FUNCTIONAL ANALYSIS Mandatory Assignment 1 Jonas Uglebjerg (krc974)

Problem 1

Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed vector spaces over \mathbb{K} , where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

(a) Let $T: X \to Y$ be a linear map. Set $||x||_0 = ||x||_X + ||Tx||_Y$, for all $x \in X$. To show that $||\cdot||_0$ is a norm on X we use definition 1.1 from Musat's notes. First we check the triangle inequality:

$$||x_1 + x_2||_0 = ||x_1 + x_2||_X + ||T(x_1 + x_2)||_Y = ||x_1 + x_2||_X + ||Tx_1 + Tx_2||_Y$$

Note that $T(x_1 + x_2) = Tx_1 + Tx_2$ since T is linear. The following holds since $\|\cdot\|_X$ and $\|\cdot\|_Y$ are norms, and therefore fulfil the triangle inequality:

$$||x_1 + x_2||_0 = ||x_1 + x_2||_X + ||Tx_1 + Tx_2||_Y \le ||x_1||_X + ||x_2||_X + ||Tx_1||_Y + ||Tx_2||_Y$$
$$= ||x_1||_0 + ||x_2||_0$$

Now we show that $\|\alpha x\|_0 = |\alpha| \|x\|_0$:

$$\|\alpha x\|_0 = \|\alpha x\|_X + \|T(\alpha x)\|_Y = \|\alpha x\|_X + \|\alpha Tx\|_Y$$

Again it holds that $T(\alpha x) = \alpha Tx$ due to the linearity of T. Now we use that $\|\cdot\|_X$ and $\|\cdot\|_Y$ are norms:

$$\|\alpha x\|_{0} = \|\alpha x\|_{X} + \|\alpha Tx\|_{Y} = |\alpha| \|x\|_{X} + |\alpha| \|Tx\|_{Y} = |\alpha| \Big(\|x\|_{X} + \|Tx\|_{Y} \Big) = |\alpha| \|x\|_{0}$$

At last we need to show that $||x||_0 = 0$ if and only if x = 0. Since $||\cdot||_X$ and $||\cdot||_Y$ are norms, and therefore positive, the following holds

$$||x||_0 = ||x||_X + ||Tx||_Y = 0 \iff ||x||_X = 0 \land ||Tx||_Y = 0$$

Since $\|\cdot\|_X$ and $\|\cdot\|_Y$ are norms $\|x\|_X = 0$ and $\|Tx\|_Y = 0$ if and only if x = 0 and Tx = 0. Since T is linear Tx = 0 if and only is x = 0. And now it is shown that $\|\cdot\|_0$ is a norm on X.

To show that the two norms $\|\cdot\|_X$ and $\|\cdot\|_0$ are equivalent if and only if T is bounded we use proposition 1.10 (Musat's notes) which tells us that if T is bounded then there exists C>0 such that $\|Tx\| \leq C\|x\|$, for all $x \in X$. Suppose that T is bounded, which means that there exists such a C. It is clear that

$$||x||_X \le ||x||_X + ||Tx||_Y = ||x||_0$$

And since $||Tx||_Y \leq C||x||_X$, for all $x \in X$, it must hold that

$$||x||_X \le ||x||_0 = ||x||_X + ||Tx||_Y \le ||x||_X + C||x||_X = (1+C)||x||_X$$

According to definition 1.4 (Musat) this means that $\|\cdot\|_X$ and $\|\cdot\|_0$ are equivalent. To show the other way suppose $\|\cdot\|_X$ and $\|\cdot\|_0$ are equivalent, which means that there exists C_1 and C_2 such that $0 < C_1 \le C_2 < \infty$ and

$$C_1 ||x||_X \le ||x||_0 = ||x||_X + ||Tx||_Y \le C_2 ||x||_X$$

From this it is clear that

$$||Tx||_Y \le C_2 ||x||_X - ||x||_X = (C_2 - 1)||x||_X$$

Notice that $C_2 \geq 1$ and then it is shown that T is bounded.

- (b) To show that any linear map $T: X \to Y$ is bounded, if X is finite dimensional, we use theorem 1.6 (Musat), which says that if X i finite dimensional, then any two norms on X are equivalent. Since $\|\cdot\|_X$ and $\|\cdot\|_0$ are two norms on X, they are equivalent and we have just shown (in part (a)) that this implies that T is bounded.
- (c) Suppose that X is infinite dimensional. To show that there exists a linear map $T: X \to Y$, which is not bounded, we use the hint, which says that there exists a Hamel basis $(e_i)_{i \in I}$ for X. Since Y is non-zero, there exists a $y' \in Y$ where $y' \neq 0$. Let $y = \frac{y'}{\|y'\|_Y}$. Then it holds that $\|y\|_Y = 1$. We can now make a family $(y_i)_{i \in I}$, such that $y_i = i \cdot y$. According to the hint, there exists a unique and linear map $T: X \to Y$ such that $T(e_i) = y_i$, for all $i \in I$. Assume for contradiction that T is bounded, which means that

$$\exists C > 0 : ||Tx||_{Y} < C||x||_{X}$$

This means:

$$||Te_i||_Y = ||y_i||_Y = ||i \cdot y||_Y = i \cdot ||y||_Y = i < C \cdot ||e_i||_X = C$$

But this is a contradiction, since we can choose i > C.

(d) Suppose again that X is infinite dimensional. Let T be the non-bounded linear map from part (c). Let $||x||_0 = ||x||_X + ||Tx||_Y$ as in part (a). According to part (a) $||\cdot||_0$ and $||\cdot||_X$ are not equivalent, since T isn't bounded. Thus, there exists a norm, $||\cdot||_0$ that is not equivalent to the given norm $||\cdot||_X$. Furthermore, it is clear that $||x||_X \le ||x||_0$, for all $x \in X$, since

$$||x||_0 = ||x||_X + ||Tx||_Y$$

which implies

$$||x||_X = ||x||_0 - ||Tx||_Y \le ||x||_0$$

since $\|\cdot\|_Y \geq 0$

To show that $(X, \|\cdot\|_0)$ is not complete if $(X, \|\cdot\|_X)$ is a Banach space we use definition 1.4. Since $\|\cdot\|_X$ and $\|\cdot\|_0$ are not equivalent, there doesn't exists C_1 and C_2 such that:

$$C_1 ||x||_X \le ||x||_0 \le C_2 ||x||_X, \quad \forall x \in X$$

Since we just show that $||x||_X \le ||x||_0$ for all $x \in X$, $C_1 = 1$ fits the inequality. Therefore, C_2 can't exists. From this it follows that there exists $x' \in X$ such that $||x'||_0 > n||x'||_X$ for $n \in \mathbb{N}$. From this it follows that a sequence $(x_n)_{n \ge 1}$ that converges to x' in $(X, ||\cdot||_X)$ isn't convergent in $(X, ||\cdot||_0)$, which means that $(X, ||\cdot||_0)$ isn't complete.

(e) An example of a vector space X equipped with two inequivalent norms $\|\cdot\|$ and $\|\cdot\|'$ satisfying $\|x\|' \leq \|x\|$, for all $x \in X$, such that $(X, \|\cdot\|)$ is complete, while $(X, \|\cdot\|')$ is not, could be

$$\ell_1(\mathbb{N}) = \left\{ (x_n)_{n \ge 1} \subset \mathbb{K} : \|(x_n)_{n \ge 1}\|_1 = \sum_{n=1}^{\infty} |x_n| < \infty \right\}$$

According to Musats notes (Lecture 1, page 3) $(\ell_1(\mathbb{N}), \|\cdot\|_1)$ is a Banach space and complete (according to Musats notes Lecture 1, page 1). Let

$$||(x_n)_{n\geq 1}||' = \sum_{n=1}^{\infty} \frac{1}{n} |x_n|$$

This is clearly a norm on $\ell_1(\mathbb{N})$, since the following holds:

$$\|(x_n)_{n\geq 1} + (y_n)_{n\geq 1}\|' = \sum_{n=1}^{\infty} \frac{1}{n} |x_n + y_n| \le \sum_{n=1}^{\infty} \frac{1}{n} (|x_n| + |y_n|) = \sum_{n=1}^{\infty} \frac{1}{n} |x_n| + \sum_{n=1}^{\infty} \frac{1}{n} |y_n|$$

$$= \|(x_n)_{n\geq 1}\|' + \|(y_n)_{n\geq 1}\|'$$

$$\|\alpha(x_n)_{n\geq 1}\|' = \sum_{n=1}^{\infty} \frac{1}{n} |\alpha x_n| = |\alpha| \sum_{n=1}^{\infty} \frac{1}{n} |x_n| = |\alpha| \|(x_n)_{n\geq 1}\|'$$

$$\|(x_n)_{n\geq 1}\|' = \sum_{n=1}^{\infty} \frac{1}{n} |x_n| = 0 \qquad \iff x_n = 0 \qquad \forall n \ge 1$$

It is clear that $\|\cdot\|' \leq \|\cdot\|_1$. According to part (d) $(\ell_1(\mathbb{N}), \|\cdot\|')$ is not complete, because if $(\ell_1(\mathbb{N}), \|\cdot\|')$ was complete then $(\ell_1(\mathbb{N}), \|\cdot\|_1)$ would not be complete, which is a contradiction.

Problem 2

Let $1 \leq p < \infty$ be fixed, and consider the subspace M of the Banach space $(\ell_p(\mathbb{N}), \|\cdot\|_p)$, considered as a vector space over \mathbb{C} , given by

$$M = \{(a, b, 0, 0, \ldots) : a, b \in \mathbb{C}\}$$

Let $f: M \to \mathbb{C}$ be given by f(a, b, 0, 0, 0, ...) = a + b, for all $a, b \in \mathbb{C}$.

(a) To show that f is bounded on $(M, \|\cdot\|_p)$ we use the knowledge about bounded functions, which is that f is bounded if

$$\exists K > 0: |f(a, b, 0, 0, ...)| \le K ||(a, b, 0, 0, ...)||_p$$

or

$$\exists K > 0: |a+b| \le K \sqrt[p]{|a|^p + |b|^p}$$

If a = b = 0 it is clear that the inequality holds, since it will evaluate to 0 on both sides of the inequality sign. Since $\sqrt[p]{|a|^p + |b|^p} > 0$ in any other situation, it means that f is bounded if

$$\exists K > 0: \quad \frac{|a+b|}{\sqrt[p]{|a|^p + |b|^p}} \le K$$

If we look at the situation where p = 1 and use the triangle inequality:

$$\frac{|a+b|}{|a|+|b|} \le \frac{|a|+|b|}{|a|+|b|} = 1$$

and it is clear, that f is bounded by K=1 in this situation. To compute ||f|| we use this:

$$||f|| = \sup\{|f(a, b, 0, 0, ...)| : ||(a, b, 0, 0, ...)||_1 \le 1\} = \sup\{|a + b| : |a| + |b| \le 1\}$$

Since $|a+b| \le |a| + |b| \le 1$, and since an example where we can switch the inequalities with equality, is easily found $(a=b=\frac{1}{2})$, it must hold that ||f||=1 in the situation p=1. Look now at the situation p=2 and let $a=x_1+iy_1$ and $b=x_2+iy_2$:

$$\frac{|a+b|}{\sqrt{|a|^2+|b|^2}} = \frac{\sqrt{(x_1+x_2)^2+(y_1+y_2)^2}}{\sqrt{x_1^2+y_1^2+x_2^2+y_2^2}} = \frac{\sqrt{x_1^2+x_2^2+2x_1x_2+y_1^2+y_2^2+2y_1y_2}}{\sqrt{x_1^2+x_2^2+y_1^2+y_2^2}}$$

Since $(x_1 - x_2)^2 \ge 0$ it follows $x_1^2 + x_2^2 - 2x_1x_2 \ge 0$ and from this it follows that $x_1^2 + x_2^2 \ge 2x_1x_2$.

$$\begin{split} \frac{|a+b|}{\sqrt{|a|^2+|b|^2}} &= \frac{\sqrt{x_1^2+x_2^2+2x_1x_2+y_1^2+y_2^2+2y_1y_2}}{\sqrt{x_1^2+x_2^2+y_1^2+y_2^2}} \\ &\leq \frac{\sqrt{x_1^2+x_2^2+x_1^2+x_2^2+y_1^2+y_2^2+y_1^2+y_2^2}}{\sqrt{x_1^2+x_2^2+y_1^2+y_2^2}} \\ &= \sqrt{\frac{2(x_1^2+x_2^2+y_1^2+y_2^2)}{x_1^2+x_2^2+y_1^2+y_2^2}} = \sqrt{2} \end{split}$$

Which means that f is bounded on $(M, \|\cdot\|_2)$ by $K = \sqrt{2}$. To compute $\|f\|$ we use that we know $|a+b| \leq \sqrt{2}\sqrt{|a|^2+|b|^2} \leq \sqrt{2}$ since $\sqrt{|a|^2+|b|^2} \leq 1$, when we try to compute $\|f\|$. If we look at the example $a=b=\frac{\sqrt{2}}{2}$ we see that $\sqrt{(\frac{\sqrt{2}}{2})^2+(\frac{\sqrt{2}}{2})^2}=1$ and $|\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}|=\sqrt{2}$, which means $\|f\|=\sqrt{2}$.

Now we have looked at the situations of p = 1 and p = 2, so lets generalize. First notice that

$$(x+y)^p = t_1 x^p + t_2 x^{p-1} y + t_3 x^{p-2} y^2 + \dots + t_{p-2} x^2 y^{p-2} + t_{p-1} x y^{p-1} + t_p y^p$$

where t_n are the binomial coefficients. Furthermore, notice $x^a \cdot y^b \leq x^p + y^p$ where a + b = p. From this the following must hold:

$$(x+y)^p \le 2^p (x^p + y^p)$$

Since the sum of row number p in Pascal's triangle is 2^p and at hte same time it's the sum of the coefficients $(t_1 + t_2 + ... + t_p)$. Now we can show that f is bounded:

$$\frac{|a+b|}{\sqrt[p]{|a|^p+|b|^p}} \leq \frac{|a|+|b|}{\sqrt[p]{|a|^p+|b|^p}} = \frac{\sqrt[p]{(|a|+|b|)^p}}{\sqrt[p]{|a|^p+|b|^p}} = \sqrt[p]{\frac{(|a|+|b|)^p}{|a|^p+|b|^p}} \leq \sqrt[p]{\frac{(2^p(|a|^p+|b|^p))}{|a|^p+|b|^p}} = 2$$

Which means f is bounded on $(M, \|\cdot\|_p)$. To compute

$$||f|| = \sup\{|a+b| : \sqrt[p]{|a|^p + |b|^p} \le 1\}$$

It is enough to look at $\sqrt[p]{|a|^p + |b|^p} = 1$ or $|a|^p + |b|^p = 1$. Let |a| = |b| to get the highest |a + b|, which means

$$2|a|^p = 1$$
 \iff $|a|^p = \frac{1}{2}$ \iff $|a| = \sqrt[p]{\frac{1}{2}} = \frac{1}{\sqrt[p]{2}}$

Due to this let $a = b = \frac{1}{\sqrt[p]{2}}$, which means

$$|a+b| = |2 \cdot \frac{1}{\sqrt[p]{2}}| = \frac{2}{\sqrt[p]{2}} = \frac{\sqrt[p]{2^p}}{\sqrt[p]{2}} = \sqrt[p]{2^{p-1}}$$

Then $||f|| = \sqrt[p]{2^{p-1}}$.

(b) To show that if 1 , then there is a unique linear functional <math>F on $\ell_p(\mathbb{N})$ extending f and satisfying ||F|| = ||f|| we first show the existence. Let $q(x) = \sqrt[p]{2^{p-1}} ||x||_p$. This is a norm since q is proportional to a norm. According to the complex Hahn-Banach extension theorem (2.5 (Musat)) it holds that $|f(x)| \le q(x)$ for $x \in M$. Then there exists a linear functional, F, such that $F|_M = f$ and $|F(x)| \le q(x)$ for all $x \in \ell_p(\mathbb{N})$. According to corollary 2.6 we can furthermore conclude ||F|| = ||f|| and then the existence is shown.

To show the uniqueness we use problem 5 from HW1. From this problem we know that if $\frac{1}{p} + \frac{1}{q} = 1$ then there exists an isometric isomorphism $(\ell_p(\mathbb{N}))^* \cong \ell_q(\mathbb{N})$. From this we can write

$$F(x) = \sum_{n=1}^{\infty} (x_n y_n) \quad \text{for} \quad y = (y_n)_{n \ge 1} \in \ell_q(\mathbb{N}) \quad \text{and} \quad x = (x_n)_{n \ge 1} \in \ell_p(\mathbb{N})$$

Since $\frac{1}{p} + \frac{1}{q} = 1$ it must hold that $\frac{1}{q} = 1 - \frac{1}{p} = \frac{p-1}{p}$. From part (a) and the proof of existence we know that

$$||F|| = ||f|| = \sqrt[p]{2^{p-1}} = 2^{\frac{p-1}{p}} = 2^{\frac{1}{q}}$$

Since F is represented by $y \in \ell_q(\mathbb{N})$ we know that $||y||_q = 2^{\frac{1}{q}}$. We know that

$$F|_{M}(x) = a + b$$

which means $y = (1, 1, y_3, y_4, ...)$. It's clear that

$$||y||_q = \left(\sum_{i=1}^{\infty} |y_i|^q\right)^{\frac{1}{q}} = \left(|1|^q + |1|^q + |y_3|^q + \ldots\right)^{\frac{1}{q}} = 2^{\frac{1}{q}}$$

Which means that $0 = y_3 = y_4 = \dots$ Therefore, it must hold that $y = (1, 1, 0, 0, \dots)$ and

$$F(x) = a + b$$

.

Assume now that $F' \in (\ell_p(\mathbb{N}))^*$ is a linear functional with $F'|_M = f$ and ||F'|| = ||f||. With the same arguments as before we can show that F'(x) = a + b, which means that F(x) = F'(x) and the uniqueness is shown.

(c) To show that if p=1, then there are infinitely many linear functional F on $\ell_1(\mathbb{N})$ extending f and satisfying ||F|| = ||f|| we first show the existence in the same way as in part (b). This time we can find infinitely many linear functionals with the two properties. On example could be $F_i: \ell_p(\mathbb{N}) \to \mathbb{C}$. where $F_i(x_1, x_2, x_3, ...) = a + b + x_i$, where $i \geq 3$. F_i is clearly linear and $F_i|_M = f$. Since F_i is a extension of f and since we know from part (a) that ||f|| = 1 it follows:

$$||F_i|| \ge ||f|| = 1$$

If we use the definition of norms on functionals we get:

$$||F_i||_1 = \sup\{|F_i| : ||x||_1 \le 1\} = \sup\{|a+b+x_i| : ||x||_1 \le 1\}$$

 $\le \sup\{|a|+|b|+|x_i| : ||x||_1 \le 1\} \le 1$

Therefore, it must hold that $||F_i|| = 1$. Then it is shown that there exists infinitely many linear functionals with the properties.

Problem 3

Let X be an infinite dimensional normed vector space over \mathbb{K} , where $\mathbb{K} = \mathbb{R}$ or \mathbb{C}

- (a) Let $n \geq 1$ be an integer. To show that no linear map $F: X \to \mathbb{K}^n$ is injective, lets suppose that F is injective for contradiction. If F is injective then all $x \in X$ are imaged into different values in \mathbb{K}^n . Because $\dim(X) = \dim(F(X)) \leq \dim(\mathbb{K}^n) = n$ we have that $\dim(X) \leq n$, which contradicts that X is infinite dimensional.
 - (b) Let $n \leq 1$ be an integer and let $f_1, f_2, ..., f_n \in X^*$. To show that

$$\bigcap_{j=1}^{n} \ker(f_j) \neq \{0\}$$

let $F: X \to \mathbb{K}^n$ where $F(x) = (f_1(x), f_2(x), ..., f_n(x))$ for all $x \in X$. According to part (a) F is not injective. From this it follows that there exists $x_1, x_2 \in X$ such that $x_1 \neq x_2$ and $F(x_1) = F(x_2)$,

which means $F(x_1) - F(x_2) = 0$, since F is linear the following must hold $F(x_1 - x_2) = 0$. Let $x' = x_1 - x_2$. It is clear that $x' \neq 0$ (since $x_1 \neq x_2$) and F(x') = 0. This means that there exists $x' \in X$, where $x' \neq 0$ such that F(x') = 0. From this it follows that $f_1(x') = 0$, $f_2(x') = 0$, ..., $f_n(x') = 0$ and therefore $x' \in \ker(f_j)$, j = 1, 2, ..., n. This means that $x' \in \bigcap_{j=1}^n \ker(f_j)$ and then $\bigcap_{j=1}^n \ker(f_j) \neq \{0\}$.

(c) Let $x_1, x_2, ..., x_n \in X$. To show that there exists $y \in X$ such that ||y|| = 1 and $||y - x_j|| \ge ||x_j||$ for all j = 1, 2, ..., n we use theorem 2.7 (Musat), which says that for $x_i \ne 0$ there exists $f_i \in X^*$ such that $||f_i|| = 1$ and $f_i(x_i) = ||x_i||$. In the situation $x_i = 0$ it inequality clearly holds, for any $y \in X$ where ||y|| = 1. Let

$$F(x) = (f_1(x), f_2(x), ..., f_m(x))$$

There is a little issue about the notation here. f_1 refers to the first f_i where $x_i \neq 0$, and so on, all the way to f_m which refers to the last f_i where $x_i \neq 0$. According to part (b) there exists $y' \in \bigcap_{i=1}^m \ker(f_i)$ where $y' \neq 0$. Let

$$y = \frac{y'}{\|y'\|}$$

and it's clear that ||y|| = 1 and $f_i(y) = 0$, for i = 1, ..., m. Look at $||x_i||$ and use the linearity of f_i :

$$||x_i|| = f_i(x_i) = f_i(x_i) - f_i(y) = f_i(x_i - y) = f_i\left(||x_i - y|| \frac{x_i - y}{||x_i - y||}\right) = ||x_i - y||f_i\left(\frac{x_i - y}{||x_i - y||}\right)$$

Since $\frac{x_i-y}{\|x_i-y\|}$ is on the unit ball, it must hold that $f_i\left(\frac{x_i-y}{\|x_i-y\|}\right) \leq 1$ (since i = 1) and

$$||x_i|| = ||x_i - y|| f\left(\frac{x_i - y}{||x_i - y||}\right) \le ||x_i - y|| = ||y - x_i||$$

Hereby the required is shown.

- (d) To show that one cannot cover the unit sphere $S = \{x \in X : ||x|| = 1\}$ with a finite family of closed balls in X such that none of the balls contains 0, assume for contradiction that one can cover S with a finite family of closed balls in X such that none of the balls contains 0. Let $\{x_1, x_2, ..., x_n\}$ be the centers of these finitely many balls. Since all of these balls do not contain 0, the radii of the balls must fulfill that $r_i < ||x_i||$. Let y be chosen as in part (c), which means that ||y|| = 1 (or $y \in S$) and $||y x_i|| \ge ||x_i|| > r_i$. This means that none of the balls contains y, but $y \in S$. This is a contradiction, since the balls cover S.
- (e) To show that S is non-compact assume for contradiction that S is compact. Let $A = \bigcup_{x \in S} \mathcal{B}(x, \frac{1}{2})$, where $\mathcal{B}(x, \frac{1}{2})$ is the open ball with center in x and radius $\frac{1}{2}$. According to the topology course A is an open covering of S, since all $x \in S$ is the center of one of the balls in A.

If S is compact, A contains a finite subcover. Even if the balls is closed in this subcover, no one of the balls contains 0 and according to part (d) this is impossible and we have a contradiction, which means that S is non-compact.

To show that the unit ball in X in non-compact, assume for contradiction that the unit ball in X is compact. Once again this means that all open coverings contains a finite subcovering. Look at the following two-part open covering:

$$\left(\bigcup_{x\in S}\mathcal{B}\left(x,\frac{1}{2}\right)\right)\cup\left(\bigcup_{n=2}^{\infty}\mathcal{B}\left(0,1-\frac{1}{n}\right)\right)$$

If the unit ball in X is compact, this covering contains a finite subcovering. Since

$$S \cap \left(\bigcup_{n=2}^{\infty} \mathcal{B}\left(0, 1 - \frac{1}{n}\right) \right) = \emptyset$$

S can be covered by finitely many sets in $\bigcup_{n=2}^{\infty} \mathcal{B}\left(0,1-\frac{1}{n}\right)$, but this we have just shown is not possible. Therefore, we have a contradiction and the unit ball is non-compact.

Problem 4

Let $L_1([0,1],m)$ and $L_3([0,1],m)$ be the Lebesgue spaces on [0,1]. It is known from Homework 2 that $L_3([0,1],m) \subsetneq L_1([0,1],m)$. For $n \ge 1$ define

$$E_n := \left\{ f \in L_1([0,1], m) : \int_{[0,1]} |f|^3 dm \le n \right\}$$

(a) To determine if the set $E_n \subset L_1([0,1],m)$ is absorbing for a given $n \geq 1$ we first need to show that E_n is convex, which it is if for $f_1, f_2 \in E_n$ and $0 < \alpha < 1$ it holds that $\alpha f_1 + (1-\alpha)f_2 \in E_n$. Therefore, assume that $f_1, f_2 \in E_n$ and $0 < \alpha < 1$. Let $f = \alpha f_1 + (1-\alpha)f_2$. It's clear that $f \in L_1([0,1],m)$ due to properties of spaces. We need to show that

$$\int_{[0,1]} |f|^3 dm \le n$$

To show that we use integration calculation know from the course "Analyse 2":

$$\int_{[0,1]} |f|^3 dm = \int_{[0,1]} |\alpha f_1 + (1-\alpha) f_2|^3 dm$$

$$\leq \int_{[0,1]} |\alpha f_1|^3 + |(1-\alpha) f_2|^3 dm$$

$$= |\alpha|^3 \int_{[0,1]} |f_1|^3 dm + |1-\alpha|^3 \int_{[0,1]} |f_2|^3 dm$$

Since $f_1, f_2 \in E_n$ it must hold that $\int_{[0,1]} |f_1|^3 \le n$ and $\int_{[0,1]} |f_2|^3 \le n$. And since $0 < \alpha < 1$ it must

hold that $|\alpha| = \alpha$ and $|1 - \alpha| = 1 - \alpha$.

$$\int_{[0,1]} |f|^3 dm \le |\alpha|^3 \int_{[0,1]} |f_1|^3 dm + |1 - \alpha|^3 \int_{[0,1]} |f_2|^3 dm$$

$$\le \alpha^3 n + (1 - \alpha)^3 n = (\alpha^3 + (1 - \alpha)^3) n$$

$$= (\alpha^3 + 1 - 3\alpha + 3\alpha^2 - \alpha^3) n = (1 - 3\alpha + 3\alpha^2) n$$

Look at $f(x) = 3x^2 - 3x + 1$. The determinant of this polynomial is $d = (-3)^2 - 4 \cdot 3 \cdot 1 = -3$, which means that the polynomial don't have roots. Since f(0) = 1 and f(1) = 1, it's clear that $0 \le f(x) \le 1$ if $x \in [0, 1]$. From this we can conclude the following:

$$\int_{[0,1]} |f|^3 dm \le (1 - 3\alpha + 3\alpha^2)n \le n$$

and it's shown that $f \in E_n$, which means E_n is convex. Assume now for contradiction that E_n is absorbing, which means that

$$\forall f \in L_1([0,1]), m)$$
 $\exists t > 0$ such that $t^{-1}f \in E_n$

This means that the following holds

$$\int_{[0,1]} |t^{-1}f|^3 dm \le n \qquad \iff \qquad \int_{[0,1]} |f|^3 dm \le t^3 n$$

Now look at $f(x) = x^{-1/3}$.

$$\int_{[0,1]} |x^{-1/3}| dm = \left[\frac{3}{2} x^{2/3} \right]_0^1 = \frac{3}{2} < \infty$$

This show that $f \in L_1([0,1], m)$, but

$$\int_{[0,1]} |x^{-1/3}|^3 dm = \int_{[0,1]} x^{-1} dm = \lim_{a \to 0^+} [\ln(x)]_a^1 = \lim_{a \to 0^+} (\ln(1) - \ln(a)) = \lim_{a \to 0^+} (-\ln(a))$$

Since $\ln(a) \to -\infty$ when $a \to 0$, we have a contradiction and E_n is not absorbing in $L_1([0,1],m)$.

(b) To show that E_n has empty interior in $L_1([0,1],m)$, for all $n \geq 1$ assume for contradiction that $Int(E_n) \neq \emptyset$, which means

$$\exists f_0 \in E_n \text{ and } \exists r > 0 \text{ such that } I = \{g \in L_1([0,1],m) : ||f_0 - g||_1 < r\} \subset E_n$$

Let $f \in L_1([0,1], m)$ be arbitrary. Look at

$$g = f_0 + \frac{r}{2} \frac{f}{\|f\|_1}$$

Because of the properties of spaces it holds that $g \in L_1([0,1], m)$. Since

$$||f_0 - g||_1 = \left||f_0 - \left(f_0 + \frac{r}{2} \frac{f}{||f||_1}\right)\right||_1 = \left||\frac{r}{2} \frac{f}{||f||_1}\right||_1 = \frac{r}{2} \frac{||f||_1}{||f||_1} = \frac{r}{2} < r$$

it must hold that $g \in I$. We used that r and $||f||_1$ are constants, which means that $\left\|\frac{r}{2}\frac{f}{||f||_1}\right\|_1 = \left|\frac{r}{2}\frac{||f||_1}{||f||_1}\right|$. Since $g \in I \subset E_n \subset L_3([0,1],m)$ and $f_0 \in L_3([0,1],m)$ it must hold that

$$f = \frac{2\|f\|}{r}(g - f_0) \in L_3([0, 1].m)$$

But since f was arbitrary in $L_1([0,1],m)$, it means that

$$L_1([0,1],m) \subseteq L_3([0,1],m)$$

which is a contradiction to $L_3([0,1],m) \subseteq L_1([0,1],m)$. Therefore, it must hold that $Int(E_n) = \emptyset$.

(c) To show that E_n is closed in $L_1([0,1],m)$, for all $n \geq 1$ assume (f_k) is a sequence where $f_k \in E_n$ for all k. Let $f_k \to f$ for $k \to \infty$, where $f \in L_1([0,1],m)$. We want to show that $f \in E_n$, since this implies that E_n is closed in $L_1([0,1],m)$. Since $E_n \subset L_1([0,1],m)$ per definition. According to corollary 2.19 (Folland) (a corollary to Fatou's lemma) it must hold that

$$\int_{[0,1]} |f|^3 dm \le \liminf \int_{[0,1]} |f_k|^3 dm$$

Since $f_k \to f$ implies $|f_k|^3 \to |f|^3$. Furthermore, we know that $\int_{[0,1]} |f_k|^3 dm \le n$ since all $f_k \in E_n$. From this we can conclude

$$\int_{[0,1]} |f|^3 dm \le \liminf \int_{[0,1]} |f_k|^3 dm \le n$$

Therefore, it's shown that $f \in E_n$ and E_n is according to this closed in $L_1([0,1],m)$.

(d) To show that $L_3([0,1],m)$ is of first category in $L_1([0,1],m)$ we use definition 3.12 (Musat). This definition says that $L_3([0,1],m)$ is of first category in $L_1([0,1],m)$ if $L_3([0,1],m)$ can be written as $\bigcup_{n\geq 1}^{\infty} E_n$ for some E_n , where these E_n are nowhere dense. Let E_n be the same E_n as previously in this problem. To show that

$$\bigcup_{n>1}^{\infty} E_n = L_3([0,1,m)$$

assume first that $f \in \bigcup_{n>1}^{\infty} E_n$, which means $\exists n' \in [0,\infty)$ such that $f \in E_{n'}$. This means

$$\int_{[0,1]} |f|^3 dm \le n' < \infty$$

and furthermore

$$||f||_3^3 = \int_{[0,1]} |f|^3 dm \le n' \implies ||f||_3 \le \sqrt[3]{n'}$$

Which means $f \in L_3([0,1], m)$.

Next assume $f \in L_3([0,1], m)$, which means $||f||_3 = n$ where $0 \le n \le \infty$. When the following holds

$$||f||_3^3 = n^3 \implies \int_{[0,1]} |f|^3 dm = n^3 \le n^3 + 1$$

Then it holds that $f \in E_{n^3+1}$ implies $f \in \bigcup_{n>1}^{\infty} E_n$.

According to definition 3.12 E_n is nowhere dense if $\operatorname{Int}(\overline{E_n}) = \emptyset$. According to part (b) $\operatorname{Int}(E_n) = \emptyset$ and according to part (c) $E_n = \overline{E_n}$, which combined gives us $\operatorname{Int}(\overline{E_n}) = \emptyset$, and it's shown that $L_3([0,1],m)$ is of first category in $L_1([0,1],m)$.

Problem 5

Let H be an infinite dimensional Hilbert space with associated norm $\|\cdot\|$, let $(x_n)_{n\geq 1}$ be a sequence in H, and let $x\in H$.

(a) Suppose that $x_n \to x$ in norm, as $n \to \infty$, which means $||x_n - x|| = ||x - x_n|| \to 0$, as $n \to \infty$. To show that $||x_n|| \to ||x||$, as $n \to \infty$, we use the triangle inequality

$$||x_n|| = ||x_n - x + x|| \le ||x_n - x|| + ||x|| \iff ||x_n|| - ||x|| \le ||x_n - x|| = ||x - x_n||$$

Furthermore:

$$||x|| = ||x - x_n + x_n|| \le ||x - x_n|| + ||x_n|| \iff ||x|| - ||x_n|| \le ||x - x_n|| = ||x_n - x||$$

Combined this gives us

$$\left| \|x\| - \|x_n\| \right| \le \|x - x_n\| \to 0$$
 as $n \to \infty$

which means $||x_n|| \to ||x||$, as $n \to \infty$.

(b) Suppose that $x_n \to x$ weakly, as $n \to \infty$. It don't follow that $||x_n|| \to ||x||$, as $n \to \infty$, and here comes a counterexample.

Let $(e_n)_{n\geq 1}$ be an orthonormal basis in H. Choose $f \in H^*$, such that $f(e_n) = \frac{1}{n}$ for all $n \geq 1$, and expand this by linearity. It is clear that $f(e_n) \to 0 = f(0)$, as $n \to \infty$. According to HW4 problem 2 we have $\forall f \in H^*$ $f(x_n) \to f(x)$ if and only if $x_n \to x$, as $n \to \infty$. This means that $e_n \to 0$, but $||e_n|| = 1$ for all $n \geq 1$ and ||0|| = 0, which opviously contradicts each other.