Hurricanes EDA

Team Members

Vipul Gharde - vig4 Animesh Sharma - as3592 Pavankumar Prakash Savanur - ps1149 Nikhil Panikulangara - npp88

Data Sources

amo_by_month.csv:

https://climatedataguide.ucar.edu/sites/default/files/amo_monthly.10yrLP.txt (Manually generated CSV file from the textual data)

category4_atlantic_by_decade.csv:

https://en.wikipedia.org/wiki/List_of_Category_4_Atlantic_hurricanes (Manually generated CSV file from the tables)

category4_atlantic_by_year.csv:

https://en.wikipedia.org/wiki/List_of_Category_4_Atlantic_hurricanes (Manually generated CSV file from the tables)

category5_atlantic_by_decade.csv:

https://en.wikipedia.org/wiki/List_of_Category_5_Atlantic_hurricanes (Manually generated CSV file from the tables)

$category 5_at lantic_by_year.csv:$

https://en.wikipedia.org/wiki/List_of_Category_5_Atlantic_hurricanes (Manually generated CSV file from the tables)

tropical_storm_data.csv:

https://www.nhc.noaa.gov/TCR_StormReportsIndex.xml (Converted XML to CSV File)

Plot Bar Plots of Hurricanes by Decade

Category 4 Hurricanes

```
Cat4.Atlantic.decade <-
  read.csv('datasets/category4_atlantic_by_decade.csv')
Cat4.Atlantic.decade</pre>
```

шш		3 3 -	c
##		aecaae	frequency
##	1	1851	2
##	2	1861	1
##	3	1871	3
##	4	1881	2
##	5	1891	5
##	6	1901	2
##	7	1911	5
##	8	1921	7
##	9	1931	9
##	10	1941	12
##	11	1951	12
##	12	1961	10
##	13	1971	5
##	14	1981	7
##	15	1991	14
##	16	2001	17
##	17	2011	13
##	18	2021	1

```
barplot(
   Cat4.Atlantic.decade$frequency,
   names.arg = Cat4.Atlantic.decade$decade,
   main = 'Category 4 Hurricanes by Decade',
   xlab = 'Decade',
   ylab = 'Frequency',
   las = 2
)
grid()
```

Category 4 Hurricanes by Decade

Category 5 Hurricanes

```
Cat5.Atlantic.decade <-
   read.csv('datasets/category5_atlantic_by_decade.csv')
Cat5.Atlantic.decade</pre>
```

##		decade	frequency
##	1	1851	0
##	2	1861	0
##	3	1871	0
##	4	1881	0
##	5	1891	0
##	6	1901	0
##	7	1911	0
##	8	1921	2
##	9	1931	6
##	10	1941	0
##	11	1951	2
##	12	1961	4
##	13	1971	4
##	14	1981	2
##	15	1991	2
##	16	2001	8
##	17	2011	6
##	18	2021	0

```
barplot(
   Cat5.Atlantic.decade$frequency,
   names.arg = Cat5.Atlantic.decade$decade,
   main = 'Category 5 Hurricanes by Decade',
   xlab = 'Decade',
   ylab = 'Frequency',
   las = 2
)
grid()
```

Category 5 Hurricanes by Decade

Calculate the Highest Frequency of Hurricanes Over the Decades

```
Cat4.max_freq = max(Cat4.Atlantic.decade$frequency)
Cat4.max_freq
## [1] 17

Cat5.max_freq = max(Cat5.Atlantic.decade$frequency)
Cat5.max_freq
```

Calculate Number of Decades

```
num_decades = length(Cat4.Atlantic.decade$decade)
num_decades
## [1] 18
```

Function to Count the Number of Decades Having the Same Hurricane Frequencies

Example: Number of Decades where there was 1 occurrence of Category 4 Hurricane is 2, Number of Decades where there were 2 occurrences of Category 4 Hurricanes is 3, etc.

```
get_freqs <- function(Cat) {
   freqs = vector(mode = 'integer', length = max(Cat$frequency) + 1)

for (i in Cat$frequency) {
    freqs[i + 1] = freqs[i + 1] + 1
   }
   return(freqs)
}

Cat4.freqs = get_freqs(Cat4.Atlantic.decade)
Cat4.freqs</pre>
```

```
Cat5.freqs = get_freqs(Cat5.Atlantic.decade)
Cat5.freqs
```

[1] 9 0 4 0 2 0 2 0 1

[1] 0 2 3 1 0 3 0 2 0 1 1 0 2 1 1 0 0 1

Plot Number of Hurricanes in a Decade

```
barplot(
   Cat4.freqs,
   names.arg = 0:Cat4.max_freq,
   main = 'Category 4 Hurricanes by Decade',
   xlab = 'Number of Hurricanes in a Decade',
   ylab = 'Frequency',
   las = 2
)
grid()
```

Category 4 Hurricanes by Decade

Number of Hurricanes in a Decade

```
barplot(
   Cat5.freqs,
   names.arg = 0:Cat5.max_freq,
   main = 'Category 5 Hurricanes by Decade',
   xlab = 'Number of Hurricanes in a Decade',
   ylab = 'Frequency',
   las = 2
)
grid()
```

