Lógica Proposicional

Prof^a. Maely Moraes

Livro base: Souza, João Nunes, Lógica para Ciência da Computação, Editora Campus, 9ª tiragem.

Lógica Proposicional

Um sistema axiomático formal na Lógica Proposicional

Introdução O Sistema Axiomático P_{α}

- Definição 6.1 (sistema axiomático P_a) O sistema formal axiomático P_a da Lógica Proposicional é definido pela composição dos quatro elementos:
 - o alfabeto da Lógica Proposicional, na forma simplificada, Definição 5.4, sem o símbolo de verdade false;
 - o conjunto das fórmulas da Lógica Proposicional;
 - um subconjunto das fórmulas, que são denominadas axiomas;
 - um conjunto de regras de dedução.

Definição 6.2 (axiomas do sistema P_a) Os axiomas¹ do sistema P_a são fórmulas da Lógica Proposicional determinadas pelos esquemas indicados a seguir. Nesses esquemas E, G e H são fórmulas quaisquer da Lógica Proposicional.

- $Ax_1 = \neg(H \lor H) \lor H$,
- $Ax_2 = \neg H \lor (G \lor H)$,
- $Ax_3 = \neg(\neg H \lor G) \lor (\neg(E \lor H) \lor (G \lor E)).$

Definição 6.2 (axiomas do sistema P_a)

- $Ax_1 = (H \lor H) \rightarrow H$
- $Ax_2 = H \rightarrow (G \lor H),$
- $Ax_3 = (H \rightarrow G) \rightarrow ((E \lor H) \rightarrow (G \lor E)).$

Notação. No sistema P_a são consideradas as correspondências a seguir, que definem os conectivos \rightarrow , \leftrightarrow e \land .

 $H \rightarrow G$ denota (¬H \vee G). ($H \leftrightarrow G$) denota ($H \rightarrow G$) \wedge ($G \rightarrow H$). ($H \wedge G$) denota ¬(¬H \vee ¬G). Definição 6.3 (regra de inferência do sistema P_a, modus ponens)

Dadas as fórmulas H e G, a regra de inferência do sistema P, denominada modus ponens (MP), é definida pelo procedimento:

tendo $He(\neg H \lor G)$ deduza G.

 Notação. Para representar o esquema de regra de inferência modus ponens, a notação a seguir é considerada

$$MP = \frac{H, (H \to G)}{G}.$$

- Nessa notação, o "numerador" da equação é o antecedente.
- O "denominador" é o consequente.

Prova sintática em P_a

Definição 6.4 (prova sintática no sistema P_a)

Sejam:

H uma fórmula e

β um conjunto de fórmulas denominadas por hipóteses.

Uma prova sintática de H a partir de β, no sistema axiomático P_a, é uma seqüência de fórmulas

$$H_{1}, H_{2}, ..., H_{n}$$

onde temos:

• H = H_n.

Consequência lógica sintática em P_a

- Definição 6.4 (prova sintática no sistema P_a)
 - E para todo i tal que $1 \le i \le n$,
 - H_i é um axioma ou
 - H_i ∈ β ou
 - H. é deduzida de H. e H., utilizando a regra modus ponens, onde 1 ≤ j<i e 1 ≤ k < i. Isto é,

$$MP = \frac{H_j \ H_k}{H_i}$$

Observe que neste caso, necessariamente, $H_k = H_j \rightarrow H_j$.

• Exemplo 6.1 (prova no sistema P_a)

Considere o conjunto de hipóteses

$$\beta = \{G_1, ..., G_q\}$$
 tal que

- $G_1 = (P \land R) \rightarrow P$;
- $G_2 = Q \rightarrow P_A$;
- $G_3 = P_1 \rightarrow Q$;
- $G_4 = (P_1 \wedge P_2) \rightarrow Q$;
- $G_5 = (P_3 \land R) \rightarrow R$;
- $G_6 = P_A \rightarrow P$;
- $G_7^0 = P_1^4$;
- \bullet $G_8 = P_3 \rightarrow P$;
- $G_{q} = P_{2}$.

• Exemplo 6.1 (prova no sistema P₃)

A sequência de fórmulas $H_1,...,H_9$ é uma prova de (S \vee P) a partir de β no sistema axiomático P_3 .

- H₁ = G₇, ou seja: H₁ = P₁;
- $H_2 = G_3$, ou seja $H_1 = P_1$;
- H₃ = Q (resultado de MP em H₁ e H₂);
- $H_A = G_2$, ou seja: $H_A = Q \rightarrow P_A$;
- H₅ = P₄ (resultado de MP em H₃ e H₄);
- $H_6 = G_6$, ou seja: $H_6 = P_6 \rightarrow P$;
- H₇ = P (resultado de MP em H₅ e H₆);
- $H_{g} = A_{y2}$, ou seja: $H_{g} = P \rightarrow (S \lor P)$;
- $H_9 = (S \lor P)$ (resultado de MP em $H_7 e H_8$).

Definição 6.5 (conseqüência lógica sintática no sistema P_a)
 Dada uma fórmula H e um conjunto de hipóteses β,
 então
 H é uma conseqüência lógica sintática de β em P_a

existe uma prova de H a partir de β.

se

Definição 6.6 (teorema no sistema Pa)

Uma fórmula H é um teorema em Pa, se existe uma prova de H, em Pa, que utiliza apenas os axiomas.

Nesse caso, o conjunto de hipóteses é vazio.

Notação.

Dada uma fórmula H, se H é conseqüência lógica sintática de um conjunto de hipóteses β tal que $\beta = \{H1, H2, ..., Hn, ...\},$

então esse fato é indicado pela notação

β⊢ H ou {H1,H2,...,Hn,...} ⊢ H.

No caso em que H é um teorema, isto é, β é vazio,
 então utilizamos a notação H.

• Proposição 6.1

Sejam: β um conjunto de fórmulas, e A, B e C três fórmulas da Lógica Proposicional. Temos que

Se

$$\beta$$
 (A \rightarrow B β (C \forall A)},

então

$$\vdash$$
{ β (B \vee C)}.

Proposição 6.2

Temos que \sqsubseteq (P $\vee \neg P$).

• Proposição 6.3 (regra de substituição)

Sejam β um conjunto de fórmulas e H uma fórmula da Lógica Proposicional tais que $\beta \Vdash H$.

- Considere $\{P_1,...,P_n\}$ um conjunto de símbolos proposicionais que ocorrem em H, mas não ocorrem nas fórmulas de β .
- Seja G a fórmula obtida de H, substituindo os símbolos proposicionais P₁,...,P_n pelas fórmulas E₁,...,E_n, respectivamente.
- Então, temos que β⊢G.

- **Proposição 6.4** *Temos que* \vdash ($P \rightarrow \neg \neg P$).
- **Proposição 6.5** *Temos que* **□** (P → P).
- Proposição 6.6
 Temos que (A ∨ B) → (B ∨ A).
- Demonstração.

cqd

1.
$$\vdash (P \rightarrow P)$$

2. $\vdash (B \rightarrow B)$
3. $\vdash (B \rightarrow B) \rightarrow ((A \lor B) \rightarrow (B \lor A))$
4. $\vdash (A \lor B) \rightarrow (B \lor A)$

pr6.5pr6.3, 1.

 Ax_3

MP, 2., 3.

Proposição 6.7 (transitividade)

Se
$$\stackrel{\frown}{\models}$$
 $(A_1 \rightarrow A_2)$ e $\stackrel{\frown}{\models}$ $(A_2 \rightarrow A_3)$, então $\stackrel{\frown}{\models}$ $(A1 \rightarrow A3)$.

1.	$\beta \vdash (\neg A_1 \lor A_2)$	hip
2.	$\beta \vdash (A_2 \rightarrow A_3)$	hip
3.		pr6.1, 1., 2.
4.	$\beta \vdash (A_3 \lor \neg A_1) \to (\neg A_1 \lor A_3)$	pr6.6
5.	$\beta \vdash (\neg A_1 \lor A_3)$	MP, 3., 4.
4.5	$\beta \vdash (A_1 \rightarrow A_3)$	reescrita de 5.
111	GET TO THE PROPERTY OF THE PRO	

• Proposição 6.8

1.	$\beta \vdash (B \rightarrow C)$	hip
2.	$\beta \vdash (B \to C) \to ((A \lor B) \to (C \lor A))$	Ax_3
3.	$\beta \vdash (A \lor B) \to (C \lor A)$	MP, 1., 2.
4.	$\beta \vdash (A \rightarrow C)$	hip
5.	$\beta \vdash (A \rightarrow C) \rightarrow ((C \lor A) \rightarrow (C \lor C))$	Ax_3
6.	$\beta \vdash (C \lor A) \to (C \lor C)$	MP, 4., 5.
7.	$\beta \vdash (A \lor B) \to (C \lor C)$	pr6.7, 3., 6.
8.	$\beta \vdash (C \lor C) \to C$	Ax_1
9.	$\beta \vdash (A \lor B) \to C$	pr6.7, 7., 8.
cqc		

• **Proposição 6.9** Se

$$\beta = (A \rightarrow C) e \beta = (\neg A \rightarrow C)$$
, então $\hat{} = C$.

1.	$\beta \vdash (A \rightarrow C)$	hip
2.	$\beta \vdash (\neg A \rightarrow C)$	hip
3.	$\beta \vdash (A \lor \neg A) \to C$	pr6.8, 1., 2.
4.	$\beta \vdash (A \lor \neg A)$	pr6.2
5.	$\beta \vdash C$	MP, 3., 4.
G & G BOX		

• Proposição 6.10

Se
$$\beta = (A \rightarrow B)$$

então $\beta = (A \rightarrow (C \lor B)) e = (A \rightarrow (B \lor C)).$

1. $\beta \vdash (A \rightarrow B)$	hip
2. $\beta \vdash B \rightarrow (C \lor B)$	Ax_2
3. $\beta \vdash A \rightarrow (C \lor B)$	pr6.7, 1., 2.
4. $\beta \vdash (C \lor B) \rightarrow (B \lor C)$	pr6.3, pr6.6
5. $\beta \vdash A \rightarrow (B \lor C)$	pr6.7, 3., 4.
cqd	

Proposição 6.11 (associatividade)

Temos que $((A \lor B) \lor C) \rightarrow (A \lor (B \lor C)).$

Demonstração.

1. $\vdash (P \rightarrow P)$	pr6.5
2. $\vdash A \rightarrow (A \lor (B \lor C))$	pr6.3, 1., pr6.10
3. $\vdash B \to (B \lor C)$	pr6.3, 1., pr6.10
4. $\vdash B \to (A \lor (B \lor C))$	pr6.10, 3.
5. $\vdash (A \lor B) \to (A \lor (B \lor C))$	pr6.8, 2., 4.
6. $\vdash C \rightarrow (B \lor C)$	pr6.3, 2., pr6.10
7. $\vdash C \rightarrow (A \lor (B \lor C))$	pr6.10, 6.
8. $\vdash ((A \lor B) \lor C) \to (A \lor (B \lor C))$	pr6.8, 5., 7.

- Proposição 6.12
 Se β ((A ∨ B) ∨ C) então (A ∨ (B ∨ C)).
- Demonstração.

1.
$$\beta \vdash (A \lor B) \lor C$$

2. $\beta \vdash ((A \lor B) \lor C) \rightarrow (A \lor (B \lor C))$
3. $\beta \vdash (A \lor (B \lor C))$
 $pr6.11$
 $MP, 1., 2.$

Proposição 6.13

Se $\beta \Vdash (A \rightarrow B)$ e $\beta \vdash (A \rightarrow (B \rightarrow C))$, então $\beta \vdash (A \rightarrow C)$.

Demonstração.

5. $\beta \vdash (\neg A \lor (C \lor \neg A))$

6. $\beta \vdash ((C \lor \neg A) \lor \neg A)$

cqd

1.
$$\beta \vdash (A \rightarrow B)$$
 hip
2. $\beta \vdash (\neg A \lor (\neg B \lor C))$ hip
3. $\beta \vdash ((\neg B \lor C) \lor \neg A)$ pr6.6, 2.
4. $\beta \vdash (\neg B \lor (C \lor \neg A))$ pr12, 3.
4. $\beta \vdash (B \rightarrow (C \lor \neg A))$ reescrita
5. $\beta \vdash (A \rightarrow (C \lor \neg A))$ pr6.7, 1., 4.

7. $\beta \vdash (C \lor (\neg A \lor \neg A))$ 8. $\beta \vdash (\neg A \lor C)$ $pr6.1, Ax_1, 7.$ 8. $\beta \vdash (A \rightarrow c)$ reescrita

reescrita

pr6.6, 5.

pr12, 6.

• Lema 6.1 Suponha que

Н

- e que $B \subseteq \beta$, ou B = A, ou B \acute{e} axioma. Temos, então, que $\beta \quad (A \rightarrow B)$.
- Teorema 6.1 (teorema da dedução forma sintática)

$$\beta \cup A = B$$

então

$$\vdash \beta$$
 (A \rightarrow B).

• Proposição 6.14

Temos que
$$\vdash$$
 (¬A \rightarrow (¬B \rightarrow ¬(A \lor B))).

6 2 6 4
pr6.3, pr6.4
pr6.10, 1.
pr6.10, 2.
pr6.8, 3., 4.
pr6.6, 5.
pr12, 6.
reescrita

Proposição 6.15

Temos que \vdash A \rightarrow (A \lor B) \vdash \neg A \rightarrow (\neg A \lor B).

Demonstração.

Prova de $\vdash A \rightarrow (A \lor B)$.

3. $\vdash \neg A \rightarrow \neg A$

4. $\vdash \neg A \rightarrow (\neg A \lor B)$

1. $\vdash A \rightarrow A$

2. $\vdash A \rightarrow (A \lor B)$

Prova de $\vdash \neg A \rightarrow (\neg A \lor B)$.

1. $\vdash \neg A \lor \neg \neg A$

2. $\vdash (\neg A \lor \neg \neg A) \to (\neg \neg A \lor \neg A)$ 3. $\vdash (\neg \neg A \lor \neg A)$

pr6.3, pr6.4pr6.3, pr6.6

pr6.3, pr6.5

pr6.10, 1.

MP, 1., 2.

reescrita pr6.10, 3.

cqd

Completude do Sistema Axiomático P_a

- Teorema 6.2 (teorema da correção)
 Seja H uma fórmula da Lógica Proposicional,
 se H então H é tautologia.
- Teorema 6.3 (teorema da completude)
 Seja H uma fórmula da Lógica Proposicional.
 Se H é tautologia, então ¡☐H.

Demonstração do Teorema da Completude

Definição 6.7 (base associada a uma fórmula.) Seja H uma fórmula e P₁,...,P_n os símbolos proposicionais contidos em H. Dada uma interpretação I, então a base associada a H conforme denotada por B[H, I], é um conjunto de literais, definidos a partir de P₁,...,P_n como se segue: • se $I[P_i] = T$, então $P_i \subseteq B[H, I]$; • Se $I[P_i] = F_i$ então $\neg P_i \subseteq B[H_i]$.

• Lema 6.2

Seja H uma fórmula e P₁, ..., P_n os símbolos proposicionais contidos em H.

Dada uma interpretação I, então:

- a) $I[H] = T \Rightarrow B[H, I] \blacksquare H$.
- b) $I[H] = F \Rightarrow B[H, I] = \neg H$.

Definição 6.8 (consistência de um sistema axiomático)

Um sistema axiomático é consistente se, e somente se, dada uma fórmula H, não se pode ter H e ⊢ ¬H.

Isto é, H e ¬H não podem ser teoremas ao mesmo tempo.

Teorema 6.4 (consistência)

O sistema axiomático P_a é consistente.

Definição 6.9 (consistência de um conjunto de fórmulas)

Um conjunto de fórmulas Γ é consistente se,

e somente se,

não existe fórmula H tal que

 \blacksquare H e \blacksquare $\neg H$.

Isto é, H e ¬H não podem ser provadas a partir de Γ.

Teorema 6.5 (consistência e satisfatibilidade)

Um conjunto de fórmulas Γ é consistente se, e somente se, é satisfatível.