

Algorithms 演算法

Graphs (1) — BFS, DFS —

Professor Chien-Mo James Li 李建模 Graduate Institute of Electronics Engineering National Taiwan University

Algorithms NTUEE 1

Outline

- Elementary Graph Algorithms, CH22
 - Breath First Search
 - application 1: shortest path
 - * application 2: Maze router
 - Depth-first Search
 - * application 1: topological sort
 - * application 2: Strongly connected components
- Minimum Spanning Trees, CH23
- Single Source Shortest Paths, CH24
- All-pairs Shortest Paths, CH25
- Maximum Flow, CH26

Graph

- Graph: A mathematical object representing a set of "points" and "interconnections" between them
- Graph has wide applications in computer science
 - Many binary relationship can be modeled as graphs

[YW Chang NTU]

Algorithms NTUEE 3

Graph (2)

- A graph G = (V, E) consists of
 - V is the vertex set
 - * |V| = number of vertices in the set
 - * e.g. $V = \{v_1, v_2, v_3, v_4, v_5, v_6\}, |V| = 6$
 - E is the edge set
 - * An edge (u, v) connects vertices u and v
 - directed or undirected
 - * |E| = number of edges in the set
 - * e.g. $e_1 = (v_1, v_2)$; $E = \{e_1, e_2, e_3, e_4, e_5\}, |E| = 5$
 - For simplicity, use V for |V| and E for |E|

Directed and Undirected Graphs

- Undirected Graph: E consist of unordered pairs of vertices
 - edge (u,v) is incident on vertices u and v
 - * **degree** of vertex u = number of edges incident on u
- Directed Graph: E consisted of ordered pairs of vertices
 - edge (u, v) leaves vertex u and enters vertex v
 - edge (u, v) is incident from u and is incident to v
 - * in-degree of vertex u = number of edges entering u
 - * out-degree of vertex u = number of edges leaving u
 - * degree of vertex u = in-degree + out-degree

Algorithms

NTUEE

55

Adjacency List

- Graph G consists of array G.Adj of |V| lists, one per vertex.
 - Each vertex u has an adjacent list: G.Adj[u]
 - * linked list of all vertices v such that $(u, v) \in E$
- directed graph has |E| edges

• undirected graph has 2|E| edges

5

Adjacent List (2)

- Storage $\Theta(|V|+|E|) = \Theta(V+E)$
 - good for sparse graph, |E| << |V|²
- Time to determine if $(u, v) \in E$
 - O(degree(u))

Algorithms

NTUEE

Adjacency Matrix

- Assume vertices are numbered 1, 2, ... |V|
- Adjacency matrix A: |V| x |V|

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{otherwise}. \end{cases}$$

directed graph

undirected graph is symmetric, $A = A^T$

Adjacency Matrix

- Storage required= $\Theta(V^2)$
 - good for dense graph, $|E| \cong |V|^2$
- Time to determine if $(u, v) \in E$
 - O(1)
- Faster but larger than adjacency list

Algorithms

9

Comparison

Comparison	winner
Faster to find an edge?	Matrix
Faster to find vertex out-degree*	List
Faster to traverse the graph?	List O(V+E) vs. matrix O(V2)
Storage for sparse graph?	List O(V+E) vs. matrix O(V2)
Storage for dense graph?	Matrix
Edge insertion or deletion?	Matrix O(1)
Better for most applications?	List

^{*}Q: how about in-degree?

Acknowledgement Prof. YW Chang

- No one best way to implement a graph
 - Depends on the programming language and algorithm
 - But usually adjacency list is better for large problems

Outline

- Elementary Graph Algorithms, CH22
 - Breadth First Search
 - application 1: shortest path
 - * application 2: Maze router
 - Depth-first Search
 - application 1: topological sort
 - * application 2: Strongly connected components
- Minimum Spanning Trees, CH23
- Single Source Shortest Paths, CH24
- All-pairs Shortest Paths, CH25
- Maximum Flow, CH26

Algorithms NTUEE 11

Breadth First Search (BFS)

- BFS is one simplest algorithm to search a graph
- Given a graph and a source vertex s,
 - explores edges to discover every vertex that is reachable from s
- Input: G = (V, E), directed or undirected, and source vertex $s \in V$
- Output: v.d = distance (smallest # of edges) from s to v for all $v \in V$
 - $v.\pi = (u, v) = last edge on shortest path <math>s \sim v$
 - * u is v's predecessor
 - * set of edges $\{(v.\pi, v): v \neq s\}$ forms a tree
- Idea: Send a wave out from s
 - First hits all vertices 1 edge from s
 - From there, hits all vertices 2 edges from s, etc
 - Use queue Q to maintain wavefront
 - * $v \in Q$ if and only if wave has hit but has not come out yet

