PHYS 427 - Discussion 07

March 11, 2025

Here is a quick review of the grand canonical ensemble. Suppose a system \mathcal{S} can exchange energy and particles with a reservoir \mathcal{R} . Suppose \mathcal{R} has temperature T and chemical potential μ . If the combined system $\mathcal{S} + \mathcal{R}$ is in thermal and diffusive equilibrium, then the probability that \mathcal{S} is in the microstate "i" is given by

$$p_i = \frac{e^{-\beta(E_i - \mu N_i)}}{\mathcal{Z}},\tag{1}$$

where $\beta = \frac{1}{k_B T}$. Here, E_i and N_i are respectively the energy and number of particles in \mathcal{S} when \mathcal{S} is in microstate "i", and \mathcal{Z} is the grand partition function

$$\mathcal{Z} \equiv \sum_{i} e^{-\beta(E_i - \mu N_i)}.$$
 (2)

- 1. Langmuir isotherms. A reservoir of monatomic ideal gas is in contact with the surface of a catalyst. The catalyst's surface has \mathcal{N} adsorption sites. A single gas particle can attach onto each site. The energy of an empty site is 0, and that of an occupied site is $\epsilon < 0$, i.e. it is energetically favorable to bind.
 - (a) Calculate the grand partition function of the catalyst.
 - (b) Show that the chemical potential of the gas is $\mu = k_B T \ln(n/n_Q)$. Hint: $S = Nk_B \left[\ln(n_Q/n) + 5/2\right]$ and n_Q is the number of "thermal de Broglie boxes" that fit into a unit volume. A "thermal de Broglie box" is a cube whose side length is the de Broglie wavelength $\frac{h}{p}$ of a gas particle whose kinetic energy is $\frac{p^2}{2m} \approx k_B T$.
 - (c) In equilibrium, the T and μ of the catalyst and the gas are the same. Show that the fraction of occupied surface sites is given by $f(T,p) = p/(p + p_0(T))$. Find $p_0(T)$, and fill in the blank: p_0 is the pressure at which ________.
 - (d) It is energetically favorable for every site to be occupied ($\epsilon < 0$). Then f = 1 minimizes the energy, so why are we finding f < 1? Give a physical explanation without any equations.
 - (e) Qualitatively sketch the Langmuir adsorption isotherms (the curves of constant T in the (P, f)-plane) for small, medium, and large T. If we want to increase the occupation at fixed pressure, should we increase or decrease T?
 - (f) (Optional) Prove the general formula $\langle N \rangle = \frac{1}{\beta} \frac{\partial \ln \mathcal{Z}}{\partial \mu}$ for any system in the grand canonical ensemble, where N denotes the number of particles in the system. Also prove the formula $\sigma_N^2 = \frac{1}{\beta} \frac{\partial \langle N \rangle}{\partial \mu}$, where $\sigma_N^2 \equiv \langle (N \langle N \rangle)^2 \rangle$. Note σ_N is called the variance or root-mean-square deviation (see why?)
 - (g) (Optional) Show that the relative variance in number of particles adsorbed to the surface, $\frac{\sigma_N}{\langle N \rangle}$, is $\sqrt{\frac{1-f}{Nf}}$.

2. Blackbody radiation. Consider a hot cube-shaped oven with volume $V = L^3$. The walls radiate electromagnetic energy into the oven, producing a photon gas that comes into equilibrium with the walls at some temperature T. We want to understand how various properties of the photon gas—energy, pressure, etc.—depend on T and V.

From classical E&M, standing electromagnetic waves in the oven can only have certain wavenumbers $\vec{k} = \frac{\pi}{L}\vec{n}$, where $n_x, n_y, n_z \in \{1, 2, 3, ...\}$. A standing wave can have one of two independent polarizations p = 1, 2 (e.g. horiontal or vertical). These allowed waves are called the *normal modes*. The frequency of a mode is $\omega = |\vec{k}|c$, independent of p.

From quantum mechanics, the amount of energy stored in the mode (\vec{n}, p) is quantized:

energy in the mode
$$(\vec{n}, p) = \hbar \omega_{\vec{n}} s_{\vec{n}, p}$$
 $s_{\vec{n}, p} = 0, 1, 2, \dots$ (3)

We say "there are $s_{\vec{n},p}$ photons in the mode (\vec{n},p) ".

- (a) Calculate the average number of photons $\langle s_{\vec{n},p} \rangle$ in the mode (\vec{n},p) . Hint: work in the canonical ensemble. Consider the single mode (\vec{n},p) to be the "system". The other modes and the walls act as the "reservoir". Start by writing down the partition function for this system.
- (b) Write down an expression for $U(\omega)d\omega$, the average amount of energy contained in all modes whose frequencies lie between ω and $\omega + d\omega$. Your expression will contain $\mathcal{D}(\omega)$, the density of modes per unit frequency interval. You don't need to calculate $\mathcal{D}(\omega)$ yet.
- (c) Calculate $\mathcal{D}(\omega)$. Insert the result in your answer to part (b) to obtain

$$U(\omega)d\omega = \frac{V\hbar}{\pi^2 c^3} \frac{\omega^3}{e^{\beta\hbar\omega} - 1} d\omega. \tag{4}$$

More often, we work with $u(\omega) \equiv U(\omega)/V$, the so-called spectral energy density.

(d) Cut a small hole in the wall. The photons fly out in all possible directions at speed c. We define $I(\omega)d\omega$ to be the *intensity* (power per unit area) of radiation leaving the hole with frequencies between ω and $\omega + d\omega$. Show that

$$I(\omega)d\omega = \frac{1}{4}cu(\omega)d\omega. \tag{5}$$

This result, when combined with $u(\omega)$ found above, is known as *Planck's law*. You don't need to obtain the factor of $\frac{1}{4}$ exactly (you can if you want), but at least make sure you understand why this factor should be less than $\frac{1}{2}$. A sketch is helpful.

(e) Integrate equation (5) to find the total intensity I_{tot} emitted by a blackbody over all frequencies. Without evaluating the integral, show

$$I_{\text{tot}} = \sigma T^4, \tag{6}$$

where σ is some constant that we won't compute now. This is the Stefan-Boltzmann law.

(f) Photons carry momentum \vec{p} as well as energy ε , related by $\varepsilon = |\vec{p}|c$. By considering the momentum deposited into the walls by the photons, show that the pressure P of the gas is

$$P = \frac{1}{3}u_{\text{tot}},\tag{7}$$

where $u_{\text{tot}} = \int_0^\infty u(\omega) d\omega$ is the total energy density¹.

The whole gas is $Z = \prod_{\vec{n},p} \frac{1}{1 - e^{-\beta\hbar\omega_{\vec{n}}}}$, so we have $F = -k_BT \ln Z = k_BT \sum_{\vec{n},p} \ln(1 - e^{-\beta\hbar\omega_{\vec{n}}}) \to k_BT \int_0^\infty d\omega \ \mathcal{D}(\omega) \ln(1 - e^{-\beta\hbar\omega}) = -\frac{1}{3}u_{\rm tot}V$. To get the last equality, integrate by parts using $\int \mathcal{D}(\omega)d\omega = \frac{1}{3}\omega\mathcal{D}(\omega)$ and notice the resulting integrand is $u(\omega)$. Then use $P = -(\partial F/\partial V)_T$ to get equation (7).