Convolutional Neural Networks (CNN)

Dr. Varodom Toochinda

Dept. of Mechanical Engineering

Kasetsart University

$$y[m, n] = x[m, n] * h[m, n] = \sum_{j} \sum_{i} x[i, j] h[m - i, n - j]$$

Convolution in image processing

 X
 h

 4
 2
 9
 4
 7
 1

 3
 1
 5
 3
 2
 5

 8
 7
 1
 2
 6
 2

 6
 3
 0
 1
 8
 1

 1
 0
 -1
 -1

 1
 0
 -1
 -1

 1
 0
 -1

 1
 0
 -1

3

9

9

 0
 1
 0
 1

 11
 5
 -10
 -2

 13
 6
 -19
 -3

 -1
 0
 -8
 -11

2D convolution example

$$(2)(1)+(6)(0)+(2)(-1)+(1)(1)+(8)(0)+(1)(-1)+(5)(1)+(7)(0)+(8)(-1) = 2+0-2+1+0-1+5+0-8 = -3$$

2D convolution example

edge detection with convolution

see convolution.ipynb

3D convolution

convolution layer in NN

max pooling layer

3	1	2	1
4	8	1	1
2	6	3	1
5	1	1	3

8	2
6	3

Max pooling (f = 2, s = 2)

average pooling layer

3	1	2	1
4	8	1	1
2	6	3	1
5	1	1	3

Average pooling (f = 2, s = 2)

CNN model example

cat/dog classification

[1.]
jackie.jpg is a dog

[1.] maam.jpeg is a dog

[0.]
dollar_scale.jpg is a cat

[1.]
fongbeer1.jpeg is a dog

[1.]
bingzoo.jpg is a dog

[0.]
ninja_bingz.jpg is a cat

DNN/CNN comparision (SVHN)

image augmentation

CNN case study

LeNet-5
AlexNet
VGG-16
ResNets
Inception model

LeNet-5

LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard, R. E.; Hubbard, W. & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541-551.

AlexNet

AlexNet

Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey E. (2017-05-24). "ImageNet classification with deep convolutional neural networks"

VGG-16

•Simonyan Sisserman. Very deep convolution networks for large-scale image recognition. 2015.

ResNets

He, K; Zhang X; Ren S.; Sun J.; Deep residual learning for image recognition. CVPR. 2015.

Residual block

Plain v.s. residual network

construct ResNets in TensorFlow

identity block

ResNet50 model

Inception model

Szegedy et al. Going deeper with convolutions. 2014.

Convolution using 1x1 kernel

Implement "bottleneck" with 1x1 convolution

 $(28 \times 28 \times 16 \times 192) + (28 \times 28 \times 32 \times 5 \times 5 \times 16) = 12.4 \text{ M multiply ops}$

Inception module

googLenet

transfer learning