

In SAS, sashelp.heart is a built-in dataset that comes with SAS software and contains information related to heart disease patients. This dataset is often used for educational and demonstration purposes. Let's explain the key aspects of the sashelp.heart dataset:

Source: The sashelp.heart dataset is not sourced from real-world data but is instead a synthetic dataset created for teaching and learning purposes within the SAS environment.

Contents: The dataset typically contains information about individuals with heart disease, including variables such as age, gender, cholesterol levels, blood pressure, smoking status, and more. It's designed to serve as a sample dataset for practicing data analysis and statistical techniques.

Usage: SAS users often use sashelp.heart to demonstrate various SAS procedures and techniques, such as data manipulation, statistical analysis, and data visualization. It's a convenient dataset for learning and testing because it's readily available within SAS environments.

Availability: sashelp.heart is usually available in SAS installations by default. Users can access it without the need to import or load an external dataset.

Here are some example variables you might find in the sashelp.heart dataset (please note that the actual variables may vary depending on the SAS version and dataset configuration):

Age: The age of the patients.

Sex: Gender of the patients (e.g., Male or Female).

Chol: Cholesterol levels of the patients.

BP: Blood pressure measurements.

Smoker: Indicates whether the patient is a smoker (e.g., Yes or No).

Chest Pain: Description of chest pain symptoms.

MaxHR: Maximum heart rate.

RestECG: Resting electrocardiogram results.

Disease: Presence or absence of heart disease (e.g., 0 for No Disease, 1 for Disease).

Users can analyze and visualize this dataset using various SAS procedures and techniques to gain insights into heart disease risk factors, correlations, and other related topics. It's

particularly useful for learning SAS programming and data analysis due to its predefined structure and availability within SAS environments.

This code block is using the proc sgplot procedure to create a histogram.

data=Heart specifies the dataset to be used for plotting (Note: the dataset name should be consistent; it should be sashelp.heart instead of Heart).

histogram AgeAtStart / binwidth=5; creates a histogram of the variable AgeAtStart with a bin width of 5 units. This means that the age values in the dataset will be grouped into bins of width 5, and the frequency of each bin will be plotted.

xaxis label="Age"; and yaxis label="Frequency"; are specifying the labels for the x and y-axes of the histogram. title "Distribution of Patient Ages"; adds a title to the histogram.

```
/*Loading
             Data*/
data Heart;
/*Data
                 Set
Selection:*/
                  set
sashelp.heart; run;
/*Data Printing:*/ proc
        data=sashelp.heart;
print
run:
/* Create a histogram of patient
ages */ proc sgplot data=Heart;
histogram AgeAtStart / binwidth=5;
xaxis
        label="Age";
                              yaxis
label="Frequency";
                               title
"Distribution of Patient Ages";
run;
```

Obs	Status	DeathCause	AgeCHDdiag	Sex	AgeAtStart	Height	Weight	Diastolic	Systolic	MRW	Smoking	AgeAtDeath	Cholesterol	Chol_Status	BP_Status	Weight_Status	Smoking_Status
1	Dead	Other		Female	29	62.50	140	78	124	121	0	55			Normal	Overweight	Non-smoker
2	Dead	Cancer		Female	41	59.75	194	92	144	183	0	57	181	Desirable	High	Overweight	Non-smoker
3	Alive			Female	57	62.25	132	90	170	114	10		250	High	High	Overweight	Moderate (6-15)
4	Alive			Female	39	65.75	158	80	128	123	0		242	High	Normal	Overweight	Non-smoker
5	Alive			Male	42	66.00	156	76	110	116	20		281	High	Optimal	Overweight	Heavy (16-25)
6	Alive			Female	58	61.75	131	92	176	117	0		196	Desirable	High	Overweight	Non-smoker
7	Alive			Female	36	64.75	136	80	112	110	15		196	Desirable	Normal	Overweight	Moderate (6-15)
8	Dead	Other		Male	53	65.50	130	80	114	99	0	77	276	High	Normal	Normal	Non-smoker
9	Alive			Male	35	71.00	194	68	132	124	0		211	Borderline	Normal	Overweight	Non-smoker
10	Dead	Cerebral Vascular Disease		Male	52	62.50	129	78	124	106	5	82	284	High	Normal	Normal	Light (1-5)
11	Alive			Male	39	66.25	179	76	128	133	30		225	Borderline	Normal	Overweight	Very Heavy (> 25
12	Alive		57	Male	33	64.25	151	68	108	118	0		221	Borderline	Optimal	Overweight	Non-smoker
13	Alive		55	Male	33	70.00	174	90	142	114	0		188	Desirable	High	Overweight	Non-smoker
14	Alive		79	Male	57	67.25	165	76	128	118	15				Normal	Overweight	Moderate (6-15)
15	Alive		66	Male	44	69.00	155	90	130	105	30		292	High	High	Normal	Very Heavy (> 25
16	Alive			Female	37	64.50	134	76	120	108	10		196	Desirable	Normal	Normal	Moderate (6-15)
17	Alive			Male	40	66.25	151	72	132	112	30		192	Desirable	Normal	Overweight	Very Heavy (> 25
18	Dead	Cancer	56	Male	56	67.25	122	72	120	87	15	72	194	Desirable	Normal	Underweight	Moderate (6-15)
19	Alive			Female	42	67.75	162	96	138	119	1		200	Borderline	High	Overweight	Light (1-5)
20	Dead	Coronary Heart Disease	74	Male	46	66.50	157	84	142	116	30	76	233	Borderline	High	Overweight	Very Heavy (> 25

/* Create a bar chart for disease status by gender */

proc sgplot data=Heart; vbar Status /
group=Sex groupdisplay=cluster; xaxis
label="Disease Status"; yaxis
label="Count"; title "Disease Status by
Gender";
run;

/* Create a box plot of systolic blood pressure (Systolic) by smoking

status */ proc sgplot data=Heart; vbox Systolic / category=Smoking; xaxis label="Smoking Status";

yaxis label="Systolic Blood Pressure"; title "Distribution of Systolic Blood Pressure by Smoking Status"; run;

/* Create a box plot of age by disease status

*/ proc sgplot data=Heart; vbox AgeAtStart
/ category=Status; xaxis label="Disease
Status"; yaxis label="Age"; title
"Distribution of Age by Disease Status"; run;

/* Create a bar chart to visualize smoking status distribution */ proc sgplot data=Heart; vbar Smoking / group=Status groupdisplay=cluster; xaxis label="Smoking Status"; yaxis label="Count"; title "Smoking Status by Disease Status"; run;

/* Create a heatmap to visualize correlations between numerical variables */ proc corr data=Heart noprob nosimple; var AgeAtStart Height Weight Diastolic Systolic Cholesterol; run;

proc sgheatmap data=Heart;

matrix Corr;

run;

1									
6 V	AgeAtStart Height Weight Diastolic Systolic Cholesterol								
		P	earson Cor Number	relation Co					
	AgeAtS	tart	Height	Weight	Diastolic	Systolic	Cholesterol		
AgeAtStart Age at Start	1.000	000 209	-0.13173 5203	0.09352 5203	0.27540 5209	0.37938 5209	0.27341 5057		
Height	-0.13°	173 203	1.00000 5203	0.51739 5199	-0.01425 5203	-0.07113 5203	-0.07959 5051		
Weight	0.093	352 203	0.51739 5199	1.00000 5203	0.32757 5203	0.26358 5203	0.07243 5051		
Diastolic	0.275 52	540 209	-0.01425 5203	0.32757 5203	1.00000 5209	0.79606 5209	0.18336 5057		
Systolic	0.379 52	938 209	-0.07113 5203	0.26358 5203	0.79606 5209	1.00000 5209	0.19935 5057		
Cholesterol	2350717	341 057	-0.07959 5051	0.07243 5051	0.18336 5057	0.19935 5057	1.00000 5057		

/* pie chart for frequencies*/ proc gchart data=heart; pie Smoking_Status;

run;

/* pie chart with exploding

slice*/ proc gchart data=heart;

pie DeathCause /

explode='Cancer';

run;

FREQUENCY of DeathCause


```
/* 3Dpie chart with exploading
slice*/ proc gchart data=heart;
pie3d DeathCause /
explode='Cancer';
run;

proc gchart data=heart; pie3d Chol_Status /
plabel=(h=1.5 color=red);;
run;
```

FREQUENCY of DeathCause

proc sgplot data=heart; vbar Cholesterol /
group=Smoking_Status groupdisplay=cluster; xaxis
label="Cholesterol Levels"; yaxis label="Frequency"; title
"Cholesterol Levels by Smoking Status"; run;

FREQUENCY of Chol_Status

/* Create a bubble chart to visualize Age vs. Cholesterol vs.

