

# MySQL

Заняття #1



- Що таке БД?
- Різновиди БД
- MySQLWbrkbench
- Встановлення MySQLWorkbench
- Створення і видалення БД
- Типи даних
- Створення і видалення таблиць





#### База даних

**База даних** – це сукупність логічно зв'язаних даних (і опис цих даних), яка відображає стан об'єктів та їх зв'язків в певній предметній області, динамічно змінюється у процесі свого функціонування і використання багатьма користувачами.

**База даних** – це єдине велике сховище даних, яке один раз визначається, а потім функціонує у багатокористувацькому режимі



#### Інші визначення

Схема (зміст) бази даних — це опис бази даних.

**Стан (деталізація) бази даних** — це сукупність інформації, що зберігається в базі даних в будь-який певний момент часу.

**«Дані» в концепції баз даних** — це набір конкретних значень, параметрів, які характеризують об'єкт, умову, ситуацію або інші фактори.

**Модель даних** – це представлення «реальних» об'єктів, подій та існуючих між ними зв'язків.

«**Модель даних» в концепції баз даних** — це інтегрований набір понять для опису даних, зв'язків між ними та обмежень, які накладаються на дані.



#### Реляційна база даних

**Реляційна база даних** — база даних, заснована на реляційній моделі даних. Слово «реляційний» походить від англ. relation. Для роботи з реляційними БД застосовують реляційні СУБД. Інакше кажучи, реляційна база даних — це база даних, яка сприймається користувачем як набір нормалізованих відношень різного ступеня.

Реляційна база даних є сукупністю елементів даних, організованих у вигляді набору формально описаних таблиць, з яких дані можуть бути доступними або повторно зібрані багатьма різними способами без необхідності реорганізації таблиць бази даних.



#### Нереляційна база даних

**Нереляційна база даних** (зазвичай розшифровується як англ. non SQL або англ. non relational, іноді англ. not only SQL) — база даних, яка забезпечує механізм зберігання та видобування даних відмінний від підходу таблиць-відношень в реляційних базах даних.



СУБД

**СУБД** – це програмне забезпечення підтримки інтегрованої сукупності даних, призначене для створення, зберігання, ведення і використання бази даних багатьма користувачами (додатками).

**Примітка:** «Базою даних» часто з метою спрощення чи навіть помилково називають СУБД. Потрібно розрізняти набір даних (тобто БД) та програмне забезпечення, що призначене для організації та супроводження бази даних.



#### **MySQL**

**MySQL (SQL англ. Structured query language** — **мова структурованих запитів)** — вільна реляційна СУБД, яка працює як сервер для забезпечення багатокористувацького доступу до великої кількості баз даних.

**MySQL** характеризується великою швидкістю, стійкістю і простотою використання.

**СУБД є мережевою**. Тобто є сервер, де фізично зберігаються дані БД та клієнт, який може знаходитися не в «одній кімнаті» з сервером. Для того, щоб клієнт мав змогу використовувати дані потрібно, щоб сервер та користувач були в одній мережі.

**СУБД** використовує текстовий метод керування даними, тобто користувач відправляє рядок записаний на зрозумілій системі мові, а система повертає потрібні користувачу дані, або ж виконує певну операцію. Цей текстовий рядок називають запитом.



#### MySQL Workbench

**MySQL Workbench** – інструмент для візуального проектування баз даних, що інтегрує проектування, моделювання, створення й експлуатацію БД в єдине оточення для системи баз даних MySQL.

MySQL Workbench пропонується в двох редакціях:

- ✓ Community Edition поширюється під вільною ліцензією GNU GPL;
- ✓ **Standard Edition** доступна за щорічною передплатою. Ця версія включає в себе додаткові функції, які підвищують продуктивність для розробників та адміністраторів БД.



