Departamento de Ciência de Computadores Algoritmos (CC4010)

FCUP 2019/20

duração: 3h (+30')

Teste (21.01.2020)

N.º	Nome
1.	[2.0] Relacione os conjuntos indicados usando o símbolo \subset , \supset , \subseteq , \supseteq , $=$, $e \neq que$ for mais adequado .
_,	a) $\Omega(n^2 + 3n)$ $O(n^2)$ b) $\Theta(n^2)$ $\Omega(n \log n)$ c) $\Theta(\log_2 n)$ $\Theta(\log_{10} n)$
Inc	tifique a alínea (a), usando <u>diretamente</u> a definição matemática das ordens de grandeza.
	a definique à difficultation de desimilation materialiste dus ordens de grandeza.
	Seja $\mathcal T$ um conjunto de n tarefas que tem de realizar (se puder). A tarefa i teria início no instante t_i e
	ação d_i (ambos são inteiros positivos). Em cada instante só pode estar a realizar uma tarefa, mas pode neçar uma nova tarefa no instante em que outra termina. Deve realizar o número máximo de tarefas .
	[0.5] Prove que a estratégia que escolhe sempre a tarefa <i>com menor duração</i> que é compatível com as
	olhidas anteriormente pelo mesmo algoritmo, pode produzir uma solução não ótima.
F)	El Ol Duova que a catuatágia "Intertatuat Cont" que accelha company a tomás que accelha com
	[1.0] Prove que a estratégia "latest start first", que escolhe sempre a tarefa que começa mais tarde e é apatível com as escolhidas anteriormente pelo mesmo algoritmo, determina uma solução ótima.

verificar (e, talvez repor) a propriedade de <i>heap</i> , usando heapify (k, q). a) [0.3] Em que consiste a "propriedade de <i>heap</i> " (para <i>heap de máximo</i>)?		
1) [0.3] Em que consiste a "propriedade de <i>neap</i>	(para neap ae maximo)!	
a) II 71 A massanta am massada sádica a formas a la		
e compara (i, j, q) para trocar os elemento nando 0 se forem iguais, um inteiro negativo s	apify (k,q), supondo definidas funções troca (i, j, os i e j, entre si, e para comparar dois elementos (retorse o primeiro for menor que o segundo, e positivo, caso que as sub-árvores com raíz no filho esquerdo e direito do	
nó k, se existirem, satisfazem a propriedade de l		
	de heapify (1, q), usou-se $T(n) \leq T(2n/3) + c$, com c e conclui? Porque é que no pior caso $T(n) \in \Omega(\log_2 n)$.	
	1 1 1 () - (62)	
1. [1.0] Explique sucintamente de que modo o	algoritmo de Strassen, cuja complexidade é	
	de duas matrizes quadradas $n \times n$, face ao algoritmo trivial,	
ruja complexidade é .		

N.º Nome	
Considere as funções MyPARTITIO	N e Select assim definidas, sendo x é um $array$ de n inteiros
listintos $x[1], \dots, x[n]$, e a e b inteiros ta	·
MYPARTITION(x,a,b)	SELECT(x,a,b,k)
$1. \mid z = x[a]$	1. if $a > b \lor b - a + 1 < k$ then
$ \begin{array}{c c} \hline 2. & j=a \end{array} $	2. return -1
3. for $i = a + 1$ to b do	3. $t = MYPARTITION(x, a, b)$
4. if $x[i] < z$ then	4. $p = t - a + 1$
5. Exchange $x[i]$ with $x[j]$	[+1] 5. if $p = k$ then return $x[t]$
6. $j = j + 1$	6. \mid if $p < k$ then
7. Exchange $x[a]$ with $x[j]$	7. return SELECT $(x, t+1, b, k-p)$
8. return j	8. return SELECT $(x, a, t - 1, k)$
o) [1.0] Justifique a correção de SELECT(a e existir.	(x,a,b,k) , i.e., que obtém o k -ésimo menor elemento de $x[a],\ldots,x$
e existir. (a) [1.5] Indique a complexidade temporal	assintótica de Select (x,a,b,k) no melhor caso, no
e existir. 2) [1.5] Indique a complexidade temporal pior caso e no caso médio	. Para o caso médio, admita uma distribuição uniforme.
e existir. (a) [1.5] Indique a complexidade temporal	assintótica de Select (x,a,b,k) no melhor caso, no, no, para o caso médio, admita uma distribuição uniforme

