

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคการเรียนที่ 1 ปีการศึกษา 2551

วิชา ENE 231 Digital Circuit and Logic Design สอบวันพุชที่ 1 ๆลาคม 2551 วิศวกรรมอิเล็กฯ ปีที่ 2, ฟิสิกส์ ปี 3-4 เวลา 13.00-16.00 น.

กำสั่ง

- 1. ข้อสอบมีทั้งหมด 8 ข้อ 12 หน้า (รวมใบปะหน้า) คะแนนรวม 140 คะแนน
- 2. ให้ทำข้อสอบทุกข้อลงใน<u>ข้อสอบ</u> หากเนื้อที่ไม่พอให้ใช้หน้าหลังได้
- 3. <u>ห้าม</u>น้ำเอกสารใด ๆ เข้าห้องสอบ
- 4. <u>ไม่</u>อนุญาตให้นำเครื่องคำนวณใค ๆ เข้าห้องสอบ
- 5. มีทฤษฎีต่างของ Switching Algebra และ Flip-flop characteristic Equation ให้ในหน้าสุดท้าย

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ

ห้ามนักสึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ นักศึกษาซึ่งทุจริตในการสอบอาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

					_					เลขที่นั่งสอบ
ชื่อ-สกุล						รหัสนักค็	ใกษา	•••••		
ข้อที่	1	2	3	4	5	6	7	8		ກນ
คะแนนเต็ม	20	10	15	25	25	15	10	20		140
คะแนนที่ได้										
(ผศ. คร. พินิจ ผู้ออกข้อง โทร. 0-247	สอบ)	ข้อสอบนี้ได้ผ่านการประเมินจาก ภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคมแล้ว							
						(ผศ.କ	เร. วุฒิชัย	ย อัศวินชั	ัยโชติ)	

หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และ โทรคมนาคม

ชื่อ-สกุลเลขที่นั่งสอบ	l
------------------------	---

1. วิเคราะหัวงจร synchronous finite state machine ในรูปข้างล่าง โดยให้เขียน excitation equations, excitation/transition table, และ state/output table (20 กะแนน)

2. ให้เขียน state/output table ของ synchronous finite state machine ที่มี state diagram ตามรูปข้างถ่าง แล้ว พยายามลดจำนวน state ให้เหลือน้อยที่สุดเท่าที่จำเป็น (10 กะแนน)

ให้ออกแบบ state diagram และเขียน state/output table ของ synchronous FSM ที่ทำหน้าที่ตาม ข้อกำหนดดังนี้ (15 คะแนน)

ให้ออกแบบระบบครวจจับ Pattern ขนาค 2 บิท (AB) เพื่อตรวจจับหา pattern 01, 01, 11, 10 โคยเป็น การตรวจจับแบบ non-reset นั่นคือเอ้าท์พุท Z ของระบบจะเป็น '1' ถ้าอินพุท AB ของมันมีลำคับเป็น 01, 01, 11, 10 นอกนั้นเอ้าท์จะเป็น 0 คังศัวอย่างอินพุทต่อไปนี้

CLK: 0 A: 0 B: 0 1

ชื่อ-สกุล	รหัสนักศึกษา	เลขที่นั่งสอบ
-----------	--------------	---------------

4. จาก state/output table ข้างล่างนี้ ให้ออกแบบ Synchronous Finite State Machine โดยใช้ Negative-edge Triggered D Flip-flop โดยให้แสดงขั้นตอนการทำอย่างละเอียดจนได้ schematic diagram และใช้การ เข้ารหัส แบบ gray (gray code) เพื่อเข้ารหัสสถานะ (state encoding) (25 คะแนน)

Current State	INPUT: XY					
	00	01	11	10		
A	A,0	A,0	A,0	В,0		
В	A,0	A,0	A,0	C,0		
С	A,0	A,0	D,0	C,0		
D	A,0	A,1	A,0	В,0		
	Next State, Z (output)					

5. จากตารางความจริงข้างล่าง

Row#	Inp	uts	Output
	ΑВ	CD	F
0	0 0	00	1
1	0 0	0 1	1
2	0 0	10	0
3	0 0	11	1
4	0 1	00	1
5	0 1	0 1	0
6	0 1	10	0
7	0 1	11	1
8	10	0 0	0
9	10	0 1	0
10	10	10	0
11	10	11	1
12	11	00	1
13	1 1	0 1	1
14	11	10	0
15	1 1	11	1

- (a.) ให้ใช้ 4-input MUX 1 ตัวร่วมกับเกทอื่น ๆ ในการ สร้างวงจรคิจิตอลที่ทำหน้าที่ตามตารางความจริงที่ กำหนคให้ (10 คะแนน)
- (b.) ให้ใช้ 3-to-8 Decoder เบอร์ 74x138 คังแสดง สัญญูลักษณ์ในรูปข้างล่างจำนวน 2 ตัวร่วมกับเกท อื่น ๆ ในการสร้างวงจรดิจิตอลที่ทำหน้าที่ตามตาราง ที่กำหนดให้ (15 กะแนน)

