Projektowanie algorytmów i metody sztucznej inteligencji - Raport 1

Damian Ryś

15 kwietnia 2021

Spis treści

1	Wst	·ę p	1
2	Zadanie		1
3	Kolejka Priorytetowa		
	3.1	Czym jest kolejka priorytetowa?	2
	3.2	Zalety i wady	2
	3.3	Implementacja	2
	3.4	Złożoności obliczeniowe	2
	3.5	Testy	2
4	4 Wnioski		3
5	5 Bibliografia		3

1 Wstęp

Grupa lab: E12-93c zmien

Termin zajęć: PN 18:45-20:35 Numer indeksu: 252936

Prowadzący: Dr inż. Piotr Ciskowski

2 Zadanie

Postawionym pzed nami problemem jest wysłanie przez użytkownika A do użytkownika B wiadomości przez Internet. wiadomość ta powinna zostać wysłana w serii pakietów na komputer użytkownika B. Problem polega w tym, że pakiety mogą przychodzić z różnych przycznym w losowej kolejności do użytkownika B. Nasz program powinien zatem:

1. Podzielić naszą wiadomość na szereg pakietów

- 2. Przelosować pakiety w celu zasymulowania sytuacji
- 3. Wczytać do struktury danych nasze pakiety
- 4. Przesyłać pakiety w foramcie [klucz,wartość]
 - (a) klucz powininen mieć unikalną wartość
 - (b) wartość powinna być dowolnego typu (użytkownik powinine mieć możliwość przesłania dowolnej wiadomości)
- 5. Złaczyć wiadomość w jedną, prawidłową całość i wyświetlić użytkownikowi

3 Kolejka Priorytetowa

Wobec postawionego problemu strukturą ADT, którą wybrałem jest kolejka priorytetowa bazowana na drzewie binarnym.

3.1 Czym jest kolejka priorytetowa?

3.2 Zalety i wady

Strukturę tą wybrałem ze względu na:

- Łatwość implementacji
- Złożoność czasową lepszą niż O(n) dla uzyskania min oraz max
- Dynamiczną alokację danych

3.3 Implementacja

3.4 Złożoności obliczeniowe

Dla naszego programu zgodnie z załozeniami projektowymi zostały obliczene złożoności czasowe poszczególnych funkcji naszej struktury: //przykład

Tak przedstawia się reszta złożoności oblicziowych naszej struktury: //tabelka

Nasze wyniki pokrywają się z danymi dostępnymi w internecie // jakiś ref // ,zatem uznaje , że kolejka została zaimplementowana prawidłowo.

3.5 Testy

Za bazę naszych testów posłużyły nam "polskie copy pasty". Teksty zostały podzielone,następnie wymieszane, załadowane do strktury, by finalnie zostały posortowane i złączone w jedną całość w osobnym pliku wynikowym. Na poniższym przykładzie został zaprezentowany cykl życia naszego pliku.

Program finalnie przeszedł testy na bazie większej ilości plików i był w stanie prawidłowo odtwrzyć plik, zatem uznaje, że program działa prawidłowo.

4 Wnioski

5 Bibliografia

https://bradfieldcs.com/algos/trees/priority-queues-with-binary-heaps/