

Rakotoarivony & Sicard

## Challenge

This document is intended for the oral restitution carried out in groups on 24 march 2021.



#### Training

### Introduction

### **Learning Hyperparameters**

#### Model A & B

Optimizer: SGD

Momentum = 0.9

Weight decay = 10<sup>-4</sup>

Lr = 0.1 [1,89]

Lr = 0.01 [90,109]

Lr = 0.001 [110,120]

#### Training

### Introduction

#### **Learning Hyperparameters**

#### **Architecture Hyperparameters**

#### Model A & B

Optimizer : SGD

Momentum = 0.9

Weight decay =  $10^{-4}$ 

Lr = 0.1 [1,89]

Lr = 0.01 [90,109]

Lr = 0.001 [110,120]

#### Model A

Grow rate = 12

Number of denseblock = 4

Number of bottleneck = [6,12,24,16]

| Model      | Accuracy | Score<br>Flops | Score<br>Parameters |
|------------|----------|----------------|---------------------|
| densenet_A | 93.70 %  | 0.231          | 0.088               |

#### Training

### Introduction

#### **Learning Hyperparameters**

### **Architecture Hyperparameters**

#### Model A & B

Optimizer : SGD

Momentum = 0.9

Weight decay =  $10^{-4}$ 

Lr = 0.1 [1,89]

Lr = 0.01 [90,109]

Lr = 0.001 [110,120]

#### Model A

Grow rate = 12

Number of denseblock = 4

Number of bottleneck = [6,12,24,16]

#### Model B

Grow rate = 8

Number of denseblock = 4

Number of bottleneck = [6,10,20,12]

| Model      | Accuracy | Score<br>Flops | Score<br>Parameters |
|------------|----------|----------------|---------------------|
| densenet_A | 93.70 %  | 0.231          | 0.088               |
| densenet_B | 92.05 %  | 0.089          | 0.029               |

## Learning rate rewinding



Comparing Rewinding and Fine-tuning in Neural Network Pruning:

https://arxiv.org/abs/2003.02389

## Learning rate rewinding

#### **Algorithm:** Our pruning algorithm

- 1. Train to completion
- 2. Prune the 20% lowest-magnitude weights globally
- 3. Retrain using learning rate rewinding for the original training time
- 4. Repeats steps 2 and 3 iteratively until the desired compression ratio is reached

#### How do we retrain?

Learning rate rewinding for t epochs runs Train  $(\boldsymbol{W}_{\boldsymbol{T}}$  ,  $\boldsymbol{m}$  ,  $\boldsymbol{T}$  - t)

#### With:

 $\boldsymbol{W}_{\boldsymbol{T}}$  , the weights actually of the pruned model

**m**, the pruned model

**T - t**, the learning rate schedule from the last t epochs of training

Retrain for 60 epochs:

Lr = 0.1 [1,29]

Lr = 0.01 [30,49]

Lr = 0.001 [50,60]

## Learning rate rewinding

### **Pruning Parameters**

#### Pruned A

Compression ratio: 5 (80 % pruned)

Steps of pruning: 7

| Model               | Accuracy | Score<br>Flops | Score<br>Parameters |
|---------------------|----------|----------------|---------------------|
| densenet_B          | 92.05 %  | 0.089          | 0.029               |
| densenet_B_pruned_A | 92.65 %  | 0.089          | 0.007               |

## Learning rate rewinding

### **Pruning Parameters**

#### Pruned A

Compression ratio: 5 (80 % pruned)

Steps of pruning: 7

#### Pruned B

Compression ratio: 10 (89 % pruned)

Steps of pruning: 10

| Model               | Accuracy | Score<br>Flops | Score<br>Parameters |
|---------------------|----------|----------------|---------------------|
| densenet_B          | 92.05 %  | 0.089          | 0.029               |
| densenet_B_pruned_A | 92.65 %  | 0.089          | 0.007               |
| densenet_B_pruned_B | 92.07 %  | 0.089          | 0.004               |

# **Sparsity of layers**



# **Sparsity of layers**



## **Sparsity of layers**



#### Removal of dense block 4

(all of his bottlenecks have more than 83% of sparsity)

Need to **modify** (increase) the number of features maps in the transition block 3

## **Sparsity of layers**



#### Removal of dense block 4

(all of his bottlenecks have more than 83% of sparsity)

Need to **modify** (increase) the number of features maps in the transition block 3

| Model               | Accuracy | Score<br>Flops | Score<br>Parameters |
|---------------------|----------|----------------|---------------------|
| densenet_B          | 92.05 %  | 0.089          | 0.029               |
|                     |          |                |                     |
| densenet_B_pruned_A | 92.65 %  | 0.0895         | 0.007               |

### **APoT Quantization**

# Quantization on **N** bits of the parameters of the **Convolutional Layers**Use of the module QuantConv2D on **4 bits**

```
m = model quant.conv1
print (m.weight[0].data)
print (m.weight quant (m.weight, m.weight mask) [0].data)
tensor([[[ 0.0000, -0.1658, 0.1490],
        [-0.0000, 0.0000, -0.1612],
        [-0.0536, -0.0825, 0.1160]],
        [[ 0.1253, 0.0759, 0.0000],
        [ 0.0000, -0.0000, -0.0468],
        [-0.0396, -0.1333, 0.17141],
        [[-0.0000, -0.0782, 0.1518],
        [ 0.1493, 0.0732, -0.0744],
        [ 0.1655, -0.0000, 0.0536]]], device='cuda:0')
tensor([[[ 0.0000, -1.2000, 1.2000],
         [ 0.0000, 0.0000, -1.2000],
         [-0.3000, -0.6000, 0.9000]],
        [[ 1.2000, 0.6000, 0.0000],
        [ 0.0000, 0.0000, -0.3000],
        [-0.3000, -0.9000, 1.2000]],
        [[ 0.0000, -0.6000, 1.2000],
         [ 1.2000, 0.6000, -0.6000],
         [ 1.2000, 0.0000, 0.6000]]], device='cuda:0')
```

- We quantize **post training** because training with quantization is really slow
- Quantization on 4 bits is the best trade-off accuracy and number of bits because we lose only approximately 2% of accuracy
- We also try to implement other types of quantization such as BWN, Binary Connect or XNOR but this method is more efficient

## **Combination of Quantization and Pruning**

The main challenge of our project was to combine quantization and pruning

- We need to modify the code of QuantConv2D in order to implement the pruning (use of mask and only focus on parameters different to 0 to calculate the mean)
- We have to modify the state dict of the prune model to implement the quantization (add new parameters)
- We need to retrain the quantize model approximately 30 epochs in order to obtain a good accuracy

| Model                            | Accuracy | Score<br>Flops | Score<br>Parameters |
|----------------------------------|----------|----------------|---------------------|
| densenet_B                       | 92.05 %  | 0.089          | 0.029               |
| densenet_B_pruned_A              | 92.65 %  | 0.089          | 0.007               |
| densenet_B_pruned_A<br>quantized | 90.07 %  | 0.067          | 0.002               |

## **Areas for improvement**

01

Use of **distillation** and **factorization** 

02

Improve our flops score

=> Modify the architecture or use of structured pruning

03

Realize tests on Cifar100

Find a **better compromise** between the score flops and the score params

## Conclusion

# Thanks for your attention

Do you have any questions?

#### General

## **Appendices and notes**

**Bottleneck**: Sequence of

BatchNorm2d - Conv2d - BatchNorm2d - Conv2d

(Trans3)(conv): Conv2d(216, 108, kernel\_size=(1, 1), stride=(1, 1),

bias=False)

=> output: 204

4217088 ops

we remove 55k or 100k max ...

Change size linear 0.086

### References

Additive Powers-of-Two Quantization: An Efficient Non-uniform Discretization for Neural Networks:

https://arxiv.org/abs/1909.13144

Comparing Rewinding and Fine-tuning in Neural Network Pruning:

https://arxiv.org/abs/2003.02389