Computabilidade Aula 2 - Revisão de Autômatos Prof. Rodrigo Mafort

Aulas

- Sextas:
 - Horário: 09h40 até 12h20

Material das Aulas e Atividades

 Todo o material das aulas, incluindo as atividades propostas, será postado no Google Classroom da disciplina.

• Link:

https://classroom.google.com/c/NjAwO TlzMjM1NjA3?cjc=cltfict

Ou leia o QR-Code ao lado.

Autômato

 Máquina abstrata que recebe entradas e produz saídas de acordo com um conjunto de regras predefinidas

- Existem diferentes tipos de autômatos:
 - Autômatos finitos determinísticos
 - Autômatos finitos não-determinísticos
 - Autômatos com pilha
 - Máquinas de Turing

- Pode ser visto como uma máquina formada por três componentes:
 - Fita: Dispositivo de entrada que contém a informação que o autômato deve processar.
 - Unidade de Controle: Armazena o estado corrente da máquina e controla a cabeça de leitura da fita. A unidade de controle se movimenta sobre a fita da esquerda para a direita.
 - Programa: Comanda as leituras e determina a transição de estados da máquina

• Definição formal: Um autômato finito determinístico é formado por um 5-upla: $M=(\Sigma,Q,\delta,q_0,F)$

Onde:

- Σ é um alfabeto de símbolos de entrada (símbolos que a máquina reconhece)
- Q é um conjunto finito de estados possíveis para o autômato
- δ é o programa do autômato: $\delta: Q \times \Sigma \rightarrow Q$
 - Isso é: o programa determina um novo estado q para o autômato baseado no estado atual p e no símbolo lido a. Essa combinação pode ser vista como $\delta(p,a)=q$
- q_0 é o estado inicial do autômato (ao ser iniciado, ele começa no estado q_0)
- F é um subconjunto de Q chamado de estados finais. Se M terminar em um estado $q \in Q$ então a máquina "aceitou" ou "reconheceu" a entrada.

- Para a máquina ser chamada de determinística:
 - O programa do autômato: δ: Q × Σ → Q deve indicar claramente todas as transições possíveis
 - Para cada estado possível $q_i \in Q$ e para cada símbolo (entrada) possível $a \in \Sigma$ a máquina deve determinar um novo estado $q_j \in Q$
 - Conhecendo a função de transição δ é possível determinar o resultado final.
 - Para uma mesma máquina e entrada, o resultado será sempre o mesmo.

- Exemplo de AFD (autômato finito determinístico):
- $M = (\{q_1, q_2, q_3\}, \{0,1\}, \delta, q_1, \{q_3\})$

•
$$\delta = \{ (q_1, 0) \to q_2, (q_1, 1) \to q_1, (q_2, 0) \to q_2, (q_2, 1) \to q_3, (q_3, 0) \to q_3, (q_3, 1) \to q_3 \}$$

A função de transição também pode ser vista como um tabela:

δ	0	1
q_1	q_2	q_1
q_2	q_2	q_3
q_3	q_3	q_3

- Os autômatos podem ser representados também graficamente:
 - Cada estado equivale a um círculo
 - Os estados finais são desenhados com borda dupla
 - Cada transição possível equivale a uma seta no diagrama
 - O estado inicial é indicado por uma seta sem origem definida
- O autômato do slide anterior pode ser desenhado como:

Simulação de um AFD:

Unidade de controle:

Responsável por ler a fita e determinar os estados

- Simulação de um AFD:
- Estado inicial: q_1

Unidade de controle:

Responsável por ler a fita e determinar os estados

- Simulação de um AFD:
 - · Autômato terminou a leitura da fita
 - Terminou em um estado final? Sim
 - O autômato aceitou a entrada
 - Reconheceu a entrada como válida

- Simulação de um AFD:
 - · Autômato terminou a leitura da fita
 - Terminou em um estado final? Não
 - O autômato não aceitou a entrada
 - Reconheceu a entrada como inválida

 Os AFDs são muito utilizados para reconhecer se uma determinada entrada satisfaz ou não uma linguagem.

Por exemplo:

- Qual linguagem esse autômato reconhece?
- Isso é: quais características uma entrada precisa ter para ser aceita pelo autômato?
- A entrada precisa conter pelo menos um 0 e, em seguida, pelo menos um 1.

Autômato Finito Não Determinístico

 Diferentemente dos AFDs, os autômatos finitos não determinísticos permitem múltiplos caminhos possíveis saindo de um estado para um mesmo símbolo (entrada).

