元素化学笔记整理

胡译文

January 30, 2020

若有bug请到<mark>github</mark>上提lssue。 技术有限所有方程式的等号都用箭头代替了。

目录

	0.1 0.2 0.3	金属活动顺序表 2 氧化性顺序 2 元素氧化图解 2
1	Na 1.1	Na单质31.1.1 物理性质31.1.2 化学性质31.1.3 钠的制取31.1.4 钠的用途41.1.5 焰色反应4Na的化合物41.2.1 氧化钠和过氧化钠41.2.2 碳酸钠和碳酸氢钠4
2	2.2 2.3	Mg单质和AI单质 6 2.1.1 化学性质 6 2.1.2 制备 6 铝、氧化铝和氢氧化铝的两性 7
3	Fe 3.1 3.2 3.3 3.4	铁的水化物
4	Si 4.1	12 硅单质 12 4.1.1 物理性质 4.1.2 化学性质 12

	4.2	硅的氧	化物							 	 	 					 				
		4.2.1	物理性质																		12
			化学性质																		12
	4.3		化物(硅																		13
		4.3.1	物理性质																		13
			化学性质																		13
																					14
	4.4	硅酸盐																			14
		4.4.1	物理性质																		14
			化学性质																		14
	4 -		硅酸盐的																		14
	4.5	用途与																			14 14
		4.5.1 4.5.2																			14
		4.5.2	恰你				٠.	٠.	• •	 	 	 	٠.		•	•	 ٠.	•	٠.	•	 13
5	CI																				16
•	О.	5.0.1	含氯酸 .									 					 				 16
			卤素																		16
	5.1																				16
		5.1.1																			16
		5.1.2	化学性质							 	 	 					 				 16
		5.1.3																			17
	5.2	氯气.								 	 	 					 				 17
		5.2.1	物理性质							 	 	 					 				 17
		5.2.2	化学性质							 	 	 					 				 17
		5.2.3	制备							 	 	 					 				 18
		5.2.4	除杂							 	 	 					 				 18
		5.2.5								 	 	 					 				 18
		5.2.6								 	 	 					 				 19
	5.3	次氯酸																			19
			化学性质																		19
	5.4	含氯酸																			19
			NaCIO .																		19
			Ca(ClO) ₂	_																	19
			Cl ₂ 逐渐通																		19
		5.4.4	Cl ₂ 逐渐退	U人B	ıa₂C	U浴	汉	٠.	٠.	 	 ٠.	 	٠.	٠.		•	 ٠.	•			 20
6	S																				21
•	6.1	硫化氢																			21
	•	6.1.1	物理性质																		21
		6.1.2	化学性质																		21
		6.1.3	制备							 	 	 					 				 21
	6.2	硫单质								 	 	 					 				 22
		6.2.1	物理性质							 	 	 					 				 22
		6.2.2	化学性质							 	 	 					 				 22
	6.3	二氧化	硫							 	 	 					 				 23
		6.3.1	物理性质							 	 	 					 				 23
		6.3.2	化学性质							 	 	 					 				 23
		6.3.3	硫酸型酸	雨 .						 	 	 					 				 24
		6.3.4								 	 	 					 				 24
		6.3.5								 	 	 					 				 24
	6.4	三氧化	·																		24
		6.4.1	物理性质																		24
		6.4.2	化学性质							 	 	 					 				 25
		0 4 0																			
	с г	6.4.3	除杂																		25
	6.5	亚硫酸	除杂			 				 	 	 					 				 25
		亚硫酸 6.5.1	除杂 : 化学性质			 				 	 	 					 				 25 25
		亚硫酸 6.5.1 硫酸 .	除杂 : 化学性质			 				 	 	 					 				 25 25 25

	6.7	6.6.2 6.6.3 含硫酸 6.7.1 6.7.2 6.7.3	化学性质 25 制备 26 上 26 EeSO4 26 CuSO4 26 Na ₂ S ₂ O ₃ 26
7	N	_ .	27
	7.1	氨气.	
		7.1.1	勿理性质
		7.1.2	尾气处理防倒吸
		7.1.3	贲泉实验
		7.1.4	七学性质
		7.1.5	<u> </u>
		7.1.6	削备
		7.1.7	用途
	7.2	氮气.	
		7.2.1	勿理性质
		7.2.2	
		7.2.3	
	7.3	氮的室	 比物
		7.3.1	 勿理性质
		7.3.2	·····································
		7.3.3	愛酐
	7.4	硝酸.	
		741	。 勿理性质
		7.4.2	化学性质
		743	り备
		7.4.4	固氮
	7.5	盐	
		751	
		,	racking in the control of the contr

Flashback

0.1 金属活动顺序表

钾钙钠镁铝: K Ca Na Mg Al锌铁锡铅氢: Zn Fe Sn Pb H铜汞银铂金: Cu Hg Ag Pt Au

0.2 氧化性顺序

氧化性: $F_2 > O_2 > Cl_2 > Br_2 > Fe^{3+} > l_2 > S$

0.3 元素氧化图解

1 Na

1.1 Na单质

1.1.1 物理性质

- · 银白色固体, 有金属性光泽
- · 密度介于水和煤油之间, 用煤油或石蜡保存
- · 熔点低
- · 质地较软,可以用小刀切割

1.1.2 化学性质

与非金属单质反应

$$\cdot \ \left\{ \begin{array}{l} 4\,Na + O_2 \longrightarrow 2\,Na_2O \\ 2\,Na + O_2 \stackrel{\Delta}{\longrightarrow} Na_2O_2 \end{array} \right.$$

•
$$2 \text{Na} + \text{S} \longrightarrow \text{Na}_2 \text{S}$$

• 2 Na + H₂
$$\xrightarrow{\Delta}$$
 2 NaH

.
$$\left\{ \begin{array}{l} 2\,\text{Na} + \text{Br}_2 \longrightarrow 2\,\text{NaBr} \\ 2\,\text{Na} + \text{Cl}_2 \xrightarrow{\underline{\text{h.M.}}} 2\,\text{NaCl} \end{array} \right.$$

与水反应 2Na+2H₂O → 2NaOH+H₂↑

浮 钠的密度比水小

溶 反应放热, 钠的熔点低

游 生成氢气推动钠

响 反应剧烈

红 生成NaOH遇到酚酞变红

与盐酸反应 2Na+2HCl → 2NaCl+H₂↑

与碱反应 实质是先与水反应,产物再和盐反应。

与盐溶液反应 实质是先与水反应,产物再和盐反应(钠不能与盐溶液发生置换反应)。

・ 钠与硫酸铜溶液
$$\left\{ \begin{array}{l} 2\,\text{Na} + 2\,\text{H}_2\text{O} \longrightarrow 2\,\text{NaOH} + \text{H}_2\uparrow \\ 2\,\text{NaOH} + \text{CuSO}_4 \longrightarrow \text{Na}_2\text{SO}_4 + \text{Cu}(\text{OH})_2\downarrow \end{array} \right.$$

与
$$\mathbf{CO_2}$$
反应
$$\left\{ \begin{array}{l} 4\,\mathsf{Na} + \mathsf{CO_2} \overset{\Delta}{\longrightarrow} 2\,\mathsf{Na_2O} + \mathsf{C} \\ 4\,\mathsf{Na} + 3\,\mathsf{CO_2} \overset{\Delta}{\longrightarrow} 2\,\mathsf{Na_2CO_3} + \mathsf{C} \end{array} \right.$$

1.1.3 钠的制取

$$\left\{ \begin{array}{l} 2\,\text{NaCI}(I) \xrightarrow{\hbox{\tt left}} 2\,\text{Na} + \text{CI}_2\,\uparrow \\ 2\,\text{NaOH}(I) \xrightarrow{\hbox{\tt left}} 2\,\text{Na} + \text{O}_2\,\uparrow + \text{H}_2\,\uparrow \end{array} \right.$$

1.1.4 钠的用途

・ 冶炼金属: 4Na+TiCl₄(I) ---- 4NaCI+Ti

· 原子反应导热剂

• 钠光灯

1.1.5 焰色反应

钠盐: 黄色火焰(更多请移步化学实验部分)

1.2 Na的化合物

1.2.1 氧化钠和过氧化钠

比较氧化钠和过氧化钠

名称	氧化钠	过氧化钠
化学式	Na ₂ O	Na ₂ O ₂
物理性质	白色固体	淡黄色固体
氧化物类型	碱性氧化物	过氧化物
获取	$4\text{Na} + \text{O}_2 \longrightarrow 2\text{Na}_2\text{O}$	$2 \text{Na} + \text{O}_2 \xrightarrow{\Delta} \text{Na}_2 \text{O}_2$
与水反应	Na ₂ O + H ₂ O → 2 NaOH 白色粘稠物	2 Na ₂ O ₂ + 2 H ₂ O → 4 NaOH + O ₂ ↑ 白色粘稠物
与酸反应	$Na_2O + 2H^+ \longrightarrow 2Na^+ + H_2O$	$2 \operatorname{Na_2O_2} + 4 \operatorname{H}^+ \longrightarrow 4 \operatorname{Na}^+ + 2 \operatorname{H_2O} + \operatorname{O_2} \uparrow$
与CO ₂ 反应	$Na_2O + CO_2 \longrightarrow Na_2CO_3$	$2Na_2O_2 + 2CO_2 \longrightarrow 2Na_2CO_3 + O_2$
用途	制取烧碱	漂白剂、消毒剂、供氧剂

过氧化钠的强氧化性

- · 与SO₂反应: Na₂O₂ + SO₂ → Na₂SO₄
- · 投入FeCl₂溶液中生成Fe(OH)₃沉淀
- · 投入氢硫酸,氧化硫化氢成硫单质,溶液浑浊
- ・ 氧化SO₃²⁻ 成SO₄²⁻
- · 使品红溶液褪色

1.2.2 碳酸钠和碳酸氢钠

碳酸钠Na2CO3

・ 俗名: 纯碱、苏打

・ 与盐酸反应: Na₂CO₃ + 2 HCl → 2 NaCl + H₂O + CO₂↑

· 与Ca(OH)₂溶液反应: Na₂CO₃ + Ca(OH)₂ → CaCO₃ ↓ + 2 NaOH

· 与BaCl₂溶液反应: Na₂CO₃ + BaCl₂ → BaCO₃ ↓ + 2 NaCl

碳酸氢钠NaHCO3

・ 俗名: 小苏打

・ 与盐酸反应: NaHCO₃ + HCI → NaCl + H₂O + CO₂↑

・ 与过量Ca(OH)₂溶液反应: Ca₂⁺ + OH⁻ + HCO₃⁻ → CaCO₃↓ + H₂O

・ 与少量Ca(OH)₂溶液反应: Ca₂⁺+2OH⁻+2HCO₃⁻+Ca(OH)₂ → CaCO₃↓+2H₂O+CO₃²⁻

· 与BaCl₂溶液反应: 无明显现象

・ 受热分解: 2 NaHCO₃ → Na₂CO₃ + H₂O + CO₂↑

相互转换 Na₂CO₃ (CO₂+H₂O或H⁺) \(\bar{\Delta}(IGM)或OH⁻) \(\bar{\Delta}(IGM)或OH⁻)

鉴别Na2CO3和NaHCO3

固体 根据热稳定性加热,能产生使澄清石灰水变浑浊的气体的是NaHCO3

溶液

- · 与可溶性钙、钡盐生成沉淀的是Na₂CO₃
- · 与足量盐酸反应剧烈的是NaHCO3
- · 逐滴加盐酸先生成气体的是NaHCO₃
- · 等物质的量pH值较大的是Na₂CO₃

2 Mg和Al

2.1 Mg单质和AI单质

2.1.1 化学性质

与非金属单质反应

・ 与
$$O_2$$
反应:
$$\left\{ \begin{array}{l} 2\,Mg + O_2 \xrightarrow{\text{点燃}} 2\,MgO(耀眼白光) \\ 4\,AI + 3\,O_2 \xrightarrow{\text{点燃}} 2\,AI_2O_3 \end{array} \right.$$

与CO₂反应: 2 Mg + CO₂ ^{点燃} 2 MgO + C(耀眼白光, 黑色固体生成)

・ 与N₂反应: 3 Mg + N₂ ^{点燃}→ Mg₃N₂

・ 与卤素反应:
$$\left\{ \begin{array}{l} 2\,\text{Mg} + \text{Cl}_2 \xrightarrow{\text{点燃}} 2\,\text{MgCl}_2 \\ \\ 2\,\text{Al} + 3\,\text{Cl}_2 \xrightarrow{\text{点燃}} 2\,\text{AlCl}_3 \end{array} \right.$$

・ 与硫反应:
$$\begin{cases} Mg + S \xrightarrow{\Delta} MgS \\ 2AI + 3S \xrightarrow{\Delta} AI_2S_3 \end{cases}$$

注意, 镁在空气中燃烧时会同时发生前三个反应。

与热水反应
$$\begin{cases} Mg + H_2O(沸水) \longrightarrow Mg(OH)_2 + H_2 \uparrow \\ 2\,AI + 6\,H_2O \longrightarrow 2\,AI(OH)_3 + 3\,H_2 \uparrow \end{cases}$$

与酸发生置换反应 特例:铝在冷的浓硫酸或浓硝酸中钝化。

用途: 焊接金属、冶炼难溶金属。

与碱反应 镁不与碱反应。铝与强碱发生反应:2 Al+2 NaOH+6 H₂O → 2 NaAlO₂+4 H₂O+3 H₂↑

2.1.2 制备

工业制铝 $2 \text{ Al}_2 \text{O}_3(I) \xrightarrow{\text{冰晶石}} 4 \text{ Al} + 3 \text{O}_2 \uparrow$

工业制镁
$$\left\{ \begin{array}{l} Mg_2^+ + 2\,OH^- \longrightarrow Mg(OH)_2 \downarrow \\ \\ Mg(OH)_2 + 2\,HCI \longrightarrow MgCI_2 + H_2O \\ \\ MgCI_2(I) \xrightarrow{\underline{\mathfrak{Me}}} Mg + CI_2 \uparrow \end{array} \right.$$

海水提镁

$$CaCO3 \longrightarrow CaO \longrightarrow Ca(OH)_2 \longrightarrow Mg(OH)_2 \longrightarrow MgCl_2 \xrightarrow{\check{\underline{\mathfrak{M}}} e} Mg$$

其中氯元素可以循环: $Cl_2 \longrightarrow HCl \longrightarrow MgCl_2 \longrightarrow Cl_2$

2.2 铝、氧化铝和氢氧化铝的两性

与酸反应
$$\begin{cases} 2\,\text{Al} + 6\,\text{H}^+ \longrightarrow 2\,\text{Al}^{3+} + 3\,\text{H}_2\uparrow (\text{非氧化性酸}) \\ \\ \text{Al}_2\text{O}_3 + 6\,\text{H}^+ \longrightarrow 2\,\text{Al}^{3+} + 3\,\text{H}_2\text{O} \\ \\ \text{Al}(\text{OH})_3 + 3\,\text{H}^+ \longrightarrow \text{Al}^{3+} + 3\,\text{H}_2\text{O} \end{cases}$$

与强碱反应
$$\begin{cases} 2\,\mathsf{AI} + 2\,\mathsf{OH}^- + 2\,\mathsf{H}_2\mathsf{O} \longrightarrow 2\,\mathsf{AIO}_2^- + 3\,\mathsf{H}_2\uparrow \\ \\ \mathsf{AI}_2\mathsf{O}_3 + 2\,\mathsf{OH}^- \longrightarrow 2\,\mathsf{AIO}_2^- + \mathsf{H}_2\mathsf{O} \\ \\ \mathsf{AI}(\mathsf{OH})_3 + \mathsf{OH}^- \longrightarrow \mathsf{AIO}_2^- + 2\,\mathsf{H}_2\mathsf{O} \end{cases}$$

Al(OH)₃的电离
$$\left\{ \begin{array}{l} Al(OH)_3 \Longrightarrow H^+ + AlO_2^- + H_2O \\ \\ Al(OH)_3 \Longrightarrow Al^{3+} + OH^- \end{array} \right.$$

2.3 铝离子和偏铝酸根

2.3.1 铝离子

与NaOH的相互滴加 缓慢滴加并搅拌

将NaOH滴入AI³⁺溶液中

1. 先出现白色沉淀: Al³⁺ + 3 OH⁻ → Al(OH)₃↓

2. 后沉淀消失: AI(OH)₃ + OH⁻ ---- AIO₂ + 2H₂O

将AI³⁺滴入NaOH溶液中

1. 先无明显现象: $AI^{3+} + 4OH^{-} \longrightarrow AIO_{2}^{-} + H_{2}O$

2. 后产生白色沉淀: Al³⁺ + 3 AlO₂⁻ + 6 H₂O → 4 Al₃(OH)₃↓

与氨水反应 $AI^{3+} + NH_3 \cdot H_2O \longrightarrow AI(OH)_3 \downarrow + 3NH_4^+$

双水解反应

• $Al^{3+} + 3HCO_3^- \longrightarrow Al(OH)_3 \downarrow + 3CO_2 \uparrow$

• $Al^{3+} + 3CO_3^{2-} + 3H_2O \longrightarrow Al(OH)_3 \downarrow + 3HCO_3^{-}$

