Отчёт по лабораторной работе 4

Вычисление наибольшего общего делителя

Гурбангельдиев Мухаммет НФИ-01-22

Содержание

1	Цель работы	5
2	Теоретические сведения	6
3	Выполнение лабораторной работы	8
4	Выводы	13
5	Список литературы	14

List of Tables

List of Figures

3.1	Функция для вычисления алгоритма Евклида	8
3.2	Функция для вычисления бинарного алгоритма Евклида	9
3.3	Функция для вычисления вычисления расширенного алгоритма	
	Евклида	10
3.4	Функция для вычисления расширенного бинарного алгоритма Ев-	
	клида. Первая часть	11
3.5	Функция для вычисления расширенного бинарного алгоритма Ев-	
	клида. Вторая часть	12
3.6	Результат алгоритмов	12

1 Цель работы

Реализация алгоритмов вычисления наибольшего общего делителя (Евклида).

2 Теоретические сведения

Алгоритм Евклида — это способ нахождения наибольшего общего делителя (НОД) двух целых чисел. Оригинальная версия алгоритма, когда НОД находится вычитанием, была открыта Евклидом (III в. до н. э). В настоящее время чаще при вычислении НОД алгоритмом Евклида используют деление, так как данный метод эффективнее.

Вычисление НОД делением

Наибольший общий делитель пары чисел – это самое большое число, которое нацело делит оба числа пары. Пусть требуется вычислить НОД для чисел 108 и 72. Алгоритм вычисления делением будет таковым:

- 1. Разделим большее число (делимое) на меньшее (делитель): 108 / 72 = 1, остаток 36.
- 2. Поскольку остаток не был равен нулю, то сделаем делитель делимым, а остаток делителем: 72 / 36 = 2, остаток 0.
- 3. Когда остаток равен нулю, то делитель является искомым НОД для пары заданных чисел. То есть НОД(108, 72) = 36. Действительно, 108 / 36 = 3 и 72 / 36 = 2.[1]

Расширенный алгоритма Евклида

Расширенным алгоритм называется не из-за более высокой скорости работы или более сложной реализации, а потому что он позволяет извлекать из входных данных дополнительную информацию.

Расширенный алгоритм также находит наибольший общий делитель, а ещё он определяет два коэффициента x и y, такие что:

ax + by = gcd(a,b), где gcd - это функция по нахождения НОД.

Иными словами, алгоритм находит наибольший делитель и его линейное представление.

gcd – это аббревиатура, которую часто используют для обозначения функции по назначению НОД:

- g Greatest (наибольший);
- c Common (общий);
- d Divisor (делитель).

Бинарный алгоритм Евклида

Суть бинарного алгоритма точно такая же — найти наибольший делитель. От классического он отличается только способом реализации.

Вместо классических арифметических операций, в бинарном алгоритме Евклида используются только битовые сдвиги влево и вправо, которые соответствуют умножению и делению на 2.[2]

3 Выполнение лабораторной работы

1. Написал функцию evklid nod для вычисления алгоритма Евклида. (рис. 3.1)

Алгоритм нахождения НОД делением:

- 1. Большее число делим на меньшее.
- 2. Если делится без остатка, то меньшее число и есть НОД (следует выйти из цикла).
- 3. Если есть остаток, то большее число заменяем на остаток от деления.
- 4. Переходим к пункту 1.

```
a=int(input("Enter a: "))
b=int(input("Enter b: "))

def evklid_nod(a,b):
   while a!=0 and b !=0:
    if a > b:
        a = a%b

   else:
        b = b%a
   return a+b

print("Алгоритм Евклида: ", evklid_nod(a,b))
```

Figure 3.1: Функция для вычисления алгоритма Евклида

- 2. Написал функцию evklid_binary для вычисления бинарного алгоритма Евклида. (рис. 3.2)
 - 1. Сначала положим g= 1

