

Apostila de Hardware

2025

Sumário

1	Con	nponentes	3
	1.1	Célula de bateria	3
	1.2	Suporte de bateria	4
	1.3	Carregador de bateria	4
	1.4	Regulador 7805	Ę
	1.5	ESP32 WROOM-32	6
	1.6	Motor DC 130	7
	1.7	Motor DC 130 com redução	8
	1.8	Ponte H DRV8833	8
	1.9	Chave Liga/Desliga	Ć
	1.10	LED	10
	1.11	Resistor	10
	1.12	Capacitor	10
		1.12.1 Capacitor de cerâmica	11
		1.12.2 Capacitor eletrolítico	11
2	Con	exões elétricas	12
	2.1	Alimentação da placa	13
	2.2	Alimentação da ESP32	14
	2.3	Controle dos motores	
	2.4	Mecanismo de segurança	16

1 Componentes

1.1 Célula de bateria

Responsável por alimentar o robô, permitindo seu funcionamento. A bateria utilizada neste projeto é do tipo Li-ion 18650.

Figure 1: Célula de bateria 18650

- Capacidade: 2200mAh (quanto maior a capacidade, mais tempo a bateria irá durar);
- Polaridade: cada bateria possui um lado positivo e um lado negativo. O lado da bateria que possui um chanfro / corte / ressalto é o positivo. É possível ainda identificar a polaridade utilizando um multímetro;
- Tensão Nominal: A tensão nominal de uma célula 18650 é de 3.7V, podendo variar entre 4.2V (quando completamente carregada) e 3.2V (quando descarregada).

É possível associar células de baterias em série (positivo de uma conectada ao negativo de outra) para produzir tensões maiores. Ao associá-las dessa forma, a tensão de saída será igual ao somatório das tensões de cada célula de bateria.

Existem modelos de baterias com diferentes capacidades, tamanhos, pesos e tipos de materiais. Existem ainda baterias que já vêm com várias células associadas (2s, 3s, ...).

1.2 Suporte de bateria

Componente utilizado para manter as baterias fixas no lugar, garantindo uma conexão elétrica segura e estável entre elas e o circuito. Esse suporte permite a conexão de duas baterias Li-íon 18650 em série.

Figure 2: Suporte para 2 baterias 18650

- No interior do suporte há um desenho mostrando como cada bateria deve ser colocada;
- Polaridade da saída: o fio vermelho é o positivo (+) e o fio preto, o negativo (-).

1.3 Carregador de bateria

Figure 3: Carregador para duas baterias 18650

Para carregar a bateria, basta encaixa-la no interior do carregador, pressionando a parte metálica que fica no meio para baixo. O positivo da bateria deve ficar para cima (conector mais próximo ao led de indicação).

• Led vermelho: indica que a bateria não está completamente carregada;

• Led verde: indica que a bateria está completamente carregada.

Observação: é necessário conectar o carregador na tomada para que os leds indiquem corretamente o estado da bateria.

1.4 Regulador 7805

Utilizado para regular a tensão de alimentação do robô (proveniente da associação série de 2 baterias 18650), que varia de 6,4 a 8,4 V, para 5 V. Essa regulagem é necessária para se fazer a alimentação da ESP32.

Figure 4: Regulador 7805

- Pinagem: possui três terminais entrada (Vin), terra (GND) e saída (Vout).
- Parâmetros elétricos:
 - Tensão de entrada: 7,5 a 35V
 - Tensão de saída: 5V
 - Máxima corrente que o componente é capaz de fornecer na saída: 1A

Observações:

- Para mais informações do componente, consulte seu manual (datasheet)
- Caso a conexão dos pinos não seja feita da forma correta, o componente explode. Portanto, deve-se tomar muito cuidado ao fazer as conexões.
- É recomendado a utilização de um dissipador de calor para impedir que o componente esquente muito. Entretanto, este não foi utilizado devido à limitação de espaço na placa.

1.5 ESP32 WROOM-32

Microcontrolador (nome técnico) responsável por ler as informações do controle Bluetooth e atuar no controle dos motores. Armazena e executa a lógica de funcionamento. É o cérebro do robô.

