МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ

ПРИКАЗ от 30 июня 2009 г. N 382

ОБ УТВЕРЖДЕНИИ МЕТОДИКИ ОПРЕДЕЛЕНИЯ РАСЧЕТНЫХ ВЕЛИЧИН ПОЖАРНОГО РИСКА В ЗДАНИЯХ, СООРУЖЕНИЯХ И СТРОЕНИЯХ РАЗЛИЧНЫХ КЛАССОВ ФУНКЦИОНАЛЬНОЙ ПОЖАРНОЙ ОПАСНОСТИ

Список изменяющих документов (в ред. Приказов МЧС России от 12.12.2011 N 749, от 02.12.2015 N 632)

В соответствии с Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании" <*> и Постановлением Правительства Российской Федерации от 31 марта 2009 г. N 272 "О порядке проведения расчетов по оценке пожарного риска" <**> приказываю:

<*> Собрание законодательства Российской Федерации, 2002, N 52 (часть I), ст. 5140; 2005, N 19, ст. 1752; 2007, N 19, ст. 2293; 2007, N 49, ст. 6070; 2008, N 30 (часть II), ст. 3616.

<**> Собрание законодательства Российской Федерации, 2009, N 14, ст. 1656.

Утвердить прилагаемую методику определения расчетных величин пожарного риска в зданиях, сооружениях и пожарных отсеках различных классов функциональной пожарной опасности.

(в ред. Приказа МЧС России от 02.12.2015 N 632)

Министр С.К.ШОЙГУ

Приложение к Приказу МЧС России от 30.06.2009 N 382

МЕТОДИКА ОПРЕДЕЛЕНИЯ РАСЧЕТНЫХ ВЕЛИЧИН ПОЖАРНОГО РИСКА В ЗДАНИЯХ, СООРУЖЕНИЯХ И ПОЖАРНЫХ ОТСЕКАХ РАЗЛИЧНЫХ КЛАССОВ ФУНКЦИОНАЛЬНОЙ ПОЖАРНОЙ ОПАСНОСТИ

Список изменяющих документов (в ред. Приказов МЧС России от 12.12.2011 N 749, от 02.12.2015 N 632)

І. Общие положения

- 1. Настоящая методика определения расчетных величин пожарного риска в зданиях, сооружениях и пожарных отсеках различных классов функциональной пожарной опасности (далее Методика) устанавливает порядок определения расчетных величин пожарного риска в зданиях, сооружениях и пожарных отсеках (далее здание) и распространяется на здания классов функциональной пожарной опасности:
- 1.1. Ф1 здания, предназначенные для постоянного проживания и временного пребывания людей, в том числе:
- а) Ф1.1 здания дошкольных образовательных организаций, специализированных домов престарелых и инвалидов (неквартирные), больницы, спальные корпуса образовательных организаций с наличием интерната и детских организаций;
- б) Ф1.2 гостиницы, общежития, спальные корпуса санаториев и домов отдыха общего типа, кемпингов, мотелей и пансионатов;
 - в) Ф1.3 многоквартирные жилые дома;
 - г) Ф1.4 одноквартирные жилые дома, в том числе блокированные;
 - 1.2. Ф2 здания зрелищных и культурно-просветительных учреждений, в том числе:
- а) Ф2.1 театры, кинотеатры, концертные залы, клубы, цирки, спортивные сооружения с трибунами, библиотеки и другие учреждения с расчетным числом посадочных мест для посетителей в закрытых помещениях;
- б) Ф2.2 музеи, выставки, танцевальные залы и другие подобные учреждения в закрытых помещениях;
- в) Ф2.3 театры, кинотеатры, концертные залы, клубы, цирки, спортивные сооружения с трибунами, библиотеки и другие учреждения с расчетным числом посадочных мест для посетителей на открытом воздухе;
- г) Ф2.4 музеи, выставки, танцевальные залы и другие подобные учреждения на открытом воздухе;
 - 1.3. ФЗ здания организаций по обслуживанию населения, в том числе:
 - а) Ф3. 1 здания организаций торговли;
 - б) Ф3.2 здания организаций общественного питания;
 - в) Ф3.3 вокзалы;
 - г) Ф3.4 поликлиники и амбулатории;
- д) Ф3.5 помещения для посетителей организаций бытового и коммунального обслуживания с нерасчетным числом посадочных мест для посетителей;
- е) Ф3.6 физкультурно-оздоровительные комплексы и спортивно-тренировочные учреждения с помещениями без трибун для зрителей, бытовые помещения, бани;
- 1.4. Ф4 здания образовательных организаций, научных и проектных организаций, органов управления учреждений, в том числе:
- а) Ф4.1 здания общеобразовательных организаций, организаций дополнительного образования детей, профессиональных образовательных организаций;
- б) Ф4.2 здания образовательных организаций высшего образования, организаций дополнительного профессионального образования;
- в) Ф4.3 здания органов управления учреждений, проектно-конструкторских организаций, информационных и редакционно-издательских организаций, научных организаций, банков, контор, офисов;
 - г) Ф4.4 здания пожарных депо;
- 1.5. Ф5 пожарные отсеки производственного или складского назначения с категорией помещений по взрывопожарной и пожарной опасности В1 В4, Г, Д, входящие в состав зданий с функциональной пожарной опасностью Ф1, Ф2, Ф3, Ф4, в том числе Ф5.2 стоянки для автомобилей без технического обслуживания и ремонта. (п. 1 в ред. Приказа МЧС России от 02.12.2015 N 632)
- 2. Расчеты по оценке пожарного риска проводятся путем сопоставления расчетных величин пожарного риска с нормативным значением пожарного риска, установленного Федеральным

законом от 22 июля 2008 г. N 123-ФЗ "Технический регламент о требованиях пожарной безопасности" <*> (далее - Технический регламент).

<*> Собрание законодательства Российской Федерации, 2008, N 30 (часть I), ст. 3579.

- 3. Определение расчетных величин пожарного риска осуществляется на основании:
- а) анализа пожарной опасности зданий;
- б) определения частоты реализации пожароопасных ситуаций;
- в) построения полей опасных факторов пожара для различных сценариев его развития;
- г) оценки последствий воздействия опасных факторов пожара на людей для различных сценариев его развития;
 - д) наличия систем обеспечения пожарной безопасности зданий.
- 4. Определение расчетных величин пожарного риска заключается в расчете индивидуального пожарного риска для людей, находящихся в здании. Численным выражением индивидуального пожарного риска является частота воздействия опасных факторов пожара (далее ОФП) на человека, находящегося в здании. Перечень ОФП установлен статьей 9 Технического регламента. Результаты и выводы, полученные при определении пожарного риска, используются для обоснования параметров и характеристик зданий, сооружений и строений, которые учитываются в настоящей Методике.

(п. 4 в ред. Приказа МЧС России от 12.12.2011 N 749)

- 5. Частота воздействия ОФП определяется для пожароопасной ситуации, которая характеризуется наибольшей опасностью для жизни и здоровья людей, находящихся в здании.
- 6. Для целей настоящей Методики используются основные понятия, установленные статьей 2 Технического регламента.

II. Основные расчетные величины индивидуального пожарного риска

(в ред. Приказа МЧС России от 02.12.2015 N 632)

7. Индивидуальный пожарный риск отвечает требуемому, если:

$$Q_{B} \leq Q_{B}^{H}$$
, (1)

где $Q_{\rm B}^{\rm H}$ - нормативное значение индивидуального пожарного риска, $Q_{\rm B}^{\rm H}=10^{\text{-6}}\,$ год $^{\text{-1}}$;

 \mathbf{Q}_{B} - расчетная величина индивидуального пожарного риска.

Расчетная величина индивидуального пожарного риска в здании, сооружении и пожарном отсеке определяется как максимальное значение пожарного риска из рассмотренных сценариев пожара:

$$Q_B = \max \{Q_{B,1},..., Q_{B,i},..., Q_{B,N}\}, (2)$$

где $Q_{B,i}$ - расчетная величина пожарного риска для i-го сценария пожара,

N - количество рассмотренных сценариев пожара.

Сценарий пожара представляет собой вариант развития пожара с учетом принятого места возникновения и характера его развития. Сценарий пожара определяется на основе данных об объемно-планировочных решениях, о размещении горючей нагрузки и людей на объекте. При расчете рассматриваются сценарии пожара, при которых реализуются наихудшие условия для обеспечения безопасности людей. В качестве сценариев с наихудшими условиями пожара следует рассматривать сценарии, характеризуемые наиболее затрудненными условиями эвакуации людей и (или) наиболее высокой динамикой нарастания ОФП, а именно пожары:

в помещениях, рассчитанных на единовременное присутствие 50 и более человек;

в системах помещений, в которых из-за распространения ОФП возможно быстрое блокирование путей эвакуации (коридоров, эвакуационных выходов и т.д.). При этом очаг пожара выбирается в помещении малого объема вблизи от одного из эвакуационных выходов, либо в помещении с большим количеством горючей нагрузки, характеризующейся высокой скоростью распространения пламени;

в помещениях и системах помещений атриумного типа;

в системах помещений, в которых из-за недостаточной пропускной способности путей эвакуации возможно возникновение продолжительных скоплений людских потоков.

В случаях, когда перечисленные типы сценариев не отражают всех особенностей объекта, возможно рассмотрение иных сценариев пожара.

В помещении, имеющем два и более эвакуационных выхода, очаг пожара следует размещать вблизи выхода, имеющего наибольшую пропускную способность. При этом данный выход считается блокированным с первых секунд пожара, и при определении расчетного времени эвакуации не учитывается.

В помещении с одним эвакуационным выходом время блокирования выхода определяется расчетом.

Сценарии пожара, не реализуемые при нормальном режиме эксплуатации объекта (теракты, поджоги, хранение горючей нагрузки, не предусмотренной назначением объекта и т.д.), не рассматриваются.

8. Расчетная величина индивидуального пожарного риска для і-го сценария пожара $Q_{B,i}$ в зданиях, указанных в пункте 1 (за исключением классов функциональной пожарной опасности $\Phi 1.1$, $\Phi 1.3$, $\Phi 1.4$) рассчитывается по формуле:

$$Q_{B,i} = Q_{n,i} \cdot (1 - K_{an,i}) \cdot P_{np,i} \cdot (1 - P_{a,i}) \cdot (1 - K_{n.a,i})$$
 (3)

где $Q_{n,i}$ - частота возникновения пожара в здании в течение года, определяемая на основании статистических данных, приведенных в приложении N 1 к настоящей Методике. При отсутствии статистической информации допускается принимать $Q_{n,i} = 4 \cdot 10^{-2}$ для каждого здания;

 $K_{an,i}$ - коэффициент, учитывающий соответствие установок автоматического пожаротушения (далее - АУП) требованиям нормативных документов по пожарной безопасности. Значение параметра $K_{an,i}$ принимается равным $K_{an,i}$ = 0,9, если выполняется хотя бы одно из следующих условий:

здание оборудовано системой АУП, соответствующей требованиям нормативных документов по пожарной безопасности;

оборудование здания системой АУП не требуется в соответствии с требованиями нормативных документов по пожарной безопасности.

В остальных случаях Кап, принимается равной нулю;

 $P_{np,i}$ - вероятность присутствия людей в здании, определяемая из соотношения $P_{np,i} = t_{\phi y н \kappa u,i} / 24$, где $t_{\phi y н \kappa u,i}$ - время нахождения людей в здании в часах;

Р_{э,і} - вероятность эвакуации людей;

К_{п.з,і} - коэффициент, учитывающий соответствие системы противопожарной защиты, направленной на обеспечение безопасной эвакуации людей при пожаре, требованиям нормативных документов по пожарной безопасности.

9. Вероятность эвакуации $P_{_{3,i}}$ из зданий, указанных в пункте 1 (за исключением зданий классов функциональной пожарной опасности Φ 1.1, Φ 1.3, Φ 1.4), рассчитывают по формуле:

$${}_{\text{"}}P_{_{9,i}} = \begin{cases} 0{,}999 \cdot \frac{0{,}8 \cdot t_{_{6\pi}} - t_{_{p}}}{t_{_{H9}}}, \text{ если } t_{_{p}} < 0{,}8 \cdot t_{_{6\pi}} < t_{_{p}} + t_{_{H9}} \text{ и } t_{_{c\kappa}} \leq 6 \text{ мин} \\ 0{,}999, \text{ если } t_{_{p}} + t_{_{H9}} \leq 0{,}8 \cdot t_{_{6\pi}} \text{ и } t_{_{c\kappa}} \leq 6 \text{ мин} \\ 0{,}000, \text{ если } t_{_{p}} \geq 0{,}8 \cdot t_{_{6\pi}} \text{ или } t_{_{c\kappa}} > 6 \text{ мин} \end{cases}$$

где $\, {\rm t}_{_{\rm D}} \,$ - расчетное время эвакуации людей, мин;

- ${
 m t_{_{H9}}}$ время начала эвакуации (интервал времени от возникновения пожара до начала эвакуации людей), мин;
- ${
 m t_{\rm fin}}$ время от начала пожара до блокирования эвакуационных путей в результате распространения на них ОФП, имеющих предельно допустимые для людей значения (время блокирования путей эвакуации), мин;
- ${\rm t_{\rm ck}}$ время существования скоплений людей на участках пути (плотность людского потока на путях эвакуации превышает значение 0,5 м²/м²).
- 10. Расчетное время эвакуации людей $\, {
 m t}_{
 m p} \,$ из помещений и зданий определяется на основе моделирования движения людей до выхода наружу одним из следующих способов:
- по упрощенной аналитической модели движения людского потока, приведенной в приложении N 2 к настоящей Методике;
- по математической модели индивидуально-поточного движения людей из здания, приведенной в приложении N 3 к настоящей Методике;
- по имитационно-стохастической модели движения людских потоков, приведенной в приложении N 4 к настоящей Методике.

Выбор способа определения расчетного времени эвакуации производится с учетом специфических особенностей объемно-планировочных решений здания, а также особенностей контингента (его однородности) людей, находящихся в нем.

При определении расчетного времени эвакуации учитываются данные, приведенные в приложении N 5 к настоящей Методике, в частности принципы составления расчетной схемы эвакуации людей, параметры движения людей различных групп мобильности, а также значения площадей горизонтальных проекций различных контингентов людей.

