Quantified Boolean Formulas: Solving and Proofs

Solving

Dr. Joshua Blinkhorn

Friedrich-Schiller-Universität Jena https://github.com/JoshuaBlinkhorn/QBF

1

Overview

Solving technologies

SAT NP established efficient technology **QBF PSPACE** happening now **DQBF NEXP** in its infancy

Leading Solvers

- In SAT, QCDCL is the dominant solving paradigm
- In QBF, there are various competitive paradigms

Solver	Paradigm	Proof System
RAReQS	CEGAR	$\forall Exp + Res \; (with \; NP \; oracle)$
CAQE	Clausal Abstraction	Level-ordered Q-Res
Dep-QBF	QCDCL	LD-Q-Res
Dep-QBF	Dependency awareness	$Q(\mathcal{D}) ext{-}Res$
Qute	Dependency learning	LD-Q-Res

QBF Solving Workflow

The DIMACS CNF Encoding

- machine readable encoding
- variables are natural numbers: $x_1 \mapsto 1$, $x_2 \mapsto 2$ etc.
- negation represented by minus: $\overline{x_1} \mapsto -1$, $\overline{x_2} \mapsto -2$ etc.

$$(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2}) \land (\overline{x_3}) \land (\overline{x_1} \lor x_3)$$

$$\begin{array}{c} p \text{ cnf } 3 \text{ 4} \\ 1 \text{ 2 3 0} \\ -1 \text{ -2 0} \\ -3 \text{ 0} \\ -1 \text{ 3 0} \end{array}$$

The QDIMACS Prenex QCNF Encoding

- extends DIMACS
- existential quantifier represented by 'e'
- universal quantifier represented by 'a'

$$\exists x_1 \exists x_2 \forall x_3 \exists x_4 \cdot (x_1 \vee x_2 \vee x_3) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (\overline{x_2}) \wedge (\overline{x_3} \vee x_4)$$

```
p cnf 4 4
e 1 2 0
a 3 0
e 4 0
1 2 3 0
-1 -3 0
-2 0
-3 4 0
```

2

Preprocessing

Why Preprocess?

- Preprocessors attempt to simplify a QBF while preserving its truth value
- Notion: easier to solve after preprocessing
- Usually, this means reducing the number of variables and the number of clauses
- There are a wide variety of preprocessing techniques
- The proof system QRAT was introduced to cover all of them
- Leading QBF preprocessors: blogger and HQS-Pre

Purely Propositional Techniques

- Propositional preprocessing techniques that are logically correct still work for QBFs
- Subsumption:

$$\mathcal{Q} \cdot (\bigwedge_i C_i) \wedge D \wedge E \quad \Rightarrow \quad \mathcal{Q} \cdot (\bigwedge_i C_i) \wedge D$$
 provided D is a subclause of E

Strengthening:

$$Q \cdot (\bigwedge_i C_i) \wedge (D \vee a) \wedge (E \vee \overline{a}) \Rightarrow Q \cdot (\bigwedge_i C_i) \wedge (D \vee \overline{a}) \wedge E$$
 provided D is a subclause of E

Pure Literal Elimination

- Pure literal elimination is not propositionally logically correct; it only preserves satisfiability
- Works differently for existentials and universals
- Existential version:

$$Q \cdot (\bigwedge_i C_i) \wedge \bigwedge_j (D_j \vee a) \quad \Rightarrow \quad Q \cdot (\bigwedge_i C_i)$$
 provided a is existential, \overline{a} doesn't appear in $(\bigwedge_i C_i) \wedge (\bigwedge_i D_j)$

Universal version

$$Q \cdot (\bigwedge_i C_i) \wedge \bigwedge_j (D_j \vee a) \Rightarrow Q \cdot (\bigwedge_i C_i) \wedge \bigwedge_j (D_j)$$

provided a is universal, \overline{a} doesn't appear in $(\bigwedge_i C_i) \wedge (\bigwedge_i D_j)$

Unit Literal Elimination

- Unit literal elimination is also not propositionally logically correct; but it does preserve satisfiability
- It can only be applied on existential unit clauses:

$$Q \cdot (\bigwedge_i C_i) \wedge (a) \Rightarrow (Q \cdot \bigwedge_i C_i)[\alpha]$$

provided ${\it a}$ is existential, and ${\it \alpha}$ is the smallest assignment satisfying ${\it a}$

• Any QBF containing a universal unit clause is false

Universal Reduction

- Universal reduction is logically correct in terms of QBF models
- So it preserves QBF truth value

$$Q \cdot (\bigwedge_i C_i) \wedge (D \vee a) \quad \Rightarrow \quad Q \cdot \bigwedge_i (C_i) \wedge D$$

provided a is universal, and var(a) is quantified after all existentials in D, and $(D \lor a)$ is not a tautology

 As a consequence: we can often assume that the final block of a QBF with a CNF matrix is existentially quantified

Blocked Clause Elimination

- Blocked clauses play a key role in SAT preprocessing
- It is an example of a redundancy property
- A redundancy property defines clauses that can be removed (or added) to a CNF while preserving satisfiability
- Propositionally, clause B is blocked w.r.t. a CNF F if B contains a literal for which all resolvents with F are tautologies
- The quantified version again requires a tweak:

$$Q \cdot (\bigwedge_i C_i) \wedge (D \vee a) \Rightarrow Q \cdot (\bigwedge_i C_i)$$

provided a is existential, and for all C_i containing \overline{a} , $C_i \otimes_{\overline{a}} D$ has complimentary literals in a variable left of var(a)

