- 1. A bacteria culture initially contains 200 cells and grows at a rate proportional to its size. After 2 hours, the culture contains 600 cells. How many bacteria are in the culture after 3 hours?
 - A. $200 e^{2 \ln 3}$
 - B. $200 e^{3 \ln 2}$
 - C. 600 $e^{\frac{3}{2} \ln 2}$
 - D. $200 e^{\frac{3}{2} \ln 3}$
 - E. $600 e^{2 \ln 3}$

- 2. A particle is traveling on the ellipse $x^2 + 4y^2 = 8$ (in the first quadrant). When y = 1, $\frac{dy}{dt} = 1$. Find $\frac{dx}{dt}$.
 - A. -1
 - B. 1
 - C. -4
 - D. 2
 - E. -2

- 3. The volume of a sphere $(V = \frac{4}{3}\pi r^3)$ is increasing at a rate of $4 \ cm^3/\min$. How fast is the radius increasing when the radius is $4 \ cm$?
 - A. $\frac{1}{16\pi}$ cm/min
 - B. $\frac{1}{4\pi}$ cm/min
 - C. $\frac{1}{12\pi}$ cm/min
 - D. $\frac{1}{24\pi}$ cm/min
 - E. $\frac{1}{32\pi}$ cm/min

- 4. Use linear approximation to compute the approximate value of $\sqrt{24.5}$.
 - A. 4.90
 - B. 4.95
 - C. 4.99
 - D. 4.80
 - E. 4.995

- 5. Compute $\frac{d}{dx}(\cosh(\ln x))$ when x = 2.
 - A. $\frac{5}{8}$
 - B. $\frac{3}{4}$
 - C. $\frac{3}{8}$
 - D. $\frac{7}{8}$
 - E. $\frac{1}{2}$

- 6. Find the absolute minimum of $f(x) = \frac{x}{x^2 + 2}$ on the interval [-4, 4].
 - A. $\frac{-1}{3}$
 - B. $\frac{\sqrt{2}}{4}$
 - C. $-\frac{1}{4}$
 - D. $-\frac{2}{9}$
 - E. $-\frac{\sqrt{2}}{4}$

7. Find the absolute minimum of $f(x) = 3x^4 - 4x^3 - 12x^2$ on the interval [-2, 2].

- A. 16
- B. 0
- C. -32
- D. -16
- E. -24

8. Assume f is continuous in [1,4] and differentiable in (1,4). If f(1)=-2 and $3 \le f'(x) \le 5$, how small can f(4) be?

- A. $f(4) \ge 5$
- B. $f(4) \ge 9$
- C. $f(4) \ge 6$
- D. $f(4) \ge 7$
- E. $f(4) \ge 11$

9. Assume f is a differentiable function whose derivative, f'(x), has the graph given by:

Which of the following describes all intervals on which f is increasing?

- A. $(-2,2) \cup (4,\infty)$.
- B. $(-2,2) \cup (4,6)$.
- C. $(-2,1) \cup (3,5)$.
- D. $(-\infty,1) \cup (6,\infty)$.
- E. $(-\infty, 1) \cup (3, 5) \cup (6, \infty)$.

10. For the function f whose derivative, f'(x), has the graph given by:

find all values of x at which the graph of f has an inflection point.

- A. x = -1, 2, and 3
- B. x = -1 and 1
- C. x = 0, 2, and 3
- D. x = 1.5 and 2.5
- E. x = -1, 0, 2, and 3

11. If $f(x) = 2x^3 - 15x^2 - 36x + 1$, find all values of x at which f has a local maximum.

- A. x = -6
- B. x = -1
- C. x = 1
- D. x = 6
- E. x = 7

- 12. Assume $f(t) = 4 \sin t + t^2$ for $-\frac{\pi}{2} < t < \frac{3\pi}{2}$. Find all intervals on which f is concave down.
 - A. $\left(-\frac{\pi}{2}, \frac{\pi}{3}\right) \cup \left(\frac{4\pi}{3}, \frac{3\pi}{2}\right)$
 - B. $\left(-\frac{\pi}{2}, \frac{\pi}{6}\right) \cup \left(\frac{5\pi}{6}, \frac{3\pi}{2}\right)$
 - C. $(\frac{\pi}{6}, \frac{5\pi}{6}) \cup (\frac{7\pi}{6}, \frac{3\pi}{2})$
 - D. $(\frac{\pi}{3}, \frac{4\pi}{3})$
 - E. $(\frac{\pi}{6}, \frac{5\pi}{6})$

- 13. Evaluate $\lim_{x\to\infty} \frac{\ln(1+x^2)}{\ln x}$.
 - A. 0
 - B. $\frac{1}{2}$
 - C. 1
 - D. 2
 - E. 4

14. The graph of $y = xe^x$ looks most like:

