C₆₀ molecules, the pressure at which the quenching gas is maintained should be subatmospheric and preferably about 50-400 torr. Especially preferred is a pressure of approximately 100 torr. The use of any lower pressure may result in reduced yield of C₆₀.

However, as the pressure is raised, the ratio of $C_{70}\colon C_{60}$ is also increased.

If the pressure is increased to at least two atmospheres, the greatest percentage of C₇₀ product is formed. Theoretically, the pressure can be raised to any level just below the point where the reactor would

explode from the increased pressure. However, at the higher pressures, the yield of the overall product (C_{60} and C_{70}) is reduced even though the ratio of C_{70} : C_{60} is also increased. Therefore, as a practical consideration,

5 the pressure of the quenching gas should not be greater than 10 atmospheres. The preferred pressure for maximizing the amount of C₇₀ produced is 2-3 atmospheres.

The produced quenched vapor of carbon, i.e., the smoked particles coats the internal surface of the reactor and of collecting substrates as black soot. These collecting surfaces are inert to the vaporized They can be transparent and/or coated with an inert metal. Examples include glass, or gold coated glass surfaces and the like. These collecting surfaces are located in the reactor in the path of the carbon smoke. The black coating can be removed by any suitable means, e.g., by scraping the solids from the coated surfaces. The ${\rm C_{60}}$ and ${\rm C_{70}}$ molecules can be removed from this collected quenched product by contacting said quenched product with an extracting solvent. words, the black soot is placed in a container containing the extracting solvent, or the extracting solvent is poured onto the black soot placed in a container. either case, the ${ t C_{60}}$ and ${ t C_{70}}$ molcules become dissolved in the solvent, while the remainder of the black soot remains insoluble. The insoluble material is separated from the solution containing the c_{60} and c_{70} molecules, e.g., by decanting, or by filtration, and the like.

Suitable solvents include non-polar organic solvents, such as the alkanes containing 5-10 carbon atoms (e.g. pentanes, hexanes, heptanes, octanes), benzene and alkyl-benzenes (e.g. toluene, xylene), carbon disulfide, carbon tetrachloride, naphtha,1,1,1-

10

15

20

25

WO 92/04279 -6- PCT/US91/05983

trichloroethane, and the like. Simple solubility determinations using classical laboratory methods will permit selection of other suitable solvents. The preferred solvents are carbon disulfide, benzene, carbon tetrachloride and toluene. Especially preferred are benzene, carbon tetrachloride and carbon disulfide.

The product obtained contains a mixture of C_{60} and C_{70} . As described hereinabove, the amounts of C_{60} and C_{70} present is dependent upon the pressure used. If subatmospheric pressures are used, such as 50-400 torr, the product is predominatly pure C_{60} with a minor amount of C_{70} present. Thus, when the collected product is dispersed in the extracting solvent, the product obtained is a mixture of C_{60} and C_{70} . For example, when the pressure is 100 torr, the product formed is about 98% C_{60} and about 2% C_{70} . This product can be separated from the organic solvent solution by standard methods as by evaporation of the solvent or by dilution of the solvent solution with a non-solvent for C_{60} . The product can be crystallized by careful evaporation of the organic solvent or by sublimation procedures.

In a preferred embodiment of producing C₆₀ and C₇₀, pure graphite rods are vaporized by passing high electrical current (either dc or ac) through narrowed tips of graphite rods. Electron beam, laser and RF heating can be used in lieu of electrical heating. This is done in a reactor (such as a bell jar) that has been evacuated, purged and filled with inert gas at or preferably below atmospheric pressure, e.g., pressures ranging from about 50 to about 400 torr. and even higher. The graphite rods are typically 1/4 inch in diameter with

10

15

20

25

- about 1 cm length of one rod reduced in diameter to about 5 mm. The electrical heating vaporizes the constricted tip of the graphite rod producing a high density vapor of carbon, which quickly condenses into a smoke consisting
- of very fine particles (of the order of 0.1 microns) of graphitic carbon with an admixture of a few percent of the desired C₆₀ molecule. At this point in the process there is a heavy black coating on collecting substrates and/or on the walls of the chamber which can be easily scraped off for the recovery step.

