طراحي الگوريتم ها

جلسه اول

طرح درس

• اهداف:

- آشنایی با روش های تحلیل الگوریتم
- آشنایی با نحوه اثبات درستی الگوریتم
- آشنایی با روش ها متداول طراحی الگوریتم
- آشنایی با الگوریتم های متداول در زمینه مهندسی و علوم کامپیوتر

كتابها

Textbook:

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
 Introduction to Algorithms. 3rd. ed. Cambridge, MA: MIT Press.

• References:

- Horowitz, E., Sahni, S Fundamentals of Computer Algorithm. Computer science press.
 2009
- Richard Neapolitan, and Kumarss Naimipour. Foundations of algorithms. Jones & Bartlett Learning, 2010.

ارتباط و تدریس یاری .T.A

- روزهای چهارشنبه ساعت ۳ تا ۴.۵
- اطلاع رسانی در شبکه اجتماعی t.me/DAAAUT
- اطلاع رسانی در شبکه اجتماعی courses.aut.ac.ir
 - برگزاری کلاس مجازی Ims.aut.ac.ir
 - ارتباط با من:
 - hoorfarhamid@yahoo.com ايميل
 - شبکه اجتماعی hamidhoorfar —

عنوان مباحث

- 1. مقدمه و نقش الگوریتم ها (فصل ۱ و ۲)
- 2. مرور رشد توابع و مفهوم سایز مسئله (فصل ۳)
- 3. حل رابطه بازگشتی، درخت بازگشت و قضیه اصلی (فصل ۴)
- 4. مرتب سازی پشته ای، مرتب سازی سریع، مرتب سازی درجی، اثبات درستی مرتب سازی درجی و تحلیل حالت متوسط زمان (فصل ۶ و ۷)
 - 5. مرتب سازی با زمان خطی (فصل ۸)
 - 6. پیدا کردن میانه و تحلیل سرشکن (فصل ۹ و ۱۷)
 - 7. روش تقسیم وحل موزائیک، استراسن، تورنمنت بازی (فصل ۴)
 - 8. برنامه ریزی پویا (فصل ۱۵) (۲ هفته)
 - 9. روش حریصانه (فصل ۱۶) (۲ هفته)

عنوان مباحث

- 10. روش عقبگرد و روش شاخه و حد
- 11. مروری سریع بر الگوریتم های گراف و درخت
 - 12. الگوريتم جريان بيشينه (فصل ۲۶)
 - 13. نظریه پیچیدگی محاسبات (فصل ۳۴)

بارم بندی نمره نهایی(غیر قطعی)

- ۷ نمره پایان ترم
- ۵ نمره میان ترم
- ۸ نمره تمرینات
 - ۱ نمره پروژه

- ۹ نمره پایان ترم
- ۶ نمره میان ترم
- ۵ نمره تمرینات
 - ۲ نمره پروژه

نقش الگوريتم ها در محاسبه

- تعريف الگوريتم:
- یک سلسله مراتب از گام های محاسباتی خوش تعریف.
- مقدار یا مجموعه مقادیر را بعنوان Input دریافت می کند
- مقدار یا مجموعه مقادیر را بعنوان output تولید می کند مثال متداول از الگوریتم ها برای مسائل محاسباتی
- Sorting problem
- Searching problem

Sorting problem

sorting problem:

```
Input: A sequence of n numbers (a_1, a_2, \ldots, a_n).
```

Output: A permutation (reordering) $\langle a'_1, a'_2, \dots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$.

Instance of sorting problem: Input: < 31,41,59,26,41,58 > *Output:* < 26,31,41,41,58,59 >

• الگوریتم صحیح برای هر نمونه از ورودی، با خروجی صحیحی متوقف میشود. به چنین الگوریتمی گفته میشود که مساله محاسباتی را حل کرده است.

