PROCEDIMIENTOS DAO: CE

Tema 1: Introducción

Punto (PU) se puede definir mediante 3 coordenadas:

Rectangulares	Absolutas	Se colocan en referencia al SCP	PU (x,y,z)
	Relativas	Se colocan respecto al punto anterior	PU @(x,y,z)
Angulares	Relativas	Se colocan respecto al punto anterior	PU @(longitud<ángulo respecto al eje X)

Comando línea (I), se define mediante dos puntos, rectas indefinidas comando (XL), Círculo (c)

Para activar referencia temporal a objetos (Shift + click derecho)

Para cambiar el SCP se coloca el cursor sobre el SCP y se le da al click derecho. Cuando se gira el SCP se sigue la regla de la mano derecha.

Comandos importantes

 Copiar (cp), Desplaza, Longitud se coloca el cursor sobre un extremo de la recta y se le da a la opción longitud, Simetría (S3), copiar con punto base (al copiar en un SCP si se cambia y se pega en otro SCP se mantiene la forma vista en el otro SCP)

	Datos	Procedimientos	Solución
Capa a usar	Despiece grueso	Despiece fino, fondo de rosca y rallado	Contornos vistos

Tema 2: Pertenencia

- 1) Punto pertenece a una recta:
 - a. SCP mediante Eje Z a través de la recta
 - b. Comando id sobre el punto
 - c. Si el punto tiene (x,y)=(0,0) pertenece
- 2) <u>Punto pertenece a dos rectas o rectas intersecan:</u>
 - a. SCP mediante tres puntos (2 de una recta y uno de la otra)
 - b. Ver si el otro punto tiene z = 0
- 3) Punto pertenece a un plano:
 - a. SCP mediante tres puntos (puntos del plano)
 - b. Ver si el punto tiene z=0
- 4) Recta pertenece a un plano:
 - a. SCP mediante tres puntos (puntos del plano)
 - b. Ver si ambos extremos de la recta tienen z=0

Tema 3: Determinación

Intersecciones y proyecciones ortogonales

- 1) Proyección ortogonal de un punto sobre un plano:
 - a. SCP mediante tres puntos (puntos del plano)
 - b. Comando línea (punto uno el dato, punto dos mediante referencia temporal a objetos \Rightarrow filtro para puntos \Rightarrow mismo XY \Rightarrow z=0)

2) Intersección entre dos rectas:

a. Comando punto, referencia intersección

3) <u>Intersección entre recta y plano:</u>

- a. SCP mediante tres puntos (puntos del plano)
- b. Proyección ortogonal de los extremos de la recta sobre el plano
- c. Unir los puntos proyectados → proyección ortogonal de la recta
- d. Intersección entre la proyección ortogonal de la recta y la recta → intersección entre la recta y el plano

4) <u>Intersección entre dos planos:</u>

- a. SCP mediante tres puntos (puntos de un plano)
- b. Coger las rectas que definen el otro plano (2) e intersecarlas con el plano que define el SCP→ dos puntos de intersección
- c. Recta que une los dos puntos → Intersección entre los dos planos

5) Recta que pasa por un punto A y corta a otras 2 rectas:

- a. SCP mediante tres puntos (punto A y dos puntos de una recta)
- b. Intersección de la otra recta con el plano → Punto K
- c. Recta que une A y K es la dirección que sigue la recta
- d. Alargar la recta AK para que corte con la otra

Paralelismo

1) Por un punto recta paralela a un plano:

a. Mediante el comando copia copiar una de las rectas del plano en el punto

2) Por un punto recta paralela a 2 planos:

- a. Hallar la intersección entre los dos planos
- b. Copiar la intersección sobre el punto

3) Por un punto plano paralelo a otro:

a. Copiar dos rectas que definan al plano sobre el punto

4) Por un punto plano paralelo a una recta:

- a. Copiar la recta en el punto
- b. Dibujar cualquier otra recta

5) Por un punto plano paralelo a dos rectas:

a. Copiar las dos rectas en el punto

6) Por una recta plano paralelo a otra recta:

a. Copiar una recta sobre la otra (un extremo mejor)

Perpendicularidad y distancia:

Th 3 perpendiculares: Si 2 rectas son perpendiculares en el espacio y una es paralela en al plano de proyección, son perpendiculares en proyecciones.

