Algebraic Topology HW Set # 3

MARIO L. GUTIERREZ ABED

gutierrez.m101587@gmail.com

Problem 1. Prove that every map $f: \mathbb{S}^2 \to \mathbb{S}^1$ is homotopic to the trivial map. [Hint: Use the covering space $E: \mathbb{R} \to \mathbb{S}^1$. If you can show that every map $f: \mathbb{S}^2 \to \mathbb{S}^1$ lifts to a map $\tilde{f}: \mathbb{S}^2 \to \mathbb{R}$, then you can conclude that f is nullhomotopic because \mathbb{R} is contractible.]

Proof. Following the hint, we use the covering space $E: \mathbb{R} \to \mathbb{S}^1$ and we want to show that every map $f: \mathbb{S}^2 \to \mathbb{S}^1$ lifts to a map $\widetilde{f}: \mathbb{S}^2 \to \mathbb{R}$. But recall the following proposition:

Proposition

Suppose given a covering space $p: (\widetilde{X}, \widetilde{x}_0) \to (X, x_0)$ and a map $f: (Y, y_0) \to (X, x_0)$ with Y path-connected and locally path-connected. Then a lift $\widetilde{f}: (Y, y_0) \to (\widetilde{X}, \widetilde{x}_0)$ of f exists if and only if $f_*(\pi_1(Y, y_0)) \subset p_*(\pi_1(\widetilde{X}, \widetilde{x}_0))$.

Applying the proposition while letting $Y=\mathbb{S}^2$, $\widetilde{X}=\mathbb{R}$, and $X=\mathbb{S}^1$ (and picking any arbitrary basepoints y_0 , \widetilde{x}_0 , and x, respectively, in each space), we indeed have the existence of a lift $\widetilde{f}\colon \mathbb{S}^2\to \mathbb{R}$ since $f_*(\pi_1(\mathbb{S}^2,y_0))=1\subset p_*(\pi_1(\mathbb{R},\widetilde{x}_0))=1$. Hence we have that $f=E\circ\widetilde{f}$, where \widetilde{f} is homotopic to a constant map since \mathbb{R} is contractible. From this it follows that $f=E\circ\widetilde{f}$ is homotopic to the trivial (i.e. constant) map, as desired.

Problem 2. Let G be topological group and let H be a discrete subgroup of G. Prove that there is a neighborhood U of the identity e such that the sets hU, for $h \in H$, are pairwise disjoint. [Hint: First choose a neighborhood $V \subset G$ of e such that $V \cap H = \{e\}$. Now use the map $f: G \times G \to G$ defined by $f(x,y) = xy^{-1}$ to prove that there is an open set U containing e such that $\{xy^{-1} \mid x,y \in U\} \subset V$.]

Proof. Let U be a neighborhood of e and choose a neighborhood $V \subset G$ of e such that $V \cap H = \{e\}$. Now we claim that for all $h \in H$ such that $h \neq e$, the sets U and hU are disjoint. Assume, to the contrary, that this is not the case. Then there would exist $x, y \in U$ and $h \in H$ such that x = hy, with $h \neq e$. Now we use our construction of U to conclude that $h = xy^{-1} \in V$. Thus $h \in V \cap H = \{e\}$, a contradiction of the assumption that $h \neq e$. This proves our claim.

Problem 3. Let G be a simply connected topological group and let H be a discrete normal subgroup. Prove that $\pi_1(G/H,e)=H$. (For example: $G=\mathbb{R}$, $H=\mathbb{Z}$, then $G/H=\mathbb{S}^1$.) [Hint: Use the previous problem to show that $G\to G/H$ is a covering space.]

Proof. We prove this in two steps. First we show that the projection $p: G \to G/H$ is the universal cover of G/H. Then we conclude that the group of deck transformations of p is isomorphic to H. Since $\pi_1(G/H)$ is isomorphic to the group of deck transformations of p, this will prove the theorem.

To show that p is a covering map, we use the result from the previous problem, letting U and V be stated as before. Fix $g \in G$ and let W = p(Ug). Note that W contains p(g) and is an open set in G/H, since $p^{-1}(W) = \coprod_{h \in H} hUg$ is open (this is the definition of the quotient topology). Moreover, the restrictions $p|_{hUg} \colon hUg \to W$ are homeomorphisms for each $h \in H$, again by the definition of the quotient topology. This is exactly what needs to happen for p to be a covering map.

