(19)日本国特新庁 (JP) (12) 公開特許公報 (A) (11)特許出願公開番号

特開平6-191821

(43)公開日 平成6年(1994)7月12日

(51) Int.Cl.5

識別記号

FΙ

技術表示箇所

C01B 33/04 HO1L 21/205 7202-4G

庁内整理番号

審査請求 未請求 請求項の数2(全 8 頁)

(21)出願番号

特願平4-342682

(71)出願人 000002004

昭和電工株式会社

(22) 出願日

平成4年(1992)12月22日

東京都港区芝大門1丁目13番9号

(72)発明者 矢野 幸太郎

神奈川県川崎市川崎区扇町5-1 昭和電

工株式会社化学品研究所内

(72)発明者 橘野 裕

神奈川県川崎市川崎区扇町5-1 昭和電

工株式会社化学品研究所内

(72)発明者 田沢 昇一

神奈川県川崎市川崎区扇町5-1 昭和電

工株式会社化学品研究所内

(74)代理人 弁理士 寺田 實

最終頁に続く

(54) 【発明の名称】 シリコン膜形成用の高次シラン含有溶液

(57)【要約】

【目的】 強膜法によるシリコン膜形成に用いることの できる高次シラン含有溶液を提供する。

【構成】 高次シランと特定の有機溶剤とから成るシリ コン膜形成用の溶液。

1

【特許請求の範囲】

【請求項1】 一般式Si₁H₂₊₊₂(但し、nはn≥2の 整数) で表される高次シランを、有機溶剤に溶解させた シリコン膜形成用の高次シラン含有溶液において、該溶 媒中の全高次シラン濃度(全高次シラン重量/(全高次 シラン重量+溶剤重量)×100)が0.1~50重量 %であり、有機溶剤としてC.H.(但し、aは3≦a≦ 16、 bは8≦b≦34の整数) で表される飽和炭化水 素類、不飽和炭化水素類、芳香族類あるいはCaHaO $_{1}$ (但し、dは2 \leq d \leq 16、eは6 \leq e \leq 34、fは1 10 ≦f≤3の整数)で表されるエーテル類、あるいはこれ らの混合溶剤を用いることを特徴とするシリコン膜形成 用の高次シラン含有溶液。

【請求項2】 請求項1配載の溶液を塗布し、高次シラ ンが分解するようなエネルギーを加えることを特徴とす るシリコン膜形成法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、LSI、薄膜トランジ スタ、光電変換装置、及び感光体用途でのシリコン膜形 20 成に用いられる高次シラン含有溶液に関する。

[0002]

【従来の技術】従来、ポリシリコン膜やアモルファスシ リコン (以下「a-Si」という) 膜の形成方法として は、熱CVD (Chemical Vapor Deposition) 法、プラズ マCVD法、光CVD法等が利用されており、一般的に はポリシリコン膜では熱CVD法(Kern, W. ら: J. Vac. Sci. Technol., 14(5)巻(1977年)第1082頁参照)、a-Si膜ではプラズマCVD法 (Spear. W. E.S: Solid State Com., 17巻 (1975年) 第1193頁参照) が広く用い 30 られ企業化されている。

【0003】しかるに、これらの気相からの堆積方法を 用いた場合は、高価な高真空装置が必要である。ガスの 流れの解析が難しく、基板の大きさに比べて装置が大き くなり形状の制約も受ける。また大面積化が困難であ る。気相反応を用いるため気相中で粉末が発生し、装置 の汚染及び洗浄、デバイスの歩留り等の問題点を生じ る。また膜形成速度が遅くスループットが悪い。プラズ マCVD法においては、高周波発生装置等複雑で高価な 装置が必要となる。また原料にガスを用いるが、それら 40 のほとんどが爆発性あるいは有毒性を有し、取扱い上の 危険性が大きい。一方、以上の気相法における欠点が無 い方法として、強布膜法(SOG法)がある。LSIで の層間絶縁膜や平坦化膜等には塗布膜法が利用されてい るが、シリコン膜用には塗布するための適当な溶液が存 在しなかった。

[0004]

