MI-KRY – Advanced Cryptology

Side channel attacks

Ing. Jiří Buček

České vysoké učení technické v Praze Fakulta informačních technologií Katedra informační bezpečnosti

©2017 Jiří Buček. bucekj@fit.cvut.cz

Lecture outline

- Side channel
- Side channel types
- Timing attacks
- Power analysis attacks
- Power models

Side channel

- An unwanted way of information exchange between a crytpographic module and its surroundings, which is not part of its normal function
- Bypasses the mathematical principle of encryption (signing, ...)
- Exploits the weaknesses of a specific physical or software implementation
- Violates the assumptions of secure function of the cipher (X is secret, Y is nonce, ...)
- ullet Often enables to get the key piecewise o limits search space

The term "side channel", also "side channel leakage" is an abstraction of information interchange commonly used in the term "side channel attack".

Side channel types

- Timing side channel
 - ► Time of operation depends on secret data (message, key ...)
 - Information leaks in time that can be measured
- Error side channel
 - ► Returned error code depends on secret data (message, key ...)
 - See padding oracle attack
- Power side channel
 - Power consumption depends on internal values during encryption, thus on secret data
 - Simple, Differential, ... Power Analysis (SPA, DPA, ...) see MIE-HWB, MIE-BHW
- Electromagnetic side channel
 - Similar to power side channel
 - Can also include optical, IR, heat, radiofrequency
- "Social channel"
 - Exploits behavior of the user

- Example 1: System login
 - User name check
 - User name wrong? → Return "User name or password error" ¹
 - Password check
 - lacktriangledown Password wrong? ightarrow Return "User name or password error"
- Password not checked for nonexistent users
 - ► From the timing we can uncover whether a user name exists or not, even though this information is not given in the error message
 - We can try user names, then the most frequent passwords (dictionary attack)

¹The error message does not specify which of the two is erroneous, the attack would be too easy. But this does not suffice.

- Example 1 (improved): System login
 - User name check
 - ② User name right? $\rightarrow u = 1$ else u = 0
 - Password check
 - 4 Password right? $\rightarrow p = 1$ else p = 0
 - **5** if $(u \text{ or } p) = 0 \rightarrow \text{Return "User name or password error"}$

- Example 2: Password, session key, hash, etc. checking
- Compare arrays

```
for (i = 0; i < n; i++) {
    if (a[i] != b[i])
        return false;
}
return true;</pre>
```

 We can guess individual bytes – each additional right byte prolongs time to response

Correct way to compare arrays:

```
c = 0;
for (i = 0; i < n; i++) {
    c |= a[i] ^ b[i];
}
return !c;</pre>
```

- RSA timing attack
 - ▶ RSA decryption: $x = |c^d|_n$, signing is similar. d is the private exponent.
 - Usually done using square and multiply:

$$k = \text{length}(d)$$

 $x = c$
for $i = k - 2$ downto 0
 $x = |x^2|_n$
if $d_i = 1$ then
 $x = |x \cdot c|_n$
return x

 Detour – power side channel – Simple power analysis (SPA) – see MI-HWB, MI-BHW

- Assume Montgomery multiplication used $c = |abR^{-1}|_n$
- Often used due to performance, $R = 2^k$, fast division by R, mod R
- Principally: c = REDC(ab), where REDC is the Montgomery reduction
- Multiplication and reduction are often interleaved e.g. by bits

function REDC(T)

1.
$$m := ||T|_R N'|_R$$

2.
$$t := (T + mn)/R$$

3. if
$$t \ge n$$
 then return $t - n$ else return t

prepare
$$m = |-n^{-1}T|_R$$

$$T + mn$$
 divisible by R

$$N' = |-n^{-1}|_R$$

Line 3 is important – final subtraction, data dependent

- $d_{k-1} = 1$ always. How to get d_{k-2} ?
- Introduce an oracle O about the message c:
 - O(c) = 1, when $(c^2) \cdot c$ is with final subtraction
 - O(c) = 0, when $(c^2) \cdot c$ is without final subtraction
- Create 2 sets of messages C₁ and C₂
 - C_1 contains messages where O(c) = 1
 - C_2 contains messages where O(c) = 0
- Measure times of RSA for these message sets:
 - ▶ F_1 contains RSA times for messages from C_1 , depend on d_{k-2}
 - ▶ F_2 contains RSA times for messages from C_2 , independent of d_{k-2}
- If the times from F_1 a F_2 differ significantly, then $d_{k-2} = 1$ (at a suitable statistical test's significance level)
- Else $d_{k-2} = 0$. Knowing d_{k-2} , we can repeat the process for d_{k-3} etc. and get the whole key.
- Problem what is a significant difference between F_1 and F_2 , so that $d_{k-2} = 1$? (we have nothing for comparison)

RSA timing side channel – attacking squaring (1)

- Variant 2: Attack on squaring.
- 2 oracula about the message c: O_1 for $d_{k-2} = 1$, O_2 for $d_{k-2} = 0$
 - $O_1(c) = 1$, when $(c \cdot c^2)^2$ is with final subtraction
 - ▶ $O_1(c) = 0$, when $(c \cdot c^2)^2$ is without final subtraction
 - $O_2(c) = 1$, when $(c^2)^2$ is with final subtraction
 - $O_2(c) = 0$, when $(c^2)^2$ is without final subtraction
- The message set C is divided into C_1 , C_2 , and again to C_3 , C_4
 - C_1 contains messages where $O_1(c) = 1$
 - C_2 contains messages where $O_1(c) = 0$
 - C_3 contains messages where $O_2(c) = 1$
 - C_4 contains messages where $O_2(c) = 0$
- Measure times F_i for messages form C_i . Division into F_1 and F_2 assumes $d_{k-2} = 1$, while division into F_2 and F_3 assumes $d_{k-2} = 0$.
- If times from F_1 , F_2 differ more, than those from F_3 , F_4 , then $d_{k-2} = 1$, else $d_{k-2} = 0$. Knowing d_{k-2} , we can repeat for d_{k-3} , and get the whole key.