•
$$AI^{3+} + 3AIO_2^- + 6H_2O \longrightarrow 4AI(OH)_3 \downarrow$$

•
$$2 \text{ Al}^{3+} + 3 \text{ S}^{2-} + 6 \text{ H}_2 \text{O} \longrightarrow 2 \text{ Al}(\text{OH})_3 \downarrow + 3 \text{ H}_2 \text{S} \uparrow$$

•
$$AIO_2^- + NH_4^+ + H_2O \longrightarrow 4AI(OH)_3 \downarrow + NH_3 \uparrow$$

•
$$2 \text{ Al}^{3+} + 3 \text{ SiO}_3^{2-} + 6 \text{ H}_2\text{O} \longrightarrow 2 \text{ Al}(\text{OH})_3 \downarrow + 3 \text{ H}_2 \text{SiO}_3 \downarrow$$

2.3.2 偏铝酸根

与强酸相互滴加 缓慢滴加并搅拌

将H2SO4滴入AIO2⁻溶液中

- 1. 先出现白色沉淀: AIO₂ + H + H₂O → AI(OH)₃↓
- 2. 后沉淀消失: AI(OH)₃ + 3 H⁺ → AI³⁺ + 3 H₂O

将AIO2^一滴入H2SO4溶液中

- 1. 先无明显现象: AlO₂⁻ + 4 H⁺ → Al³⁺ + 2 H₂O
- 2. 后产生白色沉淀: Al³⁺ + 3 AlO₂⁻ + 6 H₂O → 4 Al₃(OH)₃↓

与碳酸反应 立即生成AI(OH)3沉淀且不溶解。

- · CO₂过量: AIO₂⁻ + 2H₂O + CO₂ → AI(OH)₃↓ + HCO₃⁻
- · CO₂少量: 2 AlO₂ + 3 H₂O + CO₂ 2 Al(OH)₃ ↓ + CO₃² -

与铵盐溶液反应 NH₄⁺ + AlO₂⁻ + H₂O → Al(OH)₃ ↓ + NH₃↑

2.4 氢氧化铝

2.4.1 物理性质

· 白色胶状沉淀

2.4.2 制备

•
$$AI^{3+} + NH_3 \cdot H_2O \longrightarrow AI(OH)_3 \downarrow + 3NH_4^+$$

•
$$AIO_2^- + 2H_2O + CO_2 \longrightarrow AI(OH)_3 \downarrow + HCO_3^-$$

•
$$Al^{3+} + 3AlO_2^- + 6H_2O \longrightarrow 4Al_3(OH)_3 \downarrow$$

2.5 总结

3 Fe

3.1 铁单质

3.1.1 物理性质

- · 银白色固体, 有金属性光泽;
- · 容易被磁铁吸引;
- · 地壳中居第四位;

3.1.2 化学性质

铁元素性质活泼,有较强的还原性,主要化合价为+2价和+3价。

与非金属单质反应

- Fe + S $\xrightarrow{\Delta}$ FeS

与水反应 铁在高温下与水蒸气反应 $3 \text{ Fe} + 4 \text{ H}_2 \text{ O}(g) \xrightarrow{\text{$\overline{\textbf{A}}$}} \text{Fe}_3 \text{ O}_4 + 4 \text{ H}_2$

与酸反应 铁遇到冷的浓硫酸或浓硝酸会钝化。

- ・ 与非还原性酸: Fe + 2H⁺ → Fe²⁺ + H₂↑
- · 与还原性酸: Fe + 4 H⁺ + NO₃ ⁻ → Fe³⁺ + NO↑ + 2 H₂O

与盐溶液反应

- · 置换反应: $Fe + Cu^{2+} \longrightarrow Fe^{2+} + Cu$
- 与氯化铁溶液: Fe + 2Fe³⁺ → 3Fe²⁺

3.2 铁的氧化物

名称	氧化亚铁	氧化铁	四氧化三铁				
俗称	-	铁红	磁性氧化铁				
化学式	FeO	Fe ₂ O ₃	Fe ₃ O ₄				
化合价	+2	+3	+2、+3				
物理性质	黑色粉末	红褐色粉末	黑色晶体				
与CO反应	$FeO + CO \xrightarrow{\Delta} Fe + CO_2$	$\begin{array}{c} Fe_2O_3 + 3CO \stackrel{\Delta}{\longrightarrow} \\ 2Fe + 3CO_2 \end{array}$	$ \begin{array}{c} Fe_3O_4 + 4CO \xrightarrow{\Delta} \\ 3Fe + 4CO_2 \end{array} $				
与H ₂ 反应	$FeO + H_2 \xrightarrow{\Delta} Fe + H_2O$	$ \begin{array}{c} \operatorname{Fe_2O_3} + 3\operatorname{H_2} \xrightarrow{\Delta} \\ 2\operatorname{Fe} + 3\operatorname{H_2O} \end{array} $	$ \begin{array}{c} \operatorname{Fe_3O_4} + 4\operatorname{H_2} \xrightarrow{\Delta} \\ 3\operatorname{Fe} + 4\operatorname{H_2O} \end{array} $				
与酸反应	$FeO + 2H^{+} \longrightarrow Fe^{2+} + H_{2}O$	$Fe_2O_3 + 6H^+ \longrightarrow 2Fe^{3+} + 3H_2O$	$Fe_3O_4 + 8 H^+ \longrightarrow Fe^{2+} + 2 Fe^{3+} + 4 H_2O$				

3.3 铁的水化物

3.3.1 比较Fe(OH)₂和Fe(OH)₃

名称	氢氧化亚铁	氢氧化铁
化学式	Fe(OH) ₂	Fe(OH) ₃
物理性质	白色固体	红褐色固体
与酸反应	$Fe(OH)_2 + 2H^+ \longrightarrow Fe^{2+} + 2H_2O$	$Fe(OH)_3 + 3H^+ \longrightarrow Fe^{3+} + 3H_2O$
受热分解	$Fe(OH)_2 \xrightarrow{\Delta} FeO + H_2O$	$2 \operatorname{Fe}(OH)_3 \xrightarrow{\Delta} \operatorname{Fe}_2O_3 + 3 \operatorname{H}_2O$
制备	$FeCl_2 + 2 NaOH \longrightarrow Fe(OH)_2 \downarrow + 2 NaCl$	$FeCl_3 + 3 NaOH \longrightarrow Fe(OH)_3 \downarrow + 3 NaCl$

3.3.2 Fe(OH)₂和Fe(OH)₃的转化

 $Fe(OH)_2$ 在空气中可以迅速被氧化成 $Fe(OH)_3$ 。现象是由**白色絮状沉淀**迅速变成灰绿色,最后变成<mark>红褐色</mark>。

$$4\,Fe(OH)_2 + O_2 + 2\,H_2O \longrightarrow 4\,Fe(OH)_3 \circ$$

3.4 铁三角(铁、亚铁盐、铁盐)

亚铁盐 含有Fe²⁺的溶液呈浅绿色,Fe²⁺既有氧化性,又有还原性。

铁盐 含有Fe³⁺的溶液呈<mark>棕黄色</mark>,Fe³⁺具有氧化性。含有Fe³⁺的盐溶液遇到KSCN溶液时变成红色。

4 Si

4.1 硅单质

4.1.1 物理性质

- · 分类: 无定形硅、晶体硅(结构类似金刚石, 原子晶体)
- · 灰黑色晶状固体
- · 质地较脆
- · 半导体

4.1.2 化学性质

与非金属单质反应

- Si + O₂ $\xrightarrow{\overline{\mathbb{A}}\mathbb{A}}$ SiO₂
- Si + 2 Cl₂ $\xrightarrow{\Delta}$ SiCl₄
- $Si + 2F_2 \longrightarrow SiF_4$
- ・ Si + C ^{高温} SiC 金剛砂

与水反应
$$Si + H_2O + 2 NaOH \longrightarrow Na_2SiO_3 + 2 H_2 \uparrow$$
 野外制氢

精炼

- 1. $Si + Cl_2 \xrightarrow{\Delta} SiCl_4$
- 2. $SiCl_4 + 2H_2 \xrightarrow{\overline{\text{Si}}} 4HCI + Si$

4.2 硅的氧化物

最简式: SiO₂ (分子晶体)

4.2.1 物理性质

· 透明、硬度大、熔点高

4.2.2 化学性质

酸性氧化物

与唯一一种酸氢氟酸反应
$$SiO_2 + 4HF \longrightarrow SiF_4 \uparrow + 2H_2O$$
 (气标!气标!!) $g_{\text{腐蚀玻璃, 玻璃雕花}}$

