Predicting International Student Enrollment by Institutional Aid

Using Fixed and Random Effects

Daniel C. Posmik¹

Economic Scholars Program (ESP) Conference, May 2022

¹Department of Economics, University of Cincinnati

Findings

Table of contents

- 1. Background
- 2. Empirical Strategy
- 3. Findings
- 4. Implications for Policy and Practice

Background

Findings

Motivation

Since the fall of 2015, first-time International Student Enrollment (henceforth: ISE_{ft}) has declined for the first time in decades. But why?

- 1. Political Climate: The "Trump Effect" [Hacker and Bellmore, 2020]
- 2. Administrative Hurdles: Immigration Challenges [Shih, 2016]
- 3. ...

International students constitute a vital part of the U.S. campus communities and workforce. Therefore, universities must better understand how to reverse this trend and by incenting ISE_{ft} .

 \rightarrow Financial aid constitutes a promising solution - but little research addresses the relationship between financial aid and ISE_{ff}.

Research Design

This paper uses international student aid and enrollment data from the Common Data Set (CDS), as well as the IPEDS database (National Center for Education Statistics [NCES]).

Moreover,

- Data are sampled from institutions located within the Great Lakes region (OH, IN, IL, MI, WI).
- This study gives rise to a continuous treatment DiD scenario.
 However, causality could not be established due to treatment effect heterogeneity. [Callaway et al., 2021]
- Results must be interpreted strictly from the institutional perspective: To what extent do changes in aggregate aid awards predict the variation in overall enrollment?

Empirical Strategy

Findings

Predicting ISE_{ft} by Institutional Aid

How does financial aid predict ISE_{ft} ? Answering this question necessitates addressing three main concerns:

- 1. Heterogeneity amongst institutions (e.g., size and enrollment)
 - →Normalization to log-log framework, see [Bicak and Taylor, 2020]
- 2. Confounders/ Covariates
 - →Incorporate existing financial aid research, see [Cantwell, 2019],[Dynarski, 2000]
- 3. Institutional and Time Fixed Effects
 - →Two-Way Fixed Effects (TWFE) Model, see [De Chaisemartin and d'Haultfoeuille, 2020]

Model Specification

This yields a TWFE model such that

$$Y_{i,t} = \alpha + \hat{\beta}X_{i,t} + \hat{\delta}T_t + \hat{\gamma}F_i + \epsilon_{i,t}. \tag{1}$$

Findings

with two variables of interest and three control variables $(\rightarrow X_{i,t})$:

- log of total aid: Aggregate aid to all international students
- aid concentration: Aid recipients divided by Total ISE_{ft}
- log of total cost: Important in relationship with aid, see [Bodycott, 2009], [Darby, 2015]
- acceptance rate: Proxies for perceived attractiveness, see [Bodycott, 2009], [Darby, 2015], [Mazzarol and Soutar, 2002]
- log of undergraduate enrollment: Proxies for size, see [Cantwell, 2019]

Does aid predict ISE $_{ft}$ differently within different institutions? The short answer, probably! Why? We have already concluded that the institutional setting is highly heterogeneous. Therefore, aid is likely to be more or less powerful within certain institutional settings!

Extending the findings of [Bicak and Taylor, 2020], this paper limits this analysis to three dimensions of institutional characteristics:

Table 1: Categories of time-invariant institutional characteristics.

Location	Research Intensity	Sector
Town/ Rural	Low ('Bachelor')	Private
Suburban	Medium ('Masters')	Public
City	High ('Doctoral')	

Findings

Model Specification

Unfortunately, the time-invariance of these three institutional dimensions disqualifies a TWFE approach. This yields an important alternative to the TWFE model: A Random Effects (RE) model¹:

$$Y_{i,t} = \alpha + \hat{\nu}_{i,t} D_i \times \log(Aid)_{i,t} + \hat{\beta} X_{i,t} + \hat{\mu} D_i + \hat{\delta} T_t + \hat{\gamma} R_i + \epsilon_{i,t}$$
 (2)

where $Y_{i,t}$ is the logged new ISE_{ft} of institution i in year t. $\hat{\nu}_{i,t}$ is the coefficient on the interaction variables, where the binary variables D_i interact with $log(Aid)_{i,t}$ at time t and institution i. $\hat{\beta}_{i,t}$ are the coefficients of the all independent variables (namely the log of total aid, aid concentration, the log of cost, acceptance rate, and the log of undergraduate enrollment) established in regression (1).

Findings

Predicting ISE_{ft} by Institutional Aid

Relationship between ISE_{ff} and Institutional Aid

A 10% increase in total aid, correlates with a 1.8% increase in ISE_{ft}, all else equal.

Findings

000

Moreover,

- Financial aid is only a significant predictor in conjunction with aid concentration (negative coefficient): This is evidence for the cost barriers that international students face, see [Redden, 2015]
- Financial aid and aid concentration are the most significant (time-invariant) predictors of ISE_{ft}

Full results are reported in the Appendix.

Aid effectiveness within different institutional settings

Background

Relationship between institutional setting and aid effectiveness

Aid effectiveness varies significantly. Aid is an especially powerful predictor of ISE_{ft} in rural, low research, and private universities.

Figure 1: Enrollment boosts by different institutional characteristics.

Implications for Policy and

Practice

I find that institutional aid and its concentration are the most significant predictors of ISE_{ft} . Moreover, aid is a more powerful predictor of ISE_{ft} at rural, low research, and private universities. International students affect economic growth and development [Tremblay, 2005] So what does that mean?

1. Institutions

Background

- Aid attracts international students, they attract renown and funding for the institutions [McCormack, 2007],[Chellaraj et al., 2008]
- Aid is a student-centric enrollment tool: It is 'win-win' tool for both students and institutions [Mause, 2009]
- Less attractive universities (e.g., rural) can use the aid-induced enrollment boosts to compete more effectively (e.g., an internalization strategy per [Knight, 2004])

Implications for Policy

2. Policy

- Award aid to make education accessible to low-income students [Alon, 2009]
- Aid is an effective and reliable tool to attract and retain international talent for policymakers [Douglass and Edelstein, 2009], [Li, 2017]
- Aid to international students can be used as a tool to affect economic development/ growth in certain regions/ industries via universities as intermediaries [Owens et al., 2011]

→ Conclusion: Financial aid is a reliable enrollment management tool that prioritizes students, institutions, and economic interests!

Thank you! Questions?

Appendix A: FE Regression Specifications

Table 1: Results from the Fixed Effects Model

	Dependent variable:		
		log(First Enrollment)	
	(1)	(2)	(3)
log(Total Aid)	0.18	0.18	0.18
	(0.05)	(0.05)	(0.05)
	p = 0.0002	p = 0.0002	p = 0.0002
Aid Concentration	-0.91	-0.91	-0.85
	(0.22)	(0.22)	(0.22)
	p = 0.0001	p = 0.0001	p = 0.0002
log(Total Cost)	-0.58	-0.52	-0.85
	(0.44)	(0.45)	(0.47)
	p = 0.20	p = 0.25	p = 0.07
Acceptance Rate		0.55	0.47
		(0.44)	(0.44)
		p = 0.22	p = 0.29
log(Udgr. Enrollment)			1.01
,			(0.43)
			p = 0.02
Observations	417	415	415
R ²	0.07	0.07	0.09
F Statistic	8.33*** (df = 3; 342)	6.63*** (df = 4; 339)	6.50*** (df = 5; 338)

Appendix B: OLS vs. RE vs. FE Specifications

	Dep	endent variable	e e
	log(First Enrollment)		
	(1)	(2)	(3)
log(Total Aid)	0.37	0.26	0.18
	p = 0.00	p = 0.00	p = 0.0002
Aid Concentration	-1.47	-1.20	-0.85
	(0.19)	(0.20)	(0.22)
	p = 0.00	p = 0.00	p = 0.0002
log(Total Cost)	2.04	1.01	-0.85
	(0.27)	(0.30)	(0.47)
	p = 0.00	p = 0.001	p = 0.07
Acceptance Rate	-0.46	0.04	0.47
	(0.28)	(0.39)	(0.44)
	p = 0.11	p = 0.93	p = 0.29
log(Udgr. Enrollment)	0.64	0.61	1.01
	(0.09)	(0.11)	(0.43)
	p = 0.00	p = 0.00	p = 0.02
City	0.61		
	(0.10)		
	p = 0.00		
Suburban	0.13		
	(0.11)		
	p = 0.25		
Doctoral	-0.96		
	(0.17)		
	p = 0.0000		
Masters	-0.98		
	(0.12)		
	p = 0.00		
Private	-0.94		
	(0.20)		
	p = 0.0000		
Constant	-27.07	-15.45	
	(2.77)	(3.46)	
	p = 0.00	p = 0.0000	
Observations	415	415	415
\mathbb{R}^2	0.78	0.27	0.09
Residual Std. Error F Statistic	0.72 (df = 404)	150 00***	C 10+++ (15
F Statistic	143.04*** (df = 10; 404)	150.22***	6.50*** (df = 5; 338)

Appendix C: RE Specification: Location-specific interactions

	Dependent variable:		
	log	(First Enrollm	ent)
	(1)	(2)	(3)
City	2.58		
	p = 0.01		
	p = 0.01		
Suburban		0.11	
		p = 0.92	
Town/Rural			-6.34 (1.49)
			p = 0.000
log(Total Aid)	0.36	0.26	0.21
NIN AVER SEAS	(0.06)	(0.05)	(0.04)
	p = 0.00	p = 0.0000	p = 0.0000
Aid Concentration	-1.21	-1.18	-1.14
	(0.20)	(0.20)	(0.20)
	p = 0.00	p = 0.00	p = 0.00
log(Total Cost)	1.06	1.01	0.87
	p = 0.0004	p = 0.001	p = 0.004
Acceptance Rate	0.11	0.05	-0.03
	p = 0.78	p = 0.91	p = 0.93
log(Udgr. Enrollment)	(0.10)	(0.11)	(0.11)
	p = 0.00	p = 0.00	p = 0.00
City*log(Total Aid)	-0.17		
City-log(10thi Aid)	(0.07)		
	p = 0.02		
Suburban*log(Total Aid)		-0.02	
		(0.07)	
		p = 0.76	
Town/Rural*log(Total Aid)			0.45
			(0.11)
			p = 0.0001
Constant	-17.59	-15.52	-13.96
	p = 0.0000	p = 0.0000	g = 0.0001
	p = 0.0000	p = 0.0000	p = 0.0001
Observations	415	415	415
R ² F Statistic	0.29	0.27	0.30

Appendix D: RE Specification: Research-specific interactions

begt	ependent vario	Me:
Decimal 1.10 (1.87) (1	(First Enrollm	
(120) (120	(2)	(3)
p = 0.0000		
Martiers Bachelor Log(Tital Aid) (6.07 or 10.00 or 10.0		
Blechelor long(Total Aid) 0.40 (0.05) p − 0.00 1.28 1.28 1.29 1.20 2.20 2.20 2.20 3.21 4.20 5.20 6.23 6.23 6.23 6.23 7.20 8.20 9.20		
long(Tatal Aid) 0.0 0.00 0.00	-2.10	
long(Tatal Aid) 0.0 0.00 0.00	(1.08)	
long(Tatal Aid) 0.0 0.00 0.00	p = 0.06	
(6.05) Aid Concentration		-1.96
(10.05) Aid Concentration		(1.02)
(6.05) Aid Concentration		p = 0.06
p = 0.00	0.21	0.20
Mod Concentration [-1.98 (12.90 p − 0.00 p − 0.00 p − 0.00 (12.90 p − 0.00 p − 0	(0.04)	(0.04)
(6.22) long(Total Care) (6.27) p = 0.10. 0.27 p = 0.10. 0.27 p = 0.10. 0.27 p = 0.10. 0.27 p = 0.00. 0.27 0.2	p = 0.0000	p = 0.0000
p = 0.00 log [Taid Cast)	-1.17	-1.30
Deg Total Cost 127 (0.30)	p = 0.00	p = 0.00
(6.20) Acceptance Blais -0.65 -0.7	p = 0.00	p = 0.00
p = 0.02	0.67	0.98
Acceptance Rate	(0.30)	p = 0.0003
(0.37) p = 0.90 log(Udgr. Enrollment) 0.45 (0.14) p = 0.001 Doctorsal*log(Total Aid) 1 = 0.001 Masters*log(Total Aid) Hackelies*ln(Total Aid) Constant 1 = 13.16 (3.25)	p = 0.03	p = 0.0000
p=0.90 log(Udgr. Enrollment) 0.45 $p=0.00$ Doctorsal*log(Total Air) $p=0.00$ Mastersa*log(Total Air) $p=0.000$ Mastersa*log(Total Air) $p=0.000$ Constant -13.16 (3.16) (3.27)	-0.002	0.05
$\log(\text{Udgr. Enrollment}) \\ \log(\text{Udgr. Enrollment}) \\ 0.15 \\ p = 0.000 \\ \text{Dectoral*leg(Total Aid)} \\ -0.000 \\ \text{Dectoral*leg(Total Aid)} \\ -0.000 \\ \text{Masters*leg(Total Aid)} \\ \text{Bachelots*leg(Total Aid)} \\ \text{Constant} \\ -13.16 \\ (3.28)$	p = 1.00	(0.37) p = 0.90
$\begin{array}{ll} & 0.14) \\ & p = 0.001 \\ & \text{Doctoreal*log(Total Aid)} & -0.24 \\ & (0.07) \\ & p = 0.0000 \\ & \text{Mastern*log(Total Aid)} \\ & \\ & \text{Backelor*in(Total Aid)} \\ & \\ & \text{Constant} & -13.16 \\ & (3.78) \\ & \end{array}$	p = 1.00	p = 0.50
p = 0.001 Dectoral*leg(Total Aid)	0.55	0.93
Dectoral*leg(Total Aid) -0.34 (0.07) p = 0.000 Masters*leg(Total Aid) Hachies*ln(Total Aid) -13.16 (3.78)	p = 0.0000	p = 0.00
(0.07) p = 0.0000 Masters*log(Total Aid) Bachelor*in(Total Aid) Constant -13.16 (3.78)	p = 0.0000	p = 0.00
p = 0.0000 Masters*log(Total Aid) Blachelor*In(Total Aid) Constant −13.16 (3.78)		
Masters*log(Total Aid) Bachelor*in(Total Aid) Constant -12.16 (2.78)		
Bachelor*In(Total Aid) Constant -13.16 (3.78)		
Constant -13.16 (3.78)	0.09	
Constant -13.16 (3.78)	p = 0.27	
Constant -13.16 (3.78)	,	
(3.78)		0.22
(3.78)		p = 0.002
(3.78)		
	-10.31	-17.48
	p = 0.004	p = 0.0000
p = 0.0005	p = 0.004	p = 0.0000
Observations 415	415	415
R ² 0.32 F Statistic 196.32***	0.32	0.35

Appendix E: RE Specification: Sector-specific interactions

	Dependent variable:	
	log(First	Enrollment)
	(1)	(2)
Private	-4.86 (1.10) $p = 0.0000$	
Public		p = 0.0000
log(Total Aid)	p = 0.15 $p = 0.002$	p = 0.53 $p = 0.00$
Aid Concentration	p = 0.00	-1.21 (0.20) $p = 0.00$
log(Total Cost)	0.65 (0.36) $p = 0.08$	p = 0.65 $p = 0.08$
Acceptance Rate	0.33 (0.38) $p = 0.39$	0.33 (0.38) $p = 0.39$
og(Udgr. Enrollment)	0.75 (0.15) $p = 0.0000$	0.75 (0.15) $p = 0.0000$
Private*log(Total Aid)	0.38 (0.08) $p = 0.0000$	
Public*log(Total Aid)		-0.38 (0.08) $p = 0.0000$
Constant	-11.87 (3.62) $p = 0.002$	-16.73 (3.75) $p = 0.0000$
Observations R ² F Statistic	415 0.33 199.72***	415 0.33 199.72***

References i

Alon, S. (2009).

The evolution of class inequality in higher education: Competition, exclusion, and adaptation.

American Sociological Review, 74(5):731–755.

Bell, A., Fairbrother, M., and Jones, K. (2019).

Fixed and random effects models: making an informed choice.

Quality & Quantity, 53(2):1051-1074.

Bell, A. and Jones, K. (2015).

Explaining fixed effects: Random effects modeling of time-series cross-sectional and panel data.

Political Science Research and Methods, 3(1):133–153.

References ii

Bicak, I. and Taylor, Z. W. (2020).

Predicting international student enrollment in u.s. institutions by institutional characteristics: Using fixed and random effects.

Journal of educational research and practice (Minneapolis, Minn.), 10(1):221.

Bodycott, P. (2009).

Choosing a higher education study abroad destination: What mainland chinese parents and students rate as important.

Journal of research in International education, 8(3):349–373.

Callaway, B., Goodman-Bacon, A., and Sant'Anna, P. H. (2021). **Difference-in-differences with a continuous treatment.** *arXiv preprint arXiv:2107.02637*.

References iii

Cantwell, B. (2019).

Are international students cash cows? examining the relationship between new international undergraduate enrollments and institutional revenue at public colleges and universities in the us.

Journal of international students, 5(4):512–525.

Chellaraj, G., Maskus, K. E., and Mattoo, A. (2008).

The contribution of international graduate students to us innovation.

Review of International Economics, 16(3):444–462.

Darby, M. G. (2015).

Understanding why international student applicants choose a public four-year institution.

References iv

De Chaisemartin, C. and d'Haultfoeuille, X. (2020).

Two-way fixed effects estimators with heterogeneous treatment effects.

American Economic Review, 110(9):2964-96.

Douglass, J. A. and Edelstein, R. (2009).

The global competition for talent: The rapidly changing market for international students and the need for a strategic approach in the us. research & occasional paper series. cshe. 8.09.

Center for Studies in Higher Education.

Dynarski, S. (2000).

Hope for whom? financial aid for the middle class and its impact on college attendance.

National Tax Journal, 53(3):629-661.

References v

Hacker, N. L. and Bellmore, E. (2020).

"the trump effect": How does it impact international student enrollment in us colleges?

Journal of Critical Thought and Praxis, 10(1).

Knight, J. (2004).

Internationalization remodeled: Definition, approaches, and rationales.

Journal of studies in international education, 8(1):5–31.

Li, X. (2017).

College admissions policy of international students: Theory and evidence.

Available at SSRN 2889858.

References vi

Mause, K. (2009).

Too much competition in higher education? some conceptual remarks on the excessive-signaling hypothesis.

American Journal of Economics and Sociology, 68(5):1107-1133.

Mazzarol, T. and Soutar, G. N. (2002).

"push-pull" factors influencing international student destination choice.

International Journal of Educational Management.

McCormack, E. (2007).

Worldwide competition for international students heats up. *Chronicle of Higher Education.*

References vii

Owens, D. L., Srivastava, P., and Feerasta, A. (2011).

Viewing international students as state stimulus potential: Current perceptions and future possibilities.

Journal of Marketing for Higher Education, 21(2):157–179.

Redden, E. (2015).

Fee for being foreign.

Shih, K. (2016).

Labor market openness, h-1b visa policy, and the scale of international student enrollment in the united states.

Economic Inquiry, 54(1):121–138.

Tremblay, K. (2005).

Academic mobility and immigration.

Journal of Studies in International Education, 9(3):196–228.