

IMD0033 - Probabilidade Aula 22 - Distribuições de Probabilidade

Ivanovitch Silva Junho, 2018

Agenda

- Caracterizando distribuições de probabilidade
- Distribuições Discretas
 - Bernoulli
 - Binomial
 - Geométrica
- Distribuições Contínuas
 - Uniforme
 - Exponencial

Variável Aleatória (random variable)

$$T \longmapsto 0$$
$$H \longmapsto 1$$

$$\Omega = \{H, T\}$$

$$X(H) = 0$$

$$X(T) = 1$$

Uma variável aleatória é uma função que faz o mapeamento de cada elemento de um espaço amostral para um número real.

Variável Aleatória (random variable)

http://bit.do/simulador_prob

Variável Aleatória (random variable)

- Discretas (discrete)
- Contínuas (continuous)
- Misturadas (mixed) não é discreta tampouco contínua

Variável Aleatória - Caracterização

Discretas	PMF	CDF
Contínua	PDF	CDF

Função Massa de Probabilidade (Probability Mass Function - PMF) Função Densidade de Probabilidade (Probability Density Function - PDF) Função Distribuição Acumulada (Cumulative Distribution Function - CDF)

Função de Massa de Probabilidade (PMF)

PMF é uma função que nos informa a probabilidade de que uma variável aleatória tenha exatamente um determinado valor.

$$P(X = x) = f(x)$$

$$0 \le f(x) \le 1$$

$$\sum f(x) = 1$$

$$0.3$$

Função de Massa de Probabilidade (PMF)

```
# pmf - probability mass function
from sympy.stats import Die, density, FiniteRV

X = Die('X',6)
print("Dice - 6 faces: pmf(X)\n",density(X).dict)

Dice - 6 faces: pmf(X)
{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6}
```


Função de Massa de Probabilidade (PMF)

```
# pmf - probability mass function
pmf = {1: 0.2, 2: 0.1, 3: 0.3, 4: 0.1, 5: 0.2, 6: 0.1}
Y = FiniteRV('Y',pmf)
print("Biased Dice - 6 faces: pmf(Y)\n",density(Y).dict)
Biased Dice - 6 faces: pmf(Y)
```

 $\{1: 0.2, 2: 0.1, 3: 0.3, 4: 0.1, 5: 0.2, 6: 0.1\}$

Função de distribuição acumulada (CDF)

A função distribuição acumulada de uma variável aleatória X, representada em geral por F(x), é definida por:

$$F(X) = P(X \le x) - \infty \le x \le \infty$$

$$(P1) \Leftrightarrow 0 \leq F(X) \leq 1$$

$$(P2) \Leftrightarrow \lim_{x \to -\infty} F(X) = 0$$

$$(P3) \Leftrightarrow \lim_{x \to \infty} F(X) = 1$$

Função de distribuição acumulada (CDF)

```
# cdf - cumulative distribution function
 from sympy.stats import cdf
 print("Dice - 6 faces: pmf(X)\n", density(X).dict)
 print("Dice - 6 faces: cdf(X)\n", cdf(X))
 Dice - 6 faces: pmf(X)
   \{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6\}
 Dice - 6 faces: cdf(X)
   \{1: 1/6, 2: 1/3, 3: 1/2, 4: 2/3, 5: 5/6, 6: 1\}
```


Função de distribuição acumulada (CDF)

```
print("Biased Dice - 6 faces: pmf(Y)\n",density(Y).dict)
print("Biased Dice - 6 faces: cdf(Y)\n", cdf(Y))

Biased Dice - 6 faces: pmf(Y)
{1: 0.2, 2: 0.1, 3: 0.3, 4: 0.1, 5: 0.2, 6: 0.1}
Biased Dice - 6 faces: cdf(Y)
{1: 0.200000000000000, 2: 0.300000000000, 3: 0.600000000000, 4: 0.700000000000, 5: 0.90000000000, 6: 1.00000000000000)}
```


Desafio I

- 1) Assuma um Dado de 8 lados iguais
- 2) X é uma variável aleatória relacionada com a face do Dado em um lançamento.
- 3) Utilize cdf(X) para fazer um programa que simule o lançamento desse Dado.
- 4) E se o Dado for enviesado?

Distribuições Discretas - Bernoulli

- Muitos experimentos admitem apenas dois valores.
- Esses experimentos são conhecidos como ensaios de Bernoulli e originam variáveis aleatórias com distribuição de Bernoulli.

Pacote chegou ou não corrompido?

Choque Térmico

 $\Delta = 80^{\circ}$ - Houve defeito? (sim,não)

Distribuições Discretas - Bernoulli

$$P(X = x) \Leftrightarrow f(x) = \begin{cases} q, & x = 0 \\ p, & x = 1 \end{cases}$$

$$P(X \le x) \Leftrightarrow F(x) = \begin{cases} 0, & x < 0 \\ q, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

Distribuições Discretas - Binomial

Para gerar a pmf de Bernoulli foi considerado um simples ensaio de Bernoulli.

