the unicorn of constant-time parsing

Konstantinos Kogkalidis Utrecht Institute of Linguistics OTS, Utrecht University

End-to-End Compositional Models of Vector-Based Semantics ESSLLI, August 2022, Galway

Overview

- ► Grammar
- ► Supertagging
- ightharpoonup Parsing
- ► Unicorns

A type grammar for the 21st century

ILL $_{\sim}$ plus \Diamond , \Box modalities for dependency domain demarcation.

Types inductively defined by:

$$\mathbb{T} := A \mid T \multimap T \mid \diamondsuit^d T \mid \Box^d T \qquad A \in \mathbb{A}, T \in \mathbb{T}$$

- → linear function builder
- ♦ reserved for "necessary arguments", i.e. complements
- □ reserved for "optional functors", i.e. adjuncts

$$\frac{\Gamma \vdash \mathbf{t} : T}{\Gamma, \Delta \vdash \mathbf{s} \ \mathbf{t} : T_{2}} \rightarrow E$$

$$\frac{\Gamma \vdash \mathbf{t} : T}{\langle \Gamma \rangle^{d} \vdash \Delta^{d} \ \mathbf{t} : \Diamond^{d} T} \diamondsuit^{d} I$$

$$\frac{\Gamma \vdash \mathbf{s} : \Box^{d} T}{\langle \Gamma \rangle^{d} \vdash \Delta^{d} \mathbf{s} : T} \Box^{d} E$$

$$\frac{\Gamma, \mathbf{x} : T_{1} \vdash \mathbf{s} : T_{2}}{\Gamma \vdash \lambda \mathbf{x} . \mathbf{s} : T_{1} \rightarrow T_{2}} \rightarrow I$$

$$\frac{\langle \Gamma \rangle^{d} \vdash \mathbf{s} : T}{\Gamma \vdash \mathbf{A}^{d} \mathbf{s} : \Box^{d} T} \Box^{d} I$$

$$\frac{\langle \Gamma \rangle^{d} \vdash \mathbf{s} : T}{\Gamma \vdash \Delta^{d} \mathbf{s} : \Box^{d} T} \Box^{d} I$$

$$\frac{\langle \Gamma \rangle^{d} \vdash \mathbf{s} : T_{2}}{\langle \Gamma, \Delta \rangle^{d}, \langle \mathbf{x} : T_{1} \rangle^{X}, \Delta \rangle^{d} \vdash \mathbf{s} : T_{2}} \times A \vdash \mathbf{s} : \Delta^{d} T_{1}}{\langle \Gamma, \Delta \rangle^{d}, \langle \mathbf{x} : T_{1} \rangle^{X}, \Delta \rangle^{d} \vdash \mathbf{s} : T_{2}} \times A \vdash \mathbf{s} : \Delta^{d} T_{1}$$

$$\frac{\Gamma \vdash \mathbf{s} : T_1 \multimap T_2 \quad \Delta \vdash \mathbf{t} : T_1}{\Gamma, \Delta \vdash \mathbf{s} \mathbf{t} : T_2} \multimap E$$

$$\frac{\Gamma \vdash \mathbf{t} : T}{\langle \Gamma \rangle^d \vdash \Delta^d \mathbf{t} : \Diamond^d T} \diamondsuit^d I \qquad \frac{\Gamma \vdash \mathbf{s} : \Box^d T}{\langle \Gamma \rangle^d \vdash \nabla^d \mathbf{s} : T} \Box^d E$$

$$\frac{\Gamma, \mathbf{x} : T_1 \vdash \mathbf{s} : T_2}{\Gamma \vdash \lambda \mathbf{x} . \mathbf{s} : T_1 \multimap T_2} \multimap I$$

$$\frac{\langle \Gamma \rangle^d \vdash \mathbf{s} : T}{\Gamma \vdash \Delta^d \mathbf{s} : \Box^d T} \Box^d I \qquad \frac{\Gamma[\langle \mathbf{x} : T_1 \rangle^d] \vdash \mathbf{t} : T_2 \quad \Delta \vdash \mathbf{s} : \diamondsuit^d T_1}{\Gamma[\Delta] \vdash \mathbf{t} [\mathbf{x} \mapsto \nabla^d \mathbf{s}] : T_2} \diamondsuit^d E$$

