

Service Manual

Cassette Deck

Double Cassette Deck
Featuring 2 Dubbing Speed

RS-B33W

Color

(K)...Black Type
(S)...Silver Type

RS-B10 MECHANISM SERIES

SPECIFICATIONS

Deck system:	Stereo cassette deck
Track system:	4-track, 2-channel
Heads (TAPE 1) PLAY:	AX head
(TAPE 2) REC/PLAY:	AX head
Erasing:	Double-gap ferrite head
Motors (TAPE 1) Capstan/reel drive:	2 speed electronically controlled DC motor
(TAPE 2) Capstan/reel drive:	2 speed electronically controlled DC motor
Recording system:	AC bias
Bias frequency:	105kHz
Erasing system:	AC bias
Tape speed:	4.8cm/sec. (1-7/8 ips)
Frequency response:	
Metal;	20Hz~18,000Hz
	30Hz~16,000Hz (DIN)
	40Hz~16,000Hz±3dB
CrO ₂ ;	20Hz~18,000Hz
	30Hz~16,000Hz (DIN)
	40Hz~15,000Hz±3dB
Normal;	20Hz~17,000Hz
	30Hz~15,000Hz (DIN)
	40Hz~14,000Hz±3dB
Dynamic Range (with dbx in):	110dB (1kHz)
S/N:	(Signal level = max. recording level, CrO ₂ type tape)

dbx in:	92dB (A weighted)
Dolby C NR in:	72dB (CCIR)
Dolby B NR in:	67dB (CCIR)
NR out:	57dB (A weighted)
Wow and flutter:	0.07% (WRMS) ±0.14% (DIN)
Max. Input level improvement (with dbx in):	10dB
Fast Forward and Rewind Time:	Approx. 110 seconds with C-60 cassette tape
Input sensitivity and impedance:	
MIC;	1mV/400Ω~10kΩ
LINE;	60mV/47kΩ
Output voltage and impedance	
LINE;	400mV/1.5kΩ
HEADPHONES;	80mV/8Ω
Power consumption:	18W
Power supply:	[M][MC]AC; 120V, 50Hz/60Hz [E]AC; 220V, 50Hz/60Hz [EK][XA][XL]AC; 110V/127V/220V/240V, 50Hz/60Hz
Preset power voltage	240V
Dimensions (W×H×D):	430×108.5×232mm (15-29/32"×4-8/32"×9-4/32")
Weight:	4.3kg (9 lbs 7 oz)

Design and specifications are subject to change without notice.

*The term dbx is a registered trademark of dbx Inc.

* *'Dolby' and the double-D symbol are trademarks of Dolby Laboratories Licensing Corporation.

Technics

Matsushita Engineering and
Service Company
50 Meadowland Parkway,
Secaucus, New Jersey 07094

Panasonic Sales Company,
Division of Matsushita Electric
of Puerto Rico, Inc.
Ave. 65 De Infanteria, KM 9.7
Victoria Industrial Park
Carolina, Puerto Rico 00630

Panasonic Hawaii Inc.
91-238 Kauhi St. Ewa Beach
P.O. Box 774
Honolulu, Hawaii 96808-0774

Matsushita Electric
of Canada Limited
5770 Ambler Drive, Mississauga,
Ontario, L4W 2T3

Matsushita Electric Trading Co., Ltd.
P.O. Box 288, Central Osaka Japan

■ CONTENTS

ITEM	PAGE	ITEM	PAGE
• Location of Controls and Components	2	• Circuit Boards and Wiring Connection Diagram	19
• Safety Precautions.....	3	• Terminal Guide of Transistors, Diodes and IC's.....	22
• Insulation Resistance Test	3	• Mechanical Parts Location (included Parts List)	23
• Disassembly Instructions	3	• Cabinet Parts Location (included Cabinet, Accessories and Packing Parts List).....	25
• Measurement and Adjustment Methods	5		
• Block Diagram	11		
• Electrical Parts List	13		
• Schematic Diagram	15		

■ LOCATION OF CONTROLS AND COMPONENTS

Headphones jack [phones]

■ SAFETY PRECAUTION

1. Before servicing, unplug the power cord to prevent an electric shock.
2. When replacing parts, use only manufacturer's recommended components for safety.
3. Check the condition of the power cord. Replace if wear or damage is evident.
4. After servicing, be sure to restore the lead dress, insulation barriers, insulation papers, shields, etc.
5. Before returning the serviced equipment to the customer, be sure to make the following insulation resistance test to prevent the customer from being exposed to a shock hazard.

■ INSULATION RESISTANCE TEST

1. Unplug the power cord and short the two prongs of the plug with a jumper wire.
2. Turn on the power switch.
3. Measure the resistance value with ohmmeter between the jumpered AC plug and each exposed metal cabinet part, such as screwheads antenna, control shafts, handle brackets, etc. Equipment with antenna terminals should read between $3M\Omega$ and $5.2M\Omega$ to all exposed parts. (Fig. A) Equipment without antenna terminals should read approximately infinity to all exposed parts. (Fig. B)

Note: Some exposed parts may be isolated from the chassis by design. These will read infinity.

Resistance = $3M\Omega$ — $5.2M\Omega$

Resistance = Approx ∞

4. If the measurement is outside the specified limits, there is a possibility of a shock hazard. The equipment should be repaired and rechecked before it is returned to the customer.

■ DISASSEMBLY INSTRUCTIONS

Ref. No. 1	How to remove the case cover	Ref. No. 2	How to remove the mechanism unit
Procedure 1	• Remove 4 screws (A) and 2 screws (B).	Procedure 1 → 2	<ul style="list-style-type: none"> • Push the eject button (M) and (J) to the cassette lid assembly (see fig. 1). • Remove 4 screws (K).
			<p>(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L) (M) (N) (O) (P) (Q) (R) (S) (T) (U) (V) (W) (X) (Y) (Z)</p> <p>Cassette lid assembly</p> <p>Fig. 1</p>

• Pull out the connectors A, B, C, D, E, F, (see fig. 3).

Fig. 2

Ref. No. 3	How to remove the front panel assembly	Ref. No. 5	How to remove the FL meter P.C.B
Procedure 1 → 3	<ul style="list-style-type: none"> • Remove 3 screws (C). (See fig. 2) • Pull out the connectors A, B, C, D, E, F. 	Procedure 1 → 3 → 5	<ul style="list-style-type: none"> • Remove 2 screws (Q). • Raise the clamer in the direction of arrow ② and remove the FL meter P.C.B in the direction of arrow ③.
	<p>Connector A Connector B Connector C Connector D Connector E Connector F (G) (H) (I) (J) (K) (L) (M) (N) (O) (P) (Q) (R) (S) (T) (U) (V) (W) (X) (Y) (Z)</p> <p>Main circuit board</p> <p>Fig. 3</p>		<p>(I) (L) (M) (O) (P) (Q) (R) (S) (T) (U) (V) (W) (X) (Y) (Z)</p> <p>Motor assembly (TAPE ①) Mechanism unit (TAPE ①) Motor assembly (TAPE ②) Mechanism unit (TAPE ②) FL meter circuit board</p> <p>Fig. 4</p>

Ref. No. 4	How to remove the main P.C.B	Ref. No. 6	How to remove the volume P.C.B
Procedure 1 → 3 → 4	<ul style="list-style-type: none"> • Remove 4 screw (D). (See fig. 3) • Remove the record/playback changing wire in the direction of arrow ① (see fig. 3). 	Procedure 1 → 3 → 6	<ul style="list-style-type: none"> • Remove 2 screws (E). (See fig. 4)
Ref. No. 7	How to remove the motor Assembly (TAPE ①)	Ref. No. 8	How to remove the motor Assembly (TAPE ②)
Procedure 1 → 3 → 7	<ul style="list-style-type: none"> • Remove 3 screws (R). (See fig. 4) • Remove 2 screws (S). (See fig. 4) 	Procedure 1 → 3 → 8	<ul style="list-style-type: none"> • Remove 3 screws (L). (See fig. 4) • Remove 2 screws (U). (See fig. 4)

* Serial No. Indication

- The serial number plate of this product is attached to the bottom cover (shown in fig. 2).

■ MEASURE

NOTES: Set sw
• Mak
• Mak
clean
• Judg

A Head azim
adjustmen
(TAPE ①),

L-CH/R-CH out
1. Make conn

2. Playback th
Adjust scre
When the o
same point
3. Turn scre
peak outpu
locate angl
R-CH outpu

L-CH/R-CH pha
4. Make conn
5. Playback th
Adjust scre
swing to ma
obtained on

Ref. No. 3	How to remove the front panel assembly	Ref. No. 5	How to remove the FL meter P.C.B
Procedure 1 → 3	<ul style="list-style-type: none"> Remove 3 screws (C). (See fig. 2) Pull out the connectors A, B, C, D, E, F. 	Procedure 1 → 3 → 5	<ul style="list-style-type: none"> Remove 2 screws (Q). Raise the clamp in the direction of arrow ② and remove the FL meter P.C.B in the direction of arrow ③.
Fig. 3		Fig. 4	
Ref. No. 4	How to remove the main P.C.B	Ref. No. 6	How to remove the volume P.C.B
Procedure 1 → 3 → 4	<ul style="list-style-type: none"> Remove 4 screw (D). (See fig. 3) Remove the record/playback changing wire in the direction of arrow ① (see fig. 3). 	Procedure 1 → 3 → 6	<ul style="list-style-type: none"> Remove 2 screws (E). (See fig. 4)
Ref. No. 7	How to remove the motor Assembly (TAPE ①)	Ref. No. 8	How to remove the motor Assembly (TAPE ②)
Procedure 1 → 3 → 7	<ul style="list-style-type: none"> Remove 3 screws (R). (See fig. 4) Remove 2 screws (S). (See fig. 4) 	Procedure 1 → 3 → 8	<ul style="list-style-type: none"> Remove 3 screws (L). (See fig. 4) Remove 2 screws (U). (See fig. 4)

* Serial No. Indication

- The serial number plate of this product is attached to the bottom cover (shown in fig. 2).

■ MEASUREMENT AND ADJUSTMENT METHODS

Fig. 1

NOTES: Set switches and controls in the following positions, unless otherwise specified.

- Make sure heads are clean
- Make sure capstan and pressure roller are clean
- Judgeable room temperature $20 \pm 5^\circ\text{C}$ ($68 \pm 9^\circ\text{F}$)
- Input level controls: Maximum
- Dolby NR switch: OUT
- Mode switch: series play
- Dubbing tape speed switch: Normal

Ⓐ Head azimuth adjustment (TAPE ①, TAPE ②)	Condition: • Playback mode • Normal tape mode	Equipment: • EVM (Electronic Voltmeter) • Oscilloscope • Test tape (azimuth)...QZZCFM
--	---	--

L-CH/R-CH output balance adjustment

- Make connections as shown in fig. 2.

- Playback the 8kHz signal from the test tape (QZZCFM). Adjust screw (B) in fig. 3 for maximum output L-CH and R-CH levels. When the output levels of L-CH and R-CH are not at maximum at the same point adjust as follows.
- Turn screw (B) shown in fig. 3 to find angles A and C (points where peak output levels for left and right channels are obtained). Then, locate angle B between angles A and C, i.e., point where L-CH and R-CH outputs are balanced. (Refer to figs. 3 and 4.)

Fig. 3

L-CH/R-CH phase adjustment

- Make connections as shown in fig. 5.
- Playback the 8kHz signal from the test tape (QZZCFM). Adjust screw (B) shown in fig. 3 so that pointers of the two EVMs swing to maximum and a lissajous waveform as illustrated in fig. 6 is obtained on the oscilloscope.

Fig. 4

Fig. 6

**B Tape speed
(TAPE 1, TAPE 2)**

Condition:
• Playback mode
• Dubbing tape speed switch
...Normal/high

Equipment:
• Digital frequency counter
• Test tape...QZZCWAT

High speed adjustment

Note:
Perform high speed adjustment about 10 seconds after the start of motor rotation.
1. Make connections as shown in fig. 7.
2. Set the dubbing/mixing switch to off, and set the dubbing speed switch to high. Ground the resistor (R122).
3. Play the test tape (QZZCWAT) with the TAPE 1 and measure the playback signal frequency.
If the playback signal frequency does not conform to the standard value, adjust the high speed adjustment VR02 for the TAPE 1 head (See fig. 1).

Standard value: TAPE 1 (Playback deck: Normal speed) $6020 \pm 20\text{Hz}$

4. Play the test tape (QZZCWAT) with the TAPE 2 head, and measure the playback signal frequency, and then adjust the high speed adjustment VR02 for the TAPE 2 head so that the playback signal frequency is 30Hz lower than the output signal frequency after adjustment of TAPE 1.
5. After high speed adjustment, remove the ground the resistor (R284).

Normal speed adjustment

TAPE 1

1. Make connections as shown in fig. 7.
2. Set the dubbing speed switch to Normal.
3. Play the test tape (QZZCWAT) with the TAPE 1 head, and measure the playback signal frequency. If the playback signal frequency does not conform to the standard value, adjust the normal speed adjustment VR01 for the TAPE 1 head (See fig. 1).

Fig. 7

Standard value: TAPE 1 (Playback deck: Normal speed) $3010 \pm 10\text{Hz}$

TAPE 2

4. Play the test tape (QZZCWAT) with the TAPE 2 head, and measure the playback signal frequency, then adjust the normal speed adjustment VR01 for the TAPE 2 head so that the playback signal frequency is 15Hz lower than the output signal frequency after adjustment of TAPE 1.

Tape speed fluctuation

TAPE 1, TAPE 2

Make measurements in same manner as above (beginning, middle and end of tape), and determine the difference between maximum and minimum values and calculate as follows:

$$\text{Tape speed fluctuation (Normal speed)} = \frac{f_1 - f_2}{3,000} \times 100(\%) \quad f_1 = \text{maximum value}, f_2 = \text{minimum}$$

$$\text{Tape speed fluctuation (High speed)} = \frac{f_1 - f_2}{6,000} \times 100(\%) \quad f_1 = \text{maximum value}, f_2 = \text{minimum}$$

Standard value: Less than 0.15%

Note:

Please use non metal type screwdriver then you adjust tape speed on this unit.