BFS

- u.color
 - white (undiscovered)
 - gray (discovered: out edges are being discovered)
 - black (explored: out edges are all discovered)
- u.d
 - distance from source to u
- u.π: predecessor of u
- G.adj[u] means
 - set of vertices adjacent to u
- Store gray vertices in queue Q
 - First in first out

```
BFS(G, s)
   for each vertex u \in G.V - \{s\}
2
        u.color = WHITE
3
        u.d = \infty
4
        u.\pi = NIL
5
   s.color = GRAY
6
   s.d = 0
   s. \pi = NIL
8
   O = \emptyset
   ENQUEUE(Q, s)
10 while Q \neq \emptyset
11
        u = \text{DEQUEUE}(Q)
        for each v \in G.Adj[u]
12
13
             if v.color == WHITE
                v.color = GRAY
14
15
                v.d = u.d + 1
16
                v.\pi = u
17
                ENQUEUE(Q, v)
18
        u.color = BLACK
```

Complexity Analysis

- Use queue for gray vertices
 - Each vertex is enqueued and dequeued once at most
 - * O(V) time
 - Each edge is considered once at most
 - * O(E) time (adjacency list)
- Time complexity: O(V+E)
- Aggregate analysis
 - CH 17

```
BFS(G, s)
   for each vertex u \in G.V - \{s\}
2
        u.color = WHITE
3
        u.d = \infty
4
        u.\pi = NIL
5
   s.color = GRAY
6
   s.d = 0
7
   s. \pi = NIL
8
   O = \emptyset
  ENQUEUE(O, s)
9
10 while Q \neq \emptyset
        u = DEQUEUE(Q)
11
        for each v \in G.Adi[u]
12
13
            if v.color == WHITE
14
               v.color = GRAY
15
               v.d = u.d + 1
16
               v.\pi = u
17
               ENQUEUE(Q, v)
18
        u.color = BLACK
```

Algorithms NTUEE 15

Exercise

- Loop invariant:
 - at the test in line 10, queue Q consists of the set of gray vertices

Outline

- Elementary Graph Algorithms, CH22
 - Breadth First Search
 - * application 1: shortest path
 - * application 2: Maze router
 - Depth-first Search
 - * application 1: topological sort
 - * application 2: Strongly connected components
- Minimum Spanning Trees, CH23
- Single Source Shortest Paths, CH24
- All-pairs Shortest Paths, CH25
- Maximum Flow, CH26

Algorithms NTUEE 17

Shortest Path

- BFS finds shortest distance
 - from a given source vertex
 - to each reachable vertex
- Shortest-path distance δ(s,v):
 - minimum number of edges in any path from vertex s to vertex v
- Shortest path :
 - a path of length $\delta(s,v)$ from s to v

Breath-first Tree

- Predecessor subgraph of G is $G_{\pi} = (V_{\pi}, E_{\pi})$
 - $V_{\pi} = \{ v \in V \mid v.\pi \neq NIL \} \cup \{ s \}$
 - * {s, w, r, t, x, v, u, y}
 - $E_{\pi} = \{(v.\pi, v) \in E \mid v \in V_{\pi} \{s\}\}$
 - * $\{(s,w), (s,r), (w,t), (w,x), (r,v), (t,u), (x,y)\}$
- (Lemma 22.6) When applied to a directed or undirected graph G=(V,E), BFS constructs π so that the predecessor subgraph G_{π} is a breath-first tree
- Example : Fig. 22.3 (i)
 - root is s
- Exercise:
 - Draw BFT

Edge in E_{π} are highlighted

Algorithms NTUEE 19

PRINT-PATH

Prints out the vertices on a shortest path from s to v

```
PRINT-PATH(G, s, v)

1 if v == s

2 print s

3 elseif v.\pi == NIL

4 print "no path from" s "to" v "exists"

5 else PRINT-PATH(G, s, v.\pi)

6 print v
```

