$\begin{array}{lll} termvar,\,x,\,f & \text{term variable} \\ typevar,\,\alpha & \text{type variable} \\ integer,\,i & \text{integer} \\ s & \text{string} \\ b & \text{boolean} \\ k & \text{index} \end{array}$

const ::= constants

noop no-op wait wait

selfdestruct self destruct

move move
turn turn
grab grab
place place
give give
install install
make make

has inventory test count inventory count

drilldrillbuildbuildsalvagesalvagereprogramreprogram

saysayloglogviewviewappearappearcreatecreate

whereami location queryblocked front query

scanscanuploaduploadisherecell querywhoamiself name query

 $\begin{array}{ccc} \textbf{random} & \text{random} \\ \textbf{run} & \text{run} \\ \textbf{if} & \text{if} \end{array}$

inl left injection
inr right injection
case case analysis
fst first projection
snd second projection

forceforcereturnreturntrytry

raise exception

notnotnegnegateeqequal toneqnot equal toltless thangtgreater than

		leq geq add sub mul div exp		less-or-equal greater-or-equal addition subtraction multiplication division exponentiation
d	::=	left right back forward north south east west down		direction
$term,\ t$		() $const$ d i s b x $\lambda x.t$ $t_1 t_2$ $let x = t_1 in t_2$ $def x = t end$ $x \leftarrow t_1; t_2$ (t_1, t_2) $\{t\}$	bind x in t bind x in t_2 bind x in t_2	term unit value constant direction literal integer literal string literal boolean literal variable function abstraction function application let definition bind pair delay
$basety,\ B$::= 	() int string dir bool		base type unit integers strings directions booleans
$type, \ au$::=	$egin{array}{l} lpha \ B \ \mathbf{cmd} \ au \ \{ au\} \ au_1 + au_2 \ au_1 imes au_2 \end{array}$		monotype variable base type command type delay type sum type product type

 $\Gamma \vdash t : \tau; \Delta; \Xi$ In context Γ , t has type τ and requires evaluation and execution capabilites Δ and Ξ

$$\overline{\Gamma \vdash () : (); \bullet; \bullet} \qquad \text{TYPE_UNIT}$$

$$\overline{\Gamma \vdash d : \text{dir}; \bullet; \bullet} \qquad \text{TYPE_INT}$$

$$\overline{\Gamma \vdash b : \text{int}; \bullet; \bullet} \qquad \text{TYPE_INT}$$

$$\overline{\Gamma \vdash b : \text{bool}; \bullet; \bullet} \qquad \text{TYPE_STRING}$$

$$\overline{\Gamma \vdash b : \text{bool}; \bullet; \bullet} \qquad \text{TYPE_BOOL}$$

$$\frac{x : {}^{0} \tau ; \Xi \in \Gamma}{\Gamma \vdash x : \tau ; \bullet; \Xi} \qquad \text{TYPE_VAR}$$

$$\frac{\Gamma, x : {}^{n} \tau_{1} ; \Xi_{1} \vdash t : \tau_{2} ; \Delta_{2} ; \Xi_{2}}{\Gamma \vdash \lambda x . t : \tau_{1}} \qquad \text{TYPE_LAM}$$

$$\overline{\Gamma \vdash \lambda x . t : \tau_{1}} \qquad \frac{n ; \Delta_{2} ; \Xi_{2}}{n ; \Delta_{2} ; \Xi_{2}} \qquad \text{TYPE_LAM}$$

$$\overline{\Gamma \vdash t_{1} : \tau_{2}} \qquad \tau_{2} ; \Delta_{2} ; \Xi_{2} \qquad \Gamma \vdash t_{2} : \tau_{1} ; \Delta_{3} ; \Xi_{3}} \qquad \text{TYPE_APP}$$

$$\overline{\Gamma \vdash t_{1} : \tau_{1}} \qquad \tau_{1} ; \Xi_{1} \vdash \tau_{2} : \tau_{2} ; \Delta_{2} ; \Xi_{2}} \qquad \text{TYPE_LET}$$

$$\overline{\Gamma \vdash t_{1} : \tau_{1}} \qquad \tau_{1} ; \Xi_{1} \vdash \tau_{2} : \tau_{2} ; \Delta_{2} ; \Xi_{2}} \qquad \text{TYPE_LET}$$

$$\overline{\Gamma \vdash t_{1} : \tau_{1}} \qquad \tau_{1} ; \Xi_{1} \vdash \tau_{2} : \tau_{2} ; \Delta_{2} ; \Xi_{2}} \qquad \text{TYPE_DELAY}$$

$$\overline{\Gamma \vdash t : \tau_{1}} \qquad \tau_{1} ; \Xi_{1} \vdash \tau_{2} : \tau_{2} ; \Delta_{2} ; \Xi_{2}} \qquad \text{TYPE_FORCE}$$

$$\overline{\Gamma \vdash t : \tau_{1}} \qquad \tau_{1} ; \Xi_{1} \vdash \tau_{2} : \tau_{2} ; \Delta_{2} ; \Xi_{2}} \qquad \text{TYPE_PAIR}$$

$$\overline{\Gamma \vdash t_{1} : \tau_{1}} \qquad \tau_{1} ; \Xi_{1} \vdash \tau_{2} : \tau_{2} ; \Delta_{2} ; \Xi_{2}} \qquad \text{TYPE_PAIR}$$

$$\overline{\Gamma \vdash t_{1} : \tau_{1}} \qquad \tau_{1} ; \Xi_{1} \vdash \tau_{2} : \tau_{2} ; \Delta_{2} ; \Xi_{2}} \qquad \text{TYPE_PAIR}$$

$$\overline{\Gamma \vdash t_{1} : \text{cmd}} \qquad \tau_{1} ; \Delta_{1} ; \Xi_{1} \vdash \tau_{2} : \text{cmd}} \qquad \tau_{2} ; \Delta_{2} ; \Xi_{2}} \qquad \text{TYPE_BIND}$$

Definition rules: 13 good 0 bad Definition rule clauses: 21 good 0 bad