Por tanto, cuando consideremos el concepto de $\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x})$, supondremos siempre que \mathbf{x}_0 bien pertenece a un conjunto abierto en el que está definida f o bien está en la frontera de ese conjunto.

Una razón por la que insistimos en que $\mathbf{x} \neq \mathbf{x}_0$ en la definición de límite quedará clara si recordamos del cálculo de una variable que deseamos poder definir la derivada $f'(x_0)$ de una función f en el punto x_0 como

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0},$$

y esta expresión no está definida en $x = x_0$.

Ejemplo 3

(a) Este ejemplo ilustra un límite que no existe. Consideremos la función $f\colon \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 1 & \text{si } x > 0 \\ -1 & \text{si } x \le 0. \end{cases}$$

El $\lim_{x\to 0} f(x)$ no existe, ya que existen puntos x_1 tan cerca como se quiera de 0 para los que $f(x_1) = 1$ y también puntos x_2 tan cerca como se quiera de 0 para los que $f(x_2) = -1$; es decir, no hay un único número al que f se acerque cuando x se aproxima a 0 (véase la Figura 2.2.9). Si f se restringe al dominio (0,1) o al dominio (-1,0), entonces el límite sí que existe. ¿Puede el lector decir por qué?

Figura 2.2.9 El límite de esta funci ón cuando $x \to 0$ no existe.

(b) Este ejemplo ilustra una función cuyo límite existe, pero cuyo valor límite no es igual al valor de la función en el punto en que se toma el límite. Definimos $f \colon \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{si } x \neq 0 \\ 1 & \text{si } x = 0. \end{cases}$$

Es cierto que $\lim_{x\to 0} f(x) = 0$, ya que para todo entorno U de $0, x \in U$ y $x \neq 0$ se tiene que f(x) = 0. En la Figura 2.2.10 vemos que f se aproxima a 0 cuando $x \to 0$; no nos importa que f tome un valor distinto de 0.