• Exercise: print pat from s to y

Lee's Maze Router

- Find a path from S to T by wave propagation
- Discuss mainly on single-layer routing
- Strength: Guarantee to find a minimum-length connection between 2 terminals if it exists
- Weakness: Time & space complexity for an $M \times N$ grid: O(MN)
 - huge!
- Note: there is more than one solution

Algorithms

Filing

2121

Outline

- Elementary Graph Algorithms, CH22
 - Breath First Search
 - application 1: shortest path
 - application 2: Maze router
 - Depth-first Search
 - * application 1: topological sort
 - * application 2: Strongly connected components
- Minimum Spanning Trees, CH23
- Single Source Shortest Paths, CH24
- All-pairs Shortest Paths, CH25
- Maximum Flow, CH26

Depth-first Search (DFS)

- DFS explore edges out of the more recently discovered vertex v
 - that still have unexplored edges leaving it
- Once all of v's edges have been explored
 - backtracks to explore edges leaving the vertex from which v was discovered
- Idea: search deeper in the graph whenever possible

Algorithms NTUEE 23

DFS

- u.color
 - white (undiscovered)
 - gray (discovered: out edges are being discovered)
 - black (explored: out edges are all discovered)
- u.d
 - discovery time (gray)
- u.f
 - finishing time (black)
- u.π
 - predecessor of u

```
DFS(G)

1 for each vertex u \in G.V

2 u.color = WHITE

3 u.\pi = NIL

4 time = 0

5 for each vertex u \in G.V

6 if u.color ==WHITE

7 DFS-VISIT(G,v)
```


Complexity Analysis

- Time complexity
 - DFS line 1-3 Θ(V)
 - DFS line 4-7 Θ(V)
 - ◆ DFS-VISIT Θ(E)
 - total: Θ(V+E)

DFS(G)

- **for** each vertex $u \in G.V$
- u.color = WHITE
- 3 $u.\pi = NIL$
- 4 time = 0
- 5 **for** each vertex $u \in G.V$
- 6 if u.color == WHITE
- 7 DFS-VISIT(G,v)

```
DFS-VISIT(G, u)

time = time + 1
u.d = time
u.color = GRAY

for each v \in G.Adj[u]
if \ v.color == WHITE
DFS-VISIT(v)

u.color = BLACK
time = time + 1
u.f = time

// finish u
```

FFT

• Why BFS is O(V+E) but DFS is $\Theta(V+E)$

```
DFS(G)

1 for each vertex u \in G.V

2 u.color = WHITE

3 u.\pi = NIL

4 time = 0

5 for each vertex u \in G.V

6 if u.color == WHITE

7 DFS-VISIT(G,v)
```

```
BFS(G, s)
         for each vertex u \in G.V - \{s\}
              u.color = WHITE
      3
              u.d = \infty
      4
              u.\pi = NIL
      5 s.color = GRAY
      6 s.d = 0
      7 s. \pi = NIL
      8 Q = \emptyset
      9 ENQUEUE(Q, s)
      10 while Q \neq \emptyset
              u = DEQUEUE(Q)
      11
              for each v \in G.Adj[u]
      12
      13
                   if v.color == WHITE
      14
                     v.color = GRAY
      15
                     v.d = u.d + 1
      16
                     v.\pi = u
                     ENQUEUE(Q, v)
      17
NTUEE 18
              u.color = BLACK
```

Algorithms

Depth-first Forest

- Predecessor subgraph of G is $G_{\pi} = (V, E_{\pi})$
 - $E_{\pi} = \{(v.\pi, v) \in E \mid v \in V, v.\pi \neq NIL\}$
- G_π forms a depth-first forest
 - edges in E_{π} are called *tree edges*
- Example: Fig 22.4 (p)
 - depth-first forest $\{u \rightarrow v \rightarrow y \rightarrow x\} \{w \rightarrow z\}$
 - tree edges are shaded

(p) Edge in E_{π} are highlighted

Parenthesis Theorem (Theorem 22.7)

- For any two vertices u, v, exactly one of the following holds
- 1. u.d < u.f < v.d < v.f or v.d < v.f < u.d < u.f
 - intervals entirely disjoint; u or v is not descendant of each other
- 2. u.d < v.d < v.f < u.f and v is a descendant of u
- 3. v.d < u.d < u.f < v.f and u is a descendant of v
- u.d < v.d < u.f < v.f cannot happen
- Like parentheses:
 - OK: (), [], ([]), [()]
 - No: ([)], [(])

Algorithms

NTUEE

White-path Theorem (Theorem 22.9)

