Homework 2

Remark: In default, equations mentioned by an equation number such as (11.9a) are from Book 2.

Assignments with simple responses such as "I did it" or "I read it":

A1: Read discussions in Lecture Slides about the programming for the following Matlab functions:

mesh_generator_1D
shape_fun_1D_Lagrange
fem_generator_Lagrange_1D

- A2: Implement Matlab shape_fun_1D_Lagrange_ref.
- A3: Let \mathcal{T}_h be a mesh of a domain $\Omega \subset \mathbb{R}^1$ and let Π_p be the space of polynomials of degree p or less. Prove that for every element $K \in \mathcal{T}_h$,

$$V_h^p(K) = span\{L_{K,j}(x), j = 1, 2, \dots, p, p+1\} = \Pi_p.$$

A4: Let \mathcal{T}_h be a mesh of $\Omega \subset \mathbb{R}^1$ and let $\mathcal{N}_{h,g}$ be the set of finite element nodes for the p-th degree finite element space. Consider the following set of functions:

$$U_h^p(\Omega) = \left\{ \phi \in C^0(\overline{\Omega}) : \phi|_K \in V_h^p(K) \ \forall K \in \mathcal{T}_h \right\}$$

- (a) Show that $V_h^p(\Omega) \subseteq U_h^p(\Omega)$ where $V_h^p(\Omega)$ is the C^0 p-th degree finite element space spanned by the C^0 p-th degree finite element basis functions.
- (b) Is $U_h^p(\Omega) \subseteq V_h^p(\Omega)$ true? Why or why not?

Programming/Computing Problems:

C1: Consider the following mesh as follows:

Assume that the edges are ordered from the left to right. Find the edge matrix/arry for this mesh.

C2: Implement a Matlab function that can generate a uniform mesh for a 1D domain $\Omega = (x_l, x_r)$ with n elements. This function should be in the following format:

4

function mesh = mesh_generator_1D(domain, n)

Then generate a mesh for the domain $\Omega = (2,3)$ with n = 512 elements. Present numerical results in the following table:

p_{323}	
x_l	
x_r	

where x_l and x_r are the vertices of element K_{173} .

C3: Implement the Lagrange shape functions on an element with a Matlab function in the following format:

This Matlab function should work at least for degree = 0, 1, 2, 3. Then, generate a mesh \mathcal{T}_h for the domain $\Omega = (2,3)$ with n = 512 elements and use this Matlab function to evaluate the Lagrange shape functions on $K = K_{171} \in \mathcal{T}_h$. Present your numerical results by filling the following table:

	p = 1	p=2	p=3
$L_{K,1}^p(M)$			
$L_{K,2}^p(M)$			
$L_{K,3}^p(M)$	NA		
$(L_{K,1}^p)'(M)$			
$(L_{K,2}^p)'(M)$			
$(L_{K,3}^p)'(M)$	NA		
$L_{K,4}^p(M)$	NA	NA	
$(L_{K,4}^p)'(M)$	NA	NA	

where $M = (1/3)z_l + (2/3)z_r$ assuming $K = (z_l, z_r)$.

- C4: Assume fem is for the 3rd degree C^0 finite element space generated on the mesh \mathcal{T}_h for the domain $\Omega = (1,2)$ with n = 128 elements.
 - (a) How many nodes does this mesh have? How many nodes does this finite element space have?
 - (b) Which finite element nodes are in element K_{73} ?
 - (c) Find coordinates for all finite element nodes in $K_{73} \in \mathcal{T}_h$.