

TEST REPORT

REGULATION: FCC Part15 Subpart C Section 15.225

Applicant	Testing Laboratory	
Hitachi Information & Control Solutions, Ltd. 1-26, Omika-cho, 5-chome, Hitachi-shi Ibaraki-ken, 319-1221 Japan	Intertek Japan K.K. Kashima Site 3-2 Sunayama, Kamisu, Ibaraki 314-0255 Japan	
Tel.: +81 294 53 6142 Fax.: +81 294 53 6146	Tel.: +81 479 40 1097 Fax.: +81 479 46 1788 URL: http://www.japan.intertek-etlsemko.com	

Equipment Type Finger Vein Authentication device for Door Access **Trademark** Hitachi-ICS FVTC720 Model (s) Serial No. XR401301 0035 **FCC ID** WLT-FVTC720 **Test Result** Complied **Report Number** JK08080011 **Report Issue Date** September 11, 2008

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

idi Proda

Approved by

Junichi Okada [Site Manager]

Tested by

Katsuya Uchida

d. Mohida.

TABLE OF CONTENTS

			Page
SECTION	1.	GENERAL INFORMATION	3
SECTION	2.	SUMMARY OF TEST RESULTS	4
SECTION	3.	EQUIPMENT UNDER TEST	5
SECTION	4.	SUPPORT EQUIPMENT(S)	6
SECTION	5.	USED CABLE (S)	7
SECTION	6.	TEST CONFIGURATION	8
SECTION	7.	OPERATING CONDITION	9
SECTION	8.	TEST PROCEDURE(S)	10
SECTION	9.	MEASUREMENT UNCERTAINTY	14
SECTION	10.	EVALUATION OF TEST RESULTS	15
SECTION	11.	LIST OF MEASURING INSTRUMENTS	22

SECTION 1. GENERAL INFORMATION

TEST PERFORMED

Location Kashima No.12 Test Site (FCC Reg.: JP0008)	
EUT Received August 11, 2008	
Date of Test From August 11, 2008 to August 12, 2008	
Standard Applied FCC Part15C – Section 15.225	
Measurement methods	ANSI C63.4-2003
Test Procedure Document number : 03-10-003, 03-10-004	
Deviation from Standard (s)	Not applicable

QUALIFICATIONS OF TESTING LABORATORY

ACCREDITATION	SCOPE	LAB. CODE	Remarks
NVLAP	EMC Testing	100290-0	USA
VLAC	EMC Testing	VLAC-008-1	JAPAN
BSMI	EMC Testing	SL2-IN-E-6008	TAIWAN
FILING			
VCCI	EMC Testing	R-788, C-278, C-279, T-351, T-352 R-274, C-280, C-281, T-353, T-359 R-272, C-276, C-277, T-360, T-361 R-576, C-590, T-362	JAPAN
FCC	EMC Testing	Designation Number : JP0008	USA
IC	EMC Testing	2065A-1, 2065A-3	CANADA
SAUDI ARABIA	EMC Testing	N/A	

ABBREVIATIONS

EUT	Equipment Under Test	DoC	Declaration of Conformity
AMN	Artificial Mains Network	ISN	Impedance Stabilization Network
LISN	Line Impedance Stabilization Network	Q-P	Quasi-peak
AMP	Amplifier	AVG	Average
ATT	Attenuator	PK	Peak
ANT	Antenna	Cal	Calibration
BBA	Broadband Antenna	N/A	Not applicable
DIP	Dipole Antenna	LCD	Liquid-Crystal Display
AE	Associated Equipment		

SECTION 2. SUMMARY OF TEST RESULTS

The minimum margins to the limits are as follows:

Test	Reference <fcc></fcc>	Result
AC Conducted Emission	15.207	Pass
Field Strength Emission	15.225 (a)	Pass
Spurious Emissions – Radiated	15.225 (d) 15.209 15.205	Pass
Frequency Tolerance	15.225 (e)	Pass

Note: 1. See Section 10 for details.

