

DS2016 2K x 8 3V/5V Operation Static RAM

FEATURES

- Low power CMOS design
- Standby current
 - 50 nA max at t_A = 25°C V_{CC} = 3.0V
 - 100 nA max at $t_A = 25^{\circ}C V_{CC} = 5.5V$
 - $-1 \mu A \text{ max at } t_A = 60^{\circ} \text{C V}_{CC} = 5.5 \text{V}$
- Full operation for V_{CC} = 5.5V to 2.7V
- Data Retention Voltage = 5.5V to 2.0V
- Fast 5V access time
 - DS2016 100DS2016 150150 ns
- Reduced-speed 3V access time
 - DS2016 100DS2016 150250 ns250 ns
- Operating temperature range of -40°C to +85°C
- Full static operation
- TTL compatible inputs and outputs over voltage range of 5.5V to 2.7 volts.
- Available in 24-pin DIP and 24-pin SOIC packages
- Suitable for both battery operate and battery backup applications

PIN ASSIGNMENT

DS2016 24-PIN DIP (600 MIL) DS2016S 24-PIN SOIC (330 MIL)

PIN DESCRIPTION

 A0 - A10
 Address Inputs

 DQ0 - DQ7
 Data Input/Output

 CE
 Chip Enable Input

 WE
 Write Enable Input

 OE
 Output Enable Input

 V_{CC}
 Power Supply Input

 2.7V - 5.5V

 GND
 Ground

DESCRIPTION

The DS2016 is a 16,384—bit, low–power, fully static random access memory organized as 2048 words by 8—bits using CMOS technology. The device operates from a single power supply with a voltage input between 2.7 and 5.5 volts. The chip enable input (\overline{CE}) is used for device selection and can be used in order to achieve the minimum standby current mode, which facilitates both battery operate and battery backup applications. The device provides access times as fast as 100 ns when

operated from a 5 volt power supply input, and also provides relatively good performance of 250 ns access while operating from a 3 volt input. The device maintains TTL—level inputs and outputs over the input voltage range of 2.7 to 5.5 volts. The DS2016 is most suitable for low power applications where battery operation or battery backup for nonvolatility are required. The DS2016 is a JEDEC—standard 2K x 8 SRAM and is pincompatible with ROM and EPROM of similar density.

OPERATION MODE

MODE	CE	ŌĒ	WE	A0-A10	DQ-DQ7	POWER
READ	L	L	Н	STABLE	DATA OUT	I _{cco}
WRITE	L	Х	L	STABLE	DATA IN	Icco
DESELECT	L	Н	Н	Х	HIGH–Z	I _{cco}
STANDBY	Н	Х	Х	Х	HIGH–Z	I _{CCS}

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING
V _{CC}	Power Supply Voltage	-0.3V to +7.0V
V _{IN} , V _{I/O}	Input, Input/Output Voltage	-0.3 to V _{CC} + 0.3V
T _{STG}	Storage Temperature	−55°C to +125°C
T _{OPR}	Operating Temperature	-40°C to +85°C
T _{SOLDER}	Soldering Temperature/Time	260°C for 10 seconds

CAPACITANCE $(t_A = 25^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Capacitance	C _{IN}		5	10	pF	
Input/Output Capacitance	C _{I/O}		5	12	pF	

+5 VOLT OPERATION

RECOMMENDED DC OPERATING CONDITIONS

 $(t_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Power Supply Voltage	V _{CC}	4.5	5.0	5.5	V	
Input High Voltage	V _{IH}	2.0		V _{CC} + 0.3	V	
Input Low Voltage	V _{IL}	-0.3		0.8	V	
Data Retention Voltage	V_{DR}	2.0		5.5	V	

DC CHARACTERISTICS

 $(t_A = -40^{\circ}C \text{ to } +85^{\circ}C; V_{CC} = 5V \pm 10\%)$

			-, -			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Leakage Current	I _{IL}	$0V \le V_{IN} \le V_{CC}$			<u>+</u> 0.1	μΑ
I/O Leakage Current	I _{LO}	CE=V _{IH} , 0V≤V _{IO} ≤V _{CC}			<u>+</u> 0.5	μΑ
Output High Current	I _{OH}	V _{OH} = 2.4V	-1.0			mA
Output Low Current	l _{OL}	V _{OL} = 0.4V	4.0			mA
Standby Current	I _{CCS1}	<u>CE</u> = 2.0V			0.3	mA
Standby Current	I _{CCS2}	CE _≥ V _{CC} -0.5V t _A =60°C			1	μΑ
Standby Current	I _{CCS2}	CE≥V _{CC} -0.5V t _A =25°C			100	nA
Operating Current	Icco	CE=0.8V, 200 ns cycle			55	mA

