GEOMETRIA 10 luglio 2012 – 2 ore

Istruzioni:

- Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi.
- Per ogni quiz nella prima parte, indicare l'affermazione giudicata corretta nella tabella in questa pagina.
- Trascrivere la risposta alle singole domande degli esercizi della seconda parte nelle pagine bianche alla fine di ogni esercizio.
- Per la brutta utilizzare i fogli distribuiti dal docente.

COGNOME, NOME:													
MATRI	COLA:	:											
Docen	ITE:	_											
	Q1	a	b		С	d	Ç) 9	a	b	С	d	
	Q2	a	b		С	d	Ç	Q10	a	b	С	d	
	Q3	a	b		С	d	Ç	Q11	a	b	С	d	
	Q4	a	b		С	d	Ç	Q12	a	b	С	d	
	Q5	a	b		С	d	Ç	213	a	b	С	d	
	Q6	a	b		С	d	Ç	Q14	a	b	С	d	
	Q7	a	b		С	d	Ç	Q15	a	b	С	d	
	Q8	a	b		С	d	Ç	Q16	a	b	С	d	
Non scrivere in questo spazio													
QUIZ			E	SER	CIZI						ТО	TALE	

Quiz

Q1. Sia S l'immagine dell'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^3$ definita come $f(u,v) = (4\cos u, 4+4\sin u, 4v)$. Sia π il piano tangente a S nel punto (4,4,4).

Quale delle seguenti affermazioni è vera?

- (a) π non esiste.
- (b) π ha equazione y = 4.
- (c) π ha equazione x = 4.
- (d) π ha equazione z=4.
- **Q2.** In \mathbb{R}^3 siano dati i vettori

$$a = (1 + \sqrt{3}, -2\sqrt{3}, 3), \quad b = (\sqrt{3}, 2 - \sqrt{3}, 4), \quad c = (1, 1, \sqrt{2} + 5), \quad d = (1, -1 + \sqrt{3}, 7), \quad e = (1, -1, 33).$$

Quale delle seguenti affermazioni è vera?

- (a) a, b, c, d, e sono linearmente indipendenti.
- (b) b, c, d, e possono essere completati a base di \mathbb{R}^3 .
- (c) *a*, *c*, *d*, *e* sono linearmente indipendenti.
- (d) Nessuna delle altre affermazioni è vera.
- Q3. Sia

$$q(x, y, z) = \begin{pmatrix} x & y & z \end{pmatrix} A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

la forma quadratica associata alla matrice

$$A = \begin{pmatrix} -1 & 1 & 1\\ 1 & -1 & 1\\ 1 & 1 & -1 \end{pmatrix}.$$

Quale delle seguenti affermazioni è vera?

- (a) A non è invertibile.
- (b) A non è diagonalizzabile.
- (c) q(x, y, z) è indefinita.
- (d) q(x, y, z) è definita.
- **Q4.** Sia dato il sistema lineare S: AX = B dove

$$A = \begin{pmatrix} 1 & 2 & k \\ 1 & 2 & 0 \\ 0 & -1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}.$$

- (a) Ci sono infiniti valori di $k \in \mathbb{R}$ per i quali S ha una sola soluzione.
- (b) S ha una e una sola soluzione per ogni $k \in \mathbb{R}$.
- (c) Per k = 0 le soluzioni formano un sottospazio di \mathbb{R}^3 .
- (d) Esiste un valore di $k \in \mathbb{R}$ per cui le soluzioni di S dipendono esattamente da un parametro libero.

Q5. In \mathbb{R}^4 si consideri l'insieme

$$V = \{ (t, x, y, z) \mid t + x + y + z + 1 = 0 \}.$$

Quale delle seguenti affermazioni è vera?

- (a) Nessuna delle altre affermazioni è vera.
- (b) V è un sottospazio di \mathbb{R}^4 dimensione 3.
- (c) V è un sottospazio di \mathbb{R}^4 dimensione 2.
- (d) V è un sottospazio di \mathbb{R}^4 dimensione 1.

Q6. Sia f un endomorfismo di \mathbb{R}^3 tale che

$$f(1,2,0) = f(0,1,2).$$

Quale delle seguenti affermazioni è vera?

- (a) f è suriettivo.
- (b) $\dim(\operatorname{Im}(f)) \leq 2$.
- (c) $\dim(\ker(f)) = 0$
- (d) $(1,1,-2) \notin \ker(f)$.

Q7. Sia data la funzione $f(x,y) = \ln(1-x^2-y^2)$ e sia D il suo dominio.

Quale delle seguenti affermazioni è vera?

- (a) D è aperto non limitato.
- (b) D è compatto.
- (c) D è aperto limitato.
- (d) $D = \mathbb{R}^2$.

Q8. Nello spazio siano dati i piani α_h : x + hy - 3z = 1, con $h \in \mathbb{R}$.

- (a) I piani α_h sono paralleli fra loro al variare di $h \in \mathbb{R}$.
- (b) I piani α_h sono ortogonali al vettore $\vec{\imath} + 2\vec{\jmath} \vec{k}$ per ogni $h \in \mathbb{R}$.
- (c) La retta (x, y, z) = (3t, 0, t) è parallela ad α_h per ogni $h \in \mathbb{R}$.
- (d) Il vettore $\vec{\imath} + 2\vec{\jmath} \vec{k}$ è parallelo a α_h per ogni $h \in \mathbb{R}$.

