- (21) Application No 8811929
- (22) Date of filing 20 May 1988
- (30) Priority data (31) 053281 109680
- (33) US (32) 22 May 1987 19 Oct 1987
- (71) Applicant

E. R. Squibb & Sons Inc

(Incorporated in USA-Delaware)

Lawrenceville-Princeton Road, Princeton, New Jersey, United States of America

- (72) Inventors **Donald Steven Karanewsky** Scott Adams Biller **Eric Michael Gordon**
- (74) Agent and/or Address for Service D. Young & Co 10 Staple Inn, London, WC1V 7RD

- (51) INT CL4 C07F 9/28 // 7/18
- (52) Domestic classification (Edition J): C2P 1L1 1L2 2E12B 2E18C 2E19A 2E19B 2E19C 2E19D 2E23 2E25A 2E26B 3B12B 3B14A 3B14B 3B16 3B18C 3B19A 3B19B 3B19C 3B19D 5B 79 A C2R S121 S122 S131 S143 S173 S211 S361 SQA U1S 1317 C2P C2R
- (56) Documents cited None
- (58) Field of search C2P

(54) Phosphorus-containing HMG-CoA reductase Inhibitors

(57) Compounds which are useful as inhibitors of cholesterol biosynthesis and thus as hypocholesterolemic agents have the structure

including salts thereof, wherein R is OH, lower alkoxy or lower alkyl;

Rx is 'H or alkyl;

X is-0-or -NH-;

n is 1 or 2

Z is a hydrophobic anchor, such as

wherein the dotted lines represent optional double bonds.

New intermediates used in preparing the above compounds, e.g. compounds in which the OH group is silane blocked, pharmaceutical compositions containing such compounds and a method for using such compounds to inhibit cholesterol biosynthesis are also provided.

PHOSPHORUS-CONTAINING HMG-COA REDUCTASE INHIBITORS, NEW INTERMEDIATES AND METHOD

5

10

The present invention relates to new phosphorus-containing compounds which inhibit the activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and thus is useful in inhibiting cholesterol biosynthesis, to hypocholesterolemic compositions containing such compounds, to new intermediates formed in the preparation of such compounds and to a method of using such compounds for such purposes.

20

25

.

15

F. M. Singer et al., <u>Proc. Soc. Exper.</u>

<u>Biol. Med.</u>, 102, 370 (1959) and F. H. Hulcher,

<u>Arch. Biochem. Biophys.</u>, 146, 422 (1971) disclose
that certain mevalonate derivatives inhibit the
biosynthesis of cholesterol.

Endo et al in U. S. Patents Nos. 4,049,495, 4,137,322 and 3,983,140 disclose a fermentation

product which is active in the inhibition of cholesterol biosynthesis. This product is called compactin and was reported by Brown et al.,

(J. Chem. Soc. Perkin I. 1165 (1976)) to have a complex mevalonolactone structure.

GB 1,586;152 discloses a group of synthetic compounds of the formula

5

20

in which E represents a direct bond, a C₁₋₃ alkylene bridge or a vinylene bridge and the various R's represent a variety of substituents.

The activity reported in the U.K. patent is less than 1% that of compactin.

U. S. Patent No. 4,375,475 to Willard et al discloses hypocholesterolemic and hypolipemic compounds having the structure

wherein A is H or methyl; E is a direct bond, $-CH_2-, -CH_2-CH_2-, -CH_2-CH_2-CH_2- \text{ or } -CH=CH-; R_1, R_2$ and R_3 are each selected from H, halogen, C_{1-4} alkyl, C_{1-4} haloalkyl, phenyl, phenyl substituted

by halogen, C_{1-4} alkoxy, C_{2-8} alkanoyloxy, C_{1-4} alkyl, or C_{1-4} haloalkyl, and OR_4 in which R_4 is H, C_{2-8} alkanoyl, benzoyl, phenyl, halophenyl, phenyl C_{1-3} alkyl, C_{1-9} alkyl, cinnamyl, C_{1-4} haloalkyl, allyl, cycloalkyl- C_{1-3} -alkyl,

adamantyl-C₁₋₃-alkyl, or substituted phenyl

C₁₋₃-alkyl in each of which the substituents are
selected from halogen, C₁₋₄ alkoxy, C₁₋₄ alkyl, or

C₁₋₄ haloalkyl; and the corresponding dihydroxy
acids resulting from the hydrolytic opening of the

lactone ring, and the pharmaceutically acceptable salts of said acids, and the C₁₋₃ alkyl and phenyl, dimethylamino or acetylamino substituted C₁₋₃-alkyl esters of the dihydroxy acids; all of the compounds being the enantiomers having a 4 R configuration in the tetrahydropyran moiety of the trans racemate shown in the above formula.

WO 84/02131 (PCT/EP83/00308) (based on U. S. application Serial No. 443,668, filed November 22, 1982, and U. S. application Serial No. 548,850, filed November 4, 1983), filed in the name of Sandoz AG discloses heterocyclic analogs of mevalono lactone and derivatives thereof having the structure

- 30

25

wherein one of R and R_{o} is

other is primary or secondary C_{1-6} alkyl, C_{3-6} cycloalkyl or phenyl- $(CH_2)_m$ -,

wherein R_4 is hydrogen, C_{1-4} alkyl, C_{1-4} alkoxy, (except t-butoxy), trifluoromethyl, fluoro, chloro, phenoxy or benzyloxy,

R₅ is hydrogen, C₁₋₃ alkyl, C₁₋₃ alkoxy, trifluoromethyl, fluoro, chloro, phenoxy or benzyloxy,

 $\rm R_{5a}$ is hydrogen, $\rm C_{1-2}$ alkyl, $\rm C_{1-2}$ alkoxy, fluoro or chloro, and

m is 1, 2 or 3,

10

15

20

25

30

with the provisos that both R_5 and R_{5a} must be hydrogen when R_4 is hydrogen, R_{5a} must be hydrogen when R_5 is hydrogen, not more than one of R_4 and R_5 is trifluoromethyl, not more than one of R_4 and R_5 is phenoxy and not more than one of R_4 and R_5 is benzyloxy,

R₂ is hydrogen, C₁₋₄ alkyl, C₃₋₆ cycloalkyl, C₁₋₄ alkoxy (except t-butoxy), trifluoromethyl, fluoro, chloro, phenoxy or benzyloxy,

 R_3 is hydrogen, C_{1-3} alkyl, C_{1-3} alkoxy, trifluoromethyl, fluoro, chloro, phenoxy or benzyloxy, with the provisos that R_3 must be hydrogen when R_2 is hydrogen, not more than one of R_2 and R_3 is trifluoromethyl, not more than one of R_2 and R_3 is phenoxy, and not more than one of R_2 and R_3 is benzyloxy.

X is $-(CH_2)_n$ - or -CH=CH-(n=0, 1, 2 or 3),

wherein R_6 is hydrogen or C_{1-3} alkyl in free acid form or in the form of a physiologically-hydrolysable and -acceptable ester or a δ lactone thereof or in salt form.

of mevalolactone useful as cholesterol
biosynthesis inhibitors having the structure

wherein R₁ = 1-3C alkyl; Z is a gp. of formula Z₁ or Z₂:

15

30

 R_7 = H, a hydrolysable ester gp. or a cation.

European Patent No. 164-698-A discloses preparation of lactones useful as anti-hypercholesterolemic agents by treating an amide with an organic sulphonyl halide R⁵SO₂X, then removing the protecting group Pr.

Pro
$$\mathbb{R}^1$$
 $\mathbb{R}^3\mathbb{R}^4$
 $\mathbb{R}^5\mathbb{S}^2$
 \mathbb{R}^1
 \mathbb{R}^1
 \mathbb{R}^1
 \mathbb{R}^1
 \mathbb{R}^2

wherein X = halo;

5

15

20

Pr = a carbinol-protecting group;

 $R^{1} = H \text{ or } CH_{3};$ $R^{3}, R^{4} = H, 1-3C \text{ alkyl or phenyl-(1-3C)}$

alkyl), the phenyl being optionally substituted by 1-3C alkyl, 1-3C alkoxy or halo;

 R^2 = a group of formula (A) or (B):

$$Q = R^6 - C - \text{ or } R^6 - CH ;$$

$$CH_3$$

 $R = H \text{ or } CH_3;$

a, b, c and d = optional double bonds; R^7 = phenyl or benzyloxy, the ring in each case being optionally substituted by 1-3C alkyl or

halo; 10

5

 R^8 , $R^9 = 1-3C$ alkyl or halo; $R^5 = 1-3C$ alkyl, phenyl or mono- or di-(1-3C alkyl)phenyl.

Anderson, Paul Leroy, Ger. Offen.

DE 3,525,256 discloses naphthyl analogs of 15 mevalonolactones of the structure

wherein R^1 is alkyl, Z = Q, Q^1 ; $R^7 = H$, or a 25 hydrolyzable ester group useful as inhibitors of cholesterol biosynthesis and in treatment of atherosclerosis.

WO 8402-903 (based on U.S. application Serial No. 460,600, filed January 24, 1983) filed 30 in the name of Sandoz AG discloses mevalono-lactone analogues useful as hypolipoproteinaemic agents having the structure

$$\begin{array}{c|c}
 & X-Z & R_{5a} \\
\hline
Ro & 1 & 2 & R_{5} \\
\hline
Ro & 4 & R_{1} & R_{4}
\end{array}$$

wherein the two groups Ro together form a radical of formula

10
$$\begin{bmatrix} 8 & 7 & 6 & 5 \\ C = C - C = C \end{bmatrix}$$
 or $-(CH_2)_4$ -
$$R_2 \qquad R_3$$

5

25

wherein R₂ is hydrogen, C₁₋₄ alkyl,
C₁₋₄ alkoxy, (except t-butoxy), trifluoromethyl,
fluoro, chloro, phenoxy or benzyloxy,

 R_3 is hydrogen, C_{1-3} alkyl, C_{1-3} alkoxy, trifluoromethyl, fluoro, chloro, phenoxy or

benzyloxy, with the provisos that not more than one of R_2 and R_3 is trifluoromethyl, not more than one of R_2 and R_3 is phenoxy, and not more than one of R_2 and R_3 is benzyloxy,

R₁ is hydrogen, C₁₋₆ alkyl, fluoro, chloro or benzyloxy,

 R_4 is hydrogen, C_{1-4} alkyl, C_{1-4} alkoxy, (except t-butoxy), trifluoromethyl, fluoro, chloro, phenoxy or benzyloxy,

R₅ is hydrogen, C₁₋₃ alkyl, C₁₋₃ alkoxy, trifluoromethyl, fluoro, chloro, phenoxy or benzyloxy,

 R_{5a} is hydrogen, C_{1-2} alkyl, C_{1-2} alkoxy, fluoro or chloro, and with the provisos that not

more than one of R_4 and R_5 is trifluoromethyl, not more than one of R_4 and R_5 is phenoxy and not more than one of R_4 and R_5 is benzyloxy,

wherein n is 0, 1, 2 or 3 and both q's are 0 or one is 0 and the other is 1,

10 Z is

wherein R_6 is hydrogen or C_{1-3} alkyl, with the general proviso that -X-Z and the R_4 bearing phenyl group are ortho to each other;

in free acid form or in the form of a physiologically-hydrolysable and acceptable ester or a δ lactone thereof or in salt form.

European patent application 127,848-A (Merck & Co, Inc.) discloses derivatives of 3-hydroxy-5-thia-w-aryl-alkanoic acids having the structural formula:

30

25

15

20

wherein Z is:

5

10

25

30

$$R^1$$
 R^2
 R^3

n is 0, 1 or 2;

E is $-CH_2$ -, $-CH_2$ - CH_2 -, $-CH_2$ - CH_2 -, $-CH_2$ - CH_2 -, or $-CH_2$ - CH_2 -;

 R_1 , R_2 and R_3 are, e.g., hydrogen, chloro, bromo, fluoro, C_1 -alkyl, phenyl, substituted phenyl or OR_7 in which R_7 is, e.g., hydrogen,

15 C₂₋₈alkanoyl, benzoyl, phenyl, substituted phenyl, C₁₋₉alkyl, cinnamyl, C₁₋₄haloalkyl, allyl, cycloalkyl-C₁₋₃alkyl, adamantyl-C₁₋₃-alkyl, or phenyl C₁₋₃alkyl;

phenyl C_{1-3} alkyl; $R^{\frac{1}{2}}$, R^{5} and R^{6} are hydrogen, chloro, bromo,

20 fluoro or C₁₋₃ alkyl; and

 $\rm X$ is, e.g., hydrogen, $\rm C_{1-3}$ alkyl, a cation derived from an alkali metal or is ammonium.

Those compounds have antihypercholesterolemic activity by virtue of their ability to inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and antifungal activity.

French patent application 2,596,393 A filed on April 1, 1986 (Sanofi SA) discloses 3-carboxy-2-hydroxy-propane-phosphonic acid derivatives including salts thereof which are useful as hypolipaemic agents and have the formula:

5

10

wherein R_1 and $R_2 = H$, lower alkyl or optionally substituted aralkyl;

 R_3 and R_4 = H, lower alkyl or optionally substituted aryl or aralkyl.

These comounds are disclosed as giving greater reductions in cholesterol, triglyceride and phospholipid levels than meglutol.

