This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT `
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Continued to the Contin

91-316074/43 HO1 TART 29.07.88

TARTAR OILIND "SU 1627-663-A

29.07.88-SU-492457 (15.02.91) E21b-29/10

Sorehole repeir cosing patch tool - has expanding come with base dia. smaller than inner dia. of tubular expanded patch in working position

C91-134922

The tool comprises the expanding come (4) which is partially inserted into bottom end of a pipe (1) and connected to hydraulic displacing drive (3) by a rod (5). The come apex angle alpha = 25-80 deg. and its base dia. (d) is smaller than that of the expanded pipe (1) in working position by amt. exceeding the valve determined from the formula Dd/d = 0.057368 sin eq. 1.5 alpha, where Dd = increase in inner dia. of expanded pipe (1) in working position above dia. of base (d) of cone (4).

USE/ADVANTAGE - For reliable repairing of holed casings of gas, oil wells. Bul.6/15.2.91 (2pp Dwg.No.1/2)

OPERATION

The tool is lowered into the damaged casing and placed opposite shole (6). L4q. is pumped under pressure into the hydraulic drive .), its platfom moves up and pulls up the cone (4). The cone (4) passes up the pipe (1), expands it against the cardings damaged section and seals the latter. The tapering ring (3) serves as support for the hydraulic drive(3).

C 1991 DERMENT PUBLICATIONS LTD.
128, Theobalds Road, London WC1X 8RP, England
US Office: Derwent Inc., 1313 Dolley Madison Boulevard,
Suite 401, McLean, VA22101, USA
Unauthorised copying of this abstract not permitted

Изобретение относится к нефтедобывающей промышленности, а именно к капитальному ремонту скважин.

Цель изобретения - повышение надежности ремонта обсадной колонны.

На фиг. 1 изображено устройство для ремонта обсадной колонны после спуска его в скважину; на фиг. 2 - то же, в процессе работы.

Устройство для ремонта обсадной ко- 10 лонны включает патрубок 1, на верхнем торце которого расположено переходное кольцо 2, упирающееся в гидропривод 3. В нижний конец патрубка вставлен расширяприводом 3, предназначенным для перемещения конуса. Конус выполнен с углом при вершине 25-60° и с диаметром основания, меньшим внутреннего диаметра патрубка в рабочем положении не более, 20 чем на величину, определяемую в соответствии со следующей зависимостью:

$$\frac{\Delta d}{d} = 5.7368 \cdot 10^{-2} \cdot \sin^2 1.5 \quad \alpha$$
.

где Δd – прирост внутреннего диаметра патрубка в рабочем положении над диамет- патрубка в рабочем положении над диамет-

ром основания конуса, м; d – диаметр основания конуса, м;

α - угол при вершине конуса. Устройство работает следующим обра- 30

Устройство спускают внутрь обсадной колонны к подлежащей герметизации трещине 6. При закачке жидкости по трубам в гидропривод 3 его поршни движутся вверх и через шток 5 тянут вверх конус 4, который, проходя через патрубок, расширяет его до прижатия к стенкам обсадной колонны (фиг. 2) и герметизирует трещину 6. Переходное кольцо 2 позволяет осуществить упор на гидропривод до конца расширения.

Формула изобретения

Устройство для ремонта обсадной колонны, включающее расширяющий конус с приводом его перемещения и расположенный на расширяющем. конусе патрубок, ющий конус 4, связанный штоком 5 с гидро- 15 отличающееся тем, что, с целью повышения надежности ремонта обсадной колонны, расширяющий конус выполнен с углом при вершине 25-60° и с диаметром основания, меньшим внутреннего диаметра патрубка в рабочем положении не более, чем на величину, определяемую в соответстя вии со следующей зависимостью:

$$\frac{\Delta d}{d} = 5.7368 \cdot 10^{-2} \cdot \sin^2 1.5 \ \alpha$$

патрубка в рабочем положении над диаметром основания расширяющего конуса, м;

 d – диаметр основания расширяющего конуса, м;

а - угол при вершине расширяющего конуса, рад.

Составитель И.Левкоева Техред М.Моргентал

Корректор М.Демчик

Редактор М.Товтин

Тираж 351

Подписное

Заказ 322 ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж-35, Раушская наб., 4/5

SU 1627663 A

The invention is in the field of oil industry, i.e., in the field of well overhaul.