AC CHARACTERISTICS READ CYCLE

 $(t_A = -40^{\circ}C \text{ to } +85^{\circ}C; V_{CC} = 5V \pm 10\%)$

		DS2016-100		DS2016-150					
PARAMETER	SYMBOL	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	NOTES
Read Cycle Time	t _{RC}	100			150			ns	
Access Time	t _{ACC}			100			150	ns	
OE to Output Valid	t _{OE}			50			70	ns	
CE to Output Valid	t _{CO}			100			150	ns	
CE or OE to Output Active	t _{COE}	5			5			ns	
Output High–Z from Deselection	t _{OD}	5		35	10		60	ns	
Output Hold from Address Change	t _{OH}	5			10			ns	

AC CHARACTERISTICS WRITE CYCLE

 $(t_A = -40^{\circ}C \text{ to } +85^{\circ}C; V_{CC} = 5V \pm 10\%)$

		DS2016-100		DS2016-150					
PARAMETER	SYMBOL	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	NOTES
Write Cycle Time	t _{WC}	100			150			ns	
Write Pulse Width	t _{WP}	75			120			ns	
Address Setup Time	t _{AW}	0			0			ns	
Write Recovery Time	t _{WR}	10			10			ns	
Output High–Z from WE	t _{ODW}			35			70	ns	
Output Active from WE	t _{OEW}	5			5			ns	
Data Setup Time	t _{DS}	40			60			ns	
Data Hold Time	t _{DH}	0			0			ns	

DATA RETENTION CHARACTERISTICS

 $(t_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Data Retention Supply Voltage	V_{DR}	<u>CE</u> ≥ V _{CC} – 0.5V	2.0		5.5	V
Data Retention Current at 5.5V	I _{CCR1}	$\overline{\text{CE}} \ge V_{\text{CC}} - 0.5V$		0.1*	1	μΑ
Data Retention Current at 2.0V	I _{CCR2}	<u>CE</u> ≥ V _{CC} – 0.5V		50*	750	nA
Chip Deselect to Data Retention	t _{CDR}		0			μs
Recovery Time	t _R		2			ms

^{*} Typical values are at 25°C

+3 VOLT OPERATION

RECOMMENDED DC OPERATING CONDITIONS

 $(t_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Power Supply Voltage	V _{CC}	2.7	3.0	3.5	V	
Input High Voltage	V _{IH}	2.0		V _{CC} + 0.3	V	
Input Low Voltage	V _{IL}	-0.3		0.6	V	
Data Retention Voltage	V _{DR}	2.0		3.5	V	

DC CHARACTERISTICS

 $(t_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}; V_{CC} = 2.7\text{V to } 3.5\text{V})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Leakage Current	I _{IL}	$0V \le V_{IN} \le V_{CC}$			<u>+</u> 0.1	μΑ
I/O Leakage Current	I _{LO}	CE=V _{IH} , 0V≤V _{IO} ≤V _{CC}			<u>+</u> 0.5	μΑ
Output High Current	I _{OH}	V _{OH} = 2.2V	-0.5			mA
Output Low Current	l _{OL}	V _{OL} = 0.4V	4.0			mA
Standby Current	I _{CCS1}	CE = 2.0V			0.1	mA
Standby Current	I _{CCS2}	CE≥V _{CC} -0.3V t _A =60°C			500	nA
Standby Current	I _{CCS2}	CE≥V _{CC} -0.3V t _A =25°C			50	nA
Operating Current	I _{CCO}	CE=0.6V min cycle			25	mA

AC CHARACTERISTICS READ CYCLE

 $(t_A = -40^{\circ}C \text{ to } +85^{\circ}C; V_{CC} = 2.7V \text{ to } 3.5V)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Read Cycle Time	t _{RC}	250			ns	
Access Time	t _{ACC}			250	ns	
OE to Output Valid	t _{OE}			120	ns	
CE to Output Valid	t _{CO}			250	ns	
CE or OE to Output Active	t _{COE}	15			ns	
Output High–Z from Deselection	t _{OD}	5		100	ns	
Output Hold from Address Change	tон	15			ns	

AC CHARACTERISTICS WRITE CYCLE

$(t_A = -40^{\circ}C \text{ to } +85^{\circ}C; V_C)$	$c_{C} = 2.7 \text{V to}$	3.5V
--	---------------------------	------

