

Практическое занятие 14

Математический анализ -3 семестр

Приложения теории вычетов

Основная теорема о вычетах

Теорема 1. Если функция f(z) аналитична всюду внутри замкнутой области D, ограниченной контуром L, за исключением конечного числа изолированных особых точек $z_{1,}z_{2,}...,z_{n}$, лежащих внутри D, тогда $\oint_{L} f(z)dz = 2\pi i \sum_{k=1}^{n} \mathop{res}_{z_{k}} f(z)$.

Примеры. Вычислить интеграл:

1).
$$\int_{|z-1|=1}^{z} \frac{z}{(z-1)^2(z+2)} dz.$$

Особые точки подынтегральной функции определяются из уравнения $(z-1)^2(z+2)=0$.

$$z_1 = 1 = \frac{H(0)}{H(2)} = \Pi(2)$$
 – полюс второго порядка,

$$z_2 = -2 = \frac{\mathrm{H}(0)}{\mathrm{H}(1)} = \Pi(1)$$
 — полюс первого порядка, z_2 не принадлежит $D\colon |z-1| < 1$.

По основной теореме о вычетах

$$\int_{|z-1|=1} \frac{z}{(z-1)^2(z+2)} dz = 2\pi i \cdot \underset{z=1}{res} f(z).$$

$$\mathop{resf}_{z=1}(z) = \lim_{z \to 1} \left(\frac{z}{(z+2)} \right)' = \lim_{z \to 1} \frac{z+2-z}{(z+2)^2} = \frac{2}{9}$$

$$\int_{|z-1|=1} \frac{z}{(z-1)^2(z+2)} dz = 2\pi i \cdot \frac{2}{9} = \frac{4}{9}\pi i.$$

2).
$$I = \int_{|z|=1} z^2 \cdot \sin \frac{1}{z} dz$$
.

Особая точка функции $f(z) = z^2 \cdot \sin \frac{1}{z}$ $z_0 = 0$. Она является существенно особой точкой, принадлежит области $|z| \le 1$. Вычет в существенно особой точке найдем, разложив функцию в ряд Лорана по степеням z:

$$z^{2} \cdot \sin \frac{1}{z} = z^{2} \cdot \left(\frac{1}{z} - \frac{1}{3!z^{3}} + \frac{1}{5!z^{5}} - \cdots\right) = z - \frac{1}{3!z} + \frac{1}{5!z^{3}} - \cdots$$

$$\underset{z=0}{res} f(z) = C_{-1} = -\frac{1}{3!} = -\frac{1}{6}$$

$$I = 2\pi i \cdot \left(-\frac{1}{6}\right) = -\frac{\pi i}{3}.$$

3).
$$I = \int_{|z|=3} \frac{z^9}{z^{10}-1} dz$$
.

Особые точки подынтегральной функции – корни уравнения $z^{10} - 1 = 0$.

$$z = \sqrt[10]{1} = 1 \cdot e^{i\frac{2\pi k}{10}}, k = 0,1,...,9.$$

Все они принадлежат кругу $|z| \le 3$.

Использование основной теоремы о вычетах приводит к громоздким вычислениям. Удобнее воспользоваться теоремой: $I = -2\pi i \cdot res_{\infty} f(z)$.

Выпишем лорановское разложение функции f(z) в окрестности бесконечно удаленной точки $z = \infty$:

$$f(z) = z^9 \cdot \frac{1}{z^{10}} \cdot \frac{1}{1 - \frac{1}{z^{10}}} = z^9 \cdot \frac{1}{z^{10}} \left(1 + \frac{1}{z^{10}} + \frac{1}{z^{20}} + \cdots \right) = \frac{1}{z} \left(1 + \frac{1}{z^{10}} + \frac{1}{z^{20}} + \cdots \right)$$

$$res_{\infty}f(z) = -1, I = -2\pi i \cdot res_{\infty}f(z) = -2\pi i \cdot (-1) = 2\pi i.$$

4)
$$I = \int_{|z|=4} \frac{dz}{z^6 + 9z^4}$$
.

Подынтегральная функция $f(z) = \frac{1}{z^6 + 9z^4} = \frac{1}{z^4(z^2 + 9)}$ внутри окружности |z| = 4 имеет три особые точки $z_1 = 0$, $z_2 = 3i$, $z_3 = -3i$.

Использование основной теоремы о вычетах приводит к громоздким вычислениям. Удобнее воспользоваться теоремой: $I = -2\pi i \cdot res_{\infty} f(z)$.

