

Image Classification with DIGITS

Dr. Alptekin Temizel
DLI Certified Instructor
Associate Professor, Graduate School of Informatics, METU

8 January 2018

Training a network with data

Lab

HANDWRITTEN DIGIT RECOGNITION

HELLO WORLD of machine learning

WHAT THIS LAB IS

- An introduction to:
 - Workflow of training a network
 - Understanding the results

Hands-on exercises using DIGITS for computer vision and classification

NVIDIA DIGITS

Interactive Deep Learning GPU Training System

Process Data

Configure DNN

Monitor Progress

Visualization

WHAT THIS LAB IS NOT

- Intro to machine learning from first principles
- Rigorous mathematical formalism of neural networks
- Survey of all the features and options of tools and frameworks

LAB OVERVIEW

- Learn about the workflow of Deep Learning
 - Load data
 - Expose a network to data
 - Evaluate model results
 - Try different techniques to improve initial results

LAB OVERVIEW

- We have clean, labeled data
- Our task is "supervised image classification"
- We will train a live network on GPU

LAUNCHING THE LAB

NAVIGATING TO QWIKLABS

- 1. Navigate to: https://nvlabs.qwiklab.com
- 1. Login or create a new account

ACCESSING LAB ENVIRONMENT

- 3. Select the event specific InSession Class in the upper left
- 3. Click the "Image Classification with DIGITS" Class from the list

LAUNCHING THE LAB ENVIRONMENT

- Click on the Select
 button to launch the lab environment
 - After a short wait, lab Connection information will be shown
 - Please ask Lab Assistants for help!

LAUNCHING THE LAB ENVIRONMENT

6. Click on the Start Lab button

LAUNCHING THE LAB ENVIRONMENT

You should see that the lab environment is "launching" towards the upper-right corner

CONNECTING TO THE LAB ENVIRONMENT

7. Click on "here" to access your lab environment /
Jupyter notebook

CONNECTING TO THE LAB ENVIRONMENT

You should see your "Image Classification with DIGITS" Jupyter notebook

Training vs. programming

The fundamental difference between artificial intellegence (AI) and traditional programing is that AI *learns* while traditional algorithms are *programmed*. Let's examine the difference through an example:

Imagine you were asked to give a robot instructions to make a sandwich using traditional computer programming, instruction by instruction. How might you start?

JUPYTER NOTEBOOK

Place
your
cursor in
the code

- Click the "run cell" button
- Confirm you receive the same result

STARTING DIGITS

Instruction in Jupyter notebook will link you to DIGITS

ACCESSING DIGITS

- Will be prompted to enter a username to access DIGITS
 - Can enter any username
 - Use lower case letters

Evaluating Performance

EVALUATE THE MODEL

DEEP LEARNING APPROACH - TRAINING

Process

- Forward propagation yields an inferred label for each training image
- Loss function used to calculate difference between known label and predicted label for each image
- Weights are adjusted during backward propagation
- Repeat the process

Next Challenges

Ideas?

 Increase accuracy and confidence with similar data Generalize performance to more diverse data

Lab Review

More data

Full dataset (10 epochs)

- 99% of accuracy achieved
- No improvements in recognizing realworld images

	Defaults	Training+Data
1	1:99.90%	0:93.11%
2	2:69.03%	2:87.23 %
3	8:71.37 %	8:71.60%
4	8:85.07%	8:79.72 %
17	0:99.00%	0:95.82 %
8	8:99.69 %	8:100.0%
	8:54.75 %	2:70.57 %

DATA AUGMENTATION

Adding inverted images (10 epochs)

	SMALL DATASET	FULL DATASET	+INVERTED
1	1:99.90%	0:93.11%	1:90.84%
2	2:69.03%	2:87.23 %	2:89.44%
3	8:71.37 %	8:71.60%	3:100.0%
4	8:85.07%	8:79.72 %	4:100.0%
7	0:99.00%	0:95.82 %	7:82.84%
8	8:99.69 %	8:100.0%	8:100.0%
	8:54.75 %	2:70.57 %	2:96.27%

DATA AUGMENTATION

Adding Inverted Images


```
keras.preprocessing.image.ImageDataGenerator(featurewise center=False,
    samplewise center=False,
   featurewise_std_normalization=False,
    samplewise std normalization=False,
    zca whitening=False,
    zca epsilon=1e-6,
    rotation range=0.,
   width shift range=0.,
   height shift range=0.,
    shear range=0.,
    zoom range=0.,
    channel_shift_range=0.,
   fill mode='nearest',
    cval=0..
   horizontal flip=False,
   vertical flip=False,
    rescale=None,
    preprocessing function=None,
    data format=K.image data format())
```

MODIFIED NETWORK

Adding filters and ReLU layer (10 epochs)

	SMALL DATASET	FULL DATASET	+INVERTED	ADDING LAYER
1	1:99.90%	0:93.11%	1:90.84%	1:59.18 %
2	2:69.03%	2:87.23%	2:89.44%	2:93.39 %
3	8:71.37 %	8:71.60%	3:100.0%	3:100.0%
4	8:85.07 %	8:79.72 %	4:100.0%	4:100.0%
7	0:99.00%	0:95.82 %	7:82.84%	2:62.52 %
8	8:99.69 %	8:100.0%	8:100.0%	8:100.0%
	8:54.75 %	2:70.57 %	2:96.27%	8:70.83 %

MODIFY THE NETWORK

Necessary for less "solved" challenges.

```
layer {
       name: "pool1"
       type: "Pooling"
layer {
       name: "reluP1"
       type: "ReLU"
       bottom: "pool1"
       top: "pool1"
layer {
       name: "reluP1"
```

```
layer {
  name: "conv1"
 type: "Convolution"
        convolution_param {
        num output: 75
layer {
        name: "conv2"
        type: "Convolution"
        convolution_param {
        num_output: 100
```

Next Steps

- Experiment with Image Classification
 - Different datasets
 - Increase performance
- Learn to train existing networks with data for other challenges
- Learn about network construction
- Learn about how to create an image classifier with other frameworks
 - Caffe/Keras
 - Tensorflow
 - Etc.