Blocked Literal Elimination

- This is the universal analogue of blocked clause elimination
- It allows a universal literal to be removed from a clause:

$$Q \cdot (\bigwedge_i C_i) \wedge (D \vee a) \Rightarrow Q \cdot (\bigwedge_i C_i) \wedge D$$

provided \underline{a} is universal, and for all C_i containing \overline{a} , $C_i \otimes_{\overline{a}} D$ has complimentary literals in a variable left of var(\underline{a})

 In contrast to universal reduction, the removed literal is not necessarily right of all existential in the clause

Covered Literal Addition

- Preoprocessors sometimes add literals to clauses
- This can actually be useful for example, it may increase the set of models for a true QBF
- Covered literal addition

$$Q \cdot (\bigwedge_i C_i) \wedge (D \vee a) \Rightarrow Q \cdot (\bigwedge_i C_i) \wedge (D \vee a \vee b)$$

provided a is existential, var(b) is left of var(a), and for all C_i containing \overline{a} , either :

- b is in C_i , or
- $C_i \vee D$ has complimentary literals in a variable left of var(a)

Existential Variable Elimination

- A method of removing existential variables in the final block
- Based on DP Resolution (Davis-Putnam)
- Propositionally:
 - 1. take a CNF F
 - 2. choose a variable x
 - 3. add all resolvents over x to F
 - 4. remove all clauses containing x
- This process preserves satisfiability so it forms a CNF decision procedure
- For QBF, it can be performed on existentials in the final block while preserving truth value
- Hence, it forms a decision procedure for QBF in combination with universal reduction

Universal Expansion

- Expansion of single universal variables preserves truth value
- Preprocessors may perform some universal expansions where it is considered beneficial
- This is a form of partial expansion (but it is not a partial expansion w.r.t. a subset of total universal assignments)
- Guided by heuristics

Ownership and Acknowledgement

- In many cases, the QBF is solved completely in preprocessing
- This raises the question of acknowledgement for example, in competitions (QBFEVAL)
- Janota: "I used MiniSAT and the C compiler!"

3

Expansion-based Solving

Recap

• The expansion of a QBF $\Phi = Q \cdot F$ is the CNF

$$\exp(\varPhi) := \bigcup_{\alpha \in \langle \mathsf{vars}_\forall (\varPhi) \rangle} F \bigg[\alpha \cup \big\{ x \mapsto x_{\alpha \restriction L(x)} : x \in \mathsf{vars}_\exists (\varPhi) \big\} \bigg]$$

 The partial expansion of a QBF Φ = Q · F w.r.t. a set of universal assignments R ⊆ ⟨vars_∀(Φ)⟩ is the CNF

$$\exp(\Phi, R) := \bigcup_{\alpha \in R} F\left[\alpha \cup \left\{x \mapsto x_{\alpha \upharpoonright L(x)} : x \in \mathsf{vars}_{\exists}(\Phi)\right\}\right]$$

• The partial expansion may be unsatisfiable even when $R \subset \langle \text{vars}_{\forall}(\Phi) \rangle$ is a proper subset of universal assignments

Basic Expansion Decision Procedure

- Arguably the easiest way to solve a QBF Φ:
 - 1. Write $\exp(\Phi)$ in DIMACS
 - 2. Pass it to a SAT solver
- Benefit: easy implementation all work done by SAT solver
- SAT solver employed as an NP oracle
- Drawback: expansion is expensive
- Just computing the expansion takes exponentional time if there are linearly many universal variables, even if the expansion is small

$$\exp(\forall u_1 \cdots \forall u_n \cdot \top) = \top$$

• It makes sense to work with partial expansions

Benders Decomposition

- A techinque for solving linear programming problems
- Exploits block structure of a problem (variable set can be partitioned)
- Divide-and-conquer approach:
 - Divide variables into two sets A and B
 - Solve the master problem over A
 - For each candidate solution to the master problem, solve a subproblem over B
 - If the subproblem is insoluble, generate a cut and add it to the master problem
 - The cut rules out the candidate: it will not be selected again
 - Resolve the master problem until no more cuts can be added

Basic Benders Decomposition Approach to QBF

- Consider a QBF $\Phi := \forall U \exists X \cdot F$
- A winning move for Φ is $\alpha \in \langle U \rangle$ such that $F[\alpha]$ is unsatisfiable
- Goal: find a winning move for Φ , if one exists
 - 1. Maintain a set of moves $A \subseteq \langle U \rangle$, initally empty
 - 2. Find a move $\alpha \in \langle U \rangle$ not in A
 - 3. Determine whether $F[\alpha]$ is satisfiable with a SAT solver
 - 4. If not, return α
 - 5. If so, add α to A
 - 6. If $A \neq \langle U \rangle$, goto line 2
- Drawback: if Φ is true, all assignments in $\langle U \rangle$ will be tested
- ullet In other words: total universal expansion of arPhi is constructed
- No information from subproblem passed to master problem

An Extreme Example

Consider what would happen with this QBF

$$\forall u \forall v \exists x \cdot (u \lor v \lor x) \land (u \lor \overline{v} \lor x) \land (\overline{u} \lor v \lor x) \land (\overline{u} \lor \overline{v} \lor x)$$

- Under every assignment to $\{u, v\}$, matrix satisfied by $x \mapsto 1$
- SAT solver outputs this in each of the four subproblems
- Satisfying assignment to a subproblem explains why a candidate move fails
- We also call this a *counterexample* for the candidate
- In this case, it happens to be the same counterexample for each candidate
- Idea: add counterexamples back into the master problem