$$\frac{\langle \Gamma, \langle \mathbf{x} : T_1 \rangle^{\mathsf{X}}, \Delta \rangle^d \vdash \mathbf{s} : T_2}{\langle \Gamma, \Delta \rangle^d, \langle \mathbf{x} : T_1 \rangle^{\mathsf{X}} \vdash \mathbf{s} : T_2} \times$$

$$\frac{\Gamma \vdash \mathbf{s} : T_1 \multimap T_2 \quad \Delta \vdash \mathbf{t} : T_1}{\Gamma, \Delta \vdash \mathbf{s} \mathbf{t} : T_2} \multimap E$$

$$\frac{\Gamma \vdash \mathbf{t} : T}{\langle \Gamma \rangle^d \vdash \Delta^d \mathbf{t} : \diamondsuit^d T} \diamondsuit^d I \qquad \frac{\Gamma \vdash \mathbf{s} : \Box^d T}{\langle \Gamma \rangle^d \vdash \nabla^d \mathbf{s} : T} \Box^d E$$

$$\frac{\Gamma, \mathbf{x} : T_1 \vdash \mathbf{s} : T_2}{\nabla \Gamma \vdash \lambda \mathbf{x} . \mathbf{s} : T_1 \multimap T_2} \multimap I$$

$$\frac{\langle \Gamma \rangle^d \vdash \mathbf{s} : T}{\Gamma \vdash \mathbf{A}^d \mathbf{s} : \Box^d T} \Box^d I \qquad \frac{\Gamma[\langle \mathbf{x} : T_1 \rangle^d] \vdash \mathbf{t} : T_2 \quad \Delta \vdash \mathbf{s} : \diamondsuit^d T_1}{\Gamma[\Delta] \vdash \mathbf{t} [\mathbf{x} \mapsto \nabla^d \mathbf{s}] : T_2} \diamondsuit^d E$$

$$\frac{\langle \Gamma, \langle \mathbf{x} : T_1 \rangle^{\times}, \Delta \rangle^d \vdash \mathbf{s} : T_2}{\langle \Gamma, \Delta \rangle^d, \langle \mathbf{x} : T_1 \rangle^{\times} \vdash \mathbf{s} : T_2} \times$$

$$\frac{\Gamma \vdash \mathbf{s} : T_1 \multimap T_2 \quad \Delta \vdash \mathbf{t} : T_1}{\Gamma, \Delta \vdash \mathbf{s} \mathbf{t} : T_2} \multimap E$$

$$\frac{\Gamma \vdash \mathbf{t} : T}{\langle \Gamma \rangle^d \vdash \Delta^d \mathbf{t} : \diamondsuit^d T} \diamondsuit^d I \qquad \frac{\Gamma \vdash \mathbf{s} : \Box^d T}{\langle \Gamma \rangle^d \vdash \nabla^d \mathbf{s} : T} \Box^d E$$

$$\frac{\Gamma, \mathbf{x} : T_1 \vdash \mathbf{s} : T_2}{\Gamma \vdash \lambda \mathbf{x} : T} \multimap T_2 \multimap I$$

$$\frac{\langle \Gamma \rangle^d \vdash \mathbf{s} : T}{\Gamma \vdash \mathbf{A}^d \mathbf{s} : \Box^d T} \Box^d I \qquad \frac{\Gamma[\langle \mathbf{x} : T_1 \rangle^d] \vdash \mathbf{t} : T_2 \quad \Delta \vdash \mathbf{s} : \diamondsuit^d T_1}{\Gamma[\Delta] \vdash \mathbf{t} [\mathbf{x} \mapsto \nabla^d \mathbf{s}] : T_2} \diamondsuit^d E$$

