

Outline

- Transparent payload
 - Antennas
 - Transponders
 - Redundancy management
- Flexible payload for High Throughput Satellite (HTS)
 - Architecture for Single-Feed-Per-Beam (SFPB)
 - Architecture for Multiple-Feed-Per-Beam (MFPB)
 - On-Board Processing (OBP)
 - **Examples of HTS Payloads**
 - Transparent payload
 - Flexible payload
 - Future flexible payload

Transparent Payload

- Input section on the global bandwidth
 - Wideband input filter to suppress the feed-back from the satellite transmission antenna
 - Low Noise Amplifier (LNA) to minimize the repeater noise temperature
 - Down Converter (D/C) to convert to the downlink frequency using a Local Oscillator (LO)
 - Wideband linear amplifier

Filtering and amplification per channel bandwidth

- Input Demultiplexer (IMUX or DEMUX) to split the input signal in several channels
- Amplification based on a Linearized Channel Amplifier (LCAMP) and a High Power Amplifier (HPA)
- Output Filter (OMUX) to removes thermal noise plus out-band harmonics generated by the HPA

Antennas

- Often mission-critical
 - Risks during launch (often semi-detached)
 - Start of life (often complex deployment mechanisms)
 - Operational life (direct exposure to space environment)

Three complementary roles

- Transforming guided energy into radiation: Gain, efficiency, reflection coefficient, power handling, noise figure (antenna temperature, for reception)
- Filtering in both frequency and space (angular) domain: Transfer characteristic (for different points in space), pattern shape (vs angle and frequency), isolation among input ports, polarization purity, group delay, out-of-band response (to help rejecting disturbances)
- Transforming electric currents into radio waves: Circuit parameters (input impedance, S-parameters),
 Ohmic losses, spurious radiation (e.g. feeding lines), high-power effects (multipactor, Corona, passive inter-modulation)
- Need of RF analysis and tests
 - Antenna radiation highly dependent on spacecraft structure, antenna suite & mutual coupling effects

Travelling Wave Tube Amplifier (TWTA)

Slow wave structure to amplify wave when electron speed higher than wave phase velocity

Recent space TWTAs manufactured by Thales Electron Devices

Name	TL 4150	TH 4795	TH 4816	TH 4626	TH 4606C	THL40040CC
GHz	3.4-4.2	10.7-12.75	17.3-20.2	~ 26	32	37.5-42.5
P_{out}	150 W	150 W	160 W	50 W	35 W	40W
Gain	$50~\mathrm{dB}$	$> 50~\mathrm{dB}$	$> 50~\mathrm{dB}$	$> 50~\mathrm{dB}$	$> 50 \; \mathrm{dB}$	48 dB
Eff.	73%	68%	63%	55%	54%	50%
Mass	1000 g	800 g	900 g	700 g	700 g	$< 890 \mathrm{g}$

The Traveling-Wave Tube in the History of Telecommunication, D. Minenna & all, European Physical Journal, 2019

Redundancy Management

C-type (4-port, 2-positions), R-type (4-port, 4-position), T-type (4-port, 3-position) switches

■ Example of restoration in case of failure of a TWTA

 $Optimising\ communication\ satellites\ payload\ conguration\ with\ exact\ approaches, A.\ Stathakis\ \&\ all,\ Engineering\ Optimization,\ 2015\ and\ Stathakis\ \&\ all,\ Engineering\ Optimization\ A.\ Stathakis\ \&\ all\ A.\ Stathakis\ A.\ Stath$

Flexible Payload for High Throughput Satellite (HTS)

From contoured beam to spot beams for feeder links and multibeam for user links

- From RF flexibility to on-board processing
 - Downconverter (RF to IF or BB)
 - Analog to digital converter (sampling, quantization)
 - Switch (polyphase filters) or signal processing (demodulation, routing, modulation)
 - Digital to analog converter (sampling, quantization)
 - Upconverter (IF or BB to RF)

Approaches for Feeder Links

- Large RF gateways operating at Q/V or even W-band
 - Dedicated on-board payload
 - Tenths of large RF gateways required operating in smart diversity
 - Terrestrial interconnection costly
- Small RF gateways sharing the Ka-band user link band
 - Reuse of the Ka-band active antennas avoiding dedicated input section and offering full reconfigurability
 - Support of smart gateway diversity and progressive gateway deployment
 - Easier to install, lower connection cost but reusing user link precious bandwidth
- Optical gateways with very high rate optical links
 - 3 on-board solutions: user link regeneration (complex and inflexible), signal sampling and quantizing
 (bandwidth expansion of 16 or so), RF over optical transmission (simplest payload but power inefficient)
 - Heavily affected by atmospheric impairments requesting spatial diversity and pre-correction techniques
 - N+P smart GW diversity to reduce bit rate by N (e.g. 3 active with 9 extra in diversity)

Challenges in future satellite communications, R. de Gaudenzi, IEEE Communication Theory Workshop, 2018

HTS Global Capacity

Total useful data rate for download and upload

$$C = \left(\sum_{i} (\eta_{FL_{i}} p_{FL_{i}}) B_{FL} + \sum_{j} (\eta_{RL_{j}} p_{RL_{j}}) B_{RL}\right) * N * P / K * \eta_{HL}$$

- p_{FLI}&p_{DLJ}, uplink&downlink percentages of time minimizing link margins for a given link availability
- η_{FLI}& η_{DLI}, uplink&downlink low layer efficiencies (including guard bands) for p_{FLI}&p_{DLI}
- B_{FL}&B_{DL}, uplink&downlink bandwidths (not including double polarization)
- N, number of beams
- P, number of polarizations (1 or 2)
- K, number of colors (1/K frequency reuse factor)
- η_{HL}, high layers efficiency (throughput decrease due to overhead, signaling, latency)
- Satellite throughput increase
 - Use of Fade Mitigation Techniques (FMT) to limit link margins for a given link availability
 - Higher spectral efficiency (higher on-board power, better user terminal)
 - Use of higher frequency bands (Q/V or optical), especially for feeder links
 - Increase of number of beams (larger reflectors to have narrower beams)
 - Lower frequency reuse factor limiting interferences (beam hopping or non-orthogonal frequency reuse)
 - High layers protocols and on-board processing (lower overhead, signalling, latency)

Future Digital Payloads

Mass and power per GHz of processed bandwidth

Components

- ASIC RF front-end for ADC/DAC and Digital Beamforming
- FPGA / SoC (> 250 MHz) for flexible MoDem
- Software packet switching / router for MAC layer handling
- High Speed Serial Link (HSSL) for interconnection
- Laser digital signal processing for ISL

Satellite radio-frequency payloads and instruments - Overview and challenges, ESA ESTEC, 2023