

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro(43) Internationales Veröffentlichungsdatum
10. Juni 2004 (10.06.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/048805 A1

(51) Internationale Patentklassifikation⁷: F16H 1/22 (74) Anwalt: LOHNERT, Wolfgang; Lahn 12, A-6600 Breitwang-Reutte (AT).

(21) Internationales Aktenzeichen: PCT/EP2003/013011

(22) Internationales Anmeldedatum: 20. November 2003 (20.11.2003)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität: 102 54 527.8 22. November 2002 (22.11.2002) DE

(71) Anmelder und
(72) Erfinder: ARNDT, Joachim [DE/DE]; Wartberghöhe 2, 83278 Traunstein (DE). SIMON, Maximilian [DE/DE]; Blumenstr. 14, 82140 Olching (DE).

(71) Anmelder und
(72) Erfinder (nur für US): VOJACEK, Herbert [DE/DE]; Georg-Stöger-Str. 21, 83703 Gmund a Tegernsee (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR EFFECTING LOW-LOSS TORQUE TRANSMISSION IN PLANETARY GEARS

(54) Bezeichnung: VERFAHREN ZUR VERLUSTARMEN DREHMOMENTÜBERLEITUNG IN PLANETENGETRIEBEN

WO 2004/048805 A1

(57) Abstract: The invention relates to a method for effecting low-loss torque transmission in a single-stage planetary gear comprising 2 - 6 planet units. The arrangement and the interaction of individual gear elements in conjunction with a method for mounting and adjusting them result in a low-noise and low-loss torque transmission with uniform load distribution to the individual planet units.

[Fortsetzung auf der nächsten Seite]

Erklärungen gemäß Regel 4.17:

- *Erfindererklärung (Regel 4.17 Ziffer iv) nur für US*
- *Erfindererklärung (Regel 4.17 Ziffer iv) nur für US*

Veröffentlicht:

- *mit internationalem Recherchenbericht*
- *vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen*

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(57) Zusammenfassung: Die Endung betrifft ein Verfahren zur Drehmomentübertragung in einem einstufigen, 2 - 6 Planeteneinheiten aufweisenden Planetengetriebe. Die Anordnung und das Zusammenwirken einzelner Getriebeelemente in Verbindung mit einem Verfahren zu deren Montage und Justierung ergeben eine geräusch- und verlustarme Momentübertragung bei gleichmässiger Lastaufteilung auf die einzelnen Planeteneinheiten.

Verfahren zur verlustarmen Drehmomentüberleitung in Planetengehäusen

Die Erfindung betrifft ein Verfahren zur verlust- und geräuscharmen Übertragung eines mit niedriger Drehzahl über eine Einleitwelle in ein Getriebe eingeleiteten Drehmoments auf eine Abtriebswelle vergleichsweise hoher Drehzahl in einem einstufigen, mehrere Planeteneinheiten aufweisenden Planetengetriebe.

Mechanische Getriebe dienen dazu, ein über eine Antriebswelle eingeleitetes Drehmoment in Erfüllung verschiedener Randbedingungen möglichst verlustfrei, betriebssicher und kosteneffizient auf eine Abtriebswelle zu überführen. Vorgegebene Randbedingungen betreffen die Baumaße, bzw das verfügbare Raumangebot, die Größe des zu übertragenden Momentes, die vorgegebenen Wellendrehzahlen bei der Ein- und Ableitung, aber auch den Grad der Geräuscharmut, der Betriebssicherheit, gleichmäßiger Auslastung sowie die Forderung nach konstruktiver Auslegung für eine einfache Montage und Wartung des Getriebes.

Leistungsverluste in langsam laufenden Getrieben sind überwiegend Reibungsverluste, verursacht durch axiale und/oder radiale Kräfte zwischen kämmenden Zahnrädern und an Wellenlagern.

Es ist daher der Bedeutung entsprechend eine Vielzahl von Vorschlägen zur Minimierung von Drehmomentverlusten in Getrieben bekannt, wobei die oben angesprochenen, zu berücksichtigenden Randbedingungen zu Kompromissen zwingen.

Getriebezahnräder sind gerad- oder schrägverzahnt ausgeführt. Zur Kompensation von Axialkräften und zur Minimierung von Leistungsverlusten in Lagern werden Schrägverzahnungen als Doppel- oder Pfeilverzahnungen ausgeführt, d.h. ein

Zahnrad, bzw. eine Zahnradeinheit weist zwei aneinandergrenzende, angeschrägte Zahnhälften oder zwei, eine Einheit bildende, im Zahnbereich entsprechend angeschrägte Halbräder auf.

5 Eine eigene Gruppe von Getrieben umfasst die Stufenplaneten. Darunter versteht man Getriebe mit ein- oder zwecks Drehmoment-, bzw. Lastaufteilung vorzugsweise mehreren Planeteneinheiten, die sich um ihre eigene Planetenwelle drehen und die gegebenenfalls zusätzlich die Welle einer zur Planeteneinheit zentralen Getriebekomponente mit einem Sonnenritzel umkreisen (Standgetriebe /

10 Umlaufgetriebe). Die Planeteneinheit wirkt im Getriebe stets mit einer momenteinleitenden und einer momentabreibenden Getriebekomponente zusammen, beispielsweise mit einem Hohlrad und einem Sonnenritzel. Auf der Welle einer Planeteneinheit sind, voneinander beabstandet und zueinander drehfest angeordnet, zwei Zahnräder, bzw. Zahnradeinheiten unterschiedlicher Zähnezahl.

15 Stufenplanetengetriebe ermöglichen eine höhere Übersetzung in einer Getriebestufe als Planetengetriebe mit Einfachplaneten. Sie weisen auch weniger Teile auf als echte zweistufige Planetengetriebe und werden deshalb eingesetzt. Für eine kompakte Bauweise werden die Planetengetriebe üblicherweise mit Leistungsverzweigung ausgeführt.

20 Bei hohen Ansprüchen an die Laufruhe von Stufenplanetengetrieben werden die Zähne der Zahnräder vielfach schrägverzahnt ausgeführt. Einfache Schrägverzahnungen führen bei der Drehmomentübertragung zu unerwünschten Axialkräften zwischen den kämmenden Zahnrädern. Als Gegenmaßnahme ist es

25 bekannt, durch die Wahl der Schrägungsrichtung und der Größe des Schrägungswinkels von zwei, auf einer Planetenwelle für die Lasteinleitung und den Lastabtrieb sitzenden Planetenzahnräder die auftretenden Axialkräfte zu kompensieren und damit die resultierende Axialkraft einer Planeteneinheit möglichst klein zu halten. In einer Planeteneinheit nicht kompensierte Axialkräfte und

30 Kippmomente müssen in den Wellenlagern der Planeteneinheit aufgenommen werden.

Beim Zusammenwirken von schrägverzahnten Planeteneinheiten mit einer An- oder Abtriebskomponente des Getriebes werden stets erhebliche Axialkräfte auf diese übertragen, besonders auch in den praxisnahen Fällen, wo zur Leistungsverzweigung

zwei und mehr Planeteneinheiten eingesetzt werden. Hohe Axialkräfte erfordern, vor allem bei der Lagerung schnell drehender Getriebekomponenten; z.B. der Abtriebskomponente mit Sonnenritzel, das zudem meist noch radial frei einstellbar gestaltet ist, erheblichen baulichen Aufwand hinsichtlich Lagergröße und

5 Lagerausführung zur Aufnahme der Axialkräfte. Unerwünschte Leistungsverlusten in den Lägern sind die Folge.

In den einzelnen Planeteneinheiten innerhalb eines Stufenplanetensatzes bedarf es zur gleichmäßigen Lastaufteilung auf die einzelnen Planeteneinheiten bei

10 gleichzeitiger Kompensation von Axialkräften einer sehr genauen Abstimmung der Winkelstellungen (Zahnschräge, Winkelposition auf Planetenwelle) der einzelnen Zahnräder. Das erfordert erheblichen Aufwand bei der Fertigung und/oder bei der Montage. Zudem haben, beispielsweise durch ungleichmäßige Wärmeausdehnung hervorgerufen, axiale Abstandsänderungen zwischen zwei, auf verschiedenen
15 Wellen in einem Getriebe kämmenden Zahnräder mit einfacher Schrägverzahnung erheblichen Einfluss auf die Lastaufteilung auf die einzelnen, um eine Zentraleinheit angeordnete Planeteneinheiten.

Die beiden, voneinander beabstandeten Zahnräder oder Doppelzahnräder einer

20 Planeteneinheit werden bis heute entweder einheitlich geradverzahnt oder einheitlich schrägverzahnt, bzw. doppelt schrägverzahnt. Nur für diese Ausführungsvarianten liegen ausreichende Erfahrungen zu den Getriebeeigenschaften vor, auf die der Fachmann zurückgreifen kann.

