## 说明:

在阅读本文档 SPI boot 原理之前,需要知道以下几点:

- 1. 选择 SPI boot 需要将拨码开关拨到特定的配置。(第一章节会描述)
- 2. 烧写工具是 TI 自带的 nor-writer,被烧写文件是由.out 经过一系列工具链转化后形成的.dat 镜像文件。(工具链的使用已经被简化成 bat 批处理文件,容易使用)
- 3. 镜像文件的逻辑顺序为: boot parameter table (256 字节,前 32 字节有用), ddr configuration table (可以没有,没有的话就不能再 boot 主代码前初始化 ddr), 核 0 的 数据部分,核 1 的数据部分....(每个核的数据部分又可以细分,可参见多核B00T 研究)
- 4. 知道 boot 的流程是先编写合适的工程(多核存储空间不重叠,核 0 具有 IPC 唤醒其他核的功能)生成.out,然后经过工具链生成.dat,在通过烧写工具烧入 flash,拨码开关调整并断电重启,完成 boot。
- 5. 本文档主要描述拨码开关与寄存器的关系,boot paramter table 具体涵义 ,ddr configration table 的具体涵义,如果要快速实现 boot,参照 SPI\_boot 操作指导,如果要了解更多 boot 相关以及多核 boot,可参考多核启动研究或者 TI boot loader 文档 sprugy5B 以及 bootloader 源码。
- 6. 另外要格外注意的是 evm 板卡上的 EEPROM 的 IBL 镜像文件存在没有被刷掉,否则无法正常引导 flash。
- 7. 知道工程里 L2 地址要写全局地址(0x1x8xxxxx)的形式,另外工程中核 0 有 IPC 触发中断
- 8. 如果是超大文件 boot, 注意看 rmd 文件里的 length 是否够大, 否则 hex6x 将无法转换全部的文件。

# 一. 配置 Device configuration。

#### 667xEVM 板拨码开关



Figure 3.6: SW3, SW4, SW5, and SW6 default settings

#### 拨码开关说明:

Table 3.16: SW3-SW6, DSP Configuration Switch

| SW#      | Description   | Default Value | Function                                                                       |
|----------|---------------|---------------|--------------------------------------------------------------------------------|
| SW3[1]   | ENDIAN        | 0x1b (OFF)    | Device endian mode (LENDIAN).                                                  |
|          |               |               | 0 = Device operates in big endian mode                                         |
|          |               |               | 1 = Device operates in little endian mode                                      |
| SW3[4:2] | Boot device   | 0x101b        | Boot Device                                                                    |
|          | Bit[2:0]      | (OFF,ON,OFF)  | 000b = None                                                                    |
|          |               |               | 001b = Serial Rapid I/O<br>010b = SGMII (PA driven from core clk)              |
|          |               |               | 011b = SGMII (PA driven from core cik)<br>011b = SGMII (PA driver from PA clk) |
|          |               |               | 100b = PCI Express                                                             |
|          |               |               | 101b = I2C                                                                     |
|          |               |               | 110b = SPI                                                                     |
|          |               |               | 111b = HyperLink                                                               |
| SW5[1]   | Parameter     | 00000b        | These 5 bits are the Parameter Index                                           |
|          | Index [4:0] / |               | when I2C is the boot device. They have                                         |
| SW4[4:1] | Boot Mode     | (ON,ON,ON,    | other definitions for other boot                                               |
|          | [7:3]         | ON,ON)        | devices. For the details about the                                             |
|          |               |               | device configuration, For the details about                                    |
|          |               |               | the device configuration, please refer to the                                  |
|          |               |               | TMS320C6670 Data Manual.                                                       |
| SW5[2]   | Mode /        | 0 (ON)        | Mode (I2C Boot Device)                                                         |
|          | Boot Mode     |               | 0 = Master                                                                     |
|          | [8]           |               | 1 = Slave                                                                      |
| SW5[3]   | Reserved /    | 0 (ON)        | Bit reserved with I2C Boot Device                                              |
|          | Boot Mode     |               |                                                                                |
|          | [9]           |               |                                                                                |
| SW5[4]   | Address /     | 1 (OFF)       | Address (I2C Boot Device)                                                      |
|          | Boot Mode     |               | 0 = Boot from address 0x50                                                     |
|          | [10]          |               | 1 = Boot from address 0x51                                                     |
| SW6[1]   | Speed /       | 0 (ON)        | Speed (I2C Boot Device)                                                        |
|          | Boot Mode     |               | 0 = Low speed                                                                  |
|          | [11]          |               | 1 = High Speed                                                                 |

