### **Project Report**

On

### **Regression of Used Car Prices**

Submitted in partial fulfilment of the requirements for the award of

#### **BACHELOR OF TECHNOLOGY**

in

### **COMPUTER SCIENCE & ENGINEERING**

(Artificial Intelligence & Machine Learning)

by

**Ms. G NIKHITA (22WH1A6601)** 

**Ms. G REVATHI (22WH1A6606)** 

Ms. R GEETIKA SRI (22WH1A6654)

Ms. B SRI VAISHNAVI (22WH1A6662)

Under the esteemed guidance of Ms. A Naga Kalyani
Assistant Professor, CSE(AI&ML)



Department of Computer Science & Engineering
(Artificial Intelligence & Machine Learning)

#### **BVRIT HYDERABAD COLLEGE OF ENGINEERING FOR WOMEN**

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with A Grade

Bachupally, Hyderabad – 500090

2023-24

# Department of Computer Science & Engineering (Artificial Intelligence & Machine Learning)

### BVRIT HYDERABAD COLLEGE OF ENGINEERING FOR WOMEN

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with A Grade
Bachupally, Hyderabad – 500090
2023-24



### **CERTIFICATE**

This is to certify that the major project entitled "Regression Of Used Car Prices" is a bonafide work carried out by Ms. G. Nikhita (22WH1A6601), Ms. G. Revathi (22WH1A6606), Ms. R. Geetika Sri (22WH1A6654), Ms. B. Sri Vaishnavi (22WH1A6662) in partial fulfilment for the award of B. Tech degree in Computer Science & Engineering (AI&ML), BVRIT HYDERABAD College of Engineering for Women, Bachupally, Hyderabad, affiliated to Jawaharlal Nehru Technological University Hyderabad, Hyderabad under my guidance and supervision. The results embodied in the project work have not been submitted to any other University or Institute for the award of any degree or diploma.

Supervisor

Ms. A Naga Kalyani Assistant Professor Dept of CSE(AI&ML) Head of the Department
Dr. B. Lakshmi Praveena
HOD & Professor
Dept of CSE(AI&ML)

**External Examiner** 

### **DECLARATION**

We hereby declare that the work presented in this project entitled "Regression Of Used Car Prices" submitted towards completion of Project work in III Year of B.Tech of CSE(AI&ML) at BVRIT HYDERABAD College of Engineering for Women, Hyderabad is an authentic record of our original work carried out under the guidance of Ms. A Naga Kalyani, Assistant Professor, Department of CSE(AI&ML).

Sign with Date:

G. Nikhita

(22WH1A6601)

Sign with Date:

G. Revathi

(22WH1A6606)

Sign with Date:

R. Geetika Sri

(22WH1A6654)

Sign with Date:

B. Sri Vaishnavi

(22WH1A6662)

### **ACKNOWLEDGEMENT**

We would like to express our sincere thanks to **Dr. K. V. N. Sunitha**, **Principal**, **BVRIT HYDERABAD College of Engineering for Women**, for her support by providing the working facilities in the college.

Our sincere thanks and gratitude to Dr. B. Lakshmi Praveena, Head of the Department, Department of CSE(AI&ML), BVRIT HYDERABAD College of Engineering for Women, for all timely support and valuable suggestions during the period of our project.

We are extremely thankful to our Internal Guide, Ms. A Naga Kalyani, Assistant Professor, CSE(AI&ML), BVRIT HYDERABAD College of Engineering for Women, for her constant guidance and encouragement throughout the project.

Finally, we would like to thank our Major Project Coordinator, all Faculty and Staff of CSE(AI&ML) department who helped us directly or indirectly. Last but not least, we wish to acknowledge our **Parents** and **Friends** for giving moral strength and constant encouragement.

- **G. Nikhita (22WH1A6601)**
- **G. Revathi (22WH1A6606)**
- **R.** Geetika Sri (22WH1A6654)
- B. Sri Vaishnavi (22WH1A6662)

#### **ABSTRACT**

This project aims to develop a predictive model for estimating used car prices through exploratory data analysis (EDA) on a dataset containing detailed information about vehicles and their associated features. The dataset includes attributes such as make, model, year of manufacture, mileage, fuel type, engine size, and additional features influencing car prices. A thorough analysis of the data is performed using visualizations, statistical summaries, and pattern recognition to identify key factors driving vehicle valuation. The project employs techniques such as data cleaning, handling missing values, feature engineering, and scaling to prepare the dataset for accurate predictive modelling. Machine learning algorithms, including linear regression, random forests, and gradient boosting methods, are applied to predict car prices effectively. The outcomes of this project aim to provide insights into market dynamics, assist buyers and sellers in making informed decisions, and enhance understanding of factors affecting used car pricing.

