BERT-ATTACK: Adversarial Attack Against BERT Using BERT

EMNLP 2020 발표: Baek, Hyeongryeol

Abstract

- 1. Task: generating adversarial samples
- 2. Contribution
 - a. effectively generate fluent and semantically-preserved adversarial samples
 - b. a higher **attacking success rate** and **a lower perturb percentage** compared with previous attacking algorithms

Introduction

Introduction

- 1. Neural Networks are vulnerable to adversarial samples
 - a. imperceptible to human judges
 - b. misleading the neural networks to incorrect predictions

Heuristic	Premise	Hypothesis	Label
Lexical	The banker near the judge saw the actor.	The banker saw the actor.	Е
overlap	The lawyer was advised by the actor.	The actor advised the lawyer.	E
heuristic	The doctors visited the lawyer.	The lawyer visited the doctors.	N
	The judge by the actor stopped the banker.	The banker stopped the actor.	N
Subsequence	The artist and the student called the judge.	The student called the judge.	Е
heuristic	Angry tourists helped the lawyer.	Tourists helped the lawyer.	E
	The judges heard the actors resigned.	The judges heard the actors.	N
	The senator near the lawyer danced.	The lawyer danced.	N
Constituent	Before the actor slept, the senator ran.	The actor slept.	Е
heuristic	The lawyer knew that the judges shouted.	The judges shouted.	E
	If the actor slept, the judge saw the artist.	The actor slept.	N
	The lawyers resigned, or the artist slept.	The artist slept.	N

< Examples of misleading NN. NN is prone to label all examples as E (entailment). >

Introduction

Introduction

- 1. Neural Networks are vulnerable to adversarial samples
 - a. imperceptible to human judges
 - b. misleading the neural networks to incorrect predictions

Dataset			Label			
MANT T	Ori	$Some \ rooms \ have \ balconies \ . \qquad Hypothesis \qquad All \ of \ the \ rooms \ have \ balconies \ off \ of \ them \ .$	Contradiction			
MNLI	Adv	${\color{red} \textbf{Many} \ rooms \ have \ balconies} \ . \ \ \textbf{Hypothesis} \ \ \textbf{All of the rooms have balconies off of them} \ .$	Neutral			
IMDB	Ori	it is hard for a lover of the novel northanger abbey to sit through this bbc adaptation and to keep from throwing objects at the tv screen why are so many facts concerning the tilney family and mrs. tilney's death altered unnecessarily? to make the story more 'horrible?'				
	Adv	it is hard for a lover of the novel northanger abbey to sit through this bbc adaptation and to keep from throwing objects at the tv screen why are so many facts concerning the tilney family and mrs . tilney's death altered unnecessarily? to make the plot more' horrible?'	Positive			
IMDB	Ori	i first seen this movie in the early $80s$ it really had nice picture quality too. anyways, i'm glad i found this movie again the part i loved best was when he hijacked the car from this poor guy this is a movie i could watch over and over again. i highly recommend it.	Positive			
	Adv	i first seen this movie in the early 80s it really had nice picture quality too . anyways , i 'm glad i found this movie again the part i loved best was when he hijacked the car from this poor guy this is a movie i could watch over and over again . i inordinately recommend it .	Negative			

< Adversarial samples. Label should be invariant. >

Introduction

- 2. Key to generating adversarial samples
 - a. imperceptible to human judges yet misleading to neural models
 - b. fluent in grammar and semantically **consistent with original inputs**
- 3. Proposed methods
 - a. **finding the vulnerable words** in one given input sequence for the target model
 - b. applying BERT in **a semantic-preserving way** to generate substitutes for the vulnerable words

Methods

Methods: Finding vulnerable words

- 1. Finding important words
 - a. comparing the prediction probability b/w S with and without token w_i
 - b. taking \epsilon percent of the most important words

Let $S = [w_0, \dots, w_i \dots]$ denote the input sentence, and $o_y(S)$ denote the logit output by the target model for correct label y, the importance score I_{w_i} is defined as

$$I_{w_i} = o_y(S) - o_y(S_{\backslash w_i}), \tag{1}$$

where $S_{\backslash w_i} = [w_0, \cdots, w_{i-1}, [\texttt{MASK}], w_{i+1}, \cdots]$ is the sentence after replacing w_i with [MASK].

Methods

Methods: Word replacement

- 2. Word replacements
 - a. feeding original sequence to get candidates of token w_j
 - i. not using [MASK] token: more semantic-consistent
 - b. filtering stop words and antonyms using synonym dictionaries
 - i. preserving original labels

