FEDERATED BYZANTINE AGREEMENT SYSTEM AND STELLAR CONSENSUS PROTOCOL

HIDENORI SHINOHARA

Contents

1.	$\operatorname{Fed}_{\Theta}$	erated Byzantine Agreement System	2
	1.1.	Quorums	3
	1.2.	Dispensable Sets	6
	1.3.	Voting, Accepting, and Ratifying	11
	1.4.	Confirmation	14
2.	Stell	lar Consensus Protocol	17
	2.1.	Nomination Protocol	17
	2.2	Ballot Protocol	20

1. Federated Byzantine Agreement System

1.1. Quorums.

Definition 1.1.1 (Federated Byzantine Agreement System). Let V be a set and $Q: V \to 2^{2^V} \setminus \{\emptyset\}$ be a function such that $\forall v \in V, \forall q \in Q(v), v \in q$. Then we call the pair $\langle V, Q \rangle$ a federated Byzantine agreement system, or FBAS for short. Each q in Q(v) is called a quorum slice for each $v \in V$.

Remark 1.1.2.

- For each node v, Q(v) is a set of subsets of V. For instance, node v_1 may trust v_2, v_3, v_4 and may have $\{v_1, v_2, v_3, v_4\} \in Q(v_1) \subset 2^V$.
- Note that we explicitly exclude \emptyset from the co-domain. In other words, we want $Q(v) \neq \emptyset$ for all $v \in V$. If $Q(v) = \emptyset$ for some $v \in V$, it satisfies $\forall q \in Q(v), v \in q$. As we will see, each $q \in Q(v)$ is the list of nodes that v trusts. If v has no list of nodes that it trusts, v cannot really do anything. Thus we want $Q(v) \neq \emptyset$ for all $v \in V$.
- Consider the case when $V = \emptyset$. Note that $2^{\emptyset} = \{\emptyset\}$ and thus $2^{2^{\emptyset}} = \{\emptyset, \{\emptyset\}\}$. Thus V forms an FBAS where Q is the map $\emptyset \mapsto \{\{\emptyset\}\}$.

Definition 1.1.3 (Quorum). Let $\langle V, Q \rangle$ be an FBAS. $U \subset V$ is called a quorum if and only if $U \neq \emptyset$ and $\forall v \in U, \exists q \in Q(v), q \subset U$.

Theorem 1.1.4. In an FBAS $\langle V, Q \rangle$, the union of two quorums is a quorum.

Proof. Let U_1, U_2 be two quorums. Let $v \in U_1 \cup U_2$. Then $v \in U_i$ for i = 1 or i = 2. Then $q \subset U_i$ for some $q \in Q(v)$. Therefore, $q \subset U_1 \cup U_2$, so $U_1 \cup U_2$ is indeed a quorum.

Corollary 1.1.5. The set of quorums of a given FBAS is closed under union.

Theorem 1.1.6. In an FBAS $\langle V, Q \rangle$, V is a quorum.

Proof. For any $v \in V$, for any $q \in Q(v)$, $q \subset V$. Therefore, V is indeed a quorum.

Example 1.1.7. One might wonder if the intersection of quorums is always a quorum. However, this is not true in general.

Let $V = \{v_1, ..., v_4\}$ and

- $Q(v_1) = \{\{v_1, v_2, v_3\}, \{v_1, v_2, v_4\}, \{v_1, v_3, v_4\}\},\$
- _
- $Q(v_4) = \{\{v_1, v_2, v_4\}, \{v_1, v_3, v_4\}, \{v_2, v_3, v_4\}\}.$

In other words, $Q(v_i) = \{U \subset V \mid |U| = 3, v_i \in U\}.$

Then $U_1 = \{v_1, v_2, v_3\}$ is a quorum, and $U_2 = \{v_2, v_3, v_4\}$ is a quorum. However, $U_1 \cap U_2 = \{v_2, v_3\}$ is not a quorum because the size of any quorum slice is 3.

Definition 1.1.8 (Quorum Intersection). Let $\langle V, Q \rangle$ be an FBAS. We say $\langle V, Q \rangle$ enjoys quorum intersection if and only if $U_1 \cap U_2 \neq \emptyset$ for any pair of quorums U_1, U_2 .

Definition 1.1.9 (Delete). Let $\langle V, Q \rangle$ be an FBAS and $B \subset V$. Then the FBAS $\langle V, Q \rangle^B$ is defined to be $\langle V \setminus B, Q^B \rangle$ where $\forall v \in V \setminus B, Q^B(v) = \{q \setminus B \mid q \in Q(v)\}$.

Remark 1.1.10. One may think that this is related to fail-stop behaviors where B is the set of nodes that stopped responding. In general, however, this is not true as we also remove nodes from quorum slices. One can think of this as the *alternate* universe where nodes from B simply did not even exist from the beginning.

Theorem 1.1.11. Definition 1.1.9 is well-defined. In other words, if $\langle V, Q \rangle$ is an FBAS and $B \subset V$, then $\langle V, Q \rangle^B$ is an FBAS.

Proof. If V = B, then we are done because of Remark 1.1.2.

Suppose otherwise. Let $v \in V \setminus B$ be given. By the definition of an FBAS, $Q(v) \neq \emptyset$. Therefore, $Q^B(v) = \{q \setminus B \mid q \in Q(v)\}$ is nonempty.

Let $q' \in Q^B(v)$ be given arbitrarily. Then $q' = q \setminus B$ for some $q \in Q(v)$. Then $v \in q$ by the definition of an FBAS, so $v \in q'$.

Thus Q^B is indeed a quorum function. Therefore, $\langle V, Q \rangle^B$ is an FBAS.

Theorem 1.1.12. Let U be a quorum in FBAS $\langle V, Q \rangle$, let $B \subset V$ be a set of nodes, and let $U' = U \setminus B$. If $U' \neq \emptyset$, then U' is a quorum in $\langle V, Q \rangle^B$.

