in the interest of early and wide dissemination of Earth Resources Survey Program information and without liability for any use made timeot." E83-102235-0-404

LANDSAT-4 MULTISPECTRAL SCANNER (MSS) SUBSYSTEM RADIOMETRIC CHARACTERIZATION

(E83-10226) LANDSAT-4 MULTISPECTRAL SCANNER (MSS) SUBSYSTEM RADIOMETRIC CHARACTERIZATION (NASA) 77 p dC A05/MP A01 CSCL 148

N83-21467

Unclas
G3/43 U0226
MAR 10P3

RECLIVED
MASA STI FACILITY
ACCESS DEPT.

FEBRUARY 1983

ORIGINAL PAGE IS

GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND

LANDSAT-4 MULTISPECTRAL SCANNER (MSS) SUBSYSTEM RADIOMETRIC CHARACTERIZATION

Editors

W. Alford and J. Barker NASA/Goddard Space Flight Center Greenbelt, Maryland

Prepared by

B. P. Clark and R. Dasgupta Computer Sciences Corporation 8728 Colesville Road Silver Spring, Maryland

February 1983

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

FOREWORD

The authors wish to acknowledge the support received from both government and contract personnel associated with the Landsat-4 program. Constructive discussions and useful data have been provided by both W. Webb and J. Bala of the National Aeronautics and Space Administration (NASA). Outside contractor support was provided by L. Beuhler from Operations Research, Incorporated, and by J. Dietz and P. Mallerbe from the General Electric Corporation.

Many general references to the Landsat program are available to the public. Relevant information and data from these references have been extracted for incorporation in this document. It is hoped that this will broaden the circulation of critical information carried in these documents. Of particular interest are four publications, two by the Hughes Aircraft Company and two by the General Electric Corporation. The titles of these documents are (1) "Multispectral Scanner, Final Report," HS-248-0010-0867, Hughes Aircraft Company (March 1982); (2) "MSS Protoflight Radiometric Calibration and Alignment Handbook," HS-248-1379, Hughes Aircraft Company (July 1981); (3) "Landsat-D MSS Baseline Test Procedure," ITP-LD-311, General Electric Corporation (September 1981); and (4) "MSS Standard Interface Document." GE-B0-78-034, General Electric Corporation (July 1978).

These documents contain explicit information pertaining to sensor and spacecraft level tests and their results. In addition, the document "Landsat-4 to Ground Station Interface Description," Revision 5. GSFC 435-D-400 (August 1982), has been referenced where appropriate. Data and other technical memoranda accessed include both NASA publications and presentation material used in May 1982 at the first Landsat-4 users' conference.

PRECEDING PAGE GLANK NOT FILMED

ш

CONTENTS

Section	<u>.</u>	Page
	FOREWORD	iii
1.	INTRODUCTION	1-1
	1.1 Overview	1-1 1-3
2.	LANDSAT-4 MSS SYSTEM DESCRIPTION	2-1
	2.1 Scanner Optics for MSS. 2.2 Detectors and Electronics 2.3 Scanner Optics Operation 2.4 Mission Acquisitions 2.5 Comparison of Landsat 4 with Previous Landsats 2.6 Comparison of Unit Test Data with GE Thermal Vacuum Data	2-1 2-3 2-3 2-5 2-7 2-7
3.	MSS SPECTRAL CHARACTERIZATION	3-1
	3.1 Objective. 3.2 Procedure. 3.3 Results. 3.4 Comparison with Previous Landsats 3.5 Conclusions.	3-1 3-2 3-2 3-2 3-10
4.	PRELAUNCH MSS SENSOR RADIOMETRIC CHARACTERIZATION	4-1
	4.1 Introduction	4-1 4-4
5.	POSTLAUNCH MSS RADIOMETRIC PROCESSING	5-1
	5.1 Introduction	5-1 5-3
	5.2.1 Radiometric Correction Using Calibration Wedge Data	5-3 5-4
	5.3 Detector Gain and Offset Update	5-8 5-11
6.	LANDSAT-4 IMAGE PROCESSING DATA	6-1
	6.1 Image Processing Parameter Files 6.2 Short-Term Parameter File 6.3 Calibration Modifiers. 6.4 Long-Term Parameter File.	6-1 6-1 6-3 6-5

ILLUSTRATIONS

Figure		Page
2-1	Schematic Diagram of MSS Optics	2-2
2-2	MSS Data Acquisition	2-4
2-3	Perspective of MSS Data Acquisition	2-6
2-4	Landsat-4 Orbit Characteristics	2-8
3-1	Relative Spectral Response for an MSS Sensor	3-3
4-1	Systematic MSS Video and Wedge Level Timing Sequence	4-2
4-2	Hysteresis Effects on Detector Readings	4-3
4-3	Spectral Radiant Emittance Plot for 76-cm Integrating Sphere	4-6
4-4	Illustrative MSS Lamp Calibration Wedge	4-7
4-5	Band Normalization of MSS Channel Gains and Offset	4-11
5-1	Flow Diagram for Postlaunch Radiometric Calibration	5-2
5-2	Flow Diagram of Scene Content Correction Processing	5-7
5-3	Scene Segment Blending	5-9
	TABLES	
<u>Table</u>		Page
2-1	MSS Differences for Landsat 3 and Landsat 4	2-9
3-1	MSS Optical Filter Specification	3-4
3-2	Spectral Characterization by Channel for the Landsat-4 MSS	3-5
3-3	Characterization of Landsat-4 MSS (Band 1) and Comparison with Landsats 1, 2, and 3	3-6
3-4	Characterization of Landsat-4 MSS (Band 2) and Comparison with Landsats 1, 2, and 3	3-7

TABLES (Continued)

lable		rage
3-5	Characterization of Landsat-4 MSS (Band 3) and Comparison with Landsats 1, 2, and 3	3-8
3-6	Characterization of Landsat-4 MSS (Band 4) and Comparison with Landsats 1, 2, and 3	3-9
6-1	Calibration Nominal Values Used in Each Mode of Sensor Operation	6-2
6-2	Multiplicative Modifiers (M) and Additive Modifiers (A) Currently Used in MIPS	6-4
6-3	MIPS Parameters Record	6-6
6-4	Additional MIPS Parameters	6-9
6-5	Decompression Tables for Bands 1, 2, and 3	6-10
6-6	Decompressed Digital Values	6-11
6-7	Calibration Coefficients for High-Gain, Prime Lamp	6-13
6-8	Calibration Coefficients for Low-Gain, Primary Lamp	6-15
6-9	Calibration Coefficients for High-Gain, Redundant Lamp	6-16
6-10	Calibration Coefficients for Low-Gain, Redundant Lamp	6-17
6-11	Calibration Wedge Offsets for the Prime Lamp	6-18
6-12	Calibration Wedge Offsets for the Redundant Lamp	6-19
6-13	Geometric Image Tic-Mark and Annotation Parameters Carried in the Long-Term Record	6-20

SECTION 1

INTRODUCTION

1.1 OVERVIEW

The purpose of this document is to describe the radiometric calibration procedures for the Landsat-4 Multispectral Scanner (MSS) subsystem. The topics covered are as follows:

- Instrument Description
- MSS Spectral Characterization
- Prelaunch MSS Radiometric Calibration
- Postlaunch MSS Radiometric Processing
- Examples of Current Data Resident on the MSS Image Processing System (MIPS)

The objective of the radiometric calibration is to relate vir so digital levels on computer compatible tapes (CCT's) to radiance into the sensor. To achieve this, the sensor must be calibrated with respect to a radiance source. The scanner subsystem includes such an internal radiance source (lamps). The basic function of the internal calibration system is to provide repetitive sets of voltages (digital counts) for each letector for known input radiance levels. The digital values and their corresponding radiance levels are assumed to be related through a linear equation.

The radiance levels—f the internal source are established by calibrating it with respect to known standard reference levels. Such a source is provided by the NASA 76-cm (30-inch) integrating sphere. During prelaunch calibration, the MSS is used as a transfer device between the integrating sphere and the internal lamp. The known radiance values from the integrating sphere and their corresponding digital counts for the detector outputs are used to establish each detector's linear transformation. This transformation is used in a subsequent step to obtain the radiance levels of the internal lamp.

The MSS instrument has six detectors for each band. The detectors for any given band may have different responses to different input radiances. Some detectors saturate at different input radiance

levels; others can register zero digital values corresponding to different low-input radiances. This causes striping in the MSS image. It is therefore necessary to map the responses of all six detectors of a given band to a common calibration curve. This results in one single straight line in the radiance-digital count plane for each band as shown below:

The radiance value corresponding to a digital count V_c (on the CCT) resulting from the above straight line relationship is given by

$$R = V_c \frac{R_{max} - R_{min}}{V_{max}} + R_{min}$$
 (1-1)

where R_{max} is the saturation radiance that results in maximum digital count V_{max} (typically = 127) and R_{min} is the lower cutoff radiance resulting in zero digital value. For Landsat 4, the most current values of R_{max} and R_{min} are given as follows:

Band	$\frac{R_{m in}}{(mW/cm^2/sr)}$	$\frac{R_{max}}{(mW/cm^2/sr)}$
1	0.02	2.3
2	0.04	1.8
3	0.04	1.3
4	0.10	4.0

During prelaunch calibration analysis, linear regression coefficients are derived that relate the gain and offset of a detector to radiance levels of the internal lamp. These coefficients are used during postlaunch radiometric processing. Using these coefficients and data collected from the internal lamp during flight operation (often in conjunction with scene content data), digital counts versus radiance curves for each detector are once again generated. The final result is a Radiometric Lookup Table (RLUT) that allows a radiance value to be assigned to each detector reading. In addition, all detectors of a given band are again mapped to a common calibration curve, and a new equation identical with equation (1-1) is obtained with new values of $R_{\rm max}$ and $R_{\rm min}$.

1.2 DOCUMENT ORGANIZATION

Section 2 describes the MSS instrument, and Section 3 summarizes the spectral characteristics of the MSS. Section 4 introduces the reader to the prelaunch calibration procedures. Section 5 discusses postlaunch radiometric processing. Section 6 presents examples of current data resident on MIPS.

SECTION 2

LANDSAT-4 MSS SYSTEM DESCRIPTION

The MSS is familiar to most users of remotely sensed, digitally processed image data. The following instrument description will illustrate the scanner optics configuration, the electro-optics configuration, and major performance issues relevant to the Landsat-4 MSS.

The MSS is a scanner optic system capable of generating Earth imagery in four spectral bands. Data are gathered by either phototubes or photodiodes, multiplexed, and then transmitted to an Earth station. Images generated cover 185 km on a side. The ground-processing system artificially frames these data by using the world reference system set of scene centers established by NASA.

2.1 SCANNER OPTICS FOR MSS

The scanner optic system is specially designed to ensure contiguous coverage for each band of imagery. Data are acquired when sunlight reflected from the Earth's surface impinges on an oscillating flat mirror that redirects the Earth image into a Ritchey-Chretien-type Causegramian telescope, as shown in Figure 2-1. The mirror oscillation sweeps the Earth image across the focal plane of the telescope, at which point a fiber optic bundle receives the light and transmits data for each sensor to its respective phototube or photodiode. Bands 1, 2, and 3 each use six matched phototubes for detection; band 4 consists of six matched silicon photodiodes.

The fiber optic bundle is preceded by a rotating shutter wheel that allows image data to pass into the sensor array during the west-to-east ground track scan direction. Otherwise, the image data are obscured. During retrace motion of alternate scans, light from a calibration lamp impinges on the sensor system.

Light from the calibration lamp passes through a graded density filter before receipt by the focal plane fiber optic array. During ground processing, six unique calibration wedge data words are used to extract digital calibration light levels for each of the 24 sensors. The timing sequence between

Figure 2-1. Schematic Diagram of MSS Optics

video and calibration data is shown in Figure 2-2. The lower segment of this figure contains a representation of the relative position of the shutter wheel during video data and calibration data acquisition activities.

2.2 DETECTORS AND ELECTRONICS

Bands 1 through 3 use photomultiplier tubes (PMT's) as detectors; band 4 uses silicon photodiodes. The analog video outputs of each detector are sampled by the multiplexer during the west-to-east portion of the mirror scan. The video outputs from each detector are sampled, commutated, and multiplexed into a pulse amplitude modulated (PAM) data stream. The commutated samples of video are either transmitted directly to the analog-to-digital (A/D) converter for encoding or, for bands 1 through 3, directed to a logarithmic signal compression/amplifier and then to the encoder. This selection is made by ground command. The signal compression mode is normally used for bands 1 through 3; no signal compression is performed on band 4.

Compression is applied for the phototube signal to make the quantization noise match the defector noise. Band-4 noise nearly matches the quantization noise in the linear mode of operations.

A high-gain mode is also selectable by ground command. In this mode, a gain of 3 is applied to bands 1 and 2 (only) before A/D conversion. This allows use of the large dynamic range of these detectors. Light reflected from the surface of the Earth is the input radiance to the scan assembly. The video signal for each detector is a voltage that corresponds to this input radiance. In order to get back the values of input radiances from the voltage, a mathematical transformation is required. This transformation relates real-time calibration data to minimum and maximum radiances used in ground processing and will be discussed in a subsequent section.

2.3 SCANNER OPTICS OPERATION

Using the optical configuration previously discussed, the operation of this system must ensure contiguous coverage of the ground track. Since Landsat 4 will orl't at 705 km rather than at

Figure 2.2. MSS Data Acquision

92C km used for previous Landsats, some special design changes were required to ensure that the coverage would meet requirements. This required alteration of the instantaneous field of view (IFOV), increase of the cross-track scan angle, and adjustment of the along-track satellite velocity to achieve coverage. The IFOV of each detector is 117.2 microradians. This subtends an Earth square area of 82.7 meters on one side at the planned mean equatorial orbital altitude of 705 km. Field stops are formed for each line imaged during a scan, and for each spectral band, by the square input end of an optical fiber Six of these fibers in each of four bands are arranged in a 4 by 6 matrix in the exit focal plane of the telescope.

As the flat mirror oscillates, it scans cross-track swaths of 185 kilometers. The lower satellite altitude required that the maximum amplitude of the mirror oscillation be increased to ±3.75° from its nominal position to accommodate this requirement. Previous Landsats used an 11.56° cross-track field of view (FOV); Landsat 4 will use a 14.9° angle to achieve this ground coverage. The relative position of the shutter wheel during data acquisition is illustrated in Figure 2-2. Note that calibration data are acquired in alternate mirror sweeps.

Landsat 4 has been designed for a ground-track velocity of 6.82 km/sec. Oscillating the mirror at a frequency of 13.62 Hz creates a 73.42-msec active scan and retrace period. The optical axis subpoint (subsatellite point) moves 501 meters along the Earth's surface during this period. The width of the FOV of six detectors is also 501 meters. Thus, complete nonredundant coverage of the ground is obtained. The line swept by the first detector in one mirror sweep lies adjacent to the line scanned by the sixth detector of the previous mirror sweep.

2.4 MISSION ACQUISITIONS

A schematic of Landsat data acquisitions is presented in Figure 2-3. Each Landsat satellite has been placed in a circular Sun-synchronous orbit. This means that the orbit precesses in inertial space at the same rate at which the Earth moves around the Sun. Past orbital dynamics for Landsat have resulted in the daily coverage of adjacent paths on adjacent orbits with the repeat coverage of any fixed orbital area fixed at 14-day intervals.

OF POOR QUALITY

Figure 2-3. Perspective of MSS Data Acquisition

₫

Landsat 4 will differ slightly from this scheme because of its reduced altitude and angle of insertion. The result will be that adjacent orbits will not be covered on the same day as was done for Landsats 1, 2, and 3. For example, for previous Landsats, if orbits 1, 2, and 3 would be covered on day 1, then orbits 15, 16, and 17 would be returned on day 2, since on any one day the satellite made 14 revolutions of the Earth. This allowed duplicate coverage on sequential days for images with sufficiently large scene center latitudes.

