Report for Computer Project of Applied Stochastic

Analysis—Problem 7

Liangyu Zhang

ID:1500010720

January 3, 2019

1 Problem Setup

Consider the following combined Dirichlet-Possion problem:

$$b\nabla u + \frac{1}{2}\Delta u = f(x, y), (x, y) \in B_1(0)$$
$$u = \frac{1}{2} \text{ on } (x, y) \in \mathcal{S}^1$$

, where $b=(x,y), f(x,y)=x^2+y^2+1$. We would like to solve this PDE numerically via the simulation of SDEs.

2 Detailed Solution

Let L denote a semi-elliptic partial differential operator on $C^2(\mathbb{R}^n)$ of the form

$$L = \sum_{i=1}^{n} b_i(x) \frac{\partial}{\partial x_i} + \sum_{i=1}^{n} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j}$$

. Then we may rewrite the original PDE as:

$$Lu = -g \text{ in } B_1(0)$$

 $u = \phi \text{ on } S^1$

where $b = (x, y)^T$, $[a_{ij}] = \frac{1}{2}I_2$, $g = -(x^2 + y^2 + 1)$, $\phi = \frac{1}{2}$. Now consider an Ito diffusion $\{(X_t, Y_t)\}$ whose generator A coincides with L on $C_0^2(\mathbb{R}^2)$. To achieve this we simply choose b = (x, y) and $\sigma = I_2$. According to **Theorem 9.3.3** in [1], the solution of the concerned PDE can be represented as:

$$u(x,y) = \frac{1}{2} - E^{(x,y)} \left[\int_0^{\tau_D} (X_s^2 + Y_s^2 + 1) ds \right]$$

,where τ_D is the exit time. Since we have the fact that $E^x(\tau_D) < \infty$ (as shown in prof.Li's lecture notes) and $g(x,y) = -(x^2 + y^2 + 1)$ is bounded in $B_1(0)$, it's then trivial to verify that $E^{(x,y)}[\int_0^{\tau_D} (X_s^2 + Y_s^2 + 1)ds] < \infty$.

With the discussion above, to evaluate the solution of the PDE at some point, say, (x_0, y_0) , we just need to compute $E^{(x,y)}[\int_0^{\tau_D} (X_s^2 + Y_s^2 + 1)ds]$. Here we use the standard Euler-Maruyama scheme to simulate the Ito diffusion $\{X_t, Y_t\}$, and then approximate the integral with the simulated track. And the operation described above would be performed multiple times as to estimate the expectation. Detailed algorithm is shown as follows:

```
Algorithm 1: ESTIMATION OF u(x_0, y_0)

Input: (x_0, y_0), \delta t as the step length

Output: \hat{u}(x_0, y_0)

sum \leftarrow 0

i \leftarrow 0

while i < N do

\begin{vmatrix} X_0 \leftarrow x_0 \\ Y_0 \leftarrow y_0 \\ \text{while } True \text{ do} \end{vmatrix}

\begin{vmatrix} X_{t+1} \leftarrow X_t + X_t * \delta t + N(0, \sqrt{\delta t}) \\ Y_{t+1} \leftarrow Y_t + Y_t * \delta t + N(0, \sqrt{\delta t}) \\ \text{if } X_{t+1}^2 + Y_{t+1}^2 > 1 \text{ then} \\ \text{break} \\ \text{end} \end{vmatrix}

end

Int \leftarrow \sum_t (X_t^2 + Y_t^2 + 1) \delta t

Sum \leftarrow Sum + Int

i \leftarrow i + 1

end

return Sum/N
```

3 Numerical Results

The algorithm is implemented in C++, using a random number generator based on hardware entropy. The numerical results are quite satisfactory. Compared to the analytical solution $u(x,y) = (x^2 + y^0)/2$, the relative error is less than 1% when we set δt to be 10^{-6} and N to be 10000. And clearly the error comes from simulating the Ito diffusion by Euler-Maruyama scheme, estimating the integral by finite sum and approximating the expectation by empirical mean. The numerical convergence order in step length

is approximately 1/2, namely, $error \sim \sqrt{\delta t}$, which can be seen from the following picture, where the red line is obtained by performing linear regression to the relative error and square root of step length.

References

[1] Bernt Øksendal. Stochastic differential equations: An introduction with applications. Springer, 2000.