GLM Practical Sessions, Week 3

alexaoh

28.09.21 and 30.09.21

Linear Regression for Cholesterol

```
data <- read.csv2("COL.csv", header = T)</pre>
summary(data)
#>
                         Η
#> Min. : 9.00
                   Min. :103.0
                                   Min.
                                         :37.30
                                                  Min.
                                                         : 67.5
  1st Qu.:12.00
                   1st Qu.:130.5
                                   1st Qu.:53.23
                                                  1st Qu.:166.5
#> Median :15.00
                   Median :151.5
                                   Median :66.60
                                                  Median :217.8
#> Mean
         :14.71
                   Mean
                         :147.4
                                   Mean
                                         :64.57
                                                  Mean
                                                         :218.2
#> 3rd Qu.:18.00
                   3rd Qu.:167.2
                                   3rd Qu.:74.95
                                                  3rd Qu.:262.4
#> Max. :20.00
                  Max.
                          :187.0
                                   Max.
                                         :89.70
                                                  Max.
                                                         :438.5
```

Simple Linear Regression with W - Exercise 1

```
p < -2
n <- dim(data)[1]</pre>
# Fit linear model.
lm.fit <- lm(C~W, data = data)</pre>
summary(lm.fit)
#>
#> Call:
#> lm(formula = C ~ W, data = data)
#> Residuals:
       Min
                10 Median
                                3Q
                                       Max
#> -169.24 -39.81
                    -4.49
                             47.19
                                    200.37
#>
#> Coefficients:
               Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 346.2251
                           33.1983
                                     10.43 < 2e-16 ***
                -1.9835
                            0.5046
                                     -3.93 0.000158 ***
#> W
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#> Residual standard error: 63.55 on 98 degrees of freedom
#> Multiple R-squared: 0.1362, Adjusted R-squared: 0.1274
#> F-statistic: 15.45 on 1 and 98 DF, p-value: 0.0001581
```

Scatterplot of Points and Regression Line.

```
# Can be done manually and with a function.
scatterplot(C~W, smooth = F, data = data)
```


Regression Line for Cholesterol vs. Weight

Could do the plot from above with the scatterplot function above (comes from 'car' package).

Plot Regression Line with Conf. and Pred. Intervals

Plot confidence and prediction intervals with regression line (From package 'HH'). ci.plot(lm.fit)

95% confidence and prediction intervals for Im.fit

Plot Predicted Values vs. Residuals

```
# Plot the predicted values vs. residuals.
plot(predict(lm.fit), resid(lm.fit), main = "Predicted Values vs. Residuals")
abline(h=0, lty = 2)
```

Predicted Values vs. Residuals

Plot Standardized/Studentized Residuals

Here: 5 of the points should be outside the lines -2 and 2, since we here have 95% confidence intervals (2 approximates 1.96) and we have 100 points in the data. We can see that this is the case.

```
plot(rstandard(lm.fit), main = "Rstandard")
abline(h=c(-2, 0, 2), lty = 2)
```

Rstandard


```
plot(rstudent(lm.fit), main = "Rstudent")
abline(h=c(-2, 0, 2), lty = 2)
```

Rstudent

Diagnostic: Leverage

A line at 0.06 for some reason ? Check code after session!
plot(hatvalues(lm.fit), main= "Leverage (hat-)values")

Leverage (hat-)values

Diagnostic: Influential observations (dffits, cooks.distance)

Calculate the Cook's distances.

```
plot(cooks.distance(lm.fit), main = "Cook's Distances")
abline(h=c(0,4/n),lty = 2)
```

Cook's Distances

Compute dffits (difference of fits). This is the difference between the fits when a point is in or out of the dataset.

```
plot(dffits(lm.fit), main = "dffits")
abline(h=c(-2*sqrt(p/n), 0, 2*sqrt(p/n)), lty = 2)
```

dffits

Perform a simple regression for each group of age

```
data$AF <- factor(data$A)
sp(C~W|AF,smooth=F,col=1:20, data=data)</pre>
```


Multiple Linear Regression - Exercise 3

```
data <- data[, -5] # Remove AF again.
scatterplotMatrix(data, smooth = F, diagonal = F)</pre>
```



```
lm.fitm <- lm(C~W+A+H, data = data)</pre>
summary(lm.fitm)
#>
#> Call:
#> lm(formula = C ~ W + A + H, data = data)
#>
#> Residuals:
      Min
               1Q Median
                                      Max
                               ЗQ
                   1.888 21.156 65.410
#> -74.608 -22.137
#>
#> Coefficients:
              Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 490.9978
                          35.0517 14.008 < 2e-16 ***
                           0.7365 14.090 < 2e-16 ***
               10.3773
                                   -3.379 0.00105 **
#> A
              -13.0195
                           3.8530
#> H
               -5.0989
                           0.7227 -7.055 2.68e-10 ***
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 30.11 on 96 degrees of freedom
#> Multiple R-squared: 0.8101, Adjusted R-squared: 0.8041
\#> F-statistic: 136.5 on 3 and 96 DF, p-value: < 2.2e-16
```

 $\hat{\sigma}^2 \approx \text{Residual standard error}^2 = (30.11)^2.$

Omnibus test (F-test)

#> 1 205.3908 199.1668 211.6148 #> 2 309.1639 294.6188 323.7089 #> 3 244.4492 219.8210 269.0774

#>

#> \$se.fit

Test the null-model (all coefficients are zero, except for the intercept) vs. our model (at least one of the coefficients are zero).

Anova

```
anova(lm.fitm) # Performs the Type-I test. Order of the variables is important.
#> Analysis of Variance Table
#>
#> Response: C
#>
            Df Sum Sq Mean Sq F value
                                         Pr(>F)
#> W
             1 62396
                        62396 68.826 6.686e-13 ***
#> A
             1 263670 263670 290.841 < 2.2e-16 ***
#> H
                        45123 49.773 2.676e-10 ***
             1 45123
                          907
#> Residuals 96 87031
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Anova(lm.fitm) # Performs the Type-II test. Order of the variables is NOT important.
#> Anova Table (Type II tests)
#>
#> Response: C
#>
            Sum Sq Df F value
                                 Pr(>F)
            179985 1 198.533 < 2.2e-16 ***
#> W
             10351 1 11.418 0.001052 **
#> A
             45123 1 49.773 2.676e-10 ***
#> Residuals 87031 96
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Confidence Intervals
confint(lm.fitm, level = 0.99)
                   0.5 %
                             99.5 %
#> (Intercept) 398.881272 583.114304
#> W
                8.441792 12.312821
#> A
              -23.145228 -2.893732
#> H
               -6.998311 -3.199551
Prediction
CO <- data.frame(cbind(W = c(65, 75, 65)), A = c(15, 15, 12), H = c(150, 150, 150)), row.names = 1:3)
predict(lm.fitm, CO, interval = "confidence", level=0.95, se.fit = T)
#> $fit
#>
         fit
                  lwr
```

```
#> 1
#> 3.135539 7.327533 12.407261
#>
#> $df
#> [1] 96
#>
#> $residual.scale
#> [1] 30.1094
# How can it calculate confidence intervals for new predictions (for the mean)?
predict(lm.fitm, CO, interval = "prediction", level=0.95, se.fit = T)
#> $fit
         fit
                 lwr
#> 1 205.3908 145.3009 265.4807
#> 2 309.1639 247.6528 370.6749
#> 3 244.4492 179.8071 309.0914
#>
#> $se.fit
              2
    1
#> 3.135539 7.327533 12.407261
#>
#> $df
#> [1] 96
#>
#> $residual.scale
#> [1] 30.1094
R Diagnostic
par(mfrow=c(2,2))
```

plot(lm.fitm)

Then we did some more diagnostics, similar to the ones dones in the simple linear regression above.

Have a look at the file in Atenea for all of this + explanations regarding all of the work done in these exercises.

DO EXERCISE 2 AND 4 UNTIL NEXT TUESDAY!!!