Contents

0.1	[dist_struct]	=	<pre>get_pairwise_squared_euclidean_distance(X1,X2)</pre>	2
0.2	[dist_struct]	=	<pre>get_pairwise_euclidean_distance(X1,X2)</pre>	2
0.3	[dist_struct]	=	<pre>get_pairwise_dot_product(X1,X2)</pre>	3
0.4	[dist_struct]	=	<pre>get_pairwise_angular_distance(X1,X2)</pre>	3
0.5	[dist_struct]	=	<pre>get_pairwise_squared_lp_even_distance(X1,X2,p)</pre>	4
0.6	[dist_struct]	=	<pre>get_pairwise_lp_even_distance(X1,X2,p)</pre>	4
0.7	[dist_struct]	=	<pre>get_pairwise_resemblance(X1,X2)</pre>	5
0.8	[dist_struct]	=	<pre>get_pairwise_squared_lp_odd_distance(X1,X2,p)</pre>	6
0.9	[dist_struct]	=	<pre>get_pairwise_lp_odd_distance(X1,X2,p)</pre>	6
0.10	[dist_struct]	=	<pre>get_pairwise_l1_distance(X1,X2,p)</pre>	7
0.11	[dist_struct]	=	<pre>get_pairwise_l_infinity_distance(X1,X2,p)</pre>	7
0.12	[dist_struct]	=	<pre>get_pairwise_squared_lp_distance(X1,X2,p)</pre>	8
0.13	[dist_struct]	=	<pre>get_pairwise_lp_distance(X1,X2,p)</pre>	8
0.14	[dist_struct]	=	<pre>get_pairwise_jaccard_similarity(X1,X2)</pre>	9
0.15	[dist_struct]	=	<pre>get_pairwise_hamming_distance(X1,X2)</pre>	9
0.16	[dist_struct]	=	<pre>get_pairwise_distances(X1,X2,dist_type,p)</pre>	10
0.17	[dist struct]	=	<pre>get_pairwise_distances_big(X1.X2.dist_tvpe.p)</pre>	10

Suppose we have

$$X_{1} = \begin{pmatrix} x_{11}^{(1)} & x_{12}^{(1)} & \dots & x_{1p}^{(1)} \\ x_{21}^{(1)} & x_{22}^{(1)} & \dots & x_{2p}^{(1)} \\ \dots & \dots & \dots & \dots \\ x_{n_{1}1}^{(1)} & x_{n_{1}2}^{(1)} & \dots & x_{n_{1p}}^{(1)} \end{pmatrix} \qquad X_{2} = \begin{pmatrix} x_{11}^{(2)} & x_{12}^{(2)} & \dots & x_{1p}^{(2)} \\ x_{21}^{(2)} & x_{22}^{(2)} & \dots & x_{2p}^{(2)} \\ \dots & \dots & \dots & \dots \\ x_{n_{21}}^{(2)} & x_{n_{22}}^{(2)} & \dots & x_{n_{2p}}^{(2)} \end{pmatrix}$$

0.1 [dist_struct] = get_pairwise_squared_euclidean_distance(X1,X2)

We want some matrix $D_{n_1 \times n_2}^{\text{(squared euclidean distance)}}$ such that

$$d_{ij} := \left(x_{i1}^{(1)} - x_{j1}^{(2)}\right)^{2} + \dots + \left(x_{ip}^{(1)} - x_{jp}^{(2)}\right)^{2}$$

$$= \left(x_{i1}^{(1)^{2}} - 2x_{i1}^{(1)}x_{j1}^{(2)} + x_{j1}^{(2)^{2}}\right) + \dots + \left(x_{ip}^{(1)^{2}} - 2x_{ip}^{(1)}x_{jp}^{(2)} + x_{jp}^{(2)^{2}}\right)$$

$$= \left(\sum_{s=1}^{p} x_{is}^{(1)^{2}}\right) + \left(\sum_{s=1}^{p} x_{js}^{(2)^{2}}\right) - \left(2\sum_{s=1}^{p} x_{is}^{(1)}x_{js}^{(2)}\right)$$

$$= \|\vec{x}_{i}^{(1)}\|^{2} + \|\vec{x}_{i}^{(2)}\|^{2} - 2\langle \vec{x}_{i}^{(1)}, \vec{x}_{i}^{(2)}\rangle$$

where $\langle \vec{x}, \vec{y} \rangle$ is the ordinary dot product. We can therefore write $D_{n_1 \times n_2}^{\text{(squared euclidean distance)}}$ as the sum of three matrices $M_1 + M_2 + M_3$, where we have

$$M_{1} := \begin{pmatrix} \|\vec{x}_{1}^{(1)}\|^{2} & \|\vec{x}_{1}^{(1)}\|^{2} & \dots & \|\vec{x}_{1}^{(1)}\|^{2} \\ \|\vec{x}_{2}^{(1)}\|^{2} & \|\vec{x}_{2}^{(1)}\|^{2} & \dots & \|\vec{x}_{2}^{(1)}\|^{2} \\ \dots & \dots & \dots & \dots \\ \|\vec{x}_{n_{1}}^{(1)}\|^{2} & \|\vec{x}_{n_{1}}^{(1)}\|^{2} & \dots & \|\vec{x}_{n_{1}}^{(1)}\|^{2} \end{pmatrix} \qquad M_{2} := \begin{pmatrix} \|\vec{x}_{1}^{(2)}\|^{2} & \|\vec{x}_{2}^{(2)}\|^{2} & \dots & \|\vec{x}_{n_{2}}^{(2)}\|^{2} \\ \|\vec{x}_{1}^{(2)}\|^{2} & \|\vec{x}_{2}^{(2)}\|^{2} & \dots & \|\vec{x}_{n_{2}}^{(2)}\|^{2} \\ \dots & \dots & \dots & \dots \\ \|\vec{x}_{1}^{(2)}\|^{2} & \|\vec{x}_{2}^{(2)}\|^{2} & \dots & \|\vec{x}_{n_{2}}^{(1)}\|^{2} \end{pmatrix}$$

and $M_3 = -2X_1X_2^T$.

0.2 [dist_struct] = get_pairwise_euclidean_distance(X1,X2)

We want some matrix $D_{n_1 \times n_2}^{\text{(euclidean distance)}}$ such that

$$d_{ij} := \sqrt{\left(x_{i1}^{(1)} - x_{j1}^{(2)}\right)^2 + \ldots + \left(x_{ip}^{(1)} - x_{jp}^{(2)}\right)^2}$$

Our matrix $D_{n_1 \times n_2}^{\text{(euclidean distance)}}$ is just the matrix $D_{n_1 \times n_2}^{\text{(squared euclidean distance)}}$ where we take the square root of each entry.

0.3 [dist_struct] = get_pairwise_dot_product(X1,X2)

We want some matrix $D_{n_1 \times n_2}^{\text{(dot product)}}$ such that

$$d_{ij} := \sum_{s=1}^{p} x_{is}^{(1)} x_{js}^{(2)}$$

and set $D = X1X_2^T$.

0.4 [dist_struct] = get_pairwise_angular_distance(X1,X2)

We want some matrix $D_{n_1 \times n_2}^{(\text{angular distance})}$ such that

$$d_{ij} := \theta$$

where θ is the angular distance between $\vec{x}_i^{(1)}$ and $\vec{x}_j^{(2)}$. Since we know that for any two vectors, we have

$$\cos \theta = \frac{\langle \vec{x}_i^{(1)}, \vec{x}_j^{(2)} \rangle}{\|\vec{x}_i^{(1)}\| \|\vec{x}_j^{(2)}\|}$$

Based on the matrices M_1, M_2 on Page 2, we set $\widetilde{M}_1, \widetilde{M}_2$ to be the matrices M_1, M_2 with the square root taken of each element, and $\widetilde{M}_3 := X_1 X_2^T$. We therefore have that

$$d_{ij} := \arccos\left(\frac{\widetilde{m}_{3ij}}{\widetilde{m}_{1ij}\widetilde{m}_{2ij}}\right)$$

and construct D as such.

0.5 [dist_struct] = get_pairwise_squared_lp_even_distance(X1,X2,p)

We want some matrix $D_{n_1 \times n_2}^{\text{(squared } l_p \text{ distance)}}$ such that

$$d_{ij} := \left(x_{i1}^{(1)} - x_{j1}^{(2)}\right)^p + \ldots + \left(x_{ip}^{(1)} - x_{jp}^{(2)}\right)^p$$

The trick here is to look at the binomial expansion of $(x_i^{(1)} - x_j^{(2)})^p$ when p is even. Using the binomial expansion, we have

$$d_{ij} = (x_i^{(1)} - x_j^{(2)})^p$$

$$= \binom{p}{0} x_j^{(2)^p} - \binom{p}{1} x_i^{(1)^1} x_j^{(2)^{p-1}} + \binom{p}{1} x_i^{(1)^2} x_j^{(2)^{p-2}} - \dots + \binom{p}{p} x_i^{(1)^p}$$

$$= \sum_{t=0}^p (-1)^t \binom{p}{t} x_i^{(1)^t} x_j^{(2)^{p-t}}$$

We are therefore going to let D be the sum of p+1 matrices $M_0+M_1+M_2+\ldots+M_p$. Analogous to the Euclidean distance, we have M_0 to be the matrix where each i^{th} row of the matrix is the l_p norm of $\vec{x}_i^{(1)}$ to the p^{th} power, and M_p to be the matrix where each j^{th} column is the l_p norm of $\vec{x}_i^{(2)}$ to the p^{th} power.

However, each matrix M_t , t = 1, ..., p-1 will be the product of two other matrices $X_{1t}X_{2t}^T$, where X_{1t} will be the matrix X_1 with all elements raised to the t^{th} power, and X_{2t} will be the matrix X_2 with all elements raised to the $(p-t)^{\text{th}}$ power.

0.6 [dist_struct] = get_pairwise_lp_even_distance(X1,X2,p)

We want some matrix $D_{n_1 \times n_2}^{(l_p \text{ distance})}$ such that

$$d_{ij} := \left(\left(x_{i1}^{(1)} - x_{j1}^{(2)} \right)^p + \ldots + \left(x_{ip}^{(1)} - x_{jp}^{(2)} \right)^p \right)^{\frac{1}{p}}$$

Our matrix $D_{n_1 \times n_2}^{(l_p \text{ distance})}$ is just the matrix $D_{n_1 \times n_2}^{(\text{squared } l_p \text{ distance})}$ where we take the p^{th} root of each entry.

0.7 [dist_struct] = get_pairwise_resemblance(X1,X2)

Here, $\vec{x}_i^{(1)}$ s, $\vec{x}_i^{(2)}$ s are binary.

We want some matrix $D_{n_1 \times n_2}^{\text{(resemblance)}}$ such that

$$d_{ij} := \frac{\text{sum of logical array in } (\vec{x}_i^{(1)} \text{ or } \vec{x}_j^{(2)})}{\text{sum of logical array in } (\vec{x}_i^{(1)} \text{ and } \vec{x}_j^{(2)})}$$

We can construct this matrix $D^{\text{(resemblance)}}$ by considering two matrices M_1, M_2 , and set D to be the elementwise division of elements in M_1 by M_2 .

 M_1 is set to be the matrix where the (i, j)th element is the sum of logical array in $(\vec{x}_i^{(1)} \text{ or } \vec{x}_j^{(2)})$, and M_2 to be the matrix where the (i, j)th element is the sum of logical array in $(\vec{x}_i^{(1)} \text{ and } \vec{x}_j^{(2)})$.

 M_2 can be seen as the matrix product $X_1X_2^T$.

However, constructing M_1 isn't as easy. A loop is used to construct M_1 row by row (or column by column), depending on whether $n_1 \leq n_2$, or $n_2 > n_1$, where the loop with the shortest number of iterations is chosen.

For $n_1 \leq n_2$, the following snippet of code

is used to compute each row of M_1 , as bsxfun is used to quickly compute the logical or for one $\vec{x}_i^{(1)}$ to the whole of X_2 . Equivalently, we use

to compute each column of M_1 .

0.8 [dist_struct] = get_pairwise_squared_lp_odd_distance(X1,X2,p)

We want some matrix $D_{n_1 \times n_2}^{\text{(squared } l_p \text{ distance)}}$ such that

$$d_{ij} := \left(x_{i1}^{(1)} - x_{j1}^{(2)}\right)^p + \ldots + \left(x_{ip}^{(1)} - x_{jp}^{(2)}\right)^p$$

Unfortunately, unlike Page 4, we cannot repeat the trick of adding up matrices. Similar to Page 5, we can use the **bsxfun** function to construct D row by row, or column by column. This again depends on whether $n_1 \leq n_2$, or $n_2 > n_1$ where the loop with the shortest number of iterations is chosen.

For $n_1 \leq n_2$, the following snippet of code

is used to compute each row of M_1 , as bsxfun is used to quickly compute $\left(x_{i1}^{(1)} - x_{j1}^{(2)}\right)^p + \dots + \left(x_{ip}^{(1)} - x_{jp}^{(2)}\right)^p$ for a fixed $x_i^{(1)}$ and the rest of X_2 . Equivalently, we use

to compute each column of D.

0.9 [dist_struct] = get_pairwise_lp_odd_distance(X1,X2,p)

We want some matrix $D_{n_1 \times n_2}^{(l_p \text{ distance})}$ such that

$$d_{ij} := \left(\left(x_{i1}^{(1)} - x_{j1}^{(2)} \right)^p + \ldots + \left(x_{ip}^{(1)} - x_{jp}^{(2)} \right)^p \right)^{\frac{1}{p}}$$

Our matrix $D_{n_1 \times n_2}^{(l_p \text{ distance})}$ is just the matrix $D_{n_1 \times n_2}^{(\text{squared } l_p \text{ distance})}$ where we take the p^{th} root of each entry.

0.10 [dist_struct] = get_pairwise_l1_distance(X1,X2,p)

We want some matrix $D_{n_1 \times n_2}^{(l_1 \text{ distance})}$ such that

$$d_{ij} := \left| x_{i1}^{(1)} - x_{j1}^{(2)} \right| + \ldots + \left| x_{ip}^{(1)} - x_{jp}^{(2)} \right|$$

Unfortunately, unlike Page 4, we cannot repeat the trick of adding up matrices. Similar to Page 5, we can use the **bsxfun** function to construct D row by row, or column by column. This again depends on whether $n_1 \leq n_2$, or $n_2 > n_1$ where the loop with the shortest number of iterations is chosen.

For $n_1 \leq n_2$, the following snippet of code

sum(abs(bsxfun(@minus, X1(i,:), X2)),2),

is used to compute each row of M_1 , as **bsxfun** is used to quickly compute $\left(x_{i1}^{(1)} - x_{j1}^{(2)}\right)^p + \dots + \left(x_{ip}^{(1)} - x_{jp}^{(2)}\right)^p$ for a fixed $x_i^{(1)}$ and the rest of X_2 . Equivalently, we use

sum(abs(bsxfun(@minus, X2(j,:), X1)),1)

to compute each column of D.

0.11 [dist_struct] = get_pairwise_l_infinity_distance(X1,X2,p)

We want some matrix $D_{n_1 \times n_2}^{(l_{\infty} \text{ distance})}$ such that

$$d_{ij} := \max \left\{ \left| x_{i1}^{(1)} - x_{j1}^{(2)} \right| + \ldots + \left| x_{ip}^{(1)} - x_{jp}^{(2)} \right| \right\}$$

We use bsxfun again, with the relevant snippet of code for row / column being

max(abs(bsxfun(@minus, X1(i,:), X2)),[],2)'

and

max(abs(bsxfun(@minus, X2(j,:), X1)),[],1)

0.12 [dist_struct] = get_pairwise_squared_lp_distance(X1,X2,p)

This function combines the previous functions

- get_pairwise_l1_distance(X1,X2)
- get_pairwise_squared_lp_even_distance(X1,X2,p)
- get_pairwise_squared_lp_odd_distance(X1,X2,p)
- get_pairwise_l_infinity_distance(X1,X2)

0.13 [dist_struct] = get_pairwise_lp_distance(X1,X2,p)

This function combines the previous functions

- get_pairwise_l1_distance(X1,X2)
- get_pairwise_lp_even_distance(X1,X2,p)
- get_pairwise_lp_odd_distance(X1,X2,p)
- get_pairwise_l_infinity_distance(X1,X2)

0.14 [dist_struct] = get_pairwise_jaccard_similarity(X1,X2)

We want some matrix $D_{n_1 \times n_2}^{(l_{\infty} \text{ distance})}$ such that

$$d_{ij} := \frac{\sum_{s=1}^{p} \min \left\{ x_{is}^{(1)}, x_{js}^{(2)} \right\}}{\sum_{s=1}^{p} \max \left\{ x_{is}^{(1)}, x_{js}^{(2)} \right\}}$$

We use bsxfun again, with the relevant snippet of code for row / column being sum(bsxfun(@min, X1(i,:), X2),2)' ./ sum(bsxfun(@max, X1(i,:), X2),2)' and

sum(bsxfun(@min, X2(j,:), X1),1) ./ sum(bsxfun(@max, X2(j,:), X1),1)

0.15 [dist_struct] = get_pairwise_hamming_distance(X1,X2)

We want some matrix $D_{n_1 \times n_2}^{\text{(hamming distance)}}$ where with binary $\vec{x}_i^{(1)}, \vec{x}_j^{(2)}$, we have

$$d_{ij} := 1_{\{\vec{x}_{i1}^{(1)} \neq \vec{x}_{j1}^{(2)}\}} + \ldots + 1_{\{\vec{x}_{ip}^{(1)} \neq \vec{x}_{jp}^{(2)}\}}$$

We use bsxfun yet again, with the relevant snippet of code for row / column being sum(bsxfun(@xor, X1(i,:), X2),2)'

and

sum(bsxfun(@xor, X2(j,:), X1),1)

0.16 [dist_struct] = get_pairwise_distances(X1,X2,dist_type,p)

This function combines all previous functions together, and outputs a distance matrix of the dist_type chosen, and p (only for l_p distances). Current choices of distance include

- 1. angular_distance
- $2. dot_product$
- 3. euclidean_distance
- 4. jacaard_similarity
- 5. lp_distance
- 6. resemblance
- 7. squared_euclidean_distance
- 8. squared_lp_distance

0.17 [dist_struct] = get_pairwise_distances_big(X1,X2,dist_type,p)

This function constructs the distance matrix D_{ij} by computing the distance of "blocks" of size 250 by 250 (or less) at a time.

For example, if we had $n_1 = 510$ and $n_2 = 375$, then we would construct $D_{510\times375}$ by computing the distance matrices of six blocks $D^{(1)}, \ldots, D^{(6)}$, as shown below

$$D_{510\times375} = \begin{pmatrix} D_{250\times250}^{(1)} & D_{250\times125}^{(2)} \\ & & & \\ D_{250\times250}^{(3)} & D_{250\times125}^{(4)} \\ & & & \\ D_{10\times250}^{(5)} & D_{10\times125}^{(6)} \end{pmatrix}$$

and concatenating them to form the matrix D.