@xufuou

Train your own antivirus with Machine Learning

Who am I?

- Application Security Analyst at Checkmarx.
- Working with ConvNets since 2015.
- I do like a problem that keep me awake at night.

"a code that recursively replicates a possibly evolved copy of itself"

Definition of virus by Péter Szőr, 2005

Meet the family

Signature matching - conceptual representation

How good are signature based approaches?

1. Discovery

2. Research

3. Validation

4. Update

How long until having a valid signature?

Polymorphic virus and packing?

Heuristics and Behavior Based Antivirus

Machine Learning

"Machine Learning is programming computers to optimize a performance criterion using example data or past experience."

Ethem Alpaydin

Traditional supervised learning - training

Traditional supervised learning

Deep learning - Bonus

Training

Deep learning - Bonus

Applying supervised ML (to malware detection)

Applying supervised ML (to malware detection)

Feature extraction

The PE file format is a data structure that contains the information necessary for the Windows OS loader to manage the wrapped executable code.

- Version information
- DOS header
- COFF (NT) header
- PE optional header
- Data directories
- Import table
- Section table
- Resources

The number of sections. This indicates the size of the section table, which immediately follows the headers. Note that the Windows loader limits the number of sections to 96.

TimeDateStamp

Import Adder Quick Disassembler

Rebuilder
Resource Editor

The low 32 bits of the time stamp of the image. This represents the date and time the image was created by the linker. The value is represented in the number of seconds elapsed since midnight (00:00:00), January 1, 1970, Universal Coordinated Time, according to the system clock.

PointerToSymbolTable

The offset of the symbol table, in bytes, or zero if no COFF symbol table exists.

NumberOfSymbols

The number of symbols in the symbol table.

SizeOfOptionalHeader

The size of the optional header, in bytes. This value should be 0 for object files.

Characteristics

The characteristics of the image. This member can be one or more of the following values.

COFF header format from Windows Documentation

Can we detect packing?

Shannon's entropy equation:

$$H(X) = -\sum_{i=0}^{N-1} p_i \log_2 p_i$$

pi is the probability of a given symbol N is the number of unique symbols

Case 1 - file with 100 bytes and value 0

	-	- 500-		7	2	0	- 1	- 6	3	A	B	-	D	E	1	0123456789ABCDEF
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00													2000
1	00 00 00 00	00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00 0	00 00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00 0	00 00 00 00 00 00 00 00 00 00 00 00 00 0	00 00 00 00 00 00 00 00 00 00 00 00 00 0	00 00 00 00 00 00 00 00 00 00 00 00 00 0	00 00 00 00 00 00 00 00 00 00 00 00 00 0	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00

Entropy = 0

Case 2 - 100 byte file filled with half 0 and half 1

	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F	0123456789ABCDEF
0000h:	01	01	01	01	01	01	01	01	01	01	01	01	01	01	01	01	
0010h:	01	01	01	01	01	01	01	01	01	01	01	01	01	01	01	01	
0020h:	01	01	01	01	01	01	01	01	01	01	01	01	01	01	01	01	
0030h:	01	01	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0040h:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0050h:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0060h:	00	00	00	00	1												

Case 2 - 100 byte file filled with half zeros and half ones

	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F	0123456789ABCDEF
0000h:	01	01	01	01	01	01	01	01	01	01	01	01	01	01	01	01	
0010h:	01	01	01	01	01	01	01	01	01	01	01	01	01	01	01	01	
0020h:	01	01	01	01	01	01	01	01	01	01	01	01	01	01	01	01	
0030h:	01	01	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0040h:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0050h:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0060h:	00	00	00	00													

Shannon's entropy equation:

$$H(X) = -\sum_{i=0}^{N-1} p_i \log_2 p_i$$

Entropy =
$$-(0.5*log2(0.5)+0.5*log2(0.5)) = -(-0.5-0.5) = 1$$

Case 3 - compress case 2 with Rar

Entropy = 5.0592468625650353

Case 4 - encrypt case 2 with PGP

```
A8 03 50 47 50 C1 C0 4C 03 F4 EE 42 91 B3 CC E3
                                                  ".PGPÁÀL.ôîB'3Ìã
                                                  ...ÿba.ÅÄ.¦).:7ª
12 01 07 FF 62 61 8D C5 C4 1E A6 29 17 3A 37 AA
                                                  #.a֌-Ý¢<¥Þ©Í %.
23 19 61 F7 E5 2D DD A2 3C A5 DE A9 CD 20 BE 16
45 68 F4 D6 5C B1 OC 45 49 21 66 2B 58 51 D0 80
                                                  EhôÖ\±.EI!f+XQĐ€
                                                  ©SV.ÕÎp'œÑ<||ôEœ
A9 A7 56 09 D5 CE 70 91 9C D1 3C 7C 7C F4 45 9C
                                                  .N\A\fx>òœlaøô.la/
1B 4E 5C 41 5C 66 D7 BB F2 9C BC F8 F4 1A BC 2F
                                                  KopñUy.cn ...+±.
4B 6F 70 F1 55 79 1A 63 6E AF 01 1C F7 B1 0B 5F
                                                  o¦Ú=. †EF% "tp‡°¿
6F A6 DA 3D 00 86 45 46 BE 5F 93 74 70 87 B0 BF
                                                  (X*; éxr}%ÿÎÀÈMu}
28 58 B2 3B E9 78 72 7D BD FF CE CO C8 99 B5 7D
                                                  TP.ùé;ìŒőÖt,>ûËñ
54 50 8D F9 E9 A1 EC 8C F5 D6 86 B8 3E FB CB F1
                                                  ¢¿!{r¬ú'!b€$Imyà
A2 BF A6 7B 72 AC FA 92 A6 62 80 24 49 6D 79 E0
                                                  ÀÝOT-1ÑÒ£'6÷ud.,
CO DD 30 54 96 B9 D1 D2 A3 B4 36 F7 B5 64 1E 82
                                                  c.ùMÇÌ»¾`..:†Žį.
63 OC F9 4D C7 CC BB BD 91 18 08 3A 86 8E A1 9D
                                                  2°115{8òcem9Á%3Ö
32 BO 31 CD 35 7B FO F2 63 65 6D 39 C1 BD B3 D6
```

Entropy = 7.8347915272089166

Case 4 - encrypt case 2 with PGP

```
A8 03 50 47 50 C1 C0 4C 03 F4 EE 42 91 B3 CC E3
                                                  .PGPÁÀL.ôîB'3Ìã
                                                   ... ÿba.ÅÄ.!).:7ª
12 01 07 FF 62 61 8D C5 C4 1E A6 29 17 3A 37 AA
23 19 61 F7 E5 2D DD A2 3C A5 DE A9 CD 20 BE 16
                                                   #.a֌-Ýc<¥Þ©Í %.
                                                  EhôÖ\±.EI!f+XQĐ€
45 68 F4 D6 5C B1 OC 45 49 21 66 2B 58 51 D0 80
                                                  ©SV.ÕÎp'œÑ<||ôEœ
A9 A7 56 09 D5 CE 70 91 9C D1 3C 7C 7C F4 45 9C
                                                   .N\A\fx>òœlaøô.la/
1B 4E 5C 41 5C 66 D7 BB F2 9C BC F8 F4 1A BC 2F
                                                  KopñUy.cn ...+±.
4B 6F 70 F1 55 79 1A 63 6E AF 01 1C F7 B1 0B 5F
                                                  o¦Ú=. †EF% "tp‡°¿
6F A6 DA 3D 00 86 45 46 BE 5F 93 74 70 87 B0 BF
                                                   (X*; éxr} % ÿÎÀÈ mu}
28 58 B2 3B E9 78 72 7D BD FF CE CO C8 99 B5 7D
                                                  TP.ùé;ìŒőÖt,>ûËñ
54 50 8D F9 E9 A1 EC 8C F5 D6 86 B8 3E FB CB F1
                                                  ¢¿!{r¬ú'!b€$Imyà
A2 BF A6 7B 72 AC FA 92 A6 62 80 24 49 6D 79 E0
                                                  ÀÝOT-1ÑÔ£'6÷µd.,
CO DD 30 54 96 B9 D1 D2 A3 B4 36 F7 B5 64 1E 82
                                                   c.ùMÇÌ≫¾`..:tŽį.
63 OC F9 4D C7 CC BB BD 91 18 08 3A 86 8E A1 9D
                                                  2°1Í5{ðòcem9Á33Ö
32 BO 31 CD 35 7B FO F2 63 65 6D 39 C1 BD B3 D6
```

Entropy = 7.8347915272089166

How can I get the data?

- Kaggle
- Virus Share
- Dasmalwerk
- Virus Total
- VX Heaven

Dataset

Clean

Malicious

Windows 2008, XP, 7 and 10

Virus Share and Dasmalwerk

41323

97812

Let's play with some data

Trained models

Model	Accuracy					
RandomForest	99.416398 %					
MLP	30.005175 %					
GradientBoosting	98.827047 %					
GNB	70.322562 %					
LinearRegression	58.461576 %					
DecisionTree	99.011040 %					
AdaBoost	98.556808 %					

Training: **75**%

Testing: 25%

Accuracy = (TP + TN) / Total

Assumptions

- Variations and new malware can be detected since we look for general patterns.
- Packed/obfuscated malware can be detected since we use entropy.

Conclusions

- Signature matching is too limited, behavioral analysis ftw.
- We can apply ML to problems which we are not experts.
- ML is easy with python and its libraries.
- The results are good but building an commercial grade AV is another story.

Questions

Why relying on antivirus signatures is simply not enough anymore

https://www.webroot.com/blog/2012/02/23/why-relying-on-antivirus-signatures-is-simply-not-enough-anymore/

Computer virus: What are they and how to avoid them

https://www.eecis.udel.edu/~portnoi/publications/pcvirus-eng.html

Making an antivirus engine : the guidelines

https://www.adlice.com/making-an-antivirus-engine-the-guidelines/

ClamAV

https://www.clamav.net/

The PE file format

http://www.pelib.com/resources/luevel.txt

Malware Sample Sources for Researchers

https://zeltser.com/malware-sample-sources/

Utilizing entropy to identify undetected malware

 $\underline{\text{https://www.guidancesoftware.com/docs/default-source/document-library/whitepaper/utilizing-entropy-to-identify-undetected-malware.pdf?sfv} \\ \underline{\text{rsn=16}}$

Shannon Entropy

http://www.bearcave.com/misl/misl_tech/wavelets/compression/shannon.html