

AB

ISAACS 3-6
Ser. No. 10/797399
Date Filed 3/10/04

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift
(10) DE 41 19 518 A1

(51) Int. Cl. 6:
H 01 Q 15/04
H 01 Q 19/06
H 01 Q 3/44
H 01 Q 15/24
H 01 Q 5/00

DE 41 19 518 A1

(21) Aktenzeichen: P 41 19 518.3
(22) Anmeldetag: 13. 6. 91
(43) Offenlegungstag: 8. 1. 98

(30) Unionspriorität:
90 07516 15.06.90 FR

(72) Erfinder:
Chekroun, Claude, Gif sur Yvette, FR

(71) Anmelder:
Thomson-CSF Radant, Les Ulis, FR
(74) Vertreter:
Prinz und Kollegen, 81241 München

(54) Multiband-Mikrowellenlinse und ihre Anwendung bei einer Antenne mit elektronischer Verschwenkung

(57) Eine Mikrowellenlinse der in der FR-PS 2469808 beschriebenen Art ist zum Betrieb in wenigstens zwei Frequenzbändern weitergebildet. Zu diesem Zweck ist jeder Phasenschieber-Kanal (D) der Linse in wenigstens zwei Unterkanäle (d_1 , d_2) unterteilt, von denen jeder einem der Frequenzbänder der Linse zugeordnet ist. Jeder Unterkanal enthält außer den Phasenschieber-Tafeln (P_1 , P_2), die aneinandergesetzt sind, Diplexer-Mittel (4_1 , 4_2) und Impedanz-Anpassungsmittel (5_1 , 5_2) an jedem seiner Enden.
Eine solche Linse ist für die Ausbildung einer Multiband-Antenne für elektronische Verschwenkung geeignet.

DE 41 19 518 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

BUNDESDRUCKEREI 11.97 702 062/5

13/26

1

Beschreibung

Die Erfindung betrifft eine Multiband-Mikrowellenlinse, also eine Linse für den Betrieb in mehreren Frequenzbändern. Gegenstand der Erfindung ist ferner die Anwendung einer solchen Linse beim Aufbau einer Antenne mit elektronischer Verschwenkung.

Es ist bekannt, beispielsweise zur Herstellung einer Antenne mit elektronischer Verschwenkung, eine Mikrowellenlinse zu verwenden, die aus Platten oder Tafeln besteht, welche eine Phasenverschiebung der sie durchquerenden elektromagnetischen Welle bewirken. Jede dieser Platten oder Tafeln enthält mit Dioden versehene Drähte, die zueinander parallel sind. Die Steuerung des Zustandes der Dioden, gesperrt oder stromleitend, bewirkt eine Veränderung der Phasenverschiebung, die der auftreffenden Welle aufgegeben wird, um eine elektronische Verschwenkung zu bewirken.

Eine solche Antenne ist beispielsweise in der FR-PS 2 469 808 beschrieben. Ihr Funktionsprinzip ist in Fig. 1 der beigefügten Zeichnung veranschaulicht. Fig. 1a zeigt eine auseinandergesetzte Teilansicht, und Fig. 1b eine Draufsicht in der Ebene des elektrischen Feldes.

In Fig. 1a sind drei einander überlagerte Tafeln P₁, P₂ und P₃ in derselben Ebene dargestellt. Jede dieser Tafeln besteht aus einem dielektrischen Träger 1, an dem parallele Drähte 2 angeordnet sind, die jeweils Dioden 3 tragen. Bei dem in der Figur gezeigten Beispiel trägt jeder Draht zwei Dioden. Die Dioden sind im gleichen Sinne geschaltet. Die mit Dioden versehenen Drähte 2 sind durch Leiter 7 verbunden, die zu ihnen im wesentlichen senkrecht verlaufen und zur Steuerung des Leitungsstandes der Dioden (leitend oder gesperrt) verwendet werden. In jeder Tafel werden alle Dioden gleichzeitig und in gleicher Weise über die Leiter 7 durch Spannungen angesteuert, die ausreichen, um sie in den leitenden oder gesperrten Zustand zu bringen. Die Tafeln sind von leitfähigen Platten umgeben und durch sie getrennt, die zu ihnen senkrecht verlaufen und mit P_{L1}, P_{L2}, P_{L3} und P_{L4} bezeichnet sind.