Having proved that p is a covering map, it is not hard to show now that the group of deck transformations of p is isomorphic to H. For each $h \in H$, let $L_h \colon G \to G$ be the left translation map $L_h(g) = hg$. Note that $L_{h_1} \circ L_{h_2} = L_{h_1h_2}$, so the set $\{L_h \mid h \in H\}$ forms a group isomorphic to H under composition. Every L_h is a deck transformation of p. On the other hand, suppose φ is a deck transformation of p. Then $\varphi(e) \in H$, so that $L_{\varphi(e)^{-1}} \circ \varphi$ is a deck transformation of p that fixes $e \in G$. The only deck transformation that fixes a point is the identity, so $L_{\varphi(e)^{-1}} \circ \varphi = \mathrm{Id}$, and hence $\varphi = L_{\varphi(e)}$. This proves that the group of deck transformations of p is exactly $\{L_h \mid h \in H\} \cong H$.

Problem 4. Let M_1 and M_2 be n-dimensional connected manifolds, where n > 2. Let $M_1 \# M_2$ be their connected sum. Show that $\pi_1(M_1 \# M_2) = \pi_1(M_1) * \pi_1(M_2)$.

The proof relies on some auxiliary results, which I am listing as propositions as an aside in order to avoid breaking the flow of the main argument. The propositions that appear on our text (*Massey*'s) are merely stated; the other results that do not appear on our text are stated and proved.

Propositions

Proposition 1. Let $M_1 \# M_2$ be a connected sum of n-manifolds M_1 and M_2 . There are open subsets $U_1, U_2 \subseteq M_1 \# M_2$ and points $p_i \in M_i$ such that $U_i \cong M_i \setminus \{p_i\}$, $U_1 \cap U_2 \cong \mathbb{R}^n \setminus \{0\}$, and $U_1 \cup U_2 = M_1 \# M_2$.

Proof. For i=1,2, let $\mathbb{B}_i\subseteq M_i$ be the regular coordinate ball around $p_i\in M_i$ and let $C_i\supseteq \bar{\mathbb{B}}_i$ be the larger coordinate balls around p_i . Let $j_i\colon M_i\smallsetminus \mathbb{B}_i\to M_1\# M_2$ be the injections. Take $U_1=j_1(M_1\smallsetminus \mathbb{B}_1)\cup j_2(C_2\smallsetminus \mathbb{B}_2)$ and $U_2=j_1(C_1\smallsetminus \mathbb{B}_1)\cup j_2(M_2\smallsetminus \mathbb{B}_2)$. It is clear that $U_i\cong M_i\smallsetminus \{p_i\}$ and $U_1\cup U_2=M_1\# M_2$. Also, note that

$$U_1 \cap U_2 \cong j_1(C_1 \setminus \mathbb{B}_1) \cup j_2(C_2 \setminus \mathbb{B}_2)$$

$$\cong \mathbb{S}^{n-1} \times (0,1)$$

$$\cong \mathbb{R}^n \setminus \{0\}.$$

Proposition 2 (SIMPLY CONNECTED INTERSECTION). Assume the hypotheses of the Seifert-Van Kampen theorem, letting as usual X be covered by open sets U and V, and suppose in addition that $U \cap V$ is simply connected. Then $\pi_1(X, p) \cong \pi_1(U, p) * \pi_1(V, p)$.

Proposition 3 (ONE SIMPLY CONNECTED SET). Assume the hypotheses of the Seifert-Van Kampen theorem, letting as usual X be covered by open sets U and V, and suppose in addition that U is simply connected. Then the inclusion $V \hookrightarrow X$ induces an isomorphism

$$\pi_1(X,p) \cong \pi_1(V,p)/\overline{j_*\pi_1(U\cap V,p)},$$

where $\overline{j_* \pi_1(U \cap V, p)}$ is the normal closure of $j_* \pi_1(U \cap V, p)$.

Proposition 4. For any $n \geq 1$, \mathbb{S}^{n-1} is a strong deformation retract of $\mathbb{R}^n \setminus \{0\}$ and of $\bar{\mathbb{B}}^n \setminus \{0\}$.

Proof. Define a homotopy $H: (\mathbb{R}^n \setminus \{0\}) \times I \to \mathbb{R}^n \setminus \{0\}$ by

$$H(x,t) = (1-t)x + t\frac{x}{|x|}.$$

This is just the straight-line homotopy from the identity map to the retraction onto the sphere (see Figure 1). The same formula works for $\bar{\mathbb{B}}^n \setminus \{0\}$.

Corollary 1. For $n \geq 3$, both $\mathbb{R}^n \setminus \{0\}$ and $\bar{\mathbb{B}}^n \setminus \{0\}$ are simply connected.

Proposition 5. Suppose M is a connected manifold of dimension at least 3, and $p \in M$. Then the inclusion $M \setminus \{p\} \to M$ induces an isomorphism $\pi_1(M \setminus \{p\}) \cong \pi_1(M)$.

Proof. Let $\mathbb B$ be a coordinate ball around p and let $U=\mathbb B$ and $V=M\smallsetminus \{p\}$ in Proposition 3. Choose some base point q in $\mathbb B\smallsetminus \{p\}$. Then the inclusion $M\smallsetminus \{p\}\hookrightarrow M$ induces an isomorphism

$$\pi_1(M,q) \cong \pi_1(M \setminus \{p\},q)/\overline{j_* \pi_1(\mathbb{B} \setminus \{p\},q)},$$

where $j : \mathbb{B} \setminus \{p\} \hookrightarrow M \setminus \{p\}$ is the inclusion. But $\pi_1(\mathbb{B} \setminus \{p\}, q)$ is trivial by Corollary 1, so $\pi_1(M, q) \cong \pi_1(M \setminus \{p\}, q)$.

Proof of Problem 4. By Proposition 1, there are open sets $U_1, U_2 \subseteq M_1 \# M_2$ and points $p_i \in M_i$ such that U_i is homeomorphic to $M_i \setminus \{p_i\}$, $U_1 \cap U_2$ is homeomorphic to $\mathbb{R}^n \setminus \{0\}$, and $U_1 \cup U_2 = M_1 \# M_2$. Choose a base point $q \in U_1 \cap U_2$. Now, since $\mathbb{R}^n \setminus \{0\}$ is simply connected when n > 2, by using Proposition 2 and Proposition 5, we have

$$\pi_1(M_1 \# M_2) \cong \pi_1(U_1, q) * \pi_1(U_2, q)$$

$$\cong \pi_1(M_1 \setminus \{p_1\}) * \pi_1(M_2 \setminus \{p_2\})$$

$$\cong \pi_1(M_1) * \pi_1(M_2).$$

Figure 1: Strong deformation retraction of $\mathbb{R}^2 \setminus \{0\}$ onto \mathbb{S}^1 .

Problem 5. Let F be a finitely generated free group. Prove that there is an n-manifold M, for n > 2, with $\pi_1(M) = F$.

Proof. First, note that we can realize a free group on one generator by taking the product of \mathbb{S}^1 with \mathbb{S}^{n-1} . Let M' denote the resulting smooth orientable compact n-manifold. To get this result, we must use the fact that for any spaces X and Y, we have $\pi_1(X \times Y) \cong \pi_1(X) \times \pi_1(Y)$ (as we proved in class), coupled with the fact that $\pi_1(\mathbb{S}^1) = \langle \alpha \rangle$ and \mathbb{S}^{n-1} is simply-connected for n > 2. Then, by the result in Problem 4 above, we can take the connected sum of k copies of M', $M = \#_{i=1}^k M'$, to realize the free group on k generators $\pi_1(M) = \pi_1(\#_{i=1}^k M') = \mathop{*}_{i=1}^k M' = F$.

Problem 6. Let G be any finitely presented group. Show that there is a 4-manifold that has G as its fundamental group.

Proof. Let G have presentation $\langle g_1,\ldots,g_i\mid r_1,\ldots,r_k\rangle$ and let M be the orientable 4-manifold such that $G=\pi_1(M)$ (we know of the existence of M by Problem 5 above). Let $[\alpha]\in G$ and let $G'=\langle g_1,\ldots,g_i\mid r_1,\ldots,r_k,\alpha\rangle$. We are going to show the existence of a 4-manifold M' that satisfies $\pi_1(M')=G'$.

Let α be represented by C, a smooth simple closed curve in M (such a C is guaranteed to exist for $\dim M = n > 2$). We are going to consider a tubular neighborhood N of C, which is homeomorphic to $\mathbb{S}^1 \times \bar{\mathbb{B}}^3$. Notice that the boundary of N is homeomorphic to $\mathbb{S}^1 \times \mathbb{S}^2$. In addition, $\mathbb{S}^1 \times \mathbb{S}^2$ happens to be the boundary of the orientable 4-manifold with boundary $\bar{\mathbb{B}}^2 \times \mathbb{S}^2$. So, if we let M be the complement of the interior of N, we can perform surgery on C by identifying the boundaries of M and $\bar{\mathbb{B}}^2 \times \mathbb{S}^2$. This will yield a new space

$$M' = \left(\widetilde{M} \coprod \overline{\mathbb{B}}^2 \times \mathbb{S}^2\right) / \sim.$$

We can reference Milnor here and claim that the quotient of two smooth compact orientable 4-manifolds with boundary yields a smooth compact orientable 4-manifold. Thus it remains only to show that M' satisfies $\pi_1(M') = G'$. The first step will be to show that $\pi_1(\widetilde{M}) \cong \pi_1(M)$. Then we will be able to complete our proof by showing that

$$\pi_1(M') \cong \frac{\pi_1(M)}{\overline{\langle \alpha \rangle}}.$$

Now, since $M=\widetilde{M}\cup N$ and $\widetilde{M}\cap N\neq\emptyset$, we can apply the Van Kampen theorem letting $U=\widetilde{M}$ and V=N. This will show that $\pi_1(M)$ is in terms of $\pi_1(\widetilde{M})$. First, note that $\widetilde{M}\cap N\cong \mathbb{S}^1\times \mathbb{S}^2$, while $N\cong \mathbb{S}^1\times \bar{\mathbb{B}}^3$, so clearly the homomorphism $\pi_1(\widetilde{M}\cap N)\to \pi_1(N)$ induced by the inclusion map is actually an isomorphism (since \mathbb{S}^2 and $\bar{\mathbb{B}}^3$ are simply-connected, this follows directly from the fact that $\pi_1(\widetilde{M}\cap N)=\pi_1(\mathbb{S}^1)\times \pi_1(\mathbb{S}^2)$ and $\pi_1(N)=\pi_1(\mathbb{S}^1)\times \pi_1(\bar{\mathbb{B}}^3)$. Thus it must follow that the homomorphism $\pi_1(\widetilde{M})\to \pi_1(M)$ is an isomorphism.

Now we finally compute $\pi_1(M')$. Using the Van Kampen theorem, this time we let $U=\widetilde{M}$ and $V=\bar{\mathbb{B}}^2\times\mathbb{S}^2$ (we can do this because note that $M'=\widetilde{M}\cup(\bar{\mathbb{B}}^2\times\mathbb{S}^2)$ and $\widetilde{M}\cap(\bar{\mathbb{B}}^2\times\mathbb{S}^2)=\widetilde{M}\cap N\neq\emptyset$). Now, since $V=\bar{\mathbb{B}}^2\times\mathbb{S}^2$ is simply-connected, we may apply Proposition 3 (from the list of propositions given in Problem 4), so that we have $\pi_1(M')\cong\pi_1(\widetilde{M})/T$, where T is the smallest normal subgroup containing the image of $\pi_1(\widetilde{M}\cap N)\to\pi_1(\widetilde{M})$. But $\pi_1(\widetilde{M}\cap N)$ is generated by one loop that generates $\pi_1(N)$ itself. Moreover, this loop is homotopic to our loop C. So the image of $\pi_1(\widetilde{M}\cap N)$ in $\pi_1(\widetilde{M})$ corresponds to the image of $\pi_1(C)$ in $\pi_1(M)$ under the isomorphism $\pi_1(\widetilde{M})\stackrel{\cong}{\to} \pi_1(M)$. Thus T is equivalent to $\overline{\langle \alpha \rangle}$, and so $\pi_1(M')\cong\pi_1(M)/\overline{\langle \alpha \rangle}$, as desired.