$$\frac{\langle \Gamma, \langle \mathbf{x} : T_1 \rangle^{\times}, \Delta \rangle^d \vdash \mathbf{s} : T_2}{\langle \Gamma, \Delta \rangle^d, \langle \mathbf{x} : T_1 \rangle^{\times} \vdash \mathbf{s} : T_2} \times$$

$$\frac{\Gamma \vdash \mathbf{s} : T_1 \multimap T_2 \quad \Delta \vdash \mathbf{t} : T_1}{\Gamma, \Delta \vdash \mathbf{s} \mathbf{t} : T_2} \multimap E$$

$$\frac{\Gamma \vdash \mathbf{t} : T}{\langle \Gamma \rangle^d \vdash \Delta^d \mathbf{t} : \diamondsuit^d T} \diamondsuit^d I \qquad \frac{\Gamma \vdash \mathbf{s} : \Box^d T}{\langle \Gamma \rangle^d \vdash \nabla^d \mathbf{s} : T} \Box^d E$$

$$\frac{\mathbf{r} \vdash \mathbf{s} : \Box^d T}{\mathbf{r} \vdash \Delta^d \mathbf{s} : T} \rightharpoonup^d E$$

$$\frac{\Gamma, \mathbf{r} : T_1 \vdash \mathbf{s} : T_2}{\Gamma \vdash \Delta \mathbf{r} : T} \multimap^d E$$

$$\frac{\langle \Gamma \rangle^d \vdash \mathbf{s} : T}{\Gamma \vdash \Delta^d \mathbf{s} : \Box^d T} \Box^d I \qquad \frac{\Gamma[\langle \mathbf{r} : T_1 \rangle^d] \vdash \mathbf{t} : T_2 \quad \Delta \vdash \mathbf{s} : \diamondsuit^d T_1}{\Gamma[\Delta] \vdash \mathbf{t}[\mathbf{r} \mapsto \nabla^d \mathbf{s}] : T_2} \diamondsuit^d E$$

$$\frac{\langle \Gamma, \langle \mathbf{r} : T_1 \rangle^{\mathsf{r}}, \Delta \rangle^d \vdash \mathbf{s} : T_2}{\langle \Gamma, \Delta \rangle^d, \langle \mathbf{r} : T_1 \rangle^{\mathsf{r}} \vdash \mathbf{s} : T_2} \times$$

$$\frac{\Gamma \vdash \mathbf{s} : T_1 \multimap T_2 \quad \Delta \vdash \mathbf{t} : T_1}{\Gamma, \Delta \vdash \mathbf{s} \mathbf{t} : T_2} \multimap E$$

$$\frac{\Gamma \vdash \mathbf{t} : T}{\langle \Gamma \rangle^d \vdash \Delta^d \mathbf{t} : \diamondsuit^d T} \diamondsuit^d I \qquad \frac{\Gamma \vdash \mathbf{s} : \Box^d T}{\langle \Gamma \rangle^d \vdash \nabla^d \mathbf{s} : T} \Box^d E$$

$$\frac{\mathbf{r} \vdash \mathbf{s} : \Box^d T}{\langle \Gamma \rangle^d \vdash \Delta^d \mathbf{t} : \diamondsuit^d T} \diamondsuit^d I \qquad \frac{\Gamma, \mathbf{x} : T_1 \vdash \mathbf{s} : T_2}{\Gamma \vdash \lambda \mathbf{x} . \mathbf{s} : T_1 \multimap T_2} \multimap I$$

$$\frac{\langle \Gamma \rangle^d \vdash \mathbf{s} : T}{\Gamma \vdash \mathbf{A}^d \mathbf{s} : \Box^d T} \Box^d I \qquad \frac{\Gamma[\langle \mathbf{x} : T_1 \rangle^d] \vdash \mathbf{t} : T_2 \quad \Delta \vdash \mathbf{s} : \diamondsuit^d T_1}{\Gamma[\Delta] \vdash \mathbf{t} [\mathbf{x} \mapsto \nabla^d \mathbf{s}] : T_2} \diamondsuit^d E$$

$$\frac{\langle \Gamma, \langle \mathbf{x} : T_1 \rangle^{\mathsf{X}}, \Delta \rangle^d \vdash \mathbf{s} : T_2}{\langle \Gamma, \Delta \rangle^d, \langle \mathbf{x} : T_1 \rangle^{\mathsf{X}} \vdash \mathbf{s} : T_2} \times$$

Example

example too big, send help

Now what?

