Differentially Private Bayesian Inference

Anonymous Authors¹

Abstract

1. Setting up

The Bayesian inference process is denoted as BayesInfer(x, prior) taking an observed data set $x \in \mathcal{X}^n$ and a prior distribution as input, outputting a posterior distribution posterior. For conciseness, when prior is given, we use BayesInfer(x).

For now, we already have a prior distribution prior, an observed data set x.

1.1. Exponential Mechanism with Global Sensitivity

1.1.1. MECHANISM SET UP

In exponential mechanism, candidate set R can be obtained by enumerating $y \in \mathcal{X}^n$, i.e.

$$R = \{ \mathsf{BayesInfer}(y) \mid y \in \mathcal{X}^n \}.$$

Hellinger distance Hlg is used here to score these candidates. The utility function:

$$u(x,r) = -\mathsf{Hlg}(\mathsf{BayesInfer}(x),r); r \in R.$$
 (1)

Exponential mechanism with global sensitivity selects and outputs a candidate $r \in R$ with probability proportional to $exp(\frac{\epsilon u(x,r)}{2\Delta_{\sigma}u})$:

$$P[r] = \frac{exp(\frac{\epsilon u(x,r)}{2\Delta_g u})}{\sum_{r' \in R} exp(\frac{\epsilon u(x,r')}{2\Delta_g u})},$$

where global sensitivity is calculated by:

$$\Delta_g u = \mathsf{HIg}(\mathsf{BayesInfer}(x'), r) - \mathsf{HIg}(\mathsf{BayesInfer}(y'), r)|$$

$$\max_{\{|x',y'|\leq 1; x',y'\in\mathcal{X}^n\}} \max_{\{r\in R\}}.$$

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

1.1.2. SECURITY ANALYSIS

It can be proved that exponential mechanism with global sensitivity is ϵ -differentially private. We denote the BayesInfer with privacy mechanism as PrivInfer. For adjacent data set $||x,y||_1=1$:

$$\begin{split} &\frac{P[\mathsf{PrivInfer}(x,u,R)=r]}{P[\mathsf{PrivInfer}(y,u,R)=r]} \\ &= \frac{\frac{exp(\frac{\epsilon u(x,r')}{2\Delta_g u})}{\sum_{r' \in R} \frac{exp(\frac{\epsilon u(x,r')}{2\Delta_g u})}{2\Delta_g u}}}{\frac{exp(\frac{\epsilon u(y,r')}{2\Delta_g u})}{\sum_{r' \in R} \frac{exp(\frac{\epsilon u(y,r')}{2\Delta_g u})}{2\Delta_g u}}} \\ &= \left(\frac{exp(\frac{\epsilon u(y,r)}{2\Delta_g u})}{\sum_{r' \in R} \frac{exp(\frac{\epsilon u(y,r')}{2\Delta_g u})}{2\Delta_g u}}\right) \cdot \left(\frac{\sum_{r' \in R} \frac{exp(\frac{\epsilon u(x,r')}{2\Delta_g u})}{2\Delta_g u}}{\sum_{r' \in R} \frac{exp(\frac{\epsilon u(x,r')}{2\Delta_g u})}{2\Delta_g u}}\right) \\ &= exp\left(\frac{\epsilon(u(x,r)-u(y,r))}{2\Delta_g u}\right) \\ &\cdot \left(\frac{\sum_{r' \in R} \frac{exp(\frac{\epsilon u(y,r')}{2\Delta_g u})}{2\Delta_g u}}\right) \\ &\leq exp(\frac{\epsilon}{2}) \cdot exp(\frac{\epsilon}{2}) \cdot \left(\frac{\sum_{r' \in R} \frac{exp(\frac{\epsilon u(x,r')}{2\Delta_g u})}{2\Delta_g u}}\right) \\ &= exp(\epsilon). \end{split}$$

Then, $\frac{P[\mathsf{PrivInfer}(x,u,R)=r]}{P[\mathsf{PrivInfer}(y,u,R)=r]} \ge exp(-\epsilon)$ can be obtained by symmetry.

