Critical review of quarkonium production results at hadron colliders

The LHC is a heavy quarkonium factory!

ATLAS, CMS, LHCb and ALICE reported many studies of (prompt) quarkonium production

How do those measurements compare to each other? Are there inconsistencies among the experimental results?

Executive summary

- Many measurements made at 7 TeV (2010+2011 data) and a few at 8 TeV (2012)
 - S-wave and P-wave cross sections and/or cross section ratios
 - χ_c and χ_b feed-down fractions to S-wave states
 - Polarizations of five S-wave states (charmonia and bottomonia)
- Much still to come
 - Many analyses of 2011 and 2012 data still ongoing or not even started...
 - Run II (13 TeV) will provide many more measurements
 - Availability of results limited by manpower, not by "statistics"

• In general, good agreement between measurements made by several experiments

- G. Aad et al. Measurement of the differential cross sections of inclusive, prompt and non-prompt J/ψ production in pp collisions at $\sqrt{s} = 7 \text{ TeV}$. Nucl. Phys., B850:387-444, 2011.
- G. Aad et al. Measurement of the $\Upsilon(1S)$ production cross section in pp collisions at $\sqrt{s}=7$ TeV in ATLAS. Phys.Lett., B705:9–27, 2011.
- G. Aad et al. Measurement of Υ production in 7 TeV pp collisions at ATLAS. Phys. Rev., D87(5):052004, 2013.
- G. Aad et al. Measurement of χ_{c1} and χ_{c2} production with $\sqrt{s} = 7$ TeV pp collisions at ATLAS. JHEP, 1407:154, 2014.
- G. Aad et al. Measurement of the production cross section of $\psi(2S) \to J/\psi(\to \mu^+\mu^-)\pi^+\pi^-$ in pp collisions at $\sqrt{s}=7$ TeV at ATLAS. JHEP, 1409:79, 2014.
- R. Aaij et al. Measurement of J/ψ production in pp collisions at $\sqrt{s} = 7$ TeV. Eur. Phys. J., C71:1645, 2011.
- R Aaij et al. Measurement of ψ' meson production in pp collisions at $\sqrt{s} = 7$ TeV. Eur. Phys. J., C72:2100, 2012.
- R Aaij et al. Measurement of the cross-section ratio $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ for prompt χ_c production at $\sqrt{s}=7$ TeV. Phys.Lett., B714:215–223, 2012.
- R Aaij et al. Measurement of the ratio of prompt χ_c to J/ ψ production in pp collisions at $\sqrt{s} = 7$ TeV. Phys.Lett., B718:431–440, 2012.
- R. Aaij et al. Measurement of Υ production in pp collisions at $\sqrt{s} = 7$ TeV. Eur. Phys. J., C72:2025, 2012.
- R Aaij et al. Measurement of J/ ψ polarization in pp collisions at $\sqrt{s} = 7$ TeV. Eur. Phys. J., C73:2631, 2013.
- R Aaij et al. Measurement of J/ ψ production in pp collisions at $\sqrt{s} = 2.76$ TeV. JHEP, 1302:041, 2013.
- R. Aaij et al. Measurement of the relative rate of prompt χ_{c0} , χ_{c1} and χ_{c2} production at $\sqrt{s} = 7$ TeV. JHEP, 1310:115, 2013.
- R Aaij et al. Production of J/ψ and Υ mesons in pp collisions at $\sqrt{s} = 8$ TeV. JHEP, 1306:064, 2013.
- R. Aaij et al. Measurement of ψ' polarisation in pp collisions at $\sqrt{s} = 7$ TeV. Eur. Phys. J., C74:2872, 2014.

- R. Aaij et al. Measurement of the $\chi_b(3P)$ mass and of the relative rate of $\chi_{b1}(1P)$ and $\chi_{b2}(1P)$ production. JHEP, 041t. 19 214.

 R. Aaij et al. Measurement of the $\eta_c(1S)$ production cross-section in pp collisions via the production of Υ production
- T. Aaltonen et al. Production of ψ' Mesons in p\(\bar{p}\) Collisions at 1.96 To . Broduction of the decay in the experiments of inclusive 1/25.

 K. Aamodt et al. Rapidity and transverse momentum Orbital and transverse mo

- F. Abe et al. Production of J/ψ mesons from χ_c meson decays in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV. Phys.Rev.Lett., 79:578–583, 1997.
- B. Abelev et al. Inclusive J/ ψ production in pp collisions at $\sqrt{s} = 2.76$ TeV. Phys.Lett., B718:295–306, 2012.
- B. Abelev et al. Measurement of prompt J/ψ and beauty hadron production cross sections at mid-rapidity in pp collisions at $\sqrt{s} = 7$ TeV. JHEP, 1211:065, 2012.
- B. Abelev et al. J/ ψ polarization in pp collisions at $\sqrt{s} = 7$ TeV. Phys.Rev.Lett., 108:082001, 2012.
- B. Abelev et al. Measurement of quarkonium production at forward rapidity in pp collisions at √s= 7 TeV. Eur. Phys. J., C74:2974, 2014.
- A. Abulencia et al. Measurement of $\sigma_{\chi_{c2}}\mathcal{B}(\chi_{c2} \to J/\psi\gamma)/\sigma_{\chi_{c1}}\mathcal{B}(\chi_{c1} \to J/\psi\gamma)$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Phys.Rev.Lett., 98:232001, 2007.
- D. Acosta et al. Measurement of the J/ ψ meson and b-hadron production cross sections in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV. Phys.Rev., D71:032001, 2005.
- S. Chatrchyan et al. J/ψ and ψ' prompt double-differential cross sections in pp collisions at sqrt(s) = 7 TeV.
- S. Chatrchyan et al. $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ cross section measurements in pp collisions at $\sqrt{s} = 7$ TeV.
- S. Chatrchyan et al. J/ ψ and ψ' production in pp collisions at $\sqrt{s} = 7$ TeV. JHEP, 1202:011, 2012.
- S. Chatrchyan et al. Measurement of the relative prompt production rate of χ_{c2} and χ_{c1} in pp collisions at $\sqrt{s} = 7$ TeV. Eur. Phys. J., C72:2251, 2012.
- S. Chatrchyan et al. Measurement of the prompt J/ψ and ψ' polarizations in pp collisions at $\sqrt{s} = 7$ TeV. Phys.Lett., B727:381–402, 2013.
- S. Chatrchyan et al. Measurement of the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ cross sections in pp collisions at $\sqrt{s}=7$ TeV. Phys.Lett., B727:101–125, 2013.
- S. Chatrchyan et al. Measurement of the $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ polarizations in pp collisions at $\sqrt{s}=7$ TeV. Phys. Rev. Lett., 110:081802, 2013.
- S. Chatrchyan et al. Measurement of the X(3872) production cross section via decays to J/ψππ in pp collisions to the dev. JHEP, 1304:154, 2013.

 V. Khachatryan et al. Measurement of the inclusive upsilon production of the inclusive upsilon produ
- V. Khachatryan et al. Prompt and non-prompt J/ψ production in pp collisions at $\sqrt{s} = 7$ TeV Phys. Rev., D83:112004, or $\sqrt{s} = 7$ TeV Phys. Rev., D83:1
- from LHC and Tevatron experiments

Y(nS) cross sections

- Measured in the p_T range from 0 to 100 GeV
- No hint of significant discrepancies between measurements
- The curves represent fits to the function $\ N \cdot p_{
 m T} \cdot [\, 1 + rac{1}{eta-2} \cdot rac{p_{
 m T}^2}{\gamma}\,]^{-eta}$

Prompt J/ ψ cross sections

- Measured in the p_T range from 0 to 120 GeV
- No hint of significant discrepancies between measurements

Prompt $\psi(2S)$ cross sections

- Measured in the p_T range from 0 to 100 GeV
- Comparing CMS and ATLAS *preliminary* results showed a problem at high- $p_{\rm T}$ The ATLAS points were corrected in the final publication
 - → Shows that these comparisons are *very* useful ③

All together now: 7 different quarkonia

- Mid-rapidity cross sections for seven quarkonia have identical p_T/M shapes, for $p_T/M > 3$
- Interesting empirical observation

ATLAS and CMS will soon have J/ψ and $\psi(2S)$ differential cross sections up to $p_T/M \sim 30$!

All 12 (!) curves have identical shapes

Fitted to the CMS J/ ψ data for $p_T/M > 3$

Global χ^2 /ndf = 91/85; P = 30%

Disclaimer

For some measurements, the several experiments use a different binning in p_T or y; small corrections (intra/extrapolations) were applied to improve the comparisons

To make the ratio of two distributions measured with different p_T bins, we first fit each distribution and then show the ratio of the functions

→ Such "harmless manipulations" are identified by the "sticker"

The same label identifies figures showing "derived variables"...

The LHC collaborations are not responsible for these "derivations" ©

S-wave quarkonium cross sections vs. rapidity

- All experiments measured cross sections in the bin $8 < p_T < 15$ GeV (or very similar)
 - → Allows us to see how the cross sections change with rapidity and state
- At first sight, reasonable overlap between ATLAS, CMS and LHCb... but looking more closely we see significant differences (given the tiny uncertainties)

ATLAS Y(nS): cross sections seem to *increase* with rapidity

Other states and experiments show a decrease

Derived

Slightly different p_T bins implied interpolations

Changes of p_T with rapidity

- The shape of the p_T distributions changes with rapidity
 - → Interesting to see the average p_T^2 versus rapidity Sensitive to the low- p_T reach of the data...

Cross section ratios: bottomonium

- The nS/1S cross section ratios increase steeply with p_T up to around 40 GeV
 - \rightarrow At higher p_{T} the increase seems to slow down and the trend might flatten out...
 - \rightarrow More high- p_{T} data needed to clarify the observations
- The ATLAS 3S/1S ratio is systematically lower than the LHCb and CMS trends...

Cross section ratios: charmonium

- The 2S/1S cross section ratio increases steeply with p_T up to around 20 GeV
 - \rightarrow At higher p_T we see some tendency for saturation... but the errors are very large
 - \rightarrow More measurements needed to clarify the high- p_{T} trend
- ATLAS and CMS are working on improved measurements; should be available "soon"

From cross section ratios to feed-down fractions (1)

- We have derived the "1S from nS feed-down fractions" from the cross section ratios
 - correcting for the ratios of branching fractions
 - scaling the nS p_T by the mass ratio M(1S) / M(nS)
- Method validated using 2S \rightarrow 1S π π results, available from ATLAS both vs. 1S and 2S p_T

The derived results agree very well with those measured directly by ATLAS

From cross section ratios to feed-down fractions (2)

- Applying the method to the bottomonium family, we see that:
 - a fraction between 7% and 15% of the $\Upsilon(1S)$ is produced from $\Upsilon(2S)$ decays while the $\Upsilon(3S)$ feed-down contribution is less than 2.5%
 - the S-wave feed-down "contamination" increases with p_{T}

From cross section ratios to feed-down fractions (3)

- LHCb recently reported measurements of the nP → mS feed-down fractions:
 - the biggest $\Upsilon(1S)$ feed-down contribution comes from the $\chi_b(1P)$
 - at around 30 GeV, more than half of the $\Upsilon(1S)$ mesons result from feed-down
 - the Υ (2S) gets contributions from Υ (3S), χ_b (2P) and χ_b (3P) decays
 - the $\Upsilon(3S)$ feed-down from $\chi_b(3P)$ decays is 37±7 % (in 25 < p_T < 40 GeV)

Important inputs to interpret the $\Upsilon(nS)$ suppression seen in p-Pb and Pb-Pb collisions

From cross section ratios to feed-down fractions (4)

- The same method can be applied to the charmonium family:
 - the biggest J/ ψ feed-down fraction is from χ_c decays
 - the LHCb and ATLAS points are very well aligned...
 - while the low p_{T} CDF points seem to be outliers...

ALICE points from inclusive ratio

χ_{c2} / χ_{c1} cross section ratios

- Measurements using photon conversions are well aligned with each other
- LHCb results with ECAL and conversions are quite different, for p_T < 8 GeV
 - → Is there an experimental problem? Or is this a physics (phase space) effect?

χ_{c2} / χ_{c1} cross section ratios

- Results depend on the polarizations assumed for the two states (acceptance correction)
 - If both states have helicity = 0, the LHCb results with ECAL and conversions agree well
 - If they have extreme polarizations (±1, ±2), the spread of the measurements increases
 - \rightarrow Important to measure the polarizations of the χ_{c1} and χ_{c2} mesons

χ_{b2} / χ_{b1} cross section ratios

- The corresponding ratio in the bottomonium family is also seemingly flat
- LHCb and CMS results agree well, within the large uncertainties

Quarkonium polarization

S-wave polarizations are measured from the dimuon angular decay distributions

$$\frac{dN}{d\Omega} \propto 1 + \lambda_{\theta} \cos^{2}\theta + \lambda_{\varphi} \sin^{2}\theta \cos 2\varphi + \lambda_{\theta\varphi} \sin 2\theta \cos \varphi$$

$$\tilde{\lambda} = \frac{\lambda_g + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}}$$

Quarkonium polarization: $\Upsilon(nS)$ from CDF run 2

- The $\widetilde{\lambda}$ values reported by CDF for the $\Upsilon(nS)$ polarizations show systematic biases not covered by the uncertainties
- The lowest $p_{T} \Upsilon(3S)$ value is $\tilde{\lambda} >> 1$!
- Note: $\widetilde{\lambda}$ is not frame invariant for background

Quarkonium polarization: $\psi(2S)$ in LHCb

- The polarizations measured by LHCb for $p_{\rm T}$ < 10 GeV cluster at around $\stackrel{\sim}{\lambda}$ = -0.25
- But the highest p_T bin shows values that systematically decrease with rapidity... An "edge effect" in the acceptance calculations? Or is this a physics (phase space) effect?

Quarkonium polarization: $\psi(2S)$ in LHCb and CMS

- The polarizations measured by LHCb and CMS still suffer from large uncertainties...
 - We cannot say that there are significant discrepancies

Executive summary

- Many measurements made at 7 TeV (2010+2011 data) and a few at 8 TeV (2012)
 - S-wave and P-wave cross sections and/or cross section ratios
 - χ_c and χ_b feed-down fractions to S-wave states
 - Polarizations of five S-wave states (charmonia and bottomonia)
- Much still to come
 - Many analyses of 2011 and 2012 data still ongoing or not even started...
 - Run II (13 TeV) will provide many more measurements
 - Availability of results limited by manpower, not by "statistics"
- In general, good agreement between measurements made by several experiments

χ_{c1} and χ_{c2} cross sections

So far, only ATLAS measured the χ_{c1} and χ_{c2} cross sections

A challenging result, given the very low photon conversion and reconstruction efficiencies