The standard categorial pipeline:

- ► read a sentence
- ▶ assign a type to each word
- ▶ perform (a) phrasal composition
- **▶** ???
- ► profit

Now what?

The standard categorial pipeline:

- ► read a sentence
- ▶ assign a type to each word
- ▶ perform (a) phrasal composition
- **▶** ???
- ► profit


```
p(t_1,\ldots t_n \mid w_1,\ldots w_n) \approx

ightharpoonup \prod_{i=1}^{n} (t_i \mid w_i)

ightharpoonup \prod_{i=1}^{n} (t_i \mid w_{i-\kappa} \dots w_{i+\kappa})

ightharpoonup \prod_{i=1}^{n} (t_i \mid w_1, \dots w_n)

ightharpoonup \prod_{i=1}^{n} (t_i \mid t_1, \dots, t_{i-1}, w_1, \dots, w_n)
          \Box^{det}(n \multimap np)
                                                                                                                    \lozenge^{obj}pron \multimap \lozenge^{su}np \multimap ssub
                                                                                                  np
                     the
                                              role
                                                                       that
                                                                                               types
                                                                                                                                           play
                                                                    * := \Diamond^{relcl}(\Diamond^{obj1}pron \multimap ssub) \multimap \Box^{mod}(np \multimap np)
```

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

 $\prod_{i=1}^{n} (t_i \mid w_i)$ co-occurrence-based statistical models (90s)

- $\prod_{i=1}^{n} (t_i \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), ffns (early 10s)
- $\prod_{i=1}^{n} (t_i \mid t_1, \dots t_{i-1}, w_1, \dots w_n)$ seq2seq (late 10s)

$$* := \diamondsuit^{relcl}(\diamondsuit^{obj1}pron \multimap ssub) \multimap \Box^{mod}(np \multimap np)$$

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=1}^{n} (t_i \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), ffns (early 10s)
- $\prod_{i=1}^{n} (t_i \mid t_1, \dots t_{i-1}, w_1, \dots w_n)$ seq2seq (late 10s)

$$^* \, := \, \diamondsuit^{\mathit{relcl}}(\, \diamondsuit^{\mathit{obj1}}\mathit{pron} \multimap \mathit{ssub} \,) \multimap \sqcap^{\mathit{mod}}(\mathit{np} \multimap \mathit{np})$$

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=1}^{n} (t_i \mid w_i)$ co-occurrence-based statistical models (90s)
 - $\prod_{i=1}^{n} (t_i \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), ffns (early 10s)

 - $\prod_{i=1}^{n} (t_i \mid t_1, \dots t_{i-1}, w_1, \dots w_n)$ seq2seq (late 10s)

$$\Box^{det}(n \multimap np) \qquad \qquad * \qquad \qquad np \qquad \diamondsuit^{obj}pron \multimap \diamondsuit^{su}np \multimap ssub$$

the
$$\longleftrightarrow$$
 role \longleftrightarrow that \longleftrightarrow types \longleftrightarrow play

$$* := \diamondsuit^{relcl}(\diamondsuit^{obj1}pron \multimap ssub) \multimap \Box^{mod}(np \multimap np)$$

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=1}^{n} (t_i \mid w_i)$ co-occurrence-based statistical models (90s)
- $\prod_{i=1}^{n} (t_i \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), ffns (early 10s)
- $\prod_{i=1}^{n} (t_i \mid t_1, \dots t_{i-1}, w_1, \dots w_n)$ seq2seq (late 10s)

$$* := \diamondsuit^{relcl}(\diamondsuit^{obj1}pron \multimap ssub) \multimap \Box^{mod}(np \multimap np)$$

