```
#include <stdlib.h>
#include <string.h>
#define MAXPAROLA 30
#define MAXRIGA 80
int main(int arge, char "argv[])
   int freq[MAXPAROLA]; /* vettore di conjutte
delle frequenze delle lunghezze delle proce
char riga[MAXRIGA];
int i, inizio, lunghezza;
```

Recursion

Sorting

Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Merge sort

- In computer science, merge sort (also spelled as mergesort) is an efficient, general-purpose, and divide and conquer algorithm
- Was invented by John von Neumann in 1945
 - > A detailed description appeared in 1948

- It is a
 - Comparison-based sorting algorithm
 - Most implementations produce a stable sort

Merge sort

- Divide and conquer approach
 - Division
 - Partition the array into 2 subarrays L and R with respect to the array's middle element
 - Recursion
 - Merge sort on subarray L
 - Merge sort on subarray R
 - Termination condition
 - With 1 (l=r) or 0 (l>r) elements the array is sorted
 - Ricombination
 - Merge 2 sorted subarrays into one sorted array

Divide does not reorder anything

Combine performes the sorting

Example

First year program ...

```
void bottom_up_merge_sort (int *A, int N) {
  int i, m, l=0, r=N-1;
  int *B = (int *)malloc(N*sizeof(int));
  for (m = 1; m <= r-1; m = m + m)
    for (i = 1; i <= r-m; i += m + m)
    merge (A, B, i, i+m-1, min(i+m+m-1,r));
}</pre>
```


Example

- Merge sort is based on merge
 - Given two already ordered arrays v₁ and v₂
 - Generate e unique ordered array v₃
 - > Example

Stand-alone version

```
void merge (int *v1, int *v2, int *v3, int n) {
  int i1=0, i2=0, i3=0;
                                         Merge body of v1 and
  while (i1<n && i2<n) {
                                             body of v2
    if (v1[i1] < v2[i2]) {
                                            (both of size n)
      v3[i3++] = v1[i1++];
    } else {
      v3[i3++] = v2[i2++];
                                  v1
                                        6
                                  v2
  while (i1 < n) {
    v3[i3++] = v1[i1++];
                                  v3
  while (i2 < n) {
                                 Merge tail of
    v3[i3++] = v2[i2++];
                                 v1, if it exists
  return;
                  Merge tail of
```

v2, if it exists

- Merging two arrays has a linear cost the size of the final array
 - $\succ T(n) = O(n)$
- In merge sort the merge phase
 - Operates on two partitions of the same array (A) instead of working on arrays v₁ and v₂
 - Generates the resulting array v₃ in the original array (A)
 - Uses a temporary array (B)

```
Merge sort version
```

```
void merge (int *A, int *B, int 1, int c, int r) {
  int i, j, k;
                                             Compare and merge
  for (i=1, j=c+1, k=1; i<=c && j<=r; )
    if (A[i]<=A[j])
                                 Use <= to make
      B[k++] = A[i++];
                                 the sorting stable
    else
      B[k++] = A[j++];
                                  Copy the
                                   first tail
  while (i<=c)
    B[k++]=A[i++];
                                  Copy the
  while (j<=r)
                                  second tail
    B[k++]=A[j++];
  for (k=1; k<=r; k++)
                                   Copy the
    A[k] = B[k];
                                  array back
  return;
```

Wrapper

function that prepares the main function

Merge sort

```
B is an auxiliary array
                                           (check and free are missing)
void merge sort (int *A, int N) {
                                                   for slide showing burposes
  int l=0, r=N-1;
                                                   only, always include them!!!
  int *B = (int *)malloc(N*sizeof(int));
  merge sort r (A, B, 1, r);
                                                       Recursion
void merge sort r (int *A, int *B, int 1, int r) {
  int c;
  if (r <= 1)
                                          Left recursion
    return;
  c = (1 + r)/2
  merge sort r (A, B, 1, c);
                                            Right recursion
  merge sort r (A, B, c+1, r);
  merge (A, B, 1, c, r);
                                             Combine
  return;
                                      (merge on 2 partitions of
                                          the same array)
```

Features

- Not in place
 - It uses an auxiliary array
- Stable
 - Function merge takes keys from the left subarray

in the case of duplicate values

```
if (A[i] <= A[j])
  B[k++] = A[i++];
else
  B[k++] = A[j++];
...</pre>
```

 0
 1
 2
 3
 4
 5
 6

 A
 1₁
 1₂
 1₃
 4

 A
 1₄
 5
 7
 9

0 1 2 3 4 5 6 7

A 1_1 1_2 1_3 1_4 4 5 7 9

Analytic analysis ...