25 In Anwendung dieser, dem Fachmann geläufigen Grundkenntnisse zur Auslegung eines Planetengetriebes und dessen Auswirkung auf Axialkräfte, Leistungsverluste und Lastverzweigung konzentrierten sich in der Vergangenheit die Bemühungen darauf, entweder die unvermeidlichen Kräfte in möglichst verlustarmen Wellenlagern aufzufangen und/oder dafür möglichst platzsparende, die Getriebeabmessungen
30 wenig belastende Konstruktionen vorzuschlagen, oder aber Maßnahmen zu setzen, um Axialkräfte möglichst von den Wellenlagern fern zu halten, d.h. zu kompensieren und damit technisch aufwändige und gleichwohl meist reparaturanfällige Lager überflüssig zu machen.

Ein Beispiel für erstere Bemühungen ist die DE 199 17 605 A1. Sie betrifft ein auf eine Antriebswelle aufsteckbares Getriebe mit mehrstufiger Planetenanordnung. Der Kraft-, bzw. Momenteneintrieb erfolgt über ein innenverzahntes Hohlrad auf eine erste Planetenstufe mit gehäusefester Welle. Entsprechend dieser technischen Vorgaben

5 betrifft die dortige erfinderische Lehre eine platzsparende Lagergestaltung für die Einleitwelle, einschließlich dem auf dieser kraft- u/o formschlüssig aufgebrachten Hohlrad.

Aus der Vielzahl vorbekannter Druckschriften mit Maßnahmen zur Kraftkompenstation

10 und / oder Lastaufteilung in Planetengetrieben werden die folgenden stellvertretend skizziert.

Zur Begrenzung der nicht kompensierten Axialkräfte auf der An- und die Abtriebswelle eines Getriebes und um die Lagerung der einzelnen Planeteneinheiten eines Stufenplaneten möglichst axialkraftfrei zu halten, wird in der Patentschrift

15 DE 4017226 A1 die Ausgestaltung eines Getriebes mit mindestens drei, gleichmäßig über den Umfang verteilten Planeteneinheiten vorgeschlagen, wobei die durchgängig als Doppelverzweigungsräder ausgestalteten Zahnräder einer Planeteneinheit über eine axialelastische Kupplung miteinander verbunden sind. Diese bereits technisch

20 aufwändige Ausgestaltung erfordert zusätzlich eine axialelastische Anschlusskupplung für die An- und/oder die Abtriebswelle, da sich, je nach der unvermeidlich variablen Stellung der Zahnräder zueinander, der Abstand zwischen beiden Wellen variiert und das Getriebe andernfalls nach außen hin nicht axialkraftfrei ist. Der enorme Aufwand zweier Doppelschrägverzahnungen in

25 Kombination mit der großen Anzahl elastischer Kupplungen ist allenfalls bei leistungsverzweigten Standgetrieben ohne Hohlrad und/oder bei hohen Umfangsgeschwindigkeiten wirtschaftlich vertretbar.

Die DE 39 23 430 C2 beschreibt ein doppelt schrägverzahntes Stirnrad mit

30 Pfeilverzahnung für ein Planetengetriebe mit einer einzelnen Planeteneinheit, das zur einfacheren Fertigung als zwei Einzel-, bzw. Halbräder mit gegenläufigem, aber gleichem Schrägungswinkel ausgeführt ist. Die beiden Halbräder werden in einem eigenen Arbeitsgang drehfest und profilkonform miteinander verbunden. Dies geschieht mit Hilfe einer Pressöverbindung am Verbindungspresssitz der beiden

Halbräder, die sich auf diese Weise durch Verdrehen auf eine gemeinsame Mittelebene justieren lassen. Das Resultat ist eine Symmetrieeinstellung zweier Zahnradhälften mit hohem technisch konstruktiven Aufwand. Die Aufgabe einer gleichmäßigen Lastverteilung auf verschiedene Planeteneinheiten stellt sich mangels mehrerer Planeteneinheiten nicht.

Die DE 199 61 695 A1 betrifft ein Planetengetriebe, wie vorstehend ohne Lastverteilung auf mehrere Planeteneinheiten, mit einem doppelschrägverzahnten, fest gelagerten Festrad, das mit einem entsprechend verzahnten Losrad kämmt,

10 wobei die Zähne jeder der beiden Teilbereiche der Doppelschrägverzahnung derart unterschiedliche Schrägungswinkel aufweisen, dass die beim Kämmen dieser Doppelzahnräder gezielt aufgebauten, resultierenden axialen Kraftkomponenten derjenigen, in entgegengesetzter Richtung wirkenden entspricht, die über das Losrad der Abtriebswelle in das Getriebe eingebracht wird – beispielsweise im Fall einer nur

15 einfachen Schrägverzahnung des auf derselben Welle mit dem Losrad zusammen drehenden zweiten Zahnrad. In der Praxis kann dieser Ausgleich jedoch nur dafür sorgen, dass die Losradwelle nach außenaxialkraftfrei ist, beide

20 Doppelschrägverzahnungen zueinander zentriert und gleich beansprucht sind. Die für eine Kräftekompenstation zusätzliche Erschwerung einer gleichmäßigen Lastaufteilung auf mehrere Planeteneinheiten besteht nicht.

Der Erfindung liegt damit die Aufgabe zugrunde, ein Verfahren und ein dafür geeignetes Stufenplanetengetriebe vorzuschlagen, das eine verlust- und geräuscharme Überleitung eines mit niedriger Wellendrehzahl eingeleiteten

25 Drehmomentes auf eine vorzugsweise koaxial ausgerichtete Abtriebswelle mit zur Einleitwelle vergleichsweise hoher Drehzahl erlaubt und das die Nachteile der oben beschriebenen Verfahren und Getriebeausgestaltungen nicht aufweist oder weitestgehend verhindert. Aufgabe ist daher ein wirtschaftliches Verfahren und sind kostengünstige konstruktive Vorrichtungen zur möglichst vollständigen

30 Kompensierung von Axialkräften in einem last-, bzw. leistungsverzweigten Getriebe mit gleichmäßiger Lastaufteilung auf die einzelnen Planeteneinheiten zu finden.

Gelöst wird diese eingangs genannte Aufgabe erfindungsgemäß mittels eines Verfahrens gemäß der kennzeichnenden Merkmale von Anspruch 1. Ein dazu geeignetes Getriebe weist die Merkmale von Anspruch 11 auf.

5 Einzelne bevorzugte Ausgestaltungen des Verfahrens sind in den Unteransprüchen beschrieben.

Bevorzugte Ausgestaltungen von Planetengetrieben zur Durchführung des Verfahrens sind in den Figuren 1a und 1b wiedergegeben.

10 Fig. 1a stellt einen Teilbereich des erfindungsgemäßen Getriebes als Schnitt durch den Wellenmittelpunkt der koaxialen An- und Abtriebswelle dar. Die Anordnung der Zahnräder einer Planeteneinheit erfolgt in dieser Ausführung zwischen den beiden Wellenlagern im Planetenträger.

15 Fig. 1b zeigt ein erfindungsgemäßes Getriebe in zu Fig. 1a identischer Darstellung, jedoch mit der Anordnung eines der beiden Zahnräder, bzw. Doppelzahnräder außerhalb der beiden Wellenlager, d. h. mit fliegender Anordnung des Doppelzahnrads bezogen auf die örtliche Lage der Lager auf der Planetenwelle.

Figur 1a zeigt ein um die Achse (L) achssymmetrisch aufgebautes Planetengetriebe mit koaxialer Einleit- (8) und Abtriebswelle (9) in einer solchen Schnittebene, dass eine von mehreren um das Sonnenritzel 4) der Abtriebswelle (9) angeordneten Planeteneinheiten (1) dargestellt wird. Die Planeteneinheit (1) ist mittels zweier Lager (6) in Radialrichtung fix, in Axialrichtung beweglich in einem Planetenträger (7) gelagert und besitzt ein aus zwei Halbrädern (5a) (5b) aufgebautes Doppelzahnrad (5), sowie ein geradverzahntes Zahnrad (3) . Die gegenläufige Schrägverzahnung in den Halbrädern (5a) und (5b) ist angedeutet. Die Halbräder sind zueinander beabstandet ausgeführt. Es wurde gänzlich darauf verzichtet, eine der vielen, dem Fachmann geläufigen Vorrichtungen zu zeigen, mittels derer in jeder Planeteneinheit das zweite gegenüber dem ersten Halbrad in Achsrichtung u/o durch Verdrehen um die Achse gegeneinander justierbar und anschließend arretierbar ist. Einzelne Ausführungsvarianten für derartige Vorrichtungen sind weiter unten beschrieben.

Das Sonnenritzel (4) mit zum Doppelzahnrad (5) korrespondierender Schrägverzahnung ist auf der Abtriebswelle (9) als form- u/o stoffschlüssige

20 Zahnradeinheit ausgestaltet.

Das Hohlrad (2) ist als mit der Antriebswelle (8) als form- u/o stoffschlüssige Einheit ausgebildet.

In Figur 1b ist als einziger Unterschied zu Fig.1a die Planetenwelle einer

5 Planeteneinheit mit fliegender Anordnung des Doppelzahnrads (5) im Planetenträger (7) gelagert, und zwar bei freier axialer Beweglichkeit zwischen Planetenwelle und Lager (6).