【発明が解決しようとする課題】強布膜法によるシリコ ン膜形成に用いることのできる液体の原料としては、炭 般式Si_nH_{2n+2}(但し、nはn≥2の整数) で表される 高次シランが適している。しかるに高次シランのみの状 態では、高次シランを基板上に薄膜として均一に塗布す るには困難を生じ、また大気中に出した場合、蒸気圧分 の高次シランが大気と反応し容易に燃焼に至る危険性が ある。本発明はかかる点に鑑みてなされたもので、気相 からの堆積方法を用いず、塗布膜法によるシリコン膜形 成に用いることのできる溶液を提供することを目的とし ている。

[0005]

【課題を解決するための手段】本発明者らは、上記の目 的を達成するために鋭意努力した結果、一般式SiaH 20+2 (但し、nはn≥2の整数)で表される高次シラン を、一定の割合で有機溶剤に溶解させた高次シラン含有 溶液において、有機溶剤としてC.H。(但し、aは3≦ a≤16、bは8≤b≤34の整数)で表される飽和炭 化水素類、不飽和炭化水素類、芳香族類、あるいはCa $H_{\epsilon}O_{\epsilon}$ (但し、dは2≤d≤16、eは6≤e≤34、 fは1≤f≤3の整数)で表されるエーテル類、あるい はこれらの混合溶剤を用いた高次シラン含有溶液を、徐 布膜法によるシリコン膜形成用に用いることにより、高 品質なシリコン膜が大面積に安全にかつ効率よく得られ ることを発見した。

【0006】以下、本発明の高次シラン含有溶液を説明 する。有機溶剤に溶解させて基板上に塗布する液体原料 として本発明で使用する高次シランは、一般式51.H 311+3 (但し、nはn≥2の整数)で表され、ジシラン (Si₁H₈)、トリシラン (Si₁H₈)、テトラシラン (SiaHia)、ペンタシラン(SiaHia)、あるいは ヘキサシラン (Sie Hie) 以上のものである。これら の高次シランは、1種用いても2種以上の混合液を用い てもよい。

【0007】本発明で使用する有機溶剤は、高次シラン が可溶なものであればかまわないが、高次シランとの反 応性が無いことが望ましい。また、生成した膜中への溶 剤の残留を防ぐために沸点が300℃以下の有機溶剤を 用いることが望ましい。このような有機溶剤としては、 C_aH_b (但し、aは3 \leq a \leq 16、bは8 \leq b \leq 34の整 数)で表される飽和炭化水素類、不飽和炭化水素類、芳 香族類、あるいはC₄H_eO₁(但し、dは2≤d≤16、 eは6≤e≤34、fは1≤f≤3の整数) で表される エーテル類、あるいはこれらの混合溶剤が用いられる。 また取扱い上、室温で液体状のものが好ましい。

【0008】例をあげれば、C.H.(但し、aは3≦a ≤16、bは8≤b≤34の整数)で表される飽和炭素 水素類、不飽和炭化水素類、芳香族類としては、プロバ ン、プタン、ペンタン、2-メチルプタン、ヘキサン、 2-メチルペンタン、2,2-ジメチルプタン、2,3 ージメチルプタン、ヘプタン、2-メチルヘキサン、3 **素や酸素を分子内に含まないことが必要であるため、― 50 -メチルヘキサン、ジメチルペンタン、オクタン、2.**

2. 3-トリメチルペンタン、イソオクタン、ノナン、 2、2、5-トリメチルヘキサン、デカン、ドデカン、 ベンテン、ヘキセン、ヘプテン、オクテン、ノネン、デ セン、ペンゼン、トルエン、キシレン、エチルベンゼ ン、クメン、メシチレン、プチルベンゼン、ジエチルベ ンゼン、スチレン、シクロペンタン、メチルシクロペン タン、シクロヘキサン、メチルシクロヘキサン等であ

【0009】 CaHaOr(但し、dは2≦d≦16、eは6 類としては、ジメチルエーテル、メチルエチルエーテ ル、シエチルエーテル、シプロピルエーテル、シイソプ ロビルエーテル、ジプチルエーテル、エチルビニルエー テル、プチルピニルエーテル、アニソール、ペンジルエ チルエーテル、ジフェニルエーテル、ジオキサン、トリ オキサン、フラン、テトラヒドロフラン、テトラヒドロ ピラン、1,2-ジメトキシエタン、1,2-ジエトキシ エタン、1, 2-ジプトキシエタン、ジエチレングリコ ールジメチルエーテル、ジエチレングリコールジエチル リセリンエーテル、クラウンエーテル、メチラール、ア セタール等である。これらの有機溶剤は、1種用いても 2種以上の混合溶剤を用いてもよい。

