MA TRẬN - ĐỊNH THỨC

Đại số tuyến tính

NHÓM 3

Đại học Bách Khoa Hà Nội

Tháng 1, 2022

Nội dung

- 1. Định nghĩa ma trận
- 2 2. Các phép toán trên ma trận
 - 2.1. Phép cộng ma trận
 - 2.2. Phép nhân ma trận
 - 2.2.1. Nhân một số với ma trận
 - 2.2.2. Nhân hai ma trận
 - 2.3. Lũy thừa ma trận
 - 2.4. Ma trận chuyển vị
- 3. Định thức ma trận vuông

Định nghĩa ma trận

Cho K là trường số thực hoặc trường số phức.

• Một ma trận (trên K) cỡ $m \times n$ là một bảng có m hàng và n cột:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

với a_{ij} ($\forall i = 1, ..., m; j = 1, ..., n$) thuộc trường K.

- Nếu m=n thì A được gọi là ma trận vuông cấp n. Các phần tử $a_{11}, a_{22}, ..., a_{nn}$ được gọi là phần tử chéo. Chúng lập nên đường chéo chính của ma trân A.
- Ký hiệu ma trận có thể dùng dấu ngoặc vuông như trên, hoặc tròn, và thường được ký hiệu gọn là $A = [a_{ij}]_{m \times n}$ hoặc $A = (a_{ij})_{m \times n}$.

Môt số loại ma trân

- Ma trận cỡ $1 \times n$ được gọi là ma trận hàng.
- Ma trận cỡ $m \times 1$ được gọi là ma trận cột.
- Ma trận $A = [a_{ij}]_{m \times n}$ mà mọi phần tử $a_{ij} = 0 (\forall i, j)$ được gọi là ma trận không, thường ký hiệu là \mathcal{O} , hoặc $\mathcal{O}_{m \times n}$.

$$\mathcal{O} = \left(\begin{array}{cccc} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{array} \right)$$

Một số loại ma trận

• Ma trận vuông $A = [a_{ij}]_{n \times n}$ được gọi là ma trận tam giác trên nếu $a_{ij} = 0$, với mọi i > j.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

• Ma trận vuông $A = [a_{ij}]_{n \times n}$ được gọi là ma trận tam giác dưới nếu $a_{ij} = 0$, với mọi i < j.

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

Nội dung

- 1. Định nghĩa ma trận
- 2 2. Các phép toán trên ma trận
 - 2.1. Phép cộng ma trận
 - 2.2. Phép nhân ma trận
 - 2.2.1. Nhân một số với ma trận
 - 2.2.2. Nhân hai ma trận
 - 2.3. Lũy thừa ma trận
 - 2.4. Ma trận chuyển vị
- 3. Định thức ma trận vuông

Định nghĩa: Cho hai ma trận cùng cỡ $m \times n$: $A = [a_{ij}]_{m \times n}$, $B = [b_{ij}]_{m \times n}$. Tổng A + B là ma trận cỡ $m \times n$ xác định bởi

$$A + B = [a_{ij} + b_{ij}]_{m \times n}$$

Như vậy muốn cộng hai ma trận cùng cỡ ta cộng các phần tử cùng vị trí.

Định nghĩa: Cho hai ma trận cùng cỡ $m \times n$: $A = [a_{ij}]_{m \times n}$, $B = [b_{ij}]_{m \times n}$. Tổng A + B là ma trận cỡ $m \times n$ xác định bởi

$$A + B = [a_{ij} + b_{ij}]_{m \times n}$$

Như vậy muốn cộng hai ma trận cùng cỡ ta cộng các phần tử cùng vị trí.