For recovery, the sooty product is treated with benzene to provide a brownish-red solution. After separation of the undissolved graphitic carbon, the benzene solution is evaporated to obtain microcrystalline product. Alternatively, the product can be sublimed from the sooty carbon at 300° to 400°C. and the sublimation product obtained by condensation on a conventional substrate.

When the pressure of inert quenching gas is 100 torr, the product formed is 98% C₆₀ and 2% C₇₀. This product, as obtained from the solvent extract of the sooty graphitic carbon, is a dark brown to black crystalline material. When obtained by sublimination in vacuum or inert atmosphere, the product is obtained as a brown to gray coating depending on thickness.

On analysis by mass spectroscopy, the spectrum clearly shows a strong peak at mass 720 amu (i.e., the mass of C₆₀) and a clean peak at 840 amu (i.e., the mass of C₇₀). Significant differences in the spectra occur only in the abundances in the mass domain lower than 300 amu. Most of these differences seem to originate from the different ionization techniques in the mass spectrometer and from the different kinds of sample desorption. So far, the cleanest mass spectra have been

obtained when the material was evaporated and ionized in the vapor phase by electrons. In such spectra the mass range above 40 amu is dominated by the C₆₀ mass along with its expected isotope lines. The only other large mass found in any abundance corresponds to C₇₀, with a ratio of C₇₀ to C₆₀ of about .02.

Studies by optical microscopy of the C₆₀ material which is left after evaporating the benzene solution show a variety of what appear to be crystals -- mainly rods, platelets, and star-like flakes. Figure 1 shows a micro-photograph of such a crystal assemblage. All crystals tend to exhibit six-fold symmetry. In transmitted light they appear red to brown in color; in reflected light the larger crystals have a metallic appearance, whereas the platelets show interference colors consistent with an index of refraction of about 2.

The platelets can be rather thin and thus are ideally suited for electron diffraction studies in an electron microscope. (See the insert in Figure 2).

In order to determine if the C₆₀ molecules form a regular lattice electron, x-ray diffraction studies on the individual crystals and on the powder were carried out. A typical X-ray diffraction pattern of the purified C₆₀ powder is shown in Figure 2. To aid in comparing the electron diffraction results with the X-ray results the electron diffraction pattern is inserted into the corner of Figure 2. From the hexagonal array of diffraction spots indexed as shown in the Figure, a d-spacing of 8.7 Å was deduced corresponding to the (100) reciprocal lattice vector of a hexagonal lattice. The most obvious correspondence between the two types of diffraction is between the 5.01 Å peak of the X-ray pattern and the

30

10 .

15

20

1 (100) spot of the electron diffraction pattern, which gives a spacing of about 5.0 Å. Assuming that the C₆₀ molecules are behaving approximately as spheres stacked in a hexagonal close packed lattice with a c/a ratio of 1.633, d-spacings can be calculated. The results are shown in Table I.

Table I: X-Ray Diffraction Results and Assignments For a Hexagonal Lattice Using $a = 10.02 \, \%$, $c = 16.36 \, \%$

$$\frac{1}{d^2} = \frac{4 (h^2 + hk - k^2)}{3 (a^2)} + \frac{2}{c^2}$$

15	Measured 20 (degrees	Measured d-spacing (Å)	Calculated d-spacing (Å)	Assignment (hkl)
20	10.2 shoulder 10.81	8.7 8.18	8.68 8.18	(100) (002)
	17.69 20.73 21.63	5.01 4.28 4.11	7.67 5.01 4.27 4.09	(101) (110) (112)
25	28.1 30.8 32.7	3.18 2.90 2.74	3.17 2.89 2.73	(004) (114) (300) (006)

The values derived from this interpretation are a = 20.02 Å and c = 16.36 Å. The nearest neighbor distance is thus 10.02 Å. For such a crystal structure the density is calculated to be 1.678 g/cm³, which is consistent with a value of 1.65 +/- .05 determined by suspending crystal samples in aqueous GaCl₃ solutions of

-10-

known densities. Although the agreement shown in Table 1 is good, the absence of the characteristically strong (101) diffraction in hcp and the broad continuum in certain regions suggest a less than perfect crystalline

order. Furthermore, X-ray diffraction patterns obtained on carefully grown crystals up to 500 micrometers in size with well developed faces yielded no clear spot pattern (in contrast to the electron diffraction pattern on micron-size crystals). It thus appears that these larger

crystals do not exhibit long range periodic order in all directions.

