11 класс

25 января 2018 года Вариант МА10309 (профильный уровень)

	 _		
Выполнена: ФИО			класс

Инструкция по выполнению работы

На выполнение работы по математике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 19 заданий.

Часть 1 содержит 8 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 4 задания повышенного уровня сложности с кратким ответом и 7 заданий повышенного и высокого уровней сложности с развёрнутым ответом.

Ответы к заданиям 1-12 записываются в виде целого числа или конечной десятичной дроби.

При выполнении заданий 13-19 требуется записать полное решение на отдельном листе бумаги.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Математика. 11 класс. Вариант МА10309

Ответом к каждому из заданий 1-12 является конечная десятичная дробь, целое число или последовательность цифр. Запишите ответы к заданиям в поле ответа в тексте работы.

Задачу № 1 правильно решили 18 810 человек, что составляет 57 % выпускников города. Сколько всего выпускников в этом городе?

Ответ: . .

На диаграмме показана среднемесячная температура воздуха в Симферополе за каждый месяц 1988 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия. Определите по приведённой диаграмме наименьшую среднемесячную температуру во второй половине 1988 года. Ответ дайте в градусах Цельсия.

На клетчатой бумаге с размером клетки 1×1 изображён треугольник АВС. Найдите длину его биссектрисы, проведённой из вершины B.

Ответ:

4 Конкурс исполнителей проводится в 4 дня. Всего заявлено 75 выступлений: по одному от каждой страны, участвующей в конкурсе. Исполнитель из России участвует в конкурсе. В первый день запланировано 12 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность того, что выступление исполнителя из России состоится в третий день конкурса?

_			
Otret.			
UTRET			

5 Найдите корень уравнения $\sqrt[3]{x-6} = 2$.

Ответ:		

6 Острый угол *В* прямоугольного треугольника *АВС* равен 55°. Найдите угол между высотой *СН* и медианой *СМ*, проведёнными из вершины прямого угла *С*. Ответ дайте в градусах.

Ответ:		
OIBCI.		

7 На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .

8 Найдите объём правильной треугольной пирамиды, стороны основания которой равны 6, а высота равна $4\sqrt{3}$.

Ответ:		
OIBCI.		

Часть 2

9 Найдите значение выражения $\frac{-10\sin 97^{\circ} \cdot \cos 97^{\circ}}{\sin 194^{\circ}}$.

Ответ: ______.

При адиабатическом процессе для идеального газа выполняется закон $pV^k = 1,25 \cdot 10^8 \, \text{Па} \cdot \text{м}^4$, где p — давление в газе в паскалях, V — объём газа в кубических метрах, $k = \frac{4}{3}$. Найдите, какой объём V (в куб. м) будет занимать газ при давлении p, равном $2 \cdot 10^5 \, \text{Па}$.

Ответ:	
OIBCI.	

11 Расстояние между городами А и В равно 403 км. Из города А в город В выехал автомобиль, а через 1 час следом за ним со скоростью 90 км/ч выехал мотоцикл, догнал автомобиль в городе С и повернул обратно. Когда мотоцикл вернулся в А, автомобиль прибыл в В. Найдите расстояние от А до С. Ответ дайте в километрах.

Ответ:	

12 Найдите точку максимума функции $y = \sqrt{-79 - 18x - x^2}$

Ответ:

Для записи решений и ответов на задания 13–19 используйте отдельный лист. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- 13 а) Решите уравнение $2\sin(\pi + x) \cdot \sin(\frac{\pi}{2} + x) = \sin x$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[3\pi; \frac{9\pi}{2}\right]$.
- В основании правильной пирамиды *PABCD* лежит квадрат *ABCD* со стороной 6. Сечение пирамиды проходит через вершину *B* и середину ребра *PD* перпендикулярно этому ребру.
 - а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60° .
 - б) Найдите площадь сечения пирамиды.
- **15** Решите неравенство $\log_{(x+4)^2} (3x^2 x 1) \le 0$.
- **16** Окружность с центром O проходит через вершины B и C большей боковой стороны прямоугольной трапеции ABCD и касается боковой стороны AD в точке T .
 - а) Докажите, что угол BOC вдвое больше угла BTC.
 - б) Найдите расстояние от точки T до прямой BC, если основания трапеции AB и CD равны 4 и 9 соответственно.
- В июле планируется взять кредит на сумму 69 510 рублей. Условия его возврата таковы:
 - каждый январь долг возрастает на $10\,\%$ по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить некоторую часть долга.

