

FCC SAR TEST REPORT

Report No.: SET2016-08132

Product Name: \

Trade Name: LANIX Brand Name: LANIX

Model No.: Ilium Pad T7X

FCC ID: ZC4T7X

Applicant: Corporativo Lanix S.A. de C.V.

Address: Carretera Internacional Hermosillo - Nogales Km 8.5

Hermosillo, Sonora, México

Issued by: CCIC-SET

Lab Location: Electronic Testing Building, Shahe Road, Xili, Nanshan

District, Shenzhen, 518055, P. R. China

Tel: 86 755 26627338 Fax: 86 755 26627238

Mail: manager@ccic-set.comWebsite: http://www.ccic-set.com

This test report consists of **109**pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Wireless

Test Report

Product Name....: Model No.: Ilium Pad T7X **LANIX** Trade Name....: Brand Name....: LANIX FCC ID..... ZC4T7X Applicant....: Corporativo Lanix S.A. de C.V. Carretera Internacional Hermosillo - Nogales Km 8.5 Applicant Address.....: Hermosillo, Sonora, México Manufacturer....: Amer Mobile Ltd.,com 17/F, Tower B, Huihai Sqr, Chuangye Rd, Longhua Dist, **Manufacturer Address:** Shenzhen, China Test Standards..... 2.1093-Radiofrequency 47CFR § Radiation Exposure Evaluation: Portable Devices; ANSI C95.1-1992:Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz -300 GHz.(IEEE Std C95.1-1991) **IEEE** 1528-2013:IEEE Recommended **Practice** Determining the PeakSpatial-Average Specific Absorption (SAR) in the Human Head from Communications Devices: Measurement Techniques Test Result..... **Pass** Mei Chun 2016-05-19 Tested by: Chun Mei, Test Engineer Shuang wen The Reviewed by....: 2016-05-19 Shuangwen Zhang, Senior Egineer

(No lian

Approved by....: 2016-05-19

Wu Li'an, Manager

Contents

1.	GENERAL CONDITIONS4
2.	ADMINISTRATIVE DATA5
	2.1. Identification of the Responsible Testing Laboratory5
	2.2. Identification of the Responsible Testing Location(s)5
	2.3. Organization Item5
	2.4. Identification of Applicant5
	2.5. Identification of Manufacture5
3.	EQUIPMENT UNDER TEST (EUT)6
4.	SAR SUMMAY7
5.	Specific Absorption Rate(SAR)8
	5.1. Introduction8
	5.2. SAR Definition8
	5.3. Phantoms9
	5.4. Device Holder9
	5.5. Probe Specification10
6.	OPERATIONAL CONDITIONS DURING TEST11
	6.1. Schematic Test Configuration11
	6.2. SAR Measurement System11
	6.3. Equipments and results of validation testing13
	6.4. SAR measurement procedure16
	6.5. Antennas position and test position17
7.	CHARACTERISTICS OF THE TEST19
	7.1. Applicable Limit Regulations19
	7.2. Applicable Measurement Standards19
8.	LABORATORY ENVIRONMENT19
9.	CONDUCTED RF OUTPUT POWER20
10.	TEST RESULTS26
11.	MEASUREMENT UNCERTAINTY30
12.	MAIN TEST INSTRUMENTS33
Th	is Test Report consists of the following Annexes:
	Annex A: Test Layout34
	Annex B: Sample Photographs37
	Annex C: System Performance Check Dataand Highest SAR Plots39

1. GENERAL CONDITIONS

- 1.1 This report only refers to the item that has undergone the test.
- 1.2 This report standalone does not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities.
- 1.3 This document is only valid if complete; no partial reproduction can be made without written approval of CCIC-SET
- 1.4 This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of CCIC-SET and the Accreditation Bodies, if it applies.

2. Administrative Date

2.1. Identification of the Responsible Testing Laboratory

Company Name: CCIC-SET

Department: EMC& RF Department

Address: Electronic Testing Building, Shahe Road, Nanshan District,

ShenZhen, P. R. China

Telephone: +86-755-26629676 **Fax:** +86-755-26627238

Responsible Test Lab

Managers:

Mr. Wu Li'an

2.2. Identification of the Responsible Testing Location(s)

Company Name: CCIC-SET

Address: Electronic Testing Building, Shahe Road, Nanshan District,

Shenzhen, P. R. China

2.3. Organization Item

CCIC-SET Report No.: SET2016-08132
CCIC-SET Project Leader: Mr. Li Sixiong

CCIC-SET Responsible

Mr. Wu Li'an

for accreditation scope:

Start of Testing: 2016-05-10

End of Testing: 2016-05-16

2.4. Identification of Applicant

Company Name: Corporativo Lanix S.A.de C.V.

Address: Carretera Internacional Hermosillo - Nogales Km 8.5

Hermosillo, Sonora, México

2.5. Identification of Manufacture

Company Name: Amer Mobile Ltd..com

Address: 17/F, Tower B, Huihai Sqr, Chuangye Rd, Longhua Dist,

Shenzhen, China

Notes: This data is based on the information by the applicant.

3. Equipment Under Test (EUT)

3.1. Identification of the Equipment under Test

Sample Name: \

Model Name: Ilium Pad T7X

Brand Name: LANIX

GSM850MHz/1900MHz/900MHz/1800MHz,

Support Band WCDMA 850MHz/1900MHz,WIFI, BT

GSM 850MHz/ GSM 1900MHz,

GPRS 850MHz/ GPRS 1900MHz,

WCDMA 850MHz/1900MHz,

WIFI 802.11b

General Multislot Class GPRS: Class 12; EGPRS: Class 12

description: GPRS Class B

Test Band

Accessories Power Supply
Battery type 3.70V 2800mAh
Antenna type Inner Antenna

Operation mode GSM/WCDMA/ WIFI

Modulation mode GSM(GMSK), UMTS(QPSK), WIFI(OFDM/DSSS)

Max. RF Power 32.77dBm

Max. SAR Value Head: 0.587 W/kg;

Body: 0.334 W/kg (0mm distance)

NOTE:

a. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

4 SAR SUMMARY

Highest Standalone SAR Summary

Exposure	Frequency	Scaled	Highest Scaled	
Position	Band	1g-SAR(W/kg)	1g-SAR(W/kg)	
	GSM850	0.011		
	GSM1900	0.045		
Head	WCDMA Band ${ m V}$	0.016	0.587	
	WCDMA Band II	0.071		
	WIFI	0.587		
	GSM850	0.073		
Tablet SAR	GSM1900	0.319		
	WCDMA Band $ m V$	0.029	0.334	
(0mm Gap)	WCDMA Band II	0.334		
	WIFI	0.203		

Highest Simultaneous SAR Summary

Exposure Position	Frequency Band	Highest Scaled 1g-SAR(W/kg)
Head	WWAN(WCDMA II)&WIFI	0.658
Tablet SAR (0mm Gap)	WWAN(WCDMA II)&WIFI	0.511

5Specific Absorption Rate (SAR)

5.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awarenessand ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

5.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by(dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C \frac{\delta T}{\delta t}$$

where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where σ is the conductivity of the tissue, pis the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5.3 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SATIMO. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

5.4 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SATIMO as an integral part of the COMOSAR test system.

The device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder

5.5 Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents,

e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available.

Frequency 700 MHz to 3 GHz;

Linearity: ± 0.5 dB (700 MHz to 3 GHz)

Directivity ± 0.25 dB in HSL (rotation around probe axis)

± 0.5 dB in tissue material (rotation normal to probe

axis)

Dynamic Range 1.5 μ W/g to 100 mW/g;

Linearity: ± 0.5 dB

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 5 mm

Distance from probe tip to dipole centers: <2.7 mm

Application General dosimetry up to 3 GHz

Dosimetry in strong gradient fields Compliance tests of Tablet PCs

Compatibility COMOSAR

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

6 OPERATIONAL CONDITIONS DURING TEST

6.1 Schematic Test Configuration

During SAR test, EUT was operating in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The EUT was commanded to operate at maximum transmitting power.

The EUT should use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link was used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset.

The signal transmitted by the simulator to the antenna feeding point should be lower than the output power level of the handset by at least 35 dB

6.2 SAR Measurement System

The SAR measurement system being used is the SATIMO system, the system is controlled remotely from a PC, which contains the software to control the robot and data acquisition equipment. The software also displays the data obtained from test scans.

