Composición de Funciones

Departamento de Matemáticas

1 / 1

Coneptualización previa.

Considerando los temas tratados en las lecturas previas, responda las siguientes interrogantes:

- ¿Bajo que condiciones es posible realizar la suma de funciones?
- 2 ¿Bajo que condiciones es posible realizar el producto de funciones?
- 3 ¿Bajo que condiciones es posible realizar la composición de funciones?
- ¿Que propiedades cumple una función para ser denominada par o impar?
- 6 ¿Como es la gráfica de una función creciente?

Algebra de Funciones

Dadas dos funciones f y g de variable real es posible realizar un conjunto de operaciones si estas pueden ser definidas sobre un mismo conjunto. Lo cual se detalla en la siguiente definición.

Definición. Considere $f,g:A\subset\mathbb{R}\to\mathbb{R}$ funciones de variable real. Se definen las funciones:

- $f + g : A \subset \mathbb{R} \to \mathbb{R}$, donde (f + g)(x) = f(x) + g(x).
- $f g : A \subset \mathbb{R} \to \mathbb{R}$, donde (f g)(x) = f(x) g(x).
- $f \cdot g : A \subset \mathbb{R} \to \mathbb{R}$, donde $(f \cdot g)(x) = f(x) \cdot g(x)$.
- $\frac{f}{g}:A\subset\mathbb{R}\to\mathbb{R}$, donde $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$ si $(g(x)\neq 0)$ para todo $x\in A.$

Ejemplo. Considere $f,g:\mathbb{R}\to\mathbb{R}$ funciones definidas por $f(x)=\frac{x+1}{2}$ y $g(x)=x^2+1$, entonces:

•
$$(f+g)(x) = f(x) + g(x) = \frac{x+1}{2} + x^2 + 1 = \frac{2x^2 + x + 3}{2}$$

•
$$(f \cdot g)(x) = f(x) \cdot g(x) = \left(\frac{x+1}{2}\right)(x^2+1) = \frac{x^3 + x^2 + x + 1}{2}$$

Miguel Ángel Muñoz Jara miguel.munoz.j@unab.cl

3/1

Propieades.

Existen diversas propiedades que satisfacen algunas funciones de variable real. Como se ha mencionado las funciones permiten describir diversos fenómenos y por lo tanto comprender qué propiedades satisfacen estas funciones ayudará a describir de mejor manera los fenómenos estudiados. Las propiedades que se analizarán se detallan a continuación.

Definición. Monotonía: Considere $f:A\subset\mathbb{R}\to\mathbb{R}$ función. f se denomina:

• Una función es creciente si y sólo si

$$\forall x_1, x_2 \in A$$
 tal que si $x_1 < x_2 \Longrightarrow f(x_1) \leq f(x_2)$

• Una función es decreciente si y sólo si

$$\forall x_1, x_2 \in A$$
 tal que si $x_1 < x_2 \Longrightarrow f(x_1) \ge f(x_2)$

Observación. Si se conoce la gráfica de una función es posible determinar en que intervalos esta es creciente o decreciente. De hecho:

Propieades.

 Si al desplazarse por el eje de las abscisas de izquierda a derecha se visualiza que la gráfica de la función "sube", esto indica que la función es creciente.

 Si al desplazarse por el eje de las abscisas de izquierda a derecha se visualiza que la gráfica de la función "baja", esto indica que la función es decreciente.

Taller 1. Trabajo grupal.(3 integrantes)

Problema 1. En cada caso determine cual es el dominio de las funciones dadas.

•
$$f(x) = 3x + 1$$
, $g(x) = x^2 - 3$, $h(x) = \frac{g(x)}{f(x)}$ y $f(x) = f(x)g(x)$.

•
$$f(x) = \sqrt{x+1}$$
, $g(x) = x^2$, $h(x) = \frac{g(x)}{f(x)}$ y $f(x) = f(x)g(x)$

•
$$f(x) = \frac{1}{x}$$
, $g(x) = \frac{x}{x-1}$, $h(x) = \frac{g(x)}{f(x)}$ y $t(x) = f(x)g(x)$

Problema 2. En cada caso determine los intervalos de monotonía.

6/1

Definición. Considere $f: \mathbb{R} \to \mathbb{R}$ función. f se denomina:

- función es par si y sólo si $\forall x \in \mathbb{R}$ se tiene que f(-x) = f(x).
- función es impar si y sólo si $\forall x \in \mathbb{R}$ se tiene que f(-x) = -f(x).

Observación. La propiedad de paridad de una función de variable real se puede comprobar analizando la gráfica de la función, de hecho:

- f es una función par si su gráfica es simétrica respecto del eje de la ordenada (eje y)
- f es una función impar si su gráfica es simétrica respecto del origen.

