СОДЕРЖАНИЕ 1

Содержание

1	Собственные значения и собственные векторы	2
2	Проекторы и прямые суммы подпространств	6
3	Инвариантные подпространства. Разложение операторов	8
4	Многочлены от операторов и матриц	12
5	Теорема Гамильтона-Кэли	15
6	Многочлены от операторов и разложение операторов	16
7	TODO: Жорданов базис для нильпотентных операторов	21
8	TODO: Жорданов базис и жорданова форма линейных операторов	21
9	Сопряжённые операторы	21

§1. Собственные значения и собственные векторы

Далее X — конечномерное линейное пространство размерности $n,\,L(X)$ — алгебра операторов, I — тождественный оператор, O — нулевой оператор.

Определение 1.1. Оператор A называется $c\kappa a$ лярным, если он имеет вид $A=\alpha I,\ \alpha\in\mathbb{K}.$

Определение 1.2. Скажем, что оператор $A \in L(X)$ имеет *простную структуру* (оператор простой структуры, ОПС, *диагонализируемый* оператор), если существует базис e_1, \ldots, e_n в X и такие числа $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$, что имеют место равенства:

$$Ae_k = \lambda_k e_k, \quad k = \overline{1, n}$$

Иначе говоря, для того чтобы A был оператором простой структуры, необходимо и достаточно, чтобы существовал базис, в котором матрица оператора имеет вид

$$\mathcal{A} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

Очевидно, что оператор простой структуры обратим тогда и только тогда, когда $\forall k=\overline{1,n}\quad \lambda_k\neq 0,$ причем обратный оператор будет иметь вид

$$A^{-1}e_k = \frac{1}{\lambda_k}e_k, \quad k = \overline{1, n}$$

Всякий оператор скалярного типа является оператором простой структуры.

Существуют операторы, не являющиеся ОПС.

Определение 1.3. Ненулевой оператор $Q \in L(X)$ называется *нильпотентным*, если $\exists m \in \mathbb{N} \ \ Q^m = O$. Наименьшее из m, для которых выполняется данное равенство, называется undercom unnenomentumocmu оператора Q.

Пример 1.1.

$$D: \mathcal{P}_n(\mathbb{K}) \to \mathcal{P}_n(\mathbb{K})$$
$$D\varphi = \varphi'$$
$$D^{n+1} = O$$

Теорема 1.1. Если оператор нильпотентный, то он не диагонализируем

Доказательство. Пусть $Q \in L(X), Q \neq 0, Q^m = O$.

Предположим противное: допустим, что Q — оператор простой структуры. Тогда существует базис e_1,\ldots,e_n в X и такие числа $\lambda_1,\ldots,\lambda_n\in\mathbb{K}$, что

$$Qe_k = \lambda_k e_k, \quad k = \overline{1, n}$$

 λ_k не равны одновременно нулю (в противном случае Q был бы нулевым).

$$\forall k = \overline{1,n} \quad 0 = Q^m e_k = \lambda_k^m e_k \Rightarrow \exists k = \overline{1,n} \quad e_k = 0$$

Получили противоречие (в базисе не может быть нулевых векторов). \Box

Определение 1.4. $\lambda_0 \in \mathbb{K}$ называется *собственным значением* оператора $A \in L(X)$, если существует **ненулевой** вектор $x_0 \in X$ такой, что

$$Ax_0 = \lambda_0 x_0$$

При этом x_0 называется собственным вектором оператора A, соответствующим λ_0 .

Непосредственно из определения 1.4 следует, что λ_k из определения 1.2 являются собственными значениями оператора A, а e_k — собственными векторами.

Определение 1.5. Совокупность всех собственных значений оператора A называется *спектром* оператора:

$$\sigma(A) = \{ \lambda \in \mathbb{K} : \exists x_0 \in X \quad x_0 \neq 0 \land Ax_0 = \lambda x_0 \}$$

Рассмотрим равенство

$$Ax_0 = \lambda_0 x_0$$
$$(A - \lambda_0 I)x_0 = 0$$

Если ${\rm Ker}(A-\lambda_0I)\neq\{0\},$ то λ_0 — собственное значение A. Значит, можно сказать, что

Спектр оператора — множество тех $\lambda_0 \in \mathbb{K}$, для которых оператор $A - \lambda_0 I$ необратим.

Оператор $A - \lambda_0 I$ необратим тогда и только тогда, когда

$$\det(A - \lambda_0 I) = 0 \tag{1.1}$$

Пусть $\mathcal{A} = (a_{ij}) \in \mathrm{Matr}_n(\mathbb{K})$ — матрица оператора A. Исходя из условия (1.1), λ является собственным значением оператора A

тогда и только тогда, когда матрица $\mathcal{A} - \lambda E$ необратима, т. е. её определитель равен нулю:

$$\det(a_{ij} - \lambda \delta_{ij}) = 0$$

$$p_A(\lambda) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix}$$

$$p_A(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} (a_{11} + \dots + a_{nn}) \lambda^{n-1} + \dots + \det \mathcal{A}$$
(1.3)

Определение 1.6. Выражение вида (1.2) называется xapaкme- pucmuческим многочленом оператора A (матрицы A).

Из вышеприведённых рассуждений следует

Теорема 1.2. Спектр оператора состоит из корней характеристического многочлена:

$$\sigma(A) = \{ \lambda \in \mathbb{K} : p_A(\lambda) = 0 \}$$

Следовательно, спектр линейного оператора в конечномерном линейном пространстве всегда содержит не более n собственных значений.

Пример 1.2. Рассмотрим \mathbb{R}^2 и оператор $A \in L(\mathbb{R}^2)$ с матриней \mathcal{A} :

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad A(x_1, x_2) = (x_2, -x_1)$$
$$\det \begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix} = \lambda^2 + 1 = 0$$

Вещественных корней нет, значит

$$\sigma(A) = \varnothing$$

Теорема 1.3. Пусть X — комплексное ЛП, $\dim X \geqslant 1$. Тогда каждый $A \in L(X)$ имеет непустой спектр, состоящий из конечного числа собственных значений, число которых не превышает n, и все они совпадают c корнями $p_A(\lambda)$.

Доказательство теоремы следует из приведённых выше рассуждений и основной теоремы высшей алгебры.

Определение 1.7. След квадратной матрицы есть сумма эле-

ментов матрицы, стоящих на главной диагонали.

$$\operatorname{tr} \mathcal{A} = \sum_{i=1}^{n} a_{ii}$$

Аналогично определяется след оператора (можно показать, что подобные матрицы имеют одинаковый след).

Из формул Виета и выражения (1.3) получаем

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = a_{11} + a_{22} + \dots + a_{nn} = \operatorname{tr} A$$

 $\lambda_1 \lambda_2 \dots \lambda_n = \det A = \det A$

Определение 1.8. Ядро оператора $A - \lambda_0 I$ называется *собственным подпространством* оператора A для собственного значения λ_0 .

$$E(\lambda_0, A) = Ker(A - \lambda_0 I)$$

Определение 1.9. Кратность корня λ_0 характеристического многочлена оператора A называется алгебраической кратностью собственного значения λ_0 .

Определение 1.10. Собственное значение линейного оператора называется *простым*, если его алгебраическая кратность равна единице.

Определение 1.11. $\dim E(\lambda_0, A)$ называется геометрической кратностью собственного значения λ_0 .

Теорема 1.4. Пусть $\lambda_1, \ldots, \lambda_m \in \mathbb{K}$ — различные собственные значения оператора $A \in L(X)$. Тогда соответствующие им собственные векторы e_1, \ldots, e_m линейно независимы.

Доказательство проведём индукцией по m. База индукции: при m=1 утверждение теоремы очевидно.