- 11. Время начала эвакуации $t_{_{
 m H9}}$ определяется в соответствии с пунктом 1 приложения N 5 к настоящей Методике.
- 12. Время блокирования путей эвакуации $\mathbf{t}_{6\pi}$ вычисляется путем расчета времени достижения ОФП предельно допустимых значений на эвакуационных путях в различные моменты времени. Порядок проведения расчета и математические модели для определения времени блокирования путей эвакуации опасными факторами пожара приведен в приложении N 6 к настоящей Методике.
- 13. Коэффициент, учитывающий соответствие системы противопожарной защиты, направленной на обеспечение безопасной эвакуации людей при пожаре, требованиям нормативных документов по пожарной безопасности, К_{п.з,і} рассчитывается по формуле:

$$K_{\text{п.з.,i}} = 1 - (1 - K_{\text{обн,i}} \cdot K_{\text{СОУЭ,i}}) \cdot (1 - K_{\text{обн,i}} \cdot K_{\PiД3,i}), (5)$$

где К_{обн,і} - коэффициент, учитывающий соответствие системы пожарной сигнализации требованиям нормативных документов по пожарной безопасности;

К_{СОУЭ,і} - коэффициент, учитывающий соответствие системы оповещения людей о пожаре и управления эвакуацией людей, требованиям нормативных документов по пожарной безопасности;

 $K_{\Pi J 3,i}$ - коэффициент, учитывающий соответствие системы противодымной защиты требованиям нормативных документов по пожарной безопасности.

Порядок оценки параметров $K_{o6h,i}$, $K_{COУЭ,i}$ и $K_{\Pi ДЗ,i}$ приведен в разделе IV настоящей Методики.

14. Расчетная величина индивидуального пожарного риска $Q_{B,i}$ для i-го сценария пожара в зданиях класса функциональной пожарной опасности $\Phi 1.1$, $\Phi 1.3$, $\Phi 1.4$ рассчитывается по формуле:

$$Q_{B,i} = Q_{\Pi,i} [1 - (P_{9,i} + (1 - P_{9,i}) P_{C\Pi,i})], (6)$$

где $Q_{\Pi,i}$ - частота возникновения пожара в здании в течение года, определяется на основании статистических данных, приведенных в приложении N 1 к настоящей Методике;

Р_{э,і} - вероятность эвакуации людей;

Р_{СП.і} - вероятность спасения людей.

15. Вероятность эвакуации $P_{3,i}$ из зданий класса функциональной пожарной опасности Φ 1.1, Φ 1.3, Φ 1.4 рассчитывают по формуле:

$$\mathrm{P}_{\mathrm{s,i}} = rac{N_{\mathrm{\Sigma},i} - N_{_{\mathit{He} ext{9}}\mathit{G},i}}{N_{\mathrm{\Sigma},i}} {\cdot} 0{,}999$$
 , (7)

где $N_{\scriptscriptstyle{\Sigma,i}}$ - общее количество людей, эвакуирующихся в рассматриваемом сценарии;

 $N_{_{He96,i}}$ - количество не эвакуировавшихся людей. Определяется путем суммирования по всем участкам путей эвакуации людей, не успевших покинуть указанный участок до его блокирования опасными факторами пожара (для которых $t_p + t_{H9} > 0.8 \cdot t_{6n}$), и людей, попавших в скопление продолжительностью более 6 мин ($t_{ck} > 6$ мин);

 t_p - расчетное время эвакуации людей, мин (определяется в соответствии с пунктом 10);

t_{нэ} - время начала эвакуации (интервал времени от возникновения пожара до начала эвакуации людей), мин (определяется в соответствии с пунктом 11);

 $t_{\rm бл}$ - время от начала пожара до блокирования эвакуационных путей в результате распространения на них ОФП, имеющих предельно допустимые для людей значения (время блокирования путей эвакуации), мин (определяется в соответствии с пунктом 12);

 $t_{c\kappa}$ - время существования скоплений людей на участках пути (плотность людского потока на путях эвакуации превышает значение 0,5 м²/м²).

16. Вероятность спасения Р_{СП,і} определяется по формуле:

$$P_{cn,i} = 1 - (1 - K_{n,3,i})(1 - K_{\Phi \Pi C,i})(1 - K_{\Phi,i})(1 - K_{3B,i}), (8)$$

где $K_{\text{п.з,i}}$ - коэффициент, учитывающий соответствие системы противопожарной защиты, направленной на обеспечение безопасной эвакуации людей при пожаре, требованиям нормативных документов по пожарной безопасности, определяется по формуле (5);

 $K_{\Phi\Pi C,i}$ - коэффициент, учитывающий дислокацию подразделений пожарной охраны на территории поселений и городских округов, принимается равным $K_{\Phi\Pi C,i}=0,95$ в случае соответствия ее требованиям Технического регламента и нормативных документов по пожарной безопасности. При этом время $t_{6л,i}$ принимается в соответствии с расчетом по приложению 6 к настоящей Методике для данного сценария развития пожара. В остальных случаях $K_{\Phi\Pi C,i}$ принимается равной нулю.

 $K_{\varphi,i}$ - коэффициент, учитывающий класс функциональной пожарной опасности здания. Значение параметра $K_{\varphi,i}$ принимается равным $K_{\varphi,i} = 0,75$ в следующих случаях:

для зданий класса Ф1.1 в случае соблюдения требований нормативных документов по пожарной безопасности к оснащению первичными средствами пожаротушения;

для зданий класса Φ 1.3 в случае соблюдения требований нормативных документов по пожарной безопасности к устройству аварийных выходов;

для зданий класса Ф1.4 - во всех случаях;

В остальных случаях для зданий классов Φ 1.1. Φ 1.3 К_{ф.і} принимается равной нулю;

 $K_{\scriptscriptstyle 3B,i}$ - коэффициент, учитывающий соответствие путей эвакуации требованиям нормативных документов по пожарной безопасности.

Значение параметра $K_{_{^{3B},i}}$ принимается равным $K_{_{^{3B},i}}$ = 0,8 в случае соблюдения требований нормативных документов по пожарной безопасности к путям эвакуации.

В остальных случаях $K_{\scriptscriptstyle 3B,i}$ принимается равной нулю.

пожарного риска

Анализ пожарной опасности здания

14. Для проведения анализа пожарной опасности осуществляется сбор данных о здании, который включает:

объемно-планировочные решения;

теплофизические характеристики ограждающих конструкций и размещенного оборудования;

вид, количество и размещение горючих веществ и материалов;

количество и места вероятного размещения людей;

системы пожарной сигнализации и пожаротушения, противодымной защиты, оповещения людей о пожаре и управления эвакуацией людей.

15. На основании полученных данных производится анализ пожарной опасности здания, при этом учитывается:

возможная динамика развития пожара;

состав и характеристики системы противопожарной защиты;

возможные последствия воздействия пожара на людей и конструкции здания.

Определение частоты реализации пожароопасных ситуаций

16. Частота реализации пожароопасных ситуаций определяется частотой возникновения пожара в здании в течение года. Порядок определения частоты возникновения пожара в здании приведен в разделе II настоящей Методики.

Построение полей опасных факторов пожара для различных сценариев его развития

17. Для построения полей опасных факторов пожара проводится экспертный выбор сценария или сценариев пожара, при которых ожидаются наихудшие последствия для находящихся в здании людей.

Формулировка сценария развития пожара включает в себя следующие этапы:

выбор места нахождения первоначального очага пожара и закономерностей его развития;

задание расчетной области (выбор рассматриваемой при расчете системы помещений, определение учитываемых при расчете элементов внутренней структуры помещений, состояния проемов);

задание параметров окружающей среды и начальных значений параметров внутри помещений.

В соответствии с приложением N 6 к настоящей Методике формулируется математическая модель развития пожара и проводится моделирование его динамики развития.

На основании результатов расчетов осуществляется построение полей опасных факторов пожара и определяется значение времени блокирования путей эвакуации ОФП $\, {
m t}_{6\pi} \, .$

Оценка последствий воздействия опасных факторов пожара на людей для различных сценариев его развития

18. Оценка последствий воздействия опасных факторов пожара на людей заключается в определении вероятности эвакуации людей из здания при пожаре.

Вероятность эвакуации людей определяется по формуле (3) на основе сопоставления значений времени эвакуации людей и времени блокирования путей эвакуации опасными факторами пожара.

(в ред. Приказа МЧС России от 12.12.2011 N 749)

Для определения расчетного времени эвакуации людей $\, {
m t}_{_{
m D}} \,$ в соответствии с приложениями

- N N 2 5 к настоящей Методике определяется модель эвакуации людей из здания, проводится построение расчетной схемы эвакуации и осуществляется моделирование эвакуации людей.
- 19. В соответствии с разделом II настоящей Методики проводится определение расчетной величины индивидуального пожарного риска $Q_{\rm B}$ и сопоставление ее с нормативным значением индивидуального пожарного риска $Q_{\rm B}^{\rm H}$.

Учет наличия систем обеспечения пожарной безопасности здания

20. Наличие систем обеспечения пожарной безопасности здания учитывается в соответствии с формулой (4) и положениями раздела IV настоящей Методики.

Блок-схема, иллюстрирующая порядок проведения расчета индивидуального пожарного риска, представлена на рис. 1.

Рис. 1. Порядок проведения расчета индивидуального пожарного риска

IV. Порядок разработки дополнительных противопожарных мероприятий при определении расчетной величины индивидуального пожарного риска

21. В случае, если расчетная величина индивидуального пожарного риска превышает нормативное значение, в здании следует предусмотреть дополнительные противопожарные мероприятия, направленные на снижение величины пожарного риска.

К числу противопожарных мероприятий, направленных на снижение величины пожарного риска, относятся:

применение дополнительных объемно-планировочных решений и средств, обеспечивающих ограничение распространения пожара;

устройство дополнительных эвакуационных путей и выходов;

устройство систем оповещения людей о пожаре и управления эвакуацией людей повышенного типа;

организация поэтапной эвакуации людей из здания;

применение систем противодымной защиты;

устройство систем автоматического пожаротушения;

ограничение количества людей в здании до значений, обеспечивающих безопасность их эвакуации из здания.

Эффективность дополнительных противопожарных мероприятий должна подтверждаться повторным расчетом величины индивидуального пожарного риска.

(п. 21 в ред. Приказа МЧС России от 12.12.2011 N 749)

22. Эффективность каждого из перечисленных выше противопожарных мероприятий определяется степенью влияния на параметры $t_{\rm p}$, $t_{\rm бл}$, $t_{\rm нэ}$, а для системы пожарной сигнализации, противодымной защиты и системы оповещения людей при пожаре и управления эвакуацией людей также параметрами $K_{\rm обн}$, $K_{\rm COY9}$ и $K_{\rm IUI3}$.

Значение параметра $K_{\rm oбh,i}$ принимается равным $K_{\rm o6h,i}$ = 0,8, если выполняется хотя бы одно из следующих условий:

здание оборудовано системой пожарной сигнализации, соответствующей требованиям нормативных документов по пожарной безопасности;

оборудование здания системой пожарной сигнализации не требуется в соответствии с требованиями нормативных документов по пожарной безопасности.

В остальных случаях $\, K_{_{
m O H, i}} \,$ принимается равной нулю.

(п. 22 в ред. Приказа МЧС России от 12.12.2011 N 749)

23. Применение в качестве дополнительного противопожарного мероприятия объемнопланировочных решений и средств, обеспечивающих ограничение распространения пожара, достигается обеспечением нормируемых пределов огнестойкости и пониженной пожарной опасности облицовочных строительных материалов, используемых в ограждающих конструкциях помещения, в котором находится вероятный очаг пожара.

Степень влияния данного дополнительного противопожарного мероприятия на динамику распространения пожара и, соответственно, значение параметра $\mathbf{t}_{6\pi}$ определяется путем проведения повторного расчета $\mathbf{t}_{6\pi}$ после внесения соответствующих изменений в схему объемно-планировочных решений здания.

- 24. При применении в качестве дополнительного противопожарного мероприятия устройства дополнительных эвакуационных путей и выходов следует выполнить повторный расчет по оценке параметра \mathbf{t}_n с учетом откорректированных объемно-планировочных решений.
- 25. При применении в качестве дополнительного противопожарного мероприятия устройства системы оповещения людей о пожаре и управления эвакуацией людей повышенного типа следует выполнить повторный расчет по оценке параметра \mathbf{t}_{p} с учетом перераспределения потоков эвакуирующихся и изменения схемы эвакуации в зависимости от сценариев возникновения и развития пожара и, соответственно, алгоритма функционирования системы оповещения людей о пожаре и управлением эвакуации людей.

Значение параметра $K_{{\rm COY}3,i}$ принимается равным $K_{{\rm COY}3,i}$ = 0,8, если выполняется хотя бы одно из следующих условий:

(в ред. Приказа МЧС России от 12.12.2011 N 749)

здание оборудовано системой оповещения людей о пожаре и управления эвакуацией людей, соответствующей требованиям нормативных документов по пожарной безопасности; (в ред. Приказа МЧС России от 12.12.2011 N 749)

оборудование здания системой оповещения людей о пожаре и управления эвакуацией людей не требуется в соответствии с требованиями нормативных документов по пожарной безопасности.

(в ред. Приказа МЧС России от 12.12.2011 N 749)

В остальных случаях $K_{{\rm COY}9,i}$ принимается равной нулю. (в ред. Приказа МЧС России от 12.12.2011 N 749)

26. Влияние системы противодымной защиты на уровень обеспеченности безопасной эвакуации людей при пожаре оценивается посредством расчета значения $\mathbf{t}_{6\pi}$ с учетом технических характеристик применяемого вентиляционного оборудования противодымной защиты. Подбор параметров вентиляционного оборудования осуществляется в соответствии с нормативными документами по пожарной безопасности. При этом для выполнения расчетов следует применять зонную (зональную) или полевую модели.

Значение параметра $K_{\Pi Д 3,i}$ принимается равным $K_{\Pi Д 3,i}$ = 0,8, если выполняется хотя бы одно из следующих условий:

(в ред. Приказа МЧС России от 12.12.2011 N 749)

здание оборудовано системой противодымной защиты, соответствующей требованиям нормативных документов по пожарной безопасности; (в ред. Приказа МЧС России от 12.12.2011 N 749)

оборудование здания системой противодымной защиты не требуется в соответствии с требованиями нормативных документов по пожарной безопасности. (в ред. Приказа МЧС России от 12.12.2011 N 749)

В остальных случаях $K_{\Pi Д 3,i}$ принимается равной нулю. (в ред. Приказа МЧС России от 12.12.2011 N 749)

- 27. Ограничение количества людей в здании до значений, обеспечивающих безопасность их эвакуации из здания при пожаре, учитывается посредством повторного расчета значения параметра $\mathbf{t}_{\rm p}$ при существующих объемно-планировочных решениях и ограниченном значении количества эвакуирующихся при пожаре.
 - 28. Для получения исходных данных, необходимых для проведения расчетов,

предусмотренных настоящей Методикой, следует использовать справочные источники информации и проектную документацию здания.

СТАТИСТИЧЕСКИЕ ДАННЫЕ О ЧАСТОТЕ ВОЗНИКНОВЕНИЯ ПОЖАРА В ЗДАНИЯХ

Список изменяющих документов (в ред. Приказа МЧС России от 02.12.2015 N 632)

N п/п	Наименование здания	Частота возникновения пожара в течение года
1.	Общеобразовательные организации	1,16 · 10 ⁻²
2.	Организации начального профессионального образования (профессиональное техническое училище)	1,98 · 10 ⁻²
3.	Организации среднего профессионального образования (среднее специальное учебное заведение)	2,69 · 10 ⁻²
4.	Дошкольные образовательные организации	1,3 · 10 ⁻³
5.	Детские оздоровительные лагеря, летние детские дачи	1,26 · 10 ⁻³
6.	Санатории, дома отдыха, пансионаты	2,99 · 10 ⁻²
7.	Амбулатории, поликлиники, диспансеры, медпункты	8,88 · 10 ⁻³
8.	Здания розничной торговли: универмаги, промтоварные магазины; универсамы, продовольственные магазины; магазины смешанных товаров; аптеки, аптечные ларьки;	2,03 · 10 ⁻²

9.	Здания рыночной торговли: крытые, оптовые рынки (из зданий стационарной постройки), торговые павильоны, киоски, ларьки, палатки, контейнеры	1,13 · 10-2
10.	Здания организаций общественного питания	3,88 · 10 ⁻²
11.	Гостиницы, мотели	2,81 · 10 ⁻²
12.	Спортивные сооружения	1,83 · 10 ⁻³
13.	Здания зрелищных и культурно-просветительных учреждений	6,90 · 10 ⁻³
14.	Библиотеки	1,16 · 10 ⁻³
15.	Музеи	1,38 · 10 ⁻²
16.	Больницы	1,3 · 10-2
17.	Образовательные организации с наличием интерната	7,7 · 10 ⁻³
18.	Специализированные дома престарелых и инвалидов	7,7 · 10 ⁻³
19.	Дома жилые многоквартирные	2,6 · 10-2
20.	Дома жилые одноквартирные	1,9 · 10-3

УПРОЩЕННАЯ АНАЛИТИЧЕСКАЯ МОДЕЛЬ ДВИЖЕНИЯ ЛЮДСКОГО ПОТОКА (ОПРЕДЕЛЕНИЕ РАСЧЕТНОГО ВРЕМЕНИ ЭВАКУАЦИИ ЛЮДЕЙ ИЗ ПОМЕЩЕНИЙ И ЗДАНИЙ ПО РАСЧЕТУ ВРЕМЕНИ ДВИЖЕНИЯ ОДНОГО ИЛИ НЕСКОЛЬКИХ ЛЮДСКИХ ПОТОКОВ ЧЕРЕЗ ЭВАКУАЦИОННЫЕ ВЫХОДЫ ОТ НАИБОЛЕЕ УДАЛЕННЫХ МЕСТ РАЗМЕЩЕНИЯ ЛЮДЕЙ)

Список изменяющих документов (в ред. Приказов МЧС России от 12.12.2011 N 749, от 02.12.2015 N 632)

Расчетное время эвакуации людей t из помещений и зданий р

устанавливается по расчету времени движения одного или нескольких людских потоков через эвакуационные выходы от наиболее удаленных мест размещения людей.

При расчете весь путь движения людского потока подразделяется на участки (проход, коридор, дверной проем, лестничный марш, тамбур) длиной 1

и шириной дельта . Начальными участками являются проходы между рабочими i

местами, оборудованием, рядами кресел и т.п.

При определении расчетного времени эвакуации людей длину и ширину каждого участка пути эвакуации для проектируемых зданий принимают по проекту, а для построенных – по фактическому положению. Длину пути по лестничным маршам, а также по пандусам измеряют по длине марша. Длину пути в дверном проеме принимают равной нулю. Проем, расположенный в стене толщиной более $0,7\,$ м, а также тамбур следует считать самостоятельными участками горизонтального пути, имеющими конечную длину $1\,$.

Расчетное время эвакуации людей t следует определять как сумму времени р

движения людского потока по отдельным участкам пути t по формуле:

$$t = t + t + t + ... + t$$
, $(\Pi 2.1)$
p 1 2 3 i

где t - время движения людского потока на первом (начальном) участке, 1

t, t, t, ... t - время движения людского потока на каждом из 1 2 3 і

следующих после первого участка пути, мин.

Время движения людского потока по первому участку пути t , мин.,

рассчитывают по формуле:

где l - длина первого участка пути, м; 1

V - скорость движения людского потока по горизонтальному пути на 1 первом участке, м/мин. (определяется по таблице $\Pi 2.1$ в зависимости от плотности D).

рассчитывают по формуле:

где N - число людей на первом участке, чел.;

f - средняя площадь горизонтальной проекции человека, м²/чел., принимаемая в соответствии с пунктами 4, 5 приложения N 5 к настоящей Методике; (в ред. Приказа МЧС России от 02.12.2015 N 632)

дельта - ширина первого участка пути, м. 1

Скорость V движения людского потока на участках пути, следующих после 1

первого, принимают по таблице $\Pi 2.1$ в зависимости от интенсивности движения людского потока по каждому из этих участков пути, которую вычисляют для всех участков пути, в том числе и для дверных проемов, по формуле:

где дельта , дельта — ширина рассматриваемого і-го и предшествующего і і-1 ему участка пути, м;

 q_{i},q_{i-1} - интенсивности движения людского потока по рассматриваемому i-му и предшествующему участкам пути, м/мин. (интенсивность движения людского потока на первом участке пути q_{1} определяется по таблице $\Pi 2.1$ по значению D_{1} , установленному по формуле ($\Pi 2.3$)).

(в ред. Приказа МЧС России от 12.12.2011 N 749)

Если значение q , определяемое по формуле (П2.4), меньше или равно і q , то время движения по участку пути t , мин., равно: мах

при этом значения q , м/мин., следует принимать равными: мах

16,5 - для горизонтальных путей;

19,6 - для дверных проемов;

16,0 - для лестницы вниз;

11,0 - для лестницы вверх.

Если значение q , определенное по формуле ($\Pi 2.4$), больше q , то i max ширину дельта данного участка пути следует увеличивать на такое значение, i при котором соблюдается условие:

$$q \le q$$
 . ($\Pi 2.6$)

При невозможности выполнения условия (П2.6) интенсивность и скорость движения людского потока по участку і определяют по таблице П2.1 при значении D = 0,9 и более. При этом следует учитывать время задержки движения людей из-за образовавшегося их скопления. (в ред. Приказа МЧС России от 02.12.2015 N 632)

Интенсивность и скорость движения людского потока на разных участках путей эвакуации в зависимости от плотности

Плотность	Горизон	тальный путь	Дверной	Лестн	ница вниз	Лестница вверх		
потока D, м2/м2	скорость V, м/мин.	интенсивность q, м/мин	проем, интенсивность q, м/мин	скорость V, м/мин.	интенсивност ь q, м/мин.	скорость V, м/мин.	интенсивность q, м/мин.	
0,01	100	1,0	1,0	100	1,0	60	0,6	
0,05	100	5,0	5,0	100	5,0	60	3,0	
0,10	80	8,0	8,7	95	9,5	53	5,3	
0,20	60	12,0	13,4	68	13,6	40	8,0	
0,30	47	14,1	16,5	52	15,6	32	9,6	
0,40	40	16,0	18,4	40	16,0	26	10,4	
0,50	33	16,5	19,6	31	15,6	22	11,0	
0,60	28	16,3	19,05	24,5	14,1	18,5	10,75	
0,70	23	16,1	18,5	18	12,6	15	10,5	
0,80	19	15,2	17,3	13	10,4	13	10,4	
0,90 и более	15	13,5	8,5	8	7,2	11	9,9	

Примечание - интенсивность движения в дверном проеме при плотности потока 0,9 и более, равная 8,5 м/мин., установлена для дверного проема шириной 1,6 м и более, а при дверном проеме меньшей ширины интенсивность движения следует определять по формуле q = 2,5 + 3,75 х дельта.

Рис. П2.1. Слияние людских потоков

При слиянии в начале і-го участка двух и более людских потоков (рис. $\Pi 2.1$) интенсивность движения q , м/мин., рассчитывают по формуле:

где q - интенсивность движения людских потоков, сливающихся в начале i-1
i-го участка, м/мин.;
дельта - ширина участков пути слияния, м;
i-1
дельта - ширина рассматриваемого участка пути, м.

Абзац исключен. - Приказ МЧС России от 02.12.2015 N 632.

Время задержки t₃ движения людей на участке i из-за образовавшегося их скопления на границе с последующим участком (i + 1) определяется по формуле: (абзац введен Приказом МЧС России от 02.12.2015 N 632)

$$t = N \cdot f \cdot \left(\frac{1}{q_{npu D = 0.9} \cdot b_{i+1}} - \frac{1}{q_i \cdot b_i} \right)$$
, (N2.8)

(абзац введен Приказом МЧС России от 02.12.2015 N 632)

где N - количество людей, чел.;

(абзац введен Приказом МЧС России от 02.12.2015 N 632)

f - площадь горизонтальной проекции человека, M^2 /чел.; (абзац введен Приказом МЧС России от 02.12.2015 N 632)

 $q_{при D=0.9}$ - интенсивность движения через участок і + 1 при плотности 0,9 и более, м/мин.; (абзац введен Приказом МЧС России от 02.12.2015 N 632)

 b_{i+1} - ширина участка, м, при вхождении на который образовалось скопление людей; (абзац введен Приказом МЧС России от 02.12.2015 N 632)

 q_{i+1} - интенсивность движения на участке і, м/мин.; (абзац введен Приказом МЧС России от 02.12.2015 N 632)

b_i - ширина предшествующего участка і, м.

(абзац введен Приказом МЧС России от 02.12.2015 N 632)

Время существования скопления $t_{c\kappa}$ на участке і определяется по формуле: (абзац введен Приказом МЧС России от 02.12.2015 N 632)

$$t_{\scriptscriptstyle CK} = rac{N \cdot f}{q_{\scriptscriptstyle npu\; D=0.9} \cdot b_{\scriptscriptstyle i+1}}$$
 , (П2.9)

(абзац введен Приказом МЧС России от 02.12.2015 N 632)

Расчетное время эвакуации по участку і, в конце которого на границе с участком (і + 1) образовалось скопление людей, равно времени существования скопления t_{ск}. Расчетное время эвакуации по участку і допускается определять по формуле: (абзац введен Приказом МЧС России от 02.12.2015 N 632)

$$t_{i} = \frac{1_{i}}{V_{i}} + t_{3}$$
, (П2.10)

(абзац введен Приказом МЧС России от 02.12.2015 N 632)

Приложение N 3 к пункту 10 Методики

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ИНДИВИДУАЛЬНО-ПОТОЧНОГО ДВИЖЕНИЯ ЛЮДЕЙ ИЗ ЗДАНИЯ

Список изменяющих документов (в ред. Приказов МЧС России от 12.12.2011 N 749, от 02.12.2015 N 632)

Расчетное время эвакуации людей из здания устанавливается по времени выхода из него последнего человека.

Перед началом моделирования процесса эвакуации задается схема эвакуационных путей в здании. Все эвакуационные пути подразделяются на эвакуационные участки длиной а и шириной b. Длина и ширина каждого участка пути эвакуации для проектируемых зданий принимаются по проекту, а для построенных - по фактическому положению. Длина пути по лестничным маршам измеряется по длине марша. Длина пути в дверном проеме принимается равной нулю. Эвакуационные участки могут быть горизонтальные и наклонные (лестница вниз, лестница вверх и пандус).

```
За габариты человека в плане принимается эллипс с размерами осей 0,5 м (ширина человека в плечах) и 0,25 м (толщина человека). Задаются координаты каждого человека х - расстояние от центра эллипса до конца эвакуационного і участка, на котором он находится (рис. ПЗ.1). (в ред. Приказа МЧС России от 12.12.2011 N 749)

Координаты каждого человека х в начальный момент времени задаются в і соответствии со схемой расстановки людей в помещениях (рабочие места, места для зрителей, спальные места и т.п.). В случае отсутствия таких данных,
```

например для магазинов, выставочных залов и другое, допускается размещать

людей равномерно по всей площади помещения с учетом расстановки технологического оборудования.

Координата каждого человека в момент времени t определяется по формуле:

$$x$$
 (t) = x (t - Дельта t) - V (t) x Дельта t, M , (ПЗ.1) i

где x (t - Дельта t) - координата i-го человека в предыдущий момент i времени, м;

V (t) - скорость i-го человека в момент времени t, м/c; i

Дельта t - промежуток времени, с.

Рис. ПЗ.1. Координатная схема размещения людей на путях эвакуации

Скорость і-го человека $V_i(t)$ в момент времени t определяется по таблице $\Pi 2.1$ приложения 2 и таблицам 15.7, 15.8 приложения 15.7 к Методике в зависимости от локальной плотности потока, в котором он движется, 15.7 и типа эвакуационного участка. (в ред. Приказа МЧС России от 15.70.10 N 632)

Локальная плотность D (t) вычисляется по группе, состоящей из n i

человек, по формуле:

D (t) =
$$(n(t) - 1)$$
 x f / (b x Дельта x), $M2/M2$, (П3.2)

где n - количество людей в группе, человек;

f - средняя площадь горизонтальной проекции человека, м2; (в ред. Приказа МЧС России от 12.12.2011 N 749)

b - ширина эвакуационного участка, м;

Дельта х - разность координат последнего и первого человека в группе, м.

Если в момент времени t координата человека x (t), определенная по

формуле ($\Pi 3.1$), станет отрицательной – это означает, что человек достиг границы текущего эвакуационного участка и должен перейти на следующий эвакуационный участок.

В этом случае координата этого человека на следующем эвакуационном участке определяется:

$$x(t) = [x(t - dt) - V(t) \times dt] + a - 1, M,$$
 (II3.3)

i i i j

где x (t - dt) - координата i-го человека в предыдущий момент времени i

на (j-1) эвакуационном участке, м;

V (t) - скорость і-го человека на (j-1)-ом эвакуационном участке в і

момент времени t, м/c;

а - длина ј-го эвакуационного участка, м;

j

1 - координата места слияния j-го и (j-1)-го эвакуационных участков j

- расстояние от начала j-го эвакуационного участка до места слияния его с (j-1)-ым эвакуационным участком, м.

Количество людей, переходящих с одного эвакуационного участка на другой в единицу времени, определяется пропускной способностью выхода с участка Q(t):

Q (t) =
$$q$$
 (t) x c x dt / (f x 60), yeal, (Π 3.4)

где q (t) - интенсивность движения на выходе с j-го эвакуационного ${\sf j}$

участка в момент времени t, м/мин.;

с - ширина выхода с ј-го эвакуационного участка, м;

dt - промежуток времени, с;

f - средняя площадь горизонтальной проекции человека, м2.

Интенсивность движения на выходе с j-го эвакуационного участка q (t) в

момент времени t определяется в зависимости от плотности людского потока на этом участке Dv (t).

j

Плотность людского потока на j-ом эвакуационном участке Dv (t) в момент j

времени t определяется по формуле:

Dv (t) =
$$(N \times f \times dt) / (a \times b), M2/M2,$$
 (II3.5)

где N - число людей на j-ом эвакуационном участке, чел.;

f - средняя площадь горизонтальной проекции человека, м2;

а - длина ј-го эвакуационного участка, м;

i

b - ширина j-го эвакуационного участка, м;

i

dt - промежуток времени, с.

