```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
#visualizes all the columns
pd.set_option('display.max_columns',None)
```

#models

from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier

from sklearn.model_selection import train_test_split,GridSearchCV

from sklearn import metrics

 $from \ sklearn. metrics \ import \ mean_absolute_error, accuracy_score, precision_score, confusion_matrix, f1_score, classification_report$

#Kepler Object=koi

data=pd.read_csv('/content/exoplanets_2018 (1).csv')
data

	kepid	kepoi_name	kepler_name	koi_disposition	koi_pdisposition	koi_score	koi_fpf
0	10797460	K00752.01	Kepler-227 b	CONFIRMED	CANDIDATE	1.000	
1	10797460	K00752.02	Kepler-227 c	CONFIRMED	CANDIDATE	0.969	
2	10811496	K00753.01	NaN	CANDIDATE	CANDIDATE	0.000	
3	10848459	K00754.01	NaN	FALSE POSITIVE	FALSE POSITIVE	0.000	
4	10854555	K00755.01	Kepler-664 b	CONFIRMED	CANDIDATE	1.000	
9559	10090151	K07985.01	NaN	FALSE POSITIVE	FALSE POSITIVE	0.000	
9560	10128825	K07986.01	NaN	CANDIDATE	CANDIDATE	0.497	
9561	10147276	K07987.01	NaN	FALSE POSITIVE	FALSE POSITIVE	0.021	
9562	10155286	K07988.01	NaN	CANDIDATE	CANDIDATE	0.092	
9563	10156110	K07989.01	NaN	FALSE POSITIVE	FALSE POSITIVE	0.000	
9564 rc	ows × 49 colu	umns					

Start coding or generate with AI.

data.isnull().sum()

₹	kepid	0
	kepoi_name	0
	kepler_name	7205
	koi_disposition	0
	koi_pdisposition	0
	koi_score	1510
	koi_fpflag_nt	0
	koi_fpflag_ss	0
	koi_fpflag_co	0
	koi_fpflag_ec	0
	koi_period	0
	koi_period_err1	454
	koi_period_err2	454
	koi_time0bk	0
	koi_time0bk_err1	454
	koi_time0bk_err2	454
	koi_impact	363
	koi_impact_err1	454
	koi_impact_err2	454
	koi_duration	0
	koi_duration_err1	454
	koi_duration_err2	454
	koi_depth	363
	koi_depth_err1	454
	koi depth err2	454
	koi_prad	363

```
koi_prad_err2
                                               363
         koi_teq
         koi_teq_err1
                                              9564
         koi_teq_err2
                                              9564
                                               321
         koi_insol
         koi insol err1
                                                321
         koi_insol_err2
                                               321
         koi_model_snr
                                                363
         koi_tce_plnt_num
                                                346
                                               346
         koi tce delivname
         koi_steff
                                                363
         koi_steff_err1
                                               468
         koi_steff_err2
                                                483
                                                363
         koi_slogg
         koi_slogg_err1
                                               468
                                                468
         koi_slogg_err2
                                                363
         koi_srad
         koi_srad_err1
                                               468
         koi_srad_err2
                                                468
                                                   0
         ra
         dec
                                                   0
         koi_kepmag
         dtype: int64
data = data.rename(columns={'kepid':'KepID',
# 'kepoi_name':'KOIName',
# 'kepler_name':'KeplerName',
# 'koi_disposition':'ExoplanetArchiveDisposition',
# 'koi_pdisposition':'DispositionUsingKeplerData',
'koi_score':'DispositionScore',
'koi_fpflag_nt':'NotTransit-LikeFalsePositiveFlag',
'koi_fpflag_ss':'koi_fpflag_ss',
\verb|'koi_fpflag_co':'CentroidOffsetFalsePositiveFlag'|,
'koi fpflag ec': 'EphemerisMatchIndicatesContaminationFalsePositiveFlag',
'koi_period':'OrbitalPeriod[days',
'koi period err1':'OrbitalPeriodUpperUnc.[days',
'koi_period_err2':'OrbitalPeriodLowerUnc.[days',
'koi_time0bk':'TransitEpoch[BKJD',
'koi_time0bk_err1':'TransitEpochUpperUnc.[BKJD',
'koi_time0bk_err2':'TransitEpochLowerUnc.[BKJD',
'koi_impact':'ImpactParamete',
'koi_impact_err1':'ImpactParameterUpperUnc',
'koi_impact_err2':'ImpactParameterLowerUnc',
'koi_duration':'TransitDuration[hrs',
'koi_duration_err1':'TransitDurationUpperUnc.[hrs',
'koi_duration_err2':'TransitDurationLowerUnc.[hrs',
'koi_depth':'TransitDepth[ppm',
'koi_depth_err1':'TransitDepthUpperUnc.[ppm',
'koi depth_err2':'TransitDepthLowerUnc.[ppm',
'koi_prad':'PlanetaryRadius[Earthradii',
'koi_prad_err1':'PlanetaryRadiusUpperUnc.[Earthradii',
'koi_prad_err2':'PlanetaryRadiusLowerUnc.[Earthradii',
'koi_teq':'EquilibriumTemperature[K',
# 'koi_teq_err1':'EquilibriumTemperatureUpperUnc.[K',
# 'koi_teq_err2':'EquilibriumTemperatureLowerUnc.[K',
'koi_insol':'InsolationFlux[Earthflux',
'koi_insol_err1':'InsolationFluxUpperUnc.[Earthflux',
'koi_insol_err2':'InsolationFluxLowerUnc.[Earthflux',
'koi_model_snr':'TransitSignal-to-Nois','koi_tce_plnt_num':'TCEPlanetNumbe',
'koi_tce_delivname':'TCEDeliver',
'koi_steff':'StellarEffectiveTemperature[K',
'koi_steff_err1':'StellarEffectiveTemperatureUpperUnc.[K',
'koi_steff_err2':'StellarEffectiveTemperatureLowerUnc.[K',
'koi_slogg':'StellarSurfaceGravity[log10(cm/s**2)',
\verb|'koi_slogg_err1':'StellarSurfaceGravityUpperUnc.[log10(cm/s**2)', | log10(cm/s**2)'| 
'koi_slogg_err2':'StellarSurfaceGravityLowerUnc.[log10(cm/s**2)',
'koi_srad':'StellarRadius[Solarradii',
'koi_srad_err1':'StellarRadiusUpperUnc.[Solarradii',
'koi_srad_err2':'StellarRadiusLowerUnc.[Solarradii',
'ra':'RA[decimaldegrees',
'dec':'Dec[decimaldegrees',
'koi_kepmag':'Kepler-band[mag]'
data.koi_disposition.value_counts()
 → koi_disposition
         FALSE POSTTTVE
                                         4840
         CANDIDATE
                                        2367
```

koi prad err1

})

363

CONFIRMED 2357 Name: count, dtype: int64

data.koi_pdisposition.value_counts()

→ koi_pdisposition

FALSE POSITIVE 4847
CANDIDATE 4717
Name: count, dtype: int64

Start coding or generate with AI.

from sklearn.preprocessing import LabelEncoder
lst=['koi_disposition','koi_pdisposition']
dict1={}
for col in lst:
 dict1[col]=LabelEncoder()
 data[col]=dict1[col].fit_transform(data[col])
dict1

 $\overline{\mathbf{x}}$

data.head()

•		KepID	kepoi_name	kepler_name	koi_disposition	koi_pdisposition	DispositionScore	Lik
	0	10797460	K00752.01	Kepler-227 b	1	0	1.000	
	1	10797460	K00752.02	Kepler-227 c	1	0	0.969	
	2	10811496	K00753.01	NaN	0	0	0.000	
	3	10848459	K00754.01	NaN	2	1	0.000	
	4	10854555	K00755.01	Kepler-664 b	1	0	1.000	

data.drop(columns=['kepoi_name','kepler_name','koi_teq_err1','koi_teq_err2','TCEDeliver'],inplace=True)

data.head()

₹

•		KepID	koi_disposition	koi_pdisposition	DispositionScore	NotTransit- LikeFalsePositiveFlag	koi_f
	0	10797460	1	0	1.000	0	
	1	10797460	1	0	0.969	0	
	2	10811496	0	0	0.000	0	
	3	10848459	2	1	0.000	0	
	4	10854555	1	0	1.000	0	

Double-click (or enter) to edit

data = data.rename(columns={'koi_disposition':'exoplanet_confirmed','koi_pdisposition':'exoplanet_candidate'})

data.head()

₹

	KepID	exoplanet_confirmed	exoplanet_candidate	DispositionScore	NotTransit- LikeFalsePositiveFlag
0	10797460	1	0	1.000	0
1	10797460	1	0	0.969	0
2	10811496	0	0	0.000	0
3	10848459	2	1	0.000	0
4	10854555	1	0	1.000	0


```
# Create a list of column names columns = data.columns
```

Create subplots

fig, axes = plt.subplots(nrows=7, ncols=7, figsize=(20, 20))#create a grid of subplots using plt.subplots(nrows=7, ncols=7) to accommodate the Loop through each pair of columns and create scatter plots

for i,ax in enumerate(axes.flatten()):#loop through each pair of columns, create scatter plots for them, and assign them to individual subplicif i < len(columns) - 1:

x_col = columns[i]
y_col = columns[i + 1]
ax.scatter(data[x_col], data[y_col])

 $ax.set_xlabel(x_col)$

ax.set_ylabel(y_col)
Adjust layout

plt.tight_layout()#Finally, we adjust the layout and display the plots using plt.tight_layout() and plt.show()
plt.show()

-		_
-	→	_

	exoplanet_confirmed	exoplanet_candidate	DispositionScore	OrbitalPeriod[days	OrbitalP
0	1	0	1.000	9.488036	
1	1	0	0.969	54.418383	
2	0	0	0.000	19.899140	
3	2	1	0.000	1.736952	
4	1	0	1.000	2.525592	
9559	2	1	0.000	0.527699	
9560	0	0	0.497	1.739849	
9561	2	1	0.021	0.681402	
9562	0	0	0.092	333.486169	
9563	2	1	0.000	4.856035	

9564 rows × 39 columns

data.isnull().sum()

→	exoplanet_confirmed	0
_	exoplanet_candidate	0
	DispositionScore	1510
	OrbitalPeriod[days	0
	OrbitalPeriodUpperUnc.[days	454
	OrbitalPeriodLowerUnc.[days	454
	TransitEpoch[BKJD	0
	TransitEpochUpperUnc.[BKJD	454
	TransitEpochLowerUnc.[BKJD	454
	ImpactParamete	363
	ImpactParameterUpperUnc	454
	ImpactParameterLowerUnc	454
	TransitDuration[hrs	0
	TransitDurationUpperUnc.[hrs	454
	TransitDurationLowerUnc.[hrs	454
	TransitDepth[ppm	363
	TransitDepthUpperUnc.[ppm	454
	TransitDepthLowerUnc.[ppm	454
	PlanetaryRadius[Earthradii	363
	PlanetaryRadiusUpperUnc.[Earthradii	363
	PlanetaryRadiusLowerUnc.[Earthradii	363
	EquilibriumTemperature[K	363
	InsolationFlux[Earthflux	321
	InsolationFluxUpperUnc.[Earthflux	321
	InsolationFluxLowerUnc.[Earthflux	321
	TransitSignal-to-Nois	363
	TCEPlanetNumbe	346
	StellarEffectiveTemperature[K	363
	StellarEffectiveTemperatureUpperUnc.[K	468
	StellarEffectiveTemperatureLowerUnc.[K	483
	StellarSurfaceGravity[log10(cm/s**2)	363
	StellarSurfaceGravityUpperUnc.[log10(cm/s**2)	468
	<pre>StellarSurfaceGravityLowerUnc.[log10(cm/s**2)</pre>	468
	StellarRadius[Solarradii	363
	StellarRadiusUpperUnc.[Solarradii	468
	StellarRadiusLowerUnc.[Solarradii	468
	RA[decimaldegrees	0
	Dec[decimaldegrees	0
	Kepler-band[mag]	1
	dtype: int64	

data.dropna(inplace=True)

data.head()

data.shape

→ (7803, 39)