O objetivo agora é realizar n ensaios de Bernoulli com probabilidade de sucesso igual a p para todos os ensaios.

Notação: $X \sim B(n,p)$ Indica que a variável aleatória X possui uma distribuição Binomial com parâmetros $n \in p$.

Distribuições Discretas - Binomial

Considere uma sequência de n ensaios independentes de Bernoulli com probabilidade de sucesso p em cada ensaio.

X é uma variável aleatória que denota o número de sucessos em cada n ensaios.

$$P(X = k) \Leftrightarrow f(k, n, p) = \begin{cases} \binom{n}{k} p^k (1 - p)^{n - k} & 0 \le k \le n \\ \text{caso contrário} \end{cases}$$

$$P(X \le x) \Leftrightarrow F(k, n, p) = \sum_{i=0}^{k} \binom{n}{i} p^k (1-p)^{n-k}$$

Distribuições Discretas - Binomial

Distribuição Binomial - Exemplo

Um fabricante de chip VLSI apresenta uma expectativa de defeito nos chips de 10%. A equipe de controle de qualidade realiza uma contagem em grupos aleatórios de 35 chips.

Esse problema é típico para o uso de uma variável aleatória com Distribuição Binomial. A probabilidade de "sucesso" *p* seria a probabilidade de defeito nos chips enquanto que o número de ensaios *n* seria 35.

$$f(k, 35, 0.1) = {35 \choose k} 0.1^k (0.9)^{35-k}$$

Distribuição Binomial - Exemplo

Distribuição Binomial - Exemplo

	instant	dteday	season	yr	mnth	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	casual	registered	cnt
0	1	2011-01-01	1	0	1	0	6	0	2	0.344167	0.363625	0.805833	0.160446	331	654	985
1	2	2011-01-02	1	0	1	0	0	0	2	0.363478	0.353739	0.696087	0.248539	131	670	801
2	3	2011-01-03	1	0	1	0	1	1	1	0.196364	0.189405	0.437273	0.248309	120	1229	1349
3	4	2011-01-04	1	0	1	0	2	1	1	0.200000	0.212122	0.590435	0.160296	108	1454	1562
4	5	2011-01-05	1	0	1	0	3	1	1	0.226957	0.229270	0.436957	0.186900	82	1518	1600

Compartilhamento de Bicicletas

p - probabilidade que o número de aluguéis seja maior que 5k em um dia N - 31 dias (mês)

$$p^k \times (1-p)^{N-k} \binom{N}{k}$$

Qual seria a probabilidade que em um intervalo de um mês pelo menos 10 dias tem mais de 5k aluguéis?

Distribuições Discretas - Geométrica

Considerando uma sequência de ensaios de Bernoulli e a variável aleatória X que indica a quantidade k de ensaios até o primeiro sucesso ocorrer, dizemos que X apresenta uma **Distribuição Geométrica** - X~Geom(k,p)

$$P(X = k) \Leftrightarrow f(k,p) = \begin{cases} (1-p)^{k-1} * p & k = 1, 2, 3, \dots \\ \text{caso contrário} \end{cases}$$
$$P(X \le k) \Leftrightarrow F(k,p) = \sum_{i=1}^{k} (1-p)^{k-1} * p$$
$$= 1 - (1-p)^{k}$$

Distribuições Discretas - Geométrica

Distribuições Discretas - Geométrica

Compartilhamento de Bicicletas

Qual seria a probabilidade de termos > 5k aluguéis exatamente no quinto dia do mês?

Distribuições Contínuas - Uniforme

Todos os elementos do espaço amostral tem a mesma probabilidade de ocorrência. É comumente representada por: **Uniforme(x,a,b)**

$$P(X = x) \Leftrightarrow f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ \text{caso contrário} \end{cases}$$
$$P(X \le x) \Leftrightarrow F(x) = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x \ge b \end{cases}$$

Distribuições Contínuas - Uniforme

Distribuições Contínuas - Exponencial

Uma das distribuições mais fáceis de lidar devido sua simplicidade

- Falhas de componentes eletrônicos, elétricos
- Tempo de chegada das requisições em um servidor
- Tempos de espera (filas, trânsito, voos, etc)

$$P(X = x) \Leftrightarrow f(x, \lambda) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & \text{caso contrário} \end{cases}$$
$$P(X \le x) \Leftrightarrow F(x, \lambda) = \begin{cases} 1 - e^{-\lambda x} & x \ge 0 \\ 0 & \text{caso contrário} \end{cases}$$

Distribuições Contínuas - Exponencial

