KOREAN PATENT ABSTRACTS (KR)

Document Code: A

(11) Publication No.1020020029317 (43)

(43) Publication. Date. 20020418

(21) Application No.1020010062905

(22) Application Date. 20011012

(51) IPC Code:

G09G 3/30

(71) Applicant:

SEIKO EPSON CORP

(72) Inventor:

KASAI TOSHIYUKI

(54) Title of Invention

DRIVING CIRCUIT INCLUDING ORGANIC ELECTROLUMINESCENCE ELEMENT, ELECTRONIC EQUIPMENT AND ELECTROOPTICAL DEVICE

(57) Abstract

To provide an organic electroluminescence element driving circuit in which an application of a reverse bias is realized while hardly increasing power consumption and layout space. Switches 20-1 and 20-2 are provided so that organic electroluminescence elements are set into a reverse bias state. Then, each pixel unit, each line pixel unit constituting of a screen and all pixels simultaneously are set to a reverse bias state in a prescribed pixel unit. Thus, no need exists to add a power supply, a reverse bias application is realized while hardly increases power consumption and layout space and the service life of the elements is prolonged.

【 - 인용발명1 : 한국공개특허공보 2002-29317호(2002.04.18)】

특 2002-002931 7

(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(51) Int. Cl. ⁷	(II) 공개변호 특 2002-0525 017 (40) 공개알지 2002년04월18일
(21) 출원번호 (22) 출원잎자	10-2001-0062905 2001년10월12일
(30) 우선원주장	JP-P-2000-00312391 2000년10월12일 일본(JP)
(71) 출원인	JP-P-2001-00313951 2001년10월11일 일본(JP) 세미교 앱슨 가부시키가미샤 구사마 사부로
(72) 발명자	일본 도쿄도 선주쿠구 나사선주쿠 2초때 4시 가사이도시유키
(74) 대리인	일본국나가노켄스와시오와3-3-5세미코앱승가부시키(가이 Attill 문기상, 문투현

(54) 유기 알렉트로루메네선스 소자를 포함하는 구동 최로 몇진자 기가 및 전기 광학 장치

紀學

성사경구 : 있음

본 발명은, 소비 전력의 증가나 레이아웃 스페이스의 쏨대를 거의 수반하지 않고서 역 바이어스의 인가를 실현할 수 있는 유기 임텍트로루미네선스 소자 구동 회로를 실현한다.

본 방명은, 스위치(20-1, 20-2)를 설치하고, 유기 양력트로루마네선스 소자를 역 바이어스 상태로 설정한다. 각 화소 단위, 화면을 구성하는 각 라인 화소 단위, 전체 화소 당시 등, 소점 화소 단위로 역 바이어스 상태로 설정한다. 전원을 추가할 필요도 없고, 소비 전략의 증가나 레이마웃 스펙이스의 종대를 거의 수반하지 않고서 약 바이어소 인가를 실현할 수 있고, 유기 알렉트로루마네선스 소자의 수명 장기화를 도모할 수 있다.

母根左

£1

4001

유기 일렉트르루마네선스 소자, 역 바이어스 설정 회로, 학소 회로

BAH

复数型 不足者 基础

- 도 1은 본 발명에 따른 유기 일렉트로루미네선스 소자 구동 회로의 일 실시 험태를 나타낸 블랙도.
- 도 2는 본 말령에 따른 유가 일렉트로루미네선스 소자 구동 회로의 구성예측 나타낸 물벅도.
- 도 3은 본 방영에 따른 유가 일렉트로쿠미네션쇼 소자 구동 최로에서의 화소 최로의 단면 구성을 나타낸 도면.
- 도 4는 본 방명에 따른 유가 일렉트로푸마네션스 소자 구동 회로와 다른 구성예를 나타낸 블릭도.
- 도 5는 본 방명에 따른 유가 일렉트로투미네션스 소자 구동 회로의 다른 구성예를 나타낸 불럭도.
- 도 6은 본 발명에 따른 유기 일렉트로루미네션스 소자 구동 회로의 통작을 나타낸 파형도.
- 도 7은 본 발명에 따른 유가 일렉트로루미네선스 소자 구동 회로의 다른 실시 형태를 나타낸 블럭도.
- 도 8은 본 말씀에 따른 유기 일렉트로루미네선스 소자 구동 회로의 다른 식사 형태를 나타낸 불럭도
- 도 9는 총래의 유기 일렉트로루미네선스 소자 구봉 회로의 구성예를 나타낸 불럭도.
- 도 10은 도 9의 뮤기 일렉트로루미네선스 소자 구동 회로의 동작을 나타낸 파형도.
- 도 11은 종래의 유기 일렉트로부미네선수 소자 구동 회로의 다른 구성예를 나타낸 블럭도.
- 도 12는 도 11의 유기 임렉트로루미네선스 소자 구동 회로의 동작을 나타낸 파형도.
- 도 13은 종래의 유기 일렉트로루미네선스 소자 구동 회로의 다른 구성예를 나타낸 클럭도.
- 도 14는 도 13의 유기 일렉트로푸미네션스 소자 구용 회로의 통작을 나타낸 파형도.
- 도 15는 본 발명의 및 실시에에 따른 구동 회로를 구비한 액티브 때트릭스형 표시 장치를 이동형 퍼스널