) do algoritmo de Ghosh.	b) da prova de Fisk para o teorema de Chvátal.
	rateres, com comprimento m e n , respetivamente. Considere
oblema <i>Minimum Edit Distance</i> , aplicado a substituição 2. Apresente a recorrência que	X e Y , sendo o custo da operação de inserção de 2 , remoção de define o custo da transformação de X_i em Y_j , sendo X_i e
oblema Minimum Edit Distance, aplicado a	X e Y , sendo o custo da operação de inserção de 2 , remoção de define o custo da transformação de X_i em Y_j , sendo X_i e
oblema <i>Minimum Edit Distance</i> , aplicado a substituição 2. Apresente a recorrência que	X e Y , sendo o custo da operação de inserção de 2 , remoção de define o custo da transformação de X_i em Y_j , sendo X_i e
oblema <i>Minimum Edit Distance</i> , aplicado a substituição 2. Apresente a recorrência que	X e Y , sendo o custo da operação de inserção de 2 , remoção de define o custo da transformação de X_i em Y_j , sendo X_i e
oblema <i>Minimum Edit Distance</i> , aplicado a substituição 2. Apresente a recorrência que	X e Y , sendo o custo da operação de inserção de 2 , remoção de define o custo da transformação de X_i em Y_j , sendo X_i e
oblema <i>Minimum Edit Distance</i> , aplicado a substituição 2. Apresente a recorrência que	X e Y , sendo o custo da operação de inserção de 2 , remoção de define o custo da transformação de X_i em Y_j , sendo X_i e
oblema <i>Minimum Edit Distance</i> , aplicado a substituição 2. Apresente a recorrência que prefixos de formados pelos <i>i</i> e <i>j</i> primeiros	X e Y , sendo o custo da operação de inserção de 2 , remoção de define o custo da transformação de X_i em Y_j , sendo X_i e

N.º	Nome	

9. Considere uma *stack* suportada por um *array* V e uma variável top que designa o índice da primeira posição livre de V, com as operações usuais PUSH(x) e POP() assim definidas:

$$\begin{array}{c|c} \operatorname{PUSH}(x) & \operatorname{POP}() \\ V[top] = x & top = top + 1 \\ \end{array} \qquad \begin{array}{c|c} \operatorname{top} = top - 1 \\ \operatorname{return} V[top + 1] \end{array}$$

Suponha que inicialmente V tem M posições e considere a possibilidade de **a operação de Push**(x) **ser substituída para aumentar dinamicamente a capacidade da stack** quando está cheia e é necessário inserir um novo valor. Nessa operação, começa por realocar espaço (um novo array com mais M posições do que o anterior, sendo M a constante inicial), copia os elementos que estavam na stack para o novo array e só depois insere o novo elemento. Considere um modelo de custos em que a inserção de um elemento e a remoção de um elemento têm custo 1 e o custo da expansão da estrutura de dados é igual ao número de elementos transferidos.

- a) [1.0] Suponha que M=30 e efetua uma sequência de 135 operações de PUSH, partindo da $stack\ vazia$. Apresente a expressão que define o custo total. Qual é o custo de uma operação de PUSH no pior caso e no melhor caso? Qual é o custo amortizado de cada operação?
- **b**) [1.0] Considere o caso geral (em que apenas se sabe que M é uma constante). Suponha que efetua uma sequência de kM operações de PUSH, sendo k inteiro positivo. Compare o custo amortizado de cada operação nesta abordagem com o custo amortizado se, em cada expansão, se *duplicasse* o tamanho do *array*.

10. No problema BIN PACKING são dados n itens com pesos p_1, \ldots, p_n , tais que $0 < p_i \le 1$, para todo i,

No problema Partition são dados n inteiros positivos a_1, a_2, \ldots, a_n , e há que decidir se existe uma partição $\{S, T\}$ do conjunto de índices $\{1, 2, \ldots, n\}$ tal que $\sum_{i \in S} a_i = \sum_{i \in T} a_i$. Sabe-se que Partition é um problema **NP-completo**.

e há que os distribuir por latas de capacidade unitária, usando o menor número de latas possível.

- a) [0.2] Prove que as instâncias de PARTITION com $a_j > \sum_{j \neq i} a_i$, para algum j, são trivialmente decidíveis.
- **b)** [1.0] Dada uma instância de Partition, com $a_j \leq \sum_{j \neq i} a_i$, para todo j, definimos uma instância de BIN PACKING com $p_j = 2a_j / \sum_{i=1}^n a_i$, para todo j. Justifique que se trata de uma redução polinomial que permite decidir Partition em tempo polinomial se algum dos algoritmos seguintes existir e conclua que não podem existir a menos que P=NP: (i) um algoritmo polinomial que calcule uma solução ótima para BIN PACKING; (ii) um algoritmo de aproximação polinomial de razão c para BIN PACKING, com c < 3/2.

Master theorem:

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence T(n) = aT(n/b) + f(n), where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$, for some constant $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Stirling's approximation:

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n (1 + \Theta(1/n)) = \sqrt{2\pi n} \left(\frac{n}{e}\right)^{\alpha_n}, \text{ with } 1/(12n+1) < \alpha_n < 1/(12n)$$

Some useful results:

$$\log(\prod_{k=1}^{n} a_k) = \sum_{k=1}^{n} \log a_k \qquad \sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}, \text{ for } |x| < 1$$

If $(u_k)_k$ is an arithmetic progression (i.e., $u_{k+1} = r + u_k$, for some constant $r \neq 0$), then $\sum_{k=1}^n u_k = \frac{(u_1 + u_n)n}{2}$.

If $(u_k)_k$ is a geometric progression (i.e., $u_{k+1} = ru_k$, for some constant $r \neq 1$), then $\sum_{k=1}^n u_k = \frac{u_{n+1} - u_1}{r-1}$.

If $f \ge 0$ is continuous and a monotonically increasing function, then

$$\int_{m-1}^{n} f(x)dx \le \sum_{k=m}^{n} f(k) \le \int_{m}^{n+1} f(x)dx$$