< Measurement data correction >

* Conducted disturbance at mains terminals Emission Level [dB μ V] = Meter Reading [dB μ V] + Factor [dB] Margin [dB] = Limit [dB μ V] - Emission Level [dB μ V] * Factor = LISN Factor + Cable Loss + ATT

* Radiated disturbance

Emission Level [dB μ V/m] = Meter Reading [dB μ V] + Factor [dB/m] Margin [dB] = Limit [dB μ V/m] - Emission Level [dB μ V/m] * Factor = Antenna Factor + Cable Loss - Amplifier Gain + ATT (– Distance Conversion Factor)

SECTION 3. EQUIPMENT UNDER TEST

The equipment under test (EUT) consisted of the following apparatus.

3.1 List of System Configuration

Symbol	Item	Model No.	Serial No.	Manufacturer	FCC ID
A1 Terminal Unit		FVTC720	XR401301 0035	Hitachi Information & Control Solutions, Ltd.	WLT-FVTC720
A2 I/O Box		FB720	XR401401 0035	Hitachi Information & Control Solutions, Ltd.	N.A.
Power Ra	Power Ratings of EUT: DC 12 V, 0.8 A (Input Voltage range: DC 11.4 V – 12.6 V)				
Power Su	Power Supply : DC 12 V, 0.6 A (A1) / DC 12 V, 0.2 A (A2)				
Condition of Equipment Production					
Туре	Type Wall-hanging				
Suppress	Suppression Devices No Modifications by the laboratory were made to the device				

3.2 Overview of EUT

Carrier Frequency	13.56 MHz
Modulation Method	Amplitude Shift Keying
RF Output Power	59.2 dBuV/m (at 3.0m : Measurement value)

3.3 Port(s)/Connector(s)

Port Name	Connector Type	Connector Pin	Remarks
RS485 (Terminal unit~ I/O Box)	Terminal	2pin	
Wiegand	Terminal	6pin	
LAN	RJ45	8pin	
Power	Terminal	2pin	

3.4 Highest Frequency Oscillator(s) / Crystal (s)

Oscillator	Operating Frequency	Board Name	Remarks
12 MHz	192 MHz	CPU Board (SZC700)	

3.5 Frequency Range of Measurements

AC Conducted Emission	0.15 – 30 MHz
Spurious Emission – Radiated (Magnetic Field)	0.009 – 30 MHz
Spurious Emission – Radiated (Electric Field)	30 – 1000 MHz

SECTION 4. SUPPORT EQUIPMENT(S)

The EUT was supported by the following equipment during the test.

Symbol	Item	Model No.	Serial No.	Manufacturer	FCC ID
В	iClass Smart Card	iCLASS 16K/2	1*00046 31021091-1	HID	N.A.
С	AC Adapter	US318-12	612-0297564	UNIFIVE	DoC
Power Supply :					
С	AC 120 V, 60 Hz				

SECTION 5. USED CABLE (S)

The following cable(s) was used for the test.

No.	Name	Length (m)	Shield	Metal Connector	Ferrite Core
1	RS485 cable	5.00	Yes	No	
2	Power cable for I/O Box (DC)	1.80	No	No	

Note: No ferrite core is attached to the outer cables.

SECTION 6. TEST CONFIGURATION

* : EUT

The symbols and numbers assigned to the equipments and cables on this diagram correspond to the ones in Sections 3 to 5.

SECTION 7. OPERATING CONDITION

The EUT was operated under the following conditions during the test.

7.1 Operating Condition

The test was carried out under Finger Vein Authentication device's Test of Door Access mode. EUT was examined in the operating conditions that had maximum emissions.

7.2 Operating Flow [Finger Vein Authentication device's Test of Door Access mode]

Following operations were performed continuously.

SECTION 8. TEST PROCEDURE(S)

Test was carried out under the following conditions.

AC Conducted Emission

Test setup

* Reference Ground plane : greater than 2 x 2m

Schema for the AC conducted emission measurement

Instrument setup

Frequency [MHz]	Instrument	Detector Function	Resolution Bandwidth	Video Bandwidth
0.15 – 30	Receiver	Quasi Peak	10 kHz	N/A.
		Average	10 kHz	N/A.

[Preliminary Measurement]

EUT is tested on all operating conditions.

The spectrum analyzer is controlled by the computer program to sweep the frequency range to be measured, then spectrum chart is plotted out to find the worst emission conditions in operating mode and/or configuration decision for the final test.

All leads other than safety ground are tested.

[Final Measurement]

The EUT is operated in the worst emission condition found by the preliminary test.

The equipment and cables are arranged or manipulated within the range of the test standard in the above condition.

At least six highest spectrum are measured in quasi-peak and average (if necessary) using the test receiver.

Field Strength Emission & Spurious Emission - Radiated

Test setup

$\underline{\textbf{Schema for the field strength emission \& spurious emission radiated magnetic field measurement}}$

< Below 30MHz >

Schema for the spurious emission radiated electric field measurement < 30 - 1000MHz >

< Below 30MHz >

[Instrument Setup]

Frequency [MHz]	Instrument	trument Detector Function Resolution Band		Video Bandwidth
0.009 to 0.15	Receiver	Quasi Peak	200 Hz	N.A.
0.15 to 30	Receiver	Quasi Peak	10 kHz	N.A.

[Preliminary Measurement]

EUT is tested on all operating conditions.

The Loop antenna is used for Magnetic field measurements on the frequency range 0.009 – 30 MHz.

The antenna mast is attachable to the Loop antenna and antenna's center height is set 1 meter above the ground.

Antenna angle is adjustable 0 to 360 degree and antenna polarization is also changed. (vertical and horizontal)

The spectrum analyzer is set max-hold mode and swept during turntable was rotated 0 to 360 degree. Then spectrum chart are plotted out to find the worst emission conditions in configuration, operating mode, or ambient noise notation.

[Final Measurement]

The EUT operated in the worst emission condition found by the preliminary test.

The turntable azimuth (EUT direction) and antenna angle are adjusted the position so that maximum field strength is obtained for each frequency spectrum to be measured.

The equipment and cables are arranged or manipulated within the range of the test standard in the above condition.

Higher spectrum is measured by the test receiver (quasi-peak).

< 30 - 1000MHz >

[Instrument Setup]

[motrament octup]					
Frequency [MHz]	Frequency [MHz] Instrument		Resolution Bandwidth	Video Bandwidth	
30 to 1000	Receiver	Quasi Peak	120 kHz	N.A.	

[Preliminary Measurement]

EUT is tested on all operating conditions.

The broadband Tri-Log antenna is used for Electric field measurements on the frequency range 30 – 1000 MHz.

The antenna mast is attachable to the broadband Tri-Log and antenna height is adjustable 1 to 4 meters continuously, and antenna polarization is also changed. (vertical and horizontal)

The spectrum analyzer is set max-hold mode and swept during turntable was rotated 0 to 360 degree. Then spectrum chart are plotted out to find the worst emission conditions in configuration, operating mode, or ambient noise notation.

[Final Measurement]

The EUT operated in the worst emission condition found by the preliminary test.

The turntable azimuth (EUT direction) and antenna height (1 to 4 meters) are adjusted the position so that maximum field strength is obtained for each frequency spectrum to be measured.

The equipment and cables are arranged or manipulated within the range of the test standard in the above condition.

At least six highest spectrum are measured by the test receiver (quasi-peak).

When the uncertain result was obtained, the measurement is retried by using the half wave dipole antenna instead of the broadband antenna.

© Intertek Japan K.K. Page 12 of 23 FESJ-EM006 Version1.0

Frequency Tolerance

Schema for the voltage variation & temperature measurement

[Preliminary Measurement]

EUT is tested on all operating conditions.

Set the temperature 20 degrees C.

The power supply voltage to the EUT was varied from 85% to 115% of the normal value measured at the input to the EUT.

[Final Measurement]

Set the temperature - 20 degrees C.

Leave the EUT for 1 hour after it became the temperature that was set up.

Set the temperature 50 degrees C by 10 degrees C.

SECTION 9. MEASUREMENT UNCERTAINTY

Radiated disturbance at 3m								
30 MHz – 1000 MHz	+/- 3.8 dB							
Above 1 GHz	+/- 4.3 dB							
Radiated disturbance at 10m								
30 MHz – 1000 MHz	+/- 5.5 dB +/- 4.3 dB							
Radiated disturbance at 30m								
	N/A							
Radiated disturbance (power)								
11.7 GHz – 12.7 GHz	+/- 3.8 dB							
Conducted disturbance at mains t	Conducted disturbance at mains terminals							
9 kHz – 30 MHz	+/- 3.0 dB							
Conducted disturbance at telecom	nmunication ports (voltage)							
9 kHz – 30 MHz	+/- 3.4 dB							
Conducted disturbance at telecom	nmunication ports (current)							
9 kHz – 30 MHz	+/- 1.3 dB							
Conducted disturbance at termina	ls							
150 kHz – 30 MHz	+/- 1.0 dB							
Disturbance power								
30 MHz – 300 MHz	+/- 4.9 dB							
Radiated Magnetic Field								
9 kHz – 30 MHz	+/- 2.94 dB							
Frequency Stability								
-20 - +50deg.C	+/- 0.02 ppm							

Note on Radiated Electric Field measurement uncertainty

The following items are not included in the calculations in spite of their own uncertainty components because it is impracticable to find the value. It is our problem awaiting solution in future.

- (1) Repeatability of measurement
 - It is not possible to calculate repeatability since the measurement was carried out only one time.
- (2) Antenna factor variation
 - The definition of measured (radiated electric field strength) is not completed on the referred standard(s).
- (3) Loss of EUT radiation propagation

It is certainly one of the uncertainty components, however is not able to calculate.

Please note that these uncertainties are not reflected to the compliance judgment of the test results in this report.

SECTION 10. EVALUATION OF TEST RESULTS

10.1 AC Conducted Emission Test

Intertek Japan K.K.

Kashima No.12 Test Site

AC Conducted Emission Test

APPLICANT : Hitachi Information & Control Solutions,Ltd EUT NAME : Finger Vein Authentication device for Door Access

MODEL NO. : FVTC720 SERIAL NO. : XR401301 0035

TEST MODE : Finger Vein Authentication device's Test of Door

Access

POWER SOURCE : DC12V DATE TESTED : Aug 12 2008 FILE NO. : JK08080011

REGULATION : FCC part15C (Section 15.207)

TEST METHOD : ANSI C63.4-2003 TEMPERATURE : 24.0 [degC] HUMIDITY : 56.0 [%]

NOTE :

ENGINEER : Katsuya Uchida

FRI [No]	EQUENCY MODE [MHz]	READINO [dBuV] Line1	G Line2	FACTOF [dB] Line1	R Line2	EMISSIO [dBuV] Line1	N Line2	LIMIT [dBuV]	MARO [dB Line1	
1	0.1876 Q-P	35.3	32.8	6.1	6.1	41.4	38.9	64.1	22.7	25.2
2	0.3792 Q-P	36.5	34.5	6.1	6.1	42.6	40.6	58.3	15.7	17.7
3	0.7076 Q-P	28.0	26.4	6.2	6.3	34.2	32.7	56.0	21.8	23.3
4	4.1697 Q-P	25.1	20.4	6.6	6.6	31.7	27.0	56.0	24.3	29.0
5	12.5036 Q-P	<u>31.4</u>	30.0	7.2	7.2	<u>38.6</u>	37.2	60.0	<u>21.4</u>	22.8
6	13.5600 Q-P	<u>42.6</u>	42.5	7.2	7.2	49.8	49.7	60.0	10.2	10.3
7	13.5600 AVG	42.2	42.1	7.2	7.2	49.4	49.3	50.0	0.6	0.7
8	27.2472 Q-P	18.3	18.5	7.6	7.9	25.9	26.4	60.0	34.1	33.6

Higher six points are underlined.

Other frequencies: Below the FCC part15C (Section 15.207) limit

 $Emisson\ Level\ = Read\ + Factor(LISN,Pad,Cable)$

10.2 Field Strength Emission Test

FRE [No]	EQUENCY [MHz]	READING [dBuV]		FACTOR [dB]		EMISSION [dBuV/m]	[d	LIMIT BuV/m]	MARG [dB]	
		Hori	Vert	Hori	Vert	Hori	Vert		Hori	Vert
1	13.5600	29.5	33.5	25.7	25.7	55.2	59.2	124.0	68.8	64.8

Higher six points are underlined.

 $Emisson\ Level\ = Read\ + Factor(Antenna,\ Pad,\ Cable)$

10.3 Spurious Emissions – Radiated Test

10.3.1 Finger Vein Authentication device's Test of Door Access mode (9kH – 30MHz)

Intertek Japan K.K.

Kashima No.12 Test Site

Spurious Emissions - Radiated Test

APPLICANT : Hitachi Information & Control Solutions,Ltd EUT NAME : Finger Vein Authentication device for Door Access

MODEL NO. : FVTC720 SERIAL NO. : XR401301 0035

 $TEST\ MODE \qquad : Finger\ Vein\ Authentication\ device's\ Test\ of\ Door$

Access

POWER SOURCE : DC12V DATE TESTED : Aug 12 2008 FILE NO. : JK08080011

REGULATION : FCC part15C (Section 15.209)

TEST METHOD : ANSI C63.4-2003 DISTANCE : 3.00 [m] TEMPERATURE : 24.0 [degC] HUMIDITY : 54.0 [%]

NOTE :

ENGINEER : Katsuya Uchida

FRI [No]	EQUENCY [MHz]	READING [dBuV] Hori	Vert	FACTOR [dB] Hori	Vert	EMISSION [dBuV/m] Hori	[d Vert	LIMIT BuV/m]	MARG [dB] Hori	IN Vert
1	0.0749	8.0	<u>10.5</u>	25.3	25.3	33.3	35.8	110.1	76.8	74.3
2	0.1546	19.5	<u>21.0</u>	25.3	25.3	44.8	46.3	103.8	59.0	<u>57.5</u>
3	0.3345	11.0	<u>13.0</u>	25.3	25.3	36.3	38.3	97.1	60.8	<u>58.8</u>
4	13.5600	29.5	<u>33.5</u>	25.6	25.6	55.1	59.1	69.5	14.4	10.4
5	17.9840	<u>2.5</u>	1.0	25.9	25.9	<u>28.4</u>	26.9	69.5	<u>41.1</u>	42.6
6	27.1200	<u>5.0</u>	3.0	26.9	26.9	31.9	29.9	69.5	<u>37.6</u>	39.6

Higher six points are underlined.

Other frequencies: Below the FCC part15C (Section 15.209) limit

 $Emisson\ Level\ = Read\ + Factor(Antenna,\ Pad,\ Cable)$

10.3.2 Finger Vein Authentication device's Test of Door Access mode (30MHz - 1000MHz)

Intertek Japan K.K.

Kashima No.12 Test Site

Spurious Emissions - Radiated Test

APPLICANT : Hitachi Information & Control Solutions,Ltd EUT NAME : Finger Vein Authentication device for Door Access

MODEL NO. : FVTC720 SERIAL NO. : XR401301 0035

TEST MODE : Finger Vein Authentication device's Test of Door

Access

POWER SOURCE : DC12V DATE TESTED : Aug 11 2008 FILE NO. : JK08080011

REGULATION : FCC part15C (Section 15.209)

TEST METHOD : ANSI C63.4-2003 DISTANCE : 3.00 [m] TEMPERATURE : 21.0 [degC] HUMIDITY : 58.0 [%]

NOTE :

ENGINEER : Katsuya Uchida

FR [No]	EQUENCY [MHz]	ANT.	READING [dBuV] Hori	Vert	FACTOR [dB] Hori	Vert	EMISSION [dBuV/m] Hori	[/ Vert	LIMIT dBuV/m]	MARG [dB] Hori	
1	51.50	BBA	-	36.9	-1.0	-1.0	-	35.9	40.0	-	4.1
2	64.00	BBA	-	39.8	-4.7	-4.7	-	35.1	40.0	-	4.9
3	80.00	BBA	-	43.9	-7.9	-7.9	-	36.0	40.0	-	4.0
4	81.00	BBA	-	43.2	-7.8	-7.8	-	35.4	40.0	-	4.6
5	144.00	BBA	-	40.2	-5.0	-5.0	-	35.2	43.5	-	8.3
6	250.00	BBA	39.0	_	0.0	0.0	39.0	-	46.0	7.0	-
7	285.26	BBA	40.5	-	0.5	0.5	41.0	-	46.0	5.0	-
8	288.00	BBA	44.2	-	0.7	0.7	44.9	-	46.0	<u>1.1</u>	-
9	576.00	BBA	36.5	34.6	8.0	8.0	44.5	42.6	46.0	1.5	3.4
10	588.00	BBA	<u>35.1</u>	-	8.3	8.3	<u>43.4</u>	-	46.0	2.6	-
11	720.00	BBA	28.9	_	10.8	10.8	39.7	-	46.0	6.3	-
12	900.00	BBA	<u>29.0</u>	23.3	14.1	14.1	<u>43.1</u>	37.4	46.0	2.9	8.6

Higher six points are underlined.

 $\label{eq:continuous} Other\ frequencies: Below\ the\ FCC\ part15C\ (Section\ 15.209)\ limit\\ Emission\ Level\ =\ Read\ +\ Factor(Antenna,Antenna\ Pad,Cable,Preamp)\\ ANT.: Used\ antenna(BBA\ =\ Broadband\ antenna,\ DIP\ =\ Dipole\ antenna)\\ Other\ preample of the preampoint of the preample of the pr$

emiT 3, 0, 0, 0

 $Copyright (c) 2007\ Intertek\ Japan\ K.K.$

10.4 Restricted bands of operation

10.5 Frequency Tolerance

Tested Date : August 19, 2008

Limit : 0.01%(100[ppm]) = 13.561356 [MHz] : -0.01%(100[ppm]) = 13.558644 [MHz]

Engineer : Katsuya Uchida

Degree C	Supply Vo	ltage [v] DC	Time after stabilization [min]	Operation Frequency [MHz]	Frequency Shift [%]	Result
			startup	13.5600	0.0000	Pass
50	100%	12	2	13.5600	0.0000	Pass
50	100%	12	5	13.5605	0.0037	Pass
			10	13.5605	0.0037	Pass
			startup	13.5600	0.0000	Pass
40	100%	12	2	13.5598	-0.0015	Pass
40	100 /6	12	5	13.5603	0.0022	Pass
			10	13.5603	0.0022	Pass
			startup	13.5600	0.0000	Pass
30	100%	12	2	13.5595	-0.0037	Pass
30	100%	12	5	13.5605	0.0037	Pass
			10	13.5598	-0.0015	Pass
			startup	13.5603	0.0022	Pass
	85%	10.2	2	13.5598	-0.0015	Pass
	65%	10.2	5	13.5605	0.0037	Pass
			10	13.5598	-0.0015	Pass
20			startup	13.5600	0.0000	Reference
	1000/	12	2	13.5603	0.0022	Pass
	100%	12	5	13.5608	0.0059	Pass
			10	13.5600	0.0000	Pass
		5% 13.8	startup	13.5600	0.0000	Pass
	115%		2	13.5605	0.0037	Pass
	113%	13.0	5	13.5608	0.0059	Pass
			10	13.5605	0.0037	Pass
			startup	13.5605	0.0037	Pass
10	100%	12	2	13.5610	0.0074	Pass
10	100%	12	5	13.5605	0.0037	Pass
			10	13.5605	0.0037	Pass
			startup	13.5608	0.0059	Pass
0	100%	12	2	13.5603	0.0022	Pass
U	100%	12	5	13.5608	0.0059	Pass
			10	13.5600	0.0000	Pass
			startup	13.5595	-0.0037	Pass
-10	100%	12	2	13.5600	0.0000	Pass
-10	100 /6	12	5	13.5610	0.0074	Pass
			10	13.5608	0.0059	Pass
			startup	13.5605	0.0037	Pass
-20	100%	12	2	13.5603	0.0022	Pass
20	10070	12	5	13.5608	0.0059	Pass
			10	13.5600	0.0000	Pass

Tested Date : August 19, 2008 Limit : 0.01%(100[ppm]) = : -0.01%(100[ppm]) = 13.561856 [MHz] 13.559144 [MHz]

Engineer : Katsuya Uchida

Degree C	Supply Vo	ltage [v] DC	Time after stabilization [min]	Operation Frequency [MHz]	Frequency Shift [%]	Result
			startup	13.5603	-0.0015	Pass
50	4000/	24	2	13.5603	-0.0015	Pass
50	100%	24	5	13.5600	-0.0037	Pass
			10	13.5603	-0.0037	Pass
			startup	13.5608	0.0022	Pass
40	100%	24	2	13.5608	0.0022	Pass
40		24	5	13.5605	0.0000	Pass
			10	13.5600	-0.0037	Pass
			startup	13.5605	0.0000	Pass
00	100%	0.4	2	13.5603	-0.0015	Pass
30		24	5	13.5598	-0.0052	Pass
			10	13.5605	0.0000	Pass
			startup	13.5608	0.0022	Pass
	050/	00.4	2	13.5608	0.0022	Pass
	85%	20.4	5	13.5600	-0.0037	Pass
20			10	13.5608	0.0022	Pass
			startup	13.5605	0.0000	Reference
	4000/	0.4	2	13.5598	-0.0052	Pass
	100%	24	5	13.5603	-0.0015	Pass
			10	13.5600	-0.0037	Pass
		-0/ 07.0	startup	13.5603	-0.0015	Pass
	4450/		2	13.5603	-0.0015	Pass
	115%	27.6	5	13.5595	-0.0074	Pass
			10	13.5603	-0.0015	Pass
			startup	13.5605	0.0000	Pass
40	4000/	0.4	2	13.5608	0.0022	Pass
10	100%	0% 24	5	13.5605	0.0000	Pass
			10	13.5608	0.0022	Pass
			startup	13.5600	-0.0037	Pass
•	4000/	0.4	2	13.5603	-0.0015	Pass
0	100%	24	5	13.5595	-0.0074	Pass
			10	13.5595	-0.0074	Pass
			startup	13.5605	0.0000	Pass
10	4000/	24	2	13.5598	-0.0052	Pass
-10	100%	24	5	13.5603	-0.0015	Pass
			10	13.5603	-0.0015	Pass
			startup	13.5600	-0.0037	Pass
-20	1000/	24	2	13.5605	0.0000	Pass
-20	100%	24	5	13.5608	0.0022	Pass
			10	13.5600	-0.0037	Pass

SECTION 11. LIST OF MEASURING INSTRUMENTS

Instrument	Model No.	Serial No.	Manufacturer	Cal. Date	Calibration Expired
AC Conducted Em	ission				
LISN (EUT)	ESH2-Z5	881492/014	ROHDE & SCHWARZ	Oct. 25, 07	Oct. 31, 08
6dB Attenuator	CFA-01	None	TME	May 02, 08	May 31, 09
Test Receiver	ESS	847151/012	ROHDE & SCHWARZ	Feb. 07, 08	Feb. 28, 09
RF Switch	ACX-150-1	None	Intertek Japan	May 02, 08	May 31, 09
Coaxial cable	RG-5A/U(16.0m)	R2	Intertek Japan	May 02, 08	May 31, 09
Coaxial cable	RG-5A/U(7.0m)	R4	Intertek Japan	May 02, 08	May 31, 09
Coaxial cable	RG-5A/U(4.0m)	R6	Intertek Japan	May 02, 08	May 31, 09
Coaxial cable	5D-2W(1.5m)	R9	Intertek Japan	May 02, 08	May 31, 09
Coaxial cable	5D-2W(1.2m)	R10	Intertek Japan	May 02, 08	May 31, 09
Field Strength Emi	ssion				
Loop Antenna	HFH2-Z2	843768/005	ROHDE & SCHWARZ	Dec. 21, 07	Dec. 31, 08
6dB Attenuator	CFA-01	None	TME	Aug. 30, 07	Aug. 31, 08
Test Receiver	ESH2	880370/043	ROHDE & SCHWARZ	Oct. 18, 07	Oct. 31, 08
Coaxial cable	RG-5A/U(10.4m)	MR1	Intertek Japan	Aug. 30, 07	Aug. 31, 08
Spurious Emission	n				
Loop Antenna	HFH2-Z2	843768/005	ROHDE & SCHWARZ	Dec. 21, 07	Dec. 31, 08
Bi-cog antenna	LPB-2513/A	1103	ARA	Sep. 14, 07	Sep. 30, 08
6dB Attenuator	CFA-01	None	TME	Aug. 30, 07	Aug. 31, 08
6dB Attenuator	MP721B	M57593	ANRITSU	May 02, 08	May 31, 09
Amplifier	ZX60-3018G	002	Intertek Japan	May 02, 08	May 31, 09
Test Receiver	ESH2	880370/043	ROHDE & SCHWARZ	Oct. 18, 07	Oct. 31, 08
Test Receiver	ESS	847151/012	ROHDE & SCHWARZ	Feb. 07, 08	Feb. 28, 09
RF Switch	ACX-150-1	None	Intertek Japan	May 02, 08	May 31, 09
Site Attenuation				May 08, 08	May 31, 09
Coaxial cable	RG-5A/U(10.4m)	MR1	Intertek Japan	Aug. 30, 07	Aug. 31, 08
Coaxial cable	RG-5A/U(14.0m)	R1	Intertek Japan	May 02, 08	May 31, 09
Coaxial cable	RG-5A/U(7.0m)	R3	Intertek Japan	May 02, 08	May 31, 09
Coaxial cable	RG-5A/U(4.0m)	R5	Intertek Japan	May 02, 08	May 31, 09
Coaxial cable	5D-2W(0.7m)	R7	Intertek Japan	May 02, 08	May 31, 09
Coaxial cable	5D-2W(1.5m)	R9	Intertek Japan	May 02, 08	May 31, 09
Coaxial cable	5D-2W(1.2m)	R10	Intertek Japan	May 02, 08	May 31, 09

Restricted bands of operation					
Loop Antenna	HFH2-Z2	843768/005	ROHDE & SCHWARZ	Dec. 21, 07	Dec. 31, 08
6dB Attenuator	CFA-01	None	TME	Aug. 30, 07	Aug. 31, 08
Spectrum Analyzer	E7403A	MY42000062	Agilent	Dec. 19, 07	Dec. 31, 08
Coaxial cable	RG-5A/U(10.4m)	MR1	Intertek Japan	Aug. 30, 07	Aug. 31, 08
Frequency Tolerance					
Spectrum Analyzer	E7403	MY42000062	Agilent	Dec. 19, 07	Dec. 31, 08
Temperature Meter	PC-5000TRH-II	A11999972	Sato	Mar. 14, 08	Mar. 31, 09
Temperature Chamber	PL-3FP	5103661	TABAI ESPEC	N.A.	N.A.
Coaxial cable	RG-58C/U(1.5m)	AM90C04	Pacific custom	Aug. 31, 07	Aug. 31, 08
Testing Software : emiT (Version 3,0,0,0)					

Note: Test instruments are calibrated according to Quality Manual and Calibration Rules of Intertek Japan K.K.