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=1}^{n} (t_i \mid w_i)$ co-occurrence-based statistical models (90s)
 - $\prod_{i}^{n} (t_{i} \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), ffns (early 10s)

$$^* := \, \diamondsuit^{\mathit{relcl}}(\, \diamondsuit^{\mathit{obj1}} \mathit{pron} \multimap \mathit{ssub} \,) \multimap \sqcap^{\mathit{mod}}(\mathit{np} \multimap \mathit{np} \,)$$

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=1}^{n} (t_i \mid w_i)$ co-occurrence-based statistical models (90s)
- $\prod_{i}^{n} (t_{i} \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), ffns (early 10s)

$$\Box^{det}(n\multimap np) \longrightarrow n \qquad * \qquad np \qquad \diamondsuit^{obj}pron \multimap \diamondsuit^{su}np \multimap ssub$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

$$* := \diamondsuit^{relcl}(\diamondsuit^{obj1}pron \multimap ssub) \multimap \Box^{mod}(np \multimap np)$$

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=1}^{n} (t_i \mid w_i)$ co-occurrence-based statistical models (90s)
- $\prod_{i}^{n} (t_{i} \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), ffns (early 10s)

$$* := \diamondsuit^{relcl}(\diamondsuit^{obj1}pron \multimap ssub) \multimap \Box^{mod}(np \multimap np)$$

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

- $\qquad \qquad \prod_{i=1}^{n} (t_i \mid w_i)$ co-occurrence-based statistical models (90s)
- $\prod_{i}^{n} (t_{i} \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), ffns (early 10s)

$$* := \diamondsuit^{relcl}(\diamondsuit^{obj1}pron \multimap ssub) \multimap \Box^{mod}(np \multimap np)$$

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=0}^{n} (t_i \mid w_i)$ co-occurrence-based statistical models (90s)
- $\prod_{i}^{n} (t_{i} \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), ffns (early 10s)

$$* := \diamondsuit^{relcl}(\diamondsuit^{obj1}pron \multimap ssub) \multimap \Box^{mod}(np \multimap np)$$

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=1}^{n} (t_i \mid w_i)$ co-occurrence-based statistical models (90s)
- $\prod_{i=1}^{n} (t_i \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), ffns (early 10s)

what have we done?

- more arrows (=more context)
- auto-regression (price: temporal delay)
- what about the co-domain?

Intermezzo: the curse(?) of sparsity

The majority of unique categories in standard datasets are rare

- ▶ small penalty in accuracy
- less so for coverage..
- ► meta: sparse grammars = bad

- ▶ meta: sparse grammars = ok

Intermezzo: the curse(?) of sparsity

The majority of unique categories in standard datasets are rare

the "fix": ignore rare categories

- ► small penalty in accuracy
- less so for coverage..
- ► meta: sparse grammars = bad

- ► meta: sparse grammars = ok

Intermezzo: the curse(?) of sparsity

The majority of unique categories in standard datasets are rare

the "fix": ignore rare categories

- ► small penalty in accuracy
- less so for coverage..
- ► meta: sparse grammars = bad

the fix: decompose categories & build them up during decoding

- 4 unlimited power generalization
- ► meta: sparse grammars = ok

$$p(\sigma_1,\ldots\sigma_m\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=1}^{m} (\sigma_{i} \mid \sigma_{1}, \dots \sigma_{i-1}, w_{1}, \dots w_{n})$ sequential constructive (w/ Moortgat & Deoskar, 2019)
- $\prod_{i=1}^{m} (\sigma_{i} \mid \operatorname{anc}(\sigma_{i}), w_{1}, \dots w_{n})$ tree-recursive (Prange et. al 2020)

the
$$\longleftrightarrow$$
 role \longleftrightarrow that \longleftrightarrow types \longleftrightarrow play

```
p(\sigma_1,\ldots\sigma_m\mid w_1,\ldots w_n)\approx
```

