Data Mining Project - Sustainability Around The World

Aradhya Mathur and Ozlem Gunes

Time Series Analysis

```
In [1]: # Import libs
   import pandas as pd
   import numpy as np
   import os, fnmatch
   import matplotlib.pyplot as plt
   import statsmodels.api as sm
   import sklearn.metrics as mt
   import seaborn as sns
   from pmdarima.arima import auto_arima
   from chart_studio.plotly import plot_mpl
   from statsmodels.tsa.seasonal import seasonal_decompose
   import datetime
```

Read Data

```
data_path = "./master.csv"
In [4]:
         data = pd.read_csv(data_path)
In [6]:
         data[0:5]
                                                                      EPI
                                                                          AIR H2O BDH WRS
Out[6]:
                                    country
                                                             region
             year
                    iso
         0 2022
                   AFG
                                                        Southern Asia
                                                                                 28.1
                                                                                       30.7
                                                                                              0.0
                                Afghanistan
                                                                     43.6
                                                                           15.5
            2022
                   ALB
                                    Albania
                                                       Eastern Europe 47.1
                                                                           37.5
                                                                                 54.1
                                                                                       63.9
                                                                                              1.9
         2 2022 DZA
                                                                                       22.7
                                     Algeria
                                                   Greater Middle East 29.6
                                                                           39.4
                                                                                 53.3
                                                                                             33.1
         3 2022 AGO
                                                   Sub-Saharan Africa
                                                                                       30.1
                                     Angola
                                                                    30.5 23.1
                                                                                12.8
                                                                                              0.0
         4 2022 ATG Antigua and Barbuda Latin America & Caribbean 52.4 56.5
                                                                                50.1 54.2
                                                                                             15.7
```

Preprocess and Analysis

Get countries with sufficient data points

```
In [7]: selected_countries = data[data['year'].isin([2018,2020,2022])]['country'].unique()
In [8]: selected_countries
```

```
Out[8]: array(['Afghanistan', 'Albania', 'Algeria', 'Angola',
                 'Antigua and Barbuda', 'Argentina', 'Armenia', 'Australia',
                 'Austria', 'Azerbaijan', 'Bahamas', 'Bahrain', 'Bangladesh',
                 'Barbados', 'Belarus', 'Belgium', 'Belize', 'Benin', 'Bhutan',
                 'Bolivia', 'Bosnia and Herzegovina', 'Botswana', 'Brazil',
'Brunei Darussalam', 'Bulgaria', 'Burkina Faso', 'Burundi',
                 'Cabo Verde', 'Cambodia', 'Cameroon', 'Canada',
                 'Central African Republic', 'Chad', 'Chile', 'China', 'Colombia',
                 'Comoros', 'Costa Rica', "Cote d'Ivoire", 'Croatia', 'Cuba',
                 'Cyprus', 'Czech Republic', 'Dem. Rep. Congo', 'Denmark',
                 'Djibouti', 'Dominica', 'Dominican Republic', 'Ecuador', 'Egypt', 'El Salvador', 'Equatorial Guinea', 'Eritrea', 'Estonia',
                 'Eswatini', 'Ethiopia', 'Fiji', 'Finland', 'France', 'Gabon',
                 'Gambia', 'Georgia', 'Germany', 'Ghana', 'Greece', 'Grenada',
                 'Guatemala', 'Guinea', 'Guinea-Bissau', 'Guyana', 'Haiti',
                 'Honduras', 'Hungary', 'Iceland', 'India', 'Indonesia', 'Iran',
                  'Iraq', 'Ireland', 'Israel', 'Italy', 'Jamaica', 'Japan', 'Jordan',
                 'Kazakhstan', 'Kenya', 'Kiribati', 'Kuwait', 'Kyrgyzstan', 'Laos',
                 'Latvia', 'Lebanon', 'Lesotho', 'Liberia', 'Lithuania',
                 'Luxembourg', 'Madagascar', 'Malawi', 'Malaysia', 'Maldives',
                 'Mali', 'Malta', 'Marshall Islands', 'Mauritania', 'Mauritius',
                 'Mexico', 'Micronesia', 'Moldova', 'Mongolia', 'Montenegro', 'Morocco', 'Mozambique', 'Myanmar', 'Namibia', 'Nepal',
                 'Netherlands', 'New Zealand', 'Nicaragua', 'Niger', 'Nigeria',
                 'North Macedonia', 'Norway', 'Oman', 'Pakistan', 'Panama',
                 'Papua New Guinea', 'Paraguay', 'Peru', 'Philippines', 'Poland',
                 'Portugal', 'Qatar', 'Republic of Congo', 'Romania', 'Russia',
                 'Rwanda', 'Saint Lucia', 'Saint Vincent and the Grenadines',
                 'Samoa', 'Sao Tome and Principe', 'Saudi Arabia', 'Senegal',
                 'Serbia', 'Seychelles', 'Sierra Leone', 'Singapore', 'Slovakia',
                 'Slovenia', 'Solomon Islands', 'South Africa', 'South Korea', 'Spain', 'Sri Lanka', 'Sudan', 'Suriname', 'Sweden', 'Switzerland',
                 'Taiwan', 'Tajikistan', 'Tanzania', 'Thailand', 'Timor-Leste',
                 'Togo', 'Tonga', 'Trinidad and Tobago', 'Tunisia', 'Turkey',
                 'Turkmenistan', 'Uganda', 'Ukraine', 'United Arab Emirates',
                 'United Kingdom', 'United States of America', 'Uruguay',
                 'Uzbekistan', 'Vanuatu', 'Venezuela', 'Viet Nam', 'Zambia',
                 'Zimbabwe', "CÃf´te d'Ivoire", 'Macedonia',
                 'SÃf£o TomÃf© and PrÃfÂ\xadncipe', 'Swaziland'], dtype=object)
```

```
In [9]: data = data[data['country'].isin(selected_countries)]
```

In [10]: data

			130	country		regic						
	0	2022	AFG	Afghanistan	Sout	hern As	sia 4	3.60	15.50	28.10	30.70	0.00
	1	2022	ALB	Albania	Easter	n Europ	oe 4	7.10	37.50	54.10	63.90	1.90
	2	2022	DZA	Algeria	Greater Mi	ddle Ea	st 2	9.60	39.40	53.30	22.70	33.10
	3	2022	AGO	Angola	Sub-Sahar	an Afri	ca 30	0.50	23.10	12.80	30.10	0.00
	4	2022	ATG	Antigua and Barbuda	Latin A C	merica aribbea		2.40	56.50	50.10	54.20	15.70
	•••											
	1170	2010	UZB	Uzbekistan	Former Sov	iet Stat	es 4	2.27	65.07	87.41	21.75	21.53
	1171	2010	VEN	Venezuela	Latin A C	merica aribbea	h	2.90	97.37	83.52	78.19	56.12
	1172	2010	VNM	Viet Nam	As	ia-Paci	fic 5	9.00	41.47	73.46	41.28	78.05
	1173	2010	ZMB	Zambia	Sub-Sahar	an Afri	ca 4	7.00	36.76	36.86	100.00	70.28
	1174	2010	ZWE	Zimbabwe	Sub-Sahar	an Afri	ca 4	7.82	54.81	53.32	93.75	67.69
n [11]:			9 colum = data	.groupby([' <mark>count</mark>	:ry'])['yea	r'].c	ount	().re	set_i	ndex(ı	name='c	ounts
n [12]:	selec	ted_c	ountrie	s = data_count[c	lata_count['coun	ts']:	> 6]['	count	ry'].ı	unique()
in [13]:	data	= dat	a[data['country'].isin((selected_c	ountr	ies)]				
n [14]:	data[1:5]										
ut[14]:	ye		so cou	ntry	region	EPI	AIR	H2O	BDH	WRS		
ut[14]:	2 202	ar is			region Middle East			H2O 53.3	BDH 22.7		_	
ut[14]:	2 202	ar is	A Alg	geria Greater		29.6	39.4		22.7	33.1	_	
ut[14]:	2 202	ar is 22 DZ 22 AG	(A Alg	geria Greatei	r Middle East aharan Africa	29.6 30.5	39.4	53.3	22.7 30.1	33.1		
ut[14]:	2 200 3 200 5 200	ar is 22 DZ 22 AG	CA Alg O An	geria Greatei gola Sub-Sa ntina Latin America	r Middle East aharan Africa	29.6 30.5 41.1	39.4 23.1 52.0	53.3 12.8	22.7 30.1 42.4	33.1 0.0 5.9		
	2 200 3 200 5 200 6 200	ar is 22 DZ 22 AG 22 AR 22 AR	CA Alg O An G Arger M Arm	geria Greatei gola Sub-Sa ntina Latin America	Middle East The Middle	29.6 30.5 41.1	39.4 23.1 52.0	53.3 12.8 64.8	22.7 30.1 42.4	33.1 0.0 5.9		
nut[14]: n [15]: n [16]:	2 200 3 200 5 200 6 200 data	ar is 222 DZ 222 AG 222 AR 222 AR = dat	O And Argen M Arm	geria Greater gola Sub-Sa ntina Latin America enia Former	Middle East The Middle	29.6 30.5 41.1	39.4 23.1 52.0	53.3 12.8 64.8	22.7 30.1 42.4	33.1 0.0 5.9		
n [15]: n [16]:	2 200 3 200 5 200 6 200 data	ar is 222 DZ 222 AG 222 AR 222 AR = dat	O And Argen M Arm	geria Greater gola Sub-Sa ntina Latin America enia Former _index(drop=True	Middle East The Middle	29.6 30.5 41.1	39.4 23.1 52.0	53.3 12.8 64.8	22.7 30.1 42.4	33.1 0.0 5.9		
n [15]:	2 20.3 20.5 20.6 20.datadatayeariso	ar is 22 D2 22 AG 22 AR 22 AR = dat isnul	O And Arm Arm Armset ().sum	geria Greater gola Sub-Sa ntina Latin America enia Former _index(drop=True	Middle East The Middle	29.6 30.5 41.1	39.4 23.1 52.0	53.3 12.8 64.8	22.7 30.1 42.4	33.1 0.0 5.9		
n [15]: n [16]:	2 200 3 200 5 200 6 200 data data year iso countregion	ar is 22 D2 22 AG 22 AR 22 AR = dat isnul	O And Arger M Arm a.reset ().sum 0 0 0 0	geria Greater gola Sub-Sa ntina Latin America enia Former _index(drop=True	Middle East The Middle	29.6 30.5 41.1	39.4 23.1 52.0	53.3 12.8 64.8	22.7 30.1 42.4	33.1 0.0 5.9		
n [15]: n [16]:	2 202 3 202 5 202 6 202 data data year iso count	ar is 22 D2 22 AG 22 AR 22 AR = dat isnul	O And Arm Arm Arm (1) sum (0) (0)	geria Greater gola Sub-Sa ntina Latin America enia Former _index(drop=True	Middle East The Middle	29.6 30.5 41.1	39.4 23.1 52.0	53.3 12.8 64.8	22.7 30.1 42.4	33.1 0.0 5.9		
n [15]: n [16]:	2 200 3 200 5 200 6 200 data data year iso countregion EPI AIR H20	ar is 22 D2 22 AG 22 AR 22 AR = dat isnul	O And Arm Arm Arm O Arm O Arm O O O O O O O O O O O O O O O O O O O	geria Greater gola Sub-Sa ntina Latin America enia Former _index(drop=True	Middle East The Middle	29.6 30.5 41.1	39.4 23.1 52.0	53.3 12.8 64.8	22.7 30.1 42.4	33.1 0.0 5.9		
n [15]: n [16]:	2 200 3 200 5 200 6 200 data data year iso countregion EPI AIR H2O BDH WRS	ar is 22 D2 22 AG 22 AR 22 AR = dat isnul	O And Arm Arm Arm a.reset 1().sum 0 0 0 0 0 0 0	geria Greater gola Sub-Sa ntina Latin America enia Former _index(drop=True	Middle East The Middle	29.6 30.5 41.1	39.4 23.1 52.0	53.3 12.8 64.8	22.7 30.1 42.4	33.1 0.0 5.9		

EPI AIR H2O

region

BDH WRS

Handle Null Values

Out[10]: year iso

country

```
# data = data.sort_values(['country', 'year'])
In [17]:
          # data['index'] = data.groupby(['country']).cumcount()
         idx = data[['year']].drop_duplicates().sort_values('year', axis=0).reset_index(drop
In [18]:
          idx['idx'] = idx.index
          \# idx['idx'] = idx['idx'].astype(str)
In [19]:
         idx
Out[19]:
             year idx
          0 2010
                   0
            2012
                   1
            2014
                   2
          3 2016
                   3
            2018
                   4
            2020
                   5
          6 2022
         data = data.merge(idx, on='year')
In [20]:
```

Models - Predict 2020

Data Sets

```
In [21]:
           data_train = data[data['year'] < 2020]</pre>
           data_test = data[data['year'].isin([2020])]
           data_train.sort_values(['country', 'year'])[1:5]
In [22]:
                                                                 H20
                                                                        BDH
                                                                               WRS idx
Out[22]:
                year
                       iso country
                                           region
                                                     EPI
                                                            AIR
           615 2012 ALB
                                                   65.85
                                                          100.00 72.28
                                                                        61.72
                                                                              23.19
                            Albania
                                    Eastern Europe
                                                                                       1
                2014 ALB
           492
                            Albania
                                    Eastern Europe
                                                  54.73
                                                           68.24
                                                                 55.91
                                                                        63.19
                                                                               3.36
                                                                                       2
           369
                2016 ALB
                            Albania
                                    Eastern Europe
                                                   29.61
                                                           37.41
                                                                 48.46
                                                                        26.07
                                                                                2.70
                                                                                       3
                2018 ALB
                                                           37.10 51.50 57.10
                                                                                2.70
           246
                            Albania Eastern Europe 38.80
In [23]:
           data_test[1:5]
                                                                     AIR H2O BDH WRS idx
Out[23]:
                                                                EPI
                year
                        iso
                              country
                                                        region
           124 2020
                       DZA
                               Algeria
                                             Greater Middle East
                                                               44.8
                                                                     45.3
                                                                           53.2
                                                                                 39.0
                                                                                       33.1
                                                                                               5
                2020
                                                               29.7
                                                                                 39.3
                                                                                               5
           125
                      AGO
                               Angola
                                             Sub-Saharan Africa
                                                                     26.8
                                                                           12.8
                                                                                        0.0
           126
                2020
                       ARG
                                       Latin America & Caribbean
                                                               52.2 56.9
                                                                           64.7
                                                                                 49.1
                                                                                        5.9
                                                                                               5
                            Argentina
           127 2020 ARM
                                            Former Soviet States 52.3 36.3
                                                                                 79.2
                                                                                        8.8
                                                                                               5
                              Armenia
                                                                           57.2
```