Benders Decomposition Done Better

- Find a winning move for $\Phi := \forall U \exists X \cdot F$
 - 1. Maintain a set of CNFs A in the variables U, initally empty
 - 2. Find a candidate move $\alpha \in \langle U \rangle$ that falsifies all CNFs in A
 - 3. Determine whether $F[\alpha]$ is satisfiable with a SAT solver
 - 4. If not, return α
 - 5. If so, collect the satisfying assignment β , add $F[\beta]$ to A
 - 6. Goto line 2
- β is a counterexample to α
- β is also a counterexample to any α' satisfying $F[\beta]$
- Hence, in line 2, if no such move exists, then Φ is true, because every candidate has a counterexample
- The set A is called an abstraction

Extreme Example Revisited

Consider again the QBF

$$\forall u \forall v \exists x \cdot (u \lor v \lor x) \land (u \lor \overline{v} \lor x) \land (\overline{u} \lor v \lor x) \land (\overline{u} \lor \overline{v} \lor x)$$

- Regardless of which candidate in $\langle \{u, v\} \rangle$ is chosen first, the counterexample $x \mapsto 1$ is found, and $A = \{\top\}$
- \bullet Since \top has no falsifying assignments, we deduce that the QBF is true
- In this case, we only needed to consider a single candidate
- We avoided constructing the total universal expansion
- Essentially, we constructed a partial expansion, whose counterexamples formed a satisfiable abstraction

Quantifiers Exchanged - the Σ_2 Version

- Consider a QBF $\Phi := \exists X \forall U \cdot F$
- A winning move for Φ is $\alpha \in \langle X \rangle$ such that $F[\alpha]$ is a tautology
- Goal: find a winning move for Φ , if one exists
 - 1. Maintain a set of CNFs A in the variables X, initally empty
 - 2. Find a candidate move $\alpha \in \langle X \rangle$ that satisfies all CNFs in A
 - 3. Determine whether $F[\alpha]$ is a tautology with a SAT solver
 - 4. If so, return α
 - 5. If not, collect the falsifying assignment β , add $F[\beta]$ to A
 - 6. Goto line 2
- β is a counterexample to α and any α' falsifying $F[\beta]$
- Hence, in line 2, if no such move exists, then Φ is false, because every candidate has a counterexample

Connections to Countermodels

- For a false Σ_2 QBF $\Phi := \exists X \forall U \cdot F$, the set of counterexamples forms the range of a countermodel
 - Why? every candidate has a counterexample amongst those encoutered
 - Hence, for each $\alpha \in \langle X \rangle$ a counterexample $\beta \in \langle U \rangle$ was encountered such that $\alpha \cup \beta$ falsifies F
 - In Σ_2 , a countermodel is exactly such a mapping
- Hence we must encounter at least $\sigma(\Phi)$ counterexamples, where $\sigma(\Phi)$ is the minimum range of a countermodel for Φ
- Therefore $\sigma(\Phi)$ is a lower bound on the running time of the algorithm
- The final abstraction is essentially the partial expansion of Φ with respect to the set of counterexamples discovered

CEGAR Solving

- CEGAR: Counterexample-guided Abstraction Refinement
- A form of Benders decomposition for solving QBF
- Block structure from quantifier prefix: $\forall U_1 \exists X_1 \cdots \forall U_n \exists X_n$
- A leading CEGAR solver: RAReQs by Janota

Multi-Games

- Merely convenient notation for the pseudocode
- Definition: A multi-game is an expression of the form $QZ \cdot \{\Phi_1, \dots, \Phi_n\}$ where
 - Q is a quantifier and Z is a block of variables
 - the Φ_i are prenex QBFs whose only free variables are from Z
 - the Φ_i all have the same prefix $\mathcal Q$
 - the first quantifier of Q (if it is not the empty prefix) is opposite to Q
 - the variables of Q are disjoint from Z
- A winning move for a multigame is an assignment $\alpha \in \langle Z \rangle$ such that
 - if $Q = \exists$, all $\Phi_i[\alpha]$ are true
 - if $Q = \forall$, all $\Phi_i[\alpha]$ are false
- Without loss of generality: assume final block is existential

RAReQs Pseudocode

Function: RAReQs($QZ \cdot \{\Phi_1, \ldots, \Phi_n\}$)

Output: A winning move for Q, or NULL if none exist

- 1. **if** Φ_i have no quantifiers **then return** SAT $(\bigwedge_i \Phi_i)$
- 2. $A \leftarrow \emptyset$
- 3. $\Psi \leftarrow QZ \cdot A$ // form initial empty abstraction
- 4. while true do
- 5. $\alpha' = \mathsf{RAReQs}(\varPsi)$ // seek a winning move for the abstraction
- 6. if $\alpha' = NULL$ then return NULL
- 7. $\alpha \to \alpha' \upharpoonright_Z$ // filter a move for Z
- 8. **for** $i \in [n]$ do $\mu_i \leftarrow \mathsf{RAReQS}(\Phi_i[\tau])$ // look for a counterexample
- 9. **if** $\mu_i = \text{NULL}$ for all $i \in [n]$ **return** τ
- 10. **let** $i \in [n]$ such that $\mu_i \neq \text{NULL}$
- 11. Remove QZ from the prefix of Φ_i
- 12. $A \leftarrow A \cup \{\Phi_i[\mu_i]\}$ // refine the abstraction
- 13. end

The Key to RAReQS' Success

- According to the author, RAReQS is based on $\forall Exp+Res$
- A formal proof that an ∀Exp+Res refutation can be extracted from the solver trace on a false QBF has not been given
- RAReQs is arguably most successful expansion-based solver
- Key to success: abstraction limits the amount of expansion
- Building the abstraction and solving it is a serious overhead
- Trade-off against the benefit of partial expansion appears favourable for low levels of polynomial heirarchy

