1983 FG7.2

圖中,ACDE 為一正方形,AC = BC 及 $\angle ACB = 90^{\circ}$ 。若 ACDE 的面積為 10 cm^2 ,求 ΔABC 的面積。

In the figure shown, ACDE is a square and AC = BC, $\angle ACB = 90^{\circ}$. Find the area of B $\triangle ABC$ if the area of ACDE is 10 cm^2 .

1984 FG10.1

一正方形內接於一直徑為 10 之圓。若 A 為正方形的面積,求 A 的值。 If A is the area of a square inscribed in a circle of diameter 10, find the value of A.

1985 FSG.4

一正方形內接於一個半徑為 10 之圓。若正方形之面積為 A ,求 A 的值。 If A is the area of a square inscribed in a circle of radius 10, find the value of A .

1985 FG6.4

如附圖所示, $BA \perp AC 及 AN \perp BC$ 。

In the figure, $BA \perp AC$ and $AN \perp BC$.

If AB = 3, AC = d = 4, AN = h, find the value of h.

1985 FG9.1

 ΔLMN 之三邊長分別為 8×15 及 $17 \circ \dot{\pi} \Delta LMN$ 之面積為 A ,求 A 的值。 The lengths of the 3 sides of ΔLMN are 8, 15 and 17 respectively.

If the area of ΔLMN is A, find the value of A.

1989 FI3.3

一正方形內接一個直徑為 16 的圓。設正方形的面積為 A ,求 A 的值。 If A is the area of a square inscribed in a circle of diameter 16, find the value of A .

1991 FSG.1

一等邊三角形的高是 $8\sqrt{3}$ cm,面積是 $a\sqrt{3}$ cm²。求 a 的值。

The height of an equilateral triangle is $8\sqrt{3}$ cm and the area of the triangle is $a\sqrt{3}$ cm². Find the value of a.

1992 HG8

ABC 為一邊長 $\sqrt{12}$ cm 的等邊三角形,而 P 為此 三角形內的任意一點(如圖所示)。若 P 至三邊 AB、 BC 及 CA 的垂直距離的總和為 x cm,求 x 的值。

ABC is an equilateral triangle of side $\sqrt{12}$ cm, and P is any point inside the triangle (as shown in the figure). If the sum of the perpendicular distances from P to the three sides AB, BC and CA is x cm, find the value of x.

1992 FI5.3

圖中,b=15,求c的值。

In the figure, b = 15, find the value of c.

1993 FI2.1

If $\sin \theta = \frac{4}{5}$, find a, the area of the quadrilateral.

1994 FI2.1

在正方形 PQRS 中,Y 為 QR 之中點,且 $PX = \frac{3}{4}PQ$ 。

若A為陰影部分三角形面積與正方形面積的比, 求A的值。

In square *PQRS*, *Y* is the mid-point of the side *QR* and $PX = \frac{3}{4}PQ$. If *A* is the ratio of the area of the shaded

triangle to the area of the square, find the value of \boldsymbol{A} .

Last updated: 2021-08-25

1995 FI5.4

如圖,ABCD 為一長方形 $,AE \perp BD$ 且 BE = EO = 2 , 求長方形 ABCD 之面積 d ,

Refer to the figure, ABCD is a rectangle.

 $AE \perp BD$ and BE = EO = 2.

Find d, the area of the rectangle ABCD.

2002 FI1.1

在右圖中,ABCD 是一邊長為 10 cm 的正方形,AEB、FED 及 FBC 為直綫, ΔAED 的面積比 ΔFEB 的面積大 10 cm²。若 ΔDFB 的面積為 P cm²,求 P 的值。

In the following figure, ABCD is a square of length 10 cm. AEB, FED and FBC are straight lines. The area of ΔAED is larger than that of

將一長方形紙摺出以下的圖形。 若△ABC 的面積是原長方形紙面積

的
$$\frac{1}{3}$$
 , 求 P 的值。

A rectangular piece of paper is folded into the following figure. If the area of

 $\triangle ABC$ is $\frac{1}{3}$ of the area of the original

rectangular piece of paper, find the value of P.

2002 FI4.2

In the following figure, *ABCD* is a rectangle. *E* and *F* are points on *AB* and *BC* respectively. The areas of triangles *AED*, *EBF* and *FCD* are 4, 3 and 5 respectively.

If the area of $\triangle EFD$ is Q, find the value of Q.

2002 FG2.1

已知三角形三邊的長分別為 6.8 和 10.3 若這三角形的面積為 a.3 求 a 的值。 It is given that the lengths of the sides of a triangle are 6.8, and 10.3

If the area of the triangle is a, find the value of a.

