UPMC/master/info/4I503 APS

EXAMEN RÉPARTI 2

Mai 2018

Les documents autorisés sont vos notes de cours manuscrites et les notes fournies par votre enseignant de cours

(http://www-apr.lip6.fr/~manoury/Enseignement/2017-18/APS).

Le document de référence de cette épreuve est le formulaire mis en ligne.

Soit le programme APS2 suivant:

```
PROC mapset [f:(int -> int), xs:(vec int)]

[
    VAR i int;
    SET i 0;
    WHILE (lt i (len xs)) [
        SET (nth xs i) (f (nth xs i));
        SET i (add i 1)
    ]
    ];
    CONST tab (vect int) (alloc 2);
    CONST a int 8;
    SET (nth tab 0) 12;
    SET (nth tab 1) 34;
    CALL mapset [x:int](add x a) tab
]
```

On distingue dans ce programme les trois séquences suivantes: les déclarations; l'initialisation de tab et l'appel de mapset.

```
ds_1 = 	ext{PROC mapset ...; CONST tab ...; CONST a ...} On pose cs_2 = 	ext{SET (nth tab 0) ...; SET (nth tab 1) ...} cs_3 = 	ext{CALL mapset ...} Pour alléger les écritures, on pourra également poser cs_4 = 	ext{VAR int i; SET i 0; WHILE (...) [...]} pour le corps de la procédure mapset.
```

Règles dérivées On peut généraliser les relations \vdash_{Dec} et \vdash_{Stat} aux suites (non vides) de déclarations et aux suites (non vides) d'instructions:

(DEC) si
$$d$$
; ds est une suite de déclarations, si $\rho, \sigma \vdash_{\text{DEC}} d \rightsquigarrow (\rho', \sigma')$ et si $\rho', \sigma' \vdash_{\text{DEC}} d \rightsquigarrow (\rho'', \sigma'')$ alors $\rho, \sigma \vdash_{\text{DEC}} d$; $ds \rightsquigarrow (\rho'', \sigma'')$

(STAT) si
$$s$$
; ss est une suite d'instructions, si $\rho, \sigma, \omega \vdash_{\text{DEC}} s \leadsto (\sigma', \omega')$ et si $\rho, \sigma', \omega' \vdash_{\text{DEC}} ss \leadsto (\sigma'', \omega'')$ alors $\rho, \sigma, \omega \vdash_{\text{DEC}} s$; $ss \leadsto (\sigma'', \omega'')$

si les suites sont réduites à une seule déclaration ou une seule instruction, on applique la règle correspondante donnée en cours.

Ce qui permet de reformuler ainsi la définition de $\vdash_{\text{\tiny CMDS}}$

(DECS) si
$$\rho, \sigma \vdash_{\text{DEC}} ds \leadsto (\rho', \sigma')$$
 et si $\rho', \sigma', \omega \vdash_{\text{CMDS}} cs \leadsto (\sigma'', \omega')$ alors $\rho, \sigma, \omega \vdash_{\text{CMDS}} (ds; cs) \leadsto (\sigma'', \omega')$

(STATS) si
$$\rho, \sigma, \omega \vdash_{\text{STAT}} ss \leadsto (\sigma', \omega')$$
 et si $\rho, \sigma', \omega' \vdash_{\text{CMDS}} cs \leadsto (\sigma'', \omega'')$ alors $\rho, \sigma, \omega \vdash_{\text{CMDS}} (ss; cs) \leadsto (\sigma'', \omega'')$

(END)
$$\rho, \sigma, \omega \vdash_{\text{CMDS}} \varepsilon \leadsto (\sigma, \omega)$$

Attention le point virgule (;) désigne à la fois l'ajout d'un élément à une suite (comme dans d; ds ou cs; ε) et la concaténation de suites (comme dans ds; cs).

Ces règles sont prouvables dans APS2. Elles permettent de découper l'évaluation de notre programme selon leur découpage en trois séquences:

Étape 1
$$\rho_0, \sigma_0, \omega_0 \vdash_{\text{\tiny DEC}} ds_1 \leadsto (\rho_1, \sigma_1)$$

Étape 2
$$\rho_1, \sigma_1, \omega_0 \vdash_{STAT} cs_2 \rightsquigarrow (\sigma_2, \omega_0)$$

Étape 3
$$\rho_1, \sigma_2, \omega_0 \vdash_{\text{Stat}} cs_3; \varepsilon \leadsto (\sigma_3, \omega_0)$$

où ρ_0 et σ_0 sont, respectivement, l'environnement vide et la mémoire vide. On peut négliger ici le flux de sortie car notre programme ne contient pas d'instruction d'affichage. De ces trois étapes, avec notre nouvelle définition de \vdash_{CMDS} , on déduit que

$$\rho_0, \sigma_0, \omega_0 \vdash_{\text{\tiny DEC}} ds_1; cs_2; cs_3; \varepsilon \leadsto (\sigma_3, \omega_0)$$

L'objectif de ce qui suit est de trouver et de justifier la valeur de σ_3 .

