Teoria dei Giochi - 9 Settembre 2019

Cognome, Nome, Numero di Matricola, Email:

Non è richiesto di giustificare la risposta \equiv NGR.

Esercizio 1. (Tempo risoluzione stimato: 15 min) Si consideri il seguente gioco. Il primo giocatore può scegliere un numero tra $\{1,8,5,3\}$; il secondo giocatore può scegliere un numero tra $\{2,9,4,7\}$. Sia x il numero scelto dal primo giocatore e y il numero scelto dal secondo giocatore. Il primo giocatore vince un euro se x > y + 1 oppure se x = y - 1; analogamente, il secondo giocatore vince un euro se y > x + 1 oppure se y = x - 1. Si consideri il gioco in *strategia pura*.

1.1 Indicare tutte le strategie debolmente dominanti per il primo giocatore, se ve ne sono, e tutte le strategie debolmente dominanti per il secondo, se ve ne sono. **NGR**

Rispettivamente: giocare 8 e giocare 7

1.2 Indicare tutte le strategie conservative per il primo giocatore, se ve ne sono, e tutte le strategie conservative per il secondo, se ve ne sono. **NGR**

Soluzione Per il primo giocatore tutte, per il secondo giocatore 7.

1.3 Indicare tutti gli equilibri di Nash del gioco, se ve ne sono. NGR

Soluzione (1, 7), (3, 7), (5, 7), (8, 7),

1.4 Indicare il valore del gioco, oppure spiegare perché non è possibile individuarlo.

Soluzione Valore 1 (in forma di costo per il primo giocatore)

Esercizio 2 (Tempo risoluzione stimato: 15 min) In un parlamento siedono 10 deputati. Di questi, 3 provengono da una stessa regione A, 3 provengono da una stessa regione B, 3 provengono da una stessa regione C e uno proviene da una regione D. Una legge viene approvata se e solo se a suo favore votano almeno 8 deputati qualsiasi oppure a suo favore votano esattamente 7 deputati, ma in quest ultimo caso devono essere: due deputati di A, due deputati di B, due deputati di C e il deputato di D.

Se è possibile formulare il processo di approvazione di una legge come un gioco cooperativo, determinare il valore di Shapley di ciascun deputato, riportando i calcoli svolti. Se non è possibile determinarlo, spiegare perché.

Soluzione Il gioco può' essere formulato come un gioco cooperativo, perché non esistono due coalizioni disgiunte entrambe a valore 1.

Per determinare il valore di Shapley per questo gioco cooperativo conviene utilizzare la formula:

$$S_i(v) = \frac{\text{\# permutazioni tali che: la coalizione } A_p^i \text{ vince e la coalizione } A_p^i \setminus i \text{ perde}}{n!}$$

Prendiamo in considerazione un deputato proveniente dalla regione D. Le permutazioni in cui A_p^i vince, $A_p^i \setminus i$ perde sono sono quelle in cui: il deputato si trova in settima posizione e nelle prime due ci sono due deputati di A, due deputati di B e due deputati di C; il deputato si trova in ottava posizione.

Quindi il valore del deputato è

$$S(D) = \frac{\binom{3}{2} \cdot \binom{3}{2} \cdot \binom{3}{2} \cdot 6! \cdot 3! + 9!}{10!}$$

Per quanto riguarda gli altri deputati il loro valore è:

$$S(v) = \frac{1 - S(D)}{9}.$$

1

Esercizio 3 (Tempo risoluzione stimato: 25 min) È dato un grafo bipartito $G(X \cup Y, E)$ con vertici $X \cup Y = \{x_1, x_2, x_3, x_4, y_1, y_2, y_3\}$ e spigoli $E = \{x_1y_1, x_2y_1, x_2y_2, x_3y_2, x_3y_3, x_4y_3\}$. Siano $e \in E$ un qualunque spigolo e $y \in Y$ un qualunque vertice di Y: se y è un estremo di e, diciamo che e copre y e che y copre e.

Considera il gioco competitivo con 2 giocatori: il giocatore A, che controlla l'insieme degli spigoli E e il giocatore B che controlla l'insieme dei vertici $Y = \{y_1, y_2, y_3\}$ (i vertici di X non sono controllati da nessuno). Le strategie a disposizione di A sono i sottoinsiemi di E; mentre le strategie a disposizione di B sono i sottoinsiemi di Y.

Il payoff in forma di utilità è determinato in questo modo: sia $\overline{E} \subseteq E$ una strategia scelta dal primo giocatore, e $\overline{Y} \subseteq Y$ una strategia scelta dal secondo giocatore. Indichiamo rispettivamente con $a \ge 0$ il numero di spigoli di \overline{E} che non sono coperti da alcun vertice in \overline{Y} e con $b \ge 0$ il numero di vertici di \overline{Y} che non sono coperti da alcuno spigolo in \overline{E} :

- (1) se a > b oppure a = b e $|\overline{E}| < |\overline{X}|$, il payoff di A è 1;
- (2) se a < b oppure a = b e $|\overline{E}| > |\overline{X}|$ il payoff di A è -1;
- (3) se a = b e $|\overline{E}| = |\overline{X}|$ è il payoff di A è 0.

