TD 15

IPESUP - PC

20 mars 2024

1 Exercice

On rappelle la constante de Plank : $h=6,63\times 10^{-34}J.s$ et la constante de Boltzmann : $k=1,38\times 10^{-23}J.K^{-1}$.

- 1. On considère un milieu contenant des atome spouvant être dans l'état fondamental (N_1 atomes par unité de volume) et dénergie E_1 et dans un état excité (N_2 atomes par unité de volume) et d'énergie E_2 . Estimer le rapport $\frac{N_2}{N_1}$ à température ambiante et pour une radiation visible.
- 2. Rappeler les expressions des nombres de photons absorbés et ceux émis par émission induite pendant dt. On donne la loi de Plank : $u_{\nu} = \frac{8\pi h \nu^3}{c^3} \frac{1}{exp(\frac{h\nu}{kT})-1}$, avec u_{ν} la densité d'énergie par unité de fréquence.
- 3. Estimer la valeur de A pour une raie d'une lampe à valeur atomique.
- 4. On se place à l'équilibre thermique. Trouver une relation entre $N_1,\,N_2,\,A,\,B$ et $u_{\nu}.$
- 5. En déduire une expression de $\frac{A}{B}$ pour une fréquence donnée.
- 6. On considère dorénavant un faisceau se propageant selon l'axe z et de section S. On note n la densité volumique de photons de fréquence ν . Exprimer la puissance du faisceau en fonction de n.
- 7. Déterminer la valeur de n pout un faisceau de longueur 632nm et de puissance 1mW et de 1mm de diamètre.

2 Centrale PC 2 2018

Questions 20 à 28.