

Grundlagen der elektrischen Energietechnik

Teil 2: Elektromechanische Energieumformung

4. Übung: Asynchronmaschine

SoSe 2024

Prof. Dr.-Ing. Markus Henke, T.-H. Dietrich

Aufgabe 3: Asynchronmaschine (Luftspaltleistung)

zu 3.1: Erläutern Sie kurz den Begriff Luftspaltleistung P_{δ} .

Merke: Schlapfs ist chè mappaesticle Große fur chè Aufterlung der Leistungen

zu 3.2: Geben Sie die mechanische Leistung P_{mech} , die Rotorverlustleistung P_{vr} sowie den Motor- und Generatorwirkungsgrad formelmäßig als Funktion des Schlupfes s und der Luftspaltleistung P_{δ} an $(R_s = 0, R_{Fe} \rightarrow \infty)$. $P_{el} = P_{\delta}$ $P_{V_{CH}} = P_{V_{CH}} = P_{V_{CH}$

Aufgabe 3: Asynchronmaschine (M/n-Diagramm)

Aufgabe

An einer 6-polige Käfigläufer-Asynchronmaschine wurden im Betrieb an einem 50 Hz-Drehstromnetz

im Kipppunkt folgende Daten gemessen:

Kippmoment : $M_K = 286 \text{ Nm}$

$$M_{K} = 286 \text{ Nm}$$

$$n_{\nu} = 900 \text{ min}^{-1}$$

• Kippmoment :
$$M_K = 286 \text{ Nm}$$
 S - Schlupf im Betriess pendet
• Drehzahl : $n_k = 900 \text{ min}^{-1}$ $N_o - Synchron drehzahl (Schlupf = 0)$

Hies: $N_o - f_p = \frac{50 \, Hz}{3}$ $\frac{60 \, s}{min} = 1000 \, \frac{1}{min}$

Ermitteln Sie für die Drehzahlen n = 0, 400, 800, 900, 950 und 1000 min $^{-1}$

Das Drehmoment der Maschine (Hilfe: Kloss'sche Formel).

).
$$M = M_R \cdot \frac{2 \cdot S_k \cdot S}{S_k^2 + S^2} = S = \frac{N_0 - N}{N_R}$$

Skizzieren Sie mit diesen Werten als Stützstellen den Drehmoment-/Drehzahl-Verlauf dieser Maschine im ersten Quadranten des M/n-Diagramms kennzeichnen Sie die charakteristischen Punkte der Kurve.

Aufgabe 3: Asynchronmaschine (M/n-Diagramm)

Aufgabe 3: Asynchronmaschine (M/n-Diagramm)

Aufgabe 3: Asynchronmaschine (Kennfeld)

Zusammenhang M/n-Diagramm und Kennfeld:

MIN = 2 Lo (us) Shipt

S

Asynchronmaschine (ESB, Statorstromortskurve)

Aufgabe

Skizzieren Sie die Statorstromortskurve einer Asynchronmaschine (vereinfachtes ESB) und tragen Sie markante Punkte und Bereiche ein

Ersatzschaltbild Asynchronmaschine

allg. ESB der Asynchronmaschine (Kurzschlussläufer):

Statorstromortskurve

zu 3.3: Skizzieren Sie die Statorstromortskurve einer Asynchronmaschine (vereinfachtes ESB) und tragen Sie markante Punkte und Bereiche ein.

vereinfachtes ESB:

Annahmen:
$$U_r'=0$$
 (Hwzsolluss langer) $= S^+ = I_r' = I_n$

$$R_{FE} \rightarrow \infty \text{ (Keine Wirschshromvel.)} \qquad - D = I_s = I_n - I_r'$$

$$R_s = 0 \text{ (ohimsche Veluste selr gening)}$$

$$I_{S}^{+}I_{r}^{-}=I_{\mu}$$

$$-DI_{S}^{-}I_{\mu}-I_{r}^{-}$$

Statorstromortskurve

SR

Berechnung Asynchronmaschine

Eine <u>dreisträngige</u> Käfigläufer-Asynchronmaschine wird in <u>Dreieckschaltung</u> an einem 500V-50Hz-Drehstromnetz betrieben. Das Typenschild weist folgende Daten auf:

Nennspannung: $U_{s,N} = 500 \text{ V}$

Nennstrom: $I_{s,N} = 21,95 \text{ A}$

Nennleistungsfaktor: $\cos \varphi_N = 0.865$

Nenndrehzahl: $n_N = 950 \text{ min}^{-1}$

Im Kipppunkt wird eine Drehzahl $n_k = 897 \text{ min}^{-1}$ gemessen. Der Statorwiderstand sowie Eisen-, Reibungs- und Zusatzverluste können vernachlässigt werden.

zu 3.4: Ermitteln Sie die Polpaarzahl p, den Nennschlupf s_N und das Nennmoment M_N .

$$h = \frac{1}{P} = \frac{50 Hz}{P} \cdot \frac{60 s}{m \mu}$$

$$S_{h} = \frac{1000 \, \text{min} - 950 \, \text{min}}{1000 \, \text{min}} = 0.05$$

	P	n@ 50 Hz	
	1	3000 1/min	_
_	2	1500 1/min	= P = 3
	3	1000 1/min	
	4	750 /min	

$$M_{\rm u}=\frac{2}{3}$$

$$M_N = \frac{P_{\text{uned}}}{\Omega_N} = \frac{P_{\text{uned}}}{2R \cdot n_N} = \frac{P_{\text{uned}}}{2R \cdot \frac{950}{60} \cdot s}$$

$$P_{S} = P_{el} = m_{S} \cdot U_{SN} \cdot I_{SN} \cdot cos(\varphi) = 3.500 \cdot 21,95 A \cdot 0,865$$

$$= 28480 \omega$$

Berechnung Asynchronmaschine

zu 3.5: Ermitteln Sie den Kippschlupf s_k und das Kippmoment M_k .

Kloss's See Formel:
$$M_{K} = M_{N} \cdot \frac{s_{k}^{2} + s_{N}^{2}}{2 \cdot s_{n} \cdot s_{k}}$$

$$S_{k} = \frac{N_{0} - h_{k}}{N_{0}} = \frac{1000 \, l_{min} - 893 \, l_{min}}{1000 \, l_{min}} = 0,103$$

$$= 10,3 \, l_{0}$$

$$M_{K} = 271,9 \, N_{m} \cdot \frac{0,103^{2} + 0,05^{2}}{2 \cdot 0,103 \cdot 0,05}$$

$$= 346 \, N_{m}$$