Bisher war es für den Fachmann das nicht in Frage gestellte Mittel der Wahl bei

10 Planetengetrieben, bei welchen die Momenteneinleitung in eine Planeteneinheit über ein Hohlrad erfolgt, die dabei kämmenden Zahnräder aus Gründen der Geräusch- und Schwingungsreduzierung mit Schrägverzahnungen auszuführen.

Überraschenderweise lassen sich diese mit dem Hohlrad kämmenden

15 Planetenzahnräder gemäß Erfindung ohne Nachteile für die Geräusch- und

Schwingungseigenschaften mit Geradverzahnung ausgestalten. Eine Erklärung dafür dürfte die Kombination von sowohl niedriger Drehzahl der Einleitwelle als auch hohem Profilüberdeckungsgrad beim Zahneingriff eines Hohlrades mit den
15 Planetenzahnrädern aller Planeteneinheiten gemäß Erfindung sein. Für diese günstigen Geräuscheigenschaften förderlich oder gar unverzichtbar ist die

20 gleichzeitige erfindungswesentliche Ausgestaltung einer Doppelschrägverzahnung und weiters die erfindungsgemäße Justierbarkeit der Halbräder des Doppelzahnrads aller Planeteneinheiten, welche mit dem Sonnenritzel kämmen. Der sich einstellende Vorteil ist besonders bemerkenswert, weil beim Sonnenritzel ein für die
25 Geräuscherzeugung ungünstiger Zustand niedrigen Profilüberdeckungsgrades vorliegt.

Bei der Auslegung des Sonnenritzels ist dessen Ausgestaltung mit Schräg-, bzw.

Doppelschrägverzahnung zwingend geboten. Zum einen liegt beim Sonnenritzel die

30 Zahnumfangsgeschwindigkeit gegenüber der beim Zahneingriff von Hohlrad mit dem

Planetenzahnrad deutlich höher und zwar um das Verhältnis der Wälzkreise der

beiden gleichdrehenden Zahnräder einer Planeteneinheit , zum anderen ist die

Profilüberdeckung hier klein im Vergleich zur Situation beim Zahneingriff

Hohlrad/Stufenplanet, da es sich beim Sonnenritzel um ein Außenzahnrad mit

regelmäßig großer Zähnezahldifferenz zum kämmenden Zahnrad der

Planeteneinheit handelt. Allein bezüglich der Geräuschentwicklung ist die Doppelschrägverzahnung der Einfachschrägverzahnung vergleichbarer Baubreite gleichwertig.

5 Die axiale Positionierung von Planeteneinheiten (1) und Sonnenritzel (4) zueinander wird entweder durch eine ortsfeste Lagerung des Sonnenritzels (4) bestimmt, oder aber durch die ortsfeste Lagerung nur einer von mehreren Planeteneinheiten (1), dies in Verbindung mit der Justierung der Halbräder der übrigen Planeteneinheiten.

10 Die Ausrichtung, bzw. Justierung der beiden Halbräder (5a, 5b) des Doppelzahnrad s erfolgt in Form einer relativen Verdrehung und/oder mittels Axialverschiebung der Halbräder zueinander.
Nach einer bevorzugten Ausgestaltung der Erfindung sind die beiden Halbräder reibschlüssig verschraubt. Die Schraubenschäfte weisen Spiel in den

15 Durchgangsbohrungen auf. Die Justierung der Zahnteilungsstellung der beiden Halbräder erfolgt durch deren relative Verdrehung innerhalb des Spiels der Schraubenschäfte in den Durchgangsbohrungen.
Jede axiale Abstandsänderung der Halbräder zueinander bedeutet gleichzeitig eine relative Verdrehung der Zahnpositionen zueinander. Eine Justierung mittels

20 Axialverschiebung der Halbräder (5a, 5b) zueinander erfolgt nach einer weiteren bevorzugten Ausgestaltung der Erfindung über das Einlegen von Abstimmblechen zwischen den Halbrädern auf der Planetenwelle zur Erzielung einer gleichmäßigen Anlage der Zahnflanken beider Halbräder.
Die Möglichkeit des Justierens mittels entsprechender Elemente und Vorrichtungen

25 ergibt einen weiteren Vorteil. Sie erlaubt eine weniger exakte und damit preisgünstigere Fertigung der einzelnen Getriebe-Zahnräder und Komponenten. Dies um so mehr, wenn beide oben beschriebenen Justierverfahren kombiniert werden.

