Discrete Mathematics Lecture 9

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Summary of Lecture 8

Group: (G,\star) , closure, associative, identity, inverse

• additive group; multiplicative group

Order of a group *G*: the number of elements in *G*

Order of an element $a \in G$: the least l > 0 such that $a^l = 1$

- $a^{|G|} = 1$ for all $a \in G$
 - Euler's theorem, Fermat's little theorem

Subgroup: $H \subseteq G + (H, \star)$ is also a group $(H \leq G)$

- $\langle g \rangle = \{g^k : k \in \mathbb{Z}\}$ is a subgroup of G for all $g \in G$
- Cyclic group: $G = \langle g \rangle$ for some $g \in G$
 - \mathbb{Z}_p^* is a cyclic group for any prime p
 - p = 2q + 1 for a prime $q \Rightarrow \mathbb{Z}_p^*$ has a subgroup of order q

DLOG and CDH

DEFINITION: Let $G = \langle g \rangle$ be a cyclic group of order q with generator g. For every $h \in G$, there exists $x \in \{0,1,...,q-1\}$ such that $h = g^x$. The integer x is called the **discrete** logarithm of h with respect to g.

• $x = \log_a h$

DLOG Problem: $G = \langle g \rangle$ is a cyclic group of order q hard

- **Input**: *G* and $h = g^x$ for $x \leftarrow \{0, 1, ..., q 1\}$
- **Output**: $f_{\text{DLOG}}(q, G, g; h) = \log_q h$

CDH Problem: computational Diffie-Hellman hard

- **Input**: $G = \langle g \rangle$ of order q and $A = g^a$, $B = g^b$ for $a, b \leftarrow \{0, 1, ..., q 1\}$
- Output: $f_{\text{CDH}}(\underline{q}, \underline{G}, \underline{g}; \underline{A}, \underline{B}) = g^{ab}$ Hardness: If G is the order q subgroup of \mathbb{Z}_p^* (p = 2q + 1)

The best known algorithm runs in $\exp \left(O\left(\sqrt{\ln q \ln \ln q}\right)\right)$

Public-Key Encryption

- **Gen**, **Enc**, **Dec**: key generation, encryption, decryption
- m, c, pk, sk: plaintext (message), ciphertext, public key, private key
- \mathcal{M} , \mathcal{C} : plaintext space, ciphertext space
- $\Pi = (\mathbf{Gen}, \mathbf{Enc}, \mathbf{Dec}) + \mathcal{M}, |\mathcal{M}| > 1$
 - Correctness: Dec(sk, Enc(pk, m)) = m for any pk, sk, m
 - **Security**: if sk is not known, it's difficult to learn m from pk, c

Private-Key Encryption

- **Gen**, **Enc**, **Dec**: key generation, encryption, decryption
- m, c, k: plaintext (message), ciphertext, secret key
- \mathcal{M} , \mathcal{C} : plaintext space, ciphertext space
- $\Pi = (\mathbf{Gen}, \mathbf{Enc}, \mathbf{Dec}) + \mathcal{M}, |\mathcal{M}| > 1$
 - Correctness: Dec(k, Enc(k, m)) = m for any k, m
 - **Security**: if *k* is not known, it's difficult to learn *m* from *c*

Diffie-Hellman Key Exchange

The Scheme: $G = \langle g \rangle$ is a cyclic group of prime order q

- Alice: $a \leftarrow \mathbb{Z}_q$, $A = g^a$; send (q, G, g, A) to Bob
- Bob: $b \leftarrow \mathbb{Z}_q$, $B = g^b$; send B to Alice; output $k = A^b$
- Alice: output $k = B^a$

Whitfield Diffie, Martin E. Hellman: New directions in Cryptography, IEEE Trans. Info. Theory, 1976 **Turing Award 2015**

Correctness: $A^b = g^{ab} = B^a$

Wiretapper: view = (q, G, g, A, B)

Security: view $\not\rightarrow g^{ab}$

Diffie-Hellman Key Exchange

EXAMPLE: p = 23; $\mathbb{Z}_p^* = \langle 5 \rangle$; $G = \langle 2 \rangle$, q = |G| = 11, g = 2

Adversary: q = 11, p = 23, g = 2, A = 8, B = 13, k = ?

Combinatorics

Enumerative combinatorics

• permutations, combinations, partitions of integers, generating functions, combinatorial identities, inequalities

Designs and configurations

 block designs, triple systems, Latin squares, orthogonal arrays, configurations, packing, covering, tiling

Graph theory

• graphs, trees, planarity, coloring, paths, cycles,

Extremal combinatorics

extremal set theory, probabilistic method......

