



# IEEE-754 Rounding rules

- Directed Rounding
  - Round towards 0: also known as truncation
  - Round towards +infinity: also known as rounding up or ceiling
  - Round towards –infinity: also known as round down or floor
- Rounding to nearest
  - Round to nearest, ties to even
  - Round to nearest, ties away from zero



#### Round to nearest, ties to even

- Rounds to the nearest value
- If the number falls midway it is rounded to the nearest value with an even (zero) least significant bit
- Default for binary, recommended default for decimal
- +23.5 = ?; +24.5 = ?
- -23.5 = ?; -24.5 = ?
- Also known as banker's rounding, unbiased rounding, convergent rounding, statistician's rounding, Dutch rounding, Gaussian rounding, odd-even rounding, broken rounding



#### Round to nearest, ties away from zero

- Rounds to the nearest value
- If the number falls midway it is rounded to the nearest value above (for positive numbers) or below (for negative numbers)
- +23.5 = ?; +24.5 = ?
- **◆** -23.5 = ?; -24.5 = ?
- Also known as round half way from zero or round half way towards infinity



# IEEE-754 Rounding rules Example (to 2 significant digits)

| Number | Round<br>down | Round up | Truncate | Round to nearest ties away from zero | Round to nearest ties to even |
|--------|---------------|----------|----------|--------------------------------------|-------------------------------|
| +23.67 | +23           | +24      | +23      | +24                                  | +24                           |
| +23.35 | +23           | +24      | +23      | +23                                  | +23                           |
| -23.35 | -24           | -23      | -23      | -23                                  | -23                           |
| -23.67 | -24           | -23      | -23      | -24                                  | -24                           |
| +11.50 | +11           | +12      | +11      | +12                                  | +12                           |
| +12.50 | +12           | +13      | +12      | +13                                  | +12                           |
| -11.50 | -12           | -11      | -11      | -12                                  | -12                           |
| -12.50 | -13           | -12      | -12      | -13                                  | -12                           |

Prof RLUy, DLSU-CCS



# IEEE-754 Rounding rules Example (to 7 significant digits)

| Number               | Round<br>down | Round up  | Truncate  | Round to<br>nearest<br>ties away<br>from zero | Round to<br>nearest<br>ties to even |
|----------------------|---------------|-----------|-----------|-----------------------------------------------|-------------------------------------|
| +0.100101 <i>110</i> | +0.100101     | +0.100110 | +0.100101 | +0.100110                                     | +0.100110                           |
| +0.100101010         | +0.100101     | +0.100110 | +0.100101 | +0.100101                                     | +0.100101                           |
| -0.001111 <i>110</i> | -0.010000     | -0.001111 | -0.001111 | -0.010000                                     | -0.010000                           |
| -0.001111 <i>001</i> | -0.010000     | -0.001111 | -0.001111 | -0.001111                                     | -0.001111                           |





Floating Point Addition Algorithm

**Floating-point addition.** The normal path is to execute steps 3 and 4 once, but if rounding causes the sum to be unnormalized, we must repeat step 3.

Prof RLUy, DLSU-CCS



- Consider a 4-digit decimal example
  - $\triangleright$  9.999 × 10<sup>1</sup> + 1.610 × 10<sup>-1</sup>
- 1. Align decimal points
  - > Shift number with smaller exponent
  - $\triangleright$  9.999 × 10<sup>1</sup> + 0.016 × 10<sup>1</sup>
- 2. Add significands
  - $\triangleright$  9.999 × 10<sup>1</sup> + 0.016 × 10<sup>1</sup> = 10.015 × 10<sup>1</sup>
- 3. Normalize result & check for over/underflow
  - $> 1.0015 \times 10^2$
- 4. Round and renormalize if necessary
  - $> 1.002 \times 10^2$



- Now consider a 4-digit binary example
  - $\triangleright 1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
  - > Shift number with smaller exponent
  - $\triangleright 1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands

$$ightharpoonup 1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$$

- 3. Normalize result & check for over/underflow
  - $\geq$  1.000<sub>2</sub> × 2<sup>-4</sup>, with no over/underflow
- 4. Round and renormalize if necessary
  - $> 1.000_2 \times 2^{-4} \text{ (no change)} = 0.0625$

Prof RLUy, DLSU-CCS



- Consider a 7-digit decimal example
  - **>** 123456.7 + 101.7654
- 1. Align decimal points
  - > Shift number with smaller exponent
  - $\triangleright$  1.234567 x 10<sup>5</sup> + 0.001017654 x 10<sup>5</sup>
- 2. Add significands
  - $\gt$  1.234567 x 10<sup>5</sup> + 0.001018 x 10<sup>5</sup> = 1.235585 × 10<sup>5</sup>
- 3. Normalize result & check for over/underflow
  - $> 1.235585 \times 10^5 \text{ (same)}$
- 4. Round and renormalize if necessary
  - $> 1.235585 \times 10^5 \text{ (same)}$



- Consider a 7-digit decimal example
  - $\triangleright$  1.234567 x 10<sup>5</sup> + 9.876543 x 10<sup>-3</sup>
- 1. Align decimal points
  - > Shift number with smaller exponent
  - $\triangleright$  1.234567 x 10<sup>5</sup> + 0.00000009876543 x 10<sup>5</sup>
- 2. Add significands
  - $\gt$  1.234567 x 10<sup>5</sup> + 0.00000000 x 10<sup>5</sup> = 1.234567 × 10<sup>5</sup>
- 3. Normalize result & check for over/underflow
  - $> 1.234567 \times 10^5 \text{ (same)}$
- 4. Round and renormalize if necessary
  - $> 1.234567 \times 10^5 \text{ (same)}$



# Floating-Point Subtraction

- Consider a 7-digit decimal example
  - **>** 123457.1467 123456.659
- 1. Align decimal points
  - > Shift number with smaller exponent
  - $\triangleright$  1.234571467 x 10<sup>5</sup> 1.23456659 x 10<sup>5</sup>
- 2. Add significands
  - $\gt$  1.234571 x 10<sup>5</sup> + 1.234567 x 10<sup>5</sup> = 0.000004 × 10<sup>5</sup>
- 3. Normalize result & check for over/underflow
  - $> 4.000000 \times 10^{-1}$
- 4. Round and renormalize if necessary
  - $> 4.000000 \times 10^{-1} \text{ (same)}$





Floating Point Multiplication Algorithm

The normal path is to execute steps 3 and 4 once, but if rounding causes the sum to be unnormalized, we must repeat step 3.

Prof RLUy, DLSU-CCS



# Floating-Point Multiplication

- Consider a 4-digit decimal example
  - ightharpoonup 1.110 × 10<sup>10</sup> × 9.200 × 10<sup>-5</sup>
- ➤ 1. Add exponents
  - > For biased exponents, subtract bias from sum
  - $\triangleright$  New exponent = 10 + -5 = 5
- > 2. Multiply significands
  - $\rightarrow$  1.110 × 9.200 = 10.212  $\Rightarrow$  10.212 × 10<sup>5</sup>
- > 3. Normalize result & check for over/underflow
  - $> 1.0212 \times 10^6$
- ➤ 4. Round and renormalize if necessary
  - $> 1.021 \times 10^6$
- > 5. Determine sign of result from signs of operands
  - $\rightarrow$  +1.021 × 10<sup>6</sup>



# Floating-Point Multiplication

- Now consider a 4-digit binary example
  - $\rightarrow$  1.000<sub>2</sub> × 2<sup>-1</sup> × -1.110<sub>2</sub> × 2<sup>-2</sup> (0.5 × -0.4375)
- ➤ 1. Add exponents
  - $\triangleright$  Unbiased: -1 + -2 = -3
  - ightharpoonup Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- ➤ 2. Multiply significands
  - $\rightarrow 1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- > 3. Normalize result & check for over/underflow
  - $ightharpoonup 1.110_2 imes 2^{-3}$  (no change) with no over/underflow
- ➤ 4. Round and renormalize if necessary
  - $> 1.110_2 \times 2^{-3}$  (no change)
- $\triangleright$  5. Determine sign: +operand  $\times$  -operand  $\Rightarrow$  -operand
  - $\rightarrow$  -1.110<sub>2</sub> × 2<sup>-3</sup> = -0.21875

Prof RLUy, DLSU-CCS



# Floating-Point Multiplication

- Consider a 7-digit decimal example
  - $\rightarrow$  4.734612 × 10<sup>3</sup> × 5.417242 × 10<sup>5</sup>
- ➤ 1. Add exponents
  - > For biased exponents, subtract bias from sum
  - $\triangleright$  New exponent = 3 + 5 = 8
- > 2. Multiply significands
  - $\rightarrow$  4.734612  $\times$  5.417242 = 25.64853898104  $\Rightarrow$  25.64853898104  $\times$  10<sup>8</sup>
- > 3. Normalize result & check for over/underflow
  - $\triangleright$  2.564853898104  $\times$  10<sup>9</sup>
- ➤ 4. Round and renormalize if necessary
  - $\triangleright$  2.564854 × 10<sup>9</sup>
- > 5. Determine sign of result from signs of operands
  - $> +2.564854 \times 10^9$



# Guard, Round & Sticky Bits

- Guard bit the first of the two extra bits kept on the right during intermediate calculations of floating point numbers; used to improve rounding accuracy.
- Round bit the second of the two extra bits kept on the right during intermediate calculations of floating point numbers; used to improve rounding accuracy.
- Sticky bit bit used in rounding in addition to guard and round bit that is set whenever there are nonzero bits to the right of the round bit.



