Transition Systems over Games

Paul Blain Levy, University of Birmingham Sam Staton, Radboud University Nijmegen

July 16, 2014

Denotational vs operational

- Traditional pointer-game semantics (Hyland, Ong et al, 1994 onwards) is compositional.
- Open (normal form) bisimulation (Sangiorgi et al, 1994 onwards) is operational but not obviously compositional.
- Two different viewpoints of the same thing.

Denotational vs operational

- Traditional pointer-game semantics (Hyland, Ong et al, 1994 onwards) is compositional.
- Open (normal form) bisimulation (Sangiorgi et al, 1994 onwards) is operational but not obviously compositional.
- Two different viewpoints of the same thing.

We wanted to combine these accounts

- Start with the intuitive operational description.
- Obtain compositionality as a theorem, not a definition.

Denotational vs operational

- Traditional pointer-game semantics (Hyland, Ong et al, 1994 onwards) is compositional.
- Open (normal form) bisimulation (Sangiorgi et al, 1994 onwards) is operational but not obviously compositional.
- Two different viewpoints of the same thing.

We wanted to combine these accounts

- Start with the intuitive operational description.
- Obtain compositionality as a theorem, not a definition.
- And treat fresh names in a rigorous yet unobtrusive way.

Denotational vs operational

- Traditional pointer-game semantics (Hyland, Ong et al, 1994 onwards) is compositional.
- Open (normal form) bisimulation (Sangiorgi et al, 1994 onwards) is operational but not obviously compositional.
- Two different viewpoints of the same thing.

We wanted to combine these accounts

- Start with the intuitive operational description.
- Obtain compositionality as a theorem, not a definition.
- And treat fresh names in a rigorous yet unobtrusive way.

We needed to think more carefully about transition systems.

Labelled transition system

Over a set

An LTS over a set L of actions consists of

- a set S of states
- a relation $\stackrel{a}{\leadsto}$ for each $a \in L$.

Labelled transition system

Over a set

An LTS over a set L of actions consists of

- a set S of states
- a relation $\stackrel{a}{\leadsto}$ for each $a \in L$.

What's odd

- Actions may represent outputs, inputs or sychronizations.
- The set of actions does not change over time.

Example: chess

Consider a system that plays chess.

Every state is in a position.

The position determines what actions are legitimate.

"The position is the type of the state."

Example: higher-order functions

Each player has an inventory of function-names that they are allowed to call.

Position = two finite sets of function-names

Example: higher-order functions

Each player has an inventory of function-names that they are allowed to call.

Position = two finite sets of function-names

In the semantics of a higher-order function call:

$$f(\lambda x. x + 2, \lambda x. x + 1)$$

P performs the move f(-,-).

and O receives two fresh function-names b and b' for future use.

The new state contains the bindings

$$b \mapsto \lambda x. x + 2$$

$$b' \mapsto \lambda x. x + 1$$

The Framework

	Single	Tensor	Transfer
	\mathcal{G}	$\mathcal{G}\otimes\mathcal{G}'$	$\mathcal{G} o \mathcal{H}$
Games			
Strategies			
Transition			
systems			
Relating			
strategies		Compositionality	
to		theo	orems
transition			
systems			

Game = bipartite graph

Definition

A game consists of

- a set of passive positions (O to move)
- a set of active positions (P to move)
- from each passive position P, a set of O-moves m, each with an active target position P.m
- from each active position Q, a set of P-moves n, each with a passive target position Q.n.

Notation
$$P \xrightarrow{m} Q$$
 O-move $Q \xrightarrow{n} P$ P-move

Plays

Let P be a passive position. (The starting position.)

A play from position P is a sequence of moves

$$P \circ \xrightarrow{m_0} \cdot \bullet \xrightarrow{n_0} \cdot \circ \xrightarrow{m_1} \cdot \bullet \xrightarrow{n_1} \cdot$$

Strategies

A strategy tells P how to respond to any O-move either playing a move or diverging.

Strategies

A strategy tells P how to respond to any O-move either playing a move or diverging.

Definition

A strategy σ from position P is a set of passive-ending plays such that

- $\bullet \ \varepsilon \in \sigma$
- (prefix-closure) $smn \in \sigma \Rightarrow s \in \sigma$
- (determinacy) $tn, tn' \in \sigma \Rightarrow n = n'$

Small-step system over a game

Definition

- In each passive position, a set of passive nodes.
- In each active position, a set of active nodes.
- For each passive node x and O-move m, an active node x@m.
- Each active node y either
 - performs a P-move $y \stackrel{n}{\leadsto} x$
 - or performs a silent transition $y \rightsquigarrow y'$ (same position).

Derived notation
$$y \stackrel{n}{\Longrightarrow} x$$
 when $y \rightsquigarrow^* \stackrel{n}{\leadsto} x$ $y \uparrow \uparrow \qquad$ when $y \rightsquigarrow^{\omega}$

Big-step system over a game

Definition

- In each passive position, a set of passive nodes.
- In each active position, a set of active nodes.
- For each passive node x and O-move m, an active node x@m.
- Each active node y either
 - performs a P-move $y \stackrel{n}{\Longrightarrow}$
 - or diverges $y \uparrow$.

Passive system over a game

Definition

- In each passive position, a set of passive nodes.
- For each passive node x and O-move m,
 x responds to m by either
 - performing a P-move $x@m \implies n$
 - or diverging $x@m \uparrow$.

From nodes to strategies

For a node x in passive position P, suppose

$$x = x_0 \quad x_0@m_0 \stackrel{n_0}{\leadsto} x_1 \quad x_1@m_1 \stackrel{n_1}{\leadsto} x_2 \quad \cdots$$

then the play $m_0, n_0, m_1, n_1 \cdots$ is a *trace* of x.

From nodes to strategies

For a node x in passive position P, suppose

$$x = x_0$$
 $x_0@m_0$ $\stackrel{n_0}{\leadsto}$ x_1 $x_1@m_1$ $\stackrel{n_1}{\leadsto}$ x_2 \cdots

then the play $m_0, n_0, m_1, n_1 \cdots$ is a *trace* of x.

The set of all traces of x is a strategy [x].

From nodes to strategies

For a node x in passive position P, suppose

$$x = x_0 \quad x_0@m_0 \stackrel{n_0}{\leadsto} x_1 \quad x_1@m_1 \stackrel{n_1}{\leadsto} x_2 \quad \cdots$$

then the play $m_0, n_0, m_1, n_1 \cdots$ is a *trace* of x.

The set of all traces of x is a strategy [x].

Big-step (or passive) bisimilarity implies trace equivalence and conversely by determinism.

Tensor game $\mathcal{G} \otimes \mathcal{G}'$ (Lamarche)

We wish to play the two games concurrently.

- A passive position of $\mathcal{G} \otimes \mathcal{G}'$ is a pair of passive positions (P, P').
- O can choose which game to play in
- and P has to respond in the same game.
- So an active position has one active and one passive component.

Tensor strategies

- Given strategy σ from position P
- and σ' from position P'
- define $\sigma \otimes \sigma'$ from (P, P').
- It consists of all plays whose left projection is in σ and whose right projection is in σ' .

Tensor of transition systems

Given transition systems over \mathcal{G} and \mathcal{G}' , the tensor system has states (x, x').

Compositionality theorem for tensors

$$\llbracket (x,x') \rrbracket = \llbracket x \rrbracket \otimes \llbracket x' \rrbracket$$

Transfer from \mathcal{G} to \mathcal{H}

I am going to play the external game \mathcal{H} (chess) against external-O.

In my attic lives a player of the internal game \mathcal{G} (draughts) called internal-P.

I shall transfer moves between the two games using a transfer.

Transfer from $\mathcal G$ to $\mathcal H$

I am going to play the external game \mathcal{H} (chess) against external-O.

