Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemáticas TEMPORADA ACADÉMICA DE VERANO 2018

MAT1620 * CÁLCULO II INTERROGACIÓN 2

1. Calcule, en caso que existan, los siguientes límites,

a)
$$\lim_{(x,y)\to(0,0)} \frac{xy^4}{x^2+y^8}$$
, b) $\lim_{(x,y)\to(0,0)} (x^2+y^2) \ln(x^2+y^2)$.

2. Encuentre, si es que existen, todos los valores de $a, b \in \mathbb{R}$ de modo que la función

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2 + axy + y^2} &, (x,y) \neq (0,0) \\ b &, (x,y) = (0,0) \end{cases}$$

sea continua.

3. Demuestre que si $z = f(x, y), x = r\cos(\theta)$ e $y = r\sin(\theta)$, entonces

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{\partial^2 z}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 z}{\partial \theta^2} + \frac{1}{r} \frac{\partial z}{\partial r}.$$

- 4. a) La función $T(x,y) = \ln(x^2 + y^2)$ determine la temperatura en cada punto del plano, excepto el origen. ¿En qué dirección se debe mover, desde el punto (1,2), de manera de obtener la máxima variación de temperatura?
 - b) Encuentre el plano tangente para T(x,y) en el punto (1,2,T(1,2)).
- 5. Considere la función f(x,y) = xy(1-x-y)
 - a) Determine y clasifique los puntos críticos de f(x, y).
 - b) Determine máximo y mínimo globales de la función f sobre el triángulo de vértices (-2,0),(0,2),(2,0).
- 6. Se desea construir una caja rectangular sin tapa, de modo que su diagonal (segmento recto que une dos vértices que no comparten una cara) tenga una longitud constante e igual a L. Utilice el método de multiplicadores de Lagrange para determinar las dimensiones de la caja de modo que el volumen sea máximo.

UNA SOLUCIÓN

1. a) Notamos que si consideramos las curvas $x = my^4$ para $m \in \mathbb{R}$, entonces tendremos que

$$\lim_{(x,y)\to(0,0)}\frac{xy^4}{x^2+y^8}=\lim_{y\to0}\frac{my^8}{m^2y^8+y^8}=\frac{m}{m^2+1},$$

con lo cual podemos concluir que el límite no existe, dado que tomando m=0 y m=1 obtenemos dos valores distinto de límite.

b) Utilizando coordenadas polares, es decir, $x = r\cos(\theta)$ e $y = r\sin(\theta)$, tendremos que

$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \ln(x^2 + y^2) = \lim_{r\to 0} (r^2(\cos^2(\theta) + \sin^2(\theta))) \ln(r^2(\cos^2(\theta) + \sin^2(\theta)))$$

$$= \lim_{r\to 0} r^2 \ln(r^2) = 0,$$

para cualquier valor de $\theta \in [0, 2\pi]$. Con lo que concluimos que

$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \ln(x^2 + y^2) = 0.$$

2. Primero observamos que si tomamos a=0 entonces la función pasa a ser

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2 + y^2} &, (x,y) \neq (0,0) \\ b &, (x,y) = (0,0) \end{cases}$$

y además,

$$0 \le \frac{x^2 y^2}{x^2 + y^2} = x^2 \cdot \frac{y^2}{x^2 + y^2} \le x^2,$$

con lo cual tendremos que

$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} = 0,$$

por lo que si b=0 entonces f(x,y) ser $\tilde{\mathbf{A}}_{\mathsf{i}}$ una función continua en todo \mathbb{R}^2 .

