

Compete Case Analysis

Complete-case analysis (CCA) also called "list
- wise deletion" of cases, consists in discarding
Observations where values in any of the
Variable are missing.

Complete Case Analysis means literally analyzing only those observations for motion there is information in all of the variable in the datasets.

Assumption for CCA

1) Missing Completely at Random

1000,47

[Age] -> [50] s missing value (Randomly)

Advantage / Bisadvantage

Advantage

- 1. Easy to implement as no data manifoldation ecquired.
- 2. Pereserves variable distribution (if data is MCAR, then the distribution of the variables of the constant should match the distribution on the Original ideataset.

- 2) It can exclude a large fraction of the original adataset (if missing data is abundant)
- 2) Exclude information could be informative for the analysis (if rotate in not missing at random)
- 3.) When using our model in production, the production model will not know how to brandle missing data.

When to the CCA?

- 1. MCAR
- 2. 5/2 (lus then 5/)

Mean Median Imputation	
Age	Benefit
27	1. Simple
32 Mean	2. 54.>
32 Mean Na Median 27	
27	
Mean /	Median >
<u>Disadvantage</u>	
1.) Distribution shape ->	
2.) Outlieu	
3) Covaviance/Coulation (Tranges
3. <u>Asbitrary Value</u> 9m	Missing
L> category → NA →	
Num 30	Benfit -> easy to apply
Sohry Random	Disadvantage:
Numbe	-> Distribution strape
V	- Variance
Data is not	7
missing at fandom	+> Covariante Change

Random Imputation

4

2) Well suited for linear models as it does not of NA. distort the distribution, regardless of the % of NA.

		Missing Indicator
Age	Fare	Age-NA
27	31	F
41	35	T.
Na	41	6
(2	32	No.

Automatically select value for imputation

Use Good Search CV

Try different combination and

select prefer one.

Multivavant

KNN Inputer

Working f: There are 4 columns first column have Null value - 50 first column have Null value of notice find value of null value on the basis of notice row similar to Null value of eas. Similarity found with the help of extration distant.

	Feature 1	Feature 2	Feature3	Feature 4
8.NO			67	21
1	33	45	68	12
2	_	51	71	18
3	23	OF.	28	_
4	40	(0)	79	_
5	35	60		

let we have 3-D data

K = No. of Neighbour

* In Fullident distance, we use (x,y)

-J(x2-x1)^2 + (41-41)^2 for 2D and for

3D (x,4,Z) J

* But sometimes in data have more than I Nucle value. So, me use Nan-euclident distance

dist (21,4) = 89et (neight * 89. distance from precent coordinates)

Where,

Weight = (Total # of Coordinates)/(# of present

lets calculate distance Ignore bezot

		1		
gNo -) 1 -	Feature 1	Feature 2	Feature 3 67 68	Feature 4 21 12 3
3 ²	- - -	51	71	18
4	40 35	- 60	81 79	_
5	35			

distance = $\sqrt{\frac{3}{67-68}}(67-68)^2+(21-22)^2$

Total No. of Coordinate = 3 Total No. of Present Co-ordinate = 2 * Ne Choose Rows and

(5)

Me can ado

Check Row 2

and Row 3,

or Row4, Row5

Distance but Row2 and Row1
$$d = \sqrt{\frac{3}{2}} \left(68-67 \right)^{2} + (12-21)^{2}$$

$$d = 11\cdot29$$
Distance but Row2 and Row3
$$d = \sqrt{\frac{3}{3}} \left((51-45)^{2} + (71-68)^{2} + (18-12)^{2} \right)$$

$$d = \sqrt{\frac{3}{4}} \left((81-68)^{2} \right)$$
Distance but Row2 and Row5
$$d = \sqrt{\frac{3}{2}} \left((60-45)^{2} + (74-61)^{2} \right)$$

$$d = \sqrt{9} \left((60-45)^{2} + (74-61)^{2} \right)$$
Cloud 2 Number 9 and 519
$$Row3$$
Row4
$$Row4$$

$$\sqrt{9} = \frac{63}{2} = 31.5 \text{ in Value of Null Value}$$

$$\frac{23+40}{2} = \frac{63}{2} = 31.5 \text{ in Value of Null Value}$$

$$\frac{23+40}{2} = \frac{63}{2} = 31.5 \text{ in Value of Null Value}$$

$$\sqrt{9} = \frac{63}{2} = 31.5 \text{ in Value of Null Value}$$

$$\sqrt{9} = \frac{63}{2} = 31.5 \text{ in Value of Null Value}$$

$$\sqrt{9} = \frac{63}{2} = 31.5 \text{ in Value of Null Value}$$

$$\sqrt{9} = \frac{63}{2} = 31.5 \text{ in Value of Null Value}$$

$$\sqrt{9} = \frac{63}{2} = 31.5 \text{ in Value of Null Value}$$

$$\sqrt{9} = \frac{63}{2} = 31.5 \text{ in Value of Null Value}$$

$$\sqrt{9} = \frac{63}{2} = 31.5 \text{ in Value of Null Value}$$

$$\sqrt{9} = \frac{63}{2} = 31.5 \text{ in Value of Null Value}$$

$$\sqrt{9} = \frac{63}{2} = 31.5 \text{ in Value of Null Value}$$

$$\sqrt{9} = \frac{63}{2} = 31.5 \text{ in Value}$$

than
$$\frac{23+40+33}{2}$$
 = Null Value

Advantages & Disadvantages

6

- More accurate
- More Number of Calculation (Calculate distance with
- 3. Upload Prain Data on server.

