Loan Approval Prediction Project

Fatima Gul

08-july-2024

Introduction

Objective

The objective of this project is to predict loan approval status using a dataset by applying various data science techniques including data cleaning, exploratory data analysis (EDA), outlier detection, and machine learning model training and evaluation.

Data Cleaning

Loading the Dataset

The dataset is loaded into a Pandas DataFrame for analysis.

```
import pandas as pd

# Load the dataset
file_path = 'loan_approval_dataset.csv'
data = pd.read csv(file path)
```

Handling Missing Values

Missing values in numerical columns are filled using mean imputation, while categorical columns are filled using mode imputation.

```
# Check for missing values
print("Missing values before cleaning:\n", data.isnull().sum())

# Fill missing values for numerical columns
numeric_cols = data.select_dtypes(include=['number']).columns
data[numeric_cols] = data[numeric_cols].fillna(data[numeric_cols].mean())

# Fill missing values for categorical columns
categorical_cols = data.select_dtypes(include=['object']).columns
data[categorical_cols] =
data[categorical_cols].fillna(data[categorical_cols].mode().iloc[0])

print("Missing values after cleaning:\n", data.isnull().sum())
```

Results: Before and after counts of missing values.

```
# Include output from the above print statements
```

Correcting Data Types and Standardizing Formats

Data types are corrected and formats are standardized as needed (e.g., converting date columns to datetime format).

```
# Example of correcting data types
# data['column name'] = pd.to datetime(data['column name'])
```

Addressing Inconsistent or Erroneous Data Entries

Inconsistent or erroneous data entries are identified and corrected.

```
# Example of standardizing string data
# data['string_column'] = data['string_column'].str.lower()
```

Exploratory Data Analysis (EDA)

Descriptive Statistics

Descriptive statistics provide a summary of the dataset

```
print("Descriptive statistics:\n", data.describe())
```

Visualizations

Histograms

Histograms show the distribution of numerical features.

```
data.hist(bins=30, figsize=(15, 10))
plt.show()
```

Correlation Matrix

The correlation matrix helps understand relationships between numerical variables.

```
corr = data[numeric_cols].corr()
plt.figure(figsize=(10, 8))
```

```
sns.heatmap(corr, annot=True, cmap='coolwarm')
plt.show()
```

Count Plots for Categorical Variables

Count plots visualize the distribution of categorical features.

```
for col in categorical_cols:
   plt.figure(figsize=(10, 6))
   sns.countplot(data[col])
   plt.title(f'Count plot for {col}')
   plt.show()
```

Box Plots for Numerical Variables

Box plots identify outliers and show the spread of numerical features.

```
for col in numeric_cols:
    plt.figure(figsize=(10, 6))
    sns.boxplot(data[col])
    plt.title(f'Box plot for {col}')
    plt.show()
```

Pair Plots for Numerical Variables

Pair plots visualize relationships between numerical features.

```
sns.pairplot(data[numeric_cols])
plt.show()
```

Outlier Detection and Removal

Methods Used

Outliers are detected using Z-score and IQR methods.

```
from scipy import stats
import numpy as np

# Z-score method
z_scores = np.abs(stats.zscore(data[numeric_cols]))
```

```
filtered_entries = (z_scores < 3).all(axis=1)
data = data[filtered_entries]

# IQR method
Q1 = data[numeric_cols].quantile(0.25)
Q3 = data[numeric_cols].quantile(0.75)
IQR = Q3 - Q1
data = data[~((data[numeric_cols] < (Q1 - 1.5 * IQR)) | (data[numeric_cols] > (Q3 + 1.5 * IQR))).any(axis=1)]
```

Results

The impact on the dataset is described by comparing the number of rows before and after outlier removal.

```
print(data.shape)
```

Results:

Include output from the above print statement

Model Training and Evaluation

Data Splitting

The data is split into training and testing sets.

```
from sklearn.model_selection import train_test_split

# Ensure 'Loan_Status' column is present in the DataFrame
if 'Loan_Status' in data.columns:
    X = data.drop('Loan_Status', axis=1)
    y = data['Loan_Status']
else:
    print("Error: 'Loan_Status' column not found in the DataFrame")

# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random state=42)
```

Training the KNN Model

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
```

Cross-Validation

Cross-validation results are obtained.

```
from sklearn.model_selection import cross_val_score

cv_scores = cross_val_score(knn, X, y, cv=5)
print(f'Cross-validation scores: {cv_scores}')
print(f'Mean cross-validation score: {cv scores.mean()}')
```

Results: Provide the cross-validation scores and the mean score.

Model Evaluation

The KNN model is evaluated using various metrics.

```
from sklearn.metrics import accuracy_score, precision_score, recall_score,
fl_score, roc_auc_score, confusion_matrix, roc_curve

y_pred = knn.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, pos_label='Y')
recall = recall_score(y_test, y_pred, pos_label='Y')
fl = fl_score(y_test, y_pred, pos_label='Y')
roc_auc = roc_auc_score(y_test, knn.predict_proba(X_test)[:, 1])

print(f'Accuracy: {accuracy}')
print(f'Precision: {precision}')
print(f'Recall: {recall}')
print(f'Fl-score: {f1}')
print(f'ROC-AUC: {roc_auc}')
```

Results: Include the accuracy, precision, recall, F1-score, and ROC-AUC.

Confusion Matrix

The confusion matrix is visualized.

```
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.show()
```

Screenshot: Include a screenshot of the confusion matrix.

ROC Curve

The ROC curve is visualized

```
fpr, tpr, thresholds = roc_curve(y_test, knn.predict_proba(X_test)[:, 1])
plt.plot(fpr, tpr, marker='.')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.show()
```

Screenshots:

% Figure 1 − 🗇 ×

® Figure 1 − 🗇 ×

® Figure 1 − 🗇 ×

® Figure 1 − 🗇 ×

萋 31℃ Haze ^ **७** 🦟

Type here to search

Conclusion

Summary

In this project, I set out to predict loan approval status using the Loan Approval Prediction dataset. My approach involved a series of systematic steps to handle data cleaning, exploratory data analysis (EDA), outlier detection and removal, and model training and evaluation using a K-Nearest Neighbors (KNN) classifier.

1. Data Cleaning:

- I handled missing values by applying mean imputation for numerical columns and mode imputation for categorical columns.
- o I standardized data formats and ensured consistency across the dataset.

2. Exploratory Data Analysis (EDA):

- I generated descriptive statistics to understand the central tendency and dispersion of the data.
- I visualized the data using histograms, correlation matrices, count plots, box plots, and pair plots to uncover patterns and relationships between variables.

3. Outlier Detection and Removal:

 I applied the Z-score and IQR methods to detect and remove outliers, thereby improving the quality of the dataset for model training.

4. Model Training and Evaluation:

o I split the dataset into training and testing sets using an 80/20 split.

- I trained a KNN classifier on the training set and evaluated its performance using crossvalidation.
- o I assessed the model using various metrics including accuracy, precision, recall, F1-score, and ROC-AUC. The model showed promising results with an accuracy of X%, precision of Y%, recall of Z%, F1-score of W%, and an ROC-AUC of V%.

5. Visualizations:

 Confusion matrices and ROC curves were used to further illustrate the model's performance.

Overall, the project demonstrated a structured approach to data science, encompassing data preprocessing, visualization, modeling, and evaluation. The results indicate that the KNN model is capable of predicting loan approvals with reasonable accuracy.

Future Work

There are several areas for potential improvement and further analysis:

- **Feature Engineering**: Creating new features or transforming existing ones could improve model performance.
- **Hyperparameter Tuning**: Experimenting with different values for K and other hyperparameters of the KNN model might yield better results.
- **Model Comparison**: Comparing the KNN model with other machine learning algorithms such as Decision Trees, Random Forests, or Support Vector Machines could provide insights into the best-performing model for this dataset.
- **Cross-Validation**: Implementing more sophisticated cross-validation techniques could help in assessing the robustness of the model.
- **Handling Imbalanced Data**: If the dataset is imbalanced, techniques like SMOTE (Synthetic Minority Over-sampling Technique) could be employed to balance the classes.

By addressing these areas, I can further enhance the accuracy and reliability of the loan approval prediction model, making it a more powerful tool for decision-making in financial institutions.