FEEC Faculdade de Engenharia Elétrica e de Computação

EA614 - Análise de Sinais

1º Semestre de 2007 – 1ª Prova – Prof. Renato Lopes

QUESTÃO 1 (2.0 PONTOS):

Determine se os sinais abaixo são periódicos ou não. Para os sinais periódicos, determine o período fundamental.

$$x[n] = 5\cos(2\pi n/5 + \pi/3) + 7j \sin(7n/3 + \pi/4),$$

$$u(t) = 1 + \cos(2\pi t),$$

$$v(t) = 5\cos(2\pi t/5 + \pi/3) + 7j \sin(7t/3 + \pi/4).$$

QUESTÃO 2 (2.0 PONTOS):

Seja o sinal
$$x(t) = \begin{cases} 0, & |t| > 2 \\ 1, & -2 < t < 0 \\ 1 - t/2, & 0 \le t \le 2 \end{cases}$$

- Esboce x(-2t-1).
- Calcule a derivada de x(t), expressando-a em função de $\delta(t)$ e de u(t).

QUESTÃO 3 (1.0 PONTO):

Seja $z_1 = 1 + j$ e $z_2 = -1 + j$. Calcule $z_1 + z_2$ e $z_1 \cdot z_2$. Expresse as respostas nas formas retangular **e** polar.

QUESTÃO 4 (1.0 PONTO):

Calcule a energia total e a potência média de $x[n] = \sum_{k=-\infty}^{\infty} \delta[n-3k]$.

QUESTÃO 5 (1.0 PONTO):

A figura 1 mostra a associação em cascata de dois sistemas lineares, com resposta ao impulso dadas por $h_1[n] = u[n-2] - u[n]$ e $h_2[n] = \delta[n+1] + 2\delta[n]$, respectivamente. Determine, de forma analítica ou gráfica, a resposta ao impulso da cascata.

$$x[n] \longrightarrow h_1[n] \longrightarrow h_2[n] \xrightarrow{y[n]}$$

Figura 1: Associação em cascata de sistemas lineares referentes à questão 5.

QUESTÃO 6 (1.5 PONTOS):

Na figura 2, mostramos os sinais $x_1[n]$ e $x_2[n]$. Uma das outras figuras, com título $y_1[n]$ e $y_2[n]$, representa $x_1[n] * x_2[n]$. Determine qual figura representa essa convolução. Justifique sua resposta.

QUESTÃO 7 (1.5 PONTOS):

Considere um sistema linear e invariante no tempo cuja resposta à entrada $x_1(t)$ da Figura 3 é o sinal $y_1(t)$. Calcule a resposta do sistema para as entradas $x_2(t)$ e $x_3(t)$.

Figura 2: Sinais referentes à questão 6.

Figura 3: Sinais para o sistema da questão 7.