

Low noise JFET quad operational amplifier

Features

- Wide common-mode (up to V_{CC}⁺) and differential voltage range
- Low input bias and offset current
- Low noise $e_n = 15 \text{ nV} / \sqrt{\text{Hz}}$ (typ)
- Output short-circuit protection
- High input impedance JFET input stage
- Low harmonic distortion : 0.01% (typical)
- Internal frequency compensation
- Latch up free operation
- High slew rate: 16 V/µs (typical)

Description

The TL074, TL074A and TL074B are high-speed JFET input single operational amplifiers. Each of these JFET input operational amplifiers incorporates well matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit.

The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient.

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	B	,	Value			
	Parameter	TL074I, AI, BI	TL074C, AC, BC	- Unit		
V _{CC}	Supply voltage ⁽¹⁾		±18			
V _i	Input voltage ⁽²⁾		±15	V		
V _{id}	Differential input voltage ⁽³⁾		±30			
P _{tot}	Power dissipation		680			
R _{thja}	Thermal resistance junction to ambient ^{(4) (5)} DIP14 SO-14	80 105		°C/W		
R _{thjc}	Thermal resistance junction to case ^{(4) (5)} DIP14 SO-14	33 31		°C/W		
	Output short-circuit duration ⁽⁶⁾	li .	Infinite			
T _{oper}	Operating free-air temperature range	-40 to +105	0 to +70	°C		
T _{stg}	Storage temperature range	-65 to +150		°C		
	HBM: human body model ⁽⁷⁾		1			
ESD	MM: machine model ⁽⁸⁾		200			
	CDM: charged device model ⁽⁹⁾		1.5	kV		

- All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC}⁺ and V_{CC}⁻.
- 2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 3. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuits on all amplifiers.
- 5. Rth are typical values.
- 6. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- 7. Human body model: 100pF discharged through a $1.5k\Omega$ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- Machine model: a 200pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5Ω), done for all couples of pin combinations with other pins floating.
- 9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

Table 2. Operating conditions

Symbol	ymbol Parameter TL074I, AI, BI TL074C, AC, Bo		TL074C, AC, BC	Unit
V _{CC}	Supply voltage	6 to	V	
T _{oper}	Operating free-air temperature range	-40 to +105 0 to +70		°C

Electrical characteristics TL074

3 Electrical characteristics

Table 3. $V_{CC} = \pm 15V$, $T_{amb} = +25^{\circ}C$ (unless otherwise specified)

Cumbal	Porometer	TL074I,AC,AI, BC,BI			TL074C			Unit
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage (R _s = 50Ω) $T_{amb} = +25^{\circ}C \qquad TL074$ $TL074A$ $TL074B$ $T_{min} \leq T_{amb} \leq T_{max} \qquad TL074$ $TL074A$ $TL074B$		3 3 1	10 6 3 13 7 5		3	10	mV
DV _{io}	Input offset voltage drift		10			10		μV/°C
l _{io}	Input offset current $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		5	100 4		5	100 10	pA nA
I _{ib}	Input bias current -note ⁽¹⁾ $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		20	200 20		30	200 20	pA nA
A _{vd}	Large signal voltage gain R_L = $2k\Omega$, V_o = $\pm 10V$ T_{amb} = $+25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	50 25	200		25 15	200		V/mV
SVR	Supply voltage rejection ratio ($R_S = 50\Omega$) $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	80 80	86		70 70	86		dB
I _{CC}	Supply current, no load $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		1.4	2.5 2.5		1.4	2.5 2.5	mA
V _{icm}	Input common mode voltage range	±11	+15 -12		±11	+15 -12		٧
CMR	Common mode rejection ratio ($R_S = 50\Omega$) $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	80 80	86		70 70	86		dB
I _{os}	Output short-circuit current $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	10 10	40	60 60	10 10	40	60 60	mA
±V _{opp}	$ \begin{array}{ll} \text{Output voltage swing} \\ T_{amb} = +25^{\circ}\text{C} & \text{RL} = 2\text{k}\Omega \\ & \text{RL} = 10\text{k}\Omega \\ T_{min} \leq T_{amb} \leq T_{max} & \text{RL} = 2\text{k}\Omega \\ & \text{RL} = 10\text{k}\Omega \end{array} $	10 12 10 12	12 13.5		10 12 10 12	12 13.5		V
SR	Slew rate V_{in} = 10V, R_L = 2k Ω , C_L = 100pF, unity gain	8	13		8	13		V/µs

4/15

Table 3. $V_{CC} = \pm 15V$, $T_{amb} = +25^{\circ}C$ (unless otherwise specified) (continued)

Symbol	Parameter	TL074I,AC,AI, BC,BI			TL074C			Unit
Symbol	Farameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Ollit
t _r	Rise time V_{in} = 20mV, R_L = 2k Ω , C_L = 100pF, unity gain		0.1			0.1		μs
K _{ov}	Overshoot $V_{in} = 20mV$, $R_L = 2k\Omega$, $C_L = 100pF$, unity gain		10			10		%
GBP	Gain bandwidth product V_{in} = 10mV, R_L = 2k Ω , C_L = 100pF, = 100kHz	2	3		2	3		MHz
R _i	Input resistance		10 ¹²			10 ¹²		Ω
THD	Total harmonic distortion f= 1kHz, $R_L = 2k\Omega C_L = 100pF$, $A_v = 20dB$, $V_o = 2V_{pp}$)		0.01			0.01		%
e _n	Equivalent input noise voltage $R_S = 100\Omega$, $f = 1$ kHz		15			15		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
Øm	Phase margin		45			45		degrees
V ₀₁ /V ₀₂	Channel separation A _v = 100		120			120		dB

The input bias currents are junction leakage currents which approximately double for every 10° C increase in the junction temperature.

577

TL074 Package information

Package information 6

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

DIP14 package information 6.1

D

Figure 24. DIP14 package mechanical drawing

Table 4. DIP14 package mechanical data

Ref.	Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
a1	0.51			0.020				
В	1.39		1.65	0.055		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
Е		8.5			0.335			
е		2.54			0.100			
e3		15.24			0.600			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z	1.27		2.54	0.050		0.100		

Ordering information TL074

7 Ordering information

Table 6. Order codes

Order code	Temperature range	Package	Packing	Marking	
TL074IN TL074AIN TL074BIN		DIP14	Tube	TL074IN TL074AIN TL074BIN	
TL074ID/IDT TL074AID/AIDT TL074BID/BIDT	-40°C, +105°C	SO-14	Tube or tape & reel	074I 074AI 074BI	
TL074IYD/IYDT ⁽¹⁾ TL074AIYD/AIYDT ⁽¹⁾ TL074BIYD/BIYDT ⁽¹⁾		SO-14	Tube or tape & reel	074IY 074AIY 074BIY	
TL074CN TL074ACN TL074BCN	0°C, +70°C	DIP14	Tube	TL074CN TL074ACN TL074BCN	
TL074CD/CDT TL074ACD/ACDT TL074BCD/BCDT	0 0, +/0 0	SO-14	Tube or tape & reel	074C 074AC 074BC	

^{1.} Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.