BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL

1ª Edição

 $\begin{array}{c} {\rm Rio~Grande} \\ {\rm Editora~da~FURG} \\ 2016 \end{array}$

Universidade Federal do Rio Grande - FURG

NOTAS DE AULA DE CÁLCULO

Instituto de Matemática, Estatística e Física - IMEF
Bárbara Rodriguez
Cinthya Meneghetti
Cristiana Poffal
sites.google.com/site/calculofurg

Sumário

1	Con	ntinuidade de funções reais de uma variável	4
	1.1	Definição de continuidade	4
	1.2	Propriedades das funções contínuas	9
	1.3	Continuidade unilateral	10
	1.4	Continuidade em um intervalo fechado	11
	1.5	Tipos de descontinuidade	13
		1.5.1 Descontinuidade evitável ou removível (1ª espécie)	13
		1.5.2 Descontinuidade essencial (2ª espécie)	13
	1.6	Lista de exercícios	16
	1.7	Teoremas relativos às funções contínuas	21
		1.7.1 Teorema do Valor Intermediário	21
		1.7.2 Teorema de Weierstrass	22

Capítulo 1

Continuidade de funções reais de uma variável

Neste capítulo estudam-se os conceitos de continuidade e descontinuidade de funções. Através do estudo dos limites, é definida a continuidade de uma função real em um ponto, que é a base das propriedades e definições envolvendo continuidade.

Na modelagem de diversos fenômenos é importante investigar a existência de pontos de descontinuidade de uma função e também classificá-los.

1.1 Definição de continuidade

Definição 1.1.1 (**Definição Usual**). Uma função f(x) é contínua em x = a (ponto de acumulação do domínio de f) se:

- a) $\lim_{x\to a} f(x)$ existe, ou seja, $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x)$;
- b) $\lim_{x \to a} f(x) = f(a).$

Caso contrário, f(x) é descontínua no ponto a pertencente ao domínio de f(x).

Observação 1.1.1. Não se discute continuidade de funções em pontos que não pertencem ao domínio da função.

1.1. DEFINIÇÃO DE CONTINUIDADE

Definição 1.1.2 (**Definição Formal**). Diz-se que uma função f(x) é contínua em um ponto a se, dado um $\epsilon > 0$, existe $\delta > 0$ tal que se $0 < |x - a| < \delta$, então $|f(x) - f(a)| < \epsilon$. Logo, para a função ser contínua em x = a, $\lim_{x \to a} f(x) = f(a)$.

Exemplo 1.1.1. Prove formalmente que a função f(x) = 5x + 3 é contínua em x = 1.

Solução:

Primeiramente, tem-se que f(1)=8. Logo, deve-se mostrar que $\lim_{x\to 1}{(5x+3)}=8$. Pela definição formal de continuidade, tome $\delta=\frac{\varepsilon}{5}$ pois:

$$|f(x)-f(1)|=|5x+3-8|=|5x-5|=5|x-1|<\varepsilon \Leftrightarrow |x-1|<\frac{\varepsilon}{5}.$$
 Portanto, dado um $\varepsilon>0$, existe $\delta=\frac{\varepsilon}{5}>0$ tal que se $0<|x-1|<\delta$,

então $|f(x) - f(1)| < \varepsilon$.

Exemplo 1.1.2. Verifique se $f(x) = \sqrt{9-x^2}$ é contínua em x=4.

Solução:

Não se discute a continuidade de f(x) em x=4, pois este ponto não pertence ao domínio da função.

Exemplo 1.1.3. Observe os gráficos das funções na Figura 1.1.

- a) Determine em quais de las é possível discutir a continuidade em x=4.
- b) Nas funções em que é possível discutir a continuidade em x=4, determine quais são contínuas em x=4.

Solução:

- a) Discute-se a continuidade em x=4 das funções f(x) e g(x), pois x=4 pertence ao domínio dessas duas funções.
- b) As funções f(x) e g(x) não são contínuas em x=4, pois $\lim_{x\to 4} f(x) \neq f(4)$ e $\lim_{x\to 4} g(x)$ não existe. Não se discute a continuidade das funções h(x) e i(x) em x=4, pois este ponto não pertence ao domínio das mesmas.

Exemplo 1.1.4. Verifique se a função $f(x)=\left\{\begin{array}{ll} \frac{x^2+x-2}{x-1}, & \text{se } x>1\\ 2-x, & \text{se } x\leq 1 \end{array}\right.$ é contínua em x=1.

Figura 1.1: Gráficos de f(x), g(x), h(x) e i(x).

1.1. DEFINIÇÃO DE CONTINUIDADE

Solução:

Primeiramente, tem-se que f(1) = 2 - 1 = 1. Para concluir se f(x) é contínua, devem-se calcular os limites laterais. Se o limite existir e for igual a f(1) = 1, então f(x) será contínua em x = 1. Como trata-se de uma função definida por partes, para calcular o limite é necessário calcular os limites laterais:

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x^2 + x - 2}{x - 1} = \lim_{x \to 1^+} \frac{(x + 2)(x - 1)}{x - 1} = \lim_{x \to 1^+} (x + 2) = 3,$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (2 - x) = 1.$$

Portanto, como os limites laterais são distintos, tem-se que $\lim_{x\to 1} f(x) \not\equiv$ e consequentemente f(x) não é contínua em x=1.

Exemplo 1.1.5. Verifique se a função $f(x) = \begin{cases} \frac{x^2 + x - 2}{x - 1}, & \text{se } x > 1 \\ x + 2, & \text{se } x \le 1 \end{cases}$ é contínua em x = 1.

Solução:

Primeiramente, tem-se que f(1) = 3. Para concluir se f(x) é contínua em x = 1, devem-se calcular os limites laterais. Se o limite existir e for igual a f(1) = 3, então f(x) será contínua em x = 1. Como trata-se de uma função definida por partes, para calcular o limite é necessário calcular os limites laterais. O limite lateral à direita de x = 1 já foi calculado no exemplo 1.1.4 onde obteve-se

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x^2 + x - 2}{x - 1} = 3.$$

Para o limite lateral à esquerda, tem-se:

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x + 2 = 3.$$

Portanto, como os limites laterais são iguais, tem-se que $\lim_{x\to 1} f(x) = 3$. Além disso, f(1) = 3 e isto implica que a função é contínua em x = 1.

Exercício Resolvido 1.1.1. Verifique se a função
$$f(x) = \begin{cases} \frac{\sin(2x)\operatorname{tg}(3x)}{x^2}, & \text{se } x > 0 \\ -2, & \text{se } x = 0 \\ \frac{\ln(\frac{1-x}{1+x})}{x}, & \text{se } x < 0 \end{cases}$$

é contínua em x = 0.

1.1. DEFINIÇÃO DE CONTINUIDADE

Solução:

Note que f(0) = -2. Para saber se f(x) é contínua em x = 0, deve-se primeiramente calcular os limites laterais:

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{\sin(2x)\operatorname{tg}(3x)}{x^{2}} = \lim_{x \to 0^{+}} \frac{2\operatorname{sen}(2x)}{2x} \cdot \frac{3\operatorname{sen}(3x)}{3x} \cdot \frac{1}{\cos(3x)} = 6,$$

$$\lim_{x \to 0^{-}} \frac{1}{x} \left[\ln(1-x) - \ln(1+x) \right] = \lim_{x \to 0^{-}} \left[\frac{\ln(1-x)}{x} - \frac{\ln(1+x)}{x} \right]$$

$$= \lim_{x \to 0^{-}} \ln(1-x)^{1/x} - \ln(1+x)^{1/x}$$

$$= \ln(e^{-1}) - \ln(e)$$

$$= -1 - 1$$

$$= -2.$$

Portanto, como os limites laterais são distintos, tem-se que $\lim_{x\to 0} f(x) \not\equiv e$ como consequência f(x) não é contínua em x=0.

Exercício 1.1.1. Para cada afirmação, assinale V, se ela for verdadeira, ou F, se ela for falsa. Em ambos casos, justifique sua resposta utilizando a definição de continuidade.

- a) () $f(x) = x^2 3$ é contínua em x = 0;
- b) () $g(x) = \frac{1}{x}$ é contínua em x = 0;

c) ()
$$h(x)=\left\{ \begin{array}{ll} x+2, & \text{se } x\geq 3\\ x, & \text{se } x<3 \end{array} \right.$$
 é contínua em $x=3;$

d) ()
$$i(x) = \begin{cases} x-1, & \text{se } x \ge 2 \\ x, & \text{se } x < 2 \end{cases}$$
 é contínua em $x = 2$.

Exercício 1.1.2. Determine se as seguintes funções são contínuas em seu domínio.

a)
$$f(x) = \frac{x^2 - 4}{x - 2}$$

b)
$$g(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & \text{se } x \neq 2\\ 3, & \text{se } x = 2 \end{cases}$$

c)
$$h(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & \text{se } x \neq 2\\ 4, & \text{se } x = 2 \end{cases}$$
.

