Dasar Teori Graf

Dr. Ahmad Sabri Universitas Gunadarma 2016

Kuliah Matrikulasi Magister Teknik Elektro, 11 April 2016

Review konsep

- Definisi Graf
- Jenis-jenis graf: sederhana, berarah, multi, pseudo.
- Derajat simpul, derajat-masuk, derajatkeluar
- Beberapa kelas graf: garis (P_n), lengkap (K_n), siklis (C_n), roda (W_n), kubus-n (Q_n), bipartit (B_{m,n}), bipartit lengkap (K_{m,n})

- Graf terhubung
- Subgraf
- Representasi graf secara aljabar: matriks insidensi, matriks ajasensi

Isomorfisma Graf

Graf $G_1(V_1,E_1)$ dan $G_2(V_2,E_2)$ dikatakan *isomorfis* jika:

- Terdapat bijeksi f : V₁ → V₂
- Untuk sebarang dua simpul a,b anggota V₁, f(a) berdampingan (adjacent) dengan f(b) jika dan hanya jika a berdampingan dengan b.

Periksalah apakah pasangan graf berikut isomorfis

Graf terhubung

 Graf G dikatakan terhubung jika untuk sebarang dua simpul pada G selalu terdapat path yang menghubngkan keduanya.

Istilah terkait keterhubungan pada graf

- Perjalanan (walk): barisan simpul-ruas. Contoh:
 v₁e₁v₂e₂...v_ne_n, di mana e_i menghubungkan simpul v_i dengan v_{i+1}.
- Perjalanan terbuka [tertutup]: walk yang dimulai dan diakhiri oleh simpul yang berbeda [sama].
- Lintasan (trail): walk di mana semua ruasnya berbeda
- Jalur (path): walk di mana semua simpulnya berbeda.
- Sirkuit: path yang diawali dan diakhiri oleh simpul yang sama
- Jika pada path terdapat n ruas, maka disebut juga path dengan panjang n.
- Path sederhana: jika n = 1.

Keterhubungan pada graf berarah

Graf berarah dikatakan:

- Terhubung kuat (strongly connected) jika terdapat path antara sebarang dua simpul a dan b.
- Terhubung lemah (weakly connected) jika terdapat path antara sebarang dua simpul a dan b, jika graf dijadikan tak berarah.

 Manakah di antara graf berikut yang terhubung kuat dan terhubung lemah?

Problem 7 Jembatan di Konigsberg

Adakah lintasan yang melewati ketujuh jembatan tersebut tepat satu kali dalam satu kali perjalanan?

Problem 7 Jembatan di Konigsberg

- Lintasan Euler: lintasan yang melewati semua ruas pada graf tepat satu kali.
- Sirkuit Euler: lintasan Euler yang diawali dan diakhiri pada simpul yang sama.

- Pikirkan manakah yang benar:
 - Lintasan euler → sirkuit euler; atau
 - Sirkuit euler → lintasan euler ???

Euler membuktikan bahwa terdapat lintasan Euler pada graf jika banyaknya simpul berderajat ganjil adalah dua atau tidak ada sama sekali. (Mengapa demikian...?)

Pertanyaan lanjutan:

Temukanlah perbedaan antara lintasan Euler pada graf dengan dua simpul berderajat ganjil, dengan lintasan Euler pada graf tanpa simpul berderajat ganjil.

 Jadi.... adakah lintasan Euler pada problem 7 jembatan Konigsberg?

Graf Eulerian

- Graf Eulerian: graf yang memiliki sirkuit Euler
- Manakah graf berikut ini yang Eulerian?

Teorema Euler

Bentuklah Teorema Euler dengan memilih kalimat yang tepat pada setiap kolom

1. Sebuah graf terhubung G:

Adalah Eulerian	•Memiliki	•simpul	Berderajat dua
jika dan hanya jika	Tidak memiliki		Berderajat ganjil

2. Sebuah graf terhubung G:

•Memiliki lintasan Euler	•Memiliki	•Tepat	•Berderajat dua
jika dan hanya jika	•Tidak memiliki	dua simpul	•Berderajat ganjil

Pertanyaan latihan

1. Diberikan graf G berikut. Berapa ruas yang perlu ditambah agar graf G Eulerian?

- Tentukan n sehingga graf lengkap K_n, n ≥ 2, adalah Eulerian
- 3. (Benar/Salah) Jika dua simpul terhubung oleh sebuah walk, maka kedua simpul tersebut terhubung oleh sebuah path.

Graf Hamiltonian

- Hamiltonian path: path yang melalui semua simpul tepat satu kali
- Hamiltonian cycle: Hamiltonian path dengan pengecualian: diawali dan diakhiri oleh simpul yang sama
- Graf Hamiltonian: graf yang memuat Hamiltonian cycle

 Apakah graf dodekahedron adalah Hamiltonian?

• Hamiltonian cycle atau hamiltonian path?

- Apakah Graf Eulerian selalu Hamiltonian?
- Berikan contohnya

Teorema tentang graf Hamiltonian

Teorema Dirac

 Sebuah graf sederhana dengan n≥3 simpul adalah Hamiltonian jika setiap simpulnya berderajat n/2 atau lebih.

Teorema Ore

2. Diberikan G graf sederhana. Jika untuk sebarang dua simpul tak-berdampingan u dan v pada G berlaku deg(u)+deg(v) ≥ n, maka G adalah Hamiltonian

Traveling salesman problem

 Seorang salesman yang berdomisili di kota A akan mengunjungi kota B,C,D,E, dan kembali ke kota A. Diagram jarak antar kota diberikan sebagai berikut. Tentukan rute perjalanan yang harus ditempuh agar total jarak tempuh minimal!

Latihan

- Tulis semua biner dengan panjang 3
- Buat sebuah graf, di mana setiap simpul berlabel sebuah biner dengan panjang 3, dan ruas-ruas menghubungkan pasangan simpul dengan label biner berbeda hanya pada 1 digit.
- Graf apakah yang terbentuk?
- Temukan Hamiltonian cycle pada graf tersebut