30 Die Justierung der beiden Halbräder (5a, 5b) des Doppelzahnrad s einer Planeteneinheit zueinander muss im Bereich der Teilungsgenauigkeit der Zahnräder selbst liegen, um bei mehreren Planeteneinheiten (1) eine gleichmäßige Lastverteilung auf die einzelnen Einheiten zu erzielen.
Die Justierung erfolgt bei der Montage und zwar je nach den vorliegenden Gegebenheiten an der bereits eingebauten Planeteneinheit oder außerhalb des

Getriebes auf einer dafür bereitstehenden, dem Planetenträger nachgebildeten Justiereinrichtung. Letzteres bedeutet allerdings die Überprüfung des gleichmäßigen Zahntragens in Getriebe. Die mit der Justierung regelmäßig einhergehende Änderung der axialen Lage einer Planeteneinheit (1) gegenüber dem Hohlrad (2) – im

- 5 Falle des axial festgehaltenen Sonnenritzels (4) - stört indes nicht, da die Geradverzahnung des Planetenzahnrads (3), das im Eingriff mit dem Hohlrad (2) steht, bei einer Axial-, bzw. Längsverschiebung dieser beiden Zahnradeinheiten auf einer Welle relativ zueinander, anders als im Falle einer Schrägverzahnung keine Drehwinkeländerung zueinander hervorruft. Bei einmal auf optimale Kraftaufteilung
- 10 hin justierten Verzahnungsstellungen der einzelnen Planeteneinheiten, führt eine Längenänderung der Welle zwischen den Zahnräder einer einzelnen, aber auch zwischen denen verschiedener Planeteneinheiten, zu keiner Änderung der Lastaufteilung auf die einzelnen Zahnkontakte. Auch muss bei Ausgestaltung der Erfindungsmerkmale die Stellung der Zahnteilung des ersten Halbrads (5a) des
- 15 Doppelzahnrads (5) zu derjenigen des Zahnrads (3) mit Geradverzahnung nur soweit zugeordnet werden, dass es beim Betrieb zu keinem axialen Anlaufen von Zahnräder kommt und dass alle Zahnräder über ihre ganze Breite tragen. Um dies zu gewährleisten, wird entsprechend bekannter Getriebeausgestaltungen eines der jeweils kämmenden Zahnräder breiter ausgeführt als das andere und es werden die
- 20 Halbräder des Doppelzahnrads nicht unmittelbar aneinander gelegt, sondern sie besitzen einen axialen Spalt zwischeneinander.

Bei der fliegenden Anordnung der Doppelschrägverzahnung nach Figur 1b ist eine Montage einschließlich der Justierung der Doppelschrägverzahnung immer

- 25 vergleichsweise einfach möglich. Eine Anordnung mit der Lagerung einer Planetenwelle beiderseits außerhalb der Zahnräder entsprechend Figur 1a kann, unter anderem bei kleinem Durchmesser des Doppelzahnrads, die Montage und anschließende Justierung im Getriebe deutlich erschweren. Deshalb kann das erfindungsgemäße Getriebe nach einer weiteren bevorzugten Ausführung einen
- 30 solcherart geteilten Planetenträger (7) besitzen, dass die außerhalb des Getriebes bereits vorjustierten Planeteneinheiten für eine probeweise Lagerung und Überprüfung der Zahnstellung gegenüber den bereits eingebauten und justierten Planeteneinheiten, sowie für eine nochmalige Herausnahme und Nachjustierung,

jeweils radial zur Planetenwelle in die Lager (6) im Planetenträger (7) eingelegt werden können.

Bei einer bevorzugten Ausgestaltung zur Durchführung des erfinderischen Verfahrens

5 wird die Planetenwelle in ihrem Profil entsprechend dem geradverzahnten Planetenzahnrad gestaltet. Diese Profilform wird über die Breite des Zahneingriffs mit dem Hohlrad hinaus und dort mit gekürzten Zahnköpfen fortgeführt und es werden auf die so gezahnte Planetenwelle die Halbräder des Doppelzahnrads mit geometrisch entsprechendem Innenprofil aufgesteckt, justiert und arretiert.

10 Die Justierung der Halbräder erfolgt in diesem Fall nur durch Veränderung und Abstimmung des axialen Abstandes der beiden Halbrädern des Doppelzahnrads zueinander.

