MODEL TIP ELEMENTAR

1. Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve e.d.

$$x'' - 4x = 1 + t$$
 , $x(0) = 2$, $x'(0) = 1$

2. Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve e.d.

$$x''' - 2x'' + x' = e^{3t}$$
, $x(0) = 0$, $x'(0) = 0$, $x''(0) = 1$

3. Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve e.d.

$$x'' - x = \sin 3t + \cos 3t$$
 , $x(0) = 0$, $x'(0) = 2$

4. Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve e.d.

$$x''' - 9x' = e^{3t}$$
, $x(0) = 0$, $x'(0) = 0$, $x''(0) = 1$

5. Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve e.d. $x'' + 6x' + 25x = e^t$, x(0) = 0, x'(0) = 0

6. Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve e.d.

$$x'' + 4x' + 4x = 1 + e^{t}$$
, $x(0) = 0$, $x'(0) = 0$

7. Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve e.d.

$$x'' + x = 2 + t$$
, $x(0) = x'(0) = 1$

8. Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve e.d.

$$x'' + 4x' + 5x = 1$$
 , $x(0) = 0$, $x'(0) = 2$

9. Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve e.d.

$$x'' - x = 1 + e^{-t}$$
, $x(0) = 0$, $x'(0) = 2$

10. Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve e.d.

$$x'' + 16x = t e^t$$
, $x(0) = x'(0) = 0$

MODEL TFI

- 1. Sa se calculeze spectrul, amplitudinea si faza in frecventa ale
- semnalului $f: \mathbb{R} \to \mathbb{C}$, $f(t) = \frac{2t+j}{(t^2+8t+25)^2}$ 2. Se considera semnalul $f: \mathbb{R} \to \mathbb{C}$, $f(t) = \frac{t}{(3-jt)^5}$ Sa se determine energia E(f), spectrul $\hat{f}(\omega)$ si E(\hat{f}).
- 3. Sa se calculeze TFI prin sin pentru semnalul

$$f(t) = \frac{1}{t(t^2+9)^2}$$
, $t > 0$, pe frecventa $\omega = 2$.

4. Se considera semnalul $f: \mathbb{R} \to \mathbb{C}$

$$f(t) = \int_{-\infty}^{\infty} \frac{1}{(t^2 + x^2 - 2tx + 4)(x^2 + 2jx + 3)^2} dx$$

Sa se determine numarul real a astfel incat

$$f(t) = \frac{1}{t^2 + a} * \frac{1}{(t^2 + 2jt + 3)^2}$$
 si sa se calculeze $\hat{f}(1)$.

Obs. Simbolul * reprezinta produsul de convolutie.

5. Se considera semnalele

$$f, g, h: \mathbb{R} \to \mathbb{R}, \ f(t) = e^{-25t^2},$$

 $g(t) = f^{(6)}(t)$ si $h(t) = t^2 f(t)$. Sa se calculeze energia semnalului f si sa se determine spectrele Fourier ale semnalelor f, g, h pe frecventa $\omega = 1$.

6. Se considera semnalul

$$g: \mathbb{R} \to \mathbb{R}$$
, $g(\omega) = e^{-4\omega^2}$

si ecuatia integrala Fourier

$$\int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt = g(\omega) , \ f \in L^{1}(\mathbb{R})$$

Sa se calculeze energia semnalului g, energia semnalului f si f(1).

7. Sa se rezolve ecuatia integrala Fourier

$$\int_0^\infty f(t)\cos(\omega t)d\omega = \frac{1}{(\omega^2+9)^2 \ (\omega^2+1)}, \ \ \mathbf{f} \in L^1(0,\infty), \omega > 0.$$

MODEL_Laplace

1. Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve e.d.

$$x'' + 4x = \frac{1}{\cos^2 t + 3\sin^2 t}$$
, $x(0) = 2$, $x'(0) = 8$.

2. Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve e.d.

$$x'' - 8x' + 16x = \frac{e^{4t}}{2t+1} \quad ; \quad x(0) = 0 , \quad x'(0) = 1 .$$
3. Fie $f \in \mathcal{O}$, $f(t) = \int_0^t e^{x+t} (x-t)^2 (\cos(2t-2x))^{(5)} dx$.

- Sa se calculeze $\mathcal{L}\{f(t)\}(3)$.
- 4. Utilizand definitia si proprietatile transformarii Laplace, sa se calculeze integrala improprie

$$\int_0^\infty \frac{t^2\cos(3t)+4\sin^2t\cos t}{t} e^{-2t} dt$$
 5. Fie $f(t)=\int_0^{\sqrt{t}} x^9 e^{-2x^2} dx$. Sa se calculeze

$$\mathcal{L}{f'(t)}(s)$$
, $\mathcal{L}{f(t)}(s)$, $\int_{0}^{\infty}te^{-3t}f(5t)dt$ si $\mathcal{L}{e^{-4t}tf(t)}(1)$
6. Utilizand transformata Laplace, sa se calculeze

$$\int_0^\infty x \left(\frac{\sin(5x)}{x}\right)^3 dx$$

7. Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve in cadrul Teoriei distributiilor, ecuatia diferentiala

$$x^{(4)}(t) + 8x'''(t) + 25x''(t) = \delta^{(4)}(t) + 2\delta'(t),$$

$$x(0) = x'(0) = x''(0) = x'''(0) = 0,$$

unde δ este distributia-impuls a lui Dirac.

8. Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve ecuatia integro-diferentiala de tip convolutiv

$$x''(t) + 12 \int_0^t e^{8(t-\tau)} x''(\tau) d\tau = \cos t$$
 , $x(0) = x'(0) = 0$

- **9..** (i) Sa se calculeze $\mathcal{L}\{\cos^3(at)\}(s)$.
 - (ii) Utilizand transformata Laplace, sa se calculeze

$$\int_0^\infty \frac{\sqrt{t} e^{-t} + \cos^3(2t) - \cos^3(8t)}{t} dt.$$

MODEL TFD&z

1. Utilizand metoda (tehnica) transformarii z, sa se rezolve ecuatia cu diferente finite:

$$x(n+2) + 4x(n+1) + 4x(n) = 2^{n}u(n)$$
, $x \in S_{d}^{+}$, $x(0) = 0$, $x(1) = 2$

2. Utilizand metoda (tehnica) transformarii z, sa se rezolve ecuatia cu diferente finite:

$$x(n+2) + x(n+1) - 12x(n) = 3^n u(n), x \in S_d^+, x(0) = 1, x(1) = 2$$

3. Se considera semnalul discret

$$x = (j, 1 + 4j, 1 + 2j, 0)^T \in K^4$$

Sa se determine:

(i)
$$x(57) + x(-157)$$
; (ii) Energia $E(x)$; (iii) $X = \mathcal{F}_d x$

(iv) E(X) si sa se verifice formula lui Parseval

4. Se considera semnalul discret

$$x = (0, 1+3j, 2+j, 4+j)^T \in K^4$$

Sa se determine:

(ii)
$$x(53) + x(-153)$$
; (ii) Energia $E(x)$; (iii) $X = \mathcal{F}_d x$

(iv) E(X) si sa se verifice formula lui Parseval