A likely explanation for the unusual diffraction lies in the disordered stacking arrangement of the molecules in planes normal to the c-axis. 15 well known that the position taken by spheres in the third layer of stacking determines which of the close-packed structures occurs, the stacking arrangement in fcc being ABCABC while that in hop is ABABAB. stacking sequence varies, the X-ray lines due to certain 20 planes will be broadened by the disorder while other lines will remain sharp. Such disordered crystalline behavior was observed long ago in the close packed structure of cobalt, where X-ray diffraction lines such as (101), (102) and (202) were found to be substantially 25 broadened due to the stacking disorder. Reflections from planes such as (002) remain sharp since these planes have identical spacings in both fcc and hcp structures. A general expression for which peaks are broadened by this kind of disorder have been given in terms of Miller 30 indices (h,k,1) as $h-k=3t\pm1,\ 1\neq0$, where t is an integer. None of these broadened reflections are apparent in the X-ray pattern of Figure 2. This may explain the weakness of the characteristically strong

1 (101) peak. Whether or not this stacking disorder is related to the presence of the possibly elongated C_{70} molecules is yet to be determined.

In small crystals at least, the C₆₀ molecules appear to be assembling themselves into a somewhat ordered array as though they are effectively spherical, which is entirely consistent with the soccer ball hypothesis for their structure. The additional diameter over the calculated 7.1 Å value for the carbon cage

10 itself must represent the effective van der Waals diameter set by the repulsion of the pi electron clouds extending outward from each carbon atom. Scanning tunnelling spectroscopy of the C₆₀ molecules clearly shows the spherical nature of the C₆₀ molecules.

Some scanning tunnelling microscope images of a carbon sample prepared in accordance with the procedure described hereinabove at pressures of helium at 100 torr show a spherical molecule of twice the diameter of the C₆₀ molecules. This is evidence of the existence of a caged molecule containing 240 carbon atoms or a C₂₄₀ molecule.

Samples were prepared for spectroscopy by subliming pure material onto transparent substrates for transmission measurements. Depending on the pressure of helium in the sublimination chamber, the nature of the coatings can range from uniform films (at high vacuum) to coatings of C_{60} smoke (i.e., sub-micron microcrystalline particles of solid C_{60}) with the particle size depending to some extent on the pressure.

Figure 3 shows the transmission spectrum of an approximately 2 micrometer thick C₆₀ coating on a silicon substrate. The infrared bands show the four most intense lines at 1429, 1183, 577, and 528 cm⁻¹, with no

underlying continuum remaining from the soot. In early tries at purifying C_{60} material, the infrared spectrum showed a strong band in the vicinity of 3.0 micrometers, which is characteristic of a CH stretching mode. much effort, this contaminant was successfully removed by washing the soot with ether and using distilled benzene in the extraction. The spectrum in Figure 3 was obtained when the material cleaned in such a manner was sublimed

The spectrum shows very 10 little indication of CH impurities.

main features in the crystals.

under vacuum onto the substrate.

The presence of only four strong bands is what is expected for the free, truncated icosahedral molecule with its unusually high symmetry. Also present are a number of other weak infrared lines which may be due to other causes, among which may be absorption by the C_{70} molecule or symmetry breaking produced, for example, by isotopes other than c^{12} in the c_{60} molecule or by mutual interaction of the C₆₀ molecules in the solid. Noteworthy, are weaker features at about 2330 and 2190 cm⁻¹ which are located in the near vicinity of the free CO, and CO stretching modes. This may imply some attachment of CO_2 or CO to a small fraction of the total number of C_{60} molecules. Another noteworthy effect can be observed in the feature at 675 cm^{-1} , which is weak in the thin film samples but almost as strong as the four

be of solid state rather than molecular origin. Figure 4 shows an absorption spectrum taken on a uniform film coated onto a quartz glass substrate. 30 ultraviolet features are no longer obscured by the graphitic carbon background as in our previous spectra. Broad peaks at 216, 264 and 339 nm dominate the spectra. Weaker structures show up in the visible, including a

