CIS 519 Problem Set 3

Gabrielle Merritt

November 15, 2014

Part I

Problem Set

Probability decision boundary 1

Show that decision \hat{y} that minimizes the expected loss 1.1 equivalent to setting a probability threshold θ and predicting $\hat{y} = 0$ if $p1 < \theta$ and $\hat{y} = 1$ if $p1 \ge \theta$

solution If we assume the threshold is where Cost of predicting 0 and predicting 1 are equivalent, then we can assume p1 acts a threshold for predicting 1 or 0

$$cost_0 = 0 * p_0 + 10 * p_1$$

 $cost_1 = 5 * p_0 + 0 * p_1$
 $p_1 = \frac{1}{2}p_0$

1.2 Calculate the threshold

solution

$$\theta = p_1$$

when $cost_0 = cost_1$ also

$$p_1 = 1 - p_0$$

therefore:

$$1 - p_0 = \frac{1}{2}p_0$$

$$p_0 = \frac{2}{3}$$

2 Double Counting the evidence

2.1 What is expected error rate of Naive Bayes only using X_1 ? what if only uses X_2

 $ExpectedErrorX_1 = .15 + .1 = 0.25$

 $ExpectedErrorX_2 = 0.05 + .25 = 0.30$

2.2 Show that if naive Bayes uses both attributes X_1 and X_2 the error rate is 0.235, which is better than the single attribute

 $ExpectedError(X_1, X_2) = 0.015 + 0.135 + 0.035 + 0.05 = 0.235$

2.3 Now suppose that we create new attribute X_3 that is an exact copy of X_2 . So for every training example, attributes X_2 and X_3 have the same value. What is the expected error of naive Bayes now?

 $ExpectedError(X_1, X_2, X_3) = 0.0015 + 0.1 + 0.0035 + 0.025 = 0.13$

2.4 Explain what is happening above

Solution: By adding $X_3 = X_2$ we are skewing the predictions to more heavily relying on X_2 to predict our labels

2.5 Does logistic regression suffer from the same problem

Yes, logistic regression like Naive Bayes assumes each feature is independent from each other, so if two features like X_2 and X_3 are dependent the function will be improperly weighted.

3 Reject Option

3.1 Suppose p(y = 1|x) = 0.2. Which decision minimizes the expected loss?

solution

$$p(y = 0|x) = 1 - p(y = 1|x) = .8$$

$$Cost \hat{Y}_0 = 0 * p_0 + 10 * p_1 = 2$$

$$Cost \hat{Y}_1 = 10 * p_0 + 0 * p_1 = 8$$

$$Costreject = 3 * p_0 + 3 * p_1 = 2.4 + .6 = 3$$

Predicting \hat{Y}_0 minimizes loss

3.2 Now suppose p(y = 1|x) = 0.4. Now which decision minimizes the expected loss?

$$p(y=0|x) = 1 - p(y=1|x) = .6$$

$$Cost \hat{Y_0} = 0*0.6 + 10*0.4 = 4$$

$$Cost \hat{Y_1} = 10*0.6 + 0*0.4 = 6$$

$$Costreject = 3*0.6 + 3*0.4 = 1.8 + 1.2 = 3$$

Rejecting minimizes loss

3.3 Show that in cases such as this there will be two thresholds, θ_0 and θ_1 such that the optimal decision is to predict 0 if $p_1 < \theta_0$, reject if $\theta_0 \le p_1 \le \theta_1$, and predict 1 if $p_1 > \theta_1$

Again using when the costs are equal to determine threshold

$$p1 = 1 - p_0$$

$$0 * p_0 + 10p_1 = 3p_0 + 3p_1 = 10p_0 + 0p_1$$

$$p_1 = \frac{3}{7}p_0$$

$$1 - p_0 = \frac{3}{7}p_0$$

$$p_0 = .7$$

 $\theta_0 = \frac{3}{7}p_0 = .3$
 $\theta_1 = \frac{7}{3}p_1 = .7$

3.4 what are the threshold for new matrix

$$p1 = 1 - p_0$$

$$0 * p_0 + 10p_1 = 3p_0 + 3p_1 = 5p_0 + 0p_1$$

$$p_1 = \frac{3}{7}p_0$$

$$1 - p_0 = \frac{3}{7}p_0$$

$$p_0 = .$$

$$\theta_0 = \frac{3}{7}p_0 = .3$$

$$\theta_1 = \frac{3}{2}p_1 = .45$$

Part II Programming

3.5 Visualizing hidden nodes

Reg	lambda		=	.014
$\operatorname{numEpoch}$		=		100
lambda		=		.9
epislon		=		.9
Training accuracy	86			