Complexity Analysis

Divide and conquer problem									
Number of subproblems	a = 2								
Reduction factor	$b = n/_{\widehat{n}} = 2$								
Division cost	$D(n) = \Theta(1)$								
Recombination cost	$C(n) = \Theta(n)$								

$$T(n) = D(n) + a \cdot T(n/b) + C(n)$$

$$T(n) = \Theta(1)$$

$$n > 1$$

$$n \le 1$$

Merge

```
void merge_sort_r (...) {
  int c;
  if (r <= 1)
    return;
  c = (1 + r)/2
  merge_sort_r (A, B, 1, c);
  merge_sort_r (A, B, c+1, r);
  merge (A, B, 1, c, r);
}</pre>
```

$$n > 1$$
 $T(n) = 2 \cdot T(n/2) + n$
 $n \le 1$ $T(1) = 1$

 $T(n) = D(n) + a \cdot T(n/b) + C(n)$ $T(n) = \Theta(1)$

n > 1

 $n \leq 1$

$$T(n) = n + 2 \cdot T(n/2)$$

Unfolding

$$T(n/2) = n/2 + 2 \cdot T(n/4)$$

$$T(n/4) = n/4 + 2 \cdot T(n/8)$$

$$T(n/8) = n/8 + 2 \cdot T(n/16)$$

$$T(1)=1$$

For the sake of simplicity, we can assume $n = 2^i$

Termination condition

$$\frac{n}{2^{i}} = 1$$

$$n = 2^{i}$$

$$i = \log_{2}(n)$$

$$T(n) = n + 2 \cdot T(n/2)$$

$$T(n/2) = n/2 + 2 \cdot T(n/4)$$

$$T(n/4) = n/4 + 2 \cdot T(n/8)$$

$$T(^{n}/_{8}) = ^{n}/_{8} + 2 \cdot T(^{n}/_{16})$$
...
 $T(1) = 1$

$$i = log_2(n)$$

steps

$$T(n) = n + 2 \cdot T\binom{n}{2}$$

Substitution

$$T(n) = n + n + 4 \cdot T(n/4)$$

$$T(n) = n + n + n + 8 \cdot T(n/8)$$

$$T(n) = n + n + n + n + 16 \cdot T(n/16)$$

$$T(n) = \sum_{\substack{log_2 \\ log_2 \\ n}}^{\dots} n =$$

$$= n \sum_{\substack{log_2 \\ log_2 \\ n}}^{1} =$$

$$= n \cdot \log_2(n) =$$

$$= O(n \cdot \log_2(n))$$

Recursion levels: log₂(n)

Operations at each level: *n*

Total operations: $n \cdot log_2(n)$

Tim Sort

- Proposed by Peters in 2002
- It is based on the consideration than for small arrays insertion sort is faster than merge sort
- Thus, tim sort is a hybrid sorting algorithm
 - It applies merge sort for "large" arrays
 - > It switches to insertion sort for "small" arrays
 - > In other words tim sort

From a few tens to a few hundreds of elements

- Applies the stardard merge sort divide-and-conquer procedure to split arrays in sub-arrays
- When the sub-arrays are small enough, it applies insertion sort to sort them
- It restart merge-sort to merge sorted sub-arrays

- Quicksort is a divide-and-conquer in-place sorting algorithm
- Developed by Sir Tony Hoare in 1959
 - > Published in 1961

- It is a commonly used algorithm for sorting
- When implemented well, it can be faster than merge sort and about two or thee times faster than heap sort

- Quick sort proceeds as merge sort
 - ➤ It uses a divide and conquer (divide et impera) approach
 - It works by selecting a pivot element from the array and partitioning the other elements into two subarrays, according to whether they are less than or greater than the pivot
 - Anyway, merge sort does all the job in the combination (merge) phase, quick sort does all the job in the partition (division) phase
 - Partition is based on a specific element used as a separator and called pivot

