# Real Analysis

Course MATH 540@UIUC

# Reference

• nabla: https://ppasupat.github.io/a9online/wtf-is/nabla.html

# Guide

Took the class with him back in 2018. I would say his exams are pretty similar to the comps, for example: https://math.illinois.edu/system/files/2021-02/MATH 540 - Jan 2021.pdf. The homework from folland's book is kind of easy compare to the exams. I mean, this is a comprehensive exam class for the Math PhD people, so you shouldn't expect it to be any less, and real analysis is known to be hard for many people.

# **Textbook**

Gerald B. Folland, Real Analysis Sol1, Sol2

### CH<sub>0</sub>

### Reminder

• Do algebra with  $\mu(E)$  carefully, since it can be infinity.

### **Notation**

- X: (in plain text) the universal set.
- $\mathcal{E}$ : (mathcal in tex) a collection of subsets.
- *A*, *E*: (in tex) a set.
- $\mathcal{P}(X)$ : the power set  $\{E: E \subset X\}$ .
- $\cup A_j$  is by default countable union(or in other symbol, summation/intersection)  $\cup_{j=1}^{\infty} A_j$ . Arbitrary union will be stressed by using  $\cup_{\alpha}^{\infty} A_{\alpha}$ .
- ":=" means this is definition, or can be done by definition.

## Set theory

Nota.  $A \subset B$ : A can be B.

Nota. A set *A* is smaller than set *B* is defined as  $A \subset B$  but  $A \neq B$ .

```
Def. (Product set X \times Y)
```

Def. (map)

Def. (**todo**) Let  $\{X_{\alpha}\}_{{\alpha}\in A}$  be an indexed collection of nonempty sets,  $X:=\prod_{{\alpha}\in A}X_{\alpha}$ , and  $\pi_{\alpha}:X\to X_{\alpha}$  the coordinate maps.

$$f:A o igcup_{lpha\in A} X_lpha.$$

Def. (Arbitrary infinite sum) For a set E,  $\sum_{x \in E} f(x) := \sup\{\sum_{x \in F} f(x) : \text{finite set } F \subset E\}$ .

Def. (**Set limit**) Given  $A_1, A_2, \dots \in \mathcal{F}$ ,

$$\limsup_{n o\infty}A_n:=igcap_{m=1}^\inftyigcup_{n=m}^\infty A_n=igcap_{m=1}^\infty B_m=\{\omega\in\Omega:\omega\in A_n ext{ for infinitely many n}\}$$

$$\liminf_{n o \infty} A_n := igcup_{m=1}^\infty igcap_{n=m}^\infty A_n = igcup_{m=1}^\infty C_m = \{\omega \in \Omega : \omega \in A_n ext{ for all but finitely many n}\}$$

#### Recall:

- 1. f is continuous at x if  $\forall \{x_n\}, x_n \to x, n \to \infty \Longrightarrow \lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) = f(x)$ .
- 2.  $\limsup_n x_n = \lim_{m \to \infty} \sup_{n \ge m} x_n = \lim_{m \to \infty} c_m$ , where  $c_m$  is monotonic, so that it must converge if we include  $\pm \infty$ .

Proof. Consider  $\omega \in RHS$  or not. If yes,  $\omega \in B_m$ ,  $\forall m$ ; if not, disappear eventually.

Proof. Consider  $\omega \in RHS$  or not. If yes, appear eventually; otherwise fail.

Rmk.  $\liminf A_n \subset \limsup A_n$ ; if equal, we say  $A_n$  converges.

E.g. Monotonic set sequence converges (if including  $\infty$ ).

# Elementary real analysis

- Any open set on real line can be expressed as countable union of mutually disjoint open intervals.
- Compact set: for any open cover of S, there's a finite subcover for S.
- On real line: compact as long as closed + bounded, or sequentially campact.
- Infinite union of open set still open, infinite intersection of closed set still closed.

# **CH1** Measure theory

## 1.2 $\sigma$ -algebra/field

Def. (**Algebra** of sets of X) A non-empty collection  $\mathcal{A}$  of subsets of X, that is closed under finite union and complements. In other word,

$$1.\,E_1,E_2\in\mathcal{A}
ightarrow E_1\cup E_2\in\mathcal{A}.$$

$$2. E \in \mathcal{A} \rightarrow E^C \in \mathcal{A}.$$

Rmk. a) Algebra is closed under finite intersection; b)  $\emptyset$ ,  $X \in \mathcal{A}$ . This is important when it comes to covering.

Def. ( $\sigma$ -algebra of sets of X) A non-empty collection  $\mathcal{A}$  of subsets of X, that is closed under countable union and complements. E.g.  $\mathcal{A} = \{E \in X : E \text{ is co-countable}\}.$ 

Prop. A is a  $\sigma$ -algebra iff (a) A is a algebra; (b)

$$E_j ext{ mutually disjoint}, E_j \in \mathcal{A} 
ightarrow igcup_{j=1}^\infty E_j \in \mathcal{A}$$

Proof.  $\cup E_j = \cup_j [E_j \setminus (\cup_{k < j} E_k)] \in \mathcal{A}$ . "This device of replacing a sequence of sets by a disjoint sequence is worth remembering."

Lemma. The intersection of any family of  $\sigma$ -algebras on X is again a  $\sigma$ -algebra.

Def. ( $\sigma$ -algebra generated by  $\mathcal{E}$ ) For  $\mathcal{E} \subset \mathcal{P}(X)$ , i.e. a collection of subsets of X, there's a **unique** smallest  $\sigma$ -algebra  $\mathcal{M}(\mathcal{E})$  containing  $\mathcal{E}$ , namely, the intersection of all  $\sigma$ -algebras containing  $\mathcal{E}$ .

