# Математические модели обработки сигналов

# Тема 1: Основные понятия обработки сигналов

Лектор: Кривошеин А.В.

### Что называется сигналом?

Сигнал — это результат измерения меняющегося во времени (или пространстве) физического явления. Сигнал несёт в себе информацию о состоянии или поведении физического явления.

- 🔊 давление звуковых колебаний воздуха (аудио-сигналы)
- измерение светового потока (фото- и видео-сигналы)
- гила электромагнитного излучения, напряжение, температура окружающей среды, уровень воды в реке и др.

С математической точки зрения, сигнал — это отображение f(t), действующее из подмножества  $\mathbb{R}^d$  в  $\mathbb{R}^m$ , то есть  $f: E \subset \mathbb{R}^d \to \mathbb{R}^m$ . Изначально, мы будем работать с сигналами, как с одномерными функциями, то есть d=m=1, а под независимой переменной будем, как правило, подразумевать время.

### Основные категории сигналов

- ж Аналоговый сигнал это сигнал, значения которого меняются в зависимости от непрерывно изменяющегося времени. Например, непрерывная функция  $f: \mathbb{R} \to \mathbb{R}$ .
- *№ Дискретный сигнал* это сигнал, значения которого известны только в некоторые дискретные моменты времени. Бесконечный дискретный сигнал представляет собой элемент пространства последовательностей  $x = \{x[n]\}_{n \in \mathbb{Z}}$ ,  $x : \mathbb{Z} \to \mathbb{R}$ . Конечный дискретный сигнал имеет конечное число значений, то есть вектор N-мерного евклидова пространства  $(x[0], ..., x[N-1]) \in \mathbb{R}^N$ .
- *№ Цифровой сигнал* это конечный дискретный сигнал квантованный по амплитуде, то есть множеством значений сигнала является некоторое конечное множество, например целые числа от о до 255, или числа в формате double. Иными словами, цифровой сигнал — это отображение  $x:\{0, ..., N-1\} \to A$ , где A конечное множество.

# Примеры категорий сигналов

Аналоговый сигнал: синусоида  $f(t) = \sin(2\pi\omega t)$ .

Дискретный сигнал: последовательность  $\{x[n]\}_n$ , где  $x[n] = \sin(2\pi\omega n)$ ,  $\forall n \in \mathbb{Z}$ .

Цифровой сигнал: N-мерный вектор ( $x[0], \ldots, x[N-1]$ ), где  $x[n] \in \{-1, -0.5, 0, 0.5, 1\}$ .



# Переходы между категориями сигналов

На компьютерах реализуема обработка и хранение только цифровых сигналов.

В реальном мире значительная часть сигналов являются аналоговыми.

Определим переходы между категориями сигналов:



**Дискретизация** (sampling): Аналоговый сигнал  $x_c(t) \rightarrow \text{Дискретный сигнал } \{x[n]\}.$ 

**Квантование** (quantization): Дискретный сигнал  $\{x[n]\} \rightarrow \text{Цифровой сигнал}$ 

Дискретизация +Квантование = Оцифровка сигнала

### Равномерная дискретизация

Суть равномерной дискретизации:

- фиксируем период дискретизации (sampling period):  $T_s$  секунд.
- производим замер сигнала и записываем полученное значение,

$$x[n] = x_c(n T_s), n \in \mathbb{Z}.$$

Частота дискретизации (sampling frequency) — это число замеров в секунду:

 $F_{s} = 1/T_{s}$ . Частота дискретизации измеряется в герцах (Гц).



Синусоида  $x_c(t) = \sin(2 \pi \omega t)$ на промежутке [0, 1.5].  $T_{\rm s}$  – период дискретизации,  $N = 1.5 / T_s + 1 -$ число замеров.

Набор значений ..., x[0], ..., x[N-1] ...дискретное представление аналогового сигнала.

Важно: между элементами x[n]и x[n+1] не существует никакой информации о сигнале.

#### Квантование и восстановление сигнала

Компьютер может работать только с числами с конечной точностью.

Суть квантования: все значения дискретного сигнала кодируются числами из

некоторого конечного множества:

множество чисел формата double или

множество 16-битных целых чисел и др.

Разрядность квантования — это число бит, выделенных на кодирование одного значения сигнала.

