Spin-orbit interaction in the valence band

- Valence band and spin-orbit interaction
- Total angular momentum of valence band states
- · Heavy-hole, light-hole and split-off states

1

Semiconductor Nanostructures

05/11/2

Spin orbit interaction

Starting from the three p_x , p_y and p_z orbitals three bands are formed

Since p states have an orbital angular momentum **L** ≠0. Spin-orbit interaction needs to be considered

 $\langle \mathbf{L} \cdot \mathbf{S} \rangle = \frac{1}{2} \langle \mathbf{J}^2 - \mathbf{L}^2 - \mathbf{S}^2 \rangle$ $\uparrow h^2$ $\uparrow h^2$

$$H_{so} = \Lambda(\vec{l} \cdot \vec{s}) \qquad \vec{J} = \vec{l} + \vec{s}$$

$$\Lambda + 2^{4} \qquad \vec{J} \cdot \vec{J} = \vec{J}^{2} = (\vec{l}^{9} + \vec{s}^{9}) \cdot (\vec{l}^{9} + \vec{s}^{9})$$

$$= L^{2} + s^{2} + 2\vec{l}^{9} \cdot \vec{s}^{9}$$

$$= L^{2} + s^{2} + 2\vec{l}^{9} \cdot \vec{s}^{9} \cdot \vec{s}^{9}$$

$$= L^{2} + s^{2} + 2\vec{l}^{9} \cdot \vec{s}^{9} \cdot \vec{s}^{9}$$

0 - 1

$$H_{So} = \frac{1}{2}g^{2}(3(3+1) - l(l+1) - S(S+1))$$

$$J = \frac{3}{2}, \quad J = \frac{1}{2}$$

$$\Delta_{0} = H_{So}(3 = \frac{3}{2}) - H_{So}(3 = \frac{1}{2}) = \frac{3}{2} \wedge \pi$$

$$J = \frac{3}{2}, \quad J_{2} = +\frac{3}{2} + \frac{1}{2}, \quad -\frac{1}{2} - \frac{3}{2}$$

$$D_{0} = \frac{1}{2}, \quad J_{2} = +\frac{1}{2} + \frac{1}{2}$$

$$P_{X} = \frac{1}{2}(-\frac{1}{2}, 1 + \frac{1}{2}, 1 + \frac{1}{2})$$

$$P_{X} = \frac{1}{2}(-\frac{1}{2}, 1 + \frac{1}{2}, 1 + \frac{1}{2})$$

CLEB SCH-GORDAN COEFFF.

d

$$\frac{13}{32}$$

$$\frac{43}{2} = -\frac{1}{12}(P_{x} + i P_{y}) \qquad \frac{43}{2} - \frac{3}{2}$$

$$\frac{43}{2} + \frac{1}{2} = -\frac{1}{16}((P_{x} + i P_{y})) \qquad \frac{43}{2} - \frac{3}{2}$$

$$\frac{43}{2} + \frac{1}{2} = -\frac{1}{16}((P_{x} + i P_{y})) \qquad \frac{43}{2} - \frac{3}{2}$$

$$\frac{41}{2} + \frac{1}{2} = -\frac{1}{13}[(P_{x} + i P_{y})) \qquad \frac{4}{2} + \frac{1}{2}$$

Valence band structure

Spin-orbit removes the degeneracy of the two upper bands. The different bands can be labelled according to the two quantum numbers: J (total angular momentum) and J_z (projection of the total angular momentum). Considering that for p states I=I and s=1/2, the VB states will have J=3/2 or J=1/2. J=3/2 states lay higher in energy and will be separated by a spin-orbit energy Δ from the 'split-off' (SO) states with J=1/2. The J=3/2 states can be further divided according to the quantum number J_z . We will therefore have $J_z=\pm 3/2$ or $J_z=\pm 1/2$.

Effective mass	J	\mathbf{J}_{z}
нн	3/2	±3/2
LH	3/2	±1/2
SO	1/2	±1/2

Semiconductor Nanostructures

The eigenvector are obtained from the Clebsch-Gordan coefficients. They feature well defined values of: j, j_z I and s (not m and s_z)

Heavy holes

$$\Phi_{3/2,3/2} = \phi_{1,1} \uparrow \qquad \Phi_{3/2,-3/2} = \phi_{1,-1} \downarrow
= \frac{-1}{\sqrt{2}} (p_x + ip_y) \uparrow \qquad = \frac{1}{\sqrt{2}} (p_x - ip_y) \downarrow$$

Light holes

$$\Phi_{3/2,1/2} = \frac{1}{\sqrt{3}}\phi_{1,1} \downarrow + \frac{\sqrt{2}}{\sqrt{3}}\phi_{1,0} \uparrow \qquad \Phi_{3/2,-1/2} = \frac{\sqrt{2}}{\sqrt{3}}\phi_{1,0} \downarrow + \frac{1}{\sqrt{3}}\phi_{1,-1} \uparrow
= \frac{-1}{\sqrt{6}} [(p_x + ip_y) \downarrow -2p_z \uparrow] \qquad = \frac{1}{\sqrt{6}} [(p_x - ip_y) \uparrow + 2p_z \downarrow]$$

$$\Phi_{1/2,1/2} = \frac{-1}{\sqrt{3}} \phi_{1,0} \uparrow + \frac{\sqrt{2}}{\sqrt{3}} \phi_{1,1} \downarrow \qquad \Phi_{1/2,-1/2} = \frac{-\sqrt{2}}{\sqrt{3}} \phi_{1,-1} \uparrow + \frac{1}{\sqrt{3}} \phi_{1,0} \downarrow$$

$$= \frac{-1}{\sqrt{3}} [(p_x + ip_y) \downarrow + p_z \uparrow] \qquad = \frac{-1}{\sqrt{3}} [(p_x - ip_y) \uparrow - p_z \downarrow]$$

Semiconductor Nanostructures

05/11/2

Valence band structure

Isoenergy surfaces

Figure 5. 3D equienergy surfaces of heavy hole, light hole and split off band in Si for $k_z=0$

6

Semiconductor Nanostructures

05/11/2

High symmetry points in semiconductors

The Brillouin zone (BZ) of an FCC lattice

 Γ is the center of the BZ (k=0)

 Δ (delta) is the <100> directions (e.g. $k_x\!\!\ne\!\!0,\,k_y\!\!=\!\!k_z\!\!=\!\!0)$ connecting Γ to X

 Δ (lambda) is the <111> directions ($k_x=k_y=k_z\neq 0$) connecting Γ to L

 Σ (sigma) is the <110> directions connecting Γ to K

7

Semiconductor Nanostructures

Silicon is an indirect semiconductor. The CB minima is at 85% of the 1st BZ along Δ . In Si there are 6 ' Δ minima' or ' Δ valleys'.

Position of the CB minima in reciprocal space

8

Semiconductor Nanostructures

05/11/2

Germanium

Germanium is an indirect semiconductor.

The CB minima is at L In Ge there are 4 'L minima' or 'L valleys'.

Position of the CB minima in reciprocal space

Semiconductor Nanostructures

05/11/2

9

Gallium arsenide is a direct semiconductor. The CB minima is at Γ In GaAs there is one ' Γ minimum'.

Position of the CB minima in reciprocal space

10

Semiconductor Nanostructures

05/11/2

AlAs

Aluminum arsenide is an indirect gap semiconductor The CB minima is at X In AlAs there are 3 X minima

11

Semiconductor Nanostructures

Cadmium telluride is a direct gap semiconductor

Eg=1.5 eV

Used for solar cells, and IR windows

12

Semiconductor Nanostructures

05/11/2

GaN

Gallium nitride is a direct semiconductor. The CB minima is at Γ

