Grothendieck Topologies

Guilherme Henrique de Sá

2. Contravariant Functors

2.1 Representable functors and the Yoneda Lemma

Transformação Natural. Dado dois funtores $T, S : \mathcal{C} \to \mathcal{B}$, uma transformação natural é uma função que associa a cada objeto c em \mathcal{C} uma seta $\tau_c : S(c) \to T(c)$ em \mathcal{B} .

Esta associação é feita de forma que, para toda seta $f:X\to Y$ em \mathcal{C} , valha que o seguinte diagrama comuta:

$$\begin{array}{ccc} X & & S(X) \stackrel{\tau_X}{\longrightarrow} T(X) \\ \downarrow^f & & S(f) \downarrow & & \downarrow^{T(f)} \\ Y & & S(Y) \stackrel{\tau_Y}{\longrightarrow} T(Y) \end{array}$$

Ou seja, temos que:

$$\tau_u \circ S(f) = T(f) \circ \tau_x$$

• Transformações naturais podem ser vistas como morfismos (setas) entre funtores.

Seja $\operatorname{Hom}(\mathcal{C}^{op},\mathbf{Set})$ a categoria cujos elementos (objetos) são funtores contravariantes da categoria \mathcal{C} para a categoria dos conjuntos, e as setas são transformações naturais.

• Para cada x objeto de \mathcal{C} , podemos definir

$$h_x: \mathcal{C}^{op} \to \mathbf{Set}$$

objeto de $\text{Hom}(\mathcal{C}^{op}, \mathbf{Set})$, de forma que:

- $-h_x(U) = \operatorname{Hom}(U, X)$ para cada objeto U de C;
- Para cada seta $\alpha: U' \to U$ em \mathcal{C}^{op} , temos o morfismo $h_X U \to h_X U'$ dado por composição com α .

• Para cada seta $f: X \to Y$ de \mathcal{C} , definimos uma transformação natural h_f que associa a cada objeto U de \mathcal{C}^{op} uma seta:

$$h_f(U): h_X(U) \to h_Y(U)$$
 em **Set**

• Seja $\beta \in \text{Hom}(U, X)$, então

$$h_f(U)(\beta) := f \circ \beta \in \text{Hom}(U, Y)$$

Isso define um morfismo $h_f: h_X \to h_Y$.

Para toda seta $\alpha: U' \to U$ em \mathcal{C}^{op} , o seguinte diagrama comuta:

$$h_X(U) \xrightarrow{h_f(U)} h_Y(U)$$

$$h_X(\alpha) \downarrow \qquad \qquad \downarrow h_Y(\alpha)$$

$$h_X(U') \xrightarrow{h_f(U')} h_Y(U')$$

• Mandando cada objeto X de \mathcal{C} em h_X e cada morfismo $f: X \to Y$ de \mathcal{C} em $h_f: h_X \to h_Y$, definimos assim um funtor:

$$\mathcal{C} \to \operatorname{Hom}(\mathcal{C}^{op}, \mathbf{Set})$$

Yoneda Lemma (Versão Fraca). Seja x, y objetos de uma categoria C. Então a função:

$$\operatorname{Hom}_{\mathcal{C}}(X,X) \to \operatorname{Hom}(h_X,h_Y)$$

que manda $f \mapsto h_f$ é bijetiva.

(Note que isso nos diz que o funtor definido anteriormente é "plenamente fiel", ou "cheio e fiel").

Definição. Um funtor representável de uma categoria \mathcal{C} é um funtor

$$F: \mathcal{C}^{op} \to \mathbf{Set}$$

tal que F é isomorfo a h_X para algum X objeto de \mathcal{C} . Dizemos que F é representado por X.

Se ocorrer de F ≅ h_X e F ≅ h_Y, então h_X ≅ h_Y e, pelo lema anterior, vai existir f: X → Y tal que h_f: h_X → h_Y é uma equivalência. Mas, pela construção de h_f, teremos que f é uma equivalência.

Vamos nos preparar para o lema de Yoneda (versão definitiva).

- Seja $T: \mathcal{C}^{op} \to \mathbf{Set}$ um funtor e X um objeto de \mathcal{C} . Dado $\tau: h_X \to T$, temos um morfismo $\tau_X: h_X(X) \to T(X)$.
- Podemos definir uma função de transformações naturais entre h_X e T para elementos no conjunto T(X) dada por:

$$\operatorname{Hom}(h_X, T) \quad \to \quad T(X)$$

$$\tau \quad \mapsto \quad \tau_X(\operatorname{id}_X)$$

- Dado $\xi \in T(x)$, queremos construir uma transformação natural $\tau : h_X \to T$. Seja U um objeto de \mathcal{C} , então $h_X(U) = \operatorname{Hom}(U, X)$. Um elemento $f \in h_X(U)$ é um morfismo $f: U \to X$ em \mathcal{C} .
- Definimos:

$$\tau_U: h_X(U) \to T(U)$$

$$f \mapsto T(f)(\xi)$$

Assim, temos uma transformação natural τ e podemos fazer $\tau_U(f) = T(f)(\xi)$.

• Teremos que, para todo morfismo $\alpha: U' \to U$ em \mathcal{C}^{op} , vale que:

$$\tau_{U'}(h_X(\alpha)(f)) = \tau_{U'}(f \circ \alpha) = T(f \circ \alpha)(\xi) \tag{1}$$

$$(T(\alpha) \circ \tau_U)(f) = T(\alpha)(T(f)(\xi)) = T(f \circ \alpha)(\xi)$$
(2)

Como T é contravariante, de (1) e (2) segue:

$$(T(\alpha) \circ \tau_U)(f) = (T(\alpha) \circ T(f))(\xi) = T(f \circ \alpha)(\xi)$$

$$=(\tau_{U'}\circ h_X(\alpha))(f)$$

Fazendo com que o diagrama comute:

$$h_X(U) \xrightarrow{\tau_U} T(U)$$

$$h_X(\alpha) \downarrow \qquad \qquad \downarrow T(\alpha)$$

$$h_X(U') \xrightarrow{\tau_{U'}} T(U')$$

Logo, τ é transformação natural.

A aplicação descrita é uma função:

$$T(X) \to \operatorname{Hom}(h_X, T)$$

Lema de Yoneda (Versão Final). As funções anteriores são inversas uma da outra e vale que:

$$T(X) \cong \operatorname{Hom}(h_X, T)$$

Observação. Se considerarmos T representável por Y, i.e. $T \cong h_Y$, então:

$$h_X(Y) = \operatorname{Hom}(X, Y) \cong \operatorname{Hom}(h_X, h_Y)$$

que é a versão fraca do Lema de Yoneda.

Def. 2.2. Seja $F: \mathcal{C}^{op} \to \mathbf{Set}$ um funtor. Um objeto universal de F é um par (X, ξ) , onde X é objeto de \mathcal{C} e ξ é um elemento de FX tal que para cada objeto U de \mathcal{C} e cada $\sigma \in FU$, exista uma única seta $f: U \to X$ em \mathcal{C} satisfazendo:

$$F(f)(\xi) = \sigma$$

Perceba que se (X, ξ) é objeto universal de F, então a função T que define a transformação natural no Lema de Yoneda é bijetiva para todo U. Assim, o morfismo $h_X \to F$ é isomorfismo. Segue a proposição:

Prop. 2.3. Um funtor $F: \mathcal{C}^{op} \to \mathbf{Set}$ é representável se e somente se possui um objeto universal.

- Se (X,ξ) é objeto universal de F, então F é representado por X.
- O Lema de Yoneda nos garante que \mathcal{C} pode ser imerso em $\operatorname{Hom}(\mathcal{C}^{op}, \mathbf{Set})$ e que todo funtor $F: \mathcal{C}^{op} \to \mathbf{Set}$ pode ser estendido a um funtor representável

$$h_F: \operatorname{Hom}(\mathcal{C}^{op}, \mathbf{Set}) \to \mathbf{Set}.$$

Assim, vamos tratar h_X como simplesmente X, e $\text{Hom}(h_X, F)$ como FX.

Exemplos:

1. Seja a categoria **Set**, onde os objetos são conjuntos e as setas são funções entre conjuntos.

Seja $F: \mathbf{Set}^{\mathrm{op}} \to \mathbf{Set}$ que leva um conjunto S no conjunto $\mathcal{P}(S)$ das partes de S, e leva uma função $f: S \to T$ em

$$Ff: \mathcal{P}(T) \to \mathcal{P}(S), \quad \sigma \mapsto f^{-1}(\sigma).$$

Afirma-se que $(\{1,0\},\{1\})$ é objeto universal de F. Ora, dado um conjunto S e um subconjunto $\sigma \in \mathcal{P}(S)$, então existe uma única $f:S \to \{0,1\}$ tal que $F(f)(\{1\}) = \sigma$. A função é:

$$f(x) = \begin{cases} 0, & \text{se } x \notin \sigma \\ 1, & \text{se } x \in \sigma \end{cases}$$

2. Seja **HausTop** a categoria de todos os espaços Hausdorff com setas sendo as funções contínuas. O functor $F: \mathbf{HausTop}^{\mathrm{op}} \to \mathbf{Set}$, que manda um espaço S no conjunto FS dos subespaços abertos, não é representável.

