PEiTC_03	Romaniak Hubert	Informatyka	Semestr zimowy
		niestacjonarna II rok	2023/24

7adanie 1

Wzmacniacz tranzystorowy – układ wspólnego emitera

Wstęp teoretyczny

Wzmacniacz to element elektroniczny, którego zadaniem jest wytworzenie na wyjściu wzmocnionego wejściowego sygnału wejściowego kosztem energii pobranej ze źródła zasilania.

Głównymi parametrami wzmacniacza są:

- Współczynnik wzmocnienia prądowego
- Współczynnik wzmocnienia napięciowego
- Rezystancja wejściowa obciążenie źródła sygnału (im wyższa, tym lepiej)
- Rezystancja wyjściowa straty energii w postaci ciepła (im niższa tym lepiej)

Wzmacniacz składa się z elementów czynnych, biernych, oraz często z obwodu ujemnego sprzężenia zwrotnego. We wzmacniaczu tranzystorowym, elementem czynnym użytym do wzmacniania jest tranzystor.

Wzmacniacze tranzystorowe wykorzystują tranzystory bipolarne (BJT) lub polowe (FET). W przypadku BJT wyróżnia się układy ze wspólną bazą (OB), wspólnym emiterem (OE) i wspólnym kolektorem (OC), a w przypadku FET układy ze wspólnym źródłem (OS), wspólnym drenem (OD) i wspólną bramką (OG).

Wzmacniacz tranzystorowy w układzie ze wspólnym emiterem cechuje się dużym wzmocnieniem napięciowym i prądowym, dobrze sprawdza dla małych i średnich częstotliwości sygnału wejściowego, ale obraca fazę sygnału wyjściowego o 180° i ma umiarkowanie małą rezystancję wejściową i umiarkowanie dużą rezystancję wyjściową.

Cel zadania

Zaprojektować i zbudować wzmacniacz tranzystorowy w układzie wspólnego emitera. Wyznaczyć przebieg sygnału wyjściowego U_{WY} na tle sygnału wejściowego U_{WE} . Wyznaczyć wzmocnienie napięciowe k_u , prądowe k_i i mocy k_P . Zbadać zachowanie układu dla różnych wartości obciążenia R_0 .

Użyty tranzystor: D42C5 ($U_{CE_{max}} = 45V$, $I_{C_{max}} = 3A$)

Założone wartości: $U_{CC} = 40 V$; $I_{C_{max}} = 200 mA$

Budowa tranzystora

Wyznaczanie punktu pracy

Po wyznaczeniu rodziny charakterystyk wyjściowych tranzystora D42C5, na ich wykresie została poprowadzona prosta pracy od punktu maksymalnego napięcia kolektor-emiter i zerowego prądu kolektora ($U_{CE}=40~V;I_{C}=0~A$) do punktu zerowego napięcia kolektor-emiter i maksymalnego prądu kolektora ($U_{CE}=0~V;I_{C}=200~mA$).

Do wzmacniacza zostanie podane napięcie zmienne, więc napięcie wyjściowe nie będzie przekraczać $U_{WY}{}_{min}=0~V$, $U_{WY}{}_{max}=40~V$, zatem stałe napięcie wyjściowe powinno przyjąć wartość w połowie między tymi wartościami: $U_{WY}=20~V$. Maksymalna amplituda napięcia wyjściowego nie przekroczy $u_{WY}{}_{max}=20~V$.

Natężenie prądu zmiennego na wyjściu wzmacniacza nie przekroczy $I_{WYmin}=0~A, I_{WYmax}=200~mA$, zatem stałe napięcie wyjściowe powinno przyjąć wartość w połowie między tymi wartościami: $I_{WY}=100~mA$. Maksymalna amplituda prądu wyjściowego nie przekroczy $i_{WYmax}=100~mA$.

Oznacza to, że punkt pracy tranzystora powinien zostać wybrany jako ($U_{CE}=20~V$; $I_{C}=200~mA$). Dla wybranego punktu pracy, prąd bazy wynosi $I_{B}=440~\mu A$.

