Nama : Teosofi Hidayah Agung NRP : 5002221132

1. Perhatikan barisan fungsi (f_n) yang didefinisikan dengan $f_n(x) = \frac{nx}{1 + nx^2}$ untuk $x \in A := [0, \infty)$.

(a) Tunjukkan bahwa (f_n) terbatas pada A untuk semua $n \in \mathbb{N}$.

Jawab: Kita perhatikan bahwa $f_n(x) = \frac{nx}{1+nx^2}$. Karena $x \geq 0$ dan $n \in \mathbb{N}$, maka $nx \geq 0$ dan $1+nx^2 \geq 1$. Sehingga $f_n(x) \leq \frac{nx}{1}$. Dengan demikian, $f_n(x)$ terbatas pada A untuk semua $n \in \mathbb{N}$.

- (b) Tunjukkan bahwa (f_n) konvergen titik-demi-titik ke suatu fungsi f, tetapi tidak terbatas. **Jawab**:
 - Untuk x = 0, kita punya $f_n(0) = 0$ untuk setiap $n \in \mathbb{N}$. Sehingga $f_n(x)$ konvergen ke 0.
 - Untuk x > 0, kita punya $f_n(x) = \frac{nx}{1 + nx^2} = \frac{1}{1/nx + x} \implies \frac{1}{x}$. Sehingga $f_n(x)$ konvergen ke 1/x.

Jadi, (f_n) konvergen titik-demi-titik ke suatu fungsi f yaitu $f(x) = \begin{cases} 0 & \text{jika } x = 0 \\ 1/x & \text{jika } x > 0 \end{cases}$

Sekarang untuk menujukkan bahwa f tidak terbatas, kita gunakan kontradiksi. Asumsikan f terbatas, maka ada M>0 sehingga $|f(x)|\leq M$ untuk setiap $x\in A$. Kita ambil x=1/(2M), maka f(1/(2M))=2M yang mana bertentangan dengan asumsi bahwa f terbatas.

- $\therefore f$ tidak terbatas.
- (c) Apakah (f_n) konvergen seragam pada A? Jelaskan! **Jawab**:

Tidak konvergen seragam, karena f tidak kontinu pada A, padahal (f_n) kontinu untuk setiap $n \in \mathbb{N}$.

2. Jika $\sum a_n$ konvergen mutlak dan (b_n) barisan terbatas, tunjukkan bahwa $\sum a_n b_n$ konvergen mutlak. **Jawab**:

Karena $\sum a_n$ konvergen mutlak, maka $\sum |a_n|$ konvergen. Karena (b_n) terbatas, maka ada M>0 sehingga $|b_n|\leq M$ untuk setiap $n\in\mathbb{N}$. Dengan demikian, kita punya $|a_nb_n|\leq M|a_n|$ untuk setiap $n\in\mathbb{N}$. Karena $\sum |a_n|$ konvergen, maka $\sum M|a_n|$ juga konvergen. Dengan demikian, $\sum a_nb_n$ konvergen mutlak.

3. Tunjukkan bahwa deret $\frac{1}{1^2} + \frac{1}{2^3} + \frac{1}{3^2} + \frac{1}{4^3} + \dots$ adalah konvergen, tetapi uji rasio dan uji akar gagal diterapkan untuk memeriksa konvergensi deret tersebut.

Jawab:

Kita perhatikan bahwa deret tersebut adalah deret dapat ditulis sebagai berikut

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} + \frac{1}{(2n)^3} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} + \sum_{n=1}^{\infty} \frac{1}{(2n)^3}$$

Kita perhatikan bahwa deret $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ adalah deret p-harmonik dengan p=2>1 yang konvergen. Demikian pula dengan deret $\sum_{n=1}^{\infty} \frac{1}{(2n)^3}$ adalah deret p-harmonik dengan p=3>1 yang konvergen juga. Sehingga deret tersebut konvergen.

4. Diberikan $\sum a_n$ deret yang konvergen mutlak. Tunjukkan bahwa $\sum a_n \sin(nx)$ adalah deret yang konvergen mutlak dan seragam.

Jawab:

Karena $\sum a_n$ konvergen mutlak, maka $\sum |a_n|$ konvergen. Karena $\sin(nx)$ terbatas sehingga $|\sin(nx)| \le 1$ untuk setiap $n \in \mathbb{N}$. Dengan demikian, kita punya $|a_n\sin(nx)| \le |a_n|$ untuk setiap $n \in \mathbb{N}$. Sehingga didapatkan $\sum |a_n\sin(nx)| \le \sum |a_n|$. Dengan kriteria uji banding, maka $\sum a_n\sin(nx)$ konvergen mutlak.

Untuk menunjukkan bahwa $\sum a_n \sin(nx)$ konvergen seragam terutama pada interval $[0, 2\pi]$, kita gunakan kriteria Weierstrass M. Dalam kasus ini, kita dapat mengambil $f_n(x) = a_n \sin(nx)$ dan $M_n = |a_n|$. Kita sudah tahu bahwa $\sum |a_n|$ konvergen, maka sesuai Kriteria Weierstrass M, $\sum a_n \sin(nx)$ konvergen seragam pada interval $x \in [0, 2\pi]$.