

Sistemas de Numeração e Códigos

Apontamentos sobre sinais analógicos, sinais digitais, binário, base 4, 8 e 16 Page

Sinais Analógicos e Sinais Digitais

Sinais Analógicos

Os sinais podem variar continuamente

Sinais Digitais

- Apenas podem assumir uma gama de valores discretos (só tomam determinados valores de tensão)
- Circuitos eletrónicos que funcionam apenas com 2 valores de amplitude são chamados de Digitais Binários

Utilizam 2 estados distintos → Papel importante do sistema binário (Sistema Octal e Sistema Hexadecimal têm um papel importante)

Porquê utilizar sinais binários?

- Simplicidade tecnológica e tolerância dos componentes utilizados
- Grande imunidade ao ruído

- Simplicidade de projeto
- Capacidade de integração
- Velocidade
- Parâmetros imutáveis com o tempo
- Economia

Sinais ideais/reais

Sistemas de Numeração

245 → Duzentos e Quarenta e Cinco

Qual o algoritmo de cálculo de um número?

Base 10 (Sistema Decimal). PORQUÊ?

Símbolos Válidos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Total de símbolos = 10

Sistema Binário (Base 2)

• Quais os dígitos válidos?

0 e 1 (Total 2 logo base 2)

Qual o equivalente decimal de 10110 no sistema binário

- 10110 no sistema binário:
 - LSB Least Significant Bit
 - MSB Most Significant Bit

Conversão para decimal:

Número inteiro

Decimal

- Octal
 - Símbolos Válidos: 0, 1, 2, 3, 4, 5, 6, 7
 - Total de símbolos: 8
 - Exemplo Converta para o sistema decimal

- Hexadecimal
 - Símbolos Válidos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - Total de Símbolos: 16
 - Exemplo Converta para o sistema decimal:

- Bases 4, 8 e 16 são potências de 2
- Base $4 \to 4 = 2^2$
 - 1 digito na base 4 representa 2 dígitos na base 2
- Octal → 8 = 2³
 - 1 digito na base 8 representa 3 dígitos na base 2
- Hexadecimal → 16 = 2⁴
 - 1 digito na base 16 representa 4 digitos na base 2

Conversão direta através de uma tabela de conversão

Tabela de Conversão

Decimal	Binário	Octal	Hexadecimal	4-bits
0	0	0	0	0000
1	01	1	1	0001
2	10	2	2	0010
3	11	3	3	0011
4	100	4	4	0100
5	101	5	5	0101
6	110	6	6	0110
7	111	7	7	0111
8	1000	10	8	1000
9	1001	11	9	1001
10	1010	12	Α	1010
11	1011	13	В	1011
12	1100	14	С	1100
13	1101	15	D	1101
14	1110	16	E	1110
15	1111	17	F	1111

Notas sobre logaritmos para trabalhar os números com parte fracionária

De modo a não reduzir a capacidade de numeração devemos ter:

 $b^{n'} \ge b^n$

Onde:

b' = base de destino

n' = número de digitos na base de destino (incógnita)

b = base de origem

 \mathbf{n} = número de digitos na base de origem

 $a^x = b \Leftrightarrow x = \log_a b \Leftrightarrow x = \frac{\ln b}{\ln a}$

Por exemplo:

Então:

Logo:

Decimal para binário

• O número 35 no sistema decimal = ?

Processo idêntico para outros sistemas de numeração

Decimal para binário com parte fracionária

• O número 35,48 no sistema decimal = ?

```
35,48<sub>(10)</sub> = 100011,????<sub>(2)</sub>
                                  35,48<sub>(10)</sub> = 100011,0111101<sub>(2)</sub>
```

Representação de números negativos

Sinal + módulo

Complemento para 1

```
= 1010010<sub>(2)</sub>
```

Complemento para 2

```
= 1010011<sub>(2)</sub>
```

Soma e Subtração binária

Soma

Subtração

Códigos

Ponderados

- Existem pesos associados
- BCD Binary Coded Decimal
 - Representa os dígitos "0" a "9" através de representações binárias com 4 bits
 - Não são utilizadas as representações binárias > "9" [1010, 1111]
 - Conversões de BCD são efetuadas diretamente 4 bits por cada digito decimal

Decimal	BCD (8421)	BCD (2421)	BCD (442-1)	BCD Excesso 3
0	0000	0000	0000	0011
1	0001	0001	0011	0100
2	0010	0010/1000	0010	0101
3	0011	1001/0011	1001/0101	0110
4	0100	1010/0100	1000/0100	0111
5	0101	1011/0101	1011/0111	1000
6	0110	1100/0110	0110/1010	1001
7	0111	1101/0111	1101	1010
8	1000	1110	1100	1011
9	1001	1111	1111	1100

- Exemplos:
 - 1101 = 1x8 + 4x1 + 1x1 = 13
 - 1001 = 9

Não Ponderados

- EBCDIL
- ASCII American Standard Code for Information Intercharge
 - Código que transforma os caracteres em números decimais e vice-versa
- Gray (código espelhado)

BCD	GRAY
00 - 0000	00 - 0000
01 - 0001	01 - 0001
02 - 0010	02 - 0011
03 - 0011	03 - 0010
04 - 0100	04 - 0110
05 - 0101	05 - 0111
06 - 0110	06 - 0101
07 - 0111	07 - 0100
08 - 1000	08 - 1100
08 - 1000 09 - 1001	08 - 1100 09 - 1101
09 - 1001	09 - 1101
09 - 1001 10 - 1010	09 - 1101 10 - 1111
09 - 1001 10 - 1010	09 - 1101 10 - 1111
09 - 1001 10 - 1010 11 - 1011	09 - 1101 10 - 1111 11 - 1110
09 - 1001 10 - 1010 11 - 1011 ——————————————————————————————————	09 - 1101 10 - 1111 11 - 1110 ——————————————————————————————————

⊕ - ou exclusivo - XOR

А	В	A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

Exemplos:

- 1101 → ?
 - g3 1; g2 1; g1 0; g0 1
 - b3 1
 - b2 b3 \oplus g2 \rightarrow 1 \oplus 1 = 0
 - $b1 b2 \oplus g1 \rightarrow 0 \oplus 0 = 0$
 - $b0 b1 \oplus g0 \rightarrow 0 \oplus 1 = 1$
- 1101 → 1001
- 1110 → ?
 - g3 1; g2 1; g1 1; g0 0
 - b3 1
 - $b2 b3 \oplus g_2 \rightarrow 1 \oplus 1 = 0$
 - b1 b2 \oplus g1 \rightarrow 0 \oplus 1 = 1
 - $b0 b1 \oplus g0 \rightarrow 1 \oplus 0 = 1$
- 1110 → 1011

Conversão de binário para gray

- Exemplos:
 - 1010 → ?
 - b3 1; b2 0; b1 1; b0 0
 - g3 1
 - $g2 b3 \oplus b2 \rightarrow 1 \oplus 0 = 1$
 - g1 b2 \oplus b1 \rightarrow 0 \oplus 1 = 1
 - g0 b1 \oplus b0 \rightarrow 1 \oplus 0 = 1
 - 1010 → 1111
 - 0011 → ?
 - g3 0; g2 0; g1 0; g0 1

- g3 0
- g2 b3 \oplus b2 \rightarrow 0 \oplus 0 = 0
- g1 b2 \oplus b1 \rightarrow 0 \oplus 1 = 1
- $g0 b1 \oplus b0 \rightarrow 1 \oplus 1 = 0$
- 0011 → 0010
- Álgebra das Variáveis Lógicas