Proof. Since $U' \neq \emptyset$, it suffices to show that $\forall v \in U', \exists q \in Q^B(v), q \subset U'$. Let $v \in U'$. Then $v \in U$. Since U is a quorum in $\langle V, Q \rangle$, we can find $q \in Q(v)$ such that $q \subset U$. Then $q' = q \setminus B \in Q^B(v)$, and $q' = q \setminus B \subset U \setminus B = U'$. Therefore, U' is a quorum in $\langle V, Q \rangle^B$. \square

Remark 1.1.13. One can think of this theorem as "A quorum in the 'original' universe is a quorum in the 'alternate' universe."

Definition 1.1.14 (Quorum Intersection Despite B). Let $\langle V, Q \rangle$ be an FBAS and $B \subset V$ be a set of nodes. We say $\langle V, Q \rangle$ enjoys quorum intersection despite B if and only if $\langle V, Q \rangle^B$ enjoys quorum intersection.

Remark 1.1.15. Quorum intersection despite B is related to the system-level safety when nodes in B act arbitrarily. For instance, suppose $\langle V, Q \rangle$ is an FBAS, B is the set of all ill-behaved nodes, and $\langle V, Q \rangle$ enjoys quorum intersection despite B. Suppose two well-behaved nodes v_1, v_2 agree with contradictory statements a_1, a_2 in quorums q_1, q_2 , respectively.

Rewrite this!

Then $q_1 \cap q_2 \neq \emptyset$ have well-behaved nodes who agreed with both a_1 and a_2 . This is a contradiction because a well-behaved node cannot contradict itself. This example illustrates how the concept of quorum intersection despite B is related to system-level safety when nodes in B experience Byzantine failures.

Definition 1.1.16 (Quorum Availability Despite B). Let $\langle V, Q \rangle$ be an FBAS and $B \subset V$ be a set of nodes. We say $\langle V, Q \rangle$ enjoys quorum availability despite B if and only if $V \setminus B$ is a quorum in $\langle V, Q \rangle$ or B = V.

Theorem 1.1.17. Let $\langle V, Q \rangle$ be an FBAS and $B \subset V$. $\langle V, Q \rangle$ enjoys quorum availability despite B if and only if $\forall v \in V \setminus B$, there exists a quorum U_v such that $v \in U_v \subset (V \setminus B)$.

Proof. If V = B, we are done. Suppose otherwise.

$$\forall v \in V \setminus B, \exists \text{a quorum } U_v, v \in U_v \subset (V \setminus B) \implies \bigcup_{v \in V \setminus B} U_v \text{ is a quorum in } \langle V, Q \rangle$$
$$\implies V \setminus B \text{ is a quorum in } \langle V, Q \rangle$$

by Theorem 1.1.4. On the other hand, if $V \setminus B$ is a quorum in $\langle V, Q \rangle$, then $\forall v \in V \setminus B$, \exists a quorum $U_v, v \in U_v \subset (V \setminus B)$ because we can let $U_v = V \setminus B$ for each v.

Remark 1.1.18. Theorem 1.1.17 shows that $\langle V, Q \rangle$ enjoys quorum availability despite B if all nodes in $V \setminus B$ can find a quorum without B. This is related to the liveness of the system. If $\langle V, Q \rangle$ enjoys quorum availability despite B, then regardless of what happens to nodes in B, nodes in $V \setminus B$ can keep going.

Definition 1.1.19 (v-blocking). Let $\langle V, Q \rangle$ be an FBAS. Let $v \in V$. A subset $B \subset V$ is called v-blocking if and only if $\forall q \in Q(v), q \cap B \neq \emptyset$.

Remark 1.1.20. Intuitively, if a subset $B \subset V$ is v-blocking, then one may think of it as "v can't really get by without B." The following theorem can be interpreted as "If v can't get by without B, v can't get by without C for any $C \supset B$."

Theorem 1.1.21. Let $\langle V, Q \rangle$ be an FBAS. Let $v \in V$. Then

- The union of two v-blocking sets is v-blocking.
- Any superset of a v-blocking set is v-blocking.

Proof. It suffices to only prove the second statement. If $B \subset B'$ and B is v-blocking, $q \cap B' \supset q \cap B \neq \emptyset$ for any $q \in Q(v)$.

Theorem 1.1.22. Let $\langle V, Q \rangle$ be an FBAS. Let $A \subsetneq V$ and U_1, U_2 be a partition of $V \setminus A$. Let $v \in U_1$. If U_2 is not v-blocking in $\langle V, Q \rangle$, then U_2 is not v-blocking in $\langle V, Q \rangle^A$.

Proof. Since U_2 is not v-blocking in $\langle V, Q \rangle$, there exists $q_v \in Q(v)$ such that $q_v \cap U_2 = \emptyset$.

$$(q_v \setminus A) \cap U_2 = (q_v \cap U_2) \setminus (A \cap U_2)$$
$$= q_v \cap U_2 = \emptyset.$$

Thus U_2 is not v-blocking in $\langle V, Q \rangle^A$.

Theorem 1.1.23. Let $\langle V, Q \rangle$ be an FBAS. Let $B \subset V$. $\langle V, Q \rangle$ enjoys quorum availability despite B if and only if B is not v-blocking for any $v \in V \setminus B$.

Proof.

$$\forall v \in V \setminus B, \neg (B \text{ is } v\text{-blocking}) \iff \forall v \in V \setminus B, \neg (\forall q \in Q(v), q \cap B \neq \emptyset)$$

$$\iff \forall v \in V \setminus B, \exists q \in Q(v), q \cap B = \emptyset$$

$$\iff \forall v \in V \setminus B, \exists q \in Q(v), q \subset V \setminus B$$

$$\iff V = B \text{ or } V \setminus B \text{ is a quorum in } \langle V, Q \rangle$$

$$\iff \langle V, Q \rangle \text{ enjoys quorum availability despite } B$$

1.2. Dispensable Sets.

Definition 1.2.1 (Dispensable Set). Let $\langle V, Q \rangle$ be an FBAS and $B \subset V$ be a set of nodes. B is called a dispensable set, or DSet, if and only if $\langle V, Q \rangle$ enjoys both quorum intersection despite B and quorum availability despite B.

We will first show some basic properties of DSets.

