- 1. Answer whether the following statements are true or false. Explain shortly your answers if they are true or give a counterexample if they are false.
 - (a) $(1,2,3)^T$, $(2,-1,0)^T$, $(-2,3,-1)^T$, $(-1,2,3)^T$ are linearly independent.

(b) $E = \{(1,1)^T, (1,2)^T\}$ forms a basic of \mathbb{R}^2 . Then $[x]_E = (1,1)$ if and only if $x = (2,3)^T$.

(c) rank $\begin{pmatrix} 1 & 2 & -1 \\ -1 & -2 & 1 \\ 2 & 4 & -2 \end{pmatrix} = 3.$

(d) $L(x_1, x_2) = (x_1 x_2, x_2)$ is a linear operator from \mathbb{R}^2 to \mathbb{R}^2 .

(e) Let $\|\cdot\|$ is a norm in \mathbb{R}^n . Then $\|x\|\|y\| \ge |x^Ty|$.

2. (10 pts) Whether the following vectors $x + 2, x + 1, x^2 - 1$ are linearly independent in P_3 . What is the span of $\{x + 2, x + 1, x^2 - 1\}$?

3. Let
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & -3 & -2 \\ 3 & 3 & 0 & 2 \end{pmatrix}$$
.

(a) Find a basis of N(A), row space of A, column space of A.

(b) Find $\operatorname{nullity}(A)$ and $\operatorname{rank} A.$

- 4. Given $v = (1, -1, 1, 1)^T$ and $w = (4, 2, 2, 1)^T$.
 - (a) Determine the angle between v and w.
 - (b) Find the orthogonal complement of $V = \text{span}\,\{v,w\}.$

- 5. Determine whether the following are linear transformation in $C^1[-1,1]$, the set of all differentiable functions in [-1,1]:
 - (a) $L(f(x)) = x^2 + f(x)$ for $f \in C^1[-1, 1]$.

(b) $L(f(x)) = x^2 f(x) + f'(x)$ for $f \in C^1[-1, 1]$.

- 6. (a) Define $L: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ by $L(A) = A + A^T$.
 - (a) Show that L is a linear operator.

(b) Find $\ker L$ and its dimension.

(c) Find the matrix representation of L.

- 7. Let $\|\cdot\|$ be the Euclidean norm in \mathbb{R}^n . For any $x,y\in\mathbb{R}^n,$
 - (a) Show that $||x + y||^2 = ||x||^2 + ||y||^2 + 2x^T y$

(b) Show that $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$

- 8. (5 pts for each) Given an 5×4 matrix A with rank(A) = 4.
 - (a) How many solutions are there for equation Ax = 0? Explain your answer.

(b) How many solutions are there for equation $A^Ty=0$? Explain your answer.

Answer keys.

- 1. (a) F (b) T (c) F (d) F (e) T.
- 2. Yes.
- 3. (a) A basis of N(A) is $\{(3, -3, 1, 0)^T, (\frac{8}{3}, -\frac{10}{3}, 0, 1)^T\}$. A basis for row space is $\{(1, 2, 3, 4)^T, (0, -3, -9, -10)^T\}$. A basis for column space is $\{(1, 2, 3)^T, (0, 1, 1)^T\}$.
 - (b) $\operatorname{nullity}(A) = 2$ and $\operatorname{rank}(A) = 2$.
- 4. (a) 60° (b) span $\{(2/3, 1/3, 1, 0)^{T}, (1/2.1/2, 0, 1)^{T}\}$.
- 5. (a) No (b) Yes
- 6. (b) $\ker L = \left\{ \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} \right\}$ is the set of all anti-symmetric matrices in \mathbb{R}^2 and its dimension is 1.

$$(c) \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

- 7. Hint: $||x + y||^2 = (x + y)^T (x + y)$.
- 8. Use Rank-Nullity theorem (a) 1 solution (b) Infinitely many solutions.