Introduction

ICS632: Principles of High Performance Computing

Henri Casanova (henric@hawaii.edu)

Fall 2015

What is this all about?

- High Performance Computing (HPC): "How do we make computers compute bigger problems faster?"
- This field is both old and new, very diverse, complicated, interesting
- Two main issues
 - How do we build faster/bigger computers?
 - How do we write faster software for those computers?
- Several different perspectives, from practical to theoretical
 - Computer Architecture
 - Operating Systems
 - Networks
 - Programming Languages and Models
 - Algorithms

Parallelism

- The key HPC technique is parallel computing
 - It takes 100 hours to run my program on the fastest processor available today
 - We can't make a faster CPU due to technological/physical limitations
 - Let's run the program on 100 such CPUs
 - And perhaps it can run in 1 hour
- Parallel computing is a huge part of this course
- The course is hands-on
 - You will write parallel code
- with a small theoretical part
 - See Prof. Sitchinava grad-level course for full-fledge theory

Syllabus

- Programming assignments (50% of grade)
 - With a short report to write for each based on experiments
 - With occasional "pencil-and-paper" portions
- Research paper presentations (15% of grade)
 - List of papers will be given
 - I know you're not (yet) researchers in this field
 - The point is that presentations are good practice, and great ways to identify/answer questions
- Final project (35% of grade)
 - Possible topics will be provided
 - Defining your own topic is encouraged!
 - Graded based on written report and quality of work
 - In-class project presentations
- No final exam

Programming Language

- All programming assignments will be in C
 - Unless you really, really want to do Fortran :)
 - Feel free to use C++ if you want to
- The code we write won't however require that you are a great C developer, but that you know your way around
- Developing in C is pretty typical in the HPC world
- The concept in the course are not really language-specific
- Your final project can be in any language, as long as it's appropriate
 - But if you run into weirdness with a language I know nothing about, I won't be able to help you much

Why HPC?

- The first consumer of HPC was scientific computing
 - "640 KiB of RAM" (Bill Gates, 1981) was never enough for scientists
 - It's not enough for anybody now
- Scientific computing has driven HPC for decades
- Traditional scientific and engineering:
 - Do theory or paper design
 - Perform experiments or build system
- Limitations:
 - Too difficult cannot build large wind tunnels
 - Too expensive cannot build a throw-away airplane
 - Too slow cannot wait for climate or galactic evolution
 - Too dangerous drug design, nuclear reactor explosion
- Solution: use a computer to run simulations of physical phenomena

Scientific Computing Example

 Consider a scientist studying heat transfer: how temperature changes through a medium over time (in 1 dimension)

- $\blacksquare f(x,t)$: temperature at location x at time t
 - Initial condition: $\forall x$, f(x,0) = initial temp

Scientific Computing Example

 Consider a scientist studying heat transfer: how temperature changes through a medium over time (in 1 dimension)

- $\blacksquare f(x,t)$: temperature at location x at time t
 - Initial condition: $\forall x$, f(x,0) = initial temp
- Problem: compute f for all x and t > 0 values

Heat Transfer and Physics

If you've paid attention in Physics you know that:

$$\frac{\partial f(x,t)}{\partial t} = \alpha \frac{\partial^2 f(x,t)}{\partial^2 x}$$

- Boundary conditions: $f(0,t) = H, f(\mathcal{X},t) = L, f(x,0) = \Theta$
- This is a PDE (Partial Differential Equation), and if you've paid attention in Calculus you know that some PDEs can be solved analytically
- Unfortunately, the above equation cannot!
- Therefore it must be solved numerically

Heat Transfer and Numerical Methods

- The Finite Differences Method:
 - Discretize the domain: the values of f(x,t) are known only for some finite number of values of x and t
 - The discretized domain is called a mesh with all x values separated by Δx and all t values separated by Δt
 - So that we write f(x,t) as $f_{i,m}$ (a 2-D array!)
 - Replace partial derivatives by algebraic differences
 - In the limit, when Δx and Δt go to zero, we get close to the real solution to the PDE
- There are many algebraic difference approximations, e.g., Forward Time, Centered Space:

$$f_{i,m+1} = f_{i,m} + \frac{\alpha \Delta t}{\Delta x^2} (f_{i+1,m} - 2f_{i,m} + f_{i-1,m})$$

Wait? My beautiful Physics is... two loops?

$$f_{i,m+1} = f_{i,m} + \frac{\alpha \Delta t}{\Delta x^2} (f_{i+1,m} - 2f_{i,m} + f_{i-1,m})$$

Finite Differences

Pretty (but Useful) Pictures

Toward HPC

- We replace difficult calculus by simple arrays, iterations, additions, multiplication, and divisions
 - A lot of which is linear algebra in the end
- But there are new challenges
- The data is large
 - And often can be made almost arbitrary large and still useful
- The computation is long
 - And often can be made almost arbitrary long and still useful
- Hence the constant need for HPC (bigger, faster) for scientific computing

Large Data Analysis

In may science/engineering applications, HPC is used to analyze scientific data, as opposed to producing it

Large Data Analysis

In may science/engineering applications, HPC is used to analyze scientific data, as opposed to producing it

HPC is Important

- Although HPC has decades of success for science and engineering, it is now applied across all kinds of domains
 - The "Big Data" craze of course
- Parallel computing is key and occurs at many levels (from within a core to across the Internet)
 - It has been re-branded with many buzzwords, but fundamental principles we learn in this course apply
- So, how do we teach this?

