In many practical problems, the function Y(x) is specified either graphically or through a table of lovegoinding values of my & m. In Such Problems, the ittervals land be evaluated by usual methods of integration to Find as, an 3 bn; They lande enhanted using he following property of detinite integrals. Property: If M is the mean Value or p(x) over the interval (a,6), then Now, using his property, afternative fumulae $a_0 = \frac{1}{N} \int_{0}^{C+2N} f(x) dx = 2 \frac{\sum f(x)}{N} = \frac{2}{N} \sum f(x)$ an= 1 (426) Sin (1/2) on = = 2 Sta) sin (1/2) on

ao = 2 Sta) anz 2 fra) ws(nfm) an= 2 \(\frac{1}{N} \) Sin (\(\lambda \lambda \rangle \) NOTE := Where N 5 he number of Subjutervals .. The Found Service is かい=金サ 型[an ws(加)+bn Sin(加)] put In 7(1) = ao + \(\sum_{n=1}^{\infty} \left[a_n \ws(no) + b_n \sin(no) \right] 2(1)=do + [a, 6000 + b, sino) + [a, 60120) + be sin 120] Hare [a, 650+ b, sno] -> 1st harmonic [a2 605 (20) + b2 Sihl20) -> 2hd hav monic & 5000 197+6 -> amplitude of 1st harmonic amplitude & ao -> Constant term

Scanned by TapScanner

Lapri	es y anics.	as a	Foura	Sonie	upt	o fin	+		
2:	0		21/3		1				
3(n)	7.9	7.2	3.6	0.5	0.9	6.8	7.9		
Ans: By dida F(x) is defined in (0,2x) period = 2l =) 2l=2x = (l=x), night = nn \$ N=6 : Y(x) = \frac{a_0}{2} + \sum [a_n \los (nx) + b_n \sin (nn)] Formar some type of 1st harmonic is F(x) = \frac{a_0}{2} + [a_n \los (x) x + b_1 \sin x)									
When an = 2 \(\Str), an = 2 \(\Str) \los \(\text{N} \), and = 2 \(\Str) \los \(\text{N} \), sin \(\text{Now (mstruct he foll table} \)									
0 60 120 180 240 300	100)	0.866 0.866 -0.866 -0.866	1.0 0.5 -0.5	5(A)S 0.0 6.23 -0.7 -5.88 -2.68	52 76 - 98	7.9 3.6 -0.45 3.45	The Sto)=first Neglect any one of here in the table		
. Forward	$\frac{26.9}{1.00} = \frac{2}{6} \times 26.9 = 8.9667, \alpha_1 = \frac{2}{6} (18.15) = 4.05, b_1 = \frac{2}{6} (2.6846)$ $\frac{26.9}{1.00} = \frac{2}{6} \times 26.9 = 8.9667, \alpha_1 = \frac{2}{6} (18.15) = 4.05, b_1 = \frac{2}{6} (2.6846)$ $= 0.8949$ $\frac{1}{1.00} = (1.00) = (1$								

I find he first have local weeks to cosine ? two coefficients of sine terms in the Foreign somes for the following duton W 0 1 2 3 4 5 Hm 9 18 24 28 26 20 his: Was a defined she (0,6) [+ If is understood but 1/0)=8/6)=9] 21=63 (=3), hTV = MTV. N=6 Here 4=0,1,2 ". The Fourier Sories upto 2nd harmonics is 初十二四十一四(1)十月5四(1) + [a2 (05(211x)) + b25in(25x)) 7(1) = ao + [a, ws 0 + b, sin0] + [a2 (05(00) + b2 sin(20) b1= = 5 5 800 Sino $a_2 = \frac{2}{N} \sum f(x) \cos(20)$

			,	, ,				-	
	2	TTX = 0	Sino	Cuso	和	fa1529	5(a) (a) 6	ffe) Gin (20)	HODGAGO)
-	0	0	0	1	9	0	9		
	1	17/3	V3/2	1/2	18	953	9		
	2	211/3	V3/2	-1/2	24	1253	-12		108/2
		T					-28	man.	
	4	411/3	- 53/2	-1/2	26	-13 5	-13	No.	
	5	51/3	-03/2	1/2	20	-1053	10		
					125	-253	-25		

$$\alpha_0 = \frac{2}{6} \times 125 = 41.6667$$

$$\alpha_1 = \frac{2}{6} \times -25 = -8.3334$$

$$b_1 = \frac{2}{6} \times -253 = -1.1548$$

Complex Fourier Service

The Complex Fourier Series of a periodic function K(x) in the interval (-1,1) is

$$\mathcal{X}(x) = \sum_{n=-\infty}^{\infty} C_n e^{\left(\frac{n\pi x}{4}\right)}$$

$$3(x) = \sum_{n=-\infty}^{\infty} C_n e^{\frac{(in\pi x)}{2}}$$
Where $C_n = \frac{1}{2l} \int_{-l}^{l} f(x) e^{\frac{(in\pi x)}{2}} dx$

(1) Find the Complex form of Fourier series of 8(x)= = = x in -1< x < 1

Ans: Here 21=1-(-1)=2=> 1=1, none = none

· Complen Fowier Soviers for star) is

$$f(x) = \sum_{n=-\infty}^{\infty} C_n e^{in\pi x}$$
, When $C_n = \frac{1}{2} \int_{-\infty}^{\infty} 8\pi n e^{-in\pi x} dn$

$$C_n = \frac{1}{2} \int_{-\infty}^{\infty} e^{-in\pi x} dx = \frac{1}{2} \int_{-\infty}^{\infty} e^{-(1+in\pi)x} dx$$

$$=\frac{1}{2}\left[\frac{-(1+in\pi)}{-(1+in\pi)}\right]^{2}=\frac{1}{2\left[1+in\pi\right]}\left[\frac{-(1+in\pi)}{2\left[1+in\pi\right]}\left[\frac{-(1+in\pi)}{2\left[1+in\pi\right]}\right]^{2}$$

$$= \frac{1}{2(1+in\pi)} \left[\frac{1}{2} e^{-\frac{1}{2} - e^{-\frac{1}{2} -$$

$$= \frac{1}{2(1+ih\pi)} \left[(-1)^{3} + (-i)^{3} +$$

intra