1983 FI5.2

若 $(x+1)^2-1=0$,則 x 的解為 0 或 b ,求 b 的值。

If $(x+1)^2 - 1 = 0$, then the value of x is 0 or b, what is the value of b?

1983 FG10.4

一兩位數 X 的個位與十位相乘等於 24,若將個位與十位對掉,新的兩位數 設方程 $x^2 - 8x + 15 = 0$ 的根為 α 和 β 。 比原來的兩位數大了 18, 求 X 的值。

A number X consists of 2 digits whose product is 24. By reversing the digits, the new number formed is 18 greater than the original one. What is the value of X?

1991 FI1.3

若方程 $3x^2 - 252x - 13431 = 0$ 之正根是 c , 求 c 的值。

If the positive root of the equation $3x^2 - 252x - 13431 = 0$ is c, find the value of c.

1994 FI5.1 1999 FI5.2

已知
$$1-\frac{4}{x}+\frac{4}{x^2}=0$$
。若 $A=\frac{2}{x}$,求 A 的值。

Given $1 - \frac{4}{r} + \frac{4}{r^2} = 0$. If $A = \frac{2}{r}$, find the value of A.

1996 FI2.2

方程 $x^2 - 19x + 25 = 0$ 的根是 $x^2 + bx = 5$ 的根的平方, 求 b 的正數值。 If the roots of the equation $x^2 - 19x + 25 = 0$ are the square of the roots of the equation $x^2 + bx = 5$, find the positive value of b.

1996 FI4.3

已知
$$c$$
 是方程式 $x^2 - 200 + \frac{10000}{x^2} = 0$ 之正根,求 c 的值。

Given that c is the positive root of the equation $x^2 - 200 + \frac{10000}{r^2} = 0$,

find the value of c.

1997 FG5.3

 \ddot{a} c 是一兩位正整數,其兩位之和是 10 而兩位之積是 25。求 c 的值。 If c is a 2 digit positive integer such that sum of its digits is 10 and product of its digit is 25, find the value of c.

1998 HI5

若
$$2x + 3 = \sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots}}}$$
 , 求 x 的值。

If
$$2x + 3 = \sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots}}}$$
, find the value of x.

1998 HG7

求方程(x-2)(2x-1)=5的最小實根。

Find the smallest real root of the equation (x-2)(2x-1)=5.

2001 FI3.4

若
$$\frac{1}{\alpha^2}$$
 和 $\frac{1}{\beta^2}$ 是方程 $225x^2 - Sx + 1 = 0$ 的根,求 S 的值。

Let α and β be the roots of the equation $x^2 - 8x + 15 = 0$. If $\frac{1}{\alpha^2}$ and $\frac{1}{\beta^2}$ are

the roots of the equation $225x^2 - Sx + 1 = 0$, find the value of S.

2002 FG4.4

若
$$d$$
 是方程 $\frac{1}{2} \left\{ \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} x^2 + 2 \right) + 2 \right] + 2 \right\} = 2$ 的正實數解,求 d 的值。

If d is the positive real root of the equation $\frac{1}{2} \left\{ \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} x^2 + 2 \right) + 2 \right] + 2 \right\} = 2$,

find the value of d.

2003 FI2.2

方程式 $x^2 + ax - 16 = 0$ 的根是α和β;而方程式 $x^2 + bx - r = 0$ 的根是 $-\alpha$ 和 -β。若方程式 $(x^2+ax-16)+(x^2+bx-r)=0$ 的正根是 Q,求 Q 的值。

The roots of the equation $x^2 + ax - 16 = 0$ are α and β , whereas the roots of the equation $x^2 + bx - r = 0$ are $-\alpha$ and $-\beta$. If the positive root of the equation $(x^2 + ax)$ $(-16) + (x^2 + bx - r) = 0$ is Q, find the value of Q.

