

Q1: Binomial vs. Poisson Distributions

- -「<mark>模擬</mark>」機率事件 (n=500, p=0.002), 繪製機率分布圖,並計算該分布的平均値與標準差
- -根據上述機率事件,分別以二項分布與波以松分布,計算x=2 的機率

Q2:台南市學校的空間型態檢定 (using quadrat analysis)

Quadrat Analysis

Step 1 - fishnet GridTopology()

Step 2 - calculate counts of points in each grid poly.count()

Step 3 - calculate mean and variance of counts

Step 4 - hypothesis testing: Variance-Mean Ratio Test (t-test)

Step 5 - make a conclusion

概念複習:pmf & pdf

Discrete
e.g. Binomial/Poisson

Binomial distribution with n = 15 and p = 0.2

Continuous e.g. Normal

概念複習:Poisson

Poisson分布: 單位時間或空間中

隨機事件發生的次數之機率分布

單位區間內發生的次數 = λ

Poisson分布的性質

期望值(平均數):λ

變異數:λ

Poisson過程

將單位分成成n等分 $(n \to \infty)$

對於每一格小間隔

- 1. 兩兩獨立
- 2. 在小間隔中發生一次的機率為 $\frac{\lambda}{n}$
- 3. 在小間隔中發生兩次以上的機率為0
- \rightarrow n個獨立Bernoulli試驗(二項分配:n=n, p= $\frac{\lambda}{n}$)

$$P(X = k) = \lim_{n \to \infty} {n \choose k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} = \frac{e^{-\lambda} \lambda^k}{k!}$$

概念複習:Poisson

· 一週會賣出2件,一個月?

二項分配:
一天:p=2/7
30天:n=30, p=2/7

當n大, p小:
二項分配近似Poisson b(n,p)→poi(λ=np)

Poisson分配: 30天平均=60/7 λ=60/7

二項分配以天為單位(分30間隔)

二項分配以小時為單位(分720間隔)

點型態分布

分散

均勻分布 uniform dispersion

隨機

隨機分布 random independent

群聚

聚集分布 cluster aggregated

點型態分布

- ① 設定虛無假設與對立假設
- ② 計算統計量
- ③ 比較p值與顯著水準α
- ④ 決定是否拒絕虛無假設
- ⑤ 得出結論

1) 虚無假設與對立假設

(2) 計算統計量

③ 比較p值與α

4 拒絕虛無假設?

(5) <mark>得出結論</mark>

虛無假設: H_0

現狀、沒有關係、沒有區別

對立假設: H_a

現狀為非、有關係、有差別

※通常是研究者希望證明的

雙尾檢定

A和B有沒有區別?

- 1 虚無假設與對立假設
- (2) 計算統計量
- ③ 比較p值與α
- (4) 拒絕虛無假設?
- (5) 得出結論

$$\mu = 170$$
 $H_0 \qquad \mu_1 - \mu_2 = 0$
 $s^2 = \lambda$

$$\mu \neq 170$$

$$H_a \qquad \mu_1 - \mu_2 \neq 0$$

$$s^2 \neq \lambda$$

不等於

單尾檢定

A有沒有比B大/小?

$$\mu = 170$$
 $\mu \le 170$ $\mu_1 - \mu_2 = 0$ $\mu_1 - \mu_2 \ge 0$ $\mu_2 = \lambda$ $\mu_1 - \mu_2 \ge 0$ $\mu_2 = \lambda$ $\mu_1 - \mu_2 \ge 0$

 $\mu > 170$ $\mu_1 - \mu_2 < 0$ $s^2 > \lambda$

(兩者的概念是一樣的)

大於、小於

- (1) 虚無假設與對立假設
- 2 計算統計量
- ③ 比較p值與α
- 4) 拒絕虛無假設?
- (5) 得出結論

依照需求進行檢定,計算統計量。

→例如:t檢定、卡方檢定.....

- t檢定
 - 單一母體平均值
 - 兩母體平均差
- ANOVA 變異數分析 (F檢定)
 - 多母體平均是否一致
- 卡方檢定 (X²檢定)
 - 獨立性檢定:兩個變數是否獨立
 - 齊一性檢定:母體分配是否相同
 - 適合度檢定:樣本是否服從某機率分配或某已知關係

判斷結果

1 虚無假設與對立假設

② 計算統計量

③ 比較p值與α

4) 拒絕虛無假設?

(5) 得出結論

 H_0 為真

(不應拒絕 H_0)

真

實

狀

況

 H_0 為假

(應拒絕 H_0)

拒絕 H_0

接受 H_0

型一錯誤

正確

α: 顯著水準, 容許型一錯誤發生的機率上限

p: 犯型一錯誤的機率

正確

型二錯誤

 $\alpha = 0.05$

雙尾檢定

單尾檢定

- (1) 虚無假設與對立假設
- ② 計算統計量
- ③ 比較p值與α
- 4) 拒絕虛無假設?
- (5) 得出結論

※統計量落在拒絕域→p値小於 α (→拒絕虛無假設)

雙尾檢定

單尾檢定

- (1) 虚無假設與對立假設
- ② 計算統計量
- ③ 比較p值與α
- 4 拒絕虛無假設?
- (5) <mark>得出結論</mark>

- (1) 虚無假設與對立假設
- 2 計算統計量
- ③ 比較p值與α
- 4 拒絕虛無假設?
- (5) 得出結論

• p值< α \rightarrow 拒絕 H_0

• p值 $\geq \alpha \rightarrow$ 接受 H_0

- 1 虚無假設與對立假設
- (2) 計算統計量
- ③ 比較p值與α
- (4) 拒絕虛無假設?
- (5) 得出結論

• p值< α \rightarrow 拒絕 H_0

結論:雙尾 - 顯著有差、有關係

單尾 - 顯著較大 / 小

• p值 $\geq \alpha \rightarrow$ 接受 H_0

結論:沒有關係、沒有區別

 $H_0: s^2 = \lambda$ (隨機分布)

- (1) 虚無假設與對立假設
- (2) 計算統計量
- ③ 比較p值與α
- 4) 拒絕虛無假設?
- ⑤ 得出結論

• p值< α \rightarrow 拒絕 H_0

非隨機分布

結論:雙尾-顯著有差、有關係

單尾 - 顯著較大 / 小

▶群聚現象

• p值 $\geq \alpha \rightarrow$ 接受 H_0

結論:沒有關係、沒有區別

隨機分布

Quadrat Analysis

Step 1 - fishnet GridTopology()

Step 2 - calculate counts of points in each grid poly.count()

Step 3 - calculate mean and variance of counts

Step 4 - hypothesis testing: **Variance-Mean Ratio Test** (t-test)

Step 5 - make a conclusion

VMR Test

$$VMR = \frac{vairance}{mean}$$

$$t = \frac{VMR - 1}{s.e.},$$
 $s.e. = \sqrt{\frac{2}{k - 1}},$ $df = k - 1$

Fishnet

grd = GridTopology(cellcentre.offset, cellsize, cells.dim) $c(x,y) \qquad c(1000,1000) \qquad c(5,5)$ 到底需要多少格子?
if cellcentre.offset = min, $cells.dim = \left[\frac{max - min}{cellsize} + 0.5\right]$ $= round\left(\frac{max - min}{cellsize}\right) + 1$

grd = as.SpatialPolygons.GridTopology(grd, proj4string = TN@proj4string) →之後要對照的CRS

※需要有表格可以使用SpatialPolygonsDataFrame