В момент времени t определяется количество людей m c отрицательными координатами x (t), определенными по формуле (П3.1). Если значение m <= i

Q (t), то все m человек переходят на следующий эвакуационный участок и их j координаты определяются в соответствии с формулой (ПЗ.3). Если значение m >

Q (t), то количество человек, равное значению Q (t), переходит на следующий ј

эвакуационный участок и их координаты определяются в соответствии с формулой ($\Pi 3.3$), а количество человек, равное значению (m - Q (t)), не

переходит на следующий эвакуационный участок (остаются на данном эвакуационном участке) и их координатам присваиваются значения х (t) =

где k - номер ряда, в котором будут находиться люди (максимально возможное количество человек в одном ряду сбоку друг от друга для каждого эвакуационного участка определяется перед началом расчетов). Таким образом, возникает скопление людей перед выходом с эвакуационного участка.

На рис. П3.2 изображена блок-схема определения расчетного времени эвакуации людей из здания.

На основании заданных начальных условий (начальных координат людей, параметров эвакуационных участков) определяются плотности людских потоков на путях эвакуации и пропускные способности выходов с эвакуационных участков. Далее, в момент времени t=t+dt, определяется наличие ОФП на путях эвакуации. В зависимости от этого выбирается направление движения каждого человека и вычисляется новая координата каждого человека. После этого снова определяются плотности людских потоков на путях эвакуации и пропускные способности выходов. Затем вновь дается приращение по времени dt и определяются новые координаты людей с учетом наличия ОФП на путях эвакуации в этот момент времени. После этого процесс повторяется. Расчеты проводятся до тех пор, пока все люди не будут эвакуированы из здания.

Рис. П3.2. Блок-схема определения расчетного времени эвакуации людей из здания

Приложение N 4 к пункту 10 Методики

ИМИТАЦИОННО-СТОХАСТИЧЕСКАЯ МОДЕЛЬ ДВИЖЕНИЯ ЛЮДСКИХ ПОТОКОВ

Список изменяющих документов (в ред. Приказа МЧС России от 12.12.2011 N 749)

Множество людей, одновременно идущих в одном направлении по общим участкам пути, образуют людской поток. Участками формирования людских потоков в помещениях следует принимать проходы между оборудованием. Для последующих участков эвакуационных путей они представляют собой первичные источники людских потоков. Распределение N человек на участках формирования, имеющих ширину b и длину 1 , принимается равномерным. i Поэтому в начальный момент t на каждом элементарном участке Дельта l , t0 занимаемом потоком, плотность потока D определяется по формуле: t0 = N/ b х Дельта l , чел./м2 $(\Pi 4.1)$

При дальнейшем движении людских потоков из первичных источников по общим участкам пути происходит их слияние. Образуется общий поток, части которого имеют различную плотность. Происходит выравнивание плотностей различных частей людского потока — его переформирование. Следует учитывать, что его головная часть, имеющая перед собой свободный путь, растекается — люди стремятся идти свободно при плотности D . За интервал времени Дельта t

часть людей переходит с этих элементарных участков на последующие и происходит изменение состояния людского потока, его движение.

Скорость движения людского потока при плотности D на i-ом отрезке i

участка пути k-го вида следует считать случайной величиной V , имеющей $D_{\star}K$

числовые характеристики:

математическое ожидание (среднее значение)

$$V = V \times (1 - a \times ln D / D) \times m$$
 при $D > D$, $D,k = 0,k$ i $0,k$ i $0,k$ (П4.2)

среднее квадратичное отклонение

$$C$$
ИГМА $(V) = C$ ИГМА $(V) \times (1 - a \times ln D / D),$ (П4.3)

где V и сигма(V) - математическое ожидание скорости свободного 0, k 0, k

движения людей в потоке (при D <= D) и ее среднее квадратичное i 0,k

отклонение, м/мин.;

D - предельное значение плотности людского потока, до достижения 0, k

которого возможно свободное движение людей по k-му виду пути (плотность не влияет на скорость движения людей);

а - коэффициент адаптации людей к изменениям плотности потока при k

движении по k-му виду пути;

D - значение плотности людского потока на i-ом отрезке (Дельта l) i

участка пути шириной b , чел./м2; і

m - коэффициент влияния проема.

Значения перечисленных параметров следует принимать по таблице П4.1.

Таблица П4.1

Вид пути, k	V , 0,k м/мин.	сигма(V), 0,k м/мин.	D 0,k чел./м2	a k	m
Горизонтальный в здании	100	5	0,51	0,295	1
Горизонтальный вне здания	100	5	0,70	0,407	1
Проем <*>	100	5	0,65	0,295	1,25 - 0,05D, при D >= 5

			L		
Лестница вниз	80	5	0,89	0,400	1
Лестница вверх	50	5	0,67	0,305	1

<*> При D = 9 чел./м2 значения $q_i = V_i \cdot D_{0,k}$ определяются по формуле $q_i = 10 \cdot \left(2,5+3,75 \cdot b_i\right)$, м/мин.

(сноска в ред. Приказа МЧС России от 12.12.2011 N 749)

t0 t0

При любом возможном значении V люди в количестве N , находящиеся в і момент t на і-ом элементарном участке, двигаются по нему и начинают 0 переходить на последующий участок (i+1) (рис. $\Pi 4.1$). На участок і в свою очередь переходит часть людей с предыдущего (i-1) элементарного участка и из источника j.

По прошествии времени Дельта t к моменту t = t + Дельта t только I 0

t0 часть людей N с участка і успеет перейти на участок (i+1). К этому i,i+1 t0

моменту времени из N людей, бывших на участке і в момент t , останется і 0

t0 t0 (N - N) людей. Их число пополняется за счет людей, успевших за і і,і+1

этот интервал времени перейти на него с предыдущего участка – N и из i-1,i

источника N . Тогда плотность потока на участке і в момент t будет ј, і равна:

$$t1$$
 $t0$ $t0$ $t0$ $t0$ $D = (N - N + N + N) / b х Дельта 1. (П4.4) i i i,i+1 i-1,I j,I i$

Скорость движения людей, оказавшихся на участке і в момент t, 1 определяется по формуле:

Рис. П4.1. Изменения состояния потока в последовательные моменты времени

Следует учитывать, что изменение плотности потока на каждом участке в различные моменты времени отражает процесс переформирования различных частей потока, и как частный случай, процесс растекания потока.

Изменение плотности потока на каждом из элементарных участков в последовательные моменты времени зависит от количества людей, переходящих через границы участков. В общем случае количество людей, переходящих за интервал времени Дельта t с участка i на последующий участок i+1, составляет:

$$N_{i,i+1}^{t1} = D_i^{to} \cdot b_i V_{nep} \cdot \Delta t$$
 . (П4.6)

(в ред. Приказа МЧС России от 12.12.2011 N 749)

Скорость перехода V через границы смежных элементарных участков пер следует принимать, руководствуясь следующими формулами:

Следует учитывать, что в тот момент времени t , когда плотность потока на участке і достигла максимальной величины, на этот участок не может прийти ни один человек, ни с предшествующего участка, ни из источника. В результате перед участком і задерживается соответственно Дельта N tn Дельта N людей. В следующий момент времени t часть людей с участка j,i n+1 і переходит на участок і+1, плотность людского потока на нем уменьшится и часть скопившихся перед его границей людей сможет перейти на него. Доля их участия в пополнении людьми участка і в момент t определяется формулой: tn,tn+1 Дельта N / Дельта N = D x V x b / D x V x b . ($\Pi4.8$) Формулы ($\Pi 4.4$) - ($\Pi 4.8$) полностью описывают состояние людского потока на элементарных участках и их переходы в последовательные моменты времени. Совокупность значений расчетного времени эвакуации, полученных при различных значениях V $\,\,$, формирует эмпирическое распределение вероятностей 0.k значений SUM t . По этому распределению следует рассчитывать значение времени завершения эвакуации, соответствующее вероятности P(t) = 0,999.

Приложение N 5 к пунктам 10, 11 Методики

ДАННЫЕ ДЛЯ ОПРЕДЕЛЕНИЯ РАСЧЕТНОГО ВРЕМЕНИ ЭВАКУАЦИИ

Список изменяющих документов (в ред. Приказов МЧС России от 12.12.2011 N 749, от 02.12.2015 N 632)

1. Значение времени начала эвакуации $t_{H\theta}(c)$ для помещения очага пожара следует определять по формуле:

$$t_{H2} = 5 + 0.01 \cdot F$$
,

где F - площадь помещения, M^2 .

В случае если время начала эвакуации, рассчитанное по указанной формуле, превышает время начала эвакуации, определенное в соответствии с таблицей П5.1, время начала эвакуации из помещения очага пожара следует принимать по таблице П5.1.

Для остальных помещений значение времени начала эвакуации $t_{\scriptscriptstyle H9}$ следует определять по таблице П5.1.

N п/п	Класс функциональной пожарной опасности зданий и характеристика контингента людей	Значение вр	ремени начал мин	а эвакуации людей t _{нэ} , н.		
		системой ог управления	рудованные повещения и гэвакуацией дей	Здания, не оборудованные системой оповещения и управления эвакуацией людей		
		I - II типа	III - V типа			
1	Здания дошкольных образовательных организаций, специализированных домов престарелых и инвалидов (неквартирные), больницы, спальные корпуса образовательных организаций с наличием интерната и детских организаций; многоквартирные жилые дома; одноквартирные жилые дома, в том числе блокированные (Ф1.1, Ф1.3, Ф1.4). Люди могут находиться в состоянии сна, но знакомы со структурой эвакуационных путей и выходов.	6,0	4,0	9,0		
2	Гостиницы, общежития, спальные корпуса санаториев и домов отдыха общего типа, кемпингов, мотелей и пансионатов (Ф1.2). Жильцы могут находиться в состоянии сна и не знакомы со структурой эвакуационных путей и выходов.	3,0	2,0	6,0		
3	Здания зрелищных и культурно-	3,0	1,0	6,0		

	просветительных учреждений; здания организаций по обслуживанию населения (Ф2, Ф3). Посетители находятся в бодрствующем состоянии, но могут быть не знакомы со структурой эвакуационных путей и выходов.			
4	Здания образовательных организаций, научных и проектных организаций, органов управления учреждений (Ф4). Посетители находятся в бодрствующем состоянии и хорошо знакомы со структурой эвакуационных путей и выходов.		1,5	6,0
5	Пожарные отсеки производственного или складского назначения с категорией помещений по взрывопожарной и пожарной опасности В1 - В4, Г, Д, входящие в состав зданий с функциональной пожарной опасностью Ф1, Ф2, Ф3, Ф4, в том числе Ф5.2 - стоянки для автомобилей без технического обслуживания и ремонта	2,0	0,5	6,0

(п. 1 в ред. Приказа МЧС России от 02.12.2015 N 632)

2. Принципы составления расчетной схемы эвакуации.

Расчетная схема эвакуации представляет собой отдельно выполненную, или возможно нанесенную на план здания схему, на которой отражены:

количество людей на начальных участках - источниках (проходы между рабочими местами, оборудованием, рядами кресел и т.п.);

направление их движения (маршруты);

геометрические параметры участков пути (длина, ширина) и виды участков пути.

Расчетная схема эвакуации должна учитывать ситуацию, при которой хотя бы один человек находится в наиболее удаленной от выхода из здания, сооружения или строения точке.

Пути движения людей и выходы высотой менее 1,9 м и шириной менее 0,7 м при составлении расчетной схемы эвакуации не учитываются, за исключением случаев, установленных в нормативных документах по пожарной безопасности.

(в ред. Приказа МЧС России от 12.12.2011 N 749)

Рассмотрев количество людей на начальных участках пути, следует определить направление их движения. Установлены следующие наблюдаемые правила выбора людьми направления (маршрута) движения при эвакуации:

- а) движение по тому пути, которым люди попали в здание;
- б) исключение путей движения, проходящих рядом с зоной горения, хотя люди могут эвакуироваться через задымленные коридоры;
- в) влияние персонала. В общественных зданиях, как правило, посетители при пожаре следуют указаниям персонала, даже если эти указания не соответствуют оптимальным;
 - г) при эвакуации с первого этажа движение к открытому выходу наружу из здания;
- д) сложная логистическая зависимость, описывающая выбор выхода с этажа зрительного зала (рис. П5.5);
 - е) при прочих равных условиях движение к ближайшему выходу.

Кроме того, имеющиеся данные показывают, что фактором выбора направления может быть место парковки личного автомобиля, место встречи членов семьи и т.п. Определение ширины пути вызывает затруднение только при выходе людей на участок "неограниченной" ширины, например в вестибюль. В таком случае ширина потока (b) зависит от количества людей (N) и длины (I) участка: b = 4 м при N < 100 чел. и I < 6 м; b = 6 м - в остальных случаях.

Согласно данным натурных наблюдений установлено, что повороты пути не влияют на параметры движения людского потока.

Определение длины (вдоль оси пути) отличается для горизонтальных и наклонных путей. К наклонным путям относятся лестницы и пандусы. Свободная ширина b наклонного пути, например лестничного марша, принимается в свету: от перил до стены. Длина наклонного пути L (рис. П5.1) принимается по истинному его значению. Этажные и междуэтажные площадки в целях упрощения и облегчения вычислений, учитывая их небольшие размеры и меньшую сложность движения по ним в сравнении с лестничными маршами, допускается отнести к наклонным путям. Тогда средняя длина наклонного пути в пределах одного этажа, с учетом движения по площадкам, составит:

$$L$$
' для двухмаршевых лестниц $L = -------$, соs альфа

где L' - горизонтальная проекция длины наклонного пути, м;

альфа - угол наклона к горизонту;

не допуская серьезной погрешности, длину пути по двухмаршевой лестнице можно принимать равной его утроенной высоте H, т.e. L = 3 - H;

$$2 \times L'$$
 L" для трехмаршевых лестниц $L = ----- + ----- + L" + 4 \times b$. cos альфа сos альфа

Рис. П5.1. Расчетная длина пути по лестнице: а - двухмаршевая лестница; б - трехмаршевая лестница

Пандусы, если их наклон незначителен (меньше 1:8), можно относить к горизонтальным путям, при более значительных наклонах - к лестницам. Длина наклонного пути также определяется по его оси.

Пути движения в пределах здания обычно пересекаются дверными проемами, декоративными порталами, имеют сужения за счет различных архитектурных или технологических элементов, выступающих из плоскости ограждений. Такие местные сужения независимо от их характера в дальнейшем называются проемами шириной b. Длина пути L в проеме может не учитываться, если она не превышает 0,7 м, т.е. длины одного шага, в противном случае движение в проеме следует рассматривать как движение на самостоятельном расчетном участке горизонтального пути.

