

Yelp Data Analysis

Group 3: Yiqiao Zhang Xiawei Wang Shuyi Qu

Data Pretreatment

Negation transformation

- Find common 2-word and 3-word idioms contains negation words by tokenizing text into bigrams and trigrams
- Whenever a negation word occurs in a sentence,
 - if it occurs as a part of idioms, leave it alone;
 - else, attach "not" in front of every word after that in the same sentence and delete the negation word itself

Data Pretreatment

No matter how the food is, it's not worth being treated like that. Will never be going back.

No matter how the food is, it's NOTworth being treated like that. Will be going NOTback.

Data Pretreatment

- Lowercase first letter in each word
- Remove common stop words which did not show significant trend among different stars, like "I", "me"
- Negation word transformation

Feature selection

Feature unigrams and bigrams are supposed to

- be highly used in text
- show different trends among star rates which are quantified by formulas below:

$$\sum_{i=1}^{5} occur(i)$$

$$\left(\sum_{i=1}^{5} \sum_{j=i+1}^{5} |occur(i) - occur(j)|\right) / \sum_{i=1}^{5} occur(i)$$

Feature selection

Features selected include:

- Intersections of highly used unigrams and unigrams with large scaled L1-norm among star rates
- Intersections of highly used bigrams and bigrams with large scaled L1-norm among star rates
- Punctuations that convey attitude like "!", "?", "*"
 and "\$"

Design Matrix

- Each column represents a feature we selected
- Each row represent one piece of reformatted text
- Entry in this matrix is either 0 or 1
- Another design matrix is generated by features' frequency in each reformatted text

Actual Prediction	star 1	star 2	star 3	star 4	star 5	
star 1	97586	2436	823	204	95	101144
star 2	690	86221	1043	233	41	88228
star 3	321	1887	123610	2573	492	128883
star 4	112	735	7637	235508	12933	256925
star 5	72	210	2025	27540	322792	352639
	98781	91489	135138	266058	336353	927819

Statistics	Star 1	Star 2	Star 3	Star 4	Star 5
Sensitivity	0.99	0.94	0.91	0.89	0.96
Specificity	1	1	0.99	0.97	0.95
Precision	0.96	0.98	0.96	0.92	0.92
Recall	0.99	0.94	0.91	0.89	0.96
Balanced Accuracy	0.99	0.97	0.95	0.93	0.95
Overall Accuracy			0.9331		

1. Model: Multinomial Regression with Lasso Penalty

1. Model: Multinomial Regression with Lasso Penalty

Actual Prediction	Star 1	Star 2	Star 3	Star 4	Star 5	
Star 1	11970	3916	1176	487	375	17924
Star 2	2058	5438	2528	527	202	10753
Star 3	679	3564	8718	3554	672	17187
Star 4	660	1597	7576	21597	8943	40373
Star 5	1060	943	2311	17977	46091	68382
	16427	15458	22309	44142	56283	154619

1. Model: Multinomial Regression with Lasso Penalty

Statistics	Star 1	Star 2	Star 3	Star 4	Star 5
Sensitivity	0.73	0.35	0.39	0.49	0.82
Specificity	0.96	0.96	0.94	0.83	0.77
Precision	0.67	0.51	0.51	0.53	0.67
Recall	0.73	0.35	0.39	0.49	0.82
Balanced Accuracy	0.84	0.66	0.66	0.66	0.8
Overall Accuracy			0.6067		

- 2. Model: Long-Short Term Memory Network
 - 1) Input Layer: new text
 - 2) Embedding Layer: mapping to 32-dim space
 - 3) LSTM layer: batch size of 32
 - 4) Output Layer: classification
 - 5) Configure learning process: MSE loss

- 2. Model: Long-Short Term Memory Network
 - 1. Input Layer
 - 2. Embedding Layer
 - 3. Output Layer
 - 4. Configure learning process
 - 5. Parameter Tuning

2. Model: Long-Short Term Memory Network

Layer (type)	Output Shape	Param #
embedding_1 (Embedding)	(None, None, 32)	160000
lstm_1 (LSTM)	(None, 32)	8320
dense_1 (Dense)	(None, 1)	33

Total params: 168,353

Trainable params: 168,353 Non-trainable params: 0

None

Train on 742254 samples, validate on 185564 samples

2. Model: Long-Short Term Memory Network

```
Train on 742254 samples, validate on 185564 samples
Epoch 1/5
742254/742254 - loss: 0.5342 - val_loss: 0.4289
Epoch 2/5
742254/742254 - loss: 0.4273 - val_loss: 0.4135
Epoch 3/5
742254/742254 - loss: 0.4111 - val_loss: 0.4094
Epoch 4/5
742254/742254 - loss: 0.4013 - val_loss: 0.4076
Epoch 5/5
742254/742254 - loss: 0.3931 - val_loss: 0.4042
```


Strength

- 1. Subtle data cleaning
- 2. Flexible feature selection
- 3. Diverse model application
- 4. Always keep trying

