Package 'motifcluster'

August 15, 2022

Title Motif-Based Spectral Clustering of Weighted Directed Networks

Version 0.2.2
Description Tools for spectral clustering of weighted directed networks using motif adjacency matrices. Methods perform well on large and sparse networks, and random sampling methods for generating weighted directed networks are also provided. Based on methodology detailed in Underwood, Elliott and Cucuringu (2020) <arxiv:2004.01293>.</arxiv:2004.01293>
<pre>URL https://github.com/wgunderwood/motifcluster</pre>
Language en-US
BugReports https://github.com/wgunderwood/motifcluster/issues
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1
Depends R (>= $3.6.0$)
Imports igraph (>= 1.2.5), Matrix (>= 1.2), RSpectra (>= 0.16.0)
Suggests covr ($>= 3.5.0$),
knitr (>= 1.28), mclust (>= 5.4.6),
rmarkdown (≥ 2.1),
testthat ($>= 2.3.2$)
VignetteBuilder knitr
R topics documented:
build_laplacian
get_motif_names

2 build_laplacian

kmeanspp	 																5	
random_sparse_matrix	 																6)
run_laplace_embedding	 																6	ì
run_motif_clustering .	 																7	
run_motif_embedding .	 																8	į
sample_bsbm	 																10)
sample_dsbm	 																11	

12

build_laplacian

Build a Laplacian matrix

Description

Index

Build a Laplacian matrix (combinatorial Laplacian or random-walk Laplacian) from a symmetric (weighted) graph adjacency matrix.

Usage

```
build_laplacian(adj_mat, type_lap = c("comb", "rw"))
```

Arguments

adj_mat Symmetric adjacency matrix from which to build the Laplacian.

type_lap Type of Laplacian to build. One of "comb" (combinatorial) or "rw" (randomwalk).

Value

The specified Laplacian matrix.

Examples

```
adj_mat <- matrix(c(1:9), nrow = 3)
build_laplacian(adj_mat, "rw")</pre>
```

Description

Build a motif adjacency matrix from an adjacency matrix.

Usage

```
build_motif_adjacency_matrix(
   adj_mat,
   motif_name,
   motif_type = c("struc", "func"),
   mam_weight_type = c("unweighted", "mean", "poisson"),
   mam_method = c("sparse", "dense")
)
```

Arguments

```
adj_mat Adjacency matrix from which to build the motif adjacency matrix.

motif_name Motif used for the motif adjacency matrix.

motif_type Type of motif adjacency matrix to build. One of "func" or "struc".

mam_weight_type
The weighting scheme to use. One of "unweighted", "mean" or "product".

mam_method Which formulation to use. One of "dense" or "sparse". The sparse formulation avoids generating large dense matrices so tends to be faster for large sparse graphs.
```

Details

Entry (i, j) of a motif adjacency matrix is the sum of the weights of all motifs containing both nodes i and j. The motif is specified by name and the type of motif instance can be one of:

- Functional: motifs should appear as subgraphs.
- Structural: motifs should appear as induced subgraphs.

The weighting scheme can be one of:

- Unweighted: the weight of any motif instance is one.
- Mean: the weight of any motif instance is the mean of its edge weights.
- Product: the weight of any motif instance is the product of its edge weights.

Value

A motif adjacency matrix.

get_motif_names

Examples

```
adj_mat <- matrix(c(1:9), nrow = 3)
build_motif_adjacency_matrix(adj_mat, "M1", "func", "mean")</pre>
```

```
get_largest_component
```

Get largest connected component

Description

Get the indices of the vertices in the largest connected component of a graph from its adjacency matrix.

Usage

```
get_largest_component(adj_mat)
```

Arguments

adj_mat

An adjacency matrix of a graph.

Value

A vector of indices corresponding to the vertices in the largest connected component.

Examples

```
adj_mat <- matrix(c(0, 1, 0, 0, 0, 0, 0, 0, 0), nrow = 3)
get_largest_component(adj_mat)
```

```
get_motif_names
```

Get common motif names

Description

Get the names of some common motifs as strings.

Usage

```
get_motif_names()
```

Value

A vector of names (strings) of common motifs.

kmeanspp 5

kmeanspp kmeans++ cluster	rıng	ıg
---------------------------	------	----

Description

Use the kmeans++ algorithm to cluster points into k clusters, as implemented in the deprecated LICORS package, using the built-in function kmeans.

Usage

```
kmeanspp(data, k = 2, iter.max = 100, nstart = 10, ...)
```

Arguments

data An $N \times d$ matrix, where there are N samples in dimension d.

k The number of clusters.

iter.max The maximum number of iterations.

nstart The number of restarts.

Additional arguments passed to kmeans.

Value

A list with 9 entries:

- cluster: A vector of integers from 1:k indicating the cluster to which each point is allocated.
- centers: A matrix of cluster centers.
- totss: The total sum of squares.
- withinss: Vector of within-cluster sum of squares, one component per cluster.
- tot.withinss: Total within-cluster sum of squares, i.e.sum(withinss).
- betweenss: The between-cluster sum of squares, i.e.totss-tot.withinss.
- size: The number of points in each cluster.
- ullet iter: The number of (outer) iterations.
- ifault: An integer indicator of a possible algorithm problem.
- initial.centers: The initial centers used.

References

Arthur, D. and S. Vassilvitskii (2007). "k-means++: The advantages of careful seeding." In H. Gabow (Ed.), Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms [SODA07], Philadelphia, pp. 1027-1035. Society for Industrial and Applied Mathematics.

See Also

kmeans

Examples

```
set.seed(1984)
n <- 100
X = matrix(rnorm(n), ncol = 2)
Y = matrix(runif(length(X)*2, -1, 1), ncol = ncol(X))
Z = rbind(X, Y)
cluster_Z = kmeanspp(Z, k = 5)</pre>
```

```
random_sparse_matrix
```

Build a random sparse matrix

Description

Build a sparse matrix of size m * n with non-zero probability p. Edge weights can be unweighted, constant-weighted or Poisson-weighted.

Usage

```
random_sparse_matrix(m, n, p, sample_weight_type = "constant", w = 1)
```

Arguments

Value

A random sparse matrix.

```
run_laplace_embedding

Run Laplace embedding
```

Description

Run Laplace embedding on a symmetric (weighted) adjacency matrix with a specified number of eigenvalues and eigenvectors.

Usage

```
run_laplace_embedding(adj_mat, num_eigs, type_lap = c("comb", "rw"))
```

run_motif_clustering 7

Arguments

adj_mat	Symmetric adjacency matrix to be embedded.
num_eigs	Number of eigenvalues and eigenvectors for the embedding.
type_lap	Type of Laplacian for the embedding. One of "comb" (combinatorial) or "rw" (random-walk).

Value

A list with two entries: vals contains the length-num_eigs vector of the first few eigenvalues of the Laplacian, and vects contains an nrow(adj_mat) by num_eigs matrix of the associated eigenvectors.

Examples

```
adj_mat <- matrix(c(1:9), nrow = 3)
run_laplace_embedding(adj_mat, 2, "rw")</pre>
```

```
run_motif_clustering
```

Run motif-based clustering

Description

Run motif-based clustering on the adjacency matrix of a (weighted directed) network, using a specified motif, motif type, weighting scheme, embedding dimension, number of clusters and Laplacian type.

Usage

```
run_motif_clustering(
   adj_mat,
   motif_name,
   motif_type = c("struc", "func"),
   mam_weight_type = c("unweighted", "mean", "product"),
   mam_method = c("sparse", "dense"),
   num_eigs = 2,
   type_lap = c("comb", "rw"),
   restrict = TRUE,
   num_clusts = 2
)
```

Arguments

```
adj_mat Adjacency matrix to be embedded.

motif_name Motif used for the motif adjacency matrix.

motif_type Type of motif adjacency matrix to use. One of "func" or "struc".
```

mam_weight_t	уре
	Weighting scheme for the motif adjacency matrix. One of "unweighted", "mean" or "product".
mam_method	The method to use for building the motif adjacency matrix. One of "sparse" or "dense".
num_eigs	Number of eigenvalues and eigenvectors for the embedding.
type_lap	Type of Laplacian for the embedding. One of "comb" or "rw".
restrict	Whether or not to restrict the motif adjacency matrix to its largest connected component before embedding.
num clusts	The number of clusters to find.

Value

A list with 8 entries:

- adj_mat: the original adjacency matrix.
- motif_adj_mat: the motif adjacency matrix.
- comps: the indices of the largest connected component of the motif adjacency matrix (if restrict = TRUE).
- adj_mat_comps: the original adjacency matrix restricted to the largest connected component of the motif adjacency matrix (if restrict = TRUE).
- motif_adj_mat_comps: the motif adjacency matrix restricted to its largest connected component (if restrict = TRUE).
- vals: a length-num_eigs vector containing the eigenvalues associated with the Laplace embedding of the (restricted) motif adjacency matrix.
- vects: a matrix containing the eigenvectors associated with the Laplace embedding of the (restricted) motif adjacency matrix.
- clusts: a vector containing integers representing the cluster assignment of each vertex in the (restricted) graph.

Examples

```
adj_mat <- matrix(c(1:16), nrow = 4)
run_motif_clustering(adj_mat, "M1", "func")</pre>
```

```
run_motif_embedding
```

Run motif embedding

Description

Calculate a motif adjacency matrix for a given motif and motif type, restrict it to its largest connected component, and then run Laplace embedding with specified Laplacian type and number of eigenvalues and eigenvectors.

run_motif_embedding

9

Usage

```
run_motif_embedding(
  adj_mat,
  motif_name,
  motif_type = c("struc", "func"),
  mam_weight_type = c("unweighted", "mean", "product"),
  mam_method = c("sparse", "dense"),
  num_eigs = 2,
  type_lap = c("comb", "rw"),
  restrict = TRUE
)
```

Arguments

adj_mat	Adjacency matrix to be embedded.
motif_name	Motif used for the motif adjacency matrix.
motif_type	Type of motif adjacency matrix to use. One of "func" or "struc".
mam_weight_t	ype
	Weighting scheme for the motif adjacency matrix. One of "unweighted", "mean" or "product".
mam_method	The method to use for building the motif adjacency matrix. One of "sparse" or "dense".
num_eigs	Number of eigenvalues and eigenvectors for the embedding.
type_lap	Type of Laplacian for the embedding. One of "comb" or "rw".
restrict	Whether or not to restrict the motif adjacency matrix to its largest connected component before embedding.

Value

A list with 7 entries:

- adj_mat: the original adjacency matrix.
- motif_adj_mat: the motif adjacency matrix.
- comps: the indices of the largest connected component of the motif adjacency matrix (if restrict = TRUE).
- adj_mat_comps: the original adjacency matrix restricted to the largest connected component of the motif adjacency matrix (if restrict = TRUE).
- motif_adj_mat_comps: the motif adjacency matrix restricted to its largest connected component (if restrict = TRUE).
- vals: a length-num_eigs vector containing the eigenvalues associated with the Laplace embedding of the (restricted) motif adjacency matrix.
- vects: a matrix containing the eigenvectors associated with the Laplace embedding of the (restricted) motif adjacency matrix.

10 sample_bsbm

Examples

```
adj_mat <- matrix(c(1:9), nrow = 3)
run_motif_embedding(adj_mat, "M1", "func")</pre>
```

sample_bsbm

Sample a bipartite stochastic block model (BSBM)

Description

Sample the (weighted) adjacency matrix of a (weighted) bipartite stochastic block model (BSBM) with specified parameters.

Usage

```
sample_bsbm(
  source_block_sizes,
  dest_block_sizes,
  bipartite_connection_matrix,
  bipartite_weight_matrix = NULL,
  sample_weight_type = c("unweighted", "constant", "poisson")
)
```

Arguments

```
Source_block_sizes

A vector containing the size of each block of source vertices.

dest_block_sizes

A vector containing the size of each block of destination vertices.
```

bipartite_connection_matrix

A matrix containing the source block to destination block connection probabilities.

bipartite_weight_matrix

A matrix containing the source block to destination block weight parameters. Unused for sample_weight_type = "constant". Defaults to NULL.

sample_weight_type

The type of weighting scheme. One of "unweighted", "constant" or "poisson".

Value

A randomly sampled (weighted) adjacency matrix of a BSBM.

sample_dsbm 11

Examples

sample_dsbm

Sample a directed stochastic block model (DSBM)

Description

Sample the (weighted) adjacency matrix of a (weighted) directed stochastic block model (DSBM) with specified parameters.

Usage

```
sample_dsbm(
  block_sizes,
  connection_matrix,
  weight_matrix = NULL,
  sample_weight_type = c("unweighted", "constant", "poisson")
)
```

Arguments

Value

A randomly sampled (weighted) adjacency matrix of a DSBM.

Examples

```
block_sizes <- c(10, 10)
connection_matrix <- matrix(c(0.8, 0.1, 0.1, 0.8), nrow = 2, byrow = TRUE)
weight_matrix <- matrix(c(10, 3, 3, 10), nrow = 2, byrow = TRUE)
sample_dsbm(block_sizes, connection_matrix, weight_matrix, "poisson")</pre>
```

Index

```
build_laplacian, 2
build_motif_adjacency_matrix, 3

get_largest_component, 4
get_motif_names, 4

kmeans, 5
kmeanspp, 5

random_sparse_matrix, 6
run_laplace_embedding, 6
run_motif_clustering, 7
run_motif_embedding, 8

sample_bsbm, 10
sample_dsbm, 11
```