### PROBLEM STATEMENT

To develop a highly accurate and reliable regression model for predicting the price of used cars, leveraging advanced machine learning techniques to analyze a diverse range of vehicle features and historical data. This model will examine key attributes such as the make, model, year of manufacture, mileage, fuel type, engine capacity, overall condition, and market trends to uncover complex patterns and relationships that influence resale value. By integrating these insights, the model will provide a robust and intelligent pricing solution, catering to both buyers and sellers in the used car market. Buyers can utilize this tool to make well-informed purchasing decisions based on fair market evaluations, while sellers can set competitive prices that reflect the true value of their vehicles. This approach aims to bring greater transparency, accuracy, and efficiency to the used car market, addressing the challenges of price disparities and subjective assessments while fostering trust and confidence among stakeholders.

### **DATASET**

| car_ID | symboling | CarName    | fueltype | aspiration | doornuml | carbody    | drivewhe | engineloc | wheelbase | carlength | carwidth | carheight | curbweigh | enginety |
|--------|-----------|------------|----------|------------|----------|------------|----------|-----------|-----------|-----------|----------|-----------|-----------|----------|
| 1      | 3         | alfa-rome  | gas      | std        | two      | convertibl | rwd      | front     | 88.6      | 168.8     | 64.1     | 48.8      | 2548      | dohc     |
| 2      | . 3       | alfa-rome  | gas      | std        | two      | convertibl | rwd      | front     | 88.6      | 168.8     | 64.1     | 48.8      | 2548      | dohc     |
| 3      | 1         | alfa-rome  | gas      | std        | two      | hatchback  | rwd      | front     | 94.5      | 171.2     | 65.5     | 52.4      | 2823      | ohcv     |
| 4      | 2         | audi 100 l | gas      | std        | four     | sedan      | fwd      | front     | 99.8      | 176.6     | 66.2     | 54.3      | 2337      | ohc      |
| 5      | 2         | audi 100ls | gas      | std        | four     | sedan      | 4wd      | front     | 99.4      | 176.6     | 66.4     | 54.3      | 2824      | ohc      |
| 6      | 2         | audi fox   | gas      | std        | two      | sedan      | fwd      | front     | 99.8      | 177.3     | 66.3     | 53.1      | 2507      | ohc      |
| 7      | 1         | audi 100ls | gas      | std        | four     | sedan      | fwd      | front     | 105.8     | 192.7     | 71.4     | 55.7      | 2844      | ohc      |
| 8      | 1         | audi 5000  | gas      | std        | four     | wagon      | fwd      | front     | 105.8     | 192.7     | 71.4     | 55.7      | 2954      | ohc      |
| 9      | 1         | audi 4000  | gas      | turbo      | four     | sedan      | fwd      | front     | 105.8     | 192.7     | 71.4     | 55.9      | 3086      | ohc      |
| 10     | 0         | audi 5000  | gas      | turbo      | two      | hatchback  | 4wd      | front     | 99.5      | 178.2     | 67.9     | 52        | 3053      | ohc      |
| 11     | . 2       | bmw 320i   | gas      | std        | two      | sedan      | rwd      | front     | 101.2     | 176.8     | 64.8     | 54.3      | 2395      | ohc      |
| 12     | . 0       | bmw 320i   | gas      | std        | four     | sedan      | rwd      | front     | 101.2     | 176.8     | 64.8     | 54.3      | 2395      | ohc      |
| 13     | 0         | bmw x1     | gas      | std        | two      | sedan      | rwd      | front     | 101.2     | 176.8     | 64.8     | 54.3      | 2710      | ohc      |
| 14     | 0         | bmw x3     | gas      | std        | four     | sedan      | rwd      | front     | 101.2     | 176.8     | 64.8     | 54.3      | 2765      | ohc      |
| 15     | 1         | bmw z4     | gas      | std        | four     | sedan      | rwd      | front     | 103.5     | 189       | 66.9     | 55.7      | 3055      | ohc      |
| 16     | 0         | bmw x4     | gas      | std        | four     | sedan      | rwd      | front     | 103.5     | 189       | 66.9     | 55.7      | 3230      | ohc      |
| 17     | 0         | bmw x5     | gas      | std        | two      | sedan      | rwd      | front     | 103.5     | 193.8     | 67.9     | 53.7      | 3380      | ohc      |
| 18     | 0         | bmw x3     | gas      | std        | four     | sedan      | rwd      | front     | 110       | 197       | 70.9     | 56.3      | 3505      | ohc      |
| 19     | 2         | chevrolet  | gas      | std        | two      | hatchback  | fwd      | front     | 88.4      | 141.1     | 60.3     | 53.2      | 1488      | I        |
| 20     | 1         | chevrolet  | gas      | std        | two      | hatchback  | fwd      | front     | 94.5      | 155.9     | 63.6     | 52        | 1874      | ohc      |