Skleam - neight = Unitam, distance

unitaru 1 70+50 z 60 Null Value

Iterative Imputer / MICE

MICE stands for Multivariate aniputation by chained

There are four types of missing data 1. Missing completely at Random (MCAR)

- Missing At Random (MAR)
- Missing Not At Random (MNAR)

Assumption

Means notion optionally data missing (ex. option > you have to fill date of winth Some of people fill some of not

nuissing data helate to

Advantage & Bisadvantage
Ly alow process
Ly accurate Strain Data on servin

When Missing data in MAR.

How it works?

1. Actual Dataset

1,000	ReD spend	Administration	MarketinSpend	Peofit
	RED Speed	15.0	30.0	11.0
21	8.0		20.0	9.0
37	4.0	5.0	41.0	19.0
2	15.0	10.0	26.0	13.0
14	12.0	16:0	3.0	7.0
44	2.0	15.0	30	nit nam

2. Removing the target column

	R2D spend	Advidnistration	Marketing spend
21	8.0	15.0	30.0
37	4.0	5· O	20.0
2	15.0	10.0	41.0
14	12. 0	160	26.0
44	2.0	15-0	3.0

3.	Introduced	sonu	fake	man	Values
		•	0-1	. /4	A CONTRACTOR OF THE PARTY OF

5		١
-	1	1
-	t)
	5	7

	ReD Spend	Administration	Marketing Spend
21	8.0	15·0	30.0
37	MAN	5.0	20.0
2	15· o	10.0	41-0
14	12.0	NAW	26.0
44	2.0	150	DAN

Step 1 - Fill all the NAN values with mean of respective col

	ReD Spend	Administration	Marketing Spend
21	8.00	15.00	30.00
37	9.25 mean	5.00	20.00
2	15.00	(0,00	41.00
14	12.00	mean → [1.25]	26.00
44	2.0	15.00	mean > 29.25

Step2: > Remove all Column missing Values

7					-		
	R2D	Admins	MS	1		Admin	24
21	8.0	15:00	30.0		21	15.00	30.00
37	NAN	5.00	20.0	-> Test	2	10.00	41.00
2	15.0	10.00	41.00	data	14	11.25	26.00
14	12.0	11.25	26.00		44	15.00	29.25
44	2.0	15.00	29.25		1	TrainiyI)ata
				I		J	

Output Data

Inputdua

Step3:- Predict the missing value of cold using other cols

	ReD Spend	Administration	Marketing Spend
		15.00	30.00
21	8.00	. 5.00	20:00
37	23.14 predic	tet	41.00
2	15.00	[] 88	26.00
14	12.00		29 .Q 5
44	2.00	15.00	

Step4:- Remove all col2 missing Value

7	V .	And a second sec	Annual Control of the	A mount will ran our torn over the state of the	
		ReD	Admin	MS	- Malue
	21	8.0	15.0	30.0	_ Infant Value
	37	23.14	5.0	20.0	Output Value
	2	15.0	10.0	41.0	> Test Value
	14	12.0	NAN	26.0	-> 121 000
	44	2.0	15.0	29.25	h -

Step5:- Predict the missing values of Col2 using other cols

. (1000	()	
	R&D Spend.	Administration	Marketing Spend
,	K4D Proof.	15.0	30.0
21	8.0		20.0
37	23.14	5.0	41.0
2	15.0	10.0	26.0
1.4	12.0	15.0	29.25
44	2.0		

predicted Value

	ReD	Admin	MS
थ	8.0	15.0	30.0
37	23.14	5.0	20.0
2	[5· O	10.0	41.0
14	12.0	11.06	26.0
44	2.0	15.0	NAN

	Rep	Admin	MS
21	8.0	15.0	30.0
37	23.14	5.0	20.0
2	15:00	10.0	41.0
		11.06	26.0
ીપ	12.0	15.0	131.56
५५	2-0	1,,,,	

Predicteduale

Steration O (Mean)

	RºD	Admin	MS
er	8.0	10.0	30.0
37	9.25	5.0	20.0
2	15.0	16.0	410
14	12.0	11.25	26.0
44	2.0	15.0	29:25

(Heration 1 (Predict) Difference

ROD	Admin	MS
80	15-10	30.0
23.14	5.0	20.0
15-0	10.0	41.0
12.0	11.06	26.0
2.0	1(.0	31.6

RSD	Admin	MS
0.0	0.0	0.0
13.89	0.0	0.0
0.0	0.0	0.0
0.0	-019	00
0.0	0.0	12.31

Seration 1 (India)

R2D	Admin	MS
8.0	12.0	30.0
	5.0.	20.0
2314		41.0
12.0	10.0	26.0
12.0	[11.06]	31.56
2.0	15.0	[3130]

atevation 2 (New Indict) Difference

(Iterative Com				
RED	Admin	MS		
8.0	18.0	go.0		
25.78	5.0	20.0		
15.0	[0.0	41.0		
12.0	11.22	26.0		
2.0	15.00	31.28		

ReD	Admin	MS
0.0	0.0	0.0
10.641	0.0	0.0
0.0	0.0	0.0
0.0	0.16	0.0
0.0	0.0	0.0

* This prouss -> Continous -> Difference (all 0.0)

In Ateration 2 we do same process & finit Remove the value into NAN. and then predict the value and then find the difference beth Theration 1 and I terration 2. Until all difference be 0.0.