

Development of a Sequence Detection System in Wireless Sensor Networks

Moritz Schäfer | Maximilian Gotthardt Telecommunication

Introduction

- Wireless sensor networks
- Collecting and relay any environmental data
- Location information is important
- In some cases relative physical sequence is enough

We assume one dimensional sequences

Motivation

Create measurement data for sequence detection in multihop sensor networks

- Multihop support
- Measurment management
- Measurment collection and transmission
- Automated node discovery

What's Multihop?

Node 2 Node 3 is not in Range of Node 1

Node 3 is in Range of Node 2

So data can reach **Node 3** from **Node 1** via **Node 2**

Dezentrales Logo optional

- Sink node(Management)
 - Node Detection
 - Sender Selection
 - RSS measurement
 - Channel Selection
 - Data Collection
- Measurement nodes
 - React on sink node

Request for node ID

Request for node ID

Node response for availability

Assign next sender

After assigning next sender ...

Receivers "in range" are MEASURING RSS

Broadcast to all nodes, the new Sender frequency

Broadcast to all nodes, the new Sender frequency

Nodes acknowledge on the "next" channel, that they changed

Sending Data Request to all Nodes

Sending Data Request to all Nodes

All measured Data from all nodes will be collected

Architecture

- Protocols
 - Dissemination
 - Collection Tree Protocol
- Message Acknowledgement
- PC-Node communication

- Provides reliable broadcasting to every node in network
- Detects when a node is missing a packet
- For small data sizes

tos/lib/net/DisseminationUpdate.nc

```
interface DisseminationUpdate<t> {
  command void change(t* newVal);
}
```

tos/lib/net/DisseminationValue.nc

```
interface DisseminationValue<t> {
  command const t* get();
  event void changed();
}
```

Präsentationstitel Blindtext Lorem ipsum dolores | M. Seitermann | Anlass der Präsentation

Dezentrales Logo optional

Architecture – Collection Tree Protocol

- Improves delivery reliability
 - Acknowledgements for unicast packages
- Sending data over closest nodes (parents) to the root (sync)
- Using ETX for routing
 - expected transmissions as its routing gradient

Architecture - Acknowledgments

Still in discussion Strategies

- Sending Acknowledgments for all control packets
 - Using Collection Tree Protocol
 - Using direct transmission
 - Using Disseminate
- Waiting after each control packets
 - May be reliable, dependent on nodes
 - May be slow

Can we collect all measurments? Tests with

- Distance between node
- Obstacles
- Lower Transmision power

What we've done

Will be filled in with code and examples here...

Timetable

Milestone	Week	Goals	Success
Inital	43-45	Getting comfortable with environment: TinyOS, tmote, Communication Protocol, PC-Connectivity	Done
Milestone 1	46-49	Node detection PC communication/GUI Sender Selection Data Collection	
Milestone 2	50-2	Channel Switching Implement Sequence Algorithm	
Final	3-6	Testing Improvements Evaluation	

Präsentationstitel Blindtext Lorem ipsum dolores | M. Wristermann | Anlass der Präsentation

Dezentrales Logo optional

Thank You

Extra Stuff CTP – Details

16-Bit					
P C reserved		THL			
ETX					
origin					
seqno	collect_id				
	da	ta			

P: Routing pull.

C: Congestion notification.

THL: Time Has Lived.

ETX: The ETX routing metric of the single-hop sender.

origin: The originating address of the packet.

seqno: Origin sequence number.

collect_id: Higher-level protocol identifier.

data: the data payload, of zero or more bytes.