M4P33 Algebraic Geometry

Lectured by Dr Genival Da Silva Jr Typeset by David Kurniadi Angdinata

Spring 2019

Contents

0	Introduction	3
1	Affine varieties	4
2	Projective varieties	8
3	Morphisms	11
4	Rational maps	14
5	Nonsingular varieties	16
6	Intersections in projective space	17
7	The 27 lines on a cubic surface	21

0 Introduction

I will not follow a particular book, but everything I am going to say will be contained in one of the following books.

Lecture 1 Friday 11/01/19

- I Shafarevich, Basic algebraic geometry, 1974
- R Hartshorne, Algebraic geometry, 1977
- J Harris, Algebraic geometry: a first course, 1922

1 Affine varieties

Notation 1.1.

- R is a commutative ring with unity.
- \bullet K is a field.
- $K[x_1, \ldots, x_n]$ is the ring of polynomials in n variables.
- \mathbb{A}^n is K^n as a set.

Definition 1.2. Let $S \subseteq K[x_1, \ldots, x_n]$ then

$$Z(S) = \{x \in \mathbb{A}^n \mid \forall f \in S, \ f(x) = 0\}$$

is called the **zero locus** of S. Subsets of \mathbb{A}^n that are of this form are called **affine varieties**.

Remark 1.3. Some authors call algebraic set the object Z(S). We will not follow this notation.

Example 1.4.

- Single points $p = (p_1, ..., p_n)$. p = Z(S) where $S = \{x_1 p_1, ..., x_n p_n\}$.
- $\bullet \ \mathbb{A}^n = Z(0).$
- $\emptyset = Z(1)$.
- Subspaces of $\mathbb{A}^n = K^n$.
- If $X = Z(f_1, \ldots, f_n) \subseteq \mathbb{A}^n$ and $Y = Z(g_1, \ldots, g_m) \subseteq \mathbb{A}^n$ are affine varieties then

$$X \times Y = Z(f_1, \dots, f_n, g_1, \dots, g_m) \subseteq \mathbb{A}^{n+m}$$

is a variety.

Remark 1.5. If $S \subseteq K[x_1, ..., x_n]$ and $I = \langle S \rangle$ then Z(S) = Z(I).

Theorem 1.6 (Hilbert's basis theorem). If R is Noetherian then R[x] is Noetherian.

Corollary 1.7. Every ideal in $K[x_1, ..., x_n]$ is finitely generated.

Definition 1.8. Let $X \subseteq \mathbb{A}^n$ then

$$I(X) = \{ f \in K[x_1, \dots, x_n] \mid \forall x \in X, \ f(x) = 0 \}.$$

Example 1.9. $I(p) = I((p_1, ..., p_n)) = \langle x_1 - p_1, ..., x_n - p_n \rangle$.

Goal is

Z(I(X)) = X but $I(Z(J)) \supseteq J$.

Example 1.10. $J = \langle x^2 + 1 \rangle \subseteq \mathbb{R}[x] = I(\emptyset) = I(Z(x^2 + 1)).$

Proposition 1.11.

- If $X \subseteq Y$ then $I(Y) \subseteq I(X)$. If $I \subseteq J$ then $Z(J) \subseteq Z(I)$.
- $X \subseteq Z(I(X))$ and $S \subseteq I(Z(S))$.
- If X is affine then Z(J(X)) = X. If X = Z(S) then take Z of $S \subseteq I(Z(S))$.

Example 1.12. Let $J \subseteq \mathbb{C}[x]$. $J = \langle f \rangle$, where $f = (x - x_1)^{k_1} \dots (x - x_n)^{k_n}$.

Definition 1.13. Let $I \subseteq K[x_1, \ldots, x_n]$ be an ideal.

$$I \subseteq \sqrt{I} = \{ f \in K [x_1, \dots, x_n] \mid \exists n \in \mathbb{N}, \ f^n \in I \}.$$

If $\sqrt{I} = I$, we say I is a **radical ideal**. (Exercise: \sqrt{I} is an ideal, $I \subseteq \sqrt{I}$, and $\sqrt{I} = \bigcap_{n \text{ prime } P} p$)

Theorem 1.14 (Hilbert's Nullstellensatz). $I(Z(J)) = \sqrt{J}$. If $\sqrt{J} = J$ then

$$\begin{array}{cccc} \{ \mathit{affine \ varieties} \} & \leftrightarrow & \{ \mathit{radical \ ideals} \} \\ & X & \mapsto & I\left(X\right) \\ & Z\left(J\right) & \leftrightarrow & J \end{array} .$$

Proposition 1.15.

