Question.2-03

함수 f가 $\overrightarrow{\theta}$ 에 대해 다음과 같이 주어졌을 때, Jacobian matrix $\frac{\partial f(\overrightarrow{\theta})}{\partial \overrightarrow{\theta}}$ 를 구하시오.

1)
$$\overrightarrow{\theta} = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{pmatrix}$$
 $f(\overrightarrow{\theta}) = (\theta_1)^3 - 2(\theta_2)^2 + \theta_1 \theta_3$

2)
$$\overrightarrow{\theta} = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{pmatrix}$$
 $f(\overrightarrow{\theta}) = \ln^2(\theta_1) - 3e^{\theta_2\theta_3} + \tan(\theta_3)$

1) 3012 f(0) 0, 0, 0, 0, on the stable 301, 302, 303 3

$$\frac{\partial f(\vec{0})}{\partial \theta_{1}} = \frac{\partial}{\partial \theta_{1}} \left[(\theta_{1})^{3} - 2(\theta_{2})^{2} + \theta_{1} \theta_{3} \right]$$

$$= \frac{\partial}{\partial \theta_{1}} \left[(\theta_{1})^{3} \right] - 2\frac{\partial}{\partial \theta_{1}} \left[(\theta_{2})^{3} \right] + \frac{\partial}{\partial \theta_{1}} \left[(\theta_{1}) \theta_{3} \right]$$

$$= 3\theta_{1}^{2} + \theta_{3}$$

$$\frac{\partial f(\vec{\theta})}{\partial \theta_{2}} = \frac{\partial}{\partial \theta_{2}} \left[(\theta_{1})^{3} - 2(\theta_{2})^{2} + \theta_{1}\theta_{3} \right]$$

$$= \frac{\partial}{\partial \theta_{2}} \left[(\theta_{1})^{3} \right] - 2\frac{\partial}{\partial \theta_{1}} \left[(\theta_{2})^{3} \right] + \frac{\partial}{\partial \theta_{2}} \left[(\theta_{1})\theta_{3} \right]$$

$$= -4\theta_{2}$$

$$\frac{2f(\theta)}{3\theta_3} = \frac{\partial}{\partial \theta_3} \left[(\theta_1)^3 - 2(\theta_2)^2 + \theta_1 \theta_3 \right]$$

$$= \frac{\partial}{\partial \theta_3} \left[(\theta_1)^3 \right] - 2\frac{\partial}{\partial \theta_3} \left[(\theta_2)^3 \right] + \frac{\partial}{\partial \theta_3} \left[(\theta_1) \theta_3 \right]$$

$$= \theta_1$$

2724 Jacolians 4827 264.

$$\frac{\partial f(\vec{0})}{\partial \vec{0}} = \left(\frac{\partial f(\vec{0})}{\partial \theta_1}, \frac{\partial f(\vec{0})}{\partial \theta_2}, \frac{\partial f(\vec{0})}{\partial \theta_3} \right)$$

$$= \left(\frac{\partial f(\vec{0})}{\partial \theta_1}, \frac{\partial f(\vec{0})}{\partial \theta_2}, \frac{\partial f(\vec{0})}{\partial \theta_3}, \frac{\partial f(\vec{0})}{\partial \theta_3} \right)$$

2) 1) 27 ES HHES partial derivatives 3744

$$\frac{\partial f(\vec{0})}{\partial \theta_{1}} = \frac{\partial}{\partial \theta_{1}} \left[\ln^{2}(\theta_{1}) - 3e^{\theta_{2}\theta_{3}} + \tan(\theta_{3}) \right] \\
= \frac{\partial}{\partial \theta_{1}} \left[\ln^{2}(\theta_{1}) \right] - 3\frac{\partial}{\partial \theta_{1}} \left[e^{\theta_{2}\theta_{3}} \right] + \frac{\partial}{\partial \theta_{1}} \left[\tan(\theta_{3}) \right] \\
= 2\ln(\theta_{1}) \cdot \frac{\partial}{\partial \theta_{1}} \left[\ln(\theta_{1}) \right] \\
= \frac{2}{\theta_{1}} \ln(\theta_{1})$$

$$\frac{\partial f(\vec{0})}{\partial \theta_{2}} = \frac{\partial}{\partial \theta_{2}} \left[\ln^{2}(\theta_{1}) - 3e^{\theta_{2}\theta_{3}} + \tan(\theta_{3}) \right]$$

$$= \frac{\partial}{\partial \theta_{2}} \left[\ln^{2}(\theta_{1}) \right] - 3\frac{\partial}{\partial \theta_{2}} \left[e^{\theta_{2}\theta_{3}} \right] + \frac{\partial}{\partial \theta_{2}} \left[\tan(\theta_{3}) \right]$$

$$= -3e^{\theta_{3}\theta_{3}} \cdot \frac{\partial}{\partial \theta_{2}} \left[\theta_{3}\theta_{3} \right]$$

$$= -3\theta_{3}e^{\theta_{2}\theta_{3}}$$

$$= -3\theta_{3}e^{\theta_{2}\theta_{3}}$$

$$\frac{\partial f(\vec{0})}{\partial \theta_{3}} = \frac{\partial}{\partial \theta_{3}} \left[\ln^{2}(\theta_{1}) - 3e^{\theta_{2}\theta_{3}} + \tan(\theta_{3}) \right] \\
= \frac{\partial}{\partial \theta_{3}} \left[\ln^{2}(\theta_{1}) \right] - 3\frac{\partial}{\partial \theta_{3}} \left[e^{\theta_{2}\theta_{3}} \right] + \frac{\partial}{\partial \theta_{3}} \left[\tan(\theta_{3}) \right] \\
= -3e^{\theta_{2}\theta_{3}} \cdot \frac{\partial}{\partial \theta_{3}} \left[0_{2}\theta_{3} \right] + \sec^{2}(\theta_{3}) \\
= -3\theta_{2} \cdot e^{\theta_{2}\theta_{3}} + \sec^{2}(\theta_{3})$$

म्थर्भ Jacobian है कि ध्रेप.

$$\frac{36}{30} = \left(\frac{360}{30}, \frac{360}{30}, \frac{360}{30}, \frac{360}{30}\right) \\
= \left(\frac{2}{30}\ln(\theta_1), -303e^{020}, -305e^{020} + sec^2(0)\right)$$