The Landsat 4 coverage pattern represents a departure from this scheme because of the orbital characteristics designed for the system. These characteristics (Figure 2-4) illustrate that there will be 14-9/16 orbits per day and adjacent paths will be covered either 7 or 9 days after coverage of the primary path. This difference should be kept in mind by all users.

2.5 COMPARISON OF LANDSAT 4 WITH PREVIOUS LANDSATS

The optical system for Landsat 4 was altered slightly, by design, to accommodate the desired cross-track coverage for the MSS. Other changes were also introduced that have been itemized by the document generated by the Hughes Aircraft Company (1982A). Table 2-1 contains a summary of some of these differences. Differences pertaining to vibration, mass properties, acceleration tolerance, power distribution, the new command system interface, and the telemetry interface are described in detail in this Hughes report and will not be referenced further in this document because of lack of applicability to calibration.

2.6 COMPARISON OF UNIT TEST DATA WITH GE THERMAL VACUUM DATA

Direct comparisons of the Hughes and General Electric (GE) tests are not possible because of the difference in sequence between tests, the difference between reasons for tests, and the difference in configuration (i.e., unit tests versus total integrated system tests). One direct comparison is possible in the context of ensuring that no significant deviations occur. This comparison uses the sensor gain as measured through all orbits for each channel by both Hughes and GE. The plots are arranged so

Figure 2-4. Landsat-4 Orbit Characteristics

Table 2-1
MSS Differences for Landsat 3 and Landsat 4

Conment	Altitude-Dependent	No change	No change in scan mirror mount's spring constant, yet a larger scan angle was required. This increased the scan nonlinearity.	Scan angle . ependent co.rection made.	New requirement due to problems noted for Landsat 3.
Landsat 4	0.1172 milliradians 82 meters	14.90 ±0.06 degrees	+2.4, -5.0 percent deviation from mean scan rate	Larger than 0.36 for 0.102 mradian bars	Inserts a pseudo-scan monitor pulse if start of scan is not detected.
Landsat 3	0.086 milliradians 79 meters	11.60 ±0.05 degrees	+2, -4.3 percent deviation mean scan rate	Larger than 0.29 for 0.075 mradian bars	No requirement
Parameter	IFOV	Scan Angle	Scan Nonlinearity	MTF	Backup Start of Scan Pulse

that the Hughes test data reside on the upper portion of the page and the GE data on the lower portion of the page. These results are presented in detail in Appendix A.

SECTION 3

MSS SPECTRAL CHARACTERIZATION

3.1 OBJECTIVE

This section summarizes the MSS spectral characterization work performed by Markham and Barker (1981). Their paper contains relative spectral response data for the Landsat-4 generation of Multi-spectral Scanners (MSS's). Reference is made to the protoflight (PF) and flight (F) models throughout their tables of data. The PF model is currently in orbit as the Landsat-4 MSS sensor system. The F model is to be used in the future. The reader should therefore associate PF data with current capabilities and F data with future applications. In this paper, a comparison was made between simulated radiometric response for Landsat 4 and equivalent data for Landsats 1, 2, and 3.

Channel-by-channel (six channels per band) outputs for soil and soybean targets were simulated and compared within each band and between scanners. The primary objective of their study was to make available to the Landsat user community data on the spectral characteristics of these two sensors, including a characterization of the variability within and differences between the two new sensor systems. These data can be used by individual investigators to assess MSS data utility for each unique application. A second objective was to provide, through simulation, an estimate of the potential contribution of spectral differences between channels to within-band striping, often referred to as "spectral striping." This should not be confused with radiometric striping, which is due to gain or offset differences between channels within a band. Since spectral striping cannot be removed by uniform radiometric calibration, it represents a fundamental limit to the ability to remove banding.

Subsection 3.2 describes procedures used in this spectral analysis; subsection 3.3 presents some results obtained by Markham and Barker; subsection 3.4 compares Landsat-4 data with those from Landsats 1, 2, and 3; and subsection 3.5 presents some concluding remarks resulting from this comparison.

3.2 PROCEDURE

Relative spectral response (RSR) curves for each channel of the Landsat-4 series MSS's (Hughes, 1980, 1981a, and 1981b), as well as the MSS's on Landsat 1, Landsat 2 (Norwood et al., 1972), and Landsat 3 (Felkel et al., 1977), were digitized at 10-nm intervals for bands 1, 2, and 3 and at 20-nm intervals for band 4. Data acquired in 1981 for the current MSS were used for this characterization.

From the digitized curves, the following attributes were computed:

- Lower bandedge (50 percent relative response point)
- Upper bandedge (50 percent relative response point)
- Lower edge slope interval (width between lower 5 and 50 percent response points)
- Upper edge slope interval (width between upper 5 and 50 percent response points)
- Spectral flatness (maximum positive and negative deviation from mean response in central
 70 percent of nominal bandpass)

These five characteristics were considered appropriate to characterize the overall relative spectral response. In addition, bandwidth (bandedge to bandedge) was calculated. For each band, the band mean (the average value of the characteristic for the six channels in the band) and the band standard deviation were also calculated.

3.3 RESULTS

Data obtained by Markham and Barker are included for the protoflight MSS system, with the authors' permission. Figure 3-1 shows the resultant output for one sensor of band 1. Table 3-1 gives measured channel-by-channel responses for the Landsat-4 system. Tables 3-2 through 3-6 present data from which a comparison with other MSS sensors can be made.

3.4 COMPARISON WITH PREVIOUS LANDSATS

Both protoflight and flight MSS systems were studied. The spectral characterization results presented in Tables 3-2 through 3-6 are summarized as follows:

Figure 3-1. Relative Spectral Response for an MSS Sensor

Table 3-1 MSS Optical Filter Specification

	<u> </u>						
Band	Bandec Half Pov	Bandedge (nm) Half Power Points	Band- Width	Slope Interval (nm) From 5 to 50%	rval (nm) to 50%	Spectral F Over Cer	Spectral Flatness (%) Over Central 70%
	Lower	Upper	(wu)	Lower	Upper	Positive	Negative
	500 +10	01+ 009	1	<20	<40	<5.0	<5.0
2	01+009	700 +10	ı	<20	<45	<7.5	<7.5
3	700 +10	800 +10	1	<20	<\$0	<5.0	<5.0
4	800 +10	1100* +10	I	<35	ı	<5.0	<5.0

^aUpper bandedge not filter determined – Filter specification necessary for flatness determination

Spectral Characterization by Channel for the Landsat 4 MSS Table 3-2

Johnson	Negative	7.16	5.8°	9.2 _b	10.8 ^b	13.1b	7.8 ^b	17.2b	11.6	11.0b	13.16	11.7b	14.5b	14.2 ^b	15.7b	8.6 ^b	10.0b	13.0 ^b	15.3b	48.5b	62.2b	44.8b	59.5b	50.2b	36.7⁰
Spectral Catacon	Positive	4.4	3.5	5.6 ^b	6.0 ^b	40.9	4.8	8.2b	6.4	9.9	7.8b	4.5	8.2b	13.7b	11.6 ^b	12.9b	7.8t	13.0 ^b	18.5h	25.5 ^b	38.7b	19.5h	34.9	31.16	29.3 ^b
(mm) [on	Upper	22	22	23	24	24	22	61	91	4	18	17	15	14	15	14	14	15	91	110	120	94	117	108	112
Clone Inter	Lower Upper	15	15	15	15	14	15	12	12	12	12	13	12	16	91	15	15	15	15	23	23	24	23	23	23
445.544	(wu)	110	109	601	601	108	110	,50I	94	92	94	94	93	113	110	113	111	112	111	217	661	241	205	218	211
()	Upper	909	605	909	604	603	909	₂80∠	969	969	969	869	969	813 ^b	812 ^b	814b	814 ^b	813b	812 ⁶	1025	9001	1049	1012	1025	8101
S. C.	Lower Upp	496	496	496	495	495	495	603	602	603	603	604	602	700	701	101	702	701	701	808	808	808	807	807	807
1022040	Channel	_	7	3	4	2	9	7	∞	6	10	=	12	13	4	15	91	17	18	61	50	21	22	23	24
	Scanner Channel	Band 1						Band 2				-		Band 3						Band 4					

^aNo filter specification b Fails to neet filter specification c Rejectable as outlier: $\alpha=0.01$

Characterization of Landsat-4 MSS (Band' I) and Comparison with Landsats 1, 2, and 3 Table 3-3

		Banded	Bandedge (nm)	Width.	Slope Int	Slope Interval (nm)	Spectral	Spectral Flatness
	Scanner	Lower	Upper	(mu)	Lower	Upper	Positive	Negative
	PF	495	909	109	15	23	5.1b	8.9b
	Ľ.	497	209	109	15	21	5.0	11.26
Means	. I	105	599	86	15	27	7.16	16.1 ^b
	7.1	499	597	86	15	27	9.16	14.6b
	7	497	598	101	15	22	5.4b	14.1b
	3	497	593	96	91	22	5.4b	19.2b
	ЬF	0.5	1.2	8.0	0.3	1.0	1.0	2.7
	Ľ.	8.0	8.0	0.5	9.0	0.7	9.0	3.4
Standard	5 1	6.5	4.1	3.5	1.6	5.6	2.4	6.4
Deviations	7	5.3	3.0	3.5	1.8	5.4	0.4	5.8
	CI	4.	1.4	8:	1.2	9.0	2.4	3.5
	3	3.7	2.5	3.8	3.2	3.4	1.5	7.8

^aNo filter specification
brails to meet filter specification
cwith outlier channel included
dwith outlier channel excluded

Boxes indicate characteristics where differences between PF or F and all provious scanners (1, 2, 3) were greater than differences between two sets of PF measurements.

Characterization of Landsat-4 MSS (Band 2) and Comparison with Landsats 1, 2, and 3 Table 34

Scanner PF ^c PF ^d F	Lower	Ilnner	,				
	,	opper	(mm)	Lower	Upper	Positive	Negative
	603	869	95	12	91	7.0	12.96
	603	969	93	12	16	6.7	12.0b
Means	603	L69	94	12	15	7.6b	11.16
,							
_	603	701	6	15	56	90.6	13.3
2°	209	710	103	4	30	7.9b	18.0₽
24	607	710	103	4	29	7.8b	16.8 ^b
3	909	705	100	4	31	7.2	17.2 ^b
PF°	0.7	4.7	4.8	0.5	6.1	1.4	2.5
PF	8.0	8.0	9.0	0.5	1.4	1.5	1.4
ír.	0.4	9.0	0.5	0.4	6.0	1.2	3.0
Standard							
Deviations 1	3.5	2.2	2.8	1.7	3.4	3.4	2.8
32.	9.0	0.8	0.1	1.2		1.1	4.5
24	9.0	6.0	-:	1.2	-	1.2	3.8
£	6.0	1.2	8.0	8.0	9.7	2.0	4.8

*No filter specification brails to meet filter specification With outlier channel included With outlier channel excluded

Boxes indicate characteristics where differe , cet between PF or F and all previous scanners (1, 2, 3) were greater than differences between two sets of PF measurements.

Characterization of Landsat 4 MSS (Band 3) and Comparison with Landsats 1, 2, and 3 Table 3-5

		Bandedge (nm)	ge (nm)	Width•	Slope Int	Slope Interval (nm)	Spectral Flatness	Flatness
	Scanner	Lower	Upper	(mu)	Lower	Upper	Positive	Negative
	ЬĿ	701	8136	112	15	51	13.2 ^b	12.8 ^b
	Ľ	704	814b	110	91	14	12.6 ^b	9.6°
Means								
		694	800	105	19	35	7.2b	7.4b
	۲،	L69	802	106	91	34	8.4 _b	7.93
	8	693	793	001	61	32	96.6	22.2b
	PF	0.7	6.0	1:1	0.3	0.5	2.9°	2.9°
	ĹĽ,	0.3	0.2	0.3	1.0	0.3	1.16	98.0
Standard		- -						
Deviations	_	6.0	1.0	6.0	2.0	3.8	3.2	2.9
	2		2.3	2.1	9.0	2.7	3.0	1.9
	8	8.1	1.6	0.8	4.	1.1	2.7	3.4

*No filter specification brails to meet filter specification PF: I difference exceeds difference between two sets of PF measurements

Boxes indicate characteristics where differences between Pi' or F and all previous scanners (1, 2, 3) were preater than differences between two sets of PF measurements.

Characterization of Landsat-4 MSS (Rend 4) and Comparison with Landsats 1, 2, and 3 Table 3-6

		Randed	Bandedge (nm)	Width	Slone Inte	Slope Interval (nm)	Spectral Flatness	Flatness
	Scanner	Lower	Upper	(mu)	Lower	¹ pper	Positive	Negative
	PF	808	1023	215	23	110	29.8b	53.7b
	<u> </u>	809	1036	227	23	101	23.0b	50.8b
Means								
		810	686	621	22	120	46.0b	43.5b
	C 1	807	066	183	23	118	45.4b	4 6.€∶
	3	812 ^b	626	167	24	108	56.4b	80.7b
	PF	5.0	14.9	14.6	0.2	9.2	8.9	€.8€
	indian	0.1	12.5	12.5	0.4	6.6	0.9	4.1°
Standard								
Deviations	-	1.2	3.5	3.7	2.1	7.2	2.3	3.1
	C)	2.0	4.0	5.3	8.0	2.7	4.7	1.1
	3	6.0	7.9	7.6	0.1	3.0	11.7	2.4

*No filter specification
brails to meet filter specification
Cpf., F. difference exceeds difference between two sets of PF measurements.

Boxes indicate characteristics where differences between PF or F and all previous scanners (1, 2, 3) were greater than differences between two sets of PF measurements.

3-9

- Band 1: No outliers, relative spectral responses meet all filter specifications except flatness (Table 3-2).
- Band 2: PF channel 7 upper bandedge is 12 nm higher than the average of the other PF channels and is rejectable as an outlier; responses meet all filter specifications except flatness (Table 3-3).
- Band 3: No outliers, all channels are slightly wide (2 to 4 nm) to the long wavelength side, otherwise responses meet filter specifications.
- Band 4: No outliers, but upper bandedge varies by as much as 42 nm, resulting in width variations of up to 20 percent; system response upper half-power points below filter specifications due to silicon photodiode detector response; and response flatness considerably below filter specifications (Table 3-5).

3.5 CONCLUSIONS

The two Landsat-4 scanners are nearly identical in mean spectral response; however, some difference from previous MSS systems was found. Principal differences between the spectral responses of the Landsat-4 scanners and previous systems are itemized as follows:

- A mean upper bandedge in the green band of 606 nm was observed for Landsat 4 as compared with previous means of 593 to 598 nm.
- An average upper bandedge of 697 nm in the red band was observed for Landsat 4 as compared with previous averages of 701 to 710 nm.
- An average bandpass for the first near-infrared band of 702 to 814 nm was found for Landsat 4 compared with a range of 693 to 793 nm to 697 to 802 nm for previous scanners.

These differences resulted in the simulated Landsat-4 scahner outputs being 3 to 10 percent lower in the red band and 3 to 11 percent higher in the first near-infrared band than previous scanners when viewing a soybean target. Otherwise, outputs from soil and soybean targets were little

affected. The Landsat-4 scanners generally appear to be more uniform in both channel-to-channel and band-to-band responses than previous scanners.

SECTION 4

PRELAUNCH MSS SENSOR RADIOMETRIC CHAR ACTERIZATION

4.1 INTRODUCTION

This section introduces the reader to the calibration procedures performed on the Landsav-4 MSS instrument during prelaunch activities.

Radiometric calibration converts output voltage from the MSS photodetectors into digital values that represent input radiance. This is accomplished by using the voltage-radiance characteristics of each detector. Detector characteristics are monitored and updated using an internal calibration system. The MSS internal calibration system consists of a wedge density filter between a calibration lamp and the detectors. The internal calibration lamp, which is used as a reference, is calibrated prelaunch using a GSFC 76-cm integrating sphere. This integrating sphere is the primary standard for the radiometric calibration of the MSS. The objective of the prelaunch MSS radiometric calibration using this sphere is to establish the reference light levels of the internal calibrator lamp for all channels (detectors) in the four bands.

