Generalized Hough Transform on GPU

Yijie Chen (yijieche), Yiliu Xu (yiliux)

We implemented **Generalized Hough Transform** on **GPU** using **CUDA** and **Thrust**

Feature: Detect arbitrary target shape under rotation and scaling

Acceleration Result: 433x overall speedup on Intel i7-9700 CPU, RTX 2080 GPU

Sample Input

Sample Output

General Hough Transform Pipeline

- 1 Apply derivative filter to detect edge pixels
- (Template) Encode all edge points in R Table
- 3 (Source) Accumulate vote of each edge pixel into a **4D** accumulator matrix (x_c, y_c, s, θ)
- 4 Find the shape centers with high votes

Accumulation is expected to benefit the most from CUDA parallelization.

Parallel Image Processing

Parallel Image Processing Pipeline

Parallel R Table Processing

Carnegie Mellon University

R Table in **CPU** memory

i	ϕ_i	$R_{oldsymbol{\phi}_i}$
1	0	$(r_{11},\alpha_{11}),\dots(r_{1n},\alpha_{1n})$
2	$\Delta \phi$	$(r_{21},\alpha_{21}),(r_{2n},\alpha_{2n})$
3	2Δφ	$(r_{31}, \alpha_{31}), \dots (r_{3n}, \alpha_{3n})$

- Each slice is with dynamic size
- Troublesome for GPU implementation

R Table in **GPU** memory

Compared with Image Processing

Parallel **Accumulation**

Design Alternative 1: Map Edge Pixels to CUDA Blocks

Design Alternative 2: Kernel Dimension

1D Kernel

for each theta {
for each s {
 for each rEntry{...}}}

3D Kernel

(One block share **theta** and **s**)

for each **rEntry** {...}

Speedup

Binning is expensive

Parallel Accumulation

Design Alternative 3: Shared Memory

Global Memory

Vote directly to 4D accumulator (AtomicAdd)

Performance

Shared Memory

 Create a shared 2D accumulator slice / block, first vote within block, then write back

Overhead Analysis

Challenges using shared memory:

- 1. Bounded by shared memory allocation limit (48KB)
- 2. Need to more efficiently store and update voting data in memory

Overall Speedup

400 - 350 - 360 300 - 250 - 200 - 200 - 150 - 150 - 160 | Image Height (Aspect Ratio 16 : 9)

Runtime Break Down

Accumulation is the most critical step to achieve a high speedup.

As the image size grows, the algorithm benefits more from parallelization.

Sample Test Images

Different image sizes

4K

Different shape density

