

- 4 Integrated Circuit Technology
- 4.1 CMOS Manufacturing Process / CMOS Process Modules
- 4.2 Specific Aspects of sub 100 nm CMOS Technology
- 4.3 Alternative Transistor Concepts



## **Possible Future Transistor Options**

- Advanced Channel Materials
  - III-V and Ge channel materials
- Multi-Gate Fin Transistors
  - Non planar architecture
- Tunnel Transistors
  - New transport mechanism

Each transistor structure has many significant challenges which will have to be successfully addressed if it is to become a serious contender to silicon MOSFET



## **III-V Materials for NMOS Channel?**

- + Low m\* Γ valley ⇒ High υ<sub>inj</sub>
- Low m\* Γ valley ⇒ Low m<sub>DOS</sub>
  ⇒ Low Q<sub>INIV</sub>
- 2-D Quantization:
  - ⇒ Charge transfer from low mass Γ to high mass X & L valleys
  - $\Rightarrow$  Lowers  $\upsilon_{inj}$
- Low Eg ⇒ Large loff (junction)
- High ε ⇒ Poor SCE

Projecting III-V NMOS performance based on simplistic models could lead to erroneous performance assessment.

| Properties of some NMOS candidates |                            |      |      |       |        |        |  |  |  |
|------------------------------------|----------------------------|------|------|-------|--------|--------|--|--|--|
|                                    | Material/P<br>roperty      | Si   | Ge   | GaAs  | InAs   | InSb   |  |  |  |
|                                    | m <sub>eff</sub> *         | 0.19 | 0.08 | 0.067 | 0.023  | 0.014  |  |  |  |
|                                    | μ <sub>n</sub><br>(cm²/Vs) | 1600 | 3900 | 9200  | 40,000 | 77,000 |  |  |  |
|                                    | E <sub>G</sub> (eV)        | 1.12 | 0.66 | 1.42  | 0.36   | 0.17   |  |  |  |
|                                    | ε <sub>r</sub>             | 11.8 | 16   | 12.4  | 14.8   | 17.7   |  |  |  |



K. Saraswat et.al., IEDM 2006

SCE: short channel effect





## The Grand Challenges for III-V CMOS





### Ge Transistor- Back to the Future?

#### Advantages:

- + Best hole mobility (unlike III-V)
- + Si(Ge) already used in logic tech
- + Col-IV: Non-Polar

#### Challenges:

- Reference device is highly strained silicon
- Poor HiK interface:
  - \* Need better understanding
  - \* Buried strained QW Ge
- Higher dielectric constant
  - \* Poorer SCE
- Worse parasitic resistance
  - \* Worse dopant activation

| Material ⇒ Property ↓ | Si   | Ge   | GaAs  | InAs  | InSb  |
|-----------------------|------|------|-------|-------|-------|
| Electron<br>mobility  | 1600 | 3900 | 9200  | 40000 | 77000 |
| Hole mobility         | 430  | 1900 | 400   | 500   | 850   |
| Bandgap (eV)          | 1.12 | 0.66 | 1.424 | 0.36  | 0.17  |
| Dielectric constant   | 11.8 | 16   | 12.4  | 14.8  | 17.7  |

K. Saraswat et.al., IEDM 2006.

#### **Buried Strained Ge Quantum Well**



(U. Tokyo, APL 2002)





# **Possible Future Transistor Options**

- Advanced Channel Materials
  - III-V and Ge channel materials



- Multi-Gate Fin Transistors
  - Non planar architecture
- Tunnel Transistors
  - New transport mechanism

Each transistor structure has many significant challenges which will have to be successfully addressed if it is to become a serious contender to silicon MOSFET



## **Multi-Gate Transistor Architecture**

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = \frac{q N_A}{\varepsilon_{Si}}$$

Source <sub>V=0</sub>



#### **Multi-Gate Transistors have better SCE:**

- Gates reduce spread of V<sub>drain</sub>
   Enables lower threshold voltage (†I<sub>D</sub>)
- Enable lower channel doping (†μ)

#### **Multi-Gate Transistors have lower E**<sub>FFF</sub>:

 Optimum gate work function is away from band-edge leading to lower Eeff (†μ)

SCE: short channel effect(s)  $E_{eff}$ : transverse (channel) electric field)



## **Multi-Gate Transistors Implementation**

#### **Multi-Gate Fin Transistor:**

- ++ Self Aligned structure for S/D
- -- Non-Planar structure





**Multi-Gate Fin Transistor** 





# Top Challenges for Multi-Gate Fin Transistors

- Implement High Strain in Fins?
  Planar Ref= Highly strained
  4-5x p-mobility enhancement
  High level of fin strain NOT
  published to date
- High Parasitics in Fin Transistors Narrow fins lead to high Rext Fin architecture may also lead to higher fringe capacitance
- Manufacturing worthy Patterning
  Fin, Gate and Spacer patterning
  will be extremely challenging in
  a manufacturing environment
- Design Device Z increments quantized



- Best published drive currents for Multi-Gate Fin Transistors are significantly lower than best published planar transistors to date
- Many significant challenges remain to be resolved for Fin Transistors



# **Possible Future Transistor Options**

- Advanced Channel Materials
  - III-V and Ge channel materials
- Multi-Gate Fin Transistors
  - Non planar architecture



- **Tunnel Transistors** 
  - New transport mechanism

Each transistor structure has many significant challenges which will have to be successfully addressed if it is to become a serious contender to silicon MOSFET



# Why we Need to Beat Sub-Threshold Slope of 60mV/decade?

### $I_D \sim (V_{CC} - V_{TH})$

At very low Vcc we need small V<sub>TH</sub> for reasonable drive

#### BUT

Sub-threshold slope is limited by thermal kT/q limit

→ loff increases exponentially with V<sub>TH</sub> scaling.

HOW TO BEAT kT/q limit?



Leakage current increases exponentially as device is scaled





# Ultimate Frontier: Overcoming Thermal kT/q Limit



Electrons go over a potential barrier. Leakage current is determined by the Boltzmann distribution or 60 mV/decade, limiting MOSFET, bipolar, graphene MOSFET...

How to overcome the limit:

Let electrons go through the energy barrier, not over it → Tunneling





## **Tunnel Transistor Concept and Challenges**



- Device behaves like reverse bias pin diode
- Positive Vgs induces electron electron channel
- Band bending allows tunneling at source channel interface → Gate controlled band tunneling
- BTBT Transistor suffer from extremely poor drive current
  - → Need materials with more efficient tunneling



W. Y. Choi et al. IEEE-EDL vol. 28, pp. 743-745, 2007

## **Integrated Circuit Technology New Transistor Concepts**

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.