Reconstitution
3D à partir
de photographies:
Détection de
contour

Espace LAE

Filtrage fréquentie Texture

Filtrage spatial : Bordures

Lissage paraboliqu

Sommation des réponses

Seuillag

Opérations topologiques

Approximation polygonale

Reconstitution 3D à partir de photographies : Détection de contour

Extraction de la silhouette

Intersection des silhouettes

images/silhouettes.jpg

Choix des Types

Espace LAI

Filtrage fréquentie Texture

Filtrage spatial : Bordures

Lissage parabolique

Sommation des réponses

Seuillag

Opérations topologique

Approximatio polygonale

Type: Flottant-4octet, Complex-8octet

- Plus rapide : processeur à opérations flottantes
- ullet Pas de dépassement : exposant sur 8-bits \longrightarrow max $=10^{256}$

Structure:

Tableaux numpy à 5 dimensions :

		1 7			
1	L	2	3	4	5
d.	X	dy	Х	У	i
in	index voisinage		index image		composantes

Complexité

Temporelle

En théorie :

• Opérations vectorielles : GPU. \longrightarrow noté u(n)

Autres : CPU.

En pratique :

Opérations vectorielles : numpy, boucles en C.

• Autres : python

Objectif: Vectoriser au maximum les opérations.

Spatiale

Vectorisation \longrightarrow Complexité spatiale très grande : $\theta(t^2 \cdot n^2) \approx (8 \text{octet} \cdot 1000 \cdot 1 \text{Mpix} = 10 \text{Gib})$

Coût de copie : Relativement élevé $\approx \nu(n^2)$

Manipulation bas niveau du hardware (registres vectorielle du GPU) \longrightarrow rapide

Espace LAE

Filtrage fréquentie Texture

Filtrage spatial : Bordures

Lissage parabolique

> ommation es réponses

Opérations topologiques

Approximation polygonale

Procédé Général

Espace LAE

2 Filtrage fréquentiel : Texture

fréquentie Texture

3 Filtrage spatial : Bordures

Bordures Lissage

4 Lissage parabolique

1 Espace LAB

Sommation des répons 5 Sommation des réponses

Seuillage

6 Seuillage

Operations topologique

Opérations topologiques

Approximatio polygonale

8 Approximation polygonale

Espace LAB

Filtrage fréquentie Texture

Filtrage spatial : Bordures

Lissage parabolique

Sommation des réponses

Seuilla

Opérations topologique

Approximation polygonale

Espace LAB

$$L = \frac{R + G + B}{3}$$

$$A = \frac{G - R + 255}{2}$$

$$B = \frac{G - B + 255}{2}$$

Complexité : $\theta(\nu(n^2))$

Reconstitution
3D à partir
de photographies:
Détection de

Espace LAE

Filtrage fréquentiel : Texture

Filtrage spatial : Bordure

Lissage

Sommatio

c 111

Opérations topologique

Approximatio polygonale

1^{er} Filtrage - Domaine fréquentiel - Texture

<u>Convolution</u> par un **filtre gaussien** ←→ <u>Multiplication</u> dans le domaine fréquentielle.

Sous-image - Transformée - Filtre - Réponse

Sommation de tous les pixels → valeur de texture.

Complexité spatiale : $\theta(t^2 \cdot n^2)$

Reconstitution 3D à partir de photographies : Détection de contour

Espace LA

Filtrage fréquentiel : Texture

spatial : Bordures Lissage

Sommation

des réponse

Opérations topologique

Approximation polygonale

1er Filtrage - Domaine fréquentiel - Texture

Transformée de Fourier

Définition :

• Continue : $F(f)(s) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-2i\pi sx} \cdot f(x) dx$

• Discrete : $FD(u)(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{n=N-1} e^{-2i\pi \frac{kn}{N}} \cdot un$

Propriété de convolution : $u \star v = DF^{-1}(DF(u) \cdot DF(v))$ (Au facteur près)

Complexité temporelle

• Sur un vecteur : $\theta(n \cdot \nu(n))$

• Sur une image : $\theta(n\nu(n^2))$

Complexité spatiale : En place

Transformée de Fourier rapide : Diviser pour régner

- Sur un vecteur : $\theta(\log_2(n)\nu(n))$
- Sur une image : $\theta(\log_2(n)\nu(n^2))$

