In the Claims:

1. (currently amended) An aluminum alloy containing consisting of at least 0.0001 mass % and not more than 0.01 2 mass % of copper, at least 0.0005 mass % and not more than 3 0.1 mass % of silicon, at least 1.0 mass % and not more than 3.0 mass % of manganese, and at least 0.7 mass % and 5 not more than 1.2 mass % of iron, at least 0.0 mass % and 6 not more than 0.5 mass % of each of at least one additional element selected from a group consisting of chromium, titanium and zirconium, and a remainder containing consisting of aluminum and unavoidable impurities, , and 10 excluding zinc except for an unavoidable amount of zinc 11 12 that may be included in said unavoidable impurities.

Claim 2 (canceled)

- 1 3. (currently amended) The aluminum alloy according to claim 1, further containing wherein a content of each of said at least one additional element selected from a group consisting of is at least 0.01 mass %. and not more than 0.5 mass % of chromium, at least 0.01 mass % and not more than 0.5 mass % of titanium and at least 0.01 mass % and not more than 0.5 mass % of zirconium.
- 1 4. (previously presented) An aluminum alloy foil consisting of
 2 the aluminum alloy according to claim 1, and having a
 3 thickness, elongation and yield strength so selected that

4	the relation between the yield strength YS (N/mm^2) and the
5	thickness X (μ m) satisfies an inequality
6	YS > 28.7 $ln(X)$ - 30 and the relation between the
7	elongation El (%) and the thickness X (μ m) satisfies an
8	inequality El > 0.15X + 3.5.

(withdrawn) A method of preparing the aluminum alloy foil
 according to claim 4, comprising steps of:

heating up an ingot of said aluminum alloy to a temperature of at least 350°C and not more than 580°C;

hot-rolling said ingot of said aluminum alloy at a starting temperature of at least 350°C and not more than 530°C after the heating up thereby obtaining a plate material;

9 cold-rolling said plate material after the hot 10 rolling; and

softening said plate material after the cold rolling.

6. (withdrawn) The method of preparing the aluminum alloy foil according to claim 5, further comprising

a step of retaining said ingot of said aluminum alloy at a temperature of at least 350°C and not more than 580°C for not more than 15 hours after said step of heating up said ingot, and

carrying out said step of hot-rolling said ingot for obtaining said plate material after said holding step.

4296/WFF:ar

8

11

- (withdrawn) The method of preparing the aluminum alloy foil
 according to claim 5, comprising carrying out said step of
 hot-rolling said ingot for obtaining said plate material
 immediately after said step of heating up said ingot.
- (withdrawn) The method of preparing the aluminum alloy foil according to claim 5, wherein said step of softening said plate material includes an operation of retaining said plate material at a temperature of at least 270°C and not more than 380°C for at least one hour and not more than 20 hours.
- 9. (currently amended) An aluminum alloy foil consisting of an 1 aluminum alloy containing consisting of at least 0.0001 2 mass % and not more than 0.01 mass % of copper, at least 3 0.0005 mass % and not more than 0.1 mass % of silicon, at least 1.0 mass % and not more than 3.0 mass % of manganese. and at least 0.7 mass % and not more than 1.2 mass % of iron, at least 0.0 mass % and not more than 0.5 mass % of each of at least one additional element selected from a group consisting of chromium, titanium and zirconium, and 10 remainder containing consisting of aluminum and unavoidable impurities, and excluding zinc except for an 11 12 unavoidable amount of zinc that may be included in said 13 unavoidable impurities, and having a thickness, elongation 14 and yield strength so selected that the relation between 15 the yield strength YS (N/mm 2) and the thickness X (μ m) 16 satisfies an inequality YS > $28.7 \ln(X) - 30$ and the

- relation between the elongation El (%) and the thickness X (μm) satisfies an inequality El > 0.15X + 3.5.
- 1 10. (original) A container consisting of the aluminum alloy foil according to claim 9 and having a thickness of at least 50 μm and not more than 200 μm .
- 1 11. (previously presented) The aluminum alloy according to claim 1, containing more than 1.0 mass % of said manganese.
- 1 12. (previously presented) An article of manufacture,
- said article of manufacture consisting of the aluminum
- 3 alloy according to claim 1, and
- said article of manufacture being an article selected
- from the group consisting of a container, a food wrapping
- foil material, a domestic article, and a decorative
- 7 article.
- 1 13. (previously presented) An aluminum alloy consisting of:
- 2 0.0001 to 0.01 mass % of copper;
- 0.0005 to 0.1 mass % of silicon;
- 1.0 to 3.0 mass % of manganese;
- 0.7 to 1.2 mass % of iron;
- 6 0.0 to 0.5 mass % of each of at least one additional
- 7 element selected from a group consisting of chromium,
- 8 titanium and zirconium; and
- a remainder consisting of aluminum and unavoidable
- trace amounts of unavoidable impurities.

- 1 14. (previously presented) The aluminum alloy according to claim 13, including at least 0.01 mass % of each of at least one said additional element selected from said group.
- 1 15. (previously presented) The aluminum alloy according to claim 13, including not more than an unavoidable trace amount of each said additional element selected from said group.
- 16. (previously presented) An aluminum alloy foil consisting of 1 the aluminum alloy according to claim 13, and having a 2 thickness, elongation and yield strength so selected that 3 the relation between the yield strength YS (N/mm^2) and the thickness Х (µm) satisfies an inequality YS > $28.7 \ln(X) - 30$ and the relation between the elongation El (%) and the thickness X (μ m) satisfies an inequality El > 0.15X + 3.5.
- 1 17. (previously presented) The aluminum alloy according to claim 13, containing more than 1.0 mass % of said manganese.

[RESPONSE CONTINUES ON NEXT PAGE]