```
In [1]: import pandas as pd
         import numpy as np
         import seaborn as sns
         import matplotlib.pyplot as plt
         import warnings
         warnings.filterwarnings("ignore")
In [2]: customers_df = pd.read_csv(r'C:\Users\Bhatta\Downloads\Customers.csv')
         products_df = pd.read_csv(r'C:\Users\Bhatta\Downloads\Products.csv')
         transactions_df = pd.read_csv(r'C:\Users\Bhatta\Downloads\Transactions.csv')
In [3]: from sklearn.cluster import KMeans
         from sklearn.metrics import davies_bouldin_score, silhouette_score
         from sklearn.preprocessing import StandardScaler
In [4]: # Merge datasets
         customer_transactions = pd.merge(transactions_df, customers_df, on="CustomerID", how="left")
         customer_transactions = pd.merge(customer_transactions, products_df, on="ProductID", how="left")
In [5]: # Feature engineering
         customer_features = customer_transactions.groupby("CustomerID").agg(
             total_spent=("TotalValue", "sum"),
             total_transactions=("TransactionID", "count"),
             avg_transaction_value=("TotalValue", "mean"),
             distinct_products=("ProductID", "nunique"),
             total_quantity=("Quantity", "sum")
         ).reset_index()
         customer_features = pd.merge(customer_features, customers_df[["CustomerID", "Region"]], on="CustomerID", how="left")
         customer_features = pd.get_dummies(customer_features, columns=["Region"], drop_first=True)
In [6]: # Prepare data for clustering
         X = customer_features.drop(columns=["CustomerID"])
         scaler = StandardScaler()
         X_scaled = scaler.fit_transform(X)
In [7]: # Apply KMeans clustering and evaluate using DBI and silhouette score
         cluster_results = []
         for n_clusters in range(2, 11):
             kmeans = KMeans(n_clusters=n_clusters, random_state=42)
             labels = kmeans.fit_predict(X_scaled)
             db_index = davies_bouldin_score(X_scaled, labels)
             silhouette_avg = silhouette_score(X_scaled, labels)
             cluster_results.append({
                 "n_clusters": n_clusters,
                 "DBI": db_index,
                 "Silhouette": silhouette_avg,
             })
In [8]: # Determine the best number of clusters
         best_cluster = min(cluster_results, key=lambda x: x["DBI"])
In [9]: # Apply KMeans with the optimal number of clusters
         optimal_kmeans = KMeans(n_clusters=best_cluster["n_clusters"], random_state=42)
         customer_features["Cluster"] = optimal_kmeans.fit_predict(X_scaled)
In [10]: # Visualize DBI and silhouette scores
         results_df = pd.DataFrame(cluster_results)
         plt.figure(figsize=(12, 6))
         plt.plot(results_df["n_clusters"], results_df["DBI"], marker="o", label="DB Index")
         plt.plot(results_df["n_clusters"], results_df["Silhouette"], marker="s", label="Silhouette Score")
         plt.xlabel("Number of Clusters")
         plt.ylabel("Score")
         plt.title("Clustering Evaluation Metrics")
         plt.legend()
         plt.grid()
         plt.show()
```



```
In [11]: # Visualize clusters
         plt.figure(figsize=(10, 6))
         sns.scatterplot(
             data=customer_features,
             x="total_spent",
             y="avg_transaction_value",
             hue="Cluster",
             palette="tab10",
             s=100,
             alpha=0.7
         plt.title("Clusters Visualization: Total Spent vs. Avg Transaction Value")
         plt.xlabel("Total Spent")
         plt.ylabel("Average Transaction Value")
         plt.legend(title="Cluster")
         plt.grid()
         plt.show()
```


In [12]: # Summarize clusters
 cluster_summary = customer_features.groupby("Cluster").mean()
 pd.DataFrame(cluster_summary)

	pa.Datariame(Cluster_Summary)								
ıt[12]:		total_spent	total_transactions	avg_transaction_value	distinct_products	total_quantity	Region_Europe	Region_North America	Region_South America
	Cluster								
	0	614.394000	1.800000	337.578667	1.800000	3.533333	0.133333	0.133333	0.533333
	1	4792.131111	5.833333	842.013358	5.777778	16.055556	1.000000	0.000000	0.000000
	2	2685.889615	3.884615	710.264045	3.884615	10.230769	0.000000	1.000000	0.000000
	3	6367.055000	8.722222	736.880743	8.222222	23.166667	0.111111	0.222222	0.000000
	4	2101.315833	4.041667	537.536687	3.958333	9.000000	1.000000	0.000000	0.000000
	5	5545.575909	6.954545	817.059878	6.590909	19.454545	0.000000	0.000000	1.000000
	6	3223.288889	4.944444	658.735433	4.833333	12.777778	0.000000	0.000000	0.000000
	7	2295.272000	2.400000	960.933556	2.333333	6.466667	0.266667	0.000000	0.000000
	8	3141.587241	4.620690	694.194144	4.517241	11.206897	0.000000	0.000000	1.000000
	9	3863.757857	7.214286	542.767724	7.214286	15.428571	0.000000	1.000000	0.000000