Mitali Seth

Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Ans:

Alpha value for Ridge is 6 Alpha value for Lasso is 0.0001

Doubled the Ridge value:

There is a drop of 1% in the r2 score post doubling the value for ridge

Doubled the Lasso value:

There is a drop of 1% in the r2 score post doubling the value for lasso

MSE (Test)

2.152581e+08

	ΙŢ	ia i_iiie i i icz			
out[325]:					
	_	Ridge2 Regression	Lasso2 Regress	sion	
	0	0.947219	0.9539	977	
	1	0.911882	0.9114	431	
	2	7.215491	6.291	611	
	3	5.118878	5.1450	046	
	4	0.090346	0.0843	364	
	5	0.116063	0.1163	360	
In [326]:	<pre># without doubling result final_metric</pre>				
+[226] +					
ut[326]:		nal_metric	near Regression	Ridge Regression	Lasso Regression
Out[326]:	fi	nal_metric	near Regression 9.638171e-01	Ridge Regression 0.950637	Lasso Regression 0.958631
Out[326]:	fi	nal_metric Metric Li			
Out[326]:	fi 0	Metric Lin R2 Score (Train)	9.638171e-01	0.950637	0.958631
Out[326]:	0 1	Metric Lin R2 Score (Train) R2 Score (Test)	9.638171e-01 -3.031050e+17	0.950637 0.911930	0.958631 0.905829 5.655415
)ut[326]:	0 1 2	Metric Li R2 Score (Train) R2 Score (Test) RSS (Train)	9.638171e-01 -3.031050e+17 4.946401e+00	0.950637 0.911930 6.748234	0.958631 0.905829

0.116032

0.119984

In []:

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Solution

Lasso regression would be best, because there are too many features, Lasso will help in feature elimination as well. Hence I would chose Lasso for robust model.

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Solution:

After dropping 1st top 5 feature and built model again then below are the next top 5 features :

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Solution: Model will be **robust** if any variation in the data does not affect its performance much. Model will be generalisable when accuracy of training data and test data are close

To make sure a model is robust and generalizable, we have to **take care it doesn't overfit**. This is because an overfitting model has very high variance and a smallest change in data affects the model prediction heavily. Such a model will identify all the patterns of a training data, but fail to pick up the patterns in unseen test data.