Lemma. (1.1) 
$$\mathcal{E} \subset \mathcal{M}(\mathcal{F}) \implies \mathcal{M}(\mathcal{E}) \subset \mathcal{M}(\mathcal{F})$$
.

Def. (**Toplogy** of subsets of X) A non-empty collection  $\mathcal{F}$  of subsets of X , satisfying (a)  $\emptyset$ ,  $X \in \mathcal{F}$ ; (b) closed under arbitrary union; (c) closed under finite intersection.

Def. (**Toplogical space**) A pair  $(X, \mathcal{F})$ .

Nota. G is the family of open sets in X; F is the family of closed sets;  $G_{\delta}$  is the countable intersection of open sets;  $F_{\delta\sigma}$  is the countable union of  $F_{\delta}$  ... G is a toplogy.

Def. (**Borel**  $\sigma$ -algebra of  $(X, \mathcal{F})$ ) The  $\mathcal{M}(G)$ , denoted as  $\mathcal{B}_X$ , where G is the aforementioned family of open sets.

Rmk.  $\mathcal{M}(G)$  is the same as  $\mathcal{M}(\text{open intervals})$ ,  $\mathcal{M}(F)$ ,  $\mathcal{M}(\text{the open rays }\{(a,\infty)\})$ , etc. These will be shown in 1.5.

Def. (**Borel set**) A Borel set is a member of  $\mathcal{B}_X$ . E.g.  $G_{\delta}$ ,  $F_{\sigma}$  are Borel set. (Many sets look like either one of these two.)

Def. (**Product**  $\sigma$ -algebra) We ask for  $\mathcal{B}_{\mathbb{R}^n} = \bigotimes_{j=1}^n \mathcal{B}_{\mathbb{R}}$ . This definition enables it by: let  $\{X_\alpha\}_{\alpha \in A}$  be an indexed collection of nonempty sets,  $X := \prod_{\alpha \in A} X_\alpha$ ,  $\pi_\alpha : X \to X_\alpha$  the coordinate maps, and  $\mathcal{M}_\alpha$  is a  $\sigma$ -algebra on  $X_\alpha$ , then define  $\bigotimes \mathcal{A}_\alpha := \{\pi_\alpha^{-1}(E_\alpha) : E_\alpha \in \mathcal{M}_\alpha, \alpha \in A\}$ .

#NotCovered Prop 1.1-1.6

### 1.3 Measure

Def. (Measure  $\mu$  on measurable space (X, A))  $\mu : \mathcal{M} \to [0, \infty]$ , s.t.

- 1.  $\mu(\emptyset) = 0$ ;
- 2. Countable additivity ( $\sigma$ -additivity). If  $E_1, E_2, \ldots$  is a collection of **disjoint** members of  $\mathcal{M}$ , i.e.  $E_i \cap E_j = \emptyset$  for all  $i \neq j$ , then  $\mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$ .

Def. (Finite measure)  $\mu(X) < \infty$ .

Def. ( $\sigma$ -finite measure)  $X = \bigcup E_j, s.t., \forall j, \mu(E_j) < \infty$ .

Def. (Semifinite measure)  $\forall E \in \mathcal{M}, \mu(E) = \infty \to (\exists F \subset E, 0 < \mu(F) < \infty)$  .

Def. (Null set and "almost everywhere (a.e.)") E is a null set if  $\mu(E) = 0$ . Proposition A is true almost everywhere if it is true on all but null set.

E.g. Given  $f:X \to [0,\infty]$ , we can define a measure by  $\mu(E) = \sum_{x \in E} f(x)$ .

- 1. It's semifinite iff  $f(x) < \infty$ .
- 2. It's  $\sigma$ -finite iff it's semifinite and  $\{x: f(x) > 0\}$  is countable.
- 3. It's called **counting measure** if for some  $x_0 \in X$ ,  $f(x) = \mathbb{1}(x = x_0)$ .
- 4. It's called **point mass or Dirac measure** if f(x) = 1.

Thm. Properties of measure:

- 1. (Monotone)  $E, F \in \mathcal{M}, E \subset F \implies \mu(E) \leq \mu(F)$ .
- 2. ( $\sigma$ -subadditive)  $\mu(\bigcup_{j=1}^{\infty} E_j) \leq \sum_{j=1}^{\infty} \mu(E_j)$ .
- 3. (Continuity from below)  $E_1 \subset E_2 \ldots \implies \mu(\cup E_i) = \lim \mu(E_i)$ .
- 4. (Continuity from above)  $E_1 \supset E_2 \dots; \mu(E_1) < \infty \implies \mu(\cap E_j) = \lim \mu(E_j)$ . The  $\mu(E_1) < \infty$  is to enable  $\mu(E_1 \setminus E_j) = \mu(E_1) \mu(E_j)$ , in the convertion between union and intersection.

Prop.  $\sigma$ -finite implies semifinite.

Proof. For every E s.t.  $\mu(E)=\infty$ , given  $X=\cup E_j$ , define  $F_j:=E_j\cap E$ . By subadditivity,  $\infty=\mu(E)=\mu(\bigcup F_j)\leq \sum \mu(F_j)$ , then  $\exists j,\mu(F_j)>0$ . By monotoncity,  $\mu(F_j)\leq \mu(E_j)<\infty$ . These two gives the  $F:=F_j$  as the non-trivial measure subset for each E.

Def. (Complete) A measure whose domain contains all subsets of null sets.

