Exercice 2 Ecricome 2016

1. Pour tout $n \in \mathbb{N}$, on définit la fonction $g_n : [0, +\infty[\to \mathbb{R} \text{ par } :$

$$g_n(x) = \frac{(\ln(1+x))^n}{(1+x)^2}.$$

(a) Étudier les variations de la fonction g_0 , définie sur $[0, +\infty[$ par : $g_0(x) = \frac{1}{(1+x)^2}$.

Préciser la limite de g_0 en $+\infty$, donner l'équation de la tangente en 0, et donner l'allure de la courbe représentative de g_0 .

(b) Pour $n \geq 1$, justifier que g_n est dérivable sur $[0, +\infty[$ et montrer que :

$$\forall x \in [0, +\infty[, \quad g'_n(x) \ge 0 \iff n \ge 2\ln(1+x).$$

En déduire les variations de la fonction g_n lorsque $n \ge 1$. Calculer soigneusement $\lim_{x\to+\infty} g_n(x)$.

(c) Montrer que, pour $n \geq 1$, g_n admet un maximum sur $[0, +\infty[$ qui vaut :

$$M_n = \left(\frac{n}{2e}\right)^n$$

et déterminer $\lim_{n\to+\infty} M_n$.

(d) Montrer enfin que, pour tout $n \ge 1$:

$$g_n(x) = \underset{x \to +\infty}{o} \left(\frac{1}{x^{3/2}}\right).$$

2. On pose pour tout $n \in \mathbb{N}$:

$$I_n = \int_0^{+\infty} g_n(t)dt.$$

- (a) Montrer que l'intégrale I_0 est convergente et la calculer.
- (b) Montrer que pour tout entier $n \geq 1$, l'intégrale I_n est convergente.
- (c) A l'aide d'une intégration par parties, montrer que :

$$\forall n \in \mathbf{N}, \ I_{n+1} = (n+1)I_n.$$

(d) En déduire que :

$$\forall n \in \mathbb{N}, I_n = n!.$$

3. Pour tout $n \in \mathbb{N}$, on définit la fonction f_n par :

$$\forall x \in \mathbf{R}, f_n(x) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{1}{n!} g_n(x) & \text{si } x \ge 0 \end{cases}$$

(a) Montrer que pour tout $n \in \mathbb{N}$, f_n est une densité de probabilité.

On considère à présent, pour tout $n \in \mathbb{N}$, X_n une variable aléatoire réelle admettant f_n pour densité.

On notera F_n la fonction de répartition de X_n .

- (a) La variable aléatoire X_n admet-elle une espérance?
- (b) Que vaut $F_n(x)$ pour x < 0 et $n \in \mathbb{N}$?
- (c) Calculer $F_0(x)$ pour $x \ge 0$.
- (d) Soit $x \ge 0$ et $k \in \mathbb{N}^*$. Montrer que :

$$F_k(x) - F_{k-1}(x) = -\frac{1}{k!} \frac{(\ln(1+x))^k}{1+x}.$$

- (e) En déduire une expression de $F_n(x)$ pour $x \ge 0$ et $n \in \mathbb{N}^*$ faisant intervenir une somme (on ne cherchera pas à calculer cette somme).
- (f) Pour $x \in \mathbf{R}$ fixé, déterminer la limite de $F_n(x)$ lorsque n tend vers $+\infty$.
- (g) La suite de variables aléatoires $(X_n)_{n \in \mathbb{N}}$ converge-t-elle en loi?
- 2. Pour tout $n \in \mathbb{N}$, on note $Y_n = \ln(1 + X_n)$.
 - (a) Justifier que Y_n est bien définie. Quelles sont les valeurs prises par Y_n ?
 - (b) Justifier que Y_n admet une espérance et la calculer.
 - (c) Justifier que Y_n admet une variance et la calculer.
 - (d) On note H_n la fonction de répartition de Y_n . Montrer que :

$$\forall x \in \mathbf{R}, \ H_n(x) = F_n(e^x - 1).$$

- (e) Montrer que Y_n est une variable aléatoire à densité et donner une densité de Y_n .
- (f) Reconnaître la loi de Y_0 . A l'aide de ce qui précède, déterminer le moment d'ordre k de Y_0 pour tout $k \in \mathbb{N}^*$.

Exercice 2 Eml 2018

Dans tout cet exercice, f désigne la fonction définie sur $]0, +\infty[$ par :

$$\forall x \in]0, +\infty[, \quad f(x) = x - \ln(x).$$

Partie I : Étude de la fonction f

- 1. Dresser le tableau de variations de f en précisant ses limites en 0 et en $+\infty$.
- 2. Montrer que l'équation f(x) = 2, d'inconnue $x \in]0, +\infty[$, admet exactement deux solutions, que l'on note a et b, telles que 0 < a < 1 < b.
- 3. Montrer: $b \in [2, 4]$. On note $\ln(2) \approx 0, 7$.

Partie II: Étude d'une suite

On pose : $u_0 = 4$ et $\forall n \in \mathbb{N}, u_{n+1} = \ln(u_n) + 2$.

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et que l'on a : $\forall n\in\mathbb{N}, u_n\in[b,+\infty[$.
- 2. Déterminer la monotonie de la suite $(u_n)_{n \in \mathbb{N}}$. En déduire qu'elle converge et préciser sa limite.
- 3. (a) Montrer: $\forall n \in \mathbb{N}, u_{n+1} b \leq \frac{1}{2}(u_n b).$
 - (b) En déduire : $\forall n \in \mathbf{N}, \ 0 \le u_n b \le \frac{1}{2^{n-1}}$.
- 4. (a) Ecrire une fonction Python suite qui, prenant en argument un entier n de \mathbf{N} , renvoie la valeur de u_n .
 - (b) Recopier et compléter la ligne 3 de la fonction Python suivante afin que, prenant en argument un réel epsilon strictement positif, elle renvoie une valeur approchée de b à epsilon près.

def valeur_approchee(epsilon):

Partie III : Étude d'une fonction définie par une intégrale

On note Φ la fonction donnée par :

$$\Phi(x) = \int_x^{2x} \frac{1}{f(t)} dt.$$

1. Montrer que Φ est bien définie et dérivable sur $]0, +\infty[$, et que l'on a :

$$\forall x \in]0, +\infty[, \quad \Phi'(x) = \frac{\ln(2) - \ln(x)}{(x - \ln(x))(2x - \ln(2x))}.$$

- 2. En déduire les variations de Φ sur $]0, +\infty[$.
- 3. Montrer: $\forall x \in]0, +\infty[, 0 < \Phi(x) < x.$
- 4. (a) Montrer que Φ est prolongeable par continuité en 0. On note encore Φ la fonction ainsi prolongée. Préciser alors $\Phi(0)$.
 - (b) Montrer: $\lim_{x\to 0} \Phi'(x) = 0$. On admet quer la fonction Φ est alors dérivable en 0 et que $\Phi'(0) = 0$.
- 5. On donne $\Phi(2) \approx 1,1$ et on admet que en $+\infty$ on a $\Phi(x) = \ln(2) \approx 0,7$. Tracer l'allure de la courbe représentative de Φ ainsi que la tangente à la courbe au point d'abscisse 0.