Theorem 1.2.2. Let $\langle V, Q \rangle$ be an FBAS. Then

- V is a DSet.
- If $\forall v \in V, Q(v) = \{V\}$, then \emptyset and V are the only DSets of $\langle V, Q \rangle$.

Proof.

- $\langle V, Q \rangle^V$ enjoys quorum intersection because there is no quorum. $\langle V, Q \rangle$ enjoys quorum availability despite V because V = V.
- Suppose $\forall v \in V, Q(v) = \{V\}$. As shown above, V is a DSet of $\langle V, Q \rangle$. The empty set is a DSet because
 - $-\langle V,Q\rangle$ enjoys quorum intersection despite \emptyset because the only quorum is V.
 - $-\langle V,Q\rangle$ enjoys quorum availability despite B because $V\setminus\emptyset=V$ is a quorum.

Let $\emptyset \subsetneq S \subsetneq V$ be given. Then $V \neq S$ and $V \setminus S$ is not a quorum for it is nonempty and does not contain any quorum slice. Therefore, $\langle V, Q \rangle$ does not enjoy quorum availability despite B, so no nonempty, proper subset of V is a DSet.

Definition 1.2.3 (Intact and Befouled). Let $\langle V, Q \rangle$ be an FBAS and $v \in V$. v is said to be intact if and only if there exists a DSet B containing all ill-behaved nodes and $v \notin B$. v is said to be befouled if and only if v is not intact.

FIGURE 1. Tiered Quroum Example (P.5 of the white paper)

Example 1.2.4. We will use Figure 1 as an example.

- The smallest DSet containing v_5, v_6 in Figure 1 is $\{v_5, v_6, v_9, v_{10}\}$.
 - First, we will show that $B = \{v_5, v_6\}$ is not a DSet. By definition,

$$Q^{B}(v_{9}) = \{\{v_{9}\}, \{v_{9}, v_{7}\}, \{v_{9}, v_{8}\}, \{v_{9}, v_{7}, v_{8}\}\}\}$$
$$Q^{B}(v_{10}) = \{\{v_{10}\}, \{v_{10}, v_{7}\}, \{v_{10}, v_{8}\}, \{v_{10}, v_{7}, v_{8}\}\}$$

This implies that $U_9 = \{v_9\}$ and $U_{10} = \{v_{10}\}$ are both quorums. Then $U_9 \cap U_{10} = \emptyset$, so $\langle V, Q \rangle^B$ does not enjoy quorum intersection. Therefore, B is not a DSet.

Next, we will consider $C = \{v_5, v_6, v_1\}$. Then we can use the same argument as above. $U_9 = \{v_9\} \in Q^C(v_9)$ and $U_{10} = \{v_{10}\} \in Q^C(v_{10})$, and the intersection is empty. Therefore, C is not a DSet. It is easy to see that this argument works for the case of $\{v_5, v_6, v_i\}$ for any i = 1, 2, 3, 4.

We will consider $D = \{v_5, v_6, v_9\}$. Similarly, $U = \{v_{10}\} \in Q^D(v_{10})$ is a quorum. Moreover, $U' = \{v_1, v_2, v_3, v_4\}$ is a quorum. Then $U \cap U' = \emptyset$, so $\langle V, Q \rangle^D$ does not enjoy quorum intersection. It is easy to see that a similar argument shows that $\{v_5, v_6, v_{10}\}$ is not a DSet.

Finally, we will show that $E = \{v_5, v_6, v_9, v_{10}\}$ is a DSet. $V \setminus E$ is a quorum in $\langle V, Q \rangle$ because every node in $V \setminus E$ has a quorum slice consisting of nodes in $V \setminus E$. If a quorum in $\langle V, Q \rangle^E$ contains v_7 or v_8 , then it must contain some of v_1, v_2, v_3, v_4 . If a quorum in $\langle V, Q \rangle^E$ contains at least one of v_1, v_2, v_3 , or v_4 , then it must contain at least three of v_1, v_2, v_3, v_4 . Therefore, any intersection of two quorums in $\langle V, Q \rangle^E$ contains at least two of v_1, v_2, v_3, v_4 by the pigeon hole principle.

Therefore, E is indeed a smallest DSet containing v_5 and v_6 .

- We showed that $B = \{v_5, v_6\}$ is not a DSet because $\langle V, Q \rangle$ does not enjoy quorum intersection despite B. What this means is that if both v_5 and v_6 either stop responding or are malicious, then it is not possible to guarantee safety for v_9 and v_{10} . For instance, consider the following situation:
 - * Both v_5 and v_6 tell v_9 and v_{10} that $Q(v_5) = Q(v_6) = \{\{v_5, v_6\}\}$ convincing that $\{v_5, v_6, v_9\}$ and $\{v_5, v_6, v_{10}\}$ are both quorums.
 - * Both v_5 and v_6 tell v_9 that they want to process a certain transaction. This transaction does not contradict what v_9 knows about v_5 . Moreover, everyone in the quorum $\{v_5, v_6, v_9\}$ is in favor of this transaction. Thus there is no reason for v_9 to not believe this transaction.
 - * Both v_5 and v_6 tell v_{10} that they want to process a certain transaction that contradicts the transaction they told v_5 about. For the same reason, there is no reason for v_{10} to not believe this transaction.
 - * Then the network processes contradicting transactions. This can let v_5 double-spend some money, for instance.
 - * One can verify that this is possible by looking into the definition of accepting, confirming and such that are introduced in later chapters.
- $B = \{v_1\}$ is a DSet.
 - First, we will check if $\langle V, Q \rangle$ enjoys quorum intersection despite B.

Consider $\langle V, Q \rangle^B$. Any quorum containing v_9 and/or v_{10} must contain at least two of v_5, v_6, v_7, v_8 . Any quorum containing at least one of v_5, \dots, v_8 must contain at least one of v_2, v_3, v_4 . Any quorum containing at least one of v_2, v_3, v_4 must contain at least two of v_2, v_3, v_4 . This is because $Q(v_i)^B = \{\{v_2, v_3, v_4\}, \{v_i, v_j\}, \{v_i, v_k\}\}$ where $\{i, j, k\} = \{2, 3, 4\}$.