Das erfindungsgemäße Verfahren lässt sich insbesondere bei Planetengetrieben für

15 Windkraftanlagen verwenden, ist aber nicht auf diese Anwendung beschränkt.

Für den Fachmann leicht nachvollziehbar, lassen sich gleiche Wirkungen und Vorteile erzielen, wenn die An- und Abtriebswelle in ihrer Funktion vertauscht werden, das heißt, wenn ein Drehmoment mit hoher Wellendrehzahl in die jetzt als Antriebswelle

20 dienende Abtriebswelle eingeleitet und mit niedriger Wellendrehzahl über die bisherige Antriebswelle, jetzt Abtriebswelle abgeleitet wird. Die letztere Form der Drehmomentüberführung ist eine gleichfalls bevorzugte Ausgestaltung der vorliegenden Erfindung.

Patentansprüche

1. Verfahren zur verlust- und geräuscharmen Überleitung eines mit niedriger Wellendrehzahl in ein Getriebe eingeleiteten Drehmomentes auf eine Abtriebswelle vergleichsweise hoher Drehzahl in einem einstufigen Planetengetriebe mit mehreren Planeteneinheiten, dadurch gekennzeichnet, dass das eingeleitete Drehmoment über ein innen geradverzahntes Hohlrad auf 2 – 6, im Planetenträger zueinander radial fix gelagerte Planeteneinheiten und von dort auf ein gegenläufig schrägverzahntes Sonnenritzel einer Abtriebswelle übertragen wird, dass zunächst das mit dem Hohlrad kämmende, geradverzahnte Planetenzahnrad und eines der beiden gegenläufig schrägverzahnten Halbrädern eines mit dem Sonnenritzel kämmenden Doppelzahnrads einer jeden 15 Planeteneinheit auf der Planetenwelle ortsfest miteinander verbunden werden und dass mit der Montage der einzelnen Planeteneinheiten in die Lager des Planetenträgers das jeweils zweite gegenüber dem ersten Halbrad mittels Vorrichtungen zur Axial- u/o Drehverschiebung in eine Lage vorbestimmter Zahntragung und Lastaufteilung zwischen den einzelnen Planeteneinheiten 20 gebracht und in dieser Lage arretiert wird.

2. Verfahren zur Drehmomentüberleitung nach Anspruch 1, dadurch gekennzeichnet, dass die Axial- u/o Drehverschiebung des zweiten Halbrads nacheinander an jedem der einzelnen Planeteneinheiten durchgeführt wird.

3. Verfahren zur Drehmomentüberleitung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Lagezuordnung des ersten zum zweiten Halbrad des Doppelzahnrads über eine Verdrehung gegeneinander erfolgt.

30 4. Verfahren zur Drehmomentüberleitung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Lagezuordnung des ersten zum zweiten Halbrad des Doppelzahnrads über eine axiale Relativverschiebung erfolgt.

5. Verfahren zur Drehmomentüberleitung nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass das zweite Halbrad nach der Lagezuordnung kraft- u/o formschlüssig mit der Planetenwelle u/o dem ersten Halbrad verbunden und dort arretiert wird.

5

6. Verfahren zur Drehmomentübertragung nach Anspruch 1, 2 und 4, dadurch gekennzeichnet, dass das zweite gegenüber dem ersten Halbrad axial federnd arretiert wird.

10

7. Verfahren zur Drehmomentüberleitung nach Anspruch 6, dadurch gekennzeichnet, dass als Federelement Tellerfedern verwendet werden.

15

8. Verfahren zur Drehmomentüberleitung nach Anspruch 1 und 4 bis 7, dadurch gekennzeichnet, dass das Verzahnungsprofil des geradverzahnten Planetenzahnrads kopfgekürzt als Wellenprofil zur axialen Führung eines oder beider Halbräder mit entsprechendem Innenprofil auf der Welle verwendet wird.

20

9. Verfahren zur Drehmomentüberleitung nach Anspruch 1,2,4 und 5, dadurch gekennzeichnet, dass das zweite gegenüber dem ersten Halbrad durch Einlegen von Abstimmblechen zwischen den Halbrädern in Axialrichtung justiert wird.

25

10. Verfahren zur Drehmomentüberleitung nach Anspruch 1 bis 9, dadurch gekennzeichnet, dass in einen geteilten Planetenträger die Planeteneinheiten radial zur Achsrichtung der Planetenwelle in ihre Lagerstellen eingelegt werden.