- In a DFS forest of a graph G = (V, E), vertex v is a descendant of vertex u if and only if at the time u.d that the search discovers u, there is a path u ~> v consisting entirely of white vertices
 - Except for u, which was just colored gray
- Fig 22.4

Classification of Edges

- 4 types of edges
 - Tree edge: in the depth-first forest. Found by exploring (u, v)
 - Back edge: (u, v), where u is a descendant of v
 - Forward edge: (u, v), where v is a descendant of u
 - * but not a tree edge
 - Cross edge: any other edge
 - * between vertices in same or in different depth-first trees
- Example Fig. 22.5
 - F and T are downward. B is upward

Classification of Edges (2)

- When we first explore an edge (u, v), the color of v tell us about edge
 - 1. WHITE indicates a tree edge, e.g. (z, y)
 - 2. GRAY indicates a back edge, e.g. (x, z)
 - 3. BLACK indicates
 - * forward edge (s, w)
 - * cross edge (v, w)

Theorem 22.10

- In a depth-first search of an undirected graph G, every edge of G is either a tree edge or a back edge
 - no cross edge, no forward edge

Algorithms

Summary of Edges

- directed graph
 - tree, forward, back, cross
- directed acyclic graph (dag)
 - tree, forward, cross
- undirected graph
 - tree, back
- Lemma 22.11

Outline

- Elementary Graph Algorithms, CH22
 - Breath First Search
 - * application 1: shortest path
 - * application 2: Maze router
 - Depth-first Search
 - * application 1: topological sort
 - * application 2: Strongly connected components
- Minimum Spanning Trees, CH23
- Single Source Shortest Paths, CH24
- All-pairs Shortest Paths, CH25
- Maximum Flow, CH26

Algorithms NTUEE 35

Topological Sort

- dag = directed acyclic graph
- Topological sort of a dag G is a linear ordering of all vertices s.t.
 - if G contains edge (u, v) then u appears before v in the ordering
- Example: Fig 22.7 getting dressed in the morning
 - All edges goes from left to right

FFT

- Q: can we randomly choose the first vertex ?
- Q: if graph contain cycle, is topological sort possible?

Algorithms NTUEE 37

Topological Sort (2)

• Time complexity = ?

TOPOLOGICAL-SORT(*G*)

- 1 call DFS(G) to compute finishing times v.f for each vertex v
- 2 as each vertex is **finished**, insert it onto the **front** of a linked list
- 3 **return** the linked list of vertices

Lemma 22.11

- A directed graph G is acyclic if and only if a depth-first search of G yield NO back edges
 - ◆ Proof →
 - suppose DFS produce a back edge (u,v)
 - * then v is ancestor of u. Thus G contains a path $v \sim u$

В

- * $v \sim u$ and the back edge (u, v) complete a cycle
 - this is incorrect
- ◆ Proof ←
 - suppose G contains a cycle c
 - * let v be first vertex discovered in c
 - * let (u,v) be the preceding edge in c
 - * at time v.d, the vertices of c form a white path $v \sim u$
 - * by white-path theorem, *u* becomes a descendant of *v*
 - * so (u, v) is a back edge
 - this is incorrect

Algorithms NTUEE 39

TS Algorithm Is Correct (Theorem 22.12)

- TOPOLOGICAL-SORT produces a topological sort of the dag
 - Proof: Just need to show if $(u, v) \in E$, then v.f < u.f
 - When we explore (u, v), what are the colors of u and v?
 - *u* is gray
 - Is v gray, too?
 - * No, because v would be ancestor of u, (u,v) is a back edge. This is a contradiction of previous lemma (dag has no back edges).
 - Is v white?
 - Then v becomes descendant of u
 - * By parenthesis theorem, u.d < v.d < v.f < u.f
 - Is v black?
 - * Then v is already finished
 - * Since we're exploring (u, v), we have not yet finished u
 - * Therefore, *v.f* < *u.f*

Outline

- Elementary Graph Algorithms, CH22
 - Breath First Search
 - application 1: shortest path
 - * application 2: Maze router
 - Depth-first Search
 - * application 1: topological sort
 - application 2: Strongly connected components
- Minimum Spanning Trees, CH23
- Single Source Shortest Paths, CH24
- All-pairs Shortest Paths, CH25
- Maximum Flow, CH26

Algorithms NTUEE 41

Strongly Connected Components (SCC)

