Tool for Parallel Simulations and Verification

Jan Papoušek, Tomáš Vejpustek

Parasim

- tool for parallel simulations and verification
- Java-based, open source, freeware
- contributors: Sven, Papi, Tomáš
- available on

```
https://github.com/sybila/parasim/wiki
```


Milestones

```
Start of 2012 Program for Support of Students'
Projects

Summer 2012 Working CLI application

Autumn 2012 GUI application, user documentation

Spring 2013 Acceleration, extensions
```

Outline

- continuous deterministic systems verification
- how Parasim does this
- Parasim structure
- analysis demonstration

Goal

$$\mathcal{M} \stackrel{?}{\models} \varphi$$

- automatic deciding procedure
- feasible for *discrete* systems
- difficult for continuous systems

Setting

model system of ordinary differential equations parameters initial conditions, coefficients

ullet simulation \Longrightarrow trajectories

property temporal logic formula

• monitoring: $s \stackrel{?}{\models} \varphi$

Perturbation Set

- hyperrectangle in parameter space $P: p_1 \in [a_1, b_1], p_2 \in [a_2, b_2], \dots, p_n \in [a_n, b_n]$
- satisfaction set set of parameter values which generate trajectories satisfying φ 1
- property satisfaction w.r.t. perturbation set $P \stackrel{?}{\models} \phi$

 \forall , proportion, sets

Satisfaction w.r.t Perturbation Set

- continous set infinitely many points
- approximation efficient, reasonably precise
- ⇒ sampling (representants) **2**
 - random
 - dense
 - dimensionality curse n^d samples
- ⇒ intelligent exploration

Robustness

$$\rho(\varphi,s)$$

- robust signal neighbourhood tube
- how much s can deviate while satisfying ϕ

$$d(s,s') \leq |\rho(\varphi,s)| \implies (s \models \varphi \iff s' \models \varphi)$$

Robust Neighbourhood

Parasim Heuristics

- ullet signal neighbourhood pprox parameter space neighbourhood
- movement in parameter space does not change signals too much [∞]3
- samples are chosen according to robustness