STA 141B Final Project

Fall 2018

Xavier Hung

Weiyi Chen

Problem: Is there a correlation between speeding and red light camera violations?

Case study: Chicago

Many people are likely to speed up as they approach an intersection when the traffic light turns yellow. It is dangerous and can sometimes lead to a fatal crash. The red light camera is intended to increase public safety by preventing people from running a red light, but is it really effective?

This common occurrence brought us to analyze the association between red light violations and speeding.

Data Extraction

We obtained our data from the City of Chicago. There are four CSV files: red light camera locations, red light camera violations, speed camera locations, and speed camera violations (details of these data can be found at https://data.cityofchicago.org/browse?q=red+light+camera&sortBy=relevance).

In [1]:

```
import os
import pandas as pd
import numpy as np
import math
from ast import literal eval
from bokeh.plotting import figure, show, output notebook
from bokeh.models.annotations import Title
from bokeh.tile_providers import CARTODBPOSITRON
import numpy
from scipy.stats import linregress
from scipy.stats import spearmanr
from plotnine import *
import warnings
warnings.filterwarnings('ignore')
redlight loc = pd.read csv('red-light-camera-locations.csv')
redlight violations = pd.read csv('red-light-camera-violations.csv')
speed loc = pd.read csv('speed-camera-locations.csv')
speed violations = pd.read csv('speed-camera-violations.csv')
```

speed_loc and redlight_loc have columns, latitude and longitude. We use Mercator projection to convert latitude and longitude into coordinates, and plot the locations of red light cameras and speed cameras.

```
In [2]:
```

```
# plot red light cameras and speed cameras locations
speed loc["COORDINATES"] = '('+ speed loc["LATITUDE"].astype(str) +','+ speed lo
c["LONGITUDE"].astype(str) + ')'
redlight loc["COORDINATES"] = '('+ redlight loc["LATITUDE"].astype(str) +','+ re
dlight loc["LONGITUDE"].astype(str) + ')'
def merc(Coords):
    Coordinates = literal eval(Coords)
    lat = Coordinates[0]
    lon = Coordinates[1]
    r_{major} = 6378137.000
    x = r major * math.radians(lon)
    scale = x/lon
    y = 180.0/math.pi * math.log(math.tan(math.pi/4.0 +
        lat * (math.pi/180.0)/2.0)) * scale
    return (x, y)
speed_loc['coords_x'] = speed_loc['COORDINATES'].apply(lambda x: merc(x)[0])
speed loc['coords y'] = speed loc['COORDINATES'].apply(lambda x: merc(x)[1])
redlight loc['coords x'] = redlight loc['COORDINATES'].apply(lambda x: merc(x)[0
])
redlight loc['coords y'] = redlight loc['COORDINATES'].apply(lambda x: merc(x)[1
])
p = figure(x range=(-9790000, -9735000), y range=(5105000, 5165000),
           x axis type="mercator", y axis type="mercator")
p.add tile(CARTODBPOSITRON)
p.circle(x = redlight loc['coords x'], y = redlight loc['coords y'], legend = "R
ed Light Camera", fill color="#FF0000")
p.circle(x = speed_loc['coords_x'], y = speed_loc['coords_y'], legend = "Speed C
amera")
t = Title()
t.text = 'Locations of All Speed Cameras and Red Light Cameras'
p.title = t
p.legend.location = "top right"
p.legend.click policy="hide"
output notebook()
show(p)
```

 $@ \ \underline{OpenStreetMap\ (https://www.openstreetmap.org/copyright)}\ contributors, \\ @ \ \underline{CartoDB\ (https://cartodb.com/attributions)}\ (https://cartodb.com/attributions)\ (ht$

In Chicago, 0.0001 latitude is about 111.2 meters when longitude is constant. When latitude is constant, 0.001 longitude is about 82.69 meters. link: https://www.movable-type.co.uk/scripts/latlong.html)

(https://www.movable-type.co.uk/scripts/latlong.html)

We subset the data by red light cameras and speed cameras that are near each other by 0.001 latitude and longitude.

