INF281 Exercise 03

1. Affine gap penalty

Affine gap penalties are often preferable ways to calculate gap scores than linear penalties. A gap with length l can be calculated as: $g_l = g_{open} + (l-1) * g_{extend}$.

Use the following scoring scheme and gap penalties to answer the questions.

Scoring scheme:

$$R_{ab} = 1$$
 for $a = b$
 $R_{ab} = 0$ for $a \neq b$
 $g_{open} = 1$, $g_{extend} = 0.1$

- (a) What is the gap penalty when l=2.
- (b) Calculate the scores of the alignments.
 - 1. q: CAGCT
 - d: CT--T
 - 2. q: CAGCT
 - d: C-T-T
 - 3. q: CCT-
 - d: ---CT

2. Affine gap with single DP table

You need to check extra cells in addition to the adjacent cells of H when finding an optimal alignment with affine gap penalties.

Scoring scheme:

$$R_{ab} = 1 \text{ for a = b}$$

 $R_{ab} = 0 \text{ for a } \neq \text{ b}$

$$g_{open} = 1, g_{extend} = 0.1$$

		С	G
	0	-1	-1.1
С	-1	1	0
A	-1.1	0	

Assume we want to update $H_{2,2}$ and answer the following questions.

- (a) Calculate $H_{1,1} + R_{q_2,d_2}$.
- (b) Calculate $\max_{1 \leq l \leq 2} (H_{2,2-l} g_l)$.
- (c) Calculate $\max_{1 \le l \le 2} (H_{2-l,2} g_l)$.
- (d) What is the score of $H_{2,2}$.

3. Initializtion for affine gap penalty

Initialize the following tables when $g_{open} = 10$ and $g_{extend} = 1$.

	E				
		Т	G	С	
A					
A					

	F					
		Т	G	С		
A						
A						

	G				
		Т	G	С	
A					
A					

4. Affine gap with three DP tables

Use the following scoring scheme and gap penalties to find the optimal alignment score of two sequences q = AG and d = GGGC.

Scoring scheme:

$$R_{ab} = 1$$
 for $a = b$

$$R_{ab} = 0$$
 for $a \neq b$

$$g_{open} = 1, g_{extend} = 0.1$$

(a) Fill all blank cells in the DP tables E, F, and G.

	E					
		G	G	G	С	
	0	-1				
A	-1		-2.1	-2.2	-2.3	
G		-1	-2		-2.2	

		G	G	G	С
	0	-1			
A	-1	-2	-1		-1.2
G			-1	0	-0.1

F

	G						
G G C							
	0	-1					
A	-1	0	-1	-1.1	-1.2		
G		0	1	0			

(b) What is the optimal score?

5. Backtrack with affine gap penalty

Perform backtracking on E, F, and G tables to find the optimal alignment. The cells with double border should be visited during backtracking.

	G						
		A	С	G	Т		
С							
G							
G							

(a) Write the optimal alignment.

6. Sequence distance with DP

DP can be used to calculate the edit distance (Levenshtein distance) between two sequences.

Scoring scheme:

$$R_{ab} = 0$$
 for $a = b$
 $R_{ab} = -1$ for $a \neq b$
 $g = 1$

With the scoring scheme above, the edit distance d is calculated as 1 * T where T is the optimal score of the DP.

Find the edit distance between two sequences q = AG and d = ACG.

(a) Fill the DP table.

(b) What is the edit distance between q and d?