**C Playback frequency response
(TAPE 1, TAPE 2)**

Condition:
• Playback mode
• Normal tape mode

Equipment:
• EVM (Electronic Voltmeter)
• Oscilloscope
• Test tape...QZZCFM

1. Test equipment connection is shown in fig. 2.
2. Playback the frequency response portion of test tape (QZZCFM).
3. Measure output level at 315Hz, 12.5kHz, 8kHz, 4kHz, 1kHz, 250Hz, 125Hz and 63Hz, and compare each output level with the standard frequency 315Hz, at LINE OUT.
4. Make measurements for both channels.
5. Make sure that the measured values are within the range specified in the frequency response chart (Shown in fig. 8).

Playback frequency response chart

Fig. 8

**D Playback gain
(TAPE 1, TAPE 2)**

Condition:
• Playback mode
• Normal tape mode

Equipment:
• EVM (Electronic Voltmeter)
• Oscilloscope
• Test tape...QZZCFM

- Test equipment connection is shown in fig. 2.
- Playback standard recording level portion on test tape (QZZCFM 315Hz) and, using EVM, measure the output level at LINE OUTs.
- Make measurements for both channels.

Standard value: $0.4V \pm 0.05V$

Adjustment

- If the measured value is not within the standard, adjust TAPE 1 VR1 (L-CH) or VR2 (R-CH), Tape 2 VR3 (L-CH) or VR4 (R-CH) (See fig. 1).
- After adjustment, check "Playback frequency response" again.

**E Erase current
(TAPE 2)**

Condition:
• Record mode
• Metal tape mode

Equipment:
• EVM (Electronic Voltmeter)
• Oscilloscope

- Test equipment connection is shown in fig. 9.
- Place UNIT into metal tape mode.
- Press the record and pause buttons.
- Read voltage on EVM and calculate erase current by following formula:

$$\text{Erase current (A)} = \frac{\text{Voltage across resistor R300}}{1 (\Omega)}$$

Standard value: $160 \pm 15\text{mA}$ (Metal) ($160 \pm 15\text{mV}$)

Fig. 9

- If the measured value is not within the standard value adjust it by following the adjustment instructions.

Adjustment

- Short-circuit the registers R308, R309, R310.
(Refer to table 1)
- Measure the erasing current.
- If the measured value is not within the standard value, open or short-circuit the registers R308, R309, R310 according to table 1.

R308	R309	R310	Change in value	Illustrations
Short	Short	Short	$\pm 0\text{mA}$	
Short	Short	Open	+ 4mA	
Open	Short	Short	+ 10mA	
Open	Open	Open	+ 20mA	

Table. 1

**F Overall frequency response
(TAPE 2)**

Condition:
• Record/playback mode
• Normal tape mode
• CrO₂ tape mode
• Metal tape mode
• Input level controls...MAX

Equipment:
• EVM (Electronic Voltmeter) (reference blank tape)
• ATT ...QZZCRA for Normal
• AF oscillator ...QZZCRX for CrO₂
• Oscilloscope ...QZZCRZ for Metal

Note:
Before measuring response make sure the method of measurement (Recording equalizer).

1. Make connection.
2. Place UNIT into reference blank tape.
3. Supply a 1kHz sine wave to LINE IN.
4. Adjust ATT so that the output level is 0dB.
5. Adjust the AF oscillator so that the output level is 0dB.
6. Playback the overall frequency response.

Adjustment (A):

When the curve does not conform to overall specified response chart shown in fig. 12.

- 1) Increase bias current by turning VR302 (R-CH) (See fig. 1.)
- 2) Repeat steps 1 and 2 until confirmation is made that the curve is now in accordance with the specified response chart.
- 3) If the curve still does not conform to steps 7, 8 and 9, increase VR302 (R-CH) by 10%, increase steps 5 and 6.

7. Place UNIT into metal tape mode.
8. Change test tape to CrO₂ tape (QZZCRX), and supply a 1kHz sine wave to LINE IN. The signals are measured at the output terminals shown in the chart (fig. 14).
9. Place UNIT into metal tape mode and check if the overall frequency response is in accordance with the specified response chart.
10. Confirm that bias current is correct when the UNIT is in metal tape mode.
- Read voltage at TP1 for L-CH, TP2 for R-CH.

Bias current

Standard

D Playback gain (TAPE 1, TAPE 2)	Condition: <ul style="list-style-type: none">• Playback mode• Normal tape mode	Equipment: <ul style="list-style-type: none">• EVM (Electronic Voltmeter)• Oscilloscope• Test tape...QZZCFM
1. Test equipment connection is shown in fig. 2. 2. Playback standard recording level portion on test tape (QZZCFM 315Hz) and, using EVM, measure the output level at LINE OUTs. 3. Make measurements for both channels.		
Standard value: 0.4V±0.05V		
Adjustment		
1. If the measured value is not within the standard, adjust TAPE 1 VR1 (L-CH) or VR2 (R-CH), Tape 2 VR3 (L-CH) or VR4 (R-CH) (See fig. 1). 2. After adjustment; check "Playback frequency response" again.		
E Erase current (TAPE 2)	Condition: <ul style="list-style-type: none">• Record mode• Metal tape mode	Equipment: <ul style="list-style-type: none">• EVM (Electronic Voltmeter)• Oscilloscope
1. Test equipment connection is shown in fig. 9. 2. Place UNIT into metal tape mode. 3. Press the record and pause buttons. 4. Read voltage on EVM and calculate erase current by following formula:		
Erase current (A) = $\frac{\text{Voltage across resistor R300}}{1 \Omega}$		
Standard value: 160±15mA (Metal) (160±15mV)		
5. If the measured value is not within the standard value adjust it by following the adjustment instructions.		
Adjustment		
1. Short-circuit the registers R308, R309, R310. (Refer to table 1) 2. Measure the erasing current. 3. If the measured value is not within the standard value, open or short-circuit the registers R308, R309, R310 according to table 1.		
Table. 1		
F Overall frequency response (TAPE 2)	Condition: <ul style="list-style-type: none">• Record/playback mode• Normal tape mode• CrO₂ tape mode• Metal tape mode• Input level controls...MAX	Equipment: <ul style="list-style-type: none">• Resistor (600Ω)• EVM• Test tape (Electronic Voltmeter) (reference blank tape)• ATT• AF oscillator• Oscilloscope <p>...QZZCRA for Normal ...QZZCRX for CrO₂ ...QZZCRZ for Metal</p>

**G Overall gain
(TAPE [2])**

Condition:

- Record/playback mode
- Normal tape mode
- Input level controls...MAX
- Standard input level;

MIC	-60±4dB
LINE IN.....	-24±4dB

Equipment:

- EVM (Electronic Voltmeter)
- ATT
- Resistor (600Ω)
- Test tape

(reference blank tape)
...QZZCRA for Normal

1. Test equipment connection is shown in fig. 15.
2. Insert the normal reference blank tape (QZZCRA).
3. Place UNIT into record mode.
4. Supply a 1kHz signal through ATT (-24dB) from AF oscillator, to LINE IN.
5. Adjust ATT until monitor level at LINE OUT becomes 0.4V.
6. Playback recorded tape, and make sure that the output level at LINE OUT becomes 0.4V.
7. If measured value is not 0.4V, adjust it by using VR201 (L-CH) or VR202 (R-CH).
8. Repeat from step (2).

Fig. 15

**H Fluorescent meter
(TAPE [2])**

Condition:

- Record mode
- Input level controls...MAX

Equipment:

- EVM (Electronic Voltmeter)
- ATT
- Resistor (600Ω)
- AF oscillator
- Oscilloscope

1. Make connections as shown in fig. 16.
2. In the recording pause mode, apply 1kHz (-24dB) to LINE IN.
3. Adjust ATT so that output level at LINE OUT is 0.4V.
4. At this time, check that 0dB indicator is lighted halfway (intermediate brightness between full brightness and light-out: See fig. 17).
5. If the indicator is not lighted halfway as described in step 4, adjust VR401 (L-CH), VR402 (R-CH).
6. Repeat adjustments and checks at steps 3, 4 and 5 two or three times.

Fig. 16

Fig. 17

① Dolby NR circuit

Condition:

- Record mode
- Dolby NR switch...IN/OUT
- Dolby NR select switch
...B/C
- Input level controls...MAX

Equipment:

- EVM (Electronic Voltmeter)
- ATT
- Resistor (600Ω)
- Balance control...Center
- AF oscillator
- Oscilloscope

Record side

- Check of the Dolby-B type encoder characteristics
 1. Make connections as shown in fig. 18.
 2. Set the unit to the record mode. (NR select switch is OUT.)
 3. Apply a 1kHz signal to LINE IN.
 4. Adjust the ATT so that the output level at Pin 7 of IC103 (L-CH) and IC104 (R-CH) is 12.3mV.
 5. The output level at pin 21 should be 0dB.
 6. Set the NR select switch to B, and make sure that the output signal level at pin 21 of IC103 (L-CH) and IC104 (R-CH) is $+6\pm2.5$ dB.
 7. Set the NR select switch to OUT, and adjust the frequency to 5kHz. The output signal level at pin 21 should be 0dB.
 8. Set the NR select switch to B and make sure that the output signal level at pin 21 of IC103 (L-CH) and IC104 (R-CH) is $+8dB\pm2.5$ dB.
- Check to Dolby-C type encoder characteristics
 9. Repeat steps 1-5 above.
 10. Set the NR select switch to C and make sure that the output signal level at pin 21 of IC103 (L-CH) and IC104 (R-CH) is $+11.5dB\pm2.5$ dB.
 11. Set the NR select switch to OUT and adjust the frequency to 5kHz. The output signal at pin 21 should be 0dB.
 12. Set the NR select switch to C and make sure that the output signal level at pin 21 of IC103 (L-CH) and IC104 (R-CH) is $+8.5dB\pm2.5$ dB.

Fig. 18

② Attack recovery time adjustment (dbx circuit)

Condition:

- Record mode
- Input level control...MAX
- Balance control...Center

Equipment:

- EVM (Electronic Voltmeter)
- ATT
- AF oscillator
- DC voltmeter
- Noise reduction selector
...dbx tape

1. Make the connections as shown in fig. 19 and apply 1kHz -27 dB signal from LINE IN, and set the noise reduction selector to dbx tape position.
2. Set the unit to record mode, adjust ATT so that the signal level at C189 (L-CH) and C190 (R-CH) is 300mV.
3. Read voltage on DC volt meter.

Reference value: 15 ± 1 mV

4. If measured value is not within reference, adjust VR101 (shown in fig. 1).

Fig. 19

■ BLOCK DIAGRAM

■ ELECTRICAL PARTS LIST

NOTES: RESISTORS

ERD	Carbon
ERG	Metal-oxide
ERS	Metal-oxide
ERO	Metal-film
ERX	Metal-film
ERQ	Fuse type metallic
ERC	Solid
ERF	Cement

CAPACITORS

ECBA	Ceramic
ECG	Ceramic
ECK	Ceramic
ECC	Ceramic
ECF	Ceramic
ECM	Polyester film
ECQ	Polypropylene
ECE	Electrolytic
ECEON	Non polar electrolytic
ECOS	Polystyrene
ECS	Tantalum
QCS	Tantalum

Areas

- * [M] For U.S.A.
- * [MC] For Canada.
- * [E] For European areas except United Kingdom.
- * [EK] For United Kingdom.
- * [XA] For Asia, Latin America, Middle East and Africa areas.
- * [XL] For Australia.

REPLACEMENT PARTS LIST

Ref. No.	Part No.	Ref. No.	Part No.	Ref. No.	Part No.	Ref. No.	Part No.	Ref. No.	Part No.
RESISTORS									
R 1, 2 ERDS2TJ683 R 3, 4 ERDS2TJ101 R 7, 8 ERDS2TJ243 R 9, 10 ERDS2TJ563 R 11, 12 ERDS2TJ472 R 13, 14 ERDS2TJ820 R 15, 16 ERDS2TJ822 R 17, 18 ERDS2TJ272 R 21, 22 ERD25FJ105 R 23, 24 ERDS2TJ563 R 25, 26 ERDS2TJ101 R 29, 30 ERDS2TJ432 R 31, 32 ERDS2TJ563 R 33, 34 ERDS2TJ472 R 35, 36 ERDS2TJ820 R 37, 38 ERDS2TJ682 R 41, 42 ERDS2TJ103 R 43, 44 ERDS2TJ472 R 47, 48 ERD25FJ152 R 49 ERDS2TJ152 R 53, 54 ERDS2TJ223 R 55, 56 ERDS2TJ472 R 59, 60 ERDS2TJ332 R 61 ERDS2TJ563 R 62 ERDS2TJ681 R 63 ERDS2TJ101 R 64 ERDS2TJ562 R 65 ERDS2TJ563 R 66 ERDS2TJ102 R 67 ERDS2TJ272 R 69 ERDS2TJ152 R 71 ERDS2TJ272 R 72 ERDS2TJ563 R 73, 74 ERDS2TJ471 R 101, 102 ERD25TJ393 R 103, 104 ERDS2TJ473 R 105, 106 ERDS2TJ393 R 107, 108 ERD25TJ393 R 109, 110 ERDS2TJ473 R 111 ERD25TJ393 R 112 ERD25FJ103 R 113, 114 ERDS2TJ512 R 115, 116 ERDS2TJ683 R 117, 118 ERDS2TJ222 R 119, 120 ERDS2TJ823 R 121, 122, 123, 124 ERDS2TJ272 R 127, 128 ERDS2TJ472 R 129, 130 ERDS2TJ332 R 131, 132 ERDS2TJ102 R 133, 134 ERDS2TJ333 R 135, 136 ERDS2TJ823 R 137, 138 ERD2FCG820 R 140 ERDS2TJ331 R 141, 142 ERDS2TJ222 R 143, 144 ERD25FJ103 R 145, 146 ERDS2TJ103 R 147, 148 ERDS2TJ561 R 149, 150 ERD25FJ472 R 151, 152, 153, 154, 155, 156 ERDS2TJ223 R 157, 158, 159, 160 ERDS2TJ472 R 161, 162 ERDS2TJ153 R 163, 164 ERDS2TJ333 R 169, 170 ERDS2TJ472 R 171, 172, 173, 174 ERDS2TJ153 R 175, 176 ERDS2TJ102 R 177, 178 ERDS2TJ103 R 179, 180 ERDS2TJ151 R 181, 182 ERDS2TJ472 R 183, 184 ERDS2TJ153 R 185, 186 ERDS2TJ332 R 189, 190 ERDS2TJ102 R 191 ERD25FJ102 R 192, 193 ERDS2TJ103 R 194 ERDS2TJ223									
R 195 ERDS2TJ123 R 197, 198 ERDS2TJ392 R 199, 200 ERDS2TJ472 R 209, 210 ERDS2TJ561 R 211, 212 ERDS2TJ272 R 213, 214 ERDS2TJ153 R 215, 216 ERDS2TJ102 R 217, 218 ERDS2TJ822 R 219, 220 ERDS2TJ820 R 221, 222 ERDS2TJ822 R 223, 224 ERDS2TJ272 R 225, 226 ERDS2TJ123 R 227 ERDS2TJ103 R 229 ERDS2TJ103 R 231, 232 ERDS2TJ473 R 235, 236 ERDS2TJ152 R 239, 240 ERDS2TJ101 R 241, 242 ERDS2TJ561 R 251 ERDS2TJ473 R 252, 253, 254, 255 ERDS2TJ103 R 256 ERD25FJ103 R 257, 258 ERDS2TJ103 R 259, 260 ERDS2TJ472 R 261 ERD25FJ472 R 262, 263 ERDS2TJ562 R 264 ERDS2TJ102 R 265 ERDS2TJ223 R 266 ERDS2TJ563 R 267 ERDS2TJ152 R 269 ERDS2TJ563 R 271 ERDS2TJ223 R 273, 274, 275 ERDS2TJ103 R 276 ERDS2TJ563 R 277 ERDS2TJ472 R 278 ERD25FJ102 R 280 ERD25TJ393 R 281 ERD25FJ103 R 282, 283 ERDS2TJ103 R 284 ERD25FJ103 R 285 ERDS2TJ103 R 286 ERDS2TJ223 R 287, 288 ERDS2TJ222 R 289, 290 ERDS2TJ272 R 291, 292 ERDS2TJ103 R 293 ERDS2TJ473 R 294 ERDS2TJ153 R 295 ERDS2TJ152 R 296 ERDS2TJ562 R 297 ERDS2TJ472 R 298 ERDS2TJ103 R 299 ERDS2TJ272 R 300 ERD25FJ1R0 R 301 ERD2FCG100 R 302 ERDS2TJ682 R 303 ERDS2TJ100 R 304 ERDS2TJ272 R 305 ERDS2TJ4R7 R 306 ERDS2TJ222 R 307 ERDS2TJ681 R 308 ERD25FJ103 R 309, 310 ERD25FJ223 R 311 ERDS2TJ332 R 312 ERDS2TJ123 R 313 ERDS2TJ563 R 314 ERDS2TJ103 R 315, 316 ERDS2TJ332 R 317 ERDS2TJ153 R 318 ERDS2TJ472 R 319, 320 ERDS2TJ681 R 321 ERDS2TJ102 R 322, 323, 324 ERDS2TJ223 R 327 ERDS2TJ223 R 330 ERDS2TJ472 R 331 ERDS2TJ222 R 332 ERDS2TJ152 R 333, 334 ERDS2TJ103									
R 335 ERDS2TJ472 R 336 ERDS2TJ332 R 337 ERDS2TJ223 R 338 ERDS2TJ103 R 339 ERDS2TJ103 R 340 ERD25FJ332 R 341 ERD25TJ473 R 342 ERD25TJ103 R 343 ERDS2TJ472 R 344 ERDS2TJ103 R 345 ERDS2TJ222 R 346 ERDS2TJ152 R 347 ERDS2TJ103 R 350, 351 ERDS2TJ681 R 355 ERDS2TJ101 R 361 ERD1S1J471 R 362 ERDS2TJ101 R 363 ERDS2TJ103 R 364, 365 ERDS2TJ103 R 366 ERDS2TJ103 R 367 ERDS2TJ103 R 368 ERDS2TJ103 R 369 ERDS2TJ103 R 370 ERDS2TJ103 R 371 ERDS2TJ103 R 372 ERDS2TJ103 R 373 ERDS2TJ103 R 374 ERDS2TJ103 R 375 ERDS2TJ103 R 376 ERDS2TJ103 R 377 ERDS2TJ103 R 378 ERDS2TJ103 R 379 ERDS2TJ103 R 380 ERDS2TJ103 R 381 ERDS2TJ103 R 382 ERDS2TJ103 R 383 ERDS2TJ103 R 384 ERDS2TJ103 R 385 ERDS2TJ103 R 386 ERDS2TJ103 R 387 ERDS2TJ103 R 388 ERDS2TJ103 R 389 ERDS2TJ103 R 390 ERDS2TJ103 R 391 ERDS2TJ103 R 392 ERDS2TJ103 R 393 ERDS2TJ103 R 394 ERDS2TJ103 R 395 ERDS2TJ103 R 396 ERDS2TJ103 R 397 ERDS2TJ103 R 398 ERDS2TJ103 R 399 ERDS2TJ103 R 400 ERDS2TJ103 R 401, 402 ERDS2TJ392 R 403 ERDS2TJ103 R 406 ERDS2TJ103 C 146 ECEA1AU471 C 157, 158, 159, 160 ECQV05224JZ C 161, 162 ECQV05223JZ C 163, 164 ECEA50ZR68 C 165, 166 ECEA16Z10 C 167, 168 ECQM1H333JZ C 169, 170 ECQM1H332JZ C 171, 172 ECEA1HUR33 C 173, 174 ECQM1H332JZ C 175, 176 ECQM1H472JZ C 177, 178 ECEA0JU470 C 179, 180 ECEA1CU100 C 181, 182 ECDD1H331K C 183, 184 ECDD1H391J C 185, 186 ECQV05223JZ C 187, 188 ECEA1HU010 C 189, 190 ECEA1CU100 C 191 ECEA1EU4R7 C 193, 194 ECDD1H471J C 209, 210 2SC2603EFG C 211, 212 ECEA1HU010 C 213, 214 ECQM1H102JZ C 215, 216 ECQV05183JZ C 217, 218 ECQM1H103JZ C 219, 220 ECQV05153JZ C 221, 222 ECQM1H272JZ C 223, 224 ECQM1H472JZ C 225, 226 ECCD1H221J C 227, 228 ECEA1HU010 C 229, 230 ECKD1H152KB C 231, 232 ECEA1HU010 C 233, 234 ECD1H470KC C 237, 238 ECEA1HU010 C 241, 242 ECKD1H221KB C 243, 244 ECD1H1820K C 261 ECEA1CU100 C 262 ECEA1CU220 C 263 ECEA1EU3R3 C 264 ECEA1CU100 C 265 ECEA1HU010 C 266 ECEA1CU100 C 267 ECEA1CU331 C 268 ECKD1H561KB C 269 ECD1H102KB C 27, 28 ECQM1H273JZ C 29, 30 ECEA1EU4R7 C 31, 32 ECQM1H103JZ C 41 ECEA1CU100 C 51, 52 ECEA1HU010 C 53, 54 ECEA1CU331 C 55, 56 ECA1115E C 57, 58, 59, 60 2SC2603EFG C 61, 62 2SD1468R C 201 UN4113 C 203 2SC2603EFG C 204, 205 2SA1115E C 206 2SC2603EFG C 207 2SA1115E C 208, 209 UN4111 C 210 2SC2603EFG C 211 2SA1115E C 212 2SC2603EFG C 213 2SD985K C 214, 215 2SD1330R C 301, 302 2SD471 C 303, 304 2SA952L C 305 2SA1115E C 306 UN4112 C 309, 310 UN4112 C 311, 312, 313, 314 UN4212 C 315 2SD592ANC-Q C 316 2SC2603EFG C 317 2SA1115E C 318 2SC2603EFG C 319 UN4212 C 320 2SA1115E C 321 2SC2603EFG C 322 2SD592ANC-Q C 323 2SD1265-0 C 324 2SB941 C 328 UN4212 C 401, 402 2SC2603EFG									
CAPACITORS									
C 1, 2 ECKD1H271KB C 3, 4 ECKD1H331K C 5, 6 ECCD1H151J C 7, 8 ECQM1H472JZ C 9, 10 ECCD1H151J C 11, 12 ECEA1EU4R7 C 13, 14 ECQM1H682JZ C 15, 16 ECQM1H103JZ C 18 ECEA1HU010 C 21, 22 ECKD1H561KB C 23, 24 ECD1H151J C 25, 26 ECKD1H102KB C 27, 28 ECQM1H273JZ C 29, 30 ECEA1EU4R7 C 31, 32 ECQM1H103JZ C 41 ECEA1CU100 C 51, 52 ECEA1HU010 C 53, 54 ECEA1EU4R7 C 57, 58 ECEA1HU010 C 61 ECEA1HU010 C 62, 63 ECKD1H102KB C 64 ECEA1EU4R7 C 101, 102 ECD1H100KC C 103, 104 ECEA1HUR47 C 105, 106 ECEA1HUR33 C 107 ECEA1EU4R7 C 108 ECEA1CU331 C 64 ECEA1EU4R7 C 121, 122 ECEA50ZR68 C 123, 124 ECEA1EU4R7 C 125,									

■ SCHEMATIC DIAGRAM

NOTES:

- S1-1~S1-10 : Record/playback switch (shown in playback position).
- S201 : TAPE ① auto tape selector switch (shown in 70μs position).
- S202 : TAPE ② PLAY switch (shown in stop position).
- S203 : TAPE ② FF/REW switch (shown in stop position).
- S204 : TAPE ② motor switch (shown in OFF position).
- S205 : TAPE ② PAUSE switch (shown in OFF position).
- S301 : TAPE ② REC switch (shown in stop position).
- S302 : TAPE ② PLAY switch (shown in stop position).
- S303 : TAPE ② FF/REW switch (shown in stop position).
- S304 : TAPE ② motor switch (shown in OFF position).
- S305 : TAPE ② auto tape selector switch (for Metal mode).
- S306 : TAPE ② auto tape selector switch (for CrO₂ mode).
- S601-1, S601-2 : Dolby-C NR switch (shown in OUT position).
- S602-1, S602-2 : Dolby-B NR switch (shown in OUT position).
- S603-1, S603-2 : dbx NR switch (shown in OUT position).
- S701-1, S701-2 : Mode selector switch (shown in series play position).
- S702 : Tape speed selector switch (shown in ×1 position).
- S901 : Power ON/OFF switch (shown in ON position).
- S902 : AC voltage selector [For EK][XL][XA] areas.

• Resistance are in ohms (Ω), 1/4 watt unless specified otherwise.
1K = 1,000(Ω), 1M = 1,000kΩ

• Capacity are in micro-farads (μF) unless specified otherwise.

• All voltage values shown in circuitry are under no signal condition and playback mode with volume control at minimum position otherwise specified.

() Voltage values at record mode.
70μs Voltage values at CrO₂ tape or Metal tape mode.
X2 Voltage values at high speed mode.
CUE/REV Voltage values at cue/rev mode.
MIC IN Voltage values at mic in.
DUBBING ON Voltage values at dubbing on.
B Voltage values at Dolby NR-B mode.
C Voltage values at Dolby NR-C mode.
dbx Voltage values at dbx mode.
REC MUTE Voltage values at rec mute mode.
SERIES Voltage values at series play mode.

For measurement use EVM.

• (—) indicates B (bias).
• (----) indicates the flow of the playback signal.
• (---) indicates the flow of the recording signal.

Important safety notice (Δ)
The shaded area on this schematic diagram incorporates special features important for protection from fire and electrical shock hazards.
When servicing it is essential that only manufacturer's specified parts be used for the critical components in the shaded areas of the schematic.

Important safety notice
Components identified by Δ mark have special characteristics important for safety. When replacing any of these components, use only manufacturer's specified parts.

The part no. of diodes mentioned in the schematic diagram stand for production part No. Regarding the part No. with Δ mark the production part No. are different from the replacement part No.
Therefore, when placing an order for replacement part, please use the part No. in the replacement parts list.

The supply parts number is described alone in the replacement parts list.

This schematic diagram may be modified at any time with the development of new technology.

SPECIFICATIONS	* Input level control...MAX * Balance control.....Center
Playback S/N ratio * Test tape...QZZCFM	Greater than 45dB
Overall distortion * Test tape...QZZCRA for Normal ...QZZCRX for CrO ₂ ...QZZCRZ for Metal	Less than 4%
Overall S/N ratio * Test tape...QZZCRA	Greater than 43dB (without NAB filter)

EQUIVALENT CIRCUIT

IC401, 402: BA6146

■ CIRCUIT BOARD AND WIRING CONNECTION DIAGRAM

10

11

12

13

14

1

1

VIII HEADPHONE JACK P.C.

AC POWER SUPPLY P.C.B.

EK XA X

■ TERMINAL GUIDE OF TRANSISTORS, DIODES, AND IC'S

TEA0665 AN6291 BA6146	28 Pin 22 Pin 16 Pin	M5220L, M5218L M5219L	
2SK381D, 2SJ40D UN4111, UN4112 UN4113, UN4211 UN4212, 2SA115E 2SC2603E	2SD1450R, 2SD1468R	2SA952	
2SD952	2SB941Q, 2SD12650	2SD985	
2SD471	MC911, MC921	1SS133, 1S2473	
MA1068, MA1082 MTZ22CT77, MTZ5R1BT77	SVDS1WB10	SVGSLV31VC3 SVGSLV31MC3 SVGSLV31DC3	
QLB0205K	QLQX0332KWA QLQX0343KWA	QLM9Z9K, ELM7Q306A	
(2 Pin) CN13 CN2 CN1	(3 Pin) CN13 CN4 CN3	(9 Pin) CN13 CN6 CN5	(12 Pin) CN13 CN8 CN7

1 2 3 4 5 6 7 8 9

■ MECHANICAL PARTS LOCATION

NOTES:

- When changing mechanism parts, apply the specified grease to the area marked "xx" shown in the drawing "Mechanical Parts Location".
- The grease and/or oil shown in the parentheses function to prevent friction (lubrication).

GREASE NAME	SUPPLY NO.
AERO GREASE	RZZ0L04
MOLYCOAT	RZZ0L05
ROCOL PASTE	RZZ0L06
FLOIL	SZZ0L18

REPLACEMENT PARTS LIST

Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description						
MECHANICAL PARTS																				
101	QML4156	Erase Safety Lever	119	QBS1143	Half Retain Spring	139	QDG1339	Auto-Stop Cam Gear	158	QML4100	Change Lever	175	QXL1701	Rewind Button Assembly						
102	QMR2144	Fast Forward Rod	120	QBS1128	Lock Pin	140	QDP1989	Connection Pulley	159	QBN2038	Change Lever Spring	176	QXL1702	Fast Forward Button						
103	QMR2145	Eject Rod	121	QBN2031	Main Lever Spring	141	QML4101	Auto-Stop Detection Lever	160	QXL1694	Pinch Roller Arm	177	QXL1703	Assembly						
104	QMR2146	Record Rod	122	QBN2032	Pause Return Spring	142	QML4102	Auto-Stop Driving Lever	160-1	QBN2047	Pinch Roller Arm Spring	178	QMA4753	Pause Button Assembly						
105	QMB2149	Auto-Stop Rod	123	QBN2034	Main Control Lever Spring	143	QML4103	Auto-Stop Change Lever	161	QBP2045	Operation Button Angle	179	QMR2148	Operation Button						
106	QML4152	Main Control Gear	124	QDB0379	Capstan Belt	144	QML4108	Brake Lever	162	QXU0372	Obstruction Rod	180	QMR2147	Angle						
107	QML4094	Sub Lever	125	QDB0368	Fast Forward Belt	145	QBN2040	Auto-Stop Release Spring	163	QMF2335	Lock Rod	181	QMN2869	Lock						
108	QML4095B	Sub Control Lever	126	QTD1333	Wire Clamper	146	QBN2046	Brake Spring	164	QPM2335	Operation Lever Shaft	182	QBP2018	Shaft						
109	QML4096	Pause Lock Lever	127	QXL1689	Main Lever Assembly	147	QBC1484	Auto-Stop Pressure Spring	165	QXL1695	Thrust Retainer	183	QBS1145	Operation Lever Spring						
110	QDG1330	Main Gear	128	QML4097	Takeup Lever	148	QDR1179	Supply Reel Table	166	QBN2045	Record/Playback Arm	184	QMN2883	Head Pressure Wire						
			129	QDG1333	Takeup Intermediate Gear	149	QMK2108	Head Base Plate	167	QAM0177	Intermediate Gear Shaft	185	QBC1502	Record/Playback						
			130	QMB1434	Cap	150	QMF2334	Head Adjustment Plate	168	QBN2045	Erase Head Spring	186	QBC1372	Spring						
111	QDG1331	Sub Gear	131	QML4098	Fast Forward Lever	151	QMZ1314	Head Spacer	169	QAM0176	Mechanism Angle (R)	187	QBC1336	Reel Table Spring						
112	QMF2333	Pressure Plate	132	QDG1335	Fast Forward Gear	152	QXV0188	Record/Playback Head	170	QAM0176	Counter Belt	188	QML4139	Supply Drive Cam						
113	QBN2035	Sub Lever Spring	133	QML4099	Rewind Lever	153	QXV0213	Erase Head	171	QDB0143-2	Switch Lever	189	XUBQ3FT	Washer 2φ						
114	QBN2036	Record/Playback Arm	134	QDG1336	Rewind Gear	154	QBC1278	Head Spring	172	QBC1500	Stop Ring 3φ									
115	QBT1868D	Obstruction Rod Spring	135	QXD0158	Takeup Reel Table	155	QBN2033	Head Pressure Spring	173	QXL1697	Eraser Head	190	QWY2175G	Stop Ring 3φ						
116	QBN2039	Auto-Stop Rod Spring	136	QXG1082	Takeup Gear Assembly	156	QBT2018D	Head Return Spring	174	QXL1698	Eject Button Assembly	191	QML4106	Tapping Screw 2φ						
117	QBN2044	Auto-Stop Lever Spring	137	QXK2902	Sub Chassis Assembly	157	QXF0237	Flywheel Assembly	175	QME0157	Operation Lever (1)	192	QXA1513	Tapping Screw 2φ						
118	QBC1483	Pause Pin Spring	138	QMS2634	Takeup Shaft	157-1	QBW2049	Poly Washer	176	QXL1699	Plunger Angle Assembly	193	QML4138	Plunger						
						157-2	QBW2026	Washer	177	QXL1700	Playback Button	194	SMQM3005	Lock Release Lever						
									178	QMA4868	Mechanism Angle (1)	195	QMA4868	Mechanism Angle (1)						
									179	QMA4868	Head Base Plate Angle	196	QMA4868	Head Base Plate Angle						
SCREWS, NUTS AND WASHERS																				
N 51	XTV3 + 6BFN	Tapping Screw $\oplus 3 \times 6$	N 52	XTN2 + 6B	Tapping Screw $\oplus 2 \times 6$	N 53	XTN26 + 6B	Tapping Screw $\oplus 2.6 \times 6$	N 54	XTN3 + 10B	Tapping Screw $\oplus 3 \times 10$	N 55	XTN3 + 20B	Tapping Screw $\oplus 3 \times 20$	N 56	XTV3 + 37B	Tapping Screw $\oplus 3 \times 37$	N 57	QHO1361	Screw $\oplus 2 \times 12$
N 58	XSN26 + 3	Screw $\oplus 2.6 \times 3$	N 59	XSN2 + 3	Screw $\oplus 2 \times 3$	N 60	OBW2046	Poly Washer 3φ												

SPECIFICATIONS

NOTE: The value indicated by the torque tape may fluctuate during torque measurement. In that case, obtain the middle of the values.

Pressure of pressure roller	350±50g	Wow and flutter; (JIS)	Less than 0.15% (WRMS)
Takeup tension * Use cassette torque meter.....QZZSRKCT	45 + 15 - 10 g·cmQZZCWAT	

■ CABIN

■ CABINET PARTS LOCATION

A
B
C
D
E
F
G

REPLACEMENT PARTS LIST

Ref. No.	Part No.	Part Name & Description	Ref. No.	Part No.	Part Name & Description
CABINET PARTS					
1 [M][MC]	SYKM5-2	Cassette Lid (A)	30 [EK]	QTWM0026	Switch Cover
1 [E][EK]	[XA][XL] SYKM5-1	"Black Type"	31 QBMM0021		Cushion
1 [E][EK]	[XA][XL] SYKM5	"Silver Type"	32 QTD1315		Cord Clamer
2 [M][MC]	SYKM6-2	Cassette Lid (B)	33 [E][EK]	[XA][XL] QTF1054	Fuse Holder
2 [E][EK]	[XA][XL] SYKM6-1	"Black Type"	34 [E][EK]	[XL] QTD1164A	Cord Bushing
2 [E][EK]	[XA][XL] SYKM6	"Silver Type"	35 [E][EK]	[XL] QTD1322	Cord Clamer
3 QGCM0076KA	Case Cover	36 QMAM0173		Record/Playback Angle	
3 QGCM0076A	"Black Type"	37 QMAM0172		AC Power Selector Angle	
4 [M] SGTM6	Main Name Plate	38 [M]		Cord Bushing	
4 [MC] SGTM8	Main Name Plate	[MC][XA] QTD1129		Earth Plate	
4 [E] SGTM4	Main Name Plate	39 SNE75		Tapping Support	
4 [EK][XL] SGTM5	Main Name Plate	40 SHR9762		Reflection Plate	
4 [XA] SGTM9	Main Name Plate	41 SMPM2			
5 SXDM7	Cassette Holder Assembly	42 SHRM5003		Sheet	
5-1 QBP2006A	Tape Pressure Spring	43 SMX845		Spark Killer Cover	
6 QXG1085	Damper Gear Assembly	44 QMA4624		Headphone Plate	
7 [M][MC] SYWM3	Operation Plate Assembly	45 QGOM0145SA		Push Button	
7 [E][EK]	[XA][XL] SYWM3-2				
7 [E][EK]	[XA][XL] SYWM3-1	"Black Type"			
8 QGCM0075	Bottom Cover				
9 QMAM0170	Change Lever Angle				
10 SKL245-4	Case Foot				
11 SHRM9002	Slider				
12 SJNSB33W-SE	Tape Counter				
13 SBD113	Volume Knob				
14 SGYSB33W-KE	Front Panel Assembly				
14 SGYSB33W-SE	"Black Type"				
14 SGYSB33W-SE	"Silver Type"				
15 QGGM0036	Front Panel Assembly				
16 QMAM0167	Slider Guide				
17 QGGM0036	AC Power Switch Angle				
17 [M][MC] QMKM0015	Back Shassis				
17 [E] QMKM0027	Back Shassis				
17 [E][EK]	[XA][XL] QMKM0028	Back Shassis			
18 QGO2399	Power Button				
19 SBC715	Push Button				
20 [M][MC] RJA9YAK	AC Power Cord				
20 [E] RJA23YAK	AC Power Cord				
20 [X] RJA45YAK	AC Power Cord				
20 [XL] SJAG23	AC Power Cord				
21 [M][MC] QFC2133	Line IN/OUT Cord				
21 [E][EK]	[XA][XL] QFC2135B	Line IN/OUT Cord			
22 [E][EK]	[XL] QBJ1425A	Cord Bushing			
23 QML4123	Record/Playback Lever				
24 SUBM2	Record/Playback Wire				
25 QTD1295	Cord Bushing				
26 [E] SMCM6	Shield Plate				
27 QBN2007	Holder Spring				
28 SNE55-1	Earth Plate				
29 [EK]	[XA][XL] QJT1079	Terminal			
P 1 [XA] SPGM13	"Black Type"				
P 1 [XA] SPGM12	"Silver Type"				
P 1 [M] SPGM11					
P 1 [EK] SPGM10	"Black Type"				
P 1 [EK] SPGM9	"Silver Type"				
P 1 [E][XL] SPGM8	"Black Type"				
P 1 [E]	[MC][XL] SPGM7	"Silver Type"			
P 2 QPAM0066	Cushion. (L)				
P 3 QPAM0067	Cushion. (R)				
P 4 SPSM1	Pad				
P 5 XZB40X60A02	Poly Bag				
P 6 QPC0072	Poly Sheet				

SM SMC SE KE SEK KEK SXA KXA SXL KXL SEH KEH

Printed in Japan
850209200 (H) M.S.

MESSUNGEN UND EINSTELL METHODEN

RS-B33W DEUTSCH

Verwenden Sie bitte diese Broschüre Zusammen mit der Service-Anleitung für das Modell Nr. RS-B33W.

Anm.: Wenn nicht anders vorgeschrieben, Drehschalter und Steuereinrichtungen auf die folgenden Positionen stellen.

- Für saubere Köpfe sorgen.
- Für saubere Tonwelle und Andruckrolle sorgen.
- Auf normale Raumtemperatur achten: $20 \pm 5^\circ\text{C}$ ($68 \pm 9^\circ\text{F}$)
- Dolby-Schalter: AUS
- Bandgeschwindigkeits-Wahlschalter für die Überspielung: Normal/Hoch
- Eingangsregler: MAX
- Betriebsart-Wahlschalter: series play

A	Senkrechtstellen des Kopfes (BAND [1], BAND [2])	Bedingung: • Wiedergabe • Betriebsart: Normalband	Meßgerät: • Röhrenvoltmeter • Oszillograph • Testband (azimuth)...QZZCFM
----------	---	---	---

Ausgangsbalance-Justierung für linken und rechten Kanal

1. Den Meßaufbau zeigt Fig. 2.
2. 8kHz-Signal des Testbandes (QZZCFM) wiedergeben.
Schraube (B) in Fig. 3 auf maximalen Ausgangspegel des linken und rechten Kanals abgleichen.
Sind die Ausgangspegel des linken und rechten Kanals nicht gleichzeitig maximal, wie folgt justieren:
3. Durch Drehen der in Fig. 3 gezeigten Schraube (B) die Winkel A und C (Punkte, wo Spitzenausgangspegel für den linken und rechten Kanal erreicht werden) ermitteln. Anschließend den Winkel B zwischen dem Winkel A und C ermitteln, d.h. den Punkt, wo die Ausgangspegel des linken und rechten Kanals ausbalanciert (ausgeglichen) sind. (Siehe Fig. 3 und 4.)

Phasenjustierung für linken und rechten Kanal

4. Den Meßaufbau zeigt Fig. 5.
5. 8kHz-Signal des Testbandes (QZZCFM) wiedergeben.
Schraube (B), wie in Fig. 3 gezeigt, so einstellen, daß Zeiger von zwei Röhrenvoltmetern auf Maximum ausschlagen und am Oszillographen eine Wellenform wie in Fig. 6 erreicht wird.

B	Bandgeschwindigkeit (BAND [1], BAND [2])	Bedingung: • Wiedergabe	Meßgerät: • Elektronischer Digitalzähler • Testband...QZZCWAT
----------	---	----------------------------	---

Justierung der Hochgeschwindigkeit

Anmerkung: Die Hochgeschwindigkeits-Justierung ca. 10 Sekunden nach dem Start des Motors durchführen.

1. Anschlußverbindungen machen, wie in Fig. 7 gezeigt.
2. Den Überspiel-/Misch-Schalter auf "Off" stellen und den Bandgeschwindigkeits-Wahlschalter für die Überspielung auf "High" stellen. Die Register erden (R284).
3. Testband (QZZCWAT) mit BAND [1] wiedergeben und die Wiedergabesignal-Frequenz messen. Falls die Wiedergabesignal-Frequenz nicht mit dem Standardwert übereinstimmt, Regelwiderstand für Hochgeschwindigkeit für BAND [1]-Kopf justieren (Siehe Fig. 1).

Standardwert: BAND [1] (Wiedergabedeck: Normalgeschwindigkeit) $6020 \pm 20\text{ Hz}$

4. Testband (QZZCWAT) mit BAND [2]-Kopf wiedergeben und die Wiedergabesignal-Frequenz messen; dann den Regelwiderstand für die Hochgeschwindigkeits-Justierung für BAND [2]-Kopf so justieren, daß die Wiedergabesignal-Frequenz 30Hz niedriger ist, als die Ausgangssignal-Frequenz nach Justierung von BAND [1].
5. Nach Durchführen der Hochgeschwindigkeits-Justierung ist der Kurzschluß zwischen die Register erden (R284).

Justierung der Normalgeschwindigkeit

BAND [1]

1. Anschlußverbindungen vornehmen, wie in Fig. 7 gezeigt.
2. Den Bandgeschwindigkeits-Wahlschalter für die Überspielung auf "Normal" einstellen.

3. Testband (QZZCWAT) mit BAND [1]-Kopf wiedergeben und die Wiedergabesignal-Frequenz messen. Falls die Wiedergabesignal-Frequenz nicht mit dem Standardwert übereinstimmt, muß der Normalgeschwindigkeits-Regelwiderstand für den BAND [1]-Kopf justiert werden (Siehe Fig. 2).

Standardwert: BAND [1] (Wiedergabebedeck: Normalgeschwindigkeit) 3010 ± 10 Hz

BAND [2]

4. Testband (QZZCWAT) mit BAND [2]-Kopf wiedergeben und die Wiedergabesignal-Frequenz messen; dann den Normalgeschwindigkeits-Regelwiderstand für den BAND [2]-Kopf justieren, so daß die Wiedergabesignal-Frequenz 15Hz niedriger als die Ausgangssignal-Frequenz nach Justierung von BAND [1] ist.

Bandgeschwindigkeits-Schwankung

BAND [1], BAND [2]

Auf gleiche Weise wie oben Messungen durchführen (Anfang, Mitte, Ende des Bandes), den Unterschied zwischen den Höchst- und Niedrigstwerten ermitteln und auf folgende Weise berechnen:

$$\text{Bandgeschwindigkeits-Schwankung (Normalgeschwindigkeit)} = \frac{f_1 - f_2}{3000} \times 100(\%)$$

f_1 = Höchstwert; f_2 = Niedrigstwert

$$\text{Bandgeschwindigkeits-Schwankung (Hochgeschwindigkeit)} = \frac{f_1 - f_2}{6000} \times 100(\%)$$

f_1 = Höchstwert; f_2 = Niedrigstwert

Standardwert: Weniger als 0,15%

Anmerkung:

Für die Bandgeschwindigkeits-Justierung dieses Gerätes ist ein nichtmetallener Schraubendreher zu verwenden.

C Frequenzgang bei Wiedergabe (BAND [1], BAND [2])	Bedingung: • Wiedergabe • Betriebsart: Normalband	Meßgerät: • Röhrenvoltmeter • Oszillograph • Testband...QZZCFM
---	---	---

1. Den Meßaufbau zeigt Fig. 2.
2. Gerät auf Wiedergabe schalten. Frequenzgang-Testband QZZCFM wiedergeben.
3. Ausgangsspannung bei 315Hz, 12,5kHz, 8kHz, 1kHz, 250Hz, 125Hz und 63Hz messen und jede Ausgangsspannung mit der Standardfrequenz 315Hz an der LINE OUT vergleichen.
4. Messungen an beiden Kanälen durchführen.
5. Prüfen, ob die gemessenen Werte innerhalb des in der Frequenzgang-Übersicht aufgeführten Bereichs liegen. (Siehe Fig. 8.)

D Wiedergabe-Verstärkung (BAND [1], BAND [2])	Bedingung: • Wiedergabe • Betriebsart: Normalband	Meßgerät: • Röhrenvoltmeter • Oszillograph • Testband...QZZCFM
--	---	---

1. Den Meßaufbau zeigt Fig. 2.
2. Den Standard-Aufnahmepiegelteil auf der Testcassette (QZZCFM 315Hz) wiedergeben und die Ausgangsleistung mit dem elektronischen Voltmeter an den LINE OUT-Anschlüssen messen.
3. Messung an beiden Kanälen durchführen.

NORMALWERT: $0,4V \pm 0,03V$

Einstellung:

1. Abweichungen können durch Abgleich von BAND [1] VR1 (linker Kanal) und VR2 (rechter Kanal), BAND [2] VR3 (linker Kanal) und VR4 (rechter Kanal) korrigiert werden. (S. Fig. 1).
2. Nach erfolgtem Abgleich ist der Frequenzgang bei Wiedergabe erneut zu kontrollieren.

E Löschstrom (BAND [2])	Bedingung: • Aufnahme • Betriebsart: Metallband	Meßgerät: • Röhrenvoltmeter • Oszillograph
--------------------------------	---	--

1. Den Meßaufbau zeigt Fig. 9.
2. Die Aufnahme-und Pausentaste drücken.
3. Den Bandwahlschalter auf Metallband-Position stellen.

4. Löschstrom nach folgender Formel ermitteln:

$$\text{Löschenstrom (A)} = \frac{\text{Die Spannung über beide Enden von R300}}{1 \text{ (Ohm)}}$$

NORMALWERT: } 160 \pm 15 \text{ mA (Metal position) (} 160 \pm 15 \text{ mV)}

5. Falls der Meßwert nicht im vorgeschriebenen Bereich liegt, auf folgende Weise einstellen.

Einstellung:

1. Die Register R308, R309, R310 kurzschließen. (Siehe Tabelle 1)
2. Den Löschenstrom messen.
3. Falls der gemessene Wert nicht innerhalb des vorgeschriebenen Bereichs liegt, die Register R308, R309, R310 gemäß Tab. 1 öffnen oder kurzschließen.

F	Gesamtfrequenzgang (BAND [2])	Bedingung: <ul style="list-style-type: none">• Aufnahme und Wiedergabe• Betriebsart "Normalband"• Betriebsart "CrO₂ Band"• Betriebsart "Metallband"• Eingangsregler...MAX	Meßgerät: <ul style="list-style-type: none">• Röhrenvoltmeter• NF-Generator• Abschwächer• Oszillograph• Testband (Leerband)QZZCRA für Normal....QZZCRX für CrO₂....QZZCRZ für Metall• Widerstand (600Ω)
---	----------------------------------	---	---

Anm.:

Vor Messung und Abgleich des Gesamtfrequenzganges ist sicherzustellen, daß der Frequenzgang bei Wiedergabe korrekt ist (Vgl. entspr. Abschnitt).

Gesamtfrequenzgang-Justierung durch Aufnahme-Vomagnetisierungsstrom

(Der Aufnahme-Entzerrer ist fest eingestellt.)

1. Den Meßaufbau zeigt Fig. 11.
2. Gerät auf Betriebsart "Normalband" schalten, und Testband (QZZCRA) einlegen.
3. An LINE IN ein Signal von 1kHz, -24dB zuführen. Das Gerät auf Aufnahme schalten.
4. Den Dämpfungswiderstand feineinstellen, bis die Ausgangsleistung an LINE OUT 0,4V beträgt.
• Überprüfen, daß der Signalausgangspegel bei einer Ausgangs-Spannung von 0,4V -24±4dB beträgt.
5. Mit dem NF-Oszillator Signale von 50Hz, 100Hz, 200Hz, 500Hz, 1kHz, 4kHz, 8kHz, 10kHz und 12,5kHz zuführen, und diese Signale auf das Testband aufzeichnen.
6. Die in Schritt 5 aufgezeichneten Signale wiedergeben und überprüfen, ob die Frequenzgangkurve innerhalb des Bereichs liegt, der im Frequenzgangdiagramm für normales Band in Fig. 10 gezeigt ist. (Falls die Kurve innerhalb des vorgeschriebenen Bereichs liegt, mit den Schritten 7, 8 und 9 weiterfahren.)
Falls die Kurve außerhalb des vorgeschriebenen Bereichs liegt, wie folgt justieren.

Justierung (A):

Wenn die Kurve den vorgeschriebenen Gesamtfrequenzgangbereich (Fig. 10) überschreitet, wie in Fig. 12 gezeigt.

- 1) Den Vomagnetisierungsstrom durch Abgleichen von VR301 (linker Kanal) und VR302 (rechter Kanal) erhöhen. (S. Fig. 1.)
- 2) Die Schritte 5 und 6 zur Überprüfung wiederholen. (Wenn die Kurve dabei innerhalb des vorgeschriebenen Bereichs liegt (Fig. 10) mit den Schritten 7, 8, und 9 weiterfahren.)
- 3) Wenn die Kurve den vorgeschriebenen Bereich (Fig. 10) noch immer überschreitet, den Vormagnetisierungsstrom weiter erhöhen, und die Schritte 5 und 6 wiederholen.

Justierung (B):

Wenn die Kurve unter den vorgeschriebenen Bereich für den Gesamtfrequenzgang (Fig. 10) absinkt, wie in Fig. 13 gezeigt:

- 1) Den Vormagnetisierungsstrom durch abgleichen von VR301 (linker Kanal) und VR302 (rechter Kanal) reduzieren.
- 2) Die Schritte 5 und 6 zur Überprüfung wiederholen. (Falls die Kurve dabei innerhalb des vorgeschriebenen Bereichs in Fig. 10 liegt, mit den Schritten 7, 8, und 9 weiterfahren.)
- 3) Falls die Kurve noch immer unter den vorgeschriebenen Bereich (Fig. 10) absinkt, den Vormagnetisierungsstrom weiter reduzieren, und Schritte 5 und 6 wiederholen.
7. Gerät auf Betriebsart "CrO₂ Band" schalten.
8. Testband QZZCRX einlegen, und Signale von 50Hz, 100Hz, 200Hz, 500Hz, 1kHz, 4kHz, 8kHz, 10kHz, 12,5kHz und 15kHz aufzeichnen; anschließend die Signale wiedergeben und prüfen, ob die Kurve innerhalb des Bereichs liegt, der im Gesamtfrequenzgang-Diagramm für das CrO₂ Band dargestellt ist. (Fig. 14.)

9. Gerät auf Betriebsart "Metallband" schalten. Testband QZZCRZ einlegen und Signale von 50Hz, 100Hz, 200Hz, 500Hz, 1kHz, 4kHz, 8kHz, 10kHz und 12,5kHz aufnehmen. Anschließend die Signale wiedergeben und prüfen, ob die Kurve innerhalb des Bereichs im Gesamtfrequenzgangdiagramm für Metallband liegt. (Fig. 14.)

10. Überprüfen, daß die Vorspannung ungefähr den folgenden Werten entsprechen, wenn der Bandsortenschalter in die entsprechende Position gestellt ist.

- Spannung zwischen Masse und Testpunkt (TP1 für linken Kanal, TP2 für rechten Kanal) vom Röhrenvoltmeter ablesen und Vormagnetisierungsstrom nach folgender Formel berechnen:

$$\text{Vormagnetisierungsstrom (A)} = \frac{\text{Spannung am Röhrenvoltmeter (V)}}{10 (\Omega)}$$

Ungefähr 190µA (Normal position)
Ungefähr 250µA (CrO₂ position)
Ungefähr 380µA (Metall position)

G Gesamtverstärkung (BAND [2])

Bedingung:

- Aufnahme und Wiedergabe
- Betriebsart: Normalband
- Eingangsregler: MAX
- Standard-Eingangspegel:
Mikrofon -60±4dB
NF-Eingang -24±4dB

Meßgerät:

- Röhrenvoltmeter
- NF-Generator
- Abschwächer
- Oszillograph
- Widerstand (600Ω)
- Testband (Leerband)

...QZZCRA für Normal

1. Den Meßaufbau zeigt Fig. 15.

2. Normales Testleerband (QZZCRA) einlegen.

3. Gerät auf "Aufnahme" schalten.

4. Über den Abschwächer ein 1kHz-Signal (-24dB) vom NF-Generator dem NF-Eingang zuführen.

5. ATT justieren, bis der Monitorpegel an den LINE OUT-Anschlüssen 0,4V beträgt.

6. Eine bespielte Cassette wiedergeben und überprüfen, ob der Ausgangspegel an den LINE OUT-Anschlüssen 0,4V beträgt.

7. Wenn der gemessene Wert nicht 0,4V erreicht, die folgenden VR abgleichen: VR201 (L-CH) oder VR202 (R-CH).

8. Ab Punkt 2 wiederholen.

H Fluoreszenzmeter (BAND [2])

Bedingung:

- Aufnahme
- Eingangsregler...MAX

Meßgerät:

- Röhrenvoltmeter
- NF-Generator
- Abschwächer
- Oszillograph
- Widerstand (600Ω)

1. Den Meßaufbau zeigt Fig. 16.

2. In Betriebsart "Aufnahme-Pause" 1kHz (-24dB) Signal an den NF-Eingang geben.

3. Abschwächer so abstimmen, daß der Ausgangspegel an LINE OUT 0,4V ist.

4. Zu diesem Zeitpunkt überprüfen, ob die 0dB-Anzeige halbwegs beleuchtet ist. (mittelhell, zwischen ganz hell und erlöscht: Siehe Fig. 17.)

5. Wenn der Anzeiger nicht, wie in Stufe 4 beschrieben, abgeschwächt leuchtet, VR401 (Linker Kanal) und VR402 (Rechter Kanal) abstimmen.

6. Justierungen und Überprüfungen in den Schritten 3, 4 und 5 zwei-bis dreimal wiederholen.

I Dolby-Schaltung

Bedingung:

- Aufnahme
- Dolby-Schalter
...IN/OUT (AN/AUS)
- Dolby-Wahlschalter
...B/C
- Eingangsregler...MAX.
- Abgleichkontrolle:
Mitte (Zentrum)

Meßgerät:

- Röhrenvoltmeter
- NF-Generator
- Abschwächer
- Oszillograph
- Widerstand (600Ω)

Aufnahmeseite

- Überprüfung der Dolby-B-Typ Verschlüsselungsmerkmale.

1. Den Meßaufbau zeigt Fig. 18.

2. Gerät auf "Aufnahme" stellen. (Dolby-Wahlschalter ist OUT (AUS).)

3. Dem NF-Eingang ein 1kHz-Signal zuführen.

4. Abschwächer so abstimmen, daß die Ausgangsspannung an Nadel 7 von IC103 (L-K) und IC104 (R-K) 12,3mV beträgt.

5. Die Ausgangsspannung an Nadel 21 sollte 0dB betragen.

6. Den Dolby-Wahlschalter auf B stellen. Sicherstellen, daß das Ausgangssignalpegel an Nadel 21 von IC103 (L-K) und IC104 (R-K) + 6dB±2,5dB beträgt.
7. Dolby-Wahlschalter ausschalten und die Frequenz auf 5kHz abstimmen. Das Ausgangssignal an Nadel 21 sollte 0dB betragen.
8. Dolby-Wahlschalter auf B stellen und sicherstellen, daß das Ausgangssignalpegel an Nadel 21 von IC103 (L-K) und IC104 (R-K) + 8dB±2,5dB beträgt.

- Überprüfung der Dolby-C-Typ Verschlüsselungsmerkmale

9. Obige Stufen 1 bis 5 wiederholen.
10. Dolby-Wahlschalter auf C stellen und sicherstellen, daß das Ausgangssignalpegel an Nadel 21 von IC103 (L-K) und IC104 (R-K) + 11,5dB±2,5dB beträgt.
11. Dolby-Wahlschalter ausschalten und die Frequenz auf 5kHz abstimmen. Die Ausgangsspannung an Nadel 21 sollte 0dB sein.
12. Dolby-Wahlschalter auf C stellen und sicherstellen, daß das Ausgangssignalpegel an Nadel 21 von IC103 (L-K) und IC104 (R-K) + 8,5dB±2,5dB beträgt.

J	Einsatz Ausgleichszeit-Justierung (dbx Schaltung)	Bedingung: • Betriebsart Aufnahme Eingangspiegelregler...MAX • Abgleichkontrolle ...Mitte (Zentrum)	Meßgeräte: • Röhrenvoltmeter • Dämpfungsglied • AF-Oszillator • Gleichstromvoltameter • Gerauschverminderungsschalter...dbx Band
----------	--	---	---

1. Führen Sie die in Fig. 19 gezeigten Anschlüsse durch und geben Sie ein 1kHz –27dB Signal vom LINE IN ein und stellen Sie den Lärmreduktionswähler in die Position dbx.
2. Versetzen Sie das Gerät in die Betriebsart Aufnahme und stellen Sie das Dämpfungsglied so ein, daß der Signalpegel beim C189 (linker kanal) und beim C190 (rechter kanal) 300mV ist.
3. Voltzahl auf DC Voltmeter ablesen.

Bezugswert: 15±1mV

4. Weicht der Meßwert vom Bezugswert ab, VR101 abgleichen (Siehe Fig. 1).

METHODES DES MEASURES ET REGLAGES

RS-B33W FRANCAIS

Ceci est à utiliser conjointement avec le manuel d'entretien du modèle No. RS-B33W.

REMARQUES: Placer les interrupteurs et les contrôles dans les positions suivantes, sauf indication contraire.

- Vérifier que les têtes soient propres.
- Vérifier que le cabestan et le galet presseur soient propres.
- Température ambiante admissible: 20±5°C
- Interrupteur de réduction de bruit: OUT
- Commutateur de vitesse de copie de bande à bande: Normal/Elevé.
- Contrôles de niveau d'entrée: Maximum
- Commutateur de mode: Audition en série.

A	Réglage de l'azimut de tête (BANDE [1], BANDE [2])	Condition: • Mode de lecture • Mode de bande normale	Equipement: • Voltmètre électronique • Oscilloscope • Bande étalon (azimut) ...QZZCFM
----------	---	--	---

Réglage de l'équilibre de la sortie au canal gauche/canal droit

1. Brancher les appareils comme indiqué dans la Fig. 2.
2. Reproduire le signal de 8kHz de la bande étalon (QZZCFM). Régler la vis (B) dans la Fig. 3 pour obtenir les niveaux de sortie maximum pour les canaux gauche et droit. Lorsque les niveaux de sortie des canaux gauche et droit ne sont pas simultanément à leur maximum, les régler à nouveau de la façon suivante.

3. Faire tourner la vis indiquée dans la Fig. 3 pour trouver les angles A et C (point où les niveaux de sortie de crête pour les canaux gauche et droit sont obtenus respectivement). Situer alors l'angle B entre les angles A et C, autrement dit, en un point où les niveaux de sortie des canaux gauche et droit atteignent tous deux leur maximum. (Voir les Fig. 3 et 4).

Réglage de phase canal gauche/canal droit

4. Brancher les appareils comme indiqué dans la Fig. 5.
 5. Reproduire le signal de 8kHz de la bande étalon (QZZCFM).

Régler la vis (B) indiquée dans la Fig. 3 de sorte que les aiguilles des deux voltmètres électroniques oscillent au maximum, et qu'on obtienne sur l'oscilloscope une forme d'onde semblable à celle indiquée dans la Fig. 6.

B Vitesse de défilement (BANDE [1], BANDE [2])	Condition: • Mode de lecture	Equipement: • Fréquencemètre numérique • Bande étalon... QZZCWAT
---	---------------------------------	--

Réglage pour vitesse élevée

Nota: Effectuer le réglage pour vitesse élevée à peu près 10 secondes après le démarrage de la rotation du moteur.

- Effectuer les raccordements comme ils sont montrés à la Fig. 7.
- Régler le commutateur de copie de bande à bande/mixage sur "off" (hors circuit), et régler le commutateur de vitesse de copie de bande à bande sur "high" (élevé). Relier à la terre les résistances (R284).
- Faire jouer la bande d'essai (QZZCWAT) avec la BANDE [1] et mesurer la fréquence du signal de lecture. Si la fréquence du signal de lecture n'est pas conforme à la valeur standard, ajuster le régulateur de tension du réglage de vitesse élevée pour la tête de lecture de la BANDE [1]. (Voir la Fig. 1)

Valeur standard: BANDE [1] (Platine de lecture: Vitesse normale) 6020 ± 20 Hz

- Faire jouer la bande d'essai (QZZCWAT) avec la tête de lecture de la BANDE [2] et mesurer la fréquence du signal de lecture. Puis, ajuster le régulateur de tension du réglage de vitesse élevée pour la tête de lecture de la BANDE [2] de telle sorte que la fréquence du signal de lecture soit de 30Hz inférieure à la fréquence du signal de sortie après l'ajustement de la BANDE [1].
- après le réglage pour vitesse élevée, supprimer le relier à la terre les résistances (R284).

Réglage d'une vitesse normale

BANDE [1]

- Effectuer les raccordements comme ils sont montrés à la Fig. 7.
- Régler le commutateur de vitesse de copie de bande à bande sur "normal".
- Faire jouer la bande d'essai (QZZCWAT) avec la tête de lecture de la BANDE [1], et mesurer la fréquence du signal de lecture. Si la fréquence du signal de lecture n'est pas conforme à la valeur standard, ajuster le régulateur de tension du réglage de vitesse normale pour la tête de lecture de la BANDE [1]. (Voir la Fig. 1)

Valeur standard: BANDE [1] (Platine de lecture: Vitesse normale) 3010 ± 10 Hz

BANDE [2]

- Faire jouer la bande d'essai (QZZCWAT) avec la tête de lecture de la BANDE [2] et mesurer la fréquence du signal de lecture. Puis, ajuster le régulateur de tension du réglage de vitesse normale pour la tête de lecture de la BANDE [2] de telle sorte que la fréquence du signal de lecture soit de 15Hz inférieure à la fréquence du signal de sortie après l'ajustement de la BANDE [1].

Variation de la vitesse de la bande

BANDE [1], BANDE [2]

Effectuer les mesurages de la même manière que ci-dessus (au début, au milieu et à la fin de la bande), et déterminer la différence entre les valeurs maximum et minimum. Puis, calculer de la manière suivante:

$$\text{Variation de la vitesse de la bande (Vitesse normale)} = \frac{f_1 - f_2}{3.000} \times 100(\%)$$

f_1 = valeur maximum, f_2 = valeur minimum

$$\text{Variation de la vitesse de la bande (Vitesse élevée)} = \frac{f_1 - f_2}{6.000} \times 100(\%)$$

f_1 = valeur maximum, f_2 = valeur minimum

Valeur standard: Moins que 0,15%

Nota:

Veuillez utiliser un tournevis de type non métallique lorsque vous réglez la vitesse de bande de cet appareil.

C Réponse en fréquence à la lecture (BANDE [1], BANDE [2])	Condition: • Mode de lecture • Mode de bande normale	Equipement: • Voltmètre électronique • Oscilloscope • Bande étalon ...QZZCFM
1. Brancher les appareils comme indiqué dans la Fig. 2. 2. Lire la portion de réponse en fréquence de la bande étalon (QZZCFM). 3. Mesurer les niveaux de sortie à 315Hz, 12,5kHz, 8kHz, 4kHz, 1kHz, 250Hz, 125Hz, et 63Hz et comparer chaque niveau de sortie avec celui de la fréquence standard de 315Hz sur la borne LINE OUT. 4. Effectuer les mesures sur les deux canaux. 5. Vérifier que les valeurs mesurées se situent dans la bande spécifiée de la courbe de réponse en fréquence. (Voir Fig. 8).		
D Gain à la lecture (BANDE [1], BANDE [2])	Condition: • Mode de lecture • Mode de bande normale	Equipement: • Voltmètre électronique • Oscilloscope • Bande étalon...QZZCFM
1. Brancher les appareils comme indiqué dans la Fig. 2. 2. Faire jouer la portion du niveau d'enregistrement standard sur la bande d'essai (QZZCFM 315Hz) et en utilisant un voltmètre électronique, mesurer le niveau de sortie aux sorties de lignes. 3. Effectuer les mesures sur les deux canaux.		
Valeur standard: 0,4V±0,03V		
Réglage		
1. Si la valeur mesurée ne correspond pas à la valeur standard, régler BANDE [1] VR1 (canal gauche) ou VR2 (canal droit), BANDE [2] VR3 (canal gauche) ou VR4 (canal droit). (Voir Fig. 1). 2. Après réglage, vérifier à nouveau la "réponse en fréquence à la lecture".		
E Courant d'effacement (BANDE [2])	Condition: • Mode d'enregistrement • Mode de bande métallique	Equipement: • Voltmètre électronique • Oscilloscope
1. Brancher les appareils comme indiqué dans la Fig. 9. 2. Placer l'UNITE sur le mode de bande métallique. 3. Appuyer sur les boutons d'enregistrement et de pause. 4. Lire le voltage sur le voltmètre électronique et calculer le courant d'effacement au moyen de la formule suivante:		
Courant d'effacement (A) = $\frac{\text{Voltage à la résistance R300}}{1 (\Omega)}$		
Valeur standard: 160±15mA (bande métallique) (160±15mV)		
5. Si la valeur mesurée ne correspond pas à la valeur standard, régler selon les instructions ci-après.		
Réglage		
1. Court-circuiter les résistances R308, R309, R310. (Se référer à la Table 1.) 2. Mesurer le courant d'effacement. 3. Si la valeur mesurée n'est pas en deçà du régime, mettre hors circuit ou court-circuiter les résistances R308, R309 et R310 selon la Table 1.		
F Réponse de fréquence globale (BANDE [2])	Condition: • Mode enregistrement/lecture • Mode de bande normale • Mode de bande CrO ₂ • Mode de bande métallique • Contrôles de niveau d'entrée...MAX	Equipement: • Voltmètre électronique • Atténuateur • Oscillateur • Oscilloscope • Résistance (600Ω) • Bande étalon vierge ...QZZCRA pour bande normale ...QZZCRX pour bande CrO ₂ ...QZZCRZ pour bande métallique
Remarque: Avant de mesurer et régler la réponse de fréquence globale vérifier que la réponse en fréquence à la lecture soit correcte (pour la méthode de mesure, se reporter au paragraphe intitulé "Réponse en fréquence à la lecture"). (Le compensateur d'enregistrement est fixe.)		

1. Brancher les appareils comme indiqué dans la Fig. 11.
2. Placer l'UNITE en mode pour bande normale, et introduire la bande étalon vierge normale (QZZCRA).
3. Appliquer le signal de 1kHz de l'oscillateur AF à la borne LINE IN, par l'intermédiaire de l'atténuateur.
4. Régler l'atténuateur de sorte que le niveau d'entrée soit de 20dB en-dessous du niveau d'enregistrement standard (niveau d'enregistrement standard = 0VU).
5. Régler l'oscillateur AF pour produire des signaux de 50Hz, 100Hz, 200Hz, 500Hz, 1kHz, 4kHz, 8kHz, 10kHz et 12,5kHz et enregistrer ces signaux sur la bande étalon.
6. Reproduire les signaux enregistrés dans la phase 6, et vérifier si la courbe de réponse de fréquence se trouve dans les limites indiquées par la courbe de réponse de fréquence globale pour bandes normales (Fig. 10).

(Si la courbe est comprise dans les spécifications, passer aux phases 7, 8 et 9).
Si la courbe ne correspond pas aux spécifications du tableau, régler comme suit.

Réglage (A):

Lorsque la courbe dépasse les spécifications du tableau de réponse de fréquence globale (Fig. 10), comme indiqué dans la Fig. 12.

- 1) Augmenter le courant de polarisation en tournant VR301 (L-CH) (canal gauche) et VR302 (R-CH) (canal droit). (Voir Fig. 1).
- 2) Répéter les phases 5 et 6 pour confirmation. (Passer aux phases 7, 8 et 9 si la courbe est maintenant comprise dans les spécifications du tableau de la Fig. 10).
- 3) Si la courbe dépasse encore les spécifications (Fig. 10), augmenter encore le courant de polarisation et répéter les phases 5 et 6.

Réglage (B):

Lorsque la courbe tombe audessous des spécifications du tableau de fréquence globale (Fig. 10) comme indiqué dans la Fig. 13.

- 1) Réduire le courant de polarisation en tournant VR301 (L-CH) (canal gauche) et VR302 (R-CH) (canal droit).
- 2) Répéter les phases 5 et 6 pour confirmation. (Passer aux phases 7, 8 et 9 si la courbe est maintenant comprise dans les spécifications du tableau de la Fig. 10).
- 3) Si la courbe tombe encore au-dessous des spécifications du tableau (Fig. 10), réduire encore le courant de polarisation et répéter les phases 5 et 6.
7. Placer l'UNITE en mode de bande CrO₂.
8. Enlever la bande étalon vierge normale et placer la bande étalon QZZCRX (bande CrO₂). Enregistrer les signaux de 50Hz, 100Hz, 200Hz, 500Hz, 1kHz, 4kHz, 8kHz, 10kHz, 12,5kHz et 15kHz. Reproduire ensuite ces signaux et vérifier si la courbe est comprise dans les limites indiquées par le tableau de réponse de fréquence globale pour les bandes CrO₂ (Fig. 14).
9. Placer l'UNITE en mode de bande métallique, changer la bande étalon pour la bande étalon vierge QZZCRZ (bande métallique), et enregistrer les signaux de 50Hz, 100Hz, 200Hz, 500Hz, 1kHz, 4kHz, 8kHz, 10kHz et 12,5kHz. Ensuite, lire les signaux et vérifier si la courbe se trouve entre les limites indiquées dans le tableau de réponse en fréquence globale pour les rubans CrO₂ (Fig. 14.).
10. Confirmer que les voltage de polarisation sont approximativement les suivants lorsque le sélecteur de bande est mis sur ses différentes positions.
• Lire le voltage sur le voltmètre électronique entre la terre et le point de coupure (TP1 pour le canal gauche et TP2 pour le canal droit) et calculez le courant de polarisation selon la formule.

Tension lue sur voltm. élec. (V)

$$\text{Courant de polarisation (A)} = \frac{\text{Tension lue sur voltm. élec. (V)}}{10 (\Omega)}$$

Autour de 190µA (position: Normal)

Valeur standard: Autour de 250µA (position: CrO₂)
Autour de 380µA (position: Metal)

⑥ Gain global (BANDE [2])

Condition:

- Mode d'enregistrement/lecture
- Mode de bande normale
- Contrôles de niveau d'entrée
...MAX
- Niveau d'entrée standard:
MIC -60±4dB
LINE IN -24±4dB

Equipement:

- Voltmètre électronique
- Oscillateur AF
- Atténuateur
- Oscilloscope
- Résistance (600Ω)
- Bande étalon vierge QZZCRA pour bande normale

1. Brancher les appareils comme indiqué dans la Fig. 15.
2. Introduire la bande étalon vierge (QZZCRA).
3. Placer l'UNITE en mode d'enregistrement.
4. Appliquer le signal de 1kHz de l'oscillateur AF à la borne LINE IN, par l'intermédiaire de l'atténuateur (-24dB).
5. Régler ATT jusqu'à ce que le niveau du moniteur aux sorties de lignes soit de 0,4V.
6. Faire jouer la bande enregistrée et s'assurer que le niveau de sortie aux sorties de lignes soit de 0,4V.
7. Si la valeur mesurée n'est pas de 0,4V, régler au moyen de VR201 (canal gauche) ou VR202 (canal droit).
8. Recommencer à partir de la phase (2).

H Vumètre de niveau (BANDE [2])	<p>Condition:</p> <ul style="list-style-type: none"> • Mode d'enregistrement • Contrôles de niveau d'entrée ...MAX 	<p>Equipement:</p> <ul style="list-style-type: none"> • Voltmètre électronique • Atténuateur • Oscillateur AF • Oscilloscope • Résistance (600Ω)
<p>1. Brancher les appareils comme indiqué dans la Fig. 16.</p> <p>2. Appliquer un signal de 1kHz (-24dB) à la borne LINE IN, alors que l'unité est en mode de pause d'enregistrement.</p> <p>3. Régler l'atténuateur de sorte que le niveau de sortie sur la borne LINE OUT soit de 0,4V.</p> <p>4. A ce moment, vérifier si l'indicateur de 0dB est éclairé à mi-parcours. (luminosité intermédiaire entre pleine luminosité et extinction: Voir Fig. 17.)</p> <p>5. Si la luminosité du segment n'est pas comme celle mentionnée à la phase 4 ci-dessus, régler le VR401 (canal gauche) ou VR402 (canal droit).</p> <p>6. Répéter les réglages et vérifier deux ou trois fois aux étapes 3, 4 et 5.</p>		
I Circuit de réduction de bruit Dolby	<p>Condition:</p> <ul style="list-style-type: none"> • Mode d'enregistrement • Interrupteur de réduction de bruit Dolby...IN/OUT • Interrupteur de sélection du système de réduction de bruit Dolby...B/C • Contrôles de niveau d'entrée...MAX • Contrôle de l'équilibre ...Centre 	<p>Equipement:</p> <ul style="list-style-type: none"> • Voltmètre électronique • Oscillateur AF • Atténuateur • Oscilloscope • Résistance (600Ω)
<p>Côté enregistrement</p> <ul style="list-style-type: none"> • Vérification des caractéristiques du codeur de type Dolby-B 1. Brancher les appareils comme indiqué dans la Fig. 18. 2. Placer l'unité sur le mode d'enregistrement. (L'interrupteur de sélection du système de réduction de bruit est sur la position OUT). 3. Appliquer un signal de 1kHz à la borne LINE IN. 4. Régler l'atténuateur de sorte que le niveau de sortie à la pointe 7 des circuits intégrés IC103 (canal gauche) et IC104 (canal droit) soit de 12,3mV. 5. Le niveau de sortie à la pointe 21 devrait être de 0dB. 6. Placer l'interrupteur de sélection du système de réduction de bruit sur B et s'assurer que le niveau du signal de sortie à la pointe 21 des circuits intégrés IC103 (canal gauche) et IC104 (canal droit) est de + 6dB±2,5dB. 7. Placer l'interrupteur de sélection du système de réduction de bruit sur la position OUT et régler la fréquence sur 5kHz. Le niveau du signal de sortie à la pointe 21 devrait être de 0dB. 8. Placer l'interrupteur de sélection du système de réduction de bruit sur la position B et s'assurer que le niveau du signal de sortie à la pointe 21 des circuits intégrés IC103 (canal gauche) et IC104 (canal droit) soit de + 8dB±2,5dB. • Vérification des caractéristiques du codeur de type Dolby-C 9. Répéter les phases 1 à 5 ci-dessus. 10. Placer l'interrupteur de sélection du système de réduction de bruit Dolby sur la position C et s'assurer que le niveau de signal de sortie à la pointe 21 des circuits intégrés IC103 (canal gauche) et IC104 (canal droit) soit de + 11,5dB±2,5dB. 11. Placer l'interrupteur de sélection du système de réduction de bruit sur la position OUT et régler la fréquence sur 5kHz. Le niveau du signal de sortie à la pointe 21 devrait être de 0dB. 12. Placer l'interrupteur de sélection du système de réduction de bruit sur la position C et s'assurer que le niveau du signal de sortie à la pointe 21 des circuits intégrés IC103 (canal gauche) et IC104 (canal droit) soit de + 8,5dB±2,5dB. 		

① Réglage du temps de recouvrement à l'attaque (circuit dbx)	Condition: • Mode d'enregistrement • Contrôles de niveau d'entrée...MAX • Contrôle de l'équilibre ...Centre	Equipement: • Voltmètre électronique • Atténuateur • Oscillateur AF • Voltmètre CC • Sélecteur de réduction de bruit...position de bande dbx ("dbx tape")
1. Faire les branchements comme indiqué dans la Fig. 19 et appliquer un signal de 1kHz -27dB à la borne LINE IN. Placer le sélecteur de réduction de bruit sur la position de bande dbx ("dbx tape").		
2. Placer l'unité sur le mode d'enregistrement. Régler l'atténuateur de sorte que le niveau de signal à C189 (canal gauche) et à C190 (canal droit) soit de 300mV. 3. Lire la tension indiquée sur le voltmètre CC.		
Valeur de référence: 15±1mV		
4. Si la valeur lire ne correspond pas à la valeur de référence, régler VR101 (Voir Fig. 1).		

METODOS DE AJUSTE Y MEDIDA

RS-B33W ESPAÑOL

Sírvase utilizarse junto con manual de servicio para el modelo No. RS-B33W.

NOTAS: Colocar los interruptores y controles en las posiciones siguientes a no ser que se especifique lo contrario:

- Asegurarse de que las cabezas estén limpias.
- Asegurarse de que los cabrestantes y los rodillos presores estén limpios.
- Temperatura ambiente aconsejable: $20\pm5^{\circ}\text{C}$ ($68\pm9^{\circ}\text{F}$)
- Interruptor NR: OUT
- Interruptor de velocidad de cinta de regrabación: Normal/Alto
- Controles del nivel de entrada: Máximo
- Interruptor de modalidad: Reproducción en serie

A Ajuste de azimut de las cabezas (CINTA [1], CINTA [2])	Condición: • Modo de reproducción • Modo de cinta normal	Equipo: • EVM • Osciloscopio • Cinta de prueba (azimut) ...QZZCFM
Ajuste del equilibrio de salida L-CH/R-CH (canal izquierdo/canal derecho)		
1. Efectuar las conexiones como muestra la Fig. 2. 2. Reproducir la señal de 8kHz desde la cinta de prueba (QZZCFM). Ajustar el tornillo (B) en Fig. 3 para obtener niveles L-CH y R-CH de salida máxima. Cuando los niveles de salida de L-CH y R-CH no están al máximo, al mismo tiempo, reajustar de la siguiente forma: 3. Girar el tornillo mostrado en Fig. 3 para buscar los ángulos A y C (puntos donde los niveles de salida de cresta se obtienen para los canales derecho y izquierdo). Luego, localizar el ángulo B entre los ángulos A y C, por ej., el punto donde los niveles de salida de R-CH y L-CH estén equilibrados. (Consultar Fig. 3 y 4.)		
Ajuste de fase de L-CH/R-CH		
4. Efectuar las conexiones como muestra la Fig. 5. 5. Reproducir la señal de 8kHz desde la cinta de prueba (QZZCFM). Ajustar el tornillo. (B) de la Fig. 3 de forma que las agujas indicadoras de los dos EVM giren hacia el máximo y se obtenga una forma de onda como la indicada en la Fig. 6 sobre el osciloscopio.		

B Velocidad de la cinta (CINTA [1], CINTA [2])	Condición: • Modo de reproducción	Equipo: • Contador digital electrónico • Cinta de prueba...QZZCWAT
---	--------------------------------------	--

Ajuste de velocidad alta

Nota: Efectuar el ajuste de velocidad alta unos 10 segundos después del arranque de rotación de motor.

1. Hacer conexiones como mostrado en la Fig. 7.
2. Poner el interruptor de regrabación/mezcla en desconectado y el de velocidad de regrabación en alto. Poner a tierra el registro (R284).
3. Tocar la cinta de prueba (QZZCWAT) con la CINTA [1] y medir la frecuencia de señal de reproducción. Si la frecuencia de señal de reproducción no se conforma con el valor estandar, regular el ajuste de velocidad alta VR para la cabeza de CINTA [1] (Ver la Fig. 1).

Valor estandar: CINTA [1] (Platina de reproducción: Velocidad normal) 6020±20 Hz

4. Tocar la cinta de prueba (QZZCWAT) con la cabeza de CINTA [2] y medir la frecuencia de señal de reproducción y, luego, regular el ajuste de velocidad alta VR para la cabeza de CINTA [2] de manera que la frecuencia de señal de reproducción sea 30Hz inferior a la frecuencia de señal de salida después del ajuste de CINTA [1].
5. Después del ajuste de velocidad alta, remover el poner a tierra el registro (R284).

Ajuste de velocidad normal

CINTA [1]

1. Hacer conexiones como mostrado en la Fig. 7.
2. Ajustar el interruptor de velocidad de regrabación a normal.
3. Tocar la cinta de prueba (QZZCWAT) con la cabeza de CINTA [1] y medir la frecuencia de señal de reproducción. Si la frecuencia de señal de reproducción no se conforma al valor estandar, regular el ajuste de velocidad normal VR para la cabeza de CINTA [1] (Ver la Fig. 1).

Valor estandar: CINTA [1] (Platina de reproducción: Velocidad normal) 3010±10 Hz

CINTA [2]

4. Tocar la cinta de prueba (QZZCWAT) con la cabeza de CINTA [2] y medir la frecuencia de señal de reproducción y, luego, regular el ajuste de velocidad normal VR para la cabeza de CINTA [2] de manera que la frecuencia de señal de reproducción sea 15Hz inferior a la frecuencia de señal de salida de CINTA [1].

Fluctuación de velocidad de cinta

CINTA [1], CINTA [2]

Hacer mediciones de la misma manera que arriba (comienzo, medio y final de cinta), y determinar la diferencia entre valores máximos y mínimos y calcular como sigue:

$$\text{Fluctuación de velocidad de cinta (velocidad normal)} = \frac{f_1 - f_2}{3.000} \times 100(\%)$$

f_1 = valor máximo, f_2 = valor mínimo

$$\text{Fluctuación de velocidad de cinta (velocidad alta)} = \frac{f_1 - f_2}{6.000} \times 100(\%)$$

f_1 = valor máximo, f_2 = valor mínimo

Valor estandar: Menos de 0,15%

Nota:

Por favor, usar destornillador de tipo no metálico al ajustar la velocidad de cinta en esta unidad.

C Respuesta de frecuencia de reproducción (CINTA [1], CINTA [2])	Condición: • Modo de reproducción • Modo de cinta normal	Equipo: • EVM • Osciloscopio • Cinta de prueba...QZZCFM
---	--	--

1. La conexión del equipo de prueba se muestra en la Fig. 2.
2. Reproducir la cinta de prueba de respuesta de frecuencia (QZZCFM).
3. Medir el nivel de salida en 315Hz, 12,5kHz, 8kHz, 4kHz, 1kHz, 250Hz, 125Hz y 63Hz y comparar cada nivel de salida con 315Hz de frecuencia normal, en LINE OUT.
4. Efectuar las medidas para ambos canales.
5. Asegurarse de que el valor medido está comprendido dentro de la gama especificada en el gráfico de la respuesta de frecuencia (mostrado en la Fig. 8).

