

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호 :

10-2002-0044268

Application Number

출 원 년 월 일

2002년 07월 26일

Date of Application JUL 26, 2002

출 :

인

엘지전자 주식회사

LG Electronics Inc.

Applicant(s)

년 06

₉₁ 25

일

특

허

청

COMMISSIONER

2003

방	담	당	심	٨ŀ	관
싔					
란				2¥ T	

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0004

【제출일자】 2002.07.26

【국제특허분류】 F24C

【발명의 국문명칭】전자 레인지의 방열 구조

【발명의 영문명칭】structure for air-flow in microwave oven

【출원인】

【명칭】 엘지전자 주식회사

【출원인코드】 1-2002-012840-3

【대리인】

【성명】 김용인

【대리인코드】 9-1998-000022-1

【포괄위임등록번호】 2002-027000-4

【대리인】

【성명】 심창섭

【대리인코드】 9-1998-000279-9

【포괄위임등록번호】 2002-027001-1

专利坦克 의뢰번호

【발명자】

【성명의 국문표기】 성기영

【성명의 영문표기】 SUNG,Gi Young

【주민등록번호】 590918-1768114

【우편번호】 641-769

【주소】 경상남도 창원시 반지동 23 대동아파트 109-808

【국적】 KR

【심사청구】 청구

[취지] 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의한 출원심사를 청구합니다.

대리인

김용인 (인)

대리인

심창섭 (인)

【수수료】

【기본출원료】 29,000 20 면 【가산출원료】 15,000 15 면 0 【우선권주장료】 건 원 0 【심사청구료】 589,000 원 15 항 【합계】 633,000 원

【첨부서류】 1.요약서 명세서(도면)_1통

【요약서】

[요약]

본 발명은 전자 레인지에 관한 것으로써, 보다 구체적으로는 하나의 냉각팬 및 팬모터를 이용하여 전장실 및 마그네트론의 방열이 가능하도록 함과 더불어 방 열을 위한 유로 간의 형성 구조를 제공하고자 한 것이다.

이를 위해 본 발명은 외관을 이루며, 공기 흡입구 및 공기 배출구를 가지는 본체; 상기 본체 내의 상부 공간 상에 구비되어 조리실을 형성하며, 공기 유입공 및 공기 유출공이 각각 형성되고, 그 외측면 저부 둘레를 따라 상기 본체 내의 하부 공간과 상부 공간을 구획하는 테두리부가 돌출 형성되어 이루어진 캐비티; 상기본체 내의 하부 공간 상에 구비되어 각종 전장부품이 설치되는 전장실; 상기 본체 내의 측부 공간 상에 구비된 마그네트론부; 상기 본체 내의 하부 공간 상에 구비되어 각 공간으로 순환시키는 송풍 수단:이 포함되어 구성됨을 특징으로 하는 전자 레인지의 방열 구조가 제공된다.

【대표도】

도 6

【색인어】

전자 레인지, 방열

【발명의 명칭】

전자 레인지의 방열 구조{structure for air-flow in microwave oven} 【도면의 간단한 설명】

도 1 은 종래 천장실이 하부에 위치되는 형태의 전가 레인지 내부 구조를 개략적으로 나타낸 분해 사시도

도 2 는 종래 전자 레인지의 베이스 플레이트를 나타낸 평면도

도 3 은 종래 전자 레인지의 본체 내부 상태에 따른 측면도

도 4 는 종래 전자 레인지의 조리실 내부 상태를 나타낸 정면도

도 5 는 종래 전자 레인지의 후면 패널을 나타낸 배면도

도 6 은 본 발명에 따른 전자 레인지의 구조를 개략적으로 나타낸 분해 사시 도

도 7 은 본 발명에 따른 전자 레인지의 베이스 플레이트를 나타낸 평면도 도 8 은 본 발명에 따른 전자 레인지의 본체 내부 상태에 따른 우측면도 도 9 는 본 발명에 따른 전자 레인지의 조리실 내부 상태를 나타낸 정면 사

도 10 은 본 발명에 따른 전자 레인지의 본체 내부 상태에 따른 좌측면도 도 11 은 본 발명에 따른 전자 레인지의 후면 패널을 나타낸 배면도 도면의 주요 부분에 대한 부호의 설명

100. 본체

시도

110. 베이스 플레이트

120. 외관 프레임

140. 차폐판

230. 제1테두리

240. 제2테투리

400. 전장실

610. 제1구획판

700. 송풍 수단

820. 센서부

130. 후면 패널

200. 케비티

231. 절개공

300. 인버터부

500. 마그네트론부

620. 제2구획판

810. 점등 램프부

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

본 발명은 전자 레인지에 관한 것으로써, 보다 구체적으로는 상기 전자 레인지의 각 구성 요소를 방열시키기 위한 전자 레인지의 방열 구조에 관한 것이다.

일반적으로 전자 레인지(MWO: microwave oven)는 고주파(초당 약 2,450MHz)를 가열원으로하여 음식물의 분자 배열을 교란시킴에 따라 발생되는 분자간 마찰열에 의해 음식물을 조리하는 기구이다.

이와 같은 전자 레인지는 통상 베이스 플레이트(11)와 외관 프레임(12) 및 후면 패널(13)을 포함하여 구성되는 본체(10)와, 조리실을 형성하는 캐비티(20) 그리고, 각종 전장부품이 설치되는 전장실(30)이 포함되어 구성된다.

도시한 도 1은 상기와 같은 종래의 전자 레인지 중 전장실(30)이 캐비티(20)

하부에 구비되는 형태에 따른 일 예를 개략적으로 토시하고 있다.

이와 같은 전자 레인지는 천장실(30)이 캐비티(20)의 하부에 구비되기 때문에 방열에 대한 중요성이 컸으며, 이러한 방열 구조를 보다 구체적으로 설명하면 아래와 같다.

우신, 종래의 전자 레인지에 따른 방열 구조는 베이스 플레이트(11)의 전방 측 저부에 두 개의 냉각팬(41,42)이 각각 대응 배치됨으로써 구성된다.

이 때, 상기 어느 하나의 냉각팬(이하, "제1냉각팬"이라 한다)(41)은 각종 전장부품(31)을 냉각시키는 역할을 수행하고, 다른 하나의 냉각팬(이하, "제2냉각 팬"이라 한다)(42)은 마그네트론(Magnetron)(50) 및 캐비티(20) 내로 공기를 공급 하는 역할을 수행한다.

그리고, 상기 베이스 플레이트(11)의 전방측에는 슬릿 형상으로 이루어진 다수의 공기 흡입구(11a)가 형성되고, 상기 후면 패널(13)의 상측부위 및 하측 부위에는 다수의 공기 배출구(13a,13b)가 각각 형성된다.

이 때, 상기 각 공기 배출구(13a,13b) 중 후면 패널(13)의 하측부위에 형성된 공기 배출구(이하, "제1공기 배출구"라 한다)(13a)로는 각종 전장부품을 냉각한 공기의 배출이 이루어지고, 상기 후면 패널(13)의 상측부위에 형성된 공기 배출구(이하, "제2공기 배출구"라 한다)(13b)로는 상기 캐비티(20) 내를 순환한 공기의 배출이 이루어진다.

그리고, 상기한 각 냉각팬(41,42)은 팬모터(41a,42a)의 구동력을 전달받아 구동하고, 구획판(60)에 의해 상호간의 유로가 서로 구획된 상태로 배치된다.

또한, 케비티(20)의 일측벽면에는 다수의 공기 유입공(21)이 형성됨과 더불어 상측면에는 다수의 공기 유출공(22)이 각각 형성된다.

이 때, 상기 캐비티(20)의 외측면 상부에는 덮개부(23)가 일체로 구비되며, 상기 덮개부(23)는 상기 궁기 유출공(22) 및 제2공기 배출구(13b)와 각각 연통된다.

이하, 전술한 바와 같이 구성되는 종래의 전자 레인지에 따른 방열 과정을 보다 구체적으로 설명하면 후술하는 바와 같다.

우선, 전자 레인지의 동작이 이루어질 경우 한 쌍의 냉각팬(41,42)이 구동하면서 외부 공기를 흡입한다.

이 때, 상기 외부 공기는 베이스 플레이트(11)에 형성된 공기 흡입구(11a)를 통해 본체(10) 내의 각 냉각팬(41,42)이 구비된 공간으로 유입된다.

그리고, 상기와 같이 본체(10) 내로 유입된 외부 공기는 제1냉각팬(41) 및 제2냉각팬(42)의 구동에 따른 공기 토출력에 의해 전장실(30) 및 마그네트론(50)이 구비된 공간으로 각각 유출된다.

이 때, 상기 제1냉각팬(41)의 구동에 의해 전장실(30)로 유출된 공기는 상기 전장실(30)을 유동하면서 상기 전장실(30) 내의 각 전장 부품(31)을 냉각시킨 후 제1공기 배출구(13a)를 통해 본체(10) 외부로 배출된다.

또한, 상기 제2냉각팬(42)의 구동에 의해 마그네트론(50)이 구비된 공간으로 유출된 공기는 상기 마그네트론(50)을 통과하는 과정에서 상기 마그네트론(50)으로 부터 발생된 열을 냉각시킨다. 계속해서 상기 공기는 캐비티(20)의 벽면에 형성된 공기 유입공(21)을 통해 상기 캐비티(20) 내부를 유동한 후 상기 캐비티(20)의 상측면에 형성된 공기 유출 공(22)을 통해 캐비티(20) 외부로 배출된다.

이 때, 상기 캐비티(20) 외부로 배출된 공기는 덮개부(23)의 안내를 받아 후 면 패널에 형성된 제2공기 배출구(13b)를 통해 본체(10) 외부로 배출된다.

그러나 상기한 바와 같은 종래 기술에 의한 전자레인지에서는 다음과 같은 문제점이 있다.

우선, 종래의 전자 레인지에 따른 방열 구조는 전장실(30) 및 마그네트론(50)을 각각 냉각시키기 위해 다수의 냉각팬(41,42) 및 팬모터(41a,42a) 를 필요로 하였다.