## Rounding with Guard & Round Bit

- Consider a 7-digit decimal example
  - **>** 123457.1467 123456.659
- 1. Align decimal points
  - > Shift number with smaller exponent
  - $\triangleright$  1.234571467 x 10<sup>5</sup> 1.23456659 x 10<sup>5</sup>
- 2. Add significands (with guard bit and round bit)
  - $\triangleright$  1.23457146 x 10<sup>5</sup> + 1.23456659 x 10<sup>5</sup> = 0.00000487 × 10<sup>5</sup>
- 3. Normalize result & check for over/underflow
  - $> 4.87 \times 10^{-1}$
- 4. Round and renormalize if necessary
  - $\triangleright$  4.87 × 10<sup>-1</sup> (same) vs. [compare to 4.000000 × 10<sup>-1</sup> without guard & round bit]

Prof RLUy, DLSU-CCS



## Rounding with Guard & Round Bit

- Consider a 3-digit decimal example
  - $\triangleright 2.56 \times 10^0 + 2.34 \times 10^2$
- 1. Align decimal points
  - > Shift number with smaller exponent
  - $\triangleright 0.0256 \times 10^2 + 2.34 \times 10^2$
- 2. Add significands (with guard bit and round bit)
  - $> 0.0256 \times 10^2 + 2.3400 \times 10^2 = 2.3656 \times 10^2$
- 3. Normalize result & check for over/underflow
  - $> 2.3656 \times 10^2 \text{ (same)}$
- 4. Round and renormalize if necessary
  - $> 2.37 \times 10^2$



### Rounding without Guard & Round Bit

- Consider a 3-digit decimal example
  - $\triangleright 2.56 \times 10^0 + 2.34 \times 10^2$
- 1. Align decimal points
  - > Shift number with smaller exponent
  - $> 0.0256 \times 10^2 + 2.34 \times 10^2$
- 2. Add significands
  - $\triangleright 0.02 \times 10^2 + 2.34 \times 10^2 = 2.36 \times 10^2$
- 3. Normalize result & check for over/underflow
  - $\triangleright$  2.36 × 10<sup>2</sup> (same)
- 4. Round and renormalize if necessary
  - $\triangleright$  2.36 × 10<sup>2</sup> (same)



#### Rounding with Guard, Round & Sticky Bit

- Consider a 3-digit decimal example
  - $\gt 5.01 \times 10^{-1} + 2.34 \times 10^{2}$
- 1. Align decimal points
  - > Shift number with smaller exponent
  - $\triangleright 0.00501 \times 10^2 + 2.34 \times 10^2$
- 2. Add significands (with guard bit, round bit and sticky bit = 1 since there is non-zero after round bit)
  - $> 0.0050 \times 10^2 + 2.3400 \times 10^2 = 2.3450 \times 10^2$
- 3. Normalize result & check for over/underflow
  - $> 2.3450 \times 10^2 \text{ (same)}$
- 4. Round and renormalize if necessary
  - $\triangleright$  2.35 × 10<sup>2</sup> (since sticky bit is 1)
  - > [ If no sticky bit, it will be 2.34x 10<sup>2</sup>]

Prof RLUy, DLSU- Computer Organization CCS



# ULP (unit in the last place)

- Multiple definitions (Kahan 2004, Goldberg 1991, Harrison 1999, Markstein 2000, Overton 2001)
- Basically: gap between the two floating point numbers nearest x, even if x is one of them
- Also: the number of bits in error in the least significant bits of the significand between the actual number and the number that can be represented



# ULP (unit in the last place)

#### Example:

A = 011110001

B = 0111111010

ULP = 4

X = 2.3656

Y = 2.3700

ULP = 44

X = 2.3600

Y = 2.3700

ULP = 1

Prof RLUy, DLSU-CCS



- There are five exception handling for IEEE-754
- Invalid Operations
  - Square root of a negative number
  - Returns qNaN by default
- Division by Zero
  - Operation on **finite** operands gives an exact infinite result (e.g., 1/0 or log(0))
  - Returns +/- infinity by default
- Overflow
  - Result is too large to be represented correctly
- Returns +/- infinity by default
   Prof RLUy, DLSU- Computer Organization
   CCS



#### Underflow

- A result is very small, outside the normal range, and is inexact
- Returns a de-normalize value by default

#### Inexact

- Example: 1/3
- Returns correctly rounded result by default



- $0/0 \rightarrow NaN$
- $1/0 \rightarrow +infinity$
- $-1/0 \rightarrow -infinity$
- infinity  $+0 \rightarrow$  infinity
- infinity  $0 \rightarrow$  infinity
- infinity \*  $0 \rightarrow \text{NaN}$
- Infinity  $/ 0 \rightarrow$  Infinity
- $0 / \text{infinity} \rightarrow 0$
- Nan +-\*/0  $\rightarrow$  NaN
- $log(-N) \rightarrow NaN$
- $0^{-n} \rightarrow \text{infinity}$

infinity+infinity → infinity infinity-infinity → NaN\* infinity\*infinity → infinity infinity/infinity → NaN  $NaN + - * / NaN \rightarrow NaN$ infinity +-\*/ NaN → NaN NaN +-\*/ infinity → NaN  $sqrt(-1) \rightarrow NaN$  $\log(0) \rightarrow -infinity$ 

\*infinity sign should agree else infinity

Prof RLUy, DLSU-CCS



- Additional two exception handling for decimal floating-point operation
- Clamped
  - Result's exponent too large for the destination format
  - By default, trailing zeroes will be added to reduce the exponent value but if not possible **overflow** occurs
- Rounded
  - Result's coefficient requires more digits than the destination format
  - Inexact is signaled if any non-zero digits are discarded