Please box your answers. Show all work clearly and in order.

1. Determine whether each sequence $\{a_n\}_{n=1}^{\infty}$ converges or diverges, and if it converges, then find its limit.

limit.
(a)
$$a_n = \frac{2n^3 - 15}{n^3 - n^2 + n}$$

$$\lim_{n \to \infty} \frac{2n^3 - 15}{n^3 - n^2 + n} = \lim_{n \to \infty} \frac{(2n^3 - 15)(\frac{1}{n^3})}{(n^3 - n^2 + n)(\frac{1}{n^3})} = \lim_{n \to \infty} \frac{2 - \frac{15}{n^3}}{1 - \frac{1}{n} + \frac{1}{n^2}}$$

$$= \frac{2 - 0}{1 - 0 + 0} = \boxed{2}$$
So an [converges]

(b)
$$a_n = \cos(n)$$
 lim (os(n) = D.N.E. (as n increases cos(n) does not approach any one value, but oscillates between 1 and -1) or (cos(n) is periodic) so a_n diverges

(c)
$$a_n = \frac{\ln(n)}{n}$$
 $\lim_{n \to \infty} \frac{\ln(n)}{n}$ consider the function $f(x) = \frac{\ln(x)}{x}$ where x is a real number (specifically let $x > 0$).

Notice $\lim_{n \to \infty} \frac{\ln(x)}{x} = \lim_{n \to \infty} \frac{\ln(x)}{x} = 0$. Therefore, since $\lim_{n \to \infty} \frac{\ln(n)}{x} = 0$ for $\lim_{n \to \infty} \frac{\ln(n)}{n} = 0$. Converges

2. Pick ONE of the following. Cross out the problem you do not want graded. Otherwise I will grade the first problem worked on.

Determine if the following integral that you choose converges or diverges, and evaluate if it converges.

Notice that
$$f(x) = \frac{3}{x-1} dx$$

Notice that $f(x) = \frac{3}{x-1}$ is discontinuous at $x = 1$.

so write:
$$\int_0^2 \frac{3}{x-1} dx = \int_0^1 \frac{3}{x-1} dx + \int_1^2 \frac{3}{x-1} dx$$

Each of these are improper integrals of Type II

$$\int_0^2 \frac{3}{x-1} dx = \lim_{t \to 1^{\infty}} \int_0^t \frac{3}{x-1} dx + \lim_{t \to 1^{\infty}} \int_0^2 \frac{3}{x-1} dx$$

Solving this one first:

$$\lim_{t \to 1^{\infty}} \int_0^t \frac{3}{x-1} dx = \lim_{t \to 1^{\infty}} \left[3 \ln |x-1| \right]_0^t$$

I see below

(b)
$$\int_{1}^{\infty} \frac{1}{x^{2}+1} dx$$

This is an improper integral of type I.

So write: $\int_{1}^{\infty} \frac{1}{X^{2}+1} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{X^{2}+1} dx$

$$= \lim_{t \to \infty} \left(\left[+\tan^{-1}(x) \right]_{1}^{t} \right)$$

preture that may help:
$$= \lim_{t \to \infty} \left(+\tan^{-1}(t) - \tan^{-1}(1) \right)$$

$$= \lim_{t \to \infty} \left(+\tan^{-1}(t) - \frac{\pi}{4} \right)$$

$$= \lim_{t \to \infty} \left(+\tan^{-1}(t) - \frac{\pi}{4} \right)$$

$$= \lim_{t \to \infty} \left(+\tan^{-1}(t) - \frac{\pi}{4} \right)$$

$$= \lim_{t \to \infty} \left(+\tan^{-1}(t) - \frac{\pi}{4} \right)$$

$$=\lim_{t\to 1^{-}} \left(3\ln|t-1|-3\ln|-1|\right)$$

$$=\lim_{t\to 1^{-}} \left(3\ln|t-1|-3\ln(1)\right)$$

$$=\lim_{t\to 1^{-}} 3\ln|t-1| = -\infty$$
as $t\to 1^{-}$ $|t-1|\to 0^{+}$ so f
so this means $\int_{0}^{1} \frac{3}{x-1} dx$ is divergent
so this means $\int_{0}^{2} \frac{3}{x-1} dx$ is clivergent
(we clant even need to find $\int_{0}^{2} \frac{3}{x-1} dx$
we are dune.)

so $f(x) = \int_{0}^{2} \frac{3}{x-1} dx$
 $f(x) = \int_{0}^{2} \frac{3}{x-1} dx$