【0010】本発明における有機溶剤に溶解させた高次 シランの溶液中の全高次シラン濃度(全高次シラン重量 / (全髙次シラン重量+溶剤重量) ×100) は、好ま しくは全高次シラン濃度が0.1~50重量%である。 高次シラン濃度が50重量%以上では、大気雰囲気下で は蒸気圧分の高次シランが大気と反応し燃焼に至る危険 性が大幅に増加する。全高次シラン濃度が0.1重量% 30 以下では、十分な膜厚の膜を得るのに困難を生じる。

【0011】本発明の高次シラン含有溶液を用いてシリ コン膜を形成する際には、まず第一に基板上に高次シラ ン含有溶液を塗布する。その際には、スピンコート法、 あるいは浸漬後引き上げる方法等があるが、一般にはス ピンコート法が用いられる場合が多い。スピンコート法 におけるスピナーの回転数は、一般には100~100 00RPM、好ましくは300~6000RPMが用いられ る。強布を行なった後は、必要に応じて高次シラン含有 溶液から有機溶剤をあらかじめ蒸発除去した後、紫外線 40 光照射による光重合、あるいは加熱による熱重合等の方 法により所定のシリコン膜を得る。本発明の高次シラン 含有溶液を用いて得られるシリコン膜の膜厚は、5㎜~ 5μm程度まで自由に選択することができるが、好まし くは10m~2μm程度の膜厚が用いられる。

【0012】請求項2の高次シランが分解するようなエ ネルギーとは、波長400mm以下の光照射、または25 0℃以上の加熱のことをいう。紫外線光照射による光重 合を行なう場合は、一般に照射する光の光源としては、 波長400nm以下の光の光源が用いられる。これには例 50 15nm ~ 400 nmに分布し、160. 8nmに最大ピーク

えば、低圧水銀ランプ光、Hzや重水素、あるいはAr. Kr, Xe等の希ガスの放電光、エキシマレーザー光等が 用いられる。加熱による熱重合を行なう場合は、一般に 250~700℃において10~120分加熱すること により行なう。以上の方法において、一般に450~5 00℃以下の温度ではa-Si膜、それ以上の温度では ポリシリコン膜が得られる。

[0013]

【作用】一般式SinH2n+2(但し、nはn≥2の整数) \leq e \leq 3 4、fは $1\leq$ $f\leq$ 3 の整数)で表されるエーテル 10 で表される高次シランを、一定の割合で有機溶剤に溶解 させた溶液を基板上に塗布した後、分解して基板上にシ リコン膜を形成させることにより高品質なシリコン膜が 形成できる。 本発明の方法では高次シランを有機溶剤 に溶解させて用いるため、塗布膜法により高次シランを 薄膜として均一に塗布することができ、これにより基板 上に選択された膜厚で均一にシリコン膜が形成できる。

【0014】また一般に高次シランは大気中で自然発火 性の液体あるいは液化ガスであるが、本発明の方法では 高次シランを有機溶剤に溶解させて用いるため、大気中 エーテル、ジエチレングリコールジプチルエーテル、グ 20 での自然発火性は大幅に減少し取扱いが容易になる。本 発明の方法では液状の原料を用いるため、一般のCVD 法と異なり装置が容易で粉末の発生が防げる。また従来 のCVD法では困難であった大面積基板にも効率よく安 全に高品質なシリコン膜が形成できる。

[0015]

