IoT Security and Privacy

Create IoT devices with Raspberry Pi

Learning Outcomes

Upon completion of this unit:

- 1. Students will master the use of Raspberry Pi
- Students will understand basic circuits interacting with Raspberry Pi
- 3. Students will master programming Raspberry Pi

Outline

- Overview
- Setup and configurations
- 10 Use of Raspberry Pi
- Breadboard
- GPIO
- Sample use: Control LED
- Sample use: Read PIR motion sensor

What is a Raspberry Pi?

- University of Cambridge's Computer Laboratory
 - Decline in skill level
 - Designed for education
- A credit card sized PC
- Plugs into a TV or monitor
- Inexpensive <\$40 each
- Capability:
 - Programming
 - Electronic Projects
 - Office
 - Play HD Videos

Different Versions

- Raspberry Pi 3 model B
- Raspberry Pi 2 model B
- Raspberry Pi model B+
- Raspberry Pi model A+
- Raspberry Pi Zero W
- Raspberry Pi Zero

Components

- Essential components
 - Raspberry Pi 3 with WiFi (or USB WiFi dongle for old models)
 - Prepared Operating System SD Card
 - USB keyboard
 - USB mouse
 - Display (HDMI, DVI, or composite input (TV cable), DSI touch screen)
 - Power Supply
- Highly suggested extras
 - Internet connectivity LAN cable
 - Case
 - Breadboard
 - Sensors
 - Wires

Programming Languages

- Any language which will compile for the ARM chip used in the Pi
- Python
- C
- C++
- Java
- Scratch
- Ruby

Outline

- Overview
- Setup and configurations
- 10 Use of Raspberry Pi
- Breadboard
- GPIO
- Sample use: Control LED
- Sample use: Read PIR motion sensor

Setup

Configurations

- Booting Up for the First Time
 - Choose OS (Raspbian recommended)
 - Configure to use the Whole SD Card
 - Change Timezone
 - Boot into Desktop
- Run the configuration later
 - sudo raspi-config
 - Or use the GUI
- Network setup
 - Using a Wired Network
 - USB WiFi Adapter/Onboard WiFi

Software Packages to Use I/O (Input/Output)

- GPIO setup: install Python library Rpi.GPIO
 - 1. sudo apt-get update
 - 2. sudo apt-get install python-dev
 - sudo apt-get install python-rpi.gpio
- I2C: A standard for chips talking to each other
 - Multiple devices to Raspberry Pi through I2C bus
 - Unique address for each device through jumper settings
 - To use with Pi: Enable kernel support from rasp-config
- Install the i2c-tools utility.
 - 1. sudo apt-get update
 - 2. sudo apt-get install python-smbus
 - 3. sudo apt-get install i2c-tools
 - Test I2C devices: sudo i2cdetect -y 1

Sample Starter Kits

- CanaKit Raspberry Pi 2 Ultimate Starter Kit with WiFi \$84.99
- Raspberry Pi 2 Model B Starter Pack Includes a Raspberry Pi 2 \$99.95

Outline

- Overview
- Setup and configurations
- 10 Use of Raspberry Pi
- Breadboard
- GPIO
- Sample use: Control LED
- Sample use: Read PIR motion sensor

Example Use

- Office: LibreOffice
- Programming: Python, Scratch
- Game console
- Web server: Apache
- Tor router
- HTPC A home theater PC (HTPC) or media center computer
- Bird house
- Super computer
- Clock
- PiBot

Outline

- Overview
- Setup and configurations
- 10 Use of Raspberry Pi
- Breadboard
- GPIO
- Sample use: Control LED
- Sample use: Read PIR motion sensor

How A Breadboard Works

- A grid of holes on a plastic board
- Internal metal strips underlining the holes as jumper wires
 - Connecting specific rows or columns of holes.
- Electric component leads and wires are inserted into the holes
 - Wires connect electric component leads
- Building circuits with a breadboard: stick components and wires into the holes.

Outline

- Overview
- Setup and configurations
- 10 Use of Raspberry Pi
- Breadboard
- GPIO
- Sample use: Control LED
- Sample use: Read PIR motion sensor

GPIO: MODELS A+, B+ AND RASPBERRY PI 2, 3

- Physical interface between the Pi and the outside world.
- Can be viewed as switches
 - that you can turn on or off (input)
 - or that the Pi can turn on or off (output).

GPIO Pins

- 40 pins on the board
 - 26 GPIO pins
 - Others are power or ground pins

Use of GPIO Pins

- Program the pins to interact in various ways
- Input to a pin from a sensor, another computer or device
 - For example, from a motion sensor
- Output from a pin can do
 - Turn on an LED
 - Send a signal or data to another device.
- A networked Raspberry Pi
 - Remote control of attached physical devices
 - Receiving data from those devices

Pin Numbering

- GPIO NUMBERING
 - Seen by the onboard computer
- PHYSICAL NUMBERING
 - Counting across and down from pin 1 at the top left

Raspberry Pi 3 GPIO Header

Pin#	NAME		NAME	Pin#
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1 , I ² C)	00	DC Power 5v	04
05	GPIO03 (SCL1 , I ² C)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	00	Ground	20
21	GPIO09 (SPI_MISO)	00	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)		(SPI_CEO_N) GPIO08	24
25	Ground	00	(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	00	(I ² C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40
			J	

Rev. 2

29/02/2016

Warning

- Unknowingly plugging wires and power sources may damage Pi when connecting power hungry things to a Pi
 - LEDs are fine,
 - motors are not.
- For caution and ease of use, use a breakout board like Pibrella Until you become familiar with Pi
 - Labeled pins (otherwise needs a diagram)
 - Maybe protection circuit

Output

- GPIO pin outputs are 3v3 or 0v
 - Can be called on or off, HIGH or LOW
 - Each pin can turn on or off
- Example use
 - Raspberry Pi as the switch and the battery in the left diagram.