#### Можливості MySQL Workbench

#### Можливості:

- ✓ Дозволяє наочно представити модель бази даних в графічному вигляді.
- ✓ Наочний і функціональний механізм установки зв'язків між таблицями, в тому числі «багато до багатьох» із створенням таблиці зв'язків.
- ✓ Reverse Engineering відновлення структури таблиць з вже існуючої на сервері БД.
- ✓ Зручний редактор SQL запитів, що дозволяє відразу ж відправляти їх серверові і отримати відповідь у вигляді таблиці.
- ✓ Можливість редагування даних у таблиці в візуальному режимі.



# Структурна частина реляційної бази даних





### Термінологія в реляційній моделі

| Офіційні<br>терміни | Користувацькі<br>терміни | Терміни в<br>програмуванні |
|---------------------|--------------------------|----------------------------|
| Відношення          | Таблиця                  | Таблиця                    |
| Кортеж              | Рядок                    | Запис                      |
| Атрибут             | Стовпець                 | Поле                       |



#### Відношення, таблиця

Реляційна модель базується на математичному понятті **відношення**, а фізичне представлення його — це **таблиця**.

**Таблиця** має жорстко обумовлену кількість поіменованих та впорядкованих стовпців (структуру), і може необмежено рости за кількістю рядків. В таблиці рядки відповідають певним записам, а стовпці – атрибутам.

**Відношення** — це проста таблиця, в якій усі рядки містять однакову кількість комірок і у відповідних комірках містяться однакові типи даних.

**Відношення** — це таблиця з критерієм, який дозволяє визначити, які рядки входять у таблицю, а які — ні. Цей критерій визначає сенс або семантику відношення.

Оскільки відношення не має однакових кортежів, і кортежі є невпорядковані зверху донизу, то одне і те ж відношення можна представити різними таблицями, в яких рядки мають різний порядок.



#### Атрибут

Атрибут – це поіменований стовпець відношення.

Атрибути можуть бути розміщеними в будь-якому порядку. Незалежно від їх розміщення відношення буде залишатись одним і тим же, а тому мати той же зміст.



#### Кортеж

Елементами відношення є кортежі, тобто рядки таблиці.

Кортежі можуть бути розміщеними в будь-якому порядку, при цьому відношення залишається одним і тим же.



SQL

**SQL** (англ. Structured query language – мова структурованих запитів) – декларативна мова програмування для взаємодії користувача з базами даних.

**Декларативна мова програмування** — така мова програмування, за допомогою якої, програма описує, який результат необхідно отримати, замість описання послідовності отримання цього результату.

SQL дає можливість вирішувати наступні задачі:

- створення БД і визначення її структури;
- виконання запитів до БД;
- керування безпекою даних.



#### Інтерактивна та вбудована SQL

**Інтерактивна SQL** використовується для роботи безпосередньо в базі даних, щоб її опрацьовувати. При введенні команди в інтерактивній формі SQL, вона тут же виконається і виведуться результати.

**Вбудована SQL** складається з команд та процедур SQL, які розміщені в програмах, написаних іншими мовами програмування. Це робить такі програми більш потужними та більш ефективними.



#### Субпідрозділи (частини) SQL

**Оператори визначення даних – DDL (Data Definition Language).** Призначені для опису структури баз даних. Такі як: **CREATE** (створити), **ALTER** (змінити), **DROP** (видалити).

**Оператори маніпулювання даними – DML (Data Manipulation Language).** Призначені для отримання, вставки, видалення чи зміни даних у БД. Такі як: **SELECT** (вибрати), **INSERT** (додати), **UPDATE** (обновити), **DELETE** (видалити).

Оператори визначення доступу до даних – DCL (Data Control Language). Такі як: GRANT (надати доступ), REVOKE (анулювати видані раніше дозволи чи заборони).



#### Використання SQL для роботи з базою даних





#### Загальні типи даних в SQL

- **>** Символи
- > Числа
- Логічні дані
- Дата і час
- Двійкові дані



#### Символьні типи даних в SQL

**CHARACTER(n)** (або **CHAR(n)** в реальних СУБД) – символьний рядок фіксованої довжини з n символів (0<n<256). Якщо n не вказане, то припускається, що рядок складається з одного символу. Якщо у стовпець такого типу вводиться m<n символів, то решта позицій заповнюються пропусками.

**CHARACTER VARYING(n)** (або **VARCHAR(n)** в реальних СУБД) – символьний рядок змінної довжини, яка не перевищує п символів. Застосовується, коли дані мають різну довжину і не бажано доповнювати їх пропусками. В даному випадку є <u>обов'язковим</u> вказання максимальної кількості символів, на відміну від CHAR.

Ряд додаткових типів даних представляють текст невизначеної довжини:

- **TINYTEXT**: представляє текст довжиною до 255 байт.
- **TEXT**: представляє текст довжиною до 65 КБ.
- **MEDIUMTEXT**: представляє текст довжиною до 16 МБ
- LARGETEXT: представляє текст довжиною до 4 ГБ



#### Логічні дані в SQL

**BOOL** або **BOOLEAN** – 1-байтовий логічний тип даних, який може приймати два значення – true, false.



#### Дата і час в SQL

**DATE** – представлення значень календарної дати. Дані цього типу можуть містити будь-яку дату з 0001 року по 9999 рік.

**YEAR** – представлення лише року.

**ТІМЕ** – представлення часу.

**DATETIME** – одночасне представлення дати та часу.

**TIMESTAMP** – одночасне представлення дати та часу із врахуванням поточного часового поясу.



#### Інструкції маніпуляції з таблицями

- Створення таблиць
- Обмеження на дані
- Модифікація таблиць
- Видалення таблиць



#### Таблиці

- CREATE TABLE створення таблиці;
- **DROP TABLE** видалення таблиці.
- ALTER TABLE модифікація структури таблиці;



#### Інструкція створення таблиці (CREATE TABLE)

- Створює порожню таблицю без записів (значення вводяться засобами DML).
- CREATE TABLE, як правило, визначає ім'я таблиці та набір стовпців, вказаних у певному порядку, тобто визначає структуру таблиці.
- Типи даних стовпців повинні бути сумісними зі стандартом ANSI.
- Значення розміру стовпця залежить від типу даних.
- Кожна таблиця повинна мати хоча б один стовпець.



#### Обмеження на значення даних

- Обмеження частина визначення таблиці, яке задає певні критерії значенням, які вводяться в таблицю.
- Обмеження є одним із засобів організації підтримки цілісності даних безпосередньо в БД.
- СУБД перевіряє відповідність встановлених обмежень і значень при модифікації даних.



#### Обмеження на значення даних в SQL

- NOT NULL
- UNIQUE
- PRIMARY KEY
- FOREIGN KEY
- CHECK
- AUTO\_INCREMENT



#### Інструкція створення таблиці (CREATE TABLE)

```
Приклад 1. Наступна інструкція створює таблицю users:
```

```
create table users
(
    id int(4) auto_increment primary key,
    firstName varchar(15) not null,
    secondName varchar(20) not null,
    email varchar(40) unique not null,
    phone varchar(13) null,
    age int(2) default 18 check(age>0 and age<100)
);
```



## Дрдаткові джерела інформації:

#### Посилання

https://www.w3schools.com/sql/sql\_create\_db.asp

https://www.w3schools.com/sql/sql\_drop\_db.asp

https://www.w3schools.com/sql/sql\_create\_table.asp

https://www.w3schools.com/sql/sql drop table.asp

https://www.w3schools.com/sql/sql\_notnull.asp

https://www.w3schools.com/sql/sql\_unique.asp

https://www.w3schools.com/sql/sql\_primarykey.asp

https://www.w3schools.com/sql/sql\_foreignkey.asp

https://www.w3schools.com/sql/sql\_check.asp

https://www.w3schools.com/sql/sql\_default.asp

https://www.w3schools.com/sql/sql\_autoincrement.asp