2003 HG9

圖中,扇形 ABC 為半徑是 4 cm 的圓的四分之 A 一,且兩個陰影部分的面積相等。設梯形 ABCD 的面積為 $A \text{ cm}^2$,求 A 的值。(取 $\pi = 3.14$)

In the figure, the sector ABC is one quarter of a circle with radius 4 cm. Suppose the areas of the two shaded parts are equal. Let the area of the trapezium ABCD be $A \text{ cm}^2$, find the area of A. (Take $\pi = 3.14$)

2003 FG2.3

如圖,正方形 PQRS 內接於 ΔABC 。 ΔAPQ 、 ΔPBS 和 ΔQRC 的面積分別為 4、4 和 12。若正方形 PQRS 的面積 為 c,求 c 的值。

In the figure, the square PQRS is inscribed in $\triangle ABC$. The areas of $\triangle APQ$, $\triangle PBS$ and $\triangle QRC$ are 4, 4 and 12

respectively. If the area of the square is c, find the value of c.

2004 FI2.4

如圖,EBC 是一等邊三角形,A 和 D 分別在 EB 和 EC 上。已知 AD //BC,AB = CD = R,且 $AC \perp BD$ 。若梯形 ABCD 的面積是 S,求 S 的值。

In figure, EBC is an equilateral triangle, and A, D lie on EB and EC respectively. Given that $AD /\!\!/ BC$, AB = CD = R and $AC \perp BD$. If the area of the trapezium ABCD is S, find the value of S.

2004 FIS.1

如圖, $\triangle ABC$ 為一銳角三角形, AB = 15, AC = 13, 而高 AD = 12。 \dot{a} ΔABC 的面積為 P, \dot{a} \dot{P} 的值。 In the figure, $\triangle ABC$ is an acute triangle, AB = 15, AC =13, and its altitude AD = 12. If the area of the $\triangle ABC$ is P, find the value of P.

2004 FG2.2

如圖, ΔABC 是一直角三角形,AB=3 cm,AC=4 cm 及 BC = 5 cm。若 BCDE 是一正方形且 ΔABE 的面 看是 $b \text{ cm}^2$, 求 b 的值。

In the figure, $\triangle ABC$ is a right-angled triangle, AB = 3 B cm, AC = 4 cm and BC = 5 cm. If BCDE is a square and the area of $\triangle ABE$ is $b \text{ cm}^2$, find the value of b.

2005 HG2

已知正方形 ABCD 的面積是 130 cm^2 及圓 O 經過點 $A \cdot B \cdot C$ 及 $D \cdot$ 若圓 O 的面積是 $b \text{ cm}^2$, 求 b 的值。(取 $\pi = 3.14$)

Given that the area of a square ABCD is equal to 130 cm² and a circle O passes through the points A, B, C and D. If the area of the circle O is $b \text{ cm}^2$, find the value of *b* . (Take $\pi = 3.14$)

2005 HG9

已知在三角形 ABC 內的一點 O 到三角形三邊的垂綫的長度均為 2 cm, 而 ΔABC 的周界為 21 cm。若 ΔABC 的面積是 k cm², 求 k 的值。

Given that the perpendicular distances from the point O to three sides of a In the figure, ABCD is a square and AM = NB = DE = DEtriangle ABC are all equal to 2 cm and the perimeter of $\triangle ABC$ is equal to 21 cm. FC = 1 cm and MN = 2 cm. Let the area of quadrilateral If the area of $\triangle ABC$ is equal to $k \text{ cm}^2$, find the value of k.

2005 FG2.1

如圖,在長方形 ABCD 中, AB=6 cm, $BC = 10 \text{ cm} \circ M \text{ 和 } N \text{ 分别是 } AB \text{ 和 } DC \text{ 的中$ 點。若陰影部分的面積是 $a \text{ cm}^2$,求 a 的值。 In the figure, ABCD is a rectangle, AB = 6 cm and BC = 10 cm. M and N are the midpoints of AB and DC respectively. If the area of the shaded region is $a \text{ cm}^2$, find the value of a.

2008 HI2

已知梯形 PORS 的邊長分別為 $PO = 6 \text{ cm} \cdot OR = 15 \text{ cm} \cdot RS = 8 \text{ cm}$ 及 SP = 25 cm, 並有 QR // PS。若 PQRS 的面積為 $Y \text{ cm}^2$, 求 Y 的值。 Given that a trapezium PQRS with dimensions PQ = 6 cm, QR = 15 cm,

RS = 8 cm and SP = 25 cm, also OR // PS.

