

SALUDA: Surface-based Automotive LiDAR Unsupervised Domain Adaptation

Björn Michele

Alexandre Boulch

Tuan-Hung Vu

Gilles Puv

Renaud Marlet

Nicolas Courty

LiDAR data for autonomous driving

Why Domain adaptation for LiDAR data?

Very wide gaps:

- type of scenes: indoors vs outdoors, static vs dynamic, world location, weather...
- type of sensors: depth camera (struct. light or ToF), (ir) regular scanning patterns...
- number of sensors and scan fusion, if any
- sensor characteristics: no. beams, angular resolution, range, intensity calibration, orient.
- sensor location: bumper level, roof
- synthetic vs real: noise, outliers, intensity, etc.

(Yi et al. CVPR 2021)

SALUDA

Implicit surface reconstruction as a self-supervised auxiliary task

Implicit surface reconstruction

Query generation

- **Empty queries:** from sensor to observed point
- **Full queries:** just behind the point (max distance δ = 0.1 m)

SALUDA

Inference

Settings

Real-to-Real, different sensor:

nuScenes to SemanticKITTI (32 Beams to 64 Beams) nuScenes to SemanticPOSS (32 Beams to 40 Beams)

Synthetic-to-Real, same sensor:

SynLiDAR to SemanticKITTI (64 Beams to 64 Beams)

Synthetic-to-Real, different sensors:

SynLiDAR to SemanticPOSS (64 Beams to 40 Beams)

Quantitative results

Hyperparameter selection with validators

Qualitative results - nuScenes to SemanticKITTI

Conclusion

- ✓ Competitive results with geometric regularization
- ✓ Robust in unsupervised hyperparameter selection
- Can be combined with other SOTA methods