Algebraic combinatorics

• symmetric functions, group, algebra, representation, group actions......

Sets and Functions

DEFINITION: A **set** is an unordered collection of **elements**

- $a \in A$; $a \notin A$); roster method, set builder; empty set \emptyset , universal set
- A = B; $A \subseteq B$; $A \subseteq B$; $A \cup B$; $A \cap B$; \bar{A}

DEFINITION: Let $A, B \neq \emptyset$ be two sets. A function (map)

 $f: A \to B$ assigns a unique element $b \in B$ for all $a \in A$.

- injective $= f(a) = f(b) \Rightarrow a = b$
- surjective_{m,h}: <math>f(A) = B</sub>
- **bijective** xy: injective and surjective

Cardinality of Sets

- **DEFINITION:** Let *A* be a set. *A* is a **finite set** if it has finitely many elements; Otherwise, *A* is an **infinite set**.
 - The **cardinality** $A \mid A \mid$ of a finite set A is the number of elements in A.
- **EXAMPLE:** \emptyset , $\{1\}$, $\{x: x^2 2x 3 = 0\}$, $\{a, b, c, ..., z\}$ are all finite sets; \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are all infinite sets
- **DEFINITION:** Let A, B be any sets. We say that A, B have the same cardinality (|A| = |B|) if there is a bijection $f: A \to B$
 - We say that $|A| \le |B|$ if there exists an injection $f: A \to B$.
 - If $|A| \leq |B|$ and $|A| \neq |B|$, we say that |A| < |B|
- **THEOREM**: Let *A*, *B*, *C* be any sets. Then
 - |A| = |A|
 - $|A| = |B| \Rightarrow |B| = |A|$
 - $|A| = |B| \land |B| = |C| \Rightarrow |A| = |C|$

Cardinality of Sets

EXAMPLE:
$$|\mathbb{Z}^{+}| = |\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}^{+}| = |\mathbb{Q}|$$
 $\frac{1}{1} \longrightarrow \frac{2}{1}$ $\frac{3}{1} \longrightarrow \frac{4}{1}$...

• $f: \mathbb{Z}^{+} \to \mathbb{N}$ $x \mapsto x - 1$

• $f: \mathbb{Z} \to \mathbb{N}$ $f(x) = \begin{cases} 2x & x \ge 0 \\ -(2x + 1) & x < 0 \end{cases}$ $\frac{1}{2}$ $\frac{2}{2}$ $\frac{3}{2}$ $\frac{4}{2}$...

• $f: \mathbb{R} \to \mathbb{R}^{+}| = |\mathbb{R}| = |(0,1)| = |[0,1]|$ $\frac{1}{2}$ $\frac{2}{2}$ $\frac{3}{2}$ $\frac{4}{2}$...

• $f: \mathbb{R} \to \mathbb{R}^{+}$ $x \mapsto 2^{x}$ $f: \mathbb{Z}^{+} \to \mathbb{O}^{+}$

- $f:(0,1) \to \mathbb{R} \ x \mapsto \tan(\pi(x-1/2))$
- $f:[0,1] \to (0,1)$
 - $f(1) = 2^{-1}$, $f(0) = 2^{-2}$, $f(2^{-n}) = 2^{-n-2}$, n = 1, 2, 3, ...
 - f(x) = x for all other x

EXAMPLE: $|2^X| = |\mathcal{P}(X)|$

- $2^X = \{ \alpha \mid \alpha \colon X \to \{0,1\} \}$ the set of all functions from X to $\{0,1\}$
- $\mathcal{P}(X) = \{A | A \subseteq X\}$: the power set of X
- $f: 2^X \to \mathcal{P}(X)$ $\alpha \mapsto A = \{x: \alpha(x) = 1\}$

Cardinality of Sets

THEOREM: $|(0,1)| \neq |\mathbb{Z}^+|$

• Suppose that $|(0,1)| = |\mathbb{Z}^+|$. Then there is a bijection $f: \mathbb{Z}^+ \to (0,1)$

```
f(1) = 0.b_{11}b_{12}b_{13}b_{14}b_{15}b_{16}b_{17}b_{18}b_{19} \cdots
f(2) = 0.b_{21}b_{22}b_{23}b_{24}b_{25}b_{26}b_{27}b_{28}b_{29} \cdots
f(3) = 0.b_{31}b_{32}b_{33}b_{34}b_{35}b_{36}b_{37}b_{38}b_{39} \cdots
f(4) = 0.b_{41}b_{42}b_{43}b_{44}b_{45}b_{46}b_{47}b_{48}b_{49} \cdots
f(5) = 0.b_{51}b_{52}b_{53}b_{54}b_{55}b_{56}b_{57}b_{58}b_{59} \cdots
f(6) = 0.b_{61}b_{62}b_{63}b_{64}b_{65}b_{66}b_{67}b_{68}b_{69} \cdots
\cdots
f(n) = 0.b_{n1}b_{n2}b_{n3}b_{n4}b_{n5}b_{n6}b_{n7}b_{n8}b_{n9} \cdots
```