RAReQS and Countermodels

- ullet Consider RAReQS on a false QBF Φ
- Imagine the winning moves found for each universal block, concatenated with those from the recursive calls
- This generates a set S of total universal assignments
- S is the range of a countermodel
- Suggestion: RAReQS based on ∀Exp+Res with an NP oracle
- Hence minimal countermodel range $\sigma(\Phi)$ is a lower bound for the algorithm running time
- Corollary: equality formulas should be hard for RAReQs

Drawbacks of the RAReQS Approach

- Performs well on QBFs with few blocks
- Preforms worse on QBFs with many blocks
- Candidate moves are winning moves for the abstraction which is a QBF solved recursively
- Improvement: make abstraction simpler to solve

4

Clausal Abstraction Solving

Clausal Abstraction Solving

- Consider a QBF $\exists XQ \cdot F$
- If a move $\alpha \in \langle X \rangle$ is not winning, then $\mathcal{Q} \cdot F[\alpha]$ is false
- Idea: record the set of clauses $F[\alpha]$
- Any move $\beta \in \langle X \rangle$ that satisfies none of the clauses in $F[\alpha]$ is not winning either

Example

$$\Phi := \exists x \exists y \forall \mathbf{u} \exists z \cdot (x \vee \mathbf{u} \vee z)_1 \wedge (x \vee \mathbf{u} \vee \overline{z})_2 \wedge (\overline{x} \vee y)_3 \wedge (\overline{y} \vee z)_4$$

- Consider the assignment $\alpha = x \mapsto 0, y \mapsto 0$
- ullet lpha satisfies clauses 3 and 4, but not clauses 1 and 2
- Moreover, restriction by α yields a false QBF:

$$\Phi[\alpha] := \forall \mathbf{u} \exists z \cdot (\mathbf{u} \vee z)_1 \wedge (\mathbf{u} \vee \overline{z})_2$$

- Observation: any winning move must satisfy at least one of clauses 1 and 2
- Consider the assignment $\beta = x \mapsto 0, y \mapsto 1$
- β satisfies neither clause 1 nor 2
- Hence β is not a winning move

The Initial Abstraction

- In CA, the abstraction is a propositional formula
- We consider the existential case first:

$$\Phi := \exists X \mathcal{Q} \cdot C_1 \wedge C_2 \wedge \cdots \wedge C_k$$

The initial abstraction is the CNF

$$\mathsf{abs}(\Phi) := \bigwedge_{i \in [k]} C_i \upharpoonright_X \vee b_i$$

• The b_i are fresh variables that do not appear in Φ

$$\Phi := \exists x \exists y \forall \mathbf{u} \exists z \cdot (x \vee \mathbf{u} \vee z)_1 \wedge (x \vee \mathbf{u} \vee \overline{z})_2 \wedge (\overline{x} \vee y)_3 \wedge (\overline{y} \vee z)_4$$
$$\mathsf{abs}(\Phi) := (x \vee b_1) \wedge (x \vee b_2) \wedge (\overline{x} \vee y \vee b_3) \wedge (\overline{y} \vee z \vee b_4)$$

Abstraction Refinement

$$\Phi := \exists X \mathcal{Q} \cdot C_1 \wedge C_2 \wedge \cdots \wedge C_k$$

$$\mathsf{abs}(\Phi) := \bigwedge_{i \in [k]} C_i \upharpoonright_X \vee b_i$$

- Main idea: if $\alpha \in \langle X \rangle$ does not satisfy C_i , the corresponding literal b_i propagates in the abstraction
- Suppose that α turns out to be a losing move:
 - collect the all the literals b_i that propagated, say b_{i_1}, \ldots, b_{i_m}
 - add the clause $(\overline{b}_{i_1} \vee \cdots \vee \overline{b}_{i_m})$ to the abstraction
- This forces future candidates to satisfy at least one of the clauses that α did not

The Universal Case

• If the first block is universal:

$$\Phi := \forall UQ \cdot C_1 \wedge C_2 \wedge \cdots \wedge C_k$$

The initial abstraction is the CNF.

$$\mathsf{abs}(\Phi) := \bigwedge_{i \in [k]} \bigwedge_{a \in C_i \upharpoonright_{\mathcal{U}}} (\overline{a} \lor b_i)$$

$$\Phi := \forall uv \exists x \exists y \cdot (\underline{u} \vee \underline{v} \vee x \vee y)_1 \wedge (\underline{u} \vee \overline{v} \vee x)_2 \wedge (\overline{u} \vee \overline{x} \vee y)_3$$
$$abs(\Phi) := (\overline{u} \vee b_1) \wedge (\overline{v} \vee b_1) \wedge (\overline{u} \vee b_2) \wedge (\underline{v} \vee b_2) \wedge (\underline{u} \vee b_3)$$

Abstraction Refinement in the Universal Case

$$\Phi := \forall UQ \cdot C_1 \wedge C_2 \wedge \cdots \wedge C_k$$
$$\mathsf{abs}(\Phi) := \bigwedge_{i \in [k]} \bigwedge_{a \in C_i \upharpoonright_U} (\overline{a} \vee b_i)$$

- Main idea: if $\alpha \in \langle U \rangle$ satisfies C_i , the corresponding literal b_i propagates in the abstraction
- Suppose that α turns out to be a losing move:
 - procedure is the same as the existential case
 - collect the all the literals b_i that propagated, say b_{i_1}, \ldots, b_{i_m}
 - add the clause $(\overline{b}_{i_1} \vee \cdots \vee \overline{b}_{i_m})$ to the abstraction
- This prevents future candidates from satisfying all of the clauses that α satisfied

