Regions on the Complex Plane

A natural extension of the three loci we have studied is to change the equations to inequalities and define regions on the complex plane.

 $|z-z_1| \le r$ The inside of a circle centre z_1 radius r $|z-z_1| \ge r$ The outside of a circle centre z_1 radius r $|z-z_1| < |z-z_2|$ "Nearer to z_1 than z_2 " i.e. shade the z_1 side of the perpendicular bisector $z_1 = z_1 = z_2 = z_1 = z_2 = z_2 = z_1 = z_2 = z_2 = z_2 = z_2 = z_2 = z_1 = z_2 = z_2$

$$\theta_1 \leq \arg(z-z_1) \leq \theta_2 \qquad \quad \text{The region between half-lines starting at z_1 at angles θ_1 and θ_2}$$

e.g.
$$|z - 3 + i| \le 2$$

Rewrite as $|z - (3 - i)| \le 2$

Inside a circle centre (3, -1) radius 2

Note that the circle will cross through the x — axis but not the y — axis

e.g.
$$|z - 4i| < |z + 2|$$

Rewrite as |z - 4i| < |z - (-2)|

The chord connecting (-2,0) and (0,4) has gradient 2 and midpoint (-1,2)

The perpendicular bisector is therefore $y-2=-\frac{1}{2}(x-1)$ i.e. $y=-\frac{1}{2}x+\frac{3}{2}$

We want the region closer to 4i than -2 i.e the region above $y = -\frac{1}{2}x + \frac{3}{2}$

e.g.
$$-\frac{\pi}{4} \le \arg(z - (1+i)) \le \frac{\pi}{2}$$

Between half-lines from (1,1) going at angle $-\frac{\pi}{4}$ (i.e. parallel to y=-x) and $\frac{\pi}{2}$ (straight up)

