МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Построение и анализ алгоритмов»

Тема: Поиск с возвратом Вариант: Зи

Студентка гр. 3388	Басик В.В.
Преподаватель	 Жангиров Т.Р.

Санкт-Петербург 2025

Цель работы:

Изучить теоретические основы алгоритма поиска с возвратом. Решить с его помощью задачу о разбиении квадрата. Провести исследование зависимости количества итераций от стороны квадрата.

Задание:

У Вовы много квадратных обрезков доски. Их стороны (размер) изменяются от 1 до N-1, и у него есть неограниченное число обрезков любого размера. Но ему очень хочется получить большую столешницу - квадрат размера N. Он может получить ее, собрав из уже имеющихся обрезков(квадратов).

Например, столешница размера 7×7 может быть построена из 9 обрезков.

Внутри столешницы не должно быть пустот, обрезки не должны выходить за пределы столешницы и не должны перекрываться. Кроме того, Вова хочет использовать минимально возможное число обрезков.

Входные данные:

Размер столешницы - одно целое число N ($2 \le N \le 20$).

Выходные данные:

Одно число K, задающее минимальное количество обрезков(квадратов), из которых можно построить столешницу (квадрат) заданного размера N. Далее должны идти K строк, каждая из которых должна содержать три целых числа x,y и w, задающие координаты левого верхнего угла $(1 \le x, y \le N)$ и длину стороны соответствующего обрезка (квадрата).

Пример входных данных:

7

Соответствующие выходные данные:

9

112

1 3 2

3 1 1

4 1 1

3 2 2

5 1 3

444

153

3 4 1

Описание алгоритма:

Общее описание алгоритма:

Алгоритм решает задачу покрытия квадрата размером N×N минимальным количеством подквадратов, используя метод итеративного перебора с отсечениями (backtracking). Начиная с начального разбиения (для простых NN — трёх крупных квадратов, для составных — масштабирования), он последовательно перебирает варианты размещения квадратов, от максимальных возможных размеров к минимальным. На каждом шаге проверяется возможность размещения квадрата без пересечений, а ветви с числом квадратов, превышающим текущий минимум, отсекаются. Это сочетание жадной эвристики, битовых оптимизаций и раннего прекращения неоптимальных ветвей позволяет эффективно находить решение, минимизируя вычислительные затраты.

Основные этапы работы алгоритма:

- 1. Масштабирование квадрата (Divide-and-Conquer)
 - Цель: Уменьшить размер задачи для составных N.
 - Механизм:
 - \circ Если N имеет делители (напр., N = d × k), задача решается для меньшего размера d с последующим масштабированием результата в k раз.
 - \circ Пример: Для N = 6 \rightarrow d = 3, k = 2. Решение для 3×3 масштабируется в 6×6.
 - Функции:
 - 。 ScaleSize(N) находит делители d и k.
 - upscale() преобразует координаты и размеры квадратов из масштаба d в N.
- 2. Начальное разбиение для простых N

• Стратегия:

- 1. Разместить главный квадрат размером (N+1)/2 в левом верхнем углу.
- 2. Два квадрата размером N (N+1)/2 размещаются в оставшихся углах.

3. Итеративный перебор с приоритетом больших квадратов

- Структура данных: Стек (stack<>) хранит состояния (BitGrid, список квадратов).
- Логика:
 - 1. Извлекается текущее состояние из стека.
 - 2. Находится первая свободная позиция через findFirstEmpty().
 - 3. Для позиции (x, y) перебираются квадраты от максимально возможного размера до 1×1 .
 - 4. При успешном размещении (canPlace()) новое состояние помещается в стек.
- Ключевая оптимизация: Размещение больших квадратов сначала уменьшает глубину ветвления.

4. Отсечение неоптимальных ветвей (Pruning)

- Механизм:
 - Текущий минимум квадратов (minCount) обновляется при нахождении решения.
 - Ветви с current.size() ≥ minCount игнорируются.
- Эффект: Резко сокращает пространство поиска (до 90% для N > 10).

5. Битовые оптимизации (BitGrid)

- Структура:
 - Сетка представлена как vector<uint32_t>, где каждый бит соответствует клетке.

 \circ Проверка занятости: O(N) вместо $O(N^2)$ за счет битовых масок.

• Операции:

- \circ canPlace(x, y, size): Проверка N битовых строк за O(N).
- o place() / unplace(): Модификация битовых масок.

6. Визуализация (saveImage)

• Реализация:

- Генерация PNG-изображения через библиотеку libpng.
- Каждый квадрат заливается случайным цветом, границы выделяются черным.

Детали:

- \circ Масштабирование: 1 клетка = 50×50 пикселей.
- о Используется mt19937 для генерации цветов.