30

11. Einstufiges Planetengetriebe mit 2 –6 auf einem Planetenträger (7) radial fix zueinander gelagerten Planeteneinheiten (1) zur verlust- und geräuscharmen Überleitung eines mit niedriger Drehzahl auf eine Antriebswelle (8) eingeleiteten Drehmoments auf das Sonnenritzel (4) einer Abtriebswelle (9) vergleichsweise hoher Drehzahl,

dadurch gekennzeichnet, dass

jede Planeteneinheit (1) ein geradverzahntes Planetenzahnrad (3) aufweist, das mit einem, mit der Einleitwelle (8) fest verbundenen Hohlrad (2) mit innenliegender Geradverzahnung kämmt und mit zwei Halbrädern (5a, 5b) eines gegenläufig schrägverzahnten Doppelzahnrad (5) fest verbunden ist

und dass jede Planeteneinheit (1) Vorrichtungen besitzt, mittels derer bei der Montage der einzelnen Planeteneinheiten (1) im Planetenträger (7) das jeweils zweite gegenüber dem ersten Halbrad (5a,5b) zwecks gleichmäßiger Lastverteilung auf alle Planeteneinheiten in Achsrichtung u/o durch Verdrehen um die Planetenwelle ausrichtbar und arretierbar ist.

Fig. 1a

Fig. 1b

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 03/13011

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 F16H1/22

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 F16H F16D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	GB 662 905 A (FALK CORP) 12 December 1951 (1951-12-12) page 1, line 33 -page 2, line 58 page 3, line 10- -page 4, line 2 figures 1,3 ---	1-11
A	DE 40 17 226 A (BHS VOITH GETRIEBETECHNIK GMBH) 5 December 1991 (1991-12-05) cited in the application column 1, line 1-45 column 3, line 10-31 column 6, line 26 -column 7, line 11 figures 1-4,9 ---	1-11 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

- "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the International search

28 April 2004

Date of mailing of the International search report

07/05/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Daleff, B

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 03/13011

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DE 11 49 958 B (RENK AG ZAHNRAEDER) 6 June 1963 (1963-06-06) column 1, line 39 -column 2, line 45 column 3, line 13-45 figures 1-3 ---	1-11
A	DE 20 29 371 A (PENKAVA; NOZAR) 7 January 1971 (1971-01-07) page 7, paragraph 3 -page 8, paragraph 1; figure 3 ---	1-11

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 03/13011

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
GB 662905	A	12-12-1951	NONE		
DE 4017226	A	05-12-1991	DE	4017226 A1	05-12-1991
			DE	59104746 D1	06-04-1995
			EP	0459352 A1	04-12-1991
			JP	4362340 A	15-12-1992
			US	5085093 A	04-02-1992
DE 1149958	B	06-06-1963	GB	897066 A	23-05-1962
DE 2029371	A	07-01-1971	AT	307189 B	10-05-1973
			CH	538066 A	15-06-1973
			DE	2029371 A1	07-01-1971
			FR	2046898 A5	12-03-1971
			GB	1310417 A	21-03-1973
			SE	362695 B	17-12-1973

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 03/13011

A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 7 F16H1/22

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprässtoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 F16H F16D

Recherchierte aber nicht zum Mindestprässtoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	GB 662 905 A (FALK CORP) 12. Dezember 1951 (1951-12-12) Seite 1, Zeile 33 -Seite 2, Zeile 58 Seite 3, Zeile 10- -Seite 4, Zeile 2 Abbildungen 1,3	1-11
A	DE 40 17 226 A (BHS VOITH GETRIEBETECHNIK GMBH) 5. Dezember 1991 (1991-12-05) in der Anmeldung erwähnt Spalte 1, Zeile 1-45 Spalte 3, Zeile 10-31 Spalte 6, Zeile 26 -Spalte 7, Zeile 11 Abbildungen 1-4,9	1-11 -/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* Älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

28. April 2004

07/05/2004

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Dateff, B

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 03/13011

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	DE 11 49 958 B (RENK AG ZAHNRAEDER) 6. Juni 1963 (1963-06-06) Spalte 1, Zeile 39 -Spalte 2, Zeile 45 Spalte 3, Zeile 13-45 Abbildungen 1-3 -----	1-11
A	DE 20 29 371 A (PENKAVA; NOZAR) 7. Januar 1971 (1971-01-07) Seite 7, Absatz 3 -Seite 8, Absatz 1; Abbildung 3 -----	1-11

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 03/13011

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
GB 662905	A	12-12-1951	KEINE		
DE 4017226	A	05-12-1991	DE 4017226 A1 DE 59104746 D1 EP 0459352 A1 JP 4362340 A US 5085093 A	05-12-1991 06-04-1995 04-12-1991 15-12-1992 04-02-1992	
DE 1149958	B	06-06-1963	GB 897066 A	23-05-1962	
DE 2029371	A	07-01-1971	AT 307189 B CH 538066 A DE 2029371 A1 FR 2046898 A5 GB 1310417 A SE 362695 B	10-05-1973 15-06-1973 07-01-1971 12-03-1971 21-03-1973 17-12-1973	