

Towards Function Approximation Methods

Easwar Subramanian

TCS Innovation Labs, Hyderabad

Email: easwar.subramanian@tcs.com / cs5500.2020@iith.ac.in

October 07, 2021

Overview

Review

2 Function Approximation Methods

Review

Prediction and Control Problems

- ▶ Given a MDP $< S, A, P, R, \gamma >$ and a policy π , the **prediction problem** involves computing
 - ★ State-value function:

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s \right)$$

★ Action value function :

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s, a_t = a \right)$$

▶ Given a MDP $< S, A, P, R, \gamma >$, the **control problem** involves finding optimal value functions V_* and Q_* or equivalently finding optimal policy π_* .

Model Based Techniques

Model based implies, we know \mathcal{P} and \mathcal{R}

► Iterative Policy Evalutation (for prediction problem)

$$V_{k+1}(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_{k}(s') \right]$$

► Value Iteration (for control problem)

$$V_*(s) \leftarrow \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma V_*(s') \right) \right]$$

Drawbacks of DP Algorithms

- ▶ Requires full prior knowledge of the dynamics of the environment
- ▶ Can be implemented only on small, discrete state spaces

Model Free Techiques for Prediction

▶ Key idea is to estimate the following expectations using samples

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s \right)$$
$$= \mathbb{E}_{\pi} \left[r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_t = s \right]$$

- ▶ Monte-Carlo and TD Methods
- ▶ One Step TD for V: If the transition (s, r, s') is observed at time t under policy π , then

$$V(s) \leftarrow V(s) + \alpha_t [r + \gamma V(s') - V(s)]$$

▶ One step TD for Q: Given the transition (s, a, r, s') from π , sample $a' \sim \pi(s')$ and update

$$Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma Q(s', a') - Q(s, a)]$$

Model Free Techniques for Control

- ▶ Policy is always ε -greedy with ε decay
- ▶ **SARSA Update**: Given a trajectory segment (s, a, r, s', a') generated by the ε -greedy policy, the policy evaluation steps involves the following update

$$Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma Q(s', a') - Q(s, a)]$$

and policy improvement is done using ϵ -greedy with respect to current Q

▶ Q-learning update (Watkins) : Given a trajectory segment (s, a, r, s') generated by the ε -greedy policy, update

$$Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$$

Drawback

▶ Not scalable to large state and action spaces

Function Approximation Methods

On the need for Function Approximators

- ▶ To solve large scale RL problems
 - \star Game of Backgammon: 10^{20} states
 - \star Game of Go: 10^{170} states
 - \bigstar Even Atari games have large state space

 $|\mathcal{S}|$ is very large : Curse of Dimensionality

Value Function Approximators

- ▶ Value function have been basically lookup tables.
- ▶ Solution for large MDP's is to use function approximators
 - ★ Generalize from seen to unseen states
- ▶ Function approximators could be
 - ★ Linear function approximator
 - ★ Neural networks
 - ★ Decision tree
 - * ...

Neural Network Approximators

Policy Evaluation Using Neural Networks

The value of a policy π is given by

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s \right)$$
$$= \mathbb{E}_{\pi} \left[r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_t = s \right]$$

Question: How do we compute the above expectations using neural networks?

 \triangleright Roll-out m trajectories from state s and observe rewards

Value Function Fitting using Monte Carlo

► Consider a MDP with a finite horizon H

$$V^{\pi}(s) \approx \frac{1}{m} \left[\sum_{j=1}^{m} \left[\sum_{k=0}^{H} \left(\gamma^{k} r_{t+k+1}^{i} | s_{t} = s \right) \right] \right]$$

- \triangleright Need to reset the simulator back to state s (Not always possible)
- ▶ Alternative : Roll-out single sample estimate (high variance, but OK)
- ▶ Collect training data for as many states as possible and regress thereafter

MC Based Algorithm

Algorithm Monte Carlo Based Value Function Fitting

Initialize number of iterations N

for i = 1 to N do

Perform a roll-out from an initial state s_i (could be any state from S)

Calculate targets y_i using Monte-Carlo roll outs

$$y_i = \left[\sum_{k=0}^{H} \left(\gamma^k r_{t+k+1}^i | s_t = s_i \right) \right]$$

Form input-output pairs (s_i, y_i) (N datapoints in total)

end for

Perform supervised regression with loss function

$$L(\phi) = \frac{1}{2} \sum_{i=1}^{N} \left[V_{\phi}^{\pi}(s_i) - y_i \right]^2$$

Policy Evaluation : MC Based Algorithm

 $\blacktriangleright\,$ Needs complete sequences, suitable only for episodic tasks

Fitted V Iteration

We observe transition (s, a, r, s') at time t; Using one step look-ahead,

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left[r + \gamma V^{\pi}(s') | s_t = s \right]$$

 $\approx r + \gamma V^{\pi}(s') \text{ (Bootstrap } V^{\pi})$

Using function approximators, we get,

$$V_{\phi}^{\pi}(s) \approx r + \gamma V_{\phi}^{\pi}(s')$$

- ▶ Directly use the previous fitted value function V_{ϕ}^{π}
- ► Collect training data,

$$\left(s_i, \underbrace{r + V_{\phi}^{\pi}(s_i')}_{=y_i}\right)$$

Perform supervised regression

$$L(\phi) = \frac{1}{2} \sum_{i=1}^{N} \left[V_{\phi}^{\pi}(s_i) - y_i \right]^2$$

Fitted V Iteration : Algorithm

Algorithm Fitted V Iteration

- 1: Initialize number of iterations N
- 2: **for** j = 1 to N **do**
- 3: Sample K transitions (s, a, r, s') using policy π
- 4: **for** i = 1 to K **do**
- 5: Calculate targets y_i using one step TD approximation

$$y_i = \left[r + V_{\phi_j}^{\pi}(s_i')\right]$$

- 6: Form input-output pairs (s_i, y_i) (K datapoints in total)
- 7: end for
- 8: Perform supervised regression (Optimizer : RProp) using loss function

$$L(\phi_j) = \frac{1}{2} \sum_{i=1}^{K} \left[V_{\phi_j}^{\pi}(s_i) - y_i \right]^2$$

and get a new function approximator with new weights ϕ_{j+1}

Optimal Value Function : Control

Bellman optimality equation for V_* is given by,

$$V_*(s) \leftarrow \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma V_*(s') \right) \right] \approx \max_{a} E \left[r_{t+1} + \gamma V_*(s_{t+1}) | s_t = s \right) \right]$$

Question: How do we get a sample estimate for transition (s, a, r, s') for V_* ?

$$V(s) \approx \max_{a} [r + \gamma V(s')]$$

- \blacktriangleright To compute max over a, we need to know the outcome of all actions starting from s. Mostly not possible and costly as well.
- \blacktriangleright For model free control, we use approximators for Q and not V

Fitted Q Iteration

Bellman optimality equation for Q_*

$$Q_*(s, a) = \left| \sum_{s' \in S} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma \max_{a'} Q_*(s', a') \right) \right| \approx \mathbb{E} \left[r_{t+1} + \gamma \max_{a'} Q_*(s_{t+1}, a') | s_t = s, a_t = a \right]$$

- ▶ Max is inside the expectation; that's ok
- ▶ For transitions (s, a, r, s') we can compute $r + \gamma \max_{a'} Q(s', a')$
- ▶ Does not require simulating over actions
- \blacktriangleright Use the previous fitted optimal Q function Q_{ϕ}^* like in fitted V iteration
- ► Collect training data,

$$\left(s_i, \underbrace{r + \gamma \max_{a'} Q_{\phi}(s_i', a_i')}_{=y_i}\right)$$

► Perform supervised regression

$$L(\phi) = \frac{1}{2} \sum_{i=1}^{N} \left[Q_{\phi}(s_i, a_i) - y_i \right]^2$$

Fitted Q Iteration : Algorithm

Algorithm Fitted Q Iteration

- 1: Initialize number of iterations N
- 2: **for** j = 1 to N **do**
- 3: Sample K transitions (s, a, r, s') using any behaviour policy μ
- 4: **for** i = 1 to K **do**
- 5: Calculate targets y_i using one step TD approximation

$$y_i = \left[r + \gamma \max_{a'} Q_{\phi_j}(s'_i, a')\right]$$

- 6: Form input-output pairs (s_i, y_i) (K Datapoints in total)
- 7: end for
- 8: Perform supervised regression (Optimizer: RProp) using loss function

$$L(\phi_j) = \frac{1}{2} \sum_{i=1}^{K} \left[Q_{\phi_j}(s_i, a_i) - y_i \right]^2$$

and get a new function approximator with new weights ϕ_{j+1}

9: end for