MATH 4011 METRIC SPACES ASSIGNMENT 1

JOE TRAN

Question 1. Show that each of the following are metrics.

(a)
$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$
 for $x, y \in X$.

- (b) $s(x,y) = \|x y\|_1 = \sum_{i=1}^n |x_i y_i| \text{ for } x, y \in \mathbb{R}^n.$ (c) $m(x,y) = \|x y\|_{\infty} = \max_{1 \le i \le n} |x_i y_i| \text{ for } x, y \in \mathbb{R}^n.$ (d) $h(x,y) = \begin{cases} \|x y\|_2 & \text{if } x = ry \text{ for some } r \in \mathbb{R} \\ \|x\|_2 + \|y\|_2 & \text{otherwise} \end{cases}$, for $x, y \in \mathbb{R}^n.$
- (e) If d is a metric on X, define \bar{d} by

$$\bar{d}(x,y) = \begin{cases} d(x,y) & \text{if } d(x,y) < 1\\ 1 & \text{if } d(x,y) \ge 1 \end{cases}$$

Then \bar{d} is a metric on X.

Question 2. We proved in detail that for any $x \in \mathbb{R}^n$ and any $1 \le p < q$, that

$$||x||_q \le ||x||_p$$

Write out a detailed proof of the case n = 2, p = 2 and p = 3.

Question 3. Use the inequality (*) from above to prove that for all $1 \le p <$ $q \leq \infty, \, \ell_p \subset \ell_q.$

Question 4. Recall the proof from Calc II or Real Analysis II that

$$s = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \in \ell_p \setminus \ell_1$$

for all p > 1. Also show that for all $1 \le p < q \le \infty$ that ℓ_p is a proper subset of ℓ_q .

Date: September 19, 2023.