[Intel] 엣지 AI SW 아카데미 / 인텔 AI 비전 개발

● 이윤혁

● 정희중

● 염재영

● 김지훈

● 김민정A

● 김민정B

1 프로젝트 개요

² 프로젝트 기획

프로젝트 수행 경과

4 자체 평가 의견

GAMJADAN

REC

● 비대면 회의

● 화상회의

● 비대면 수업

● 줌 스트레스

1-1. 프로젝트 배경

 $-\square \times$

비대면 증가

비대면 증가

비대면 증가

코로나19 이후 비대면 수업, 재택 근무, 비대면 회의의 급증 화상 회의에서 주변 환경과 사람의 노출로 사생활 침해 피로감 증가

'줌 스트레스'라는 신조어 등장, 사생활 노출 문제 부각

- 기능 복잡성: '줌'의 가상 아바타, 가상 배경 화면 등 프라이버시 보호 기능은 찾기 어려움
- 사용자 어려움 : 중장년층이나 학생들이 복잡한 기능을 파악하고 사용하는 데 어려움
- 사생활 침해 : 화상 회의 중 사생활이 무방비하게 노출
- 손 동작 제어: 다양한 프라이버시 보호 기능을 간단한 손 동작만으로 실행할 수 있는 시스템 개발 필요

1-3. 프로젝트 내용

 $-\square \times$

손 쉬운 화상 회의 제어 시스템

-> '부처핸섬' (Put your hands Up)

여러 손 동작들의 데이터를 직접 수집하여 기계학습 모델 개발

1-3. 프로젝트 내용

 $-\square \times$

간단한 손동작 하나로 짧은 시간내에 사생활 보호 기능을 실행 가능

1-4. 프로젝트 구조

 $-\square \times$

• 모델 학습

학습 데이터 수집

캠코더를 사용하여 이미지 파일 캡쳐

데이터 가공

MediaPipe 사용 모델에 사용 가능한 형식으로 데이터화

모델 학습

Keras 사용하여 RNN 학습 후 모델 생성

• 모델 예측

예측 데이터 준비

캠코더를 사용하여이미지 파일 캡쳐

동작 판단

학습된 모델을 사용해 예측된 값을 토대로 동작을 판단

모드/기능 실행

동작과 연동시킨 모드/기능 ON/OFF

● 리소스

2-1. 프로젝트 팀 구성 및 역할

 $-\square X$

팀원	담당업무	내용					
이윤혁	조장	총괄, 기능 구현 (블러 처리), PPT					
염재영	코드 총괄	코드 총괄, 통합, 기능 구현 (음량 관련), 발표					
김지훈	모션 인식 학습	MediaPipe 기계 학습, 발표, 코드 통합 구현					
김민정 A	기능 구현, PPT	PPT, 기능 구현 (필터, 음악)					
김민정 B	기능 구현, PPT	PPT, 기능 구현 (배경화면, 음악, 멈춤)					
정희중	기능 구현, PPT	PPT, 기능 구현 (화면 온오프)					

REC 🛑

2-2. 프로젝트 수행 절차 및 방법

 $-\square X$

번호	작업 활동	5.10	5.14	5.15	5.16	5.17	5.18	5.19	5.20	5.21
1	프로젝트 구상 및 착수									
1.1	팀빌딩									
1.2	주제 정하기									
1.3	필요한 자료 조사 및 역할 분배									
2	프로젝트 기능 구현 (모델 부)									
2.1	손동작 인식(MediaPipe) 데이터셋 구축									
2.2	손동작 인식(MediaPipe) 학습 및 모델 구축									
3	프로젝트 기능 구현 (동작 부)									
3.1	필터, 배경화면, 화면 온오프 기능 구현									
3.2	블러 처리, 음악, 볼륨 설정 기능 구현									
4	프로젝트 정리									
4.1	기능 취합 및 연계									
4.2	보고서, PPT 작성									

2-3. 장비 및 리소스

end python™

 $-\square X$

REC

● 데이터 셋 구축

● 사생활 보호 기능

● 볼륨 조절

● 기타기능

프로젝트 수행 경과

1. 데이터셋구축 2.기능구현

3-1. 데이터셋 구축 - (1) 데이터 수집 및 가공

 $-\square \times$

소동작은 관절에 연결된 각도의 변화로 이루어져 있음

2 MediaPipe를 사용하여 손을 인식하고 관절의 위치(Joint)를 저장 후 화면에 표시

Joint 간의 좌표 차이를 바탕으로 직선(Vecter)를 구함

관절에 연결되어 있는 두 Vecter 사용하여 관절의 각도 계산

> 각각의 관절의 각도를 취합하여 배열로 저장 후 라벨링 추가

가공된 데이터셋

3-1. 데이터셋 구축 - (1) 데이터 수집 및 가공

 $-\square X$

MediaPipe의 손 감지 기능을 사용하여 Label 하나당 30초 씩 관절 각도 데이터 수집

미리 설정한 손 동작 9개 모두의 데이터셋 수집.

