

Registered (Inner-Product) Functional Encryption

Danilo Francati¹, Daniele Friolo², Monosij Maitra³, Giulio Malavolta^{4,5}, Ahmadreza Rahimi⁵, Daniele Venturi²

¹Royal Holloway University of London, England

²Sapienza University of Rome

³IIT Kharagpur, India

⁴Bocconi University, Italy

⁵Max-Planck Institute for Security and Privacy, Germany

Functional Encryption

Functional Encryption

Cannot learn $f_{\neq 1,2}($

Key-Escrow Problem

Registered Functional Encryption

Trivial solution

Registered Functional Encryption

Key Curator

mpk is updated periodically

 hks_i produced at each update connecting mpk and

Requirements:

L = #Users

 $|crs|, |hks_i|, |mpk|$ = polylog in L

Keygen and registration run in **polylog** time in L

#Updates = O(logL)

Our Contributions

Registered (attribute-hiding) Inner Product Encryption
 from prime order groups in the bilinear GGM. Recasted in RFE as:

$$f_{\mathbf{x}}(m, \mathbf{y}) = \begin{cases} m & \text{if } \langle \mathbf{x}, \mathbf{y} \rangle = 0 \\ \bot & \text{otherwise} \end{cases}$$

 Registered Functional Encryption from iO and SSB hash functions for generic functionalities and large universe of users

Similar blueprint of [HLWW22] Registered Attribute-Based Encryption

Comparison with [HLWW22] RABE:

Our RIPE

PROS:

- Large function space: n-size vectors
- Strong attribute-hiding:
 - CPA-2-sided security

CONS:

- Inner-Product
- Pairings of prime order + GGM

• [HLWW22] RABE

CONS:

- Small attribute space
- Attributes in clear

PROS:

- LSSS policies
- Pairings of composite order

Both CONs:

- Require a bounded number of users
- CRS, Kgen and registration runtime dependent on L

Comparison with [HLWW22] RABE:

Reference	Type	CRS size	Keygen runtime	Registration key runtime	Master public key size	Helper dec. key size	# Updates	Unbounded users	вв	Assumptions
[GHMR18]	IBE	O(1)	O(1)	$poly(\log L)$	$poly(\log L)$	$poly(\log L)$	$O(\log L)$	✓	Х	iO + SSB
[GHMR18]	IBE	O(1)	O(1)	O(L)	$poly(\log L)$	$poly(\log L)$	$O(\log L)$	✓	Х	CDH/LWE
$[GHM^+19]$	Anon. IBE	O(1)	O(1)	$poly(\log L)$	$poly(\log L)$	$poly(\log L)$	$O(\log L)$	✓	Х	CDH/LWE
[GV20]	$_{ m IBE}$	O(1)	O(1)	$poly(\log L)$	$poly(\log L)$	$poly(\log L)$	$O(\log L)$	✓	X	CDH/LWE
[CES21]	$_{ m IBE}$	O(1)	O(1)	$poly(\log L)$	$O(\sqrt{L})$	$poly(\log L)$	$O(\log L)$	✓	X	CDH/LWE
[GKMR22]	O(1)-size ciphertexts	$O(\sqrt{L})$	$O(\sqrt{L})$	$O(\sqrt{L})$	$O(\sqrt{L})$	$O(\sqrt{L})$	$O(\sqrt{L})$	×	✓	Pairings of Prime Order
[GKMR22]	$\begin{array}{c} {\rm IBE} \\ O(\log L)\text{-size ciphertexts} \end{array}$	$O(\sqrt{L})$	$O(\sqrt{L})$	$O(\sqrt{L}\log L)$	$O(\sqrt{L}\log L)$	$O(\log L)$	$O(\log L)$	×	/	Pairings of Prime Order
$[DKL^+23]$	$_{ m IBE}$	$poly(\log L)$	$poly(\log L)$	O(L)	$poly(\log L)$	$poly(\log L)$	$O(\log L)$	✓	✓	$_{ m LWE}$
[HLWW22]	$egin{array}{l} { m ABE} \ { m small\ attribute\ space}\ {\cal U} \ { m LSSS\ policies} \end{array}$	$L^2 \cdot poly(\mathcal{U} , \log L) \; L$	\cdot poly $(\mathcal{U} , \log L$	$)\;L\cdotpoly(\mathcal{U} ,\log L)$	$ \mathcal{U} \cdot poly(\log L)$	$ \mathcal{U} \cdot poly(\log L)$	$O(\log L)$	×	✓	Pairings of Composite Order
[HLWW22]	ABE large attribute space \mathcal{U} arbitrary policies	O(1)	O(1)	O(L)	O(1)	O(1)	$O(\log L)$	1	×	iO + SSB
Ours §6	Inner-Product PE large function space \mathcal{F} n -size vectors	$n \cdot L^2 \cdot poly(\log L)$	$L \cdot poly(\log L)$	$n \cdot L^2 \cdot poly(\log L)$	$n \cdot poly(\log L)$	$n \cdot poly(\log L)$	$O(\log L)$	×	✓	Pairings of Prime Order + GGM
Ours §B	FE large function space \mathcal{F} arbitrary functions	O(1)	O(1)	O(L)	O(1)	<i>O</i> (1)	$O(\log L)$	√	x	iO + SSB

