МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа радиотехники и компьютерных технологий

Лабораторная работа 3.2.6

Изучение гальванометра

Автор: Черниенко Владислав Антонович Группа Б01-110 **Цель работы:** изучение работы высокочувствительного зеркального гальванометра магнитоэлектрической системы в режимах измерения постоянного тока и электрического заряда.

В работе используются: зеркальный гальванометр с осветителем и шкалой, источник постоянного напряжения, делитель напряжения, магазин сопротивлений, эталонный конденсатор, вольтметр, переключатель, ключи, линейка.

Теоретические сведения

Баллистическим гальванометром называют электроизмерительный прибор магнитоэлектрической системы, отличающийся высокой чувствительностью к току и сравнительно большим периодом колебаний подвижной системы (рамки).

А. Определение динамической постоянной гальванометра Экспериментальная установка

Схема для исследования гальванометра в стационарном режиме представлена на рис. 1. Постоянное напряжение U снимается с блока питания и измеряется вольтметром V. Ключ K_3 позволяет менять направление тока через гальванометр Γ , делитель напряжения — менять величину тока в широких пределах. Ключ K_2 служит для включения гальванометра, кнопка K_1 — для его успокоения. Магазин сопротивлений R позволяет менять режим работы гальванометра от колебательного до апериодического.

Рис. 1: Схема установки для работы гальванометра в стационарном режиме

При $R_1 \ll R, R_0, R_2$ сила тока, протекающего через гальванометр, может быть вычислена как

$$I = \frac{R_1}{R_2} \frac{U_0}{R + R_0},\tag{1}$$

где U_0 — показания вольтметра, R_1/R_2 — положение делителя, R — сопротивление магазина, R_0 — внутреннее сопротивление гальванометра.

Угол отклонения рамки от положения равновесия измеряется с помощью осветителя, зеркальца, укреплённого на рамке, и шкалы, на которую отбрасывается луч света от зеркальца. Координата x светового пятна на шкале связана с углом φ отклонения рамки формулой

$$x = a \arctan(2\varphi),$$

где a — расстояние от шкалы до зеркальца. При малых углах можно считать, что $\varphi=x/2a$. Динамическую постоянную

$$C_I = \frac{I}{\varphi} = \frac{2aI}{x},\tag{2}$$

как правило, выражают в единицах $\left[\frac{A}{\text{мм/м}}\right]$ (ток I измеряется в амперах, x – в миллиметрах, a – в метрах).

Б. Определение критического сопротивления гальванометра

Критическим сопротивлением баллистического гальванометра называется сопротивление его электрической цепи $R_{\rm kp}$, при котором после начального толчка подвижная система почти экспоненциально возвращается к нулю. На практике критический режим, требующий строгого выполнения условия $\gamma = \omega_0$, не может быть точно реализован и имеет значение как пограничный между режимом затухающих колебаний ($\gamma < \omega_0$) и режимом апериодического затухания ($\gamma > \omega_0$).

Измерение критического сопротивления гальванометра можно выполнить с помощью той же схемы (рис. 1).

При больших R свободное движение рамки имеет колебательный характер. С уменьшением R затухание увеличивается, и колебательный режим переходит в апериодический.

В качестве характеристики процесса затухания колебаний рамки гальванометра воспользуемся представленным формулой логарифмическим декрементом затухания:

$$\Theta = \gamma T_1 = \ln \frac{x_n}{x_{n+1}},\tag{3}$$

где x_n и x_{n+1} — два последовательные отклонения колеблющейся величины в одну сторону. Измеряя зависимость $\Theta(R)$ логарифмического декремента затухания от сопротивления внешней цепи R, можно найти критическое сопротивление $R_{\rm kp}$

$$R_{\rm kp} = rac{R + R_0}{\sqrt{\left(rac{2\pi}{\Theta}\right)^2 + 1}} - R_0,$$

или

$$\sqrt{\frac{4\pi^2}{\Theta^2} + 1} = \frac{R + R_0}{R_{\text{KP}} + R_0}.$$
 (4)

В. Определение баллистической постоянной и критического сопротивления гальванометра, работающего в баллистическом режиме

Для изучения работы гальванометра в режиме измерения заряда (в баллистическом режиме), используется схема, представленная на рис. 2.

Система ключей устроена так, что нормально ключ K_2 замкнут, а ключи K_3 и K_4 разомкнуты. При нажатии на кнопку K_0 сначала размыкается ключ K_2 , затем замыкается K_3 и через некоторое время — K_4 . При нормальном положении кнопки K_0 конденсатор C заряжается до напряжения U_C и получает заряд q:

$$U_C = \frac{R_1}{R_2} U_0,$$
 $q = CU_C = \frac{R_1}{R_2} U_0 C.$

При нажатии на ключ K_0 конденсатор отключается от источника постоянного напряжения (размыкается ключ K_2) и подключается к гальванометру (замыкается ключ K_3).

Ёмкость конденсатора выбрана так, что к моменту замыкания ключа K_4 весь заряд успевает пройти через гальванометр, и рамка получает начальную скорость $\dot{\varphi}(\tau)$. При этом можно считать, что отклонение рамки, происходящее за время, протекающее между замыканием ключей K_3 и K_4 , равно нулю.

Первый отброс зайчика φ_{max} после нажатия на кнопку K_0 зависит от сопротивления внешней цепи, подключённой к гальванометру. Для определения $R_{\rm kp}$ используется то обстоятельство,

Рис. 2: Схема установки для определения баллистической постоянной

что в критическом режиме максимальное отклонение зайчика в e раз меньше, чем у гальванометра без затухания.

Следует помнить, что наблюдать колебания рамки при полном отсутствии затухания, конечно, невозможно, так как даже при разомкнутой внешней цепи $(R=\infty)$ остаётся трение в подвеске и трение рамки о воздух. Величину максимального отклонения рамки гальванометра без затухания $\varphi_{max}^{\rm cb}$ можно, однако, рассчитать, если при разомкнутой цепи тах измерить реальное максимальное отклонение рамки φ_0 и логарифмический декремент затухания Θ_0 (при $R=\infty$ величина Θ_0 определяется только внутренним трением в рамке). Из уравнений движения рамки при $\gamma \ll \omega_0$ вытекают равенства

$$\varphi_0 = \varphi(T_1/4) = \varphi_{max}^{\text{CB}} e^{-\Theta_0/4},$$

так что максимальное отклонение рамки гальванометра без затухания

$$\varphi_{max}^{\text{\tiny CB}} = \varphi_0 e^{\Theta_0/4} \approx \varphi_0 \left(1 + \frac{\Theta_0}{4} \right).$$

Баллистическая постоянная гальванометра $C_q^{\text{кр}}\left[\frac{\mathrm{K_{J}}}{\mathrm{мм/м}}\right]$ определяется при критическом сопротивлении $(R=R_{\text{кр}})$:

$$C_q^{\text{Kp}} = \frac{q}{\varphi_{max}^{\text{Kp}}} = 2a \frac{R_1}{R_2} \frac{CU_0}{x_{max}^{\text{Kp}}},$$
 (5)

где $x_{max}^{\text{кр}}$ — величина первого отброса в критическом режиме, выраженная в делениях шкалы (мм), a — расстояние от зеркальца до шкалы, выраженное в метрах, произведение CU_0 — заряд, выраженный в кулонах.

Ход работы/Обработка результатов эксперимента

1. Подготовим к работе приборы, настроем гальванометр. Установим делитель напряжения на небольшое входное напряжение: $\frac{R_1}{R_2} = \frac{1}{2000}$. Соберём электрическую схему согласно рис. 1. Запишем также величину R_2 , расстояние от шкалы до зеркальца гальванометра и внутреннее сопротивление гальванометра R_0 , указанное на установке: $R_2 = 10$ кОм; a = 136, 8 см; $R_0 = 610$ Ом.

Измерим зависимость отклонения зайчика x от сопротивления магазина R, увеличивая сопротивление магазина, но не меняя делителя. По полученным данным рассчитаем токи I через гальванометр по формуле (1) и построем график I(x). Результаты будем заносить в табл. 1, а график изобразим на рис. 3.

R, кОм	50	40	30	20	15	10	8	6	5	4
x, MM	0	3	8	13	28	47	62	84	101	125
I, нА	12,45	15,51	20,58	30,57	40,36	59,38	73,17	95,31	112,30	136,66

Таблица 1: Зависимость отклонения зайчика от сопротивления, постоянный ток

Рис. 3: График зависимости I = f(x)

Пользуясь наклоном графика на рис. 3, рассчитаем динамическую постоянную C_I гальванометра по формуле (2). Получим результат:

$$C_I = (2,68 \pm 0,01) \cdot 10^{-9} \left[\frac{A}{\text{MM/M}} \right]$$

Рассчитаем также чувствительность гальванометра к току:

$$S_I = \frac{1}{C_I} = (3,73 \pm 0,12) \cdot 10^8 \left[\frac{\text{MM/M}}{\text{A}} \right].$$

2. Установим такое значение R, при котором зайчик отклоняется почти на всю шкалу: R=2 кОм. Разомкнём ключ K_2 и понаблюдаем за свободными колебаниями рамки. Измерим

