- 컴퓨터의 문제 해결 과정

- **자료구조**란 자료를 효율적으로 사용하기 위해서 자료의 특성에 따라서 분류하여 구성하고 저장 및 처리하는 모든 작업.
- 자료구조를 배워야하는 이유는 컴퓨터가 효율적으로 문제를 처리하기위해서는 문제를 정의하고 분석하여 그에 대한 최적의 프로그램을 작성해야 하기때문이다.

- 단순 구조

정수, 실수, 문자, 문자열 등의 기본 자료형.

- 선형 구조

자료들 간의 앞뒤 관계가 1:1의 선형 관계. Ex) 배열, 연결 리스트, 스택, 큐, 덱 등.

- 비선형 구조

자료들 간의 앞뒤 관계가 '1:다' 또는 '다:다'의 관계. Ex) 트리 그래프 등.

- 파일 구조

레코드의 집합인 파일에 대한 구조. Ex) 순차 파일, 색인 파일, 직접 파일 등.

- 배열

같은 자료형을 가진 자료들을 나열하여 메모리에 연속으로 저장된 자료들의 그룹.

인덱스(index)는 배열의 요소를 간단히 구별하기 위해 사용되는 번호.

int i[2][3] = {{1, 2, 3}, {4, 5, 6}};
int i[2][3] = {1, 2, 3, 4, 5, 6};
int i[][3] = {{1, 2, 3}, {4, 5, 6}};

- 포인터

변수의 메모리 주소값. 포인터 변수는 주소값을 저장하는 특별한 변수다.

- 구조체

구조체도 배열처럼 여러 개의 데이터를 그룹으로 묶어서 하나의 자료형으로 정의하고 사용하는 자료 형이다.

배열은 같은 자료형 만을 그룹으로 묶을 수 있지만, 구조체는 서로 다른 자료형을 그룹으로 묶을 수 있 으므로 복잡한 자료 형태를 정의하는데 유용하게 사용된다.

레코드(record)는 자료를 체계적으로 관리하기 위해서 구성한 일정한 단위 형신이다. 여러 개의 레코드가 모여서 *파일*(file)을 구성한다. *필드*(field)는 레코드를 구성하는 하위 항목이다.

- 순차 자료구조 (Sequential Data Structure)

자료의 논리적인 순서와 물리적인 순서가 일치하는 자료구조. Ex) 배열.

- 연결 자료구조 (Linked Data Structure)

자료의 논리적인 순서와 물리적인 순서가 일치하지 않는 자료구조. Ex) 연결 리스트 (Linked List).

각 원소에 저장되어 있는 다음 원소의 주소에 의해 순서가 연결되는 방식. 물리적인 순서를 맞추기 위 한 오버헤드가 발생하지 않음.

여러 개의 작은 공간을 연결하여 하나의 전체 자료 구조를 표현. 크기 변경이 유연하고 더 효율적으로 메모리를 사용.

- 순차 자료구조의 단점

삽입 또는 삭제 연산 후, 연속적인 물리 주소를 유지하기 위해서 원소들을 이동시키는 추가적인 작업과 시간이 소요됨. 즉, 배열이 갖고 있는 메모리 사용의 비효율성 문제를 그대로 가짐.

- 단순 연결 리스트

첫 번째 노드로 삽입

```
insertFirstNode(L, x)
   new := getNode();
   new.data := x;
   new.link := L;
   L := new;
end insertFirstNode()
```

중간 노드로 삽입

```
insertMiddleNode(L, pre, x)
   new := getNode();
   new.data := x;
   if(L = null) then {
       L := new;
       new.link := null;
   } else {
       new.link := pre.link;
       pre.link := new;
   }
end insertMiddleNode()
```

마지막 노드로 삽입

```
insertLastNode(L, x)
    new := getNode();
    new.data := x;
    new.link := null;
    if(L = null) then {
        L := new;
        return;
    }
    temp := L;
    while(temp.link != null) do {
        temp := temp.link;
    }
    temp.link := new;
end insertLastNode()
```

노드 삭제

```
deleteNode(L, pre)
  if(L = null) then error;
  else {
     old := pre.link;
     if(old = null) then return;
     pre.link := old.link;
  }
  returnNode(old);
end deleteNode()
```