In my attic lives a player of the internal game \mathcal{G} (draughts) called internal-P.

I shall transfer moves between the two games using a transfer.

Secret

A transfer is a total passive system over

$$\mathcal{G} \multimap \mathcal{H} = (\mathcal{G} \otimes \mathcal{H}^{\perp})^{\perp}$$

Positions and linkers

At any time, either

- both games are in passive position and I'm waiting for external-O
- or both games are in active position and I'm waiting for internal-P.

Positions and linkers

At any time, either

- both games are in passive position and I'm waiting for external-O
- or both games are in active position and I'm waiting for internal-P.

My own state is called a linker

Example: a binary transfer

 λ **Game** is the game for λ -calculus.

• A position is two finite sets of function-names.

Example: a binary transfer

 λ **Game** is the game for λ -calculus.

• A position is two finite sets of function-names.

We define a transfer from λ **Game** $\otimes \lambda$ **Game** $\to \lambda$ **Game**.

Intended purpose of the transfer

To provide a semantic counterpart to syntactic substitution.

Example: a binary transfer

 λ **Game** is the game for λ -calculus.

• A position is two finite sets of function-names.

We define a transfer from λ **Game** $\otimes \lambda$ **Game** $\to \lambda$ **Game**.

Intended purpose of the transfer

To provide a semantic counterpart to syntactic substitution.

What's a linker in this transfer?

A function saying that certain names in one game correspond to certain names in the other.

Responding to an external O-move

Given a passive linker and external O-move

$$\begin{array}{c}
P \\
h \downarrow \\
R \xrightarrow{m'}
\end{array}$$

I play either

or

external square

Responding to an internal P-move

Given an active linker and internal P-move

I play either

internal square

or

P-move square

What is a transfer?

A transfer from $\mathcal G$ to $\mathcal H$ consists of

- a collection of passive linkers
- a collection of active linkers
- a collection of interaction squares (of four kinds) saying how to respond to every external O-move and every internal P-move.

Interaction sequence

An interaction sequence from a linker is a sequence of interaction squares.

internal play

external play

Transferring strategies

Given a transfer ${\mathcal O}$ from ${\mathcal G}$ to ${\mathcal H}$

and a linker $h: P \rightarrow R$,

each strategy σ from P gives a strategy $\mathcal{O}(\sigma)$ from R

viz. the set of all external plays of interaction sequences from h whose internal play is in σ .

Compositionality theorem for transfers

```
Given small-step systems over \mathcal G and \mathcal H and a transfer \mathcal O from \mathcal G to \mathcal H and a linker-indexed relation \mathcal R, i.e. for each linker h:P\to R a relation \mathcal R_h from states in position P to states in position R. Suppose \mathcal R is a stepped bisimulation across \mathcal O. If x\,\mathcal R_h\,y then [\![y]\!]=\mathcal O([\![x]\!]).
```

What's a stepped bisimulation?

For a linker-indexed relation to be a stepped bisimulation,

it must be preserved across each kind of square and across silent transitions.

What's a stepped bisimulation?

For a linker-indexed relation to be a stepped bisimulation,

it must be preserved across each kind of square and across silent transitions.

But that's not enough.

The danger

 $x \mathcal{R}_k y$ and we have infinitely many internal squares

Then the transfer predicts that *y* diverges, but it might not.

To rule this out, predicates $(U_k^i)_{i\in\mathbb{N}}$ bound the number of internal squares.

What have we gained?

To describe a game semantics we first give a transition system over a game.

Then for each term constructor we give a transfer, and a stepped bisimulation to demonstrate its correctness.

We only need to talk about individual moves. Plays and strategies are handled by our compositionality theorems.

Further directions

- Game semantics for many different languages
- $!\mathcal{G}$ for multiple threads (Hyland)
- *-autonomous bicategory of games and transfers
- Equations between operations on strategies arising from transfers
- Nondeterminism, probability, . . .
- Concurrency?