Weight */ proc sgplot data=heart; scatter x=AgeAtStart y=Cholesterol / group=Weight; xaxis label="Age"; yaxis label="Cholesterol Levels"; title "Bubble Chart: Age vs. Cholesterol vs. Weight"; run;

/* Calculate mean, variance, and standard deviation for selected numerical variables */ proc means data=Sashelp.Heart mean var std; var AgeAtStart Cholesterol Systolic Diastolic; run;

Variable	Label	Mean	Variance	Std Dev
AgeAtStart	Age at Start	44.0687272	73.5298379	8.5749541
Cholesterol		227.4174412	2019.20	44.9355238
Systolic		136.9095796	563.5684355	23.7395964
Diastolic		85.3586101	168.3010976	12.9730913

/* Frequency analysis for categorical variables */ proc

freq data=Sashelp.Heart; tables Sex Smoking_Status

DeathCause / nocum nopercent;

run;

	Sex	Frequ	uency	
	Female		2873	3
	Male		2336	
	Smok	ing Sta	tus	
Sm	Smoking_Status Free			iency
Hea	Heavy (16-25)			1046
Lig	Light (1-5)			579
Mo	Moderate (6-15)			576
No	n-smoker			2501
Ver	y Heavy (>	25)		471
	Frequency	/ Missi	ng =	36
	Cause	e of De	ath	
DeathC	10000000			requen
Cancer				53
Cerebra	l Vascular	Diseas	se	37
Corona	ry Heart Di	sease		60
041				35
Other			- 1	

/* Descriptive statistics for categorical variables */ proc

freq data=Sashelp.Heart; tables Sex Smoking_Status

DeathCause / norow nocol nopercent; run;

	Sex	Free	quency		nula: eque	20.00.000	
	Female		2873	3	2	73	
	Male		2336		5209		
		Smo	king S	tatue			
Sr	noking_Sta		Cu		mulative		
He	eavy (16-25)		1046			1046	
Li	ght (1-5)		579			1625	
Me	derate (6-15)			576		2201	
No	n-smoker			2501		4702	
Ve	ry Heavy (>	25)	471			5173	
	Fre	quen	cy Mis	sing =	36		
		Cau	se of D	eath			
Death(ause	Cau		eath reque	псу	Cumulativ Frequenc	
		Cau		reque	ncy 539		
Cance			F	reque		Frequenc	
Cance Cerebr	r	Disea	ise	reque	539	Frequenc 53	
TESTITE TO	r al Vascular	Disea	ise	reque	539 378	Frequenc 53 91	

/* Create a contingency table and perform a chi-square

test */ proc freq data=Sashelp.Heart; tables Sex *
Smoking_Status / chisq; run;

The FREQ Procedure

Frequency Percent Row Pct Col Pct

		Tabl	e of Sex by Smokii	ng_Status								
	Smoking_Status(Smoking Status)											
Sex	Heavy (16-25)	Light (1-5)	Moderate (6-15)	Non-smoker	Very Heavy (> 25)	Total						
Female	339	422	340	1682	73	2856						
	6.55	8.16	6.57	32.51	1.41	55.21						
	11.87	14.78	11.90	58.89	2.56							
	32.41	72.88	59.03	67.25	15.50							
Male	707	157	236	819	398	2317						
	13.67	3.03	4.56	15.83	7.69	44.79						
	30.51	6.78	10.19	35.35	17.18							
	67.59	27.12	40.97	32.75	84.50							
Total	1046	579	576	2501	471	5173						
	20.22	11.19	11.13	48.35	9.10	100.00						

Statistics for Table of Sex by Smoking_Status

Statistic	DF	Value	Prob
Chi-Square	4	743.4890	<.0001
Likelihood Ratio Chi-Square	4	771.5109	<.0001
Mantel-Haenszel Chi-Square	1	40.7641	<.0001
Phi Coefficient		0.3791	
Contingency Coefficient		0.3545	
Cramer's V		0.3791	

Sample Size = 5173 Frequency Missing = 36

/* Cross-tabulation with percentages */

proc freq data=Sashelp.Heart; tables Sex *

Smoking_Status / nocol nopercent;

run;

Frequency	Table of Sex by Smoking_Status										
Row Pct		Smoking_Status(Smoking Status)									
	Sex	Heavy (16-25)	Light (1-5)	Moderate (6-15)	Non-smoker	Very Heavy (> 25)	Total				
	Female	339 11.87	422 14.78	340 11.90	1682 58.89	73 2.56	2856				
	Male	707 30.51	157 6.78	236 10.19	819 35.35	398 17.18	2317				
	Total	1046	579	576	2501	471	5173				

/* Perform a two-sample t-test for Age by

Gender */ proc ttest data=Sashelp.Heart;

class Sex; var

AgeAtStart;

run;

		vari	able: A	geAtS	tart (Age :	at Star	t)			
Sex	Method	1	N I	Mean	Std	Dev	Std	Err	Min	imum	Maximun
Female		287	3 44	44.0515	5 8.5349	0.1	0.1592		8.0000	62.0000	
Male		233	6 44	.0899	8.	6258	0.1	785	29	0.0000	62.0000
Diff (1-2)	Pooled		-0	.0384	8.	5758	0.2	389	389		
Diff (1-2)	Satterthwaite		-0.	-0.0384			0.2	392			
Sex	Method	1	Mean	95	% CL	Mea	ın	Std D)ev	95% C	L Std Dev
Female	The second secon	44	.0515	43.73	93	44.3	637	8.534		8.3198	8.7615
Male		44	.0899	43.73	99	44.4	399	8.62	258	8.3853	8.8805
Diff (1-2)	Pooled	-0		-0.50	68	0.4	300	8.57	58	8.4142	8.7437
Diff (1-2)	Satterthwaite	-0	.0384	-0.50	073 0		0.4305				
	Method		Vania	nces		DE	t Valu				
	Pooled		Equa		5207 -0	-0.1		0.872			
	Satterthy	vaite	Uned	200		-0.16	07	0.872			
	Ė		Equa	ality of	Vari	ance	s				
	Metho	d	Num D	F De	n DF	F	Value	Pr	> F		
	Folded	IF	233	5	2872		1.02		898		

/* Perform a one-way ANOVA for Cholesterol by Smoking

Status */ proc anova data=Sashelp.Heart; class

Smoking_Status; model Cholesterol = Smoking_Status; run;

/* code to view the contents of sashelp.heart

data*/ proc contents data=sashelp.heart; run;

The ANOVA Procedure

Class

Smoking_Status

Levels

	Class Level Information
els	Values
5	Heavy (16-25) Light (1-5) Moderate (6-15) Non-smoker Very Heavy (> 25)

Number of Observations Rea	d 5209
Number of Observations Use	d 5049

The ANOVA Procedure

Dependent Variable: Cholesterol

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	22345.12	5586.28	2.77	0.0257
Error	5044	10168843.77	2016.03		
Corrected Total	5048	10191188.89			

R-Square	Coeff Var	Root MSE	Cholesterol Mean
0.002193	19.74114	44.90020	227.4448

Source	DF	Anova SS	Mean Square	F Value	Pr > F
Smoking_Status	4	22345.11719	5586.27930	2.77	0.0257

The CONTENTS Procedure

Data Set Name	SASHELP.HEART	Observations	5209
Member Type	DATA	Variables	17
Engine	V9	Indexes	0
Created	08/06/2020 06:41:21	Observation Length	168
Last Modified	08/06/2020 06:41:21	Deleted Observations	0
Protection		Compressed	NO
Data Set Type		Sorted	NO
Label	Framingham Heart Study		
Data Representation	SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64		
Encoding	us-ascii ASCII (ANSI)		

Eng	jine/Host Dependent Information	
Data Set Page Size	65536	
Number of Data Set Pages	14	
First Data Page	1	
Max Obs per Page	389	
Obs in First Data Page	365	
Number of Data Set Repairs	0	
Filename	/pbr/sfw/sas/940/SASFoundation/9.4/sashelp/heart.sas7bdat	
Release Created	9.0401M7	
Host Created	Linux	
Inode Number	134873665	
Access Permission	rw-rr	
Owner Name	odaowner	
File Size	960KB	
File Size (bytes)	983040	

	Alphabetic	List of	Variab	les and Attributes
#	Variable	Туре	Len	Label
12	AgeAtDeath	Num	8	Age at Death
5	AgeAtStart	Num	8	Age at Start
3	AgeCHDdiag	Num	8	Age CHD Diagnosed
15	BP_Status	Char	7	Blood Pressure Status
14	Chol_Status	Char	10	Cholesterol Status
13	Cholesterol	Num	8	
2	DeathCause	Char	26	Cause of Death
8	Diastolic	Num	8	
6	Height	Num	8	
10	MRW	Num	8	Metropolitan Relative Weigh
4	Sex	Char	6	
11	Smoking	Num	8	
17	Smoking_Status	Char	17	Smoking Status
1	Status	Char	5	
9	Systolic	Num	8	
7	Weight	Num	8	
16	Weight_Status	Char	11	Weight Status

Data Overview:

We loaded the Heart Study data from the sashelp.heart dataset. then printed the data to get a general understanding of its structure. **Age**

Distribution:

we created a histogram of patient ages, showing the distribution of ages at the study's start. The histogram suggests that the study included a wide range of ages, with a higher concentration of participants in their 40s and 50s. **Disease Status by Gender:**

We created a bar chart to visualize the distribution of disease status by gender.

The chart provides insights into how disease status varies between male and female participants.

Systolic Blood Pressure by Smoking Status:

We created a box plot to visualize the distribution of systolic blood pressure based on smoking status.

This analysis shows whether there are differences in systolic blood pressure between smokers and non-smokers.

Age by Disease Status:

We created a box plot to visualize the distribution of age based on disease status.

This analysis helps understand how age relates to disease status in the study population.

Smoking Status by Disease Status:

We created a bar chart to visualize the distribution of smoking status by disease status.

It shows the proportion of smokers and non-smokers among individuals with different disease statuses.

Correlation Analysis:

We performed a correlation analysis to explore relationships between numerical variables. The heatmap visually represents the correlations between variables such as age, height, weight, blood pressure, and cholesterol. **Pie Charts:**

We created pie charts to visualize the distribution of smoking status and causes of death. These charts provide a quick overview of the proportions within these categories. **3D Pie Charts:**

We created 3D pie charts, including an exploding slice for the "Cancer" category in the cause of death data.

These charts add a visual element to the distribution of causes of death, emphasizing specific categories.

Cholesterol Levels by Smoking Status:

We created a bar chart to explore how cholesterol levels vary with smoking status. This chart can help identify differences in cholesterol levels between smokers and nonsmokers. **Bubble Chart:**

We created a bubble chart to visualize relationships between age, cholesterol levels, and weight. It can be used to identify patterns or clusters within these three variables. **Descriptive Statistics:**

We calculated mean, variance, and standard deviation for selected numerical variables. This provides a summary of the central tendency and variability of key variables. **Frequency Analysis:**

We conducted frequency analyses for categorical variables like sex, smoking status, and causes of death.

These analyses give insight into the distribution of categorical variables. **Chi-Square Test:**

We performed a chi-square test to explore the relationship between sex and smoking status. This test assesses whether there's a significant association between the two variables. **Two-Sample T-Test:**

We conducted a two-sample t-test to compare the means of age between genders. It helps determine whether there's a statistically significant difference in age between males and females.

One-Way ANOVA:

We performed a one-way ANOVA to examine the effect of smoking status on cholesterol levels. It tests whether there are statistically significant differences in cholesterol levels among different smoking groups.

In conclusion, our analysis of the Heart Study data in SAS provides valuable insights into various aspects of the dataset including demographics health measures, and relationships

various aspects of the dataset, including demographics, health measures, and relationships between variables. The specific findings and conclusions will depend on the results generated by each analysis, and further interpretation may be necessary for a comprehensive understanding of the data.