There are several radiance levels (illumination intensities) associated with the integrating sphere, which corresponds to different numbers of lamps, that are turned on within it. In a typical calibration experiment in the laboratory, the MSS is exposed to different intensities (radiances) from the sphere. For each output radiance level, R_j , C_i the integrating sphere, the MSS registers a digital count, V_j , that is obtained as an average over several mirror sweeps. During retrace motion of alternate scans (Figure 4-1), the shutter wheel within the scan mirror assembly is used to transmit light from the internal lamp through a graded density filter. This produces a wedge-shaped signal from the internal lamp. Because of hysteresis effects, detector readings for any given word location on the wedge will be different, corresponding to different radiance levels from the integrating sphere. Figure 4-2 conceptually shows how detector readings, Q_{ij} , corresponding to internal lamp wedge word location, i,

Figure 4-1. Systematic MSS Video and Wedge Level Timing Sequence

for different integrating sphere radiance levels, j, may change due to hysteresis. Similarly, the digital readings V_i for the sphere radiance levels R_i are also affected by hysteresis.

During calibration analysis in the laboratory, corrections to hysteresis effects are made to V_j 's to obtain adjusted, digital values, VA_j , for each radiance level R_j . A linear transformation between VA_j and R_j is then assumed. Using the coefficients of this transformation (which are evaluated), the radiance, R_i , at the internal lamp wedge word locations is calculated. Radiance values corresponding to six preselected word locations on this wedge are then used to compute the gain and offset of the detector. Details of this procedure are presented as six distinct steps in the following section.

4.2 CALIBRATION PROCEDURE

The entire calibration process involves the following steps for each detector of each band.

STEP 1: Determination of Equivalent Radiance of the Integrating Sphere

The integrating sphere was calibrated at CSFC using a grating spectroradiometer, by comparing the output from the sphere with that of a standard of spectral irradiance (Reference HS 248-5660-3-1). The integrating sphere uses tungsten lamps that are not spectrally flat. The equivalent spectrally flat radiance of the integrating sphere must therefore be determined independently for each detector within a band. The equivalent spectrally flat radiance of the integrating sphere for any detector is determined from

$$R_{jk} = BW_{k} \frac{\int_{RW_{j}} RSR_{k} d_{\lambda}}{\int_{RSR_{k}} d_{\lambda}}$$
(4-1)

where

R_{jk} = equivalent spectrally flat emittance for integrating sphere level j (mW/cm² sr) for detector k

BW = bandwidth of detector k at 50 percent of peak value

 RW_j = spectral radiant emittance of the integrating sphere for level j (mW/cm² μ sr). A plot of RW_j versus wavelength is shown in Figure 4-3.

RSR_k = relative spectral response of detector k (dimensionless)

STEP 2: Selection of Calibration Wedge Words for Each Band

During the retrace interval of alternate scans, a shutter wheel closes off the optical system's view of the scene. At this time, light from an internal lamp is projected into the sensor through a graded density filter that resides on the shutter wheel. This produces a unique wedge-shaped video data stream at each detector. The detector responses at six word locations on this calibration wedge are selected to represent sample video data from the internal lamp. These word counts are referenced to the first sample on the leading edge greater than level 32 (see Figure 4-4). The particular word locations are selected on the basis of the following factors:

- Temperature Effects—Detector gains and offset are a function of temperature.
- Detector Aging-Previous detectors have experienced long-term drift effects, particularly for Landsat 1, channel 13.
- Hysteresis-Detector gain changes as a function of incident radiance.
- Vacuum—Detector gain and offset shift somewhat when the MSS is introduced to the vacuum conditions of space.

STEP 3: Adjustment of Integrating Sphere Video Levels

As the system is run through a sequence of radiance levels R_j from the sphere, average video digital counts V_i corresponding to a radiance level R_i (as seen in the scene) must be adjusted to

Figure 4-3. Spectral Radiant Emittance Plot for 76-cm Integrating Sphere

Figure 44. Illustrative MSS Lamp Calibration Wedge

.1

compensate for the effects of detector hysteresis. If Q_{ij} is the calibration wedge digital count for the ith calibration word location, corresponding to the jth radiance level from the sphere, then

$$\overline{Q}_{i} = \frac{1}{n} \sum_{j=1}^{n} Q_{ij}$$
 (4-2)

is the average wedge digital count for wedge word location i. Assuming a linear relationship between \overline{Q}_i and Q_{ij} ,

$$Q_{ij} = a_j + b_j \overline{Q}_i \tag{4-3}$$

It should be noted that GE used 14 word locations (i = 1 ... 14) on the internal lamp wedge and 9 radiance levels (j = 1 ... 9) from the integrating sphere.

Summing overall word locations (i) for a given level (j) produces

$$\sum_{i=1}^{m} Q_{ij} = ma_{j} + b_{j} \sum_{i=1}^{m} \overline{Q}_{i}$$
 (4-4)

Equation (4-3), when multiplied by \overline{Q}_i and summed over i, yields

$$\sum_{i=1}^{m} \overline{Q}_{i} Q_{ij} = a_{j} \sum_{i=1}^{m} \overline{Q}_{i} + b_{j} \sum_{i=1}^{m} (\overline{Q}_{i})^{2}$$
(4-5)

Equations (4-4) and (4-5) are solved simultaneously for a_i and b_i.

This produces

$$a_{j} = \left[\sum_{i=1}^{m} \overline{Q}_{i}^{2} \sum_{i=1}^{m} Q_{ij} - \sum_{i=1}^{m} \overline{Q}_{i} \sum_{i=1}^{m} \overline{Q}_{i} Q_{ij} \right] / D_{1}$$
 (4-6)

and

$$b_{j} = \left[m \sum_{i=1}^{m} \overline{Q}_{i} Q_{ij} - \sum_{i=1}^{m} \overline{Q}_{i} \sum_{i=1}^{m} Q_{ij} \right] / D_{i}$$
 (4-7)

ORIGINAL PAGE IS

where

$$D_i = m \sum_{i=1}^m \overline{Q}_i^2 - \left(\sum_{i=1}^m \overline{Q}_i\right)^2$$
 (4-8)

It should be noted that since the coefficients a_j and b_j connect individual Q_{ij} 's with the average \overline{Q}_i , b_j should be near unity and a_j should be very small. The coefficients a_j and b_j can now be used to adjust the integrating sphere video digital values V_j to correct for hysteresis effects.

$$V_i = a_i + b_i V A_i$$

STEP 4: Equivalent Radiance (R_i) Values at Wedge Word Locations

Assume that a linear relationship exists between adjusted video digital count VA_j and the corresponding radiance level R_j of the sphere. Or,

$$VA_i = p + q R_i \tag{4-9}$$

The values p and q are solved by a least-squares fit (as before for a_j and b_j) of the data sequence over j. Assuming that these detector transfer coefficients apply to the calibration lamp, an equivalent calibration lamp radiance can be calculated for each of 14 wedge-word location i from

$$R_i = \frac{\overline{Q_i} - p}{q} \tag{4-10}$$

STEP 5 Calibration Coefficients C_i and D_i

From the 14 radiance values computed in equation (4-10), six radiance values corresponding to previously prescribed word locations are chosen, and a new linear relationship is assumed between these six radiance values and the corresponding average wedge digital counts \overline{Q}_1

where

$$\alpha = \sum_{i=1}^{6} \overline{Q}_i C_i$$
 ... the offset

 $\overline{Q}_i = \alpha + \beta R_i$

$$\beta = \sum_{i=1}^{6} \overline{Q}_{i} D_{i}$$
 is the gain

where

$$C_{i} = \left(\sum_{i=1}^{6} R_{i}^{2} - R_{i} \sum_{i=1}^{6} R_{i}\right) / K_{1}$$

$$D_{i} = \left(6R_{i} - \sum_{i=1}^{6} R_{i}\right) / K_{1}$$

$$K_{1} = 6\sum_{i=1}^{6} R_{i}^{2} - \left(\sum_{i=1}^{6} R_{i}\right)^{2}$$

These are the calibration coefficients.

It should be noted that all the foregoing computations are performed to produce six C_i 's and D_i 's for each channel of every band (Figure 4-5).

STEP 6: Sensor Transformation Equation

Since the six detectors of a given band have different gains and offsets, the detectors may saturate at different input radiance levels. Similarly, zero digital values may result at different low-input radiance for different detectors. This will cause striping. To eliminate striping, each detector response for the set of six detectors in a band is mapped to a common band calibration curve. To achieve this, first identify the detector that saturates first. Let R_{max} be the radiance value slightly

Figure 4-5. Band Normalization of MSS Channel Gains and Offset

lower than the lowest incident radiance that saturates this detector. Let R_{\min} be the radiance slightly higher (chosen from experience to be 10 percent higher) than the highest value of input radiance that produces zero output from one detector. Let V_{\max} (typically 127 for the logarithmically compressed modes for bands 1, 2, and 3) be the maximum digital count from the detectors (after decompression). Let R be apparent input scene radiance and V_o be the actual observed video digital count corresponding to R. Then, the corrected video digital count V_c corresponding to input R is given by

$$V_c = \frac{V_{max}}{R_{max} - R_{min}} (R - R_{min})$$
 (4-12)

From equation (4-11), Vo and R are related by the equation

$$V = \alpha + \beta R$$

or

$$R = \frac{1}{\beta} (V_o - \alpha) \tag{4-13}$$

Substituting in equation (4-12),

$$V_{c} = \frac{V_{max}}{R_{max} - R_{min}} \left(\frac{V_{o} - \alpha}{\beta} - R_{min} \right)$$
 (4-14)

Equation (4-14) maps all six detectors to one straight line defined by the points (R_{min} , o) and (R_{max} , V_{max}) in the (R, V) plane. Equation (4-14) can be rearranged to read

$$V_{c} = \frac{V_{max}}{\beta'}(V_{o} - \alpha') \tag{4-15}$$

ORIGINAL PAGE IS OF POOR QUALITY

where

$$\alpha' = \alpha + \beta R_{\min}$$
 (4-16)

$$\beta' = (R_{max} - R_{min})\beta \tag{4-17}$$

Since

$$\alpha = \sum_{i=1}^{6} C_{i} \bar{Q}_{i}$$

and

$$\beta = \sum_{i=1}^{6} D_i \widetilde{Q}_i$$

it can be written

$$\alpha' = \sum_{i=1}^{6} C_i \, \overline{Q}_i + R_{\min} \sum_{i=1}^{6} D_i \, \overline{Q}_i$$

$$\beta' = (R_{max} - R_{min}) \sum_{i=1}^{6} D_i \overline{Q}_i$$

New regression coefficients can be defined as

$$C_i' = C_i + R_{min} D_i$$
 (4-18)

$$D'_{i} = (R_{max} - R_{min}) D_{i}$$
 (4-19)

so that

$$\alpha' = \sum_{i} C'_{i} \bar{Q}_{i} \tag{4-20}$$

ORIGINAL PAGE IS OF POOR QUALITY

$$\beta' = \sum D_i' \, \overline{Q}_i \tag{4-21}$$

These are modified regression coefficients used postlaunch.

It should be noted that the scanner subsystem contains two lamps: primary and secondary. Calibration procedures described are performed for both the lamps. However, during flight operations, the secondary lamp is used only when major problems with the primary lamp are observed.

For bands 1 through 3, commutated samples of video are normally directed to a logarithmic signal compression amplifier and then to the encoder. No signal compression is performed on band 4. A high-gain mode can also be applied to band 1 and 2 voltages before analog-to-digital conversion. Calibration coefficients, C'_i and D'_i , are therefore obtained for the low-gain compressed mode for bands 1 through 3, linear quantized mode for band 4, and high-gain compressed mode for bands 1 and 2.

SECTION 5

POSTLAUNCH MSS RADIOMETRIC PROCESSING

5.1 INTRODUCTION

Radiometric correction consists of a prelaunch and a postlaunch part. in the prelaunch part, as described in Section 4, the internal calification lamps are calibrated using an integrating sphere with known radiance values. Regression coefficients (C_i' and D_i') are derived that are used in computing postlaunch voltage (digital counts) radiance curves. Postlaunch radiometric processing involves determining the video count-radiance curves for each detector using the calibration lamp data either alone or in combination with the scene content data. The final result is a Radiometric Lookup Table (RLUT) that allows a radiance value to be assigned to each detector reading. Computing and applying the RLUT values to produce imagery constitute the MSS radiometric correction.

The steps in the process are shown in Figure 5-1. The detectors are exposed to the internal calibration lamp every other sweep. During each calibration, the internal lamp radiance is modified by a neutral density filter producing a variation from full radiance to zero. At six prechosen calibration wedge word locations, the detector output is sampled. The digital counts combined with prelaunch regression coefficients determine the slope (i.e., gain) and bias (offset) for a linear detector output versus radiance relationship. This calibration is performed for each segment of a scene at a time. Note that at present it has been decided that each MSS scene will be divided into four segments for calibration procedures. The internal calibration could be used directly to produce RLUT's. However, there will be some residual error in the internal calibration procedure that will result in residual striping. An additional calibration, referred to as scene content or histogram calibration, is applied to improve the RLUT's. This scene segment calibration methodology differs from the scan-by-scan calibration scheme used for Landsats 2 and 3

Figure 5-1. Flow Diagram for Postlaunch Radiometric Calibration

5.2 RADIOMETRIC CORRECTIONS

During each forward scan of the mirror (in-flight), approximately 3000 6-bit samples are taken from each detector. In every other scan during the retrace part of the mirror, six calibration wedge values (from the internal lamp) for each detector are measured. The detector output for bands 1, 2, and 3 is normally compressed (logarithmically amplified) before sampling. During ground processing, the 6-bit digital samples are decompressed to 7 bits (0 to 127) using decompression tables established during the prelaunch calibration. Band 4 is always 6-bit linear and is expanded to 7 bits for display during ground processing.

Radiometric correction is achieved in two steps: (1) radiometric correction using calibration wedge data only and (2) radiometric correction using scene content.

5.2.1 RADIOMETRIC CORRECTION USING CALIBRATION WEDGE DATA

First, the scenes are divided into either one, two, four, or eight (usually four) image segments per scene. For a given segment, each of the six calibration wedge values for each detector is averaged over the segment. Using these average values and the prelaunch linear regression coefficients C'_i and D'_i , initial values of the gain G and offset B for each detector are calculated:

$$G = \sum_{i=1}^{6} D_i' \overline{V}_i$$
 (5-1)

$$B = \sum_{i=1}^{6} C_i' \overline{V}_i$$
 (5-2)

where \overline{V}_i is the average value of calibration wedge data. An RLUT that converts output digital samples to estimated radiance samples (for an N-level display) is then generated:

$$RLUT (i) = (i-1-B)/G \text{ for } 1 \le i \le N$$
 (5-3)

and rounded off to the nearest integer. Here N = 127. The lookup table must now be truncated for the following reason: It may occur that the detector's saturation output sample value conseponds to a radiance value less than 127. Then, the imagery will appear striped in high-radiance areas. Similarly, it may occur that some detector's zero output sample value may correspond to a radiance value greater than zero. In that case, the imagery will appear striped in low-radiance areas. To avoid this striping, the lookup table must be truncated to display the imagery over a common radiance range. Some residual striping will still remain due to nonlinearities, quantization, hysteresis, or calibration source variation, etc. The lookup table can no v be adjusted using scene content on the following assumption: over a "large enough" segment of the imagery, each detector statistically sees the same distribution of radiance.

5.2.2 RADIOMETRIC CORRECTION USING SCENE CONTENT

For a given image segment, the observed statistics of a detector's digital output are contained in the sample histogram Vh (i, j). This histogram is the number of occurrences of the digital sample (i - 1) for the jth detector over the entire image segment. It has been suggested by GE that it is not necessary to use every sample from the detector to generate this histogram. In a test case with Landsat-3 data, GE found that no performance degradation was noted even for histograms generated from as few as every sixteenth sample. This sample reduction for histogram generation has obvious benefits for high-speed processing.

