

Interpretable and accessible Deep Learning for single-cell data analysis

Sara Al-Rawi, Harald Binder, Maren Hackenberg, Moritz Hess, Martin Treppner

Institute of Medical Biometry and Statistics (IMBI)

SPONSORED BY THE

Gene expression - investigated in single cells

Part I: Learning latent representations

Part I: Learning latent representations

Principal components (PCs) computed from raw data

Part I: Learning latent representations

Principal components (PCs) computed from raw data

Latent representations, learned by a deep Boltzmann machine

Part II: Understanding the relationship between latent representations and the observed variables (genes).

Principal component analysis (PCA)

Shlens et al. 2014

Principal component analysis (PCA)

Original 2D space

Original 2D space

Original 2D space

Original 2D space

Original 2D space

Original 2D space

Dimension reduced 1D space

Objective function

$$C = D_{KL}(P | | Q) = \sum_{x \in X} P(x) log \left(\frac{P(x)}{Q(x)}\right)$$
$$\frac{\delta C}{\delta y_i} = 4 \sum_{j} (p_{ij} - qij)(y_i - y_j)(1 + ||y_i - y_j||^2)^{-1}$$

https://towardsdatascience.com/tsne-vs-umap-global-structure-4d8045acba17

$$x_1 = 25$$
 9 26 300 1 $x_1', \hat{x}_1 = 20$ 4 20 310 1

Learning non-linearities with deep neural networks

(Stochastic) gradient descent / Backpropagation

What is a good latent space?

What is a good latent space?

Variational Autoencoder (VAE)

Autoencoder

Variational Autoencoder

- random
- deterministic

$$x_1 = 25$$
 9 26 300 1
 $x_1', \hat{x}_1 = 20$ 4 20 310 1

VAE viewed as a probabilistic random variable model

VAE viewed as a probabilistic random variable model

We want to learn the posterior distribution over the latent variables, given the data.

$$p(z \mid x) = \frac{p(x \mid z) * p(z)}{p(x)}$$

$$p(x)$$
evidence

VAE viewed as a probabilistic random variable model

We want to learn the posterior distribution over the latent variables, given the data.

$$p(z \mid x) = \frac{p(x \mid z) * p(z)}{p(x)}$$

$$p(x)$$
evidence

Objective function: Evidence Lower Bound

$$log p_{\theta}(x_i) \geq \mathbb{E}_{q_{\theta}(z|x_i)}[log p_{\phi}(x_i|z)] - \mathbb{KL}(q_{\theta}(z|x_i)||p(z))$$

VAE viewed as a probabilistic random variable model

evidence

Objective function: Evidence Lower Bound

$$log p_{\theta}(x_i) \ge \mathbb{E}_{q_{\theta}(z|x_i)}[log p_{\phi}(x_i|z)] - \mathbb{KL}(q_{\theta}(z|x_i)||p(z))$$

VAE viewed as a probabilistic random variable model

We want to learn the posterior distribution over the latent variables, given the data.

$$p(z \mid x) = \frac{p(x \mid z) * p(z)}{p(x)}$$

$$p(z \mid x) = \frac{p(x \mid z) * p(z)}{p(x)}$$
evidence

dichotomized expression data

Objective function: Evidence Lower Bound

$$log p_{\theta}(x_i) \ge \mathbb{E}_{q_{\theta}(z|x_i)}[log p_{\phi}(x_i|z)] - \mathbb{KL}(q_{\theta}(z|x_i)||p(z))$$

Other deep generative approaches ...

Variational Autoencoder

○ random

O deterministic

Other deep generative approaches ...

Variational Autoencoder

Deep Boltzmann Machine

- random
- O deterministic

Other deep generative approaches ...

Variational Autoencoder

Deep Boltzmann Machine

Generative Adversarial Network

- random
- O deterministic

Adaptations to single cell RNA-Seq data

Exemplary gene expression (log transformed) of six random genes from Tasic et al. (2016) data

Adaptations to single cell RNA-Seq data

From Lopez et al. 2018: "Deep generative modeling for single-cell transcriptomics"

