

Q: what is the min no. of colours

nequired for an asymmetric UC of G?

= asymm. VC no.

As the colorings cannot be less than 2

(we saw non-trivial automorphisms exist)

hence Asymm. VC no. = 2.

= a(G)

Application: Understanding the symmetries of a graph

and computing the assym. colourings is a key

step in algorithmic study and pattern matching problems.

Examples (computation) ->

1> Cyclic graphs (Cn):

2> Complete graphs (kn):

3> (Try!) Generalised Stan (Sn,k):

Possible qs: ->

17 Can a graph (undu specific conditions) can be broken down into components whos a(G;)'s can be used to find a(G)?

27 What about Graph products? or Disjoint Unions?

There exists other methods to break symmetry: -

a) fixing number (vertex)

Defined fixing set

b) Axing number (edge)

c) Asymm. Edge colowing number.

orans

for for

Follow up 95:

Does there exist a relation between a(G) and a'(G)?

Or f(G) or f'(G)?

Taking the Disjoint Union

The Automorphism grp of

the graph \cong Aut (C₆).

 \Rightarrow 2 graphs can have different f(G)'s but same $a(G)_S$.

Hence, Linking a(G), f(G) might be possible

(Snout Theoritic Proof).

 $\frac{1}{(G)} + \frac{1}{(G)} = \frac{1}{\alpha(G)}$

حساب ا	 15.	19(4)
	f(G) f(G)	0((())
37 Bounds?	Edge venter	7 4 (9)
•		ear