European patent application 142,146-A (Merck & Co., Inc) discloses mevinolin-like compounds of the structural formula:

HO OR1
OR1
Z

20

wherein:

25

5 R^1 is, e.g., hydrogen or C_{1-4} alkyl; E is $-CH_2CH_2$, -CH=CH-, or $-(CH_2)_r$ -; and Z is

wherein X is -O- or -NR⁹ wherein R⁹ is hydrogen or C₁₋₃ alkyl;

R⁷ is C₂₋₈alkyl; and R⁸ is hydrogen or CH₃;

2)

3)

5

15 .

20

30

 R^{10} R^{11} R^{12}

wherein \mathbf{R}^{10} , \mathbf{R}^{11} and \mathbf{R}^{12} are independently, e.g., hydrogen, halogen or \mathbf{C}_{1-4} alkyl;

25 (R¹⁴),

In accordance with the present invention, there is provided phosphorus-containing compounds

which inhibit the enzyme 3-hydroxy-3-methylglutarylcoenzyme A reductase (HMG-CoA Reductase) and thus are useful as hypocholesterolemic agents and include the following moiety

5

10

wherein X is -O- or -NH-, n is 1 or 2 and Z is a "hydrophobic anchor".

The term hydrophobic anchor as employed

15 herein refers to a lipophilic group which when
linked to the HMG-like upper side chain of the
molecule by the appropriate linker ("X"), binds to
a hydrophobic pocket of the enzyme not utilized in
binding the substrate HMG CoA, resulting in

20 enhanced potency relative to compounds where Z=H.

In preferred embodiments, the compounds of the invention have the formula I

including salts thereof, wherein R is OH, lower alkoxy or lower alkyl;

RX is H or lower alkyl;

X is -O- or -NH-;

n is 1 or 2;

Z is a hydrophobic anchor; and including pharmaceutically acceptable

5 salts thereof.

The terms "salt" and "salts" refer to basic salts formed with inorganic and organic bases. Such salts include ammonium salts, alkali metal salts like, lithium, sodium and potassium salts (which are preferred), alkaline earth metal salts like the calcium and magnesium salts, salts with organic bases, such as amine like salts, e.g., dicyclohexylamine salt, benzathine, N-methyl-D-glucamine, hydrabamine salts, salts with amino acids like arginine, lysine and the like. The nontoxic, pharmaceutically acceptable salts are preferred, although other salts are also useful, e.g., in isolating or purifying the product.

Examples of hydrophobic anchors which may be included in accordance with the present invention include, but are not limited to

30

5

wherein the dotted lines represent optional double bonds, for example,

wherein R¹, R², R^{2a} and R^{2b} may be the same or
different and are each independently selected from
H, halogen, lower alkyl, haloalkyl, phenyl,
substituted phenyl or OR^y wherein R^y is H,
alkanoyl, benzoyl, phenyl, halophenyl,
phenyl-lower alkyl, lower alkyl, cinnamyl,
haloalkyl, allyl, cycloalkyl-lower alkyl,
adamantyl-lower alkyl or substituted phenyl-lower
alkyl.
Where Z is

10

5

 ${\mbox{R}}^{5}$ and ${\mbox{R}}^{5}$ are the same or different and are H, lower alkyl or OH;

R⁶ is lower alkyl-C such as CH₃-CH₂-C-C-C-CH₂ R⁷

15

or arylCH₂-;

R^{6a²} is lower alkyl, hydroxy, oxo or halogen;

q is 0, $\frac{1}{7}$, 2 or 3, and

R⁷ is H or lower alkyl;

Thus, the compounds of formula I encompass

25

30

The term "lower alkyl" or "alkyl" as employed herein alone or as part of another group includes

both straight and branched chain hydrocarbons, containing 1 to 12 carbons in the normal chain, preferably 1 to 7 carbons, such as methyl, ethyl, propyl, isopropyl, butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4-dimethylpentyl, octyl, 2,2,4-trimethylpentyl, nonyl, decyl, undecyl, dodecyl, the various branched chain isomers thereof, and the like as well as such groups including a halo-substituent, such as F, Br, Cl or I or CF3, an alkoxy substituent, an aryl 10 substituent, an alkyl-aryl substituent, a haloaryl substituent, a cycloalkyl substituent, an alkylcycloalkyl substituent, hydroxy, and alkylamino substituent, an alkanoylamino substituent, an arylcarbonylamino substituent, a nitro substituent, a 15 cyano substituent, a thiol substituent or an alkylthio substituent.

The term "cycloalkyl" as employed herein alone or as part of another group includes saturated cyclic hydrocarbon groups containing 3 to 20 12 carbons, preferably 3 to 8 carbons, which include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl and cyclododecyl, any of which groups may be substituted with 1 or 2 halogens, 1 or 2 lower alkyl 25 groups, 1 or 2 lower alkoxy groups, 1 or 2 hydroxy groups, 1 or 2 alkylamino groups, 1 or 2 alkanoylamino groups, 1 or 2 arylcarbonylamino groups, 1 or 2 amino groups, 1 or 2 nitro groups, 1 or 2 cyano groups, 1 or 2 thiol groups, and/or 1 or 2 alkyl-30 thio groups.

The term "aryl" or "Ar" as employed herein refers to monocyclic or bicyclic aromatic groups

containing from 6 to 10 carbons in the ring portion, such as phenyl, naphthyl, substituted phenyl or substituted naphthyl wherein the substituent on either the phenyl or naphthyl may be 1, 2 or 3 lower alkyl groups, halogens (Cl, Br or F), 1, 2 or 3 lower alkoxy groups, 1, 2 or 3 hydroxy groups, 1, 2 or 3 phenyl groups, 1, 2 or 3 alkanoyloxy group, 1, 2 or 3 benzoyloxy groups, 1, 2 or 3 haloalkyl groups, 1, 2 or 3 halophenyl groups, 1, 2 or 3 allyl groups, 1, 2 or 3 cycloalkylalkyl groups, 1, 2 or 3 adamantylalkyl groups, 1, 2 or 3 alkylamino groups, 1, 2 or 3 alkanoylamino groups, 1, 2 or 3 arylcarbonylamino groups, 1, 2 or 3 amino groups, 1, 2 or 3 nitro groups, 1, 2 or 3 cyano groups, 1, 2 or 3 thiol groups, and/or 15 1, 2 or 3 alkylthio groups with the aryl group preferably containing 3 substituents.

10

20

25

The term "aralkyl", "aryl-alkyl" or "aryl-lower alkyl" as used herein alone or as part of another group refers to lower alkyl groups as discussed above having an aryl substituent, such as benzyl.

The term "lower alkoxy", "alkoxy", or "aryloxy" or "aralkoxy" as employed herein alone or as part of another group includes any of the above lower alkyl, alkyl, aralkyl or aryl groups linked to an oxygen atom.

The term "lower alkylthio", "alkylthio", "arylthio" or "aralkylthio" as employed herein alone or as part of another group includes any of the 30 above lower alkyl, alkyl, aralkyl or aryl groups linked to a sulfur atom.

The term "lower alkylamino", "alkylamino", "arylamino", "arylalkylamino" as employed herein alone or as part of another group includes any of the above lower alkyl, alkyl, aryl or arylalkyl groups linked to a nitrogen atom.

The term "alkanoyl" as used herein as part of another group refers to lower alkyl linked to a carbonyl group.

The term "halogen" or "halo" as used herein refers to chlorine, bromine, fluorine, iodine and CF₃, with chlorine or fluorine being preferred.

Preferred are those compounds of formula I which have the following structure

lower alkyl;

5

10

20

wherein R is OH, OLi; RX is Li or H;
X is O or NH; and

or R^1 is benzyloxy which includes a halo substituent; R^2 and R^{2a} are the same and are halogen or Z may also preferably be

wherein R^1 and R^2 are as defined immediately above with respect to the compound of formula II, or

10

Z is

wherein R⁵ is H, CH₃ or OH and R⁶ is 15

20

The compounds of formula I of the invention may be prepared according to the following reaction sequence and description thereof.

= OH)
$$\frac{R^{b} \text{OH-DCC}}{(R^{b} = 1 \text{ower alkyl})}$$
 $\frac{R^{b} \text{O-P-CH}_{2} - \text{CH-CH}_{2}^{\text{CO}_{2}} \text{alkyl}}{\text{OH}}$ $\frac{0}{0}$ Pyridine (Esterification)

alkoxy)

or	2)	Z-(CH ₂) _n -XH (coupling reaction)	$R^{C}-P-CH_{2}-CH-CH_{2}CO_{2}$ alkyl
	-	(C ₂ H ₅) ₃ N, DMAP	$\begin{pmatrix} 1 & 1 & 1 \\ (CH_2)_n & Si - C(CH_3)_3 \\ z & z \\ C_6H_5 & C_6H_5 \end{pmatrix}$
			IIA
,		•	(R ^C = lower alkyl or lower
110	1)	1) $(n-C_4H_9)_4NF$, CH_3COOH , THF $(silyl)$ ether cleavage)	O H R-P-CH-CH-CH-CO,R ^X
110	2)	OH ⁻ , dioxane (Hydrolysis)	HO HO

As seen in the above reaction sequence, compounds of Formula I may be prepared by subjecting iodide A to an Arbuzov reaction by heating iodide \underline{A}

5

$$\underline{\underline{A}} \qquad \underline{I-CH_2-C-CH_2-CO_2}^{C_6H_5}$$

10

and phosphonite/phosphite III

III R^a-P(Oalkyl)₂

15

25

wherein R^a is lower alkyl or lower alkoxy, employing standard Arbuzov conditions and procedures to form phosphinate/phosphonate IV

IV $R^{a}-P$ CH_{2} CH_{2} CH_{2} CH_{2} CH_{3} C_{6} CH_{5} C_{6} C_{6} C_{6}

Phosphinate/phosphonate IV is a novel compound and as such is a part of the present invention.

Phosphinate/phosphonate IV is then subjected to a phosphorus ester cleavage by treating a solution of compound IV in an inert organic solvent, such as methylene chloride, sequentially with bis(trimethylsilyl)trifluoroacetamide (BSTFA) and trimethylsilyl bromide, under an inert atmosphere

such as argon to form the phosphinic acid VA where R^{a} in IV is lower alkyl, that is,

or phosphonic acid VB (wherein R^a in IV is lower alkoxy), that is

30

Compounds VA and VB are novel intermediates
and as such as part of the present invention.

Where phosphonic acid VB is obtained, it is esterified by treating VB in dry pyridine with alcohol

25 VC R^bOH (where R^b is lower alkyl)

and dicyclohexyl carbodiimide and the resulting reaction mixture is stirred under an inert atmosphere, such as argon, to form phosphonic mono alkyl ester VI

5

10

15

25

30

Ester VI or phosphinic acid VA is then dissolved in an inert organic solvent, such as, methylene chloride, benzene or tetrahydrofuran (THF) and treated with trimethylsilyldiethylamine and stirred under an inert atmosphere such as argon; the mixture is evaporated and then dissolved in methylene chloride (or other appropriate inert organic solvent). The resulting solution is cooled to a temperature within the range of from about 0°C to about 25°C, treated with oxalyl chloride and then evaporated to give crude phosphonochloridate. The phosphonochloridate is dissolved in inert organic solvent such as methylene chloride, benzene, pyridine or THF; the solution is cooled to 20 a temperature within the range of from about -20°C to about 0°C and treated with

Z-(CH₂)_n-XH B

employing a molar ratio of VI or $VA:\underline{B}$ of within the range of from about 0.5:1 to about 3:1 and preferably from about 1:1 to about 2:1, followed by triethylamine and catalytic 4-dimethylaminopyridine (DMAP) to form adduct VII

VII
$$R^{C}-P$$
— CH_{2} — $CH_{2}-CH_{2}-CO_{2}$ alkyl C_{6} C_{6}

wherein R^C is lower alkyl or lower alkoxy.

10 Compound VII is subjected to silyl ether cleavage by treating a VII in an inert organic solvent such as tetrahydrofuran, with glacial acetic acid and tetrabutylammonium fluoride to form ester VIII

15

20

 $(R^X = alkyl)$

The ester VIII may then be hydrolyzed to

the corresponding alkali metal salt or acid, that
is, where R^X is alkali metal or H by treatment with
strong base such as lithium hydroxide in the
presence of dioxane, tetrahydrofuran or other inert
organic solvent, under an inert atmosphere such as
argon, at 25°C, employing a molar ratio of
base:ester VIII of within the range of from about
1:1 to about 1.1:1 to form the corresponding alkali
metal salt

wherein R is lower alkyl or lower alkoxy.

10 Compound VIIIA may then be treated with strong acid such as HCl to form the corresponding acid VIIIB

The ester VIII wherein R is lower alkoxy may be converted to the corresponding di-alkali

may be converted to the corresponding at the metal salt by treating ester VIII with strong base at 50-60°C employing a molar ratio of base:ester

VIII of within the range of from about 2:1 to about 4:1 to form VIIIC

O VIIIC alkali metalo-P-CH₂-CH-CH₂-CO₂alkali metal X OH

The di-alkali metal salt VIIIC may be converted to the corresponding acid wherein R is OH by treatment with strong acid such as HCl to form VIIID

5

10

The iodide starting material \underline{A} may be prepared starting with the bromide \underline{C}

15

20 (prepared employing procedures as described in Tetrahedron Lett. <u>26</u>, 2951 (1985))

which is dissolved in solution in dimethylformamide (DMF) with imidazole and 4-dimethylamino pyridine and the resulting solution is treated with

25 t-butyldiphenyl silyl chloride under an inert atmosphere such as argon to form the silyl ether <u>D</u>

A solution of silyl ether <u>D</u> in an inert organic solvent such as methyl ethyl ketone or DMF is treated with sodium iodide under an inert atmosphere such as argon, to form iodide A.