与碱性氧化物反应 氧化硅与碱性氧化物反应,不与水反应(与水反应产物为硅酸,是沉淀,阻止反应进行)

・ SiO₂ + Na₂O ^{高温}→ Na₂SiO₃

· SiO₂ + CaO ^{高温}→ CaSiO₃

与碱性盐反应

・ $SiO_2 + Na_2CO_3$ $\stackrel{\overline{a} \boxtimes}{\longrightarrow} Na_2SiO_3 + CO_2 \uparrow$ 制作玻璃
・ $SiO_2 + CaCO_3$ $\stackrel{\overline{a} \boxtimes}{\longrightarrow} CaSiO_3 + CO_2 \uparrow$ 造渣反应

与碳反应

· $SiO_2 + 2C \xrightarrow{\overline{Ala}} Si + 2CO \uparrow$

• $SiO_2 + 3C \xrightarrow{\overline{Bla}} SiC + 3CO \uparrow$

精炼

2. $Mg_2Si + 4HCl \longrightarrow 2MgCl_2 + SiH_4 \uparrow$

3. $SiH_4 + 2O_2 \longrightarrow SiO_2 + 2H_2O$ (自然)

4.3 硅的水化物(硅酸、原硅酸)

硅酸: H₂SiO₃、、原硅酸: H₄SiO₄

4.3.1 物理性质

白色胶状沉淀

4.3.2 化学性质

弱酸性 不使酸碱指示剂变色

硅酸电离
$$\left\{ \begin{array}{l} H_2SiO_3 \Longleftrightarrow H^+ + HSiO_3^- \\ H_2SiO_3^- \Longleftrightarrow H^+ + SiO_3^{2-} \end{array} \right.$$

原硅酸电离
$$\begin{cases} H_2SiO_3 & \Longrightarrow H^+ + SiO_3^- \\ \\ H_4SiO_4 & \Longrightarrow H^+ + H_3SiO_4^- \\ \\ H_3SiO_4^- & \Longrightarrow H^+ + H_2SiO_4^{2-} \\ \\ H_2SiO_4^- & \Longrightarrow H^+ + HSiO_4^{3-} \\ \\ HSiO_4^- & \Longrightarrow H^+ + SiO_4^{4-} \end{cases}$$

不稳定沉淀

• $H_4SiO_4 \longrightarrow H_2SiO_3 + H_2 \uparrow$

•
$$H_2SiO_3 \xrightarrow{\Delta} SiO_2 + H_2O$$

•
$$H_2SiO_3 \xrightarrow{\Delta} SiO_2 \cdot xH_2O + H_2O$$

与强碱反应

与氢氧化钠反应
$$H_2SiO_3 + 2NaOH \longrightarrow Na_2SiO_3 + 2H_2O$$

4.3.3 制备

$$\mathbf{SiO_2}$$
无法一步变成 $\mathbf{H_2SiO_3}$
$$\left\{ \begin{array}{l} \mathrm{SiO_2} + 2\,\mathrm{NaOH} \longrightarrow \mathrm{Na_2SiO_3} + \mathrm{H_2O} \\ \mathrm{Na_2SiO_3} + 2\,\mathrm{HCI} \longrightarrow 2\,\mathrm{NaCI} + \mathrm{H_2SiO_3} \downarrow \end{array} \right.$$

4.4 硅酸盐

4.4.1 物理性质

K₂SiO₃和Na₂SiO₃溶于水,其余硅酸盐微溶于水。

4.4.2 化学性质

$$\begin{array}{c} \cdot & \begin{cases} \text{Na}_2\text{SiO}_3 + \text{CO}_2 + \text{H}_2\text{O} \longrightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{SiO}_3 \downarrow \\ \\ \text{Na}_2\text{SiO}_3 + 2\,\text{CO}_2 + 2\,\text{H}_2\text{O} \longrightarrow 2\,\text{Na}\text{HCO}_3 + \text{H}_2\text{SiO}_3 \downarrow \end{cases} \\ \cdot & \begin{cases} \text{Na}_2\text{SiO}_3 + 6\,\text{HF} \longrightarrow \text{SiF}_4 \uparrow + 2\,\text{NaF} + 3\,\text{H}_2\text{O} \\ \\ \underbrace{\text{CaSiO}_3 + 6\,\text{HF} \longrightarrow \text{SiF}_4 \uparrow + \text{CaF}_2 + 3\,\text{H}_2\text{O}}_{\text{\reff}} \end{cases} \\ \frac{\text{CaSiO}_3 + 6\,\text{HF} \longrightarrow \text{SiF}_4 \uparrow + \text{CaF}_2 + 3\,\text{H}_2\text{O}}{\text{\reff}} \end{cases}$$

4.4.3 硅酸盐的拆分

活泼金属氧化物 — 较活泼金属氧化物 — 二氧化硅 — 水

· Na₂SiO₃: Na₂O · SiO₂

· CaSiO₃: CaO·SiO₂

Al₂(Si₂O₅)(OH)₄): Al₂O₃ · 2SiO₂ · 2H₂O

4.5 用途与俗称

4.5.1 用途

· Si (不透明): 硅芯片、太阳能电池板

・ SiO_2 (透明):玻璃、石英玻璃、硅胶($mSiO_2 \cdot nH_2O$,干燥剂)、光导纤维

・ SiO₃²⁻ 盐: 水泥、陶瓷、防火材料等无机非金属材料

・ H₂SiO₃: 制硅胶

4.5.2 俗称

・ SiO₂: 水晶、玛瑙、石英

・ Na₂SiO₃水溶液:水玻璃

・ Na₂SiO₃: 泡花碱

5 CI

氯相关

5.0.1 含氯酸

从上至下,酸性递增,氧化性递减。

・ HCIO: 次氯酸

・ HCIO₂: 亚氯酸

・ HCIO₃: 氯酸

・ HCIO₄: 高氯酸

5.0.2 卤素

· F: 无正价, 氧化性最强的单质

· CI: 黄绿色气体

· Br: 常温下唯一液态非金属单质, 保存液溴需水封, 海水元素

· I: 易升华

・ AgF: 可溶于水

・ AgCI: 白色沉淀

・ AgBr: 淡黄色沉淀

· Agl: 黄色沉淀, 用于人工降雨

海水提溴

海水 $\xrightarrow{\text{m} \pm}$ 盐卤 $\xrightarrow{\text{@} \lambda \text{Cl}_2}$ $\text{Br}_2(\text{aq})$ $\xrightarrow{\text{v,h} \geq \text{-q, v,k} \leq \text{-q, v,k}}$ $\text{Br}_2(\text{g})$ $\xrightarrow{\text{h} \oplus \text{h} \oplus \text{q, v,k}}$ p \text

$$\begin{cases} Cl_2 + 2Br^- \longrightarrow Br_2 + 2Cl^- \\ 3Br_2 + 3CO_3^{2-} \longrightarrow 5Br^- + BrO_3^- + 3CO_2 \\ 5Br^- + BrO_3^- + 6H^+ \longrightarrow 3Br_2 + 3H_2O \end{cases}$$

海带提碘

海带
$$\longrightarrow$$
 烧碱灰 $\stackrel{{ ilde D}_{N}}{\longrightarrow}$ $\stackrel{{ ilde Cl}_2}{\longrightarrow}$ ${ ilde I}_2$

拟卤素 CN、SCN、OCN 氰 硫氰 氧氰

5.1 盐酸

5.1.1 物理性质

无色、有刺激性气味液体。

5.1.2 化学性质

酸性 产物中有盐

•
$$2H^+ + Fe \longrightarrow Fe^{2+} + H_2 \uparrow$$

$$\cdot H^+ + OH^- \longrightarrow H_2O$$

$$\cdot 2H^+ + CaO \longrightarrow Ca_2^+ + H_2O$$

•
$$2H^+ + CO_3^{2-} \longrightarrow CO_2 \uparrow + H_2O$$

氧化性 盐酸的氧化性由H⁺体现

•
$$2 H^+ + Fe \longrightarrow Fe^{2+} + H_2 \uparrow$$

还原性

・
$$\underbrace{4\,\text{HCI}(浓) + \text{MnO}_2 \xrightarrow{\Delta} \text{MnCI}_2 + \text{CL}_2 \uparrow + 2\,\text{H}_2\text{O}}_{\text{实验室制氯气}}$$

$$\begin{cases} 16\,\text{HCl} + 2\,\text{KMnO}_4 \longrightarrow 2\,\text{KCl} + 5\,\text{Cl}_2 \uparrow + 2\,\text{MnCl}_2 + 8\,\text{H}_2\text{O} \\ 14\,\text{HCl} + \text{K}_2\text{Cr}_2\text{O}_7 \longrightarrow 2\,\text{KCl} + 3\,\text{Cl}_2 \uparrow + 2\,\text{CrCl}_3 + 7\,\text{H}_2\text{O} \\ 6\,\text{HCl} + \text{KClO}_3 \longrightarrow \text{KCl} + 3\,\text{Cl}_2 \uparrow + 3\,\text{H}_2\text{O} \\ 14\,\text{HCl} + \text{PbO}_2 \longrightarrow \text{PbCl}_2 + \text{Cl}_2 \uparrow + 2\,\text{H}_2\text{O} \\ 6\,\text{HCl} + \text{NaBiO}_3 \longrightarrow \text{NaCl} + \text{Cl}_2 \uparrow + \text{BiCl}_2 + 3\,\text{H}_2\text{O} \end{cases}$$