Using the lookup table discussed above (equation (5-3)), an estimated input radiance histogram rh (i, j) can be generated for each detector in a band. The histograms for the detectors are again truncated to a common radiance range. The next step is to compute an average radiance histogram for a band from the input radiance histograms of the six detectors in the band

$$\overline{rh}(i) = \frac{1}{6} \sum_{j=1}^{6} rh(i, j)$$
(5-4)

To remove striping, the following algorithm can be used:

- a. Equalization of Average and Standard Deviation—In the following, the indexe 1 and j will be suppressed, remembering that calculations for the new gain and offset refer to an individual detector. Let
 - r = truncated input radiance histogram for the jth detector
 - z = average of the six histograms for a band as defined in equation (5-4)

Now demand that

$$z = g * r + b \tag{5-5}$$

Parameters g and b are obtained by equating the mean and standard deviation of both sides of this equation. Therefore,

$$Avg(z) = Avg[g * r + b] = g * [Avg(r)] + b$$
 (5-6)

$$Var(z) = Var(s * r + b) = g^2 * Var(r)$$
 (5-7)

or

$$Std(z) = g \cdot Std(r)$$
 (5-8)

so that

$$g = Std(z)/Std(r)$$
 (5.9)

and

$$b = Avg(z) - gAvg(r)$$
 (5-10)

Here, Avg, Var, and Std refer to average, variance, and standard deviation.

The calculated values of g and b can now be used to compute the new gain G' and offset B' for the jth detector. The radiance values r corresponding to digital outputs from the jth detector are obtained from

$$r = (V-B)/G \tag{5-11}$$

where G and B have been calculated from the calibration wedge data and the regression coefficients C'_i and D'_i . Now

$$z = g * r + b = g * [(V-B)/G] + b$$

 $z = (V-B')/G'$ (5-12)

where G' and B' are the scene-adjusted gain and offset for the jth detector given by

$$G' = G/g$$

$$R' = R - b * G'$$
(5-13)

With this new gain and offset, the procedure of deriving a lookup table and obtaining truncated, estimated input radiance can be iterated. Because of integer lookup-table roundoff and common radiance range truncation, the average and standard deviations of the updated estimated input radiance histograms do not generally equal that of the original average histogram. The destriping can be improved by iterating (as shown in the schematic diagram of Figure 5-2) the scene content correction.

For illustration purposes, calculation for Avg, Var, and Std for r will now be shown. Let

r = rh(i, j) = truncated estimated input radiance for the jth detector

Then

sum (j) = number of pixel samples from the jth detector

Figure 5-2. Flow Diagram of Scene Content Correction Processing

.

$$sum (j) = \sum_{i=1}^{N} rh (i, j)$$

$$Avg (j) = Avg (r) = \sum_{i=1}^{N} (i - 1) rh (i, j) / Sum (j)$$

$$Var (j) = Var (r) = \sum_{i=1}^{N} [i - 1 - Avg (j)]^{2} rh (i, j) / Sum (j)$$

$$Std (j) = Std (r) = \sqrt{Var (j)}$$

b. Image Segment Blending—It has been previously mentioned that each scene is divided into several segments. When viewing the displayed imagery, there should be no evident radiance level discontinuities between segments (i.e., the imagery should blend evenly with those of the adjacent image segments). To blend the imagery from adjacent image segments, each segment is divided into subsegments, and lookup tables for these subsegments are computed by interpolating the gains and offsets between image segments. The interpolation uses a weighted average of the segment gains and biases to compute gains and biases for the boundary subsegments. An example of interpolating gain and bias in the case of three subsegments per processing segment is shown in Figure 5-3.

5.3 DETECTOR GAIN AND OFFSET UPDATE

For any given band, the gains and offsets of detectors can have too much of a spread between them. A method is then needed to adjust the calibration equations to achieve reduced striping. The method used introduces multiplicative and additive modifiers (M and A) in the equation for the corrected digital value derived in subsection 4.2. In subsection 4.2, the corrected digital value has been shown to be (equation (4-15))

$$V_c = \frac{V_{max}}{\beta'} (V_o - \alpha')$$

EXAMPLE OF SEGMENT BLENDING WITH NUMBER OF SEGMENTS = 4 NUMBER OF SUBSEGMENTS/SEGMENT = 3

Figure 5-3. Scene Segment Blending

where β' and α' are gain and offset, and V_o is the uncorrected digital value. $V_{max} = 127$. The modifiers M and A are introduced in the foregoing equation to make it read as

$$V'_{c} = \frac{V_{max}}{MB'} (V_{o} - \alpha') - A = \frac{V_{c}}{M} - A$$
 (.-14)

To find M and A, a detector's mean radiance (over a flat radiance region) is plotted against the band mean radiance for several radiance levels. Linear regression yields a slope μ and an offset α for each detector mean radiance $(\overline{V}_c)_{det}$ as a function of the band mean radiance $(\overline{V}_c)_{band}$

$$(\overline{V}_c)_{det} = \mu (\overline{V}_c)_{hand} + \alpha \tag{5-15}$$

The goal is to have the detectors in the band calibrated so that they all yield the band mean value when exposed to a flat radiance level. Therefore, the adjusted radiance, $(\overline{V}_c)'_{det}$, is given by

$$(\overline{V}_c)'_{det} = (\overline{V}_c)_{band} = \frac{(\overline{V}_c)_{det} - \alpha}{\mu} = \frac{(\overline{V}_c)_{det}}{\mu} - \frac{\alpha}{\mu}$$
 (5-16)

Comparing this equation with equation (5-14), it can be seen that

$$M = \mu$$
 and $k = \frac{\alpha}{\mu}$

The calculated values of M and A are stored in a file. By using these modifiers, the corrected digital count for each detector is $(\overline{V}_c)'_{det}$. If, at a later time, significant striping occurs, then the M and A for the detector will have to be updated by iterating the above procedure. For this second time, $(\overline{V}_c)'_{det}$ acts as the old (before correction by M and A) $(\overline{V}_c)_{det}$, and it can be written for the second iteration

$$(\overline{V}_c)_{det}^{"} = \frac{(\overline{V}_c)_{det}^{\prime}}{\mu^{\prime}} - \frac{\alpha^{\prime}}{\mu^{\prime}}$$
 (5-17)

where μ' and α' are the new slope and offset. μ' and α' can again be determined by regression analysis as before, and the updated M' and A' can be shown to be

$$M' = \mu' M$$

$$A' = \frac{A}{\mu'} + \frac{\alpha'}{\mu'}$$

In general, it can be shown that for subsequent iterations

$$M_{i+1} = \mu_{i+1} M_i$$

$$A_{i+1} = \frac{A_i}{\mu_{i+1}} + \frac{\alpha_{i+1}}{\mu_{i+1}}$$

This update is intended as a long-term improvement. In contrast, scene content correction relates only to a specific scene segment. Presumably updating M and A will remove detector response changes before the scene content correction.

5.4 R_{max} AND R_{min} UPDATE

The modifiers M and A can also be used to update the values of R_{max} and R_{min} discussed in subsection 4.2, equation (4-12). Using modifiers M and A, the corrected digital value has been shown to be

$$V'_{c} = \frac{V_{\text{max}}}{M \beta'} (V_{o} - \alpha') - A \qquad (5-18)$$

If R'_{max} and R'_{min} are the adjusted cutoff values of the radiances, then analogous to equation (4-12) can be written

$$V_{c}' = \frac{V_{\text{max}} (R - R_{\text{min}}')}{R_{\text{max}}' - R_{\text{min}}'}$$
 (5-19)

From equation (4-13),

ORIGINAL PAGE IS OF POOR QUALITY

$$R = \frac{V_o - \alpha}{\beta}$$

It should be noted that V_0 is the uncorrected digital count and β and α are the uncorrected gain and offset. Substituting these in equation (5-19) yields

$$V'_{c} = \frac{V_{max} (V_{c} - \alpha - \beta R'_{min})}{\beta (R'_{max} - R'_{min})}$$
 (5-20)

Now

$$\alpha' = \alpha + \beta R_{min}$$

 $\beta' = (R_{max} - R_{min}) \beta$

Substituting for α and β from this equation in equation (5-20) yields

$$V'_{c} = \frac{V_{\max} (V_{o} - \alpha')}{\beta' \left(\frac{R'_{\max} - R'_{\min}}{R_{\max} - R_{\min}} \right)} - V_{\max} \frac{R'_{\min} - R_{\min}}{R'_{\max} - R'_{\min}}$$

Comparing with equation (5-18), it can be written

$$M = \frac{R'_{max} - R'_{min}}{R_{max} - R_{min}}$$

$$A = V_{max} \left(\frac{R'_{min} - R_{min}}{R'_{max} - R'_{min}} \right)$$

Knowing M and A, R'_{max} and R'_{min} can now be solved. This process can be iterated just as M and A are updated through an iterative process.

SECTION 6

LANDSAT-4 IMAGE PROCESSING DATA

6.1 IMAGE PROCESSING PARAMETER FILES

Data to be discussed in this section include all parameters used in the MSS Image Processing System (MIPS) and carried in either long- or short-term files. Some of these data are unique to the radiometric response of the sensor. Others are required to gain a more complete understanding of the total MSS image processing scheme used by the Landsat-4 ground data production system.

6.2 SHORT-TERM PARAMETER FILE

The first data set is labeled "Active Detector Status." These data (refer to Table 6-1) carry the nominal calibration values used for MSS radiometry for each sensor. Furthermore, data have been presented for each mode of sensor operation using both the primary calibration lamp (lamp A) and the secondary lamp (lamp B).

Reference to the table can best be illustrated by example. The top row of the table contains six nominal calibration data values for each detector of band 1 when used in the high-gain, linear mode of operation while viewing lamp A. It should be noted, for example, that the numbers can be rearranged as follows:

Detector 1	42	40	38	35	2	2
Detector 2	42	39	38	35	2	2
Detector 3	43	41	39	37	2	2
Detector 4	43	41	38	36	2	2
Detector 5	41	39	37	33	2	2
Detector 6	42	40	38	36	2	2

During radiometric data processing, these tables are referenced. When processing band-1 data in the high-gain, linear mode, the six dynamic calibration values acquired for each of the first band's detectors are compared against this table. If, for example, band 1 sensor 1 has a dynamic calibration response in excess of either of the numbers 42, 40, 38, 35, 2, or 2 by more than six levels.

Table 6-1 Calibration Nominal Values Used in Each: Mode of Sensor Operation

ACTIVE DETECTOR STATUS: ANABABABABABABABABA

1	~	-	~	+		~	~	~	•		•	~	~	•		×	•	-	~		~	~	~	•		~	~	_	₹		•	•	٠	•		n	•	•	•
,	~	~	~ ,	•		~	~	~	~		w	s,	•	4		•	-	•	4		~	~	~	-		~	_	~	•		9	•	~	•		*	•	~	•
			42					7					21			9	75	51	0		33	33	7	36		=	7	† 2	36		9	-	\$	36		=	20	6	•
		_	'n	~		~	-	ts.	~		9	s	23	~		_	~	2	~		•	_	\$	•		_	~	5	•		_	•	2	•		•	2	_	•
	0	•	7 4	•		•	٠	_	s			_	5.5	S		•		55	•			~	Ç	0		-	•	Ç	0			0	52	0		_	3	~	•
	~	~	•			•	ō	•			Ġ	•	_	-		_	9	5.			=	'n	64	~			0	-	~		0	_	•	~		_	n	-	~
			2 5					2					2			-	-	-					~					~					9				8		
	~	~	~	•		~	~	_	•		'n	va	•	-		'n	_		-		~	•	~	•		~	~	_	~		•	•	_	~		v	•	_	•
	—	_	_	,5		•	0		0			_		•		_		_	0				٥			0	0	0	5		S	80		'n		_	-	-	•
			7				•	7 ~	-				~			'n	~	3	~		-		+	_		~	_	~	~		9	9	4	~		•	•	6	_
1	~	~	ب ب	~ ,		•	•	8	•				S S					5				0	5	•				2					*			-	~		
•	~	~	, e	~		•	•		•		*	*	2	*		•	•	2 5			•	~	7	~			-	4					~				2		
•	*	*	÷ m	•		•	•	÷	*		*	*	is •	*		*	'n	2	~		•	•	_	•		•	•	7	₹.		•	•	9	*		r	5	S	•
			~										-					•				•	_	_				_					_				•		
								^					_					_					_					_									•		
•	_	~	\$	•		*	~	7	*		•	•	25	•		•	L7	200	•		_	~	-	*		•		-	~		•	•	-	4		•	÷ R	•	4
•	Pì	47	A. A.	•		~	*	+	*		•	•	S	•		v	80	~	4		~	~	9	~		•	~	÷	*			•	ត			80	÷	8	•
•	•	~	46	*		•	*	9 +	~		*	*	10	*		S	ĸ	7 55	~		•	-	~	~		*	~	2	•		•	77	~	٠ -		S	\$ 7	S	*
•	•	~	49	ĸ		•	*	7.9	83		ĸ	7	57	w		r.	Ġ	S	IJ		~	4	=	*		*	•	4	*		K 7	₹	ĸ	*		2	2	5	*
(~	-	_	40		~	.74	~	W)				0					•					_					~					_				٠.		
			•			~	~		83				•					•				-	_	-				_					•				'n		
1	1	~	5	9				45					53			~	•	ŝ	•			~	Ŧ	•		4	~	*	*		~	*	50	3		*	4.5	S	•
			£1					+			*	*	5.4	•		80	'n	5	*		*	~	+1	•		•		+	~		*	*	52	•		8	4	S	•
:	÷	23	49	52				6			#		ٽ 5			5	S	56	52		•	~	49	4		4.	*	4	*		*	*	3.4	4		ĸ	43	٠.	*
			52			7	Ŧ	52	55 55	3	50	46	ۍ ق	5.5	~			5.8			7	39	53	5				25							•		5		
~	~	~	_	S)	_	~	~	~	80	AND	'n	^	•	A.	Q.	n	9	_	€,	6	~	•	~	~		(4	7		~	2 4 4	9	•	•	*	ă.	'n	80	9	•
G.	~	~	~	₩)	«	~	~	~	'n	2.	•	*	45	8	£.	ń	-	•	S	ů.	~	•	_	~	G 1	~	~	~		Ġ					۲٦.				
	3	35	£ 3		13 H	Ç	42	÷	7	388	*	+	\$	4				52		۲Ţ.	3.6	2	+1	33	χ. .:		42		~	6) (3	•	4	•	~	360	•	~	7	~
. Y			Ş	9	5	45	Ţ	46	45	386	4		54	\$		49	5.5	4	9	EFR		39	*	Ŧ			7	7	-						RES				
			¢,		20.5				49	100	+1	47	¥;	63	Z X C	50	5	5	C	Ξ.	Ç	=	17	÷	HE	4	+	7	4.4	200	-	7	\$2	÷	920		25		
=	•	•		S	:	•	S	רו	S	Ξ	•	4	w	~)	.:	~	40	S	S	Ξ	~	•	•	*	د د	*	*	•	~	Ξ	•	Ś	S	*	Ž	5	a)	RJ.	~
3	~	_	~	S	•	~	~	~	•	3	*	~	~	Ю	245	•	•	-	ĸ7	3	~	~	~	•	C 1 1	~	~	~	•	รี	47	•	_	•	275	S	r3	_	•
			~					~		Ö					×					Š					*			~	1	2				*	Ξ		•		
Ξ.		~	4	4	~	~	~	*	*	•	~	*	N.	•	<u> </u>	•	27	•	•	~	_	_	•	_	~	•	_	•		~	•	•	•	~	3	•	•	_	,
v,	8	3	9.	4 8	ć.	=	;	9	E	-	4	Ç	25	9	í. P	4	\$	25	œ Ŧ	G	33	3.1	÷	•	Ğ	13	-	?	•	6) i	£	£	~	Ţ	350	6	4	5	=
2	9	36	43	ភ	252	* *	43	?	5	3 JA	-	4.5	*	5	#Et	3	Š	2	ร	02.1	-	8	+1	•	S X	2	7	41	•	ū	2	46	25	÷	NE	S	20	\$ 5	=
		~	0	n	3	•	'n	0	v	_:	c	~	S	Š	ب	7	-	ń	'n	ڊ	~	_	0	۰	ني	_	9	-	٠.	٠	0	9	7	<u>9</u>	74	_	~	-	9

ORIGINAL PAGE IS OF POOR QUALITY

the system will default to the nominal value. Using data in this table, the nominal response for every mode of sensor operation can be applied during routine MSS data processing operations.

