CLAIMS

What is claimed is:

- A process of producing a fluorided catalyst metallocene catalyst component comprising contacting a nitrogenous metallocene compound with a fluoriding agent comprising a fluorided acid for a time sufficient to form a fluorided metallocene catalyst compound.
- 2. The process of claim 1, wherein the nitrogenous metallocene catalyst compound is described by the formulae

wherein M is a Group 4, 5 or 6 atom;

Cp^A and Cp^B are each bound to M and are the same or different and are selected from the group consisting of cyclopentadienyl, indenyl, tetrahydroindenyl, fluorenyl, and substituted derivatives of each;

(A) is a divalent bridging group bound to each of Cp^A and Cp^B;

n is 0, 1 or 2; and

X is selected from the group consisting of amides, amines, imines, nitriles and combinations thereof.

- The process of claim 2, wherein X is described by the formula $-N(R^{\alpha})_2$, wherein each R^{α} is independently selected from C_1 to C_{10} alkyls, C_6 to C_{20} aryls, C_7 to C_{21} alkylaryls, C_7 to C_{21} arylalkyls, and halide, carboxylate silyl or hydroxy-substituted versions thereof; wherein any two R^{α} groups may form a ring system of from 4 to 10 carbons that may also comprise an atom selected from Groups 13-16.
- 4. The process of claim 1, wherein the fluoriding agent is a fluorided anhydrous acid.

- 5. The process of claim 1, wherein from 1 to 10 equivalents of fluoriding agent are contacted with the nitrogenous metallocene compound.
- 6. The process of claim 1, wherein the fluoriding agent is selected from the group consisting of HF, HBF₄, HPF₆, HBF₄OMe₂ and combinations thereof.
- 7. The process of claim 2, wherein n is 2.
- 8. The process of claim 2, wherein the Cp^A and Cp^B are selected from the group consisting of substituted cyclopentadienyl and substituted tetrahydroindenyl; the substituent groups selected from the group consisting of C₁ to C₁₀ alkyls and C₆ to C₂₀ aryls.
- 9. The process of claim 7, wherein the substituent groups are selected from C_1 to C_6 alkyls.
- 10. The process of claim 2, wherein M is zirconium or hafnium.
- 11. The process of claim 1, wherein contacting the nitrogenous metallocene compound with the fluoriding agent subsequently forms an organic compound and a neutral nitrogenous compound and additionally comprising separating the neutral nitrogenous compound from the organic compound to form the fluorided metallocene catalyst compound.
- 12. The process of claim 2, wherein (A) is selected from divalent C₁ to C₅ hydrocarbons and silicon-containing hydrocarbons.
- 13. The process of claim 1, wherein contacting the nitrogenous metallocene compound with the fluoriding agent results in a fluorided metallocene compound yield of 50% or more.

- 14. The process of claim 1, wherein contacting the nitrogenous metallocene compound with the fluoriding agent results in a fluorided metallocene compound yield of 80% or more.
- 15. The process of claim 1, wherein contacting the nitrogenous metallocene compound with the fluoriding agent results in a fluorided metallocene compound yield of 90% or more.
- 16. The process of claim 2, wherein M is zirconium.
- 17. The process of claim 1, further comprising drying the fluorided metallocene compound in the presence of magnesium sulfate.
- 18. The process of claim 1, wherein contacting the nitrogenous metallocene compound with the fluoriding agent comprises contacting the nitrogenous metallocene compound with 2 or more equivalents of the fluoriding agent.
- 19. The process of claim 1, wherein contacting the nitrogenous metallocene compound with the fluoriding agent comprises contacting the nitrogenous metallocene compound with 2 or less equivalents of the fluoriding agent.
- 20. A process of producing a polyolefin comprising combining a metallocene catalyst system comprising a fluorided metallocene catalyst component and monomers selected from the group consisting of ethylene and C₃ to C₁₂ olefins; wherein the fluorided metallocene catalyst component is produced by contacting a nitrogenous metallocene compound with a fluoriding agent for a time sufficient to form a fluorided metallocene catalyst compound, followed by isolation of the fluorided metallocene catalyst compound and formation of a metallocene catalyst system.
- 21. The process of claim 20, wherein the nitrogenous metallocene catalyst compound is described by the formulae

Cp^ACp^BMX_n and Cp^A(A)Cp^BMX_n

wherein M is a Group 4, 5 or 6 atom;

Cp^A and Cp^B are each bound to M and are the same or different and are selected from the group consisting of cyclopentadienyl, indenyl, tetrahydroindenyl, fluorenyl, and substituted derivatives of each;

(A) is a divalent bridging group bound to each of Cp^A and Cp^B; n is 0, 1 or 2; and

X is selected from the group consisting of amides, amines, imines, nitriles and combinations thereof.

- 22. The process of claim 21, wherein X is described by the formula $-N(R^{\alpha})_2$, wherein each R^{α} is independently selected from C_1 to C_{10} alkyls, C_6 to C_{20} aryls, C_7 to C_{21} alkylaryls, C_7 to C_{21} arylalkyls, and halide, carboxylate silyl or hydroxy-substituted versions thereof; wherein any two R^{α} groups may form a ring system of from 4 to 10 carbons that may also comprise an atom selected from Groups 13-16.
- 23. The process of claim 20, wherein the fluoriding agent is a Bronsted acid comprising fluorine.
- 24. The process of claim 20, wherein the fluoriding agent is a fluorided anhydrous acid.
- 25. The process of claim 20, wherein the olefins are selected from the group consisting of ethylene and C_3 to C_{12} α -olefins.
- 26. The process of claim 20, wherein the olefins and catalyst system are combined in a fluidized bed gas phase reactor at a polymerization temperature of from 50°C to 120°C.
- 27. The process of Claim 20, wherein the catalyst system further comprises a support material.

- 28. The process of Claim 27, wherein the support material is silica calcined at a temperature of from 800°C to 900°C.
- 29. The process of Claim 28, wherein the catalyst system further comprises an alumoxane activator.
- 30. The process of Claim 20, wherein the metallocene catalyst system further comprises a Ziegler-Natta catalyst component or a Group 15-containing catalyst component.
- 31. The process of Claim 20, wherein a polyolefin is produced having a density in the range of from 0.880 to 0.925 g/cm³.
- 32. The process of Claim 30, wherein the bimodal polyolefin is produced having a density in the range of from 0.930 to 0.970 g/cm³.
- 33. A film made from the process of Claim 31.
- 34. A film or pipe made from the process of Claim 32.