PROPIEDADES DE LAS FUNCIONES INTEGRABLES

JUAN FERRERA

Recordemos que $f: \mathbb{R}^n \to \mathbb{R}$ medible, es integrable si

$$\int_{\mathbb{R}^n} |f| d\mu < +\infty$$

Cuando definimos la integral de funciones medibles no negativas, admitimos que estas funciones podían tomar valores $+\infty$. Vamos a admitir también que nuestra función integrable f pueda tomar valores infinitos, es decir $f: \mathbb{R}^n \to [-\infty, +\infty]$, entonces tenemos que $|f|: \mathbb{R}^n \to [0, +\infty]$. Pero el conjunto de puntos donde $|f(x)| = +\infty$ tiene que tener medida cero. Si no fuese así, es decir si ese conjunto, llamémoslo A tiene medida positiva, entonces, como $k\aleph_A \leq |f|$ para todo $k \in \mathbb{N}$, tendríamos que

$$\int_{\mathbb{R}^n} |f| d\mu \ge \int_{\mathbb{R}^n} k \aleph_A d\mu = k\mu(A)$$

 \mathbf{v} por tanto haciendo tender k a infinito obtenemos que

$$\int_{\mathbb{R}^n} |f| d\mu = +\infty$$

y por tanto f no sería integrable. Es decir hemos probado el siguiente resultado:

Proposición: Si $f: \mathbb{R}^n \to [-\infty, +\infty]$ es integrable, entonces $\mu(\{x: |f(x)| = +\infty\}) = 0.$

Además como sabemos que si A tiene medida cero, entonces $\int_A |f| d\mu = 0$, ya que para cualquier función simple no negativa $\varphi \leq |f|$, $I(\varphi) = 0$. Esto implica el siguiente resultado:

Proposición: Si $f, g : \mathbb{R}^n \to [-\infty, +\infty]$ verifican que f = g c.t.p. entonces f es integrable si y solo si g es integrable, y en este caso

$$\int_{\mathbb{R}^n} f d\mu = \int_{\mathbb{R}^n} g d\mu.$$

Date: February 6, 2022 (1149).

Por otra parte, como $|f| = f^+ + f^-$, usando la regla de la suma para la integral de funciones medibles no negativas, tenemos que

$$\int_{\mathbb{R}^n} |f| d\mu = \int_{\mathbb{R}^n} f^+ d\mu + \int_{\mathbb{R}^n} f^- d\mu,$$

y por tanto tenemos el siguiente resultado:

Proposición: Para una función medible, $f: \mathbb{R}^n \to [-\infty, +\infty]$ son equivalentes

- (1) f integrable
- (2) |f| integrable
- (3) f^+ y f^- son integrables

Por otra parte, si f es integrable, hemos definido

$$\int_{\mathbb{R}^n} f d\mu = \int_{\mathbb{R}^n} f^+ d\mu - \int_{\mathbb{R}^n} f^- d\mu,$$

¿Qué sucede si f se escribe como diferencia de dos funciones integrables, no necesariamente de f^+ y f^- ? El siguiente Lema nos da la respuesta

Lema: Si f es integrable y f = g - h donde g y h son no negativas e integrables, entonces

$$\int_{\mathbb{R}^n} f d\mu = \int_{\mathbb{R}^n} g d\mu - \int_{\mathbb{R}^n} h d\mu.$$

Demostración: Tenemos que $f = f^+ - f^- = g - h$. Podemos suponer sin pérdida de generalidad que todas las funciones toman solo valores reales, ya que todas ellas son integrables y por tanto donde pudiesen tomar valores infinitos, es un conjunto de medida cero que podemos no considerar a efectos de integración. (Esto lo tenemos que hacer para evitar restar infinitos)

Luego $f^+ + h = f^- + g$ y por la regla de la suma para funciones no negativas tenemos que

$$\int_{\mathbb{R}^n} f^+ d\mu + \int_{\mathbb{R}^n} h d\mu = \int_{\mathbb{R}^n} f^- d\mu + \int_{\mathbb{R}^n} g d\mu$$

Como los cuatro sumandos que aparecen son números finitos, puedo restar y obtengo

$$\int_{\mathbb{R}^n} f d\mu = \int_{\mathbb{R}^n} f^+ d\mu - \int_{\mathbb{R}^n} f^- d\mu = \int_{\mathbb{R}^n} g d\mu - \int_{\mathbb{R}^n} h d\mu$$

Con este lema ya podemos probar que la integral de Lebesgue es aditiva

Teorema: Si f y g son integrables y $\alpha \in \mathbb{R}$, entonces f + g y αf son integrables y

$$\int_{\mathbb{R}^n} (f+g)d\mu = \int_{\mathbb{R}^n} f d\mu + \int_{\mathbb{R}^n} g d\mu,$$
$$\int_{\mathbb{R}^n} \alpha f d\mu = \alpha \int_{\mathbb{R}^n} f d\mu.$$

Demostración: Como $|f + g| \le |f| + |g|$ y $|\alpha f| = |\alpha||f|$, deducimos que

$$\int_{\mathbb{R}^n} |f + g| d\mu \le \int_{\mathbb{R}^n} |f| d\mu + \int_{\mathbb{R}^n} |g| d\mu < +\infty$$

y que

$$\int_{\mathbb{R}^n} |\alpha f| d\mu = |\alpha| \int_{\mathbb{R}^n} |f| d\mu < +\infty.$$

Esto prueba que f + g y αf son integrables.

Por otra parte, como $f+g=f^++g^+-(f^-+g^-)$, aplicando el lema tenemos que

$$\int_{\mathbb{R}^n} (f+g)d\mu = \int_{\mathbb{R}^n} (f^+ + g^+)d\mu - \int_{\mathbb{R}^n} (f^- + g^-)d\mu =$$

$$\int_{\mathbb{R}^n} f^+ d\mu + \int_{\mathbb{R}^n} g^+ d\mu - \int_{\mathbb{R}^n} f^- d\mu - \int_{\mathbb{R}^n} g^- d\mu =$$

$$\int_{\mathbb{R}^n} f d\mu + \int_{\mathbb{R}^n} g d\mu$$

Para ver la otra fórmula, observamos que si $\alpha \geq 0$ entonces $(\alpha f)^+ = \alpha f^+$ y $(\alpha f)^- = \alpha f^-$ y por tanto

$$\int_{\mathbb{R}^n} \alpha f d\mu = \int_{\mathbb{R}^n} (\alpha f)^+ d\mu - \int_{\mathbb{R}^n} (\alpha f)^- d\mu = \alpha \int_{\mathbb{R}^n} f d\mu$$

Para ver el caso negativo basta ver $\alpha = -1$. Esto es claro de nuevo porque $-f = f^- - f^+$ y por tanto

$$\int_{\mathbb{R}^n} (-f)d\mu = \int_{\mathbb{R}^n} f^- d\mu - \int_{\mathbb{R}^n} f^+ d\mu = -\int_{\mathbb{R}^n} f d\mu.$$

Observación: El lema previo es necesario porque en general no es cierto que $(f+g)^+ = f^+ + g^+$.