

Graphentheorie I

Martin Thoma | 2. Juli 2013

INSTITUT FÜR STOCHASTIK

Inhalte

- Grundlagen
- 2 Spezielle Graphen
- Strukturen in Graphen
- 4 Königsberger Brückenproblem
- Ende

Graph

Graph

Ein Graph ist ein Tupel (E,K), wobei $E\neq\emptyset$ die Eckenmenge und $K\subseteq E\times E$ die Kantenmenge bezeichnet.

Graph

Graph

Ein Graph ist ein Tupel (E,K), wobei $E\neq\emptyset$ die Eckenmenge und $K\subseteq E\times E$ die Kantenmenge bezeichnet.

Synonyme

Knoten ⇔ Ecken

Isomorphe Graphen

martin-thoma.de/uni/graph.html

Aufgabe 1

Zeichnen Sie alle Graphen mit genau vier Ecken.

Aufgabe 1

Zeichnen Sie alle Graphen mit genau vier Ecken.

Inzidenz

Inzidenz

Sei $e \in E$ und $k = \{e_1, e_2\} \in K$. e heißt **inzident** zu $k :\Leftrightarrow e = e_1$ oder $e = e_2$

Inzidenz

Inzidenz

Sei $e \in E$ und $k = \{e_1, e_2\} \in K$. e heißt **inzident** zu $k :\Leftrightarrow e = e_1$ oder $e = e_2$

Vollständige Graphen

Vollständiger Graph

Sei G = (E, K) ein Graph.

G heißt vollständig : $\Leftrightarrow K = E \times E \setminus \{e \in E : \{e, e\}\}$

Ein vollständiger Graph mit n Ecken wird als K_n bezeichnet.

Vollständige Graphen

Vollständiger Graph

Sei G = (E, K) ein Graph.

G heißt vollständig : $\Leftrightarrow K = E \times E \setminus \{e \in E : \{e, e\}\}$

Ein vollständiger Graph mit n Ecken wird als K_n bezeichnet.

Bipartiter Graph

Bipartiter Graph

Sei G=(E,K) ein Graph und $A,B\subset E$ zwei disjunkte Eckenmengen mit $E\setminus A=B.$

G heißt **bipartit**

 $:\Leftrightarrow \forall_{k=\{\ e_1,e_2\ \}\in K}: (e_1\in A\ \mathsf{und}\ e_2\in B)\ \mathsf{oder}\ (e_1\in B\ \mathsf{und}\ e_2\in A)$

Vollständig bipartiter Graph

Vollständig bipartiter Graph

Sei G=(E,K) ein bipartiter Graph und $\{\,A,B\,\}$ bezeichne die Bipartition.

G heißt vollständig bipartit : $\Leftrightarrow A \times B = K$

Vollständig bipartite Graphen

Bezeichnung: Vollständig bipartite Graphen mit der Bipartition $\{A, B\}$ bezeichnet man mit $K_{|A|,|B|}$.

Aufgabe 2

Wie viele Ecken und wie viele Kanten hat der $K_{m,n}$?

Aufgabe 2

Wie viele Ecken und wie viele Kanten hat der $K_{m,n}$?

Ecken: m+n(1)

(2)Kanten: $m \cdot n$

Kantenzug, Länge eines Kantenzuges und Verbindung von Ecken

Kantenzug, Länge eines Kantenzuges und Verbindung von Ecken

Sei G = (E, K) ein Graph.

Dann heißt eine Folge k_1,k_2,\ldots,k_s von Kanten, zu denen es Ecken e_0,e_1,e_2,\ldots,e_s gibt, so dass

- $k_1 = \{ e_0, e_1 \}$
- $k_2 = \{ e_1, e_2 \}$
-
- $\bullet k_s = \{e_{s-1}, e_s\}$

gilt ein Kantenzug, der e_0 und e_s verbindet und s seine Länge.

Geschlossener Kantenzug

Geschlossener Kantenzug

Sei G=(E,K) ein Graph und $A=(e_0,e_1,\ldots,e_s)$ ein Kantenzug. A heißt **geschlossen** : $\Leftrightarrow e_s=e_0$.

Weg

Weg

Sei G = (E, K) ein Graph und $A = (k_1, k_2, \dots, k_s)$ ein Kantenzug.

A heißt **Weg** : $\Leftrightarrow \forall_{i,j \in 1,...,s} : i \neq j \Rightarrow k_i \neq k_i$.

Weg

Weg

Sei G = (E, K) ein Graph und $A = (k_1, k_2 \dots, k_s)$ ein Kantenzug.

A heißt $\mathbf{Weg}:\Leftrightarrow \forall_{i,j\in 1,...,s}: i\neq j\Rightarrow k_i\neq k_j$.

Salopp

Ein Kantenzug, bei dem man keine Kante mehrfach abläuft, ist ein Weg.

Achtung: Knoten dürfen mehrfach abgelaufen werden!

Weg

Weg

Sei G=(E,K) ein Graph und $A=(k_1,k_2\ldots,k_s)$ ein Kantenzug.

A heißt $\mathbf{Weg}:\Leftrightarrow \forall_{i,j\in 1,...,s}: i\neq j\Rightarrow k_i\neq k_j$.

Salopp

Ein Kantenzug, bei dem man keine Kante mehrfach abläuft, ist ein Weg.

Achtung: Knoten dürfen mehrfach abgelaufen werden!

Kreis

Kreis

Sei G=(E,K) ein Graph und $A=(k_1,k_2\ldots,k_s)$ ein Kantenzug.

A heißt **Kreis** : \Leftrightarrow A ist geschlossen und ein Weg.

Manchmal wird das auch "einfacher Kreis" genannt.

Kreis

Kreis

Sei G = (E, K) ein Graph und $A = (k_1, k_2 \dots, k_s)$ ein Kantenzug.

A heißt **Kreis** : $\Leftrightarrow A$ ist geschlossen und ein Weg.

Manchmal wird das auch "einfacher Kreis" genannt.

Martin Thoma - Graphentheorie I

Ende

Kreis

Kreis

Sei G=(E,K) ein Graph und $A=(k_1,k_2\ldots,k_s)$ ein Kantenzug.

A heißt **Kreis** : \Leftrightarrow A ist geschlossen und ein Weg.

Manchmal wird das auch "einfacher Kreis" genannt.

Zusammenhängender Graph

Zusammenhängender Graph

Sei G = (E, K) ein Graph.

G heißt **zusammenhängend** : $\Leftrightarrow \forall e_1,e_2 \in E$: Es ex. ein Kantenzug, der e_1 und e_2 verbindet

Grad einer Ecke

Grad einer Ecke

Der Grad einer Ecke ist die Anzahl der Kanten, die von dieser Ecke ausgehen.

Isolierte Ecke

Hat eine Ecke den Grad 0, so nennt man ihn isoliert.

Grundlagen

Spezielle Graphen

Strukturen in Graphen 00000

Königsberger Brückenproblem

2. Juli 2013

Ende

Königsberg heute

Königsberger Brückenproblem

Übersetzung in einen Graphen

Übersetzung in einen Graphen

Eulerscher Kreis

Sei G ein Graph und A ein Kreis in G.

A heißt eulerscher Kreis : $\Leftrightarrow \forall_{e \in E} : e \in A$.

Eulerscher Graph

Ein Graph heißt eulersch, wenn er einen eulerschen Kreis enthält.

Satz von Euler

Satz von Euler

Wenn ein Graph G eulersch ist, dann hat jede Ecke von G geraden Grad.

Satz von Euler

Satz von Euler

Wenn ein Graph ${\cal G}$ eulersch ist, dann hat jede Ecke von ${\cal G}$ geraden Grad.

 \Rightarrow Wenn G eine Ecke mit ungeraden Grad hat, ist G nicht eulersch.

Martin Thoma - Graphentheorie I

Ende

Satz von Euler

Satz von Euler

Wenn ein Graph ${\cal G}$ eulersch ist, dann hat jede Ecke von ${\cal G}$ geraden Grad.

 \Rightarrow Wenn G eine Ecke mit ungeraden Grad hat, ist G nicht eulersch.

Martin Thoma - Graphentheorie I

Beh.: G ist eulersch $\Rightarrow \forall e \in E : \mathsf{Grad}(e) \equiv 0 \mod 2$

Bew.: Eulerkreis geht durch jede Ecke $e \in E$, also geht der Eulerkreis (eventuell mehrfach) in e hinein und hinaus $\Rightarrow \operatorname{Grad}(e) \equiv 0 \mod 2$

Martin Thoma - Graphentheorie I

Beh.: G ist eulersch $\Rightarrow \forall e \in E : \mathsf{Grad}(e) \equiv 0 \mod 2$

Bew.: Eulerkreis geht durch jede Ecke $e \in E$,

also geht der Eulerkreis (eventuell mehrfach) in \emph{e} hinein und hinaus

 $\Rightarrow \operatorname{\mathsf{Grad}}(e) \equiv 0 \mod 2$

Martin Thoma - Graphentheorie I

Ende

Beh.: G ist eulersch $\Rightarrow \forall e \in E : \mathsf{Grad}(e) \equiv 0 \mod 2$

Bew.: Eulerkreis geht durch jede Ecke $e \in E$,

also geht der Eulerkreis (eventuell mehrfach) in \emph{e} hinein und hinaus

 $\Rightarrow \operatorname{\mathsf{Grad}}(e) \equiv 0 \mod 2$

Martin Thoma - Graphentheorie I

Beh.: G ist eulersch $\Rightarrow \forall e \in E : \mathsf{Grad}(e) \equiv 0 \mod 2$

Bew.: Eulerkreis geht durch jede Ecke $e \in E$,

also geht der Eulerkreis (eventuell mehrfach) in e hinein und hinaus

 $\Rightarrow \mathsf{Grad}(e) \equiv 0 \mod 2$

Umkehrung des Satzes von Euler

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis per Induktion TODO

Martin Thoma - Graphentheorie I

Offene eulersche Linie

Sei ${\cal G}$ ein Graph und ${\cal A}$ ein Weg, der kein Kreis ist.

A heißt **offene eulersche Linie** von $G : \Leftrightarrow$ Jede Kante in G kommt genau ein mal in A vor.

Ein Graph kann genau dann "in einem Zug" gezeichnet werden, wenn er eine offene eulersche Linie besitzt.

Martin Thoma - Graphentheorie I

Satz 8.2.3

Sei ${\cal G}$ ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\dots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup\{\,e_s,e_0\,\}).$ Es gibt einer

Eulerkreis in G^*

Martin Thoma - Graphentheorie I

 $\xrightarrow{\mathsf{Satz}\ \mathsf{von}\ \mathsf{Euler}} \mathsf{In}\ G^*$ hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht

 \Rightarrow in G haben genau 2 Ecken ungeraden Grad lacksquare

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒ "

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup\{e_s,e_0\})$. Es gibt einen

Eulerkreis in G^*

Martin Thoma - Graphentheorie I

 $\xrightarrow{\text{Satz von Euler}}$ In G^* hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht

 \Rightarrow in G haben genau 2 Ecken ungeraden Grad lacktriangle

Satz 8.2.3

Sei ${\cal G}$ ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒ "

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup\{e_s,e_0\})$. Es gibt einen

Eulerkreis in G^st

Martin Thoma - Graphentheorie I

 $\stackrel{\mathsf{Satz} \text{ von Euler}}{\longrightarrow} \mathsf{In} \ G^* \mathsf{ hat jede Ecke geraden Grad}$

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht

 \Rightarrow in G haben genau 2 Ecken ungeraden Grad lacktriangle

Satz 8.2.3

Sei ${\cal G}$ ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒ "

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup\{\ e_s,e_0\ \})$. Es gibt einen Eulerkreis in G^*

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht \Rightarrow in G haben genau 2 Ecken ungeraden Grad

Martin Thoma - Graphentheorie I

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie : $\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒ "

Sei G = (E, K) ein zusammenhängender Graph und $L = (e_0, \ldots, e_s)$ eine offene eulersche Linie. Sei $G^* = (E, K \cup \{e_s, e_0\})$. Es gibt einen

Eulerkreis in G^*

Martin Thoma - Graphentheorie I

Satz von Euler In G^* hat jede Ecke geraden Grad

 \Rightarrow in G haben genau 2 Ecken ungeraden Grad

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒ "

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup\{e_s,e_0\})$. Es gibt einen

Eulerkreis in G^*

Martin Thoma - Graphentheorie I

Satz von Euler In G^* hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht

 \Rightarrow in G haben genau 2 Ecken ungeraden Grad lacktriangle

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒ "

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup\{e_s,e_0\})$. Es gibt einen

Eulerkreis in G^*

Martin Thoma - Graphentheorie I

Satz von Euler In G^* hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht

 \Rightarrow in G haben genau 2 Ecken ungeraden Grad \blacksquare

Aufgabe 3

Zeigen Sie: Ein Kreis ist genau dann bipartit, wenn er gerade Länge hat.

Bildquelle

- http://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png
- Google Maps (Grafiken ©2013 Cnes/Spot Image, DigitalGlobe)

Literatur

• A. Beutelspacher: Diskrete Mathematik für Einsteiger, 4. Auflage, ISBN 978-3-8348-1248-3