مسايل قابل حل توسط الگوريتم ها

- الگوریتم های تحت اینترنت
- الگوريتم هاى مرتبط با تجارت الكترونيكى:
- توانایی نگهداری اطلاعات: اعداد کارت اعتباری، کلمات عبور و رمزها، صورت حسابها،
 - رمزگشایی،
 - امضاهای دیجیتال و ...
 - الگوريتمهاي مرتبط با صنعت:
 - مکان یابی چاههای نفت
 - خطوط هوایی
 - پیش بینی انتخابات
 - الگوریتم های مسیریابی:
 - یافتن کوتاهترین مسیر
 - الگوریتم های محاسباتی یافتن توالی بهینه ضرب ماتریس ها
 - الگوريتم يافتن convex hull

efficient algorithms and Hard Problem

- يكى از اهداف مهم اين درس طراحي الگوريتم هاى كارآمد است.
- مقیاس کارایی سرعت است : تا چه اندازه یک الگوریتم زمان صرف می کند تا نتایج خود را تولید کند.

Hard problem

- مسائل محاسباتی از لحاظ مقیاس کارآیی به دسته های مختلف تقسیم می شوند.
- حسته ای از مسائل که تاکنون ثابت نشده است که برای آنها الگوریتم کارآمد
 وجود دارد، NP-complete گفته می شوند.
- اگر الگوریتم کارامدی برای یکی از آنها موجود باشد آنگاه الگوریتم کارآمد برای مابقی آنها نیز حتما موجود است.
 - این مسائل بسیار شبیه مسائلی هستند که برای آنها الگوریتم کارآمد وجود دارد. کار آمد ؟؟؟؟؟؟؟

یک نمونه مساله NP-complete

- Travelling salesman problem (TSP)
- ابتدا در سده ۱۸ مسائل مربوط به آن توسط ویلیام همیلتون و چوریو مطرح شد و سپس در دهه ۱۹۳۰ شکل عمومی آن به وسیله ریاضیدانانی مثل کارل منگر از دانشگاه هاروارد و هاسلر ویتنی از دانشگاه پرینستون مورد مطالعه قرار گرفت.
 - شرح مسئله بدین شکل است که:
 - تعدادی شهر داریم و هزینه رفتن مستقیم از یکی به دیگری را میدانیم. مطلوب است کمهزینه ترین مسیری که از یک شهر شروع شود و از تمامی شهرها دقیقاً یکبار عبور کند و به شهر شروع بازگردد.

Figure 1 Geographical Routes as per TSP

تكنولوژي الگوريتم ها

- افزایش سرعت: زمان محاسبه یک منبع محدود است.
- كاهش مصرف حافظه: حافظه ارزان است ولى رايگان نيست.
 - تولید الگوریتم های پایان پذیر

Time efficiency

- تفاوت در راندمان الگوریتم ها علاوه بر وابستگی به سخت افزار و نرم افزار به نحوه طراحی الگوریتم ها نیز وابسته است.
 - مقايسه نحوه طراحي الگوريتم ها و كارايي آنها
- Insertion sort $\rightarrow c_1 n^2 \rightarrow 2n^2$
- Merge Sort $\rightarrow c_2 n \lg n \rightarrow 50n \lg n$

- مرتب سازی ده میلیون عدد:
- Computer A \rightarrow 10000000000clock/sec=10¹⁰
- Computer B \rightarrow 10000000clock/sec=10⁷

$$\frac{2 \cdot (10^7)^2 \text{ instructions}}{10^{10} \text{ instructions/second}} = 20,000 \text{ seconds (more than 5.5 hours)},$$

$$\frac{50 \cdot 10^7 \text{ lg } 10^7 \text{ instructions}}{10^7 \text{ instructions/second}} \approx 1163 \text{ seconds (less than 20 minutes)}$$

تمرين

• کوچکترین مقدار n که به ازای آن الگوریتمی با زمان اجرای $100n^2$ سریعتر از الگوریتمی با زمان اجرای 2^n روی ماشین یکسان اجرا میشود چیست؟

n	100 n^2	2^n	
1	100	2	>
2	400	4	>
3	900	8	>
4	1600	16	>
5	2500	32	>
6	3600	64	>
7	4900	128	>
8	6400	256	>
9	8100	512	>
10	10000	1024	>
11	12100	2048	>
12	14400	4096	>
13	16900	8192	>
14	19600	16384	>
15	22500	32768	<
16	25600	65536	<
17	28900	131072	<
18	32400	262144	<
19	36100	524288	<
20	40000	1048576	<

پاسخ