D Ganancia de reproducción (CINTA [1], CINTA [2])	Condición: • Modo de reproducción • Modo de cinta normal	Equipo: • EVM • Osciloscopio • Cinta de prueba...QZZCFM
--	--	--

1. La conexión del equipo de prueba se muestra en la Fig. 2.
2. Reproducir la porción de nivel de grabación estandard en la cinta de prueba (QZZCFM 315Hz) y, usando EVM, medir el nivel de salida en "LINE OUTs" (salidas de línea).
3. Efectuar las medidas para ambos canales.

Valor normal: $0,4V \pm 0,03V$

Ajuste

1. Si el valor medido no está comprendido dentro del valor normal, ajustar CINTA [1] [VR1 (L-CH), VR2 (R-CH)], CINTA [2] [VR3 (L-CH), VR4 (R-CH)] (Ver la Fig. 1).
2. Despues del ajuste, comprobar de nuevo la "respuesta de frecuencia de reproducción".

E Corriente de borrado (CINTA [1], CINTA [2])	Condición: • Modo de grabación • Modo de cinta metal	Equipo: • EVM • Osciloscopio
--	--	------------------------------------

1. La conexión del equipo de prueba se muestra en la Fig. 9.
2. Poner el aparato en el modo de cinta Metal.
3. Apretar los botones de pausa y grabación.
4. Tomar la lectura del voltaje en EVM y calcular la corriente de borrado mediante la fórmula siguiente:

$$\text{Corriente de borrado (A)} = \frac{\text{Voltaje entre terminales de R300}}{1 (\Omega)}$$

Valor normal: $160 \pm 15 \text{mA}$ (Modo de cinta... Metal) ($160 \pm 15 \text{mV}$)

5. Si el valor medido no está comprendido dentro del valor normal, ajustar de la forma siguiente:

Ajuste

1. Cortocircuitar los registros R308, R309, R310. (Referir a la Tabla 1)
2. Medir la corriente de borrado.
3. Si el valor medido no cae dentro del régimen nominal, abrir o cortocircuitar los registros R308, R309, R310 de acuerdo con la Tabla 1.

F Respuesta de frecuencia total (CINTA [2])	Condición: • Modo de reproducción/ grabación • Modo de cinta normal • Modo de cinta CrO ₂ • Modo de cinta Metal • Control de nivel de entrada ...MAX	Equipo: • EVM • ATT • Oscilador de AF • Osciloscopio • Resistor (600Ω) • Cinta de prueba (cinta en blanco de referencia) ...QZZCRA para Normal ...QZZCRX para CrO ₂ ...QZZCRZ para Metal
--	--	---

Nota:

Antes de medir y ajustar la respuesta de frecuencia total, asegurarse de la respuesta de frecuencia de reproducción. (Para el método de medida, sírvase consultar la respuesta de frecuencia de reproducción). (Se fija el compensador de grabación.)

1. Efectuar las conexiones tal como se muestra en la Fig. 11.
2. Poner la UNIDAD en el modo de cinta normal y cargar la cinta de prueba (QZZCRA).
3. Aplicar una señal de 1kHz desde el oscilador de AF a través de ATT a LINE IN.
4. Ajustar el ATT de forma que el nivel de entrada sea de -20dB por debajo del nivel estandar de grabación (nivel estandar de grabación = 0VU).
5. Ajustar el oscilador de AF para generar señales de 1kHz, 50Hz, 100Hz, 200Hz, 500Hz, 4kHz, 8kHz, 10kHz y 12,5kHz y grabar, estas señales en la cinta de prueba.
6. Reproducir las señales grabadas en el paso 6, y comprobar si la curva de respuesta de frecuencia está dentro de los límites mostrados en el gráfico de respuesta de frecuencia total para las cintas normales (Fig. 10).

(Si la curva está dentro de las especificaciones del gráfico, seguir con los pasos 7, 8 y 9).
 Si la curva no está dentro de las especificaciones del gráfico, ajustar de la forma siguiente:

Ajuste A:

Cuando la curva excede las especificaciones del gráfico de respuesta de frecuencia total (Fig. 10) tal como se muestra en la Fig. 12.

- 1) Aumentar la corriente de polarización girando VR301 (L-CH) y, VR302 (R-CH). (Ver la Fig. 1 de la página 4).
- 2) Repetir los pasos 5 y 6 para confirmación (Seguir con los pasos 7, 8 y 9 si la curva está ahora dentro de las especificaciones del gráfico de la Fig. 10).
- 3) Si la curva todavía excede las especificaciones (Fig. 10), aumentar aún más la corriente de polarización y repetir los pasos 5 y 6.

Ajuste B:

Cuando la curva está por debajo de las especificaciones del gráfico de respuesta de frecuencia total (Fig. 10) tal como se muestra en la Fig. 13.

- 1) Reducir la corriente de polarización girando VR301 (L-CH) y VR302 (R-CH).
- 2) Repetir los pasos 5 y 6 para confirmación. (Seguir con los pasos 7, 8 y 9 si la curva está ahora dentro de las especificaciones del gráfico de la Fig. 10).
- 3) Si la curva todavía cas por debajo de las especificaciones del gráfico (Fig. 10), reducir aún más la corriente de polarización y repetir los pasos 5 y 6.
7. Poner la UNIDAD en el modo de cinta CrO₂.
8. Cambiar la cinta de prueba a QZZCRX y grabar señales de 1kHz, 50Hz, 100Hz, 200Hz, 500Hz, 4kHz, 8kHz, 10kHz, 12,5kHz y 15kHz. Luego, reproducir las señales y comprobar si la curva está dentro de los límites mostrados en el gráfico de respuesta de frecuencia total para las cintas CrO₂ (Fig. 14).
9. Poner la UNIDAD en modo de cinta a Metal y cambiar la cinta de prueba a QZZCRZ, y grabar señales de 1kHz, 50Hz, 100Hz, 200Hz, 500Hz, 4kHz, 8kHz, 10kHz y 12,5kHz. Luego, reproducir las señales y comprobar si la curva está dentro de los límites mostrados en el gráfico de respuesta de frecuencia total para las cintas de Metal (Fig. 14).
10. Asegurarse de que las tensiones de polarización sean aproximadamente las que se indican a continuación cuando el aparato esté colocado en un modo de cinta distinto.
 - Leer la tensión en el EVM entre tierra y el punto de prueba (TP1 para L-CH y TP2 para R-CH) y calcular la corriente de polarización según la siguiente fórmula:

$$\text{Corriente de polarización (A)} = \frac{\text{Valor leído en el EVM (V)}}{10 (\Omega)}$$

Unos 190μA (posición Normal)

Valor normal: Unos 250μA (posición CrO₂)
Unos 380μA (posición Metal)

**⑥ Ganancia total
(CINTA [2])**

Condición:

- Modo de reproducción/ grabación
- Modo de cinta Normal
- Controles del nivel de entrada ...MAX.
- Nivel de entrada normal:
MIC -60 ± 4dB
LINE IN -24 ± 4dB

Equipo:

- EVM
- Oscilador de AF
- ATT
- Osciloscopio
- Resistor (600Ω)
- Cinta de prueba
(cinta en blanco de referencia)
...QZZCRA para Normal

1. La conexión del equipo de prueba se muestra en la Fig. 15.
2. Cargar la cinta normal en blanco de referencia (QZZCRA).
3. Poner el aparato en el modo grabación.
4. Suministrar una señal 1kHz (-24dB) desde el oscilador de AF a través de ATT a LINE IN (ENTRADA DE LINEA).
5. Ajustar ATT hasta que el nivel de monitor en "LINE OUTs" se convierta en 0,4V.
6. Reproducir la cinta grabada y asegurarse de que el nivel de salida en "LINE OUTs" se convierta en 0,4V.
7. Si el valor medido no es de 0,4V, ajustarlo con VR201 (L-CH), VR202 (R-CH).
8. Repetir desde el punto (2).

**⑦ Medidor de nivel
(CINTA [2])**

Condición:

- Modo de grabación
- Controles del nivel de entrada ...MAX.

Equipo:

- EVM
- ATT
- Oscilador de AF
- Osciloscopio
- Resistor (600Ω)

1. Efectuar las conexiones tal como se muestra (Ver la Fig. 16).
2. En el modo de pausa durante la grabación, aplicar 1kHz (-24dB) a LINE IN.
3. Ajustar el ATT de forma que el nivel de salida en LINE OUT sea de 0,4V.

4. En este momento, comprobar que el indicador de 0dB esté medio iluminado. (intensidad luminosa intermedia entre intensidad máxima y apagado: Ver la Fig. 17).
5. Si el indicador no está iluminado a medias tal como se ha descrito en el paso 4, ajustar VR401 (L-CH), VR402 (R-CH).
6. Repetir ajustes y comprobaciones en pasos 3, 4 y 5 dos o tres veces.

① Circuito Dolby de ruido (NR)

Condición:

- Modo de grabación
- Interruptor Dolby NR ...IN/OUT
- Interruptor selector del Dolby NR...B/C
- Controles del nivel de entrada...MAX
- Control del balance ...Centro

Equipo:

- EVM
- ATT
- Resistor (600Ω)
- Oscilador de AF
- Osciloscopio

Lado de grabación

- Comprobación de las características del codificador tipo Dolby B.
- 1. Efectuar las conexiones según se muestra en la Fig. 20.
- 2. Colocar la unidad en el modo de grabación (el interruptor selector NR está en OUT).
- 3. Aplicar una señal de 1kHz a LINE IN.
- 4. Ajustar el ATT de forma que el nivel de salida en el terminal 7 del IC103 (L-CH) e IC104 (R-CH) sea de 12,3mV.
- 5. El nivel de salida en el terminal 21 deberá ser de 0dB.
- 6. Colocar el interruptor selector NR en B, y asegurarse de que el nivel de la señal de salida en el terminal 21 del IC103 (L-CH) e IC104 (R-CH) sea de +6dB±2,5dB.
- 7. Colocar el interruptor NR en OUT y ajustar la frecuencia a 5kHz. El nivel de la señal de salida en el terminal 21 deberá ser de 0dB.
- 8. Colocar el interruptor selector NR en B y asegurarse de que el nivel de la señal de salida en el terminal 21 del IC103 (L-CH) e IC104 (R-CH) sea de +8dB±2,5dB.
- Comprobación de las características del codificador tipo Dolby C.
- 9. Repetir los pasos 1 a 5 anteriores.
- 10. Colocar el interruptor selector NR en C y asegurarse de que el nivel de la señal de salida en el terminal 21 del IC103 (L-CH) e IC104 (R-CH) sea de +11,5dB±2,5dB.
- 11. Colocar el interruptor selector NR en la posición OUT y ajustar la frecuencia a 5kHz. La señal de salida en el terminal 21 deberá ser de 0dB.
- 12. Colocar el interruptor selector NR en C, y asegurarse de que el nivel de la señal de salida del terminal 21 del IC103 (L-CH) e IC104 (R-CH) sea de +8,5dB±2,5dB

② Ajuste del tiempo de recuperación de ataque (circuit dbx)

Condición:

- Modo de grabación
- Controles del nivel de entrada...MAX
- Control del balance ...Centro

Equipo:

- EVM
- ATT
- Oscilador de AF
- Voltímetro de CC
- Selector de reducción de ruido...cinta dbx

1. Hacer las conexiones que se muestran en la Fig. 19, y suministrar una señal de 1kHz -27dB desde LINE IN. Colocar también el selector de reducción de ruido en la posición de cinta dbx.
2. Colocar la unidad en el modo de grabación, y ajustar ATT de forma que el nivel de la señal en C189 (L-CH) y C190 (R-CH) sea de 300mV.
3. Lee el voltaje en el voltímetro de CC.

Valor de referencia: 15±1mV

4. Si el valor medido no está dentro del valor de referencia, ajustar VR101 (ver la Fig. 1).

Parts Change Notice

Model No. RS-B33W (SM/SMC/SE/KE/SEK/KEK/SXA/KXA/SXL/KXL)

Service Manual
Order No. HAD85022413C0

Please revise the original parts list in the Service Manual to conform to the change (s) shown herein. If new part numbers are shown, be sure to use them when ordering parts.

Reason for Change		*The circled item indicates the reason. If no marking, see the Notes in the bottom column.
1. Improve performance		
2. Change of material or dimension		
3. To meet approved specification		
4. Standardization		
5. Addition		
6. Deletion		
7. Correction		
8. Other		

Interchangeability Code **The circled item indicates the interchangeability. If no marking, see the Notes in the bottom column.

Parts	Set Production	
A Original Early New Late		Original or new parts may be used in early or late production set. Use original parts until exhausted, then stock new parts.
B Original Early New Late		Original parts may be used in early production sets only. New parts may be used in early or late production sets. Use original parts where possible, then stock new parts.
C Original Early New Late		New parts only may be used in early or late production sets. Stock new parts.
D Original Early New Late		Original parts may be used in early production sets only. New parts may be used in late production sets only. Stock both original and new parts.
E Other		

Part Number

Model No.	Ref. No.	Original Part No.	New Part No.	Notes (***)	Part Name & Descriptions	
	105	QMB2149	QMR2149	7/C	Auto-stop Rod	
	D501	SVGSLW31VC3	SVGSLV31VC3	7/C	Diode	
	D502	SVGSLW31MC3	SVGSLV31MC3	7/C	Diode	
	503					
	D504	SVGSLW31DC3	SVGSLV31DC3	7/C	Diode	
	R21, 22	ERD25FJ105	ERD25TJ105	7/C	Resistor	
	R355	ERD1SJ471	ERG1SJ471P	7/C	Resistor	

File this Parts Change Notice with your copy of the Service Manual.

Matsushita Engineering and
Service Company
50 Meadowland Parkway,
Secaucus, New Jersey 07094

Panasonic Hawaii, Inc.
91-238 Kauhi St., Ewa Beach
P.O. Box. 774
Honolulu, Hawaii 96808-0774

Matsushita Electric Trading Co., Ltd.
P.O. Box 288, Central Osaka Japan

Panasonic Sales Company,
Division of Matsushita Electric
of Puerto Rico, Inc.
Ave. 65 De Infanteria, KM 9.7
Victoria, Industrial Park
Carolina, Puerto Rico 00630

Matsushita Electric
of Canada Limited
5770 Ambler Drive, Mississauga,
Ontario, L4W 2T3

Printed in Japan
850300880 ® MS

Technics