1. Por un punto recta perpendicular a un plano:

- a. Proyectar ortogonalmente el punto sobre el plano
- b. Recta que une ambos puntos

2. Por un punto A recta perpendicular a una recta:

a. Línea, punto A y referencia temporal a objetos perpendicular, poner el cursor en la recta y dibujar la recta

3. Por un punto plano perpendicular a una recta:

- a. SCP mediante eje Z en la recta
- b. Mover el origen al punto
- c. Dibujar rectas en la dirección X e Y mediante rastreo polar

4. Por una recta plano perpendicular a otro:

- a. Proyectar ortogonalmente uno de los extremos de la recta
- b. Plano definido por la recta y la proyección ortogonal del punto

5. Distancia entre dos rectas paralelas:

a. Hallar la recta perpendicular común a ambas por un punto cualquiera

6. <u>Distancia entre dos planos paralelos:</u>

- a. Proyectar ortogonalmente uno de los puntos de un plano sobre el otro
- b. Distancia entre el punto y su proyección ortogonal

7. Distancia entre dos rectas (AB y CD) que se cruzan:

- a. Copiar AB sobre CD
- b. Definir un plano mediante la CD y A'B'
- c. Distancia entre AB y el plano CDA′ → Recta (unir A y su proyección ortogonal)
- d. Copiar la recta distancia (d) en AB
- e. Plano entre AB y la d
- f. Intersección ABd y CD → punto I
- g. Copiar d en I (recta de mínima distancia)

Tema 4: Ángulos directos medir ángulos

1) Dos rectas:

- a. Primero comprobar que se cortan si lo hacen se pasa a (b) sino
 - i. Se copia una recta sobre la otra
- b. Pasar SCP por tres puntos (intersección y 2 extremos Eje X a la derecha y eje Y hacia arriba)
- c. Acotar angularmente ambas rectas

2) Recta plano:

a. Ángulo entre la recta y su proyección ortogonal

3) Dos planos:

- a. Plano pi perpendicular a la recta intersección entre los planos
- b. Intersección del plano pi con ambos planos → rectas r y t
- c. Ángulo entre r y t

Tema 5: Ángulos inversos dibujar ángulos

Toda la teoría parte del dibujo de un cono: \mathbf{e} (eje), \mathbf{g} (generatriz), \mathbf{pi} (plano de la directriz) y p (plano tangente), \mathbf{P} (vértice) y $\mathbf{\alpha}$ (semiángulo en el vértice).

Rectas y rectas

- 1) Por un punto de una recta, rectas que formen α grados con ella:
 - a. SCP mediante tres puntos (exe X la recta y tercer punto cualquiera)
 - b. Dibujar generatriz g (línea) en el punto de la recta con @distancia<ángulo α
 - c. Perpendicular en el punto final de g en la recta inicial
 - d. SCP eje Z en la recta inicial (origen el punto proyectado del final de g sobre la recta origen)
 - e. Dibujar circunferencia con centro el punto proyectado y final de g
 - f. Las rectas definidas por el cono son las rectas que forman α grados con la recta inicial
- 2) Por un punto rectas que formen un ángulo α con otra dada y deben cortarse con ella:
 - a. SCP mediante tres puntos eje X la recta y tercer punto el P
 - b. Dibujar línea con @distancia< ángulo α
 - c. Desplazar esa recta a P
 - d. Existen dos soluciones (una de ángulo α y otra de ángulo 90 + α [otra dirección del eje X])
- 3) Por un punto rectas que formen un ángulo con otra dada y se cruzan con ella:
 - a. SCP mediante tres puntos eje X la recta y tercer punto no sea P
 - b. Dibujar línea con @distancia< ángulo α
 - c. Desplazar esa recta a P

- 4) Por el punto intersección rectas que formen ángulos dados con otras dos rectas dadas:
 - a. Dibujar 2 conos mediante el procedimiento en 1 en cada recta (la distancia de la generatriz debe ser igual en ambas) siendo el vértice el punto dado (intersección)
 - b. Hacer simétrico de uno de los conos respecto al vértice (comando S3 y comprobar el número de soluciones)
 - c. Unir los puntos intersección de las bases de los conos o generatrices con el vértice → Soluciones
- 5) Por un punto K rectas que formen ángulos dados con otras dos rectas dadas:
 - a. Procedimiento en 4 por el punto intersección
 - b. Copiar las soluciones en el punto K

Rectas y planos

- 1) Por un punto rectas que formen un ángulo α con un plano:
 - a. Proyectar el punto sobre el plano
 - b. Recta que une el punto y su proyección
 - c. Procedimiento de ángulos **recta-recta (1)** siendo el ángulo 90- α y el punto el dato
- 2) Por un punto rectas que formen ángulos dados con dos planos:
 - a. Proyectar el punto sobre los planos
 - b. Unir las proyecciones con el punto sin proyectar (se obtienen dos rectas)
 - c. Procedimiento de ángulos recta-recta (4) siendo el ángulo 90-α
- 3) Por un punto rectas que formen ángulos dados con una recta y un plano:
 - a. Procedimiento de ángulos recta-recta (1) en la recta y procedimiento (1) con el plano (los conos deben tener la misma generatriz o distancia)
 - b. Intersección de las bases o los círculos de los conos → Unir los puntos intersección con el punto o vértice.
- 4) Por un punto planos que formen un ángulo α dado con una recta:
 - a. Dibujar el cono de las generatrices que formen α^{ϱ} con la recta, mediante el procedimiento: **recta-recta (1)**
 - b. Girar el radio mediante el comando (gira) de manera que sea tangente al cono (90º)
 - c. El plano queda definido mediante la generatriz y la recta tangente

- 5) Por un punto K planos que formen ángulos dados con dos rectas:
 - a. Hallar el punto de corte de ambas rectas, si no existe copiar una sobre la otra
 - b. Dibujar un plano auxiliar que contenga ambas rectas
 - c. Definir una esfera mediante una circunferencia en el plano auxiliar con radio cualquiera
 - d. Generatrices en el plano auxiliar siendo los ejes las rectas y formando los ángulos respectivos con las rectas @distancia<ángulo. Cualquier distancia
 - e. Perpendicular del centro de la circunferencia a las generatrices
 - f. Desplazar las rectas hasta el punto de tangencia con la circunferencia y recortar el sobrante
 - g. Dibujar los conos siendo el tamaño de la directriz el de la recta tangente y ejes sus respectivas rectas
 - h. Hallar el simétrico de uno de los conos
 - i. Intersección de las bases de los conos
 - j. Unir las intersecciones de los conos con los vértices de los conos
 - k. Copiar la solución en K

Planos y Planos

- 1) Por un punto planos que formen ángulos dados con un plano:
 - a. Perpendicular al plano por el punto P, eje del cono
 - b. Eje X el eje del cono y ángulo $90-\alpha$
 - c. Dibujar cono
 - d. Girar el radio de manera que sea tangente al cono
 - e. Plano definido por la generatriz y la tangente
- 2) Planos que contienen a una recta y formen un ángulo dado con un plano:
 - a. Por uno de los puntos dibujar el cono que muestra los planos que forman α grados con el plano
 - b. Hallar la intersección con el plano respecto al cual se formarán los ángulos
 - c. Desde ese punto intersección hallar las tangentes con la base del cono
 - d. Los planos están definidos por las tangentes y la recta
- 3) Por un punto K planos que formen ángulos dados α y β con dos planos:
 - a. Perpendiculares desde el punto a los planos (dos rectas)
 - b. Problema **planos-recta** (5) con ángulos $90-\alpha$ y $90-\beta$

Tema 6 Poliedros:

- 1) Procedimiento general:
 - a. Dibujar poliedro con el elemento que tienes de dato.
 - b. Mediante el comando escala, escalar el poliedro.
- 2) Pirámide: recta si la altura coincide con el centro

Sección recta es la paralela a la base.

3) <u>Prisma:</u> recto si las rectas son perpendiculares a las bases y truncado si las bases no son paralelas.

Sección recta es la paralela a la base.

4) <u>Dibujar Tetraedro:</u>

- a. Dibujar un triángulo equilátero
- b. Hacer un circulo por los tres vértices
- c. Dibujar la altura por el centro del círculo
- d. SCP por un vértice, el centro del círculo y la altura
- e. Dibujar una circunferencia de radio el lado y unir ese cuarto vértice con el resto

5) <u>Dibujar Hexaedro o cubo:</u>

- a. Dibujar un cuadrado en la base
- b. Dibujar perpendiculares por cada vértice de la misma longitud que el lado y unir extremos

6) <u>Dibujar Octaedro:</u>

- a. Dibujar un cuadrado (será el cuadrado central)
- b. Dibujar la altura por el centro del cuadrado
- c. SCP por un vértice, el centro del cuadrado y la altura
- d. Dibujar una circunferencia de radio el lado y unir ese vértice con el resto

7) Desarrollo pirámide:

- a. Dibujar la recta en el desarrollo (sin conocer su longitud)
- b. SCP por tes puntos (uno en la arista, otro en el eje y el último en el vértice)
- c. Dibujar circulo con radio la arista a copiar
- d. Pegar el círculo en el otro lado

Tema 7: Superficies radiadas:

Cilindro:

La circunferencia de la base se denomina directriz.

Superficie cilíndrica: creada por las paralelas de la generatriz sobre la directriz.

Cilindro cuadrático: seccionado por dos planos paralelos y directriz cónica o cuádrica (elipse, circunferencia)

Cilindro revolución: directrices equidistantes al eje.

1) Hallar los puntos comunes entre un cilindro y una recta:

- a. Contener la recta en un plano paralelo al eje (copiar eje sobre la recta y SCP por tres puntos)
- b. Intersección de la directriz con el plano (SCP objeto por la directriz) problema simplificado a intersección entre dos planos
- c. Sobre los puntos de corte se copian las directrices
- d. Se intersecan las directrices con la recta y se obtienen los puntos solución

2) Hallar los planos tangentes por un punto:

a. Dos casos:

- i. Si el punto pertenece a una generatriz del cilindro
 - 1. Copiar una generatriz por el punto
 - 2. Donde corte con la directriz se rota el radio de la circunferencia y se define el plano
- ii. Si el punto no pertenece a una generatriz del cilindro
 - 1. SCP objeto por la directriz
 - 2. Copiar el eje sobre el punto
 - 3. Intersección del eje sobre el punto y el plano
 - 4. Desde la intersección del punto hallar tangentes a la directriz
 - 5. En los puntos de tangencia copiar el eje

3) Hallar los planos tangentes paralelos a una dirección:

- a. Copiar el eje en la recta dirección
- b. Intersección del plano de la directriz con este definido por el eje y la recta dirección
- c. Perpendicular desde el centro de la circunferencia a la recta intersección
- d. Copiar el eje a la intersección entre la perpendicular y la directriz (salen dos puntos, alargando hacia un lado y hacia el otro) → Dos planos solución

4) Dibujar un cilindro con bases no rectas:

- a. Hallamos la sección recta del cilindro
- b. Copiamos con punto base la sección recta del cilindro y el punto donde queramos hallar su base pegamos la circunferencia (una vez en el plano de la circunferencia y otra vez en el plano que define la base)
- c. La intersección entre estas circunferencias define el eje menor
- d. Para hallar el eje mayor rotamos el eje menor y lo intersecamos con las generatrices por los extremos de la circunferencia (su otro eje)

5) <u>Intersección de un cilindro con un plano y su desarrollo:</u>

- a. SCP por el plano
- b. Proyectar el eje sobre el plano (hallar la recta sobre el plano) → Dirección eje mayor de la elipse y alargamos este eje
- c. Intersección entre el plano (recta eje mayor y el eje) con la directriz
- d. Copiar el eje por los puntos de intersección y así se define el eje mayor de la elipse
- e. Giramos 90º la recta intersección con la directriz y los puntos donde corte con la directriz obtenemos dos puntos que indican la longitud del eje menor
- f. Copiamos el eje menor sobre el punto intersección (eje-eje mayor)
- g. SCP por tres puntos, siendo el origen el punto central de la elipse y los otros dos del eje mayor y menor
- h. Dibujar la elipse

6) Desarrollo de un cilindro:

- a. Se dibuja un rectángulo de base la longitud de la circunferencia y de altura h
- b. Se dibujan las bases pegadas

7) <u>Desarrollo del cilindro con una sección recta y otra oblicua:</u>

- a. Comando Divide: la directriz en 12 partes y por cada punto se dibuja una generatriz del cilindro hasta que interseque con la sección elíptica (como es simétrica se puede hacer el desarrollo de solo una de las partes y luego simetría)
- b. Dibujar la transformada de una sección recta (base inferior) → Recta de dimensión cualquiera
- c. Comando longitud (total) → control 8 → (pi*[función distancia entre dos punto]) → aplicar
- d. Situamos los puntos con el comando divide en 6 partes
- e. Trazar las rectas perpendiculares por cada punto
- f. Con el comando longitud escalamos las rectas (total)
- g. Unimos los extremos sueltos con una recta spline
- h. Hacemos la simetría
- i. Copiamos la elipse y la circunferencia en el desarrollo final
- j. Si se pide el área:
 - i. Comando región
 - ii. Comando área y pinchar en la región: nos da el área

Cono: Se define con directriz y vértice

1. Intersección cono con recta:

- a. Dibujar un plano auxiliar que contenga a la recta y al vértice
- b. Intersección de la recta con la directriz
- c. Unir los puntos intersección con el vértice
- d. Donde corten estas generatrices con la recta son los puntos intersección

2. Planos tangentes por un punto:

- a. Caso 1: punto pertenece al cono
 - i. Dibujamos la generatriz que pasa por el punto
 - ii. Alargamos la recta hasta que corte con la directriz
 - iii. Giramos el radio de la directriz en el punto intersección
 - iv. La recta girada y la generatriz definen plano
- b. Caso 2: punto no pertenece al cono
 - i. Dibujamos la recta que une el vértice y el punto
 - ii. Hallamos la intersección de la recta con el plano de la directriz
 - iii. Desde ese punto hallamos tangentes a la directriz
 - iv. Las tangentes y la recta definen los planos

3. Planos tangentes paralelos a una dirección:

- a. Copiamos la dirección en el vértice
- b. Operamos igual que en el caso anterior (ver donde corta al plano de la directriz → planos)

4. Sección plana elíptica:

- a. Definimos un SCP según el plano
- b. Hallamos la intersección con la recta eje del cono
- c. La recta intersección del plano define el eje mayor de la elipse (proyección sobre el plano secante)
- d. Hallar intersección recta con el cono
- e. Tras ello, el centro de la elipse estará en el punto medio del eje mayor

- f. Desplazamos el eje perpendicular al centro de la elipse (dirección eje menor)
- g. Hallar intersección eje menor con el cono

5. Desarrollo de un cono:

- a. Dibujar un punto (será el vértice)
- b. Dividir en 12 partes iguales la directriz
- c. Unir los puntos con el vértice dibujando generatrices y las limitamos según la sección
- d. Dibujamos una recta vertical con la dimensión de la generatriz del cono
- e. Arco (centro, inicio, fin): La longitud medirá pi por el radio de la directriz
 - i. Dibujar un arco de longitud cualquiera
 - ii. Comando longitud (LG) → Total → (control + 8) en la calculadora ponemos pi*(radio) [si se hace por simetría]
- f. Dividimos el arco en el mismo número de partes
- g. Unimos con el vértice
- h. Vamos copiando la distancia

ESFERA: Queda definida por su centro y un punto de su superficie (círculo)

1. Pertenencia de un punto:

- a. Comprobar que pasa por una circunferencia máxima
- **b.** Definir el plano mediante el origen el punto y un punto de la superficie y ver si el punto queda dentro de esa circunferencia máxima

2. Intersección con una recta:

- a. Hallar un plano que contenga a la recta y a un punto de la superficie esférica
- **b.** Hallar la proyección del centro de la circunferencia sobre el plano
- **c.** Dibujar circunferencia en el plano que contenga al punto de la superficie esférica
- **d.** Donde corte a la recta son los puntos de intersección

3. Planos tangentes por un punto:

- a. Caso 1: el punto pertenece a la superficie
 - i. Se define el SCP mediante eje z el radio
 - ii. Se dibujan dos rectas cualesquiera tangentes (eje x y eje y)
- b. Caso 2: el punto no pertenece a la superficie
 - i. Hallar 2 rectas tangentes a dos circunferencias máximas cualesquiera
 - ii. Las dos rectas definen los planos de tangencia

4. Planos tangentes que contengan a una recta:

- a. Hallar dos puntos de la circunferencia
- **b.** SCP eje Z por la recta
- c. Desplazar el origen al centro de la circunferencia
- d. Hallar la intersección de dos puntos de la superficie esférica con el plano

- **e.** Unir ese punto intersección con el centro de la esfera y prolongarlo (será el radio de otra circunferencia de la superficie esférica
- f. Donde corte el plano en el centro de la esfera con la recta obtenemos un punto desde el cual hallaremos rectas tangentes a la circunferencia máxima contenida en dicho plano
- g. Las rectas tangentes y la recta inicial definen los planos tangentes

5. Intersección con planos

- a. Se proyectan un punto de la esfera y el centro sobre el plano
- b. La proyección del centro será el centro de la circunferencia sección
- **c.** Dibujamos la circunferencia máxima de la esfera en el plano definido por los dos puntos proyectados y P
- **d.** Donde corte con la recta de los puntos proyectados obtenemos el radio de la sección
- **e.** La sección es la circunferencia entre la intersección de la circunferencia máxima auxiliar y centro el origen de la esfera proyectado

6. Cono circunscrito:

- a. Dibujamos la circunferencia máxima de la esfera en el plano definido por el vértice del cono el centro de la esfera y un punto de ella
- b. Desde el vértice hallar tangentes a la circunferencia
- c. Los dos puntos de tangencia definen el diámetro de la directriz del cono
- d. Para dibujar la directriz SCP eje Z en la recta que une el punto medio del diámetro con el vértice y dibujar la circunferencia según su diámetro

7. Cilindro circunscrito:

- a. Dada la dirección del cilindro copiarla en el centro de la circunferencia
- b. SCP mediante EJE Z por la directriz copiada
- c. Dibujar EJE X de ese SCP (Girar 90)
- d. Dibujar SCP que contenga a la recta girada y a un punto de la esfera
- e. Dibujar una circunferencia en ese SCP (es la directriz del cilindro)