**#NotCovered** THM1.9. Completion of measure.

### Continuity of measure (not covered)

Def. (Continuity of general measure)  $\mu$  is continuous if

 $orall \{A_n\}, A_n o A, n o \infty \longrightarrow \lim_{n \to \infty} \mu(A_n) = \mu(\lim_{n \to \infty} A_n) := \mu(A).$  Notice the closeness under union&intersection gives that  $A := \limsup_n A_n \in \mathcal{F}.$ 

Thm. (Countable additivity implies continuity)

Proof. For all convergent sequence  $\{A_n\}$ , which means

1. Case 1: monotonic increasing An  $(A_{n-1} \subset A_n)$  Recall countable additivity, construct  $D_n = A_n \setminus A_{n-1}$ , then

$$egin{aligned} \mu(A) &= \mu(\lim_{n o \infty} A_n) := \mu(igcup_{n=1}^\infty igcap_{m=n}^\infty A_m) \ &= \mu(igcup_{n=1}^\infty A_n) = \mu(igcup_{n=1}^\infty D_n) \stackrel{(*)}{=} \sum_{n=1}^\infty \mu(D_n) \ &= \lim_{n o \infty} \sum_{i=1}^n \mu(D_i) = \lim_{n o \infty} \mu(igcup_{i=1}^n D_i) = \lim_{n o \infty} \mu(A_n) \end{aligned}$$

2. Case2: monotonic decreasing An  $(A_{n-1} \supset A_n)$  Construct  $E_n = A_n \setminus A_{n+1}$ , then

$$egin{aligned} \mu(A) &:= \mu(\lim_{n o \infty} A_n) := \mu(\bigcap_{n=1}^\infty igcup_{m=n}^\infty A_m) \ &= \mu(igcup_{n=1}^\infty A_n) = \mu(igcup_{n=1}^\infty E_n) \stackrel{(*)}{=} \sum_{n=1}^\infty \mu(E_n) \ &= \lim_{n o \infty} \sum_{i=1}^n \mu(E_i) = \lim_{n o \infty} \mu(igcup_{i=1}^n E_i) = \lim_{n o \infty} \mu(A_n) \end{aligned}$$

3. Case 3: general An Recall  $B_n=\bigcup_{m=n}^\infty A_m, C_n=\bigcap_{m=n}^\infty A_m$ . Clearly  $C_n\subset A_n\subset B_n$ , and that  $B_n$  is monotonic decreasing,  $C_n$  is monotonic increasing. From case 1, we know that

$$egin{aligned} \limsup_{n o \infty} \mu(A_n) & \leq \lim_{n o \infty} \mu(B_n) = \mu(\lim_{n o \infty} B_n) \\ & = \mu(B) = \mu(A) = \mu(C) \\ & = \mu(\lim_{n o \infty} C_n) = \lim_{n o \infty} \mu(C_n) \leq \liminf_{n o \infty} \mu(A_n) \end{aligned}$$

However,  $\limsup_{n\to\infty}A_n\geq \liminf_{n\to\infty}A_n$ , therefore  $\lim_{n o\infty}\mu(A_n)=\lim\sup_{n o\infty}\mu(A_n)=\liminf_{n o\infty}\mu(A_n)=\mu(A).$ 

Conclusion:  $\mu$  is a continuous set function.

Prop. (Finite additivity + continuity iff countable additivity) Proof. (only => is needed) Recall continuity:  $\forall \{A_n\}, A_n \to A, n \to \infty \longrightarrow \lim_{n \to \infty} \mu(A_n) = \mu(\lim_{n \to \infty} A_n) = \mu(A)$  and (countable additivity) If  $A_1, A_2, \ldots$  is a collection of disjoint members of  $\mathcal{F}$ , then

$$\mu(\bigcup_{i=1}^\infty A_i) = \mu(\lim_{n\to\infty}\bigcup_{i=1}^n A_i) = \lim_{n\to\infty}\mu(\bigcup_{i=1}^n A_i) = \lim_{n\to\infty}\sum_{i=1}^n \mu(A_i) = \sum_{i=1}^\infty \mu(A_i)$$

### 1.4 Tools to construct measure

Motiv. In calculus, one defines area by marking grids inside and outside. Approximation from the outside is what we're going to build in the following.

Def. (**Outer measure** on X)  $\mu^* : \mathcal{P}(X) \to [0, \infty]$ , s.t.

- $1.\ \mu^*(\emptyset)=0;$  2. Monotonicity;
- 3. ( $\sigma$ -subadditivity)  $\mu^*(\cup A_j) \leq \sum \mu^*(A_j)$ .

Prop. (1.10) Let  $\mathcal{E} \subset \mathcal{P}(X)$  be a family of "elementary sets" that we can later choose, and  $\rho: \mathcal{E} \to [0, \infty]$ , such that  $\emptyset, X \in \mathcal{E}, \rho(\emptyset) = 0$ . These elementary sets are enough to define a outer measure:

$$\mu^*(A) := \inf_{\{E_j\}} \{ \sum_{j=1}^\infty 
ho(E_j) : E_j \in \mathcal{E}, A \subset igcup_{j=1}^\infty E_j \}$$

Proof. The first and the second condition come immediately from the definition of infimum. For the third one, again, consider  $\mu^*(A_i)$  as a infimum the largest lowerbound, then for any j and  $\epsilon_i > 0$ ,  $\mu^*(A_j) + \epsilon_j$  is not a lowerbound, therefore exists  $\sum_{k=1}^\infty \rho(E_{j,k}) < \mu^*(A_j) + \epsilon_j$ . Suming up LHS gives a value that's less than  $\sum \mu^*(A_j) + \sum \epsilon_j$  but greater than  $\mu^*(\cup A_j)$ . Let  $\epsilon_j = \epsilon * 2^{-j}$  and sending  $\epsilon$  to 0gives the desired inequality.

$$orall E \subset X, \mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

Motiv. This definition can be understood as, when A is "good", we can use A to evaluate any  $E \subset X$ , such that the inner measure of A (intersection of two, approximate from inside),  $\mu^*(E \cap A)$ , is equal to the outer measure of A,  $\mu^*(E) - \mu^*(E \cap A^c)$ .

