30.	(a) Design PDA for the language L={a ⁿ⁻¹ b ⁿ / n≥1 by using empty stack and final state method also solve find i) Transition function	12	3	3
	ii) PDA tuples iii) Trace the string for n=2 (OR)			
	(b) Convert the PDA P=($\{P, Q\}, \{0, 1\}, \{x, z_0\}, \text{ delta, } q_0, z_0, \phi)$ to a CFG if delta is given by			
	$\delta(q_{0, 0}, z_{0}) = (q_{0}, x z_{0})$ $\delta(q_{1, 1}, x) = (q_{1}, \xi)$			
	$\begin{array}{l} \delta(q_{0,0},x) = (q_{0},xx) \\ \delta(q_{1,E},x) = (q_{1},E) \\ \delta(q_{0,1},x) = (q_{1},E) \\ \delta(q_{1,E},z_{0}) = (q_{1},E) \end{array}$			
31.	(a) Design a Turing machine to check whether a string over {a, b} contains equal number of a's and b's. Also verify the string "w = baab" accepted or not. (OR)	12	3	4
	(b) Design a Turing machine to compute multiplication of two unary numbers. Also simulate the working of machine for 3 * 2.			
32.	(a) i) Explain post correspondence problem with an example. ii) Prove that the halting problem of a Turing machine is unsolvable. (OR)	12	1	5
	(b) i) Explain Rice theorem with an example. ii) Prove the theorem "union of two recursive languages L1 and L2 is also recursive.			
	* * * * *			

Reg. No

B.Tech. DEGREE EXAMINATION, JUNE 2023

Fifth Semester

18AIC303T - FORMAL LANGUAGES AND AUTOMATA THEORY

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40 minutes.

ii. Part - B and Part - C should be answered in answer booklet.

Time: 3 Hours					Max. Marks: 100				
	Part - A (20 × 1 Marks Answer All Que	Mar	СО						
1.	Select the language for the following described for all strings over alphabet {0,1}, such a multiple of 3. (A) L= {000, 11, 11000, 00011, 1111000, 0001111, 11110000000,} (C) L= {0001, 1000, 111000,	(B) L= {11, 1100, 011, 110000, 1110000,} (D) L= {00111, 111000, 111100,	1	2	I				
2.	How many states will be needed for a DF substring aabb}	1000000,} FA if the L={set of all strings that contains	; 1	3	1				
	(A) 4 (C) 6	(B) 5 (D) 7							
3. '	Choose the string accepted by the following (A) 111 (C) 010	ng DFA. (B) 011 (D) 1111	1	3	1				
4.	Given an arbitrary non-deterministic fininumber of states in an equivalent minimise (A) N ² (C) 2N	tte automata with N states, the maximum ed DFA is at least (B) 2 ^N (D) N!	i 1	2	1				
5.	A polynomial time algorithm which consinstances of some other problem P1 is call (A) NP complete (C) P-time reduction	tructs instances of a problem P2 from the ed as (B) Np-hard (D) NP	1	2	5				
6.	Write the regular expression for the follow Set of all strings over alphabet {1} having (A) 1* (C) (111)*		<u>;</u> 1	2	2				
7.	Find the regular expression of the language (A) $ab + cd \cdot e^n$ (C) $(a \cdot b) \cdot (c+d) \cdot e^n$	(B) (a +b) + (c+ d) . e ⁿ (D) (a +b) . (c+ d) . e	1	3	2				
8.	Choose the wrong statement from the followard (A) $R^*R^* = R^*$ (C) $(1+0)^* = (0^*1^*)^*$	owing. (B) $R + R = R$ (D) $1 + 1^* = 1^+$	1	1	2				
9.	Which one is not a regular language? (A) $L=\{a^nb^n \mid n \le 1\}$	(B) $L = \{ a^n b^n c^m \mid n, m \le 1 \}$	1	2	2 .				

