Differential Equations in Geophysical Fluid Dynamics

XIV. Wind-driven circulation: approximated solution to Stommel wind-driven circulation problem

Jang-Geun Choi

Center for Ocean Engineering University of New Hampshire

Oct, 2025

This seminar is supported by mathematics community EM (maintained by Prof. Gunhee Cho) and oceanography community COKOAA.

Recap

Stommel's wind-driven circulation problem is given by

 $\frac{\gamma}{h} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} \right) + \beta \frac{\partial \psi}{\partial x} = \frac{\gamma}{\rho_0 h L_y} \sin(\pi y / L_y)$ $\frac{\gamma}{\beta \bar{v}: \text{ Planetary } \beta\text{-term}} \qquad \qquad \text{Wind stress curl} \qquad \qquad \text{(1a)}$

$$|\psi|_{x=0} = 0, \quad \psi|_{x=L_x} = 0, \quad \psi|_{y=0} = 0, \quad \psi|_{y=L_y} = 0.$$
 (1b)

Scale analysis

Let us nondimensionalize the governing equation using $x=Lx^*$, $y=Ly^*$, and $\psi=\Psi\psi^*$:

$$\frac{O(1): \text{ big "Sverdrup balance"}}{\epsilon \left(\frac{\partial^2 \psi^*}{\partial x^{*2}} + \frac{\partial^2 \psi^*}{\partial y^{*2}}\right) + \frac{\partial \psi^*}{\partial x^*} = \nabla \times \vec{\tau}_s^*} \qquad (2)$$

where $\epsilon = L_S/L \ll 1$ and $L_S = \gamma/(h\beta)$. The order of the forcing term is set to be identical to that of the beta term.

Scale analysis

What if we set $x=L_Sx^*$ representing narrow western boundary region?

$$\frac{\partial^{2}\psi^{*}}{\partial x^{*2}} + \epsilon^{2}\frac{\partial^{2}\psi^{*}}{\partial y^{*2}} + \frac{\partial\psi^{*}}{\partial x^{*}} = \epsilon\nabla\times\vec{\tau}_{s}^{*}$$

$$O(\epsilon^{2}): \text{ very small}$$
(3)

So, for the narrow western boundary, the governing equation can be simplified to

$$\frac{\partial^2 \psi}{\partial x^{*2}} + \frac{\partial \psi^*}{\partial x^*} = 0$$

$$\left(\frac{\gamma}{h} \frac{\partial^2 \psi}{\partial x^2} + \beta \frac{\partial \psi}{\partial x} = 0\right)$$
(4)

Simplified problem

Consider two components of the steam function: interior component (ψ_I) and boundary component (ψ_B) , so $\psi = \psi_I + \psi_B$.

Based on scaling analysis above, simplified governing equations for each component are given by

$$\beta \frac{\partial \psi_I}{\partial x} = -\frac{\tau_0 \pi}{\rho_0 h L_y} \sin(\pi y / L_y) \tag{5}$$

$$\frac{\gamma}{h} \frac{\partial^2 \psi_B}{\partial x^2} + \beta \frac{\partial \psi_B}{\partial x} = 0 \tag{6}$$

and the boundary conditions, also simplified, are given by

$$\psi|_{x=0} = 0 \qquad \lim_{x \to \infty} \psi = \psi_I. \tag{7}$$

Simplified problem

Solution to the simplified problem is given by

$$\psi = \psi_I + \psi_B \tag{8a}$$

$$\psi_{I} = \left(-\frac{\tau_{0}\pi}{\rho_{0}L_{y}h\beta}\sin(\pi y/L_{y})\right)(x - L_{x}) \tag{8b}$$

$$\psi_{B} = -\psi_{I}e^{x/L_{S}} \tag{8c}$$

$$\psi_B = -\psi_I e^{x/L_S} \tag{8c}$$

Summary

For the narrow western boundary region, governing equation is simplified to

$$\frac{\gamma}{h} \frac{\partial^2 \psi_B}{\partial x^2} + \beta \frac{\partial \psi_B}{\partial x} = 0 \tag{9a}$$

$$\psi_B|_{x=0} = -\psi_I \tag{9b}$$

$$\lim_{x \to \infty} \psi_B = 0 \tag{9c}$$

This implies that the boundary current is forced by interior flow, rather than regional wind stress forcing.

Solution to the problem is given by

$$\psi_B = -\psi_I e^{x/L_S} \tag{10}$$

where $L_S = \gamma/(h\beta)$ representing scale of width of western boundary current.

