顧客市場分析X機器學習

Customer Analytics with Machine Learning

這次分析目的

❖主要目的:

- 1. 利用Python機器學習針對<u>不同特徵進行分類</u>,再利用分類好的群組對加上特定特徵預測消費者購買的品牌。
- 2. 不同區塊對於價格的反應程度,藉此擬訂行銷策略,提高銷售額以及穩定市場佔有率。

❖此分析有效商家為:

- 1. 擁有該資料的賣場:可利用此分析進行促銷、商品陳列位置更改或是對該客群的顧客推薦類似商品以提升 營業額。
- 2. 想要進入該市場的商家:可藉此資料了解到不同客群所喜歡的品牌樣式,提升商家的品牌定位精準度。

分析項目

1. 依照各區塊族群來進行品牌偏好、銷售額以及購買機率價格彈性分析。

分析資料-1

2000筆不同ID的:

- 性別
- 婚姻
- 年齡
- 教育程度
- 收入
- 職業
- 居住的城市大小

segmentation data.csv(8 features)

ID	Sex	Marital stat Age		Education	Income	Occupation	Settlement siz
100000001	0	0	67	2	124670	1	2
100000002	1	1	22	1	150773	1	2
100000003	0	0	49	1	89210	0	0
100000004	0	0	45	1	171565	1	1
100000005	0	0	53	1	149031	1	1
100000006	0	0	35	1	144848	0	0
100000007	0	0	53	1	156495	1	1
100000008	0	0	35	1	193621	2	1
100000009	0	1	61	2	151591	0	0
100000010	0	1	28	1	174646	2	0
100000011	1	1	25	1	108469	1	0
100000012	1	1	24	1	127596	1	0
100000013	1	1	22	1	108687	1	2
100000014	0	0	60	2	89374	0	0
100000015	1	1	28	1	102899	1	1
100000016	1	1	32	1	88428	0	0
100000017	0	0	53	1	125550	1	0
100000018	0	0	25	0	157434	1	2
100000019	1	1	44	2	261952	2	2
100000020	0	0	31	0	144657	1	1
100000021	0	0	48	1	118777	1	1
100000022	0	0	44	1	147511	1	1
100000023	0	0	48	1	89804	0	0
100000024	0	0	44	1	134918	1	2

分析資料-2

共5萬多筆不同ID的:

- 進入該店的時間
- 有無購買
- 品牌
- 數量
- 上次購買的品牌
- 上次購買品牌的數量
- 品牌價格1~5
- 品牌促銷1~5
- Segment Data的:
 - 性別
 - 婚姻
 - 年齡
 - 教育程度
 - 收入
 - 職業
 - 居住的城市大小

purchase data.csv(24 features)

D	Day	Incidence	Brand	Quantity	Last_Inc_Bra	Last_Inc_QuP	rice_1	Price_2	Price_3	Price_4	Price_5
200000001	1	0	0	0	0	0	1.59	1.87	2.01	2.09	2.66
200000001	11	0	0	0	0	0	1.51	1.89	1.99	2.09	2.66
200000001	12	0	0	0	0	0	1.51	1.89	1.99	2.09	2.66
200000001	16	0	0	0	0	0	1.52	1.89	1.98	2.09	2.66
200000001	18	0	0	0	0	0	1.52	1.89	1.99	2.09	2.66
200000001	23	0	0	0	0	0	1.5	1.9	1.99	2.09	2.66
200000001	28	1	2	2	0	0	1.5	1.9	1.99	2.09	2.67
200000001	37	0	0	0	2	1	1.5	1.9	1.99	2.09	2.67
200000001	41	0	0	0	0	0	1.35	1.58	1.97	2.09	2.67
200000001	43	0	0	0	0	0	1.35	1.58	1.97	2.09	2.67
200000001	51	0	0	0	0	0	1.35	1.87	1.93	2.09	2.55
200000001	58	1	5	1	0	0	1.39	1.9	1.91	2.12	2.62
200000001	59	0	0	0	5	1	1.39	1.9	1.91	2.12	2.62
200000001	77	0	0	0	0	0	1.36	1.85	1.95	2.12	2.5
200000001	78	0	0	0	0	0	1.47	1.85	1.95	2.12	2.5
200000001	83	0	0	0	0	0	1.47	1.9	1.99	2.12	2.45
200000001	90	0	0	0	0	0	1.39	1.58	1.99	2.12	2.55
200000001	92	0	0	0	0	0	1.39	1.46	1.99	2.12	2.4
200000001	98	0	0	0	0	0	1.47	1.9	1.95	2.12	2.67
200000001	110	1	1	2	0	0	1.47	1.9	1.99	1.97	2.67
200000001	111	0	0	0	1	1	1.47	1.9	1.99	1.97	2.67
200000001	118	0	0	0	0	0	1.43	1.31	1.99	2.16	2.67