Simple Linear Regression

```
In [24]: # Train-predict and plot for all countries
         x_train = data_train[['idx']]
         y_train = data_train['EPI']
         x_test = data_test[['idx']]
         y_test = data_test['EPI']
         # with statsmodels
         x_train = sm.add_constant(x_train) # adding a constant
         model = sm.OLS(y_train, x_train).fit()
         predictions_train = model.predict(x_train)
         print_model = model.summary()
         print(print_model)
         p = model.params
         data_plot_train = data_train
         data_plot_train['fitted'] = data_plot_train['idx'] * p.idx + p.const
         data_plot_train['tag'] = 'train'
         data_plot_test = data_test
         data_plot_test['fitted'] = data_plot_test['idx'] * p.idx + p.const
         data_plot_test['tag'] = 'test'
         data_plot = pd.concat([data_plot_train,data_plot_test], axis=0)
         sns.lmplot(x='idx', y='EPI', data=data_plot, hue='tag', fit_reg=True)
         sns.regplot(x='idx', y='fitted', data=data_plot, color='red', scatter=False)
```

OLS Regression Results ______

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:	EPI OLS Least Squares Sun, 11 Dec 2022 03:18:21 615 613	Prob (F-statistic):	0.099 0.098 67.46 1.28e-15 -2506.3 5017. 5025.
Covariance Type:	nonrobust		
=======================================			=======================================
CO	ef std err	t P> t	[0.025 0.975]
const 59.099	99 0.996 5	9.313 0.000	57.143 61.057
idx -3.34	LO 0.407 -	8.213 0.000	-4.140 -2.542
Omnibus: Prob(Omnibus): Skew: Kurtosis:	23.974 0.000 0.189 2.382	Prob(JB): Cond. No.	1.812 13.442 0.00121 4.74

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne l launcher.py:18: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl e/user_guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne 1_launcher.py:19: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl e/user_guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne 1_launcher.py:21: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl e/user_guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne 1_launcher.py:22: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl e/user_guide/indexing.html#returning-a-view-versus-a-copy

<AxesSubplot:xlabel='idx', ylabel='fitted'> Out[24]:


```
x_test = sm.add_constant(x_test, has_constant='add')
In [25]:
         predictions = model.predict(x_test)
```

mt.mean_squared_error(y_test, predictions) In [26]:

320.56405438271065

Out[26]:

```
# Train-predict and plot for sample country Norway
In [27]:
         country = 'Norway'
         x_train = data_train[data_train['country'] == country][['idx']]
         y_train = data_train[data_train['country'] == country]['EPI']
         x_test = data_test[data_test['country'] == country][['idx']]
         y_test = data_test[data_test['country'] == country]['EPI']
         # with statsmodels
         x_train = sm.add_constant(x_train) # adding a constant
         model = sm.OLS(y_train, x_train).fit()
         predictions_train = model.predict(x_train)
         print_model = model.summary()
         print(print_model)
         p = model.params
         data_plot_train = data_train[data_train['country'] == country]
         data_plot_train['fitted'] = data_plot_train['idx'] * p.idx + p.const
         data_plot_train['tag'] = 'train'
         data_plot_test = data_test[data_test['country'] == country]
         data_plot_test['fitted'] = data_plot_test['idx'] * p.idx + p.const
         data_plot_test['tag'] = 'test'
         data_plot = pd.concat([data_plot_train,data_plot_test], axis=0)
         sns.lmplot(x='idx', y='EPI', data=data_plot, hue='tag', fit_reg=True)
         sns.regplot(x='idx', y='fitted', data=data_plot, color='red', scatter=False)
         C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\statsmod
         els\stats\stattools.py:75: ValueWarning: omni_normtest is not valid with less than
         8 observations; 5 samples were given.
           "samples were given." % int(n), ValueWarning)
         C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
         1_launcher.py:19: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
         e/user_guide/indexing.html#returning-a-view-versus-a-copy
         C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
         l launcher.py:20: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
         e/user_guide/indexing.html#returning-a-view-versus-a-copy
         C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
         1_launcher.py:22: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
         e/user_guide/indexing.html#returning-a-view-versus-a-copy
         C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
         1_launcher.py:23: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
         e/user guide/indexing.html#returning-a-view-versus-a-copy
```

OLS Regression Results

		0_0			- C-		
========		========	=====	======		=======	=======
Dep. Variab	ole:		EPI	R-squa	ared:		0.429
Model:			OLS	Adj. F	R-squared:		0.239
Method:		Least Squ	ares	F-stat	cistic:		2.256
Date:		Sun, 11 Dec	2022	Prob ((F-statistic)	:	0.230
Time:		-	8:42		ikelihood:		-13.755
No. Observa	ations:		5	AIC:			31.51
Df Residual			3	BIC:			30.73
Df Model:			1	DIC.			30.73
	Typo	nonro	_				
Covariance	Type.	11011110	bust				
			=====		D. I±I	[0 025	0.0751
					P> t	-	_
const					0.000		
idx	-2.3230	1.547	-1	1.502	0.230	-7.245	2.599
		========	=====	 - د ما مسلم		=======	2.404
Omnibus:			nan		n-Watson:		3.484
Prob(Omnibu	ıs):		nan	Jarque	e-Bera (JB):		0.484
Skew:		-0	.430	Prob(3	JB):		0.785
Kurtosis:		1	.741	Cond.	No.		4.74

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Out[27]: <AxesSubplot:xlabel='idx', ylabel='fitted'>


```
In [28]: x_test = sm.add_constant(x_test, has_constant='add')
predictions = model.predict(x_test)
```

In [29]: mt.mean_squared_error(y_test, predictions)