Exercício 1.1.3. Seja
$$f(x) = \begin{cases} 2x - 2, & \text{se } x < -1 \\ Ax + B, & \text{se } x \in [-1, 1] \\ 5x + 7, & \text{se } x > 1 \end{cases}$$

- a) Determine os valores de A e B tais que f(x) seja uma função contínua em \mathbb{R} .
- b) Uma vez calculados A e B, esboce o gráfico da função f(x).

Respostas dos exercícios

- 1.1.1. a) V b) F c) F d) F.
- 1.1.2. a) Sim. b) Não é contínua em x = 2. c) Sim.
- 1.1.3. a) A = 8, B = 4.

1.2 Propriedades das funções contínuas

As funções contínuas satisfazem as propriedades:

- 1. Se k é uma constante e f e g são funções contínuas em x=a, então f+g, f-g, $k\cdot f$ e $f\cdot g$ são funções contínuas em x=a. Se $g(a)\neq 0$, então $\frac{f}{g}$ também é contínua em x=a.
- 2. Os polinômios são contínuos em \mathbb{R} .
- 3. Toda função racional é contínua em seu domínio. Nos pontos onde o denominador for igual a zero, não se discute a continuidade.
- 4. Uma função é contínua em um intervalo aberto se ela for contínua em todos os pontos do intervalo.

Exemplo 1.2.1. Mostre que se f e g são funções contínuas em x=a, então f+g também é contínua em x=a.

Solução:

Deseja-se mostrar que $\lim_{x\to a} [f(x) + g(x)] = f(a) + g(a)$.

Como f e g são contínuas em x=a, então pela definição de continuidade tem-se que $\lim_{x\to a} f(x)=f(a)$ e $\lim_{x\to a} g(x)=g(a)$. Utilizando a propriedade do limite da soma:

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = f(a) + g(a).$$

Assim, $\lim_{x\to a} [f(x)+g(x)]=f(a)+g(a)$, por isso pode-se afirmar que f(x)+g(x) é contínua em x=a.

1.3 Continuidade unilateral

Definição 1.3.1 (Continuidade Unilateral). Uma função f(x) tem continuidade unilateral à direita de um ponto a se $\lim_{x\to a^+} f(x) = f(a)$. Da mesma forma, uma função f(x) tem continuidade unilateral à esquerda de um ponto a se $\lim_{x\to a^-} f(x) = f(a)$.

Exemplo 1.3.1. Sendo $f(x) = \sqrt{9 - x^2}$, verifique se f(x) tem continuidade unilateral:

- a) à direita de x = -3;
- b) à esquerda de x = 3;
- c) à direita de x = 3;
- d) à esquerda de x = -3.

Solução:

Primeiramente, tem-se que o domínio da função f(x) é o intervalo [-3,3]. Além disso, tem-se que f(-3)=0 e f(3)=0.

- a) À direita de x=-3, tem-se $\lim_{x\to -3^+} \sqrt{9-x^2}=0$. Portanto, como $f(-3)=\lim_{x\to -3^+} f(x)$ conclui-se que f(x) tem continuidade unilateral à direita de x=-3.
- b) À esquerda de x=3, tem-se $\lim_{x\to 3^-} \sqrt{9-x^2}=0$. Portanto, como $f(3)=\lim_{x\to 3^-} f(x)$ conclui-se que f(x) tem continuidade unilateral à esquerda de x=3.
- c) O limite à direita de x=3 da função f(x) não existe. Portanto, a função não tem continuidade unilateral à direita de x=3.

d) O limite à esquerda de x=-3 da função f(x) não existe. Portanto, a função não tem continuidade unilateral à esquerda de x=-3.

Exemplo 1.3.2. Verifique se a função
$$f(x) = \begin{cases} \frac{\sin(2x)\operatorname{tg}(3x)}{x^2}, & \text{se } x > 0 \\ -2, & \text{se } x = 0 \\ \frac{\ln(\frac{1-x}{1+x})}{x}, & \text{se } x < 0 \end{cases}$$

continuidade unilateral em x = 0.

