Advanced Mathematics

Valeri Makarov

Dept. of Mathematical Analysis and Applied Mathematics, U.C.M.

Grado en Ingeniería Informática (grupo I)

F.CC. Matemáticas, Desp. 420 http://www.mat.ucm.es/~vmakarove-mail: vmakarov@mat.ucm.es

Chapter 1

Sequences and series of functions

Example of a sequence and a limit

Decimal representation of a rational number:

$$\begin{split} \frac{7}{6} &= \frac{6+1}{6} = 1 + \frac{1}{6} = 1 + \frac{1}{10} \frac{10}{6} = 1 + \frac{1}{10} \left(1 + \frac{4}{6} \right) = \\ 1 + 0.1 + \frac{1}{100} \frac{40}{6} &= 1 + 0.1 + \frac{1}{10^2} \left(6 + \frac{4}{6} \right) = 1 + 0.1 + 0.06 + \frac{1}{10^3} \frac{4}{6} = \cdots \end{split}$$

Sequence of real numbers

$$a_0 = 1$$
; $a_1 = 1.1$; $a_2 = 1.16$; $a_3 = 1.166$; ...

Distance (n > 1):

$$\left| a_n - \frac{7}{6} \right| = \frac{4}{6 \times 10^n} \to 0 \quad \text{if} \quad n \to \infty \iff \lim_{n \to \infty} a_n = \frac{7}{6}$$

Def.: The sequence $\{a_n\}_{n=1}^{\infty}$ has a limit a if and only if for $\forall \epsilon > 0$, there exists a natural number N_{ϵ} (depends on ϵ) such that

$$|a_n - a| < \epsilon, \quad \forall n > N_{\epsilon}$$

For the previous example: Given ϵ we have

$$\left| a_n - \frac{7}{6} \right| = \frac{4}{6 \times 10^n} < \epsilon \quad \Rightarrow \quad n > \lg\left(\frac{4}{6\epsilon}\right)$$

Thus, we can select

$$N_{\epsilon} = \left\lceil \lg\left(rac{4}{6\epsilon}
ight)
ight
ceil + 1$$

Calculation of limits

Let $\{a_n\}$ and $\{b_n\}$ be two sequences with $\lim_{n\to\infty}a_n=a$ and $\lim_{n\to\infty}b_n=b$. Then

$$\lim_{n \to \infty} (a_n + b_n) = a + b$$

$$\lim_{n \to \infty} (a_n b_n) = ab$$

$$\lim_{n \to \infty} a_n^k = (\lim_{n \to \infty} a_n)^k = a^k$$

If $f: \mathbb{R} \to \mathbb{R}$, $f \in C$ (a continuous function), then

$$\lim_{n\to\infty} f(a_n) = f\left(\lim_{n\to\infty} a_n\right) = f(a)$$

Sequences of functions. Pointwise convergence

Given a set $D \subset \mathbb{R}$ and a family of indexed functions $f_n : D \to R$, we can define a sequence of functions $\{f_n(x)\}_{n=1}^{\infty}$.

For each fixed $x \in D$, $\{f_n(x)\}_{n=1}^{\infty}$ is a sequence of real numbers.

Def.: (pointwise convergence) The sequence of functions $\{f_n\}_{n=0}^{\infty}$ converges to f(x) pointwise on D iff $\forall x \in D$ the sequence of real numbers $\{f_n(x)\}_{n=0}^{\infty}$ converges to the number f(x)

$$\lim_{n\to\infty} f_n(x) = f(x)$$

In other words: $\{f_n\}_{n=0}^{\infty}$ converges to f(x) pointwise iff $\forall \epsilon > 0$ $\exists N_{x,\epsilon} \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \epsilon$ for $n > N_{x,\epsilon}$.

Uniform convergence

This is a stronger type of convergence.

Def.: $\{f_n\}_{n=0}^{\infty}$ converges to f(x) uniformly iff $\forall \epsilon > 0$ and $\forall x \in D$ $\exists N_{\epsilon} \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \epsilon$ for $n > N_{\epsilon}$.

Note: N_{ϵ} is independent on x.

Criterion of non-convergence: If $\forall N \in \mathbb{N} \ \exists \epsilon > 0, \ n > N$, and $x_0 \in D$ such that

$$|f_n(x_0) - f(x_0)| > \epsilon$$

Supreme criterion for uniform convergence

$$f_n(x) \xrightarrow{uniform} f(x)$$
 iff $\lim_{n \to \infty} \left(\sup_{x \in D} |f_n(x) - f(x)| \right) = 0$

Problem 1.1

Consider
$$f_n(x) = x^n$$
, $x \in [0,1]$ and $h_n(x) = (cos(\pi x))^{2n}$

1. Represent graphically for n = 1, 2, 3

2. Pointwise convergence

$$f(x) = \lim_{n \to \infty} x^n = \begin{cases} 0, & \text{if } x \in [0, 1) \\ 1, & \text{if } x = 1 \end{cases}$$

$$f(x) = \lim_{n \to \infty} (\cos(\pi x))^{2n} = \begin{cases} 1, & \text{if } x \in \mathbb{Z} \\ 0, & \text{otherwise} \end{cases}$$

3. Uniform convergence.

$$\lim_{n \to \infty} \left(\sup_{x \in [0,1]} |x^n - f(x)| \right) = \lim_{n \to \infty} \left(\sup_{x \in [0,1]} \{x^n\} \right) = 1$$

Thus, it does not converge uniformly on [0,1]. However, if $x \in [0,a]$ (0 < a < 1), then

$$\lim_{n\to\infty} \left(\sup_{x\in[0,a]} |x^n - f(x)| \right) = \lim_{n\to\infty} \left(\sup_{x\in[0,a]} \{x^n\} \right) = \lim_{n\to\infty} a^n = 0$$

Thus, the sequence converges uniformly on [0, a]!

General property: A sequence of continuous functions cannot converge to a noncontinuous function (the previous example).

Problem 1.4b. $f_n = \frac{\sin(nx)}{1+nx}$. Show that it converges uniformly on $[a, \infty)$, a > 0.

Pointwise: $(|\sin(nx)| \le 1)$

$$f(x) = \lim_{n \to \infty} \frac{\sin(nx)}{1 + nx} = 0$$

Uniform:

$$L = \lim_{n \to \infty} \left(\sup_{x \in [a, \infty]} \left| \frac{\sin(nx)}{1 + nx} - 0 \right| \right) = \lim_{n \to \infty} \left(\sup_{x \in [a, \infty]} \frac{|\sin(nx)|}{1 + nx} \right)$$

Let's find the extreme points (max/min) of $\frac{\sin(nx)}{1+nx}$.

$$f'_n = \frac{n\cos(nx)(1+nx) - n\sin(nx)}{(1+nx)^2} = 0$$

Thus, the extreme points satisfy to

$$\cos(nx^*)(1 + nx^*) = \sin(nx^*)$$
 or $\cos^2(nx^*)(1 + nx^*)^2 = \sin^2(nx^*)$

which is equivalent to

$$\sin^2(nx^*) = \frac{(1+nx^*)^2}{1+(1+nx^*)^2}$$

Thus,

$$\sup_{x \in [a,\infty]} \frac{|\sin(nx)|}{1+nx} = \max \left\{ \frac{|\sin(na)|}{1+na}, \frac{\sqrt{\sin^2(nx^*)}}{1+nx^*} \right\} =$$

$$= \max \left\{ \frac{|\sin(na)|}{1 + na}, \frac{1}{\sqrt{1 + (1 + nx^*)^2}} \right\} =$$

$$= \max \left\{ \frac{|\sin(na)|}{1 + na}, \frac{1}{\sqrt{1 + (1 + nx_1^*)^2}} \right\}$$

where x_1^* is the first extreme value $(x_1^* \ge a)$. Now

$$\lim_{n\to\infty} \left(\max\left\{ \frac{|\sin(na)|}{1+na}, \frac{1}{\sqrt{1+(1+nx_1^*)^2}} \right\} \right) = 0$$

and thus the sequence converges uniformly.

Convergence of integrals

Theorem: If a sequence of functions $\{f_n(x)\}$ converges uniformly to a function f on the interval [a,b] and the integrals $I_n = \int_a^b f_n(x) dx$ and $I = \int_a^b f(x) dx$ exist, then

$$\lim_{n\to\infty}I_n=I.$$

Problem 1.7: Find $\lim_{n\to\infty} \int_0^1 \frac{ne^x}{n+x} dx$

1. Pointwise
$$(f_n(x) = \frac{ne^x}{n+x})$$

$$\lim_{n\to\infty}\frac{ne^x}{n+x}=e^x\lim_{n\to\infty}\frac{n}{n+x}=e^x\equiv f(x)$$

2. Uniform:

$$\lim_{n\to\infty} \left(\sup_{x\in[0,1]} \left| \frac{n e^x}{n+x} - e^x \right| \right) = \lim_{n\to\infty} \left(\sup_{x\in[0,1]} \frac{x e^x}{n+x} \right)$$

It's easy to check that $\left(\frac{xe^x}{n+x}\right)' > 0$. Thus, the function reaches its maximum at the right end: x = 1. Therefore,

$$\lim_{n \to \infty} \left(\sup_{x \in [0,1]} \frac{xe^x}{n+x} \right) = \lim_{n \to \infty} \left(\frac{e}{n+1} \right) = 0$$

3. Limit: (we now can swap the limit and integral)

$$\lim_{n\to\infty} \int_0^1 \frac{ne^x}{n+x} dx = \int_0^1 \left(\lim_{n\to\infty} \frac{ne^x}{n+x} \right) dx = \int_0^1 e^x dx = e-1$$

Series of real numbers

In the first example of this chapter:

$$s_0 = 1$$
, $s_1 = 1 + 0.1$, $s_2 = 1 + 0.1 + 0.06$, ...

then $\lim_{n\to\infty} s_n = \frac{7}{6}$.

In general: $\sum_{n=0}^{\infty} a_n$ is a series of real numbers; $s_n = \sum_{k=0}^{n} a_k$ is a partial sum.

Geometric series:
$$\sum_{n=0}^{\infty} a^n$$
. Then $s_n = 1 + a + a^2 + \cdots + a^n$

$$1 + as_n = s_{n+1} = s_n + a^{n+1} \implies s_n = \frac{1 - a^{n+1}}{1 - a}$$

If
$$0 < a < 1$$

$$\sum_{n=0}^{\infty} a^n = \lim_{n \to \infty} s_n = \frac{1}{1-a}$$

Generic series $s_n = \sum_{k=0}^n a_k$.

Convergence. Assume the sequence of partial sums converges:

$$s_n \rightarrow s$$
. Then $s_n - s_{n-1} = a_n$

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} (s_n - s_{n-1}) = s - s = 0$$

Thus, the necessary condition for convergence is: $a_n \rightarrow 0$.

Integral criterium: If f(x) is a positively defined and monotonously decaying function and

$$\int_{a}^{\infty} f(x) dx < \infty \quad \text{then} \quad \sum_{n=a}^{\infty} f(n) < \infty$$

i.e., converges.

Series of functions

Let $f_n : D \to \mathbb{R}$ be a family of functions. Then we can define the series:

$$\sum_{k=1}^{\infty} f_k(x)$$

We can also define partial sums:

$$s_n(x) = \sum_{k=1}^n f_k(x)$$

Then (if exists) $s(x) = \lim_{n \to \infty} s_n(x) = \sum_{k=1}^{\infty} f_k(x)$.

Convergence: A series converges pointwise (uniformly) if the corresponding sequence $s_n(x)$ converges pointwise (uniformly).

Weierstrass criterium: If $f_n(x) \le a_n \ \forall n > N$ and $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly.

Problem 1.8a: Study the pointwise and uniform convergence of $\sum_{n=0}^{\infty} x^n$, $x \in [0,1]$.

$$s_n(x) = \sum_{k=0}^n x^k = \frac{1 - x^{n+1}}{1 - x}$$

1. Pointwise:

$$s(x) = \sum_{k=0}^{\infty} x^k = \lim_{n \to \infty} s_n = \begin{cases} \frac{1}{1-x}, & \text{if } 0 \le x < 1 \\ \infty, & \text{if } x = 1 \end{cases}$$

The series converges for $x \in [0, 1)$.

2. Uniform: Consider $x \in [0, b]$, 0 < b < 1. Let's apply the Weierstrass criterium:

$$f_n(x) = x^n \le b^n$$
, $\sum_{n=0}^{\infty} b^n = \frac{1}{1-b} < 0 \implies$ uniform convergence.

Note that for $x \in [0,1)$ the series does not converge uniformly. Let's show it.

$$\lim_{n \to \infty} \left(\sup_{x \in [0,1)} |s_n(x) - s(x)| \right) = \lim_{n \to \infty} \left(\sup_{x \in [0,1)} \left| \frac{1 - x^{n+1}}{1 - x} - \frac{1}{1 - x} \right| \right) =$$

$$= \lim_{n \to \infty} \left(\sup_{x \in [0,1)} \frac{x^{n+1}}{1 - x} \right) = \infty$$

Note sup $= \infty$ is reached when $x \to 1$.