Slotted RFE

Slightly modified compiler of [HLWW22] to make L independent with log updates

CRS

• Prime order q:

$$\mathcal{G} = \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, q, g_1, g_2, e$$

General params:

$$h = g_1^{\beta} \qquad Z = e(g_1, g_2)^{\alpha}$$

• Slot-specific:

$$A = g_2^t \qquad B = g_2^{\alpha} A^{\beta} = g^{\alpha + \beta t}$$

Key-specific:

$$U_w = g_1^{\boldsymbol{u_w}}$$
 for each $w \in [n+1]$

Key registration

Key aggregation:

$$pk \cdot \prod_{w=1}^{n} U_{w}^{-x_{w}}$$

$$G Z = e(g_1, g_2)^a$$

$$U_w = g_1^{u_w} \qquad h =$$

$$pk \cdot \prod_{w=1}^{n} U_{w}^{-x_{w}}$$

$$\mathcal{G} \quad Z = e(g_1, g_2)^{\alpha}$$

$$U_w = g_1^{\mathbf{u}_w} \quad h = g_1^{\beta}$$

$$p_k \cdot \prod_{w=1}^n U_w^{-x_w}$$

$$A = g_2^{\mathbf{t}} \quad B = g_2^{\alpha} A^{\beta} = g^{\alpha+\beta t}$$

Enc $(m, y = (y_1, ..., y_n))$:

$$C_1 = m \cdot Z^s$$

$$C_2 = g_1^s$$

$$C_{3,w} = h^{y_w \cdot r + s} \cdot U_w^{-z}, \forall w \in [n]$$

$$C_{3,n+1} = h^{s} \cdot U_{n+1}^{-z} - z$$

$$C_{3,n+2} = h^{s} \cdot (pk \prod_{i=1}^{n} U_{w}^{-x_{w}})$$

Dec (
$$C_1$$
, C_2 , $C_{3,w}$, $C_{3,n+1}$, sk , x):

$$m = \frac{C_1}{e(C_2, B)} \cdot e(h^s, A)$$

$$h^{s} = \left(C_{3,n+2} \cdot C_{3,n+1}^{sk} \cdot \prod_{w=1}^{n} C_{3,w}^{x_{w}}\right)^{(1+sk+\sum x_{w})^{-1}}$$

$$G Z = e(g_1, g_2)^{\alpha}$$

$$U_w = g_1^{u_w} \qquad h = g_1^{\beta}$$

$$pk \cdot \prod_{w=1}^{n} U_{w}^{-x_{w}}$$

$$\bigcup_{\mathbf{v}} \begin{array}{cccc} \mathcal{G} & Z = e(g_1, g_2)^{\alpha} \\ U_w = g_1^{\mathbf{u}_w} & h = g_1^{\beta} \end{array} \qquad pk \cdot \prod_{w=1}^n U_w^{-\mathbf{x}_w} \qquad \qquad A = g_2^{\mathbf{t}} \quad B = g_2^{\alpha} A^{\beta} = g^{\alpha+\beta t}$$

