

Acyklické digrafy

Stanislav Palúch

Fakulta riadenia a informatiky, Žilinská univerzita

1. apríla 2011

Acyklický digraf, orientovaný strom

Definícia

Acyklický digraf je taký digraf, ktorý neobsahuje orientovaný cyklus.

Definícia

Orientovaný strom je neorientovane súvislý digraf, ktorý neobsahuje polocyklus.

Poznámka

Ak $\overrightarrow{G} = (V, H)$ je acyklický digraf, potom nemôže obsahovať hrany (u, v) a (v, u) súčasne, lebo by v tomto prípade obsahoval i cyklus (u, (u, v), v, (v, u), u).

Poznámka

(u,(u,v),v,(u,v),u) nie je polocyklus, lebo obsahuje tú istú orientovanú hranu (u,v) dvakrát.

Vlastnosti orientovaných stromov

Veta

Nasledujúce tvrdenia sú ekvivalentné:

- a) Digraf $\overrightarrow{G} = (V, H)$ je orientovaný strom.
- b) V digrafe $\overrightarrow{G} = (V, H)$ existuje pre každé $u, v \in V$ jediná u–v polocesta.
- c) Digraf $\overrightarrow{G} = (V, H)$ je neorientovane súvislý a každá orientovaná hrana množiny H je mostom.
 - (Mostom v orientovanom digrafe rozumieme takú orientovanú hranu, po vybratí ktorej stúpne počet komponentov digrafu).
- **d)** Digraf $\overrightarrow{G} = (V, H)$ je neorientovane súvislý a |H| = |V| 1.
- e) V digrafe $\overrightarrow{G} = (V, H)$ platí |H| = |V| 1 a \overrightarrow{G} neobsahuje polocyklus.

Monotónne očíslovanie vrcholov acyklického digrafu

Definícia

Očíslovanie vrcholov v_1, v_2, \ldots, v_n acyklického digrafu $\overrightarrow{G} = (V, H)$, pre ktoré platí:

$$ak(v_i, v_k) \in H$$
, potom $i < k$,

nazveme monotónnym očíslovaním vrcholov acyklického digrafu.

Monotónne očíslovanie vrcholov acyklického digrafu

Algoritmus

Algoritmus I. na monotónne očíslovanie acyklického digrafu $\overrightarrow{G} = (V, H)$.

- Krok 1. Polož i := 1.
- Krok 2.

Vezmi taký vrchol $v \in V$, že ideg(v) = 0 a polož $v_i := v$.

• Krok 3. $Ak\ V - \{v\} = \emptyset$ STOP, $inak\ \overrightarrow{G} := \overrightarrow{G} - \{v\}, \ i := i + 1 \ a \ Goto \ Krok \ 2.$

Monotónne očíslovanie vrcholov acyklického digrafu

Algoritmus

Algoritmus II. na monotónne očíslovanie vrcholov acyklického digrafu $\overrightarrow{G} = (V, H)$.

• Krok 1. Pre každé $v \in V$ priraď značku d(v) := ideg(v). Urči podmnožinu V_0 vrcholovej množiny V s nulovou značkou d, t. j.

$$V_0 = \{ v \mid v \in V, \ d(v) = 0 \}.$$

Polož $k := |V_0|$ a prvky z množiny V_0 zoraď do ľubovoľnej postupnosti $\mathcal{P} = v_1, v_2, \dots, v_k$. Polož i := 1.

- Krok 2. Postupne pre každý vrchol w výstupnej hviezdy vrchola v_i taký, že $w \neq v_i$, urob: d(w) := d(w) 1. Ak d(w) = 0 potom zaraď vrchol w na koniec postupnosti \mathcal{P} , t. j. polož k := k + 1, $v_k := w$.
- Krok 3. Ak | k = n = |V| STOP, inak polož i := i + 1 a GOTO Krok 2.

Algoritmus na hľadanie najkratších orientovaných u-v ciest

z pevného vrchola $u \in V$ do všetkých dosiahnuteľných vrcholov $v \in V$ v hranovo ohodnotenom acyklickom digrafe $\overrightarrow{G} = (V, H, c)$ s všeobecnou cenou hrany c(h).

- Krok 1. Monotónne očísluj vrcholy digrafu \overrightarrow{G} , nech $\mathcal{P} = v_1, v_2, \ldots, v_n$ je postupnosť vrcholov digrafu \overrightarrow{G} zoradená podľa monotónneho očíslovania. Zisti index vrchola u v postupnosti \mathcal{P} . Nech i je index taký, že $u = v_i$.
- **Krok 2.** Pre každý vrchol $v \in V$ priraď značky t(v), x(v). Polož t(u) := 0, $t(j) := \infty$ pre všetky $j \neq u$, $j \in V$.

