Portfolio Optimization: A Comparative Analysis

Ossama Tchina - 3137796

Bocconi University

20598 - Finance with Big Data

Table of contents

- Data overview
- Methodology
- Analysis and Results
- Conclusion

- yfinance package
- 8 stocks
- 2010-2015 vs 2015-2020

Data overview

Ticker	Date	AAPL	AMZN	ВА	GOOG	IBM	мсм	т	TSLA
0	2010-07-01	8.874286	5.5480	62.259998	10.946221	117.179733	9.700000	18.383686	1.464000
1	2010-07-02	8.819286	5.4570	61.939999	10.872995	116.500954	9.480000	18.345921	1.280000
2	2010-07-06	8.879643	5.5030	61.360001	10.861040	118.030594	9.270000	18.436556	1.074000
3	2010-07-07	9.238214	5.6715	63.299999	11.212971	121.414917	9.900000	18.376133	1.053333
4	2010-07-08	9.217500	5.8110	64.730003	11.371377	122.342255	9.820000	18.557402	1.164000
1129	2014-12-24	28.002501	15.1515	131.240005	26.366112	154.703629	20.770000	25.649548	14.817333
1130	2014-12-26	28.497499	15.4545	131.630005	26.628391	155.200760	21.110001	25.808157	15.188000
1131	2014-12-29	28.477501	15.6020	132.289993	26.443897	153.451248	21.480000	25.762840	15.047333
1132	2014-12-30	28.129999	15.5150	131.830002	26.448385	153.011475	21.450001	25.740181	14.815333
1133	2014-12-31	27.594999	15.5175	129.979996	26.247936	153.384323	21.379999	25.370090	14.827333

1134 rows × 9 columns

Methodology

Mean-variance optimization

Black-Litterman model

Hierarchical Risk Parity optimization

Mean-variance optimization

- Computation of returns and volatilities of the stocks
- Determination of the covariances and correlations among all pairs of stocks in the portfolio
- Derivation of the expected returns and risks of several candidate portfolios
- Identifying the portfolio with the maximum risk-adjusted return

20598 – Finance with Big Data

Black-Litterman model

- BL integrates market-implied returns (priors) with investor views, using a Bayesian framework to produce posterior expected returns.
- Investors can express views on specific assets (absolute) or relationships between assets (relative)
- Views and priors are weighted based on confidence (via Ω) and a tuning parameter τ , allowing for flexible portfolio adjustments.
- BL-generated posterior returns lead to more stable portfolios compared to mean-historical returns, reducing estimation risk.
- Outputs posterior returns and covariance matrix are used to calculate optimized portfolio weights.

Hierarchical Risk Parity optimization

- 1. Formation of clusters
- 2. Quasidiagonalization
- 3. Recursive Bisection

Data analysis and results

20598 – Finance with Big Data

2010-2015

	Return	Volatility	Sharpe Ratio
Mean-Variance Portfolio	0.267208	0.205732	1.298815
Black-Litterman Portfolio	0.292804	0.212228	1.379667
HRP Portfolio	0.172024	0.183135	0.939325

2015-2020

	Return	Volatility	Sharpe Ratio
Mean-Variance Portfolio	0.203065	0.205732	0.987038
Black-Litterman Portfolio	0.221380	0.212228	1.043123
HRP Portfolio	0.135488	0.183135	0.739826

Thank you!