Ví dụ 1:

$$\begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 7 \\ 2 & -3 \end{bmatrix} = \begin{bmatrix} 2+5 & 3+7 \\ -1+2 & 4-3 \end{bmatrix} = \begin{bmatrix} 7 & 10 \\ 1 & 1 \end{bmatrix}$$

Định nghĩa: Cho hai ma trận cùng cỡ $m \times n$: $A = [a_{ij}]_{m \times n}$, $B = [b_{ij}]_{m \times n}$. Tổng A + B là ma trận cỡ $m \times n$ xác định bởi

$$A + B = [a_{ij} + b_{ij}]_{m \times n}$$

Như vậy muốn cộng hai ma trận cùng cỡ ta cộng các phần tử cùng vị trí.

Ví du 1:

$$\begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 7 \\ 2 & -3 \end{bmatrix} = \begin{bmatrix} 2+5 & 3+7 \\ -1+2 & 4-3 \end{bmatrix} = \begin{bmatrix} 7 & 10 \\ 1 & 1 \end{bmatrix}$$

Ví dụ 2:

$$\left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right] + \left[\begin{array}{c} 1 \\ 2 \\ 3 \end{array}\right]$$

4□ > 4□ > 4 = > 4 = > = 90

Định nghĩa: Cho hai ma trận cùng cỡ $m \times n$: $A = [a_{ij}]_{m \times n}$, $B = [b_{ij}]_{m \times n}$. Tổng A + B là ma trận cỡ $m \times n$ xác định bởi

$$A + B = [a_{ij} + b_{ij}]_{m \times n}$$

Như vậy muốn cộng hai ma trận cùng cỡ ta cộng các phần tử cùng vị trí.

Ví dụ 1:

$$\begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 7 \\ 2 & -3 \end{bmatrix} = \begin{bmatrix} 2+5 & 3+7 \\ -1+2 & 4-3 \end{bmatrix} = \begin{bmatrix} 7 & 10 \\ 1 & 1 \end{bmatrix}$$

Ví dụ 2:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 không thực hiện được vì hai ma trận không cùng cỡ.

←□ > ←□ > ← □ >

Định nghĩa: Cho hai ma trận cùng cỡ $m \times n$: $A = [a_{ij}]_{m \times n}$, $B = [b_{ij}]_{m \times n}$. Tổng A + B là ma trận cỡ $m \times n$ xác định bởi

$$A + B = [a_{ij} + b_{ij}]_{m \times n}$$

Như vậy muốn cộng hai ma trận cùng cỡ ta cộng các phần tử cùng vị trí.

Ví dụ 1:

$$\begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 7 \\ 2 & -3 \end{bmatrix} = \begin{bmatrix} 2+5 & 3+7 \\ -1+2 & 4-3 \end{bmatrix} = \begin{bmatrix} 7 & 10 \\ 1 & 1 \end{bmatrix}$$

Ví dụ 2:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 không thực hiện được vì hai ma trận không cùng cỡ.

←□▶ ←□▶ ← □▶ ← □ ▶ ← □

Cho ma trận $A=[a_{ij}]_{m\times n}$, ta định nghĩa *ma trận đối* của A, ký hiệu -A bởi $-A=[-a_{ij}]_{m\times n}$. Ta cũng định nghĩa A-B=A+(-B).

NHÓM 3 (Dại học Bách Khoa Hà Nội)

MA TRÂN - ĐỊNH THỰC

Tháng 1, 2022

Cho ma trận $A = [a_{ij}]_{m \times n}$, ta định nghĩa *ma trận đối* của A, ký hiệu -A bởi $-A = [-a_{ij}]_{m \times n}$. Ta cũng đinh nghĩa A - B = A + (-B).

Tính chất của phép cộng

•
$$(A + B) + C = A + (B + C)$$

Cho ma trận $A = [a_{ij}]_{m \times n}$, ta định nghĩa *ma trận đối* của A, ký hiệu -A bởi $-A = [-a_{ij}]_{m \times n}$. Ta cũng đinh nghĩa A - B = A + (-B).

Tính chất của phép cộng

•
$$(A + B) + C = A + (B + C)$$

$$\bullet$$
 $A + \mathcal{O} = \mathcal{O} + A = A$

Cho ma trận $A = [a_{ij}]_{m \times n}$, ta định nghĩa *ma trận đối* của A, ký hiệu -A bởi $-A = [-a_{ij}]_{m \times n}$. Ta cũng đinh nghĩa A - B = A + (-B).

