2. Rigid Body Dynamics (still Recap)

Particle Dynamics

- Law I: Every body persists in its state of being at rest or of moving uniformly straight forward, except insofar as it is compelled to change its state by force
- Law II: The alteration of motion is ever proportional to the motive force impress'd; and is made in the direction of the right line in which that force is
- Law III: To every action there is always an equal and opposite reaction: or the forces of two bodies on each other are always equal and are directed in opposite directions.

$$\sum_{p} \vec{F}_{p} = \vec{O} \rightarrow \vec{v}_{p} = 0$$

$$\sum_{p} \vec{F}_{p} = \vec{P}_{p} = m \vec{a}_{p}$$

$$\vec{F}_{pa} = -\vec{F}_{QP}$$

2.2. Systems of Partides

For every partide Pi

- @ p; = m; a; = F; + 5 Bij
- (b) $\vec{r}_{A_i} \times \vec{p}_i = m_i (\vec{r}_{A_i} \times \vec{a}_i) = \vec{r}_{A_i} \times \vec{F}_i + \sum_{j=1}^{n} \vec{r}_{A_i} \times \vec{B}_{ij}$ Som over all P_i : resultant force

- (a), RHS.: $\sum_{j=1}^{n} F_{j} + \sum_{j=1}^{n} \sum_{j=1}^{n} F_{j} = \sum_{j=1}^{n} F_{j} = F_{j}$ total momentum
- @, L.H.S: Em; a; = Em; Fi = d Em; Fii = P
- (b) R.H.S.: \(\frac{\times}{\times} \) \(\frac{\
- (b), L.H.S.: \(\sum_{i\int_{i}} \times \overline{a_{i}}\):=\(\overline{D}_{i}\)
 \(\tau_{i\int_{i}} \times \overline{a_{i}}\):=\(\overline{D}_{i}\)
 \(\tau_{i\int_{i}} \times \overline{a_{i}}\)
 \(\tau_{i

$$\vec{p} = m \vec{r}_{iG} = \vec{F}$$
 with $m_i = \sum_{i=1}^{n} m_i$, $\vec{r}_{iG} := \frac{1}{n} \sum_{i=1}^{n} m_i \vec{r}_{ii}$
 $\vec{D}_A = \vec{M}_A$ with $\vec{M}_A := \sum_{i=1}^{n} \vec{r}_{Ai} \times \vec{F}_i$, $\vec{D}_A := \vec{r}_{Ai} \times m_i \vec{a}_i$

2.3. Angular Momentum I, (about point A)

a) Definition

$$\vec{L}_{A} = \sum_{i=1}^{n} \vec{r}_{A_{i}} \times \vec{p}_{i} = \sum_{i=1}^{n} m_{i} \left(r_{A_{i}} \times \vec{V}_{i} \right)$$

b) Change of Reference Point

$$\vec{L}_{B} = \sum_{i=1}^{n} \vec{r}_{Bi} \times \vec{p}_{i} = \sum_{i=1}^{n} (\vec{r}_{BA} + \vec{r}_{Ai}) \times \vec{p}_{i} = \vec{r}_{BA} \times \sum_{i=1}^{n} \vec{p}_{i} + \sum_{i=1}^{n} \vec{r}_{Ai} \times \vec{p}_{i}$$

$$\vec{L}_{B} = \vec{r}_{BA} \times \vec{p} + \vec{L}_{A}$$

c) For a Rigid Body w.r.t. the COG

$$\vec{L}_{G} = \sum_{i=1}^{n} m_{i} \left[\vec{r}_{Gi} \times (\vec{V}_{G} + \vec{\Omega}_{B} \times \vec{r}_{Gi}) \right] = \left(\sum_{i=1}^{n} m_{i} \vec{v}_{Gi} \right) \times \vec{V}_{G} + \sum_{i=1}^{n} \vec{v}_{Gi} \times (-\vec{r}_{Gi} \times \Omega_{B}) m_{i}$$

$$\vec{L}_{G} = \left(\sum_{i=1}^{n} \hat{r}_{G_{i}}^{T} \hat{r}_{G_{i}} \cdot m\right) \vec{J}_{B} = \vec{L}_{G} \vec{J}_{B}$$
Therefore Matrix

in body - fixed coords:

in components:
$$\overline{f}_{G} = \sum_{i=1}^{N} \frac{\left(g_{2}^{2} + e_{3}^{2} - g_{1} \cdot g_{2} - g_{1} \cdot g_{3}\right)}{-g_{1} \cdot g_{3}} - g_{2} \cdot g_{3}$$
 with $\overline{g}_{G_{1}} = \left(g_{7} \cdot g_{2}\right)$ $-g_{1} \cdot g_{3} - g_{2} \cdot g_{3}$ $g_{1}^{2} + g_{2}^{2}$

d) Some Intuition for Lx

2.4. Rigid Body Dynamics

a) Relation of
$$\hat{L}_{4}$$
 & \hat{D}_{4}

$$\overset{\circ}{L}_{A} = \overset{n}{\underset{i=1}{\sum}} \left(\overrightarrow{r}_{A_{i}} \times m_{i} \overrightarrow{v_{i}} + \overrightarrow{r}_{A_{i}} \times m_{i} \overrightarrow{v_{i}} \right) = \overset{n}{D}_{A} + \overset{h}{\underset{i=1}{\sum}} \overrightarrow{v_{i}} \times m_{i} \overrightarrow{v_{i}} - \overset{n}{\overrightarrow{v_{i}}} \times m_{i} \overrightarrow{v_{i}} = \overset{\circ}{\overrightarrow{v_{i}}} \times \overset{n}{\overrightarrow{v_{i}}} \overset{\circ}{\overrightarrow{v_{i}}} \times \overset{n}{\overrightarrow{v_{i}}} \overset{\circ}{\overrightarrow{v_{i}}} = \overset{\circ}{\overrightarrow{v_{i}}} \times \overset{n}{\overrightarrow{v_{i}}} \overset{\circ}{\overrightarrow{v_{i}}} = \overset{\circ}{\overrightarrow{v_{i}}} \times \overset{\circ}{\overrightarrow{v_{i}}} \overset{\circ}{\overrightarrow{v_{i}}} = \overset{\circ}{\overrightarrow{v_{i}}} \times \overset{\circ}{\overrightarrow{v_{i}}} \times \overset{\circ}{\overrightarrow{v_{i}}} = \overset{\circ}{\overrightarrow$$