| SW6[2]   | Reserved /<br>Boot Mode<br>[12] | 0 (ON)         | Bit reserved with I2C Boot Device                                                                                                                               |
|----------|---------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SW6[4:3] | PCIESSMODE<br>[1:0]             | 00b<br>(ON,ON) | PCIe Subsystem mode selection.  00b = PCIe in end point mode  01b = PCIe legacy end point (no support for MSI)  10b = PCIe in root complex mode  11b = Reserved |

## SW4~SW6 因 boot 模式不同定义不一样 DEVSTAT 寄存器中存储了 boot 启动的相关信息

可见 DEVSTAT 寄存器的地址是 0x02620020,长度是 4 个字节

| Address Start            | Address End | Size | Acronym  | Description       |
|--------------------------|-------------|------|----------|-------------------|
| <mark>0x0262</mark> 0000 | 0x02620007  | 8B   | Reserved |                   |
| 0x02620008               | 0x02620017  | 16B  | Reserved |                   |
| 0x02620018               | 0x0262001B  | 4B   | JTAGID   | See section 3.3.3 |
| 0x0262001C               | 0x0262001F  | 4B   | Reserved |                   |
| 0x02620020               | 0x02620023  | 4B   | DEVSTAT  | See section 3.3.1 |

(拨码开关与 DEVSTAT 映射)SW6~SW3 16 个 pin 对应的位就是 DEVSTAT 寄存器 bit16~0

Figure 3-1 Device Status Register

| 31       | 18 | . 17     | 16       | 15       | 14      | 13 |                | 1 | 0       |
|----------|----|----------|----------|----------|---------|----|----------------|---|---------|
| Reserved |    | PACLKSEL | PCIESSEN | PCIESSMO | ODE[1:0 | E  | BOOTMODE[12:0] |   | LENDIAN |
| R-0      |    |          | R-v      | R/W.     | -vv     | B  | /W-yyyyyyyyy   |   | R-v (1) |

Legend: R = Read only; RW = Read/Write; -n = value after reset



Figure 3.6: SW3, SW4, SW5, and SW6 default settings

### 以下是具体含义:

#### Table 3-3 Device Status Register Field Descriptions

| Bit    | Field           | Description                                                                                                                                                                                                                                                                          |
|--------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-18  | Reserved        | Reserved. Read only, writes have no effect.                                                                                                                                                                                                                                          |
| 17     | PACLKSEL        | PA Clock select to select the reference clock for PA subsystem PLL  0 = Selects output of Main PLL MUX (SYSCLK vs. ALTCORECLK - depending on CORECLKSEL pin)  1 = Selects PASSCLKP/N                                                                                                 |
| 16     | PCIESSEN        | PCIe module enable 0 = PCIe module disabled 1 = PCIe module enabled                                                                                                                                                                                                                  |
| 15-14  | PCIESSMODE[1:0] | PCIe mode selection pins  00b = PCIe in end-point mode  01b = PCIe in legacy end-point mode (support for legacy INTx)  10b = PCIe in root complex mode  11b = Reserved                                                                                                               |
| 13-1   | BOOTMODE[12:0]  | Determines the bootmode configured for the device. For more information on bootmode, see Section 2.5 "Boot Modes Supported and PLL Settings" on page 27 and see the <i>Bootloader for the C66x DSP User Guide</i> in 2.10 "Related Documentation from Texas Instruments" on page 63. |
| 0      | LENDIAN         | Device endian mode (LENDIAN) — shows the status of whether the system is operating in big endian mode or little endian mode (default).  0 = System is operating in big endian mode  1 = System is operating in little endian mode (default)                                          |
| End of | Table 3-3       | •                                                                                                                                                                                                                                                                                    |

