# **Hierarchial and K-means Clustering**

### 21BAI1533 Zeel Mehta

In [103]: import pandas as pd import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns %matplotlib inline

In [104]: **from** sklearn **import** datasets

iris=pd.read\_csv('/Users/zeelmehta/Desktop/FALL INTER 23/ML/Decisio

In [105]: iris

Out [105]:

|     | ld  | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species        |
|-----|-----|---------------|--------------|---------------|--------------|----------------|
| 0   | 1   | 5.1           | 3.5          | 1.4           | 0.2          | Iris-setosa    |
| 1   | 2   | 4.9           | 3.0          | 1.4           | 0.2          | Iris-setosa    |
| 2   | 3   | 4.7           | 3.2          | 1.3           | 0.2          | Iris-setosa    |
| 3   | 4   | 4.6           | 3.1          | 1.5           | 0.2          | Iris-setosa    |
| 4   | 5   | 5.0           | 3.6          | 1.4           | 0.2          | Iris-setosa    |
|     |     |               |              |               |              |                |
| 145 | 146 | 6.7           | 3.0          | 5.2           | 2.3          | Iris-virginica |
| 146 | 147 | 6.3           | 2.5          | 5.0           | 1.9          | Iris-virginica |
| 147 | 148 | 6.5           | 3.0          | 5.2           | 2.0          | Iris-virginica |
| 148 | 149 | 6.2           | 3.4          | 5.4           | 2.3          | Iris-virginica |
| 149 | 150 | 5.9           | 3.0          | 5.1           | 1.8          | Iris-virginica |

150 rows × 6 columns

```
In [106]: | x=iris.iloc[:, [0, 1, 2, 3]].values
           Χ
                       7.
                    [
                               4.6,
                                       3.4,
                                               1.4],
                               5.,
                                       3.4,
                                               1.5],
                       8.
                       9.
                               4.4,
                                       2.9,
                                               1.4],
                     10.
                               4.9,
                                       3.1,
                                               1.5],
                                       3.7,
                      11.
                               5.4,
                                               1.5],
                    [ 12.,
                               4.8,
                                       3.4,
                                               1.6],
                      13.,
                               4.8,
                                       3.,
                                               1.4],
                    [ 14. ,
                                       3.,
                               4.3,
                                               1.1],
                    [ 15. ,
                               5.8,
                                       4.,
                                               1.2],
                    [ 16. ,
                               5.7,
                                       4.4,
                                               1.5],
                    [ 17. ,
                               5.4,
                                       3.9,
                                               1.3],
                     18. ,
                               5.1,
                                       3.5,
                                               1.4],
                    [ 19. ,
                               5.7,
                                       3.8,
                                               1.7],
                     20.,
                               5.1,
                                       3.8,
                                               1.5],
                    [ 21. ,
                               5.4,
                                       3.4,
                                               1.7],
                     22.,
                               5.1,
                                       3.7,
                                               1.5],
                    [ 23. ,
                                       3.6,
                               4.6,
                                               1. ],
                    [ 24. ,
                               5.1,
                                       3.3,
                                               1.7],
                                               1.9],
                     25.
                               4.8,
                                       3.4,
```

### In [107]: iris.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

| #                   | Column        | Non-Null Count      | Dtyne   |  |  |
|---------------------|---------------|---------------------|---------|--|--|
| "                   | CO CUIIII     | Non Nace Counc      | Бсурс   |  |  |
|                     |               |                     |         |  |  |
| 0                   | Id            | 150 non-null        | int64   |  |  |
| 1                   | SepalLengthCm | 150 non-null        | float64 |  |  |
| 2                   | SepalWidthCm  | 150 non-null        | float64 |  |  |
| 3                   | PetalLengthCm | 150 non-null        | float64 |  |  |
| 4                   | PetalWidthCm  | 150 non-null        | float64 |  |  |
| 5                   | Species       | 150 non-null        | object  |  |  |
| dtypes: float64(4), |               | int64(1), object(1) |         |  |  |

memory usage: 7.2+ KB

In [108]: iris[0:10]

Out[108]:

|   | ld | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species     |
|---|----|---------------|--------------|---------------|--------------|-------------|
| 0 | 1  | 5.1           | 3.5          | 1.4           | 0.2          | Iris-setosa |
| 1 | 2  | 4.9           | 3.0          | 1.4           | 0.2          | Iris-setosa |
| 2 | 3  | 4.7           | 3.2          | 1.3           | 0.2          | Iris-setosa |
| 3 | 4  | 4.6           | 3.1          | 1.5           | 0.2          | Iris-setosa |
| 4 | 5  | 5.0           | 3.6          | 1.4           | 0.2          | Iris-setosa |
| 5 | 6  | 5.4           | 3.9          | 1.7           | 0.4          | Iris-setosa |
| 6 | 7  | 4.6           | 3.4          | 1.4           | 0.3          | Iris-setosa |
| 7 | 8  | 5.0           | 3.4          | 1.5           | 0.2          | Iris-setosa |
| 8 | 9  | 4.4           | 2.9          | 1.4           | 0.2          | Iris-setosa |
| 9 | 10 | 4.9           | 3.1          | 1.5           | 0.1          | Iris-setosa |

In [109]: iriso=pd.crosstab(index=iris["Species"],columns="count")

In [110]: iriso

Out[110]:

col\_0 count

| Species         |    |
|-----------------|----|
| Iris-setosa     | 50 |
| Iris-versicolor | 50 |
| Iris-virginica  | 50 |

In [111]: irissetosa=iris.loc[iris["Species"]=="Iris-setosa"]
irissetosa.head()

Out[111]:

|   | ld | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species     |
|---|----|---------------|--------------|---------------|--------------|-------------|
| 0 | 1  | 5.1           | 3.5          | 1.4           | 0.2          | Iris-setosa |
| 1 | 2  | 4.9           | 3.0          | 1.4           | 0.2          | Iris-setosa |
| 2 | 3  | 4.7           | 3.2          | 1.3           | 0.2          | Iris-setosa |
| 3 | 4  | 4.6           | 3.1          | 1.5           | 0.2          | Iris-setosa |
| 4 | 5  | 5.0           | 3.6          | 1.4           | 0.2          | Iris-setosa |

In [112]: irisvirginica=iris.loc[iris["Species"]=="Iris-virginica"]
irisvirginica.head()

#### Out[112]:

|     | ld  | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species        |
|-----|-----|---------------|--------------|---------------|--------------|----------------|
| 100 | 101 | 6.3           | 3.3          | 6.0           | 2.5          | Iris-virginica |
| 101 | 102 | 5.8           | 2.7          | 5.1           | 1.9          | Iris-virginica |
| 102 | 103 | 7.1           | 3.0          | 5.9           | 2.1          | Iris-virginica |
| 103 | 104 | 6.3           | 2.9          | 5.6           | 1.8          | Iris-virginica |
| 104 | 105 | 6.5           | 3.0          | 5.8           | 2.2          | Iris-virginica |

#### Out[113]:

|    | ld | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species         |
|----|----|---------------|--------------|---------------|--------------|-----------------|
| 50 | 51 | 7.0           | 3.2          | 4.7           | 1.4          | Iris-versicolor |
| 51 | 52 | 6.4           | 3.2          | 4.5           | 1.5          | Iris-versicolor |
| 52 | 53 | 6.9           | 3.1          | 4.9           | 1.5          | Iris-versicolor |
| 53 | 54 | 5.5           | 2.3          | 4.0           | 1.3          | Iris-versicolor |
| 54 | 55 | 6.5           | 2.8          | 4.6           | 1.5          | Iris-versicolor |

In [114]: sns.pairplot(iris,hue="Species")

Out[114]: <seaborn.axisgrid.PairGrid at 0x17cd06af0>



In [115]: sns.boxplot(x="Species",y="PetalLengthCm",data=iris)
plt.show()



### K means

```
In [116]: from sklearn.cluster import KMeans
wcss = []
In [117]: for i in range(1, 11):
```

```
In [117]: for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', max_iter =
    kmeans.fit(x)
    wcss.append(kmeans.inertia_)
```

```
In [118]: plt.plot(range(1, 11), wcss)
    plt.title('The elbow method')
    plt.xlabel('Number of clusters')
    plt.ylabel('WCSS') #within cluster sum of squares
    plt.show()
```



In [120]: plt.scatter(x[y\_kmeans == 0, 0], x[y\_kmeans == 0, 1], s = 100, c = plt.scatter(x[y\_kmeans == 1, 0], x[y\_kmeans == 1, 1], s = 100, c = plt.scatter(x[y\_kmeans == 2, 0], x[y\_kmeans == 2, 1], s = 100, c = plt.scatter(kmeans.cluster\_centers\_[:, 0], kmeans.cluster\_centers\_[plt.legend()

# Out[120]: <matplotlib.legend.Legend at 0x1393c3490>



```
In [121]: fig = plt.figure(figsize = (15,15))
ax = fig.add_subplot(111, projection='3d')
plt.scatter(x[y_kmeans == 0, 0], x[y_kmeans == 0, 1], s = 100, c =
plt.scatter(x[y_kmeans == 1, 0], x[y_kmeans == 1, 1], s = 100, c =
plt.scatter(x[y_kmeans == 2, 0], x[y_kmeans == 2, 1], s = 100, c =
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[
plt.show()
```



### HIERARCHIAL CLUSTERING

```
In [122]: matcorr = iris.iloc[:,~iris.columns.isin(['Id','Species'])].corr()
mask = np.zeros_like(matcorr, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
```

/var/folders/72/3kxng2yd5yn203b626zw3kpc0000gn/T/ipykernel\_11074/3 622765179.py:2: DeprecationWarning: `np.bool` is a deprecated alia s for the builtin `bool`. To silence this warning, use `bool` by i tself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool\_` here. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations (https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations) mask = np.zeros\_like(matcorr, dtype=np.bool)

In [123]: sns.heatmap(matcorr, mask=mask, vmin=-1, vmax=1, center=0, square=T



In [124]: from scipy.cluster.hierarchy import dendrogram, linkage

# single linkage

In [125]: dist\_sin = linkage(iris.loc[:,["SepalLengthCm","SepalWidthCm","Peta

```
In [126]: dendrogram(dist_sin, leaf_rotation=90)
    plt.figure(figsize=(18,6))
    plt.show()
```



<Figure size 1296x432 with 0 Axes>

```
In [127]: from scipy.cluster.hierarchy import fcluster
iris_SM=iris.copy()
```

```
In [128]: iris_SM['2_clust']=fcluster(dist_sin,2, criterion='maxclust')
    iris_SM['3_clust']=fcluster(dist_sin,3, criterion='maxclust')
    iris_SM.head()
```

#### Out [128]:

|   | ld | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species         | 2_clust 3_ |
|---|----|---------------|--------------|---------------|--------------|-----------------|------------|
| 0 | 1  | 5.1           | 3.5          | 1.4           | 0.2          | Iris-<br>setosa | 1          |
| 1 | 2  | 4.9           | 3.0          | 1.4           | 0.2          | Iris-<br>setosa | 1          |
| 2 | 3  | 4.7           | 3.2          | 1.3           | 0.2          | Iris-<br>setosa | 1          |
| 3 | 4  | 4.6           | 3.1          | 1.5           | 0.2          | Iris-<br>setosa | 1          |
| 4 | 5  | 5.0           | 3.6          | 1.4           | 0.2          | Iris-<br>setosa | 1          |

```
In [129]: plt.figure(figsize=(24,4))
    plt.suptitle("Hierarchical Clustering Single Method",fontsize=18)

plt.subplot(1,3,1)
    plt.title("K = 2",fontsize=14)
    sns.scatterplot(x="PetalLengthCm",y="PetalWidthCm", data=iris_SM, h

plt.subplot(1,3,2)
    plt.title("K = 3",fontsize=14)
    sns.scatterplot(x="PetalLengthCm",y="PetalWidthCm", data=iris_SM, h

plt.subplot(1,3,3)
    plt.title("Species",fontsize=14)
    sns.scatterplot(x="PetalLengthCm",y="PetalWidthCm", data=iris_SM, h
```



```
In [130]: plt.figure(figsize=(24,4))
   plt.subplot(1,2,1)
   plt.title("K = 2",fontsize=14)
   sns.swarmplot(x="Species",y="2_clust", data=iris_SM, hue="Species")
   plt.subplot(1,2,2)
   plt.title("K = 3",fontsize=14)
   sns.swarmplot(x="Species",y="3_clust", data=iris_SM, hue="Species")
```

/Users/zeelmehta/opt/anaconda3/lib/python3.9/site-packages/seaborn /categorical.py:1296: UserWarning: 38.0% of the points cannot be p laced; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

/Users/zeelmehta/opt/anaconda3/lib/python3.9/site-packages/seaborn /categorical.py:1296: UserWarning: 38.0% of the points cannot be p laced; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

/Users/zeelmehta/opt/anaconda3/lib/python3.9/site-packages/seaborn/categorical.py:1296: UserWarning: 34.0% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

Out[130]: <AxesSubplot:title={'center':'K = 3'}, xlabel='Species', ylabel='3
 \_clust'>





In [131]: loc[:,["SepalLengthCm","SepalWidthCm","PetalLengthCm","PetalWidthCm"

Out[131]: <AxesSubplot:ylabel='2\_clust'>



# **Complete linkage**

In [132]: dist\_comp = linkage(iris.loc[:,["SepalLengthCm","SepalWidthCm","Pet

In [133]: plt.figure(figsize=(18,6))
 dendrogram(dist\_comp, leaf\_rotation=90)
 plt.show()



```
In [134]: iris_CM=iris.copy()
    iris_CM['2_clust']=fcluster(dist_comp,2, criterion='maxclust')
    iris_CM['3_clust']=fcluster(dist_comp,3, criterion='maxclust')
    iris_CM.head()
```

#### Out[134]:

|   | ld | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species         | 2_clust | 3_ |
|---|----|---------------|--------------|---------------|--------------|-----------------|---------|----|
| 0 | 1  | 5.1           | 3.5          | 1.4           | 0.2          | Iris-<br>setosa | 2       |    |
| 1 | 2  | 4.9           | 3.0          | 1.4           | 0.2          | Iris-<br>setosa | 2       |    |
| 2 | 3  | 4.7           | 3.2          | 1.3           | 0.2          | Iris-<br>setosa | 2       |    |
| 3 | 4  | 4.6           | 3.1          | 1.5           | 0.2          | Iris-<br>setosa | 2       |    |
| 4 | 5  | 5.0           | 3.6          | 1.4           | 0.2          | Iris-<br>setosa | 2       |    |

```
In [135]: plt.figure(figsize=(24,4))
    plt.suptitle("Hierarchical Clustering Complete Method",fontsize=18)
    plt.subplot(1,3,1)
    plt.title("K = 2",fontsize=14)
    sns.scatterplot(x="SepalLengthCm",y="SepalWidthCm", data=iris_CM, h
    plt.subplot(1,3,2)
    plt.title("K = 3",fontsize=14)
    sns.scatterplot(x="SepalLengthCm",y="SepalWidthCm", data=iris_CM, h
    plt.subplot(1,3,3)
    plt.title("Species",fontsize=14)
    sns.scatterplot(x="SepalLengthCm",y="SepalWidthCm", data=iris_CM, h
```





```
In [136]: plt.figure(figsize=(24,4))
    plt.subplot(1,2,1)
    plt.title("K = 2",fontsize=14)
    sns.swarmplot(x="Species",y="2_clust", data=iris_CM, hue="Species")

plt.subplot(1,2,2)
    plt.title("K = 3",fontsize=14)
    sns.swarmplot(x="Species",y="3_clust", data=iris_CM, hue="Species")
```

/Users/zeelmehta/opt/anaconda3/lib/python3.9/site-packages/seaborn/categorical.py:1296: UserWarning: 38.0% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

/Users/zeelmehta/opt/anaconda3/lib/python3.9/site-packages/seaborn /categorical.py:1296: UserWarning: 36.0% of the points cannot be p laced; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

/Users/zeelmehta/opt/anaconda3/lib/python3.9/site-packages/seaborn /categorical.py:1296: UserWarning: 38.0% of the points cannot be p laced; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

/Users/zeelmehta/opt/anaconda3/lib/python3.9/site-packages/seaborn /categorical.py:1296: UserWarning: 36.0% of the points cannot be p laced; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

Out[136]: <AxesSubplot:title={'center':'K = 3'}, xlabel='Species', ylabel='3
 \_clust'>





In [137]: loc[:,["SepalLengthCm","SepalWidthCm","PetalLengthCm","PetalWidthCm"

Out[137]: <AxesSubplot:ylabel='3\_clust'>

