PADRIEN SOLVENIS USING STARCY:

- > Search Strategy
 - -> Blind /Uninformed
 - -> New; St.C
- Constraint Satisfaction Problems (No final State, only

 L. Finite Search Tree Final State test)

 L. All solution same depth. Co path doesn't matter.

 (All equal)
- * 2- Player bames

SEAR CH FORMULATION:

- * Initial Stote
- * Final State or Final State Test (CSP)
- * Actions (Successor function checks if action/state are legal).

OPTIMIZE:

- eq: Number of Steps from IS to Fs.
- 2. Cost of finding a solution.
 - eg: 2 search strategy. Both find came solution. One does by expanding full tree other doesn't.

MEASURE OF DIPFICULTY OF A GEARCH PROBLEM:

- 1. Number of possible states (State space).
- 2. Branching factor
- 3. Depth of solution

SEARCH PROCESS:

Repeat:

- 1. Find a fringe/frontier node based on the strategy.
- 2. Expand the node
 - → Check if Fs
 - → Generate Children

SEARCH STRATEWIES:

ENALUATION:

- * Completeness: Find solution if exists
- * Time Complexity: Number of nodes expanded
- * Space Complexity: Maximum number of nodes in memory.
- * Optimality : Always find least-cost solution.

$$N(b,d) = 1+b+b^2 + \cdots + b^d$$

 $bn(b,d) = b+b^2 + \cdots + b^{d+1}$
 $N(b,d) = b+b^2 + \cdots + b^d$

BLIND STARCH STRATEMIES:

	BFS	DFS	LIMITED OFS(R)	TIERATIVE DEFPENSAL
Complete	\	×	d ≤ L	✓
Optimal	✓	×	*	✓
TC	Pq	ه	P	b
S	Pg	рш	ઠા	69

ID:

Heuristic

h(0): STRATE HIES: HEURISTIL SEARCH

UNIFORM COT , GREEDY BELT SEARCH FIRST STARCH SEARCH Complete X Optimal (if hin) is X od missible) βc"/ε7 TC \[c*/\[] SC 9(1) h(0) Evaluation : fln)= gln)) COST Straight functio p b(a) Distance line distance travelled till from n to ,0,

goal

HEURISTIC: Admissible

$$h(n) \le h^*(n)$$
 [least out to go from n to $goal$]

 $h(n) \ge 0$
 $h(n) \ge 0$

for a goal State 6.

n(n) = admissible => A= is optimal

CONSTRAINT SATSSFACTION PROBLEMS (CSPS):

PRIMAL / CONSTRAINT GRAPH:

Connect nodes that are in a constraint.

TYPEST

Unary us Binary VS Higher-constraints

Hard us Soft.

Variable

STRATEGY: DFS

Domain

IMPROVEMENTS:

Constraints

1. BACKTRACK SEARCH:

Avoid children that violate constraints.

Iterate through constraints and see if assignment violates it.

- 2. VALUE ORDERING.

 Least constraining value; Choose value that rules out
- the fewest values of remaining variables.
- 3. VARIABLE ORDERING:

Most constrained variable; Choose variable with fewest legal values.

- 4. FORWARD CHECKING (FC):
 - * Maintain set of possible valves for each variable.
 - " Update as you assign.
 - * Declare "bad state" if variable loses all values.
- 5. AAC CONSILTENCY (AC):
 - * Draw arcs between constrained variables with their allowed values
 - t Arc x y is consistent if

 Y value of x, there is a compatible

 value for y.

0 (02 43)

TWO PLAYER GAMES:

See it as one player more followed by another.

Terminal States (Not Goal / Final)

MINIMAY ALGORITHM:

Player 1 maximizes, 2 minimizes.

DFS. 0 (bd).

O-B PRUNING:

Best case: 0(bd/2)

GAMES WITH CHANCE:

Expected Minimax:

PROPOSITIONAL LOUTL:

SYNTAX:

a. Boolean Variables

c. Variable is sentence
$$S_1, S_2$$
 are sentences, then

sentences.

DE MORDAN'S LAW

NORMAL FORMS:

	UNIVERSAL	TRACTOBLE (SAT is easy)
CNF	✓	
BNF	✓	✓
Horn		✓
NNF	~	
DNNF CIRCUITS	✓	✓

CNF: Conjunction of clauses

DNF: Disjunction of terms

Horn: \$1 Positive literal per clause

Conjunction of such clauses

NNF: Negation only to literals

DUNF: AND Grate inputs are separate.

SEMANTECS:

M(d)= set of worlds where & holds at

Meaning of of { w: w | x }

Opposite: W of a

 $x \in A$ equivalent to β $M(\alpha) = M(\beta)$

 α is contradictory /inconsistent $M(\alpha) = \phi$

- * α is valid / tautology $M(\alpha) = \alpha II \quad \text{horlds}$
- α and β are mutually exclusive $M(\alpha) \cap M(\beta) = 0$
- * α implies β

 M(α) ⊆ M(β)

INFERFACE:

KB: 0

Query: a

 $\Delta \models \alpha$ reads: Δ implies α , Δ entails α

of follows from D.

INFERENCE METHODS:

1. TRUTH TABLE (MODEL ENUMERATION):

a imply of: M(a) & M(d)

(Brute Force)

REFUTATION THEOREM:

D ⊨ α : D implies α

An7d contractory M(An7a) = \$

2. INFERENCE RULES:

INFERENCE RULES R

Alax: & derived from A using R.

Complete:

If $\Delta \models \alpha$ then $\Delta \models \alpha$

Sound:

If $\Delta \vdash \alpha$ then $\Delta \vdash \alpha$

INFERENCE RULES:

1. Modus Ponens:

2. OR - INTRODUCTION:

3. AND - INTRODUCTION:

RESDLUTION:

Unit Resolution - One of the 2 clauses is unit.

Linear time! But it is not refutation

complete.

Is D F & 3

- 1. ANTA CONVERT to CAR
- 2. DATA prove unsat
 - " Contradiction => A Fd
 - , no contradiction => △ ⊭d

CONVERTIND SENTENCES INTO CAF:

Any sentence can be converted into CNF.

1. bet rid of all connections but for 1, v, 7

$$d \leftarrow \beta \rightarrow (a = 7\beta) \wedge (\beta = 7d)$$

0 92 v

2. Use de Morgan's law to push negations inside

3. Distribute V over 1

$$(\alpha \vee \beta) \wedge \beta \rightarrow (\alpha \wedge \beta) \vee (\beta \wedge \beta)$$

- 3. By REDUCTION SAT (Satistiability) SEARCA
 - Q. Complete Method: Systematic Search (dfs)
 Always completes

DPLL Algorithm:

I. DRIWIN CHE A

 $\rightarrow \triangle \wedge A$ $\rightarrow \triangle \wedge A$

- 2. UNIT RESOLUTION
- b. Incomplete Meshow: Local Search

 Completes if sat
 If unsat, might loop infinitely.
 - # MIN- (ONFICTS / HILL (CIMBIND:

 for i = 1... N: (Number of restarts)

 Choose random Starting Point.

 While the violated constraints decrease:

 Find neighbor hith least violated constraints

 Move to that neighbor.

& SIMULATED ANNERLING:

- Pick random neighbor (n)
- DE: violations (n) violations (s)
 - L> DE <0 : go to n
 - L, otherwise

T: Temperature

As time proceeds, chances to go to n decreases.

Randonization:

- Avoids local minima
- -> Reaches almost all nodes.

4. Convertinh KB (knowledge Base) into "tractable forms"
[Knowledge Compilation]

"lompile it" into a "tractable circuit".

NNF :

DNNF

Decomposability:

And Grates: Children should not share variables

DETERMENTSM:

OR Gates. 2 Children - 0, B then 9, B are motually

exclusive. & AB unsat.

OR bates -> Children same variables.

SOLVES:

SAT / MODEL COUNTING:

-> SMOOTHNESS:

→ (buots # of assignments that solve CNF.

HOW TO SOLVE #SOT:

1. BOSE CASE:

True gets), False gets 0

Every literal get 1.

(+ue /-ve)

2. AND Gates: Multiply

OR Gates: Add