6.3 CALIBRATION MODIFIERS

As the system ages, it is expected that some degradation in apparent sensor response will occur. This can be due either to sensor electronics, variation in output from the calibration lamp, or a combination of factors of this type. The result can be a pronounced video striping effect. Rather than recalibrating with mathematical procedures developed for prelaunch data, NASA has determined, using Landsats 1, 2, and 3, that calibration modifiers for both gain and offset parameters can be derived that significantly reduce visual striping. Before launch, the following relationship is used:

$$[V] = \frac{127}{M\beta'} (V_o - \alpha') - A$$

where

M = 1

A = 0

[V] = output digital level

 $V_a = sensor voltage$

 β' = sensor gain factor

 α' = sensor offset factor

Postlaunch studies generate new values of M and A to minimize striping effects. Data of this type are carried in a dated file. The information presented as Table 6-2 was current as of January 25, 1983. At that time, values for M and A in the high-gain mode of operation were not available.

ORIGINAL PAGE IS OF POOR QUALITY

Table 6-2 Multiplicative Modifiers (M) and Additive Modifiers (A) Currently Used in MIPS

.9870 1.0030	.0000 1.0000	1,0202	900	.0000 1.0000	.0000 1.0000	.0000 1.0000	.0000 1.0000	0.000 0.0000	0.0000 0.0000	.0800 -0.1760	9.0	0.000 0.0000	000000000000000000000000000000000000000	0.0000 0.0000	0.0000 0.0000
0.000.8 0.00.00.8	1.0000 1.0	1.0000 1.00001	. 00500	1.0000	1.0000 1.0	1.0000 1.0	1.0000 1.0	0.0006 0.0	0.0000 0.0	0.0000 0.0	-0.075# 0.26 -0.0430 0.08	0.0000 0.0	0.0000000000000000000000000000000000000	0.0000 0.000.0	0.0000 0.0000
1.0000	1.0000 0.9950	1,0000	200	0000	1.0000	1.0000	1.0000	0.0000	0.000	0.0000	-0.3110	00000.7	0.0000	0.0000	0.000.0
1.0000	1.0000	1.0000	.994	0000	1.0000	00000	.0000	0.0000	0.000	0.0000	-0.1260	0.000	00000	0.0000	0.000
1.0000	1.0300	0.000	0.9900	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0540	0.000	000000	0.0000	0.000
.0000 1.0000	1.0000	1.0000	0.9160	.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	-0.0370	0.000.0	00000	0.0000	0.000
1.0000	1.0000	8.0000 0.8550	0.9100		1.0000	1.0000	0000.1	MEDGE) 0.0000 0.0000	0.000	0.0000	0.1060	000000	0.000	0000000	0.0000
1.0000	1.0000	1.0000	0.9130	1.0000	1.0000	1.0000	1.0000	ER AS CAL 0.0000 0.0000	00000.0000	0.000	0.1560	0.000	0.0000	0000.0	0.0000
0000	1.0000	1.0000	0.9160	1.0000	1.0000	1.0000	1.0000	(SANE ORDER 0.0000 0.0000	0.0000	0.0000	-0.0290 0.8790	0.0000	0.000.0	0.0000	0.0000
1.0000	1.0000	1,0000	0.9210	1.0000	1.0000	1.0000	1.0000	001FTERS 0.0000 0.0000	0.000	0.0000	-0.0930	0.0000	0.0000	0.0000	0.0000
1.0000.1.0000.1.	1.0000	1.0000	0.9310	1.0000	1.0000	1.0000	1.0000	ADDITIVE MODIFIERS 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	-0.1213	0.000	0.0000	0.0000	0.0000

Table 6-3 contains the next data set in the sequence carried in the short-term parameter file. For ease of presentation, these MSS Archive Generation (MAG) records have been merged into a single table. This data set is self-explanatory. Throughout the table, the following acronyms have been used:

ECC	Error Correction Count
CPN	Control Point Neighborhood
CP	Control Point
RLUT	Radiometric Lookup Table
R/C	Radiometric Correction
CC	Cubic Convolution
CPLB	Control Point Library Build
GCP	Geodetic Control Point
MACS	MSS Attitude Correction System
VRS	Vertical Resampling
SOM	Space Oblique Mercator
UTM	Universal Transverse Mercator
PS	Polar Stereographic
S/C	Spacecraft
HRS	Horizontal Resampling

6.4 LONG-TERM PARAMETER FILE

The long-term parameter file contain five unique records. Table 6-4 contains MIPS parameters relating to repeat performance and data processing required for day-to-day image generation.

Table 6-5 contains decompression tables for radiometry for bands 1, 2, and 3. Using band 1 as an example, Table 6-6 has been constructed from Table 6-5 to illustrate how the 64 multiplexer (mux) levels transmitted to the ground stations are expanded to produce data on the 0 to 127 scale.

Table 6-3 MIPS Parameters Record

**** MAG PARAMETERS RECURD *****		
(ICD RECORDS WAG-PAHI)		
INGEST ECC THE SHOLD	.5	FRAHES
OUTPUT FCC SURFSHOLD	3	FHAMES
INGEST MINOR FRAME STREET LOSS THRESHOLD	401	
INGEST MISSING SWEEP THRESHOLD MAXIMUM SUBSTITUTED LINES PER SCENE	100 2460	
TIRE INTERVAL TO COLLECT ECC COUNTS	0.5000000E+01	SECOTOS
CPH LINE SIZE	120	LINES
CPH PIXEL SIZE		PILELS
MAXIMUM GUBSITUTED LINES IN CPN CPN CLOUD COVER LOUER RADIANCE PERCENTAGE	0.000000F+00	LINES
CPH CLOUD COVER UPPER RADIANCE PERCENTAGE	0.0000000£+00	
OP CORR. PEAK HEIGHT TO MEAN ACCEPTANCE CRITERIA	0.3000005.01	SIRMA
CP CORR. SEC. PEAR HEIGHT ACCEPTANCE CRITERIA CP CORR. SUMPIXEL LOCATION ACCEPTANCE CRITERIA	0.20000005+01	SIGNA PITELS
th Chas, 2 metre meriting with the character rational	4 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	T & A
CP CORR. AT EDGE OF CPN ACCEPTANCE CRITERIA	0.5000000E+01	PIXELS
CP OUICK REG. CP CENTERED IN CPN CRITERIA	9.2000000E+02	PIXELS
CP PREFILTOR GUTLIER CRITERIA	0.300000E:01	5 i gha
FILTER OUTLIER CRITCRIA RUUT SEGNENTS PER SCENE	0.9210000E+01	
ALUT SUBSECHENTS OFR SCENE	ž	
R/C HISTOGRAM SWEEP SUBSAMPLE RATIO R/C HISTOGRAM PIXEL SUBGAMPLE RATIO	0.1000000E+01	
R/C HISTOGRAM PIXEL SUBGAMPLE RATIO		
HANIMUN KUNDER OF CAG KEDGE BUSSTITUTIONS	1201	
# OF SMEEPS TO INGEST TO ACCOUNT FOR PCS ERROR MAXIBUM ALLOWARDS LINE LENGTH ERROR	30	
HIGH THRESHOLD FOR CC EMHAM. ALGO. BAND 1	Õ	712004
LOW THRESHOLD FOR CC ENHAN. ALGO , BARD 1	Ò	
HIGH THRESHOLD FOR CC THIAR. ALGO MAND 2	0	
HIGH THRESHOLD FOR CC CHHAN. ALGO., 12 7 2 HIGH THRESHOLD FOR CC CHHAN. ALGO., BAND 3	0	
LOV THRESHOLD FOR CC SHAM. ALGO., BIND 3	0 0 0 100 20 100	
HIGH THRESHOLD FOR CC EMHAH. ALGO BAND 4	Ŏ	
LOW THRESHOLD FOR CC ENHAN. ALGO BAND 4	0	
HIGH THRESHOLD FOR CC CALC. ALGO., BAND 1 LOW THRESHOLD FOR CC CALC. ALGO., BAND 1	100	QUANTUM LEVELS
HIGH THRESHOLD FOR CC CALC. ALGO., BAND 2	20 100	CLEVEL HUTHAUD
LOW THRESHOLD FOR CC CALC. ALGO BAND 2	15	
HIGH THRESHOLD FOR CC CALC. ALGO BARD 1	100	QUANTUM LEVELS
LOW THRESHOLD FOR CC CALC. ALGO., BAND 3	4	
HIGH THRESHOLD FOR CC CALC. ALGO BAND 4 LOW FRESHOLD FOR CC CALC. ALGO BAND 4	100	QUARTUM LEVELS
HIGH THRESHOLD FOR CC REJECTION	0.50000000+00	Anduitou orieno
X VARIANCE OF CP DISLOCATION	0.4900000E-02	KH##2
Y VARIANCE OF CP DISLOCATION	0.7056000E-02	KM+*2
(ICD RECORD: MAG-PAR2)		
MEASUREPENT OF HOLSE HATRIX ELEMENT 1	0.7280000E-03	KH##5
MEASUREMENT OF HOISE MATRIX SLEHENT 2 HIGH THRESHOLD FOR SOGZ SHMARCKERT, BAND 1	0.7280000E-03	KH##2
LOW THESHOLD FOR EDGE EHRANCHOFF, SAND 1	100 16	
HIGH THRESHOLD FOR EDGE ENMANCHENT, SAND 2	100	
LOW THRESHOLD FOR EDGE EHMANCHENT. BAND 2	12	BIBYEL PUTBAND
HIGH THRESHOLD FOR EDGE EHHANCHENT, SAND 3	100	QUANTUM LEVELS
LOW THRESHOLD FOR EDGE EMMANCHENT, BAND 3	100	QUARTUM LEVELS
HIGH THRESHOLD FOR EDGE EHNANCHENT, BAND 4 LOW THRESHOLD FOR EDGE EHNANCHENT, BAND 4	100	QUANTUM LEVELS
LOW THRESHOLD FOR CHIP & NEIGHEDHICOD CORR.	0.1000000E+01	
LOW THRESHOLD NON-SUBS. REAL POINTS IN CORR.	0.0000000000000	
A PRIORI VARIANCE OF DITCH	0.2600000E-05	RAD##2
A PRIORI VARIANCE OF ROLL A PRIORI VARIANCE OF ROLL	0.1000000E-05	RAD##2
RADIAL DISPLACEMENT	0.1200000E-05	RAU+#2 kmc*2
PITCH RATE	0.100C000E-11	(RAD/SEC) **2
ROLL RATE	0.100000008-11	(RAD/SEC) ##2

ORIGINAL PAGE 18 OF POOR QUALITY

Table 6-3 (Continued)

• • • • • • • • • • • • • • • • • • •		
######################################		
(ICD RECORDS COLSPARM)	170	1.1.1.m
CPH BINE SIZE CPH PIXEL SIZE	120 128	LINES Plants
CP LINE SIZE	32	1.1 M . 5
CP PIXEL SIZE	12	PIXELS
CP ERROR EULIPSE ACCEPTANCS CRITESIA	0.46050008+01	
CP PEAN HEIGHT ACCUPTANCE CRITERIA	0.50000000:+01	
CP SEC. PEAK BEIGHT ACCEPTANCE CRITERIA	0.2000000+401	SIGHA
AN ANNALATAN ARRIVATINAS ANIMANIA	•	
CP DEVIATION ACCEPTANCE CRETERIA	1	BIGNA
CP CORR. SURFACE CURVATURE ACCEPTANCE CRITERIA CP SUSPINEL LOCATION ACCEPTANCE CRITERIA	D0+3000000.0	
FILTER OUTLIER CRITERIA	0.92100002+01	
NURBER OF GCPS REQUIRED TO GENERATE SCPS	0	
GCD QUALITY ACCUPTANCE CRITERIA	0.3000000E+01	
DIGITIZER CONSISTENCY CRITCRIA	0	
VARIANCE OF CP DISLOCATION IN X	0.4900000E-02	KH##7
VARIANCE OF CO DIULOCATION IN Y	0.7056000E-02	K###2
MEASUREMENT OF HOISE MATRIX ELEMENT 1	0.72300006-03	KH # # 2
REASUREMENT OF NOISE MATRIX ELEMENT 2		
A PRIORI VARIANCE OF PITCH	0.26000005-05	
A PRIORI TARIANCE OF YAM	0.1000000E-05	
A PRICHT VARIANCE OF ROLL RADIAL DISCLACEMENT	0.1200000E-05 0.1000000E-01	
PITCH RATE	0.1000000E-11	
ROLL RATE	0.1000000E-11	
Naga 11-10		(11.407.000)
##### PEPG PARAMETERS RECORD #####		

(1CD RECOUD! PERGRARA)		
SIZE OF X RESAMPLING BUFFER		PIXELS
SIZE OF Y RESAMPLING BUFFER	16	LIHES
**** 3/C AND INSTRUMENT RECORD *****		
****** ALC VEG TESTERNESS METERS AND ALLES		
(ICD RECORDS S/CLIUST)		
NORINAL PITCH	0.000000E+00	RADIANS
WONIKAL ROLL	0.00000002+00	RADIAHS
HONTHAL YAW	0.0000000000000	RADIANS
PITCH ALIGNHENT	0.4702700E-03	RADIARS
ROLL ALIGNHENT	0.2860400E-02	
TAN ALIGNRENT	0.54784002-03	
MACS PITCH ALIGNMENT NACS ROLL ALIGNMENT	0.0000000E+00	RADIANS
MACS YAW ALIGNMENT	0.900000E+00	RADIANS RADIANS
OF X BENCHMARKS (OUTPUT SPACE OR VRS)	61	Kuntunn
# OF Y BENCHMARKS (OUTPUT SPACE OR VRS)	44	
X DENCHMARK SPACING (DUTPUT SPACE OR VRS)	0.6000000E+02	PIXELS
T BENCHMARK SPACING COUTPUT SPACE OR VRS)	0.700000000+02	PIXELS
SCALE FACTOR FOR SOM	0.1000000000101	
SCALE FACTOR FOR UTH	0.9996000E+00	
SCALE FACTOR FOR PS	0.1000000E+01	
HALF FRAME TIME	0.1468400E+05	MSECS
TIME TO HIDSCAN MONEUT OF INERTIA OF MIRROR	0.1600000E+02 0.4100000E+01	HSECS
TORSIONAL CONSTANT OF MIRROR	0.2660000E+02	
MSS RAND SEPANATION (BAND 1)	0.0000000000000	
MSS DAND SEPARATION (CAND 2)	0.1950070E+01	
HSG DARD SUPARATION (DARO 3)	0 908408+01	
MSS DARD SEPARATION (BAND 4)	0.5040910E+01	PIXCLS
NOMINAL S/C VELOCITY	0.7500000E+01	KH/SECS
NOMINAL GROUND VELOCITY	0.6750000E+01	KM/SECS
ATCD DECORDS CACCERDED		
(ICD RECORD) S/CRIRS2) 6 OF IMPUT PIXELS SCIFEEN ALONG SCAN BENCHMARKS	0.01000000.00	Divere
# OF IMPUT LINES BETWEEN ALONG TRACK BENCHMARKS	0.4100700F+02 0.4800000E+02	PIXELS LINES
# OF OUTPUT PIXELS BETHEEN X BENCHMARKS	0.4000000000000	PEXELS
OF OUTPUT GIVES BETWEEN VERTICAL BENCHMARKS	0,7000000000000	LINES
OUTPUT PIXEL SIZE	0.57000008-01	KH
ACTIVE SCAN TIME	0.12100001-01	SECHNUS

Table 6-3 (Continued)

```
MONINAL TIME RETWEEN SWEEP STARTS
                                                       0.7342RGOE-01 SECONDS
MIDSCAN INDUT PIXEL VALUE
                                                       0.1620500E+04
# OF BORDER PLACES TO LOFT OF IMAGE FRAME
                                                       0.0000000000000
                                                                        PIXELS
DUTPUT PIXEL NUMBER FOR RIGHT BOLOER
                                                       0.354R000E+04
                                                                        PIXELS
INPUT PIXEL GUC. OF THE LEFT JYERLAP HARKS
                                                      -0.200C000E+02
INCUT PIXEL LOC. OF THE PICHT OVERLAP MARKS
                                                       0.3260000000004
INPUT LINE NUMBER OF LUNCH OVERLAP MARKS
                                                       0.21970001:+04
INPUT LINE NUMBER OF UPPER OVERLAP MARKS
                                                       0.2030000F+03
# OF DUTPUT LIKES ADOVE THE IMAGE FRAME # OF LAST LING OF THE FRAME
                                                       0.0000000E+00 LINES
                                                       0.2983000F+04
MAXIMUM ABSOLUTE VALUE OF HRS J DIFFERENCE
                                                       0.12000cnc+ca
MAXIMUM ADSOLUTE VALUE OF MAS-X DIFFERENCE MAXIMUM APSOLUTE VALUE OF VRS-Y DIFFERENCE
                                                       0.11000000:01
                                                       0.7600000E+00
MAXINUM AUGOLUTE VALUE OF VRS-X DIFFERENCE
                                                       0.12000006-01
MEAN VALUE OF HRS J DIFFERENCE
                                                       0.4800000E+02
HEAR VALUE OF HRS X DIFFERENCE
                                                       0.6000000E+02
MEAN VALUE OF IRS Y DIFFERENCE
                                                       6.7000000E+02
REAN VALUE OF YRS X DIFFERENCE
COORDINATE OF SCENE CENTER IN HRS GRID
                                                       0.6000000E+02
                                                       0.30550006+02
CHORDINATE OF SCENE CENTER IN VRS GRID
                                                       0.22300008+02
TIME DETHECH PIXELS
                                                       0.9958000F-05
                                                                       SECONDE
TIME RETWEEN SIC EPHENERIS POINTS
                                                       9.2048000E+01 SECONUS
TIME BETWEEN SIC ATTITUDE POINTS
                                                       0.5120000E+00
                                                                        SECUNDS
NO. OF SWEEPS PRIOR TO SC. CENTER IN USEFUL DATA
MONIHAL SCAN LINE AT SCENE CENTER (NADIRLINE)
                                                       0.1203500E+04
(ICD RECORD: S/CLSENS)
ROMINAL PIXELS PER INPUT LISE
                                                                 3240 PIXELS
OF INPUT LINES IN PARTIALLY PROCESSED INAGE
                                                                 2400
                                                                        LIRES
MONINAL SCALE OF TAPUT INTER-PIXEL DISTANCE
                                                       0.5700000E+03 HETERS
ROMINAL SCALE OF TYPUT INTER-GINE DISTANCE OF PIXEUS/OUTPUT LINE OF FULLY PROCESSED IMAGE
                                                       0.8270000E+02 METERS
                                                                 3548
                                                                        PIXELS
& OF LINES PER FULLY PROCESSED THAGE
                                                                 2983
                                                                        LINES
SCALE OF FULLY PROCESSED INTER-PIXEL DISTANCE ACALE OF FULLY PROCESSED INTER-GINE DISTANCE
                                                       0.5700000E+02
                                                                        METERS
                                                       0.570000000+02
                                                                        METERS
MONIBLE SPACECRAFT ALTITUDE
                                                       0.7053000E+06 HETERS
NOMINAL INDUT SWATH WINTH
                                                               105000 HETERS
                                                       0.2333900E+00
MSS MIRROR MODEL COEFFICIENT AO
MSS MIGROR MODEL COOFFICIENT AL
                                                       0.1749900E+02 RAD/SECS
KES BIRROR HUPEL COSFFICIENT AZ
                                                      -0.1615000C+02 MSECS
ME: MIRROR MODEL COEFFICIENT A3
                                                       0.9958000E-02 MSECS
MIS HAXINUH MIRROR ANGLE
                                                       0.1299000E+00 RADIANS
SEAN SKEW CONSTANT
                                                       0.1351350E-02
                                                                        RADIAHS
TIPE WETWEEN SUCCESSIVE SMEEPS
                                                       0.7342000E-01
                                                                        SECORUS
TIME FOR ACTIVE PORTION OF HIRROR SHEEP
                                                       0.3230000E-01
                                                                        SECOUDS
SENI-HAJOR AXIS OF CARTH (INT. SPHEROID)
                                                       0.43783882+04
                                                                        KHS
BEMI-WINOR AXES OF EARTH (INT. SPHEROID)
                                                       0.6356912E+04
EARTH CURVATURE CONSTANT
                                                      -0.1113315C-12
(ICD RECORD: SDBO
MSS SAMPLING DELAYS FOR DETECTORS ! THRU 24 (PIXCLS)!
           -0.2770005F+01 -0.2800465E+01 -0.2800525E+01 -0.2960305E+01 -0.2040245F+01 -0.2120105E+01
           +0.2720805E+01 +0.2800665E+01 +0.2880525E+01 +0.2860385E+01 +0.3040745E+01 +0.3120108F+01 +0.2720805E+01 +0.2800665E+01 +0.2880525E+01 +0.2850385E+01 +0.3040245E+01 +0.3120105 +01
           -0.2720805E+01 -0.2800665E+01 -0.2800525E+01 -0.2960305E+01 -0.3040245F+01 -0.31201027+01
                                                     0.1950070F+01 PIXELS
MSS BAND TO BAND OFFSET FUR HAND 2 (REL. TO 1)
MSS BARD TO BARD OFFSET FOR BARD 3 (REL. TO 1)
MSS BARD TO DAND OFFSET FOR BARD 4 (REL. TO 1)
                                                     0.1890040E+01 PIXELS
0.5840910F+01 PIXELS
```

Table 6-4 Additional MIPS Parameters

MIPS LONG TERM PARAMETER FILE MIPS_PARMS:ML4005.AM 25-JAN-1923 14:12:06.C0

ICFE MIPS LONGTERM PARAMETER RECORD LONGTERMS000 LONGTERH4000 1R44 EARTH ROTATION BETWEEN ASCENDING HODES (ARC-MIN) 1487.320 .: #4 ORBIT REPEAT CYCLE (DAYS) 16.00000 IR*4 ORBITS PER CYCLE 233.0000 IR#4 SATELLITE PERIOD (MINUTES) 98.08412 IR*4 INCLINATION OF ORBIT (DEGREES) 98.20000 IR#4 ECCENTRICITY OF EARTH ELIPSOID \$.1992000E-02 IR#4 ORBIT RADIUS (HETERS) 7003465. IR#4 LONGITUDE OF ASCENDING NODE PRIOR TO PATH 1 127.7605 IC42 TYPE OF SHPEROID .Б4 IR#4 EARTH RADIUS AT EQUATOR (KKS) 6378.388 IR#4 WRS SPACING AT THE EQUATOR (DEGREES) 1.545064 1144 NUMBER OF PATHS IN THE WRS 233 1144 NUMBER OF ROWS IN THE WRS 248 11+4 NUMBER OF ROWS IN THE DELTA EPHENERIS 16 1144 NUMBER OF COLUMNS IN THE DELTA EPHEMERIS 1144 NUMBER OF ROWS IN THE DELTA ATTITUDE 64 1144 NUMBER OF COLUMNS IN THE DELTA ATTITUDE IR#4 MIDDLE LINE HUMBER OF INPUT NOMINAL SCENE 1203.500 IR44 HIDDLE PIXEL NUMBER OF INPUT HOMINAL SCENE 1620,500 1144 HUNRER OF COLUMNS IN THE HRS 61 11+4 NUMBER OF ROWS IN THE HRS 51 1144 NUMBER OF COLURNS IN THE YRS 61 11+4 HUMBER OF ROWS IN THE YRS 44

ORIGINAL PAGE IS OF POOR QUALITY

Table 6-5
Decompression Tables for Bands 1, 2, and 3

DETINDRC4000					
1144 NOMINAL CAL	WEDGE WIND	OW SIZE			
6					
11#4 DECOMPRESSIO	ON TABLES F	OR BAHTS 1 A	ND 3. 64 VALU	Jes	_
0	1	2	3	3	4
5	6	7	8	9	10
11	12	13	14	16	37
18	20	21	22	24	26
27	29	J 1	33	34	36
38	40	42	44	46	45
50	52	54	56	59	62
65	67	70	73	76	79
82	85	8 8	91	94	96
99	102	105	108	111	£14
117	120	123	127		
1144 DECOMPRESSI	ON TABLE FO	R BAHD 2. 64	VALUES		
0	1	2	2	3	\$
5	6	7	8	C.	10
11	12	13	14	16	17
18	19	21	22	24	26
27	29	31	ži	3'4	36
38	40	42	44	46	40
49	51	54	56	59	61.
64	67	70	73	76	79
91	84	97	90	93	96
99	102	105	108	111	116
117	120	123	127		

ORIGINAL PAGE IS OF POOR QUALITY

Table 6-6
Decompressed Digital Values

Original	Decompressed	Original	Decompressed
0	0	32	42
i	1	33	44
	1	34	46
2 3	3	35	48
4	3 3	36	50
5	4	37	52
6	5	38	54
7	6	39	56
8	7	40	59
j 9	8	41	62
10	9	42	65
11	10	43	67
12	11	44	70
13	12	45	73
14	13	46	76
15	14	47	79
16	16	48	82
17	17	49	85
18	18	50	88
19	20	51	91
20	21	52	94
21	22	53	96
22	24	54	99
23	26	55	102
24	27	56	105
25	29	57	108
26	31	58	111
27	33	59	114
28	34	60	117
29	36	61	120
30	38	62	123
31	40	63	127

The third record of importance (Table 6-7) is the set of C_i and D_i values calculated using prelaunch data. These values are presented for each sensor in each mod of operation. The sequence of values for each calibration lamp source follows the same pattern given in Table 6-1, in which the calibration response has been presented in terms of digital counts. This set of C_i, D_i is used to calculate sensor gain and offset in terms of radiance and calibration wedge digital response. These data are presented in Tables 6-7, 6-8, 6-9, and 6-10. The fourth record contains calibration wedge offsets for each sensor in the high- and low-gain modes of operation. These data presented in Tables 6-11 and 6-12 can be correlated directly with calibration wedge response. Therefore, the following applies for sensor 1, band 1, and high gain:

Word	460	470	480	490	910	220
Calibration Response	42	40	38	35	2	:

where the calibration response refers to the calibration wedge described in Table 6-1.

Finally, Table 6-13 contains data used in image generation relating to tic-mark placement and separation and to the size of the annotation words used by MIPS.

Table 6-7 Calibration Coefficients for High-Gain, Prime Lamp

OFFSETS (CI) AND GAINS (DI) FOR SIX CAL MEDGE YALUES

OFFSETS (C1) AND GAING (D1)

LAMP A (PRINE) HIGH GAIN

.0.515552	0.5091431	0.5141420	0.5120857	0.5103336	0.5110931	0.4987552	0.451541	0.4851587	0.1934390	0.4994534	0.4041AS1
. 1	7				- 1					7	
0.5090237	0.5010356	0.5669316	9.5045975	0.503:191	0.5031267	0.4914715	0.4650080	0.430,572	0.4871623	C.4925770 -0.66649RB	0 4910111
0.3634670E-01 0.2638616	0.3933630E-01 0.2657746	0.3899490E-01 0.2606126	0.3825920E-01	0.38434405-01	0.39689508-01	0.504	0.4969290E-01	0.5721700E-01	0.5119340E-01 0.2464138	0.4753513E-01	A 4747740F-01
1.9569900E-02 0.3180776	0.1402540E-01 0.3186053	0.97610005-07	0.11675008-01	0.1305000E-01 0.3166170	0.1234110E-01 0.3214320	0.2319788E-01	0.2722290E-01 0.2942579	0.3090510E-01 0.2925267	0.2572820E-01 0.3037519	0.2553940E-U1 0.2567794	0.2114110F-01
-0.2014560E .01 0.3782430	-0.1757830E-01 0.3845716	-C.2031000F-F1	0.13376305-01	-0.1728000E-01	-0.18045205-01	-0.1373920E-01 0.3729172	-0.549,200E-02	-0.6085050E-02	-0.115696021 0.2803455	-0.1290570E-01	-0.9684; NOF-02
-0.5034660E-01 0.4393915	-0.4696410E-01 0.4455089	-0.4951040E-01	-0.4853200E-01	-0.4772620E-01 0.4419056					-0.4595430E-01	-C. AR25250E-03	-0.4413180F-01
OFFSETSI	OFFSETS 1 GAINS 1	OFFSETSI	GAINSE	OFFSETS1 GAINSI	OFFSETSA	OFFSETSI GATHSI	OFFSCT91	OFFSETS &	OFFSETS:	OFFSETS1	NFFSFTS:
•	~	~	•	17	Ġ	_	•	•	9	=	12
DETECTOR	DETECTOR	DETECTOR	DETECTOR	DETECTOR	DETECTOR	DETECTOR	DETECTOR	DETECTUR	DETECTOR 10	DETECTOR 11	DETECTOR 12

-0.6994466	0.5177433	-0.63:4206	0.5195257	-0.5395299	0.5246107	-0.6564431	0.5215927	•0.6559715	0.5196952	-0.6745509	0.5155175	-0.6510102	0.5102212	-0.6198230	0.3435971	-0.5(34300	0.3452751	-0.6251615	9.5488132	-0.6712754	0.5155178	-0.7:54302	0.5461547	-0.6957984
	0.5132497		0.5141711	-0.6303163	0.5200693	-0.6401126	0.5173103	-0.6603417	0.5149243	-0.6654352	0.5149391	-0.6530377	0.5467716	-0.6174682	0.5463895							-0.7127149	0.5442715	-0.6923453
0.2514836	0.3262200E-01	0.2303389	6:39143508-01	0.2312959	0.3753270E-01	0.2360220	0.3025340E-01	0.2416133	.0.3040970E-01	0.2450629	0,3374310E-01	0.2392554	0.39907306-01	0.2059172	0.331105nE-01	0.2150676	0.3991670E-01	0.2117355	0.4064930E-01	0.2213627	0.3921280E-01	0.2406665	0.1645530E-01	0.2307447
0.3070097	0.8423000E-02	0.2869595	0.8275200E-02	0.2372369	0.4115500E-02	0.2901065	0.75262008-02	0.1955836	0.0036400E-02	0.2011258	0.86486808-02	0.2959356	-0.3951700E-02	0.2771546	-0.2070100E-02	0.2051537	-0.1126500E-02	0.2775145	-0.2753300E-02	0.2976214	-0.7428000E-03	0.3161137	-0.3245600E-03	0.3061812
0.3720921	-0.21975402-01	0.3419647	-0.2231510E-01	0.3427029	-0.2705710E-01	0.3552930	-0.2476510E-01	0.3605108	-0.2233320E-01	0.3511317	-0.234767CE-01	0.3555332	-0.4144450E-01	0.3306703	-0.42594405-01							0.3959642	-0.4235670E-01	0.3832669
0.4532148	-0.5704220E-01	0.4055327	-0.5796030E-01	0.4074523	-0.59251105-01	0.4143347					-0.5365450E-01		-0.8050200E-01	~	-0.8913090£-01		10-30	35	0.5-01		90E-01		10-301	~
GAINS	OFFSETSI	CAINS	· + SETS1	おけがとす。	107	1388	OFFSETSI	GAINSI	CFFSETS1	GAINS	OFFSSTSI	GAIRS	OFFSETSI	GAINS	OFFSET31	GASHSB	OFFS2771	CAJ 11	OFFSETS1	GAINE	OFFSETSI	GAINSE	OFFSETS	GAIESI
	13		=		2		16		11		=		6		00		7		7.7		53		7	
	DETECTOR 13		DETECTOR 14		DETECTOR 15		DETECTOR 16		DETECTOR 17		DETECTOR 18		DETECTOR 19		DETECTOR 20		DETECTOR 21		DETECTOP 22		DETECTOR 23		DETECTOR 24	

