Příjmení a jméno:

| Úloha      | 1  | 2  | 3  | 4  | 5  | Celkem |
|------------|----|----|----|----|----|--------|
| Maximum    | 10 | 10 | 10 | 10 | 10 | 50     |
| Počet bodů |    |    |    |    |    |        |

- 1. Jsou dány vektory  $\mathbf{x} = (1, 1, 1, 1), \mathbf{y} = (1, 0, -1, 0)$  v  $\mathbb{R}^4$  a nechť  $X = \text{span}\{\mathbf{x}, \mathbf{y}\}.$ 
  - (a) (2 b) Najděte bázi ortogonálního doplňku prostoru X.
  - (b) (2 b) Najděte ortonormální bázi ortogonálního doplňku prostoru X takovou, že jeden vektor této báze leží ve směru (0,1,0,-1).
  - (c) (3 b) Najděte matici ortogonání projekce na podprostor X.
  - (d) (3 b) Najděte matici ortogonální projekce na podprostor  $X^{\perp}$ .

# Řešení:

- (a) Při označení  $\mathbf{A}=[\mathbf{x}\ \mathbf{y}]$  řešíme soustavu  $\mathbf{A}^T\mathbf{u}=\mathbf{0}$  a báze řešení je báze  $X^\perp$ . Například (0,1,0,-1),(1,-2,1,0).
- (b) Ortogonální báze  $X^{\perp}$  je například (0,1,0,-1),(1,-1,1,-1). Je třeba ji ještě normalizovat, tj. první vektor vydělit  $\sqrt{2}$  a druhý vydělit dvěma.
- (c) Při označení  $\mathbf{U} = [\mathbf{x}/2 \ \mathbf{y}/\sqrt{2}]$  je matice projekce na X rovna  $\mathbf{U}\mathbf{U}^T = \frac{1}{4}\begin{bmatrix} 3 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 \\ -1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ .
- (d) Analogicky projektor na  $X^{\perp}$  má matici  $\mathbf{V}\mathbf{V}^T$ , kde matice  $\mathbf{V}$  má ve sloupcích bázi z

2. V následující soustavě

$$\begin{aligned} \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} &= \mathbf{a} + \mathbf{C}\mathbf{z} \\ \mathbf{D}\mathbf{y} + \mathbf{z} &= \mathbf{1} \end{aligned}$$

jsou  ${\bf A},\,{\bf B},\,{\bf C}$  a  ${\bf D}$  matice,  ${\bf a}$  je vektor konstant,  ${\bf 1}$  je vektor obsahující jedničky a  ${\bf x},\,{\bf y},\,{\bf z}$  jsou vektory neznámých.

- (a) (3 b) Určete nejobecnější rozměry matic a vektorů tak, aby všechny operace a rovnosti v soustavě měly smysl.
- (b) (5 b) Vyjádřete uvedenou soustavu ve tvaru  $\mathbf{P}\mathbf{u} = \mathbf{q}$  pro nějakou matici  $\mathbf{P}$ , vektor konstant  $\mathbf{q}$  a vektor proměnných  $\mathbf{u}$ . Jaké rozměry má matice  $\mathbf{P}$  a vektory  $\mathbf{q}$ ,  $\mathbf{u}$ ?
- (c) (2 b) Může se stát, aby soustava měla jediné řešení?

Optimalizace Zkouškový test 17.6. 2022

# Řešení:

(a),(b) Soustavu lze napsat ve tvaru

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} & -\mathbf{C} \\ \mathbf{O} & \mathbf{D} & \mathbf{I} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{a} \\ \mathbf{1} \end{bmatrix}$$

kde  $\mathbf{A} \in \mathbb{R}^{n \times m}$ ,  $\mathbf{B} \in \mathbb{R}^{n \times p}$ ,  $\mathbf{C} \in \mathbb{R}^{n \times q}$ ,  $\mathbf{a} \in \mathbb{R}^{n}$ ,  $\mathbf{x} \in \mathbb{R}^{m}$ ,  $\mathbf{y} \in \mathbb{R}^{p}$ ,  $\mathbf{z} \in \mathbb{R}^{q}$ ,  $\mathbf{1} \in \mathbb{R}^{q}$ ,  $\mathbf{D} \in \mathbb{R}^{q \times p}$ .

- (c) Soustava může mít jediné řešení: když m+p=n, je matice  ${\bf P}$  čtvercová a může být regulární.
- 3. Rozhodněte, zda je zadaný optimalizační problém konvexní a odpověď zdůvodněte.
  - (a) (2 b) Minimalizuj  $\mathbf{x}^T \mathbf{A} \mathbf{x}$  za podmínek  $\|\mathbf{x}\|^2 = 1$ ,  $\mathbf{x} \in \mathbb{R}^n$ , kde  $\mathbf{A} \in \mathbb{R}^{n \times n}$  je symetrická.
  - (b) (2 b) Minimalizuj x + y za podmínek  $y \le x^2$ ,  $(x, y) \in \mathbb{R}^2$ .
  - (c) (2 b) Minimalizuj 3x y + z za podmínek  $x + y z \le 2$ ,  $y z \ge -1$ ,  $x, y, z \ge 0$ .
  - (d) (2 b) Minimalizuj  $\|\mathbf{A}\mathbf{x} \mathbf{b}\|$  za podmínky  $\mathbf{x} \in \mathbb{R}^n$ , kde  $\|.\|$  je norma,  $\mathbf{A} \in \mathbb{R}^{m \times n}$  a  $\mathbf{b} \in \mathbb{R}^m$ .
  - (e) (2 b) Maximalizuj  $x^2 + y^2$  za podmínek  $x + y \le 1, x, y \ge 0$ .

