

Devoir surveillé 5 - 14/01/25

Exercice 1: On considère une urne contenant n boules noires et b boules blanches (avec $n, b \in \mathbb{N}^*$), les boules sont supposées indiscernables au toucher. On effectue une suite infinie de tirages avec remise. On suppose qu'on dispose d'un espace probabilisé $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ permettant d'étudier cette expérience aléatoire.

- 1. On note N la variable aléatoire égale au rang d'apparition de la première boule noire et B la variable aléatoire égale au rang d'apparition de la première boule blanche.
 - (a) Déterminer les lois de N et B.
 - (b) Soit $k \in \mathbb{N}^*$, déterminer $\mathbb{P}((N, B) = (k, k))$. Les variables aléatoires N et B sont-elles indépendantes?
- 2. Dans les mêmes conditions, on s'intéresse au nombre de tirages successifs permettant d'obtenir deux changements de couleur dans les résultats. On obtient tout d'abord i boules successives d'une même couleur puis j boules successives de l'autre couleur puis une boule de la couleur initiale et on ne s'intéresse pas aux couleurs obtenues dans les tirages suivants. La variable X désigne le nombre de boules de la même couleur apparues en début de tirage, la variable aléatoire Y désigne le nombre de boules de la même couleur apparues en deuxième partie de tirage.

Par exemple, l'évènement $(X = 4 \cap Y = 2)$ est réalisé par les évènements "obtenir successivement 4 boules noires puis 2 boules blanches puis 1 boule noire" ou "obtenir successivement 4 boules blanches puis 2 boules noires puis 1 boule blanche".

On a $X(\Omega) = Y(\Omega) = \mathbb{N}^*$.

- (a) Déterminer la loi conjointe de (X, Y).
- (b) Déterminer la loi de X.
- (c) Montrer que X a une espérance et la calculer.
- (d) Déterminer $\mathbb{P}(X = Y)$.

Exercice 2 : Soient $(A_n)_{n\in\mathbb{N}^*}$ une suite d'évènements mutuellement indépendants d'un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ tels que pour tout $n \in \mathbb{N}^*, \mathbb{P}(A_n) = \frac{1}{n}$. On pose pour tout $n \in \mathbb{N}^*, R_n = \sum_{k=1}^n \mathbf{1}_{A_k}$ (en notant $\mathbf{1}_{A_k}$ la fonction indicatrice de A_k)

- 1. (a) Soient $n \in \mathbb{N}^*, B_1, ..., B_n$ des évènements mutuellement indépendants
 - i. Démontrer que $B_1,...,B_{n-1},\overline{B_n}$ sont mutuellement indépendants.
 - ii. Démontrer que pour tout $k \in [|1, n|], B_1, ..., B_{n-k}, \overline{B_{n-k+1}}, ..., \overline{B_n}$ sont mutuellement indépendants.
 - (b) En déduire que la famille de variables $(\mathbf{1}_{A_n})_{n\in\mathbb{N}^*}$ est une famille de variables mutuellement indépendantes.
- 2. Déterminer l'espérance et la variance de R_n
- 3. (a) Déterminer la fonction génératrice de R_n .
 - (b) En déduire $\mathbb{P}(R_n = 0)$ et $\mathbb{P}(R_n = 1)$.
- 4. (a) En admettant que $\sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{\sim} \ln(n)$, démontrer que $V(R_n) \underset{n \to +\infty}{\sim} \ln(n)$.
 - (b) Soit $\epsilon \in \mathbb{R}_+^*$, démontrer qu'il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$ $(|\frac{R_n}{\ln(n)} 1| \ge \epsilon) \subset (|\frac{R_n}{\ln(n)} \mathbb{E}(\frac{R_n}{\ln(n)})| \ge \frac{\epsilon}{2}).$
 - (c) En déduire que $\lim_{n \to +\infty} \mathbb{P}(|\frac{R_n}{\ln(n)} 1| \ge \epsilon) = 0.$