$$= \vec{D}_A - \vec{V}_A \times \frac{n}{i = 1} m_i \vec{V}_i = \vec{D}_A - \vec{V}_A \times m \vec{V}_G$$

$$\vec{D}_{G} = \vec{H}_{G} = \vec{L}_{G}, \quad \vec{D}_{1} = \vec{H}_{1} = \vec{L}_{1}, \quad \vec{D}_{A} = \vec{H}_{A} = \vec{L}_{A} + \vec{v}_{A} \times m \vec{v}_{G}$$

Newton Euler Equations for Rigid Badies

Physics:

Point G" = COG on

the body:

$$\vec{T}_{G} = \frac{1}{m} \sum_{i=1}^{N} m_{i} \vec{T}_{Ii} \quad \vec{B}_{G} = \vec{B}_{G} \vec{B}_{G} \quad \text{with: } \vec{B}_{G} = \sum_{i=1}^{N} \vec{B}_{G} \vec{B}_$$

D) Example (momentarily planar)

$$I_{G} = \sum_{i=1}^{n} m_{i} \begin{pmatrix} \rho_{z}^{2} + \rho_{3}^{2} & -\rho_{i} \rho_{2} & -\rho_{i} \rho_{3} \\ -\rho_{i} \rho_{2} & \rho_{i}^{2} + \rho_{3}^{2} & -\rho_{2} \rho_{3} \\ -\rho_{i} \rho_{3} & -\rho_{2} \rho_{3} & \rho_{i}^{L} + \rho_{z}^{2} \end{pmatrix}$$

- 2. Rigid Body Dynamics Page 6
- 2.5. Properties of Ia

$$B = \begin{cases} S_{1} + S_{2} + S_{3} - S_{1} + S_{3} \\ S_{1} + S_{3} - S_{2} + S_{2} \end{cases} - S_{1} + S_{2} + S_{2} + S_{2}$$

$$S_{1} + S_{3} - S_{2} + S_{$$

Note: In = In

a) Symmetry

2	2. Rigid Body	Dynamics -	- Page 7				
	D ,	, ,					
	Principa	l Axes					
		1.1		, ,			
رب	Irequa	ury of	· Diago	nal Iern	گ		
Ŧ							

d) Parallel Axes Theorem

2.6 Transition to Continuous Bodies

•
$$m = \int dm$$

• $\vec{r}_{1G} = \frac{1}{m} \int \vec{r}_{1} dm$

•
$$\vec{L}_{k} = \int \vec{r}_{4} \times \vec{v} dm$$

Example: Cylinder, Find Iss

So far:
$$I_{33} = I_{22} = \sum_{i=1}^{n} (p_{1,i}^2 + p_{2,i}^2)$$

$$I_{33} = \int (x^2 + y^2) dm$$

(Some Notes on P8)

Integrating Kinematics (Problem 8) "Given $A_{IC}(t_o)$ and $Iw_{IC}(t)$, can you find $A_{IC}(t)$?"

8a)
$$A_{ci} \hat{A}_{ic} = \tilde{\omega}_{ic} = A_{ci} \tilde{\omega}_{ic} A_{ci}$$

 $\hat{A}_{ic} = \tilde{\omega}_{ic} A_{ci}$
Tintegrate this

$$\vec{\omega}_{ic} = f(\alpha, \beta, \gamma, \dot{\alpha}, \dot{\beta}, \dot{\gamma}) = B\begin{pmatrix} \dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma} \end{pmatrix} = \begin{pmatrix} A_{ic} B \end{pmatrix}_{i} \vec{\omega}_{ic}$$
Tintegrate this

% Compute derivative:

A_IC_dot = I_omega_IC * A_IC;
% Integration:

A_IC = A_IC + A_IC_dot*delta_t

A_IC = A_IC + A_IC_dot*delta_t; C.A_IC = A_IC; drawnow();

end

for i = 1:n

% Compute derivatives of cardan angles:

AB_inv_num = AB_inv_fct(alpha_num, beta_num, gamma_num); card_vec_dot = AB_inv_num * I_omega_IC_vec; % Integration:

alpha_num = alpha_num + card_vec_dot(1)*delta_t; beta_num = beta_num + card_vec_dot(2)*delta_t; gamma_num = gamma_num + card_vec_dot(3)*delta_t;

% Compute new transformation from cardan angles:

A_IC_num = A_IC_fct(alpha_num, beta_num, gamma_num);

C.A_IC = A_IC_num;
 drawnow();

end

AB inv:

[cos(gamma)/cos(beta), sin(gamma)/cos(beta), 0]
[-sin(gamma), cos(gamma), 0]
[cos(gamma)*tan(beta), tan(beta)*sin(gamma), 1]

How can you change one line in the solution of (9a) to get a perfectly accurate rotation?

for i = 1:n
 % Compute derivative:
 A_IC_dot = I_omega_IC * A_IC;
 % Integration:
 A_IC = A_IC + A_IC_dot*delta_t;
 C.A_IC = A_IC;
 drawnow();
end