The starting compound B

$$\underline{\mathbf{B}}$$
 \mathbf{Z} -(\mathbf{CH}_2)_n-XH

may be prepared as described below depending upon the definition of Z and X.

Thus, compounds of formula \underline{B} wherein Z is

$$R^{2} = 0$$

$$R^{2}$$

$$R^{2}$$

20 and X is O, that is, compounds of the structure

may be prepared by treating aldehyde E

5

$$\stackrel{\underline{E}}{\underset{\mathbb{R}^2}{=}} 0 \stackrel{\mathbb{R}^1}{\underset{\mathbb{R}^2}{=}} (CH_2)_{n-1} - CHO$$

with a reducing agent such as lithium aluminum hydride or sodium borohydride.

Compounds of formula B where Z is

$$R^{2a} \longrightarrow R^{1}$$

10

20

and X is N, that is compounds of the structure

may be prepared by oxidizing the aldehyde \underline{E} by treating \underline{E} in solution with acetone with, for example, Jones reagent to form the acid \underline{F}

$$\underline{F}$$
 \mathbb{R}^{2a} $\mathbb{C}^{\mathbb{R}^{2}}$ \mathbb{R}^{2a} \mathbb{R}^{2a} \mathbb{R}^{2a}

which in suspension with methylene chloride is treated with oxalyl chloride to form the corresponding acid chloride which is dissolved in an inert organic solvent such as tetrahydrofuran, and treated with a mixture of concentrated ammonium hydroxide in tetrahydrofuran to form an amide of the structure

15

25

5

10

$$\begin{array}{c}
\underline{G} \\
\mathbb{R}^{2} \\
\mathbb{R}^{2}
\end{array}$$

$$\begin{array}{c}
\mathbb{R}^{1} \\
\mathbb{C}^{1} \\
\mathbb{C}^{1}$$

Amide \underline{G} is then reduced to the corresponding amide \underline{B}^2 by treating \underline{G} with a reducing agent such as lithium aluminum hydride.

Starting compounds of formula \underline{B} wherein Z

is

and X is O or -NH-, that is, compounds of the structure

15
$$\underline{H'}$$

$$(R^{6a})_q$$

$$(R^{6a})_q$$

$$(R^{6a})_q$$

where X is O are disclosed by C. H. Heathcock et al,

J. Org. Chem. <u>50</u>, 1190 (1985). Compounds of
formula H' were X is NH may be prepared by the
reductive amination of

(prepared as disclosed by C. H. Heathcock et al, supra)

by treating \underline{J} with ammonium acetate and sodium cyanoborohydride in the presence of an alcohol solvent such as methanol.

Starting compound of formula \underline{B} wherein Z is

5

10

and X is O, that is, compounds of the structure

15

25

are disclosed in WO 8402-903-A and GB 2,162,179A both filed in the name of Sandoz.

Starting compounds of formula B wherein Z

is

10 and X is NH, that is, compounds of the structure

20 may be prepared by the reductive amination of the aldehyde O

25
$$O$$

$$\begin{array}{c}
\mathbb{R}^{2a} & \mathbb{R}^{1} \\
\mathbb{Q} & \mathbb{Q} & \mathbb{R}^{2b}
\end{array}$$

$$\begin{array}{c}
\mathbb{R}^{2b} & \mathbb{R}^{2} \\
\mathbb{R}^{2b} & \mathbb{R}^{2}
\end{array}$$

30

by treating <u>O</u> with ammonium acetate and sodium cyanoborohydride in the presence of an alcohol solvent such as methanol.

The compounds of the invention may be prepared as racemic mixtures and may later be resolved to obtain the S-isomer which is preferred. However, the compounds of the invention may be prepared directly in the form of their S-isomers as described herein and in the working examples set out hereinafter.

The compounds of the invention are inhibitors of 3-hydroxy-3-methyl-glutaryl coenzyme

10 A (HMG-CoA) reductase and thus are useful in inhibiting cholesterol biosynthesis as demonstrated by the following tests.

1) Rat Hepatic HMG-CoA Reductase

5

25

30

measured using a modification of the method described by Edwards (Edwards, P.A., et al., J. Lipid Res. 20:40, 1979). Rat hepatic microsomes are used as a source of enzyme, and the enzyme activity is determined by measuring the conversion of the ¹⁴C-HMG-CoA substrate to ¹⁴C-mevalonic acid.

a. Preparation of Microsomes

Livers are removed from 2-4
cholestyramine-fed, decapitated, Sprague Dawley
rats, and homogenized in phosphate buffer A
(potassium phosphate, 0.04 M, pH 7.2; KCl, 0.05 M;
sucrose, 0.1 M; EDTA, 0.03 M; aprotinin, 500 KI
units/ml). The homogenate is spun at 16,000 x g
for 15 minutes at 4°C. The supernatant is removed
and recentrifuged under the same conditions a
second time. The second 16,000 x g supernatant is

spun at 100,000 x g for 70 minutes at 4°C.

Pelleted microsomes are resuspended in a minimum volume of buffer A (3-5 ml per liver), and homogenized in a glass/glass homogenizer.

5 Dithiothreitol is added (10 mM), and the preparation is aliquoted, quick frozen in acetone/dry ice, and stored at -80°C. The specific activity of the first microsomal preparation was 0.68 nmole mevalonic acid/mg protein/minute.

b. Enzyme Assay

15

The reductase is assayed in 0.25 ml which contains the following components at the indicated final concentrations:

	0.04 M	Potassium phosphate, pH 7.0
	0.05 M	KCl
	0.10 M	Sucrose
20	0.03 M	EDTA
•	0.01 M	Dithiothreitol
	3.5 mM	NaCl
	1%	Dimethylsulfoxide
	50-200 µg	Microsomal protein
25	100 µM	14 C-[DL]HMG-CoA (0.05 μ Ci,
		30-60 mCi/mmole)
•	2.7 mM	NADPH (nicotinamide adenine
	-	dinucleotide phosphate)

Reaction mixtures are incubated at 37°C. Under conditions described, enzyme activity increases linearly up to 300 µg microsomal protein per reaction mixture, and is linear with respect to

incubation time up to 30 minutes. The standard incubation time chosen for drug studies is 20 minutes, which results in 12-15% conversion of HMG-CoA substrate to the mevalonic acid product. [DL-]HMG-CoA substrate is used at 100 μ M, twice the concentration needed to saturate the enzyme under the conditions described. NADPH is used in excess at a level 2.7 times the concentration required to achieve maximum enzyme velocity.

10

15

20

25

30

Standardized assays for the evaluation of inhibitors are conducted according to the following procedure. Microsomal enzyme is incubated in the presence of NADPH at 37°C for 15 minutes. DMSO vehicle with or without test compound is added, and the mixture further incubated for 15 minutes at 37°C. The enzyme assay is initiated by adding 14c-HMG-CoA substrate. After 20 minutes incubation at 37°C the reaction is stopped by the addition of 25 μ l of 33% KOH. ³H-mevalonic acid (0.05 µCi) is added, and the reaction mixture allowed to stand at room temperature for 30 minutes. Fifty µ1 5N HCl is added to lactonize the mevalonic acid. Bromophenol blue is added as a pH indicator to monitor an adequate drop in pH. Lactonization is allowed to proceed for 30 minutes at room temperature. Reaction mixtures are centrifuged for 15 minutes at 2800 rpm. The supernatants are layered onto 2 grams AG 1-X8 anion exchange resin (Biorad, formate form) poured in 0.7 cm (id) glass columns, and eluted with 2.0 ml H20. The first 0.5 ml is discarded, and the next 1.5 ml is

collected and counted for both tritium and carbon 14 in 10.0 ml Opti-fluor scintillation fluid. Results are calculated as nmoles mevalonic acid produced per 20 minutes, and are corrected to 100% recovery of tritium. Drug effects are expressed as I₅₀ values (concentration of drug producing 50% inhibition of enzyme activity) derived from composite dose response data with the 95% confidence interval indicated.

Conversion of drugs in lactone form to their sodium salts is accomplished by solubilizing the lactone in DMSO, adding a 10-fold molar excess of NaOH, and allowing the mixture to stand at room temperature for 15 minutes. The mixture is then partially neutralized (pH 7.5-8.0) using 1N HCl, and diluted into the enzyme reaction mixture.

10

15

20

25

2) Cholesterol Synthesis in Freshly Isolated Rat Hepatocytes

Compounds which demonstrate activity as inhibitors of HMG-CoA reductase are evaluated for their ability to inhibit ¹⁴C-acetate incorporation into cholesterol in freshly isolated rat hepatocyte suspensions using methods originally described by Capuzzi et al. (Capuzzi, D.M. and Margolis, S., Lipids, 6:602, 1971).

a. Isolation of Rat Hepatocytes

sprague Dawley rats (180-220 grams) are anesthetized with Nembutol (50 mg/kg). The abdomen is opened and the first branch of the portal vein is tied closed. Heparin (100-200 units) is injected directly into the abdominal

vena cava. A single closing suture is placed on the distal section of the portal vein, and the portal vein is canulated between the suture and the first branching vein. The liver is perfused at a rate of 20 ml/minute with prewarmed (37°C), oxygenated buffer A (HBSS without calcium or magnesium containing 0.5 mM EDTA) after severing the vena cava to allow drainage of the effluent. The liver is additionally perfused with 200 ml of prewarmed buffer B (HBSS containing 0.05% 10 bacterial collagenase). Following perfusion with buffer B, the liver is excised and decapsulated in 60 ml Waymouth's medium allowing free cells to disperse into the medium. Hepatocytes are isolated by low speed centrifugation for 3 minutes 15 at 50xg at room temperature. Pelleted hepatocytes are washed once in Waymouth's medium, counted and assayed for viability by trypan blue exclusion. These hepatocyte enriched cell suspensions routinely show 70-90% viability. 20

b. 14C-Acetate Incorporation into Cholesterol

Hepatocytes are resuspended at 5x10⁶ cells

per 2.0 ml in incubation medium (IM) [0.02 M

Tris-HCl (pH 7.4), 0.1 M KCl, 3.3 mM sodium

citrate, 6.7 mM nicotinamide, 0.23 mM NADP, 1.7 mM

glucose-6-phosphate].

Test compounds are routinely dissolved in

DMSO or DMSO:H₂O (1:3) and added to the IM. Final

DMSO concentration in the IM is < 1.0%, and has no

significant effect on cholesterol synthesis.

Incubation is initiated by adding $^{14}\text{C-acetate}$ (58 mCi/mmol, 2 µCi/ml), and placing the cell suspensions (2.0 ml) in 35 mm tissue culture dishes, at 37°C for 2.0 hours. Following incubation, cell suspensions are transferred to glass centrifuge tubes and spun at 50xg for 3 minutes at room temperature. Cell pellets are resuspended and lysed in 1.0 ml $_{2}$ 0, and placed in an ice bath.

5

30

Lipids are extracted essentially as 10 described by Bligh, E. G. and W. J. Dyer, Can. J. Biochem. and Physiol., 37:911, 1959. The lower organic phase is removed and dried under a stream of nitrogen, and the residue resuspended in (100 μ l) chloroform:methanol (2:1). The total sample 15 is spotted on silica gel (LK6D) thin-layer plates and developed in hexane:ethyl ether:acetic acid (75:25:1). Plates are scanned and counted using a BioScan automated scanning system. Radiolabel in the cholesterol peak (RF 0.28) is determined and 20 expressed at total counts per peak and as a percent of the label in the total lipid extract. Cholesterol peaks in control cultures routinely contain 800-1000 cpm, and are 9-20% of the label present in the total lipid extract; results 25 compatable with Capuzzi, et al., indicating 9% of extracted label in cholesterol.

Drug effects (% inhibition of cholesterol synthesis) are determined by comparing % of label in cholesterol for control and drug treated cultures. Dose response curves are constructed from composite data from two or more studies, and

results are expressed as I_{50} values with a 95% confidence interval.

