UNIVERZA V LJUBLJANI

FAKULTETA ZA MATEMATIKO IN FIZIKO

Poročilo

Vaja 45 - Tuljava v magentnem polju

Luka Orlić

Kazalo

Se	Seznam uporabljenih simbolov		
1	Teoretični uvod	3	
2	Naloga	4	
3	Naloga	4	
4	Potrebščine	4	
5	Skica	4	
6	Meritve	6	
7	Obdelava meritev	6	
8	Analiza rezultatov	10	

Seznam uporabljenih simbolov

Oznaka	Pomen
Δ	TEXT, enota: $UNIT$
В	Magnetno polje , enota: T
p_m	Magnetni dipolni navor , enota: Am^2
N	Število ovojev , enota: /
S	presek, enota: m^2
M	Navor , enota: Nm
I	Tok , enota: A
μ_0	indukcijska konstanta, enota: Vs/Am
ϕ	Kot med tuljavam , enota: deg

1 Teoretični uvod

Magnetni dipolni moment je lastnost mnogih teles. V zunanjem magnetnem polju B na telo z magnetnim dipolnim momentom p_m deluje navor, ki ga izračunamo po enačbi (1). Za tuljavo s presekom S in N ovoji, ter tokom I, velja enačba (2). Smer površinskega vektorja S pove gibanje desnega vijaka, ki ga sukamo v smeri toka. Navor na tuljavo v zunanjem magnetem polju je tako enak enačabi (3). Pri vaji bomo kot vir zunanjega magnetnega polja uporabili par Helmholtzovih tuljav, To je priprava, ki jo sestavljata dve enaki okrogli zaporedno vezani tuljavi (indeks H se uporablja za oznako lastnosti teh tuljav), ki sta nameščeni na isti osi in sta med seboj oddaljeni toliko, kot znaša njuni radij R_H . Kadar skozi njiju teče električni tok I_H v isti smeri, kaže gostota magnetnega polja okoli centra postavitve v smeri osi in je precej homogena. Njeno velikost lahko izpeljemo iz Biot-Savartovega zakoa po enačbi (4), ter je velikost navora enaka enačbi (5), kjer je ϕ kot med vektorjema S in B. Pri vaji bomo z ustreznimi kombinacijami parametrov I, I_H , M skušali ta kot obdržati na $\pi/2$ in določiti indukcijsko konstano μ_0 .

$$M = p_m \times B \tag{1}$$

$$p_m = NIS (2)$$

$$M = NIS \times B \tag{3}$$

$$B = \frac{4}{5}^{\frac{3}{2}} \cdot \frac{\mu_0 N_H I_H}{R_H} \tag{4}$$

$$M = \frac{4}{5}^{\frac{3}{2}} \cdot \frac{\mu_0 N_H I_H}{R_H} \sin \phi \tag{5}$$

2 Naloga

i.) Z uravnovešenjem navora na tuljavo v homogenem magnetnem polju Helmholtzove tuljave določi indukcijsko konstanto.

3 Naloga

- i.) Kako določimo smer magnetnega polja znotraj tuljave, če poznamo smer električnega toka?
- ii.) Kakšno smer ima vektor navora, ki deluje na tuljavo v magnetnem polju?
- iii.) Kako je navor odvisne od kota med smerjo magnetnega polja in osjo tuljave?

4 Potrebščine

- Par Helmholtzovih tuljav $(R_H = 200 \, mm N_H = 154)$,
- Merilna tuljava ,
- Stojalo za merilno tuljavo s torzijskim merilcem navora,
- Tokovni usmerilnik za Helmholtzovo tuljavo,
- Tokovni usmerilnik za merilno tuljavo

5 Skica

Skica (1) je skica poskusa.

