ENGR 507 (Spring 2025) S. Alghunaim

1. Vectors and matrices

- vectors
- vector operations
- inner product and norm
- matrices
- matrix operations
- functions
- linear equations

Vector

a (column) vector is an ordered list of numbers arranged in a vertical array, written as:

$$a = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \quad \text{or} \quad a = (a_1, a_2, \dots, a_n)$$

- a_i is the *i*th *entry* (*element, coefficient, component*) of vector a
- *i* is the *index* of the *i*th entry a_i
- number of entries *n* is the *size* (*length*, *dimension*) of the vector
- a vector of size n is called an n-vector

the **transpose** of an n-vector a is a *row* vector arranged in a horizontal array:

$$a^T = [a_1 \ a_2 \ \cdots \ a_n]$$

- $(\cdot)^T$ is transpose operation
- $(a^T)^T = a$ (transpose of row vector is a column vector)

Notes and conventions

- all vectors are column vectors unless otherwise stated
 - for row vector we use the transpose notation (e.g., a^T)
- \mathbb{R}^n is set of *n*-vectors with real entries
- $a \in \mathbb{R}^n$ means a is n-vector with real entries
- two *n*-vectors a and b are equal, denoted as a = b, if $a_i = b_i$ for all i
- a_i can refer to an *i*th vector in a collection of vectors
 - in this case, we use $(a_i)_i$ to denote the jth entry of vector a_i
 - example: if $a_2 = (-1, 2, -5)$, then $(a_2)_3 = -5$

Conventions

- · parentheses are also used instead of rectangular brackets to represent a vector
- other notations exist to distinguish vectors from numbers (e.g., \mathbf{a} , \vec{a} , \mathbf{a})
- conventions vary; be prepared to distinguish scalars from vectors

Examples of vectors

Location and displacement

- location (position): coordinates of a point in 2-D (plane) or 3-D space
- displacement: vector represents the change in position from one point to another (shown as an arrow in plane or 3-D space)

Examples of vectors

Time series or signal: entries are values of some quantity at n different times

- hourly temperature over a period of n hours
- audio signal: entries give the acoustic pressure values at equally spaced times

Feature vector: entries are quantities that relate to a single object

- example: age, height, weight, blood pressure, gender, etc., of patients
- entries are called the features or attributes

Portfolio: entries can represent stock portfolio (e.g., investment in n assets)

- ith entry is the number of shares of asset i held (or invested in asset i)
- entries can be the no. of shares, dollar values, fractions of total dollar amount
- shares you owe another party (short positions) are represented by negative values

Special vectors

Zero vector and ones vector

$$0 = (0, 0, \dots, 0), \quad \mathbf{1} = (1, 1, \dots, 1)$$

size follows from context (if not, we add a subscript and write $0_n, 1_n$)

Unit vectors

• there are *n* unit vectors of size *n*, denoted by e_1, e_2, \ldots, e_n

$$(e_i)_j = \begin{cases} 1 & j = i \\ 0 & j \neq i \end{cases}$$

- the ith unit vector is zero except its ith entry which is 1
- example: for n = 3,

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

• the size of e_i follows from context (or should be specified explicitly)

Block vectors, subvectors

Stacking

- vectors can be stacked (concatenated) to create larger vectors
- stacking vectors b, c, d of size m, n, p gives an (m + n + p)-vector

$$a = \begin{bmatrix} b \\ c \\ d \end{bmatrix} = (b, c, d) = (b_1, \dots, b_m, c_1, \dots, c_n, d_1, \dots, d_p)$$

- we call b, c, and d as subvectors or slices of a
- example: if a = 1, b = (2, -1), c = (4, 2, 7), then (a, b, c) = (1, 2, -1, 4, 2, 7)

Subvectors slicing

- colon (:) notation is used to define subvectors (slices) of a vector
- for vector a, we define $a_{r:s} = (a_r, \dots, a_s)$
- example: if a = (1, -1, 2, 0, 3), then $a_{2:4} = (-1, 2, 0)$

Outline

- vectors
- vector operations
- inner product and norm
- matrices
- matrix operations
- functions
- linear equations

Addition and subtraction

for n-vectors a and b,

$$a+b = \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_n + b_n \end{bmatrix}, \quad a-b = \begin{bmatrix} a_1 - b_1 \\ a_2 - b_2 \\ \vdots \\ a_n - b_n \end{bmatrix}$$

Example

$$\left[\begin{array}{c} 0\\7\\3 \end{array}\right] + \left[\begin{array}{c} 1\\2\\0 \end{array}\right] = \left[\begin{array}{c} 1\\9\\3 \end{array}\right]$$

Properties: for vectors a, b of equal size

• commutative: a + b = b + a

• associative: a + (b + c) = (a + b) + c

Geometric interpretation: displacements addition

• if a and b are displacements, a + b is the net displacement

• position displacements

Scalar-vector multiplication

for scalar β and n-vector a,

$$\beta \left[\begin{array}{c} a_1 \\ a_2 \\ \vdots \end{array} \right] = \left[\begin{array}{c} \beta a_1 \\ \beta a_2 \\ \vdots \\ a \end{array} \right]$$

example:

$$(-2)\begin{bmatrix} 1\\9\\6\end{bmatrix} = \begin{bmatrix} -2\\-18\\-12\end{bmatrix}$$

Properties: for vectors a, b of equal size, scalars β, γ

- commutative: $\beta a = a\beta$
- associative: $(\beta \gamma)a = \beta(\gamma a)$, we write as $\beta \gamma a$
- distributive with scalar addition: $(\beta + \gamma)a = \beta a + \gamma a$
- distributive with vector addition: $\beta(a+b) = \beta a + \beta b$

1.10

Linear combination

a *linear combination* of vectors a_1, \ldots, a_k is a sum of scalar-vector products

$$\beta_1 a_1 + \beta_2 a_2 + \cdots + \beta_k a_k$$

- scalars β_1, \ldots, β_k are the *coefficients* of the linear combination
- example: any *n*-vector *b* can be written as

$$b = b_1 e_1 + \cdots + b_n e_n$$

Special linear combinations

- affine combination: when $\beta_1 + \cdots + \beta_k = 1$
- convex combination or weighted average: when $\beta_1 + \cdots + \beta_k = 1$ and $\beta_i \geq 0$

Example: combination of displacements

Line segment

any point on the line passing through distinct \boldsymbol{a} and \boldsymbol{b} can be written as

$$c = \theta a + (1 - \theta)b$$

- θ is a scalar
- for $0 \le \theta \le 1$, point c lie on the segment between a and b

vector operations SA — ENGREO7

Outline

- vectors
- vector operations
- inner product and norm
- matrices
- matrix operations
- functions
- linear equations

Inner product

the (Euclidean) inner product (or dot product) of two n-vectors a, b is

$$a^T b = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

- a scalar
- other notation exists: $\langle a, b \rangle$, $\langle a \mid b \rangle$, $a \cdot b$
- example:

$$\begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}^T \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} = (-1)(1) + (2)(0) + (2)(-3) = -7$$

Properties of inner product

for vectors a,b,c of equal size, scalar γ

- nonnegativity: $a^T a \ge 0$, and $a^T a = 0$ if and only if a = 0.
- commutative: $a^Tb = b^Ta$
- associative with scalar multiplication: $(\gamma a)^T b = \gamma (a^T b)$
- distributive with vector addition: $(a + b)^T c = a^T c + b^T c$

Useful combination: for vectors a, b, c, d

$$(a+b)^T(c+d) = a^Tc + a^Td + b^Tc + b^Td$$

Block vectors: if vectors a, b are block vectors, and corresponding blocks $a_i, b_i \in \mathbb{R}^{n_i}$ have the same sizes (they conform),

$$a^{T}b = \begin{bmatrix} a_1 \\ \vdots \\ a_k \end{bmatrix}^{T} \begin{bmatrix} b_1 \\ \vdots \\ b_k \end{bmatrix} = a_1^{T}b_1 + \dots + a_k^{T}b_k$$

Simple examples

Inner product with unit vector

$$e_i^T a = a_i$$

Differencing

$$(e_i - e_j)^T a = a_i - a_j$$

Sum and average

$$\mathbf{1}^T a = a_1 + a_2 + \dots + a_n$$

$$\operatorname{avg}(a) = \frac{a_1 + a_2 + \dots + a_n}{n} = \left(\frac{1}{n}\mathbf{1}\right)^T a$$

Inner product examples

Polynomial evaluation

• n-vector c represents the coefficients of a polynomial p of degree n-1 or less:

$$p(x) = c_1 + c_2 x + \dots + c_{n-1} x^{n-2} + c_n x^{n-1}$$

- t is number, and let $z = (1, t, t^2, \dots, t^{n-1})$ be the n-vector of powers of t
- $c^T z = p(t)$ is the value of the polynomial p at the point t

Price quantity (cost)

- vectors of prices p and quantities q of n goods
- $p^Tq = p_1q_1 + p_2q_2 + \cdots + p_nq_n$ is the total cost

Portfolio value

- *s* is an *n*-vector of holdings in shares of a portfolio of *n* assets
- p is an n-vector for the prices of the assets
- $p^T s$ is the total (or net) value of the portfolio

Euclidean norm

Euclidean norm of vector $a \in \mathbb{R}^n$:

$$\|a\| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2} = \sqrt{a^T a}$$

- reduces to absolute value $|a| = \max\{a, -a\}$ when n = 1
- measures the magnitude of a
- examples

$$\left\| \begin{bmatrix} 2\\ -1\\ 2 \end{bmatrix} \right\| = \sqrt{9} = 3, \quad \left\| \begin{bmatrix} 0\\ -1 \end{bmatrix} \right\| = 1$$

Properties

Positive definiteness

$$||a|| \ge 0$$
 for all a , $||a|| = 0$ only if $a = 0$

Homogeneity

$$\|\beta a\| = |\beta| \|a\|$$
 for all vectors a and scalars β

Triangle inequality

$$||a+b|| \le ||a|| + ||b||$$
 for all vectors a and b of equal length

- any real function that satisfies these properties is called a (general) norm (we will see other norms)
- Euclidean norm is often written as $||a||_2$ to distinguish from other norms

Norm of block vector and norm of sum

Norm of block vector: for vectors a, b, c,

Norm of sum: for vectors a, b,

$$\|a+b\| = \sqrt{\|a\|^2 + 2a^Tb + \|b\|}$$

Cauchy-Schwarz inequality

$$|a^Tb| \le ||a|| ||b||$$
 for all $a, b \in \mathbb{R}^n$

moreover, equality $|a^Tb| = ||a|| ||b||$ holds if:

- a = 0 or b = 0; in this case $a^T b = 0 = ||a|| ||b||$
- $b = \gamma a$ for some $\gamma > 0$; in this case

$$0 < a^T b = \gamma ||a||^2 = ||a|| ||b||$$

• $b = -\gamma a$ for some $\gamma > 0$; in this case

$$0 > a^T b = -\gamma ||a||^2 = -||a|| ||b||$$

Proof of Cauchy-Schwarz inequality

- 1. trivial if a = 0 or b = 0
- 2. assume ||a|| = ||b|| = 1; we show that $-1 \le a^T b \le 1$

$$0 \le ||a - b||^{2} \qquad 0 \le ||a + b||^{2}$$

$$= (a - b)^{T} (a - b) \qquad = (a + b)^{T} (a + b)$$

$$= ||a||^{2} - 2a^{T}b + ||b||^{2} \qquad = ||a||^{2} + 2a^{T}b + ||b||^{2}$$

$$= 2(1 + a^{T}b)$$

with equality only if a = b

with equality only if a = -b

3. for general nonzero a, b, apply case 2 to the unit-norm vectors

$$\frac{1}{\|a\|}a, \quad \frac{1}{\|b\|}b$$

Euclidean distance

Euclidean distance between two vectors a and b,

$$\operatorname{dist}(a,b) = \|a-b\|$$

• agrees with ordinary distance for n = 1, 2, 3

 when the distance between two vectors is small, we say they are 'close' or 'nearby', and when the distance is large, we say they are 'far'

Angle between vectors

the angle between nonzero real vectors a, b is defined as

$$\theta = \angle(a,b) = \arccos\left(\frac{a^Tb}{\|a\|\|b\|}\right)$$

- this is the unique value of $\theta \in [0, \pi]$ that satisfies $a^T b = ||a|| ||b|| \cos \theta$
- coincides with ordinary angle between vectors in 2-D and 3-D
- symmetric: $\angle(a,b) = \angle(b,a)$
- unaffected by positive scaling: $\angle(\beta a, \gamma b) = \angle(a, b)$ for $\beta, \gamma > 0$

Classification of angles

vectors are aligned or parallel $\theta = \pi$ $a^Tb = -\|a\|\|b\|$ vectors are anti-aligned or opposed

1.25

Orthonormal vectors

set of vectors a_1, a_2, \ldots, a_k is *orthonormal* if:

$$a_i^T a_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

- vectors are mutually orthogonal and have unit norm
- vector of norm one is called normalized
- process of dividing a vector by its norm is known as normalizing

Examples

- standard unit vectors e_1, \ldots, e_n are orthonormal
- vectors

$$\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}, \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

are orthonormal

Outline

- vectors
- vector operations
- inner product and norm
- matrices
- matrix operations
- functions
- linear equations

Matrices

a matrix is an ordered rectangular array of numbers, written as

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- scalars in array are the entries (elements, coefficients, components)
- a_{ij} is the i, jth entry of A (i is row index, j is column index)
- *size* (*dimensions*) of the matrix is $m \times n = (\#rows) \times (\#columns)$

Example

$$A = \begin{bmatrix} 0 & 1 & -2.3 & 0.1 \\ 1.3 & 4 & -0.1 & 0 \\ 4.1 & -1 & 0 & 1.7 \end{bmatrix}$$

- $a_{23} = -0.1$
- a 3×4 matrix

Notes and conventions

Notes

- a matrix of size $m \times n$ is called an $m \times n$ -matrix
- $\mathbb{R}^{m \times n}$ is set of $m \times n$ matrices with real entries
- we use $a_{i,j}$ when i or j are more than one digit
- two matrices with same size are equal if corresponding entries are all equal
- sometimes A_k is a matrix; in this case, we use $(A_k)_{ij}$ to denote its i, j entry

Conventions

- matrices are typically denoted by capital letters
- parentheses are also used instead of rectangular brackets to represent a matrix
- sometimes A_{ij} is used to denote the i, jth entry of A
- some authors use bold capital letter for matrices (e.g., A, A)
- be prepared to figure out whether a symbol represents a matrix, vector, or a scalar

Matrix examples

Images

- $m \times n$ matrix denote a monochrome (black and white) image
- X_{ij} is i, j pixel value in a monochrome image

Multiple asset returns

- $T \times n$ matrix R gives the returns of n assets over T periods
- R_{ij} is return of asset j in period i
- jth column of R is a T-vector that is the return time series for asset j

Feature matrix

- $X = [x_1 \cdots x_N]$ is $n \times N$ feature matrix
- column x_i is feature n-vector for object or example j
- X_{ij} is value of feature i for example j

Matrix shapes

Scalar: a 1×1 matrix is a scalar

Row and column vectors

- a 1 × n matrix is called a row vector
- an $n \times 1$ matrix is called a column vector (or just vector)

Tall, wide, square matrices: an $m \times n$ matrix is

- tall, skinny, or thin if m > n
- wide or fat if m < n
- square if m = n

1.30

Transpose of a matrix

transpose of an $m \times n$ matrix A is the $n \times m$ matrix:

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

- $\bullet (A^T)_{ij} = a_{ji}$
- $\bullet \quad (A^T)^T = A$
- example:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

Columns and rows

an $m \times n$ matrix can be viewed as a matrix with row/column vectors

Columns representation

$$A = [a_1 \ a_2 \cdots a_n], \qquad a_j = \begin{bmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{bmatrix}$$

each a_i is an m-vector (the jth column of A)

Rows representation

$$A = \begin{bmatrix} b_1^T \\ b_2^T \\ \vdots \\ b_m^T \end{bmatrix}, \qquad b_i^T = \begin{bmatrix} a_{i1} & \cdots & a_{in} \end{bmatrix}$$

each b_i^T is a $1 \times n$ row vector (the *i*th row of A)

Block matrix and submatrices

- a block matrix is a rectangular array of matrices
- entries in the array are the blocks or submatrices of the block matrix

