

Lecture 5

The classical linear regression model

The material in this video is subject to the copyright of the owners of the material and is being provided for educational purpose under rules of fair use for registered students in this course only. No additional copies of the copyrighted work may be made or distributed.

- Simple linear regression model
 - ARM = B0 + B1 (age 6) + e, $e^{N(0,\sigma^2)}$, independent

- Sex adjusted relationship between ARM and age
 - ► ARM = B0 + B1 (age 6) + B2 Female + e, $e^N(0,\sigma^2)$, independent

- ► Height adjusted relationship between ARM and age
 - ► ARM = B0 + B1 (age 6) + B2 (HT 62) + e, $e^{N(0,\sigma^2)}$, independent

- ► Effect modification: Is the ARM vs. age relationship the same or different by sex
 - ARM = B0 + B1 (age 6) + B2 Female + B3 (age 6) Female + e, $e^N(0,\sigma^2)$, independent

Multiple Linear Regression Model

- Y is a random variable representing the outcome of interest in the population
- ► The explanatory variables, X₁, X₂, ..., X_p are fixed/known (not random or measured with error)
- ▶ Sample of size n is observed, data are:

$$Y_i = \mu_i(\beta, X_i) + \varepsilon_i$$

- X is the design matrix
- X_i is the row of the design matrix corresponding to subject i

Multiple Linear Regression Model

$$Y_i = \mu_i(\beta, X_i) + \varepsilon_i$$

- Systematic component:
 - $\vdash \mu_i(\beta, X_i)$
- \triangleright ε_i is the random components:
- ▶ The least squares solution finds the values of β that minimize:

Least squares solution: simple linear regression

Maximum likelihood inference in MLR

Start with the MLR:

▶ Other notation:

Likelihood function definition

► Model:

Probability density function:

Likelihood function:

Likelihood function

► Log Likelihood Function

Solution for β_i

Solution for β_i

Solution for σ^2

MLEs for simple linear regression

MLEs for simple linear regression

MLEs for simple linear regression

Take away messages

Take away messages

Next time....

- Vector / Matrix representation of MLR
- Geometry of least squares
- ▶ Distribution of MLEs for regression parameters