TABLE 1: PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Acceleration due to gravity	g	9,8 m⋅s ⁻²
Permittivity of free space	ε ₀	8,85 × 10 ⁻¹² Fm ⁻¹

TABLE 2: FORMULAE

FORCE

F _{net} = ma	p = mv
$f_s^{\text{max}} = \mu_s N$	$f_k = \mu_k N$
$F_{\text{net}}\Delta t = \Delta p$ $\Delta p = mv_f - mv_i$	$F_g = mg$

WORK, ENERGY AND POWER

$W = F\Delta x \cos \theta$	U = mgh or $Ep = mgh$
$K = \frac{1}{2}mv^2$ or $E_k = \frac{1}{2}mv^2$	$\Delta K = K_f - K_i$ or $\Delta E_k = K_{kf} - K_{ki}$
$M_E = E_k + E_p$	$P = \frac{W}{\Delta t}$
$P_{ave} = Fv_{ave}$	

ELASTICITY, VISCOSITY AND HYDRAULICS

$\sigma = \frac{F}{A}$	$\varepsilon = \frac{\Delta \ell}{L}$
$\frac{\sigma}{\epsilon} = K$	$\frac{F_1}{A_1} = \frac{F_2}{A_2}$

IEB Copyright © 2020 PLEASE TURN OVER

ELECTROSTATICS

$C = \frac{\kappa \varepsilon \circ A}{d}$ and $C = \frac{\varepsilon \circ A}{d}$	$E = \frac{V}{d}$
$C = \frac{Q}{V}$	

CURRENT ELECTRICITY

$R = \frac{V}{I}$	$q = I \Delta t$
W = VQ	$P = \frac{W}{\Delta t}$
$W = VI \Delta t$	P = VI
$W = I^2 R \Delta t$	$P = I^2R$
$W = \frac{V^2 \Delta t}{R}$	$P = \frac{V^2}{R}$
$R_s = R_1 + R_2 + \dots$	$\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots$

ELECTROMAGNETISM

φ = ΒΑ	$\epsilon = -N \frac{\Delta \phi}{\Delta t}$
$\frac{V_s}{V_p} = \frac{N_s}{N_p}$	