

HOW MACHINE LEARNING HELPS CANCER RESEARCH

Evelina Gabasova University of Cambridge

DNA sequencing

DNA and genes

Cancer

- Genetic mutations
- Oncogenes and tumour suppressors

BRCA1 and BRCA2 are chromosome guardians

Cancer is not a single disease

10 -PC2 -10 -20 -20 10 -10 PC1

20 -

CLUSTERING

Example: clustering customers

440 wholesale customers Annual spending on

- Fresh produce
- Milk products
- Grocery products
- Frozen products
- Detergents and paper
- Delicatessen

Customers

Genes

Products Expression

Conventional medicine

Precision medicine

Clustering in cancer research

Integrative clustering

Collaborative filtering

Example: the Netflix prize

	Movie 1	Movie 2	Movie 3	Movie 4	Movie 5	Movie 6	Movie 7
Alice	****		***	***	***		
Bob		***		***	**		
Carol	**					****	****
Dave			****		?		

Matrix factorization

Users Patients

Ratings Mutations

Matrix factorization in cancer research

	$C \rightarrow A$	C → G	C → T	T → A	T → C	T → G
Alice	5	0	0	1	2	0
Bob	1	2	0	0	0	1
Carol	3	1	0	2	0	3
Dave	0	0	2	3	1	1

Matrix factorization in cancer research

	$C \rightarrow A$	C → G	C → T	T → A	T → C	T → G
Alice	5	0	0	1	2	0
Bob	1	2	0	0	0	1
Carol	3	1	0	2	0	3
Dave	0	0	2	3	1	1

Proving system stability

Theorem proving: SAT

$$(A \lor \neg B) \land (\neg A \lor B)$$

Theorem proving: SAT

$$(A \lor \neg B) \land (\neg A \lor B)$$

$$A = true$$

$$B = true$$

Theorem proving: SMT

$$(A \lor \neg B) \land (\neg A \lor B)$$

 $((a > 3) \lor (b < 1))$ $((a < 5) \lor (b = 0))$

Theorem proving: SMT

Satisfiability modulo theories

Software verification

Preconditions

Postconditions

Loop conditions

Assertions

• • •

SMT formulas

Z3 theorem prover

Software verification

```
static void Swap(int[]! a, int i, int j)
requires 0 <= i && i < a.Length;
requires 0 <= j && j < a.Length;
    int temp;
    temp = a[i];
    a[i] = a[j];
    a[j] = temp;
                                   Spec#
```

Proving stability of biological systems

Proteins

Genes

Receptors

Variables

• • •

$$v + 1 \qquad \text{if } v < T(v)$$

$$v \qquad v \qquad \text{if } v = T(v)$$

$$v - 1 \qquad \text{if } v > T(v)$$

Chronic myeloid leukemia

Proving stability of biological systems

Chronic myeloid leukemia

Machine learning is not just for targeted advertising or algorithmic trading

@evelgab

evelinag

evelina@evelinag.com

evelinag.com

Links

- MRC Cancer Unit, University of Cambridge http://www.mrc-cu.cam.ac.uk/
- Z3 code samples https://github.com/evelinag/cancer-research-and-ML
- Big Data: Astronomical or Genomical? http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002195
- Signatures of mutational processes in cancer http://www.nature.com/nature/journal/v500/n7463/full/nature12477.html
- Proving stabilization of biological systems <u>http://research.microsoft.com/en-us/um/cambridge/projects/terminator/biocheck11-final.pdf</u>
- Bio Model Analyser http://biomodelanalyzer.research.microsoft.com/
- Drug target optimization in Chronic Myeloid Leukemia <u>http://research.microsoft.com/apps/pubs/default.aspx?id=226356</u>
- Z3 theorem prover https://github.com/Z3Prover