Design, Simulation, and Prototyping of a Novel Hybrid-Excitation Flux-Switching Permanent Magnet Machine with Segmental Magnet for Electric Vehicle Applications

Amirkabir University of Technology (Tehran Polytechnic)

Tohid Sharifi

Supervisor: Dr. Mojtaba Mirsalim

Department of Electrical Engineering Amrikabir University of Technology

This thesis is submitted for partial fulfillment of the degree of Master of Science

I would like to dedicate this thesis to:

My loving family and especially

My Beautiful Angel,

My Mother.

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this or any other university. This dissertation is my work and contains nothing about the outcome of work done in collaboration with others, except as specified in the text and acknowledgments.

Tohid Sharifi

Supervisor: Dr. Mojtaba Mirsalim

October 2021

Acknowledgments

I would like to thank my supervisor Dr. Mojtaba Mirsalim for his support and encouragement during this project. At many stages in this thesis, I benefited from his advice, particularly when exploring new ideas. His positive outlook and confidence in my research inspired me and gave me confidence. His careful editing contributed enormously to the production of this thesis. A project of this nature is only possible with the help of many people. I profoundly thank them.

Abstract

Electrical drive (ED) systems are the fundamental components of many modern appliances and industrial systems. For best performance, various methods have been developed for the design optimization of EDs. Torque density and cost are the most critical and demanding criteria for automotive and aerospace applications. However, these objectives are conflicting, and so there should be a related trade-off region for them.

By placing the PMs on the stator side as in flux switching PM (FSPM) machines, we can manage their temperature rise more efficiently, and the risk of demagnetization decreases significantly. FSPM machines have attracted significant attention from researchers, particularly over the last decade, because of high torque density, low torque ripple, high efficiency, excellent thermal behavior, and ease of control. The magnet-less rotor structure of the FSPM machine is quite robust, cost-effective, and applicable at high speeds, unlike some other PM motors. Hybrid excitation machines are of attention due to the potential of combining the high-power density of PM machines with the flux-adjusting capability of wound field excitation machines. Magnet segmentation is a common technique in different PM machines, including the FSPM machine. The main aim of such a method is to reduce the eddy current loss in the PMs. By this method, the location and thickness of each segment can be optimized to have the best torque and cost performances. In other words, by the segmentation method, one can obtain more freedom in the design.

Although electromagnetic solution determines the torque performance of the machine for most portions, considering other issues is also crucial in practical situations. Thermal, mechanical, and vibration are the essential motor-related problems that one should assess for a reliable and safe operation. Temperature distribution and dynamics for all parts, appropriate cooling method, mechanical deformation and stress, and vibration noise are the most valuable outputs of this analysis. The result of the multiphysics analysis determines the final confirmation of the machine design.

Table of contents

Table	of contents	xi
List of	f figures	xvi
List of	f tables	xxi
Chapt	er 1 Introduction	1
1.1	Introduction	
1.2	Energy and environmental challenges	2
1.3	Hybrid Electric Vehicles (HEVs)	4
1.4	Plug-in hybrid electric vehicles (PHEVs)	4
1.5	Electric Vehicles (EVs)	5
1.6	PM Brushless machines	5
1.7	Electric machines with magnets on the rotor	6
1.7	.1 Thermal management	6
1.7	.2 Centrifugal forces	· 7
1.8	Electric machines with the magnetic stator	· 7
1.9	Flux Switching Permanent Magnet Machine	8
1.10	Hybrid-Excited FSPM Machines (HEFSPMM)	9
1.11	Torque capability in the FSPM machines	11
1.12	Literature review of the HEFSPMMs	11
1.13	Thesis Organization	19
Chapt	er 2 Proposed Topology	23
2.1	Introduction	24
2.2	The design-optimization process for electrical machines	24
2.3	Main aspects of the design - optimization in electrical machines	24
2.4	Proposed HEFSPMM	25
2.5	Novelties	26
2.6	Performance evaluation	29
2.7	Power losses	30
2.8	Results	32
Chapt	er 3 Optimization	33