2003 FI3.3

已知
$$x_0y_0 \neq 0$$
 及 $33x_0^2 - 22\sqrt{3}x_0y_0 + 11y_0^2 = 0$ 。若 $\frac{6x_0^2 + y_0^2}{6x_0^2 - y_0^2} = R$,,求 R 的

值。

Given that $x_0y_0 \neq 0$ and $33x_0^2 - 22\sqrt{3}x_0y_0 + 11y_0^2 = 0$.

If $\frac{6x_0^2 + y_0^2}{6x_0^2 - y_0^2} = R$, find the value of R.

2003 FG2.1

設方程 ax(x+1) + bx(x+2) + c(x+1)(x+2) = 0 有根 1 和 2。若 a+b+c=2, 求 a 的值。

Given that the equation ax(x + 1) + bx(x + 2) + c(x + 1)(x + 2) = 0 has roots 1 and 2. If a + b + c = 2, find the value of a.

2004 FIS.4

設
$$W=2$$
, $S=W+\frac{1}{W+\frac{1}{W+\frac{1}{W+\cdots}}}$,求 S 的值。

Let
$$W = 2$$
, $S = W + \frac{1}{W + \frac{1}{W + \frac{1}{W + \cdots}}}$, find the value of S .

2006 FI3.4

設
$$a$$
 是方程 $x^2-2x-6=0$ 的一個正根。若 $P=3+\frac{6}{2+\frac{6}{2+\frac{6}{2+\frac{6}{2+\frac{6}{2+\cdots}}}}}$,求 P 的值。

Let a be the positive root of the equation $x^2 - 2x - 6 = 0$.

If
$$P = 3 + \frac{6}{2 + \frac{6}{2 + \frac{6}{2 + \frac{6}{2 + \frac{6}{2 + \dots}}}}$$
, find the value of P.

2008 HI7

設
$$r$$
 為方程 $\frac{4}{y+1} + \frac{5}{y-5} = -\frac{3}{2}$ 的較大實根。求 r 的值。

Let *r* be the larger real root of the equation $\frac{4}{y+1} + \frac{5}{y-5} = -\frac{3}{2}$.

Find the value of r.

2008 FIS.2

已知
$$x$$
 為負實數且 $\frac{1}{x+\frac{1}{x+2}} = 2 \circ \stackrel{.}{=} b = x + \frac{7}{2}$, 求 b 的值。

Given that x is a negative real number that satisfy $\frac{1}{x + \frac{1}{x + 2}} = 2.$

If $b = x + \frac{7}{2}$, find the value of b.

2012 FG2.2

若方程 $(x^2-3x+2)^2-3(x^2-3x)-4=0$ 有 K 個整數解,求 K 的值。 If there are K integers that satisfy the equation $(x^2-3x+2)^2-3(x^2-3x)-4=0$, find the value of K.

2016 FG4.4

求下列方程
$$x=1+\frac{1}{1+\frac{1$$

Determine the positive real root of the following equation: $x = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{x}}}}$.

2018 FG3.4

設 θ 及
$$\gamma$$
 為正整數,當中 $\theta < \gamma$ 。若 $\frac{\theta + \gamma}{2}$: $\sqrt{\theta \gamma} = 13:12$,求 γ 的最小值。

Suppose that θ and γ are positive integers, where $\theta < \gamma$.

If
$$\frac{\theta + \gamma}{2}$$
: $\sqrt{\theta \gamma} = 13$: 12, determine the least value of γ .

Answers

1 XII 5 W CI 5				
1983 FI5.2	1983 FG10.4	1991 FI1.3	1994FI5.1 1999FI5.2	1996 FI2.2
-2	46	121	1	3
1996 FI4.3 10	1997 FG5.3 55	1998 HI5 $-\frac{1}{2}$	1998 HG7 $-\frac{1}{2}$	2001 FI3.4 34
2002 FG4.4	2003 FI2.2	2003 FI3.3	2003 FG2.1	2004 FIS.4
2	4	3	12	$1 + \sqrt{2}$
2006 FI3.4 $2 + \sqrt{7}$	2008 HI7 3	2008 FIS.2 2	2012 FG2.2 2	2016 FG4.4 $\frac{1+\sqrt{5}}{2}$
2018 FG3.4 9				