What do we run on?

- Some of you have already asked me: "What kind of machine do I need for this HPC course???"
- Years ago, a student in this course build his own parallel platform at home with 8 machines he had in his studio apartment (he had to crank the A/C way up).
- This was awesome, but not expected of anybody
- You won't need anything but a Linux (virtual) box for this course
- The typical approach is to provide students with accounts on a parallel platforms
 - Many such platforms are available at universities

© Students get to work on real systems

- Students get to work on real systems
- © There are a lot of warts (including downtimes!) which can obfuscate general principles, not good for "beginners"

- Students get to work on real systems
- There are a lot of warts (including downtimes!) which can obfuscate general principles, not good for "beginners"
- "Hey, can you give accounts to my inexperienced students on your system that's being used by eager researchers?" is often a tough sell because systems are fragile and busy

- Students get to work on real systems
- © There are a lot of warts (including downtimes!) which can obfuscate general principles, not good for "beginners"
- "Hey, can you give accounts to my inexperienced students on your system that's being used by eager researchers?" is often a tough sell because systems are fragile and busy
- The instructor keeps saying "if the machine had a better network...", "if the machine was larger...", "if the machine was heterogeneous...", which is not great pedagogy

- Students get to work on real systems
- There are a lot of warts (including downtimes!) which can obfuscate general principles, not good for "beginners"
- Whey, can you give accounts to my inexperienced students on your system that's being used by eager researchers?" is often a tough sell because systems are fragile and busy
- The instructor keeps saying "if the machine had a better network...", "if the machine was larger...", "if the machine was heterogeneous...", which is not great pedagogy
- Sefore an assignment is due students compete for the machine with other users and with each other, which leads to ugliness if the machine is small/busy

- Students get to work on real systems
- There are a lot of warts (including downtimes!) which can obfuscate general principles, not good for "beginners"
- Whey, can you give accounts to my inexperienced students on your system that's being used by eager researchers?" is often a tough sell because systems are fragile and busy
- The instructor keeps saying "if the machine had a better network...", "if the machine was larger...", "if the machine was heterogeneous...", which is not great pedagogy
- Sefore an assignment is due students compete for the machine with other users and with each other, which leads to ugliness if the machine is small/busy
- The instructor must deal with "the cluster is broken" issues and doesn't want to teach HPC anymore?

Simulation!!!

- 12 years ago I started developing a simulator for parallel/distributed computing
- It's since become a large open-source project: http://simgrid.gforge.inria.fr
- Only for distributed-memory assignments
 - Shared-memory assignments will be on your own machines, since in this day and age we all have multi-core machines
 - If you don't, I'll give you an account somewhere...
- Let's see what's good/bad about simulation...

- The simulation could be inaccurate
 - But decade of simulation accuracy research behind us! ☺

- The simulation could be inaccurate
 - But decade of simulation accuracy research behind us! ③
- © There are some things we cannot simulate (well)
 - Applications with data-dependent behavior

- The simulation could be inaccurate
 - But decade of simulation accuracy research behind us! ③
- © There are some things we cannot simulate (well)
 - Applications with data-dependent behavior
- Students don't experience a real platform

- The simulation could be inaccurate
 - But decade of simulation accuracy research behind us! ③
- There are some things we cannot simulate (well)
 - Applications with data-dependent behavior
- Students don't experience a real platform
 - © The simulation is repeatable, reliable, and fast

- The simulation could be inaccurate
 - But decade of simulation accuracy research behind us! ⊕
- © There are some things we cannot simulate (well)
 - Applications with data-dependent behavior
- ② / ③ Students don't experience a real platform
 - © The simulation is repeatable, reliable, and fast
 - The simulation allows to explore many scenarios
 - A huge pedagogical advantage

- The simulation could be inaccurate
 - But decade of simulation accuracy research behind us! ©
- There are some things we cannot simulate (well)
 - Applications with data-dependent behavior
- Students don't experience a real platform
 - © The simulation is repeatable, reliable, and fast
 - The simulation allows to explore many scenarios
 - A huge pedagogical advantage
 - The instructor should be happy-er..-ish?
 - Much easier to help you debug a simulation than to deal with a flaky cluster with angry users
 - But there are non-flaky clusters with nice ok users!

Last Semester

- Last time I taught ICS632 it was 100% simulation
- The result was very positive
 - Most students were happy with it, and thought it made learning/understanding easier
- But there was some mild "disappointment" to not get to work with a real big machine
- This semester, we'll do both

UHM's Cray CS Series "Supercomputer"

- UHM now has a big Cray machine and we are getting accounts! you're welcome
- We'll also do simulation because pedagogically it's great
- http://www.hawaii. edu/its/ci
- More information to come...

Word of "Warning"

- Several students from last semester came to my office and said: "Wow! You're using a real supercomputer this semester, I am so jealous!"
 - Even though I had been telling them that it wasn't a big deal
- They requested a demo
- So I gave one
- ..
- Let's just say it's a bit anticlimactic...
 - Login via ssh, type a few commands, wait a long time, see nothing, oooh I got an e-mail telling me my program is done

Course Web Site

```
http:
//henricasanova.github.io/ics632_fall2015/
```

Announcement: Upcoming Xeon Phi Workshop

```
■ http:
   //citi.clemson.edu/workshop/hawaii-phi15/
```

■ Would a large fraction of you be interested?