Tính chất của phép cộng

•
$$(A + B) + C = A + (B + C)$$

•
$$A + \mathcal{O} = \mathcal{O} + A = A$$

•
$$A + (-A) = (-A) + A = \mathcal{O}$$

Cho ma trận $A = [a_{ij}]_{m \times n}$, ta định nghĩa *ma trận đối* của A, ký hiệu -A bởi $-A = [-a_{ij}]_{m \times n}$. Ta cũng đinh nghĩa A - B = A + (-B).

Tính chất của phép cộng

•
$$(A + B) + C = A + (B + C)$$

•
$$A + \mathcal{O} = \mathcal{O} + A = A$$

•
$$A + (-A) = (-A) + A = \mathcal{O}$$

•
$$A + B = B + A$$

Cho ma trận $A = [a_{ij}]_{m \times n}$, ta định nghĩa *ma trận đối* của A, ký hiệu -A bởi $-A = [-a_{ij}]_{m \times n}$.

Ta cũng định nghĩa A - B = A + (-B).

Tính chất của phép cộng

Trên tập hợp các ma trận cùng cỡ $m \times n$ (trên K), ta có:

•
$$(A + B) + C = A + (B + C)$$

•
$$A + \mathcal{O} = \mathcal{O} + A = A$$

•
$$A + (-A) = (-A) + A = \mathcal{O}$$

•
$$A + B = B + A$$

Nói cách khác, tập hợp $\mathcal{M}_{m\times n}(K)$ cùng với phép cộng ma trận lập thành một nhóm giao hoán.

Phép nhân một số với ma trận

Định nghĩa

Tích của số k với ma trận $A = [a_{ij}]_{m \times n}$ là ma trận kA cỡ $m \times n$ cho bởi

$$kA = [ka_{ij}]_{m \times n}$$
.

Khi nhân một số k với ma trận, ta nhân mỗi phần tử của ma trận với k.

Ví dụ:

$$2\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{bmatrix}$$

Chú ý: Ta có (-1)A = -A

Tính chất cơ bản

Cho A,B thuộc $\mathcal{M}_{m\times n}(K)$ và $c,d\in K$. Khi đó

$$\bullet (cd)A = c(dA),$$

Tính chất cơ bản

Cho A, B thuộc $\mathcal{M}_{m \times n}(K)$ và $c, d \in K$. Khi đó

- (cd)A = c(dA),
- 1*A* = *A*,

Tính chất cơ bản

Cho A, B thuộc $\mathcal{M}_{m \times n}(K)$ và $c, d \in K$. Khi đó

- (cd)A = c(dA),
- 1A = A,
- c(A+B)=cA+cB,

Tính chất cơ bản

Cho A, B thuộc $\mathcal{M}_{m \times n}(K)$ và $c, d \in K$. Khi đó

- (cd)A = c(dA),
- 1A = A.
- c(A+B)=cA+cB,
- (c+d)A = cA + dA.

NHÓM 3 (Dại học Bách Khoa Hà Nội)

Tính chất cơ bản

Cho A, B thuộc $\mathcal{M}_{m \times n}(K)$ và $c, d \in K$. Khi đó

- (cd)A = c(dA),
- 1A = A.
- c(A+B) = cA + cB,
- (c+d)A = cA + dA.

Tính chất bổ sung: Cho A là ma trận cỡ $m \times n$, \mathcal{O} là ma trận không cỡ $m \times n$:

$$cA = \mathcal{O} \Rightarrow \begin{bmatrix} c = 0 \\ A = \mathcal{O} \end{bmatrix}$$

◆ロト ◆個 ト ◆ 差 ト ◆ 差 ・ 釣 ९ ○

Phép nhân hai ma trận

Định nghĩa

Cho hai ma trận $A=[aij]_{m\times n}$ cỡ $m\times n$ và $B=[bij]_{n\times p}$ cỡ $n\times p$. Tích AB là ma trận $C=[cij]_{m\times p}$ cỡ $m\times p$ cho bởi

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj} (\forall i = 1, ..., m; j = 1, ..., p).$$

Hình: Minh họa phép nhân hai ma trận

Chú ý

- Tích AB chỉ được định nghĩa khi số cột của A bằng số hàng của B.
- Ta có thể tính phần tử ij của ma trận AB bằng cách nhân lần lượt n phần tử của dòng thứ i của A (từ trái sang phải) với n phần tử của cột thứ j của B (từ trên xuống dưới) rồi lấy tổng của chúng:

• Có thể tích AB tồn tại nhưng tích BA không tồn tại. Kể cả trong trường hợp AB và BA đều tồn tại thì nói chung $AB \neq BA$.

4 D > 4 P > 4 E > 4 E > E 990

Chú ý

- Nói chung $AB = \mathcal{O}$ không suy ra được $A = \mathcal{O}$ hoặc $B = \mathcal{O}$.
- ullet Nói chung AC=BC (hoặc CA=CB) với $C
 eq\mathcal{O}$ không suy ra được A=B

Ví dụ:

•
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -2 \\ -1 & 2 \end{bmatrix}$: $A \neq \mathcal{O}$, $B \neq \mathcal{O}$ nhưng $AB = \mathcal{O}$,

•
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & -1 \\ 0 & -2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & -2 \\ -1 & 2 \end{bmatrix}$:

$$AC = BC = \begin{bmatrix} 1 & -2 \\ 2 & -4 \end{bmatrix}$$
 nhưng $A \neq B$

NHÓM 3 (Đại học Bách Khoa Hà Nội

Ví dụ

Cho
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ 2 & -1 \\ 3 & 1 \end{bmatrix}$. Tính AB .

- $C = AB \ c\tilde{o} \ 2 \times 2, \ C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}.$
- $C_{11} = 1.1 + (-1).2 + 2.3 = 5.$
- $C_{12} = 1.2 + (-1).(-1) + 2.1 = 5.$
- $C_{21} = 0.1 + 1.2 + (-2).3 = -4$.
- $C_{22} = 0.2 + 1.(-1) + (-2).1 = -3.$
- $\bullet \ AB = C = \begin{bmatrix} 5 & 5 \\ -4 & -3 \end{bmatrix}.$

4 D > 4 B > 4 E > 4 E > 9 Q O

NHÓM 3 (Dại học Bách Khoa Hà Nội

Tính chất

Cho A, B, C là các ma trân với cỡ sao cho các phép toán trong các hệ thức sau được định nghĩa. Cho $c \in K$. Khi đó:

- \bullet (AB)C = A(BC)
- A(B+C) = AB + AC, (B+C)A = BA + CA
- (cA)B = A(cB) = c(AB)
- Cho A cỡ $m \times n$: $AI_n = A$ và $I_m A = A$.

Nhận xét: Tập $\mathcal{M}_n(K)$ các ma trận vuông cấp n cùng với các phép toán cộng và nhân ma trận lập thành một vành (có đơn vị).

Lũy thừa ma trận

Cho A là ma trận vuông cấp n.

ullet Với $k\geq 1$ là một số nguyên dương, ta định nghĩa

$$A^k = A.A...A$$

- Tính chất : $A^{k+l} = A^k A^l, A^{Kl} = (A^K)^l$, với mọi K, I nguyên dương
- Với $f(x) = a_k x^k + ... + a_1 x + a_0$ là một đa thức bậc k, ta định nghĩa

$$f(A) = a_k A^k + \dots + a_1 A + a_0 I_n$$

NHÓM 3 (Đại học Bách Khoa Hà Nội)

MA TRẬN - ĐỊNH THỰC

Tháng 1, 2022

Phép chuyển vị ma trận

Chuyển vị ma trận

Cho $A = [a_{ij}]_{m \times n}$ cỡ $m \times n$. Ma trận chuyển vị của A, ký hiệu $A^T = [b_{ij}]$ là ma trận $m \times n$ xác định bởi

$$b_{ij} = a_{ij}, \forall i = 1, ..., m.$$

Các cột của A^T là các hàng của A. Các hàng của A^T là các cột của A.