#### no boot

SW6 SW5 SW4 SW3 0011 0000 0000 **000**1

#### 以 SPI boot 为例展开说明:

SW6 SW5 SW4 SW3

0001 0100 0000 **110**1 off 1 on 0

### 结合上表说明:

bit0: 小端模式

bit3~bit1 boot 模式(比如 110 是 SPI boot)

bit13~bit4 根据不同的 boot 模式而异,下表是 SPI boot 的这 10 个比特定义

<sup>1</sup> x indicates the bootstrap value latched via the external pin

Table 3-28 SPI Boot Mode Device Configuration

| 9                    | 8 | 7        | 6          | 5    | 4      | 3      | 2                 | 1                 | 0         |
|----------------------|---|----------|------------|------|--------|--------|-------------------|-------------------|-----------|
| Mode (Clk Pol/Phase) |   | 4, 5 Pin | Addr Width | Chip | Select | Parame | eter Index (1 - 0 | bits also used fo | or SR ID) |

Table 3-29 SPI Boot Mode Device Configuration Description

| Bit Field             | Description                                                                                                                                                       |  |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Mode                  | 0 = Data is output on the rising edge of SPICLK. Input data is latched on the falling edge.                                                                       |  |  |  |  |
|                       | 1 = Data is output one half-cycle before the first rising edge of SPICLK and on subsequent falling edges. Input data is latched on the rising edge of SPICLK.     |  |  |  |  |
|                       | 2 = Data is output on the falling edge of SPICLK. Input data is latched on the rising edge.                                                                       |  |  |  |  |
|                       | 3 = Data is output one half-cycle before the first falling edge of SPICLK and on subsequent rising edges. Input data is latched<br>on the falling edge of SPICLK. |  |  |  |  |
| 4,5 pin               | 0 = 4-pin mode used                                                                                                                                               |  |  |  |  |
|                       | 1 = 5-pin mode used                                                                                                                                               |  |  |  |  |
| Addr Width            | 0 = 16 bit address values are used                                                                                                                                |  |  |  |  |
|                       | 1 = 24 bit address values are used                                                                                                                                |  |  |  |  |
| Chip Select           | 0-3 = The chip select field value                                                                                                                                 |  |  |  |  |
| Parameter Table Index | 0-3 = Specifies which parameter table is loaded                                                                                                                   |  |  |  |  |
| SR Index              | 0-3 = Smart Reflex Index                                                                                                                                          |  |  |  |  |
| End of Table 3-29     | •                                                                                                                                                                 |  |  |  |  |

SR Index 是 00,

Parameter Table Index 是 00,

Chip Select 片选也是 00,

Addr Width 是 1,代表 24 bit address,

4,5pin mode 是 0, 使用的是 4pin 模式,

Mode Clk phase 01, Data is output one half-cycle before.....

bit15~bit14: PCle in end-point mode

至此 Device configuration 结束

# 二. 配置 boot parameter table

Boot 过程中,boot ROM 用到的地址空间为

start address: 0x008F 2DC0 //6670 或者 0x00872DC0//6678 end address: 0x008F FFFF//6670 或者 0x0087FFFF//6678

length : 0xD240 //52K

Table 2-2 CorePac0 Memory Usage by the ROM Bootloader

| Bytes offset | Size   | Description                                                          |
|--------------|--------|----------------------------------------------------------------------|
| 0x0          | 0x0040 | ROM boot version string, (Unreserved)                                |
| 0x40         | 0x0400 | Boot Code Stack                                                      |
| 0x520        | 0x0020 | Boot Progress Register Stack (copies of boot program on mode change) |
| 0x540        | 0x0100 | Boot Internal Stats                                                  |
| 0x640        | 0x0100 | Boot variables (FAR data)                                            |
| 0x740        | 0x0100 | DDR Configuration table                                              |
| 0x840        | 0x0080 | RAM table functions                                                  |
| 0x8C0        | 0x0080 | Boot Parameter table                                                 |
| 0x940        | 0x3600 | Clear text packet scratch                                            |
| 0x5240       | 0x7f80 | Ethernet/SRIO packet/message/descriptor memory                       |
| 0xD1C0       | 0x80   | Small Stack                                                          |
| 0xD23C       | 0x04   | Boot Magic Address                                                   |

#### 说明:

1. no-boot 和 spi boot 以及 I2C boot 是不负责配置主 PLL 的,需要应用程序自己去写。

Table 2-1 PLL Clock Configuration

| <b>Boot PII Select</b> | Input Clock Freq (MHz) | Core = 800 MHz |      | Core = 10 | 000MHz | Core = 1200MHz |      |
|------------------------|------------------------|----------------|------|-----------|--------|----------------|------|
|                        |                        | Clkr           | Clkf | Clkr      | Clkf   | Clkr           | Clkf |
| 0                      | 50.00                  | 0              | 31   | 0         | 39     | 0              | 47   |
| 1                      | 66.67                  | 0              | 23   | 0         | 29     | 0              | 35   |
| 2                      | 80.00                  | 0              | 19   | 9         | 24     | 0              | 29   |
| 3                      | 100.00                 | 0              | 15   | 0         | 19     | 0              | 23   |
| 4                      | 156.25                 | 24             | 255  | 4         | 63     | 24             | 383  |
| 5                      | 250.00                 | 4              | 31   | 0         | 7      | 4              | 47   |
| 6                      | 312.50                 | 24             | 127  | 4         | 31     | 24             | 191  |
| 7                      | 122.88                 | 47             | 624  | 28        | 471    | 31             | 624  |

- 2. L1D,L1P 被 boot ROM 自动配成全 cache,L2 自动配成全可寻址的 RAM
- 3. DDR 先被 DDR table 初始化,然后才会有数据 load 进 DDR,将会在第三章描述。

实际在被烧写文件中 parameter table 却只有 32 个字节 前 12 个是所有 boot 模式共用的,后 24 个字节是 SPI boot 专属

Table 2-6 Boot Parameter Common Values

| Byte<br>Offset | Name        | Description                                                                                                                                           |
|----------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0              | Length      | The length of the table, including the length field, in bytes.                                                                                        |
| 2              | Checksum    | The 16 bits ones complement of the ones complement of the entire table. A value of 0 will disable checksum verification of the table by the boot ROM. |
| 4              | Boot Mode   | 0-7: Specifies the boot device.                                                                                                                       |
| 6              | Port Num    | Identifies the device port number to boot from, if applicable                                                                                         |
| 8              | SW PLL, MSW | PLL configuration, MSW                                                                                                                                |
| 10             | SW PLL, LSW | PLL configuration, LSW                                                                                                                                |
| End of 1       | able 2-6    |                                                                                                                                                       |

