Ketarded Green Functions

- · Our goal is to write down the retarded Green function of the Maxwell equation and to learn mathematics.
- · Let us start with the harmonic oscillator

$$\left[\frac{md^2 + m\eta d + mw^2}{dt^2}\right] G_{R}(t,t_0) = 8(t-t_0)$$

Galt, to) is the displacement at time to due to an impulsive force at time to. Here we have defined the linear operator & which is the underlined term. For a general F(+) driving the oscillator

$$\propto_{t} \chi(t) = F(t)$$

The general solution is a specific solution $X_g(t)$ (usually the steady state) + a homogeneous solution

$$\chi(t) = \chi_{s}(t) + \chi_{hemo}(t)$$

where
$$\mathcal{L}_{t} \times (t) = F(t)$$
 and $\mathcal{L}_{t} \times (t) = 0$

and X is adjusted to satisfy the Initial conditions

For the oscillator example at small damping X (t) = A e 7/2 t e iwt + B e 7/2 t e iwt The specific solution (1) $X_s(t) = \int_{R}^{\infty} G_R(t-t_s) F(t_s) dt_s$ $= \int_{-\infty}^{\infty} S(t-t_0) F(t_0) dt_0 = F(t)$ · We will specifically be interested in the retarded or causal Green fon: GR (+,+0)=0 for t<+ So GR is a response at t to a force at to

Note all physical quantities are ultimately expressible as Grn-fins. For example, we used a harmonic oscillator (Lorentz Model) to describe the dielectric constant. F(t)=eElt) the current j(t) = ne V(t), so from Eq. (1) $x_s(\omega) = G_R(\omega) F(\omega)$ j(w) = ne (-iwx(w)) And F(w) = e E(w) = ne2 Ge(W) (-iWE(W)) So comparison with the constitutive relation $(j(\omega) = \chi_e(\omega) (-i\omega E(\omega)))$ gives $\chi_{e}(\omega) = ne^{2}G_{R}(\omega)$ Thus we see how in a particular model, the response function of the dynamical system determines the susceptibility

Finding the Green Function in time: Direct Method Demand continuity and integrate from to-E to to + E. We know GR(+, to) = 0 for + < +. $G_{\epsilon}(t+\epsilon,t_{\delta})=0$ md 6 R(t+E,t) + my GR(t+E,t) = 1 00 $md G_R(t+\epsilon, t_0) = 1$ 农农 Then we can solve the diff-eq given the initial conditions. The two homogeneous solutions are X+ = e 7/t etiwot for small y Then the linear combo of xx which satisfies the initial conditions (*) and (**) are GR= (Sinwo (t-to) e-7/2 (t-to) /mwo t-to>0 otherwise.

Us nally	y this	is wr	ritten		
	G _R (t) =	Θ (τ)	Sin Wol	e z	$T \equiv t - t_0$
			mωo	·····	
			·····		
	<u></u>		······································		
			,		
					
			100 mg - 100		
		•			
	· · · · · · · · · · · · · · · · · · ·				
			<u> </u>		
		er unt dete e			

Fourier Method for Green fon, Jaw e WT
//
$ \left[\begin{array}{cccc} m d^{2} & m \eta d & m \omega_{0}^{2} \\ d\tau \end{array}\right] G_{R}(\tau) = \delta(\tau) $
CT2 dT
Fourier Transform both sides
Tourier transform both sides
77
[-mw2 + my(-iw) + mw,2]Gp(w) = 1
GR(W) = 1/m
GR(W) = 1/m [-w2+w2-iw7]
Thus
$G_{\rho}(\tau) = \int d\omega e^{-i\omega\tau} Y_{m}$ $\int 2\pi \left[-\omega^{2} + \omega_{0}^{2} - i\omega\gamma \right]$
) 2T [-1/2+1/2]
\(\tag{1} \)
You can do these integrals with contour integration
the poles are at
$\omega^2 + i\omega_{\gamma} = \omega_0^2$
7
Solving this equation for small ?:
w~ ±wo-ing
(A) 0 Sec 1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
We see that the integrand has the following
analytic structure

Case 2: T>O
For t>0 we must close the contour in the
LHP picking up poles at w= two-ing
5
For t>0:
For t>0: wrong way around poles
$G_{R}(\tau) = -2\pi i \left[Res_{\omega=\omega_0-i\gamma} + Res_{\omega=-\omega_0-i\gamma/2} \right]$
κ ω-ω ₀ -ιη ω-ω ₀ -τη/ ₂
= 1 = e7/2 e iwot + 1-i e 7/2 e iwot
m 2ω ₀ m 2ω ₀
F
homogeneous solutions
from two pages
back
bace
, -7, T
$= 1 e^{-\frac{\gamma}{2}t} \sin \omega_0 t$
m ω_{o}
So
Gp(T) = B(T) sin w T e-7/2 -> O(T) sin w T
$G_{p}(\tau) = G(\tau) \frac{\sin \omega_{0} \tau}{\sin \omega_{0}} e^{-\eta/2\tau} \xrightarrow{\gamma \to 0} G(\tau) \frac{\sin \omega_{0} \tau}{m\omega_{0}}$
We will see that this Green function is closely
related to the green function of the wave eqn

(Aside is perscription:)
Take the $\eta \rightarrow 0$ limit of the damped harmonic oscillator
oscillator
$G_{R}(t) = \sin \omega_{t} T \Theta(t)$
$m\omega_o$
Gp(w) = Vm
$G_{\varrho}(\omega) = Vm$ $\left[-\omega^2 + \omega_{\varrho}^2\right]$
But this is and invalue since the more
on the real axis What does this mean (1) a-iwt
But this is ambiguous since the poles are on the real axis. What does this mean $\int \frac{d\omega}{2\pi} \frac{e^{-i\omega T}}{(-\omega^2 + \omega)^2}$
We know that causality do 1 - 11-1 do 1
We know that causality demands that the poles.
lie in the lower half plane. We can enforce this
by adding an infinitessimal imaginary part
w -> wtie positive
So
Gp(w) = Vm
$\left(-(\omega+i\epsilon)^2+\omega^2\right)$
Amounts to adding
- Vm an infinitessimal
(-w2+w2-2iEW) damping coefficie
$(-\omega + \omega_0 - 2.1 \epsilon \omega)$ $\gamma = 2\epsilon$
(

Kramers - Krönig and retarded Green functions
The Kramers Krönig relation hold for causal response functions, which are always analytic in UHP (upper half plane). Gp(W) satisfies these properties thus:
(upper half plane). Gp(W) satisfies these properties, thus:
$ReG(\omega) = -(d\omega')P TerG(\omega')$
$ReG_{R}(\omega) = -\int \frac{d\omega'}{\pi} \frac{P}{\omega - \omega'} ImG_{R}(\omega')$
$\underline{Tm}G_{R}(\omega) = + \int_{-\infty}^{\infty} d\omega' \underline{P} ReG_{R}(\omega')$
$\int_{-\infty}^{\infty} \overline{\pi} \ \omega - \omega'$