Construction d'indicateurs pour détecter des stratégies d'écriture collaborative dans des documents textes

Atelier RJC-EIAH 2022 : Conception et évaluation de tableaux de bord

Anis M. HADDOUCHE **

En collaboration avec :

- ► Fahima DJELLIL **
- Jean-Marie GILLIOT **
- Cédric HAM *
- Christian HOFFMANN *
- Nadine MANDRAN *
- Maria Teresa SEGARRA MONTESINON **
- ** IMT Atlantique ,* Université Grenoble-Alpes

Table des matières

- . Introduction
- II. Création des indicateurs
- III. Detection des stratégies de collaboration
- IV. Perspectives

I - Introduction

- Lors de la conception des tableaux de bords, les enseignants demandent souvent des indicateurs pour suivre la collaboration entre les étudiants.
- Nos travaux nous ont conduits à élaborer des indicateurs pour détecter des stratégies d'écriture collaborative sur des documents textes.
- L'élaboration de ces indicateurs est difficile car il est nécessaire de combiner différents outils de traitement des données et de valider ces indicateurs.
- Notre présentation focalisera sur le processus de construction et de validation des ces indicateurs entre statisticien et enseignants.

Processus de construction Définitions

- Nous nous intéressons à deux stratégies de collaboration:
 - Construction séquentielle sommative :
 - un membre propose un document initial (complet ou pas), les autres ajoutent successivement leurs contribution sans modifier ce qui à été écrit auparavant
 - Construction séquentielle intégrative :
 - un membre propose un document initial (complet ou pas), les autres ajoutent successivement leurs contribution et modifient ce qui à été écrit auparavant
- Nous construisons deux indicateurs pour détecter ces deux stratégies

Processus de construction Comparaison de textes

- Séquentielle : comment mesurer la différence (ou similarité) entre deux séquences de texte ?
- Utilisation de métrique pour les chaines de caractères
- La mesure la plus connue est une mesure « rudimentaire » appelée distance de Levenshtein

Processus de construction Comparaison de textes : distance de Levensthein

- Le coût minimal pour transformer une chaîne A en B en effectuant :
 - Modification
 - Suppression
 - Insertion
- Associer à chaque opération un coût
- La distance (entre 0 et 1) est la somme de ces coûts

Processus de construction Comparaison de textes : Exemple

- Librairie Difflib de Python
- Recherche les plus grandes séquences similaires
- Accorder des tags pour chaque séquence

```
En bleu, on a indiqué les parties communes aux deux textes, en rouge les parties supprimées, en vert les
parties insérées et en orange les parties modifiées.
Texte initial : « LabNbook est une plateforme gratuite, utilisée par plus de 2 800 élèves chaque année, à
l'Université Grenoble-Alpes, Grenoble-INP, dans des collèges, lycées et des CPGE. »
Texte final : «LabNbook est une plateforme open source et gratuite, utilisée par plus de 2 800 étudiants
chaque année, à l'Université Grenoble-Alpes, Grenoble-INP, dans des lycées et des CPGE. »
                         'LabNbook est une plateforme' --> 'LabNbook est une plateforme'
equal
                                                        " --> 'open source et'
insert
equal
                     'gratuite, utilisée par plus de 2 800' --> 'gratuite, utilisée par plus de 2 800'
replace (0.73)
                                                  'élèves' --> 'étudiants'
               'chaque année, à l'Université ... dans des' --> 'chaque année, à l'Université ... dans des'
equal
                                                'collèges,' --> "
delete
                                     'lycées et des CPGE.' --> 'lycées et des CPGE.'
equal
```

Processus de construction Comparaison de textes : difficultés

- Algorithme non robuste à la ponctuation qui nécessite de faire un pré-nettoyage de texte
- D'autres traitements possibles :
 - Lemmatization: Prendre la racine de chaque mot (ex: petites -> petit)
 - Enlever les Stop-words: Mots non significatifs dans le texte (ex: la, de, ce...etc)
- Nous avons décidé de faire uniquement un nettoyage de ponctuation