In operation, the system first does an area (2D) scan at a fixed depth within the liquid from the inside wall of the phantom. When the maximum SAR point has been found, the system will then carry out a 3D scan centred at that point to determine volume averaged SAR level.

6.2.1Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness Power drifts in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Ingredients Frequency (MHz) (% by 450 835 915 1900 2450 2600 weight) Tissue Type Head Body Head Body Head Body Head Body Head Body Head Body 51.16 52.4 41.05 56.0 54.9 40.4 62.7 55.24 64.49 Water 38.56 41.46 73.2 Salt (Nacl) 3.95 1.49 1.45 1.4 1.35 0.76 0.18 0.5 0.04 0.5 0.024 0.5 Sugar 56.32 46.78 56.0 45.0 56.5 41.76 0.0 58.0 0.0 0.0 0.0 0.0 HEC 0.98 0.52 1.0 1.0 1.0 1.21 0.0 1.0 0.0 0.0 0.0 0.0

Table 1: Recommended Dielectric Performance of Tissue

Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	0.0	0.0
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	44.45	32.25
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	0.0	26.7
Dielectric	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	39.0	52.5
Constant	45.42	36.0	42.54	30.1	42.0	30.6	39.9	34.0	39.0	32.3	39.0	32.3
Conductivity (s/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	1.96	2.16

Table 2a Recommended Tissue Dielectric Parameters

Fraguenov (MHz)	Head	Tissue	Body Tissue		
Frequency (MHz)	€ r	σ(S/m)	€ r	σ(S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800-2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	

Table 2b The composition of the tissue simulating liquid

Ingredient	835MHz		1900	MHz	2450MHz	
(% Weight)	Head	Body	Head	Body	Head	Body
Water	35,338	52,873	55,265	69,990	55,671	70,801
DGBE	0,0	0,0	13,816	8,934	18,680	8,684
Triton X100	0,0	0,0	30,398	20,661	23,335	20,212
propanediol	63,679	46,058	0.00	0.00	0.00	0.00
Salt	0,983	1,068	0,521	0,415	0,313	0,303

6.2.2Simulateliquid

For measurements against the phantom head, the "cheek" and "tilt" position on both the left hand and the right hand sides of the phantom. For body measurements, the EUT was tested against flat phantom representing the user body. The EUT was put on in the belt holder. Stimulate liquid that are used for testing at frequencies of GSM 850MHz/1900MHz, WCDMA850MHz/1900MHz, and Wi-Fi 2.4GHz, which are made mainly of sugar, salt and water solutions may be left in the phantoms.

Table 3: Dielectric Performance of Head Tissue Simulating Liquid

Temperature: 23.2°C;Humidity: 64%;								
/	Frequency	Permittivity ε	Conductivity σ (S/m)					
Target value	850MHz	41.5±5%	0.90±5%					
Validation value (May 10th, 2016)	850MHz	41.39	0.89					
Target value	1900MHz	40.0±5%	1.40±5%					
Validation value (May 11th, 2016)	1900MHz	39.87	1.39					
Target value	2450MHz	39.2±5%	1.80±5%					
Validation value (May 16th, 2016)	2450MHz	38.98	1.79					

Table 4: Dielectric Performance of Body Tissue Simulating Liquid

Temperature: 23.2°C;Humidity: 64%;								
1	Frequency	Permittivity ε	Conductivity σ (S/m)					
Target value	850MHz	55.2±5%	0.97±5%					
Validation value (May 12th, 2016)	850MHz	55.27	0.97					
Target value	1900MHz	53.3±5%	1.52±5%					
Validation value (May 13th, 2016)	1900MHz	53.23	1.52					
Target value	2450MHz	52.7±5%	1.95±5%					
Validation value (May 16th, 2016)	2450MHz	52.55	1.94					

6.3 Results of validation testing

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The following procedure, recommended for performing validation tests using box phantoms is based on the procedures described in the IEEE standard P1528. Setup according to the setup diagram below :

With the SG and Amp and with directional coupler in place, set up the source signal at the relevant frequency and use a power meter to measure the power at the end of the SMA cable that you intend to connect to the balanced dipole. Adjust the SG to make this, say, 0.25W (24 dBm). If this level is too high to read directly with the power meter sensor, insert a calibrated attenuator (e.g. 10 or 20 dB) and make a suitable correction to the power meter reading.

- Note 1: In this method, the directional coupler is used for monitoring rather than setting the exact feed power level. If, however, the directional coupler is used for power measurement, you should check the frequency range and power rating of the coupler and measure the coupling factor (referred to output) at the test frequency using a VNA.
- Note 2: Remember that the use of a 3dB attenuator (as shown in Figure 8.1 of P1528) means that you need an RF amplifier of 2 times greater power for the same feed power. The other issue is the cable length. You might get up to 1dB of loss per meter of cable, so the cable length after the coupler needs to be quite short.
- Note 3: For the validation testing done using CW signals, most power meters are suitable. However, if you are measuring the output of a modulated signal from either a signal generator or a handset, you must ensure that the power meter correctly reads the modulated signals.

The measured 1-gram averaged SAR values of the device against the phantom are provided in Tables 5 and Table 6. The humidity and ambient temperature of test facility were64% and 23.2°C respectively. The body phantom were full of the body tissue simulating liquid. The EUT was supplied with full-charged battery for each measurement.

The distance between the back of the EUT and the bottom of the flat phantom is 10 mm (taking into account of the IEEE 1528 and the place of the antenna).

Table 5: Head SAR system validation (1g)

		, ,			
Г	Duty avala	Target value	Test value (W/kg)		
Frequency	Duty cycle	(W/kg)	250 mW	1W	
835MHz(May 10th, 2016)	1:1	9.77±10%	2.41	9.64	
1900MHz(May 11th, 2016)	1:1	40.37±10%	9.85	39.40	
2450MHz(May 16th, 2016)	1:1	53.60±10%	13.16	52.64	

Table 6: Body SAR system validation (1g)

(·g/							
Fraguenov	Duty ovolo	Target value	Test value (W/kg)				
Frequency	Duty cycle	(W/kg)	250 mW	1W			
835MHz(May 12th, 2016)	1:1	10.31±10%	2.53	10.12			
1900MHz(May 13th, 2016)	1:1	40.81±10%	10.13	40.52			
2450MHz(May 16th, 2016)	1:1	52.66±10%	13.08	52.48			

^{*}Note: Target value was referring to the measured value in the calibration certificate of reference dipole. Note: All SAR values are normalized to 1W forward power.

6.4SAR measurement procedure

The SAR test against the head phantom was carried out as follow:

Establish a call with the maximum output power with a base station simulator, the connection between the EUT and the base station simulator is established via air interface.

After an area scan has been done at a fixed distance of 2mm from the surface of the phantom on the source side, a 3D scan is set up around the location of the maximum spot SAR. First, a point within the scan area is visited by the probe and a SAR reading taken at the start of testing. At the end of testing, the probe is returned to the same point and a second reading is taken. Comparison between these start and end readings enables the power drift during measurement to be assessed.

Above is the scanning procedure flow chart and table from the IEEEp1528 standard. This is the procedure for which all compliant testing should be carried out to ensure that all variations of the device position and transmission behavior are tested.

For body-worn measurement, the EUT was tested under two position: face upward and back upward.

6.5Transmitting antenna information

The GSM & WCDMA & WIFI & BTantennas inside the EUT.

Antenna-to-User (Edge Side) distance (mm):

Antenna	Front	Back	Edge A	Edge B	Edge C	Edge D
WWAN Main Antenna	3	3	171	4	2	50
WIFI Antenna	3	3	5	95	180	10

The Body SAR measurement positions of each band are as below:

Antenna	Front	Back	Edge A	Edge B	Edge C	Edge D
WWAN Antenna Body-worn	Yes	Yes	No	No	No	No
WWAN Antenna hotspot	Yes	Yes	No	Yes	Yes	No
WIFI Antenna Body-worn	Yes	Yes	No	No	No	No
WIFI Antenna hotspot	Yes	Yes	Yes	No	No	Yes

Note: According to KDB 941225 D06 v02r01, when antenna-to-edge>2.5cm, SAR is not required.

