Exame de Álgebra

Universidade de Brasília

Exame de Álgebra Lucas Corrêa Lopes

Notas escritas para o Exame de Qualificação em Álgebra da Universidade de Brasília, sob orientação do Prof. Dr. Pavel Zalesski. Os assuntos se resumem, essencialmente, a Grupos Profinitos, com ênfase em Construções Livres e Teoria de Bass-Serre.

Sum<mark>ário</mark>

capítulo 1	Produtos livres abstratos e profinitos	Página 1
1.1	Produtos livres abstratos	
1.2	Generalização dos grupos livres	2
1.3	Aplicações de Kurosh	
1.4	O Teorema de Grushko-Neumann	
1.5	Produtos profinitos livres	
1.6	O completamento do produto livre	
1.7	Aplicações de Kurosh	
1.8	O Teorema de Grushko-Neumann	

Capítulo 1

Produtos livres abstratos e profinitos

1.1 Produtos livres abstratos

Definição 1.1.1. Sejam $G_1,...,G_n$ grupos. Um grupo G junto com uma família de homomorfismos $\iota_i:G_i\to G$ é um produto livre dos G_i se satisfaz a seguinte **propriedade universal**: dados um grupo H e uma família de homomorfismos $\varphi_i:G_i\to H$, existe um único homomorfismo $\varphi:G\to H$ tal que $\varphi\iota_i=\varphi_i$. Dizemos que G_i é um fator livre de G.

Isso significa que o diagrama

é comutativo.

A demonstração da existência é similar ao caso dos grupos livres: assumindo que $G_i \cap G_j = \emptyset$ (trocando por uma cópia isomorfa se necessário), considere $X = \bigcup_i G_i$ e todas as palavras em g. Definimos uma relação de equivalência entre duas palavras g e g se podemos transformar g em g trocando um par g no mesmo grupo por seu

g e h se podemos transformar g em h trocando um par g_1g_2 no mesmo grupo por seu produto, trocando um elemento $g_j \in G_{i_j}$ por um par que seja seu produto e inserindo ou removendo a identidade. Não é difícil verificar que cada classe de equivalência [g] contém uma única palavra reduzida. Escolhemos G como o grupo gerado por todos os [g] com a operação de justaposição. Definimos $\iota_i:G_i\to G$ por $\iota_i(g)=[g]$. Dados $\varphi_i:G_i\to H$ definimos $\varphi([g])=\varphi_{i_1}(g_1)\cdots\varphi_{i_k}(g_k)$ para $g_j\in G_{i_j}$.

O produto livre é denotado por

$$G = \underset{i}{*} G_i = G_1 * \cdots * G_n.$$

Exercício. Pesquise e descreva detalhadamente o processo acima para a construção do produto livre.

Exercício. Deduza da construção acima que existe uma forma normal e que está caracteriza o produto livre G.

1.2 Generalização dos grupos livres

Seja F um grupo livre em X. Como F é livre de torção, então $|\langle x \rangle| = \infty$ para cada $x \in X$. Considere $G_x = \langle x \rangle$ e $G = \underset{x}{*} G_x$. Sejam $\varphi_x : G_x \to F$ as inclusões. Pela propriedade universal do produto livre, existe um único $\varphi : G \to F$ tal que $\varphi \iota_x = \varphi_x$ onde $\iota_x : G_x \to G$ é dado por $\iota_x(x) = x$. É imediato notar que φ é sobrejetora. Se $\varphi(w)\varphi(v)^{-1} = 1$, então a unicidade da forma normal nos dá w = v. Assim,

$$F \simeq G \simeq * \mathbb{Z}.$$

1.3 Aplicações de Kurosh

O Teorema de Kurosh tem um enunciado carregado de símbolos, então este autor se permitirá escrevê-lo uma única vez num outro arquivo em que também constará uma demonstração (felizmente quem nunca viu o enunciado pode usar o google).

Aplicação 1. O Teorema de Nielsen-Schreier é consequência de Kurosh.