 $\mathit{Индукционный nepexod}$: пусть утверждение верно для k векторов. e_1, \ldots, e_k — линейно независимы. Добавим к ним вектор e_{k+1} .

$$\sum_{j=1}^{k+1} \alpha_j e_j = 0 \Rightarrow (A - \lambda_{k+1} I) \left(\sum_{j=1}^{k+1} \alpha_j e_j \right) = 0$$

$$\sum_{j=1}^{k} (\lambda_j - \lambda_{k+1}) \alpha_j e_j = 0 \Rightarrow \alpha_j = 0, \quad j = \overline{1, k}$$

$$\alpha_{k+1} e_{k+1} = 0 \Rightarrow \alpha_{k+1} = 0, \text{ T.K. } e_{k+1} \neq 0$$

Из определения 1.2 и теоремы 1.4 следует

Теорема 1.5. Если характеристический многочлен оператора

имеет n различных корней и размерность пространства равна n, то этот оператор диагонализируем.

§2. Проекторы и прямые суммы подпространств

Далее

$$\dim X = n$$

$$X = X_1 \oplus X_2 \oplus \cdots \oplus X_m$$

Определение 2.1. Оператор $P \in L(X)$ называется *проектором*, если

 $P^2 = P$

Матрица $\mathcal{P} \in \mathrm{Matr}_n(\mathbb{K})$ называется идемпотентной, если

$$\mathcal{P}^2 = \mathcal{P}$$

Определение 2.2. Пусть P_k , $k = \overline{1,m}$ — проекторы. Будем говорить, что они образуют разложение единицы, если

1.
$$I = \sum_{k=1}^{m} P_k$$

2.
$$P_i P_j = O \quad \forall i \neq j$$

Пусть далее m=2 (аналогично можно рассмотреть случай произвольного m).

$$X = X_1 \oplus X_2$$
$$x = x_1 + x_2$$

Построим операторы P_1 и P_2 следующим образом:

$$P_1 x = x_1$$
$$P_2 x = x_2$$

Линейность очевидна. Ясно, что построенные операторы являются проекторами.

Пемма 2.1. Построенные указанным выше образом проекторы образуют разложение единицы:

1.
$$P_1 + P_2 = I$$

2.
$$P_1P_2 = P_2P_1 = O$$

Доказательство.

1.
$$(P_1 + P_2)x = P_1x + P_2x = x_1 + x_2 = x = Ix$$

2.
$$(P_1P_2)x = P_1(P_2x) = P_1x_2 = P_1(0+x_2) = 0$$

 Лемма 2.2. Пусть задано разложение единицы

$$\begin{cases} I = P_1 + P_2 \\ P_1 P_2 = O \end{cases}$$

Тогда

$$X = X_1 \oplus X_2$$

где

$$X_1 = \operatorname{Im} P_1$$
$$X_2 = \operatorname{Im} P_2$$

ДОКАЗАТЕЛЬСТВО. Пусть $x \in X$. Ясно, что его можно представить как сумму $x = x_1 + x_2$, где $x_1 \in X_1$ и $x_2 \in X_2$:

$$P_1x = x_1 \in \text{Im } P_1 = X_1$$

 $P_2x = x_2 \in \text{Im } P_2 = X_2$
 $Ix = P_1x + P_2x = x_1 + x_2$

Покажем, что такое представление единственно. Пусть

$$x = x_1' + x_2', \quad x_i' \in X_i, \quad i = 1, 2$$
 (2.1)

Можно показать, что $P_1x_1' = x_1'^{-1}$ и $P_1x_2' = 0^{-2}$ Применим к обеим частям равенства (2.1) оператор P_1 :

$$P_1x = P_1x_1' + P_1x_2' = x_1$$

Применим к обеим частям того же равенства (2.1) оператор P_2 :

$$P_2x = P_2x_1' + P_2x_2' = x_2$$

Таким образом, объединяя полученные равенства, получаем:

$$P_1 x = x_1 = x_1'$$

 $P_2 x = x_2 = x_2'$

/ -

$$x_1' \in \operatorname{Im} P_1 \Rightarrow \exists x_0 \in X \quad P_1 x_0 = x_1' \Rightarrow$$

$$\Rightarrow P_1^2 x_0 = P_1 x_1' \Rightarrow P_1 x_0 = P_1 x_1' \Rightarrow x_1' = P_1 x_1'$$

2

1

$$P_1x_2' = P_1(P_2x_0) = 0$$

Пусть $P \in L(X)$ — проектор. Рассмотрим оператор вида I-P. Покажем, что он является проектором:

$$(I-P)^2 = I - 2P + P^2 = I - 2P + P = I - P$$

Покажем, что проекторы I-P и P образуют разложение единицы:

$$(I - P)P = P - P^2 = O$$
$$(I - P) + P = I$$

Проектор I-P называется дополнительным проектором к P. Из леммы 2.2 следует, что

$$X = \operatorname{Im} P \oplus \operatorname{Im}(I - P)$$

§3. Инвариантные подпространства. Разложение операторов

Далее $A \in L(X)$.

Определение 3.1. Подпространство $M \subset X$ называется *инвариантным* для A, если

$$A(M) \subset M$$

Иначе:

$$\forall x \in M \quad Ax \in M$$

Далее сужение оператора A на инвариантное подпространство M будем обозначать A_M или A|M.

Теорема 3.1. Пусть X — комплексное пространство размерности больше единицы. Тогда для любого оператора $A \in L(X)$ имеется инвариантное подпространство ненулевой размерности.

Доказательство. Пусть $A \in L(X)$. Так как пространство комплексное, спектр оператора A непуст, т.е. имеется хотя бы одно собственное значение λ_1 :

$$Ae_1 = \lambda_1 e_1$$

Рассмотрим множество

$$M = \{ \alpha e_1 : \alpha \in \mathbb{C} \}$$

Это инвариантное подпространство, т. к.

$$A(\alpha e_1) = \alpha \lambda_1 e_1 \in M$$

Замечание. В вещественном пространстве может и не быть инвариантных подпространств.

Пример 3.1.

$$A: \mathbb{R}^2 \to \mathbb{R}^2$$

$$Ae_1 = e_2$$

$$Ae_2 = -e_1$$

TODO: свойства матриц

Определение 3.2. Пусть $X = X_1 \oplus \cdots \oplus X_m$ — прямая сумма инвариантных относительно A подпространств X_k , $k = \overline{1,m}$. В этом случае говорят, что A приводится (разлагается) семейством подпространств X_k в прямую сумму операторов:

$$A = A_1 \oplus \cdots \oplus A_m$$

где $A_k = A|X_k$.

Такое обозначение обусловлено тем, что любой вектор Ax можно единственным образом представить в виде суммы:

$$Ax = A(x_1 + \dots + x_m) = Ax_1 + \dots + Ax_m = A_1x_1 + \dots + A_mx_m$$

Теорема 3.2. Пусть $A \in L(X)$ — оператор простой структуры, $\sigma(A) = \left\{\lambda_i\right\}_{i=1}^m$, $m \leq n$. Тогда $X = \bigoplus_{k=1}^m X_k$, где $X_k = E(\lambda_k, A) = \operatorname{Ker}(A - \lambda_k I)$ и оператор A допускает разложение

$$A = \lambda_1 I_1 \oplus \cdots \oplus \lambda_m I_m$$

ДОКАЗАТЕЛЬСТВО. Нетрудно показать, что любое собственное подпространство оператора является инвариантным относительно этого оператора.

Покажем, что
$$X = \bigoplus_{k=1}^{m} X_k$$
.

