Model selection

David L Miller

What do we mean by "model selection"?

- Term "selection"
 - Path dependence
 - Shrinkage
- Selection between models
 - Term formulation
 - Selection between structurally different models

Term selection

Term selection via p-values

- Old paradigm select terms using p-values
- p-values are approximate
- 1. treat smoothing parameters as known
- 2. rely on asymptotic behaviour

(p-values in summary.gam() have changed a lot over time — all options except current default are deprecated as of v1.18-13 (i.e., ignore what's in the book!).)

Technical stuff

Test of zero-effect of a smooth term

Default p-values rely on theory of Nychka (1988) and Marra & Wood (2012) for confidence interval coverage.

If the Bayesian CI have good across-the-function properties, Wood (2013a) showed that the p-values have:

- almost the correct null distribution
- reasonable power

Test statistic is a form of χ^2 statistic, but with complicated degrees of freedom.

(RE)ML rant again...

Best behaviour when smoothness selection is by ML (REML also good)

Neither of these are the default, so remember to use method = "ML" or method = "REML" as appropriate

Term selection by shrinkage

Shrinkage & additional penalties

- Usually can't remove a whole function when smoothing
- Penalties used act only on range space
- null space of the basis is unpenalised.

Parts of f that don't have $2^{\mbox{nd}}$ derivatives aren't penalised

$$\int_{\mathbb{R}} \left(\frac{\partial^2 f(x)}{\partial x^2} \right)^2 dx$$

(Note that penalty form depends on the basis!)

Double-penalty shrinkage

 S_j penalty matrix j, eigendecompose:

$$\mathbf{S}_{j} = \mathbf{U}_{j} \mathbf{\Lambda}_{j} \mathbf{U}_{j}^{\mathrm{T}}$$

where U_j is a matrix of eigenvectors and Λ_j a diagonal matrix of eigenvalues (i.e., this is an eigen decomposition of S_j).

 Λ_j contains some Os due to the spline basis null space — no matter how large the penalty λ_j might get no guarantee a smooth term will be suppressed completely.

Shrinkage & additional penalties

mgcv has two ways to penalize the null space ⇒ term selection

- double penalty approach via select = TRUE
- shrinkage approach via special bases "ts" and "cs"

Marra & Wood (2011) review other options.

Double-penalty shrinkage

Create a second penalty matrix from U_j , considering only the matrix of eigenvectors associated with the zero eigenvalues

$$\mathbf{S}_{j}^{*} = \mathbf{U}_{j}^{*}\mathbf{U}_{j}^{*T}$$

Now we can fit a GAM with two penalties of the form

$$\lambda_{j}\beta^{T}\mathbf{S}_{j}\beta + \lambda_{j}^{*}\beta^{T}\mathbf{S}_{j}^{*}\beta$$

In practice, add select = TRUE to your gam() call

Shrinkage

- Double penalty ⇒ twice as many smoothing parameters
- Alternative is shrinkage, add small value to zero eigenvalues
- Null space terms to be shrunk at the same time

```
Use s(..., bs = "ts") or s(..., bs = "cs") in mgcv
```

Selecting between models

GAMs are Bayesian models

Bayesian models

- duh
 - we can build Bayesian GLMs
 - see also INLA and BayesX
- mgcv fits Bayesian models
- penalties are prior precision matrices
- (improper) Gaussian prior on $oldsymbol{eta}$

Empirical Bayes...?

- $\bullet \ \ \text{Improper prior derives from} \ S_j \ \text{not being of full rank} \\$
 - \blacksquare zeroes in Λ_j .
- Double penalty and shrinkage smooths make prior proper
 - Double penalty: no assumption as to how much to shrink the null space
 - Shrinkage smooths: assume null space should be shrunk less than the wiggles

Practical Bayes

Marra & Wood (2011) show that the double penalty and the shrinkage smooth approaches:

- performed significantly better than alternatives in terms of predictive ability, and
- performed as well as alternatives in terms of variable selection

AIC

AIC

- Use full likelihood of $\pmb{\beta}$ conditional upon λ_j is used, with the EDF replacing k, the number of model parameters
- This conditional AIC tends to select complex models, especially those with random effects, as the EDF ignores that λ_j are estimated
- Wood et al (2015) suggests a correction that accounts for uncertainty in λ_i (AIC)

Examples

Back to the dolphins...

Fitting some models

Comparing terms by p-value

summary(dolphins_depth_xy)

```
Family: Negative Binomial(0.027)
Link function: log
Formula:
count \sim s(x, y) + s(depth) + offset(off.set)
Parametric coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept) -19.7573 0.6243 -31.65 \stackrel{?}{<}2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(x,y) 2.001 2.002 2.259 0.323
s(depth) 5.312 6.416 37.328 2.68e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = -0.0072 Deviance explained = 39.5% -REML = 369.37 Scale est. = 1 n = 387
```

Comparing models by AIC

AIC(dolphins_xy, dolphins_depth, dolphins_depth_xy)

```
df AIC
dolphins_xy 5.044883 775.7682
dolphins_depth 8.248728 744.4248
dolphins_depth_xy 10.417717 746.0289
```

Shrinkage (basis)

Shrinkage (basis)

summary(dolphins_depth_xy_s)

```
Family: Negative Binomial(0.027)
Link function: log
Formula:
count \sim s(x, y, bs = "ts") + s(depth, bs = "ts") + offset(off.set)
Parametric coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) -19.2704 0.4933 -39.06 \stackrel{?}{<}2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
           edf Ref.df Chi.sq p-value
s(x,y) 0.02385 29 0.017 0.472
s(depth) 4.64835 9 42.845 1.91e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.0476 Deviance explained = 36.2%
```

Shrinkage (extra penalty)

Shrinkage (basis)

summary(dolphins_depth_xy_e)

```
Family: Negative Binomial(0.027)
Link function: log
Formula:
count \sim s(x, y) + s(depth) + offset(off.set)
Parametric coefficients:
         Estimate Std. Error z value Pr(>|z|)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
         edf Ref.df Chi.sq p-value
s(x,y) 0.1779 29 0.145 0.421
s(depth) 4.7667 9 46.659 1.5e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.0457 Deviance explained = 37.5%
```

These last two models were empirical Bayes models

That's all from the dolphins for now...