Seja F um grupo livre. Podemos então escrever

$$F = * \mathbb{Z}$$

Se $H \leq F$, o Teorema de Kurosh nos dá a decomposição

$$H = \tilde{F} * \left(\underset{i,g_{ij}}{*} (H \cap \mathbb{Z}^{g_{ij}}) \right).$$

Uma vez que $H \cap \mathbb{Z}^{g_{ij}} \leq \mathbb{Z}$, então $H \cap \mathbb{Z}^{g_{ij}}$ é trivial ou cíclico infinito. Assim,

$$H = \tilde{F} * (* \mathbb{Z}),$$

isto \acute{e} , H \acute{e} um produto livre de grupos livres \acute{e} , portanto, \acute{e} livre.

Aplicação 2. Assumindo que $\mathrm{PSL}_2(\mathbb{Z}) = C_2 * C_3$, podemos descrever precisamente seus subgrupos usando Kurosh.

Se $H \leq C_2 * C_3$, o Teorema de Kurosh nos dá a decomposição

$$H = \tilde{F} * \left(*(H \cap C_2^{g_i}) \right) * \left(*(H \cap C_3^{\tilde{g}_j}) \right).$$

Assim, os fatores livres não triviais são isomorfos a C_2 ou C_3 . Portanto,

$$H \simeq \tilde{F} * H_1 * H_2$$

onde $H_1 = 1$ ou $H_1 = C_2$ e $H_2 = 1$ ou $H_2 = C_3$.

1.4 O Teorema de Grushko-Neumann

Teorema 1.4.1 (Grushko-Neummann). Sejam F um grupo livre finitamente gerado e $G=\underset{i}{*}G_{i}$ um produto livre de grupos. Se $\varphi:F\to G$ é um epimorfismo, então

$$F = \underset{i}{*} F_i$$

onde $\varphi(F_i) = G_i$

Corolário 1.4.2 (Grushko-Neumann 'baby'). Se G_1 e G_2 são grupos finitamente gerados, então

$$\operatorname{rk}(G_1 * G_2) = \operatorname{rk}(G_1) + \operatorname{rk}(G_2).$$

Demonstração. Sejam $\operatorname{rk}(G_1)=n$, $\operatorname{rk}(G_2)=m$, F o grupo livre de posto k e $\varphi:F\to G=G_1*G_2$ um epimorfismo. Pelo Teorema de Grushko-Neumann, $F=F_1*F_2$ com $\varphi(F_1)=G_1$ e $\varphi(F_2)=G_2$. Se $x_1,...,x_k$ os geradores de F, sejam $x_1,...,x_r$ os geradores de F_1 e $x_{r+1},...,x_k$ os geradores de F_2 . Então

$$G = \langle \varphi(x_1), ..., \varphi(x_k) \rangle, \quad G_1 = \langle \varphi(x_1), ..., \varphi(x_r) \rangle, \quad G_2 = \langle \varphi(x_{r+1}), ..., \varphi(x_k) \rangle,$$

logo, $r \ge n$ e $k - r \ge m$. Assim,

$$rk(G_1) + rk(G_2) = n + m \le r + (k - r) = k = rk(G).$$

A outra desiguadade é óbvia.

1.5 Produtos profinitos livres

Consideraremos $\mathcal C$ uma variedade de grupos finitos fechada para extensões.

Definição 1.5.1. Sejam $G_1,...,G_n$ grupos pro- \mathcal{C} . Um grupo pro- \mathcal{C} G junto com uma família de homomorfismos contínuos $\iota_i:G_i\to G$ é um produto pro- \mathcal{C} livre dos G_i se satisfaz a seguinte **propriedade universal**: dados um grupo pro- \mathcal{C} H e uma família de homomorfismos contínuos $\varphi_i:G_i\to H$, existe um único homomorfismo contínuo $\varphi:G\to H$ tal que $\varphi\iota_i=\varphi_i$. Dizemos que G_i é um fator livre de G.

Isso significa que o diagrama

é comutativo.

O produto pro- $\mathcal C$ livre será denotado por

$$G = \bigcup G_i = G_1 \sqcup \cdots \sqcup G_n.$$

Teorema 1.5.2. O produto pro-C livre de grupos pro-C $G_1, ..., G_n$ existe e é único.