Table 3-27 SPI Boot Parameter Table

| Byte Offset  | Name          | Description                                                                                                                                                                                                                               |
|--------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12           | Options       | Bits 0 & 1 Modes  00 = Load a boot parameter table from the SPI (Default mode)  01 = Load boot records from the SPI (boot tables)  10 = Load boot config records from the SPI (boot config tables)  11 = Reserved  Bits 2 - 15 = Reserved |
| 14           | Mode          | SPI mode, 0-3                                                                                                                                                                                                                             |
| 16           | Address Width | The number of bytes in the SPI device address. Can be 2 or 3 (16 or 24 bit)                                                                                                                                                               |
| 18           | Data Width    | The data width of the device. Can be 8 or 16                                                                                                                                                                                              |
| 20           | NPin          | The operational mode, 3 or 4 pin                                                                                                                                                                                                          |
| 22           | Chipsel       | The chip select used (valid in 4 pin mode only). Can be 0-3.                                                                                                                                                                              |
| 24           | Read Addr MSW | The first address to read from, MSW (valid for 24 bit address width only)                                                                                                                                                                 |
| 26           | Read Addr LSW | The first address to read from, LSW                                                                                                                                                                                                       |
| 28           | CPU Freq MHz  | The speed of the CPU, in MHz                                                                                                                                                                                                              |
| 30           | Bus Freq, MHz | The MHz portion of the SPI bus frequency. Default = 5 MHz                                                                                                                                                                                 |
| 32           | Bus Freq, kHz | The kHz portion of the SPI buf frequency. Default = 0                                                                                                                                                                                     |
| End of Table | 3-27          | •                                                                                                                                                                                                                                         |

另外要说的是,似乎 ROM bootloadre 的源代码和此表不符,下面是源代码的结构体: 以 boot rom 源代码的结构体为准。

对应上述结构体为下面文件:

此为 i2crom.ccs 文件

-----

0x 0050 0000

Length checksum

0x 0032 0000 // bootmode 50 SPI boot portnum : 0

Bootmode portnum

### 这里 6670 和 6678 有所区别

(6670)

0x 4051 0502 //见下表 PLL configuration

swPllCfg\_msw swPllCfg\_lsw

#### Table 2-7 PLL Configuration

| 31 30                                                                                                          | 29 16                                     | 15 8                                      | 7 0                                        |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|
| PLL Config Ctl • 00 - PLL not configured • 01 - PLL configured only if it is already in bypass or disable mode | Pll Multiplier<br>(can be between 0-8191) | PII Pre-Divider<br>(can be between 0-255) | PII Post-Divider<br>(can be between 0-255) |
| 10 - PLL is configured     11- PLL is disabled and put into bypass mode                                        |                                           |                                           |                                            |

31:30 01 主 pll 处于 bypassmode

29:16 00000001010001 Pll Multipiler 81

15:8 00000101 pre-divider 5 7:0 00000010 post divider 2

所以 cpu 主频应该是 122.88 \* 81 / 5 / 2 = 995.328

(6678)

0x 4013 0002 //见下表 PLL configuration

swPllCfg\_msw swPllCfg\_lsw

Table 2-7 PLL Configuration

| 31 30                                                                                                                                                                                   | 29 16                   | 15 8                   | 7 0                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|------------------------|
| PLL Config Ctl - 00 - PLL not configured - 01 - PLL configured only if it is already in bypass or disable mode - 10 - PLL is configured - 11 - PLL is disabled and put into bypass mode | Pll Multiplier          | PII Pre-Divider        | Pll Post-Divider       |
|                                                                                                                                                                                         | (can be between 0-8191) | (can be between 0-255) | (can be between 0-255) |

31:30 01 主 pll 处于 bypassmode

29:16 00 0000 0001 0011 Pll Multipiler 19

15:8 0000 0000 pre-divider 0 7:0 0000 0010 post divider 2 所以 cpu 主频应该是 100 \* 19 / 2 = 950

0x 0001 0018 //boot table mode addrWidth = 24

options addrWidth

Ox 0004 0000 // 4 pin flash , 片选选择了 0 似乎不合代码里的 valid 值

npins csel

| 0x     | 0001            | 0000       | // 待查证                                            |
|--------|-----------------|------------|---------------------------------------------------|
|        | mode            | c2tdelay   |                                                   |
| <br>0x | <br>03e8        |            | / 1000 MHZ cpu                                    |
| ΟX     | cpuFreqMhz      | busFreqMhz | •                                                 |
|        |                 |            | ·<br>                                             |
| 0x     | 01f4            | 0000       | //500K bus rate;后四位原来是 0x0051,因为 boot             |
|        |                 |            | paramter table 不全所以改为了 0000                       |
|        | bhsFreqKhz      | readaddrN  | Isw                                               |
|        |                 |            |                                                   |
| 0x     | 0400            | 0000       | //read address is 0x00000400 即 1Kbytes 的地方,.dat 文 |
|        |                 |            | 件里 boot table 确实从第 256 行开始                        |
|        | readaddrLsw     | next_csel  |                                                   |
|        |                 |            |                                                   |
| 0x     | 0000            | 0000       |                                                   |
| nex    | t_Read_addr_msw | next_Read_ | _addr_lsw                                         |
|        |                 |            |                                                   |

# 三. 配置 DDR configuration table

#### 6678:

DDR3 boot table:

将上段代码加在.btbl 文件的前四个字节之后(main 函数入口点) 再次粘入 DDR table 配置表

Table 2-3 DDR Configuration

| Byte offset  | Name             | Description                                                                                                                                                                                  |
|--------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | Enable bitmap    | One bit per configuration value. Bit 0 corresponds to the PLL config entry, bit 1 to the SDRAM config entry, etc. The corresponding value will only be set if the bit is set in this bitmap. |
| 4            | PLL config       | See Figure 2-1                                                                                                                                                                               |
| 88           | config           | SDRAM Config Register                                                                                                                                                                        |
| 12           | config 2         | SDRAM Config 2 Register                                                                                                                                                                      |
| 16           | Refresh ctl      | SDRAM Refresh Control Register                                                                                                                                                               |
| 20           | Timing 1         | SDRAM Timing 1 Register                                                                                                                                                                      |
| 24           | Timing 2         | SDRAM Timing 2 Register                                                                                                                                                                      |
| 28           | Timing 3         | SDRAM Timing 3 Register                                                                                                                                                                      |
| 32           | Nvm timing       | LPDDR2-NVM Timing Register                                                                                                                                                                   |
| 36           | Pwr management   | Power Management Control Register                                                                                                                                                            |
| 40           | IODFT_TLGC       | IODFT Test Logic Global Control Register                                                                                                                                                     |
| 44           | Perf ctl cfg     | Performance Counter Config Register                                                                                                                                                          |
| 48           | Perf ctl sel     | Performance Counter Master Region Select Register                                                                                                                                            |
| 52           | Read idle ctl    | Read Idle Control Register                                                                                                                                                                   |
| 56           | Irq enable       | System VBUSM Interrupt Enable Set Register                                                                                                                                                   |
| 60           | Zq config        | SDRAM Output Impedance Calibration Config Register                                                                                                                                           |
| 64           | Temp alert cfg   | Temperature Alert Config Register                                                                                                                                                            |
| 68           | Phy ctrl 1       | DDR PHY Control 1 Register                                                                                                                                                                   |
| 72           | Phy ctrl 2       | DDR PHY Control 2 Register                                                                                                                                                                   |
| 76           | Pri cos map      | Priority to Class of Service Mapping Register                                                                                                                                                |
| 80           | Mst id cos map 1 | Master ID to Class of Service 1 Mapping Register                                                                                                                                             |
| 84           | Mst id cos map 2 | Master ID to Class of Service 2 Mapping Register                                                                                                                                             |
| 88           | Ecc ctrl         | ECC Control Register                                                                                                                                                                         |
| 92           | Ecc addring 1    | ECC Address Range 1 Register                                                                                                                                                                 |
| 96           | Ecc addrrng 2    | ECC Address Range 2 Register                                                                                                                                                                 |
| 100          | Rw/exc thresh    | Read Write Execution Threshold Register                                                                                                                                                      |
| End of Table | e 2-3            |                                                                                                                                                                                              |

