Semaine 12 - Polynômes

Valentin De Bortoli email : valentin.debortoli@gmail.com

1 Écriture binaire et polynôme

Soit $P_n(x) = (1+X)(1+X^2)\dots(1+X^{2^n})$ avec $n \in \mathbb{N}$.

- 1 Donner la forme développée de P_n .
- 2 Montrer que tout entier $p \in \mathbb{N}$ s'écrit de manière unique comme la somme de puissance de deux.

Remarque : ce résultat permet de montrer de manière élégante, l'existence et l'unicité de l'écriture binaire des entiers.

2 Équations polynomiale(s) (1)

Résoudre dans k[X] les équations suivantes.

- 1 $Q^2 = XP^2 \text{ en } (P, Q).$
- $\mathbf{2} \quad P \circ P = P \text{ en } P.$
- 3 $P(X^2) = (X^2 + 1)P(X)$ en P

3 Équations polynomiale(s) (2)

Soit $P \in \mathbb{C}[X]$ tel que $P(X^2) = P(X)P(X-1)$ et P non nul.

- $\mathbf{1}$ Montrer que les racines de P sont de module 1.
 - **2** Déduire P.

4 Intégration et polynômes (1)

Soit [a,b] un intervalle non vide de \mathbb{R} . Soit $f \in \mathcal{C}([a,b])$. Soit $n \in \mathbb{N}$.

1 On suppose que $\forall k \in [0, n]$, $\int_a^b f(t)t^k dt = 0$. Montrer que f s'annule au moins n+1 fois.

Remarque : le théorème de Weierstrass permet de montrer une version limite de ce théorème à savoir : si $\forall P \in \mathbb{R}[X], \int_a^b f(x)P(x)\mathrm{d}x = 0$, alors f = 0.

5 Intégration et polynômes (2)

1 Trouver tous les polynômes de $\mathbb{R}[X]$ qui vérifient : $\forall k \in \mathbb{N}, \ \int_k^{k+1} P(x) \mathrm{d}x = k+1.$

6 Localisation des racines

Soit $P = X^n + a_{n-1}X^{n-1} + \cdots + a_0$ un polynôme de $\mathbb{C}[X]$. Soit z une racine complexe de P.

1 Montrer que $|z| \le 1 + \max_{j \in \llbracket 0, n-1 \rrbracket} |a_j|$.

Remarque : cette majoration permet de réduire l'ensemble de recherche des racines du polynômes. D'autres techniques permettent d'affiner le domaine : règle de changement des signes de Descartes, suites de Sturm, disques de Gershgörin.

7 Le théorème de Gauss-Lucas

Soit $P \in \mathbb{C}[X]$.

1 Montrer que toute racine de P' est barycentre des racines de P.

8 Majoration des coefficients

Soit $P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_0$.

- 1 Calculer $P(1) + P(\omega) + \cdots + P(\omega^n)$ avec ω une racine n+1-ème de l'unité.
- **2** En déduire que $\forall k \in [0, n], |a_k| \leq M \text{ avec } M = \sup_{z \in \mathbb{U}} (|P(z)|).$

9 Localité et polynômes

Soit f une fonction sur $\mathbb R$ localement polynômiale :

$$\forall x_0 \in \mathbb{R}, \ \exists (\epsilon, P_{x_0}) \in \mathbb{R}_+^* \times \mathbb{R}[X], \ \forall x \in]x_0 - \epsilon, x_0 + \epsilon[, \ f(x) = P(x)]$$

1 Montrer que f est un polynôme.

Remarque : on peut encore affaiblir les hypothèses (théorème de Balaguer-Corominas) :

$$\forall x \in \mathbb{R}, \exists n_x, f^{(n_x)}(x) = 0 \Leftrightarrow f \text{ est polynômiale.}$$

10 Trigonométrie et polynômes

1 Peut-on écrire la fonction cos comme un polynôme ?

11 Racines réelles de polynôme (1)

Soit $(a, b) \in \mathbb{R}^2$, $n \in \mathbb{N}$.

1 Montrer que le polynôme $X^n + aX + b$ admet au plus trois racines réelles.

12 Racines réelles de polynômes (2)

1 Montrer que $P_n = ((1 - X^2)^n)^{(n)}$ est un polynôme de degré n dont les racines sont réelles, simples et appartiennent à [-1, 1].

13 Théorème de Niven

On se propose de montrer le théorème suivant :

 $\textbf{Th\'eor\`eme 1} \ \ (\text{Niven, 1956}). \ \ \textit{Soit} \ \ r \in \mathbb{Q}, \ \cos(r\pi) \in \mathbb{Q} \ \ \Rightarrow \ \ \cos(r\pi) = 0, \ \ \frac{1}{2}, \ \ \textit{ou} \ \ 1.$

- 1 On considère la suite $(P_n)_{n\in\mathbb{N}}$ définie par $P_0=2,\,P_1=X$ et $P_{n+1}=XP_n-P_{n-1}$ (presque des polynômes de Tchebychev!). Montrer que $\forall n\in\mathbb{N},\,\,\forall x\in\mathbb{R},\,\,P_n(2\cos(x))=2\cos(nx)$.
 - 2 Soit $P \in \mathbb{Z}[X]$. Montrer que si P a une racine rationnelle alors en fait cette racine est entière.
 - 3 En utilisant les deux questions précédentes, conclure sur le théorème de Niven.