Assignment Project Exam Help

Regression: https://powcoder.com/ Introduction & Linear Regression

Ch.4 Multivariate Data Analysis. Joseph Hair et al. 2010. Pearson

Ch.6. Learn R for Applied Statistics. Eric Hui. 2018. Apress

Ch.2 Regression Analysis. William Mendenhall and Terry Sincich. 2012. 7th edition. Pearson

Ch.7. Simple Linear Regression. David Dalpiaz. 2019

Regression in Applied Statistics

Hypothesis: **null** (H_0) and **alternative** (H_A)

Inference Test signment Project Exam Help p < 0.05 (alpha)

Reject

https://powcoder.com

Add WeChat powcoder

Regression:

a set of statistical processes to estimate the relationships between all the variables

Descriptive Statistics

Derives dataset summary:

- central tendency
- dispersion
- skewness

Inferential Statistics

- Makes inference about the population
- Use hypothesis testing and parameter estimation

Model

The variable to be predicted (or modeled), y, is called the **dependent** (or **response**) variable

General Form of Probabilistic Model in Regression Assignment Project Exam Help where y = D Dependent variable E(y) = M ean (or expected) value of y $\varepsilon = U$ nexplainable, or Find Powcoder. com (Mendenhall, 2012)

- Response = Prediction + Error
- Response = Signal + Noise
- Response = Model + Unexplained
- Response = Deterministic + Random
- Response = Explainable + Unexplainable

The variables used to predict (or mode) y are called **independent** variables and are denoted by the symbols x_1 , x_2 , x_3

$$Y=f(X)+\epsilon.$$
 $Y=eta_0+eta_1X+\epsilon.$

(beta zero) = y-intercept of the line [the line intercepts the y-axis] (beta one) = Slope of the line [amount of increase (or decrease) in the mean of y for every 1-unit increase in x

Regression Types

selection

Independent Regression Line Dependent Variables Shape variable Assignment Project Exam Help Continuous Linear **Simple** 1 Independent https://powcoder.com Quadratic Logistic Binary Add WeChat powcoder > 1 Independent Multiple **Nominal** > 2 categories Curvilinear Highly correlated Ridge 150 100 **Poisson** Count Identification of **Stepwise** best variables Logistic Ordered response **Ordinal** Ridge with variable Lasso Multivariate > 1 dependent

Key Terms: Error Types

α (alpha) The level of risk we accept in making a wrong decision about a null hypothesis

Level of significance 0.05, 0.01, 0.001

When a is set to 0.05 Apsyaly for 1995 implicates ignificance lelp

Null istruttps://powcoder.com/isfalse

Reject null Type I errox (False Positive) powRight decision

Retain null Right decision Type II error (False Negative)

β (beta)

The probability of committing Type II error

Simple Linear Regression

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Simple y depends on only one other variable

$$\epsilon_i \sim N(0,\sigma^2).$$

Assignment Project Exam

Fixed known constant: X;

https://powcoder.com

Fixed unknown parameters β_0 β_1 , and σ_2

Add WeChat powcoder

Random unobserved variable: ε_l - independently and identically distributed (iid) normal random error variables

Random variable: Y_i and their possible values y_i

Note for each x the y-values spread about the mean E(y) and with a standard deviation σ that is the same for every value of x.

Y - Response

X - Predictor

(Shaffer and Zhang, 2019. Introductory Statistics)

Simple Linear Regression Assumptions

- 1. Variables Type Continuous (Interval or Ratio)
- **2. Linear**: The relationship between Y and x is linear
- 3. Outliers: There should be no significant (Secoject Exam Help Ch.13 Applied Statistics in R. David Dalpiaz)
- https://powcoder.com

 4. Independence: You should have independence of observations

 Add WeChat powcoder
- **5. Equal Variance:** The variances along the line of best fit remain similar.
 - **Normal:** The errors ϵ are normally distributed

Note: the values of x are fixed. We do not make a distributional assumption about the predictor variable.

Inspect your Y and X relationship in scatterplot

High leverage, Large residuals, Large Influence

Heteroscedasticity

Homoscedasticity

Fitting the Model: The Method of Least Squares

least squares estimates

We need to find β_0 and β_1 that make the SSE a minimum.

response predictor

Call:

Residuals 5 summary points signment Project Exam Help

intercept = MEAN(distance) for https://ped/ped/powcoder.com

slope = for every 1 mph increase, the distance is increased by 3.9 feet

MY HOBBY: EXTRAPOLATING NUMBER OF HUSBANDS

https://xkcd.com/605/

lm(formula = dist ~ speed, data = cars) Residuals: Mean = 010 Median Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -17.5791 6.7584 - 2.6010.0123 * 0.4155 9.464 1.49e-12 *** beta on 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 Signif. codes:

Residual standard error: 15.38 on 48 degrees of freedom Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438 F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

Model Summary in R: Im()

summary(model)

- **Standard Error**: The standard deviation of an
- estimate. Low values are ideal.
- t value coefficient/std errorsignment Project Exam Help
- p value individual p value for each https://powcoder.com_Estimate Std. Error t value Pr(>|t|) parameter
- **Residual Standard Error**: a measure of the quality of a linear regression fit
- **R-squared**: how well the model is fitting the actual data
- **F-Statistic** indicator of a relationship between predictor and response

```
Call:
lm(formula = dist ~ speed, data = cars)
Residuals: Mean = 0
    Min
             10 Median
                             30
                                    Max
```

Add WeChat powcoder 3.9324 6.7584 -2.601 0.4155 9.464 0.0123 * 9.464 1.49e-12 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1

Residual standard error: 15.38 on 48 degrees of freedom Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438

F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

Felipe Rego, 2015. Quick Guide: Interpreting Simple Regression.

Model Summary in Python: OLS

```
y = data.dist
x = data.speed
x = sm.add_constant(x)
```

```
model = smf.OLS(y, x)
results = model.fit()
print(results.summary())
```

```
Add Intercept (None - by default)
```

import statsmodels.formula.api as smf

OLS Regre Aigs rement Project Exam Help

```
Dep. Variable:
                                                                         0.651
                                 dist
                                        R-squared:
Model:
                                  0LS
                        Least Squares
Method:
                     Sat, 21 Sep 2019
                                        Prob (F-statistic):
Date:
                                                                      1.49e-12
                                        Log-Likelihood: eChat poweoder
Time:
                             00:29:54
No. Observations:
                                   50
Df Residuals:
                                                                         421.0
                                   48
                                        BIC:
Df Model:
```

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const speed	-17.5791 3.9324	6.758 0.416	-2.601 9.464	0.012 0.000	-31.168 3.097	-3.990 4.768
Omnibus: Prob(Omnibus): Skew: Kurtosis:		8.9 0.0 0.8 3.8)11 Jarque 885 Prob(-	:	1.676 8.189 0.0167 50.7

Im()

```
Call:
lm(formula = dist ~ speed, data = cars)
Residuals:
    Min
            10 Median
                                   Max
-29.069 - 9.525 - 2.272
                         9.215 43.201
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) −17.5791
                        6.7584 - 2.601 0.0123 *
             3.9324
                        0.4155 9.464 1.49e-12 ***
speed
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1
Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
```

F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

Workflow

STEP 1. Confirm Linear Relationship

data(cars) with(cars, plot(y=dist, x=speed))

The plot shows a fairly strong positive relationship

%matplotlib inline import matplotlib.pyplot as plt import pandas as pd plt.style.use('seaborn')

df = pdLread_csv("cars.csv")

Workflow Example

STEP 2 Run Regression

model = Im(dist~speed, data=cars) summary(model)

```
Call:
lm(formula = dist ~ speed, data = cars)
Residuals:
                                                https://powcode
   Min
           10 Median
-29.069 -9.525 -2.272 9.215 43.201
Coefficients:
                                                Add WeChat p
          Estimate Std. Error t value Pr(>|t|)
                      6.7584 -2.601 0.0123 *
(Intercept) -17.5791
                      0.4155 9.464 1.49e-12 ***
            3.9324
speed
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
```

STEP 3. Interpret Summary Output

import statsmodels api as sm
y = df.dist
x = df.speed
x = sm.add_constant(x)
model = sm.OLS(y, x)
results = model.fit()

Assignment Project Exam Print results summary())

OLS Regression Results										
 Dep () anaple:		di	====== st R-squ	 R-squared:		 0.651				
Modet:		0	LS Adj.	Adj. R-squared:		0.644				
Method:		Least Squar	es F-sta	F-statistic:		89.57				
Date: Sat		t, 21 Sep 20	19 Prob	<pre>Prob (F-statistic):</pre>		1.49e-12				
Time:		00:48:	40 Log-l	Log-Likelihood:		-206.58				
NA COASe (Va	⇔ons:		50 AIC:			417.2				
Df Kesidual	5:		48 BIC:			421.0				
Df Model:			1							
Covariance	Type:	nonrobu	st							
	coef	std err	t	P> t	[0.025	0.975]				
const	-17 . 5791	6.758	-2.601	0.012	-31 . 168	-3.990				
speed	3.9324	0.416	9.464	0.000	3.097	4.768				
Omnibus:		8.9°	======= 75	======================================		1.676				
Prob(Omnibus):		0.0	11 Jarqı	Jarque-Bera (JB):		8.189				
Skew:		0.8	85 Prob	Prob(JB):		0.0167				
Kurtosis:		3.8	93 Cond.	Cond. No.		50.7				

Workflow

STEP 4. Create a plot with abline

library(ggplot2)
ggplot(cars, aes(x=speed, y=dist))+
geom_point()+
geom_smooth(method=lm, seignment Project Exam Help

import seaborn as sns
sns.set(color_codes=True)
g = sns.lmplot(x="speed", y="dist", data=df)