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Write Cycle Time	t _{WC}	250			ns	
Write Pulse Width	t _{WP}	190			ns	
Address Setup Time	t _{AW}	0			ns	
Write Recovery Time	t _{WR}	25			ns	
Output High–Z from WE	t _{ODW}			90	ns	
Output Active from WE	t _{OEW}	5			ns	
Data Setup Time	t _{DS}	100			ns	
Data Hold Time	t _{DH}	0			ns	·

DATA RETENTION CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Data Retention Supply Voltage	V_{DR}	$\overline{\text{CE}} \ge V_{\text{CC}} - 0.3V$	2.0		3.5	V
Data Retention Current at 3.5V	I _{CCR1}	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.3\text{V}$		50*	1000	nA
Data Retention Current at 2.0V	I _{CCR2}	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.3\text{V}$		50*	750	nA
Chip Deselect to Data Retention	t _{CDR}		0			μs
Recovery Time	t _R		2			ms

^{*} Typical values are at 25°C

TIMING DIAGRAM: READ CYCLE

TIMING DIAGRAM: WRITE CYCLE 1

SEE NOTES 2, 3, 4, 5, 6 AND 7

TIMING DIAGRAM: WRITE CYCLE 2

SEE NOTES 2, 3, 4, 5, 6 AND 7

TIMING DIAGRAM: DATA RETENTION – POWER UP, POWER DOWN Figure 1

NOTES:

- 1. WE is high for read cycles.
- 2. $\overline{OE} = V_{IH}$ or V_{IL} . If $\overline{OE} = V_{IH}$ during write cycle, the output buffers remain in a high impedance state.
- 3. t_{WP} is specified as the logical AND of \overline{CE} and \overline{WE} . t_{WP} is measured from the latter of \overline{CE} or \overline{WE} going low to the earlier of \overline{CE} or \overline{WE} going high.
- 4. t_{DH} and t_{DS} are measured from the earlier of \overline{CE} or \overline{WE} going high.
- 5. If the $\overline{\text{CE}}$ low transition occurs simultaneously with or later than the $\overline{\text{WE}}$ low transition, the output buffers remain in a high impedance state.
- 6. If the $\overline{\text{CE}}$ high transition occurs prior to or simultaneously with the $\overline{\text{WE}}$ high transition, the output buffers remain in a high impedance state.
- 7. If WE is low or the WE low transition occurs prior to or simultaneously with the CE low transition, the output buffers remain in a high impedance state.
- 8. If the V_{IH} level of $\overline{\text{CE}}$ is 2.0V during the period that V_{CC} voltage is going down from 4.5V to 2.7V, I_{CCS1} current flows.
- 9. The DS2016 maintains full operation from 5.5V to 2.7V. The electrical characteristics tables show two tested and guaranteed points of operation. For operation between 4.5V and 3.5 volts, used the composite worst case characteristics from both 5V and 3V operation for design purposes.

DC TEST CONDITIONS

Outputs Open
All voltages are referenced to ground.

AC TEST CONDITIONS

Output Load: 100 pF + 1TTL Gate Input Pulse Levels: 0V – 3.0V Timing Measurement Reference Levels Input: 1.5V Output: 1.5V

Input Pulse Rise and Fall Times: 5 ns

DS2016 24-PIN DIP

PKG	24-PIN		
DIM	MIN	MAX	
A IN.	1.245	1.270	
MM	31.62	32.25	
B IN.	0.530	0.550	
MM	13.46	13.97	
C IN.	0.140	0.160	
MM	3.56	4.06	
D IN.	0.600	0.625	
MM	15.24	15.88	
E IN.	0.015	0.050	
MM	0.380	1.27	
F IN.	0.120	0.145	
MM	3.05	3.68	
G IN.	0.090	0.110	
MM	2.29	2.79	
H IN.	0.625	0.675	
MM	15.88	17.15	
J IN.	0.008	0.012	
MM	0.20	0.30	
K IN.	0.015	0.022	
MM	0.38	0.56	

DS2016S 24-PIN SOIC

PKG	24-PIN		
DIM	MIN	MAX	
A IN.	0.080	0.120	
MM	2.04	3.05	
A1 IN.	0.002	0.014	
MM	0.05	0.35	
b IN.	0.012	0.020	
MM	0.30	0.50	
C IN	0.004	0.0125	
MM	0.10	0.32	
D IN.	0.595	0.634	
MM	15.1	16.1	
e IN.	0.050 BSC		
MM	1.27 BSC		
E1 IN.	0.324	0.350	
MM	8.23	8.90	
H IN	0.453	0.500	
MM	11.5	12.7	
L IN	0.016	0.051	
MM	0.40	1.30	
α	0°	10°	

The chamfer on the body is optional. If it is not present, a terminal 1 identifier must be positioned so that 1/2 or more of its area is contained in the hatched zone.