6 Напряженность электрического поля

Любое заряженное тело порождает электрическое поле в пространстве вокруг себя. Во всякой точке этого пространства поле способно вызвать силу, действующую на точечный заряд¹, помещенный в эту точку. (Далее заряды предполагаются точечными, если не оговорено иное.)

Напряженность $\left(\vec{E} \ \begin{bmatrix} \mathbf{B} \\ \mathbf{M} \end{bmatrix}\right)^{-}$ - это характеристика силовой способности электрического поля в точке пространства:

$$\vec{E} = \frac{\vec{F}_{K}}{q_{\text{внесен}}},\tag{1}$$

где $q_{\text{внесен}}$ — заряд, внесенный (помещенный) в поле (на него действует поле).

В каждой точке пространства поле характеризуется вектором напряженности \vec{E} . Вектор \vec{E} всегда указывает направление силы Кулона, которая бы действовала на *положительный* заряд, помещенный в соответствующую точку.

На рис. 1 показан вектор напряженности \vec{E} поля, создаваемого положительным зарядом, в произвольной точке на расстоянии r от него.

Рис. 1. Напряженность поля положительного заряда

Как видно из рисунка, напряженность поля положительного заряда направлена $om\ nero$. Напряженность же поля, создаваемого отрицательным зарядом, в произвольной точке направлена $\kappa\ nem y$.

Напряженность поля точечного заряда в вакууме находят так (подстановка формулы закона Кулона в формулу (1)):

$$E = k \frac{q_{\text{источника}}}{r^2},\tag{2}$$

где $q_{\rm источника}$ — заряд тела, создающего поле.

Особый интерес представляет поле вблизи заряженной пластины (заряженной плоскости) с равномерным распределением заряда по ее поверхности. В этом случае пластина создает однородное поле — поле, напряженность которого одинакова в каждой точке рассматриваемой области ($\vec{E}=\mathrm{const}$).

Заряженную пластину характеризуют поверхностной плотностью заряда:

$$\sigma = \frac{q}{S},\tag{3}$$

где q — заряд участка пластины площадью S.

Напряженность поля пластины в вакууме тогда находят по формуле:

$$E = \frac{\sigma}{2\varepsilon_0},\tag{4}$$

где ε_0 — электрическая постоянная (см. справочные таблицы).

Для среды с диэлектрической проницаемостью ε формулы (2) и (4) переписываются так:

$$E = k \frac{q_{\text{источника}}}{\varepsilon r^2}, \quad E = \frac{\sigma}{2\varepsilon\varepsilon_0}.$$

 $^{^{1}}$ Точечный заряд — это заряженное тело, размерами которого можно пренебречь.