Solução:

Note que f(0) = -2. Para saber se f(x) tem continuidade unilateral em x = 0, deve-se primeiramente calcular os limites laterais:

$$\lim_{x \to 0^{+}} \frac{\operatorname{sen}(2x)\operatorname{tg}(3x)}{x^{2}} = \lim_{x \to 0^{+}} \frac{2\operatorname{sen}(2x)}{2x} \cdot \frac{3\operatorname{sen}(3x)}{3x} \cdot \frac{1}{\operatorname{cos}(3x)} = 6 \neq f(0),$$

$$\lim_{x \to 0^{-}} \frac{1}{x} \left[\ln(1-x) - \ln(1+x) \right] = \lim_{x \to 0^{-}} \left[\frac{\ln(1-x)}{x} - \frac{\ln(1+x)}{x} \right]$$

$$= \lim_{x \to 0^{-}} \ln(1-x)^{1/x} - \ln(1+x)^{1/x}$$

$$= \ln(e^{-1}) - \ln(e)$$

$$= -1 - 1$$

$$= -2 = f(0).$$

Portanto, como o limite lateral à esquerda de x = 0 é igual a f(0) tem-se que $\lim_{x\to 0^-} f(x) = f(0)$, isto é, f(x) tem continuidade unilateral à esquerda de x = 0.

1.4 Continuidade em um intervalo fechado

Definição 1.4.1 (Continuidade em um intervalo fechado). Uma função é dita contínua em um intervalo fechado [a, b] se as seguintes condições são satisfeitas:

- a) f(x) é contínua em (a,b);
- b) f(x) é contínua à direita em a, isto é, $f(a) = \lim_{x \to a^+} f(x)$;
- c) f(x) é contínua à esquerda em b, isto é, $f(b) = \lim_{x \to b^-} f(x)$.

Exemplo 1.4.1. Considere a função $f(x)=\left\{ egin{array}{ll} \sqrt{1-x^2} & \mbox{se } 0\leq x<1 \\ 1, & \mbox{se } 1\leq x<2 \end{array} \right.$ Determine $2, & \mbox{se } x=2 \\ \mbox{o domínio da função } f(x) \mbox{ e o intervalo onde ela é contínua.} \end{array} \right.$

Solução:

O domínio da função f(x) é o intervalo [0,2]. Decorre das propriedades de limites e do fato de que a função polinomial $1-x^2$ é contínua em seu domínio que f(x) é contínua em $]0,1[\cup]1,2[$. Deve-se verificar a continuidade de f(x) em cada um dos intervalos, isto é, com relação ao intervalo]0,1[:

- i) se f(x) tem continuidade unilateral à direita de x = 0;
- ii) se f(x) tem continuidade unilateral à esquerda de x = 1.

De fato, com relação ao intervalo]0,1[, note que f(0)=1 e $\lim_{x\to 0^+} f(x)=\lim_{x\to 0^+} \sqrt{1-x^2}=1$. Portanto, f(x) tem continuidade unilateral à direita de x=0. Este fato inclui x=0 no intervalo de pontos em que f(x) é contínua, isto é, f(x) é contínua em [0,1[. Além disso, tem-se que f(1)=1 e $\lim_{x\to 1^-} f(x)=\lim_{x\to 1^-} \sqrt{1-x^2}=0$. Portanto, f(x) não tem continuidade unilateral à esquerda de x=1.

Com relação ao intervalo [1, 2[, deve-se verificar:

- ii) se f(x) tem continuidade unilateral à direita de x = 1;
- iii) se f(x) tem continuidade unilateral à esquerda de x=2.

Como f(1)=1 e $\lim_{x\to 1^+}f(x)=\lim_{x\to 1^+}1=1,\ f(x)$ tem continuidade unilateral à direita de x=1. Além disso, f(2)=2 e $\lim_{x\to 2^-}f(x)=\lim_{x\to 2^-}1=1$. Portanto, f(x) não tem continuidade unilateral à esquerda em x=2.

Portanto, a função f(x) é contínua nos intervalos [0,1[e [1,2[. Observe que não é correto escrever que f(x) é contínua em [0,2[pois f(x) não possui continuidade unilateral à esquerda de x=1 e portanto não é contínua em x=1.

Exercício 1.4.1. Verifique se a função $f(x) = \sqrt{2-x^2}$ é contínua no intervalo $[-\sqrt{2},\sqrt{2}]$.

Exercício 1.4.2. Verifique se f(x) é contínua em [0,1], onde

$$f(x) = \begin{cases} \frac{1 - \sqrt{x}}{x - 2}, & \text{se } 0 \le x < 1\\ -\frac{1}{2}, & \text{se } x = 1 \end{cases}.$$

Exercício 1.4.3. Mostre que a função $f(x) = 1 - \sqrt{1 - x^2}$ é contínua no intervalo [-1, 1].

Respostas dos exercícios

- 1.4.1. Sim.
- 1.4.2. Não, f(x) é contínua em [0,1].

