CS118 Discussion 1B

Link layer, Multiple Access, Ethernet

Week 8

Zhiyi Zhang (zhiyi@cs.ucla.edu)

Link Layer

Network Stack: A better understanding

Application

- Where app message is generated
 - HTML request and response, DNS request and response, etc.

Transport

- Where the message is prepended the transport header for process-wide identification (multiplexing and demultiplexing)
 - HTML request is from process whose port is 12345 and to the process whose port is 80

Network

- Where the packet is delivered across the Internet, host to host
 - From sender's LAN to sender's AS to other ASes to target network's LAN

Link

- Where packet is transmitted in each link, hop to hop
 - From router1's interface 1 to the shared link then to router2's interface 2

Application
Transport
Network
Link
Physical

Link Layer

- Services provided by the link layer
 - Data framing
 - Error detection, correction CRC (cyclic redundancy check)
 - Multiple access handling
 - Link layer addressing
- Typical link layer protocols for LAN (local area network, e.g., your home, office)
 - Ethernet
 - VLANs
 - o WiFi

Packet Delivery at the Link Layer

- Basic communication models (also applies to other layers)
 - Unicast
 - A sends to B
 - E.g., TCP, UDP unicast
 - Broadcast
 - A sends to the rest hosts in the network
 - E.g., DHCP discovery (over UDP)
 - Multicast
 - A sends to a group of hosts in the network
 - E.g., IGMP (Internet Group Management Protocol) + DVMRP (Distance Vector Multicast Routing Protocol)

Multiple Access Protocol over Broadcast Media

- Channel partitioning
 - FDMA: partition frequency
 - o TDMA: partition time
 - CDMA: partition code
- Random access
 - Aloha
 - Slotted Aloha
 - CSMA
 - o CSMA/CD wired link
 - CSMA/CA wireless link
- Taking turns
 - Token ring

Aloha vs Slotted Aloha

- Suppose N nodes with enough frames to send, each transmit with probability
- Aloha
 - Pr(a given node can send out the message) = p(1-p)^{2(N-1)}
 - $Pr(a node can send out the message) = Np(1-p)^{2(N-1)}$
- Slotted Aloha
 - Pr(a given node can send out the message) = p(1-p)^{N-1}
 - Pr(a node can send out the message) = Np(1-p)^{N-1}
- To get max efficiency, find a p that maximize the equation, when N goes to infinity, we get max efficiency to be 1/e = 0.37 v.s. 1/(2e) = 0.18

Carrier Sense Multiple Access (CSMA)

- Listen before transmit: only send when idle
- What if busy
 - Retry immediately
 - Retry immediately with a probability
 - Retry after a random time interval
- Collision is possible
 - Because of the propagation delay, a sending host can be hidden to the listener
- To reduce bandwidth waste after collision
 - CSMA/CD (collision detection): abort transmission when detecting collision, used more in wired network because collision can easily be detected
 - CSMA/CA (collision avoidance): better ensure the channel is clear, used more in wireless
 network because collision cannot be detected

Ethernet

Ethernet Overview

- Service: connectionless, unreliable (best effort) data delivery
- Multiple Access Solution: CSMA/CD + exponential backoff
- MAC addresses are identifiers used in Ethernet
- Switch are used in Ethernet
 - ARP
 - Self learning strategy to be plug-and-play

Ethernet Multiple Access Protocol

- NIC creates frames after it receives datagram from the network layer
- If the channel is idle, starts frame transmission; if it's busy, wait until the channel is idle again then transmit.
- If NIC transmits the whole frame successfully, we are done; if another transmission is detected (collision), abort the transmission, send jam signal, and run exponential backoff

MAC address

- Assigned by the manufacture (eventually assigned by IEEE)
- Burned in NIC ROM
- MAC address flat -> portable
 - IP is structured -> fit into the network topology, not portable
- Format: 48 bits address
 - AA-BB-CC-DD-EE-FF
 - Broadcast address: FF-FF-FF-FF-FF

ARP: Address Resolution Protocol

- A mapping between the IP address and the MAC address
- ARP table: check with arp -a
 - IP address
 - MAC address
 - o TTL
- When a host/router is about to send the packet, the adapter needs to get the MAC address for the next hop who is physically connected to the sender
- Broadcast based
 - Broadcast the query: who knows the MAC address of this IP?
 - Reply with unicast: this IP's MAC address is blabla

A host send out a packet

- What's the destination IP address?
 - If same network
 - Look up the corresponding MAC address and send out the packet
 - If not within the same network
 - Look up the gateway router's MAC address and send out the packet

Switch

- Forward frame based on its destination MAC address
- Store and forward
- No "routing" equivalent
 - Use self learning to establish the forwarding table
- Different from a router
 - Router forwards by IP address, cross networks, network layer,
- Different from a hub or a repeater
 - Repeater: repeat bits from the incoming link to all other links
 - Hub: link layer packet received from the incoming link to all other links

Open to Quiz 2, Homework, Project 2 questions