이는, 상기 전장실(30)에 구비되는 각 전장부품(31)의 종류가 많았음과 더불어 상기 마그네트론(50)을 냉각시킨 공기가 캐비티(20) 내부를 유동하도록 하여 상기 캐비티(20) 내부의 습기를 방지하고자 하였기 때문이다.

따라서, 각각의 냉각팬(41,42) 및 팬모터(41a,42a) 설치로 인해 전체적인 구 소가 복잡할 수 밖에 없었고, 재료비의 상승을 유발하게된 문제점이 있었다.

또한, 전술한 종래의 전자 레인지는 각각의 팬모터(41a,42a) 및 냉각팬(41,42)이 본체(10)의 전방측에 위치되기 때문에 그 동작에 따라 발생되는 소음이 보다 직접적으로 사용자에게 전달되었다. 이로 인해 사용자의 불쾌감 유발 이 더욱 큰 문제점을 가지게 되었다.

【발명이 이루고자 하는 기술적 과제】

본 발명은 전술한 바와 같은 종래의 문제점을 해결하기 위해 안출된 것으로 써, 하나의 냉각팬 및 팬모터를 이용하여 전장실 및 마그네트론의 방열이 가능하도록 함과 더불어 하부 공간과 상부 공간간의 공기 유동이 차단될 수 있도록 한 전자레인지의 방열 구조를 제공하는데 그 목적이 있다.

[팔명의 구성]

상기한 목적을 달성하기 위한 본 발명의 형태에 따르면, 외관을 이루며, 공기 흡입구 및 공기 배출구를 가지는 본체; 상기 본체 내의 상부 공간 상에 구비되어 조리실을 형성하며, 공기 유입공 및 공기 유출공이 각각 형성되고, 그 외측면 저부 둘레를 따라 상기 본체 내의 하부 공간과 상부 공간을 구획하는 테두리부가 돌출 형성되어 이루어진 캐비티; 상기 본체 내의 하부 공간 상에 구비되어 각종 전장부품이 설치되는 전장실; 상기 본체 내의 측부 공간 상에 구비된 마그네트론부; 상기 본체 내의 하부 공간 상에 구비된 마그네트론부; 상기 본체 내의 하부 공간 상에 구비되어 외부 공기를 상기 본체 내의 각 공간으로 순환시키는 송풍 수단:이 포함되어 구성됨을 특징으로 하는 전자 레인지의 방열 구조를 제시한다.

그리고, 상기한 목적을 달성하기 위한 본 발명의 다른 형태에 따르면, 외관을 이루며, 다수의 공기 흡입구 및 공기 배출구가 각각 형성된 본체; 상기 본체 내의 상부 공간 상에 구비되어 조리실을 형성하며, 공기 유입공 및 공기 유출공이 각각 형성되고, 그 저부 둘레를 따라 상기 본체 내의 하부 공간과 상부 공간을 구획하는 테두리부가 돌출 형성되어 이루어진 캐비티; 상기 본체 내의 하부 전방측에 배치되어 인버터를 가지며, 상기 공기 배출구와 연통된 인버터부; 상기 본체 내의

하부 후방측에 배치되어 각종 전장부품이 설치됨과 더불어 상기 공기 흡입구와 연통되는 전장실; 상기 본체 내의 측부 공간 상에 구비된 마그네트론부; 상기 인버터부가 이루는 공간과, 전장실을 이루는 공간 및 마그네트론부가 구비된 공간을 각각구확하는 구획판; 그리고, 상기 각 공간간이 공통적으로 접하는 부위에 구비되어상기 인버터부가 구비된 공간 및 마그네트론부가 구비된 공간으로 공기를 송풍하는송풍 수단:이 포함되어 구성됨을 특징으로 하는 전자 레인지의 방열 구조가 제공된다.

즉, 본 발명은 단 하나의 송풍 수단을 이용하여 전반적인 전자 레인지의 각부위에 대한 방열이 가능하도록 하며, 이 때의 순환되는 공기 중 유입 공기와 배출공기 간의 혼합됨이 방지될 수 있도록 함을 제시하고 있다.

이하, 도시한 도 6 내지 도 11을 참조하여 본 발명에 따른 전자 레인지의 방열 구조에 대한 실시예를 구체적으로 설명하면 하기와 같다.

먼저, 본 발명에 따른 전자 레인지는 크게 본체(100)와, 캐비티(200)와, 전 장실(400)과, 마그네트론부(500)와, 구획판(610,620)과, 송풍 수단(700)이 포함되 어 구성된다.

상기에서 본체(100)는 상기 전자 레인지의 외관을 이루며, 베이스 -플레이트(110)와 외관 프레임(120) 및 후면 패널(130)을 포함하여 구성된다.

이와 함께, 상기 본체(100)에는 다수의 공기 흡입구(111,131) 및 공기 배출 구(121,132)가 각각 형성되어 이루어진다.

이 때, 상기 공기 흡입구(111,131)는 상기 베이스 플레이트(110)의 후방측

및 후면 패널(130)의 하부측을 따라 각각 형성되며, 상기 공기 배출구(132,121)는 후면 패널(130)의 좌측 상단 및 중앙측 상단에 각각 형성됨과 더불어 외관 프레임(120)의 좌측면 전방에 형성된다.

상기 베이스 플레이트(110)의 후방측에 형성된 공기 흡입구(이하, "제1공기 흡입구"라 한다)(111)로는 본체(100) 저부를 유동하는 공기가 흡입되고, 상기 후면 패널(130)의 하부측을 따라 형성된 공기 흡입구(이하, "제2공기 흡입구"라 한다)(131)로는 본체(100) 후방측을 유동하는 공기가 흡입된다.

또한, 상기 후면 패널(130)의 좌측 상단에 형성된 공기 배출구(이하, "제1 공기 배출구"라 한다)(132)는 마그네트론부(500) 및 캐비티(200) 내부를 방열한 공기가 배출되고, 상기 외관 프레임(120)의 좌측면 전방에 형성된 공기 배출구(이하, "제2공기 배출구"라 한다)(121)는 인버터부(300)를 방열한 공기가 배출된다.

특히, 본 발명에서는 베이스 플레이트(110)를 평면에서 봤을 때 그 좌측 전 방에 별도의 공기 배출구(이하, "제3공기 배출구"라 한다)(112)가 더 형성됨을 제시하고, 상기 후면 패널(130)의 중앙측 상단에도 별도의 공기 배출구(이하, "제4공기 배출구"라 한다)(133)가 더 형성됨을 제시한다.

이 때, 상기 제3공기 배출구(112)는 제2공기 배출구(121)와 같이 인버터부(300)를 방열한 공기의 배출이 이루어지는데, 상기한 인버터부(300)의 보 다 원활한 냉각을 위해 형성된다.

즉, 송풍 수단(700)의 동작이 중단될 경우 보다 많은 양의 외부 공기가 상기 인버터부(300)의 장착 공간으로 유입되기 때문에 상기 인버터부(300)의 원활한 냉 각이 가능하다.

또한, 상기 제4공기 배출구(133)로는 케비티(200)의 상측 공간을 유동하는 공기가 배출된다.

그리고, 본 발명을 구성하는 상기 캐비티(200)는 상기 본체(100) 내의 상측에 장착되어 조리실을 형성한다.

이와 함께, 상기 캐비티(200)의 양측면에는 공기 유입공(211) 및 공기 유출 공(221)이 각각 형성되어 이루어진다.

이 때, 상기 공기 유입공(211)은 상기 캐비티(200)를 정면에서 봤을 때 우측 면의 전방측에 형성되고, 상기 공기 유출공(이하, "제1공기 유출공"이라 한다)(221)은 상기 캐비티(200)를 정면에서 봤을 때 좌측면의 후방측에 형성된다.

또한, 본 발명에서는 상기 캐비티(200)의 전방측 상면에도 별도의 공기 유출 공(이라, "제2공기 유출공"이라 한다)(222)이 더 형성됨을 추가로 제시한다.

이 때, 상기 공기 유입공(211)으로는 마그네트론부(500)를 방열한 공기가 유입된다.

또한, 상기 제1공기 유출공(221)으로는 캐비티(200) 내부를 유동한 공기가 제출되고, 상기 제2공기 유출공(222)으로는 상기 캐비티(200) 내의 습기 방지를 위해 습기를 함유한 공기가 배출된다.

특히, 본 발명에서는 상기 캐비티(200)의 외측면 저부 둘레를 따라 제1테두리부(230)가 돌출 형성되고, 상기 캐비티(200)의 외측면 상부 둘레를 따라 제2테두리부(240)가 돌출 형성됨을 제시한다.

상기 제1테두리부(230)는 특정 부위를 제외하고는 본체(100)의 하부 공간을 유동하는 공기가 상기 본체(100)의 상부 공간으로 유동됨을 방지하고, 상기 각 공 간을 유동하는 공기간의 혼합됨을 방지한다.

이 때, 장기 특정 부위라 함은 캐비티(200)에 형성된 공기 유입공(211)이 형성된 부위이며, 장기 부위에는 절개공(231)을 형성한다.

즉, 본체(100) 내의 하부 공간 상을 유동하는 공기가 상기 본체(100) 내의 상부 공간으로 유동하기 위해서는 상기 절개공(231)을 통과하여야만 가능하도록 구 성한 것이다.

이는, 캐비티(200)의 제1공기 유출공(221)을 통해 유출되는 가습 공기가 방열을 목적으로 본체(100) 내에 유입된 공기와 혼합됨을 방지하고, 상기 본체(100) 내로 유입된 공기가 반드시 마그네트론부(500)를 통과한 후 캐비티(200) 내부로 유입될 수 있도록 하기 위함이다.

또한, 제2테두리부(240)는 캐비티(200)의 상면과 본체(100)의 상면 사이에 형성되는 공간으로 공기의 유동을 차단한다.

이와 같은 각 테두리부(230,240)는 상기 외관 프레임(120)의 내측면에 밀착 될 수 있을 정도의 길이를 가지도록 돌출된다.

또한, 본 발명에서는 상기 본체(100) 내의 후면 패널(130)과 캐비티(200) 사이에 차폐판(140)을 더 구비하여 상기 제1공기 유출공(221)을 통해 유출된 공기가제1공기 배출구(132)로 원활히 배출될 수 있도록 안내한다.