Out[29]: 122.78856100000007

Multiple Linear Regression

```
In [30]: sns.regplot(x='AIR', y='EPI', data=data)
```



```
x_train = data_train[['idx', 'AIR', 'H2O', 'BDH', 'WRS']]
In [31]:
         y_train = data_train['EPI']
         x_test = data_test[['idx', 'AIR', 'H2O', 'BDH', 'WRS']]
         y_test = data_test['EPI']
         # with statsmodels
         x_train = sm.add_constant(x_train) # adding a constant
         model = sm.OLS(y_train, x_train).fit()
         predictions_train = model.predict(x_train)
         print_model = model.summary()
         print(print_model)
         p = model.params
         data_plot_train = data_train
         data_plot_train['fitted'] = data_plot_train['idx'] * p.idx + \
                                      data_plot_train['AIR'] * p.AIR + \
                                      data_plot_train['H20'] * p.H20 + \
                                      data_plot_train['BDH'] * p.BDH + \
                                      data_plot_train['WRS'] * p.WRS + p.const
         data_plot_train['tag'] = 'train'
         data_plot_test = data_test
         data_plot_test['fitted'] = data_plot_test['idx'] * p.idx + \
                                      data_plot_test['AIR'] * p.AIR + \
                                      data_plot_test['H20'] * p.H20 + \
                                      data plot test['BDH'] * p.BDH + \
                                      data_plot_test['WRS'] * p.WRS + p.const
         data_plot_test['tag'] = 'test'
         data_plot = pd.concat([data_plot_train,data_plot_test], axis=0)
         sns.lmplot(x='idx', y='EPI', data=data_plot, hue='tag', fit_reg=False)
         sns.regplot(x='idx', y='fitted', data=data_plot, color='red', scatter=False)
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations:	Least Square Sun, 11 Dec 20: 03:19:0	es F-sta 22 Prob	ared: R-squared: tistic: (F-statistic ikelihood:):	0.845 668.4 1.62e-244 -1963.4 3939.
Df Residuals:		09 BIC:			3965.
Df Model:		5			
Covariance Type:	nonrobus	st			
coe	======================================	t		[0.025	
const 17.781	9 0.956	18.610	0.000	15.905	19.658
idx 0.139	0.189	0.734	0.463	-0.233	0.511
AIR 0.130	6 0.012	10.521	0.000	0.106	0.155
H2O 0.185	4 0.012	15.749	0.000	0.162	0.209
BDH 0.158	2 0.010	15.343	0.000	0.138	0.178
WRS 0.162	2 0.010	16.698	0.000	0.143	0.181
Omnibus:	:====================================	======= 88 Durbi	======================================	=======	1.926
Prob(Omnibus): Skew:	0.04 -0.19		e-Bera (JB):		6.337 0.0421
Kurtosis:	-0.1	00 1100(JD / •		0.0421

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
l_launcher.py:21: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
l launcher.py:22: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
l_launcher.py:28: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
l_launcher.py:29: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

<AxesSubplot:xlabel='idx', ylabel='fitted'>


```
In [32]: fig = sm.graphics.plot_partregress_grid(model)
fig.tight_layout(pad=1.0)
```

eval_env: 1
eval_env: 1
eval_env: 1
eval_env: 1
eval_env: 1
eval_env: 1

Partial Regression Plot


```
In [33]: x_test = sm.add_constant(x_test, has_constant='add')
predictions = model.predict(x_test)
```

```
In [34]: mt⋅mean_squared_error(y_test, predictions)
```

Out[34]: 20.794376334029756

Sample Country

```
In [35]: # Train-predict and plot for sample country Norway
x_train = data_train[data_train['country'] == country][['idx', 'AIR', 'H2O', 'BDH'
```

```
y_train = data_train[data_train['country'] == country]['EPI']
x_test = data_test[data_test['country'] == country][['idx', 'AIR', 'H2O', 'BDH', 'I
y_test = data_test[data_test['country'] == country]['EPI']
# with statsmodels
x_train = sm.add_constant(x_train) # adding a constant
model = sm.OLS(y_train, x_train).fit()
predictions_train = model.predict(x_train)
print_model = model.summary()
print(print_model)
p = model.params
data_plot_train = data_train[data_train['country'] == country]
data_plot_train['fitted'] = data_plot_train['idx'] * p.idx + \
                            data_plot_train['AIR'] * p.AIR + \
                            data_plot_train['H20'] * p.H20 + \
                            data_plot_train['BDH'] * p.BDH + \
                            data_plot_train['WRS'] * p.WRS + p.const
data_plot_train['tag'] = 'train'
data_plot_test = data_test[data_test['country'] == country]
data_plot_test['fitted'] = data_plot_test['idx'] * p.idx + \
                            data_plot_test['AIR'] * p.AIR + \
                            data_plot_test['H20'] * p.H20 + \
                            data_plot_test['BDH'] * p.BDH + \
                            data_plot_test['WRS'] * p.WRS + p.const
data_plot_test['tag'] = 'test'
data_plot = pd.concat([data_plot_train,data_plot_test], axis=0)
sns.lmplot(x='idx', y='EPI', data=data_plot, hue='tag', fit_reg=False)
sns.regplot(x='idx', y='fitted', data=data_plot, color='red', scatter=False)
```

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\statsmod
els\stats\stattools.py:75: ValueWarning: omni_normtest is not valid with less than
8 observations; 5 samples were given.

"samples were given." % int(n), ValueWarning)

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\statsmod
els\regression\linear_model.py:1765: RuntimeWarning: divide by zero encountered in
true_divide

return 1 - (np.divide(self.nobs - self.k_constant, self.df_resid)

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\statsmod
els\regression\linear_model.py:1766: RuntimeWarning: invalid value encountered in
double_scalars

* (1 - self.rsquared))

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\statsmod
els\regression\linear_model.py:1687: RuntimeWarning: divide by zero encountered in
double_scalars

return np.dot(wresid, wresid) / self.df_resid

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
l_launcher.py:22: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
l_launcher.py:23: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
l_launcher.py:29: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
l_launcher.py:30: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

OLS Regression Results

===========	:=========	=======	========	=======	=======
Dep. Variable:	EPI	R-squar	ed:		1.000
Model:	OLS		squared:		nan
Method:	Least Squares				nan
Date:	Sun, 11 Dec 2022		-statistic)	:	nan
Time:	03:19:23	•	elihood:		144.69
No. Observations:	5	Ü			-279.4
Df Residuals:	0	BIC:			-281.3
Df Model:	4				
Covariance Type:	nonrobust				
=======================================		=======			=======
	oef std err	t	P> t	[0.025	0.975]
const 0.0	034 inf	0	nan	nan	nan
idx -2.0	882 inf	-0	nan	nan	nan
AIR -0.3	160 inf	-0	nan	nan	nan
H2O 0.6	633 inf	0	nan	nan	nan
BDH 0.3	145 inf	0	nan	nan	nan
WRS 0.3	167 inf	0	nan	nan	nan
		=======	========		=======
Omnibus:	nan	Durbin-	Watson:		0.660
Prob(Omnibus):	nan		Bera (JB):		0.359
Skew:	-0.607	`	•		0.836
Kurtosis:	2.500	Cond. N	0.		748.

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.
- $\[2\]$ The input rank is higher than the number of observations. <AxesSubplot:xlabel='idx', ylabel='fitted'>

Out[35]:


```
x_test = sm.add_constant(x_test, has_constant='add')
In [36]:
         predictions = model.predict(x_test)
```

In [37]: mt.mean_squared_error(y_test, predictions)

97.68311940770529

Models - Predict 2022

Data Sets

```
In [38]: data_train = data[(data['year'] < 2022)]
   data_test = data[data['year'].isin([2022])]</pre>
```

Simple Linear Regression