This vibrational mode may

15

20

WO 92/04279 -13- PCT/US91/05983

l plateau with ends at about 460 and 500 nm and a very weak peak near 625 nm. At the bottom of Figure 4 are snown positions and relative oscillator strengths taken from Larsson, et al. (Chem. Phys. Lett. 137, 501-504)

- 5 calculated for the $\rm C_{60}$ molecule. This reference also shows a variety of forbidden bands with the lowest energy ones in the vicinity of 500 nm. There seems to be a rough correspondence between the present measurements on thin films and the allowed transitions predicted for the
- molecule. There was no band at 386 nm in our films of C_{60} , a disclosed by Heath, et al. (J. Chem. Phys. <u>87</u>, 4236-4238 (1987)) using a laser depletion spectroscopy method and attributed to the C_{60} molecule. Quite similar spectra to that in Figure 4 have been recorded for
- microcrystalline coatings deposited at helium pressures of 100 torr, for example. The peaks occur at the slightly shifted positions of 219, 268, and 345 nm.

The C₇₀ molecule is larger than the C₆₀ molecule. The C₇₀ molecule shows a molecular ion peak at 840 amu. Furthermore, a noticeable peak in the ultraviolet spectrum of the C₇₀ molecule taken on a uniform film coated onto a quartz glass substrate is exhibited at about 216 nm. This is a broad peak. Suprisingly, it appears that the C₇₀ molecule is more stable than C₆₀.

Thus, using the procedures described hereinabove, at quenching pressures of less than 1 atmospheric pressure and especially at pressures of 50--400 torr, a product is produced which is predominantly C_{60} and cantains minor amounts of C_{70} . The C_{60} product can be used or can be further purified.

Further purification and separation of C_{60} and C_{70} can be made by many conventional techniques known to

WO 92/04279 PCT/US91/05983

one skilled in the art, e.g., fractional crystallization, column chromatography, capillary electrophoresis, HPLC, preparative thin-layer chromatography, and the like.

Because the molecular figuration of C₆₀ and C₇₀ are different, the attractive intermolecular forces are different which allows for the two molecules to be readily separated.

Furthermore, the solubility of C_{60} and C_{70} in pure solvents and mixed solvents are also different from each other, which also makes the two compounds separable by using conventional techniques known to one skilled in the art, such as crystallization, extraction, and the like.

For example, pure C_{60} and pure C_{70} molecules can be isolated as follows. The black sooty mixture of ${\bf C}_{60}$ and ${\bf C}_{70}$ which is produced according to the procedure described hereinabove is placed in the extracting solvent, such as benzene. The insoluble residue is removed and the resulting benzene solution containing C 60 and C_{70} molecules is concentrated. The C_{60} and C_{70} 20 solution is added to a packed column with an adsorbent, such as alumina. The column is eluted with an eluent such as benzene or a mixture of benzene and toluene. Various fractions of set volume e.g., 10 mL, are collected. The eluent i.e., the solvent is removed from 25 each fraction such as by evaporation to dryness. The fractions with product will contain microcrystals, the identity of which can be confirmed by spectroscopy, e.g., mass spectroscopy.

Thus, the process of the present invention can produce a product which is predominantly C₆₀, which, if desired, can be further purified by the purification and separation techniques described hereinabove.

Furthermore, the present invention contemplates two different variations of the procedure described hereinabove to make C₇₀ molcules. First, if subatmospheric pressures of quenching gases are used in the initial step, small amounts of C₇₀ are produced, which can be separated from the C₆₀ molecules using the purification techniques described hereinabove. However, if the pressure of the quenching gas is raised to at least 2 atmospheres, after separation and purification, a greater percentage of substantially pure C₇₀ would be produced from each vaporization of carbon.

The present new products, C₆₀, C₇₀, or mixtures thereof have the similar utilities as graphite. However, they are particularly valuable for forming products of a higher order of stability than those formed from graphitic carbon, and can be processed into formed or molded products such as C₆₀ fibers, C₇₀ fibers, or mixtures thereof using standard processing techniques. In this regard, free-flowing, particulate C₆₀ and C₇₀ are of special value particularly for use in a region of the second standard processing techniques.

