

Ground-based Testing of TiB₂ and Al₂O₃/TiB₂ Response to Space Environment

Sharon A. Jefferies
NASA Langley Research Center

Kathryn V. Logan, Ph.D., PE
Virginia Polytechnic Institute and State University/
National Institute of Aerospace

Outline

- Background
- Test materials
- Experiments and discussion
 - Atomic oxygen (AO) exposure
 - Neutron shielding
- Conclusions
- Questions

General Background

- Constant search for improved space materials
- Low Earth Orbit
 - Highly reactive AO environment
 - Galactic cosmic ray induced neutron radiation
- Unique TiB₂ material
 - Carbonless SHS production
 - Improved performance
- Boron has high neutron capture cross-section
- Selection for MISSE 6
 - Minimal prior space environment testing

Test Materials

TiB₂ Characteristics

Density	4.53 g/cm ³
Melting Point	3000° C
Fracture Toughness	5 - 6 MPa * m ^{1/2}
Hardness	3400 Knoop
Electrical Conductivity	9 - 18 $\mu\Omega$ * cm
Chemical Stability	Resistant to acids
High Thermal Conductivity	
Excellent Thermal Shock Resistance	

Atomic Oxygen Exposure Test

- Purpose: Determine effects of AO exposure
- Exposures of varying durations
- Ground state AO
- No significant oxidation or erosion expected

Placement of samples
on glass holder

AO Exposure Test Procedure

$$\text{Fluence} = \Delta m_K / (A_K r_K E_K) \text{ atoms/cm}^2$$

Δm_K = mass loss of Kapton sample, E_K = Kapton sample erosion rate ($3.0 \times 10^{-24} \text{ cm}^3/\text{atom}$), A_K = Kapton sample area (6.45 cm^2), r_K = Kapton sample density (1.42 g/cm^3)

- Average AO fluence: $6.72 \times 10^{19} \text{ atom/cm}^2/\text{hr}$
- Longest equivalent test duration: 10.6 months

AO Exposure Test Results

- No significant oxidation or erosion detected
- Slight yellowing
 - Coincides with previous study
 - Indicative of slight oxidation

Comparison of unexposed and exposed samples Left:
 TiB_2 (14.5 hr exp), Right: $\text{Al}_2\text{O}_3/\text{TiB}_2$ (14.5 hr exp)

AO Exposure Test Results – Optical

10X

50X

Optical magnification pictures (top: 10X, Bottom: 50X)
Left to right: Unexposed TiB_2 . 24 hr exposed TiB_2 , Unexposed
 $\text{Al}_2\text{O}_3/\text{TiB}_2$. 24 hr exposed $\text{Al}_2\text{O}_3/\text{TiB}_2$

AO Exposure Test Results – SEM

5000X magnification SEM (Top: TiB_2 ; Bottom: $\text{Al}_2\text{O}_3/\text{TiB}_2$)
Left: unexposed; Center: 6 hr exposure; Right: 24 hr exposure

AO Exposure Test Results – EDAX

EDAX mappings of samples after 24 hours exposure
Left: TiB₂ (T1), Ti (T2), B (T3), O (T4)
Right: TiB₂/Al₂O₃ (C1), Ti (C2), Al (C3), O (C4)

AO Exposure Test Results

- No significant mass changes with either material
- XPS, EDAX showed oxides present in control and exposed samples
- EDAX found presence of contamination (silica) on surface of material samples
 - Sample holder etching suspected as source
 - Negligible impact on mass readings

Neutron Shielding Test

- Purpose: Determine TiB_2 and $\text{Al}_2\text{O}_3/\text{TiB}_2$ neutron shielding ability
- Exposure to moderated neutron source
 - Source: 1 Ci Am 241/Be 9
 - Moderation: 2 inch-walled polyethylene cylinder
 - Average neutron energy: $\leq 1\text{MeV}$
- Expectations:
 - Reduced radiation transmission
 - TiB_2 performs better than $\text{Al}_2\text{O}_3/\text{TiB}_2$

Neutron Shielding Test Procedure

- Indium foil detector
 - 54.4 minute half life
 - Reaction path: $^{115}\text{In} + n \rightarrow ^{116}\text{Sn} + \beta^-$
- Sample placed touching source container
- Minimum 24 hour exposure

Sample placement with source

Sample set (left to right):
1mm composite back layer, In
foil, 1mm test material layers

Neutron Shielding Test Procedure

- Radiation detection
 - Model 500 Nuclear Scaler radiation counter
 - Ambient radiation readings
 - Indium detector radiation reading
 - 2-minute counts, 5-minute intervals, 2 hour period
 - Ambient correction applied

Neutron Shielding Results

- TiB_2 exhibits significant shielding ability
- $\text{Al}_2\text{O}_3/\text{TiB}_2$ exhibits shielding enhancement
- Al 6061 produces radiation increase

Radiation reductions							
	None	1mm TiB2	2mm TiB2	1mm Comp	2mm Comp	1mm Al 6061	2mm Al 6061
Run 1	1744	306	105	782	395	2179	3315
Run 2	1779	336	77	690	399	2309	2906
Run 3	2450	313	112	717	352	2077	3305
Average	1991	318	98	730	382	2188	3175
		84.03%	95.08%	63.34%	80.81%	-9.89%	-59.47%

Radiation shielding percentages by material and thickness

Neutron Results

Shielding Performance Summary

Conclusions

- Atomic oxygen
 - No significant surface changes
 - Potential oxidation observed
- Neutron shielding
 - 1 mm TiB_2 provides $\sim 84\%$ reduction in neutron transmission
 - 1 mm $\text{Al}_2\text{O}_3/\text{TiB}_2$ provides $\sim 63\%$ reduction
 - $\text{Al}_2\text{O}_3/\text{TiB}_2$ requires over 2X TiB_2 thickness to match effectiveness

Acknowledgements

- NASA Contract #
- Sheila Thibeault
- Richard Kiefer
- Robert Edahl
- Robert Singletary
- Jairaj Payyapilly
- Michael Hunt
- Brad Hopkins
- Brian Stewart

Questions?

References

1. Logan, Kathryn V., et al., "Thermite Processing of Titanium Diboride." Technical Report MTL TR 87-16, March 1987.
2. Logan, Kathryn V. and Villalobos, Guillermo R., "Thermodynamic Behavior of Selected SHS Reactions." HTD-Vol. 250, Heat Transfer in Fire and combustion Systems. B. Farouk, M.P. Menguc, R. Viskanta, C. Presser, and S. Chellaiah, ed., Book No. G00807, 1993
3. Munro, Ronald G. "Material Properties of Titanium Diboride." *J. Res. Natl. Inst. Stand. Technol.* **105**, 709-720, 2000.
4. Banks, Bruce A., Miller, Sharon K., De Groh, Kim K., "Low Earth Orbit Atomic Oxygen Interactions with Materials." AIAA-2004-5638, August 2004.
5. Opeka, Mark M., Price, Jack, and Becker, Eric J. "Atomic Oxygen Response of Titanium Carbide and Titanium Diboride." IAF-93-1.4.234, 44th International Astronautical Congress, October 1993.
6. Kinsey, R.R., et al., *The NUDAT/PCNUDAT Program for Nuclear Data*, 9th International Symposium of Capture-Gamma Ray Spectroscopy and Related Topics, Budapest, Hungary, October 1996.

