

Acquiring Practical Skills of Data Science

WEEK7

~ Data Visualization ~

Schedule

```
01 (4/15)
                      : Introduction
02 (4/22)
                      : Software
03 (5/13) & 04 (5/20) : Programming
05 (5/27) & 06 (6/03) : Data Acquision & Construction
07 (6/10)
                        Data Visualization
08 (6/17)
                       : Presentation
09 (6/24) & 10 (7/01) : Data Analysis
11 (7/08) & 12 (7/22) : Simulation
13 (7/29)
                      : Data Science Literacy
14 (8/05) & 15 (8/06) : Presentation
```


Week 07 (6/10): Data Visualization

 Goal for week07: Become able to build a basic data visualization

- Topics
 - What is data visualization?
 - Building plots with ggplot2
 - Creating a plot in major visualization types
 - Exporting a plot to a file

- Environment
 - Programming Language:

R language

- Platform: Jupyter Hub
- Form : Coding for Exercise
 Tasks on Jupyter Hub

Exploratory data analysis

Exploratory Data Analysis Checklist

- 1. Formulate your question
- 2. Read in your data
- 3. Check the packaging
- 4. Run str()
- 5. Look at the top and the bottom of your data
- 6. Check your "n"s
- 7. Validate with at least on external data source
- 8. Try the easy solution first
- 9. Challenge your solution
- 10. Follow up

1. Formulate your question

- A sharper question or hypothesis is easier
 - Eliminate variables that are not relevant to the question
- Q. Are air pollution levels higher on the east coast than on the west coast?
 - <= all pollutants across entire east and west
- Q. Are hourly ozone levels on average higher in New York City than they are in Los Angeles?
 - <= single pollutant in two cities</p>

2. Read in your data

- Data is sometimes/always messy
- Cleaning up a dataset
- "Tidy data"

3-5. Check data

- Check the packaging
 - Find warnings or errors when reading
 - Check the number of rows and columns after reading
 - nrow(data), ncol(data)
- Check the content briefly
 - str(data)
- Look at the top and the bottom
 - head(data), tail(data)

6-7. Check data

- Check your "n"s
 - Identify some landmarks that can be used to check
 - "Does it include expected Date and Time properly?"
 - "Does it cover all of states?"
- Validate with at least one external data source
 - Measurements: summary()
 - Distributions: quantile()
 - Units

8. Try the easy solution first

- Use simple measurements
- Use a portion of data
 - Top 10, Bottom 10, ...
- Use a group of data
 - By month, By year, By country
 - filter()

• 9. Challenge your solution

- The easy solution is nice, but...
- You should always think of ways to challenge results
- A result by year was great
 - By month? Is there enough data?

10. Follow up questions

- Do you have the right data?
- Do you need other data?
- Do you have the right question?

Principles of Analytic Graphics

- Show comparisons
- Show causality, mechanism, explanation, systematic structure
- Show multivariate data
- Integrate evidence
- Describe and document the evidence
- Content, content, ...

Materials

• https://github.com/fumi/DS2019 Week07

Week 08 (6/17): Presentation

Report

- Choose a topic you are interested in
- Use techniques learned in Data Acquision & Construction Data Visualization
- Within 3000 English words
- Due on 6/17
- Hand in your report to: yamaji@nii.ac.jp

Presentation

- Make a presentation based on the report
- Within 15 minutes