Figure 5: Pinagem ESP32 WROOM32 30 pinos

A alimentação da placa pode ser feita por meio do conector USB presente na placa ou então por meio do pino VIN. A tensão recebida no pino VIN deve ser de 5V. As opções de alimentação são mutuamente exclusivas, ou seja, nunca se deve alimentar a placa das duas maneiras simultaneamente. Se for alimentar pelo pino VIN, deve-se remover o cabo USB e vice-versa. No projeto desenvolvido, a tensão vinda da bateria é regulada para 5V e é encaminhada para o pino VIN da ESP.

O controlador trabalha em **nível lógico 3,3V**. Portanto, todo sinal de saída da placa poderá ter até 3,3V e **todo sinal de entrada deve ter até 3,3V**.

Do lado oposto ao conector USB fica a antena Bluetooth do microcontrolador. A fim de evitar problemas de conexão (queda de conexão e lentidão) entre a placa e o controle, deve-se manter a antena o mais longe possível de fios de energia e motores, pois estes são fontes de interferências eletromagnéticas.

Com base no diagrama, percebe-se que cada pino possui diversas funcionalidades. Entretanto, utilizaremos apenas as funcionalidades GPIO e PWM. GPIO indica que o pino pode operar como entrada e saída digital, mandando / recebendo 0V ou 3.3V apenas. Já PWM indica que o pino é capaz de gerar um sinal PWM de saída, ou seja, o pino é capaz de gerar valores de tensão de 0V a 3.3V, não apenas 0V ou 3.3V.

Observação: apesar de estarem identificados como GPIO, os pinos D34, D35, D36 e D39 funcionam apenas como entrada digital.

1.6 Motor DC 130

Componente capaz de exercer uma força rotativa. Constituído internamente de um par de ímãs (estator - parte fixa) e um núcleo (rotor - parte móvel).

Figure 6: Motor DC 130

- Tensão de Operação: de 3 a 6V.
- Alimentação: feita por meio dos terminais de cobre externos. Coloca-se o positivo da fonte de alimentação em um terminal e o negativo em outro.

Observações:

- É possível alimentar os motores com níveis de tensão maiores que os especificados (*overvoltage*), produzindo uma maior rotação. Entretanto, isso pode danificar o componente;
- A direção da rotação (horária e anti-horária) pode ser modificada invertendo a alimentação (trocar o positivo e negativo de terminal);
- Os parâmetros de tensão do motor podem mudar em função de sua construção mecânica (tamanho do núcleo, força do ímã, etc).

Não recomendamos a compra de motores 130 em que a parte traseira seja da cor branca (vide imagem abaixo), pois esses motores geralmente demandam uma alta corrente, o que pode danificar a ESP32 e a placa do robô.

Figure 7: Motor com fundo branco (não recomendado)

1.7 Motor DC 130 com redução

Motor DC 130 que incorpora um sistema de engrenagens para converter a rotação do motor em força (torque). O motor por si só não possui força suficiente para movimentar o robô, devido a isso, faz-se necessário o uso da caixa de redução. A relação de conversão velocidade / torque depende da relação de engrenagens da caixa de redução.

Figure 8: Motor DC 130 com redução

1.8 Ponte H DRV8833

Componente utilizado para fazer o controle de velocidade e sentido de rotação dos motores de locomoção e da arma.

Figure 9: Ponte H DRV8833

Características:

- Quantidade de canais (motores): 2
- Tensão de alimentação: 2,7 a 10,8V
- Máxima corrente que cada canal consegue fornecer continuamente: 1,4A
- Máxima tensão aceita pelos pinos de controle: 7V

O sentido e a velocidade de rotação de cada motor são controlados via um par de pinos de entrada (IN). Um dos pinos do par recebe GND e o outro, Vcc. O sentido de rotação muda em função de qual pino receber o Vcc e qual receber GND. Cada canal possui também 2 pinos de saída, por onde é feita a alimentação do motor.

Para controlar a velocidade de rotação utilizando a ESP32, deve-se utilizar uma técnica chamada *Pulse Width Modulation* (PWM), que permite gerar valores de tensão entre 0 e 3,3V. Ao invés de o par de pinos de controle da ponte H receber GND e Vcc, ele passa a receber GND e o sinal PWM.

Pinagem:

- IN1 e IN2: pinos de controle do canal 1;
- OUT1 e OUT2: pinos de saída do canal 1;
- IN3 e IN4: pinos de controle do canal 2;
- OUT1 e OUT2: pinos de saída do canal 2;
- VCC e GND: pinos de alimentação da ponte H e dos motores;
- ULT e EEP: não utilizados.

Observações:

- O pino de GND da ponte H e do ESP32 devem ser interconectados. Isso é necessário para que a ponte H consiga interpretar corretamente a tensão recebida pelos pinos de controle (IN);
- Para mais informações sobre o componente, consulte o manual.

1.9 Chave Liga/Desliga

Utilizada para ligar e desligar o robô.

Figure 10: Chave tipo gangorra Liga/Desliga

Funcionamento: ao pressionar a chave para um dos lados, fecha-se o contato mecânico entre o pino central (chamado de comum) e o pino lateral (referente ao lado em que o botão foi pressionado), fazendo com que o sinal elétrico em um dos pinos seja transmitido ao outro.

1.10 LED

Utilizado para indicar o estado do robô: ligado (led aceso) e desligado (led apagado).

Figure 11: LED

É um componente que possui polaridade, ou seja, um terminal deve receber especificamente o Vcc e o outro, o GND. Observando o interior do componente, percebe-se que existem duas placas. A placa maior indica o terminal negativo.

O led utilizado no robô é da cor azul, diâmetro de 5mm e é do tipo alto brilho. Para esse tipo de componente, temos os seguintes parâmetros elétricos:

- Tensão necessária para funcionamento: 2,5 a 3V
- Máxima corrente que pode passar pelo componente: 20mA

1.11 Resistor

São componentes eletrônicos que limitam o fluxo de corrente elétrica em um circuito. Eles são caracterizados pela sua resistência elétrica, medida em ohms (Ω) . No projeto em questão, foi utilizado um resistor de 330Ω para limitar a tensão e a corrente recebidas pelo led, de modo a evitar que ele seja danificado.

Observação: além de possuir a resistência necessária para o projeto, o resistor deve ser capaz de suportar a potência (tensão x corrente no componente) que será dissipada nele.

Figure 12: Resistor 330Ω

1.12 Capacitor

Capacitores são componentes eletrônicos que armazenam e liberam energia elétrica. Pense neles como baterias bem pequenas. Possuem uma ampla gama de aplicações, mas em nosso projeto estão sendo utilizados para filtragem e desacoplamento.

Filtragem e desacoplamento: os capacitores de desacoplamento funcionam como fones de ouvido com cancelamento de ruído. Eles ajudam a "limpar" esses ruídos indesejados do circuito, permitindo que os componentes funcionem corretamente.

Parâmetros elétricos: os parâmetros elétricos mais importantes de um capacitor são a sua máxima tensão de operação, que indica com até quantos volts ele pode ser alimentado, e sua capacidade de armazenamento. A capacidade de armazenamento (capacitância) é normalmente dada em Farad (F) e quanto maior, mais energia o componente consegue armazenar.

Podem ser de diversos tipos de materiais, como, por exemplo: poliéster, cerâmica e eletrolítico.

1.12.1 Capacitor de cerâmica

Não possuem polaridade de conexão. Geralmente suportam tensões relativamente altas e possuem baixa / média capacidade de armazenamento. Para encontrar o valor de capacitância do componente, basta pegar os 2 primeiros números, multiplicar por 10 elevado ao terceiro valor e depois por 10 elevado a -12. Exemplo:

$$104 = 10 \times 10^4 \times 10^{-12} = 100.10^{-9} = 100nF \tag{1}$$

Figure 13: Capacitor de cerâmica de 100nF

1.12.2 Capacitor eletrolítico

Conhecidos por sua alta capacitância e capacidade de armazenamento de energia. São polarizados, o que significa que possuem um terminal positivo (ânodo) e um terminal negativo (cátodo). A conexão incorreta pode danificar o capacitor ou o circuito.

Figure 14: Capacitor eletrolítico

AUTOMAÇÃO ELÉTRICA

2 Conexões elétricas

Figure 15: Esquema elétrico completo da placa

AUTOMAÇÃO E ELETRICA

2.1 Alimentação da placa

Figure 16: Entrada de energia da placa

Nessa parte do circuito é possível observar o conector de entrada da bateria, por onde entra a energia para alimentar a placa, a chave liga/desliga do sistema e o led de indicação de funcionamento. Ao pressionar a chave, a conexão entre o Vcc da bateria e o resto do circuito é estabelecida, energizando o robô.

Nessa parte primária de alimentação temos 2 capacitores: de cerâmica, com valor de 100nF, e eletrolítico (polarizado), com valor de 470uF. Estes capacitores são responsáveis por filtrar o sinal de energia vindo da bateria.

2.2 Alimentação da ESP32

Figure 17: Regulagem para alimentação da ESP32

O 7805 regula a tensão proveniente da bateria para 5V e entrega ao pino VIN da ESP32, para energizá-la. Tanto na entrada quanto na saída do regulador, foi utilizado um par de capacitores para filtrar o sinal. Cada par é composto por um capacitor de cerâmica de 100nF e um capacitor eletrolítico, de 100uF.

2.3 Controle dos motores

Figure 18: Conexões da ponte H DRV8833

A placa do robô conta com 2 pontes H DRV8833, onde cada uma controla um motor de movimentação e um motor de arma (a placa foi projetada para trabalhar com até dois motores de arma). A tabela abaixo demonstra as conexões feitas entre os pinos de controle das pontes H e os pinos da ESP32:

Table 1: Conexões ponte H 1 / ESP32

	PONTE H 1				
FUNÇÃO	PINO DRV	PINO ESP32			
ARMA 1	IN1	D32			
	IN2	D33			
DIREITO	IN3	D25			
	IN4	D26			

Table 2: Conexões ponte H 2 / ESP32

PONTE H 2				
FUNÇÃO	PINO DRV	PINO ESP32		
ESQUERDO	IN1	D27		
ESQUEICEO	IN2	D14		
ARMA2	IN3	D12		
	IN4	D13		

Observando a pinagem da ESP32 apresentada no tópico 1, percebe-se que todos os pinos utilizados para controle dos motores possuem a funcionalidade PWM.

Os pinos de saída de cada canal estão conectados aos terminais de um conector, onde o motor é fixado

A alimentação do DRV883 é feita diretamente pela bateria. Portanto, a tensão recebida pelos motores é proporcional (depende do sinal PWM de controle) à tensão da bateria. Devido a isso, quanto maior a tensão de alimentação, mais rápido os motores irão girar (importante respeitar os limites de tensão de todos os componentes da placa). Em paralelo à alimentação de cada ponte H há um capacitor de cerâmica de 100nF, utilizado para filtragem do sinal de alimentação.

2.4 Mecanismo de segurança

Conforme descrito no tópico acima, o pino D14 da ESP32 está sendo utilizado para controle de um dos motores. Durante o processo de inicialização (boot) do microcontrolador, que ocorre assim que ele é alimentado, aparece nesse pino uma tensão de 3,3V, devido ao funcionamento interno do componente. Essa tensão de 3,3V faz com que a ponte H ligue o motor conectado aos pinos OUT1 E OUT2. Apesar de essa energização ser momentânea, ela não pode acontecer. Para evitar esse problema, foi colocado um resistor de 22k Ω entre o pino D14 e o GND (resistor de Pull-Down), para garantir que o pino do DRV883 receba GND durante a inicialização e que o motor não ligue.

AUTOMAÇÃO E ELETRICA

Figure 19: Resistor de pull-down conectado ao pino D14