**DataSet Link: DataSet** 

### Code

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model\_selection import train\_test\_split
from sklearn.linear\_model import LinearRegression
from sklearn.metrics import mean\_squared\_error,r2\_score
import warnings
warnings.filterwarnings('ignore')

### Code

 $df = pd.read\_csv('/CarPrice\_Assignment.csv')$ 

### Code

df.isnull().sum()



dtype: int64

# Code

df.duplicated().sum()

# Output

0

# Code

df.dtypes

# Output

| car_ID         | int64   |
|----------------|---------|
| symboling      | int64   |
| CarName        | object  |
| fueltype       | object  |
| aspiration     | object  |
| doornumber     | object  |
| carbody        | object  |
| drivewheel     | object  |
| enginelocation | object  |
| wheelbase      | float64 |
| carlength      | float64 |
| carwidth       | float64 |
| carbeight      | floot64 |

dtype: object

df.nunique()

# Output

| car_ID         | 205 |
|----------------|-----|
| symboling      | 6   |
| CarName        | 147 |
| fueltype       | 2   |
| aspiration     | 2   |
| doornumber     | 2   |
| carbody        | 5   |
| drivewheel     | 3   |
| enginelocation | 2   |
| wheelbase      | 53  |
| carlength      | 75  |
| carwidth       | 44  |

dtype: int64

# Code

df.describe()

|       | car_ID     | symboling  | wheelbase  | carlength  | carwidth   | carheight  | curbweight  | enginesize |
|-------|------------|------------|------------|------------|------------|------------|-------------|------------|
| count | 205.000000 | 205.000000 | 205.000000 | 205.000000 | 205.000000 | 205.000000 | 205.000000  | 205.000000 |
| mean  | 103.000000 | 0.834146   | 98.756585  | 174.049268 | 65.907805  | 53.724878  | 2555.565854 | 126.907317 |
| std   | 59.322565  | 1.245307   | 6.021776   | 12.337289  | 2.145204   | 2.443522   | 520.680204  | 41.642693  |
| min   | 1.000000   | -2.000000  | 86.600000  | 141.100000 | 60.300000  | 47.800000  | 1488.000000 | 61.000000  |
| 25%   | 52.000000  | 0.000000   | 94.500000  | 166.300000 | 64.100000  | 52.000000  | 2145.000000 | 97.000000  |
| 50%   | 103.000000 | 1.000000   | 97.000000  | 173.200000 | 65.500000  | 54.100000  | 2414.000000 | 120.000000 |
| 75%   | 154.000000 | 2.000000   | 102.400000 | 183.100000 | 66.900000  | 55.500000  | 2935.000000 | 141.000000 |
| max   | 205.000000 | 3.000000   | 120.900000 | 208.100000 | 72.300000  | 59.800000  | 4066.000000 | 326.000000 |

```
categorical_columns =
['fueltype','aspiration','doornumber','carbody','drivewheel','enginelocation','enginet
ype',
    'cylindernumber',
    'fuelsystem'
]
for col in categorical_columns:
    print(f''Category in {col} is : {df[col].unique()}")
```

### Output

```
Category in fueltype is : ['gas' 'diesel']
Category in aspiration is : ['std' 'turbo']
Category in doornumber is : ['two' 'four']
Category in carbody is : ['convertible' 'hatchback' 'sedan' 'wagon' 'hardtop']
Category in drivewheel is : ['rwd' 'fwd' '4wd']
Category in enginelocation is : ['front' 'rear']
Category in enginetype is : ['dohc' 'ohcv' 'ohc' 'l' 'rotor' 'ohcf' 'dohcv']
Category in cylindernumber is : ['four' 'six' 'five' 'three' 'twelve' 'two' 'eight']
Category in fuelsystem is : ['mpfi' '2bbl' 'mfi' '1bbl' 'spfi' '4bbl' 'idi' 'spdi']
```

