```
In [4]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

Retriving dataset of FDI

In [5]: df=pd.read_csv('/Users/shashankpatil/Desktop/pan/FDI_India.csv')
 df1=pd.read_csv('/Users/shashankpatil/Desktop/pan/FDI.csv')

In [6]: df.head(10)

Out[6]:

: _		Sector	2000- 01	2001- 02	2002- 03	2003- 04	2004- 05	2005- 06	2006- 07	2007- 08	:
	0	METALLURGICAL INDUSTRIES	22.69	14.14	36.61	8.11	200.38	149.13	169.94	1175.75	ć
	1	MINING	1.32	6.52	10.06	23.48	9.92	7.40	6.62	444.36	
3	2	POWER	89.42	757.44	59.11	27.09	43.37	72.69	157.15	988.68	(
	3	NON- CONVENTIONAL ENERGY	0.00	0.00	1.70	4.14	1.27	1.35	2.44	58.82	,
	4	COAL PRODUCTION	0.00	0.00	0.00	0.04	0.00	9.14	1.30	14.08	
	5	PETROLEUM & NATURAL GAS	9.35	211.07	56.78	80.64	102.78	12.09	87.71	1405.04	3
	6	BOILERS AND STEAM GENERATING PLANTS	0.00	0.00	0.00	0.04	0.54	0.00	3.31	1.51	
	7	PRIME MOVER (OTHER THAN ELECTRICAL GENERATORS)	0.00	0.00	0.00	0.00	2.66	0.74	25.57	40.53	
	8	ELECTRICAL EQUIPMENTS	79.76	65.76	34.71	73.20	97.40	39.50	76.85	653.74	
	9	COMPUTER SOFTWARE & HARDWARE	228.39	419.39	314.24	368.32	527.90	1359.97	2613.33	1382.25	15

In [7]: df1.head()

Out[7]:		FY year	Sector	FDI
	0	2000-01	METALLURGICAL INDUSTRIES	22.69
	1	2001-02	METALLURGICAL INDUSTRIES	14.14
	2	2002-03	METALLURGICAL INDUSTRIES	36.61
	3	2003-04	METALLURGICAL INDUSTRIES	8.11
	4	2004-05	METALLURGICAL INDUSTRIES	200.38

Descriptive statistics of the Dataset

In	[8]:	df.describe()
----	------	--------------	---

_				\sim	п.	
- ()	1	1	+	\circ	-	-

	2000-01	2001-02	2002-03	2003-04	2004-05	2005-06	2
count	63.000000	63.000000	63.000000	63.000000	63.000000	63.000000	63.
mean	37.757302	63.931587	42.925714	34.727778	51.090317	87.932540	198
std	112.227860	157.878737	86.606439	67.653735	101.934873	206.436967	686
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.
25%	0.000000	0.000000	0.200000	0.215000	0.715000	1.230000	4.
50%	4.030000	5.070000	11.010000	6.370000	9.090000	22.620000	25.
75%	23.510000	44.830000	36.555000	38.660000	43.205000	63.855000	108.
max	832.070000	873.230000	419.960000	368.320000	527.900000	1359.970000	4713.

In [9]: df1.describe()

Out[9]:

FDI count 1071.000000

mean 309.982250

std 819.037233

min 0.000000 25% 3.140000

50% 37.940000

75% 213.740000

max 8684.070000

In [10]:

df.columns

Visaulization of the FDI dataset

```
In [12]: df.plot(figsize=(15,5))
```

Out[12]: <AxesSubplot:xlabel='Sector'>

Overall FDI from Financial year 2000-2016

```
In [13]: df1.groupby('FY year').sum().plot(figsize=(20,5))
  plt.title('Overall FDI investment from FY 2000 TO 2016')
  plt.xlabel('FY year')
  plt.ylabel('FDI')
  plt.show()
```


Top 5 Investment Sectors by FDI

```
In [14]: df_trans = df.transpose()
    df_trans.sum().sort_values()[-5:].plot(figsize=(20,10),kind='bar', title

Out[14]: <AxesSubplot:title={'center':'top 10 investments by FDIs'}, xlabel='Secto'</pre>
```


Detailed FDI year on year for the top 5 best performing sector