На сколько рублей больше придётся отдать в случае, если кредит будет полностью погашен тремя равными платежами (то есть за три года), по сравнению со случаем, если кредит будет полностью погашен двумя равными платежами (то есть за два года)?

- Найдите все значения параметра a, при каждом из которых система уравнений $\begin{cases} 2x^2 + 2y^2 = 5xy, \\ (x-a)^2 + (y-a)^2 = 5a^4 \end{cases}$ имеет ровно два решения.
- Последовательность $a_1, a_2, ..., a_n, ...$ состоит из натуральных чисел, причём $a_{n+2} = a_{n+1} + a_n$ при всех натуральных n.
 - а) Может ли выполняться равенство $4a_5 = 7a_4$?
 - б) Может ли выполняться равенство $5a_5 = 7a_4$?
 - в) При каком наибольшем натуральном n может выполняться равенство $6na_{n+1} = (n^2 + 24)a_n$?

Ответы на тренировочные варианты 10309-10312 (профильный уровень) от 25.01.2018

	1	2	3	4	5	6	7	8	9	10	11	12
10309	33000	2	1	0,28	14	20	- 1,25	36	- 5	125	234	- 9
10310	36000	6	4	0,24	116	48	- 2	96	8	27	504	10
10311	7	100	4,5	0,15	- 2	118	4	7	0,25	180	35	251
10312	12	80	5,5	0,25	3	127	8	3	2,5	120	70	117

Критерии оценивания заданий с развёрнутым ответом

- 13 a) Решите уравнение $2\sin(\pi+x)\cdot\sin(\frac{\pi}{2}+x) = \sin x$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[3\pi; \frac{9\pi}{2}\right]$.

Решение.

а) Преобразуем уравнение:

$$-2\sin x \cdot \cos x = \sin x; \quad \sin x (1 + 2\cos x) = 0.$$

Получаем $\sin x = 0$ или $\cos x = -\frac{1}{2}$, откуда $x = \pi n$, $x = \frac{2\pi}{3} + 2\pi k$ или $x = -\frac{2\pi}{3} + 2\pi m$, где $n, k, m \in \mathbb{Z}$.

б) На отрезке $\left[3\pi;\frac{9\pi}{2}\right]$ корни отберём с помощью единичной окружности. Получаем $x=3\pi$, $x=\frac{10\pi}{3}$ и $x=4\pi$.

Otbet: a) πn , $\frac{2\pi}{3} + 2\pi k$, $-\frac{2\pi}{3} + 2\pi m$, $n, k, m \in \mathbb{Z}$; 6) 3π , $\frac{10\pi}{3}$, 4π .

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте a или в пункте δ .	1
ИЛИ	
Получен неверный ответ из-за вычислительной ошибки, но при этом	
имеется верная последовательность всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- В основании правильной пирамиды *PABCD* лежит квадрат *ABCD* со стороной 6. Сечение пирамиды проходит через вершину *B* и середину ребра *PD* перпендикулярно этому ребру.
 - а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60° .
 - б) Найдите площадь сечения пирамиды.

Решение.

а) Пусть M — середина PD. Так как прямая BM лежит в плоскости сечения, перпендикулярного PD, отрезки BM и PD перпендикулярны, то есть в треугольнике BPD медиана BM является высотой. Значит, BP = BD, но, так как PB = PD, треугольник BPD равносторонний, а поэтому $\angle PBD = 60^{\circ}$, что и требовалось доказать.

б) Из доказанного следует, что $PA=6\sqrt{2}$ и $BM=3\sqrt{6}$ как высота равностороннего треугольника BPD. Применяя теорему косинусов в треугольнике APD, получаем $36=144\left(1-\cos\angle APD\right)$, откуда $\cos\angle APD=\frac{3}{4}$. Пусть BKML — указанное сечение (точка K лежит на ребре PA, а точка L — на ребре PC). Так как отрезки KM и PD перпендикулярны, $PK=\frac{PM}{\cos\angle APD}=4\sqrt{2}$. Аналогично находим $PL=4\sqrt{2}$. Значит, PK=PL,

а потому треугольник PKL подобен треугольнику PAC. Поэтому $LK = 4\sqrt{2}$. Кроме того, прямые KL и AC параллельны, а прямые AC и BM перпендикулярны, так как AC перпендикулярна плоскости BPD, а BM лежит в этой плоскости. Значит, прямые KL и BM перпендикулярны. Поэтому искомая площадь равна

$$\frac{1}{2}BM \cdot KL = \frac{1}{2} \cdot 3\sqrt{6} \cdot 4\sqrt{2} = 12\sqrt{3}.$$

Ответ: $12\sqrt{3}$.

© СтатГрад 2017-2018 уч. г.

© СтатГрад 2017—2018 уч. г.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и	2
обоснованно получен верный ответ в пункте δ	
Верно доказан пункт а.	1
ИЛИ	
Верно решён пункт δ при отсутствии обоснований в пункте a	
Решение не соответствует ни одному из критериев, перечис-	0
ленных выше	
Максимальный балл	2

15 Решите неравенство $\log_{(x+4)^2} (3x^2 - x - 1) \le 0$.

Решение.

Рассмотрим два случая. Первый случай: $0 < (x+4)^2 < 1$; -5 < x < -4 или -4 < x < -3. Тогда

$$3x^2-x-1\geq 1$$
; $(3x+2)(x-1)\geq 0$,

откуда $x \le -\frac{2}{3}$ или $x \ge 1$.

При $0 < (x+4)^2 < 1$ получаем

$$-5 < x < -4$$
 или $-4 < x < -3$.

Второй случай: $(x+4)^2 > 1$; x < -5 или x > -3. Тогда

$$\begin{cases} 3x^2 - x - 1 > 0, \\ 3x^2 - x - 1 \le 1; \end{cases} \begin{cases} \left(x - \frac{1 - \sqrt{13}}{6}\right) \left(x - \frac{1 + \sqrt{13}}{6}\right) > 0, \\ (3x + 2)(x - 1) \le 0, \end{cases}$$

откуда $-\frac{2}{3} \le x < \frac{1-\sqrt{13}}{6}$ или $\frac{1+\sqrt{13}}{6} < x \le 1$.

Найденные решения удовлетворяют условию $(x+4)^2 > 1$.

Решение исходного неравенства:

$$-5 < x < -4; \quad -4 < x < -3; \quad -\frac{2}{3} \le x < \frac{1 - \sqrt{13}}{6}; \quad \frac{1 + \sqrt{13}}{6} < x \le 1.$$

Other:
$$(-5; -4); (-4; -3); \left[-\frac{2}{3}; \frac{1-\sqrt{13}}{6} \right]; \left(\frac{1+\sqrt{13}}{6}; 1 \right].$$

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Решение содержит вычислительную ошибку, возможно, приведшую	1
к неверному ответу, но при этом имеется верная последовательность	
всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- 16 Окружность с центром O проходит через вершины B и C большей боковой стороны прямоугольной трапеции ABCD и касается боковой стороны AD в точке T .
 - а) Докажите, что угол BOC вдвое больше угла BTC .
 - б) Найдите расстояние от точки T до прямой BC, если основания трапеции AB и CD равны 4 и 9 соответственно.

Решение.