In [3]:

```
# redlight loc copy is a subset of redlight loc and contains the locations of re
d light cameras near speed cameras
# speed loc copy is a subset of speed loc and contains the locations of speed ca
meras near red light cameras
redlight loc copy = pd.DataFrame(columns = redlight loc.columns.values)
speed_loc_copy = pd.DataFrame(columns = speed loc.columns.values)
pairs = pd.DataFrame(columns = ['speed', 'redlight'])
# find red light cameras near speed cameras
for i in range(0, speed loc.shape[0]):
    for j in range(0,redlight loc.shape[0]):
        if abs(speed loc.iloc[i,4] - redlight loc.iloc[j,5]) < 0.001 and abs(spe</pre>
ed loc.iloc[i,5] - redlight <math>loc.iloc[j,6]) < 0.001:
            #if pd.to datetime(speed loc['GO-LIVE DATE']).dt.year[i] < pd.to dat
etime(redlight loc['GO LIVE DATE']).dt.year[j]:
            redlight_loc_copy = redlight_loc_copy.append(redlight_loc.iloc[j], i
gnore index = True)
            speed loc copy = speed loc copy.append(speed loc.iloc[i], ignore ind
ex = True
            temp = pd.DataFrame({'speed': [speed loc.iloc[i,0]], 'redlight': [re
dlight loc.iloc[j,0]]})
            pairs = pairs.append(temp)
pairs = pairs.reset index(drop = True)
```

In [4]:

```
# plot red light cameras near speed cameras
redlight loc copy["COORDINATES"] = '('+ redlight loc copy["LATITUDE"].astype(str
) +','+ redlight_loc_copy["LONGITUDE"].astype(str) + ')'
speed_loc_copy["COORDINATES"] = '('+ speed_loc_copy["LATITUDE"].astype(str) +','
+ speed loc copy["LONGITUDE"].astype(str) + ')'
speed loc copy['coords x'] = speed loc copy['COORDINATES'].apply(lambda x: merc(
x)[0])
speed loc copy['coords y'] = speed loc copy['COORDINATES'].apply(lambda x: merc(
x)[1])
redlight_loc_copy['coords_x'] = redlight_loc_copy['COORDINATES'].apply(lambda x:
merc(x)[0]
redlight loc copy['coords y'] = redlight loc copy['COORDINATES'].apply(lambda x:
merc(x)[1]
p = figure(x range=(-9780000, -9745000), y range=(5120000, 5160000),
           x axis type="mercator", y axis type="mercator")
p.add tile(CARTODBPOSITRON)
p.circle(x = redlight loc copy['coords x'], y = redlight loc copy['coords y'], l
egend = "Red Light Camera", fill color="#FF0000")
p.circle(x = speed_loc_copy['coords_x'], y = speed_loc_copy['coords_y'], legend
= "Speed Camera",)
t = Title()
t.text = 'Speed Cameras in Close Proximity to Red Light Cameras'
p.title = t
p.legend.location = "top right"
p.legend.click policy="hide"
output notebook()
show(p)
```

(http:8/okelk&6.1).@atsuocessfully loaded.

© OpenStreetMap (https://www.openstreetmap.org/copyright) contributors,© CartoDB (https://cartodb.com/attributions)


```
© OpenStreetMap (https://www.openstreetmap.org/copyright) contributors,© CartoDB (https://cartodb.com/attributions)
-87.85 -87.8 -87.75 -87.65 -87.6 -87.55
```

In [7]:

```
# change format of addresses in speed loc copy to match format of addresses in s
peed violations
remove = ["(Speed", "Camera)", "Ave", "ST", "Rd", "St", "Blvd"]
for i in range(0, speed_loc_copy.shape[0]):
    speed_loc_copy.iloc[i,0] = " ".join([word for word in speed_loc_copy.iloc[i,
0].split() if word not in remove])
for i in range(0, pairs.shape[0]):
    pairs.iloc[i,0] = " ".join([word for word in pairs.iloc[i,0].split() if word
not in remove]).upper()
    pairs.iloc[i,1] = pairs.iloc[i,1].upper()
speed_violations_copy = pd.DataFrame(columns = speed_violations.columns.values)
# subset speed violations where speed cameras are near red light cameras
for i in range(0, speed loc copy.shape[0]):
    address = speed_violations[speed_violations['ADDRESS'].str.contains(speed_lo
c copy.iloc[i,0].upper())]
    speed violations copy = speed violations copy.append(address, ignore index =
True)
    if len(address.index) > 0:
        pairs.iloc[i,0] = address.iloc[0,0]
```

In [8]:

```
redlight violations copy = pd.DataFrame(columns = redlight violations.columns.va
lues)
# subset red light violations where speed cameras are near red light cameras
# this will take a while
for i in range (0, redlight_violations.shape[0]):
    for j in range(0, redlight_loc_copy.shape[0]):
        intersection1 = redlight violations.iloc[i,0].replace(' AND ', '/').repl
ace(' and ', '/').split('/')
        intersection2 = redlight_loc_copy.iloc[j,0].split('-')
        if len(intersection1) > 1 and len(intersection2) > 1:
            if intersection1[0] == intersection2[0].upper() or intersection1[0]
== intersection2[1].upper():
                if intersection1[1] == intersection2[0].upper() or intersection1
[1] == intersection2[1].upper():
                    redlight_violations_copy = redlight_violations_copy.append(r
edlight_violations.iloc[i], ignore_index = True)
                    pairs.iloc[j,1] = redlight violations.iloc[i,0]
```

