**		
Kall	No.	

M.Sc. SEMESTER I EXAMINATION 2022-23 <u>COMPUTER SCIENCE</u>

CS - 202: Theory of Computation

Time: Three hours Max. Marks: 70

(WRITE YOUR ROLL NO. AT THE TOP IMMEDIATELY ON THE RECEIPT OF THIS QUESTION PAPER)

NOTE: ATTEMPT <u>FIVE</u> QUESTIONS FROM THE FOLLOWING INCLUDING QUESTION No. 1, WHICH IS COMPULSORY. THE FIGURES IN THE RIGHT-HAND MARGIN INDICATE MARKS.

1	(a) Let L1 and L2 be regular languages. Is the language $L = \{w: w \in L1, w^R \in L2 \text{ necessarily regular}\}$	Marks [2]
	(b) Is it possible for a context free grammar to be ambiguous? Explain	[2]
	(c) Which language is accepted by Linear Bounded Automata? Does it contain empty string?	[2]
	(d) Construct a grammar which generates all even integers up to 998.	[2]
	(e) Find the language generated by the grammar $S \rightarrow AB$, $A \rightarrow Al 0$, $B \rightarrow 2B 3$. Can the above language be generated by a grammar of higher type?	[2]
	(f) Take $\Sigma = \{a, b\}$ and $\Gamma = \{a, b, c\}$. Define h by h(a)=abb, h(b)= bb. If L is a Regular language denoted by $r = (a+b^*)aa$ then find homomorphic image of L.	[2]
	(g) Is the halting problem solvable for deterministic push down automata (PDA); that is given a PDA, can we always predict whether or not the automaton will halt on input w?	[2]
2	(a) Construct deterministic finite automaton for the language	[5]
	$L = \{w : (n_a(w) + 2n_b(w)) \mod 3 < 2\}.$	
	(b) Construct an epsilon-NFA accepting the set of all strings over {a, b} for the language	<mark>[5]</mark>
	L={ambn: m+n=odd}. Use it to construct an equivalent NFA.	
	(c) Find a regular expression for the following languages:	[4]
	i. $L = \{vwv: v, w \in \{a, b\}^*, v \le 3\}$	
	ii. $L = \{w : n_a (w) \mod 5 > 0\}$	
3	(a) Construct a minimum state automaton using Myhill-Nerode theorem which is equivalent to	[6]

3 (a) Construct a minimum state automaton using Myhill-Nerode theorem which is equivalent to [6] a given automaton M whose transition table is defined as:

State	Input	
	a	ь
→q ₀	90	93
→90 91	92	95
a ₂	q_3	94
9 3	q_0	q_5
94	q_0	q_{6}
95	q 1	94
<u> </u>	q_1	q_3

- (b) Construct a Mealy machine which can compute 2's complement, convert it to its equivalent Moore machine. [4]
- (c) Let L= {aⁿb^m | n≥100, m≤50} (i) Can you use the pumping lemma to show that L is regular?
 - (ii) Can you use the pumping lemma to show that L is not regular? Explain your answers.
- 4 (a) Construct the grammar in Chomsky normal form generating the following language
 L: {wcw^R |w ∈ {a, b}*}

	(b) Remove all unit-productions, all useless productions, and all λ -productions from the grammar $S \rightarrow AA \mid aBB$ $A \rightarrow aaA \mid \varepsilon$ $B \rightarrow bB \mid bbC \mid A, C \rightarrow B$	[5]
	 (c) Consider the grammar G = (V, T, A, P) with productions P: A→A+A A-A id i. Check whether the grammar is ambiguous or not. ii. Give a parse tree for string '5-1+2*2' 	[4]
5	 (a) What are PDA and NPDA? which one is more powerful and why? Why stack is used in PDA. (b) Construct NPDA which accepts the language L = {w: n_a (w) = n_b (w) + 1}. (c) Is the language L = {a^{nm}: n and m are prime numbers} context-free? 	[5] [5] [4]
6	 (a) Give the mathematical definition of a Turing machine. Explain its variants with example. (b) Construct a Turing Machine for L((101(01)*), then find an unrestricted grammar for it. Give a derivation for 10101 using the resulting grammar. (c) Does the PCP with {(01, 011), (1, 10), (1, 11)} have a solution? If yes, find at least two solutions. (Here, X1 =01, X2 = 1, X3 = 1, Y1 =011, Y2 = 10, Y3 = 11.) 	[5] [5]
7	Write Short notes on the following: i. Rice's theorem ii. The Halting problem iii. Closure properties of context free language iv. Church Turing Thesis	[3.5*4]