7. Бенчмаркинг

- Метрики:
 - 。 Итерации: Счетчик в solveOriginal().
 - ∘ Время: Замер через <chrono> в main().

Описание функций и структур:

труктуры данных и функции

Структуры

- 1. Square квадрат с коордиантами X,Y, и размера W
- 2. BitGrid
 - о Инкапсулирует логику работы с битовой сеткой.
 - о Методы:
 - $canPlace(x, y, size) \rightarrow bool$
 - $place(x, y, size) \rightarrow void$

• findFirstEmpty() \rightarrow int (позиция в flat-представлении).

Ключевые функции

- 1. solveOriginal(N)
 - Возвращает: SolveResult (список квадратов + итерации).
 - Логика: Основной алгоритм с начальным разбиением и стековым перебором.
- 2. solveScaled(N)
 - о Определяет необходимость масштабирования через ScaleSize().
 - Комбинирует решение для d×d с upscale().
- 3. ScaleSize(N)
 - Возвращает: pair(d, k), где d делитель, k коэффициент масштабирования.

Оценка сложности алгоритма:

Временная сложность алгоритма $O(c^N)$, где c>1 — константа, зависящая от структуры разбиений. Это экспоненциальный рост, что подтверждается:

Доказательство:

- 1. Комбинаторный взрыв:
- На каждом шаге алгоритм рассматривает все возможные размеры квадратов в текущей позиции
 - о Для позиции (x,y) максимальный размер квадрата: min(N-x, N-y)
 - о Число вариантов для каждого шага: O(N) (в худшем случае)
 - 2. Глубина рекурсии:
 - о Каждое размещение квадрата уменьшает площадь
 - о Максимальная глубина: O(N²) (площадь квадрата)
 - 3. Общая сложность:

- \circ В худшем случае: $O(N^{\{N^2\}})$ но это верхняя оценка
- \circ Практическая сложность: $O(c^N)$ из-за оптимизаций ветвей и границ

Пространственная сложность алгоритма:

 $O(N^2 \cdot c^{\wedge}N)$ (экспоненциальная), где c > 1 — константа, зависящая от структуры разбиений.

Детальный анализ:

- CTek stack:
 - Хранит пары (BitGrid, vector<Square>)
 - Каждый BitGrid занимает O(N) памяти (битовая маска для каждой строки)
 - \circ Каждый vector<Square> в худшем случае содержит $O(N^2)$ элементов (для минимальных квадратов 1×1)
- Максимальный размер стека:
 - В худшем случае стек может содержать O(c^N) элементов (экспоненциальный рост состояний)
 - \circ Каждый элемент стека занимает O(N+k) памяти, где k текущее количество квадратов (до $O(N^2)$)
- Дополнительные структуры:
 - о best (лучшее решение) занимает O(N2) памяти
 - \circ current (текущее решение) в цикле занимает до $O(N^2)$ памяти

Визуализация

Для визуализации работы алгоритма была использована библиотека libpng.

Рис. 1 Визуализация работы алгоритма.

Тестирование

Таблица 1. Тестирование.

Входные данные	Выходные данные	
7	9	
	1 1 4	
	1 5 3	
	5 1 3	
	4 5 2	
	471	
	5 4 1	

	5 7 1
	6 4 2
	662
25	8
	1 1 15
	1 16 10
	16 1 10
	11 16 5
	11 21 5
	16 11 5
	16 16 10
	21 11 5
26	4
	1 1 13
	1 14 13
	14 1 13
	14 14 13
31	15
	1 1 16
	1 17 15
	17 1 15
	16 17 1
	16 18 1
	16 19 4
	16 23 3
	16 26 6
	17 16 3
	19 23 3
	20 16 6
	20 22 1
	21 22 1
	22 22 10
	26 16 6

Исследование

В ходе лабораторной работы было проведено исследование зависимости количества итераций от стороны квадрата. В ходе исследования получились следующие результаты (рис. 1 и табл. 2).

Таблица 2. Зависимость количества итераций от стороны квадрата.

Сторона квадрата	Количество итераций
2	2
3	4
4	2
5	19
6	2
7	92
8	2
9	4
10	2
11	1776
12	2
13	5290
14	2
15	4
16	2
17	43801
18	2
19	103275
20	2
21	4
22	2
23	535267
24	2
25	19
26	2
27	4
28	2
29	4591530

30	2
31	8243190

Построим график зависимости количества итераций от стороны квадрата. Рассматривать будем только простые числа.

Рис. 2. Зависимость количества итераций от стороны квадрата

Вывод

В ходе лабораторной работы была написана программа с использованием итеративного метода backtracking. Также было проведено тестирование на различных входных данных по результатам, которого можно заключить, что число операций растет экспоненциально в зависимости от размера стороны квадрата.