- of special value particularly for use in producing molded products, especially those extended in at least one direction. C_{60} , and C_{70} are also useful for producing a low temperature C_{60} vapor (300°-400°C.) and C_{70} vapor of the respective molecules to produce low temperature
- atomic and molecular beams of carbon which is not now possible using graphite as the carbon source. Further, the synthesis of compounds such as ${^C}_{60}{^H}_{60}$ and ${^C}_{60}{^F}_{60}$ can be accomplished by introducing hydrogen and fluorine, respectively, into a reactor containing ${^C}_{60}$ vapor.
- Furthermore, the C_{60} product and the C_{70} product may be used as an industrial paint pigment or as a lubricant. Moreover, since the C_{60} and C_{70} molecule are hollow, they could be used for binding and/or storing molecules e.g., toxic material.

1

5

10

15

20

25

EXAMPLE 1

 ${\rm C}_{60}$ -containing carbon dust was produced in a conventional bell-jar carbon evaporator which was first evacuated to 10^{-4} torr by either an oil diffusion pump or a turbo pump, both equipped with liquid nitrogen traps, and then filled with an inert quenching gas. Helium and argon were used at pressures ranging up to 400 torr. Then graphite rods (as previously described herein) were evaporated using a current of about 100 amps (either AC or DC).

The smoke which formed in the vicinity of the evaporating carbon rods was collected on substrates which were placed within 5 cm to 10 cm of the evaporating carbon rods.

The evaporator was opened after a cool down period of 10-30 min. and the carbon dust samples removed by scraping substrate surfaces and the internal surfaces of the bell-jar. After washing with ether, the collected dust samples were then extracted with benzene to produce a wine-red to brown solution. On evaporation of the solution, C₆₀ was obtained as a microcrystalline residue.

The crystals were sublimed by heating $\underline{\text{in}}$ $\underline{\text{vacuo}}$ or in a quenching inert gas to 400°C. and collected on a substrate. The sublimed product was brown to gray in color.

In powder form, the present new carbon allotrope is brownish-red.

1 EXAMPLE 2

The procedure of Example 1 is repeated except, in the original step, the graphite rods are evaporated at 2 or more atmospheres of helium pressure in the chamber.

The product obtained from this procedure contains a greater percentage of C₇₀ than does the product in Example 1.

10

15

20

25

30

1 EXAMPLE 3

Pure C_{60} and pure C_{70} are obtained as follows:

The C₆₀ and C₇₀ mixtures prepared in either Examples 1 or 2 are dissolved in benzene and added to an alumina column. Using benzene as the eluent, the fractions are collected and each elute fraction is evaporated to dryness. The presence of C₆₀ or C₇₀ in the fraction can be determined by taking mass spectroscopy thereof.

10

15

20

25

30

The above embodiments and examples are given to illustrate the scope and spirit of the instant invention. These embodiments and examples are within the contemplation of the present invention. Therefore, the present invention should be limited only by the appended claims.

10

15

20

25

30

WHAT IS CLAIMED IS:

1

5

10

15

- 1. A method of producing C_{60} and C_{70} compounds which comprises evaporating graphite in an atmosphere of an inert quenching gas at effective pressures in an evacuated reactor, collecting the quenched carbon product produced therefrom and contacting the quenched carbon product with an extracting nor-polar organic solvent under effective conditions to separate the C_{60} and C_{70} compounds therefrom.
- 2. The method according to Claim 1 wherein the quenched carbon is collected on a collecting substrate.
- 3. The method according to Claim 1 or 2 wherein the C_{60} and C_{70} compounds are recovered from the organic solvent.
- 4. The method according to Claim 3 wherein the separating step comprises evaporating the solvent.
- 5. The method according to Claim 1 wherein the solvent is benzene or carbon tetrachloride.
- 6. The method according to any of Claims 1 to 5 wherein the evaporation of graphite is effected by passing high electrical current through graphite rods.
 - 7. The method according to any of Claims 1 to 6 wherein the inert gas is helium or argon.
- 8. The method according to any of Claims 1 to 7 wherein the graphite is evaporated at pressures ranging from about 50 torr to about 400 torr.
 - 9. The method according to any of Claims 1 to 7 wherein the pressure ranges from about 2 to about 3 atmospheres.
 - 10. The method according to any of Claims 1 to 9 further comprising separating the C_{60} compound from the C_{70} compound.
- 11. Amorphous or crystalline particulate matter comprised of C_{60} or C_{70} .