По определению оператора простой структуры существует базис e_1,\ldots,e_n в X такой, что $Ae_k=\lambda_ie_k$. Каждый из этих векторов принадлежит одному из подпространств X_i . Таким образом каждый вектор $x\in X$ можно представить в виде суммы некоторых векторов из $X_k,\ k=\overline{1,m}$, причем такое представление единственно в силу свойств базиса.

Ясно также, что сужение оператора A на инвариантное подпространство $E(\lambda_k, A)$ будет иметь вид:

$$A_k = A|E(\lambda_k, A) = \lambda_k I_k$$

где $I_k \in L(X_k)$ — тождественный оператор.

Теорема 3.3. Пусть $A \in L(X)$ допускает разложение $A = A_1 \oplus \cdots \oplus A_m$ относительно прямой суммы инвариантных подпространств $X = X_1 \oplus \cdots \oplus X_m$. Тогда

1. Ker
$$A = \operatorname{Ker} A_1 \oplus \cdots \oplus \operatorname{Ker} A_m$$

$$\operatorname{Im} A = \operatorname{Im} A_1 \oplus \cdots \oplus \operatorname{Im} A_m$$

2.
$$\operatorname{Ker}(A - \lambda I) = \bigoplus_{k=1}^{m} \operatorname{Ker}(A_k - \lambda I_k) \quad \forall \lambda \in \mathbb{C}$$

$$\operatorname{Im}(A - \lambda I) = \bigoplus_{k=1}^{m} \operatorname{Im}(A_k - \lambda I_k) \quad \forall \lambda \in \mathbb{C}$$

3. А обратим тогда и только тогда, когда обратима каждая его часть A_k .

4.
$$\sigma(A) = \bigcup_{k=1}^{m} \sigma(A_k)$$

Доказательство.

1. Пусть $x \in \operatorname{Ker} A$, $x = x_1 + \cdots + x_m$. Тогда

$$0 = Ax = A_1x_1 + \cdots + A_mx_m, \quad A_kx_k \in X_k, \ k = \overline{1, m}$$

Из свойств прямой суммы (единственности представления нуля) получаем, что $A_k x_k = 0, \ k = \overline{1,m},$ т.е. $x_k \in \operatorname{Ker} A_k$. Отсюда и получаем первое равенство.

Пусть $y \in \text{Im } A$. Тогда существует $x \in X$, $x = x_1 + \cdots + x_m$ такой, что y = Ax.

$$\operatorname{Im} A \ni y = Ax = A_1x_1 + \dots + A_mx_m, \quad A_kx_k \in \operatorname{Im} A_k, \ k = \overline{1, m}$$

2. Рассмотрим скалярный оператор λI :

$$\lambda I = \lambda I_1 \oplus \cdots \oplus \lambda I_m$$

относительно X_1, \ldots, X_m . Следовательно

$$A - \lambda I = (A_1 - \lambda I_1) \oplus \cdots \oplus (A_m - \lambda I_m)$$

Далее, применяя (1) для оператора $A - \lambda I$ получаем равенства (2).

3. Оператор A обратим тогда и только тогда, когда $\operatorname{Ker} A = \{0\}$. Отсюда и из свойства (1), очевидно, следует утверждение (3) теоремы.

Пусть A обратим. Рассмотрим оператор B такой, что

$$B = A_1^{-1} \oplus \ldots \oplus A_m^{-1}$$

$$Bx = A_1^{-1}x_1 + \ldots + A_m^{-1}x_m$$

Покажем, что оператор B — обратный к оператору A:

$$A(Bx) = A(A_1^{-1}x_1 + \dots + A_m^{-1}x_m) = x_1 + \dots + x_m = x$$

т.к.
$$A_k^{-1} x_k \in X_k$$

Таким образом

$$A^{-1} = A_1^{-1} \oplus \cdots \oplus A_m^{-1}$$

4. Рассмотрим прямую сумму операторов

$$A - \lambda I = (A_1 - \lambda I_1) \oplus \cdots \oplus (A_m - \lambda I_m)$$

 $\lambda \in \sigma(A) \Leftrightarrow A - \lambda I$ необратим \Leftrightarrow необратим хотя бы один из $A_k - \lambda I_k$, т. е.

$$\sigma(A) = \sigma(A_1) \cup \dots \cup \sigma(A_m) \qquad \Box$$

Теорема 3.4. Пусть $A \in L(X)$, $X = X_1 \oplus \cdots \oplus X_m$, проекторы P_1, \ldots, P_m образуют разложение единицы, причем $\operatorname{Im} P_k = X_k$. Тогда для того чтобы каждое из подпространств X_k было инвариантным относительно A, необходимо и достаточно, чтобы каждый из операторов P_k был перестановочен c A:

$$AP_k = P_k A, \quad k = \overline{1, m}$$

Доказательство.

Необходимость: Пусть $A(X_k) \subset X_k, \quad k = \overline{1, m}$.

$$AP_k x = IAP_k x = (P_1 + \dots + P_k + \dots + P_m)AP_k x =$$

$$= P_k AP_k x = P_k AP_k (x_1 + \dots + x_k + \dots + x_m) = P_k AP_k x_k =$$

$$= P_k Ax_k = \underbrace{P_k Ax_1}_{=0} + \dots + P_k Ax_k + \dots + \underbrace{P_k Ax_m}_{=0} = P_k Ax$$

Необходимость доказана.

Достаточность: Пусть $x \in X_k$.

$$Ax = AP_k x = P_k Ax \in \operatorname{Im} P_k = X_k$$

Теорема 3.5. Пусть $A \in L(X)$ — оператор простой структуры, $\sigma(A) = \{\lambda_1, \dots, \lambda_m\}$. Тогда

$$A = \sum_{k=1}^{m} \lambda_k P_k, \tag{3.1}$$

еде P_k — проекторы, образующие разложение единицы, $\operatorname{Im} P_k = E(\lambda_k, A)$.

Доказательство. Пусть $x \in X$. По теореме 3.2

$$X = X_1 \oplus \cdots \oplus X_m, \quad X_k = E(\lambda_k, A), \ k = \overline{1, m}$$

Тогда

$$x = x_1 + \dots + x_m = P_1 x + \dots + P_m x, \quad P_k x \in X_k$$

Применим к правой и левой частям равенства оператор A:

$$Ax = AP_1x + \dots + AP_mx =$$

$$= \lambda_1 P_1 x + \dots + \lambda_m P_m x = \left(\sum_{k=1}^m \lambda_k P_k\right) x \quad \Box$$

Определение 3.3. Представление (3.1) называется *спектральным разложением* оператора простой структуры.

Следствие 1. Если $\mathcal{A} \in \operatorname{Matr}_n(\mathbb{K})$ диагонализируема, $\sigma(A) = \{\lambda_1, \ldots, \lambda_m\}$, то

$$\mathcal{A} = \sum_{k=1}^{m} \lambda_k \mathcal{P}_k,$$

ede
$$\mathcal{P}_k^2 = \mathcal{P}_k$$
, $E = \sum_{k=1}^m \mathcal{P}_k$, $\mathcal{P}_i \mathcal{P}_j = 0 \quad \forall i \neq j$

§4. Многочлены от операторов и матриц

Далее будем рассматривать алгебры линейных операторов, матриц и многочленов.

Пусть $A \in L(X)$, $p \in \mathcal{P}(\mathbb{K})$.

$$p(z) = p_0 + p_1 z + \dots + p_m z^m$$

Поставим p в соответствие такой оператор p(A), что

$$p(A) = p_0 I + p_1 A + \dots + p_m A^m$$

Определение 4.1. Оператор p(A) называется многочленом от оператора A.

Рассмотрим отображение $\Phi_A: \mathcal{P}(\mathbb{K}) \to L(X)$ такое что

$$\Phi_A(p) = p(A) \tag{4.1}$$

Лемма 4.1. Отображение (4.1) — гомоморфизм алгебр:

1.
$$\Phi_A(\mathbb{1}) = I$$
, $\epsilon \partial e \mathbb{1}(z) \equiv 1$

2.
$$\Phi_A(\alpha f + \beta g) = \alpha \Phi_A(f) + \beta \Phi_A(g)$$

3.
$$\Phi_A(fg) = \Phi_A(f)\Phi_A(g)$$

Доказательство.

Утверждения (1) и (2) очевидны. Докажем утверждение (3).

3.
$$f(z) = f_0 + f_1 z + \dots + f_m z^m$$

$$g(z) = g_0 + g_1 z + \dots + g_k z^k$$

$$(fg)(z) = \sum_{i=0}^{m+k} c_i z^i, \qquad c_i = \sum_{j+p=i} f_j g_p$$

$$\Phi_A(fg) = \sum_{i=0}^{m+k} c_i A^i$$

$$\Phi_A(f)\Phi_A(g) = f(A)g(A) = (f_0 I + f_1 A + \dots + f_m A^m) \times$$

$$\times (g_0 I + g_1 A + \dots + g_k A^k) = \sum_{i=0}^{m+k} c_i A^i, \quad c_i = \sum_{j+p=i} f_j g_p$$

$$\Phi_A(fg) = \Phi_A(f)\Phi_A(g) \qquad \Box$$

Следствие 1. f(A)g(A) = g(A)f(A) Доказательство.

$$\Phi_A(f)\Phi_A(g) = \Phi_A(fg) = \Phi_A(gf) = \Phi_A(g)\Phi_A(f) \qquad \Box$$

Аналогично можно рассмотреть многочлены от матриц (и вообще элементов любой унитарной алгебры).

Несложно заметить, что многочлен $p(\mathcal{A})$ от матрицы \mathcal{A} оператора A есть матрица многочлена p(A) от оператора A.

Рассмотрим оператор $A \in L(X)$ такой, что

$$I = I_1 \oplus \cdots \oplus I_m$$
$$A = A_1 \oplus \cdots \oplus A_m$$

относительно

$$X = X_1 \oplus \cdots \oplus X_m$$

Очевидно, что если X_k инвариантно относительно A, то оно инвариантно также относительно $A^j,\ j\geqslant 0$. Также ясно, что если A_k — сужение оператора A на инвариантное подпространство X_k , то A^j_k — сужение оператора A^j на то же подпространство. Отсюда получаем, что

$$A^j = A_1^j \oplus \cdots \oplus A_m^j$$

Пусть далее A — оператор простой структуры, $f \in \mathcal{P}(\mathbb{K})$.

$$A = \sum_{j=1}^{m} \lambda_j P_j$$

$$A^k = \sum_{j=1}^{m} \lambda_j^k P_j$$

$$f(A) = \sum_{j=1}^{m} f(\lambda_j) P_j$$

Последние два равенства доказываются простой проверкой. Наша цель — получить из последнего равенства проекторы P_j .

Этого можно добиться, если найти такие многочлены f_j , что

$$\begin{cases} f_j(\lambda_j) = 1\\ f_j(\lambda_k) = 0, & k \neq j \end{cases}$$

Тогда $f_j(A) = P_j$.

Используем интерполяционную формулу Лагранжа:

$$f_j(\lambda) = \prod_{\substack{i=0\\i\neq j}}^m \frac{\lambda - \lambda_i}{\lambda_j - \lambda_i}$$

$$A = \sum_{j=1}^{m} \lambda_j P_j = \sum_{j=1}^{m} \lambda_j f_j(A) = \sum_{j=1}^{m} \lambda_j \prod_{\substack{i=0\\i\neq j}}^{m} \frac{A - \lambda_i}{\lambda_j - \lambda_i}$$
(4.2)

Формула (4.2) называется интерполяционной формулой Сильвестра.

§5. Теорема Гамильтона-Кэли

Определение 5.1. Ненулевой многочлен $p \in \mathcal{P}(\mathbb{K})$ называется аннулирующим оператор $A \in L(X)$ (матрицу $\mathcal{A} \in \operatorname{Matr}_n(\mathbb{K})$), если p(A) = O $(p(\mathcal{A}) = 0)$.

Определение 5.2. Многочлен p наименьшей положительной степени со старшим коэффициентом 1 и аннулирующий оператор A называется минимальным (аннулирующим) многочленом оператора A.

Рассмотрим без доказательства следующую важную теорему.

Теорема 5.1 (Гамильтона-Кэли). Пусть X — линейное пространство над полем комплексных чисел. Тогда характеристический многочлен оператора $A \in L(X)$ аннулирует оператор A.

$$p_A(A) = O$$

Лемма 5.1. Минимальный многочлен единственен.

Доказательство. Предположим противное. Пусть f и g — минимальные многочлены оператора A:

$$f(A) = g(A) = O$$

Тогда

$$(f - g)(A) = O$$

То есть многочлен f-g также аннулирующий, причем его степень меньше степени f и g. Получили противоречие минимальности f и g.

Следствие 1 (из теоремы 5.1). Пусть $A \in L(X), \ \sigma(A) = \{\lambda_0\}.$ Тогда

$$A = \lambda_0 I + Q,$$

где Q — нильпотентный либо нулевой оператор и $Q^n=O,\ n=\dim X$

Доказательство. Характеристический многочлен для оператора A имеет вид

$$p_A(\lambda) = (-1)^n (\lambda - \lambda_0)^n$$

Тогда по теореме Гамильтона-Кэли получаем

$$O = p_A(A) = (A - \lambda_0 I)^n$$

Таким образом оператор $A - \lambda_0 I = Q$ — нильпотентный и

$$A = \lambda_0 I + Q$$

§6. Многочлены от операторов и разложение операторов

Лемма 6.1. Любой необратимый оператор $A \in L(X)$ представим в виде прямой суммы нильпотентного (нулевого) и обратимого операторов относительно некоторого разложения в прямую сумму инвариантных подпространств.

Доказательство. Имеют место включения:

$$\{0\} \neq \operatorname{Ker} A \subset \operatorname{Ker} A^2 \subset \dots$$

 $X \supset \operatorname{Im} A \supset \operatorname{Im} A^2 \supset \dots$

В силу конечномерности пространства существует такое $k \in \mathbb{N}$, что $\operatorname{Ker} A^k = \operatorname{Ker} A^{k+1}$.

Покажем, что $\forall j \geqslant k+1 \operatorname{Ker} A^k = \operatorname{Ker} A^j$.

Пусть k — наименьшее натуральное число, для которого выполнено условие $\operatorname{Ker} A^k = \operatorname{Ker} A^{k+1}$. Докажем, что $\operatorname{Ker} A^{k+2} = \operatorname{Ker} A^k$. Пусть $x \in \operatorname{Ker} A^{k+2}$.

$$x \in \operatorname{Ker} A^{k+2} \Rightarrow A^{k+2}x = 0 \Rightarrow A^{k+1}(Ax) = 0 \Rightarrow$$
$$\Rightarrow Ax \in \operatorname{Ker} A^{k+1} = \operatorname{Ker} A^k \Rightarrow A^k(Ax) = 0 \Rightarrow A^{k+1}x = 0 \Rightarrow$$
$$\Rightarrow x \in \operatorname{Ker} A^{k+1} = \operatorname{Ker} A^k$$

В силу теоремы о ранге и дефекте оператора,

$$\dim X = \dim \operatorname{Ker} A^j + \dim \operatorname{Im} A^j$$

И тогда, если $j\geqslant k$, то не только $\operatorname{Ker} A^j=\operatorname{Ker} A^k$, но и $\operatorname{Im} A^j=\operatorname{Im} A^k.$

Пусть $X_0 = \operatorname{Ker} A^k, X_1 = \operatorname{Im} A^k$. Нетрудно показать, что это инвариантные относительно A подпространства.