Polož x(j) := 0 pre všetky $j \in V$.

• Krok 3. Pre všetky vrcholy w výstupnej hviezdy vrchola v_i také, že $w \neq v_i$, urob: Ak $t(w) > t(v_i) + c(v_i, w)$,

potom
$$t(w) = t(v_i) + c(v_i, w), \ a \times (w) := v_i.$$

• **Krok 4.** i := i + 1. Ak i = n STOP, inak GOTO Krok 3.

T Definícia

Nech $\overrightarrow{G}=(V,H,c)$ je hranovo ohodnotený digraf, $u\in V$, $v\in V$. Najdlhšia orientovaná u–v cesta v digrafe $\overrightarrow{G}=(V,H,c)$ je tá orientovaná u–v cesta, ktorá má zo všetkých u–v ciest najväčšiu dĺžku. Analogicky definujeme najdlhšiu cestu v hranovo ohodnotenom grafe G=(V,H,c).

Poznámka

- Úloha hľadania najkratšej cesty v hranovo ohodnotenom digrafe
 G = (V, H, c), v ktorom je c(h) ≥ 0 pre ∀h ∈ H, je polynomiálne riešiteľná
- Úloha hľadania najkratšej cesty v hranovo ohodnotenom digrafe
 G = (V, H, c), v ktorom cena hrany môže nadobúdať aj záporné hodnoty je vo všeobocnosti ťažká nemáme pre ňu polynomiálny algoritmus.
- Úloha hľadania najdlhšej cesty v digrafe $\overrightarrow{G} = (V, H, c)$ môže byť prevedená na úlohu hľadania nakratšej cesty v digrafe $\overrightarrow{G} = (V, H, \overline{c})$, kde $\overline{c}(h) = -c(h)$. Vo všeobecnom prípade je to ťažká úloha.

Projekt – Metódy časového plánovania

- Projekt sa skladá z elementárnych činností
- Elementárna činnosť je činnosť, ktorú z prijatého rozlišovacieho hľadiska považujeme za nedeliteľnú.
- Pre každú elementárnu činnosť je daný čas vykonávania, ktorý je nemenný. Jednotlivé elementárne činnosti však môžu mať vo všeobecnosti rôzne časy vykonávania.
- Niektoré elementárne činnosti sa môžu vykonávať súčasne, avšak niektoré činnosti môžu začať až po ukončení iných činností.

Definícia

Budeme hovoriť, že činnosť A **predchádza** činnosti B a písať $A \prec B$, ak sa činnosť B môže začať vykonávať až po skončení vykonávania činnosti A.

Ak $A \prec B$, budeme tiež hovoriť že činnosť A je **predchodca** činnosti B alebo činnosť B je **následník** činnosti A.

Vzťah $A \prec B$ je binárnou reláciou na množine všetkých elementárnych činností.

Budeme ju volať precedenčná relácia alebo relácia precedencie.

Poznámka

Relácia precedencie \prec je **tranzitívna**, t. j. platí:

$$Ak A \prec B, B \prec C, potom aj A \prec C.$$

Ak elementárna činnosť B musí čakať na skončenie činnosti A a činnosť C musí čakať na skončenie činnosti B, tým skôr musí činnosť C čakať na ukončenie činnosti A.

Relácia precedencie \prec je **antireflexívna**, t. j.: Pre žiadne $A \in \mathcal{E}$ neplatí $A \prec A$.

V opačnom prípade by začiatok činnosti A musel čakať na jej vlastný koniec, čo je technologický nezmysel.

Dôsledok: Z toho ďalej vyplýva, že neexistuje postupnosť činností A_1, A_2, \ldots, A_n taká, že

$$A_1 \prec A_2 \prec \cdots \prec A_n \prec A_1$$

lebo potom by z tranzitivity vyplývalo $A_1 \prec A_1$. Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Acyklické digra

Bezprostredná precedencia. Úloha časového plánovania.

Definícia

Hovoríme, že činnosť A bezprostredne predchádza činnosti B a píšeme $A \prec\!\!\prec B$, ak $A \prec B$ a neexistuje činnosť C taká, že $A \prec C$ a súčasne $C \prec B$.

Ak A ← B budeme tiež hovoriť že činnosť A je **bezprostredný predchodca** činnosti B, alebo činnosť B je **bezprostredný následník** činnosti A.

Definícia

Úloha časového plánovania \mathcal{U} je daná množinou elementárnych činností \mathcal{E} , precedenčnou reláciou \prec na množine \mathcal{E} a reálnou funkciou $p: \mathcal{E} \to \mathbb{R}$ priraďujúcou každej činnosti $A \in \mathcal{E}$ jej trvanie p(A) (p – processing time).

