Spectral Clustering

References:

U. Von Luxburg, "A tutorial on spectral clustering," *Stat. Comput.*, vol. 17, no. 4, pp. 395–416, 2007.

Spectral Clustering

- The study of Laplacian eigenvalues revealed the structure of graphs, in particular the existence of a partition.
- Eigenvectors reveal how to select partitions
- Can we make these insights more explicit and formulate a spectral theory of clustering?

Reference: U. Von Luxburg, "A tutorial on spectral clustering," Stat. Comput., vol. 17, no. 4, pp. 395–416, 2007.

Back to the Start: Cut and Cluster

When cutting through edges, we can associate cost functions inspired by the Cheeger constant:

$$C(A,B) := \sum_{i \in A, j \in B} \mathbf{W}[i,j]$$

$$\operatorname{RatioCut}(A, \overline{A}) := \frac{1}{2} \frac{C(A, \overline{A})}{|A|} + \frac{1}{2} \frac{C(A, \overline{A})}{|\overline{A}|}$$

NormalizedCut
$$(A, \overline{A}) = \frac{1}{2} \frac{C(A, A)}{\text{vol}(A)} + \frac{1}{2} \frac{C(A, A)}{\text{vol}(\overline{A})}$$

Normalization seeks to impose balanced clusters

Exposing RatioCut

Let's try to solve:

$$\min_{A\subset V} \operatorname{RatioCut}(A,\overline{A})$$

Observations:

$$f[i] = \begin{cases} \sqrt{|\overline{A}|/|A|} & \text{if } i \in A \\ -\sqrt{|A|/|\overline{A}|} & \text{if } i \in \overline{A} \end{cases}$$

f is the indicator of the partition

$$f^T \mathbf{L} f = |V| \operatorname{RatioCut}(A, \overline{A})$$

$$||f|| = \sqrt{|V|}$$
 and $\langle f, 1 \rangle = 0$

Exposing RatioCut

The following problem is equivalent to Ratiocut:

$$\underset{A \subset V}{\operatorname{arg \, min}} f^T \mathbf{L} f$$
 subject to $||f|| = \sqrt{N}, \quad \langle f, 1 \rangle = 0$ and f indicator of A

NP-hard

$$\operatorname{arg\,min}_{f} f^{T} \mathbf{L} f \text{ subject to } ||f|| = \sqrt{N}, \quad \langle f, 1 \rangle = 0$$

Relaxed problem: Looking for a **smooth** partition function!

Exposing RatioCut

$$\operatorname{arg\,min}_{f} f^{T} \mathbf{L} f \text{ subject to } ||f|| = \sqrt{N}, \quad \langle f, 1 \rangle = 0$$

Solution (G connected): eigenvector of λ_2

Warning: recover partition after thresholding $f = sign(u_2)$

So we are back to the Fiedler vector!!!

RatioCut: Generalizing to k > 2

For more than two components, we look for a set of partition functions

$$F \in \mathbb{R}^{N \times k}$$
 $F[i,j] = f_j[i] = \begin{cases} 1/\sqrt{|A_j|} & \text{if } v_i \in A_j \\ 0 & \text{otherwise} \end{cases}$

Observe:
$$f_j^T \mathbf{L} f_j = \frac{\operatorname{Cut}(A_j, A_j)}{|A_j|}$$
 $F^T F = \mathbb{I}$

RatioCut
$$(A_1, \ldots, A_k) = \text{Tr}(F^T \mathbf{L} F)$$

Suggests the relaxed problem:

$$\arg\min_{F\in\mathbb{R}^{N\times k}}\operatorname{Tr}(F^T\mathbf{L}F)$$
 such that $F^TF=\mathbb{I}$

Unnormalized Spectral Clustering

This form of relaxed RatioCut = Unnormalized Spectral Clustering

$$\arg\min_{F\in\mathbb{R}^{N\times k}}\operatorname{Tr}(F^T\mathbf{L}F)$$
 such that $F^TF=\mathbb{I}$

Algorithm: Unnormalized Spectral Clustering

Compute the matrix F of first k eigenvectors of \mathbf{L}

Apply k-means to rows of F to obtain cluster assignments

Normalized Cut, k=2

NormalizedCut
$$(A, \overline{A}) = \frac{1}{2} \frac{C(A, A)}{\text{vol}(A)} + \frac{1}{2} \frac{C(A, A)}{\text{vol}(\overline{A})}$$

$$f[i] = \begin{cases} \sqrt{\operatorname{vol}(\overline{A})/\operatorname{vol}(A)} & \text{if } v_i \in A\\ -\sqrt{\operatorname{vol}(A)/\operatorname{vol}(\overline{A})} & \text{otherwise} \end{cases}$$

Check that:
$$\langle \mathbf{D}f, 1 \rangle = 0$$
 $f^T \mathbf{D}f = \text{vol}(G)$

$$f^T \mathbf{L} f = \text{vol}(V) \text{NormalizedCut}(A, \overline{A})$$

 $\arg\min_{f} f^{T} \mathbf{L} f \text{ subject to } f^{T} \mathbf{D} f = \operatorname{vol}(G), \quad \langle \mathbf{D} f, 1 \rangle = 0$ $g = \mathbf{D}^{1/2} f$ $\arg\min_{g} g^{T} \mathbf{L}_{\operatorname{norm}} g \text{ subject to } ||g||^{2} = \operatorname{vol}(G), \quad \langle g, \mathbf{D}^{1/2} 1 \rangle = 0$

$$g = \mathbf{D}^{1/2} f$$

Normalized Cut, k> 2

$$F[i,j] = f_j[i] = \begin{cases} 1/\sqrt{\operatorname{vol}(A_j)} & \text{if } v_i \in A_j \\ 0 & \text{otherwise} \end{cases}$$

$$f_j^T \mathbf{L} f_j = \frac{\operatorname{Cut}(A_j, \overline{A_j})}{\operatorname{vol}(A_j)}$$
 $F^T F = \mathbb{I}$ $f_j^T \mathbf{D} f_j = 1$

$$\arg\min_{H\in\mathbb{R}^{N\times k}}\operatorname{Tr}(H^T\mathbf{L}_{\mathrm{norm}}H)$$
 such that $H^TH=\mathbb{I}$ $H=\mathbf{D}^{1/2}F$

Algorithm: Normalized Spectral Clustering

Compute the matrix H of first k eigenvectors of \mathbf{L}_{norm}

Apply k-means to rows of H to obtain cluster assignments

Applications

In practice normalised spectral clustering is often preferred

In practice the eigenvectors are "re-normalized" by the degrees

$$F = \mathbf{D}^{-1/2}H$$

before k-means, because these are real cluster assignments

Rem: this is equivalent to using the "random walk Laplacian"

$$\mathbf{L}_{\mathrm{rw}} = \mathbf{D}^{-1} \mathbf{L}$$

If data has k **clear** clusters, there will be a gap in the Laplacian spectrum after the k-th eigenvalue. Use to choose k.

Example

