Universidad de Santiago de Chile Facultad de Ingeniería Depto. de Ingeniería Informática

Taller de minería de datos avanzada Capítulo VI "SVM Regresión y recurrencia"

Profesor: Dr. Max Chacón

Objetivos

- Introducción
- El problema de la recta de regresión
- El problema de Support Vector Regression (SVR)
- El problema de modelamiento temporal
- Recurrencias externas.

6.1. Support Vector Regression

Supongamos que se requiere buscar la mejor recta que ajusta a una nube de puntos $f(\vec{x}) = \vec{\omega} * \cdot \vec{x} + b$ el problema es encontrar los coeficientes $\vec{\omega}$ que determinan la ecuación de la recta.

Existirá un conjunto de datos cerca de la recta que no influyen en su posición, pero los datos que se encuentran a una distancia $> \varepsilon$ controlaran mejor su ángulo.

6.2. El problema de optimización de SVR

Se requiere que la desviación entre $f(\vec{x}_i)$ e y_i sea de distancia máxima ε

Además es necesario ponderar los datos que quedan fuera del tubo, al igual que los vectores acotados de SVM

$$\begin{aligned} \textit{Minimizar} \quad & \frac{1}{2} \| \vec{\omega} \|^2 + C \sum_{j=1}^n (\xi_j - \xi_j^*) \\ y_i - (\vec{\omega} \cdot \vec{x}_i) - b &\leq \varepsilon + \xi_i \\ \textit{s.a.} \quad & (\vec{\omega} \cdot \vec{x}_i) + b - y_i \leq \varepsilon + \xi_i^* \\ \xi_j, \xi_j^* &\geq 0 \end{aligned}$$

- El Lagrangeano aumentado será:

$$L(\boldsymbol{\varpi}, \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{i}^{*}, \lambda_{i}, \lambda_{i}^{*}, \boldsymbol{\beta}_{i}, \boldsymbol{\beta}_{i}^{*}, b) = \frac{1}{2} \|\boldsymbol{\varpi}\|^{2} + C \sum_{i=1}^{n} (\boldsymbol{\xi}_{i} + \boldsymbol{\xi}_{i}^{*})$$

$$- \sum_{i=1}^{n} \lambda_{i} (\boldsymbol{\varepsilon} + \boldsymbol{\xi}_{i} - \boldsymbol{y}_{i} + (\boldsymbol{\varpi} \cdot \vec{\boldsymbol{x}}_{i}) + b)$$

$$- \sum_{i=1}^{n} \lambda_{i} (\boldsymbol{\varepsilon} + \boldsymbol{\xi}_{i}^{*} + \boldsymbol{y}_{i} - (\boldsymbol{\varpi} \cdot \vec{\boldsymbol{x}}_{i}) - b)$$

$$- \sum_{i=1}^{n} (\boldsymbol{\beta}_{i} \boldsymbol{\xi}_{i} + \boldsymbol{\beta}_{i}^{*} \boldsymbol{\xi}_{i}^{*})$$

$$(i)$$

 $\bar{\omega}, \xi_i, \xi_i^*, b$ Variables del primal

 $\lambda_i, \lambda_i^*, \beta_i, \beta_i^*$ Multiplicadores de Lagrange (duales)

Derivando el Lagrangeano e igualando a cero, se esta en el punto silla que permite obtener las ecuaciones en el espacio dual.

$$\begin{split} \frac{\partial L}{\partial \omega} &= \varpi + \sum_{i=1}^{n} \lambda_{i} \vec{x}_{i} + \sum_{i=1}^{n} \lambda_{i}^{*} \vec{x}_{i} = 0 & (ii) \\ \frac{\partial L}{\partial b} &= \sum_{i=1}^{n} (\lambda_{i} - \lambda_{i}^{*}) = 0 & (iii) \\ \frac{\partial L}{\partial \xi_{i}} &= C - \lambda_{i} - \beta_{i}^{*} = 0 & (iv) \\ \frac{\partial L}{\partial \xi_{i}^{*}} &= C - \lambda_{i}^{*} - \beta_{i}^{*} = 0 & (v) \end{split}$$

Sustituyendo $ii\ a\ v$ en i, se tiene la función objetivo en el espacio dual.

