

2013 年全国硕士研究生入学统一考试 数学一试题

一、选择题: 1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.

(1) 已知极限
$$\lim_{x\to 0} \frac{x - \arctan x}{x^k} = c$$
,其中 c,k 为常数,且 $c \neq 0$,则()

(A)
$$k = 2, c = -\frac{1}{2}$$

(B)
$$k = 2, c = \frac{1}{2}$$

(C)
$$k = 3, c = -\frac{1}{3}$$

(D)
$$k = 3, c = \frac{1}{3}$$

(2) 曲面
$$x^2 + \cos(xy) + yz + x = 0$$
 在点 $(0,1,-1)$ 处的切平面方程为 ()

(A)
$$x - y + z = -2$$

(B)
$$x + y + z = 0$$

(C)
$$x-2y+z=-3$$

$$(D) x-y-z=0$$

- (A) $\frac{3}{4}$
- (B) $\frac{1}{4}$
- (C) $-\frac{1}{4}$
- (D) $-\frac{3}{4}$

(4) 设
$$l_1: x^2 + y^2 = 1, l_2: x^2 + y^2 = 2, l_2: x^2 + 2y^2 = 2, l_2: 2x^2 + y^2 = 2$$
为四条逆时针的平面曲线,记

$$I_{i} = \oint_{L} (y + \frac{y^{3}}{6}) dx + (2x - \frac{x^{3}}{3}) dy (i = 1, 2, 3, 4), \quad \text{ind} \quad \left\{ I_{1}, I_{2}, I_{3}, I_{4} \right\} = ($$

- (A) I_1
- (B) I_2
- (C) I_3
- (D) $I_{\scriptscriptstyle A}$
- (5) 设矩阵 A,B,C 均为 n 阶矩阵, 若 AB=C,且 B 可逆,则
- (A) 矩阵 C 的行向量组与矩阵 A 的行向量组等价
- (B) 矩阵 C 的列向量组与矩阵 A 的列向量组等价
- (C) 矩阵 C 的行向量组与矩阵 B 的行向量组等价
- (D) 矩阵 C 的列向量组与矩阵 B 的列向量组等价

(6) 矩阵
$$\begin{pmatrix} 1 & a & 1 \\ a & b & a \\ 1 & a & 1 \end{pmatrix}$$
 与 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 相似的充分必要条件为

- (A) a = 0, b = 2
- (B) a = 0, b为任意常数
- (C) a = 2, b = 0
- (D) a = 2, b为任意常数
- (7) 设 X_1 , X_2 , X_3 是随机变量,且 $X_1 \sim N(0,1)$, $X_2 \sim N(0,2^2)$, $X_3 \sim N(5,3^2)$,

$$P_j = P\{-2 \le X_j \le 2\} (j = 1, 2, 3), \text{ }$$

- (A) $P_1 > P_2 > P_3$
- (B) $P_2 > P_1 > P_3$
- (C) $P_3 > P_1 > P_2$
- (D) $P_1 > P_3 > P_2$
- (8)设随机变量 $X \sim t(n), Y \sim F(1,n),$ 给定 a(0 < a < 0.5),常数 c 满足 $P\{X > c\} = a$,则 $P\{Y > c^2\} = ($
- (A) α
- (B) $1-\alpha$
- (C) 2α
- (D) $1-2\alpha$

二、填空题: 9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.

(9) 设函数
$$f(x)$$
 由方程 $y-x=e^{x(1-y)}$ 确定,则 $\lim_{n\to\infty} n(f(\frac{1}{n})-1) = \underline{\qquad}$.

(10) 已知 $y_1 = e^{3x} - xe^{2x}$, $y_2 = e^x - xe^{2x}$, $y_3 = -xe^{2x}$ 是某二阶常系数非齐次线性微分方程的 3 个解,该方程的通解为 y =______.

(11) 设
$$\begin{cases} x = \sin t \\ y = t \sin t + \cos t \end{cases}$$
 (t为参数),则
$$\frac{d^2 y}{dx^2} \bigg|_{t = \frac{\pi}{4}} = \underline{\qquad}.$$

$$(12) \int_{1}^{+\infty} \frac{\ln x}{(1+x)^{2}} dx = \underline{\hspace{1cm}}.$$

(13)设 $A=(a_{ij})$ 是三阶非零矩阵,|A| 为 A 的行列式, A_{ij} 为 a_{ij} 的代数余子式,若 $a_{ij}+A_{ij}=0 (i,j=1,2,3),则 |A|=\underline{\hspace{1cm}}$

三、解答题: 15—23 小题, 共 94 分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.

(15)(本题满分10分)

计算
$$\int_0^1 \frac{f(x)}{\sqrt{x}} dx$$
, 其中 $f(x) = \int_1^x \frac{\ln(t+1)}{t} dt$

设数列 $\{a_n\}$ 满足条件: $a_0 = 3, a_1 = 1, a_{n-2} - n(n-1)a_n = 0 (n \ge 2), S(x)$ 是幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的和函数,

(I) 证明:
$$S''(x) - S(x) = 0$$
,

(II) 求S(x)的表达式.

(17)(本题满分10分)

求函数 $f(x, y) = (y + \frac{x^3}{3})e^{x+y}$ 的极值.

(18)(本题满分10分)

设奇函数 f(x)在[-1, 1]上具有 2 阶导数,且 f(1)=1,证明:

(I) 存在
$$\xi \in (0,1)$$
,使得 $f'(\xi) = 1$

(II) 存在
$$\eta \in (-1,1)$$
,使得 $f''(\eta) + f'(\eta) = 1$

(19) (本题满分 10 分)

设直线 L 过 A(1,0,0), B(0,1,1) 两点,将 L 绕 Z 轴旋转一周得到曲面 Σ , Σ 与平面 z=0,z=2 所围成的立体为 Ω ,

- (I) 求曲面Σ的方程
- (II) 求Ω的形心坐标.

(20)(本题满分11分)

设 $A = \begin{pmatrix} 1 & a \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & b \end{pmatrix}$, 当 a,b 为何值时,存在矩阵 C 使得 AC - CA = B,并求所有矩阵 C 。

(21)(本题满分11分)

设二次型
$$f(x_1, x_2, x_3) = 2(a_1x_1 + a_2x_2 + a_3x_3)^2 + (b_1x_1 + b_2x_2 + b_3x_3)^2$$
, 记 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$, $\beta = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ 。

- (I) 证明二次型 f 对应的矩阵为 $2aa^T + bb^T$;
- (II) 若lpha, eta 正交且均为单位向量,证明 f 在正交变换下的标准形为 $2y_1^2+y_2^2$ 。

(22) (本题满分 11 分)

设随机变量的概率密度为 $f(x) = \begin{cases} \frac{1}{9}x^2 & 0 < x < 3 \\ 0 & \end{cases}$, 令随机变量 $Y = \begin{cases} 2 & x \le 1 \\ x & 1 < x < 2, \\ 1 & x \ge 2 \end{cases}$

- (I) 求 Y 的分布函数
- (II) 求概率 *P*{*X* ≤ *Y*}

设总体 X 的概率密度为 $f(x,\theta) = \begin{cases} \frac{\theta^2}{x^3} e^{-\frac{\theta}{x}}, x > 0 \\ 0, 其他 \end{cases}$ 其中 θ 为未知参数且大于零, $X_1, X_2, \cdots X_N$ 为来自总体

X 的简单随机样本.

- (1) 求 θ 的矩估计量;
- (2) 求 θ 的最大似然估计量.