Polytopes

Henrique Hepp

May 7, 2014

Algorithm based on the article "Embedding Stacked Polytopes on a Polynomial-Size Grid ".

The algorithm can be divided in:

- 1. Receive the entry.
- 2. Heavy caterpillar decomposition.
- 3. Balance the tree.
- 4. Get the coefficients.
- 5. Lift the graph to a polytope.

1 The Entry of the algorithm

It is given to the algorithm a 3 connected planar graph and a tree representation of the graph, as showed below.

2 Heavy caterpillar decomposition

The tree representation is decomposed in *heavy paths*. Resulting sub-trees called *caterpillars*. When a node lies on a heavy path it is called a *spine node*, otherwise

is a tree node. The spine nodes are labelled by s_1 (root), s_2 , ..., s_i ,..., s_{\perp} . The children from s_i are s_{i+1} , t_{i+1} and t'_{i+1} . In t are stored a pointer link(t) to a other caterpillar.

3 Balance the tree

A balanced Tree:

```
function BALANCE(C)

Input: A caterpillar C from the heavy caterpillar decomposition of \mathcal{T}(G). All weights are equal 1.

Output: Weights for the nodes of \mathcal{T}(G).

for all t_i, t_i' in C do

BALANCE(link(t_i))

BALANCE(link(t_i'))

if w(t_i) > w(t_i') then

relabel t_i \leftrightarrow t_i'

end if

w(t_i) = w(t_i')

add (w(t_i) - w(t_i')) to the weight of s_{\perp} in link (t_i)

add (w(t_i') - w(t_i)) to the weight of link^{-1}(C)

end for

end function
```


4 Get the coefficients

If v_i is the vertex stacked on the face $v_j v_k v_l$ then:

$$\alpha_{ijkl} = \frac{1}{w(t_u)}$$

Where $w(t_u)$ is the weight of the subface $v_j v_k v_l$ obtained by the function BALANCE.

The weights are now updated with the coordinate values. First the coordinates from the vertices are rounded down. $r_i = (\lfloor x_i \rfloor, \lfloor y_i \rfloor)$.

The weights are:

$$\dot{w}_{ij} = \sum_{\{i,j,k,l\} \in S} [Y\alpha_{ijkl}] w_{ij}^{kl}$$

The coefficient α_{ijkl} is scaled by multiplying it with $Y=4n^2$, n is the number of vertices.

$$w_{ij}^{kl} = [i, k, l][j, k, l]$$

$$[i, j, k] = \det \begin{pmatrix} x_i & x_j & x_k \\ y_i & y_j & y_k \\ 1 & 1 & 1 \end{pmatrix}$$

5 The lifting

Pages 133 to 139 of REALIZATION SPACES OF POLYTOPES