3. Usaremos la notación z_x , z_y , z_r , etc, para denotar las derivadas parciales. Luego tendremos que el esquema de dependencia es el siguente

Luego

$$z_r = (z_{xx})_r + (z_y)(y_r) = z_x \cos(\theta) + z_y \sin(\theta)$$

$$z_\theta = (z_x)x_\theta + z_y y_\theta = -z_x r \sin(\theta) + z_y r \cos(\theta)$$

Ahora sacando las derivadas de segundo orden tendremos

$$z_{rr} = (z_{xx}x_r + z_{xy}y_r)\cos(\theta) + (z_{yx}x_r + z_{yy}y_r)\sin(\theta)$$

= $(z_{xx}\cos(\theta) + z_{xy}\sin(\theta))\cos(\theta) + (z_{xy}\cos(\theta) + z_{yy}\sin(\theta))\sin(\theta)$
= $z_{xx}\cos^2(\theta) + z_{yy}\sin^2(\theta) + 2z_{xy}\cos(\theta)\sin(\theta)$

$$z_{\theta\theta} = -r(z_{xx}x_{\theta} + z_{xy}y_{\theta})\sin(\theta) - rz_{x}\cos(\theta) + r(z_{yx}x_{\theta} + z_{yy}y_{\theta})\cos(\theta) - rz_{y}\sin(\theta)$$

$$= r^{2}z_{xx}\sin^{2}(\theta) - r^{2}z_{xy}\cos(\theta)\sin(\theta) - rz_{x}\cos(\theta) - r^{2}z_{xy}\sin(\theta)\cos(\theta) + r^{2}z_{yy}\cos^{2}(\theta) - rz_{y}\sin(\theta)$$

$$r^{-2}z_{\theta\theta} = z_{xx}\sin^{2}(\theta) - 2z_{xy}\cos(\theta)\sin(\theta) - r^{-1}z_{x}\cos(\theta) + z_{yy}\cos^{2}(\theta) - r^{-1}z_{y}\sin(\theta)$$

Por lo tanto,

$$z_{rr} + r^{-2}z_{\theta\theta} + r^{-1}z_r = z_{xx}(\sin^2(\theta) + \cos^2(\theta)) + z_{yy}(\sin^2(\theta) + \cos^2(\theta))$$
$$-r^{-1}z_x\cos(\theta) - r^{-1}z_y\sin(\theta) + r^{-1}(z_x\cos(\theta) + z_y\sin(\theta)) = z_{xx} + z_{yy},$$

que es lo que se ped\(\text{A} \) a demostrar.

4. a) Sabemos que la dirección en cual el módulo de la derivada direccional es en la dirección del vector gradiente en el punto, por lo que la dirección está dada por

$$\nabla T(1,2)$$
,

lo cual se calcula usando las derivadas parciales

$$\frac{\partial T}{\partial x} = \frac{2x}{x^2 + y^2}$$

$$\frac{\partial T}{\partial y} = \frac{2y}{x^2 + y^2}$$

Por lo que

$$\nabla T(1,2) = \left(\frac{1}{5}, \frac{4}{5}\right).$$

b) Dado que por la parte a) conocemos las derivadas parciales, entonces el plano tangente viene dado por la ecuación

$$z = T(1,2) + \frac{\partial T}{\partial x}(1,2)(x-1) + \frac{\partial T}{\partial y}(1,2)(y-2),$$

$$\Rightarrow z = \ln(5) + \frac{1}{5}(x-1) + \frac{4}{5}(y-2) \Rightarrow 5z = x + 4y + (\ln(5) - 9).$$

5. a) Comenzamos calculando las respectivas derivadas parciales,

$$f_x = y(1 - x - y) - xy,$$
 $f_y = x(1 - x - y) - xy.$

Resolvemos el respectivo sistema $\nabla f(x,y) = (0,0)$, que tiene por soluciones los puntos,

$$P_1 = (0,0), \quad P_2 = (0,1), \qquad P_3 = (1,0), \qquad P_4 = \left(\frac{1}{3}, \frac{1}{3}\right).$$

A continuación calculamos la respectiva matriz Hessiana y su respectivo determinante.

$$Hf(x,y) = \begin{pmatrix} -2y & 1 - 2(x+y) \\ 1 - 2(x+y) & -2x \end{pmatrix}, \qquad D(x,y) = 4xy - (1 - 2(x+y))^{2}.$$

