PSY9511: Seminar 4

The basics of regression and classification

Esten H. Leonardsen 29.05.2024

What is statistical learning?

What is statistical learning?

Inferentiental view: Finding a function $\hat{f}(X)$ that describes the relationship between some input variables X and an output variable y.

What is statistical learning?

Inferentiental view: Finding a function $\hat{f}(X)$ that describes the relationship between some input variables X and an output variable y.

Predictive view: Finding a function $\hat{f}(X)$ that, when given a new set of inputs X allows us to predict an output y.

What is statistical learning?

Inferentiental view: Finding a function $\hat{f}(X)$ that describes the relationship between some input variables X and an output variable y.

Predictive view: Finding a function $\hat{f}(X)$ that, when given a new set of inputs X allows us to predict an output y.

$$\hat{y} = e^{3.86 - 0.0073x}$$

Plan for the day:

• Different types of outputs y: Regression vs classification

- Different types of outputs *y*: Regression vs classification
- Simple solutions to regression problems

- Different types of outputs *y*: Regression vs classification
- Simple solutions to regression problems
 - · Linear regression
 - · k nearest neighbours
- Finding $\hat{f}(X)$: Training machine learning models

- Different types of outputs *y*: Regression vs classification
- Simple solutions to regression problems
 - · Linear regression
 - · k nearest neighbours
- Finding $\hat{f}(X)$: Training machine learning models
- Simple solutions to classification problems

- Different types of outputs y: Regression vs classification
- · Simple solutions to regression problems
 - · Linear regression
 - · k nearest neighbours
- \cdot Finding $\hat{f}(X)$: Training machine learning models
- Simple solutions to classification problems
 - · Logistic regression
 - · Generative models

Plan for the day:

- Different types of outputs y: Regression vs classification
- · Simple solutions to regression problems
 - · Linear regression
 - · k nearest neighbours
- Finding $\hat{f}(X)$: Training machine learning models
- Simple solutions to classification problems
 - · Logistic regression
 - · Generative models

Plan for future lectures:

- · How do we evaluate how good our models are? (Lecture 3)
- Complex solutions to regression and classification problems (Lecture 4 and onwards)

Regression vs classification

