Iluminación y Sombreado

Dr. Ivan Sipiran

Maarten Everts – Renderizado con OpenGL, Dominio público

Graphics Rendering Pipeline

Escena renderizada con Pov-Ray, demostrando radiosidad, mapeo de fotones, blur focal, y otras capacidades fotorealistas (creado por Gilles Tran)

"Reflections". Epic, ILMxLAB, NVIDIA

Iluminación Global

- Escenas anteriores involucran abundantes reflexiones y transparencias.
- Pintar cada modelo o parte de la escena implica un conocimiento de los objetos que se ubican a su alrededor.
- Las imágenes anteriores son sintéticas, y utilizan algoritmos de iluminación global para lograr un excelente nivel de realismo.

Iluminación Global

- Escenas anteriores involucran abundantes reflexiones y transparencias.
- Pintar cada modelo o parte de la escena implica un conocimiento de los objetos que se ubican a su alrededor.
- Las imágenes anteriores son sintéticas, y utilizan algoritmos de iluminación global para lograr un excelente nivel de realismo.
- En esta clase veremos un algoritmo de iluminación local. No consideramos elementos del entorno, sólo el elemento siendo iluminado.

En esta clase...

Modelo de iluminación de Phong

Modelo de Iluminación de Phong

- Es un modelo de iluminación local
- No considera reflexiones
- No considera proyecciones de sombras
- Es una simple aproximación y no se basa en modelos físicos de iluminación
- Utilizado en computación gráfica por su simpleza
- Puede ser implementado en GPU para ejecución en tiempo real.

• Necesitamos las siguientes especificaciones:

- Necesitamos las siguientes especificaciones:
 - Fuente de luz

- Necesitamos las siguientes especificaciones:
 - Fuente de luz
 - Material / color / textura

- Necesitamos las siguientes especificaciones:
 - Fuente de luz
 - Material / color / textura
 - Geometría de la superficie (normales de triángulos)

Espacio RGB

• Un color $C = (C_R, C_G, C_B)$ puede ser multiplicado por un escalar s

$$sC = (sC_R, sC_G, sC_B)$$

Dos colores C y D pueden ser sumados o multiplicados

$$C + D = (C_R + D_R, C_G + D_G, C_B + D_B)$$

$$CD = (C_R D_R, C_G D_G, C_B D_B)$$

- El producto de dos colores, o de un color por un escalar, se conoce como modulación.
- Usaremos estas propiedades para calcular un nuevo color: utilizando colores o texturas, o una mezcla de ellos y otros factores.

Fuentes de luz

- Tipos de fuentes de luz:
 - Luz Ambiental: Fuente o dirección no identificable
 - Luz puntual: Generada por un punto
 - Luz distante: Sólo apreciamos una dirección
 - Spotlight: Desde una fuente a una dirección específica
 - Ángulo de corte define un cono de luz

Luz Ambiental

- Modela un color base del objeto en la escena
- La escena completa puede ser más o menos brillante regulando estos colores
- Evita la oscuridad absoluta
- Es independiente de las fuentes de luz
- Económica computacionalmente

Fuente de luz direccional

- Dirección es dada por un vector
 3D
- Ejemplos de uso:
 - Sol
 - Luna

Fuentes de luz puntuales

- Luz es emitida en todas direcciones
- Generada en un punto
- Su intensidad se atenúa con la distancia

$$I \propto \frac{1}{\|p-p_0\|^2}$$

 Se suele usar un polinomio cuadrático para la atenuación, produce un mejor efecto gráfico:

$$C = \frac{1}{k_c + k_l d + k_q d^2} C_0 \qquad d = ||Q - P||$$

Fuente de luz spotlight

- Generada en un punto, pero en una dirección preferencial
- Si la fuente de luz se ubica en P y emite un spot en la dirección R, el color resultante C en un punto Q está dado por

$$C = \frac{\text{máx} (-R \cdot L, 0)^{P}}{k_{c} + k_{I}d + k_{q}d^{2}}C_{0} \qquad d = \|Q - P\|$$

$$L = \frac{P - Q}{\|P - Q\|}$$

• El exponente p controla qué tan concentrada está la luz en la dirección preferencial.

Fuente de luz spotlight

De izquierda a derecha, el exponente p toma los valores 2, 10, 50, 100

Modelo de lluminación de Phong

Modelo de iluminación de Phong

- Calculamos el color para un punto arbitrario en una superficie
- Entradas básicas son:
 - l: vector unitario hacia la fuente de luz
 - *n*: vector normal a la superficie
 - v: vector unitario hacia la cámara
- Con esas entradas, podemos calcular:
 - r: reflexión de l en el punto Q

Modelo de iluminación de Phong

- Comenzar con la luz ambiente
- Agregar contribuciones de cada fuente de luz
- Saturar el resultado en el rango [0,1] (clamp)
 - Cada canal de color se calcula independientemente
 - Las contribuciones de cada fuente de luz pueden ser descompuestas en
 - Reflexión ambiental
 - Reflexión difusa
 - Reflexión especular
 - Un objeto puede comportarse de manera distinta según el tipo de componente de la luz
 - Puede tener un color específico para la reflexión ambiental, otro para la difusa y otro para la especular.
 - Estos colores pasan a constituir una descripción de material.

Reflexión Ambiental

$$J_a = \mathcal{K}_a \mathcal{L}a$$

- Intensidad del color es uniforme en cada punto
- \mathcal{K}_a es el coeficiente de reflexión ambiental y cumple con $\mathcal{K}_a \geq 0$
- Puede ser distinto para cada superficie y color
- Determina qué fracción de la luz ambiental es reflejada
- \mathcal{L}_a es la componente ambiental de la fuente de luz
- \mathcal{L}_a no es una cantidad física significativa

Reflexión difusa

- Un objeto reflector difuso difumina la luz
- Este tipo de superficie es llamada superficie de Lambert
- \mathcal{K}_d es el coeficiente de reflexión difusa y cumple con $\mathcal{K}_d \geq 0$
- El ángulo de incidencia es relevante

Aumentando \mathcal{K}_d

Reflexión difusa – Superficie de Lambert

Reflexión difusa

$$\mathcal{I}_d = \mathcal{K}_d \mathcal{L}_d(l.n)$$

- $\cos \theta = l.n$
- \mathcal{L}_d es la componente difusa de la fuente de luz
- l es el vector unitario de la fuente de luz
- n es el vector unitario normal a la superficie
- Podemos agregar atenuación con la distancia

$$\mathcal{I}_d = \frac{\mathcal{K}_d \mathcal{L}_d}{k_c + k_l d + k_q d^2} (I \cdot n) \qquad d = ||Q - P||$$

Reflexión ambiental y difusa

Hacia la derecha aumenta \mathcal{K}_d Hacia arriba aumenta \mathcal{K}_a

- Se refleja la luz en una dirección preferencial
- \mathcal{K}_{S} es el coeficiente de reflexión especular y cumple con $\mathcal{K}_{S} \geq 0$
- Superficies brillantes tienen un alto \mathcal{K}_{s}
- Notar que no estamos modelando el efecto de espejo

$$\mathcal{I}_{S} = \mathcal{K}_{S} \mathcal{L}_{S} (v.r)^{\alpha}$$

- $\cos \phi = v \cdot r$
- \mathcal{L}_{S} es la componente especular de la fuente de luz
- α es el coeficiente de brillo
- l es el vector unitario de la fuente de luz
- r es el vector unitario reflejado
- n es el vector unitario normal a la superficie
- Podemos agregar atenuación con al distancia

$$\mathcal{I}_s = \frac{\mathcal{K}_s \mathcal{L}_s}{k_c + k_l d + k_a d^2} (v \cdot r)^{\alpha} \qquad d = \|Q - P\|$$

$$\mathcal{I}_s = \frac{\mathcal{K}_s \mathcal{L}_s}{k_c + k_l d + k_q d^2} (v \cdot r)^{\alpha} \qquad d = \|Q - P\|$$

Hacia la derecha aumenta α Hacia arriba aumenta \mathcal{K}_s

Modelo de iluminación de Phong

- \mathcal{L}_a , \mathcal{L}_d , \mathcal{L}_s son los componentes de la luz
- \mathcal{K}_a , \mathcal{K}_d , \mathcal{K}_s son los coeficientes de reflexión del material de cada componente
- d = ||P Q|| es la distancia del punto Q hasta la fuente de luz P
- k_c , k_l , k_q son los coeficientes de atenuación constante, lineal y cuadrático respectivamente.
- α es el coeficiente de brillo

$$\mathcal{I} = \mathcal{K}_a \mathcal{L}_a + \frac{1}{k_c + k_l d + k_q d^2} (\mathcal{K}_d \mathcal{L}_d (l \cdot n) + \mathcal{K}_s \mathcal{L}_s (v \cdot r)^{\alpha})$$

$$d = \|Q - P\|$$

Importante

- ullet \mathcal{L}_a , \mathcal{L}_d , \mathcal{L}_s , \mathcal{K}_a , \mathcal{K}_d y \mathcal{K}_s se aplican para cada independientemente para R, G y B
- Luego, \mathcal{L}_a , \mathcal{L}_d , \mathcal{L}_s , \mathcal{K}_a , \mathcal{K}_d y \mathcal{K}_s son representadas compactamente como colores

Modelos de Sombreado

- El modelo de iluminación de Phong nos indica cómo calcular el color final para un punto arbitrario en la superficie
- Si embargo, nuestros modelos son discretizados, por lo que conocemos solo algunas de las posiciones de cada trozo de superficie.
- Tenemos distintas estrategias:
 - Flat: Asigna un único color a cada cara poligonal
 - Gouraud: Calcula el color para los vértices que definen cada cara poligonal
 - Phong: Calcula el color para cada pixel contenido en la cara poligonal.

Modelos de Sombreado

Sobreado Flat, Gouraud y Phong

Modelos de Sombreado

Sobreado Flat, Gouraud y Phong

Sombreado Plano

- Cada vértice del triángulo puede tener distinto color
- Simplemente escogemos uno, y con ese pintamos el triángulo completo.
- Con muchos triángulos, o caras poligonales en general, podemos apreciar degradaciones generadas por las fuentes de luz
- Es el método más económico

Sombreado de Gouraud

- Como cada vértice del triángulo puede tener distinto color, colores en el interior del triángulo pueden ser simplemente interpolados
- Se produce un mejor efecto en superficies suaves
- Podemos aproximar la normal en cada vértice como el promedio normalizado de las normales de las caras vecinas
- Se requiere conocimiento sobre qué caras comparten determinado vértice
 - Más adelante veremos estructuras de datos para mallas poligonales

Sombreado de Phong

- A diferencia del método de Gouraud, aquí interpolaremos la normal al interior de cada triángulo, y con ella calcularemos el color asociado a cada píxel.
- Se produce un excelente efecto en superficies suaves
- Significativamente más costoso

Vectores Normales

- El vector normal a una cara nos entrega información de su orientación en el espacio
- Cuando se transforma el modelo, se deben convertir vértices y normales

By Nicoguaro - Own work, CC BY 4.0

Normal de un triángulo

 Dado un triángulo cuyos vértices están ordenados en sentido contrario a las manecillas del reloj (counter-clockwise), podemos calcular la normal hacia afuera con la ecuación

$$N = \frac{(P_1 - P_0) \times (P_2 - P_0)}{\|(P_1 - P_0) \times (P_2 - P_0)\|}$$

Normal en un vértice

Aproximación de Gouraud: la normal de un vértice se aproxima como el promedio normalizado de las normales de las caras vecinas

$$n_{v} = \frac{n_1 + n_2 + n_3 + \dots}{\|n_1 + n_2 + n_3 + \dots\|}$$

Problema: transformando vectores normales

 Si la transformación no es ortogonal, la dirección de las normales se verá afectada, perdiendo su ortogonalidad

Problema: transformando vectores normales

- Se requiere que los vectores tangente T y normal N sean perpendiculares luego de la transformación M
- Queremos encontrar una transformación G que conserve la ortogonalidad

$$N' \cdot T' = (GN) \cdot (MT) = 0$$

• Luego:

$$(GN) \cdot (MT) = (GN)^T (MT) = N^T G^T MT$$

- Como $N^TT=0$, la ecuación se satisface cuando $G^TM=I$
- Por lo tanto: $G = (M^{-1})^T$

Advertencia: Phong en Shaders

- La interpolación de normales requiere la inversión de la matriz de transformación de modelo resultante
- Inversión de matrices en shaders es soportada solo desde OpenGL
 3.3
- Existen casos, donde la inversión puede ser sencilla (rotaciones)
- Una solución alternativa es enviar al shader tanto la matriz de transformación del modelo, como su inversa. De esta forma, se podría tener sombreado de Phong en GLSL 1.3 o anteriores.