3) Cholesterol Synthesis in Human Skin Fibroblasts

Compound selectivity favoring greater inhibitory activity in hepatic tissue would be an attribute for a cholesterol synthesis inhibitor. Therefore, in addition to evaluating cholesterol synthesis inhibitors in hepatocytes, these compounds are also tested for their activity as inhibitors of cholesterol synthesis in cultured fibroblasts.

a. Human Skin Fibroblast Cultures

Human skin fibroblasts (passage 7-27) are 15 grown in Eagles' minimal essential medium (EM) containing 10% fetal calf serum. For each experiment, stock cultures are trypsonized to disperse the cell monolayer, counted, and plated in 35 mm tissue culture wells (5x10⁵ cells/2.0 20 ml). Cultures are incubated for 18 hours at 37°C in 5% CO₂/95% humidified room air. Cholesterol biosynthetic enzymes are induced by removing the serum containing medium, washing the cell monolayers, and adding 1.0 ml of EM containing 25 1.0% fatty acid free bovine serum albumin, and incubating the cultures an additional 24 hours.

b. 14_{C-Acetate Incorporation into Cholesterol}

30

Induced fibroblast cultures are washed with EMEM₁₀₀ (Earle's minimal essential medium). Test compounds are dissolved in DMSO or DMSO:EM (1:3)

(final DMSO concentration in cell cultures < 1.0%), added to the cultures, and the cultures preincubated for 30 minutes at 37°C in 5% CO₂/95% humidified room air. Following preincubation with drugs, [1-14c]Na acetate (2.0 μ Ci/ml, 58 mCi/mmole) is added, and the cultures reincubated for 4 hours. After incubation, the culture medium is removed, and the cell monolayer (200 µg cell protein per culture) is scraped into 1.0 ml of H20. Lipids in the lysed cell suspension are extracted into chloroform:methanol as described for hepatocyte The organic phase is dried under suspensions. nitrogen, and the residue resuspended in chloroform:methanol (2:1) (100 μ l), and the total sample spotted on silica gel (LK6D) thin-layer plates, and analyzed as described for hepatocytes.

10

15

20

25

30

Inhibition of cholesterol synthesis is determined by comparing the percent of label in the cholesterol peak from control and drug-treated cultures. Results are expressed as I_{50} values, and are derived from composite dose response curves from two or more experiments. A 95% confidence interval for the I_{50} value is also calculated from the composite dose response curves.

A further aspect of the present invention is a pharmaceutical composition consisting of at least one of the compounds of formula I in association with a pharmaceutical vehicle or diluent. The pharmaceutical composition can be formulated employing conventional solid or liquid vehicles of diluents and pharmaceutical additives of a type appropriate to the mode of desired administration. The compounds can be administered

by an oral route, for example, in the form of tablets, capsules, granules or powders, or they can be administered by a parenteral route in the form of injectable preparations, such dosage forms containing from 1 to 2000 mg of active compound per dosage, for use in the treatment. The dose to be administered depends on the unitary dose, the symptoms, and the age and the body weight of the patient.

administered in a similar manner as known compounds suggested for use in inhibiting cholesterol biosynthesis, such as lovastatin, in mammalian species such as humans, dogs, cats and the like. Thus, the compounds of the invention may be administered in an amount from about 4 to 2000 mg in a single dose or in the form of individual doses from 1 to 4 times per day, preferably 4 to 200 mg in divided dosages of 1 to 100 mg, suitably 0.5 to 50 mg 2 to 4 times daily or in sustained release form.

The following working Examples represent preferred embodiments of the present invention. Unless otherwise indicated, all temperatures are expressed in degrees Centigrade. Flash chromatography was performed on either Merck 60 or Whatmann LPS-I silica gel. Reverse phase chromatography was performed on CHP-20 MCI gel resin supplied by Mitsubishi, Ltd.

Example 1

5

10

(S)-4-[[[4'-Fluoro-3,3',5-trimethyl[1,1'-biphenyl]-2-yl]methoxy]methoxyphosphinyl]-3-hydroxy-butanoic acid, monolithium salt

A. N-(2,4-Dimethylbenzylidene)benzeneamine

15 Ref. Merck U. S. Patent No. 4,375,475, pg. 39.

A solution of freshly distilled 2,4-dimethylbenzaldehyde (Aldrich, 6.97 ml, 50 mmole) and distilled aniline (Aldrich, 4.56 ml, 50 mmole) in dry toluene (80.0 ml) was refluxed for

- 20 3.0 hours under argon in a flask equipped with a Dean-Stark apparatus. The mixture was cooled, then evaporated in vacuo to a yellow oil. The crude oil was purified by Kugelrohr distillation (0.5 mm Hg, 160-180°C) to give 8.172 g (78.1%) of
- desired title benzeneimine as a light yellow oil which crystallized on standing to a low melting solid. TLC (4:1) Hex-acetone, RF=0.67 and 0.77 (geometric isomers), U.V. and I2.

25

30

Ref. Merck U.S. Patent No. 4,375,475, pg. 39. 10 A mixture of Part A benzeneimine (6.0 g, 28.7 mmol) in glacial HOAc (144 ml) was treated with palladium (II) acetate (6.44 g, 28.7 mmole) and the clear, red homogeneous solution refluxed under argon for one hour. The resulting turbid 15 mixture was filtered warm through a packed 3" bed of Celite into 900 ml of H20. Precipitated orange solid was collected by filtration and dried in vacuo at 65°C over P205 for 16.0 hours to give 10.627 g (85°.5%) of desired title palladium 20 complex as an orange solid with m.p. = 194°-196°C. (Literature m.p. of a recrystallized analytical sample = 203°-205°C).

C. 4'-Fluoro-3,3',5-trimethyl[1,1'biphenyl]-2-carboxaldehyde

(1) Bromo[4-fluoro-3-methylphenyl]magnesium

Ref. Merck U. S. Patent No. 4,375,475, pp. 37 and 38.

The title Part C(1) Grignard reagent was prepared by adding 5-bromo-2-fluorotoluene (22.5 g, 60.9 mmole, Fairfield Chemical Co.) dropwise

at a rate sufficient to maintain the reaction at reflux to stirred magnesium turnings (1.35 g, 55.4 mmole, 8.0 eq.) in dry Et₂O (70.0 ml). The reaction was initiated in an ultrasound device. After bromide addition was complete, the mixture was stirred for one hour under argon at room temperature, refluxed for 15 minutes and then allowed to cool to room temperature.

10

(2) 4'-Fluoro-3,3',5-trimethyl[1,1'-biphenyl]-2-carboxaldehyde

In a second flask, a mixture of the Part B dipalladium complex (3.0 g, 6.92 mmole) and triphenylphosphine (14.52 g, 55.4 mmole, 8.0 eq.) in dry benzene (100 ml) was stirred at room 15 temperature under argon for 30 minutes. Freshly prepared and filtered (glass wool plug) Part C (1) Grignard reagent was then added in one portion by means of a cannula to this solution and the mixture was stirred for 1.5 hours at room 20 temperature under argon. 6.0 N HCl (35 ml) was added, the mixture stirred an additional hour at room temperature, then filtered through packed Celite (% bed). The filtrate was extracted with Et₂O (250 ml), the extract washed with brine (2 x 25 100 ml), dried over anhydrous MgSO₄ and evaporated in vacuo to give 13.35 g of a viscous orange oil which crystallized on standing. The crude orange solid was purified by flash chromatography on silica gel (700 g) eluting with hexane, followed by 30 (95:5) hexane-Et₂O. Product fractions were evaporated to give 1.507 g (89.9%) of desired title aldehyde as a light yellow solid with m.p. =

72°-75°C) (Literature reports m.p. = 73° -74°C). TLC: (95:5) Hex-Et₂O, Rf = 0.40, U.V. and PMA.

D. 4'-Fluoro-3,3',5-trimethyl[1,1'-biphenyl]-2-methanol

A cooled (0°C, ice bath) solution of dry ${\rm Et_2O}$ (15.0 ml) was treated with LiAlH₄ (259 mg, 6.82 mmole, 0.55 eq.) and the gray suspension treated dropwise over 15 minutes with a solution of the Part C aldehyde (3.0 g, 12.4 mmole) in dry Et₂O (15 ml). The mixture was stirred at room temperature under argon for 30 minutes, then cooled back to 0°C and quenched by sequential dropwise addition of 260 μ l H₂O, 260 μ l of 15% NaOH and 780 μ l H_2 O. The suspension was diluted with EtOAc, filtered through anhydrous Na2SO4 over packed Celite (1/2" bed) and the colorless filtrate evaporated in vacuo to give 2.99 g (98.8%) of a white solid. Trituration of the crude solid with cold hexane and drying in vacuo afforded 2.467 g (81.6%) of desired title alcohol as a white solid with m.p. 102-103°C. TLC: (9:1) Hex-EtOAc, Rf =

10

15

30

E. (S)-3-[[(1,1-Dimethylethyl)diphenyl-silyl]oxy]-4-(hydroxymethoxyphosphinyl)-butanoic acid, methyl ester

0.24, U.V. and PMA.

- (1) (S)-4-Bromo-3-hydroxybutanoic acid, methyl ester
 - (1)(a) [R-(R*,R*)]-2,3,4-trihydroxy-butanoic acid, calcium salt, hydrate

Ref. Carbohydrate Research 72, pp. 301-304 (1979). Calcium carbonate (50 g) was added to a solution of D-isoascorbic acid (44.0 g, 250 mmol) in H2O (625 ml), the suspension cooled to 0°C (ice bath) and treated portionwise with 30% $\rm H_2O_2$ (100 ml). The mixture was stirred at 30°-40°C (oil bath) for 30 minutes. Darco (10 g) was added and the black suspension heated on a steam bath until evolution of O_2 ceased. The suspension was filtered through Celite, evaporated in vacuo (bath The residue was taken up in temperature 40°C). H₂O (50 ml), warmed on a steam bath and CH₃OH was added until the solution was turbid. The gummy precipitated solid was collected by filtration and air dried to give 30.836 g (75.2%) of desired calcium salt as a powdery white solid. TLC (7:2:1) $iProh-NH_4OH-H_2O$, Rf = 0.19, PMA.

> (1)(b) $[S-(R^*,S^*)]-2,4-Dibromo-3$ hydroxybutanoic acid, methyl ester

Ref. Bock, K. et al., Acta Scandinavica (B) 37, pp. 341-344 (1983)

20

25

Part (1)(a) calcium salt (30 g) was dissolved in 30-32% HBr in acetic acid (210 ml) and stirred at room temperature for 24 hours. Methanol (990 ml) was then added to the brown solution and it was stirred overnight. The mixture was evaporated to an orange oil, taken up in CH3OH (75 ml), refluxed for 2.0 hours and evaporated. 30 The residue was partitioned between EtOAc (100 ml) and $\mathrm{H}_2\mathrm{O}$, the organic phase washed with $\mathrm{H}_2\mathrm{O}$ (2x) and brine then dried over anhydrous Na2SO4 and

evaporated to give 22.83 g (90.5%) of crude dibromide as a light orange oil. TLC (1:1) EtOAc-Hex, Rf = 0.69, UV & PMA.

(1)(c) (S)-4-Bromo-3-hydroxybutanoic acid, methyl ester

Ref. the same as for preparation of (1)(b).

5

An argon purged solution of the dibromide (20.80 g, 75.4 mmol) and anhydrous NaOAc (21.0 g) in

- 10 EtOAc (370 ml) and glacial HOAc (37 ml) was treated with 5% Pd/C (1.30 g) and the black suspension stirred under of H₂ (1 atm) while monitoring H₂ uptake. After 2.0 hours H₂ uptake was complete, the mixture was
- filtered through Celite, the filtrate washed with saturated NaHCO₃ and brine then dried over anhydrous MgSO₄ and evaporated to give crude dibromoester as a brown oil. The crude oil was combined with another batch (starting from 36.77 g
- of the dibromide) and vacuum distilled to give 25.77 g (61.3%) of desired title bromoester as a clear oil with b.p. = 79°-80°C (1.0 mm Hg). TLC (1:1) EtOAc-Hex, Rf = 0.44, PMA.
- 25 Anal Calcd for C₅H₉O₃Br: C, 30.48; H, 4.60; Br, 40.56 Found: C, 29.76; H, 4.50; Br, 39.86
- (2) (S)-4-Bromo-3-[[(1,1-dimethylethyl)
 diphenylsilyl]oxy]butanoic acid, methyl

 ester

A solution of part E(1) bromohydrin (4.0 g, 20.4 mmol), imidazole (6.94 g, 5.0 eq.), and

4-dimethylamino pyridine (4-DMAP) (12 mg, 0.005 eq.) in dry DMF (40 ml) was treated with t-butyl-diphenylsilyl chloride (5.84 ml, 1.1 eq.) and the homogeneous mixture stirred overnight under argon at room temperature. The mixture was partitioned between 5% KHSO₄ and EtCAc, the organic phase washed with H₂O and brine, dried over anhydrous Na₂SO₄ and evaporated to give 9.32 g (100%) of crude silyl ether as a clear, viscous oil. TLC (3:1) Hex-EtOAc, Rf silyl ether = 0.75, U.V. and PMA.

10

15

(3) (S)-4-Iodo-3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]butanoic acid,
methyl ester

A solution of the crude Part E(2) bromide (9.32 g, 201 mmole) in methyl ethyl ketone (60 ml, dried over 4Å sieves) was treated with sodium iodide (15.06 g, 100.5 mmole, 5.0 eq.) and the yellow suspension refluxed for 5.0 hours under 20 argon. The mixture was cooled, diluted with EtOAc, filtered, the filtrate washed with dilute NaHSO3 (until colorless) and brine then dried over anhydrous Na2SO4 and evaporated in vacuo to give 10.17 g of a yellow oil. The crude oil was 25 purified by flash chromatography on silica gel (600 g) eluting with (3:1) Hexane-CH₂Cl₂. Product fractions were combined and evaporated to give 7.691 g (74.2%, overall yield for both steps) of desired title iodide as a clear, colorless, viscous 30 TLC (3:1) Hex-EtOAc, product. Rf = 0.75, U.V. (Note: product iodide co-spots with and PMA. starting bromide).

