Homework 5

Moulinath Banerjee

November 11, 2020

1 The distribution of the number of sights of a jungle animal over a long period of time is given by the following logarithmic series distribution:

$$P(X = x) = -\frac{(1-p)^x}{x \log p}, \ x = 1, 2, 3, \dots$$

- (a) Verify that this is a proper probability distribution.
- (b) What is the most likely number of sights of the jungle animal?
- (c) Calculate the mean and variance of the number of sights.
- **2** For a random vector $\underline{X} := (X_1, X_2, \dots, X_p)$, the m.g.f is defined as $M_{\underline{X}}(\mathbf{t}) = E(\exp(\mathbf{t}^T \underline{X}))$. As in the one-dimensional case, if $M_{\underline{X}}(\mathbf{t})$ exists for all $\|\mathbf{t}\| < \epsilon$ (for some $\epsilon > 0$), it uniquely determines the distribution of \underline{X} .
 - (a) If $X_1, X_2, ..., X_p$ are i.i.d. random variables, each with m.g.f $M_X(t)$, express the m.g.f. of $M_X(\mathbf{t})$ in terms of $M_X(\cdot)$ where $\mathbf{t} = (t_1, t_2, ..., t_p)$.
 - (b) Find the m.g.f. of \underline{X} where the X_i 's are i.i.d. N(0,1).
 - (c) Let $\underline{Y} = \mu + B\underline{X}$ where $B_{p \times p}$ is a non-singular matrix and μ is a fixed vector in \mathbb{R}^p . Define $\Sigma = BB^T$. Then Σ is a positive-definite matrix. Let $M_{\underline{Y}}(\mathbf{t})$ denote the m.g.f. of \underline{Y} .
 - Show that the m.g.f of \underline{Y} exists for all \mathbf{t} and depends only on (μ, Σ) . Note that $\mu = E(\underline{Y})$ and $\Sigma = \text{Cov}(\underline{Y})$, where Cov denotes the dispersion matrix. Denote by $M_{\mu,\Sigma}(\cdot)$ the m.g.f. of Y. It follows that any p dimensional random vector with this particular m.g.f must have the same distribution as Y, and in that case μ must be its mean and Σ its variance-covariance matrix.
 - (d) If $(\mu_1, \Sigma_1) \neq (\mu_2, \Sigma_2)$, show that $M_{\mu_1, \Sigma_1} \neq M_{\mu_2, \Sigma_2}$ and therefore the corresponding distributions are different.
 - (e) As (μ, Σ) varies over all possible pairs, we get the family of non-singular p-dimensional normal distributions. Use the change of variable theorem in p-dimensions to find the p.d.f. of \underline{Y} . (For p=2 we get the family of bivariate normal distributions.)
- **3** Exercises from the textbook: 4.33, 4.34, 4.36, 4.40, 4.47.
- 4 [Supplemental exercise, will not count towards the grade] Let X be a random variable distributed on [0, M] with a continuous p.d.f. f(x) and distribution function F(x). Assume

that f(x) is non-increasing on [0,M], i.e. $f(u) \geq f(v)$ for u < v. (For purposes of visualization, you might want to draw a schematic diagram of a non-negative continuous non-increasing function on a finite interval starting at the point 0.) For this problem you will

- crucially need to use the fact that f is a non-increasing function. (a) Show that $F(x) \ge x f(x)$ and deduce that $\mu \le \int_0^M F(x) dx$ where μ is the mean of X. (b) Show that m, the median of X (i.e. F(m) = 1/2) and μ are both at most M/2. [Hints: Which is greater: $P(X \le M/2)$ or P(X > M/2)? Also recall that $\int_0^M (1 F(x)) dx = \mu$]
- (c) Show that if m = M/2 or $\mu = M/2$ in either case X must follow the uniform distribution on [0, M]. [Note: In either case, you should be able to deduce that the nonincreasing density f actually has to be constant.