Q9. Sia l'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ avente matrice A rispetto alla base canonica. Supponiamo che f non sia iniettivo e che 2 e 3 siano autovalori di A.

Quale delle seguenti affermazioni è vera?

- (a) f è suriettivo.
- (b) A ammette 2 o 3 come autovalore doppio.
- (c) Il polinomio caratteristico di A ha una radice complessa non reale.
- (d) A è diagonalizzabile.
- **Q10.** Sia data la conica γ di equazione $x^2 + 2hxy + y^2 6 = 0$, dove h è un parametro reale.

Quale delle seguenti affermazioni è vera?

- (a) Per ogni h > 1, γ è un'iperbole.
- (b) Per h = 1, γ è un'iperbole.
- (c) Esiste h < -1, tale che la conica γ sia un'ellisse.
- (d) Per ogni h, γ è una circonferenza.
- **Q11.** Nello spazio siano dati i vettori applicati $\vec{u}=3\vec{\imath}+2\vec{\jmath}+\vec{k}$ e $\vec{v}=\vec{\imath}-2\vec{\jmath}+2\vec{k}$.

Quale delle seguenti affermazioni è vera?

- (a) Esistono due piani distinti contenenti sia \vec{u} che \vec{v} .
- (b) I vettori applicati \vec{u} , \vec{v} e $\vec{w} = 5\vec{\imath} 2\vec{\jmath} + 5\vec{k}$ sono complanari.
- (c) L'angolo tra i vettori applicati \vec{u} e \vec{v} è ottuso.
- (d) I vettori applicati \vec{u} , \vec{v} e $\vec{u} \times \vec{v}$ sono complanari (× indica il prodotto vettoriale).
- **Q12.** Sia data la funzione $f(x,y) = y^2 + e^{x^2}$.

- (a) (0,0) è un punto di sella per f.
- (b) (0,0) è un punto di minimo per f.
- (c) In (0,0) la funzione non è differenziabile.
- (d) $\frac{\partial f}{\partial x}(0,0) \neq \frac{\partial f}{\partial y}(0,0)$.

Q13. Nello spazio sia data la sfera $\mathcal S$ di equazione: $x^2+y^2+z^2-6y+2z=0.$

Quale delle seguenti affermazioni è vera?

- (a) \mathscr{S} ha centro in (0,3,-1) e raggio $\sqrt{10}$.
- (b) \mathcal{S} non ha punti reali.
- (c) \mathscr{S} ha centro in (3,0,-1) e raggio $\sqrt{10}$.
- (d) \mathcal{S} ha raggio 0.

Q14. Per ogni funzione h sia J_h la relativa matrice jacobiana. Siano date le funzioni

$$f: \mathbb{R}^2 \to \mathbb{R}^3, \qquad g: \mathbb{R}^3 \to \mathbb{R}^3.$$

Quale delle seguenti affermazioni è vera?

- (a) $J_{g \circ f} = J_f \cdot J_g$.
- (b) $J_{g \circ f}$ è invertibile.
- (c) $J_{g \circ f}$ ha al più rango 2 in ogni punto.
- (d) $J_{f \circ g} = J_{g \circ f}$.

Q15. Sia data la matrice

$$A_h = \begin{pmatrix} 10 & \sqrt{2} & \sqrt{3} \\ 0 & 2 & \sqrt{5} \\ 0 & 0 & h \end{pmatrix}$$

con $h \in \mathbb{R}$.

Quale delle seguenti affermazioni è vera?

- (a) A_h non è diagonalizzabile perché non è simmetrica.
- (b) A_h è diagonalizzabile perché è sempre invertibile.
- (c) A_h è diagonalizzabile per ogni $h \neq 2, 10$.
- (d) A_h è diagonalizzabile per ogni $h \neq 0$.

Q16. Sia data l'applicazione lineare $f: \mathbb{R}^4 \to \mathbb{R}^3$ associata, rispetto alle basi canoniche, alla matrice

$$A = \begin{pmatrix} 3 & 1 & -1 & 5 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}.$$

- (a) f è iniettiva.
- (b) f è suriettiva.
- (c) $\dim(\operatorname{Im}(f)) = 2$.
- (d) f è un isomorfismo.

Esercizio 1. Nello spazio siano dati i piani α , β , γ_h rispettivamente di equazioni

$$x + y + z = 1,$$
 $x - 2y + z = 0,$ $2x - y + 2hz = 1,$

con $h \in \mathbb{R}$.

- (i) Determinare i valori di $h \in \mathbb{R}$ tali che i piani α , β , γ_h si intersechino in un unico punto.
- (ii) Per ogni valore tale che $\alpha\cap\beta\cap\gamma_h$ sia un punto, determinare tale punto.
- (iii) Verificare che, se h=1, l'intersezione $r=\alpha\cap\beta\cap\gamma_1$ è una retta.
- (iv) Determinare un sistema di equazioni parametriche di $\it r.$

Esercizio 2. Sia data la funzione

$$f(x,y) = x - y + \ln(x^2 + y^2).$$

- (i) Determinare il dominio D di f e determinarne la frontiera ∂D .
- (ii) Stabilire se il punto (-1,1) è stazionario per f e, in caso affermativo, determinarne la natura (punto di minimo, massimo, sella).
- (iii) Determinare tutti i punti stazionari di f.
- (iv) Calcolare il polinomio di Taylor di f del primo ordine centrato nel punto (1,0).