1.5 Tipos de descontinuidade

1.5.1 Descontinuidade evitável ou removível (1ª espécie)

Definição 1.5.1 (Descontinuidade Evitável). Uma função apresenta descontinuidade evitável no ponto x = a, se existe o limite finito de f(x) quando x tende a a e este é diferente de f(a), ou seja,

$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) \neq f(a).$$

Tal descontinuidade é dita evitável ou removível, uma vez que redefinindo o valor da função no ponto x=a, de tal forma que $\lim_{x\to a} f(x)=f(a)$, pode-se "evitar" ou "remover" a descontinuidade nesse ponto.

Exemplo 1.5.1. Seja $f(x) = \begin{cases} \frac{x^2 - 5x + 4}{x - 4}, & \text{se } x \neq 4 \\ 5, & \text{se } x = 4 \end{cases}$. Verifique que x = 4 é uma descontinuidade evitável de f(x).

Solução:

Primeiramente, tem-se que $x = 4 \in D(f)$ e f(4) = 5. Além disso,

$$\lim_{x \to 4} f(x) = \lim_{x \to 4} \frac{x^2 - 5x + 4}{x - 4} = \lim_{x \to 4} \frac{(x - 4)(x - 1)}{x - 4} = \lim_{x \to 4} (x - 1) = 3.$$

Portanto, f(x) tem uma descontinuidade evitável em x = 4.

1.5.2 Descontinuidade essencial (2ª espécie)

Definição 1.5.2 (Descontinuidade Essencial). Uma função apresenta descontinuidade essencial no ponto x = a se não existe o limite (finito) de f(x) quando x tende a a, ou seja,

$$\lim_{x \to a^+} f(x) \neq \lim_{x \to a^-} f(x).$$

Exemplo 1.5.2. Considere a função $f(x)=\left\{ egin{array}{ll} \dfrac{1-\sqrt{1-x}}{x}, & \text{se } x>0 \\ \dfrac{1-e^x}{2x}, & \text{se } x<0 \end{array} \right.$ Determine $\left\{ \dfrac{1}{2}, & \text{se } x=0 \end{array} \right.$

se f(x) é contínua em x = 0. Caso contrário, classifique a descontinuidade e verifique a existência de continuidade unilateral.

Solução:

A função f(x) é definida por partes, por isso para calcular $\lim_{x\to 0} f(x)$ é necessário calcular os limites laterais.

O limite lateral à direita de x = 0 é

$$\lim_{x \to 0^{+}} \frac{1 - \sqrt{1 - x}}{x} = \lim_{x \to 0^{+}} \frac{1 - \sqrt{1 - x}}{x} \frac{(1 + \sqrt{1 - x})}{(1 + \sqrt{1 - x})}$$
$$= \lim_{x \to 0^{+}} \frac{1 - (1 - x)}{x(1 + \sqrt{1 - x})}$$
$$= 1$$

O limite lateral à esquerda é

$$\lim_{x \to 0^{-}} \frac{1 - e^{x}}{2x} = \lim_{x \to 0^{-}} -\frac{1}{2} \frac{e^{x} - 1}{x}$$
$$= -\frac{1}{2} \ln(e)$$
$$= -\frac{1}{2}.$$

 2^{\cdot} Como $f(0)=\frac{1}{2},\ f(x)$ não é contínua em x=0. A descontinuidade é do tipo essencial, pois $\lim_{x\to 0}f(x)$ não existe. A função não apresenta continuidade unilateral.

- a) Determine o domínio de f(x).
- b) Encontre e classifique os pontos de descontinuidade de f(x).

c) Determine os intervalos em que a função é contínua.

Solução:

- a) O domínio da função f(x) é o intervalo $[-1, +\infty[$. Note que os candidatos a pontos de descontinuidade são x = -1, 0, 1 e 2.
- b) Primeiramente, deve-se verificar se f(x) é contínua em x=0. Note que f(0)=0 e

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} 2x = 0,$$
$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x^2 - 1) = -1.$$

Como $\lim_{x\to 0} f(x)$ não exite, tem-se que f(x) não é contínua em x=0 e a descontinuidade é essencial. No entanto, como $f(0)=\lim_{x\to 0^+} f(x),\ f(x)$ apresenta continuidade unilateral à direita de x=0.

Para concluir sobre a continuidade de f(x) em x=1, note que f(1)=1 e ainda

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (-2x + 4) = 2,$$
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} 2x = 2.$$

Como $\lim_{x\to 1} f(x)=2\neq f(1)$, tem-se que f(x) é descontínua em x=1 e a descontinuidade é evitável.

