

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

Sistemas Urbanos Inteligentes

Fundamentos de Machine Learning Parte 2

Hans Löbel

Dpto. Ingeniería de Transporte y Logística Dpto. Ciencia de la Computación Recordemos que Machine Learning se centra en algoritmos que mejoran su rendimiento en una tarea, a través de la experiencia

Buscamos la solución más adecuada en el espacio de hipótesis, usando conocimiento previo (sesgo inductivo) y datos de entrenamiento para guiar la búsqueda.

Recordemos que Machine Learning se centra en algoritmos que mejoran su rendimiento en una tarea, a través de la experiencia

O visto de otra manera, debemos considerar 3 elementos centrales:

Representación (espacio hipótesis/sesgo inductivo), Rendimiento y Optimización (búsqueda)

Ok, súper lindo, pero, ¿cómo funciona?

¿Cómo podemos construir un detector de rostros?

¿Cómo podemos construir un detector de rostros?

¿Cómo podemos construir un detector de rostros?

Computador: Algún rostro humano?

Veamos ahora un caso de estudio más avanzado e interesante

Image Inpainting for Irregular Holes Using Partial Convolutions

Veamos ahora un caso de estudio más avanzado e interesante

Image Inpainting for Irregular Holes Using Partial Convolutions

¿Qué es lo primero que necesitamos?

¿Cómo podemos estructurar el sistema de aprendizaje?

Veamos como funciona el sistema en la práctica

(https://youtu.be/gg0F5JjKmhA)

Algoritmos de ML trabajan sobre datos multidimensionales

- Cada dato esta caracterizado por una serie de mediciones = atributos = variables.
- La cantidad de variables define la dimensionalidad del dato.
- El espacio donde viven los datos (variables) se conoce como espacio de características (feature space).

Para entrenar = ajustar = calibrar un modelo, se utiliza un set de entrenamiento

Typhoon		Response vector				
number	Distance from the eye	Wind speed at site	Pressure deficit	Forward speed of the	Storm surge	
Humber	of the storm (km)	(m/s)	at site (hPa)	eye of the storm (km/h)	(cm)	
5111	96.0	20.7	20.6	27.6	47.4	
5114	108.5	15.4	11.0	58.9	24.5	
5201	181.2	8.1	1.7	40.1	7.9	
5204	245.3	5.7	6.4	29.6	5.5	
5209	117.5	23.3	22.0	46.6	61.7	
5211	231.4	13.3	11.5	38.1	20.8	
5309	293.6	4.0	7.2	35.4	5.6	
5508	0.6	8.5	7.0	32.2	8.7	
5512	227.6	10.0	10.4	19.3	16.0	
5609	257.3	11.5	15.0	44.1	10.8	

Cada dato (fila) del set de entrenamiento, puede considerarse como un vector en el espacio de características.

Objetivo último es la generalización (aprendizaje inductivo)

		Typhoon		Response vector			
		Typhoon number	Distance from the eye	Wind speed at site	Pressure deficit	Forward speed of the	Storm surge
		Humber	of the storm (km)	(m/s)	at site (hPa)	eye of the storm (km/h)	(cm)
		5111	96.0	20.7	20.6	27.6	47.4
0		5114	108.5	15.4	11.0	58.9	24.5
Ę		5201	181.2	8.1	1.7	40.1	7.9
<u>.</u>		5204	245.3	5.7	6.4	29.6	5.5
Ξ		5209	117.5	23.3	22.0	46.6	61.7
ور		5211	231.4	13.3	11.5	38.1	20.8
ē		5309	293.6	4.0	7.2	35.4	5.6
בַּ		5508	0.6	8.5	7.0	32.2	8.7
Entrenamiento		5512	227.6	10.0	10.4	19.3	16.0
		5609	257.3	11.5	15.0	44.1	10.8
		0209	290.6	9.5	13.6	46.9	
		0215	245.3	10.6	14.2	77.6	
		0306	227.0	4.4	7.9	20.8	
Test		0314	279.1	4.4	7.8	29.5	
ف		0415	266.3	8.7	8.8	32.9	
		0515	165.6	19.2	16.4	45.6	_
		0601	136.5	10.7	12.2	4.6	
		0603	207.9	4.4	8.0	14.1	