### Code



# Code

plt.figure(figsize=(8, 6))
sns.histplot(data=df['price'], bins=20, kde=True)
plt.title('Distribution of Price')
plt.show()





```
n = 20
top_car_models = df['CarName'].value_counts().head(n)
plt.figure(figsize=(10, 6))
sns.barplot(x=top_car_models.values, y=top_car_models.index)
plt.title(f'Top {n} Car Models by Frequency')
plt.xlabel('Frequency')
plt.ylabel('Car Model')
plt.tight_layout()
plt.show()
```

### **Output**



### Code

```
avg_prices_by_car =
df.groupby('CarName')['price'].mean().sort_values(ascending=False)
top_car_models = avg_prices_by_car.head(n)
plt.figure(figsize=(10, 6))
sns.barplot(x=top_car_models.values, y=top_car_models.index)
plt.title(f'Top {n} Car Models by Average Price')
```

```
plt.xlabel('Average Praice')
plt.ylabel('Car Model')
plt.tight_layout()
plt.show()
```



### Code

```
plt.figure(figsize=(12, 8))
for feature in categorical_columns:
    plt.subplot(3, 3, categorical_columns.index(feature) + 1)
    sns.boxplot(data=df, x=feature, y='price')
    plt.title(f'{feature} vs. Price')
plt.tight_layout()
plt.show()
```



### Code

correlation\_matrix = df[numerical\_features].corr()
plt.figure(figsize=(10, 8))
sns.heatmap(correlation\_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()



```
Code
```

```
df['brand'] = df['CarName'].apply(lambda x: x.split(' ')[0])
df['model'] = df['CarName'].apply(lambda x: ''.join(x.split('')[1:]))
categorical columns = ['fueltype', 'aspiration', 'doornumber', 'carbody',
'drivewheel'.
              'enginelocation', 'enginetype', 'cylindernumber', 'fuelsystem',
'brand', 'model']
numerical columns = ['wheelbase', 'carlength', 'carwidth', 'carheight', 'curbweight',
             'enginesize', 'boreratio', 'stroke', 'compressionratio', 'horsepower',
             'peakrpm', 'citympg', 'highwaympg']
label encoder = LabelEncoder()
for column in categorical columns:
  df[column] = label encoder.fit transform(df[column])
df['power to weight ratio'] = df['horsepower'] / df['curbweight']
for column in numerical columns:
  df[f'\{column\} \ squared'] = df[column] ** 2
df['log\ enginesize'] = np.log(df['enginesize'] + 1)
scaler = StandardScaler()
df[numerical columns] = scaler.fit transform(df[numerical columns])
Code
X = df.drop(['price', 'CarName'], axis=1)
y = df['price']
X train, X test, y train, y test = train test split(X, y, test size=0.2,
random state=42)
model = LinearRegression()
model.fit(X train, y train)
y pred = model.predict(X test)
```

```
mse = mean_squared_error(y_test, y_pred)
r2_square = r2_score(y_test,y_pred)
print(f" R-squared: {r2_square}")
print(f'Mean Squared Error: {mse}')
```

# Output

R-squared: 0.8615670883413198

Mean Squared Error: 10928450.668414652

### Code

pred\_df=pd.DataFrame({'Actual Value':y\_test,'Predicted
Value':y\_pred,'Difference':y\_test-y\_pred})
pred\_df

### **Output**

|     | Actual Value | Predicted Value | Difference   |
|-----|--------------|-----------------|--------------|
| 15  | 30760.000    | 24644.498946    | 6115.501054  |
| 9   | 17859.167    | 19770.234284    | -1911.067284 |
| 100 | 9549.000     | 8323.732428     | 1225.267572  |
| 132 | 11850.000    | 13885.801565    | -2035.801565 |
| 68  | 28248.000    | 26718.615839    | 1529.384161  |
| 95  | 7799.000     | 7079.308256     | 719.691744   |
| 159 | 7788.000     | 10106.850946    | -2318.850946 |
| 162 | 9258.000     | 6570.571035     | 2687.428965  |
| 147 | 10198.000    | 10418.264330    | -220.264330  |
| 182 | 7775.000     | 10904.998472    | -3129.998472 |
| 191 | 13295.000    | 13284.208305    | 10.791695    |
| 164 | 8238.000     | 6407.502162     | 1830.497838  |
| 65  | 18280.000    | 17635.683226    | 644.316774   |
| 175 | 9988.000     | 10737.804545    | -749.804545  |
| 73  | 40960.000    | 43281.426089    | -2321.426089 |

GitHub Repository: GitHub

