Chapter 14 Rank of a Matix and Singular Value Decomposition

1 Rank of a Matrix

Rank of a matrix is the number of linearly independent columns of a matrix For example,

Consider this matrix

$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

Can the first column $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ be written as a linear combination of its previous columns?

Since there are no previous columns, this column is linearly independent of its previous columns, hence we can put a \times over it.

$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

Can the second column $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ be written as a linear combination of its previous columns?

No, we can not write $c \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Hence, this column is also linearly independent. We can put a \times over it also.

$$\times \times \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

We are done with all the columns, now to calculate the rank of this matrix we just need to calculate number of \times over this matrix.

Hence, Rank
$$\begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \end{pmatrix} = 2$$

More examples

1.

$$Rank \begin{pmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \end{pmatrix} = 1$$

2.

$$Rank\left(\begin{bmatrix}0&0\\0&0\end{bmatrix}\right)=0$$

Now, let's consider a bigger matrix

$$\begin{bmatrix} 1 & 1 & 2 & 4 & 2 \\ 2 & 1 & 3 & 5 & 4 \\ 1 & 1 & 2 & 4 & 2 \\ 0 & 1 & 1 & 3 & 0 \end{bmatrix} = \begin{bmatrix} \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\ a_1 & a_2 & a_3 & a_4 & a_5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \end{bmatrix}$$

- $a_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}$ can't be written as a linear combination of it's previous columns
- $a_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ can't be written as a linear combination of it's previous columns
- $a_3 = \begin{bmatrix} 2\\3\\2\\1 \end{bmatrix}$ can be written as a linear combination of it's previous columns

$$\begin{bmatrix} 1\\2\\1\\0 \end{bmatrix} + \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 2\\3\\2\\1 \end{bmatrix}$$
$$a_1 + a_2 = a_3$$

• $a_4 = \begin{bmatrix} 4 \\ 5 \\ 4 \\ 3 \end{bmatrix}$ can be written as a linear combination of it's previous columns

$$1 \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} 2 \\ 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 4 \\ 3 \end{bmatrix}$$

$$1a_1 + 3a_2 + 0.a_3 = a_4$$

•
$$a_5 = \begin{bmatrix} 2\\4\\2\\0 \end{bmatrix}$$
 can be written as a linear combination of it's previous columns

$$2\begin{bmatrix} 1\\2\\1\\0 \end{bmatrix} + 0\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + 0\begin{bmatrix} 2\\3\\2\\1 \end{bmatrix} + 0\begin{bmatrix} 4\\5\\4\\3 \end{bmatrix} = \begin{bmatrix} 2\\4\\2\\0 \end{bmatrix}$$

$$2a_1 + 0a_2 + 0a_3 + 0a_4 = a_5$$

Hence

$$\begin{bmatrix} \times & \times & . & . & . \end{bmatrix}$$

$$Rank \begin{pmatrix} \begin{bmatrix} 1 & 1 & 2 & 4 & 2 \\ 2 & 1 & 3 & 5 & 4 \\ 1 & 1 & 2 & 4 & 2 \\ 0 & 1 & 1 & 3 & 0 \end{bmatrix} \end{pmatrix} = 2$$

What does this means?

This means we can write all the columns of this matrix using a linear combination of only the 1st and 2nd column i.e., a_1 and a_2 .

This means a_1 and a_2 are the linearly independent basis vectors for $a_3, a_4 \& a_5$ this means

- $a_1 = 1a_1 + 0a_2$
- $a_2 = 0a_1 + 1a_2$
- $a_3 = 1a_1 + 1a_2$
- $a_4 = 1a_1 + 3a_2$
- $a_5 = 2a_1 + 0a_2$

$$\Longrightarrow \begin{bmatrix} \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\ a_1 & a_2 & a_3 & a_4 & a_5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} \uparrow & \uparrow \\ a_1 & a_2 \\ \downarrow & \downarrow \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 3 & 0 \end{bmatrix}$$

- Hence, there exist Rank(A) basis vectors for a matrix A.
- If M is a square matrix of dimensions $n \times n$ then there exist n eigenvectors which can act as a basis for this matrix.

But what if Rank(M) < n

is this conflicting with our result that "there exist Rank(A) basis vectors for a matrix A"? Not really.

If Rank(M) < n then there would still be n eigenvectors but only Rank(M) non-zero eigenvalues.

These n - Rank(M) zero eigenvalues when multiplied with their corressponding eigenvectors will make them zero vectors.

for example $Rank \begin{pmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \end{pmatrix} = 1$ but number of eigenvectors=2 Let v_1, v_2 be eigenvectors of this matrix and λ_1, λ_2 be eigenvalues of this

matrix $v_1 = \begin{bmatrix} -2\\1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 1\\1 \end{bmatrix}$ But $\lambda_1 = 0$ and $\lambda_2 = 3$

This means there is only 1 non-zero basis vector of this matrix with Rank = 1

• Hence, the correct result is: there exist Rank(A) non-zero basis vectors for a matrix A.

Problem $\mathbf{2}$

If A is a square matrix then we can write

$$Av_1 = \lambda_1 v_1$$

$$Av_2 = \lambda_2 v_2$$

$$\vdots$$

$$Av_n = \lambda_n v_n$$

Where v_1, v_2, \ldots, v_n are the eigenvectors of A and $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigen-

If v_1, v_2, \ldots, v_n are taken as basis, then we can write any vector $x \in \mathbb{R}^n$ as a linear combination of these basis eigenvectors.

$$x = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = \sum_{i=1}^n \alpha_i v_i$$

So, what would be matrix vector product Ax be?

$$Ax = \sum_{i=1}^{n} \alpha_i . A. v_i = \sum_{i=1}^{n} \alpha_i \lambda_i v_i$$

A matrix vector product became a scalar vector product...!!!

That's one of the advantage of having a square matrix is that we can have eigenvectors and eigenvalues and convert that matrix's operations into something simpler.

Can we have eigenvectors for a non-square i.e., a rectangular matrix? In other words, is this possible

$$A_{(m \times n)}x_{(n \times 1)} = x_{(n \times 1)}$$
?

No!, Why? Because

$$\mathbb{R}^{(m \times n)}.\mathbb{R}^{(n \times 1)} = \mathbb{R}^{(m \times 1)}$$

$$\left[\begin{array}{c} (\mathbf{m} \times \mathbf{n}) Matrix \end{array}\right] \cdot \left[\begin{array}{c} (\mathbf{n} \times \mathbf{1}) \\ Vector \end{array}\right] \Longrightarrow \left[\begin{array}{c} (\mathbf{m} \times \mathbf{1}) \\ Vector \end{array}\right]$$

Since, any vector cannot remain of the same dimensions after rectangular matrix transformation.

Hence eigenvectors don't exist for rectangular matrices.

Can we not have something that can change a matrix operation into some scalar operations for a rectangular matrices then?

3 Setup

Ok, so we can think of a rectangular matrix $\mathbb{R}^{m \times n}$ as a function that takes a \mathbb{R}^n matrix and outputs a \mathbb{R}^m matrix.

If $(v_1, u_1), (v_2, u_2), \dots, (v_k, u_k)$ are pairs of vectors such that $v_i \in \mathbb{R}^n$ and $u_i \in \mathbb{R}^m$

then we hope to write.

$$Av_i = \sigma_i u_i$$

Where, $A \in \mathbb{R}^{\text{m x n}}$

And if this is true and if a σ_i exist

And if we assume that v_1, v_2, \ldots, v_k are orthonormal and thus form a basis V in \mathbb{R}^n then we can write any $x \in \mathbb{R}^n$ as a linear combination of these v_1, v_2, \ldots, v_k basis vectors

$$x = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k = \sum_{i=1}^k \alpha_i v_i$$

But do you see something, x is an n dimensional vector and we are trying to represent it using k basis's which means k dimensions, why?

Recall that if $M \in \mathbb{R}^n$ is a square matrix of dimensions n x n then, there will be n eigenvectors for it.

And we know eigenvectors are linearly independent and can thus form a basis for any vector $x \in \mathbb{R}^n$.

So, we can say a square matrix of dimensions $n \times n$ can always have n basis vectors.

But we cannot say the same for non-square aka rectangular matrices.

There can only be Rank(M) non-zero basis vectors for a non-square matrix.

Hence the dimensions of x will have k non-zero basis vectors, where k = Rank(A)

Therefore,

$$x = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k = \sum_{i=1}^k \alpha_i v_i$$

4 Finding the Reduced form of $A_{m \times n}$

And If $Av_i = \sigma_i u_i$ was possible then we can write

$$A_{m \times n} V_{n \times k} = U_{m \times k} \Sigma_{k \times k}$$

$$A_{m \times n} \cdot \begin{bmatrix} \uparrow & \uparrow & \dots & \uparrow \\ v_1 & v_2 & \dots & v_k \\ \downarrow & \downarrow & \dots & \downarrow \end{bmatrix} = \begin{bmatrix} \uparrow & \uparrow & \dots & \uparrow \\ u_1 & u_2 & \dots & u_k \\ \downarrow & \downarrow & \dots & \downarrow \end{bmatrix} \cdot \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_k \end{bmatrix}$$

Here,

- \bullet V is a matrix of input basis vectors
- \bullet U is a matrix of outure basis vectors

Since, we have only k orthogonal basis vectors for V and U and there are n-k basis vectors remaining we can find these remaining vectors using Gram Schmidt orthogonalisation process.

After getting all n orthogonal basis vectors

$$A_{m \times n}.V_{n \times n} = U_{m \times n}.\Sigma_{n \times n}$$

$$A_{m \times n} \cdot \begin{bmatrix} \uparrow & \uparrow & \dots & \uparrow \\ v_1 & v_2 & \dots & v_n \\ \downarrow & \downarrow & \dots & \downarrow \end{bmatrix} = \begin{bmatrix} \uparrow & \uparrow & \dots & \uparrow \\ u_1 & u_2 & \dots & u_n \\ \downarrow & \downarrow & \dots & \downarrow \end{bmatrix} \cdot \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_n \end{bmatrix}$$

Then we can say,

Since, V and U are orthogonal matrices, this means

 $V^T V = \mathbb{I}$ [Identity matrix]

 $U^T U = \mathbb{I}$ [Identity matrix]

But we also know for any matrix $M, M^{-1}M = \mathbb{I}$

This means

 $V^T = V^{-1}$ if V is an orthogonal matrix

 $U^T = U^{-1}$ if U is an orthogonal matrix

And if,

$$A.V = U.\Sigma$$

Then,

$$U^{-1}AV = \Sigma = U^TAV$$
 [Diagonalisation of A]

$$A = U.\Sigma.V^{-1} = U.\Sigma.V^{T}$$
 [Singular Value Decomposition of A]

This is called Singular Value Decomposition, as we are decomposing a non-square matrix A into simpler vector matrices and its singular values which allows us for simpler operations on A.

Singular Values

Singular values of a matrix M are the positive square roots of the eigenvalues of $M^T M$

Suppose $V, U\&\Sigma$ exist, then

$$A_{n\times m}^T A_{m\times n} = M_{n\times n} = (U.\Sigma.V^T)^T.(U.\Sigma.V^T) = V.\Sigma^T.U^T.U.\Sigma.V^T = V.\Sigma^T.\mathbb{I}.\Sigma.V^T = V.\Sigma^T.\Sigma.V^T$$

But since Σ is a diagonal matrix $\Sigma^T \Sigma = \Sigma^2$

Hence

$$A^TA = V.\Sigma^T.\Sigma.V^T = V.\Sigma^2.V^T$$

$$A^TA = V.\Sigma^2.V^T$$

Similarly

$$AA^T = U.\Sigma^2.U^T$$

If we Recall,

If S is a square symmetric matrix, E is a matrix of orthonormal eigenvectors of S and Λ is a diagonal matrix of eigenvalues of S

$$S = E\Lambda E^T$$

Is the Eigenvalue Decomposition of S

In our situation also

Singular Value Decomposition \iff Eigenvalue Decomposition

For

$$A^T A = V.\Sigma^2.V^T$$

- A^TA is a square symmetric matrix
- V is the matrix of eigenvectors of A^TA
- \bullet V is also called the right singular vectors of matrix A
- Σ^2 is the diagonal matrix of eigenvalues of A^TA .
- Σ^2 These eigenvalues are also the squares of singular values of A

Singular Value Decomposition ← Eigenvalue Decomposition

and for

$$AA^T = U.\Sigma^2.U^T$$

- AA^T is a square symmetric matrix
- ullet U is the matrix of eigenvectors of AA^T
- ullet U is also called the left singular vectors of matrix A
- Σ^2 is the diagonal matrix of eigenvalues of AA^T .
- Σ^2 These eigenvalues are also the squares of singular values of A