CS 577- Intro to Algorithms

Divide and Conquer (Part 2)

Dieter van Melkebeek

September 15, 2020

Paradigm

- 1. Break up given instance into significantly smaller ones.
- 2. Recursively solve those.
- 3. Combine their solutions into one for the given instance.

Paradigm

- 1. Break up given instance into significantly smaller ones.
- 2. Recursively solve those.
- 3. Combine their solutions into one for the given instance.

Common pattern

Paradigm

- 1. Break up given instance into significantly smaller ones.
- 2. Recursively solve those.
- 3. Combine their solutions into one for the given instance.

Common pattern

- Sorting (Mergesort)
- Counting inversions

Paradigm

- 1. Break up given instance into significantly smaller ones.
- 2. Recursively solve those.
- 3. Combine their solutions into one for the given instance.

Common pattern

- Sorting (Mergesort)
- Counting inversions
- Closest pair of points in the plane (today)

Paradigm

- 1. Break up given instance into significantly smaller ones.
- 2. Recursively solve those.
- 3. Combine their solutions into one for the given instance.

Common pattern

- Sorting (Mergesort)
- Counting inversions
- Closest pair of points in the plane (today)

Other patterns

► Integer multiplication (today)

Paradigm

- 1. Break up given instance into significantly smaller ones.
- 2. Recursively solve those.
- 3. Combine their solutions into one for the given instance.

Common pattern

- Sorting (Mergesort)
- Counting inversions
- Closest pair of points in the plane (today)

Other patterns

- ► Integer multiplication (today)
- Selection (next time)

Recursion Tree Analysis of Common Pattern

Problem

Input: $(x_i, y_i) \in \mathbb{R}^2$ for $i \in [n]$

Problem

```
Input: (x_i, y_i) \in \mathbb{R}^2 for i \in [n]
Output: \delta \doteq \min\{\delta_{i,j} \text{ for } i, j \in [n] \text{ with } i \neq j\} where \delta_{i,j} \doteq \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
```

Problem

```
Input: (x_i, y_i) \in \mathbb{R}^2 for i \in [n]
Output: \delta \doteq \min\{\delta_{i,j} \text{ for } i, j \in [n] \text{ with } i \neq j\} where \delta_{i,j} \doteq \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
```

Algorithms

▶ Trivial: $O(n^2)$

Problem

```
Input: (x_i, y_i) \in \mathbb{R}^2 for i \in [n]
Output: \delta \doteq \min\{\delta_{i,j} \text{ for } i, j \in [n] \text{ with } i \neq j\} where \delta_{i,j} \doteq \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
```

Algorithms

- ▶ Trivial: $O(n^2)$
- ▶ Common D&C pattern: $O(n \log n)$

Closest Crossing Pair in the Plane

Pseudocode for recursive case

- 1. Find x^* , L, and R
- 2. Recursively compute δ_L and δ_R
- 3. $\delta^* \leftarrow \min(\delta_L, \delta_R)$
- 4. $M \leftarrow \{i \in [n] \text{ s.t. } x_i \in (x^* \delta^*, x^* + \delta^*) \}$
- 5. Sort *M* based on y-coordinate
- 6. $\delta_M \leftarrow \min{\{\delta_{M[i],M[j]} \text{ for } i < j < i + 12\}}$
- 7. Return $min(\delta^*, \delta_M)$

Pseudocode for recursive case

- 1. Find x^* , L, and R
- 2. Recursively compute δ_L and δ_R
- 3. $\delta^* \leftarrow \min(\delta_L, \delta_R)$
- 4. $M \leftarrow \{i \in [n] \text{ s.t. } x_i \in (x^* \delta^*, x^* + \delta^*) \}$
- 5. Sort *M* based on y-coordinate
- 6. $\delta_M \leftarrow \min{\{\delta_{M[i],M[j]} \text{ for } i < j < i + 12\}}$
- 7. Return min(δ^* , δ_M)

Correctness

Pseudocode for recursive case

- 1. Find x^* , L, and R
- 2. Recursively compute δ_L and δ_R
- 3. $\delta^* \leftarrow \min(\delta_L, \delta_R)$
- 4. $M \leftarrow \{i \in [n] \text{ s.t. } x_i \in (x^* \delta^*, x^* + \delta^*) \}$
- 5. Sort *M* based on y-coordinate
- 6. $\delta_M \leftarrow \min{\{\delta_{M[i],M[j]} \text{ for } i < j < i + 12\}}$
- 7. Return min(δ^* , δ_M)

Correctness

Running time

Pseudocode for recursive case

- 1. Find x^* , L, and R
- 2. Recursively compute δ_L and δ_R
- 3. $\delta^* \leftarrow \min(\delta_L, \delta_R)$
- 4. $M \leftarrow \{i \in [n] \text{ s.t. } x_i \in (x^* \delta^*, x^* + \delta^*) \}$
- 5. Sort *M* based on y-coordinate
- 6. $\delta_M \leftarrow \min{\{\delta_{M[i],M[j]} \text{ for } i < j < i + 12\}}$
- 7. Return $\min(\delta^*, \delta_M)$

Correctness

Running time

▶ Using local sorting: $O(n \log n)$ locally and $O(n(\log n)^2)$ overall

Pseudocode for recursive case

- 1. Find x^* , L, and R
- 2. Recursively compute δ_L and δ_R
- 3. $\delta^* \leftarrow \min(\delta_L, \delta_R)$
- 4. $M \leftarrow \{i \in [n] \text{ s.t. } x_i \in (x^* \delta^*, x^* + \delta^*) \}$
- 5. Sort *M* based on y-coordinate
- 6. $\delta_M \leftarrow \min{\{\delta_{M[i],M[j]} \text{ for } i < j < i + 12\}}$
- 7. Return min(δ^* , δ_M)

Correctness

Running time

- ▶ Using local sorting: $O(n \log n)$ locally and $O(n(\log n)^2)$ overall
- ▶ Using presorting: O(n) locally and $O(n \log n)$ overall

Problem

Input: nonnegative integers a and b in binary notation

Output: product $a \times b$ in binary notation

Problem

Input: nonnegative integers a and b in binary notation

Output: product $a \times b$ in binary notation

Grade school algorithm

Problem

Input: nonnegative integers a and b in binary notation

Output: product $a \cdot b$ in binary notation

Algorithms

Problem

Input: nonnegative integers a and b in binary notation

Output: product $a \cdot b$ in binary notation

Algorithms

▶ Grade school: $O(n^2)$

Problem

Input: nonnegative integers a and b in binary notation

Output: product $a \cdot b$ in binary notation

Algorithms

• Grade school: $O(n^2)$

▶ D&C: $O(n^q)$ for some $q \in (1,2)$

Problem

Input: nonnegative integers a and b in binary notation

Output: product $a \cdot b$ in binary notation

Algorithms

• Grade school: $O(n^2)$

▶ D&C: $O(n^q)$ for some $q \in (1,2)$

▶ Best known (2019): $O(n \log n)$

Integer Multiplication - D&C attempt

Integer Multiplication - recursion tree D&C attempt

▶ Running time: $\left(\sum_{i=0}^{d-1} 2^i\right) \cdot c \cdot n + c' \cdot 4^d$ where $d = \log_2(n)$

- ▶ Running time: $\left(\sum_{i=0}^{d-1} 2^i\right) \cdot c \cdot n + c' \cdot 4^d$ where $d = \log_2(n)$
- ▶ Geometric sum with ratio $r \neq 1$: $\sum_{i=0}^{d-1} r^i = \frac{r^d-1}{r-1} = \Theta(r^d)$

- ▶ Running time: $\left(\sum_{i=0}^{d-1} 2^i\right) \cdot c \cdot n + c' \cdot 4^d$ where $d = \log_2(n)$
- ▶ Geometric sum with ratio $r \neq 1$: $\sum_{i=0}^{d-1} r^i = \frac{r^d-1}{r-1} = \Theta(r^d)$
- Geometric sum with r = 2: $\sum_{i=0}^{d-1} 2^i = 2^d 1$

- ▶ Running time: $\left(\sum_{i=0}^{d-1} 2^i\right) \cdot c \cdot n + c' \cdot 4^d$ where $d = \log_2(n)$
- ► Geometric sum with ratio $r \neq 1$: $\sum_{i=0}^{d-1} r^i = \frac{r^d-1}{r-1} = \Theta(r^d)$
- ▶ Geometric sum with r = 2: $\sum_{i=0}^{d-1} 2^i = 2^d 1$
- $2^d = n \text{ for } d = \log_2(n)$

- ▶ Running time: $\left(\sum_{i=0}^{d-1} 2^i\right) \cdot c \cdot n + c' \cdot 4^d$ where $d = \log_2(n)$
- ► Geometric sum with ratio $r \neq 1$: $\sum_{i=0}^{d-1} r^i = \frac{r^d-1}{r-1} = \Theta(r^d)$
- Geometric sum with r = 2: $\sum_{i=0}^{d-1} 2^i = 2^d 1$
- $2^d = n \text{ for } d = \log_2(n)$
- $4^d = (2^2)^d = 2^{2d} = (2^d)^2 = n^2$

- ▶ Running time: $\left(\sum_{i=0}^{d-1} 2^i\right) \cdot c \cdot n + c' \cdot 4^d$ where $d = \log_2(n)$
- ▶ Geometric sum with ratio $r \neq 1$: $\sum_{i=0}^{d-1} r^i = \frac{r^d-1}{r-1} = \Theta(r^d)$
- ▶ Geometric sum with r = 2: $\sum_{i=0}^{d-1} 2^i = 2^d 1$
- $2^d = n \text{ for } d = \log_2(n)$
- $ightharpoonup 4^d = (2^2)^d = 2^{2d} = (2^d)^2 = n^2$
- Running time: $O(n^2)$

- $a = a_L \cdot 2^{n/2} + a_R$
- $b = b_L \cdot 2^{n/2} + b_R$

- $a = a_L \cdot 2^{n/2} + a_R$
- $b = b_L \cdot 2^{n/2} + b_R$

▶ $a = a_L \cdot 2^{n/2} + a_R$ ▶ $b = b_L \cdot 2^{n/2} + b_R$ ▶ $a \times b = (a_L \cdot 2^{n/2} + a_R) \times (b_L \cdot 2^{n/2} + b_R)$ ▶ $a \times b = (a_L \times b_L) \cdot 2^n + (a_L \times b_R + a_R \times b_L) \cdot 2^{n/2} + (a_R \times b_R)$

- $a = a_L \cdot 2^{n/2} + a_R$
- $b = b_L \cdot 2^{n/2} + b_R$
- $ightharpoonup a imes b = (a_L \cdot 2^{n/2} + a_R) imes (b_L \cdot 2^{n/2} + b_R)$
- ► $a \times b =$ $(a_L \times b_L) \cdot 2^n +$ $(a_L \times b_R + a_R \times b_L) \cdot 2^{n/2} +$ $(a_R \times b_R)$
- ▶ $a \times b =$ $(a_L \times b_L) \cdot 2^n +$ $[(a_L + a_R) \times (b_L + b_R) (a_L \times b_L) (a_R \times b_R)] \cdot 2^{n/2} +$ $(a_R \times b_R)$

Integer Multiplication - recursion tree improved D&C

▶ Running time: $\left(\sum_{i=0}^{d-1} \left(\frac{3}{2}\right)^i\right) \cdot c \cdot n + c' \cdot 3^d$ where $d = \log_2(n)$

- ▶ Running time: $\left(\sum_{i=0}^{d-1} \left(\frac{3}{2}\right)^i\right) \cdot c \cdot n + c' \cdot 3^d$ where $d = \log_2(n)$
- ► Geometric sum with ratio r: $\sum_{i=0}^{d-1} r^i = \frac{r^d-1}{r-1} = \Theta(r^d)$

- ▶ Running time: $\left(\sum_{i=0}^{d-1} \left(\frac{3}{2}\right)^i\right) \cdot c \cdot n + c' \cdot 3^d$ where $d = \log_2(n)$
- ► Geometric sum with ratio r: $\sum_{i=0}^{d-1} r^i = \frac{r^d-1}{r-1} = \Theta(r^d)$
- For $r = \frac{3}{2}$: $r^d = (\frac{3}{2})^d = \frac{3^d}{2^d}$

- ▶ Running time: $\left(\sum_{i=0}^{d-1} \left(\frac{3}{2}\right)^i\right) \cdot c \cdot n + c' \cdot 3^d$ where $d = \log_2(n)$
- ► Geometric sum with ratio r: $\sum_{i=0}^{d-1} r^i = \frac{r^d-1}{r-1} = \Theta(r^d)$
- For $r = \frac{3}{2}$: $r^d = (\frac{3}{2})^d = \frac{3^d}{2^d}$
- $\blacktriangleright \text{ For } d = \log_2(n)$
 - $ightharpoonup 2^d = n$

- ▶ Running time: $\left(\sum_{i=0}^{d-1} \left(\frac{3}{2}\right)^i\right) \cdot c \cdot n + c' \cdot 3^d$ where $d = \log_2(n)$
- ► Geometric sum with ratio r: $\sum_{i=0}^{d-1} r^i = \frac{r^d-1}{r-1} = \Theta(r^d)$
- For $r = \frac{3}{2}$: $r^d = (\frac{3}{2})^d = \frac{3^d}{2^d}$
- $\blacktriangleright \text{ For } d = \log_2(n)$
 - $ightharpoonup 2^d = n$

- ▶ Running time: $\left(\sum_{i=0}^{d-1} \left(\frac{3}{2}\right)^i\right) \cdot c \cdot n + c' \cdot 3^d$ where $d = \log_2(n)$
- ► Geometric sum with ratio r: $\sum_{i=0}^{d-1} r^i = \frac{r^d-1}{r-1} = \Theta(r^d)$
- For $r = \frac{3}{2}$: $r^d = (\frac{3}{2})^d = \frac{3^d}{2^d}$
- $\blacktriangleright \text{ For } d = \log_2(n)$
 - $ightharpoonup 2^d = n$
 - $3^d = 3^{\log_2(n)} = (2^{\log_2(3)})^{\log_2(n)} = (2^{\log_2(n)})^{\log_2(3)} = n^{\log_2(3)}$
- ► Running time: $O(\frac{n^q}{n} \cdot c \cdot n + c' \cdot n^q) = O(n^q)$ where $q = \log_2(3) \approx 1.585$