COMP3411/9814 Artificial Intelligence Term 1, 2024

Tutorial - Week 5

This page was last updated: 03/13/2024 11:37:29

1. Decision Trees

Consider the task of predicting whether children are likely to be hired to play members of the Von Trapp Family in a production of The Sound of Music, based on these data:

height	hair	eyes	hired	
short	blond	blue	+	
tall	red	blue	+	
tall	blond	blue	+	
tall	blond	brown	_	
short	dark	blue	_	
tall	dark	blue	_	
tall	dark	brown	_	
short	blond	brown	_	

a. Compute the information (entropy) gain for each of the three attributes (height, hair, eyes) in terms of classifying objects as belonging to the class.

$$+ or - .$$

b. Construct a decision tree based on the minimum entropy principle.

2. Laplace Pruning

The Laplace error estimate for pruning a node in a Decision Tree is given by:

$$E = 1 - \frac{n+1}{N+k}$$

where N is the total number of items, n is the number of items in the majority class and k is the number of classes. Given the following subtree, should the children be pruned or not? Show your calculations.

1 of 3 13/3/24, 16:26

3. Perceptron Learning

a. Construct by hand a Perceptron which correctly classifies the following data; use your knowledge of plane geometry to choose appropriate values for the weights w_0 , w_1 and w_2 .

Training Example	x_1	x_2	Class
a.	0	1	-1
b.	2	0	-1
c.	1	1	+1

b. Demonstrate the Perceptron Learning Algorithm on the above data, using a learning rate of 1.0 and initial weight values of

$$w_0 = -1.5$$

$$w_1 = 0$$

$$w_2 = 2$$

In your answer, you should clearly indicate the new weight values at the end of each training step. The first three steps are shown here:

Iteration	w_0	w_1	w_2	Training Example	x_1	x_2	Class	$s = w_0 + w_1 x_1 + w_2 x_2$	Action
1	-1.5	0	2	a.	0	1	_	+0.5	Subtract
2	-2.5	0	1	b.	2	0	_	-2.5	None
3	-2.5	0	1	c.	1	1	+	-1.5	Add

Continue the table until all items are correctly classified.

4. Computing any Logical Function with a 2-layer Network

Recall that any logical function can be converted into Conjunctive Normal Form (CNF), which means a conjunction of terms where each term is a disjunction of (possibly negated) literals. This is an example of an expression in CNF:

$$(A \lor B) \land (\neg B \lor C \lor \neg D) \land (D \lor \neg E)$$

Assuming False=0 and True=1, explain how each of the following could be constructed. You should include the bias for each node, as well as the values of all the weights (input-to-output or input-to-hidden and hidden-to-output, as

2 of 3 13/3/24, 16:26

appropriate).

- a. Perceptron to compute the OR function of m inputs:
- b. Perceptron to compute the AND function of n inputs:
- c. Two-layer Neural Network to compute the function $(A \lor B) \land (\neg B \lor C \lor \neg D) \land (D \lor \neg E).$

With reference to this example, explain how a two-layer neural network could be constructed to compute any (given) logical expression, assuming it is written in Conjunctive Normal Form.

3 of 3 13/3/24, 16:26