AMA 505: Optimization Methods

Subject Lecturer: Ting Kei Pong

Lecture 10
Unconstrained Optimization
Conjugate gradient method

0/20

Conjugate gradient method

In this lecture, we focus on

$$\underset{x \in \mathbb{R}^n}{\text{Minimize}} \ f(x) := \frac{1}{2} x^T A x - b^T x \tag{1}$$

for a given $A \succ 0$ and $b \in \mathbb{R}^n$.

- The function f is convex because $\nabla^2 f(x) = A \succ 0$.
- First-order optimality condition is given by Ax = b. Since A > 0 is invertible, f has a unique minimizer given by $A^{-1}b$.
- (1) arises when truncated Newton's methods are adopted.

$A^{-1}b$?

- Direct method for computing $A^{-1}b$ such as Gaussian elimination / Cholesky factorization + back substitution takes $O(n^3)$ flops.
- Use iterative methods with low per-iteration cost?
- Recall: Steepest descent with exact line search on f:

Steepest descent with exact line search
Start at
$$x^0 \in \mathbb{R}^n$$
. For each $k = 0, 1, 2, ...,$
 \star Set $d^k = b - Ax^k$.
 \star Pick α_k so that

$$\alpha_k \in \operatorname{Arg\,min}\{f(x^k + \alpha d^k) : \alpha \geq 0\}.$$

$$\star \operatorname{Set} x^{k+1} = x^k + \alpha_k d^k.$$
(2)

Flops per iteration is $O(n^2)$, but can take lots of iterations.

Note that the exact line search is well defined as long as $d^k \neq 0$, because $\psi(\alpha) := f(x^k + \alpha d^k)$ is a quadratic with leading coefficient $\frac{1}{2}d^{k}A^TAd^k$. An explicit formula for α_k was discussed in Tutorial 1.

2/20

n abe: n 主方 Conjugate gradient method

We introduce the conjugate gradient method:

- Flops per iteration is $O(n^2)$;
- It converges in at most n steps;
- It keeps track of O(1) vectors of dimension n per iteration.
- The red line shows the progress made by conjugate gradient method: it converges in 2 iterations.
- The green line shows the progress made by steepest descent with exact line search: it shows the signature zig-zag behavior.

Idea: Modify the steepest descent direction to fit the (ellipse) geometry.

Review

Definition: (Projection) Let $u \in \mathbb{R}^n$ and $v \in \mathbb{R}^n \setminus \{0\}$. The projection of u onto v is defined as

$$\operatorname{proj}_{v}(u) := \frac{u^{T}v}{\|v\|_{2}^{2}}v.$$

Geometric interpretation:

1. Length of w equals

$$||u||_2 \cos \theta = ||u||_2 \frac{u^T v}{||u||_2 ||v||_2} = \frac{u^T v}{||v||_2}.$$

2. Unit vector along w is $\frac{v}{\|v\|_2}$.

Thus,

$$\operatorname{proj}_{v}(u) = \frac{u^{T}v}{\|v\|_{2}} \cdot \frac{v}{\|v\|_{2}} = \underbrace{u^{T}v}_{\|v\|_{2}^{2}}v.$$

4/20

Gram-Schmidt process

Theorem 10.1: (Gram-Schmidt process)

Given a set of linearly independent vectors $\{v^0, \dots, v^k\} \subset \mathbb{R}^n$. Set $w^0 = v^0$ and for each $j = 1, \dots, k$

$$w^{k} = v^{k} - \sum_{j=0}^{k-1} \frac{v^{kT} w^{j}}{\|w^{j}\|_{2}^{2}} w^{j}$$

Then $w^i \neq 0$ for all i. Moreover, $w^{i^T}w^j = 0$ whenever $i \neq j$, and for each i = 0, 1, ..., k, it holds that

$$\operatorname{Span}\{v^0,\ldots,v^i\}=\operatorname{Span}\{w^0,\ldots,w^i\}.$$

Remark:

• If $\{v^0,\ldots,v^{k-1}\}$ is linearly independent but $\{v^0,\ldots,v^k\}$ is not, then $w^k=0$. Indeed, in this case, $v^k=\sum_{i=0}^{k-1}\alpha_iw^i$ for some α_i . Multiplying both sides by $(w^j)^T$ for each $j=0,\ldots,k-1$, we have $\alpha_i=v^{k^T}w^i/\|w^i\|_2^2$. Hence, $w^k=0$.

