學號:B03201031 系級: 數學四 姓名:王楷

請實做以下兩種不同 feature 的模型,回答第 (1)~(3) 題:

- 1. 抽全部 9 小時內的污染源 feature 的一次項(加 bias)
- 2. 抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias)

## 備註:

- a. NR 請皆設為 0, 其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
- 1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數),討論兩種 feature 的影響

|          | private | public  | total    |
|----------|---------|---------|----------|
| 全部汙染源    | 5.36561 | 7.59287 | 12.95848 |
| 只有 pm2.5 | 5.62839 | 7.45285 | 13.08124 |

從此表格觀察,若觀察 private 的 RMSE, 只有 pm2.5 feature 的 model 誤差略高於抽取全部汙染源的 model, 而 public 的結果則相反,而將 public+private,只有 pm2.5 的略高,但兩者相差非常小,很難判斷哪個 model 比較好

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

|          | private | Public  | total    |
|----------|---------|---------|----------|
| 全部汙染源    | 5.41397 | 7.64271 | 13.05668 |
| 只有 pm2.5 | 5.79853 | 7.57784 | 13.37637 |

總體來說,兩個 model 在兩種結果(public, private),的誤差都上升了,其中只有 pm2.5 feature 的 model 又更明顯,可以判斷此模型太 simple

3. (1%)Regularization on all the weight with  $\lambda$ =0.1、0.01、0.001、0.0001,並作圖

Take all as feature:





4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量  $\mathbf{x}^n$ ,其標註(label)為一存量  $\mathbf{y}^n$ ,模型參數為一向量  $\mathbf{w}$  (此處 忽略偏權值  $\mathbf{b}$ ),則線性回歸的損失函數(loss function)為  $\mathbf{n}=1$ Ny $\mathbf{n}$ -x $\mathbf{n}$ w2 。若將所有訓練資料的特徵值以矩陣  $\mathbf{X}=[\mathbf{x}^1\,\mathbf{x}^2\,...\,\mathbf{x}^N]^T$  表示,所有訓練資料的標註以向量  $\mathbf{y}=[\mathbf{y}^1\,\mathbf{y}^2\,...\,\mathbf{y}^N]^T$ 表示,請問如何以  $\mathbf{X}$  和  $\mathbf{y}$  表示可以最小化損失函數的向量  $\mathbf{w}$  ?請寫下算式並選出正確答案。(其中  $\mathbf{X}^T\mathbf{X}$  為 invertible)

a.  $(X^TX)X^Ty$  b. $(X^TX)^{-0}X^Ty$  c. $(X^TX)^{-1}X^Ty$  d. $(X^TX)^{-2}X^Ty$ 

The normal equations can be derived directly from a matrix representation of the problem as follows. The objective is to minimize

$$S(\boldsymbol{\beta}) = \left\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\right\|^2 = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathrm{T}}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = \mathbf{y}^{\mathrm{T}}\mathbf{y} - \boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}^{\mathrm{T}}\mathbf{y} - \mathbf{y}^{\mathrm{T}}\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\beta}^{\mathrm{T}}\mathbf{X}^{\mathrm{T}}\mathbf{X}\boldsymbol{\beta}.$$

Note that :  $(\boldsymbol{\beta}^T \mathbf{X}^T \mathbf{y})^T = \mathbf{y}^T \mathbf{X} \boldsymbol{\beta}$  has the dimension 1x1 (the number of columns of y),

so it is a scalar and equal to its own transpose, hence  $\boldsymbol{\beta}^T \mathbf{X}^T \mathbf{y} = \mathbf{y}^T \mathbf{X} \boldsymbol{\beta}$  and the

quantity to minimize becomes  $S(\beta) = \mathbf{y}^T \mathbf{y} - 2\beta^T \mathbf{X}^T \mathbf{y} + \beta^T \mathbf{X}^T \mathbf{X} \beta$ . Differentiating this with respect to  $\beta$  and equating to zero to satisfy the first-order conditions gives

 $-\mathbf{X}^T\mathbf{y} + (\mathbf{X}^T\mathbf{X})\boldsymbol{\beta} = 0$ , which is equivalent to the above-given normal equations. A sufficient condition for satisfaction of the second-order conditions for a minimum is that  $\mathbf{X}$  have full column rank, in which case  $\mathbf{X}^T\mathbf{X}$  is positive definite so we pick (c).