два последовательных отклонения зайчика в одну сторону для расчёта логарифмического декремента затухания Θ_0 разомкнутого гальванометра. Получим результаты:

$$x_1 = 192 \text{ MM}, \qquad x_2 = 160 \text{ MM}.$$

Также приближённо измерим период T_0 свободных колебаний рамки. Получим:

$$T_0 = 3,35 \text{ c.}$$

Пользуясь данными, полученными нами ранее, по формуле (3) рассчитаем логарифмический декремент затухания разомкнутого гальванометра. Получим:

$$\Theta_0 = (1,82 \pm 0,08) \cdot 10^{-1}.$$

3. Снова замкнём ключ K_2 и убедимся, что зайчик находится на краю шкалы. Разомкнём ключ K_3 . Теперь подберём наибольшее сопротивление магазина R, при котором при замыкании ключа K_3 зайчик не переходит за нулевое значение. Это сопротивление близко к критическому: $R_{\rm Kp} \approx 4,5$ кОм.

Установим сопротивление магазина $R \approx 3R_{\rm kp}$ и подберём делитель так, чтобы в стационарном режиме зайчик отклонялся почти на всю шкалу: $\frac{R_1}{R_2} = \frac{1}{300}$. Рассчитаем декремент затухания Θ , измеряя дво последовательных отклонения зайчика в одну сторону после размыкания ключа K_3 . Повторим измерения декремента затухания для других значений R, постепенно увеличивая сопротивление магазина до $10R_{\rm kp}$. Результаты будем заносить в табл. 2.

<i>R</i> , кОм	13,50	18,00	20,25	22,50	24,75	27,00	31,50	36,00	40,50	45,00
x_1 , MM	55	64	62	62	62	62	58	65	54	49
x_2 , MM	3	7	9	11	13	14	15	20	19	19
Θ	2,91	2,21	1,93	1,73	1,56	1,49	1,35	1,18	1,04	0,95

Таблица 2: Зависимость декремента затухания от сопротивления магазина

Пользуясь данными табл. 2, построим график $1/\Theta^2 = f[(R+R_0)^2]$ и по формуле (4) рассчитаем значение критического сопротивления R_0 (в области малых R). График приведём на рис. 4.

Рассчитаем значение R_0 , пользуясь первыми пяти точками. В итоге получим:

$$R_0 = 5580 \pm 123 \text{ Om}.$$

4. Перейдём к работе гальванометра в баллистическом режиме. Соберём схему согласно рис. 2. Запишем параметры и показания вспомогательных приборов: C=2 мк Φ ; $U_0=1,26$ В. Установим на магазине сопротивление R=50 кОм. Разомкнём цепь R, отсоединив одну из клемм от магазина. Подберём делитель так, чтобы при замыкании ключа K_0 первый отброс l_{max} соотвествовал отклонению зайчика почти на всю шкалу: $R_1/R_2=1/20$. Запишем значение первого отброса для свободных колебаний: $l_0=237$ мм. Вновь подключим магазин R. Получим зависимость первого отброса от величины R. Будем уменьшать R до тех пор, пока первый отброс не уменьшится до 1/3-1/4 от максимальной величины. Результаты будем заносить в табл. 3.

Теперь построим график зависимости $l_{max} = f[(R + R_0)^{-1}]$. График представим на рис. 5.

Рис. 4: График зависимости $1/\Theta^2 = f[(R+R_0)^2]$

R, кОм	50	40	35	30	25	20	15	10	5	2,5
l_{max} , MM	163	157	155	148	149	138	120	96	61	40

Таблица 3: Зависимость первого отброса от сопротивления магазина

Рис. 5: График зависимости $l_{max} = f[(R+R_0)^{-1}]$

Определим по рис. 5 критическое сопротивление гальванометра:

$$R_{\rm kp} \approx 723 \; {\rm Om}.$$

5. Рассчитаем баллистическую постоянную в критическом режиме $C_q^{\kappa p}$ по формуле (5). Получим:

$$C_q^{\text{kp}} = (4,00 \pm 0,23) \cdot 10^{-9} \left[\frac{\text{K}_{\text{J}}}{\text{MM/M}} \right].$$

6. Сравним время релаксации $t = R_0 C$ и период свободных колебаний гальванометра T_0 :

$$t = 0,00122 \text{ c} \ll T_0 = 3,35 \text{ c},$$

время релаксации сильно меньше периода свободных колебаний. Значит эксперимент и данные полученные нами корректны.

Вывод

В ходе данной работы нами были получены динамическая постоянная и баллистическая постоянная гальванометра, а также тремя разными способами было получено значение критического сопротивления гальванометра. В конце обработки результатов была проверена корректность данного эксперимента и всех полученных результатов, путём сравнения времени релаксации и периода свободных колебаний гальванометра.