Technical Team

Nature of Invention: Process Flow Diagram , Mass Balance and Energy Balance

Applicant: QuantiVEX

Inventors: Bipin Kumar Jaiswal, Nonit Gupta, Peeyush Sahu, Sarthak Singh

Chemical Formula: RO-(CH2CH2CO)nH

Chemical Name: Fatty Alcohol Ethoxylates

Process Title: Production of Fatty Alcohol Ethoxylates from triglycerides (fuel)

(a) Process Diagram

1 Molecular Weights

Compound	Formula	Molecular Weight (kg/kmol)
Triglyceride	$(C_{17}H_{35}COO)_3C_3H_5$	891.48
Water	$\mathrm{H_{2}O}$	18.02
Glycerol	$\mathrm{C_3H_8O_3}$	92.09
Fatty Acid	$\mathrm{C}_{17}\mathrm{H}_{35}\mathrm{COOH}$	284.47
Hydrogen	${ m H_2}$	2.02
Fatty Alcohol	$\mathrm{C_{17}H_{35}CH_{2}OH}$	270.49
Sodium Hydroxide	NaOH	40.00
Ethylene Oxide	$\mathrm{C_2H_4O}$	44.05
Carbon Monoxide	CO	28.01
Carbon Dioxide	CO_2	44.01
Fatty Alcohol Ethoxylate	$\mathrm{C}_{17}\mathrm{H}_{35}\mathrm{CH}_{2}(\mathrm{OCH}_{2}\mathrm{CH}_{2})_{5}\mathrm{OH}$	490.75

Table 1: Molecular Weights of Compounds Involved in the Process

2 Mass Balance

 \bullet We have chosen the alkyl group R to be $\mathrm{C}_{17}\mathrm{H}_{35}.$

Step 1: Hydrolysis of Triglycerides

Key Assumption: 95% conversion of triglycerides

$$C_3H_5(OOCR)_3 + 3H_2O \longrightarrow C_3H_8O_3 + 3RCOOH$$
 (1)

Input:

- \bullet Trigly cerides: x kmol/hr
- Water: Excess (from recycle streams + fresh feed as needed)

Output (95% conversion):

- Fatty acids: $3x \times 0.95 = 2.85x \text{ kmol/hr}$
- Glycerol: $x \times 0.95 = 0.95x \text{ kmol/hr}$
- Unreacted triglycerides: x 0.95x = 0.05x kmol/hr (Recycled)

Recycle:

- Unreacted triglycerides are recycled back to the hydrolysis step.
- Excess water from downstream processes is recycled to minimize fresh water usage.

Step 2: Steam Reforming of Glycerol

Key Assumption: Complete combustion of glycerol occurs

$$C_3H_8O_3 + 3H_2O \longrightarrow 3CO_2 + 7H_2$$
 (2)

Input:

- Glycerol: 0.95x kmol/hr
- Water: Excess (recycled + fresh as needed)

Output:

- Hydrogen: 7x kmol/hr
- Carbon dioxide: 2.85x kmol/hr

Recycle:

- Unreacted hydrogen from hydrogenation is recycled here.
- Excess water is reused to minimize fresh water input.

Step 3: Hydrogenation of Fatty Acids

Key Assumption: 95% conversion of fatty acids

$$RCOOH + 2H_2 \longrightarrow RCH_2OH + H_2O$$
 (3)

Input:

- Fatty acids: 2.85x kmol/hr
- Hydrogen: $2 \times 2.85x \times 0.95 = 5.42x \text{ kmol/hr}$

Output:

- Fatty alcohol: 2.71x kmol/hr
- Water: 2.71x kmol/hr
- Unreacted fatty acids: 0.14x kmol/hr (Recycled)
- Unreacted hydrogen: 1.58x kmol/hr (Recycled)

Recycle:

- Unreacted fatty acid is recycled.
- Unreacted hydrogen is recycled to hydrogenation or steam reforming.

Step 4: Alkoxide Formation

$$RCH_2OH + NaOH \longrightarrow RCH_2O^-Na^+ + H_2O$$
 (4)

Input:

- Fatty alcohol: 2.71x kmol/hr
- NaOH: 2.71x kmol/hr

Output:

- Alkoxide: 2.71x kmol/hr
- Water: 2.71x kmol/hr

Recycle:

- Excess water is recycled.
- Some NaOH is recovered and reused in neutralization.

Step 5: Ethoxylation (FAE Formation)

$$RCH_2O^-Na^+ + 5C_2H_4O + H_2O \longrightarrow RCH_2(OCH_2CH_2)_5OH + NaOH$$
 (5)

Input:

- Alkoxide: 2.71x kmol/hr
- Ethylene oxide: 13.55x kmol/hr
- Water: 2.71x kmol/hr

Output:

- Fatty Alcohol Ethoxylates (FAE): 2.71x kmol/hr
- NaOH: 2.71x kmol/hr

Recycle:

- Excess water is recycled.
- Unreacted ethylene oxide is separated and reused.
- Excess NaOH is reused in neutralization.

