Welcome to...

Join the Vevox session

Go to vevox.app

Enter the session ID: 130-474-361

Or scan the QR code

MUDE experience so far

No (big) issues	
	0%
I'm struggling with probability	
	0%
I'm struggling with the programming	
	0%
I'm struggling with linear algebra	
	0%

No (big) issues	
	##.##%
I'm struggling with probability	
	##.##%
I'm struggling with the programming	
	##.##%
I'm struggling with linear algebra	
	##.##%

RESULTS SLIDE

Modelling, Uncertainty and Data for Engineers (MUDE)

Week 1.3-1.4: Sensing and Observation Theory
Sandra Verhagen

Where we have been, and where we are going

Identify, create, validate simple models

Estimate uncertainty in model output given uncertain inputs

 \rightarrow Covariance matrix, Σ_X and Σ_Y

In weeks 3 and 4:

- Models to describe process/phenomenon of interest
- Build functions more complex than a line / polynomial
- Fit the model to data, taking into account uncertainty
- Construct confidence intervals
- Use statistical techniques to validate models

Sensing and observation theory

- Science and engineering: need observations!
- Observations → parameters of interest?
- Estimation results: interpretation & uncertainty
- → Input for other engineers, decision makers, ...

Do we need higher dikes?

Monitoring and Sensing: why?

Sensing and observation theory: applications

- Sea level rise
- Subsidence / uplift
- Air quality modelling
- Settlement of soils
- Tunnel deformation
- Bridge motions
- Traffic flow rate
- Water vapor content
- Ground water level

Excavation of Middle bench

Excavation of lower bench

(b) DK224+520 Section monitoring data and deformation profile

Input data Y

model & estimate parameters of interest x

Output data $\hat{X} = q(Y)$

What sensor / observation types are used in your discipline?

What sensor / observation types are used in your discipline?

What sensor / observation types are used in your discipline?

RESULTS SLIDE

Sensor/observation types

- camera: visible, IR, UV, hyperspectral
- radar
- radio signals
- rain gauges
- tide gauges
- stress / strain sensors
- acoustic sensors
- accelerometers
- gyroscopes
- temperature
- pressure

You wil need ...

- ... a model to describe relation between Y and x
- ... to select and apply an appropriate estimation method
- ... to apply uncertainty propagation to assess the precision of \hat{X}
- ... to apply tests to assess validity of our model

You wil need ...

- ... a model to describe relation between Y and x
- ... to select and apply an appropriate estimation method
- ... to apply uncertainty propagation to assess the precision of \hat{X}
- ... to apply tests to assess validity of our model

Input data Y

estimate parameters of interest *x*

Output data $\hat{X} = q(Y)$

You wil need ...

- ... a model to describe relation between Y and x
- ... to select and apply an appropriate estimation method
- ... to apply uncertainty propagation to assess the precision of \hat{X}
- ... to apply tests to assess validity our model
 - to account for errors in data

Input data Y

estimate parameters of interest *x*

Output data $\hat{X} = q(Y)$

You wil need ...

... a model to describe relation between Y and x

... to select and apply an appropriate estimation method

- ... to apply uncertainty propagation to assess the precision of \hat{X}

... to apply tests to assess validity of our model

to account for errors in data

to choose best model from different candidates

Examples

Linear trend model:

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_m \end{bmatrix} = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_m \end{bmatrix}$$
$$= \mathbf{A}\mathbf{x} + \epsilon$$

Unknowns:

 x_1 initial value at t = 0

 x_2 slope

Model formulation

Observable Y : stochastic quantity (due to random errors)

→ an observable ("to be observed quantity") has a certain probability distribution

Observation vector y : realization of Y

→ the measured value(s)

Parameter vector x : deterministic, but unknown

Random errors ϵ : stochastic with $\,\epsilon \sim N(0,\Sigma_\epsilon)$

Functional model (linear case) : $\mathbb{E}(Y) = \mathop{\mathrm{A}}_{n} \cdot \mathbf{x}$ or $Y = \mathop{\mathrm{A}}_{\cdot} \cdot \mathbf{x} + \epsilon$

Design matrix A : describes functional relationship between Y and x

Examples

Step model

$$\mathbb{E}(\begin{bmatrix} Y_1 \\ \vdots \\ Y_{i-1} \\ Y_i \\ \vdots \\ Y_m \end{bmatrix}) = \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{\mathbf{A}}$$

Part 7: Sensing and Observation

The distance x between a fixed benchmark and a moving benchmark on a landslide is measured at times t=0,2,4,6,8,10 months. The observations are shown in the figure.

It is assumed that normally the distance is changing at a constant rate. It is known, however, that at t=5 months there was a sudden slip of the landslide, causing an additional change in distance at that time.

10

t [months]

x(t) [mm]

Observations y collected, we have a functional model A, how to estimate x?