- а) Угол BTC вписан в окружность, а угол BOC соответствующий ему центральный угол. Следовательно, $\angle BOC = 2 \angle BTC$.
- б) Из условия касания окружности и стороны AD следует, что прямые OT и AD перпендикулярны. Пусть окружность вторично пересекает сторону AB в точке L и сторону CD в точке M. Тогда диаметр окружности, перпендикулярный стороне AB, делит каждую из хорд BL и CM пополам. Обозначим OT = r, тогда AL = 2r AB = 2r 4, DM = 2r CD = 2r 9.

По теореме Пифагора $TB^2 = AT^2 + AB^2$. По теореме о касательной и секущей $AT^2 = AB \cdot AL = 4(2r-4)$. Следовательно,

$$TB^2 = 4(2r-4) + 4^2 = 8r$$
.

Аналогично $TC^2 = 18r$

Из теоремы синусов следует, что $BC=2r\cdot\sin\angle BTC$. Пусть h — искомое расстояние от точки T до прямой BC . Выразим площадь треугольника BTC двумя способами:

$$\frac{1}{2}h \cdot BC = \frac{1}{2}TB \cdot TC \cdot \sin \angle BTC.$$

Отсюда получаем, что

$$h \cdot 2r \cdot \sin \angle BTC = \sqrt{8r} \cdot \sqrt{18r} \cdot \sin \angle BTC$$
.

© СтатГрад 2017-2018 уч. г.

6

Следовательно, $h = \sqrt{4 \cdot 9} = 6$.

Ответ: 6

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и	3
обоснованно получен верный ответ в пункте δ	
Обоснованно получен верный ответ в пункте δ .	2
ИЛИ	
Имеется верное доказательство утверждения пункта а, и при	
обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки	
Имеется верное доказательство утверждения пункта а.	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	3

В июле планируется взять кредит на сумму 69 510 рублей. Условия его возврата таковы:

- каждый январь долг возрастает на 10 % по сравнению с концом преды-
- с февраля по июнь каждого года необходимо выплатить некоторую часть долга.

На сколько рублей больше придётся отдать в случае, если кредит будет полностью погашен тремя равными платежами (то есть за три года), по сравнению со случаем, если кредит будет полностью погашен двумя равными платежами (то есть за два года)?

Решение.

Пусть сумма ежегодного платежа х рублей, а взятая в кредит сумма составляет а рублей. Получаем уравнение

$$((1,1a-x)\cdot 1,1-x)\cdot 1,1-x=0$$

откуда

$$1,1^3a - (1,1^2 + 1,1 + 1)x = 0$$
; $3x = \frac{3 \cdot 1,1^3a}{1+1,1+1,1^2} = \frac{3,993a}{3,31}$.

Рассуждая аналогично, получим, что если бы долг выплачивали двумя равными платежами по у рублей, то общая сумма платежа равнялась бы

© СтатГрад 2017-2018 уч. г.

Математика. 11 класс. Вариант МА10309

$$2y = \frac{2 \cdot 1, 1^2 a}{1 + 1, 1} = \frac{2,42a}{2,1}$$
.

Подставляя a = 69510, получаем

$$3x - 2y = \frac{3,993 \cdot 69510}{3,31} - \frac{2,42 \cdot 69510}{2,1} =$$

 $= 3.993 \cdot 21000 - 2.42 \cdot 33100 = 83853 - 80102 = 3751.$

Ответ: 3751 руб.

Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Верно построена математическая модель, решение сведено	2
к исследованию этой модели, получен неверный ответ из-за	
вычислительной ошибки	
Верно построена математическая модель, и решение сведено	1
к исследованию этой модели, при этом решение не завершено	
Решение не соответствует ни одному из критериев,	0
перечисленных выше	
Максимальный балл	3

Найдите все значения параметра a, при каждом из которых система уравнений $\begin{cases} 2x^2 + 2y^2 = 5xy, \\ (x-a)^2 + (y-a)^2 = 5a^4 \end{cases}$ имеет ровно два решения.

Решение.

