Erythrocytosis

AMY BUENING MLS(ASCP) CM

Today's Discussion

- Introduction
- Absolute Erythrocytosis
 - Secondary Erythrocytosis
- •Relative Erythrocytosis

Erythrocytosis

 Condition in which the red blood cells, hemoglobin, and hematocrit values are elevated

Separated into Two groups based on the determination of Red Cell Mass:

- Absolute Erythrocytosis
- Relative Erythrocytosis

Erythrocytosis

Absolute Erythrocytosis

Red cell mass is elevated

true increase in the number of circulating erythrocytes

Relative Erythrocytosis

- Increase in Hct with the absence of the elevation in red cell volume
 - Plasma level does not increase as the RBC level increases

Absolute Erythrocytosis

Absolute Erythrocytosis

- •Red cell mass (or red cell volume) is elevated
 - True increase in number of circulating erythrocytes
- Divided into 3 distinct groups:
 - Polycythemia Vera
 - Chronic myeloproliferative disorder arising as a clonal hematologic malignancy of the BM

Secondary Erythrocytosis

- Physiologic response to abnormal stimulus
 - Tissue hypoxia, increased erthryopoietic activity
- Idiopathic group
 - Neither myeloproliferative nor secondary cause of sustained erythrocytosis can be implicated

- Diagnosed by an increased secretion of erythropoietin
 - Increase production of RBCs by the BM

- Separated into 3 groups:
 - Appropriate, compensatory increase in EPO
 - Inappropriate or pathologic secretion of EPO
 - Increase from defective oxygen transport

Appropriate, compensatory increase in EPO

- Release of erythropoietin from a compensatory effect to minimize impending tissue hypoxia
- Abnormal hemoglobin
 - High-affinity variants with abnormal oxygen affinity
 - AA substitutions in variants interferes with release of oxygen to the tissue
 - Prevent normal conformational changes → deoxygenation → tissue hypoxia
 - · Kidney senses hypoxia and respond by increasing the release of EPO
 - Characterized by Left shift oxygen-dissociation curve
 - Seen in β-thalassemia minor and other rare hemoglobinopathies
 - Most individuals are asymptomatic and have no physical symptoms except ruddy complexion

Appropriate, compensatory increase in EPO

- Methemoglobinemia
 - Caused from hereditary deficiency of the enzyme NADH-methemoglobin reductase
 - Due to hemoglobin M disease, various drugs, or toxic substance exposure
 - Methemoglobin (ferric state) is incapable of carrying oxygen and cyanosis is observed
 - Mild, associated erythrocytosis
 - Result of a shift to the left of the oxygen-dissociation curve (increased oxygen affinity)

Appropriate, compensatory increase in EPO

- Cardiac or respiratory diseases that lead to significant arterial oxygen desaturation
 - Most common
 - Most common lung disease is COPD
- Caused by ascent to high altitudes due to low atmospheric pressure
 - Most normal individuals experience no symptoms
 - Acute mountain sickness- travel to high altitude too quickly
- Sleep apnea

Inappropriate Increase in EPO

- Increase in EPO without tissue hypoxia
- Associated with a wide range of disorders
 - Renal disease
 - Benign and malignant tumors (liver, cerebellum, and uterus)
- No physiologic advantage and causes the clinical features observed with these associated disorders
 - Hct and Red cell mass are increased, no WBC or platelet count increase

Defective Oxygen Transport

- •Seen with heavy cigarette smoking due to chronic carbon monoxide intoxication
 - Hemoglobin is bound to carbon monoxide, the carboxyhemoglobin loses its capacity to carry oxygen
 - Results in tissue hypoxia
 - Left shift in the oxygen-dissociation curve
 - Increase in EPO will cause mild erythrocytosis
 - Approximately seen in 600 to 1,000 per 100,000 population
- Environmental pollution
 - Increase levels of carboxyhemoglobin
 - Mild erythrocytosis

Relative Erythrocytosis

Relative Erythrocytosis

- •Elevated Hct, normal red cell mass, and decreased plasma volume
 - Hct between 50-60%

•Caused by:

- Dehydration
 - Loss of body fluids causes the decrease in plasma volume
 - Ex. Burns, diuretics, vomiting, diarrhea
- Stress erythrocytosis
 - Gaisböck syndrome
 - Asymptomatic middle-aged white men who are hypertensive, obese, and long history of smoking
 - Low plasma volume possibly associated with changes in hormone level
 - Usually benign

Classification of the Polycythemias

References

- •Harmening, Clinical Hematology and Fundamentals of Hemostasis- 4th Edition
- •Rodak's Hematology, Clinical Principles and Applications 6th Edition

