

## Design & **Analysis** of **Algorithms**

## Lecture 6

# Asymptotic Complexity & Notations

## What is an asymptote?

• An asymptote is a **line** that a curve approaches, as it heads towards infinity:



For other examples refer the following website:

https://www.mathsisfun.com/algebra/asymptote.html

## **Asymptotic Complexity**

- ◆ Running time of an algorithm as a function of input size *n* for large *n*.
- Expressed using only the highest-order term in the expression for the exact running time.
  - Instead of exact running time, say  $\Theta(n^2)$ .
- Describes behavior of function in the limit.
- Written using Asymptotic Notations.

#### **Asymptotic Notations**

- Asymptotic notations:  $\Theta$ , O,  $\Omega$
- Defined for functions over the natural numbers.

Example: 
$$f(n) = \Theta(n^2)$$
.

Describes how f(n) grows in comparison to  $n^2$ .

- Define a *set* of functions; in practice used to compare two function sizes.
- ◆ The notations describe different rate-of-growth relations between the defining function and the defined set of functions.

#### O-notation

For function g(n), we define O(g(n)), big-O of n, as the set:

$$O(g(n)) = \{f(n) :$$
  
 $\exists$  positive constants  $c$  and  $n_{0}$ , such that  $\forall n \geq n_{0}$ , we have  $0 \leq f(n) \leq cg(n)$ 

*Intuitively*: Set of all functions whose *rate of growth* is the same as or lower than that of g(n).



g(n) is an asymptotic upper bound for f(n).

#### **Examples**

```
O(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0,
such that \forall n \geq n_0, we have 0 \leq f(n) \leq cg(n) \}
```

- $3n+2=O(n) /* 3n+2 \le 4n \text{ for } n \ge 2 */$
- $3n+3=O(n) /* 3n+3 \le 4n \text{ for } n \ge 3 */$
- 100n+6=O(n) /\* 100n+6≤101n for n≥10 \*/
- $10n^2+4n+2=O(n^2)$  /\*  $10n^2+4n+2\le 11n^2$  for  $n\ge 5$  \*/
- $6*2^n+n^2=O(2^n)$  /\*  $6*2^n+n^2 \le 7*2^n$  for  $n \ge 4*/2^n$

#### **Θ**-notation

For function g(n), we define  $\Theta(g(n))$ , big-Theta of n, as the set:

$$\Theta(g(n)) = \{f(n) :$$
  
 $\exists$  positive constants  $c_1, c_2,$  and  $n_{0,}$   
such that  $\forall n \geq n_0,$   
we have  $0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \}$ 

*Intuitively*: Set of all functions that have the same *rate of growth* as g(n).



g(n) is an asymptotically tight bound for f(n).

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n)).$$
  
 $\Theta(g(n)) \subset O(g(n)).$ 

#### **Examples**

$$\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0,$$
  
such that  $\forall n \geq n_0, \quad 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \}$ 

$$1. 3n+2 = \Theta(n)$$

For 
$$n \ge 2$$
,  $c1 = 3$  and  $c2 = 4$ 

**2.10**
$$n^2 + 4n + 2 > = \Theta(n^2)$$

$$10n^2 + 4n + 2 > = 10n^2$$

$$10n^2 + 4n + 2 \le 11n^2$$

#### $\Omega$ -notation

For function g(n), we define  $\Omega(g(n))$ , big-Omega of n, as the set:

$$\Omega(g(n)) = \{f(n) :$$
 $\exists$  positive constants  $c$  and  $n_{0}$ , such that  $\forall n \geq n_{0}$ ,
we have  $0 \leq cg(n) \leq f(n)\}$ 

*Intuitively*: Set of all functions whose *rate of growth* is the same as or higher than that of g(n).



g(n) is an asymptotic lower bound for f(n).

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = \Omega(g(n)).$$
  
 $\Theta(g(n)) \subset \Omega(g(n))$ 

## Example

 $\Omega(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0,$  such that  $\forall n \geq n_0$ , we have  $0 \leq cg(n) \leq f(n)\}$ 

•  $\sqrt{\mathbf{n}} = \Omega(\lg n)$ .

Choose c and  $n_0$ .

