Lecture#10 Data Structures

Dr. Abu Nowshed Chy

Department of Computer Science and Engineering
University of Chittagong

February 24, 2025

Faculty Profile

Graphs

A coloring of a simple graph is the assignment of a color to each vertex of the graph so that no two adjacent vertices are assigned the same color.

The chromatic number of a graph is the least number of colors needed for a coloring of this graph.

The Four Color Theorem:

The chromatic number of a planar graph is no greater than four.

The Four Color Theorem:

The chromatic number of a planar graph is no greater than four.

Bipartite

Bipartite

Bipartite

Graph Coloring Applications

Scheduling Final Exams: How can the final exams at a university be scheduled so that no student has two exams at the same time?

Frequency Assignments

To

Topological Sorting

- ☐ Topological Sorting is possible if and only if the graph is a Directed Acyclic Graph (DAG)
- ☐ Topological Sort is a linear ordering of the vertices in such a way that if there is an edge in the DAG going from vertex 'u' to vertex 'v', then 'u' comes before 'v' in the ordering.
- ☐ There may exist multiple different topological orderings for a given directed acyclic graph

Topological Sort Example

For this graph, following 4 different topological orderings are possible-

- > 123456
- 123465
- 132456
- 132465

Find the number of different topological orderings possible for the given graph-

Step-01:

Write in-degree of each vertex-

Step-02:

- Vertex-A has the least in-degree.
- So, remove vertex-A and its associated edges.
- Now, update the in-degree of other vertices.

Step-03:

- Vertex-B has the least in-degree.
- > So, remove vertex-B and its associated edges.
- Now, update the in-degree of other vertices.

Step-04:

There are two vertices with the least in-degree. So, following 2 cases are possible-

Step-05:

Now, the above two cases are continued separately in the similar manner.

Find the number of different topological orderings possible for the given graph-

For the given graph, following 2 different topological orderings are possible-

- > ABCDE
- > ABDCE

Find the number of different topological orderings possible for the given graph-

For the given graph, following 4 different topological orderings are possible-

- ▶ 123456
- 123465
- 132456
- 132465

