

TYPE "4" - EEG FILE STRUCTURE DESCRIPTION

Version: 1.04 Dated: 19/12/2016

Via Giotto 2 - 31021
Mogliano Veneto (TV) - Italy
tel. +39.041.5937000
fax. +39.041.5937011
e-mail micromed@micromed.eu
web: www.micromed.eu

WARNING

This document is strictly confidential and must not be distributed without permission. Contact Micromed to have permissions or any other information.

INTRODUCTION

This is a description of the Micromed EEG file of Type 4, that is files generated by SystemPlus EVOLUTION. Four older versions do exist:

- The first two are the Type 0 or 1, which refers to System 1 files.
- The third is the Type 2, which refers to System 2 files.
- The fourth is the Type 3, which refers to System98 files, first edition.

Any Micromed EEG file contains a data file structure that can be easily interpreted. Data file is broken down into two main sections: the *header, which* contains the patient and setup data and a variable length *trailer* that contains the digitised trace data. The sequence of this data can be interpreted with the header block. Files have the capability to store up to 256 individual channels of signal data, the number stored in each file may vary and this information may be found in the header. To find the file of the relative trace that you are examining, use the "Properties" function provided by the System 98 software.

HEADER OF TYPE "4" FILES - SUMMARY

Offset	Label	Data Type	Description	Values
0 = 00h	Title	char[32]	Micromed Descriptive String	
32 = 20h	Laboratory	char[32]	Laboratory Descriptive Strings	'max.31 characters',0x00
64 = 40h	Patient_Data	Micromed_New_Patient_Data	Patient Data	
128 = 80h	Date	Micromed_New_Date_Type	Recording Date	[dd,mm,yy] 1998 = 98
131 = 83h	Time	Micromed_New_Time_Type	Recording Time	[hh,mm,ss]
134 = 86h	Acquisition_Unit	unsigned short int	Acquisition Equipment	See constant values
136 = 88h	Filetype	unsigned short int	Type of File	See constant values
138 = 8ah	Data_Start_Offset	unsigned long int	Address of First Signal Data	
142 = 8eh	Num_Chan	unsigned short int	Number of Memorised Channels	1128
144 = 90h	Multiplexer	unsigned short int	Distance Between Channel Data	
146 = 92h	Rate_Min	unsigned short int	Minimum Sampling Frequency	64,128,256,512,1024Hz
148 = 94h	Bytes	unsigned short int	Number of Bytes for each sample	1 ⇒ 1 byte
	•		,	$2 \Rightarrow 2$ bytes $4 \Rightarrow 4$ bytes
150 = 96h	Compression	unsigned short int	Type of Data Compression	$0 \Rightarrow No Compression$
152 = 98h	Montages	unsigned short int	Number of Specific Montages	030
154 = 9ah	Dvideo_Begin	unsigned long int	Starting Sample of Digital Video	
159 = 9Eh	MPEG_Delay	unsigned short int	Number of frames per hour of de-synchronization in MPEG acq.	
160 = A0h	Reserved_1	unsigned char[15]		
175 = AFh	Header_Type	unsigned char	Header Type	0,1 ⇒ "System 1" File 2 ⇒ "System 2" File
170 DOI	<u> </u>	Mi IN D	D :	3,4 ⇒ "System 98" File
176 = B0h	Code_Area	Micromed_New_Descriptor	Descriptor of storage CODE	'ORDER', Pos, Len
192 = C0h	Electrode_Area	Micromed_New_Descriptor	Descr. of ELECTRODE	'LABCOD', Pos, Len
208 = D0h	Note_Area	Micromed_New_Descriptor	Descr. of operator NOTE	'NOTE', Pos, Len
224 = E0h	Flag_Area	Micromed_New_Descriptor	Descr. of FLAG	'FLAGS', Pos, Len
240 = F0h	Segment_Area	Micromed_New_Descriptor	Descr. of REDUCTION	'TRONCA', Pos, Len
256 = 100h	B_Impedance_Area	Micromed_New_Descriptor	Descr. of BEGIN IMPED.	'IMPED_B', Pos, Len
272 = 110h	E_Impedance_Area	Micromed_New_Descriptor	Descr. of ENDING IMPED.	'IMPED_E', Pos, Len
288 = 120h	Montage_Area	Micromed_New_Descriptor		'MONTAGE', Pos, Len
304 = 130h	Compression_Area	Micromed_New_Descriptor	Descr. of COMPRESSION	'COMPRESS', Pos, Len
320 = 140h	Average_Area	Micromed_New_Descriptor	Descr. Of AVERAGE	'AVERAGE', Pos, Len
336 = 150h	History_Area	Micromed_New_Descriptor	Descr. of HISTORY	'HISTORY', Pos, Len
352 = 160h	Dvideo_Area	Micromed_New_Descriptor	Descr. of DVIDEO	'DVIDEO', Pos, Len
368 = 170h	EventA_Area	Micromed_New_Descriptor	Descr. of EVENT A	'EVENT A', Pos, Len
384 = 180h	EventB_Area	Micromed_New_Descriptor	Descr. of EVENT B	'EVENT B', Pos, Len
400 = 190h	Trigger_Area	Micromed_New_Descriptor	Descr. of TRIGGER	'TRIGGER', Pos, Len
416 = 1A0h	Brain_Img_Area	Micromed_New_Descriptor	Descr. of BRAIN IMG	'BRAINIMG', Pos, Len
	Reserved_2	unsigned char [208]		
640 = 280h				
	Code	Micromed_New_Code [MAX_CAN]	List of the Recorded Channels	
	Electrode	Micromed_New_Electrode [MAX_LAB]	Description of Each Channel	
	Note	Micromed_New_Annotation [MAX_NOTE]	Operator Notes	
	Flag	Micromed_New_Marker_Pair [MAX_FLAG]	Pointers to Flags	
	Segment	Micromed_New_Segment [MAX_SEGM]	Reduction Description	
	B_Impedance	Micromed_New_Impedance [MAX_CAN]	Impedance at Beginning of Record	
	E_Impedance	Micromed_New_Impedance [MAX_CAN]	Impedance at End of Recording	
	Montage	Micromed_New_Montage [MAX_MONT]	Specific Montages	
	Compression	Micromed_New_Compression	Data Compression	
	Average	Micromed_New_Average	Off-Line Average	
	History_Sample	Micromed_New_Sample [MAX_SAMPLE]	"As Recorded" Pointers	
	History	Micromed_New_Montage [MAX_HISTORY]	"As Recorded" Montages	
	Dvideo	Micromed_New_Dvideo [MAX_FILE]	Pointers to linked Digital Video	
	EventA	Micromed_New_Event	Event A Descriptor	
	EventB	Micromed_New_Event	Event B Descriptor	
	Trigger	Micromed_New_Trigger [MAX_TRIGGER]	Digital Triggers	
	Brain_Img	JPEG Image [MAX_LENGHT]	Brain Image	
Consta	nt Definition:	-		

Constant Definition:

MAX_CAN256MAX_NOTE200MAX_SAMPLE128MAX_FILE1024MAX_LAB640MAX_FLAG100MAX_HISTORY30MAX_TRIGGER8192

Declaration: char Laboratory [32];

MICROMED FILE HEADER TYPE 4

The following is the structure of the data file. The first column contains the effective address in the file.

0 TITLE Declaration: *char <u>Title</u> [32];*

This descriptive string specifies that the file is a "MICROMED Brain-quick file". It's been introduced to let the user identify a Micromed Brain-Quick file simply typing at the DOS prompt "TYPE PAZxx.TRC" where xx is the number of the selected file. The number of possible ASCII characters is 30, with a 0x00,0x1A used as terminators of the string.

32 LABORATORY

This descriptive string identifies the laboratory where the acquisition has been made. Its value obviously is specified by the user and is not known prior. The number of possible ASCII characters is 31, with a 0x00 used as terminator of the string.

64 PATIENT DATA

Declaration: Micromed New Patiant Data Patient Data;

This is data pertaining to patient identification. The structure of this record is the following:

Offset	Label	Data Type	Description
64	Surname	char[22]	Surname, without any terminator
86	Name	char[20]	First Name, without any terminator
106	Month	unsigned char	Month of birth
107	Day	unsigned char	Day of birth
108	Year	unsigned char	Year of birth, where 1900 =0, then the year 1998 =98
109	Reserved	unsigned char[19]	Internally used by the Brain-Quick software. They are not
			meaningful for the user and can't be used.

128 RECORDING DATE

Declaration: Micromed_New_Date_Type Date;

Stores the date of file creation, and therefore the recording date. The structure of this record is the following:

Offset	Label	Data Type	Description
0	Day	unsigned char	Day
1	Month	unsigned char	Month
2	Year	unsigned char	Year, where 1900 =0, then the year 1998 =98

Please note that this format support any year until 2155.

131 RECORDING TIME

Declaration: *Micromed_New_Time_Type <u>Time</u>;*

Stores the time of file creation, and therefore the recording time. The structure of this record is the following:

Offset	Label	Data Type	Description
0	Hour	unsigned char	Hours
1	Min	unsigned char	Minutes
2	Sec	unsigned char	Seconds

134 ACQUISITON EQUIPMENT

Declaration: unsigned short int Acquisition_Unit;

This byte specifies the source of the data with the following values:

Value	Description
0	BQ124 - 24 channels headbox, Internal Interface
1	MS40 - Holter recorder
2	BQ132S - 32 channels headbox, Internal Interface
6	BQ124 - 24 channels headbox, BQ CARD Interface
7	SAM32 - 32 channels headbox, BQ CARD Interface
8	SAM25 - 25 channels headbox, BQ CARD Interface
9	BQ132S R - 32 channels reverse headbox, Internal Interface
10	SAM32 R - 32 channels reverse headbox, BQ CARD Interface
11	SAM25 R - 25 channels reverse headbox, BQ CARD Interface
12	SAM32 - 32 channels headbox, Internal Interface
13	SAM25 - 25 channels headbox, Internal Interface
14	SAM32 R - 32 channels reverse headbox, Internal Interface
15	SAM25 R - 25 channels reverse headbox, Internal Interface
16	SD - 32 channels headbox with jackbox, SD CARD Interface – PCI Internal Interface
17	SD128 - 128 channels headbox, SD CARD Interface – PCI Internal Interface
18	SD96 - 96 channels headbox, SD CARD Interface – PCI Internal Interface
19	SD64 - 64 channels headbox, SD CARD Interface – PCI Internal Interface
20	SD128c - 128 channels headbox with jackbox, SD CARD Interface – PCI Internal Interface
21	SD64c - 64 channels headbox with jackbox, SD CARD Interface – PCI Internal Interface
22	BQ132S - 32 channels headbox, PCI Internal Interface
23	BQ132S R - 32 channels reverse headbox, PCI Internal Interface

136 FILE TYPE

Declaration: unsigned short int Filetype;

This variable indicates the type of data that has been stored.

