Name: Christopher Allwood Student ID: 3174698

ECON 7201 Applied Econometrics

Assignment 2

Due Date

Sunday October 5, 2025 at 11:59 PM

Directions

Answer all questions. Submit both a PDF and Quarto file to the nexus assignment portal.

Git and GitHub

- 1. (a) Create a new R project in your **econ_3201** directory called **assignment_2**.
 - (b) Download the assignment PDF and Quarto file the **assignment 2** folder.
 - (c) Commit and push the changes to your **econ 3201** repository on GitHub.com.

LaTeX

Matrices are created in LaTeX using the \begin{bmatrix}...\end{bmatrix} command. To separate entries along the same row, use &. To end a line, use \\. To make vertical elipses (:), use \vdots. Practice writing the following matrices and vectors in LaTeX. Write the following matrices in LaTeX.

2. (a)
$$X'X = \begin{bmatrix} n & \sum_{i=1}^{n} x_{1i} & \sum_{i=1}^{n} x_{2i} \\ \sum_{i=1}^{n} x_{1i} & \sum_{i=1}^{n} x_{1i}^{2} & \sum_{i=1}^{n} x_{1i}x_{2i} \\ \sum_{i=1}^{n} x_{2i} & \sum_{i=1}^{n} x_{1i}x_{2i} & \sum_{i=1}^{n} x_{2i}^{2} \end{bmatrix}$$
 (b)

b)
$$\Omega = \begin{bmatrix} \sigma_1^2 & 0 & 0 & 0 \\ 0 & \sigma_2^2 & 0 & 0 \\ 0 & 0 & \sigma_3^2 & 0 \\ 0 & 0 & 0 & \sigma_4^2 \end{bmatrix}$$

R

3. In this question we compare standard errors based on (incorrect) asymptotic assumptions with those based on alternate (appropriate) estimator (White). Consider one sample drawn from the following data generating process (DGP) which we will simulate in R:

```
eval = TRUE
echo = TRUE

set.seed(123)
n <- 25
x <- rnorm(n,mean=0.0,sd=1.0)
beta0 <- 1
beta1 <- 0
## x is irrelevant in this model, the data generating process is as follows:
dgp <- beta0 + beta1*x
## The residual is heteroskedastic by construction
e <- x^2*rnorm(n,mean=0.0,sd=1.0)
y <- dgp + e</pre>
```

(a) Compute the OLS estimator of β_2 and its standard error using the lm() command in R for the model $y_i = \beta_1 + \beta_2 x_i + \epsilon_i$ based on the DGP given above.

```
lm(y~x)
```

```
Call:
lm(formula = y ~ x)
```

```
Coefficients:
(Intercept)
```

0.889 0.461

Х

(b) Next, compute the standard error of $\hat{\beta}_2$ by computing $\hat{\sigma}^2(X'X)^{-1}$ in R using matrix commands, and verify that the two standard error estimates are

```
identical.
X \leftarrow cbind(1, x)
beta_hat2 <- solve(t(X) %*\%X) %*\% (t(X)%*\%y)
beta_hat2
        [,1]
  0.8889841
x 0.4610238
summary
function (object, ...)
UseMethod("summary")
<bytecode: 0x000002c87c9a8a50>
<environment: namespace:base>
cbind(matrix= as.numeric(beta_hat2), lm=coef(lm(y~x)))
                {\tt matrix}
```

```
(Intercept) 0.8889841 0.8889841
            0.4610238 0.4610238
Х
```

(c) Compute White's heteroskedasticity consistent covariance matrix estimator using matrices in R and report the White estimator of the standard error of β_2 . Compare this with that from 3 (a) above.

```
resid <-y-X%*% beta_hat2
WHCC_beta_hat2 <- matrix(0,</pre>
                            nrow=2,
                            ncol = 2)
```

```
for (i in 1:n) {
   WHCC_X <- X[i, , drop=FALSE]
   WHCC_beta_hat2 <- WHCC_beta_hat2+ as.numeric(resid[i]^2)* t(WHCC_X) %*% WHCC_X
}

WHCC_Resid <- solve(t(X)%*% X)

White_Result <-WHCC_Resid %*% WHCC_beta_hat2%*%WHCC_Resid

SE_WHCC_Beta_hat2 <-sqrt(White_Result[2,2])

beta_hat2</pre>
```

[,1] 0.8889841 x 0.4610238

SE_WHCC_Beta_hat2

[1] 0.4529172

4. Let $\hat{\theta}$ be an estimator for the population parameter θ . $\hat{\theta}$ is said to be unbiased if $E(\hat{\theta}) = \theta$. That is, if the mean of the sampling distribution of $\hat{\theta}$ is equal to the true population value.

Consider the model

$$y_i = \beta_0 + \beta_1 x_{1,i} - \beta_2 x_{2,i} + \epsilon_i.$$

Lets provide empirical evidence that the ordinary least squares estimators $\hat{\beta}_0$, $\hat{\beta}_1$, and $\hat{\beta}_2$ are unbiased estimators of β_0 , β_1 , β_2 , respectively, using R.

(a) Set the seed to 1, i.e., set.seed(1).

set.seed(1)

(b) Set the number of observations \$n=100\$

```
n=(100)
```

(c) Generate the following model $\$y_i=2+3.5x_{1,i}-9.2x_{2,i}+\epsilon_i$, where $\$x_1\leq 1$

```
x_1 <- rnorm(n,mean=3,sd=6)
x_2 <-rnorm(n,mean=2,sd=4)
epsilon <- rnorm(n,mean=0,sd=100)
y <-2+3.5*x_1-9.2*x_2+epsilon
model4c <- lm(y ~x_1+x_2)
summary(model4c)</pre>
```

Call:

 $lm(formula = y \sim x_1 + x_2)$

Residuals:

Min 1Q Median 3Q Max -294.359 -43.645 0.202 63.692 263.941

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.153 13.605 0.452 0.652071
x_1 3.852 1.946 1.979 0.050596 .
x_2 -10.537 2.737 -3.850 0.000212 ***
--Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 104.3 on 97 degrees of freedom Multiple R-squared: 0.162, Adjusted R-squared: 0.1447 F-statistic: 9.377 on 2 and 97 DF, p-value: 0.0001892

(d) Estimate the model coefficients using the `lm()` command. (Search `?lm()` in the console

```
lm(y~x_1+x_2)$coefficients
```

```
(Intercept) x_1 x_2
6.153175 3.851836 -10.536670
```

(e) Using a `for()` loop, replicate the model above \$M=1000\$ times and save the coefficient

```
set.seed(1)
n=100
M=1000
estimates_hat <- matrix( , nrow=M, ncol=3)</pre>
for (i in 1:M){
  x_1 that <- rnorm(n, mean=3, sd=6)
  x_2hat <-rnorm(n,mean=2,sd=4)</pre>
  epsilonhat <- rnorm(n,mean=0,sd=100)</pre>
  yhat <-2+3.5*x_1hat-9.2*x_2hat+epsilonhat
  model4c_hat <- lm(yhat ~x_1hat+x_2hat)</pre>
  summary(model4c_hat)
  estimates_hat[i, ]<-coef(model4c_hat)</pre>
}
summary(model4c_hat)
Call:
lm(formula = yhat ~ x_1hat + x_2hat)
Residuals:
             1Q Median
                             3Q
    Min
                                     Max
-237.36 -61.37 18.30 58.46 207.67
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -16.822 11.283 -1.491 0.13922
x_1hat
               2.759
                         1.361 2.028 0.04531 *
x_2hat
              -6.237
                          2.212 -2.819 0.00584 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 87.71 on 97 degrees of freedom
Multiple R-squared: 0.1235,
                               Adjusted R-squared: 0.1055
F-statistic: 6.837 on 2 and 97 DF, p-value: 0.001669
colnames(estimates_hat) <-c("Intercept", "Beta1_hat", "Beta2_hat" )</pre>
lm(yhat~x_1hat+x_2hat)$coefficients
```

x_2hat

(Intercept)

 x_1hat

```
-16.821915 2.759031 -6.236846
```

(f) Using `hist()`, plot the sampling distributions of the coefficient estimates, \$\beta_1\$

```
hist(estimates_hat[, "Beta1_hat"],
    main="Sampling Distribution from 1000 iterations",
    xlab = x_1hat,
    col= "blue")
```

Sampling Distribution from 1000 iterations


```
hist(estimates_hat[, "Beta2_hat"],
    main="Sampling Distribution from 1000 iterations",
    xlab = x_2hat,
    col= "green")
```

Sampling Distribution from 1000 iterations

(g) Add a vertical line to each figure at the mean of the respective variable. Search `?abli:

```
hist(estimates_hat[ , "Beta1_hat"],
    main="Sampling Distribution from 1000 iterations",
    xlab = x_1hat,
    col= "blue")

abline(v= mean(estimates_hat[, "Beta1_hat"]),
    col= "red",
    lwd=2,
    lty=2)
```

Sampling Distribution from 1000 iterations


```
hist(estimates_hat[ , "Beta2_hat"],
    main="Sampling Distribution from 1000 iterations",
    xlab = x_2hat,
    col= "green")

abline(v= mean(estimates_hat[, "Beta2_hat"]),
    col= "red",
    lwd=2,
    lty=2)
```

Sampling Distribution from 1000 iterations

