COL380

Introduction to Parallel & Distributed Programming

Fast Merge (A,B)

- Select from A, elements i√n, i ∈ [0: √n)
- Rank each selected element of A in B

- → √n Parallel searches, use √n processors for each search
- Similarly rank √n selected elements from B in A
- · Recursively merge pairs of sub-sequences
 - → Total time: $T(n) = O(1)+T(\sqrt{n}) = O(\log \log n)$
 - → Total work: W(n) = O(n)+ \sqrt{n} W(\sqrt{n}) = O(n log log n)

Fast Merge (A,B)

- Select from A, elements i√n, i ∈ [0: √n)
- Rank each selected element of A in B

- → √n Parallel searches, use √n processors for each search
- Similarly rank √n selected elements from B in A
- · Recursively merge pairs of sub-sequences
 - → Total time: $T(n) = O(1)+T(\sqrt{n}) = O(\log \log n)$
 - → Total work: W(n) = O(n)+ \sqrt{n} W(\sqrt{n}) = O(n log log n)

Min-find

Input: array A with n elements

Algorithm A1 using O(n²) processors:

CRCW

Input: array A with n elements

Algorithm A1 using O(n²) processors:

forall i in [0:n)
$$M[i] = 1$$

CRCW

Min-find

Input: array A with n elements

Algorithm A1 using O(n²) processors:

```
forall i in [0:n)
M[i] = 1
forall i,j in [0:n)
if i \neq j \&\& A[i] < A[j]
M[j] = 0
```

CRCW

Min-find

Input: array A with n elements

Algorithm A1 using O(n²) processors:

```
forall i in [0:n)
   M[i] = 1
forall i,j in [0:n)
   if i≠j && A[i] < A[j]
       M[j] = 0
forall i in (0:n]
   if M[i]==1
      min = A[i]
```


Input: array A with n elements

Algorithm A1 using O(n²) processors:

```
forall i in [0:n)
    M[i] = 1
forall i,j in [0:n)
   if i \neq j \&\& A[i] < A[j]
       M[j] = 0
forall i in (0:n]
   if M[i]==1
       min = A[i]
```


O(1) time, O(n²) work: Not optimal

Optimal Min-find

Balanced Binary tree

→ O(log n) time

- \rightarrow O(n) work => Optimal
- Make the tree branch quicker
 - → Number of children of node handling *n* items = \sqrt{n}
 - amounts to n leaves in this subtree
- Use Accelerated cascading

From n² processors to n√n

Algorithm A2

Step 1: Partition into disjoint blocks of size \sqrt{n}

Step 2: Apply A1 to each block

Step 3: Apply A1 to the results from the step 2

A2 work

$$n\sqrt{n}$$

n

From n√n processors to n¹+1/4

Algorithm A3

Step 1: Partition into disjoint blocks of size

Step 2: Apply A2 to each block

Step 3: Apply A2 to the results from the step 2

A3 work

$$n^{\frac{1}{2}}n^{\frac{3}{4}}$$

Algorithm A_{k+1}

- 1. Partition input array C (size n) into disjoint blocks of size $n^{1/2}$ each
- 2. Solve for each block in parallel using algorithm A_k
- 3. Re-apply A_k to the results of step 2: minimum of $n^{1/2}$ minima

$$A_1$$
 A_2 A_3 .. $n^2 \rightarrow n^{1+1/2} \rightarrow n^{1+1/4} \rightarrow n^{1+1/8} \rightarrow n^{1+1/2k}$.. $\sim n^{1+\epsilon}$

Algorithm A_{∞} takes ?? with $n^{1+\epsilon}$ processors

Doubly-log depth tree:
$$n^{\frac{1}{2^i}}$$
 = O(1) at leaf

Algorithm A_{k+1}

- 1. Partition input array C (size n) into disjoint blocks of size $n^{1/2}$ each
- 2. Solve for each block in parallel using algorithm A_k
- 3. Re-apply A_k to the results of step 2: minimum of $n^{1/2}$ minima

$$A_1$$
 A_2 A_3 .. $n^2 \rightarrow n^{1+1/2} \rightarrow n^{1+1/4} \rightarrow n^{1+1/8} \rightarrow n^{1+1/2k}$.. $\sim n^{1+\epsilon}$

Algorithm A_{∞} takes ?? with $n^{1+\epsilon}$ processors

Doubly-log depth tree:
$$n^{\frac{1}{2^i}}$$
 = O(1) at leaf

n loglog n work, loglog n time

Min-Find Review

- O(log n) Balanced tree approach
 - → O(n) work (Work-Optimal)
- Constant-time algorithm
 - \rightarrow O(n²) work
- · O(loglog n) Doubly-log depth tree approach
 - → O(n loglog n) work
 - → O(loglog n) time

Accelerated Cascading

- Solve recursively
- Start bottom-up with the optimal algorithm
 - until the problem sizes is smaller
- Switch to fast (non-optimal algorithm)
 - A few small problems solved fast but non-work-optimally
- Min Find:
 - Optimal algorithm for lower loglog n levels
 - Then switch to O(n loglog n)-work algorithm

o(n) work, O(loglog n) time

- Choose the pivot
 - → Select median?
- Subdivide into two groups
 - → Group sizes linearly related with high probability (expect log(n) rounds)
- Sort each independently in parallel

- Choose the pivot
 - → Select median?
- Subdivide into two groups
 - → Group sizes linearly related with high probability (expect log(n) rounds)
- Sort each independently in parallel

- Choose the pivot
 - → Select median?
- Subdivide into two groups
 - → Group sizes linearly related with high probability (expect log(n) rounds)
- Sort each independently in parallel

```
psum (1) 1 (2) 2 2 (3) (4) flag 1 0 1 0 0 1 1
```

- Choose the pivot
 - → Select median?
- Subdivide into two groups
 - → Group sizes linearly related with high probability (expect log(n) rounds)
- Sort each independently in parallel

- Choose the pivot
 - → Select median?
- Subdivide into two groups
 - → Group sizes linearly related with high probability (expect log(n) rounds)
- Sort each independently in parallel
- Time per round = O(log n)
- Work per round = O(n)

```
T(n) ~ T(n/2) + O(log n)
W(n) ~ 2W(n/2) + O(n)
```


(i - psum[i]) + psum[n-1]

Merge Sort

- Partition data into two halves
 - Assign half the processors to each half
- Sort each half in parallel
- Merge results in parallel

$$\rightarrow$$
 T(n) = T(n/2) + O(log log n)

→
$$W(n) = 2 W(n/2) + O(n)$$

$$T(n) = O(log n loglog n)$$

 $W(n) = n log n$

Sort each partition and Merge

(p processors)

$$W(n)/p + T(n) = O(((n lg n)/p + O((lg n lglg n)))$$

How efficiently can you merge?

Merge Sort

Divide into p groups

- → Locally sort each group
- → $n/p \log (n/p) = O((n \log n)/p)$

Parallel merge p groups

- → Binary tree: log(p) stages
 - @level 1: 2 processors merge two n/p size lists, each in O(n/p) time
 - ▶ @level i: 2i+1 processors merge two 2i n/p size lists, each in O(n/p + llg n/p) time
 - @root: p processors merge two n/2 size lists in O(n/p + llg n) time
- \rightarrow O(n/p lg p + lg p llg n) total time for mergers

Partition into p groups

Hyper Quick Sort

→ Sort each group independently in O(n/p log n) time

Sort n/p elements

Sort n/p elements

- → Sort each group independently in O(n/p log n) time
- Pivot = median of any one group (broadcast)
- Partition each group into "<pivot" and ">pivot" sets
 - → Binary search for pivot in (log n)

Sort n/p elements

- → Sort each group independently in O(n/p log n) time
- Pivot = median of any one group

p₀ de p₂

P₁ p₃

- · Partition each group into "<pivot" and ">pivot" sets
 - → Binary search for pivot in (log n)

Sort r/p
elements

Sort n/p
elements

- · Merge p/2 "<pivot" pairs, and p/2 ">pivot" pairs (pair-wise exchange)
 - → Each sequentially: O(n/p)

- → Sort each group independently in O(n/p log n) time
- Pivot = median of any one group
 - P₀ P₂

P1 P3

- Partition each group into "<pivot" and ">pivot" sets
 - → Binary search for pivot in (log n)
- Sort r/p elements Sort n/p elements
- Merge p/2 "<pivot" pairs, and p/2 ">pivot" pairs (pair-wise exchange)
 - → Each sequentially: O(n/p)
- Low = p/2 "<pivot" lists; High = p/2 ">pivot" lists
 - → Recurse on Low with p/2 processors and High with p/2 processors

P1

- → Sort each group independently in O(n/p log n) time
- Pivot = median of any one group
- p₀ d p₂

p3

- Partition each group into "<pivot" and ">pivot" sets
 - → Binary search for pivot in (log n)
- Sort r/p
 elements