If the area of *PQRS* is $Y \text{ cm}^2$, find the value of Y.

2009 HI10

如圖,ABCD 是一矩形。E 及 F 分別在 CD 及 AD 上使 A得 AF = 8 cm 及 EC = 5 cm。已知陰影部分的面積是 80 cm^2 。設矩形 ABCD 的面積為 g cm^2 , 求 g 的值。

In the figure, ABCD is a rectangle. Points E and F lie on CD_F and AD respectively, such that AF = 8 cm and EC = 5 cm.

Given that the area of the shaded region is 80 cm². Let the area of the rectangle ABCD be $g \text{ cm}^2$, find the value of g.

2009 HG6

如圖,ABCD 是一正方形且 AM = NB = DE = FC = D求c的值。

PQRS be $c \text{ cm}^2$, find the value of c.

Last updated: 2021-08-25

2009 FI4.2

如圖, ΔBAC 是一直角三角形, AB = AC = 3 cm。 已知直徑為AB的圓與BC相交於D且陰影部分的面 看是 $n \text{ cm}^2$, 求 n 的值。

In the figure, ΔBAC is a right-angled triangle, AB =AC = 3 cm. Suppose that the circle with diameter ABintersects the line BC at D, and the total area of the shaded region is $n \text{ cm}^2$. Find the value of n.

2015 HG2

已知等邊三角形 ABC 的邊長為 3,P 為三角形內的一點。設 PX、PY 及 在圖中,等邊三角形 ABC 的高為 $15\,\mathrm{cm}$ 。 PZ 分別為 P 至三角形三邊 $AB \times BC$ 及 CA 的垂足, 求 PX + PY + PZ 的值。

Given an equilateral triangle ABC with each side of length 3 and P is an interior $5 \text{ cm} \circ \bar{x} h$ 的值。 point of the triangle. Let PX, PY and PZ be the feet of perpendiculars from P to In the figure, the altitude of an equilateral AB, BC and CA respectively, find the value of PX + PY + PZ.

2015 FG3.4

右圖中,每個小三角形的面積皆為1, 求三角形ABC的面積的值。

In the figure below, the area of each small triangle is 1. Determine the value of the area of the triangle ABC.

2017 HG6

在圖中,正方形 ABCD 的邊長為 20。已知 DK: KA = $AH: HB = 1:3 \ \mathcal{B} \ BK // GD \ , HC // AN \ ,$ 求陰影部分 PQRS 的面積。

In the figure, square ABCD has sides of length 20. Given that DK : KA = AH : HB = 1 : 3 and BK // GD, HC // AN, find the area of shaded region PQRS.

2018 HI8

如圖所示,兩個邊長為 x cm 的正方形於一角重疊。 若兩個正方形的非重疊部分與重疊部分面積的比是 a:1, 求 a 的值。

As shown in the figure, two squares with side x cm coincides at one corner. If the ratio of the non-overlapping area to the overlapping area of the two squares is a:1, find the value of a.

2021 P1O6

P 為 $\triangle ABC$ 內的一點。從 P 與 $AB \setminus BC$ 和 AC 的垂直距離分別為 h cm、4 cm 和

triangle ABC is 15 cm. P is a point inside $\triangle ABC$. The perpendicular distances from P to AB, BC and AC are h cm, 4 cm and 5 cm respectively. Find the value of h.

Answer

1983 FG7.2 5 cm ²	1984 FG10.1 50	1985 FSG.4 200	1985 FG6.4 12 5	1985 FG9.1 60
1989 FI3.3	1991 FSG.1	1992 HG8	1992 FI5.3	1993 FI2.1
128	64	3	12	136
1994 FI2.1 $\frac{5}{16}$	1995 FI5.4 $16\sqrt{3}$	2002 FI1.1 40	2002 FI3.1 12	2002 FI4.2 8
2002 FG2.1	2003 HG9	2003 FG2.3	2004 FI2.4	2004 FIS.1
24	20.56	16	2352	84
2004 FG2.2 9/2	2005 HG2 204.1	2005 HG9 21	2005 FG2.1 15	2008 HI2 96
2009 HI10 200	2009 HG6 $\frac{2}{3}$	2009 FI4.2 9/4	$\frac{2015 \text{ HG2}}{\frac{3\sqrt{3}}{2}}$	2015 FG3.4 10
2017 HG6 16	2018 HI8 $2(\sqrt{3}-1)$	2021 P1Q6 6		

Created by Mr. Francis Hung
Page 5