Lecture 24: Gaussian quadrature wrap-up

Ciaran Evans

Gaussian quadrature so far

Gauss-Legendre quadrature: $\int_{-1}^{1} f(x) dx \approx \sum_{i=1}^{n} w_i f(x_i)$

- \triangleright $x_1, ..., x_n$ are the roots of the *n*th **Legendre** polynomial p_n . Legendre polynomials satisfy

$$\int_{-1}^{1} (c_0 + c_1 x + \dots + c_{n-1} x^{n-1}) p_n(x) dx$$

Gauss-Hermite quadrature: $\int_{-\infty}^{\infty} f(x)e^{-\frac{1}{2}x^2}dx \approx \sum_{i=1}^{n} w_i f(x_i)$

- $x_1, ..., x_n$ are the roots of the *n*th **Hermite** polynomial h_n . Hermite polynomials satisfy

$$\int_{-\infty}^{\infty} (c_0 + c_1 x + \dots + c_{n-1} x^{n-1}) h_n(x) e^{-\frac{1}{2}x^2} dx = 0$$

Other types of integrals

Here is another type of integral that often comes up in statistics:

$$\int_{0}^{\infty} f(x)e^{-x}dx$$

Question: When might we see this type of integral?

Examples

$$\int_{0}^{\infty} f(x)e^{-x}dx$$

▶ Suppose $X \sim Gamma(\alpha, \beta)$. Then

$$\mathbb{E}[g(X)] = \int_{0}^{\infty} g(x) \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta} dx$$

- $\Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt$
- (HW 7) pdf of sample correlation coefficient involves the integral

$$\int_{0}^{\infty} (\cosh t - \rho r)^{1-n} dt$$

Gauss-Laguerre quadrature

$$\int_{0}^{\infty} f(x)e^{-x}dx \approx \sum_{i=1}^{n} w_{i}f(x_{i})$$

- $w_i = \int_0^\infty L_{n,i}(x)e^{-x}dx$
- \triangleright $x_1,...,x_n$ are the roots of the *n*th **Laguerre** polynomial
- ▶ The *n*th Laguerre polynomial ℓ_n satisfies

$$\int_{a}^{b} (c_0 + c_1 x + \dots + c_{n-1} x^{n-1}) \ell_n(x) e^{-x} dx = 0$$

Gaussian quadrature in general

$$\int_{a}^{b} f(x)\omega(x)dx$$

where $\omega(x)$ is some weighting function.

- ► Gauss-Legendre quadrature: a = -1, b = 1, $\omega(x) = 1$ (Uniform density)
- ▶ Gauss-Hermite quadrature: $a=-\infty$, $b=\infty$, $\omega(x)=e^{-\frac{1}{2}x^2}$ (Normal density)
- ► Gauss-Laguerre quadrature: a = 0, $b = \infty$, $\omega(x) = e^{-x}$ (Gamma density)

In general:
$$\int_{a}^{b} f(x)\omega(x)dx \approx \sum_{i=1}^{n} w_{i}f(x_{i})$$

Choose nodes $x_1, ..., x_n$ as roots of family of polynomials corresponding to ω

HW₇

https://sta379-s25.github.io/homework/hw7.html

- Derive a few Laguerre polynomials
- Use Gauss-Laguerre quadrature to approximate density of sample correlation coefficient