Promotion_	Promotion_	Promotion_	Promotion	Promotion	Sex	Marital stati A	ge	Education	Income	Occupation	Settlement size
0	1	0	0	0	0	0	47	1	110866	1	0
0	0	0	0	0	0	0	47	1	110866	1	0
0	0	0	0	0	0	0	47	1	110866	1	0
0	0	0	0	0	0	0	47	1	110866	1	0
0	0	0	0	0	0	0	47	1	110866	1	0
0	0	0	0	0	0	0	47	1	110866	1	0
0	0	0	0	0	0	0	47	1	110866	1	0
0	0	0	0	0	0	0	47	1	110866	1	0
1	1	1	0	0	0	0	47	1	110866	1	0
1	1	1	. 0	0	0	0	47	1	110866	1	0
1	1	1	0	0	0	0	47	1	110866	1	0
1	0	0	0	1	0	0	47	1	110866	1	0
1	0	0	0	0	0	0	47	1	110866	1	0
0	1	0	0	0	0	0	47	1	110866	1	0
0	0	0	0	1	0	0	47	1	110866	1	0
0	0	0	0	1	. 0	0	47	1	110866	1	0
0	1	0	0	0	0	0	47	1	110866	1	0
0	0	0	0	0	0	0	47	1	110866	1	0
0	0	0	0	0	0	0	47	1	110866	1	0
0	0	0	1	0	0	0	47	1	110866	1	0
1	1	0	0	0	0	0	47	1	110866	1	0
0	1	0	0	0	0	0	47	1	110866	1	0

分析工具

- 預處理(Preprocessing): StandardScaler
- 分群(Clustering): linkage、dendrogram(SciPy)、KMeans(scikit-learn)
- 分解(Decomposition): Principal Component Analysis(PCA)
 - 利用PCA轉換維度,將其影響程度略低的component去除。
- 曲線模型(linear_model): LogisticRegression
 - 羅吉斯回歸線為分類演算法,設計來預測分類目標對象(target labels)。
- 製圖: matplotlib、seaborn
- •機器學習演算法: PySpark、Sickit-learn

STP Marketing Model

利用以下方式找出市場利基

- 市場區隔(Segmentation): 依照相似的特徵區分為不同族群做區隔
- 市場目標(Targeting): 從市場區隔評估潛在利益,決定傳住的區塊
- 市場定位(Positioning): 什麼形式 的商品可以吸引到該族群

Hierarchical Clustering

在這個地方立永平衡好的資料針對不同特徵所產生的距離差,利用Ward's linkage method計算出在平衡後各點的距離,進而分類。

- 下一張圖可以看到,下圖紅框的參數得以分出4~6個區塊
- Hierarchical Clustering 比flat clustering (比方說K-means)慢,但是可以先用Hierarchical Clustering做分類(知道有幾個 clusters),再用 flat clustering做 segementation

```
from sklearn.preprocessing import StandardScaler
from scipy.cluster.hierarchy import dendrogram, linkage
scaler = StandardScaler()
segmentation_std = scaler.fit_transform(df_segmentation)
hier_clust = linkage(segmentation_std, method = 'ward')
plt.figure(figsize = (12,9))
plt.title('Hierarchical Clustering Dendrogram')
plt.xlabel('Observations')
plt.ylabel('Distance')
dendrogram(hier_clust,
           truncate_mode = 'level',
           p = 5
           show_leaf_counts = False,
           no_labels = True)
plt.show()
```

Standardization&Hierarchical Clustering

method = 'complete'

method = 'ward'

K-means Clustering

利用上面的演算法已先初步 得知群體個數,再來利用Kmeans做最後的確認。

```
wcss = []
for i in range(1,11):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
    kmeans.fit(segmentation_std)
    wcss.append(kmeans.inertia_)

plt.figure(figsize = (10,8))
plt.plot(range(1, 11), wcss, marker = 'o', linestyle = '--')
plt.xlabel('Number of Clusters')
plt.ylabel('WCSS')
plt.title('K-means Clustering')
plt.show()
```

K-means Clustering

利用個點與cluster的平方距離總和 (sum of the squared distances),在不同總和間找到一個凹折,有一個普遍的方法叫做elbow method,由右圖可以微微的看到紅色圈起來的地方有趨緩的現象,因此可以選擇cluster=5。

K-means Clustering

最後的表做出來有三個clusters幾乎混在一起,只有綠色的群體有稍微分開,接下來用主成分分析(pca)修正,可以讓分類比較明顯

Principal Component Analysis(PCA)

