Decomposição elétrica do TiS3 em condições ambientais

Filipe Gonçalves Jacinto

September 24, 2021

Contents

1	Introdução:			
	1.1	Pontos positivos do TiS3:		
	1.2	Problema do paper: Calcular a decomposição elétrica do TiS3		
		1.2.1	Resultados:	
2	Est	rutura	do código:	
	2.1	Funco	es.py	
		2.1.1	Gamma:	
		2.1.2	R _{sum} :	
		2.1.3	Probable _{event} :	
		2.1.4	$Time_{foward}$:	
	2.2	Main.	ру:	
1	In	trodi	ução:	
1.	1 F	Pontos	positivos do TiS3:	
	• P	ossível s	substituto do Silício	
	• Bandgap de 1.0 eV			
	• P	ode ser	isolado em monocamada e nanotubos	
1.5		Proble FiS3	ma do paper: Calcular a decomposição elétrica do	

1.2.1 Resultados:

- A decomposição elétrica é causada tanto por efeito Joule
- A decomposição elétrica também é causada por formação de vacâncias , mesmo que a energia de ativação da reação seja alta para um único átomo de S
- O teste com atmosfera rica em Oxigênio mostra que a energia de formação de defeitos cai significativamente quando se retira uma dupla de átomos SO comparado a um átomo de S sozinho
- DFT + Monte Carlo cinético sugerem que a formação de vacâncias é devida à oxidação do material seguida da dessorção dos átomos de enxofre

2 Estrutura do código:

2.1 Funcoes.py

2.1.1 Gamma:

- Faz o cálculo de Gamma[i] cálculo de Gamma
- Γ

2.1.2 R_{sum} :

- Cálcula R_i[i]
- Soma os termos de R_i[i]

2.1.3 Probable_{event}:

2.1.4 Time_{foward}:

 \bullet Cálcula o time $_{\rm step}$ (intervalo do evento) e o adiciona ao contador de tempo(t)

2.2 Main.py:

- Este código é dividido em três partes:
 - 1. A primeira parte declara as variáveis e arrays necessários nesse algoritmo em específicos:

- Variáveis
 - * gamma_{zero}
 - * temperatura
 - * t (tempo)
- Arrays
 - * Delta (energias de ativação)
 - * N (número de particulas que realizaram o evento)
- Empty Arrays
 - * time (armazena os tempos calculados em cada iteração)
 - * rate (armazera a soma R_n ao longo do tempo)
- 2. Esta parte é onde está estruturado a ordem do algoritmo utilizando as funções definidas em Funcoes.py
 - O algoritmo segue a seguinte forma:
 - (a) Gamma(), calcula gamma
 - (b) For in range(numero de iterações necessárias)
 - * Lista de eventos dentro do for:
 - i. $R_{sum}()$
 - ii. Probable Event()
 - iii. Time Foward
 - iv. Adicionamos o termo no array de time
 - v. Adicionamos o termo no array de rate
- 3. A parte final do algoritmo consiste em plotar/calcular quantidades que ajudem a compreender o problema :
 - (a) Plot de gráfico utilzando o pacote matplotlib