

INNOMATICS RESEARCHLABS

Simple Linear Regression

Contents

- Measures of Association
 - Covariance
 - Correlation
- Correlation Properties
- Regression Analysis
- Ordinary Least Squares method (OLS)
- Assumptions of Regression Analysis
- Output interpretation

Covariance

- Covariance is a measure of association between two random variables.
- Measures the linear relationship between two variables.
- Covariance can be negative or positive or zero.
- Formula for Covariance

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X})(Y_j - \overline{Y})}{n} \qquad Cov(X,Y) = \frac{\sum (X_i - \overline{X})(Y_j - \overline{Y})}{n-1}$$

Covariance

- A positive Covariance value → the two variables tend to vary in the same direction (i.e. if one increases, then the other one increases too).
- A negative value

 they vary in opposite directions (i.e. if one increases, then the other one decreases).
- Zero means that they don't vary together.

Limitations

- measures the directional relationship between two variables.
- does not show the strength of the relationship between them.
- Covariance values are not standardized.

Correlation

- A correlation coefficient measures the extent to which two variables tend to change together. The coefficient describes both the **strength** and the **direction** of the relationship.
- It is considered to be the normalised version of the Covariance.

$$\rho(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

• The correlation is bounded between -1 and 1.

Correlation

Limitation

Correlation is not and cannot be taken to imply causation. Even if there is a very strong association between two variables we cannot assume that one causes the other.

Covariance vs Correlation

Types of Relationships

Regression Analysis

- Linear regression is a very simple approach for supervised learning.
- Useful technique for predicting a quantitative response.
- Aim of regression analysis is to find a best fit line that passes through the points.
- Describes the relationship between two variables x and y can be expressed by the following equation:

$$Y = c + mx + \varepsilon$$

Regression Analysis

Ordinary Least Squares method (OLS)

$$Y = \beta_0 + \beta_1 x + \varepsilon$$

- Y predicted value of the dependent variable, Dependent/Response variable.
- β_0 the intercept (the predicted value of Y when all the predictor variables equal zero).
- β_1 the regression coefficient (Slope) for the predictor X.
- x predictor value, Independent/Explanatory variable (Input).
- ε Random error/Noise.

OLS – What is the best fit?

OLS – Least Squares

Min. Sum of Squares
$$\sum_{i=0}^6 arepsilon_i^2 = arepsilon_1^2 + arepsilon_2^2 + arepsilon_3^2 + arepsilon_4^2 + arepsilon_5^2 + arepsilon_6^2$$

OLS – Least Squares

- Let $\varepsilon_i = (y_i \widehat{y}_i)$ be the prediction error for observation *i*.
- Sum of Squares of Errors, $SSE = \sum_{i=1}^{n} \varepsilon_i^2$
- For good fit, SSE should be minimum, that is "Least Squares".

$$SSE = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

Least Squares Regression Properties

The sum of the residuals from the least squares regression line is 0.

$$(\sum (y - \hat{y}) = 0)$$

The sum of the squared residuals is a minimum.

(minimized
$$\sum (y - \hat{y})^2$$
)

The simple regression line always passes through the mean of the y variable and the mean of the x variable.

The least squares coefficients are unbiased estimates of β_0 and β_1 .

Explained and Unexplained variation

Explained and Unexplained variation

$$SST = SSE + SSR$$

Total sum of Squares

Sum of Squares Error

Sum of Squares Regression

$$SST = \sum (y - \overline{y})^2$$

$$SSE = \sum (y - \hat{y})^2$$

$$SSR = \sum (\hat{y} - \overline{y})^2$$

Where:

 \overline{v} = Average value of the dependent variable

y = Observed values of the dependent variable

 \hat{y} = Estimated value of y for the given x value

Explained and Unexplained variation

SST = Total sum of squares

Measures the variation of the y_i values around their mean y

SSE = Error sum of squares

 Variation attributable to factors other than the relationship between x and y (Unexplained)

SSR = Regression sum of squares

Explained variation attributable to the relationship between x and y

Coefficient of determination (R^2)

- How to judge a good fit line -
 - SSE (Minimum or Maximum?)
 - SSR (Minimum or Maximum?)
 - SSR/SSE(Minimum or Maximum?)
- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable.
- R-squared provides an estimate of the strength of the relationship between your model and the response variable.
- The coefficient of determination is also called R-squared and is denoted as R^2 .

$$R^2 = \frac{SSR}{SST}$$
 where $0 \le R^2 \le 1$