#### Relations Between $\Theta$ , O, $\Omega$







#### Relations Between $\Theta$ , O, $\Omega$

**Theorem:** For any two functions g(n) and f(n),

$$f(n) = \Theta(g(n))$$
 iff

$$f(n) = O(g(n))$$
 and  $f(n) = \Omega(g(n))$ .

- i.e.,  $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$
- In practice, asymptotically tight bounds are obtained from asymptotic upper and lower bounds.

#### o-notation

For a given function g(n), the set little-o:

$$o(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \text{ such that}$$
  
  $\forall n \ge n_0, \text{ we have } 0 \le f(n) < cg(n)\}.$ 

f(n) becomes insignificant relative to g(n) as n approaches infinity:

$$\lim_{n\to\infty} [f(n) / g(n)] = 0$$

g(n) is an *upper bound* for f(n) that is not asymptotically tight.

Observe the difference in this definition from previous ones. Why?

#### **Running Times**

- "Running time is O(f(n))"  $\Rightarrow$  Worst case is O(f(n))
- O(f(n)) bound on the worst-case running time  $\Rightarrow$  O(f(n)) bound on the running time of every input.
- "Running time is  $\Omega(f(n))$ "  $\Rightarrow$  Best case is  $\Omega(f(n))$
- Can still say "Worst-case running time is  $\Omega(f(n))$ "
  - Means worst-case running time is given by some unspecified function  $g(n) \in \Omega(f(n))$ .

## **Common Time Complexities**



• Using the formal definitions of the asymptotic notations, we can prove their general properties

#### **Example:**

◆ **Theorem:** If  $t_1(n) \in O(g_1(n))$  and  $t_2(n) \in O(g_2(n))$ , then  $t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\})$ .

(The analogous assertions are true for the and notations as well.)

◆ The property, in particular, is useful in analyzing algorithms that comprise **two consecutively executed parts**.

#### **Proof:**

• The proof extends to orders of growth the following simple fact about four arbitrary real numbers  $a_1$ ,  $b_1$ ,  $a_2$ ,  $b_2$ : if  $a_1 \le b_1$  and  $a_2 \le b_2$ , then  $a_1 + a_2 \le 2 \max\{b_1, b_2\}$ .

• Since  $t_1(n) \in O(g_1(n))$ , there exist some positive constant  $c_1$  and some nonnegative integer  $n_1$  such that

$$t_1(n) \le c_1 g_1(n)$$
 for all  $n \ge n_1$ .

• Similarly, since  $t_2(n) \in O(g_2(n))$ , there exist some positive constant  $c_2$  and some nonnegative integer  $n_2$  such that

$$t_2(n) \le c_2 g_2(n)$$
 for all  $n \ge n_2$ .

• Let  $c_3 = \max\{c_1, c_2\}$  and consider  $n \ge \max\{n_1, n_2\}$  so that we can use both inequalities. Adding them yields the following:

$$t_1(n) + t_2(n) \le c_1 g_1(n) + c_2 g_2(n)$$

$$\le c_3 g_1(n) + c_3 g_2(n) = c_3 [g_1(n) + g_2(n)]$$

$$\le c_3 2 \max\{g_1(n), g_2(n)\}.$$

• Hence,  $t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\})$ , with the constants c and  $n_0$  required by the O definition being  $2 c_3 = 2 \max\{c_1, c_2\} \text{ and } \max\{n_1, n_2\}, \text{ respectively.}$ 

- So what does this property imply for an algorithm that comprises two consecutively executed parts?
- It implies that the algorithm's overall efficiency is determined by the part with a higher order of growth, i.e., its least efficient part.

#### References

• Chapter 2: Anany Levitin, "Introduction to the Design and Analysis of Algorithms", Pearson Education, Third Edition, 2017

• Chapter 2: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", MIT Press/PHI Learning Private Limited, Third Edition, 2012.

## Homework

1. Sort in ascending order

$$\sqrt{n}$$
, log n, n, n<sup>2</sup>, n log n

Sort in Descending order

$$n^3$$
,  $2^n$ ,  $n^n$ ,  $n!$ ,  $n^2 \log n$ 

Sort in Ascending/Descending order

$$\sqrt{n}$$
, log n, n, n<sup>2</sup>, n log n, n<sup>3</sup>, 2<sup>n</sup>, n<sup>n</sup>, n!, n<sup>2</sup> log n