Étape 1

On suppose que $allocn(\sigma_0, 2) = (0, [0 = any; 1 = any])$. Donnez (sans justification) les valeurs de ρ_1 et de σ_1

(Réponse)

$$\begin{split} \rho_1 &= [\texttt{mapset} = inP(cs_4, \lambda v_1, v_2. [\texttt{f} = v_1; \texttt{x} = v_2]); \texttt{tab} = inB(0, 2); \texttt{a} = inN(8)] \\ \sigma_1 &= [0 = any; 1 = any] \end{split}$$

Étape 2

Donnez (sans justification) la valeur σ_2

(Réponse)

$$\sigma_2 = [0 = inN(12); 1 = inN(34)]$$

Étape 3

Nous allons nous attaquer maintenant à la troisème séquence de notre programme: l'appel de mapset dans le contexte $\rho_1, \sigma_2, \omega_0$.

(S1) Quelle est la valeur de $\rho_1(mapset)$?

(Réponse)

$$\rho_1(\texttt{mapset}) = inP(cs_4, \lambda v_1, v_2.[\texttt{f} = v_1; \texttt{xs} = v_2])$$

(S2) Donnez (sans justification) la valeur v_1 telle que $\rho_1, \sigma_2 \vdash_{\text{Expr}} [\texttt{x:int}] (\texttt{add} \ \texttt{x} \ \texttt{a}) \leadsto (v_1, \sigma_2).$

(Réponse)

$$v_1 = inF((add x a), \lambda v. \rho_1[x = v])$$

(S3) Donnez (sans justification) la valeur v_2 telle que $\rho_1, \sigma_2 \vdash_{\text{Expr}} \mathsf{tab} \leadsto (v_2, \sigma_2)$.

(Réponse)

$$v_2 = inB(0,2)$$

(S4) Par la règle d'application des procédures, pour avoir $\rho_1, \sigma_2, \omega_0 \vdash_{\text{STAT}} cs_3 \rightsquigarrow (\sigma_3, \omega_0)$ il faut un environnement ρ_2 tel que $\rho_2, \sigma_2, \omega_0 \vdash_{\text{CMDS}} cs_4$; $\varepsilon \rightsquigarrow (\sigma_3, \omega_0)$ (rappel: cs_4 est le corps de mapset).

Quelle est la valeur de ρ_2 ? Justifiez votre réponse.

(Réponse)

(S1) nous donne $\lambda v_1, v_2$.[f = v_1 ; x = v_2] que l'on applique aux valeurs données par (S2) et (S3):

$$\begin{array}{lll} \rho_2 & = & (\lambda v_1, v_2.[{\tt f} = v_1; {\tt x} = v_2])(inF(({\tt add} \ {\tt x} \ {\tt a}), \lambda v. \rho_1[{\tt x} = v]), inB(0,2)) \\ & = & [{\tt f} = inF(({\tt add} \ {\tt x} \ {\tt a}), \lambda v. \rho_1[{\tt x} = v]); {\tt xs} = inB(0,2)] \end{array}$$

Pour évaluer cs_4 , on traite d'abord la déclaration et l'initialisation de i.

(S5) Donnez les valeurs de ρ_3 et σ_{3a} telles que $\rho_2, \sigma_2, \omega_0 \vdash_{\text{Dec}} \text{VAR i int} \rightsquigarrow (\rho_3, \sigma_{3a})$.

(Réponse)

On pose
$$alloc(\sigma_2)=(2,\sigma_2[2=any])$$

 $\rho_3=\rho_2[\mathtt{i}=inA(2)]$
 $\sigma_{3a}=\sigma_2[2=any]=[0=inN(12);1=inN(34);2=any]$

(S6) Donnez la valeur de σ_{3b} telle que $\rho_3, \sigma_{3a}, \omega_0 \vdash_{\text{STAT}} \text{SET i } 0 \rightsquigarrow (\sigma_{3b}, \omega_0).$ (Réponse)

- $\rho_3, \sigma_{3a}, \omega_0 \vdash_{\text{LVAL}} i \leadsto (2, \sigma_{3a}))$
- $\rho_3, \sigma_{3a}, \omega_0 \vdash_{\text{Expr}} 0 \leadsto (inN(0), \sigma_{3a}))$
- par (SET): $\sigma_{3b} = \sigma_{3a}[2 := inN(0)] = [0 = inN(12); 1 = inN(34); 2 = inN(0)]$

