课后作业 - 2022 年 10 月 24 日

1. 设随机变量 (X,Y) 的概率密度函数为

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}.$$

求条件概率密度函数 $f_{X|Y}(x|y)$ 和 $f_{Y|X}(y|x)$.

2. 设随机变量 (X,Y) 的概率密度函数为

$$f(x,y) = \begin{cases} \frac{21}{4}x^2y, & x^2 \leqslant y \leqslant 1\\ 0, & \text{otherwise} \end{cases}.$$

求条件密度 $f_{Y|X}(y|x)$ 以及概率 $P(Y \ge \frac{3}{4}|X = \frac{1}{2})$.

3. 已知随机变量 (X,Y) 的概率分布为

$X \setminus Y$	1	2	3
1	$\frac{1}{6}$	$\frac{1}{9}$	$\frac{1}{18}$
2	$\frac{1}{3}$	$\frac{1}{a}$	$\frac{1}{b}$

问: 当 a, b 为何值时, X 与 Y 相互独立? 并求 P(X = i|Y = 1).

4. 设随机变量 X 和 Y 相互独立,下表列出了二维随机变量 (X,Y) 的联合概率分布及关于 X 和关于 Y 的边缘概率分布,求其中的未知量 a,b,c,d,e,f,g,h.

$X \setminus Y$	y_1	y_2	y_3	p_{i} .
x_1	a	$\frac{1}{8}$	b	c
x_2	$\frac{1}{8}$	d	e	f
$p_{\cdot j}$	$\frac{1}{6}$	g	h	

5. 设随机变量 (X,Y) 的概率密度函数为

$$f(x,y) = \begin{cases} Axy^2, & 0 < x < 1, 0 < y < 1 \\ 0, & \text{otherwise} \end{cases}.$$

求: (1) 常数 A. (2) 证明 X 与 Y 相互独立.