- - 13. A carbon product, the mass spectrum of which shows a strong peak at mass 720 amu, the infrared bonds of which have four intense lines at 1424, 1183, 577, and 528 cm⁻¹, absorption peaks in the UV at 264 and 339 nm, soluble in non-polar organic solvents and sublimes at a temperature of from about 300° to 400°C.
- 14. A carbon product produced by the process of any of Claims 1 to 10.
 - 15. A formed or molded product comprising C_{50} or C_{70} .
 - 16. The product according to Claim 14 which is extended in at least one direction.
- 17. A free flowing particulate comprised of C₆₀ or C₇₀.
 - 18. Substantially pure C₆₀ or C₇₀.
 - 19. A brownish-red carbon allotrope.
- 20. A carbon product, the mass spectrum of which shows a molecular ion at 840 amu, a broad peak in the ultraviolet at 216 nm, and soluble in non-polar organic solvents.
 - 21. C_{60} or C_{70} .

- 22. The vapor of C_{60} or C_{70} .
- 23. A method of extracting C₆₀ and C₇₀ from a carbon source containing same which comprises contacting the carbon source with a non-polar organic solvent.
 - 24. A method according to Claim 22 wherein the C_{60} and C_{70} are recovered from the organic solvent.
- 30 25. A method according to Claim 22 or 23 wherein the solvent is benzene, carbon tetrachloride or carbon disulfide.
- 26. A method according to Claim 24 wherein a carbon source containing C₆₀ and C₇₀ is contacted with benzene and recovering C₆₀ and C₇₀ from the benzene solution thus formed.

SUBSTITUTE SHEET

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US91/05983

I. CLASS	SIFICATION OF SUBJECT MATTER (if several classi	fication symbols apply, indicate all) 6				
According to International Patent Classification (IPC) or to both National Classification and IPC IPC 5: 001B 31/00						
U.S. Cl. 423/445B						
II. FIELD	S SEARCHED					
	Minimum Documer	ntation Searched 7				
Classificati	on System	Classification Symbols				
U.S.	U.S. 423/445, 445B, 449, 460, 658.5, 427/122					
	Documentation Searched other to the Extent that such Documents	han Minimum Documentation are Included in the Fields Searched *				
DOC!	IMENTS CONSIDERED TO BE RELEVANT					
Category *	Citation of Document, 11 with indication, where appli	ropriate, of the relevant passages 12	Relevant to Claim No. 13			
X,Y	US, A, 4,132,671 (DEININGER ET AL) 2 Jan See column 2, lines 11-68	23, 25, 26				
A	Surface Sciece, 156, 1985 (KRATSCHMER E "Spectroscopy of Matrix -Isolated Carbo 200 and 850 nm Wavelength", See pages 8	AIL				
X	Nature, 318, 14 November 1985 (KROIO ET "C ₆₀ : Buckminster fullerene", See page	11-22				
X	Kirk-Othmer, <u>Encyclopedia of Chemical Te</u> Third Edition, Vol. 4, published 1978, 1 (New York) pages 652-653.	11–22				
-						
"A" doc con "E" earl filin "L" doc white cital "O" doc othe "P" doc late	I categories of cited documents: 10 ument defining the general state of the art which is not sidered to be of particular relevance for document but published on or after the international godate godate. The state of the state	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. 'X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step. "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family				
Date of the Actual Completion of the International Search O4 NOVEMBER 1991 O4 NOVEMBER 1991						
International Searching Authority Signature of Authorized Officer LSA/US STEPHEN KALINDAK						

III. DOCI	III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)				
Category *	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No			
. A	Chemical Physics Letters, 137, 4, 19 June 1987 (GERHARDI ET AL) "Polyhedral Carbon Ions in Hydrocarbon Flames" See pages 308-309.	A11			
A	The Journal of Physical Chemistry, 90, 4, 1988 "Reactivity of Large Carbon Clusters: Spheroidal Carbon Shells and Their Possible Relevance to the Formation and Morphology of Soot", See pages 525-528.	All			
T	Scientific American, October 1991 (CURL ET AL) "Fullerenes", See pages 54-63.	11-22			
T	Nature, 352, 11 July 1991, (HOWARD ET AL), "Fullerenes C ₆₀ and C ₇₀ in flames", See pages 139-141.	11-22			
	•·				
1					
	·				
		-			