Выпишем лорановское разложение функции f(z) в окрестности бесконечно удаленной точки $z=\infty$

$$f(z) = \frac{1}{z^6 + 9z^4} = \frac{1}{z^6} \cdot \frac{1}{1 + \frac{9}{z^2}} = \frac{1}{z^6} \left(1 - \frac{9}{z^2} + \frac{81}{z^4} - \dots \right) =$$
$$= \frac{1}{z^6} - \frac{9}{z^8} + \frac{81}{z^{10}} - \dots$$

Коэффициент $c_{-1} = 0$, т.е. $res_{\infty} f(z) = 0$, следовательно

$$\int_{|z|=4} \frac{dz}{z^6 + 9z^4} = 0.$$

5).
$$\int_{|z|=1} \frac{e^z \cos \pi z}{z^2 + 2z} dz$$
. $\{\pi i\}$

6).
$$\int_{\left|z-\frac{\pi}{2}\right|=1} \frac{z^2}{\sin^3 z \cdot \cos z} dz$$
. $\left\{-\frac{2\pi^3 i}{4}\right\}$

7).
$$\int_{|z|=1}^{\infty} \frac{e^{z}-1}{z^{17}} dz. \qquad \left\{ \frac{2\pi i}{16!} \right\}$$

8).
$$\int_{|z|=5} \frac{z^2}{e^z+1} dz$$
. $\{4\pi^3 i\}$

9).
$$\int_{|z|=\frac{1}{2}} \frac{\sin^2 \pi z}{z^2} dz$$

10).
$$\int_{|z|=1} \frac{1-\cos 3z}{9z^9} dz$$

Вычисление несобственных интегралов

1. Интегралы от рациональных функций.

Теорема 2. Если $F(x) = \frac{P(x)}{Q(x)}$, где P(x), Q(x) – многочлены, причем все корни знаменателя комплексные и степень Q(x) «m» хотя бы на две единицы больше степени P(x) «n» ($m-n \ge 2$), то $\int_{-\infty}^{\infty} F(x) dz = 2\pi i \sum_{k=1}^{n} res_{z_k} F(z)$, где $F(x) = \frac{P(x)}{Q(x)}$ и z_k – полюсы функции F(z), лежащие в верхней полуплоскости.

<u>Пример</u>. 1). Вычислить интеграл $\int_{-\infty}^{+\infty} \frac{dx}{(x^2+4)(x^2+9)}$.

Введем функцию $f(z) = \frac{1}{(z^2+4)(z^2+9)}$.

Т.е. на действительной оси при z = x f(z) = f(x). Функция f(z) имеет особые точки $z_{1,2} = \pm 2i$, $z_{3,4} = \pm 3i$ — это простые полюсы. В верхней

полуплоскости находятся точки $z_1 = 2i, z_3 = 3i$.

Условия теоремы 2 для функции f(z) выполнены, т.е. можно воспользоваться формулой из этой теоремы. Для этого необходимо вычислить $res_{z=2i}f(z)$ и $res_{z=3i}f(z)$.

$$res_{z=2i} \frac{1}{(z^2+4)(z^2+9)} = \lim_{z \to 2i} \frac{1}{(z+2i)(z^2+9)} = \frac{1}{4i(9-4)} = \frac{1}{20i}.$$

$$res_{z=3i} \frac{1}{(z^2+4)(z^2+9)} = \lim_{z \to 3i} \frac{1}{(z+3i)(z^2+4)} = \frac{1}{6i(-9+4)} = -\frac{1}{30i}.$$

$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+4)(x^2+9)} = 2\pi i \left(\frac{1}{20i} - \frac{1}{30i}\right) = 2\pi i \frac{1}{60i} = \frac{\pi}{30}.$$

2). Вычислить интеграл
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)^2} \quad \left\{\frac{\pi}{2}\right\}.$$

2. Вычисление интегралов с тригонометрическими функциями вида

$$\int_0^{+\infty} R(x) \cos \alpha x \, dx, \int_0^{+\infty} R(x) \sin \alpha x \, dx,$$

где R(x) — правильная рациональная дробь, $\alpha > 0$ — любое вещественное число.

Лемма Жордана. Если функция f(z) аналитична в верхней полуплоскости за исключением конечного числа изолированных особых точек и стремится в этой полуплоскости к нулю при $|z| \to \infty$, тогда при $\alpha > 0$

$$\lim_{R\to\infty}\int_{C_R}e^{i\alpha z}f(z)dz=0,$$

где контур C_R – полуокружность |z| = R в верхней полуплоскости.

Теорема 3. Если функция f(z), заданная на всей действительной оси, может быть продолжена на верхнюю полуплоскость и полученная функция f(z) удовлетворяет

условиям леммы Жордана и не имеет особых точек на действительной оси, тогда при a>0

 $\int_{-\infty}^{\infty}e^{iax}f(x)dx=2\pi i\sum_{k=1}^{n}res_{z_k}\big[f(z)e^{iaz}\big]$, где z_k — особые точки функции f(z) в верхней полуплоскости.

