

ДАТЧИК ЦВЕТА HITECHNIC

By Sanjay and Arvind Seshan

НА ЭТОМ ЗАНЯТИИ

- Научимся пользоваться датчиком цвета HiTechnic V.2
- Научимся настраивать ваш датчик
- Научимся правильно располагать датчик на роботе
- Изучим разные режимы датчика

СКАЧАЕМ БЛОК

- Блок для датчика цвета скачиваем по этой ссылке:
 - https://www.hitechnic.com/downloads
- Добавьте блок в ваше ПО.
 - Если вы не знаете как добавить блок в ПО, обратитесь к уроку "Импорт блоков HiTechnic" на сайт Mindlesson.ru → Робототехника → Бонусные уроки программирования

HiTechnic EV3 Color Sensor Block This is preliminary release of the HiTechnic EV3 Color Sensor Block. Note that this block only supports the EV3 and will not work with the NXT. Zip file includes both the Color Sensor block and a sample program that shows the color sensor values on the EV3 screen. See instructions at top of this downloads page for installation instructions.										
	Description	Version	Release Date	Size						
•	HiTechnic EV3 Color Sensor Block	0.3	February 18th, 2014	41.85 KB	<u>Download Now</u>					

НАСТРОЙКА ПОД ЧАСТОТУ ЭЛЕКТРОСЕТИ

- Зачастую электросети бывают 2 типов частот (50Гц и 60Гц).
- Датчик настроен на 60Гц по умолчанию (США, Канада и др.)
- Проверьте свою страну по списку по ссылке: https://www.hitechnic.com/colorsensor
- Если вам нужно сменить частоту, обратитесь к следующему слайду
- Зачастую СНГ 50Гц

COUNTRY	FREQUENCY
Afghanistan	50 Hz
Albania	50 Hz
Algeria	50 Hz
American Samoa	60 Hz
Andorra	50 Hz
Angola	50 Hz
Anguilla	60 Hz
Antigua	60 Hz
Argentina	50 Hz
Armenia	50 Hz
Aruba	60 Hz
Australia	50 Hz
Austria	50 Hz
Azerbaijan	50 Hz
Azores	50 Hz
3ahamas	60 Hz
Bahrain	50 Hz
Balearic Islands	50 Hz
Bangladesh	50 Hz
Barbados	50 Hz
Belarus	50 Hz
Belgium	50 Hz
Belize	60 Hz
Benin	50 Hz
3ermuda	60 Hz
3hutan	50 Hz
3olivia	50 Hz
Bosnia	50 Hz
Botswana	50 Hz
Brazil	60 Hz

НАСТРОЙКА ПОД ЧАСТОТУ ЭЛЕКТРОСЕТИ

- На данный момент программный блок EV3 «умеет» менять режимы датчика
- Установите нужный режим путем запуска программного блока
- Это нужно делать только один раз, для одного датчика

ПОЗИЦИЯ И УГОЛ (ОТ HITECHNIC)

- Датчик цвета V2 работает лучше всего, когда находится на небольшом расстоянии до цели
 - Примерно 4 лего блока (см. на картинку)
- В идеале датчик должен находиться под углом. Угол предотвращает прямое отражение света от светодиода на датчик. (см. на картинку)

4 РЕЖИМА

Режим Color

Может распознать
 18 цветов

Режим **RG**B

• Выводит Красный, Зеленый, Синий, и Белый в диапазоне от 0 до 255

Режим Passive

- Выводит Красный, Зеленый, Синий, и Белый вне диапазона 0-255
- Показания внешнего освещения
- Могут быть использованы для измерения освещения комнаты
- Светодиод выключен

Режим Raw

- Выводит Красный, Зеленый, Синий, и Белый в сыром виде
- Этот режим предоставляет сырые данные, не обработанные

РЕЖИМ RGB ПРОТИВ PASSIVE

- Сравнивая показания датчика цвета в режиме **Passive** в разных условия освещения показывает, что значения зависят от внешнего освещения
- В режиме **RGB**, датчик исключает внешнее освещение

	Режим RGB Тусклый свет			Режим RGB Яркий свет			Режим Passive Тусклый свет			Режим Passive Яркий свет		
Цвет LEGO	Крас ный	Зелен ый	Сини й	Красн ый	Зелены й	Синий	Красн ый	Зелен ый	Синий	Красн ый	Зелены й	Синий
Белый	123	123	102	121	122	101	72	61	39	785	1062	475
Красный	64	17	8	63	16	7	47	20	10	1034	543	185
Желтый	110	80	13	114	83	13	58	40	14	1851	2122	392
Зеленый	14	32	19	10	28	17	11	19	11	183	575	226
Синий	10	23	53	10	23	54	12	18	19	106	262	240
Черный	9	9	9	8	8	8	13	12	8	87	135	65
Коричнев ый	21	12	9	20	12	8	21	16	9	324	309	137

Color

∰ RG8 ∰ Passive

БОЛЬШЕ О РЕЖИМЕ **RGB**

- В режиме **RGB**, датчик измеряет и исключает внешнее освещение
- Тем не менее существует ограничение «исключению» внешнего освещения. В очень ярких условиях датчик перегружен (См. значения passive) и не может «исключать» эффективно. Выдавая непредсказуемые показания в режиме RGB.

	Режим RGB Тусклый свет			Режим RGB прямые лучи солнца			Режим Passive Тусклый свет			Режим Passive прямые лучи солнца		
Цвет LEGO	Крас ный	Зелен ый	Сини й	Красн ый	Зелены й	Сини й	Красн ый	Зелен ый	Синий	Красн ый	Зелены й	Синий
Белый	123	123	102	0	0	126	72	61	39	37810	39305	32973
Красный	64	17	8	0	17	11	47	20	10	37692	25968	16953
Желтый	110	80	13	0	0	33	58	40	14	37689	39317	25230
Зеленый	14	32	19	8	30	15	11	19	11	20046	31605	21915
Синий	10	23	53	12	23	51	12	18	19	21447	30028	28308
Черный	9	9	9	3	6	7	13	12	8	16012	18125	13029
Коричнев ый	21	12	9	18	12	9	21	16	9	25995	23004	15443

РЕЖИМ RAW ПРОТИВ RGB

- Проведя тесты, мы обнаружили, что показания в необработанном режиме обрабатываются с помощью линейного уравнения для генерации данных RGB.
- Обратите внимание, что разные цвета масштабируются по-разному. Белый может отображаться как [120 красный, 120 зеленый, 120 синий] в режиме RGB, но как [285 красный, 450 зеленый, 300 синий] в режиме Raw

Режим Raw против RGB датчика цвета HiTechnic

ПОЛУЧЕННЫЕ УРОКИ

- **Позиция:** следуйте рекомендациям производителя по поводу угла и расстояния до цели.
- **Настройка**: Если вы живете в стране, где частота электросети 50Гц, вам нужно настроить датчик.
- **Режим Color:** Он может распознать 18 цветов.
- **Peжим Passive:** Не исключает внешнее освещение. Этот режим полезен для измерения внешнего освещения.
- Raw против RGB: Выходные данные из режима RGB – производные режима Raw. Данные режима Raw конвертируются в данные режима RGB.

БЛАГОДАРНОСТЬ

- Этот урок был сделан Sanjay Seshan и Arvind Seshan
- Больше уроков доступно на сайте mindlesson.ru и ev3lessons.com
- Перевод осуществил: Абай Владимир, abayvladimir@hotmail.com

This work is licensed under a <u>Creative Commons Attribution-</u> NonCommercial-ShareAlike 4.0 International License.