ℰ Analyse Exomes CLOVES

Dr. Thomas Steimlé

Mars 2023

Laboratoire d'oncohématologie de l'hôpital Necker

Alias	Cases	Patho	Normal
AUZAL		612200191032	612200128560
BASPA		2007N080798	2007N080327
BOUDE-1		2006N080622	2006N080641
BOUDE-2		2006N080656	2006N080641
BRIAN		2105N190483	2105N170599
DEVCL		2010N260761	2010N260754
DUMEL		612200588717	612200588556
FARMO		2105N210788	2105N210782
GOSJU		612120459843	612120454105
KRAMA		1911N040786	1911N040784
LABPH		2006N080633	2006N080640
LASPH		612120335709	612120316267
LECFA		2008N170574	2007N270441
LHYET		2006N080768	2006N080767
MASFA		612100070595	612100070580
MOKRA		1811N280725	1501N300498
MULAY		6612112860	61210092424
OUATI		2104N160342	2104N130615
PLANY		2103N110343	2103N110124
REMMA		2104N160304	2104N150297
ROQRO-1		2006N080629	2006N080644
ROQRO-2		612200572392	6122005723638
SAMAR		1712N040796	612120165753
VERPY		612120515645	612120504794

Séquençage selon la méthode Agilent SureSelect Human All Exon V7 panel sur automates Illumina Next/NovaSeq.

Analyse bioinformatique:

Alignement (hg19 bwa mem vo.7.17-r1188) et déduplication UMI (umi_tools v1.1.1)

Callers:

mutect2 (GATK v4.2)

strelka (Illumina v2.9.10)

lancet (NY Genome Center v1.1.0)

En suivant les modes opératoires displonibles (cf. diapos supplémentaires).

Results

Alignment – proportions of targeted sequences at given depth by case

	Case	< 100x (%)			
	LASPH_N			MOKRA P	
_		100		_	
_	LASPH_P	100	_	OUATI_N	
_	BRIAN_P	41	_	REMMA_N	
_	BOUDE-1_P	26	_	REMMA_P	
_	KRAMA_N	26	_	LABPH_P	
_	KRAMA_P	20	_	PLANY_N	
_	MULAY_P	19	_	ROQRO-1_N	
_	MULAY_N	18	_	MOKRA_N	
_	DEVCL_N	15	_	ROQRO-1_P	
_	MASFA_N	11	_	BASPA_N	
_	DEVCL_P	11	_	GOSJU_N	
_	BOUDE-2_P	11	_	ROQRO-2_P	
_	LECFA_N	11	_	VERPY_P	
_	BASPA_P	11	_	BOUDE-1_N	
_	SAMAR_P	10	_	BOUDE-2_N	
_	LECFA_P	10	_	SAMAR_N	
_	BRIAN_N	10	_	VERPY_N	
_	LHYET_N	10	_	DUMEL_P	
_	FARMO_N	9	_	DUMEL_N	
_	LHYET_P	9	_	ROQRO-2_N	
_	MASFA_P	8	_	GOSJU_P	
_	OUATI_P	7	_	AUZAL_N	
_	PLANY_P	7	_	LABPH_N	
_	FARMO_P	7	_	AUZAL_P	

Variant calling

Filtering – Proportion of filtered calls for each case

Filtering – Rules and resulting allelic fraction distribution

Results – Recurrent genes known as tumor suppressors or proto-oncogenes.

Alias	Gene	Variant	VAF (%)
BASPA	ALK	p.Gly1202GlufsTer56	2.9
REMMA	ALK	p.Lys1267Asn	1.4
REMMA	ARID1A	p.Thr290Pro	9.3
PLANY	ARID1A	p.Arg1223His	1
MULAY	ARID1A	p.Met1759Ile	2.4
MULAY	ARID1A	p.Ala532Val	5.9
PLANY	KMT2C	p.His4278Asn	1.4
FARMO	KMT2C	p.Ala117Thr	1
DEVCL	KMT2C	intron	0.6
BASPA	NCOA3	p.Gln758Ter	2.5
MOKRA	NCOA3	p.Pro115Leu	1.1
REMMA	NCOR1	p.Arg627Leu	1.7
MULAY	NCOR1	intron	3.7
MULAY	NCOR1	p.Gly134oCys	1.3
GOSJU	NOTCH1	p.Gln1837Ter	2.7
GOSJU	NOTCH1	p.Gly251Asp	1.2
ROQRO-2	NOTCH1	p.Ala1418Thr	1.1
BOUDE-2	NOTCH1	intron	1.4
ROQRO-2	NOTCH2	p.Gln2006Ter	1.2
BASPA	NOTCH2	p.His1208Asn	1.5
MOKRA	PIK3CA	p.Glu545Lys	3.5
DEVCL	PIK3CA	p.Glu542Lys	4.2
SAMAR	SMARCA4	p.Met797Ile	2
MASFA	SMARCA4	p.Phe939Leu	1.9

📊 Results – Over-representation analysis – KEGG pathways | WikiPathways | Reactome

🧭 Results – Over-representation analysis – KEGG – Phosphatidylinositol signaling system

Complexes:

2 7 1 107 diacylglycerol kinase (ATP)

1-phosphatidylinositol-5-phosphate 4-kinase

phosphatidylinositol-4.5-bisphosphate 3-kinase catalytic subunit alpha/beta/delta phosphatidylinositol-4-phosphate 3-kinase

27167

phosphatidylinositol 4-kinase A

1-phosphatidylinositol-4-phosphate 5-kinase

classical protein kinase C alpha type

inositol-hexakisphosphate 5-kinase

inositol-hexakisphosphate/diphosphoinositol-pentakisphosphate 1-kinase

phosphatidylinositol 4-phosphatase

myo-inositol-1(or 4)-monophosphatase 3.1.3.36

inositol polyphosphate 5-phosphatase INPPSB/F 21248/21264/21205

myotubularin-related protein 3/4 3.1.3.64/3.1.3.95

myotubularin-related protein 1/2 21266

inositol polyphosphate-4-phosphatase

phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1 3.1.4.11

phosphatidylinositol phospholipase C. beta

Results – Over-representation analysis – KEGG – Focal Adhesion

🐼 Results – Over-representation analysis – KEGG – Inositol Phosphate Metabolism

271169 1-phosphatidylinositol-5-phosphate 4-kinase phosphatidylinositol-4.5-bisphosphate 3-kinase catalytic subunit alpha/beta/delta phosphatidylinositol-4-phosphate 3-kinase 27167 phosphatidylinositol 4-kinase A 1-phosphatidylinositol-4-phosphate 5-kinase phosphatidylinositol 4-phosphatase myo-inositol-1(or 4)-monophosphatase 3.1.3.36 inositol polyphosphate 5-phosphatase INPP5B/F 3.1.3.48/3.1.3.64/3.1.3.95 myotubularin-related protein 3/4 inosital polyphosphate 5-phosphatase INPPSI/K 3.1.3.64/3.1.3.95 myotubularin-related protein 1/2 inositol polyphosphate-4-phosphatase 3.1.3.86 nhosphatidylinositol-3 & E-trisphosphate E-phosphatase s

phosphatidulinosital phospholinase C heta

Complexes:

Results – Confirmation panel

confirmed

unconfirmed

The sequencing depths at positions we wanted to confirm are deeper in the exome. In the confirmation panel, confirmed calls positions have significantly deeper depth.

Conclusions

- ⇒ 17 éxomes analysés, environ 300 mutations par cas.
- ⇒ Mutations retrouvées majoritairement à des VAF allant de 1 à 2 %
- ⇒ Récurrence de mutations sur les gènes connus pour être impliqués dans le cancer: ALK, ARID1A, KMT2C, NCOA3, NCOR1, NOTCH1, NOTCH2, PIK3CA et SMARCA4.
- ⇒ Net enrichissement de mutations touchant des gènes impliqués dans le métabolisme des Inositol Phosphates.
- ⇒ Panel de confirmation insuffisamment couvert cependant il confirme 65 mutations.

Source code: https://github.com/nygenome/lancet

```
lancet --ref hg19.fa

--tumor {TUMOR.BAM}

--normal {NORMAL.BAM}

--bed {AGILENT_REGIONS_V7.BED}

--num-threads 31

> {OUTPUT.VCF}
```

Listing 1: lancet – bash version

💾 Methods > Calling > Manta puis Strelka

Manta: https://github.com/Illumina/manta

```
configManta.py --exome
--referenceFasta hg19.fa
--tumorBam {TUMOR.BAM}
--normalBam {NORMAL.BAM}
--callRegions {AGILENT_REGIONS_V7.BED}
--runDir /tmp/...
```

Listing 2: manta - bash version

```
Strelka: https://github.com/Illumina/strelka
```

Listing 3: strelka – bash version

From: https://gatk.broadinstitute.org/hc/en-us/articles/360035531132

```
gatk-4.2.1.0/gatk --java-options -Xmx32g

Mutect2
-R hg19.fa
-L {AGILENT_REGIONS_V7.BED}
-I {TUMOR.BAM}
-I {NORMAL.BAM}
--normal-sample {NORMAL}
--germline-resource af-only-gnomad.raw.sites.chr.vcf
--panel-of-normals pon.vcf.gz
--f1r2-tar-gz {TUMOR_tumoral_f1r2.tar.gz}
-O {OUTPUT.VCF}
```

Listing 4: Mutect2 – seule étape adaptée – bash version