Image Recognition with IBM Cloud Visual Recognition

PHASE_4

Implement the image classification process using the IBM Cloud Visual Recognition API.

Use natural language generation to create captions for the recognized images.

1. Set Up IBM Cloud Visual Recognition:

- Create an IBM Cloud account if you don't have one.
- Create a Visual Recognition service instance in the IBM Cloud.
 - Get your API key and credentials for this service.

2. Integrate IBM Visual Recognition:

- Use the IBM Watson SDK or API to connect your application with the Visual Recognition service.
 - Send images to the service for classification.

3. Image Classification:

- When a user uploads an image, send it to the IBM Visual Recognition service.
- Process the response to obtain classification results, which might include labels or tags describing the content of the image.

4. Natural Language Generation:

- Once you have the image classification results, use a natural language generation (NLG) system to create captions for the recognized images. OpenAI's GPT-3 or GPT-4 can be used for this purpose.

Python code:

```
# Import necessary libraries
import ibm watson
from ibm_cloud_sdk_core.authenticators import IAMAuthenticator
# Set up IBM Visual Recognition
# JSE UP ION VISUAL_recognition_authenticator = IAMAuthenticator('ab12cd34ef56gh78ij90kl12mm34op56qr78st90uv12mx34yz56')
Visual_recognition = ibm_watson.VisualRecognitionV4(

Version='2018-03-19',
     authenticator=visual_recognition_authenticator
visual_recognition.set_service_url('https://api.us-south.visual-recognition.watson.cloud.ibm.com')
# Set up OpenAI GPT-3
openai.api_key = 'ab12cd34ef56gh78ij90kl12mn34op56qr78st90uv12wx34yz56'
# Define a function to process images
# Orline a "minage (image_path):

# Upload the image to IBM Visual Recognition
with open(image_path, 'rb') as image_file:
          image_results = visual_recognition.classify(images_file=image_file).get_result()
     # Extract relevant labels/tags from image classification results labels = [label['class'] for label in image_results['images'][0]['classifiers'][0]['classes']]
     # Generate a caption using OpenAI GPT-3 caption = generate_caption(labels)
     return caption
# Define a function to generate captions using GPT-3
def generate_caption(labels);
    prompt = f"Create a caption for an image with labels: {', '.join(labels)}"
    response = openai.Completion.create(
engine="text-davinci-002", # You can choose an appropriate GPT-3 engine
          prompt=prompt,
max_tokens=50 # Adjust the token limit as needed
     caption = response.choices[0].text.strip()
     return caption
# Example usage
image_path = 'path/to/your/image.jpg'
caption = process_image(image_path)
print(f"Generated Caption: {caption}")
```



```
jupyter Demo (unsaved changes)
                                                                                                   Logo
 File
        Edit
                View
                        Insert
                                 Cell
                                        Kernel
                                                 Widgets
                                                            Help
                                                                     Notebook saved
                                                                                   Trusted
                                                                                                Python 3
                                N Run
                                           C
1
          20
                                                   Code
                                                                     (####)
       In [6]: vr = VisualRecognitionV3(
                 version="2018-03-19",
                     authenticator=iam
       In [ ]: recognition.watson.cloud.ibm.com/instances/8748e9b2-5116-49e6-94d2-5028159f92e1"
```