Si consideri il gioco in strategia pura.

3.1 Indicare tutte le strategie debolmente dominanti per il primo giocatore, se ve ne sono, e tutte le strategie debolmente dominanti per il secondo, se ve ne sono. **NGR**

Soluzione Per il primo giocatore ce ne sono due: $\{x_1y_1, x_2y_2, x_3y_3\}$ e $\{x_2y_1, x_3y_2, x_4y_3\}$. Per il secondo giocatore solo una: $\{y_1, y_2, y_3\}$.

3.2 Indicare tutti gli equilibri di Nash del gioco, se ve ne sono. NGR

Soluzione Ci sono due equilibri di Nash: $(\{x_1y_1, x_2y_2, x_3y_3\}, \{y_1, y_2, y_3\})$ e $(\{x_2y_1, x_3y_2, x_4y_3\}, \{y_1, y_2, y_3\})$.

Esercizio 4 (Tempo risoluzione stimato: 20 min) Si consideri un'istanza dello Stable Marriage Problem con 4 uomini $\{1,2,3,4\}$ e 4 donne $\{A,B,C,D\}$. Sapete solo cha nella graduatoria di 4 la donna A è al primo posto, mentre nella graduatoria di A l'uomo 4 è all'ultimo posto.

4.1 È possibile che nell'algoritmo di Gale Shapley, svolto a partire dagli uomini, la donna *A* e l'uomo 4 siano alla fine sposati, ma *A* accetti l'offerta di 4 solo alla terza iterazione? Se la risposta è affermativa esibire delle graduatorie per cui questo accade, se la risposta è negativa non è necessario giustificare la risposta.

Soluzione Si è possibile: $U_1: B, A, C, D; U_2: B, C, D, A; U_3: C, D, A, B; U_4: A, B, C, D; D_A: 2, 1, 3, 4; D_B: 1, 2, 3, 4; D_C: 2, 3, 1, 4; D_D: 3, 2, 4, 1.$

4.2 È possibile che nell'algoritmo di Gale Shapley, svolto a partire dagli uomini, la donna *A* e l'uomo 4 siano alla fine sposati, ma *A* accetti l'offerta di 4 solo alla quarta iterazione? Se la risposta è affermativa esibire delle graduatorie per cui questo accade, se la risposta è negativa non è necessario giustificare la risposta.

Soluzione Si è possibile: $U_1: B, A, C, D; U_2: B, C, A, D; U_3: C, B, D, A; U_4: A, C, B, D; D_A: 1,2,3,4; D_B: 1,2,3,4; D_C: 2,3,1,4; D_D: 3,1,2,4.$

Esercizio 5 (Tempo risoluzione stimato: 15 min) Si consideri la seguente matrice dei payoff del primo giocatore per un gioco antagonistico in forma di minimizzazione:

$$\begin{pmatrix} G1 - G2 & S1 & S2 & S3 & S4 \\ S1 & 1 & 8 & -1 & 0 \\ S2 & -1 & -1 & 0 & -6 \\ S3 & -9 & -2 & 9 & -1 \\ S4 & 2 & 0 & 1 & 8 \end{pmatrix}$$

Considera l'*estensione in strategia mista* del gioco e le seguenti strategie rispettivamente per *G*1 e *G*2:

$$\begin{aligned} &(i): \xi_1^i = \tfrac{1}{4} \ \forall i = 1, \dots, 4 \ (ii): \xi_1^1 = \tfrac{1}{3}, \xi_1^2 = \tfrac{2}{3}, \xi_1^3 = 0, \xi_1^4 = 0; \ (iii): \xi_1^1 = 0, \xi_1^2 = \xi_1^3 = \tfrac{1}{2}, \xi_1^4 = 0; \\ &(j): \xi_2^j = \tfrac{1}{4} \ \forall j = 1, \dots, 4; \ (jj): \xi_2^1 = \tfrac{1}{3}, \xi_2^2 = \tfrac{2}{3}, \xi_2^3 = \xi_2^4 = 0; \ (jjj): \xi_2^1 = \tfrac{1}{3}, \xi_2^2 = 0, \xi_2^3 = \tfrac{2}{3}, \xi_2^4 = 0. \end{aligned}$$

- **5.1**. Per ciascuna strategia, indica quanto paga, nel caso peggiore, il giocatore che la usa. **NGR Soluzione** Rispettivamente: $(i) \frac{9}{4}$; (ii) 2; $(iii) \frac{9}{2}$; (j) 2; $(jj) \frac{13}{3}$; $(jjj) \frac{1}{3}$.
- **5.2** Qualcuna delle strategie fornite è conservativa? *Indicare le eventuali strategie conservative, oppure scrivere che non è possibile individuarne.* **NGR Soluzione** Non è possibile individuarne.
- 5.3 È possibile individuare qualche equilibro di Nash in strategia mista? *Indicare gli eventuali equilibri, oppure scrivere che non si può individuarne*. **NGR**Soluzione Non è possibile individuarne.
- **5.4** Qual è il valore del gioco misto? *Indicare il valore, oppure scrivere che non si può individuarlo.* **NGR**

Soluzione Non è possibile individuarlo, sappiamo solo che è compreso nell'intervallo [-1/3, 2].