Definícia

Digraf precedencie \prec alebo precedenčný digraf pre príslušnú úlohu $\mathcal U$ časového plánovania je vrcholovo ohodnotený digraf

$$\overrightarrow{\mathbb{G}}_{\prec} = (V, H, p),$$

ktorého množinou vrcholov je množina všetkých elementárnych činností, ohodnotenie p(v)>0 vrchola $v\in V$ je čas spracovania príslušnej elementárnej činnosti a množinou orientovaných hrán je

$$H_{\prec} = \{(A, B) | A, B \in V, A \prec B\}.$$

Definícia

Digraf bezprostrednej precedencie $\prec\!\!\!\prec$ pre príslušnú úlohu $\mathcal U$ časového plánovania je vrcholovo ohodnotený digraf

$$\overrightarrow{\mathbb{G}}_{\prec\!\!\prec}=(V,H_{\prec\!\!\prec},p),$$

ktorého množinou vrcholov je množina všetkých elementárnych činností, ohodnotenie p(v)>0 vrchola $v\in V$ je čas spracovania príslušnej elementárnej činnosti a množinou orientovaných hrán je

$$H_{\prec\!\prec} = \{(A, B) | A, B \in V, A \prec\!\!\prec B\}.$$

Vytvoriť **rozvrh** pre danú úlohu \mathcal{U} časového plánovania znamená každej elementárnej činnosti A priradiť časový interval $\langle b_A, c_A \rangle$, $b_A < c_A$ v ktorom sa bude činnosť A vykonávať.

- b_A začiatok vykonávania činnosti A (b beginning time)
- c_A koniec vykonávania činnosti A (c completion time)

Prípustný rozvrh úlohy $\mathcal U$ je taký rozvrh pre úlohu $\mathcal U$, kde pre ľubovoľné elementárne činnosti $A,\ B$ platí:

- 1. $c_A b_A = p(A)$
- 2. ak $A \prec B$, potom $b_A < c_A \le b_B < c_B$

Poznámka

Všimnime si, že na základe vlastnosti 1. prípustného rozvrhu stačí pre každú elementárnu činnosť A určiť jej začiatok b_A , čas ukončenia sa vypočíta ako $c_A = b_A + p(A)$.

Trvanie projektu

- Prípustných rozvrhov pre daný problém časového plánovania je veľa, z nich by sme chceli vybrať optimálny z nejakého hľadiska.
- Veľmi často sa ako kritérium optimality berie C_{\max} čas ukončenia poslednej činnosti, teda

$$C_{\mathsf{max}} = \mathsf{max}\{c_A \mid A \in \mathcal{E}\},\$$

pričom sa predpokladá, že projekt začína v čase 0. Veličinu C_{\max} budeme nazývať **trvanie rozvrhu** (anglicky **makespan**.)

- Základnou otázkou časového plánovania je pre danú úlohu $\mathcal U$ určiť prípustný rozvrh taký, aby príslušné trvanie rozvrhu C_{\max} bolo minimálne.
- Označme T minimum zo všetkým možných trvaní prípustných rozvrhov. Veličinu T budeme nazývať trvanie projektu.

- Začiatok vykonávania projektu stanovíme do času 0.
- Najskôr možný začiatok z(A) elementárnej činnosti A je najmenší (t. j. prvý) časový okamih meraný od začiatku vykonávania projektu, kedy možno začať činnosť pri dodržaní precedenčnej relácie ≺.
- Ak už máme najskôr možný začiatok z(A) pre každú elementárnu činnosť A, trvanie projektu T určíme ako

$$T = \max\{z(A) + p(A) \mid A \in \mathcal{E}\}\$$

- Ak už poznáme hodnotu trvania projektu T, chceme pre každú elementárnu činnosť A poznať najneskôr nutný koniec k(A) činnosti A definovaný ako najväčší (t. j. posledný) časový okamih meraný od od začiatku vykonávania projektu, po ktorý sa ukončenie činnosti A môže oneskoriť bez predĺženia trvania projektu T.
- Časová rezerva R(A) činnosti A je

$$R(A) = k(A) - z(A) - p(A).$$

- Kritická činnosť je taká činnosť A, pre ktorú je R(A) = 0.
- Kritická cesta v digrafe $\overrightarrow{\mathbb{G}}_{\prec\!\!\prec}$ je taká orientovaná cesta, ktorá má maximálny súčet ohodnotení vrcholov.

Poznámka

Dá sa ukázať, že

Algoritmus

Algoritmus II. na určenie najskôr možných začiatkov z(v) elementárnych činností v digrafe $\overrightarrow{\mathbb{G}}_{\prec\!\prec} = (V, H, p)$.

- **Krok 2.** Každému vrcholu $v \in V$ priraď dve značky z(v), x(v). Pre každé $v \in V$ inicializačne polož x(v) := 0, z(v) := 0.
- **Krok 3.** *Postupne pre* k = 1, 2, ..., n 1 *urob:*

Pre všetky také vrcholy w výstupnej hviezdy vrchola v_k , že $w \neq v_k$, urob:

$$Ak^{\prime}z(w) < z(v_k) + p(v_k),$$

 $potom\ z(w) := z(v_k) + p(v_k)\ a\ x(w) := v_k.$

• Krok 4. Vypočítaj trvanie projektu

$$T := \max\{z(w) + p(w) \mid w \in V, \text{ odeg}(w) = 0\}$$

Algoritmus

Algoritmus II. na určenie najneskôr nutných koncov k(v) elementárnych činností v digrafe $\overrightarrow{\mathbb{G}}_{\prec\!\!\prec} = (V, H, p)$.

- Krok 2. Každému vrcholu $v \in V$ priraď dve značky k(v), y(v). Nech T je trvanie projektu. Pre každé $v \in V$ inicializačne polož k(v) := T, y(v) := 0.
- **Krok 3.** *Postupne pre* i = n 1, n 2, ..., 1 *urob*:

Pre všetky vrcholy w výstupnej hviezdy vrchola v_i také, že $w \neq v_i$, urob:

Ak
$$k(v_i) > k(w) - p(w)$$
,
potom $k(v_i) := k(w) - p(w)$ a $y(v_i) := w$.

Klasická interpretácia metódy CPM

Majme úlohu časového plánovania $\mathcal U$ danú množinou elementárnych činností $\mathcal E$, precedenčnou reláciou \prec na množine $\mathcal E$ a reálnou funkciou $c:\mathcal E\to\mathbb R$ priraďujúcou každej činnosti $A\in\mathcal E$ jej trvanie p(A).

Sieťový digraf je neorientovane súvislý acyklický hranovo ohodnotený digraf G = (V, H, p), obsahujúci práve jeden vrchol z, z ktorého sú všetky ostatné vrcholy dosiahnuteľné – **začiatok vykonávania projektu** a práve jeden vrchol k, ktorý je dosiahnuteľný zo všetkých ostatných vrcholov – **koniec vykonávania projektu**.

Hrany sieťového digrafu predstavujú elementárne činnosti – každej úlohe $A \in \mathcal{E}$ pridelená práve jedna hrana ohodnotená dĺžkou spracovania p(A) príslušnej činnosti A.

Vrcholy – predstavujú časové začiatky a konce spracovania elementárnych činností.

Trvanie projektu, kritické činnosti, kritická cesta, časová rezerva

Označme $d_{\text{max}}(x, y)$ dĺžku najdlhšej orientovanej x-y cesty.

Pre každý vrchol i sieťového digrafu vypočítame T_i , t. j. najskôr možný začiatok činností vychádzajúcich z vrchola i, ako

$$T_i = d_{\mathsf{max}}(1, i)$$

a T'_i najneskôr nutný koniec činností vchádzajúcich do vrchola i ako

$$T_i' = T_n - d_{\max}(i, n)$$

Hodnota T trvania projektu je

$$T = T_n$$
.

Každú orientovanú cestu dĺžky trvania projektu T_n v sieťovom digrafe nazveme **kritickou cestou** (kritických ciest môže existovať aj viac).

Činnosti ležiace na niektorej kritickej ceste sa nazývajú kritické činnosti.

Časová rezerva R_i vo vrchole i je $R_i = T'_i - T_i$.

Konštrukcia sieťového digrafu

- $oldsymbol{\mathbb{Q}}$ Zostroj graf bezprostrednej precedencie $\overrightarrow{\mathbb{G}}_{\ll}$.
- lacktriangle Hrany digrafu $\overrightarrow{\mathbb{G}}_{\prec\!\!\prec}$ prehlás za fiktívne činnosti s trvaním 0.
- 3 Pridaj dva vrcholy z = k.
- Pridaj orient. hrany (z, v) pre všetky v také, že ideg(v) = 0. Tieto hrany budú považované za fiktívne činnosti s trvaním 0.
- Tridaj orient. hrany (v), k pre všetky v také, že odeg(v) = 0. Tieto hrany budú považované za fiktívne činnosti s trvaním 0.
- Rozdeľ každý vrchol predstavujúci činnosť na vstupnú a výstupnú časť a pridaj orientovanú hranu vedúcu zo vstupnej do výstupnej časti. Ohodnoť túto hranu trvaním príslušnej činnosti.