Reconstitution
3D à partir
de photographies:
Détection de

1^{er} Filtrage - Domaine fréquentiel - Texture Exemples

Espace LAB

Filtrage fréquentiel : Texture

Filtrage spatial

Lissage

Sommation des réponse

Seuillage

Opérations topologique

Approximatio

Reconstitution
3D à partir
de photographies:
Détection de

Espace I AR

Filtrage fréquentiel : Texture

Filtrage spatial:

Lissage

Sommation des répons

Seuillage

Opérations topologique

Approximatio

1^{er} Filtrage - Domaine fréquentiel - Texture

taille : 16, θ : $\frac{\pi}{2}$, σ : 4

2ème Filtrage - Domaine spatial - Bordures

Espace LAB

Filtrage fréquentie Texture

Filtrage spatial : Bordures

Lissage parabolique

Sommation des réponses

Seuillag

Opérations topologiques

Approximation polygonale Pour chaque pixel : somme pondérée des pixels du voisinage.

Exemple: gradient simple

35	42	27	1	1	1
11	12	14	$\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$	0	0
0	7	4	-1	-1	-1

35	42	27
0	0	0
0	-7	-4

 \longrightarrow 93

Complexité:

• Spatiale : En place

• Temporelle : $\theta(t^2\nu(n^2))$

Espace LAE

Filtrage fréquentie Texture

Filtrage spatial : Bordures

Lissage parabolique

Sommation

Seuillag

Opérations topologique

Approximation polygonale

2^{ème} Filtrage - Domaine spatial - Bordures Filtre de Canny

Filtre optimal pour les arêtes en "pas"

Dérivée d'une gaussienne :

$$h(x) = x \cdot e^{-\frac{x^2}{\sigma^2}}$$

Reconstitution
3D à partir
de photographies:
Détection de

Espace I A P

Filtrage fréquentie

Filtrage spatial: Bordures

Lissage

Sommation

Seuillas

Opérations topologique

Approximatio

2^{ème} Filtrage - Domaine spatial - Bordures Résultats

 $\theta: \frac{pi}{2}, \sigma: 1$

Lissage parabolique

Approximation parabolique du voisinage :

$$ax^2 + bx + c = 0$$

Fonction lissée :

$$\frac{c}{\text{distance au max local}} = \frac{c^+}{\left(\frac{|b|}{2a^+}\right)}$$

Lissage parabolique

des réponse

Opérations topologiques

Approximation polygonale

Procédé:

	Opération	complexité
1	Génération du voisinage	selon hardware
2	Projection des coordonées	$\theta(\nu(t^2))$
3	Etablissement du system	$\theta(t^2\nu(n^2))$
4	Pivot de gauss	$\theta(t^2\nu(n^2))$
5	Calcul de la fonction lissée	$\theta(\nu(n^2))$
	Total	$\theta(\nu(n^2))$

Reconstitution
3D à partir
de photographies:
Détection de
contour

Lissage parabolique Résultats

Espace LAE

Filtrage fréquentiel Texture

Filtrage spatial:

Lissage parabolique

Sommation

Seuillage

Opérations topologiques

Approximation

Sommation des réponses Procédé

Espace LAI

Filtrage fréquentie Texture

Filtrage spatial : Bordures

Lissage parabolique

Sommation des réponses

Seuillag

Opérations topologiques

Approximatio polygonale

30 composantes :

- 3 couleurs + 3 couleurs * 4 directions = 15 composantes avant filtrage
- pour chaque composante, filtrage par deux filtres de Canny d'écart type 1 et 2 = 30 composantes

Choix des coefficients de sommation ? Approche optimale : apprentissage supervisé

Approche optimale : apprentissage supervise

lci : choix empirique

Résultats

Espace LAE

Filtrage fréquentie Texture

Filtrage spatial: Bordure

Lissage paraboliqu

Sommation des réponses

Seuillage

Opérations topologiques

Approximation polygonale

Seuillage

(1)

Seuillage

Conversion en image binaire par seuillage :

$$\begin{cases} 1 & \text{si } l > 0 \\ 0 & \text{sinon} \end{cases}$$

Reconstitution 3D à partir de photographies : Détection de contour

Espace LAF

Filtrage fréquentie Texture

Filtrage spatial : Bordures

Lissage paraboliqu

Sommation des réponses

Opérations topologiques

Approximation polygonale

Opérations binaires - Topologie Définitions

Même procédé de filtrage mais sur des images binaires

Erosion Dilatation Fermeture

0	1	0		
1	1	1		
0	1	0		
0	0	0	0	0
0	1	0	1	0
0	1	1	1	0
1	1	1	1	1
1	1	1	1	1
0	0	0	0	0
0	0	1	1	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	1

