Análisis de Supervivencia

Estimación no paramétrica

Sergio M. Nava Muñoz

2025 - 06 - 01

Table of contents

1	Esti	mación no paramétrica	1
	1.1	General Data Layout	1
	1.2	III. Características Generales de las Curvas de Kaplan-Meier	8
	1.3	Justificación Matemática de la Fórmula KM	9
	1.4	La función de distribución acumulada empírica (FDAE)	10
	1.5	Ejemplo en R: FDAE	11
	1.6	Estimador de Kaplan-Meier	12
	1.7	Ejemplo en R: Kaplan-Meier	13
	1.8	Comparación conceptual	14
	1.9	Ejemplo: Ensayo clínico con cáncer	14
	1.10	Representación gráfica del seguimiento	15
	1.11	Programación en R	15
	1.12	Conjunto de datos gastricXelox de la biblioteca asaur	19
	1.13	Ejercicio	20
		Comparación entre grupos	22
	1.15	Prueba Log-Rank	23
	1.16	Modelo de riesgos proporcionales de Cox	23
	1.17	Supuestos del modelo de Cox	24
		Actividad práctica guiada	24

1 Estimación no paramétrica

1.1 General Data Layout

Table 1: Esquema General de Datos con Subíndices

No. Indiv.	t	d	X_1	X_2	 X_p
1	t_1	d_1	X_{11}	X_{12}	 X_{1p}
2	t_2	d_2	X_{21}	X_{22}	 X_{2p}

No. Indiv.	t	d	X_1	X_2	 X_p
		•••			
n	t_n	d_n	X_{n1}	X_{n2}	 X_{np}

Table 2: Disposición alternativa de los datos ordenados

Tiempos de fallo ordenados $t_{(f)}$	Núm. de fallos m_f	Censurados en $[t_{(f)}, t_{(f+1)}), q_f$	Conjunto de riesgo $R(t_{(f)})$
$\overline{t_{(0)}}$	m_0	q_0	$R(t_{(0)})$
$t_{(1)}$	m_1	q_1	$R(t_{(1)})$
$t_{(2)}$	m_2	q_2	$R(t_{(2)})$
•••		•••	•••
$t_{(k)}$	m_k	q_k	$R(t_{(k)})$

i Disposición alternativa de los datos ordenados

Una disposición alternativa de los datos se muestra a continuación. Esta organización es la base sobre la cual se derivan las curvas de supervivencia de Kaplan-Meier.

- La primera columna de la tabla presenta los tiempos de supervivencia ordenados de menor a mayor.
- La segunda columna muestra el conteo de fallos en cada uno de los tiempos de fallo distintos.
- La tercera columna presenta los conteos de censura, denotados por q_f , correspondientes a las personas censuradas en el intervalo de tiempo que inicia en el tiempo de fallo $t_{(f)}$ y termina justo antes del siguiente tiempo de fallo, $t_{(f+1)}$.
- La última columna muestra el conjunto de riesgo, que representa el grupo de individuos que han sobrevivido al menos hasta el tiempo $t_{(f)}$.

i Ejemplo: Tiempos de remisión (semanas) para dos grupos de pacientes con leucemia

Grupo 1 (n = 21) — Tratamiento 6, 6, 6, 7, 10, 13, 16, 22, 23, 6^+ , 9^+ , 10^+ , 11^+ , 17^+ , 19^+ , 20^+ ,

25⁺, 32⁺, 32⁺, 34⁺, 35⁺ **Grupo 2** (n = 21) — Placebo 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 13, 15, 17, 22, 23

Nota: el símbolo ⁺ denota observaciones censuradas.

Grupo	# Fallos	# Censurados	Total
Grupo 1	9	12	21
Grupo 2	21	0	21

- Estadísticos descriptivos: \bar{T}_1 (ignorando censuras): 17.1
 - \bar{T}_2 : 8.6

Table 4: Grupo 1 (tratamiento): Tiempos de fallo ordenados

$\overline{t_{(f)}}$	n_f	m_f	q_f
		J	1]
0	21	0	0
6	21	3	1
7	18	1	1
10	17	1	2
13	15	1	0
16	11	1	3
22	7	1	0
23	2	1	5
> 23	—	—	

Table 5: Grupo 2 (placebo): Tiempos de fallo ordenados

$t_{(f)}$	n_f	m_f	q_f
0	21	0	0
1	21	2	0
2	19	2	0
3	17	1	0
4	16	2	0
5	14	2	0

$t_{(f)}$	n_f	m_f	q_f
8	12	4	0
11	8	2	0
12	6	2	0
13	4	1	0
15	3	1	0
17	2	1	0
22	1	1	0
23	1	1	0

Table 6: Grupo 2 (placebo): Estimación de la función de supervivencia empírica (Kaplan-Meier)

$t_{(f)}$	n_f	m_f	q_f	$\hat{S}(t_{(f)})$
0	21	0	0	1.00
1	21	2	0	0.90
2	19	2	0	0.81
3	17	1	0	0.76
4	16	2	0	0.67
5	14	2	0	0.57
8	12	4	0	0.48
11	8	2	0	0.29
12	6	2	0	0.19
13	4	1	0	0.14
15	3	1	0	0.10
17	2	1	0	0.05
22	1	1	0	0.00
23	1	1	0	0.00

i Interpretación

- $\hat{S}(t_{(f)}) = \frac{\text{Número de sujetos sobrevivientes después de } t_{(f)}}{21}$
- No hay censura en el Grupo 2.
- Se utilizó el método de Kaplan-Meier para estimar la función de supervivencia.

i Ejemplo: Cálculo de la función de supervivencia empírica

Table 7: Grupo 2 (placebo): Estimación de la función de supervivencia empírica (Kaplan-Meier)

t_{0}	(f)	n_f	m_f	q_f	$\hat{S}(t_{(f)})$
П	0	21	0	0	1.00
	1	21	2	0	0.90
	2	19	2	0	0.81
	3	17	1	0	0.76
	4	16	2	0	0.67
	5	14	2	0	0.57
	8	12	4	0	0.48
	11	8	2	0	0.29

Sea $\hat{S}(4)$ la probabilidad estimada de supervivencia más allá de la semana

$$\hat{S}(4) = 1 \times \frac{19}{21} \times \frac{17}{19} \times \frac{16}{17} \times \frac{14}{16} = \frac{14}{21} = 0.67$$

Esto equivale a: $\begin{array}{c} \text{Pr}(T>t_{(0)}) = \frac{21}{21} = 1 \\ \text{• } \Pr(T>t_{(0)}) = \frac{21}{21} = 1 \\ \text{• } \Pr(T>t_{(1)} \mid T\geq t_{(1)}) = \frac{19}{21} \\ \text{• } \Pr(T>t_{(2)} \mid T\geq t_{(2)}) = \frac{19}{19} \\ \text{• } \Pr(T>t_{(3)} \mid T\geq t_{(3)}) = \frac{16}{17} \\ \text{• } \Pr(T>t_{(4)} \mid T\geq t_{(4)}) = \frac{14}{16} \\ \text{Donde 16 es el número de individuos en riesgo en la semana 4.} \\ \text{Pare } t=\$. \end{array}$

$$\hat{S}(8) = 1 \times \frac{19}{21} \times \frac{17}{19} \times \frac{16}{17} \times \frac{14}{16} \times \frac{12}{14} \times \frac{8}{12} = \frac{8}{21}$$

Fórmula KM:

$$\hat{S}(t) = \prod_{t_{(j)} \leq t} \left(1 - \frac{d_j}{n_j}\right)$$

donde d_j es el número de eventos (fallos) en $t_{(j)}$ y n_j el número en riesgo.

1.1.1 Tabla (Grupo 1 – Tratamiento)

Table 8: Grupo 1 (tratamiento): estimación inicial de la curva de supervivencia empírica

$\overline{t_{(f)}}$	n_f	m_f	q_f	$\widehat{S}(t_{(f)})$
$\frac{(j)}{0}$	21	0	0	1
6	21	3	1	$\frac{1}{18/21}$
				•
•				•
•				•

$\overline{t_{(f)}}$	n_f	m_f	q_f	$\hat{S}(t_{(f)})$
				•
				•

Table 9: Grupo 1 (tratamiento): Estimación paso a paso de la función de supervivencia ${\rm KM}$

$t_{(f)}$	n_f	m_f	q_f	$\hat{S}(t_{(f)})$
0	21	0	0	1
6	21	3	1	18/21 = 0.8571
7	17	1	1	$0.8571 \times 16/17 = 0.8067$
10	15	1	2	$0.8067 \times 14/15 = 0.7529$
13	12	1	1	$0.7529 \times 11/12 = 0.6902$
16	11	1	2	$0.6902 \times 10/11 = 0.6275$
22	7	1	1	$0.6275 \times 6/7 = 0.5378$
23	6	1	1	$0.5378 \times 5/6 = 0.4482$

i Cálculo de otras estimaciones de supervivencia

Las demás estimaciones de supervivencia se calculan multiplicando la estimación en el tiempo de fallo inmediatamente anterior por una fracción. Por ejemplo:

- La fracción es $\frac{18}{21}$ para sobrevivir más allá de la semana 6, porque 21 sujetos permanecen hasta la semana 6 y 3 de ellos no sobreviven más allá de esa semana.
- La fracción es $\frac{16}{17}$ para sobrevivir más allá de la semana 7, ya que 17 personas permanecen hasta la semana 7 y 1 de ellas no sobrevive más allá de esa semana.

Las demás fracciones se calculan de manera similar.

Curvas de Kaplan-Meier para los Grupos de Tratamiento

1.2 III. Características Generales de las Curvas de Kaplan-Meier

1.2.1 Fórmula general de KM

$$\hat{S}(t_{(f)}) = \hat{S}(t_{(f-1)}) \times \Pr(T > t_{(f)} \mid T \ge t_{(f)})$$

1.2.2 Fórmula producto-límite (KM)

$$\hat{S}(t_{(f)}) = \prod_{i=1}^f \Pr(T > t_{(i)} \mid T \geq t_{(i)})$$

1.2.3 Ejemplo

Table 10: Grupo 1 (tratamiento): Estimación paso a paso de la función de supervivencia KM

$\overline{t_{(f)}}$	n_f	m_f	q_f	$\hat{S}(t_{(f)})$
0	21	0	0	1
6	21	3	1	18/21 = 0.8571
7	17	1	1	$0.8571 \times 16/17 = 0.8067$
10	15	1	2	$0.8067 \times 14/15 = 0.7529$
13	12	1	1	$0.7529 \times 11/12 = 0.6902$
16	11	1	2	$0.6902 \times 10/11 = 0.6275$

$t_{(f)}$	n_f	m_f	q_f	$\hat{S}(t_{(f)})$
22	7	1	1	$0.6275 \times 6/7 = 0.5378$
23	6	1	1	$0.5378 \times 5/6 = 0.4482$

1.2.3.1 Para t = 10:

$$\hat{S}(10) = 0.8067 \times \frac{14}{15} = 0.7529$$

También se puede expresar como:

$$\hat{S}(10) = \frac{18}{21} \times \frac{16}{17} \times \frac{14}{15}$$

1.2.3.2 Para t = 16:

$$\hat{S}(16) = 0.6902 \times \frac{10}{11} = 0.6274$$

O bien:

$$\hat{S}(16) = \frac{18}{21} \times \frac{16}{17} \times \frac{14}{15} \times \frac{11}{12} \times \frac{10}{11}$$

1.3 Justificación Matemática de la Fórmula KM

Sea:

$$\begin{array}{ll} \bullet & A = \{T \geq t_{(f)}\} \\ \bullet & B = \{T > t_{(f)}\} \end{array}$$

Entonces:

$$\Pr(A\cap B)=\Pr(B)=\hat{S}(t_{(f)})$$

Dado que no hay fallos en $t_{(f-1)} < T < t_{(f)}\colon$

$$\Pr(A) = \Pr(T \ge t_{(f-1)}) = \hat{S}(t_{(f-1)})$$

Y por la regla de la probabilidad condicional:

$$\Pr(B \mid A) = \Pr(T > t_{(f)} \mid T \geq t_{(f)})$$

Por lo tanto, usando $Pr(A \cap B) = Pr(A) \cdot Pr(B \mid A)$:

$$\hat{S}(t_{(f)}) = \hat{S}(t_{(f-1)}) \cdot \Pr(T > t_{(f)} \mid T \geq t_{(f)})$$

1.4 La función de distribución acumulada empírica $({ m FDAE})$

Dada una muestra de tiempos de falla sin censura:

$$\hat{F}(t) = \frac{\#\{T_i \leq t\}}{n}$$

Es un estimador escalonado, que da saltos en cada observación. La función de supervivencia empírica se define como:

$$\hat{S}(t) = 1 - \hat{F}(t)$$

 ${\bf Limitaci\'on:}\ \ {\bf no}\ \ {\bf puede}\ \ {\bf manejar}\ \ {\bf adecuadamente}\ \ {\bf datos}\ \ {\bf censurados}.$

FDAE y supervivencia empírica sin censura

F^(t): verde sólido | S^(t): azul discontinua

F^(t): verde sólido | S^(t): azul discontinua

1.5 Ejemplo en R: FDAE

t	F_hat	S_hat
0.0	0.0000000	1.0000000
2.0	0.1428571	0.8571429
3.0	0.2857143	0.7142857
4.0	0.4285714	0.5714286
4.5	0.5714286	0.4285714
6.0	0.7142857	0.2857143
7.0	0.8571429	0.1428571
9.0	1.0000000	0.0000000
10.0	1.0000000	0.0000000

F^(t): verde sólido | S^(t): azul discontinua

1.6 Estimador de Kaplan-Meier

Cuando hay censura, la FDAE no es válida. Kaplan-Meier estima la función de supervivencia como:

$$\hat{S}(t) = \prod_{t_i \leq t} \left(1 - \frac{d_i}{n_i}\right)$$

donde:

- d_i : número de eventos en el tiempo t_i
- n_i : número de individuos en riesgo justo antes de t_i

Es un estimador escalonado que ajusta el denominador cuando hay censura.

Table 12: Comparación entre FDAE, Supervivencia Empírica y Kaplan-Meier

tiempo	status	FDAE	S_empirica	Kaplan_Meier
2.0	1	0.1667	0.8333	0.8750
3.0	1	0.3333	0.6667	0.7500
4.0	1	0.5000	0.5000	0.6250
4.5	0	0.5000	0.5000	0.6250
6.0	1	0.6667	0.3333	0.4688

tiempo	status	FDAE	S_empirica	Kaplan_Meier
7.0	1	0.8333	0.1667	0.3125
9.0	0	0.8333	0.1667	0.3125
10.0	1	1.0000	0.0000	0.0000

1.7 Ejemplo en R: Kaplan-Meier

Table 13: Tabla de tiempos y estatus de censura

ID	tiempo	evento
Ind 1	2.0	1
$\mathrm{Ind}\ 2$	3.0	1
Ind 3	4.0	1
$\mathrm{Ind}\ 4$	4.5	0
$\mathrm{Ind}\ 5$	6.0	1
Ind 6	7.0	1
Ind 7	9.0	0
Ind 8	10.0	1

Estimación de Kaplan-Meier

Call: survfit(formula = surv_obj ~ 1, data = datos)

time n.risk n.event survival std.err lower 95% CI upper 95% CI

2	8	1	0.875	0.117	0.673	1.000
3	7	1	0.750	0.153	0.503	1.000
4	6	1	0.625	0.171	0.365	1.000
6	4	1	0.469	0.187	0.215	1.000
7	3	1	0.312	0.178	0.102	0.955
10	1	1	0.000	NaN	NA	NA

1.8 Comparación conceptual

Característica	FDAE	Kaplan-Meier
Usa solo eventos		
Maneja censura		
Escalonada		
Basada en conteos simples		(ajusta denominadores)

1.9 Ejemplo: Ensayo clínico con cáncer

paciente	entrada	fin	evento
1	2000	2007	0
2	2000	2006	1
3	2001	2007	0
4	2002	2007	0
5	2002	2004	1
6	2002	2006	1

Figure 1: Reclutamiento y seguimiento

Representación gráfica del seguimiento

Table 16: Ejemplo

paciente	tiempo	status
1	7	0
2	6	1
3	6	0
4	5	0
5	2	1
6	4	1

- \bullet Círculo abierto = censura
- X = evento (muerte)

1.10

1.11 Programación en R

• Librería survival:

```
library(survival)
Surv(tiempo, status)
```

- Este objeto puede usarse en:
 - Surv() codifica la información de tiempo y censura.
 - survfit() ajusta curvas de supervivencia (Kaplan-Meier).

1.11.1 La función Surv() de survival

```
library(survival)

# Censura derecha
tiempos <- c(5, 8, 12, 3, 10)
evento <- c(1, 0, 1, 1, 0) # 1 = evento, 0 = censurado

datos <- Surv(tiempos, evento)
datos</pre>
```

- [1] 5 8+ 12 3 10+
 - Crea un objeto de clase Surv.
 - Es la base para ajustar modelos de supervivencia.

1.11.2 Visualizando Surv() con tipos de censura

```
# Censura izquierda
tiempos <- c(5, 8, 12, 3, 10)
evento <- c(1, 0, 1, 1, 0)
Surv(tiempos, evento, type = "left")

[1] 5 8- 12 3 10-

# Censura por intervalo
inferior <- c(2, 6, 7, 5, 1)
superior <- c(4, 6, 9, 6, 3)
evento <- c(3, 0, 3, 0, 3) # 3 = intervalo
Surv(inferior, superior, type = "interval2")

[1] [2, 4] 6 [7, 9] [5, 6] [1, 3]
```

1.11.3 Ajuste con survfit()

```
# Datos con censura derecha
tiempos <- c(5, 8, 12, 3, 10)
evento <- c(1, 0, 1, 1, 0)
datos <- Surv(tiempos, evento)
print(datos)</pre>
```

[1] 5 8+ 12 3 10+

```
modelo <- survfit(datos ~ 1) # sin covariables
summary(modelo)</pre>
```

Call: survfit(formula = datos ~ 1)

```
time n.risk n.event survival std.err lower 95% CI upper 95% CI
   3
                          0.8
                                 0.179
                                               0.516
   5
                                 0.219
                                               0.293
          4
                   1
                          0.6
                                                                 1
  12
          1
                   1
                          0.0
                                   NaN
                                                  NA
                                                                NA
```

• survfit() ajusta una curva de Kaplan-Meier.

1.11.4 Graficando la curva de supervivencia

Curva de Kaplan-Meier

Puedes usar ggsurvplot() del paquete survminer para una mejor presentación visual.

Curva de Kaplan-Meier

1.12 Conjunto de datos gastricXelox de la biblioteca asaur

library(asaur)
data("gastricXelox")

Table 17: Ejemplo

paciente	tiempo	status
1	8	1
2	64	1
3	76	1
4	57	0
5	8	1
6	66	1

- Tiempo: semanas hasta progresión o muerte
- delta = 1 si hubo evento, O si censurado
- Los datos se desordenaron para este ejemplo

1.13 Ejercicio

- Usar R para:
 - Estimar la curva de supervivencia de gastricXelox
 - Obtener la mediana de supervivencia
 - Graficar con intervalo de confianza

Call: survfit(formula = Surv(timeMonths, delta) ~ 1, data = gastricXelox)

1.851 47 3 0.917 0.0399 0.842 0 2.083 44 1 0.896 0.0441 0.813 0 2.545 43 1 0.875 0.0477 0.786 0	1.000 0.998 0.987 0.974 0.960 0.946 0.915 0.883
2.083 44 1 0.896 0.0441 0.813 0 2.545 43 1 0.875 0.0477 0.786 0	0.987 0.974 0.960 0.946 0.915
2.545 43 1 0.875 0.0477 0.786	0.974 0.960 0.946 0.915
	0.960 0.946 0.915
2 777 /2 1 0 85/ 0 0509 0 760	0.946 0.915
2.111 42 1 0.004 0.0009 0.100	0.915
3.008 41 1 0.833 0.0538 0.734	
3.702 40 2 0.792 0.0586 0.685	0.883
3.934 38 2 0.750 0.0625 0.637	
4.397 36 1 0.729 0.0641 0.614	0.866
4.860 35 1 0.708 0.0656 0.591	0.849
5.554 34 2 0.667 0.0680 0.546	0.814
5.785 32 1 0.646 0.0690 0.524	0.796
6.479 31 2 0.604 0.0706 0.481	0.760
6.942 29 1 0.583 0.0712 0.459	0.741
8.562 28 2 0.542 0.0719 0.418	0.703
9.719 26 1 0.521 0.0721 0.397	0.683
9.950 25 1 0.500 0.0722 0.377	0.663
10.645 23 1 0.478 0.0722 0.356	0.643
12.264 19 1 0.453 0.0727 0.331	0.620
13.653	0.596
13.884 14 1 0.394 0.0742 0.273	0.570
14.810 13 1 0.364 0.0744 0.244 0	0.544
15.273 12 1 0.334 0.0742 0.216	0.516
17.587 11 1 0.303 0.0734 0.189	0.487
18.050 10 1 0.273 0.0720 0.163	0.458

1.14 Comparación entre grupos

Note: La p-value corresponde a la prueba log-rank para igualdad de curvas.

1.15 Prueba Log-Rank

```
Call:
```

```
survdiff(formula = Surv(tiempo, evento) ~ grupo, data = datos.df)
```

```
N Observed Expected (0-E)^2/E (0-E)^2/V grupo=A 3 2 1.23 0.477 0.825 grupo=B 3 2 2.77 0.212 0.825
```

Chisq= 0.8 on 1 degrees of freedom, p= 0.4 $\,$

Salida típica:

```
N Observed Expected (O-E)^2/E (O-E)^2/V grupo= A 3 2.0 1.2 0.533 0.60 grupo= B 3 1.0 1.8 0.356 0.60
```

1.16 Modelo de riesgos proporcionales de Cox

Call:

```
coxph(formula = Surv(tiempo, evento) ~ grupo, data = datos.df)
```

n= 6, number of events= 4

Concordance= 0.727 (se = 0.136)

Likelihood ratio test= 0.81 on 1 df, p=0.4

Wald test = 0.75 on 1 df, p=0.4

Score (logrank) test = 0.83 on 1 df, p=0.4

Salida relevante:

Interpretación: - HR = 0.429 indica que grupo B tiene menor riesgo relativo, pero no es significativo.

1.17 Supuestos del modelo de Cox

Global Schoenfeld Test p: 0.1941

Schoenfeld Individual Test p: 0.1941

Note: El test de cox.zph() evalúa el supuesto de proporcionalidad de riesgos.

1.18 Actividad práctica guiada

Datos: lung del paquete survival.

Pasos:

- 1. Cargar datos con data(lung)
- 2. Crear objeto Surv(time, status)
- 3. Estimar curvas por sex
- 4. Probar igualdad con log-rank
- 5. Ajustar modelo de Cox con covariables
- 6. Evaluar supuestos

Note: Proporciónales la estructura base y pídeles completar la interpretación.