Nov23_PSP_22Apr

Nov23_PSP_22Apr

Gobika K	SABBAVARAPU KARTHIK
Piyush Kumar	manikandan m
kameswarreddy Yeddula	Prashant Kumar Soni
Manjunatha I	Mayur Hadawale
Sai Sharath	MD JASHIMUDDIN
Harshil Dabhoya	Vigneshwaran K
Rajeev	Pradeep Kumar Chandra
Yash Malviya	Shaurya Srivastava
Vijay V A	barani r
Mohammad Mateen	SIJU SAMSON
Kevin Theodore E	Mohammed Arshad
Robin Dhiman	Sarat Patel
Suraj Devraye	Pushkar Deshpande

Agenda:

Max subsequence sum w/o adjacent elements

No. of paths

No. of paths with obstacle

Dungeons & Princess.

A - Gren an array And max subsequence sum # you are not allowed to prek adjacent elements

$$am = 9 + 13 + 3 + 9$$
 $0 + 2 + 3 + 5$

follow lapat order Contiguous follow laput order

example

$$am = 9 + 13$$
 $0 + 13 = 22$

$$arr = 9 + 13 + 24$$
 $arrs = 9 + 24$

$$arr = 10 20 30 40$$
 $arrs = 20 + 40 = 60$

Observation

the last stage will be we have considered all subsequences from [0,7] to get maximum sum

88 (0,7)

$$take (7)$$
 $act 1 + 88 (0,5)$
 $take$
 $don't$
 $take$
 $don't$
 $take$
 $don't$
 $take$
 $don't$
 $sc (0,4)$
 $s (0,5)$

Optimal substructure

→ Bigger Problem can be solved noing smaller problem

Overlapping Subproblem

- Repeating subproblem

SS (1) - Max Subsequence sum from (0, 1) Pelation: 88 lij = MAX (SBC l-27 + A Ci7, SS li-17) take don't Brute force 9nt subsequence (A, 9) é Pf (l'xo) reform 0; // Base Condition take = A CiJ + subsequence (A, 1-2); dont = subsequence (f, i-1); return max (take, dont) Y $T. C = O(2^n)$ S. C = O(n)

Memoire

Pr = CJ + P mark as 0

Pnt subsequence (A, 9) {

Pf (Pxo) return 0; // Ease Condetton

Pf (DPCi) 1=0) return DPC 87 // reuse

take = A CiJ + subsequence (A, 1-2);

dont = subsequence (H, 1-1);

DPCiJ = max (take, don't) // store

return DPCiJ

Gterative Code

TL →			PRDD,	RDRD,	RDDR
			DDRR	, DRDR ,	DRRD
		◆ BP			

Quiz

RRD, DRP, RDR

8.C= O(RC)

last step (Observation)

Brute Force

Put ways
$$(r, c)$$
 {

if $(r==0)$ $c==0$ return 1:,

top = ways $(r-1, c)$

Left = ways $(r, c-1)$

return top + left

T. $c=2^{pc}$

Dynamie trogramming

Both optimal substructure & Overlapping subproblem ls met.

memo Ezatton

DP CPJCCJ / Pritialize to -1

Put ways (r, c) {

if (r==0 || C==0) return 1:

lf (DPCx) Cc7 (=-1) return DPCxJCc) (/reuse

top = ways (r-1, c)

left = ways (r, e-1)

DPCYJCCJ = top + left; Ustore

return DPCYJCCJ

J

Herathe approach // smallet to bigger problem DP CRJ CCJ; DP C07 C07 = 1; for (1=0; (< R; 1++) { for (p=0; p< c; p++) & if (i == 0 1 j == 0) DPC 17 Ej] = 1 else DPCircjr= dpci-17cjr+dpcircj-17; 0 2

₩ →	Find	tot	ol	No.	of i	vays	. +	70	reach	なな	from TL
											ent free)
									•	,	Right
	1	1	1	1						▼ Dov	งท
	1	v	١	t			1111			,	
	1	l	0	t	viruali -2e			III			
	t	1	t	1							

Observation

I	1	1)	Pf (mat Cij Cj) ==0)						
1	#	١	2	DP Ciacla = p						
1	1	#/	2	1/ rest of the code remarks						
1	2	2	4	the same						

aniz 3

a - Dungern and Frences

Find the minimum health level of the prince to start with to save the princess, where the negative numbers denote a dragon and positive numbers denote red bull Redbull will increase the health whereas the dragon will decrease health.

health <=0, it means prince is dead

Right

ams = 4

Observation

Greedy approach

In greedy approach we choose (0,1) over (1,0) which be a bad more

Brute Force Approach

2 0 -3 4 2 - 5 b -6 -7 5 -15 -2 3 -4 -3 10

smallest problem to solve

matcozcos X Dont have entire mat(z)(z)

ave entire smallest problem

Vien

Pf arr [N-1] CM-1] = -4 men Health needed for enter the cell

$$X + (-4) = 1$$

Next Steps

	E-1,j	To enter	Ci, j,	g,	should 4	unter
E, J-)	i,s	from	(1-1,5)	0~	· Li, j-1	

Min Health to enter
$$x + (-2) = 5$$

Win Health to enter $y + (-3) = 5$

Generalizing

ralizing

men Health CiJCjJ
$$\longrightarrow x$$
 $x + arr CiJCjJ = min g x at CitlJCjJ$
 $x + arr CiJCjJ = min g x at CiJCj+iJ$

	O	l	2	3			O	t	2	3	
0	-3	2	4	- 5		0	4	ı	1	6	
t	-6	5	-4	Ь		l	子	١	5	١	
2	-15	-7	5	-2	men Health	2	lb	8	2	7	
3	2	10	-3	-4	DP	3	1	١	8	ما	

aniz 4

T.c to perform above solution = O(x*c)

Algorithm (Pndex (t, 3))

n + arr Cir Cjr = min (dp Ci+1) Cjr, dp Cir Cj+1) n = min (dp Ci+1) Cjr, dp Cr) Cj+1) - arr Cir CjrSince x > 1

x = max (1, min Cdp Ci+I)CJJ, dp CiJCJ+I) - arr CiJCj)

psendo code

dp CNJCMJ // mitialize as o

PF (AM CN-17 CM-17 >0)

dp CN-17 CM-17 = 1

else

dp CN-17 CM-17 = 1+ abs (arr CN-17 CM-17)

T. C = D (P * C) S. C = D (P * C)

Catalan Numbers

Numerous application en combinatorial mathematics.

- no. of doethnet binary Rearch tree

with N nodes

pairs of paranthuses

Segnence

$$Co = 1$$
 , $C_1 = 1$

Generalize

psendo code

Clo7=1 CCIJ=1;

for
$$(i=2)$$
, $i<=n$, $i+1$) {

 for $(j=0)$, $j, $j++$) {

 CciJ+= CCjJ * CCn-1-jJ

 a$