

CH 110

ATOMIC STRUCTURE &

PERIODICITY

5

Trends in Ionization Energy

 Ionization energy: the energy required to remove an electron from a gaseous atom or ion

$$X(g) \rightarrow X^{+}(g) + e^{-}$$

- The highest energy electron is removed first.
- First ionization energy (I₁) is that required to remove the first electron.
- Second ionization energy (I₂) the second electron etc. etc.

Consider Al:

Al(g)
$$\rightarrow$$
 Al⁺(g) + e⁻ $I_1 = 580$ kJ/mol
Al⁺(g) \rightarrow Al²⁺(g) + e⁻ $I_2 = 1815$ J/mol
Al²⁺(g) \rightarrow Al³⁺(g) + e⁻ $I_3 = 2740$ kJ/mol
Al³⁺(g) \rightarrow Al⁴⁺(g) + e⁻ $I_4 = 11600$ kJ/mol

- Al Conf. is [Ne]3s²3p¹
- for Mg
 - $I_1 = 735 \text{ kJ/mole}$
 - $I_2 = 1445 \text{ kJ/mole}$
 - $I_3 = 7730 \text{ kJ/mole}$

Trends in ionization energy

- Notice change in values from I₁ to I₄
- Why?
- The effective nuclear charge increases as you remove electrons.
- There is a high jump in IE after removing the valence electron(s)
- It takes much more energy to remove a core electron than a valence electron because there is less shielding

First, Second, Third, and Fourth Ionization Energies of Sodium, Magnesium, and Aluminum (kJ/mol)

	<u> Ist IE</u>	<u> 2nd IE</u>	<u> 3r d IE</u>	<u>4th IE</u>
Na	495.8	4562.4	6912	9543
Mg	737.7	1450.6	7732.6	10,540
A1	577.6	1816.6	2744.7	11,577

IE Trend Across a Period

- Generally from left to right, ${\rm I}_1$ increases because
 - there is a greater nuclear charge with the same shielding.
- As you go down a group I₁ decreases because
 - electrons are further away and there is more shielding

IE Trend Across a Period

- Z_{eff} changes as you go across a period, so will I_1
- Half-filled and filled orbitals are harder to remove electrons from.
 - This brings variations within the period e.g Be to B & N to O.
- Here's what it looks like

Atomic number

IE energies for period 3 elements

Table 7.5 Successive Ionization Energies in Kilojoules per Mole for the Elements in Period 3										
Element	11	12	13	14	15	16	17			
Na	495	4560	_							
Mg	735	1445	7730	Core el	ectrons*					
Al	580	1815	2740	11,600	_					
Si	780	1575	3220	4350	16,100	_				
P	1060	1890	2905	4950	6270	21,200	_			
s	1005	2260	3375	4565	6950	8490	27,000			
Cl	1255	2295	3850	5160	6560	9360	11,000			
Ar	1527	2665	3945	5770	7230	8780	12,000			

^{*}Note the large jump in ionization energy in going from removal of valence electrons to removal of core electrons

General increase

Try This

- Which atom in the following pairs has the greater first IE
 - Li or Be
 - Ca or Ba
 - Na or K
 - P or Ar
 - Cl or Si
 - Li or K

Trends in Atomic Size

- First problem is where do you start measuring.
- The electron cloud doesn't have a definite edge.
- We get around this by measuring more than 1 atom at a time.
- Atomic Radius = half the distance between two nuclei of a diatomic molecule

Trends in Atomic Size

- Atomic size is influenced by two factors:
 - -Shielding
 - More shielding pushes electron further away
 - Charge on nucleus
 - More charge pulls electrons in closer

Group trends

- As we go down a group
 - Each atom has another energy level
 - So the atoms get bigger

Electronic Structure of Atoms

Periodic Trends

- As you go across a period the radius gets smaller.
- Same energy level.
- But more nuclear charge.
- Outermost electrons are pulled closer

