Geometric Assumption (Ricci Curvature) implies Topological Conclusion (Homology)

Alice Lim

2020 Syracuse University

Myers' Theorem

Suppose (M,g) is a complete Riemannian manifold.

The Splitting Theorem (Cheeger-Gromoll)

Ric > 0

 $Ric \ge 0$

M complete, noncompact,

 $Ric \ge 0$ Implies Homology

(Shen-Sormani)

Let M^n be complete and noncompact.

Result

 $M^n = \mathbb{R} \times N$ $g = dr^2 + g_0$

 $H_{n-1}(M,\mathbb{Z})=0$

 $H_{n-1}(M,\mathbb{Z})=0 \text{ or } \mathbb{Z}$

Bakry Émery Ricci Curvature

where $\varphi: M^n \to \mathbb{R}$, *m* is a constant.

 $\operatorname{Ric}_{\varphi}^{m} = \operatorname{Ric} + \operatorname{Hess} \varphi - \frac{1}{m} (\nabla \varphi)^{*} \otimes (\nabla \varphi)^{*},$

Myers' Theorem for $\mathrm{Ric}_{\varphi}^{\infty}$ (Fernández-López and García-Río)

Let (M, g) be a complete Riemannian manifold.

Splitting Theorem for Ric_{φ}^{∞} (Fang-Li-Zhang)

Example:

 $\nabla \varphi$ bounded, $\mathrm{Ric}_{\varphi}^{\infty} > 0$, Splitting Theorem doesn't hold,

$$H_{n-1}(M,\mathbb{Z}) = \mathbb{Z}$$

$$M = \mathbb{R} \times S^{n-1},$$

$$g = dr^2 + \rho^2(r)g_N.$$

Let V be a vector in the tangent space of S^{n-1} . Let $\rho(r)$ look as follows:

We can choose $\varphi(r)$ such that the Splitting Theorem doesn't hold, $\nabla \varphi$ is bounded, $\operatorname{Ric}_{\varphi}^{\infty} > 0.$

$Ric_{\varphi}^{-(n-1)} \geq 0$ Implies Homology Result

Let M^n be complete and noncompact.

Example: $Ric_{\varphi}^{m} \geq 0$, φ unbounded,

$$H_{n-1}(M, \mathbf{Z}) \neq 0$$

Consider $M = S^{n-1} \times \mathbb{R}$ with m = 1 - n.

Let
$$\varphi : \mathbb{R} \to \mathbb{R}$$
, $r \to r^2$.

Then
$$\operatorname{Ric}_{\varphi}^{m} > 0$$
,
BUT $H_{n-1}(M, \mathbb{Z}) = \mathbb{Z}$.