Rysunek 1 – układ z tranzystorem D42C5 przeznaczony do badania charakterystyki wyjściowej oraz rodzina charakterystyk wyjściowych z wyznaczoną prostą pracy i punktem pracy ($U_{CE}=20\,V;I_C=200\,mA$); charakterystyka dla wybranego prądu bazy $I_B=440\,\mu A$ w punkcie pracy została pogrubiona

Wyznaczenie rezystancji $R_{\mathcal{C}}$ oraz napięcie zasilania bazy U_{BE}

Rezystancja kolektora R_C to rezystancja ograniczająca maksymalny przepływ prądu I_C . Jej wartość wynosi $R_C=rac{U_{CC}}{I_{C_{max}}}=rac{40\ V}{0.2\ A}=200\ \Omega.$

Napięcie baza-emiter zostało wyznaczone eksperymentalnie: U_{BE} . Złącze baza-emiter jest diodą spolaryzowaną w kierunku przewodzenia, ale prąd bazy nie spełnia dokładnie równanie Shockley'a ze względu na dodatkowe złącze kolektor-emiter w okolicy. Można jednak przyjąć, że złącze przewodzony prąd rośnie ekspotencjalnie do przyłożonego napięcia.

Dla dostatecznie niskich napięć wejściowych, bliskich napięciu polaryzacji złącza, prądy są rzędu setek mikroamperów. Wartość napięcia baza-emiter została zatem wyznaczona eksperymentalnie jako $U_{BE}=647\ mV$.

Rysunek 2 – wzmacniacz z tranzystorem D42C5 pracującym w punkcie pracy ($U_{BE}=647~mV;\;I_{B}=440~\mu A;\;R_{C}=200~\Omega$)

Przyłożenie mało-sygnałowego napięcia zmiennego do wejścia wzmacniacza

Do napięcia U_{BE} został dołożony mało-sygnałowy przebieg zmienny $u_{WE}=1\ mV(rms),\ f=1\ kHz,$ a następnie został zbadany oscyloskopem sygnał wyjściowy na tle sygnału wejściowego.

Rysunek 3 – układ wzmacniacza z przyłożonym mało-sygnałowym przebiegiem zmiennym

Rysunek 4 – przebieg sygnału wyjściowego wzmacniacza (zielony) na tle 100-krotnie powiększonego przebiegu sygnału wejściowego (czerwony)

Można zauważyć, że sygnał wyjściowy jest przesunięty w fazie o 180° w stosunku do powiększonego 100-krotnie sygnału wejściowego. Widoczne również jest ponad 200-krotne wzmocnienie amplitudy napięcia wyjściowego.

Rysunek 5 – układ wzmacniacza z pomiarami prądów i napięć wejściowych i wyjściowych

Po wpięciu w odpowiednie miejsca woltomierzów i amperomierzów, można wyznaczyć dokładne wzmocnienia prądowe, napięciowe i mocy dla zbudowanego wzmacniacza.

• Napięcie wejściowe (źródło napięcia zmiennego): $u_{WE} = 1 \ mV(rms)$ • Natężenie prądu wejściowego: $i_{WE} = 14,646 \ \mu A$

• Napięcie wyjściowe: $u_{WY} = 393,648 \, mV(rms)$

• Natężenie prądu wyjściowego: $i_{WY} = 1,968 \, mA$

Wzmocnienie napięciowe: $k_u = \frac{u_{WY}}{u_{WE}} = \frac{393,648 \text{ mV}(rms)}{1 \text{ mV}(rms)} \approx 393,65$

Wzmocnienie prądowe: $k_i = \frac{i_{WY}}{i_{WE}} = \frac{1,968 \text{ } mA}{14,646 \text{ } \mu A} \approx 134,37$

Wzmocnienie mocy: $k_P = k_u \cdot k_i \approx 393,648 \cdot 134,371 \approx 52894,93$

Możliwe jest również obliczenie wzmocnienia prądowego, napięciowego i mocy w decybelach.

Wzmocnienie napięciowe (dB): $k_{udB} = 20 \cdot \log k_u \approx 20 \cdot 2,595 = 51,90 \, [dB]$

Wzmocnienie prądowe (dB): $k_{idB} = 20 \cdot \log k_i \approx 20 \cdot 2,128 \approx 42,57 \ [dB]$

Wzmocnienie mocy (dB): $k_{PdB} = 10 \cdot \log k_P \approx 10 \cdot 4,723 = 47,23 \, [dB]$

Zasilanie bazy napięciem zasilającym wzmacniacz U_{CC}

Można zastąpić dodatkowe źródło napięcia zasilające bazę, korzystając z głównego napięcia zasilającego wzmacniacz U_{CC} . Należy to zrobić poprzez ograniczenie tego napięcia odpowiednio dużą rezystancją, na której będzie się odkładało napięcie $U_{BE}=647\ mV$ i będzie płynął przez nią oczekiwany prąd $I_B=440\ \mu A$.

Aby obliczyć wartość tej rezystancji, należy skorzystać ze wzoru $R_B = \frac{U_{CC} - U_{BE}}{I_B}$.

$$R_B = \frac{40 V - 647 mV}{440 \mu A} = \frac{39,353 V}{0,00044 A} = 89,439 k\Omega$$

Rysunek 6 – układ wzmacniacza z bazą zasilaną z głównego napięcia zasilającego U_{CC} przez odpowiednią rezystancję; można zauważyć zachowane parametry $U_{BE}=647~mV$ oraz $I_B=440~\mu A$

Po dodaniu rezystancji bazy, należy przyłożyć między bazę a uziemienie mało-sygnałowy przebieg zmienny u_{WE} . Nie można tego zrobić bezpośrednio, ponieważ prąd stały służący do ustawienia parametrów tranzystora, popłynąłby przez źródło napięcia zmiennego do uziemienia, zamiast przez złącze baza-emiter. Można temu zapobiec, wpinając między sygnał wejściowy a bazę kondensator, którego wielkość minimalną wyznacza się ze wzoru $C_{IN} \geq \frac{1}{2\pi R_B f} [F]$.

Dla częstotliwości
$$f=1~kHz$$
: $C_{IN}\geq \frac{1}{2\pi\cdot 89439\cdot 1000}F\approx \frac{1}{561\,961\,810}F\approx 1.78~\mathrm{n}F$

 C_{IN} powinno być znacznie większe od wyznaczonej wartości minimalnej dla poprawnego i pełnego działania wzmacniacza. Eksperymentalnie wyznaczono, że wartość ta powinna być około 10 000 razy większa od wartości minimalnej, zatem została wybrana wartość $C_{IN}=18~\mu F$.

Podobnie można postąpić w przypadku wyjścia wzmacniacza, aby obciąć składową stałą można przed wyjściem wpiąć kondensator, którego wielkość minimalną wyznacza wzór $C_{OUT} \geq \frac{1}{2\pi R_C f}[F]$.

Dla częstotliwości
$$f=1~kHz$$
: $C_{OUT} \geq \frac{1}{2\pi \cdot 200 \cdot 1000} F \approx \frac{1}{1.256~637} F \approx 795~\text{n}F$

 C_{OUT} również powinno być znacznie od wyznaczonej wartości minimalnej. Eksperymentalnie wyznaczono, że jego wartość powinna być około 10 razy większa, zatem została wybrana wartość $C_{OUT}=8.2~\mu F$.

Rysunek 7 – układ wzmacniacza z kondensatorami na wejściu i wyjściu oraz z wpiętym mało-sygnałowym przebiegiem zmiennym na wejściu $u_{WE}=1\ mV(rms),\ f=1\ kHz;$ widać zachowane wartości prądu stałego oraz wzmocnione napięcie zmienne na wyjściu

Badanie zachowania wzmacniacza dla różnych obciążeń R_o

Dla takiego samego źródła sygnału zmiennego $u_{WE}=1~mV(rms)$, f=1~kHz, $i_{WE}=14.5~\mu A(rms)$, i różnych obciążeń zostały zmierzone wartości napięć wyjściowych, a następnie na podstawie tych danych zostały wyliczone prądy wyjściowe oraz wzmocnienia napięciowe, prądowe i mocy w dB.

$R_o\left[\Omega\right]$	$u_{WY}\left[mV(rms)\right]$	$i_{WY}\left[\mu A(rms)\right]$	$k_u [dB]$	$k_i [dB]$	$k_P [dB]$
1	3,17	3170,00	10,02	46,79	28,41
10	29,60	2960,00	29,43	46,20	37,81
100	176,00	1760,00	44,91	41,68	43,30
1 000	348,00	348,00	50,83	27,60	39,22
10 000	385,00	38,50	51,71	8,48	30,10
100 000	390,00	3,90	51,82	-11,41	20,21
1 000 000	390,00	0,39	51,82	-31,41	10,21

Wnioski

Z przeprowadzonych badań wynika, że zaprojektowany i zbudowany wzmacniacz tranzystorowy dla częstotliwości f=1~kHz pozwala osiągnąć maksymalne wzmocnienie mocy o ponad 40~dB dla obciążenia około $100~\Omega-1000~\Omega$.

Dodatkowo można zauważyć, że wraz ze wzrostem rezystancji obciążenia wzrasta wzmocnienie napięciowe, osiągając swoje maksimum dla obciążeń pomiędzy $10k\Omega-100\,k\Omega$ – wynosi ono 51,82 dB.

Ponadto, wzrost rezystancji obciążenia powoduje zmniejszenie wzmocnienia prądowego, które pomiędzy $10k\Omega-100\,k\Omega$ osiąga wartości ujemne.

Można zatem wywnioskować, że wzmacniacze mają największe wzmocnienie napięciowe dla dużych obciążeń, natomiast największe wzmocnienie prądowe dla małych obciążeń.