18.226 PROBLEM SET (FALL 2020)

Helpful tips:

- Please read the course homepage carefully regarding homework policies (due dates, lateness, acknowledging sources on each problem, etc.)
- Only turn in problems marked ps1 and ps1* for problem set 1, etc. You are recommended to try the other problems for practice, but do not submit them.
- In a multipart problem, if a later part is marked for submission, it may be helpful to think about the earlier unassigned parts first.
- Bonus problems, marked by ⋆, are more challenging. A grade of A- may be attained by
 only solving the non-starred problems. To attain a grade of A or A+, you should solve a
 substantial number of starred problems. No hints will be given for bonus problems, e.g.,
 during office hours.
- Start each solution on a new page, and try to fit your solution within one page for each unstarred problem/part (without abusing font/margins). The spirit of this policy is to encourage you to think first before you write. Distill your ideas, structure your arguments, and eliminate unnecessary steps. If necessary, some details of routine calculations may be skipped provided that you give precise statements and convincing explanations.
- This file will be updated as the term progresses. Please check back regularly. There will be an announcement whenever each problem set is complete.
- You are encouraged to include figures whenever they are helpful. Here are some recommended ways to produce figures in decreasing order of learning curve difficulty:
 - (1) TikZ
 - (2) IPE (which supports LaTeX), Powerpoint, or other drawing app
 - (3) drawing on a tablet (e.g., Notability on iPad)
 - (4) photo/scan (I recommend the Dropbox app on your phone, which has a nice scanning feature that produces clear monochrome scans)

A. Introduction and linearity of expectations

- A1. Verify the following asymptotic calculations used in Ramsey number lower bounds:
 - (a) For each k, the largest n satisfying $\binom{n}{k} 2^{1-\binom{k}{2}} < 1$ has $n = \left(\frac{1}{e\sqrt{2}} + o(1)\right) k 2^{k/2}$.
 - (b) For each k, the maximum value of $n \binom{n}{k} 2^{1 \binom{k}{2}}$ as n ranges over positive integers is $\left(\frac{1}{e} + o(1)\right) k 2^{k/2}$.
 - (c) For each k, the largest n satisfying $e\left(\binom{k}{2}\binom{n}{k-2}+1\right)2^{1-\binom{k}{2}}<1$ satisfies $n=\left(\frac{\sqrt{2}}{e}+o(1)\right)k2^{k/2}$.
- A2. Prove that, if there is a real $p \in [0, 1]$ such that

$$\binom{n}{k} p^{\binom{k}{2}} + \binom{n}{t} (1-p)^{\binom{t}{2}} < 1$$

then the Ramsey number R(k,t) satisfies R(k,t) > n. Using this show that

$$R(4,t) \ge c \left(\frac{t}{\log t}\right)^{3/2}$$

for some constant c > 0.

- A3. Let G be a graph with n vertices and m edges. Prove that K_n can be written as a union of $O(n^2(\log n)/m)$ copies of G (not necessarily edge-disjoint).
 - A4. Generalization of Sperner's theorem. Let \mathcal{F} be a collection of subset of [n] that does not contain k+1 elements forming a chain: $A_1 \subsetneq \cdots \subsetneq A_{k+1}$. Prove that \mathcal{F} is no larger than taking the union of the k levels of the boolean lattice closest to the middle layer.
- A5. Let A_1, \ldots, A_m be r-element sets and B_1, \ldots, B_m be s-element sets. Suppose $A_i \cap B_i = \emptyset$ for each i, and for each $i \neq j$, either $A_i \cap B_j \neq \emptyset$ or $A_j \cap B_i \neq \emptyset$. Prove that $m \leq (r+s)^{r+s}/(r^r s^s)$.
- A6. Let G be a graph on $n \ge 10$ vertices. Suppose that adding any new edge to G would create a new clique on 10 vertices. Prove that G has at least 8n 36 edges.

 (Hint in white:
- A7. Prove that for every positive integer r, there exists an integer K such that the following holds. Let S be a set of rk points evenly spaced on a circle. If we partition $S = S_1 \cup \cdots \cup S_r$ so that $|S_i| = k$ for each i, then, provided $k \geq K$, there exist r congruent triangles where the vertices of the i-th triangle lie in S_i , for each $1 \leq i \leq r$.
- A8. Prove that $[n]^d$ cannot be partitioned into fewer than 2^d sets each of the form $A_1 \times \cdots \times A_d$ where $A_i \subseteq [n]$.