RSA timing side channel – attacking squaring (2)

Assume we have guessed a few first bits correctly. Ex: d = 1101101001, k = 10. The first few iterations were \rightarrow (see table)

Computing until the unknown multiplication, we have an intermediate value $c_{temp} = c^b = c^{12} = c^{1100_2}$. If the bit $d_i = 1$, the operations will be (using Montgomery)

i	k _i	X
_	1	С
8		c^2
8	1	$c^2 \cdot c = c^3$
7	0	$(c^3)^2 = c^6$
6		$(c^6)^2 = c^{12} = c_{temp}$
6	1?	$?c^{12} \cdot c = c^{13}?$
5		?2

- multiply c_{temp} by c (part of iteration i)
- 2 square the result (part of iteration i + 1)

Execute multiplication, then determine if the **squaring** needs final subtraction \rightarrow oracle O_1 divides all messages into C_1 (final subtraction), and C_2 (no final subtraction).

RSA timing side channel – attacking squaring (3)

If the bit $d_i = 0$, no multiplication will occur, the operation is

• square the result: c_{temp}^2 (part of iteration i + 1)

Determine if the squaring needs final subtraction \rightarrow oracle O_2 divides all messages into C_3 (final subtraction), and C_4 (no final subtraction).

One of these separations makes sense, depending on the actual value of $d_i \rightarrow$ compare the separations

- If the difference between C_1 and C_2 is more important than between C_3 and C_4 , then decide $d_i = 1$
- Otherwise decide $d_i = 0$

Variant 2 also works for "square and multiply always":

```
k = \operatorname{length}(d)

x = c

for i = k - 2 downto 0

x = |x^2|_n

if d_i = 1 then

x = |x \cdot c|_n

else

dummy = |x \cdot c|_n (discard the result)

return x
```

- Countermeasures
 - Completely data-independent execution time (not trivial to implement due to e.g. caches)
 - Blinding (a type of masking, see next)

Countermeasures - masking

- In digital signatures, usually called Blinding
 - Exploit the arithmetic properties of the cipher to obscure the real internal value, so that the attacker is unable to guess, what is being computed.
 - E.g. RSA multiplicative homomorphism:

$$(a \cdot b)^d \equiv a^d \cdot b^d \pmod{n}$$

- ► Choose a mask m, compute $|m^e|_n$ (e is public)
- ▶ RSA signature normally: $s = |x^{\alpha}|_n$
- RSA signature of x with a mask m:

$$s_m = |(x \cdot m^e)^d|_n = |x^d \cdot m|_n$$

▶ RSA signature is then unmasked *m*:

$$s = |s_m \cdot m^{-1}|_n$$

▶ In advance, we can prepare a random m, $|m^e|_n$, $|m^{-1}|_n$.

Differential Power Analysis (recap from MIE-BHW)

- Choose an intermediate value that depends on data and key
 v = f(d, k)
- Measure **power traces** $t_{i,j}$ while encrypting data d_i
 - for each data block i and time j
- Build a matrix of hypothetical intermediate values inside the cipher
 - for every trace i and key k: $v_{i,k} = f(d_i, k)$
- Using a power model, compute the matrix of hypothetical power consumption
 - for every trace *i* and key *k*: $h_{i,k} = \text{hwmodel}(v_{i,k})$
- Statistically evaluate which key hypothesis k best matches the measured power at each individual time j (across all traces i).
 - ► There are multiple methods, we will focus on the correlation coefficient $r_{\{h,\dots,k\},\{t,\dots,l\}}$.

Correlation power analysis

- A type of Differntial Power Analysis (DPA),
- sometimes denoted CPA
- Uses the (Pearson's) correlation coefficient as the statistical method
 - Determines the measure of linear relationship between two random variables

$$\bullet \ \, \rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sqrt{\text{var } X \text{ var } Y}} = \frac{\text{E}[(X - \mu_X)(Y - \mu_Y)]}{\sqrt{\text{E}(X - \mu_X)^2 \text{E}(Y - \mu_Y)^2}} = \frac{\text{E}(XY) - \text{E}(X) \text{E}(Y)}{\sqrt{\text{E}(X^2) - \text{E}^2(X)} \sqrt{\text{E}(Y^2) - \text{E}^2(Y)}}$$

Because we have a limited sample, use the point estimate

•
$$r_{X,Y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Power Models

- Models how power consumption depends on intermediate value
- Single bit model eg. hwmodel(v) = LSB(v)
 - In real circuits, not every bit affects consumption the same way
- Hamming weight model consumption depends on value's Hamming weight
 - hwmodel(v) = HW(v) Applies mainly to processors, buses with pullups etc.
 - Not suitable for an ideal CMOS circuit, where the consumption depends on the *change* of value
- Hamming distance model consumption depends on Hamming distance of two values
 - ▶ hwmodel(v) = HD(v, v') = HW($v \oplus v'$), where v' is the previous value in the circuit (in a register, on a bus, in a logic network)
 - Works also for ASICs, FPGAs
 - ▶ If v' is constant, or depends on v, or has a significantly non-uniform distribution, Hamming weight model works usually, too.
- Zero value model consumption is different for zero / nonzero value - hwmodel(v) = (v == 0)

Bibliography

Mangard, S., Oswald, E., Popp., T.: Power Analysis Attacks – Revealing the secrets of smart cards, Springer, 2007, ISBN 0-387-30857-1