Suponha que (X,ξ) é objeto universal de F. Isso nos diz que $\forall \sigma \in FS$, existe $f: S \to X$ tal que $F(f)(\xi) = f^{-1}(\xi) = \sigma$.

Tomando $\sigma=S,$ então ξ possui um único elemento. Se $\sigma=\emptyset,$ então $\#X\setminus \xi=1.$

Como X é Hausdorff, segue que $X = \{a, b\}$ com a topologia discreta.

Seja S um espaço Hausdorff tal que existe $\sigma \in FS$ aberto mas não fechado.

Tem que existir $f: S \to X$ contínua tal que $f^{-1}(\xi) = \sigma \Rightarrow f^{-1}(X \setminus \xi) = S \setminus \sigma \Rightarrow S \setminus \sigma$ é aberto e teríamos que σ é fechado.

Assim, (X, ξ) não é objeto universal!

1. Categories Functors and Natural Transformations

5. Mônicos, Epis e Zeros

Definição. Uma seta $e: a \to b$ é dita **invertível** se existe uma seta $e': b \to a$ na mesma categoria tal que

$$ee' = 1_b$$
 e $e'e = 1_a$.

Neste caso, dizemos que $a \in b$ são **isomorfos** $(a \cong b) \in e$ é dito um **isomorfismo**.

Definição. Um morfismo $m:a\to b$ é dito **mônico** em $\mathcal C$ quando, para quaisquer setas paralelas $f_1,f_2:d\to a$, se

$$mf_1 = mf_2 \quad \Rightarrow \quad f_1 = f_2.$$

Definição. Uma seta $h:a\to b$ em $\mathcal C$ é dita **epi** se, para quaisquer setas $g_1,g_2:b\to c$, vale

$$g_1h = g_2h \quad \Rightarrow \quad g_1 = g_2.$$

Definição. Dado $h: a \to b$, um **inverso à direita** de h é uma seta $r: b \to a$ tal que $hr = 1_b$. r é chamado **seção** de h.

Analogamente, um inverso à esquerda é uma seta $p:b\to a$ tal que $ph=1_a$. p é dito retração de h.

Proposição. Se uma seta possui inverso à direita, então ela é necessariamente epi. Se possui inverso à esquerda, então é mônico.

Idempotentes e Splitting

Definição. Se duas setas $g: a \to b$ e $h: b \to a$ são tais que $gh = 1_b$, então f:= hg está bem definido e é um **idempotente**, isto é, $f^2 = f$.

Definição. Um idempotente f splita quando existem setas g, h tais que

$$f = gh$$
 e $hg = 1_d$.

Objetos Especiais

Definição. Um objeto t é **terminal** quando, para todo objeto a, existe um único morfismo $a \to t$.

Definição. Um objeto i é **inicial** quando, para todo objeto b, existe um único morfismo $i \to b$.

Definição. Um objeto que é inicial e terminal é dito nulo.

Proposição. Objetos nulos são únicos a menos de isomorfismos e definem, para quaisquer objetos a e b, uma seta

$$a \rightarrow z \rightarrow b$$
,

chamada seta zero (onde z é um objeto nulo).

Grupoides

Definição. Um **grupoide** é uma categoria onde toda seta é invertível. Um exemplo típico é o **grupoide fundamental** $\pi(X)$ de um espaço topológico X:

- os objetos são pontos $x \in X$;
- as setas $x \to x'$ são classes de homotopia de caminhos de x para x'.

Proposição. Se G é um grupoide e x é um objeto de G, então $Hom_G(x,x)$ forma um grupo.

Proposição. Se existe morfismo ligando dois objetos $x \to x'$ em G, então os grupos $Hom_G(x,x)$ e $Hom_G(x',x')$ são isomorfos (pela conjugação).

Definição. Um grupoide é dito **conexo** se existe uma seta ligando quaisquer dois objetos. Um grupoide conectado é caracterizado pelo seu conjunto de objetos e um grupo $\operatorname{Hom}_G(x,x)$.

Observação. No caso do grupoide fundamental $\pi(X)$, o conjunto é X e o grupo $\operatorname{Hom}(x,x)$ é dito **grupo fundamental**.