

تمرین سری ششم تجزیه و تحلیل سیگنالها و سیستمها، گروههای ۱-۴، ترم ۱- ۱۳۹۹

۱- سیستم زیر طراحی یک پردازشگر دیجیتال برای سیگنالهای پیوسته را نشان میدهد.

که در آن $\omega_{
m s}=rac{2\pi}{T}$ و $p(t)=\sum_{k=-\infty}^{+\infty}\delta(t-kT)$ که در آن

الف) حداكثر مقدار فركانس قطع ω_a برحسب T چقدر باید باشد تا اختلاط فركانسی (aliasing) در طیف T برخسب الف)

 $y_p(t)$ ، $y_d[n]$ ، $x_d[n]$ ، $x_p(t)$ ، $x_f(t)$. $x_f(t)$ ، $x_f(t)$. $x_f(t)$ ، $x_f(t)$

را رسم کنید. (مسئله را در دو حالت $\frac{\omega_s}{4}>\omega_a>\frac{\omega_s}{4}$ درنظر بگیرید.) y(t)

ج) پاسخ فرکانسی سیستم پردازشگر زمان پیوسته معادل سیستم فوق را در دو حالت $\omega_a > \frac{\omega_s}{4}$ و $\omega_a > \frac{\omega_s}{4}$ رسم کنید.

($\Delta=\pi/(2M)$ با سیگنال باند محدود (x(t) با طیف $X(j\omega)=\Lambda(\frac{\omega}{2M})$ با سیگنال باند محدود (x(t) با طیف ($\Delta=\pi/(2M)$

الف) سیگنال نمونه برداری شده $x_p(t)$ و طیف آن را بدست آورید و طیف سیگنال های z(t) و z(t) را رسم کنید.

ب) سیستمی طراحی کنید که سیگنال (x(t را از روی سیگنال (z(t بازسازی کند.

ج) یک پردازشگر زمان گسسته طراحی کنید که معادل فیلتر پایینگذر با فرکانس قطع M/2 برای سیگنال زمان پیوسته ورودی باشد.

۳– مسئله ۷-۲۰ کتاب درسی

۴- (اختیاری) مسئله ۷-۲۶ کتاب درسی، نمونه برداری از سیگنال میانگذر با نرخ کمتر از نایکوئیست

۵- (اختیاری) مسئله ۷-۲۴ کتاب درسی، نمونه برداری با موج مربعی

۶- (اختیاری) مسئله ۷-۲۸ کتاب درسی، نمونه برداری از سیگنال متناوب

۷- (اختیاری) مسئله ۷-۳۷ کتاب درسی، نمونه برداری با قطار ضربه غیر یکنواخت

۸- (اختیاری) مسئله ۷-۳۸ کتاب درسی، نحوه کار اسیلوسکوپ

۹- (اختیاری) مسئله ۷-۴۱ کتاب درسی، مقابله با چندمسیر گی سیگنال های بی سیم