

Prédiction de la satisfaction lors d'un vol

SARAH BOUNDAOUI & AHMED BAAROUN

Table des matières

- Présentation du dataset
- Déroulement du projet
- Exploration et recherche de corrélation
- Preprocessing
- Application des modèles d'apprentissage
- Conclusion

Présentation du dataset

- Ensemble trouvé sur Kaggle de source malheureusement inconnue car ayant apparemment été remanié.
- Il se présente en format CSV, déjà scindé en deux fichiers "train" et "test".
- Chaque ligne correspond aux caractéristiques de voyage d'un passager ainsi que sa satisfaction (ou pas !).

Etapes réalisées (problème)

Chargement et exploration surfacique des données.

Recherche de liens et préparation à la classification.

Application de :

- Decision Tree Classifier
- Random Forest Classifier

Données

Exploration des données

Analyses Réalisées

Diagrammes à bâtons montrant les tranches de données en fonction du pourcentage de satisfaction

Exemples de visualisations effectuées

Données catégoriques nominales

"irrégulières"

Diagrammes à bâtons de couleur pour chaque catégorie permettant d'avoir une comparaison entre les catégories en fonction du pourcentage de satisfaction

Données catégoriques numériques

IDEM aux Données catégoriques nominales

Inflight wifi service

Analyse par le biais de la corrélation

Certaines features ne sont en rien corrélées avec la satisfaction, comme le montre la Heatmap cidessous :

Application de Decision Tree Classifier

Random Forest

Données à classifier (satisfaction ou non) donc utilisation d'un classificateur assez intuitif qu'est Decision Tree (Classifier) Essai d'un autre modèle, qu'est une multitude d'arbres de décision, ce qui peut être intéressant de voir pour notre dataset

Optimisation de chaque modèle

Première application des modèles de façon intuitive puis réglage des hyperparamètres avec des estimateurs plus rigoureux

Comparaison de précision

Comparaison des deux modèles avec des courbes ROC (Receiver Operating Characteristic) avec une AUC (Area Under the Curve) permettant d'évaluer la performance de chacun et de les comparer naturellement

Matrice de confusion de Decision Tree Classifier

Courbe ROC de comparaison entre les deux modèles

Pour conclure

Comparaison indiquant des performances assez similaires avec un léger avantage pour Random Forest un écart et des performances sûrement plus élevées avec plus de données L'intuition ne constitue pas forcément une vérité!