Processus de construction Comparaison de textes : difficultés

- Comment gérer les formules mathématiques ?
- Il faut d'abord être capable de les détecter :
 - Formule LaTex : utiliser des règles d'occurrences d'expressions régulières (ex : le dollar « \$ » pour le début et la fin d'une formule)
 - Plus difficile quand c'est des formules écrites avec des caractères « textes » (ex : f(x) = ax + b)
 - Des approches statistiques sont possibles comme les HMM (Hiden Markov Chain)
- Une fois les formules détectées, on peut utiliser une comparaison caractère par caractère pour mesurer son évolution (à l'instar des logiciels de « versionning » informatiques comme git)
- Pour l'instant, on s'intéresse uniquement aux documents textes avec très peu de formules

Processus de construction Comparaison de textes : matrice de contribution

- Comment quantifier et agréger cette information pour la rendre exploitables ?
- Construction de matrice de contribution :
 - Pour chaque apprenant on donne un score entre 0 et 1 pour quantifier sa contribution à l'écriture de chaque mot du texte

```
Etudiant n°1 : « LabNbook est une plateforme utilisée à l'Université Grenoble-Alpes et dans des établissements secondaires »

Etudiant n°2 : « LabNbook est une plateforme open source et gratuite, utilisée par près de 3000 élèves tout au long de l'année, à l'Université Grenoble-Alpes »

Etudiant n°1 : « LabNbook est une plateforme open source et gratuite, utilisée par plus de 2800 étudiants chaque année, à l'Université Grenoble-Alpes mais aussi dans des lycées et des CPGE»

Sorties :

Etudiant n°1 : [1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0.5, 0, 0.53, 0.53, 0.53, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Etudiant n°2 : [0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0.5, 1, 0.47, 0.47, 0.47, 0.47, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
```

Processus de construction Comparaison de textes : matrice de contribution

- Soit $x_{i,j,l}$ la contribution de l'auteur i au mot l de la phrase j
- ▶ Ici, $i \in [1,K]$, $j \in [1,N]$ et $l \in [1,n_j]$ où K est le nombre d'auteurs, N le nombre de phrases et n_j le nombre de mots dans la phrase j

		Ph	rase 1						Phrase	j					Phrase	N	
	$\left[x_{1,1,1} \right]$		$x_{1,1,l}$		$x_{1,1,n_1}$		$x_{1,j,1}$		$x_{1,j,l}$		x_{1,j,n_j}		$x_{1,N,1}$		$x_{1,N,l}$		x_{1,N,n_N}
T 7	:	٠.	:	•••	:	•••••	÷	٠.	÷	•••	÷	•••••	÷	٠.	÷	•••	:
X =	$x_{i,1,1}$	•••	$x_{i,1,l}$	•••	$x_{i,1,n_1}$	•••••	$x_{i,j,1}$	•••	$x_{i,j,l}$	•••	x_{i,j,n_j}	•••••	$x_{i,N,1}$	•••	$x_{i,N,l}$	•••	x_{i,N,n_N}
	:		:	٠.	:		÷		÷	٠.	:		:		÷	٠.	i l
	$x_{K,1,1}$	•••	$x_{K,1,l}$		$x_{i,1,n_1}$	•••••	$x_{K,j,1}$	•••	$x_{K,j,l}$	•••	x_{i,j,n_j}	•••••	$x_{K,N,1}$	•••	$x_{K,N,l}$	•••	x_{K,N,n_N}

Nous verrons plus bas comment on découpe un texte en phrases

Processus de construction Équilibre de contribution : Exemple

- L'équilibre de contribution, noté e(X), est un indicateur qui mesure la répartition des contributions au texte final en terme de mots (écrits ou modifiés).
- Exemple:

- 1. Moyenne sur les lignes :
 - R1 = 0.56
 - R2 = 0.35
 - R3 = 0.081
- 2. Dispersion des ces moyennes autours de 1/3