Example: a 2×2 block matrix

$$A = \left[\begin{array}{cc} B & C \\ D & E \end{array} \right]$$

- submatrices can be referred to by their block row and column (C is 1, 2 block of A)
- dimensions of the blocks must be compatible
- if the blocks are

$$B = \left[\begin{array}{c} 2 \\ 1 \end{array} \right], \quad C = \left[\begin{array}{cc} 0 & 2 & 3 \\ 5 & 4 & 7 \end{array} \right], \quad D = \left[\begin{array}{c} 1 \end{array} \right], \quad E = \left[\begin{array}{cc} -1 & 6 & 0 \end{array} \right]$$

then

$$A = \left[\begin{array}{rrrr} 2 & 0 & 2 & 3 \\ 1 & 5 & 4 & 7 \\ 1 & -1 & 6 & 0 \end{array} \right]$$

1.33

Slice of matrix

$$A_{p:q,r:s} = \begin{bmatrix} a_{pr} & a_{p,r+1} & \cdots & a_{ps} \\ a_{p+1,r} & a_{p+1,r+1} & \cdots & a_{p+1,s} \\ \vdots & \vdots & & \vdots \\ a_{qr} & a_{q,r+1} & \cdots & a_{qs} \end{bmatrix}$$

- an $(q p + 1) \times (s r + 1)$ matrix
- obtained by extracting from A entries in rows p to q and columns r to s
- from last page example, we have

$$A_{2:3,3:4} = \begin{bmatrix} 4 & 7 \\ 6 & 0 \end{bmatrix}$$

Transpose of block matrix

the transpose of a block matrix (shown for a 2×2 block matrix)

$$\left[\begin{array}{cc} A & B \\ C & D \end{array}\right]^T = \left[\begin{array}{cc} A^T & C^T \\ B^T & D^T \end{array}\right]$$

- A, B, C, and D are matrices with compatible sizes
- · concept holds for any number of blocks

Special matrices

Zero matrix

- matrix with $a_{ij} = 0$ for all i, j
- notation: 0 or $0_{m \times n}$ (if dimension is not clear from context)

Identity matrix

- square matrix with $a_{ij} = 1$ if i = j and $a_{ij} = 0$ if $i \neq j$
- notation: I or I_n (if dimension is not clear from context)
- columns of I_n are unit vectors e_1, e_2, \ldots, e_n ; for example,

$$I_3 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] = \left[e_1 \ e_2 \ e_3 \right]$$

Structured matrices

matrices with special patterns or structure arise in many applications

Diagonal matrix

- square with $a_{i,i} = 0$ for $i \neq j$
- represented as $A = \operatorname{diag}(a_1, \dots, a_n)$ where a_i are diagonal entries

$$\operatorname{diag}(0.2, -3, 1.2) = \left[\begin{array}{ccc} 0.2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1.2 \end{array} \right]$$

Lower triangular matrix: square with $a_{ij} = 0$ for i < j

$$\begin{bmatrix} 4 & 0 & 0 \\ 3 & -1 & 0 \\ -1 & 5 & -2 \end{bmatrix}, \begin{bmatrix} 4 & 0 & 0 \\ 0 & -1 & 0 \\ -1 & 0 & -2 \end{bmatrix}$$

Upper triangular matrix: square with $a_{ij} = 0$ for i > j

(a triangular matrix is **unit** upper/lower triangular if $a_{ii} = 1$ for all i)

Symmetric matrices

a square matrix is symmetric if

$$A = A^T$$

- $a_{ij} = a_{ji}$
- examples:

$$\left[\begin{array}{cccc}
3 & 7 & -2 \\
7 & -1 & 5 \\
-2 & 5 & 0
\end{array}\right]$$

Outline

- vectors
- vector operations
- inner product and norm
- matrices
- matrix operations
- functions
- linear equations

Matrix addition

sum of two $m \times n$ matrices A and B

$$A+B=\left[\begin{array}{ccccc} a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1n}+b_{1n} \\ a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2n}+b_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1}+b_{m1} & a_{m2}+b_{m2} & \cdots & a_{mn}+b_{mn} \end{array}\right]$$

Properties

• commutativity: A + B = B + A

• associativity: (A + B) + C = A + (B + C)

• addition with zero matrix: A + 0 = 0 + A = A

• transpose of sum: $(A + B)^T = A^T + B^T$

Scalar-matrix multiplication

scalar-matrix product of $m \times n$ matrix A with scalar β

$$\beta A = \begin{bmatrix} \beta a_{11} & \beta a_{12} & \cdots & \beta a_{1n} \\ \beta a_{21} & \beta a_{22} & \cdots & \beta a_{2n} \\ \vdots & \vdots & & \vdots \\ \beta a_{m1} & \beta a_{m2} & \cdots & \beta a_{mn} \end{bmatrix}$$

Properties: for matrices A, B, scalars β, γ

- associativity: $(\beta \gamma)A = \beta(\gamma A)$
- distributivity: $(\beta + \gamma)A = \beta A + \gamma A$ and $\gamma(A + B) = \gamma A + \gamma B$
- transposition: $(\beta A)^T = \beta A^T$

Matrix-vector product

product of $m \times n$ matrix A with n-vector x

$$Ax = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} = \begin{bmatrix} b_1^Tx \\ b_2^Tx \\ \vdots \\ b_m^Tx \end{bmatrix}$$

- b_i^T is *i*th row of A
- dimensions must be compatible (number of columns of A equals the size of x)
- Ax is a linear combination of the columns of A:

$$Ax = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n$$

each a_i is an m-vector (ith column of A)

Properties of matrix-vector multiplication

for matrices A, B, vectors x, y and scalar β

- associativity: $(\beta A)x = A(\beta x) = \beta(Ax)$ (we write βAx)
- distributivity: A(x + y) = Ax + Ay and (A + B)x = Ax + Bx
- transposition: $(Ax)^T = x^T A^T$