(D) L={ a^ib^j | i=2j}

Page 4 of 4

(C) $L = \{p^n | p \text{ is a even number}\}$

10.	Which of the following is/are true for recur (A) partially decidable (C) Turing Recognisable	sively enumerable language? (B) Turing decidable (D) partially Acceptable	1	3	5
11.	Equivalent CFG notation for the transition $(A) [q_1, A, q_2] \rightarrow a[q_1, A, q_2]$ (C) $[q_1, A, q_2] \rightarrow \varepsilon$	function $\delta(q_1, a, A) = (q_2, E)$ (B) $[q_1, A, q_2] \rightarrow a$ (D) $[q_2, A, q_1] \rightarrow a$	1	3	3
12.	Push down machine represents(A) Type 0 grammar (C) Type 2 grammar	(B) Type 1 grammar (D) Type 3 grammar	. 1	1	3
13.	If $G = (\{S\}, \{a\}, \{S \rightarrow SS\}, S)$, then language $(A) L(G) = \varphi$ $(C) L(G) = a*$	ge generated by G is (B) $L(G) = a^n$ (D) $L(G) = a^n ba^n$	1	3	3
14.	Which of the following string is not generate (A) aabb (C) abaabb	ted by the given grammar : S -> SaSbS E (B) abab (D) baaa	1	3	3
15.	Which among the following options are con 1. Every Turing decidable language is Turing 2. Every Turing acceptable language need not (A) 1 and 2, both are correct (C) 2 is correct while 1 is false	g Acceptable	1	3	5
16.	Identify the language accepted by the given (A) Strings of odd number of 0's (C) Strings ending with 00	Turing Machine? (B) Strings starting with 00 (D) Strings with 00 as substring	1	4	4
17.	Find the output if the string 11111 is given a (A) 011111 (C) 100000	as input to the following Turing Machine? (B) 111111 (D) 111110	1 .	4	4
18.	A Turing machine operates over (A) finite memory tape (C) depends on the algorithm	(B) infinite memory tape (D) none of the mentioned	1	1	4
19.	The ability for a system of instructions t	to simulate a Turing Machine is called	1	-2	4
	(A) Turing Completeness (C) Turing Halting	(B) Simulation (D) None of the mentioned	*		
20.	If a language L and its complement L' are re (A) Recursive language (C) Universal language	ccursively enumerable then L is (B) Recursively Enumerable language (D) Diagonal Language	1	2	5
	Marks	BL	CO		
21.	Construct DFA that accepts the language ov strings that start and end with same sy representation of the DFA diagram.	rer {a,b} where L(D) = {w w contains all mbol } and also write formal Tuple	4	3	1
22.	Construct a DFA with sigma $\Sigma = \{a, b\}$ number of "a" and even number of "b".	, accepts those strings which has even	4	3	1
23.	Show that the following grammar is ambig two leftmost derivations. S -> a abSb aAb A -> bS aAAb	quous by showing (a) two parse trees (b)	4	3	2

24.	Write the regular expressions for the following a. Identifiers in C programming language b. Strings over {0,1} with even number of 1's.						4	3	2
25.	Construct push down automata for the following languages. Acceptance either by empty stack or by final state. (Transition diagram) $L = \{ 0^p 1^q 2^r \mid p, q, r \in \mathbb{N}, p+q=r \}$						oy 4	3	3
26.	Design the	e Turing r	nachine to on prove v	implement	nt the functed string.	tion operation f(m,n)=m+n. Desig	gn 4	1	4
27.	If both a l	anguage I	and its co	omplement	are RE, tl	nen L is recursive. Prove it.	4	2	5
	Part - C (5 × 12 Marks = 60 Marks) Answer All Questions						Marl	ks BL	CO
28.	Consider (i) Comput (ii) Conver (iii) Find the	ter E-closu t the auto	re of each mata to a]	state		estions.	12	3	quark
		a	b	c	3				
	→ p	ф	{ q}	{r}	{q, r}				
	q	{p}	{r}	{p,q}	е ф				
	. *r	ф	ф	ф	ф	@ 			
	(b) Construmber of Convert the i) Find E-ii) Computiii) Develo	f 'a' follo ne NFA wi reachable nted δ' tran	wed by a th ε to NF states from sitions	hich acces ny number A without n the curre	r of 'b' ar ε. int states	age consisting of a string of an ad followed by any number ' c es.	y		
	b) Elim	epsilon a A bb here any u inate - pro	ıseless syn			m.	12	3	2
	(b) Consid	5	$V = \{a, b, S\}$ $S = \{a, b\}$, $S = \{a, b\}$, $S = \{a, b\}$, $S = \{a, b\}$,	(V, S, R, S S, A},	(OR) S), where				
	(b) Give	at least to	of L(G) can ur distinct	A-> Ab }. 1 be production derivation	s for the s	ivations of four or fewer steps? tring babbab. of the string b ^m ab ⁿ ab ^p .			