Qual a expressão booleana da seguinte tabela verdade?

Α	В	С	S
0	0	0	1
0	0	1	0
0	~	0	1
0	~	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

- Qual a expressão booleana da seguinte tabela verdade?
- Primeiro passo é extrair os casos onde S = 1

A	В	С	S
0	0	0	1
0	0	1	0
0	~	0	1
0	~	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

- Casos onde S = 1
- 000 ou 010 ou 110 ou 111
- Depois é só montar a expressão usando
 E entre cada variável e OU entre cada caso
- S=A'.B'.C'+A'.B.C'+A.B.C'+A.B.C

 Próximo passo é montar o circuito lógico da expressão

Α	В	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Qual a expressão booleana da seguinte tabela verdade?
 Primeiro passo é extrair os casos onde S = 1

Α	В	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Qual a expressão booleana da seguinte tabela verdade? Primeiro passo é
extrair os casos onde S = 1

Exemplo 02

Α	В	С	S
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

• S=A'.B'.C'+A'.B.C'+A.B.C'+A.B.C

Α	В	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

• S=A'.B'.C'+A'.B.C'+A.B.C'+A.B.C

Α	В	С	S
0	0	0	1
0	0	1	0
0	~	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

• S=A'.B'.C'+A'.B.C'+A.B.C'+A.B.C

•
$$S=A'C'(B'+B) + AB(C'+C)$$

• S = A'C' + AB

Α	В	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

• S = A'.B'.C'+A'.B.C'+A.B.C'+A.B.C = A'C' + AB

Α	В	С	A'C'	AB	S
0	0	0	1	0	1
0	0	1	0	0	0
0	1	0	1	0	1
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	1	1
1	1	1	0	1	1

• S = A'.B'.C'+A'.B.C'+A.B.C'+A.B.C = A'C'+AB

Voltando ao exercício

- Implementar um sistema onde o ALARME deve disparar se:
 - O botão de PÂNICO for pressionado
 - O sistema estando ATIVADO e as PORTAS ou JANELAS não estiverem fechadas

 Desta vez implemente os circuitos lógicos com base na montagem da tabela verdade

Pânico	Ativado	Portas	Janelas	Alarme
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Pânico	Ativado	Portas	Janelas	Alarme
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Exemplo Alarme

Entrada Dois sensores – porta e janela. Botão de Ativado

Saída Alarme

Ativado (A) Portas (B) Janelas (C) Alarme O O O O	
	(S)
0 0 1	
0 0 1	
0 1 0	
0 1 1	
1 0 0	
1 0 1	
1 1 0	
1 1 1	

$$A.(B+C) = S$$

Ativado	Portas	Janelas	Alarme
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$AB'C+ABC'+ABC=S$$

Funções Lógicas

- Blocos lógicos
 - OU EXCLUSIVO, EXCLUSIVE OR ou XOR
 - NOU EXCLUSIVO, EXCLUSIVE NOR ou XNOR
- Equivalência entre blocos

Tabela Verdade EXCLUSIVE OR ou XOR

 1 na saída sempre que as entradas forem diferentes entre si

A	В	S
0	0 -	0
0	1	1
1	0	1
1	1	0

INP	JTS	OUTPUT
Α	В	Υ
L	L	L
L	Н	Н
Н	L	Н
Н	Н	L

Simbologia EXCLUSIVE OR ou XOR

SN74AC86 Texas Instruments

- Quadruple 2-Input Positive XOR Gates
 - <u>sn74ac86 XOR.pdf</u>

Simulação EXCLUSIVE OR ou XOR

Problema XOR

- Dados do problema:
 - Qual o formato da onda de saída S?

Tabela Verdade EXCLUSIVE NOR ou XNOR

 1 na saída sempre que as entradas forem iguais entre si

A	В	S
0	0	1
0	1	0
1	0	0
1	1	1

INP	OUTPUT	
nA	nB	nY
L	L	Н
L	Н	L
Н	L	L
Н	Н	Н

Simbologia EXCLUSIVE NOR ou XNOR

•
$$Y = A \cdot B + A \cdot B$$

Simulação EXCLUSIVE NOR ou XNOR

CD74HC7266

Texas Instruments

- Quadruple 2-Input XNOR Gates
 - <u>cd74hc7266 XNOR.pdf</u>

Quadro Resumo

	BLOCOS LÓG	TCOS DIAGIC			
Porta	Símbolo Usual	Tabela da Função Verdade Lógica		Expressão	
OU EXCLUSIVO EXCLUSIVE OR	A	A B S 0 0 0 0 1 1 1 0 1 1 1 0	Função OU Exclusivo: assume 1 quando as variáveis assumirem valores diferentes entre si.	$S = \overline{A} \cdot B + A \cdot \overline{B}$ $S = A \oplus B$	
NOU EXCLUSIVO EXCLUSIVE NOR COINCIDÊNCIA	A	A B S 0 0 1 0 1 0 1 0 0 1 1 1	Função Coincidência: assume 1 quando houver coincidência entre os valores das variáveis.	$S = \overline{A} \cdot \overline{B} + A$. $S = A \odot B$	

Equivalência entre blocos

- NOT a partir de porta NAND
- Inversor a partir de porta NOR
- Portas NOR e OU a partir de E, NAND e NOT
- Portas NAND e E a partir de OU, NOR e NOR

Inversor a partir de porta NAND

Como fazer um NOT a partir de um NAND?

A	В	S		?	A	S
0	0	1		<u>. </u>	0	1
0	1	1			1	0
1	0	1				
1	1	0				

Inversor a partir de porta NAND

Como fazer um NOT a partir de um NAND?

Inversor a partir de porta NOR

Como fazer um NOT a partir de um NOR?

Α	В	S	?	Α	S
0	0 .	1		-0	1
0	1	0		1	0
1	0	0			
1	1	0			

Inversor a partir de porta NOR

Como fazer um NOT a partir de um NOR?

A	В	S
0	0 .	1
0	1	0
1	0	0
1	1	0

Equivalência entre blocos

O seguintes circuitos s\u00e3o equivalentes entre si?
 Porque?

Quadro resumo

BLOCO LÓGICO	BLOCO EQUIVALENTE
——> 	

Referências Básicas

- Apresentação PowerPoint Prof. Victory Fernandes.
- Sistemas digitais: princípios e aplicações 10 ed. / 2007 Livros TOCCI, Ronald J.;
 WIDMER, Neal S.; MOSS, Gregory L. São Paulo: Pearson Prentice Hall, 2007. 804 p. ISBN 978-85-7605-095-7 (broch.)
- Elementos de eletrônica digital 40. ed / 2008 Livros CAPUANO, Francisco Gabriel;
 IDOETA, Ivan V. (Ivan Valeije). São Paulo: Érica, 2008. 524 p. ISBN 9788571940192
 (broch.)