## **CLAIMS**

1. Serine protease inhibitor having the formula (I),

500 A

(l)

in which

**J** is H, R<sup>1</sup>, R<sup>1</sup>-O C(O)-, R<sup>1</sup>-C(O)-, R<sup>1</sup>-SO<sub>2</sub>-, R<sup>3</sup>OOC-(CHR<sup>2</sup>)<sub>p</sub>-, (R<sup>2a</sup>,R<sup>2b</sup>)N-CO (CHR<sup>2</sup>)<sub>p</sub>- or Het-CO-(CHR<sup>2</sup>)<sub>p</sub>-;

10

D is an amino-acid of the formula -NH-CHR¹-C(O)-, -NR⁴-CH[(CH₂)qC(O)OR¹]-C(O)-, -NR⁴-CH[(CH₂)qC(O)N(R²a,R²b)]-C(O)-, -NR⁴-CH[(CH₂)qC(O)Het]-C(O)-, D-1-Tiq, D-3-Tiq, D-Atc, Aic, D-1-Piq or D-3-Piq;

E is -NR<sup>2</sup>-CH<sub>2</sub>- or the fragment (CH<sub>2</sub>)<sub>t</sub>

15

20

25

-N——CH-, optionally substituted with (1-6C)alkyl, (1-6C)alkoxy or benzyloxy;

R<sup>1</sup> is selected from (1-12C)alkyl, (2-12C)alkenyl, (2-12C)alkynyl, (3-12C)cycloalkyl and (3-12C)cycloalkyl(1-6C)alkylene, which groups may optionally be substituted with (3-12C)cycloalkyl, (1-6C)alkoxy, oxo, OH, CF<sub>3</sub> or halogen, and from (6-14C)aryl, (7-15C)aralkyl, (8-16C)aralkenyl and (14-20C)(bisaryl)alkyl, whereby the aryl groups may optionally be substituted with (1-6C)alkyl, (3-12C)cycloalkyl, (1-6C)alkoxy, OH<sub>3</sub> CF<sub>3</sub> or halogen;

R<sup>2</sup>, R<sup>2a</sup> and R<sup>2b</sup> are each independently selected from H, (1-8C)alkyl, (3-8C)alkenyl, (3-8C)alkynyl, (3-8C)cycloalkyl and (3-6C)cycloalkyl(1-4C)alkylene, which can each be optionally substituted with (3-6C)cycloalkyl, (1-6C)alkoxy, CF<sub>3</sub> or halogen, and from (6-14C)aryl and (7-15C)aralkyl whereby the aryl groups may optionally be substituted with (1-6C)alkyl, (3-6C)cycloalkyl, (1-6C)alkoxy, CF<sub>3</sub> or

halogen;

R<sup>3</sup> is as defined for R<sup>2</sup> or Het-(1-6C)alkyl;

R⁴ is H or (1-3C)alkyl;

30 X and Y are CH or N with the proviso that they are not both N;

Het is a 4-, 5- or 6-membered heterocycle containing one or more heteroatoms selected from O, N and S;

m is 1 or 2;

p is 1, 2 or 3;

35 q is 1, 2 or 3;

15

20

25

30

35

t is 2, 3 or 4; or a prodrug;

and/or a pharmaceutically acceptable addition salt and/or solvate thereof.

2. Serine protease inhibitor according to claim 1, wherein m is 2; X\is CH and Y is CH.

3. Serine protease inhibitor according to claim 2, wherein

**J** is H, R<sup>1</sup>, R<sup>1</sup>, SO<sub>2</sub>-, R<sup>3</sup>OOC-(CHR<sup>2</sup>)<sub>p</sub>-, (R<sup>2a</sup>, R<sup>2b</sup>)N-CO-(CHR<sup>2</sup>)<sub>p</sub>- or Het-CO-(CHR<sup>2</sup>)<sub>o</sub>-;

**D** is an amino-acid of the formula -NH-CHR¹-C(O)-, 10

 $-NR^4-CH[(CH_2)_qC(O)OR^1]-C(O)-, \ -NR^4-CH[(CH_2)_qC(O)N(R^{2a},R^{2b})]-C(O)-, \ -NR^4-CH[(CH_2)_qC(O)N(R^{2a},R^{2b})]-C$ -NR<sup>4</sup>-CH[(CH<sub>2</sub>)<sub>q</sub>C(O)Het]-C(O)-;

E is -N(3-6C)cycloalkyl-CH2- or the fragment  $(CH_2)_t$ 

-CH-, optionally substituted with (1-6C)alkyl or (1-6C)alkoxy;

R1 is selected from (1-12C)alkyl, (3-12C)cycloalkyl and (3-12C)cycloalkyl(1-6C)alkylene, which groups may optionally be substituted with (3-12C)cycloalky!\((1-6C)alkoxy or oxo, and from (6-14C)aryl, (7-15C)aralkyl and (14-20C)(bisaryl)alkyl, whereby the aryl groups may optionally be substituted with (1-6C)alkyl, (3-12C)cycloalkyl, (1-6C)alkoxy, OH, CF<sub>3</sub> or halogen;

R2 is H:

R<sup>2a</sup> and R<sup>2b</sup> are each independently selected from H, (1-8C)alkyl, (3-8C)cycloalkyl and (3-6C)cycloalkyl(1-4C)alkylene, which can each be optionally substituted with (3-6C)cycloalkyl or (1-6C)alkoxy and from (6-14C)aryl and (7-15C)aralkyl whereby the aryl groups may optionally be substituted with (1-6C)alkyl, (3-6C)cycloalkyl, (1-6C)alkoxy,  $C 
bar{h}_3$  or halogen;

R³ is selected from H, (1-8C)alkyl, (3-8C)cycloalkyl and (3-6C)cycloalkyl(1-4C)alkylene, which can each be optionally substituted with (3-6C)cycloalkyl or (1-6C)alkoxy, and from (7-15C)aralkyl whereby the aryl groups may optionally be substituted with (1-6C)alkyl, (3-6C)cycloalkyl,

(1-6C)alkoxy, CF<sub>3</sub> or halogen and from Het-(1-6C)alkyl;

p is 1;

q is 2;

t is 3 or 4.

4. Serine protease inhibitor according to claim 3, wherein

5 / K cont

10

e S 15

D is an amino-acid of the formula -NH-CHR¹-C(O)- or glutamyl [or an (1-6C)alkylester thereof];

- R<sup>1</sup> is selected from (3-12C)cycloalkyl and (3-12C)cycloalkyl(1-6C)alkylene, which groups may optionally be substituted with (3-12C)cycloalkyl or (1-6C)alkoxy, and from (6-14C)aryl, (7-15C)aralkyl and (14-20C)(bisaryl)alkyl, whereby the aryl groups may optionally be substituted with (1-6C)alkyl, (3-12C)cycloalkyl, (1-6C)alkoxy or halogen; and
- R<sup>3</sup> is selected from (1-8C)alkyl and (3-8C)cycloalkyl, which can each be optionally substituted with (3-6C)cycloalkyl or (1-6C)alkoxy, and from (7-15C)aralkyl whereby the aryl groups may optionally be substituted with (1-6C)alkyl, (3-6C)cycloalkyl, (1-6C)alkoxy, CF<sub>3</sub> or halogen and from Het-(1-6C)alkyl.

5. Serine protease inhibitor according to claim 4, wherein

- J is -CH<sub>2</sub>COO(1-6C)alkyl, (3-8C)cycloalkyl, -SO<sub>2</sub>-10-camphor, -CH<sub>2</sub>CONHphenyl or -CH<sub>2</sub>CONH(3-8C)cycloalkyl;
- D is D-cyclohexylalaninyl, D-phenylalaninyl, D-diphenylalaninyl or glutamyl [or an (1-6C)alkylester thereof]; and

E is the fragment

 $(CH_2)_t$ 

-N—CH-, wherein t is 3 or 4.

6. A pharmaceutical composition comprising the serine protease inhibitor of any one of claims 1 to 5 and pharmaceutically suitable auxiliaries.

7. The serine protease inhibitor of any one of claims 1 to 5 for use in therapy.

25

20

8. Use of the serine protease inhibitor of any one of claims 1 to 5 for the manufacture of a medicament for treating or preventing thrombin-mediated and thrombin-associated diseases.