(4) (S)-4-(Diethoxyphosphinyl)-3-[[(1,1dimethylethyl)diphenylsilyl]oxy]butanoic acid, methyl ester

A solution of the iodide (7.691 g) in triethyl phosphite (20 ml) was heated at 155°C (oil bath) for 3.5 hours under argon. was cooled and excess phosphite distilled off in vacuo (0.5 mm Hg, 75°C) to leave a yellow oil (~8.0 g). The crude oil was purified by flash chromatography on silica gel (400 g) eluting with 10 (4:1) Hexane-acetone. Product fractions were evaporated to give 3.222 g (41.1%) of desired title phosphonate as a clear, colorless, viscous oil. TLC (1:1) Hex-acetone, Rf = 0.51, U.V. and PMA. Additionally 2.519 g (61.1% corrected yield) of 15 starting Part (3) iodide was recovered.

> (5) (S)-3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-4-phosphonobutanoic acid, methyl ester

20

25

A solution of the Part (4) phosphonate $(9.85 \text{ g}, 20.0 \text{ mmole}) \text{ in dry } CH_2Cl_2 (60 \text{ ml}) \text{ was}$ treated sequentially with bistrimethylsilyltrifluoroacetamide (BSTFA) (5.31 ml, 32.0 mmole, 1.6 eq.) and trimethylsilyl bromide (TMSBr) (6.60 ml 50.0 mmole, 2.5 eq. and the clear mixture stirred overnight under argon at room temperature. . 5% ${
m KHSO_4}$ (80 ml) was added and the mixture was The aqueous phase was extracted with EtOAc. saturated with NaCl and re-extracted with EtOAc. 30 The combined organic layers were washed with brine, dried over anhydrous $\mathtt{Na_2SO_4}$ and evaporated in vacuo to give crude title phosphonic acid as a

viscous oil. TLC (7:2:1) $iPrOH-NH_4OH-H_2O$, Rf = 0.30, U.V. and PMA.

5

25

(6) (S)-3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-4-(hydroxymethoxyphosphinyl)butanoic acid, methyl ester

Part (5) crude phosphonic acid (~20.0 mmole) in dry pyridine (25 ml) was treated with dried CH₃OH. (over 3Å sieves, 1.62 ml, 40.0 mmole, 2.0 eq.) and dicyclohexyl carbodiimide (DCC) (4.54 10 gm, 22.0 mmole, 1.10 eq.) and the resulting white suspension stirred under argon at room temperature overnight. Pyridine was removed in vacuo, then azeotroped with benzene (2 x 15 ml). The residual oil was dissolved in EtOAc, filtered and washed 15 with 1.0 N HCl and brine, dried over anhydrous Na2SO4 and evaporated in vacuo to give 8.272 g of crude title ester as an oil containing a small amount of precipitated dicyclohexyl urea (DCU). TLC (7:2:1) $iProH-NH_4-OH\ H_2O$, Rf = 0.60, 20 U.V. and PMA.

F. (S)-4-[[[4'-Fluoro-3,3',5-trimethyl[1,1'-biphenyl]-2-yl]methoxyphosphinyl]3-t-butyldiphenylsilyloxybutanoic acid,
methyl ester

Part E crude phosphonic acid mono methyl ester (6.595 gm, ~14.7 mmole) was dissolved in dry CH₂Cl₂ (30 ml), treated with distilled trimethylsilyldiethylamine (5.60 ml, 29.4 mmole, 2.0 eq.) and stirred under argon at room temperature for 1 hour. The mixture was evaporated in vacuo, chased with benzene (1 x 30 ml) and dried in vacuo.

The light yellow viscous oil was dissolved in dry CH₂Cl₂ (30 ml) and DMF (dried over 4Å sieves, 2 drops), the clear solution cooled to -10°C (salt/ice bath) and treated dropwise via syringe with distilled oxalyl chloride (1.41 ml, 16.2 mmole, 1.1 eq.). Vigorous gas evolution was evident and the solution became deeper yellow in color. The mixture was stirred under argon at -10°C for 15 minutes then allowed to stir at room temperature for 1 hour. The mixture was evaporated in vacuo, chased with benzene (1 x 30 ml) and dried in vacuo:to give crude phosphonochloridate as a yellow oil.

To a solution of the crude phosphono
15 chloridate (~ 14.7 mmole) in dry CH₂Cl₂ (10 ml)

was added dropwise a solution of the Part D

biphenyl alcohol (2.06 g, 8.43 mmole) in dry

pyridine (15 ml) and the resulting mixture stirred

at room temperature under argon for 16 hours.

20 The mixture was evaporated to dryness and the

- The mixture was evaporated to dryness and the residue partitioned between 5% KHSO₄ and EtOAc. The organic phase washed with saturated NaHCO₃ and brine then dried over anhydrous Na₂SO₄ and evaporated in vacuo to give 8.290 g of a brown
- oil. The crude product was purified by flash chromatography on silica gel (370 g) eluting with (70:30) Hexane-acetone. Product fractions were combined and evaporated to give 3.681 g (66%) of the desired title phosphonate as a pale yellow
- oil. TLC (3:2) Hexane-acetone, Rf = 0.59, U.V. and PMA.

G. (S)-4-[[[4'-Fluoro-3,3',5-trimethyl[1,1'-biphenyl]-2-yl]methoxyphosphinyl]3-hydroxybutanoic acid, methyl ester

A mixture of the Part F silyl ether (1.103 g, 1.66 mmole) in dry THF (20.0 ml) was treated with glacial acetic acid (380 μ 1, 6.64 mmole, 4.0 eq.) and a 1.0 M tetrabutylammonium fluoride solution (4.98 ml, 4.98 mmole, 3.0 eq.) and the clear yellow solution stirred overnight at room temperature under argon. The mixture was partitioned between cold H2O and EtOAc, the organic phase washed with saturated NaHCO3 and brine, dried over anhydrous Na₂SO₄ and evaporated to a viscous yellow oil (1.174 g). crude oil was purified by flash chromatography on silica gel (47 g) eluting with (85:15) CH2Cl2-Acetone. Product fractions were evaporated to give 679 mg (93.1%) of desired title alcohol as a clear viscous oil. TLC (1:1) Hexane-acetone, Rf = 0.41, U.V. and PMA.

5

10

15

20

25

30

H. (S)-4-[[[4'-Fluoro-3,3',5-trimethyl[1,1'-biphenyl]-2-yl]methoxy]methoxyphosphinyl]-3-hydroxy-butanoic acid,
monolithium salt

A solution of the Part G methyl ester (184 mg, 0.420 mmole) in dioxane (5.0 ml) was treated with 1.0 N LiOH (0.50 ml, 1.2 eq.) and the mixture stirred at room temperature under argon for 3 hours. The mixture was diluted with $\rm H_2O$, filtered through a 0.4 μm polycarbonate membrane and evaporated in vacuo. The residue dissolved in $\rm H_2O$ (75 ml), frozen and lyophilized. The crude acid

was dissolved in a minimum amount of H₂O and chromatographed on a 100 ml bed of CHP-20 resin eluting with a H₂O/CH₃CN linear gradient system. Product fractions were evaporated, dissolved in H₂O (50 ml), filtered through 0.4 μm polycarbonate membrane and lyophilized to give 174 mg (89.1% based on weight of hydrate) of desired title mono-lithium salt as a white solid. TLC (7:2:1) iPrOH-NH₄OH-H₂O, Rf = 0.58 , U.V. and PMA.

Anal Calcd for $C_{21}H_{25}O_6PFLi + 1.95$ moles H_2O (MW

465.46): C, 54.19; H, 6.26; F, 4.08; P. 6.65 Found: C, 54.19; H, 6.21; F, 4.29; P, 6.43

H¹ NMR (400 HMz): 15 δ 1.74-2.08 ppm (2H, m, -PO(OCH₃)<u>CH</u>₂-) (3H, s, aromatic methyl) 2.30 (3H, d, aromatic methyl α to 2.32 fluorine, J_{HF}2.2 Hz) $(2H, m, -\underline{CH}_2CO_2Li)$ 2.35-2.62 20 (3H, s, aromatic methyl) 2.46 3.57 & (3H, 2 doublets, $-OP(OCH_3)$ -, 3.63 2 diastereomers, J_{H-D}= 10.3 Hz) (1H, m, $-CH_2CH(OH)CH_2CO_2Li$) 25 4.28 (2H, m, PhCH2OP(OCH3)R) 4.97 (5H, m, aromatic H's) 6.87-7.25

Example 2

(S)-4-[[4'-Fluoro-3,3',5-trimethyl[1,1'-biphenyl]-2-yl]methoxy]hydroxyphosphinyl]-3-hydroxybutanoic acid, dilithium salt

5

10

15

20

25

A solution of the Example 1 diester (374 mg, 0.853 mmole) in dioxane (8.0 ml) was treated with 1.0 N LiOH (2.6 ml, 3.0 eq.) and heated at 50°C (oil bath) for 5.0 hours under argon. white precipitate was evident. The mixture was diluted with H₂O and filtered. The aqueous solution was extracted once with Et20, filtered through a 0.4 µm polycarbonate membrane and concentrated in vacuo. The crude product was chromatographed on CHP-20 resin (100 ml bed) eluting with a H₂O/CH₃CN linear gradient system. Product fractions were evaporated in vacuo, taken up in $\rm H_2O$ (50 ml), filtered through a 0.4 μm polycarbonate membrane and lyophilized to give 260 mg (67.1% based on hydrate weight) of desired title di-lithium salt as a white solid. TLC (7:2:1). ProH-NH4OH-H2O, Rf=0.47, U.V. and PMA.

Anal Calcd for C₂₀H₂₂O₆PFLi₂ + 1.77 moles H₂O: C, 52.88, H, 5.67; F, 4.18; P, 6.82 Found: C, 52.88; H, 5.26; F, 4.24; P, 6.43

H1 NMR (400 MHz, CD30D):

6 1.69 ppm (2H, m, -OPCH₂CH(OH)-)

2.26-2.42 (2H, m, CH₂CO₂Li)

2.30 (3H, s, aromatic methyl)

2.31 (3H, d, aromatic methyl α

to F, J_{HF}=1.9 Hz)

2.38 (3H, s, aromatic methyl)
4.22 (1H, m, -CH(OH)CH₂-)

0
4.75 (2H, m, PhCH₂OP-)

1

6.86-7.23 (5H, m, aromatic protons)

Example 3

(3S)-4-[[[4'-Fluoro-3,3',5-trimethyl[1,1'-biphenyl]10 2-yl]methoxy]methylphosphinyl]-3-hydroxybutanoic
acid, monolithium salt

A. (S)-4-[(Chloro)methylphosphinyl]-3[[(1,1-dimethylethyl)diphenylsilyl]oxy]butanoic acid, methyl ester

The title phosphinochloridate compound is prepared as described in Example 6 Part B first three paragraphs.

15

20

25

30

B. (3S)-4-[[[4'-Fluoro-3,3',5-trimethyl-[1,1'-biphenyl]-2-yl]methoxy]methylphosphinyl]-3-t-butyldiphenylsilyloxybutanoic acid, methyl ester

A cooled (0°C, ice bath) solution of Part A phosphinochloridate (~2.2 mmole) and Example 1 Part C(2) biphenyl alcohol (429 mg, 2.2 mmole, 1.0 eq) in dry CH₂Cl₂ (10 ml) was treated with Et₃N (425 μl, 3.04 mmole, 1.4 eq) and 4-DMAP (27 mg, 0.22 mmole) and the orange solution stirred at room temperature overnight under argon. The mixture was partitioned between 5% KHSO₄ and EtoAc, the organic layer washed with brine, dried over anhydrous Na₂SO₄ and evaporated to give 1.1 g of an orange oil. The crude oil was purified by flash

chromatography on LPS-1 silica gel (44 g) eluting with (1:1) EtOAc:Hexane. Product fractions were combined and evaporated to give 298 mg (21%) of desired coupled title product as a pale yellow oil. Also 460 mg (67% corrected yield) of starting Example 1 Part C(2) biphenyl alcohol was recovered. TLC (1:1) EtOAc:Hex, Rf=0.18 UV and PMA.

C. (3S)-4-[[[4'-Fluoro-3,3',5-trimethyl[1,1'-biphenyl]-2-yl]methoxy]methylphosphinyl]-3-hydroxybutanoic acid,
methyl ester

10

30

A solution of the Part B silyl ether (298 mg, 0.46 mmole) in dry THF (6.0 ml) was treated with glacial HOAc (110 μ l, 1.84 mmole, 4.0 eq) and 15 a 1.0 M in THF solution of tetrabutylammonium fluoride (1.43 ml, 3.1 eq) and the resulting solution stirred overnight under argon at room temperature. The mixture was partitioned between cold H₂O and EtOAc, the organic phase washed with . 20 saturated NaHCO3 and brine, dried over anhydrous Na2SO4 and evaporated to a yellow oil (273 mg). The crude oil was purified by flash chromatography on LPS-1 silica gel (11 g) eluting with (3:2) Hex-acetone. Product fractions 25 were combined and evaporated to give 150 mg (80%) of desired title alcohol as a viscous oil. TLC (1:1) Hex:acetone, Rf=0.23, UV and PMA.