Start coding or generate with AI.

```
→ dtype('float64')
x=data.drop(columns='exoplanet_candidate')
data.exoplanet_candidate.value_counts()
→ exoplanet_candidate
          3741
     1
     Name: count, dtype: int64
y=data['exoplanet_candidate']
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.4,random_state=1)
x_train.shape
→ (4681, 38)
x_test.shape
→ (3122, 38)
data.shape
→▼ (7803, 39)
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
x_train_scaled=sc.fit_transform(x_train)
x_test_scaled=sc.transform(x_test)
x_test_scaled
→ array([[ 0.93182479, -1.0348051 , -0.21374544, ..., 1.47444355,
             -0.9927248 , -0.33328488],
[ 0.93182479, -1.0348051 , -0.2995078 , ..., 1.15858122,
              -0.92419694, -0.80284268],
            [ 0.93182479, -1.0348051 , -0.22834646, ..., 0.61429732, 0.77317435, 1.37948309],
            [-1.5931372 , 1.02188583, -0.40101061, ..., -0.01312033, 0.03086757, 0.05577729],
             [ \ 0.93182479, \ -1.0348051 \ , \ \ 3.18527275, \ \ldots, \ \ 0.05171439,
              -1.39608929, -0.72234706],
            [-1.5931372 , 0.43425985, -0.27984925, ..., 0.04694809,
              -0.33838837, 0.31440675]])
def evaluation(y_true, y_pred):
# Print Accuracy, Recall, F1 Score, and Precision metrics.
    print('Evaluation Metrics:')
    print('Accuracy: ' + str(metrics.accuracy_score(y_test, y_pred)))
    print('Recall: ' + str(metrics.recall_score(y_test, y_pred)))
    print('F1 Score: ' + str(metrics.f1_score(y_test, y_pred)))
    print('Precision: ' + str(metrics.precision_score(y_test, y_pred)))
\hbox{\tt\# Print Confusion Matrix}
    print('\nConfusion Matrix:')
    print(' TN, FP, FN, TP')
    print(confusion_matrix(y_true, y_pred).ravel())
# Function Prints best parameters for GridSearchCV
def print results(results):
    print('Best Parameters: {}\n'.format(results.best_params_))
```

```
lr=LogisticRegression(C=100, max_iter=200, class_weight='balanced')
# Fitting Model to the train set
lr.fit(x_train,y_train)
# Predicting on the test set
y_pred5=lr.predict(x_test)
# Evaluating model
evaluation(y_test, y_pred5)
→▼ Evaluation Metrics:
     Accuracy: 0.8238308776425368
     Recall: 0.7751004016064257
     F1 Score: 0.8080949057920447
    Precision: 0.8440233236151603
     Confusion Matrix:
     TN, FP, FN, TP
     [1414 214 336 1158]
     /usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458: ConvergenceWarning: lbfgs failed to converge (status=1):
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
       n_iter_i = _check_optimize_result(
knn
knn=KNeighborsClassifier(leaf_size=8, metric='manhattan',weights='uniform')
# Fitting Model to the train set
knn.fit(x_train,y_train)
# Predicting on the test set
y_pred4=knn.predict(x_test)
# Evaluating model
evaluation(y_test, y_pred4)
Accuracy: 0.8023702754644458
     Recall: 0.7590361445783133
     F1 Score: 0.7861351819757365
    Precision: 0.8152408339324227
     Confusion Matrix:
     TN, FP, FN, TP
     [1371 257 360 1134]
decision tree
tree=DecisionTreeClassifier()
# Fitting Model to the train set
tree.fit(x_train,y_train)
# Predicting on the test set
y_pred3=tree.predict(x_test)
# Evaluating model
evaluation(y_test,y_pred3)
    Evaluation Metrics:
     Accuracy: 0.9983984625240231
     Recall: 0.998661311914324
     F1 Score: 0.998327199732352
     Precision: 0.9979933110367893
```

random forest

[1625

Confusion Matrix: TN, FP, FN, TP

3

2 1492]

```
# Instantiate model
forest=RandomForestClassifier(n_estimators=100, criterion='gini')
# Fitting Model to the train set
forest.fit(x_train,y_train)
# Predicting on the test set
y_pred2=forest.predict(x_test)
# Evaluating model
evaluation(y_test, y_pred2)
→▼ Evaluation Metrics:
     Accuracy: 0.9990390775144138
     Recall: 0.998661311914324
     F1 Score: 0.9989956478071643
     Precision: 0.999330207635633
     Confusion Matrix:
      TN, FP, FN, TP
                   2 14921
     [1627 1
forest.feature_importances_
→ array([0.40626069, 0.25648283, 0.01474966, 0.00902676, 0.00910078,
             0.00147552, 0.0021883 , 0.00332403, 0.00750104, 0.00211219, 0.00136105, 0.00417534, 0.00580974, 0.00926642, 0.01659487,
             0.00189965,\ 0.00180856,\ 0.05569416,\ 0.03553199,\ 0.04084757,
             0.01203039, 0.01711754, 0.01659179, 0.01017143, 0.00785109, 0.00160457, 0.00172491, 0.01202405, 0.02231944, 0.00150562,
             0.00158019,\ 0.00148578,\ 0.00167941,\ 0.00142575,\ 0.00146524,
             0.00158551, 0.00097541, 0.00165069])
# Instantiate model
gr=GradientBoostingClassifier(n_estimators=1000,learning_rate=0.001,min_samples_split=10)
# Fitting Model to the train set
gr.fit(x_train,y_train)
# Predicting on the test set
y_pred1=gr.predict(x_test)
# Evaluating model
evaluation(y_test,y_pred1)
→ Evaluation Metrics:
     Accuracy: 0.9990390775144138
     Recall: 0.998661311914324
     F1 Score: 0.9989956478071643
     Precision: 0.999330207635633
     Confusion Matrix:
     TN, FP, FN, TP
[1627 1 2 3
                    2 1492]
x_im=gr.feature_importances_
x_im=x_im>10**-6
new=[]
for i,j in zip(x.columns,x_im):
 if j==True:
    new.append(i)
x_new=data[new]
dict10={'model':forest,'encoder':dict1[col]}
import pickle
with open('exo_planet_prediction.pkl','wb') as file:
    pickle.dump(dict10,file)
with open ('exo_planet_prediction.pkl','rb') as file1:
 var1=pickle.load(file1)
{'model': RandomForestClassifier(), 'encoder': LabelEncoder()}
var1['model'].predict(x)
\Rightarrow array([0, 0, 0, ..., 1, 0, 1])
```