Category 5 Hurricanes by Decade

Number of Hurricanes in a Decade

Calculate lambda Value for Poisson Distribution

[1] 2

```
Cat4.lambda = mean(Cat4.Atlantic.decade$frequency)
Cat4.lambda

## [1] 7.055556

Cat5.lambda = mean(Cat5.Atlantic.decade$frequency)
Cat5.lambda
```

Plot Poisson Distribution Over Hurricane Relative Frequencies

Poisson Distribution Over Category 4 Hurricane Relative Frequencies

Hurricane Frequency in a Decade

Poisson Distribution Over Category 5 Hurricane Relative Frequencies

Plot Q-Q Plots

```
qqplot(
  dpois(0:Cat4.max_freq, Cat4.lambda) * sum(Cat4.freqs),
  Cat4.freqs,
  main = 'Poisson Q-Q Plot for Category 4 Hurricanes',
  xlab = 'Theoretical Quantiles',
  ylab = 'Sample Quantiles',
  xlim = c(0, 4),
  ylim = c(0, 4)
)
abline(0, 1)
```

Poisson Q-Q Plot for Category 4 Hurricanes


```
qqplot(
  dpois(0:Cat5.max_freq, Cat5.lambda) * sum(Cat5.freqs),
  Cat5.freqs,
  main = 'Poisson Q-Q Plot for Category 5 Hurricanes',
  xlab = 'Theoretical Quantiles',
  ylab = 'Sample Quantiles',
  xlim = c(0, 4),
  ylim = c(0, 4)
)
abline(0, 1)
```

Poisson Q-Q Plot for Category 5 Hurricanes

Read Monthly Atlantic Multidecadal Oscillation Index CSV File

```
AMO.month <- read.csv('datasets/amo_by_month.csv')
AMO.month
```

Remove Outlier Values

```
AMO.month = AMO.month[c(-146:-152), ]
AMO.month
```

Plot AMO Index (Yearly Mean)

AMO Index (Yearly Mean)

Read Annual Tropical Storm Data from 1958 - 2021

```
TS <- read.csv('datasets/tropical_storm_data.csv')
TS
```

Plot a Bar Plot with Year on x-axis and Storm Frequency on y-axis

```
barplot(
  as.data.frame(table(TS$Year))$Freq,
  names.arg = unique(TS$Year),
  main = 'Tropical Storms by Year (Pacific & Atlantic)',
  xlab = 'Year',
  ylab = 'Frequency',
  las = 2
)
grid()
```

Tropical Storms by Year (Pacific & Atlantic)

Calculate the Highest Frequency of Tropical Storms Over the Years

```
TS.max_freq = max(as.data.frame(table(TS$Year))$Freq)
TS.max_freq
## [1] 50
```

Count the Number of Years Having the Same Tropical Storm Frequencies

Example: Number of Years where there were 3 occurrences of Tropical Storm is 1, Number of Years where there were 4 occurrences of Tropical Storm is 2, etc.

```
TS.freqs = vector(mode = 'integer', length = max(as.data.frame(table(TS$Year))$Freq) + 1)
for (i in as.data.frame(table(TS$Year))$Freq) {
   TS.freqs[i + 1] = TS.freqs[i + 1] + 1
}
TS.freqs
```

```
## [1] 0 0 0 1 2 1 4 4 4 2 3 3 4 2 0 0 0 0 0 0 0 0 0 3 1 1 0 2 2 3 3 2 0 5 2 2 1 ## [39] 2 2 0 0 1 0 0 1 0 0 0 0 1
```

Plot Number of Tropical Storms in a Year

```
barplot(
  TS.freqs,
  names.arg = 0:TS.max_freq,
  main = 'Tropical Storms by Year',
  xlab = 'Number of Tropical Storms in a Year',
  ylab = 'Frequency',
  las = 2
)
grid()
```

Tropical Storms by Year

Number of Tropical Storms in a Year

Calculate lambda Value for Poisson Distribution

```
TS.lambda = mean(as.data.frame(table(TS$Year))$Freq)
TS.lambda
```

[1] 21.54688

Plot Poisson Distribution Over Tropical Storm Relative Frequencies

Poisson Distribution over Tropical Storm (Pacific & Atlantic) Relative Frequencies

Tropical Storm Frequency in a Year

Plot the Q-Q Plot

```
qqplot(
  dpois(0:TS.max_freq, TS.lambda) * sum(TS.freqs),
  TS.freqs,
  main = 'Poisson Q-Q Plot for Tropical Storms (Pacific & Atlantic)',
  xlab = 'Theoretical Quantiles',
  ylab = 'Sample Quantiles',
  xlim = c(0, 6),
  ylim = c(0, 6)
)
abline(0, 1)
```

Poisson Q-Q Plot for Tropical Storms (Pacific & Atlantic)

Conclusion

The Tropical Storm dataset contains data for Tropical Depressions, Tropical Storms and Hurricanes for both East Pacific and Atlantic Oceans. As such, Tropical Storms as a whole are not as rare as Hurricanes. Therefore, the Q-Q Plot for the Poisson Distribution of the data doesn't properly fit, unlike the isolated Hurricane datasets.