Лестничные клетки являются центрами тяготения людских потоков (для первого этажа выходы наружу), на входе в которые заканчивается второй этап эвакуации. Поэтому расчетные схемы целесообразно составлять для каждой части этажа, по которой люди эвакуируются через предусмотренную для них лестничную клетку (выход наружу). На рис. П5.2 приведен пример составления расчетной схемы эвакуации людей по части этажа до входа в лестничную клетку.

Рис. П5.2. Пример составления расчетной схемы эвакуации людей по части этажа до входа в лестничную клетку: N - количество людей; b - ширина; l - длина; b - ширина проема 0

В зрительных залах с постоянными местами для посетителей распределение людей по направлениям движения к эвакуационным выходам показано на рис. П5.3 и П5.4.

Рис. П5.3. Маршрутизация движения людских потоков при эвакуации из зрительных залов с боковыми (продольными) проходами

Рис. П5.4. Маршрутизация движения людских потоков при эвакуации из зрительных залов с поперечным проходом

Если в дальнейшим люди выходят в фойе или вестибюль, т.е. через помещения, не ограничивающие, как коридор, ширины людского потока, то распределение людских потоков между возможными эвакуационными выходами, когда они не блокированы, происходит согласно закономерностям, приведенным на рис. П5.5, а, б.

Рис. П5.5, а. Число зрителей
и выбор выхода при эвакуации в две лестничные
клетки либо в две открытые лестницы или в два выхода
из здания: N - общее количество эвакуирующихся;
N - число эвакуирующихся через ближний выход;
1
N - число эвакуирующихся через дальний выход;
2
1 - длина пути до ближнего выхода; 1 - длина
1 2
пути до дальнего выхода

Рис. П5.5, б. Число зрителей, эвакуирующихся по открытой лестнице: N - общее количество эвакуирующихся; N - число эвакуирующихся 1 по открытой лестнице; 1 - длина пути до открытой 1 лестницы; 1 - длина пути до выхода на лестничную 2 клетку

3. При однородном составе людского потока групп мобильности M2, M3 и M4 значения величин D, V и q следует принимать в соответствии с данными таблицы П5.2.

Расчетные значения параметров для групп мобильности М2 - М4

Группа		Вид пути										
мобильност и	D, m2/m2	2 горизонтальный		лестни	ца вниз	лестница вверх		пандус вниз		пандус вверх		
		V, м/мин.	q, м2/м х мин.	V, м/мин.	q, м2/м х мин.	V, м/мин.	q м2/м х мин.	V, м/мин.	q, м2/м х мин.	V, м/мин.	q, м2/х мин.	
M2	0,01	30,00	0,30	30,00	0,30	20,00	0,20	45,00	0,45	25,00	0,25	
	0,05	30,00	1,50	30,00	1,50	20,00	1,00	45,00	2,25	25,00	1,25	
	0,1	30,00	3,00	30,00	3,00	20,00	2,00	45,00	4,50	25,00	2,50	
	0,2	26,05	5,21	26,22	5,24	16,78	3,36	41,91	8,38	21,98	4,40	
	0,3	21,97	6,59	22,01	6,60	13,96	4,19	33,92	10,18	18,09	5,43	
	0,4	19,08	7,63	19,03	7,61	11,96	4,78	28,25	11,30	15,32	6,13	
	0,5	16,84	8,42	16,71	8,36	10,41	5,20	23,85	11,93	13,18	6,59	
	0,6	15,01	9,01	14,82	8,89	9,14	5,48	20,26	12,16	11,43	6,86	
	0,7	13,46	9,42	13,22	9,25	8,07	5,65	17,22	12,05	9,95	6,97	
	0,8	12,12	9,69	11,83	9,47	7,14	5,71	14,59	11,67	8,67	6,94	
	0,9	10,93	9,84	10,61	9,55	6,32	5,68	12,27	11,04	7,54	6,79	
M3	0,01	70,00	0,70	20,00	0,20	25,00	0,25	105,00	1,05	55,00	0,55	
	0,05	70,00	3,50	20,00	1,00	25,00	1,25	105,00	5,25	55,00	2,75	

	0,1	70,00	7,00	20,00	2,00	25,00	2,50	105,00	10,50	55,00	5,50
	0,1	53,50	10,70	20,00	4,00	20,57	4,11	83,41	16,68	45,54	9,11
	0,3	43,57	13,07	16,67	5,00	17,05	5,12	65,70	19,71	35,59	10,68
	0,4	36,52	14,61	14,06	5,62	14,56	5,82	53,13	21,25	28,54	11,41
	0,5	31,05	15,53	12,04	6,02	12,62	6,31	43,39	21,69	23,06	11,53
	0,6	26,59	15,95	10,38	6,23	11,04	6,62	35,42	21,25	18,59	11,15
	0,7	22,81	15,97	8,98	6,29	9,70	6,79	28,69	20,08	14,81	10,37
	0,8	19,54	15,63	7,77	6,21	8,54	6,83	22,86	18,28	11,53	9,23
	0,9	16,65	14,99	6,70	6,03	7,52	6,77	17,71	15,94	8,64	7,78
M4	0,01	60,00	0,60	-	-	-	-	115,00	1,15	40,00	0,40
	0,05	60,00	3,00	-	-	-	-	115,00	5,75	40,00	2,00
	0,1	60,00	6,00	-	-	-	-	115,00	11,50	40,00	4,00
	0,2	50,57	10,11	-	-	-	-	99,65	19,93	35,17	7,03
	0,3	40,84	12,25	-	-	-	-	79,88	23,97	28,36	8,51
	0,4	33,93	13,57	-	-	-	-	65,86	26,34	23,52	9,41
	0,5	28,58	14,29	-	-	-	-	54,98	27,49	19,77	9,89
	0,6	24,20	14,52	-	-	-	-	46,09	27,65	16,71	10,03
	0,7	20,50	14,35	-	-	-	-	38,57	27,00	14,12	9,88
	0,8	17,30	13,84	-	-	-	-	32,06	25,65	11,88	9,50

0,9 14,47	13,02		26,32 2	23,68 9,90	8,91
-----------	-------	--	---------	------------	------

Примечание:

- M2 немощные люди, мобильность которых снижена из-за старения организма (инвалиды по старости); инвалиды на протезах; инвалиды с недостатками зрения, пользующиеся белой тростью; люди с психическими отклонениями;
 - МЗ инвалиды, использующие при движении дополнительные опоры (костыли, палки);
 - М4 инвалиды, передвигающиеся на креслах-колясках, приводимых в движение вручную.
- 4. Площадь горизонтальной проекции человека f, м²/чел. принимается в зависимости от состава людей в потоке в соответствии с приведенными ниже данными.

Рис. П5.6. Площадь горизонтальной проекции человека: а) расчетная; б) действительная

Размеры людей изменяются в зависимости от физических данных, возраста и одежды. В таблицах П5.3, П5.4, П5.5 и на рисунке П5.7 приводятся усредненные размеры людей разного возраста, в различной одежде и с различным грузом. При этом приведены значения площади горизонтальной проекции инвалидов с нарушением опорно-двигательного аппарата.

Площади горизонтальной проекции взрослых людей

Тип одежды	Ширина (а), м	Толщина (с), м	Площадь горизонтальной проекции, м²/чел.
летняя	0,46	0,28	0,100
весенне-осенняя	0,48	0,30	0,113
РЕМИИЕ	0,50	0,32	0,125

Площади горизонтальной проекции детей и подростков

Тип одежды	Возрастные группы				
	Младшая	Средняя	Старшая		
	до 9 лет	10 - 13 лет	14 - 16 лет		
домашняя одежда	0,04	0,06	0,08		
домашняя одежда со школьной сумкой	0,07	0,10	0,14		
уличная одежда	0,09	0,13	0,16		

Таблица П5.4

Рис. П5.7. Площадь горизонтальной проекции людей с различным грузом

Таблица П5.5

Площадь горизонтальной проекции людей с ограниченной мобильностью, M^2 /чел.

	Слепые С поражением опорно-двига	гельного аппарата
--	----------------------------------	-------------------

слабослышащие , с ограничением		передвигающиеся без дополнительных опор	передвигающиеся с одной дополнительной опорой	передвигающиеся с двумя дополнительными опорами	передвигающиес я на креслах- колясках	транспортируемые на носилках	транспортируемые на каталках
1	2	3	4	5	6	7	8
†	K	Ř	À	À	Ja.	İ	
	c c		G G G	4		pl II	b2
a = 0,28	a ₁ = 0,72	a ₂ = 0,40	a ₃ = 0,50	a ₄ = 0,50	a ₅ = 0,80	b ₁ = 0,50	b ₂ = 0,75
c = 0,46	c ₁ = 0,82	c ₂ = 0,75	c ₃ = 0,65	c ₄ = 0,90	c ₅ = 1,20	i ₁ = 2,10	i ₂ = 2,10
f = 0,10	f = 0,40	f = 0,25	f = 0,20	f = 0,30	f = 0,96	f = 1,05	f = 1,58

(п. 4 в ред. Приказа МЧС России от 02.12.2015 N 632)

4. Время задержки t движения на участке i из-за образовавшегося 3 скопления людей на границе с последующим участком (i+1) определяется по формуле:

где N - количество людей, чел.;

f - площадь горизонтальной проекции, м;

q — интенсивность движения через участок i+1 при плотности 0,9 при D=0,9

и более, м/мин.;

b - ширина участка, м, при вхождении на который образовалось $i\!+\!1$

скопление людей;

 ${\tt q}$ - интенсивность движения на участке і, м/мин.;

b - ширина предшествующего участка i, м.

i

Время существования скопления t на участке i определяется по формуле: $c\kappa$

Расчетное время эвакуации по участку i, в конце которого на границе с участком (i+1) образовалось скопление людей, равно времени существования скопления t . Расчетное время эвакуации по участку i допускается ck определять по формуле:

2. Расчетные значения параметров движения людских потоков в зданиях класса функциональной пожарной опасности Ф1.1.

(введен Приказом МЧС России от 02.12.2015 N 632)

5. Значения величин a_j , D_{0j} и V_{0j} при использовании имитационно-стохастической модели представлены в таблице П 5.6.

Вид пути	a _j	D _{0j} , чел./м²	V _{0j} , м/мин.	σ (V _{0j}), м/мин.								
(здания д	Дети дошкольного возраста (здания дошкольных образовательных организаций)											
Горизонтальный	Горизонтальный 0,275 0,78 60											
Проем	0,350	1,20	60	10								
Лестница вниз	0,190	0,64	47	10								
Лестница вверх	0,275	0,76	47									
	Дети с ограниченными возможностями (специализированные дома инвалидов)											
Горизонтальный	0,29	0,60	51	20								
Проем	0,30	0,67	47	26								
Лестница вниз	0,21	0,63	23	12								
Лестница вверх	0,30	0,69	20	8								
Люди трудс	оспособного возр (стационары	аста в стационарах (ы больниц)	больниц									
Горизонтальный	0,414	0,77	44	10								
Проем	0,345	0,57	38	8								
Лестница вниз	0,422	0,96	24	7								
Лестница вверх	0,313	0,74	14	5								

Престарелые люди (специализированные дома престарелых)										
Горизонтальный	Горизонтальный 0,428 0,96 25									
Проем	0,456	1,02	20							
Лестница вниз	0,505	1,26	20	_						
Лестница вверх	0,338	0,56	20	5						
Пандус вниз	0,353	0,58	25							
Пандус вверх	0,368	0,72	15							
	Слепые и слабовидящие люди (специализированные дома инвалидов)									
Горизонтальный	0,371	0,73	26	7						
Проем	0,271	0,77	17	6						
Лестница вниз	0,519	0,97	21	6						
Лестница вверх	0,387	0,82	18	6						
	Глухие и слабос (специализированны	лышащие люди ые дома инвалидов)								
Горизонтальный	0,301	0,58	82	15						
Проем	0,328	0,73	82	15						
Лестница вниз	0,380	0,91	82	15						
Лестница вверх										

6. Значения параметров движения людских потоков для расчета путей эвакуации по упрощенной аналитической и индивидуально-поточной моделям приведены в таблицах П 5.7 - П 5.9.

При определении плотности людского потока D_i через площадь горизонтальной проекции человека f m^2 /чел., значение f m^2 /чел. принимается в соответствии с приведенными ниже данными:

- $0,03 \text{ м}^2$ /чел. для детей дошкольного возраста;
- 0,15 м²/чел. для детей с ограниченными возможностями;
- 0,2 м²/чел. для людей трудоспособного возраста в стационарах больниц;
- 0,1 м²/чел. для слепых и слабовидящих людей;
- $0,1 \text{ м}^2$ /чел. для глухих и слабослышащих людей;
- 0,2 м²/чел. для престарелых людей;
- $0,13 \text{ м}^2$ /чел. для беременных женщин.

Таблица П 5.7

D, M^2/M^2	Горизонтал	льный путь	Проем	Лестница вниз		Лестниц	ца вверх				
	V, м/мин.	q, м/мин.	q, м/мин.	V, м/мин.	q, м/мин.	V, м/мин.	q, м/мин.				
	Дети дошкольного возраста (здания дошкольных образовательных организаций)										
0,01	60,00	0,60	0,60	47,00	0,47	47,00	0,47				
0,05	47,19	2,36	2,66	38,36	1,92	36,96	1,85				
0,1	35,75	3,58	3,85	32,17	3,22	28,00	2,80				
0,2	24,31	4,86	4,80	25,98	5,20	19,05	3,81				
0,3	17,62	5,29	4,64	-	-	-	-				
0,4	12,88	5,15	3,77	-	-	-	-				
0,5	9,19	4,60	2,37	-	-	-	-				
	Дети с ограниченными возможностями										

(специализированные дома инвалидов)										
0,01	50,59	0,51	0,47	23,33	0,23	19,94	0,20			
0,05	50,59	2,53	2,34	23,33	1,17	19,94	1,00			
0,1	48,97	4,90	4,68	23,06	2,31	20,19	2,02			
0,2	38,88	7,78	7,42	19,64	3,93	16,02	3,20			
0,3	32,97	9,89	9,41	17,64	5,29	13,57	4,07			
0,4	28,78	11,51	10,93	16,22	6,49	11,84	4,74			
0,5	25,54	12,77	12,08	15,12	7,56	10,50	5,25			
0,6	22,88	13,73	12,96	14,22	8,53	9,40	5,64			
0,7	20,64	14,45	13,60	13,46	9,42	8,47	5,93			
0,8	18,69	14,95	14,04	12,80	10,24	7,67	6,14			
0,9	16,98	15,28	14,30	12,22	11,00	6,96	6,26			
		Лю,	ди трудоспос (стационар	обного возра ы больниц)	аста					
0,01	44,03	0,44	0,38	24,09	0,24	13,69	0,14			
0,05	44,03	2,20	1,88	24,09	1,20	13,69	0,68			
0,1	44,03	4,40	3,77	24,09	2,41	13,69	1,37			
0,2	44,03	8,81	7,53	24,09	4,82	13,69	2,74			
0,3	41,42	12,43	11,30	20,37	6,11	13,24	3,97			

