PhysicsNeRF: Physics-Guided 3D Reconstruction from Sparse Views

PhysicsNeRF is a physically grounded framework for 3D reconstruction from sparse views, extending Neural Radiance Fields (NeRFs) with four complementary constraints: depth ranking, RegNeRF-style consistency, sparsity priors, and cross-view alignment. While standard NeRFs fail under sparse supervision, PhysicsNeRF employs a compact 0.67M-parameter architecture and achieves 21.4 dB average PSNR using only 8 views, out-performing the state-of-the-art baselines. A generalization gap of 5.7-6.2 dB is consistently observed and analyzed, revealing fundamental limitations of sparse-view reconstruction. PhysicsNeRF enables physically consistent, generalizable 3D representations for agent interaction and simulation, and clarifies the expressiveness-generalization trade-off in constrained NeRF models.

M Rayan Barhdadi¹, Hasan Kurban², Hussein Alnuweiri²

¹ Department of Electrical and Computer Engineering, Texas A&M University, Doha, Qatar ² College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar

What's the Problem?

With ≤ 8 posed images—common in phone or drone scans—leave vanilla NeRF under-constrained, so it memorises inputs and hallucinates the rest.

(A) Needs > 20 views; otherwise geometry blurs or vanishes.

(B) Recent fixes (RegNeRF, DietNeRF, SparseNeRF) add heuristics yet still leave a 5 – 6 dB gap on unseen views, showing physics-free regularisation is not enough.

Figure 1: Standard NeRF performance degrades with sparse inputs.

Our Approach & Preliminary Results

Figure 2: PhysicsNeRF Training Dynamic Evolution

Table 1: Train / Test / Gap PSNR (in dB) for 8-view static reconstruction. Each cell shows: train / test / gap

Method	Chair	Lego	Drums
PhysicsNeRF (Ours)	23.2 / 18.5 / 4.7	21.7 / 15.0 / 6.7	19.2 / 12.0 / 7.2
NeRF	16.2 / 9.1 / 7.1	15.0 / 8.5 / 6.5	14.4 / 8.5 / 5.9
RegNeRF	21.0 / 12.6 / 8.4	19.8 / 11.5 / 8.3	19.5 / 11.3 / 8.2
DietNeRF	20.4 / 13.8 / 6.6	19.5 / 13.0 / 6.5	19.5 / 12.8 / 6.7
SparseNeRF	21.3 / 12.9 / 8.4	20.1 / 11.7 / 8.4	20.1 / 12.8 / 8.4

Impact & Future Work

Accessible Sparse-View 3D

Enables accurate 3D reconstruction from just 8 images, making high-quality 3D capture more accessible.

Future Adaptive Physics Priors & Fusion

Develop adaptive physics constraints and integrate multi-modal cues for better generalization and fidelity.

Full Paper CVPR 26'

Acknowledgments and References

I thank Dr. Hasan Kurban and Dr. Hussein Alnuweiri for invaluable guidance and discussion and the Texas A&M University at Qatar & HBKU HPC teams for compute resources. Open-source tools (Instant-NGP, PyTorch) and public datasets (NeRF-Synthetic) were essential to rapid experimentation.

Contact: rayan.barhdadi@tamu.edu Web: https://bmrayan.com