5.1.3 制备

工业

1.
$$2 \text{ NaCl} + 2 \text{ H}_2 \text{O} \xrightarrow{\underline{\hat{\text{Me}}}} 2 \text{ NaOH} + \text{H}_2 \uparrow + \text{Cl}_2 \uparrow$$

$$2. \ H_2 + CI_2 \xrightarrow{\text{\underline{A}}} 2 \, HCI$$

实验室

• NaCl +
$$H_2SO_4($$
浓) $\stackrel{\Delta}{\longrightarrow}$ NaHSO₄ + HCl↑

•
$$2 \text{ NaCl} + \text{H}_2 \text{SO}_4($$
次 $) \xrightarrow{\Delta} \text{Na}_2 \text{SO}_4 + 2 \text{HCl} \uparrow$

5.2 氯气

5.2.1 物理性质

- · 黄绿色气体
- · 密度大于空气, 加压易液化
- · 难溶于饱和食盐水,可溶于水,易溶于CCl4。

5.2.2 化学性质

助燃性 强氧化性

- · H₂ + Cl₂ ^{点燃}→ 2 HCl(苍白色火焰)
- ・ 2 Fe + 3 Cl₂ ^{点燃} 2 FeCl₃ (产物是三价铁)

- · Cu + Cl₂ ^{点燃} CuCl₂
- ・ 2 Na + Cl₂ ^{点燃} 2 NaCl(白烟黄光)

・ 磷在氯气中燃烧产生白色烟雾
$$\left\{ \begin{array}{l} 2\,P + 5\,\text{Cl}_2 \xrightarrow{\text{s.m.}} 2\,\text{PCl}_5(\text{烟}) \\ \\ 2\,P + 3\,\text{Cl}_2 \xrightarrow{\text{s.m.}} 2\,\text{PCl}_3(\overline{\textbf{g}}) \end{array} \right.$$

$$. \quad \left\{ \begin{array}{l} PCI_3 + 3H_2O \longrightarrow H_3PO_3 + 3HCI \\ PCI_5 + 4H_2O \longrightarrow H_3PO_4 + 5HCI \end{array} \right.$$

氧化性和还原性

$$\cdot \left\{ \begin{array}{l} H_2O + CI_2 \Longrightarrow HCI + HCIO \\ \\ H_2O + CI_2 \Longrightarrow H^+ + CI^- + HCIO \end{array} \right. \\ \cdot \left\{ \begin{array}{l} NaOH + CI_2 \longrightarrow NaCI + \underbrace{NaCIO}_{84 \Hat bar{bar{bar{bar{bar{c}}{3.5}}}{3.5}}} + H_2O \\ \\ 2\,Ca(OH)_2 + 2\,CI_2 \longrightarrow CaCI_2 + Ca(CIO)_2 + 2\,H_2O \end{array} \right. \\ \left\{ \begin{array}{l} \\ \\ \\ \\ \\ \end{array} \right. \right\}$$

NaOH +
$$Cl_2$$
 \longrightarrow NaCl + NaClO + H_2O 84消毒液、漂白粉
$$2Ca(OH)_2 + 2Cl_2 \longrightarrow CaCl_2 + Ca(ClO)_2 + 2H_2O$$
 漂白精、漂白粉

$$. \quad \left\{ \begin{array}{l} 6\,\text{NaOH} + 3\,\text{Cl}_2 \stackrel{\Delta}{\longrightarrow} 5\,\text{NaCI} + \text{NaCIO}_3 + 3\,\text{H}_2\text{O} \\ \\ 6\,\text{KOH} + 3\,\text{Cl}_2 \stackrel{\Delta}{\longrightarrow} 5\,\text{KCI} + \text{KCIO}_3 + 3\,\text{H}_2\text{O} \end{array} \right.$$

$$\cdot 2H_2O + CI_2 + SO_2 \longrightarrow HCI + H_2SO_4$$

5.2.3 制备

工业

- 2 NaCl + 2 H₂O $\xrightarrow{\bar{\mathbf{M}}\mathbf{e}}$ 2 NaOH + H₂↑ + Cl₂↑
- · 2 NaCl(l) ^{通电} 2 Na + Cl₂↑

实验室

• $MnO_2 + 4HCI(浓) \xrightarrow{\Delta} CI_2 \uparrow + MnCI_2 + 2H_2O$

5.2.4 除杂

・ Cl₂ (HCI): 饱和食盐水 (溶液度: HCI > NaCI > Cl₂)

· HCI (Cl₂) : CCl₄

・ CO₂ (HCI): 饱和NaHCO₃溶液

5.2.5 氯水

成分

・ 分子: H₂O、Cl₂、HClO

・ 离子: Cl - 、H+、ClO - 、OH -

检验

· Cl₂: FeCl₂溶液由浅绿色变为棕黄色

· Cl : 加入硝酸酸化的AgNO3溶液,产生白色沉淀

・ HCIO: 有色布条褪色

· H+: pH试纸先变红,再褪色

5.2.6 鉴别

湿润淀粉碘化钾试纸变为蓝色 $CI_2 + 2KI \longrightarrow 2KCI + I_2$

5.3 次氯酸

化学式 HCIO

5.3.1 化学性质

见光分解 2 HCIO $\stackrel{\mathcal{H}}{\longrightarrow}$ 2 HCI + O₂ ↑

酸性 H₂CO₃ > HCIO > HCO₃

氧化性 $HCIO + SO_2 + H_2O \longrightarrow HCI + H_2SO_4$

5.4 含氯酸盐

5.4.1 NaClO

次氯酸钠的变质
$$\left\{ \begin{array}{l} CO_2 + NaCIO + H_2O \longrightarrow HCIO + NaHCO_3 \\ \\ 2\,HCIO \stackrel{\mathcal{H}}{\longrightarrow} 2\,HCI + O_2 \uparrow \end{array} \right.$$

 SO_2 通入 $NaCIO_3$ 溶液 $CIO^- + SO_2 + H_2O \longrightarrow CI^- + 2H^+ + SO_4^{2-}$

5.4.2 Ca(CIO)₂

 SO_2 通入 $Ca(ClO_3)_2$ 溶液 $Ca^{2+} + ClO^- + SO_2 + H_2O \longrightarrow Cl^- + 2H^+ + CaSO_4 \downarrow$

5.4.3 Cl2逐渐通入Fel2和FeBr2混合溶液

1.
$$Cl_2 + 2l^- \longrightarrow 2Cl^- + l_2$$

2.
$$Cl_2 + 2Fe^{2+} \longrightarrow 2CI^- + 2Fe^{3+}$$

3.
$$Cl_2 + 2Br^- \longrightarrow 2Cl^- + Br_2 \uparrow$$

4.
$$5 \text{ Cl}_2 + 6 \text{ H}_2 \text{O} + \text{I}_2 \longrightarrow 12 \text{ H}^+ + 2 \text{ IO}_3^- + 10 \text{ Cl}^-$$

5.4.4 Cl₂逐渐通入Na₂CO溶液

$$H_2O + Cl_2 \Longrightarrow HCl + HClO$$
 (1)

$$HCI + Na_2CO_3 \longrightarrow NaCI + NaHCO_3$$
 (2)

$$HCI + NaHCO_3 \longrightarrow NaCI + H_2O + CO_2 \uparrow$$
 (3)

$$HCIO + Na_2Co_3 \rightleftharpoons NaCIO + NaHCO_3$$
 (4)

注意HCIO和NaHCO3不反应。

1.
$$2 \text{Na}_2\text{CO}_3 + \text{CI} + \text{H}_2\text{O} \longrightarrow 2 \text{NaHCO}_3 + \text{NaCI} + \text{NaCIO} (1+2+4)$$

