Chapter 11: Electricity

Introduction

Electricity is a controllable and convenient form of energy used in homes, schools, hospitals, and industries. In this chapter, we explore:

- What constitutes electricity
- How it flows in circuits
- Laws governing current, voltage, and resistance
- Heating effects and power calculation

11.1 Electric Current and Circuit

Electric Current:

The flow of electric charge (usually electrons) through a conductor. It is measured as the rate of flow of charge:

I = Q/t

Where:

I = Current (in amperes),

Q = charge (in coulombs),

t = time (in seconds)

- 1 Coulomb = charge carried by 6 × 1018 electrons
- 1 Ampere = 1 Coulomb/1 second
- Ammeter: Used to measure electric current. Always connected in series in a circuit.

Figure 11.1
A schematic diagram of an electric circuit comprising – cell, electric bulb, ammeter and plug key

◆ 11.2 Electric Potential and Potential Difference

Electric Potential:

Work done in moving a unit charge from one point to another.

Potential Difference (V) = Work Done (W) / Charge (Q)

Unit: Volt (V)

1 V = 1 Joule / 1 Coulomb

Example: Moving 2 C of charge across 12 V requires 24 J of work.

_

11.3 Circuit Diagram

Circuit diagrams use symbols to represent components.

Examples:

- Cell: |-
- Battery: | |-
- Switch (open):..
- Switch (closed): -
- Resistor: zig-zag line
- Ammeter: ⓐ
- Voltmeter: v

__

• 11.4 Ohm's Law

Ohm's Law:

At constant temperature, current (I) through a conductor is directly proportional to the voltage (V).

$V \propto I \rightarrow V = IR$

 $R = Resistance in ohms (\Omega)$

Resistance (R) = V/I

If V = 1 V and I = 1 A, then $R = 1 \Omega$

™ Fig 11.3 – V-I graph

♦ 11.5 Factors Affecting Resistance

Activity: Using wires of different lengths, areas, and materials

Resistance depends on:

Length (l): R

C

• Cross-sectional Area (A): R ∝ 1/A

Material: Resistivity (ρ)

 $R = \rho \times (l / A)$

Resistivity (ρ):

Characteristic of the material. Unit: Ω m

	Material	Resistivity (Ω m)
Conductors	Silver	1.60 × 10 ⁻⁸
	Copper	1.62 × 10 ⁻⁸
	Aluminium	2.63 × 10 ⁻⁸
	Tungsten	5.20 × 10 ⁻⁸
	Nickel	6.84×10^{-8}
	Iron	10.0 × 10 ⁻⁸
	Chromium	12.9 × 10 ⁻⁸
	Mercury	94.0 × 10 ⁻⁸
	Manganese	1.84 × 10 ⁻⁶
Alloys	Constantan	49 × 10 ⁻⁶
	(alloy of Cu and Ni)	
	Manganin	44 × 10 ⁻⁶
	(alloy of Cu, Mn and Ni)	
	Nichrome	100 × 10 ⁻⁶
	(alloy of Ni, Cr, Mn and Fe)	
Insulators	Glass	$10^{10} - 10^{14}$
	Hard rubber	$10^{13} - 10^{16}$
	Ebonite	$10^{15} - 10^{17}$
	Diamond	1012 - 1013
	Paper (dry)	1012

i Table 11.2 – Resistivity of various materials (e.g., Copper, Nichrome, Glass)

_

◆ 11.6 Resistance in Series and Parallel

Series Combination:

- Current is same through all
- Voltage divides

Rtotal = $R_1 + R_2 + R_3$

Parallel Combination:

- Voltage is same across all
- Current divides

$1/Rtotal = 1/R_1 + 1/R_2 + 1/R_3$

Figure 11.6 Resistors in series

Figure 11.7 Resistors in parallel

11.7 Heating Effect of Electric Current

Mhen current flows through a resistor, electrical energy is converted into heat.

Heat (H) = $VIt = I^2Rt = V^2t/R$

- Doule's Law of Heating:
 - **H** ∝ **I**² (more current, more heat)
 - **H** ∝ **R** (more resistance, more heat)
 - **H ∝ t** (longer time, more heat)

Figure 11.13
A steady current in a purely resistive electric circuit

Applications:

- Electric heaters, toasters, irons
- Electric bulbs (tungsten filament)
- Electric fuse (thin wire that melts when excess current flows)

◆ 11.8 Electric Power

Power (P) = Rate at which electrical energy is used

 $P = VI = I^2R = V^2/R$

Unit: Watt (W)

Commercial unit of energy: kilowatt-hour (kWh)

 $1 \text{ kWh} = 1000 \text{ W} \times 3600 \text{ s} = 3.6 \times 10^6 \text{ J}$

Example:

If a 400 W refrigerator works for 8 hrs/day for 30 days:

Energy = 400 × 8 × 30 = 96000 Wh = 96 kWh

If cost is ₹3/kWh → Bill = ₹288

_

★ Summary:

- Electric current is flow of electrons
- Potential difference causes the flow
- Ohm's Law: V = IR
- Resistance depends on length, area, material
- Series: R adds up; Parallel: 1/R adds up
- Heating effect used in daily devices
- Electric power = energy/time; unit = watt, kWh