Clausal Abstraction Psuedocode

```
Function: CA(QZQ \cdot F)
Output: The truth value of QZQ \cdot F
   1. if Q is empty then return SAT(F)
   2. A \leftarrow abs(\Phi)
                                                        // adds extention variables B
   3. while true do
          (result, \alpha) = SAT(A)
                                                             // \alpha<sub>7</sub> is a candidate move
   5
          if result = UNSAT then return (Q = \exists)? UNSAT : SAT
          result \leftarrow \mathsf{CS}(\mathcal{Q} \cdot F[\alpha \upharpoonright_{\mathbf{z}}])
   6.
                                                                           // recursive call
          if Q = \exists and result = FALSE then A \leftarrow A \land (\overline{\alpha})_{R}
   7
                                                                                       // refine
          else if Q = \forall and result = TRUE then A \leftarrow A \land (\overline{\alpha} \upharpoonright_{R})
   8
                                                                                       // refine
          else return (Q = \exists)? TRUE : FALSE
   9
```

Level-ordered Q-Resolution

- Clausal abstraction works recursively, with one abstraction for each quantifier block
- According to its authors, CA corresponds to level-ordered Q-Resolution
- Level-ordered means block-ordered:
 - call a resolution step over an existential pivot x from block X
 a step on X
 - call the reduction of a universal variable u from block U a step on U
 - for any block Z: every step on Z precedes all steps on blocks left of Z

Example Level-ordered Q-Resolution Refutation

$$\exists x \forall \mathbf{u} \exists z \cdot (x \vee \mathbf{u} \vee z) \wedge (\overline{x} \vee \overline{\mathbf{u}} \vee z) \wedge (\overline{z})$$

4

QCDCL

Conflict-driven Clause Learning

- State of the art in SAT solving
- Backtracking search of assignment space
- Decisions (variable assignments) and propagations (unit clauses)
- Clause learning reasons for failed assignments are recorded
- Heuristics (decision, restarts, etc.)

CDCL Workflow

CDCL Psuedocode

Function: CDCL(F)

Output: SAT if F is satisfiable; UNSAT otherwise

- 1. while true do
- conflict ← UnitPropagate()
- 3. **if** conflict == NONE **then** Decide()
- 4. else
- 5. (clause, level) ← AnalyseConflict(conflict)
- 6. if clause is empty return UNSAT else AddClause(clause)
- Backtrack(level)

Conflict Analysis (Clause Learning)

- At conflict, a clause is learned and added to the CNF
- The learned clause is derived by resolution
- If the learned clause is empty, return UNSAT
- The resolution process is driven by the implication graph

Clause Learning - Cutting the Implication Graph

Unique Implication Points

- A unique implication point (UIP) is:
 - a node at the highest decision level
 - every path from highest decision to conflict passes through it

Common Implementation

- advantage: clauses learned from UIPs are always asserting
- asserting means 'becomes unit at a previous decision level'
- the asserting level is second highest decision level in learned clause
- hence: backtrack to asserting level ('backjumping')
- easy implementation:
- resolve conflict clause with 'reason clauses' until there is exactly one variable at highest decision level
- This is the 1UIP learning scheme

What's Different in QCDCL?

- 1. Cannot terminate when all variables are assigned
 - This means the current assignment satisfies the matrix
 - But to determine truth we need a QBF model
- 2. Variables cannot be assigned arbitrarily
 - Variable dependence must be resepected
 - A variable can only be assigned after all of its dependencies
 - Scope of decision heuristics limited
- 3. We have two kinds of constraints
 - Clauses
 - Terms

QCDCL Workflow

What are Terms?

A term is a conjunction of literals:

$$(a_1 \wedge a_2 \wedge \cdots \wedge a_k)$$

 Terms are in natural correspondence with assignments: there is a unique smallest assignment satisfying a term

$$(x \wedge \overline{y} \wedge \overline{z}) \sim x \mapsto 1, y \mapsto 0, z \mapsto 0$$

- Similarly, there is a unique largest term satisfied by an assignment
- So we can think of terms and assignments as the same
- A term satisfies a CNF if the corresponding assignment does

Using Terms to Prove True QBFs

- Q-Resolution is a refutational proof system: it refutes false QBFs
- Dual proof system: Q-Consensus
- Proves true QBFs
- Operates on terms instead of clauses
 - Resolution over universal pivots
 - Existential reduction

Q-Consensus

• Consider a QBF $Q \cdot F$

axiom: T	T is a term satisfying F
resolution: $\frac{T \wedge u \qquad S \wedge \overline{u}}{T \wedge S}$	T and S are terms u is a universal variable $T \wedge S$ is non-contradictory
weakening: $T \wedge S$	T and S are terms $T \wedge S$ is non-contradictory
existential reduction: $\frac{T \wedge a}{T}$	T is a term a is an existential literal vars $_{\forall}(T)\subseteq L(\text{var}(a))$

Q-Consensus

Definition: A Q-consensus derivation from a QBF $Q \cdot F$ is a sequence of terms $\Pi = T_1, \dots, T_k$ derived with the rules above. We call Π a proof of $Q \cdot F$ when C_k is the empty term.

- The empty term ∅ is semantically equivalent to ⊤
- Hence $\mathcal{Q} \cdot \emptyset$ is always a true QBF, and therefore has no countermodels.