【実施例】以下実施例により本発明を詳細に説明する が、本発明を限定するものではない。本発明の高次シラ ン含有溶液は以下のようにして調製した。まず有機溶剤 として市販の特級試薬を脱気及び脱水を行なった後、蒸 留により精製して用いた。高次シランとしては、一定の 組成の混合液体、あるいは蒸留によりほぼ単一の高次シ ランに精製した液体を用い、不活性ガス中で上記有機溶 剤中に所定濃度まで撹拌しながら混合する。混合にあた り、系内への空気の混入を防ぐために、系内圧力は微加 圧に保った。混合の順番は高次シランを有機溶剤に滴下 しても逆でも可であるが、容器に高次シランが付着する ことを防ぐために、高次シランの滴下口を有機溶剤の液 面近くに設置した。

【0016】本発明の高次シラン含有溶液を用いてシリ コン膜を形成するための装置の例を示せば図1. 図2の ようになる。図1は紫外線照射による光重合を行なう場 合の例、図2は加熱による熱重合を行なう場合の例を示 している。図1の装置において、光源として重水素ラン ブ106を用いた。膜形成室101内へは重水素ランプ 106からMgF:製の光照射窓107を通して光を照射 する。膜形成室101内にはヒーター等によって加熱可 能な1000の円形の基板台103が設けられ、その上 に基板102が保持される。重水素ランプ106は、1 50W, 25 oのものを設置した。光のスペクトルは1

5

を持っている。高次シラン含有溶液を塗布された基板1 02を膜形成室101中の基板台103に保持した後、 不活性ガスを不活性ガス流量計104によって膜形成室 101に導入し、必要に応じて基板102上の溶液から 有機溶媒を蒸発させる。蒸発した有機溶媒は排気系10 5を通って排出させる。膜形成室101において高次シ ランを光の照射により分解し基板102上にシリコン膜 を堆積させる。

【0017】図2の装置において、膜形成室201内に はヒーター等によって加熱可能な1000の円形の基板 10 基板202上にシリコン膜を形成させた。 台203が設けられ、その上に基板202が保持され る。高次シラン含有溶液を塗布された基板202を膜形 成室201中の基板台203に保持した後、不活性ガス を不活性ガス流量計204によって膜形成室201に導 入し、必要に応じて基板202上の溶液から有機溶媒を 蒸発させる。蒸発した有機溶媒は排気系205を通って 排出させる。膜形成室201において高次シランを加熱 により分解し基板202上にシリコン膜を堆積させる。

【0018】以上図1及び図2の例において、基板上へ の溶液の塗布は、市販の不活性ガスで置換可能な、回転 20 実施例2と同じにしてシリコン膜を形成させた。 数100~6000RPM 、ホルダー径200mmのスピン コーターを用いて行なった。基板上への溶液の塗布はス ピンコーターに基板102,202を保持した後、所定 量溶液を滴下し、所定の回転数で所定時間回転させて行

【0019】実施例において使用した高次シラン含有溶 液の組成を表1に示した。実施例、比較例において得ら れた膜の構造をX線回折により調べた後、a-Si膜に ついては次の物性の測定を行ない結果を表2に示した。 で行ない、電気伝導度はAI蒸着により、コプレーナー 型のセルを形成して測定した。

光学ギャップ···光吸収係数αより、√αhν-hνプロ ットの切辺として求めた。

【0020】実施例1

高次シラン含有溶液として表1 (以下同じ) のNo. 1の 組成のものを用い、実験装置として図1に示した装置を 使用した。基板102としてコーニング社の7059ガ ラスを用い、まず窒素ガス雰囲気下でスピンコーターに て、溶液No. 1を数ml基板102上に滴下し、1000 40 RPMで3秒、次いで3000RPMで10秒間回転し、塗布 膜を形成した。次に膜形成室101内の基板台103の 上に基板102を設置し、不活性ガス流量計104より 水素ガスを500CCM 流しながら、基板台103の温度 を150℃に設定した後、重水素ランプ106から紫外 光を光照射窓107を通して40分間照射して、高次シ ランの光重合を行ない、基板102上にシリコン膜を形 成させた。

【0021】実施例2

高次シラン含有溶液としてNo. 1の組成のものを用い、

実験装置として図2に示した装置を使用した。基板20 2としてコーニング社の7059ガラスを用い、まず窒 素ガス雰囲気下でスピンコーターにて、溶液No. 1を数 ml基板202上に滴下し、1000RPMで3秒、次いで 3000RPMで10秒間回転し、塗布膜を形成した。次 に膜形成室201内の基板台203の上に基板202を 設置し、不活性ガス流量計204より水素ガスを500 CCM 流しながら、基板台203の温度を350℃に設定 した後、50分間保持し高次シランの熱重合を行ない、

