Segunda prova de Bases Matemáticas

prof. Rodrigo Fresneda

18 de agosto de 2017

Avisos:

- Sempre que puder, justifique as passagens efetuadas, demonstrando conhecimento sobre os resultados e teoremas discutidos em sala. Poucas questões bem resolvidas valem mais que muitas mal resolvidas.
- Resolva as questões na ordem que lhe convier, mas indique na folha de resposta a questão e item sendo resolvidos.
- Não é permitida a consulta a material externo ou colega, nem o uso de calculadora ou celular.
- 1. Faça o que é pedido.
 - (a) Defina precisamente $\lim_{x\to p^+} f(x) = L$
 - (b) Determine L de modo que a função dada seja contínua no ponto x=3:

$$f(x) = \begin{cases} \frac{\sqrt{x^2 + 7} - 4}{x^2 - 5x + 6} & \text{se } x \neq 3\\ L & \text{se } x = 3 \end{cases}$$

- (a) Dado $\varepsilon > 0$, existe $\delta > 0$ tal que, para $x \in Domf$, se $p < x < p + \delta$, então $|f(x) - L| < \varepsilon$
- (b) Devemos ter $\lim_{x\to 3} f(x) = f(3) = L$. Temos

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{\sqrt{x^2 + 7} - 4}{x^2 - 5x + 6} = \lim_{x \to 3} \left(\frac{\sqrt{x^2 + 7} - 4}{(x - 3)(x - 2)} \frac{\sqrt{x^2 + 7} + 4}{\sqrt{x^2 + 7} + 4} \right) = \lim_{x \to 3} \left(\frac{x^2 - 9}{(x - 3)(x - 2)} \frac{1}{\sqrt{x^2 + 7} + 4} \right)$$

$$= \lim_{x \to 3} \left(\frac{x + 3}{x - 2} \frac{1}{\sqrt{x^2 + 7} + 4} \right) = \lim_{x \to 3} \frac{x + 3}{x - 2} \lim_{x \to 3} \frac{1}{\sqrt{x^2 + 7} + 4} = \frac{3}{4},$$

onde usamos a propriedade de produto de limites e continuidade da função racional $\frac{x+3}{x-2}$ e da função $\frac{1}{\sqrt{x^2+7}+4}$. Assim, devemos ter $L=\frac{3}{4}$.

- 2. Calcule os limites abaixo, justificando as passagens smpre que necessário:
 - (a) $\lim_{x\to 0} \frac{1-\cos x}{x^2}$
 - (b) $\lim_{x\to 0} x^2 \sin \frac{1}{x^2}$
 - (c) $\lim_{x\to\infty} \frac{x}{\sqrt[3]{x^3+10}}$

(d)
$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$$
 para $f(x)=x^3$ (a)

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \left(\frac{1 - \cos x}{x^2} \frac{1 + \cos x}{1 + \cos x} \right) = \lim_{x \to 0} \left(\frac{1 - \cos^2 x}{x^2} \frac{1}{1 + \cos x} \right) = \lim_{x \to 0} \left[\left(\frac{\sin x}{x} \right)^2 \frac{1}{1 + \cos x} \right]$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^2 \lim_{x \to 0} \frac{1}{1 + \cos x} = \left(\lim_{x \to 0} \frac{\sin x}{x} \right)^2 \lim_{x \to 0} \frac{1}{1 + \cos x} = \frac{1}{2},$$

onde usamos a propriedade de produto de limites, o primeiro limite fundamental e continuidade da função $\cos x$.

(b) Como $\left|\sin\frac{1}{x^2}\right| \le 1$, $\left|x^2\sin\frac{1}{x}\right| \le x^2$. Então $-x^2 \le x^2\sin\frac{1}{x} \le x^2$. Como $\lim_{x\to 0} x^2 = 0$, pelo teorema do confronto, $\lim_{x\to 0} x^2\sin\frac{1}{x^2} = 0$.

$$\lim_{x \to \infty} \frac{x}{\sqrt[3]{x^3 + 10}} = \lim_{x \to \infty} \frac{x}{x\sqrt[3]{1 + \frac{10}{x^3}}} = \lim_{x \to \infty} \frac{1}{\sqrt[3]{1 + \frac{10}{x^3}}} = \frac{1}{\sqrt[3]{1 + \lim_{x \to \infty} \frac{10}{x^3}}} = 1,$$

pois $\lim_{x\to\infty} \frac{1}{x^3} = 0$ e \sqrt{x} é contínua. (d)

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h} = \lim_{h \to 0} \frac{h\left((x+h)^2 + (x+h)x + x^2\right)}{h}$$
$$= \lim_{h \to 0} \left((x+h)^2 + (x+h)x + x^2\right) = 3x^2,$$

onde usamos continuidade de polinômios.

- 3. Dada as funções $f:A\subset\mathbb{R}\to\mathbb{R},\ f(x)=|x|,\ \mathrm{e}\ g:B\subset\mathbb{R}\to\mathbb{R},\ g(x)=tg(x),\ \mathrm{determine}\ \mathrm{o}$ domínio de $g\circ f$ e esboçe seu gráfico.
 - (a) Temos g(f(x)) = g(|x|) = tg(|x|). Como $Domg = \{x \in \mathbb{R}, x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$, e $Imf = \mathbb{R}_+$, temos $Dom(g \circ f) = \{x \in \mathbb{R}, x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$.

Figura 1: Gráfico de $\tan x$ e de $\tan (|x|)$

- 4. Considere a equação $\arcsin x = \sqrt{x}$.
 - (a) Desenhe os gráficos de arcsin x e \sqrt{x} no intervalo [0,1].
 - (b) Com base nos teoremas vistos em sala de aula, a equação do enunciado tem uma raiz no intervalo (0,1)?
 - (c) E quanto ao intervalo $(\frac{1}{2}, 1)$? Considere $\sqrt{2} \simeq 1.4$.

Figura 2: Gráfico de arcsin x e de \sqrt{x}

(b) Para $f(x) = \arcsin x - \sqrt{x}$, temos $f(0) = \arcsin 0 = 0$ e $f(1) = \arcsin 1 - 1 = \frac{\pi}{2} - 1 > 0$. Embora a função seja contínua em [0,1], como a f(x) não tem sinais opostos em 0 e 1, não é possível aplicar o teorema do anulamento. Com tanto mais razão, como $0 \notin (f(0), f(1)) = (0, \frac{\pi}{2} - 1)$, pelo TVI não é possível afirmar que exista $x \in (0,1)$ tal que f(x) = 0.

(c) Nesse caso, $f\left(\frac{1}{2}\right) = \arcsin\frac{1}{2} - \frac{1}{\sqrt{2}} = \frac{\pi}{6} - \frac{\sqrt{2}}{2} = \frac{\pi - 3\sqrt{2}}{6} < 0$. Assim, $f\left(x\right)$ troca de sinal em 1/2 e 1, e portanto, pelo teorema do anulamento, existe $x \in \left(\frac{1}{2},1\right)$ tal que $f\left(x\right) = 0$, ou, o que é equivalente, $\arcsin x = \sqrt{x}$. Ou ainda, pelo TVI, como $0 \in \left[f\left(\frac{1}{2}\right), f\left(1\right)\right]$, então existe $x \in \left(\frac{1}{2},1\right)$ tal que $f\left(x\right) = 0$.