The purpose of the invention is to increase the reliability of repair of the casing string.

Figure 1 shows the device for casing string repair after its suspension into the well; Figure 2 shows the same during operation.

The casing string repair device includes a connecting pipe, 1, at the upper face of which is located a junction ring, 2, leaning against a hydraulic drive, 3. An expanding cone, 4, connected by means of a stock, 5, to the hydraulic drive, 3, the purpose of which is to move the cone, is installed at the lower end of the connecting pipe. The cone is executed with a top angle of 25-60 degrees and a base diameter smaller than the inner diameter of the connecting pipe in operating position for no more than the rate determined in accordance with the following formula:

[see original for formula]

where Δ d is the increase in the inner diameter of the connecting pipe during operation above the base diameter of the cone, m;

d is the base diameter of the cone, m; and

 α is the angle at the top of the cone.

The device operates in the following manner.

The device is suspended inside the casing string to the crack, 6, that is subject to air tightness restoration. When fluid is injected through the tubes into the hydraulic drive, 3, its pistons 5, move up and pull the cone, 4, up through the stock, where the cone, while going through the connecting pipe, expands it until the latter is pressed against the walls of the casing string (Figure 2) and restores the air tightness of the crack, 6. The junction ring, 2, provides the support for the hydraulic drive until the completion of the expansion.

Claims:

Device for casing string repair including an expanding cone with a drive for its movement and a connecting pipe installed on the cone, which is *characterized* by the fact that, for the purpose of increasing the reliability of the repair of the casing string, the expanding cone is executed with a top angle of 25 - 60 degrees and a base diameter smaller than the inner diameter of the connecting pipe in operating position for no more than the rate determined in accordance with the following formula:

[see original for formula]

where Δ d is the increase in the inner diameter of the connecting pipe during operation above the base diameter of the cone, m;

d is the base diameter of the cone, m; and

 α is the angle at the top of the cone, radian.

[see original for figure]

Figure 2

Prepared by: I. Levkoeva

Editor: M. Tovtin Copy Editor: M. Morgental Proofreader: M. Demchik

Order: 322 Copies: 351 By subscription

VNIIPI of the USSR State Committee on Inventions and Discoveries 113035, Moscow, ZH-35, Raushskaia izb., d. 4/5 Patent Production and Publishing Works, City of Uzhgorod, 101 Gagarin Street RU2016345 C1

AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following patents from Russian to English:

RU2039214 C1 RU2056201 C1 ATLANTA BOSTON BRÜSSELS CHICAGO DALLAS DETROIT FRANKFURT HOUSTON LONDON SU1041671 A LOS ANGELES SU1051222 A SU1086118 A MINNEAPOLIS SU1158400 A NEW YORK SU1212575 A PARIS PHILADELPHIA SAN DIEGO SAN FRANCISCO SEATTLE SU1432190 A1 WASHINGTON, DC

RU2064357 C1 RU2068940 C1 RU2068943 C1 RU2079633 C1 RU2083798 C1 RU2091655 C1 RU2095179 C1 RU2105128 C1 RU2108445 C1 RU21444128 C1 SU1250637 A1 SU1295799 A1 SU1411434 A1 SU1430498 A1 SU 1601330 A1 SU 001627663 A SU 1659621 A1 SU 1663179 A2 SU 1663180 A1. SU 1677225 A1 SU 1677248 A1 SU 1686123 A1 SU 001710694 A SU 001745873 A1 SU 001810482 A1 SU 001818459 A1 350833

SU 607950 SU 612004 620582 641070 853089 832049 WO 95/03476

Page 2 TransPerfect Translations Affidavit Of Accuracy Russian to English Patent Translations

Kim Stewart

TransPerfect Translations, Inc.

3600 One Houston Center

1221 McKinney

Houston, TX 77010

Sworn to before me this 23rd day of January 2002.

Signature, Notary Public

OFFICIAL SEAL
MARIA A. SERNA
NOTARY PUBLIC
in and for the State of Texas
My commission expires 03-22-2003

Stamp, Notary Public

Harris County

Houston, TX