- $\prod_{i=1}^{m} (\sigma_{i} \mid \sigma_{1}, \dots \sigma_{i-1}, w_{1}, \dots w_{n})$ sequential constructive (w/ Moortgat & Deoskar, 2019)
- $\prod_{i=1}^{m} (\sigma_{i} \mid \operatorname{anc}(\sigma_{i}), w_{1}, \dots w_{n})$ tree-recursive (Prange et. al 2020)


```
p(\sigma_1,\ldots\sigma_m\mid w_1,\ldots w_n)\approx
```

- $\prod_{i=1}^{m} (\sigma_{i} \mid \sigma_{1}, \dots \sigma_{i-1}, w_{1}, \dots w_{n})$ sequential constructive (w/ Moortgat & Deoskar, 2019)
- $\prod_{i=1}^{m} (\sigma_{i} \mid \operatorname{anc}(\sigma_{i}), w_{1}, \dots w_{n})$ tree-recursive (Prange et. al 2020)


```
p(\sigma_1,\ldots\sigma_m\mid w_1,\ldots w_n)\approx
```

- $\prod_{i=1}^{m} (\sigma_{i} \mid \sigma_{1}, \dots \sigma_{i-1}, w_{1}, \dots w_{n})$ sequential constructive (w/ Moortgat & Deoskar, 2019)
- $\prod_{i=1}^{m} (\sigma_{i} \mid \operatorname{anc}(\sigma_{i}), w_{1}, \dots w_{n})$ tree-recursive (Prange et. al 2020)

$$p(\sigma_1,\ldots\sigma_m\mid w_1,\ldots w_n)\approx$$

- $ightharpoonup \prod_{i=1}^{m} (\sigma_i \mid \sigma_1, \ldots \sigma_{i-1}, w_1, \ldots w_n)$ sequential constructive (w/ Moortgat & Deoskar, 2019)
- $ightharpoonup \prod_{i=1}^{m} (\sigma_i \mid \operatorname{anc}(\sigma_i), w_1, \dots w_n)$

$$p(\sigma_1,\ldots\sigma_m\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=1}^{m} (\sigma_{i} \mid \sigma_{1}, \dots \sigma_{i-1}, w_{1}, \dots w_{n})$ sequential constructive (w/ Moortgat & Deoskar, 2019)
- $\prod_{i=1}^{m} (\sigma_{i} \mid \operatorname{anc}(\sigma_{i}), w_{1}, \dots w_{n})$ tree-recursive (Prange et. al 2020)

$$p(\sigma_1,\ldots\sigma_m\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=1}^{m} (\sigma_{i} \mid \sigma_{1}, \dots \sigma_{i-1}, w_{1}, \dots w_{n})$ sequential constructive (w/ Moortgat & Deoskar, 2019)
- $\prod_{i=1}^{m} (\sigma_{i} \mid \operatorname{anc}(\sigma_{i}), w_{1}, \dots w_{n})$ tree-recursive (Prange et. al 2020)

$$p(\sigma_1,\ldots\sigma_m\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=1}^{m} (\sigma_{i} \mid \sigma_{1}, \dots, \sigma_{i-1}, w_{1}, \dots, w_{n})$ sequential constructive (w/ Moortgat & Deoskar, 2019)

the
$$\longleftrightarrow$$
 role \longleftrightarrow that \longleftrightarrow types \longleftrightarrow play

$$p(\sigma_1,\ldots\sigma_m\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=1}^{m} (\sigma_{i} \mid \sigma_{1}, \dots, \sigma_{i-1}, w_{1}, \dots, w_{n})$ sequential constructive (w/ Moortgat & Deoskar, 2019

Modern Times

$$p(\sigma_1, \ldots \sigma_m \mid w_1, \ldots w_n) \approx$$

- $\prod_{i=0}^{m} (\sigma_{i} \mid \sigma_{1}, \dots, \sigma_{i-1}, w_{1}, \dots, w_{n})$ sequential constructive (w/ Moortgat & Deoskar, 2019)

Modern Times

$$p(\sigma_1,\ldots\sigma_m\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=0}^{m} (\sigma_{i} \mid \sigma_{1}, \dots, \sigma_{i-1}, w_{1}, \dots, w_{n})$ sequential constructive (w/ Moortgat & Deoskar, 2019)

neither sequence nor tree but sequence of trees

$$p(\sigma_1, \dots \sigma_m \mid w_1, \dots w_n) \approx \prod_{i=1}^m (\sigma_i \mid \sigma_i : \operatorname{depth}(\sigma_i) < \operatorname{depth}(\sigma_i), w_1, \dots w_n)$$

the
$$\longleftrightarrow$$
 role \longleftrightarrow that \longleftrightarrow types \longleftrightarrow play

(encode)

neither sequence nor tree but sequence of trees $p(\sigma_1, \ldots, \sigma_m \mid w_1, \ldots, w_n) \approx \prod_i^m (\sigma_i \mid \sigma_i : \operatorname{depth}(\sigma_i) < \operatorname{depth}(\sigma_i), w_1, \ldots, w_n)$

(predict)

neither sequence nor tree but sequence of trees $p(\sigma_1, \ldots, \sigma_m \mid w_1, \ldots, w_n) \approx \prod_i^m (\sigma_i \mid \sigma_i : \operatorname{depth}(\sigma_i) < \operatorname{depth}(\sigma_i), w_1, \ldots, w_n)$

(feedback)

neither sequence nor tree but sequence of trees $p(\sigma_1, \ldots, \sigma_m \mid w_1, \ldots, w_n) \approx \prod_i^m (\sigma_i \mid \sigma_i : \operatorname{depth}(\sigma_i) < \operatorname{depth}(\sigma_i), w_1, \ldots, w_n)$

(contextualize)

neither sequence nor tree but sequence of trees $p(\sigma_1, \ldots, \sigma_m \mid w_1, \ldots, w_n) \approx \prod_i^m (\sigma_i \mid \sigma_i : \operatorname{depth}(\sigma_i) < \operatorname{depth}(\sigma_i), w_1, \ldots, w_n)$

(predict)

neither sequence nor tree but sequence of trees $p(\sigma_1, \ldots, \sigma_m \mid w_1, \ldots, w_n) \approx \prod_{i=1}^{m} (\sigma_i \mid \sigma_i : \operatorname{depth}(\sigma_i) < \operatorname{depth}(\sigma_i), w_1, \ldots, w_n)$

(feedback)

neither sequence nor tree but sequence of trees $p(\sigma_1, \ldots, \sigma_m \mid w_1, \ldots, w_n) \approx \prod_i^m (\sigma_i \mid \sigma_i : \operatorname{depth}(\sigma_i) < \operatorname{depth}(\sigma_i), w_1, \ldots, w_n)$

(contextualize)

neither sequence nor tree but sequence of trees $p(\sigma_1, \ldots, \sigma_m \mid w_1, \ldots, w_n) \approx \prod_{i=1}^{m} (\sigma_i \mid \sigma_i : \operatorname{depth}(\sigma_i) < \operatorname{depth}(\sigma_i), w_1, \ldots, w_n)$

(predict)

DL Jargon

- ► contextualize: states → states universal transformer encoder w/ relative distance weights (many-to-many, update states with neighborhood context)
- ▶ predict: state → nodes
 token classification w/ unary tree node embeddings
 (one-to-many, predict fringe nodes from current state)
- ► feedback: nodes → state
 heterogeneous dynamic graph attention
 (many-to-one, update state with last predicted nodes)

Color coded summary

decoder	${\rm seq2seq}[t]$	$\mathrm{seq}2\mathrm{seq}[\sigma]$	tree	dynamic graph	
codomain	fixed	open	constrained	constrained	
context	left	preorder (global)	ancestors (local)	levels (global)	
complexity	# words	# symbols	tree depth	tree depth	
treeness	ignored	implicit	explicit	explicit	
sequencess	explicit	misaligned	ignored	explicit	
search?	✓	✓	X	?	

legend

- ightharpoonup green = good
- ightharpoonup yellow = meh
- ightharpoonup red = bad

accuracy (%)

Table with numbers

		• (**)							
model	overall	frequent	uncommon	rare	unseen				
Æthel (van Benthem calculus & dependency modalities, nl)									
Sequential Transformer	83.67	84.55	64.70	50.58	24.55				
this work	93.67	94.72	73.45	53.83	15.78				
TLGBank (Lambek calculus & control modalities, fr)									
ELMo LSTM	93.20	95.10	75.19	25.85	_				
this work	95.93	96.40	81.48	55.37	7.26				
CCGbank (Combinatory Categorial Grammar, en)									
Sequential RNN	95.10	95.48	65.76	26.02	0.00				
Tree Recursive	96.09	96.44	68.10	37.40	3.03				
Attentive Convolutions	96.25	96.64	71.04	_	_				
this work	96.29	96.61	72.06	34.45	4.55				
$CCGrebank \ (ditto, \ improved \ version)$									
Sequential RNN	94.44	94.93	66.90	27.41	1.23				
Tree Recursive	94.70	95.11	68.86	36.76	4.94				
this work	95.07	95.45	71.40	37.19	3.70				

Proof Frame A bi-colored sequence of decomposed formula assignments.

- + (sub-)formulas we have
- (sub-)formulas we *need* preserves result and inverts argument polarity

Proof Frame A bi-colored sequence of decomposed formula assignments.

- + (sub-)formulas we have
- (sub-)formulas we *need* preserves result and inverts argument polarity

Proof Structure A proof frame & a bijection between + and — atoms

Proof Structure A proof frame & a bijection between + and — atoms

Proof Net

Proof Net

Proof Net

Proof Net

Proof Net

Proof Net

Proof Net

Proof Net

Proof Net

Proof Net

Proof Net

Proof Net

Proof Net

Proof Net

Proof Net

•000 Proof Nets 101

Parsing

Proof Net

Parsing •000

Proof Nets 101

Proof Net

Proof Net

Proof Net

Proof Net

Proof Net

Parsing •000

Proof Nets 101

Proof Net

Proof Net

Proof Net

Proof Net

≡ proof, a proof structure you can navigate

the bad news: (# atoms)! combinations to consider

Goal	nn_0	n n-	nna
	np_2	np_5	np_6
np_1	X		
np_3			X
np_4		X	

\mathbf{Cost}	np_2	np_5	np_6
np_1			
np_3			
np_4			

Goal			
	np_2	np_5	np_6
np_1	X		
np_3			Х
np_4		X	

$\frac{\mathbf{Cost}}{W}$	np_2	np_5	np_6
np_1			
np_3			
np_4			

Goal			
	np_2	np_5	np_6
np_1	X		
np_3			X
np_4		X	

W	np_2	np_5	np_6
np_1			
np_3			
np_4			

- ? boundedness
- ? backprop

Sinkhorn-Knopp

iterative row/column-wise normalization → bistochasticity

in the log scale:

LSF:
$$\mathbb{R}^n \to \mathbb{R}$$

$$\mathsf{LSE}(\mathbf{x}) = x^* + log\left(\sum_i \exp(x_i - x^*)\right), \quad x^* := \max(\mathbf{x})$$

$$\mathsf{norm}_1: \mathbb{R}^n o \mathbb{R}^n$$

$$\mathsf{norm}_1(\mathbf{x}) = \mathbf{x} - \mathsf{LSE}(\mathbf{x})$$

$$norm_2: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$$

$$\mathsf{norm}_2(X) = \mathsf{norm}_1 \left(\mathsf{norm}_1(X)^\top \right)^\top$$

 np_2

X

 np_5

 np_6

Proof Nets 102: neural this time

- \checkmark boundedness : negative in the log scale
- ? backprop

$$egin{array}{c|cccc} \mathbf{Goal} & np_2 & np_5 & np_6 \\ \hline np_1 & m{\chi} & & & & \\ np_3 & & m{\chi} & & & \\ np_4 & & m{\chi} & & & \\ \end{array}$$

- \checkmark boundedness : negative in the log scale
- \checkmark backprop : NLL /w straight-through estimator

A note on complexity

Forward pass of 64 matrix-batches, 3 Sinkhorn iterations

constant decoding + constant linking = ???