 $[\]overline{\ }^3$ Если $M,\,N-$ подпространства из X, то условия $M\neq N$ и $M\subset N$ влекут за собой, что $\dim M<\dim N$

Докажем, что $X = X_0 \oplus X_1$. Из теоремы о ранге и дефекте

$$\dim X_0 + \dim X_1 = \dim X$$

Осталось показать, что $X_0 \cap X_1 = \{0\}.$

$$y \in X_0 \cap X_1 \Rightarrow (A^k y = 0) \land (\exists x \in X \ y = A^k x) \Rightarrow$$
$$\Rightarrow A^k y = A^{2k} x \Rightarrow A^{2k} x = 0 \Rightarrow x \in \operatorname{Ker} A^{2k} = \operatorname{Ker} A^k \Rightarrow$$
$$\Rightarrow A^k x = 0 \Rightarrow y = 0$$

Таким образом $A = A_0 \oplus A_1$ относительно $X = X_0 \oplus X_1$.

 $\operatorname{Ker} A_1 = \{0\}$, т. к. все векторы из ядра A лежат в X_0 , значит A_1 обратим.

 $\forall x\in X_0\ A_0^kx=A^kx=0$ — то есть Aнильпотентный либо нулевой. $\hfill\Box$

Лемма 6.2. Многочлен $g \in \mathcal{P}(\mathbb{K})$ аннулирует $A \in L(X)$ тогда и только тогда, когда g делится на минимальный многочлен p_0 оператора A.

Доказательство.

Необходимость.

Пусть g(A) = O, $g = fp_0 + r$, $\deg r < \deg p_0$.

$$O = g(A) = f(A)p_0(A) + r(A) = r(A)$$

То есть r(A) = O, при этом степень r меньше степени минимального многочлена. Значит, r = 0.

Достаточность.

Если
$$g = fp_0$$
, то $g(A) = f(A)p_0(A) = O$.

Лемма 6.3. Если $p \in \mathcal{P}(\mathbb{C})$ — минимальный многочлен для оператора A, то $\sigma(A)$ совпадает с множеством корней многочлена p.

Доказательство.

1. Пусть $\lambda_0 \in \sigma(A)$, $p(z) = p_0 + p_1 z + \dots + p_k z^k$. Тогда есть такой ненулевой вектор x_0 , что $Ax_0 = \lambda_0 x_0$.

$$p(A)x_0 = p_0x_0 + p_1\lambda_0x_0 + p_2\lambda_0^2x_0 + \dots + p_k\lambda_0^kx_0 = p(\lambda_0)x_0$$

Таким образом

$$0 = p(A)x_0 = p(\lambda_0)x_0 \Rightarrow p(\lambda_0) = 0$$

2. Пусть $\mu_0 \in \mathbb{C}$ — корень p:

$$p(\mu_0) = 0$$

Предположим противное: $\mu_0 \notin \sigma(A)$. Это значит, что оператор $A - \mu_0 I$ обратим.

Рассмотрим многочлен $g(\lambda) = \frac{p(\lambda)}{\lambda - \mu_0}$.

$$p(\lambda) = g(\lambda)(\lambda - \mu_0)$$

$$p(A) = g(A)(A - \mu_0 I)$$

$$g(A) = p(A)(A - \mu_0 I)^{-1}$$

$$g(A) = O$$

Таким образом получили, что g — аннулирующий (ненулевой) многочлен, $\deg r g < \deg r p$, что противоречит минимальности p.

Следствие 1. $\sigma(A)$ содержится в множестве корней любого аннулирующего многочлена оператора A.

Теорема 6.1 (о разложении оператора). Пусть $A \in L(X)$, X — комплексное линейное пространство, $\sigma(A) = \{\lambda_1, \dots, \lambda_m\}$, $\underbrace{k_i -}_{1,m}$ логда оператор A допускает разложение в прямую сумму операторов

$$A = \bigoplus_{k=1}^{m} A_k \tag{6.1}$$

относительно инвариантных подпространств X_1, \ldots, X_m :

$$X = \bigoplus_{k=1}^{m} X_k$$

При этом справедливы следующие утверждения:

1.
$$\sigma(A_j) = \{\lambda_j\}, \quad j = \overline{1, m}$$

2. dim
$$X_j = k_j$$
, $j = \overline{1, m}$

3. $A_j = \lambda_j I_j + Q_j$, где Q_j — нильпотентный (либо нулевой) оператор с индексом нильпотентности $k_j^0 \leqslant k_j$, k_j^0 — кратность корня λ_j в минимальном многочлене оператора A.

Доказательство. Рассмотрим оператор $A-\lambda_j I,\ \lambda_j\in\sigma(A)$. Он необратим, значит к нему применима лемма 6.1, то есть существует такое разложение $X=X_j\oplus X_j'\ (X_j\ \text{и}\ X_j'\ \text{инвариантны относительно}\ A-\lambda_j I)$, что сужение этого оператора на X_j нильпотентно (индекс нильпотентности обозначим m_j), а на X_j' — обратимо.

Несложно показать 4 , что X_j и X_j' являются инвариантными подпространствами и для оператора A. Тогда можно рассмотреть прямую сумму

$$A = A_i \oplus A_i'$$

где $A_j = A|X_j, A'_j = A|X'_j.$

Рассмотрим оператор A_j . $\lambda_j \in \sigma(A_j)$, поскольку $A_j - \lambda_j I_j$ — сужение оператора $A - \lambda_j I$ на X_j , которое нильпотентно, а значит необратимо.

Покажем, что никаких других точек спектра оператор A_j не имеет. Пусть $\lambda_0 \in \sigma(A_j)$. Тогда существует ненулевой вектор $x \in X_j$, что

где m_j — индекс нильпотентности $A_j - \lambda_j I_j$. Таким образом $\sigma(A_j) = \{\lambda_i\}$.

Ясно, что $\lambda_j \notin \sigma(A_j')$, поскольку $A_j' - \lambda_j I_j'$ — сужение $A - \lambda_j I$ на X_j' — обратим.

По пункту (4) теоремы 3.3, $\sigma(A) = \sigma(A_j) \cup \sigma(A_j')$, значит

$$\sigma(A_i') = \sigma(A) \setminus \{\lambda_i\}$$

Значит, повторяя аналогичный процесс для подпространства X_j' и оператора A_j' , за конечное число шагов (а именно за m-1) мы сможем получить разложение (6.1), где каждый из операторов будет иметь одноточечный спектр.

Первое утверждение теоремы доказано.

$$^{4}x \in X_{j} \Rightarrow (A - \lambda_{j}I)x = Ax - \lambda_{j}x \in X_{j} \Rightarrow Ax \in X_{j}$$

Теперь докажем второе утверждение теоремы. Так как $A=A_1\oplus\cdots\oplus A_m$, то $p_A(\lambda)=p_{A_1}(\lambda)\dots p_{A_m}(\lambda)$, где p_A — характеристический многочлен A,p_{A_j} — характеристический многочлен A_j . Кроме того

известно, что
$$p_A(\lambda)=(-1)^n\prod_{j=1}^m(\lambda-\lambda_j)^{k_j},$$
 и $\sigma(A_j)=\{\lambda_j\}\,,\;j=\overline{1,m}.$

Значит

$$p_{A_j}(\lambda) = (-1)^{k_j} (\lambda - \lambda_j)^{k_j}, \quad j = \overline{1, m}$$

Отсюда следует, что $\dim X_j = k_j, \ j = \overline{1, m}$.