Autômato Finito Não Determinístico

- Modelo teórico em que a transição depende de fatores aleatórios
- O resultado do processamento não pode ser determinado com base na entrada e na função de transição.
- Ele depende de fatores aleatórios.
- Usado também para reconhecer algumas linguagens e gramáticas.

Autômato com Pilha

- Uma evolução da ideia dos autômatos finitos.
- Possui uma pilha como componente adicional.
- A pilha é usada como uma memória para o autômato.

• Pilha:

- Estrutura de dados que permite armazenar e recuperar informações de forma LIFO (last-in, first-out)
- LIFO = O último elemento inserido na pilha é o primeiro a ser removido
- As inserções e remoções são executadas exclusivamente no topo da pilha

Autômato com Pilha

 A pilha armazena informações sobre o histórico das transições realizadas pela máquina.

 O autômato pode ler um símbolo de entrada, fazer uma transição de estado e, opcionalmente, modificar a pilha adicionando ou removendo elementos.

- A transição de estado é determinada por três fatores:
 - o estado atual
 - o símbolo lido da fita de entrada
 - o topo da pilha

Autômatos com Pilha

 Assim como em um autômato finito, um AP pode ser determinístico ou não-determinístico.

- Em autômatos determinísticos com pilha:
- Para cada combinação de estado, símbolo de entrada e topo da pilha existe apenas uma transição possível.

Autômatos com Pilha

- Um autômato com pilha é formado por um 6-upla:
- $M = (\Sigma, \Gamma, Q, \delta, q_0, F)$
- Onde:
 - Σ é o alfabeto de símbolos de entrada (símbolos que a máquina reconhece)
 - Γ é o alfabeto de símbolos que podem ser escritos na pilha
 - Q é um conjunto finito de estados possíveis para o autômato
 - δ é o programa do autômato: $\delta: Q \times \Sigma \times \Gamma \rightarrow Q \times \Gamma$
 - q_0 é o estado inicial do autômato (ao ser iniciado, ele começa no estado q_0)
 - F é um subconjunto de Q chamado de estados finais. Se M terminar em um estado $q \in Q$ então a máquina "aceitou" ou "reconheceu" a entrada.
- Vale observar que $\varepsilon \in \Sigma$ e $\varepsilon \in \Gamma$. Onde ε significa uma entrada vazia (seja para a fila de entrada ou para a pilha)

Autômatos com Pilha

- Observe que cada transição é formada por:
 - $(q_i, a, b) \rightarrow (q_j, c)$

Onde:

- $q_i \in Q$ é o estado atual da máquina
- $a \in \Sigma$ é a informação lida da fita de entrada
- $b \in \Gamma$ é a informação que consta no topo da pilha
- $q_i \in Q$ é o estado para o qual a máquina deve transacionar
- $c \in \Gamma$ é a informação que deve ser escrita no topo da pilha
- Se estou no estado q_i E li a na fila E b está no topo da pilha então vá para o estado q_i E escreva c na pilha

Atividade:

• Pense em um AFD com Pilha para reconhecer uma linguagem formada por $0^n 1^n$.

- Por exemplo:
 - 000111 e 01 são aceitos
 - Enquanto 001100 e 00110011 não são aceitos

- Dica: Como verificar se a pilha está vazia?
 - Escrever um símbolo logo no início do autômato.

Resposta

- $M = (\{0,1,\varepsilon\}, \{\$, Z, \varepsilon\}, \{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\}, \delta, q_{1}, \{q_{5}\})$
- Função de Transição δ :

Estado Atual	Símbolo lido da fila	Valor lido da pilha	\rightarrow	Novo Estado	Valor escrito na pilha
q_1	ε	${\cal E}$		q_2	\$
q_2	0	${\cal E}$		q_2	Z
q_2	1	\$		q_3	${\cal E}$
q_2	ε	Z		q_3	${\cal E}$
q_2	1	Z		q_4	${\cal E}$
q_3	0,1	${\cal E}$		q_3	${\cal E}$
q_3	ε	\$		q_3	ε
q_4	1	Z		q_4	${\cal E}$
q_4	1	\$		q_3	ε
q_4	0	${\cal E}$		q_3	${\cal E}$
q_4	ε	Z		q_3	ε
q_4	${\cal E}$	\$		q_5	${\cal E}$

Resposta

Próxima Aula

Máquina de Turing

• Tese de Church-Turing