Soundness and Completeness

- Q-consensus is sound and complete for true QBFs:
 A QBF has a Q-consensus proof if and only if it is true
- Arguments for soundness and completeness dual to Q-Res:
 - Completeness: form model from axioms, resolve and reduce to get the empty term
 - Soundness: every countermodel of the QBF is a countermodel of every derived term
- Hence a QBF has either a Q-Resolution refutation or a Q-Consensus proof (and not both)

QCDCL Intuition

- QCDCL attempts to generate both a Q-Resolution refutation and a Q-consensus proof of the QBF
 - Due to completeness at least one is generated
 - Due to soundness, this determines the QBF truth value
- Thus QCDCL learns both clauses and terms
- By analogy with SAT solving:

$$\mathsf{SAT} \sim \mathsf{TRUE} \qquad \mathsf{UNSAT} \sim \mathsf{FALSE}$$

- When the current assignment is satisfying (SAT), it is added as a term
- This corresponds to a Q-Consensus axiom

QCDCL Pseudocode

```
Function: QCDCL(\Phi)
Output: Truth value of \Phi
  1. while true do
       conflict ← ConstraintPropagation()
                                                  // clauses and terms
  3.
       if conflict == NONE then Decide()
                                                 // dependencies apply
  4.
       else
                                          // some constraint is empty
  5
         (constraint, level) ← AnalyseConflict(conflict)
         if constraint is empty
  6
  7
           if constraint is a clause return FALSE else return TRUE
         AddConstraint(constraint)
  8
  9
         Backtrack(level)
```

Conflict Analysis in QCDCL

- Clauses and terms are derived using Q-Resolution and Q-Consensus analogously to SAT solving
- For UIP learning, we need long-distance derivations
 - Universal reduction is performed as propagation
 - As a result, UIP learning can generate universal tautologies
 - But these tautologies are always right of the pivot
- Hence soundness of long-distance Q-Resolution is crucial to solver performance
- Dual situation for terms: long-distance Q-Consensus

5

Dependency Schemes

Motivations

- Desicion heuristics are central to CDCL performance
- But in QBF, allowable decisions are restricted by the prefix

$$\exists x_1 \cdots x_n \forall u_1 \cdots u_n \exists z_1 \cdots z_n \cdot F$$

- No u_i can be a decision until all x_i have been assigned
- No z_i can be a decision until all u_i have been assigned
- Reason: variable dependence must be respected
- Consequence: Scope of decision heuristics limited

Spurious Dependencies

- However dependencies are often spurious
- Spurious dependencies can be safey ignored and the QBF truth value will not change

In this model, y does not depend on v

Spurious Dependencies

- However dependencies are often spurious
- Spurious dependencies can be safey ignored and the QBF truth value will not change

In this model, y does not depend on v

Improving Decision Heuristic via Dependency Analysis

- Identify spurious dependencies before the solving starts
- The dependency sets shrink

$$\forall u \exists x \forall v \exists y \cdot \{u, x, v\}, \{u, \bar{y}\}, \{\bar{u}, y\}$$

- Here, L(y) = (u, v)
- But we know that y is independent of v
- So we could take L(y) = (u)
- Then y is available as decision before v is assigned
- Justification: there exists a model which exhibits the independence of y on v
- In general: more variables available for decision
- Scope of decision heuristics is increased

Static Dependency-aware Solving

Variable Dependence in the Equality Formulas

$$EQ_n := \exists x_1 \cdots x_n \forall u_1 \cdots u_n \exists z_1 \cdots z_n \cdot \left(\bigwedge_{i \in [n]} (x_i \vee u_i \vee z_i) \right) \wedge \left(\bigwedge_{i \in [n]} (\overline{x_i} \vee \overline{u_i} \vee z_i) \right) \wedge \left(\bigvee_{i \in [n]} \overline{z_i} \right)$$

Let us recall the countermodel:

$$h: \langle \mathsf{vars}_\exists(EQ_n) \rangle \rightarrow \langle \mathsf{vars}_\forall(EQ_n) \rangle$$

 $\alpha \mapsto \{ \underbrace{\mathsf{u}_1}_1 \mapsto \alpha(\mathsf{x}_1), \dots, \underbrace{\mathsf{u}_n}_n \mapsto \alpha(\mathsf{x}_n) \}$

- Each u_i depends only on x_i
- This dependency structure cannot be written as a QBF prefix;
 the best we can do is something like this:

$$\exists x_1 \forall u_1 \cdots \exists x_n \forall u_n \exists z_1 \cdots \exists z_n$$

• Still we have spurious dependence of u_n on x_1, \ldots, x_{n-1}

A Note About Duality

- In practice, dependency schemes work with two kinds of dependencies:
 - dependence of existentials on universals
 - dependence of universals on existentials
- These are handled in a 'dual' fashion
- For simplicity: focus on the first kind only

Dependency Schemes - Traditional Definition

Definition: The *trivial dependency scheme* is the mapping $\mathcal{D}^{\mathsf{trv}}$ that maps a QBF Φ to the set of pairs

$$\mathcal{D}^{\mathsf{trv}}(\Phi) := \{(\mathbf{u}, \mathsf{x}) : \mathbf{u} \in \mathsf{vars}_{\forall}(\Phi), \mathsf{x} \in \mathsf{vars}_{\exists}(\Phi), \mathbf{u} \in \mathsf{L}(\mathsf{x})\}$$

• Total order of prefix represented as set of pairs

Definition: A dependency scheme is a mapping that maps each QBF Φ to a subset of $\mathcal{D}^{\mathsf{trv}}(\Phi)$

- Absent pairs should represent spurious dependencies
- Dependency scheme defines a partial order on the variables
- ullet Better approximation to the 'true' dependency structure of Φ

What Do We Want From a Dependency Scheme?

$$\Phi := \forall \mathbf{u} \exists \mathbf{x} \forall \mathbf{v} \exists \mathbf{y} \cdot \{\mathbf{u}, \mathbf{x}, \mathbf{v}\}, \{\mathbf{u}, \bar{\mathbf{y}}\}, \{\bar{\mathbf{u}}, \mathbf{y}\}$$

- y does not depend on v
- (v, y) is a spurious dependency we want $(v, y) \notin \mathcal{D}(\Phi)$

Standard Dependency Scheme $\mathcal{D}^{\mathsf{std}}$

Connection-based dependencies

$$\Phi := \forall \mathbf{u} \exists x \exists y \exists z \ \{\mathbf{u}, x\} \qquad \{x, y\} \qquad \{y, z\}$$

$$(\mathbf{u}, z) \text{ is a } \mathcal{D}^{\text{std}}\text{-dependency}$$

- This connection links u to z via connecting variables x and y
- Connecting variables must be:
 - existential
 - right of <u>u</u> (i.e. not in L(u))
- $(u,z) \in \mathcal{D}^{\mathsf{std}}(\Phi) \sim {}^{\mathsf{c}}z$ depends on u in Φ according to $\mathcal{D}^{\mathsf{std}}$
- A dependency is only acknowledged when a connection exists
- Spurious dependencies identified by absence of a connection

Standard Dependency Scheme $\mathcal{D}^{\mathsf{std}}$

$$\Phi := \forall \mathbf{u} \exists \mathbf{x} \forall \mathbf{v} \exists \mathbf{y} \cdot \{\mathbf{u}, \mathbf{x}, \mathbf{v}\}, \{\mathbf{u}, \bar{\mathbf{y}}\}, \{\bar{\mathbf{u}}, \mathbf{y}\}$$

- There are trivial connections from u to x and y
- Hence $(\mathbf{u}, \mathbf{x}), (\mathbf{u}, \mathbf{y}) \in \mathcal{D}^{\mathsf{std}}(\Phi)$
- There is no connection from v to y
- Hence $(\mathbf{v}, \mathbf{y}) \notin \mathcal{D}^{\mathsf{std}}(\Phi)$
- \mathcal{D}^{std} identifies that y does not depend on v in Φ
- That is, (v, y) is a spurious dependency
- A solver using \mathcal{D}^{std} can assign y before u

Universal Reduction with Dependency Schemes

universal reduction:

C is a clause a is a universal literal vars $_{\exists}(C) \subseteq L(\text{var}(a))$

• The condition $vars_{\exists}(C) \subseteq L(var(a))$ is equivalent to:

for all
$$x \in \text{vars}_{\exists}(C)$$
, $(\text{var}(\mathbf{a}), x) \notin \mathcal{D}^{\text{trv}}(\Phi)$

C is a clause
a is a universal literal

for all
$$x \in \text{vars}_{\exists}(C)$$
, $(\text{var}(\mathbf{a}), x) \notin \mathcal{D}(\Phi)$

Learning With Dependency Schemes

- Dependency-aware solvers employ universal reduction w.r.t. their dependency scheme ${\cal D}$
- Hence, learning mechanism is based on Q-Res with universal reduction w.r.t. $\mathcal D$
- We call this proof system $Q(\mathcal{D})$ -Res
- Even better: use long-distance resolution LD-Q(\mathcal{D})-Res
- Crucial: soundness
- How can we be sure that $Q(\mathcal{D})$ -Res and LD- $Q(\mathcal{D})$ -Res are sound?

Unsound Dependency Schemes

- There exist obvious unsound dependency schemes
- E.g. the empty dependency scheme: $\mathcal{D}(\Phi) = \emptyset$ for all QBFs Φ
- Allows all universal reductions

• Non-trivial problem: even the so-called 'optimal' scheme $\mathcal{D}^{\mathsf{opt}}$ is unsound!

Defining Independence

$$\Phi := \forall \mathbf{u} \exists \mathbf{x} \forall \mathbf{v} \exists \mathbf{y} \cdot \{\mathbf{u}, \mathbf{x}, \mathbf{v}\}, \{\mathbf{u}, \bar{\mathbf{y}}\}, \{\bar{\mathbf{u}}, \mathbf{y}\}$$

Definition: An existential x is independent of a universal u w.r.t. a model M of a QBF Φ when flipping the value of u on any path does not change the value of x.

Problems With the Optimal Dependency Scheme

Definition: The optimal dependency scheme \mathcal{D}^{opt} is defined by

$$\mathcal{D}^{\mathsf{opt}}(\varPhi) := \mathcal{D}^{\mathsf{trv}}(\varPhi) \setminus \mathit{O}(\varPhi)$$

$$O(\Phi) := \{(\mathbf{u}, \mathbf{x}) : \mathbf{x} \text{ independent of } \mathbf{u} \text{ in some model of } \Phi\}$$

- Idea: all spurious dependencies are removed
- Problem: unsound
- Crux: different spurious dependencies may be exhibited by different models
- Solution: consider a set of spurious depencies exhibited by a single model

Full Exhibition

Definition: Given a dependency scheme \mathcal{D} and a QBF Φ , a \mathcal{D} -model for Φ is a model in which x is independent of \mathbf{u} whenever $(\mathbf{u}, x) \notin \mathcal{D}(\Phi)$.

Definition: A dependency scheme $\mathcal D$ is fully exhibited when every true QBF Φ has a $\mathcal D$ -model.

Theorem: The standard dependency scheme \mathcal{D}^{std} is fully exhibited.

Full Exhibition is Sufficient for Soundness

Theorem: If \mathcal{D} is fully exhibited, then $Q(\mathcal{D})$ -Res and LD- $Q(\mathcal{D})$ -Res are sound.