- Let $b_i = \begin{cases} 4, & b_{ii} \neq 4 \\ 5, & b_{ii} = 4 \end{cases}$ for i = 1,2,3,...
- $b = 0.b_1b_2b_3b_4b_5b_6b_7b_8b_9 \cdots$ is in (0,1) but has no preimage
 - $b \neq f(i)$ for every i = 1, 2, ...
- *f* cannot be a bijection

Cantor's Diagonal Argument

Question: Show that $|A| \neq |\mathbb{Z}^+|$.

The Diagonal Argument:

- 1) Suppose that $|A| = |\mathbb{Z}^+|$. Then there is a bijection $f: \mathbb{Z}^+ \to A$
- 2) Represent the function *f* as a list:

```
f(1) a_1 \cdots a_2 \cdots a_2 \cdots a_2 \cdots a_2 \cdots a_2 \cdots a_1 \cdots a_n = 1 Every element of \mathbb{Z}^+ appears once in the left-hand side f(i) a_i \cdots a_n = 1 of the left a_i \cdots a_n = 1 of the lift a_i \cdots a_n = 1
```

- 3) Construct an element x by considering the diagonal of the list
- 4) Show that $x \neq a_i$ for all $i \in \mathbb{Z}^+$
- 5) Show that $x \in A$
- 6) 4) and 5) give a contradiction

Cantor's Theorem

THEOREM: (Cantor) Let *A* be any set. Then $|A| < |\mathcal{P}(A)|$.

- $|A| \leq |\mathcal{P}(A)|$
 - The function $f: A \to \mathcal{P}(A)$ defined by $f(a) = \{a\}$ is injective.
- $|A| \neq |\mathcal{P}(A)|$
 - Assume that there is a bijection $g: A \to \mathcal{P}(A)$
 - Define $X = \{a : a \in A \text{ and } a \notin g(a)\}$
 - *X* should appear in the list. It is clear that $X \subseteq A$ and hence $X \in \mathcal{P}(A)$
 - *X* will not appear in the list. Suppose that X = g(x) for some $x \in A$
 - If $x \in X$, then $x \notin g(x) = X$
 - This gives a contradiction
 - If $x \notin X$, then $x \in g(x) = X$
 - This gives a contradiction

The Halting Problem

$$\mathbf{HALT}(P,I) = \begin{cases} \text{"halts"} & \text{if } P(I) \text{ halts;} \\ \text{"loops forever"} & \text{if } P(I) \text{ loops forever.} \end{cases}$$

• *P*: a program; *I*: an input to the program *P*.

QUESTION: Is there a Turing machine **HALT**?

- Turing machine: can be represented as a an element of $\{0,1\}^*$
 - $\{0,1\}^* = \bigcup_{n\geq 0} \{0,1\}^n$: the set of all finite bit strings

THEOREM: There is no Turing machine **HALT**.

- Assume there is a Turing machine HALT
- Define a new Turing machine **Turing**(*P*) that runs on any Turing machine *P*
 - **If** HALT(P, P) = "halts", loops forever
 - **If** HALT(P, P) = "loops forever", halts
- Turing(Turing) loops forever⇒ HALT(Turing, Turing) =
 "halts"⇒Turing(Turing) halts
- Turing(Turing) halts ⇒ HALT(Turing, Turing) = "loops forever"⇒Turing(Turing) loops forever

Countable and Uncountable

- **DEFINITION:** A set *A* is **countable**_°, ¬η if $|A| < \infty$ or $|A| = |\mathbb{Z}^+|$; otherwise, it is said to be **uncountable**_{¬¬∞}, ¬¬¬∞.
 - countably infinite: $|A| = |\mathbb{Z}^+|$

EXAMPLE:

- $\mathbb{Z}^-, \mathbb{Z}^+, \mathbb{Z}, \mathbb{Q}^-, \mathbb{Q}^+, \mathbb{Q}, \mathbb{N}, \mathbb{N} \times \mathbb{N}$, are countable
- \mathbb{R}^- , \mathbb{R}^+ , \mathbb{R} , (0,1), [0,1], (0,1], [0,1), (a, b), [a, b] are uncountable
- **THEOREM:** A set A is countably infinite iff its elements can be arranged as a sequence $a_1, a_2, ...$
 - If A is countably infinite, then there is a bijection $f: \mathbb{Z}^+ \to A$
 - If $A = \{a_1, a_2, ...\}$, then the $f: \mathbb{Z}^+ \to A$ defined by $f(i) = a_i$ is a bijection
 - $a_i = f(i)$ for every i = 1,2,3...

Countable and Uncountable

THEOREM: Let *A* be countably infinite, then any infinite subset $X \subseteq A$ is countable.

- Let $A = \{a_1, a_2, ...\}$. Then $X = \{a_{i_1}, a_{i_2}, ...\}$ X is countable
- **THEOREM:** Let *A* be uncountable, then any set $X \supseteq A$ is uncountable.
 - If *X* is countable, then *A* is finite or countably infinite

THEOREM: If *A*, *B* are countably infinite, then so is $A \cup B$

- $A = \{a_1, a_2, a_3, \dots\}, B = \{b_1, b_2, b_3, \dots\}$
- $A \cup B = \{a_1, b_1, a_2, b_2, a_3, b_3, ...\}$ //no elements will be included twice
 - application: the set of irrational numbers is uncountable

THEOREM: If A, B are countably infinite, then so is $A \times B$

- $A = \{a_1, a_2, a_3, \dots\}, B = \{b_1, b_2, b_3, \dots\}$
- $A \times B = \{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_1, b_3), (a_2, b_2), (a_3, b_1), (a_1, b_4), \dots \}$

Schröder-Bernstein Theorem

QUESTION: How to compare the cardinality of sets in general?

- $|\mathbb{Z}^-| = |\mathbb{Z}^+| = |\mathbb{Z}| = |\mathbb{Q}^-| = |\mathbb{Q}^+| = |\mathbb{Q}| = |\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$
- $|\mathbb{R}^-| = |\mathbb{R}^+| = |\mathbb{R}| = |(0,1)| = |[0,1]| = |(0,1)| = |[0,1)|$
- $|\mathbb{Z}^+| \neq |(0,1)|$: hence, $|\mathbb{Z}^+| \neq |\mathbb{R}|$, and in fact $|\mathbb{Z}^+| < |\mathbb{R}|$
- $|\mathbb{Z}^+| < |\mathcal{P}(\mathbb{Z}^+)|$
- $|\mathbb{R}|$? $|\mathcal{P}(\mathbb{Z}^+)|$: which set has more elements?

THEOREM: If $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|.

EXAMPLE: Show that |(0,1)| = |[0,1)|

- $|(0,1)| \le |[0,1)|$
 - $f:(0,1) \to [0,1)$ $x \to \frac{x}{2}$ is injective
- $|[0,1)| \le |(0,1)|$
 - $g:[0,1) \to (0,1) \ x \to \frac{x}{4} + \frac{1}{2}$ is injective

Schröder-Bernstein Theorem

EXAMPLE:
$$|\mathcal{P}(\mathbb{Z}^+)| = |[0,1)| = (|\mathbb{R}|)$$

- $|\mathcal{P}(\mathbb{Z}^+)| \leq |[0,1)|$
 - $f: \mathcal{P}(\mathbb{Z}^+) \to [0,1)$ $\{a_1, a_2, \dots\} \mapsto 0, \dots 1_{a_1} \dots 1_{a_2} \dots \text{ is an injection.}$
- $|[0,1)| \le |\mathcal{P}(\mathbb{Z}^+)|$
 - $\forall x \in [0,1), x = 0, r_1 r_2 \cdots (r_1, r_2, \cdots \in \{0, \dots, 9\}, \text{no } \dot{9})$
 - $0 \leftrightarrow 0000, 1 \leftrightarrow 0001, \dots, 9 \leftrightarrow 1001$
 - x has a binary representation $x = 0.b_1b_2 \cdots$
 - $f:[0,1) \to \mathcal{P}(\mathbb{Z}^+) \ x \mapsto \{i: i \in \mathbb{Z}^+ \land b_i = 1\} \text{ is an injection }$

THEOREM:
$$|\mathbb{Z}^+| < |\mathcal{P}(\mathbb{Z}^+)| = |[0,1)| = |(0,1)| = |\mathbb{R}|$$

The continuum hypothesis Edition: There is no cardinal number between \aleph_0 and c, i.e., there is no set A such that $\aleph_0 < |A| < c$.