

AS "ALFA RPAR" Joint Stock Company ALFA Riga, Latvia www.alfarzpp.lv; alfa@alfarzpp.lv

AS3330

AS3330 - Dual Voltage Controlled Amplifier (VCA)

FEATURES

- two independent voltage controlled amplifiers
- simultaneous linear and exponential control Inputs
- wide control range: 120dB min.
- very accurate control scales for excellent gain tracking
- exceptionally low control voltage feedthrough < -90dB
- low distortion: < 0.1%
- exceptionally low noise: < -100dB
- operating point anywhere from Class B to Class A
- summing nodes for signal and linear control inputs
- current outputs for ease of use in voltage controlled 2-Pole Filters
- can be used in VCO and VCF control paths without causing shift
- ±15 volt supplies

for electronic music

APPLICATIONS

AS3330 PDIP-18 (300 mil)

AS3330F QFN-24 4x4mm 0,5mm

General Description

The AS 3330 is a dual, high performance, voltage controlled amplifier intended for electronic musical instrument and professional audio applications. Each amplifier includes complete circuitry for simultaneous linear and exponential control of gain. In addition, the operating point of the amplifiers may be set anywhere from Class B to Class A, allowing the user to optimize those parameters critical to the particular application. Also featured are virtual ground summing nodes for both the signal and linear control inputs, so that signal and control mixing may be accomplished within the device itself. VCA outputs are signal currents, allowing the device to be conveniently used in two-pole voltage controlled filters, as well as dual voltage controlled amplifiers.

The devices include an on-chip 7.4 volt Zener, allowing them to operate off ±15 volt supplies as well as +15, -5 volt supplies.

Improved protection and crosstalk level (better than -80 dB).

Power pad in QFN package highly improves thermal stability of parameters of AS3330F.

Pin Information

PDIP-18	QFN-24L	Pin	Description	
Pin No	Pin No	Name		
1	4	Out1	Current Output 1	
2	5	VG1	Gain 1	
3	7	DTrim1	Distortion Trim 1	
4	8	IN1	Signal Input 1	
5	9	V_{EE}	Negative supply	
6	11	V _{CE1}	Exponential Control Input 1	
7	12	V_{CL1}	Linear Control Input 1	
8	14	IDLE	IDLE Adjust	
9	15	C_{COMP1}	Compensation 1	
10	16	Vcc	Positive supply	
11	17	C_{COMP2}	Compensation 2	
12	19	V _{CL2}	Linear Control Input 2	
13	20	IN2	Signal Input 2	
14	22	V_{CE2}	Exponential Control Input 2	
15	23	VG2	Gain 2	
16	24	Out2	Current Output 2	
17	2	DTrim2	Distortion Trim 2	
18	3	GND	Ground	
-	Power pad	Power pad	Don't connect	

Circuit Block and Connection Diagram (PDIP-18)

2019 v.6 1

AS "ALFA RPAR" Joint Stock Company ALFA Riga, Latvia www.alfarzpp.lv; alfa@alfarzpp.lv

AS3330

Absolute Maximum Ratings

Voltage between Output and Distortion Trim

and GND pins +18V, -0,5V Voltage between all other pins and GND pin ±6V Current through any pin ±40mA

Storage temperature range - 55°C to +150°C Operating temperature range - 25°C to +75°C

Electrical Characteristics

 V_{CC} =+15V, Vee= -15V, T_A = 25°C

Nº	Parameter, symbol	Conditions	Class (8*)	Min	Тур	Max	Units
1.	Linear Control Scale Error (1*)	0 < Icl < 100 uA (7*)		0		1.5	%/V
2.	Linear Control Range			-125		-	dB
3.	Exponential Control Scale Error (1*)			0		1.0	dB
4.	Exponential Control Scale Sensitivity			2.80		3.2	mV/dB
5.	Exponential Control Range(6*)			-125		-	dB
6.	Peak Cell Current	input plus output	Class A	0.8		1.8	mΑ
			Class B	0.7		1.2	mA
7.	Cell Current Gain	Vg=0, Icl = 100uA		0.83		1.2	
				0.7		1.2	
8.	Output Voltage Compliance	lcl=Iref		-0.3		13	V
		Gain Deviation < 5%					
9.	Untrimmed Control Feedthrough		Class A	-5		5	μΑ
	Lin (2*)		Class B	-0.8		0.8	μA
10.	Untrimmed Control Feedthrough		Class A	-5		5	μA
	Exp (2*)		Class B	-0.8		0.8	μA
11.	Idle Current	B Ridle = 767K	Class B	0.8		1.2	μA
		A Ridle = 68K	Class A	80		120	μA
12.	Signal Control Input Offset Voltage			-15		5	mV
13.	Linear Control Input Offset Voltage			-7		15	mV
14.	Exponential Control Input Current (7*)	Icl = 100μA		-1.3		1.3	μA
15.	Internal Bias Current at Linear		Class A	50		280	nA
	Control Input (5*)		Class B	25		280	nA
16.	Internal Bias Current at Signal		Class A	0		280	nA
	Control Input (5*)		Class B	0		280	nA
17.	Positive Supply Current	Vcc=+15V, Vee=-15V	Class A	1.5		2.5	mΑ
	·		Class B	0.8		2.1	mA
18.	Supply Current in Negative Supply	Vcc= +9V, Vee= -18V					
	Voltage Range (3*)	Ree = 680Ω					
	Icc			1.3		3	mA
	lee			13		20	mA
19.	Supply Current in Positive Supply	Vcc=+18V, Vee= -4.5V					
	Voltage Range	Ree = 680Ω					
	Icc			0.5		2	mA
	lee			1.2		5	mA

- Note 1. From current gain of +20dB to -80dB.Max cell current is less than 100uA.
- Note 2. Current gain varies from unity to attenuation 110dB.
- Note 3. Current limiting resistor required for negative voltages greater than -6 volts.
- Note 4. Class B is defined at an idle current of 1uA±0.2 uA; Class A is at an idle current of 100uA±20uA.
- Note 5. In absolute value (ABS).
- Note 6. Specified with Control Voltage 13V or 10V with Rce = 25K
- Note 7. Icl linear control input current
- Note 8. Not specified class Class A

2019 v.6 2

AS "ALFA RPAR" Joint Stock Company ALFA Riga, Latvia www.alfarzpp.lv; alfa@alfarzpp.lv

Device type	Package	
AS3330	PDIP-18 (300mil)	
AS3330F	QFN-24L (4x4 mm, 0.5 mm)	

Package Information PDIP-18 (300mil)

QFN-24 4x4 mm, 0.5 mm

Revision history

11011010111110101				
Date	Revision	Changes		
18-Dec-2017	1	Initial version		
30-May-2018	2	Minor changes		
12-Jun-2018	3	Minor changes		
16-Jul-2018	4	Electrical parameters precised		
02-Aug-2018	5	Minor changes Connection Diagram		
30-Aug-2019	6	Minor changes Connection Diagram		

2019 v.6 3