- 1. $Z(S) \cup Z(T) = Z(ST)$.
- 2. $\bigcap_i Z(S_i) = Z(\bigcup_i S_i)$.
- 3. $Z(0) = \mathbb{A}^n$ and $Z(1) = \emptyset$.

Proof.

1. If $p \in Z(S) \cup Z(T)$, then f(p) = 0 for $f \in S$ or $f \in T$, so f(x) = 0 for $f \in ST$, where

$$ST = \left\{ \sum_{i \in I, \ I \ \text{finite}} s_i t_i \right\} \subseteq S \cap T,$$

with equality if S + T = R. If $p \in Z(ST)$, there exists f such that f(p) = 0 for $f \in S$ or f(p) = 0 for $f \in T$, so $p \in Z(S) \cup Z(T)$.

Definition 1.16. The **Zariski topology** on \mathbb{A}^n is the topology generated by closed sets of the form Z(S). By the above proposition this is a topology.

Example 1.17. \mathbb{A}^1 is not Hausdorff.

Definition 1.18. A topological space X is **irreducible** if it cannot be expressed as a union $X = A \cup B$, where A and B are proper and closed subsets. \emptyset is not considered irreducible.

Example 1.19. \mathbb{A}^1 .

Example 1.20. Any non-empty open set of irreducible X is dense and irreducible. Suppose A is open then $X = A^c \cup \overline{A}$. Since X is irreducible then $A^c = X$, a contradiction, or $\overline{A} = X$. Suppose A is reducible. Let $A = (A \cap B) \cup (A \cap C)$, where B and C are closed. Then $X = A^c \cup (B \cup C)$. $A^c = X$ or $B \cup C = X$, which are contradictions.

Example 1.21. If A is irreducible then \overline{A} is also irreducible. Suppose \overline{A} is not irreducible. $\overline{A} = (\overline{A} \cap B) \cup (\overline{A} \cap C)$. Take $\bigcap A$, $A = (A \cap B) \cup (A \cap C)$, a contradiction.

Definition 1.22. An affine variety is **irreducible** if it is irreducible as a topological space.

Remark 1.23. A quasi-affine variety is an open set of an affine variety.

Proposition 1.24.

- 1. $I(X \cup Y) = I(X) \cap I(Y)$.
- 2. $Z(I(X)) = \overline{X}$ for any $X \subseteq \mathbb{A}^n$.

Lecture 2 Monday 14/01/19

Proof.

- 1. If $f \in I(X \cup Y)$ then f(p) = 0 for all $p \in X \cup Y$, so $f \in I(X)$ and $f \in I(Y)$.
- 2. We know that $X\subseteq Z\left(I\left(X\right)\right)$ hence $\overline{X}\subseteq Z\left(I\left(X\right)\right)$. Now, let Y be a closed set containing X, that is $X\subseteq Y$. Then

$$I(Y) \subset I(X) \implies Z(I(X)) \subset Z(I(X)) = Y,$$

so any closed set containing Y contains Z(I(X)).

Proposition 1.25. X is irreducible if and only if I(X) is prime.

Proof.

 \implies Let $f, g \in I(X)$.

$$X \subseteq Z(fg) = Z(f) \cup Z(g) \implies X = (X \cap Z(f)) \cup (X \cap Z(g)).$$

$$Z(f) \subseteq X$$
, so $f \in I(X)$, or $Z(q) \subseteq X$, so $q \in I(X)$.

 \iff Exercise.

Example 1.26. \mathbb{A}^n .

Definition 1.27. If $X \subseteq \mathbb{A}^n$, the coordinate ring of X is

$$A(X) = \frac{A}{I(X)} = \frac{K[x_1, \dots, x_n]}{I(X)}.$$

Lecture 3 Tuesday 15/01/19

Example 1.28. Let $f \in K[x_1, ..., x_n]$ be irreducible. If n = 3, Z(f) is a surface. If n = 2, Z(f) is a curve.

Example 1.29. Let $y - x^2 \in K[x, y]$. Then

$$A(X) = \frac{K[x,y]}{\langle y - x^2 \rangle} \cong K[x,x^2] \rightarrow K[x]$$

$$\sum_{i,j} a_{ij} x^i x^{2j} = \sum_{i,j} a_{ij} x^{2j+i} \mapsto \sum_n b_n x^n.$$

Example 1.30. Let $xy - 1 \in K[x, y]$. Then

$$A(X) = \frac{K[x,y]}{\langle xy - 1 \rangle} \cong K\left[x, \frac{1}{x}\right].$$

A(X) cannot be K[x].

