Riemannian Geometry

2018

COURSEWORK

This assignment counts for 20% of your marks.

Solutions are due by 18 April 3pm

Write solutions in the provided spaces.

STUDENT'S NAME:

Consider a surface M, the upper sheet of the cone

$$\mathbf{r}(h,\varphi) \colon \begin{cases} x = h \cos \varphi \\ y = h \sin \varphi \\ z = kh \end{cases}, \qquad 0 \le \varphi < 2\pi, h > 0.$$

Find the length of the shortest curve C which belongs to the surface M, starts at the point (h, 0, kh) and ends at the point (-h, 0, kh).

2

You know that the Riemannian metric on the sphere of radius R in the stereographic coordinates is expressed by the formula

$$G_{\text{stereogr.}} = \frac{4R^4(du^2 + dv^2)}{(R^2 + u^2 + v^2)^2}.$$

- a) Give an example of a non-identity transformation of coordinates u, v such that it preserves this metric.
- b) Give an example of a non-linear transformation of coordinates u, v such that it preserves this metric.

(Hint: You may find this transformation considering transformations of the sphere.)

c) Find the length of the line v=au in ${\bf R}^2$ with respect to this metric.

Why the length of this curve does not depend on the parameter a?

- a) Evaluate the area of the part of the sphere of radius R=1 between the planes given by equations 2x+2y+z=1 and 2x+2y+z=2.
- b) Consider the plane \mathbf{R}^2 with standard coordinates (x,y) equipped with Riemannian metric

$$G = (1 + x^2 + y^2)e^{-a^2x^2 - a^2y^2} (dx^2 + dy^2).$$

Calculate the total area of this plane.

4

a) Consider the points $A=(0,0,R),\ B=(R,0,0)$ and $C=(R\cos\varphi,R\sin\varphi,0)$ on the sphere $x^2+y^2+z^2=R^2$ in \mathbf{E}^3 (0 < $\varphi<\pi$). Consider the isosceles triangle ABC on this sphere. (Sides of this triangle are the arcs of great circles joining these points.) Show that:

$$\frac{\text{Area }(\triangle ABC)}{R^2} = \alpha + \beta + \gamma - \pi \,,$$

where α, β, γ are angles of this triangle.

b) Consider the upper half-plane y > 0 with the Riemannian metric

$$G = \frac{dx^2 + dy^2}{y^2}$$

(the Lobachevsky plane).

In the Lobachevsky plane consider the domain D defined by

$$D = \{x, y: x^2 + y^2 \ge 1, -a \le x \le a\},\$$

where a is a parameter such that 0 < a < 1.

Find the area of the domain D (with respect to the metric G).

Show that

Area of the domain
$$D = \pi - \beta - \gamma$$
,

where β, γ are angles between the vertical lines $x = \pm a$ and arc of the circle delimiting the domain D.

Consider the points $A_t = (-a, t)$ and $B_t = (a, t)$ on the vertical rays $x = \pm a$ delimiting the domain D. Show that the distance between these points tends to 0 if $t \to \infty$.

Explain why the domain D can be considered as an isosceles triangle.

Why it can be said that the third angle of this triangle vanishes.

a) Let ∇ be an affine connection on the 2-dimensional manifold M such that in local coordinates $(u,v), \ \nabla_{\frac{\partial}{\partial u}} \left(u^2 \frac{\partial}{\partial v} \right) = 3u \frac{\partial}{\partial v} + u \frac{\partial}{\partial u}$.

Calculate the Christoffel symbols Γ^u_{uv} and Γ^v_{uv} of this connection.

b) Let ∇ be an arbitrary connection on a manifold M. Show that

$$\cos F \nabla_{\mathbf{A}} (\sin F \mathbf{B}) - \sin F \nabla_{\mathbf{A}} (\cos F \mathbf{B}) = (\partial_{\mathbf{A}} F) \mathbf{B},$$

where \mathbf{A}, \mathbf{B} are arbitrary vector fields and F is an arbitrary function.

c) Let $\Gamma_{km}^{i(1)}$ be the Christoffel symbols of a connection $\nabla^{(1)}$ and $\Gamma_{km}^{i(2)}$ be the Christoffel symbols of a connection $\nabla^{(2)}$. Show, that the linear combinations $\frac{2}{3}\Gamma_{km}^{i(1)} + \frac{1}{3}\Gamma_{km}^{i(2)}$, are Christoffel symbols for some connection.

Explain, why $\frac{1}{2}\Gamma_{km}^{i(1)} + \frac{1}{3}\Gamma_{km}^{i(2)}$ are not Christoffel symbols for any connection.

6

Let M be a surface considered in question 1 (the upper sheet of a cone),

- a) Calculate the induced connection on this surface (the connection induced by the canonical flat connection in the ambient Euclidean space: $\nabla_{\mathbf{X}}\mathbf{Y} = (\nabla_{\mathbf{X}}^{\text{can.flat}}\mathbf{Y})_{\text{tangent}}$).
- b) Calculate the Riemannian metric on the cone induced by the canonical metric in ambient Euclidean space \mathbf{E}^3 and calculate explicitly the Levi-Civita connection of this metric using the Levi-Civita Theorem.
- c) Calculate the Christoffel symbols of Levi–Civita connection on the cone using Lagrangian of free particle.