Slika 1: Shema poskusa: A - gumb za nastavljanje navora, B - indikatorska prečka, C - gumb za nastavljanje izhodišča, D - Helmholtzovi tuljavi, E - merilna tuljava

6 Meritve

Meritve							
Index	$I_H [mA]$	I [mA]	F[mN]	M [Nm]			
1	2000	0	0	0.000000000			
2	2000	203	0.09	0.000010260			
3	2000	399	0.17	0.000019380			
4	2000	603	0.25	0.000028500			
5	2000	807	0.37	0.000042180			
6	2000	1011	0.45	0.000051300			
7	2000	1205	0.52	0.000059280			
8	2000	1415	0.62	0.000070680			
9	2000	1606	0.7	0.000079800			
10	2000	1803	0.8	0.000091200			
11	2000	2000	0.9	0.000102600			
12	1796	2000	0.8	0.000091200			
13	1586	2000	0.71	0.000080940			
14	1396	2000	0.63	0.000071820			
15	1197	2000	0.52	0.000059280			
16	1010	2000	0.46	0.000052440			
17	798	2000	0.37	0.000042180			
18	604	2000	0.27	0.000030780			
19	400	2000	0.18	0.000020520			
20	205	2000	0.1	0.000011400			
21	0	2000	0.02	0.000002280			
22	3100	3100	2.18	0.000248520			

$$N = 3$$
 $N_H = 154$
 $R_H = 0, 2 m$
 $l = 0, 114m$
(6)

7 Obdelava meritev

Da bi izračunali μ_0 , rabimo izračunati B. B lahko izračunaom it navora po enačbi (7). Ter μ_0 po enačbi (8).

$$M = NIS \times B$$

 $M = NISB \cdot sin(\phi)$
 $M = NISB; \ \phi = 90 \deg \implies sin(\phi) = 1$ (7)

$$B = \frac{M}{NIS}$$

$$\mu_0 = (\frac{5}{4})^{3/2} \cdot \frac{BR_H}{N_H I_H}$$

$$\mu_0 = (\frac{5}{4})^{3/2} \cdot \frac{FlR_H}{NISN_H I_H}$$
(8)

Z pametno določenim linearnim fitom, ki je definiran pri enačbi (9). Lahko po formuli izračunamo μ_0 .

$$F = k \cdot I_{var.}$$

$$\mu_0 = \left(\frac{5}{4}\right)^{3/2} \cdot \frac{klR_H}{NSN_H I_{konst.}}$$
(9)

Dobili smo:

$$k_1 = 0,00044202 \, N/m$$

 $k_2 = 0,000448328 \, N/m$
 $k_{avg} = 0,000445174 \, N/m$ (10)

$$\mu_0 = 1,36 \cdot 10^{-6} \ (1 \pm 0,075) \ Vs/Am$$

OPOMBA: Konstanta $I_{konst.}$ je v primeru, spremembe toka v merilni tuljavi ali Helmholtzovi tuljavi vedno $2\,A$, zato lahko računamo z k_{avg} in $I_{konst.}=2A$, namesto da bi računali $\mu_{0,1}$ in $\mu_{0,2}$, ter njuno povprečje!

Imamo tudi grafa fit funkcij. Graf (2) prikazuje F(I) za Helmholtzovo tuljavo pri konstantih 2A, graf (3) prikazuje F(I) za merilnot tuljavo pri konstantih 2A.

Slika 2: Graf $\mathcal{F}(\mathcal{I}),$ ko je Helmholtzova tuljava pri konstantnih 2A

Slika 3: Graf $\mathcal{F}(\mathcal{I}),$ ko je merilna tuljava pri konstantnih 2A

8 Analiza rezultatov

Dobili smo indukcijsko konstanto z napako približno 7,5%, kar vključuje tudi podano vrednost za primerjanje μ_0 .

Smer magnetnega polja znotraj tuljave, skozi katero teče tok določimo poprincipu desnega vijaka. Gostota magnetnega polja gleda v smer premikadesnega vijaka, če vijak vrtimo v smeri toka.

Smer navora na tuljavo v zunanjem magnetnem polju določa enačba (3), kjer ima površinski vektor S smer magnetnega polja, ki je posledica električnega toka v tuljavi. Navor na tuljavo je torej pravokoten na osi obeh tuljav, pri čemer smer toka skozi tuljavo določa usmerjenost navora gor oz. dol.

Vektorsko odvisnost navora od magnetnega polja in površinskega vektorja s smerjo osi tuljave opisuje enačba (3). Vektorsko odvisnost lahko nadomesti kot med osjo tuljave in smerjo zunanjega magnetnega polja, enačba pa se preoblikuje v drugo vrstico enačbe (8).