Course Wrap-Up

Pritam Dalal

April 30, 2019

History & Background

- Python is a general purpose programming language that was created in 1990 by Guido van Rossum.
- It was **not** initially created as a scientific computing or data analysis programming environment.
 - R and Matlab were created specifically for this purpose
- Python is an interpreted language (no compilation step) which makes it well suited for interactive computing.
- Development of Python as scientific computing tool began in 2001 when Fernando Perez launched of the IPython project.

Python, IPython, Qt Console

The simplest way of running python code is from the python console application:

```
>>>
```

- ► IPython is an enhanced (but still primitive) interactive console application that is more suited for scientific computing:
 - ▶ In [1]:
 - still didn't include in-line plotting
- The Qt Console is a more modern command-line interface that allows for inline plotting.

The Juypter Project

- Two notebook formats that grew in popularity in the 1990s and early 2000s were Maple and Mathematica.
 - both were very expensive
- ▶ The first IPython notebook was created in 2011.
- From 2011-2014, IPython notebooks started supporting other languages, including R and Julia.
- In 2014, all the language agnostic parts of IPython were rebranded as Project Jupyter.
 - Jupyter Notebook
 - Jupter Lab

Various Ways We Ran Python

- Python command line tool: >>>
 - demo only
- ▶ IPyton command line tool: In [1]:
 - demo only
- Jupyter Notebook: \$ jupyter notebook
 - first half of class
- - second half of class
- ▶ VS Code: \$ code

Built-In Data Structures

- List [1, 2, 'a'] a simple container of multiple values.
 - the values can be of multiple types
 - we mostly used this for indexing DataFrame columns or supplying arguments to functions
- ► Tuple (2022, 7) an immutable sequence of values
 - e.g. the output format of DataFrame.shape
- Dict {'SPY':290.15, 'IWM':160.25} Python's implementation of a hash table.
 - we mostly used this for function arguments

Control-Flow and Functions

- if-elif-else:
 - conditional execution
- lefor:
 - repeating a block of code a fixed number of times
- def func_name(<inputs>): <code> return <output>

Packages

Python is an open source language and it has been greatly extended by thousands of paackages. Here are the ones we used in this course:

- numpy performant linear alegbra
- pandas data analysis, basic visualization
- matplotlib low-level visualization library
- seaborn high level statistical visualization library
- sklearn machine learning

Numpy

- This is the foundational package that most scientific Python packages (e.g. pandas) are built on top of.
- ndarray data structure that can be used to represent vectors and matrices
- Arrays can be created manually with the np.array() function.
 - we didn't do this very much because our data comes from external sources
- ► Element-wise function broadcasting allows for vectorized code.
- Implementation of standard linear algebra libraries like BLAS and LA-PACK.

Pandas

- Create by Wes McKinney in 2008, when he was working as quant at AQR, a quantitative asset management firm.
- Built on top of numpy.
- Introduces two primary data structures.
 - Series an indexed one-dimensional array
 - DataFrame a collection of names Series
- ► The DataFrame structure was borrowed from R (which in turn was inspired by SQL).
 - one major difference is that R data frames do not have an index.

DataFrame Indexing

- Indexing generally refers to selecting subsets of a DataFrame by positional arguments.
- ➤ To select columns: df['col1'] or df[['col1', 'col2']].
- To select rows by index: df.loc[].
- To select rows by row number: df.iloc[].
- pandas has a variety of row indexers, which can be a little confusing.

DataFrame Masking

- Masking allows you to grab all rows of a DataFrame that meet certain conditions.
- The basic idea is to feed an array of booleans into a DataFrame.
- The booleans are generated by some kind of comparison operation, usually involving the columns of the DataFrame
- Eg. df_spy[df_spy['trade_date'] > '2019-01-01']
- This is analogous to querying a database table in SQL with a WHERE clause.

Vectorized Code

- Vectorized code is an important concept in data analysis.
- In essence, code vectorization means writing code that is absent of a lot of for loops.
 - numpy broadcasting
 - numpy universal functions
 - DataFrame.apply()
- The for loops exist, they are just written by the package developers, not you.
- Code vectorization has several benefits:
 - faster development times
 - improves code readability
 - improves performance by pushing calculation to the C layer.

Merging and Joining

- Data is often spread across multiple data frame and needs to be combined before further analysis.
- ► This is done the with .merge() function in pandas.
- Three variants:
 - inner keeps matches in both tables
 - ▶ left keeps all rows in left table, returns matches in right
 - right keeps all rows in right table, returns matches in left
- ▶ I found joins to be mentally taxing when I was learning them.

Grouping and Aggregation

- The basic data wrangling toolbox is rounded out with performing aggregation calculations (sum, average, stdev) on subgroups of a data frame.
- This is accomplished by a combination of .group_by() and .agg().
- Creating custom aggregation functions is great way of adding flexibility of this technique.
- A huge amount of basic data analysis/wrangling is repeated combination of indexing, masking, joining, groupby, aggregation, and a bit of visualization.

Visualization

- No treatment of data analysis is complete without a discussion of data visualization.
- My personal opinion is that at an introductory level, the basic wrangling techniques discussed above have a higher return on time investment.
- Finished graphs or complex visualization can take a long time to develop.
- Simple graphs that are quick and dirty can be generated quickly in python, and are a good return on time.
- In this class we focused on the graphing capabilities in pandas and seaborn.

Matplotlib

- There are many visualization packages in the python ecosystem, most of them are built on top of matplotlib.
- matplotlib is a low-level package.
- matplotlib.pyplot is a module that contains functions that collectively create a MATLAB-like plotting interface.
- pyplot is a legacy feature which was implemented to compete with MATLAB.
- Use the %matplotlib inline magic command in Jupyter to see plots inline.

Pandas Plotting

- pandas has simple built-in plotting capabilities, which allow you to easily produce graphs while working with DataFrames.
- We created both line graphs and bar charts with the DataFrame.plot() method.
- To create scatter plots we used the DataFrame.plot.scatter() method.
- You can apply customizations to the graphs via arguments to these functions.

Seaborn

- seaborn is a visualization package that is written on top of matplotlib.
- The idea behind seaborn is to be higher-level than matplotlib and to also focus on statistical applications.
- seaborn plots tend to be a bit more stylish with default settings.
- In tutorial 16, we recreated all of our pandas plots with seaborn.
- Later in the course we used sns.pairplot() to create pair-wise scatter plots for a collection of features.

Monte-Carlo Simulation

- Monte-Carlo simulation is a general technique used in finance for a variety of tasks including option pricing.
- The basic idea is to generate a variety of simulated market price paths that you believe reflect the future.
- Aside from general finance interest, we used Monte-Carlo as a way to explore a different style of programming in Python.
- numpy.random was used to generate psuedo-random numbers.

Beyond Notebooks

- In this course, almost all of our work was done in Jupyter Notebook.
- This is typical of initial exploratory data analysis (which is highly interactive) and *final-stage* data analysis (which involves rich-text, code, and visualization).
- In real-world settings, a lot of time is spent in between these two stages, an consists of a large amount of invovled data wrangling.
- This type of coding is less interactive, and feels more like programming than data analysis.

Modular Programming

- Larger data analysis efforts require spreading code over multiple text files, which is known as *modular programming*.
- Python has three constructs to facilitate modular programming:
 - function
 - module a .py file that contains Python code
 - package a folder that contains modules
- from <package>.<module> import <function>
 - e.g. from sklearn.decomposition import PCA
- Check out the package folder to see some examples.

Machine Learning

- Machine Learning is fundamentally about prediction and pattern recognition using data.
- In a *supervised learning* task we seek to predict a *label* from a given set of *features*.
 - classification: discrete labels
 - regression: continuous labels
- In an *unsupervised learning* task we seek to find interesting structure with-in the features themselves.
 - there are no labels
 - this is harder and more subjective

sklearn

- sklearn is a popular library that encompasses many machine learning techniques.
- One very nice feature of sklearn is that all learning models share the same API and workflow.
 - feature selection: organized in a DataFrame or ndarray
 - scaling: normalize features
 - model selection: instantiate model with constructor
 - fit the model: using the .fit() method of model object
 - analyze accuracy: using the .score() method
- The simple API of sklearn has made python the de facto standard language in machine learning.

Finance Examples

- Simple Linear Regression
 - implied leverage effect (implied vs returns)
 - volatility clustering (realized-vol vs realize-vol)

K Nearest Neighbors

- predicting gain/loss by looking at VIX term structure
- good same-day predictor; additional points adds little
- had little predictive power for next day (exercise 9)

Principal Components Analysis

- recovered level, slope, and curvature from VIX term-structure
- ≥ 95% of variance is from level, the first principle component
- you will see similar results in stock returns (exercise 10)

Key Concepts

▶ Variance-Bias Trade-Off

- a model that is too simple, will not capture structure in the data
- a model that is too complex, will overfit the data
- in KNN, think n_components = 1 vs n_components = 500

▶ Hold-Out Sets

- training set score will inflate accuracy
- solution use 80% of the data to fit the model, and then test the accuracy of the model with the remaining 20%.
- train_test_split()

Cross Validation

- hold-out sets reduce the amount of data that the model can be trained with
- solution break the data set into 5 parts and do and 80/20 train-test-split 5 times; use some aggregate of the 5 accuracies.
- cross_validation()

Delta-Neutral Data

www.historicaloptiondata.com

- All the option data from this course was donated by Delta-Neutral.
- This is high quality EOD equity option data.
- Over 4000 underlyings covered.
- http://www.deltaneutral.com/