8 класс

Радикальная ось

30 марта 2019

8 класс Радикальная ось

30 марта 2019

- 1. Пусть A и B две различные точки плоскости, $\lambda \in \mathbb{R}$.
- а) Докажите, что на прямой AB найдется единственная точка X такая, что $AX^2-BX^2=\lambda.$
- **б)** Докажите, что ГМТ плоскости X таких, что $AX^2 BX^2 = \lambda$, является прямая, перпендикулярная AB.
- **2. а)** Радикальная ось. Пусть ω_1 и ω_2 неконцентрические окружности. Докажите, что ГМТ X таких, что $\deg(X,\omega_1) = \deg(X,\omega_2)$, является прямая, перпендикулярная линии центров ω_1 и ω_2 .
- **б)** Радикальный центр. Пусть ω_1 , ω_2 и ω_3 попарно неконцентрические окружности. Докажите, что радикальные оси ω_1 и ω_2 , ω_2 и ω_3 , ω_3 и ω_1 пересекаются в одной точке или попарно параллельны.
- **3.** Докажите, что середины отрезков четырех общих касательных к двум непересекающимся кругам (двух внешних и двух внутренних) лежат на одной прямой.
- **4.** На окружности ω с диаметром AB взята точка C. Точка H основание перпендикуляра из C на AB. Обозначим через Ω окружность с центром в точке C и радиусом CH. Докажите, что общая хорда ω и Ω делит отрезок CH пополам.
- **5.** Окружность, проходящая через вершины B и C трапеции ABCD $(AD \parallel BC)$, пересекает боковые стороны трапеции в точках P и Q, а диагонали в точках M и N. Докажите, что прямые AD, PQ и MN пересекаются в одной точке или параллельны.
- **6.** Про шестиугольник ABCDEF известно, что AB=BC, CD=DE, EF=FA и $\angle A=\angle C=90^{\circ}$. Докажите, что $FD\perp BE$.
- 7. В выпуклом четырехугольнике ABCD AB=BC и AD=DC. Точки K,L,M середины отрезков AB,CD,AC соответственно. Перпендикуляр, опущенный из A на прямую BC, пересекается с перпендикуляром, опущенным из C на прямую AD, в точке F. Докажите, что $MF \perp KL$.
- 8. Вписанная окружность треугольника ABC касается сторон AB, AC, BC в точках C_1, B_1, A_1 соответственно. Докажите, что средние линии треугольников A_1CB_1 и A_1BC_1 , параллельные сторонам A_1B_1 и A_1C_1 , а также серединный перпендикуляр к BC пересекаются в одной точке.
- **9.** В остроугольном неравнобедренном треугольнике ABC проведены высоты AA_1 , BB_1 , CC_1 . Докажите, что точки пересечения пар прямых AB и A_1B_1 , BC и B_1C_1 , CA и C_1A_1 лежат на одной прямой, перпендикулярной прямой, соединяющей ортоцентр и центр описанной окружности треугольника ABC.

- 1. Пусть A и B две различные точки плоскости, $\lambda \in \mathbb{R}$.
- а) Докажите, что на прямой AB найдется единственная точка X такая, что $AX^2-BX^2=\lambda.$
- **б)** Докажите, что ГМТ плоскости X таких, что $AX^2 BX^2 = \lambda$, является прямая, перпендикулярная AB.
- **2. а)** Радикальная ось. Пусть ω_1 и ω_2 неконцентрические окружности. Докажите, что ГМТ X таких, что $\deg(X,\omega_1) = \deg(X,\omega_2)$, является прямая, перпендикулярная линии центров ω_1 и ω_2 .
- **б)** Радикальный центр. Пусть ω_1 , ω_2 и ω_3 попарно неконцентрические окружности. Докажите, что радикальные оси ω_1 и ω_2 , ω_2 и ω_3 , ω_3 и ω_1 пересекаются в одной точке или попарно параллельны.
- **3.** Докажите, что середины отрезков четырех общих касательных к двум непересекающимся кругам (двух внешних и двух внутренних) лежат на одной прямой.
- **4.** На окружности ω с диаметром AB взята точка C. Точка H основание перпендикуляра из C на AB. Обозначим через Ω окружность с центром в точке C и радиусом CH. Докажите, что общая хорда ω и Ω делит отрезок CH пополам.
- **5.** Окружность, проходящая через вершины B и C трапеции ABCD $(AD \parallel BC)$, пересекает боковые стороны трапеции в точках P и Q, а диагонали в точках M и N. Докажите, что прямые AD, PQ и MN пересекаются в одной точке или параллельны.
- **6.** Про шестиугольник ABCDEF известно, что AB=BC, CD=DE, EF=FA и $\angle A=\angle C=90^\circ$. Докажите, что $FD\perp BE$.
- 7. В выпуклом четырехугольнике ABCD AB = BC и AD = DC. Точки K, L, M середины отрезков AB, CD, AC соответственно. Перпендикуляр, опущенный из A на прямую BC, пересекается с перпендикуляром, опущенным из C на прямую AD, в точке F. Докажите, что $MF \perp KL$.
- **8.** Вписанная окружность треугольника ABC касается сторон AB, AC, BC в точках C_1, B_1, A_1 соответственно. Докажите, что средние линии треугольников A_1CB_1 и A_1BC_1 , параллельные сторонам A_1B_1 и A_1C_1 , а также серединный перпендикуляр к BC пересекаются в одной точке.
- **9.** В остроугольном неравнобедренном треугольнике ABC проведены высоты AA_1 , BB_1 , CC_1 . Докажите, что точки пересечения пар прямых AB и A_1B_1 , BC и B_1C_1 , CA и C_1A_1 лежат на одной прямой, перпендикулярной прямой, соединяющей ортоцентр и центр описанной окружности треугольника ABC.