Sequential Data Modeling

Sequential Data

- Most of data are sequential
- Speech, Text, Image, ...

Deep Learnings for Sequential Data

- Convolutional Neural Networks (CNN)
 - Try to find local features from a sequence
- Recurrent Neural Networks: LSTM, GRU
 - Try to capture the feature of the past

Sequential Data Processing

What is sequential data?

What do we have to consider for sequential data processing?

Connections form cycles

$$h_t = f(Ux_t + Wh_{t-1})$$
$$y_t = g(Vh_t)$$

- $\rightarrow x_t$: input at time t
- h_t : hidden state at time t
- ▶ f: is an activation function
- ▶ U, V, W: network parameters
 - RNN shares the same parameters across all time steps
- g. activation function for the output layer

Connections form cycles

Training Data (x_{1}, y_{1}) (x_{2}, y_{2}) (x_{3}, y_{3}) (x_{4}, y_{4}) (x_{5}, y_{5})

Connections form cycles

Training Data (x_1, y_1) (x_2, y_2) (x_3, y_3) (x_4, y_4) (x_5, y_5)

Connections form cycles

Connections form cycles

Training Data (x_1, y_1) (x_2, y_2) (x_3, y_3) (x_4, y_4) (x_5, y_5)

Connections form cycles

Training Data (x_1, y_1) (x_2, y_2) (x_3, y_3) (x_4, y_4) (x_5, y_5)

Connections form cycles

Long Term Dependency

- $\rightarrow x_1 \sim x_{t-1}$ are encoded into h_{t-1}
- h_{t-1} has the information on the past
- \rightarrow It is a context to process x_t

Fully-Connected NN

- Long Term Dependency of Standard RNN
 - However, it may exponentially decade or grow
 - Usually, it is limited to 10 steps

- Capable of learning long-term dependencies.
 - ▶ An LSTM can learn to bridge time intervals of 1000 steps
 - Gate units that learn to open and close access to the past

Equations

- i: input gate
- f: forget gate
- o: output gate
- ▶ g: self-recurrent
- c_t : internal memory
- h_t : hidden state
- y: final output

$$i = \sigma(x_t U^i + h_{t-1} W^i)$$

$$f = \sigma(x_t U^f + h_{t-1} W^f)$$

$$o = \sigma(x_t U^o + h_{t-1} W^o)$$

$$g = \tanh(x_t U^g + h_{t-1} W^g)$$

$$c_t = c_{t-1} \circ f + g \circ i$$

$$h_t = \tanh(c_t) \circ o$$

$$v = softmax(Vh_t)$$

Structure without gates

How to work

h_t

 h_{t-1}

Gradient Flow

Uninterrupted Gradient Flow

Similar to ResNet!

Sequence Processing

- Training Data
 - Usually, samples are preprocessed in a fixed length

$$(x_{1}, y_{1})$$

$$(x_{2}, y_{2})$$

$$(x_{1}x_{2}x_{3}x_{4}, y_{4})$$

$$(x_{3}, y_{3})$$

$$(x_{2}x_{3}x_{4}x_{5}, y_{5})$$

$$(x_{4}, y_{4})$$

$$(x_{5}, y_{5})$$

$$(x_{6}, y_{6})$$

$$(x_{7}, y_{7})$$

$$(x_{8}, y_{8})$$
...
$$(x_{1}x_{2}x_{3}x_{4}, y_{4})$$

$$(x_{2}x_{3}x_{4}x_{5}, y_{5})$$

$$(x_{3}x_{4}x_{5}x_{6}, y_{6})$$

$$(x_{4}x_{5}x_{6}x_{7}, y_{7})$$
...
$$(x_{5}x_{6}x_{7}x_{8}, y_{8})$$
...

Sequence Processing

Training

Samples are trained with a fixed length of RNN

$$(x_{1}x_{2}x_{3}x_{4}, y_{4})$$

$$(x_{2}x_{3}x_{4}x_{5}, y_{5})$$

$$(x_{3}x_{4}x_{5}x_{6}, y_{6})$$

$$(x_{4}x_{5}x_{6}x_{7}, y_{7})$$

$$(x_{5}x_{6}x_{7}x_{8}, y_{8})$$

$$E = (y - o)^2$$

Question and Answer