•
$$e(X) = 0,58$$

Processus de construction Équilibre de contribution : calcul

Matrice de contribution X

$$\begin{bmatrix} x_{1,1,1} & \dots & x_{1,1,l} & \dots & x_{1,1,n_1} & \dots & x_{1,j,1} & \dots & x_{1,j,l} & \dots & x_{1,j,n_j} & \dots & x_{1,N,1} & \dots & x_{1,N,l} & \dots & x_{1,N,n_N} \\ \vdots & \ddots & \vdots & \dots & \vdots & \ddots & \vdots & \dots & \vdots & \dots & \vdots & \ddots & \vdots & \dots & \vdots \\ x_{i,1,1} & \dots & x_{i,1,l} & \dots & x_{i,1,n_1} & \dots & x_{i,j,1} & \dots & x_{i,j,l} & \dots & x_{i,j,n_j} & \dots & x_{i,N,1} & \dots & x_{i,N,l} & \dots & x_{i,N,n_N} \\ \vdots & \dots & \vdots & \ddots & \vdots & \dots & \vdots & \ddots & \vdots & \dots & \vdots & \dots & \vdots \\ x_{K,1,1} & \dots & x_{K,1,l} & \dots & x_{i,1,n_1} & \dots & x_{K,j,1} & \dots & x_{K,j,l} & \dots & x_{i,j,n_j} & \dots & x_{K,N,1} & \dots & x_{K,N,l} & \dots & x_{K,N,n_N} \end{bmatrix}$$

• Équilibre de contribution e(X)

$$e(X) = 1 - \frac{K}{K - 1} \sum_{i=1}^{K} \left(\bar{x}_{i,\cdot,\cdot} - \frac{1}{K} \right)^2 \text{ où } \bar{x}_{i,\cdot,\cdot} = \frac{1}{N} \sum_{j=1}^{N} \sum_{l=1}^{n_j} x_{i,j,l}$$

Processus de construction Équilibre de contribution : propriétés

- Propriétés de e(X):
 - Prend des valeurs dans l'intervalle [0,1]
 - e(X) = 0: Le texte à été écrit par un seul rédacteur
 - e(X) = 1: Le texte à été écrit de façon équilibrée par tous les rédacteurs

Processus de construction Équilibre de contribution : Exemples

- $e(X) \simeq 1$
 - Exemples avec deux rédacteurs :
 - L'équilibre de contribution mesure la répartition des contributions au texte final.
 - L'équilibre de contribution mesure la répartition des contributions au texte final.
 - L'équilibre de contribution mesure la répartition des contributions au texte final.
- $e(X) \simeq 0.50$
 - Exemple avec trois rédacteurs
 - L'équilibre de contribution mesure la répartition des contributions au texte final.

Processus de construction Équilibre de contribution : Limites

- Rappels :
 - Nous considérons que les phrases sont des unités sémantiques

L'équilibre de contribution ne mesure pas ce type de collaboration

Processus de construction Équilibre de contribution : Limite

Exemples:

		PHRASE 1		PHRASE 2			
Exemple 1	MOT 1	MOT 2	MOT 3	MOT 1	MOT 2	MOT 3	
Exemple 2	MOT 1	MOT 2	MOT 3	MOT 1	MOT 2	MOT 3	

- Pour ces deux exemples e(X) = 1, alors que, c'est deux stratégies de collaboration sont différentes.
 - Exemple 1 : intégrative
 - Exemple 2 : sommative

Processus de construction Indice de co-éctiure : Calcul

- 1.D'abord segmenter le texte en phrases
 - Segmentation des phrases basée sur des règle (cf Sadvilkar, N., & Neumann, M. (2020).
 PySBD: Pragmatic Sentence Boundary Disambiguation. arXiv preprint arXiv:2010.09657.
 - Exemple :
 - Un simple point pour terminer une phrase
 - Bonjour à tous. Mon nom est Nicole. ["Bonjour à tous.", "Mon nom est Nicole.]
- 2. Ensuite calculer un indice de collaboration sur chaque segment
- 3. Agréger ces indices en faisant la moyenne pondérée