그리고, 본 발명을 구성하는 인버터부(300)는 상기 본체(100) 내의 하부 전

방측에 배치되며, 인버터(310)를 가진다.

그리고, 본 발명을 구성하는 전장실(400)은 상기 베이스 플레이트(110)의 후 방측에 배치되며, 상기 인버터(310) 이외의 각종 전장부품(예컨대. 고전압 트랜스 혹은, 턴 테이블을 회진시키는 구등 고터 등)이 설치된다.

또한, 상기 전장실(400)은 제1공기 흡입구(111) 및 제2공기 흡입구(131)와 각각 연통되도록 구성된다.

그리고, 본 발명을 구성하는 마그네트론부(500)는 본체(100)를 정면에서 봤을 때 상기 본체(100) 내의 우측 공간상에 구비된다.

이러한 마그네트론부(500)는 마이크로파를 발생시키는 역할을 수행하는 통상의 마그네트론(510)과 상기 마그네트론(510)을 보호하는 하우징(520)을 포함하여 구성된다.

이 때, 상기 하우정(520)은 본체(100) 내의 각 부위 중 캐비티(200)의 공기 유입공(211)이 연통되는 전방측 공간 및 그 후방측 공간을 상호 구획할 수 있도록 종방향으로 길게 형성됨과 더불어 외관 프레임(120)이 결합될 경우 상기 외관 프레 임(120)의 우측 내면과 밀착될 수 있을 정도로 길게 돌출 형성된다.

이와 함께, 상기와 같은 마그네트론부(500)의 하우징(520)은 캐비티(200)의 제1테두리부(230)를 관통하여 그 하단은 상기 본체(100) 내의 저부 공간에 위치되도록 함과 더불어 그 상단은 상기 본체(100) 내의 상부 공간에 위치되도록 한다.

이 때, 마그네트론(510)은 상기 본체(100) 내의 저부 공간에 위치된다.

그리고, 본 발명을 구성하는 구획판은 상기 인버터부(300)가 이루는 공간과,

전장실(400)을 이루는 공간 및 상기 마그네트론부(500)가 구비되는 공간이 서로 구획될 수 있도록 형성된다.

즉, 상기 구획판은 베이스 플레이트(110)를 평면에서 봤을 때 상기 베이스 플레이트(110)의 전반측 공간(인데터부가 이루는 공간)과 후방측 공간(진장실을 이루는 공간)을 구획하도록 횡방향으로 청성된 제1구획판(610)과, 상기 베이스 플레이트(110)의 좌측 공간(전장실을 이루는 공간 및 인버터부를 이루는 '공간을 포함하는 공간)과 우측 공간(마그네트론부가 구비되는 공간)을 구획하도록 종방향으로 형성된 제2구획판(620)을 포함하여 구성된다.

그리고, 본 발명을 구성하는 송풍 수단(700)은 송풍팬(710) 및 팬모터(720) 를 가지며, 상기 인버터부(300)가 이루는 공간과, 전장실(400)을 이루는 공간 및 마그네트론부(500)가 구비되는 공간간이 공통적으로 접하는 부위에 구비된다.

이 때, 상기 송풍 수단(700)의 공기 유입측은 상기 전장실(400)을 이루는 공 간과 연통되고, 상기 송풍 수단(700)의 공기 유출측은 상기 인버터부(300)가 이루 는 공간 및 마그네트론부(500)가 구비되는 공간과 각각 연통된다.

이는, 상기 제2구획판(620)이 상기 송풍팬(710)의 중심을 향하도록 배치함으로써 가능하다.

즉, 상기 송풍팬(710)을 통해 토출되는 공기의 유동이 상기 제2구획판(620)을 기준으로 인버터부(300)가 구비된 공간 및 마그네트론부(500)가 구비된 공간을 각각 향하도록 함으로써 단일의 송풍 수단(700)을 이용하여 상기 인버터(310) 및 마그네트론(510)의 방열이 가능하도록 한 것이다.

또한, 본 발명에서는 전술한 일련의 구성에 있어서, 캐비티(200)의 외측 벽면 중 공기 유입공(211)이 형성된 부위에 점등 램프부(800)가 더 구비됨을 제시한다.

이 때, 상기 점등 램프부(810)는 상기 캐비티(200) 내부를 선택적으로 전등하는 역할을 수행하며, 크게 점등 램프(811)와, 상기 점등 램프(811)를 지지하는 지지홀더(812)를 포함하여 구성된다.

특히, 상기 지지홀더(812)는 상기 공기 유입공(211)의 상축 부위에 고정되고, 판상으로 형성되어 상기 공기 유입공(211)이 형성된 부위를 기준으로 그 상하측 공간을 구획하게 된다.

즉, 상기 지지홀더(812)에 의해 마그네트론부(500)를 통과한 공기가 상기 공기 유입공(211)을 통해 캐비티(200) 내부로 원활히 유입될 수 있도록 한 것이다.

또한, 본 발명은 상기 캐비티(200)의 외측 벽면 중 제1공기 유출공(221)이 형성된 부위에 수분 센서를 가지는 센서부(820)가 위치되도록 구성함을 제시한다.

이 때, 상기 센서부(820)는 유출되는 공기 내의 수분 함유량을 센싱하는 역할을 수행한다.

이하, 전술한 바와 같이 구성되는 본 발명의 형태에 의한 방열 과정을 보다 구체적으로 설명하면 후술하는 바와 같다.

우선, 본 발명에 따른 전자 레인지의 동작이 수행되면 송풍 수단(700)의 구 동이 이루어지면서 송풍력이 발생된다.

이 때, 상기 송풍 수단(700)은 전장실 내부 공간으로부터 공기를 흡입하여

인버터부(300)가 구비된 공간 및 마그네트론부(500)가 구비된 공간으로 상기 흡입된 공기를 토출하도록 동작된다.

이에 따라, 상기 전장실(400)을 이루는 공간상에 형성된 제1공기 흡입구(111) 및 제2공기 흡입구(131)를 통해 본체(100) 외부의 공기가 흡입되어 상기 인버터부(300)가 구비된 공간 및 마그네트론부(500)가 구비된 공간으로 분할된 상태로 각각 토출된다.

이 때, 상기 제1공기 흡입구(111)를 통해 흡입되는 외부 공기는 일차적으로 상기 전장실(400) 내의 각종 전장부품을 냉각시킨 후 그 토출이 이루어진다.

이는, 상기 제1공기 흡입구(111)가 베이스 플레이트(110)의 저면에 형성되어 있기 때문에 가능하다.

그리고, 상기한 과정에 의해 송풍팬(710)을 통과하여 각 공간(인버터부가 구비된 공간 및 마그네트론부가 구비된 공간)으로 토출된 각 공가 중 상기인버터부(300)가 구비된 공간으로 토출된 공기는 상기 인버터부(300)를 통과하면서인버터(310)를 냉각시킨다.

이와 함께, 상기 인버터(310)를 냉각한 공기는 계속적인 유동이 이루어진 후 외관 프레임(120)에 형성된 제2공기 배출구(121) 및 베이스 플레이트(110)에 형성 된 제3공기 배출구(112)를 통해 본체(100) 외부로 배출된다.

또한, 상기 송풍팬(710)을 통과하여 마그네트론부(500)가 구비된 공간으로 토출되는 공기는 상기 마그네트론부(500)를 통과하면서 마그네트론(510)을 방열시 킨 후 캐비티(200)의 제1테두리부(230)에 형성된 절개공(231)을 통해 본체(100) 내 의 상부 공간으로 유입된다.

이 때, 상기 절개공(231) 이외의 부분으로는 본체(100) 내의 하부 공간을 순환하는 공기가 상기 본체(100) 내의 상부 공간으로 유출되지 못한다.

이는, 상기 제1테두리부(230)가 상기 본체(100) 내의 하부 공간과 상부 공간 간을 차단하기 때문이다.

특히, 상기 송풍팬(710)의 토출 방향은 상기 마그네트론(510)이 위치된 방향을 향하기 때문에 상기 마그네트론(510)의 보다 원활한 방열이 가능하다.

그리고, 상기의 과정에 의해 본체(100) 내의 상부 공간으로 유입된 공기는 캐비티(200)에 형성된 공기 유입공(211)을 통해 상기 캐비티(200) 내로 유입된다.

이 때, 상기 본체(100) 내의 상부 공간의 전방측으로 유입된 공기는 마그네 트론부(500)를 구성하는 하우징(520)에 의해 상기 본체(100) 내의 상부 공간의 후 방측으로 유동됨이 방지된다.

또한, 상기 공기는 공기 유입공(211)의 형성 부위에 장착된 점등 램프부(810)의 지지홀더(812)에 의해 더 이상의 유동이 방지된 상태로 상기 공기 유입공(211)을 통한 캐비티(200) 내로의 유입이 이루어진다.

그리고, 상기한 각 과정을 통해 캐비티(200) 내부로 유입된 공기는 상기 캐비티(200) 내부 공간인 조리실을 순환한 후 상기 캐비티(200)에 형성된 제1공기 유출공(221) 및 제2공기 유출공(222)을 통해 캐비티(200) 외부로 배출된다.

이 때, 상기 제2공기 유출공(222)은 전자 레인지를 구성하는 도어부(150)의 유리창에 습기가 차는 현상을 방지한다. 이는, 상기 제2공기 유출공(222)이 캐비티(200)의 전방측 상면에 형성되어 있기 때문에 상기 조리실을 순환하면서 상기 제2공기 유출공(222)을 통해 배출되는 공기에 의해 습기가 제거될 수 있게 된다.

즉, 상기 제2군기 유출공(222)을 통한 신선한 공기의 지속적인 유입 및 습기가 함유된 공기의 배출이 원활히 이루어지기 때문에 유리창의 습기 발생을 방지할수 있는 것이다.

이 때, 상기 제2공기 유출공(222)을 통해 배출되는 공기는 캐비티(200)의 상 측 공간을 유동한 후 후면 패널(130)에 형성된 제4공기 배출구(133)를 통해 본체(100) 외부로 배출된다.

또한, 캐비티(200)의 제1공기 유출공(221)을 통해 유출되는 공기는 상기 제1 공기 유출공(221)이 형성된 부위에 장착된 센서부(820)를 통과한 후 본체(100) 내 의 좌측 상부 공간으로 배출된다.

이 때, 상기 센서부(820)에 내장된 수분 센서는 상기 유출되는 공기 내의 수분 함유량을 센싱하고, 이 센싱된 값은 컨트롤러(도시는 생략함)로 제공하여 운전제어에 사용되도록 한다.

이와 함께, 상기 센서부(820)를 통과한 공기는 본체(100) 내의 좌측 상부 공간을 유동한 후 상기 본체(100)의 후면 패널 좌측 상단에 형성된 제1공기배출구(132)를 통해 본체(100) 외부로 배출된다.

이 때, 상기 캐비티(200)와 본체(100) 사이에 구비된 각 구획판(610,620)은 상기 공기가 공기 유입공(211)이 형성된 공간으로의 유동됨을 차단함으로써 상기 캐비티(200) 내부로부터 유출된 공기가 다시 상기 케비티(200) 내부로 유입됨을 방지하게 된다.

또한, 상기의 경우 상기 캐비티(200)의 하단 둘레면에는 제1테두리부(230)가 돌출 형성된 상태로 본체(100)의 내측 둘레면에 밀착되어 있고, 상기 캐비티(200) 의 상단 둘레면에는 제2테두리부(240)가 돌출 형성된 상태로 본체(100)의 내측 둘 레면에 밀착되어 있다.

이에 따라, 상기 제1테두리부(230)로 인해, 상기 캐비티(200)의 상부와 본체(100)의 하부 공간 사이의 공간이 차단되어 상기 제1공기 유출공(221)으로 유 출된 가습 공기가 상기 본체(100)의 하부 공간으로 유동됨은 방지된다.

이와 함께, 상기 제2테두리부(240)로 인해, 상기 캐비티(200)의 상부와 본체(100)의 상면 사이의 공간이 차단되어 상기 제1공기 유출공(221)으로 유출된 가습 공기가 상기 캐비티(200)의 상부 공간으로 유동됨은 방지된다.

따라서, 상기 제1공기 유출공(221)을 통과한 가습 공기가 본체(100)의 여타 공간에 각각 존재하는 공기(특히 각 구성부분의 방열을 위해 유입되는 공기)와의 혼합됨이 방지된다.

전술한 바와 같은 일련의 동작은 전자 레인지의 운전이 정지에 따른 송풍 수 단의 구동이 정지되면 그 중단이 이루어진다.

【발명의 효과】

이상에서 설명한 바와 같이 본 발명에 따른 전자 레인지의 방열 구조는 후술하는 각종 효과를 가진다.

첫째, 전장실 및 마그네트론을 냉각시키기 위한 구성이 하나의 냉각펜 및 팬모터만으로 가능하기 때문에 전체적인 제조 단가의 저감을 이룰 수 있게 된 효과를 가진다.

이는, 하나의 냉각팬을 통해 토출되는 공기의 유동을 인버터가 구비된 공간 및 마그네트론이 구비된 공간으로 각각 유동하도록 안내하는 유로를 형성하였기 때 문에 가능하다.

또한, 전장실의 각 전장 부품은 상기 냉각팬의 회전에 따른 흡입력에 의해 본체 외부의 공기가 상기 본체 내부로 유입되는 과정에서 냉각될 수 있도록 하였기 때문에 별도의 송풍 수단을 필요로 하지 않게 된다.

둘째, 본 발명에 따른 송풍 수단은 본체의 후방측에 위치되기 때문에 그 동작에 따라 발생되는 소음이 사용자에게 직접 전달됨을 방지할 수 있게 될 뿐 아니라, 전체적인 소음의 감소를 이룰 수 있게 된 효과를 가진다.

셋째, 본 발명은 외부 공기가 유입되는 하부 공간 및 공기의 배출이 이루어지는 상부 공간간이 서로 구획되어 있기 때문에 외부로부터 유입된 공기와 각 구성부품을 방열시킨 공기가 서로 혼합됨이 방지될 수 있는 효과를 가진다.

이로 인해, 각 구성부품의 보다 원활한 방열이 가능하다는 장점을 가진다.

【특허청구범위】

【청구항 1】

외관을 이루며, 다수의 공기 흡입구 및 다수의 공기 배출구를 가지는 본체;

상기 본체 내의 상부 군간 상에 구비되어 조리실을 형성하며, 공기 유입공 및 공기 유출공이 각각 형성되고, 그 외측면 저부 둘레를 따라 상기 본체 내의 하 부 공간과 상부 공간을 구획하는 테두리부가 돌출 형성되어 이루어진 '캐비티;

상기 본체 내의 하부 공간 상에 구비되어 각종 전장부품이 설치되는 전장실; 상기 본체 내의 측부 공간 상에 구비된 마그네트론부;

상기 본체 내의 하부 공간 상에 구비되어 외부 공기를 상기 본체 내의 각 공 간으로 순환시키는 송풍 수단:이 포함되어 구성됨을 특징으로 하는 전자 레인지의 방열 구조.

【청구항 2】

제 1 항에 있어서,

공기 유입공이 형성된 부위에 위치되는 캐비티의 테두리부에는 절개공을 형 성함을 특징으로 하는 전자 레인지의 방열 구조.

【청구항 3】

제 1 항에 있어서,

본체 내의 후면과 상기 캐비티 둘레면 사이에는 차폐판이 포함되어 구성됨을 특징으로 하는 전자 레인지의 방열 구조.

【청구항 4】

제 1 항에 있어서.

캐비티의 전방측 상면에 별도의 공기 유출공이 더 형성되고, 본체의 후면 상 단에는 상기 공기 유출공을 통해 유출된 공기가 배출되는 별도의 공기 배출구가 더 형성되어 이루이김을 특징으로 하는 전자 테인지의 방열 구조.

【청구항 5】

제 1 항에 있어서,

캐비티에 형성된 공기 유입공은

마그네트론부가 구비된 공간의 전방측인 상기 캐비티의 일측 벽면 상부에 형 성됨을 특징으로 전자 레인지의 방열 구조.

【청구항 6】

제 5 항에 있어서,

상기 캐비티의 외측 벽면 중 상기 공기 유입공이 형성된 부위에는 상기 캐비티 내부의 점등을 위한 점등 램프부가 구비됨을 특징으로 하는 전자 레인지의 방열구조.

【청구항 7】

제 6 항에 있어서,

상기 점등 램프부는

점등 램프와,

상기 점등 램프를 지지하며, 공기 유입공이 형성된 부위를 기준으로 그 상하 측 공간을 구획하도록 형성된 지지홀더를 포함하여 구성됨을 특징으로 하는 전자 레인지의 방열 구조.

【청구항 8】

제 1 항에 있어서,

캐비티에 영성된 공기 유출공에는

유출되는 공기 내의 수분 함유량을 센싱하는 센서부가 장착됨을 특징으로 하는 전자 레인지의 방열 구조.

【청구항 9】

제 1 항에 있어서,

상기 마그네트론부는

마그네트론과,

상기 마그네트론을 외부 환경으로부터 보호함과 더불어 본체 내의 측부 공간 중 캐비티의 공기 유입공이 형성된 전방측 공간을 후방측 공간으로부터 구획하도록 본체 내의 측면을 향하여 돌출 형성된 하우징을 포함하여 구성됨을 특징으로 하는 전자 레인지의 방열 구조.

【청구항 10】

제 1 항에 있어서,

본체 내의 하부 전방측에 구비되어 인버터를 가지며, 어느 하나의 공기 배출 구와 연통된 인버터부와,

상기 본체 내의 저면에 일체로 형성되어 상기 인버터부가 이루는 공간과, 전 장실을 이루는 공간 및 마그네트론부가 구비된 공간을 각각 구획하는 구획판이 더 포함되어 구비됨을 특징으로 하는 전자 레인지의 방열 구조.

【청구항 11】

제 1 항에 있어서,

송풍 수단은

송풍펜과, 상기 송풍팬을 구동하는 팬모터를 포함하여 구성됨을 특징으로 하는 전자 레인지의 방열 구조.

【청구항 12】

제 10 항 또는, 제 11 항에 있어서,

송풍팬은

인버터부가 구비된 공간 및 마그네트론부가 구비된 공간을 구획하는 측의 구획판을 향하여 대략 공기 토출측의 중심이 위치되도록 설치됨을 특징으로 하는 전자 레인지의 방열 구조.

【청구항 13】

제 1 항에 있어서,

상기 캐비티의 상부 둘레를 따라 상기 본체 내의 상면과 상기 캐비티의 상면사이 공간을 구획하는 별도의 테두리부가 더 형성되어 이루어짐을 특징으로 하는전자 레인지의 방열 구조.

【청구항 14】

외관을 이루며, 다수의 공기 흡입구 및 공기 배출구가 각각 형성된 본체;

상기 본체 내의 상부 공간 상에 구비되어 조리실을 형성하며, 공기 유입공

및 공기 유출공이 각각 형성되고, 그 저부 둘레를 따라 상기 본체 내의 하부 공간 과 상부 공간을 구획하는 테두리부가 돌출 형성되어 이루어진 캐비티;

상기 본체 내의 하부 전방측에 배치되어 인버터를 가지며, 상기 공기 배출구 와 연통된 인버터부;

상기 본체 내의 하부 후방측에 배치되어 각종 전장부품이 설치됨과 더불어 상기 공기 흡입구와 연통되는 전장실;

상기 본체 내의 측부 공간 상에 구비된 마그네트론부;

상기 인버터부가 이루는 공간과, 전장실을 이루는 공간 및 마그네트론부가 구비된 공간을 각각 구획하는 구획판; 그리고,

상기 각 공간간이 공통적으로 접하는 부위에 구비되어 상기 인버터부가 구비된 공간 및 마그네트론부가 구비된 공간으로 공기를 송풍하는 송풍 수단:이 포함되어 구성됨을 특징으로 하는 전자 레인지의 방열 구조.

[청구항 15]

제 14 항에 있어서,

공기 유입공이 형성된 부위에 위치되는 캐비티의 테두리부에는 절개공을 형 성함을 특징으로 하는 전자 레인지의 방열 구조.

【도면】

[도 1]

[토 5]

