利用 HUNGARIAN METHOD 及 EDMONDS-KARP ALGORITHM 實作 MAXIMUM BIPARTITE MATCHING

元智大學資訊工程學系 111學年度專題製作成果

專題生:張宇越、賴仲倫

指導教授:張經略

一、摘要

本次研究是比較Hungarian algorithm 與 Edmonds-Karp algorithm兩個演算法中,何者可以 在最短的時間解決maximum bipartite matching。

二、問題描述

將一個分類好的bipartite graph ,我們欲經由Hungarian algorithm 與Edmonds-Karp algorithm去解決maximum bipartite matching,並且透過多筆測資比較兩個演算法的時間,希望可以找出哪個演算法配對的速度較快,或是在某些情况或測資下某個演算法會是最快的。

三、研究方法與步驟

1. 何謂bipartite graph?

也被稱為bigraph,圖上的點會被分成2個互斥集,同個集合中的點不會有邊相連。

2. Edmond-Karp algorithm

從源點使用BFS(或DFS)找到一條增廣路徑,當第一次到達匯點 T 後就停止搜索,然後執行增加流量和建立反向邊的操作(如圖二),然後再繼續從源點開始找增廣路徑,若不能再找到增廣路徑則得到最大流,而最大流即此圖最大匹配數。

圖一、 Edmond-Karp algorithm

圖二、增加流量和建立反向邊的操作

3. Hungarian algorithm

① 何謂增廣路徑?

增廣路徑是說起點和終點都是目前的配對所沒碰到 的點,且中間一條邊不在目前的配對裡、一條邊在目前的 配對裡、下一條邊又不在目前的配對裡,如此交錯的路徑, 稱為增廣路徑。

② Hungarian algorithm的核心就是尋找增廣路徑,是一種用增廣路徑求二分圖最大匹配的算法,實作方法如下:

STEP1:如圖三中所示(1,6)和(2,7)為一組配對,為了找到最大配對數,我們繼續尋找有沒有其他增廣路徑,尋找後可以發現一條由虛線和紅線組成的增廣路徑(5,1,6,2,7,4)。

STEP2:在增廣路徑中移除本來在配對裡面的邊,因此可得到新的一組配對為(1,5)、(2,6)、(4,7),且同時得到最大匹配數為3。

若還不是最大匹配數,則依照此二步驟繼續尋找新的增廣路徑,使配對數增大。

圖三、bipartite graph經Hungarian algorithm後之結果

四、成果與討論

從表一中可以發現,這三種演算法經由程式所隨機產生的100筆測資後,得知Hungarian algorithm的平均時間是最短的,而Edmonds Karp algorithm (BFS) 的平均時間是最長的,Edmonds Karp algorithm (DFS) 的平均時間是中間值。透過這項研究,可以發現利用Hungarian algorithm的平均時間是最快的。

表一、三種方法之比較

演算法	平均時間(ms)
Hungarian algorithm	0.746526 ms
Edmonds Karp algorithm (DFS)	2.01412 ms
Edmonds Karp algorithm (BFS)	2.40401 ms