D. (3S)-4-[[[4'-Fluoro-3,3',5-trimethyl[1,1'-biphenyl]-2-yl]methoxy]methylphosphinyl]-3-hydroxybutanoic acid,
monolithium 'salt

A solution of the Part C methyl ester (150 mg, 0.367 mmole) in dioxane (3.0 ml) was treated with 1.0 N LiOH (0.44 ml, 1.2 eq.) and the resulting white suspension was stirred at room temperature under argon for 2 hours. The mixture was diluted with ${\rm H_2O}$, filtered through a 0.4 μm polycarbonate membrane and evaporated in vacuo to a colorless glass.

The crude product was taken up in a minimum amount of H₂O and chromatographed on HP-20 (100 ml bed) eluting with a H2O/CH3CN linear gradient. Product fractions were evaporated, taken up in H20 (50 ml), filtered through a 0.4 μm polycarbonate membrane and lyophilized to give 130 mg (79% based on hydrate weight) of desired title lithium salt as 15 a white solid. TLC (8:1:1) CH₂Cl₂-CH₃OH-HOAC, Rf=0.52, UV and PMA.

Anal Calcd for $C_{21}^{H_{25}O_{5}}$ FLiP + 1.73 moles H_{2}^{O} (MW 445.49): C, 56.61; H, 6.44; F. 4.26; P, 6.95 20 Found: C, 56.67; H, 6.36; F, 4.31; P, 7.43

H1 NMR (400 MHz):

10

 δ 1.49 ppm (3H, d, $-OP(CH_3)$ -, J_{H-P} =14.7 Hz) 25 (2H, m, P-(CH₃)CH₂-) 1.83-2.0 (2H, m, CH2CO2Li) 2.27-2.40 (6H, s, 2 aromatic methyl's) 2.30 (3H, s, aromatic methyl) 2.44 30 (1H, m, -CH₂CH(OH)CH₂CO₂Li) 4.26

4.87 (2H, m, Ar<u>CH</u>₂OP(CH₃)-) 6.90-7.20 (5H, m, aromatic H's)

Example 4

(S)-4-[[[2,4-Dichloro-6-[(4-fluorophenyl)methoxy]-phenyl]methoxy]methoxyphosphinyl]-3-hydroxy-butanoic acid, monolithium salt

A. 2,4-Dichloro-6-(4-fluorophenylmethoxy)-benzaldehyde

(Ref.: J. Med Chem., 1986, 29, 167)

10

15

20

25

30

A solution of 13.77 g (72.5 mmol) of 4,6-dichloro-2-hydroxybenzaldehyde in 100 ml of DMF was stirred and 12.02 g (87 mmol) of K₂CO₃ was added. This mixture was heated to ~70°C for 60 minutes, then 11.7 ml of 4-fluorobenzyl bromide was added. The resulting solution was stirred at 70°C for 3.5 hours, then this was poured onto ice H₂O (1.5 1), filtered and washed with H₂O, and recrystallized from Et₂O/petroleum ether. Yield: 17.88 g (83%) of off-white crystals, m.p. 107-108°C.

B. 2,4-Dichloro-6-[(4-fluorophenyl)-methoxy]benzenemethanol

cold (0°C, ice bath), dry Et₂O (10.0 ml) was treated with LiAlH₄ (158 mg, 4.16 mmole, 0.6 eq.) and the grey suspension treated dropwise with a solution of Part A aldehyde (2.06 g, 6.93 mmole) in 10 ml dry THF. The mixture was warmed to room temperature and stirred for an hour under argon. The mixture was cooled back to 0°C (ice bath) and quenched by sequential dropwise addition

of H_2O (160 µl), 15% NaOH (160 µl) and H_2O (475 µl). Precipitated salts were removed by filtration through anhydrous Na_2SO_4 over packed Celite ($\frac{1}{2}$ " bed). The clear filtrate was evaporated to give 2.052 g (98.9%) of crude alcohol as white

2.052 g (98.9%) of crude alcohol as white crystals. One trituration with cold hexane afforded 1.892 g (91.2%) of pure title alcohol as a white crystalline solid with m.p. = 72-73°C.

10 TLC (4:1) Hex-acetone, Rf=0.31, UV and PMA.

20

25

Anal Calcd for C₁₄H₁₁O₂Cl₂F (MW 301.142): C, 55.84; H, 3.68; Cl, 23.55; F, 6.31 15 Found: C, 55.97; H, 3.71; Cl, 23.42; F, 6.30

C. (S)-4-[[[2,4-Dichloro-6-[(4-fluorophenyl)methoxy]phenyl]methoxy]methoxyphosphinyl]-3-t-butyldiphenylsilyloxybutanoic acid, methyl ester

A solution of the Example 1 Part E(6) methyl ester (~3.84 mmole) in dry $\mathrm{CH_2Cl_2}$ (10 ml) was treated with distilled trimethylsilyl diethylamine (1.46 ml, 7.68 mmole, 2.0 eq.) and the resulting solution stirred at room temperature under argon for 1.0 hour. The mixture was evaporated in vacuo, chased with benzene (1 x 20 ml) and dried in vacuo to give crude silylated phosphonic acid mono methyl ester as a colorless

A solution of the crude ester (~3.84 mmole) in dry CH₂Cl₂ (10 ml) and dry DMF (1 drop) was cooled to -10°C (salt, ice bath) and treated

dropwise with distilled oxalyl chloride (368 µl, 4.22 mmole, 1.1 eq.). Gas evolution was evident from the clear yellow mixture. The mixture was stirred at room temperature under argon for one hour, evaporated in vacuo, chased with benzene (2 x 20 ml) to give crude phosphonochloridate as a viscous yellow oil.

The crude phosphonochloridate (~3.84 mmole) in dry CH2Cl2 (10 ml) at 0°C (ice bath) was treated with Part B alcohol (1.15 g, 3.84 mmole, 1.0 eq.) 10 followed by Et₃N (805 μ l, 5.76 mmole, 1.5 eq.) and 4-DMAP (47 mg, 0.384 mmole, 0.1 eq.) and the brown mixture stirred overnight at room temperature. under argon. The mixture was partitioned between 5% KHSO4 and EtOAc, the organic phase washed with brine, dried over anhydrous Na2SO4 and evaporated to give 3.197 g of a dark brown oil. The crude product was purified by flash chromatography on silica gel (160 g) eluting with (7:3) Hex-EtOAc. Product fractions were combined and evaporated to 20 give 594 mg (21.1%) of desired title phosphonate as a yellow oil. Additionally, 688 mg (52.4% corrected yield) of starting Part B alcohol was recovered. TLC (1:1) Hex-acetone, Rf=0.29, UV and PMA.

25

D. (S)-4-[[[2,4-Dichloro-6-[(4-fluoro-phenyl)methoxy]phenyl]methoxy]methoxy-phosphinyl]-3-hydroxy butanoic acid, methyl ester

A solution of the Part C silyl ester (578 mg, 0.788 mmole) in dry THF (8 ml) was treated with glacial HOAc (180 μl, 3.2 mmole, 4.0 eq.) followed by 1.0 M solution of n-Bu₄NF in THF (2.36

ml, 2.36 mmole, 3.0 eq.) and the resulting pale yellow solution stirred overnight under argon at room temperature. The mixture was poured into cold H₂O and extracted with EtOAc (2X). The organic phase was washed with saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄ and evaporated to give 625 mg of a yellow oil. The crude product was purified by flash chromatography on silica gel (31 g) eluting with (7:3) Hexane-acetone. Product fractions were combined and evaporated to give 339 mg (86.9%) of desired title alcohol as a clear, colorless, viscous oil.

15 E. (S)-4-[[[2,4-Dichloro-6-[(4-fluoro-phenyl)methoxy]phenyl]methoxy]methoxy-phosphinyl]-3-hydroxybutanoic acid,

monolithium salt

10

A solution of the Part D phosphonate (132 mg, 0.267 mmole) in dioxane (2.5 ml) was treated . 20 with 1.0 N LiOH (0.32 ml, 1.2 eq.) and the mixture stirred under argon at room temperature for 4.0 A white precipitate was noted. mixture was diluted with H20, filtered and the filtrate evaporated to dryness in vacuo. The 25 residue was chromatographed on HP-20 resin (100 ml bed) eluting with a H2O/CH3CN linear gradient system. Product fractions were combined and evaporated, taken up in H2O, filtered through a 0.4 µm polycarbonate membrane and lyophilized to give 30 108 mg (79% based on hydrate weight) of desired title lithium salt as a white solid.

TLC (20:1:1) CH_2Cl_2 - CH_3OH -HOAC, Rf = 0.41, UV and PMA.

Anal Calcd for $C_{19}^{H_{18}O_7Cl_2Fli_2P} + 1.42 \text{ moles } H_2O_5$ (MW 511.72): C, 44.59; H, 4.10; Cl, 13.86; F, 3.71; P, 6.05

Found: C, 44.22; H, 4.09; Cl, 13.91; F, 3.72; P, 6.11

10 H¹ NMR (400 MHz):

25

30

δ 1.98-2.11 ppm (2H, m, OP(OCH₃)CH₂CH(OH)2.26-2.45 ppm (2H, m, -CH(OH)CH₂CO₂Li)

3.63 &
3.62 (3H, 2 doublets, 2 diastereomers,

OP(OCH₃)CH₂-, J_{HP}-11 Hz)

4.23 (1H, m, (-CH₂CH(OH)CH₂CO₂Li)

5.16 (2H, s, F-PhCH₂O)

5.24 (2H, d, ArCH₂OP, J_{HP}=6.2 Hz)

7.13-7.53 (6H, m, aromatic H's)

Example 5

(3S)-4-[[[2,4-Dichloro-6-[(4-fluorophenyl)-methoxy]phenyl]methoxy]hydroxyphosphinyl]-3-hydroxybutanoic acid, dilithium salt

A mixture of the Example 4 Part D diester (210 mg, 0.424 mmole) in dioxane (4.0 ml) was treated with 1.0 N LiOH (1.30 ml, 3.0 eq.) and the colorless solution heated at 50° C (oil bath) under argon for 3.5 hours. A white precipitate was evident after 15 minutes. The mixture was diluted with $\rm H_2O$, filtered and the filtrate evaporated

in vacuo. The residue was dissolved in a minimum amount of $\rm H_2O$ and chromatographed on HP-20 resin (100 ml bed) eluting with a $\rm H_2O/CH_3CN$ linear gradient. Product fractions were combined and evaporated. The residue was taken up in $\rm H_2O$ (50 ml), filtered through a 0.4 μ m polycarbonate membrane and lyophilized to give 175 mg (81% based on hydrate weight) of desired title dilithium salt as a white solid.

10 TLC (8:1:1) $CH_2Cl_2-CH_3OH-HOAC$, Rf = 0.07, UV and PMA.

Anal Cacld for $C_{18}H_{16}O_7Cl_2FLi_2P + 1.70 \text{ moles } H_2O$ (MW 509.62): C, 42.42; H, 3.84; F, 3.73;

Cl, 13.91; P, 6.08

Found: C, 42.46; H, 3.90; F, 3.93; Cl, 13.42;
P, 5.66

 H^1NMR (400 MHz):

15

20

8 1.73-1.92 ppm (2H, m, -oP(OLi)-CH₂CH(OH)2.27 (1H, dd, -CH(OH)CH₂CO₂Li, J_{HH}=8.8

Hz)

2.39 (1H, dd, -CH(OH)CH₂CO₂Li, J_{HH}=4.4

Hz)

4.26 (1H, m, CH₂CH(OH)CH₂CO₂Li)

5.08 (2H, s, F-Ph-CH₂OAr)

7.03-7.53 (6H, m, aromatic H's).

Example 6

(3S)-4-[[2,4-Dichloro-6-[(4-fluorophenyl)methoxy]-phenyl]methoxy]methylphosphinyl]-3-hydroxybutanoic acid, methyl ester

5

25

30

A. (S)3-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-4-(ethoxymethylphosphinyl)butanoic
acid, methyl ester

A mixture of the Example 1 Part E(3) iodide (4.68 g, 9.18 mmole) in methyl diethoxyphosphine (Strem Chemicals, 5.0 g, 36.7 mmole) was 10 heated at 100°C (oil bath) for 2.5 hours, then at 150°C for three additional hours under argon. white precipitate slowly formed in the yellow solution. Excess phosphine was distilled off in vacuo (0.5 mm Hg) and the crude product purified 15 by flash chromatography on silica gel eluting with (65:35) Hexane-acetone. Product fractions were combined and evaporated to give 1.590 g (38%) of desired title phosphinic ester (mixture of diastereomers) as a clear viscous oil. 20 TLC (3:2) Hex-acetone, Rf (2 diastereomers) = 0.19 and 0.22, UV and PMA.

B. (3S)-4-[[2,4-Dichloro-6-[(4-fluoro-phenyl)methoxy]phenyl]methoxy]methyl-phosphinyl]-3-t-butyldiphenylsilyl-butanoic acid, methyl ester

A solution of Part A phosphinic ester (605 mg, 1.3 mmole) in dry $\mathrm{CH_2Cl_2}$ (6.0 ml) was treated with bis(trimethylsilyl)trifluoroacetamide (BSTFA) (280 μ l, 1.05 mmole, 0.8 eq.) and trimethylsilyl bromide (TMSBr) (210 μ l, 1.57 mmole, 1.2 eq.) and the resulting solution stirred at room temperature

under argon overnight. 5% KHSO₄ (15 ml) was added and the mixture extracted with EtOAc. The organic phase was washed with brine, dried over anhydrous Na₂SO₄ and evaporated <u>in vacuo</u> to give crude phosphinic acid as a colorless oil.