- Given directed graph G =(V,E)
 - SCC of G is a maximal set of vertices C⊆V such that
 - For all $u, v \in C$, both $u \sim v$ and $v \sim u$
 - * i.e. u and v are reachable from each other
- Example : Fig 22.9
 - each shaded region is an SCC of G

Transpose Graph

- G^T = transpose of G
 - $G^T = (V, E^T), E^{T=} \{(u, v): (v, u) \in E\}$
 - G^T is G with all edges reversed
 - Can create G^T in $\Theta(V + E)$ time if using adjacency lists
- Obviously, G and G^T have the same SCC's
 - u and v are reachable from each other in G if and only if reachable from each other in G^T
- Example:
 - Fig 22.9

Algorithms

Component Graph

- $G^{SCC} = (V^{SCC}, E^{SCC})$
 - VSCC has one vertex for each SCC in G
 - ESCC has an edge if there's an edge between corresponding SCC
- (Lemma 22.13) G^{SCC} is a dag
 - Proof: let C and C' be distinct SCC
 - let $u, v \in C$ let $u', v' \in C'$
 - If there is a path $u \sim u'$, then there is no path $v' \sim v$
 - * why? If there is a path $v \sim v'$ in G
 - * then there are paths $u \sim u' \sim v' \sim v$
 - * u and v' are reachable from each other \rightarrow contradition!

Algorithms

NTUEE

SCC Algorithm

STRONGLY-CONNECTED-COMPONENTS(G)

- 1 call DFS(G) to compute finishing times u.f for each vertex u
- 2 compute G^T
- 3 call DFS(G^T), but in the main loop of DFS, consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

Lemma 22.14

- For a set of vertices U ⊆ V
 - $d(U) = \min_{u \in U} \{u.d\}$ (earliest discovery time of all vertices in U)
 - $f(U)=\max_{u\in U} \{u.f\}$ (latest finishing time of all vertices in U)
- (Lemma 22.14) Let C and C' be distinct SCC in G =(V,E). Suppose there is an edge (u,v) ∈ E such that u∈C and v∈C'. Then f(C) > f(C')
 - If d(C) < d(C'), let x be the first vertex discovered in C
 - * At time x.d, all vertices in C and C' are white. Thus, there exist paths of white vertices from x to all vertices in C and C'
 - * (white-path theorem) all vertices in C and C' are descendants of x
 - * (parenthesis theorem) x.f = f(C) > f(C')
 - If d(C) > d(C'), let y be the first vertex discovered in C'
 - * At time y.d, all vertices in C' are white and there is a white path from y to each vertex in C'. Again, y.f = f(C')
 - * At time y.d, all vertices in C are white.
 - * (Lemma 22.13) since there is an edge (u,v), we cannot have a path from C' to C. So no vertex in C is reachable from y
 - * At time y.f. all vertices in C are still white. which means f(C) > f(C')

46

Corollary 22.15

- Let C and C' be distinct SCC in G = (V, E). Suppose there is an edge $(u, v) \in E^T$ such that $u \in C$ and $v \in C'$. Then f(C) < f(C')
 - $(u, v) \in E^T$
 - $(v, u) \in E$
 - Since SCC's of G and G^T are the same, f(C) < f(C')
- Let C and C' be distinct SCC in G, and f(C) > f(C'). Then there cannot be an edge from C to C' in G^T
 - Proof: It's the contrapositive of the previous corollary.

Algorithms NTUEE 47

SCC Algorithm Is Correct (Theorem 22.16)

- Second DFS on G^T start with SCC in C such that f(C) is maximum
- Starts from some $x \in C$, and visits all vertices in C
 - f(C) > f(C') for all $C' \neq C$, so no edges from C to C' in G^T (corollary)
 - 2nd DFS will visit only vertices in C
- Next root chosen is in C'
 - such that f(C') is maximum over all SCC other than C
 - 2nd DFS visits all vertices in C',
 - * The only edges out of C'go to C
- Repeat ... Each time the second DFS reaches only
 - vertices in its SCC tree edges
 - vertices in SCC already visited no tree edges

Algorithms 48

Another View

- 2^{nd} DFS visits vertices of $(G^T)^{SCC}$ in reverse topologically order
 - because $((G^T)^{SCC})^T = G^{SCC}$ (exercise 22.5-4)
 - 2nd DFS visit the vertices of GSCC in topological order

49

Reading

• CH 22