seem as inner product < v. w7 = v7. A. w (Generalized) Gram-Schmidt process

Theorem 10.2: ((Generalized) Gram-Schmidt process)

Given $A \in \mathbb{R}^{n \times n}$ with $A \succ 0$ and a set of linearly independent vectors $\{v^0, \dots, v^k\} \subset \mathbb{R}^n$. Set $w^0 = v^0$ and for each $j = 1, \dots, k$

$$w^{k} = v^{k} - \sum_{j=0}^{k-1} \frac{v^{kT}Aw^{j}}{w^{j}^{T}Aw^{j}} w^{j}$$
 \Rightarrow that means, will will in Moreover, $w^{iT}Aw^{j} = 0$ whenever $i \neq j$, and

Then $w^i \neq 0$ for all i. Moreover, $w^{iT}Aw^j = 0$ whenever $i \neq j$, and for each i = 0, 1, ..., k, it holds that

$$\mathsf{Span}\{v^0,\ldots,v^i\}=\mathsf{Span}\{w^0,\ldots,w^i\}.$$

Remark:

• If $\{v^0,\ldots,v^{k-1}\}$ is linearly independent but $\{v^0,\ldots,v^k\}$ is not, then $w^k = 0$. Indeed, in this case, $v^k = \sum_{i=0}^{k-1} \alpha_i w^i$ for some α_i . Multiplying both sides by $(Aw^j)^T$ for each $j = 0, \dots, k-1$, we have $\alpha_i = v^k^T A w^i / (w^j^T A w^j)$. Hence, $w^k = 0$.

6/20

Conjugate gradient method: Conceptual version

Conjugate gradient method: Conceptual version Start at $x^0 \in \mathbb{R}^n$ and $d^0 = -\nabla f(x^0) = b - Ax^0$.

For each k = 0, 1, 2, ...,

- If $d^k = 0$, terminate.
- Pick α_k so that

$$\alpha_k \in \operatorname{Arg\,min}\{f(x^k + \alpha d^k) : \alpha \geq 0\}.$$

• Set $x^{k+1} = x^k + \alpha_k d^k$ and

$$\frac{d^{k+1} = -\nabla f(x^{k+1}) - \sum_{j=0}^{k} \frac{[-\nabla f(x^{k+1})]^T A d^j}{d^j A d^j} d^j}{d^j A d^j} d^j$$
upper to n orthogonal $\{d^k\}_{k=1}^{N}$

To do:

- Prove the correctness: i.e., when $d^k = 0$, what happens?
- The update of d^{k+1} requires access to O(k) vectors and k grows! — further simplify it?

Conjugate gradient method: Conceptual version cont.

Theorem 10.3:

Let $A \succ 0$ and $x^0 \in \mathbb{R}^n$. Set $d^0 = -\nabla f(x^0)$. For k = 0, 1, ...,suppose that $d^0, \ldots, d^k \neq 0$, where for each $i = 0, \ldots, k-1$,

$$d^{i+1} = -\nabla f(x^{i+1}) - \sum_{j=0}^{i} \frac{[-\nabla f(x^{i+1})]^T A d^j}{d^j^T A d^j} d^j,$$
 with $x^{i+1} = x^i + \alpha_i d^i$ and α_i coming from exact line search. Then

 $[\nabla f(x^j)]^T \nabla f(x^{k+1}) = 0$ and $d^{j}^T \nabla f(x^{k+1}) = 0$ for j < k+1.

Proof: The proof is by induction. Let k = 0 and $d^0 \neq 0$. Then $d^0 = -\nabla f(x^0)$, and ${d^0}^T \nabla f(x^1) = 0$ holds because of exact line search.

7 f(20) 7. 7 f(201) =0

8/20

Conjugate gradient method: Conceptual version cont.

Proof of Theorem 10.3 cont.: Now, suppose that the claim is true for k=m, i.e., if $d^0,\ldots,d^m\neq 0$, then $[\nabla f(x^j)]^T\nabla f(x^{m+1})=0$ and $d^{j^T}\nabla f(x^{m+1}) = 0$ for j < m+1. We prove the claim for k = m+1.

Suppose that $d^0, \ldots, d^{m+1} \neq 0$. Then for each j < m+1, we have

The that
$$d^0, ..., d^{m+1} \neq 0$$
. Then for each $j < m+1$, we have
$$d^{j^T} \nabla f(x^{m+2}) = d^{j^T} [A(x^{m+1} + \alpha_{m+1} d^{m+1}) - b] = d^{j^T} [A(x^{m+1} - b) + \alpha_{m+1} d^{j^T} A d^{m+1}] = 0.$$

$$= d^{j^T} (Ax^{m+1} - b) = d^{j^T} \nabla f(x^{m+1}) = 0.$$

Next, $d^{m+1}^T \nabla f(x^{m+2}) = 0$ follows from exact line search.

Finally, we also have $[\nabla f(x^j)]^T \nabla f(x^{m+2}) = 0$ for j < m+2 because $span\{d^0,...,d^{m+1}\} = span\{\nabla f(x^0),....,\nabla f(x^{m+1})\}.$

This completes the induction argument.

$$diTAd^{m} = 0 \Rightarrow diT \cdot \mathcal{F}(x^{m}) = 0 \Rightarrow \nabla f(x^{i})^{T} \cdot \nabla f(x^{m}) = 0$$

Benchmark

Conjugate gradient method: Conceptual version cont.

• Rewrite d^{k+1} : Note that $\nabla f(x^{j+1}) - \nabla f(x^j) = \alpha_j A d^j$ for $j \leq k$, and $\alpha_j > 0$. (Observe that if $\alpha_j = 0$, then $\nabla f(x^j) = d^j = 0$.) Thus

$$d^{k+1} = -\nabla f(x^{k+1}) - \sum_{j=0}^{k} \frac{[-\nabla f(x^{k+1})]^{T} A d^{j}}{d^{j}^{T} A d^{j}} d^{j}$$

$$= -\nabla f(x^{k+1}) + \sum_{j=0}^{k} \frac{\nabla f(x^{k+1})^{T} [\nabla f(x^{j+1}) - \nabla f(x^{j})]}{d^{j}^{T} [\nabla f(x^{j+1}) - \nabla f(x^{j})]} d^{j}$$

$$= -\nabla f(x^{k+1}) + \frac{\nabla f(x^{k+1})^{T} [\nabla f(x^{k+1}) - \nabla f(x^{k})]}{d^{k}^{T} [\nabla f(x^{k+1}) - \nabla f(x^{k})]} d^{k}$$

$$= -\nabla f(x^{k+1}) - \frac{\nabla f(x^{k+1})^{T} \nabla f(x^{k+1})}{d^{k}^{T} \nabla f(x^{k})} d^{k}$$

10/20

Conjugate gradient method: Conceptual version cont.

• Thus, we have $d^{k+1} = -\nabla f(x^{k+1}) - \frac{\nabla f(x^{k+1})^T \nabla f(x^{k+1})}{d^{k^T} \nabla f(x^k)} d^k$. On the other hand, using Theorem 10.3, we have for $k \ge 1$ that

$$\begin{aligned} [\nabla f(x^k)]^T d^k &= [\nabla f(x^k)]^T \left[-\nabla f(x^k) + \sum_{j=0}^{k-1} \frac{[\nabla f(x^k)]^T A d^j}{d^j^T A d^j} d^j \right] \\ &= -[\nabla f(x^k)]^T \nabla f(x^k) = -\|\nabla f(x^k)\|_2^2. \end{aligned}$$

The same formula also holds for k = 0. Consequently,

$$d^{k+1} = -\nabla f(x^{k+1}) + \frac{\|\nabla f(x^{k+1})\|_2^2}{\|\nabla f(x^k)\|_2^2} d^k.$$

Conjugate gradient method: Formal version

Conjugate gradient method: Formal version

Start at $x^0 \in \mathbb{R}^n$ and $d^0 = -\nabla f(x^0) = b - Ax^0$.