The overall logic is the following one

- Partition phase
 - The array A[l..r] is partitioned in 2 subarrays L (left subarray) and R (right subarray)
 - Given a pivot element x
 - L, i.e., A[I..q-1], contains all elements less than the pivot, i.e., A[i] < x
 - R, i.e., A[q+1..r], contains all elements larger than the pivot, i.e., A[i] > x
 - The value x is placed in the right place, i.e., in its final position
 - Division doesn't necessarily halve the array

- Recursion phase
 - Quicksort on subarray L, i.e., A[l..q-1]
 - Quicksort on subarray R, i.e., A[q+1..r]
 - Termination condition
 - If the array has 1 element it is sorted
- Ricombination phase
 - None

Implementation

Wrapper

```
void quick sort(int *A, int N) {
  int 1, r;
  1 = 0;
                                      Recursive call
  r = N-1;
  quick sort r (A, l, r);
                                                  Boundaries
void quick sort r (int *A, int 1, int r) {
  int c;
                                    Termination
  if (r <= 1)
                                     condition
    return;
  c = partition (A, 1, r);
                                                  Division
  quick sort r (A, 1, c-1);
  quick sort r (A, c+1, r);
  return;
                                           Recursive calls
                  Element c is not
                 moved any more
```

Partition

- There are several partition schemes
 - Hoare, Lomuto, etc.
 - > We present the original Hoare partition scheme
- The pivot may be selected in several ways
 - We select the pivot as the rightmost element of the subarray
 - pivot = A[r]
- Then, the partition phase proceeds as follows:

Partition

- Starts with i=l-1 and j=r
 - A first cycle (ascending loop) increments i until it finds an element A[i] larger than the pivot x
 - A second cycle (descending loop) decrements j until it finds an element less than the pivot x
 - If the elements A[i] and A[j] are on the wrong array partition
 - Swap A[i] and A[j]
- Repeat until i < j termination condition
- Swap A[i] and pivot x
- Return the value of i to partition the array

Implementation

```
int partition (int *A, int 1, int r ){
  int i, j, pivot;
                                     Pivot values are moved in the
  i = 1-1;
                                    right sub-array; worst case: stop
  j = r;
                                             on pivot
  pivot = A[r];
  while (i<j) {</pre>
    while (A[++i]<pivot);
    while (j>l && A[--j]>=pivot);
    if (i < j)
       swap(A, i, j);
                                         Pivot values stay in the right
                                        sub-array; worst case: stop on
                                                 element I
  swap (A, i, r);
  return i;
                            void swap (int *v, int n1, int n2) {
                              int temp;
                              temp=v[n1];v[n1]=v[n2];v[n2]=temp;
                              return;
```


Example

pivot

Partition ...

moving before checking

```
int partition (...){
  int i, j, pivot;
  i = 1-1; j = r;
 pivot = A[r];
 while (i<j) {
                      pivot works like a sentinel
    while (A[++i]<pivot);
    while (j>l && A[--j]>=pivot);
    if (i < j) swap(A, i, j);</pre>
  swap (A, i, r);
  return i;
```


Example

13 pivot

Partition ...

```
int partition (...) {
  int i, j, pivot;
  i = l-1; j = r;
  pivot = A[r];
  while (i<j) {
    while (A[++i]<pivot);
    while (j>l && A[--j]>=pivot);
    if (i < j) swap(A, i, j);
  }
  swap (A, i, r);
  return i;
}</pre>
```


Example: Scrambled order

pivot	0	1	2	3	4	5	6	7	8	9 6
	1	8	0	2	3	9	4	6	5	7
7	1	5	0	2	3	6	4	7	8	9
4	1	3	0	2	4	6	5	7	8	9
2	1	0	2	3	4	6	5	7	8	9
0	0	1	2	3	4	6	5	7	8	9
5	0	1	2	3	4	5	6	7	8	9
9	0	1	2	3	4	5	6	7	8	9

```
int partition (...) {
  int i, j, pivot; i = l-1; j = r;
  pivot = A[r];
  while (i<j) {
    while (A[++i]<pivot);
    while (j>l && A[--j]>=pivot);
    if (i < j) swap(A, i, j);
  }
  swap (A, i, r); return i;
}</pre>
```

```
void quick_sort_r (
   int *A, int l, int r) {
   int c;
   if (r <= 1)
      return;
   c = partition (A, l, r);
   quick_sort_r (A, l, c-1);
   quick_sort_r (A, c+1, r);
   return;
}</pre>
```

