

FIG. 2

FIG. 3

FIG. 4

(a) PROTEIN SELECTION DATABASE	N CONDITIONS SPEC	IES	
Swiss-prot		o sapiens	▼
KEYWORD			
zinc finger			
(b) FREQUENCY AND WEIGHT			
MODIFICATION	☐ PHOSPHOR I ZATION	LJACETYLATION L	<u> METHYLATION</u>
DIGESTIVE ENZYME	Trypsin		
METHOD OF IONIZATION	ESI	▼	
MASS ACCURACY (Da)	1		
MASS RANGE (Da)	50	_ 40000	
MASS TYPE	MONOISOTOPIC	O AVER	AGE
FREQUENCY 150 100 50 0	FREQUENCY © WEIGHT	PATTERN 1 © WEI	GHT PATTERN 2 MASS 2000
d) PRECURSOR ION SELECTION	ON AND MS/MS ANALYSI		
MASS RANGE (Da)	300		000
THRESHOLD OF ION INTEN	ISITY	10	% ▼
PSEUDOSPECTRUM INTENSITY (LOW FREQUENCY)		0. 5	⁻ 0. 001
PSEUDOSPECTRUM INTENSI	TY (HIGH FREQUENCY)	1	- 0. 01
PRECURSOR ION	FROM LOW FREQUENCY	© FROM H	IGH FREQUENCY
@	D HIGH → LOW ALTERN	ATELY \odot LOW \rightarrow	HIGH ALTERNATELY
MS/MS ANALYSIS REPETIT	10N	3	TIMES 🔻

FIG. 5

No. MASS ION INTENSITY (%) FREQUENCY 1 395 70 203 2 790 55 257 3 1241 55 260 4 1092 100 265 5 837 43 271	TABLE OF RESULTS OF PRECURSOR ION SELECTION				
2 790 55 257 3 1241 55 260 4 1092 100 265	SELECTION				
3 1241 55 260 4 1092 100 265	Yes				
4 1092 100 265	Yes				
	No				
5 837 43 271	No				
10 271	No				
6 604 73 429	No				
7 572 92 674	No				

FIG. 6

FIG. 7

FIG. 8

FIG. 9

1000

1500

MASS

2000

500

-3000 -4000

0