East West University

Post Lab Report

Course Code: EEE 102
Course Name: Electronic circuit-1

Name of the experiment: Open Ended Lab Project

Submitted to:

Md. A A Ferdous

Dept. of Electrical and Electronic Engineering
East West University

Submitted by:

Md. Srabon Islam Ramim ID No: 2020-2-80-046

Date of Submission: 36th Septembert 2021. Date of allocation: 17th August 2021.

OBJECTIVE: The objective of this experiment is to design an amplifier using a BJT with some given parameter.

PROBLEM STATEMENT: Designing a common emitter BJT amplifier with the given data and target as follows.

Given data:

- 1. Supply voltage $V_{cc} = 15 \text{ V}$
- 2. Transistor has Beta = 100
- 3. Load resistance $R_L = 2k$
- 4. Input signal $V_{in} = 50 \text{mV}$ (peak to peak) at 10 kHz.

Target to achieve:

- 1. Input resistance $R_i \ge 2k$
- 2. Voltage gain $A_v = \langle -50 \text{ (V/V)} \rangle$
- 3. Output resistance $R_0 \le 4k$

Circuit diagram:

Fig-1: Circuit diagram for DC biasing.

Fig-2: Circuit diagram showing amplifier circuit.

DETAILED STEPS AND CALCULATION OF THE DESIGN:

- Step 1: Draw the small signal equivalent circuit to assume the values of resistors and we get $V_{be} = V_{in}$
- Step 2: Then we wrote node equation at V_0 , assumeing $R_C \le 4k$. I have assumed $R_c = 3.999k$. since $V_{be} = V_{in}$, I am using voltage gain -60 V/V to find other resistors value.
- Step 3: After calculating the equation we get the value of g_m . As we found g_m , now we can get I_c , I_B , and I_E .
- Step 4: Now $R_{\Pi} = \beta/gm$, and following the design rule we get V_{CE} from $V_{CE} = V_{CC}/2$. Now we can calculate V_C , V_B and V_E . As we found V_E we can also calculate R_E .
- Step5: As we have R_E, we can get R₂ and also can get the current across the R₂.
- Step 6: Now we have to calculate I_{R1} . After having the value of I_{R1} , we can calculate R_1 .
- Step7: Now, we can get R_{in} as we have R_1 , R_2 and R_{\prod} .
- Step 8: For get V_{CE}=7.2V the value of R₁, R₂, R_C, R_E, has been changed latter.

Fig-3: Assumption for R₁, R₂, R_C, R_E.

Node equation at Base

$$\frac{\sqrt{8}}{R_{\perp}} + \frac{\sqrt{6} - \sqrt{60}}{R_{\parallel}} + I_{\theta} = 0$$

$$= > \sqrt{6} \left(\frac{1}{R_{\perp}} + \frac{1}{R_{\parallel}} \right) = \frac{\sqrt{6}}{R_{\parallel}} - I_{\theta}$$

$$= > \sqrt{6} \left(\frac{1}{33} + \frac{1}{75} \right) = \frac{15}{75} - I_{\theta}$$

$$= > \sqrt{6} = \frac{4.585 - 22.91}{16} - 0$$

we know,

Node equation at 16

$$V_{o}(1/L + 1/3,99) = -9\pi V_{o} = -9\pi V_{o} = -\frac{40.7}{0.750} = 54.22$$

Fig-4: Design calculation.

EQUIPMENT LIST:

- Number of Resistors = 5
 One resistor (75k), one resistor (3.999k), one resistor (3.4k), one resistor (2k) and one resistor (33k)
- 2. Number of Capacitors = 3 (10 uF)
- 3. One Q2N2222 BJT.

EXPERIMENT PROCEDURE (PSPICE):

- 1. Draw the dc part of the circuit. That is Q1, R1, R2, RC, RE and 15V source.
- 2. Use R2 = 33k. This will give a V_{CE} of nearly 7.2 V.
- 3. Clicked on the BJT > go to edit Model > edit instance model text and changed the value of bf= 126. It will give us BETADC = 100
- 4. Run the simulation with bias point calculation only. Check VCE. And found approximately 7.2V.
- 5. Wrote the values of VC, VE, and VB.
- 6. Write BETADC from analysis > examine output file.
- 7. Now added the rest of the components.
- 8. Set Vin as VSIN. Set its frequency to 10kHZ, amplitude to 25mV, and VOFF to 0V.
- 9. Setup simulation to transient. Set final time to 400 us, step ceiling to 1 us.
- 10. Simulate the circuit and observed the output. It was a sine wave.
- 11. Measured the peak-to-peak values of the output signal and input signal. Observe the current through Vin and measure its peak-to-peak value.
- 12. Measured the peak-to-peak value of open circuit voltage. To do that, changed the R_L value to $100G\Omega$.
- 13. Measured the peak-to-peak value of short circuit current. To do that, changed R_L value to $1m\Omega$.

From simulation:

 $V_C = 10.70 V$

 $V_E = 3.69V$

 $V_B = 4.33V$

Value of BETA DC= 100

Peak-to-peak value of the output voltage =879.281-(-2184) =3064 mV

Peak-to-peak value of the input voltage = 25-(-25) = 50 mV

Voltage gain,

$$A_V = \frac{V_O}{V_{in}}$$
$$= \frac{3064}{50}$$
$$= 61.28 \text{ V/V}$$

Peak-to-peak value of the input current = $24.3\mu A$

$$R_{in} = \frac{V_{in}}{I_{in}}$$

$$= \frac{(50 \times 10^{-3})}{24.3 \times 10^{-6}}$$

$$= 2.057 \text{k}\Omega$$

Peak-to-peak value of the open circuit voltage = 8.62V Peak-to-peak value of the Short circuit current =2377.896µA

$$R_0 = \frac{8.62}{2380.9 \times 10^{-6}}$$
$$= 3.65 \text{ k}\Omega$$

Table-1: Comparison between experimental and theoretical data.

	A _v (V/V)	R _{in} (k)	$R_0(k)$
From calculation	54.22	2.21	3.999
From simulation	61.28	2.05	3.65

Comment: There is little bit difference between calculated values and simulation values which is avoidable.

Discussion: This experiment helps us learn designing an amplifier circuit by using a BJT with some given parameters. The experiment also helps us to build and simulate electronic circuits and perform measurements using electronic equipment.