GEOMETRIA 10 luglio 2012 – 2 ore

Istruzioni:

- Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi.
- Per ogni quiz nella prima parte, indicare l'affermazione giudicata corretta nella tabella in questa pagina.
- Trascrivere la risposta alle singole domande degli esercizi della seconda parte nelle pagine bianche alla fine di ogni esercizio.
- Per la brutta utilizzare i fogli distribuiti dal docente.

COGNOME,	Nоме	:							
Matricola	Λ: _								
DOCENTE:									
Q1	а	b	С	d	Q 9 a	b	С	d	
Q2	a	b	С	d	Q10 a	b	С	d	
Q3	a	b	С	d	Q11 a	b	С	d	
Q4	a	b	С	d	Q12 a	b	С	d	
Q5	a	b	С	d	Q13 a	b	С	d	
Q6	a	b	С	d	Q14 a	b	С	d	
Q7	a	b	С	d	Q15 a	b	С	d	
Q8	a	b	С	d	Q16 a	b	С	d	
Non scrivere in q	uesto sp	oazio							
QUIZ		ESEI	RCIZI				TO	ΓALE	

Quiz

Q1. Sia data l'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^4$ associata, rispetto alle basi canoniche, alla matrice

$$A = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 1 & 1 \\ -1 & 2 & 0 \\ 5 & 0 & 1 \end{pmatrix}.$$

Quale delle seguenti affermazioni è vera?

- (a) f è iniettiva.
- (b) f è suriettiva.
- (c) $\dim(\operatorname{Im}(f)) = 2$.
- (d) f è un isomorfismo.

Q2. Sia data la matrice

$$A_h = \begin{pmatrix} 10 & \sqrt{2} & \sqrt{3} \\ 0 & 2 & \sqrt{5} \\ 0 & 0 & h \end{pmatrix}$$

con $h \in \mathbb{R}$.

Quale delle seguenti affermazioni è vera?

- (a) A_h è diagonalizzabile per ogni $h \neq 0$.
- (b) A_h è diagonalizzabile per ogni $h \neq 2, 10$.
- (c) A_h non è diagonalizzabile perché non è simmetrica.
- (d) A_h è diagonalizzabile perché è sempre invertibile.

Q3. Sia l'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ avente matrice A rispetto alla base canonica. Supponiamo che f non sia iniettivo e che 2 e 3 siano autovalori di A.

Quale delle seguenti affermazioni è vera?

- (a) Il polinomio caratteristico di A ha una radice complessa non reale.
- (b) A è diagonalizzabile.
- (c) A ammette 2 o 3 come autovalore doppio.
- (d) f è suriettivo.

Q4. Nello spazio sia data la sfera $\mathscr S$ di equazione: $x^2 + y^2 + z^2 - 6x + 2z = 0$.

- (a) \mathscr{S} ha centro in (0,3,-1) e raggio $\sqrt{10}$.
- (b) \mathcal{S} non ha punti reali.
- (c) \mathscr{S} ha centro in (3,0,-1) e raggio $\sqrt{10}$.
- (d) \mathcal{S} ha raggio 0.

Q5. Sia data la conica γ di equazione $x^2 + 2hxy + y^2 - 6 = 0$, dove h è un parametro reale.

Quale delle seguenti affermazioni è vera?

- (a) Per ogni h < 1, γ è un'iperbole.
- (b) Per h=1, γ è un'iperbole.
- (c) Esiste h > -1, tale che la conica γ sia un'ellisse.
- (d) Per ogni h, γ è una circonferenza.
- **Q6.** Nello spazio siano dati i vettori applicati $\vec{u} = 3\vec{\imath} + 2\vec{\jmath} + \vec{k}$ e $\vec{v} = \vec{\imath} 2\vec{\jmath} 2\vec{k}$.

Quale delle seguenti affermazioni è vera?

- (a) I vettori applicati \vec{u} , \vec{v} e $\vec{w} = 5\vec{i} 2\vec{j} + 5\vec{k}$ sono complanari.
- (b) Esistono due piani distinti contenenti sia \vec{u} che \vec{v} .
- (c) I vettori applicati \vec{u} , \vec{v} e $\vec{u} \times \vec{v}$ sono complanari (× indica il prodotto vettoriale).
- (d) L'angolo tra i vettori applicati \vec{u} e \vec{v} è ottuso.
- **Q7.** Sia data la funzione $f(x,y) = y^2 + e^{x^2}$.

Quale delle seguenti affermazioni è vera?

- (a) $\frac{\partial f}{\partial x}(0,0) \neq \frac{\partial f}{\partial y}(0,0)$.
- (b) In (0,0) la funzione non è differenziabile.
- (c) (0,0) è un punto di sella per f.
- (d) (0,0) è un punto di minimo per f.
- **Q8.** Per ogni funzione h sia J_h la relativa matrice jacobiana. Siano date le funzioni

$$f: \mathbb{R}^2 \to \mathbb{R}^3, \qquad g: \mathbb{R}^3 \to \mathbb{R}^3.$$

- (a) $J_{g \circ f}$ è invertibile
- (b) $J_{g \circ f} = J_f \cdot J_g$.
- (c) $J_{f \circ g} = J_{g \circ f}$.
- (d) $J_{g\circ f}$ ha al più rango 2 in ogni punto.