C.R. = Common Reference, poly = polygraphy

Value	Label	Description		
40	C128	C.R., 128 EEG (headbox SD128 only)		
42	C84P	C.R., 84 EEG, 44 poly (headbox SD128 only)		
44	C84	C.R., 84 EEG, 4 reference signals (named MKR,MKRB,MKRC,MKRD) (headbox SD128 only)		
46	C96	C.R., 96 EEG (headbox SD128 – SD96 – BQ123S(r))		
48	C63P	C.R., 63 EEG, 33 poly		
50	C63	C.R., 63 EEG, 3 reference signals (named MKR,MKRB,MKRC)		
52	C64	C.R., 64 EEG		
54	C42P	C.R., 42 EEG, 22 poly		
56	C42	C.R., 42 EEG, 2 reference signals (named MKR,MKRB)		
58	C32	C.R., 32 EEG		
60	C21P	C.R., 21 EEG, 11 poly		
62	C21	C.R., 21 EEG, 1 reference signal (named MKR)		
64	C19P	C.R., 19 EEG, variable poly		
66	C19	C.R., 19 EEG, 1 reference signal (named MKR)		
68	C12	C.R., 12 EEG		
70	C8P	C.R., 8 EEG, variable poly		
72	C8	C.R., 8 EEG		
74	CFRE	C.R., variable EEG, variable poly		
76	C28P	C.R., 28 EEG (21 standard, 7 poly transformed to EEG channels), 4 poly – headbox BQ132S(r) only		
78	C24P	C.R., 24 EEG (21 standard, 3 poly transformed to EEG channels), 8 poly – headbox SAM32(r) only		
80	C25P	C.R., 25 EEG (21 standard, 4 poly transformed to EEG channels), 7 poly – headbox SD with headbox JB 21P		
82	C27P	C.R., 27 EEG (21 standard, 6 poly transformed to EEG channels), 5 poly – headbox SD with headbox JB 21P		
100	C26P	C.R., 26 EEG, 6 poly (headbox SD, SD64c, SD128c with headbox JB Mini)		
101	C16P	C.R., 16 EEG, 16 poly (headbox SD with headbox JB M12)		
102	C12P	C.R., 12 EEG, 20 poly (headbox SD with headbox JB M12)		

103	32P	32 poly (headbox SD, SD64c, SD128c with headbox JB Bip)	
120	C48P	C.R., 48 EEG, 16 poly (headbox SD64)	
121	C56P	C.R., 56 EEG, 8 poly (headbox SD64)	
122	C24P	C.R., 24 EEG, 8 poly (headbox SD64)	
140	C52P	C.R., 52 EEG, 12 poly (headbox SD64c, SD128c with 2 headboxes JB Mini)	
141	64P	64 poly (headbox SD64c, SD128c with 2 headboxes JB Bip)	
160	C88P	C.R., 88 EEG, 8 poly (headbox SD96)	
161	C80P	C.R., 80 EEG, 16 poly (headbox SD96)	
162	C72P	C.R., 72 EEG, 24 poly (headbox SD96)	
180	C120P	C.R., 120 EEG, 8 poly (headbox SD128)	
181	C112P	C.R., 112 EEG, 16 poly (headbox SD128)	
182	C104P	C.R., 104 EEG, 24 poly (headbox SD128)	
183	C96P	C.R., 96 EEG, 32 poly (headbox SD128)	
200	C122P	C.R., 122 EEG, 6 poly (headbox SD128c with 4 headboxes JB Mini)	
201	C116P	C.R., 116 EEG, 12 poly (headbox SD128c with 4 headboxes JB Mini)	
202	C110P	C.R., 110 EEG, 18 poly (headbox SD128c with 4 headboxes JB Mini)	
203	C104P	C.R., 104 EEG, 24 poly (headbox SD128c with 4 headboxes JB Mini)	
204	128P	128 poly (headbox SD128c with 4 headboxes JB Bip)	
205	96P	96 poly (headbox SD128c with 3 headboxes JB Bip)	

138 ADDRESS OF SIGNAL DATA Declaration: unsigned long int <u>Data Start Offset;</u>

The content of this variable is a pointer to the location of the first digitised signal data. This will indicate at which address in the file you will find the first data for channel 1. The next data in the string is the data for channel 2, the next data is the first data for channel 3 etc., etc. After the first data for all channels recorded have been stored (see **Num_Chan** to see how many channels have been stored and the description of each signal to see the correlation between the data and the particular electrode) then the next series of bytes will be the second data for each progressive channel and the sequence continues until the end of the file has been reached. The file can be image as structured in records which size is equivalent to the value of **Multiplexer** i.e. if recording 32 channels with two bytes per channel all at the same sample frequency, then the record size will be 64 bytes long.

142 NUMBER OF STORED CHANNELS Declaration: unsigned short int Num_Chan;

This variable indicate how many channels of data are being stored, this value may vary from 1 to 128.

144 MULTIPLEXER Declaration: *unsigned short int Multiplexer;*

This variable indicate the distance in bytes between a sample (or a block of samples) of a channel and the following sample (or block of samples) of the same channel.