No ponto x = 2, tem-se que f(2) = 0 e ainda

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} 0 = 0,$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} -2x + 4 = 0.$$

Como $\lim_{x\to 2} f(x) = 0 = f(2)$, tem-se que f(x) é contínua em x=2.

Note que $\lim_{x\to -1^+}(x^2-1)=0=f(-1)$. Logo f(x) apresenta continuidade unilateral à direita de x=-1.

- c) De acordo com os limites calculados no item b), tem-se que f(x) é contínua nos intervalos [-1,0[, [0,1[e $]1,+\infty[$.
- Exercício 1.5.1. Para cada uma das seguintes funções, analise-as quanto à continuidade e classifique os pontos de descontinuidade, caso existam:

a)
$$f(x) = \frac{e^x - e^{-x}}{x}$$

b)
$$g(x) = \begin{cases} \operatorname{tg}(x), & \text{se } x \neq 0 \\ \frac{1}{x+1}, & \text{se } x = 0 \end{cases}$$

c)
$$h(x) = \frac{5x - 2}{\log(x + 3)}$$

d)
$$i(x) = |x - 3|$$

e)
$$j(x) = \begin{cases} \frac{\operatorname{sen}(x)}{x}, & \text{se } x \neq 0 \\ 1, & \text{se } x = 0 \end{cases}$$

f)
$$l(x) = \begin{cases} \frac{x^3 - 27}{x - 3}, & \text{se } x \neq 3\\ 3, & \text{se } x = 3 \end{cases}$$
.

Respostas do exercício

1.5.1.

- a) Contínua em seu domínio.
- b) Não é contínua em x=0; descontinuidade removível.
- c) Contínua em seu domínio.
- d) Contínua em seu domínio.
- e) Contínua em seu domínio.
- f) Não é contínua em x = 3; descontinuidade removível.

1.6 Lista de exercícios

- 1. Para cada afirmação, assinale V, se ela for verdadeira, ou F, se ela for falsa.
 - a) () Toda função polinomial é contínua em \mathbb{R} .
 - b) () Se f(x) for contínua em a, então $\lim_{x\to a} f(x) = f(a)$.
 - c) () Para uma função f, se $D(f) = \mathbb{R}$, então f é contínua em toda parte.
 - d) () Toda função racional possui descontinuidade onde o denominador é zero.

2. Determine se as seguintes funções são contínuas em D(f):

a)
$$f(x) = \frac{x^2 - 9}{x - 3}$$

b)
$$g(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & \text{se } x \neq 3 \\ 3, & \text{se } x = 3 \end{cases}$$

c) $h(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & \text{se } x \neq 3 \\ 6, & \text{se } x = 3 \end{cases}$

c)
$$h(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & \text{se } x \neq 3 \\ 6, & \text{se } x = 3 \end{cases}$$
.

3. Observando o gráfico de f(x) na Figura 1.2, determine se a função é contínua ou descontínua para cada um dos seguintes valores de x:

Figura 1.2: Gráfico de f(x).

a)
$$x = -1$$

$$d) \quad x = 3$$

b)
$$x = -4$$

e)
$$x = 4$$
.

c)
$$x = -3$$

$$4. \text{ Considere a função } f(x) = \left\{ \begin{array}{ll} x^2-1, & \text{se } -1 \leq x < 0 \\ 2x, & \text{se } 0 < x < 1 \\ 1, & \text{se } x = 1 \\ -2x+4, & \text{se } 1 < x < 2 \\ 0, & \text{se } 2 < x < 3 \end{array} \right. , \text{ responda:}$$

Existe f(-1)?

- Existe f(1)?
- Existe $\lim_{x \to -1^+} f(x)$?
- f) Existe $\lim_{x \to 1} f(x)$?
- $\lim_{x \to -1^+} f(x) = f(-1)?$
- g) $\lim_{x \to 1} f(x) = f(1)$?
- f(x) é contínua em x = -1?
- h) f(x) é contínua em x = 1?

5. Para cada gráfico na Figura 1.3, determine se a função traçada é contínua no intervalo [-1,3]. Se não for contínua, aponte onde ela deixa de ser contínua e diga qual o tipo de descontinuidade em questão.

Figura 1.3: Gráficos de f(x), g(x), h(x) e k(x), exercício 5.

- 6. Determine um valor para a constante k, se possível, que torna a função $f(x) = \begin{cases} kx^2, & \text{se } x \le 2\\ 2x + k, & \text{se } x > 2 \end{cases}$ contínua.
- 7. Determine, se existirem, os valores de x para os quais cada uma das seguintes funções são descontínuas:

a)
$$f(x) = \begin{cases} 3-x, & \text{se } x < 1 \\ 4, & \text{se } x = 1 \\ x^2+1, & \text{se } x > 1 \end{cases}$$
b) $g(x) = \begin{cases} \frac{1}{x+1}, & \text{se } x > -1 \\ 1, & \text{se } x = -1 \\ x+1, & \text{se } x < -1 \end{cases}$
c) $h(x) = \begin{cases} |x-3|, & \text{se } x \neq 3 \\ 2, & \text{se } x = 3 \end{cases}$
d) $i(x) = \begin{cases} \frac{1}{x-5}, & \text{se } x \neq 5 \\ 0, & \text{se } x = 5 \end{cases}$

c)
$$h(x) = \begin{cases} |x-3|, & \text{se } x \neq 3\\ 2, & \text{se } x = 3 \end{cases}$$

d)
$$i(x) = \begin{cases} \frac{1}{x-5}, & \text{se } x \neq 5 \\ 0, & \text{se } x = 5 \end{cases}$$
.

- 8. Considere a função $f(x)=\left\{\begin{array}{ll} \frac{3^x-5^{2x}}{x}, & \text{se } x>0\\ \frac{\ln\left(1+\frac{3x}{25}\right)}{x}, & \text{se } x<0\\ \frac{3}{25}, & \text{se } x=0 \end{array}\right.$
 - a) Calcule $\lim_{x\to 0^+} f(x)$ e $\lim_{x\to 0^-} f(x)$.
 - b) Analise a continuidade de f(x) em x = 0. Justifique sua resposta.
- 9. Analise a continuidade da função:

$$g(x) = \begin{cases} \frac{1 - \cos(2x)}{x(e^{x+1} - e)}, & \text{se } x > 0\\ \frac{2}{e}, & \text{se } x = 0\\ \frac{x+2}{e\left(3^{\frac{1}{x}} - 1\right)}, & \text{se } x < 0 \end{cases}$$

10. A aceleração devido a gravidade G varia com a altitude em relação à superfície terrestre. G é uma função de r, a distância ao centro da Terra, e pode ser escrita como:

$$G(r) = \begin{cases} \frac{gMr}{R^3}, & \text{se } r < R \\ \frac{gM}{R^2}, & \text{se } r \ge R \end{cases},$$

onde R é o raio da Terra, M a massa da Terra e g a aceleração da gravidade. Verifique se G é contínua.

11. Considere a função

$$f(x) = \begin{cases} x+1, & \text{se } x \le 0\\ \frac{c}{x}, & \text{se } x > 0. \end{cases}$$

- a) Existe uma constante c para a qual a função é contínua em x=0? Justifique sua resposta.
- b) Se existir uma constante c tal que f(x) seja contínua em x = 0, esboce o gráfico de f(x).

12. Considere a função

$$f(x) = \begin{cases} x+1, & \text{se } x < 1\\ \frac{c}{x}, & \text{se } x \ge 1. \end{cases}$$

- a) Existe uma constante c para a qual a função é contínua em x=1? Justifique sua resposta.
- b) Se existir uma constante c tal que f(x) seja contínua em x=1, esboce o gráfico de f(x).

Respostas dos exercícios

- 1. a) V b) V c) F d) F
- 2. a) Não. b) Não. c) Sim.
- 3. a) Sim. b) Sim. c) Não. d) Não. e) Sim.
- 4. a) Sim. b) Sim. c) Sim. d) Sim (só existe limite à direita). e) Sim. f) Sim.
 - g) Não. h)Não.
- 5. 1) É contínua no seu domínio.
 - 2) Não é contínua; descontinuidade evitável em x=2.
 - 3) É contínua.
 - 4) Não é contínua; descontinuidade essencial em x=2.
- 6. $k = \frac{4}{3}$.
- 7. a) Descontínua em x = 1.
 - b) Descontínua em x = -1.
 - c) Descontínua em x = 3.
 - d) Descontínua em x = 5.
- 8. a) $\ln\left(\frac{3}{25}\right), \frac{3}{25}$.
 - b) A função é descontínua em x=0 e apresenta continuidade unilateral à esquerda.

1.7. TEOREMAS RELATIVOS ÀS FUNÇÕES CONTÍNUAS

- 9. Não é contínua em x = 0.
- 10. É contínua em x = R.
- 11. Não existe uma constante c.
- 12. Basta escolher c=2.