Второе утверждение теоремы доказано.

Как было показано в начале доказательства, $A_j - \lambda_j I_j = Q_j$ является нильпотентным оператором. Найдём его индекс нильпотентности.

Рассмотрим минимальный многочлен p_0 оператора A.

$$p_0(A) = p_0(A_1) \oplus \cdots \oplus p_0(A_m) = O$$

$$p_0(\lambda) = (\lambda - \lambda_1)^{k_1^0} \dots (\lambda - \lambda_m)^{k_m^0}$$

$$p_0(A_j) = \prod_{i=1}^m (A_j - \lambda_i I_j)^{k_i^0}$$

Каждый из операторов $A_j - \lambda_i I_j, \ i \neq j$ обратим⁵, а значит и не нильпотентен. Так как $p_0(A_j) = O$ и $(A_j - \lambda_i I_j)^{k_i^0}. \neq O$ при $i \neq j$, получаем, что $(A_j - \lambda_j I_j)^{k_j^0} = Q^{k_j^0} = O$.

В силу минимальности многочлена p_0 получаем, что k_j^0 — индекс нильпотентности Q_j . Теорема полностью доказана.

Теорема 6.2. Чтобы оператор $A \in L(X)$ был оператором простой струкутуры, необходимо и достаточно, чтобы все корни минимального многочлена оператора A имели кратность 1.

Доказательство.

Необходимость

Пусть A — оператор простой структуры со спектром $\sigma(A) = \{\lambda_1, \dots, \lambda_m\}$. По теореме 3.2, оператор имеет вид

$$A = \lambda_1 I_1 \oplus \cdots \oplus \lambda_m I_m$$

Тогда для любого многочлена $f \in \mathcal{P}(\mathbb{C})$ справедливо

$$f(A) = f(\lambda_1)I_1 \oplus \cdots \oplus f(\lambda_m)I_m$$

Тогда для того чтобы многочлен f был аннулирующим, достаточно условия $\forall k \in \overline{1,n} \ f(\lambda_k) = 0,$ значит, минимальный многочлен

 $^{^5\}sigma(A_j) = \{\lambda_j\}$

будет иметь вид

$$p_0(\lambda) = (\lambda - \lambda_1) \dots (\lambda - \lambda_1)$$

Достаточность

Пусть $p_0(\lambda) = (\lambda - \lambda_1) \dots (\lambda - \lambda_m)$ — минимальный. По теореме 6.1 получаем, что оператор A имеет вид

$$A = \bigoplus_{j=1}^{m} (\lambda_j I_j + Q_j),$$

где Q_j — нильпотентный, причем его индекс нильпотентности равен кратности корня λ_j в минимальном многочлене, то есть единице:

$$Q_i = O$$

Значит, оператор A имеет вид

$$A = \bigoplus_{j=1}^{m} \lambda_j I_j,$$

откуда и следует, что A — оператор простой структуры.

- §7. TODO: Жорданов базис для нильпотентных операторов
- §8. TODO: Жорданов базис и жорданова форма линейных операторов

§9. Сопряжённые операторы

Далее будет рассматриваться конечномерное пространство со скалярным произведением (евклидово пространство) H над полем действительных либо комплексных чисел.

Лемма 9.1. Любой линейный функционал $\xi: H \to \mathbb{K}$ допускает единственное представление вида

$$\xi(x) = \langle x, a \rangle, \quad a \in H$$

Доказательство. Выберем некоторый ортонормированный базис e_1, \ldots, e_n в H. Пусть $\xi: H \to \mathbb{K}$ — линейный функционал.

Определим а следующим образом:

$$a = \sum_{j=1}^{n} \overline{\xi(e_j)} e_j$$

Рассмотрим скалярное произведение $\langle e_k, a \rangle$, $k = \overline{1, n}$:

$$\langle e_k, a \rangle = \langle e_k, \sum_{j=1}^n \overline{\xi(e_j)} e_j \rangle = \langle e_k, \overline{\xi(e_k)} e_k \rangle = \xi(e_k)$$

Тогда

$$\xi(x) = \sum_{j=1}^{n} x_j \xi(e_j) = \sum_{j=1}^{n} x_j \langle e_j, a \rangle = \langle \sum_{j=1}^{m} x_j e_j, a \rangle = \langle x, a \rangle$$

Определение 9.1. Оператор $B \in L(H)$ называется *сопряжённым* κ $A \in L(H)$, если

$$\langle Ax, y \rangle = \langle x, By \rangle \quad \forall x, y \in H$$

Лемма 9.2. Для любого линейного оператора в евклидовом пространстве существует единственный сопряженный оператор.

Доказательство. Пусть $y \in H$.

Рассмотрим функционал $\xi_y: H \to \mathbb{K}$ вида

$$\xi_u(x) = \langle Ax, y \rangle$$

По лемме 1 существует $a \in H$, что

$$\xi_y(x) = \langle x, a \rangle$$

Положим By=a. Докажем, что B — линейный оператор из L(H).

Пусть $y = \alpha y_1 + \beta y_2$.

$$\xi_{y_1}(x) = \langle Ax, y_1 \rangle = \langle x, By_1 \rangle$$

$$\xi_{y_2}(x) = \langle Ax, y_2 \rangle = \langle x, By_2 \rangle$$

$$\xi_{y}(x) = \langle Ax, \alpha y_1 + \beta y_2 \rangle = \langle x, B(\alpha y_1 + \beta y_2) \rangle$$

$$\xi_{y}(x) = \langle Ax, \alpha y_1 \rangle + \langle Ax, \beta y_2 \rangle = \overline{\alpha} \xi_{y_1}(x) + \overline{\beta} \xi_{y_2}(x) =$$

$$= \langle x, \alpha By_1 + \beta By_2 \rangle$$

$$\langle x, B(\alpha y_1 + \beta y_2) \rangle = \langle x, \alpha By_1 + \beta By_2 \rangle$$

$$B(\alpha y_1 + \beta y_2) = \alpha B y_1 + \beta B y_2$$
$$\langle Ax, y \rangle = \langle x, By \rangle \qquad \Box$$

Сопряженный оператор обозначается звёздочкой:

$$A^* = B$$

Лемма 9.3 (свойства сопряженных операторов). Для любых операторов $A, B \in L(H)$ и любых чисел $\alpha, \beta \in \mathbb{K}$ справедливы следующие утверждения:

- 1. $(\alpha I)^* = \overline{\alpha}I$
- 2. $(AB)^* = B^*A^*$
- 3. $(\alpha A + \beta B)^* = \overline{\alpha} A^* + \overline{\beta} B^*$
- 4. Если A обратим, то и A^* обратим, причём

$$(A^{-1})^* = (A^*)^{-1}$$

- 5. $(A^*)^* = A$
- 6. Если M инвариантное подпространство A и A^* , то

$$(A|M)^* = A^*|M$$

Доказательство.

- $1. \ \langle \alpha Ix, y \rangle = \alpha \langle x, y \rangle = \langle x, \overline{\alpha} y \rangle = \langle x, \overline{\alpha} I y \rangle$
- 2. $\langle ABx, y \rangle = \langle A(Bx), y \rangle = \langle Bx, A^*y \rangle = \langle x, B^*A^*y \rangle$
- 3. Доказывается аналогично (используются свойства скалярного произведения)

4.
$$AA^{-1} = A^{-1}A = I$$

 $(AA^{-1})^* = (A^{-1}A)^* = I^*$
 $(A^{-1})^*A^* = A^*(A^{-1})^* = I$
 $(A^{-1})^* = (A^*)^{-1}$

- 5. Доказывается при помощи свойства эрмитовой симметричности скалярного произведения.
- 6. Очевидно.