In Fig. 1b sind mehrere Tafeln P₁, P₂ und P₃ jeweils durch P bezeichnet und in Kanälen angeordnet, die durch die Platten gebildet und mit P_L bezeichnet sowie jeweils zu zweit verwendet sind. Die Gesamtheit von Tafeln P desselben Kanals bildet einen Phasenschieber (D₁, D₂, D₃ ...). Der aus mehreren solchen Phasenschaltern bestehende Stapel bildet eine aktive Mikrowellenlinse, die von einer Quelle S (Fig. 1a) angestrahlt wird. Diese Quelle S liefert eine elektromagnetische Welle, deren elektrisches Feld E senkrecht zu den Platten P_L steht. Als Beispiel ist in Fig. 1b ein Stapel von fünf Phasenschaltern zugleich mit der Richtung des elektrischen Feldes (Pfeil E) der auftreffenden Welle (Pfeil 10) und der durchgelassenen Welle (Pfeil 20) gezeigt; letztere wird bezüglich der auftreffenden Welle abgelenkt.

Da die Tafeln P unabhängig voneinander angesteuert werden, kann die Phasenverschiebung, welche sie der sie durchquerenden Welle erteilen, von Tafel zu Tafel verschieden sein. Durch Aneinanderfügen mehrerer Tafeln hintereinander in demselben Kanal auf dem Weg der Mikrowelle können Phasenverschiebungen von 0 bis 360° in Stufen erzielt werden, deren Größe von der Anzahl der auseinandergesetzten Tafeln abhängt. Durch Aufeinanderstapeln mehrerer solcher Phasenschalter kann eine elektronische Verschwenkung in einer Ebene parallel zu dem elektrischen Feld E erzielt werden.

Bei manchen Anwendungen ist es erforderlich, diesel-

2

be Antenne in wenigstens zwei verschiedenen Frequenzbändern zu betreiben, insbesondere aus folgenden Gründen:

- gewisse Optimierungen von Parametern sind in manchen Fällen miteinander unvereinbar, während bei Verwendung von mehreren verschiedenen Frequenzbändern die Optimierungen getrennt vorgenommen werden können; dies ist insbesondere für die Mehrdeutigkeit oder die Geschwindigkeits- oder Winkelauflösung der Fall;
- durch Ausdehnung des Frequenzbereiches, in welchem die Antenne betrieben wird, kann deren Immunität gegenüber Störquellen verbessert werden;
- da die sogenannten getarnten Ziele im allgemeinen nur innerhalb von einem relativ schmalen Frequenzbereich getarnt sind, können sie bei Verwendung von mehreren Frequenzbändern besser erfaßt werden;
- durch die Verwendung von mehreren Frequenzbändern können Mehrdeutigkeiten aufgelöst werden, die auf dem Bildeffekt beruhen, also der Erzeugung eines Bildes vom Ziel aufgrund von Reflexionen der von der Antenne gesendeten Wellen am Boden oder am Meer.

Gegenstand der Erfindung ist eine Mikrowellenlinse der in der obengenannten Druckschrift angegebenen Art, die dahingehend weitergebildet ist, daß sie in wenigstens zwei Frequenzbändern betrieben werden kann.

Gemäß der Erfindung ist jeder Phasenschieberkanal der Linse in wenigstens zwei Unterkänele unterteilt, von denen jeder einem Betriebsfrequenzband der Antenne zugeordnet ist. Jeder Unterkanal enthält außer den auseinandergesetzten Phasenschiebertafeln zusätzlich Diplexer-Einrichtungen und Impedanzanpassungs-Einrichtungen an jedem seiner Enden.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung und aus der Zeichnung, auf die Bezug genommen wird. In der Zeichnung zeigen:

Fig. 1a und 1b, die bereits erwähnt wurden, schematische Darstellungen zur Erläuterung des Standes der Technik nach der eingangs genannten Druckschrift;

Fig. 2 eine schematische Darstellung einer Ausführungsform der Multiband-Antenne nach der Erfindung;

Fig. 3 eine Ausführungsform eines Phasenschieberkanals, der in der Struktur nach Fig. 2 verwendet wird;

Fig. 4 eine Ausführungsvariante der Fig. 3;

Fig. 5a und 5b eine Ausführungsform der Diplexer- und Anpassungseinrichtungen bei bestimmten Unterkänele der Linse nach der Erfindung;

Fig. 6a und 6b eine Ausführungsform der Diplexer- und Anpassungseinrichtungen, die bei weiteren Unterkänele der Linse nach der Erfindung verwendet werden;

Fig. 7a und 7b eine Ausführungsform der Diplexer- und Anpassungseinrichtungen, die bei den Unterkänele der Linse nach der Erfindung verwendet werden; und

Fig. 8 eine Ausführungsform der erfindungsgemäßen Multiband-Antenne.

In den verschiedenen Figuren werden einander entsprechende Elemente mit gleichen Bezugszeichen bezeichnet.

Zur Vereinfachung der Beschreibung der Antenne, worin die erfindungsgemäße Linse verwendet wird,

wird der Sendebetrieb angenommen, wobei es sich versteht, daß die Antenne im Empfangsbetrieb analog arbeitet.

Die in Fig. 2 schematisch dargestellte Ausführungsform der erfundungsgemäßen Antenne ist beispielshalber für den Betrieb in zwei Frequenzbändern ausgelegt. Sie besteht aus einer Mikrowellenlinse L, die durch Sende/Empfangs-Einrichtungen (Quelle) S angestrahlt wird, von denen die elektromagnetische Mikrowellenenergie ausgeht.

Die Quelle S enthält Einrichtungen zum Aussenden einer Mikrowelle bei einer ersten Frequenz F_1 , die innerhalb des Frequenzbandes ΔF_1 variieren kann, sowie Einrichtungen zum Aussenden einer Mikrowelle mit einer zweiten Frequenz F_2 , die ihrerseits innerhalb eines Frequenzbandes ΔF_2 variieren kann. Die beiden Frequenzbänder ΔF_1 und ΔF_2 sind vorzugsweise durch einen Abstand voneinander getrennt.

Diese Frequenzen F_1 und F_2 können prinzipiell von beliebigen bekannten Einrichtungen ausgehen. Bei der in Fig. 2 gezeigten Ausführungsform gehen sie von zwei Schlitz-Wellenleitern G_1 , G_2 aus. Diese Wellenleiter sind in Richtung der Achse Ox aufeinandergestapelt. Sie strahlen die Energie entlang der Achse Oz (senkrecht zur Achse Ox) über Slitze F ab, die parallel zur Achse Oy (senkrecht zu den vorgenannten Achsen) ausgebildet sind.

Die Linse L ist analog zu der in den Fig. 1a und 1b gezeigten Ausführungsform gebildet, mit dem Unterschied jedoch, daß jeder Phasenschieberkanal D in zwei Unterkanäle d_1 , d_2 unterteilt ist.

Insbesondere besteht die Linse L aus einem Stapel von Phasenschieberkanälen D, die in Richtung der Achse Ox aufeinanderfolgen und durch leitfähige Platten P_L getrennt sind, welche parallel zur Ebene yOz sind. Die Phasenschieber-Tafeln sind innerhalb der Kanäle parallel zur Ebene xOy angeordnet.

Die Fig. 3 zeigt im einzelnen eine Ausführungsform eines Phasenschieberkanals D nach Fig. 2.

Zwischen den beiden Platten P_L welche den Kanal D abgrenzen, ist eine dritte leitfähige Platte P_{L1} angeordnet, die als Zwischenplatte bezeichnet wird und parallel zu den vorgenannten Platten liegt. Diese Zwischenplatte P_{L1} kann im halben Abstand oder in einem anderen Abstand zwischen den Platten P_L angeordnet sein. Bei einer bevorzugten Ausführungsform ist die Zwischenplatte P_{L1} kleiner als die Platten P_L , beispielsweise um das Abstandsmaß d_p in der Größenordnung einer Wellenlänge bei der niedrigsten Betriebsfrequenz, um zu vermeiden, daß die Anpassung an der Eintrittsfläche der Linse L gestört wird. Jeder Unterkanal ist somit durch eine der Platten P_L und die Zwischenplatte P_{L1} abgegrenzt.

Die Phasenschiebertafeln sind im Inneren jedes Unterkanals angeordnet und so plaziert und dimensioniert, daß sie in folgender Weise betrieben werden:

- die Tafeln P_1 im Unterkanal d_1 bei der Frequenz F_1 ;
- die Tafeln P_2 im Unterkanal d_2 bei der Frequenz F_2 ;

Jeder Unterkanal d_1 und d_2 enthält ferner an jedem seiner Enden Diplexer-Einrichtungen (4_1 bzw. 4_2) sowie Impedanzanpassungs-Einrichtungen (5_1 bzw. 5_2).

Im Betrieb wird die Linse L nach Fig. 2 durch die zwei Wellenleiter G_1 und G_2 angestrahlt, und zwar gleichzeitig oder auch nicht gleichzeitig. Die Diplexer 4_1 und 4_2

haben die Aufgabe, dafür zu sorgen, daß sich in dem Unterkanal d_1 nur die Energie der Frequenz F_1 und in dem Unterkanal d_2 nur die der Frequenz F_2 ausbreitet. Zu diesem Zweck bildet jeder Diplexer 4_1 , 4_2 einen Mikrowellenkreis, der vorzugsweise auf einem dielektrischen Träger ausgebildet ist, welcher parallel zu den Tafeln P_1 oder P_2 liegt und maximale Transparenz für eine der Frequenzen (F_1 bzw. F_2) aufweist, bei maximalem Reflexionsvermögen für die andere Frequenz (F_2 bzw. F_1). Die Impedanzanpassungs-Einrichtungen 5_1 und 5_2 haben die Aufgabe, für jeden Unterkanal dafür zu sorgen, daß die Fehlanpassung aufgrund der Reflexion von Energie am anderen Unterkanal kompensiert wird. Sie sind vorzugsweise analog zu den Diplexern 4_1 , 4_2 ausgebildet, bestehen also aus einem Mikrowellenkreis auf einem dielektrischen Träger, der parallel zu den Tafeln P_1 und P_2 ist.

Da ferner die Energie an der einen oder anderen Endfläche der Linse auftreffen kann, enthält jeder Unterkanal diese Einrichtungen 4_1 bzw. 4_2 sowie 5_1 bzw. 5_2 an jedem seiner Enden.

Durch die Erfundung wird also eine Antenne mit elektronischer Verschwenkung in der Ebene xOz zur Verfügung gestellt, die in zwei verschiedenen Frequenzbändern ΔF_1 und ΔF_2 arbeiten kann.

Es ist zu beachten, daß diese Doppelband-Funktion einfach dadurch ermöglicht wird, daß die Phasenschieberkanäle doppelt ausgeführt werden. Die Funktion kann auf n Frequenzbänder erweitert werden, wobei n größer als 2 sein kann, indem eine Aufteilung jedes Phasenschieberkanals in n Unterkanäle erfolgt; die Struktur von aufeinandergestapelten Phasenschieberkanälen ist nämlich in den Abmessungen keinen Beschränkungen unterworfen.

Die Ansteuerung der Phasenschiebertafeln P_1 und P_2 kann voneinander vollkommen unabhängig erfolgen, so daß die Strahlungsbündel verschiedener Frequenz in verschiedene Richtungen abgelenkt werden können, und dies zu verschiedenen Zeitpunkten. Da ferner die Ansteuerung und die Funktion der Unterkanäle voneinander unabhängig sind, kann auch die Anzahl von Phasenschiebertafeln der verschiedenen Kanäle unterschiedlich sein, also verschieden für die Unterkanäle d_1 und die Unterkanäle d_2 .

Die Fig. 4 zeigt eine Ausführungsvariante der in Fig. 3 gezeigten Anordnung, worin die Diplexer und die Impedanzanpassungseinrichtungen durch denselben Mikrowellenkreis verwirklicht sind.

Bei dieser Ausführungsform ist wiederum ein Phasenschieberkanal D in zwei Unterkanäle d_1 und d_2 unterteilt. Jeder Unterkanal (d_1 , d_2) enthält zwei Phasenschieber-Tafeln P_1 , P_2 ; an jedem seiner Enden ist eine Einrichtung 6_1 bzw. 6_2 vorhanden, die sowohl die Funktion des Diplexers 4 als auch die der Impedanzanpassungseinrichtung 5 nach Fig. 3 erfüllt. Diese Einrichtungen sind auch hier vorzugsweise durch einen Mikrowellenkreis gebildet, den ein dielektrischer Träger aufnimmt, welcher parallel zu den Phasenschieber-Tafeln P_1 , P_2 angeordnet ist.

Die Fig. 5a zeigt eine Ausführungsform der Diplexer- und Anpassungseinrichtungen 6_1 in dem Unterkanal d_1 der erfundungsgemäßen Linse; diese Einrichtung soll nur die Frequenz F_1 durchlassen, von der angenommen wird, daß sie unterhalb der Frequenz F_2 liegt.

Die Einrichtungen 6_1 enthalten ein dielektrisches Substrat 11, auf dem, beispielsweise durch Metallisierung, zwei Leiterstreifen 51, 52 im wesentlichen parallel zu einander aufgebracht sind, welche eine Blende bilden

und zwischen denen Kapazitäten 13 mittels Drähten 12 parallelgeschaltet sind. Beispielsweise sind die Drähte 12 gleichzeitig auf dem Substrat 11 aufgedruckt, und die Kapazitäten 13 sind durch Ablagerung von Leitern senkrecht zu den Drähten 12 einander gegenüberliegend ausgebildet. Im letzteren Falle hängt die Größe der Kapazität von der Länge c der abgelagerten Leiter ab. Das Substrat 11 ist von metallischen Platten P_L und P_{L1} umgeben, die im wesentlichen senkrecht zu seiner Ebene stehen.

Zur Erleichterung des Verständnisses der Figur ist die Oberfläche der verschiedenen Leiter (nicht geschnitten dargestellt) gestrichelt.

Die Fig. 5b zeigt das Ersatzschaltbild der Anordnung nach Fig. 5a für Frequenzen im Mikrowellenbereich.

Die Mikrowelle wird zwischen den Anschlüssen B_1 und B_2 empfangen. Sie trifft auf zwei in Reihe liegende Kapazitäten C_0 und C_1 , die diese Anschlüsse überbrücken. Die Kapazität C_0 ist die Linienskapazität für die Entkopplung zwischen den Streifen 51 und 52 sowie den Platten P_L und P_{L1} ; die Kapazität C_1 die der Irisblende 51, 52. Diese Kapazitäten hängen vom Abstand D_0 zwischen den Streifen und Platten bzw. D_1 zwischen den Streifen 51, 52 ab.

An die Anschlüsse der Kapazität C_1 sind in Reihenschaltung eine Induktivität L und eine Kapazität C_{13} angeschlossen. Diese letztere stellt die Kapazität 13 in Fig. 5a dar. Die Induktivität L stellt die Induktivität der Drähte 12 dar, welche mit einem Faktor

$$\frac{a^\alpha}{b}$$

behaftet ist, worin gilt:

- a ist der Abstand zwischen zwei Kapazitäten 13;
- b ist der Abstand zwischen den Platten P_L und P_{L1} ;
- α ist ein Koeffizient, welcher die Wechselwirkung zwischen den Drähten 12 kennzeichnet.

Die Spannung am Mikrowellenausgang wird zwischen den Anschlüssen B_3 und B_4 an den Anschlüssen der Kapazitäten C_0 und C_1 abgegriffen.

Die Werte von C_0 , C_1 , L und C_{13} sind so bestimmt, daß der Kreis 6₁ des Unterkanals d_1 :

- für eine Mikrowelle der Frequenz F_2 reflektiert;
- die Anpassung des Unterkanals d_1 gewährleistet, wenn eine Mikrowelle der Frequenz F_1 auftritt.

Der Reflektivitätszustand des Kreises wird in herkömmlicher Weise dadurch hergestellt, daß sein Blindleitwert (B_1) für die Frequenz F_2 gegen unendlich strebt. Die Anpassungsbedingung wird in analoger Weise dadurch erzielt, daß der Blindleitwert (B_1) für die Frequenz F_1 einen bestimmten Wert annimmt, der von dem Abstand (d_6) des Kreises 6₁ am Eingang des Unterkanals abhängt, also vom Rand der Zwischenplatte P_{L1} . Wenn beispielsweise der Abstand d_6 etwa gleich 0,15 λ_1 beträgt, so gilt $B_1 \approx 0,7 \lambda_1$, wobei λ_1 die Wellenlänge ist, welche der Frequenz F_1 entspricht.

Die Bestimmung der vorgenannten Werte führt zur Bestimmung der geometrischen Parameter D_0 , D_1 und a , während der Abstand b in Abhängigkeit von den gewünschten Abstrahlungs-Kennwerten der Linse gewählt wird.

Die Fig. 6a zeigt eine Ausführungsform der Diplexer- und Anpassungseinrichtungen 6₂, die in dem Unterkanal d_2 der erfundsgemäßen Linse verwendet werden und die Aufgabe haben, nur die Frequenz F_2 durchzulassen.

- 5 Diese Einrichtungen 6₂ sind in analoger Weise zu den Einrichtungen 6₁ in Fig. 5a ausgebildet, enthalten also ein dielektrisches Substrat 11, auf dem beispielsweise durch Metallisierung zwei leitende Streifen 51, 52 aufgebracht sind, die im wesentlichen parallel zueinander sind und eine Irisblende bilden und zwischen denen Drähte 12 parallel angeschlossen sind, die beispielsweise ebenfalls auf dem Substrat 11 aufgedruckt sind. Das Substrat 11 ist von metallischen Platten P_L und P_{L1} umgeben, die zu seiner Ebene im wesentlichen senkrecht stehen. Im 15 Gegensatz zu dem Kreis 6₁ enthält jedoch der Kreis 6₂ keine Kapazität an den Drähten 12.

Die Fig. 6b zeigt das Ersatzschaltbild der Fig. 6a für Frequenzen im Mikrowellenbereich.

Die Mikrowelle wird zwischen den zwei Anschlüssen B_1 und B_2 empfangen. Sie trifft wie zuvor auf die zwei Kapazitäten C_0 und C_1 , die in Reihe liegen.

An die Anschlüsse der Kapazität C_1 ist die Induktivität L angeschlossen, die wie zuvor die Induktivität der Drähte 12 darstellt, welche mit dem Faktor

$$\frac{a^\alpha}{b}$$

25 behaftet ist.

Die Werte C_0 , C_1 und L werden analog zu der vorstehenden Beschreibung bestimmt, also für den Kreis 6₂ des Unterkanals d_2 :

- 35 — entweder für Reflexion, wenn eine Mikrowelle der Frequenz F_1 auftrifft;
— oder für eine Anpassung des Unterkanals d_2 , wenn eine Mikrowelle der Frequenz F_2 auftrifft.

- 40 Die Reflektivitätsbedingung des Kreises wird in gleicher Weise dadurch erhalten, daß sein Blindleitwert (B_2) für die Frequenz F_1 gegen Unendlich strebt. Die Anpassungsbedingung wird dadurch erhalten, daß der Blindleitwert B_2 für die Frequenz F_2 einen bestimmten Wert 45 aufweist, welcher vom Abstand (d_6) des Kreises 6₂ vom Eingang des Unterkanals abhängt.

Wenn beispielsweise d_6 in der Größenordnung von 0,15 λ_2 liegt, so ist $B_2 \approx 0,7 \lambda_2$, worin λ_2 die Wellenlänge entsprechend der Frequenz F_2 ist.

- 50 Man bestimmt so die Werte der geometrischen Parameter D_0 , D_1 und a , wenn b gegeben ist.

Die Fig. 7a zeigt eine weitere Ausführungsform der Diplexer- und Anpassungseinrichtungen, die in den Unterkanälen der erfundsgemäßen Linse verwendet werden.

Der in Fig. 7a gezeigte Kreis stimmt vollständig mit dem nach Fig. 5a überein, mit Ausnahme der Kapazitäten 13, die durch Dioden 14 ersetzt sind.

- 55 Wenn die Dioden 14 über die leitenden Streifen 51 und 52 in Durchlaßrichtung gepolt sind, arbeitet der Kreis nach Fig. 7a in gleicher Weise wie der nach Fig. 6a. Wenn die Dioden 14 hingegen in Sperrrichtung gepolt sind, erfüllt der Kreis nach Fig. 7a die gleiche Funktion wie der nach Fig. 5a. Die Einrichtungen 6₁ und 6₂ können also durch einen einzigen Kreis gleicher Art verwirklicht werden.

Fig. 7b zeigt das Ersatzschaltbild der Fig. 7a.

Man findet dort wieder die Kapazitäten C_0 und C_1 in

Reihenschaltung zwischen den Anschlüssen B_1 und B_2 . An den Anschlüssen der Kapazität C_i ist nunmehr eine Induktivität L' angeschlossen, die in Reihe liegt mit:

- entweder einer Kapazität C_i in Reihe mit einem Widerstand R_i
- oder einem Widerstand R_d .

je nachdem, ob die Diode 14 in Durchlaßrichtung oder Sperrrichtung gepolt wird, was durch einen Unterbrecher 20 symbolisch dargestellt ist.

Die Induktivität L' hat folgende Form:

$$L' = L_o \cdot \frac{a}{b}$$

worin L_o symbolisch dargestellt ist. Der Widerstand R_i ist der Diodenwiderstand in ihrer Sperrrichtung, mit dem Verhältnis a/b behaftet. Der Widerstand R_d ist der Durchlaßwiderstand der Diode, mit demselben Verhältnis behaftet. Schließlich ist die Kapazität C_i die Kapazität des Halbleiterübergangs der Diode, mit der Verhältnis b/a behaftet.

Die Bestimmung der Parameter erfolgt wie oben erläutert, je nachdem, ob der Kreis die Einrichtungen 6₁ oder 6₂ bilden soll.

Die vorstehend für die Diplexer- und Anpassungseinrichtungen beschriebenen Ausführungsformen weisen den Vorteil auf, daß eine zu den Phasenschieber-Tafeln gleichartige Vorrichtung verwendet wird.

Die verschiedenen Tafeln, Phasenschieber, Diplexer und Anpassungseinrichtungen eines selben Unterkanals können beispielsweise auf den Platten P_L oder P_{LI} aufgeklebt werden. Bei einer Ausführungsvariante ist der Raum zwischen den Tafeln mit einem Material von geringer Dielektrizitätskonstante ausgefüllt, beispielsweise ein Polyurethanschaum, der überdies die Aufgabe erfüllt, eine mechanische Halterung zu bilden: die Tafeln werden dann einfach in die Zwischenräume eingeschoben, die in dem Schaum angebracht sind.

Fig. 8 zeigt eine weitere Ausführungsform der erfundsgemäßen Multiband-Antenne.

Diese Antenne enthält eine Quelle S, die hier in Form von zwei Hornstrahlern ausgebildet ist, welche entlang der Achse Ox eines rechtwinkligen Koordinatensystems Oxyz übereinander angeordnet sind; der eine Hornstrahler C_1 sendet mit der Frequenz F_1 und der andere C_2 mit der Frequenz F_2 . Beide Hornstrahler senden in der Richtung Oz. Die Quelle S strahlt eine erste Linse L_1 an, die beispielsweise wie die Linse L in Fig. 2 ausgebildet ist, deren Platten P_L parallel zur Ebene yOz liegen.

Parallel zu der Linse L_1 sind nacheinander ein Polarisations-Drehungsgitter G und eine zweite Linse L_2 angeordnet.

Das Gitter G gibt der Polarisation der aus der Linse L_1 austretenden Welle eine Drehung um 90° auf. Die Ausbildung dieses Gitters erfolgt beispielsweise gemäß der Druckschrift "Broad-Band Wide-Angle Quasi-Optical Polarization Rotators" von AMITAY und SALEH, erschienen in IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, Vol AP-31, Nr. 1, Januar 1983.

Die Linse L_2 ist analog der Linse L_1 ausgebildet, jedoch um 90° verdreht, so daß ihre Platten P_L parallel zur Ebene xOz sind.

Auf diese Weise wird eine Antenne mit elektronischer Verschwenkung in zwei orthogonalen Ebenen verwirk-

licht, die in zwei verschiedenen Frequenzbändern arbeiten kann.

Bei den oben beschriebenen Ausführungsformen wird die Linse der Antenne durch getrennte Mittel angestrahlt, die eine Quelle bilden; die Quelle kann aber auch jeweils in einen Unterkanal integriert sein: beispielsweise wird in jedem Kanal eine "Serpentinen"-Leitung angeordnet. Die Einrichtungen 4, 5 oder 6 sind dann auf der Seite dieser Serpentinen-Leitung nicht mehr erforderlich, da diese die Anpassung gewährleistet.

Patentansprüche

1. Mikrowellenlinse zum Empfangen einer elektromagnetischen Welle, die sich in einer ersten Richtung (Oz) ausbreitet, mit mehreren Phasenschieber-Kanälen (D), die im wesentlichen entlang einer zweiten Richtung (Ox), die senkrecht zu der ersten ist, aufeinandergestapelt und voneinander durch leitfähige Platten (P_L) getrennt sind, die im wesentlichen senkrecht zu der zweiten Richtung (Ox) sind, wobei jeder Kanal mehrere Phasenschieber-Tafeln (P) aufweist, die im wesentlichen senkrecht zur ersten Richtung (Oz) angeordnet sind, wobei jede Tafel (P) leitfähige Drähte (2) trägt, die im wesentlichen parallel zu der zweiten Richtung (Ox) sind und Dioden (3) tragen, wobei der Zustand der Dioden einer Tafel — stromführend oder gesperrt — eine Veränderung der Phasenverschiebung verursacht, mit welcher die Tafel die sie durchquerende Welle behaftet; dadurch gekennzeichnet, daß jeder Kanal in wenigstens zwei Unterkanäle (d_1, d_2) mittels einer leitfähigen Zwischenplatte (P_{LI}) unterteilt ist, welche zwischen zwei Platten angeordnet und zu diesen im wesentlichen parallel ist, wobei diese Unterkanäle jeweils mehrere Phasenschieber-Tafeln (P_1, P_2) enthalten, die in solcher Weise ausgebildet und angeordnet sind, daß der erste Unterkanal bei einer ersten Frequenz (F_1) und der zweite bei einer zweiten Frequenz (F_2) betreibbar ist, und daß beiderseits der Phasenschieber-Tafeln auf dem Weg der elektromagnetischen Welle Diplexer- und Impedanzanpassungs-Einrichtungen angeordnet sind.
2. Linse nach Anspruch 1, dadurch gekennzeichnet, daß die Diplexer-Einrichtungen (4) jeweils durch einen Mikrowellenkreis verwirklicht sind.
3. Linse nach Anspruch 1, dadurch gekennzeichnet, daß die Impedanzanpassungs-Einrichtungen (5) mittels eines Mikrowellenkreises ausgebildet sind.
4. Linse nach Anspruch 1, dadurch gekennzeichnet, daß die Diplexer- und Impedanzanpassungs-Einrichtungen mittels desselben Mikrowellenkreises (6₁, 6₂) verwirklicht sind.
5. Linse nach Anspruch 4, dadurch gekennzeichnet, daß jeder der Mikrowellenkreise desjenigen (d_1) Unterkanals, der bei der niedrigeren Frequenz (F_1) arbeitet, auf einem dielektrischen Träger ausgebildet ist, welcher im wesentlichen parallel zu den Phasenschieber-Tafeln angeordnet ist und leitende Drähte (12) aufweist, die im wesentlichen parallel zu der zweiten Richtung (Ox) sind, Kapazitäten (13) tragen und miteinander durch leitende Streifen (51, 52) verbunden sind, die zu ihnen im wesentlichen senkrecht sind.
6. Linse nach Anspruch 4, dadurch gekennzeichnet, daß jeder Mikrowellenkreis desjenigen (d_2) Unterkanals, der bei der höchsten Frequenz (F_1) arbeitet,

auf einem dielektrischen Träger verwirklicht ist, welcher im wesentlichen parallel zu den Phasenschieber-Tafeln ist und leitfähige Drähte (12) aufweist, die im wesentlichen parallel zu der zweiten Richtung (Ox) und miteinander durch leitende Streifen (51, 52) verbunden sind, die zu ihnen im wesentlichen senkrecht sind. 5

7. Linse nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die leitfähigen Zwischenplatten (P_{L1}) in der ersten Richtung (Oz) kleiner als die leitfähigen Platten (P_L) sind. 10

8. Linse nach Anspruch 4, dadurch gekennzeichnet, daß jeder der Mikrowellenkreise in einem vorbestimmten Abstand (d_6) vom Rand der Zwischenplatte angeordnet ist, welcher im wesentlichen gleich 15 0,15 λ ist, worin λ die Wellenlänge ist, mit welcher die Ausbreitung in dem Unterkanal stattfindet.

9. Antenne mit elektronischer Verschwenkung, mit Einrichtungen (S) zum Aussenden und Empfangen 20 einer elektromagnetischen Welle und einer Mikrowellen-Linse, die auf dem Weg dieser Welle angeordnet ist, dadurch gekennzeichnet, daß die Linse gemäß einem der vorstehenden Ansprüche ausgebildet ist und daß die Sende/Empfangs-Mittel die 25 Ausendung und den Empfang einer elektromagnetischen Welle auf wenigstens einer der zwei Frequenzen (F_1, F_2) und im wesentlichen entlang der ersten Richtung (Oz) gewährleisten.

10. Antenne nach Anspruch 9, dadurch gekennzeichnet, daß sie ferner hinter der Linse (L_1) und parallel zu dieser angeordnet ein Polarisationsdrehungsgitter (G) aufweist, welches eine 90°-Drehung der dieses durchquerenden Welle gewährleistet, sowie eine zweite Linse (L_2), die analog zu der ersten ausgebildet, jedoch um 90° gegenüber dieser verdreht ist. 30 35

Hierzu 8 Seite(n) Zeichnungen

FIG.1a

FIG.1b

FIG. 2

FIG.5aFIG.5b

FIG. 6aFIG. 6b

FIG. 7aFIG. 7b

FIG.8

G R A M M A L
N O M A R G I N A L I A

702 062/5