3-1. 데이터셋 구축 - (2) 데이터 학습

 $-\square \times$

Recurrent Neural Networks

RNN 딥러닝 기법을 사용하여 가공된 데이터셋을 학습 후 모델 완성

완성된 모델을 사용하여 모션인식 성공

3-2. 주요 기능

$-\square X$

Blur Mode

- Segmentation
- cv2
- 가장 가까운 사람 윤곽선 검출
- 가장 가까운 사람 아니면 Blur

배경 합성 Mode

- Segmentation
- cv2
- 지정한 이미지 배경에 합성

일시정지 Mode

- save_frame = frame
- frame = save_frame

얼굴 필터 Mode

- Detaction
- cv2
- 얼굴 좌표 계산 후 이미지 합성

노래 Mode

- pygame
- 지정한 음악 재생

볼륨 조절 Mode

- GetMasterVolumeLevel Scalar
- cv2
- 볼륨 감소 및 증가
- 음소거

On/Off Mode

- On: 화면 그대로 출력
- Off : 검은 화면 및 음소거 이 미지 출력

3-2. 주요 기능 - (1) Blur Mode

3-2. 주요 기능 - (2) 배경 합성 Mode

 $-\square X$

3-2. 주요 기능 - (3) 일시정지 Mode

3-2. 주요 기능 - (4) 얼굴 필터 Mode

 $-\square \times$

3-2. 주요 기능 - (5) 노래 Mode

3-2. 주요 기능 - (6) 볼륨 조절 Mode

 $-\square \times$

< 음소거 >

< 볼륨 감소 >

< 볼륨 증가 >

3-2. 주요 기능 - (7) On/Off Mode

 $-\square \times$

REC

● 완성도 평가

● 아쉬운 점

● 개선할점

● 느낌과 소감

자체 평가 의견

- 1. 프로젝트성능평가
- 2 자체완성도평가
- 3. 프로젝트 개선&보완점
 - 4. 느낀점및소감

REC 🛑

4-1. 프로젝트성능평가

4-2. 자체 완성도 평가

 $-\square \times$

완성도 95 / 100

- 새로운 방식으로 의사 소통을 촉진
- 사용자 경험을 혁신적으로 개선

화상 회의 시스템에 통합하는 것이 가능

상업적 가치 창출 가능

새로운 하드웨어나 소프트웨어를
→ 구매할 필요가 없음
→ Λ

불안정한 감지 및 인식 과정 보완 필요

4-3. 프로젝트 개선/보완점

 $-\Box \times$

영상 처리 과정 중 손 제스처 인식 정확도 및 속도

모델 개선점

사용 기능에 적합한 제스처 연결

기능 개선점

구축한 시스템에 대한 가상 인터페이스 환경 구현

UI 개선점

4-4. 느낀 점 및 소감

 $-\Box \times$

이윤혁: 이정도 인원으로 프로젝트를 진행한 것은 처음이었는데, 서로 소통해가면서 코드를 완성하는 것이 즐거웠다.

• 염재영 : 팀원들 간에 소통도 잘되고, 프로젝트 진행 과정에 어려움이 없어서 즐거웠던 것 같다.

• 김지훈: 협업툴의 부족으로 효율적인 일처리가 안된 것은 아쉬웠지만 프로젝트 자체는 계획대로 잘 진행되어 만족스럽다.

• 김민정A: 강의를 정리할 수 있고, 새로운 기법도 배울 수 있는 시간이었다.

• 김민정B: 협업의 중요성을 배웠고, 강의 내용을 다시 한 번 정리할 수 있어서 너무나 값진 시간이었다.

• 정희중 : 기능을 만들기 전에 팀원들과 미리 협업하고 수시로 점검 받으면서, 서로 호환이 되도록 해야한다는 것을 느꼈다.

[Intel] 엣지 AI SW 아카데미 / 인텔 AI 비전 개발

● 이윤혁

● 정희중

● 염재영

● 김지훈

● 김민정A

● 김민정B