Section 2: Electromagnetics AE435

AE435 Spring 2018

In this section, we will review the basics of charge, electricity, magnetism, and Maxwell equations.

4 Magnetostatics with Magnetic Media

Contents

4	Mag	gnetostatics with Magnetic Media	38
	4.1	Effect of Magnetic Media	39
	4.2	Total Magnetic Field	41
	4.3	Constitutive Equations/Relations	43
	4.4	Boundary Conditions	44
	4.5	Magnetic Flux	45

4.1 Effect of Magnetic Media

In our previous discussion, we only considered magnetostatics involving steady currents in a vacuum. Now we will examine...

- Question: What happens if matter is present?
- Answer: The magnetic field \vec{B} changes!
- Reason: Matter has micro-currents associated with the motion of the electrons around atoms, "atomic currents"
- Aftermath: So now we must consider two kinds of currents:
 - Conduction currents, involving free charges
 - Atomic currents, with no charge transport (to the first order)

Each atom has a magnetic dipole moment.

Magnetic Dipole Moment

$$\vec{m}_i = \frac{1}{2} J_i \oint_{\mathcal{C}} \vec{r}_i \times d\vec{l}$$
 (75)

We can define a macroscopic vector quantity analogous to polarization, known as the **magnetization** or the magnetic dipole moment per unit volume.

Magnetization

$$\overrightarrow{M} = \lim_{\Delta \overrightarrow{V} \to 0} \frac{1}{\Delta V} \sum_{i} \overrightarrow{m}_{i} \tag{76}$$

In the **unmagnetized state**, $\overrightarrow{M} = 0$ because \overrightarrow{m}_i have random orientations that cancel out. In the presence of an external \overrightarrow{B} , matter becomes organized and \overrightarrow{M} can become nonzero depending on the material properties.

Magnetization Current: How does magnetization give rise to currents?

Figure 20

For a uniform \overrightarrow{M} , currents cancel in the interior but not on the exterior. The result is a net surface current as shown in Figure 20.

Similarly, if \overrightarrow{M} is non-uniform, we can have an internal net current.

We can define a Magnetization Current Density:

$$\overrightarrow{j}_m = \nabla \times \overrightarrow{M} \tag{77}$$

4.2 Total Magnetic Field

To incorporate \overrightarrow{j}_m into Ampere's Law (Equation 72) we have to modify the magnetic field equations, just as we modified Gauss' law to include ρ_e .

As before, we still have no monopoles:

$$\nabla \cdot \vec{B} = 0$$

But now, Ampere's law becomes:

$$\nabla \times \vec{B} = \mu_o \left(\vec{j} + \vec{j}_m \right) \tag{78}$$

Using Equation 77, we can write this as:

$$\nabla \times \left(\frac{1}{\mu_o} \vec{B} - \vec{M} \right) = \vec{j}$$

Where $(\frac{1}{\mu_o} \vec{B} - \vec{M})$ depends only on conduction current density \vec{j} as its source. As a results, we define a vector field:

Magnetic Intensity or "H"-field

$$\vec{H} = \frac{1}{\mu_o} \vec{B} - \vec{M} \qquad \left[\frac{A}{m}\right] = [Oersted]$$
 (79)

Note: $1 \frac{A}{m} = 0.01257$ Oersted

Finally, Ampere's Law for Magnetic Media is:

$$\nabla \times \overrightarrow{H} = \overrightarrow{j} \tag{80}$$

A comparison of Magnetostatics and Electrostatics:

Electrostatics	${f Magnetostatics}$
In vacuum (no ρ_p)	In vacuum (no \overrightarrow{j}_m)
$\nabla \cdot \overrightarrow{E} = \frac{q}{\epsilon_o}$ (isolated charges)	$\nabla \cdot \overrightarrow{B} = 0$
$\nabla \cdot \vec{E} = \frac{\rho_e(\vec{r})}{\epsilon_o}$ (distributed charges)	
$\nabla \times \overrightarrow{E} = 0$	$\nabla \times \vec{B} = \mu_o \vec{j}$
With media effects (finite ρ_p)	With media effects (finite \overrightarrow{j}_m)
$\nabla \cdot \vec{E} = (\rho_f +_p)/\epsilon_o$	$ abla \cdot \vec{B} = 0$
$ abla \cdot ec{D} = ho_f$	
$\nabla imes \overrightarrow{E} = 0$	$ abla imes \vec{B} = \mu_o(\vec{j} + \vec{j}_m)$
	$ abla imes ec{H}=ec{j}$

We can also derive the integral equation for magnetic intensity. From Equation 80, if we integrate over a surface element and apply Stokes theorem on a closed curve surrounding the surface, we get:

$$\int_{S} \nabla \times \overrightarrow{H} \cdot \hat{n} \, dA = \oint_{C} \overrightarrow{H} \cdot d\overrightarrow{l} = \int_{S} \overrightarrow{j} \cdot \hat{n} \, dA = J$$
 (81)

Important Note: This only applies for Magnetostatics. It does not work for time-varying fields.

${\bf 4.3}\quad {\bf Constitutive\ Equations/Relations}$

4.4 Boundary Conditions

4.5 Magnetic Flux