A solution of the crude phosphinic acid (~1.3 mmole) in dry CH₂Cl₂ (6.0 ml) was treated with distilled trimethylsilyl diethylamine (270 µl, 1.44 mmole, 1.1 eq.) and the clear mixture was stirred at room temperature under argon for 1.0 hour. The mixture was evaporated in vacuo, chased with benzene (1 x 15 ml), and dried in vacuo.

10

A cooled (0°C, ice bath) solution of the

15 crude silylated phosphinic acid (~1.3 mmole) in dry

CH₂Cl₂ (6.0 ml) and DMF (1 drop) was treated

dropwise via syringe with distilled oxalyl chloride

(130 µl, 1.44 mmole, 1.1 eq.). Gas evolution was

evident. The mixture was stirred at room

temperature under argon for one hour then

evaporated in vacuo, chased with benzene (2 x

15 ml) and dried in vacuo to give crude phosphino-

chloridate as a yellow oil.

A cooled (0°, ice bath) solution of

phosphinochoridate (~1.3 mmole) and Example 1 Part

E(6) alcohol (392 mg, 1.3 mmole) in dry CH₂Cl₂ (6.0

ml) was treated with Et₃N (275 µl, 1.97 mmole,

1.5 eq.) and 4-DMAP (16 mg, 0.13 mmole, 0.1 eq)

and the resulting yellow mixture stirred under

argon at room temperature overnight. The mixture

was partitioned between 5% KHSO₄ and EtOAc, the

organic phase washed with brine, dried over

anhydrous Na₂SO₄ and evaporated to give 908 mg of

crude product as a dark yellow oil. The crude product was purified by flash chromatography on silica gel (45 g) eluting with (3:2) Hex-EtOAc. Product fractions were combined and evaporated to give 266 mg (28.3%) of desired title product as a clear, colorless oil. Also 197 mg (57%, corrected yield) of the starting alcohol was recovered.

C. (3S)-4-[[2,4-Dichloro-6-[(4-fluorophenyl)methoxy]phenyl]methoxy]methylphosphinyl]-3-hydroxybutanoic acid,
methyl ester

A solution of the Part B silyl ester (275 mg, 0.38 mmole) in dry THF (6.0 ml) was treated with glacial HOAc (90 μ l, 1.53 mmole, 4.0 eq.) and a 1.0 M solution in THF of tetrabutylammonium fluoride (1.2 ml, 3.1 eq.). The resulting solution was stirred overnight under argon at room temperature. The mixture was partitioned between cold H2O and EtOAc, the organic phase washed with saturated NaHCO3 and brine, dried over anhydrous $\mathrm{Na_2SO_4}$ and evaporated to give 258 mg of a yellow The crude product was purified by flash chromatography on LPS-1 silica gel (8 g) eluting with (1:1) Hexane-acetone. Product fractions were combined and evaporated to give 142 mg (77%) of desired title alcohol as a clear, colorless, oil.

TLC (1:1) Hexane-acetone, Rf = 0.20, UV and PMA.

25

10

15

20

D. (3S)-4-[[2,4-Dichloro-6-[(4-fluoro-phenyl)methoxy]phenyl]methoxy]methyl-phosphinyl]-3-hydroxybutanoic acid, monolithium salt

M solution of the Part C methyl ester (142 mg, 0.296 mmole) in dioxane (3.0 ml) was treated with 1.0 N LiOH (0.36 ml, 1.2 eq.) and the resulting white suspension stirred under argon at room temperature for 2.0 hours. The mixture was diluted with $\rm H_2O$, filtered through a 0.4 μm polycarbonate membrane and the filtrate evaporated in vacuo.

The crude product was dissolved in a minimum amount of H₂O and chromatographed on a 100 ml bed of HP-20 resin eluting with a H₂O/CH₃CN linear gradient. Product fractions were combined and evaporated. The residue was taken up in H₂O, filtered through a polycarbonate membrane and lyophilized to give 93 mg (63% based on hydrate weight) of desired title lithium salt as a white solid.

TLC (8:1:1) CH₂Cl₂- CH₃OH-HOAC, Rf = 0.51, UV and PMA.

25 Anal Calcd for C₁₉H₁₉O₇Cl₂FLiP + 1.38 moles H₂O
(MW 495.94): C, 46.01; H, 4.42; F, 3.83; Cl, 14.30;
P, 6.24
Found: C, 46.10; H, 4.49; F, 3.82; Cl, 14.32;
P, 6.43

H¹ NMR (400 MHz):

5

10

30

```
1.53 ppm (3H, d, -0P(CH_3)CH_2-, J_{H-P}=
                                  14.6 Hz)
                                 (2H, m, -OP(OCH<sub>3</sub>)<u>CH</u>2-)
               1.87-2.10
 5
                                 (1H, dd, -CH(OH)CH2CO2Li,
                     2.27
                                  J<sub>H-H</sub>=8.4 Hz, J<sub>H-P</sub>=1.1 Hz)
                                 (1H, dd, -CH(OH)CH2CO2Li,
                      2.38
                                  J_{H-H}=4.7 \text{ Hz}, J_{H-P}=1.1 \text{ Hz})
                                 (1H, m, -CH_2CH(OH)CH_2CO_2Li)
                      4.29
10
                                 (4H, m, ArCH2OP and F-PhCH2O)-)
               5.16+5.18
                                  (6H, m, aromatic)
               7.11-7.52
```

Example 7

(S)-4-[[[4'-Fluoro-3,3',5-trimethyl[1,1'-biphenyl-15 2-y1]methy1]amino]methoxyphosphiny1]-3-hydroxybutanoic acid, monolithium salt

20

25

4'-Fluoro-3,3',5-trimethy1[1,1'biphenyl]-2-carboxylic acid

A solution of the Example 1 Part C(2) aldehyde (1.0 g, 4.13 mmole) in acetone (10.0 ml) at 0°C (ice bath) was treated dropwise with 8.0 N Jones reagent (4.1 ml, excess) and the resulting brown-green suspension stirred overnight Excess oxidant under argon at room temperature. was destroyed by adding isopropanol (10.0 ml) and precipitated chromium salts removed by filtration through a ½" pad of Celite. The filtrate was evaporated, taken up in EtOAc, washed with 1.0 N HCl (2X), saturated NH₄Cl (2X) and brine, then 30 dried over anhydrous Na2SO4 and evaporated to give 1.011 g of a green solid with m.p. 153-154°C.

The crude acid was purified via the dicyclohexylamine salt. To a solution of the crude acid in EtOAc (5.0 ml) was added dicyclohexyl amine (DCHA) (823 µl, 1.0 eq.). The solution diluted with hexane and precipitated crystalline salt was collected to give 997 mg (55% from aldehyde, m.p. 181-183°C) of desired product as an off-white crystalline DCHA salt.

The title free acid was regenerated from

the DCHA salt by partitioning the salt between 5%
KHSO₄ and EtOAc. The organic phase was washed
with brine, dried over anhydrous Na₂SO₄ and
evaporated in vacuo to give 554 mg (52% from
aldehyde) of desired title acid.

15 TLC (9:1) CH₂Cl₂-CH₃OH, Rf=0.37, UV and PMA.

B. 4'-Fluoro-3,3',5-trimethyl[1,1'-biphenyl]-2-carboxamide

A suspension of the Part A acid (554 mg,

2.14 mmole) in dry CH₂Cl₂ (6.0 ml) and dry DMF (1
drop) at 0°C (ice bath) was treated dropwise via
syringe with distilled oxalyl chloride (205 µl,

2.35 mmole, 1.1 eq.) and the clear yellow solution
stirred under argon at room temperature for one
hour. The mixture was evaporated in vacuo, chased
with benzene (2X) and dried in vacuo to give crude
acid chloride as a yellow oil.

A cooled (0°C, ice bath) mixture of THF

(3.0 ml) and concentrated NH₄OH (2.0 ml, excess)

was treated dropwise with a THF solution (3.0 ml)

of the crude acid chloride and the bright orange

solution stirred at room temperature under argon

for 1.0 hour. The mixture was partitioned

between H₂O and EtOAc, the organic phase washed with saturated NaHCO₃, H₂O and brine, then dried over anhydrous Na₂SO₄ and evaporated to give 528 mg (96.1%) of crude amide as a light orange solid. One recrystallization from EtOAc-hexane afforded 435 mg (79.1%) of purified title amide as pale yellow needles with m.p. 197-198°C. TLC (1:1) Et₂O-Acetone Rf=0.83, UV and PMA.

c. 4'-Fluoro-3,3',5-trimethyl[1,1'biphenyl]-2-methanamine

10

A cooled (0°C, ice bath) solution of dry THF (5.0 ml) was treated with solid $LiAlH_4$ (125 mg, 3.3 mmole) and the gray suspension treated dropwise over five minutes with a solution of the 15 Part B amide (424 mg, 1.65 mmole) in THF (5.0 ml). The resulting suspension was stirred at room temperature under argon for 2.5 hours, then refluxed for 45 minutes. The mixture was cooled to 0°C (ice bath) and quenched by sequential dropwise 20 addition of 125 μ l H $_2$ O, 125 μ l of 15% NaOH and 375 μ1 H₂O. Precipitated aluminum salts were removed by filtration through anhydrous Na2SO4 over packed Celite. The clear filtrate was evaporated in vacuo to give the crude amine as a clear oil. 25 TLC (7:3) Et₂O-acetone, Rf=0.60, UV and PMA. amine was purified as the HCl salt.

A solution of the crude amine (~1.65 mmole) in absolute EtOH (8.0 ml) was treated with concentrated HCl (152 µl, 1.82 mmole) and the mixture stirred for 15 minutes at room temperature under argon. The mixture was evaporated in vacuo to a white crystalline solid.

The solid was triturated with cold Et20, collected by filtration and dried in vacuo to give 426 mg (92.4%) of title amine-HCl as fine white crystals.

(S)-4-[[[[4'-Fluoro-3,3',5-trimethyl-[1,1'-biphenyl]-2-yl]methyl]amino]methoxyphosphinyl]-3-t-butyldiphenylsilyloxy butanoic acid, methyl ester

5

15

30

A solution of Example 1 Part E(6) methyl ester (~2.0 mmole) in dry CH₂Cl₂ (5.0 ml) was 10 treated with distilled trimethylsilyl diethylamine (758 μ l, 4.0 mmole, 2.0 eq.) and the clear mixture stirred at room temperature under argon for one hour. The mixture was evaporated in vacuo, chased with benzene (1 x 15 ml) and dried in vacuo.

A cooled (0°C) solution of the crude silyl phosphonate in dry CH2Cl2 (7.0 ml) and DMF (1 drop) was treated dropwise with distilled oxalyl chloride (192 μ l, 2.2 mmole, 1.1 eq.).

evolution was evident from the clear yellow 20 mixture. The solution was stirred at room temperature for one hour, evaporated in vacuo, chased with benzene (2 x 15 ml), and dried in vacuo to give the crude phosphonochloridate as a yellow, viscous oil. 25

A cooled (0°C) solution of the phosphonochloridate and Part C biphenyl amine HCl (416 mg, 1.49 mmole) in dry CH_2Cl_2 (10 ml) was treated with Et $_3N$ (641 μ l, 4.6 mmole, 2.3 eq.) and 4-DMAP (24 mg, 0.2 mmole, 0.1 eq.) and the clear yellow mixture stirred overnight at room The mixture was temperature under argon. partitioned between 5% KHSO4 and EtOAc, the

organic phase washed with brine, dried over anhydrous Na₂SO₄ and evaporated in vacuo to give 1.19 g of a yellow oil. The crude product was purified by flash chromatography on silica gel (60 g) eluting with (7:3) hexane-acetone. Product fractions were evaporated to give 588 mg (59.5%) of desired title phosphonamide as a pale yellow, viscous oil.

TLC (7:3) Hexane-acetone, Rf=0.20, UV and PMA.

10

E. (S)-4-[[[[4'-Fluoro-3,3',5-trimethyl[1,1'-biphenyl)-2-yl]methyl]amino]methoxyphosphinyl]-3-hydroxybutanoic
acid, methyl ester

A solution of Part D silyl ether (588 mg, 15 0.888 mmole) in dry THF (10.0 ml) was treated with glacial HOAc (203 μ 1, 3.55 mmole, 4.0 eq.) and a 1.0 M solution in THF of tetrabutylammonium fluoride (2.66 ml, 2.66 mmole, 3.0 eq.) and the resulting solution stirred overnight under argon 20 at room temperature. The mixture was poured into cold H2O and extracted with EtOAc. The organic phase was washed with saturated NaHCO3 and brine, then dried over anhydrous Na2SO4 and evaporated 25 <u>in vacuo</u> to give 605 mg of an orange oil. crude product was purified by flash chromatography on silica gel (36 g) eluting with (1:1) Hexaneacetone. Product fractions were combined and evaporated to give 196 mg (50.4%) of desired title alcohol as a light orange oil. 30 TLC (1:1) Hexane-acetone, Rf=0.16, UV and PMA.