Rmk. Notice that to show a set is  $\mu^*$ -measurable, due to the subadditivity, it suffices to show

$$orall E \subset X, s.t. \ \mu^*(E) < \infty, \mu^*(E) \geq \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

Thm. (**Caratheodory's thm**) If  $\mu^*$  is an outer measure on X, then the collection  $\mathcal{M}$  of  $\mu^*$ -measurable sets is a  $\sigma$ -algebra, and  $\mu^*|_{\mathcal{M}}$  is a complete measure on measurable space  $(X, \mathcal{M})$ .

Proof.

1.  $\mathcal{M}$  is an algebra: the goal is, given  $A, B \in \mathcal{M}$ , show that  $\forall E \subset X, \mu^*(E) = \mu^*(E \cap (A \cup B)) + \mu^*(E \cap (A \cup B)^c)$ . Taking the fact that A is  $\mu^*$ -measurable, and let E be the latter two respectively,

$$\mu^{*}(E \cap (A \cup B)) = \mu^{*}(E \cap (A \cup B) \cap A) + \mu^{*}(E \cap (A \cup B) \cap A^{c})$$

$$= \mu^{*}(E \cap A) + \mu^{*}(E \cap B \cap A^{c})$$

$$\mu^{*}(E \cap (A \cup B)^{c}) = \mu^{*}(E \cap (A \cup B)^{c} \cap A) + \mu^{*}(E \cap (A \cup B)^{c} \cap A^{c})$$

$$= \mu^{*}(E \cap (A \cup B)^{c}) = \mu^{*}(E \cap A^{c} \cap B^{c})$$

2.  $\mathcal{M}$  is a  $\sigma$ -algebra: it suffices to prove it's closed under disjoint  $\sigma$ -union, and we only need to check one side of inequality. Define  $B_n = \bigcup_{i=1}^n A_n$ ,

$$\mu^*(E\cap B_n) = \mu^*(E\cap B_n\cap A_n) + \mu^*(E\cap B_n\cap A_n^c)$$
 given disjoint, 
$$= \mu^*(E\cap A_n) + \mu^*(E\cap B_{n-1})$$
 by induction, 
$$= \sum_{i=1}^n \mu^*(E\cap A_i)$$
 
$$\mu^*(E) = \mu^*(E\cap (\cup_{i=1}^n A_i)) + \mu^*(E\cap (\cup_{i=1}^n A_i)^c)$$
 
$$\geq \mu^*(E\cap B_n) + \mu^*(E\cap (\cup_{i=1}^\infty A_i)^c)$$
 
$$\geq \sum_{i=1}^n \mu^*(E\cap A_i) + \mu^*(E\cap (\cup_{i=1}^\infty A_i)^c)$$
 take limit, 
$$\geq \sum_{i=1}^\infty \mu^*(E\cap A_i) + \mu^*(E\cap (\cup_{i=1}^\infty A_i)^c)$$
 by subadditivity, 
$$\geq \mu^*(E\cap (\cup_{i=1}^\infty A_i)) + \mu^*(E\cap (\cup_{i=1}^\infty A_i)^c)$$

3.  $\mu^*|_{\mathcal{M}}$  is a measure: we now know  $\bigcup_{i=1}^{\infty} A_i \in \mathcal{M}$  is in the domain, which enable us to use the inequality above but with  $\sigma$ -union as E:

$$\mu^*(\cup_{i=1}^\infty A_i) \geq \sum_{i=1}^n \mu^*((\cup_{j=1}^\infty A_j) \cap A_i) + \mu^*((\cup_{i=1}^\infty A_i) \cap (\cup_{i=1}^\infty A_i)^c)$$

The other side is again by  $\sigma$ -subadditivity.

4. 
$$\mu^*|_{\mathcal{M}}$$
 is complete. Given  $B\subset A, \mu^*(A)=\mu^*(B)=0$ ,  $\forall E\subset X, \mu^*(E)\geq \mu^*(E\cap B^c)=\mu^*(E\cap B)+\mu^*(E\cap B^c).$ 

Def. (**Premeasure**)  $\mu_0 : \mathcal{A} \to [0, \infty]$ ,  $\mathcal{A}$  is a algebra, with:

- 1.  $\mu_0=0$ ; 2. Any  $\{A_j\}_{j=0}^\infty\subset A$  that are sequence of disjoint sets s.t.  $\bigcup_{j=1}^\infty A_j\in\mathcal{A}$ , then  $\mu_0(\cup A_j)=\sum_{i=1}^\infty \mu_0(A_j)$ .

Prop. Monotonicity of premeasure.

Prop. (1.13) By applying Prop. 1.10 with  $\rho=\mu_0$ , one can construct outermeasure  $\mu^*:\mathcal{P}(X)\to[0,\infty]$ , which extends the domain of  $\mu_0$ . Then,

- 1.  $\mu^*|_{\mathcal{A}} = \mu_0$ ;
- 2.  $\forall A \in \mathcal{A}$ , A is  $\mu^*$ -measurable.

#### Proof.

- 1. (Recall)  $\mu^*(D) := \inf_{\{A_i\}} \{ \sum_{i=1}^{\infty} \mu_0(A_j) : A_j \in \mathcal{A}, D \subset \bigcup_{i=1}^{\infty} A_j \};$
- 2.  $\mu^*|_{\mathcal{A}} \leq \mu_0$  is true since LHS is a lowerbound of a set containing  $\mu_0(A)$  induced by sequence  $\{A,\emptyset,\emptyset,\emptyset,\ldots\}.$
- 3. To show the other side, need to show the RHS is a lowerbound. We only have disjoint complete sequence additivity. For  $A \in \mathcal{A}$ , covering  $\{A_i\}$ , construct  $B_n = A \cap (A_n \setminus \bigcup_{i < n} A_i)$ , then  $\cup B_i = A \in \mathcal{A}$  given covering. Then  $\mu_0(A) = \sum_j \mu_0(B_j) \leq \sum_j \mu_0(A_j)$ .
- 4. Want to show:  $\forall A \in \mathcal{A}, E \subset X, \mu^*(E) \geq \mu^*(E \cap A) + \mu^*(E \cap A^c)$ . It suffices to show  $\forall \epsilon > 0, \mu^*(E) + \epsilon \geq \mu^*(E \cap A) + \mu^*(E \cap A^c)$ . The LHS isn't a lowerbound, therefore exists covering  $\{A_i\} \subset \mathcal{A}$  s.t.

