Estadística Multivariante Derivación matricial

Trabajo B

Antonio R. Moya Martín-Castaño Elena Romero Contreras Nuria Rodríguez Barroso

Universidad de Granada anmomar85@correo.ugr.es elenaromeroc@correo.ugr.es rbnuria6@gmail.com

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Introducción	2
2.	Diferencial primera y jacobianos	2
3.	Matrices jacobianas y derivadas matriciales	2
4.	Diferencial segunda y hessianos	2

1. Introducción

2. Diferencial primera y jacobianos

EJERCICIO 2.1: Sea $h: \mathbb{R}^k \to \mathbb{R}$ definida por $h(\beta) = (y - X\beta)^t (y - X\beta)$ donde $y \in \mathbb{R}^n$ y $X \in \mathbb{M}_{n \times k}$. Haciendo uso de la regla de invarianza de Cauchy demostrar que

$$dh(c; u) = dg(y - Xc; df(c; u)) = dg(y - Xc; -Xu) = -2(y - Xc)^{t}Xu$$

y con ello $Dh(c) = -2(y - Xc)^t X$.

Solución:

EJERCICIO 2.2: Sea F(X) = AG(X)B, donde $A_{m \times r}$ y $B_{s \times p}$ son matrices constantes y $G(X)_{r \times s}$ es una función diferenciable. Calcular DF(C) a partir de la definición de diferencial matricial.

Solución:

EJERCICIO 2.3: Si $X_{n\times n}$ es una matriz simétrica y $F: \mathbb{M}_{n\times q} \to \mathbb{M}_{m\times p}$ es diferenciable, demostrar que $d\text{Vec}(F(X)) = D_n DF(X) d\text{Vech}(X)$, mientras que $d\text{Vec}(F(X)) = N_n DF(X) d\text{Vec}(X)$ donde $N_n = \frac{1}{2}[I_{n^2} + K_{nn}]$.

Solución:

3. Matrices jacobianas y derivadas matriciales

EJERCICIO 3.1: A partir de las relacioens existentes entre la derivada matricial y la matriz jacobiana, verificar las siguientes expresiones:

- a) Sea $X_{n \times n}$ y F(X) = tr[X]. Entonces $DF(X) = \text{Vec}^t(I_n)$.
- b) Sea ahora $X_{n\times q}$ y F(X)=X. Entonces $DF(X)=I_q\otimes I_n=I_{nq}$.

EJERCICIO 3.2: Sea $X_{n \times q}$. Demostra las siguientes igualdades:

a)
$$\frac{\partial X^t}{\partial X} = K_{qn}$$
.

b)
$$\frac{\partial X}{\partial X^t} = K_{nq}$$
.

c)
$$\frac{\partial X^t}{\partial X^t} = \text{Vec}(I_q)\text{Vec}^t(I_n).$$

EJERCICIO 3.3: Demostrar que si $X_{n\times n}$ es no singular entonces $\frac{\partial X^{-1}}{\partial X} = -\text{Vec}((X^{-1})^t)\text{Vec}^t(X^{-1})$. Solución:

4. Diferencial segunda y hessianos