Assignment no: 1

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.ensemble import RandomForestClassifier

from sklearn.impute import SimpleImputer

from sklearn.metrics import r2_score, mean_squared_error

from scipy import stats

In [124]:

df=pd.read_csv('uber.csv')

In [125]:

df.head()

Out[125]:

	Unn ame d: 0	key	fare_a moun t	pickup_ datetim e	pickup_l ongitud e	pickup _latitu de	dropoff_ longitud e	dropoff _latitud e	passeng er_coun t
0	2423 8194	2015-05- 07 19:52:06. 0000003	7.5	2015- 05-07 19:52:0 6 UTC	- 73.9998 17	40.738 354	- 73.9995 12	40.7232 17	1

	Unn ame d: 0	key	fare_a moun t	pickup_ datetim e	pickup_l ongitud e	pickup _latitu de	dropoff_ longitud e	dropoff _latitud e	passeng er_coun t
1	2783 5199	2009-07- 17 20:04:56. 0000002	7.7	2009- 07-17 20:04:5 6 UTC	- 73.9943 55	40.728 225	- 73.9947 10	40.7503 25	1
2	4498 4355	2009-08- 24 21:45:00. 00000061	12.9	2009- 08-24 21:45:0 0 UTC	- 74.0050 43	40.740 770	- 73.9625 65	40.7726 47	1
3	2589 4730	2009-06- 26 08:22:21. 0000001	5.3	2009- 06-26 08:22:2 1 UTC	- 73.9761 24	40.790 844	- 73.9653 16	40.8033 49	3
4	1761 0152	2014-08- 28 17:47:00. 00000018	16.0	2014- 08-28 17:47:0 0 UTC	- 73.9250 23	40.744 085	- 73.9730 82	40.7612 47	5

In [126]:

df.isnull().sum()

Out[126]:

Unnamed: 0 0

key 0

fare_amount 0

pickup_datetime 0

pickup_longitude 0

pickup_latitude 0

dropoff_longitude 1

dropoff_latitude 1

passenger_count 0

dtype: int64

In [127]:

```
df['pickup_datetime']=pd.to_datetime(df['pickup_datetime'])
In [128]:
numeric_columns = df.select_dtypes(include=[np.number]).columns
imputer = SimpleImputer(strategy='mean')
df[numeric_columns] = imputer.fit_transform(df[numeric_columns])
In [129]:
df.dropna(subset=['fare_amount'],inplace=True)
In [130]:
df['pickup_year']=df['pickup_datetime'].dt.year
df['pickup_month']=df['pickup_datetime'].dt.month
df['pickup_day']=df['pickup_datetime'].dt.day
df['pickup_hour']=df['pickup_datetime'].dt.hour
In [131]:
df.drop(columns=['pickup_datetime','key'],inplace=True)
In [132]:
corr_matrix=df.corr()
plt.figure(figsize=(10,8))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.show()
```


In [133]:

X = [[1], [2], [3], [4]]

y = [1, 2, 3, 4]

In [134]:

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

In [135]:

Ir_model=LinearRegression()

In [136]:

lr_model.fit(x_train, y_train)

y_pred_lr = lr_model.predict(x_test)

In [137]:

rf_model = RandomForestClassifier()

In [138]:

```
rf_model.fit(x_train, y_train)
y_pred_rf = rf_model.predict(x_test)
In [139]:
r2_lr = r2_score(y_test, y_pred_lr)
rmse_lr = np.sqrt(mean_squared_error(y_test, y_pred_lr))
r2_rf = r2_score(y_test, y_pred_rf)
rmse_rf = np.sqrt(mean_squared_error(y_test, y_pred_rf))
C:\Users\hp\anaconda3\Lib\site-packages\sklearn\metrics\_regression.py:996:
UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.
warnings.warn(msg, UndefinedMetricWarning)
C:\Users\hp\anaconda3\Lib\site-packages\sklearn\metrics\_regression.py:996:
UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.
warnings.warn(msg, UndefinedMetricWarning)
In [140]:
print("Linear Regression R2:", r2 lr, " RMSE:", rmse lr)
print("Random Forest R2:", r2 rf, " RMSE:", rmse rf)
Linear Regression R2: nan RMSE: 0.0
Random Forest R2: nan RMSE: 1.0
In [ ]:
```