$$\mu^*(E) + \epsilon > \sum_j \mu_0(A_j)$$
By disjoint additivity,  $= \sum_j \mu_0(A_j \cap A) + \mu_0(A_j \cap A^c)$ 
 $= \sum_j \mu^*(A_j \cap A) + \mu^*(A_j \cap A^c)$ 
By subadditivity,  $\geq \mu^*(\cup_j (A_j \cap A)) + \mu^*(\cup_j (A_j \cap A^c))$ 
 $= \mu^*(E \cap A) + \mu^*(E \cap A^c)$ 

Thm. (1.14) Algebra  $\mathcal{A}$ ,  $\sigma$ -algebra  $\mathcal{M} := \mathcal{M}(\mathcal{A})$ , premeasure  $\mu_0$  on  $\mathcal{A}$ , and  $\mu^*$  the outermeasure given in last thm. Then:

- 1.  $\mu := \mu^*|_{\mathcal{M}}$  is a measure on  $\mathcal{M}$ ; (This gives the existence of measure extending  $\mu_0$ )
- 2. Any other measure  $\tilde{\mu}$  that extends  $\mu_0$  has  $\forall E \in \mathcal{M}, \tilde{\mu}(E) \leq \mu(E)$ , with equality when  $\mu(E) < \infty$ .
- 3. If  $\mu_0$  is  $\sigma$ -finite, then  $\mu$  is unique. (This gives the uniqueness of measure extending  $\mu_0$  under stronger condition)

#### Proof.

- 1. Let  $\mathcal{B}$  the collection of  $\mu^*$ -measurable sets. By C-thm,  $\mathcal{B}$  is a  $\sigma$ -algebra and  $\mu^*|_{\mathcal{B}}$  is a measure. By Prop 1.13,  $A \subset B$ , and M is the smallest  $\sigma$ -algebra containing A, therefore  $M \subset B$ ,  $\mu^*|_{M}$  is a measure.
- 2. Goal:  $\forall E \in \mathcal{M}, \tilde{\mu}(E) \leq \mu(E)$ . Notice that for any covering  $\{A_i\} \subset \mathcal{A}$  of E,  $\tilde{\mu}(E) \leq \tilde{\mu}(\cup A_j) \leq \sum \tilde{\mu}(A_j) = \sum \mu_0(A_j) = \sum \mu(A_j)$ , therefore a lowerbound, which is not greater than the greatest lowerbound  $\mu^*$ .

3. Claim  $\mu^*(\cup A_j) = \tilde{\mu}(\cup A_j)$ : since both are measure extending  $\mu_0$  defined on  $\mathcal{A}$  where finite union is closed, consider using contituity by

$$\begin{split} \mu^*(\cup A_j) &= \lim \mu^*(\cup_{j=1}^\infty A_j) = \lim \mu^*(\cup_{j=1}^\infty A_j) \\ &= \lim \mu_0(\cup_{j=1}^\infty A_j) = \lim \tilde{\mu}(\cup_{j=1}^\infty A_j) = \tilde{\mu}(\cup_{j=1}^\infty A_j) \end{split}$$

.

- 4. Goal:  $\forall E \in \mathcal{M}, \tilde{\mu}(E) \geq \mu(E)$  when  $\mu(E) < \infty$ . Notice that for any covering  $\{A_j\} \subset \mathcal{A}$  of E,  $\mu^*(E) \leq \mu^*(\cup A_j) = \tilde{\mu}(\cup A_j) = \tilde{\mu}(E) + \tilde{\mu}(\cup A_j \setminus E)$ . It suffices to show that  $\tilde{\mu}(\cup A_j \setminus E) \leq \epsilon$  for any  $\epsilon > 0$ , and further more,  $\mu^*(\cup A_j \setminus E) \leq \epsilon$ , given part 2. Consider adding  $\epsilon$  to the infimum, i.e.  $\forall \epsilon > 0$ , there's a covering  $\{A_j\} \subset \mathcal{A}$  of E, s.t.  $\mu^*(E) + \mu^*(\cup A_j \setminus E) = \mu^*(\cup A_j) \leq \sum \mu_0(A_j) < \mu^*(E) + \epsilon$ . When  $\mu(E) < \infty$ , subtracting it on both sides gives the desired.
- 5. Goal:  $\forall E \in \mathcal{M}, \tilde{\mu}(E) = \mu(E)$ . Recall definition,  $X = \cup A_j$ , s.t.  $A_j \in \mathcal{A}, \mu_0(A_j) < \infty$ . Make it disjoint by  $B_j := A_j \setminus (\cup_{k < j} A_k)$  to have a partition of E. Then  $\tilde{\mu}(E) = \sum \tilde{\mu}(E \cap B_j) = \sum \mu(E \cap B_j) = \mu(E)$ , given part 4.

### **1.5** Borel measure on $\mathbb{R}$

Recall.  $\mathcal{B}_{\mathbb{R}}:=\mathcal{M}(G)$ .

Def.

- 1. Open invervals  $A_{\theta} := \{(a,b) : -\infty \le a < b \le +\infty\};$
- 2. h-intervals  $A_h := \{(a,b]: -\infty \le a < b < +\infty\} \cup \{(a,\infty): -\infty \le a < +\infty\} \cup \{\emptyset\}$
- 3.  $A_2$  := finite union of disjoint h-intervals.