Set de test es útil para evaluar la capacidad de generalización del modelo

El set de datos MNIST permite construir clasificadores de dígitos a partir de imágenes (OCR)

- MNIST es un set de datos compuesto de imágenes de dígitos escritos a mano.
- Cada imagen muestra un sólo dígito entre 0 y 9. Las imágenes son binarias con una resolución de 28x28=784 pixeles.
- El dataset consta de 60.000 ejemplos de entrenamiento y 10.000 de test.

El set de datos MNIST permite construir clasificadores de dígitos a partir de imágenes (OCR)

```
22242222222222
```

- ¿Cómo podríamos resolver este problema (clasificación de dígitos)?
- Quizá, visualizar el espacio de características nos da una pista.

¿Es posible visualizar directamente el espacio de características de MNIST?

Usando técnicas no supervisadas de reducción de dimensionalidad (tSNE*), es posible transformar el espacio de características

¿Cómo podríamos resolver este problema? (aka cuál es el algoritmo más simple que podríamos usar)

Clasificador de k-vecinos cercanos permite realizar la tarea de manera intuitiva

Clasificador de k-vecinos cercanos permite realizar la tarea de manera intuitiva

- Dado un dato sin clasificar, su clase se define como el resultado de la votación de los k-vecinos más cercanos.
- Con k=1, se obtienen los siguientes resultados:

Predicción

Real

	0	1	2	3	4	5	6	7	8	9
0	972	1	1	0	0	1	3	1	0	0
1	0	1129	3	0	1	1	1	0	0	0
2	7	6	992	5	1	0	2	16	3	0
3	0	1	2	970	1	19	0	7	7	3
4	0	7	0	0	944	0	3	5	1	22
5	1	1	0	12	2	860	5	1	6	4
6	4	2	0	0	3	5	944	0	0	0
7	0	14	6	2	4	0	0	992	0	10
8	6	1	3	14	5	13	3	4	920	5
9	2	5	1	6	10	5	1	11	1	967

Vamos a Colab...

A pesar de ser clave, el set de entrenamiento no lo es todo

- En general, los algoritmos de aprendizaje viven y mueren por el set de entrenamiento.
- Lamentablemente, tener un buen set de entrenamiento, no asegura siempre tener buena generalización.
- Poder de representación del algoritmo de aprendizaje pasa a ser también un tema central.
- El porqué de esto está dado por un problema llamado Bias-Variance Tradeoff

BV tradeoff se da de forma natural en ML

$$Y = f(x) + \varepsilon, \varepsilon \sim N(0, \sigma^2)$$

$$f(x) \approx \hat{f}(x)$$

$$Err(x) = E\left[\left(Y - \hat{f}(x)\right)^2\right]$$

$$Err(x) = \left(E[\hat{f}(x)] - f(x)\right)^2 + E\left[\left(\hat{f}(x) - E[\hat{f}(x)]\right)^2\right] + \sigma^2$$

 $Err(x) = Bias^2 + Varianza + Error irreducible$

Complejidad del modelo es el parámetro que permite capturar el *BV tradeoff*

 $Err(x) = Bias^2 + Varianza + Error irreducible$

Modelo es demasiado simple para capturar el comportamiento de los datos (*underfitting, alto sesgo*).

Modelo es muy complejo, y captura hasta el ruido presente en los ejemplos (*overfitting, alta varianza*).

Modelo tiene la complejidad necesaria para capturar los patrones relevantes, controlando sesgo y varianza.

Vamos a Colab...

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

Sistemas Urbanos Inteligentes

Fundamentos de Machine Learning Parte 2

Hans Löbel

Dpto. Ingeniería de Transporte y Logística Dpto. Ciencia de la Computación