The 0mm gap Full-size Tablets 1g SAR Test Exclusion Calculations are shown below:

Antennas < 50mm to adjacent edges

Antenna		Frequen cy (MHz)	Output	t Power	Separation Distances (mm)				Calculated Threshold Value							
		Cy (IVII IZ)	dBm	mW	Back	EdgeA	EdgeB	EdgeC	EdgeD	Front	Back	EdgeA	EdgeB	EdgeC	EdgeD	Front
	Per KDB 616217 D04 SAR for laptop and tablets, Front Surface of DUT is not applied.															
WWAN	GPRS 850(4Tx)	824.2	32	1584	3	171	4	2	50	N/A	Test	>50mm	Test	Test	Test	N/A
WWAN	GPRS1900(4 Tx)	1880.0	29.5	891	3	171	4	2	50	N/A	Test	>50mm	Test	Test	Test	N/A
WWAN	WCDMA1900 (RMC)	1880.0	23.5	223	3	171	4	2	50	N/A	Test	>50mm	Test	Test	Test	N/A
WWAN	WCDMA 850 (RMC)	846.6	23	199	3	171	4	2	50	N/A	Test	>50mm	Test	Test	Test	N/A
WLAN	WIFI 802.11b	2462	11	12	3	5	95	180	10	N/A	Test	Test	>50mm	>50mm	Test	N/A

Antennas > 50mm to adjacent edges

					<u> </u>											
Antenna	Mode	de Frequen	Output	Power		\$	Separation D	istances (mm	1)			(Calculated Th	nreshold Valu	ie	
		Cy (IVII 12)	dBm	mW	Back	EdgeA	EdgeB	EdgeC	EdgeD	Front	Back	EdgeA	EdgeB	EdgeC	EdgeD	EdgeD Front
	Per KDB 616217 D04 SAR for laptop and tablets, Front Surface of DUT is not applied.															
WWAN	GPRS 850(4Tx)	824.2	32	1584	3	171	4	2	50	N/A	<50mm	Exempt	<50mm	<50mm	Test	N/A
WWAN	GPRS1900(4 Tx)	1880.0	29.5	891	3	171	4	2	50	N/A	<50mm	Exempt	<50mm	<50mm	Test	N/A
WWAN	WCDMA 1900 (RMC)	1880.0	23.5	223	3	171	4	2	50	N/A	<50mm	Exempt	<50mm	<50mm	Test	N/A
WWAN	WCDMA 850 (RMC)	846.6	23	199	3	171	4	2	50	N/A	<50mm	Exempt	<50mm	<50mm	Test	N/A
WLAN	WIFI 802.11b	2462	11	12	3	5	95	180	10	N/A	<50mm	<50mm	Exempt	Exempt	<50mm	N/A

Note: According to KDB 616217 D04 v01r02 SAR for laptop and tablets, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom, and the SAR Test Exclusion Threshold in KDB 447498 D01 can be applied to determine SAR test exclusion for adjacent edge configurations.

7CHARACTERISTICS OF THE TEST

7.1 Applicable Limit Regulations

47CFR § **2.1093-**Radiofrequency Radiation Exposure Evaluation: Portable Devices;

ANSI C95.1–1992:Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.(IEEE Std C95.1-1991)

IEEE 1528–2013:IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

7.2 Applicable Measurement Standards

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this is in accordance with the following standards:

FCC 47 CFR Part2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2013

FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02

FCC KDB 447498 D01 v06 General RF Exposure Guidance

FCC KDB 648474 D04 v01r03Handset SAR

FCC KDB 616217 D04 v01r02SAR for laptop and tablets

FCC KDB 865664 D01 v01r04 SAR Measurement 100MHz to 6GHz

FCC KDB 865664 D02 v01r02 SAR Exposure Reporting

FCC KDB 941225 D01 v03r01 3G SAR Procedures

FCC KDB 941225 D06 v02r01 Hotspot Mode

8 LABORATORY ENVIRONMENT

The Ambient Conditions during SAR Test

Temperature	Min. = 22°C, Max. = 25°C			
Atmospheric pressure	Min.=86 kPa, Max.=106 kPa			
Relative humidity	Min. = 45%, Max. = 75%			
Ground system resistance	< 0.5 Ω			

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

9. Conducted RF Output Power

9.1 GSM Conducted Power

GSM Conducted Power

COM COMMUNICATION OF									
	Band		erage Powe	er (dBm)	Frame-Average Power (dBm)				
GSM850	TX Channel	128	190	251	128	190	251		
	Frequency(MHz)	824.2	836.6	848.8	824.2	836.6	848.8		
	GSM	32.77	32.64	32.50	23.74	23.61	23.47		
	GPRS(Slot 1)	32.70	32.56	32.45	23.67	23.53	23.42		
GMSK	GPRS(Slot 2)	31.65	31.50	31.38	25.63	25.48	25.36		
	GPRS(Slot 3)	29.43	29.28	29.18	25.17	25.02	24.92		
	GPRS(Slot 4)	28.35	28.20	28.08	25.34	25.19	25.07		
	EGPRS(Slot 1)	32.77	32.65	32.56	23.74	23.62	23.53		
GMSK	EGPRS(Slot 2)	31.71	31.56	31.43	25.69	25.54	25.41		
Civiore	EGPRS(Slot 3)	29.44	29.32	29.21	25.18	25.06	24.95		
	EGPRS(Slot 4)	28.39	28.24	28.11	25.38	25.23	25.1		

Band		Burst Ave	erage Pow	er (dBm)	Frame-Average Power (dBm)			
GSM1900	TX Channel	512	661	810	512	661	810	
33	Frequency(MHz)	1850.2	1880	1909.8	1850.2	1880	1909.8	
	GSM	29.82	30.01	30.02	20.79	20.98	20.99	
	GPRS(Slot 1)	29.87	30.07	30.09	20.84	21.04	21.06	
GMSK	GPRS(Slot 2)	29.03	29.06	28.94	23.01	23.04	22.92	
	GPRS(Slot 3)	26.69	26.72	26.58	22.43	22.46	22.32	
	GPRS(Slot 4)	25.50	25.53	25.40	22.49	22.52	22.39	
	EGPRS(Slot 1)	29.83	30.02	30.04	20.8	20.99	21.01	
GMSK	EGPRS(Slot 2)	28.94	29.05	28.98	22.92	23.03	22.96	
S.III S.I.	EGPRS(Slot 3)	26.69	26.70	25.56	22.43	22.44	21.3	
	EGPRS(Slot 4)	25.52	25.54	25.43	22.51	22.53	22.42	

Note: Per KDB 447498 D01 v06, the maximum output power channel is used for SAR testing and for further SAR test reduction.

For Head SAR testing, GSM should be evaluated, therefore the EUT was set in GSM Voice for GSM850 and GSM1900 due to its highest frame-average power.

For Body worn SAR testing, GSM should be evaluated, therefore the EUT was set in GSM Voice for GSM850 and GSM 1900 due to its highest frame-average power.

For hotspot mode SAR testing, GPRS and EDGE should be evaluated, therefore the EUT was set in EGPRS850 (2Tx slots) and GPRS1900 (2Tx slots) due to its highest frame-average power.

Timeslot consignations

No. Of Slots	Slot 1	Slot 2	Slot 3	Slot 4
Slot Consignation	1Up4Down	2UpDown	3UpDown	4Up1Down
Duty Cycle	1:8	1:4	1:2.67	1:2
Crest Factor	-9.03dB	-6.02dB	-4.26dB	-3.01dB

9.2 WCDMA Conducted output Power

WCDMA conducted output power

	band	١	NCDMA 850		V	VCDMA 1900)
Item	ARFCN	4132	4183	4233	9262	9400	9538
	subtest	Burst Av	erage Power	r (dBm)	Burst Av	erage Powe	r (dBm)
RMC 12.2kbps	non	22.64	22.67	22.81	23.06	23.14	23.06
	1	21.65	21.58	21.71	22.06	22.15	22.10
ПСОВА	2	21.61	21.60	21.75	22.04	22.17	22.05
HSDPA	3	21.08	21.14	21.28	21.59	21.60	21.57
	4	21.06	21.11	21.26	21.58	21.58	21.54
	1	21.65	21.58	21.71	22.06	22.07	22.15
	2	21.61	21.60	21.75	22.04	22.17	22.05
HSUPA	3	21.08	21.14	21.28	21.59	21.60	21.57
	4	21.06	21.11	21.26	21.58	21.58	21.54
	5	21.03	21.08	21.23	21.56	21.56	21.53

Note:

- WCDMA SAR was tested under PMC 12.2kbps with HSPA Inactive per KDB Publication 941225
 D01.HSPA SAR was not requires since the average output power of the HSPA subtests was not more than 0.25dB higher than the RMC level and SAR was less than 1.2W/kg.
- 2. It is expected by the manufacturer that MPR for some HSPA subtests may be up to 2dB more than specified by 3GPP,but also as low as 0dB according to the chipset implementation in this model.