- Proof: follow the soundness proof for Q-Res:
 - Q-Res rules preserve models
 - $Q(\mathcal{D})$ -Res rules preserve \mathcal{D} -models

Corollary: $Q(\mathcal{D}^{std})$ -Res and LD- $Q(\mathcal{D}^{std})$ -Res are sound.

Theorem: $Q(\mathcal{D}^{opt})$ -Res is not sound.

- Proof breaks down:
 - D^{opt}-models do not always exist
 - Using different models to validate different reduction steps breaks the induction

Complexity of Dependency Schemes

- $QDRes\mathcal{D}$ always simulates Q-Res = $Q(\mathcal{D}^{\mathsf{trv}})$ -Res
- Can dependency schemes shorten QBF proofs (exponentially)?
- Yes...
- However relative proof complexities of Q-Res and Q(D^{std})-Res is an open problem (neither simulation nor separation has been proved.)
- Separation shown with a stronger dependency scheme

Reflexive Resolution Path Dependency Scheme $\mathcal{D}^{\mathsf{rrs}}$

Connection-based dependencies with polarity

- Resolution paths link u to z and \overline{u} to \overline{z} via connecting variables x and y
- Connecting variables must:
 - be existential
 - be right of <u>u</u> (i.e. not in L(<u>u</u>))
 - appear in opposite polarities
 - be consecutively distinct

$Q(\mathcal{D}^{rrs})$ -Res versus Q-Res (1)

• We prove a stronger result.

Theorem: $Q(\mathcal{D}^{rrs})$ -Res is exponentially stronger than $Q(\mathcal{D}^{std})$ -Res.

Use the equality formulas

$$EQ_n := \exists x_1 \cdots x_n \forall u_1 \cdots u_n \exists z_1 \cdots z_n \cdot \left(\bigwedge_{i \in [n]} (x_i \vee u_i \vee z_i) \right) \wedge \left(\bigwedge_{i \in [n]} (\overline{x_i} \vee \overline{u_i} \vee z_i) \right) \wedge \left(\bigvee_{i \in [n]} \overline{z_i} \right)$$

$Q(\mathcal{D}^{rrs})$ -Res versus Q-Res (2)

Lower bound for $Q(\mathcal{D}^{std})$ -Res

- Lemma: $\mathcal{D}^{\text{std}}(\mathsf{EQ}_n)$ is the set of trivial dependencies.
- $Q(\mathcal{D}^{std})$ -Res and Q-Res are equivalent on EQ_n.
- Q-Res refutations are be exponentially large.

Upper bound for $Q(\mathcal{D}^{rrs})$ -Res

- $\mathcal{D}^{\mathsf{rrs}}$ identifies all independencies.
- Lemma: $\mathcal{D}^{\mathsf{rrs}}(\mathsf{EQ}_n) = \emptyset$.
- Allows linear-size refutations of EQ_n.

$Q(\mathcal{D}^{rrs})$ -Res versus Q-Res (3)

- Short refutations of equality in $Q(\mathcal{D}^{rrs})$ -Res
 - Since $\mathcal{D}^{rrs}(\mathsf{EQ}_n) = \emptyset$, all universal literals can be reduced from axioms
 - reduce all universal literals to obtain $(x_i \lor z_i)$ and $(\overline{x_i} \lor z_i)$
 - resolve over all x_i to obtain unit clauses (z_i)
 - resolve unit clauses with $(\overline{z_1} \lor \cdots \lor \overline{z_n})$

Dependency-aware Solving - Some Thoughts

- Scope of decision heuristics and propagation improved
- Trade-off with computation overhead of the scheme
- Overall: faster solving with the standard dependency scheme
- Problems with soundness
- Essence obfuscated?
- Not ideal: dependency scheme written into proof system rules

Dependency Quantified Boolean Formulas (DQBF)

Existential dependencies made explicit

$$\forall u_1 \cdots \forall u_n \exists e_1(U_1) \cdots \exists e_m(U_m) \cdot \phi(u_1, \dots, u_n, e_1, \dots, e_m)$$

$$U_i \subseteq \{u_1, \dots, u_n\}$$

- Semantics: model a set of Boolean functions f_1, \ldots, f_m s.t.
 - (a) variables of f_i are U_i
 - (b) $\phi(\mathbf{u_1}, \dots, \mathbf{u_n}, f_1, \dots, f_m)$ is a tautology

DQBF proof systems

- Expansion: DQBF version of ∀Exp+Res is sound and complete
- Reduction: not so simple
 - Q-Res is sound but incomplete
 - LD-Q-Res is not sound
- Nevertheless we can use DQBF proof systems to refute QBF
- Even LD-Q-Res
- Result: shorter QBF proofs

DQBF-centric Interpretation of Dependency Schemes

Definition: A dependency scheme is a truth-preserving polynomial-time computable mapping from QBF into DQBF s.t.:

- (a) Φ and $\mathcal{D}(\Phi)$ have the same matrix
- (b) dependency sets of $\mathcal{D}(\Phi)$ are subsets of those of Φ
 - Dependency scheme can be viewed as a preprocessor
 - Independent of the solver and the proof system
 - Proof complexity of dependency schemes can be studied via fragments of DQBF proof systems
 - For example: $Q(\mathcal{D})$ -Res is the fragment of Q-Res on the image of \mathcal{D}
 - In general: $P(\mathcal{D})$ is the fragment of P on the image of \mathcal{D}
 - Soundness for free via truth preservation (full exhibition)
 - Completeness should follow from QBF system (monotonicity)