UIT 2305 UNIT III Information Theory

Session Objectives

- To introduce the basic concepts of Information theory
 - Information measure

Session Outcomes

At the end of the session, students will be able to understand

The concepts of Information measure

Outline

- Information measure
- Units of Information
- Properties of Information

Information Measure

- If the probability of occurrence of an event is more, there is a very less amount of information;
- otherwise, if the probability of occurrence of an event is less, then there will be more amount of information.

Example:

- if a dog bites a man, the probability of occurrence is more, so very less information, otherwise,
- if a man bites a dog, the probability of occurrence is very less, hence more information.

Information Measure

This relationship is expressed as,

$$I(x_j) = f\left[\frac{1}{p(x_j)}\right] \qquad \cdots (1)$$

where,

 x_j – event

 $P(x_j)$ – Probability of an event

 $I(x_j)$ – Amount of information due to the occurrence of an event x_i

Information Measure

Therefore, the amount of information I_{x_j} is related to the logarithm on the inverse of the **probability of occurrence** of an event $P(x_j)$.

$$I_{x_j} = \log \frac{1}{p(x_j)} \tag{2}$$

(i..e)
$$I_k = \log \frac{1}{p_k}$$
 (if $x_j = k$) ... (3)

Units of Information

Different units of information can be defined for different bases of logarithms are,

- (i) base '2' the unit is bit,
- (ii) base 'e' the unit is nat, and
- (iii) base '10' the unit is decit

Properties of Information

The following are the properties of information,

- (i) $I(x_j) = 0$ for $p(x_j) = 1$ $I(x_j) = \infty$ for $p(x_j) = 0$ This means *no information* gained
- (ii) Non negative quantity i.e., $I(x_j) \ge 0$ for $0 \le p(x_j) \le 1$ This means no loss of information.
- (iii) $I(x_j) > I(y_k)$ for $p(x_j) < p(y_k)$ This means more information gain.
- (iv) $I(x_j, y_k) = I(x_j) + I(y_k)$ if x_j and y_k are statistically independent.

Summary

- Discussed the basic concepts such as
 - Information measure
 - Properties of Information

Test Your Understanding

• List the properties of information

References

• Thomas Cover, Joy Thomas, "Elements of Information Theory", Wiley Inderscience, 2nd Edition, 2006.

THANK YOU