INPUT

- GPIO pins are the simplest I/O on microcontrollers
- "pull up" and "pull down" circuits give an input pin a reference
 - In a case that the switch is off
 - To differentiate noise from signal
- The input mode of a GPIO pin has high impedance

Outline

- Overview
- Setup and configurations
- 10 Use of Raspberry Pi
- Breadboard
- GPIO
- Sample use: Control LED
- Sample use: Read PIR motion sensor

Program with Python to Control LED

- Open Terminal application
 - Click the terminal icon on the taskbar or
 - Main Menu -> Accessories -> Terminal.
- Open editor idle3: sudo idle3 & and press
- Create a Python file within idle3
 - File -> new window.
 - File -> New Window.
 - File -> Save As reaction.py
 - Type the code
 - Save the file: File -> Save.
- Run the code: Run -> Run Module or by pressing F5

Run Python File from the Command Line

- Run Python 2
 - python reaction.py
- Run python3
 - Python3 reaction.py

Python [7]

- Hello world
 - print("Hello world")
- Indentation
 - Indicate a block of code
 - 4 blank spaces in tradition
- Variables
 - Assignment like c with no need of type definition
 - Type can be changed
- Comments
 - Single line #
 - Multi-line: triple quotes """ comments """

Python [7] (Cont'd)

```
• Lists (like array)
```

• Mylist=[7, 8, 9]

```
    Iteration
```

• for

Range

• if statement

```
N= [1, 2, 3]
for n in N:
print(n)
```

```
for i in range(5):
    print(i)
```

```
name = "Joe"
if len(name) > 3:
    print("Nice name,")
    print(name)
else:
    print("That's a short name,")
    print(name)
```


Code

- 1. import RPi.GPIO as GPIO # Import GPIO library
- 2. import time # Import time library
- 3. GPIO.setmode(GPIO.BCM) #Use BCM pin numbering
- 4. GPIO.setwarnings(False) #Ignore GPIO warning messages
- 5. led = 4 # Assign 4 to variable *led*
- 6. GPIO.setup(led, GPIO.OUT) # Set pin 4 for outputting information
- 7. GPIO.output(led, 1) # Turns the GPIO pin 'on' (i.e., outputs 3.3v)
- 8. time.sleep(5) # Pause the prorgam for 5 second
- 9. GPIO.output(led, 0) # Turns the GPIO pin 'off' (i.e., outputs 0v)
- 10. # Clean up all the used ports in the program. Resets any ports you have used in this program back to input mode
- 11. GPIO.cleanup()

Outline

- Overview
- Setup and configurations
- 10 Use of Raspberry Pi
- Sample starter kit
- GPIO
- Sample use: Control LED
- Sample use: Read PIR motion sensor

Demo – Motion Sensor

PIR Sensor Principle

- The PIR sensor is made of IR sensitive material
- The lens over the sensor can change
 - breadth, range, sensing pattern
- An idle sensor detect the same amount of IR from the environment.
- Motion detection
 - A warm entity entering the sensing zone causes a positive differential change
 - The warm entity leaving the sensing zone generates a negative differential change

PIR Sensor Code Example

- 1. import RPi.GPIO as GPIO
- 2. import time
- 3. GPIO.setmode(GPIO.BCM)
- 4. pir= 7
- 5. GPIO.setup(pir, GPIO.IN)
- 6. try:
- 7. print "PIR Module Test (CTRL+C to exit)"
- 8. time.sleep(10)
- 9. print "Ready"

- 10. while True:
- 11. # read status of pin pir
- 12. if GPIO.input(pir): #
- 13. print "Motion Detected!"
- 14. time.sleep(1)
- 15. except KeyboardInterrupt:
- 16. print "Quit"
- 17. GPIO.cleanup()

Circuits

Equivalent Resistances in Series Circuits

• Equivalent Resistances in Parallel Circuits

$$R_{tot} = R_1 + R_2 + \dots + R_{N-1} + R_N$$

References

- [1] CTAYLOR, Voltage, Current, Resistance, and Ohm's Law, 2016
- [2] Smon Monk, <u>LEARN RASPBERRY PI 13 GUIDES</u>, 2015
- [3] Mtaylor, Raspberry gPlo, 2016
- [4] How PIRs work, 2015
- [5] PETE-O, Series and Parallel Circuits, 2016
- [6] RPi.GPIO basics 6 Using inputs and outputs together with RPi.GPIO pull-ups and pull-downs, Jul 172013
- [7] Python, 2017