6. ให้สร้างวงจรแปลงสัญญาณ 4 บิทแบบขนาน (4-bit parallel data) เป็นสัญญาณแบบลำคับ (sequential data) ที่ทำงานตามตารางความจริงข้างล่าง โดยการใช้ D flip-flops และ 2-input MUXs มาต่อเป็น shift register ขนาด 4 บิท ให้เลือกใช้ D Flip-flop ที่เหมาะสมเอง และให้เขียน timing diagram ในกรณี ตัวอย่างข้างล่าง (15 คะแนน)

		Input	Output		
LE	ShE	CLOCK	D3 D2 D1 D0	Q3 Q2 Q1 Q0	so
0	0	х	xxxx	No change	D0
1	х	1	d3 d2 d1 d0	d3 d2 d1 d0	D0
0	1	1	x x x x	Shift Right	D0

7. ฟลิบฟลอบตามสัญญลักษณ์ข้างล่างนี้เป็นฟลิบฟลอบชนิคใด พร้อมกับเขียนตารางความจริง และ Characteristic Equation ของมัน (10 กะแนน)

ชื่อ-สกล	รหัสนักศึกษา	เลขที่นั่งสอบ
4		

8. ออกแบบวงจรเปรียบเทียบเลข two's complement ขนาค 4 บิท 2 ตัวคือ A= a3a2a1a0 กับ B=b3b2b1b0 โดยใช้วิธี iterative circuit (20 กะแนน)

(แนวทาง: ปี่ท MSB (ในกรณีนี้คือบิท 3) เป็น sign bit คังนั้นถ้าบิทนี้ไม่เหมือนกัน ตัวเลขที่บิทนี้เป็น 0 จะ มากกว่าตัวเลขที่บิทนี้เป็น 1 (0xxx > 1xxx) ส่วนบิทที่เหลือใช้หลักการเคียวกันกับ binary comparator)

Switching Algebra Postulates and Theorems

1. Closure Properties

- a. Postulate 1a (P1a): If X and Y are in the domain, that is, take on only the values $\{0,1\}$, then (X+Y) is also in the domain.
- b. Postulate 1b (P1b): If X and Y are in the domain, that is, take on only the values {0,1}, then $(X \cdot Y)$ is also in the domain.

2. Identity Properties

- a. Postulate 2a (P2a): X + 0 = X
- b. Postulate 2b (P2b): $X \cdot 1 = X$

3. Commutative Properties

- a. Postulate 3a (P3a): X + Y = Y + X
- b. Postulate 3b (P3b): $X \cdot Y = Y \cdot X$

4. Distributive Properties

- a. Postulate 4a (P4a): X + (Y·Z) = (X+Y).(X+Z)
 b. Postulate 4b (P4b): X·(Y+Z) = X·Y + X.Z

5. Complement Properties

- a. Postulate 5a (P5a): $X + \overline{X} = 1$
- b. Postulate 5b (P5b): $X \cdot \overline{X} = 0$

Theorems

1. Involution Theorem	
Theorem 1 (T1): $X = \overline{X}$	
2. <u>Identity Theorems</u>	6. Adjacency Theorems
a. Theorem 2a (T2a): $X + 1 = 1$	a. Theorem 6a (T6a): $X \cdot \overline{Y} + X \cdot Y = X$
b. Theorem 2b (T2b): $X \cdot 0 = 0$	b. Theorem 6b (T6b): $(X + \overline{Y}) \cdot (X + Y) = X$
3. Idempotency Theorems	7. Absorption Theorems
a. Theorem 3a (T3a): $X + X = X$	a. Theorem 7a (T7a): $X + X \cdot Y = X$
b. Theorem 3b (T3b): $X \cdot X = X$	b. Theorem 7b (T7b): $X \cdot (X + Y) = X$
4. Associative Theorems	8. Simplification Theorems
a. Theorem 4a (T4a): $X + (Y + Z) = (X + Y) + Z$	a. Theorem 8a (T8a): $X + \overline{X} \cdot Y = X + Y$
b. Theorem 4b (T4b): $X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$	b. Theorem 8b (T8b): $X \cdot (\overline{X} + Y) = X \cdot Y$
5. DeMorgan's Theorems	9. Consensus Theorems
a. Theorem 5a (T5a): $\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$	a. Theorem 9a (T9a):
b. Theorem 5b (T5b): $\overline{X \cdot Y} = \overline{X} + \overline{Y}$	$X \cdot Y + X \cdot Z + Y \cdot Z = X \cdot Y + X \cdot Z$
	b. Theorem 9b (T9b):
	$(X+Y)\cdot(X+Z)\cdot(Y+Z) = (X+Y)\cdot(X+Z)$

Device Type	Characteristic Equation
S-R latch	Q* = S +R' · Q
D latch	Q* = D
Edge-triggered D flip-flop	Q* = D
D flip-flop with enable	Q* = EN · D + EN' · Q
Master/slave S-R flip-flop	Q* = S + R' + Q
Master/slave J-K flip-flop	$Q* = J \cdot Q' + K' \cdot Q$
Edge-triggered J-K flip-flop	$Q* = J \cdot Q' + K' \cdot Q$
T flip-flop	Q* = Q'
T flip-flop with enable	Q* =EN· Q' +EN' · Q