Therefore, the intersection of any two quorums must contain at least one of v_2, v_3, v_4 by the pigeon hole principle.

- Next, we need to check if $\langle V, Q \rangle$ enjoys quorum availability despite B. $V \setminus B$ is indeed a quorum in $\langle V, Q \rangle$ because each node in $V \setminus B$ has a quorum slice that does not contain v_1 .
- We showed that B is indeed a DSet. What this means is that even if v_1 stops responding or becomes malicious, the rest of the network can make progress safely. For instance, suppose that v_1 becomes malicious and tries to double-spend money. v_1 might tell v_5 that it wants to process a certain transaction. Similarly, v_1 might tell v_6 that it wants to process a contradicting transaction. However, every quorum slice of v_5 and v_6 contains at least one tier-1 node that is not v_1 . Suppose that v_5 asks v_2 what it thinks, and v_6 asks v_3 what it thinks. Then every quorum slice of v_2 and v_3 contains 3 tier-1 nodes. By the pigeon hole principle, at least one tier-1 node that is not v_1 gets asked what it thinks about the contradicting transactions from v_5 . The tier-1 node does not agree with them and v_1 's attempt to double-spend money fails.

Theorem 1.2.5. If B_1 and B_2 are DSets in an FBAS $\langle V, Q \rangle$ enjoying quorum intersection, then $B = B_1 \cap B_2$ is a DSet, too.

Proof. If $B_1 = V$ or $B_2 = V$, then we are done. Suppose otherwise.

First, we will show that $\langle V, Q \rangle$ enjoys quorum availability despite B. By Definition 1.1.16, it suffices to show that V = B or $V \setminus B$ is a quorum in $\langle V, Q \rangle$. Since we assumed that $B_1 \neq V$ and $B_2 \neq V$, $B \neq V$. Therefore, we will show that $V \setminus B$ is a quorum in $\langle V, Q \rangle$. By basic set theory, $V \setminus B = V \setminus (B_1 \cap B_2) = (V \setminus B_1) \cup (V \setminus B_2)$. Since B_1 is a DSet, $V = B_1$ or $V \setminus B_1$ is a quorum in $\langle V, Q \rangle$. Since we assumed that $V \neq B_1$ earlier, $V \setminus B_1$ is a quorum in $\langle V, Q \rangle$. Similarly, $V \setminus B_2$ is a quorum in $\langle V, Q \rangle$. By Theorem 1.1.4, the union $(V \setminus B_1) \cup (V \setminus B_2) = V \setminus B$ is a quorum in $\langle V, Q \rangle$.

Next, we will show that $\langle V, Q \rangle$ enjoys quorum intersection despite B. Let U_a, U_b be quorums in $\langle V, Q \rangle^B$. We want to show that $U_a \cap U_b \neq \emptyset$. We will do so by proving a stronger statement, which is $(U_a \cap U_b) \setminus B_1 \neq \emptyset$. In other words, we will show that $(U_a \setminus B_1) \cap (U_b \setminus B_1) \neq \emptyset$.

Since B_1 is a DSet, $\langle V, Q \rangle$ enjoys quorum intersection despite B_1 . In other words, $\langle V, Q \rangle^{B_1}$ enjoys quorum intersection. Therefore, it suffices to show that $U_a \setminus B_1$ and $U_b \setminus B_1$ are both quorums in $\langle V, Q \rangle^{B_1}$. By Theorem 1.1.12, $U_a \setminus B_1$ and $U_b \setminus B_1$ are quorums in $(\langle V, Q \rangle^B)^{B_1}$ if $U_a \setminus B_1 \neq \emptyset$ and $U_b \setminus B_1 \neq \emptyset$. Since $(\langle V, Q \rangle^B)^{B_1} = \langle V, Q \rangle^{B_1}$, it suffices to show that $U_a \setminus B_1 \neq \emptyset$ and $U_b \setminus B_1 \neq \emptyset$.

We will first show that $U_a \setminus B_1 \neq \emptyset$. By basic set theory,

$$U_a = U_a \setminus B$$

$$= U_a \setminus (B_1 \cap B_2)$$

$$= (U_a \setminus B_1) \cup (U_a \setminus B_2)$$

because $U_a \cap B = \emptyset$.

This implies that $(U_a \setminus B_1) \cup (U_a \setminus B_2) \neq \emptyset$. If $U_a \setminus B_1$ is nonempty, we are done. Suppose $U_a \setminus B_2$ is nonempty. We will show that this implies that $U_a \setminus B_1 \neq \emptyset$. We will do so by first finding two quorums in $\langle V, Q \rangle^{B_2}$ whose intersection is a subset of $U_a \setminus B_1$. Since $\langle V, Q \rangle^{B_2}$ enjoys quorum intersection, the intersection of such two quorums must be nonempty, which in turn shows that $U_a \setminus B_1$ is nonempty.

- We claim that $U_a \setminus B_2$ is a quorum in $\langle V, Q \rangle^{B_2}$. U_a is a quorum in $\langle V, Q \rangle^B$. Since $U_a \setminus B_2$ is assumed to be nonempty, $U_a \setminus B_2$ is a quorum in $(\langle V, Q \rangle^B)^{B_2}$ by Theorem 1.1.12. Since $(\langle V, Q \rangle^B)^{B_2} = \langle V, Q \rangle^{B_2}$, $U_a \setminus B_2$ is a quorum in $\langle V, Q \rangle^{B_2}$.
- $V \setminus B_2 \neq \emptyset$ is a quorum in $\langle V, Q \rangle$ because $\langle V, Q \rangle$ must enjoy quorum availability despite B_2 and $B_2 \neq V$. Similarly, $V \setminus B_1 \neq \emptyset$ is a quorum in $\langle V, Q \rangle$. Because $\langle V, Q \rangle$ enjoys quorum intersection, $(V \setminus B_1) \cap (V \setminus B_2) \neq \emptyset$. In other words, $(V \setminus B_1) \setminus B_2 \neq \emptyset$. By applying Theorem 1.1.12 to the fact that $V \setminus B_1$ is a quorum in $\langle V, Q \rangle$ and $(V \setminus B_1) \setminus B_2 \neq \emptyset$, we can conclude that $(V \setminus B_1) \setminus B_2$ is a quorum in $\langle V, Q \rangle^{B_2}$.