- 2. Пока оба числа а и b четные, выполнить $a=\frac{a}{2}$, $b=\frac{b}{2}$, g= 2g до получения хотя одного нечетного значения а или b.
- 3. Положим u=a, v=b
- 4. Пока и ≠0:
 - 1. Пока и четное, полагать $u=\frac{u}{2}$
 - 2. Пока v четное, полагать $v=\frac{v}{2}$
 - 3. При и >v положим u= u-v. В противном случае положим v=v-u
- 5. Положим d=gv
- 6. Получим результат d

```
def evklid_binary(a,b):
  while a%2 == 0 and b%2 == 0:
   a=a/2
   b=b/2
   g=2*g
  v=b
  while u !=0:
   if u % 2 ==0:
     u= u/2
    if v % 2 ==0:
     v = v/2
    if u>=v:
     u=u-v
    else:
     v=v-u
  d= g*v
  return d
print("Бинарный алгоритм Евклида: ",evklid_binary(a,b))
```

Figure 3.2: Функция для вычисления бинарного алгоритма Евклида

3. Написал функцию evklid_extend для вычисления расширенного алгоритма Евклида. (рис. 3.3)

Сначала проверяется, равно ли первое число нулю, если это так, то второе число является делителем, а коэффициенты равны 0 и 1, так как «num1*x + num<math>2*y = y» в том случае, если y = 1, а левое произведение равно нулю.

Функция возвращает три числа: делитель, коэффициент х и коэффициент у.

```
def evklid_extend(a,b):
    if a== 0:
        return(b,0,1)
    else:
        div,x,y= evklid_extend(b%a,a)
    return(div,y-(b//a)*x,x)

print("Расширенный алгоритм Евклида: ",evklid_extend(a,b))
```

Figure 3.3: Функция для вычисления вычисления расширенного алгоритма Евклида.

- 4. Написал функцию evklid_binary_extend для вычисления расширенного бинарного алгоритма Евклида. (рис. 3.4) (рис. 3.5)
 - 1. Сначала положим g= 1
 - 2. Пока оба числа а и b четные, выполнить $a=\frac{a}{2}$, $b=\frac{b}{2}$, g= 2g до получения хотя одного нечетного значения а или b.
 - 3. Положим u=a, v=b, A=1, B= 0, C= 0, D=1.
 - 4. Пока и ≠0:
 - 1. Пока и четное, полагать $u=\frac{u}{2}$
 - 2. Если оба числа A и B четные, полагать $A=\frac{A}{2}$, $B=\frac{B}{2}$. В противном случае положить $A=\frac{A+b}{2}$, $B=\frac{B-a}{2}$
 - 3. Пока v четное, полагать $v=rac{v}{2}$
 - 4. Если оба числа С и D четные, полагать $C=\frac{C}{2}$, $D=\frac{D}{2}$. В противном случае положить $C=\frac{C+b}{2}$, $D=\frac{D-2}{2}$
 - 5. При и >v положим u= u-v, A= A-C, B = B-D. В противном случае положим v=v-u, C= C-A, D= D-B.
 - 5. Положим d=gv, x=C, y=D
 - 6. Получим результат d,х,у

```
def evklid binary extend(a,b):
 g=1
 while a%2 == 0 and b%2 == 0:
    a=a/2
   b=b/2
   g=2*g
  u=a
  v=b
 A=1
  B=0
 C=0
  D=1
  while u !=0:
    if u % 2 ==0:
      u= u/2
      if A%2==0 and B%2==0:
        A=A/2
        B=B/2
      else:
        A=(A+b)/2
        B=(B-a)/2
    if v % 2 ==0:
      v= v/2
      if C%2==0 and D%2==0:
        C=C/2
        D=D/2
```

Figure 3.4: Функция для вычисления расширенного бинарного алгоритма Евклида. Первая часть

Figure 3.5: Функция для вычисления расширенного бинарного алгоритма Евклида. Вторая часть

5. Получил результат (рис. 3.6)

Enter a: 91 Enter b: 105

Алгоритм Евклида: 7

Figure 3.6: Результат алгоритмов

4 Выводы

Реализовал алгоритм вычисления наибольшего общего делителя (Евклида).

5 Список литературы

- 1. Алгоритм Евклида [Электронный ресурс] Режим доступа: https://scienceland.info/algebra8/euclid-algorithm
- 2. Бинарный алгоритм вычисления НОД [Электронный ресурс] Режим доступа: https://intellect.icu/binarnyj-algoritm-vychisleniya-nod-4394