MATH-2105: Matrices, Vector Analysis and Coordinate Geometry

Course Instructor:

Abdul Karim

Lecturer, Department of Applied Mathematics, NSTU.

Cell: 01737184545

E-mail: akarim.amth@nstu.edu.bd

Lecture Sheet 2

Determinant of a matrix

A determinant is a function of a square matrix that reduces it to a single number. For example

The determinant of the matrix $A = \begin{bmatrix} 4 & 1 \\ 1 & 2 \end{bmatrix}$ is given by

$$|A| = \begin{vmatrix} 4 & 1 \\ 1 & 2 \end{vmatrix} = 4 \times 2 - 1 \times 1 = 7$$

The determinant of the matrix $B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$ is given by

$$|B| = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{vmatrix} = 1 \times \begin{vmatrix} 4 & 5 \\ 5 & 6 \end{vmatrix} - 2 \times \begin{vmatrix} 2 & 5 \\ 3 & 6 \end{vmatrix} + 3 \times \begin{vmatrix} 2 & 4 \\ 3 & 5 \end{vmatrix}$$

$$= 1 \times (-1) - 2 \times (-3) + 3 \times (-2)$$

$$= -1 + 6 - 6$$

$$= -1$$

Singular matrix

A matrix having determinant zero is said to be singular matrix, i.e. |A| = 0. For example

The matrix $A = \begin{bmatrix} -4 & -6 \\ 2 & 3 \end{bmatrix}$ is singular as

$$|A| = \begin{vmatrix} -4 & -6 \\ 2 & 3 \end{vmatrix} = (-4) \times 3 - 2 \times (-6) = 0$$

The matrix
$$B = \begin{bmatrix} 3 & 8 & 1 \\ -4 & 1 & 1 \\ -4 & 1 & 1 \end{bmatrix}$$
 singular as

$$|B| = \begin{vmatrix} 3 & 8 & 1 \\ -4 & 1 & 1 \\ -4 & 1 & 1 \end{vmatrix} = 3 \times \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} - 8 \times \begin{vmatrix} -4 & 1 \\ -4 & 1 \end{vmatrix} + 1 \times \begin{vmatrix} -4 & 1 \\ -4 & 1 \end{vmatrix} = 0$$

- The inverse of a singular matrix does not exist.
- To have an inverse, a matrix must be non-singular.
- Singular matrix is also known as non-invertible matrix.

Invertible or non-singular matrix

A matrix having non-zero determinant is said to be non-singular or invertible matrix, i.e. |A| = 0. For example

The matrix
$$A = \begin{bmatrix} 2 & -6 \\ 2 & 3 \end{bmatrix}$$
 is singular as

$$|A| = \begin{vmatrix} 2 & -6 \\ 2 & 3 \end{vmatrix} = 2 \times 3 - 2 \times (-6) = 18 \neq 0$$

The matrix
$$B = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 4 & 0 \\ 5 & 4 & 6 \end{bmatrix}$$
 singular as

$$|B| = \begin{vmatrix} 2 & 0 & 0 \\ 3 & 4 & 0 \\ 5 & 4 & 6 \end{vmatrix} = 2 \times \begin{vmatrix} 4 & 0 \\ 4 & 6 \end{vmatrix} - 0 \times \begin{vmatrix} 3 & 0 \\ 5 & 6 \end{vmatrix} + 0 \times \begin{vmatrix} 3 & 4 \\ 5 & 4 \end{vmatrix} = 48 - 0 + 0 = 48 \neq 0$$

- There exist the inverse of a non-singular matrix.
- To have an inverse, a matrix must be non-singular.
- Non-ingular matrix is also known as invertible matrix.

Example

If
$$A = [a_{ij}]$$
 where $a_{ij} = \begin{cases} 0, & when \ i < j \\ i+j, & when \ i = j \\ 2i-j, & when \ i > j \end{cases}$

Construct a 3×3 matrix and identify the type of the matrix A. Also check whether it is singular or not.

Solution

A 3 × 3 matrix is
$$A = \begin{bmatrix} a_{1j} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Using the conditions
$$a_{ij} = \begin{cases} 0, & \text{when } i < j \\ i+j, & \text{when } i=j \\ 2i-j, & \text{when } i > j \end{cases}$$
, we get

$$a_{11} = i + j = 1 + 1 = 2$$
, $a_{12} = 0$, $a_{13} = 0$

$$a_{21} = 2i - j = 2 \times 2 - 1 = 3$$
, $a_{22} = i + j = 2 + 2 = 4$, $a_{23} = 0$

$$a_{31} = 2i - j = 2 \times 3 - 1 = 5$$
, $a_{32} = 2i - j = 2 \times 3 - 2 = 4$, $a_{33} = i + j = 3 + 3 = 6$

$$A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 4 & 0 \\ 5 & 4 & 6 \end{bmatrix}$$

This matrix is a square matrix and a lower triangular matrix.

The determinant of A is

$$|A| = \begin{vmatrix} 2 & 0 & 0 \\ 3 & 4 & 0 \\ 5 & 4 & 6 \end{vmatrix} = 2 \times \begin{vmatrix} 4 & 0 \\ 4 & 6 \end{vmatrix} - 0 \times \begin{vmatrix} 3 & 0 \\ 5 & 6 \end{vmatrix} + 0 \times \begin{vmatrix} 3 & 4 \\ 5 & 4 \end{vmatrix} = 48 - 0 + 0 = 48 \neq 0$$

So the matrix *A* is not singular.

Example

If
$$A = [a_{ij}]$$
, where $a_{ij} = \begin{cases} 0, & when \ i \neq j \\ C, & when \ i = j \end{cases}$

Construct a 3×3 order matrix and identify the type of matrix. Also test the matrix A is orthogonal or not, where C is the sum of the 1^{st} digit and the last digit of your ID.

Solution

Solve yourself.

Example

Construct a 4×4 matrix A having:

$$A = (a_{ij}) = \begin{cases} 2i - j, & when i < j \\ 0, & when i = j \\ 3i + j, & when i > j \end{cases}$$

Solution

Solve yourself.

Difference between Determinant and Matrices

Determinant	Matrix
Determinant of A is denoted by $ A $	Matrix can be denoted by [], () or
Number of rows and columns are always equal.	Number of rows and columns are not always
Example $\begin{bmatrix} -4 & -6 \\ 2 & 3 \end{bmatrix}$	equal.
	Example $\begin{bmatrix} 2 & 2 \\ 1 & 0 \end{bmatrix}$
	Example 1 0
It has a definite value although it is an	It has no definite value, it is merely an
arrangement of numbers	arrangement of numbers
If two rows (or columns) are identical, a	Identical rows (or columns) may occur in a
determinant vanishes	matrix
Rows and columns can be interchanged	Rows and columns cannot be interchanged
If a determinant is multiplied by a number m,	If a matrix is multiplied by m, every element of
every element of any one row (or any one	the entire matrix is multiplied by m
column) is multiplied by m.	Example 2 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 2a & 2b \\ 2c & 2d \end{bmatrix}$
Example $2 \begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} 2a & 2b \\ c & d \end{vmatrix}$	-c u2c 2u-
A determinant can be resolved into two	A matrix cannot be resolved into two matrices
determinants by using only one row (or	using only one row (or column)
column)	
The sign of a determinant changes if two rows	Two rows (or columns) cannot be interchanged
(or columns) are interchanged	at all
The product of two determinants does not	The product of two matrices may change the
change the order	order

Example

Show that
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{bmatrix}$$
 and $B = \begin{bmatrix} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{bmatrix}$ are inverses of each other.

Solution

Given matrices are
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{bmatrix}$$
, $B = \begin{bmatrix} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{bmatrix}$

Now the product of the matrices *A* and *B* is

$$AB = \begin{bmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{bmatrix} \begin{bmatrix} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 1(-11) + 0(-4) + 2.6 & 1.2 + 0.0 + 2(-1) & 1.2 + 0.1 + 2(-1) \\ 2(-11) - 1(-4) + 3.6 & 2.2 - 1.0 + 3(-1) & 2.2 - 1.1 + 3(-1) \\ 4(-11) + 1(-4) + 8.6 & 4.2 + 1.0 + 8(-1) & 4.2 + 1.1 + 8(-1) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= I$$

Since AB = I, the matrices A and B are the inverses of each other.

Algebraic operations of Matrices

- 1. Addition (A + B)
- 2. Subtraction (A B)
- 3. Scalar Multiplication $(2A, 5A \text{ or } \frac{5}{7}A)$
- 4. Multiplication (AB)
- 5. Combination (2A 3B + 2AB & so on)
- 6. Inversion (A^{-1})

Example

Given
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 4 & 5 & -6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 0 & 2 \\ -7 & 1 & 8 \end{bmatrix}$, find $A + B$, $A - B$ and $2A - 3B$.

Solution

$$A + B = \begin{bmatrix} 1 & -2 & 3 \\ 4 & 5 & -6 \end{bmatrix} + \begin{bmatrix} 3 & 0 & 2 \\ -7 & 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & -2 & 5 \\ -3 & 6 & 2 \end{bmatrix}$$

$$A - B = \begin{bmatrix} 1 & -2 & 3 \\ 4 & 5 & -6 \end{bmatrix} - \begin{bmatrix} 3 & 0 & 2 \\ -7 & 1 & 8 \end{bmatrix} = \begin{bmatrix} -2 & -2 & 1 \\ 11 & 4 & -14 \end{bmatrix}$$

$$2A - 3B = 2\begin{bmatrix} 1 & -2 & 3 \\ 4 & 5 & -6 \end{bmatrix} - 3\begin{bmatrix} 3 & 0 & 2 \\ -7 & 1 & 8 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -4 & 6 \\ 8 & 10 & -12 \end{bmatrix} - \begin{bmatrix} 9 & 0 & 6 \\ -21 & 3 & 24 \end{bmatrix}$$

$$= \begin{bmatrix} -7 & -4 & 0 \\ 29 & 7 & -36 \end{bmatrix}$$

Example

Find x, y, z, t using the concept of equality of matrices, where

$$3\begin{bmatrix} x & y \\ z & t \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & 2t \end{bmatrix} + \begin{bmatrix} 4 & x+y \\ z+t & 3 \end{bmatrix}$$

Solution

We write each side as a single matrix

$$\begin{bmatrix} 3x & 3y \\ 3z & 3t \end{bmatrix} = \begin{bmatrix} x+4 & x+y+6 \\ z+t-1 & 2t+3 \end{bmatrix}$$

Equating the corresponding terms, we get

$$3x = x + 4$$
 giving $x = 2$

$$3y = x + y + 6$$
 giving $y = 4$

$$3t = 2t + 3$$
 giving $t = 3$

$$3z = z + t - 1$$
 giving $z = 1$

So, the solution is (x, y, z, t) = (2, 4, 1, 3).

Example

Find
$$AB$$
, where $A = \begin{bmatrix} 2 & 3 & -1 \\ 4 & -2 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -1 & 0 & 6 \\ 1 & 3 & -5 & 1 \\ 4 & 1 & -2 & 2 \end{bmatrix}$.

Solution

Given matrices are
$$A = \begin{bmatrix} 2 & 3 & -1 \\ 4 & -2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -1 & 0 & 6 \\ 1 & 3 & -5 & 1 \\ 4 & 1 & -2 & 2 \end{bmatrix}$

$$AB = \begin{bmatrix} 2 & 3 & -1 \\ 4 & -2 & 5 \end{bmatrix} \begin{bmatrix} 2 & -1 & 0 & 6 \\ 1 & 3 & -5 & 1 \\ 4 & 1 & -2 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 2.2 + 3.1 - 1.4 & 2(-1) + 3.3 - 1.1 & 2.0 + 3(-5) - 1(-2) & 2.6 + 3.1 - 1.2 \\ 4.2 - 2.1 + 5.4 & 4(-1) - 2.3 + 5.1 & 4.0 - 2(-5) + 5(-2) & 4.6 - 2.1 + 5.2 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 6 & -13 & 13 \\ 26 & -5 & 0 & 32 \end{bmatrix}$$

Example

If
$$A = \begin{bmatrix} 3 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 4 \\ 2 & 2 \\ 1 & 0 \end{bmatrix}$, then find AB . Is BA exist? Create an argument.

Solution

$$AB = \begin{bmatrix} 3 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 7 & 14 \\ 3 & 2 \\ 13 & 12 \end{bmatrix}$$

BA doesn't exist.

Argument: As the number of the columns in the matrix B (2) and the number of the rows in the matrix A (3) are not the same, so BA isn't possible to calculate.

Example

If
$$A = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix}$, then find AB and show that $AB \neq BA$.

Assignment

Given
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{bmatrix}$, find

(i)
$$5A + 3B$$

(ii)
$$2A - B$$

(iv)
$$A^2$$

(v)
$$B^3$$

(vi)
$$A^2 + 2AB + B^2$$

(vii)
$$(A+B)^2$$

(viii) the matrix C, such that
$$A + 2C = B$$

Solution

Part (viii)

Given that
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{bmatrix}$

Now, A + 2C = B implies 2C = B - A implies $C = \frac{1}{2}(B - A)$

$$\therefore \quad C = \frac{1}{2} \begin{pmatrix} \begin{bmatrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{bmatrix} \end{pmatrix} = \frac{1}{2} \begin{bmatrix} 2 & -3 & 5 \\ -1 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -3/2 & 5/2 \\ -1/2 & 1 & 3/2 \\ 1/2 & 1/2 & 1 \end{bmatrix}$$

Example

Solve the following equations for A and B

$$2A - B = \begin{bmatrix} 3 & -3 & 0 \\ 3 & 3 & 2 \end{bmatrix}$$

$$2B + A = \begin{bmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{bmatrix}$$

Solution

Given matrix equations are

$$2A - B = \begin{bmatrix} 3 & -3 & 0 \\ 3 & 3 & 2 \end{bmatrix}$$
 ---- (i)

$$2B + A = \begin{bmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{bmatrix}$$
 ---- (ii)

$$(i)-2\times(ii) \rightarrow$$

$$-5B = \begin{bmatrix} 3-8 & -3-2 & 0-10 \\ 3+2 & 3-8 & 2+8 \end{bmatrix} = \begin{bmatrix} -5 & -5 & -10 \\ 5 & -5 & 10 \end{bmatrix}$$

$$\therefore B = -\frac{1}{5} \begin{bmatrix} -5 & -5 & -10 \\ 5 & -5 & 10 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ -1 & 1 & -2 \end{bmatrix}$$

Again, $2\times(i)+(ii) \rightarrow$

$$5A = \begin{bmatrix} 6+4 & -6+1 & 0+5 \\ 6-1 & 6+4 & 4-4 \end{bmatrix} = \begin{bmatrix} 10 & -5 & 5 \\ 5 & 10 & 0 \end{bmatrix}$$

$$\therefore A = \frac{1}{5} \begin{bmatrix} 10 & -5 & 5 \\ 5 & 10 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$