1.2. Exponential Mechanism with Local Sensitivity

1.2.1. MECHANISM SET UP

Exponential mechanism with local sensitivity share the same candidate set and utility function as it with global sensitivity. This outputs a candidate $r \in R$ with probability proportional to $exp(\frac{\epsilon u(x,r)}{2\Delta_1 u})$:

$$P[r] = \frac{exp(\frac{\epsilon u(x,r)}{2\Delta_l u})}{\sum_{r' \in R} exp(\frac{\epsilon u(x,r')}{2\Delta_l u})},$$

where local sensitivity is calculated by:

¹Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author <anon.email@domain.com>.

 $\Delta_l u(x) = \mathsf{Hlg}(\mathsf{BayesInfer}(x), r) - \mathsf{Hlg}(\mathsf{BayesInfer}(y'), r)$

We will then prove that exponential mechanism with local

 $= exp\left(\frac{\epsilon u(x,r)}{2\Delta_l u(x)} - \frac{\epsilon u(y,r)}{2\Delta_l u(y)}\right) \cdot \left(\frac{\sum\limits_{r' \in R} exp(\frac{\epsilon u(y,r')}{2\Delta_l u(y)})}{\sum\limits_{r' \in R} exp(\frac{\epsilon u(x,r')}{2\Delta_l u(x)})}\right)$

Without loss of generality, we consider the case that $\Delta_l u(y) < \Delta_l u(x), \quad r = arg(\max_{r' \in R} \{u(x, r')\}) =$

 $arg(\min_{r'\in R}\{u(y,r')\})$ and $\Delta_l u(y) = u(x,r) - u(y,r)$. We

 $=exp(\frac{\epsilon}{2}(\frac{u(x,r)+u(y,r)}{\Delta_l u(x)}-\frac{u(x,r)+u(y,r)}{\Delta_l u(y)})).$

From Eq. 1, $\{u(x,r')\leq 0|r'\in R\}$ and $\{u(y,r')\leq 0|r'\in R\}$, we can infer that $r=arg(\max_{r\in R}\{u(x,r')\})=$

BayesInfer(x) and u(x,r) = 0.From $\Delta_l u(y) = u(x,r)$ –

u(y,r), we can also infer that $\Delta_l u(y) = -u(y,r)$. Then,

the following relationship between u(x,r), u(y,r), $\Delta_l u(x)$

 $-\Delta_I u(x) < \Delta_I u(y)$

 $\Delta_l u(x) - \Delta_l u(y) < 2\Delta_l u(x)$

 $-\Delta_l u(y)(\Delta_l u(y) - \Delta_l u(x)) < 2\Delta_l u(x)\Delta_l u(y)$

 $u(y,r)(\Delta_l u(y) - \Delta_l u(x)) < 2\Delta_l u(x)\Delta_l u(y)$

1.2.2. SECURITY ANALYSIS

 $\frac{P[\mathsf{PrivInfer}(x,u,R)=r]}{P[\mathsf{PrivInfer}(y,u,R)=r]}$

sensitivity is non-differentialy private.

 $= \frac{\sum\limits_{r' \in R} exp(\frac{\epsilon u(x,r)}{2\Delta_l u(x)} + \frac{\epsilon u(y,r')}{2\Delta_l u(y)})}{\sum\limits_{r' \in R} exp(\frac{\epsilon u(y,r)}{2\Delta_l u(y)} + \frac{\epsilon u(x,r')}{2\Delta_l u(x)})}.$

 $\frac{\sum\limits_{r' \in R} exp(\frac{\epsilon u(x,r)}{2\Delta_l u(x)} + \frac{\epsilon u(y,r')}{2\Delta_l u(y)})}{\sum\limits_{r' \in R} exp(\frac{\epsilon u(y,r)}{2\Delta_l u(y)} + \frac{\epsilon u(x,r')}{2\Delta_l u(x)})}$

 $> \frac{\sum\limits_{r' \in R} exp(\frac{\epsilon(u(x,r) + u(y,r'))}{2\Delta_l u(x)})}{\sum\limits_{l \in R} exp(\frac{\epsilon(u(y,r) + u(x,r'))}{2\Delta_l u(y)})}$

 $> \frac{|R| \exp(\frac{\epsilon(u(x,r)+u(y,r))}{2\Delta_l u(x)})}{|R| \exp(\frac{\epsilon(u(y,r)+u(x,r))}{2\Delta_l u(y)})}$

holds.

i.e.

Then we can have:

 $> exp(\frac{\epsilon}{2} * 2)$

it is non-differentially private.

1.3.2. SECURITY ANALYSIS

1.4.2. SECURITY ANALYSIS

2. Privacy Fix

2.1. Propositions

 x_0 to denote:

the statements.

if n is even

1.3.1. MECHANISM SETTING UP

1.4.1. MECHANISM SETTING UP

if BayesInfer $(x) = beta(a_1 + 1, b_1 + 1)$

 $= exp(\epsilon),$

 $exp(\frac{\epsilon}{2}(\frac{u(x,r)+u(y,r)}{\Delta_l u(y)} - \frac{u(x,r)+u(y,r)}{\Delta_l u(x)}))$

 $\frac{P[\mathsf{PrivInfer}(x, u, R) = r]}{P[\mathsf{PrivInfer}(u, u, R) = r]} > exp(\epsilon).$

Since there are cases where exponential mechanism with local sensitivity's privacy loss is greater than e^{ϵ} , we can say

1.3. Exponential Mechanism of Varying Sensitivity

1.4. Exponential Mechanism of Smooth Sensitivity

Assume we have a prior distribution beta(1, 1), an observed data set $x \in \{0,1\}^n$, n > 0. We use the x + 1 and x - 1 to

then BayesInfer $(x + 1) = beta((a_1 + 1) + 1, (b_1 - 1) + 1)$

else BayesInfer $(x_0) = \{beta(\frac{n+1}{2}+1, \frac{n-1}{2}+1),$

beta (α, β) is the beta function with two arguments α and

Then, we have the following three statements, and proofs of

 $\mathsf{Hlg}(\mathsf{BayesInfer}(x+1), \mathsf{BayesInfer}(x+2)) \ \forall x \geq x_0;$

I Hlg(BayesInfer(x), BayesInfer(x + 1))

 $beta(\frac{n-1}{2}+1,\frac{n+1}{2}+1)$

then $\mathsf{BayesInfer}(x_0) = beta(\frac{n}{2}+1,\frac{n}{2}+1)$

BayesInfer $(x-1) = beta((a_1-1)+1,(b_1+1)+1),$

062

063 064 065

066

094

096

098 099

105

106

$\frac{u(x,r) + u(y,r)}{\Delta_l u(x)} - \frac{u(x,r) + u(y,r)}{\Delta_l u(y)} > 2.$

and $\Delta_l u(y)$:

093

095

097

or $\mathsf{Hlg}(\mathsf{BayesInfer}(x), \mathsf{BayesInfer}(x+1)) > \mathsf{Hlg}(\mathsf{BayesInfer}(x+1), \mathsf{BayesInfer}(x+2)) \forall x \leq x_0.$

II $\Delta_l u(x) = \mathsf{Hlg}(\mathsf{BayesInfer}(x), \mathsf{BayesInfer}(x + 1)), \forall x \geq x_0;$

1)), $\forall x \ge x_0$; $\Delta_l u(x) = \mathsf{Hlg}(\mathsf{BayesInfer}(x), \mathsf{BayesInfer}(x - x))$

1), $\forall x \leq x_0$.

III $\forall x \neq x_0 : \Delta_l u(x) > \Delta_l u(x_0).$

2.2. proof

2.2.1. STATEMENT I

We use the MI (Mathematical Induction) method to prove the first statement.

Proof. Since the Hellinger distance is symmetric, if we prove the $\mathsf{Hlg}(\mathsf{BayesInfer}(x), \mathsf{BayesInfer}(x+1)) < \mathsf{Hlg}(\mathsf{BayesInfer}(x+1), \mathsf{BayesInfer}(x+2)) \ \forall x \geq x_0$, the other part when $\forall x \leq x_0$ also holds.

1. if $x=x_0$, $\mathsf{Hlg}(\mathsf{BayesInfer}(x_0), \mathsf{BayesInfer}(x_0+1)) < \mathsf{Hlg}(\mathsf{BayesInfer}(x_0+1), \mathsf{BayesInfer}(x_0+2))$ holds:

$$\sqrt{1-\frac{\det(\frac{\frac{n}{2}+1+m+\frac{n}{2}+1+m+1}{2},\frac{\frac{n}{2}+1-m+\frac{n}{2}+1-m-1}{2})}{\sqrt{\det(\frac{n}{2}+1+m,\frac{n}{2}+1-m)}}}}$$

$$<\sqrt{1-\frac{\det(\frac{\frac{n}{2}+1+m+1+\frac{n}{2}+1+m+2}{2},\frac{\frac{n}{2}+1-m-1+\frac{n}{2}+1-m-2}{2})}{\sqrt{\det(\frac{n}{2}+2+m,\frac{n}{2}-m)}beta(\frac{n}{2}+3+m,\frac{n}{2}-m-1)}}$$

$$\begin{aligned} &\frac{\mathsf{beta}\big(\frac{n+2m+3}{2},\frac{n-2m+1}{2}\big)}{\sqrt{\mathsf{beta}(\frac{n}{2}+1+m,\frac{n}{2}+1-m)\mathsf{beta}(\frac{n}{2}+2+m,\frac{n}{2}-m)}} \\ > &\frac{\mathsf{beta}\big(\frac{n+2m+5}{2},\frac{n-2m-1}{2}\big)}{\sqrt{\mathsf{beta}(\frac{n}{2}+2+m,\frac{n}{2}-m)\mathsf{beta}(\frac{n}{2}+3+m,\frac{n}{2}-m-1)}} \end{aligned}$$

Now, we need to proof $\mathsf{HIg}(beta(\frac{n}{2}+1+m+1,\frac{n}{2}+1-m-1),beta(\frac{n}{2}+1+m+2,\frac{n}{2}+1-m-2)) < \mathsf{HIg}(beta(\frac{n}{2}+1+m+2,\frac{n}{2}+1-m-2),beta(\frac{n}{2}+1+m+3,\frac{n}{2}+1-m-3))$ by using what we know.

From $x=x_0+m$ and property of beta (α,β) function, we know:

$$\begin{split} & \operatorname{HIg}(beta(\frac{n}{2}+1,\frac{n}{2}+1),beta(\frac{n}{2}+1+1,\frac{n}{2}+1-1)) < \operatorname{HIg}(beta(\frac{n}{2}+1+1,\frac{n}{2}+1-1),beta(\frac{n}{2}+1+2,\frac{n}{2}+1-2)) \\ & \sqrt{1 - \frac{beta(\frac{n}{2}+1+\frac{n}{2}+1+1}{2},\frac{n}{2}+1)beta(\frac{n}{2}+1+1,\frac{n}{2}+1-1)} < \sqrt{1 - \frac{beta(\frac{n}{2}+1+1+\frac{n}{2}+1+2}{2},\frac{n}{2}+1-1)beta(\frac{n}{2}+1+2,\frac{n}{2}+1-1)} \\ & \sqrt{1 - \frac{beta(\frac{n+3}{2},\frac{n+1}{2})}{\sqrt{beta(\frac{n}{2}+1,\frac{n}{2}+1)beta(\frac{n}{2}+2,\frac{n}{2})}} < \sqrt{1 - \frac{beta(\frac{n+5}{2},\frac{n-1}{2})}{\sqrt{beta(\frac{n}{2}+2,\frac{n}{2})beta(\frac{n}{2}+1,\frac{n}{2}+1)}} \\ & \frac{beta(\frac{n+3}{2},\frac{n+1}{2})}{\sqrt{beta(\frac{n}{2}+1,\frac{n}{2}+1)beta(\frac{n}{2}+2,\frac{n}{2})}} > \frac{beta(\frac{n+5}{2},\frac{n-1}{2})}{\sqrt{beta(\frac{n}{2}+2,\frac{n}{2})beta(\frac{n}{2}+3,\frac{n}{2}-1)}} \\ & \frac{beta(\frac{n+3}{2},\frac{n-1}{2})\frac{n-1}{2+1+\frac{n+3}{2}}}{\sqrt{beta(\frac{n}{2}+1,\frac{n}{2}-1)\frac{n-1}{2}+\frac{n+3}{2}}}} > \frac{beta(\frac{n+3}{2},\frac{n-1}{2})\frac{n+3}{2}+\frac{n-1}{2}}{\sqrt{beta(\frac{n}{2}+1,\frac{n}{2}-1)\frac{n+3}{2}+2}+1}} \\ & \frac{n-1}{2} > \frac{n-1}{2} > \frac{n-1}{2}}{\sqrt{(\frac{n}{2}-1)(\frac{n}{2})}} > \frac{n+3}{2} \\ & (n-1)^2(n+2)(n+4) > (n+3)^2n(n-2) \\ & n > -1. \end{split}$$

Since n > 0, it always holds.

2. if $x = x_0 + m$ holds, then also $x = x_0 + m + 1$ holds:

i.e $\operatorname{HIg}(beta(\frac{n}{2}+1+m,\frac{n}{2}+1-m),beta(\frac{n}{2}+1+m+1,\frac{n}{2}+1-m-1)) < \operatorname{HIg}(beta(\frac{n}{2}+1+m+1,\frac{n}{2}+1-m-1),beta(\frac{n}{2}+1+m+2,\frac{n}{2}+1-m-2))$ is what we know:

$$\begin{aligned} & \operatorname{beta}(\frac{n+2m+5}{2},\frac{n-2m-1}{2})\frac{n-2m-1}{n+2m+3} \\ & \sqrt{\operatorname{beta}(\frac{n}{2}+2+m,\frac{n}{2}-m)\operatorname{beta}(\frac{n}{2}+3+m,\frac{n}{2}-m-1)\frac{n-2m}{n+2m+2}} \\ > & \frac{\operatorname{beta}(\frac{n+2m+7}{2},\frac{n-2m-3}{2})\frac{n-2m-3}{n+2m+5}}{\sqrt{\operatorname{beta}(\frac{n}{2}+2+m,\frac{n}{2}-m)\operatorname{beta}(\frac{n}{2}+3+m,\frac{n}{2}-m-1)\frac{n-2m-2}{n+2m+6}} \end{aligned}$$

2.2.3. STATEMENT III

when $x < x_0$

References

 $x > x_0$

when

Proof. From Statement I and Statement II, we can conclude

Hlg(BayesInfer(x), BayesInfer(x + 1)

Hlg(BayesInfer(x), BayesInfer(x-1))

i.e. $\Delta_l u(x) > \Delta_l u(x_0)$

i.e. $\Delta_l u(x) > \Delta_l u(x_0)$.

3. Experimental Evaluations

We got some results from these mechanisms.

 $> \mathsf{Hlg}(\mathsf{BayesInfer}(x_0), \mathsf{BayesInfer}(x_0+1);$

 $> Hlg(BayesInfer(x_0), BayesInfer(x_0 - 1);$

165 166 $\frac{\mathsf{beta}(\frac{n+2m+5}{2},\frac{n-2m-1}{2})}{\sqrt{\mathsf{beta}(\frac{n}{2}+2+m,\frac{n}{2}-m)\mathsf{beta}(\frac{n}{2}+3+m,\frac{n}{2}-m-1)}}$ 167 168 $\frac{\mathsf{beta}(\frac{n+2m+7}{2},\frac{n-2m-3}{2})}{\sqrt{\mathsf{beta}(\frac{n}{2}+2+m,\frac{n}{2}-m)\mathsf{beta}(\frac{n}{2}+3+m,\frac{n}{2}-m-1)}}$ 169 170 171 172 $$\begin{split} \sqrt{1 - \frac{\mathsf{beta}(\frac{n+2m+5}{2}, \frac{n-2m-1}{2})}{\sqrt{\mathsf{beta}(\frac{n}{2} + 2 + m, \frac{n}{2} - m)\mathsf{beta}(\frac{n}{2} + 3 + m, \frac{n}{2} - m - 1)}}} \\ < \sqrt{1 - \frac{\mathsf{beta}(\frac{n+2m+7}{2}, \frac{n-2m-3}{2})}{\sqrt{\mathsf{beta}(\frac{n}{2} + 2 + m, \frac{n}{2} - m)\mathsf{beta}(\frac{n}{2} + 3 + m, \frac{n}{2} - m - 1)}}} \end{split}$$ 173 174 175 176 177 178 $\mathsf{Hlg}(beta(\frac{n}{2} + 2 + m, \frac{n}{2} - m), beta(\frac{n}{2} + 3 + m, \frac{n}{2} - 1 - m))$ 179 $<\!\mathrm{HIg}(beta(\frac{n}{2}+m+3,\frac{\tilde{n}}{2}-1-m),beta(\frac{n}{2}+m+4,\frac{n}{2}-m-2))^{\mathbf{i}},\mathbf{e}\;\forall\;x\neq x_0,\Delta_lu(x)>\Delta_lu(x_0).$ 180 181 182 183 i.e. $x = x_0 + m + 1$ also holds when $x = x_0 + m$ is 184 185 186 187 2.2.2. STATEMENT II 188 Proof. 189 190 $\therefore \Delta_l u(x) = |\mathsf{HIg}(\mathsf{BayesInfer}(x), r) - \mathsf{HIg}(\mathsf{BayesInfer}(y'), r)|,$ 191 $\max_{\{|x,y'| \le 1; y' \in \mathcal{X}^n\}} \max_{\{r \in R\}};$ 193 \therefore Hlg(BayesInfer(x), r) - Hlg(BayesInfer(y'), r) $\leq \mathsf{Hlg}(\mathsf{BayesInfer}(x), \mathsf{BayesInfer}(y'));$ 196 $\therefore \Delta_l u(x) = \mathsf{Hlg}(\mathsf{BayesInfer}(x), \mathsf{BayesInfer}(y')),$ $\max_{\{|x,y'| \le 1; y' \in \mathcal{X}^n\}}$ 198 199 $\therefore \Delta_l u(x) = \max\{\mathsf{Hlg}(\mathsf{BayesInfer}(x), \mathsf{BayesInfer}(x+1)),\$ 200 Hlg(BayesInfer(x), BayesInfer(x-1)); 202 According to Statement I:if $x > x_0$ 204 then Hlg(BayesInfer(x), BayesInfer(x-1))< Hlg(BayesInfer(x), BayesInfer(x + 1));206 $\Delta_l u(x) = \mathsf{Hlg}(\mathsf{BayesInfer}(x), \mathsf{BayesInfer}(x+1));$ 208 if $x < x_0$ 209 then Hlg(BayesInfer(x), BayesInfer(x-1))210 > Hlg(BayesInfer(x), BayesInfer(x + 1));211 $\Delta_l u(x) = \mathsf{Hlg}(\mathsf{BayesInfer}(x), \mathsf{BayesInfer}(x-1));$ 212 else $\Delta_l u(x_0) = \mathsf{Hlg}(\mathsf{BayesInfer}(x_0), \mathsf{BayesInfer}(x_0-1))$ 214 = Hlg(BayesInfer (x_0) , BayesInfer $(x_0 + 1)$). 215 216

From above, we can conclude the Statement II.

217

218

219