Since $\langle V, Q \rangle^{B_2}$ enjoys quorum intersection, $(U_a \setminus B_2) \cap ((V \setminus B_1) \setminus B_2) \neq \emptyset$.

$$\emptyset \neq (U_a \setminus B_2) \cap ((V \setminus B_1) \setminus B_2)$$

$$= (U_a \cap (V \setminus B_1)) \setminus B_2$$

$$\subset U_a \cap (V \setminus B_1)$$

$$= U_a \setminus B_1.$$

Thus, $U_a \setminus B_1 \neq \emptyset$.

The same argument will show that $U_b \setminus B_1 \neq \emptyset$.

Remark 1.2.6. Theorem 1.2.5 states that the intersection of two DSets is a DSet if the FBAS enjoys quorum intersection. One might wonder if the union of two DSets is a DSet when the FBAS enjoys quorum intersection. However, this is not true in general. Consider the FBAS $\langle V, Q \rangle$ where $V = \{v_1, v_2, v_3, v_4\}$ and $Q(v_i) = \{U \subset V \mid v_i \in U, |U| = 3\}$. This FBAS enjoys quorum intersection by the pigeon-hole principle because each quorum contains at least 3 elements. Then $B = \{v_1\}$ is a DSet because

- \bullet Quorum intersection despite B
 - Every quorum slice in $\langle V, Q \rangle^B$ contains at least 2 nodes because every quorum slice in $\langle V, Q \rangle$ contains exactly 3 nodes. This implies that any quorum in $\langle V, Q \rangle^B$ must contain at least 2 nodes. By the pigeon-hole principle, every pair of quorums in $\langle V, Q \rangle^B$ must intersect.

- \bullet Quorum availability despite B
 - $-V \setminus B = \{v_2, v_3, v_4\}$ is a quorum in $\langle V, Q \rangle$ because $\{v_2, v_3, v_4\} \in Q(v_i)$ for each i = 2, 3, 4.

Similarly, $C = \{v_2\}$ is a DSet. However, $B \cup C = \{v_1, v_2\}$ is not a DSet because $B \cup C \neq V$ and $V \setminus (B \cup C) = \{v_3, v_4\}$ is not a quorum in $\langle V, Q \rangle$.

Theorem 1.2.7. In an FBAS with quorum intersection, the set of befouled nodes is a DSet.

Proof. Let $\langle V, Q \rangle$ be an FBAS with quorum intersection. Let B be the intersection of all DSets that contain all ill-behaved nodes. We will show that B is the set of befouled nodes by showing that $V \setminus B$ is the set of intact nodes.

$$v \in V \setminus B \iff v \notin B$$
 $\iff \exists \text{ DSet } B_v \text{ that contains all ill-behaved nodes and } v \notin B_v$
 $\iff v \text{ is intact}$

Therefore, $V \setminus B$ is precisely the set of intact nodes, and thus B is the set of befouled
nodes.
By applying Theorem 1.2.5 repeatedly, we can conclude that B is a DSet. \Box
Theorem 1.2.8. Let $\langle V, Q \rangle$ be an FBAS and let $B \subset V$ be the set of befouled nodes. If B is a DSet, B is not v-blocking for any intact v.
<i>Proof.</i> By Definition 1.2.3, a node $v \in V$ is intact if and only if $v \notin B$. By Theorem 1.1.23, $\langle V,Q \rangle$ enjoys quorum availability despite B if and only if B is not v -blocking for any $v \in V \setminus B$. Since B is a DSet, $\langle V,Q \rangle$ enjoys quorum availability despite B . Thus B is not v -blocking for any intact v .

1.3. Voting, Accepting, and Ratifying.

Definition 1.3.1 (Vote). A node v votes for a statement a if and only if v asserts

- a is valid,
- a is consistent with all statements v has accepted,
- v has never voted against a,
- \bullet v promises never to vote for a statement that contradicts a in the future.

Definition 1.3.2 (Vote Against a). When a node v votes for a statement that contradicts a, we say v votes against a.

Definition 1.3.3 (Accept). Let $\langle V, Q \rangle$ be an FBAS, and let $v \in V$. v accepts a statement a if and only if

- It has never accepted a statement contradicting a, and
- It determines that either
 - There exists a quorum U such that $v \in U$ and each member of U either voted for a or broadcast that it has accepted a, or
 - There exists a v-blocking set B such that every member of B broadcast that it has accepted a.

When v accepts a, it must vote for the statement "an intact node accepted a." For simplicity, we will often write "accept(a)" to mean "an intact node accepted a."

As you can see, the definitions of voting and accepting have a circular dependency. Note that it is possible for a node to accept a statement after voting for a contradictory statement.

Definition 1.3.4 (Ratify). A quorum U_a ratifies a statement a if and only if every member of U_a votes for a. A node v ratifies a if and only if v is a member of a quorum U_a that ratifies a.

Theorem 1.3.5. Let $\langle V, Q \rangle$ be an FBAS. If a node $v \in V$ ratifies a statement a, then it must accept a.

Proof. If a node v ratifies a, then it is a member of a quorum $U \subset V$ that ratifies a. Thus every member of U votes for a. This implies that v also votes for a. By Definition 1.3.1, v has never accepted a statement contradicting a. By Definition 1.3.3, v accepts a.

Remark 1.3.6. Theorem 1.3.5 shows that ratifying is a stronger condition than accepting.

Theorem 1.3.7. If an FBAS enjoys quorum intersection and contains no ill-behaved node, then two contradictory statements cannot be both ratified.

Proof. Suppose the statement is false and let a, \bar{a} denote two contradictory statements ratified in such an FBAS. Let $U_a, U_{\bar{a}}$ denote quorums ratifying such statements, respectively. By the definition of quorum intersection, $U_a \cap U_{\bar{a}} \neq \emptyset$. Let $v \in U_a \cap U_{\bar{a}}$. This implies that v voted for both a and \bar{a} . However, the definition of voting(Definition 1.3.1) explicitly prohibits that. In other words, v must be ill-behaved, which is a contradiction to our assumption.