Наиболее полную информацию о явлении несет в себе аналоговый сигнал.

#### Потеря информации происходит на каждом переходе:

Аналоговый сигнал 

Дискретный сигнал 

Цифровой сигнал

Квантование — потеря информации не восполнима.

Дискретизация — при определенных условиях утерянная информация

может быть целиком восстановлена (теорема Котельникова).

Интерполяция — это процесс перевода дискретного/цифрового сигнала в аналоговый.

# Оцифровка

#### Дискретизация + Квантование = Оцифровка сигнала.

Устройства для оцифровки сигналов: АЦП (аналогово-цифровой преобразователь).

Основные параметры АЦП: частота дискретизации и разрядность квантования.

Различные типы АЦП являются составными частями таких устройств как: цифровая звукозаписывающая аппаратура, цифровые фото- и видео- камеры, медицинские приборы (КТ, МРТ) и др.

Пример: формат AudioCD для записи компакт-дисков, параметры АЦП: 44.1 кГц, 16 бит.

Устройства для перевода цифровых сигналов в аналоговые: ЦАП (цифро-аналоговые преобразователи)

Примеры: устройства воспроизведения звука, дисплеи

### Обработка сигналов

Обработка сигналов включает в себя извлечение нужной информации из сигнала, выявление особенностей сигнала, сравнение сигналов, анализ сигналов, разложение сигнала на элементарные составляющие или наоборот синтезирование сигнала.



Фундаментальные различия между аналоговыми и цифровыми сигналами влекут различия в методах их обработки.

Пример: найти среднее значение сигнала на некотором промежутке.

Аналоговый сигнал: проинтегрировать по промежутку и поделить на длину.

Дискретный сигнал: просуммировать значения сигнала и поделить на их количество.

Обработка сигналов: аналоговая и цифровая. Устройства, производящие обработку:

аналоговые вычислительные машины (АВМ, аналоговый компьютер), электронно-вычислительные машины (ЭВМ, цифровой компьютер).

АВМ — узкая специализация: под каждую задачу нужна своя машина.

ЭВМ — универсальность: для решения новой задачи нужна лишь новая программа.

### Цифровая обработка сигналов

Под цифровой обработкой сигналов (ЦОС, англ. Digital Signal Processing, DSP) понимают обработку цифровых сигналов на компьютере. Вместе с АЦП и ЦАП можно проводить и цифровую обработку аналоговых сигналов.



Первые ЭВМ решали задачи, связанные с обороной и ядерной физикой (начиная с 40-х годов).

Развитие компьютеров и быстрых алгоритмов для обработки сигналов с начала 1960-х привело к взрывному росту решаемых с помощью ЦОС задач.

Телекоммуникации (передача информации на расстояние): телефонная и сотовая связь, телевизионные сигналы, Интернет.

Аудио: запись, хранение. Широчайшие возможности для редактирования звука, фильтрации, добавления эффектов. Цифровые музыкальные инструменты. Распознавание речи.

Изображения: фото- и видео-съёмка, редактирование, распознавание и др.

Медицина: "умные" диагностические приборы, КТ, МРТ.

### Гильбертово пространство: определение

Сигналы, с точки зрения математики, — это функции, последовательности и вектора. Но неудобно работать со всеми сигналами вообще. Их удобно "упаковать" в некоторые "контейнеры" или пространства с общими правилами. Самой удобной математической абстракцией для работы с сигналами является гильбертово пространство.

Гильбертово пространство - это линейное пространство, в котором для любых двух элементов пространства определено скалярное произведение, и которое является полным и сепарабельным относительно порождённой этим скалярным произведением метрики.

Пусть  ${\mathcal H}$  гильбертово пространство. Скалярное произведение - это отображение, сопоставляющее любым двум элементам  $x,y\in {\mathcal H}$ комплексное число  $\langle x, y \rangle \in \mathbb{C}$  и

```
1. для любых x, y, z \in \mathcal{H} и \alpha, \beta \in \mathbb{C} верно \langle \alpha x + \beta z, y \rangle = \alpha \langle x, y \rangle + \beta \langle z, y \rangle (линейность);
```

- 2. для любых  $x, y \in \mathcal{H}$  верно  $\langle x, y \rangle = \langle y, x \rangle$ ;
- 3. для любого x верно  $\langle x, x \rangle \geq 0$ , причем  $\langle x, x \rangle = 0$  только если x = 0.

Порожденная метрика (норма) :  $\rho(x, y) = \sqrt{\langle x - y, x - y \rangle} = \|x - y\|, \quad \forall x, y \in \mathcal{H}.$ 

Полнота  $\mathcal{H}$ :  $\forall \ \{x_n\}_n \subset \mathcal{H}: \ \|x_n - x_m\|_{\stackrel{n,m \to \infty}{\longrightarrow} 0} \Longrightarrow \exists \ x \in \mathcal{H}: \ \lim_{n \to \infty} x_n = x.$ 

Сепарабельность  $\mathcal{H}$ : существует счётное всюду плотное множество  $\mathcal{M} \subset \mathcal{H}$ ,

то есть для каждого  $\varepsilon > 0$  и  $\forall x \in \mathcal{H} \exists y \in \mathcal{M} : ||x - y|| < \varepsilon$ .

# Гильбертово пространство: свойства

В гильбертовом пространстве  $\mathcal{H}$  верно неравенство Коши-Буняковского  $|\langle x, y \rangle| \le ||x|| \, ||y||, \, \, \forall \, x, y \in \mathcal{H}.$ 

Два элемента  $x, y \in \mathcal{H}$  называются ортогональными, если  $\langle x, y \rangle = 0$ . Важным свойством гильбертовых пространств является наличие в нём ортономированного базиса  $\{e_n\}_{n=1}^{\infty}$ . Если  $\mathcal H$  гильбертово пространство и  $\{e_n\}_{n=1}^{\infty}$  ортонормированный базис в  $\mathcal H$ , то любой элемент  $x \in \mathcal{H}$  может быть представлен в виде

$$x = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n$$
. При этом имеет место равенство Парсеваля  $\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 = ||x||^2$ .

Пусть W замкнутое подпространство гильбертова пространства  $\mathcal{H}$ . Пусть в W есть ортонормированный базис  $\{e_n\}_n$ . Для элемента x из  $\mathcal{H}$  построим элемент  $x_W$  следующим образом

$$x_W = \sum_n \langle x, e_n \rangle e_n.$$

Ясно, что  $x_W$  является ортогональной проекцией элемента x на подпространство W, то есть  $x-x_W$  ортогонально подпространству W. Более того,  $x_W$  является наилучшим приближением элемента x с помощью подпространства W, то есть

$$||x - x_W|| = \inf_{y \in W} ||x - y||.$$

# Пространства сигналов

Под пространствами сигналов будем понимать следующие гильбертовы пространства:

| Дискретные сигналы | $\mathbf{x} \in \mathbb{C}^N$       | x := (x[o],x[1],,x[N-1])                                                                | $\langle \mathbf{x}, \mathbf{y} \rangle := \sum_{n=0}^{N-1} \mathbf{x}[n] \overline{y[n]}$           |
|--------------------|-------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                    | $\mathbf{X} \in \ell_2(\mathbb{Z})$ | $  \mathbf{x}  ^2 = \sum_{n=-\infty}^{+\infty}  \mathbf{x}[n] ^2 < +\infty$             | $\langle \mathbf{x}, \mathbf{y} \rangle := \sum_{n=-\infty}^{+\infty} \mathbf{x}[n] \overline{y[n]}$ |
| Аналоговые сигналы | $\mathbf{x} \in L_2[0,1]$           | $  x  ^2 = \int_0^1  x(t) ^2 dt < +\infty$                                              | $\langle \mathbf{x}, \mathbf{y} \rangle := \int_{0}^{1} \mathbf{x}(\mathbf{t}) \overline{y(t)} dt$   |
|                    | $\mathbf{x} \in L_2(\mathbb{R})$    | $  \mathbf{x}  ^2 = \int_{\mathbb{R}}  \mathbf{x}(\mathbf{t}) ^2 d\mathbf{t} < +\infty$ | $\langle x,y\rangle := \int_{\mathbb{R}} x(t)\overline{y(t)}dt$                                      |

Интегралы понимаются в смысле Лебега — это обобщение интеграла Римана.