Reste à évaluer la boucle WHILE du corps de mapset dans le contexte $\rho_3, \sigma_{3b}, \omega_0$. On pose $cs_6 = \text{WHILE (lt (i (len xs)) [SET (nth xs i) (f (nth xs i)); SET i (add i 1)]; } \varepsilon$ (S7) Justifiez que $\rho_3, \sigma_{3b}, \omega_0 \vdash_{\text{EXPR}} (\text{lt i (len xs)}) \leadsto (inN(1), \sigma_{3b})$ (Réponse)

par (PRIM), avec

- $\rho_3, \sigma_{3b}, \omega_0 \vdash_{\text{EXPR}} i \leadsto inN(0) \text{ par (ID2)}$
- $\rho_3, \sigma_{3b}, \omega_0 \vdash_{\text{EXPR}} xs \leadsto inB(2,0) \text{ par (ID1)}$ donc $\rho_3, \sigma_{3b}, \omega_0 \vdash_{\text{EXPR}} (\text{len } xs) \leadsto (inN(2), \sigma_{3b}), \text{ par (LEN)}$
- $\pi(1t)(0,2) = inN(1)$
- (S8) Quelle est la valeur v_3 telle que $\rho_3, \sigma_{3b}, \omega_0 \vdash_{\text{EXPR}}$ (f (nth xs i)) \rightsquigarrow (v_3, σ_{3b})? Justifiez votre réponse.

(Réponse)

- $\rho_3, \sigma_{3b}, \omega_0 \vdash_{\text{EXPR}} \mathbf{f} \leadsto inF((\text{add x a}), [\lambda v. \rho_1[\mathbf{x} = v]))$
- $ho_3, \sigma_{3b}, \omega_0 \vdash_{\scriptscriptstyle{\mathrm{EXPR}}}$ (nth xs i) $\leadsto inN(12)$
- $\rho_1[\mathbf{x}=inN(12)], \sigma_{3b}, \omega_0 \vdash_{\scriptscriptstyle \mathrm{Expr}} (\mathrm{add}\ \mathbf{x}\ \mathrm{a}) \leadsto inN(20)$
- par (APP), $v_3 = inN(20)$
- (S9) Donnez la valeur de σ_{3c} telle que $\rho_3, \sigma_{3b}, \omega_0 \vdash_{\text{STAT}} \text{SET}$ (nth xs i) (f (nth xs i)) $\leadsto (\sigma_{3c}, \omega_0)$.

(Réponse)

$$\sigma_{3c} = \sigma_{3b}[0 := inN(20)] = [0 = inN(20); 1 = inN(34); 2 = inN(0)]$$

(S10) Donnez la valeur de σ_{3d} telle que $\rho_3, \sigma_{3c}, \omega_0 \vdash_{STAT} SET i (add i 1) <math>\rightsquigarrow (\sigma_{3d}, \omega_0)$.

(Réponse)

$$\sigma_{3d} = \sigma_{3c}[2 := inN(1)] = [0 = inN(20); 1 = inN(34); 2 = inN(1)]$$

(S11) On admet que $\rho_3, \sigma_{3d}, \omega_0 \vdash_{\text{Expr}}$ (1t i (len xs)) \leadsto $(inN(1), \sigma_{3d})$. Donnez (sans justification) la valeur de σ_{3e} telle que

$$ho_3, \sigma_{3d}, \omega_0 \vdash_{\scriptscriptstyle \mathrm{CMDS}} \mathtt{SET}$$
 (nth xs i) ...; SET i .. $\leadsto (\sigma_{3e}, \omega_0)$

(Réponse)

$$\sigma_{3e} = [0 = inN(20); 1 = inN(42); 2 = inN(2)]$$

(S12) Quelle est la valeur v_4 telle que $\rho_3, \sigma_{3e}, \omega_0 \vdash_{\text{EXPR}}$ (1t i (len xs)) $\leadsto (v_4, \sigma_{3e})$?

(Réponse)

$$v_4 = inN(0)$$

(S13) Déduire de ce qui précède que $\rho_1, \sigma_{3a}, \omega_0 \vdash cs_6 \leadsto (\sigma_{3e}, \omega_0)$

(Réponse)

(S13a) par (S12) et (LOOP0),
$$\rho_3, \sigma_{3e}, \omega_0 \vdash_{\text{CMDS}} cs_6 \leadsto (\sigma_{3e}, \omega_0)$$

(S13b) par (S11), (S13a) et (LOOP1),
$$\rho_3, \sigma_{3d}, \omega_0 \vdash_{\text{CMDS}} cs_6 \leadsto (\sigma_{3e}, \omega_0)$$

(S13c) par (S7), (S9), (S10), (S13b) et (LOOP1),
$$\rho_3, \sigma_{3b}, \omega_0 \vdash cs_6 \leadsto (\sigma_{3e}, \omega_0)$$

En fait, on a, par (S6) et (STAT) ρ_3 ; σ_{3a} , $\omega_0 \vdash_{\text{CMDS}} \text{SET x 0}$; $cs_6 \leadsto (\sigma_{3e}, \omega_0)$

(S14) En déduire que $\rho_2, \sigma_2, \omega_0 \vdash_{\text{CMDS}} cs_4; \varepsilon \leadsto (\sigma_3 e, \omega_0)$

(R'eponse)

(S15) Quelle est la valeur du σ_3 recherché?

(Réponse)

$$\sigma_3 = \sigma_{3e}/\rho_1 = [0 = inN(20); 1 = inN(42)]$$