Ví dụ:

$$A = \begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix} \text{ thì } A^T = \begin{pmatrix} 0 & 3 \\ 1 & 2 \end{pmatrix}$$

Nội dung

- 1. Định nghĩa ma trận
- 2 2. Các phép toán trên ma trận
 - 2.1. Phép cộng ma trận
 - 2.2. Phép nhân ma trận
 - 2.2.1. Nhân một số với ma trận
 - 2.2.2. Nhân hai ma trận
 - 2.3. Lũy thừa ma trận
 - 2.4. Ma trận chuyển vị
- 3 3. Định thức ma trận vuông

Định nghĩa định thức

Cho $A = [a_{ij}]_{n \times n}$ là một ma trận vuông cấp n. Ta sẽ định nghĩa định thức của A, ký hiệu $\det(A)$ hoặc |A|, truy hồi theo n.

Định thức ma trận cấp 1 và 2

- Nếu $A=[a_{11}]$ là ma trận cấp 1, thì $\det(A)=a_{11}$.
- Nếu $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ thì

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Định thức ma trận cấp $n \ge 3$

Giả sử ta đã định nghĩa được định thức của tất cả các ma trận vuông cấp n-1.

- Xét ma trận $A = [a_{ii}]_{n \times n}$ là một ma trận vuông cấp n.
- Với mỗi i, j, ta gọi M_{ij} là ma trận nhận được từ A bằng cách xóa đi cột i và j. Khi đó M_{ij} là một ma trận vuông cấp n-1.
- Đặt $A_{ij} = (-1)^{i+j} det(M_{ij})$, và A_{ij} được gọi là phần phụ đại số của a_{ij} .

Định nghĩa

Định thức của $A = [a_{ij}]_{n \times n}$ là

$$\det(A) = |A| = a_{11}A_{11} + a_{12}A_{12} + \cdots + a_{1n}A_{1n}.$$

Ví dụ

Tính định thức của ma trận
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & -1 & 2 \\ 3 & 1 & 2 \end{bmatrix}$$

•
$$M_{11} = \begin{vmatrix} -1 & 2 \\ 1 & 2 \end{vmatrix} \Rightarrow A_{11} = + \det(M_{11}) = \begin{vmatrix} -1 & 2 \\ 1 & 2 \end{vmatrix} = -4$$

•
$$M_{12} = \begin{vmatrix} 2 & 2 \\ 3 & 2 \end{vmatrix} \Rightarrow A_{12} = -\det(M_{12}) = \begin{vmatrix} 2 & 2 \\ 3 & 2 \end{vmatrix} = -(-2) = 2$$

•
$$M_{13} = \begin{vmatrix} 2 & -1 \\ 3 & 1 \end{vmatrix} \Rightarrow A_{13} = + \det(M_{13}) = \begin{vmatrix} 2 & -1 \\ 3 & 1 \end{vmatrix} = 5$$

•
$$|A| = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = 1.(-4) + 2.2 + (-1).5 = -5$$

Viết gọn:

$$|A| = a_{11} \det(M_{11}) - a_{12} \det(M_{12}) + a_{13} \det(M_{13})$$

$$= 1 \cdot \begin{vmatrix} -1 & 2 \\ 1 & 2 \end{vmatrix} - 2 \cdot \begin{vmatrix} 2 & 2 \\ 3 & 2 \end{vmatrix} + (-1) \cdot \begin{vmatrix} 2 & -1 \\ 3 & 1 \end{vmatrix}$$

$$= 1 \cdot (-4) + 2 \cdot 2 + (-1) \cdot 5 = -5.$$