This case in very inconvenient

Example: Ascending order

if already sorted it still checks everything so a nightmare for the algo

pivot	0	1	2	3	4	5	6	7	8	9
	0	1	2	3	4	5	6	7	8	9
9	0	1	2	3	4	5	6	7	8	9
8	0	1	2	3	4	5	6	7	8	9
7	0	1	2	3	4	5	6	7	8	9
6	0	1	2	3	4	5	6	7	8	9
5	0	1	2	3	4	5	6	7	8	9
4	0	1	2	3	4	5	6	7	8	9
3	0	1	2	3	4	5	6	7	8	9
2	0	1	2	3	4	5	6	7	8	9
1	0	1	2	3	4	5	6	7	8	9

This case in very inconvenient

Example: Descending order

pivot	0	1	2	3	4	5	6	7	8	9
	9	8	7	6	5	4	3	2	1	0
0	0	8	7	6	5	4	3	2	1	9
9	0	8	7	6	5	4	3	2	1	9
1	0	1	7	6	5	4	3	2	8	9
8	0	1	7	6	5	4	3	2	8	9
2	0	1	2	6	5	4	3	7	8	9
7	0	1	2	6	5	4	3	7	8	9
3	0	1	2	3	5	4	6	7	8	9
6	0	1	2	3	5	4	6	7	8	9
4	0	1	2	3	4	5	6	7	8	9

Features

- In place
- Not stable
 - Partition may swap "far away" elements
 - Then occurrence of a duplicate key moves to the left of a previous occurrence of the same key
- Complexity
 - > Efficiency depends on the partition balance
 - > Balancing depends on the choice of the pivot

Worst case

- The pivot is the minimum or the maximum value within the array
 - Quick sort generates a subarray with n-1 elements and a subarray with 1 element
 - This happens when the array is already sorted in ascending or descending order

Number

of steps

Recursion equation

$$T(n) = n + T(n - 1)$$
$$T(1) = 1$$

$$n \ge 2$$
 $n = 1$

> That is

$$T(n) = n + T(n - 1)$$

$$T(n - 1) = (n - 1) + T(n - 2)$$

$$T(n - 2) = (n - 2) + T(n - 3)$$
...

$$T(n) = n + (n-1) + (n-2) + \dots + 2 =$$

$$= \frac{n(n+1)}{2} - 1 =$$

$$= O(n^2)$$

- Best case
 - At each step **partition** returns 2 subarrays with n/2 elements
 - Recursion equation

$$T(n) = 2 \cdot T(n/2) + n$$
$$T(1) = 1$$

n > 1

 $n \le 1$

> Time complexity

As for merge sort ...

$$T(n) = n + n + n + n + 16 \cdot T(^{n}/_{16}) =$$

$$= \sum_{i=0}^{\log n} n = n \sum_{i=0}^{\log n} 1 =$$

$$= n \cdot \log_{2}(n) =$$

$$= 0 (n \cdot \log_{2}(n))$$

Average case

- ➤ At each step **partition** returns 2 subarrays of different sizes
- Provided we are not in the worst case, though partitions may be strongly unbalanced
 - The average case leads to performances quite close to the ones of the best case

> Example

- At each step partition generates 2 partitions
- Let us suppose the first one has $({}^9/_{10} \cdot n)$ elements and the second one $({}^1/_{10} \cdot n)$ elements

Pivot selection

- Selecting the pivot is one of the main problem
- The pivot can be selected following several different strategies
 - Random element
 - Generate a random number i with $p \le i \le r$, then swap A[r] and A[i], use A[r] as pivot
 - Middle element

•
$$x = A[^{(p+r)}/_2]$$

- Average between min and max
- Median of 3 elements chosen randomly in array
 - **>** ...

Sorting algorithms

A synoptic table for all analyzed sorting algorithms

Algorithm	In place	Stable	Worst-Case
Bubble sort	Yes	Yes	O(n ²)
Selection sort	Yes	No	O(n ²)
Insertion sort	Yes	Yes	O(n ²)
Shellsort	Yes	No	depends
Mergesort	No	Yes	O(n·log n)
Quicksort	Yes	No	O(n ²)
Counting sort	No	Yes	O(n)

Sorting algorithms

