URI Online Judge | 1373

Sequências de DNA

Por Cláudio L. Lucchesi
Brasil

Timelimit: 4

Thomas, um cientista da computação que trabalha com sequências de DNA, precisa computar as maiores subsequências comuns de dados pares de strings. Considere um alfabeto S de letras e uma palavra w = $a_1a_2...a_r$, onde $a_i \in \Sigma$, para i = 1, 2, ..., r. Uma subsequencia de w é uma palavra $x = a_{i1}a_{i2}...a_{is}$ tal que $1 \le i_1 < i_2 < ... < i_s \le r$. A subsequência x é um segmento de w se $i_{j+1} = i_j + 1$, para j = 1, 2, ..., s-1. Por exemplo a palavra ove é um segmento da palavra lovely, enquanto a palavra loly é uma subsequência de lovely, mas não um segmento.

Uma palavra é uma subsequência comum de duas palavras w_1 e w_2 se ela é uma subsequência de cada uma das duas. Uma maior subsequência comum de w_1 e w_2 uma subsquência comum de w_1 e w_2 tendo o maior comprimento possível. Por exemplo, considere as palavras w_1 = lovxxelyxxxxx e w_2 = xxxxxxxxlovely. As palavras w_3 = lovely e w_4 = xxxxxxxx, a última de comprimento 7, são ambas subsequências comums de w_1 e w_2 . De fato, w_4 é a maior subsequência comum delas. Perceba que a palavra vazia, de comprimento zero, é sempre uma subsequência comum, apesar não ser necessariamente a mais longa.

No caso do Thomas, existe um requerimento extra: a subsequência tem que ser formada de segmentos comuns tendo comprimento K ou maior. Por exemplo, se Thomas decidir que K = 3, então ele considera lovely como uma subsequência comum aceitável de lovxxelyxxxxx e xxxxxxxlovely, enquanto xxxxxxx, que tem um comprimento de 7 e também é uma subsequência comum, não é aceitável. Você pode ajudar Thomas?

Entrada

A entrada consiste de vários casos de teste. A primeira linha de um caso de teste contém um inteiro \mathbf{K} representando o comprimento mínimo de segmentos comuns, onde $1 \le \mathbf{K} \le 100$. As próximas duas linhas contém, em cada, uma palavra com letras minúsculas do alfabeto tradicional de 26 letras. O comprimento \mathbf{L} de cada palavra satisfaz a desigualdade $1 \le \mathbf{L} \le 10^3$. Não existem espaços nas linhas de entrada. O final da entrada é indicado por uma linha contendo um zero.

Saída

Para cada caso de teste na entrada, seu programa deve imprimir uma única linha, contendo o comprimento da maior subsequência formada por segmentos consecutivos de comprimento de pelo menos **K** de ambas palavras. Se não existir uma subsequência comum de comprimento maior que zero, então deve ser imprimido 0.

Exemplo de Entrada	Exemplo de Saída
3	6
lovxxelyxxxxx	7
xxxxxxxlovely	10
1	0
lovxxelyxxxxx	
xxxxxxxlovely	
3	
lovxxxelxyxxxx	
xxxlovelyxxxxxxx	

4 Exemplo de Entrada	Exemplo de Saída
lovxxxelyxxx	
xxxxxxlovely	
0	
0	

ACM/ICPC South America Contest 2008.