 Sort n/p
 elements

- Merge p/2 "<pivot" pairs, and p/2 ">pivot" pairs (pair-wise exchange)
 - → Each sequentially: O(n/p)

- Low = p/2 "<pivot" lists; High = p/2 ">pivot" lists
 - → Recurse on Low with p/2 processors and High with p/2 processors

- → Sort each group independently in O(n/p log n) time
- Pivot = median of any one group
- p₀ d p₂

P1 P3

- Partition each group into "<pivot" and ">pivot" sets
 - → Binary search for pivot in (log n)
- Sort r/p
 elements

 Sort n/p
 elements
- Merge p/2 "<pivot" pairs, and p/2 ">pivot" pairs (pair-wise exchange)
 - → Each sequentially: O(n/p)

- Low = p/2 "<pivot" lists; High = p/2 ">pivot" lists
 - → Recurse on Low with p/2 processors and High with p/2 processors

- → Sort each group independently in O(n/p log n) time
- Pivot = median of any one group
- po de pa

P1 P3

- Partition each group into "<pivot" and ">pivot" sets
 - → Binary search for pivot in (log n)
- Sort r/p
 elements

 Sort n/p
 elements

- Merge p/2 "<pivot" pairs, and p/2 ">pivot" pairs (pair-wise exchange)
 - → Each sequentially: O(n/p)
- Low = p/2 "<pivot" lists; High = p/2 ">pivot" lists

→ Recurse on Low with p/2 processors and High with p/2 processors

P1

- → Sort each group independently in O(n/p log n) time
- Pivot = median of any one group
- po de pa

p3

- Partition each group into "<pivot" and ">pivot" sets
 - → Binary search for pivot in (log n)
- Sort r/p
 elements

 Sort n/p
 elements

- Merge p/2 "<pivot" pairs, and p/2 ">pivot" pairs (pair-wise exchange)
 - → Each sequentially: O(n/p)

- Low = p/2 "<pivot" lists; High = p/2 ">pivot" lists
 - → Recurse on Low with p/2 processors and High with p/2 processors

- → Sort each group independently in O(n/p log n) time
- Pivot = median of any one group
- p₀ d p₂

P1 P3

- Partition each group into "<pivot" and ">pivot" sets
 - → Binary search for pivot in (log n)
- Sort r/p
 elements

 Sort n/p
 elements

- Merge p/2 "<pivot" pairs, and p/2 ">pivot" pairs (pair-wise exchange)
 - → Each sequentially: O(n/p)

- Low = p/2 "<pivot" lists; High = p/2 ">pivot" lists
 - → Recurse on Low with p/2 processors and High with p/2 processors

- → Sort each group independently in O(n/p log n) time
- Pivot = median of any one group
- po de pa

P1 P3

- · Partition each group into "<pivot" and ">pivot" sets
 - → Binary search for pivot in (log n)
- Sort r/p
 elements

 Sort n/p
 elements
- Merge p/2 "<pivot" pairs, and p/2 ">pivot" pairs (pair-wise exchange)
 - → Each sequentially: O(n/p)
- Low = p/2 "<pivot" lists; High = p/2 ">pivot" lists

O(n/p log n) expected

→ Recurse on Low with p/2 processors and High with p/2 processors

Parallel Bucket Sort

- Divide the range [a,b] of numbers into p sub-ranges
- Partition input into p equal-sized blocks
- Processor p_j sorts the elements in block j into p bins
 - \rightarrow bin k for sub-range k
 - → "Send" *i*th bucket to p_i
- p_i collects bucket *i* from all processors
 - → For uniformly distributed input, expected bucket size is uniform
- Processor p_i locally sorts bucket i

Parallel Bucket Sort

- Divide the range [a,b] of numbers into p sub-ranges
- Partition input into p equal-sized blocks

 $O(n/p \log n/p + p \log p)$?

- Processor p_j sorts the elements in block j into p bins
 - \rightarrow bin k for sub-range k
 - → "Send" *i*th bucket to p_i
- p_i collects bucket *i* from all processors
 - → For uniformly distributed input, expected bucket size is uniform
- Processor p_i locally sorts bucket i

Real risk of load imbalance

Parallel Bucket Sort

- Divide the range [a,b] of numbers into p sub-ranges
- Partition input into p equal-sized blocks

 $O(n/p \log n/p + p \log p)$?

