CHOW GROUPS AND L-DERIVATIVES OF AUTOMORPHIC MOTIVES FOR UNITARY GROUPS

NOTES BY WENHAN DAI

ABSTRACT. These notes are based on a talk by Chao Li at Columbia in February, 2021. We survey the background of the joint work by Chao Li and Yifeng Liu [LL21, LL22] on Beilinson–Bloch conjecture for unitary Shimura varieties.

Contents

1.	Backgrounds	1
2.	Beilinson-Bloch conjecture for $U(2m-1,1)$ -Shimura varieties	3
3.	Arithmetic inner product formula and arithmetic theta lifting	4
Rei	ferences	-

1. Backgrounds

- 1.1. Birch–Swinnerton-Dyer conjecture. Let $E: y^2 = x^3 + Ax + B$ be an elliptic curve over \mathbb{Q} . In the sense of Birch–Swinnerton-Dyer conjecture, we define
 - The algebraic rank of E is the rank of the finitely generated abelian group $E(\mathbb{Q})$, that is,

$$r_{\rm alg}(E) := \operatorname{rank} E(\mathbb{Q}).$$

• The analytic rank of E is the order of vanishing of the L-function associated to E at the central point s = 1, that is,

$$r_{\rm an}(E) := {\rm ord}_{s=1} L(E, s).$$

Conjecture 1.1 (Birch–Swinnerton-Dyer, 1960s).

(1) (Rank part).

$$r_a n(E) = r_{\rm alg}(E)$$
.

(2) (Leading coefficient). For $r = r_{an}(E)$,

$$\frac{L^{(r)}(E,1)}{r!} = \frac{\Omega(E)R(E)\prod_p c_p(E) \cdot |\mathrm{III}(E)|}{|E(\mathbb{Q})_{\mathrm{tor}}|^2},$$

where

 $\circ R(E) = \det(\langle P_i, P_j \rangle_{\mathrm{NT}})_{r \times r}$ is the regulator for the Néron-Tate height pairing

$$\langle -, - \rangle_{\rm NT} : E(\mathbb{Q}) \times E(\mathbb{Q}) \longrightarrow \mathbb{R},$$

- $\circ \coprod(E)$ is the Tate-Shafarevich group,
- $\circ \Omega(E)$ is the Néron period integral of Néron differentials ω_E along $E(\mathbb{R})$, and
- $\circ c_p(E)$, called the local Tamagawa number, equals $[E(\mathbb{Q}_p):E^0(\mathbb{Q}_p)]$ for an elliptic curve E^0 arose by some local torsion condition.

The following remark is by Tate in The Arithmetic of Elliptic Curves, 1974.

This remarkable conjecture relates the behavior of a function L at a point where it is not at present known to be defined to the order of a group III which is not known to be finite!

The BSD conjecture is still widely open in general, but much progress has been made in the rank 0 or 1 case.

Theorem 1.2 (Gross-Zagier, Kolyvagin, 1980s).

$$r_{\rm an}(E)=0 \implies r_{\rm alg}(E)=0, \qquad r_{\rm an}(E)=1 \implies r_{\rm alg}(E)=1.$$

Remark 1.3. When $r = r_{\rm an}(E) \in \{0,1\}$, many cases of the formula for $L^{(r)}(E,1)$ are known.

The proof combines two inequalities:

(1) (Gross–Zagier formula, [GZ86])

$$r_{\rm an}(E) = 1 \implies r_{\rm alg}(E) \geqslant 1.$$

(2) (Kolyvagin's Euler system, [BD05])

$$r_{\rm an}(E) \in \{0,1\} \implies r_{\rm alg}(E) \leqslant r_{\rm an}(E).$$

Both steps rely on *Heegner points* on modular curves.

1.2. Beilinson-Bloch conjecture.

1.2.1. The general statement. Let X be a smooth projective variety over a number field K. Denote $\operatorname{Ch}^m(X)$ the Chow group of algebraic K-cycles of codimension m on X. Also denote $\operatorname{Ch}^m(X)^0 \subset \operatorname{Ch}^m(X)$ the subgroup of geometrically cohomologically trivial cycles. Using this, we obtain the Beilinson–Bloch height pairing

$$\langle -, - \rangle_{\mathrm{BB}} : \mathrm{Ch}^m(X)^0 \times \mathrm{Ch}^{\dim X + 1 - m}(X)^0 \longrightarrow \mathbb{R}.$$

To state the conjecture, we also define $L(H^{2m-1}(X),s)$ to be the motivic L-function for $H^{2m-1}(X_{\overline{K}},\mathbb{Q}_{\ell})$.

Conjecture 1.4 (Beilinson-Block, 1980s).

(1) (Rank part).

$$\operatorname{ord}_{s=m} L(H^{2m-1}(X), s) = \operatorname{rank} \operatorname{Ch}^{m}(X)^{0}.$$

(2) (Leading coefficient).

$$L^{(r)}(H^{2m-1}(X), m) \sim \det(\langle Z_i, Z_i' \rangle_{BB})_{r \times r}.$$

Example 1.5. Let m=1 and X=K over E/\mathbb{Q} . Then BB conjecture 1.4 recovers the BSD conjecture 1.1 as

$$\operatorname{Ch}^{1}(E)^{0} \simeq E(\mathbb{Q}), \quad L(H^{1}(E), s) = L(E, s), \quad \langle -, - \rangle_{\operatorname{BB}} = -\langle -, - \rangle_{\operatorname{NT}}.$$

Remark 1.6. In general, both sides in Conjecture 1.4(1) are only conditionally defined.

- $L(H^{2m-1}(X), s)$ is not known to be analytically continued to the central point s = m.
- $\operatorname{Ch}^m(X)^0$ is not known to be finitely generated.

1.2.2. The case of Shimura variety. BB conjecture is testable when X is a certain Shimura variety. Due to the works by Langlands–Kottwitz and Langlands–Rapoport, one can express the motivic L-functions of Shimura varieties $X = \operatorname{Sh}_G$ as a product of automorphic L-functions $L(s, \pi)$ on G, i.e.

$$L(H^{2m-1}(Sh_G), s+m) = \prod_{\pi} L(s+1/2, \pi).$$

In the upcoming context we focus on the most interested case. For this, assume from now

- (i) $2m-1=\dim X$, so that we can consider the arithmetic middle degree;
- (ii) π is tempered cuspidal.

In is known that the analytic properties of $L(s,\pi)$ can be established, and hence we are able to detect those of the motivic L-function. However, $\operatorname{Ch}^m(X)^0$ is not known to be finitely generated even when $X = \operatorname{Sh}_G$, but we can test if it is nontrivial.

The following is an unconditional prediction of BB conjecture, in the same spirit of Gross-Zagier.

Conjecture 1.7 (Beilinson–Bloch for Shimura varieties).

$$\operatorname{ord}_{s=1/2}L(s,\pi)=1 \implies \operatorname{rank}\operatorname{Ch}^m(X)^0_{\pi}\geqslant 1,$$

where $\operatorname{Ch}^m(X)^0_{\pi}$ is the π -isotypical component of $\operatorname{Ch}^m(X)^0$.

Remark 1.8. Conjecture 1.7 was only known for:

- (1) X is a modular curve, by Gross-Zagier [GZ86];
- (2) X is a Shimura curve, by S. Zhang [Zha01b, Zha01a], Kudla–Rapoport–Yang [KRY06], Yuan–Zhang–Zhang [YZZ13], Liu [Liu16, Liu19];
- (3) $X = U(1,1) \times U(2,1)$ is a Shimura threefold and π is endoscopic, by Xue [Xue19].

Theorem 1.9 (Li–Liu, the impressionist version). Conjecture 1.7 holds for U(2m-1,1)-Shimura varieties while π satisfying certain local assumptions.

- 2. Beilinson-Bloch conjecture for U(2m-1,1)-Shimura varieties
- 2.1. **Setups.** Before setting up the unitary Shimura variety with U(2m-1,1), we first consider the Hermitian symmetric space for U(n-1,1), that is,

$$\mathbb{D}_{n-1} := \{ z \in \mathbb{C}^{n-1} : |z| < 1 \} \cong \frac{\mathrm{U}(n-1,1)}{\mathrm{U}(n-1) \times \mathrm{U}(1)}.$$

Moreover, we have an action on \mathbb{D}_{n-1} by U(n-1,1). Notice that \mathbb{D}_1 can be regarded as a hyperbolic plane (and is hence isomorphic to the upper half complex plane \mathbb{H}).

2.1.1. The unitary Shimura variety X. Let E be a CM extension of a totally real number field F over \mathbb{Q} . Let \mathbb{V} be a totally definite incoherent $\mathbb{A}_E/\mathbb{A}_F$ -hermitian space of rank n; here \mathbb{V} is incoherent if it is not the base change of a global E/F-hermitian space, or equivalently, $\prod_v \varepsilon(\mathbb{V}_v) = -1$ with $\mathbb{V}_v := \mathbb{V} \otimes_{\mathbb{A}_F} F_v$. On the other hand, any place $w \mid \infty$ of F gives a nearby coherent E/F-hermitian space V such that

$$V_v \cong \mathbb{V}_v, \quad v \neq w,$$

whereas V_w has signature (n-1,1).

Set $G = \mathrm{U}(\mathbb{V})$ and fix an open compact subgroup $K \subset G(\mathbb{A}_F^{\infty}) \cong U(V)(\mathbb{A}_F^{\infty})$. Then we can take X to be the unitary Shimura variety of dimension n-1 over its reflex field E such that for any place $w \mid \infty$ inducing the complex embedding $\iota_w : E \hookrightarrow \mathbb{C}$,

$$X(\mathbb{C}) = \mathrm{U}(V)(F) \setminus (\mathbb{D}_{n-1} \times \mathrm{U}(V)(\mathbb{A}_F^{\infty})/K).$$

It turns out that X is a Shimura variety of abelian type. Its étale cohomology and L-function are computed in the forthcoming work of Kisin–Shin–Zhu [KSZ], under the help of the endoscopic classification for unitary groups (Mok [Mok15], Kaletha–Minguez–Shin–White [KMSW14]).

2.1.2. Automorphic representations π . Resume on the setup above. Let $W=E^{2m}$ be the standard E/F-skew-hermitian space with matrix $\begin{pmatrix} 0 & 1_m \\ -1_m & 0 \end{pmatrix}$. Let $\mathrm{U}(W)$ be the quasi-split unitary group of rank n=2m. Let π be the cuspidal automorphic representation of $\mathrm{U}(W)(\mathbb{A}_F)$.

Assumptions 2.1. We assume the following about π_v locally.

- (1) E/F is split at all 2-adic places and $F \neq \mathbb{Q}$. Assume that E/\mathbb{Q} is Galois or contains an imaginary quadratic field (for simplicity).
- (2) For $v \mid \infty, \pi_v$ is the holomorphic discrete series with Harish-Chandra parameter $\{(n-1)/2, (n-3)/2, \ldots, (-n+3)/2, (-n+1)/2\}$.
- (3) For $v \nmid \infty$, π_v is tempered.
- (4) For $v \nmid \infty$ ramified in E, π_v is spherical with respect to the stabilizer of $\mathcal{O}_{E_v}^{2m}$.
- (5) For $v \nmid \infty$ inert in E, π_v is unramified or almost unramified. If π_v is almost unramified, then v is unramified over \mathbb{Q} .

Remark 2.2 (Almost unramifiedness). Saying π_v is almost unramified means that π_v has a nonzero Iwahori-fixed vector and its Satake parameter contains $\{q_v, q_v^{-1}\}$ and 2m-2 complex numbers of norm 1. Equivalently, the theta lift of π_v to the non-quasi-silt unitary group of same rank is spherical with respect to the stabilizer of an almost self-dual lattice.

2.2. Main result. The first main result of [LL21, LL22] is the verification of BB conjecture. Let S_{π} be the set of places v that are inert and such that π_v 's are almost unramified. Then under Assumptions 2.1, the global root number for the (complete) standard L-function $L(s,\pi)$ equals

$$\varepsilon(\pi) = (-1)^{|S_{\pi}|} \cdot (-1)^{m \cdot [F:\mathbb{Q}]}$$

by epsilon dichotomy (Harris-Kudla-Sweet [HKS96], Gan-Ichino [GI16]). When $\operatorname{ord}_{s=1/2}L(s,\pi)=1$:

- $\varepsilon(\pi) = -1$,
- $\mathbb{V} = \mathbb{V}_{\pi}$ is the totally definite incoherent space of rank n = 2m such that, for $v \nmid \infty$, we have $\varepsilon(\mathbb{V}_v) = -1$ exactly for $v \in S_{\pi}$,
- X, the associated unitary Shimura variety, is of dimension n-1=2m-1 over E, and
- $\operatorname{Ch}^m(X)^0_{\pi}$ is the localization of $\operatorname{Ch}^m(X)^0_{\mathbb{C}}$ at the maximal ideal \mathfrak{m}_{π} of the Hecke algebra associated to π .

Theorem 2.3 ([LL21, LL22]). Let π be a cuspidal automorphic representation of $U(W)(\mathbb{A}_F)$ satisfying Assumptions 2.1. Then the implication

$$\operatorname{ord}_{s=1/2}L(s,\pi)=1 \implies \operatorname{rank}\operatorname{Ch}^m(X)_{\pi}^0 \geqslant 1$$

holds when the level $K \subset G(\mathbb{A}_F^{\infty})$ is sufficiently small.

Example 2.4 (Symmetric power L-function of elliptic curves). Let A/F be a modular elliptic curve without complex multiplication such that

- (i) A has bad reduction only at places v that split in E;
- (ii) $\operatorname{Sym}^{2m-1} A_E$ is automorphic (Newton-Thorne, Clozel-Thorne, etc.).

Then there exists π satisfying Assumptions 2.1 such that

$$L(s+1/2,\pi) = L(\operatorname{Sym}^{2m-1} A_E, s+m).$$

As $S_{\pi} = \emptyset$ and $\varepsilon(\pi) = (-1)^{m \cdot [F:\mathbb{Q}]}$, Theorem 2.3 applies to π when $m \cdot [F:\mathbb{Q}]$ is odd.

3. Arithmetic inner product formula and arithmetic theta lifting

3.1. Generating series of Heegner points. Nontrivial cycles can be constructed via the method of arithmetic theta lifting by Kudla and Liu [Liu11a, Liu11b]. Here comes a baby example of Heegner points, which contributes to Gross–Zagier formula as well.

Consider the modular curve

$$X_0(N) = \Gamma_0(N) \setminus \mathbb{H} \cup \{\text{cusps}\} = \{E_1 \to E_2 : \text{cyclic } N \text{-isogeny}\}.$$

For certain imaginary quadratic field $K = \mathbb{Q}(\sqrt{-d})$, we have a Heegner divisor

$$Z(d) := \{E_1 \to E_2 \text{ with endomorphisms by } \mathcal{O}_K\} \in \mathrm{Ch}^1(X_0(N)).$$

The theory of complex multiplication asserts that Z(d) is actually a divisor of $X_0(N)$ defined over K. Let E/\mathbb{Q} be an elliptic curve of conductor N who has a modular parametrization

$$\varphi_E: X_0(N) \longrightarrow E.$$

Using these, we define a *Heegner point*

$$P_K \in \varphi_E(Z(d) - \deg Z(d) \cdot \infty) \in E(K).$$

Then we are able to state the Gross–Zagier formula.

Theorem 3.1 (Gross-Zagier, [GZ86]). Up to simpler nonzero factors,

$$L'(E_K,1) \sim \langle P_K, P_K \rangle_{\rm NT}.$$

Remark 3.2. (1) Choosing K suitably gives the implications

$$r_{\rm an}(E) = 1 \implies r_{\rm alg}(E) \geqslant 1.$$

(2) BSD formula for E_K reduces to a precise relation between P_K and $\coprod(E_K)$.

To introduce Arithmetic theta liftings, we first consider the following heuristic example. Recall that $K = \mathbb{Q}(\sqrt{-d})$. Take $P_d = \operatorname{tr}_{K/\mathbb{Q}} P_K \in E(\mathbb{Q})$. It may depend on the choice of d, even when $E(\mathbb{Q}) \cong \mathbb{Z}$.

Example 3.3. Let
$$E = X_0^+(37) : y^2 + y = x^3 - x$$
. Then

- $\diamond E(\mathbb{Q}) \cong \mathbb{Z}$ with a generator P = (0,0).
- \diamond E corresponds to the modular form $f \in S_2(37)$ where

$$f = q - 2q^2 - 3q^3 + 2a^4 - 2q^5 + 6q^6 - q^7 + 6q^9 + 4q^{10} - 5q^{11} - 6q^{12} - 2q^{13} + \cdots$$

 \diamond Table of Heegner points P_d :

d	ļ	3	4	7	11	12	16	27	 67	
P	d	(0,-1)	(0,-1)	(0,0)	(0,-1)	(0,0)	(1,0)	(-1, -1)	 (6, -15)	
c_{ϵ}	d	-1	-1	1	-1	1	2	3	 -6	

where $P_d = c_d \cdot P$.

Now the miracle is that the coefficients c_d appear as the Fourier coefficients of $\phi \in S_{3/2}^+(4\cdot 37)$, for

$$\phi = \sum_{d \ge 1} c_d q^d = -q^3 - q^4 + q^7 - q^{11} + q^{12} + 2q^{16} + 3q^{27} + \dots - 6q^{67} + \dots,$$

which maps to f under the Shimura–Waldspurger–Kohnen correspondence

$$\theta: S_{3/2}^+(4\cdot 37) \longrightarrow S_2(N), \quad \phi \longmapsto f.$$

3.2. **Arithmetic theta lifting.** The observation arising from Example 3.3 dictates that the generating series of Heegner points

$$\sum_{d\geqslant 1} P_d \cdot q^d = \sum_{d\geqslant 1} c_d P \cdot q^d = \phi \cdot P \in S_{3/2}^+(4 \cdot 37) \otimes E(\mathbb{Q})_{\mathbb{C}}$$

is a modular form valued in $E(\mathbb{Q})_{\mathbb{C}}$. More generally, we may define a generating series of Heegner divisors on $X_0(N)$,

$$Z := \sum_{d} Z(d)q^{d} \in M_{3/2}(4N) \otimes \operatorname{Ch}^{1}(X_{0}(N))_{\mathbb{C}},$$

which may be viewed as an arithmetic theta series.

Definition 3.4. Use Z as the kernel to define arithmetic theta lifting

$$\Theta(\phi) := (Z, \phi)_{\text{Pet}} \in \text{Ch}^1(X_0(N))_{f, \mathbb{C}}^0 = E(\mathbb{Q})_{\mathbb{C}}.$$

Indeed, $\Theta(\phi)$ does not depend on any particular choice of d or K.

Theorem 3.5 (Gross-Kohnen-Zagier, [GKZ87]). Up to simpler nonzero factors,

$$L'(E,1) \sim \langle \Theta(\phi), \Theta(\phi) \rangle_{NT}.$$

Now let us focus on the case where X is a unitary Shimura variety as before.

Definition 3.6 (Special cycles on unitary Shimura variety). Suppose $X = \operatorname{Sh}_{\mathrm{U}(V)}$.

• For any $y \in V$ with (y,y) > 0, its orthogonal complement $V_y \subset V$ has rank n-1. The embedding $U(V_y) \hookrightarrow U(V)$ defines a Shimura subvariety of codimension1, read as

$$\operatorname{Sh}_{\mathrm{U}(V_{\mathrm{s}})} \longrightarrow X = \operatorname{Sh}_{\mathrm{U}(V)}.$$

• For any $x \in V(\mathbb{A}_F^{\infty})$ with $(x, x) \in F_{>0}$, there exists $y \in V$ and $g \in U(V)(\mathbb{A}_F^{\infty})$ such that y = gx. Define the *special divisor*

$$Z(x) \longrightarrow X$$

to be the g-translate of $Sh_{U(V_n)}$.

• For any $\mathbf{x} = (x_1, \dots, x_m) \in V(\mathbb{A}_F^{\infty})^m$ with $T(\mathbf{x}) = ((x_i, x_j)) \in \operatorname{Herm}_m(F)_{>0}$, define the special cycle (of codimension m) as

$$Z(\mathbf{x}) = Z(x_1) \cap \cdots \cap Z(x_m) \longrightarrow X.$$

• More generally, for a Schwartz function $\varphi \in \mathscr{S}(V(\mathbb{A}_F^{\infty})^m)^K$ and $T \in \operatorname{Herm}_m(F)_{>0}$, define the weighted special cycle

$$Z_{\varphi}(T) = \sum_{\substack{\mathbf{x} \in K \setminus V(\mathbb{A}_F^{\infty})^m, \\ T(\mathbf{x}) = T}} \varphi(\mathbf{x}) Z(\mathbf{x}) \in \mathrm{Ch}^m(X)_{\mathbb{C}}.$$

• With extra care, we can also define $Z_{\varphi}(T) \in \mathrm{Ch}^m(X)_{\mathbb{C}}$ for any $T \in \mathrm{Herm}_m(F)_{\geq 0}$.

Definition 3.7. Define Kudla's generating series of special cycles as

$$Z_{\varphi}(\tau) = \sum_{T \in \operatorname{Herm}_{m}(E)_{\geqslant 0}} Z_{\varphi}(T) q^{T}.$$

Conjecture 3.8 (Kudla's modularity [Kud97, Kud04]). The formal generating series $Z_{\varphi}(\tau)$ converges absolutely and defines a modular form on U(W) valued in $\operatorname{Ch}^m(X)_{\mathbb{C}}$.

Remark 3.9. (1) The analogous modularity in Betti cohomology is known by Kudla–Millson [KM90] in 1980s.

(2) Conjecture is known for m = 1. For general m, the modularity follows from the absolute convergence [Liu11b].

- (3) The analogous conjecture for orthogonal Shimura varieties over \mathbb{Q} is known by Bruinier–Westerholt-Raum [BWR15].
- (4) Conjecture is known when E/F is a norm-Euclidean imaginary quadratic field, due to Xia [Xia21].

Definition 3.10. Assuming Kudla's modularity conjecture, for $\phi \in \pi$, define arithmetic theta lifting for Kudla's generating series of weighted special cycles as

$$\Theta_{\varphi}(\phi) = (Z_{\varphi}(\tau), \phi)_{\text{Pet}} \in \text{Ch}^m(X)_{\pi}^0$$

Theorem 3.11 ([LL21, LL22]). Let π be a cuspidal automorphic representation of $U(W)(\mathbb{A}_F)$ satisfying Assumptions 2.1. Assume $\varepsilon(\pi) = -1$. Assume Kudla's modularity in Conjecture 3.8. Then for any $\phi \in \pi$ and $\varphi \in \mathcal{S}(V(\mathbb{A}_F^\infty)^m)$, up to simpler factors depending on ϕ and φ ,

$$L'(1/2,\pi) \sim \langle \Theta_{\varphi}(\phi), \Theta_{\varphi}(\phi) \rangle_{BB}.$$

Remark 3.12. The simpler factors can be further made explicit. For example, if

- $\circ \pi$ is unramified or almost unramified at all finite places,
- $\phi \in \pi$ is a holomorphic newform such that $(\phi, \overline{\phi})_{\pi} = 1$, and if
- $\circ \varphi$ is a characteristic function of self-dual or almost self-dual lattices at all finite places,

then

$$\frac{L'(1/2,\pi)}{\prod_{i=1}^{2m} L(i,\eta_{E/F}^i)} C_m^{[F:\mathbb{Q}]} \prod_{v \in S_\pi} \frac{q_v^{m-1}(q_v+1)}{(q_v^{2m-1}+1)(q_v^{2m}-1)} = (-1)^m \langle \Theta_\varphi(\phi), \Theta_\varphi(\phi) \rangle_{\text{BB}},$$

where

$$C_m = 2^{m(m-1)} \pi^{m^2} \frac{\Gamma(1) \cdots \Gamma(m)}{\Gamma(m+1) \cdots \Gamma(2m)}.$$

Moreover, as an addendum,

(1) The classical Riemann hypothesis predicts that

$$L'(1/2,\pi) \geqslant 0;$$

(2) Beilinson's Hodge index conjecture predicts that

$$(-1)^m \langle \Theta_{\varphi}(\phi), \Theta_{\varphi}(\phi) \rangle_{BB} \geqslant 0.$$

The combination of (1) and (2) is compatible with our formula.

Before introducing the proof strategy of Li–Liu, we list out a brief summary on arithmetic theta lifting, as well as the generalization from BSD conjecture to BB conjecture.

	BSD conjecture	BB conjecture			
Ambient varieties	Modular curves $X_0(N)$	Unitary Shimura varieties X			
Simple geometric objects	Heegner points $Z(d)$	Special cycles $Z_{\varphi}(T)$			
Kudla's generating series	$Z = \sum_d Z(d)q^d \in \mathrm{Ch}^1(X_0(N))_{\mathbb{C}}$	$Z_{\varphi} = \sum_{T} Z_{\varphi}(T) q^{T} \in \operatorname{Ch}^{m}(X)_{\mathbb{C}}$			
Arithmetic theta liftings	$\Theta(\phi) \in E(\mathbb{Q})_{\mathbb{C}}$	$\Theta_{\varphi}(\phi) \in \mathrm{Ch}^m(X)^0_{\pi}$			
Formulas	Gross–Zagier formula $L'(E,1) \sim \langle \Theta(\phi), \Theta(\phi) \rangle_{\text{NT}}$	Arithmetic inner product formula $L'(1/2, \pi) \sim \langle \Theta_{\varphi}(\phi), \Theta_{\varphi}(\phi) \rangle_{BB}$			

3.3. The proof strategy.

3.3.1. Doubling method. The doubling method is introduced by Piatetski-Shapiro–Rallis [PSR86, PSR87] and Yamana [Yam14], read as

$$L(s+1/2,\pi) \sim (\phi \otimes \overline{\phi}, \mathrm{Eis}(s,g))_{\mathrm{U}(W)^2},$$

where $\mathrm{Eis}(s,g)$ is a Siegel Eisenstein series on $\mathrm{U}(W\oplus W)$.

By definition $\Theta_{\varphi}(\phi) = (Z_{\varphi}, \phi)_{\text{Pet}}$ gives

$$\langle \Theta_{\varphi}(\phi), \Theta_{\varphi}(\phi) \rangle_{\mathrm{BB}} = (\phi \otimes \overline{\phi}, \langle Z_{\varphi}, Z_{\varphi} \rangle_{\mathrm{BB}})_{U(W)^2}.$$

To prove $L'(1/2, \pi) \sim \langle \Theta_{\varphi}(\phi), \Theta_{\varphi}(\phi) \rangle_{BB}$, it suffices to compare

$$\operatorname{Eis}'(0,g) \stackrel{?}{=} \langle Z_{\varphi}, Z_{\varphi} \rangle_{\operatorname{BB}}.$$

This can be viewed as an arithmetic Siegel-Weil formula. Here the Beilinson-Bloch height pairing is a sum of local indexes

$$\langle Z_{\varphi}, Z_{\varphi} \rangle_{\mathrm{BB}} = \sum_{v} \langle Z_{\varphi}, Z_{\varphi} \rangle_{\mathrm{BB}, v}.$$

And the nonsingular Fourier coefficient for the q^T -term decomposes as

$$\operatorname{Eis}_{T}'(0,g) = \sum_{v} \operatorname{Eis}_{T,v}'(0,g).$$

3.3.2. Local comparison on arithmetic Siegel-Weil formula. For nonsingular local terms, it suffices to prove

$$\operatorname{Eis}'_{T,v}(0,g) \stackrel{?}{=} \langle Z_{\varphi}, Z_{\varphi} \rangle_{\operatorname{BB},T,v}.$$

In codimension 1 case with m = 1, the Gross–Zagier formula computes both sides explicitly. However, such an explicit computation is infeasible for general m.

- When $v \nmid \infty$, we use:
 - (i) the work for relating $\langle Z_{\varphi}, Z_{\varphi} \rangle_{\mathrm{BB},T,v}$ to arithmetic intersection numbers;
 - (ii) recent proof of Kudla-Rapoport conjecture due to Li-Zhang [LZ22].
- When $v \mid \infty$, we use:
 - (i) archimedean arithmetic Siegel-Weil formula, proved by Liu [Liu11a] and Garcia-Sankaran [GS19] independently;
 - (ii) avoidance of holomorphic projections.

To finish the argument, we kill singular terms on both sides by proving the existence of special $\varphi \in \mathscr{S}(V(\mathbb{A}_F^\infty)^m)$ with regular support at two split places with nonvanishing local zeta integrals. Motivated by the comparison of nonsingular terms which deduced Theorem 3.11 for special φ , we can extrapolate such a proof for arbitrary φ with multiplicity one of doubling method in tempered case. Consequently, Theorem 2.3 is given by a same computation without Kudla's modularity, using the proof by contradiction.

Remark 3.13. We have some final remarks on Assumptions 2.1.

- (1) When $v \nmid \infty$, the local index $\langle -, \rangle_{BB,v}$ is defined as an ℓ -adic linking number. It is defined on a certain subspace $\operatorname{Ch}^m(X)^{\langle \ell \rangle} \subset \operatorname{Ch}^m(X)^0$ (which are conjecturally equal) and its independence on ℓ is not known in general.
- (2) Find a Hecke operator $t \notin \mathfrak{m}_{\pi}$ such that $t^*Z \in \operatorname{Ch}^m(X)^{\langle \ell \rangle}$, so BB height is defined. Also find another Hecke operator $s \notin \mathfrak{m}_{\pi}$ and BB height of s^*t^*Z can be therefore computed in terms of the arithmetic intersection number of a nice extension \mathcal{Z} on \mathcal{X} . Here \mathcal{X} is a regular integral model of a related unitary Shimura variety of PEL type. This step requires to prove certain vanishing of \mathfrak{m}_{π} -localized ℓ -adic cohomology of \mathcal{X} .
- (3) The Kudla-Rapoport conjecture states that

 $\operatorname{Eis}'_{T,v}(0,g) = \text{the arithmetic intersection number above.}$

Assuming the conjecture, the ℓ -independence of $\langle Z_{\varphi}, Z_{\varphi}$ rangle_{BB,T,v} will follow.

- (4) Assumptions 2.1 are required in both construction of Hecke operators and the proof of Kudla–Rapoport conjecture.
- (5) The condition $F \neq \mathbb{Q}$ of fields is needed to prove vanishing of \mathfrak{m}_{π} -localized cohomology of integral models with Drinfeld level structures at split places (with input from Mantovan [Man08], Caraiani–Scholze [CS17]).

References

- [BD05] M. Bertolini and H. Darmon. Iwasawa's main conjecture for elliptic curves over anticyclotomic \mathbb{Z}_p -extensions. Ann. Math. (2), 162(1):1–64, 2005.
- [BWR15] J.H. Bruinier and M. Westerholt-Raum. Kudla's modularity conjecture and formal Fourier–Jacobi series. Forum Math. Pi, 3:e7, 30, 2015.
- [CS17] A. Caraiani and P. Scholze. On the generic part of the cohomology of compact unitary Shimura varieties. Ann. of Math., 186(3):649–766, 2017.
- [GI16] W. T. Gan and A. Ichino. The Gross-Prasad conjecture and local theta correspondence. *Inventiones Mathematicae*, 206(3):705-799, 2016.

- [GKZ87] B. H. Gross, W. Kohnen, and D. B. Zagier. Heegner points and derivatives of L-series, II. Math. Ann., 278(1-4):497–562, 1987.
- [GS19] L.E. Garcia and S. Sankaran. Green forms and the arithmetic Siegel-Weil formula. Invent. Math., 215(3):863–975, 2019.
- [GZ86] B. H. Gross and D. Zagier. Heegner points and derivatives of L-series. Invent. Math., 84(2):225–320, 1986.
- [HKS96] M. Harris, S. S. Kudla, and W. J. Sweet. Theta dichotomy for unitary groups. Journal of the American Mathematical Society, 9(4):941–1004, 1996.
- [KM90] S. Kudla and J. Millson. Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables. Inst. Hautes Études Sci. Publ. Math., 71:121–172, 1990.
- [KMSW14] T. Kaletha, A. Minguez, S. W. Shin, and P.-J. White. Endoscopic classification of representations: Inner forms of unitary groups. 2014. arXiv:1409.3731.
- [KRY06] S. Kudla, M. Rapoport, and T. Yang. Modular forms and special cycles on Shimura curves. 161:x+373, 2006.
 [KSZ] M. Kisin, S.W. Shin, and Y. Zhu. The stable trace formula for Shimura varieties of abelian type. arXiv:2110.05381.
- [Kud97] S. Kudla. Algebraic cycles on Shimura varieties of orthogonal type. Duke Math. J., 86(1):39–78, 1997.
- [Kud04] S. Kudla. Special cycles and derivatives of Eisenstein series. In Heegner points and Rankin L-series, volume 49 of Math. Sci. Res. Inst. Publ., pages 243–270. Cambridge Univ. Press, Cambridge, 2004.
- [Liu11a] Y. Liu. Arithmetic theta lifting and L-derivatives for unitary groups, I. Algebra Number Theory, 5(7):849–921, 2011.
- [Liu11b] Y. Liu. Arithmetic theta lifting and L-derivatives for unitary groups, II. Algebra Number Theory, 5(7):923– 1000, 2011.
- [Liu16] Y. Liu. Hirzebruch–Zagier cycles and twisted triple product Selmer groups. Invent. Math., 205(3):693–780, 2016.
- [Liu19] Y. Liu. Bounding cubic–triple product Selmer groups of elliptic curves. J. Eur. Math. Soc. (JEMS), 21(5):1411–1508, 2019.
- [LL21] C. Li and Y. Liu. Chow groups and l-derivatives of automorphic motives for unitary groups. Annals of Mathematics, 194(3):817–901, 2021.
- [LL22] C. Li and Y. Liu. Chow groups and L-derivatives of automorphic motives for unitary groups, II. Forum of Mathematics, Pi, 10:Paper No. e5, 2022.
- [LZ22] C. Li and W. Zhang. Kudla-rapoport cycles and derivatives of local densities. J. Amer. Math. Soc., 35(3):705-797, 2022.
- [Man08] Elena Mantovan. A compactification of Igusa varieties. Math. Ann., 340(2):265–292, 2008.
- [Mok15] C. P. Mok. Endoscopic classification of representations of quasi-split unitary groups. Memoirs of the American Mathematical Society, 235(1108):vi+248, 2015.
- [PSR86] I. Piatetski-Shapiro and S. Rallis. ε factor of representations of classical groups. *Proc. Nat. Acad. Sci. U.S.A.*, 83(13):4589–4593, 1986.
- [PSR87] I. Piatetski-Shapiro and S. Rallis. L-functions for the classical groups. In *Automorphic Forms, Representa*tions, and L-functions, pages 1–52. Springer Berlin Heidelberg, Berlin, Heidelberg, 1987.
- [Xia21] J. Xia. Some cases of Kudla's modularity conjecture for unitary Shimura varieties. 2021. arXiv:2101.06304.
- [Xue19] H. Xue. Arithmetic theta lifts and the arithmetic Gan-Gross-Prasad conjecture for unitary groups. Duke Mathematical Journal, 168(1):127-185, 2019.
- [Yam14] S. Yamana. L-functions and theta correspondence for classical groups. Invent. Math., 196(3):651-732, 2014.
- [YZZ13] X. Yuan, S.-W. Zhang, and W. Zhang. The Gross-Zagier formula on Shimura curves, volume 184 of Annals of Mathematics Studies. Princeton University Press, 2013.
- [Zha01a] S. Zhang. Gross–Zagier formula for GL(2). Asian J. Math., 5(2):183–290, 2001.
- [Zha01b] S. Zhang. Heights of Heegner points on Shimura curves. Ann. of Math. (2), 153(1):27-147, 2001.

School of Mathematical Sciences, Peking University, 100871, Beijing, China $Email\ address$: daiwenhan@pku.edu.cn