Q9. Nello spazio siano dati i piani α_h : x + hy - 3z = 1, con $h \in \mathbb{R}$.

Quale delle seguenti affermazioni è vera?

- (a) La retta (x, y, z) = (3t, 0, t) è parallela ad α_h per ogni $h \in \mathbb{R}$.
- (b) Il vettore $\vec{i} + 2\vec{j} \vec{k}$ è parallelo a α_h per ogni $h \in \mathbb{R}$.
- (c) I piani α_h sono paralleli fra loro al variare di $h \in \mathbb{R}$.
- (d) I piani α_h sono ortogonali al vettore $\vec{\imath} + 2\vec{\jmath} \vec{k}$ per ogni $h \in \mathbb{R}$.
- **Q10.** Sia S l'immagine dell'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^3$ definita come $f(u,v) = (4v, 4\cos u, 4+4\sin u)$. Sia π il piano tangente a S nel punto (4,4,4).

Quale delle seguenti affermazioni è vera?

- (a) π non esiste.
- (b) π ha equazione y = 4.
- (c) π ha equazione x = 4.
- (d) π ha equazione z = 4.
- **Q11.** Sia f un endomorfismo di \mathbb{R}^3 tale che

$$f(1,2,0) = f(0,1,2).$$

Quale delle seguenti affermazioni è vera?

- (a) *f* non è suriettivo.
- (b) $\dim(\operatorname{Im}(f)) \geq 3$.
- (c) $\dim(\ker(f)) = 0$
- (d) $(1,1,-2) \notin \ker(f)$.
- **Q12.** In \mathbb{R}^4 si consideri l'insieme

$$V = \{ (t, x, y, z) \mid t + x + y + z = 0 \}.$$

- (a) V è un sottospazio di \mathbb{R}^4 dimensione 3.
- (b) V è un sottospazio di \mathbb{R}^4 dimensione 2.
- (c) V è un sottospazio di \mathbb{R}^4 dimensione 1.
- (d) Nessuna delle altre affermazioni è vera.

Q13. Sia dato il sistema lineare S: AX = B dove

$$A = \begin{pmatrix} 1 & 2 & k \\ 1 & 2 & 0 \\ 0 & -1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}.$$

Quale delle seguenti affermazioni è vera?

- (a) Ci sono infiniti valori di $k \in \mathbb{R}$ per i quali S ha infinite soluzioni.
- (b) S ha una e una sola soluzione per ogni $k \in \mathbb{R}$.
- (c) Per k = 0 le soluzioni formano un sottospazio di \mathbb{R}^3 .
- (d) Esiste un valore di $k \in \mathbb{R}$ per cui le soluzioni di S dipendono esattamente da un parametro libero.

Q14. Sia

$$q(x, y, z) = \begin{pmatrix} x & y & z \end{pmatrix} A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

la forma quadratica associata alla matrice

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

Quale delle seguenti affermazioni è vera?

- (a) A non è invertibile.
- (b) A non è diagonalizzabile.
- (c) q(x, y, z) è indefinita.
- (d) q(x, y, z) è definita.

Q15. In \mathbb{R}^3 siano dati i vettori

$$a = (1 + \sqrt{3}, -2\sqrt{3}, 3), \quad b = (\sqrt{3}, 2 - \sqrt{3}, 4), \quad c = (1, 1, \sqrt{2} + 5), \quad d = (1, -1 + \sqrt{3}, 7), \quad e = (1, -1, 33).$$

Quale delle seguenti affermazioni è vera?

- (a) Nessuna delle altre affermazioni è vera.
- (b) b, c, d, e possono essere completati a base di \mathbb{R}^3 .
- (c) *a*, *b*, *c*, *d*, *e* sono linearmente indipendenti.
- (d) a, c, d, e sono linearmente indipendenti.

Q16. Sia data la funzione $f(x,y) = \ln(x^2 + y^2 - 1)$ e sia D il suo dominio.

- (a) D è compatto.
- (b) D è aperto non limitato.
- (c) D è aperto limitato.
- (d) $D = \mathbb{R}^2$.

Esercizio 1. Sia data la funzione

$$f(x,y) = y - x + \ln(x^2 + y^2).$$

- (i) Determinare il dominio D di f e determinarne la frontiera ∂D .
- (ii) Stabilire se il punto (1,-1) è stazionario per f e, in caso affermativo, determinarne la natura (punto di minimo, massimo, sella).
- (iii) Determinare tutti i punti stazionari di f.
- (iv) Calcolare il polinomio di Taylor di f del primo ordine centrato nel punto (0,1).

Esercizio 2. Nello spazio siano dati i piani α , β , γ_k rispettivamente di equazioni

$$x - y + z = 1,$$
 $x - y - 2z = 0,$ $2x + 2ky - z = 1,$

con $k \in \mathbb{R}$.

- (i) Determinare i valori di $k \in \mathbb{R}$ tali che i piani α , β , γ_k si intersechino in un unico punto.
- (ii) Per ogni valore tale che $\alpha \cap \beta \cap \gamma_k$ sia un punto, determinare tale punto.
- (iii) Verificare che, se k=-1, l'intersezione $r=\alpha\cap\beta\cap\gamma_{-1}$ è una retta.
- (iv) Determinare un sistema di equazioni parametriche di $\it r.$

GEOMETRIA 10 luglio 2012 – 2 ore

Istruzioni:

- Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi.
- Per ogni quiz nella prima parte, indicare l'affermazione giudicata corretta nella tabella in questa pagina.
- Trascrivere la risposta alle singole domande degli esercizi della seconda parte nelle pagine bianche alla fine di ogni esercizio.
- Per la brutta utilizzare i fogli distribuiti dal docente.

Cogno	OME, Ì	Nom	E: _								
MATRI	COLA	:									
Docen	NTE:	_									
	Q1	a	b	С	d	Q9	а	b	С	d	
	Q2	a	b	С	d	Q10	a	b	С	d	
	Q3	a	b	С	d	Q11	a	b	С	d	
	Q4	a	b	С	d	Q12	a	b	С	d	
	Q5	a	b	С	d	Q13	a	b	С	d	
	Q6	a	b	С	d	Q14	a	b	С	d	
	Q7	a	b	С	d	Q15	a	b	С	d	
	Q8	a	b	С	d	Q16	a	b	С	d	
Non scriver	e in qu	iesto s	spazio							г	
QUIZ			ES	SERCIZI	-				TO	TALE	

Quiz

Q1. Per ogni funzione h sia J_h la relativa matrice jacobiana. Siano date le funzioni

$$f: \mathbb{R}^2 \to \mathbb{R}^3, \qquad g: \mathbb{R}^3 \to \mathbb{R}^3.$$

- Quale delle seguenti affermazioni è vera?
- (a) $J_{q \circ f}$ è invertibile.
- (b) $J_{g\circ f}$ ha al più rango 2 in ogni punto.
- (c) $J_{f \circ g} = J_{g \circ f}$.
- (d) $J_{g \circ f} = J_f \cdot J_g$.
- **Q2.** Sia l'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ avente matrice A rispetto alla base canonica. Supponiamo che f non sia iniettivo e che 2 e 3 siano autovalori di A.
 - Quale delle seguenti affermazioni è vera?
 - (a) f è suriettivo.
 - (b) A ammette 2 o 3 come autovalore doppio.
 - (c) A è diagonalizzabile.
 - (d) Il polinomio caratteristico di A ha una radice complessa non reale.
- **Q3.** Nello spazio siano dati i vettori applicati $\vec{u} = 3\vec{\imath} + 2\vec{\jmath} + \vec{k}$ e $\vec{v} = \vec{\imath} 2\vec{\jmath} + 2\vec{k}$.
 - Quale delle seguenti affermazioni è vera?
 - (a) I vettori applicati \vec{u} , \vec{v} e $\vec{w} = 5\vec{\imath} 2\vec{\jmath} + 5\vec{k}$ sono complanari.
 - (b) Esistono due piani distinti contenenti sia \vec{u} che \vec{v} .
 - (c) I vettori applicati \vec{u} , \vec{v} e $\vec{u} \times \vec{v}$ sono complanari (× indica il prodotto vettoriale).
 - (d) L'angolo tra i vettori applicati \vec{u} e \vec{v} è ottuso.
- **Q4.** Sia data la funzione $f(x,y) = y^2 + e^{x^2}$.
 - Quale delle seguenti affermazioni è vera?
 - (a) (0,0) è un punto di sella per f.
 - (b) $\frac{\partial f}{\partial x}(0,0) \neq \frac{\partial f}{\partial y}(0,0)$.
 - (c) (0,0) è un punto di minimo per f.
 - (d) In (0,0) la funzione non è differenziabile.

Q5. Sia data la conica γ di equazione $x^2 + 2hxy + y^2 - 6 = 0$, dove h è un parametro reale.

Quale delle seguenti affermazioni è vera?

- (a) Per h = 1, γ è un'iperbole.
- (b) Esiste h < -1, tale che la conica γ sia un'ellisse.
- (c) Per ogni h, γ è una circonferenza.
- (d) Per ogni h > 1, γ è un'iperbole.
- Q6. Sia data la matrice

$$A_h = \begin{pmatrix} 10 & \sqrt{2} & \sqrt{3} \\ 0 & 2 & \sqrt{5} \\ 0 & 0 & h \end{pmatrix}$$

con $h \in \mathbb{R}$.

Quale delle seguenti affermazioni è vera?

- (a) A_h è diagonalizzabile per ogni $h \neq 2, 10$.
- (b) A_h non è diagonalizzabile perché non è simmetrica.
- (c) A_h è diagonalizzabile per ogni $h \neq 0$.
- (d) A_h è diagonalizzabile perché è sempre invertibile.
- **Q7.** Nello spazio sia data la sfera $\mathscr S$ di equazione: $x^2+y^2+z^2-6y+2z=0$.

Quale delle seguenti affermazioni è vera?

- (a) \mathcal{S} non ha punti reali.
- (b) \mathscr{S} ha centro in (0,3,-1) e raggio $\sqrt{10}$.
- (c) \mathcal{S} ha raggio 0.
- (d) \mathscr{S} ha centro in (3,0,-1) e raggio $\sqrt{10}$.
- **Q8.** Sia data l'applicazione lineare $f: \mathbb{R}^4 \to \mathbb{R}^3$ associata, rispetto alle basi canoniche, alla matrice

$$A = \begin{pmatrix} 3 & 1 & -1 & 5 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}.$$

- (a) f è iniettiva.
- (b) f è un isomorfismo.
- (c) *f* è suriettiva.
- (d) $\dim(\operatorname{Im}(f)) = 2$.

Q9. Nello spazio siano dati i piani α_h : x + hy - 3z = 1, con $h \in \mathbb{R}$.

Quale delle seguenti affermazioni è vera?

- (a) I piani α_h sono ortogonali al vettore $\vec{\imath} + 2\vec{\jmath} \vec{k}$ per ogni $h \in \mathbb{R}$.
- (b) La retta (x, y, z) = (3t, 0, t) è parallela ad α_h per ogni $h \in \mathbb{R}$.
- (c) I piani α_h sono paralleli fra loro al variare di $h \in \mathbb{R}$.
- (d) Il vettore $\vec{i} + 2\vec{j} \vec{k}$ è parallelo a α_h per ogni $h \in \mathbb{R}$.

Q10. In \mathbb{R}^3 siano dati i vettori

$$a = (1 + \sqrt{3}, -2\sqrt{3}, 3), \quad b = (\sqrt{3}, 2 - \sqrt{3}, 4), \quad c = (1, 1, \sqrt{2} + 5), \quad d = (1, -1 + \sqrt{3}, 7), \quad e = (1, -1, 33).$$

Quale delle seguenti affermazioni è vera?

- (a) b, c, d, e possono essere completati a base di \mathbb{R}^3 .
- (b) *a*, *b*, *c*, *d*, *e* sono linearmente indipendenti.
- (c) Nessuna delle altre affermazioni è vera.
- (d) *a*, *c*, *d*, *e* sono linearmente indipendenti.

Q11. Sia

$$q(x, y, z) = \begin{pmatrix} x & y & z \end{pmatrix} A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

la forma quadratica associata alla matrice

$$A = \begin{pmatrix} -1 & 1 & 1\\ 1 & -1 & 1\\ 1 & 1 & -1 \end{pmatrix}.$$

Quale delle seguenti affermazioni è vera?

- (a) A non è diagonalizzabile.
- (b) q(x, y, z) è indefinita.
- (c) q(x, y, z) è definita.
- (d) A non è invertibile.

Q12. Sia dato il sistema lineare S: AX = B dove

$$A = \begin{pmatrix} 1 & 2 & k \\ 1 & 2 & 0 \\ 0 & -1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}.$$

- (a) Per k = 0 le soluzioni formano un sottospazio di \mathbb{R}^3 .
- (b) Esiste un valore di $k \in \mathbb{R}$ per cui le soluzioni di S dipendono esattamente da un parametro libero.
- (c) Ci sono infiniti valori di $k \in \mathbb{R}$ per i quali S ha una sola soluzione.
- (d) S ha una e una sola soluzione per ogni $k \in \mathbb{R}$.

Q13. In \mathbb{R}^4 si consideri l'insieme

$$V = \{ (t, x, y, z) \mid t + x + y + z + 1 = 0 \}.$$

Quale delle seguenti affermazioni è vera?

- (a) V è un sottospazio di \mathbb{R}^4 dimensione 3.
- (b) Nessuna delle altre affermazioni è vera.
- (c) V è un sottospazio di \mathbb{R}^4 dimensione 1.
- (d) V è un sottospazio di \mathbb{R}^4 dimensione 2.

Q14. Sia S l'immagine dell'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^3$ definita come $f(u,v) = (4\cos u, 4+4\sin u, 4v)$. Sia π il piano tangente a S nel punto (4,4,4).

Quale delle seguenti affermazioni è vera?

- (a) π ha equazione x = 4.
- (b) π non esiste.
- (c) π ha equazione z=4.
- (d) π ha equazione y = 4.

Q15. Sia data la funzione $f(x,y) = \ln(1-x^2-y^2)$ e sia D il suo dominio.

Quale delle seguenti affermazioni è vera?

- (a) D è compatto.
- (b) D è aperto limitato.
- (c) D è aperto non limitato.
- (d) $D = \mathbb{R}^2$.

Q16. Sia f un endomorfismo di \mathbb{R}^3 tale che

$$f(1,2,0) = f(0,1,2).$$

- (a) $\dim(\ker(f)) = 0$
- (b) $(1, 1, -2) \notin \ker(f)$.
- (c) f è suriettivo.
- (d) $\dim(\operatorname{Im}(f)) \leq 2$.

Esercizio 1. Nello spazio siano dati i piani α , β , γ_h rispettivamente di equazioni

$$x + y + z = 1,$$
 $x - 2y + z = 0,$ $2x - y + 2hz = 1,$

con $h \in \mathbb{R}$.

- (i) Determinare i valori di $h \in \mathbb{R}$ tali che i piani α , β , γ_h si intersechino in un unico punto.
- (ii) Per ogni valore tale che $\alpha \cap \beta \cap \gamma_h$ sia un punto, determinare tale punto.
- (iii) Verificare che, se h=1, l'intersezione $r=\alpha\cap\beta\cap\gamma_1$ è una retta.
- (iv) Determinare un sistema di equazioni parametriche di $\it r.$

Esercizio 2. Sia data la funzione

$$f(x,y) = x - y + \ln(x^2 + y^2).$$

- (i) Determinare il dominio D di f e determinarne la frontiera ∂D .
- (ii) Stabilire se il punto (-1,1) è stazionario per f e, in caso affermativo, determinarne la natura (punto di minimo, massimo, sella).
- (iii) Determinare tutti i punti stazionari di f.
- (iv) Calcolare il polinomio di Taylor di f del primo ordine centrato nel punto (1,0).

GEOMETRIA 10 luglio 2012 – 2 ore

Istruzioni:

- Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi.
- Per ogni quiz nella prima parte, indicare l'affermazione giudicata corretta nella tabella in questa pagina.
- Trascrivere la risposta alle singole domande degli esercizi della seconda parte nelle pagine bianche alla fine di ogni esercizio.
- Per la brutta utilizzare i fogli distribuiti dal docente.

Cognome	, Nоме:									
MATRICOL	A:									
DOCENTE:										
Q1	a	b	С	d	Q9	а	b	С	d	
Q2	a	b	С	d	Q10	a	b	С	d	
Q3	a	b	С	d	Q11	a	b	С	d	
Q4	а	b	С	d	Q12	a	b	С	d	
Q5	а	b	С	d	Q13	a	b	С	d	
Q6	а	b	С	d	Q14	a	b	С	d	
Q7	а	b	С	d	Q15	a	b	С	d	
Q8	а	b	С	d	Q16	a	b	С	d	
Non scrivere in o	questo spa	azio	_						_	
QUIZ		ESEI	TOTALE							

Quiz

Q1. Nello spazio siano dati i piani α_h : x + hy - 3z = 1, con $h \in \mathbb{R}$.

Quale delle seguenti affermazioni è vera?

- (a) I piani α_h sono ortogonali al vettore $\vec{i} + 2\vec{j} \vec{k}$ per ogni $h \in \mathbb{R}$.
- (b) I piani α_h sono paralleli fra loro al variare di $h \in \mathbb{R}$.
- (c) Il vettore $\vec{i} + 2\vec{j} \vec{k}$ è parallelo a α_h per ogni $h \in \mathbb{R}$.
- (d) La retta (x, y, z) = (3t, 0, t) è parallela ad α_h per ogni $h \in \mathbb{R}$.

Q2. Sia

$$q(x, y, z) = \begin{pmatrix} x & y & z \end{pmatrix} A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

la forma quadratica associata alla matrice

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

Quale delle seguenti affermazioni è vera?

- (a) q(x, y, z) è definita.
- (b) A non è invertibile.
- (c) q(x, y, z) è indefinita.
- (d) A non è diagonalizzabile.

Q3. In \mathbb{R}^3 siano dati i vettori

$$a = (1 + \sqrt{3}, -2\sqrt{3}, 3), \quad b = (\sqrt{3}, 2 - \sqrt{3}, 4), \quad c = (1, 1, \sqrt{2} + 5), \quad d = (1, -1 + \sqrt{3}, 7), \quad e = (1, -1, 33).$$

Quale delle seguenti affermazioni è vera?

- (a) *a*, *b*, *c*, *d*, *e* sono linearmente indipendenti.
- (b) Nessuna delle altre affermazioni è vera.
- (c) b, c, d, e possono essere completati a base di \mathbb{R}^3 .
- (d) *a*, *c*, *d*, *e* sono linearmente indipendenti.

Q4. Sia S l'immagine dell'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^3$ definita come $f(u,v) = (4v, 4\cos u, 4+4\sin u)$. Sia π il piano tangente a S nel punto (4,4,4).

- (a) π ha equazione x = 4.
- (b) π non esiste.
- (c) π ha equazione z=4.
- (d) π ha equazione y = 4.

Q5. Sia dato il sistema lineare S: AX = B dove

$$A = \begin{pmatrix} 1 & 2 & k \\ 1 & 2 & 0 \\ 0 & -1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}.$$

Quale delle seguenti affermazioni è vera?

- (a) Ci sono infiniti valori di $k \in \mathbb{R}$ per i quali S ha infinite soluzioni.
- (b) Esiste un valore di $k \in \mathbb{R}$ per cui le soluzioni di S dipendono esattamente da un parametro libero.
- (c) Per k = 0 le soluzioni formano un sottospazio di \mathbb{R}^3 .
- (d) S ha una e una sola soluzione per ogni $k \in \mathbb{R}$.

Q6. Sia data la funzione $f(x,y) = \ln(x^2 + y^2 - 1)$ e sia D il suo dominio.

Quale delle seguenti affermazioni è vera?

- (a) D è compatto.
- (b) $D = \mathbb{R}^2$.
- (c) D è aperto non limitato.
- (d) D è aperto limitato.

Q7. Sia data la funzione $f(x,y) = y^2 + e^{x^2}$.

Quale delle seguenti affermazioni è vera?

- (a) (0,0) è un punto di minimo per f.
- (b) In (0,0) la funzione non è differenziabile.
- (c) $\frac{\partial f}{\partial x}(0,0) \neq \frac{\partial f}{\partial y}(0,0)$.
- (d) (0,0) è un punto di sella per f.

Q8. Per ogni funzione h sia J_h la relativa matrice jacobiana. Siano date le funzioni

$$f: \mathbb{R}^2 \to \mathbb{R}^3, \qquad g: \mathbb{R}^3 \to \mathbb{R}^3.$$

- (a) $J_{q \circ f}$ ha al più rango 2 in ogni punto.
- (b) $J_{g \circ f} = J_f \cdot J_g$.
- (c) $J_{f \circ g} = J_{g \circ f}$.
- (d) $J_{g \circ f}$ è invertibile.

