

TI Precision Labs – Inductive Sensing

Presented and prepared by Scott Bryson

Rotary Encoding

Inductive Sensor Review

 θ = arctan (DataB/DataA)

Incremental vs. Absolute Encoding

Position	Sensor Coil 1	Sensor Coil 2
1	0	1
2	0	1
3	1	0
4	1	0

Sensor Outputs

Design Tools

https://www.ti.com/lit/zip/slyc137

https://www.ti.com/lit/an/snoa957a/snoa957a.pdf

Other Resources

To find materials for rotary applications using Hall Effect Sensors, visit

https://training.ti.com/ti-precision-labs-magnetic-sensors

To find more inductive sensor resources and products, visit ti.com/sensors/specialty-sensors/inductive/products.html

TI Precision Labs – Inductive Sensing

Presented and prepared by Scott Bryson

- 1) T/F Incremental Encoding measures angle for a linear output response
 - a) True
 - b) False
- 2) LDC sensors are (select all that apply)
 - a) Robust against dirt and grime
 - b) Sensitive to non conductive targets
 - c) Tolerant of nearby fixed permanent magnets
 - d) Great for long distance measurements

- 3) What coil shape is best suited for the gear shaped target for incremental encoding
 - a) Trapezoidal
 - b) Circular
 - c) Racetrack
 - d) Rectangular
- 4) In absolute encoding, Differential coils help:
 - a) Add a fail safe to the design
 - b) Create discrete output increments
 - c) Normalize the output signal
 - d) Increase design complexity

- 5) Select all that apply to incremental angle encoding
 - a) Power on state is easily determined
 - b) Resolution is defined by gap spacing on the target
 - c) Angle is defined by width of the target
 - d) Angle tracking is calculated using simple counter logic
- 6) Select all that apply to absolute angle encoding
 - a) Power on state is easily determined
 - b) Resolution is defined by gap spacing on the target
 - c) Angle is defined by width of the target
 - d) Angle tracking is calculated using simple counter logic

- 1) T/F Incremental Encoding measures angle for a linear output response
 - a) True
 - b) False
- 2) LDC sensors are (select all that apply)
 - a) Robust against dirt and grime
 - b) Sensitive to non conductive targets
 - c) Tolerant of nearby fixed permanent magnets
 - d) Great for long distance measurements

- 3) What coil shape is best suited for the gear shaped target for incremental encoding
 - a) Trapezoidal
 - b) Circular
 - c) Racetrack
 - d) Rectangular
- 4) In absolute encoding, Differential coils help:
 - a) Add a fail safe to the design
 - b) Create discrete output increments
 - c) Normalize the output signal
 - d) Increase design complexity

- 5) Select all that apply to incremental angle encoding
 - a) Power on state is easily determined
 - b) Resolution is defined by gap spacing on the target
 - c) Angle is defined by width of the target
 - d) Angle tracking is calculated using simple counter logic
- 6) Select all that apply to absolute angle encoding
 - a) Power on state is easily determined
 - b) Resolution is defined by gap spacing on the target
 - c) Angle is defined by width of the target
 - d) Angle tracking is calculated using simple counter logic

To find more inductive sensor resources and products, visit ti.com/sensors/specialty-sensors/inductive/products.html