- 主成分分析(PCA)以原資料產生出該特徵數量的成分 (Component)數,在各個成分數裡,可以選擇變異數 (variance)最多的幾個成分,可以做到最佳分類。
- 根據經驗法則,explained_variance_ratio_,80%的資料成分數據分析最佳,右圖可以看到利用解釋方差紅色圈起來的地方剛好在0.8左右。


```
#找到PCA commponents

pca = PCA()

pca.fit(segmentation_std)

print(pca.explained_variance_ratio_)

#圖表顯示·可看出最佳commponents數

plt.figure(figsize = (12,9))

plt.plot(range(1,8), pca.explained_variance_ratio_.cumsum(), marker = 'o', linestyle = '--

plt.title('Explained Variance by Components')

plt.xlabel('Number of Components')

plt.ylabel('Cumulative Explained Variance')
```

PCA Results


```
pca = PCA(n_{components} = 7)
pca.fit(segmentation_std)
df_pca_comp = pd.DataFrame(data = pca.components_,
                            columns = df_segmentation.columns.values,
                            index = [f'component \{x\}' for x in np.arange(1,8)])
plt.figure(figsize=(12,10),dpi=80)
sns.heatmap(df_pca_comp,
            vmin = -1,
            vmax = 1,
            cmap = 'RdBu',
            annot = True)
plt.yticks(np.arange(1,8),
           [f'component \{x\}' for x in np.arange(1,8)],
           rotation = 45,
           fontsize = 9);
```

依照上一頁的解釋,我們選擇最上面的三個components

PCA Results

右圖可以看到:

- 越接近0,表示相關越低,這邊看到相關係數在0.5以上較為重要。
- component1 與Income, ccupation, Settlement size相關性比較大,這表示它們相互影響力大,所以可推測它們應該是專注在事業上多一點,
- component2 跟component1的相關係數相反,所以推測比較專注於學術以及生活方面

K-means clustering with PCA Results

右邊上圖scatterplot可以看到,利用PCA降維後的分群效果比較好。

Classification without/with PCA

K-means clustering with PCA Results

利用PCA降維,由上圖可以看到分層效果,最終達到針對不同客戶也可以分類的結果,下表可以看到不同客群所呈現的結構狀態。

	Sex	Marital status	Age	Education	Income	Occupation	Settlement size
Segment K-means							
high_level	0.478088	0.677291	55.764940	2.135458	160996.087649	1.175299	1.147410
fewer_opportunities	0.096386	0.000000	34.506024	0.560241	97094.189759	0.346386	0.117470
well_off	0.879487	0.730769	33.787179	1.179487	88644.882051	0.053846	0.000000
early_goal_oriented_stage	0.779439	0.938318	27.915888	1.003738	119174.517757	1.039252	0.768224
standard	0.004065	0.073171	37.099593	0.725610	144174.142276	1.288618	1.504065

Pickle

利用pickle儲存我們做好的模型,將在接下來的Purchase Data使用

```
pickle.dump(scaler, open('scaler.pickle', 'wb'))
pickle.dump(pca, open('pca.pickle', 'wb'))
pickle.dump(kmeans_pca, open('kmeans_pca.pickle', 'wb'))
```

Purchase Data(分析資料-2)

開始分析各別ID的不同消費行為,共500筆不同ID,

df_purchase = pd.read_csv('purchase data.csv') df_purchase Age Education Income ID Day Incidence Brand Quantity Last Inc Brand Last Inc Quantity Price 1 Price 2 Price 3 ... Promotion 3 Promotion 4 Promotion 5 Sex 200000001 1 0 1.59 1.87 2.01 110866 200000001 11 0 1.51 1.89 1.99 110866 200000001 12 0 1.51 1.89 110866 200000001 16 0 1.52 1.89 1.98 110866 3 200000001 18 0 1.52 1.89 1.99 110866 1.41 1.85 2.01 120946 200000500 703 0 200000500 710 0 1.36 1.84 2.09 120946 1.50 1.80 120946 200000500 717 0 2.14 200000500 722 1 1.51 1.82 120946 1.51 **58692** 200000500 726 0 1.82 2.09 120946

Purchase Data

事前準備資料,先用pickle 將模型載卸下來,再將該 資料的特徵進行處理

	ID	Day	Incidence	Brand	Quantity	Last_Inc_Brand	Last_Inc_Quantity	Price_1	Price_2	Price_3		Promotion_4	Promotion_5	Sex	Marital status	Age	Education	Income	Occupation	Settlement size	Segment
0	200000001	1	0	0		0		1.59	1.87	2.01	(0	0	0	0	47	1	110866	1	0	2
1	200000001	11	0	0	0	0	0	1.51	1.89	1.99		0	0	0	0	47	1	110866	1	0	2
2	200000001	12	0	0	0	0	0	1.51	1.89	1.99		0	0	0	0	47	1	110866	1	0	2
3	200000001	16	0	0	0	0	0	1.52	1.89	1.98		0	0	0	0	47	1	110866	1	0	2
4	200000001	18	0	0		0		1.52	1.89	1.99	(0	0	0	0	47	1	110866	1		2
***		***	***	3***		2 111	***	itt	***					***	reta)	***	***	***	(m)	See:	

Exploratory Data Analysis

Segments Portions

• 圓餅圖可以看到Fewer opportunities 的區塊的拜訪購買次數的比例比較大

Segment Proportions

Incidence rate

• 用新的Purchase Data裡面的資料計算Incidence rate,即是各個ID每次到該賣場有購買巧克力的機率,這邊可以看到在fewer-opportunity以及well_off的族群,購買率集中在0~30之間,購買機率不大,該產品對於此Segment的消費者來說並非為必需品,相較於其他三個族群來說波動差距比較大。

Exploratory Data Analysis

Segments_Brand

- 預設:Brand_1~_5,1的價格是最低,而5是最高
- 依照segments來看可以理解個別所偏好的品牌價格,右圖可以看到Career-Focused和Well-Off分別對4及5的品牌有所偏好,比較特別的是feweropportunity的品牌偏好竟然不是價格最低的,所以在定價策略上面最低價絕對不是最好的選擇。

Price elasticity formula

公式為數量的變動對於價格的變動比例,一般如果|E|<1,都歸類為inelastic,簡單來說當財貨價格產生變動時,對需求的影響較小。

經過數學公式轉換求得下面公式, 得以利用Python計算:

Calculating Percentage Changes

Using the midpoint method:

The price elasticity of demand equals

右圖片來源: https://www.youtube.com/watch?v=5UKw4blQdsc

\$250

\$200

12

Price Elasticity of Purchase Probability

Coeficient

利用LogisticRegression先求出<u>相關</u> <u>係數</u>(Coefficient),該資料裡的所 有價格做加總再平均後得出X,拿 平均價格(X)和發生購買事件(Y)做 訓練求得<u>相關係數</u>

```
df_pa = df_purchase_predictors
Y = df_pa['Incidence']
df_purchase_predictors
X = pd.DataFrame()
X['Mean_Price'] = (df_pa['Price_1'] +
                   df_pa['Price_2'] +
                   df_pa['Price_3'] +
                   df_pa['Price_4'] +
                   df_pa['Price_5'] ) / 5
model_purchase = LogisticRegression(solver = 'sag')
model_purchase.fit(X, Y)
model_purchase.coef_
 array([[-2.34816446]])
```

Price Elasticity of Purchase Probability

Average Price

```
price_range = np.arange(0.5, 3.5, 0.01)
df_price_range = pd.DataFrame(price_range)
Y_pr = model_purchase.predict_proba(df_price_range)
purchase_pr = Y_pr[:][:, 1]
pe = model_purchase.coef_[:, 0] * price_range * (1 - purchase_pr)
plt.figure(figsize = (9, 6))
plt.plot(price_range, pe, color = 'grey')
plt.xlabel('Price')
plt.ylabel('Elasticity')
plt.title('Price Elasticity of Purchase Probability')
```


上圖可以看到,價格彈性跟價格是負相關的。在差不多價格1.3元之後,消費者對於商品價格將會比較強烈的回應。

Purchase Probability by Segments

利用價格彈性公式可以看到不同 族群的人對於價格有所不同的反 應,其中紅色線是最明顯的,在 約1.5元之後就呈現急速下降,其 次是藍色線,也就是我們的 well_off族群,可以想像,因為先 前已經看到這兩個族群對該品牌 並沒有特別偏好,故價格對他們 的影響也會比其他三個族群高。

PySpark & scikit-learn

利用隨機樹演算法進行網格搜索以及交叉驗證,針對消費者購買的品牌做預測,分數(accuracy)落在0.65附近。

訓練參數包含:

- 1. 該消費者特徵分群
- 2. 各牌子的價格
- 3. 各牌子是否有促銷
- 4. 第幾天到訪

共12種

總結:

- 這次的主要分析為:
 - 分類 運用三種模型可以有效進行分類。
 - 品牌的選擇 運用LogisticRegression搭配heatmap的mean_brand_choice了解到顧客偏好以及對價格的反應程度。
 - 使用PySpark以及sickit-learn對該資料預測分數並不高,有可能是給予的特徵不足以判斷或是資料量太少。
- 經過這次的分析,對於顧客的掌握度提高,更加瞭解目標客群, 針對不同客群做出不同對策,對於公司未來產品發展會有明顯的 幫助,至於預測結果可以蒐集更多特徵優化預測結果。