Determining the value of x

- Our given basis (\dot{m}_{FAE}) is 1000 kg/day of neutralized FAE
- $\dot{m}_{FAE} = 1000 \text{ kg/day} = \frac{1000 \text{ kg}}{24 \text{ hr}} = 41.67 \text{ kg/hr}$
- Hence its molar flow rate $\dot{n}_{FAE}=\frac{\dot{m}_{FAE}}{M_{FAE}}=\frac{41.67~\mathrm{kg/hr}}{476.72~\mathrm{kg/kmol}}=0.0874~\mathrm{kmol/hr}$
- Since we got the final molar flow rate of FAE = 2.71x kmol/hr, we can equate it with the above obtained molar flow rate of FAE to solve for x.
- $2.71x = 0.0874 \implies \boxed{x = 0.032}$

3 Mass Balance Tables

Compound Name	In Mass Flow (kg/hr)	Out Mass Flow (kg/hr)
Triglycerides	28.53	1.43
Water	1.728	0.086
Fatty Acid	-	25.94
Glycerol	-	2.80
Total	30.26	30.26

Table 2: Mass Flow Summary of Compounds in Hydrolysis of Triglycerides

Compound Name	In Mass Flow (kg/hr)	Out Mass Flow (kg/hr)
Glycerol	2.80	-
Water	1.64	-
Hydrogen	-	0.43
Carbon Dioxide	-	4.01
Total	4.44	4.44

Table 3: Mass Flow Summary of Compounds in Steam Reforming of Glycerol

Compound Name	In Mass Flow (kg/hr)	$\begin{array}{c} {\rm Out~Mass~Flow} \\ {\rm (kg/hr)} \end{array}$	
Fatty acids	25.94	1.27	
Hydrogen	0.35	0.10	
Fatty alcohol	-	23.46	
Water	-	1.56	
Total	26.3	26.4	

Table 4: Mass Flow Summary of Compounds in Hydrogenation of Fatty Acids

Compound Name	In Mass Flow (kg/hr)	Out Mass Flow (kg/hr)	
Fatty alcohol	23.46	-	
Sodium Hydroxide	3.47	-	
Alkoxide	-	25.37	
Water	-	1.56	
Total	26.93	26.93	

Table 5: Mass Flow Summary of Compounds in Alkoxide Formation

Compound Name	$\begin{array}{c} \text{In Mass Flow} \\ \text{(kg/hr)} \end{array}$	$rac{ m Out~Mass~Flow}{ m (kg/hr)}$
Alkoxide	25.37	-
Ethylene Oxide	19.10	-
Water	1.56	-
Fatty Alcohol Ethoxylates	-	42.56
Sodium Hydroxide	-	3.47
Total	46.03	46.03

Table 6: Mass Flow Summary of Compounds in Ethoxylation

4 Energy Balance

4.1 Specific Heat Capacities

Substance	Specific Heat Capacity (C_p) [kJ/kg·K]
Triglyceride	2.0
Water	4.18
Hydrogen gas (H_2)	14.3
$C_{17}H_{35}COOH$	1.9
Glycerol	2.4
$\mathrm{C_{17}H_{35}CH_{2}OH}$	2.2
Ethylene Oxide	1.18
Fatty Acid Ethoxylate (FAE)	2.5
$\operatorname{NaOH}\left(\operatorname{aq}\cdot\right)$	3.7

Table 7: Specific Heat Capacity of Various Substances

4.2 Energy Balance Calculations

4.2.1 Preheating the Feed

Temperature change:

$$\Delta T = 150 - 25 = 125^{\circ}C$$

Heat required:

$$\dot{Q}_{in} = \dot{m}C_p \Delta T$$
 (kJ/hour)

For individual components:

$$\begin{split} \dot{Q}_{TG} &= \dot{m}_{TG} C_{p,TG} \Delta T \implies 28.53 \times 2 \times 125 = 7132.5 \text{ kJ/hr} \\ \dot{Q}_{H_2O} &= \dot{m}_{H_2O} C_{p,\text{H}_2O} \Delta T \implies 1.728 \times 4.18 \times 125 = 902.88 \text{ kJ/hr} \\ \dot{Q}_{pre-heat} &= \dot{Q}_{TG} + \dot{Q}_{\text{H}_2O} = 8035.38 \text{ kJ/hr} \end{split}$$

4.2.2 Hydrolysis Reactor

Reaction enthalpy:

$$\Delta H_r = -1213 \text{ kJ/kmol}$$

Total heat released:

$$\begin{split} \dot{Q}_{out} &= -1213 \times \dot{n} \quad \text{(kJ/hour)} \\ \dot{Q}_{hydr,out} &= -1213 \times 0.95 \times 0.032 = -36.87 \text{ kJ/hr} \end{split}$$

4.2.3 Steam Reforming Reactor

Reaction enthalpy:

$$\Delta H_r = 742.5 \text{ kJ/kmol}$$

Total heat input:

$$\dot{Q}_{in} = 742.5 \times \dot{n} \quad (kJ/hour)$$

 $\dot{Q}_{SR,in} = 742.5 \times 0.95 \times 0.032 = 22.57 \text{ kJ/hr}$

4.2.4 Heating Fatty Acid and Hydrogen to 200°C

$$\dot{Q}_{in,total} = \dot{m}_{H_2} C_{p,H_2} (200 - 150) + \dot{m}_{FA} C_{p,FA} (200 - 150)$$
 (kJ/hour)
 $\Rightarrow \dot{Q}_{in,total} = 0.35 \times 14.3 \times 50 + 25.94 \times 1.9 \times 50 = 2714.55$ kJ/hr

4.2.5 Hydrogenation of Fatty Acid

Reaction enthalpy:

$$\Delta H_r = 180.32 \text{ kJ/kmol}$$

Total heat input:

$$\begin{split} \dot{Q}_{in} &= 180.32 \times \dot{n} \quad (\text{kJ/hour}) \\ \Longrightarrow \dot{Q}_{in} &= 180.32 \times 2.71 \times 0.032 = 15.64 \text{ kJ/hr} \end{split}$$

4.2.6 Mixing Unit

Reaction enthalpy:

$$\Delta H_r = -117 \text{ kJ/kmol}$$

Total heat:

$$\begin{split} \dot{Q}_{total} &= \dot{Q}_{cooling}(\text{RCH}_2\text{OH}) + \dot{Q}_{heating}(NaOH) + \Delta H_r \times \dot{n} \quad (\text{kJ/hour}) \\ &\implies \dot{m}_1 C_p (200-150) + \dot{m}_2 C_p (150-25) + \Delta H_r \times \dot{n} \\ &\implies 23.46 \times 2.2 \times (150-200) + 3.47 \times 3.7 \times (150-25) + (-117) \times 2.71 \times 0.032 = -985.87 \text{ kJ/hr} \end{split}$$

4.2.7 Preheating Ethylene Oxide

Temperature change:

$$\Delta T = 150 - 25 = 125^{\circ}C$$

Heat required:

$$\begin{split} \dot{Q}_{in} &= \dot{m}C_p \Delta T \quad \text{(kJ/hour)} \\ \Longrightarrow \, \dot{Q}_{in} &= 19.1 \times 1.18 \times 125 = 2817.25 \text{ kJ/hr} \end{split}$$

4.2.8 Ethoxylation Reactor

Reaction enthalpy:

$$\Delta H_r = -231 \text{ kJ/kmol}$$

Total heat released:

$$\begin{split} \dot{Q}_{out} &= \Delta H_r \times \dot{n} \quad (\text{kJ/hour}) \\ \Longrightarrow \, \dot{Q}_{out} &= (-231) \times 2.71 \times 0.032 = -19.16 \text{ kJ/hour} \end{split}$$

4.3 Total Heat Given or Consumed

The total energy input/output in the process is calculated as:

$$\dot{Q}_{net} = \sum \dot{Q}_{in} - \sum \dot{Q}_{out} \quad (kJ/hour)$$

$$\Longrightarrow \dot{Q}_{net} = 13605.39 - 1041.90 = 12563.49 \text{ kJ/hr}$$

Capital cost (only for the reactor):

Equipment	Design Capacity (L)	No. of units	Cost/unit (\$ for year 2014)	Total Cost (\$ for year 2014)
REACTOR 1 (Jacketed reactor, agitated, Carbon steel, pressure of 150 psi)	2000	1	39,500	39,500
REACTOR 2 (Jacketed, agitated, carbon steel, pressure of 300 psi)	1000	1	37,100	37,100
REACTOR 3 (Jacketed, agitated, carbon steel, pressure of 150 psi)	1000	1	25,600	25,600

References: Provide reference for a research paper or an actual patent.

- 1. http://www.matche.com/equipcost/Reactor.html
- 2. https://patents.google.com/patent/US4218386A/en#:~:text=A%20process%20for%20hydrolyzing%20triglyceride,to%20produce%20carboxylic%20acids%20corresponding
- 3. https://patents.google.com/patent/US1839974A/en
- 4. https://patents.google.com/patent/EP0310194A1/en
- 5. https://docs.google.com/document/d/10Py2cF JycGj6WjQylfV7wy3jah52hNr2eDtSsB ZRo/edit?usp=sharing

List the contributions of each author:

• **Process flow diagram:** Sarthak Singh

• Material Balance: Bipin Kumar Jaiswal, Nonit Gupta, Peeyush Sahu

• Energy Balance: Bipin Kumar Jaiswal, Nonit Gupta, Peeyush Sahu

• Capital Cost: Sarthak Singh

Sign the pdf and upload.

Name	Roll No	Signature
CEO Name	230709	Nith Ru
Sarthak Singh	230930	Hortrak
Bipin Kumar Jaiswal)	230300	Bipino
Peeyush Sahu	230750	Freyush
Nonit Gupta	230712	Pupta