PercolationDFS

Grid Size (N by N)	Num of Trials (T)	Time	Mean	Standard Deviation	95% Conf. Interval
100	10	0.546890	0.593440	0.018743	[0.581823, 0.605057]
200	10	6.358221	0.590292	0.009209	[0.584585, 0.596000]
400	10	82.6047819	0.590939	0.002731	[0.589247, 0.592632
100	20	1.163771	0.592645	0.014201	[0.586421, 0.598869]
200	20	13.506909	0.591840	0.010227	[0.587358, 0.596322]
400	20	162.939465	0.590832	0.004670	[0.588785, 0.592878]

- 1. How does doubling the grid-size, N, affect the running time?
 - a. Doubling the grid size increases the run time by a factor of approximately 12
- 2. How does doubling the number of experiments, T, performed affect the running time?
 - a. Doubling the number of experiments performed increases the runtime by a factor of two (thus, it's linear)
- 3. Try to provide a formula for the running time in terms of N and T, use big-Oh.
 - a. N affects runtime linearly (by factor of 12 when doubling) and T affects runtime linearly as well. The runtime has time complexity of approximately O(N*kT) = O(NT)
- 4. Estimate the largest grid-size you can run in a day for 100 trials (assume time is the only limit here, not memory).
 - a. The number of trials increases by 10, thus increasing the runtime by a factor of 10 as well. Thus, for a grid size of 100 by 100, the run time will be about 60 seconds or a minute. A day has 1440 minutes (60 min / hour * 24 hours = 1440 minutes), and we need the grid size to increase by a factor of X such that the runtime increases by a factor of 1440. Since doubling the grid size increases run time by approx 12, and since 12^3 is approximately 1440 minutes, we can double the grid size 2^3 times, or the largest grid-size is approximately 800 by 800 to run in a day with 100 trials.

- 5. Give estimate for how much memory is used in terms of N, the grid-size. Provide your estimate in bytes and use four bytes for an int, one byte for a boolean, and eight bytes for a double. For example, an array of N integers uses 4N bytes in this model, there's no overhead for the array other than storing the integer values.
 - a. Each cell in the N by N grid stores an int or 4 bytes, so the array of N^2 integers uses 4N^2 bytes, which is in O(N^2)

PercolationDFSFast

Grid Size (N by N)	Num of Trials (T)	Time	Mean	Standard Deviation	95% Conf. Interval
100	10	0.114917	0.593440	0.018743	[0.581823, 0.605057]
200	10	0.253476	0.590292	0.009209	[0.584585, 0.596000]
400	10	0.504194	0.590939	0.002731	[0.589247, 0.592632]
100	20	0.168339	0.592645	0.014201	[0.586421, 0.598869]
200	20	0.374967	0.591840	0.010227	[0.587358, 0.596322]
400	20	0.844927	0.590320	0.012327	[0.587101, 0.598927]

- 1. How does doubling the grid-size, N, affect the running time?
 - a. It approximately doubles the running time
- 2. How does doubling the number of experiments, T, performed affect the running time?
 - a. It approximately doubles the running time
- 3. Try to provide a formula for the running time in terms of N and T, use big-Oh.
 - a. O(NT)
- 4. Estimate the largest grid-size you can run in a day for 100 trials (assume time is the only limit here, not memory).
 - a. With 100 trials, we need to multiple the runtime of 0.115 by 10, because of the tenfold increase in T, thus getting 1.15 seconds for N = 100 and T = 100. A day has 86400 seconds, so 86400/1.15 is approximately 75000

seconds, so we can increase N by a factor of approximately log_2(75000) = 16, or 16*100 = 1600

- 5. Give estimate for how much memory is used in terms of N, the grid-size. Provide your estimate in bytes and use four bytes for an int, one byte for a boolean, and eight bytes for a double. For example, an array of N integers uses 4N bytes in this model, there's no overhead for the array other than storing the integer values.
 - a. Each cell in the N by N grid stores an int (4 bytes), so approximately 4N^2 bytes are used, which is in O(N^2)

