1 nalen

א. תנאי התחלה:

(סדרה ריקה! נוח להיעזר ב- מסעיף ב) $a_0 = 1$

(רק בלוק 2 × 1 עומד אפשרי) $a_1 = 1$

. (שוכבים 2×1 שוכבים 2×1 שוכבים או שני בלוקים 2×1 שוכבים , או שני בלוקים $a_2 = 3$

n+1 יחס נסיגה: נתבונן בריצוף באורך

- ,n באורך כל ריצוף הזה יכול לפני הבלוק אז לפני 2 אומד, עומד, אז בבלוק 2×1 באורך אם הוא אם הוא כלומר מפשריים.
- , n-1 באורך באורך לבוא כל ריצוף באורך * 2×2 , אז לפני הבלוק הזה יכול לבוא כל ריצוף באורך * כלומר a_{n-1} ריצופים אפשריים.
- אם הוא מסתיים בבלוק 2×1 שוכב, אז בהכרח מדובר בשני בלוקים 2×1 שוכבים זה מעל * a_{n-1} הוא כל ריצוף באורך n-1 באורך באורך לבוא כל לבוא לפניהם יכול לבוא כל היצוף באורך ל

 $a_{n+1} = a_n + 2a_{n-1}$: בסה"כ

. $a_2 = a_1 + 2a_0 = 1 + 2 \cdot 1 = 3$: נבדוק שרשמנו ההתחלה את תנאי את נבדוק שזה נבדוק

 $\lambda^2 - \lambda - 2 = 0$: ב. המשוואה האפיינית

. 2 , -1 כלומר $\lambda_{1,2}=\frac{1\pm\sqrt{1+8}}{2}=\frac{1\pm3}{2}$: פתרונותיה הם

. $a_n = A \cdot 2^n + B \cdot (-1)^n$ לפיכך

: נקבל a_1, a_0 נקבל בהצבת תנאי ההתחלה

2A - B = 1 , A + B = 1

. B=1/3 מכאן . A=2/3 כלומר , 3A=2 מהיבור שתי משוואות אלה לפיכך

$$a_n = \frac{2}{3} \cdot 2^n + \frac{1}{3} (-1)^n = \frac{1}{3} (2^{n+1} + (-1)^n)$$

 $a_4=a_3+2a_2=11$, $a_3=a_2+2a_1=5$: מיחס הנסיגה $a_4=\frac{1}{3}\Big(2^5+(-1)^4\Big)=11$: מהנוסחה המפורשת

2 nalen

כמו בפתרון שאלה 4 בממיין 15, נניח שהמשתנים הזוגיים הם 3 הראשונים, ונכפול את התוצאה כמו בפתרון שאלה 4 בממיין 15. $. \ \, \binom{6}{3} = 20 \ \, .$ שנקבל ב- $. \ \, \binom{6}{3} = 20$

מספר פתרונות המשוואה $x_1+x_2+x_3+x_4+x_5+x_6=29$ תחת האילוצים הנתונים בשאלה . $f(x)=(x^2+x^4+x^6+...)^3(x^3+x^5+x^7+...)^3$ בפיתוח הפונקציה בפיתוח השמאליים על x^2 שלאחר העלאה בחזקת 3 נותן x^3 שלאחר העלאה בחזקת 3 נותן x^4

 $x^{9}\,$ בסוגריים הימניים נוציא גורם משותף $x^{3}\,$ שלאחר העלאה נוציא נותן קיבלנו

$$f(x) = x^{6}(1 + x^{2} + x^{4} + x^{6} + \dots)^{3} \cdot x^{9}(1 + x^{2} + x^{4} + x^{6} + \dots)^{3}$$
$$= x^{15}(1 + x^{2} + x^{4} + x^{6} + \dots)^{6}$$

. $(1+x^2+x^4+x^6+...)^6$ בפונקציה x^{14} בפונקציה זו הוא המקדם של בפונקציה x^{29} בפונקציה או המקדם של בפונקציה y^7 או המקדם של y^7 הוו המקדם של y^7 הוו המקדם של בפונקציה y^7

. $D(6,7) = \binom{12}{5} = 792$ לפי נוסחה (iii) שבסוף הממיין, המקדם הזה הוא

. $792 \cdot 20 = 15,840$: תשובה סופית את זה עלינו לכפול ב- 20 ממור בתחילת הפתרון, את זה עלינו לכפול ב- 20

उ नगराय

א. לפי הדיון בעמי 124 - 127 בספר, הפונקציה היוצרת היא

$$f(x) = (1 + x + x^2 + x^3)^2 (1 + x + x^2 + x^3 + x^4 + \dots)^2$$

וו. בפיתוח פונקציה זו. a_n הוא המקדם של

ב. מסעיף א׳, בעזרת סכום טור הנדסי סופי וסכום טור הנדסי אינסופי נקבל:

$$f(x) = \left(\frac{1-x^4}{1-x}\right)^2 \left(\frac{1}{1-x}\right)^2 = (1-x^4)^2 \frac{1}{(1-x)^4} = (1-2x^4+x^8) \frac{1}{(1-x)^4}$$

. $\frac{1}{(1-x)^4} = \sum_{i=0}^{\infty} D(4,i) \, x^i$,(11), שהופיעה בממיין (עמי 11), שהופיעה לפי נוסחה

מכאן עייי קיבוץ איברים הנותנים מעלה n (נוסחה מעלה הקודמת), מכאן עייי קיבוץ איברים הנותנים מעלה f(x) ב- x^n המקדם של

$$a_n = D(4, n) - 2D(4, n - 4) + D(4, n - 8) = \binom{n+3}{3} - 2\binom{n-1}{3} + \binom{n-5}{3}$$

. (20 אם n < 5 הביטוי הימני ביותר באגף ימין הוא n < 5 (מקדמים בינומיים חריגים - ר' עמי n < 5 בדומה, אם n < 1 < 3 הביטוי האמצעי באגף ימין מתאפס.

נקבל כך את המקרים $a_1=4$, $a_0=1$, $a_1=4$, $a_0=1$ נקבל כך את המקרים $n\geq 5$ ונפתח השאלה, אך הם אינם מהוים בדיקה טובה לביטוי בשלמותו. מצד שני, אם נניח $a_n\geq 5$ ונפתח את הביטוי, לאחר פיתוח וקיבוץ איברים מתקבל הביטוי הפשוט: $a_n=16n-32$ (תרגיל מומלץ - לחשב זאת). האם מישהו רואה דרך קצרה להגיע ישר לתוצאה זו $a_n=16$

4 22167

. $c_{2m}=\binom{n}{2m}$, המקדם של x^{2m} בפיתוח $(1+x)^n$ הוא, לפי נוסחת הבינום, x^{2m} של . את אגף שמאל של הזהות הנתונה בשאלה נראה כמכפלה של שני גורמים: $b_i=D(n,i)$ בממ"ן, מנוסחה $\frac{1}{(1-x)^n}$ בפיתוח x^i בפיתוח x^i בפיתוח המקדם של x^i בפיתוח x^i

.
$$(1-x^2)^n = \sum_{i=0}^{\infty} (-1)^i \binom{n}{i} (x^2)^i = \sum_{i=0}^{\infty} (-1)^i \binom{n}{i} x^{2i}$$
 : נפתח גם

 a_i נסמן ב- a_i את המקדם של מ

 \pm מכיוון שמופיעות רק חזקות זוגיות של \pm , כל המקדמים בעלי אינדקס אי-זוגי מתאפסים

.
$$a_{2i} = (-1)^i \binom{n}{i}$$
 -ש גם אים אנו אנו אנו $a_{2i+1} = 0$

. 2i אולא i מופיע, מופיע (-1) מופיע במקדם הבינומי ובחזקה של (a_{2i} ולא מימו לב שזהו לב שזהו אבסוף הממיין למציאת המקדמים בכפל פונקציות יוצרות:

$$c_{2m} = \sum_{i=0}^{2m} a_i b_{2m-i}$$

: יום עבור המקרה עלנו , a_{2i+1} ולא מקדמים אלנו רק יים יש לנו רק - a -יים יש לנו רק מקדמים יש ולא

$$c_{2m} = \sum_{i=0}^{m} a_{2i} b_{2m-2i}$$

שימו לב לשינוי גבול הסכימה כאן והבינו מדוע הוא נדרש. נציב בשוויון זה את הביטויים שקיבלנו עבור המקדמים:

$$\binom{n}{2m} = \sum_{i=0}^{m} (-1)^{i} \binom{n}{i} D(n, 2m-2i)$$

i במקום i כדי להתאים לנדרש בשאלה). זו הזהות המבוקשת (נקרא למשתנה הסכימה k

בדיקה: כאשר
$$\binom{5}{4}=5$$
 אגף שמאל הוא $\binom{5}{4}=5$ אגף שמאל הוא $\binom{5}{4}=5$ אגף ימין הוא $\binom{5}{0}D(5,4)-\binom{5}{1}D(5,2)+\binom{5}{2}D(5,0)=\binom{8}{4}-5\cdot\binom{6}{2}+10\cdot 1=70-75+10=5$
$$D(j,0)=\binom{j+0-1}{j-1}=\binom{j-1}{j-1}=1$$
 שימו לב ש-

את הבדיקה השניה אנא השלימו בעצמכם.

איתי הראבן