WLAN 2.4GHz Band Conducted Power

802.11b/g mode

Mode	Data	Teat	Result(dBm) (AVG)
Mode	Rate(Mbps)	Ch1	Ch6	Ch11
	1	9. 15	9. 31	9. 52
802. 11b	2	9. 21	9. 38	9. 58
002.110	5. 5	10. 27	10. 35	10. 57
	11	10. 01	10. 19	10. 37
	6	5. 8	5. 9	6. 35
	9	5. 95	5. 98	6. 65
	12	6. 11	6. 21	6. 75
802.11g	18	6. 07	6. 18	6. 73
002.11g	24	6. 13	6. 17	6. 42
	36	5. 75	5. 77	6. 35
	48	5. 93	6. 02	6. 51
	54	5. 86	5. 91	6. 47

802.11n mode

Mode	Data	Teat	Result(dBm) (A	AVG)
Mode	Rate(Mbps)	Ch1	Ch6	Ch11
	MCS0	5. 61	5. 52	6. 15
	MCS1	5. 32	5. 33	5. 99
	MCS2	5. 65	5. 69	6. 24
802.11n	MCS3	5. 57	5. 54	6. 14
(20MHz)	MCS4	5. 72	5. 76	6. 37
	MCS5	5. 96	5. 93	6. 67
	MCS6	6. 13	6. 19	6.87
	MCS7	6. 10	6. 13	6.82
	MCS0	4. 11	4. 25	4.89
	MCS1	4. 13	4. 27	4. 94
	MCS2	4. 15	4. 32	4. 98
802.11n	MCS3	4. 16	4. 31	5. 01
(40MHz)	MCS4	4. 20	4. 33	4. 99
	MCS5	4. 41	4. 59	5. 27
	MCS6	4. 32	4. 48	5. 23
	MCS7	4. 34	4. 51	5. 26

Bluetooth Output Power

Channel	Frequency	BT3.0Output Power PK(dBm)						
Onamici	(MHz)	GFSK π/4-DQPSK		8-DPSK				
CH 0	2402	-1.55	-2.16	-2.00				
CH 39	2441	-2.25	-2.61	-2.61				
CH 78	2480	-3.16	-3.50	-3.50				
Channel	Frequency	BT4.0 Output						
Onamici	(MHz)	G	SFSK					
CH 0	2402	-						
CH 19	2442	-:						
CH 39	2480	-:	11.08					

SAR test Exclusion and estimate SAR calculation:

Note:

1. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100MHz to 6GHz at test separation distances ≤ 50mm are determined by:[(max. power of channel, including tune-up tolerance,

mW)/(min. test separation distance, mm)] • [$^{\sqrt{f}}$ (GHz)] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR

- (1) f(GHz) is the RF channel transmit frequency in GHz
- (2) Power and distance are round to the nearest mW and mm before calculation
- (3) The result is rounded to one decimal place for comparison
- (4) If the test separation distance(antenna-user) is < 5mm, 5mm is used for excluded SAR calculation (5)

BT3.0 Max Power (dBm)	mW	Test Distance (mm)	Frequency(GHz)	Exclusion Thresholds
-1.5	0.708	5	2.45	0.222

 $Per\ KDB\ 447498\ D01v06\ exclusion\ thresholds\ is 0.222 < 3,\ RF\ exposure\ evaluation\ is\ not\ required.$

BT estimated SAR value=Exclusion Thresholds/7.5=0.222/7.5=0.030W/Kg

BT4.0 Max Power (dBm)	mW	Test Distance (mm)	Frequency(GHz)	Exclusion Thresholds
-9.5	0.112	5	2.45	0.035

Per KDB 447498 D01v06 exclusion thresholds is 0.035<3, RF exposure evaluation is not required.

BT estimated SAR value=Exclusion Thresholds/7.5=0.035/7.5=0.005W/Kg

The estimated SAR value is used for simultaneous transmission analysis.

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
- 2. PerKDB447498D01v06,testingofotherrequiredchannelswithintheoperatingmodeofa frequencybandisnotrequiredwhenthereported1-gor10-gSARforthemid-bandorhighestoutputpow erchannelis:≤0.8W/kgor2.0W/kg,for1-gor10-grespectively,whenthetransmissionbandis≤100M Hz.Whenthemaximumoutputpowervariationacrosstherequiredtestchannelsis>½dB, instead of the middle channel, the highest output power channel must be used.
- 3. Per KDB 865664 D01v01r04,for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg; if the deviation among the repeated measurement is ≤20%,and the measured SAR <1.45W/Kg, only one repeated measurement is required.
- 4. Per KDB865664 D02 v01r02, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when the measured SAR is > 1.5 W/kg, or > 7.0 W/kg for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing(Refer to appendix D for details).
- 5. Per KDB941225 D01 v03r01, when multiple slots can be used, the GPRS/EDGE slot configuration with the highest frame—averaged output power was selected for SAR testing.
- 6. Per KDB941225 D01 v03r01, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.
- 7. Per KDB248227 D01 v02r02, 802.11g /11n-HT20/11n-HT40 is not required. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤1.2W/Kg. Thus the SAR can be excluded.

9.3. Scaling Factor calculation

Operation Mode	Channel	Output	Tune up Power in	Scaling
		Power(dBm)	tolerance(dBm)	Factor
GSM 850	128	32.77	32 ± 1	1.054
(Burst Average	190	32.64	32 ± 1	1.086
Power)	251	32.50	32 ± 1	1.122
EGPRS 850(2Tx)	128	31.71	31 ± 1	1.069
(Burst Average	190	31.56	31 ± 1	1.107
Power)	251	31.43	31 ± 1	1.140
GSM1900	512	29.82	29.5 ± 1	1.169
(Burst Average	661	30.01	29.5 ± 1	1.119
Power)	810	30.02	29.5 ± 1	1.117
GPRS1900(2Tx)	512	29.03	28.5 ± 1	1.114
(Burst Average	661	29.06	28.5 ± 1	1.107
Power)	810	28.94	28.5 ± 1	1.138
WCDMA1900	9262	23.06	22.5 ± 1	1.107
(RMC 12.2kbps)	9400	23.14	22.5 ± 1	1.086
(Burst Average Power)	9538	23.06	22.5 ± 1	1.107
WCDMA850	4132	22.64	22.0± 1	1.219
(RMC 12.2kbps)	4183	22.67	22.0± 1	1.211
(Burst Average Power)	4233	22.81	22.0± 1	1.172
WIFI 802.11b	1	10.27	10.0± 1	1.183
(Burst Average	6	10.35	10.0± 1	1.161
Power)	11	10.57	10.0± 1	1.104
BT (Peak Power)	0	-1.55	-2.5± 1	1.012

Simultaneous SAR

No.	Transmitter Combinations	Scenario Supported or not	Supported for Mobile Hotspot or not		
1	GSM(Voice)+GSM(Data)	No	No		
2	WCDMA(Voice)+WCDMA(Data)	No	No		
3	GSM(Voice)+ WCDMA(Data)	No	No		
4	WCDMA(Voice)+GSM(Data)	No	No		
5	GSM(Voice)+ WCDMA(Voice)	No	No		
6	GSM(Voice)+Wifi	Yes	No		
7	WCDMA(Voice) +Wifi	Yes	No		
8	GSM(Voice)+ BT	Yes	No		
9	WCDMA(Voice) + BT	Yes	No		
10	GSM(Data)+wifi	Yes	Yes		
11	WCDMA(Data) +wifi	Yes	Yes		

