Lecture 30

Tuesday, 26 October 2021 10:00 AM

Man-Flow Peoblem

Griven:

A directed geoph G = (V, E), and each edge e has a capacity (e) > 0.

A source - destination pair (8, t).

@ capacity of in-edges of s = capacity of out-edges of t = 0

Constraints (Def of flow f):

- (1) Capacity: $\forall e \in E$, $f(e) \in [0, c(e)]$
- Q Conservation

 of flow: $\forall x \neq s, t$, fout $(x) = f_{in}(x)$ (out-flow = in-flow) $\sum_{(x,y)} f(x,y) = \sum_{(x,y)} f(x,x)$

Value of flow f:

$$vol(f) = \sum_{(s,x) \in E} f(s,x) = fout(s)$$

Why (1) = (2)?

(1)
$$faut(s) = faut(s) - fin(s)$$

=
$$\sum_{x \neq t} fout(x) - fin(x)$$

$$= \sum_{n \neq t} \left(\sum_{(x,y) \in \text{Out}(n)} f(x,y) - \sum_{(x,y) \in \text{Out}(n)} f(x,y) - \sum_{(x,y) \in \text{Out}(n)} f(x,y) \right)$$

$$a = \int_{x \neq t} \left(\sum_{(x,y) \in \text{Out}(x)} f(x,y) - \sum_{(x,y) \in \text{Out}(x)} f(x,y) = \int_{x \in V} f(x,y) = \int_{x$$

=
$$\sum_{e \in E} \{(e) - \sum_{e \in E} f(e) - 0 + fin(t)\}$$

OneNote

Residual graph G. W. r.t. some flow I in G

 $\chi \qquad f(x,y) = 20$

For each edge (x,y) \in E(G):

(*) Include
$$(x,y)$$
 in Grf and set $C_r(x,y) = C(x,y) - f(x,y) = C_r(x,y) = 30$
also mark this edge as FORWARD edge.

(i) Include
$$(y,x)$$
 in G_{1f} and set $C_{r}(y,x) = f(x,y)$

also mark this edge as BACKWARD edge.

Ford-Fulkerson for Man-Flow

- 1) Set f(e)=0 Ye. Compute Gre.
- 2 While (3 s -> t path in Gg)

① P
$$\leftarrow$$
 s-t path in G_f $f \leftarrow O(m+n)$

If
$$(x,y)$$
 is FWD: $f(x,y) = f(x,y) + S$

FINE: $f(x,y) = f(x,y) - S$

Value of flow of always increases in each iteration.

Corollary Claim 1

- If
$$\forall C \in E$$
, $C(e)$ is an integer $\geqslant 1$.

- No of iterations of while loop \leq value of (a,t) -man-flow

 \Rightarrow Time complimity = $O((m+n) = value of (a,t) - man - flow - flow)$

- $Y A \subseteq V$ s.t. $S \in A$, $t \in \overline{A}$, then cut $(A, \overline{A}) = \begin{cases} (x, y) \in E \mid x \in A, y \in \overline{A} \end{cases}$ set of edges is called (1, t) - cut
- Copacity of cut $C(A, \overline{A}) = C(x, y)$ (7,4) E Cut (A, A)

• fout
$$(A) := \sum_{(x,y) \in \text{cut}(A,\overline{A})} f(x,y)$$

$$fin(A) = \sum_{x,y} f(x,y)$$
 $(x,y) \in E$
 $x \in A$
 $y \in A$

$$C(A, \overline{A}) = 100 + 200$$

$$\frac{\text{Jemma}}{x \in A} : \sum_{x \in A} \text{fout } (x) - \text{fin } (x)) = \text{fout } (A) - \text{fin } (A), A \subseteq V$$

Proof: LHS.

$$= \sum_{e \in \text{out from}(A)} f(e)$$

$$= \sum_{e \in \text{entery}(A)} f(e)$$
fort (A)
$$= \sum_{e \in \text{entery}(A)} f(e)$$

fout (A) -
$$fin(A) = \begin{cases} fout(s) = val(f) & \forall s \in A, t \in \overline{A} \\ -fin(t) = -val(f) & \forall t \in A, s \in \overline{A} \end{cases}$$

f & flow that is returned by F.T. ALGO.

hat (A) - fin (A) = man. flow possebb.