Observations y collected, we know A, how to estimate x?

for now we ignore the random errors

A linear system
$$y = A \cdot x$$

We will consider overdetermined systems with $\ rank({
m A})=n < m$

Hence we have more observations than unknowns

Redundancy =
$$m-n$$

Example of overdetermined system with rank(A) = n

$$\underbrace{\begin{bmatrix} 3 \\ 5 \\ 6 \end{bmatrix}}_{\mathbf{y}} = \underbrace{\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{\mathbf{x}}$$

→ no solution

$$\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
y

$$\Rightarrow \hat{\mathbf{x}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

→ in case of perfect measurements, i.e., errors equal to 0

Overdetermined system

Account for random errors, otherwise generally no solution

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ 1 & t_3 \\ 1 & t_4 \\ 1 & t_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \end{bmatrix}$$

unknowns: 2 parameters + 5 errors but only 5 observations... many possible solutions

Year

Overdetermined system

Account for random errors, otherwise generally no solution

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ 1 & t_3 \\ 1 & t_4 \\ 1 & t_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \end{bmatrix}$$

unknowns: 2 parameters + 5 errors but only 5 observations... many possible solutions

Least squares criterion?

What is the least-squares criterion?

minimize the mann of the errors

minimize the mean of the errors	
	0%
minimize the mean of the absolute errors	
	0%
minimize the sum of the squared errors	
	0%
minimize the sum of the absolute errors	
	0%

What is the least-squares criterion?

minimize the mean of the errors	
	##.##%
minimize the mean of the absolute errors	
	##.##%
minimize the sum of the squared errors	
	##.##%
minimize the sum of the absolute errors	
	##.##%

RESULTS SLIDE

Quiz: what is the least-squares criterion?

- minimize the mean of the errors
- minimize the mean of the absolute errors
- minimize the sum of the absolute errors
- minimize the sum of the squared errors

Least-squares principle

• Linear model: $y = Ax + \epsilon$

• Objective:
$$\min_{\mathbf{x}} (\epsilon^T \epsilon) = \min_{\mathbf{x}} (\mathbf{y} - \mathbf{A}\mathbf{x})^T (\mathbf{y} - \mathbf{A}\mathbf{x})$$

Minimize the sum of squared errors (i.e., optimization problem)

- Gradient (first-order partial derivatives) = 0
- Hessian (matrix with second-order partial derivatives) > 0

- Solution
$$\hat{\mathbf{x}} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \cdot \mathbf{y}$$

Least-squares solution

Functional model:

$$y = Ax + \epsilon$$

Least squares solution

$$\hat{\mathbf{x}} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \cdot \mathbf{y}$$

Adjusted (predicted) observations:

$$\hat{y} = A\hat{x}$$

Residuals (estimated errors):

$$\hat{\epsilon} = y - \hat{y}$$

Open questions

is least-squares the best way to estimate the parameters (fit model)?

 \rightarrow e.g., by taking into account the distribution of ϵ

• what if forward model is not linear?

quality assessment?

Introduction Sensing and Observation Theory

Model formulation

Notation and terminology

Least-Squares estimation

Weighted Least-Squares estimation

Best Linear Unbiased estimation

Maximum Likelihood estimation

Non-linear Least Squares estimation

Quality and testing

Keep the application in mind!

Decisions to be made based on monitoring and sensing:

- can we safely continue with gas extraction / water injection/extraction / CO2 sequestration?
- do we need to build higher dikes based on sea level rise predictions / observed deformations?
- do we need to evacuate a region due to risk of landslide, volcano eruptions, tsunami, ...?
- is railway maintenance needed?
- is a safe underkeel clearance of ships approaching Rotterdam guaranteed?
- ... (etcetera etcetera etcetera)

Need proper data processing and quality assessment of the results

TUDelft

Estimation principles also needed for model verification and validation, regression analysis, machine learning

Weighted Least-Squares estimation

Leas-squares...

• Linear model:
$$y = Ax + \epsilon$$

• Objective
$$\min_{\mathbf{x}} (\epsilon^T \epsilon) = \min_{\mathbf{x}} (\mathbf{y} - \mathbf{A}\mathbf{x})^T (\mathbf{y} - \mathbf{A}\mathbf{x})$$

Solution:
$$\hat{\mathbf{x}} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \cdot \mathbf{y}$$

- ... treats all observations equally
- But what if observations are collected with different sensors, with different measurement precision?
 - only use the observations from the best one? NO
 - give different weights to the observations?

Least-squares...

- Linear model: $y = Ax + \epsilon$
- Introduce a weight matrix W

- Objective: $\min_{\mathbf{x}}(\epsilon^T W \epsilon)$
- For example with a diagonal weight matrix:

$$\epsilon^T W \epsilon = egin{bmatrix} \epsilon_1 & \epsilon_2 & \cdots & \epsilon_m \end{bmatrix} egin{bmatrix} W_{11} & & O \ & W_{22} & & \ & & \ddots & \ O & & & W_{mm} \end{bmatrix} egin{bmatrix} \epsilon_1 \ \epsilon_2 \ dots \ \epsilon_m \end{bmatrix} = \sum_{i=1}^m W_{ii} \cdot \epsilon_i^2 \ dots \ \epsilon_m \end{bmatrix}$$

An observation with a larger weight is supposed to have a smaller error; this is considered in this minimization problem