### Řešení:

- (a) Není, protože jednotková sféra není konvexní množina. Alternativně: účelová funkce nemusí být konvexní, pokud **A** není pozitivně semidefinitní.
- (b) Není, protože podmínka  $y \leq x^2$  definuje nekonvexní množinu v rovině (body pod parabolou).
- (c) Je, protože jde o úlohu lineárního programování.
- (d) Je, protože norma je konvexní funkce a složená funkce  $\|\mathbf{A}\mathbf{x} \mathbf{b}\|$  je také konvexní.
- (e) Není, hledáme maximum (a nikoli minimum) konvexní funkce na konvexní množině.
- 4. Firma maximalizuje zisk z prodeje vyráběného hnojiva a pracího prášku. Zisk z tuny prodaného hnojiva je 2 a z tuny prodaného pracího prášku je 5. Přitom není možno vyrábět více než 5 tun hnojiva, více než 4 tuny pracího prášku a další omezení dané společnou výrobní linkou je  $3\cdot (\text{množství hnojiva}[t])+\text{množství pracího prášku}[t] \leq 16.$ 
  - (a) (2 b) Formulujte výše uvedený problém jako úlohu lineárního programování.
  - (b) (4 b) Vyřešte úlohu z bodu (a).
  - (c) (3 b) Napište duální program a jeho optimální hodnotu.
  - (d) (1 b) Jsou všechny hodnoty duálních proměnných v optimu nenulové?

Optimalizace Zkouškový test 17.6. 2022

# Řešení:

- (a) Maximalizujeme 2x+5y za omezení  $x\leq 5,\,y\leq 4,\,3x+y\leq 16$  a podmínek nezápornosti  $x,y\geq 0.$
- (b) Množina přípustných řešení tvoří omezený konvexní polyedr s vrcholy (0,0), (0,4), (4,4), (5,1), (5,1). To lze snadno nahlédnout graficky nebo řešením příslušných soustav lineárních rovnic. Maximální hodnoty 28 se nabývá ve vrcholu (4,4).
- (c) Duální lineární program: minimalizuj 5t + 4u + 16v za podmínek  $t + 3v \ge 2$ ,  $u + v \ge 5$  a podmínek nezápornosti  $t, u, v \ge 0$ . Podle věty o silné dualitě musí být hodnota v optimu stejná jako v primárním programu, tedy 28.
- (d) Nemohou. V optimu (4,4) není omezení  $x \leq 5$  aktivní a proto musí být podle podmínky komplementarity odpovídající duální proměnná t=0.
- 5. Minimalizujeme funkci  $f(\mathbf{x}) = \sum_{i=1}^{n} (\mathbf{a}_{i}^{T}\mathbf{x} y_{i})^{2}$ , kde  $\mathbf{a}_{1}, \dots, \mathbf{a}_{n} \in \mathbb{R}^{m}$  a  $y_{1}, \dots, y_{n} \in \mathbb{R}$  jsou zadána. Dále předpokládejme, že lineární obal vektorů  $\mathbf{a}_{1}, \dots, \mathbf{a}_{n}$  je celý prostor  $\mathbb{R}^{m}$ .
  - (a) (2 b) Napište problém maticově. Co jsme schopni říct o hodnosti vzniklé matice?
  - (b) (2 b) Napište iteraci gradientní metody pro řešení výše uvedeného problému.
  - (c) (3 b) Napište iteraci Newtonovy metody pro řešení výše uvedeného problému.
  - (d) (3 b) Pro které počáteční body Newtonova metoda selže v první iteraci, a pro které počáteční body v jedné iteraci zkonverguje do optima?

### Řešení:

- (a) Maticový zápis je minimalizace  $\|\mathbf{A}\mathbf{x} \mathbf{y}\|^2$ , kde řádky  $\mathbf{A}$  jsou  $\mathbf{a}_i$ . Předpoklad na lineární obal říká, že matice  $\mathbf{A}$  má lineárně nezávislé sloupce, a tedy její hodnost je m. Současně je  $\mathbf{A}^T \mathbf{A}$  je invertovatelná.
- (b) První derivace je

$$2(\mathbf{A}\mathbf{x} - \mathbf{y})^T \mathbf{A} = 2\sum_{i=1}^n (\mathbf{a}_i^T \mathbf{x} - y_i) \mathbf{a}_i^T$$

a druhá derivace je matice

$$2\mathbf{A}^T\mathbf{A} = 2\sum_{i=1}^n \mathbf{a}_i \mathbf{a}_i^T$$

Gradientní metoda má tvar  $\mathbf{x}^{k+1} = \mathbf{x}^k - 2\alpha \mathbf{A}^T (\mathbf{A}\mathbf{x}^k - \mathbf{y}).$ 

(c) Newtonova metoda má krok

$$\mathbf{x}^{k+1} = \mathbf{x}^k - (2\mathbf{A}^T\mathbf{A})^{-1}2\mathbf{A}^T(\mathbf{A}\mathbf{x}^k - \mathbf{y}) = (\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{y}.$$

Vzhledem k tomu, že toto je optimální hodnota nejmenších čtverců, tak Newtonova metoda vždy konverguje do optimálního řešení v první iteraci.