I See, Therefore I Do: Estimating Causal Effects for Image Treatments

Abhinav Thorat, Ravi Kolla*, Niranjan Pedanekar Sony Research India

Introduction

Background

Under Rubin-Neyman potential outcomes framework, Individual Treatment Effect (ITE) is defined as:

$$\mathsf{ITE} = \mathrm{E}[\mathrm{Y}_1 - \mathrm{Y}_0 | \mathrm{X} = \mathrm{x}]$$

Research gap

Majority of the ITE estimation literature does not consider treatment information in the ITE estimation, and merely represents treatments in scalar form

Problem statement

This work addresses **ITE estimation for Image treatments** by **utilizing auxiliary treatment information** in the estimation under **multiple treatments** setting

Practical use

Thumbnail personalization in video streaming and e-commerce platforms etc.

Evolution of Causal Effect Estimation Algorithms

Assumptions

Unconfoundedness

Conditional on observed covariates, potential outcomes are independent of treatment assignment

$$(Y_1, Y_2, ... Y_k) \perp t \mid x.$$

Positivity

Each user has positive probability of receiving any available treatment

$$0 < P(t = a \mid x = x') < 1 \ \forall 1 \le a \le k.$$

SUTVA

Each user's observed outcome depends only on the treatment they received, independent of other users' assigned treatments.

Key contributions

Dataset simulation

- ❖ As there are no existing datasets, created new semi-synthetic datasets
- Image treatments are real, and covariates and potential outcomes are simulated

Neural Network Architecture

- Proposed NICE architecture with shared representation learning, MSE and MMD losses
- Capability of handling multiple treatments and zero shot (novel treatment) scenarios

Empirical evaluation

Demonstrated the superior performance of NICE against across various experimental setups

Theoretical guarantees

Derived an upper bound on the PEHE error metric for ITE estimation

Proposed Model

Joint Representation Learning **Treatment-Specific Outcome Heads** Learns low-dimensional For k possible treatments, NICE uses embeddings for both user k distinct neural network heads. Covariate Treatment Head covariates and image treatments each predicting the potential outcome Covariates Representations Layer(s) using separate fully connected for its corresponding image networks treatment. Φ $\mathcal{L}_1(Y_{t_{obs}}, \hat{Y}_{t_{obs}})$ Image Embedding via **Pre-trained Models** Π_k Uses pre-trained models (e.g., $\mathcal{L}_2(\Phi_{t=a}, \Phi_{t=b})$ ResNet, VGG) to extract semantic embeddings from treatment images, **Treatment** which are then refined by a learnable Generate Image Observed **Regularization Loss** network. **Embeddings**

Model Agnostic wrt Pretrained Model

Treatment

Counterfactual Estimation with Regularization

Combines **mean squared error (MSE)** for factual outcomes with Maximum Mean Discrepancy (MMD) to reduce treatment assignment bias across embeddings.

Loss Functions

The MSE loss ensures the model learns to accurately predict factual outcomes by minimizing the error between observed and predicted values.

Loss Function: $L = lpha \cdot L_1 + eta \cdot L_2$

Treatment Regularization Loss

 $L_2 = rac{1}{{k \choose 2}} \sum_{a=1}^k \sum_{b=1}^{a-1} ext{MMD}(\{\Phi; \Psi\}_{t=a}, \{\Phi; \Psi\}_{t=b}) \; ,$

The **MMD-based regularization loss** promotes balanced and unbiased representations across treatments, enabling reliable counterfactual estimation even under treatment assignment bias.

NICE achieves lower PEHE across all number of treatments settings

Setting

- ❖ No. of treatment (K) = {4, 8, 16}
- ♦ Moderate treatment assignment bias, κ
 =10 for all treatments

$$\epsilon_{\text{PEHE}} = \frac{1}{\binom{k}{2}} \sum_{a=1}^{k} \sum_{b=1}^{a-1} \left[\frac{1}{n} \sum_{i=1}^{n} (\hat{\tau}^{a,b}(x_i) - \tau^{a,b}(x_i))^2 \right]$$

NICE outperforms baselines in zero-shot scenarios

Setting

- No. of treatment (K) = {4, 8, 16}
- A treatment is called as zero-shot if its samples are not seen by a model during training
- Considered 1 zero-shot treatment
- Moderate treatment assignment bias, κ =10

$$\epsilon_{\text{PEHE}}^{\text{ZS}} = \frac{1}{k-1} \sum_{\substack{a=1\\a \neq z}}^{k} \left[\frac{1}{n} \sum_{i=1}^{n} \left(\hat{\tau}^{a,z}(x_i) - \tau^{a,z}(x_i) \right)^2 \right]$$

NICE performance under high treatment assignment bias scenario

Setting No. of treatment (K) = {4, 8, 16} ❖ Considered High treatment assignment bias scenario, ⋉ = 100 for a treatment and 10 for all other treatments

Theoretical Guarantees of NICE

Theorem. Let $\Phi: \mathcal{X} \to \mathbb{R}_X$ and $\Psi: \mathcal{I} \to \mathcal{R}_I$ are twice differentible and invertible functions. Let Π be a hypothesis function. Let \mathcal{G} denote a family of functions $g: \mathcal{R}_X \times (\mathcal{R}_I; \{0,1\})$. Assume the loss function L used to define $l_{\Pi,\Phi,\Psi}$ is the squared loss function. Further, assume that there exists a constant $D_{\Phi,\Psi} > 0$ s.t. the loss function $l(\cdot)$ satisfies the following: $\frac{1}{D_{\Phi,\Psi}} l_{\Pi,\Phi,\Psi} \left(\Phi^{-1}(r_x), \Psi^{-1}(r_{I_t}), t\right) \in \mathcal{G}$ for $t \in \{0,1\}$. Then, we have

$$\left(\epsilon_{\text{PEHE}}(\Pi, \Phi, \Psi) \leq \underbrace{\frac{2}{k} \sum_{a=1}^{k} \epsilon_F^{t=a}(\Pi, \Phi, \Psi)}_{\text{MSE loss}} + \underbrace{\frac{2}{\binom{k}{2}} \sum_{a=1}^{k} \sum_{b=1}^{a-1} (D_{\Phi, \Psi} \text{IPM}_{\mathcal{G}} \left(p_{\Phi}^{t=a}, p_{\Phi}^{t=b}\right) - 2 \min\{\sigma_{Y_a}^2, \sigma_{Y_b}^2\}).\right)$$

Provides an **upper bound** on the **PEHE** obtained by **NICE** as a function of **MSE loss** computed using **factual outcomes** and **average IPM loss** between all pairs of treatments

Conclusion

- Studied Individual Treatment Effect (ITE) estimation problem for Image treatments
- Proposed SOTA NICE framework that utilizes auxiliary treatment information to obtain improved causal effect estimates
- Demonstrated NICE's superior performance against baselines across various setups including zero-shot and high treatment assignment bias scenarios
- ❖ Derived **an upper bound** on the PEHE error metric for NICE algorithm

Thank you