EE1101 Signals and Systems JAN—MAY 2018 Tutorial 3

February 12, 2018

- 1. Find the fundamental period of the signal $x(t) = \sin\left(\frac{3\pi}{5}t\right)$. Let x[n] be obtained from x(t) by sampling at $t = nT_s$ where (a) $T_s = 1$ sec, (b) $T_s = 5$ sec, and (c) $T_s = 1/\pi$ sec. Determine whether x[n] is periodic for each case. If so, find its fundamental period.
- 2. Let $y_1[n] = x[2n]$ and

$$y_2[n] = x[n/2], n \text{ even}$$

= 0, $n \text{ odd}$

If x[n] is periodic, are $y_1[n]$ and $y_2[n]$ periodic? If so, find their fundamental period.

- 3. Let $x[n] = \delta[n] + 2\delta[n-1] \delta[n-3]$ and $h[n] = 2\delta[n+1] + 2\delta[n-1]$. Compute and plot each of the following convolutions.
 - (a) $y_1[n] = x[n] \star h[n]$
 - (b) $y_2[n] = x[n+2] \star h[n]$
 - (c) $y_3[n] = x[n] \star h[n+2]$
- 4. Let the output of a discrete time LTI system, with impulse response h[n], be given by, $y[n] = x[n] \star h[n]$, where the input x[n] = 0 outside the range $0 \le n \le N-1$. Let the column vector \mathbf{y} represent the output y[n] from 0 to N-1, and the column vector \mathbf{x} , the values of x[n] from 0 to N-1. If $\mathbf{y} = \mathbf{H}\mathbf{x}$, find the matrix \mathbf{H} .
- 5. Convolve the signals u[n] and $a^n u[-n-1]$, given that |a| > 1.
- 6. Let

$$x[n] = \begin{cases} 1, & 0 \le n \le 9 \\ 0, & \text{elsewhere} \end{cases}$$

and

$$h[n] = \begin{cases} 1, & 0 \le n \le N \\ 0, & \text{elsewhere} \end{cases}$$

where $N \leq 9$ is an integer. Determine the value of N, given that $y[n] = x[n] \star h[n]$, y[4] = 5 and y[14] = 0.

- 7. Let $y(t) = x(t) \star h(t)$. x(t) is non-negative for $t \in (2,3)$ and zero elsewhere, and is symmetric about t = 5/2. h(t) = 1 for $t \in (3,4)$ and zero elsewhere.
 - (a) During what times will the values y(t) be non-zero?
 - (b) At what time(s) will y(t) achieve its maximum value.
- 8. Perform the following convolutions where ★ indicates convolution.
 - (a) For u(t) a unit step function, find $r(t) = u(t) \star u(t)$.
 - (b) Find $x(t) \star h(t)$, where $h(t) = (-e^{-t} + 2e^{-2t})u(t)$ and $x(t) = 10e^{-3t}u(t)$.
 - (c) Find the output y(t) of an LTI system with impulse response $h(t) = 2e^{-2t}u(t)$ when excited with an input x(t) given by

$$x(t) = \begin{cases} 1, & 2 \le t \le 4 \\ 0, & \text{otherwise} \end{cases}$$

- (d) Sketch $y(t) = [u(t) \star u(t-2)] u(4-t)$.
- (e) Determine graphically $h(t) = f(t) \star g(t)$, where
 - (i) f(t) = u(-t) and g(t) = 2(u(t) u(t-1)).
 - (ii) f(t) = r(t) r(t-2) and g(t) = u(t-3) u(t-6) [Note: r(t) = tu(t)].
- 9. Consider a system with input x(t) and output y(t) related by:

$$y(t) = \int_{-\infty}^{t+1} \sin(t - \tau) x(\tau) d\tau.$$

- (a) Is the system time-invariant? Prove.
- (b) What is the system impulse response?
- (c) Is the system causal?
- 10. Let $x(t) = 1, 0 \le t < 1$ and zero elsewhere. And, let $h(t) = x\left(\frac{t}{\alpha}\right)$, with $0 < \alpha \le 1$.
 - (a) Plot $y(t) = x(t) \star h(t)$, where \star de-

notes convolution operation.

- (b) Plot the first derivative of y(t).
- (c) What should be the value of α such that the first derivative of y(t) contains exactly three discontinuities?
- 11. Consider a time-invariant system with input x(t) and output y(t). Show that if x(t) is periodic with period T, y(t) is also periodic.