PercolationUF-QuickFind

Grid Size (N by N)	Num of Trials (T)	Time	Mean	Standard Deviation	95% Conf. Interval
100	10	0.357217	0.593440	0.018743	[0.581823, 0.605057]
200	10	4.094621	0.590292	0.009209	[0.584585, 0.596000]
400	10	88.737023	0.590939	0.002731	[0.589247, 0.592632]
100	20	0.748193	0.592645	0.014201	[0.586421, 0.598869]
200	20	8.616876	0.591840	0.010227	[0.587358, 0.596322]
400	20	195.039239	0.592031	0.011329	[0.585458, 0.593218]

- 1. How does doubling the grid-size, N, affect the running time?
 - a. It increases it exponentially by 2^N
- 2. How does doubling the number of experiments, T, performed affect the running time?
 - a. It doubles the runtime as well
- 3. Try to provide a formula for the running time in terms of N and T, use big-Oh.
 - a. N affects runtime exponentially, and T increases it linearly, for a big Oh time of O(2^{N*}T)

- 4. Estimate the largest grid-size you can run in a day for 100 trials (assume time is the only limit here, not memory).
 - a. For 100 trials and N = 100, we get runtime is approximately 4 seconds. 86400 seconds in a day, and log _2 (86400) = ~16.4 so we can the largest grid size is 16.4*100 trials = 1640.
- 5. Give estimate for how much memory is used in terms of N, the grid-size. Provide your estimate in bytes and use four bytes for an int, one byte for a boolean, and eight bytes for a double. For example, an array of N integers uses 4N bytes in this model, there's no overhead for the array other than storing the integer values.
 - a. QuickFind uses an int array of size N^2+2, or 4(N^2+2) bytes, and PercolationUF uses a boolean array of size N^2, or a total of 5N^2+8 bytes, which is in O(N^2)

PercolationUF-QuickUWPC

Grid Size (N by N)	Num of Trials (T)	Time	Mean	Standard Deviation	95% Conf. Interval
100	10	0.131078	0.593440	0.018743	[0.581823, 0.605057]
200	10	0.596107	0.590292	0.009209	[0.584585, 0.596000]
400	10	0.617702	0.590939	0.002731	[0.589247, 0.592632]
100	20	0.166709	0.592645	0.014201	[0.586421, 0.598869]
200	20	0.331767	0.591840	0.010227	[0.587358, 0.596322]
400	20	0.760565	0.590832	0.004670	[0.588785, 0.592878]

- 1. How does doubling the grid-size, N, affect the running time?
 - a. It similarly roughly doubles the runtime
- 2. How does doubling the number of experiments, T, performed affect the running time?
 - a. It increases T by log T
- 3. Try to provide a formula for the running time in terms of N and T, use big-Oh.

- a. For T, it is O(log T), and for N it's O(N), so the run time is roughly O(N log T)
- 4. Estimate the largest grid-size you can run in a day for 100 trials (assume time is the only limit here, not memory).
 - a. Because trials affect run time by $\log T$, if N = 100, we get for T = 100, run time is 0.26. Doubling N doubles run time, and there are 86400 seconds in a day. At N = 400, run time is approx 1 sec. $\log_2(86400)$ = 16.4. Thus the largest grid size is approximately 16.4*400 = 6560.
- 5. Give estimate for how much memory is used in terms of N, the grid-size. Provide your estimate in bytes and use four bytes for an int, one byte for a boolean, and eight bytes for a double. For example, an array of N integers uses 4N bytes in this model, there's no overhead for the array other than storing the integer values.
 - a. PercolationUF uses a boolean array of size N^2, or using N^2 bytes.
 QuickUWPC uses two int arrays of size 8N^2 + 2 bytes total, for a total of 6N^2+8 bytes which is O(N^2)