		_	1	
0	0	0		
1	1	1		
0	0	0		
0	0	0	0	0
0	1	1	1	0
0	0	0	0	1
1	1	1	1	1
1	1	1	1	1
0	0	0	0	0
0	0	0	0	0
1	1	0	0	0
0	0	0	0	0
^	^	_	^	\sim

Dilatation + Erosion

Reconstitution 3D à partir de photographies : Détection de contour

Opérations binaires - Topologie Résultats

Espace LAE

 $\begin{array}{c|cccc}
0 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}$

Erosion par:

Filtrage fréquentie Texture

Fermeture par :

spatial : Bordures

Lissage parabolique

Opérations

topologiques

Approximation polygonale

Auguel on

Auquel on applique des rotations dans 8 directions différentes

Filtrage fréquentie Texture

spatial: Bordures

parabolique Sommation

des réponses

Opérations topologique

Approximation polygonale

Approximation polygonale

Parcours du contour

Parcours dans le sens trigonométrique

Départ du pixel le plus en haut

Direction initiale : Bas

Priorités de déplacement : Gauche - Bas - Droite - Haut

Approximation polygonale Approximation polygonale

Espace LAI

Filtrage fréquentie Texture

Filtrage spatial : Bordures

Lissage parabolique

Sommation des réponses

Seuillag

Opérations topologique

Approximation polygonale

Initialisation : Point le plus haut - Point le plus bas Sur chaque segment, successivement :

- Calcul de D distance max du contour au segment
- Si D > seuil, on ajoute le point le plus éloigné
- ullet Lorsque pour tout segment $D < \mathrm{seuil}$, on sort de la boucle

Conclusion

Espace LAI

Filtrage fréquentie Texture

Filtrage spatial : Bordure

Lissage parabolique

Sommation des réponses

Seuilla

Opérations topologiques

Approximation polygonale

Précision : moyenne Temps : moyen $\approx 45s$

Reconstitution 3D à partir de photographies : Détection de contour

Espace LAB

Filtrage fréquentie Texture

Filtrage spatial : Bordures

Lissage parabolique

Sommation des réponses

Opérations topologiques

Approximation polygonale

Annexe - Transformée de Fourier rapide |

Notation :

•
$$N = 2p$$

•
$$n = n_1 + pn_2$$
 $n_1 \in (0, p-1)$ $n_2 \in 0, 1$

•
$$k = 2k_1 + k_2$$
 $k_1 \in (0, p-1)$ $k_2 \in [0, 1]$

•
$$a = e^{-\frac{2i\pi}{N}}$$

Alors:

$$F(u)(k) = \sum_{n=0}^{N-1} u(n) \cdot a^{kn}$$
 (2)

$$F(u)(2k_1+k_2) = \sum_{n_1=0}^{1} \sum_{n_2=0}^{p-1} u(n_1+pn_2) \cdot a^{k\cdot(n_1+pn_2)}$$
 (3)

$$= \sum_{n_1=0}^{1} \sum_{n_2=0}^{p-1} u(n_1 + pn_2) \cdot a^{kn_1} \cdot a^{kpn_2}$$
 (4)

Annexe - Transformée de Fourier rapide II

Espace LA

Filtrage fréquenti Texture

Filtrage spatial : Bordures

Lissage parabolique

Sommation des réponses

Seuillag

Opérations topologiques

Approximation polygonale

De plus : $a^{kpn_2} = a^{2p \cdot k_1 n_2} \cdot a^{k_2 n_1 p} = a^{k_2 n_1 p}$

Ainsi :
$$F(u)(2k_1 + k_2) = \sum_{n_1=0}^{1} a^{kn_1} \cdot \sum_{n_2=0}^{p-1} u(n_1 + pn_2) \cdot a^{k_2 n_1 p}$$

Posons:
$$v(n_1, k_2) = \sum_{n_2=0}^{p-1} u(n_1 + pn_2) \cdot a^{k_2 n_1 p}$$

Finalement : $F(u)(2k_1 + k_2) = v(0, k_2) + a^k \cdot v(1, k_2)$ Le calcul de v est celui d'une transformée de Fourier discrète.

On applique récursivement la décomposition