Prop. 
$$\mathcal{M}(\mathcal{A}_{\theta}) = \mathcal{M}(\mathcal{A}_{h}) = \mathcal{M}(\mathcal{A}_{2}) = \mathcal{M}(G) := \mathcal{B}_{\mathbb{R}}.$$

Proof. By lemma 1.1, it suffices to show that

$$\mathcal{A}_{\theta}, \mathcal{A}_{h}, \mathcal{A}_{2} \subset \mathcal{M}(G), \mathcal{A}(G) \subset \mathcal{M}(\mathcal{A}_{\theta}) \cap \mathcal{M}(\mathcal{A}_{h}) \cap \mathcal{M}(\mathcal{A}_{2}).$$

Prop.  $A_2$  is a algebra.

Thm.  $F: \mathbb{R} \to \mathbb{R}$  (non-strictly) increasing and right-continuous. We can construct premeasure  $\mu_0$  by  $\mu_0(\emptyset) = 0$  and  $\mu_0(\bigcup_{i=1}^n (a_j, b_j]) = \sum_{i=1}^n F(b_j) - F(a_j)$  where  $(a_j, b_j]$  are disjoint.

Proof.

- 1. Goal:  $\mu_0$  is well-defined (consistent with different union partition). Draw diagram.
- 2. Goal: For any disjoint sequence s.t.  $\bigcup_{j=1}^{\infty} I_j \in \mathcal{A}_2$ , we have  $\mu_0(\bigcup_{j=1}^{\infty} I_j) = \sum_{j=1}^{\infty} \mu_0(I_j)$ . Since the union is in  $\mathcal{A}_2$ , it can be expressed in a finite union of disjoint h-intervals. By considering each h-interval as a trunk, the sequence can be partitioned into **finitely many subsequences**, each is with a trunk and disjoint to others. With finite additivity and relabelling, consider each trunk and corresponding subsequence seperately, WOLG, say  $I := \bigcup_{j=1}^{\infty} I_j := (a,b]$ . For  $I_j = (a_j,b_j]$ , discard contained ones to get disjoint intervals.
- 3. Goal: For  $I:=\cup_{j=1}^\infty I_j:=(a,b]$ , show  $\mu_0(\cup_{j=1}^\infty I_j)\leq \sum_{j=1}^\infty \mu_0(I_j)$ . It's obvious given monotonicity.
- 4. Goal: For  $I := \bigcup_{j=1}^{\infty} I_j := (a,b]$ , show  $\mu_0(\bigcup_{j=1}^{\infty} I_j) \geq \sum_{j=1}^{\infty} \mu_0(I_j)$ .
  - First suppose a and b are finite. Recall that any open set on real line can be expressed as countable union of disjoint open intervals, and a open cover of a compact set on real line

(closed) can be reduced to a finite yet valid subcover.

- To have open interval and compact set from h-interval, we make use of right-continuity, which gives us that  $\forall \epsilon > 0, \exists \delta > 0, F(a+\delta) F(a) < \epsilon$ , and further more,  $\forall j, \exists \delta_j, F(b_j + \delta_j) F(b_j) < \epsilon \cdot 2^{-j}$ . Now we can adjust the boundary of sets.
- Extend I from (a,b] into  $[a+\delta,b]$ , which is compact, and extend  $I_j$  from  $(a_j,b_j]$  into  $(a_j,b_j+\delta_j)$ . To simplify, we can adjust so that we have  $b_j+\delta_j\in(a_{j+1},b_{j+1})$ . Now that we have an open cover  $I\subset \cup_{j=1}^\infty(a_j,b_j+\delta_j)$ , we obtain a finite subcover (with relabelling)  $I\subset \cup_{j=1}^n(a_j',b_j'+\delta_j)$ . Summing up

$$egin{aligned} \mu_0((a_j',b_j']) &= F(b_j') - F(a_j') \ &\geq F(b_j' + \delta_j) - F(a_j') - \epsilon \cdot 2^{-j} \ &\geq F(a_{j+1}') - F(a_j') - \epsilon \cdot 2^{-j} \end{aligned}$$

, we get

$$egin{aligned} \sum_{j=1}^\infty \mu_0(I_j) &\geq \sum_{j=1}^n \mu_0((a_j',b_j']) \ &\geq F(b_n'+\delta_n) - F(a_1') - \epsilon \ &\geq F(b) - F(a+\delta) - \epsilon \ &\geq F(b) - F(a) - 2\epsilon \ &= \mu_0(I) - 2\epsilon \end{aligned}$$

• Corner case of a, b being infinite is omitted.

Thm. Given F increasing and right-continuous, then

- 1. There's a unique Borel measure  $\mu_F$  on  $\mathbb R$  s.t.  $\mu_F((a,b]) = F(b) F(a)$ . To be explicit,  $\mu_F = \inf\{\sum_{i=1}^\infty \mu_0((a_j,b_j]) : E \subset \bigcup_{i=1}^\infty (a_j,b_j]\}.$
- 2. If other distribution function G, then  $\mu_F = \mu_G$  iff F G is constant.
- 3. Conversely, if  $\mu$  is a Borel measure on  $\mathbb R$  that is finite on all bounded Borel sets, and we define  $F(x) = \mu((0,x]), x>0$ , F(0)=0,  $F(x)=-\mu((x,0]), x<0$ , then F is increasing and right continuous, and  $\mu=\mu_F$ .

Proof.

- 1. The constructed  $\mu_0$  is  $\sigma$ -finite, since  $\mathbb{R} = \bigcup_{-\infty}^{\infty} (j, j+1]$ . Then it follows from the Thm 1.14;
- $2. \mu_F = \mu_G \iff \forall a, b, F(b) G(b) = F(a) G(a).$
- 3. Take x>0 as example. The monotonicity is from the monotonicity of F, and the right-continuous can be get from the continuity.  $\mu$  and  $\mu_F$  is the same on  $\mathcal{A}_2$ , therefore the same on  $\mathcal{B}_{\mathbb{R}}$ .

