FCC TEST REPORT

47 CFR FCC Part 15 Subpart C 12.249

Compiled by

(position+printed name+signature)..: File administrators Lion Cai

Supervised by

(position+printed name+signature)..: Technique principal Kendy Wang

Approved by

(position+printed name+signature)..: Manager Tony Wu

Date of issue...... Aug 05, 2013

Representative Laboratory Name .: Shenzhen Sinco Testing Technology Co., Ltd.

Address 4F, Block B, Famous Industry Products Center Baoyuan Rd.,

Xixiang, Baoan, Shenzhen, China

Testing Laboratory Name Bontek Compliance Testing Laboratory Ltd

Road, Nanshan, Shenzhen, China

Applicant's name...... Dura Gold Ltd.

Hom, Kowloon, Hongkong

Test specification:

Standard 47 CFR FCC Part 15 Subpart C - Intentional Radiators

ANSI C63.10: 2009

TRF Originator...... Shenzhen Sinco Testing Technology Co., Ltd.

Master TRF...... Dated 2012-06

Shenzhen Sinco Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Sinco Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Sinco Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description wireless car mouse

Trade Mark: /

Manufacturer Shenzhen XinBoYing Technology Co.,Ltd.

Listed Models /

Operation Frequency...... From 2402MHz to 2480MHz

Modulation Type GFSK

Result...... Positive

TEST REPORT

Test Report No. :	SKW1307016E	Aug 05, 2013
	SKW 13070 TOL	Date of issue

Equipment under Test : wireless car mouse

Model /Type : BY-WQ02

Listed Models : /

Applicant : Dura Gold Ltd.

Address : Unit 1313, 13/F Peninsula Square, 18 Sung On St., Hung

Hom, Kowloon, Hongkong

Manufacturer Shenzhen XinBoYing Technology Co.,Ltd.

Address : 4 Floor, Building 46 xitian the Second Industrial

Park, Shenzhen City China

Test Result according to the standards on page 4:	Positive
---	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1.</u>	TEST STANDARDS	<u> 4</u>	Ł
		_	
<u>2.</u>	SUMMARY	5	<u>></u>
2.1.	General Remarks	5	
2.2.	Equipment Under Test	5	
2.3.	EUT operation mode	5	
2.4.	Related Submittal(s) / Grant (s)	5	
2.5.	Modifications	5	
2.6.	Configuration of Tested System	5	
2.7.	NOTE	5	
<u>3 .</u>	TEST ENVIRONMENT	6	3
		_	
3.1.	Address of the test laboratory	6	
3.2.	Test Facility	6	
3.3.	Environmental conditions	6	
3.4.	Statement of the measurement uncertainty	6	
3.5.	Equipments Used during the Test	7	
<u>4 .</u>	TEST CONDITIONS AND RESULTS	8	3
4.1.	Conducted Emissions Test (Not Applicable)	8	
4.2.	Radiated Emission Test	9	
4.3.	Out of band emissions	17	
4.4.	20dB Bandwidth Measurement ANTENNA REQUIREMENT	20 22	
4.5.	ANTENNA REQUIREMENT	22	
<u>5.</u>	TEST SETUP PHOTOS OF THE EUT	. 23	3
_			
<u>6 .</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	. 24	ļ

V1.0 Page 4 of 25 Report No.: SKW1307016E

1. TEST STANDARDS

The tests were performed according to following standards:

47 CFR FCC Part 15 Subpart C - Intentional Radiators

<u>ANSI C63.10: 2009</u> – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in theRange of 9 kHz to 40GHz

V1.0 Page 5 of 25 Report No.: SKW1307016E

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	July 30,2013
Testing commenced on	:	July 30,2013
Testing concluded on	:	Aug 05, 2013

2.2. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow	

DC 3.0V

2.3. EUT operation mode

The EUT has been tested under typical operating condition.

2.4. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AAQT-BY-WQ02** filing to comply with the FCC Part 15, Subpart C 15.249 Rules.

2.5. Modifications

No modifications were implemented to meet testing criteria.

2.6. Configuration of Tested System

Configuration of Tested System

EUT

2.7. NOTE

1. The EUT is a 2.4GHz car wireless mouse ,The functions of the EUT listed as below:

	Test Standards	Reference Report
Radio	FCC Part 15 Subpart C (Section15.249)	SKW1307016E

V1.0 Page 6 of 25 Report No.: SKW1307016E

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Bontek Compliance Testing Laboratory Ltd 1/F, Block East H-3, OCT Eastern Ind. Zone, Qiaocheng East Road, Nanshan, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2003) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 7631A

The 3m alternate test site of Bontek Compliance Testing Laboratory Ltd EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 7631A on March, 2008.

FCC-Registration No.: 338263

Bontek Compliance Testing Laboratory Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 338263, March 24, 2008.

CNAS-Lab Code: L3923

Bontek Compliance Testing Laboratory Ltd has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: Mar 22, 2012. Valid time is until Mar 21, 2015.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Bontek Compliance Testing Laboratory Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Bontek Compliance Testing Laboratory Ltd is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	3.40 dB	(1)
Radiated Emission	1~18GHz	3.40 dB	(1)
Conducted Disturbance	0.15~30MHz	2.30 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.5. Summary of standards and result

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207(a)	Conduction Emissions	Compliance
§15.109, §15.205(a), §15.209(a), 15.249(a), §15.249(c), §15.35	Radiated Emissions	Compliance
§15.249(d)	Out of Band Emissions	Compliance
§15.215(c)	20 dB Bandwidth	Compliance

NOTE: 1) The detailed test rusult please see section 4.

- 2) The test report merely corresponds to the test sample.
- 3) It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

3.6. Equipments Used during the Test

Radia	Radiated Emissions					
No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	
1	TRILOG Broadband Test-Antenna	SCHWARZBECK	VULB9163	9163-324	2013-4-9	
2	EMI Test Receiver	R&S	ESPI	100097	2012-7-25	
3	Spectrum Analyzer	R&S	FSP	100397	2012-11-2	
4	Broadband preamplifier	SCH WARZBECK	BBV9718	9718-182	2013-4-5	
5	EMI TEST SOFTWARE	R&S	ESK1	N/A	N/A	
6	Horn Antenna	SCHWARZBECK	BBHA9120D	0499	2012-11-27	
7	Loop Antenna	Rohde&Schwarz	HFH2-Z2	100020	2012-11-27	
8	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2012-11-27	
9	EMI TEST SOFTWARE	Audix	E3	N/A	N/A	

20dB	20dB Bandwidth & Deactivation Time & Duty Cycle						
No.	No. Test Equipment Manufacturer Model No. Serial No. Last Cal.						
1	EMI Test Receiver	R&S	ESPI	100097	2012-7-25		
2	Spectrum Analyzer	AGILENT	E4407B	MY44210775	2012-7-25		

The calibration interval was one year.

V1.0 Page 8 of 25 Report No.: SKW1307016E

4. TEST CONDITIONS AND RESULTS

4.1. Conducted Emissions Test (Not Applicable)

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4-2009.
- 2 Support equipment, if needed, was placed as per ANSI C63.4-2009.
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4-2009.
- 4 The EUT received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

CONDUCTED POWER LINE EMISSION LIMIT

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following:

Fraguency	Maximum RF Line Voltage (dBμV)					
Frequency	CLAS	SS A	CLASS B			
(IVITIZ)	(MHz) QP		QP	Ave		
0.15 - 0.50	79	66	66-56*	56-46*		
0.50 - 5.00	73	60	56	46		
5.00 - 30.0	73	60	60	50		

TEST RESULTS

Not Applicable (The product powered by battery)

4.2. Radiated Emission Test

TEST CONFIGURATION

a) Radiated Emission Test Set-Up, Frequency below 1000MHz

b) Radiated Emission Test Set-Up, Frequency above 1000MHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The Highest frequency generated or used in the device or on which the device operates or tunes was 2480MHz and the minimum operation frequency was 34.8KHz,so radiated emissions test frequency from 9KHz to 25GHz.

V1.0 Page 10 of 25 Report No.: SKW1307016E

FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

For example

Frequency	FS	RA	AF	CL	AG	Transd
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300.00	40	58.1	12.2	1.6	31.90	-18.1

Transd=AF +CL-AG

RADIATION LIMIT

according to § 15.209, the field strength of radiated emissions limits comply with the following:

Frequency (MHz)	Field strength (microvolts/meter)	Measure- ment dis- tance (meters)
0.009–0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705–30.0	30	30

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

As per §15.249 (a), except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

As per §15.249 (c), Field strength limits are specified at a distance of 3 meters.

V1.0 Page 11 of 25 Report No.: SKW1307016E

Note:We tested three(High,Middle,Low) channels' Radiated emission and recored worst case data below 1G

TEST RESULTS

Reark: 1. The radiated emission measurement are for each channel(low,middle,high),and recorded worst case at middle channel.

From 9KHz to 30MHz

Frequency (MHz)	Corrected Reading (dBµV/m)@3m	FCC Limit (dBµV/m) @3m	Margin (dB)	Detector	Result
0.58	48.89	73.11	24.22	QP	PASS
1.21	42.63	65.87	23.24	QP	PASS
16.06	40.89	69.54	28.65	QP	PASS

For 30MHz to 1GHz

SCAN TABLE: "test (30M-1G)"
Short Description: Fi Field Strength Start Stop ÍF Detector Meas. Transducer Bandw. Frequency Frequency Time

30.0 MHz 1.1 GHz MaxPeak Coupled 100 kHz VULB9163

MEASUREMENT RESULT: "HTW0715306 fin"

7/15/2013 7:3 Frequency MHz	13PM Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
167.740000 431.580000	30.10 38.20	-17.0 -9.6	43.5 46.0	13.4 7.8	QP QP	300.0 100.0	245.00 211.00	HORIZONTAL HORIZONTAL
455.830000	37.20	-9.0	46.0	8.8	QP	100.0	199.00	HORIZONTAL
480.080000	40.90	-8.0	46.0	5.1	QP	100.0	199.00	HORIZONTAL
504.330000	38.70	-6.9	46.0	7.3	QP	100.0	188.00	HORIZONTAL
931.130000	41.60	3.2	46.0	4.4	QP	100.0	29.00	HORIZONTAL

SCAN TABLE: "test (30M-1G)"
Short Description: Field Strength
Start Stop Detector Meas. IF Detector Meas. IF Transducer Frequency Frequency 30.0 MHz 1.1 GHz Time Bandw. MaxPeak Coupled 100 kHz VULB9163

MEASUREMENT RESULT: "HTW0715307 fin"

7/15/2013 7: Frequency MHz	32PM Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
71.710000 167.740000	33.30 29.70	-19.6 -17.0	40.0 43.5	6.7 13.8	QP QP	100.0	183.00 90.00	VERTICAL VERTICAL
215.270000	29.70	-15.0	43.5	13.8	QP	100.0	77.00	VERTICAL
431.580000	34.60	-9.6	46.0	11.4	QP	100.0	264.00	VERTICAL
480.080000	36.50	-8.0	46.0	9.5	QP	100.0	274.00	VERTICAL
931.130000	40.80	3.2	46.0	5.2	QP	100.0	341.00	VERTICAL

For 1GHz to 25GHz

The frequency spectrum above 1 GHz for Transmitter was investigated. All emission not reported are much lower than the prescribed limits. Set the RBW=1MHz,VBW=3MHz for Peak Detector while the RBW=1MHz,VBW=10Hz for Average Detector,Readings are both peak and average values. The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

		AN	TENNA	A POLAF	RITY &	TEST D	ISTANCE	: VERTI	CAL 3 M		
No.	Frequency (MHz)	Ems Le (dBu	vel	Limit (dBuV/m)	Margin	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)
1	*2402.00	91.14	PK	114.00	22.86	1.00	25	89.07	29.44	8.72	36.09
1	*2402.00	79.86	AV	94.00	14.14	1.00	25	77.79	29.44	8.72	36.09
2	4804.00	46.48	PK	74.00	27.52	1.00	111	35.20	34.30	12.35	35.37
2	4804.00	38.00	AV	54.00	16.00	1.00	111	26.72	34.30	12.35	35.37

V1.0 Page 14 of 25 Report No.: SKW1307016E

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M													
No.	Frequency (MHz)	Le	Emssion Level (dBuV/m)		Margin	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)			
1	*2402.00	92.63	PK	114.00	21.37	1.00	330	90.56	29.44	8.72	36.09			
1	*2402.00	81.23	AV	94.00	12.77	1.00	330	79.16	29.44	8.72	36.09			
2	4804.00	45.19	PK	74.00	28.81	1.00	154	33.91	34.30	12.35	35.37			
2	4804.00	38.82	AV	54.00	15.18	1.00	154	27.54	34.30	12.35	35.37			

Middle Channel-2441MHz

		ANTEN	INA P	OLARITY	/ & TE	ST DIST	ANCE: H	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M														
No.	Frequency (MHz)	Le	evel Limit Margin Heigh		Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)												
1	*2441.00	93.99	PK	114.00	20.01	1.00	38	91.81	29.47	8.77	36.06											
1	*2441.00	80.82	AV	94.00	13.18	1.00	38	78.64	29.47	8.77	36.06											
2	4882.00	45.08	PK	74.00	28.92	1.00	285	33.59	34.41	12.44	35.36											
2	4882.00	36.10	AV	54.00	17.90	1.00	285	24.61	34.41	12.44	35.36											

V1.0 Page 15 of 25 Report No.: SKW1307016E

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL 3 M														
No.	Frequency (MHz)	Le	(dBuV/m)		evel Limit Margin Height Angle V				Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)			
1	*2441.00	93.74	PK	114.00	20.26	1.00	278	91.56	29.47	8.77	36.06				
1	*2441.00	82.37	AV	94.00	11.63	1.00	278	80.19	29.47	8.77	36.06				
2	4882.00	47.08	PK	74.00	26.92	1.00	165	35.59	34.41	12.44	35.36				
2	4882.00	34.33	AV	54.00	19.67	1.00	165	22.84	34.41	12.44	35.36				

High Channel-2480MHz

		AN	TENNA	A POLAF	RITY &	TEST D	ISTANCE	: VERTI	CAL 3 M		
No.	Frequency (MHz)	Ems Lev (dBu	vel	Limit (dBuV/m)	Margin	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)
1	*2480.00	91.97	PK	114.00	22.03	1.00	333	89.58	29.49	8.87	35.97
1	*2480.00	79.02	AV	94.00	14.98	1.00	258	76.63	29.49	8.87	35.97
2	4960.00	46.55	PK	74.00	27.45	1.00	147	34.85	34.54	12.53	35.37
2	4960.00	35.77	AV	54.00	18.23	1.00	147	24.07	34.54	12.53	35.37

V1.0 Page 16 of 25 Report No.: SKW1307016E

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
No.	Frequency (MHz)	Ems Le (dBu	vel	Limit (dBuV/m)	Margin	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)
1	*2480.00	90.31	PK	114.00	23.69	1.00	222	87.92	29.49	8.87	35.97
1	*2480.00	78.35	AV	94.00	15.65	1.00	222	75.96	29.49	8.87	35.97
2	4960.00	45.49	PK	74.00	28.51	1.00	15	33.79	34.54	12.53	35.37
2	4960.00	35.00	AV	54.00	19.00	1.00	15	23.30	34.54	12.53	35.37

REMARKS: 1. Emission level (dBuV/m) =Raw Value (dBuV) + Antenna Factor (dB/m) + Cable Factor (dB) - Pre-amplifier Factor

- 2. The other emission levels were very low against the limit.
- 3. Margin value = Limit value- Emission level.
- 4. The limit value is defined as per 15.249
- 5. " * ": Fundamental frequency
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

V1.0 Page 17 of 25 Report No.: SKW1307016E

4.3. Out of band emissions

TEST PROCEDURE

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.4 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW to 1MHz and VBM to 3MHz to measure the peak field strength and set RBW to 1MHz and VBW to 10Hz to measure the average radiated field strength.

The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW to 100 KHz and VBM to 300 KHz, to measure the conducted peak band edge.

TEST CONFIGURATION

LIMIT

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

TEST RESULTS

Frequency (MHz)	Corrected Reading (dBµV/m)@3m	FCC Limit (dBµV/m) @3m	Margin (dB)	Detector	Polarization	Results
2390.00	45.45	74.00	28.55	PK	Horizontal	PASS
2400.00	65.63	74.00	8.37	PK	Horizontal	PASS

Frequency (MHz)	Corrected Reading (dBµV/m)@3m	FCC Limit (dBµV/m) @3m	Margin (dB)	Detector	Polarization	Results
2390.00	46.27	74.00	27.73	PK	Vertical	PASS
2400.00	66.26	74.00	7.74	PK	Vertical	PASS

Frequency (MHz)	Corrected Reading (dBµV/m)@3m	FCC Limit (dBµV/m) @3m	Margin (dB)	Detector	Polarization	Results
2483.50	54.06	74.00	19.94	PK	Horizontal	PASS
2483.50	46.28	54.00	7.72	AV	Horizontal	PASS
2500.00	46.28	74.00	27.72	PK	Horizontal	PASS

Frequency (MHz)	Corrected Reading (dBµV/m)@3m	FCC Limit (dBµV/m) @3m	Margin (dB)	Detector	Polarization	Results
2483.50	50.39	74.00	23.61	PK	Vertical	PASS
2500.00	43.20	74.00	30.80	PK	Vertical	PASS

V1.0 Page 20 of 25 Report No.: SKW1307016E

4.4. 20dB Bandwidth Measurement

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The spectrum analyzer center frequency is set to the transmitter frequency. The RBW is set to 100 KHz and VBW is set 300 KHz.

LIMIT

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

TEST RESULTS

Test Channel	Test Frequency (MHz)	20dB Bandwidth (MHz)	Test Results
Low	2402	1.1437	PASS
Middle	2441	1.1424	PASS
High	2480	1.1465	PASS

V1.0 Page 21 of 25 Report No.: SKW1307016E

Middle Channel-2441MHz

High Channel-2480MHz L Trace Agilent Trace Ch Freq 2.48 GHz Trig Free Occupied Bandwidth Clear Write Ref 0 dBm #Atten 10 dB #Peak Max Hold Log 10 0 dB/ Min Hold View Center 2.480 000 GHz Span 3 MHz #Res BW 30 kHz #VBW 100 kHz Sweep 3.2 ms (601 pts) Blank Occupied Bandwidth Occ BW % Pwr 99.00 % 1.1465 MHz -20.00 dB x dB More Transmit Freq Error -33.578 kHz 1 of 2 x dB Bandwidth 1.207 MHz Copyright 2000-2005 Agilent Technologies

4.5. ANTENNA REQUIREMENT

According to FCC Part 15C § 15.203,

- a), An intentional radiator shall be de-signed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.
- b), The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The EUT complied the antenna requirement., Please refer to the EUT Internal photos.

V1.0 Page 23 of 25 Report No.: SKW1307016E

5. Test Setup Photos of the EUT

V1.0 Page 24 of 25 Report No.: SKW1307016E

6. External and Internal Photos of the EUT

External Photos

V1.0 Page 25 of 25 Report No.: SKW1307016E

Internal Photos

.....End of Report.....