Monte Carlo methods

Stat 580

Monte Carlo integration

Monte Carlo integration

- a numerical approximation for expectation
- often useful for multidimensional problems that require the estimation of $\mu = E\{h(X)\}$, where X is a random vector and h is a function
- simplest approach: approximate μ by $\hat{\mu}_m = \frac{1}{m} \sum_{i=1}^m h(X_i)$ where X_1, \dots, X_n are iid copies of X
- properties:
 - $\hat{\mu}_m$ is consistent: by the Strong Law of Large Numbers, with probability 1, $\hat{\mu}_m \to \mu$ as $m \to \infty$
 - $\circ \hat{\mu}_m$ is unbiased: $E(\hat{\mu}_m) = \mu = E\{h(X)\}$.
 - $\circ \operatorname{Var}(\hat{\mu}_m) = \operatorname{Var}\{h(X)\}/m$ and can be estimated by

$$\widehat{\text{Var}}(\hat{\mu}_m) = \frac{1}{m(m-1)} \sum_{i=1}^m \{h(X_i) - \hat{\mu}_m\}^2.$$

Monte Carlo integration

- we will see methods:
 - 1. that are applicable when X_1, \ldots, X_m cannot be easily sampled
 - 2. to reduce $Var(\hat{\mu}_m)$
- MC integration can be used to evaluate a "usual" integral $I = \int_{\mathcal{X}} H(x) dx$
 - 1. the idea is to "factorize" H(x) = f(x)h(x) with f(x) as a pdf with support $\supseteq \mathcal{X}$ (we take h(x) = 0 if $x \notin \mathcal{X}$.)
 - 2. approximate *I* by $\frac{1}{m} \sum_{i=1}^{m} h(X_i)$, where X_1, \dots, X_m are iid with pdf f(x)

We want to compute

$$\int_{-\infty}^{\infty} \log |x| e^{-\frac{(x+1)^2}{8}} dx.$$

Set

$$f(x) = \frac{1}{\sqrt{8\pi}} e^{-\frac{(x+1)^2}{8}}$$

and

$$h(x) = \sqrt{8\pi} \log |x|.$$

Note that f(x) is the pdf for $\mathcal{N}(-1,4)$, so the integral can be approximated by $\frac{\sqrt{8\pi}}{n} \sum_{i=1}^{m} \log |X_i|$ with $\{X_i\}$ iid $\sim \mathcal{N}(-1,4)$.

In a particular missing data problem, suppose $Y \sim p_Y(y|\theta)$ but only X = M(Y) is observed, where M is a (known and nonrandom) many-to-fewer mapping.

Frequentist approach:

To estimate θ by the MLE, you need the likelihood

$$L(\boldsymbol{\theta}|\boldsymbol{x}) = p_{\boldsymbol{X}}(\boldsymbol{x}|\boldsymbol{\theta}) = \int_{M(\boldsymbol{y})=\boldsymbol{x}} p_{\boldsymbol{Y}}(\boldsymbol{y}|\boldsymbol{\theta}) d\boldsymbol{y}.$$

- This integral is often hard to compute analytically
- Using MC integration
 - \circ one designs a suitable function h and a distribution P
 - then sample Y_1, \ldots, Y_n from P and get

$$L(\boldsymbol{\theta}|\mathbf{x}) \approx \frac{1}{m} \sum_{i=1}^{m} h(\mathbf{Y}_i).$$

Bayesian approach:

- Suppose θ has a prior $\pi(\theta)$.
- We are interested in the posterior distribution of θ .
 - \circ If the full data Y = y is observed, by Bayes formula, the posterior is

$$p_{\theta|Y}(\theta|y) \propto p_Y(y|\theta)\pi(\theta).$$

• If only X = x is observed, the posterior is

$$p_{\theta|X}(\theta|x) = \int p_{\theta|Y}(\theta|y)p_{Y|M(Y)}(y|x)dy.$$

• If $p_{\theta|Y}(\theta|y)$ has a closed form, a MC integration method may sample $Y_1, \ldots, Y_m \sim p_{Y|M(Y)}(y|x)$ and approximate

$$p_{\theta|X}(\theta|x) \approx \frac{1}{m} \sum_{i=1}^{m} p_{\theta|Y}(\theta|Y_i).$$

Importance sampling

Importance sampling

• Same setup: want to estimate

$$\mu = \int h(x)f(x)dx$$
, $f(x)$ is a pdf.

