EXERCISE 11.2

In each of the following Exercises 1 to 6, find the coordinates of the focus, axis of the parabola, the equation of the directrix and the length of the latus rectum.

1.
$$y^2 = 12x$$

2.
$$x^2 = 6y$$

2.
$$x^2 = 6y$$
 3. $y^2 = -8x$

- 1. F (3, 0), axis x axis, directrix x = -3, length of the Latus rectum = 12
- 2. $F(0, \frac{3}{2})$, axis y axis, directrix $y = -\frac{3}{2}$, length of the Latus rectum = 6
- 3. F (-2, 0), axis x axis, directrix x = 2, length of the Latus rectum = 8

4.
$$x^2 = -16y$$

5.
$$y^2 = 10x$$
 6. $x^2 = -9y$

6.
$$x^2 = -9y$$

- 4. F(0, -4), axis y axis, directrix y = 4, length of the Latus rectum = 16
- 5. $F(\frac{5}{2}, 0)$ axis x axis, directrix $x = -\frac{5}{2}$, length of the Latus rectum = 10
- 6. $F(0, \frac{-9}{4})$, axis y axis, directrix $y = \frac{9}{4}$, length of the Latus rectum = 9

In each of the Exercises 7 to 12, find the equation of the parabola that satisfies the given conditions:

7. Focus (6,0); directrix x = -6

8. Focus (0,-3); directrix y = 3

9. Vertex (0,0); focus (3,0)

10. Vertex (0,0); focus (-2,0)

11. Vertex (0,0) passing through (2,3) and axis is along *x*-axis.

12. Vertex (0,0), passing through (5,2) and symmetric with respect to y-axis.

7.
$$y^2 = 24x$$

10.
$$y^2 = -8x$$

8.
$$x^2 = -12y$$

11.
$$2y^2 = 9x$$

9.
$$y^2 = 12x$$

12.
$$2x^2 = 25y$$