Так как согласно формуле Эйлера $e^{i\alpha x} = \cos \alpha x + i \sin \alpha x$,

T.e. $\cos \alpha x = Re(e^{i\alpha x})$, $\sin \alpha x = Im(e^{i\alpha x})$, To:

$$\int_{-\infty}^{\infty} f(x) \sin \alpha x \, dx = Im \left[2\pi i \sum_{k=1}^{n} res_{z_{k}} \left(f(z) e^{i\alpha z} \right) \right]$$

$$\int_{-\infty}^{\infty} f(x)\cos\alpha x \, dx = Re\left[2\pi i \sum_{k=1}^{n} res_{z_k} \left(f(z)e^{i\alpha z}\right)\right], (Im \, z_k > 0).$$

Примеры

1). Вычислить интеграл $I = \int_0^\infty \frac{\cos x}{(x^2+4)^2} dx$.

Введем вспомогательную функцию $F(z) = \frac{e^{iz}}{(z^2+4)^2}$

Так как подынтегральная функция F(x) четная, то $I = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos x}{(x^2+4)^2} dx = \frac{1}{2} Re \Big(2\pi i \sum_{k=1}^n res_{z_k} F(z) \Big), Im z_k > 0 \ .$

z = 2i — особая точка функции F(z), находится в верхней полуплоскости и является полюсом второго порядка.

z = -2i — также особая точка F(z), находится в нижней полуплоскости и в вычислении интеграла не используется.

Вычислим вычет в точке z=2i

$$res_{z=2i} \left(\frac{e^{iz}}{(z^{2}+4)^{2}} \right) = \frac{1}{1!} \lim_{z \to 2i} \left(\frac{e^{iz}}{(z^{2}+4)^{2}} (z - 2i)^{2} \right)' = \lim_{z \to 2i} \left(\frac{e^{iz}}{(z + 2i)^{2}} \right)' =$$

$$= \lim_{z \to 2i} \frac{ie^{iz}(z + 2i)^{2} - 2(z + 2i)e^{iz}}{(z + 2i)^{4}} = \lim_{z \to 2i} \frac{ie^{iz}(z + 2i) - 2e^{iz}}{(z + 2i)^{3}} =$$

$$= \lim_{z \to 2i} \frac{ie^{iz}z - 4e^{iz}}{(z + 2i)^{3}} = \frac{-2e^{-2} - 4e^{-2}}{(4i)^{3}} = \frac{-6e^{-2}}{-64i} = \frac{3}{32i}e^{-2}$$

$$I = \frac{1}{2} Re \left(2\pi i \frac{3}{32i}e^{-2} \right) = \frac{3\pi}{32}e^{-2}.$$

2). Вычислить интеграл $I = \int_{-\infty}^{\infty} \frac{x \sin 6x}{x^2 + 4x + 13} dx$.

Введем вспомогательную функцию $F(z)=\frac{ze^{i6z}}{z^2+4z+13}$. Найдем ее особые точки: $z^2+4z+13=0$, $z_{1,2}=\frac{-4\pm\sqrt{16-52}}{2}=\frac{-4\pm6i}{2}$.

 $z_1 = -2 + 3i$, $z_2 = -2 - 3i$. Они являются простыми полюсами.

 z_2 находится в нижней полуплоскости и в вычислении интеграла не используется.

$$\begin{split} res_{z=-2+3i}\left(\frac{ze^{i6z}}{z^2+4z+13}\right) &= \frac{ze^{i6z}}{2z+4}\Big|_{z=-2+3i} = \frac{(-2+3i)e^{i(-12+18i)}}{2(-2+3i)+4} = \frac{(-2+3i)e^{-18-12i}}{6i}, \\ I &= Im\left(2\pi i \cdot \frac{(-2+3i)e^{-18}e^{-12i}}{6i}\right) = Im\left[\frac{\pi}{3}(-2+3i)e^{-18}(\cos 12 - i\sin 12)\right] = \\ &= Im\left[\frac{\pi}{3e^{18}}(-2\cos 12 + 3i\cos 12 + 2i\sin 12 + 3\sin 12)\right] = \\ &= \frac{\pi}{3e^{18}}(3\cos 12 + 2\sin 12). \end{split}$$

3). Вычислить интеграл
$$I = \int_{-\infty}^{\infty} \frac{x \cos x}{x^2 - 2x + 10} dx$$
. $\left\{ \frac{\pi}{3e^3} (\cos 1 - 3 \sin 1) \right\}$

4). Вычислить интеграл
$$I = \int_0^\infty \frac{x \sin 3x}{x^2 + 16} dx$$
. $\left\{ \frac{\pi}{2e^{12}} \right\}$

Домашнее задание: Типовой расчет,

Часть 1, задачи 1.23, 1.24

Часть 2, задачи 2.9, 2.10