Processus de construction Indice de co-éctiure : calcul

$$\begin{bmatrix} x_{1,1,1} & \dots & x_{1,1,l} & \dots & x_{1,1,n_1} & \dots & x_{1,j,1} & \dots & x_{1,j,l} & \dots & x_{1,j,n_j} & \dots & x_{1,N,1} & \dots & x_{1,N,l} & \dots & x_{1,N,n_N} \\ \vdots & \ddots & \vdots & \dots & \vdots & \ddots & \vdots & \dots & \vdots & \ddots & \vdots & \dots & \vdots \\ x_{i,1,1} & \dots & x_{i,1,l} & \dots & x_{i,1,n_1} & \dots & x_{i,j,1} & \dots & x_{i,j,l} & \dots & x_{i,j,n_j} & \dots & x_{i,N,1} & \dots & x_{i,N,l} & \dots & x_{i,N,n_N} \\ \vdots & \dots & \vdots & \ddots & \vdots & \dots & \vdots & \ddots & \vdots & \dots & \vdots & \dots & \vdots \\ x_{K,1,1} & \dots & x_{K,1,l} & \dots & x_{i,1,n_1} & \dots & x_{K,j,l} & \dots & x_{i,j,n_j} & \dots & x_{K,N,1} & \dots & x_{K,N,l} & \dots & x_{K,N,n_N} \end{bmatrix}$$

$$\begin{bmatrix} \overline{x}_{1,1, \bullet} & \dots & \overline{x}_{1,j, \bullet} & \dots & \overline{x}_{1,N, \bullet} \\ \vdots & \ddots & \vdots & & \vdots \\ \overline{x}_{i,1, \bullet} & \dots & \overline{x}_{i,j, \bullet} & \dots & \overline{x}_{i,N, \bullet} \\ \vdots & \dots & \vdots & \ddots & \vdots \\ \overline{x}_{K,1, \bullet} & \dots & \overline{x}_{K,j, \bullet} & \dots & \overline{x}_{K,N, \bullet} \end{bmatrix}$$

$$v_j = 1 - \frac{K}{K - 1} \sum_{i=1}^{K} \left(\bar{x}_{i,j,\cdot} - \frac{1}{K} \right)^2, \quad \forall j \in [1,N].$$

$$c(X) = \sum_{j=1}^{N} p_j v_j$$
 where $p_j = \frac{n_j}{N}$.

Processus de construction Indice de co-éctiure : Exemple

Segm. En phrases

Cont. sur les phrases

Aggérer cont. Phrases

R. 1	1	1	1	0.5	0.2	0.5	1	1	0	0	0
R. 2	0	0	0	0.5	0.5	0.5	0	0	0.8	0.8	0.8
R. 3	0	0	0	0	0.3	0	0	0	0.2	0.2	0.2

	PHRASE 1	PHRASE 2	PHRASE 3
R. 1	1	0.4	0.4
R. 2	0	0.5	0.48
R. 3	0	0.1	0.12

	PHRASE 1	PHRASE 2	PHRASE 3
V	$v_1 = 0$	$v_1 = 0.63$	$v_1 = 0.67$

$$c(X) = (3/11) \times 0 + (3/11) \times 0.63 + (5/11) \times 0.67 = 0.48$$

IV - Detection des stratégies de collaboration

Rappel

- Sommative : membre propose un document initial (complet ou pas), les autres ajoutent successivement leurs contributions sans modifier ce qui à été écrit auparavant
- intégrative : un membre propose un document initial (complet ou pas), les autres ajoutent successivement leurs contributions et modifient ce qui à été écrit auparavant

IV - Detection des stratégies de collaboration

Validation des indicateurs

 Simuler des matrices de contribution aléatoire pour voir la distribution des indicateurs grâce à la loi de Dirichelit (https://fr.wikipedia.org/wiki/Loi_de_Dirichlet)

- Les tester sur un ensemble d'exemple
- Faire une validation empirique à travers un questionnaire :
 - Tirer des exemples d'une base de donnée réelle (LabnBook)
 - Les classer automatiquement dans le triangle de collaboration
 - Comparer cette classification automatique par une classification faite par des humains

V- Perspectives

- Segmentation sémantique
- Extraction des formules
- Meilleurs découpages des valeurs dans l'intervalle [0,1]
- Définir une relation mathématique qui prend en entrée les indicateurs et donne en sortie la stratégie de collaboration