General examples

- 0x = 0, *i.e.*, multiplying by zero matrix gives zero
- Ix = x, i.e., multiplying by identity matrix does nothing
- inner product a^Tb is matrix-vector product of $1 \times n$ matrix a^T and n-vector b
- $Ae_j = a_j$, the jth column of $A[(A^Te_i)^T = e_i^TA$ is ith row]
- the product A1 is the sum of the columns of A
- for the $n \times n$ matrix

$$A = \begin{bmatrix} 1 - 1/n & -1/n & \cdots & -1/n \\ -1/n & 1 - 1/n & \cdots & -1/n \\ \vdots & & \cdots & \vdots \\ -1/n & -1/n & \cdots & 1 - 1/n \end{bmatrix},$$

 $\tilde{x} = Ax$ is de-meaned version of x (i.e., $\tilde{x} = x - \text{avg}(x)\mathbf{1}$)

Difference matrix

 $(n-1) \times n$ difference matrix is

$$D = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 & 0 \\ & & \ddots & \ddots & & & \\ & & & \ddots & \ddots & & \\ 0 & 0 & 0 & \cdots & -1 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$$

y = Dx is (n - 1)-vector of differences of consecutive entries of x:

$$Dx = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ \vdots \\ x_n - x_{n-1} \end{bmatrix}$$

1 44

Vandermonde matrix

consider a polynomial of degree n-1 or less with coefficients x_1, x_2, \ldots, x_n :

$$p(t) = x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1}$$

• values of p(t) at m points t_1, \ldots, t_m can be written as

$$\begin{bmatrix} p(t_1) \\ p(t_2) \\ \vdots \\ p(t_m) \end{bmatrix} = \begin{bmatrix} 1 & t_1 & \cdots & t_1^{n-1} \\ 1 & t_2 & \cdots & t_2^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & t_m & \cdots & t_m^{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = Ax$$

- the matrix A is called a Vandermonde matrix
- the product Ax maps coefficients of polynomial to function values

Matrix multiplication

product of $m \times n$ matrix A and $n \times p$ matrix B

$$C = AB$$

is the $m \times p$ matrix with i, j entry

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{in} b_{nj}$$

- to get c_{ij} : move along *i*th row of A, *j*th column of B
- dimensions must be compatible:

#columns in A = #rows in B

example:

$$\begin{bmatrix} -1.5 & 3 & 2 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 0 & -2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3.5 & -4.5 \\ -1 & 1 \end{bmatrix}$$

1 46

Special cases of matrix multiplication

- scalar-vector product (with scalar on right!) $x\alpha$
- inner product a^Tb
- matrix-vector multiplication Ax
- outer product of m-vector a and n-vector b is the $m \times n$ matrix

$$ab^{T} = \begin{bmatrix} a_{1}b_{1} & a_{1}b_{2} & \cdots & a_{1}b_{n} \\ a_{2}b_{1} & a_{2}b_{2} & \cdots & a_{2}b_{n} \\ \vdots & \vdots & & \vdots \\ a_{m}b_{1} & a_{m}b_{2} & \cdots & a_{m}b_{n} \end{bmatrix}$$

- multiplication by identity $AI_n = A$ and $I_mA = A$
- matrix power: multiplication of matrix with itself p times: $A^p = AA \cdots A$

Properties of matrix-matrix product

- associativity: (AB)C = A(BC) so we write ABC
- associativity: with scalar multiplication: $(\gamma A)B = \gamma (AB) = \gamma AB$
- distributivity with sum:

$$A(B+C) = AB + AC$$
, $(A+B)C = AC + BC$

transpose of product:

$$(AB)^T = B^T A^T$$

• **not** commutative: $AB \neq BA$ in general; for example,

$$\left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right] \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] \neq \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right]$$

there are exceptions, e.g., AI = IA for square A

1 48

Product of block matrices

block-matrices can be multiplied as regular matrices

Example: product of two 2×2 block matrices

$$\left[\begin{array}{cc} A & B \\ C & D \end{array}\right] \left[\begin{array}{cc} W & Y \\ X & Z \end{array}\right] = \left[\begin{array}{cc} AW + BX & AY + BZ \\ CW + DX & CY + DZ \end{array}\right]$$

if the dimensions of the blocks are compatible

1 49

Column and row representations

Column representation

• $A ext{ is } m \times n, B ext{ is } n \times p ext{ with columns } b_i$

$$AB = A \begin{bmatrix} b_1 & b_2 & \cdots & b_p \end{bmatrix} = \begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_p \end{bmatrix}$$

• so AB is 'batch' multiply of A times columns of B

Row representation

• with a_i^T the rows of A

$$AB = \left[\begin{array}{c} a_1^T B \\ a_2^T B \\ \vdots \\ a_m^T B \end{array} \right] = \left[\begin{array}{c} (B^T a_1)^T \\ (B^T a_2)^T \\ \vdots \\ (B^T a_m)^T \end{array} \right]$$

• row i is $(B^Ta_i)^T$

1.50

Inner and outer product representations

Inner product representation: A is $m \times n$ with rows a_i^T , B is $n \times p$ with columns b_i

$$AB = \left[\begin{array}{cccc} a_1^T b_1 & a_1^T b_2 & \cdots & a_1^T b_p \\ a_2^T b_1 & a_2^T b_2 & \cdots & a_2^T b_p \\ \vdots & \vdots & & \vdots \\ a_m^T b_1 & a_m^T b_2 & \cdots & a_m^T b_p \end{array} \right]$$

i, jth entry is $a_i^T b_j$

Outer product representation: A is $m \times n$ with rows a_i^T , B is $n \times p$ with rows b_i^T

$$AB = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} \begin{bmatrix} b_1^T \\ \vdots \\ b_n^T \end{bmatrix} = a_1 b_1^T + \cdots + a_n b_n^T$$

matrix operations SA — ENGR507 1.51

Trace of a matrix

the *trace* of a square matrix $A \in \mathbb{R}^{n \times n}$ is the sum of its diagonal entries:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$$

some properties of the trace are:

- $\operatorname{tr}(A) = \operatorname{tr}(A^T)$
- tr(A + B) = tr(A) + tr(B) for square and equal size matrices A and B
- $tr(\beta A) = \beta tr(A)$ for any scalar β
- if A is an $m \times n$ matrix and B is an $n \times m$ matrix, then

$$tr(AB) = tr(BA)$$

• $\operatorname{tr}(ab^T) = \operatorname{tr}(b^Ta) = b^Ta$ for any *n*-vectors *a* and *b*

Inner product of matrices: the standard inner product between $A, B \in \mathbb{R}^{m \times n}$

$$\langle A, B \rangle = \operatorname{tr}(A^T B) = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} B_{ij}$$

Determinant of a matrix

the determinant of a square matrix for value of i (i = 1, 2, ..., n) is

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij}$$

 A_{ij} is the *ijth submatrix* of A obtained by removing row i and column j from A; for example

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \quad A_{12} = \begin{bmatrix} 4 & 6 \\ 7 & 9 \end{bmatrix}, \quad A_{32} = \begin{bmatrix} 1 & 3 \\ 4 & 6 \end{bmatrix}$$

- $\det A_{ij}$ is called the *ij*th *minor* of A
- $(-1)^{i+j} \det(A_{ij})$ is called the ijth *cofactor* of A

Examples

- for a scalar matrix $A = [a_{11}]$, we have $\det A = a_{11}$
- for a 2×2 matrix:

$$\det A = \det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

for the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

we have for i = 1

$$A_{11} = \begin{bmatrix} 5 & 6 \\ 8 & 9 \end{bmatrix}, \quad A_{12} = \begin{bmatrix} 4 & 6 \\ 7 & 9 \end{bmatrix}, \quad A_{13} = \begin{bmatrix} 4 & 5 \\ 7 & 8 \end{bmatrix}$$

thus, the determinant is

$$\det A = (-1)^2 a_{11} (\det A_{11}) + (-1)^3 a_{12} (\det A_{12}) + (-1)^4 a_{13} (\det A_{13})$$

$$= a_{11} (\det A_{11}) - a_{12} (\det A_{12}) + a_{13} (\det A_{13})$$

$$= 1(-3) - 2(-6) + 3(-3) = 0$$

Determinant properties

- $\det A = \det A^T$
- $\det \beta A = \beta^n \det A$ for any scalar β
- $\det AB = \det A \times \det B$ for square matrices A and B
- if A is lower/upper triangular, then $\det A = a_{11} \cdots a_{nn}$
- if A is block upper/lower triangular, with square diagonal blocks A_{11}, \ldots, A_{nn} (of possibly different sizes), then $\det A = \det A_{11} \cdots \det A_{nn}$
- determinant unchanged if we add to a column a linear comb. of other columns
- swapping two rows/columns changes the sign of det(A)

Outline

- vectors
- vector operations
- inner product and norm
- matrices
- matrix operations
- functions
- linear equations

Functions

- $f: X \to \mathcal{Y}$ denotes a function f that maps an element from set X to set \mathcal{Y}
- $f: \mathbb{R}^n \to \mathbb{R}^m$ means that f maps a real n-vector to a real m-vector:

$$f(x) = \begin{bmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{bmatrix}$$

where the entry $f_i: \mathbb{R}^n \to \mathbb{R}$ is itself a scalar-valued function of x

Function domain

- the *domain* of f, denoted by dom $f \subseteq X$, is the set where f is defined and finite
- for example, the functions

$$f_1(x) = \begin{cases} 1/x & \text{if } x \neq 0 \\ \infty & \text{otherwise} \end{cases}, \quad f_2(x) = \begin{cases} 1/x & \text{if } x > 0 \\ \infty & \text{otherwise} \end{cases}$$

are different since they have different domains

1.56

Examples

Defined everywhere ($\operatorname{dom} f = \mathbb{R}^n$)

- $f: \mathbb{R} \to \mathbb{R}$: $f(x) = x^2 + x + 1$ maps a scalar x to a scalar f(x)
- $f: \mathbb{R}^3 \to \mathbb{R}$: $f(x_1, x_2, x_3) = x_1 + x_2 + x_3^2$
- $f: \mathbb{R}^n \to \mathbb{R}^m$: f(x) = Ax where $x \in \mathbb{R}^n$ and A is an $m \times n$ matrix
- $f: \mathbb{R}^2 \to \mathbb{R}^3$: $f(x_1, x_2) = (x_1, x_2, x_1 + x_2^2)$

Undefined everywhere

- $f(x) = \log x$ is valid only for x > 0, hence $\operatorname{dom} f = \{x \mid x > 0\}$
- $f(x_1, x_2) = x_1/(x_1 + x_2)$ has domain $dom f = \{(x_1, x_2) \mid x_1 + x_2 \neq 0\}$

Linear functions

Linear functions: f is linear if it satisfies the *superposition* property

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

for all numbers α , β , and all n-vectors x, y

Extension: if f is linear, then

$$f(\alpha_1u_1+\alpha_2u_2+\cdots+\alpha_mu_m)=\alpha_1f(u_1)+\alpha_2f(u_2)+\cdots+\alpha_mf(u_m)$$

for all n-vectors u_1, \ldots, u_m and all scalars $\alpha_1, \ldots, \alpha_m$

1.58

Linear functions as matrix-vector product

define f(x) = Ax for fixed $A \in \mathbb{R}^{m \times n}$ $(f : \mathbb{R}^n \to \mathbb{R}^m)$

- any function of this type is linear: $A(\alpha x + \beta y) = \alpha(Ax) + \beta(Ay)$
- every linear function f can be written as f(x) = Ax:

$$f(x) = f(x_1e_1 + x_2e_2 + \dots + x_ne_n)$$

$$= x_1f(e_1) + x_2f(e_2) + \dots + x_nf(e_n)$$

$$= [f(e_1) f(e_2) \dots f(e_n)] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = Ax$$

where $A = [f(e_1) f(e_2) \cdots f(e_n)]$ and $f(e_i)$ is an *m*-vector

• for $f: \mathbb{R}^n \to \mathbb{R}$, we get inner product function $f(x) = a^T x$

Examples

Linear

- average function of an *n*-vector, $f(x) = (1/n)^T x = (x_1 + \dots + x_n)/n$
- *f* reverses the order of the components of *x* is linear

$$A = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right]$$

• f scales x_1 by a given number d_1, x_2 by d_2, x_3 by d_3 is linear

$$A = \left[\begin{array}{ccc} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{array} \right]$$

Nonlinear

- *f* sorts the components of *x* in decreasing order: not linear
- f replaces each x_i by its absolute value $|x_i|$: not linear

Affine function

a function $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine if it satisfies

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

for all *n*-vectors x, y and all scalars α , β with $\alpha + \beta = 1$

Extension: if f is affine, then

$$f(\alpha_1u_1 + \alpha_2u_2 + \dots + \alpha_mu_m) = \alpha_1f(u_1) + \alpha_2f(u_2) + \dots + \alpha_mf(u_m)$$

for all n-vectors u_1, \ldots, u_m and all scalars $\alpha_1, \ldots, \alpha_m$ with

$$\alpha_1 + \alpha_2 + \dots + \alpha_m = 1$$

Affine functions and matrix-vector product

 $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine, if and only if it can be expressed as

$$f(x) = Ax + b$$

for some $A \in \mathbb{R}^{m \times n}$. $b \in \mathbb{R}^m$

• to see it is affine, let $\alpha + \beta = 1$ then

$$A(\alpha x + \beta y) + b = \alpha(Ax + b) + \beta(Ay + b)$$

• using the definition, we can show

$$A = [f(e_1) - f(0) \ f(e_2) - f(0) \ \cdots \ f(e_n) - f(0)], \ b = f(0)$$

• for $f: \mathbb{R}^n \to \mathbb{R}$ the above becomes $f(x) = a^T x + b$

Quadratic functions

a function $f:\mathbb{R}^n \to \mathbb{R}$ is *quadratic* if it can be expressed as

$$f(x) = x^T Q x + x^T r + s$$

- Q is an $n \times n$ matrix
- r is an n-vector
- s is a scalar

Quadratic form

- a quadratic form is a special case: x^TQx where Q is symmetric
- we can always assume Q is symmetric because:

$$x^T Q x = (1/2) x^T (Q + Q^T) x$$

hence, $x^TQx = x^TPx$ with $P = \frac{1}{2}(Q + Q^T)$ being symmetric

Some sets notation

• nonnegative orthant:

$$\mathbb{R}_{+}^{n} = \{(x_{1}, x_{2}, \dots, x_{n}) \mid x_{1}, x_{2}, \dots, x_{n} \geq 0\}$$

• positive orthant:

$$\mathbb{R}_{++}^{n} = \{(x_1, x_2, \dots, x_n) \mid x_1, x_2, \dots, x_n > 0\}$$

• symmetric matrices:

$$\mathbb{S}^n = \{ X \in \mathbb{R}^{n \times n} \mid X = X^T \}$$

1.64

Level sets

the *level set* (sublevel set or contour lines) of a function $f:\mathbb{R}^n \to \mathbb{R}$ at level γ is

$$S_{\gamma} = \{ x \mid f(x) = \gamma \}$$

- the set of points with function value equal to γ
- for n = 2, this level set is called a *curve*; for n = 3, it is a *surface*
- for larger values of n, it is referred to as a hyper-surface
- example:

Level sets (controur lines) of f(x)

Outline

- vectors
- vector operations
- inner product and norm
- matrices
- matrix operations
- functions
- linear equations

Systems of linear equations

set (system) of m linear equations in n variables x_1, \ldots, x_n :

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

- can express compactly as Ax = b
- a_{ii} are the *coefficients*; A is the *coefficient matrix*
- *b* is called the *right-hand side*
- may have no solution, a unique solution, infinitely many solutions

Classification

- under-determined if m < n (A wide; more unknowns than equations)
- square if m = n (A square)
- over-determined if m > n (A tall; more equations than unknowns)

Examples

no solution

$$x_1 + x_2 + x_3 = 3$$

$$x_1 - x_2 + 2x_3 = 2$$

$$2x_1 + 3x_3 = 1$$

• unique solution

$$x_1 + x_2 + x_3 = 3$$

$$x_1 - x_2 + 2x_3 = 2$$

$$x_2 + 3x_3 = 1$$

· infinitely many solutions

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_2 + 2x_3 = 2$$

Example: polynomial interpolation

• polynomial of degree at most n-1 with coefficients x_1, x_2, \ldots, x_n :

$$p(t) = x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1}$$

- fit polynomial to m given points $(t_1, y_1), \ldots (t_m, y_m)$
- this is a system of linear equations:

$$Ax = \begin{bmatrix} 1 & t_1 & \cdots & t_1^{n-1} \\ 1 & t_2 & \cdots & t_2^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & t_m & \cdots & t_m^{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

where A is the Vandermonde matrix

Particular and general solution

$$\begin{bmatrix} 1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 42 \\ 8 \end{bmatrix}$$

- first two columns consist of a 1 and a 0, so a particular solution is $\hat{x} = (42, 8, 0, 0)$
- to find a general solution, we find $Ax_0 = 0$; for any x_3, x_4

$$x_1 = -8x_3 + 4x_4, \quad x_2 = -2x_3 - 12x_4$$

so
$$x_0 = (-8x_3 + 4x_4, -2x_3 - 12x_4, x_3, x_4)$$
 satisfies $Ax_0 = 0$

• combining solutions, the set of all solution, called general solution, is

$$x = \begin{bmatrix} 42 \\ 8 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -8x_3 + 4x_4 \\ -2x_3 - 12x_4 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 42 \\ 8 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -8 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 4 \\ -12 \\ 0 \\ 1 \end{bmatrix}, \quad x_3, x_4 \in \mathbb{R}$$

Elementary row transformation

the solution of Ax = b is invariant under the elementary operations:

- exchange of two equations (rows of augmented matrix $[A \ b]$)
- multiplication of an equation (row of $[A \ b]$) with a nonzero constant
- addition of two equations (rows of [A b])

Row echelon form: system is in *row-echelon form* if it has staircase structure:

- all rows that contain only zeros are below the nonzero rows (bottom of matrix)
- in nonzero rows, leading coefficient or pivot is to right of pivot of row above it

it is in reduced row-echelon form or row canonical form (as in page 1.69) if further

- every pivot is 1
- · pivot is the only nonzero entry in its column

Basic and free variables

- variables corresponding to the pivots are called basic variables
- other variables are called free variables.

linear equations SA — ENGR507 1.70

Gaussian elimination

Gaussian elimination is an algorithm that solves Ax = b by transforming $\begin{bmatrix} A & b \end{bmatrix}$ into (reduced) row-echelon form

to find all solutions to Ax = b:

- 1. find a particular solution to Ax = b by Guassian elimination
 - obtained from pivot columns (basic variables) with free variables set to zero
- 2. find all solutions to the homogeneous equation Ax = 0
 - by expressing basic variables in term of free variables
- 3. combine the solutions to the general solution

Example

$$-3x_1 + 2x_3 = -1$$

$$x_1 - 2x_2 + 2x_3 = -5/3$$

$$-x_1 - 4x_2 + 6x_3 = -13/3$$

- \mathbf{r}_i : ith equation or row of $[A\ b]$
- · transform system into row echelon-form

$$\begin{bmatrix} -3 & 0 & 2 & | & -1 \\ 1 & -2 & 2 & | & -5/3 \\ -1 & -4 & 6 & | & -13/3 \end{bmatrix} \xrightarrow[-(1/3)r_1+r_3]{} \begin{bmatrix} -3 & 0 & 2 & | & -1 \\ 0 & -2 & 8/3 & | & -2 \\ 0 & -4 & 16/3 & | & -4 \end{bmatrix}$$

$$\xrightarrow{-2r_2+r_3} \begin{bmatrix} -3 & 0 & 2 & | & -1 \\ 0 & -2 & 8/3 & | & -2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

we can work backward to solve this system or continue to make it into reduced row echelon form

• multiplying row 1 by -1/3 and row 2 by 1/-2, we obtain the canonical form

$$\left[\begin{array}{ccc|c}
1 & 0 & -2/3 & 1/3 \\
0 & 1 & -4/3 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]$$

basic variables are x_1, x_2 and free variable is x_3

• a particular solution is x = (1/3, 1, 0) and the homogeneous solution is

$$x_0 = \begin{bmatrix} (2/3)x_3 \\ (4/3)x_3 \\ x_3 \end{bmatrix}$$

· the set of all solutions is

$$\left\{ \begin{bmatrix} 1/3 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 2/3 \\ 4/3 \\ 1 \end{bmatrix} z \mid z \in \mathbb{R} \right\}$$

each value of z gives a different solution

Example

suppose after Gaussian elimination, we obtain

$$[A b] = \begin{bmatrix} 1 & 3 & 0 & 0 & 3 & 1 \\ 0 & 0 & 1 & 0 & 9 & 2 \\ 0 & 0 & 0 & 1 & -4 & 3 \end{bmatrix}$$

- basic variables are x_1, x_3, x_4 and a particular solution is x = (1, 0, 2, 3, 0)
- for Ax = 0 expressing the basic variables in terms of free variables x_2, x_5 :

$$x_1 = -3x_2 - 3x_5$$
, $x_3 = -9x_5$, $x_4 = 4x_5$

so the homogeneous solution has the form

$$\begin{bmatrix} 3x_2 - 3x_5 \\ x_2 \\ -9x_5 \\ 4x_5 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ -9 \\ 4 \\ 1 \end{bmatrix}, \quad x_2, x_5 \in \mathbb{R}$$

1 74

References and further readings

- S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares. Cambridge University Press, 2018. (https://web.stanford.edu/~boyd/vmls/) (Ch. 1,2,3,6,8,10)
- E. K.P. Chong, Wu-S. Lu, and S. H. Zak, *An Introduction to Optimization: With Applications to Machine Learning*. John Wiley & Sons, 2023. (Ch. 2, 5.5)

references SA FIGRS 07 1.75