Tiempo: 2 h. 30 m. Total: 37 puntos Fecha: 11 de octubre de 2010

Segundo Examen Parcial

Instrucciones: Trabaje en forma ordenada y clara. Escriba todos los procedimientos que utilice para resolver los ejercicios propuestos.

- 1. Considere el grupo abeliano $(\mathbb{Z}_8, +)$.
 - (a) Determine el elemento neutro, los inversos de cada elemento del grupo, los elementos involutivos y los elementos idempotentes. (2 puntos)
 - (b) Calcule todos los subgrupos de ($\mathbb{Z}_8, +$). (3 puntos)
- 2. En el conjunto $\mathbb{R} \times \mathbb{R}^*$ se define la operación \otimes como:

$$(a,b)\otimes(c,d)=(a+c-1,2bd)$$

Si se sabe que $(\mathbb{R} \times \mathbb{R}^*, \otimes)$ es grupo abeliano.

- (a) Determine la fórmula explícita de $(a,b)^{-1}$ (2 puntos)
- (b) Calcule el valor exacto de $(3,-1)^{-2}\otimes(1,2)^3$ (2 puntos)
- (c) Si $H = \{(1,t) / t \in \mathbb{R}^*\}$, pruebe que (H, \otimes) es subgrupo de $(\mathbb{R} \times \mathbb{R}^*, \otimes)$ (2 puntos)
- 3. Si (G,*) es un grupo, con e su elemento neutro. Pruebe que (G,*) es grupo abeliano si y solo si para todo a, b en G se cumple que $(a*b)^{-1} = a^{-1}*b^{-1}$.

 (4 puntos)
- 4. Sea $A = \begin{pmatrix} -4 & -1 \ 3 & 5 \end{pmatrix}$, un vector del espacio vectorial $M_2(\mathbb{R})$. Exprese a A como combinación lineal de los vectores $\begin{pmatrix} 1 & 2 \ 2 & 0 \end{pmatrix}$, $\begin{pmatrix} 2 & -3 \ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} -3 & 1 \ -1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \ 0 & 3 \end{pmatrix}$. (4 puntos)
- 5. Sea $W = \{ax^3 + bx^2 + cx + d \in P_3 / 2a c + 3d = 0\}$. Pruebe que W es subespacio vectorial de P_3 . (5 puntos)

- 6. Sea $H = \{(a, b, c, d) \in \mathbb{R}^4 \ / \ a + 2b + 3d = 0 \land a + 3b + 5c d = 0\}$. Si se sabe que H es un subespacio vectorial de \mathbb{R}^4
 - (a) Determine una base para H. (4 puntos)
 - (b) Determine la dimensión de H. (1 punto)
- 7. Si se sabe que $\{u, v, w\}$ es una base de un espacio vectorial V, determine si el conjunto $\{2u + v + w, u v + 2w, u 2v + w\}$ es o no base de V. (4 puntos)
- 8. Sean V algún espacio vectorial y $S = \{u_1, u_2, \dots, u_n\}$ un subconjunto de V, tal que S es linealmente independiente. Si $x \in V$, tal que $x \notin Gen(S)$. Demuestre que el conjunto $\{u_1, u_2, \dots, u_n, x\}$ es, también, linealmente independiente.

(4 puntos)