UNIT 4 FINITE STATE MACHINE

2012학년 2학기

마이크로 프로세서 실습

1

FINITE STATE MACHINE

FINITE STATE MACHINE INTRODUCTION [1 of 7]

- Finite State Machine 이란?
 - Finite State Machine
 - 제한된 (Finite) 수의 상태(State)를 가지며, 상태의 변화에 따라 해당하는 작업을 수행 하는 장치 (Machine)
 - + Synchronous Sequential logic
 - Clock 기반으로 동작한다. (positive edge or negative edge)
 - 출력 값은 현재 입력 값 뿐만 아니라 과거의 동작에 의해서도 결정된다.

FINITE STATE MACHINE INTRODUCTION [2 of 7]

FSM의 역할

- ◆ Scenario를 가지는 module
- + Example : Processor read sequence
 - Fetch state -> Decode state -> Execute state -> Memory state -> Write back state
 - 각 state에 진입할 때 마다 해당 state에 맞는 동작을 수행한다.

FSM의 구조

- State list
- Present state
- Next state
- + State 갱신하는 부분
- + 다음 상태 정의 부분
- + 현재 상태에 따른 작업 수행 부분

FINITE STATE MACHINE INTRODUCTION [3 of 7]

■ Finite state machine의 일반적인 형태

FINITE STATE MACHINE INTRODUCTION [4 of 7]

- 💶 순차회로의 설계 단계
 - ◆ 문제를 읽고 state diagram을 만들고, 그에 따른 state table(input/present 와 output/next state) 을 만든다.
 - 🛨 각 state에 binary code를 할당 (state assignment)
 - ↑ 사용할 Flip-Flop을 결정하여, state table의 각 행의 현 상태로 부터 다음 상태가 되는지 결정 (Flip Flop 수 = binary code의 길이
 - + Flip-Flop의 입출력을 위한 간소화 된 equation을 구한다
 - + 회로를 구현한다

FINITE STATE MACHINE INTRODUCTION [5 of 7]

- 설계의 예 : Sequence recognizer
 - + 회로의 기능 설명
 - 하나의 입력 w와 하나의 출력 z가 존재한다.
 - 회로의 모든 변화는 clock의 positive edge에 발생
 - 바로 이전의 두개의 clock cycle동안 입력 w가 1이면, 출력 z가 1이고, 아니면 z값은 0

Clockcycle: w:	t_0	t_1	t_2	t_3	t_4	t ₅	t_6	t ₇	t_8	t ₉	t_{10}
w:	0	1	0	1	1	0	1	1	1	0	1
											0

FINITE STATE MACHINE INTRODUCTION [6 of 7]

- State Diagram(상태도) 이란?
 - ◆ 순차회로의 기능 표시를 위한 그래프
 - ◆ 순차회로의 필요한 각기 다른 상태를 표시
 - + 상태간의 전이 관계 (state transition) 표시
 - 전이를 위한 입력 조건
 - +Reset State (처음 시작 상태) 표시
 - + Mealy Machine과 Moore Machine
 - 출력이 상태와 연계 (Moore)되거나 전이에 연계(Mealy)

FINITE STATE MACHINE INTRODUCTION [7 of 7]

🧧 설계 예를 위한 State Diagram

MEALY AND MOORE MACHINE [1 of 3]

Moore Machine

- 각 상태가 특정한 값의 출력신호를 갖는 것
- + Current output : current state에 의해 결정

Mealy Machine

- 출력이 회로의 상태와 입력값에 의해 결정
- ↑ 출력이 각 상태 전이 edge에 정해짐
- + Current output: current state와 current input에 의해 결정

MEALY AND MOORE MACHINE [2 OF 3]

Mealy Modeling (Sequence recognizer)

Clock cycle: w:	t_0	t_1	t_2	t ₃	t ₄	t ₅	t_6	t ₇	t ₈	t ₉	t ₁₀
w:	0	1	0	1	1	0	1	1	1	0	1
z:	0	0	0	0	1	0	0	1	1	0	0

Moore Machine

Mealy Machine

MEALY AND MOORE MACHINE [3 of 3]

Mealy <-> Moore 변환

DESIGN EXAMPLE [1 of 6]

■ 설계 예를 위한 상태표(State Table)

Present	Next state		Output	
state	w = 0	w = 1	\mathcal{Z}	
Α	Α	В	0	
В	Α	С	0	
С	Α	С	1	Reset
<u></u>			W	= 0 $A/z=0$ $W=1$ $W=0$ $W=0$
state diagram⊆	의 표 형태의 표	현		w=0 $w=1$
				C/z=1 $W=1$

DESIGN EXAMPLE [2 OF 6]

- 상태의 할당 (State Assignment)
 - +각 상태에 n-bit binary code할당(2⁻>상태수)
 - + n-bit binary code → n개의 F/F로 구현
 - 설계 예: 3개의 상태 → 2 비트 필요 → 2 F/F

DESIGN EXAMPLE [3 OF 6]

■ 상태 할당 (계속)

Present	Nex	Next state				
state	w = 0	w = 1	Z			
А	Α	В	0			
В	Α	С	0			
С	Α	С	1			

Present	Next		
state	w = 0 $w = 1$		Output
y ₂ y ₁	Y_2Y_1	$Y_{2}Y_{1}$	Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

DESIGN EXAMPLE [4 OF 6]

◆ Excitation table : 원하는 상태의 전이를 위한 Flip-Flop의 input 값을 보여줌

Q(†)	Q(†+1)	D	Operation
0	0	0	Reset
0	1	1	Set
1	0	0	Reset
1	1	1	Se†

Q(†)	Q(t+1)	J	K	Operation
0	0	0	×	No change/reset
0	1	1	×	Set/complement
1	0	×	1	Reset/complement
1	1	×	0	No change/set

Q(†)	Q(t+1)	Т	Operation
0	0	0	No change
0	1	1	Complement
1	0	1	Complement
1	1	0	No change

DESIGN EXAMPLE [5 OF 6]

- Flip-Flop의 선택과 다음 상태식 and 출력식
 - D Flip-Flop 선택

Ignoring don't cares

$$Y_1 = \overline{wy_1y_2}$$

Using don't cares

$$Y_1 = \overline{wy_1y_2}$$

$$Y_2 = wy_1y_2 + wy_1y_2$$
 $Y_2 = wy_1 + wy_2$

$$Y_2 = wy_1 + wy_2$$
$$= w(y_1 + y_2)$$

$$y_2$$
 y_1 y_2 y_2 y_1 y_2 y_1 y_2 y_2 y_1 y_2 y_1 y_2 y_1 y_2 y_2 y_2 y_1 y_2 y_2 y_2 y_1 y_2 y_2 y_2 y_2 y_2 y_1 y_2 y_2 y_2 y_1 y_2 y_2

$$z = \overline{y_1 y_2}$$

$$z = y_2$$

DESIGN EXAMPLE [5 OF 6]

DESIGN EXAMPLE [6 OF 6]

Timing Diagram (설계 검증)

SUMMARY

■ 회로의 기능에 대한 명세

상태도를 구한다

- ◆ 시작상태를 포함한 모든 상태
- + 모든 입력 값을 고려
- ◆ 상태 사이의 전이 관계 및 전이 조건

상태표를 구하고 상태 할당을 함

사용한 Flip-Flop의 종류 결정, next state와 output을 위한 논리 수식 결정

논리 수식으로부터 회로를 구현함

DESIGN EXAMPLE #2 [1 of 6]

- Sequential Parity Checker
 - 8 bit words with odd parity
 - Parity bit
 - Data bit에 더한 후 전송하여 수신단에서 오류 검출에 이용
 - Odd Parity
 - Data bit와 Parity bit를 더하여 '1'의 개수가 홀수가 되도록 함
 - 수신단에서는 1개수를 세어 짝수 개인 경우 오류로 판단
 - Data bit에 더한 후 전송하여 수신단에서 오류 검출에 이용

DESIGN EXAMPLE #2 [2 OF 6]

Block Diagram for Parity Checker (at Receiver)

**실제 parity checker 구현 위해서는 data bit 시작과 끝을 알려주는 추가 회로 필요함

DESIGN EXAMPLE #2 [3 OF 6]

Waveforms for Parity Checker

X: input data

Z: parity check 결과

'1'의 개수 합이 홀수 개이면 Z=1(오류x), '1'의 개수 합이 짝수 개이면 Z=0 (오류)

DESIGN EXAMPLE #2 [4 OF 6]

State Graph for Parity Checker (Moore Machine)

DESIGN EXAMPLE #2 [5 OF 6]

Present State	$\begin{vmatrix} & & \\ X = 0 & & \\ & & \end{vmatrix}$	t state <i>X</i> = 1	Present Output	Q		X = 1	T = 0	X = 1	Z
$\overline{S_0}$	S_0	S_1	0	0	0	1	0	1	0
S_1	S_1	S_0	1	1	1	0	0	1	1

Table 13-1. State Table for Parity Checker

DESIGN EXAMPLE #2 [6 of 6]

State Table for Parity Checker

Parity Checker

Analysis by Signal Tracing [1 of 5]

Moore machine vs Mealy machine

◆ Moore machine : {Flip-Flop의 현재 상태 (Q)} -> 회로의 출력

★ Mealy machine: {Flip-Flop의 현재 상태(Q)+현재 입력}->회로의 출력

Moore machine

Mealy machine

Analysis by Signal Tracing [2 of 5]

Moore Sequential Circuit

Timing Chart

X = 0 1 1 0A = 0 1 0 1 0 1 B = 0 0 1 1 1 1 Z = (0) 1 1 0 1 0

Analysis by Signal Tracing [3 of 5]

Mealy Sequential Circuit

Analysis by Signal Tracing [4 of 5]

fig 13-8: Timing Chart for Circuit of Figure 13-7

Mealy 회로의 glitch (or false output) ; FF 출력 변화, 입력은 변화 직전 경우 발생

그림의 경우 X=1→0 변화 도중 B, A 값이 미리 변하면 서 glitch 발생

→ 따라서 밀리 회로의 경우 입력 값이 변하고 충분한 시간이 지난 뒤 출력 값 확인

Analysis by Signal Tracing [5 of 5]

- State table and graph : 복잡한 순차회로의 체계적 분석 및 합성에 필요
 - ★ 회로의 Flip-Flop 입출력 식을 정함
 - ↑ 다음 관계식 중 하나를 이용, Flip-Flop의 차기 상태(Q+) 식을 유도

D Flip-Flop

Q+=D

D CE Flip-Flop Q+ = D*CE+QCE'

T Flip-Flop

Q+ = T XOR Q

S-R Flip-Flop Q+=S+R'Q

J-K Flip-Flop Q+ = JQ' + K'Q

- Flip-Flop 의 Q+ -> State Map 표현
- State Map -> State Table

STATE TABLE AND GRAPHS [1 OF 11]

Moore 회로의 분석

F/F Input & Output

$$D_A = X \oplus B'$$

$$D_B = X + A$$

$$Z = A \oplus B$$

F/F Next State

$$A+=X\oplus B'$$

$$B+=X+A$$

STATE TABLE AND GRAPHS [2 OF 11]

$$A+=X\oplus B'$$

$$A+=X\oplus B'$$
 $B+=X+A$

State Map

X AB	0	1
00	0	1
01	0	1
11	1	1
10	1	1
•	B	+

STATE TABLE AND GRAPHS [3 OF 11]

Moore 회로의 분석

State Map

		A^{+}	$B^{\scriptscriptstyle +}$		
_	AB	X=0	X=1	Z	
S_0	00 01 11 10	10	01	0	
S_1	01	00	11	1	
S ₂	11	01	11	0	
S ₃	10	11	01	1	

State Table

Present State	X=0	at state $X = 1$	Present Output(z)
S_0	S_3	S_1	0
S_1	S_0	S_2	1
S_2	S_1	S_2	0
S_3	S_2	S_1	1

Moore State Tables

STATE TABLE AND GRAPHS [4 OF 11]

Moore 회로의 분석

Present State	X = 0	t state $X = 1$	Present Output(z)
S_0	S_3	S_1	0
S_1	S_0	S_2	1
S_2	S_1	S_2	0
S_3	S_2	S_1	1

Moore State Tables

Moore State Graph

STATE TABLE AND GRAPHS [5 OF 11]

Mealy 회로의 분석

F/F Input & Output

2. F/F Next State

$$A^{+} = J_{A}A' + K_{A}'A = XBA' + X'A$$

 $B^{+} = J_{B}B' + K_{B}'B = XB' + (AX)'B = XB' + X'B + A'B$
 $Z = X'A'B + XB' + XA$

STATE TABLE AND GRAPHS [6 OF 11]

Mealy 회로의 분석

$$A^{+} = J_{A}A' + K_{A}'A = XBA' + X'A$$

 $B^{+} = J_{B}B' + K_{B}'B = XB' + (AX)'B = XB' + X'B + A'B$
 $Z = X'A'B + XB' + XA$

F/F Next State

STATE TABLE AND GRAPHS [7 OF 11]

Mealy 회로의 분석

AB X	0	1
00	0	1
01	1	1
11	1	0
10	0	1
_	В	+

X	0	1
00	0	1 1
01	1	0
11	0	1
10	0	1
51-27	3	\overline{Z}

	A^{-}	$^{\scriptscriptstyle +}B^{\scriptscriptstyle +}$	Z		
AB	X = 0	$\overline{X} = 1$	X = 0	1	
00	00	01	0	1	
01	01	11	1	0	
11	11	00	0	1	
10	10	01	0	1	

State Table

 Present State
 Next state
 Present Output(z) X = 0

 S_{0} S_{0} S_{1} S_{1}
 S_{1} S_{1} S_{2} S_{2}
 S_{2} S_{2} S_{3} S_{1}
 S_{3} S_{3} S_{1} S_{2}

Mealy State Tables

STATE TABLE AND GRAPHS [8 OF 11]

Mealy 회로의 분석

STATE TABLE AND GRAPHS [9 OF 11]

Mealy 회로의 분석

STATE TABLE AND GRAPHS [10 of 11]

Timing Diagram for Serial Adder

State Graph for Serial Adder

STATE TABLE AND GRAPHS [11 of 11]

Present	Next State			Present Output (Z_1Z_2)				
State	$X_1 X_2 = 00$	01	10	11	$X_1X_2=00$	01	10	11
S_0	S ₃	S ₂	S ₁	So	00	10	11	01
S_1	S ₀	S_1	S_2	S_3	10	10	11	11
S_2	S ₃	S_0	S_1	S_1	00	10	11	01
S_3	S ₂	S_2	S ₁	S_0	00	00	01	01

A State Table with Multiple Inputs and Outputs

THANK YOU