Con esto tenemos que,

- $D(P_1) = -1$, $D(P_2) = -1$, $D(P_2) = -1$ por lo tanto P_1 , P_2 , P_3 son puntos tipo silla.
- $D(P_4) = \frac{1}{3}$, $f_{xx}(P_4) = \frac{-2}{3}$, por lo tanto P_4 es un minimo local.
- b) A continuación notamos que nuestra región tiene una frontera consistente en tres partes, a las que analizaremos por separado.
 - $\gamma_1: y=2-x, x\in [0,2]$. En esta segmento, la función se convierta en f(x)=x(x-2) y tiene un único punto crítico que es $P_5(1,1)$.
 - $\gamma_2: y = x + 2, x \in [-2, 0]$ En este segmento, la función se convierte en $f(x) = -2x^3 + 5x^2 + 2x$ y tiene dos puntos críticos,

$$P_6 = \left(\frac{-5 - \sqrt{13}}{6}, \frac{7 - \sqrt{13}}{6}\right), \qquad P_7 = \left(\frac{-5 + \sqrt{13}}{6}, 7 + \frac{\sqrt{13}}{6}\right).$$

 $3: y = 0, x \in [-2, 2].$

En este segmento, la función se convierte en f(x) = 0 y no posee puntos críticos.

Finalmente debemos agregar los puntos en los vértices del triangulo

$$P_8 = (-2,0), P_9 = (2,0), P_{10} = (0,2).$$

Para determinar el valor máximo y minimo debemos evaluar nuestra función en los puntos encontrados

$$f(P_4) = \frac{1}{27}$$
, $f(P_5) = -1$, $f(P_6)$, $f(P_7)$, $f(P_8) = f(P_9) = f(P_{10}) = 0$.

Se concluye que el valor máximo se alcanza en P_4 y el valor mínimo en P_5 .

6. Sea x, y y z el largo, alto y ancho respectivamente de la caja. Entonces queremos maximimzar

$$f(x, y, z) = xyz$$

sujeto a la resttricción

$$g(x, y, z) = \sqrt{x^2 + y^2 + z^2} = L$$

Usando el método de los multiplicadores de Lagrange, buscamos valores de x, y, z y λ tales que $\nabla f = \lambda \nabla g$ y g(x, y, z) = L, lo que se traduce en las ecuaciones

$$f_x = \lambda g_x$$

$$f_y = \lambda g_y$$

$$f_z = \lambda g_z$$

$$\sqrt{x^2 + y^2 + z^2} = L$$

Es decir,

$$yz = \frac{\lambda x}{\sqrt{x^2 + y^2 + z^2}} \tag{1}$$

$$xz = \frac{\lambda y}{\sqrt{x^2 + y^2 + z^2}} \tag{2}$$

$$xy = \frac{\lambda z}{\sqrt{x^2 + y^2 + z^2}} \tag{3}$$

$$\sqrt{x^2 + y^2 + z^2} = L \tag{4}$$

Multipliacando la ecuación (1) por x, la ecuación (2) por y y la ecuación (3) por z, obtenemos

$$xyz = \frac{\lambda x^2}{\sqrt{x^2 + y^2 + z^2}} \tag{5}$$

$$xyz = \frac{\lambda y^2}{\sqrt{x^2 + y^2 + z^2}} \tag{6}$$

$$xyz = \frac{\lambda z^2}{\sqrt{x^2 + y^2 + z^2}} \tag{7}$$

$$\sqrt{x^2 + y^2 + z^2} = L \tag{8}$$

Observe que $\lambda \neq 0$, ya que si $\lambda = 0$, entonces al menos 2 elementos en el conjunto $\{x, y, z\}$ deben ser 0, y en tal caso no tendríamos una caja. Así, dado que L > 0 de las ecuaciones (5) y (6) tenemos que x = y, del mismo modo de las ecuaciones (6) y (7) tenemos que z = y. Luego reemplazando lo anterior en (8) tenemos que

$$\sqrt{y^2 + y^2 + y^2} = L$$

Dado que x, y, z son todos positivos, resolviendo la ecuación anterior se tiene que $y = \frac{\sqrt{3}}{3}L$ y por lo tanto $x = \frac{\sqrt{3}}{3}L$ y $z = \frac{\sqrt{3}}{3}L$.