1.7 Teoremas relativos às funções contínuas

Funções contínuas em intervalos apresentam propriedades que as tornam particularmente úteis em Matemática e suas aplicações. Nesta seção serão enunciados dois importantes resultados: o Teorema do Valor Intermediário e o Teorema de Weierstrass. Cabe salientar que as suas demonstrações estão fora do escopo deste texto.

1.7.1 Teorema do Valor Intermediário

Teorema 1.7.1. Seja f uma função contínua em um intervalo fechado [a, b]. Então dado qualquer número d, entre f(a) e f(b), existe pelo menos um número c entre a e b, tal que d = f(c).

Geometricamente, este teorema afirma que qualquer reta horizontal y = d cruzando o eixo y entre f(a) e f(b) cruza a curva y = f(x) pelo menos uma vez no intervalo [a, b].

Exemplo 1.7.1. Mostre que existe um número c que satisfaz 0 < c < 1 tal que $c^3 + c = 1$.

Solução:

A função $f(x)=x^3+x$ é contínua em [0,2], pois é uma função polinomial. Pelo Teorema do Valor Intermediário, tem-se que para d=1, existe c tal que f(c)=1, isto é, $c^3+c=1$.

Exemplo 1.7.2. Justifique por que o Teorema do Valor Intermediário não pode ser aplicado para a função

$$f(x) = \begin{cases} 2x - 2, & \text{se } 1 \le x < 2\\ 3, & \text{se } 2 \le x \le 4. \end{cases}$$

Figura 1.4: Teorema do Valor Intermediário.

Solução:

A função f(x) está definida no intervalo [1,4], mas não é contínua em x=2. De fato, f(2)=3, $\lim_{x\to 2^+}3=3$ e $\lim_{x\to 2^-}(2x-2)=2$.

Como f(x) não é contínua em x=2, certamente não é contínua em [1,4]. Precisamente, como f(x) tem continuidade unilateral a direita de x=2, tem-se que f(x) é contínua nos intervalos [1,2[e [2,4]. Portanto, somente restringindo a função ao intervalo [2,4] é possível aplicar o Teorema do Valor Intermediário.

Observação 1.7.1. O Teorema do Valor Intermediário é útil para determinar as raízes de funções contínuas. Se f é uma função contínua em [a, b] e se f(a) e f(b) possuem sinais opostos então existe uma raiz de f no intervalo (a, b).

1.7.2 Teorema de Weierstrass

Teorema 1.7.2. Seja f uma função contínua em um intervalo fechado [a, b], então existem x_1 e x_2 pertencentes ao intervalo [a, b] tais que

$$f(x_1) \le f(x) \le f(x_2)$$

para todo $x \in [a, b]$.

1.7. TEOREMAS RELATIVOS ÀS FUNÇÕES CONTÍNUAS

Geometricamente este teorema afirma que toda função contínua definida em um intervalo fechado assume pelo menos um valor mínimo e um valor máximo.

Exemplo 1.7.3. Mostre que a função $f(x) = \ln(x) + \sin(x) + e^{x+2}$ possui um máximo e um mínimo no intervalo [2, 10].

Solução:

A função f(x) é uma soma de funções contínuas no intervalo [2,10], e portanto, é contínua no intervalo [2,10]. Pelo Teorema de Weierstrass, f(x) possui um máximo e um mínimo neste intervalo.

Exemplo 1.7.4. Considere a função $f(x) = x^2$. Mostre que a função f possui máximo e mínimo nos intervalos:

- a) [-1, 1];
- b) [0, 1];
- c) Determine esses pontos.

Solução:

- a) A função f(x) é contínua em [-1,1], pois está definida em todos os pontos do intervalo e $f(-1) = 1 = \lim_{x \to -1^+} x^2$ e $f(1) = 1 = \lim_{x \to 1^-} x^2$. Pelo Teorema de Weierstrass, f(x) possui um máximo e um mínimo neste intervalo.
- b) A função f(x) é contínua em [0,1], pois está definida em todos os pontos do intervalo, $f(0) = 0 = \lim_{x \to 0^+} x^2$ e $f(1) = 1 = \lim_{x \to 1^-} x^2$. Pelo Teorema de Weierstrass, f(x) possui um máximo e um mínimo neste intervalo.
- c) Analisando o gráfico de f(x), tem-se que o valor mínimo é assumido em f(0) e os valores máximos em f(-1) e f(1). Veja a Figura 1.5.

Figura 1.5: Gráfico de $f(x) = x^2$