Automata, Computability & Complexity

Author: Daria Shutina

Automata, Computability & Complexity

```
23-02-06
    Org stuff
   von Neumann architecture
    Finite automata
    Deterministic finite automata
        Definitions
        Example 1: a STD
        Example 2: finding FA
        Example 3: finding a FA for a union of RLs
        Regular language
        Regular operations
   Th 1.1 (unoin operation of RLs)
   Th. 1.2 (concatenation operation of RLs)
23-02-13
   Nondeterministic finite automata
        Definitions
        Example of NFA
        Creating a tree for an input
   Th 2.1 (equivalence between NFA and FA)
    Corollary 2.1 (relation between RL and NFA)
    Th 2.2 (star operation of RLs)
```

23-02-06

Org stuff

Timetable:

- Mondays 14:15 lectures offline. Moodle quiz in the beginning of each lecture
- Wednesdays 14:15 lectures offline
- Thursdays 17:15 consultations online. Need to book

Grade:

- 100% exam
- bonus 0.33 (5%) if 50% of quizes and 50% of homeworks are done

von Neumann architecture

Our nowadays computers are based on the von Neumann computer architecture.

Finite automata

For theory achievements, we will use a simpler compute model which gets the input as a string of symbols, has no memory, and generates an output that is either accept or reject. This machine is called *finite automaton*.

Deterministic finite automata

Deterministic means that an input symbol a leads from state q to exactly one possible state q'.

The vizualization of the input computation is a chain.

Definitions

Definition 1.1 (Finite automaton) A finite automaton (FA) M is a 5-tuple $M=(Q,\Sigma,\delta,q_0,F)$ where

- 1. Q is a finite set called the **states**,
- 2. Σ is a finite set called the **alphabet**,
- 3. $\delta: Q \times \Sigma \to Q$ is the **transition function**,
- 4. $q_0 \in Q$ is the **start state**, and
- 5. $F \subseteq Q$ is the set of accept states / final states.

A transition function can be described via *state transition diagram* (STD) or *state transition table*.

If a state is a start state, it has an arrow pointing from nowhere.

What is an *accept state*? Imagine we have an input. We go from one state to another, as the input says. Then we finish in a definite state. This state can be a final/accept state. In other words, it is where an input ends. Final states are shown as double-circled states in STD.

FA accepts a string if it starts in a start state, uses only transitions of δ and finishes in one of final states.

Definition 1.2 (Strings accepted by M) Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and $w = w_1 w_2 \cdots w_n$ be a string over alphabet Σ .

M accepts w if there exists a sequence of states r_0, r_1, \ldots, r_n , such that all following three conditions hold:

- 1. $r_0 = q_0$ (M starts in start state.)
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$, for $i = 0, \dots n-1$ (State change follows transition function.)
- 3. $r_n \in F$ (M ends up in accept state)

If M does not accept w, it **rejects** it.

A computation of FA on a string is a sequence of states such that it starts in a start state and uses only transitions of δ .

L(M) -- the language of machine M -- is the set of <u>all</u> strings that are accepted by M. Every FA stil recognizes and empty language \varnothing .

Example 1: a STD

$$Q = \{q_1, q_2, q_3\}; \ \Sigma = \{0, 1\}; \ F = \{q_2\}.$$

 q_1 is a start state.

 δ can be described with a table:

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_3 & q_2 \\ q_3 & q_2 & q_2 \end{array}$$

FA accepts a string 1101, for example, since it starts in q_1 and finishes in q_2 .

Example 2: finding FA

We consider a language $L = \{w \mid w \ contains \ 001 \ as \ substring\}$. The alphabet is $\{0,1\}$.

The idea is that we will have 4 states:

- *q* -- no subsequence
- ullet q_0 -- we have 0
- q_{00} -- we have 00
- ullet q_{001} -- we have 001 and we neep to stop.

Example 3: finding a FA for a union of RLs

$$M_1 = (S, \Sigma_1, \delta_1, q_1^0, F_1)$$

$$M_2=(T,\Sigma_2,\delta_2,q_2^0,F_2)$$

We can finds a new FA for $M=(Q,\Sigma,\delta,q_0,F)$ where

$$Q = S \times T$$

$$\Sigma = \Sigma_1 \cap \Sigma_2$$

$$\delta((s,t),a) = (\delta_s(s,a),\delta_t(t,a))$$

$$q_0=(s_0,t_0)$$

$$F = F_1 \times F_2$$

Regular language

A language is called a *regular language* if \exists FA that recognizes it.

To prove that a language is regular, we need to build a FA that will recognize it. If we are able to build a STD, then the language is regular.

Example of a non-regular lenguage:

$$L = \{0^n 1^n \mid n \geqslant 1\}.$$

n is not fixed, so we have a problem with choosing a transition function.

Regular operations

Definition 1.6 (Regular operations) Let A and B be languages. We define the regular operations union, concatenation and star as follows:

- Union: $A \cup B := \{x | x \in A \text{ or } x \in B\}$
- Concatenation: $A \circ B := \{xy | x \in A \text{ and } y \in B\}.$
- Star: $A^* := \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}.$

Th 1.1 (unoin operation of RLs)

The class of regular languages is closed under the union operation:

 A_1,A_2 are RLs \Rightarrow $A_1 \cup A_2$ is a RL.

Proof:

There are regular languages A_1 and A_2 . W

There exists FAs M_1 and M_2 such that

$$\left\{egin{aligned} L(M_1) = A_1, \ M_1 = (S, \Sigma, \delta_1, s_0, F_1) \ L(M_2) = A_2, \ M_2 = (T, \Sigma, \delta_2, t_0, F_2) \end{aligned}
ight.$$

If M_1 and M_2 have different alphabets, then Σ will be the union of their alphabets.

To show that $A_1 \cup A_2$ is a RL, we construct a FA M such that $M = (Q, \Sigma, \delta, q_0, F)$

$$Q = S \times T$$

 Σ is the same

$$\delta((s,t),a) = (\delta_s(s,a),\delta_t(t,a))$$

$$q_0 = (s_0, t_0)$$

$$F = F_1 \times F_2$$

Th. 1.2 (concatenation operation of RLs)

The class of regular languages is closed under the concatenation operation.

$$A_1,A_2$$
 are RLs \Rightarrow $A_1 \circ A_2$ is a RL.

Proof: его нет

23-02-13

Nondeterministic finite automata

In contrast to deterministic FAs, nondeterministic FAs allow several successor states (or even none) for a given fixed input. An NFA adds more flexibility to the computation.

- There can be several transitions with the same symbol
- There can also be no transition for some symbol
- There can be additional label ϵ . It is like a special symbol (i.e., an empty string). Every alphabel has its own ϵ (provided that it has special symbols),

The vizualization of the computation is a tree.

Definitions

Definition 1.7 (Nondeterministic finite automaton) A nondeterministic finite automaton (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ is the transition function, with $\Sigma_{\varepsilon} := \Sigma \cup \{\varepsilon\}$,
- 4. $q_0 \in Q$ is the start state, and
- 5. $F \subseteq Q$ is the set of accept states.

In the transition functin definition, P(Q) means a set of states, since in NFA we can get from one state to several (or zero) states.

NFA *accepts* a given input string, if there exists a computation branch in a tree that ends in an accept state; otherwise it *rejects* it.

Definition 1.8 (Strings accepted by NFA N)

Let $N = (Q, \Sigma, \delta, q_0, F)$ be a nondeterministic finite automaton and w be a string over alphabet Σ .

N accepts w if we can write w as $w = y_1 y_2 \dots y_m$, $y_i \in \Sigma_{\varepsilon}$ and if there exists a sequence of states r_0, r_1, \dots, r_m (in Q), such that all following three conditions hold:

- 1. $r_0 = q_0$ (N starts in start state.)
- 2. $r_{i+1} \in \delta(r_i, y_{i+1})$, for $i = 0, \dots m-1$ (State change follows transition function.)
- 3. $r_m \in F$ (N ends up in accept state)

If N does not accept w, it **rejects** it.

A computation brance of NFA on a string is a sequence of states such that it starts in a start state and uses only transitions of δ .

A computation branch is *accepting* if the last state after all transitions is an element of F; otherwise, it is a *rejecting* branch.

Example of NFA

Given the definition of an NFA as 5-tuple, N_1 is defined by

$$N_1 = (Q, \Sigma, \delta, q_1, F), \quad Q = \{q_1, q_2, q_3, q_4\}, \quad \Sigma = \{0, 1\}, \quad F = \{q_4\},$$

with transition function

δ	0	1	ε	
$\overline{q_1}$	$\{q_1\}$	$\{q_1,q_2\}$	Ø	_
q_2	$\{q_3\}$	Ø	$\{q_3\}$	
q_3	Ø	$\{q_4\}$	Ø	
q_4	$\{q_4\}$	$\{q_4\}$	\emptyset	

Finally, we can to the conclusion that $L(N_1)=\{\;w\mid w \; {\rm contains\; either\; 101\; or\; 11\; as\; a\; substring\;}\}.$

Creating a tree for an input

Let us consider an input 010110 for the STD from the example above. The tree will be:

 $q_1 o q_3$ is $1 + \epsilon$ that is equal to 1.

Th 2.1 (equivalence between NFA and FA)

$$\forall NFA \ N \ \exists FA \ M : \ L(M) = L(N).$$

In other words, all languages that can be recognized by an NFA, can also be recognized by some FA.

Proof:

We have an NFA $N=(Q,\Sigma,\delta,q_0,F)$ and we want to construct a deterministic FA $M=(Q',\Sigma,\delta',q_0',F')$.

- Q' includes subsets of Q that are outcomes of δ : Q'=P(Q).
- δ' get a success if one of considered gates gets a success: $\delta' = \bigcup_{r \in R} \delta(r,a), \ \forall R \in Q', a \in \Sigma.$
- ullet $q_0'=\{q_0\}.$ The start state becomes a set, because Q' consists of sets.
- $F' = \{ R \in Q' \mid R \text{ contains an accept state of } N \}$

We do not have ϵ in FA. What to do with ϵ -transitions?

Let us create a set
$$E(R)=\{\ q\in Q\ |\ \exists \{s_i\}_{0..m}\ :\ s_0\in R\ \wedge\ s_m=q\ \wedge\ s_{i+1}\in \delta(s_i,\epsilon)\ \}.$$
 A set R is a state for FA: $R\in Q'.$

A set E(R) is a set of states for NFA: $E(R) \in Q$. It consists of such states that can be reached from R only via ϵ -transitions.

It is obvious that $R\in E(R)$: $\delta(r,\epsilon)=r,\ \forall r\in R$. Thus, we can modify our function δ' : $\delta'(R,a)=\bigcup_{r\in R}E(\delta(r,a)),\ \forall R\in Q', a\in \Sigma.$ As we can see, a set of values for δ' can become only larger.

Also, we need to modify the start state: $q_0 = E(\{q_0\})$.

Corollary 2.1 (relation between RL and NFA)

Language is regular ⇔ some NFA recognizes it.

Proof:

Language is regular \Leftrightarrow \exists FA that recognizes it \Leftrightarrow \exists NFA that recognizes it.

Th 2.2 (star operation of RLs)

The class of regular languages is closed under the star operation:

A is a RL \Rightarrow A^* is an RL.

Proof:

Remainder: $A^* = \{ x_1 x_2 \dots x_k : k \geqslant 0 \land x_i \in A, \forall i \}.$

We have an NFA $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ that recognizes A. We want to construct an NFA $N=(Q,\Sigma,\delta,q_0,F)$ such that it recognizes A^* .

In the STD we connect final states with the start state via ϵ -transitions, thus we get a concatenation of elements. Also, there is also an empty string ϵ as an input in A^* , so we choose a new start state by adding a new state to the initial start state:

- $\bullet \ \ Q = \{q_0\} \ \cup \ Q_1$
- $\bullet \ \ F=\{q_0\} \ \cup F_1$
- $\forall q \in Q, a \in \Sigma_{\epsilon}$:

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & \text{if } q \in Q_1 \text{ and } q \notin F_1, & (\textit{main part of } N_1) \\ \delta_1(q,a) & \text{if } q \in F_1 \text{ and } a \neq \varepsilon, \\ \delta_1(q,a) \cup \{q_1\} & \text{if } q \in F_1 \text{ and } a = \varepsilon, & (\textit{loop to old start state}) \\ \{q_1\} & \text{if } q = q_0 \text{ and } a = \varepsilon, & (\textit{adding } q_0) \\ \emptyset & \text{if } q = q_0 \text{ and } a \neq \varepsilon, \text{ and} \end{cases}$$