A Working Example of an Adaptive Controller With the Slotine Li Algorithm

Roberto Cadena Vega

Fig. 2. Simplified servomechanism model

Abstract—The abstract goes here.

I. INTRODUCTION

THE intention of this paper is to provide a simple implementation of the Slotine Li Algorithm to control a robotic manipulator with an adaptive control law.

II. PRELIMINARIES

A. Servomechanism Model

The servomechanism used in this experiment consists of a DC motor with a brass disc on it's axis, connected to a power amplifier, so as to have a block diagram representation like the one in the figure 1.

Where β is the gain of the power amplifier because of the armature current feedback loop, K_C is a pre amplification stage, K is the current-torque relation, Kb is related to the counter electromotive force. Let's consider a high gain in the power amplification stage due to the current feedback loop, we can simplify this model to a much more simpler one:

$$\ddot{q}(t) + a\dot{q}(t) = bu(t) \tag{1}$$

Where a and b are defined as:

$$a = \frac{B_m}{J_m}$$

$$b = \frac{K}{K_C J_m}$$
(2)

$$b = \frac{K}{K_C J_m} \tag{3}$$

We consider β of great magnitude, so that the time constant of the electric servomechanism is smaller than the mechanical one.

R. Cadena Vega is a student of the Department of Automatic Control, CINVESTAV-IPN, México, e-mail:(rcadena@ctrl.cinvestav.mx).

Manuscript delivered April 20, 2015

B. Parameter Identification

In previous works it has been stablished that the values of the constants a and b are:

$$a = 0.45 \tag{4}$$

$$b = 31.0 \tag{5}$$

So, when presented the results of the estimation of this parameters, they will be compared against this results.

C. Slotine Li Algorithm for Non-linear Robot Manipulators

The Slotine-Li algorithm for robotic manipulator considers a dynamic equation for the robot like:

$$H(q)\ddot{q} + C(q,\dot{q}) + g(q) = \tau \tag{6}$$

Which can be rewritten like this:

$$\tilde{H}(q)\ddot{q}_r + \tilde{C}(q,\dot{q})\dot{q}_r + \tilde{g}(q) = Y(q,\dot{q},\dot{q}_r,\ddot{q}_r)\tilde{a}$$
 (7)

Where \hat{a} is the parameter estimated through the adaptation law, and $\hat{H}(q)$ is the matrix H(q) substituted with the estimated parameter \hat{a} . More over, we define the error in the estimation of the parameter $\tilde{a} = a = \hat{a}$ and Y only depends on dynamic parameters. The error in the estimation of the state of the system is defined as $\tilde{q}(t) = q(t) - q_d(t)$ and we define a new state as:

$$\dot{q}_r = \dot{q}_d - \Lambda \tilde{q} \tag{8}$$

so that when we use the proposed control law:

$$\tau = \hat{H}(q)\ddot{q}_r + \hat{C}(q,\dot{q})\dot{q}_r + \hat{g}(q) - K_D s$$
 (9)

with the adaptation law:

$$\dot{\hat{a}} = -\Gamma Y^T s \tag{10}$$

 Γ being a constant positive definite matrix, and s being defined as:

$$s = \dot{q} - \dot{q}_r = \dot{\tilde{q}} + \Lambda \tilde{q} \tag{11}$$

the equation of the closed loop system will be as stated in 7.

D. Trajectories Generation

The algorithm needs not only the signal for the trajectory to track, but the derivative and the second derivative, both of them can be acheived with a second order filter like the one in the figure3.

Fig. 1. Servomechanism model

Fig. 3. Second order filter for trajectory generation

III. CONTROL LAW DERIVATION

Since our model is linear and the control law is designed for a non-linear system, it is necessary to derive a simplification for the control law. Rewriting 1 to look like the non-linear manipulator model we have:

$$\frac{1}{b}\ddot{q} + \frac{a}{b}\dot{q} = u \tag{12}$$

And the proposed control law then translates to:

$$u = \frac{1}{\hat{h}}\ddot{q}_r + \frac{\hat{a}}{\hat{h}}\dot{q}_r - K_D s$$

Where we will define $\beta=\frac{1}{\hat{b}}$ and $\alpha=\frac{\hat{a}}{\hat{b}}$ to handle this values easier, so that we will have:

$$u = \beta \ddot{q}_r + \alpha \dot{q}_r - K_D \left(\dot{q} - \dot{q}_r \right) \tag{13}$$

And the adaptation law remains:

$$\dot{\hat{a}} = -\Gamma Y^T s$$

Where the vector of parameters to estimate will be:

$$\hat{a} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \tag{14}$$

The vector of known signals is:

$$Y = \begin{pmatrix} \dot{q}_r \\ \ddot{q}_r \end{pmatrix} \tag{15}$$

The control and adaptation laws are implemented in the figures 4 and 5.

Fig. 4. Slotine-Li algorithm implementation

IV. EXPERIMENT PARAMETERS

V. EXPERIMENTAL RESULTS

Subsection text here.

VI. CONCLUSION

The conclusion goes here.

APPENDIX A

PROOF OF THE FIRST ZONKLAR EQUATION Appendix one text goes here.

3

Fig. 7. Error signal

Fig. 9. Control law signal

Fig. 5. Adaptation law implementation

Fig. 11. Estimated signal of parameter a

Fig. 12. Estimated signal of parameter b

Fig. 8. Integrated square error

Fig. 10. Control signal first impulse