

自动控制原理实验 A(1) 实验报告

 院 系 名 称:
 自动化科学与电气工程学院-自动化系

 学
 5:

 生
 2:

 查翰韬
 2:

 正 薇

<u>2018</u>年<u>10</u>月<u>31</u>日

实验一 二阶系统的电子模拟及时域响应的动态测试

实验时间: 10月31日下午8/9节 实验编号: 无 同组同学: 无

一、实验目的

- 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
- 2、学习在电子模拟机上建立典型环节系统模型的方法。
- 3、学习阶跃响应的测试方法。

二、实验过程与结果

1、一阶系统:

建立一阶系统的电子模型, 观测并记录在不同时间常数 T 时的跃响应曲线, 并测定其过渡过程时间 TS。

系统传递函数为: $\emptyset(S) = \frac{C(S)}{R(S)} = \frac{K}{TS+1}$ 模拟运算电路如图 1- 1 所示:

由图 1-1 得 $\frac{U_0(S)}{U_i(S)} = \frac{R2/R1}{R_2CS+1} = \frac{K}{TS+1}$

在实验当中始终取 R2= R1,则 K=1,T= R2C 取不同的时间常数 T 分别为: 0.25、0.5、1。

元件参数取值如下表所示:

一阶系统阶跃响应					
T	0.25	0.5	1		
R2	250K	500K	1 M		
С	1uF	1uF	1uF		
Ts理论	0.750s	1.500s	3.000s		
Ts实际	0.885s	1.486s	3. 450s		
误差	18%	-0.93%	15%		

其中理论值 $T_s = 3T$

图像如下:

图 1-5 一阶系统阶跃响应曲线 T=0.25s

图 1-6 一阶系统阶跃响应曲线 T=0.5s

图 1-7 一阶系统阶跃响应曲线 T=1s

2、二阶系统:

建立二阶系统的电子模型, 观测并记录在不同阻尼比 ζ 时的跃响应曲线, 并测定其超调量 σ %及过渡过程时间 TS。

系统传递函数为:
$$\phi(S) = \frac{C(S)}{R(S)} = \frac{\omega_n^2}{S^2 + 2\zeta\omega_n S + \omega_n^2}$$

令 $\omega_n=1$ 弧度/秒,则系统结构如图 1-2 所示:

图 1-2

根据结构图,建立的二阶系统模拟线路如图 1-3 所示:

取 R2C1=1 ,R3C2 =1,则 $\frac{R_4}{R_3}=R_4C_2=\frac{1}{2\xi}$ 及 $\xi=\frac{1}{2R_4C_2}$

ζ取不同的值 ζ =0.25 , ζ =0.5 , ζ =0.707 , ζ =1

元件参数取值如下表所示:

二阶系统阶跃响应					
ζ	0.25	0.5	0.707	1	
R4	2M	1M	707K	500K	
C2	1uF	1uF	1uF	1uF	
σ%理论	0.444	0.163	0.043		
σ‰实际	0.445	0.152	0.045		
误差	0.22%	-6.75%	4.65%		

其中理论值 $\sigma\% = e^{-\pi\zeta\sqrt{1-\zeta^2}} \times 100\%$

对于调节时间,可用近似公式 $T_s = \frac{3.5}{\zeta \omega_n}$ 计算:

ζ	0. 25	0.5	0.707
Ts理论	14s	7s	4.95s
Ts实际	11. 22s	5.55s	4.77s

但显然与实际测量结果差距较大,故在此不做误差表示。实验图像如下:

图 1-10 二阶系统阶跃响应 ξ =0.25 其中 Ts=11.22s

图 1-11 二阶系统阶跃响应 ξ =0.5 其中 Ts=5.55s

图 1-12 二阶系统阶跃响应 ξ =0.707 其中 Ts=4.77s

图 1-13 二阶系统阶跃响应 ξ =1.0 其中 Ts=5.82s

三、结果分析

1、一阶系统

单位阶跃响应是单调上升曲线,特性由 T 唯一决定,T 越小,过渡过程进行的越快,系统的快速性越好。但应当注意到,在实验中 T 太小的时候对外界条件更加敏感,将导致外界的扰动对系统的输出特性有较大干扰,会使其输出特性曲线发生波动。一阶系统的单位阶跃响应是没有稳态误差的,这是因为: $e_{ss}=1-h(\infty)=1-1=0$,这一点从实验结果的曲线图中也可以反映出来。

2、二阶系统

- ①平稳性:由曲线可以看出,阻尼比 ξ 越大,超调量越小,响应的振荡倾向越弱,平稳性越好。反之阻尼比 ξ 越小,振荡越强,平稳性越差。
- ②快速性:由曲线的对比可以看出, ξ 过大,例如接近 1,系统响应迟钝,调节时间 t_s 长,快速性差; ξ 过小,虽然响应的起始速度较快,但因为振荡强烈,衰减缓慢,所以调节时间 t_s 也长,快速性差。从实验中可以看到 $\xi=0.8$ 时, t_s 最短,即快速性最好,此时的平稳性也让人满意。
- ③稳态精度:可以看出,稳态分量随着 t 的增长衰减到 0,而稳态分量等于 1,因此从实验结果中我们可以看到对于欠阻尼和临界阻尼的情况下,单位阶跃响应是不存在稳态误差的。

四、收获、体会与建议

从得到的数据可以看出,不论是一阶还是二阶系统,实测值均与理论值有着或多或少的偏差。从实验的过程、原理分析可能的原因有以下几条:

- 1、电容电阻的标称值和实际值一般都有误差,所以依次搭接的电路的传递 函数和理论不完全一致。
- 2、运放带来的误差:一方面,实验中的运放的正极没有接补偿电阻,这有可能造成零点漂移以致结果不准确。另一方面,理想运放的放大倍数是无穷大的,而理论运放不一定是无穷大,这也会对传递函数的参数造成一定影响。
 - 3、实验箱 A/D 转换时有误差。
- 4、理论公式计算的 Ts 和超调量也是经验估计公式,并不完全准确,所以实测值与理论值出现误差也是情理之中的。