Ejemplo. Al analizar la gráfica de la función cuadrática $f(x) = -x^2 + 4$, es posible deducir que f es una función par ya que su gráfica es simétrica respecto del eje de las ordenadas. De hecho, para comprobar lo expuesto observe que

$$f(-x) = -(-x)^2 + 4 = -x^2 + 4 = f(x)$$

Por lo tanto al aplicar la definición

de paridad es posible deducir que f es una función par.

Ejemplo. Al analizar la gráfica de la función cuadrática $f(x) = -2x^3$, es posible deducir que f es una función impar ya que su gráfica es simétrica respecto del origen. De hecho, para comprobar lo expuesto observe que

$$f(-x) = -2(-x)^3 = 2x^3 = -f(x)$$

Por lo tanto al aplicar la definición de paridad es posible deducir que f es una función impar.

8 / 1

Función compuesta

Definición. Considere $f: A \rightarrow B$ y $g: B \rightarrow C$ funciones. Se define la función compuesta $g \circ f: A \rightarrow C$ por:

$$(g \circ f)(x) = g(f(x))$$

El siguiente diagrama, ilustra la composición de funciones.

9/1

Ejemplo. Considere las funciones de variable $f(x) = \sqrt{x-1}$ y g(x) = x+1. Así:

$$(g \circ f)(x) = g(f(x)) = g(\sqrt{x-1}) = \sqrt{x-1} + 1$$

$$(f \circ g)(x) = f(g(x)) = f(x+1) = \sqrt{x}$$

Observe que las expresiones anteriores se deben contextualizar y analizar cual es el dominio des estas, teniendo presente las restricciones propias de las funciones f y g. De hecho:

Función Compuesta.

• el dominio de $g \circ f$ está dado por:

$$D = \{x \in \mathbb{R} | x \in Dom(f) \land f(x) \in Dom(g)\}$$
$$= \{x \in \mathbb{R} | x \in [1, \infty[\land f(x) \in \mathbb{R}] = [1, \infty[$$

• el dominio de $f \circ g$ está dado por:

$$D = \{x \in \mathbb{R} | x \in Dom(g) \land g(x) \in Dom(f)\}$$
$$= \{x \in \mathbb{R} | x \in \mathbb{R} \land g(x) \in [1, \infty[\}$$
$$= \{x \in \mathbb{R} | x \in \mathbb{R} \land x + 1 \in [1, \infty[\} = [0, \infty[$$

Observación. Del ejmplo anterior es posible establecer que la composición de funciones no es conmutativa, es decir $f \circ g \neq g \circ f$

Taller. Trabajo grupal.(3 integrantes)

1 En cada caso determine $\frac{f(x+h)-f(x)}{h}$.

a
$$f(x) = \frac{1}{x-1}$$

b $f(x) = 3x^2 + 1$

•
$$f(x) = \frac{x^2 + x}{2}$$

• $f(x) = 2x + 7$

2 Dadas las siguientes funciones por ramas:

$$f(x) = \begin{cases} x+1 & \text{si } x \le -2 \\ \frac{1}{x^2 - 4} & \text{si } -2 < x \le 1 \\ (3x^2 + x) - 1 & \text{si } x > 1 \end{cases} \quad \text{si } x \le 5$$

Calcule el valor de $(f \circ g)(-1)$, $(f \circ g)(1)$, $(g \circ f)(2)$.

3 En cada caso analice la paridad de la función dada.

a
$$f(x) = \frac{x}{x^2 + x^3}$$

b $f(x) = \frac{x}{|x| + 1}$

o
$$f(x) = \frac{x}{x^2 + 1}$$

d
$$f(x) = 3x^2 - 6x + 1$$

Taller 2. Trabajo grupal.(3 integrantes)

- ♦ Los defensores del medio ambiente han estimado que el nivel promedio de monóxido de carbono en el aire es M(m) = (1+0.6m) partes por millón cuando el número de personas es m-miles. Si la población en miles en el momento t es $P(t) = 400 + 30t + 0.5t^2$. Exprese el nivel de monóxido de carbono en el aire como una función del tiempo y Calcule el nivel de monóxido de carbono en t = 5.
- **6** Un barco está navegando a 20 mi/h paralelo a un borde recto de la playa. El barco está a 5 millas de la playa y pasa frente a un faro al mediodía.
 - **3** Exprese la distancia s entre el faro y el barco como función de d, la distancia que el barco ha navegado desde el mediodía; es decir, encuentre f de modo que s = f(d).
 - **(b)** Exprese d como función de t, el tiempo transcurrido desde el mediodía; esto es, encuentre g para que d = g(t).
 - **©** Encuentre $f \circ g$. ¿Qué representa esta función?
- Se deja caer una piedra en un lago, creando una onda circular que se mueve hacia fuera con una rapidez de 60 cm/s.
 - **a** Encuentre una función *g* que modele el radio como función del tiempo. *y* una función *f* que modele el área del círculo como función del radio.
 - **b** Encuentre $f \circ g$. ¿Qué representa esta función?