Try this

- Rank the following elements by increasing atomic radius
 - C, AI, O, K

Try this

- Rank the following elements by increasing atomic radius
 - O, C, Al, K
 - Xe, F, Rb, Sn, Sr

Try this

- Rank the following elements by increasing atomic radius
 - O, C, Al, K
 - F, Xe, Sn, Sr, Rb

Electron Affinity

 The energy change associated with adding an electron to a gaseous atom.

$$X(g) + e^{-} \rightarrow X^{-}(g)$$

- High electron affinity gives you more negative energy
 - Exothermic
- EA increases (more -ve) from left to right
 - greater nuclear charge.
- EA decrease as we go down a group
 - More shielding

Ionic Size

Cations are formed by losing electrons.

Cations are smaller than the atom they come from.

Metals form cations.

 Cations of representative elements have noble gas configuration.

Ionic size

Anions are formed by gaining electrons.

Anions are bigger than the atom they come from.

Nonmetals form anions.

 Anions of representative elements have noble gas configuration.

Configuration of lons

- Ions always have noble gas configuration
- Na is $1s^22s^22p^63s^1$
- Forms a +1 ion Na+: 1s²2s²2p⁶
- Same configuration as Neon
- Metals form ions with the configuration of the noble gas before them - they lose electrons

Configuration of lons

 Non-metals form ions by gaining electrons to achieve noble gas configuration.

 They end up with the configuration of the noble gas after them.

Group trends

- Adding energy level
- Ions get bigger as you go down

Periodic Trends

- Across the period, nuclear charge increases so they get smaller.
- Energy level changes between anions and cations.

Size of Isoelectronic ions

- Iso same
- Iso electronic ions have the same # of electrons
- Al⁺³ Mg⁺² Na⁺¹ Ne F⁻¹ O⁻² and N⁻³
- all have 10 electrons
- all have the same configuration 1s²2s²2p⁶

Size of Isoelectronic ions

Positive ions have more protons so they are smaller

Try This

- Which ion is larger in each of the pairs below:
 - Ca^{2+} and B^{3+}
 - K⁺ and P³⁻
 - Li⁺ and Rb⁺
 - Ca²⁺
 - **–** P³⁻
 - $-Rb^+$

Electronegativity

Electronegativity

- The tendency for an atom to attract electrons to itself when it is chemically combined with another element.
- How "greedy!"
- Big electronegativity means it pulls the electron toward itself.
- Atoms with large negative electron affinity have larger electronegativity.

Group Trend

- The further down a group more shielding
- Less attracted (Z_{eff})
- Low electronegativity.

Periodic Trend

- Metals are at the left end.
 - Low ionization energy- low effective nuclear charge.
 - Low electronegativity.

- At the right end are the nonmetals
 - More negative electron affinity.
 - High electronegativity.
 - Except noble gases.

Ionization energy, electronegativity Electron affinity INCREASE

Atomic size increases,

lonic size increases

- Which atom in each pair has greater electronegativity
 - Ca or Ga
 - Br or As
 - Li or O
 - Ba or Sr
 - Cl or S
 - O or S

- Rank the following elements by increasing electronegativity
 - S, O, Ne, Al

- Which atom in each pair has the greater electronegativity
 - Ca or Ga
 - Br or As
 - Li or O
 - Ba or Sr
 - Cl or S
 - O or S

- Rank the following elements by increasing electronegativity
 - Ne, Al, S, O

- Which atom in each pair has the greater electronegativity
 - Ca or Ga
 - Br or As
 - Li or O
 - Ba or Sr
 - Cl or S
 - O or S

- Rank the following elements by increasing electronegativity
 - Ne, Al, S, O
 - Fr, Rn, Cs, At

- Which atom in each pair has the greater electronegativity
 - Ca or Ga
 - Br or As
 - Li or O
 - Ba or Sr
 - Cl or S
 - O or S

- Rank the following elements by increasing electronegativity
 - Ne, Al, S, O
 - Rn, Fr, Cs, At