# ASTRONOMY SOLVENORE SOLVE

# **Quantum Mechanics**

# 1. Quantum State and Hilbert Space

# - Solving Problems

### 1. Problem 1

If the states  $\{|1\rangle, |2\rangle, |3\rangle\}$  form an orthonormal basis and if the operator  $\hat{K}$  has the properties

$$\hat{K}|1\rangle = 2|1\rangle$$

$$\hat{K}|2\rangle = 3|2\rangle$$

$$\hat{K}|3\rangle = -6|3\rangle$$

- (a) Write an expression for  $\hat{K}$  in terms of its eigenvalues and eigenvectors (projection operators). Use this expression to derive the matrix representing  $\hat{K}$  in the  $|1\rangle, |2\rangle, |3\rangle$  basis.
- (b) What is the expectation or average value of  $\hat{K}$ , defined as  $\langle \alpha | \hat{K} | \alpha \rangle$ , in the state

$$|\alpha\rangle = \frac{1}{4}(-3|1\rangle + i\sqrt{6}|2\rangle + |3\rangle)$$

### 2. Problem 2

The Hamiltonian operator for a two-state system is given by

$$H = a(|1\rangle\langle 1| - |2\rangle\langle 2| + |1\rangle\langle 2| + |2\rangle\langle 1|),$$

where a is a number with the dimension of energy. Find the energy eigenvalues and the corresponding energy eigenkets (as linear combinations of  $|1\rangle$  and  $|2\rangle$ ).

### 3. Problem 3

Consider the states  $|\psi\rangle = 9i |\phi_1\rangle + 2 |\phi_2\rangle$  and  $|\chi\rangle = -\frac{i}{\sqrt{2}} |\phi_1\rangle + \frac{1}{\sqrt{2}} |\phi_2\rangle$  where the two vectors  $|\phi_1\rangle$  and  $|\phi_2\rangle$  form a complete and orthonormal basis.

- (a) Calculate the operators  $|\psi\rangle\langle\chi|$  and  $|\chi\rangle\langle\psi|$ . Are they equal? item Find the Hermitian conjugates of  $|\psi\rangle, |\chi\rangle, |\psi\rangle\langle\chi|$ , and  $|\chi\rangle\langle\psi|$
- (b) Calculate  $\text{Tr}(|\psi\rangle\langle\chi|)$  and  $\text{Tr}(|\chi\rangle\langle\psi|)$ . Are they equal?
- (c) Calculate  $|\psi\rangle\langle\psi|$  and  $\chi\rangle\langle\chi|$  and the traces  $\text{Tr}(|\psi\rangle\langle\psi|)$  and  $\text{Tr}(|\chi\rangle\langle\chi|)$ . Are they projection operators?

## 4. Problem 4

Consider a system whose Hamiltonian is given by

$$\hat{H} = \alpha \left( |\phi_1\rangle \langle \phi_2| + |\phi_2\rangle \langle \phi_1| \right)$$

where  $\alpha$  is a real number having the dimensions of energy and  $|\phi_1\rangle$ ,  $|\phi_2\rangle$  are normalized eigenstates of a Hermitian operator  $\hat{A}$  that has no degenerate eigenvalues.

- (a) Is  $\hat{H}$  a projection operator? What about  $\alpha^{-2}\hat{H}^2$ ?
- (b) Show that  $|\phi_1\rangle$  and  $|\phi_2\rangle$  are not eigenstates of  $\hat{H}$ .
- (c) Calculate the commutators  $\left[\hat{H}, |\phi_1\rangle \langle \phi_1|\right]$  and  $\left[\hat{H}, |\phi_2\rangle \langle \phi_2|\right]$  then find the relation that may exist between them.
- (d) Find the normalized eigenstates of  $\hat{H}$  and their corresponding energy eigenvalues.
- (e) Assuming that  $|\phi_1\rangle$  and  $|\phi_2\rangle$  form a complete and orthonormal basis, find the matrix representing  $\hat{H}$  in the basis. Find the eigenvalues and eigenvectors of the matrix and compare the results with those derived in (d).

### 5. Problem 5

Construct  $|\mathbf{S} \cdot \hat{\mathbf{n}}; +\rangle$  such that

$$\mathbf{S} \cdot \hat{\mathbf{n}} | \mathbf{S} \cdot \hat{\mathbf{n}} ; + \rangle = \left( \frac{\hbar}{2} \right) | \mathbf{S} \cdot \hat{\mathbf{n}} ; + \rangle$$

where  $\mathbf{S} = \{S_x, S_y, S_z\}$  are the spin-1/2 matrices

$$S_x = \frac{\hbar}{2}(|+\rangle\langle -|+|-\rangle\langle +|),$$

$$S_y = \frac{i\hbar}{2}(-|+\rangle\langle -|+|-\rangle\langle +|),$$

$$S_z = \frac{\hbar}{2}(|+\rangle\langle +|-|-\rangle\langle -|)$$

and  $\hat{\mathbf{n}}$  is characterised by the angles shown in the figure. Express your answer as a linear combination of  $|+\rangle$  and  $|-\rangle$ .



Figure 1: