Which of the following functions are one-to-one? For each one-to-one function, determine the inverse function.

Function	One-to-One? (Y or N)	Inverse Function
$f(x) = e^{2x}$	Y	$\int_{1}^{\infty} (x) = \frac{1}{2} \ln x$
$f(x) = e^{-2x}$	Y	$f(x) = -\frac{1}{2} \ln x$
$f(x) = \ln(x+2)$	Y	f(x)=ex-2
$f(x) = 2\ln x$	Y	$f(x) = e^{\left(\frac{x}{2}\right)}$
$f(x) = \tan^{-1}(x+6) + \frac{\pi}{2}$	Y	f(x)= ta(x-==)-6
$f(x) = x^3 + 1$	Y	$f(x) = \sqrt[3]{x-1}$
$f(x) = 1 - x^2$	N	

The following equations involve functions and their inverses. For each, specify the values of x for which the equation is true.

Equation	Correct Values of x
$ \ln(e^x) = x $	- 60 < X < 60
$e^{\ln x} = x$	×>0
$\sin(\sin^{-1}x) = x$	-(<u> </u>
$\sin^{-1}(\sin x) = x$	- T = X = T = 2
$\cos(\cos^{-1}x) = x$	-1 < x < 1
$\cos^{-1}(\cos x) = x$	0 = x = 1
$\tan(\tan^{-1}x) = x$	-∞∠x∠∞
$\tan^{-1}(\tan x) = x$	-T_2 < X < T