Demonstração. Sejam G^{abs} o produto livre abstrato dos $G_1,...,G_n$, $\iota_i^{abs}:G_i\to G^{abs}$ os monomorfismos. Considere

$$\mathcal{N} = \{ N \lhd G^{abs} : G^{abs}/N \in C, (\iota_i^{abs})^{-1}(N) \lhd_o G_i \},$$

G o completamento de G^{abs} com respeito a topologia determinada por \mathcal{N} , $f:G^{abs}\to G$ o mapa natural e $\iota_i=f\iota_i^{abs}$.

Sejam $H \in \mathcal{C}$ e $\varphi_i: G_i \to H$ homomorfismos contínuos. Pela propriedade universal do produto livre abstrato, existe um único $\varphi^{abs}: G^{abs} \to H$ que torna o diagrama

comutativo. Por construção, temos

Note que $(\iota_i^{abs})^{-1}(\ker \varphi^{abs})=\ker \varphi_i$, logo, $\ker \varphi^{abs}\in \mathcal{N}$ e φ^{abs} é contínua. Pela propriedade universal do completamento, existe um homomorfismo $\varphi:G\to H$ tornando o diagrama

comutativo. É imediato verificar que qualquer outro $\tilde{\varphi}$ completando o diagrama é igual a φ .

A unicidade fica como exercício para o leitor (se você fez os anteriores já sabe exatamente o que precisa fazer, senão... estou te dando mais uma chance de aprender). \Box

Note que, assim como fizemos para grupos livres, ao invés de tomar um grupo pro- \mathcal{C} , escolhemos um C-grupo finito H. O argumento que justifica essa escolha é extremamente similar ao usado para grupos livres (e usaremos esse maravilhoso fato

posteriormente). Daremos uma ideia mais uma vez apenas para exercício: suponha a propriedade universal válida para grupos em $\mathcal C$ e considere o diagrama

onde H é um grupo pro- \mathcal{C} . Por hipótese, existe φ_N tal que o diagrama

é comutativo. Pela propriedade universal do limite invero, existe $\varphi:G\to H$ tal que o diagrama

é comutativo. É imediato verificar que φ é único.

1.6 O completamento do produto livre

Proposição 1.6.1. Seja $G=G_1st G_2$ um produto livre abstrato. Então

$$\widehat{G} = \widehat{G}_1 \sqcup \widehat{G}_2.$$

Demonstração. A propriedade universal do produto profinito livre garante a existência de um único φ que torna o diagrama

propriedade universal do completamento de G_1

Estamos usando implicitamente o fato de \widehat{G}_1 ser fechado em $\widehat{G}_1 \sqcup \widehat{G}_2$, logo, ser profinito (veja [Rib17] para uma demonstração).

Exercício. Esse argumento vale para o completamento pro-C?

Vimos anteriormente que se F é o grupo profinito livre num conjunto finito X, então F é o completamento profinito do grupo livre abstrato F^{abs} em X. Além disso,

$$F^{abs} = \underset{X}{*} \mathbb{Z},$$

logo,

$$F = \bigsqcup_{X} \widehat{\mathbb{Z}}.$$

Aplicações de Kurosh 1.7

Aplicação 3. Assim como no caso abstrato, a versão pro- $\mathcal C$ de Nielsen-Schreier é uma consequência de Kurosh.

Uma vez que Nielsen-Schreier não vale em geral no caso profinito, então Kurosh obviamente não pode valer. Mas é útil ter um exemplo dentro desse contexto.

Exemplo 1.7.1. Sejam G_1 e G_2 grupos pro-p não triviais com p primo (ambos são profinitos). Considere $G=G_1\sqcup G_2$ seu produto profinito livre. Note que o subgrupo cartesiano K_G é um grupo profinito livre, logo, grupo pro-q, com $q \neq p$, é imagem epimórfica contínua de K_G . Assim, existe um pro-q subgrupo de Sylow não trivial Q em G. Temos que $Q \cap G_1^g = 1 = Q \cap G_2^g$ para qualquer $g \in G$, pois $q \neq p$.

Se o Teorema de Kurosh é verdadeiro em qualquer caso, Q deve ser profinito livre. Se Q é profinito livre em um conjunto X e $g: X \to \mathbb{Z}_p$ é um mapa 1-convergente satisfazendo g(x) = 1, pela propriedade universal, deve existir um homomorfismo contínuo $\varphi:Q\to\mathbb{Z}_p$ satisfazendo $\varphi(g)=1$ onde g é gerador de Q, o que é impossível. Assim, Q não é um grupo profinito livre.

Aplicação 4. Sejam $G_1,...,G_n$ grupos em \mathcal{C} e G seu produto pro- \mathcal{C} livre com $G_j \neq 1$. Então $G_i \cap G_i^x = 1$ para cada $x \in G - G_i$.

Escolha $x \in G - G_i$ e $N_i \triangleleft_o G$ tal que $x \notin g_i N_i$ para cada $g_i \in G_i$. Assim, se $N = \bigcap N_i$, então $x \notin G_i N$. Uma vez que $G_i N$ é aberto, o Teorema de Kurosh nos dá

$$G_iN = F \sqcup \left(\bigsqcup_{j,g_{jk}} (G_iN \cap G_j^{g_{jk}})\right)$$

. Existe um representante g de uma classe dupla tal que

$$x \in (G_i N) g G_i$$

ou seja,

$$x = (g_i u)gg_j = g_i g_{i,k} g'_j u.$$

Os mapas que mandam cada fator livre identicamente no fator direto correspondente induzem o homomorfismo

$$\psi: G_i N \to F \times \left(\prod_{j,g_{jk}} (G_i N \cap G_j^{g_{jk}})\right).$$

Além disso, $G_i^x = G_i^{g_{i,k}g_j'u}$ implica

$$G_i \cap G_i^x = G_i \cap (G_i N \cap G^{g_{i,k}g_j'u}).$$

Assim,

$$\psi(G_i \cap G_i^x) \leqslant \psi(G_i) \cap \psi(G_i N \cap G^{g_{i,k}}) = 1,$$

logo, $G_i \cap G_i^x = 1$ (explique com detalhes).

1.8 O Teorema de Grushko-Neumann

O Teorema de Grushko-Neumann 'baby' não vale no caso profinito.

Exemplo 1.8.1. Considere o seguinte resultado:

Teorema (Kovács-Sim (1991)). Se um grupo finito solúvel G pode ser gerador por s subgrupos de ordens coprimas e se cada um dos subgrupos geradores pode ser gerado por r elementos, então G pode ser gerado por r+s-1 elementos.

Considere $G_1=C_2\times C_2$ e $G_2=C_3\times C_3$. Note que $d(G_1)=2$ e $d(G_2)=2$. Se $G=G_1*G_2$ é um produto prosolúvel livre, G é limite inverso de grupos solúveis finitos G/N. Aplicando esse teorema a cada G/N, vemos que d(G/N)=3 e assim, d(G)=3, logo,

$$d(G) = 3 < 4 = d(G_1) + d(G_2).$$

Contudo, nos restringindo a classe dos p-grupos finito, ainda temos a validade no resultado.

Teorema 1.8.2 (Grushko-Neumann 'baby' versão pro-p). Sejam G_1 e G_2 grupos pro-p finitamente gerados, então

$$\operatorname{rk}(G_1 \sqcup G_2) = \operatorname{rk}(G_1) + \operatorname{rk}(G_2)$$

Demonstração. Seja K_G o subgrupo cartesiano de G. Então

$$G/K_G \simeq G_1 \times G_2$$
.

Assim,

$$\operatorname{rk}(G) \geqslant \operatorname{rk}(G/\Phi(G)) = \operatorname{rk}(G_1/\Phi(G_1)) + \operatorname{rk}(G_2/\Phi(G_2)) = \operatorname{rk}(G_1) + \operatorname{rk}(G_2).$$

A outra desigualdade é óbvia.

Referências Bibliográficas

[Rib17] L. Ribes. Profinite graphs and groups, volume 66. Springer, 2017.