Problema dual

Máximizar:
$$\theta(\lambda_{i}, \lambda_{i}^{*}) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (\lambda_{i} - \lambda_{i}^{*})(\lambda_{j} - \lambda_{j}^{*})(\vec{x}_{i} \cdot \vec{x}_{j})$$
$$-\varepsilon \sum_{i=1}^{n} (\lambda_{i} - \lambda_{i}^{*}) + \sum_{i=1}^{n} y_{i}(\lambda_{i} - \lambda_{i}^{*})$$
s.a.
$$\sum_{i=1}^{n} (\lambda_{i} - \lambda_{i}^{*}) = 0; \quad 0 \le \lambda_{i} \le C; \quad 0 \le \lambda_{i}^{*} \le C$$

La solución óptima esta dada por la multiplicación de las variables duales y las restricciones del problema original (KKT).

$$\lambda_{i}(\varepsilon + \xi_{i} - y_{i} + (\vec{\omega} \cdot \vec{x}_{i}) + b) = 0$$

$$\lambda_{i}^{*}(\varepsilon + \xi_{i}^{*} + y_{i} - (\vec{\omega} \cdot \vec{x}_{i}) - b) = 0$$

$$\beta_{i}\xi_{i} = (C - \lambda_{i})\xi_{i} = 0$$

$$\beta_{i}\xi_{i}^{*} = (C - \lambda_{i}^{*})\xi_{i}^{*} = 0$$

$$(vii)$$

De las ultimas dos ecuaciones (vii) se puede concluir que el ξ asociada a una muestra (\bar{x}_i, y_i) sólo puede ser distinta de cero si su λi es igual a C.

De las dos primeras ecuaciones (vi), se puede obtener los valores b, puesto que si $0 < \lambda i < C$, la variable ξ será cero, entonces.

$$b = y_i - (\vec{\omega} \cdot \vec{x}_i) - \varepsilon \quad \forall \ \lambda_i \in]0, C[$$

$$b = y_i - (\vec{\omega} \cdot \vec{x}_i) + \varepsilon \quad \forall \ \lambda_i^* \in]0, C[$$

También se observa (de vi) que no pueden existir dos variables duales λi y λ_i^* que sean simultáneamente distintas de cero.

De (vi) se puede ver que para distancias de $f(x) < \varepsilon$ el segundo factor es $\neq 0$, por lo tanto $\lambda i = 0$.

En el caso contrario de (vi) se puede ver que para distancias de $f(x) > \varepsilon$ el segundo factor es = 0, por lo tanto pueden ser $\lambda i > 0$.

Lo anterior implica que sólo los $\lambda i > 0$ son los que contribuyen a la solución del problema y no se necesitan todas las i=1...n, muestras para describir el problema.

Por lo tanto la ecuación de la recta original puede ser reescrita de la siguiente manara

$$f(\vec{x}) = \vec{\omega}^* \cdot \vec{x} + b = \sum_{i=1}^l (\lambda_i - \lambda_i^*)(\vec{x}_i \cdot \vec{x}) + b$$

Donde *l* representa los casos con $\lambda i > 0$, *Vectores Soporte*

6.3. Tiempo y Recurrencias externas

Identificación de Sistemas (IS)

Reglas:

- Obtención de datos de entrada y salida del sistema que se desea identificar.
- Pre-procesamiento de los datos de entrada y salida. (Examinar, limpiar y filtrar los datos).
- Elección del conjunto de modelos.
- Obtención de los parámetros del modelo y validación.
- -Si modelo tiene buenos resultados (alcanzo un error aceptable), terminar sino realizar cambios en punto anterior e iterar.

Estructura general de la Identificación de sistemas

 $e(n) = y(n) - \hat{y}(n)$

 $-\hat{y}(n)$ la salida del modelo generado y e el error. La identificación de los parámetros de los modelos para Sistemas en el tiempo se basa en el error de predicción $e(n)=y(n)-\hat{y}(n)$

Sistemas con recurrencias externas en SVM

➤ Modelos FIR (o NFIR)

- Respuesta finita al impulso.
- Solo poseen memorias las entradas.
- Su estructura de aprendizaje es la siguiente

Donde el parámetro de retardos (*m*) de las entradas también es un parámetro que se debe ajustar por el método de grilla.

Entonces para un modelo FIR se requiere ajustar 3 parámetros para el caso lineal y 4 para el caso no-lineal.

C, ε, m FIR y C, ε, m y γ NFIR.

Existen algunas implementaciones, donde el ancho del tubo de la sección ε -insensitiva se normaliza, para ser una proporción de los vectores de soporte. En ese caso el parámetro se denomina ν y varia de 0 a 1, en general se estima con pasos de 0,1.

Entonces para un modelo ARX se requiere ajustar 4 parámetros para el caso lineal y 5 para el caso no lineal NARX.

C, ε , m y n ARX y C, ε , m, n y γ NARX.

O el caso de donde ε es remplazado por ν