In [17]:

```
redlight = redlight_violations_copy.groupby('INTERSECTION')['VIOLATIONS'].sum().
sort_values(ascending = False)
# output in order of most red light violations to least red light violations
for i in range(0, len(redlight)):
    rlc_violation_intersection = redlight_violations_copy.loc[redlight_violation
s_copy['INTERSECTION'].str.contains(redlight.axes[0][i])].reset_index(drop = Tru
    rlc_speed = pd.DataFrame()
    temp = pairs.loc[pairs['redlight'] == rlc violation intersection.iloc[0,0]].
reset_index(drop = True).iloc[:, 0].tolist()
    for j in range(0, len(temp)):
        rlc_speed = rlc_speed.append(speed_violations_copy.loc[speed_violations_
copy['ADDRESS'].str.contains(temp[j])].reset index(drop = True))
    temp1 = rlc speed
    temp1['VIOLATION DATE'] = pd.to datetime(temp1['VIOLATION DATE'])
    temp2 = rlc_violation_intersection
    temp2['VIOLATION DATE'] = pd.to datetime(temp2['VIOLATION DATE'])
    for k in range(0, len(temp1['ADDRESS'].value_counts())):
        temp = temp1.loc[temp1['ADDRESS'] == temp1['ADDRESS'].value_counts().ind
ex[k]
        x1 = pd.DataFrame()
        x2 = pd.DataFrame()
        for 1 in range(0, len(temp)):
            for m in range(0, len(temp2)):
                if(temp['VIOLATION DATE'][1] == temp2['VIOLATION DATE'][m]):
                    x1 = x1.append(temp.iloc[1])
                    x2 = x2.append(temp2.iloc[m])
        #print('The Pearson correlation coefficient for speed violations at ', t
emp.iloc[0,0], ' and red light violations at ', x2.iloc[0,2], ' is ', numpy.corr
coef(x1['VIOLATIONS'], x2['VIOLATIONS'])[0,1], '.', sep = '')
        print('The Spearman correlation coefficient and p-value for speed violat
ions at ', temp.iloc[0,0], ' and red light violations at ', x2.iloc[0,2], ' are
', spearmanr(x1['VIOLATIONS'], x2['VIOLATIONS'])[0], ' and ', spearmanr(x1['VIOL
ATIONS'], x2['VIOLATIONS'])[1], ', respectively.', sep = '')
        #print('R-squared for speed violations at ', temp.iloc[0,0], ' and red 1
ight violations at ', x2.iloc[0,2], ' is ', linregress(x1['VIOLATIONS'], x2['VIO
LATIONS'])[2] ** 2, '.', sep = '')
    rlc_speed['date'] = pd.to_datetime(rlc_speed['VIOLATION DATE']).apply(lambda
x: x.strftime('%Y-%m'))
    rlc_speed['date'] = pd.to_datetime(rlc_speed['date'])
    temp = rlc_speed.groupby(['ADDRESS', 'date'])['VIOLATIONS'].sum()
    plotdata_speed = pd.DataFrame({'ADDRESS': temp.index.get_level_values('ADDRE
SS'), 'date': temp.index.get level values('date'),'count': temp.values})
   plotdata_speed['camera_type'] = 'Speed Camera'
    rlc_violation_intersection['date'] = pd.to_datetime(rlc_violation_intersecti
on['VIOLATION DATE']).apply(lambda x: x.strftime('%Y-%m'))
    rlc violation intersection['date'] = pd.to datetime(rlc violation intersecti
```

```
on['date'])
    temp = rlc violation intersection.groupby('date')['VIOLATIONS'].sum()
    plotdata_redlight = pd.DataFrame({'date': temp.index.get_level_values('date'
), 'count': temp.values, 'ADDRESS': rlc violation intersection.iloc[0,0]})
    plotdata redlight['camera type'] = 'Red Light Camera'
   plotdata speed = plotdata speed.loc[plotdata speed['count'] != 0]
    plotdata redlight = plotdata redlight.loc[plotdata redlight['count'] != 0]
    plotdata_speed['ADDRESS'] += ' (Speed Camera)'
    plotdata redlight['ADDRESS'] += ' (Red Light Camera)'
    print(ggplot(aes(x = 'date', y = 'count', color = 'ADDRESS', linetype = 'cam')
era type'), data = plotdata redlight)
      + geom line()
      + geom line(aes(x = 'date', y = 'count', color = 'ADDRESS', linetype = 'ca
mera type'), data = plotdata speed)
      + labs(x = 'Violation Date', y = 'Number of Violations')
      + theme(axis_text_x = element_text(angle = 90, hjust = 1))
      + ggtitle('Violations Over Time Near ' + rlc violation intersection.iloc[0
,0]))
```

The Spearman correlation coefficient and p-value for speed violation s at 449 N COLUMBUS DR and red light violations at COLUMBUS AND ILLI NOIS are 0.162963453255 and 2.78044192069e-52, respectively. The Spearman correlation coefficient and p-value for speed violation s at 450 N COLUMBUS DR and red light violations at COLUMBUS AND ILLI NOIS are 0.264360762275 and 2.79546990715e-134, respectively. The Spearman correlation coefficient and p-value for speed violation s at 324 E ILLINOIS ST and red light violations at COLUMBUS AND ILLI NOIS are -0.0754133215296 and 0.00111370502749, respectively.