【0022】 実施例3

(4)

高次シラン含有溶液としてNo. 2の組成のものを用い、 塗布膜形成をスピンコーターで、1000RPMで5秒、 次いで3000RPMで15秒間回転して行なった他は、 実施例1と同じにしてシリコン膜を形成させた。

【0023】実施例4

高次シラン含有溶液としてNo. 2の組成のものを用い、 塗布膜形成をスピンコーターで、1000RPMで5秒、 次いで3000RPMで15秒間回転して行なった他は、

【0024】 実施例 5, 7, 8, 10, 11, 15, 1

高次シラン含有溶液としてNo. 3, 5, 6, 8, 9, 1 1, 12の組成のものを用いた他は、実施例1と同じに してシリコン膜を形成させた。

【0025】 実施例12

高次シラン含有溶液としてNo. 9の組成のものを用いた 他は、実施例2と同じにしてシリコン膜を形成させた。

【0026】実施例6,9,13,17

光電気伝導度···AM-1.5,100mW/cm³の光照射下 30 高次シラン含有溶液としてNo.4,7,10,13の組 成のものを用いた他は、実施例3と同じにしてシリコン 膜を形成させた。

【0027】 実施例14

高次シラン含有溶液としてNo. 10の組成のものを用い た他は、実施例4と同じにしてシリコン膜を形成させ た。

【0028】 実施例18

基板102として石英ガラスを用い、塗布膜形成を行な った基板を紫外光照射しながら、基板台103の温度を 150℃で10分間保持した後、さらに10℃/分の昇 温速度で550℃まで40分、さらに550℃で20分 間保持して紫外光照射を続けた他は、実施例1と同じに してシリコン膜を形成させた。得られた膜の光電気伝導 度は3. 1×10-4S/cmであり、従来の膜(約10-4 S/cm) と同等であった。

【0029】 実施例19

基板202として石英ガラスを用い、塗布膜形成を行な った基板を熱重合における基板台203の温度を350 ℃で30分間保持した後、さらに5℃/分の昇温速度で 50 550℃まで40分、さらに550℃で20分間保持し

た他は、実施例2と同じにしてシリコン膜を形成させ た。得られた膜の光電気伝導度は1. 1×10-4S/cm であり、従来の膜(約10-1S/cm)と同等であった。 【0030】実施例20

基板102として100mの熱酸化膜を形成した3イン チ径のシリコン単結晶基板を用いた他は、実施例1と同 じにしてシリコン膜を形成せしめた。基板102を取り 出した後、A1蒸着によりソース及びドレイン電極を形 成し、チャンネル長100 μm、チャンネル幅200 μ mの薄膜トランジスタを作成した。得られたトランジス 10 膜厚は約50mであった。 夕の特性を測定しところ、電界効果移動度は電子移動度 が2. 1 cm²/Vsであり、従来のアモルファスシリコンT FT (約2cm²/Vs) と同等であった。

【0031】実施例21

基板102として100mの熱酸化膜を形成した3イン チ径のシリコン単結晶基板を用いた他は、実施例3と同 じにしてシリコン膜を形成せしめた。基板102を取り 出した後、A1蒸着によりソース及びドレイン電極を形 成し、チャンネル長100μm、チャンネル幅200μ mの薄膜トランジスタを作成した。得られたトランジス 夕の特性を測定したところ、電界効果移動度は電子移動 度が64cm²/Vsであり、従来のポリシリコンTFT(約 50cm /Vs) と同等であった。

【0032】以上の実施例においてX線回折測定より実 施例1~17及び20ではシリコン膜としてa-Si 膜、実施例18,19及び21ではポリシリコン膜が得 られた。ポリシリコンの粒径はいずれも約4~5 µm、

【0033】比較例

市販のプラズマCVD装置を用い、反応ガスとしてモノ シランを用い、0.1torrの圧力下、基板台温度200 ℃で、13.56MEZ の高周波出力20Wにて5分間プ ラズマCVD法を行ないa-Si膜を80mmの膜厚に堆 積せしめた。

[0034]

【表1】

_	
o	

9							,,,								10
	和	-	10	-	10	-	-	10	-		10	-	-	10	
1%)	くをサンシン以上	0.269	69		0.1	0.269	0.01	0. 1	0.269	0.01	0.1	0.269	0.01	0.1	
後度 (重量%	スツタツルン	0. 193	1.93	0.98	9.8	0.193	96.0	8.6	0. 193	0.88	8 .6	0.193	0.98	9.8	
南次シロン徴用	テトラシラン	0.216	2. 16	0.01	0. 1	0.216	0.01	٥. ي	0.216	0.01	0. 1	0.218	0.01	0. 1	
l he	イラをリイ	0.285	2.85	0	0	0.285	0	0	0.285	0	0	0.285	0	0	
	ジャッン	0.037	0.37	0	0	0.037	0	0	0.037	0	0	0.037	0	0	
加泰塔地		トルエン	イエイ	くエイイ	トルコン	ョーヘキサン	ョーヘキサン	n-ヘキサン	ジエチルエーテル	ジエチルエーテル	ゾエチルエーテル	ゾプロピルエーテル	ジプロピルエーテル	ゾプロビルエーテル	
通次ツルン	的右部被形	1	2	9	4	5	9	7	8	6	0.7	11	12	13	

【0035】表2から明らかなように、本発明により形 成したa-Si膜は、プラズマCVD法により得られた 膜と比較して、光伝導度において同等または優れてい

た。 【表2】

12

11					
	形成	条 件		膜特	性
実施例	高次シ		膜厚	光伝導度	光学
	ラン含有	形成法			ギャップ
	溶液Na		(nm)	(10 ⁻⁴ S/cm)	(eV)
1	1	光重合	50	2.4	1.78
2	1	熱重合	40	0.6	1.50
3	2	光里合	80	1.8	1.70
4	2	熱重合	75	0.4	1.55
5	3	光重合	45	1. 8	1. 69
6	4	光重合	60	3. 0	1.72
7	5	光重合	55	1. 2	1.80
8	6	光重合	50	2. 0	1.78
9	7	光重合	70	2. 1	1.75
10	8	光重合	60	1. 3	1.77
11	9	光重合	50	1. 9	1.68
12	9	熱重合	40	0.3	1.42
13	10	光重合	65	2.0	1.69
14	10	熱重合	50	0.4	1.45
15	11	光重合	55	1.2	1.76
16	12	光皇合	4.5	1.8	1.66
17	13	光重合	60	0, 3	1.67
	1	プラズマCVD	80	0.1	1.68

[0036]

【発明の効果】以上述べたように本発明によれば、一般 30 が期待できる。 式Si, H:1+2 (但し、nはn ≥ 2の整数) で表される高 次シランを、一定の割合で有機溶剤に溶解させた溶液を 基板上に塗布した後、分解して基板上にシリコン膜を形 成させることにより高品質なシリコン膜が均一に高い安 全性で形成できる。本発明の高次シラン含有溶液を用い てシリコン膜を形成すると、液状の原料を用いるため、 一般のCVD法と異なり装置が容易で粉末の発生が防げ る。また従来のCVD法では困難であった大面積基板に も効率よく安全に高品質なシリコン膜が形成できる。ま た複雑で高価な反応装置を必要としないため、半導体材 40 104,204 不活性ガス流量計 料装置における設備費を極めて小さくできる等の長所を 有する。以上のことより本発明の高次シラン含有溶液 は、シリコン膜応用デバイスとしてのLSI、薄膜トラ ンジスタ、光電変換装置、感光体等のシリコン膜形成用

に広く利用でき、シリコン膜の利用分野の飛躍的な拡大

【図面の簡単な説明】

【図1】紫外線照射による光重合でシリコン膜を形成す る装置。

【図2】加熱による熱重合でシリコン膜を形成する装

【符号の説明】

101,201 反応室

102,202 基板

103,203 基板台

105,205 排気系

重水素ランプ 106

光透過窓 107

フロントページの続き

(72)発明者 川崎 計二

神奈川県川崎市川崎区扇町 5-1 昭和電 工株式会社化学品研究所内