Rmk.

- 1. The collection  $\mathcal{M}_{\mu}$  of  $\mu^*$ -measurable in Caratheodory's thm is the largest (in fact strictly larger than  $\mathcal{B}_{\mathbb{R}}$ , denoted as  $\mathcal{E}$ ) gives the domain of the completion of  $\mu_F$  (Ex22a), which is called the **Lebesgue-Stieltjes measure** associated to F.
- 2. When F(x) = x, the Lebesgue-Stieltjes measure associated is called the **Lebesgue measure** m. The domain is denoted as  $\mathcal{L}$ .

Lemma. (1.17)  $\mu|_{\mathcal{E}}(E)=\inf\{\sum_{j=1}^\infty \mu((a_j,b_j)): E\subset \cup_{j=1}^\infty (a_j,b_j)\}.$ 

Proof. Say the RHS is  $\tilde{\mu}(E)$ .

- 1. Goal:  $\mu(E) \leq \tilde{\mu}(E)$ . Since  $(a,b) = \bigcup_{n=1}^{\infty} (a,b-\frac{1}{n}]$ ,  $E \subset \bigcup (a_j,b_j) \subset \bigcup \bigcup (a_j,b_j-\frac{1}{n})$ , therefore the set in left contains the set in right;
- 2. Goal:  $\mu(E) + \epsilon \ge \tilde{\mu}(E), \forall \epsilon > 0$ . Use right-continuity.

$$egin{aligned} \exists \{(a_j,b_j]\}, \mu(E) + \epsilon &\geq \sum \mu_0((a_j,b_j]) = \sum F(b_j) - F(a_j) \ &\geq \sum F(b_j+\delta_j) - F(a_j) - \epsilon \cdot 2^{-j} \ &= -\epsilon + \sum \mu_0((a_j,b_j+\delta_j]) \ &\geq -\epsilon + \sum \mu((a_j,b_j+\delta_j)) \ &\geq -\epsilon + ilde{\mu}(E) \end{aligned}$$

Thm. (1.18)  $\mu|_{\mathcal{E}}(E) = \inf\{\mu(U) : U \supset E, U \ open\} = \sup\{\mu(K) : K \subset E, K \ compact\}$ . This is so important that it's used as definition in some textbooks.

Proof. Say, to show  $\mu(E) = \tilde{\mu}(E) = \mu'(E)$ , with the formula given in lemma 1.17:

- 1. Goal:  $\mu(E) \leq \tilde{\mu}(E)$ . This is because  $\mu(E) \leq \mu(U), \forall U$ ;
- 2. Goal:  $\mu(E) + \epsilon \ge \tilde{\mu}(E), \forall \epsilon > 0$ . Again,  $\exists \{(a_j, b_j]\}, \mu(E) + \epsilon \ge \sum \mu((a_j, b_j)) \ge \mu(\cup(a_j, b_j)) \ge \tilde{\mu}(E)$ .
- 3. Goal:  $\mu(E) \geq \mu'(E)$ . The same as 1.
- 4. Goal:  $\mu(E) \leq \mu'(E)$ . Use the first equality.
  - 1. If E is bounded:
    - 1. Subcase: If E is compact. Just take K:=E.
    - 2. Subcase: If otherwise. Consider  $\bar{E}\setminus E$ , then by the first equality,  $\exists open\ U\supset \bar{E}\setminus E, s.\ t.\ \mu(\bar{E}\setminus E)+\epsilon>\mu(U)$ . Let  $K=\bar{E}\setminus U$ , then it's compact and  $K\subset E$

$$egin{aligned} \mu(K) &= \mu(E) - \mu(E \cap U) = \mu(E) - (\mu(U) - \mu(U \setminus E)) \ &= \mu(E) - \mu(U) + \mu(U \setminus E) \ &\geq \mu(E) - \mu(U) + \mu(ar{E} \setminus E) \geq \mu(E) - \epsilon \end{aligned}$$

2. If E is unbounded, partition it as  $E_j=E\cap (j,j+1]$ . By case 1,  $\forall \epsilon>0, \exists K_j\subset E_j, s.\ t.\ \mu(K_j)\geq \mu(E_j)-\epsilon\cdot 2^{-|j|}.\ \mu'(E)\geq \mu(\cup_{-n}^n K_j)\geq \mu(\cup_{-n}^n E_j)-\epsilon.$ 

Thm. (1.19) If  $E \subset \mathbb{R}$ , then TFAE:

- $1. E \in \mathcal{E}$ ;
- 2.  $E = V \setminus N_1$ , where  $V \in G_{\delta}$ ,  $\mu(N_1) = 0$ ;
- 3.  $E = H \cup N_2$ , where  $H \in F_{\sigma}$ ,  $\mu(N_2) = 0$ .

Proof. We know  $V, H \in \mathcal{E}$ . Since  $\mu$  is complete on  $\mathcal{E}$ , all  $N_1, N_2 \in \mathcal{E}$ , and  $\sigma$ -algebra is closed under countable union and intersection, (2) and (3) each imply (1). Now to show the converse,

1. Suppose  $\mu(E)<\infty$ . Based on thm 1.18, for  $j\in\mathbb{N}$ , we can have open  $U_j\supset E$  and compact  $K_j\subset E$ , s.t.  $\mu(U_j)-2^{-j}\leq \mu(E)\leq \mu(K_j)+2^{-j}$ . Let  $V:=\cap U_j, H:=\cup K_j$ , then  $H\subset E\subset V$ . While  $\mu(E)\leq \mu(V)\leq \mu(U_j)\leq \mu(E)+2^{-j}, \forall j \text{ and } \mu(E)-2^{-j}\leq \mu(K_j)\leq \mu(H)\leq \mu(E)$ , we can have

$$\mu(H)=\mu(E)=\mu(V)<\infty.$$
  $N_1:=V\setminus E, N_2:=E\setminus H$ , then  $\mu(N_1)=\mu(V)-\mu(E)=0, \mu(N_2)=\mu(E)-\mu(H)=0.$ 

- 2. Otherwise. Again, the constructed  $\mu_0$ , is  $\sigma$ -finite, since  $\mathbb{R} = \bigcup_{-\infty}^{\infty} (j, j+1]$ , and therefore  $E_j := E \cap (j, j+1], \mu(E_j) < \infty, E = \bigcup E_j$ .
  - 1. Notice that (1)->(3) implies (1)->(2). So we only need to show the former.
  - 2. Consider the partition, in which we have  $E_j=H_j\cup N_j$ . Let  $H:=\cup H_j, N=\cup N_j$ . Then  $E=\cup (H_j\cup N_j)=H\cup N$ .

Prop. (1.20) If  $E \in \mathcal{E}$ ,  $\mu(E) < \infty$ , then  $\forall \epsilon > 0$ ,  $\exists A$  that is a finite union of open intervals such that  $\mu(E \triangle A) < \epsilon$ .

Proof. Based on thm 1.18, we can have open  $U \supset E$  and compact  $K \subset E$ , s.t.  $\mu(U) \le \mu(E) \le \mu(K) + \epsilon$ . Since  $U = \bigcup_{j=1}^{\infty} (a_j, b_j)$  gives a open cover of compact set K, we can have the subcover  $A := \bigcup_{j=1}^n (a_j, b_j) \supset K$ . Then  $\mu(E) - \epsilon \le \mu(K) \le \mu(A) \le \mu(U) \le \mu(E) + \epsilon$  and  $\mu(E) - \epsilon \le \mu(K) \le \mu(A \cap E) \le \mu(U) \le \mu(E) + \epsilon$ . Then  $|\mu(E) - \mu(A)| \le \epsilon$ , which means

$$egin{aligned} \mu(E igtriangleup A) \ &\leq \mu(E igle A) + \mu(A igreangle E) \ &= \mu(A) - \mu(E) + \mu(E) - \mu(A \cap E) + \mu(E) - \mu(A \cap E) \ &\leq 3\epsilon \end{aligned}$$

.

Prop. For any  $E \in \mathcal{L}$ , we have  $E + s, rE \in \mathcal{L}$ , and  $\mu(E + s) = \mu(E), \mu(rE) = |r|\mu(E)$ .

Proof. They agree on the algebra, and by uniqueness of thm 1.14 (3), they also agree on  $\mathcal{B}_{\mathbb{R}}$ . Further more, since Lebesgue measure zero is preserved by translations and diluations, by thm 1.19, they agree on  $\mathcal{L}$ . #TODO

E.g. (**Cantor set** C) Repeadly remove the middle thirds open interval, starting from [0,1]. It's compact, totally disconnected, no where dense, no isolated points, m(C)=0, and  $0,1\in C$ . Moreover, it's uncountable and with the cardinality of  $\mathbb R$ . This can be proved by constructing  $f:C\to [0,1]$  and let it onto.  $f:\sum a_j 3^{-j}\mapsto \sum \frac{a_j}{2}2^{-j}$ .

Thm. If  $F \subset \mathbb{R}$ , s.t.  $\forall G \subset F, G \in \mathcal{L}$ , then m(F) = 0.

Cor. (Existence of non-measurable set) For F that m(F) > 0,  $\exists G \subset F, G \notin \mathcal{L}$ .

Def. (Coset) A coset of  $\mathbb{Q}$  in additive group  $(\mathbb{R}, +)$  is  $\mathbb{Q} + x$ , where  $x \in \mathbb{R}$ .

Proof of Thm.

- 1. Let E be the set that contains exactly one point from each coset. The existence of E is given by the axiom of choice.
- 2. Claim:  $\forall r_1, r_2 \in \mathbb{Q}, r_1 \neq r_2 \rightarrow (E + r_1) \cap (E + r_2) = \emptyset$ . Otherwise, that means  $e_1, e_2 \in E, e_1 \neq e_2, e_1 e_2 \in \mathbb{Q}$ , contradicts with the "exactly one point".
- 3. Claim:  $\mathbb{R} = \bigcup_{r \in \mathbb{Q}} (E+r)$ . For any  $x \in \mathbb{R}$ , there's a coset  $\mathbb{Q} + x$ , in which E contains exactly an element q + x. Then x = q + x + (-q) will be contained in E + (-q), which is when r = -q, in the union.

- 4. Now  $F = F \cap \mathbb{R} = \bigcup_{r \in \mathbb{Q}} (F \cap (E+r)) = \bigcup F_r$ , it suffices to show  $m(F_r) = 0$ . Given that  $m(F_r) = \sup\{m(K) : compact \ K \subset F_r\}$ , this holds iff  $\forall compact \ K \subset F_r, m(K) = 0$ . We're going to use the fact that K is bounded.
- 5. Suppose not, i.e. there's a K, s.t. m(K)>0. Due to to the same reason as 2, we have  $\forall r_1,r_2\in\mathbb{Q}, r_1\neq r_2\to (K+r_1)\cap (K+r_2)=\emptyset$ . Note that it's still bounded after translation. Further more, let's bound the translation scale. Let  $H=\cup_{r\in\mathbb{Q}\cap[0,1]}(K+r)$ , which is a disjoint union of bounded set and should be bounded as a whole (within the union of  $(-M_r,M_r)$ ). Yet since every summand in this  $\sigma$ -additivity (infinite) summation, m(K+r)>0, we have  $m(H)=\infty$ , contradict.

# **Ch2 Integration**

# 2.1 Measurable function

Rmk. Random variables are special cases of measurable function.