Violations Over Time Near COLUMBUS AND ILLINOIS

<ggplot: (-9223372036557937250)>

The Spearman correlation coefficient and p-value for speed violation s at 5030 S PULASKI and red light violations at PULASKI AND ARCHER a re 0.0858098835074 and 8.32305340821e-06, respectively.

The Spearman correlation coefficient and p-value for speed violation s at 4929 S PULASKI and red light violations at PULASKI AND ARCHER a re 0.0805567849214 and 3.18889544956e-05, respectively.

<ggplot: (-9223372036541700804)>

The Spearman correlation coefficient and p-value for speed violation s at 7833 S PULASKI and red light violations at PULASKI AND 79TH are 0.0421715594408 and 0.0309514706502, respectively.

The Spearman correlation coefficient and p-value for speed violation s at 7826 S PULASKI and red light violations at PULASKI AND 79TH are 0.0141353546134 and 0.468865265261, respectively.

Violations Over Time Near PULASKI AND 79TH 2000 1500 **ADDRESS** Number of Violations PULASKI AND 79TH (Red Light Camera) 7826 S PULASKI (Speed Camera) 1000 7833 S PULASKI (Speed Camera) camera type Red Light Camera --- Speed Camera 500 2014-07-01 2015-01-01 2017-07-01 2018-07-01 2019-01-01 2015-07-01 2016-01-01 2016-07-01 2017-01-01 2018-01-01 Violation Date

<ggplot: (296454415)>

The Spearman correlation coefficient and p-value for speed violation s at 5532 S KEDZIE AVE and red light violations at 55TH AND KEDZIE a re 0.0196416695613 and 0.30387986204, respectively.

The Spearman correlation coefficient and p-value for speed violation s at 3212 W 55TH ST and red light violations at 55TH AND KEDZIE are -0.0428981540587 and 0.065662139916, respectively.

The Spearman correlation coefficient and p-value for speed violation s at 3217 W 55TH ST and red light violations at 55TH AND KEDZIE are 0.0192534438388 and 0.450386639939, respectively.

<ggplot: (296718095)>

The Spearman correlation coefficient and p-value for speed violation s at 819 E 71ST ST and red light violations at COTTAGE GROVE AND 71S T are -0.298144378532 and 0.0121817373417, respectively.

The Spearman correlation coefficient and p-value for speed violation s at 7122 S SOUTH CHICAGO AVE and red light violations at COTTAGE GR OVE AND 71ST are -0.0650908855775 and 0.597942453407, respectively.

<ggplot: (-9223372036558081392)>

The Spearman correlation coefficient and p-value for speed violation s at 5433 S PULASKI and red light violations at 55TH and PULASKI are 0.0513666664902 and 0.0130290766203, respectively.

The Spearman correlation coefficient and p-value for speed violation s at 5428 S PULASKI and red light violations at 55TH and PULASKI are 0.126406090074 and 1.19662717129e-09, respectively.

Violations Over Time Near 55TH and PULASKI

<ggplot: (-9223372036557143587)>

The Spearman correlation coefficient and p-value for speed violation s at 3534 N WESTERN and red light violations at WESTERN AND ADDISON are 0.0829683054404 and 0.0101969649149, respectively.

<ggplot: (296568475)>

The Spearman correlation coefficient and p-value for speed violation s at 2335 W CERMAK RD and red light violations at WESTERN AND CERMAK are 0.0126478366504 and 0.693407633301, respectively.

Violations Over Time Near WESTERN AND CERMAK

<ggplot: (294987605)>

The Spearman correlation coefficient and p-value for speed violation s at 732 N PULASKI RD and red light violations at PULASKI AND CHICAG O are -0.0305480932393 and 0.274597466049, respectively.

<ggplot: (297608989)>

The Spearman correlation coefficient and p-value for speed violation s at 4123 N CENTRAL AVE and red light violations at CENTRAL AND IRVI NG PARK are -0.0261146025436 and 0.198785140848, respectively.

Violations Over Time Near CENTRAL AND IRVING PARK

<ggplot: (-9223372036557175566)>

In []: