STREAMLINES AND SKETCHES OF FIELDS

It is difficult to visualize the nature of electric fields due to various charged distributions from the mathematical equations. A pictorial representation of electric fields, on the other hand, gives clear understanding of the nature of the fields.

The continuous lines which are used to represent the electric field around; charge are called streamlines. These are also called flux lines or direction lines. The streamlines have basically two properties:

Insights on Engineering Electromagnetics

- These are the continuous lines from the charge which only show the i. direction of $\overrightarrow{\mathbb{E}}$ and are everywhere tangent to $\overrightarrow{\mathbb{E}}$.
- The magnitude of the field can be shown to be inversely proportional to ii. the spacing of the streamlines.

The streamlines are associated with the arrows which are used to show the direction of \overrightarrow{E} . If a small positive test charge is placed at any point in the field and is free to move, then the direction in which it will accelerate is indicated by the streamline at that point.

The streamlines for a line charge (the cross-section of the line charge is shown).

The three dimensional sketching of streamlines is very difficult. Hence, in practice, only two dimensional sketching is used. For such sketching, the zcomponent of \overrightarrow{E} is assumed to be zero.

Equation of streamlings

Consider the streamlines shown in the figure.

The equation of a streamline is obtained by solving the differential Figure 2.9 equation $E_y/E_x = dy/dx$.

Consider a point P on any of the streamlines. The \overrightarrow{E} is tangential to the streamline at that point P. The \overrightarrow{E} can be resolved into two components E_x in xdirection and Ey in y direction.

It can be seen that E_y is proportional to a small component Δy in y direction while E_x is proportional to the small component Δx in x direction. Thus, we can write

$$\frac{E_y}{E_x} = \frac{\Delta y}{\Delta x} = \frac{dy}{dx}$$

SOME IMPORTANT FORMULAE:

$$\overrightarrow{E_P} = \frac{Q}{4\pi\epsilon_0 R^2}\,\hat{a}_R$$

$$\vec{E}_L = \frac{\rho_L}{2\pi\epsilon_0 R} \, \hat{a}_R$$

$$\vec{E}_S = \frac{\rho_S}{2\epsilon_o} \, \hat{a}_N \, .$$

	Additional Questions Page:
9.	Obtain the equation of the streamline that passes through the point P(-2,7,10) in the field:
	and the second of the second o
-	Here,
	E' = 2(y-1)2n + 2n + 2n
	= En 2n + Eg ay
1 1 1 1	At any point, the equation of streamline
, ())	satisfies. O. fry: (, y-24-21-01=0
·	$\frac{dy}{dy} = \frac{2x}{2x^2} + \frac{1}{(x^2 + 2x^2)^2}$
	dn 2(g-1) (is the req.
,	or 2(y-1)dy= 231dy eq 4.
	Integrating on both sider
	$\int 2y dy - 2 dy - \int 2\pi dx y^{2} y^{-1} dx$
	or, $\frac{y^2 - 2y + (-y^2 + (-y^2 - 7) - 1 - 0}{2}$
- 4	$\frac{y^2}{y^2} = x^2 + (x^0)$
	At-point (-2, 7, 10),
	J, 49-14-4+C=0
l l	

STANDING WAVE RATIO (SWR):

rersa.

$$E_{xs1}^{+} = E_{xo1}^{+} e^{-j\beta_1 z}$$

$$E_{xs1}^- = E_{xo1}^- e^{+j\beta_1 z}$$

$$= \Gamma E_{XO_1}^{+} e^{+j\beta_1 z} \left(\frac{E_{XO_1}^{-}}{E_{XO_1}^{+}} \right) = |\Gamma| e^{j\phi} E_{XO_1}^{+} e^{+j\beta_1 z}$$

Now,
$$E_{XS1} = E_{XS1}^{+} + E_{XS1}^{-}$$

$$= E_{XO1}^{+} e^{-j\beta_1 z} + |\Gamma| e^{j\phi} E_{XO1}^{+} e^{+j\beta_1 z} = E_{XO1}^{+} (e^{-j\beta_1 z} + |\Gamma| e^{j\phi} e^{+j\beta_1 z})$$

The Exs1 will be maximum when the phase angles of the terms in the larger parenthesis are equal (the phase difference is zero) because they will be directed in the same direction, and their magnitudes are therefore added constructively. Hence,

$$E_{XS1,max} = (1 + |\Gamma|) E_{XO1}^{+}$$
 which is true for $-\beta_1 z - (\beta_1 z + \phi) = 0 + 2n\pi$ (n = 0, ±1, ±2,)

or,
$$-2\beta_1 z = 2n\pi + \phi$$

or,
$$-2 \times \frac{2\pi}{\lambda_1} z = 2n\pi + \phi$$

or,
$$z_{max} = \frac{-\lambda_1}{2} \left(n + \frac{\phi}{2\pi} \right)$$

or,
$$z_{\text{max}} = \frac{-1}{2\beta_1} (\phi + 2n\pi)$$

madilla

Similarly, the Exsi will be minimum when the phase angles of the terms in the larger parenthesis differ by 180°, because they will be directed in the opposite direction, and their magnitudes are therefore added destructively. Hence,

$$E_{XS1,min} = (1 - |\Gamma|) E_{XO1}^{+}$$
 and this occurs when
$$-\beta_1 z - (\beta_1 z + \phi) = \pi + 2n\pi \quad (n = 0, \pm 1, \pm 2,)$$
 or, $-2\beta_1 z = 2n\pi + \phi + \pi$

or,
$$z_{min} = -\frac{\lambda_1}{2} \left(n + \frac{\phi}{2\pi} + \frac{1}{2} \right)$$

or,
$$z_{\min} = \frac{-1}{2\beta_1} [\phi + (2n+1)\pi]$$

The ratio of the maximum to the minimum electric field is known as the standing wave ratio, SWR.

SWR =
$$\frac{E_{XS_1,max}}{E_{XS_1,min}} = \frac{(1 + |\Gamma|) E_{XO1}^{+}}{(1 - |\Gamma|) E_{XO1}^{+}} = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$

Since, $|\Gamma| \le 1$, we have $1 \le SWR < \infty$. The higher the SWR, the greater the portions of the standing wave in the wave comprising of both the travelling and the standing waves.

	Date :
From (1)	Page:
or, 2 - 777	
3 - h +322	
315 20 tait call the init	2000
on 21, +777X2 - 31, -	7x377
	60 (4)
01) 12 - 5 X377	
14000	
hz = 1885-Q.	is the required
infonncie in	ppedance of the
unknown	ipedance of the Imaterial
	•