10 TEST RESULTS

10.1 Summary of SAR Measurement Results

Table 7:SAR Values of GSM 850MHz Band

		Temperature	: 23.0~23.5°C, h	umidity: 62~64	1%.		
			Channel SAR(W/Kg), 1.6 (1g avera				
т,	Test Positions			SAR	Scaled	Scaled	Plot
rest Positions			(MHz)	(W/Kg),1g	Factor	SAR(W/Kg)	No.
					,1g		
Right Side of	(Cheek	128/824.2	0.010	1.054	0.011	1
Head	Tilt 1	5 degrees	128/824.2	0.008	1.054	0.008	
Left Side of	(Cheek	128/824.2	0.008	1.054	0.008	-
Head	Tilt 1	5 degrees	128/824.2	0.005	1.054	0.005	-
		Face Upward	128/824.2	0.044	1.069	0.047	
Tablet SAR	FODDO	Back Upward	128/824.2	0.060	1.069	0.064	
(0mm	EGPRS	Edge B	128/824.2	0.068	1.069	0.073	2
Separation)	(2Tx)	Edge C	128/824.2	0.033	1.069	0.035	
		Edge D	128/824.2	0.016	1.069	0.017	

Table 8:SAR Values of GSM1900MHz Band

		Temperatu	re: 23.0~23.5°C,	humidity: 62~6	4%.				
			Channel	SAR(W/h	(g), 1.6 (1g	average)			
T.	Test Positions		/Frequency	SAR	Scaled	Scaled	Plot		
	rest rosmons			(W/Kg),1g	Factor	SAR(W/Kg)	No.		
					,1g				
Right Side of		Cheek	810/1909.8	0.038	1.117	0.042			
Head	Tilt	15 degrees	810/1909.8	0.027	1.117	0.030			
Left Side of		Cheek	810/1909.8	0.040	1.117	0.045	3		
Head	Tilt	15 degrees	810/1909.8	0.025	1.117	0.028			
		Face Upward	661/1880	0.288	1.107	0.319	4		
Tablet SAR	CDDC	Back Upward	661/1880	0.122	1.107	0.135			
(0mm	GPRS	Edge B	661/1880	0.101	1.107	0.112			
Separation)	on) (2Tx)	Edge C	661/1880	0.059	1.107	0.065			
		Edge D	661/1880	0.027	1.107	0.030			

Table 9:SAR Values of WCDMA850

	Temperatu	ıre: 23.0~23.5°	°C, humidity: 6	2~64%.		
		Channel	SAR(W	⁷ /Kg), 1.6 (1	lg average)	Plot
Test Pos	sitions	/Frequency	SAR	Scaled	Scaled	No.
		(MHz)	(W/Kg), 1g	Factor	SAR(W/Kg),1g	INO.
Right Side of Head	Cheek	4233/846.6	0.014	1.172	0.016	5
Right Side of Head	Tilt 15 degrees	4233/846.6	0.008	1.172	0.009	
Left Side of Head	Cheek	4233/846.6	0.006	1.172	0.007	
Leit Side of Flead	Tilt 15 degrees	4233/846.6	0.004	1.172	0.005	
	Face Upward	4233/846.6	0.025	1.172	0.029	
Tablet SAR	Back Upward	4233/846.6	0.036	1.172	0.042	6
	Edge B	4233/846.6	0.009	1.172	0.011	
(0mm Separation) -	Edge C	4233/846.6	0.024	1.172	0.028	
	Edge D	4233/846.6	0.007	1.172	0.008	

Table 10:SAR Values of WCDMA1900

Table 10.07 II Valide of Weblin (1000									
	Temperatu	re: 23.0~23.5°C	, humidity: 62	~64%.					
		Channel	SAR(W/	Kg), 1.6 (1g average)	Plot			
Test Pos	itions	/Frequency	SAR	Scaled	Scaled				
		(MHz)	(W/Kg),1g	Factor	SAR(W/Kg),1g	No.			
Dight Side of Hood	Cheek	9400/1880.0	0.065	1.086	0.071	7			
Right Side of Head	Tilt 15 degrees	9400/1880.0	0.019	1.086	0.021				
Left Side of Head	Cheek	9400/1880.0	0.050	1.086	0.054				
Left Side of Head	Tilt 15 degrees	9400/1880.0	0.018	1.086	0.020				
	Face Upward	9400/1880.0	0.166	1.086	0.180				
Tablet SAR	Back Upward	9400/1880.0	0.308	1.086	0.334	8			
(0mm Separation)	Edge B	9400/1880.0	0.083	1.086	0.090				
(omin Separation)	Edge C	9400/1880.0	0.043	1.086	0.047	I			
	Edge D	9400/1880.0	0.024	1.086	0.026				

Table 11:SAR Values of Wi-Fi 802.11b

		Channel	SAR(W/	Kg), 1.6 (1g	average)			
Test Posi	tions	/Frequency	SAR(W/Kg)	Scaled	Scaled	Plot		
1621 1031	rest i ositions		1g	Factor	SAR(W/Kg)	No.		
					,1g			
Right Side of Head	Cheek	11/2462	0.532	1.104	0.587	9		
Right Side of Flead	Tilt 15 degrees	11/2462	0.509	1.104	0.562			
Left Side of Head	Cheek	11/2462	0.193	1.104	0.213			
Left Side of Head	Tilt 15 degrees	11/2462	0.267	1.104	0.295			
	Face Upward	11/2462	0.187	1.104	0.206	10		
Tablet SAR	Back Upward	11/2462	0.177	1.104	0.195			
(0mm Separation)	Edge A	11/2462	0.164	1.104	0.181			
	Edge D	11/2462	0.184	1.104	0.203			

Note: When the 1-g SAR for the mid-band channel or the channel with the Highest output power satisfy the following conditions, testing of the other channels in the band is not required.(Per KDB 447498 D01 General RF Exposure Guidance v06)

- ≤ 0.8 W/kg, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg, when the transmission band is ≥ 200 MHz

10.2Simultaneous Transmissions Analysis

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 6 of this report. Maximum localized SAR is **below** exposure limits specified in the relevant standards.

Simultaneous Tx Combination of GSM/WCDMA and BT/WIFI (Head).

	Test Position	Right Cheek	Right Title	Left Cheek	Left Tilt
	GSM850	0.011	0.008	0.008	0.005
Head	GSM1900	0.042	0.030	0.045	0.028
MAY	WCDMA850	0.016	0.009	0.007	0.005
MAX 1-g SAR(W/Kg)	WCDMA1900	0.071	0.021	0.054	0.020
SAR(W/Rg)	WIFI 802.11b	0.587	0.562	0.213	0.295
	BT	*0.030	*0.030	*0.030	*0.030
BT Simultaneous Σ1-g SAR(W/Kg)		0.101	0.060	0.084	0.058
WiFi Simulta	aneous Σ 1-g SAR(W/Kg)	0.658	0.592	0.267	0.333

0mm Tablet SAR Simultaneous Transmissions:

	Test Position	Face	Back	Edge A	Edge B	Edge C	Edge D
Tablet CAD	GPRS850	0.047	0.064		0.073	0.035	0.017
Tablet SAR	GPRS1900	0.319	0.135		0.112	0.065	0.030
0mm	WCDMA 850	0.029	0.042		0.011	0.028	0.008
separation MAX 1-g	WCDMA 1900	0.180	0.334		0.090	0.047	0.026
SAR(W/Kg)	WIFI 802.11b	0.187	0.177	0.181			0.203
SAIN(W/Ng)	BT	*0.030	*0.030	*0.030			*0.030
BT Simultaneous ∑1-g SAR(W/Kg)		0.349	0.364	0.030	0.112	0.065	0.060
WiFi Simulta	neous Σ 1-g SAR(W/Kg)	0.506	0.511	0.181	0.112	0.065	0.233

The estimated SAR value with * Signal

SAR to PeakLocation SeparationRatio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required

11Measurement Uncertainty

No.	Uncertainty Component	Туре	Uncertainty Value (%)	Probability Distribution	k	ci	Standard Uncertainty(%) ui(%)	Degree of freedom Veffor vi				
	Measurement System											
1	Probe Calibration	В	5.8	N	1	1	5.8	8				
2	– Axialisotropy	В	3.5	R	$\sqrt{3}$	0.5	1.43	8				
3	—Hemispherical Isotropy	В	5.9	R	$\sqrt{3}$	0.5	2.41	80				
4	– Boundary Effect	В	1	R	$\sqrt{3}$	1	0.58	8				
5	– Linearity	В	4.7	R	$\sqrt{3}$	1	2.71	8				
6	– System Detection Limits	В	1.0	R	$\sqrt{3}$	1	0.58	8				
7	Modulation response	В	3	N	1	1	3.00					
8	- Readout Electronics	В	0.5	N	1	1	0.50	8				
9	– Response Time	В	1.4	R	$\sqrt{3}$	1	0.81	8				
10	- Integration Time	В	3.0	R	$\sqrt{3}$	1	1.73	8				
11	- RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.73	8				
12	Probe Position Mechanical tolerance	В	1.4	R	$\sqrt{3}$	1	0.81	8				
13	Probe Position with respect to Phantom Shell	В	1.4	R	$\sqrt{3}$	1	0.81	8				
14	 Extrapolation, Interpolation and Integration Algorithms for Max. SAR evaluation 	В	2.3	R	$\sqrt{3}$	1	1.33	∞				
			Uncertair	nties of the DU	Γ							
15	– Position of the DUT	А	2.6	N	$\sqrt{3}$	1	2.6	5				
16	– Holder of the DUT	А	3	N	$\sqrt{3}$	1	3.0	5				

17	Output Power Variation SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.89	∞
		Р	hantom and Ti	ssue Paramet	ers			
18	Phantom Uncertainty(shape and thickness tolerances)	В	4	R	$\sqrt{3}$	1	2.31	∞
19	Uncertainty in SAR correction for deviation(in permittivity and conductivity)	В	2	N	1	1	2.00	
20	- Liquid Conductivity Target -tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	∞
21	- Liquid Conductivity -measurement Uncertainty)	В	4	N	$\sqrt{3}$	1	0.92	9
22	Liquid Permittivity Target tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	80
23	- Liquid Permittivity -measurement uncertainty	В	5	N	$\sqrt{3}$	1	1.15	∞
Con	mbined Standard Uncertainty			RSS			10.63	
((Expanded uncertainty Confidence interval of 95 %)			K=2			21.26	

System Check Uncertainty

No.	Uncertainty Component	Туре	Uncertainty Value (%)	Probability Distribution	k	ci	Standard Uncertainty(%) ui(%)	Degree of freedom Veffor vi
			Measur	ement System				
1	– Probe Calibration	В	5.8	N	1	1	5.8	8
2	– Axialisotropy	В	3.5	R	$\sqrt{3}$	0.5	1.43	8
3	—Hemispherical Isotropy	В	5.9	R	$\sqrt{3}$	0.5	2.41	∞
4	– Boundary Effect	В	1	R	$\sqrt{3}$	1	0.58	8
5	– Linearity	В	4.7	R	$\sqrt{3}$	1	2.71	8
6	– System Detection Limits	В	1	R	$\sqrt{3}$	1	0.58	∞
7	Modulation response	В	0	N	1	1	0.00	

						JUILING, SE 12	
- Readout Electronics	В	0.5	N	1	1	0.50	∞
– Response Time	В	0.00	R	$\sqrt{3}$	1	0.00	∞
– Integration Time	В	1.4	R	$\sqrt{3}$	1	0.81	∞
- RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.73	∞
Probe Position Mechanical tolerance	В	1.4	R	$\sqrt{3}$	1	0.81	∞
Probe Position with respect to Phantom Shell	В	1.4	R	$\sqrt{3}$	1	0.81	∞
Extrapolation, Interpolation and Integration Algorithms for Max. SAR evaluation	В	2.3	R	$\sqrt{3}$	1	1.33	∞
		Uncertair	nties of the DU	Т			
Deviation of experimental source from numberical source	Α	4	N	1	1	4.00	5
Input Power and SAR drift measurement	Α	5	R	$\sqrt{3}$	1	2.89	5
Dipole Axis to Liquid Distance	В	2	R	$\sqrt{3}$	1	1.2	∞
	Р	hantom and Ti	ssue Paramet	ers			
 Phantom Uncertainty(shape and thickness tolerances) 	В	4	R	$\sqrt{3}$	1	2.31	∞
Uncertainty in SAR correction for deviation(in permittivity and conductivity)	В	2	N	1	1	2.00	
- Liquid Conductivity Target -tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	∞
- Liquid Conductivity -measurement Uncertainty)	В	4	N	$\sqrt{3}$	1	0.92	9
Liquid Permittivity Target tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	∞
- Liquid Permittivity -measurement uncertainty	В	5	N	$\sqrt{3}$	1	1.15	∞
mbined Standard Uncertainty			RSS			10.15	
Expanded uncertainty Confidence interval of 95 %)			K=2			20.29	
	- Response Time - Integration Time - RF Ambient Conditions - Probe Position Mechanical tolerance - Probe Position with respect to Phantom Shell - Extrapolation, Interpolation and Integration Algorithms for Max. SAR evaluation Deviation of experimental source from numberical source Input Power and SAR drift measurement Dipole Axis to Liquid Distance - Phantom Uncertainty (shape and thickness tolerances) Uncertainty in SAR correction for deviation (in permittivity and conductivity) - Liquid Conductivity Target —tolerance - Liquid Conductivity Target tolerance - Liquid Permittivity Target tolerance	- Response Time B - Integration Time B - RF Ambient Conditions B - Probe Position Mechanical tolerance B - Probe Position with respect to Phantom Shell B - Extrapolation, Interpolation and Integration Algorithms for Max. SAR evaluation B Deviation of experimental source from numberical source Input Power and SAR drift measurement Dipole Axis to Liquid Distance B - Phantom Uncertainty(shape and thickness tolerances) Uncertainty in SAR correction for deviation(in permittivity and conductivity) - Liquid Conductivity Target tolerance B - Liquid Conductivity Target tolerance B - Liquid Permittivity Target tolerance B	- Response Time B 0.00 - Integration Time B 1.4 - RF Ambient Conditions B 3.0 - Probe Position Mechanical tolerance B 1.4 - Probe Position with respect to Phantom Shell B 2.3 - Extrapolation, Interpolation and Integration Algorithms for Max. SAR evaluation Uncertaint Source from numberical source from numberical source Input Power and SAR drift measurement Dipole Axis to Liquid Distance B 2 - Phantom Uncertainty(shape and thickness tolerances) Uncertainty in SAR correction for deviation(in permittivity and conductivity) - Liquid Conductivity Target - tolerance - Liquid Permittivity Target measurement uncertainty - Liquid Permittivity Target tolerance - Liquid Permittivity Target measurement uncertainty - Liquid Permittivity Target tolerance - Liquid Permittivity Target measurement uncertainty - Liquid Permittivity Target tolerance - Liquid Permittivity Target measurement uncertainty - Liquid Permittivity Target tolerance - Liquid Permittivity Target measurement uncertainty - Liquid Permittivity Target measurement uncertainty	- Response Time	- Response Time	-Readout Electronics B 0.5 N 1 1 -Response Time B 0.00 R √3 1 - Integration Time B 1.4 R √3 1 - RF Ambient Conditions B 3.0 R √3 1 - Probe Position Mechanical tolerance B 1.4 R √3 1 - Probe Position with respect to Phantom Shell B 1.4 R √3 1 - Probe Position with respect to Phantom Shell B 1.4 R √3 1 - Extrapolation, Interpolation and Integration Algorithms for Max. SAR evaluation B 2.3 R √3 1 Deviation of experimental source A 4 N 1 1 Input Power and SAR drift measurement A 5 R √3 1 Distance Phantom and Tissue Parameters - Phantom B 2 R √3 1 Uncertainty (Shape and thickness tolerances) B 4	- Readout Electronics B 0.5 N 1 1 0.50 - Response Time B 0.00 R √3 1 0.00 - Integration Time B 0.00 R √3 1 0.81 - RF Ambient Conditions B 1.4 R √3 1 1.73 - Probe Position Mechanical tolerance B 1.4 R √3 1 0.81 - Probe Position with respect to Phantom Shell B 1.4 R √3 1 0.81 - Extrapolation, Interpolation and Integration Algorithms for Max. SAR evaluation B 2.3 R √3 1 0.81 - Extrapolation, Interpolation and Integration Algorithms for Max. SAR evaluation B 2.3 R √3 1 1.33 Uncertainty in SAR evaluation A 4 N 1 1 4.00 Dipole Axis to Liquid Distance B 2 R √3 1 2.89 Phantom Uncertainty (shape and thicknes

12 MAIN TEST INSTRUMENTS

TYPF	Series No.	Calibration	calibration
=	Genes ito.	Date	period
E5515C	GB 47200710	2015/06/10	1 Year
SATIMO	SN_0413_EP166	2015/08/10	1 Year
SID835	SN09/13 DIP0G835-217	2014/08/28	2 Year
SID1900	SN09/13 DIP1G900-218	2014/08/28	2 Year
SID2450	SN09/13 DIP2G450-220	2014/08/28	2 Year
ZVB8	A0802530	2015/06/08	1 Year
SMR27	A0304219	2015/06/08	1 Year
NRP2	A140401673	2016/03/09	1 Year
NPR-Z11	1138.3004.02-114072-nq	2016/03/09	1 Year
Nucletudes	143060	2016/03/09	1 Year
DC6180A	305827	2016/03/09	1 Year
NRVS	A0802531	2016/03/09	1 Year
NRV-Z4	100069	2016/03/09	1 Year
Keithley-2000	4014020	2016/03/09	1 Year
	SATIMO SID835 SID1900 SID2450 ZVB8 SMR27 NRP2 NPR-Z11 Nucletudes DC6180A NRVS NRV-Z4	E5515C GB 47200710 SATIMO SN_0413_EP166 SID835 SN09/13 DIP0G835-217 SID1900 SN09/13 DIP1G900-218 SID2450 SN09/13 DIP2G450-220 ZVB8 A0802530 SMR27 A0304219 NRP2 A140401673 NPR-Z11 1138.3004.02-114072-nq Nucletudes 143060 DC6180A 305827 NRVS A0802531 NRV-Z4 100069	TYPE Series No. Date E5515C GB 47200710 2015/06/10 SATIMO SN_0413_EP166 2015/08/10 SID835 SN09/13 DIP0G835-217 2014/08/28 SID1900 SN09/13 DIP1G900-218 2014/08/28 SID2450 SN09/13 DIP2G450-220 2014/08/28 ZVB8 A0802530 2015/06/08 SMR27 A0304219 2015/06/08 NRP2 A140401673 2016/03/09 NPR-Z11 1138.3004.02-114072-nq 2016/03/09 Nucletudes 143060 2016/03/09 DC6180A 305827 2016/03/09 NRVS A0802531 2016/03/09 NRV-Z4 100069 2016/03/09

ANNEX A

of

CCIC-SET

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

SET2016-08132

Tablet PC

Type Name: Ilium Pad T7X

Hardware Version: K706G DK V1.0

Software Version: Ilium Pad T7X_TELCEL_SW_01

TEST SETUP

This Annex consists of 9pages

Date of Report: 2016-05-19

Fig.1 COMO SAR Test System

Fig.2Head Liquid of 835MHz(15cm)

Fig.3Body Liquid of 835MHz(15cm)

Fig.4Head Liquid of 1900MHz(15cm)

Fig.5Body Liquid of 1900MHz(15cm)

Fig.6Head Liquid of 2450MHz(15cm)

Fig.7Body Liquid of 2450MHz(15cm)

ANNEX B

of

CCIC-SET

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

SET2016-08132

Tablet PC

Type Name: Ilium Pad T7X

Hardware Version: K706G_DK_V1.0

Software Version: Ilium Pad T7X_TELCEL_SW_01

Sample Photographs

This Annex consists of 2 pages

Date of Report:2016-05-19

1. Appearance

Appearance and size (obverse)

Appearance and size (reverse)

ANNEX C

of

CCIC-SET

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

SET2016-08132

Tablet PC

Type Name: Ilium Pad T7X

Hardware Version: K706G_DK_V1.0

Software Version: Ilium Pad T7X_TELCEL_SW_01

System Performance Check Data and Highest SAR Plots

This Annex consists of 27pages

Date of Report: 2016-05-19

System Performance Check (Head, 835MHz)

Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 10/05/2016

Measurement duration: 21 minutes 26 seconds

A. Experimental conditions.

Phantom File	dx=8mm dy=8mm
Phantom	5x5x7,dx=8mm dy=8mm dz=5mm
Device Position	
Band	850MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	850
Relative permittivity (real part)	41.39
Relative permittivity	19.19
Conductivity (S/m)	0.89
Power drift (%)	0.95
Ambient Temperature:	23.2°C
Liquid Temperature:	23.5°C
ConvF:	5.69
Duty factor:	1:1

Maximum location: X=7.00, Y=-1.00

SAR 10g (W/Kg)	1.812368
SAR 1g (W/Kg)	2.413640

System Performance Check (Head, 1900MHz)

Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 11/05/2016

Measurement duration: 22 minutes 31 seconds

A. Experimental conditions.

Phantom File	dx=8mm dy=8mm
Phantom	5x5x7,dx=8mm dy=8mm dz=5mm
Device Position	
Band	1900MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	1900.000000
Relative permittivity (real part)	39.87
Relative permittivity	13.90
Conductivity (S/m)	1.39
Power drift (%)	1.34
Ambient Temperature:	22.2°C
Liquid Temperature:	22.5°C
ConvF:	5.25
Duty factor:	1:1

Maximum location: X=6.00, Y=0.00

SAR 10g (W/Kg)	5.158547
SAR 1g (W/Kg)	9.851324

System Performance Check (Head, 2450MHz)

Type: Phone measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm dy=5mm dz=4mm

Date of measurement: 16/05/2016

Measurement duration: 21 minutes 29 seconds

A. Experimental conditions.

Phantom File	dx=8mm dy=8mm
Phantom	7x7x8,dx=5mm dy=5mm dz=4mm
Device Position	Dipole
Band	2450MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	2450
Relative permittivity (real part)	38.98
Relative permittivity	12.17
Conductivity (S/m)	1.79
Power Drift (%)	0.36
Ambient Temperature:	22.2°C
Liquid Temperature:	22.5°C
ConvF:	4.93
Duty factor:	1:1

Maximum location: X=0.00, Y=8.00

SAR 10g (W/Kg)	5.914368
SAR 1g (W/Kg)	13.161225

System Performance Check (Body, 835MHz)

Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 12/05/2016

Measurement duration: 21 minutes 33 seconds

A. Experimental conditions.

Phantom File	dx=8mm dy=8mm
Phantom	5x5x7,dx=8mm dy=8mm dz=5mm
Device Position	Dipole
Band	835MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

<u> </u>	
E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	850
Relative permittivity (real part)	55.27
Relative permittivity	20.54
Conductivity (S/m)	0.97
Power drift (%)	-0.22
Ambient Temperature:	22.2°C
Liquid Temperature:	22.5°C
ConvF:	5.82
Duty factor:	1:1

VOLUME SAR

Maximum location: X=7.00, Y=-1.00

SAR 10g (W/Kg)	1.633642
SAR 1g (W/Kg)	2.534217

System Performance Check (Body, 1900MHz)

Type:Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 13/05/2016

Measurement duration: 21 minutes 37 seconds

A. Experimental conditions.

Phantom File	dx=8mm dy=8mm
Phantom	5x5x7,dx=8mm dy=8mm dz=5mm
Device Position	Dipole
Band	1900MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	1900
Relative permittivity (real part)	53.23
Relative permittivity	14.40
Conductivity (S/m)	1.52
Power Drift (%)	-0.97
Ambient Temperature:	22.1°C
Liquid Temperature:	22.6°C
ConvF:	5.43
Duty factor:	1:1

Maximum location: X=1.00, Y=6.00

SAR 10g (W/Kg)	5.262651
SAR 1g (W/Kg)	10.132574

System Performance Check (Body, 2450MHz)

Type: Phone measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=4mm

Date of measurement: 16/05/2016

Measurement duration: 22 minutes 11 seconds

A. Experimental conditions.

Phantom File	dx=8mm dy=8mm
Phantom	7x7x8,dx=5mm dy=5mm dz=4mm
Device Position	Dipole
Band	2450MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	2450
Relative permittivity (real part)	52.55
Relative permittivity	14.25
Conductivity (S/m)	1.94
Power Drift (%)	1.39
Ambient Temperature:	22.1°C
Liquid Temperature:	22.6°C
Duty factor:	1:1
ConvF:	5.09

Maximum location: X=0.00, Y=8.00

SAR 10g (W/Kg)	6.056387
SAR 1g (W/Kg)	13.082258

Plot 1: GSM850, Left Cheek, Low

Type: Phone measurement

Date of measurement: 10/05/2016

Measurement duration: 21 minutes 12seconds

Tablet PC IMEI number: --

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Left head
Device Position	Cheek
Band	GSM850
Channels	128
Signal	GSM (Duty cycle: 1:8)

B. SAR Measurement Results

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	824.2
Relative permittivity (real part)	41.39
Relative permittivity (imaginary part)	19.19
Conductivity (S/m)	0.89
Variation (%)	-0.59
ConvF:	5.69

SURFACE SAR

VOLUME SAR

Maximum location: X=-32.00, Y=-19.00

SAR Peak: 0.01 W/kg

571	int i cak. 0.01 w/kg
SAR 10g (W/Kg)	0.006750
SAR 1g (W/Kg)	0.009725

Plot 2: EGPRS850, Edge B, Low, 0mm distance

Type: Phone measurement

Date of measurement: 12/05/2016

Measurement duration: 22 minutes 11 seconds

Tablet PC IMEI number: -- **A. Experimental conditions.**

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Body
Band	EGSPRS850_2Tx
Channels	128
Signal	EGPRS(Duty cycle: 1:4)

B. SAR Measurement Results

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	824.2
Relative permittivity (real part)	55.27
Relative permittivity (imaginary part)	20.54
Conductivity (S/m)	0.97
Variation (%)	2.80
ConvF:	5.82

SURFACE SAR

VOLUME SAR

Maximum location: X=5.00, Y=0.00 SAR Peak: 0.11 W/kg

SAR 10g (W/Kg)	0.042247
SAR 1g (W/Kg)	0.068221

Plot 3: GSM1900, Left Cheek, High

Type: Phone measurement

Date of measurement: 11/05/2016

Measurement duration: 21 minutes 42 seconds

Tablet PC IMEI number: --

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Left head
Device Position	Cheek
Band	GSM1900
Channels	810
Signal	GSM (Duty cycle: 1:8)

B. SAR Measurement Results

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	1909.8
Relative permittivity (real part)	39.87
Relative permittivity (imaginary part)	13.90
Conductivity (S/m)	1.39
Variation (%)	1.57
ConvF:	5.25

VOLUME SAR

Maximum location: X=-51.00, Y=0.00 SARPeak: 0.06 W/kg

SAR 10g (W/Kg)	0.023086
SAR 1g (W/Kg)	0.040188

Plot 4: GPRS1900, Back, Middle, 0mm distance

Type: Phone measurement

Date of measurement: 13/05/2016

Measurement duration: 22 minutes 13 seconds

Tablet PC IMEI number: --

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Body
Band	GPRS1900_2Tx
Channels	810
Signal	GPRS (Duty cycle: 1:4)

B. SAR Measurement Results

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	1880.0
Relative permittivity (real part)	53.23
Relative permittivity (imaginary part)	14.40
Conductivity (S/m)	1.52
Variation (%)	-4.83
ConvF:	5.43

SURFACE SAR

Maximum location: X=14.00, Y=-27.00

SAR 10g (W/Kg)	0.149818
SAR 1g (W/Kg)	0.288068

Plot 5: WCDMA850, Right, Cheek, High

Type: Phone measurement

Date of measurement: 10/05/2016

Measurement duration: 21 minutes 22seconds

Tablet PC IMEI number: --**A. Experimental conditions.**

11. Experimental conditions.	
Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Right head
Device Position	Cheek
Band	Band5_WCDMA850
Channels	4233
Signal	WCDMA (Duty cycle: 1:1)

B. SAR Measurement Results

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	846.6
Relative permittivity (real part)	41.39
Relative permittivity (imaginary part)	19.19
Conductivity (S/m)	0.89
Variation (%)	1.11
ConvF:	5.69

Maximum location: X=-41.00, Y=-37.00

SAR Peak: 0.02 W/kg

SAR 10g (W/Kg)	0.009651
SAR 1g (W/Kg)	0.013787

Plot 6: WCDMA850, Back, High, 0mm distance

Type: Phone measurement

Date of measurement: 12/05/2016

Measurement duration: 22 minutes 18 seconds

Tablet PC IMEI number: --

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Body
Band	Band5_WCDMA850
Channels	4233
Signal	WCDMA (Duty cycle: 1:1)

B. SAR Measurement Results

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	846.6
Relative permittivity (real part)	55.27
Relative permittivity (imaginary part)	20.54
Conductivity (S/m)	0.97
Variation (%)	4.93
ConvF:	5.82

VOLUME SAR

Maximum location: X=7.00, Y=-26.00 SAR Peak: 0.05 W/kg

SAR 10g (W/Kg)	0.023111
SAR 1g (W/Kg)	0.035854

Plot 7: WCDMA1900, Right Cheek, Middle

Type: Phone measurement

Date of measurement: 11/05/2016

Measurement duration: 22 minutes 17 seconds

Tablet PC IMEI number: --

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Right head
Band	Cheek
Channels	9400
Signal	WCDMA (Duty cycle: 1:1)

B. SAR Measurement Results

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	1880.0
Relative permittivity (real part)	39.87
Relative permittivity (imaginary	13.90
Conductivity (S/m)	1.39
Variation (%)	4.37
ConvF:	5.25

-42 I (nn) -36 I (nn)

SURFACE SAR

VOLUME SAR

Maximum location: X=-42.00, Y=-35.00

SAR Peak: 0.17 W/kg

SAR 10g (W/Kg)	0.026402
SAR 1g (W/Kg)	0.064843

Plot 8: WCDMA1900, Back, Middle, 0mm distance

Type: Phone measurement

Date of measurement: 13/05/2016

Measurement duration: 22 minutes 16 seconds

Tablet PC IMEI number: -- **A.** Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Body
Band	Band2_WCDMA1900
Channels	9400
Signal	WCDMA (Duty cycle: 1:1)

B. SAR Measurement Results

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	1880.0
Relative permittivity (real part)	53.23
Relative permittivity (imaginary	14.40
Conductivity (S/m)	1.52
Variation (%)	1.73
ConvF:	5.43

VOLUME SAR

Maximum location: X=-12.00, Y=-15.00

SAR Peak: 0.56 W/kg

SAR 10g (W/Kg)	0.151954
SAR 1g (W/Kg)	0.308075

Plot 9: Wi-Fi 802.11b ,Left Tilt, High

Type: Phone measurement (11 points in the volume)

Date of measurement: 16/05/2016

Measurement duration:22 minutes 08 seconds

Tablet PC IMEI number: --

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	7x7x8,dx=5mm dy=5mm dz=4mm
Phantom	Left head
Device Position	Tilt
Band	IEEE 802.11b ISM
Channels	11
Signal	DSSS (Crest factor: 1:1)

B. SAR Measurement Results

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	2462
Relative permittivity (real part)	38.97
Relative permittivity (imaginary part)	12.17
Conductivity (S/m)	1.79
Variation (%)	-0.94
ConvF:	4.93

SURFACE SAR

Maximum location: X=-32.00, Y=-1.00

SAR Peak: 1.23 W/kg

SAR 10g (W/Kg)	0.210297
SAR 1g (W/Kg)	0.531873

Plot 10:Wi-Fi 802.11b, Face, Low,0mm distance

Type: Phone measurement

Date of measurement: 16/05/2016

Measurement duration: 22 minutes 14 seconds

Tablet PC IMEI number: --**A. Experimental conditions.**

11. Experimental conditions.	
Area Scan	dx=8mm dy=8mm
ZoomScan	7x7x8,dx=5mm dy=5mm dz=4mm
Phantom	Validation plane
Device Position	Body
Band	IEEE 802.11b
Channels	11
Signal	DSSS (Crest factor: 1:1)

B. SAR Measurement Results

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	2462
Relative permittivity (real part)	52.52
Relative permittivity (imaginary part)	14.25
Conductivity (S/m)	1.94
Variation (%)	-1.10
ConvF:	5.09

Maximum location: X=-32.00, Y=18.00 SAR Peak: 0.42 W/kg

SAR 10g (W/Kg)	0.080716
SAR 1g (W/Kg)	0.186515

——End of the Report——