Homework #1

담당교수: 유지현 (컴퓨터정보공학부)

Notice:

- ✓ Solve the problems $1 \sim 9$. The problem must be solved by hand. (Use note or blank paper)
- ✓ Scan and upload your result to KLAS assignment before due date. No late submission is allowed.
- ✓ You should solve the problems yourself. All answers should be written in Korean except any terminologies. No English sentence is allowed.
- ✓ Deadline 23:59 on March 23rd, 2023 Thursday (UTC+9, Korean Standard Time)

1. How many different truth tables exist for Boolean functions of N variables? You should explain why.

- 2. Convert the following decimal numbers to 8-bit two's complement numbers or indicate that the number would overflow the range.
 - A. 38₁₀
 - B. -24₁₀
 - C. -67₁₀
 - D. 137₁₀
 - E. 127₁₀
- 3. Convert the following decimal numbers to 6-bit two's complement binary numbers and subtract them. Indicate whether the difference overflows a 6-bit result.

 (Note that you should perform subtraction in two's complement binary form, not in decimal form!)
 - A. $31_{10} 17_{10}$
 - B. $7_{10} 9_{10}$
 - C. $-32_{10} 24_{10}$
 - D. $12_{10} 21_{10}$

4. A majority gate produces a TRUE output if and only if more than half of its inputs are TRUE.

Complete a truth table and Boolean equation for the three-input majority gate of figure above.

Then, draw a schematic of majority gate using CMOS transistor logic. Use minimum number of transistors. Also, you should explain why your circuit works as majority gate.

A	В	С	Y

5. Is it possible to assign logic levels so that a device with the transfer characteristics shown in figure below would serve as an inverter? If so, what are the input and output low and high levels (V_{IL} , V_{OL} , V_{IH} , and V_{OH}) and noise margins (NM_L and NM_H)? If not, explain why not.

6. Write a truth table for the function performed by the gate in figure below. What is the name of this function?

A	В	Y

7. There are various kinds of logic levels. Figure below is examples of logic levels. (Figure from Texas instruments, Logic Guide 2017)

- A. Is it possible to connect 3.3-V LVTTL to 5-V CMOS as input? Explain it. (Assume all logics are 5V tolerant, which means you can connect up to 5V to all chips)
- B. Is it possible to connect 5-V TTL to 2.5-V CMOS as input? Explain it. (Assume all logics are 5V tolerant, which means you can connect up to 5V to all chips)
- C. Is it possible to connect 3.3-V LVTTL to 5-V TTL as input? Explain it. (Assume all logics are 5V tolerant, which means you can connect up to 5V to all chips)

8. Complete a truth table and draw a CMOS schematic of Boolean equations given below.

$$Y = A\bar{B}\bar{C} + \bar{A}B\bar{C} + \bar{A}\bar{B}C + ABC$$

A	В	C	Y

9. How many different equations exist for Boolean functions of N variables? Explain why.