2.
$$Cl_2 + Na_2CO_3 + H_2O \longrightarrow NaCl + NaHCO_3 + HClO$$
 (1+2)

3.
$$Na_2CO_3 + 2CI_2 + H_2O \longrightarrow CO_2 \uparrow + 2NaCI + 2HCIO (1+2+3)$$

6 S

6.1 硫化氢

6.1.1 物理性质

· 无色、有刺激性气味(臭鸡蛋味)、有毒气体

· 能溶于水

· H₂S水溶液俗称氢硫酸, 有毒

- 碘酸: HIO - 碘化氢: HI

- 氢碘酸: HI水溶液

6.1.2 化学性质

弱酸性

与碱生成对应酸式/正盐

与一些盐反应

· H₂S + CuSO₄ → CuS ↓ + H₂SO₄ (强酸置弱酸)

· PbAc₂ + H₂S → PbS↓ + 2 HAc(鉴别硫化氢:PbAc₂试纸变黑)

不稳定性 高温易分解

可燃性

• $2 H_2 S + 3 O_2 \xrightarrow{\text{s.m.}} 2 SO_2 + 2 H_2 O$

 $\cdot \ 2\,H_2S + O_2 \xrightarrow{\text{\underline{A}}} 2\,S + 2\,H_2O$

强还原性

• $2H_2S + SO_2 \longrightarrow 3S \downarrow + 2H_2O$

• $2H_2S(aq) + O_2 \longrightarrow 2S \downarrow + 2H_2O$

 $\cdot \ H_2S + X_2 \longrightarrow 2\,HX + S\, \downarrow$

$$\cdot \ \left\{ \begin{array}{l} H_2S + H_2O_2 \longrightarrow 2\,H_2O + S \downarrow \\ \\ H_2S + 4\,H_2O_2 \longrightarrow H_2SO_4 + 4\,H_2O \end{array} \right.$$

6.1.3 制备

向上双管排气法收集 除杂: NaOH

• FeS + $H_2SO_4 \longrightarrow H_2S \uparrow + FeSO_4$

· $ZnS + H_2SO_4 \longrightarrow H_2S \uparrow + ZnSO_4$

6.2 硫单质

6.2.1 物理性质

- · 黄色硫固体/淡黄色硫粉/白色纳米尺度的硫
- · 难溶于水、微溶于酒精、易溶于二硫化碳
- · 熔沸点低, 存在多种同素异形体

6.2.2 化学性质

与金属反应 主要生成低价化合物

- S + Fe $\xrightarrow{\Delta}$ FeS
- $S + 2Cu \xrightarrow{\Delta} Cu2S$ 硫化亚铜
- ・ $\underbrace{3S + 2AI}_{\text{高中唯-} \#AI_2S_3}$ 的方法
- $\bullet \underbrace{S + Hg \longrightarrow HgS}_{\mathbb{R}_{\overline{\mathbb{R}}}}$

与非金属反应

- · $S + 3F_2 \longrightarrow SF6$ 变压器涂层
- $S + O_2 \xrightarrow{\Delta g \land k} SO_2$
- \cdot S + H₂ $\stackrel{\overline{\text{BL}}}{\longleftarrow}$ H₂S

还原性

$$\cdot \left\{ \begin{array}{l} S + 4 \, HNO_3(浓) \stackrel{\Delta}{\longrightarrow} SO_2 \uparrow + 4 \, NO_2 \uparrow + 2 \, H_2O \\ \\ S + 2 \, H_2 SO_4(浓) \stackrel{\Delta}{\longrightarrow} 3 \, SO_2 \uparrow + 2 \, H_2O \end{array} \right.$$

$$\cdot \quad S + 3\,H_2O_2 \longrightarrow H_2SO_4 + 2\,H_2O_4$$

除硫粉

- 1. 用CS₂洗涤
- 2. 用热的氢氧化钠溶液洗涤: 3S+6 NaOH $\stackrel{\Delta}{\longrightarrow} 2$ Na₂S + Na₂So₃ + 3 H₂O

歧化和归中

・ 硫单质:
$$\left\{ \begin{array}{c} \underbrace{S + OH^- \stackrel{\Delta}{\longrightarrow} S^{2-} + SO_3^{2-} + H_2O}_{\text{碱性歧化}} \\ \underbrace{S^{2-} + SO_3^{2-} + H^+ \longrightarrow S\downarrow + H_2O}_{\text{酸性归中}} \end{array} \right.$$

・ 卤素加热:
$$\begin{cases} X_2 + OH^- \xrightarrow{\Delta} X^- + XO_3^- + H_2O \\ X^- + XO_3^- + H^+ \longrightarrow X_2 \uparrow + H_2O \end{cases}$$

・ 卤素不加热:
$$\left\{ \begin{array}{l} X_2 + OH^- \longrightarrow X^- + XO^- + H_2O \\ \\ X^- + XO^- + H^+ \longrightarrow X_2 \uparrow + H_2O \end{array} \right.$$

6.3 二氧化硫

6.3.1 物理性质

- · 无色、刺激性气味、有毒气体
- · 易溶于水

6.3.2 化学性质

酸性

・与强碱:
$$\begin{cases} SO_2 + 2 \, NaOH \longrightarrow Na_2SO_3 + H_2O \\ \\ SO_2 + NaOH \longrightarrow NaHSO_3 \\ \\ SO_2 + Ca(OH)_2 \longrightarrow CaSO_3 \downarrow + H_2O \end{cases}$$

・ 与水反应:
$$\begin{cases} SO_2 + H_2O \Longrightarrow H_2SO_3 \\ H_2SO_3 \Longrightarrow H^+ + HSO_3^- \\ HSO_3^- \Longleftrightarrow H^+ + SO_3^{2-} \end{cases}$$

· 酸性比盐酸弱:不与BaCl₂溶液反应生成沉淀

・ 与BaCl₂和NH₃ · H₂O溶液:
$$\begin{cases} SO_2 + 2\,NH_3 \cdot H_2O \longrightarrow (NH_4)_2SO_3 + H_2O \\ (NH_4)_2SO_3 + BaCl_2 \longrightarrow BaSO_3 \downarrow + 2\,NH_4Cl \end{cases}$$

・与BaCl₂和Cl₂溶液:
$$\begin{cases} SO_2 + 2H_2O + Cl_2 \longrightarrow H_2SO_4 + 2HCl \\ H_2SO_4 + BaCl_2 \longrightarrow 2HCl + BaSO_4 \downarrow \end{cases}$$

氧化性 $2H_2S + SO_2 \longrightarrow 3S \downarrow + H_2O$ (仅此一个反应能体现氧化性)

・
$$SO_2$$
通入 Na_2S 溶液:
$$\left\{ \begin{array}{l} SO_2 + H_2O \longrightarrow H_2SO_3 \\ \\ H_2SO_3 + Na_2S \longrightarrow Na_2SO_3 + H_2S \uparrow \\ \\ 2H_2S + SO_2 \longrightarrow 3S \downarrow + H_2O \end{array} \right.$$

还原性

• $SO_2 + H_2O_2 \longrightarrow H_2SO_4$

· $SO_2 + Na_2O_2 \longrightarrow Na_2SO_4$

•
$$SO_2 + 2Fe^{3+} + 2H_2O \longrightarrow 2Fe^{2+} + SO_4^{2-} + 4H^+$$

•
$$5 SO_2 + 2 MnO_4^- + 2 H_2O \longrightarrow 2 Mn^{2+} + 5 SO_4^{2-} + 4 H^+$$

•
$$SO_2 + HCIO + H_2O \longrightarrow 3H^+ + CI^- + SO_4^{2-}$$

•
$$NO_2 + SO_2 \longrightarrow NO + SO_3$$

$$\cdot \left\{ \begin{array}{l} SO_2 + 2H_2O + X_2 \longrightarrow H_2SO_4 + 2HX \\ \\ SO_2 + 2H_2O + CI_2 \longrightarrow H_2SO_4 + 2HCI \end{array} \right.$$

漂白性 SO₂使品红溶液褪色,加热后红色复现。原理:与特定有机染料结合,生成无色或浅色物质;加热可逆

· SO₂通入酸性高锰酸钾溶液褪色: 还原性

· SO₂通入品红溶液褪色:漂白性

6.3.3 硫酸型酸雨

• $SO_2 \longrightarrow SO_3 \longrightarrow H_2SO_4$

 \cdot SO₂ \longrightarrow H₂SO₃ \longrightarrow H₂SO₄

6.3.4 除杂

· SO₂ (CO₂): NaHSO₃溶液

· CO₂ (SO₂): NaHCO₃溶液或酸性高锰酸钾溶液

・ SO₂ (HCI): NaHSO₃溶液

· SO₂ (CI₂): 无法分开

6.3.5 制备

$$\cdot \ \left\{ \begin{array}{l} Na_2SO_3 + H_2SO_4(\mbox{$\not$$}\mbox{$\not$$}) \longrightarrow Na_2SO_4 + CO_2\mbox{\uparrow} + H_2O \\ \\ Na_2SO_3 + H_2SO_4 \stackrel{\Delta}{\longrightarrow} Na_2SO_4 + CO_2\mbox{\uparrow} + H_2O \end{array} \right.$$

