dnssec-detect项目年度报告

1.项目背景与要求

DNSSEC是一种dns的安全扩展技术,通过提供源身份验证来防止 DNS 数据欺骗,并使用公钥加密确保数据完整性和不存在身份验证。尽管保护像 DNS 这样对互联网至关重要的技术的重要性是显而易见的,但 DNSSEC 的实施增加了已部署的 DNS 基础设施的复杂性,这可能会导致配置错误,而对于支持dnssecc的递归服务器来说,能否验证出这些错误是保证dns是否安全的重要前提。

本项目研究加密递归解析服务器错误配置检测方法,并研发原型系统,对开放的重要加密递归解析服务器进行配置错误分析。 DNSSEC的配置错误主要体现在权威域名的错误配置,本项目将基于RFC8914等标准,全面梳理DNSSEC的错误配置类型,拟搭建测试环境,将多个支持DNSSEC的权威域名设置不同错误配置,通过命令行和脚本的形式发数据包请求,对开放的支持DNSSEC的重要递归解析服务器进行探测,分析递归解析服务器是否提供相应的错误提示,以判定递归服务器对DNSSEC配置错误是否有效验证。

1.1 梳理错误类型

INFO- CODE	PURPOSE	DESCRIPTION
0	other error	does not match known extended error
1	Unsupported DNSKEY Algorithm	DNSKEY RRset contained only unsupported DNSSEC algorithms.
2	Unsupported DS Digest Type	a DS RRset contained only unsupported Digest Types.
3	stale Answer	The resolver was unable to resolve the answer within its time limits
4	Forged Answer	provide a forged answer for some reasons
5	DNSSEC Indeterminate	DNSSEC validation by resolver ended in the indeterminate state
6	DNSSEC Bogus	DNSSEC validation by resolver ended in the bogus state
7	Signature Expired	no signatures are presently valid and some (often all) are expired
8	Signature Not Yet Valid	no signatures are presently valid and at least some are not yet valid.
9	DNSKEY Missing	A DS record existed at a parent, but no supported matching DNSKEY record could be found for the child
10	RRSIGs Missing	no RRSIGs could be found for at least one RRset where RRSIGs were expected.
11	No Zone Key Bit Set	no Zone Key Bit was set in a DNSKEY
12	NSEC Missing	the requested data was missing and a covering NSEC or NSEC3 was not provided
13	Cached Error	The resolver is returning the SERVFAIL RCODE from its cache.
14	Not Ready	The server is unable to answer the query, as it was not fully functional when the query was received.
15	Blocked	The server is unable to respond to the request because the domain is on a blocklis
16	Censored	The server is unable to respond to the request because the domain is on a blocklish due to an external requirement imposed by an entity
17	Filtered	the request domain is on a blocklist as requested by the client
18	Prohibited	a query from an "unauthorized" client can annotate its REFUSED message with thi code
19	Stale NXDomain Answer	answer with a previously cached NXDOMAIN answer
20	Not Authoritative	
21	Not Supported	The requested operation or query is not supported
22	No Reachable Authority	The resolver could not reach any of the authoritative name servers (or they potentially refused to reply).
23	Network Error	An unrecoverable error occurred while communicating with another server.
24	Invalid Data	The authoritative server cannot answer with data for a zone it is otherwise configured to support
25- 49151	Unassigned	
49151- 65535	reserved for private use	

1.2 搭建环境进行探测

搭建测试环境,将多个支持DNSSEC的权威域名设置不同错误配置,通过命令行和脚本的形式发数据包请求,对开放的支持 DNSSEC的重要递归解析服务器进行探测。

2.研究思路

- 首先,我们基于 RFC8914 等标准,全面梳理DNSSEC的错误配置类型;
- 接着,我们搭建了域名iwbtfy.top,配置好了可以配置的相关错误;
- **同时**,为了配置更多的错误,我们扩展到三级域,并且进行相应的配置;
- 然后,我们从全球前百万的dns服务器表中筛选了支持dnssec的递归服务器;
- 最后,编写好python脚本探测程序,以及python结果统计程序,对这一错误进行检错统计。大致方案流程如下图:

2.1 环境准备

一台腾讯云服务器: 123.207.59.193一个腾讯云的域名: iwbtfy.top

2.2 配置域名iwbtfy.top

1. 将租借的iwbtfy.top域名解析的dns服务器指向租借的腾讯云服务器

- 2. 在腾讯云服务器中配置该域名的域配置文件,使其可以成功解析域名
 - 下载安装bind

```
yum install bind -y
```

• 配置/etc/named.conf文件

```
zone "iwbtfy.top" IN {
   type master;
   auto-dnssec maintain;
   update-policy local;
   file "iwbtfy.top.zone";
   key-directory "/var/named/keys";
};
```

• 配置/var/named/iwbtfy.top.zone文件

```
$TTL 600

iwbtfy.top. IN SOA ns admin.iwbtfy.top. (

3

1H

5M

2D

6H )

iwbtfy.top. IN NS ns.iwbtfy.top.
iwbtfy.top. IN MX 10 mail.iwbtfy.top.
ns IN A 123.207.59.193
mail IN A 123.207.59.193
```

```
; www IN A 123.207.59.193
; ftp IN CNAME www
@ IN A 123.207.59.193
www IN NS ns1.www
ns1.www IN A 123.207.59.193
```

3. 在腾讯云服务器中进一步配置该域名的dnssec配置

• 生成keys

```
mkdir /var/named/keys

cd /var/named/keys

dnssec-keygen -f KSK -a RSASHA1 -r /dev/urandom -b 512 -n ZONE iwbtfy.top.

dnssec-keygen -a RSASHA1 -r /dev/urandom -b 512 -n ZONE iwbtfy.top.

kSK Kiwbtfy.top.+005+16429.key

ZSK Kiwbtfy.top.+005+63462.key
```

• 将keys添加到/var/named/iwbtfy.top.zone

```
vi iwbtfy.top.zone 添加

$INCLUDE "/var/named/keys/Kiwbtfy.top.+005+16429.key"

$INCLUDE "/var/named/keys/Kiwbtfy.top.+005+63462.key"
```

• 用keys签名zone

```
dnssec-signzone -K /var/named/keys -o iwbtfy.top. /var/named/iwbtfy.top.zone
```

• 修改/etc/named.conf文件

```
zone "iwbtfy.top" IN {
   type master;
   auto-dnssec maintain;
   update-policy local;
   file "iwbtfy.top.zone.signal";
   key-directory "/var/named/keys";
};
# 改成签名过的域文件
```

• 生成ds记录

```
dnssec-dsfromkey -2 Kiwbtfy.top.+005+16429.key
iwbtfy.top. IN DS 16429 5 2 C86EDB0E66548551236FDF978CB92E12F005C033FA2B7DC21AA4FD98BF0E5E8B
```

• 将ds记录添加到腾讯云控制台

2.3 扩展三级域——<u>www.iwbtfy.top</u>

2.4 修改域名dnssec配置——配置错误

具体修改-----> 3.项目方案实施结果总结

2.5 筛选支持dnssec的递归服务器

• 收集dns服务器

○ 网址: <u>https://public-dns.info/</u>

- 筛选支持dnssec的递归服务器
 - recursion

```
# 筛选递归服务器
# flag字段中含有RA ---> recursion available
```

```
# 参数说明
# nameserver: 需要检测的dns服务器ip
def is_recursion(nameserver):
  # 定义dig命令和参数
  dig_command = ['dig', '+norecurse', 'example.com', '@' + nameserver]
  # 执行dig命令
  try:
      dig_output = subprocess.check_output(dig_command)
  except subprocess.CalledProcessError as e:
     print("Error running dig:", e)
     exit(1)
  # 在输出中查找包含"flags"的行
  flags_line = None
  for line in dig_output.split('\n'):
      if "flags".encode("utf-8") in line:
         flags_line = line
         break
  # 从含有flags的行中进一步查询是否有RA字段
  if "ra".encode("utf-8") in flags_line:
     return True
  else:
      return False
```

o dnssec

```
# 筛选递归服务器中的支持dnssec的递归服务器
# flag字段中含有AD ---> authenticated data
# 参数说明
# nameserver: 需要检测的dns服务器ip
def is_dnssec(nameserver):
  # 定义dig命令和参数
  dig_command_two = ['dig', '+norecurse', 'example.com', '@' + nameserver]
  # 执行dig命令
  try:
     dig_output = subprocess.check_output(dig_command_two)
  except subprocess.CalledProcessError as e:
     print("Error running dig:", e)
     exit(1)
  # 在输出中查找包含"flags"的行
  flags_line = None
  for line in dig_output.split('\n'):
     if "flags".encode("utf-8") in line:
         flags_line = line
         break
  # 从含有flags的行中进一步查询是否有RA字段
  if "ad".encode("utf-8") in flags_line:
     return True
  else:
     return False
```

2.6 编写脚本探测服务器检错能力

```
# 检测dnssec的配置错误并且写入文件
# errors: 配置的错误(如果不知道可以填NULL)
                                           domain_name: 需要检测的域名
# nameserver_file: 使用的递归服务器的文件路径
                                           key_file: 根服务器的key的路径
# logs:存储日志的列表
                                           record_types: 需要查询域名的记录类型
# project_root_file: 项目的根路径
def detect_error(errors, domain_names, nameserver_file, key_file, logs, record_types,
project_root_file):
   log_file = os.path.join(project_root_file, "data", "detect_logs",
                           "detect_logs_" + domain_names.split('.')[0] + '_' +
                           errors + ".txt")
   nameserver_re_dnssec = np.loadtxt(nameserver_file, delimiter=',', dtype=str)
   errors_set = set()
    for nameserver in nameserver_re_dnssec:
       # 创建dig命令
       dig_command = ['dig', '@' + nameserver, '+sigchase', '+trusted-key=' + key_file, domain_names,
record_types]
       try:
           # 日志
           logs.append(nameserver)
           result = subprocess.check_output(dig_command)
           lines = result.splitlines()
           if lines:
               last_line = lines[-1]
               if not last_line:
                   last_line = lines[-2]
               print(last_line)
               errors_set.add(last_line)
           # 保存日志
           logs.append(result)
       except subprocess.CalledProcessError as e:
           errors_set.add("DIG command failed")
           logs.append("DIG command failed")
           print("connection time out")
       except FileNotFoundError:
           print('DIG command not found. Make sure dig is installed on your system.')
```

2.7 结果统计与分析

具体统计分析-----> 3.项目方案实施结果总结

3.项目方案实施结果总结

3.1 iwbtfy.top上配置的错误

- 1. 错误的ds
- 配置:修改ds记录的摘要算法

• 结果:

iwbtfy_ds_error_distribute

- Impossible to verify the Non-existence, the NSEC RRset can't be validated: FAILED
- DNSKEY is missing to continue validation: FAILED
- ERROR no DS validates a DNSKEY in the DNSKEY RRset: FAILED
- DIGcommand failed
- RRSIG is missing for continue validation: FAILED
- 说明:
 - o Error no DS validates a DNSKEY in the DNSKEY RRset:期望的正确返回
 - DIGcommand failed: 无法连接到dns服务器
 - Impossible to verify the non-existence, the NSEC RRset can't be
 validated:服务器探测不到域名的A地址时的返回,即当服务器发现域名的DNSSEC配置有问题后就不再进一步解析,也可算是一种检错的结果
 - DSKEY is missing to Ncontinue validation:检测错误
 - 。 RRSIG is missing to continue validation:检测错误
 - 。 针对该配置错误类型,我们以Error no DS validates a DNSKEY in the DNSKEY Rrset为主要判断依据。

2. Unsupported DNSKEY Algorithm

• 配置:将DNSKEY的签名算法值改掉

```
600 DNSKEY 256 3 5 (

AWEAAdxgYRXnZANzpvCRkDg7chu82TfMMqHa

U4VB/G01T5ru1Gdi1GzfsgjLmcjwt2X+i01z

QAuojeklOMRUnIb3h1U=

); ZSK; alg = RSASHA1; key id = 63462

5 ----> 30
```

iwbtfy_dnskey_error_distribute

• 说明:

- No DNSKEY is valid to check the RRSIG of the RRset:期望的正确返回
- 。 DIGcommand failed: 无法连接到dns服务器
- Impossible to verify the non-existence, the NSEC RRset can't be
 validated:服务器探测不到域名的A地址时的返回,即当服务器发现域名的DNSSEC配置有问题后就不再进一步解析,也可算是一种检错的结果
- o DNSKEY is missing to continue validation: 检测错误
- 。 RRSIG is missing to continue validation: 检测错误
- 。 针对该配置错误类型,我们以No DNSKEY is valid to check the RRSIG of the RRset为主要判断依据。

3. RRSIG missing

• 配置: 直接注释掉A记录的RRSIG

```
600 A 123.207.59.193
; 600 RRSIG A 5 2 600 (
; 20240112145536 20231213145536 63462 iwbtfy.top.
; hdCiDnQ11MYeqRhx+PzKMFrFgsujDoD/PWSe
; hwR9KwawsoDabXwjmryhT5PzwpIsuVim09Qw
; BwYqeLtjCvguFQ== )
```

• 结果:

iwbtfy_RRsigMissing_error_distribute

- DIGcommand failed
- RRSIG is missing for continue validation: FAILED
- Impossible to verify the Non-existence, the NSEC RRset can't be validated: FAILED

• 说明:

- 。 RRSIG is missing to continue validation:期望的正确返回
- 。 DIGcommand failed:无法连接到dns服务器
- Impossible to verify the non-existence, the NSEC RRset can't be
 validated:服务器探测不到域名的A地址时的返回,即当服务器发现域名的DNSSEC配置有问题后就不再进一步解析,也可算是一种检错的结果
- 。 针对该配置错误类型,我们以RRSIG is missing to continue validation为主要判断依据。

4. NSEC missing

• 配置: 直接注释掉nsec

```
; 21600 NSEC mail.iwbtfy.top. A NS SOA MX RRSIG NSEC DNSKEY
; 21600 RRSIG NSEC 5 2 21600 (
; 20240112145536 20231213145536 63462 iwbtfy.top.
; HVTpaXHK2/gQXtj6MEaL0f1KntSWRSk2gHnl
; 3F9cjYttR/jcLWYdJOshXBNjSWokpvF7auih
; 3+li4ADLAIFMYw== )
```

• 结果:

iwbtfy_nsec_error_distribute

- RRSIG is missing for continue validation: FAILED
- Impossible to verify the Non-existence, the NSEC RRset can't be validated: FAILED
- DIGcommand failed
- DNSKEY is missing to continue validation: FAILED
- 说明:
 - o Impossible to verify the non-existence, the NSEC RRset can't be validated:期望的正确返回
 - 。 DIGcommand failed: 无法连接到dns服务器
 - o DNSKEY is missing to continue validation: 检测错误
 - 。 RRSIG is missing to continue validation: 检测错误
 - 。 针对该配置错误类型,我们以Impossible to verify the non-existence, the NSEC RRset can't be validated为主要判断依据。

3.2 <u>www.iwbtfy.top</u>上配置的错误

1. DNSKEY missing

• 配置: 直接注释掉DNSKEY

```
; 600 DNSKEY 256 3 5 (
; AWEAAZjFG/UFHijzwJ5d2TpLl7XYWKJodDpJ
; LrSxRAHMEqAd700t0NVtXRooQPO+RjgGIqmp
; D9BB3cpzhuqeQSLHI3k=
; ) ; ZSK; alg = RSASHA1 ; key id = 24216
```

• 结果:

www_DnskeyMissing_error_distribute

- Impossible to verify the Non-existence, the NSEC RRset can't be validated: FAILED
- DIGcommand failed
- RRSIG is missing for continue validation: FAILED
- ERROR no DS validates a DNSKEY in the DNSKEY RRset: FAILED

• 说明:

- o RRSIG is missing to continue validation:期望的正确返回
- DIGcommand failed: 无法连接到dns服务器
- o Impossible to verify the non-existence, the NSEC RRset can't be validated:服务器探测不到域名的A地址时的返回,即当服务器发现域名的DNSSEC配置有问题后就不再进一步解析,也可算是一种检错的结果
- o Error no DS validates a DNSKEY in the DNSKEY RRset:检测错误
- 针对该配置错误类型,我们以RRSIG is missing to continue validation为主要判断依据。

```
600
      A 123.207.59.193
600 RRSIG A 5 3 600 (
       20240113102237 20231214102237 24216 www.iwbtfy.top.
       fHjWKPUHJdUhWZiZmQJyVG23gPZdEcNbhwe1
       ievRpFmRvUa9dAiCtTqeHXWhxy+U8i6EjSNM
       4Tv7HXZc/OKpPw== )
```

• 结果:

www_RRsigMissing_error_distribute

- DIGcommand failed
- Impossible to verify the Non-existence, the NSEC RRset can't be validated: FAILED
- RRSIG is missing for continue validation: FAILED
- 说明:
 - o RRSIG is missing to continue validation:期望的正确返回
 - o DIGcommand failed: 无法连接到dns服务器
 - Impossible to verify the non-existence, the NSEC RRset can't be validated:服务器探测不到域名的A地址时的返回,即当服务器发现域名的DNSSEC配置有问题后就不再进一步解析,也 可算是一种检错的结果
 - 。 针对该配置错误类型,我们以RRSIG is missing to continue validation为主要判断依据。

3. Signature Not Yet Valid

• 配置: 将签名的起始时间改为比当前的时间晚

```
600 DS 19291 5 2 (
       4B91D8C3CBD8F956D8CF35FF7E7369EE307C
       526F9A0F5C9B3BFA720158D98970 )
600 RRSIG DS 5 3 600 (
       20240112145536 20231213145536 63462 iwbtfy.top.
       BJyUMVBGzFZ1Xq3eCp7/FK4cwZUFq8gBBqt/
       cMQFSxGoz4XeQssiBysQlx33kzlR5TA4KYTT
       sntsqqDLxZJ/+Q== )
目前时间-->20231223234345
结束有效时间-->20240112145536
开始有效时间-->20231213145536 改成 20231224432432
```

www_dsNotValid_error_distribute

- DNSKEY is missing to continue validation: FAILED
- RRSIG is missing for continue validation: FAILED
- No DNSKEY is valid to check the RRSIG of the RRset: FAILED
- DIGcommand failed
- Impossible to verify the Non-existence, the NSEC RRset can't be validated: FAILED
- 说明:
 - o RRSIG is missing to continue validation:期望的正确返回
 - o DIGcommand failed: 无法连接到dns服务器

- o Impossible to verify the non-existence, the NSEC RRset can't be validated:服务器探测不到域名的A地址时的返回,即当服务器发现域名的DNSSEC配置有问题后就不再进一步解析,也可算是一种检错的结果
- o DNSKEY is missing to continue validation: 检测错误
- 。 No DNSKEY is valid to check the RRSIG of the RRset: 检测错误
- 。 针对该配置错误类型,我们以RRSIG is missing to continue validation为主要判断依据。

4. Signature Expired

• 配置: 将签名的结束时间改成比当前的早

• 结果:

www_dsExpiration_error_distribute

- DIGcommand failed
- RRSIG is missing for continue validation: FAILED
- No DNSKEY is valid to check the RRSIG of the RRset: FAILED
- Impossible to verify the Non-existence, the NSEC RRset can't be validated: FAILED

• 说明:

- Impossible to verify the non-existence, the NSEC RRset can't be validated:期望的正确返回
- DIGcommand failed: 无法连接到dns服务器
- o DNSKEY is missing to continue validation: 检测错误
- 。 RRSIG is missing to continue validation:检测错误
- 。 针对该配置错误类型,我们以Impossible to verify the non-existence, the NSEC RRset can't be validated为主要判断依据。

5. Unsupported DS Digest Type

• 配置: 将ds记录的摘要类型改成支持范围外

www_unSupportedDsType_error_distribute

- RRSIG is missing for continue validation: FAILED
- RRSIG for DNSKEY is missing to continue validation : FAILED
- DIGcommand failed
- DNSKEY is missing to continue validation: FAILED
- Impossible to verify the Non-existence, the NSEC RRset can't be validated: FAILED
- the DNSKEY isn't trusted-key and there isn't DS to validate the DNSKEY: FAILED
- ERROR no DS validates a DNSKEY in the DNSKEY RRset: FAILED

• 说明:

- o Error no DS validates a DNSKEY in the DNSKEY RRset:期望的正确返回
- 。 DIGcommand failed: 无法连接到dns服务器
- o Impossible to verify the non-existence, the NSEC RRset can't be

validated:服务器探测不到域名的A地址时的返回,即当服务器发现域名的DNSSEC配置有问题后就不再进一步解析,也可算是一种检错的结果

- o DNSKEY is missing to continue validation: 检测错误
- 。 RRSIG is missing for continue validation: 检测错误
- 。 RRSIG for DNSKEY is missing to continue validation: 检测错误
- 。 the DNSKEY isn't trusted-key and there isn't DS to validate the DNSKEY: 检测错误
- 。 针对该配置错误类型,我们以Error no DS validates a DNSKEY in the DNSKEY RRset为主要判断依据。

6. DNSKEY Signature expired

• 配置: 修改dnskey的签名时间比当前早

• 结果:

www_dnskeySigExpired_error_distribute

- DIGcommand failed
 - No DNSKEY is valid to check the RRSIG of the RRset: FAILED
- DNSKEY is missing to continue validation: FAILED
- Impossible to verify the Non-existence, the NSEC RRset can't be validated: FAILED
- RRSIG is missing for continue validation: FAILED

• 说明:

- RRSIG is missing for continue validation:期望的正确返回
- 。 DIGcommand failed: 无法连接到dns服务器
- Impossible to verify the non-existence, the NSEC RRset can't be
 validated:服务器探测不到域名的A地址时的返回,即当服务器发现域名的DNSSEC配置有问题后就不再进一步解析,也可算是一种检错的结果
- o DNSKEY is missing to continue validation: 检测错误
- o No DNSKEY is valid to check the RRSIG of the RRset: 检测错误
- 。 针对该配置错误类型,我们以RRSIG is missing for continue validation为主要判断依据。

4.总结与展望

4.1 总结

我们使用筛选到的1000台全球的支持dnssec的递归服务器对每一种配置错误的验证,同时对返回的验证结果进行了可视化,结果分析,得出以下结论:

- 1. 首先不是所有的RFC8914中的错误类型都是可配置的,有些错误类型可能是由于网络原因造成的,我们通过分析,对可配置的错误类型都进行了配置。
- 2. 根据每一个配置错误的分布图,我们可以清晰的看出,支持dnssec的递归服务器是可以检测出权威dnssec的配置错误,但是大多数返回的日志不能返回具体的错误类型,也就是能检错,但是不能对检测出具体这些配置错误是RFC8914中的哪一种。
- 3. 对于每一种配置的错误,错误分布图中都会有四种左右的错误,这说明目前每台支持dnssec的递归服务器获取到的域名的 dnssec配置是有区别的,才会导致返回的错误日志会不一样。

4.2 展望

因此,在与陈老师开会讨论后,陈老师提出了新的思路,即通过修改dig版本,使其支持edns,将其他返回的错误文本信息都统一转换为error_code,如下图,以更好的说明服务器的检测能力。同时,为了搭建一个整体的检测系统,我们后续将为每一种错误类型申请一个三级域名并配置错误,最后再封装成递归解析安全增强措施部署分析的原型系统。