(the integral is taken over the region where the integrand is positive)

- \circ but it is difficult to sample from f
- Rewrite

$$\mu = \int h(x) \frac{f(x)}{g(x)} g(x) dx,$$

where *g* is a pdf such that g(x) > 0 whenever f(x) > 0.

- Let X have density g(x).
- Then $\mu = E\{h(X)w^*(X)\}\$ with $w^*(X) = \frac{f(X)}{g(X)}$.

Importance sampling

- Consider the following steps:
 - 1. Generate X_1, \ldots, X_m iid $\sim g(x)$.
 - 2. Estimate μ by $\hat{\mu}_g = \frac{1}{m} \sum_{i=1}^m h(X_i) w^*(X_i)$.
- $\hat{\mu}_g$ is the importance sampling (IS) estimator of μ associated with g.
- $w^*(X_i)$'s are referred to as importance ratios
- Note that $\hat{\mu}_g$ is a weighted sum of $h(X_i)$.
- If f = g, then $\hat{\mu}_g$ is the ordinary MC estimator.

We want to compute $\mu = E(U^5)$ where $U \sim \text{Unif}(0, 1)$.

- the straightforward MC estimator: $\hat{\mu} = \frac{1}{m} \sum_{i=1}^{m} U_i^5$
 - \circ oversample data U_i^5 near the origin and undersample the data near 1
 - $\circ \ Var(\hat{\mu}) = 0.0631/m$
- Use IS to put more weights near 1:
 - use $g(x) = 5x^4$ for 0 < x < 1
 - the IS estimator: $\hat{\mu}_g = \frac{1}{n} \sum_{i=1}^m X_i^5 w^*(X_i)$ where $w^*(X_i) = 1/(5X_i^4)$
 - $Var(\hat{\mu}_g) = 0.00794/m$ (verify!)
 - resulting a variance reduction of 98.74%!
- the IS can be used as a variance reduction technique!

Properties

- 1. $\hat{\mu}_g$ is unbiased for μ .
- 2. $\operatorname{Var}(\hat{\mu}_g) = \frac{1}{m} \operatorname{Var}\{h(X)w^*(X)\}$.
- To reduce the variance of $\hat{\mu}_g$, g(x) should be in proportion to h(x)f(x) as much as possible.

Properties

To show this, we need to reduce

$$E\left[\left\{h(X)\frac{f(X)}{g(X)}\right\}^2\right] = \operatorname{Var}(\hat{\mu}_g) + \mu^2.$$

We can use

$$E\left[\left\{h(X)\frac{f(X)}{g(X)}\right\}^2\right] \ge \left[E\left\{h(X)\frac{f(X)}{g(X)}\right\}\right]^2.$$

The equality holds if $h(x)\frac{f(x)}{g(x)}$ is a constant. That is, when $g(x) \propto h(x)f(x)$. (Why is it called importance sampling?)

When f is only known up to a constant

• That means, f(x) = cq(x) with c > 0 unknown, then

$$\mu = \frac{E\{h(X)w^*(X)\}}{E\{w^*(X)\}}$$

with
$$w^*(X) = \frac{q(X)}{g(X)}$$
.

- In this case, standardized weights have to be used in IS:
 - 1. Generate X_1, \ldots, X_m iid from g(x).
 - 2. Estimate μ by $\hat{\mu}_g = \frac{1}{m} \sum_{i=1}^m h(X_i) w(X_i)$ where $w(X_i) = \frac{w^*(X_i)}{\sum_{i=1}^m w^*(X_i)}$.

Processes

- Let $\{S_1, S_2, ...\}$ be a discrete time stochastic process.
- For example, S_i = asset price $S(t_i)$ at time t_i .
- In general, to estimate $\mu = E\{h(S_1, ..., S_n)\}$, one treats $(S_1, ..., S_n)$ as a random vector S with density f.
- Then IS estimates μ by $\hat{\mu}_g = \frac{1}{m} \sum_{i=1}^m h(X_i) \frac{f(X_i)}{g(X_i)}$, where X_1, \dots, X_m are iid with density g(x), and g(x) > 0 whenever f(x) > 0.
- It is useful to think of $X_i = (X_{i,1}, \dots, X_{i,n})$ as a sample path of a process (up to the n-th index).
- From this point, IS uses a process different from S to estimate μ .
- An important issue is how to design the auxiliary process to take advantage of any special dependence structure of $S_1, S_2,$

Markov processes

• S_1, \ldots, S_n form a Markov process; i.e., we can decompose their joint density as

$$f(x_1, ..., x_n) = f_1(x_1) \prod_{j=2}^n f_j(x_j | x_{j-1}),$$

where $f_1(x_1)$ is the density of the initial distribution and $f_j(x_j|x_{j-1})$ is the transition density at step j.

• To utilize the Markov property in IS, the auxiliary density $g(x_1, ..., x_n)$ may also have a similar structure as f:

$$g(x_1, \dots, x_n) = g_1(x_1) \prod_{j=2}^n g_j(x_j | x_{j-1})$$

• Now in IS, the weight for $X = (X_1, ..., X_n)$ is

$$w(X) = \frac{f_1(X_1)}{g_1(X_1)} \prod_{j=2}^n \frac{f_j(X_j | X_{j-1})}{g_j(X_j | X_{j-1})}.$$

Markov processes

- The IS in this case is, for i = 1, ..., m:
 - 1. Draw $X_1 \sim g_1$.
 - 2. For j = 2, ..., n, draw $X_j \sim g_j(x_j | x_{j-1})$.
 - 3. Set $h_i = h(X_1, ..., X_n)$ and

$$w_i = \frac{f_1(X_1)}{g_1(X_1)} \prod_{j=2}^n \frac{f_j(X_j | X_{j-1})}{g_j(X_j | X_{j-1})}.$$

• The IS estimator is

$$\hat{\mu}_g = \frac{1}{m} \sum_{i=1}^m h_i w_i.$$

Control variates

Control variates

- We still want to compute $\mu = E\{h(X)\}$.
- Suppose we know the exact value of $\theta = E\{c(Y)\}$, where c is a function of another random variable Y.
- The simple MC estimators for μ and θ are, respectively,

$$\hat{\mu}_{MC} = \frac{1}{n} \sum_{i=1}^{n} h(X_i), \qquad \hat{\theta}_{MC} = \frac{1}{n} \sum_{i=1}^{n} c(Y_i).$$

- Of course, for θ , $\hat{\theta}_{MC}$ is unnecessary. However, it can be helpful for the estimation of μ .
- How? Suppose h(X) and c(Y) are positively correlated. (If not, this method is not applicable.)

Control variates

- If we see $\hat{\theta}_{\rm MC} > \theta$, then due to the positive correlation, $\hat{\mu}_{\rm MC}$ is more likely to be $> \mu$.
- Then we can decrease the value of $\hat{\mu}_{\mathrm{MC}}$ to obtain a better estimate.
- To be specific, suppose we can sample $(X_1, Y_1), \dots, (X_n, Y_n)$ iid.
- The control variate estimator for μ is

$$\hat{\mu}_{\text{CV}} = \hat{\mu}_{\text{MC}} - b(\hat{\theta}_{\text{MC}} - \theta),$$

where b is a constant.

- $\hat{\mu}_{\rm CV}$ is unbiased and consistent (as MC estimators are unbiased and consistent).
- If b=0, then $\hat{\mu}_{\rm CV}=\hat{\mu}_{\rm MC}$, so the optimal control variate estimator is at least as good as $\hat{\mu}_{\rm MC}$.
- Given a control variate c(Y), need to choose b (choosing c(Y) is harder)

Choice of *b*

- How should we choose *b*?
 - \circ for any given b,

$$\operatorname{Var}(\hat{\mu}_{\text{CV}}) = \operatorname{Var}(\hat{\mu}_{\text{MC}}) + b^2 \operatorname{Var}(\hat{\theta}_{\text{MC}}) - 2b \operatorname{Cov}(\hat{\mu}_{\text{MC}}, \hat{\theta}_{\text{MC}}).$$

• the minimum of $Var(\hat{\mu}_{CV})$ happens when $b = b^*$, where

$$b^* = \frac{\operatorname{Cov}(\hat{\mu}_{\mathrm{MC}}, \hat{\theta}_{\mathrm{MC}})}{\operatorname{Var}(\hat{\theta}_{\mathrm{MC}})} = \frac{\operatorname{Cov}\{h(X), c(Y)\}}{\operatorname{Var}\{c(Y)\}}.$$

- \circ in practice b^* is unknown, but we can estimate it.
- plug b^* into $Var(\hat{\mu}_{CV})$ to get $Var(\hat{\mu}_{CV}^{opt})$, and we can show the variance reduction factor is

$$\frac{\operatorname{Var}(\hat{\mu}_{CV}^{\text{opt}})}{\operatorname{Var}(\hat{\mu}_{MC})} = 1 - \rho^2,$$

where ρ is the correlation coefficient between h(X) and c(Y).

Estimation of b^*

• the optimal b^* can be estimated by

$$\hat{b}_n = \frac{\widehat{\text{Cov}}(\hat{\mu}_{\text{MC}}, \hat{\theta}_{\text{MC}})}{\widehat{\text{Var}}(\hat{\theta}_{\text{MC}})},$$

where

$$\widehat{\operatorname{Var}}(\widehat{\theta}_{\mathrm{MC}}) = \frac{1}{n(n-1)} \sum_{i=1}^{n} \left\{ c(Y_i) - \widehat{\theta}_{\mathrm{MC}} \right\}^2$$

and

$$\widehat{\text{Cov}}(\hat{\mu}_{\text{MC}}, \hat{\theta}_{\text{MC}}) = \frac{1}{n(n-1)} \sum_{i=1}^{n} \{h(X_i) - \hat{\mu}_{\text{MC}}\} \{c(Y_i) - \hat{\theta}_{\text{MC}}\}.$$

• \hat{b}_n is the slope of the least-squares regression line for $(h(X_i), c(Y_i))$, i = 1, ..., n

General idea

- Overall, the general idea for the control variate method is to search $c(\mathbf{Y})$ such that
 - 1. $E\{c(Y)\}$ is known.
 - 2. the scatterplot of $(h(X_i), c(Y_i))$ shows strong correlation.
- In practice, $\hat{\mu}_{\rm MC}$ and $\hat{\theta}_{\rm MC}$ often depend on the same random variable; i.e., $Y_i = X_i$.
- It is possible to use more than one control variate; i.e.,

$$\hat{\mu}_{\text{CV}} = \hat{\mu}_{\text{MC}} - b_1(\hat{\theta}_{1,\text{MC}} - \theta_1) - b_2(\hat{\theta}_{2,\text{MC}} - \theta_2).$$

Let $\mu = E(e^U)$ where $U \sim \text{Unif}(0, 1)$. Theoretical study of CV estimator with b^* (when n = 1):

- Use *U* as the control variate
- E(U) = 1/2, $Cov(e^U, U) = 1 (e 1)/2 = 0.14086$ and Var(U) = 1/12
- the CV estimator: $\hat{\mu}_{CV} = e^U b^*(U 1/2)$, where $b^* = 12(0.14086)$
- $Var(\hat{\mu}_{CV}) = 0.0039$ (verify!)
- resulting a variance reduction of 98.4% when compared to $Var(e^U) = 0.242$

Monte Carlo Testing

Monte Carlo testing

- We use Monte Carlo testing when
 - we cannot calculate the null distribution of the test statistic
 - but we can simulate from the null hypothesis.
- We "simulate" the null distribution of the test statistic.

Let $X_1, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$. Suppose we want to test $H_0: \mu = 3, \sigma^2 = 4$ against the alternative $H_A: \mu \neq 3, \sigma^2 = 4$.

• This is a simple *z*-test. The test statistic is

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

- To use Monte Carlo testing,
 - we generate X_1^*, \dots, X_n^* from $\mathcal{N}(3,4)$, the distribution in the null hypothesis.
 - We then calculate $\bar{X}^* = \frac{\sum X_i^*}{n}$ and repeat this procedure m times (e.g., set m = 999) to get $m \, \bar{X}^*$ values.
 - This approximates the distribution of the test statistic using m simulated values of \bar{X} .
 - If \bar{X} is amongst the smallest 2.5% or the largest 2.5% of these \bar{X}^* values, we reject H_0 .