Theorem 1.3.8. Let $\langle V, Q \rangle$ be an FBAS and $B \subset V$. Suppose that B contains all the ill-behaved nodes and $\langle V, Q \rangle^B$ enjoys quorum intersection. Let $v_1 \neq v_2 \in V \setminus B$. If v_1 ratifies a statement a, then v_2 cannot ratify any statement that contradicts a.

Proof. Suppose that the theorem is false and let U_1, U_2 be quorums of v_1, v_2 that ratify a, \bar{a} , respectively, where a and \bar{a} are contradictory. Since $v_1 \in U_1 \setminus B$, $U_1 \setminus B \neq \emptyset$. By Theorem 1.1.12, $U_1' = U_1 \setminus B$ is a quorum in $\langle V, Q \rangle^B$. Similarly, $U_2' = U_2 \setminus B$ is a quorum in $\langle V, Q \rangle^B$. Since $\langle V, Q \rangle^B$ enjoys quorum intersection, $U_1' \cap U_2' \neq \emptyset$. Choose $v \in U_1' \cap U_2'$ arbitrarily. Then $v \in U_1 \cap U_2$. In order for U_1, U_2 to ratify a, \bar{a} , respectively, v must vote for both v and v. However, this is against the definition of voting. v must be an ill-behaved node, so $v \in B$, which is a contradiction because $v \in U_1' \cap U_2' \subset U_1' = U_1 \setminus B$ and v contains all the ill-behaved nodes.

Theorem 1.3.9. Let $\langle V, Q \rangle$ be an FBAS with quorum intersection. Then two intact nodes in V cannot ratify contradictory statements.

Proof. Let $v \neq v'$ be two intact nodes in V. Let $B \subset V$ be the set of befouled nodes. Then $v \notin B$ and $v' \notin B$. Since $\langle V, Q \rangle$ is an FBAS with quorum intersection, B is a DSet by Theorem 1.2.7. By the definition of a DSet (Definition 1.2.1), $\langle V, Q \rangle^B$ enjoys quorum intersection. By Theorem 1.3.8, v, v' cannot ratify contradictory statements.

Lemma 1.3.10. Let $\langle V, Q \rangle$ be an FBAS enjoying quorum intersection and B be the set of befouled nodes. If a is accepted by an intact node in V, then a is ratified by some intact node in $\langle V, Q \rangle^B$.

Proof. Suppose that a is accepted by one or more intact nodes in V. Since V is finite, there has to be an intact node v such that no intact nodes in V accepted a before v.

By the definition of accepting (Definition 1.3.3), v accepted a because either

- There was a quorum U of v such that every element of U either voted for a or broadcast that it has accepted a, or
- There existed a v-blocking set such that every element in it broadcast that it has accepted a.

We claim that it could not have been the second one. On the contrary, suppose that it was the second one. Since no intact nodes in V accepted a before v, such a v-blocking set must have only had befouled nodes. Therefore, such a v-blocking set must be a subset of B. Since $\langle V, Q \rangle$ enjoys quorum intersection, B is a DSet by Theorem 1.2.7. By Theorem 1.2.8, B is not v-blocking. By taking the contrapositive of Theorem 1.1.21, we conclude that no subset of B is v-blocking.

Therefore, it must have been the first case. In other words, there must have existed a quorum U of v such that, before v accepted a, every member of U either voted for a or broadcast that it has accepted a. Since no intact node accepted a before v, every intact node in U must have voted for a before v accepted a. In other words, every node in $U \setminus B$ voted for a. By Theorem 1.1.12, $U \setminus B$ is a quorum in $\langle V, Q \rangle^B$. Thus $U \setminus B$ ratified a in $\langle V, Q \rangle^B$, and thus v ratified a in $\langle V, Q \rangle^B$. Finally, v is indeed an intact node in $\langle V, Q \rangle^B$ because $\langle V, Q \rangle^B$ contains no ill-behaved nodes.

In conclusion, v is an intact node in $\langle V, Q \rangle^B$ and v ratified a in $\langle V, Q \rangle^B$.

Theorem 1.3.11. Two intact nodes in an FBAS $\langle V, Q \rangle$ enjoying quorum intersection cannot accept contradictory statements.

By Theorem 1.3.5, ratifying is a stronger condition than accepting. Therefore, Theorem 1.3.11 is a stronger version of Theorem 1.3.9.

Proof. Suppose otherwise. Let a, \bar{a} be contradictory statements accepted by two intact nodes in $\langle V, Q \rangle$. Let B denote the set of befouled nodes. By Lemma 1.3.10, a, \bar{a} are ratified by some intact nodes in $\langle V, Q \rangle^B$. By the definition of a DSet(Definition 1.2.1), $\langle V, Q \rangle$ enjoys quorum intersection despite B.

This means that $\langle V, Q \rangle^B$ enjoys quorum intersection and two contradictory statements

This means that $\langle V, Q \rangle^B$ enjoys quorum intersection and two contradictory statements are ratified by some intact nodes in $\langle V, Q \rangle^B$. However, this is a direct contradiction to Theorem 1.3.9. Hence, two contradictory statements cannot be accepted by two intact nodes in $\langle V, Q \rangle$.

1.4. Confirmation.

Definition 1.4.1 (Irrefutable). A statement a is irrefutable in an FBAS if no intact node can ever vote against it.

Definition 1.4.2 (Confirm). A quorum U_a in an FBAS confirms a statement a if and only if every element in U_a broadcasts that it has accepted a. A node confirms a if and only if it is in such a quorum.

Theorem 1.4.3. Ratifying is stronger than confirming, and confirming is stronger than accepting.

Proof. Let $\langle V, Q \rangle$ and $v \in V$ be given. Suppose that v ratifies a statement a. Then there exists a quorum U such that $v \in U$ and every member in U votes for a. For any $u \in U$,

- u has never accepted a statement contradicting a by the definition of voting (Definition 1.3.1), and
- U is a quorum such that $u \in U$ and every member of U voted for a.

Therefore, u accepts a. In other words, every member of U accepts a. U confirms a and thus v confirms a. Thus ratifying is stronger than confirming.

The definition of confirming (Definition 1.4.2) shows that a node must first accept a statement before confirming. Therefore, confirming is stronger than accepting. \Box

FIGURE 2. Lemma 1.4.4

Lemma 1.4.4. Let $\langle V, Q \rangle$ be an FBAS with quorum intersection. Let B denote the set of befouled nodes. Let U be a quorum containing an intact node, and let S be a set containing U. Let S^+ be the set of intact nodes in S, and let S^- be the set of intact nodes not in S. Either $S^- = \emptyset$, or $\exists v \in S^-$ such that S^+ is v-blocking. (See Figure 2.)

Proof. Note that $S^+ = S \setminus B$ and $S^- = (V \setminus S) \setminus B = (V \setminus B) \setminus S^+$. If $\exists v \in S^-$ such that S^+ is v-blocking, then we are done.

Suppose that $\forall v \in S^-, S^+$ is not v-blocking in $\langle V, Q \rangle$. We want to show that $S^- = \emptyset$.

- S^+ and S^- form a partition of $V \setminus B$,
- S^+ is not v-blocking in $\langle V, Q \rangle$ for any arbitrary $v \in S^-$,

By Theorem 1.1.22, S^+ is not v-blocking in $\langle V, Q \rangle^B$ for any $v \in S^-$. Since $S^- = (V \setminus B) \setminus S^+$, S^+ is not v-blocking in $\langle V, Q \rangle^B$ for any $v \in (V \setminus B) \setminus S^+$. By applying Theorem 1.1.23 to the FBAS $\langle V, Q \rangle^B$ and subset S^+ , $\langle V, Q \rangle^B$ enjoys quorum availability despite S^+ .

By the definition of quorum availability(Definition 1.1.16), $(V \setminus B) \setminus S^+$ is a quorum in $\langle V, Q \rangle^B$, or $V \setminus B = S^+$. Suppose $(V \setminus B) \setminus S^+$ is a quorum in $\langle V, Q \rangle^B$. This leads to two contradictory claims:

- Claim 1: $\langle V, Q \rangle$ enjoys quorum intersection despite B.
 - Since $\langle V, Q \rangle$ enjoys quorum intersection, B is a DSet by Theorem 1.2.7. By the definition of a DSet(Definition 1.2.1), $\langle V, Q \rangle^B$ enjoys quorum intersection.
- Claim 2: $\langle V, Q \rangle$ does not enjoy quorum intersection despite B.
 - $-U \setminus B$ is nonempty since U contains an intact node. Thus $U \setminus B$ is a quorum in $\langle V, Q \rangle^B$ by Theorem 1.1.12. We also assumed that $(V \setminus B) \setminus S^+$ is a quorum in $\langle V, Q \rangle^B$.

$$(U \setminus B) \cap ((V \setminus B) \setminus S^{+}) = (U \setminus B) \cap S^{-}$$

$$\subset (S \setminus B) \cap S^{-}$$

$$\subset S^{+} \cap S^{-}$$

$$= \emptyset.$$

Therefore, $\langle V, Q \rangle^B$ does not enjoy quorum intersection.

Therefore, $(V \setminus B) \setminus S^+$ must not be a quorum in $\langle V, Q \rangle^B$, so $V \setminus B$ must be S^+ . In other words, S^+ contains all the intact nodes, so $S^- = \emptyset$, which is exactly what we wanted to show.

Theorem 1.4.5. If an intact node in an FBAS $\langle V, Q \rangle$ with quorum intersection confirms a statement a, then every intact node will accept and confirm a once sufficient messages are delivered.

Proof. Let B denote the set of befouled nodes. When an intact node confirms a, some quorum containing such an intact node confirms a. In other words, there exists a quorum $U \not\subset B$ such that every node in U broadcast that it accepted a. Some nodes may decide to accept a upon hearing that nodes in U broadcast that it accepted a. This may, in turn, make more nodes accept a. Thus we may experience a gradual increase in the number of nodes that accept a over time. Since V only contains finitely many nodes, there will be a point at which the number of nodes that accept a stops increasing. Let S be the set of nodes that accept a at that point. We claim that S contains all intact nodes.

- \bullet *U* is a quorum containing an intact node.
- $U \subset S \subset V$ because every node in U accepted a in the beginning.
- Let $S^+ = S \setminus B$ be the set of intact nodes in S, and let $S^- = (V \setminus S) \setminus B$ be the set of intact nodes not in S.

By Lemma 1.4.4, S^- is empty, or S^+ is v-blocking for some $v \in S^-$. Suppose S^- is nonempty. Then v accepts a because S^+ is v-blocking and every element of S^+ broadcast that it has accepted a. This is a contradiction because we assumed that the number of nodes that accept a stopped increasing. Therefore, S^- must be empty. If S^- is empty, then that

implies that every intact node accepted and confirmed a assuming sufficient messages are delivered because

- Since S^- is empty, S^+ contains all intact nodes in V. $S^+ \subset S$, so S contains all intact nodes. Since every node in S accepted a, every intact node accepted a.
- Since $\langle V, Q \rangle$ enjoys quorum intersection, B is a DSet by Theorem 1.2.7. By the definition of a DSet, $V \setminus B$ is a quorum. In other words, the set of all intact nodes is a quorum.
- Since $V \setminus B$ is a quorum in which every node accepted a, every intact node confirmed a.

2. Stellar Consensus Protocol

2.1. **Nomination Protocol.** Nomination is done through voting, accepting, and confirming a special type of statement in the form of *nominate* x.

Definition 2.1.1 (Nominate). A node v is said to nominate a value x if and only if it votes for the statement *nominate* x.

Definition 2.1.2 (Candidate). A node v considers a value x to be a candidate if and only if v has confirmed the statement *nominate* x. Alternatively, we say that a node v has a candidate value x.

Definition 2.1.3 (Weight, Neighbors, and Priority). Let H be a cryptographic hash function whose range can be interpreted as a set of integers $\{0, \dots, h_{\text{max}} - 1\}$. Let $G_i(m) = H(i, x_{i-1}, m)$ be a slot-specific hash function for slot i, where x_{i-1} is the value chosen for the slot preceding i. Let N, P are arbitrary constants. Given a slot i, a round number n and node v, we define

$$\begin{aligned} \text{weight}(v, v') &= \frac{|\{q \in Q(v) \mid v' \in q\}|}{|Q(v)|} \\ \text{neighbors}(v, n) &= \{v' \mid G_i(N, n, v') < h_{\text{max}} \cdot \text{weight}(v, v')\} \\ \text{priority}(n, v') &= G_i(P, n, v') \end{aligned}$$

Remark 2.1.4. In Stellar Core, N and P are always 1 and 2.

Example 2.1.5 (Weight, Neighbors, and Priority(Part 1)).

proofread!

We will calculate the weight, neighbors, and priority for v_5 in Figure 1 as an example. Since each quorum slice consists of v_5 along with two nodes from $\{v_1, v_2, v_3, v_4\}$ as in

$$Q(v_5) = \{\{v_1, v_2, v_5\}, \{v_1, v_3, v_5\}, \{v_1, v_4, v_5\}, \cdots, \{v_3, v_4, v_5\}\},\$$

 $Q(v_5)$ has $\binom{4}{2} = 6$ slices.

We will first calculate the weight of v_1 .

weight
$$(v_5, v_1) = \frac{|\{q \in Q(v_5) \mid v_1 \in q\}|}{|Q(v_5)|}$$

= $\frac{|\{v_1, v_2, v_5\}, \{v_1, v_3, v_5\}, \{v_1, v_4, v_5\}|}{6}$
= $\frac{3}{6} = \frac{1}{2}$.

By symmetry, weight $(v_5, v_j) = \frac{1}{2}$ for each j = 1, 2, 3, 4. weight $(v_5, v_5) = 1$ because every quorum slice in $Q(v_5)$ contains v_5 . Finally, weight $(v_5, v_j) = 0$ for all j = 6, 7, 8, 9, 10 because no quorum slice in $Q(v_5)$ contains any of v_6, v_7, \dots, v_{10} . Therefore, we obtain the following table:

j	weight (v_5, v_j)							
1, 2, 3, 4	1/2							
5	1							
6, 7, 8, 9, 10	0							
17								

For this example, we will suppose that $h_{max} = 100$. Let N, P, i, n be fixed. Then we will calculate the neighbors. First, we will start with v_1, v_2, v_3, v_4 .

Suppose

$$G_i(N, n, v_1) = 41$$

 $G_i(N, n, v_2) = 72$
 $G_i(N, n, v_3) = 19$
 $G_i(N, n, v_4) = 84$.

The condition for a node v' to be in neighbors (v_5, n) is $G_i(N, n, v') < 100 \cdot \text{weight}(v_5, v')$. Therefore, $v_1, v_3 \in \text{neighbors}(v_5, n)$. (e.g., $G_i(N, n, v_1) = 41 < 50 = 100 \cdot 1/2 = 100 \cdot \text{weight}(v_5, v_1)$.)

Moreover, $v_5 \in \text{neighbors}(v_5, n)$ since weight $(v_5, v_5) = 1$. Finally, $v_j \in \text{neighbors}(v_5, n)$ for each $j = 6, 7, \dots, 10$ because weight $(v_5, v_j) = 0$.

Therefore, we have

neighbors
$$(v_5, n) = \{v_1, v_3, v_5\}.$$

This is a reasonable choice of neighbors because

- v_5 trusts v_1, \dots, v_4 , so it is a good thing that we have v_1, v_3 in neighbors (v_5, n) .
- v_5 trusts v_5 .
- Since v_5 does not trust v_6, \dots, v_{10}, v_5 has no quorum slice containing any of them. Thus it is a good thing that neighbors (v_5, n) does not contain any of them.

Finally, suppose

priority
$$(n, v_1) = G_i(P, n, v_1) = 17$$

priority $(n, v_3) = G_i(P, n, v_3) = 86$
priority $(n, v_5) = G_i(P, n, v_5) = 25$.

Then v_5 will simply nominate the same value as v_3 .

Remark 2.1.6.

- weight is not symmetric in general. In other words, weight $(v_i, v_j) \neq \text{weight}(v_j, v_i)$ in general.
- neighbors(v_i) is a set of nodes calculated locally at each v_i . In general, neighbors(v_i) \neq neighbors(v_i) for any $i \neq j$.
- priority(n, v) is global in a sense that the values of priority(n, v) calculated at node w and w' must be identical for it only depends on n, the hash function G_i and the constant P.

Example 2.1.7 (Weight, Neighbors, and Priority(Part 2)). We will again use the FBAS in Figure 1 as an example. Suppose that priority $(n, v_j) = G_i(P, n, v_j)$ for each j is as follows:

j	1	2	3	4	5	6	7	8	9	10
priority (n, v_j)	26	3	60	89	18	56	35	19	61	27

Moreover, suppose that each node's neighbors is as follows:

j	neighbors (v_j)
1	$\{v_1, v_3\}$
2	$\{v_2, v_4\}$
3	$\{v_2, v_3, v_4\}$
4	$\{v_1, v_2, v_4\}$
5	$\{v_2, v_5\}$
6	$\{v_1, v_3, v_6\}$
7	$\{v_1, v_2, v_3, v_7\}$
8	$\{v_3, v_8\}$
9	$\{v_6, v_7, v_8, v_9\}$
10	$\{v_{10}\}$

Then each node's leader (the node whose nominations it will renominate) will be as follows:

j	1	2	3	4	5	6	7	8	9	10
v_j 's leader	v_3	v_4	v_4	v_4	v_5	v_3	v_3	v_3	v_9	v_{10}

FIGURE 3. Leader Relation Graph

As you can see, this is a directed graph such that the only cycles are self-loops. In this particular case, v_4, v_9, v_{10}, v_5 will produce new values, and other nodes will simply renominate those values.

2.2. Ballot Protocol.