Malyse _

Chapitre O. Préreguis

§ 0.1 Identités algébriques

Polynômiales:
$$(x+y)^2 = x^2 + 2xy + y^2$$

 $x^2 - y^2 = (x-y)(x+y)$
 $x^3 - y^3 = (x-y)(x^2 + xy + y^2)$
 $x^3 + y^3 = (x+y)(x^2 - xy + y^2)$.

Exponentielles:

a, b des nombres réels positifs, x, y des nombres réels. $\alpha^{\times} \cdot \alpha^{\circ} = \alpha^{\times + \circ}$ $(a^{x})^{y} = a^{xy}$ n-natural positif $\frac{\alpha^{x}}{\alpha^{y}} = \alpha^{x-y}$ $\sqrt[n]{a} = a^{\frac{1}{n}}$ $(\alpha \beta)^{\times} = \alpha^{\times} \beta^{\times}$ $\left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{a^{x}}$ a o = 1 $a^1 = a$.

$$log(xy) = logx + logy$$
 $log(1) = 0$
 $log(\frac{x}{y}) = logx - logy$ $log(e) = 1$
 $log(x^c) = c \cdot logx$ $c \text{ réel}$
 $log_a(1) = 0$; $log_a(a) = 1$ $a \text{ réel posihif, } a \neq 1$.

\$0.2 Trigonométrie.

$$sin x$$
, $cos x$ definis pour tout x réel $tgx = \frac{sin x}{cos x}$ $ctg x = \frac{cos x}{sin x}$ $cos x \neq 0$ $sin x \neq 0$

$$S_{ih}(x \pm y) = S_{ih} \times cos y \pm cos x sh y$$

 $cos(x \pm y) = cos \times cos y \mp S_{ih} \times S_{in} y$

$$1 = \cos(x - x) = \cos^2 x + 8m^2 x$$

$$\int i N^2 x + \cos^2 x = 1.$$

Valeurs de cosx, sinx pour $x = \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \pi, 0$...

=>
$$\sinh \frac{\overline{u}}{4} = \cos \frac{\overline{u}}{4} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

 $\operatorname{carr\'{e}} \operatorname{de} \operatorname{co\'{f\'{e}}} = 1$

$$SIM X = \frac{6}{C}$$

$$COSX = \frac{9}{C}$$

$$=> 3h\frac{11}{6} = cos\frac{11}{3} = \frac{1}{2}$$

$$\sin \frac{\pi}{3} = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$$

triangle équilatéral de côté = 2

§0.3. Rappel: Fonctions réelles d'une variable réelle.

$$\underline{E_{X:}} \qquad \int (\underline{x}) = 3\underline{x}^2 + 2\underline{x} + 1$$

Types des fonctons élémentaires (exemples)

Polynômes

nômes
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_r x + a_o \quad \text{où } \quad a_i \text{ sont des nombres}$$
 réels.

$$\frac{Ex}{f(x)} = ax + b$$

$$fonction linéaire$$

$$Ex$$
 $f(x) = -(x+1)(x-2)$
polynôme quadratique

$$f(x) = \frac{P(x)}{Q(x)}$$
 où $P(x)$ et $Q(x)$ sont des polynômes, $Q(x) \neq 0$

$$\frac{E_{\times}}{f(x)} = \frac{3\times +1}{x^2-1} \qquad x \text{ reil}, x \neq \pm 1$$

$$x \in \mathbb{R} \setminus \{\pm 1\}$$

Toute fonction obtenue à partir des polynômes par application des opérations +, -, ÷, puissances, \(\tag{7}

$$\begin{cases}
1.5 \\
1.0 \\
1.0
\end{cases}$$

$$\begin{cases}
(x) = \sqrt{x} \\
x \ge 0
\end{cases}$$

$$0.5$$

$$\int (x) = \frac{2 + \sqrt{x+1}}{x^2 + 4} , \quad x \ge -1.$$

Fonctions transcendantes (ne sont pas algèbriques)

Fonctions trigonométriques (et leurs réciproques). f(x) = sin x, f(x) = cos x

$$COS(X) = Sih(X + \frac{\pi}{2})$$

[46] Fonctions exponentielles et logarithmiques

Ex $f(x) = \ell^x$, $g(x) = \log x$, x > 0 (log de base e). Pour tout x réel => $\log (\ell^x) = x$ Pour tout x réel positif => $\ell^x = x$ fonctions réciproques.

Ex

En général, si on a

y = f(x) <=> x = f'(y)

on dit que f(x) et f'(x)

sont réciproques

(il faut préciser les valeurs
admissibles de x ety).

Les graphique de $feff^{-1}$ Sont symétriques par rapport à la droite x = y

Ex $f(x) = a^{x}$, a > 0, $a \neq 1$, x réel

Alors la fonction réciproque est $f'(x) = \log_{a} x$, x > 0.

$$f(x) = x^2 - 3.$$

descendre le graphique $f(x) = x^2$ par 3.

Ex

$$\int (x) = (x-3)^2$$

Deplacer le graphique Y=x² à droite par 3

$$\underline{E_X}$$
 $\int (x) = (x-3)^2 - 3$

deplacer le graphique y = x² à droite par 3 et descendre par 3

Ex

$$f(x) = 2 \sin x$$

Etendre le graphique de sinx=y en direction verticale

$$E_X$$
 $\int (x) = \sin(2x)$

Serrer le graphique de y = sin x en direction horisontale