Structures algébriques

récapitulatif

GROUPES

Définition — GROUPE —

On appelle groupe tout couple (G,*), où G est un ensemble, * une loi interne sur G et qui jouit des propriétés suivantes :

- 1. La loi * est associative.
- 2. La loi * possède un élément neutre.
- 3. Tout élément de G possède un symétrique.

Si de plus la loi * est commutative, on dit que le groupe est abélien.

Définition — Sous-groupe —

Soit (G,*) un groupe. On appelle sous-groupe de (G,*), tout couple (H,*) où :

- H est une partie de G stable par la loi *;
- * est la loi induite par * sur H;
- -(H, *) est un groupe.

Remarque — Abusivement on dit que H est un sous-groupe.

Proposition — CARACTÉRISATION DES SOUS-GROUPES —

Soit (G,*) un groupe. Soit H une partie de G. H est un sous-groupe de (G,*) si et seulement si

- 1. La partie H est non vide.
- 2. La partie H est stable par la loi *.
- 3. La partie H est stable par passage au symétrique.

Proposition — Intersection de sous-groupes —

L'intersection d'une famille, finie ou non, de sous-groupes d'un groupe (G, *) est un sous-groupe de (G, *).

Définition — MORPHISME DE GROUPES —

Soient $(G_1, *)$ et $(G_2, *)$ des groupes. On appelle morphisme du groupe $(G_1, *)$ dans le groupe $(G_2, *)$, toute application φ de G_1 dans G_2 telle que pour tout x et tout y éléments de G, $\varphi(x * y) = \varphi(x) * \varphi(y)$.

Proposition — Propriétés des morphismes de groupes — Soit φ un morphisme d'un groupe $(G_1, *)$ dans une groupe $(G_2, *)$. Alors,

- 1. $\varphi(e_{G_1}) = e_{G_2}$.
- 2. Pour tout élément x de G_1 , $\varphi(x^{-1}) = (\varphi(x))^{-1}$.
- 3. Si H_1 est un sous-groupe de $(G_1, \underset{1}{*})$, alors $\varphi(H_1)$, en est un de $(G_2, \underset{2}{*})$.
- 4. Si H_2 est un sous-groupe de $(G_2, *)$, $\varphi^{-1}(H_2)$, en est un de $(G_1, *)$

Cas particulier — $\varphi^{-1}(\{e_{G_2}\})$ est un sous-groupe de $(G_1, *_1)$; on l'appelle noyau de φ et on le note $\operatorname{Ker}(\varphi)$.

Proposition — Soit φ un morphisme d'un groupe $(G_1, *)$ dans un groupe $(G_2, *)$. Alors φ est injectif si et seulement si $\text{Ker}(\varphi) = \{e_{G_1}\}.$

ANNEAUX

Définition — ANNEAU —

On appelle anneau tout triplet $(A, +, \times)$, où A est un ensemble, + et \times des lois internes sur G tels que l'on ait :

- 1. (A, +) est un groupe abélien.
- 2. La $loi \times est$ associative.
- 3. La loi × possède un élément neutre.
- 4. La $loi \times est$ distributive par rapport à la loi +.

 $Si\ de\ plus\ la\ loi imes est\ commutative,\ on\ dit\ que\ l'anneau\ est\ commutatif.$

Définition — SOUS-ANNEAU —

Soit $(A, +, \times)$ un anneau. On appelle sous-anneau de $(A, +, \times)$, tout triplet $(B, +, \times)$ où :

- B est une partie de A stable par les lois + $et \times$;
- -1_A est élément de B;
- -+ $\underset{B}{e}$ $\underset{B}{e}$ \times sont les lois induites respectivement par+ $et \times sur$ B;
- $-(B, +, \times)$ est un anneau.

Remarque — Par un abus on dit que B est un sous-anneau.

Proposition — CARACTÉRISATION DES SOUS ANNEAUX —

Soit $(A, +, \times)$ un anneau. Une partie B de A est un sous-anneau de $(A, +, \times)$ si et seulement si

- 1. 1_A est élément de B.
- 2. B est stable par +.
- 3. B est stable par passage à l'opposé.
- 4. B est stable par \times .

Définition — MORPHISMES D'ANNEAUX —

On appelle morphisme d'un anneau $(A_1, +, \times)$ dans un anneau $(A_2, +, \times)$, toute application φ de A_1 dans A_2 telle que :

- 1. $\varphi(1_{A_1}) = 1_{A_2}$.
- 2. pour tout x et tout y éléments de A_1 , $\varphi(x+y) = \varphi(x) + \varphi(y)$.
- 3. pour tout x et tout y éléments de A_1 , $\varphi(x \times y) = \varphi(x) \times \varphi(y)$.

Si de plus φ est une bijection de A_1 sur A_2 , on dit que φ est un isomorphisme d'anneaux.

Proposition — Propriétés des morphismes d'anneaux —

Soit φ un morphisme de l'anneau $(A_1, +, \times)$ dans l'anneau $(A_2, +, \times)$.

- 1. φ est un morphisme du groupe $(A_1, +)$ dans le groupe $(A_2, +)$.
- 2. Pour tout élément x_1 de A_1 inversible, $\varphi(x_1^{-1}) = (\varphi(x_1))^{-1}$.
- 3. L'image direct d'un sous-anneau de $(A_1, +, \times)$ par φ est un sous-anneau.
- 4. L'image réciproque d'un sous-anneau de $(A_2, +, \times)$ par φ est un sous-anneau.

ANNEAUX INTÈGRES, CORPS

Définition — Anneau intègre —

Un anneau $(A, +, \times)$ est dit intègre si par définition,

- 1. L'anneau $(A, +, \times)$ est non trivial.
- 2. L'anneau $(A, +, \times)$ est commutatif.
- 3. Pour tout a et tout b éléments de A, si $a \times b = 0_A$ alors $a = 0_A$ ou $b = 0_A$.

Définition — CORPS —

On appelle corps, tout anneau $(K, +, \times)$ tel que l'on ait :

- 1. L'anneau $(K, +, \times)$ est non trivial.
- 2. L'anneau $(K, +, \times)$ est commutatif.
- 3. Tout élément de K distinct de 0_K est inversible.

Proposition — Tout corps est un anneau intègre.

Définition — Sous-corps —

On appelle sous-corps d'un corps $(K, +, \times)$ tout sous-anneau de $(K, +, \times)$ (considéré comme un anneau), qui est un corps.

Proposition — CARACTÉRISATION DES SOUS-CORPS —

Soient un corps $(K, +, \times)$ et k une partie de K. k est un sous-corps de $(K, +, \times)$ si et seulement

- 1. $1_K \in k$, (ou bien k non nul)
- 2. k est stable par + ,3. k est stable par passage à l'opposé,

 4. k est stable par passage à l'opposé,
- 4. k est stable $par \times$,
- 5. k est stable par passage à l'inverse.

Définition — MORPHISMES DE CORPS —

On appelle morphisme d'un corps $(K_1, +, \times)$ dans un corps $(K_2, +, \times)$, toute application φ de K_1 dans K_2 telle que :

- 1. $\varphi(1_{A_1}) = 1_{A_2}$ (ou bien φ non nulle).
- 2. Pour tout x et tout y éléments de K_1 , $\varphi(x+y) = \varphi(x) + \varphi(y)$.
- 3. Pour tout x et tout y éléments de K_1 , $\varphi(x \times y) = \varphi(x) \times \varphi(y)$.

Si de plus φ est une bijective, on dit que φ est un isomorphisme de corps.

Proposition — Propriétés des morphismes de corps —

Soit φ un morphisme d'un corps $(K_1, +, \times)$ dans le corps $(K_2, +, \times)$.

- 1. Pour tout élément x_1 de K_1 non nul, $\varphi(x_1^{-1}) = (\varphi(x_1))^{-1}$.
- 2. L'image direct d'un sous-corps de $(K_1, +, \times)$ par φ est un sous-corps.
- 3. L'image réciproque d'un sous-corps de $(K_2, +, \times)$ par φ est un sous-corps.

Définition — IDÉAL —

Soit $(A, +, \times)$ un anneau intègre, dans la pratique $(\mathbf{Z}, +, \times)$, $(\mathbf{K}[X], +, \times)$ etc. On appelle idéal $de(A, +, \times)$, toute partie \Im_0 de A telle que:

- 1. $(\Im_0, +)$ soit un sous groupe de (A, +).
- 2. Pour tout élément x_0 de \Im_0 et tout élément a de A, $a \times x_0 \in \Im_0$.

Proposition — Les noyaux des morphismes d'un anneau intègre dans un anneau sont des $id\acute{e}aux.$

ESPACES VECTORIELS

Définition — ESPACE VECTORIEL —

On appelle espace vectoriel sur un corps $(\mathbf{K}, +, \times)$ $(\mathbf{K} = \mathbf{R}, \mathbf{C}, \dots)$ tout triplet $(\mathbf{E}, +, \cdot)$, où \mathbf{E} est un ensemble, + une loi interne sur \mathbf{E} , \cdot une opération de l'ensemble \mathbf{K} sur \mathbf{E} , $(\mathbf{K} \times \mathbf{E} \to \mathbf{E}; (\alpha, \mathbf{x}) \mapsto \alpha \cdot \mathbf{x},)$, tel que $(\mathbf{E}, +, \cdot)$ soit un groupe abélien et qui jouit des propriétés suivantes :

1. Pour tout élément α de \mathbf{K} , tout \mathbf{x} et tout \mathbf{y} éléments de \mathbf{E} .

$$\alpha \cdot (\mathbf{x} + \mathbf{y}) = (\alpha \cdot \mathbf{x}) + (\alpha \cdot \mathbf{y}).$$

2. Pour tout élément \mathbf{x} de \mathbf{E} , tout α et tout β éléments de \mathbf{K} .

$$(\alpha + \beta) \cdot \mathbf{x} = (\alpha \cdot \mathbf{x}) + (\beta \cdot \mathbf{x}).$$

3. Pour tout élément \mathbf{x} de \mathbf{E} , tout α et tout β éléments de \mathbf{K} .

$$(\alpha \times \beta) \cdot \mathbf{x} = \alpha \cdot (\beta \cdot \mathbf{x}).$$

4. Pour tout élément \mathbf{x} de \mathbf{E} , $1 \cdot \mathbf{x} = \mathbf{x}$.

Conventions d'écriture — + noté +, omission de \cdot , priorité de \cdot sur +.

Définition — Sous-espace vectoriel —

Soit $(\mathbf{E}, +, .)$ un e.v. sur \mathbf{K} . On appelle sous-espace vectoriels de $(\mathbf{E}, +, \cdot)$, tout triplet $(\mathbf{H}, +, \cdot, \cdot)$ où :

- **H** est une partie de E stable $par + et par \cdot$, $(\mathbf{H} + \mathbf{H} \subset \mathbf{H}, \mathbf{K} \cdot \mathbf{H} \subset \mathbf{H})$;
- -+ la loi induite sur \mathbf{H} par +, \cdot l'opération de \mathbf{K} sur \mathbf{H} induite par \cdot ;
- $-(\mathbf{H}, +, \cdot, \cdot)$ est un espace vectoriel sur \mathbf{K} .

Remarque — Abusivement on dit que H est un sous-espace vectoriel.

Proposition — Caractérisation des sous-espaces vectoriels — Soit $(\mathbf{E},+,.)$ un e.v. sur \mathbf{K} . Soit \mathbf{H} une partie de \mathbf{E} . \mathbf{H} est un sous-e.v. de $(\mathbf{E},+,.)$ si et seulement si

- 1. H est non vide.
- 2. La partie H est stable par combinaison linéaire.

Définition — APPLICATIONS LINÉAIRES —

On appelle application linéaire d'un \mathbf{K} -e.v $(\mathbf{E}, +, \cdot)$ dans un \mathbf{K} -e.v. $(\mathbf{F}, +, \cdot)$, toute application \mathbf{f} de \mathbf{E} dans \mathbf{F} telle que : pour tout $(\mathbf{x}, \mathbf{y}) \in \mathbf{E}^2$, pour tout $(\alpha, \beta) \in \mathbf{K}^2$, $\mathbf{f}(\alpha \cdot \mathbf{x} + \beta \cdot \mathbf{y}) = \alpha \cdot \mathbf{f}(\mathbf{x}) + \beta \cdot \mathbf{f}(\mathbf{y})$.

Proposition — Propriétés des applications linéaires — Soit \mathbf{f} une application linéaire d'un e.v. $(\mathbf{E}, +, \cdot)$ dans un e.v. $(\mathbf{F}, +, \cdot)$.

- 1. $f(0_E) = 0_F$.
- 2. Si \mathbf{H} est un sous-e.v. $(\mathbf{E}, +, \cdot)$, alors $\mathbf{f}(\mathbf{H})$, en est un de $(\mathbf{F}, +, \cdot)$.
- 3. Si \mathbf{H}' est un sous-e.v. de $(\mathbf{F}, +, \cdot)$, alors $\mathbf{f}^{-1}(\mathbf{H}')$, en est un de $(\mathbf{E}, +, \cdot)$.

Cas particulier — $\mathbf{f}^{-1}(\{\mathbf{0}_{\mathbf{F}}\})$ est un sous-e.v. de $(\mathbf{E}, +, \cdot)$; on l'appelle noyau de \mathbf{f} et on le note $\operatorname{Ker}(\mathbf{f})$. \mathbf{f} est injectif si et seulement si $\operatorname{Ker}(\mathbf{f}) = \{\mathbf{0}_{\mathbf{E}}\}$.

ALGÈBRES

Définition — ALGÈBRE —

On appelle algèbre sur un corps $(\mathbf{K}, +, \times)$ $(\mathbf{K} = \mathbf{R}, \mathbf{C}, \dots)$ tout quadruplet $(\mathbf{E}, +, \times, \cdot)$, où \mathbf{E} est un ensemble, + et \times des lois internes sur \mathbf{E} , \cdot une opération de l'ensemble \mathbf{K} sur \mathbf{E} , tel que :

- 1. $(E, +, \times)$ soit un anneau.
- 2. $(E, +, \cdot)$ soit un espace vectoriel sur \mathbf{K} .
- 3. Pour tout α élément K, tout x et tout y éléments de E.

$$(\alpha \cdot \mathbf{x}) \times \mathbf{y} = \mathbf{x} \times (\alpha \cdot \mathbf{y}) = \alpha \cdot (\mathbf{x} \times \mathbf{y}).$$

Si de plus la loi × est commutative on dit que l'algèbre est commutative.

Définition — Sous-Algèbre —

Soit $(\mathbf{E}, +, \times, \cdot)$ une algèbre sur \mathbf{K} . On appelle sous-algèbre de $(\mathbf{E}, +, \times, \cdot)$, tout quadruplet $(\mathbf{H}, +, \times, \cdot, \cdot)$ où :

- \mathbf{H} est une partie de E stable par +, $par \times$ et $par \cdot$ et contenant l'unité de l'anneau $(\mathbf{E}, +, \times,)$;
- +, × les lois induites sur $\mathbf H$ respectivement par + et ×, \vdots l'opération de $\mathbf K$ sur $\mathbf H$ induite par \vdots ;
- $(\mathbf{H}, \underset{\mathbf{H}}{+}, \underset{\mathbf{H}}{\times}, \underset{\mathbf{H}}{\cdot},)$ est une algèbre sur \mathbf{K} .

Remarque — abusivement on dit que H est une sous-algèbre.

Proposition — Soit $(\mathbf{E}, +, \times, \cdot)$ un e.v. sur \mathbf{K} . Une partie \mathbf{H} de \mathbf{E} est une sous-algèbre de $(\mathbf{E}, +, \times, \cdot)$ si et seulement si \mathbf{H} est un sous-anneau de $(\mathbf{E}, +, \times)$ et un sous-e.v. $(\mathbf{E}, +, \cdot)$.

Proposition — Caractérisation des sous-algèbres — Soit $(\mathbf{E}, +, \times, \cdot)$ un e.v. sur \mathbf{K} . Soit \mathbf{H} une partie de \mathbf{E} . \mathbf{H} est une sous-algèbre de $(\mathbf{E}, +, \times, \cdot)$ si et seulement si

- 1. $\mathbf{1}_{E} \in H$.
- 2. La partie H est stable par combinaison linéaire.
- 3. La partie \mathbf{H} est stable par \times .

Définition —MORPHISME D'ALGÈBRES —

Soient $(\mathbf{E}, +, \times, \cdot)$ et $(\mathbf{F}, +, \times, \cdot)$ des algèbres sur \mathbf{K} . On appelle morphisme de l'algèbre $(\mathbf{E}, +, \cdot)$ dans l'algèbre $(\mathbf{F}, +, \cdot)$ toute application \mathbf{f} de \mathbf{E} dans \mathbf{F} qui soit un morphisme de l'anneau $(\mathbf{E}, +, \times)$ dans l'anneau $(\mathbf{F}, +, \times)$ et une application linéaire de l'e.v. $(\mathbf{E}, +, \cdot)$ dans l'e.v. $(\mathbf{F}, +, \cdot)$; c'est-à-dire qui vérifie :

- $f(1_E) = 1_F$,
- Pour tout $(\mathbf{x}, \mathbf{y}) \in \mathbf{E}^2$, tout $(\alpha, \beta) \in \mathbf{K}^2$, $\mathbf{f}(\alpha \cdot \mathbf{x} + \beta \cdot \mathbf{y}) = \alpha \cdot \mathbf{f}(\mathbf{x}) + \beta \cdot \mathbf{f}(\mathbf{y})$;
- Pour tout $(\mathbf{x}, \mathbf{y}) \in \mathbf{E}^2$, $\mathbf{f}(\mathbf{x} \times \mathbf{y}) = \mathbf{f}(\mathbf{x}) \times \mathbf{f}(\mathbf{y})$.

Proposition — Propriétés des morphismes d'algèbres — Soit \mathbf{f} un morphisme d'une algèbre $(\mathbf{E}, +, \times, \cdot)$ dans un algèbre $(\mathbf{F}, +, \times, \cdot)$.

- 1. Si **H** est un sous-algèbre de $(\mathbf{E}, +, \times, \cdot)$, alors $\mathbf{f}(\mathbf{H})$, en est une de $(\mathbf{F}, +, \times, \cdot)$.
- 2. Si \mathbf{H}' est un sous-algèbre de $(\mathbf{F}, +, \times, \cdot)$, alors $\mathbf{f}^{-1}(\mathbf{H}')$, en est une de $(\mathbf{E}, +, \times, \cdot)$.