ORIGINAL PAGE IS OF PCOR QUALITY

Table 6-8
Calibration Coefficients for Low-Gain, Primary Lamp

OFFSETS (CI) AND GAINS (OI) FOR SIX CAL PEDGE VALUES

LOW JAIN

0.5149519	613599	501	775	. 4	2:	-0.6782993 -0.6782993	=		100	_	######################################	-0.5850023		-0.[807067		1774	3542	SO 	? ?	4	21892	-0.6629745	74550	1961	-0.6616102	0.9462212		-0.6154350	0.5132151	~ .	0.55.61.22	0.5:1173	-0.7121302	0.5451541	-0.6557914
0.5137314	512379	0.513555	513142	2692	-0.6605032	12957	16627	0.0191136	1,929	130605.0	0.000000	950965	0.509:63	-0.5746152	. 591018	. 513249	.620275		. 52006	~	.517310	-0.6603447	665415	. 51493	.653037	= =	246389	.641704	2	.623528	.652337	515109	.712714	6.5142715	-0.6923453
0.34031906-01	0.3452540E-01	0:3240320E-01	0.33454 0.3304160E-01	0.3451C40E-01	0.2547755	0.2605552	0.42513906-01	0.2102547	_	0.3666120E-01	0.4602010E.01	90160	0.4085980E-01	0.2109577	2158096	0.39607005-01		0.19149505-01	0.17532705-01	368220	0.3026340E-01	0.2419133	150589	0.3874310E-01	0.2390664	0.3990730C-08	0.30201030	0.2160676	0.3891670E-01	0.2112665	.2213521		402565	0.15:55305-01	0.2347447
0.8467600E-02		0.7016760E-02	0.73656002-02	0.9532700E-02	0.3035178	061900	G. 11220502-01	0.2522203	0.2659329	10-20765911.0	0.12937101	075044	0.1027140E-01	0.2622496	702951	0.8423000E-02	000505	0.02/52006~02	* *	2991066	~	0.2996986	.9901606	0.8340600E-02	2959356	-0.3951760E-02	-0.20101002-02	0.2051537	-0.1126530E-02	0.27/5145	2976214	•	.3151137	-0.32460C0E-03	0.3041912
-0.2074160L-01	-0.1939700E-01	-0.1909270E-01	-0.19410106-01	. (4	0.3645377	3603066	~:	-0.1916970E-01	.3167271	=:	-0.1823660E-01	. 3217964	٦.	-0.1940263E-01	3217345	-0.2197540E-01	.3415647	0 1122036	-0:2706710E-01	.3552	.24765:	0.360510B -0.2233320E-01	0.2611317	.234767	.3565332	0.3320104	-0.42394:0E-01	.3536371	-0.395820E-01	0.541/10/	3727796	420031	2642	10-301957 6.0-	0.1332669
-0.5044050E-01	***	8	-0.48960646-01	-0.4785020E-01	0.41778C1 -0.45778C1	4202252	-0.5544900E-01		3760300	-0.5335230E-01		~	-0.53800608-01	-0.5412530E-01	0.3837511	-0.5704220E-01	0.4055327	0.401453	-0.5926110E-01	0.4143347	-0.6022040E-01	-0.54731308-01	0.4306794	536645	0.4225129	-0.E950200E-01 0.4161379		.4322907	•	0.41%1.03 -0.04384.05	•	٠.	(754731	o, .	0.4589492
057.56151	OFFSETSI	IFFSETS1	000000000000000000000000000000000000000		62123	GAIRS	OFFSETSI	OFFICTS	641151	OFFSETS	DIESETOS	GAINS	OFFSETSI	OFFSETS	GATES		641:31	GA 1 KS 1	OFFSETS	GATHS	OFFSETS	CAINS	GAIRSI	OFFSETSI	CAINS	OFFSETSI	OFFSETSI	GATES	OFFSETSE	かいしょう はんし	6×1×51	OFFSATOS		٠, د	CA 1855
DETECTOR 1	DETECTOR 2	DETECTOR 3	DETECTOR 4	DETECTOR 5	DETECTOR		DETECTOR 7	DETECTOR 0		DETECTOR 9	DETECTOR 10		DETECTOR 11	DETECTOR 12		DITECTOR 13		011C110F 14	DETECTOR 15		DETECTOR 16	DETFCTOR 17		DETECTOR 18		DETECTOR 19	PETECTOR 20		DCTECTOR 21	Prince 33		CETECTOR 23		DETECTOR 24	

ORIGINAL PAGE IS OF POOR QUALITY

Calibration Coefficients for High-Gain, Redundant Lamp Table 6-9 LAMP B (REDUNDANT) OFFSETS (CI) AND GAIHS (DI)

OFF3ETS (CI) AND GAINS (DI) FOR SIX CAL MIDGE VALUES

HICH GAIN

0.6203248	-0.6522454	0.516:249	20. 21. 21. 21. 21. 21. 21. 21. 21. 21. 21	-0.7373731	52171	-0.72/1094	1007/10°0	6.5170.0	-0.7115233	0.5280745	-0.6311422	0.524625	0.522621	9615969-0-	0.5237499	-0.6521114						0.5169	-0.64670			0.5206	•		.5	.6490	Ξ	.71631	0.5424)79	0.542476	,	77. //7. 0	-0.7::1477	0.544.123		0.113335	-0.7812112
0.5152770	.6307073	111655	******	7117	5124109	12953		3279	-0.70 4545	0.5252325	-0.67776:8	0.05.000	0.5216518	-0.6927794	0.5222449	-0.6392716	0.5313157	#1:01/0.0*	\$090576.0 \$090576.0	0.5128416	-0.6237567.	0.513771	-0.6401173	0.5210131	-0.6469506	0.5172936	0.5140637	. ~;	-	543773	.53.224		716016.0	0.5338450		0.5452149			-9.7009597		-0.7727181
.344704	5874SB	0.3578256E-01	0.202020200	110050	0.3551150E-01	0.25/2545	521215	587390E-01	531319	10-3016505	555113	30430640	321290E-01	536761	123910E-01	557467	1200302-01	3.5.3.5		100205-01	94948	159700E-01	164209	09750E-01	17576	30000	52870E-01	19197	~	75:07	5	E1055	71050	0.3442040E-01	. 2340937	.302c200c-01	.2572255	.343/5502-01	56023	. 33354808-01	22.
0.639600CE-02	. 3120100		0.44:32602-02	.3334310	0.53569705-02	0.95213605-02	3148327	0.6722200E-02	. 3252753	0.3033005-02	0.5000005.00	3124033		.3166708	0-3000000000	.3221315	C.0/2/0/02=02	0.3275500E-02	3051791	0.9054400E-02	.2039907	0.93135906-02	.2304791	0/3552.	0.6980338	.2941260	0,1103720E-01	0.2953913	20-30055196.0	.2905130	20-2006-071-0	6 272 3113 6 272 3400 402	. 1227444	.0.1967000E-02	.2965035	•	. 3213909	.0.4270600E-02	.3577590	<u>~ </u>	0.1334361
-0.2314010E-01	3/08033	0.3210557		130154	-0.2433140E-01	-0.22121306-01	0.1762271	-0.23463602-01	**************************************	-0.22780106-01		590357	-0.2536150E-01	3753000	-0.21559408-01		150005	-0.2749620E-01		114640	0.1199002	-0.2301500E-01	0.3301585	0.473/0006-01	7.237.3369	3534035	31162	502161	.216071	0.5405704		172376	1400111	-0.1855000E-01	.3532604	-0.10516908-01			0.4291974		
-0.5393770E-01	4300140	0.4441122	-0.5234030E-01	C.4323769	-0.35171205-01 0 1574728	-0.5234610E-01	0.4367638	-0.5273720E-01	0.4501409	0.4205013	-0.5987640E-01	0.4369113		0.1360635	0.2123550E-01	65505307-01	4249166	63028508-01	4304259	5633750E-01	4018272	000000000000000000000000000000000000000	50003005-01	0.411119A	-0.5090450E-01	0.4195329		1250326	-0.5744090E-01		5449:2	3	451200	-0.7632510E-01	420121 4		708830 2 36601000		*0.75059308*01	5010801	
OFFSETSI	101111		 	.			_	15125130		10.745	OFFSETSI	GATES	OFFSETSI		10170		GA1.151				.	01126121	. -			-	-	_	OF VETA			_	GAINS	0.000		. .		• •			
DETECTOR 1	OSTRETOB 3		DETECTOR 3	- (DETECTOR +	DETECTOR 5		DETECTOR 6	Defection 1		DETECTOR 8		DETECTOR 9	01 00177170	•	DETECTOR 11		DETECTOR 12	•	DETECTOR 13	1. 00203230	-	DETECTOR 15	•	DETECTOR 16		DETECTOR 17	٠	מבוברוסא דב	DFTECTOR 19		.TECTOR 20		DETECTOR 41	DETECTOR 22	•	SC BOLDSTEE	•	DETECTOR 24		

ORIGINAL LAGE IS OF POOR QUALITY

-0.7115598 0.51373733 -0.756353 -0.5134332 -0.772333 -0.6605740 0.5394.150 0.25539400 0.25539400 0.25539400 0.25539400 0.35399550 0.35399550 0.3539950 0.3539950 0.3539950 0.3539950 0.3539950 0.3539950 0.3539950 0.3539950 0.3539950 0.3539950 0.3539950 0.3539950 0.3539950 0.3539950 0.3539950 0.3539950 0.3539950 0.3539950 0.2359700E-01 0.2359750E-01 0.237576 0.3599670E-01 0.23594670E-01 0.2459197 0.19300206-01 0.32537208-01 0.3223370E-01 0.2571054 0.3442040E-01 7.30200008-01 0.2376407 0.2294540 0.2555075 0.2340937 0.25/2265 0.2545379 0.2533700E-02 0.25705620 0.26737090 0.3673906-02 0.2537592 0.2537592 0.2537592 0.713260E-02 0.294639 0.723360E-02 0.5063102 0.900590E-03 0.911500E-02 0.2904791 0.2990700E-02 0.2990555 0.1103/20E-01 0.2953913 0.9675900E-02 0.3577690 -0.3875490E-02 0.3534583 0.20244002-02 -0.2037100E-02 -0.19670008-02 0.2985016 -0.3031400E-02 0.3213909 -0.4276-00E-02 .1023790E-01 -0.17033398-02 .29:12:0 0,3216975 -0.1735030G-04 0.3535650 -0.19975010E-01 0.34975010E-01 -0.1607550E-01 0.3567526 0.3215000 -0.15010508-01 -0.21106508-01 -0.320929 -0.3209409 -0.3176908-01 -0.2301500E-01 0.3501500E-01 -0.7957550E-01 0.3573509 0.4291014 -0.3021360E-01 0.6267016 -0.2311620E-01 0.3502161 -0.2163710E-01 0.3511310 -0.2093220E-01 -0.2146 :00E-01 -0.3728760E-ui -0.39550008-01 -0.2134540E-01 -0.3534200E-01 -0.38155000-01 -0.30516908-01 0.3329004 0.1456704 0.3190521 0.3479304 0.3962111 0.3632004 0.3869625 -0.49255106-01 -0.49255106-01 -0.49255106-01 -0.4925106-01 -0.4925106-01 -0.4925106-01 -0.4925106-01 -0.4925106-01 -0.4925106-01 -0.4925106-01 -0.4925106-01 -0.4925106-01 -0.4925106-01 -0.5051006-01 -0.5051006-01 -0.5051006-01 -0.5090.50E-01 -0.5125129 -0.5125129 -0.4151090E-01 -0.4151090E-01 -0.7643090E-01 -0.7643090E-01 -0.7643090E-01 -0.7643090E-01 -0.7643090E-01 -0.7643090E-01 -0.7643090E-01 0.4643362 -0.7559100E-01 0.5070:03 -0.7505930E-01 GAIRSP OFFSETSP GAIRSP OFFSETSP GALKOS OF FEETSP GALKOS OFFSCTS1 GATHS1 OFFSSTS1 GALTSI OFFSETSI GALMSI OFFSCTSI GALMSI GARES OFFSZTS GARRS OFFSSTS OFFSETSI GAIRSI OFFSETEI GAIRSI GAINS) OFFSETS1 GAINS1 GAIRS OFFSETS CFFSCTS1 GATHS1 OFFSETS: GAINS: OFFSETS: OFFSST31 CFFSETS1 OFFEETSI OFFSETSI GAINS OFFSETSI GAIRSI **CFFSETS1** CAINS GA 1 113 1 OFFSUTS 21:149 GAINS CFFEFF 67.18.5 0 2 = 2 = I 2 -. 2 20 7 2 DETECTOR DETFCTOR DETECTOR DETFCTOR DETECTOR DETECTOR

Calibration Coefficients for Low-Gain, Redundant Lamp

CAL NEDGE YALUES

OF SETS (CI) AND GAINS (DI) FOR SIX

CAIN

TOX

Table 6-1 l

Calibration Wedge Offsets for the Prime Lamp

LAMP A (PRI	KE)	CAI	L WEDGE	OFFSETS						
HIGH GA	IN	CAI	L MEDGE	OFFSETS	FOR 5	IIX CAL	EDGE	VALUES		
DETECTOR 1	CAL	WEDGE	OFFEETS	51 46	60	470	480	190	910	920
DETECTOR 2	CAL	MEDGE	OFFSET	52 40	6 3	473	483	493	913	923
DETECTOR 3	CAL	REDGE	OFFSET:	31 40	57	477	487	497	917	927
DETECTOR 4	CAL	MEDGE	DEFSETS	58 47	71	481	491	501	921	931
DETECTOR S	CAL	MEDGE	OFFSETS	51 47	15	485	495	25	925	¥ 2 5
DETECTOR 6	CAL	ASDUE	OFFSETS	31 47	79	489	499	509	979	9.19
DETECTOR 7	CAL	MEDGE	OFFSETS	St 50	8 8	578	588	598	918	943
DETECTOR 8	-		OFFSETS		71	581	591	601	941	951
CETECTOR 9			OFFSETS	_	_	545	595	605	945	955
DETECTOR 10			OFFSET:		79	589	599	609	949	959
DETECTOR 11			OFFSETS		13	593	603	613	953	963
DETECTOR 12			OFFSETS		97	597	607	617	957	967
DETECTOR 13		_	OFFSETS		t Q	360	390	400	880	690
DETECTOR 14			OFFSET:		73	303	393	403	883	891
DETCCTOR 15		-	OFFSET:		17	367	397	407	887	897
DETECTOR 16			DEFSETS		-	391	401	411	891	301
DETECTOR 17			OFFEETS		35	395	405	415	895	905
DETECTOR 10			DFFSST		89	399	409	419	99	909
DETECTOR 19			OFFSETS		23	333	343	353	743	753
DETECTUR 20			OFFSETS		27	337 341	347	357	747	757
DETECTOR 21			OFFSET:		31 35		351	361	751	761
DETECTOR 22 DETECTOR 23			OFFSET:		**************************************	345 350	355 360	365 370	755	765
DETECTOR 24			OFFSET		13	353	363	373	760 763	770
DETECTOR 14		46506	0112617		• •	,,,	303	213	103	773
I'UA CY	IN	CAI	L WEDGE	OFFSETS	FOR 8	IX CAL	WEDGE	VALUES		
DETECTOR 1	CAL	WEDGE	DEFSET:	31 2	20	210	240	250	600	810
DETECTOR 2	CAL	MEDGE	OFFSST	3: 2:	24	234	244	254	804	614
DETECTOR 3	CAL	MEDGE	OFFSET	51 27	27	737	247	257	807	817
DETECTOR	CAL	MEDGE	OFFSETS	5 i 2	3 2	242	252	262	813	822
DETECTOR 5	CLL	redce	051567	31 23	35	245	255	265	815	825
DETECTOR 6		REDGE	CEESET:		39		259	269	819	8 2 9
DETECTOR 1	CAL	REDUE	OFFSCT		27		347	357	E67	677
DETECTOR 8			OFFSETS		3.0		350	360	\$ 70	880
DETECTOR 9			OURSET:		34	344	354	364	874	694
DETECTOR 10			OFFSETS		38		358	368	978	834
DETECTOR 11			OFFSETS		12		362	372	802	592
DETECTOR 12			OFFSET		16		366	376	686	644
DETECTOR 11			07FSE7		\$5		305	395	875	605
DETECTOR 14			OFFSET		59		389	399	#79	683
DETECTOR 15			OFFSET:	-	73		393	403 407	883	893
DETECTUR 16			OCCSETS		•		347 400	410	897 890	897
DETECTOR 17 DETECTOR 18			OFFSETS		3 Q 3 4	-	404	414	894	900 904
DETECTOR 19			OFFSETS		19		339	349	739	749
DETECTOR 20			07F5ET		33	•	343	153	743	753
DETECTOR 21			OFFSET		27		347	357	747	757
DETECTOR 22			OFFSETS	-	3 1	•	351	361	751	761
DETECTOR 23			UFFSETS		35		155	365	755	765
DETECTOR 2			OFFSET		39		359	369	759	769
				•					· •	. • -

Table 6-12
Calibration Wedge Offsets for the Redundant Lamp

LAMP 8 (REDUNDANT) CAL WEDGE OFFSETS

HIGH GAIH CAL WEDGE OFFSETS FOR SIX CAL WEDGE VALUES

DETECTOR	1	CAL	WEDGE	OFFSETS:	460	470	480	490	910	920
DETECTOR	2	CAL	WEDGE	OFFEETS:	463	573	483	493	913	923
DETECTOR	3	CAL	REDGE	OFFSETSI	467	477	487	497	917	927
DETECTOR	4	CAL	MEDGE	OFFSETS:	471	481	491	501	971	931
DETECTOR	5	CAL	WEDGE	OFFSETS!	475	485	495	505	925	935
DETECTOR	6			OFFSETS:	479	439	499	509	929	932
DETECTOR	7	CAL	MEDCE	OFFSETS:	568	578	588	598	938	948
DETECTUR	8	CAL	MEDGE	OFFSETS:	572	582	592	602	942	952
DETECTOR	9			OFFSETS:	576	586	596	606	946	956
DETECTOR				OFFSETS:	579	589	599	£09	949	959
DETECTOR	11	CAL	WEDGE	OFFSETSI	583	593	603	613	953	963
DETECTOR				OFFSCTS:	587	597	607	617	557	967
DETECTOR	13	CAL	HEDGE	OFFSETS!	370	300	390	400	860	090
DETECTOR				OFFSETS:	374	384	394	404	884	894
DETECTOR	-	-		OFFSETSI	378	368	398	408	908	893
DETECTOR	-			OFFSETS:	382	392	402	412	892	902
DETECTOR				OFFSETS:	365	395	405	415	895	905
DETECTOR	•			OFFSETS:	389	399	409	419	899	909
DETECTOR	-			OFFSETS:	322	332	342	352	742	752
DETECTOR				OFFSETS:	326	336	346	356	746	756
DETECTOR	-			OFFSETSI	330	340	350	360	750	760
DETECTOR				OFFSETS:	333	343	353	363	753	763
DETFCTOR				OFFSETS:	338	348	358	168	758	768
DETECTOR	-			OFFSETSE	342	352	362	372	762	. 772
					• • • •				,	,,,
LOW	GAI	r N	CAI	L REDGE G	FESETS FOR	SIX CAL	WEDCE	VALUES		
FOR	GA	t H	CA	redge G	FFSETS FOR	SIX CAL	WEDCE	Z VALUES		
LOW	GA 1			. VEDGE G: Offsets:	FFSETS FOR	SIX CAL	WEDCE 240	VALUES 250	800	910
DETECTOR	i	CAL	WEDGE	OFFSETS:	220				800 804	
DETECTOR DETECTOR		CAL CAL	WEDGE WEDGE	OFFSETS:	220 224	230	240	250		010 014 517
DETECTOR	1 2	CAL CAL CAL	WEDGE WEDGE WEDGE	OFFSETS:	220	230 234	240 244	250 254	804	814
DETECTOR DETECTOR DETECTOR DETECTOR	1 2 3	CAL CAL CAL	WEDGE WEDGE WEDGE	OFFSETS: OFFSETS: OFFSETS:	220 224 227	230 234 237	240 244 247	250 254 257	804 807	014 517
DETECTOR DETECTOR DETECTOR DETECTOR DETECTOR	1 2 3 4 5	CAL CAL CAL CAL	WEDGE WEDGE WEDGE WEDGE	OFFSETS: OFFSETS: OFFSETS: OFFSETS:	220 224 227 231 235	230 234 237 241 245	240 244 247 251 255	250 254 257 261	804 807 811	014 617 021 025
DETECTOR DETECTOR DETECTOR DETECTOR DETECTOR DETECTOR	1 2 3 4 5 6	CAL CAL CAL CAL CAL	WEDGE WEDGE WEDGE WEDGE WEDGE	OFFSETS: OFFSETS: OFFSETS: OFFSETS: OFFSETS:	220 224 227 231 235 239	230 234 237 241	240 244 247 251	250 254 257 261 265	904 807 911 815	014 517 021
DETECTOR DETECTOR DETECTOR DETECTOR DETECTOR DETECTOR DETECTOR	1 2 3 4 5	CAL CAL CAL CAL CAL CAL	REDGE MEDGE MEDGE MEDGE MEDGE MEDGE MEDGE	OFFSETS: OFFSETS: OFFSETS: OFFSETS: OFFSETS: OFFSETS: OFFSETS:	220 224 227 231 235 239 327	230 234 237 241 245 249 337	240 244 247 251 255 259 347	250 254 257 261 265 269 357	804 807 811 815 819 667	814 817 821 825 829 077
DETECTOR DETECTOR DETECTOR DETECTOR DETECTOR DETECTOR DETECTOR DETECTOR	1 2 3 4 5 6 7	CAL CAL CAL CAL CAL CAL CAL	WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE	OFFSETS: OFFSETS: OFFSETS: OFFSETS: OFFSETS: OFFSETS: OFFSETS: OFFSETS:	220 224 227 231 235 239 327 321	230 234 237 241 245 249 337 341	240 244 247 251 255 259 347 351	250 254 257 261 265 269 357 361	804 807 811 815 919	814 817 821 825 829 077 081
DETECTOR DETECTOR DETECTOR DETECTOR DETECTOR DETECTOR DETECTOR DETECTOR DETECTOR	1 2 3 4 5 6 7 8 9	CAL CAL CAL CAL CAL CAL CAL CAL	WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE	OFFSETS: OFFSETS: OFFSETS: OFFSETS: OFFSETS: OFFSETS: OFFSETS: OFFSETS:	220 224 227 231 235 239 327 331 334	230 234 237 241 245 249 337 341	240 244 247 251 255 259 347	250 254 257 261 265 269 357	804 807 811 815 919 667 871	814 817 821 825 829 077
DETECTOR	1 2 3 4 5 6 7 8 9	CAL CAL CAL CAL CAL CAL CAL CAL	WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE	OFFSETS: OFFSETS: OFFSETS: OFFSETS: OFFSETS: OFFSETS: OFFSETS: OFFSETS: OFFSETS:	220 224 227 231 235 239 327 321 334 338	230 234 237 241 245 249 337 341 344 348	240 244 247 251 255 259 347 351 354	250 254 257 261 265 269 357 361 364	904 807 811 815 919 667 971	014 617 621 625 629 C77 081 684
DETECTOR	1 2 3 4 5 6 7 8 9 10	CAL CAL CAL CAL CAL CAL CAL CAL CAL	WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE	OFFSETS:	220 224 227 231 235 239 327 321 334 338 342	230 234 237 241 245 249 337 341	240 244 247 251 255 259 347 351 354 358	250 254 257 261 265 269 357 361 364 368	904 807 811 815 919 667 971 974	014 617 021 025 029 077 081 080
DETECTOR	1 2 3 4 5 6 7 8 9 10 11 12	CAL CAL CAL CAL CAL CAL CAL CAL CAL	WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE	OFFSETS:	220 224 227 231 235 239 327 321 334 338 342 346	230 234 237 241 245 249 337 341 344 348 352 356	240 244 247 251 255 259 347 351 354 358 362	250 254 257 261 265 269 357 361 364 368 372	804 807 811 815 919 667 871 874 876 802	014 617 021 025 027 077 081 080 092
DETECTOR	1 2 3 4 5 6 7 8 9 10 11 12 13	CAL CAL CAL CAL CAL CAL CAL CAL CAL	WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE	OFFSETS:	220 224 227 231 235 239 327 331 334 338 342 346 366	230 234 237 241 245 249 337 341 344 348 352	240 244 247 251 255 259 347 351 354 358 362 366	250 254 257 261 265 269 357 361 364 368 372	804 807 811 815 919 667 871 874 876 802 802	014 617 021 025 029 077 001 804 083 092
DETECTOR	1 2 3 4 5 6 7 8 9 10 11 12 13 14	CAL CAL CAL CAL CAL CAL CAL CAL CAL	WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE	OFFSETS:	220 224 227 231 235 239 327 331 334 338 342 346 366 370	230 234 237 241 245 249 337 341 344 348 352 356 376 300	240 244 247 251 255 357 351 354 366 386	250 254 257 261 265 269 357 361 364 368 372 376 396	804 807 811 815 919 667 871 874 876 802 876	014 617 021 025 029 077 081 080 092 092 086
DETECTOR	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	CAL CAL CAL CAL CAL CAL CAL CAL CAL CAL	WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE	OFFSETS:	220 224 227 231 235 239 327 331 334 338 342 346 366	230 234 237 241 245 249 337 341 344 352 356 376	240 244 247 251 255 357 351 354 366 386 390	250 254 257 261 265 269 357 361 364 368 372 376 396 400	804 807 811 815 919 667 871 874 876 800 876 876	014 617 625 629 C77 084 689 692 886 896
DETECTOR	123455678910112 13141516	CAL CAL CAL CAL CAL CAL CAL CAL CAL CAL	WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE WEDGE	OFFSETS:	220 224 227 231 235 239 327 331 334 336 342 346 366 370 373	230 234 237 241 245 249 337 341 344 348 352 356 376 383	240 244 247 255 255 347 351 354 366 390 393	250 254 257 261 265 269 357 361 364 368 372 376 396 400 403	804 807 811 815 919 667 871 874 876 802 665 876 883	014 617 625 625 627 081 682 682 683 685 685 685
DETECTOR	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17		MEDGE MEDGE	OFFSETS:	220 224 227 231 235 239 327 331 334 338 342 346 366 370 373	230 234 237 241 245 249 337 341 344 348 352 356 376 383 383	240 244 247 251 255 347 351 354 358 366 386 390 393	250 254 257 261 265 269 357 361 364 368 372 376 396 400 403 407	804 807 811 815 919 667 874 876 802 807	014 617 025 829 C77 081 889 6996 896 893
DETECTOR	1234567891011213141561718		# # # # # # # # # # # # # # # # # # #	OFFSETS:	220 224 227 231 235 239 327 331 334 338 342 346 366 370 373 377 101	230 234 237 241 245 249 337 341 344 348 352 356 376 387 387 391	240 244 247 255 255 257 354 358 366 386 390 397 401	250 254 257 261 265 269 357 361 364 368 372 376 400 403 407 411	804 807 811 815 919 667 874 876 802 807 803 807	014 617 025 025 027 0827 089 0896 0896 0893 0991
DETECTOR	1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19		REDGE WEDDGE WED	OFFSETS:	220 224 227 231 235 239 327 331 334 338 342 346 366 370 373 377 381	230 234 237 241 245 249 337 341 344 352 356 376 387 387 395	240 244 247 255 259 354 358 366 390 397 401 405	250 254 257 261 265 269 357 364 368 372 376 400 407 411 615	804 807 811 815 817 877 874 876 867 867 867 867 867 867 867 867	014 617 625 625 627 686 696 686 696 686 697 697 697 697 697 697 697 697 697 69
DETECTOR	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		HEADER WEED GEER GEER WEED GEER GEER GEER GEER GEER GEER GEER G	OFFSETS:	220 224 227 231 235 239 327 331 334 338 342 346 370 373 377 181 185 318	230 234 237 241 245 249 337 341 344 352 356 376 387 387 395 395	240 2447 2515 2559 3513 354 358 366 399 397 405 330	250 254 257 261 265 269 357 364 368 372 376 400 407 411 415 348	804 807 811 815 817 871 871 872 876 883 883 883 887 891	014 617 6225 6227 688 688 688 688 688 688 688 688 688 68
DETECTOR	1 2 3 4 5 6 7 8 9 10 11 1 2 1 3 1 4 1 5 6 1 7 1 8 1 9 2 0 2 1		MEDDAGE WEED WEED WEED WEED WEED WEED WEED WE	OFFSETS:	220 224 227 231 235 239 327 321 334 338 342 346 370 373 377 385 318 322	230 234 237 241 245 249 337 341 344 352 356 376 303 387 395 395 328 332	240 2447 2515 2559 3451 354 358 366 399 397 405 330 405	250 254 257 261 265 265 364 364 368 372 376 400 403 407 411 415 348 352	804 807 811 815 917 971 971 976 805 807 807 807 807 807 807 807 807 807 807	014 617 6229 716 6229 716 6829 6889 6899 6899 6899 6899 6899 759
DETECTOR	1 2 3 4 5 6 7 8 9 10 11 2 1 3 1 4 1 5 6 1 7 1 8 1 9 2 0 2 1 2 2 2		WEDGE BEDGE	OFFSETS:	220 224 227 231 235 239 327 331 334 346 366 370 373 377 381 385 318 322 325 329	230 234 237 241 245 249 337 341 344 352 356 376 383 387 395 395 328 332 332	240 2447 251 2559 347 354 358 366 399 397 405 340 342 345	250 254 257 261 265 265 364 364 372 376 400 403 407 411 415 348 352 355	804 807 811 815 917 871 871 876 876 877 877 877 877 877 877 877 877	014 617 6225 6227 688 689 689 689 689 689 699 689 755
DETECTOR	12345567891011231451617812012223		A SOUGE MEDO CE SOUGE MED C	OFFSETS:	220 224 227 231 235 239 327 321 334 346 366 370 373 377 385 318 322 325	230 234 237 241 245 249 337 341 344 352 356 376 383 387 395 328 332 335 339	240 2447 251 2559 347 354 358 366 389 393 401 405 342 349	250 254 257 261 265 265 364 368 372 376 400 403 407 411 615 348 352 355 359	804 807 811 815 817 871 876 871 876 877 877 877 877 877 877 877	0147159714402689997158899997158

ري اردي

ORIGINAL PAGE IS OF POOR QUALITY

Table 6-13 Geometric Image Tic-Mark and Annotation Parameters Carried in the Long-Term Record

11*4 LENGTH OF HORIZONTAL ANNOTATION BLOCK (PIXELS)
336
11*4 LENGTH OF VERTICAL ANNOTATION SLOCK (LINES)
420
11*4 PIXELS PER DUTPUT LIRE (PIXELS)
3548
11*4 LINES IN THE OUTPUT IMAGE (LINES)
2983
11*4 DISTANCE IN PIXELS AWAY FROM THE X AXIS OF THE PS SYSTEM
1492
1R*4 WINDOW SIZE AROUND 0.0 FOR P(1.1) AND P(1.2)
9.999999E-03
1R*4 HINDOW SIZE AROUND 0.90,180,-90 (DEGREES)
0.1745000