We write $u \leftarrow \mu_{\delta}^k$ to denote a tuple u of length k which each element is independently drawn from the Bernoulli distribution with parameter δ . We denote the protocol execution between probabilistic algorithms A and B by $\langle A, B \rangle$. Additionally, the output of A in such a protocol execution is denoted by $\langle A, B \rangle_A$.

Definition 1.1 (Dynamic weakly verifiable puzzle.) A dynamic weakly verifiable puzzle (DWVP) is defined by a probabilistic algorithm P called a problem poser. A problem solver $S = (S_1, S_2)$ for P is a probabilistic two phase algorithm. We write $P(\pi)$ to denote the execution of P with the randomness fixed to $\pi \in \{0,1\}^n$, and $S_1(\rho)$ to denote that the execution of the first phase of S with the randomness fixed to $\rho \in \{0,1\}^*$. The poser $P(\pi)$ and the solver $S_1(\rho)$ interact. As the result of the interaction $P(\pi)$ outputs circuits Γ_V , Γ_H , and a bitstring $x \in \{0,1\}^*$. The algorithm $S_1(\rho)$ produces no output. The circuit Γ_V takes as input $q \in Q$, an answer $q \in \{0,1\}^*$, and outputs a bit. An answer $q \in \{0,1\}^*$ is a correct solution if and only if $\Gamma_V(q,y) = 1$. The circuit Γ_H on input $q \in Q$ outputs a hint such that $\Gamma_V(q,\Gamma_H(q)) = 1$.

In the second phase S_2 takes as input x, and has oracle access to Γ_V and Γ_H . The execution of S_2 with x and the randomness fixed to ρ is denoted by $S_2(x,\rho)$. The queries of S_2 to Γ_V are called verification queries, and to Γ_H hint queries. The algorithm S_2 can ask at most h hint queries, v verification queries, and succeeds if and only if it makes a verification query (q,y) such that $\Gamma_V(q,y) = 1$, and it has not previously asked for a hint query on q.

Definition 1.2 (k-wise direct-product of DWVPs.) Let $g: \{0,1\}^k \to \{0,1\}$ be a monotone function and $P^{(1)}$ a problem poser as in Definition 1.1. The k-wise direct product of $P^{(1)}$ is a DWVP defined by a probabilistic algorithm $P^{(g)}$. We write $P^{(g)}(\pi^{(k)})$ to denote the execution of $P^{(g)}$ with the randomness fixed to $\pi^{(k)} := (\pi_1, \ldots, \pi_k)$. Let $S := (S_1, S_2)$ be a solver for $P^{(g)}$ as in Definition 1.1. The algorithm $P^{(g)}$ sequentially interacts in k rounds with S_1 such that in the ith round $(x_i, \Gamma^i_V, \Gamma^i_H) := \langle P^{(1)}(\pi_i), S_1(\rho) \rangle_{P^{(g)}}$. Finally, $P^{(g)}$ outputs: a verification circuit

$$\Gamma_V^{(g)}(q, y_1, \dots, y_k) := g(\Gamma_V^1(q, y_1), \dots, \Gamma_V^k(q, y_k)),$$

a hint circuit

$$\Gamma_H^{(k)}(q) := (\Gamma_H^1(q), \dots, \Gamma_H^k(q)),$$

and a puzzle $x^{(k)} := (x_1, \dots, x_k)$.

Let C be a random circuit that corresponds to a solver S in Definition 1.1. Similarly as for two phase algorithm, we write $C := (C_1, C_2)$ to denote that C in the first phase uses C_1 , and in the second phase C_2 . A verification query (q, y) of C for which a hint query on this q has been asked before can not be a successfully verification query. Therefore, without loss of generality, we make an assumption that C does not ask verification queries on $q \in Q$, for which a hint query has been asked before.

Experiment $Success^{P,C^{(\cdot,\cdot)}}(\pi,\rho)$

Oracle: A problem poser P, a solver circuit $C^{(\cdot,\cdot)}$.

Input: Bitstrings π , ρ . Output: A bit $b \in \{0, 1\}$.

$$(x, \Gamma_V, \Gamma_H) := \langle P(\pi), C_1(\rho) \rangle_P$$

Run $C_2^{\Gamma_V, \Gamma_H}(x, \rho)$

If $C_2^{\Gamma_V,\Gamma_H}$ asks a verification query (q,y) and $\Gamma_V(q,y)=1$ then

return 1

The success probability of C in solving a puzzle defined by P in the experiment Success is

$$\Pr_{\pi}[Success^{P,C^{(\cdot,\cdot)}}(\pi,\rho)=1]. \tag{0.0.1}$$

TODO: What happens when $8(h+v)\left(\Pr_{\mu\leftarrow\mu_{\delta}^{k}}[g(\mu)=1]+\varepsilon\right)\geq 1$. The formula does not work then.

Theorem 1.3 (Security amplification for a dynamic weakly verifiable puzzle.) Let $P^{(1)}$ be a fixed problem poser as in Definition 1.1, and $P^{(g)}$ be the poser for the k-wise direct product of $P^{(1)}$. There exists a probabilistic algorithm $Gen(C, g, \varepsilon, \delta, n, v, h)$ which takes as input: a solver circuit C for the puzzle posed by $P^{(g)}$, a monotone function $g: \{0,1\}^k \to \{0,1\}$, parameters ε, δ, n , the number of verification queries v, and hint queries h asked by C, and outputs a random circuit D such that the following holds: If C is such that

$$\Pr_{\pi^{(k)},\rho}[Success^{P^{(g)},C}(\pi^{(k)},\rho)=1] \ge 8(h+v) \left(\Pr_{u \leftarrow \mu_{\delta}^{k}}[g(u)=1] + \varepsilon\right)$$

then D satisfies almost surely

$$\Pr_{\pi,\rho}[Success^{P^{(1)},D}(\pi,\rho)=1] \ge (\delta + \frac{\varepsilon}{6k}).$$

Additionally, Gen and D require oracle access to g, $P^{(1)}$,C. Furthermore, D requires also oracle access to $\Gamma_V^{(g)}$ and $\Gamma_H^{(g)}$, and asks at most h hint queries and v verification queries. Finally, $Size(D) \leq Size(C) \cdot \frac{6k}{\varepsilon}$ and $Time(Gen) = poly(k, \frac{1}{\varepsilon}, n, v, h)$.

The Theorem 1.3 implies that if there is no good solver for a puzzle defined by $P^{(1)}$, then a good solver for a k-wise direct product of $P^{(1)}$ does not exist.

The idea of the algorithm Gen is to output a circuit D that solves the input puzzle often. We know that C has good success probability for a k-wise product of $P^{(1)}$. The algorithm Gen tries to find a puzzle such that when C runs with this puzzle fixed on the first position, and disregards whether this puzzle is correctly solved then the assumptions of Theorem 1.3 are true but for a k-1-wise direct product. If it is possible to find such a puzzle then Gen recurses. Otherwise, when the first position is disregarded then the success probability of C is not substantially better. As we know that C performs good for k-wise product, it means that the first position is important, in the sense that it is solved unusually often. Therefore, it is reasonable to construct the circuit D using C by placing the input puzzle of D on that position, and then finding remaining k-1 puzzles. These k-1 remaining puzzles are generated by the circuit D, hence it is possible to check whether they are correctly solved by the circuit C. We know that circuit C has good success probability, and the puzzle on the first position is important. Therefore, if we are able to find a k-1 puzzles such that the fact whether the k-wise direct product is correctly solved depends on whether the puzzle on the first position is correctly solved then we can assume that C is often correct on this first position.

There are some problems with this approach, first we have to ensure that we can make a decision when the algorithm Gen should recurse and when not correctly with high probability. Then, we have to show that it is possible to find a puzzles such that C is often correct on the first position. Finally, we also have to be sure that we do not ask a hint query, on the final verification query to the oracle. To satisfy the last requirement we split Q.

Let $hash: Q \to \{0, 1, \ldots, 2(h+v)-1\}$, then a set $P_{hash} \subseteq Q$, defined with respect to hash, is the set of preimages of 0 for hash. The idea is that P_{hash} contains $q \in Q$ on which C is not allowed to ask hint queries and q on which the first successful verification query is asked is in P_{hash} . Therefore, if C makes a verification query on $q \in P_{hash}$ we know that no hint query is ever asked on this q. In the experiment CanonicalSuccess a circuit C succeeds if and only if it ask a verification query on $q \in P_{hash}$ and no hint query is asked on $q \in P_{hash}$. Finally, Lemma 1.4 states that it is possible to find hash such that success probability of C in the experiment CanonicalSuccess is not much worser than in the experiment Success. In the experiment CanonicalSuccess we denote the ith query of C by q_i if it is a hint query, and by (q_i, y_i) if it is a verification query.

```
Experiment CanonicalSuccess^{P,C^{(\cdot,\cdot)},hash}(\pi,\rho)

Oracle: A problem poser P. A solver circuit C^{(\cdot,\cdot)}.

A function hash: Q \leftarrow \{0,\ldots,2(h+v)-1\}.

Input: Bitstrings: \pi, \rho.

Output: A bit b \in \{0,1\}.

(x,\Gamma_V,\Gamma_H):=P(\pi)

Run C^{\Gamma_V,\Gamma_H}(x,\rho)

Let (q_j,y_j) be the first verification query such that C^{\Gamma_V,\Gamma_H}(q_j,y_j)=1, or an arbitrary verification query if C does not succeed.

If (\forall i < j: q_i \notin P_{hash}) and q_j \in P_{hash} and \Gamma_V(q_j,y_j)=1

return 1

else

return 0
```

Similarly as for the experiment Success, we define the success probability of C with respect to a function hash in the experiment CanonicalSuccess in solving a puzzle defined by P as

$$\Pr_{\pi,\rho}[CanonicalSuccess^{P,C^{(\cdot,\cdot)},hash}(\pi,\rho)=1]. \tag{0.0.2}$$

For fixed hash and $P^{(1)}$ a canonical success of C for $\pi^{(k)}$, ρ is a situation when $CanonicalSuccess^{P^{(g)},C^{(\cdot,\cdot)},hash}(\pi^{(k)},\rho)=1$. We show that if for a fixed $P^{(1)}$ a solver circuit C often succeeds in the experiment Success for $P^{(g)}$, then it also often successful in the experiment CanonicalSuccess for $P^{(g)}$.

Lemma 1.4 (Success probability in solving a k-wise direct product of $P^{(1)}$ with respect to a function hash.) For fixed $P^{(1)}$ let C succeed in the experiment Success for $P^{(g)}$ with probability γ , asking at most h hint queries and v verification queries. There exists a probabilistic algorithm, with oracle access to C and $P^{(g)}$, that runs in time $O((h+v)^4/\gamma^4)$, and with high probability outputs a function hash : $Q \to \{0, \ldots, 2(h+v)-1\}$ such that success probability of C with respect to P_{hash} in the experiment CanonicalSuccess is at least $\frac{\gamma}{8(h+v)}$.

Proof. We fix $P^{(1)}$ and C in the whole proof. Let \mathcal{H} be a family of pairwise independent hash functions $Q \to \{0, 1, \dots, 2(h+v) - 1\}$. For all $i \neq j \in \{1, \dots, (h+v)\}$ and $k, l \in \{0, 1, \dots, 2(h+v) - 1\}$ by pairwise independence property of \mathcal{H} , we have

$$\forall q_i, q_j \in Q : \Pr_{hash \leftarrow \mathcal{H}}[hash(q_i) = k \mid hash(q_j) = l] = \Pr_{hash \leftarrow \mathcal{H}}[hash(q_i) = k] = \frac{1}{2(h+v)}. \quad (0.0.3)$$

Let $\pi^{(k)}$, ρ be fixed. We consider the experiment CanonicalSuccess for $P^{(g)}$. in which we define a binary random variable X for the event that $hash(q_j) = 0$, and for every query q_i asked before $q_j : hash(q_i) \neq 0$. Conditioned on the event $hash(q_i) = 0$, we get

$$\Pr_{hash \leftarrow \mathcal{H}}[X = 1] = \Pr_{hash \leftarrow \mathcal{H}}[hash(q_j) = 0 \land \forall i < j : hash(q_i) \neq 0]$$
$$= \Pr_{hash \leftarrow \mathcal{H}}[\forall i < j : hash(q_i) \neq 0 \mid hash(q_j) = 0] \Pr_{hash \leftarrow \mathcal{H}}[hash(q_j) = 0].$$

Now we use (0.0.3) twice and obtain

$$\begin{aligned} \Pr_{hash \leftarrow \mathcal{H}}[X=1] &= \frac{1}{2(h+v)} \left(1 - \Pr_{hash \leftarrow \mathcal{H}}[\exists i < j : hash(q_i) = 0 \mid hash(q_j) = 0] \right) \\ &= \frac{1}{2(h+v)} \left(1 - \Pr_{hash \leftarrow \mathcal{H}}[\exists i < j : hash(q_i) = 0] \right). \end{aligned}$$

Finally, we use union bound and the fact that $j \leq (h + v)$ to get

$$\Pr_{hash \leftarrow \mathcal{H}}[X=1] \ge \frac{1}{2(h+v)} \left(1 - \sum_{i < j} \Pr_{hash \leftarrow \mathcal{H}}[hash(q_i) = 0] \right) \ge \frac{1}{4(h+v)}.$$

Let $\mathcal{P}_{Success}$ be the set of all $(\pi^{(k)}, \rho)$ for which C succeeds in the random experiment Success for $P^{(g)}$. Furthermore, we denote the set of those $(\pi^{(k)}, \rho)$ for which $CanonicalSuccess^{P^{(g)}, C(;\dot{j}, hash}(\pi^{(k)}) = 1$ by $\mathcal{P}_{Canonical}$. For fixed $\pi^{(k)}, \rho$, if C succeeds canonically, then it also succeeds in the experiment Success for $P^{(g)}$. Hence, $\mathcal{P}_{Canonical} \subseteq \mathcal{P}_{Success}$, and we have

$$\Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi^{(k)}, \rho}} \left[Canonical Success^{P^{(g)}, C^{(\cdot, \cdot)}, hash}(\pi^{(k)}, \rho) = 1 \right] = \underset{(\pi^{(k)}, \rho) \in \mathcal{P}_{Success}}{\mathbb{E}} \left[\Pr_{hash \leftarrow \mathcal{H}}[X = 1] \right] \\
\geq \frac{\gamma}{4(h + v)}. \tag{0.0.4}$$

Algorithm: FindHash

Oracle: A solver circuit $C^{(\cdot,\cdot)}$ for a k-wise direct product of DWVP.

Input: A set \mathcal{H} .

Output: A function $hash \in \mathcal{H}$.

For
$$i=1$$
 to $32(h+v)^2/\gamma^2$
$$hash \overset{\$}{\leftarrow} \mathcal{H}$$

$$count := 0$$

$$\textbf{For } j := 1 \text{ to } 32(h+v)^2/\gamma^2$$

$$\pi^{(k)} \overset{\$}{\leftarrow} \{0,1\}^{kl}$$

$$\textbf{If } Canonical Success^{P(g)}, C^{(\cdot,\cdot)}, hash(\pi^{(k)}) = 1 \textbf{ then}$$

$$count := count + 1$$

$$\textbf{If } \frac{\gamma^2}{32(h+v)^2} count \geq \frac{\gamma}{6(h+v)}$$

return \perp

We show that FindHash chooses hash such that the canonical success probability of C with respect to P_{hash} is at least $\frac{\gamma}{4(h+v)}$ almost surely. Let \mathcal{H}_{Good} denote a family of functions $hash \in \mathcal{H}$

$$\Pr_{\pi^{(k)}, \rho} \left[Canonical Success^{P^{(g)}, C^{(\cdot, \cdot)}, hash}(\pi^{(k)}, \rho) = 1 \right] \ge \frac{\gamma}{4(h+v)},$$

and \mathcal{H}_{Bad} be the family of functions $hash \in \mathcal{H}$ such that

$$\Pr_{\pi^{(k)},\rho}\left[CanonicalSuccess^{P^{(g)},C^{(\cdot,\cdot)},hash}(\pi^{(k)},\rho)=1\right] \leq \frac{\gamma}{8(h+v)}.$$

Additionally, for a fixed hash, we define binary random variables X_1, \ldots, X_N such that

$$X_i = \begin{cases} 1 & \text{if in } i \text{th iteration variable } count \text{ is increased} \\ 0 & \text{otherwise} \end{cases}.$$

We first show that it is unlikely that **FindHash** returns $hash \in \mathcal{H}_{Bad}$. For $hash \in \mathcal{H}_{Bad}$ we have $\mathbb{E}_{\pi^{(k)},\rho}[X_i] < \frac{\gamma}{8(h+v)}$. Therefore, for any fixed $hash \in \mathcal{H}_{Bad}$ using the Chernoff bound we

$$\Pr_{\pi^{(k)}, \rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \ge \frac{\gamma}{6(h+v)} \right] \le \Pr_{\pi^{(k)}, \rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \ge (1 + \frac{1}{3}) \mathbb{E}[X_i] \right] \le e^{-\frac{\gamma}{4(h+v)}N/27}.$$

The probability that $hash \in \mathcal{H}_{Good}$, when picked, is not returned amounts

$$\Pr_{\pi^{(k)}, \rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \le \frac{\gamma}{6(h+v)} \right] \le \Pr_{\pi^{(k)}, \rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \le (1 - \frac{1}{3}) \mathbb{E}[X_i] \right] \le e^{-\frac{\gamma}{4(h+v)}N/27}.$$

Finally, we show that **FindHash** picks in one of its iteration $hash \in \mathcal{H}_{Good}$ almost surely. Let Y_i be a binary random variable such that

$$Y_i = \begin{cases} 1 & \text{if in } i \text{th iteration } hash \in \mathcal{H}_{Good} \text{ is picked} \\ 0 & \text{otherwise} \end{cases}$$

From equation (0.0.4) we know that $\Pr_{hash \leftarrow \mathcal{H}}[Y_i = 1] = \mathbb{E}[Y_i] \ge \frac{\gamma}{4(h+v)}$, almost surely. Thus, we get

$$\Pr_{hash \leftarrow \mathcal{H}} \left[\sum_{i=1}^{K} Y_i = 0 \right] \le \left(1 - \frac{\gamma}{4(h+v)} \right)^K \le e^{-\frac{\gamma}{4(h+v)}K}.$$

The bound stated in the Lemma 1.4 is achieved for $K = N = 32(h+v)^2/\gamma^2$.

We define the following solver circuit \widetilde{C} for a k-wise direct product of $P^{(1)}$.

Circuit $\widetilde{C}^{\Gamma_V^{(g)},\Gamma_H^{(g)},hash,C}(x^{(k)},\rho)$

Oracle: $\Gamma_V^{(g)}, \Gamma_H^{(k)}, hash, C$ Input: puzzles $x^{(k)}$, bitstring ρ

Output: A tuple (q, y_1, \ldots, y_k) or \perp .

Run $C^{\Gamma_V^{(g)},\Gamma_H^{(k)}}(x^{(k)},\rho)$

If C asks a hint query on q then

If $q \in P_{hash}$ then

return
$$\bot$$
else
answer the query using $\Gamma_H^{(k)}(q)$

If C asks a verification query (q, y_1, \ldots, y_k) then
If $q \in P_{hash}$ then
return (q, y_1, \ldots, y_k)
else
answer the verification query with 0
return \bot

Lemma 1.5 For fixed $P^{(1)}$ and hash the following statement is true

$$\Pr_{\pi^{(k)},\rho}[Canonical Success^{P^{(g)},C,hash}(\pi^{(k)},\rho)=1] \leq \Pr_{\pi^{(k)},\rho\atop (x^{(k)},\Gamma_V^{(g)},\Gamma_H^{(k)}):=P^{(g)}(\pi^{(k)})} [\Gamma_V^{(g)}(\tilde{C}^{\Gamma_V^{(g)},\Gamma_H^{(k)},hash}(x^{(k)},\rho))=1].$$

Proof. We observe that for fixed $\pi^{(k)}$, ρ if C succeeds canonically, then for $(x^{(k)}, \Gamma_V^{(g)}, \Gamma_H^{(g)}) := P^{(g)}(\pi^{(k)})$ we have

$$\Gamma_V^{(g)}(\widetilde{C}^{\Gamma_V^{(g)},\Gamma_H^{(g)},hash}(\pi_1,\ldots,\pi_k))=1.$$

Using this observation, we conclude that

$$\begin{split} \Pr_{\pi^{(k)},\rho} \left[Canonical Success^{P^{(g)},C,hash}(\pi^{(k)},\rho) = 1 \right] \\ &= \underset{\pi^{(k)},\rho}{\mathbb{E}} \left[\Pr\left[Canonical Success^{P^{(g)},C,hash}(\pi^{(k)},\rho) = 1 \right] \right] \\ &\leq \underset{\pi^{(k)},\rho}{\mathbb{E}} \left[\Pr\left[Canonical Success^{P^{(g)},\widetilde{C},hash}(\pi^{(k)},\rho) = 1 \right] \right] \\ &= \underset{\pi^{(k)},\rho}{\Pr} \left[\Gamma_V^{(g)}(\widetilde{C}^{\Gamma_V^{(g)},\Gamma_H^{(k)},hash}(x^{(k)},\rho)) = 1 \right]. \\ &\qquad \qquad \left(x^{(k)},\Gamma_V^{(g)},\Gamma_H^{(k)} \right) := P^{(g)}(\pi^{(k)}) \end{split}$$

Therefore, from a circuit C we can build a circuit \widetilde{C} that outputs \bot or $(q, y_1, ..., y_k)$ such that $q \in P_{hash}$. Furthermore, the circuit \widetilde{C} asks no verification queries, and every hint query on q is such that $q \notin P_{hash}$.

TODO: Hash function is taken from Lemma 1.5

Lemma 1.6 (Security amplification of a dynamic weakly verifiable puzzle with respect to P_{hash} .) For fixed $P^{(1)}$ there exists an algorithm $Gen(C, g, \varepsilon, \delta, n, v, h, hash)$, which takes as input a solver circuit C for $P^{(g)}$, a monotone function $g: \{0, 1\}^{(k)} \to \{0, 1\}$, a function $hash: Q \to \{0, \dots, 2(h+v)-1\}$, parameters ε, δ, n , number of verification queries v and hint queries h asked by C, and outputs a circuit D such that the following holds: If C is such that

$$\Pr_{\pi^{(k)}, \rho} \left[Canonical Success^{P^{(g)}, C, hash}(\pi^{(k)}, \rho) = 1 \right] \ge \Pr_{\mu \leftarrow \mu_{\varepsilon}^{k}} [g(\mu) = 1] + \varepsilon,$$

then D satisfies almost surely

$$\Pr_{\substack{\pi,\sigma\\(x,\Gamma_V,\Gamma_H):=P^{(1)}(\pi)}} \left[\Gamma_V(D^{P^{(1)},C,\Gamma_V,\Gamma_H,hash}(x,\sigma)) = 1 \right] \ge (\delta + \frac{\varepsilon}{6k}).$$

Additionally, Gen requires only oracle access to g, $P^{(1)}$ and C. Furthermore, $Size(D) \leq Size(C) \frac{6k}{\varepsilon}$ and $Time(Gen) = poly(k, \frac{1}{\varepsilon}, n, v, h)$.

Proof. First we define helper procedures **EvalutePuzzles** and **EvaluateSurplus**.

EvaluatePuzzles $^{P^{(1)},C,hash}(\pi^{(k)},k)$

Oracle: A circuit C, an algorithm $P^{(1)}$, a function hash.

Input: Bitstrings $\pi^{(k)}$, ρ , an integer k.

Output: A tuple (c_1, \ldots, c_k) .

$$(x^{(k)}, \Gamma_V^{(g)}, \Gamma_H^{(k)}) := P^{(g)}(\pi^{(k)})$$

 $(q, y^{(k)}) := \widetilde{C}^{\Gamma_V^{(g)}, \Gamma_H^{(k)}, hash, C}(x^{(k)}, \rho)$
For $i := 1$ to k do:
 $(x_i, \Gamma_V^i, \Gamma_H^i) := P^{(1)}(\pi_i)$
For $i := 1$ to k do:
 $c_i := \Gamma_v^i(q, y_i)$
return (c_1, \dots, c_k)

TODO: Figure out N_K

TODO: Get a sample for $\Pr[g(b,\ldots,b)=1]$

EvaluateSurplus^{$P^{(1)}$},C,hash</sub> (π^*, b, k)

Oracle: An algorithm $P^{(1)}$, a circuit C, a function hash.

Input: A bistring π^* , a bit b, an integer k.

Output: A circuit D.

$$\begin{aligned} & \mathbf{For} \ i := 1 \ \text{to} \ N_k \\ & (\pi_2, \dots, \pi_k) \overset{\$}{\leftarrow} \{0, 1\}^{(k-1)n} \\ & \rho \overset{\$}{\leftarrow} \{0, 1\}^* \\ & (c_1, \dots, c_k) := \mathbf{EvalutePuzzles}^{P^{(1)}, C, hash}(\pi^*, \pi_2, \dots, \pi_k, k) \\ & \widetilde{S}^i_{\pi^*, b} := g(b, c_2, \dots, c_k) - \Pr_{(u_2, \dots, u_k)}[g(b, u_2, \dots, u_k) = 1] \end{aligned}$$

$$\mathbf{return} \ \frac{1}{N_t} \sum_{i=1}^{N_k} \widetilde{S}^i_{\pi^*, b}$$

Circuit
$$D^{C,P^{(1)}}(x^*,\sigma)$$

Oracle: A circuit C, a poser $P^{(1)}$, a function hash.

Input: A puzzle x^* , a bitstring $\sigma \in \{0,1\}^*$.

Output: A circuit D.

```
Let k be the number of input puzzles taken by C.

For i := 1 to \frac{6k}{\varepsilon} \log(\frac{6k}{\varepsilon}) do:
\pi^{(k)} \leftarrow \text{read } k \cdot n \text{ bits from } \sigma
(c_1, \dots, c_k) := \mathbf{EvaluatePuzzles}^{P^{(1)}, C, hash}(\pi^{(k)}, k)

If g(1, c_2, \dots, c_k) = 1 \wedge g(0, c_2, \dots, c_k) = 0 then

For i := 1 to k do:
(x_i, \Gamma_V^i, \Gamma_H^i) := P^{(1)}(\pi_i)
(q, y_1, \dots, y_k) := \widetilde{C}(x^*, x_2, \dots, x_k)
\mathbf{return } (q, y_1)

return \perp
```

```
Algorithm Gen(C, g, \varepsilon, \delta, n, v, h, hash)

Oracle: C, g, hash

Input: \varepsilon, \delta, n, v, h

Output: A circuit D

Let k be the number of input puzzles taken by C.

If k = 1 then return C

For i := 1 to \frac{6k}{\varepsilon} \log(n)
\pi^* \leftarrow \{0, 1\}^n
\widetilde{S}_{\pi^*, 0} := \mathbf{EvaluateSurplus}^{P^{(1)}, C, hash}(\pi^*, 0, k)
\widetilde{S}_{\pi^*, 1} := \mathbf{EvaluateSurplus}^{P^{(1)}, C, hash}(\pi^*, 1, k)
If \widetilde{S}_{\pi^*, 0} \ge (1 - \frac{3}{4k})\varepsilon or \widetilde{S}_{\pi^*, 1} \ge (1 - \frac{3}{4k})\varepsilon
C' := C with the first input fixed on x^*
g'(b_2, \dots, b_k) := g(c_1, b_2, \dots, b_k)
return Gen(\widetilde{C}', g', \varepsilon, \delta, n, v, h, hash)
// all estimates are lower than (1 - \frac{3}{4k})\varepsilon
return D^{\widetilde{C}}
```

For k=1 the function $g:\{0,1\} \to \{0,1\}$ is either the identity or a constant function. If g is the identity function then the success probability of C in the random experiment CanonicalSuccess is as least $\delta + \varepsilon$, and C can be directly used to solve a puzzle. In case g is a constant function the statement is vacuously true.

For fixed $\pi^{(k)}$, ρ let $(x^{(k)}, \Gamma_V^{(g)}, \Gamma_H^{(k)}) := P^{(g)}(\pi^{(k)})$. Additionally, for any i such that $1 \leq i \leq k$ let us the denote $(x_i, \Gamma_V^i, \Gamma_H^i) := P^{(1)}(\pi_i)$. For $(q, y_1, \dots, y_k) := \widetilde{C}(x^{(k)}, \rho)$ we denote $c_i := \Gamma_V^i(q, y_i)$. We define the surplus:

$$S_{\pi^*,b} = \Pr_{\pi^{(k)}} \left[g(b, c_2, \dots, c_k) = 1 \right] - \Pr_{\mu^{(k)}} \left[g(b, u_2, \dots, u_k) = 1 \right]$$

$$(0.0.5)$$

The surplus $S_{\pi^*,b}$ tells us how good \widetilde{C} performs when the first puzzle is fixed, and the fact whether \widetilde{C} succeeds in solving the puzzle posed by $P^{(1)}(\pi_1)$ is disregarded. Instead, the bit b is used as the first input to g.

The procedure **EvaluateSurplus** returns the estimate $\widetilde{S}_{\pi^*,b}$ for $S_{\pi^*,b}$. All puzzles used during obtaining the estimate are generated internally. Therefore, it is possible to answer all hint and verification queries, without calls to the verification oracles.

Lemma 1.7 The estimate $\widetilde{S}_{\pi^*,b}$ returned by EvaluteEstimate differs from $S_{\pi^*,b}$ by at most $\frac{\varepsilon}{4k}$ almost surely.

TODO: Chernoff for the estimate

From Lemma 1.7 we conclude that if $\widetilde{S}_{\pi^*,b} \geq (1 - \frac{3}{4k})\varepsilon$, then $S_{\pi^*,b} \geq (1 - \frac{1}{k})\varepsilon$ almost surely.

Let us assume that Gen manages to find an estimate that satisfies $\widetilde{S}_{\pi^*,b} \geq (1 - \frac{3}{4k})\varepsilon$. In this case we define a new monotone function $g'(b_2,\ldots,b_k) := g(b,b_2,\ldots,b_k)$, and a circuit C' which is by fixing the first input of C to x^* , where $(x^*,\Gamma_V^*,\Gamma_H^*) := P^{(1)}(\pi^*)$. The circuit \widetilde{C}' satisfies the conditions of Lemma 1.6 and we recurse using C' and g'.

If all estimates are less than $(1-\frac{3}{4k})\varepsilon$, then intuitively C does not perform much better on the remaining k-1 puzzles than an algorithm that solves each puzzle independent with probability δ . However, from the assumption we know that on all k puzzles \widetilde{C} has higher success probability. Therefore, it is likely that the first puzzle is correctly solved with probability higher than δ . We now show that this intuition is indeed correct. For a fixed π^* using (0.0.5), we get

$$\Pr_{u \leftarrow \mu_{\delta}^{k}}[g(1, u_{2}, \dots, u_{k}) = 1] - \Pr_{u \leftarrow \mu_{\delta}^{k}}[g(0, u_{2}, \dots, u_{k}) = 1] =$$

$$\Pr_{\pi^{(k)}}[g(1, c_{2}, \dots, c_{k}) = 1 \mid \pi_{1} = \pi^{*}] - \Pr_{\pi^{k}}[g(0, c_{2}, \dots, c_{k}) = 1 \mid \pi_{1} = \pi^{*}] - (S_{\pi^{*}, 1} - S_{\pi^{*}, 0}).$$
(0.0.6)

From the monotonicity of g we know that for any set of tuples (b_1, \ldots, b_k) and sets $\mathcal{B}_0 = \{(b_1, b_2, \ldots, b_k) : g(0, b_2, \ldots, b_k) = 1\}$, $\mathcal{B}_1 = \{(b_1, b_2, \ldots, b_k) : g(1, b_2, \ldots, b_k) = 1\}$ we have $G_0 \subseteq G_1$. Hence, we can write (0.0.6):

$$\Pr_{u \leftarrow \mu_{\delta}^{k}} [g(1, u_{2}, \dots, u_{k}) = 1 \land g(0, u_{2}, \dots, u_{k}) = 0] =
\Pr_{\pi^{(k)}} [g(1, c_{2}, \dots, c_{k}) = 1 \land g(0, c_{2}, \dots, c_{k}) = 0 \mid \pi_{1} = \pi^{*}] - (S_{\pi^{*}, 1} - S_{\pi^{*}, 0}).$$
(0.0.7)

Let $G_{u^{(k)}}$ denote the event $g(1, u_2, ..., u_k) = 1 \land g(0, u_2, ..., u_k) = 0$, and correspondingly $G_{\pi^{(k)}} := g(1, c_2, ..., c_k) = 1) \land (g(0, c_2, ..., c_k) = 0$. From (0.0.7) we obtain

$$\Pr_{r}[\Gamma_{V}(D(x^{*},r)) = 1 \mid \pi_{1} = \pi^{*}] = \frac{\Pr_{r}[\Gamma_{V}(D(x^{*},r)) = 1 \mid \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_{1} = \pi^{*}]}{\Pr_{u \leftarrow \mu_{\delta}^{k}}[G_{\mu}]} - \frac{\Pr_{v \leftarrow \mu_{\delta}^{k}}[G_{\nu}]}{\Pr_{u \leftarrow \mu_{\delta}^{k}}[G_{\mu}]} - \frac{\Pr_{v \leftarrow \mu_{\delta}^{k}}[G_{\nu}]}{\Pr_{v \leftarrow \mu_{\delta}^{k}}[G_{\mu}]}$$
(0.0.8)

If $D(x^*, r) \neq \bot$ then we denote $c_i := \Gamma_V^i(q, y_i)$. We can write the first summand of (0.0.8) as

$$\Pr_{r}[\Gamma_{V}^{(g)}(D(x^{*},r)) = 1 \mid \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_{1} = \pi^{*}] =$$

$$\Pr_{r}[D(x^{*},r) \neq \bot \mid \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[c_{1} = 1 \mid G_{\pi}, \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_{1} = \pi^{*}]$$

$$(0.0.9)$$

where we make use of the fact that the event G_{π} implies $D(x^*, r) \neq \bot$. We consider two cases. For $\Pr_{\pi^k}[g(1, c_2, \ldots, c_k) = 1 \land g(0, c_2, \ldots, c_k) = 0 \mid \pi_1 = \pi^*] \leq \frac{\varepsilon}{6k}$ then

$$\Pr_{\pi^{(k)}}[c_1 = 1 \mid G_{\pi}, \pi_1 = \pi^*] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_1 = \pi^*] \le \frac{\varepsilon}{6k}, \tag{0.0.10}$$

and when $\Pr_{\pi^k}[g(1,c_2,\ldots,c_k)=1 \land g(0,c_2,\ldots,c_k)=0] > \frac{\varepsilon}{6k}$ then circuit D outputs \bot only if it fails in all $\frac{6k}{\varepsilon}\log(\frac{6k}{\varepsilon})$ iterations to find $\pi^{(k)}$ such that $g(1,c_2,\ldots,c_k)=1 \land g(0,c_2,\ldots,c_k)=0$ which happens with probability

$$\Pr_r[D(x^*, r) = \bot \mid \pi_1 = \pi^*] \le (1 - \frac{\varepsilon}{6k})^{\frac{6k}{\varepsilon} \log(\frac{\varepsilon}{6k})} \le \frac{\varepsilon}{6k}.$$
 (0.0.11)

We conclude that in both cases:

$$\Pr_{r}[D(x^{*}, r) \neq \bot \mid \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[c_{1} = 1 \mid G_{\pi}, \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_{1} = \pi^{*}]
\geq \Pr_{\pi^{(k)}}[c_{1} = 1 \mid G_{\pi}, \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_{1} = \pi^{*}] - \frac{\varepsilon}{6k}.$$
(0.0.12)

Therefore, we have

$$\Pr_{r}[D(x^{*}, r) \neq \bot \mid \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[c_{1} = 1 \mid G_{\pi}, \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_{1} = \pi^{*}]$$

$$= \Pr_{\pi^{(k)}}[c_{1} = 1 \land g(1, c_{2}, \dots, c_{k}) = 1 \land g(0, c_{2}, \dots, c_{k}) = 0 \mid \pi_{1} = \pi^{*}] - \frac{\varepsilon}{6k}$$

$$= \Pr_{\pi^{(k)}}[g(c_{1}, c_{2}, \dots, c_{k}) = 1 \land g(0, c_{2}, \dots, c_{k}) = 0 \mid \pi_{1} = \pi^{*}] - \frac{\varepsilon}{6k}$$

$$= \Pr_{\pi^{(k)}}[g(c_{1}, c_{2}, \dots, c_{k}) = 1 \mid \pi_{1} = \pi^{*}] - \Pr_{\pi^{(k)}}[g(0, c_{2}, \dots, c_{k}) = 0 \mid \pi_{1} = \pi^{*}] - \frac{\varepsilon}{6k},$$

and finally by (0.0.5)

$$\Pr_{r}[D(x^{*}, r) \neq \bot \mid \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[c_{1} = 1 \mid G_{\pi}, \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_{1} = \pi^{*}]$$

$$= \Pr_{\pi^{(k)}}[g(c_{1}, c_{2}, \dots, c_{k}) = 1 \mid \pi_{1} = \pi^{*}] - \Pr_{\mu_{\delta}^{(k)}}[g(0, \mu_{2}, \dots, \mu_{k}) = 0 \mid \pi_{1} = \pi^{*}] - S_{\pi^{*}, 0} - \frac{\varepsilon}{6k}.$$

$$(0.0.13)$$

Inserting this result into the equation (0.0.8) yields

$$\Pr_{r,\pi}[\Gamma_{V}(D(x,r)) = 1] = \mathbb{E}_{\pi} \left[\Pr_{r}[D(x,r) = 1 \mid \pi_{1} = \pi^{*}] \right] \\
= \mathbb{E}_{\pi} \left[\frac{\Pr_{\pi^{(k)}}[g(c) = 1 \mid \pi_{1} = \pi^{*}] - \Pr_{\mu_{\delta}^{(k)}}[g(0,\mu_{2},\dots,\mu_{k}) = 0 \mid \pi_{1} = \pi^{*}] - \frac{\varepsilon}{6k}}{\Pr_{\mu_{\delta}^{k}}[G_{\mu}]} \right] \\
- \mathbb{E}_{\pi} \left[\frac{S_{\pi^{*},0} + \Pr_{r}[\Gamma_{V}^{(g)}(D(x^{*},r)) = 1 \mid \pi_{1} = \pi^{*}](S_{\pi^{*},1} - S_{\pi^{*},0})}{\Pr_{\mu_{\delta}^{k}}[G_{\mu}]} \right] \tag{0.0.14}$$

For the second summand we show that if we do not recurse, then almost surely majority of estimates is low. Let assume

$$\Pr_{\pi} \left[\left(S_{\pi,0} \le (1 - \frac{1}{2k})\varepsilon \right) \wedge \left(S_{\pi,1} \le (1 - \frac{1}{2k})\varepsilon \right) \right] < 1 - \frac{\varepsilon}{6k}, \tag{0.0.15}$$

then the algorithm recurses almost surely. Therefore, under the assumption that Gen does not recurse, we have almost surely

$$\Pr_{\pi} \left[\left(S_{\pi,0} \le (1 - \frac{1}{2k})\varepsilon \right) \wedge \left(S_{\pi,1} \le (1 - \frac{1}{2k})\varepsilon \right) \right] \ge 1 - \frac{\varepsilon}{6k}. \tag{0.0.16}$$

Let us define a set

$$W = \left\{ \pi : \left(S_{\pi,0} \le (1 - \frac{1}{2k})\varepsilon \right) \land \left(S_{\pi,1} \le (1 - \frac{1}{2k})\varepsilon \right) \right\}$$
 (0.0.17)

and use \mathcal{W}^c to denote the complement of \mathcal{W} . We bound the second summand in (0.0.14)

$$\mathbb{E}_{\pi} \left[S_{\pi^*,0} + \Pr_{r} [\Gamma_{V}^{(g)}(D(x^*,r)) = 1 \mid \pi_{1} = \pi^*] (S_{\pi^*,1} - S_{\pi^*,0}) \right] \\
= \mathbb{E}_{\pi \in \mathcal{W}^{c}} \left[S_{\pi^*,0} + \Pr_{r} [\Gamma_{V}^{(g)}(D(x^*,r)) = 1 \mid \pi = \pi^*] (S_{\pi^*,1} - S_{\pi^*,0}) \right] \\
+ \mathbb{E}_{\pi \in \mathcal{W}} \left[S_{\pi^*,0} + \Pr_{r} [\Gamma_{V}^{(g)}(D(x^*,r)) = 1 \mid \pi = \pi^*] (S_{\pi^*,1} - S_{\pi^*,0}) \right] \qquad (0.0.18) \\
\leq \frac{\varepsilon}{6k} + \mathbb{E}_{\pi \in \mathcal{W}^{c}} \left[S_{\pi^*,0} + \Pr_{r} [\Gamma_{V}^{(g)}(D(x^*,r)) = 1 \mid \pi = \pi^*] ((1 - \frac{1}{2k})\varepsilon - S_{\pi^*,0}) \right] \qquad (0.0.19) \\
\leq \frac{\varepsilon}{6k} + 1 - \frac{\varepsilon}{2k} = 1 - \frac{\varepsilon}{3k} \qquad (0.0.20)$$

Finally, we insert this result into equation (0.0.14) and make use of the fact

$$\Pr[g(u) = 1] = \Pr[(g(0, \mu_2, \dots, \mu_k) = 1) \lor (g(1, \mu_2, \dots, \mu_k) = 1 \land g(0, \mu_2, \dots, \mu_k) = 0 \land \mu_1 = 1)]$$

$$= \Pr[g(0, \mu_2, \dots, \mu_k) = 1] + \Pr[g(1, \mu_2, \dots, \mu_k) = 1 \land g(0, \mu_2, \dots, \mu_k) = 0] \Pr[\mu_1 = 1]$$

which yields

$$\Pr_{r,\pi}[D(x,r)=1] \ge \mathbb{E}_{\pi} \left[\frac{\Pr_{\pi^{(k)}}[g(c)=1 \mid \pi_{1}=\pi^{*}] - \Pr_{\mu_{\delta}^{(k)}}[g(0,\mu_{2},\dots,\mu_{k})=0] - (1-\frac{1}{6k})\varepsilon}{\Pr_{\mu_{\delta}^{k}}[G_{\mu}]} \right]$$

Using the assumptions of Lemma 1.6, we get

$$\Pr_{r,\pi}[\Gamma_{V}(D(x,r)) = 1] \ge \frac{\Pr_{\mu_{\delta}^{(k)}}[g(\mu) = 1] + \varepsilon + \Pr_{\mu_{\delta}^{(k)}}[g(0,\mu_{2},\dots,\mu_{k}) = 0] - (1 - \frac{1}{6k})\varepsilon}{\Pr_{\mu_{\delta}^{(k)}}[G_{\mu}]} \\
\ge \frac{\varepsilon + \delta \Pr_{\mu_{\delta}^{(k)}}[G_{\mu}] - (1 - \frac{1}{6k})\varepsilon}{\Pr_{\mu_{\delta}^{k}}[G_{\mu}]} \ge \delta + \frac{\varepsilon}{6k} \qquad \square$$

TO ASK: Is notation $\rho \stackrel{\$}{\leftarrow} \{0,1\}^*$ correct.