146 MINIMUM SAMPLING RATE Declaration: unsigned short int Rate_Min;

This variable indicates the minimum sampling frequency used to sample the channels stored. If same channels are sampled at a greater sampling frequency, in the description of each of these channels it will be found that a block of data is stored subsequently, and this number is 2 if the sampling frequency of the channel is 2 times the minimum, 4 if the sampling frequency of the channel is 4 times the minimum and so on. If all channels are sampled at the same frequency, the minimum sampling frequency will be the sampling frequency of each channel (and in the descriptor of each channel the length of data block will be 1).

148 NUMBER OF BYTES Declaration: *unsigned short int Bytes;*

The contents of this location indicate the number of bytes used for each data in the file. This value is 1 to indicate 1 byte used (data converted with 8 bits or less), or 2 to indicate 2 bytes used (data converted with 16 bits or less). The number of bits used by each channel must be read in the description of each channel as it can be different one each other.

150 COMPRESSION Declaration: *unsigned short int Compression*;

The contents of this location indicate if EEG data are compressed in the trailer or not. Value of 0 means no compression, value of 1 means compression, for which details can be found in the appropriate descriptor.

152 NUMBER OF MONTAGES STORED Declaration: unsigned short int Montages;

The contents of this location indicate the presence and the exact number of particular montages stored for this trace. These montages are to be intended as a particular configuration of visualisation parameters, to be used only to display the EEG data in a specific way. These montages give no specification on the acquisition configuration, they are used only for the convenience of the physicians.

154 DIGITAL VIDEO START SAMPPLE Declaration: unsigned long int <u>Dvideo_Begin;</u>

The contents of this location indicate the sample of the EEG data at which Digital Video recording has begun. This parameter, in combination with other contained in the Digital Video file is used to synchronise the DVEEG.

158 MPEG DIG. VIDEO SYNCHRONIZATION Declaration: *unsigned short int MPEG_Delay*

160reserved...... Declaration: unsigned char Reserved_1[15];

This area will be used only for further development of Micromed Brain-Quick and cannot be used by external applications. Values that are found inside are not to be specified.

175 HEADER TYPE Declaration: *unsigned char Header Type*;

This byte represents the type of header. This parameter is used to distinguish this type of header from older Micromed header type.

value	description
0,1	Micromed "System 1" Header type
2	Micromed "System 2" Header Type
3	Micromed "System98" Header Type
4	Micromed "System98" Header Type

The first operation to do before reading all data is to verify if the header type is 4, otherwise descriptions of the header could be different

176 DESCRIPTOR OF CODE Declaration: Micromed_New_Descriptor Code_Area;

This is the pointer to the area that contains the code of the electrodes stored in the file. Codes are written in the order than data are stored in the file. The descriptor has the following structure:

Offset	Label	Data Type	Description
0	Name	char[8]	fixed string 'ORDER'
8	Start_Offset	unsigned long int	Start Offset, in bytes, of Code Area
12	Length	unsigned long int	Length, in bytes, of Code Area

192 DESCRIPTOR OF ELECTRODE Declaration: Micromed_New_Descriptor Electrode Area;

This is the pointer to the area, which contains the description of the electrode conversion parameters. The descriptor has the following structure:

Offset	Label	Data Type	Description
0	Name	char[8]	fixed string 'LABCOD'
8	Start_Offset	unsigned long int	Start Offset, in bytes, of Electrode Area
12	Length	unsigned long int	Length, in bytes, of Electrode Area

208 DESCRIPTOR OF NOTE Declaration: Micromed_New_Descriptor Note_Area;

This is the pointer to the area, which contains the operator notes. The descriptor has the following structure:

Offset	Label	Data Type	Description
0	Name	char[8]	fixed string 'NOTE'
8	Start_Offset	unsigned long int	Start Offset, in bytes, of Note Area
12	Length	unsigned long int	Length, in bytes, of Note Area

224 DESCRIPTOR OF FLAG

Declaration: Micromed New Descriptor Flag Area;

This is the pointer to the area, which contains the flags inserted by the user. The descriptor has the following structure:

Offset	Label	Data Type	Description
0	Name	char[8]	fixed string 'FLAGS'
8	Start_Offset	unsigned long int	Start Offset, in bytes, of Flag Area
12	Length	unsigned long int	Length, in bytes, of Flag Area

240 DESCRIPTOR OF REDUCTION Declaration: *Micromed_New_Descriptor Segment_Area*;

This is the pointer to the area, which contains the description of the reduction made to the file. The descriptor has the following structure:

Offset	Label	Data Type	Description
0	Name	char[8]	fixed string 'TRONCA'
8	Start_Offset	unsigned long int	Start Offset, in bytes, of Reduction Area
12	Length	unsigned long int	Length, in bytes, of Reduction Area

256 DESCRIPTOR OF BEGIN IMPEDANCE Declaration: **B** *Impedance Area*;

Micromed_New_Descriptor

This is the pointer to the area which contains the description of the impedance measured at the beginning of the acquisition. The descriptor has the following structure:

Offset	Label	Data Type	Description
0	Name	char[8]	fixed string 'IMPED_B'
8	Start_Offset	unsigned long int	Start Offset, in bytes, of Begin Impedance Area
12	Length	unsigned long int	Length, in bytes, of Begin Impedance Area

272 DESCRIPTOR OF END IMPEDANCE Declaration: Micromed_New_Descriptor <u>E_Impedance_Area</u>;

This is the pointer to the area, which contains the description of the impedance measured at the end of the acquisition. The descriptor has the following structure:

Offset	Label	Data Type	Description
0	Name	char[8]	fixed string 'IMPED_E'
8	Start_Offset	unsigned long int	Start Offset, in bytes, of End Impedance Area
12	Length	unsigned long int	Length, in bytes, of End Impedance Area

288 DESCRIPTOR OF MONTAGES Declaration: *Micromed_New_Descriptor Montage_Area;*

This is the pointer to the area, which contains the description of the specific montages stored for this trace. The descriptor has the following structure:

Offset	Label	Data Type	Description
0	Name	char[8]	fixed string 'MONTAGE'
8	Start_Offset	unsigned long int	Start Offset, in bytes, of Montage Area
12	Length	unsigned long int	Length, in bytes, of Montage Area

304 DESCRIPTOR OF COMPRESSION Declaration: *Micromed_New_Descriptor Compression_Area*;

This is the pointer to the area, which contains the description of the compression used to store data. The descriptor has the following structure:

Offset	Label	Data Type	Description
0	Name	char[8]	fixed string 'COMPRESS'
8	Start_Offset	unsigned long int	Start Offset, in bytes, of Compression Area
12	Length	unsigned long int	Length, in bytes, of Compression Area

320 DESCRIPTOR OF AVERAGE

Declaration: Micromed_New_Average Average_Area;

When present, this is the pointer to the area, which contains the information of an Off-Line Average process, which has been done, on the described traces. The descriptor has the following structure:

Offset	Label	Data Type	Description
0	Name	char[8]	fixed string 'AVERAGE'
8	Start_Offset	unsigned long int	Start Offset, in bytes, of Average Area
12	Length	unsigned long int	Length, in bytes, of Average Area

336 DESCRIPTOR OF HISTORY

Declaration: Micromed_New_Descriptor History_Area;

This is the pointer to the area which contains the information necessary to perform the "As Recorder" review of the trace. The descriptor has the following structure:

Offset	Label	Data Type	Description
0	Name	char[8]	fixed string 'HISTORY'
8	Start_Offset	unsigned long int	Start Offset, in bytes, of History Area
12	Length	unsigned long int	Length, in bytes, of History Area

352 DESCRIPTOR OF DVIDEO

Declaration: Micromed New Descriptor Dvideo Area;

This is the pointer to the area which contains the information necessary to play all Digital Video linked to the EEG file. The descriptor has the following structure:

Offset	Label	Data Type	Description
0	Name	char[8]	fixed string 'DVIDEO'
8	Start_Offset	unsigned long int	Start Offset, in bytes, of Dvideo Area
12	Length	unsigned long int	Length, in bytes, of Dvideo Area

368 DESCRIPTOR OF EVENT A

Declaration: Micromed_New_Descriptor EventA_Area;

This is the pointer to the area, which contains the pointers to the event of type "A" marked by the user. The descriptor has the following structure:

Offset	Label	Data Type	Description
0	Name	char[8]	fixed string 'EVENT A'
8	Start_Offset	unsigned long int	Start Offset, in bytes, of Event A Area
12	Length	unsigned long int	Length, in bytes, of Event A Area

384 DESCRIPTOR OF EVENT B

Declaration: Micromed_New_Descriptor EventB_Area;

This is the pointer to the area, which contains the pointers to the event of type "B" marked by the user. The descriptor has the following structure:

Offset	Label	Data Type	Description
0	Name	char[8]	fixed string 'EVENT B'
8	Start_Offset	unsigned long int	Start Offset, in bytes, of Event B Area
12	Length	unsigned long int	Length, in bytes, of Event B Area

384 DESCRIPTOR OF TRIGGER

Declaration: Micromed_New_Descriptor Trigger_Area;

This is the pointer to the area which contains the pointers to the digital triggers acquired during recording. The descriptor has the following structure:

Offset	Label	Data Type	Description
0	Name	char[8]	fixed string 'TRIGGER'
8	Start_Offset	unsigned long int	Start Offset, in bytes, of Trigger Area
12	Length	unsigned long int	Length, in bytes, of Trigger Area

416 DESCRIPTOR OF BRAIN IMAGE Declaration: Micromed_New_Descriptor Brain_Img_Area;

This is the pointer to the area which contains the pointers to the Brain image saved in connect. The descriptor has the following structure:

Offset	Label	Data Type	Description
0	Name	char[8]	fixed string 'BRAINIMG'
8	Start_Offset	unsigned long int	Start Offset, in bytes, of Brain Img Area
12	Length	unsigned long int	Length, in bytes, of Brain Img Area

432 RESERVED AREA

Declaration: unsigned char Reserved_2[208];

This is an area reserved by Micromed for further development. It's not to be used for other purposes.

The following is the description of the structure of each information area that can be encountered in the header.

• ORDER: Order of storage of the electrodes

This is an array, which contains the coded list of the electrodes stored in the file. Each byte specifies the code of signal entered in the amplifier, which has made the measurement. The number of channels stored can be found at location **142-NUMBER OF CHANNELS STORED.** The code refers to the description of the electrodes described in the next paragraph, i.e. 1 = Fp1, 2 = Fp2 and so on. If, for example, you find a Byte with the value **0x01**, it means that the electrode is **Fp1-G2**, as the second record of **ELECTRODE** (position 1, location 128) specifies **Fp1-G2**.