18

Первое уравнение системы раскладывается множители: (x-2y)(y-2x) = 0. Следовательно, уравнение задаёт пару прямых x = 2y и y = 2x.

Второе уравнение при каждом $a \neq 0$ — уравнение окружности с центром (a, a) и радиусом $a^2\sqrt{5}$.

Если a = 0, то система имеет единственное решение и поэтому не удовлетворяет условию задачи.

Если $a \neq 0$, то условие задачи выполнено тогда и только тогда, когда окружность касается каждой из прямых, то есть расстояние от центра до каждой из прямых равно радиусу окружности. Получаем уравнение $\frac{|a-2a|}{\sqrt{5}} = \frac{|a-2a|}{\sqrt{5}} = a^2 \sqrt{5}$. Отсюда $a = \pm 0, 2$.

Ответ: $a = \pm 0.2$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получены все значения а, но ответ	3
содержит лишнее значение	
С помощью верного рассуждения получены все решения уравнения	2
Задача верно сведена к исследованию возможного значения корней	1
уравнения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4

19

Последовательность $a_1, a_2, \dots, a_n, \dots$ состоит из натуральных чисел, причём $a_{n+2} = a_{n+1} + a_n$ при всех натуральных n .

- а) Может ли выполняться равенство $4a_5 = 7a_4$?
- б) Может ли выполняться равенство $5a_5 = 7a_4$?
- в) При каком наибольшем натуральном n может выполняться равенство $6na_{n+1} = \left(n^2 + 24\right)a_n$?

Решение.

- а) Пусть $a_1 = 2$ и $a_2 = 1$. Тогда $a_3 = 2 + 1 = 3$, $a_4 = 1 + 3 = 4$, $a_5 = 3 + 4 = 7$ и $4a_5 = 7a_4$.
- б) Предположим, что $5a_5=7a_4$. Тогда $a_5=7a$ и $a_4=5a$, где $a=\frac{a_5}{7}>0$.

Имеем $a_3=a_5-a_4=2a$, $a_2=a_4-a_3=3a$ и $a_1=a_3-a_2=-a<0$. Получаем противоречие.

в) Пример последовательности 3, 8, 11, 19, 30, 49, ... показывает, что равенство $6na_{n+1} = (n^2 + 24)a_n$ может выполняться при n = 5.

Действительно, для такой последовательности выполнены условия задачи и $30a_6 = 49a_5$.

Пусть $n \ge 6$ и $6na_{n+1} = \left(n^2 + 24\right)a_n$. Положим $a = \frac{a_n}{6n} > 0$. Тогда $a_n = 6na$ и $a_{n+1} = \left(n^2 + 24\right)a$. Имеем

$$a_{n-1} = a_{n+1} - a_n = \left(n^2 - 6n + 24\right)a;$$

$$a_{n-2} = a_n - a_{n-1} = \left(-n^2 + 12n - 24\right)a;$$

$$a_{n-3} = a_{n-1} - a_{n-2} = \left(2n^2 - 18n + 48\right)a;$$

 $a_{n-4} = a_{n-2} - a_{n-3} = -3(n^2 - 10n + 24)a$.

Так как $a_{n-4}>0$, получаем, что $n^2-10n+24=(n-4)(n-6)<0$. Следовательно, n=5. Полученное противоречие показывает, что при $n\geq 6$ равенство $6na_{n+1}=\left(n^2+24\right)a_n$ выполняться не может.

Ответ: а) да; б) нет; в) при n = 5.

Содержание критерия	Баллы
Верно получены все перечисленные (см. критерий на 1 балл)	4
результаты	
Верно получены три из перечисленных (см. критерий на 1 балл)	3
результатов	
Верно получены два из перечисленных (см. критерий на 1 балл)	2
результатов	
Верно получен один из следующих результатов:	1
— обоснованное решение пункта <i>a</i> ;	
— обоснованное решение пункта <i>б</i> ;	
— искомая оценка в пункте <i>в</i> ;	
— пример в пункте ϵ , обеспечивающий точность предыдущей	
оценки	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4