Лемма 9.4. Пусть $A \in L(H)$. Тогда H раскладывается в ортогональную прямую сумму подпространств $H = \operatorname{Im} A \oplus \operatorname{Ker} A^* u$ $H = \operatorname{Ker} A \oplus \operatorname{Im} A^*$.

Доказательство. Для доказательства леммы достаточно показать, что $(\operatorname{Im} A)^{\perp} = \operatorname{Ker} A^*$. Пусть $y \in (\operatorname{Im} A)^{\perp}$. Тогда $\langle Ax, y \rangle = 0$, т. к. $\forall x \in H \ y \perp Ax \in \operatorname{Im} A$. Значит $\langle x, A^*y \rangle = 0$. Тогда, в силу произвольности x, подставляя вместо него A^*y получаем

$$\langle A^*y, A^*y \rangle = 0 \Rightarrow A^*y = 0 \Rightarrow y \in \operatorname{Ker} A^*$$

Теперь обратно: пусть $y \in \operatorname{Ker} A^*$. Тогда $\langle x, A^*y \rangle = 0$, и $\langle Ax, y \rangle = 0$, значит $y \perp \operatorname{Im} A$ и тогда $y \in (\operatorname{Im} A)^{\perp}$.

Непосредственно из леммы 9.4 следует

Теорема 9.1 (Фредгольма). Уравнение вида

$$Ax = b, \quad b \in H$$

разрешимо тогда и только тогда, когда вектор b перпендикулярен всем решениям однородного уравнения

$$A^*y = 0$$

Лемма 9.5. Пусть e_1, \ldots, e_n — ортонормированный базис, $A, B \in L(H), \ \mathcal{A} = (a_{ij}) \in \operatorname{Matr}_n(\mathbb{K}), \ \mathcal{B} = (b_{ij}) \in \operatorname{Matr}_n(\mathbb{K})$ — матрицы этих операторов в том же базисе. Тогда для того чтобы $B = A^*$ необходимо и достаточно, чтобы $b_{ij} = \overline{a_{ji}}$. Доказательство.

$$Ae_j = x = \sum_{i=1}^n a_{ij}e_i = \sum_{i=1}^n \langle x, e_i \rangle e_i = \sum_{i=1}^n \langle Ae_j, e_i \rangle$$

Таким образом

$$a_{ij} = \langle Ae_i, e_i \rangle$$

Доказательство в обе стороны проводится аналогично:

$$Ae_j = \sum_{i=1}^n a_{ij} e_i$$

$$a_{ij} = \langle Ae_j, e_i \rangle = \langle e_j, A^*e_i \rangle = \overline{\langle A^*e_i, e_j \rangle} = \overline{b_{ji}}$$

Определение 9.2. Оператор $A \in L(H)$ называется *самосопряженным*, если $A^* = A$

$$\langle Ax, y \rangle = \langle x, Ay \rangle$$

Пример 9.1. Пусть $A \in L(H)$. Тогда операторы

$$\mathfrak{Re}\,A = \frac{A+A^*}{2}$$

$$\mathfrak{Im}\,A = \frac{A-A^*}{2i}$$

являются самосопряженными. При этом $A = \Re A + i \Im A$. \diamondsuit Пример 9.2. Самосопряженным является оператор AA^* :

$$(AA^*)^* = (A^*)^*A^* = AA^*$$

Определение 9.3. Матрица $\mathcal{B} = (b_{ij}) \in \operatorname{Matr}_n(\mathbb{K})$ называется сопряженной к $\mathcal{A} = (a_{ij}) \in \operatorname{Matr}_n(\mathbb{K})$, если

$$b_{ij} = \overline{a_{ji}}$$

Непосредственно из леммы 9.5 следует, что оператор $A \in L(H)$ является самосопряженным тогда и только тогда, когда его матрица в некотором ортонормированном базисе является самосопряженной.

Определение 9.4. Проектор $P \in L(H)$ называется *ортого- нальным (ортопроектором)*, если он осуществляет разложение H в ортогональную прямую сумму.

$$H = \operatorname{Im} P \oplus \operatorname{Im}(I - P)$$
$$\operatorname{Im} P \perp \operatorname{Im}(I - P) = \operatorname{Ker} P$$

Лемма 9.6. Проектор $P \in L(H)$ является ортопроектором тогда и только тогда, когда $P^* = P$.

Доказательство.

Необходимость

Пусть P — ортопроектор, то есть

$$\operatorname{Im} P \perp \operatorname{Im} (I - P)$$

Пусть $H\ni x=x_1+x_2,\ H\ni y=y_1+y_2,$ где $x_1,y_1\in {\rm Im}\, P,$ $x_2,y2\in {\rm Im}(I-P.$

$$\langle Px, y \rangle = \langle x_1, y_1 + y_2 \rangle = \langle x_1, y_1 \rangle + \langle x_1, y_2 \rangle =$$

= $\langle x_1, Py \rangle = \langle x_1 + x_2, Py \rangle = \langle x, Py \rangle$

Достаточность

Пусть проектор P самосопряжен. Тогда по лемме 9.4 получаем,

ОТР

$$H = \operatorname{Im} P \oplus \operatorname{Ker} P = \operatorname{Im} P \oplus \operatorname{Im}(I - P)$$

где предполагается разложение в ортогональную прямую сумму. □

Следствие 1. Дополнительный проектор κ ортопроектору есть ортопроектор.

$$(I-P)^* = I^* - P^* = I - P$$

Определение 9.5. $B \in L(H)$ называется антисамосопряженным (кососамосопряженным), если $B^* = -B$.

Лемма 9.7. Если $B \in L(H)$ — антисамосопряженный оператор, то существует самосопряженный оператор A такой, что B = iA.

Доказательство. Пусть $B^* = -B, A = -iB$.

$$A^* = iB^* = -iB = A$$

то есть A — самосопряженный оператор и B = iA.

Определение 9.6. Оператор $U \in L(H)$ называется *унитарным*, если имеют место равенства:

$$U^*U = UU^* = I,$$

т. е. U — обратим и $U^* = U^{-1}$.

Пусть U — унитарный оператор.

$$||Ux||^2 = \langle Ux, Ux \rangle = \langle x, U^*Ux \rangle = \langle x, x \rangle = ||x||^2$$

То есть всякий унитарный оператор сохраняет длины векторов (является изометрией) (можно показать, что верно и обратное: всякий изометрический изоморфизм есть унитарный оператор).

Определение 9.7. Оператор $A \in L(H)$ называется *нормальным*, если

$$AA^* = A^*A$$

Непосредственно из определений следует, что самосопряженные, кососамосопряженные и унитарные операторы являются нормальными.

Лемма 9.8. Пусть $A, B \in L(X)$ — операторы в произвольном линейном пространстве — перастановочны:

$$AB = BA$$

Tогда $\operatorname{Ker} B$ u $\operatorname{Im} B$ являются инвариантными подпростран-

ствами для А

Доказательство. Пусть $x \in \text{Ker } B$, тогда Bx = 0

$$B(Ax) = A(Bx) = A0 = 0 \Rightarrow Ax \in \text{Ker } B$$

Аналогично доказывается для образа.