Enc $(m, y = (y_1, ..., y_n))$:

$$C_1 = m \cdot Z^s$$

$$C_2 = g_1^s$$

$$C_{3,w} = h^{y_w \cdot r + s} \cdot U_w^{-z}, \forall w \in [n]$$

$$C_{3,n+1} = h^{s} \cdot U_{n+1}^{-z}$$

$$C_{3,n+2} = h^{s} \cdot (pk \prod_{w=1}^{n} U_{w}^{-x_{w}})$$

Dec $(C_1, C_2, C_{3,W}, C_{3,n+1}, sk, x)$:

$$m = \frac{C_1}{e(C_2, B)} \cdot e(h^s, A)$$

$$\prod_{w=1}^{n} C_{3,w}^{x_w} = \prod_{w=1}^{n} h^{x_w(y_w \cdot r)} \qquad \prod_{w=1}^{n} h^{x_w s} \prod_{w=1}^{n} U_w^{-z \cdot x_w}$$

$$C_{3,n+1}^{sk} = h^{s \cdot sk} \qquad U_{n+1}^{-z \cdot sk}$$

$$C_{3,n+2} = h^{s} \qquad U_{n+1}^{z \cdot sk}$$

$$\prod_{w=1}^{n} h^{x_w s} \prod_{w=1}^{n} U_w^{-z \cdot x_w}$$

$$\prod_{w=1}^{Z \cdot x_w} U_w^{Z \cdot x_w}$$

$$G Z = e(g_1, g_2)^{\alpha}$$

$$U_w = g_1^{\mathbf{u}_w} \qquad h = g_1^{\mathbf{\beta}}$$

$$pk \cdot \prod_{w=1}^{n} U_{w}^{-x_{w}}$$

$$\bigcup_{v} G \quad Z = e(g_1, g_2)^{\alpha}$$

$$U_w = g_1^{u_w} \quad h = g_1^{\beta}$$

$$pk \cdot \prod_{w=1}^{n} U_w^{-x_w} \qquad A = g_2^{t} \quad B = g_2^{\alpha} A^{\beta} = g^{\alpha+\beta t}$$

Enc $(m, y = (y_1, ..., y_n))$:

$$C_1 = m \cdot Z^s$$

$$C_2 = g_1^s$$

$$C_{3,w} = h^{y_w \cdot r + s} \cdot U_w^{-z}, \forall w \in [n]$$

$$C_{3,n+1} = h^{s} \cdot U_{n+1}^{-z}$$

$$C_{3,n+2} = h^{s} \cdot (pk \prod_{w=1}^{n} U_{w}^{-x_{w}})$$

Dec $(C_1, C_2, C_{3,w}, C_{3,n+1}, sk, x)$:

$$m = \frac{C_1}{e(C_2, B)} \cdot e(h^s, A)$$

$$\prod_{w=1}^{n} C_{3,w}^{x_w} = \prod_{w=1}^{n} h^{x_w(y_w \cdot r)} \qquad \prod_{w=1}^{n} h^{x_w s} \left[\prod_{w=1}^{n} U_w^{-z \cdot x_w} \right]$$

$$C_{3,n+1}^{sk} = h^{s \cdot sk} \qquad U_{n+1}^{-z \cdot sk}$$
$$C_{3,n+2} = h^{s} \qquad U_{n+1}^{z \cdot sk}$$

$$C_{3,n+2} = h^{5}$$

$$\prod_{w}^{n} h^{x_{w}s}$$

$$G Z = e(g_1, g_2)^{\alpha}$$

$$U_w = g_1^{u_w} \qquad h = g_1^{u_w}$$

$$pk \cdot \prod_{w=1}^{n} U_{w}^{-x_{w}}$$

$$\bigcup_{v} G \quad Z = e(g_1, g_2)^{\alpha}$$

$$U_w = g_1^{u_w} \quad h = g_1^{\beta}$$

$$pk \cdot \prod_{w=1}^{n} U_w^{-x_w} \qquad A = g_2^{t} \quad B = g_2^{\alpha} A^{\beta} = g^{\alpha+\beta t}$$

Enc $(m, y = (y_1, ..., y_n))$:

$$C_1 = m \cdot Z^s$$

$$C_2 = g_1^s$$

$$C_{3,w} = h^{y_w \cdot r + s} \cdot U_w^{-z}, \forall w \in [n]$$

$$C_{3,n+1} = h^{s} \cdot U_{n+1}^{-z}$$

$$C_{3,n+2} = h^{s} \cdot (pk \prod_{w=1}^{n} U_{w}^{-x_{w}})$$

Dec (C_1 , C_2 , $C_{3,w}$, $C_{3,n+1}$, sk, x):

$$m = \frac{C_1}{e(C_2, B)} \cdot e(h^s, A)$$

$$\prod_{w=1}^{n} C_{3,w}^{x_w} = \prod_{w=1}^{n} h^{x_w(y_w \cdot r)} \qquad \prod_{w=1}^{n} h^{x_w s}$$

$$C_{3,n+1}^{sk} = h^{s \cdot sk}$$

$$C_{3,n+2} = h^{s}$$

$$\prod_{w=1}^{n} h^{x_{w}s}$$

$$G Z = e(g_1, g_2)^{\alpha}$$

$$U_w = g_1^{u_w} \qquad h = g_1^{\beta}$$

$$pk \cdot \prod_{w=1}^{n} U_{w}^{-x_{w}}$$

$$\mathcal{G} \qquad Z = e(g_1, g_2)^{\alpha} \\
U_w = g_1^{u_w} \qquad h = g_1^{\beta} \qquad pk \cdot \prod_{w=1}^n U_w^{-x_w} \qquad \qquad A = g_2^t \qquad B = g_2^{\alpha} A^{\beta} = g^{\alpha+\beta t}$$

Enc $(m, y = (y_1, ..., y_n))$:

$$C_1 = m \cdot Z^s$$

$$C_2 = g_1^s$$

$$C_{3,w} = h^{y_w \cdot r + s} \cdot U_w^{-z}, \forall w \in [n]$$

$$C_{3,n+1} = h^{s} \cdot U_{n+1}^{-z}$$

$$C_{3,n+2} = h^{s} \cdot (pk \prod_{w=1}^{n} U_{w}^{-x_{w}})$$

Dec (C_1 , C_2 , $C_{3,w}$, $C_{3,n+1}$, sk, x):

$$m = \frac{C_1}{e(C_2, B)} \cdot e(h^s, A)$$

$$\prod_{w=1}^{n} C_{3,w}^{x_w} = \prod_{w=1}^{n} h^{x_w(y_w \cdot r)} \qquad \prod_{w=1}^{n} h^{x_w s}$$

$$C_{3,n+1}^{sk} = h^{s \cdot sk}$$

$$C_{3,n+2} = h^{\epsilon}$$

$$\prod_{w=1}^{n} h^{x_w s}$$

$$G Z = e(g_1, g_2)^{\alpha}$$

$$U_w = g_1^{u_w}$$

$$h = g_1^{\beta}$$

$$pk \cdot \prod_{w=1}^{n} U_{w}^{-x_{w}}$$

Enc $(m, y = (y_1, ..., y_n))$:

$$C_1 = m \cdot Z^s$$

$$C_2 = g_1^s$$

$$C_{3,w} = h^{y_w \cdot r + s} \cdot U_w^{-z}, \forall w \in [n]$$

$$C_{3,n+1} = h^{s} \cdot U_{n+1}^{-z} \Big|_{n} -z$$

$$C_{3,n+2} = h^{s} \cdot (pk \prod_{w=1}^{n} U_{w}^{-x_{w}})$$

Dec $(C_1, C_2, C_{3,W}, C_{3,n+1}, sk, x)$:

$$m = \frac{C_1}{e(C_2, B)} \cdot e(h^s, A)$$

$$\prod_{w=1}^{n} C_{3,w}^{x_w} = \prod_{w=1}^{n} h^{x_w(y_w \cdot r)}$$

$$C_{3,n+1}^{sk} = h^{s \cdot sk}$$

$$C_{3,n+2} = h^{s}$$

$$\prod_{w=1}^{n} h^{x_w s}$$

$$G Z = e(g_1, g_2)^{\alpha}$$

$$U_w = g_1^{u_w}$$

$$h = g_1^{\beta}$$

$$pk \cdot \prod_{w=1}^{n} U_{w}^{-x_{w}}$$

Enc $(m, y = (y_1, ..., y_n))$:

$$C_1 = m \cdot Z^s$$

$$C_2 = g_1^s$$

$$C_{3,w} = h^{y_w \cdot r + s} \cdot U_w^{-z}, \forall w \in [n]$$

$$C_{3,n+1} = h^{s} \cdot U_{n+1}^{-z}$$

$$C_{3,n+2} = h^{s} \cdot (pk \prod_{w=1}^{n} U_{w}^{-x_{w}})$$

Dec $(C_1, C_2, C_{3,W}, C_{3,n+1}, sk, x)$:

$$m = \frac{C_1}{e(C_2, B)} \cdot e(h^s, A)$$

$$\prod_{w=1}^{n} C_{3,w}^{x_{w}} = \prod_{w=1}^{n} h^{x_{w}(y_{w} \cdot r)} \qquad \prod_{w=1}^{n} h^{x_{w}s} \prod_{w=1}^{n} U_{w}^{-z \cdot x_{w}}$$

$$C_{3,n+1}^{sk} = h^{s \cdot sk} \qquad U_{n+1}^{-z \cdot sk}$$

$$C_{3,n+2} = h^s \qquad U_{n+1}^{z \cdot sk}$$

$$\prod_{w=1}^{n} h^{x_w s} \prod_{w=1}^{n} U_w^{-z \cdot x_w}$$

$$\prod_{w=1} U_w^{z \cdot x_w}$$

Slotted RIPE (2 slots) IDEA:

CRS Generation:

$$A_1$$
, B_1

$$A_2, B_2$$

$$\{U_{w,1}\}$$

$$\{U_{w,2}\}$$

$$\{U_{w,1}\cdot U_{w,2}\}$$

Key Generation:

$$\mathbf{x_1} = (x_{1,1}, \dots, x_{n,1})$$

$$pk_2 = U_{n+1}^{-sk_2}$$
 $x_2 = (x_{1,2}, \dots, x_{n,2})$

$$\mathbf{x_2} = (x_{1,2}, \dots, x_{n,2})$$

Key Aggregation:

$$pk_1 \cdot pk_2 \cdot \prod U_{w,1}^{x_{w,1}} \prod U_{w,2}^{x_{w,2}}$$

Slotted RIPE (2 slots)

$$\prod_{w \in [n]} C_{3,w}^{x_{w,1}} = \prod_{w \in [n]} h^{(y_w \cdot r + s) \cdot x_{w,1}} \cdot \prod_{w=1}^n U_{w,1}^{-z \cdot x_{w,1}} \cdot \left[\prod_{w=1}^n U_{w,2}^{-z \cdot x_{w,1}} \right] \\
C_{3,n+1}^{\mathsf{sk}_1} = h^{s \cdot \mathsf{sk}_1} \cdot U_{n+1,1}^{-z \cdot \mathsf{sk}_1} \cdot \left[U_{n+1,2}^{-z \cdot \mathsf{sk}_2} \right] \\
C_{3,n+2} = h^s \cdot U_{n+1,1}^{z \cdot \mathsf{sk}_1} \cdot \left[U_{n+1,2}^{z \cdot \mathsf{sk}_2} \right] \cdot \prod_{w=1}^n U_{w,1}^{z \cdot x_{w,1}} \left[\prod_{w=1}^n U_{w,2}^{z \cdot x_{w,2}} \right] \\$$

Slotted RIPE (2 slots)

CRS Generation:

$$A_1, B_1$$
 A_2, B_2

$$A_{\mathtt{2}}$$
 , $B_{\mathtt{2}}$

$$\left\{W_{1,2,w} = A_1^{u_{2,w}}\right\} \quad \left\{W_{2,1,w} = A_2^{u_{1,w}}\right\}$$

$$\{U_{w,1} = g^{u_{1,w}}\}$$
 $\{U_{w,2} = g^{u_{2,w}}\}$

$$\{U_{w,1}\cdot U_{w,2}\}$$

Key Generation:

$$pk_1 = U_{n+1}^{-sk_1} \quad x_1 = (x_{1,1}, \dots, x_{n,1}) \quad \left\{ W_{2,1,w}^{sk_1} \right\}$$

$$\left\{W_{2,1,w}^{sk_1}\right\}$$

$$pk_2 = U_{n+1}^{-sk_2} \quad x_2 = (x_{1,2}, \dots, x_{n,2}) \quad \{W_{1,2,w}^{sk_2}\}$$

$$\left\{W_{1,2,w}^{sk_2}\right\}$$

Key Aggregation:

$$W_{2,1,n+1}^{sk_1} \cdot W_{1,2,n+1}^{sk_2}$$

$$\{U_{w,1}\cdot U_{w,2}\}$$

$$\begin{cases} U_{w,1} \cdot U_{w,2} \end{cases} \qquad pk_1 \cdot pk_2 \cdot \prod U_{w,1}^{x_{w,1}} \prod U_{w,2}^{x_{w,2}}$$

$$A_1$$
, B_1

$$W_{2,1,n+1}^{sk_1}\cdot W_{1,2,n+1}^{sk_2}$$

$$\prod_{w \in [n]} C_{3,w}^{x_{w,1}} = \prod_{w \in [n]} h^{(y_w \cdot r + s) \cdot x_{w,1}} \cdot \prod_{w=1}^n U_{w,1}^{-z \cdot x_{w,1}} \cdot \prod_{w=1}^n U_{w,2}^{-z \cdot x_{w,1}}$$

$$C_{3,n+1}^{\operatorname{sk}_1} = h^{s \cdot \operatorname{sk}_1} \cdot \underbrace{U_{n+1,1}^{-z \cdot \operatorname{sk}_1}}_{n+1,1} \cdot \underbrace{U_{n+1,2}^{-z \cdot \operatorname{sk}_1}}$$

$$C_{3,n+2} = h^s \cdot U_{n+1,1}^{z \cdot \mathsf{sk}_1} \cdot U_{n+1,2}^{z \cdot \mathsf{sk}_2} \cdot \prod_{w=1}^n U_{w,1}^{z \cdot x_{w,1}} \prod_{w=1}^n U_{w,2}^{z \cdot x_{w,2}}$$

$$\prod_{v=1}^{n} U_{w,1}^{z \cdot x_{w,1}} \prod_{w=1}^{n} U_{w,2}^{z \cdot x_{w,2}}$$

$$C_4 = g_1^z$$

Slotted RIPE (2 slots)
$$\{W_{1,2,w} = A_1^{u_{2,w}/\gamma}\} \quad \{W_{2,1,w} = A_2^{u_{1,w}/\gamma}\}$$

$$\{U_{w,1}\cdot U_{w,2}\}$$

$$\Gamma = g_1^{\gamma}$$
 Z

$$A_1$$
, B_1

$$W_{2,1,n+1}^{sk_1} \cdot W_{1,2,n+1}^{sk_2}$$

$$\prod_{w \in [n]} C_{3,w}^{x_{w,1}} = \prod_{w \in [n]} h^{(y_w \cdot r + s) \cdot x_{w,1}} \cdot \prod_{w=1}^n U_{w,1}^{-z \cdot x_{w,1}} \cdot \prod_{w=1}^n U_{w,2}^{-z \cdot x_{w,1}}$$

$$C_{3,n+1}^{\mathsf{sk}_1} = h^{s \cdot \mathsf{sk}_1} \cdot \underbrace{U_{n+1,1}^{-z \cdot \mathsf{sk}_1}}_{n+1,1} \cdot \underbrace{U_{n+1,2}^{-z \cdot \mathsf{sk}_1}}_{n+1,2}$$

$$C_{3,n+2} = h^s \cdot U_{n+1,1}^{z \cdot \mathsf{sk}_1} \cdot U_{n+1,2}^{z \cdot \mathsf{sk}_2} \cdot \prod_{w=1}^n U_{w,1}^{z \cdot x_{w,1}} \prod_{w=1}^n U_{w,2}^{z \cdot x_{w,2}}$$

$$\prod_{w=1}^{n} U_{w,1}^{z \cdot x_{w,1}} \left| \prod_{w=1}^{n} U_{w,2}^{z \cdot x_{w,2}} \right|$$

$$C_4 = \Gamma^z$$

Slotted RIPE (2 slots)

$$\{U_{w,1}\cdot U_{w,2}\}$$

$$\Gamma = g_1^{\gamma}$$
 Z

$$A_1, B_1$$

$$W_{2,1,n+1}^{sk_1} \cdot W_{1,2,n+1}^{sk_2}$$

$$\prod_{w \in [n]} C_{3,w}^{x_{w,1}} = \prod_{w \in [n]} h^{(y_w \cdot r + s) \cdot x_{w,1}} \cdot \prod_{w=1}^n U_{w,1}^{-z \cdot x_{w,1}} \cdot \prod_{w=1}^n U_{w,2}^{-z \cdot x_{w,1}}$$

$$C_{3,n+1}^{\mathsf{sk}_1} = h^{s \cdot \mathsf{sk}_1} \cdot \underbrace{U_{n+1,1}^{-z \cdot \mathsf{sk}_1}}_{n+1,2} \cdot \underbrace{U_{n+1,2}^{-z \cdot \mathsf{sk}_1}}_{n+1,2}$$

$$C_{3,n+2} = h^s \cdot U_{n+1,1}^{z \cdot \mathsf{sk}_1} \cdot U_{n+1,2}^{z \cdot \mathsf{sk}_2} \cdot \prod_{w=1}^n U_{w,1}^{z \cdot x_{w,1}} \prod_{w=1}^n U_{v,2}^{z \cdot x_{w,2}}$$

Conclusions

- RFE Definition
- Registered IPE from parings in the GGM
- RFE for P/poly and unbounded users from iO and SSB hash functions
- Open problems
 - RFE from any compact and polynomially-hard FE
 - RFE for specialized function classes from weaker assumptions
 - Prove our pairing-based RIPE in the standard model

Thank you for your attention!

https://ia.cr/2023/395