For each k = 0, 1, 2, ...,

- If $d^k = 0$, terminate.
- Pick α_k so that

$$\alpha_k \in \operatorname{Arg\,min}\{f(x^k + \alpha d^k): \ \alpha \geq 0\}.$$

• Set $x^{k+1} = x^k + \alpha_k d^k$ and

$$d^{k+1} = -\nabla f(x^{k+1}) + \frac{\|\nabla f(x^{k+1})\|_2^2}{\|\nabla f(x^k)\|_2^2} d^k$$

Remark:

- Proof of correctness: when $d^{k+1} = 0$ but $d^k \neq 0$, then $\nabla f(x^{k+1})$ is a multiple of d^k . Since $d^{kT} \nabla f(x^{k+1}) = 0$ according to Theorem 10.3, we conclude that $\nabla f(x^{k+1}) = 0$.
- The update of d^{k+1} requires access to only 3 vectors!

12/20

Finding α_k

We next derive a formula for α_k .

- Recall that $f(x) = \frac{1}{2}x^TAx b^Tx$.
- Hence, $\psi(\alpha) := f(x^k + \alpha d^k)$ is a quadratic with leading coefficient $\frac{1}{2} d^k^T A d^k > 0$.
- To find α_k , we compute

$$\frac{d}{d\alpha}f(x^k + \alpha d^k) = d^{kT}\nabla f(x^k + \alpha d^k) = d^{kT}(Ax^k + \alpha Ad^k - b).$$

Set the above to zero and solve for α , we obtain that

$$\alpha_k = \frac{d^{k^T}(b - Ax^k)}{d^{k^T}Ad^k} = \frac{[-\nabla f(x^k)]^T d^k}{d^{k^T}Ad^k} = \frac{\|\nabla f(x^k)\|_2^2}{d^{k^T}Ad^k}.$$

See also Tutorial 1

Conjugate gradient method: Actual version

Conjugate gradient method: Actual version

Start at $x^0 \in \mathbb{R}^n$ and $r^0 = d^{\overline{0}} = b - Ax^0$.

For each k = 0, 1, 2, ...,

- If $\|r^k\|$ (or, less commonly, $\|a^k\|$) is below a tolerance, terminate.
- (Exact line search) Compute

$$\underline{\alpha_k} = \frac{r^{k^T} r^k}{d^{k^T} A d^k}, \quad x^{k+1} = x^k + \alpha_k d^k, \quad r^{k+1} = r^k - \alpha_k A d^k.$$

• (Update d^{k+1}) Compute

$$\sqrt{\beta_k} = \frac{r^{k+1} r^k}{r^k r^k}, \quad d^{k+1} = r^{k+1} + \beta_k d^k.$$

Remark:

Bk not sowed

- One matrix-vector multiplication per iteration if Ad^k is saved.
- Keeping track of four vectors, x^k , r^k , d^k and the Ad^k saved.

14/20

Convergence rate

Conjugate gradient method must terminate in at most n iterations: because $\{d^0, \ldots, d^{n-1}\}$ must be a basis of \mathbb{R}^n , if $d^k \neq 0$ for each k. Then necessarily, $d^n = 0$.

In practice, conjugate gradient method can converge much more quickly. We state the following result without proof. See Theorem 5.5 of Ref 2.

Theorem 10.4: (Luenberger)

Consider the conjugate gradient method for minimizing $f(x) = \frac{1}{2} \underline{x^T A x - b^T x}$ for some $b \in \mathbb{R}^n$ and $A \succ 0$. Let $\{x^k\}$ be the sequence generated and let $\underline{x^*}$ be the minimizer of \underline{f} . If A has eigenvalues $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$, then

$$\underbrace{(x^{k+1}-x^*)^T A(x^{k+1}-x^*)}_{t} \leq \left(\frac{\lambda_{n-k}-\lambda_1}{\lambda_{n-k}+\lambda_1}\right)^2 (x^0-x^*)^T A(x^0-x^*)$$

so if
$$\lambda_{n-k} - \lambda_1 = 0$$
, we have $x^{k+1} = x^*$.

Example

Example: Consider Minimize f(x) with

$$f(x) = \frac{1}{2}x^T \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} x - x_1 - 2x_2.$$

Perform two iterations of conjugate gradient method, starting with $x^0 = (2, 1)$. Write down x^1 and x^2 .

Remark: Note that the matrix $\begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix}$ is positive definite.

Solution: We have

$$r^0 = d^0 = b - Ax^0 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -8 \\ -3 \end{bmatrix}.$$

16/20

Example cont.

Solution cont.: We have

$$\alpha_0 = \frac{r^0{}^T r^0}{d^0{}^T A d^0} = \frac{73}{331}, \ x^1 = x^0 + \alpha_0 d^0 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \frac{73}{331} \begin{bmatrix} -8 \\ -3 \end{bmatrix} = \begin{bmatrix} 0.2356 \\ 0.3384 \end{bmatrix}.$$

We can then compute the next residual.

$$r^{1} = r^{0} - \alpha_{0}Ad^{0} = \begin{bmatrix} -8 \\ -3 \end{bmatrix} - \frac{73}{331} \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} -8 \\ -3 \end{bmatrix} = \begin{bmatrix} -0.2810 \\ 0.7492 \end{bmatrix}.$$

Next, we compute β_0 :

$$\beta_0 = \frac{\|r^1\|_2^2}{\|r^0\|_2^2} = \frac{(-0.2810)^2 + (0.7492)^2}{(-8)^2 + (-3)^2} = 0.0088.$$

Example cont.

Solution cont.: Next, we compute d^1 :

$$d^{1} = r^{1} + \beta_{0}d^{0} = \begin{bmatrix} -0.2810 \\ 0.7492 \end{bmatrix} + 0.0088 \begin{bmatrix} -8 \\ -3 \end{bmatrix} = \begin{bmatrix} -0.3511 \\ 0.7299 \end{bmatrix}.$$

Finally, we have

$$\alpha_1 = \frac{{r^1}^T r^1}{{d^1}^T A d^1} = \frac{(-0.2810)^2 + (0.7492)^2}{\begin{bmatrix} -0.3511 & 0.7299 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} -0.3511 \\ 0.7299 \end{bmatrix}} = 0.4122,$$

and

$$x^2 = x^1 + \alpha_1 d^1 = \begin{bmatrix} 0.2356 \\ 0.3384 \end{bmatrix} + 0.4122 \begin{bmatrix} -0.3511 \\ 0.7299 \end{bmatrix} = \begin{bmatrix} 0.0909 \\ 0.6364 \end{bmatrix}.$$

18/20

Nonlinear conjugate gradient method

There are extensions of conjugate gradient method for minimizing a general $f \in C^1(\mathbb{R}^n)$.

Nonlinear conjugate gradient method: Conceptual version Start at $x^0 \in \mathbb{R}^n$ and $d^0 = -\nabla f(x^0)$.

- For each k = 0, 1, 2, ...,
 If $||d^k||_2$ is small, terminate.
 - Pick α_k judiciously. Set $x^{k+1} = x^k + \alpha_k d^k$ and

$$d^{k+1} = -\nabla f(x^{k+1}) + \frac{\|\nabla f(x^{k+1})\|_2^2}{\|\nabla f(x^k)\|_2^2} d^k$$

Remark:

- If α_k is not chosen carefully, d^k can fail to be a descent direction
- The above choice of d^k is due to Fletcher and Reeves.

Nonlinear conjugate gradient method cont.

Remark cont.:

• If α_k is chosen according to exact line search and if d^k is a descent direction, then $d^{k} \nabla f(x^{k+1}) = 0$. Then d^{k+1} is a descent direction at x^{k+1} if x^{k+1} is nonstationary, because:

$$d^{k+1}^T \nabla f(x^{k+1}) = -\|\nabla f(x^{k+1})\|_2^2 < 0.$$

However, exact line search can be hard to perform for general f.

• In practice, one chooses α_k to satisfy strong Wolfe conditions:

Strong Wolfe conditions:

Let
$$0 < c_1 < c_2 < \frac{1}{2}$$
, $x \in \mathbb{R}^n$ and $d \in \mathbb{R}^n$. Find $\alpha > 0$ so that
$$f(x + \alpha d) \le f(x) + \alpha c_1 [\nabla f(x)]^T d,$$
$$|[\nabla f(x + \alpha d)]^T d| \le c_2 |[\nabla f(x)]^T d|.$$

The nonvoidness can be proved similarly as Theorem 3.3.

20/20