INTRODUÇÃO A PROGRAMAÇÃO

PROF. DEMÉTRIUS DE CASTRO

PROF2303@IESP.EDU.BR

83 9 8773-0383

WWW.DEMETRIUSDECASTRO.COM.BR

NÚMEROS DECIMAIS (BASE 10)

- ▶ É o padrão numérico mais utilizado no dia-a-dia;
- Consiste de valores que vão do 0 ao 9 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9);
- Possuem operações de soma, subtração, multiplicação e divisão bem definidos;
- ► São amplamente utilizados em transações financeiras, medidas e etc;
- ► Representamos os números decimais de forma: 45₁0

NÚMEROS DECIMAIS (BASE 10)

POSICIONAMENTO E VALOR POSICIONAL

1.254.751,23

Qual a nomenclatura de cada posição do valor acima:

NÚMEROS DECIMAIS (BASE 10)

POSICIONAMENTO E VALOR POSICIONAL

1.254.751,23

Qual a nomenclatura de cada posição do valor acima:

1	2	5	4	7	5	1	2	3
Milhões	Centena de milhar	Dezena de milhar	Milhar	Centena	Dezena	Unidade	Décimo	Centésimo

NÚMEROS DECIMAIS

OPERAÇÕES MATEMÁTICAS

SOMA

$$1 + 1 = 2$$

SUBTRAÇÃO

▶ MULTIPLICAÇÃO

DIVISÃO

NÚMEROS DECIMAIS

OPERAÇÕES COMPARATIVAS

MAIOR

15 > 10

MENOR

2 < 5

IGUAL

3 = 3

MAIOR IGUAL

5 >= 4

MENOR IGUAL

19 <= 25

NÚMEROS DECIMAIS

FRAÇÕES (NOTAÇÃO DECIMAL)

No nosso trabalho, algumas vezes podemos encontrar número com $\frac{3}{10}$, sabendo que não temos como representar um valor neste formato para o computador, teremos que converte-lo para uma notação decimal. Como podemos fazer isso?

NÚMEROS DECIMAIS

FRAÇÕES (NOTAÇÃO DECIMAL)

No nosso trabalho, algumas vezes podemos encontrar número com $\frac{3}{10}$, sabendo que não temos como representar um valor neste formato para o computador, teremos que converte-lo para uma notação decimal. Como podemos fazer isso?

Para frações onde o denominador apresente valores múltiplos de 10, apenas contamos a quantidade de zeros do denominador e aplicamos antes do valor apresentado no numerador, seguido de uma vírgula.

Ex.: Para o valor $\frac{3}{10}$, contamos a quantidades de zeros, que no caso será 1, adicionamos antes do numerador e colocamos o zero, ficando: 0,3.

NÚMEROS DECIMAIS

FRAÇÕES (NOTAÇÃO DECIMAL)

Para frações onde o valor do numerador não apresente números múltiplos por 10, aplicamos a regra da divisão, fazendo a divisão do numerador pelo denominador.

Ex.: Na fração $\frac{5}{19}$, pegamos o numerador 5 e dividimos pelo denominador 19. Ficando 0,2631578947368421. Este valor pode ser arredondado de acordo com a necessidade do sistema.

NÚMEROS OCTAIS

- ► Antigamente o Sistema octal era a principal alternativa mais compacta ao binário na programação em linguagem de máquina.
- Esse sistema tem base 8 e compreendem os números 0, 1, 2, 3, 4, 5, 6 e 7, podendo ser continuado (10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, ...)
- ► Também é possível fazer operações matemáticas com os números octais.
- ► Representamos os números octais da seguinte forma: 228

NÚMEROS OCTAIS

Conversão de Decimal para octal

Para converter um valor decimal para octal, precisamos pegar o valor decimal e dividi-lo por 8, até que não possa mais ser divido por 8.

Ex.:

NÚMEROS OCTAIS

Conversão de Decimal para Octal

Faça:

95410 -

129₁₀ -

314₁₀ -

1514₁₀ -

NÚMEROS OCTAIS

Conversão de Decimal para Octal

Faça:

95410 - 16728

129₁₀ - 201₈

314₁₀ - 472₈

NÚMEROS OCTAIS

Conversão de Octal para Decimal

Para fazer a conversão de octal para decimal, precisamos multiplicar cada digito pela potência de 8 relativa a posição e depois somam-se os resultados.

Ex.:

1	2	3	
82	81	80	
1*64	2*8	3*1	
64	16	3	

$$64 + 16 + 3 = 83_{10}$$

NÚMEROS OCTAIS

Conversão de Octal para Decimal

Faça:

16728 -

2018 -

4728 -

NÚMEROS OCTAIS

Conversão de Octal para Decimal

Faça:

16728 - 95410

2018 - 12910

4728 - 31410

NÚMEROS HEXADECIMAIS

- ► Trata-se de um sistema de numeração posicional que representa os números em base 16, sendo assim, utilizando 16 símbolos.
- ► Este sistema utiliza os símbolos 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 do sistema decimal, além das letras A, B, C, D, E e F, sendo A = 10, B = 11, C = 12, D = 13, E = 14 e F = 15.
- ► A nomenclatura "hexadecimal" é usada devido aos termos "hexa" que significa "6" e "deci" que representa "10", portanto indicando a base 16. Cada número hexa significa quatro bits de dados binários.

NÚMEROS HEXADECIMAIS

Convertendo Decimal para Hexadecimal

Para converter um número decimal pra hexadecimal, fazemos da mesma forma que a conversão de octal para decimal, mudando o valor da divisão de 8 para 16.

Ex.:

NÚMEROS HEXADECIMAIS

Convertendo Hexadecimal para Decimal

Para fazer a conversão de octal para decimal, precisamos multiplicar cada digito pela potência de 16 relativa a posição e depois somam-se os resultados.

Ex.:

41A₁₆ -

4	1	Α		
16 ²	16¹	16º		
4*256	1*16	10*1		
1024	16	10		

105010

NÚMEROS HEXADECIMAIS

Convertendo Hexadecimal para Decimal

Faça:

25D₁₆ -

234E₁₆ -

1A5₁₆ -

2EA₁₆ -

NÚMEROS HEXADECIMAIS

Convertendo Hexadecimal para Decimal

Faça:

25D₁₆ - 605₁₀

234E₁₆ - 9038₁₀

1A5₁₆ - 421₁₀

2EA₁₆ - 746₁₀

NÚMEROS BINÁRIOS

- ▶ O sistema binário é um sistema de numeração onde todas as quantidades são apresentadas com base em dois números: 0 e 1.
- ▶ O sistema binário serve como base para a Álgebra Booliana, do matemático inglês George Boole. Com isso, é possível realizar operações lógicas e aritméticas usando apenas dois dígitos ou dois estados, tais como, sim ou não, verdadeiro ou falso, ligado ou desligado.
- Inclusive, a eletrônica digital e computação têm como base o sistema binário e a lógica de Boole, que possibilita representar por circuitos eletrônicos digitais (portas lógicas) os números, caracteres, realizar operações lógicas e aritméticas.
- ► Sendo assim, os programas de computadores são codificados de forma binária e armazenados nas mídias (memórias, discos e afins) com esse formato.

NÚMEROS BINÁRIOS

Convertendo Decimal para Binário

Esta conversão é realizada da mesma forma que as vista anteriormente, só que desta vez, dividimos o valor decimal por 2 até que não seja mais possível a sua divisão.

Ex.: 10₁₀ -

10 2 0 5 2 2 2 0 1 1010₂

NÚMEROS BINÁRIOS

Convertendo Binário para Decimal

Já a conversão de binário para decimal, pegamos cada posição d número binário e colocamos os valores da potência de 2 para cada um deles, sendo da direita para a esquerda, e somamos os valores onde a posição for 1.

Ex.:
$$11001101_2 - 128 + 64 + 8 + 4 + 1 = 205$$

1	1	0	0	1	1	0	1
128	64	32	16	8	4	2	1

NÚMEROS BINÁRIOS

Convertendo Binário para Decimal

Faça:

111001112 -

10001012 -

22410 -

NÚMEROS BINÁRIOS

Convertendo Binário para Decimal

Faça:

111001112 - 23110

10001012 - 6910

22410 - 111000002

EXERCÍCIOS

CONVERTA

5478 - Binário

100010112 - Hexadecimal

49DA₁₆ - Octal

110100012 - Octal

148₁₀ - Binário

AAB5₁₆ - Binário