#### **Time Series Plots**

Maria Eduarda Silva

School of Economics, University of Porto

LMU, July 1 2022

## Representing a time series

- A time plot is the simplest and more intuitive representation of a time series
- A time plot allows to inspect the data and find the main characteristics

# Time plot of Monthly Carbon Dioxide Levels at Mauna Loa, 1958-2019



## Time series components I

The the main components of a time series are:

- trend- long term change in the mean of the data
- **seasonality** cycles within one year usually related to the seasons of the year; it is fixed and the frequency is known  $S_t$
- cycles raises and falls in the data with unknown frequency-
- random or remainder component  $R_t$  with some desirable properties that will be introduced later

Usually trend and cycle are included in the same component, a trend-cycle component  $\mathcal{T}_t$ 

## Time series components II

#### In this example

- the trend looks approximately linear
- the seasonal cycles have constant over time- we say that a linear model may be appropriate

$$y_t = T_t + S_t + R_t$$

# Time plot of Monthly Scripts of Anti-diabetic drugs, a10



## Time series components III

#### In a10 time series

- the trend is non linear
- the amplitude of the seasonal cycles grows with the trend, implying heterocedasticity (changing variance)

We need a multiplicative model to represent the relationship between the components

$$y_t = T_t S_t R_t$$

# Time plot of Weekly passenger load Ansett airlines economy class: Melbourne-Sidney



#### Time Series Characteristics III

#### Interesting features

- There was a period in 1989 when no passengers were carried this was due to an industrial dispute.
- There was a period of reduced load in 1992. This was due to a trial in which some economy class seats were replaced by business class seats.
- A large increase in passenger load occurred in the second half of 1991.
- There are some large dips in load around the start of each year. These
  are due to holiday effects. -There is a long-term fluctuation in the level
  of the series which increases during 1987, decreases in 1989, and
  increases again through 1990 and 1991.

#### Time series Characteristics IV

Plot the time series and check for:

- trend
- discontinuities such as level changes
- changes in variance
- seasonality
- cycles
- unusual observations- outliers

Depending on the purpose of our study, when we analyse a time series the interest may be in studying the trend, the seasonality, the cycles or the remainder component or all together!!!

#### Seasonal Plots I

For a clear representation of the seasonal patterns we may use the seasonal plots.



#### Seasonal Plots II

The blue lines represent the mean of the corresponding month. Be careful because this mean has no meaning since the data presents trend.

#### Seasonal Plots III



## **Lag Plots**

- Lag Plots are scatterplots where the horizontal axis shows lagged values of the time series.
- Each graph shows  $w_t$  plotted against  $w_{t-k}$  for different values of k
- ullet Help to assess the relationship between values separated by k time units

#### White noise

Simulate a time series that are just iid observations - **WHITE NOISE** declare it as ts object and plot.



## Lag Plot of white noise using package "astsa"



## Australian quarterly beer production



# Lag Plot of Australian quarterly beer production using package astsa



#### Lag Plot of Australian quarterly beer production lag 1 lag 2 lag 3 500 -450 lag 4 lag 5 lag 6 Quarter 500 -2 450 **-**3 400 lag 8 lag 7 lag 9 500 -450 -

#### **Autocorrelation Function -**

- Correlation measures the extent of a linear relationship between two variables
- Autocorrelation measures the linear relationship between lagged values of a time series,

Some notation - time series :  $y_t$ , t = 1, ..., n or  $y_1, y_2, ..., y_T$ 

• There are several autocorrelation coefficients, one corresponding to each panel in the lag plot:  $-r_1$  measures the correlation between  $y_t$  and  $y_{t-1} - r_2$  measures the correlation between  $y_t$  and  $y_{t-2}$  – in general,  $r_k$  measures the correlation between  $y_t$  and  $y_{t-k}$ 

where

$$r_k = \frac{\sum_{t=k+1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})}{\sum_{t=k+1}^{T} (y_t - \bar{y})^2}$$

### **Autocorrelation of White Noise**



**##** [1] 0.02 -0.03 -0.01 0.02 -0.05 0.06 -0.04 0.06 -0.04

#### **Autocorrelation of Beer data**



## **Autocorrelation, ACF characteristics**

- ACF reflets the characteristics of the time series
  - ▶ When data have a trend, the nautocorrelations for small lags tend to be large and positive.
  - ▶ When data are seasonal, the autocorrelations will be larger at the seasonal lags (i.e., at multiples of the seasonal frequency)
  - When data are trended and seasonal, you see a combination of these effects.
- ACF of White Noise
  - Sample autocorrelations for white noise series.
  - Expect each autocorrelation to be close to zero.
  - ▶ Blue lines show 95% critical values when correlations exceed the critical values they indicate departure from white noise

#### Which is Which?

