LECTURE-35

Course: Mathematics-I Module-4: Multivariable Calculus-I

Course Code: KAS-103T Teacher: Dr. S. P. Gupta

Topic: Triple integral.

LO: Illustrate the working methods of Triple Integration and apply for finding Triple integral of the given region.

then
$$\iiint_{V} f(n,y,z) dV = \int_{N_1}^{N_2} \int_{Y_1}^{Y_2} \int_{Z_1}^{Z_2} f(n,y,z) dz dy dx$$
.

order of Integration depends upon the limit.

Let
$$3_1, 3_2$$
 be tunchion of x and y ie $3_1 = \phi(n,y)$, $3_2 = \phi_2(n,y)$
 y_1, y_2 be a function of x ie $y_1 = \psi_1(x)$, $y_2 = \psi_2(n)$

and
$$x_1, x_2$$
 be constart.

Example: ① Evaluate
$$\int_{0}^{1} \int_{0}^{1} e^{2x+4z} dx dy dz$$

Soll- $\int_{0}^{1} \int_{0}^{1} \left[e^{2x+4z} \right]_{0}^{1} dy dz$

= $\int_{0}^{1} \int_{0}^{1} \left[e^{1x+2} - e^{1+2} \right] dy dz$

= $\int_{0}^{1} \left[e^{1x+2} - e^{1+2} \right] dz$

= $\int_{0}^{1} \left(e^{2x+2} - e^{1+2} - e^{1+2} + e^{2} \right) dz$

$$= e^{3} - 3e^{2} + 3e^{-1} = (e^{-1})^{3}.$$

Evaluate
$$\iiint_{0} (x-3y+2) dz dy dx$$
, where k is the region obtained by $0 \le x \le 1$, $0 \le y \le x^{2}$, $0 \le z \le x + y$.

Sold $\iint_{0}^{x^{2}} \int_{0}^{x^{2}} \int$

3 Evaluate III, andydz, Rib the region bounded by x+y+z < a, x > 0, y > 0, z > 0

Sof. The limits are.

0 < z < a-x-y

0 < y < a-x

0 < x < a

of som some de dydn nzo yzo
qqx J [a-n-y] dydm $\int_{120}^{9} \left[ay - xy - \frac{y^2}{2} \right]_{7}^{9} dn$ $\int_{0}^{\alpha} \left[\alpha(\alpha-n) - \alpha(\alpha-n) - (\alpha-n)^{2} \right] dn$ $\int_{120}^{4} \left\{ a^{2} - an - an + n^{2} - \left(\frac{a^{2} + n^{2} - 2an}{2} \right) \right\} d\eta$ $\int \left(a^2 + x^2 - 2ax - \frac{a^2}{2} - \frac{x^2}{2} + 4x\right) dx$ $\int_{-\infty}^{\infty} \left(\frac{a^2}{2} + \frac{n^2}{2} - an\right) dn$ $\left[\begin{array}{cccc} a^2 & x + \frac{x^3}{6} - a \frac{x^2}{2} \end{array}\right]_{x}$ 2 + 2 - 6 /2 = 23

- (Excercise):- () Evaluate SSSp (2+y2+22) drdydz,
 where R denote the region 20, 4=0, 2=0 and
 n+y+2=a.
- B Evaluate : SS n 2 y z dndydz, throughout · Volume · bounded by planes. 2 = 0, y = 0, z = 0 and 2 + 2 + = = 1
- (3) Evaluate ISI, (n+y+z) and y dz bounded by the region $0 \le n \le 1$, $1 \le y \le 2$, $2 \le z \le 3$. $\left[\frac{9}{2}\right]$