- Processor p_j sorts the elements in block j into p bins
 - \rightarrow bin k for sub-range k
 - \rightarrow "Send" i^{th} bucket to p_i

Choose evenly separated splitters from data for bucketing Choose a sample of sufficient size s

Sort the samples

Choose **B-1** evenly spaced samples

- p_i collects bucket i from all processors
 - → For uniformly distributed input, expected bucket size is uniform
- Processor p_i locally sorts bucket i

Real risk of load imbalance

Parallel Splitter Selection

- Partition n elements equally into B blocks
- (Quick)Sort each block
- From each sorted block:
 - → Choose B-1 evenly spaced samples
- Sort B*(B-1) samples
 - → Choose B-1 evenly spaced **splitters**
- Arrange elements by bucket in output array
 - → No bucket contains more than 2*n/B elements

Parallel Splitter Selection

- Partition n elements equally into B blocks
- · (Quick)Sort each block

(n/B log n/B)

- From each sorted block:
 - → Choose B-1 evenly spaced samples
- Sort B*(B-1) samples

(B² log B)

- → Choose B-1 evenly spaced **splitters**
- Arrange elements by bucket in output array (n/B + B log B)
 - → No bucket contains more than 2*n/B elements

For each input element

- → Find its bucket: Binary search Splitters
- Count the number of elements in each bucket
 - → Find destination using B-1 prefix sums
 - → Destination[i] = exclusive psum[i]
- Reserve space per bucket
- For each input element
 - → Write in element i output bucket at Destination[i]

Arrange Elements

 $(n/B + B \log B)$

Find Roots in a Forest

- p(i): parent of node i
- Do in parallel

$$- p(i) = p(p(i))$$

- Stop if p(i) = i
- Time: log(height)
- Work: n log(height)

Find Roots in a Forest

- p(i): parent of node i
- Do in parallel

$$- p(i) = p(p(i))$$

- Stop if p(i) = i
- Time: log(height)
- Work: n log(height)

Find Roots in a Forest

- p(i): parent of node i
- Do in parallel

$$- p(i) = p(p(i))$$

- Stop if p(i) = i
- Time: log(height)
- Work: n log(height)

Pointer Jumping

- · Progressively push computation to all elements at a given distance
 - → Doubling the distance at each step
 - → After k steps the computation has been performed for elements within a distance of 2k
- Applies to array, list, tree

Parallel Data Structures

- · Linked List, Skip lists, Trees, Heap
- Parallelize single operation
- Parallelize k operations
- Concurrent operations
 - → Lock at low granularity
 - → Lock-free operations
 - → Lazy deletions
- Modify algorithm to avoid serializing data structures

Binomial Tree

- B₀: single node (Root)
- B_k : Root with k binomial subtrees, $B_0 \dots B_{k-1}$

Binomial Tree

- B₀: single node (Root)
- B_k : Root with k binomial subtrees, $B_0 \dots B_{k-1}$

Parallel Priority Queue

- A binomial tree of rank r contains exactly 2^r nodes
- A node of rank r contains one son of each rank i, 0 <= i < r
- Heap ordered: node-key ≥ parent-key
- A forest of binomial trees
- Exactly 1, 2, or 3 trees of each rank up to 1+log n
- The minimum root of rank i is smaller than the roots of higher rank
 - → Minimum root of rank 0 is the minimum element

Forest Operation: PARLINK

· for each i

- → If there are ≥3 roots
 - ▶ Link two <u>non-minimum</u> trees to make a tree of rank i+1
- → If there were 3 (or more) of this rank
 - the count decreases by at least 1
- → Otherwise, the count increases by at most 1

Forest Operation: PARLINK

- for each i
 - → If there are ≥3 roots
 - ▶ Link two non-minimum trees to make a tree of rank i+1
 - → If there were 3 (or more) of this rank
 - the count decreases by at least 1
 - → Otherwise, the count increases by at most 1

O(1), O(log n) processors

Forest Operation: PARUNLINK

· for each i

- → Unlink the minimum root for each rank *i* (from its rank i-1 child)
 - creating two trees of rank *i*-1
- → The number of trees of rank i increases by at most 1
 - Except rank 0, which can increase by 2
- → The new minimum for rank i ≤ old minimum at rank i+1

Forest Operation: PARUNLINK

for each i

- → Unlink the minimum root for each rank *i* (from its rank i-1 child)
 - creating two trees of rank *i*-1
- → The number of trees of rank i increases by at most 1
 - Except rank 0, which can increase by 2
- → The new minimum for rank i ≤ old minimum at rank i+1

O(1), O(log n) processors

Priority Queue

INSERT

- → Create a new tree of rank 0 with the element
- → PARLINK

EXTRACTMIN

- → Remove min root of rank 0
- → PARUNLINK
- → PARLINK
 - To ensure no more than 3 trees of any rank