离散数学第12次作业

林陈冉

2017年5月4日

1 (上次没交)

正五边形 $D = \{1, 2, 3, 4, 5\}$ 上的置换群 D_5 为

- 恒等变换 e,1个(5,0,0,0,0)型.
- 旋转, 记 a = (12345), 有 a, a^2 , a^3 , a^4 4个 (0,0,0,0,1) 型.
- 翻转, 记 b = (25)(34), 有 b, ab, a^2b , a^3b , a^4b 5个 (1,2,0,0,0) 型.

故

$$P_{D_5}(x_1, x_2, x_3, x_4, x_5) = \frac{1}{10}(x_1^5 + 5x_1x_2^2 + 4x_5)$$

设红色为r, 蓝色为b, 白色为w, 则

$$\begin{split} &P_{D_5}(r+b+w,r^2+b^2+w^2,r^3+b^3+w^3,r^4+b^4+w^4,r^5+b^5+w^5)\\ &=\frac{1}{10}\left((r+b+w)^5+5\left(r+b+w\right)\left(r^2+b^2+w^2\right)^2+4\left(r^5+b^5+w^5\right)\right)\\ &=b^5+b^4r+b^4w+2b^3r^2+2b^3rw+2b^3w^2+2b^2r^3+4b^2r^2w+4b^2rw^2+2b^2w^3+br^4\\ &+2br^3w+4br^2w^2+2brw^3+bw^4+r^5+r^4w+2r^3w^2+2r^2w^3+rw^4+w^5 \end{split}$$

其中 r^2bw^2 的系数为4, 故有4中不等价的染色

7.2.7 设 $a \in V_1 \cap V_2$, $\forall u, v \in V'$

- 若 $u, v \in V_1$, 由 H_1 的连通性可知存在 u v 路径.
- $u, v \in V_2$ 同理.
- 若 $u \in V_1$, $v \in V_2$, 由 H_1 , H_2 的连通性, 存在 u-a 路径和 v-a 路径, 故存在 u-v 路径.
- $u \in V_2$, $v \in V_1$ 同理.

综上, H 是连通的.

7.2.11 对任何简单图 G = (V, E), 当 |G| = 3, 命题显然成立.

假设当 |G|=n 时命题成立,当 |G|=n+1, $\forall u\in V$, $\rho(u)\leq n$,则 $G\setminus u$ 的边数大于 $\binom{n-1}{2}$,故 $G\setminus u$ 是连通的. 若 $\rho(u)=0$,G 的边数等于 $G\setminus u$ 的边数,不大于 $\binom{n}{2}$,和条件矛盾,故存在边连接 u 和 $G\setminus u$,则 G 连通.

7.3.4

7.3.5

- (a) 不存在,一共7个点,其中有一个点的degree是6,说明和所有点连接,这与存在degree为0的点矛盾.
- (b) 不存在, degree之和为奇数.

补充1 假设 u_1-v_1 , u_2-v_2 是连通图 G 中的两条最长路径, $u_1\neq u_2\neq v_1\neq v_2$, 由连通性可知, 存在路径 v_1-u_2 , 则路径 $u_1-v_1-u_2-v_2$ 比最长路径更长, 矛盾.

补充2

补充3

- (1) e 是割边, 但 a, b 不是割点
- (2) 补充条件: 割边两端点 a , b 至少有一个degree大于1. 证明: 记图 G 割边为 e , 两个端点为 a , b . 因为 e 是割边, 则 $G \setminus e$ 有两个连通子图 G_a , G_b , $a \in G_a$, $b \in G_b$. 因为 $\rho(a)$, $\rho(b)$ 至少有一个大于1, 不妨设 $\rho(a) > 1$,则 $|G_a| > 1$, $G_a \setminus a$ 非空 . $\forall u \in G_a \setminus a$,u b 路径必定包含 a ,这说明了 a 是割点命题得证.