. 5

10

15

20

PMA.

F. (S)-4-[[[[4'-Fluoro-3,3',5-trimethyl[1,1'-biphenyl]-2-yl]methyl]amino]methoxyphosphinyl]-3-hydroxybutanoic
acid, monolithium salt

A solution of the Part E diester (105 mg, 0.240 mmole) in dioxane (2.0 ml) was treated with 1.0 N LiOH (288 μl, 1.2 eq.) and the white suspension stirred under argon at room temperature for 4.0 hours. The mixture was diluted with H₂O, filtered, the filtrate evaporated in vacuo. The residue was chromatographed on HP-2O (100 ml bed) resin eluting with a H₂O/CH₃CN linear gradient. Product fractions were combined and evaporated. The residue was taken up in H₂O (50 ml), filtered through a 0.4 μm polycarbonate membrane and lyophilized to give 70 mg (62.7% based on weight of hydrate) of desired title lithium salt as a white solid. TLC (20:1:1) CH₂Cl₂-CH₃OH-HOAC, Rf=0.19, UV and

Anal Calcd for $C_{21}^{H_{26}NO_{5}PFLi} + 2.41 \text{ moles } H_{2}^{O}$ (MW 472.75): C, 53.35; H, 6.57; N, 2.96; F, 4.02; P, 6.55

25 Found: C, 53.35; H, 6.52; N, 2.98; F, 4.05; P, 6.59

H¹ NMR (400 MHz):

	 - •	
		· O
	δ 1.79-1.97 ppm (2H,	m, -P(OCH ₃) <u>CH</u> ₂ -)
	2.26-2.44 ppm	(2H, m, -CH ₂ CO ₂ Li
5	2.29	(3H, s, aromatic methyl)
	2.31	(3H, d, aromatic methyl α
		to fluorine, J _{HF} =1.4 Hz)
	2.47	(3H, aromatic methyl)
	3.46 &	
10	3.50	(3H, 2 doublets, 2
		diastereomers, J _{HP} =10.5 Hz)
		. 0
	3.96	(2H, m, -PhCH ₂ NHP(OCH ₃)-
	4.17	(1H, m, (-CH ₂ CH(OH)CH ₂ CO ₂ Li)
15	6.84-7.21	(5H, m, aromatic protons)

Examples 8 to 20

Following the procedures as outlined heretofore and as described in the previous working Examples, the following additional compounds may be prepared.

Ex.		z	n	<u>x</u> .	RX
No. 8.	OH OH	CH ₂	1	o	H
9.	с ₂ н ₅ о	CH 3 O	2	ИН	CH ₃
10.	с _{3^Н7}	CH ₃ Cl Cl C ₂ H ₅	1	o	Li
11.	сн ₃ о	©CH ₂ -0	2	NH	H
12.	ОН	CH ₃	2	0	

13.
$$c_{4}^{H_{9}^{0}}$$
 O $c_{2}^{H_{2}^{-0}}$

No.	R	z	n	<u>x</u>	R ^X _
14.	5 ^H 11	CH ₂ -0	1	NH	CH ³

Ex.	R	<u>z</u>	<u>n</u>	<u>. x</u>	RX
18.	CH3	CH ₃ CH ₃ CH ₃ CH ₃	1	o · ·	н
-		OH			

Example 21

(S)-4-Diisopropyloxyphosphinyl)-3- [[(1,1-dimethylethyl)diphenylsilyl] oxy]-butanoic acid, methyl

ester The Example 1 Part E(3) iodide (45.1 mmol., 5 21.70 g) was stirred under high vacuum for 30 minutes. Freshly distilled triisopropyl phosphite (0.451 mol., 93.92 g, 113.37 ml.) was added in one portion and the reaction mixuture was stirred under argon and heated in a 155°C oil bath for 16.5 10 The mixture was then cooled to room temperature. Excess triisopropyl phosphite and volatile reaction products were removed by short path distillation (10 mm Hg) followed by Kugelrohr distillation (0.50 mm Hg, 100°C, 8 hours). 15 product was further purified via flash chromatography (95 mm diam. column, 6"/Merck silica gel, 6/3/1 Hexane/acetone/toluene eluent, 2"/min flow rate, 50 ml fractions) to afford 17.68 g (33.96 mmol, 75% yield) of the title 20 isopropylphosphonate as a clear viscous oil. Silica gel R_f=0.32 (6:3:1 Hexane/acetone TLC: toluene) ¹HNMR: (270 MH_z, CDCl₃) 7.70-7.65 (m,4H) 25 7.45-7.35 (m,6H)4.57-4.44 (m,3H) 3.59 (s, 3H)2.94 and 2.88 (2xd, 1H J=3.7 Hz) 30

2.65 and 2.60 (2xd, 1H J=7.4 Hz)

2.24-1.87 (Series of m, 2H)

1.19 and 1.12 (2xd, 12H J=6.3 Hz)

1.01 (s, 9H)

Example 22

S)-4-(Hydroxymethoxyphosphinyl)-3- [[(1,1-dimethyl-ethyl)diphenylsilyl]oxy]butanoic acid, methyl ester, dicyclohexylamine (1:1) salt

The Example 21 isopropyl phosphonate (30.5 5 mmol, 10.66 g) was stirred under argon, at room temperature, in 80 ml of dry CH2Cl2. This solution was treated dropwise (5 min) with bistrimethylsilyltrifluoroacetamide (BSTFA) (32.8 mmol, 8.44 g, 8.71 ml), followed by dropwise 10 addition (10 min) of trimethylsilylbromide (TMSBr) (51.3 mmol, 7.84 g, 6.75 ml). After stirring at room temperature for 20 hours, the reaction mixture was quenched with 200 ml of 5% aqueous KHSO4 and stirred vigorously for 15 minutes. 15 aqueous layer was extracted 3 times with ethylacetate. The organic extracts were combined, washed once with brine, dried over Na2SO4 and The residue was azeotroped concentrated in vacuo. 2 times with 50 ml of toluene. The precipitate 20 which formed was suspended in toluene and filtered. The filtrate was concentrated and the The resulting azeotrope/filter process repeated. filtrate was evaporated in vacuo and then pumped under high vacuum for 5 hours. The resulting 25 viscous clear oil was stirred under argon, at room temperature, in 50 ml of dry pyridine. solution was treated in one portion with dicyclohexylcarbodiimide (DCC) (22.6 mmol, 4.65 g), followed by addition of methanol (41.0 mmol, 1.31 30 g, 1.67 ml). After stirring at room temperature for 20 hours, the reaction mixture was filtered through a celite pad in a sintered glass funnel.

The celite was washed with ethyl acetate and the combined filtrates were evaporated in vacuo. The residue was redissolved in ethyl acetate and washed 2 times with 5% aqueous $KHSO_4$ and once with brine. The organic extract was dried over Na2SO4, filtered, the filtrate concentrated and azeotroped 2 times with toluene, suspended in toluene and filtered. The resulting filtrate was again concentrated, azeotroped, filtered and the filtrate evaporated in vacuo and placed under high 10 vacuum for 6 hours to afford the phosphonate monoester as a clear viscous oil (10.2 g, >100% TLC: silica gel $R_f=0.50$ (7:2:1 yield). nProH/NH4OH/H2O). The phosphonate monoester [1.21 g was pumped under high vacuum for 4 hours, affording 1.16 g (2.57 mmol)] was dissolved in 10 ml of dry ethyl ether and treated dropwise with dicyclohexylamine (2.65 mmol, 0.481 g, 0.528 ml). The resulting homogeneous solution sat at room temperature for 7 hours resulting in significant 20 crystal formation. The mixture was stored at -20°C for 16 hours and then warmed to room The crystals were temperature and filtered. washed with cold, dry ethyl ether and then pumped under high vacuum over P205 for 18 hours. The 25 crystals were subsequently pumped under high vacuum at 45°C for 4 hours, affording 1.25g (1.98 mmol, 77% yield) of the title dicyclohexylamine salt as a white powdery solid, m.p. 155-156°C. TLC: Silica gel R_f =0.57 (20% MeOH/CH $_2$ Cl $_2$) 'H NMR: 30 (270 MH₂, CDCl₃)

```
7.71-7.65 (m, 4H)
           7.40-7.32 (m, 6H)
           4.02 (m, 1H)
           3.52 (s, 3H)
           3.28 and 3.22 (m, 1H)
5
           3.11 (d, 3H J=11 Hz)
           2.77-2.64 (m, 2H)
            2.62-2.56 (m, 1H)
            1.92-1.08 (Series of m, 22H)
            1.00 (S, 9H)
10
     Mass Spec: (FAB) 632 (M&H)+
                3466-3457 (broad)
     IR:(KBr)
     3046, 3016, 2997, 2937, 2858, 2836, 2798, 2721,
     2704, 2633, 2533, 2447, 1736, 1449, 1435, 1426,
     1379, 1243, 1231, 1191, 1107, 1074, 1061, 1051,
15
     820 CM-1
     Anal Calcd for C22H31 O6PSi·C12H23N:
            C,64.63; H,8.61; N,2.22
     Found: C, 64.51; H, 8.49; N, 2.18
 20
```

CLAIMS

1. A compound useful in inhibiting the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase having the moiety

wherein X is -O- or -NH-, n is 1 or 2 and Z is a hydrophobic anchor.

- 2. The compound as defined in Claim 1 wherein the hydrophobic anchor is a lipophilic group which when linked to the HMG-like upper side chain of the molecule by the appropriate linker (X), binds to a hydrophobic pocket of the enzyme not utilized in binding the substrate HMG CoA, resulting in enhanced potency relative to compounds where Z=H.
- 3. The compound as defined in Claim 1 having the structure

including salts thereof, wherein R is OH, lower alkoxy or lower alkyl and RX is H or lower alkyl;

X is -0- or -NH-; n is 1 or 2 Z is a hydrophobic anchor which is

wherein the dotted lines represent optional double bonds,

wherein R¹, R², R^{2a} and R^{2b} may be the same or different and are H, halogen, lower alkyl, haloalkyl, phenyl, substituted phenyl or OR^y in which R^y is H, alkanoyl, benzoyl, phenyl, halophenyl, phenyl-lower alkyl, lower alkyl, cinnamyl, haloalkyl, allyl, cycloalkyl-lower alkyl, adamantyl-lower alkyl or substituted phenyl-lower alkyl;

wherein Z is

R⁵ and R⁵ are the same or different and are H, lower alkyl or OH, one or R⁵ and R⁵ being present when the carbon to which it is attached is linked to a double bond;

R⁶ is alkyl-C-or arylCH₂-;
R^{6a} is lower alkyl, hydroxy, oxo or halogen, and q is 0, 1, 2 or 3,

wherein R^X is hydrogen or lower alkyl in free acid form or in the form of a physiologically-hydrolysable and -acceptable ester in salt form.

4. The compound as defined in Claim 3 wherein X is -O-, R is alkoxy, and Z is

$$R^1$$
 R^2 R^2

5. The compound as defined in Claim 3 wherein X is -NH-, R is alkoxy and $(CH_2)_n$ is CH_2 , and Z is

6. The compound as defined in Claim 4 having the name (S)-4-[[4'-fluoro-3,3',5-trimethyl[1,1'-biphenyl]-2-yl]methoxy]methoxy-

phosphinyl]-3-hydroxy-butanoic acid, methyl ester
or its monolithium salt,

- (S)-4-[[[4'-fluoro-3,3',5-trimethyl[1,1'-biphenyl]-2-yl]methoxy]hydroxyphosphinyl]-3-hydroxybutanoic acid, dilithium salt,
- (3S)-4-[[[4'-fluoro-3,3',5-trimethyl[1,1'-biphenyl]-2-yl]methoxy]methylphosphinyl]-3-hydroxybutanoic acid, monolithium salt,
- (S)-4-[[[2,4-dichloro-6-[(4-fluorophenyl)-methoxy]phenyl]methoxy]methoxyphosphinyl]-3-hydroxybutanoic acid, monolithium salt,
- (3S)-4-[[[2,4-dichloro-6-[(4-fluorophenyl)-methoxy]phenyl]methoxy]hydroxyphosphinyl]-3-hydroxybutanoic acid, dilithium salt,
- (3S)-4-[[2,4-dichloro-6-[(4-fluorophenyl)-methoxy]methoxy]methylphosphinyl]-3-hydroxybutanoic acid, or its methyl ester, or
- (S)-4-[[[[4'-fluoro-3,3',5-trimethyl[1,1'-biphenyl-2-yl]methyl]amino]methoxyphosphinyl]-3-hydroxybutanoic acid, monolithium salt.
- 7. A hypocholesterolemic or hypolipemic composition comprising a compound as defined in Claim 3 and a pharmaceutically acceptable carrier therefor.
 - 8. A compound having the structure

wherein R^a is lower alkyl or lower alkoxy, including all stereoisomers thereof.

9. A compound having the structure

stereoisomers thereof.

10. The use of a compound as defined in Claim 3 for inhibiting cholesterol biosynthesis.

.... Office, Come House 66 71 Wigh Hollow London WOLR 4TP. Further copies may be obtained from The Patent Office,

THIS PAGE BLANK (USPTO)