注意:以上配置表完全和 src code 对不上,不要参考对照配置,应按照以下 src code 里的源代码为准,结合论坛上关于 PllPrediv 三个 word 的说法,有以下表

```
* Emif4 (DDR3) configuration table
  +
= typedef struct bootEmif4Tbl_s {
       VINT32 configSelect;
                                                 /* Bit map defining which registers to set */
      UINT32 pllPrediv;
UINT32 pllMult;
                                                 /* Values of all Os will disable the pll */
       UINT32 pllPostDiv;
      UINT32 sdRamConfig;
UINT32 sdRamConfig2;
UINT32 sdRamRefreshCtl;
       UINT32 sdRamTiming1;
                sdRamTiming2;
       UINT32
      UINT32 sdRamTiming3;
UINT32 lpDdrNvmTiming;
      UINT32 lpDdrNvmliming;
UINT32 powerManageCtl;
UINT32 iODFTTestLogic;
UINT32 performCountCfg;
UINT32 performCountMstRegSel;
UINT32 readIdleCtl;
UINT32 sysVbusmIntEnSet;
      VINT32 sdRamOutImpdedCalCfg;
VINT32 tempAlterCfg;
      UINT32 tempAlterUrg;
UINT32 ddrPhyCtl1;
UINT32 ddrPhyCtl2;
UINT32 priClassSvceMap;
UINT32 mstId2ClsSvceIMap;
UINT32 mstId2ClsSvceZMap;
       UINT32
                eccCtl;
       UINT32
                eccRange1;
       UINT32
               eccRange2
       UINT32 rdWrtExcThresh;
```

```
00 00 00 70  //???
00 87 35 00  //where to load ddr table to L2
02 42 80 F5  //config select

00 00 00 00  //pll Prediv
00 00 00 1C  //pll Mul
00 00 00 02  //pll post div

63 06 2A 32  //sd ram config
00 00 00 00  //sdram config 2
00 00 14 50  //sdram fresh cntrl
11 13 78 3C  //sdram timing 1
30 71 7F E3  //sdram timing 2
```

```
55 9F 86 AF //sdram timing 3
00 00 00 00
00 00 00 00
00 00 00 00
00 01 00 00 //perform count config
00 00 00 00
00 00 00 00
00 00 00 00
70 07 32 14 //sdRamoutImpedCalcfg
00 00 00 00
00 10 01 0F //ddr phy control1
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
10 00 00 00 //ecc cntrl
00 00 00 00
00 00 00 00
00 00 03 05//rdWrtExcThresh
```