0,4	36,18	14,47	14,39	17,44	6,98	12,01	4,80				
0,5	32,11	16,05	16,54	15,17	7,59	11,05	5,52				
0,6	28,79	17,27	18,42	13,32	7,99	10,27	6,16				
0,7	25,98	18,18	20,09	11,75	8,23	9,61	6,73				
0,8	23,54	18,83	21,57	10,40	8,32	9,04	7,23				
0,9	21,40	19,26	22,89	9,20	8,28	8,53	7,68				
	Престарелые люди (специализированные дома престарелых)										
0,01	25,00	0,25	0,20	20,00	0,20	20,00	0,20				
0,05	25,00	1,25	1,00	20,00	1,00	20,00	1,00				
0,1	25,00	2,50	2,00	20,00	2,00	20,00	2,00				
0,2	24,56	4,91	4,00	20,00	4,00	16,08	3,22				
0,3	20,22	6,07	4,94	18,24	5,47	13,34	4,00				
0,4	17,15	6,86	5,54	15,33	6,13	11,39	4,56				
0,5	14,76	7,38	5,91	13,08	6,54	9,89	4,94				
0,6	12,81	7,68	6,10	11,24	6,74	8,65	5,19				
0,7	11,16	7,81	6,13	9,68	6,78	7,61	5,33				
0,8	9,73	7,78	6,03	8,33	6,67	6,71	5,37				
0,9	8,47	7,62	5,82	7,14	6,43	5,91	5,32				

	Слепые и слабовидящие люди (специализированные дома инвалидов)											
0,01	0,01 26,34 0,26 0,17 21,37 0,21 18,00 0,18											
0,05	26,34	1,32	0,85	21,37	1,07	18,00	0,90					
0,1	23,26	2,33	1,58	21,03	2,10	16,62	1,66					
0,2	16,49	3,30	2,52	13,34	2,67	11,79	2,36					
0,3	12,53	3,76	3,22	8,85	2,65	8,96	2,69					
0,4	9,72	3,89	3,77	5,66	2,26	6,96	2,78					
0,5	7,54	3,77	4,19	3,18	1,59	5,41	2,70					
		•		лышащие лю ые дома инва								
0,01	82,36	0,82	0,82	82,36	0,82	53,81	0,54					
0,05	82,36	4,12	4,12	82,36	4,12	53,81	2,69					
0,1	68,86	6,89	7,39	79,41	7,94	47,73	4,77					
0,2	51,67	10,33	11,03	57,72	11,54	34,90	6,98					
0,3	41,62	12,49	13,25	45,03	13,51	27,39	8,22					
0,4	34,49	13,80	14,56	36,02	14,41	22,07	8,83					
0,5	28,96	14,48	15,19	29,04	14,52	17,94	8,97					
0,6	24,44	14,66	15,27	23,33	14,00	14,56	8,74					

0,7	20,62	14,43	14,90	18,51	12,96	11,71	8,20
0,8	17,31	13,84	14,15	14,33	11,46	9,24	7,39
0,9	14,39	12,95	13,05	10,64	9,58	7,06	6,35

Примечание: в таблице П 5.7 представлены данные о параметрах движения престарелых людей, передвигающихся без дополнительных опор и с одной дополнительной опорой, а также детей с ограниченными возможностями, способных к самостоятельной эвакуации.

Таблица П 5.8. Расчетные значения параметров движения по пандусам престарелых людей в специализированных домах престарелых

D, m ² /m ²	Пандус вниз		Пандус вверх	
	V, м/мин.	q, м/мин.	V <i>,</i> м/мин.	q, м/мин.
0,01	25,00	0,25	15,00	0,15
0,05	25,00	1,25	15,00	0,75
0,1	25,00	2,50	15,00	1,50
0,2	20,19	4,04	13,19	2,64
0,3	16,61	4,98	10,95	3,28
0,4	14,08	5,63	9,36	3,74
0,5	12,11	6,05	8,13	4,06
0,6	10,50	6,30	7,12	4,27
0,7	9,14	6,40	6,27	4,39
0,8	7,96	6,37	5,53	4,43
0,9	6,92	6,23	4,88	4,40

Таблица П 5.9. Расчетные зависимости между плотностью и интенсивностью движения людского потока, состоящего

из людей, передвигающихся на креслах-колясках

Плотность потока, D, м²/м²	Интенсивность движения, q, м/мин.
0	0
0,1	15,2
0,2	22,7
0,3	24,2
0,4	21,5
0,5	18,4
0,6	16,1
0,7	13,9
0,8	12,4
0,9	11,0
0,96	9,7

Площадь горизонтальной проекции беременных женщин следует принимать по данным рис. П5.8 и табл. П 5.10.

Рис. П5.8. Площадь горизонтальной проекции беременной женщины $f=0,13\ m^2/\mbox{чел}.$

Таблица П5.10. Значения a, b, c, d для расчета площади горизонтальной проекции беременной женщины

Обозначение	Размер, м
a	0,355
b	0,56
С	0,30
d	0,205

7. Для людей различного возраста, не способных к самостоятельной эвакуации (далее - немобильные люди), необходимо определять расчетное время спасения из лечебно-профилактических и социальных учреждений при помощи носилок.

При расчете эвакуации необходимо учитывать транспортировку немобильных людей из лечебно-профилактических и социальных учреждений силами персонала при помощи носилок.

Расчетное время транспортировки немобильных людей с определенного этажа здания определяется по формуле:

$$t_{\text{pcn}} = \left(t_1 + t_2 + \frac{L_1}{V_1^c} + \frac{L_2}{V_2^c} + \frac{L_1}{V_1} + \frac{L_2}{V_2}\right) \cdot \frac{N_{\text{HM}}}{0.5 \cdot N_{\text{nepc}}} - \left(\frac{L_1}{V_1} + \frac{L_2}{V_2}\right), (\Pi 5.1)$$

где t_1 - время укладывания человека на носилки, мин.;

 t_2 - время перекладывания человека с носилок на подготовленную поверхность, мин.;

N_{нм} - количество немобильных людей;

N_{перс} - количество персонала;

 L_1 - длина пути спасения по горизонтали, м;

L₂ - длина пути спасения по лестнице, м;

 V_1 - скорость передвижения медперсонала по горизонтали с носилками без спасаемого человека, м/мин.;

 V_1^c - скорость передвижения медперсонала по горизонтали со спасаемым человеком, лежащим на носилках, м/мин.;

 V_2 - скорость передвижения медперсонала по лестнице вверх с носилками без спасаемого человека, м/мин.;

 ${
m V}_{\! 2}^{
m c}$ - скорость передвижения медперсонала по лестнице вниз со спасаемым человеком, лежащим на носилках, м/мин.

При отсутствии необходимых исходных данных для определения скорости переноски персоналом носилок с человеком следует воспользоваться данными, приведенными в таблице П 5.11.

Таблица П 5.11. Скорость движения персонала при переноске носилок с человеком, м/мин.

Вид пути	С человеком	Без человека	
Горизонтальный путь	70	100	
Лестница вниз	30	80	

Лестница вверх	20	60
----------------	----	----

При осуществлении переноски немобильных людей по лестнице с различных этажей здания количество рейсов, осуществляемых одной парой человек из числа персонала, следует определять по таблице П 5.12.

Таблица П 5.12. Количество рейсов по переноске немобильных людей на носилках с различных этажей здания, осуществляемое одной парой человек из числа персонала

Этаж	Максимальное количество рейсов для переноски немобильных людей на носилках
15	1
14	1
13	1
12	2
11	2
10	2
9	2
8	2
7	3
6	3
5	5
4	5

3	8
2	11
1	20

Время укладывания человека на носилки или перекладывания с носилок на подготовленную поверхность, осуществляемое одной парой человек из числа персонала, составляет 0,15 мин.

Приложение N 6 к пункту 12 Методики

ПОРЯДОК ПРОВЕДЕНИЯ РАСЧЕТА И МАТЕМАТИЧЕСКИЕ МОДЕЛИ ДЛЯ ОПРЕДЕЛЕНИЯ ВРЕМЕНИ БЛОКИРОВАНИЯ ПУТЕЙ ЭВАКУАЦИИ ОПАСНЫМИ ФАКТОРАМИ ПОЖАРА

Список изменяющих документов (в ред. Приказов МЧС России от 12.12.2011 N 749, от 02.12.2015 N 632)

I. Порядок проведения расчета

Производится экспертный выбор сценария или сценариев пожара, при которых ожидаются наихудшие последствия для находящихся в здании людей.

Формулировка сценария развития пожара включает в себя следующие этапы:

выбор места нахождения первоначального очага пожара и закономерностей его развития;

задание расчетной области (выбор рассматриваемой при расчете системы помещений, определение учитываемых при расчете элементов внутренней структуры помещений, задание состояния проемов);

задание параметров окружающей среды и начальных значений параметров внутри помещений.

Выбор места нахождения очага пожара производится экспертным путем. При этом учитывается количество горючей нагрузки, ее свойства и расположение, вероятность возникновения пожара, возможная динамика его развития, расположение эвакуационных путей и выходов.

Наиболее часто при расчетах рассматриваются три основных вида развития пожара: круговое распространение пожара по твердой горючей нагрузке, линейное распространение пожара по твердой горючей нагрузке, неустановившееся горение горючей жидкости.

Скорость выгорания для этих случаев определяется формулами:

```
| 2 2 | пси х пи х v х t - для кругового распространения пожара уд | пси х 2 х v х t х b - для линейного распространения пожара (П6.1) уд | /t | пси х F х /--- - для неустановившегося горения ГЖ, уд / t | // ст | ст
```

где пси - удельная скорость выгорания (для жидкостей установившаяся),

```
уд
кг/(с x м2);
v - скорость распространения пламени, м/с;
b - ширина полосы горючей нагрузки, м;
t - время стабилизации горения горючей жидкости, с;
ст
F - площадь очага пожара, м2.
```

При наличии в помещении очага пожара установки автоматического пожаротушения, соответствующей требованиям нормативных документов по пожарной безопасности, при проведении расчетов значение скорости выгорания принимается уменьшенным в 2 раза. (абзац введен Приказом МЧС России от 02.12.2015 N 632)

С учетом раздела II данного приложения выбирается метод моделирования, формулируется математическая модель, соответствующая данному сценарию, и производится моделирование динамики развития пожара. На основании полученных результатов рассчитывается время достижения каждым из опасных факторов пожара предельно допустимого значения на путях эвакуации.

Критическое время по каждому из опасных факторов пожара определяется как время достижения этим фактором предельно допустимого значения на путях эвакуации на высоте 1,7 м от пола.

Предельно допустимые значения по каждому из опасных факторов пожара составляют: (в ред. Приказа МЧС России от 12.12.2011 N 749)

по повышенной температуре - 70 °C;

(в ред. Приказа МЧС России от 12.12.2011 N 749)

по тепловому потоку - 1400 Вт/м2;

(в ред. Приказа МЧС России от 12.12.2011 N 749)

по потере видимости - 20 м (для случая, когда оба горизонтальных линейных размера помещения меньше 20 м, предельно допустимое расстояние по потере видимости следует принимать равным наибольшему горизонтальному линейному размеру);

(в ред. Приказа МЧС России от 12.12.2011 N 749)

по пониженному содержанию кислорода - 0,226 кг/м3;

(в ред. Приказа МЧС России от 12.12.2011 N 749)

по каждому из токсичных газообразных продуктов горения (CO2 - 0,11 кг/м3; $CO-1,16\cdot 10^{-3}$ кг/м3; $HCL-23\cdot 10^{-6}$ кг/м3).

(в ред. Приказа МЧС России от 12.12.2011 N 749)

Необходимо отметить, что при использовании полевой модели определение критического времени имеет существенные особенности, связанные с тем, что критическое значение в различных точках помещения достигается не одновременно. Для помещений с соизмеримыми горизонтальными размерами критическое время определяется как максимальное из критических времен для эвакуационных выходов из данного помещения (время блокирования последнего выхода).

Определяется время блокирования t :

II. Классификация и область применения методов математического моделирования пожара

Для описания термогазодинамических параметров пожара применяются три основных группы детерминистических моделей: интегральные, зонные (зональные) и полевые.

Выбор конкретной модели расчета времени блокирования путей эвакуации следует

осуществлять исходя из следующих предпосылок:

интегральный метод:

для зданий, содержащих развитую систему помещений малого объема простой геометрической конфигурации;

для помещений, где характерный размер очага пожара соизмерим с характерными размерами помещения и размеры помещения соизмеримы между собой (линейные размеры помещения отличаются не более чем в 5 раз);

для предварительных расчетов с целью выявления наиболее опасного сценария пожара; зонный (зональный) метод:

для помещений и систем помещений простой геометрической конфигурации, линейные размеры которых соизмеримы между собой (линейные размеры помещения отличаются не более чем в 5 раз), когда размер очага пожара существенно меньше размеров помещения;

для рабочих зон, расположенных на разных уровнях в пределах одного помещения (наклонный зрительный зал кинотеатра, антресоли и т.д.);

полевой метод:

для помещений сложной геометрической конфигурации, а также помещений с большим количеством внутренних преград (атриумы с системой галерей и примыкающих коридоров, многофункциональные центры со сложной системой вертикальных и горизонтальных связей и т.д.);

для помещений, в которых один из геометрических размеров гораздо больше (меньше) остальных (тоннели, закрытые автостоянки большой площади и т.д.);

для иных случаев, когда применимость или информативность зонных и интегральных моделей вызывает сомнение (уникальные сооружения, распространение пожара по фасаду здания, необходимость учета работы систем противопожарной защиты, способных качественно изменить картину пожара, и т.д.).

При использовании интегральной и зонной моделей для помещения, один из линейных размеров которого более чем в пять раз превышает хотя бы один из двух других линейных размеров, необходимо это помещение делить на участки, размеры которых соизмеримы между собой, и рассматривать участки как отдельные помещения, сообщающиеся проемами, площадь которых равна площади сечения на границе участков. Использование аналогичной процедуры в случае, когда два линейных размера превышают третий более чем в 5 раз, не допускается.

III. Интегральная математическая модель расчета газообмена в здании, при пожаре

(в ред. Приказа МЧС России от 12.12.2011 N 749)

Для расчета распространения продуктов горения по зданию составляются и решаются уравнения аэрации, тепло- и массообмена как для каждого помещения в отдельности, так и для всего здания в целом.

Уравнения движения, связывающие значения перепадов давлений на проемах с расходами газов через проемы, имеют вид:

$$G_{ji} = signig(\Delta P_{ji}ig)\cdot \xi\cdot F\cdot \sqrt{2\cdot \rho\cdot ig|\Delta P_{ji}ig|}$$
 , (П6.3)

где G_{ii} - расход газов через проем между двумя (j-м и i-м) смежными помещениями, кг/с;

 ξ - коэффициент расхода проема ($\xi=0,8$ для закрытых проемов и $\xi=0,64$ для открытых);

F - площадь сечения проема, м2;

ho - плотность газов, проходящих через проем, кг/м3;

 ΔP_{ji} - средний перепад полных давлений между j-м и i-м помещением, Па.

Направление (знак) расхода определяется знаком разности давлений ΔP_{ii} .

В зависимости от этого плотность ρ принимает различные значения.

Знак расхода газов (входящий в помещение расход считается положительным, выходящий - отрицательным) и значение ρ зависят от знака перепада давлений:

$$sign(\Delta P), \rho = \begin{cases} -1, \rho = \rho_{\rm j}, \text{ при } \Delta P < 0 \\ +1, \rho = \rho_{\rm i}, \text{ при } \Delta P > 0 \end{cases}$$
 (П6.4)

Для прогнозирования параметров продуктов горения (температуры, концентраций токсичных компонентов продуктов горения) в помещениях многоэтажного здания на этажах, расположенных выше этажа, на котором может возникнуть пожар, рассматриваются процессы распространения продуктов горения в вертикальных каналах (лестничные клетки, шахты лифтов, вентканалы и т.п.).

Вертикальную шахту по высоте разделяют на зоны, которые представляют узлы в гидравлической схеме здания. Зона по высоте может охватывать несколько этажей здания. В этом случае расход газа между зонами можно выразить формулой вида:

$$G = \sqrt{\frac{\Delta p}{S}}$$
 , (П6.5)

где $S = \frac{1}{2 \cdot g \cdot \rho \cdot k \cdot F^2}$ - характеристика гидравлического сопротивления на границе зон;

F - площадь поперечного сечения шахты;

k - коэффициент (допускается принимать равным 0,05 c2/м);

g = 9,81 м/c2 - ускорение свободного падения;

 Δp - перепад давлений между узлами.

Здание представляют в виде гидравлической схемы, узлы которой моделируют помещения, а связи - пути движения продуктов горения и воздуха. Каждое помещение здания описывается системой уравнений, состоящей из уравнения баланса массы, уравнения сохранения энергии и уравнения основного газового закона (Менделеева-Клайперона).

Уравнение баланса массы выражается формулой:

$$d \Big(\rho_j \cdot V_j \Big) / \, dt = \psi + \sum_k G_k \, - \! \sum_i G_i$$
 , (П6.6)

где $\,V_{_{j}}\,$ - объем помещения, м3;

t - время. c:

 $\sum_k G_k$ - сумма расходов, входящих в помещение, кг/с;

 $\sum_{i}G_{i}\,$ - сумма расходов, выходящих из помещения, кг/с;

 ψ - скорость выгорания пожарной нагрузки, кг/с.

Уравнение сохранения энергии выражается формулой:

$$d\Big(C_{_{\boldsymbol{v}}}\cdot\boldsymbol{\rho}_{_{j}}\cdot\boldsymbol{V}_{_{j}}\cdot\boldsymbol{T}_{_{j}}\Big)/dt = C_{_{\boldsymbol{p}}}\cdot\sum_{_{\boldsymbol{k}}}\Big(T_{_{\boldsymbol{k}}}\cdot\boldsymbol{G}_{_{\boldsymbol{k}}}\Big) - C_{_{\boldsymbol{p}}}\cdot\boldsymbol{T}_{_{j}}\cdot\sum_{_{i}}\boldsymbol{G}_{_{i}} + Q_{_{\boldsymbol{\Gamma}}} - Q_{_{\boldsymbol{w}}}\text{ , (\Pi6.7)}$$

где $C_{_{v}}$, $C_{_{p}}$ - удельная изохорная и изобарная теплоемкости, кДж/(кг·К);

 $T_{\!_{i}}$, $T_{\!_{i}}$ - температуры газов в і-м и ј-м помещениях, К;

 \mathbf{Q}_Γ - количество тепла, выделяемого в помещении при горении, кВт;

 ${
m Q}_{
m w}$ - тепловой поток, поглощаемый конструкциями и излучаемый через проемы, кВт.

Для помещения очага пожара величина $\,Q_{\Gamma}\,$ определяется по формуле:

$$Q_{\Gamma} = (\eta \cdot Q_{_{H}} + I) \psi ,$$

где η - коэффициент полноты горения;

 $Q_{\!\scriptscriptstyle H}$ - низшая теплота сгорания, кДж/кг;

 $I=\mathrm{c}_{_{\mathrm{D}}}\cdot\mathrm{T}\,$ - энтальпия газифицированной горючей нагрузки, кДж/кг;

 ${\tt C}_{\tt n}$ - удельная теплоемкость продуктов пиролиза, кДж/(кг·К);

Т - температура продуктов пиролиза, К.

Для остальных помещений $\mathbf{Q}_{\scriptscriptstyle \Gamma}=0$.

Коэффициент полноты горения η определяется по формуле:

$$\eta=\eta_0\cdot K+\cdotig(1\!-\!Kig)rac{\displaystyle\sum_k X_{ox,k}\cdot G_k}{\psi\cdot L_{ox}}$$
 , (Пб.8)

где η_0 - коэффициент полноты горения в режиме пожара, регулируемом горючей нагрузкой, определяемый формулой:

$$\eta_0 = 0.63 + 0.2 \cdot X_{ox.0} + 1500 \cdot X_{ox.0}^6$$
. (П6.9)

Коэффициент К рассчитывается по формуле:

$$K = \left(rac{X_{ox,m}}{X_{ox,0}}
ight)^{\!B} \exp\!\left(B \cdot \left(1 - rac{X_{ox,m}}{X_{ox,0}}
ight)
ight)$$
, (Пб.10)

где
$$B = \left(\frac{X_{ox,0}}{X_{ox,0} - 0.01}\right)^2$$
;

 $X_{\mathit{ox},0}$ - начальная концентрация кислорода в помещении очага пожара, кг/кг;

 $X_{{\scriptscriptstyle ox,m}}$ - текущая концентрация кислорода в помещении очага пожара, кг/кг;

 ${
m L_{ox}}\,$ - количество кислорода, поглощаемого при сгорании 1 кг горючей нагрузки, кг/кг.

Уравнение Менделеева-Клайперона выражается формулой:

$$P_{\mathrm{j}} =
ho_{\mathrm{j}} \cdot T_{\mathrm{j}} \cdot rac{R}{M}$$
 , (Пб.11)

где $\,P_{j}\,$ - давление газа в j-м помещении, Па;

 $T_{\rm i}$ - температура газа в ј-м помещении, K;

R = 8,31 - универсальная газовая постоянная, Дж/(моль·К);

М - молярная масса газа, моль.

Параметры газа в помещении определяются из уравнения баланса масс отдельных компонентов продуктов горения и кислорода и уравнения баланса оптической плотности дыма.

Уравнение баланса масс отдельных компонентов продуктов горения и кислорода:

$$d\Big(X_{L,j}\cdot\rho_j\cdot V_j\Big)/\,dt = \psi\cdot L_L + \sum_k \Big(X_{L,k}\cdot G_k\,\Big) - X_{L,j}\cdot \sum_i G_i \text{ , (П6.12)}$$

где $X_{L,i}$, $X_{L,j}$ - концентрация L-го компонента продуктов горения в i-м и j-м помещениях, кг/кг;

 $L_{\rm L}$ - количество L-го компонента продуктов горения (кислорода), выделяющегося (поглощающегося) при сгорании одного килограмма пожарной нагрузки, кг/кг.

Уравнение баланса оптической плотности дыма:

$$V_{_{j}}\cdot d\mu_{_{j}}\,/\,dt=\psi\cdot D_{_{m}}+\sum_{_{k}}\left(\mu_{_{k}}\cdot G_{_{k}}\right)\!/\,\rho_{_{k}}-\!\mu_{_{j}}\cdot\sum_{_{i}}G_{_{i}}\,/\,\rho_{_{j}}\,\text{, (\Pi6.13)}$$

где $\,\mu_{i}$, $\,\mu_{j}\,$ - оптическая плотность дыма в i-м и j-м помещениях, $\,H\pi\cdot {\text{M}}^{\text{-}1}\,$;

 D_{m} - дымообразующая способность пожарной нагрузки, $\mathrm{Hn}\cdot\mathrm{m}2/\mathrm{kr}.$

Оптическая плотность дыма при обычных условиях связана с расстоянием предельной видимости в дыму формулой:

$$l_{\text{ind}} = 2{,}38/\mu$$
 . (П6.14)

Для помещений без источника тепла система уравнений (Пб.6), (Пб.7) и (Пб.8) упрощается и представляется в виде:

$$\begin{cases} G_{ij}(\tau) = sign\left(\Delta P_{ij}\left(\tau\right)\right) \cdot \mu \cdot F \cdot \sqrt{2 \cdot \rho_k \cdot \left|\Delta P_{ij}\left(\tau\right)\right|} \\ \sum_{i=1}^{n} \frac{G_{ij}(\tau)}{\rho_k} = 0 \end{cases}, (\Pi6.15)$$

где
$$\rho_{k} = \frac{1}{2} \cdot \left[\rho_{i} + sign\left(\Delta P_{ij}\right) \cdot \rho_{i} + \rho_{j} - sign\left(\Delta P_{ij}\right) \cdot \rho_{j} \right].$$

Первое уравнение связывает перепады давлений на соединяющих помещение проемах с расходом газа через эти проемы. Второе - выражает постоянство объема для данного помещения. Таким образом, для всего здания требуется решать систему, состоящую из $(m_{rc}+m_{gc})\cdot n_{gt}$ нелинейных уравнений вида (П6.12) и $n_y\cdot n_{gt}$ линейных уравнений вида (П6.13). Здесь m_{rc} и m_{gc} - соответственно число горизонтальных и вертикальных связей на этаже; n_y - число узлов; n_{gt} - число этажей.

Система уравнений, включающая в себя уравнения ($\Pi6.6$), ($\Pi6.7$) для помещения очага пожара и ($\Pi6.12$), ($\Pi6.13$) для остальных помещений и уравнение ($\Pi6.11$), описывающая гидравлическую схему здания, решается численно методом итерации в совокупности с методом секущих.

Основные уравнения для определения температуры газа и концентрации продуктов горения в помещениях здания получены из уравнений сохранения энергии и массы.

Температура газа в помещении, где отсутствует очаг пожара, определяется из уравнения теплового баланса, которое можно получить из уравнения сохранения энергии (П6.7). Формула для определения температуры газа в j-м помещении здания в "n"-ый момент времени:

$$T_{nj} = \frac{\sum_{k=1}^{n} (C_{PB} \cdot G_{k} \cdot T_{k}) + Q_{j}}{C_{vz} \cdot \left(\sum_{k=1}^{n} G_{k} - \sum_{i=1}^{m} G_{i}\right) + C_{pz} \cdot \sum_{i=1}^{m} G_{i} + \alpha *_{jn} \cdot F_{jn} + \alpha *_{jct} \cdot F_{jct}} + \left[\frac{\sum_{k=1}^{n} (C_{PB} \cdot G_{k} \cdot T_{k}) + Q_{j}}{C_{vz} \cdot \left(\sum_{k=1}^{n} G_{k} - \sum_{i=1}^{m} G_{i}\right) + C_{pz} \cdot \sum_{i=1}^{m} G_{i} + \alpha *_{jn} \cdot F_{jn} + \alpha *_{jct} \cdot F_{jct}} \right] \cdot , (\Pi6.16)$$

$$\cdot \exp \left[-\frac{C_{vz} \cdot \left(\sum_{k=1}^{n} G_{k} - \sum_{i=1}^{m} G_{i}\right) + C_{pz} \cdot \sum_{i=1}^{m} G_{i} + \alpha *_{jn} \cdot F_{jn} + \alpha *_{jct} \cdot F_{jct}}{C_{vz} \cdot \rho_{j} \cdot V_{j}} \cdot \Delta \tau \right]$$

где $\,Q_{\scriptscriptstyle j}\,$ - сумма источников (стоков) тепла в объеме ј-го помещения и тепла, уходящего в ограждающие конструкции;

$$lpha^* = lpha \cdot \left[rac{T\left(au
ight) - T_{
m w}\left(au
ight)}{T\left(au
ight) - T_{
m 0}}
ight]$$
 - приведенный коэффициент теплоотдачи;

 $\mathbf{T}_{\!\scriptscriptstyle 0}\,$ - начальная температура в помещении;

 $F_{
m icr}\,$ - площадь поверхности ограждающих конструкций в j-м помещении.

Коэффициент теплоотдачи α может быть рассчитан по эмпирической формуле:

$$\alpha = \begin{cases} 4,07 \cdot \sqrt[3]{T_{\rm m} - T_{\rm w}} & \text{при } T_{\rm m} \leq 60 \text{ °C} \\ 11,63 \cdot \exp \left[0,0023 \cdot \left(T_{\rm m} - T_{\rm 0} \right) \right] & \text{при } T_{\rm m} > 60 \text{ °C} \end{cases}. \text{ (П6.17)}$$

Концентрация отдельных компонентов газовых смесей в помещениях здания вычисляется из уравнения баланса массы данного компонента (П6.12). Концентрация L-го компонента продуктов горения в j-м помещении в "n"-ый момент времени определяется уравнением:

$$X_{Lj(n)} = \frac{\displaystyle\sum_{k=1}^{n} \left(X_{Lk} \cdot G_{k}\right)}{\displaystyle\sum_{k=1}^{n} G_{k}} + \left(X_{Lj(n-1)} - \frac{\displaystyle\sum_{k=1}^{n} \left(X_{Lk} \cdot G_{k}\right)}{\displaystyle\sum_{k=1}^{n} G_{k}}\right) \cdot exp \left(-\frac{\displaystyle\sum_{k=1}^{n} G_{k}}{\rho_{j} \cdot V_{j}} \cdot \Delta \tau\right). \text{ (\Pi6.18)}$$

Оптическая концентрация дыма в помещениях определяется из балансового уравнения (П6.19). Натуральный показатель ослабления среды в j-ом помещении в "n"-ый момент времени определяется уравнением:

$$\mu_{(n)j} = \frac{\displaystyle\sum_{k=1}^{n} \left(\mu_{k} \cdot G_{k}\right)}{\displaystyle\sum_{k=1}^{n} G_{k}} + \left(\mu_{(n-1)j} - \frac{\displaystyle\sum_{k=1}^{n} \left(\mu_{k} \cdot G_{k}\right)}{\displaystyle\sum_{k=1}^{n} G_{k}}\right) \cdot exp\left(-\frac{\displaystyle\sum_{k=1}^{n} G_{k}}{\rho_{j} \cdot V_{j}} \cdot \Delta\tau\right). \text{ (П6.19)}$$

Аналитические соотношения для определения критической продолжительности пожара

Для одиночного помещения высотой не более 6 м, удовлетворяющего условиям применения интегральной модели, при отсутствии систем противопожарной защиты, влияющих на развитие пожара, допускается определять критические времена по каждому из опасных факторов пожара с помощью аналитических соотношений:

по повышенной температуре

$$\mathbf{t}_{\mathrm{kp}}^{\mathrm{T}} = \left\{ \frac{\mathbf{B}}{\mathbf{A}} \cdot \ln \left[1 + \frac{70 - \mathbf{t}_0}{(273 + \mathbf{t}_0) \cdot \mathbf{z}} \right] \right\}^{\frac{1}{n}}, (\text{\Pi6.20})$$

по потере видимости

$$t_{_{KP}}^{_{^{\mathrm{II.B.}}}} = \left\{ \frac{B}{A} \cdot ln \left[1 - \frac{V \cdot ln(1,05 \cdot \alpha \cdot E)}{l_{_{np}} \cdot B \cdot D_{_{m}} \cdot z} \right]^{-1} \right\}^{\frac{1}{\prime}_{n}}, (\Pi6.21)$$

по пониженному содержанию кислорода

$$t_{\text{kp}}^{O_2} = \left\{ \frac{B}{A} \cdot \ln \left[1 - \frac{0,044}{\left(\frac{B \cdot L_{O_2}}{V} + 0,27 \right) \cdot z} \right]^{-1} \right\}^{\frac{1}{n}}, (\Pi6.22)$$

по каждому из газообразных токсичных продуктов горения

$$\mathbf{t}_{\mathrm{kp}}^{\scriptscriptstyle\mathrm{T.F.}} = \left\{ \frac{\mathrm{B}}{\mathrm{A}} \cdot \ln \left[1 - \frac{\mathrm{V} \cdot \mathrm{X}}{\mathrm{B} \cdot \mathrm{L} \cdot \mathrm{z}} \right]^{-1} \right\}^{\frac{1}{n}}, \, (\Pi6.23)$$

где $B = \frac{353 \cdot c_p \cdot V}{(1-\varphi) \cdot \eta \cdot Q_H}$ - размерный комплекс, зависящий от теплоты сгорания материала

и свободного объема помещения, кг;

 ${\bf t}_{\rm o}$ - начальная температура воздуха в помещении, °C;

n - показатель степени, учитывающий изменение массы выгорающего материала во времени;

A - размерный параметр, учитывающий удельную массовую скорость выгорания горючего материала и площадь пожара, $\mathrm{K}\Gamma/\mathrm{c}^{\mathrm{n}}$;

Z - безразмерный параметр, учитывающий неравномерность распределения ОФП по высоте помещения;

 $Q_{\rm H}\,$ - низшая теплота сгорания материала, МДж/кг;

 $\mathrm{C_p}$ - удельная изобарная теплоемкость дымовых газов, МДж/(кг·К) (допускается принимать равной теплоемкости воздуха при 45 °C);

arphi - коэффициент теплопотерь (принимается по данным справочной литературы, при отсутствии данных может быть принят равным 0,55);

η - коэффициент полноты горения (определяется по формуле П6.9);

V - свободный объем помещения, м3;

а - коэффициент отражения предметов на путях эвакуации;

Е - начальная освещенность, лк;

 $\mathbf{l}_{ ext{ iny ID}}$ - предельная дальность видимости в дыму, м;

 ${
m D}_{
m m}$ - дымообразующая способность горящего материала, Нп \cdot м2/кг;

L - удельный выход токсичных газов при сгорании 1 кг материала, кг/кг;

X - предельно допустимое содержание токсичного газа в помещении, $\mbox{K}\mbox{\Gamma}/\mbox{M}^{-3}$ ($\mbox{X}_{\rm CO_2}=0{,}11$ кг/м3; $\mbox{X}_{\rm CO}=1{,}16\cdot 10^{-3}$ кг/м3; $\mbox{X}_{\rm HCL}=23\cdot 10^{-6}$ кг/м3);

 $L_{\Omega_{\alpha}}$ - удельный расход кислорода, кг/кг.

Если под знаком логарифма получается отрицательное число, то данный ОФП не представляет опасности.

Параметр z вычисляют по формуле:

$$z = \frac{h}{H} \cdot exp \left(1, 4 \cdot \frac{h}{H} \right)$$
 при $H \le 6$ м, (п6.24)

где h - высота рабочей зоны, м;

Н - высота помещения, м.

Определяется высота рабочей зоны:

$$h = h_{\text{HI}} + 1,7 - 0,5 \cdot \delta$$
 , (П6.25)

где $\,h_{_{\rm III}}\,$ - высота площадки, на которой находятся люди, над полом помещения, м;

 δ - разность высот пола, равная нулю при горизонтальном его расположении, м.

Следует иметь в виду, что наибольшей опасности при пожаре подвергаются люди, находящиеся на более высокой отметке. Поэтому, например, при определении необходимого времени эвакуации людей из партера зрительного зала с наклонным полом значение h следует находить, ориентируясь на наиболее высоко расположенные ряды кресел. Параметры A и n вычисляют так:

для случая горения жидкости с установившейся скоростью:

$$A = \frac{0.67 \cdot \psi_{yo} \cdot F}{\sqrt{t_{cm}}} \quad n = 1.5,$$

для кругового распространения пожара:

$$A = 1,05 \cdot \psi_{\text{VM}} \cdot V^2 \text{ n = 3,}$$

где V - линейная скорость распространения пламени, м/с;

для вертикальной или горизонтальной поверхности горения в виде прямоугольника, одна из сторон которого увеличивается в двух направлениях за счет распространения пламени (например, распространение огня в горизонтальном направлении по занавесу после охвата его пламенем по всей высоте):

$$A = \psi_{VX} \cdot V \cdot b$$
 n = 2,

где b - перпендикулярный к направлению движения пламени размер зоны горения, м. При отсутствии специальных требований значения а и E принимаются равными 0,3 и 50 лк соответственно, а значение $1_{\rm mp}=20\,$ м.

IV. Математическая двухзонная модель пожара в здании

При решении задач с использованием двухзонной модели пожар в здании характеризуется усредненными по массе и объему значениями параметров задымленной зоны:

Т - температура среды в задымленной зоне, К;

мю - оптическая плотность дыма, Нп/м;

х - массовая концентрация і-того токсичного продукта горения в
і
задымленной зоне, кг/кг;
 х - массовая концентрация кислорода, кг/кг;

Z - высота нижней границы слоя дыма, м.

В свою очередь перечисленные параметры выражаются через основные интегральные параметры задымленной зоны с помощью следующих формул:

$$T$$
 $Q = \text{интеграл m x c (T) x dT,}$
 0
 p
(П6.26)

$$m$$
 m i κ $x = --, x = --, i$ m κ m m

$$MEO = \frac{S}{--},$$
 V
 Π
 Π

$$po = {\begin{array}{*{20}{c}} & V \\ m & \mu \\ --, Z = H - --, \\ V & A \end{array}}$$
 (П6.29)

где m, m - общая масса дыма и соответственно i-го токсичного продукта i горения в задымленной зоне, кг; m - масса кислорода в задымленной зоне, кг; к

Q - энтальпия продуктов горения в задымленной зоне, кДж; з S - оптическое количество дыма, $\rm Hn \ x \ M2$; $\rm po$ - плотность дыма при температуре T, $\rm kr/M3$; $\rm V$ - объем задымленной зоны, $\rm M3$; $\rm H$, $\rm A$ - высота и площадь помещения, $\rm M$; $\rm c$ - удельная теплоемкость дыма, $\rm kДж/(K \ x \ kr)$.

Динамика основных интегральных параметров задымленной зоны определяется интегрированием системы следующих балансовых уравнений:

общей массы компонентов задымленной зоны с учетом дыма, вносимого в зону конвективной колонкой и дыма, удаляемого через проемы в соседние помещения:

dm
$$-- = G - G$$
, $(\Pi6.30)$ dt $K \Pi$

где t - текущее время, c;

G , G - массовый расход дыма соответственно через конвективную колонку К Π

и открытые проемы в помещении, кг/с;

энтальпия компонентов задымленной зоны с учетом тепла, вносимого в зону конвективной колонкой, теплоотдачи в конструкции и уноса дыма в проемы:

$$dQ$$
-- = Q - Q - Q , ($\Pi 6.31$)
 $dt \quad K \quad \Pi \quad KOH$

где Q , Q , Q — тепловая мощность, соответственно вносимая в К П кон задымленную зону конвективной колонкой, удаляемая с дымом через открытые проемы и теряемая в конструкции, кВт;

массы кислорода с учетом потерь на окисление продуктов пиролиза горючих веществ:

$$\frac{\mathrm{d}m_{_{ox}}}{\mathrm{d}t}=0,23\cdot\left(\mathrm{G_{_{K}}}-\eta\cdot\psi\cdot\mathrm{L_{_{ox}}}\right)-\mathrm{x_{_{ox}}\cdot\mathrm{G}_{_{\Pi}}}$$
 , (П6.32)

(в ред. Приказа МЧС России от 12.12.2011 N 749)

η - полнота сгорания горючего материала, кг/кг;

(в ред. Приказа МЧС России от 12.12.2011 N 749)

 ψ - скорость выгорания горючего материала, кг/с;

(в ред. Приказа МЧС России от 12.12.2011 N 749)

 $L_{\rm ox}\,$ - потребление кислорода при сгорании единицы массы горючего материала, кг/кг; (в ред. Приказа МЧС России от 12.12.2011 N 749)

оптического количества дыма с учетом дымообразующей способности горящего материала: (в ред. Приказа МЧС России от 12.12.2011 N 749)

$$rac{\mathrm{dS}}{\mathrm{d}t} = \psi \cdot D_{\scriptscriptstyle m} - G_{\scriptscriptstyle II} \cdot rac{\mu}{
ho}$$
 , (П6.33)

(в ред. Приказа МЧС России от 12.12.2011 N 749)

где D_m - дымообразующая способность горючего материала, Hп/(м $2\cdot$ кг); (в ред. Приказа МЧС России от 12.12.2011 N 749) массы і-го токсичного продукта горения:

dm
$$i$$
 $--- = \pi C M \times L - X \times G$, ($\pi 6.34$) dt i i π

где L - массовый выход i-го токсичного продукта горения, кг/кг. i

Масса компонентов дыма G , вносимых в задымленную зону конвективной κ

колонкой, оценивается с учетом количества воздуха, вовлекаемого в конвективную колонку по всей ее высоте до нижней границы слоя дыма. В инженерных расчетах расход компонентов дыма через осесимметричную конвективную колонку на высоте нижнего уровня задымленной зоны \mathbf{Z} (в зависимости от того, какая область конвективной колонки или факела погружена в задымленную зону) задается полуэмпирической формулой:

где Q - мощность очага пожара, кВт.

Динамика параметров очага пожара определяется развитием площади горения с учетом сложного состава горючих материалов, их расположения, места возникновения очага пожара и полноты сгорания:

$$\mathbf{Q} = \boldsymbol{\eta} \cdot \boldsymbol{\psi}_{\mathbf{y}\mathbf{I}} \cdot \boldsymbol{Q}_{\!\scriptscriptstyle H} \cdot \boldsymbol{F} \left(\mathbf{t}\right)$$
. (П6.36)

(в ред. Приказа МЧС России от 12.12.2011 N 749)

Потери тепла в ограждающие конструкции рассчитываются с учетом температуры горячей струи T , скорости и излучательной способности струи, c омывающей конструкции и прогрева самой i-й конструкции T (у) по толщине у. i Для этого численно интегрируется нестационарное уравнение Фурье:

с граничными и начальными условиями:

где альфа , альфа – соответственно конвективный и лучистый коэффициент к л теплоотдачи, Вт/(м2 x K);

дельта - толщина ограждающей конструкции, м;

C(T) - теплоемкость материала конструкции при температуре T(y), Дж /(кг2 x °K);

лямбда(T) - теплопроводность материала конструкции при температуре T(y), $BT/(M \times {}^{\circ}K)$; T , T — температура соответственно обогреваемой части конструкции и

среды у необогреваемой поверхности, К;

ро - плотность материала конструкции, кг/м.

Тепловые и массовые потоки через проем в каждый момент времени рассчитываются с учетом текущего перепада давления по высоте проема, состава и температуры газовой среды по обе стороны проема (схема расчета на рис. Пб.1). Так, массовый расход дыма из помещения очага пожара в соседнее помещение рассчитывается следующим образом:

где В - ширина проема, м;

кси - аэродинамический коэффициент проема;

P(h) - P (h) - разница давлений в помещениях на высоте h;
$$_2$$

ро - плотность дыма в задымленной зоне соседнего помещения при температуре дыма Т.

Рис. Пб.1. Массопотоки через проем

Пределы интегрирования Y и Y выбираются в пределах створа проема, мах min слоя дыма помещения очага пожара и там, где избыточное давление Дельта P = (P(h) - P(h)) > 0, как это указано на рис. $\Pi6.1$.

Необходимая для оценки перепада давления по створу проема зависимость давления от высоты в i-м помещении (с учетом задымленной зоны этого помещения) оценивается как:

$$P_{i}\left(h\right) = \begin{cases} P_{i0} - \rho_{o} \cdot g \cdot h & \text{если } h \leq Z_{i} \\ P_{i0} - \rho_{o} \cdot g \cdot Z_{i} - \rho_{i} \cdot g \cdot h & \text{если } h > Z_{i} \end{cases} , (\Pi6.42)$$

(в ред. Приказа МЧС России от 12.12.2011 N 749)

где P - текущее давление в i-м помещении на нулевой отметке (или i0 приведенное к нулевой отметке, если уровень пола помещения выше нулевой отметки); ро - плотность воздуха при начальной температуре Т;

ро — плотность воздуха при начальной температуре
$$T$$
; 0 0 Z — текущая высота незадымленной зоны в $i-м$ помещении. i

Рассчитанные параметры тепломассообмена в проеме используются как граничные условия для соседнего помещения.

V. Полевой метод моделирования пожара в здании

Основой для полевых моделей пожаров являются уравнения, выражающие законы сохранения массы, импульса, энергии и масс компонентов в рассматриваемом малом контрольном объеме.

Уравнение сохранения массы:

dpo d
--- + --- (po x u) = 0.
dt dx j
(
$$\pi$$
6.43)

Уравнение сохранения импульса:

Для ньютоновских жидкостей, подчиняющихся закону Стокса, тензор вязких напряжений определяется формулой:

Уравнение энергии:

Т где
$$h = h$$
 + интеграл c dT + SUM $(Y \times H)$ - статическая энтальпия 0 T p k k k

смеси;

H - теплота образования k-го компонента; k c = SUM Y x c - теплоемкость смеси при постоянном давлении; p k k p,k R q - радиационный поток энергии в направлении x .

Уравнение сохранения химического компонента k:

Для замыкания системы уравнений (Пб.43) - (Пб.47) используется уравнение состояния идеального газа. Для смеси газов оно имеет вид:

$$p = po \times R \times T \times SUM --,$$

$$0 \qquad k M$$

$$k$$
(\Pi6.48)

где R — универсальная газовая постоянная; 0 M — молярная масса k-го компонента. k