Q9. Sia f un endomorfismo di \mathbb{R}^3 tale che

$$f(1,2,0) = f(0,1,2).$$

Quale delle seguenti affermazioni è vera?

- (a) $\dim(\ker(f)) = 0$
- (b) $(1, 1, -2) \notin \ker(f)$.
- (c) f non è suriettivo.
- (d) $\dim(\operatorname{Im}(f)) \geq 3$.

Q10. Sia data la conica γ di equazione $x^2 + 2hxy + y^2 - 6 = 0$, dove h è un parametro reale.

Quale delle seguenti affermazioni è vera?

- (a) Per ogni h < 1, γ è un'iperbole.
- (b) Esiste h > -1, tale che la conica γ sia un'ellisse.
- (c) Per ogni h, γ è una circonferenza.
- (d) Per h = 1, γ è un'iperbole.

Q11. Nello spazio siano dati i vettori applicati $\vec{u} = 3\vec{i} + 2\vec{j} + \vec{k}$ e $\vec{v} = \vec{i} - 2\vec{j} - 2\vec{k}$.

Quale delle seguenti affermazioni è vera?

- (a) I vettori applicati \vec{u} , \vec{v} e $\vec{w} = 5\vec{i} 2\vec{j} + 5\vec{k}$ sono complanari.
- (b) I vettori applicati \vec{u} , \vec{v} e $\vec{u} \times \vec{v}$ sono complanari (× indica il prodotto vettoriale).
- (c) L'angolo tra i vettori applicati \vec{u} e \vec{v} è ottuso.
- (d) Esistono due piani distinti contenenti sia \vec{u} che \vec{v} .

Q12. Sia data l'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^4$ associata, rispetto alle basi canoniche, alla matrice

$$A = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 1 & 1 \\ -1 & 2 & 0 \\ 5 & 0 & 1 \end{pmatrix}.$$

- (a) f è un isomorfismo.
- (b) f è suriettiva.
- (c) $\dim(\operatorname{Im}(f)) = 2$.
- (d) f è iniettiva.

Q13. Nello spazio sia data la sfera $\mathscr S$ di equazione: $x^2 + y^2 + z^2 - 6x + 2z = 0$.

Quale delle seguenti affermazioni è vera?

- (a) \mathcal{S} ha raggio 0.
- (b) \mathscr{S} ha centro in (0,3,-1) e raggio $\sqrt{10}$.
- (c) \mathscr{S} non ha punti reali.
- (d) \mathscr{S} ha centro in (3,0,-1) e raggio $\sqrt{10}$.
- **Q14.** Sia l'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ avente matrice A rispetto alla base canonica. Supponiamo che f non sia iniettivo e che 2 e 3 siano autovalori di A.

Quale delle seguenti affermazioni è vera?

- (a) A ammette 2 o 3 come autovalore doppio.
- (b) A è diagonalizzabile.
- (c) Il polinomio caratteristico di A ha una radice complessa non reale.
- (d) f è suriettivo.
- Q15. Sia data la matrice

$$A_h = \begin{pmatrix} 10 & \sqrt{2} & \sqrt{3} \\ 0 & 2 & \sqrt{5} \\ 0 & 0 & h \end{pmatrix}$$

con $h \in \mathbb{R}$.

Quale delle seguenti affermazioni è vera?

- (a) A_h è diagonalizzabile per ogni $h \neq 0$.
- (b) A_h è diagonalizzabile perché è sempre invertibile.
- (c) A_h non è diagonalizzabile perché non è simmetrica.
- (d) A_h è diagonalizzabile per ogni $h \neq 2, 10$.
- **Q16.** In \mathbb{R}^4 si consideri l'insieme

$$V = \{ (t, x, y, z) \mid t + x + y + z = 0 \}.$$

- (a) V è un sottospazio di \mathbb{R}^4 dimensione 1.
- (b) Nessuna delle altre affermazioni è vera.
- (c) V è un sottospazio di \mathbb{R}^4 dimensione 3.
- (d) V è un sottospazio di \mathbb{R}^4 dimensione 2.

Esercizio 1. Sia data la funzione

$$f(x,y) = y - x + \ln(x^2 + y^2).$$

- (i) Determinare il dominio D di f e determinarne la frontiera ∂D .
- (ii) Stabilire se il punto (1,-1) è stazionario per f e, in caso affermativo, determinarne la natura (punto di minimo, massimo, sella).
- (iii) Determinare tutti i punti stazionari di f.
- (iv) Calcolare il polinomio di Taylor di f del primo ordine centrato nel punto (0,1).

Esercizio 2. Nello spazio siano dati i piani α , β , γ_k rispettivamente di equazioni

$$x - y + z = 1,$$
 $x - y - 2z = 0,$ $2x + 2ky - z = 1,$

con $k \in \mathbb{R}$.

- (i) Determinare i valori di $k \in \mathbb{R}$ tali che i piani α , β , γ_k si intersechino in un unico punto.
- (ii) Per ogni valore tale che $\alpha \cap \beta \cap \gamma_k$ sia un punto, determinare tale punto.
- (iii) Verificare che, se k=-1, l'intersezione $r=\alpha\cap\beta\cap\gamma_{-1}$ è una retta.
- (iv) Determinare un sistema di equazioni parametriche di $\it r.$