Práctico 3 Matemática Discreta I - Año 2021/1 **FAMAF**

c) 135 por −23,

d) −135 por −23,

e) 127 por 99,

f) 98 por 73.

(1) Hallar el cociente y el resto de la división de:

a) 135 por 23, *b*) −135 por 23,

de a por b .		allar el cociente y el resto de niendo ahora que $-b \leq r < 1$	
(3) Dado $m \in \mathbb{N}$ 3, 4, 5, 7, 8, 11.	hallar los restos pos	sibles de <i>m</i> ² y <i>m</i> ³ en la o	división por
(4) Expresar en bas	se 10 los siguientes en	nteros:	
<i>a)</i> (1503) ₆ <i>b)</i> (1111) ₂	c) (1111) ₁₂ d) (123) ₄	e) (12121) ₃ f) (1111) ₅	
(5) Convertir			
a) (133) ₄ a bas b) (<i>B</i> 38) ₁₆ a ba		c) (3506) ₇ a base 2, d) (1541) ₆ a base 4.	
(6) Calcular: a) (22	$(34)_5 + (2310)_5$	b) $(10101101)_2 + (10011)_2$.	
(7) Sean a , b , $c \in \mathbb{Z}$. Demostrar las siguientes afirmaciones: a) Si $ab = 1$, entonces $a = b = 1$ ó $a = b = -1$. b) Si a , $b \neq 0$, $a b$ y $b a$, entonces $a = b$ ó $a = -b$. c) Si $a 1$, entonces $a = 1$ ó $a = -1$. d) Si $a \neq 0$, $a b$ y $a c$, entonces $a (b+c)$ y $a (b-c)$. e) Si $a \neq 0$, $a b$ y $a (b+c)$, entonces $a c$. f) Si $a \neq 0$ y $a b$, entonces $a b \cdot c$.			
 a) 0 es par y b) Si b es par lo es -b). c) Si b y c soud) Si un núme e) La suma de 	y $b \mid c$, entonces c eson pares, entonces $b + c$ ro par divide a 2, enton un número par y uno	s par. (Por lo tanto, si <i>b</i> es p c también lo es. nces ese número es 2 ó -2.	

(9) Sea $n \in \mathbb{Z}$. Probar que n es par si y sólo si n^2 es par.

1

- (10) Probar que n(n + 1) es par para todo n entero.
- (11) Sean a, b, $c \in \mathbb{Z}$. ¿Cuáles de las siguientes afirmaciones son verdaderas? Justificar las respuestas.
 - a) $a \mid b \cdot c \Rightarrow a \mid b \circ a \mid c$.
 - b) $a \mid (b+c) \Rightarrow a \mid b \circ a \mid c$.
 - c) $a \mid c \mid b \mid c \Rightarrow a \cdot b \mid c$.
 - d) $a \mid c \ y \ b \mid c \Rightarrow (a+b) \mid c$.
 - e) a, b, c > 0 y $a = b \cdot c$, entonces $a \ge b$ y $a \ge c$.
- (12) Probar que cualquiera sea $n \in \mathbb{N}$:
 - a) $3^{2n+2} + 2^{6n+1}$ es múltiplo de 11.
 - b) $3^{2n+2} 8n 9$ es divisible por 64.
- (13) Decir si es verdadero o falso justificando:
 - a) $3^n + 1$ es múltiplo de $n, \forall n \in \mathbb{N}$.
 - b) $3n^2 + 1$ es múltiplo de 2, $\forall n \in \mathbb{N}$.
 - c) $(n+1) \cdot (5n+2)$ es múltiplo de 2, $\forall n \in \mathbb{N}$.
- (14) Probar que para todo $n \in \mathbb{Z}$, $n^2 + 2$ no es divisible por 4.
- (15) Probar que todo entero impar que no es múltiplo de 3, es de la forma $6m \pm 1$, con m entero.
- (16) *a)* Probar que el producto de tres enteros consecutivos es divisible por 6.
 - b) Probar que el producto de cuatro enteros consecutivos es divisible por 24 (ayuda: el número combinatorio $\binom{n}{4}$ es entero).
- (17) Probar que si a y b son enteros entonces $a^2 + b^2$ es divisible por 7 si y sólo si a y b son divisibles por 7. ¿Es lo mismo cierto para 3? ¿Para 5?
- (18) Encontrar (7469, 2464), (2689, 4001), (2447, -3997), (-1109, -4999).
- (19) Calcular el máximo común divisor y expresarlo como combinación lineal de los números dados, para cada uno de los siguientes pares de números:
 - a) 14 y 35,
- *d*) 12 y −52,
- *q*) 606 y 108.

- b) 11 y 15,
- e) 12 y 532,
- c) 12 y 52,
- f) 725 y 441,
- (20) Probar que no existen enteros x e y que satisfagan x + y = 100 y (x, y) = 3.
- (21) *a)* Sean $a \ y \ b$ coprimos. Probar que si $a \mid b \cdot c$ entonces $a \mid c$.
 - b) Sean $a \ y \ b$ coprimes. Probar que si $a \ | \ c \ y \ b \ | \ c$, entonces $a \cdot b \ | \ c$.
- (22) Probar que si $n \in \mathbb{Z}$, entonces los números 2n+1 y $\frac{n(n+1)}{2}$ son coprimos.

- (23) Encontrar todos los enteros positivos a y b tales que (a, b) = 10 y [a, b] = 100.
- (24) *a)* Probar que si d es divisor común de a y b, entonces $\frac{(a,b)}{d} = \left(\frac{a}{d}, \frac{b}{d}\right)$. b) Probar que si $a,b\in\mathbb{Z}$ no nulos, entonces $\frac{a}{(a,b)}$ y $\frac{b}{(a,b)}$ son coprimos.
- (25) Probar que 3 y 5 son números primos.
- (26) Dar todos los números primos positivos menores que 100.
- (27) Determinar con el criterio de la raíz cuáles de los siguientes números son primos: 113, 123, 131, 151, 199, 503.
- (28) Si $a \cdot b$ es un cuadrado y a y b son coprimos, probar que a y b son cuadrados.
- (29) a) Probar que $\sqrt{5}$ no es un número racional.
 - b) Probar que $\sqrt{15}$ no es un número racional.
 - c) Probar que $\sqrt{8}$ no es un número racional.
 - d) Probar que $\sqrt[3]{4}$ no es un número racional.
- (30) Probar que si p_k es el k-ésimo primo positivo entonces

$$p_{k+1} \leq p_1 \cdot p_2 \cdot \cdots \cdot p_k + 1$$

- (31) Calcular el máximo común divisor y el mínimo común múltiplo de los siguientes pares de números usando la descomposición en números primos.
 - a) a = 12 y b = 15.

- b) a = 11 y b = 13.
- d) $a = 3^2 \cdot 5^2$ y b = e) $a = 2^2 \cdot 3 \cdot 5$ y $b = 2^2 \cdot 11$. $2 \cdot 5 \cdot 7$.
- c) a = 140 y b = 150.