```
In [15]:
         plt.subplot(1, 5, 1)
         df.loc['SERVICES SECTOR (Fin., Banking, Insurance, Non Fin/Business, Outsourc
         plt.title('FDI for service sector')
         plt.xlabel('FY year')
         plt.ylabel('FDI')
         plt.subplot(1, 5, 2)
         df.loc['TELECOMMUNICATIONS'].plot(kind='bar',title='FDI for Computer soft
         plt.xlabel('FY year')
         plt.ylabel('FDI')
         plt.subplot(1, 5, 3)
         df.loc['COMPUTER SOFTWARE & HARDWARE'].plot(kind='bar',title='FDI for Com
         plt.xlabel('FY year')
         plt.ylabel('FDI')
         plt.subplot(1, 5, 4)
         df.loc['CONSTRUCTION DEVELOPMENT: Townships, housing, built-up infrastruc
         plt.xlabel('FY year')
         plt.ylabel('FDI')
         plt.subplot(1, 5,5)
         df.loc['CONSTRUCTION (INFRASTRUCTURE) ACTIVITIES'].plot(kind='bar',title=
         plt.xlabel('FY year')
         plt.ylabel('FDI')
```

Out[15]: Text(0, 0.5, 'FDI')

FDI overall growth of the best performing Sector from FY 2000-2016

```
In [16]: df.loc['SERVICES SECTOR (Fin., Banking, Insurance, Non Fin/Business, Outsourc
plt.xlabel('FY year')
plt.ylabel('FDI')
plt.show()
```


Visualizing the correlation among sectors

```
In [17]: corr = df_trans.corr()
   plt.matshow(corr)
```

Out[17]: <matplotlib.image.AxesImage at 0x7fde4962a700>

Top 10 correlated sectors

Top Absolute Correlations

Sector Out[18]: MISCELLANEOUS MECHANICAL & ENGINEERING INDUSTRIES DEFENCE INDUSTRIES 0.958449 SUGAR CONSTRUCTION (INFRASTR UCTURE) ACTIVITIES 0.937258 ELECTRICAL EQUIPMENTS TEXTILES (INCLUDING DY ED, PRINTED) 0.926705 MEDICAL AND SURGICAL APPLIANCES TEXTILES (INCLUDING DY ED, PRINTED) 0.919642 SEA TRANSPORT RETAIL TRADING 0.918936 DYE-STUFFS DIAMOND, GOLD ORNAMENTS 0.916723 AIR TRANSPORT (INCLUDING AIR FREIGHT) CONSTRUCTION (INFRASTR UCTURE) ACTIVITIES 0.916622 FERMENTATION INDUSTRIES FOOD PROCESSING INDUST RTES 0.910990 ELECTRICAL EQUIPMENTS GLUE AND GELATIN 0.908833 MATHEMATICAL, SURVEYING AND DRAWING INSTRUMENTS GLASS 0.908687 dtype: float64

Plotting the correlated sector

```
In [72]: abs_corr = get_top_abs_correlations(df_trans,10)
    plt.rcParams['figure.figsize'] = [25, 5]
    for i in range(10):
        plt.plot(df.loc[abs_corr.index[i][0]], label = abs_corr.index[i][0])
        plt.plot(df.loc[abs_corr.index[i][1]], label = abs_corr.index[i][1])
        plt.title(f'Correleation between {abs_corr.index[i][0]} and {abs_corr.i
        plt.legend()
        plt.show()
```


Lets look at the 3 most correlated years

```
In [56]:
            abs_corr = get_top_abs_correlations(df,3)
            abs_corr
            for i in range(3):
              plt.plot(df_trans.loc[abs_corr.index[i][0]], label = abs_corr.index[i][
              plt.plot(df trans.loc[abs corr.index[i][1]], label = abs corr.index[i][
              plt.title(f'Correleation between {abs_corr.index[i][0]} and {abs_corr.i
              plt.legend()
              plt.show()
                                             Correleation between 2006-07 and 2007-08
                                                leation between 2014-15 and 2016-17
                                              Correleation between 2010-11 and 2011-12
                                                                                         2010-11
2011-12
 In [ ]:
 In [ ]:
```

In []: