Upogib palice

Matevž Demšar

28. november 2024

Uvod. Pri vaji smo merili upogib kovinske palice. Palico smo na sredini obremenili z utežmi in z mikrometersko uro merili upogib u(0), kakor kaže Skica (1). Odmik lahko napovemo po formuli

Slika 1: Ko palico na sredini obremenimo z maso m, se upogne za majhen a merljiv u(0).

$$u(0) = -\frac{F_0 l^3}{48EJ}$$

v kateri F_0 predstavlja silo, s katero obremenimo palico, l dolžino palice, E Youngov prožnostni modul in J vztrajnostni moment presekov palic. Le-tega definiramo kot

$$J = \int_{\Omega} y^2 dS$$

Za kvadraten presek upoštevamo, da je dS enak $dx\,dy$ in dobimo integral:

$$J_1 = 2 \int_0^{a/2} \left(2 \int_0^{a/2} y^2 \, dy \right) dx$$
$$= 2 \int_0^{a/2} ay'^2 \, dy' = \frac{a^4}{12}$$

Za izračun vztrajnostnega momenta okroglega preseka si zamislimo, da je krog unija infinitezimalno ozkih kolobarjev s ploščino $dS = \pi R dR$:

$$J_2 = \int_{\Omega} y^2 dS$$
$$\int_0^r R^2 \pi R dR$$
$$= \pi r^4 / 4$$

Meritve. Obravnavali smo palico s kvadratnim prerezom in palico z okroglim prerezom. Izmeriti je bilo treba maso, dolžino in premer obeh palic. Poleg tega smo izmerili odvisnost bremena igle v mikrometerski uri od odmika. Začeli smo z merjenjem prožnostnega modula. Na sredino palice smo postopoma obešali uteži in merili odmik u(0). Meritve smo ponovili še tako, da smo uteži postopoma snemali. Meritve so vpisane v Tabeli (1)

Rezultate za obe palici narišemo v graf na Sliki (2) in jima priredimo premici s koeficientoma k_1 in k_2 , iz katerih bomo izrazili prožnostna modula palic.

Kvadratna palica		Okrogla palica	
a	6,8 mm	2r	6,8 mm
l_1	$56,1~\mathrm{cm}$	l_2	$56,1~\mathrm{cm}$
m_1	261 g	m_2	207 g
m [g]	$u(0) \ [\mu m]$	m [g]	$u(0) \ [\mu {\rm m}]$
50	60	50	110
100	150	100	250
150	240	150	400
200	320	200	550
250	440	250	690
300	520	300	820
350	610	350	960
400	690	400	1100
450	780	450	1230
500	850	500	1490
450	780	450	1380
400	700	400	1240
350	610	350	1140
300	540	300	1000
250	440	250	870
200	360	200	740
150	260	150	480
100	180	100	400
50	100	50	160

Tabela 1: V zgornjem delu tabele so zapisani odmiki, izmerjeni med dodajanjem uteži, v spodnjem pa odmiki, izmerjeni pri odvzemanju uteži.

S pomočjo pythonove funkcije $scipy.optimize.curve_fit$ dobimo

$$\frac{l_1^3}{48E_1J_1} = 178 \frac{\mu m}{N} \pm 2 \frac{\mu m}{N} = k_1$$

$$\frac{l_2^3}{48E_2J_2} = 297 \frac{\mu m}{N} \pm 14 \frac{\mu m}{N} = k_2$$

$$E_1 = \frac{l^3}{48k_1J_1} = \frac{l^3}{4a^4k_1}$$

$$E_2 = \frac{l^3}{48k_2J_2} = \frac{l^3}{12\pi r^4k_2}$$

$$E_1 = 116 GPa \pm 9 GPa$$

$$E_2 = 118 GPa \pm 13 GPa$$

Izračunamo še gostoto obeh palic. Ta je enaka $\rho=m/V$. V primeru kvadratne palice je $V=a^2l_1$, v primeru okrogle palice pa πr^2l_2 .

$$\rho_1 = m_1/a^2 l_1 = 10100 \ kg/m^3 \pm 400 \ kg/m^3$$
$$\rho_2 = m_2/\pi r^2 l_2 = 10200 \ kg/m^3 \pm 200 \ kg/m^3$$

Na podlagi gostote in prožnostnih modulov palic zaključimo, da sta palici verjetno iz istega materiala. Breme igle izmerimo tako, da pritisnemo mikrometersko uro ob tehtnico in izmerimo silo igle na tehtnico:

Slika 2: Opazimo, da so meritve pri okrogli palici bolj razpršene. Razlog za to je premikanje palice med merjenjem. Napaka posameznih meritev pa je zelo majhna.

Slika 3: Iz naklona premice, ki jo priredimo meritvam, ocenimo, da je odvisnost dodatne obremenitve, ki jo povzroča igla ure, enaka 0.005 $g/\mu m$ ali $(5.0\pm0.7)~kg/m$