```
In [39]: x_train = data_train[['idx']]
         y_train = data_train['EPI']
         x_test = data_test[['idx']]
         y_test = data_test['EPI']
         # with statsmodels
         x_train = sm.add_constant(x_train) # adding a constant
         model = sm.OLS(y_train, x_train).fit()
         predictions_train = model.predict(x_train)
         print_model = model.summary()
         print(print_model)
         p = model.params
         data_plot_train = data_train
         data_plot_train['fitted'] = data_plot_train['idx'] * p.idx + p.const
         data_plot_train['tag'] = 'train'
         data plot test = data test
         data_plot_test['fitted'] = data_plot_test['idx'] * p.idx + p.const
         data_plot_test['tag'] = 'test'
         data_plot = pd.concat([data_plot_train,data_plot_test], axis=0)
         sns.lmplot(x='idx', y='EPI', data=data_plot, hue='tag', fit_reg=True)
         sns.regplot(x='idx', y='fitted', data=data_plot, color='red', scatter=False)
```

OLS Regression Results

	_			
=======================================	=========	================		========
Dep. Variable:	EPI	R-squared:		0.057
Model:	0LS	Adj. R-squared:		0.056
Method:	Least Squares	F-statistic:		44.67
Date:	Sun, 11 Dec 2022	<pre>Prob (F-statistic):</pre>		4.61e-11
Time:	03:19:40	Log-Likelihood:		-3030.8
No. Observations:	738	AIC:		6066.
Df Residuals:	736	BIC:		6075.
Df Model:	1			
Covariance Type:	nonrobust			
=======================================		============	.======	
coe	f std err	t P> t	[0.025	0.975]
	7 0 061			FO 3FO
		59.827 0.000		
idx -2.120	6 0.317	-6.684 0.000	-2.744	-1.498
Omnibus:	======================================	Dunhin Watson:	:======	1.770
	30.015			
Prob(Omnibus):	0.000			16.693
Skew:	0.197	Prob(JB):		0.000237
Kurtosis:	2.377	Cond. No.		5.78
===========	=========	==========	.======	========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
l_launcher.py:17: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
l_launcher.py:18: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
l_launcher.py:20: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
l_launcher.py:21: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

<AxesSubplot:xlabel='idx', ylabel='fitted'>


```
In [40]: x_test = sm.add_constant(x_test, has_constant='add')
predictions = model.predict(x_test)

In [41]: mt.mean_squared_error(y_test, predictions)

Out[41]: 183.67397634532637
```

Sample Country

```
In [42]:
         # Train-predict and plot for sample country Norway
         x_train = data_train[data_train['country'] == country][['idx']]
         y_train = data_train[data_train['country'] == country]['EPI']
         x_test = data_test[data_test['country'] == country][['idx']]
         y_test = data_test[data_test['country'] == country]['EPI']
         # with statsmodels
         x_train = sm.add_constant(x_train) # adding a constant
         model = sm.OLS(y_train, x_train).fit()
         predictions_train = model.predict(x_train)
         print model = model.summary()
         print(print_model)
         p = model.params
         data_plot_train = data_train[data_train['country'] == country]
         data_plot_train['fitted'] = data_plot_train['idx'] * p.idx + p.const
         data_plot_train['tag'] = 'train'
         data_plot_test = data_test[data_test['country'] == country]
         data_plot_test['fitted'] = data_plot_test['idx'] * p.idx + p.const
         data plot test['tag'] = 'test'
         data_plot = pd.concat([data_plot_train,data_plot_test], axis=0)
         sns.lmplot(x='idx', y='EPI', data=data_plot, hue='tag', fit_reg=True)
         sns.regplot(x='idx', y='fitted', data=data_plot, color='red', scatter=False)
```

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\statsmod els\stats\stattools.py:75: ValueWarning: omni normtest is not valid with less than 8 observations; 6 samples were given.

"samples were given." % int(n), ValueWarning)

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne 1_launcher.py:18: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl e/user_guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne 1_launcher.py:19: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl e/user_guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne 1_launcher.py:21: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl e/user_guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne 1_launcher.py:22: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl e/user_guide/indexing.html#returning-a-view-versus-a-copy

OLS Regression Results

=========	:======		=====				=======
Dep. Variable	::		EPI	R-squ	uared:		0.069
Model:			OLS	Adj.	R-squared:		-0.164
Method:		Least Squ	ares	F-sta	atistic:		0.2943
Date:	9	Sun, 11 Dec	2022	Prob	(F-statistic)	:	0.616
Time:		03:2	0:47	Log-l	_ikelihood:		-17.746
No. Observati	.ons:		6	AIC:			39.49
Df Residuals:			4	BIC:			39.08
Df Model:			1				
Covariance Ty	pe:	nonro	bust				
=========	======		=====				=======
	coef	std err		t	P> t	[0.025	0.975]
const	76.1233	4.130	18		0.000	64.657	87.589
idx	-0.7400						3.047
=========	:======	========	=====		-========		=======
Omnibus:			nan	Durb	in-Watson:		2.573
Prob(Omnibus)	:		nan	Jarqı	ue-Bera (JB):		0.866
Skew:		-0	.028	Prob	(JB):		0.648
Kurtosis:		1	.139	Cond	. No.		5.78
========	:======		=====				=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

Out[42]: <AxesSubplot:xlabel='idx', ylabel='fitted'>


```
In [43]: x_test = sm.add_constant(x_test, has_constant='add')
predictions = model.predict(x_test)

In [44]: mt.mean_squared_error(y_test, predictions)

Out[44]: 153.3469444444439
```

Multiple Linear Regression

```
In [45]: x_train = data_train[['idx','AIR', 'H2O', 'BDH', 'WRS']]
         y_train = data_train['EPI']
         x_test = data_test[['idx','AIR', 'H2O', 'BDH', 'WRS']]
         y_test = data_test['EPI']
         # with statsmodels
         x train = sm.add constant(x train) # adding a constant
         model = sm.OLS(y_train, x_train).fit()
         predictions_train = model.predict(x_train)
         print_model = model.summary()
         print(print_model)
         p = model.params
         data_plot_train = data_train
         data_plot_train['fitted'] = data_plot_train['idx'] * p.idx + \
                                      data_plot_train['AIR'] * p.AIR + \
                                      data_plot_train['H20'] * p.H20 + \
                                      data_plot_train['BDH'] * p.BDH + \
                                      data_plot_train['WRS'] * p.WRS + p.const
         data_plot_train['tag'] = 'train'
         data_plot_test = data_test
         data_plot_test['fitted'] = data_plot_test['idx'] * p.idx + \
                                      data_plot_test['AIR'] * p.AIR + \
                                      data_plot_test['H20'] * p.H20 + \
                                      data_plot_test['BDH'] * p.BDH + \
                                      data_plot_test['WRS'] * p.WRS + p.const
         data_plot_test['tag'] = 'test'
```

```
data_plot = pd.concat([data_plot_train,data_plot_test], axis=0)
sns.lmplot(x='idx', y='EPI', data=data_plot, hue='tag', fit_reg=False)
sns.regplot(x='idx', y='fitted', data=data_plot, color='red', scatter=False)
```

```
OLS Regression Results
______
Dep. Variable:
                                  EPI R-squared:
                                                                          0.859
                                  OLS Adj. R-squared:
Model:
                                                                           0.859
                     Least Squares F-statistic:
                  Least Squares F-statistic.

Sun, 11 Dec 2022 Prob (F-statistic): 5.09e-309
03:20:58 Log-Likelihood: -2328.5
Method:
Date:
Time:
No. Observations:
                                   738 AIC:
                                                                           4669.
                                   732 BIC:
Df Residuals:
                                                                            4697.
Df Model:
                                    5
Covariance Type:
                     nonrobust
______
                coef std err t P>|t| [0.025 0.975]

      const
      16.8606
      0.824
      20.470
      0.000
      15.244
      18.478

      idx
      0.2858
      0.137
      2.082
      0.038
      0.016
      0.555

      AIR
      0.1320
      0.011
      11.569
      0.000
      0.110
      0.154

      H2O
      0.1968
      0.011
      18.136
      0.000
      0.176
      0.218

      0.1626
      0.009
      17.305
      0.000
      0.144

      0.1545
      0.009
      18.049
      0.000
      0.138

                                                                          0.181
BDH
WRS
                                                                          0.171
______
Omnibus:
                                9.169 Durbin-Watson:
                                                                           1.941
                               0.010 Jarque-Bera (JB):
Prob(Omnibus):
                                                                         10.622
                               -0.179 Prob(JB):
Skew:
                                                                        0.00494
                                3.466 Cond. No.
Kurtosis:
______
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
l_launcher.py:21: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
l_launcher.py:22: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
l_launcher.py:28: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
l_launcher.py:29: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

```
Out[45]: <AxesSubplot:xlabel='idx', ylabel='fitted'>
```



```
In [46]: x_test = sm.add_constant(x_test, has_constant='add')
predictions = model.predict(x_test)

In [47]: mt.mean_squared_error(y_test, predictions)

77.71281286078752
```

Out[47]: //./12812860/8/52

Sample Country

```
In [48]: |
         # Train-predict and plot for sample country Norway
         x_train = data_train[data_train['country'] == country][['idx', 'AIR', 'H2O', 'BDH'
         y_train = data_train[data_train['country'] == country]['EPI']
         x_test = data_test['data_test['country'] == country][['idx', 'AIR', 'H2O', 'BDH', 'I
         y_test = data_test[data_test['country'] == country]['EPI']
         # with statsmodels
         x_train = sm.add_constant(x_train) # adding a constant
         model = sm.OLS(y_train, x_train).fit()
         predictions_train = model.predict(x_train)
         print_model = model.summary()
         print(print_model)
         p = model.params
         data_plot_train = data_train[data_train['country'] == country]
         data_plot_train['fitted'] = data_plot_train['idx'] * p.idx + \
                                      data_plot_train['AIR'] * p.AIR + \
                                      data_plot_train['H20'] * p.H20 + \
                                      data_plot_train['BDH'] * p.BDH + \
                                      data_plot_train['WRS'] * p.WRS + p.const
         data_plot_train['tag'] = 'train'
         data_plot_test = data_test[data_test['country'] == country]
         data_plot_test['fitted'] = data_plot_test['idx'] * p.idx + \
                                      data_plot_test['AIR'] * p.AIR + \
                                      data_plot_test['H20'] * p.H20 + \
                                      data_plot_test['BDH'] * p.BDH + \
```

```
data_plot_test['WRS'] * p.WRS + p.const
data_plot_test['tag'] = 'test'
data_plot = pd.concat([data_plot_train,data_plot_test], axis=0)
sns.lmplot(x='idx', y='EPI', data=data_plot, hue='tag', fit_reg=False)
sns.regplot(x='idx', y='fitted', data=data_plot, color='red', scatter=False)
C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\statsmod
els\stats\stattools.py:75: ValueWarning: omni_normtest is not valid with less than
8 observations; 6 samples were given.
 "samples were given." % int(n), ValueWarning)
C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\statsmod
els\regression\linear_model.py:1765: RuntimeWarning: divide by zero encountered in
true divide
 return 1 - (np.divide(self.nobs - self.k_constant, self.df_resid)
C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\statsmod
els\regression\linear_model.py:1766: RuntimeWarning: invalid value encountered in
double_scalars
 * (1 - self.rsquared))
C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\statsmod
els\regression\linear_model.py:1687: RuntimeWarning: divide by zero encountered in
double_scalars
 return np.dot(wresid, wresid) / self.df_resid
C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
1_launcher.py:22: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
e/user_guide/indexing.html#returning-a-view-versus-a-copy
C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
1_launcher.py:23: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
e/user_guide/indexing.html#returning-a-view-versus-a-copy
C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
1_launcher.py:29: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
e/user_guide/indexing.html#returning-a-view-versus-a-copy
C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
1_launcher.py:30: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
```

e/user_guide/indexing.html#returning-a-view-versus-a-copy

OLS Regression Results

Sun, 11 Dec 2022 03:21:30 6	Adj. I F-sta Prob Log-L: AIC:	R-squared: tistic: (F-statistic)	:	1.000 nan nan nan 146.03
0	BIC:			-281.3
5				
nonrobust				
	======		=======	
f std err	t	P> t	[0.025	0.975]
0 inf	-0	nan	nan	nan
3 inf	0	nan	nan	nan
0 inf	-0	nan	nan	nan
1 inf	0	nan	nan	nan
4 inf	0	nan	nan	nan
5 inf	0	nan	nan	nan
	======		=======	
nan	Durbi	n-Watson:		0.002
nan	Jarque	e-Bera (JB):		0.205
0.446	Prob(JB):		0.903
2.838	•	•		2.91e+05
,	OLS Least Squares Sun, 11 Dec 2022 03:21:30 6 0 5 nonrobust ef std err 0 inf 63 inf 60 inf 61 inf 64 inf 65 inf 65 inf 66 inf 67 inf 68 inf 69 inf 60 inf 60 inf 61 inf 64 inf 65 inf	OLS Adj. R Least Squares F-star Sun, 11 Dec 2022 Prob 03:21:30 Log-L 6 AIC: 0 BIC: 5 nonrobust ef std err t 00 inf -0 6 inf 0 6 inf 0 7 inf 0 7 inf 0 8 inf 0 8 inf 0 8 inf 0 9 inf	OLS Adj. R-squared: Least Squares F-statistic: Sun, 11 Dec 2022 Prob (F-statistic) 03:21:30 Log-Likelihood: 6 AIC: 0 BIC: 5 nonrobust ef std err t P> t 0 inf -0 nan 10 inf 0 nan 11 inf 0 nan 11 inf 0 nan 15 inf 0 nan 16 inf 0 nan 17 inf 0 nan 18 inf 0 nan 18 inf 0 nan 19 nan 10 nan 10 nan 10 nan 11 inf 0 nan 12 inf 0 nan 13 inf 0 nan 14 inf 0 nan 15 inf 0 nan 16 inf 0 nan 17 inf 0 nan 18 i	OLS Adj. R-squared: Least Squares F-statistic: Sun, 11 Dec 2022 Prob (F-statistic): 03:21:30 Log-Likelihood: 6 AIC: 0 BIC: 5 nonrobust ef std err t P> t [0.025] .0 inf -0 nan nan nan nan nan nan nan nan nan na

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.91e+05. This might indicate that there are strong multicollinearity or other numerical problems. <AxesSubplot:xlabel='idx', ylabel='fitted'>

Out[48]:


```
In [49]: x_test = sm.add_constant(x_test, has_constant='add')
predictions = model.predict(x_test)
```

In [50]: mt.mean_squared_error(y_test, predictions)

ARIMA

Data prep

Predict 2020

```
All Countries Avg
          data_arima_all = data.groupby(['date', 'year'], as_index=False).mean()
In [53]:
In [54]:
          data_arima_all
                                   EPI
                                            AIR
                                                     H20
                                                               BDH
                                                                         WRS
Out[54]:
                  date year
                                                                             idx
          0 2010-01-01 2010 60.251138 67.837967 77.512683 58.312114 68.656992
                                                                              0.0
          1 2012-01-01 2012 53.542439 71.842927 57.831789 60.059106 31.310000
                                                                              1.0
          2 2014-01-01 2014 55.251382 80.631463 57.126748 61.361057 32.226748
                                                                              2.0
          3 2016-01-01 2016 45.454146 43.607154 46.896911 53.589024 30.661789
                                                                              3.0
          4 2018-01-01 2018 47.590244 44.652033 51.738211 58.256098 30.661789
                                                                              4.0
          5 2020-01-01 2020 50.937398 49.315447 55.434146 62.035772 30.661789
                                                                               5.0
          6 2022-01-01 2022 44.358537 44.569106 55.507317 58.218699 32.001626 6.0
In [55]:
          data_train_arima = data_arima_all[data_arima_all['year'] < 2020].sort_values('year')</pre>
          data_test_arima = data_arima_all[data_arima_all['year'].isin([2020])].sort_values(
In [56]:
          data_train_arima
                                   EPI
                                            AIR
                                                     H20
                                                               BDH
                                                                         WRS idx
Out[56]:
                  date year
          0 2010-01-01 2010 60.251138 67.837967 77.512683
                                                           58.312114
                                                                    68.656992
                                                                               0.0
          1 2012-01-01 2012
                             53.542439
                                      71.842927 57.831789
                                                           60.059106
                                                                    31.310000
                                                                               1.0
          2 2014-01-01 2014 55.251382 80.631463 57.126748
                                                          61.361057
                                                                    32.226748
                                                                               2.0
          3 2016-01-01 2016 45.454146 43.607154 46.896911 53.589024
                                                                    30.661789
                                                                               3.0
          4 2018-01-01 2018 47.590244 44.652033 51.738211 58.256098 30.661789
In [57]:
          data_train_arima = data_train_arima[['date', 'EPI']]
          data_test_arima = data_test_arima[['date', 'EPI']]
          data_train_arima.set_index('date', inplace=True)
          data_test_arima.set_index('date', inplace=True)
```

```
data_test_arima.index = pd.to_datetime(data_test_arima.index)
         stepwise_model = auto_arima(data_train_arima,
                                      start p=1, start q=1,
                                      max_p=5, max_q=5,
                                      m=1,
                                      seasonal=False,
                                      d=1, trace=True,
                                      error_action='ignore',
                                      suppress_warnings=True,
                                      stepwise=False)
         print(stepwise_model.aic())
         stepwise_model.fit(data_train_arima)
         future_forecast = stepwise_model.predict(n_periods=1)
         data_test_arima['Prediction'] = future_forecast
         data_arima = pd.concat([data_train_arima, data_test_arima])
         data_arima['idx'] = data_arima.index #.astype(str)
          ARIMA(0,1,0)(0,0,0)[0] intercept : AIC=28.550, Time=0.03 sec
          ARIMA(0,1,1)(0,0,0)[0] intercept : AIC=inf, Time=0.08 sec
          ARIMA(1,1,0)(0,0,0)[0] intercept : AIC=22.223, Time=0.02 sec
          ARIMA(1,1,1)(0,0,0)[0] intercept : AIC=inf, Time=0.12 sec
         Best model: ARIMA(1,1,0)(0,0,0)[0] intercept
         Total fit time: 0.265 seconds
         22.22342320426996
In [58]: future_forecast
                       38.791233
         2020-01-01
Out[58]:
         Freq: 2AS-JAN, dtype: float64
         data_arima[['EPI', 'Prediction']]
In [59]:
Out[59]:
                          EPI Prediction
               date
         2010-01-01 60.251138
                                   NaN
         2012-01-01 53.542439
                                   NaN
         2014-01-01 55.251382
                                   NaN
         2016-01-01 45.454146
                                   NaN
         2018-01-01 47.590244
                                   NaN
         2020-01-01 50.937398
                              38.791233
         plt.plot(data_arima.idx.dt.year, data_arima.EPI, 'o-', label = "Actual")
In [60]:
         plt.scatter(data_arima.idx.dt.year, data_arima.Prediction, label = "Prediction", co
         plt.legend()
         plt.ylim([25, 70])
         plt.show()
```

data_train_arima.index = pd.to_datetime(data_train_arima.index)


```
In [61]: mt.mean_squared_error(data_test_arima.EPI, data_test_arima.Prediction)
```

Out[61]: 147.52932490439358

Sample Country

```
In [62]: data_train_arima = data[data['year'] < 2020][data['country'] == country].sort_value
data_test_arima = data[data['year'].isin([2020])][data['country'] == country].sort_</pre>
```

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
l_launcher.py:1: UserWarning: Boolean Series key will be reindexed to match DataFr
ame index.

"""Entry point for launching an IPython kernel.

C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
l_launcher.py:2: UserWarning: Boolean Series key will be reindexed to match DataFr
ame index.

```
In [63]: data_train_arima = data_train_arima[['date', 'EPI']]
    data_test_arima = data_test_arima[['date', 'EPI']]

    data_train_arima.set_index('date', inplace=True)
    data_test_arima.set_index('date', inplace=True)

data_train_arima.index = pd.to_datetime(data_train_arima.index)
    data_test_arima.index = pd.to_datetime(data_test_arima.index)
```

```
In [64]: data_train_arima
```

Out[64]: **EPI**

```
date2010-01-0181.132012-01-0169.922014-01-0178.042016-01-0168.752018-01-0170.10
```

```
In [65]: data_test_arima
```

```
date
         2020-01-01 77.7
         stepwise_model = auto_arima(data_train_arima,
                                      start_p=1, start_q=1,
                                      max_p=5, max_q=5,
                                      m=1,
                                      seasonal=False,
                                      d=1, trace=True,
                                      error action='ignore',
                                      suppress_warnings=True,
                                      stepwise=False)
         print(stepwise_model.aic())
          ARIMA(0,1,0)(0,0,0)[0] intercept : AIC=31.881, Time=0.01 sec
          ARIMA(0,1,1)(0,0,0)[0] intercept : AIC=inf, Time=0.07 sec
          ARIMA(1,1,0)(0,0,0)[0] intercept : AIC=27.418, Time=0.02 sec
          ARIMA(1,1,1)(0,0,0)[0] intercept : AIC=inf, Time=0.09 sec
         Best model: ARIMA(1,1,0)(0,0,0)[0] intercept
         Total fit time: 0.197 seconds
         27.417919922228585
In [67]: stepwise_model.fit(data_train_arima)
         ARIMA(maxiter=50, method='lbfgs', order=(1, 1, 0), out_of_sample_size=0,
Out[67]:
               scoring='mse', scoring_args={}, seasonal_order=(0, 0, 0, 0),
               start_params=None, suppress_warnings=True, trend=None,
               with_intercept=True)
In [68]:
         future_forecast = stepwise_model.predict(n_periods=1)
         data_test_arima['Prediction'] = future_forecast
         data_arima = pd.concat([data_train_arima, data_test_arima])
         data_arima['idx'] = data_arima.index #.astype(str)
In [69]: data_arima[['EPI', 'Prediction']]
Out[69]:
                      EPI Prediction
               date
         2010-01-01 81.13
                               NaN
         2012-01-01 69.92
                               NaN
         2014-01-01 78.04
                               NaN
         2016-01-01 68.75
                               NaN
         2018-01-01 70.10
                               NaN
         2020-01-01 77.70 64.872379
         plt.plot(data arima.idx.dt.year, data arima.EPI, 'o-', label = "Actual")
         plt.scatter(data_arima.idx.dt.year, data_arima.Prediction, label = "Prediction", co
```

Out[65]:

EPI

plt.legend()
plt.show()

Predict 2022

All Countries

```
In [71]: data_train_arima = data_arima_all[data_arima_all['year'] < 2022].sort_values('year</pre>
         data_test_arima = data_arima_all[data_arima_all['year'].isin([2022])].sort_values(
In [72]:
         data_train_arima = data_train_arima[['date', 'EPI']]
         data_test_arima = data_test_arima[['date', 'EPI']]
         data_train_arima.set_index('date', inplace=True)
         data_test_arima.set_index('date', inplace=True)
         data_train_arima.index = pd.to_datetime(data_train_arima.index)
         data_test_arima.index = pd.to_datetime(data_test_arima.index)
         stepwise_model = auto_arima(data_train_arima,
                                      start_p=1, start_q=1,
                                      max_p=5, max_q=5,
                                      m=1,
                                      seasonal=False,
                                      d=1, trace=True,
                                      error_action='ignore',
                                      suppress_warnings=True,
                                      stepwise=False)
         print(stepwise_model.aic())
         stepwise_model.fit(data_train_arima)
         future forecast = stepwise model.predict(n periods=1)
         data_test_arima['Prediction'] = future_forecast
         data_arima = pd.concat([data_train_arima, data_test_arima])
         data_arima['idx'] = data_arima.index #.astype(str)
```

: AIC=34.933, Time=0.01 sec ARIMA(0,1,0)(0,0,0)[0] intercept ARIMA(0,1,1)(0,0,0)[0] intercept : AIC=34.852, Time=0.10 sec : AIC=inf, Time=0.10 sec ARIMA(0,1,2)(0,0,0)[0] intercept ARIMA(1,1,0)(0,0,0)[0] intercept : AIC=35.868, Time=0.02 sec : AIC=2438603.608, Time=0.05 sec ARIMA(1,1,1)(0,0,0)[0] intercept : AIC=inf, Time=0.11 sec ARIMA(1,1,2)(0,0,0)[0] intercept ARIMA(2,1,0)(0,0,0)[0] intercept : AIC=39.553, Time=0.14 sec ARIMA(2,1,1)(0,0,0)[0] intercept : AIC=38.514, Time=0.15 sec : AIC=inf, Time=0.23 sec ARIMA(2,1,2)(0,0,0)[0] intercept

Best model: ARIMA(0,1,1)(0,0,0)[0] intercept

Total fit time: 0.921 seconds

34.8522281264441

```
In [73]: data_arima[['EPI','Prediction']]
```

Out[73]: EPI Prediction

date		
2010-01-01	60.251138	NaN
2012-01-01	53.542439	NaN
2014-01-01	55.251382	NaN
2016-01-01	45.454146	NaN
2018-01-01	47.590244	NaN
2020-01-01	50.937398	NaN
2022-01-01	44.358537	44.756014

```
In [74]: plt.plot(data_arima.idx, data_arima.EPI, 'o-', label = "Actual")
  plt.scatter(data_arima.idx, data_arima.Prediction, label = "Prediction", color='red
  plt.legend()
  plt.ylim([25, 70])
  plt.show()
```



```
In [75]: mt.mean_squared_error(data_test_arima.EPI, data_test_arima.Prediction)
```

Out[75]: 0.15798856585889806

Sample Country

```
data_train_arima = data[data['year'] < 2022][data['country'] == country].sort_value
In [76]:
         data_test_arima = data[data['year'].isin([2022])][data['country'] == country].sort]
         C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
         l_launcher.py:1: UserWarning: Boolean Series key will be reindexed to match DataFr
         ame index.
           """Entry point for launching an IPython kernel.
         C:\Users\ozlem.gunes\AppData\Local\Continuum\miniconda3\lib\site-packages\ipykerne
         l_launcher.py:2: UserWarning: Boolean Series key will be reindexed to match DataFr
         ame index.
         data_train_arima = data_train_arima[['date', 'EPI']]
In [77]:
         data_test_arima = data_test_arima[['date', 'EPI']]
         data_train_arima.set_index('date', inplace=True)
         data_test_arima.set_index('date', inplace=True)
         data_train_arima.index = pd.to_datetime(data_train_arima.index)
         data_test_arima.index = pd.to_datetime(data_test_arima.index)
In [78]: data_train_arima
                      EPI
Out[78]:
               date
         2010-01-01 81.13
         2012-01-01 69.92
         2014-01-01 78.04
         2016-01-01 68.75
         2018-01-01 70.10
         2020-01-01 77.70
         data_test_arima
In [79]:
Out[79]:
                     EPI
               date
         2022-01-01 59.3
In [80]: stepwise_model = auto_arima(data_train_arima,
                                      start_p=1, start_q=1,
                                      max_p=5, max_q=5,
                                      m=1,
                                      seasonal=False,
                                      d=1, trace=True,
                                      error_action='ignore',
                                      suppress_warnings=True,
                                      stepwise=False)
         print(stepwise_model.aic())
```

```
ARIMA(0,1,0)(0,0,0)[0] intercept
                                              : AIC=39.215, Time=0.01 sec
          ARIMA(0,1,1)(0,0,0)[0] intercept
                                              : AIC=inf, Time=0.13 sec
                                              : AIC=inf, Time=0.10 sec
          ARIMA(0,1,2)(0,0,0)[0] intercept
          ARIMA(1,1,0)(0,0,0)[0] intercept
                                              : AIC=38.598, Time=0.02 sec
                                              : AIC=inf, Time=0.12 sec
          ARIMA(1,1,1)(0,0,0)[0] intercept
                                              : AIC=inf, Time=0.13 sec
          ARIMA(1,1,2)(0,0,0)[0] intercept
          ARIMA(2,1,0)(0,0,0)[0] intercept
                                              : AIC=37.529, Time=0.12 sec
          ARIMA(2,1,1)(0,0,0)[0] intercept
                                              : AIC=1397421.593, Time=0.05 sec
          ARIMA(2,1,2)(0,0,0)[0] intercept : AIC=inf, Time=0.19 sec
         Best model: ARIMA(2,1,0)(0,0,0)[0] intercept
         Total fit time: 0.877 seconds
         37.528581428326504
         stepwise_model.fit(data_train_arima)
In [81]:
         ARIMA(maxiter=50, method='lbfgs', order=(2, 1, 0), out_of_sample_size=0,
Out[81]:
               scoring='mse', scoring_args={}, seasonal_order=(0, 0, 0, 0),
               start_params=None, suppress_warnings=True, trend=None,
               with_intercept=True)
         future_forecast = stepwise_model.predict(n_periods=1)
In [82]:
         data_test_arima['Prediction'] = future_forecast
         data_arima = pd.concat([data_train_arima, data_test_arima])
         data_arima['idx'] = data_arima.index #.astype(str)
         data_arima[['EPI', 'Prediction']]
In [83]:
Out[83]:
                      EPI Prediction
               date
         2010-01-01 81.13
                               NaN
         2012-01-01 69.92
                               NaN
         2014-01-01 78.04
                               NaN
         2016-01-01 68.75
                               NaN
         2018-01-01 70.10
                               NaN
         2020-01-01 77.70
                               NaN
         2022-01-01 59.30 61.724263
         plt.plot(data_arima.idx, data_arima.EPI, 'o-', label = "Actual")
In [84]:
         plt.scatter(data arima.idx, data arima.Prediction, label = "Prediction", color='rediction',
         plt.legend()
```

plt.show()

In []: