IDP General information and deliverables

General information:

Group: L105

Assessor: Prof Fumiya Lida - http://www.eng.cam.ac.uk/profiles/fi224 Mentor/Tech advisor: Tim Love - http://www2.eng.cam.ac.uk/~tpl/

Schedule and deadlines:

Project Week	Day	Activity
Week 1	Thursday	9:00: Introduction Session, Online livestreamed with Q&A (Note there is no 'lab' session 9-11) 14:00: Project Management Lecture, Online livestreamed
	Monday	
	Tuesday pm	First Presentation, via Teams timetable here
	Wednesday	
Week 2	Thursday	16:00 First Report Due, submit on Moodle
	Monday	
	Tuesday pm	Progress Meeting with Academic ,via Teams timetable here
	Wednesday	
Week 3	Thursday	
	Monday	
	Tuesday pm	Progress Meeting with Academic , via Teams timetable here
	Wednesday	
Week 4	Thursday	9:00: First Competition.
	Monday	
	Tuesday pm	9:00: Final Presentation. via Teams timetable here
	Wednesday	14:00: Final Competition.
Week 5	Monday	16:00 Final Report and Documentation Deadline. Submit on Moodle.

Specific guidance: Milestone basis:

- 1. First presentation:
- 10 mins + 5-10 for q+a
- think of it like a pitch
- all members attend
- max 10 slides
 - o team name, management structure and organisation
 - o approach for solving the problem
 - o robot concept and diagram
 - prototype
 - hand-drawn diagrams
 - CAD models

- System block diagram
- Exploration, navigation and planning algos
- Anticipated risks/challenges
- Gantt chart
 - Resource/time allocation
 - Key dependancies
 - Critical path
- All must provide a 'professional contribution'

2. First report

- Presented as a group
- More detailed reflection of the planned system
- Reflect on feedback given in (1)
- Max 6 pages of text (Does not cad, diagrams, sketches etc)
- Same content as given in (1) more in depth
- Contains:
 - o Coversheet:
 - Team identifier (L105)
 - Team name
 - Robot name
 - Name, lab group, college etc of every member
 - Approach(es) to solving the problem
 - Sketches of the concepts you have considered
 - Evaluation of each approach/concept
 - Robot concept and diagram
 - Hand drawn
 - CAD models
 - System level diagram
 - Any other format?
 - Details of how the hardware and software interact
 - Electronics and sensing
 - List of sensors/circuits
 - Any/all circuit and block diagrams
 - Evaluation of pros/cons of doing some hardware based processing
 - Given example: adc
 - Software
 - Any/all algos
 - Hardware software interfaces/integration
 - Risks/challenges evaluation
 - Gantt chart
- Submitted on moodle, 1 per team

3. Progress meetings:

- Two meetings see schedule above
- Approx. 20 30 mins

- No formal presentations required (would be preferred though!)
 - o Discuss with mentor how they would like the info presented
 - Gantt chart sent before both meetings
 - Electronics
 - Details of approach
 - Up to date schematics
 - o CAD
 - assembly showing all major parts
 - Software
 - Flow chart Representation of overall strategy
 - Tasks to solve and plans to solve them
 - Plans and responsibilities for next week
- Teams are expected to keep updated
 - o circuit diagrams
 - layouts
 - o CAD
 - Software flow charts
 - Strategy diagrams/Gantt
- All members must participate
 - marking on both team and individual level
- Better to be upfront about issues.
- 4. As above (3)
- 5. Competitions:
- Very little room for delays
- 2 members operate the robot competition can be livestreamed to monitor progress
- at least two official markers
- LED indicator location
- 6. Final presentation:
- 10 mins
- Max 8 slides
 - o review of overall design strategy
 - software
 - electronics
 - hardware
 - overall strategy
 - try to sell you innovative appraoch to your assesors
 - o Physical implementation:
 - How?
 - Problems encountered and subsequent major changes
 - Review of programme management:
 - Timescale discrepancies

- Key lessons learnt what would you do differently
- Brief overview of first competition
 - Following changes
 - Performance prediction for final competition
- 7. As above (5)
- 8. Final documentation:
- Must be sufficient to allow someone else to build it
- Professional standard!
- Must ensure good matches between simulated and designed robot
- Software/overall
 - Overall system diagram
 - Details of algos and strategy
 - Pictorial/flow-chart etc
 - Software approach (1 A4 page)
 - Overall approach top level algos
 - Flow of information at a high level of abstraction
 - Code structure and algos (1 A4 page)
 - Key algos show in diagram?
 - UML (unified modelling language) not required (although would be nice!)
 - Structure of code
 - Git link
- Electrical
 - Circuit diagrams:
 - Covers all electronics and interfaces between arduino
 - Pin numbers
 - Part numbers
 - Power lines
 - All parts
 - Digital/analogue considerations
 - Think about indicator LEDs, pots etc for ease of development
 - Are there any analogue inputs which would be better suited as digital?
 - Layout diagrams
 - Higher level diagrams showing flow of info
 - Layout of PCB and veroboard
 - All connectors
 - Power rails
 - Location of all headers
 - Location of all parts
 - Location of tracks to be cut
 - Location of any jumper wires
 - Think about practical construction
 - Component placement

- Thermal considerations
- Noise
- o Good examples: https://jaehughes.github.io/IDPDocs/ElectricalDA.pdf
- Mechanical:
 - CAD diagrams allow for easily understood construction
 - Must also include materials used
 - Overall CAD assembly
 - As close as possible to the final design
 - Sensors, mounts, electronics etc
 - Overall assembly showing the final structure
 - 3D views and plan/side views
 - labels of every part
 - o 2D drawing of parts/subsystems:
 - 2D drawings of every part
 - sufficiently dimensioned
 - Threads of holes
 - Do not mix laser cut and 3D printed drawings for example
 - Good/Bad examples:

https://www.vle.cam.ac.uk/mod/resource/view.php?id=14097261

9. Final report:

- Individual
- Max of 2 pages:
 - Summary of systems developed
 - Major decisions
 - Strategies used
 - Summary of contributions
 - Details of what aspects you worked on
 - Review of performance
 - o Team management aspects of the project:
 - Evaluation of the management structure
 - Discussion of final performance
 - Review of final simulation
 - Extent to which the spec was met
 - Discussion of the validity of simulation
 - How well does it work to de-risk the robot?
 - Phsical tests which might be performed to reduce risk
 - Impact of real world considerations on final design