The complexity of type inference for System F

Perry Hart

UMN PL Seminar

March 29, 2023

Overview

Let \mathbb{T} denote a type system.

Type inference: Given a raw term t of \mathbb{T} , decide whether t is typable.

Theorem

- 1. Type inference for STLC is decidable in polynomial time.
- 2. Type inference for Core ML is decidable in $O(2^n)$ time and is EXPTIME-hard under logspace reduction.

The more expressive the language, the harder the decision problem.

Example

Deciding whether a propositional sentence is true is PTIME-complete.

Deciding whether $\exists x. \varphi(x)$ with $\varphi(x)$ a propositional formula is NP-complete.

Theorem (Henglein and Mairson)

Type inference for System F is EXPTIME-hard under logspace reduction.

Corollary

Type inference for System F requires exponential time.

Proof strategy

For each integer $k \ge 1$, find a logspace reduction

total TM M and string x of length $n \mapsto \text{raw term } \Psi_k(M, x)$,

where M rejects x in 2^{n^k} steps if and only if $\Psi_k(M,x)$ is non-typable.

Such a reduction is known for Core ML.

Difficulty

The non-typable term $\Psi_k(M,x)$ in Core ML could be typable in System F.

Construct a term $A_k(M,x)$ of System F in logspace such that

$$A_k(M,x) \to^*$$
 false when M accepts x in 2^{n^k} steps $A_k(M,x) \to^*$ true when M rejects x in 2^{n^k} steps.

Take

$$\Psi_k(M,x) := (\Lambda \alpha.\lambda(x:\alpha).xx) (A_k(M,x) (\Lambda \alpha.\lambda(x:\alpha).x) (\Lambda \alpha.\lambda(y:\alpha).yy))$$

Construct a term $A_k(M,x)$ of System F in logspace such that

$$A_k(M,x) \to^*$$
 false when M accepts x in 2^{n^k} steps $A_k(M,x) \to^*$ true when M rejects x in 2^{n^k} steps.

Take

$$\Psi_k(M,x) := (\Lambda \alpha.\lambda(x:\alpha).xx) (A_k(M,x) (\Lambda \alpha.\lambda(x:\alpha).x) (\Lambda \alpha.\lambda(y:\alpha).yy))$$

If $A_k(M,x) \to^*$ false, then

$$\Psi_k(M,x) \longrightarrow^* \underbrace{(\Lambda \alpha.\lambda(x:\alpha).xx)(\Lambda \alpha.\lambda(y:\alpha).yy)}_{\text{non-terminating}}.$$

If $A_k(M,x) \to^*$ true, then we must show that $\Psi_k(M,x)$ is typable.

5/9

Encoding Turing machines with System F

Let M be a TM.

The *n*-th configuration $ID_{M,x}(n)$ of M on input x is the triple (q, L, R) where, after exactly n steps,

- q is the state of M,
- L is the (finite) list of symbols to the left of the read head, and
- R the list of symbols at or to the right of the read head.

We can find a λ -term δ_M in logspace such that

$$\delta_{M} \ \overline{\mathsf{ID}_{M,x}(n)} \ \longrightarrow^{*} \ \overline{\mathsf{ID}_{M,x}(n+1)}$$

for all $n \in \mathbb{N}$.

We can find a λ -term δ_M in logspace such that

$$\delta_{M} \ \overline{\mathsf{ID}_{M,x}(n)} \ \longrightarrow^{*} \ \overline{\mathsf{ID}_{M,x}(n+1)}$$

for all $n \in \mathbb{N}$.

Moreover, the term

$$\left(\overline{2^{n^k}}[T_{\mathsf{ID}_{M,x}}]\ \delta_M\right)\overline{\mathsf{ID}_{M,x}(0)}$$

has normal form $\overline{\mathrm{ID}_{M,x}(2^{n^k})}$. If $(q,L,R)=\mathrm{ID}_{M,x}(2^{n^k})$, then take

$$A_k(M,x) := \overline{q}[\mathsf{Bool}] \ \mathit{false} \cdots \mathit{false} \ \underbrace{\mathit{true} \cdots \mathit{true}}_{|Q_F| \ \mathsf{copies}}.$$

If M accepts x in 2^k steps, then $A_k(M,x)$ reduces to **true**. Therefore,

$$(\lambda(x:\tau).x[\tau]x) (A_k(M,x)[\tau][\tau \to \tau] (\Lambda\alpha.\lambda(x:\alpha).x) (\lambda(y:\tau).y[\tau]y)) (\tau := \forall \alpha.\alpha \to \alpha)$$

has type τ , so that $\Psi_k(M,x)$ is typable.

If M accepts x in 2^k steps, then $A_k(M,x)$ reduces to **true**. Therefore,

$$(\lambda(x:\tau).x[\tau]x)(A_k(M,x)[\tau][\tau \to \tau](\Lambda\alpha.\lambda(x:\alpha).x)(\lambda(y:\tau).y[\tau]y))$$
$$(\tau := \forall \alpha.\alpha \to \alpha)$$

has type τ , so that $\Psi_k(M,x)$ is typable.

Since $A_k(M,x)$ can be constructed in logspace, so can $\Psi_k(M,x)$.

Related questions

- The decidability of type inference for System F was an open question until 2012, then answered in the negative by Fujita and Schubert.
- Pfenning proved that partial type inference for System F is undecidable.
- The set of all strongly normalizing terms of System F is RE-complete (hence undecidable).