HYU AILAB

Methods

Methods: Pseudo-code

1: p	rocedure WORD IMPORTANCE RANKING		
2:	$S = [w_0, w_1, \cdots]$ // input: tokenized sentence		
3:	$Y \leftarrow \text{gold-label}$		
4:	for w_i in S do		
5:	calculate importance score I_{w_i} using Eq. 1		
6:	select word list $L = [w_{top-1}, w_{top-2}, \cdots]$	Calculating word importance	
7:	// sort S using I_{w_i} in descending order and collect $top-K$ words		
8: p	rocedure Replacement using BERT		
9:	$H = [h_0, \cdots, h_n]$ // sub-word tokenized sequence of S		
10:	generate top-K candidates for all sub-words using BERT and get $P^{\in n \times K}$		
11:	for w_j in L do		
12:	if w_j is a whole word then		
13:	get candidate $C = Filter(P^j)$		
14:	replace word w_j	Itarating takana apparding to importance as	oro
15:	else	Iterating tokens according to importance so	OIE
16:	get candidate C using PPL ranking and Filter	And getting candidates	
17:	replace sub-words $[h_j, \cdots, h_{j+t}]$		
18:	Find Possible Adversarial Sample		
19:	for c_k in C do		
20:	$S' = [w_0, \cdots, w_{j-1}, c_k, \cdots]$ // attempt	Replacing a token with a candidate one by	<i>/</i> 0
21:	if $\operatorname{argmax}(o_y(S'))! = Y$ then	And calculating a prediction score	
22:	return $S^{adv} = S'$ // success attack		
23:	else		
24:	if $o_y(S') < o_y(S^{adv})$ then		
25:	$S^{adv} = [w_0, \cdots, w_{j-1}, c, \cdots]$ // do one perturbation		
26:	return None		
		8	

Metrics

- After-attack-accuracy (lower is better)
 - : the acc. scores on the adversarial samples
- Query number per sample (lower is better)
 - : the total times of sending a text to the target model to get the prediction score
- Semantic consistency (higher is better)
 - : sim. score b/w the adversarial sample and the original sequence using Universal Sentence Encoder
- Perturbed percentage (lower is better)
 - : the ratio of the number of perturbed words to the text length

Experiments

- Model comparison across metrics
- Human evaluation of adversarial samples w.r.t grammar and fluency
- Transferability: examining if adversarial samples curated based on one model can also fool another
- Adversarial training: finetuning with adversarial samples

Experiments

Experiments: Model comparison across metrics

Dataset	Method	Original Acc	Attacked Acc	Perturb %	Query Number	Avg Len	Semantic Si
	BERT-Attack(ours)	77 124012777729	15.5	1.1	1558		0.81
Fake	TextFooler(Jin et al., 2019)	97.8	19.3	11.7	4403	885	0.76
	GA(Alzantot et al., 2018)		58.3	1.1	28508	_	L.
4.00 MW 100	BERT-Attack(ours)	N. M. Marine	5.1	4.1	273		0.77
Yelp	TextFooler	95.6	6.6	12.8	743	157	0.74
	GA		31.0	10.1	6137		-
	BERT-Attack(ours)		11.4	4.4	454		0.86
IMDB	TextFooler	90.9	13.6	6.1	1134	215	0.86
	GA	• (45.7	4.9	6493		-
	BERT-Attack(ours)	94.2	10.6	15.4	213	43	0.63
AG	TextFooler		12.5	22.0	357		0.57
	GA		51	16.9	3495		-1
	BERT-Attack(ours)		7.4/16.1	12.4/9.3	16/30	8/18	0.40/ 0.55
SNLI	TextFooler	89.4(H/P)	4.0/20.8	18.5/33.4	60/142		0.45/0.54
	GA		14.7/-	20.8/-	613/-		-
	BERT-Attack(ours)		7.9/11.9	8.8/7.9	19/44		0.55/0.68
MNLI matched	TextFooler	85.1(H/P)	9.6/25.3	15.2/26.5	78/152	11/21	0.57/0.65
	GA		21.8/-	18.2/-	692/-		51
LIMITALIS	BERT-Attack(ours)		7/13.7	8.0/7.1	24/43	1000000	0.53/0.69
MNLI nismatched	TextFooler	82.1(H/P)	8.3/22.9	14.6/24.7	86/162	12/22	0.58/0.65
	GA	6	20.9/-	19.0/-	737/-		-

Table 1: Results of attacking against various fine-tuned BERT models. TextFooler is the state-of-the-art baseline. For MNLI task, we attack the hypothesis(H) or premises(P) separately.

Purturbed percentage and query number are significantly low

BERT-Attack

Experiments

Experiments: Human evaluation & Transferability

- More difficult; semantics-preserved
- More transferable in NLI task

Dataset		Accuracy	Semantic	Gramma	
MNLI	Original	0.90	3.9	4.0	
MINLI	Adversarial	0.70	3.7	3.6	
IMDB	Original	0.91	4.1	3.9	
	Adversarial	0.85	3.9	3.7	

Dataset	Model	LSTM	BERT-base	BERT-large
	Word-LSTM	S	0.78	0.75
IMDB	BERT-base	0.83	=:	0.71
	BERT-large	0.87	0.86	(5)
Dataset	Model	ESIM	BERT-base	BERT-large
	ESIM	-	0.59	0.60
MNLI	BERT-base	0.60	(- 0)	0.45
	BERT-large	0.59	0.43	-

Table 6: Transferability analysis using attacked accuracy as the evaluation metric. The column is the target model used in attack, and the row is the tested model.

HYU AILAB

Experiments: Adversarial training

- The models becomes more robust to adversarial-attacks.

Dataset	Method	Ori Acc	Atk Acc	Perturb %
MNLI	BERT-Atk	85.1	7.9	8.8
	+Adv Train	84.6	23.1	10.5

Lesson learned

- Adversarial samples make the model more robust to heuristic methods.
- Transferability of adversarial samples is poor (can generate target model specific samples).
- It is harder to attack pretrained model, i.e., requiring more query times and perturbed words.