P.218

NASA Contractor Report 174860

IN-07 DATE OULRRIDE 97824

00058

Aerodynamic Performance Investigation of Advanced Mechanical Suppressor and Ejector Nozzle Concepts for Jet Noise Reduction

C.D. Wagenknecht E.D. Bediako

CONTRACT NAS3-23038 FEBRUARY 1985

(NASA-CR-174860) AERODYNAMIC PERFORMANCE N87-29534
INVESTIGATION OF ADVANCED MECHANICAL
SUPPRESSOR AND EJECTOR NOZZLE CONCEPTS FOR
JET NOISE REDUCTION Final Report, 1981-1984
(General Electric Co.) 218 p Avail: NTIS G3/07 0097824

NASA Contractor Report 174860

Aerodynamic Performance Investigation of Advanced Mechanical Suppressor and Ejector Nozzle Concepts for Jet Noise Reduction

C.D. Wagenknecht E.D. Bediako General Electric Company Cincinnati, Ohio

Prepared for Lewis Research Center under Contract NAS3-23038

National Aeronautics and Space Administration

Scientific and Technical Information Branch

TABLE OF CONTENTS

<u>Section</u>		Page
1.0	SUMMARY	1
2.0	INTRODUCTION	3
3.0	SYMBOLS AND ABBREVIATIONS	9
4.0	PROGRAM APPROACH	13
5.0	CONCEPTUAL DESIGN	21
6.0	MECHANICAL DESIGN	51
7.0	MISSION ANALYSIS	75
8.0	TEST FACILITY DESCRIPTION	87
	8.1 Static Thrust Stand 8.2 Transonic Wind Tunnel 8.3 Force Balance System 8.4 Instrumentation and Data Acquisition 8.5 Operational Procedures	87 87 89 93 93
9.0	MODEL DESCRIPTION	95
	9.1 Baseline Coannular Model 9.2 Baseline 20-Chute Suppressor Model 9.3 Ejector Shroud Model	96 96 103
10.0	FACILITY DATA REDUCTION PROCEDURES	121
	10.1 Flow Rates 10.2 Thrust Measurement: Dual Flow 10.3 Thrust Measurements: Single Passage	121 122 124
11.0	MODEL DATA REDUCTION PROCEDURES	125
	<pre>11.1 Mass-Momentum Average Pt 11.2 Pressure Data 11.3 Discharge Coefficients 11.4 Thrust Coefficients</pre>	125 125 127 127
12.0	DATA ANALYSIS PROCEDURES	129
13.0	PERFORMANCE RESULTS AND DISCUSSION	131
	13.1 Coannular Nozzle 13.2 20-Chute Nozzle 13.3 Ejector Nozzle 13.4 Flow Visualization	137 140 142 146

TABLE OF CONTENTS (Concluded)

<u>Section</u>		Page
14.0	CONCEPTUAL DESIGN AND TEST PROGRAM RESULTS RECONCILIATION	151
15.0	CONCLUSIONS AND RECOMMENDATIONS	163
16.0	REFERENCES	165
	APPENDIX A - EJECTOR SHROUD PLOTTED DATA	167
	APPENDIX B - E.IECTOR SHROUD TABULATED DATA	189

LIST OF ILLUSTRATIONS

Figure No.	<u>Title</u>	<u>Page</u>
1	Fully Suppressed Single Stream Exhaust System	4
2	Coannular Acoustic Nozzle Exhaust System	4
3	Coannular Nozzle with Outer Stream Suppressor	6
4	Program Work Flow	14
5	20-Chute Coannular Nozzle (18 degree plug)	16
6	Coannular Nozzle (18 degree plug), Takeoff Mode	17
7	FAR 36 (1969) Noise Measuring Points	24
8	Federal Aviation Regulation Noise Goals FAR 36, 1969, Stages 1, 2 & 3	26
9	Task 2, Acoustically Treated Ejector Shroud Study and Evaluation Process	29
10	Early Chute Suppressor/Ejector Nozzle Configuration	31
11	Conceptual Ejector Shroud Development; Takeoff Mode	32
12	Conceptual Ejector Shroud Development; Super- sonic Cruise Mode	33
13	Ejector Shroud Supersonic Cruise Analytical Model and Nomenclature	35
14	Plug Pressure Distributions Showing Superior Performance of the Full Plug Over the Truncated Plug	38
15	Streamline Development; Supersonic Cruise, Long Flap, Truncated Plug with External Flow	39
16	Streamline Development; Supersonic Cruise, Short Flap, Full Plug with External Flow	40
17	Ejector Shroud Nozzle Aerodynamic Performance Comparisons Based on Combinations of Long and Short Shrouds and Truncated and Full Plugs	41
18	Total Engine and Component Noise Levels of the Ejector Shroud Nozzle with the G21-V50C Engine	43

LIST OF ILLUSTRATIONS (Continued)

Figure No.	<u>Title</u>	<u>Page</u>
19	Total Engine and Component Noise Levels of the Ejector Shroud Nozzle with the G21-V50C Engine with Shock Noise Control	44
20	Definition of $\theta(\text{degrees})$ for Perceived Noise Level Directivities	45
21	Approximate Perceived Noise Level Difference (APNdB) Between FAR 36 Stages 2 and 3 Side-line Measurement Locations	46
22	Coannular Nozzle	52
23	Baseline Coannular 20-Chute Suppressor Nozzle	53
24	20-Chute Supressor Ejector Shroud Nozzle (Takeoff Mode)	54
25	20-Chute Suppressor Ejector Shroud Nozzle (Supersonic Cruise Mode)	55
26	Section Drawings of Chutes Stowed and Deployed	61
27	Ejector Shroud Flow Passages at Various Modes of Operation	65
28	Ejector Shroud Nozzle Materials	72
29	NASA Reference Aircraft Configuration	76
30	AST Mission	77
31	AST Mission "B" Performance, Airflow Versus TOGW	78
32	AST Mission Analysis Method	80
33	Predicted Noise Versus Aircraft TOGW	81
34	AST Mission Analysis Results for the Coannular, 20-Chute and Ejector Shroud Exhaust Systems	83
35	FluiDyne Test Facility Schematics	88
36	FluiDyne Transonic Wind Tunnel	90
37	Station Nomenclature, Suppressor and Ejector	91

LIST OF ILLUSTRATIONS (Continued)

Figure No.	<u>Title</u>	Page
38	Coannular (Nozzle) Test Configurations	99
39	Coannular Baseline Nozzle Dimensional Informa- tion	100
40	Coannular Baseline and 20-Chute Suppressor Model Assembly Methods	101
41	Coannular Baseline Model Photographs	102
42	20-Chute Suppressor Test Configurations	104
43	20-Chute Suppressor Nozzle Dimensional Infor- mation	105
44	20-Chute Suppressor Profile	106
45	20-Chute Suppressor Nozzle Model Photographs	107
46	20-Chute Suppressor Nozzle Model Photographs	108
47	Ejector Shroud Test Configurations Takeoff Mode	109
48	Ejector Shroud Test Configurations: Subsonic, Transonic and Supersonic Modes	111
49	Ejector Shroud Nozzle Dimensional Information; Takeoff Configuration	112
50	Ejector Shroud Nozzle Dimensional Information; Subsonic Cruise Configuration	113
51	Ejector Shroud Nozzle Dimensional Information; Supersonic Cruise Configuration	114
52	Ejector Shroud Nozzle Dimensional Information: Transonic Acceleration Configuration	115
53	Ejector Shroud Nozzle Model Assembly Methods	117
54	Ejector Shroud Nozzle Model Photographs	118
55	Ejector Shroud Nozzle Model Photographs	119
56	Nozzle Exit Peak Thrust Coefficient Results	132
57	Nozzle Full Scale Thrust and Loss Coefficient Stackups Takeoff Mode; M = .35	133

LIST OF ILLUSTRATIONS (Concluded)

Figure No.	<u>Title</u>	<u>Page</u>
58	Nozzle Full Scale Thrust and Loss Coefficient Stackups Subsonic Cruise Mode; M = .9	134
59	Nozzle Thrust and Loss Coefficient Stackups Transonic Acceleration Mode: M = 1.2 (Static)	135
60	Nozzle Thrust and Loss Coefficient Stackups Supersonic Cruise Mode: M = 2.32 (Static)	136
61	Coannular and 20-Chute Nozzle Sizing Results	138
62	Ejector Nozzle Sizing Results	139
63	Variation of Ejector Takeoff Performance with Setback	143
64	Ejector Shroud Nozzle Flow Visualization: Overall View	148
65	Ejector Shroud Nozzle Flow Visualization Showing Details of Plug and Deployed Chutes (Ejector Shroud Removed)	149
66	Ejector Shroud Nozzle Flow Visualization Showing Interior View of Ejector Shroud (Disassembed)	150
67	Ejector Shroud Nozzle Subsonic Cruise Configu- ration Defined by Cycle Sizing Data Showing a Divergent-Convergent Section and High Boattail Angle	159
68	Proposed Options for Subsonic Cruise Installed Performance Improvement Showing Possible Area Ratio Settings and Cycle Options to Match Thrust Requirements	160

LIST OF TABLES

Table No.	<u>Title</u>	Page
1	Ejector Shroud Weight Study Summary	36
2	TOGW Trade Equivalents for Performance, Engine Weight and Noise	48
3	Comparison Between the Short and Long Ejector Shrouds Showing TOGW Equivalent for .75 EPNdB Reduction in Long Shroud	50
4	Cycle Sizing Data	69
5	Exhaust System Design Parameters	70
6	Actuation Systems	71
7	Exhaust System Weight Summary	74
8 .	Preliminary Mission Analysis Results Summary Showing Commensurate Airflow and TOGW Necessary to Satisfy a Noise Goal of 103 EPNL Using Pre- dicted Performance Data	85
9	Instrumentation Summary	97
10	Nozzle Test Configurations and Variables	98
11	Ejector Nozzle Test Configurations and Variables	116
12	Coannular, 20-Chute and Ejector Shroud Nozzle Instrumentation Summary	126
13	Performance Sensitivities Supersonic Cruise Aircraft	152
14	Predicted vs. Measured Installed Performance Comparison	153
15	TOGW Adjustments: 20-Chute Suppressor Nozzle (Based on Predicted vs. Measured Installed Performance)	154
16	TOGW Adjustments: Ejector Shroud Nozzle (Based on Predicted vs. Measured Installed Performance)	155
17	TOGW Summary (Measured Installed Performance)	156

1.0 SUMMARY

In pursuit of an acoustically acceptable, high performance exhaust system capable of meeting Federal Aviation Regulation Stage 3 (FAR 36 Stage 3) noise goals for an Advanced Supersonic Transport (AST) application, a design study was conducted to incorporate an acoustically treated ejector shroud into a 20-chute suppressor exhaust system. The resulting ejector shroud exhaust system, after a full scale mechanical design development, was tested along with the 20-chute and the coannular exhaust systems. The results of the test were evaluated in a mission analysis study to determine engine size and aircraft Takeoff Gross Weight (TOGW) necessary to complete a typical AST mission based on system installed performance and estimated acoustic suppression effectiveness.

The mission analysis results showed the ejector shroud nozzle to be the best among the three nozzle systems studied for the AST mission within the constraints of FAR 36 (1969) Stage 3 noise goals. Comparatively, the ejector shroud nozzle system has a 79,000 pounds advantage in TOGW over a commensurate aircraft fitted with the 20-chute nozzle. The coannular nozzle, on the other hand, appears not to be an attractive concept for AST application where noise suppression is a measure of acceptability.

Though the ejector shroud nozzle performs excellently at supersonic cruise and reasonably well at takeoff, it did not quite meet subsonic performance levels projected during the conceptual design phase. This resulted from the conflicting requirements where takeoff and supersonic cruise configurations are dominated by acoustics and aerodynamics, respectively, thereby compromising the intermediate subsonic cruise point. Solutions have been advanced, however, that will seek to restore or alleviate subsonic cruise performance deficits and push it towards the conceptual design goal.

The ejector nozzle takeoff configuration flow visualization test showed complex air induction characteristics by virtue of the action of the discrete 20-Chute conic nozzles. The ejector air induction pattern appeared characteristically different from conventional annular ejector systems, and it did change current thinking on ejector inlet sizing for Ejector Shroud systems.

It is believed that implementation of the recommendations will further improve the ejector shroud nozzle system and make it even more suitable for the AST mission.

2.0 INTRODUCTION

Background

Jet noise reduction and control has been one of the dominant forces in supersonic cruise aircraft research, and hence, the exhaust system, the primary component through which the noise abatement schemes are carried out, has received considerable attention. General Electric product design engines for the NASA Supersonic Cruise Research Program have proposed annular and, in particular, coannular nozzle concepts due to their potential for noise abatement. These exhaust nozzle system concepts have included both single stream and dual stream designs for conventional engines, as well as inverted flow coannular designs for single and double bypass Variable Cycle Engines (VCE). shows the single stream multi-chute mechanical suppressor nozzle with retractable chutes. The chutes are stored in the plug when not used for noise suppression during cruise modes. While the exhaust nozzle performance penalties are minimized by retracting the suppressor chutes during cruise, the single stream nozzle design resulted in a relatively heavy exhaust system, primarily due to the deep and long suppressor chute lobes. This weight penalty forced alternative approaches to be investigated, the first being the coannular suppressor exhaust system. pression potential of the coannular system is derived from inversion of core and fan flows through flow inverting struts where the lower velocity and temperature fan flow promotes rapid decay of the higher velocity outer annulus core jet. This suppression system demonstrated 4-6 Effective Perceived Noise (EPNdB) suppression on the YJ101 Acoustic test vehicle (Reference 1). ure 2 shows the coannular Acoustic Nozzle Exhaust System.

Extensive scale model testing under various Government contracts (Reference 1) showed that the multi-chute mechanical suppressor could be installed in the outer (core) stream of the

Figure 1. Fully Suppressed Single Stream Exhaust System

Figure 2. Coannular Acoustic Nozzle Exhaust System

coannular exhaust primary nozzle to provide additional noise reduction of 3-4 EPNdB over that of coannular exhaust system Additionally, the small shallow chutes resulted in a lighter and a more reliable mechanical design compared to the single stream full suppressor nozzle concept. The most recent refinement of this type of jet noise suppression system was designed for the Variable Cycle Test Bed Engine Program. (Reference This mechanical suppressor is a 20-chute, 1.75 nozzle-tobase area ratio, with moderate chute depth. Figure 3 shows the coannular nozzle with outer stream suppressor. The feasibility of implementation of these complex geometrical features in a full scale product design without excessive compromises in weight and aero/acoustic/mechanical design prompted a scale model program (Contract NAS3-21608) to measure jet noise characteristics of the 20-chute suppressor in the General Electric Anechoic Free Jet The test indicated a combined noise suppression potential of the two suppression schemes to be approximately 7-10 EPNdB.

The noise suppression effectiveness of all exhaust systems mentioned above are measured against the Federal Aviation Regulation. Part 36, 1969 (FAR 36, 1969) noise goals. These are noise goals to be complied with by all transport category large aircraft and turbojet powered aircraft by specific dates in the future. The noise milestones are categorized by stages, from FAR 36-Stage 1 through FAR 36-Stage 3. For the Supersonic Cruise Aircraft to be a viable proposition, it has to meet the FAR 36. Stage 3 noise regulation and also have acceptable performance and realistic takeoff gross weight (TOGW).

Each of the exhaust system concepts illustrated in Figures 1 through 3 successfully utilized the noise suppression schemes discussed above either singly or in combination to achieve the FAR 36-Stage 1 and Stage 2 noise goals with a reasonable engine size in the NASA AST-2 Aircraft (References 3 and 4), but they

Figure 3. Coannular Nozzle with Outer Stream Suppressor

could not satisfy the Stage 3 goal. It was hypothesized that an acoustically treated ejector, when combined with a 20-chute mechanical suppressor and a coannular suppression scheme, could promote enough suppression to achieve the FAR 36-Stage 3 noise goal. The purpose of this program, therefore, was to conduct design studies to identify important exhaust systems features, followed by scale model testing to investigate aerodynamic performance of the fully integrated ejector shroud system at the important flight points.

3.0 SYMBOLS AND ABBREVIATIONS

A Cross section area, in²

A* Sonic throat area, in²

ΔA Effective seal area change, in²

 $A_{\rm I}$ Inner nozzle exit area, in²

 A_0 Outer nozzle exit area, in²

AST Advanced Supersonic Transport

C_D Discharge coefficient, dimensionless

C_F Friction drag coefficient, dimensionless

CFG Thrust coefficient, dimensionless

Cp Pressure drag coefficient, dimensionless

C_T Thrust coefficient, dimensionless

C₂ Axial balance readout, millivolts

dB decibel

DOT Department of Transportation

EPNdB Effective Perceived Noise in decibel

EPNL Effective Perceived Noise Level. decibels

f Exit stream thrust parameter, $(H+P_aA_9)/PT_8A_8$, dimensionless

F Stream thrust, mV+PA, 1bf

FAA Federal Aviation Administration

FAR Federal Aviation Regulation

FAR 36 Federal Aviation Regulation, Part 36 Stage 1 noise Stage 1 goal

FI Ideal thrust, 1bf

ft feet

PRECEDING PAGE BLANK NOT FILMED

G Real-gas stream thrust correction factor, dimensionless

g Acceleration of gravity, 32.174 ft/sec²

GE General Electric Company

H Net thrust (static) or thrust-minus-drag (wind-on), lbf

H_O Axial balance force, lbf

in inches

K Real-gas mass flow function, $R^{1/2}$ /sec

K₂ Balance force calibration factor, lbf/millivolt

km kilometers

kps kilo pounds (1,000 lbs)

Ls Ejector shroud length, inches

m meters; mass flow rate, slugs/sec

M Mach number, dimensionless

NASA National Aeronautics and Space Administration

N.M. Nautical Miles

NPR Nozzle Pressure Ratio

P Pressure, static unless otherwise specified by sub-

script, psia

ΔP Static pressure differential across seal, psi

R Gas constant, $1716.32 \text{ ft}^2/\text{sec}^2-\text{°R}$

RN Reynolds number, dimensionless

RSPD Rapid Solidification Process Deposition

S Ejector setback from suppressor shroud boattail, in

SCA Supersonic Cruise Aircraft

SCAR Supersonic Cruise Aircraft Research

SCR Supersonic Cruise Research

STC Stream Tube Curvature fluid dynamics analysis program T Temperature, °R TOGW Takeoff Gross Weight, lbs V Velocity, ft/sec ۷į Nozzle core jet velocity, ft/sec v_{mix} Mass averaged mixed stream velocity, ft/sec V_{R} Velocity ratio, V₈₉/V₉, dimensionless W Mass flow rate, lbm/sec $W_{\mathbf{X}}$ Dead-weight calibration load, lbf X Ejector setback, full scale, in. (See def. for 5 on page 10). Incremental quantity Δ Total to ambient pressure ratio, Pt/Pa, dimension-

θ Meridian angle measured clockwise from vertical

θi Angle of observer relative to inlet axis, degrees

Specific heat ratio, dimensionless Υ

Σ Summation

less

Subscripts

λ

Ambient a

b Base

Exit station е

i Ideal

j Counter for summations

Freestream conditions 0

t Total conditions

Subscripts (Continued) x component X Inner passage flow ASME metering nozzle station 1 Inner passage flexible seal station 2 Balance cavity 4 Outer passage flow ASME metering nozzle stations 5 Outer passage flexible seal station 6 Outer nozzle charging station 7 Outer passage throat area station 8 Outer nozzle discharge 9 Inner nozzle charging station 87 Inner nozzle throat station 88

Superscripts

89

- * Sonic flow
- Referenced to base pressure

Inner nozzle discharge

4.0 PROGRAM APPROACH

The overall program consisted of three major tasks. These are:

- Task 1 Coannular and 20-Chute Suppressor Nozzle Aerodynamic Performance Test Program
- Task 2 Acoustically Treated Ejector Shroud Study
- Task 3 Ejector Shroud Nozzle Aerodynamic Performance Test Program.

Although Task 1 was independent of Tasks 2 and 3. Task 2 was initiated first as illustrated in the work flowchart, shown in Figure 4. This provided an ejector shroud design early enough in the program to enable Tasks 1 and 3 to be conducted in parallel. By combining the Tasks 1 and 3 experimental programs, the associated model hardware were designed simultaneously to take advantage of parts commonality for cost effectiveness. In addition, the overall time required to complete the program was reduced relative to a sequential order of accomplishing the three tasks. The following summarizes the work accomplished from each of the tasks.

Task 1 - Model Coannular and 20-Chute Suppressor Nozzle Aerodynamic Performance Test Program

The objective of this task was to measure and evaluate the aerodynamic performance of a model coannular plug nozzle with a 20-chute mechanical noise suppressor in the outer stream. The evaluation was conducted at simulated takeoff, subsonic cruise, and supersonic cruise flight conditions representative of an advanced supersonic transport. The basis for the model design

Figure 4. Program Work Flow

was a full scale product type nozzle design shown in Figure 5 and reported in Reference 2. This particular concept utilized an 18° half-angle plug which was revised in Task 1 to incorporate a 15° half-angle plug. This revision was accomplished first in Task 1 to provide the basis for the model design in subsequent tasks.

The aerodynamic performance of a "baseline" unsuppressed nozzle was also investigated in Task 1. An existing product type unsuppressed coannular nozzle, shown in Figure 6, was also revised from 18° plug half-angle to 15° plug half-angle design for aerodynamic enhancement. This revision was also accomplished early in Task 1 to provide a basis for the unsuppressed coannular model design. The remainder of the task activities involved (1) formulation of test plan. (2) design and fabrication of scale model hardware. (3) wind tunnel and static testing, and (4) data analysis.

Task 2 - Acoustically Treated Ejector Shroud Study

The objective of this task was to conduct a design study to identify a candidate full scale ejector shroud coannular plug nozzle exhaust system for an advanced supersonic transport incorporating an outer stream 20-chute mechanical suppressor with an acoustically treated ejector shroud for additional jet noise reduction. The full scale design was used as the basis for defining scale models for Task 3. The work elements for this task included (1) conceptual design study, (2) mechanical design study, and (3) mission analysis.

Conceptual Design Study

A preliminary design study was conducted to incorporate an acoustically treated ejector shroud into the 20-chute mechanical suppressor and coannular acoustic exhaust system (20-chute noz-zle). The design began with a baseline GE21/V5OC double bypass

Figure 5. 20-Chute Coannular Nozzle (18 degree plug).

Figure 6. Coannular Nozzle (18 degree plug), Takeoff Mode.

variable cycle engine (Reference 4). Design factors considered during this conceptual design phase included ejector flap length and thickness, as well as plug truncation, all of which affected aerodynamic performance, weight and acoustic suppression characteristics. Several ejector shroud nozzle configurations were defined and developed to provide the pertinent information required to make the selection.

Performance estimates were based on prediction methodologies presented in the Noise Abatement Nozzle Design Guide for High Velocity Jet Noise Source Location and Reduction Program. Reference 5, and current GE Fluid Dynamics Analysis Programs. The analysis results were used to update the engine cycle to reflect prevailing engine takeoff performance data needed to estimate takeoff noise levels. It was the goal of the entire design process to satisfy the FAR 36-Stage 3 noise goals without undue aerodynamic and mechanical design compromises, and the work proceeded accordingly. Noise from all engine related sources was examined; fan and core turbomachinery additions to exhaust jet noise were evaluated to check compliance with the noise goals. Based on the analysis data, a trade study was conducted to select the most promising ejector shroud configuration for full scale mechanical design development.

Mechanical Design Study

The aero-acoustic exhaust nozzle configurations defined in the conceptual design study provided the basic internal contours for the mechanical design study. Important aspects of the exhaust system mechanical design were covered. The study analyzed pressures, temperatures and stresses for proper selection of materials; details of deployment and retraction of the mechanical suppressor and ejector shroud; cooling requirements of nozzle components; actuation system types and quantities, thrust

reverser installation and actuation, weights and dimensions. A design cross section was generated to show the layout and operational feasibility.

Mission Analysis

The aerodynamic performance data from the Conceptual Design and the Exhaust System Weight studies were evaluated using the mission analysis program. This program used the AST-2 Airplane (References 3 and 4) and flew the AST Mission "B" with an initial 600 N.M. subsonic cruise segment followed by a Mach 2.32 (hot day) supersonic cruise. The output yielded takeoff gross weight to perform the 4.000 N.M. mission. Also available from the Mission Analysis were Mission parameter sensitivities (derivatives) which would enable calculation of change in takeoff gross weight as a figure of merit in response to changes in installed performance, exhaust system weight, or noise level.

Task 3 - Model Ejector Nozzle Aerodynamic Performance Test Program

The objective of this task was to measure and evaluate the aerodynamic performance of the 20-chute nozzle from Task 1 with an integrated ejector at simulated takeoff, subsonic cruise, transonic acceleration, and supersonic cruise flight conditions representative of an advanced supersonic transport.

As was previously discussed and illustrated in the work flowchart of Figure 4. Task 3 was conducted in parallel with Task 1 in order to improve efficiency. The models tested in Task 3 were based on the 20-chute nozzle with an integrated ejector concept as defined in the Task 2 study. Work elements in Task 3 were the same as for Task 1, namely: (1) formulation of test plan, (2) design and fabrication of scale model hardware, (3) wind tunnel and static testing, and (4) data analysis.

5.0 CONCEPTUAL DESIGN

Design Philosophy

Deployment of aircraft noise abatement schemes present a special challenge to gas turbine engine exhaust system design technology because design features that promote noise abatement generally detract from system performance potential. In addition to the performance potential decrement, they promote mechanical design complexity, increase exhaust system weight and complicate the inter-relationships between mission performance parameters like propulsion efficiency, fuel requirements and Takeoff Gross Weight (TOGW) assessment. Introduction of acoustics into the exhaust system selection criteria means that the selection of a particular exhaust system over others will be on the basis of its capability to minimize the TOGW for a specific mission profile at a specific noise level (EPNdB) as outlined in FAR 36 (1969).

Since TOGW is the sum of payload, aircraft system weight and fuel, it becomes apparent that any weight minimization process hinges heavily on aircraft system efficiency improvements. Reduction of aircraft system weight and improvement of propulsion system efficiency are directly translated into TOGW reduction. Propulsion efficiency and aircraft system technology enhancements are derived from aerodynamics, mechanical design, and materials technology, among others. Improved aerodynamics means less drag, more efficient fuel usage and lower TOGW. Advanced mechanical design reduces aircraft weight, saves fuel, and reduces TOGW. Use of advanced light weight, higher temperature resistant materials improves specific thrust, and reduces aircraft system weight as well as fuel requirements and TOGW.

As indicated earlier, jet noise abatement dominates supersonic cruise aircraft exhaust system design, and the evaluation of the net cumulative effects of the three identified suppression schemes is the primary task of this program. Reduction of jet noise is accomplished through coannular inverted flow suppression, direct suppression through use of multi-chute mechanical suppressors and the deployment of acoustically treated ejector shroud. Any or all of these contribute heavily towards exhaust system weight increase and the higher the suppression desired, the greater the weight contribution. This means that the acceptability of an exhaust system must be based on the best compromise between acoustics, aerodynamic performance, and weight.

The strategy of Task 2 was to develop the ejector shroud nozzle and evaluate it against the other two baseline nozzles (i.e., the baseline coannular nozzle and the 20-chute suppressor nozzle) for required engine size (lb/sec of air intake) and TOGW, with the aircraft flying a specific mission profile, at an allowable noise level using a specific supersonic cruise aircraft. The following portions of the report present problem synthesis and analysis methods.

Noise Goals

Several factors influence aircraft performance. Among these are operational, technological and regulatory factors. Operational factors are characterized by payload, mission profile, fuel, aircraft system, propulsion efficiency, etc. The technology factors are dominated by acoustics, aerodynamics, mechanical design, materials, aircraft system, propulsion efficiency and others. The most obscured, yet the most dominant of the aircraft performance influencing factors are the regulatory factors, either for safety or for noise abatement. With the acoustics being such a dominant force in supersonic aircraft systems design, it is worth a few moments to examine how the FAR 36-Stages 1 through 3 are formulated.

The FAR 36-Stages 1 through 3 are noise goals to be complied with by all transport category large aircraft and turbojet powered aircraft by specific dates in the future. These noise goals are categorized by stages from Stage 1 through Stage 3, in order of increasing stringency.

Noise Measuring Points

Compliance with the noise goals is determined by measuring Effective Perceived Noise Level (EPNL) of the concerned aircraft at three reference points along or parallel to the runway or runway extended. These noise measuring (reference) points are (1) Takeoff (Community), (2) Approach, and (3) Sideline. noise is measured at a point 21,325 feet (6,500 meters) from the start of the takeoff roll on the extended centerline of the runway, and Approach noise is measured at a point 6,562 feet (2,000 meters) from the threshold on the extended centerline of the runway. Likewise, the Sideline noise is measured at a point on a line parallel to and 1.476 feet (450 meters) from the extended centerline of the runway where the noise level after liftoff is greatest, except for airplanes powered by more than three turbojet engines, where this distance is 0.35 nautical miles for the purpose of showing compliance with Stage 1 or stage 2 noise limits as applicable. Figure 7 shows the FAR 36 (1969) Noise Measuring Points

Noise Levels

Compliance with noise levels is determined by flight test at the prescribed measuring points shown in Figure 7 and at the appropriate FAR 36 stage.

Figure 7. FAR 36 (1969) Noise Measuring Points

Stage 1 Noise Limits

The Stage 1 maximum noise limit is 108 EPNdB regardless of the number of engines and must not exceed the noise level indicated by an appropriate interpolation between weights as shown in Figure 8a. Only the Takeoff (Community) noise is to be satisfied in Stage 1.

Stage 2 Noise Limits

Stage 2 noise limits for airplanes regardless of the number of engines are as follows:

- 1. For Takeoff 108 EPNdB for maximum weight of 600,000 pounds or more, reduced by 1 EPNdB per 60,000 pounds from the maximum weight down to 93 EPNdB for a maximum weight of 75,000 pounds and less.
- 2. For Sideline and Approach 108 EPNdB for a maximum weight of 600,000 pounds or more reduced by 1 EPNdB per 150,000 pounds from the maximum weight down to 102 EPNdB weight for a maximum weight of 75,000 pounds and less. Stage 2 noise limits are illustrated in Figure 8b.

Stage 3 Noise Limits

Stage 3 noise limits are as follows:

Takeoff (Community)

a. For airplanes with more than 3 engines, 106 EPNdB for maximum weight of 850,000 pounds or more, reduced by 1 dB per 106,250 pounds from the maximum weight down to 89 EPNdB for maximum weight of 44,673 pounds and less.

Figure 8. Federal Aviation Regulation Noise Goals FAR 36, 1969, Stages 1, 2 & 3

- b. For airplanes with 3 engines 104 EPNdB for a maximum weight of 850,000 pounds or more, reduced by 1dB per 106,250 pounds from the maximum weight down to 89 EPNdB for a maximum weight of 63,177 pounds and less.
- c. For airplanes with fewer than 3 engines 101
 EPNdB for a maximum weight of 850,000 pounds or more, reduced by 1 dB per 106,250 pounds from the maximum weight of 106,250 pounds and less.
- 2. For Sideline, regardless of the number of engines 103 EPNdB for a maximum weight of 882,000 pounds or more, reduced by 1 dB per 172,270 pounds from the maximum weight down to 94 EPNdB for a maximum weight of 77,200 pounds and less.
- 3. For Approach, regardless of the number of engines -105 EPNdB for maximum weights of 617,300 pounds or more, reduced by 1 dB per 132,468 pounds from the maximum weight down to 93 EPNdB for a maximum weight of 77,200 pounds or less. Stage 3 noise limits are illustrated in Figure 8c.

Throughout the study, the FAR 36 (1969) Stage 3 was used. After noise levels at the study conditions were determined, the values were "traded" in order to obtain an overall noise level.

"Trading" rules used are described in Appendix C of FAR 36 as follows:

"Tradeoff" - The noise levels may be exceeded at one or two of the measuring points if.

- 1. The sum of the exceedances is not greater than 3 EPNdB.
- 2. No exceedance is greater than 2 EPNdB, and
- 3. The exceedances are completely offset by reductions at other required measuring points.

Ejector Shroud Conceptual Design

The approach used in Task 2 to accomplish the conceptual design and ultimate selection of the final ejector nozzle configuration is illustrated schematically in Figure 9. The prototype mechanical design and engine cycle were redefined to suit program goals, refined through mechanical design, aerodynamics and acoustics trade studies, and followed by mission analysis to identify engine size and TOGW commensurate with the desired noise goals.

The conceptual design was started by selecting a prototype cycle and an ejector shroud design for development. These were reviewed and compared with previous NASA programs for development ideas. Several documents published under SST Technology, Follow-On Program - Phase II, Noise Suppressor/Nozzle Development, were studied to identify the variables that dominate ejector performance.

The following geometric features were identified to influence ejector performance:

- Setback the axial distance from the suppressor exit plane to the flight lip hilite of the ejector.
- Minimum annular area between the ejector lip and suppressor chutes.
- Number of suppressor elements and geometry.
- Suppressor nozzle area ratio.
- Ejector shroud area ratio inlet-to-exit ratio.
- Ejector length to diameter ratio.
- Suppressor radius ratio suppressor exit inner radius divided by outer radius.

Figure 9. Task 2, Acoustically Treated Ejector Shroud Study and Evaluation Process

Some of these geometric parameters were set by virtue of the 20-chute suppressor to be used in the study. These include the suppressor area ratio, suppressor geometry and the number of elements. An early suppressor configuration spouting an 18°, truncated plug is shown in Figure 10.

The prototype 20-chute suppressor nozzle was revised to reflect the specific cycle being used in the study, i.e., the GE21-V50C engine cycle. The plug half-angle was changed from 18° to a 15° half-angle, to improve aero performance. The revised 20-chute suppressor nozzle was then used as the base for the integrated ejector design. Figure 11 shows the preliminary redesigned ejector-suppressor concept in the suppressed (Takeoff) mode, and Figure 12 shows the schematic of the ejector in the supersonic cruise mode. The suppressor has an area ratio of 1.75, a radius ratio of .717, and a depth-to-width ratio of the individual suppressor elements of 1.0.

After takeoff and during subsonic, transonic acceleration, and supersonic modes, the suppressor is retracted and stowed within the plug and the shroud is also translated forward to close the ejector inlet. The shroud consists of flaps and seals which allow the exit area to be varied to control exhaust gas expansion. The inner-to-outer nozzle area ratio which is about 0.2 at rotation, based on cycle data, is decreased to zero by translating the inner plug aft while opening the Variable Bypass Injector (VABI) to allow various degrees of mixing of the fan and core flows from partial to full at subsonic cruise, transonic acceleration and supersonic cruise modes, respectively.

The initial ejector shroud design was analyzed for potential aero/acoustic performance problems and later evaluated for weight, aerodynamic performance and acoustic characteristics. Flowpaths representing takeoff, subsonic cruise, transonic acceleration and supersonic cruise were defined and used to estimate

Figure 10. Early Chute Suppressor/Ejector Nozzle Configuration

Figure 11. Conceptual Ejector Shroud Development; Take-off Mode

conceptual Ejector Shroud Development; Supersonic Cruise Mode Figure 12.

performance, primarily at the design supersonic cruise point and other off-design points. The shroud length and other exhaust system parameters were varied to create several possible configurations to determine the effect of the variation on performance, acoustics, and exhaust system weight. Studies were conducted to estimate the weights of the various configurations as well as Stream Tube Curvature (STC) computer code fluid dynamics analysis for their supersonic cruise performance.

The analytical model of the ejector shroud nozzle in the supersonic cruise mode is shown in Figure 13. The main variable for the study was the shroud length, Ls. The nominal length of the shroud for the preliminary ejector design was 42.5 inches. To study the effect of shroud length on weight and aero/acoustic performance, a shroud 60 inches long was also analyzed. represents a 41% increase in shroud length that could be acoustically treated. The preliminary weight study indicated that the baseline ejector nozzle weighed 5,375 lbs., or about 25% more than the unshrouded nozzle with 20-chute mechanical suppressor. Adding more shroud length while maintaining the same nacelle radius. $R_{\mbox{NAC}}$, increased the nozzle weight by an additional 1.750 lbs. for a 66% increase over the suppressor alone configuration. In order to reduce this substantial weight penalty, the nacelle radius was increased from 42.9 inches to 45 inches to allow a more efficient structure to be constructed and at the same time reduce the change in weight from 1.750 lbs. to 840 lbs., or 44% over the 20-chute suppressor configuration. summary of the ejector shroud configurations weight study is shown in Table 1.

The weight reduction of the system was evaluated against performance loss associated with higher boattail drag (supersonic configuration) because of the increased nacelle diameter.

Figure 13. Ejector Shroud Supersonic Cruise Analytical Model and Nomenclature.

 G Tinternal = C Tinviscid - G FSHRD - G FPLUG

 C Tinstalled = C Tinternal - C FNAC - C PNAC

TABLE 1

EJECTOR SHROUD WEIGHT STUDY SUMMARY

CONFIGURATION	SHORT FLAP R _{NAC} = 42.9	LONG FLAP R _{NAC} = 42.9	LONG FLAP R _{NAC} = 45
ΔWEIGHT FOR EJECTOR SHROUD DESIGN RELATIVE TO BASELINE (LBS)	BASE	+ 1750	+ 840
TOTAL WEIGHT (LBS)	53.75 LBS	7125	6215
FLAP WEIGHT (L _S)(IN)	42.5	60.0	60.0

The STC computer program was used to evaluate the effects of ejector shroud length and diameter on nozzle performance. Referring to Figure 13. the following represent increments in gross thrust coefficient:

CPNAC -- Nacelle pressure drag
CFNAC -- Nacelle friction drag
CPPLUG -- Plug friction drag
CFSHRD -- Shroud internal friction drag
CFEI -- Ejector Interface drag

Initial STC runs on the ejector shroud configuration indicated a substantial loss in performance due to sub-ambient pressures on the plug in the curved region of the truncation. However, STC runs with a full plug (conical) alleviated that performance deficit. Plug pressure distribution plots indicating full plug performance characterized by no sub-ambient pressures and higher pressure recovery is shown in Figure 14. flowfields differentiating between the truncated and the full plugs are shown in Figures 15 and 16, respectively. The results of the STC study showing effect of plug and shroud length is detailed in Figure 17. Though the short shroud (LS = 42.5) had the highest aerodynamic performance, it was not sufficient information to base the selection (short versus long shroud) on. selection criterion would be based on the cumulative effect of aerodynamic performance, weight, and acoustics on aircraft mission.

Work was initiated to accumulate precise acoustic information to assess the merits of the long and short ejector shroud nozzles. Work elements included acoustic evaluation of the acoustically treated ejector shroud using the Motsinger & Sieckman (M & S) methodology (Reference 6) and identification of spectral distribution of the jet mixing and the shock cell noise for the different ejector lengths at typical takeoff conditions.

Plug Pressure Distributions Showing Superior Performance of the Full Plug Over the Truncated Plug. Figure 14.

Streamline Development; Supersonic Cruise, Long Flap, Truncated Plug With External Flow. Figure 15.

Streamline Development; Supersonic Cruise, Short Flap, Full Plug With External Flow Figure 16.

Ejector Shroud Nozzle Aerodynamic Performance Comparisons Based on Combinations of Long and Short Shrouds and Truncated and Full Plugs. Figure 17.

The completed acoustic study estimated total engine and component (jet, fan inlet, exhaust, turbomachinery) noise levels at FAR 36 (1969) Stage 3 measurement locations using the GE21-V50C engine cycle and ejector shroud nozzle at typical take-off cycle. The M & S engineering spectral correlation program was used to calculate the jet and shock cell noise associated with supersonic jet flows, and the AST prediction program, likewise, was used to predict the fan inlet, fan exhaust, and core turbomachinery noise estimates.

The synthesis of the above noise estimates plus the jet noise and other component noise estimates yielded the total noise estimate at FAR 36 (1969) Stage 2 measurement locations.

In order to study the impact of shock cell noise on the total engine noise, predictions were made with and without shock cell noise. Figures 18 and 19 summarize Perceived Noise Level (PNL) directivities of the total and component engine noise levels with and without shock cell noise control respectively. Definition of PNL directivities is shown in Figure 20. The predictions show that the long (LS = 60 in) treated ejector shroud has a takeoff sideline noise level of 103.0 EPNdB and could be reduced to 101.9 EPNdB if shock noise is effectively controlled. The reshaping of the 20-chute suppressor profile and the provision for a full length conical plug system were the principal means of controlling shock noise.

It is to be noted that at the cycle condition under consideration jet noise is the dominant component, and sideline noise is the most difficult noise goal to satisfy. Since the noise levels shown in Figures 18 and 19 were evaluated at FAR 36 Stage 2 measurement location, equivalent sideline noise increase when measured at Stage 3 noise measurement location was computed. The computation showed an increase of 2.84 dB. The computational algorithm and geometry of the Stages 2 and 3 measurement locations are shown in Figure 21. On the basis of above

Total Engine and Component Noise Levels of the Ejector Shroud Nozzle with the G21-V50C Engine. Figure 18.

Figure 20. Definition of $\theta(degrees)$ for Perceived Noise Level Directivities.

Approximate Perceived Noise Level Difference (APNdB) Between FAR 36 Stages 2 and 3 Sideline Measurement Locations. Figure 21.

noise computation. the nominal sideline noise including shock noise control and under Stage 3 rules would be 104.74 PNdB for the long ejector shroud (Ls=60 in) and 105.49 PNdB for the short ejector shroud (Ls=42.5 in). The computational algorithm for calculating the difference in noise between the long and short ejector is shown in Table 2.

Conceptual Design Results

One of the penalties of noise reduction is system weight increase due to engine oversizing; and so when a specific noise level has to be achieved, component weight by itself becomes an item of secondary importance. Weight becomes a discriminating factor only when two competing acoustic systems satisfy the same noise goal. For this reason the 20-chute nozzle, which can only satisfy Stage 2 noise, gets automatically eliminated, though it is lighter in weight compared to the ejector shroud. foregoing, the choice between the short and the long ejector designs becomes easier when consideration is given to the fact that the short ejector shroud cannot meet the Stage 3 rules, even under the "Noise Tradeoff" rules without upward resizing of the engine whereas the long ejector shroud could under the "Noise Tradeoff" rules. This, then, makes the long ejector shroud the better choice for the application intended and the 840 pounds increase becomes the cost of achieving .75 PNdB extra noise suppression.

The following table shows the attributes of both ejector nozzles at an engine size of 858 lb/sec airflow, and using the short ejector shroud as reference:

TABLE 2

TOGW TRADE EQUIVALENTS FOR PERFORMANCE. ENGINE WEIGHT AND NOISE

- - 1% Δ CFG (SUPERSONIC) = + 10,000 LBS TOGW
 - + 1% Δ ENGINE WEIGHT = + 1,700 LBS TOGW
 - 1 \triangle DB NOISE \approx + 5.000 LBS TOGW (20-CHUTE NOZZLE)
- NOISE SUPPRESSION POTENTIAL FOR LONG FLAP EJECTOR: LONGER SHROUD HAS MORE AREA AND THICKNESS FOR ACOUSTIC TREATMENT AND PACKING.

ADDITIONAL SUPPRESSION IS EVALUATED THUS

 Δ PNDB = 5 LOG (L2/L1) WHERE WHERE = L2 = 60 AND L1 = 42.5

L = THE LENGTH OF EJECTOR FLAP

 Δ PNDB = .75 DB

- BASELINE ENGINE WEIGHT = 13,150 LBS (GAS GENERATOR)
- BASELINE TOGW = 735,000 LBS

Item	Short Ejector Shroud	Long Ejector Shroud	Increment of Long Shroud Over Short
C _{FG}	.9817	.9743	0074 (75%)
Stage 3 Sideline Noise, PNdB	105.49	104.74	75
Engine Weight, Gas Generator + Ex- haust System, lbs	18,525	19,365	+840 (+4%)

Comparing the two ejector shroud noise levels to that shown for FAR 36. Stage 3. sideline, in Figure 8, one concludes that none of the ejector shrouds absolutely satisfies the Stage 3 rules. However, interpreting the rules within the broader context of "Noise Tradeoff" enables the long ejector shroud to satisfy the Stage 3 rules with the knowledge that the sideline noise is exceeded by less than 2 PNdB and that there is adequate margin for noise reduction at community and approach to offset the increase at the sideline. See page 28 for the noise trading rules. The foregoing concludes that the short ejector shroud cannot meet the Stage 3 rules under any conditions without upward resizing of engine and airplane in spite of performance and weight superiority; and the long ejector shroud, therefore, becomes the choice for full scale prototype development.

The question may, however, be asked if the short ejector flap could be brought into noise compliance by resizing the engine, but the fact remains that the ideal critical noise parameters (V_{mix} and V_R) have been "tailored" during the matching to achieve maximum coannular and 20-chute noise suppression, so without a massive engine and cycle redesign, the long flap ejector appears to be the most reasonable way to go. From Table 3, it can be concluded that the cost of the .75 PNdB noise reduction, due to the long flap ejector (relative to the short flap), is approximately 15,150 lbs.

TABLE 3

COMPARISON BETWEEN THE SHORT AND LONG EJECTOR SHROUDS SHOWING TOGW EQUIVALENT FOR .75 EPNDB REDUCTION IN LONG SHROUD

- REFERENCE SHORT EJECTOR SHROUD.
- LONG EJECTOR SHROUD TRADES:
 - .0075 \triangle CFG \simeq + 7,500 LBS IN TOGW
 - + 4.5% \triangle ENGINE WEIGHT = + 7,650 LBS IN TOGW
 - -.75 EPNDB = ?

COST OF .75 AEPNDB = 15,150 LBS IN TOGW.

6.0 MECHANICAL DESIGN

Design Approach

Three nozzle layouts were completed to develop operating modes, materials, actuation mechanisms, structures and weights of the exhaust systems. These were the baseline coannular, the 20-chute suppressor, and the ejector shroud nozzles shown in Figures 22 through 24 respectively. Figure 25 shows the ejector shroud in the supersonic cruise configuration. The 20-chute suppressor and the ejector shroud nozzles required successive increases in diameter to satisfy the aero/acoustic requirements. The addition of the 20-chute suppressor to the baseline coannular nozzle increased the outer diameter by 5% in order to match the suppressor radius ratio requirements. Likewise, the addition of the ejector shroud to the 20-chute suppressor necessitated increase in the outer diameter by 11% to allow structural strength without the weight and also provide thickness and volume for acoustic material packing.

As a result of these changes, plug truncation, shroud translations and engine mount locations were adjusted accordingly to match the area ratio requirements for an overall improvement in performance.

Exhaust System Design Results

The AST exhaust system is a high radius ratio plug nozzle with a Fixed Primary Nozzle Cowl and a translating center plug nozzle. A translating outer shroud adjusts the exit area ratio for high performance throughout the pressure ratio range. The outer shroud inner surface is contoured to match closely the primary throat area requirements at the more important operating points. The translating center plug nozzle exhausts the excess bypass airflow that cannot flow through the primary nozzle throat.

Figure 22. Coannular Nozzle.

Baseline Coannular 20-Chute Suppressor Nozzle Figure 23.

20-Chute Suppressor Ejector Shroud Nozzle (Takeoff Mode) Figure 24.

Figure 25. 20-Chute Suppressor Ejector Shroud Nozzle (Supersonic Cruise Mode)

During noise suppression takeoff, bypass flow is ducted from the outer fan passage through eight strut-ducts into the plug beam and then to the center plug nozzle. This arrangement along with the high radius ratio primary nozzle provides the characteristic inverted jet velocity profile co-annular suppression. Additional suppression is obtained by deploying 20 chutes in the outer stream during suppressed operation. Still higher suppression is obtained by shrouding the nozzle discharge with ejected ambient air and a mechanical shroud lined with sound absorbing material. The ejector shroud is attached to the aft end of the translating shroud. For unsuppressed operation, most of the bypass air is mixed with the core stream, the suppressor chutes are stowed in the nozzle plug outer surface, and the ejector inlet is closed for high internal performance. The ejector shroud is made of variable area flaps and seals so that the required expansion ratio for good performance can be met throughout the wide pressure ratio operating range.

The exhaust system includes a cascade type thrust reverser. The thrust reverser cascades are attached to the forward end of the translating outer shroud. When the shroud is fully extended, the cascades are exposed on the outside and inside and a shroud mounted door assembly is expanded to contact the fixed plug crown to block the flow through the primary nozzle. The cascades occupy three quarters of the circumference but may be positioned in the total circumference if the reverser discharge efflux can be controlled to prevent airframe impingement and engine reingestion. A low temperature rise augmentor is used in the exhaust system to provide augmented thrust during acceleration.

Translating Outer Shroud

The outer shroud is a cylindrically shaped fabrication made up of machined rings, sheet metal rolled rings and

honeycomb. The aft end is shaped to provide a path for ambient airflow ventilation of the backside of the suppressor chutes. Twelve reverser blocker doors are contained in a cavity near the middle of the cylinder. The thrust reverser cascade boxes are located near the forward end of the shroud. They occupy 270° of the circumference and can be arranged in any desired circumferential location to prevent exhaust gas impingement on the aircraft and/or engine hot gas reingestion. The forward end of the shroud supports the linkage which drives the reverser blocker doors. The inner liner of the shroud provides convective cooling for the shroud inner surface to the end of the liner and film cooling beyond the end of the liner. The aft cavity of the shroud contains the support and positioning system for the ejector shroud.

Ejector Shroud

The ejector shroud is composed of a flap support ring forming the aft surface of the ejector inlet and containing the flap actuators. 20 variable area flaps. 10 support beams and an actuating ring housed in the aft cavity of the translating outer shroud. The forward outer end of the flap support ring contains the seal for the ejector inlet in the inlet closed position. The inner surface of the support ring contains 20-chute inlet cavity fillers to provide a continuous inner flowpath when the inlet is closed. The flaps are conventional sheet metal fabrication and incorporate sound absorption panels on the inner surface of the flaps. The sound absorption panels are constructed similar to honeycomb with the chambers vented to the inner flowpath.

Outer Cowl

The outer cowl provides the outer flow surface between the aft end for the aircraft nacelle and the translating shroud. It also retains the cowl to shroud seal at the aft end and thus functions as the outer container wall for the bypass cooling air for the shroud liner.

Outer Structure

The outer structure is a cylindrical structure with a bulkhead at the forward end and a stiffening ring at the aft end. The outer forward end of the bulkhead has a step to provide for the nacelle-exhaust nozzle interface. The aft ring contains the inner shroud seal to separate the shroud cooling air from the main stream. Two sets of longitudinal tracks are contained in the cylindrical portion of the outer structure. One set of four tracks support the outer shroud. The other set of twelve tracks provide for positioning of the reverser block doors.

Strut Structure

The strut structure is composed of eight pairs of radial beams (slanted 60° to the engine centerline) joined by outer and inner circumferential rings. The forward outer ring is joined through vanes in the bypass stream to the bypass duct outer spacer ring. The supporting loads for the inner nozzle are thus transferred to the engine outer bypass duct through radial beams and strut sidewalls for the bypass air duct. Upper and lower cylindrical surfaces between struts form the boundary for the core engine airflow passage, and the upper surface support the VABI doors. This strut structure is encased with cooling air liners that blend with the turbine frame liner to form continuous struts from the turbine frame entrance to the bypass strut exit. A portion of the liner is sound absorbing material.

VABI Doors

Twenty-four Variable Area Bypass Injector doors in sets of three between each of the eight struts are hinged to the forward outer part of the strut structure. One power hinge per set of three doors maintains the VABI door position. The doors are conventional sheet metal structure with sound absorbing panels on the core flowpath side.

Outer Plug Structure

The outer plug structure is composed of welded sheet metal and machined rings to form the core flow inner flowpath. It is supported at the forward end by the strut structure aft inner ring. The aft end ring forms the outer flowpath of the inner nozzle. This structure also contains the suppressor chutes and their actuation mechanism.

Inner Plug Structure

The inner plug structure consists of a truss support attached at the forward end of the strut structure aft inner ring, a mid ring that supports an aft stiffened cylinder which in turn supports the four sets of guide rollers, and the actuator for the translating plug.

Translating Plug

The translating inner plug is composed of welded sheet metal and machined rings stiffened at the forward end with honeycomb and containing a honeycomb type sound absorption covering cone. Thus, the inner bypass flowpath contributes to the jet noise suppression. The inner plug is supported by four sets of guide tracks that engage the guide rollers on the plug structure.

Suppressor Chutes

Twenty suppressor chutes are mounted in the outer plug structure. Each chute is supported by a link and a set of two rollers engaging tracks attached to the plug. The chute construction can be sheet metal or cast. The 1.75 nozzle to base area ratio suppressor allows a lightweight simple stowed position arrangement that does not require a cover door and a cover door actuation system. The chutes are retracted into cavities on the

outer plug surface such that they blend with the plug outer contour to form the inner flowpath of the outer stream. Section drawings of the chutes stowed in the plug are shown in Figure 26 in Sections B-B and C-C. Section A-A shows a cut through the chute actuator, and Section E-E shows the plug blending aft of the stowed position chute. Section D-D shows the chutes in the deployed position.

Actuation

Six actuation systems are required for positioning the exhaust system components. Four synchronized rotary hydraulic motor driven ball-screw actuators are used to position the outer translating shroud for the suppressed and unsuppressed forward thrust modes and the reverse operating mode. Four similar actuators position the ejector shroud relative to the translating shroud. Twenty hydraulic piston actuators position the ejector flaps. Eight rotary hydraulic motors driving power hinges position the VABI doors. The inner plug is positioned by a single hydraulic piston actuator. Twenty rotary hydraulic motor driven ball-screw actuators are used to position the suppressor chutes. Alternate actuation methods such as air or hydraulic powered cable driven gear boxes for positioning the shroud, VABI doors and suppressor chutes are possible options. Future detailed trade studies outside this contract will provide the optimum choice.

Augmentor

The augmentor for the AST exhaust nozzle is a low ΔT burner, producing 600 to 1000°F temperature rise primarily for transonic acceleration. It consists of two flameholders, fuel spraybars and an ignitor. The flameholder is a molded ceramic "V" gutter. The spraybars are radial tubes supplied by a single fuel manifold.

Figure 26. Section Drawings of Chutes Stowed and Deployed

Figure 26. (Cont'd). Section Drawings of Chutes Stowed and Deployed.

Figure 26. (Cont'd). Section Drawings of Chutes Stowed and Deployed.

Operating Modes

Figure 27 shows the relative positions of the components in the major operating modes as describe below.

Suppressed Takeoff, Figure 27a

The suppressor chutes are deployed and the translating outer shroud is positioned to mate with the chute outer edges. The translating shroud forms the outer flowpath of the high pressure outer stream, and the outer nozzle throat is formed between chutes at their aft edges. The ejector shroud is translated aft relative to the translating shroud to enable ejector ambient air induction and allow mixing of ambient air and the outer stream discharge from the suppressor chutes. The ejector flaps are positioned to match the full expansion area requirement of the mixed ambient air, outer stream and inner stream. Most of the bypass air flows from the bypass duct through the eight struts to the inner annulus and then exhausts through the open-positioned inner plug nozzle. Some of the bypass flow passes through the twenty-four Variable Area Bypass Injector (VABI) doors and is mixed with core flow. This feature allows the engine to be operated efficiently with the limited variation in the outer nozzle throat area.

Subsonic Cruise, Figure 27b

The suppressor chutes are in the stowed position. The outer shroud to be positioned to match the throat area, and the ejector inlet is closed. The ejector flaps are rotated to match the full expansion area of the outer and inner stream mixture.

a - Takeoff

b - Subsonic Cruise

c - Transonic Acceleration

Figure 27. Ejector Shroud Flow Passages at Various Modes of Operation.

d - Supersonic Cruise

Figure 27. (Cont'd). Ejector Shroud Flow Passages at Various Modes of Operation.

Acceleration, Figure 27c

The suppressor chutes are in the stowed position. The outer shroud is positioned to match the throat area, and the ejector shroud is positioned in the forward (closed ambient inlet) position relative to the translating shroud. The trailing edges of the ejector flaps are positioned to match the full expansion area of the outer and inner stream mixture. The flap positions vary from partially closed to fully open as the nozzle pressure ratio increases during the climb/acceleration portion of the flight profile. The low temperature rise (600-1000°) augmentor is operating to provide the required climb/acceleration thrust. The bypass airflow is regulated by the VABI and the inner plug nozzle to match the total airflow requirements consistent with the outer nozzle throat area. Most of the bypass air is mixed with the outer stream for high internal performance. Thus, the inner nozzle is nearly closed.

Supersonic Cruise, Figure 27d

The suppressor chutes are in the stowed position. The outer shroud is positioned to match the cruise throat area. The ejector inlet is closed, and the ejector flaps are positioned fully open to minimize base drag and optimize internal expansion area requirements for high supersonic performance. The bypass air is mixed with the core stream for highest internal performance, and the translating center plug nozzle is closed.

Reverser Thrust, Figure 27e

The suppressor chutes are in the stowed position. The outer shroud is fully extended to expose the reverser cascades to the outer stream flowpath and the ambient air. In this position blocker doors are deployed from the shroud at the plug crown to divert the outer stream to the cascades. The discharge from the

reverser cascades is controlled by cascade circumferential location and cascade vane orientation to prevent aircraft impingement and engine reingestion. The ejector is in the closed inlet position, and the ejector flaps are near closed, matching the approach area position. The center plug is closed, and VABI doors are open to mix the bypass air with the outer stream so that most of the engine airflow is utilized for reverse thrust. Tables 4 through 6 show the Cycle Sizing Data, Exhaust System Design Parameters and Actuation Systems respectively.

Exhaust System Materials Results

Advanced materials and processes that will permit use of better materials are continuously monitored for application to products such as the AST exhaust system. For high strength to density ratios at intermediate temperatures, the Titanium Aluminide materials (TiAl and $Ti_{3}Al$) appear to be very promising. These materials would be applied to the outer shroud and inner plug components. At higher temperatures, MA956 and the Rene' series of nickel base alloy would be used. MA956 is expected to be an improved liner material replacing Hastalloy X and HS188. The Rapid Solidification Plasma Deposition (RSPD) manufacturing approach is expected to broaden the application of the Rene' superalloys such as R120 and R125 from casting and forgings to sheet metal forms of construction, thus increasing the strength to weight ratio and temperature capabilities of sheet metal components now fabricated with 1718 or R41. These superalloys will be applied to the structure outer plug, ejector structure and ejector flaps. For very high temperatures, ceramics and Carbon-Carbon are promising materials. Silicon ceramic is applied to the flameholder and oxidation inhibited Carbon-Carbon is applied to the sound absorption panels on the ejector flaps and inner plug surface. These materials along with the gas pressures and temperatures are shown in Figure 28.

TABLE 4 CYCLE SIZING DATA

	COANNULAR	20 CHUTE EJECTOR	EJECTOR
A8 Rotation, Square Inches A8 Supersonic Cruise, Square Inches A8 Hax, Square Inches A8 Min, Square Inches	1135 1291 1450 1110	1275 1291 1450 1110	1275 1291 1450 1110
A88 Rotation, Square Inches A88 Supersonic Cruise, Square Inches A88 Max, Square Inches	247 5 500	248 5 400	248 400
A9, Square Inches A9, Flaps Open, Square Inches A9, Flaps Closed, Square Inches	4112	4592	5505 3097
Ambient Inlet Aero, Square Inches		\$ 8 8	1220
TB, Max Augmented, Degrees Rankine	2360	2360	2360

TABLE 5 EXHAUST SYSTEM DESIGN PARAMETERS

	COANNULAR 20 CHUTE 20 CHUTE BASE + EJECTOR	20 CHUTE BASE	20 CHUTE + EJECTOR		COANNULAR 20 CHUTE 20 CHUTE BASE BASE + EJECTOR	20 CHUTE Base	20 CAUTE + EJECTOR
M0721 F				SUPPRESSOR			
Max Diameter, Inches	77.44	86.98	90.86	Radius Ratio (R9/throat inside	.856	711.	711.
Shroud Exit Diameter Dg. Inches	72.36	76.46	76.46	radius)			
Plug Angle, Degrees	15	15	15	Area Ratio (base area/throat	1:0	1.75	1.75
No. of Struts	•	~	•	2010)			
				Chute Depth/Width Ratio		1.0	1.0
Mount, Inches	179.5	181.6	181.6	Chute liner Width/Outer	•	711.	
Length, Engine Mount to A/C	11.74	12.29	29.41	Width Ratio			
Interface				Chute Forward Edge Angle Degrees	:	7.5	7.0
Inner Plug Exit Diameter D69, Inches	44.72	47.26	47.26	No. of Chutes	•	2	20
THRUST REVERSER				EJECTOR			
Cascade Exit Length, Inches	12.60	12.05	10.73	Flap Inside Diameter, Open,	•	:	83.76
Discharge Circumstrates, vegices		3	}				
				Flap Inside Diameter, Closed Inches	:	•	62.80
				No. of Flaps	•		20

IABLE 6
ACTUATION SYSTEMS

	TYPE		QUANTITY	
		COANNULAR 20 CHUTE EJECTOR	20 CHUTE	EJECTOR
Translating Shroud	Hydraulic Screw Jack	+	+	+
VABI Door	Rotary Hydraulic	∞	89	©
Translating Inner Plug	Hydraulic Cylinder	-	-	-
Suppressor Chute	Hydraulic Screw Jack	•	20	2
Ejector Translation	Hydraulic Screw Jack	,		~
Ejector Flaps	Hydraulic Cylinder	•	•	92
		-		

M Alt Ft.	.3 0.0	1.2 34,500	2.32 53,540	s/sec		RSPD R120		COATED CARBON		CYST LI VI
	TAKEOFF-ROTATION	ACCELERATION - CLIMB	SUPERSONIC CRUISE	P_t - PSIA; T_t = °F; W = 1bs/sec	T RSPD 7 7 7 R120		CAST			Pt Tt W TilN 27.1 340 8
				g.	42.9 1385 851 20.0 1800 409 A1 20.9 1435 400 Pt		T 14A1 T 1 14A1 1 1385 851	1435 MA 959		T _t W T1A1 954 209 348 18 640 8
KSPV – Kapld Solldlfleation Flasma Deposition Tial – Titanium Aluminida	יייייייייייייייייייייייייייייייייייייי	מווכסוו כמו מומכ		1 L	50.4 384 37 27.2 345 79 37.3 640 150 CAST TIA	m. 1	MA 959 TIAI	T _t W 20.	316	CAST 18125 P. 1 18260 R139 27.1 87.3
KSPU - Kapi	71 - 1VI - 11C.	dillos i c				37.3 640 163 T1A1				CAST R125 R125 RSP0 JOINED

Figure 28. Ejector Shroud Nozzle Materials.

Exhaust System Weight Results

The preliminary weight estimate of the ejector exhaust system is 6.215 lbs. This is an increase of 1.910 lbs. relative to the 20-chute suppressor design and 2.456 lbs. relative to the coannular nozzle. The nozzles studied for this report were based on a 15° plug half-angle. The lower plug angle not only increases the plug length but also increases the outer shroud travel which in turn increases the length of the forward structure of the nozzle. All of these increase the weight of the nozzle. The increase in weight of the 20-chute with the 15° plug relative to one with an 18° plug is 345 lbs. Exhaust System Weight Summary is shown in Table 7.

TABLE Z EXHAUST SYSTEM WEIGHT SUMMARY

7.0 MISSION ANALYSIS

Methodology

Aircraft mission performance is a function of aircraft system weight, payload, trip fuel, acoustics and installed performance; hence, the effect of these subsystems on TOGW was determined through the mission analysis process to define performance versus TOGW tradeoffs.

Using the performance data generated in the conceptual design section the mission analysis was performed for the GE21-V50C engine cycle. The mission analysis computer program was set up to represent the aerodynamic and weight characteristics of the NASA AST-2 airplane shown in Figure 29 and the AST Mission B profile shown in Figure 30, which includes a 1,111 km (600 nmi) subsonic cruise segment and a supersonic cruise at Mach 2.32 on a hot (+8°C) day.

Engine performance data was generated for key mission flight conditions (supersonic cruise, subsonic cruise, climb, acceleration, takeoff and landing) for the engine cycle. The engine cycle was then run in the mission for a range of engine takeoff airflow sizes. The mission range was held constant at 7.408 km (4.000 nmi), and the TOGW varied with engine airflow size. Curves of TOGW versus engine takeoff airflow size (W/0/8) for a 7.408 km (4.000 nmi) mission "B" were generated as shown in Figure 31. These curves were generated for the three exhaust systems, namely, the ejector shroud, the 20-chute suppressor and the coannular baseline nozzles. The curves correlate airplane TOGW against engine size without regard for noise.

Figure 29. NASA Reference Aircraft Configuration

Figure 30. AST Mission

Figure 31. AST Mission "B" Performance, Airflow Versus TOGW.

Engine and Noise Sizing for Takeoff

The sizing analysis for engine and noise at takeoff conditions included the following subtasks:

- Generation of TOGW vs. airflow characteristics for the Ejector Shroud, 20-chute suppressor and the coannular unsuppressed nozzles to meet mission requirements.
- Engine sizing for takeoff distance of specified field length.
- Aircraft/engine noise estimation using noise levels (per FAR 36).

Figure 32 describes the flow of work and the interrelation of the subtasks.

Engine Cycle/Acoustic Data

As indicated earlier in the text, there are three types of noise suppression schemes as follows:

- Coannular noise suppression
- Multi-chute (20) mechanical noise supppressors
- Acoustically treated ejector shroud.

The noise suppression effectiveness was evaluated individually and the net suppression arrived at through an acoustic addition algorithm depending on the combinations to be evaluated.

Acoustic data generated by previous FAA study (Reference 5) were used to estimate coannular suppression noise level (EPNdB) versus mass averaged exhaust jet velocities (V_{mix}) and exhaust jet velocity ratio ($V_R = V_{jcold} / V_{jhot}$). These ideal critical noise parameters, V_{mix} and V_R), were "tailored" during cycle matching to achieve a maximum coannular noise suppression.

Figure 32. AST Mission Analysis Method.

Figure 33. Predicted Noise Versus Aircraft TOGW.

The results produced two plots:

- Variation of TOGW with V_{mix}
- ullet Variation of noise (FAR 36 Stage 3) with V_{mix} .

Eliminating the independent variable V_{mix} produced a crossplot of TOGW [for 7,408 km (4,000 nmi) range] versus traded noise. Superimposing the noise suppression due to the 20-chute mechanical suppressor, and further, that due to the acoustically treated ejector shroud on the coannular suppression produced TOGW versus noise for various degrees of noise suppression as shown in Figure 33. There are two curves for the Ejector Shroud nozzle, one with and one without shock cell control. The superiority of the ejector nozzle concept at low noise levels is clearly evident from this plot.

The combination of the TOGW versus takeoff airflow (1b/sec) and noise versus airflow plot produced a third plot. Figure 34, which enables any two of the variables. TOGW, takeoff airflow and noise to be determined, given the noise level and the type of nozzle. For example, to find the commensurate airflow and TOGW for an ejector shroud nozzle, no shock cell noise control at 104.7 EPNdB noise level, enter 104.7 on the noise level axis to determine approximately 860 lb/sec airflow and about 765,000 lbs TOGW. To achieve equivalent noise reduction using the 20-chute suppressor will require 862,000 lbs TOGW.

The above curves were generated by assuming the following:

- Installed performance at levels estimated in conceptual design phase.
- 2. Fixed pay load
- 3. Aircraft range of 7,408 km (4,000 nmi).

Figure 34. AST Mission Analysis Results for the Coannular, 20-Chute and Ejector Shroud Exhaust Systems.

Table 8 summarizes Mission Analysis results on the basis of installed performance estimated during the conceptual design phase. The above results were modified to reflect test performance after the test program which follows.

TABLE 8

PRELIMINARY MISSION ANALYSIS RESULTS SUMMARY SHOWING COMMENSURATE AIRFLOW AND TOGW NECESSARY TO SATISFY A NOISE GOAL OF 103 (TRADED) USING PREDICTED PERFORMANCE DATA

<u>NOZZLE</u>	SIDELINE EPNL _{dB}	AIRFLOW 1b/sec	TOGW 1bs.
Ejector Shroud	104.74	8 58	765,000
20-Chute Suppressor	104.74	1,270	862,000
Coannular	104.74	Not Realistically Achievable	Not Realistically Achievable

8.0 TEST FACILITY DESCRIPTION

The tests described in this report were run in a static test stand and a transonic wind tunnel at the FluiDyne Medicine Lake Aerodynamic Laboratory.

8.1 STATIC THRUST STAND

The static thrust stand is the static (M = 0) wind tunnel setup and checkout facility. It consists of the piping which supplies dried, heated air from the 2,500 psia air storage systems to the sting-mounted flow-through force balance. This facility, shown schematically in Figure 35a, allows static checkout of the model balance, instrumentation and data acquistion systems before the sting is installed in the wind tunnel. Proper performance of this facility was verified by testing a standard ASME nozzle.

Nozzle pressure ratios up to 30 were achieved by enclosing the model in a 48-inch diameter test cabin equipped with a second-throat diffuser. This arrangement operated as a no-flow ejector whereby the model provided altitude simulation through the pumping effect of its own exhaust flow. Ambient pressure (nozzle exhaust pressure) was calculated as the average of 16 sidewall static taps. The 16 taps showed essentially constant pressure in the test cabin. Circulation velocities were measured using fore— and aft-facing total pressure probes and were found to be low (less than 50 ft/sec). Test cell interference effects were found to be negligible for most configurations. Test cabin bleed ports were provided as a means of stabilizing cabin pressure.

8.2 TRANSONIC WIND TUNNEL

The transonic wind tunnel has a 66 in. \times 66 in. slotted-wall test section, and Figure 35b shows the tunnel

a. FluiDyne Static Thrust Stand

b. FluiDyne $5-1/2 \times 5-1/2$ foot Transonic Wind Tunnel

FluiDyne Test Facility Schematics.

Figure 35.

installation schematic. Figure 36 shows an overall view of the tunnel. This is an induction-type tunnel in which atmospheric air is drawn through the test section using air ejectors to reduce the downstream pressure. The required test section Mach number is obtained by controlling the mass flow to the ejectors. Water condensation in the test section is avoided by burning propane upstream of the inlet.

Tunnel Mach numbers for the tests spanned Mach Numbers M = .35, .45 and .90.

The exhaust nozzle model and the force balance system were supported in the test cell by a cantilevered 10-inch diameter tube. The model support tube consists of two concentric pipes, with the dried and heated model air (obtained from a 2,500 psi storage system) being supplied to the model through the inner pipe. Thinning of the boundary layer on the support tube was achieved by using the facility vacuum system (33,500 ft³) to remove the low energy air adjacent to the tube through a perforated section upstream of the test model.

8.3 FORCE BALANCE SYSTEM

Performance data taken in the static and wind tunnel test stands were obtained by force measurement using a dual-passage flow-through strain-gage force balance system. This system consists of two choked ASME metering nozzles, two flexible seals, and an axial force flexure. Figure 37 shows a schematic of the in-flight force balance system, test model assembly, and station nomenclature.

The force balance calibration determined the output characteristics of both the force balance flexure and the two elastic seals. The balance was first calibrated with the seals unpressurized to determine the "straight pull" calibration coefficient.

Figure 36. FluiDyne Transonic Wind Tunnel

Figure 37. Station Nomenclature, Suppressor and Ejector Nozzles

Inner nozzle charging station

Inner nozzle throat station

88 89

87

Inner nozzle discharge

Outer nozzle throat station

Outer nozzle discharge

 K_2 . The balance interior was then pressurized to produce seal pressure differentials. ΔP . This pressure loading produces a downstream force on the balance. Additional loads (W_X) are applied to decrease or increase the net load to simulate actual test conditions of load and ΔP .

A summation of forces at the seal station indicates the axial balance force:

$$H_0 = C_2 K_2 = \Delta P_2 (A_2 + \Delta A_2) + \Delta P_6 (A_6 + \Delta A_6) + W_x.$$

Since ΔP acts upon each of two identical seals in this dual nozzle system. ΔA_2 is assumed equal to ΔA_6 when both seals are exposed to the same differential pressure and balance force (balance deflection) and an overall seal effective area increase (ΔA) is defined:

$$\Delta A = \Delta A_2 + \Delta A_6 = \frac{C_2 K_2 - W_x - \Delta P (A_2 + A_6)}{\Delta P}$$

 ΔA was then curve-fit as a function of H_O and ΔP so that a correction term could be included in the balance force calculation. When used to reduce test data, ΔA for each seal was defined by H_O and the ΔP at each seal.

Additional calibrations were performed for single passage tests. For these cases, the seal effective area increase was defined:

$$\Delta A_2 = \frac{C_2 K_2 - W_x - \Delta P_2 A_2}{\Delta P_2}$$

$$\Delta A_6 = \frac{C_2 K_2 - W_x - \Delta P_6 A_6}{\Delta P_6}$$

8.4 INSTRUMENTATION AND DATA ACQUISITION

The following instrumentation and data acquisition systems were used for these tests:

<u>Measurement</u> <u>Instrumentation</u> Acquisition Balance force, H Strain-gage force balance Vidar IDVM Facility temperatures Shielded I-C thermocouple Facility meter. P_{t_5} 0-1,000 psi Statham transducer Facility meter, Pt 0-2,000 psi Statham transducer Facility seal. P6 0-100 psi Statham transducer Facility seal. P₂ 0-50 psi Statham transducer Balance cavity. P 0-30 psi multi-port transducer PSI* Unit Wind tunnel and test cabin ambient, Pa Model surface statics Model charging station 0-100 psi multi-port transducers *Pressure Systems, Inc.

8.5 OPERATIONAL PROCEDURES

The required nozzle flow was set by regulating the total air flow to obtain the desired $^{P}t_{8}$, while regulating a motorized flow-splitter to obtain the desired $^{P}t_{87}$. The external flow Mach number in the wind tunnel was set using the tunnel air ejectors, the boundary layer suction was adjusted with sting vacuum control, and the upstream tunnel propane burners were ignited to produce a desired freestream air temperature rise to prevent test section water vapor condensation. After the flow conditions and instrumentation systems stabilized, the outputs from the force balance, transducers and thermocouples were recorded. All systems were then shut down and recorder outputs were labelled and filed.

For tests performed in the static thrust test cabin, ambient pressure (and therefore model pressure ratio) was controlled by model mass flow rate. Test cabin in-bleed was used to provide fine tuning of cabin pressure for supersonic cruise configurations.

9.0 MODEL DESCRIPTION

Scale models representing the full scale baseline coannular. 20-chute suppressor, and the ejector shroud exhaust systems were tested. Each of these models consisted of several configurations which simulated nozzle operating modes of interest. The model support weldment, shown (hatched) in Figure 37, forms the outer passage charging station. The coaxial inner passage charging station for the inner plug is supplied by a separately metered flow. This charging station hardware is common to all the models tested. The outer and inner passage charging stations were instrumented with 4 ten-element and 2 five-element area-weighted total pressure rakes, respectively, with inner and outer wall static pressure taps located at each rake position.

The coannular plug system is common to all models and configurations. The inner nozzle throat area was adjusted by translating the center plug through the use of spacers. For configurations with the inner passage completely closed, the inner passage flow conditioning screens were replaced with a blank-off plate to avoid pressurizing the inner passage flexible seal. In this condition flow was delivered to the model through the outer passage meter only. Temperature data was acquired by calculating the Joule-Thomson temperature drop (adiabatic throttling) from the meter to the charging station. All interchangeable model components featured quick-disconnect O-ring type pressure instrumentation.

Static pressure taps were installed inlayed on outer surfaces of the nacelle and outer cowl except where static testing only was required. Static taps were also installed inlayed on the main plug, center plug, or surfaces of the inner and outer passages through the throat regions to the trailing edges of the cowls. Base taps were installed on all cowls and suppressor

chutes, and ejector shroud translating beams were instrumented with pressure taps as well. Table 9 summarizes test model instrumentation.

9.1 BASELINE COANNULAR MODEL

The baseline coannular scale model flowpaths were based on full scale coannular (unsuppressed) nozzle with a 15° coannular plug system. Spool pieces were used to vary shroud positions to set throat and exit areas to simulate takeoff, subsonic and supersonic cruise modes. Figure 38 shows the coannular (unsuppressed) nozzle test configurations, and Figure 39 shows the coannular baseline nozzle dimensional information. Full scale details were duplicated to the greatest extent possible with the exception of introduction of additional model parting lines to facilitate configuration change over and reduce the likelihood of damage during assembly and disassembly. Typical coannular model assembly methods are shown in Figure 40. Coannular baseline configurations tested are shown in Table 10. The four configurations were tested under varying conditions of tunnel Mach number, nozzle bypass ratio (A_{88}/A_8) and outer and inner pressure ratios $(\lambda_{8}, \lambda_{88})$, respectively. Photographs of two coannular baseline nozzle configurations, supersonic and subsonic cruise modes, are shown in Figure 41.

9.2 BASELINE 20-CHUTE SUPPRESSOR MODEL

The design of the scale model flowpaths was based on a full scale 20-chute suppressor nozzle with a 15° coannular plug system. Spool pieces were used to vary shroud positions to set nozzle throat and exit areas to simulate takeoff, subsonic cruise and supersonic cruise modes. To avoid the complexity of suppressor chute actuating mechanisms, two different shroud pieces emulating the chute "deployed" and "stowed" modes were used. The "chute-stowed" shroud included shroud tip scalloped features left

TABLE 9

INSTRUMENTATION SUMMARY

NOZZLE TYPE	OPERATING CONFIGURATION	QTY. OF PS TAPS
COANNULAR BASELINE	TAKEOFF SUBSONIC SUPERSONIC	53 53 43
20 - CHUTE SUPPRESSOR	TAKEOFF SUBSONIC CRUISE SUPERSONIC	61 53 43
EJECTOR SHROUD	TAKEOFF SUBSONIC TRANSONIC SUPERSONIC	65 60 47 47

OUTER PASSAGE - 4 TEN-ELEMENT PT RAKES 4 PS TAPS INSTRUMENTATION:

COMMON

INNER PASSAGE - 2 FIVE-ELEMENT PT RAKES 6 PS TAPS

- JOULE-THOMPSON METERS **MEA SUREMENT TEMPERATURE**

TABLE 10 NOZZLE TEST CONFIGURATIONS AND VARIABLES

	OPERATING MODE	A INNER!AOUTER	SUPPRESSOR FEATURES	NPR
	TAKEOFF M=0,.35,.45	0.2	NONE	2.2 - 3.5
COANNULAR BASELINE	SUBSONIC CRUISE M=.9	0 .13	NONE	2.5 - 4.5
·	SUPERSONIC CRUISE M=2,32 (STATIC)	0		14 - 22
	TAKEOFF M=0, . 35, . 45	0 .13 .2	DEPLOYED DEPLOYED DEPLOYED	2.2 - 3.5
20-CHUTE SUPPRESSOR	SUBSONIC CRUISE M=.9	0 .13	STOWED STOWED	2.5 - 4.5
	SUPERSONIC CRUISE M=2,32 (STATIC)	0	STOWED	14 - 22

Figure 38. Coannular (Nozzle) Test Configurations

Model Scale Factor =

Figure 39. Coannular Baseline Nozzle Dimensional Information

Figure 40. Coannular Baseline and 20-Chute Suppressor Model Assembly Methods

SUBSONIC CRUISE CONFIGURATION

INNER PASSAGE OPEN

SUPERSONIC CRUISE CONFIGURATION

INNER PASSAGE CLOSED

Figure 41. Coannular Baseline Model Photographs

by chute retraction, and commensurately, a ring component emulating "stowed chutes" was installed on the plug surface. vided means for determining the effect of the stowed chutes on performance. Typical 20-chute model assembly methods are shown in Figure 40. Figure 42 shows the 20-chute suppressor test configurations, and Figures 43 and 44 show 20-chute nozzle dimensional information and chute profile respectively. radius-ratio requirement of the 20-chute nozzle for takeoff noise suppression required larger nacelle radius than the coannular; therefore. different scale factors had to be applied to enable the models to share a common plug system. The six configurations tested under varying conditions of tunnel Mach number, nozzle bypass ratio (A_{88}/A_8) , and outer and inner nozzle pressure ratios $(\lambda_8, \lambda_{88})$ are shown in Table 1. Photographs of the 20-chute suppressor nozzle in various operating modes are shown in Figures 45 and 46.

9.3 EJECTOR SHROUD MODEL

The scale model flowpaths were based on full scale ejector shroud nozzle design with a 15° coannular plug system. Different ejector pieces were used to vary nozzle throat and exit areas to simulate takeoff, subsonic cruise, transonic acceleration, and supersonic cruise modes. Additional parting lines were introduced to facilitate model assembly and reduce the likelihood of damage.

The ejector shroud nozzle used the 20-chute suppressor nozzle as the basis for development. To accommodate the ejector shroud translation and flap rotation provisions, new forward shroud pieces had to be created. In so doing the ejector shroud nozzle nacelle diameter was increased relative to the 20-chute suppressor nozzle, but the chute deployment and stowage provisions remained intact along with the 15° coannular plug system.

Figure 42. 20-Chute Suppressor Test Configurations

Rmax	11	40.49 in.	in.		
Rpm/Rmax	II	.823	R9/Rmax	li	.944
Rpi/Rmax	tl	.584			
X1/Rmax	tt	.574			
X2/Rmax	H	.443			
X3/Rmax	11	606.			
Model Scale Factor	le Fa	actor =	.1235		

Figure 43. 20-Chute Suppressor Nozzle Dimensional Information

Figure 44. 20-Chute Suppressor Profile

TAKEOFF CONFIGURATION

CHUTES DEPLOYED

SUBSONIC CRUISE CONFIGURATION
CHUTES STOWED
INNER PASSAGE OPEN

Figure 45. 20-Chute Suppressor Nozzle Model Photographs

CHUTES STOWED

ighal page is Poor quality

SUPERSONIC CRUISE CONFIGURATION NO SUPPRESSOR FEATURES ON PLUG; INNER PASSAGE CLOSED

Figure 46. 20-Chute Suppressor Nozzle Model Photographs

Figure 47. Ejector Shroud Test Configurations Take-Off Mode

The primary reason for the ejector shroud nozzle development is the noise abatement potential associated with it, but also inherent in the ejector design feature is the thrust augmentation benefits available during takeoff. Maximum thrust augmentation is realized at an optimum setback where setback is defined as the distance between ejector leading edge and nozzle shroud boattail faces as shown in Figure 47. To identify the optimum setback position experimentally, five setback provisions were made available, which invariably determined ejector inlet area and hence, the air induction characteristics. During subsonic cruise, transonic acceleration and supersonic cruise modes, the ejector setback is set to zero (equivalent to zero ejector inlet area); the suppressor is stowed and the shroud boattail scalloped cavities left by the stowed chute suppressors are filled by scalloped cavity fillers mounted on ejector leading edge face to provide a smooth path for gas expansion. Figures 47 and 48 show ejector nozzle test configurations, and Figures 49 through 52 show ejector nozzle model dimensional information. Since ejector shroud flap hinges for rotation purposes were not duplicated in the models, shroud model pieces representing the different flight regimes were made of interchangeable solid pieces. The thirteen configurations were tested under varying conditions of tunnel Mach number nozzle bypass ratio (A_{88}/A_8) , and outer and inner nozzle pressure ratio (λ_8 , λ_{88}) are shown in Table 11. Ejector nozzle model assembly methods are shown in Figure 53, and model photographs of the various Ejector Nozzle Configurations are shown in Figures 54 and 55.

Ejector Shroud Test Configurations: Subsonic, Transonic and Supersonic Modes Figure 48.

Ejector Shroud Nozzle Dimensional Information; Takeoff Configuration Figure 49.

Figure 50. Ejector Shroud Nozzle Dimensional Information; Subsonic Cruise Configuration

ъ.						.1235
45.0 in.	_	10	σ.	· •	6	11
45.	.741	.525	.893	1.113	.279	actor
11	11	II	H	11	II	le F
Rmax	Rpm/Rmax	Rpi/Rmax	R9/Rmax	Ls/Rmax	$^{ m T}/{ m Rmax}$	Model Scale Factor

Figure 51. Ejector Shroud Nozzle Dimensional Information; Supersonic Cruise Configuration

Figure 52. Ejector Shroud Nozzle Dimensional Information; Transonic Acceleration Configuration

IABLE 11
EJECTOR NOZZLE TEST CONFIGURATIONS & VARIABLES

NPR	2.2 - 3.5	2.5 - 4.5	6 - 6	14 - 22
EJECTOR SETBACK FS (IN)	4 8 12 16 18			
SUPPRESSOR FEATURES	DEPLOYED DEPLOYED	STOWED	STOWED SMOOTH PLUG	STOWED SMOOTH PLUG
A INNER!AOUTER	2 . → 2.	0 .13	0	0
OPERATING MODE	TAKEOFF M=0,.35,.45	SUBSONIC CRUISE M=.9	TRANSONIC CRUISE M=1.2 (STATIC)	SUPERSONIC CRUISE M=2.32 (STATIC)

Figure 53. Ejector Shroud Nozzle Model Assembly Methods

TAKEOFF CONFIGURATION
EJECTOR INLET OPEN
CHUTES DEPLOYED

TAKEOFF CONFIGURATION VIEW LOOKING AFT

Figure 54. Ejector Shroud Nozzle Model Photographs

ORIGINAL PAGE IS OF POOR QUALITY

SUPERSONIC CRUISE CONFIGURATION EJECTOR INLET CLOSED

CHUTES STOWED

SUBSONIC CRUISE CONFIGURATION

EJECTOR INLET CLOSED

CHUTES STOWED

Ejector Shroud Nozzle Model Photographs Figure 55.

10.0 FACILITY DATA REDUCTION PROCEDURES

The following subsections describe facility data reduction procedures (flow rate and thrust measurements) as they apply to the coannular, suppressor and ejector shroud model tests performed in the static stand and in the wind tunnel. Model station notation is defined in Figure 37.

10.1 FLOW RATES

The mass flow rates through the test nozzles were determined using two choked ASME long-radius metering nozzles. The inner nozzle flow rate was determined at Station 1, and the outer nozzle flow rate was determined at Station 5, using the following equations.

$$W_1 = W_{88} = K_1^{C_{D_1}} A_1^{P_{t_1}} / \sqrt{T_{t_1}}$$
 $W_5 = W_8 = K_5^{C_{D_5}} A_5^{P_{t_5}} / \sqrt{T_{t_5}}$

Total temperatures were measured at the meter charging stations and the critical flow factor, K, was calculated as a function of total pressure and total temperature using an equation of the form

$$K = A_1(T_t + T_t^2) + B_1(T_t + T_t^2)P_t + C_1(T_t + T_t^2)P_t^2$$

or
$$K=A+BP_t+CP_t^2$$

where $A=A_1(T_t+T_t^2)$, $B=B_1(T_t+T_t^2)$, and $C=C_1(T_t+T_t^2)$ and A_1 , B_1 , and C_1 are coefficients of the polynomial. This equation was obtained by curve-fitting data from Reference 4 and applies for $0<P_t<1000$ psia and $460<T_t<560$ °R.

Meter discharge coefficients were calculated as a function of the throat Reynolds number, using a semi-empirical equation

$$C_{D}^{=1-0.184} RN^{-0.2}$$

Meter geometric throat areas, A_1 and A_5 , were 1.0790 and 1.0658 in 2, respectively, and the total pressure for each meter was calculated using the measured static pressure and the isentropic pressure ratio for the measured critical area ratio at the meter charging station. See Figure 37.

Therefore,

$$P_{t_1} = P_{1_c}/.9920$$
 and $P_{t_5} = P_{5_c}/.9920$

Calculated flow rates (lb_m/sec) for tests with the flow-through balance system were in the ranges shown:

12 <
$$W_5$$
 < 23; 0 < W_1 < 5 Wind tunnel tests 10 < W_5 < 23; 0 < W_1 < 5 Static stand tests

10.2 THRUST MEASUREMENT: DUAL FLOW

Static thrust of nozzle is defined as the axial momentum of the exhuast flow, plus the excess of exit pressure over ambient pressure times the exit area.

$$H=mV_e+(P_e-P_a)A_e$$

For wind tunnel tests, the measured thrust included form and friction drag on the external model surfaces. The actual thrust for the dual flow model tests was determined by applying the momentum equation to the control volume shown in Figure 37. The analysis of axial forces applied to the control volume included

entering stream thrusts (F_1 and F_5), the axial balance force (H_0), various pressure-area terms and the axial exit stream thrust ($H + P_a A_e$). Summing axial forces,

$$^{H=F_1+F_5+P_2(A_2+\Delta A_2-A_1)+P_6(A_6+\Delta A_6-A_5)+P_4(A_4-A_2-\Delta A_2-A_6-\Delta A_6)-P_A^A_4^H}$$

where p_4 is the pressure inside the cavity surrounding the seal and load cell, and A_4 , the forward nacelle cross-sectional area at the support tube metric break station. A_4 ranged between 78.54 in 2 (20-chute) and 97.05 in 2 (ejector shroud). External nozzle boattail drag forces were accounted for in the above equation when models were run in the wind tunnel and are included in the H_0 term.

 P_a is the ambient pressure surrounding the model. For static stand tests P_4 , the balance cavity pressure, is equal to the ambient pressure; and for static tests exhausting to atmosphere, P_a is barometric pressure. Ambient pressure for static tests in the test cabin is the average of test cell static pressure tap readings. Measured wind tunnel plenum pressures were corrected as a function of test section Mach number to determine P_a for wind-on tests.

The stream thrust (F_1 and F_5) is the exit stream thrust of the choked long-radius ASME nozzle and is calculated using a semi-empirical expression at the critical pressure ratio of 1.8929 as shown below:

$$F = GP_t (1 + \gamma C_D C_T) (P * / P_t)$$

The factor G corrects the stream thrust (calculated using ideal gas constants; $\gamma=1.4$ and $P*/P_t=.52828$) for real gas effects.

Therefore.

$$G=1.00011+AP_t+BP_t^2-C(T_t-560)P_t^{1.9477}$$

where $A = .601347 \times 10^{-5}$ $B = 1.50556 \times 10^{-9}$ $C = 2.2751 \times 10^{-11}$

This equation was obtained by curve-fitting data from Reference 7 and applies for $460<T_t<560$ °R and $0<P_t<1000$ psia. Thrust coefficients CT_1 and CT_5 were thus calculated as follows:

$$C_{T}=1-0.109 \text{ RN}^{-0.2}$$

10.3 THRUST MEASUREMENTS: SINGLE PASSAGE

For single meter, single passage configurations, the redundant meter was blanked off at the meter charging station. Therefore, for outer passage only tests, Station 1 meter was blanked off and the inner passage flow conditioning screens replaced with a blank-off plate to avoid pressurizing (or evacuating the P₂ seal cavity. In this case the blank-off seal cavity was vented to Station 4, which is at ambient pressure for static stand tests and very nearly at ambient pressure for wind tunnel tests. This venting was necessary to prevent a large tare force which otherwise would result from the difference between barometric pressure (trapped in the blanked-off cavity) and P₄ during tests.

11.0 MODEL DATA REDUCTION PROCEDURES

The following subsections describe model data analysis procedures used for the coannular baseline, 20-chute suppressor, and the Ejector Shroud Nozzle tests. Station notation is defined in Figure 37.

11.1 MASS-MOMENTUM AVERAGE P

To obtain the best representative model charging station total pressures, the Mass Momentum Average Total Pressure technique was used. This method yields a better representative average total pressure in a nonuniform flow field by averaging flow properties that simultaneously satisfy both continuity and momentum equations.

For the tests, the total pressure profile at each of the charging station rakes was integrated using the mass-momentum technique, assuming a linear variation between the static pressures measured on the inner and outer walls at each rake. The average charging station total pressure was then defined as the average from the separate rake integrations.

11.2 PRESSURE DATA

Pressure instrumentation for facility and charging station were described previously. All other pressures in the model were measured using the PSI system. Model pressure data were reduced to absolute pressure (psia) and dimensionless ratios (P/Pa, P/ $^{\rm P}$ t₈₈, P/ $^{\rm P}$ t₈). See Table 12 for coannular, 20-chute and ejector shroud nozzle instrumentation summary.

TABLE 12

COANNULAR, 20-CHUTE AND EJECTOR SHROUD NOZZLE INSTRUMENTATION SUMMARY

NOZZLE TYPE	OPERATING CONFIGURATION	QTY. OF PS TAPS
COANNULAR BASELINE	TAKEOFF SUBSONIC SUPERSONIC	53 53 43
20 - CHUTE SUPPRESSOR	TAKEOFF SUBSONIC CRUISE SUPERSONIC	61 53 43
EJECTOR SHROUD	TAKEOFF SUBSONIC TRANSONIC SUPERSONIC	65 60 47

INNER PASSAGE - 2 FIVE-ELEMENT PT RAKES
6 PS TAPS OUTER PASSAGE - 4 TEN-ELEMENT PT RAKES 4 PS TAPS - JOULE-THOMP SON METERS **TEMPERATURE** INSTRUMENTATION COMMON

MEASUREMENT

11.3 DISCHARGE COEFFICIENTS

Nozzle discharge coefficients were defined as the ratio of actual flow rate through the nozzle, to the ideal isentropic flow rate at the overall nozzle pressure ratio. Defining nozzle pressure ratios as $\lambda_{88} = {}^Pt_{88}/P_a$ and $\lambda_{8} = {}^Pt_{8}/P_a$ where P_a is the ambient pressure.

The discharge coefficients were calculated as

$$^{C}D_{88} = W_{88} / W_{88} = W_{1} / W_{88}$$
 and $^{C}D_{8} = W_{8} / W_{8} = W_{5} / W_{8}$ and $^{C}D_{8} = W_{8} / W_{8} = W_{5} / W_{8}$ and $^{C}D_{8} = W_{8} / W_{8} = W_{5} / W_{8}$ and $^{C}D_{8} = W_{8} / W_{8} = W_{5} /$

 $^{\rm T}t_{\rm 88}$ and $^{\rm T}t_{\rm 8}$ were calculated from the measured values of $^{\rm T}t_{\rm 1}$ and $^{\rm T}t_{\rm 5}$ by subtracting the temperature drop due to throttling of the flow between the meters and test nozzles. These temperature drops were calculated from Joule-Thomson throttling data.

 ${\rm K}^{}_{88}$ and ${\rm K}^{}_{8}$ are the critical flow factors defined earlier.

Model throat areas were determined from model throat measurements.

11.4 THRUST COEFFICIENTS

The thrust coefficient was defined as the ratio of actual thrust to the ideal thrust of the outer passage flow (expanded

from P t $_{8}$ to P to P to plus the ideal thrust of the inner passage flow (expanded from P t $_{88}$ to P to P to. Thus,

$$C_T = \frac{H}{m_{88}v_{i_{89}} + m_8v_{i_9}}$$
 where H = Net thrust

The ideal thrust (mv_i) was calculated from the actual mass flow and the dimensionless ideal thrust function based on nozzle pressure ratio. The ideal thrust was calculated as:

$$m_8^{v_i} = (A^*/A)_8^{c_0} D_8^{c_0} A_8^{c_0} (m_i^{v_i}/P_t^{A^*})_8$$

$$m_{88}v_{88} = (A^*/A)_{88}c_{088}A_{88}v_{88}(m_iv_i/P_tA^*)_{88}$$

where
$$\frac{mvi}{P_tA^*} = \gamma \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}} \left(\frac{\gamma+1}{\gamma-1}\right)^{1/2} \left[1 - \left(\frac{1}{\lambda}\right)^{\frac{\gamma-1}{\gamma}}\right]^{1/2}$$

In flight (wind-tunnel) thrust coefficients were referred to as "thrust-minus-drag-coefficients" because the measured thrust includes form and friction drag on the external model surfaces.

12.0 DATA ANALYSIS PROCEDURES

The exhaust system thrust coefficient defined as the actual thrust produced divided by the ideal thrust is a measure of exhaust system efficiency. However, the actual thrust measured is influenced by pressure losses due to flow duct aerodynamic design, instrumentation rakes, fan and turbine frames and struts, etc., as well as overall flow surface conditions. For instance, two identical nozzles, same areas, geometry, flow conditions, but different instrumentation, frames, struts and surface conditions will register different levels of actual thrust by virtue of different levels of pressure losses manifested by different flowpath obstacles. The differences in thrust coefficients for the above nozzles, therefore, are indicative of pressure losses associated with the flowpath obstacles and external influences and not the isolated nozzles in question. It becomes important, then, as a means of evaluating the efficiency of an isolated exhaust system to discount all hardware dependent losses in order to obtain a fair appraisal of the exhaust system geometry. The efficiency of such isolated nozzle is termed the exit thrust coefficient.

A similar situation exists between subscale and full scale exhaust systems where though similar, geometrically, are very different in many respects, such as absolute operating pressures and temperatures. Reynolds numbers, instrumentation, construction details, surface conditions, etc. For this reason it is imperative to establish a common reference of equivalence from where proper adjustments can be made to transform model coefficients to full scale coefficients and vice versa. This common reference is the exit thrust coefficient—a measure of nozzle geometry effectiveness for both the model and the full scale nozzle.

The exit thrust coefficient establishes a geometric similarity between test model and full scale nozzle and therefore represents the thrust coefficient of both nozzles with system

dependent calculable loss effects removed, i.e., skin friction, rake effects, base drag, protuberances, gaps, etc. To obtain full scale coefficients, full scale nozzle dependent losses of ducts, struts, links, rakes, bolts and other protuberances are calculated or tested and subtracted from the exit coefficients. In this case the loss items are flight path dependent due to Reynolds number effects and are treated accordingly.

The exit coefficient is appropriately a measure of nozzle angularity loss and expansion efficiency. Ideally, the exit coefficient for a perfect nozzle should be unity but a practical expectation is $0.995 \pm .0025$. Thus, a nozzle with an exit thrust coefficient near unity is an excellent performing design provided it is operating at peak design, and the nozzle cannot be made more favorable based on other trades. However, introduction of augmentation devices can cause the exit coefficient to go above unity as has been noted for ejector nozzles.

For this program, exit and full scale coefficient analyses were performed for all three nozzle systems. Model test coefficients were transformed to exit coefficients, to rid them of model dependent losses, and finally transformed to full scale coefficients to put back full scale dependent loss effects as evidenced by higher temperatures, Reynolds numbers, etc. The process was accomplished by adding the sum of model dependent losses to the model coefficients to obtain exit coefficients and similarly subtracting full scale dependent losses from the exit coefficients to obtain full scale coefficients. The full scale losses were calculated using full scale dimensions and actual flight path engine aero-thermodynamic variables.

13.0 PERFORMANCE RESULTS AND DISCUSSION

All nozzle concepts tested showed good exit coefficient characteristics within practical limits for conventional nozzles with the exception of the ejector subsonic cruise configuration and, to a lesser degree, the 20-Chute takeoff configuration as shown in Figure 56 in a bar chart form. These two configurations by virture of their unconventional features exhibited more exit losses.

The ejector subsonic cruise aerodynamic performance reduction resulted from the ejector takeoff acoustics and supersonic cruise aerodynamics optimization process which compromised subsonic cruise performance. In a similar manner the 20-chute takeoff aerodynamics was subordinated to the takeoff acoustics and hence the reduced performance, even though to a lesser degree. However, for the ejector takeoff configuration, which also embodies the 20-chute suppressor features, ejector thrust augmentation appears to make up for the suppressor exit losses. reason ejector takeoff exit coefficients show values sometimes higher than unity in static tests to demonstrate the effect of ejector thrust augmentation. The full scale wind-on installed thrust coefficients (Figures 57-60) appear fairly good for all configurations tested except, once again, the ejector subsonic cruise configuration. Stackup of performance and loss coefficients showed that for the ejector subsonic cruise configuration, the losses are mainly from internal expansion and boattail drag. The data will be particularly important for tuning the ejector takeoff and subsonic cruise configuration geometries to improve performance.

Despite the losses mentioned above, the ejector nozzle shows high potential for being an efficient expansion exhaust system. Development work should focus on improving the calculable loss items, enhancing the mechanical system, and tuning

Figure 56. Nozzle Exit Peak Thrust Coefficient Results

Nozzle Full Scale Thrust and Loss Coefficient Stackups Takeoff Mode; M = .35. Figure 57.

Nozzle Full Scale Thrust and Loss Coefficient Stackups Subsonic Cruise Mode; M = .9. Figure 58.

OVERALL THRUST AND LOSS COEFFICIENTS

Nozzle Thrust and Loss Coefficient Stackups Transonic Acceleration Mode; M = 1.2 (Static). Figure 59.

individual configurations for the mission design points. The full scale thrust and loss coefficient stackup bar charts shown in Figures 57 through 60 are an important roadmap for identifying development needs.

Nozzle afterbody drag characteristics behave in relation to nozzle sizing parameter A9_{external}/A_{max} as defined in Figures 61 and 62. Therein, the low afterbody drag nozzles like the coannular, the 20-chute, and the ejector supersonic cruise configurations show a relatively higher A9_{external}/A_{max} ratios than the Ejector subsonic cruise configuration which shows high afterbody drag. One of the ways of improving the ejector subsonic cruise performance is to find a means of increasing the A9_{external}/A_{max} ratio. Solutions along these lines are shown later.

As shown in Figure 62, the Ejector Area Ratio (EAR) varied with ejector setback due to model construction techniques. No specific test was conducted to ascertain what an optimum EAR should be. It is another potential area of investigation to bring substantial improvement to Ejector Shroud Nozzle System.

The following discussions provide a synopsis of the test data for each basic configuration.

13.1 COANNULAR NOZZLE

The coannular nozzle is an efficient thrust producing nozzle. It is generally smaller in diameter and has low boattail angle in relation to the other nozzles. Though endowed with high thrust coefficients, its poor overall acoustic suppression qualities limits its potential for the AST mission as shown in Task 2 mission analysis studies.

)	CONFIGURATION	A9 INTERNAL/A8	A9EXTERNAL ^{/A} 8	A9EXTERNAL ^{/A} MAX	NPR DESIGN
COANNULAR	TAKEOFF	1.0	3.62	.87	3.5
BASELINE:	SUBSONIC	1.15	2.84	.87	3.3
	SUPERSONIC	1.85	3.19	.87	21.7
20-CHUTE	TAKEOFF	1.0	3.60	68.	2.9
SUPPRESSOR:	SUBSONIC	1.15	3.17	68.	3.3
	SUPERSONIC	1.95	3.56	68.	21.7

Figure 61. Coannular and 20-Chute Nozzle Sizing Results

CONFIGURATION	EJECTOR SETBACK (FS)	A9 INT / A8	A9EXT / A8	EJECTOR AREA RATIO Ag1/Ag1MT	NPR) + V - V
				INTC TC	UL3 I UIV	MEXI / MMAX
TAKEOFF	4	2.08	2.55	1.07	2.9	0.51
	∞	2.14	2.55	1.03	2.9	0.51
	12	2.20	2.55	1.00	2.9	0.51
	16	2.25	2.55	0.97	2.9	0.51
	18	2.27	2.55	0.95	2.9	0.51
SUBSONIC	0	1.15	1.74	ļ	3.3	0.40
TRANSONIC	0	1.76	2.32	!	7.7	0.53
SUPERSONIC	0	3.22	3.93	!	21.7	0.80

Figure 62. Ejector Nozzle Sizing Results

Takeoff - Figures 56 and 57

The takeoff configuration is a conic nozzle for acoustic reasons and due to its smaller diameter the takeoff NPR is 3.5 as opposed to 2.9 for the others, to provide the necessary mass flow.

The measured peak exit coefficient is .996 at NPR=2.2, well within the expected values for conventional nozzles but it is operating off peak. The full scale expansion loss at 3.5 NPR is 1.5%; however, the plug recovers about 0.3%. The inner nozzle open condition provides a slight performance improvement due to lower friction. The installed performance loss is approximately 1% at takeoff.

Subsonic - Figures 56 and 58

The measured peak exit thrust coefficient is approximately unity, indicating that near ideal expansion has been achieved for the design. The inner nozzle in the open position suggests a slight improvement in installed performance. The subsonic cruise installed performance loss is approximately 3.5% at an NPR=3.3.

<u>Supersonic - Figures 56 and 60</u>

The measured peak exit thrust coefficient of 0.994 is a good design value, and the static installed performance is 0.989. Because of low afterbody drag characteristics for the coannular, the overall installed performance can be expected to be very good.

13.2 20-CHUTE NOZZLE

The 20-chute configuration design is similar to the coannular nozzle with the exception of the 20-chute mechanical suppressor for additional noise suppression at takeoff. For non-takeoff operations it maintains some of the high thrust coannular-like features when the chutes are stowed. It has a larger diameter than the coannular as a condition for satisfying the high chute radius ratio requirements for acoustic effectiveness. The 20-chute sacrifices a little performance for acoustic suppression, and the slightly larger diameter exacts some drag losses.

Takeoff - Figures 56 and 57

The measured peak exit coefficient is 0.991 at NPR=2.2 and decreases when the inner nozzle is opened; a condition contrary to the coannular nozzle behavior. The difference here is that the deployed chutes at takeoff operate as twenty discrete conic nozzles whose jets mix only towards the end of the plug. This may be why it does not take advantage of the lower friction plug for inner-nozzle-open condition. The lower than expected exit coefficient is slightly below the practical conventional limits. The chutes account for over 1% internal friction loss at takeoff and an additional 1/2% installed. The net installed efficiency loss of the 20-chute relative to the coannular nozzle is approximately 4% at takeoff.

Subsonic Cruise - Figures 56 and 58

The measured peak exit coefficient is 0.995, an excellent value. The 20-Chute has approximately 3% additional installation loss relative to the coannular at subsonic cruise. This performance loss is attributable to the shape and higher projected area of the scalloped cowling.

<u>Supersonic Cruise - Figures 56 and 60</u>

The peak exit coefficient is 0.992 and is evaluated as fair. The reason may be the unconventional scalloped cowling. The static overall thrust coefficient is 0.985, a good value.

13.3 EJECTOR NOZZLE

The ejector nozzle is an integration of an acoustically treated ejector shroud and a 20-chute nozzle. The integration made it possible for the ejector nozzle to satisfy the AST mission goals. The overall performance was good except at the subsonic cruise point. The combination of good overall aerodynamic and acoustic performance provided the ejector nozzle with the best mission results of the three exhaust systems studied. subsonic cruise configuration is vulnerable to high boattail drag and poor internal performance. This stems from AST engine/exhaust system sizing guidelines which size engine/exhaust systems for noise at takeoff and for aerodynamic efficiency at supersonic cruise. As a result, the intermediate subsonic and transonic cruise points are decided on "best available performance to satisfy thrust requirements" basis. In this particular case it appears the subsonic cruise cycle condition is not compatible with the configuration design. The result is higher than expected installation losses. Opportunity exits, however, to improve these intermediate cycle points, and that is addressed later.

Takeoff - Figures 56 and 57

The ejector nozzle takeoff performance has a strong dependence on ejector setback and the results indicated a maximum ejector augmentation corresponding with a setback between 16 and 18 inches, full scale. Variation of ejector takeoff performance with setback is shown in Figure 63. The measured exit static thrust coefficient is above unity for a setback of 12 inches (FS, Figure 56) indicating the extent of ejector augmentation at Mach zero. Incidentally, 12 inches is the largest setback tested statically. The gains in ejector augmentation were, however, slightly overcome by large installation and scrubbing drag losses as shown in Figure 57. It is particularly worthy of notice that

Figure 63. Variation of Ejector Takeoff Performance With Setback

the suppressor chute base drag was reduced by about half by the installation of ejector at the takeoff condition. The overall ejector takeoff installed performance is about .5% lower than the 20-chute nozzle.

Subsonic Cruise - Figures 56 and 58

The ejector subsonic cruise configuration is a compromise between takeoff acoustics and supersonic cruise aerodynamics. The measured peak exit thrust coefficient at Mach zero is 0.973, a low value. This compromise resulted in the internal nozzle expansion-contraction feature that may have caused over 2% loss in full scale thrust coefficient. This 2% loss estimate is conjectured on the basis of a large unexplained loss component on top of the ejector shroud subsonic cruise bar chart in Figure 58. Such large unexplained loss is usually indicative of some nozzle deficiency, and for the ejector shroud subsonic cruise nozzle configuration with less than ideal internal area distribution that anomaly becomes a prime suspect. The design compromise also resulted in a high boattail angle with about 13% installation loss. The installation loss has been verified by nozzle pressure integrations.

The ejector takeoff configuration was tested under subsonic cruise conditions to determine if the lower boattail angle could manifest itself in a lower boattail drag and an overall full scale thrust coefficient improvement. An overall performance loss of 6% relative to the bonafide subsonic cruise configuration was observed, and adjusting for chute base drag posted a gain of 4% for an overall loss of 2%. The test was conducted at 18 inches setback, full scale and chute may, also, have affected the ejector flow. Interestingly, the shallow boattail angle reduced the boattail drag by 91% relative to the bonafide subsonic cruise configuration. This brings to focus one

important aspect of setback ejector operation; though the ejector can produce a large static thrust augmentation, there is some forward velocity (tunnel Mach number) beyond which the ejector becomes a performance handicap, and it appears Mach .9 is within the velocity of diminishing returns. It is a fact that there is a performance lapse rate, as a function of tunnel Mach number, associated with any particular ejector inlet design, and it is equally conceivable that a shallower angle ejector inlet can decrease the performance lapse rate. Such optimism, however, should be tempered with the fact that shallower inlet angles necessitate longer shroud translations to achieve equivalent ejector inlet areas and the impact of weight is obvious. A performance versus ejector inlet design and weight impact study will be beneficial.

The problem with the ejector subsonic cruise configuration, though manifested as an aerodynamic problem, may be solved by subsonic cruise cycle redefinition and configuration area ratio rescheduling. The fundamental problem, it appears, is subsonic cruise cycle-hardware configuration incompatibility. However, the issue of compatibility can be resolved by performing a system trade study using the "Takeoff Acoustics-Supersonic Cruise Aerodynamics" compromise as boundary conditions.

In this way, the problem becomes an exercise in variational calculus whereby the goal will be to determine the cycle condition and area ratio schedule that will produce the required subsonic cruise thrust efficiently (i.e., at the least specific fuel consumption). The solution of this variational calculus problem will determine the appropriate cycle area ratio, boattail angle, etc., that will yield the least SFC and, consequently, the optimum subsonic cruise thrust coefficient. Figure 58 illustrates subsonic cruise performence improvement approach. To illustrate the potential improvement likely to be realized, the ejector subsonic cruise full scale thrust coefficient was evalu-

ated at an NPR of 4, a legitimate subsonic cruise cycle point. As can be seen from Figure 58, the full scale thrust coefficient at NPR of 4 is roughly 5% better than at the nominal NPR of 3.3. It is reasonable to expect that with the proper area ratio schedule and improved internal contours and some optimization techniques, an additional 7 to 10% improvement can be realized. Having achieved the means of efficient thrust production, tailoring the thrust available to the thrust required will be a simple matter, especially if there is more than required.

Transonic Cruise - Figures 56 and 59

The measured peak exit thrust coefficient at static conditions is 0.994, a good value. The stowed chutes show 0.3% decrement in full scale performance. The transonic cruise configuration can also benefit from a variational calculus exercise similar to the one prescribed for the subsonic cruise, but to a lesser extent. To properly assess installed performance at this condition, wind tunnel testing will have to be conducted.

Supersonic Cruise - Figures 56 and 60

The measured peak exit thrust coefficient is 0.994 based on constant stream thrust parameter. The stowed chutes show 0.2% in full scale performance loss. This is the performance anchor point and the performance was satisfactory with a static thrust coefficient of .9835. With a calculated external drag coefficient of about .0058, the full scale installed thrust coefficient registers at about .9777.

13.4 FLOW VISUALIZATION

The complexity of ejector aerodynamics is demonstrated by flow visualization pictures of the ejector takeoff configuration.

at optimum setback, as shown in Figures 64 through 66. The flow-lines, as shown in Figures 64 and 65, seem to suggest that ejector air induction takes place primarily through inter-chute or inter-jet spaces. This is supported by the circumferential component of the flowlines direction at the nacelle base area and also at the surfaces of the ejector translation beams. If this is so, then it means the inducted air does not form an annular path, as previously envisioned, but rather a series of twenty isolated paths. This may explain why it took about twice as much ejector inlet opening than originally estimated to reach the optimum setback. From Figure 66, it appears the twenty discrete jets and the ejector inducted air finally coalesce about halfway through the ejector shroud as shown by the flowlines. More than one flow visualization test may be required in order to draw the precise relationship between all the important variables.

Figure 64. Ejector Shroud Nozzle Flow Visualization: Overall View

Figure 65. Ejector Shroud Nozzle Flow Visualization Showing Details of Plug and Deployed Chutes (Ejector Shroud Removed).

ORIGINAL PAGE IS OF POOR QUALITY

14.0 CONCEPTUAL DESIGN AND TEST PROGRAM RESULTS RECONCILIATION

The mission analysis study conducted in Section 7 utilized conceptual design performance data to establish aircraft TOGW necessary to fulfill the AST mission. This was done with the understanding that the TOGW could be adjusted later to reflect the installed performance when the test program was completed. During the course of the study, important performance sensitivities (derivatives) were generated to enable TOGW equivalents to be calculated for performance increments relative to the predicted installed performance established during the conceptual design phase. Table 13 shows performance sensitivities for the four flight regimes. i.e., takeoff, subsonic cruise, transonic acceleration and supersonic cruise. The small impact of takeoff performance on TOGW is very reasonable when the following is considered: the engine is sized primarily for acoustics so takeoff thrust is not critical, besides takeoff is a minute fraction of the mission. On the other hand, at supersonic cruise, which represents the largest block of mission time, a poor performance can be costly as shown by the 10,000 pounds penalty in TOGW for a 1% performance increment. Table 14 shows the individual and aggregate TOGW adjustments made as a result of reconciling the performance differences between the prediction and test installed performances. The final TOGW summaries referencing measured installed performance (except for those otherwise indicated) are shown in Tables 15 and 16 for the 20-chute and ejector shroud nozzles, respectively.

Final Mission Analysis Results

The mission analysis results indicate the ejector shroud as the best among the three nozzle systems studied for the AST mission, within the constraints of FAR 36 (1969) Stage 3 noise goal. Comparatively, the ejector nozzle system has 79,000 lbs advantage in TOGW over a commensurate aircraft fitted with the

TABLE 13

PERFORMANCE SENSITIVITIES SUPERSONIC CRUISE AIRCRAFT

TAKEOFF: - 1% CFG \approx +

% CFG \approx + 750 LBS IN TOGW

- 1% CFG \approx + 3,000 LBS IN TOGW

TRANSONIC - 1% CFG \approx + 2,000 LBS IN TOGW ACCELERATION:

SUPERSONIC - 1% CFG \approx +10,000 LBS IN TOGW CRUISE:

SUBSONIC CRUISE:

TABLE 14

PREDICTED VS. MEASURED INSTALLED PERFORMANCE COMPARISON

NOZZLE	OPERATING MODE	PREDICTION	MEASURED	Δ
COANNULAR RASELINE	TAKEOFF	7576.	. 9753	0004
DASELINE	SUBSONIC	. 9682	. 9325	0357
	SUPERSONIC	. 9827	. 9853*	+. 0026
20-CHUTE	TAKEOFF	. 9328	. 9291	0037
SUPPRESSOR	SUBSONIC	0596.	. 9015	0635
	TRANSONIC	9956	* 9444	0122
	SUPERSONIC	.921	.9810*	0011
EJECTOR	TAKEOFF	.9408	. 9225	0183
SHROUD	SUBSONIC	. 9465	. 8100	1365
	TRANSONIC	. 9311	. 9211 *	0100
	SUPERSONIC	.9743	* 4.776°	+.0034

* WITH ESTIMATED EXTERNAL DRAG.

TABLE 15

(BASED ON PREDICTED VS. MEASURED INSTALLED PERFORMANCE) TOGW ADJUSTMENTS: 20-CHUTE SUPPRESSOR NOZZLE

TAKEOFF:

 Δ -.37% CT \approx + 277 LBS. IN TOGW

 Δ -6.35% CT \approx +19,050 LBS. IN TOGW SUBSONIC CRUISE: Δ -1.22% CT \approx + 2,440 LBS. IN TOGW

TRANSONIC ACCEL:

SUPERSONIC CRUISE: Δ -.11% CT pprox + 1,100 LBS. IN TOGW

(TABLE 8, PAGE 85) REFERENCE TOGW (MISSION ANALYSIS) \approx 862,000 PROJECTED TOGW \approx 885,000

LABLE 16

(BASED ON PREDICTED VS. MEASURED INSTALLED PERFORMANCE TOGW ADJUSTMENTS: EJECTOR SHROUD NOZZLE

 Δ - 1.83% CT \approx + 1,372 LBS. IN TOGW TAKEOFF:

 Δ -13.65% CT \approx +40,950 LBS. IN TOGW SUBSONIC CRUISE:

 Δ - 1.0 % CT \approx + 2,000 LBS. IN TOGW TRANSONIC ACCEL:

SUPERSONIC CRUISE: Δ +.35% CT \approx -3,490 LBS. IN TOGW

(TABLE 8, PAGE 85) 40,832 765,000 806,000 + ? NET CHANGE IN TOGW ≈ REFERENCE TOGW (MISSION ANALYSIS) ≈ PROJECTED TOGW ≈

IABLE 1Z

TOGW SUMMARY
(MEASURED INSTALLED PERFORMANCE)

NOZZLE	SIDELINE NOISE EPNL dB	AIRFLOW LB/SEC	TOGW LBS.
EJECTOR SHROUD	104.74	858	806,000
20-CHUTE SUPPRESSOR	104.74	1,270	885, 000
COANNULAR BASELINE	104.74	NOT REALISTICALLY ACHIEVABLE	NOT REALISTICALLY ACHIEVABLE

 Δ togw ejector shroud vs. 20-chute suppressor pprox 79,000 lbs.

20-chute nozzle. The results further indicate that all three noise suppression systems will be required to meet the FAR 36 (1969) Stage 3 noise goals, not absolutely, but within the noise trading guidelines, with a reasonable engine size. In the same vein, the coannular is not an attractive concept for AST application where Stage 3 noise suppression is the measure of acceptability.

The increase in ejector/AST system TOGW from the preliminary estimate of 765,000 to 806,000 lbs, results from differences between predicted and measured performance. The aerodynamic explanation of the details of the performance decrement is covered under "Performance Discussions" in the test program results, but the bigger issue of not meeting performance prediction, as it relates specifically to the ejector subsonic cruise mode (shown in Table 17), has wider conceptual implications than aerodynamics of the subsonic cruise nozzle. As a rule, AST engines are sized for noise at takeoff and aerodynamically configured for peak performance at supersonic cruise, with intermediate points determined on the basis of best available perfor-The former is imperative in order to maximize coannular noise suppression and the latter to minimize sfc and reduce mission block fuel consumption through high peak installed perfor-The performance sensitivity shown in Table 13 supports mance. this procedure by the fact that a 1% decrement in supersonic cruise performance is equivalent to 10,000 lbs gain in TOGW, whereas the same performance decrement at subsonic cruise increases TOGW by only 3,000 lbs. This is why ejector subsonic cruise nozzle remains second on the performance priority list.

Equally detrimental to the ejector subsonic cruise performance is the "High Radius Ratio" feature of the 20-chute suppressor system which makes it necessary to increase nozzle radius and, also, the low subsonic cruise thrust requirement which makes

it necessary to operate at a low area ratio schedule, thereby creating a high boattail angle. The low thrust requirement, and hence the low area ratio schedule, coupled with the high radial hinge points for the ejector shroud flaps combined unfavorably to create less than optimum internal nozzle expansion characteristics and a high boattail angle of 19°. Figure 67 illustrates the unfavorable features of the ejector subsonic cruise configuration characterized by a diverging-converging internal flowpath for what normally should be strictly divergent.

There are other subsonic cruise cycle points that, if adopted, may alleviate the current internal expansion-high boattail angle problem. though the accompanying high thrust output may not be desirable, particularly during the subsonic cruise leg following a missed approach (as shown in AST mission, Figure 30) when aircraft weight as well as thrust demand is low. However, the available thrust can be modulated to the required levels by rescheduling ejector shroud flap settings. Two options are available for resolving this problem, either by maintaining the as configured pressure ratio of 3.3 and manipulating flap position to improve and reduce internal performance and boattail drag respectively, or by operating at a higher pressure ratio cycle option (NPR=4) and modulating the thrust through control of area ratio settings. Figure 68 illustrates the two options discussed above. A slight modification of option 1 would be to operate with the ejector inlet open, suppressor chutes stowed, and ejector shroud flap more fully open to reduce boattail drag.

It is believed that the installed performance deficits incurred, particularly at the subsonic cruise point, can be restored by choosing the low or high pressure ratio subsonic cruise cycle point and performing the necessary area ratio rescheduling. It appears that choosing the high pressure ratio point (NPR=4) will be more prudent since that will assure thrust requirement availability at all times; besides the specific fuel

$$A_{8} = 1450$$
 $A_{91} = 1570$
 $A_{92} = 1961$
 $A_{9} = 1667$
 $A_{9} = 19^{0}$
Full Scale, IN²

Figure 67. Ejector Shroud Nozzle Subsonic Cruise Configuration
Defined By Cycle Sizing Data Showing a DivergentConvergent Divergent Section and High Boattail Angle

Figure **68.** Proposed Options For Subsonic Cruise Installed Performance Improvement Showing Possible Area Ratio Settings And Cycle Options To Match Thrust Requirements

consumption (sfc) is better at this point and the solution more consistent with AST mission objectives. The subsonic cruise point is determined by thrust and since there is a large thrust reserve (per cycle data) the solution becomes a matter of how efficiently the large thrust reserve can be tailored to meet requirements.

It is reasonable to expect the higher pressure ratio subsonic cruise cycle point in combination with the area ratio rescheduling to minimize installed performance losses and push the installed thrust coefficient towards the conceptual design goal.

15.0 CONCLUSIONS AND RECOMMENDATIONS

The program was successful in establishing the ejector shroud nozzle as an improved concept for Advanced Supersonic Transport application in relation to the baseline coannular and the 20-chute nozzles. The large data base accumulated stands ready for development initiation when required.

The integrated ejector shroud design is capable of providing adequate noise reduction to satisfy the FAR 36. Stage 3 guidelines under the "Noise Tradeoff" rules. At an estimated traded noise of 103 EPNdB, the ejector shroud nozzle leads to a calculated 79,000 pound saving in TOGW relative to the 20-chute suppressor nozzle, despite the existence of a highly non-optimized ejector flap geometry for subsonic cruise. The coannular nozzle, however, is not an attractive concept for FAR 36. Stage 3 noise requirement relative to the 20-chute or the ejector shroud nozzles.

Despite the success of this program, further investigation into certain aspects of ejector nozzle development will be beneficial in further enhancing aerodynamic performance and noise suppression. To this end, a clear understanding of ejector aerodynamics, particularly in the takeoff mode, must be pursued because of the wider implication it has, not only for aerodynamic performance but also for the acoustics as well. The noise absorption coefficient of the ejector shroud noise treatment is a function of the aerodynamic variables and therefore a better understanding of it will enable specific treatment techniques to be applied to improve the noise absorption coefficient.

The flow visualization test showed the complex interaction between the twenty discrete chute jets and the tertiary ejector air induction. It appears the tertiary flow is discretely inducted through inter-jet or inter-chute spaces and thus differs demonstrably from the conventional ejector characteristics

thought of as uniform and annular. For the ejector shroud, the ejector induction process appeared to be controlled by inter-jet areas rather than the physical ejector opening. This may explain why it took twice as much setback as originally calculated to reach optimum setback.

Further complicating the ejector aerodynamic analysis is the fact that the ejector shroud area ratio (1.07-0.95) varied with ejector setback. The importance of ejector area ratio in determining optimum ejector augmentation is undeniable but since identification of ejector optimum area ratio was not part of program objectives, the currently identified optimum ejector setback may only be provisional. Future development programs should focus on this as well as conduct more flow visualization studies to clarify the functional relationships between the important ejector takeoff configuration variables.

The present ejector nozzle subsonic cruise performance deficits may possibly be restored through subsonic cruise cycle redefinition and area ratio schedule changes. Future development programs should attempt to match engine cycle definition (NPR, etc.) to nozzle hardware configuration peculiarities in order to satisfy subsonic thrust requirements at a minimum loss.

The enhancement techniques suggested for the subsonic cruise configuration can be extended to the transonic acceleration configuration as well, even though the losses are less. The supersonic cruise configuration was the aerodynamic anchor point and therefore showed excellent performance. The potential exists for improving the ejector shroud exhaust system performance, aerodynamically and acoustically, if these recommendations are carried out to fruition.

16.0 REFERENCES

Task 2 Acoustically Treated Ejector Shroud

- J. F. Brausch, W. S. Clapper, P. F. Scott, M. A. Smith, E. J. Stringas, R. W. Whittaker, "High Velocity Jet Noise Source Location And Reduction, FAA-RD-76-79, Tasks 1-6, R79AEG302, April 1979.
- J. P. Wolf, "Preliminary Design of an AST Jet Engine Exhaust System Incorporating a 20-Chute Suppressor in the Outer Stream of an Annular Two Stream Plug Nozzle," GE TM No. 79-535, September 1979.
- 3. R. D. Allan, J. E. Johnson, W. Joy, R. H. Brown, H. J. Bar-rial, "Engine Cycle Studies", General Eletric Company, NASA, CR-159500, NAS3-21388, R80AEG428, August 1980.
- R. D. Allan, B. G. Hines, W. L. Wines, "Effect of Design Temperature on Double Bypass Engines For SCR," General Eletric Company, NASA, CR167854, NAS3-22749, R82AEB225, September 1982.
- J. Brausch, W. S. Clapper, P. R. Gliebe, et. al., "High Velocity Jet Noise Source Location and Reduction, Task 6 – Noise Abatement Nozzle Design Guide, FAA-RD-76-79, VI, April 1979.
- 6. A. Sieckman., R. E. Motsinger, P. R. Gliebe, , "High Velocity Jet Noise Source Location and Reduction: General Supplement - Computer Programs: The Engineering Correlation (M*5) Jet Noise Prediction Method and Unified Aeroacoustic Prediction Model (M*G*B) for Nozzles of Arbitrary Shape," General Electric Company, FAA-RD-76-79, VIa, April 1979.

- 7. Ames Research Staff, "Equations, Tables, and Charts for Compressible Flow." NACA 1133, 1953.
- 8. SST Technology, Follow-on Program--Phase II, Vol. I-X.
 Noise Suppressor/Nozzle Development: Boeing Commercial Airplane Company. 1975.
- 9. Wyatt, DeMarquis D., "Analysis of Errors Introduced by Several Methods of Weighting Non-Uniform Duct Flows." NACA TN 3400. March 1955.
- 10. Reimer, R.M., "Computation of the Critical Flow Function.

 Pressure Ratio. and Temperature Ratio for Real Air." ASME
 Paper #62-WA-177. 1962.
- 11. Jordan, D.P. and Mintz, M.D., "Air Tables." McGraw-Hill Book Company, New York. 1965.
- 12. Johnson, R. C., "Real Gas Effects in Critical-Flow-Through Nozzles and Tabulated Thermodynamic Properties." NASA TN D-2565. 1965.

APPENDIX A

EJECTOR SHROUD PLOTTED DATA

DESIGN PRESSURE RATIO

66

OVERALL THRUST COEFFICIENT

1.00

OF POOR QUALITY

* - DESIGN PRESSURE RATIO

- DESIGN PRESSURE RATIO

171

*- DESIGN PRESSURE RATIO

A -DESIGN PRESSURE RATIO

173

*- DESIGN PRESSURE RATIO

174

-DESIGN PRESSURE RATIO

*- DESIGN PRESSURE RATIO

A -DESIGN PRESSURE RATIO

177

*- DESIGN PRESSURE RATIO

178

- DESIGN PRESSURE RATIO

179

- DESIGN PRESSURE RATIO

* - DESIGN PRESSURE RATIO

OF POOR QUALITY

* - DESIGN PRESSURE RATIO

A- DESIGN PRESSURE RATIO

ORIGINAL PAGE ST OF POOR QUALITY

APPENDIX B

EJECTOR SHROUD TABULATED DATA

APPENDIX B

ANALYSIS RESULTS

Nomenclature:

RDG Reading number MACH Mach number **PAMB** Ambient pressure PR7M Model outer nozzle charging station pressure ratio CV7M Model outer nozzle charging station velocity coefficient CD7M Model outer nozzle charging station flow coefficient PR87M Model inner nozzle charging station pressure ratio CD87M Model inner nozzle charging station flow coefficient CTM Overall model thrust coefficient PR8 Main nozzle pressure ratio Model outer nozzle flow coefficient CV9M with scrubbing drag CV8 Outer nozzle velocity coefficient CD8 Outer nozzle flow coefficient **PR88** Inner nozzle pressure ratio CV89 Inner nozzle velocity coefficient with scrubbing drag CD88 Inner nozzle flow coefficient CTOA9 Overall exit thrust coefficient with scrubbing drag CTOA Overall exit thrust coefficient without scrubbing drag PR7FS Full scale outer nozzle charging sta-

PRECEDING PAGE BLANK NOT FILMING

tion pressure ratio

CV7FS	Full scale outer nozzle charging sta-
	tion flow coefficient
CV9FS	Full scale outer nozzle velocity co-
	efficient with scrubbing drag
CD7FS	Full scale outer nozzle charging sta-
	tion flow coefficient
PR87FS	Full scale inner nozzle charging sta-
	tion pressure ratio
CV87FS	Full scale inner nozzle charging sta-
	tion velocity coefficient
CV89FS	Full scale inner nozzle velocity co-
	efficient with scrubbing drag
CD87FS	Full scale inner nozzle charging sta-
	tion flow coefficient
CTFS	Overall full scale thrust coefficient

	2. 1867 2. 1867 2. 1968 2. 1968 2. 1968 2. 1968 2. 1968 2. 1968 2. 1968 3. 196
	15300 13000 13.5000 13.5000 13.5000 13.5000 13.5000 13.5000 13.5000 13.5000 13.5000 13.5000 13.5000 13.5000 13.5000 13.5000 14
	15196 .3535 13.113 2.8861 .97967 .98516 .98516 .98615 .98615 .98615 .99588 .99588 .99588 .98645 .98645 .98645 .98645 .98645 .98645 .98645 .98645 .98645 .98645 .98645
TEST RESULTS	15000 3523 13.122 2.1829 97609 98625 98625 99609 97125 97125 97125 97125 97125 97125 97125 97125 97126 9
DYNE SCALE MODEL TEST COANNULAR BASELINE	3.5591 3.5591 3.5591 3.5591 3.5591 3.5591 3.5591 3.5591 3.5591 3.5591 3.5591 3.5591 3.5591 3.5591 3.5591 3.5591 3.5591 3.5591 3.59999
AST FLUIDYNE COANN	2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 2. 4. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
A	2
	2.26 8 8 3 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	PARPE PARPE CV7M CV2M CV80 CV80 CV80 CV80 CV080

95952 8.3976 4.1168 98148 4.0783 98693 4.09 95134 95264 94853 99589 4.0778 98702 94985 .8955 .95034 4.0711 95341 4.9416 .95285 96135 .98791 94841 95087 8000 99726 8.3743 .94614 .99317 3.3613 .94476 181*00* .8997 9819 .93675 3.2883 .93363 94811 .93087 .93243 98827 3.3318 93253 .98801 .98851 94511 .92931 .8968 8.3898 2.5099 96228 2.5833 2.5833 94656 99638 2.4926 .89139 .89345 .5274 .94153 8838 .8888 98217 2.4807 2.5277 .98729 .98677 18200 AST FLUIDYNE SCALE MODEL TEST RESULTS 4.314 .98313 .98415 .94849 .99228 .98723 .99592 4.2139 .99057 .99188 .98713 4.3124 .94936 .9517 98351 6.522 4.2424 .98925 :9805 **\$9866** 98569 99242 4.1944 .99172 4.2742 808 COANNULAR BASELINE .98284 3.0259 .99305 1.0006 .94227 .99326 .987**0**7 7.993 3.0703 3.0462 99875 98512 98392 98431 98769 3.099 94306 94628 3.0609 69886 66086 3.0995 0 99105 .983 .98522 .98635 2.6052 .9453 .9438 2.5315 .98016 2.6056 97643 5195 98647 994 98137 94138 98317 97802 4.074 2.5475 .98137 98341 99. 99. 3.5073 .4582 12.374 3.5141 .97533 .98478 3.5115 .97133 .99263 3.4788 .95391 .994*0*9 .97397 3.5038 .9779 .982 97758 69186 98307 95712 98602 97239 4,900 94936 99593 97442 98351 .4499 12.434 2.8917 98473 2.8446 9864 .97112 .97924 2.8829 .97603 97268 2.8174 .99274 97904 .98773 2.8497 95039 95364 98775 5200 P. /FS CV87FS CV89FS CD87F9 CTFS PR7FS CV7FS CV9FS CF 75 PY 75 CD87M PR87M CT0A9 CTM PR8 CV9M CV8 CD8 CV89 CV89 MACH PAME PR7M CV7M CD7M CTOA

	18496 8.4296 3.39888 3.39888 3.27595 3.2759 9.2978 9.2752 9.2989 9.2989
	1836 8.4536 2.4818 .981736 .981736 .9936 .9936 .98871 .888871 .888871 .888871 .888871
50	200 7.337 9.1492 98876 99196 1.0011 1.0011 1.0011 99196 98989 98989 98989
TEST RESULTS	8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8
DYNE SCALE MODEL TEST COANNULAR BASELINE	1.00 1.00 2.5112 2.5112 2.48057 98057 98052 99144 99151 2.4955 97645 97645 97645
AST FLUIDYNE COANN	18896 - 4596 2.8414 - 98585 - 97349 - 97349 - 98269 - 97349 - 98269 - 97448 - 97448 - 97448 - 97448 - 97448
*	18700 .3571 13.075 2.853 .96527 .97717 .98641 .98628 .99326 .99326 .99326 .99326 .99326 .99326 .99326 .99326
	18699 13.1351 2.11.121 2.1571 2.1572 2.1392 2.1392 2.1392 2.1392 2.1392 2.1392 2.1392 2.1392 2.1392 2.1392 2.1593 2.15
	RDG. MACH PAMB PAMB CD7M CT0A9 CV8 CT0A CT0A CT0A CT0A CT0A CT0A CT0A CT0A CT0A CT0A CT0A

AST FLUIDYNE SCALE MODEL TEST RESULTS 20-CHUTE SUPPRESSOR

12.3
12.96
12.993
8.646
14.219
14.2
2.934 14.2
14.516 12.934 14.21

	11. 4
	1786 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8
	17.996 8.4453 8.4453 9.4453 2.44661 2.51369 2.51369 1.94742 2.51369 1.94662 1.94662 1.94663 1.
FEST RESULTS	3.6982 3.6982 3.6982 3.9862 3.9862 3.98643 3.986443 3.6814 3.6816
FLUIDYNE SCALE MODEL TEST 20-CHUTE SUPPRESSOR	1200 7.949 3.3525 98549 98549 98549 99749 99749 99749 99749 99749 98279 98279 98279 98279 98575 98575 98575 98575
AST FLUIDYNE SCALE 20-CHUTE	1. 200
AS	15600 12.321 3.518 92202 92602 97478 97478 97541 97541 97541 97541 97541 97541 97541 97541 97541 97541 97541 97544 97544 97544 97544
	152.00 15.200 2.9097 2.91146 2.91146 2.91146 2.91146 2.90939 2.9926 2.9926 2.9926 2.9926 3
	RDG. MACH PAMB PRAMB CV7M CD87M CD87M CD88 CV89 CV89 CD88 CV89 CV89 CD88 CV87 CT0A CT0A CT0A CT0A CT0A CT0A CT0A CT0A

	10000000000000000000000000000000000000
	19786 12.4524 2.2314 2.2314 2.18253 2.18253 2.2881 2.28887 2.28887 2.28887 3.89451 3.89451 3.89451 3.89451 3.89451 3.89451
	19266 13.1662 13.1683 9.4735 9.4735 9.92992 9.92999 9.93261 9.92999 9.93261 9.92999 9.93261
TEST RESULTS SOR	19400 .3597 12.967 2.9173 .92018 .92434 .92434 .92105 .92105 .92105 .92105 .92105 .92105
FLUIDYNE SCALE MODEL TEST 20-CHUTE SUPPRESSOR	19300 2.202 2.202 9594 95814 2.1766 91416 91416 91416 91416 91432 2.195 91432 91432 91432
AST FLUIDYNE 20-C	5300 8.733 3.4856 95886 96618 3.4457 96991 969918 96991 96733 97005 97005
A	2. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.
	5.10
	RADG. PAMB PAMB CV7M CT0A9 CT0A9 CT0A9 CT0A9 CV9FS CV9FS

	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
S	26. 46. 26. 46. 26. 46. 26. 46. 26. 46. 26. 26. 26. 26. 26. 26. 26. 26. 26. 2
TEST RESULTS SSOR	28 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
FLUIDYNE SCALE MODEL TEST 20-CHUTE SUPPRESSOR	65@@ 3.123 15.849 987917 97998 97998 97998 97858 97858 97858 97858 97858 97858
AST FLUIDYNE 20-0	9. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.
	3.2893 3.2993 3.
	19.20 1.2.20 2.5.20 2.5.29
	RUG. PAMCH CCVAM CCVAM CCTOA CCTOA CCTOA CCTOA CCTOA CCTOA CCTOA CCTOA CCTOA CCTOA CCTOA CCTOA CCTOA

ILTS	
RESULTS	
TEST	
MODEL	SHROIID
SCALE	F. IFCTOR S
FLUIDYNE	R 18
AST	

99.5	9	4.2	957	367	2560	2.9674	7799	7384	924	7408	611	1996	.939	7502	9891	9424	00	948	9376	9407	288	96.	926	237	98	6	
2300	9	4.2	43	9247	955	2,2152	808	9283	.217	9306	1.0	4667	.193	516	9904	9340	.046	36	9267	9310	9587	.211	9519	563	822	308	
28.00	Ø	.44	.484	8756	9562	3.4627	6086	8878	-444	8790	9435	8673	.428	9519	1966	8912	.94	.472	8773	8798	9595	456	9538	9564	827	668	
27.60	e .	39	.942	416	9576	2.9151	9823	8587	.908	8455	9490	896.	988.	482	9921	8626	9533	932	8436	8464	6096	606	9502	50	840	861	
26.00	Ø	4.24	.168	7289	9565	2.1566	9816	7652	143	7338	9499	9676	135	9519	9913	2011	9551	161	7307	734	9595	15	9521	926	83	672	
22,30	G.	16	100 E	9136	9561	Ñ	9815	9196	3.54	9170	8996	9672	527	9526	9912	9236	9684	572	9153	9178	9594	555	954	571	8	.92181	
2120	6	25	857	8849	9543	32	9816	8952	824	8892	8986	9675	506	948	9914	8994	9847	847	8870	2002	9596	726	(0)	7 O O O O O O O O O O O O O O O O O O O) () () ()	89789.)
9	٥	Ξ		: 1	. [: <u>`</u>	9 2	Σ	·Or	' >	. S) (X	α () (C	0	100) <u> </u>	17. 17.	. u	77.7	1000 A 10	1000	\ 0 0 0 0	1007	1 C L	:

	16300 12.3522 12.3522 3.5522 3.5531 3.5531 3.5531 3.55331 3.55
LTS	16488 - 3581 12.964 2.9138 - 91566 - 95973 2.9812 - 9198 - 95812 - 9198 - 95812 - 9136 - 92889 - 92889 - 92889 - 91683 - 91683 - 91683 - 91683 - 95349 - 95349 - 95349 - 95349 - 95349
EL TEST RESULTS D	16566 12.996 12.996 12.996 12.263 2.1882 2.1845 2.1845 2.1958 2.1958 2.1958 2.1958 2.1958 3.1
YNE SCALE MODEL EJECTOR SHROUD	16888 13.8883 13.8883 3.5193 3.5193 3.5193 3.5883 3.5883 3.5883 3.5884 3.5894 3.5894 3.5894 3.5894 3.5894 3.5894 3.5894 3.5894 3.5894 3.5894 3.5894 3.5894 3.5894 3.5894 3.5894
AST FLUIDYNE EJEC	16200 13.5242 13.013 2.8992 2.8992 2.8992 2.89882 2.896882 2.896882 2.89689 2.89689 2.89689 2.89689 2.8969 3.9555 3.9555 3.9555 3.9629
	161.00 13.038 2.1948 2.1948 9.5951 2.2298 97564 97564 97564 2.1695 2.2079 97564 2.1877 2.1877 2.1877 2.1877 2.1877 2.1877 2.1877 2.1877 2.1877 2.1877 2.1877 2.1877 2.2664 2.2664 2.2665 2.
	3
	RDG. PAMB PRAMB CV7M CD87M CT08 CV89 CT08 CT08 CV9FS CV87FS CV87FS CV87FS CV87FS CV87FS CV87FS

3.3955 .96386 .75136 3.4354 .77235 .97638 3.362 .95132 75423 8Ø567 3.4633 3.3894 71647 .96255 98561 17106 .8926 8.4836 3.4754 .71289 .9592 95602 75299 3.5522 3.55328 3.55328 3.55528 3.55 12.38 3.4973 .95421 .9568 .98334 4547 17666 AST FLUIDYNE SCALE MODEL TEST RESULTS .98334 .91232 2.8729 90982 93747 97025 2.852 94933 .91639 .94371 2.8966 .91009 .96231 2.8755 .9502 .95338 .4525 12.416 2.9055 .90568 .95934 91409 90701 17200 EJECTOR SHROUD .4528 12.263 2.2198 .88814 .89767 2.1939 .89401 .9238 .9696 2.1805 .95832 2.2024 90347 2.2123 .8907 .89497 .96153 2.1986 .95203 .95089 99261 77008 6689 .3511 12.943 3.5306 93434 9822 93717 93744 93774 96096 97027 3.496 95415 94049 .96357 .935Ø5 .93763 .96246 3.5244 .95441 .95699 .98338 .95968 2.8786 .92368 .95718 .97022 2.899 .9497 .9242 2.9111 .91952 .95938 2.9268 92383 2.9228 2.9023 3467 95345 92565 2.244 2.1843 2.1843 94715 94715 95099 95083 2.2219 95083 2.20262 96573 .3515 12.958 2.2098 9101 96232 2.2404 95185 .95919 .95623 8800 CTOA PR7FS CV7FS CV9FS CD7FS PR87FS CV87FS CV87FS CV87FS CT0A9 PR87M CD87M CTM PR8 CV9M CV8 CD8 CD8 CV89 CV89 PR7M CV7M CD7M RDG. PAMB

TS.	24
L TEST RESULTS	17500 8 . 89229 3 . 2527 3 . 2527 3 . 2527 3 . 2529 3 . 2529 3 . 2529 3 . 2529 3 . 2529 3 . 2553 3 . 2
FLUIDYNE SCALE MODEL EJECTOR SHROUD	2
AST FLUIDYNI EJI	1998 6.5552 7.6241 9.5451 9.5451 9.55451 9.5564 9.5564 9.55651 9.55651 9.55651 9.55651 9.55627 9.55627 9.5627 9.5627 9.5627 9.5627 9.5627 9.5627 9.5627 9.5627 9.5627 9.5627 9.5627 9.5627 9.5627 9.5627 9.5627
	18@@ 8. @ 45. 9. 2839 9. 2839 9. 2839 9. 255179 9. 255179 9. 25521 9. 3386 9. 3352 9. 3352 9. 3352 9. 3352 9. 35589 9. 33552 9. 33552 9. 355289 9. 3
-	1,200 1,200 2.5296 2.5296 2.5296 2.5316 2.5316 2.5316 2.5318 2.53112 2
	ADG. MACH PAME PRAME CUSA CUSA CUSA CUSA CUSA CUSA CUSA CUSA

	6788 1.782 26.929 .98585 .98866 .98866 .98938 .98938 .98843 .98843 .98843 .98883
	2.18 2.039 21.845 .98367 .98896 .98896 .9876 .9876 .98819 .98854 .98854 .98855
TEST RESULTS Æ	2.332 18.829 .98.829 .98565 18.679 .99144 .99144 .99144 .98553 .98553 .98565
DYNE SCALE MODEL TEST COANNULAR BASELINE	5620 0.2.636 16.786 .98495 .98082 16.651 .98173 .98173 .9871 .98642 .98642 .98642
AST FLUIDYNE COANN	5510 0.078 3.078 14.078 98478 97954 97954 98661 986661
A	5500 3.183 13.314 98548 97966 13.207 98069 98703 98703 977084 977984 977984
	18500 - 8956 8.4539 - 98174 - 9453 - 9453 - 9453 - 9453 - 95739 - 95739 - 95739 - 95739 - 95739 - 9581
	RDG. MACH PAMB PR7M CU7M CT0A9 CV8 CV8 CV8 CV8 CV8 CV7FS CV7FS CV7FS CV7FS

20000 3300 3300 3300 3300 9033 8.3054 9.46154 9.482 9.8351 9.8474 9.4532 9.8351 9.8626 9.8351 9.8626 9.8351 9.8626 9.8351 9.83248 9.9177 9.93662 9.25394 9.9521 9.93248 9.9521 9.99521 9.99521 9.99521 9.99521 9.99521 9.99521 9.99521 9.99521 9.99521 9.99521 9.99521 9.99521 9.99521 9.99521 9.99521 9.99521 9.99521 9.99529
20100 8 .8995 2 .5107 2 .5107 2 .5107 2 .5024 2 .5024 2 .5024 2 .5024 2 .5024 3 .5024
3166 7 6061 9 6061 9 4444 9 444471 9 444471 9 444771 9 6647 9 6683 9 66
3616 3.286 3.2865 9.2864 9.2727 9.2727 9.2721 9.2721 9.39999 9.39999
2. 4. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
######################################

AST FLUIDYNE SCALE MODEL TEST RESULTS EJECTOR SHROUD	4 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	4100 6.7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-
	4666 6.9677 98584 9721 6.8561 97368 97368 97368 97368 97121 97121 97121 97121
	39.00 0.00
	20200 20002 4.50002 4.548 .83352 8.3552 8.3552
	20300 .9036 8.2966 3.3511 .98588 .7654 .7677 .78929 .76929 .76591 .76591 .76591
	20000 20000 2.51262 .673999 .673999 .673999 .673999 .673599 .67559 .67559 .67559 .67559
	34 C
	RDCH PAMB PAMB CLV7M CLV9M CLOA CTOA CTOA CCV7FS CCV9FS CCV9FS

AST FLUIDYNE SCALE MODEL TEST RESULTS EJECTOR SHROUD	2. 481 19. 425 98935 98966 98966 98966 98966 99949 9799 9799 97999 99363
	4366 2.713 17.372 97642 97642 17.251 17.251 17.367 97572 97572 97572 97572 97572
	4666 3.169 9.1183 9.1183 9.4047 9.4047 9.4047 9.40412 9.40412 9.40412 9.40412 9.40412 9.40412
	.01 3.735 11.728 .96052 .96052 11.646 .9732 .9732 .95998 .95998 .95998
	386 4.253 9.9563 9.9563 9.9563 9.9512 9.9312 9.9312 9.9312 9.9312 9.9312 9.9312 9.9312 9.9312
	3266 4.711 7.8845 98339 97727 7.7396 97873 97873 97873 97873 97873 97873 97873 97873 97873 97873
	3600 5.0488 7.1252 98423 97611 7.06511 7.06511 7.0953 7.0953 7.0953 7.0953 7.0953 7.0953 7.0953 7.0953 7.0953
	356 5.536 972634 97281 97281 97281 97281 97281 97281 97281 97281 97281 97281
	######################################

	4900 2.176 2.176 9.9895 9883 21.828 99701 99701 99853 99853 99853 99853 99851 99855
TS	26 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
SCALE MODEL TEST RESULTS	5616 2.599 18.947 .98321 .98321 18.816 .99214 .99214 .99238 .98238 .98238 .98238 .98238
YNE SCALE MODE EJECTOR SHROUD	4806 2.654 17.524 97906 97906 17.402 97837 97837 97837 97837 97837 97837
AST FLUIDYNE EJEC	47.00 3.176 14.049 97079 97079 97165 97165 97165 97018 97018 97018 97018
	4510 2.069 23.469 98992 98479 98546 99256 99256 998423 98423 998423 99363
	4410 2.401 20.137 .98912 .98398 .98398 19.997 .9847 .99257 .99257 .98321 .98321 .98321 .98321
	ADCH PACH PACH CUZM CUZM CVZM CVZM CVZM CVZM CVZM CVZM CVZM CV

DISTRIBUTION LIST

		No. of Copies
NASA Lewis Research Center		
21000 Brookpark Road		
Cleveland, OH 44135		
Attn: Report Control Office	MS 60-1	1
Library	MS 60-3	2
R. E. Coltrin L. H. Fishbach	MS 86-7 MS 6-12	2 1
W. C. Strack	MS 6-12	i
L. C. Franciscus	MS 6-12	ī
A. G. Powers	MS 86-7	1
J. B. Whitlow	MS 86-7	5
NASA Scientific and Technical Informati	ion Facility	
P. O. Box 8757		
Baltimore/Washington International Airpattn: Accessioning Department	port, MD 21240	20
NASA Headquarters		
Washington, DC 20546		
Attn: W. S. Aiken, Jr.	Code RJ	1
J. Levine	Code RX	1
J. A. Suddreth G. Banerian	Code RJ	1 1
G. Ballettall	Code RP	ı
NASA Langley Research Center		
Hampton, VA 23665 Attn: D. Maglieri	160 040D	•
C. Driver	MS 249B MS 249A	1 1
• • •	MS 249B	i
C. E. Mercer	MS 280	ī
Research Information Center	MS 151A	1
NASA Dryden Flight Research Center P. O. Box 273		
Edwards, CA 93523		
Attn: F. W. Burcham	MS D-OFAP	1
R. S. Baron	MS D-FP	1
NASA Ames Research Center		
Moffett Field, CA 94035 Attn: C. Thomas Snyder	MC 200 2	1
•	MS 200-3	1
Air Force Aero Propulsion Lab		
Wright Patterson AFB, OH 45433	30037 /2243	
Attn: E. E. Bailey	AFWAL/NASA-PC) 1

DISTRIBUTION LIST (Continued)

		No. of Copies
Pratt & Whitney Aircraft Commercial Products Division East Hartford, CT 06108 Attn: R. B. Hunt R. W. Hines	Eng. 3NJ Eng. 3NJ	1 1
The Boeing Commercial Airplane Company P. O. Box 3707 Seattle, WA 98124 Attn: F. Neumann P. Johnson G. Evelyn G. W. Klees	MS 9H-46 MS 9H-46 MS 9H-46 MS 9H-46	1 1 1
Lockheed-California Company P. O. Box 551		
Burbank, CA 91503 Attn: J. Clauss	Dept. 75-21 Bldg. 63-3 Plant A-1	1
L. Bangert	Dept. 75-21 Bldg. 63-3 Plant A-1	1
Douglas Aircraft Company 3855 Lakewood Boulevard Long Beach, CA 90801 Attn: R. D. FitzSimmons W. Rowe	Code 35-74 Code 35-74	1 1
General Electric Company 1 Neumann Way Cincinnati, OH 45215 Attn: D. J. Dusa C. D. Wagenknecht R. W. Whittaker E. D. Bediako R. Lee J. F. Brausch R. K. Majjigi B. A. Janardan J. P. Wolf R. D. Allan Evendale Technical Information Center Lynn Technical Information Center Technical Information Exchange, Schenectady	M/D H-43 M/D H-43 M/D H-43 M/D H-43 M/D G-42 M/D G-42 M/D G-42 M/D H-6 M/D H-6 M/D N-32 24001 Bldg. 5 Rm. 221	1 2 1 5 1 1 1 1 1 6

	,				
1. Report No.	2. Government Access	on No.	3. Recipient's Catalog	No.	
NASA CR-174860	<u> </u>				
4. Title and Subtitle	-		5. Report Date		
Aerodynamic Performa		- <u>-</u>	February		
Advanced Mechanical			6. Performing Organiz	ation Code	
Nozzle Concepts for	Jet Noise R	leduction			
7. Author(s)			8. Performing Organiz	ation Report No.	
C. D. Wagenknecht a	nd E. D. Bek	iako	R83AEB12	2-3	
			10. Work Unit No.		
9. Performing Organization Name and Address					
General Electric Co	mpany		11. Contract or Grant	No.	
Aircraft Engine Bus		ļ	NAS3-23038		
Cincinnati, OH 452	15-6301	†	13. Type of Report ar	nd Period Covered	
12. Sponsoring Agency Name and Address			Final Re	port	
National Aeronautics	and Space Adr	ninistration	1981 - 1		
Washington, DC 205			14. Sponsoring Agency	Code	
				·	
15. Supplementary Notes	L D 1712 i h 1 -				
Project Manager, Jo	nn B. Whitic Division	ow, Jr.			
Propulsion Systems NASA Lewis Research	Center				
<u>Cleveland, OH 4413</u>	5				
16. Abstract					
Advanced Supersonic	Transport	iet noise may	, be reduce	d to	
Federal Air Regulat					
recently developed	eiector shro	oud exhaust s	system are	success=	
fully carried out.	0,00001 0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
rarry carried sact					
This report describ					
study and a subscal	e model wind	l tunnel test	effort co	nducted to	
define an acoustica					
for supersonic tran					
ejector shroud exha	ust systems	were evaluat	ed. Progr	am results	
were used in a miss					
takeoff gross weigh					
Federal Aviation Re	gulation (19	969), Part 36	5, Stage 3	noise	
conștraints.					
	1 .			1 1	
Mission trade study	results con	ifirmed that	tne ejecto	r snroud	
was the best of the					
ficant takeoff gros			the 20-chu	re sup-	
pressor nozzle whic	n was the se	econd best.			
17. Key Words (Suggested by Author(s))		18. Distribution Statemer	nt		
	an1.				
Ejector, Exhaust No		-			
Acoustic, Suppresso	r, Aircraft,	(Until	February 1	5, 1986)	
Propulsion			•		
				T	
19. Security Classif. (of this report)	20. Security Classif, (c	of this page)	21. No. of Pages	22. Price*	

UNCLASSIFIED

208

UNCLASSIFIED