Лемма 9.9.

$$\sigma(A^*) = \overline{\sigma(A)}$$

Доказательство. Пусть $\lambda \in \mathbb{K}$.

$$(A - \lambda I)^* = A^* - \overline{\lambda}I$$

Оператор $A-\lambda I$ обратим тогда и только тогда, когда обратим $A^*-\overline{\lambda}I$, откуда и следует утверждение теоремы. \square

Теорема 9.2. Пусть $A \in L(H)$ — нормальный оператор, его спектр $\sigma(A) = \{\lambda_1, \ldots, \lambda_m\}$, $\mathbb{K} = \mathbb{C}$. Тогда

1.
$$E(\overline{\lambda_i}, A^*) = E(\lambda_i, A), i = \overline{1, m}$$

2. Пространство H раскладывается в ортогональную прямую сумму

$$H = E(\lambda_1, A) \oplus \cdots \oplus E(\lambda_m, A)$$

3. $A \ u \ A^* - onepamopы простой структуры$

Доказательство.

Рассмотрим собственное подпространство $E(\lambda_k, A) = M$. Поскольку A и A^* перестановочны, то по лемме 9.8 для оператора A^* подпространство M также будет инвариантным.

Покажем, что $E(\lambda_k, A) \subset E(\overline{\lambda_k}, A^*)$. Пусть $x \in E(\lambda_k, A)$. Рассмотрим сужение $(A - \lambda_k I)_M = O_M$. M инвариантно для $A - \lambda_k I$ и для $A^* - \overline{\lambda_k} I$ и по пункту (6) леммы 9.3 получаем, что

$$O_M = (A - \lambda_k I)_M = ((A - \lambda_k)^*)_M = (A^* - \overline{\lambda_k} I)_M$$

Таким образом

$$(A^* - \overline{\lambda_k}I)_M = O_M$$

Значит $A^*x = \overline{\lambda_k}x$, а следовательно $x \in E(\overline{\lambda_k}, A^*)$. Обратное включение доказывается аналогично.

Итак, $E(\lambda_1, A) = E(\lambda_1, A^*).$

$$H = E(\lambda_1, A) \oplus H_1, \quad H_1 = (E(\lambda_1, A))^{\perp}$$

Докажем, что H_1 инвариантно для A (аналогично показывается для A^*).

Пусть $x \in H_1, e \in E(\lambda_1, A)$.

$$\langle Ax, e \rangle = \langle x, A^*e \rangle = \langle x, \overline{\lambda_1}e \rangle = \lambda_1 \langle x, e \rangle = 0 \Rightarrow$$

$$\Rightarrow Ax \perp E(\lambda_1, A) \Rightarrow Ax \in H_1$$

Таким образом операторы A и A^* раскладываются в прямую сумму операторов:

$$A = \lambda_1 I_1 \oplus A_2$$
$$A^* = \overline{\lambda_1} I_1 \oplus A_2^*$$

Из пункта (4) теоремы 3.3 получаем, что

$$\sigma(A) = \{\lambda_2, \dots, \lambda_m\}$$

Продолжая аналогичный процесс для операторов A_2 и A_2^* до тех пор, пока не останется одна точка спектра, получаем разложения:

$$A = \lambda_1 I_1 \oplus \cdots \oplus \lambda_{m-1} I_{m-1} \oplus A_m$$
$$A^* = \overline{\lambda_1} I_1 \oplus \cdots \oplus \overline{\lambda_{m-1}} I_{m-1} \oplus A_m^*$$

относительно подпространств

$$H = E(\lambda_1, A) \oplus \cdots \oplus E(\lambda_{m-1}, A) \oplus H_m$$

$$H = E(\overline{\lambda_1}, A) \oplus \cdots \oplus E(\overline{\lambda_{m-1}}, A) \oplus H_m$$

где A_m и A_m^* — сопряженные операторы с одной точкой спектра. A_m можно представить в виде

$$A_m = \lambda_m I_m + Q,$$

где Q — нильпотентный либо нулевой.

Понятно, что если $x \in E(\lambda_m, A)$, то Qx = 0. Рассмотрим прямую сумму

$$H_m = E(\lambda_m, A) \oplus (E(\lambda_m, A))^{\perp}$$

Как уже было показано, $(E(\lambda_m, A))^{\perp}$ — инвариантное подпространство. Пусть $x \in (E(\lambda_m, A))^{\perp}$. Тогда и $Ax \in (E(\lambda_m, A))^{\perp}$.

$$(E(\lambda_m, A))^{\perp} \ni Ax = \lambda_m x + Qx,$$

$$\lambda_m x \in E(\lambda_m, A), \ Qx \in (E(\lambda_m, A))^{\perp}$$

По определению прямой суммы Ax единственным образом пред-

ставимо в виде суммы

$$Ax = 0 + Qx$$

Таким образом $\lambda_m x = 0$, откуда следует, что x = 0, то есть $H_m = E(\lambda_m, A), A_m = \lambda_m I_m$, что и требовалось доказать.

Следствие 1. *Каждый нормальный оператор допускает раз*ложение

$$A = \sum_{k=1}^{m} \lambda_k P_k,$$

где $P_k^* = P_k$, $k = \overline{1,m}$. При этом

$$A^* = \sum_{k=1}^m \overline{\lambda_k} P_k$$

(следует из свойств сопряженных операторов)

Теорема 9.3. Пусть $A \in L(H)$ — самосопряженный оператор в комплексном евклидовом пространстве. Тогда его спектр состоит из вещественных собственных значений и существует ортонормированный базис, составленный из собственных векторов оператора A.

Доказательство. По следствию из теоремы 9.2 оператор A имеет допускает разложение

$$A = \sum_{k=1}^{m} \lambda_k P_k$$

При этом

$$A^* = \sum_{k=1}^m \overline{\lambda_k} P_k$$

Так как $A = A^*$ получаем

$$\sum_{k=1}^{m} (\lambda_k - \overline{\lambda_k}) P_k = O$$

Применим к обеим частям равенства оператор P_j , $j = \overline{1,m}$:

$$P_j\left(\sum_{k=1}^m (\lambda_k - \overline{\lambda_k})P_k\right) = O$$

Отсюда получаем

$$(\lambda_j - \overline{\lambda_j})P_j = O \Rightarrow \lambda_j = \overline{\lambda_j}$$

To есть $\lambda_j \in \mathbb{R}$.

Теперь, чтобы получить ортонормированный базис, рассмотрим разложение H в ортогональную прямую сумму

$$H = E(\lambda_1, A) \oplus \cdots \oplus E(\lambda_m, A)$$

и выберем в каждом собственном подпространстве ортонормированный базис. Их объединение и будет ортонормированным базисом в H.

Теорема 9.4. Пусть $U \in L(H)$ — унитарный оператор. Тогда его спектр лежит на единичной окружности, т. е.

$$|\lambda_i| = 1, \ \forall \lambda_i \in \sigma(U),$$

u существует ортонормированный базис, состоящий из собственных векторов оператора U.

Доказательство. Пусть $U \in L(H)$ — унитарный, то есть $U^* = U^{-1}$. Тогда

$$U = \sum_{k=1}^{m} \lambda_k P_k$$

И

$$U^{-1} = \sum_{k=1}^{\infty} \frac{1}{\lambda_k} P_k = U^*$$

Аналогично случаю самосопряженного оператора можно показать, что

$$\frac{1}{\lambda_k} = \overline{\lambda_k}$$

а это значит, что

$$\lambda_k \overline{\lambda_k} = 1 \Rightarrow |\lambda_k| = 1$$

Утверждение о базисе доказывается аналогично предыдущей теореме. \Box

Определение 9.8. Матрица \mathcal{A} называется *нормальной*, если

$$\mathcal{A}\mathcal{A}^* = \mathcal{A}^*\mathcal{A}$$

Определение 9.9. Матрица ${\cal A}$ называется *ортогональной*, если

$$\mathcal{A}\mathcal{A}^* = \mathcal{A}^*\mathcal{A} = E$$