

Recurrent Neural Networks (RNNs)

Long Short-Term Memory (LSTM)

What's for dinner?

What's for dinner?

A vector is a list of values

67 temperature Low 43 temperature "High is 67 F. Low is 43 F. Wind is 13 mph. Wind speed .25 inches of rain. 13 Relative humidity is 83%." Precipitation .25 Humidity .83

High

Weather vector 67 43 13 .25 .83

A vector is a list of values

A vector is a list of values

predictions for yesterday

prediction for today

dinner yesterday

Unrolled predictions

Write a children's book

Doug saw Jane.

Jane saw Spot.

Spot saw Doug.

•••

Your dictionary is small: {Doug, Jane, Spot, saw, .}

recurren t neural network

Hyperbolic tangent (tanh) squashing function

No matter what you start with, the answer stays between -1 and 1.

recurrent neural network

Mistakes an RNN can make

Doug saw Doug.

Jane saw Spot saw Doug saw ...

Spot. Doug. Jane.

recurrent neural network

Plus junction: element-by-element addition (+-)

Times junction: element-by-element multiplication

Gating

Logistic (sigmoid) squashing function

No matter what you start with, the answer stays between 0 and 1.

long prediction short-term selection memory collected possibilities forgetting memory filtered possibilities ignoring possibilities Jane saw Spot. Doug ...

Sequential patterns

Text

Speech

Audio

Video

Physical processes

Anything embedded in time (almost everything)

Traditional LSTM with forget gates. [2][3]

 $f_t = \sigma_q(W_f x_t + U_f h_{t-1} + b_f)$

Initial values: $c_0 = 0$ and $h_0 = 0$. The operator \circ denotes the Hadamard product (entry-wise product).

$$egin{aligned} j_t &= \sigma_g(W_f x_t + C_f n_{t-1} + c_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \end{aligned}$$

 $h_t = o_t \circ \sigma_h(c_t)$

Variables

x_t: input vector

h_t: output vector

c_t: cell state vector

• W, U and b: parameter matrices and vector

• f_t , i_t and o_t : gate vectors

• f_t : Forget gate vector. Weight of remembering old information.

• i_t : Input gate vector. Weight of acquiring new information.

o_t: Output gate vector. Output candidate.

Activation functions

- - σ_q : The original is a sigmoid function.
 - σ_c : The original is a hyperbolic tangent. • σ_h : The original is a hyperbolic tangent, but the peephole LSTM paper suggests $\sigma_h(x) = x$. [18][19]