Information

Tutorials Reference

Articles Forum

Search:

<random>

Go

register log in

(1)

C library: Containers: Input/Output:

Multi-threading:

Other:

<algorithm>

bitset>

<chrono>

<codecvt>

<complex>

<exception> <functional>

<initializer list>

<iterator>

dimits>

<locale> <memory>

<new>

<numeric>

<random>

<ratio>

<regex>

<stdexcept> <string>

<system_error>

<tuple>

<tvpeindex>

<typeinfo> <type_traits>

<utility>

<valarray:

distributions:

<random>

bernoulli distribution

binomial_distribution

cauchy_distribution chi_squared_distribution

discrete_distribution

exponential distribution

extreme value distribution fisher f distribution

gamma_distribution geometric_distribution

lognormal_distribution

negative_binomial_distribution

normal distribution

piecewise_constant_distribution piecewise linear distribution

poisson distribution

student t distribution

uniform int distribution uniform_real_distribution

weibull_distribution

generators:

default_random_engine discard_block_engine

independent_bits_engine

knuth b

linear_congruential_engine mersenne_twister_engine

minstd_rand

minstd_rand0

mt19937 mt19937 64

random device

ranlux24

ranlux24 base ranlux48

ranlux48_base

shuffle_order_engine

subtract_with_carry_engine

other:

generate canonical

seed sea

TASTE THE FEELING DISCOVER NOW

header

Reference

<random>

Random

This header introduces random number generation facilities.

This library allows to produce random numbers using combinations of generators and distributions:

- Generators: Objects that generate uniformly distributed numbers.
- Distributions: Objects that transform sequences of numbers generated by a generator into sequences of numbers that follow a specific random variable distribution, such as uniform, Normal or Binomial

Distribution objects generate random numbers by means of their operator () member, which takes a generator object as argument:

```
1 std::default_random_engine generator;
2 std::uniform int distribution<int> distribution(1,6);
3 int dice_roll = distribution(generator); // generates number in the range 1..6
```

For repeated uses, both can be bound together:

```
1 auto dice = std::bind ( distribution, generator );
2 int wisdom = dice()+dice();
```

Except for random_device, all standard generators defined in the library are random number engines, which are a kind of generators that use a particular algorithm to generate series of pseudo-random numbers. These algorithms need a seed as a source of randomness, and this seed can either be a single value or an object with a very specific generate() member function (see seed_seq for more info). A typical source of randomness for trivial tasks is time, such as the information provided by time or system_clock::now (for a typical example, see uniform_int_distribution::operator()).

As an alternative, trivial random numbers can also be generated using cstdlib's functions rand and srand.

Generators

Pseudo-random number engines (templates)

Generators that use an algorithm to generate pseudo-random numbers based on an initial seed:

linear_congruential_engine	Linear congruential random number engine (class template)
mersenne_twister_engine	Mersenne twister random number engine (class template)
subtract_with_carry_engine Subtract-with-carry random number engine (class template)	

Engine adaptors

They adapt an engine, modifying the way numbers are generated with it:

discard_block_engine	Discard-block random number engine adaptor (class template)
independent_bits_engine	Independent-bits random number engine adaptor (class template)
shuffle_order_engine	Shuffle-order random number engine adaptor (class template)

Pseudo-random number engines (instantiations)

Particular instantiations of generator engines and adaptors:

default_random_engine	Default random engine (class)
minstd_rand	Minimal Standard minstd_rand generator (class)
minstd_rand0	Minimal Standard minstd_rand0 generator (class)
mt19937	Mersenne Twister 19937 generator (class)
mt19937_64	Mersene Twister 19937 generator (64 bit) (class)
ranlux24_base	Ranlux 24 base generator (class)
ranlux48_base	Ranlux 48 base generator (class)
ranlux24	Ranlux 24 generator (class)
ranlux48	Ranlux 48 generator (class)
knuth b	Knuth-B generator (class)

Random number generators

Non-deterministic random number generator.

random_device	True random number generator (class)	

Distributions

Uniform:	
uniform_int_distribution	Uniform discrete distribution (class template)
uniform real distribution	Uniform real distribution (class template)

Related to Bernoulli (yes/no) trials:

bernoulli_distribution	Bernoulli distribution (class)
binomial_distribution	Binomial distribution (class template)
geometric distribution	Geometric distribution (class template)

negative_binomial_distribution Negative binomial distribution (class template)

Rate-based distributions:

poisson_distribution	Poisson distribution (class template)
exponential_distribution	Exponential distribution (class template)
gamma_distribution	Gamma distribution (class template)
weibull_distribution	Weibull distribution (class template)
extreme_value_distribution	Extreme Value distribution (class template)

Related to Normal distribution:

normal_distribution	Normal distribution (class template)
lognormal_distribution	Lognormal distribution (class template)
chi_squared_distribution	Chi-squared distribution (class template)
cauchy_distribution	Cauchy distribution (class template)
fisher_f_distribution	Fisher F-distribution (class template)
student_t_distribution	Student T-Distribution (class template)

Piecewise distributions:

discrete_distribution	Discrete distribution (class template)
piecewise_constant_distribution Piecewise constant distribution (class template)	
piecewise_linear_distribution	n Piecewise linear distribution (class template)

Other

seed_seq	Seed sequence (class)	
generate_canonical	Generate canonical numbers (function template)	
		(1)

Home page | Privacy policy
© cplusplus.com, 2000-2017 - All rights reserved - v3.1
Spotted an error? contact us