上述 bootloader 里关于 ddr3 的对应文档为 DDR3 memory controller user guide , Table4-1

Table 4-1 DDR3 Memory Controller Registers starting at 0x21000000

| Offset | Acronym           | Register Description                                      | Section      |
|--------|-------------------|-----------------------------------------------------------|--------------|
| 000h   | MIDR              | Module ID and Revision Register                           | Section 4.1  |
| 004h   | STATUS            | DDR3 Memory Controller Status Register                    | Section 4.2  |
| 008h   | SDCFG             | SDRAM Configuration Register                              | Section 4.3  |
| 010h   | SDRFC             | SDRAM Refresh Control Register                            | Section 4.4  |
| 018h   | SDTIM1            | SDRAM Timing 1 Register                                   | Section 4.5  |
| 020h   | SDTIM2            | SDRAM Timing 2 Register                                   | Section 4.6  |
| 028h   | SDTIM3            | SDRAM Timing 3 Register                                   | Section 4.7  |
| 038h   | PMCTL             | Power Management Control Register                         | Section 4.8  |
| 0x54h  | LAT_CONFIG        | Latency Configuration Register                            | Section 4.9  |
| 0x80   | PERF_CNT_1        | Performance Counter 1 Register                            | Section 4.10 |
| 0x84   | PERF_CNT_2        | Performance Counter 2 Register                            | Section 4.11 |
| 0x88   | PERF_CNT_CFG      | Performance Counter Config Register                       | Section 4.12 |
| 0x8C   | PERF_CNT_SEL      | Performance Counter Master Region Select Register         | Section 4.13 |
| 0x90   | PERF_CNT_TIM      | Performance Counter Time Register                         | Section 4.14 |
| 0A4h   | IRQSTATUS_RAW_SYS | Interrupt Raw Status Register                             | Section 4.15 |
| 0ACh   | IRQ_STATUS_SYS    | Interrupt Status Register                                 | Section 4.16 |
| 084h   | IRQENABLE_SET_SYS | Interrupt Enable Set Register                             | Section 4.17 |
| 0BCh   | IRQENABLE_CLR_SYS | Interrupt Enable Clear Register                           | Section 4.18 |
| 0C8h   | ZQCONFIG          | SDRAM Output Impedance Calibration Configuration Register | Section 4.19 |
| 0D4h   | RDWR_LVL_RMP_WIN  | Read-Write Leveling Ramp Window Register                  | Section 4.20 |
| 0D8h   | RDWR_LVL_RMP_CTRL | Read-Write Leveling Ramp Control Register                 | Section 4.21 |
| 0DCh   | RDWR_LVL_CTRL     | Read-Write Leveling Control Register                      | Section 4.22 |
| 0E4h   | DDR_PHY_CTRL_1    | DDR PHY Control 1 Register                                | Section 4.23 |
| 100h   | PRICOSMAP         | Priority To Class-Of-Service Mapping Register             | Section 4.24 |
| 104h   | MIDCOSMAP1        | Master ID to Class-Of-Service 1 Mapping Register          | Section 4.25 |
| 108h   | MIDCOSMAP2        | Master ID to Class-Of-Service 2 Mapping Register          | Section 4.26 |
| 110h   | ECCCTL            | ECC Control Register                                      | Section 4.27 |
| 114h   | ECCADDR1          | ECC Address Range 1 Register                              | Section 4.28 |

| Offset           | Acronym  | Register Description                    | Section      |
|------------------|----------|-----------------------------------------|--------------|
| 118h             | ECCADDR2 | ECC Address Range 2 Register            | Section 4.29 |
| 120h             | RWTHRESH | Read Write Execution Threshold Register | Section 4.30 |
| End of Table 4-1 |          |                                         |              |

### 6670:

6670 一切尽与 6678 相同,就是在 L2 里放置 ddr configuration table 的地方不一样

Table 2-2 CorePac0 Memory Usage by the ROM Bootloader

| Bytes offset | Size   | Description                                                          |
|--------------|--------|----------------------------------------------------------------------|
| 0x0          | 0x0040 | ROM boot version string, (Unreserved)                                |
| 0x40         | 0x0400 | Boot Code Stack                                                      |
| 0x520        | 0x0020 | Boot Progress Register Stack (copies of boot program on mode change) |
| 0x540        | 0x0100 | Boot Internal Stats                                                  |
| 0x640        | 0x0100 | Boot variables (FAR data)                                            |
| 0x740        | 0x0100 | DDR Configuration table                                              |
| 0x840        | 0x0080 | RAM table functions                                                  |
| 0x8C0        | 0x0080 | Boot Parameter table                                                 |
| 0x940        | 0x3600 | Clear text packet scratch                                            |
| 0x5240       | 0x7f80 | Ethernet/SRIO packet/message/descriptor memory                       |
| 0xD1C0       | 0x80   | Small Stack                                                          |
| 0xD23C       | 0x04   | Boot Magic Address                                                   |

再次粘入 table2-2,看相对偏移量 0x740 便可知,因为初始地址 6670 与 6678 不同,所以 ddr configuration table 的地址也不一样,于是有

#### DDR3 boot table: