Санкт-Петербургский государственный университет Прикладная математика и информатика

Отчет о научно-исследовательской работе ПРИМЕНЕНИЕ ЦЕПЕЙ МАРКОВА В АНАЛИЗЕ ДАННЫХ

Выполнил:

Саттаров Никита Дмитриевич группа 19.Б04-мм

Научный руководитель:

к. ф.-м. н., доцент

Н. Э. Голяндина

Введение

В книге [1, Гл. 6] вводится следующее определение цепи Маркова:

Определение 1. Конечная последовательность дискретных случайных величин $\{X_n\}_{n\geq 0}$ называется конечной цепью Маркова, если

$$\mathbb{P}(X_{n+1} = i_{n+1} \mid X_n = i_n, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) = \mathbb{P}(X_{n+1} = i_{n+1} \mid X_n = i_n). \tag{1}$$

Таким образом, в простейшем случае условное распределение последующего состояния цепи Маркова зависит только от текущего состояния и не зависит от всех предыдущих состояний.

Область значений случайных величин $\{X_n\}$ называется **пространством состояний** цепи, а номер n — номером шага.

Определение 2. *Матрица* P(n), $\epsilon \partial e$

$$P_{ii}(n) \equiv \mathbb{P}(X_{n+1} = j \mid X_n = i) \tag{2}$$

называется **матрицей переходных вероятностей** на n-м шаге, а вектор $\mathbf{p} = (p_1, p_2, \ldots)^{\top}, \ \textit{где}$

$$p_i \equiv \mathbb{P}(X_0 = i) \tag{3}$$

— начальным распределением цепи Маркова.

В общем случае имеем конечное множество состояний системы S и конечное множество объектов O. Объекты могут перемещаться из одного состояния системы в другое. Наблюдением назовем перемещение некоторого объекта $o \in O$ из состояния $s_{start} \in S$ в состояние $s_{end} \in S$. Объекты перемещаются независимо друг от друга.

Имеем таблицу наблюдений:

$$\forall i: s_{start_i}, s_{end_i} \in S, \ \forall k, j, m: o_k, o_j, o_m \in O$$

Хотим извлечь из таблицы (1) информацию: вероятность попасть из s_i в s_j , среднее количество шагов, чтобы попасть из s_i в s_j и т.д. $\forall i,j: s_i,s_j \in S$

Можем это сделать с помощью преобразования матрицы переходных вероятностей (2).

Номер наблюдения	Объект	Начальное состояние	Конечное состояние
1	o_k	s_{start_1}	s_{end_1}
2	o_j	s_{start_2}	S_{end_2}
3	O_m	s_{start_3}	s_{end_3}

Таблица 1. Данные о наблюдениях в общем виде

В качестве таблицы наблюдений (1) берем таблицу данных с сайта *Kaggle*: https://www.kaggle.com/pronto/cycle-share-dataset?select=trip.csv. Она содержит наблюдения о поездках прокатных велосипедов от одной станции к другой за конечный промежуток времени. Станции будут являться состояниями цепи Маркова. А поездки — переходами от из одного состояния в другое. Всего станций: 58. Всего поездок: 286858.

Текущая задача заключается в проверки корректности цепи Маркова, построенной по данной таблице данных.

Для этого мы:

- Построим цепь Маркова, которая будет соответствовать вероятностям попасть из состояния s_i в состояние s_j для нашей таблицы данных
- Сгенерируем новые наблюдения на основе вероятностей из цепи Маркова
- Построим новую цепь Маркова по сгенерированным наблюдениям
- Сверим две получившиеся цепи

Построение цепи Маркова по таблице данных

1.1. Импорт таблиц и устранение ошибок в таблице данных

Импортируем две таблицы данных: *poezdki.csv*, в которой содержатся даные о поездках, и *station.csv*, в которой содержатся данне о станциях.

Сталкиваемся с ошибкой, что первые 50793 поездки записаны в таблицу данных дважды. Исправляем это, сделав срез таблицы.

Для текущей задачи необходимо использовать столбец $station_id$ с идентификаторами станций из таблицы $station_csv$ и столбцы $from_station_id$ и $to_station_id$ с идентификаторами станций, откуда была совершена поездка, и идентификаторами станций, куда была совершена поездка соответственно, из таблицы poezdki.csv.

На данный момент работы опустим столбец "Объект"из таблицы данных (1) и будем считать, что поездки совершались на одном велосипеде.

Далее берем необходимые нам столбцы из таблиц, а конкретно $station_id$, $from_station_id$ и $to_station_id$, и сортируем их в алфавитном порядке.

Рис. 1.1. Идентификаторы первых 5 станций, отсортированных в алфавитном порядке

Здесь возникает несколько проблем с обработкой таблиц. Во-первых, не все станции, которые описаны в столбцах from_station_id и to_station_id (1.2), присутствуют в списке station_id (1.1). Во-вторых, были такие ячейки столбца to_station_id, которые содержали «мусор» или не содержали ничего вообще. Эти проблемы будем решать на стадии построения марковской цепи.

	from_station_id	to_station_id
0	8D OPS 02	8D OPS 02
1	8D OPS 02	8D OPS 02
2	BT-01	BT-01
3	BT-01	BT-01
4	BT-01	BT-01
236060	WF-04	WF-04
236061	WF-04	WF-04
236062	WF-04	WF-04
236063	WF-04	WF-04
236064	WF-04	WF-04

Рис. 1.2. Таблица поездок, отсортированная в алфавитном порядке станций

1.2. Алгоритм построения цепи Маркова по таблице данных

Обозначение 1. $\exists S - \textit{множество кодов станций.}$

$$S = \{BT-01, BT-03, \dots, WF-04\}$$

N = |S| — количество станций.

Обозначение 2. $\exists d: S \to \mathbb{N} - c$ ловарь кодов станций такой, что

$$d("BT-01") = 0$$

 $d("BT-03") = 1$
...
 $d("WF-04") = 57$

Обозначение 3. Под поездкой будем подразумевать упорядоченную пару (s_{start}, s_{end}) , где s_{start} — код станции старта, s_{end} — код станции финиша, $s_{start}, s_{end} \in S$. Тогда множество $t_n = \{(s_{start_i}, s_{end_i}) \mid s_{start_i}, s_{end_i} \in S, \ i \in \{0, \dots, n\}\}$ — таблица поездок размера n.

Марковская цепь, основанная на таблице даннных, строится следующим образом: за переходные состояния принимаем станции, откуда выезжали велосипедисты. А сумма поездок из станции s_i в станцию s_j , деленная на общее количество поездок из станции

 s_i , как раз дает нам вероятность попасть из станции s_i в станцию s_j для случайного велосипедиста, $s_i, s_j \in S \ \forall i, j \in \{0, \dots, N\}.$

Чтобы построить Марковскую цепь, необходимо создать словарь d (2), который идентификаторам станций из таблицы будет сопоставлять число (индекс строки/столбца ячейки переходной матрицы).

С проблемой того, что в столбце $to_station_id$ может находиться непонятно что, справляемся следующим образом: пробегаем по списку всех поездок, если не получилось взять значение по ключу словаря d, значит поездка состоит из «мусора» и мы её обнуляем, в дальнейшем не используя для построения Марковской Цепи.

Обозначение 4. $\exists M: N \times N \to \mathbb{N}$ — матрица, в каждой ячейке которой стоит количество поездок из s_i в s_j в таблице поездок t_n .

$$M_{ij} = \sum_{\substack{n \geq k \geq 1, \\ d(s_{start_k}) = i, \\ d(s_{end_k}) = j}} 1, \ \textit{rde} \ (s_{start_k}, s_{end_k}) \in t_n.$$

Обозначение 5. $\exists P_{ij} = \frac{M_{ij}}{\sum\limits_{j=0}^{N-1} M_{ij}} - omнормированная по строкам матрица <math>M_{ij}$.

Так как $\forall i \in \{0,1,\ldots,N-1\}: \sum\limits_{j=0}^{N-1}(P_{ij})=1,$ то P_{ij} — построенная по таблице t_n матрица переходных вероятностей, в каждой ячейке (i,j) которой стоит вероятность попасть из станции s_i в станцию $s_j,$ $i,j \in \{0,1,\ldots,N-1\}.$

В нашем случае N = 58, n = 236044.

Для построения матрицы переходных вероятностей P (2) пробегаем по таблице поездок и строим матрицу M (4), в каждой ячейке которой стоит количество поездок, совершенных из станции s_i в станцию s_j , где (i,j) — индексы ячейки матрицы. Далее отнормировав каждую строку матрицы M получаем матрицу P, в каждой ячейке которой стоит вероятность попасть из станции s_i в станцию s_j , где (i,j) — индексы ячейки матрицы. Таким образом мы получили матрицу переходных вероятностей (1.3) и построили Марковскую цепь (1).

	0	1	2	3	4
0	0.066759	0.019378	0.012138	0.042909	0.019059
1	0.045828	0.043240	0.012028	0.031060	0.028471
2	0.046609	0.027756	0.038230	0.015711	0.018853
3	0.074809	0.030886	0.015443	0.044124	0.033293
4	0.051306	0.033967	0.018290	0.028979	0.058195

Рис. 1.3.

Вероятности попасть из первых 5 станций в первые 5 станций в получившейся матрице переходных вероятностей

Генерация новых наблюдений и построение цепи Маркова по новым наблюдениям

2.1. Выбор начального состояния

Для начала нужно определиться, с какой станции мы будем начинать генерацию новых данных. Для этого построим вектор nss размерности N такой, что $nss_i = \sum_{j=0}^{N-1} M_{ij}$. То есть в каждой i-ой ячейке находится сумма всех исходящих поездок из станции s_i . Отнормировав вектор nss получим вектор $pss = \frac{nss}{||nss||_1}$, в каждой i-ой ячейке которого будет стоять вероятность начать поездку в станции s_i .

2.2. Генерация поездок в новой таблице данных

Будем генерировать 10.000.000 поездок. Для этого создадим новую матрицу P_{new} , изначально заполненную нулями, и новую таблицу $t'_{10.000.000}$ (2.1, a) со столбцами $station_start$ и $station_end$. k-ую поездку в таблице $t'_{10.000.000}$ будем обозначать упорядоченной парой (s_{start_k}, s_{end_k}) , где $s_{start_k}, s_{end_k} \in S$, $k \in \{1, 2, \ldots, 10.000.000\}$.

Определение 3. Функция $\xi: \Omega \to X$ называется случайной величиной, если для любого борелевского множества $B \in \mathfrak{B}(X)$ множество $\xi^{-1}(B)$ является событием, т.е. принадлежит σ -алгебре \mathfrak{F} .

Обозначение 6. $\exists \Omega = \{0, 1, \dots, N-1\}$, случайная величина $\xi : \Omega \to S$ такая, что $\xi(\omega) = d^{-1}(\omega) \ \forall \omega \in \Omega \ (3), \ u$

ξ	BT-01	BT-03	BT-04	 WF-04
P	pss_0	pss_1	pss_2	 pss_{N-1}

Таблица 2.1. Распределение случайной величины ξ

Выберем случайную начальную станцию $s_{initial}$, с которой будем стартовать генерацию, по вероятности из вектора pss, то есть по распределению случайной величины ξ . Запишем её в таблицу данных. Таким образом $s_{start_1} = s_{initial} = \xi$.

Обозначение 7. $\exists \Omega = \{0, 1, ..., N-1\}, \ \forall i \in \Omega :$ случайная величина $\eta_i : \Omega \to S$ такая, что $\eta_i(\omega) = d^{-1}(\omega) \ \forall \omega \in \Omega \ (3), \ u$

η	BT-01	BT-03	BT-04	 WF-04
P	P_{i_0}	P_{i_1}	P_{i_2}	 $P_{i_{N-1}}$

Таблица 2.2. Распределение случайной величины η_i

Далее выберем случайную следующую станцию s_{end_1} по вероятности из вектора P_i , то есть по распределению случайной величины η_i , где $i=d(s_{start_1})$, запишем её в таблицу. Первая поездка таблицы $t'_{10.000.000}$ равна (s_{start_1}, s_{end_1}) . Следующая поездка будет начинаться из станции s_{end_1} , таким образом $s_{start_2} = s_{end_1}$. Продолжаем генерировать следующие поездки: $s_{end_i} = \eta_{d(s_{start_i})}$, $s_{start_i} = s_{end_{i-1}}$, i=1...10.000.000.

2.3. Построение новой цепи Маркова по сгенерированным поездкам

Параллельно с генерацией поездок строим матрицу M_{new} , в каждой ячейке которой стоит количество поездок из s_i в s_j в таблице поездок $t'_{10.000.000}$, по аналогии с матрицей M (4).

Определение 4. В пространстве т-мерных векторов R^m введена фиксированная норма ||x|| (например, одна из норм $||x||_p$, $1 \le p \le \infty$, в зависимости от того, какая ошибка нам нужна: линейная, среднеквадратичная и т.п.). В этом случае в качестве меры степени близости векторов x и x^* естественно использовать величину $||x-x^*||$, являющуюся аналогом расстояния между точками x и x^* .

Введём абсолютную и относительную ошибки вектора x^* с помощью формул:

$$\Delta(x^*) = ||x - x^*||, \ \delta(x^*) = \frac{||x - x^*||}{||x||}.$$

Определение 5. Нормой матрицы A называется величина $||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$.

Абсолютная и относительная погрешности матрицы вводятся аналогично погрешностям вектора с помощью формул:

$$\Delta(A^*) = ||A - A^*||, \ \delta(A^*) = \frac{||A - A^*||}{||A||}.$$

Через каждое количество поездок, кратное порядку 10, начиная с 10.000 и до 10.000.000, нормируем по строкам матрицу M_{new} , таким образом получаем матрицу P_{new} (2.1, δ) по аналогии с получением матрицы переходных вероятностей P из матрицы M (5) и считаем абсолютную и относительную ошибки по формуле (5), где A — начальная матрица переходных вероятностей P, A^* — новая матрица P_{new} , построенная на сгенерированных данных.

	station_start	station_end
0	CBD-05	SLU-15
1	SLU-15	BT-01
2	BT-01	WF-01
3	WF-01	PS-05
4	PS-05	SLU-19

(a)

Первые 5 строк в таблице сгенерированных данных t'

	0	1	2	3	4
0	0.067347	0.019364	0.012303	0.043233	0.019254
1	0.046165	0.042317	0.011781	0.031573	0.028216
2	0.045980	0.027391	0.038047	0.015695	0.018689
3	0.075738	0.030146	0.015622	0.044520	0.033332
4	0.051179	0.034043	0.018512	0.028764	0.058755
			(6)		

Вероятности попасть из первых 5 станций в первые 5 станций в новой построенной по сгенерированным данным матрице переходных вероятностей P_{new}

Сравнение двух цепей Маркова

Программа выдала следующие результаты:

Количество поездок	Абсолютная погрешность	Относительная погрешность
10.000	0.895783	0.439285
100.000	0.277931	0.136295
1.000.000	0.092052	0.045583
10.000.000	0.026711	0.013099

Таблица 3.1. Абсолютные и относительные погрешности рассчетов

В учебном пособии по теории вероятностей [2, Гл. 8] вводится следующая теорема:

Теорема 1 (Центральная предельная теорема Ляпунова)

 $\exists \xi_1, \xi_2, \ldots$ — независимые и одинаково распределённые случайные величины с конечной и ненулевой дисперсией: $0 < \mathbf{D}\xi_1 < +\infty$. $S_n = \xi_1 + \ldots + \xi_n$. Тогда имеет место слабая сходимость

$$\frac{S_n - n\mathbf{E}\xi_1}{\sqrt{n\mathbf{D}\xi_1}} \Rightarrow N_{0,1} \tag{3.1}$$

Откуда не трудно вывести соотношение:

$$P\left(\left|\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-\mathbf{E}\xi_{1}\right|\leq k\frac{\sqrt{\mathbf{D}\xi_{1}}}{\sqrt{n}}\right)\Rightarrow2\Phi(k)-1$$
(3.2)

Заметим, что для больших n, при увеличении n отклонение $\left|\frac{1}{n}\sum_{i=1}^n \xi_i - \mathbf{E}\xi_1\right|$ уменьшается в \sqrt{n} раз.

Как мы видим (3.1), при увеличении числа поездок в 100 раз абсолютная и относительная погрешности уменьшаются примерно в 10 раз. Значит ошибки обратно пропорциональны корню из количества поездок. Ссылаясь на центральную предельную теорему (1) и принимая во внимание тот факт, что в нашем случае можем считать каждый элемент матрицы P_{new} преобразованием величин ξ и η_i , а каждый элемент матрицы P — математическим ожиданием этого преобразования, можем заключить, что изначально построенная матрица переходных вероятностей P построена корректно.

Следующая задача

Следующей задачей я ставлю рассчет матрицы первых достижений по новой матрице переходных вероятностей Марковской цепи, построенной на сгенерированных данных, и проверку корректности её значений с помощью алгоритма подсчёта времен первых достижений через таблицу сгенерированных данных.

Список литературы

- $1. \ \, {\rm Stirzaker\ DR,\ Grimmett\ GR.\ Probability\ and\ random\ processes.-Clarendon\ Press,\ 1992.}$
- 2. Чернова Н.И. Теория вероятностей. Изд-во МЦНМО, 2007.