・ 装置: 固液加热, 含沸石

· 除杂(水):浓硫酸或无水氯化钙

・ 收集: 向上排空气(易溶于水,不能用排水法)

· 验满:湿润的蓝色石蕊试纸(酸性)或品红试纸(漂白性)

· 尾气处理: 氢氧化钠溶液、放倒吸(工业用氨水,产物可做化肥)

6.4 三氧化硫

6.4.1 物理性质

・ 无色

· 常温液体、标况固体

· 溶于浓硫酸

6.4.2 化学性质

酸性氧化物,与水反应生成硫酸,放热。

$$SO_3 + CaO \longrightarrow CaSO_4SO_3 + 2NaOH \longrightarrow Na_2SO_4 + H_2O$$

6.4.3 除杂

弱酸气体混有强酸气体杂质时,用弱酸的酸式盐溶液除杂。也可以利用杂质的氧化性或还原性除杂。

- ・ CO₂ (SO₂): 酸性高锰酸钾溶液、Fe₂(SO₄)₃溶液、NaHCO₃溶液
- · H₂S (HCI): 饱和NaHS溶液
- ・ CO₂ (H₂S): 酸性高锰酸钾溶液、Fe₂(SO₄)₃溶液、CuSO₄溶液

6.5 亚硫酸

6.5.1 化学性质

不稳定性

• $H_2SO_3 \xrightarrow{\Delta} H_2O + SO_2 \uparrow$

还原性

- · $2H_2SO_3 + O_2 \Longrightarrow H_2SO_4$
- $\cdot \ \ H_2SO_3 + CI_2 + H_2O \Longrightarrow H_2SO_4 + 2\,HCI$
- · $H_2SO_3 + H_2O_2 \Longrightarrow H_2SO_4 + H_2O$

酸性 亚硫酸是中强酸

- ・ NaHCO3: 显碱性
- ・ NaHSO₃: 显酸性

6.6 硫酸

6.6.1 物理性质

- · 无色粘稠状液体、不易挥发
- · 吸水性
- · 溶于水放热

6.6.2 化学性质

酸性

脱水性 (注意区分吸水性) 酸性干燥剂

强氧化性

- · 与金属反应: 可与金属活动顺序表中铜及之前的物质反应, 常温下使铁、铝钝化。
 - $Cu + 2H_2SO_4($ \dot{x}) $\xrightarrow{\Delta} CuSO_4 + SO_2$ ↑ + $2H_2O$

・ 与非金属反应:
$$\left\{ \begin{array}{l} C + 2\,H_2SO_4(浓) \stackrel{\Delta}{\longrightarrow} CuSO_4 + SO_2\uparrow + 2\,H_2O \\ \\ S + 2\,H_2SO_4(浓) \stackrel{\Delta}{\longrightarrow} 3\,SO_2\uparrow + 2\,H_2O \end{array} \right.$$

$$\begin{array}{c} \cdot \hspace{0.1cm} = \hspace{0.1cm} \text{与非金属反应:} \end{array} \left\{ \begin{array}{l} C + 2 \hspace{0.1cm} H_2 SO_4 (\hbox{浓}) \stackrel{\Delta}{\longrightarrow} CuSO_4 + SO_2 \uparrow + 2 \hspace{0.1cm} H_2 O \\ \\ S + 2 \hspace{0.1cm} H_2 SO_4 (\hbox{٪χ}) \stackrel{\Delta}{\longrightarrow} 3 \hspace{0.1cm} SO_2 \uparrow + 2 \hspace{0.1cm} H_2 O \end{array} \right. \\ \left. \cdot \hspace{0.1cm} = \hspace{0.1cm} \begin{array}{l} 2 \hspace{0.1cm} Br^- + SO_4^{2-} + 4 \hspace{0.1cm} H^+ \longrightarrow Br_2 + SO_2 \uparrow + 2 \hspace{0.1cm} H_2 O \\ \\ 2 \hspace{0.1cm} Fe^{2+} + SO_4^{2-} + 4 \hspace{0.1cm} H^+ \longrightarrow 2 \hspace{0.1cm} Fe^{3+} + SO_2 \uparrow + H_2 O \end{array} \right.$$

6.6.3 制备

工业

沸腾炉 煅烧黄铁矿

$$4 \operatorname{FeS}_2 + 11 \operatorname{O}_2 \xrightarrow{\Delta} 2 \operatorname{Fe}_2 \operatorname{O}_3 + 8 \operatorname{SO}_2$$

接触室 V₂O₅附着于网上

$$2\,SO_2 + O_2 \xrightarrow{\text{$\rlap/{$\underline{$}$}} \ \ } 2\,SO_3$$

吸收塔

$$SO_3 + H_2O \longrightarrow H_2SO_2$$

实际用浓硫酸吸收
$$\left\{ \begin{array}{l} H_2SO_4 + SO_3 \longrightarrow H_2S_2O_7 \\ \text{ 集硫酸} \\ H_2S_2O_7 + H_2O \longrightarrow 2\,H_2SO_4 \end{array} \right.$$

6.7 含硫酸盐

6.7.1 FeSO₄

$$FeSO_4 \xrightarrow{\Delta} Fe_2O_3 + SO_2 \uparrow + SO_3 \uparrow$$

6.7.2 CuSO₄

$$\left\{ \begin{array}{l} CuSO_4 \stackrel{\Delta}{\longrightarrow} CuO + SO_2 \\ \\ CuSO_4 \stackrel{\Delta}{\xrightarrow{(\overline{p} \cap \overline{a} | \underline{g})}} CuO + SO_2 \uparrow + SO_3 \uparrow + O_2 \uparrow \end{array} \right.$$

制备
$$\begin{cases} 2Cu + 2H_2SO_4(稀) + O_2 \xrightarrow{\Delta} 2CuSO_4 + 2H_2O \\ Cu + H_2SO_4(稀) + H_2O_2 \longrightarrow CuSO_4 + 2H_2O \end{cases}$$

6.7.3 Na₂S₂O₃

- 无法在酸性条件下存在: Na₂S₂O₃ + 2 HCI → 2 NaCl + H₂O + SO₂↑ + S↓
- · 生成: Na₂So₃ + S → Na₂S₂O₃
- ・ 除氯剂: Na₂S₂O₃ + 4 Cl₂ + 10 NaOH → 8 NaCl + 2 Na₂So₄ + 5 H₂O
- ・ 測定空气中I₂含量: 2Na₂S₂O₃ + I₂ → B=Na₂S₄O₆ + 2NaI

7 N

7.1 氨气

7.1.1 物理性质

- · 无色、刺激性气体
- · 极易溶于水
- · 加压易液化(制冷剂)

7.1.2 尾气处理防倒吸

 NH_3 或HCI等气体极易溶于水,直接通入水中会使水倒吸。在水层下放 CCI_4 层并将气体通入,可以防止倒吸。(NH_3 和HCI不溶于 CCI_4)

7.1.3 喷泉实验

气体	液体
NH ₃	水或稀H ₂ SO ₄
HCI	水或NaOH溶液
Cl ₂	
CO ₂	NaOH
SO ₂	溶液
H ₂ S	

7.1.4 化学性质

可燃性

・
$$4NH_3 + 3O_2 \xrightarrow{\Delta g = 2M_2} 2N_2 + 6H_2O$$

碱性 唯一的碱性气体

•
$$NH_3 + H_2O \Longrightarrow NH_3 \cdot H_2O \Longrightarrow NH_4^+ + OH^-$$

还原性

・ 催化氧化:
$$4NH_3 + 5O_2 \stackrel{Pt}{\longleftarrow} 4NO + 6H_2O$$

・
$$\left\{ \begin{array}{l} 2\,\text{NH}_3 + 3\,\text{CI}_2 \longrightarrow \text{N}_2 + 6\,\text{HCI} \\ \\ 8\,\text{NH}_3 + 3\,\text{CI}_2 \longrightarrow \text{N}_2 + 6 \quad \text{NH4CI} \\ \\ \text{白烟: 检验氯气泄漏} \end{array} \right.$$

•
$$2 NH_3 + CuO \xrightarrow{\Delta} 3 Cu + N_2 + 3 H_2O$$

7.1.5 检验与验满

- ・ 检验: NH3能使湿润红色石蕊试纸变蓝(没有紫色石蕊试纸)。
- · 验满: 沾取少量浓盐酸, 置于瓶口, 出现白烟。

7.1.6 制备

• Ca(OH)₂ + 2NH₄CI $\stackrel{\Delta}{\longrightarrow}$ CaCl₂ + 2NH₃ \uparrow + 2H₂O

7.1.7 用途

制硝酸、氮肥、制冷剂

7.2 氮气

7.2.1 物理性质

· 无色无味气体、难溶于水

7.2.2 化学性质

氮气常温下不活泼(氮氮三键)、高温下(氮原子)活泼。

- $N_2 + 3 \, Mg \xrightarrow{\text{点燃}} Mg3N2$
- ・ $N_2 + 3H_2 \xrightarrow{\overline{\text{Al}} \setminus \overline{\text{Al}}} 2NH_3$
- $N_2 + O_2 \xrightarrow{\overline{\beta}\underline{\mathbb{A}}} 2NO$

7.2.3 制备

• NaNO₂ + NH₄CI $\xrightarrow{\Delta}$ NaCI + N₂ \uparrow + 2 H₂O

7.3 氮的氧化物

7.3.1 物理性质

- · NO: 无色气体、有毒、难溶于水
- · NO₂: 红棕色气体、有毒、与水反应
- · N₂O₄: 无色气体、有毒、与水反应、化学性质类似NO₂、标况非气体

7.3.2 化学性质

一些实际发生的反应

- · 2NO + O₂ → NO₂ (迅速转变为<u>红棕色</u>)
- · 3 NO₂ + H₂O → 2 HNO₃ + NO(歧化)
- · $2 NO_2 \Longrightarrow N_2O_4$
- $2 NO_2 + 2 NaOH \longrightarrow NaNO_2 + NaNO_3 + H_2O$
- NO + NO₂ + 2 NaOH \longrightarrow 2 NaNO₃ + H₂O

推导反应 (只能用于计算)

•
$$3 NO_2 + H_2O \longrightarrow 2 HNO_3 + NO$$

•
$$4 \text{ NO}_2 + \text{O}_2 + 2 \text{ H}_2\text{O} \longrightarrow 4 \text{ HNO}_3$$

•
$$4 \text{ NO} + 3 \text{ O}_2 + 2 \text{ H}_2 \text{O} \longrightarrow 4 \text{ HNO}_3$$

与氮的氢化物反应

• 6 NO + 4 NH₃
$$\stackrel{\Delta}{\longrightarrow}$$
 5 N₂ + 6 H₂O

$$\cdot \ 6 \, NO_2 + 8 \, NH_3 \stackrel{\Delta}{\longrightarrow} 7 \, N_2 + 12 \, H_2 O$$

・
$$\underbrace{N_2O_4 + 3N_2H_4 \xrightarrow{\Delta} 3N_2 + 4H_2O}_{$$
火箭推进

7.3.3 酸酐

将可电离的H⁺配合O分解。

$$H_2SO_4 \longrightarrow SO_3 + H_2O2HNO_3 \longrightarrow N_2O_5 + H_2O_3$$

化学性质 与碱反应生成盐和水

与酸性氧化物的关系 酸酐是酸性氧化物或非氧化物,酸性氧化物一定是酸酐。

7.4 硝酸

7.4.1 物理性质

· 无色、有刺激性气味

7.4.2 化学性质

氧化性 活泼金属与硝酸反应时不生成氢气。

$$\cdot \begin{cases} \mathsf{Cu} + 4 \,\mathsf{HNO}_3(\mbox{${\rm id}$}) &\longrightarrow \mathsf{Cu}(\mathsf{NO}_3)_2 + 2 \,\mathsf{NO}_2 \uparrow + 2 \,\mathsf{H}_2 \mathsf{O} \\ \mathsf{Cu} + 8 \,\mathsf{HNO}_3(\mbox{${\rm id}$}) &\longrightarrow 3 \,\mathsf{Cu}(\mathsf{NO}_3)_2 + 2 \,\mathsf{NO} \uparrow + 4 \,\mathsf{H}_2 \mathsf{O} \end{cases} \\ \cdot \begin{cases} \mathsf{Zn} + 4 \,\mathsf{HNO}_3(\mbox{${\rm id}$}) &\longrightarrow \mathsf{Zn}(\mathsf{NO}_3)_2 + 2 \,\mathsf{NO}_2 \uparrow + 2 \,\mathsf{H}_2 \mathsf{O} \\ \mathsf{Zn} + 8 \,\mathsf{HNO}_3(\mbox{${\rm id}$}) &\longrightarrow 3 \,\mathsf{Zn}(\mathsf{NO}_3)_2 + 2 \,\mathsf{NO} \uparrow + 4 \,\mathsf{H}_2 \mathsf{O} \\ \mathsf{4Zn} + 10 \,\mathsf{HNO}_3(\mbox{${\rm id}$}) &\longrightarrow 4 \,\mathsf{Zn}(\mathsf{NO}_3)_2 + \mathsf{N}_2 \mathsf{O} \uparrow + 5 \,\mathsf{H}_2 \mathsf{O} \\ \mathsf{4Zn} + 10 \,\mathsf{HNO}_3(\mbox{${\rm id}$}) &\longrightarrow 4 \,\mathsf{Zn}(\mathsf{NO}_3)_2 + \mathsf{NH}_4 \mathsf{NO}_3 + 3 \,\mathsf{H}_2 \mathsf{O} \end{cases}$$

• $C + 4 HNO_3(浓) \xrightarrow{\Delta} 4 NO_2 \uparrow + CO_2 \uparrow + 2 H_2 O$

不稳定性

• $4 HNO_3 \xrightarrow{\Delta} 4 NO_2 \uparrow + O_2 \uparrow + 2 H_2 O$

漂白性 浓硝酸可以漂白石蕊溶液

7.4.3 制备

$$1. \ N_2 + 3 \, H_2 \, \underbrace{ \begin{array}{c} \overline{\text{all.}} \, \overline{\text{alg.}} \\ \overline{\text{tevn}} \end{array}} 2 \, NH_3$$

2.
$$4NH_3 + 5O_2 \stackrel{Pt}{\underset{\Delta}{\longleftarrow}} 4NO + 6H_2O$$
(催化剂一明一暗)

3.
$$2 NO + O_2 \longrightarrow 2 NO_2$$

$$4. \ 3\,NO_2 + H_2O \longrightarrow 2\,HNO_3 + \mathop{NO}_{gg}$$

5.
$$(HNO_3 + NH_3 \longrightarrow NH4NO3)$$

装置: 硬质石英玻璃

现象:催化剂一明一暗,有红棕色气体和白色烟雾生成。

7.4.4 固氮

固氮 将游离态的氮(氮气)转化为化合态的氮

自然固氮

高能固氮 雷雨发庄稼

1.
$$N_2 + O_2 \xrightarrow{\text{\dot{p}}} 2 \, NO$$

2.
$$2 NO + O_2 \longrightarrow 2 NO_2$$

3.
$$3 NO_2 + H_2O \longrightarrow 2 HNO_3 + NO$$

生物固氮 大豆根瘤菌

人工固氮 合成氨

7.5 盐

7.5.1 硝酸盐分解规律

- ・ K到Mg: 亚硝酸盐和氧气 $(2 \text{ NaNO}_3 \xrightarrow{\Delta} 2 \text{ NaNO}_2 + \text{O}_2 \uparrow)$
- Al到Cu: 金属氧化物、二氧化氮和氧气 $(2 Pb(NO_3)_2 \xrightarrow{\Delta} 2 PbO + 4 NO_2 \uparrow + O_2 \uparrow)$

32

・ Hg到Ag: 金属单质、二氧化氮和氧气 $(2 \text{ AgNO}_3 \xrightarrow{\Delta} 2 \text{ Ag} + 2 \text{ NO}_2 + \text{ O}_2 \uparrow)$

7.5.2 铵盐分解规律

·
$$NH_4NO_3 \xrightarrow{\Delta} N_2O \uparrow + 2H_2O$$

•
$$NH_4HCO_3 \xrightarrow{\Delta} NH_3 \uparrow + CO_2 \uparrow + H_2O$$

$$\cdot \quad NH_4CI \xrightarrow{\Delta} N_2O \uparrow + HCI \uparrow$$

•
$$(NH_4)_2Cr_2O_7 \xrightarrow{\Delta} N_2 \uparrow + CrO_3 + 4H_2O$$