Declaration: unsigned short int Code [MAX_CAN];

• ELECTRODE: Description of electrodes

This is a list of electrodes that could be used by the system, and contains all the information needed about the electrode signal conversion. To see which of these electrodes are stored, see previous area, **ORDER**, which specifies the order and the number of electrodes used. Number 0 means the first electrode of this area (that is always G2), number 1 means the second electrode of this area (located 128 bytes after the previous). Every cell of **ELECTRODE** is a record of 128 bytes with the following structure:

Declaration: Micromed_New_Electrode Electrode [MAX_LAB];

offset	Label	Type	Description	Typical Values
0	Status	unsigned char	Status of Electrode for acquisition	0 = not acquired
	Otatus	disigned onai	Status of Electrode for acquisition	1 = acquired
1	Туре	unsigned char	Reference and Type of Electrode	bit0 (LSB) is for Reference:
	- 76-			• 0 = Referred to G2
				• 1 = Bipolar
				if bit1=1 then type=Marker
				if bit2=1 then type=Oxym.
				if bit3=1 then type=16DC
				if bit4=1 then type=bip2eeg
2	Positive_Input_Label	char[6]	Label of Positive Electrode Input	'label',0
8	Negative_Input_Label	char[6]	Label of Negative Electrode Input	'label',0
14	Logic_Minimum	long int	Logic Minimum of Signal	
18	Logic_Maximum	long int	Logic Maximum of Signal	
22	Logic_Ground	long int	Logic Value of Ground	LOGIC_MIN≤value
				value≤LOGIC_MAX
26	Physic_Minimum	long int	Physical Minimum of Signal	
30	Physic_Maximum	long int	Physical Maximum of Signal	4)/ !: 400 0/
34	Measurement_Unit	unsigned short int	Measurement Unit	-1 = nVolt 100 = %
				$0 = \mu \text{Volt}$ 101 = bpm 1 = mVolt 102 = Adim.
				2 = Volt
36	Prefiltering_HiPass_Limit	unsigned short int	HighPass Prefilitering	value in Hz * 1000
38	Prefiltering_HiPass_Type	unsigned short int	HighPass Filter Type	
40	Prefiltering_LowPass_Limit	unsigned short int	LowPass Prefiltering	value in Hz
42	Prefiltering_LowPass_Type	unsigned short int	LowPass Filter Type	
44	Rate_Coefficient	unsigned short int	Sampling Rate Coefficient	1 ⇒ min. Sampling Rate
				2 ⇒ 2∗min. Sampling Rate
				4 ⇒ 4∗min. Sampling Rate
46	Position	unsigned short int	Reserved	
48	Latitudine	float	Map's Latitudo (radius=1)	
52	Longitudine	float	Map's Longitudo (radius=1)	
56	presentInMap	unsigned char	Presence of electrode in map	0 = electrode not present
			11 17 17 17	1 = electrode is present
57	islnAvg	unsigned char	Used for AVG calculation	0 = electrode is not used
F0	Description	ahar[20]	Floatrada Dagarintian Strice	1 = electrode is used
58 90	Description	char[32]	Electrode Description String	'max. 31 characters',0
90	y y	float	x coordinate for 3D map analysis	
98	z	float	y coordinate for 3D map analysis z coordinate for 3D map analysis	
102			Type of coordinate used for 3D	0 = polar map (Lat. & Lon.)
102	Coordinate_Type	unsigned short int	Type of coordinate used for 3D	$0 = \text{polar map (Lat. } \alpha \text{ Lon.)}$

			map analysis	1 = XYZ 3D-system
104	Free	unsigned char[24]	reserved for future use	

NOTE: Operator Annotation

These are the operator notes that are written during acquisition or subsequent review of the patient signals. The structure of this area is very simple: Each record contains a pointer to the instant of the note insertion and a string containing the annotation text. This area has the following structure:

Declaration: Micromed_New_Annotation Note [MAX_NOTE];

offset	Label	Data Type	Description
0	Sample	unsigned long Int	The time in samples, from the start of signal recording, at which the note has been recorded. Used to synchronise the placement of the note with respect to the signal data with which it is associated.
4	Comment	char[40]	The actual ASCII text of the note to a maximum of 40 characters eventually filled with spaces. No terminators are used here.

WARNING:

- 1. A time of 0000 means that there are no more notes, so a note in sample 0000 can't be placed.
- 2. All notes are in ascending order of time.

FLAG: Pointers to selection flags

A trace may contain portions of data, which the user has highlighted with the FLAGs as an area of interest or for further elaboration. Most flags come in pairs, one start and one end limit. The user may place up to MAX_FLAG pairs of flags within any trace and all flags are in ascending order (decided on the Begin field). A single flag may exist if a start was marked but no end is marked. The flag, start or end is formed of 4 bytes (long int) that is the numerical value of the record number or sample number of the marked data. Therefore, the time position of the flag is dependent on the sampling rate in order to calculate the flag's exact position in time within the trace. Any value of 0000 means no more flags, so if the first value is 0000 then no user set flags are present. (Note also that a flag in position 0000 can't be placed!). The area is an array of record with the following structure:

Declaration: Micromed_New_Marker_Pair Flag [MAX_FLAG];

Offset	Label	Data Type	Description
0	Begin	Long Int	Starting sample of selected segment
4	End	Long Int	Ending sample of selected segment

Example: a value of 2560 in a trace file sampled at 256 Hz, means that a flag has been set by the user at sample 2560 or at 2560/256 = 10 sec. from the beginning of the trace.

REDUCTION: Reduced file description

It is possible that the file in use is not an original file but a "reduced" file, created by extracting one or more portions from a file (i.e. using flags to cut out interesting portions) or joined together from two or more separate files. These files have the same structure as an original, so it must be possible to find the points of data which are not contiguous and also to allow a correct reconstruction of the exact time. It is possible to have up to a maximum of MAX_SEGM separate pieces in a reduced file, so this area is an array of MAX_SEGM elements with the following structure:

Declaration: Micromed_New_Segment [MAX_SEGM];

Offset	Label	Data Type	Description
0	Time	unsigned long int	Real value of the sample
4	Sample	unsigned long int	Starting sample of reduced segment

Using the <u>starting sample</u> value, the programmer may find at which sample of the current file data starts for a particular segment. The real sample in the original file of the beginning of that segment is contained in the other value, called the <u>real value</u> of the sample. The reduction indicators terminate when the first string of real value equal to 0000 is found or the end of this reserved area is reached. Note that all these values point to or are indicative of the sample number. The following is an example of what could be found in the reduction area:

ORIGINAL FILE

039	40139	140169	170269	270300
	to be cut		to cut	

REDUCED FILE

039	4069	7099	<u>real value</u> 140	starting sample 40
			270	70

STARTING IMPEDANCE: Electrodes impedance at the beginning of the recording

This area contains the measurements of the impedance of the electrodes <u>at the beginning of the recording</u>, that are stored in the file. The order is the one that is specified in the structure **CODE.** The values are expressed in $K\Omega$ but they are multiplied by 10, so effectively it is a value in hundreds of Ω . The maximum values are 200 (20 $K\Omega$) if a 32 channel headbox has been used, and 176 (17.6 $K\Omega$) if a 24 channel headbox has been used. The records of the array have the following structure:

Declaration: Micromed_New_Impedance Impedance_B [MAX_CAN]);

Offset	Label	Data Type	Description	
0	Positive	unsigned char	Value of the impedance measured at positive Input	
1	Negative	unsigned char	Value of the impedance measured at negative input	

Each value specifies the impedance of the positive and negative input of the amplifier, and for channels referred to G2 the negative impedance will be that of G2 (if measured). If any measurement hasn't been taken, a value of 255 will be found.

• ENDING IMPEDANCE Electrodes impedance at the end of the recording

This area contains the measurements of the impedance of the electrodes <u>at the end of the recording</u>, The description is exactly the same than that for STARTING IMPEDANCE.

Declaration: Micromed_New_Impedance Impedance_E [MAX_CAN]);

• SPECIFIC MONTAGES: Specific visualisation montages for the trace

This is a group of specific montages stored in the file, to be used only to specify a particular configuration of parameters to be used to display the data stored in the file. *This information is not necessary for the interpretation of the trace.* The structure of this area is the following:

Declaration: *Micromed_New_Montage Montage [MAX_MONT]*;

Offse	Label	Data Type	Description	Typical Values
0	Lines	unsigned short int	Number of Lines	1128
2	Sectors	unsigned short int	Number of Sectors	1,2
4	Base_Time	unsigned short int	Length of Page	140 sec.
6	Notch	unsigned short int	Notch Filter	010
8	Colour	unsigned char[MAX_CAN_VIEW]	Line Colour	0 = Not Active 60 = 60 Hertz 50 = 50 Hertz
136	Selection	unsigned char[MAX_CAN_VIEW]	Selection of Lines	0 = Not Selected 1 = Selected
264	Description	char[64]	Montage Description	
328	Inputs	Micromed_New_Inputs[MAX_CAN_VIEW]	Electrodes Montage	NonInv = Non Inverting Input Inv = Inverting Input
840	HiPass_Filter	unsigned long int[MAX_CAN_VIEW]	High Pass Band Limit	value in Hz * 100
1352	LowPass_Filter	unsigned long int[MAX_CAN_VIEW]	Low Pass Band Limit	value in Hz
1864	Reference	unsigned long int[MAX_CAN_VIEW]	Gain Value	800μV/cm,

0770				
	Eroo	unsigned char[1720]	Docorvod	
123/0	riee	l unsigned charl1/201	Reserved	

Declaration: Micromed_New_Inputs Inputs[MAX_CAN_VIEW];

Offset	Label	Data Type	Description	Typical Values
0	NonInv	unsigned short int	Non Inverting Input	
2	Inv	unsigned short int	Inverting Input	

Constant Definition:

MAX_CAN_VIEW 128

• COMPRESSION: Compression description

This parameter would specify the kind of compression used on the digital data. Now no compression is used on any file, so this parameter is not meaningful. The structure of this area is the following:

Declaration: *Micromed_New_Compression*;

• AVERAGE: Specific parameters for Off-Line Average process

This is a group of specific parameters stored in the file when an Off-Line Average process has been done on the traces. These parameters are not needed to display data, but only for further process of them. <u>This information is not necessary for the interpretation of the trace.</u> The structure of this area is the following:

Declaration: *Micromed_New_Average Average*;

Offset	Label	Data Type	Description	Typical Values
0	Mean_Trace	unsigned long int	Averaged Triggers	0, 1,
4	Mean_File	unsigned long int	Averaged Files	1,
8	Mean_Prestim	unsigned long int	Pre-stimuli Interval	in msec.
12	Mean_PostStim	unsigned long int	Post-stimuli Interval	in msec
16	Mean_Type	unsigned long int	Average Type	0 = Normal (By File)
				1 = Weighted (By Traces)
20	Free	unsigned char[AVERAGE_FREE]	free	

Constant Definition:

AVERAGE FREE 108

• HISTORY: Recording History Description

This is the area which contains the information necessary to perform the "As Recorder" review of the trace. It means that it contains all the information of the changes occurred to the visualisation of the trace during recording. The way to memorise these data is very simple: every time a modification occur to the visualisation the instant of the modification is memorised (as the sample from the beginning of the trace) and the new visualisation configuration (the complete montage) is stored also. This space is composed of 2 main areas, that have the following structure:

Declaration: Micromed_New_Sample History Sample [MAX_SAMPLE];

Micromed_New_Sample is an unsigned long int that is the pointer to the sample from which the montage must be changed.

Declaration: Micromed_New_Montage History [MAX_HISTORY];

The description of this structure is the same of that for SPECIFIC MONTAGES.

• <u>DVIDEO</u>: Pointers to Digital Video files linked to the EEG

This area contains the pointers to the Digital Video file linked to the EEG. The records of the array have the following structure:

Declaration: Micromed_New_DVideo Dvideo [MAX_FILE];

Offset	Label	Data Type	Description
0	Start_time	Long Int	Starting time in msec (offset from beginning of file)
4	Length	Long Int	Length in msec of video file
8	Video_num	Long Int	ID Video file
12	Free	Long Int	Always -1 (0xFFFFFFF)

Constant Definition:

MAX FILE 256

EVENT "A": Pointers to events of type "A"

A trace may contain portions of data, which the user has highlighted as they contain a particular event like Hyperventilation, Visual Stimulation or other. The user may mark up to MAX_EVENT event on a single trace, and the data structure contains all the pointers to these segments and the general description of this event. The exact structure of this area is the following:

Declaration: Micromed_New_Event Event_A;

Offset	Label	Data Type	Description
0	Description	Long Int	Description of the kind of event
64	Selection	Micromed_New_Marker_Pair[MAX_EVENT]	Pointers to marked segments

Selection is an area with the following structure

Offset	Label	Data Type	Description
0	Begin	Long Int	Starting sample of marked segment
4	End	Long Int	Ending sample of marked segment

All marked segments within any trace are in ascending order (decided on the Begin field). A Begin record with no End set may exist if a start was marked but no end has been marked. The Begin or End values are the numerical record number or sample number of the marked data. Therefore, their time position is dependent on the sampling rate with the same relation already discussed for the FLAGS.

EVENT "B": Pointers to events of type "B"

The description is the same than that for EVENT "A".

Declaration: Micromed_New_Event Event_B;

TRIGGER: Digital Triggers

This area contains the digital triggers acquired via RS232 or inserted off-line. The records of the array have the following structure:

Declaration: Micromed_New_Trigger Trigger [MAX_TRIGGER];

Offset	Label	Data Type	Description
0	Trig_Sample	unsigned long int	Pointer to the sample where the trigger was received
1	Trig_Value	unsigned short int	value obtained from RS232

Constant Definition:

MAX_TRIGGER 8192

BRAIN_IMG: Brain Image

This area contains the brain image file format JPEG loaded from connect menu for the electrode position representation on the brain

Declaration: JPEG Image [MAX_LENGTH]

Constant Definition:

MAX_LENGTH 200KB

GENERAL NOTE

1. The sampled data is always 1 or 2 bytes long, they are unsigned, recorded in EXCESS XXX standard, where XXX can be read for each electrode at the location Logic_Ground. This means that the value range from a Logic_Minimum (normally 0) to a Logic_Maximum (normally 255 or 4095) and the physical zero is at Logic_Ground. Let's suppose we have a convertible signal ranging from -400μV (value of Physic_Minimum) to 400μV (value of Physic_Maximum), converted with 12 bits (value of Logic_Minimum 0, Logic_Maximum 4095, Logic_Ground 2048). If we obtain a digital value of 4000, the real value of the sample can be obtained with the following calculation:

$$\left[\frac{\text{Digital Value} - \text{Logic}_\text{Ground}}{\text{Logic}_\text{Maximum} - \text{Logic}_\text{Minimum} + 1}\right] \cdot \left[\text{Physic}_\text{Maximum} - \text{Physic}_\text{Minimum}\right] = \frac{4000 - 2048}{4096} \cdot 800 = 381.25 \mu v$$

- 2. When present, the MARKER (labelled "MKR+", code 160) is a square wave whose amplitude has to be used as a calibration, since it's amplitude is normally $100\mu V$ (from -50 to $50\mu V$).
- 3. The samples are always stored referred to the common electrode (labelled "G2"), so the value of the common electrode must not be subtracted to data. Average or any other reference specified is always re-calculated by the software.
- 4. Differences from files of type 2 are the following:
 - Header has a value of 3 and no longer a value of 2
 - Note pointers are no longer in seconds but in samples
 - Data_Start_Address is no longer forced to be multiple of Multiplexer
 - Dvideo_Begin has been added
 - Event_A, Event_B and History descriptor and relative structure have been added
- 5. The differences from file of type 3 are the following:
 - Code is unsigned short int instead of unsigned char
 - Electrode has a different structure
 - Specific Montage has a different structure
 - DVideo, Average, Triggers, BrainImg descriptors have been added