노드 탐색

```
searchNode(L, x)
  temp := L;
  while(temp != null) do {
    if(temp.data = x) then {
       return temp;
    }
    temp := temp.link;
  }
  return temp;
end searchNode()
```

- 스택 (Stack)

접시를 쌓듯이 자료를 차곡차곡 쌓아 올린 형태의 자료구조. 스택에 저장된 원소는 top으로 정한 곳 에서만 접근 가능. 후입선출, Last-In-First-Out (LIFO).

push

```
psuh(S, x)
    top := top + 1;
    if(top > STACK_SIZE) then {
        overflow;
    } else {
        S(top) := x;
    }
end push()
```

pop

```
pop(S)
    if(top = 0) then{
        underflow;
    } else {
        return S(top);
        top := top -1;
    }
end pop()
```

Applicable for: 역순 문자열 만들기, 시스템 스택, 모바일 앱의 Activity.

- 큐 (Queue)

스택과 마찬가지로 삽입과 삭제의 위치가 제한되어 있는 유한 순서 리스트. 큐의 뒤에서는 삽입만 하고, 앞에서는 삭제만 할 수 있는 구조. 선입선출, First-In-First-Out (FIFO).

- 원형 큐

큐에서 삽입과 삭제를 반복하면서 앞자리가 비어 있지만 포화상태로 인식하고 더 이상의 삽입을 수 행하지 않는다. 원형 큐는 논리적으로 배열의 처음 과 끝이 연결되어 있다고 가정하는 것이다.

- 순차자료구조를 이용한 큐의 구현

초기 공백 큐 생성

```
createQueue()
   Q[n];
   front := -1;
   rear := -1;
end createQueue()
```

공백 큐 검사

```
isEmpty(Q)
  if(front = rear) then {
    return true;
  } else return false;
end isEmpty()
```

포화 상태 검사

```
isFull(Q)
  if(rear = QUEUE_SIZE - 1) then {
    return true;
  } else return false;
end isEmpty()
```

원소 삽입

```
enQueue(Q, item)
   if(isFull(Q)) then {
       Queue_Full();
   } else {
       rear := rear + 1;
       Q[rear] := item;
   }
end enQueue()
```

원소 반환

```
deQueue(Q)
   if(isEmpty(Q)) then {
      Queue_Empty();
   } else {
      front := front + 1;
      return Q[front];
   }
end isEmpty()
```

원소 삭제

```
delete(Q)
  if(isEmpty(Q)) then {
    Queue_Empty();
  } else front := front + 1;
end delete()
```

원소 검사

```
peak(Q)
   if(isEmpty(Q)) then {
      Queue_Empty();
   } else return Q[front + 1];
end peak()
```

- 연결자료구조를 이용한 큐의 구현

초기 공백 연결 큐 생성

```
createLinkedQueue()
  front := null;
  rear := null;
end createQueue()
```

공백 연결 큐 검사

```
isEmpty(LQ)
  if(front = null) then {
    return true;
  } else return false;
end isEmpty()
```

원소 삽입

```
enQueue(LQ, item)
  new := getNode();
  new.data := item;
  new.link := null;
  if(front = null) then {
     rear := new;
     front := new;
  } else {
     rear.link := new;
     rear := new;
  }
end enQueue()
```

워소 반화

```
deQueue(LQ)
   if(isEmpty(LQ)) then {
      Queue_Empty();
   } else {
      old := front;
      item := front.data;
      front := front.link;
      if(isEmpty(LQ)) then {
         rear := null;
      }
      returnNode(old);
      return item;
   }
end deQueue()
```

원소 삭제

```
delete(LQ)
   if(isEmpty(LQ)) then {
      Queue_Empty();
   } else {
      old := front;
      front := front.link;
      if(isEmpty(LQ)) then {
        rear := null;
      }
      returnNode(old);
   }
end delete()
```

- 트리 (Tree)

원소들 간에 '1:다' 관계를 가지는 비선형 자료구조. 원소들 간에 계층 관계를 가지는 계층형 자료구조.

트리 A의 *노드*(원소)는 A-L이다.

A는 *루트 노드*(Root Node)라고 한다.

B의 *부모 노드*(Parent Node)는 A.

B의 *자식 노드*(Child Node)는 E, F.

B, C, D는 서로 *형제 노드*(Sibling Node).

K의 조상 노드(Ancestor Node)는 F, B, A.

B의 *자손 노드*(Descendant Node)는 E, F, K, L.

트리 A의 *단말 노드*(Leaf Node)는 E, K, L, G, H, I, J.

간선(Edge)은 노드를 연결하는 선이다. 부모 노드와 연결된 간선을 끊으면 서브 트리(Subtree)가 생성된 다. 즉, 각 노드는 자식 노드의 개수만큼 서브 트리 를 갖는다.

노드의 차수(Degree)는 노드에 연결된 자손 노드의 레벨 수 이다. 즉, A의 차수는 3, B의 차수는 2이다.

트리의 차수는 트리에 있는 노드의 차수 중 가장 큰 값이다. 즉, 트리 A의 차수는 3이다.

높이(Height)는 루트 노드에서 가장 깊이 있는 노드까지 가는 경로의 길이이다. 즉, 트리 A의 높이는 3이다.

깊이(Depth)는 루트 노드에서 특정 노드까지 가는 경로의 길이 이다. 즉, 트리 A에서 노드 F의 깊이는 2이다.

- 이진 트리 (Binary Tree)

트리의 노드 구조를 일정하게 정의하여 트리의 구 현과 연산이 쉽도록 정의한 트리. 이진 트리의 모 든 노드는 왼쪽과 오른쪽 자식 노드 만을 가진다.

N개 노드를 가진 이진 트리는 항상 N-1개 간선을 가진다.

루트 노드를 제외한 모든 노드가 부모 노드와 연결 되는 한 개의 간선을 가지기 때문이다.

높이가 H인 이진 트리가 가질 수 있는 노드의 최소 개수는 H+1개가 되며, 최대 개수는 $2^{H+1}-1$ 개가 된다.

이진 트리의 높이가 H가 되려면 한 레벨에 최소한 개의 노드가 있어야하므로 높이가 H인 이진 트리의 최소 노드의 개수는 H+1개.

하나의 노드는 최대 2개의 자식 노드를 가질 수 있으므로 레벨 L에서의 노드의 최대 개수는 2L개 이므로 높이가 H인 이진 트리 전체의 노드 개수는 $\Sigma 2L = 2^{H+1} - 1$ 개.

- **포화 이진 트리 (Full Binary Tree)**는 모든 레벨에 노드가 포화상태로 채워져 있는 트리.
- 완전 이진 트리 (Complete Binary Tree)는 노드 번호 1번부터 n번까지 빈자리가 없이 연속된 트리.
- 편향 이진 트리 (Skewed Binary Tree)는 한쪽 방향
 의 자식 노드 만을 가진 트리.

- 순회 (Traversal)

전위(Preorder) 순회 A-B-D-H-E-I-J-C-F-G-K

중위(Inorder) 순회 H-D-B-I-E-J-A-F-C-G-K

후위(Postorder) 순회 H-D-I-J-E-B-F-K-G-C-A

- 트리 순회의 응용

```
〈알고리즘〉
1. 자료구조
1-1. 리스트
가. 개념
나. 구현
(1) 순차자료구조 기반
(2) 연결자료구조 기반
1-2. 스택
가. 개념
2. 기초 알고리즘
1. 알고리즘 설계와 분석의 기초
2. 점화식과 점근적 복잡도 분석
3. 정렬 알고리즘
3. 고급 알고리즘
3. 고급 알고리즘
```

전위 순회는 트리 구조로 저장된 목차(Index) 출력.

중위 순회는 트리를 이용한 수식 연산의 표기

*후위 순회*는 디렉토리의 용략 계산

- 이진 탐색 트리 (Binary Search Tree; BST)

모든 원소는 서로 다른 유일한 키를 갖는다. 왼쪽 서브 트리 원소의 키는 그 루트의 키보다 작다. 반 대로 오른쪽은 그 루트의 키보다 크다. 따라서, 왼 쪽 서브 트리와 오른쪽 서브 트리도 BST다. - 바람직한 알고리즘은 *명확해야* 해야한다. 이해하기 쉽고 가능하면 간결하게 기술하며, 지나친 기호적 표현은 오히려 명확성을 떨어뜨린다. 명확성을 해 치지 않으면 일반 언어의 사용도 무방하다. 수행 시간을 고려하여 *효율적이어야* 한다.

- 알고리즘의 수행 시간

```
sample(A[], n){
    k := n/2;
    return A[k];
}
n에 관계 없이 상수 시간 소요.
```

```
sample(A[], n){
    sum := 0;
    for i := 1 to n
        sum := sum + A[i]
    return sum;
}
n에 비례한 시간 소요.
```

```
sample(A[], n){
    sum := 0;
    for i := 1 to n
        for j := 1 to n
        sum := sum + A[i] * A[j];
    return sum;
}

n^2에 비례한 시간 소요.
```

```
sample(A[], n){
    sum := 0;
    for i := 1 to n
        for j := 1 to n
        sum := sum + max(A)
    return sum;
}

n^3에 비례한 시간 소요.
```

```
factorial(n){
   if (n = 1) return 1;
   return n * factorial(n - 1);
}
n에 비례한 시간 소요.
```

- 점근적 분석 (Asymptotic Analysis)

입력의 크기가 충분히 큰 경우에 대한 분석. 점근적 분석은 O(Omicron), Ω (Omega), Θ (Theta) 등을 이용하여 표기한다. 이러한 방법을 점근적 표기법 (Asymptotic Notation)이라고 한다.

- O(f(n)); Omicron; Upper Bound

$$=\{g(n)|\exists c>0,n_0\geq 0\ s.t. \forall n\geq n_0,cf(n)\geq g(n)\}$$

충분히 큰 모든 n에 대하여 $cf(n) \ge g(n)$ 인 양의 상수 c가 존재한다.

즉, g(n) = O(f(n))에서 $g \vdash f$ 보다 느리거나 같은 정도로 증가한다.

$$O(n^2) \supset \{3n^2 + 2n, 7n^2 - 100n, n \log n + 5n, 3n\}$$

- Ω(f(n)); Omega; Lower Bound

$$=\{g(n)|\exists c>0, n_0\geq 0 \ s.t. \forall n\geq n_0, cf(n)\leq g(n)\}$$

충분히 큰 모든 n에 대하여 $cf(n) \le g(n)$ 인 양의 상수 c가 존재한다.

즉, $g(n) = \Omega(f(n))$ 에서 $g \leftarrow f$ 보다 빠르거나 같은 정도로 증가한다.

$$\Omega(n^2) \supset \{3n^2 + 2n, 7n^2 - n, 5n^3 + 15, 2n^2 \log n + 5n\}$$

- Θ(f(n)); Theta; Tight Bound

$$= O(f(n)) \cap \Omega(f(n))$$

즉, $g(n) = \Theta(f(n))$ 에서 g는 f와 같은 속도로 증가한다.

$$\Theta(n^2) \supset \{3n^2 + 2n, 7n^2 - n, 2n^2 + 3n \log n + 5n\}$$

- 다음 알고리즘의 시간 복잡도는

```
\begin{array}{l} \mathsf{sample}(\mathsf{A}[\,],\;\mathsf{n}) \{ \\ & \mathsf{sum1} \, := \, 0; \\ & \mathsf{for} \; \mathsf{I} \, := \, 1 \; \mathsf{to} \; \mathsf{n} \\ & & \mathsf{sum1} \, := \, \mathsf{sum1} \, + \, \mathsf{A}[\mathsf{n}]; \\ & \mathsf{sum2} \, := \, 0 \\ & \mathsf{for} \; \mathsf{i} \, := \, 1 \; \mathsf{to} \; \mathsf{n} \\ & & \mathsf{for} \; \mathsf{j} \, := \, 1 \; \mathsf{to} \; \mathsf{n} \\ & & \mathsf{sum2} \, := \, \mathsf{sum2} \, + \, \mathsf{A}[\mathsf{i}] \; * \; \mathsf{A}[\mathsf{j}] \\ & \mathsf{return} \; \mathsf{sum1} \, + \, \mathsf{sum2}; \\ \} \\ \\ & n^2 + n = \Omega(n) |O(n^2)|\Omega(n^2)|\Theta(n^2) \end{array}
```

- 정렬 알고리즘의 복잡도

선택 정렬 $\Theta(n^2)$

힙 정력 $O(n \log n)$

퀵 정렬 $O(n^2)$, avg. $O(n \log n)$

- 검색의 복잡도

Array $\Theta(n)$

Binary Search tree $\Theta(n)$, avg. $\Theta(\log n)$

Balanced BST $\Theta(\log n)$ Hash Table avg. $\Theta(1)$