3.1	Introduction	34
3.2	Appropriate optimization method selection	34
3.2	2.1 Robust and deterministic algorithms	34
3.2	2.2 Single-objective and multi-objective algorithms	35
3.3	Optimization algorithms	35
3.4	Non dominated sorting genetic algorithm-II (NSGA-II)	35
3.4	GA for multi-objective optimization	35
3.5	Multi-objective particle swarm optimization (MOPSO)	36
3.6	Strength Pareto evolutionary algorithm-II (SPEA-II)	37
3.7	Definition of the optimization problem	37
3.7	7.1 Decision variables and objective functions	37
3.8	NSGA-II optimization	40
3.8	3.1 NSGA-II Results	40
3.9	MOPSO optimization	43
3.9	0.1 MOPSO Results	44
3.10	SPEA-II optimization	46
3.1	0.1 SPEA-II Results	47
3.11	Comparisons	47
3.12	Performance evaluation and comparison	49
3.13	Results	53
Chapt	ter 4 Analytical Methods and Motor Sizing	55
4.1	Introduction	
4.2	Performance Comparison	56
4.3	Electrical equivalent circuit	58
4.4	Sizing equation of the HEFSPMM	61
4.5	Results	64
Chapt	ter 5 Comparison with other HEFSPMMs	65
5.1	Introduction	
5.2	Hybrid excited flux switching PM machine	
5.2		
5.3	Hybrid excited flux switching permanent magnet machine	
5.3		
5.4	Hybrid excited flux switching permanent magnet machine	
5.4		
5.5	Hybrid excited flux switching permanent magnet machine	76

5.3	5.1 Performance evaluation	77
5.6	Results	80
Chap	ter 6 Multi-physics Analysis and Thermal Test	81
6.1	Introduction	82
6.2	Thermal analysis	82
6.3	Thermal analysis of HEFSPMM	84
6.4	Temperature test	88
6.5	Differences between the PRTs and thermocouples	89
6.6	Thermal Test	90
6.7	Mechanical Analysis	93
6.	7.1 Rotational movement of the rotor	93
6.	7.2 Thermal expansion	96
6.′	7.3 Harmonic analysis	100
6.8	Vibration noise analysis	100
6.9	Results	103
Chap	ter 7 Manufacturing and Testing	104
7.1	Introduction	105
7.2	Structure of the motor	105
7.3	Vector (field-oriented) control of the FSPMM	109
7.4	Main Drive Circuit	109
7.5	Closed-loop vector control	110
7.6	Results of the closed-loop vector control of the HEFSPMM	110
7.7	Generator Test	112
7.	7.1 Back EMF waveform for MMFexcitation=40 A.t	112
7.	7.2 Back EMF waveform for MMFexcitation=-40 A.t	113
7.8	Results	114
Chap	ter 8 Conclusions and Recommendations	115
8.1	Conclusions	116
8.2	Recommendations	117
Refer	ences	119
Appe	ndix 1 Analytical Considerations	132
A.1	Analytical formulation of the HEFSPMM	
A.2	Voltage and torque equations in machine variables	
A.3	Voltage and torque equations in rotor reference frame variables	

xiv Table of contents

Apper	ndix 2 Optimization Theory	137
B.1	Introduction	138
B.2	Structure of an optimization problem	138
B.3	GA operators	138
B.3	3.1 Definition 1	140
B.4	MOPSO	141
B.5	SPEA-II	142

List of figures

Fig. 1.1 Global electricity demand	3
Fig. 1.2 Estimated electricity demands for electric motors	3
Fig. 1.3 Estimated demands for electric motors by different applications	4
Fig. 1.4 HEV, PHEV, EV sales	6
Fig. 1.5 Surface mounted permanent magnet synchronous machine	8
Fig. 1.6 Robust rotor structure	10
Fig. 1.7 Conventional 12/10 FSPM machine	10
Fig. 1.8 Structure of the 12/10 HEFSPMM	12
Fig. 1.9 Design Flowchart	22
Fig. 2.1 Design and optimization flowchart	26
Fig. 2.2 The proposed HEFSPMM (initial design)	27
Fig. 2.3 Initial design for HEFSPMM with segmental magnets	27
Fig. 2.4 Electromagnetic performance of the initial motor	31
Fig. 2.5 Block diagram of the thermal analysis problem	32
Fig. 2.6 Power losses of the initial motor	32
Fig. 3.1 Robust and deterministic solutions of the optimization problem	34
Fig. 3.2 Objective functions of the multi-objective problem	38
Fig. 3.3 Decision variables of the problem	39
Fig. 3.4 Pareto front for the average torque and torque ripple (NSGA-II)	41
Fig. 3.5 Pareto front for the torque ripple, total area of iron, and power loss	42
Fig. 3.6 Pareto front for the average torque, total area of iron, and power loss	42
Fig. 3.7 Pareto front for the average torque, torque ripple, and total area of iron	42
Fig. 3.8 Pareto front for the average torque and torque ripple (MOPSO)	44
Fig. 3.9 Pareto front for the torque ripple, total area of iron, and power loss	45
Fig. 3.10 Pareto front for the average torque, total area of iron, and power loss	45
Fig. 3.11 Pareto front for the average torque, torque ripple, and area of iron	45
Fig. 3.12 Pareto front for the average torque and torque ripple (SPEA-II)	48
Fig. 3.13 Pareto front for the torque ripple, total area of iron, and power loss	48
Fig. 3.14 Pareto front for the average torque, total area of iron, and power loss	48

Fig. 3.15 Pareto front for the average torque, torque ripple, and area of iron	49
Fig. 3.16 Selected HEFSPMM for the manufacturing	50
Fig. 3.17 performance comparison of the initial and optimal designs	52
Fig. 3.18 a) Harmonic contents b) Airgap flux density	53
Fig. 4.1 Self-inductance of Phase A from analytical and FEA methods	58
Fig. 4.2 Mutual-inductance of Phases A and B from analytical and FEA methods	59
Fig. 4.3 Input power of the motor calculated by analytical method	59
Fig. 4.4 Torque performance calculated by the analytical (ABC) and FEA	59
Fig. 4.5 Torque performance calculated by the analytical (DQ) and FEA method	60
Fig. 4.6 Output power calculated by the analytical and FEA method	60
Fig. 4.7 Efficiency calculated by the analytical and FEA method	60
Fig. 4.8 Electrical equivalent circuit for the a) d-sequence, b) q-sequence	62
Fig. 4.9 Voltage and current waveform in the HEFSPMM	62
Fig. 5.1 HEFSPMM with external excitations	66
Fig. 5.2 Electromagnetic performance comparison	68
Fig. 5.3 Flux regulation characteristics, a) Proposed motor, b) Compared motor	69
Fig. 5.4 Harmonic content of the proposed and compared motors	69
Fig. 5.5 HEFSPMM with inner and outer excitations	70
Fig. 5.6 Electromagnetic performance comparison	71
Fig. 5.7 Flux regulation characteristics, a) Proposed motor, b) Compared motor	72
Fig. 5.8 Harmonic content of the proposed and compared motors	72
Fig. 5.9 HEFSPMM with inner excitations	73
Fig. 5.10 Electromagnetic performance comparison	75
Fig. 5.11 Flux regulation characteristics, a) Proposed motor, b) Compared motor	76
Fig. 5.12 Harmonic content of the proposed and compared motors	76
Fig. 5.13 HEFSPMM with external excitations	77
Fig. 5.14 Electromagnetic performance comparison	78
Fig. 5.15 Flux regulation characteristics, a) Proposed motor, b) Compared motor	79
Fig. 5.16 Harmonic content of the proposed and compared motors	79
Fig. 6.1 Stator meshing for the thermal problem	84
Fig. 6.2 Shaft and housing meshing for the thermal problem	85
Fig. 6.3 Rotor meshing for the thermal problem	85
Fig. 6.4 Thermal meshing for Ansys Fluent (3D view)	85

xviii List of figures

Fig. 6.5 Temperature results for the PM and rotor	86
Fig. 6.6 Temperature results for the rotor and shaft	86
Fig. 6.7 Temperature results for the stator, rotor, and shaft	87
Fig. 6.8 Temperature results for the windings	87
Fig. 6.9 Temperature result for the end doors	87
Fig. 6.10 Temperature results for the housing and foot	88
Fig. 6.11 Temperature results for the shaft and rear door	88
Fig. 6.12 Temperature data acquisition circuit and Pt100 sensors	91
Fig. 6.13 Location of the Pt100 sensors in the thermal test of the HEFSPMM	91
Fig. 6.14 Setup for the thermal test	92
Fig. 6.15 Results of the thermal test for the winding, housing, and ambient temperatures	92
Fig. 6.16 Mechanical meshing in the rotor and stator	94
Fig. 6.17 Mechanical meshing in the shaft	94
Fig. 6.18 Mechanical damage in the rotational problem	94
Fig. 6.19 Life characteristic of the machine parts in the rotational problem	95
Fig. 6.20 Elastic strain intensity of the machine parts in the rotational problem	95
Fig. 6.21 Stress intensity of the machine parts in the rotational problem	95
Fig. 6.22 Normal stress (X-axis) of the machine parts in the rotational problem	96
Fig. 6.23 Total deformation of the machine parts in the rotational problem	96
Fig. 6.24 Mechanical damage on machine parts of the thermal expansion problem	97
Fig. 6.25 Life characteristics of the machine parts of the thermal expansion problem	98
Fig. 6.26 Total deformation of the machine parts of the thermal expansion problem	98
Fig. 6.27 Normal stress of the thermal expansion problem	98
Fig. 6.28 Safety factor of the mechanical problem of the thermal expansion problem	99
Fig. 6.29 Stress intensity on machine parts of the thermal expansion problem	99
Fig. 6.30 Thermal strain on the x-axis of the thermal expansion problem	99
Fig. 6.31 Total deformation for the first mode of the harmonic analysis	100
Fig. 6.32 Normal stress (X-axis) for the first mode of the harmonic analysis	101
Fig. 6.33 Stress intensity for the first mode of the harmonic analysis	101
Fig. 6.34 Radiated power versus frequency for different speeds	101
Fig. 6.35 ERP level waterfall diagram of the HEFSPMM	102
Fig. 6.36 The sound of the motor in the Audacity software	102
Fig. 7.1 Rear door of the motor	105

T 1	400
Fig. 7.2 Front door of the motor	106
Fig. 7.3 Housing of the motor	106
Fig. 7.4 Rotor of the motor	106
Fig. 7.5 Shaft and rotor of the motor	107
Fig. 7.6 Stator block of the motor in three views	107
Fig. 7.7 Stator of the motor	107
Fig. 7.8 DC and AC windings of the motor	108
Fig. 7.9 Stator, PMs, and windings of the motor	108
Fig. 7.10 DC Windings of the motor	108
Fig. 7.11 Main drive circuit of the HEFSPMM	109
Fig. 7.13 Motor test setup	111
Fig. 7.14 Electromagnetic torque and speed of the motor (test)	111
Fig. 7.15 Three-phase currents of the motor (test)	112
Fig. 7.16 Generator test setup	112
Fig. 7.17 Back-EMF of the motor for excitation current = 0 (test)	113
Fig. 7.18 Back-EMF of the motor for positive excitation current (test)	113
Fig. 7.19 Back-EMF of the motor for negative excitation current (test)	114
Fig. 7.20 Three-phase currents for the generator test	114
Fig. B.1 Basic blocks of the GA	139
Fig. B.2 Crossover operator in the GA	139
Fig. B.3 Mutation Operator in the GA	140
Fig. B.4 Flowchart of the GA	140
Fig. B.5 Flowchart of the PSO	142
Fig. B.6 Flowchart of the SPEA-II algorithm	143

List of tables

Table 2.1 Main design parameters	28
Table 2.2 Initial motor performance	31
Table 3.1 Settings of the NSGA-II	40
Table 3.2 Analysis of the NSGA-II performance	41
Table 3.3 Settings of the MOPSO	43
Table 3.4 Analysis of the MOPSO performance	43
Table 3.5 Settings of the SPEA-II	46
Table 3.6 Analysis of the SPEA-II performance	47
Table 3.7 The optimal design resulted from the algorithms	49
Table 4.1 Parameters for the electrical equivalent circuit	61
Table 4.2 Electromagnetic parameters used in the sizing equation	64
Table 6.1 Material properties used for thermal analysis	89
Table 6.2 Difference between simulation and test results of the thermal problem	90
Table 6.3 Thermal expansion coefficient of the materials used in the HEFSPMM	97
Table B.1 Final optimal designs and the selected motor from NSGA-II	144
Table B.2 Final optimal designs and the selected motor from MOPSO	145
Table B.3 Final optimal designs and the selected motor from SPEA-II	146

Chapter 1 Introduction