

TRIGONOMETRIC IDENTITIES

(SINE AND COSINE ADDITION FORMULAS)

AGENDA

General Concept

Trigonometry Table

Sine and Cosine Addition Formulas

GENERAL CONCEPT

•
$$sin\theta = \frac{opposite}{hypothenuse}$$

•
$$\cos\theta = \frac{adjacent}{hypothenuse}$$

•
$$tan\theta = \frac{opposite}{adjacent}$$

GENERAL CONCEPT: EXAMPLE

Find the $sin\theta$, $cos\theta$, and $tan\theta$ using formulas from the previous slide.

•
$$sin\theta = \frac{opposite}{hypothenuse} = \frac{3}{5}$$

•
$$cos\theta = \frac{adjacent}{hypothenuse} = \frac{4}{5}$$

•
$$tan\theta = \frac{opposite}{adjacent} = \frac{3}{4}$$

TRICK TO REMEMBER SIN COS TAN FORMULAS

$$SOH \longrightarrow sin \theta = \frac{Opposite}{Hypotenuse}$$

$$CAH \longrightarrow cos \theta = \frac{Adjacent}{Hypotenuse}$$

$$TOA \longrightarrow tan \theta = \frac{Opposite}{Adjacent}$$

TRIGONOMETRY TABLE

Trigonometry table is a chart with the trigonometric values of sine, cosine, and tangent functions for some standard angles 30°, 45°, 60°, and 90°.

θ	0° (or) 0	30° (or) $\frac{\pi}{6}$	45° (or) $\frac{\pi}{4}$	60° (or) $\frac{\pi}{3}$	90° (or) $\frac{\pi}{2}$
sin θ	0	1/2	<u>√2</u> 2	√ <u>3</u> 2	1
cosθ	1	√ <u>3</u> 2	<u>√2</u> 2	1/2	0
tan θ	0	√ <u>3</u> 3	1	√3	Not Defined

TIPS TO REMEMBER TRIGONOMETRY TABLE

- The angle 30°, 45°, 60°, and 90° is in order.
- The first row (of sin) can be remembered like this: 0/2, $\sqrt{1/2}$, $\sqrt{2/2}$, $\sqrt{3/2}$, $\sqrt{4/2}$.
- That's all you need to remember because:
 - The row of cos is as same as the row of sin just in the reverse order.
 - Each value in the row of tan is obtained by dividing the corresponding values of sin by cos because tan = sin/cos.

θ	0° (or) 0	30° (or) $\frac{\pi}{6}$	45° (or) $\frac{\pi}{4}$	60° (or) $\frac{\pi}{3}$	90° (or) $\frac{\pi}{2}$
sin θ	0	1/2	√ <u>2</u> 2	$\frac{\sqrt{3}}{2}$	1
cos θ	1	$\sqrt{\frac{3}{2}}$	$\frac{\sqrt{2}}{2}$	1/2	0
tan θ	0	√ <u>3</u> 3	1	√3	Not Defined

SINE AND COSINE ADDITION FORMULAS

- Sine
 - $sin(\alpha + \beta) = sin\alpha \cdot cos\beta + cos\alpha \cdot sin\beta$
 - $\sin(\alpha \beta) = \sin\alpha \cdot \cos\beta \cos\alpha \cdot \sin\beta$
- Cosine
 - $cos(\alpha + \beta) = cos\alpha \cdot cos\beta sin\alpha \cdot sin\beta$
 - $cos(\alpha \beta) = cos\alpha \cdot cos\beta + sin\alpha \cdot sin\beta$

Additional: $sin^2\alpha + cos^2\beta = 1$

SINE AND COSINE ADDITION FORMULAS: EXAMPLE

$$sin36^{\circ} \cdot cos24^{\circ} + cos36^{\circ} \cdot sin24^{\circ}$$

Use Sine Addition formula:

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$

$$\sin(36^{\circ} + 24^{\circ}) = \sin36^{\circ} \cdot \cos24^{\circ} + \cos36^{\circ} \cdot \sin24^{\circ}$$

$$\sin(60^{\circ}) = \sin36^{\circ} \cdot \cos24^{\circ} + \cos36^{\circ} \cdot \sin24^{\circ}$$

Therefore,

$$\sin 36^{\circ} \cdot \cos 24^{\circ} + \cos 36^{\circ} \cdot \sin 24^{\circ} = \frac{\sqrt{3}}{2}$$

REFERENCES:

- https://www.cuemath.com/trigonometry /sin-cos-tan/
- https://www.mathcentre.ac.uk/resources/uploaded/mc-ty-addnformulae-2009-1.pdf