Name Havjuan He
Berkeley ID 3033721461.

Homework 3

1. Let *X*, *Y*, *Z* and *W* be independent random variables with E(X) = 1, E(Y) = 0, E(Z) = 2, E(W) = 1, $E(W^2) = 4$; E(W) = 1, E(W) =

(15 p) (a)
$$E(3X - Y + Z)$$
 and $Var(3X - Y + Z)$

$$\Rightarrow \mathbb{E}(3X - Y + Z)$$

$$= \mathbb{E}(3X) - \mathbb{E}(Y) + \mathbb{E}(2)$$

$$= 3 \mathbb{E}(X) - \mathbb{E}(Y) + \mathbb{E}(2)$$

$$= 3 - 0 + 2 = 5$$

$$\Rightarrow \mathbb{E}(3X - Y + Z) = 6$$

$$\Rightarrow \mathbb{E}(3X - Y$$

2. Let $x_1,...,x_n$ be independent random variables, all having the same distribution with expected value μ and variance σ^2 .

(65 points) The random variable defined as the arithmetic average of these variables, is called the *sample*

mean. That is, the sample mean is given by $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$

(24p.) (a) Derive E() and Var() as functions of μ and σ^2 respectively.

$$\Rightarrow \mathbb{E}(\widehat{x}) = \mathbb{E}(\widehat{h} \widehat{\Sigma} X_{i}) = \widehat{h} \mathbb{E}(X_{i} + X_{i} + X_{i})$$

$$= \widehat{h} \mathbb{E}(\widehat{x}_{i}) + \mathbb{E}(X_{i}) + \mathbb{E}(X_{i}) = \widehat{h} \mathbb{E}(X_{i}) + \mathbb{E}(X_{i}) = \widehat{h} \mathbb{E}(X_{i}) + \mathbb{E}(X_{i}) = \widehat{h} \mathbb{E}(\widehat{x}_{i}) = \widehat{h}$$

$$\Rightarrow Var(\overline{x}) = Var(\frac{\widehat{\Sigma}_{721} \times i}{N})$$

$$= Var(\frac{1}{N} \times i + \frac{1}{N} \times i + \dots + \frac{1}{N} \times i_{N}) \leftarrow total \text{ of } n^{th} \text{ term.}$$

$$= Var(\frac{1}{N} \times i) + Var(\frac{1}{N} \times i) + \dots + Var(\frac{1}{N} \times i_{N}) \leftarrow x_{1}, \dots, x_{N} \text{ are independent variable.}$$

$$= \frac{1}{N^{2}} Var(x_{1}) + \frac{1}{N^{2}} Var(x_{2}) + \dots + \frac{1}{N^{2}} Var(x_{N})$$

$$= \frac{1}{N^{2}} \times [n \times f^{2}] = f^{2}/N$$

$$\Rightarrow Var(\overline{x}) = f^{2}/N.$$

$$(10p) (b) \text{ is consistent? Explain.}$$

$$\Rightarrow 0 \times [\overline{x}] = \mu \Rightarrow +hus \times i_{N} \text{ an unbarred estimator.}$$

$$\Rightarrow 0 \times [\overline{x}] = \frac{1}{N^{2}} \times [n \times i_{N}] = \frac{1}{N^{2}} \times [n \times i_{N$$

=) +hus, x B consistent.

(10p) (c) Consider an alternative linear estimator $\widetilde{X} = \sum_{i=1}^{n} a_i x_i$ where a_i are constant. What restrictions on a_i

 $\Rightarrow E(\%) == \mu \notin \text{unbased} \Rightarrow \text{thus, for unbased } \%, S_{in} \alpha_i = 1.$

(11p) (d) Derive Var(.

$$= Var(X) = Var(S_{1=1}^{n} A_{1}X_{1}) = Var(A_{1}X_{1} + A_{2}X_{2} + X_{n})$$

$$= Var(A_{1}X_{1}) + Var(A_{2}X_{2}) + + Var(A_{n}X_{n})$$

$$= A_{1}^{n} Var(X_{1}) + + A_{n}^{n} Var(X_{n}) = A_{1}^{n} f^{2} + + A_{n}^{n} f^{2}$$

$$= f^{2} * S_{1=1}^{n} A_{1}^{2}$$

 $\begin{array}{c}
\text{(10p) (e) Which linear estimator is more efficient? (Hint: use the inequality)} & \frac{\left(\sum_{i=1}^{n} a_{i}\right)^{2}}{n} \leq \sum_{i=1}^{n} a_{i}^{2}
\end{array}$

=) for & to be unbaised (only then we can compare) ⇒ Sizia; =1 = devive in 2c

$$\Rightarrow$$
 We know $\frac{(\sum_{i=1}^{n} \alpha_i)^2}{N} \leq \sum_{i=1}^{n} \alpha_i^2$

$$\Rightarrow \frac{1}{n} \leq \sum_{i=1}^{n} \Omega_{i}^{2} \leftarrow \sum_{i=1}^{n} \Omega_{i} = 1$$

- =) for $Var(\bar{x})$ & $Var(\bar{x})$, the diff in constant define the diff in those two variable
- \Rightarrow since $\frac{1}{N} \leq \sum_{i=1}^{N} \alpha_i^2$
- \Rightarrow $Var(x) \leq Var(x)$
- \Rightarrow thus, for linear estimator $\bar{\chi}$ is more efficient than $\hat{\chi}$.