Definition 1.31. A **Noetherian** topological space X is a topological space such that if

$$C_1 \supseteq C_2 \supseteq \dots$$

is a decreasing chain of closed sets then there is a k such that $C_k = C_{k+1} = \dots$

Example 1.32. \mathbb{A}^n . Recall that if $A \subset B$ then $I(B) \subset I(A)$. So using the definition above,

$$I(C_1) \subseteq I(C_2) \subseteq \dots$$

Since $K[x_1, ..., x_n]$ is Noetherian then $I(C_i)$ stabilises. So $I(C_k) = I(C_{k+1}) = ...$, but taking Z, we recover C_k so C_k stabilises as well.

Theorem 1.33. If X is Noetherian then any non-empty closed subset can be expressed as a finite union of irreducible closed sets $X = Y_1 \cup \cdots \cup Y_n$. Moreover, if we require that $Y_i \subseteq Y_i$ then this expression is unique.

Proof. Let C be the collection of closed sets that do not satisfy that property. Let Y be a minimum closed inside C, in particular Y is reducible, so $Y = Y' \cup Y''$, for Y', Y'' closed. Hence $Y', Y'' \not\subset C$, so they can be expressed as a finite union of irreducibles, a contradiction. If $Y_i \not\subset Y_j$, then suppose

$$Y_1 \cup \cdots \cup Y_n = X_1 \cup \cdots \cup X_n$$
.

Then $Y_1 \subset X_1 \cup X_n$, in particular $Y_1 = \bigcup_j (Y_1 \cap X_j)$, so there is a j such that $Y_1 \cap X_j = Y_1$, so $Y_1 \subset X_j$. We can assume j = 1 and repeat the same argument to find that $Y_1 = X_1$, so consider $\overline{Y \setminus Y_1} = Y_2 \cup \cdots \cup Y_n$. But

$$Y_2 \cup \cdots \cup Y_n = X_2 \cup \cdots \cup X_n$$

and the result follows by induction.

Corollary 1.34. Any affine variety in \mathbb{A}^n can be expressed equally as a union of irreducible algebraic varieties.

Definition 1.35. The dimension of a topological space is the supremum of n where

$$Y_0 \subset \cdots \subset Y_n$$

is a sequence of irreducible closed sets.

Example 1.36. Dimension of \mathbb{A}^1 is one.

Definition 1.37. Let A be a ring and \mathfrak{p} be a prime ideal, then the **height** of \mathfrak{p} is the supremum of n where

$$\mathfrak{p}_1 \subset \cdots \subset \mathfrak{p}_n \subset \mathfrak{p},$$

where \mathfrak{p}_i are prime. The **Krull dimension** of A is

$$\sup_{\mathfrak{p} \text{ prime}} height(\mathfrak{p}).$$

Proposition 1.38. If Y is affine then $\dim(Y) = \dim(A(Y))$.

Proof. Let C be a closed and irreducible set $C \subset Y$, then $I(C) \supset I(Y)$, then I(C) is prime.

Proposition 1.39. Let K be a field and B be an integral domain which is a finitely generated algebra, then

- $\dim(B)$ is the transcendence degree of K(B) over K, and
- if $\mathfrak{p} \subseteq B$ is prime, then

$$height(\mathfrak{p}) + \dim\left(\frac{B}{\mathfrak{p}}\right) = \dim(B).$$

Proof. Atiyah Macdonald chapter 11.

Proposition 1.40 (Krull Hauptidealsatz). Let A be a Noetherian ring and $f \in A$ not a zero divisor and not a unit. Then every prime ideal containing f has height one.

Proof. Atiyah Macdonald page 122.

Lecture 4 Friday 18/01/19

Proposition 1.41. A Noetherian integral domain A is a UFD if and only if every prime ideal I of height one is principal.

Theorem 1.42. An irreducible variety $Y \subseteq \mathbb{A}^n$ has dimension n-1 if and only if Y = Z(f) where f is an irreducible polynomial in $K[x_1, \ldots, x_n]$.

Proof.

- \implies If Y has dimension n-1 then I(Y) has height one, by the above proposition $I(Y) = \langle f \rangle$, so Y = Z(f).
- \Leftarrow Let I = I(Y) then I is prime, by the Krull Hauptidealsatz we have that I has height one, so dim (Y) = n 1.

2 Projective varieties

Definition 2.1. The **projective space** \mathbb{P}^n is defined as

$$\mathbb{P}^n = \frac{\mathbb{A}^{n+1} \setminus \{0\}}{\{x \sim \lambda x \mid \lambda \in K^*\}}.$$

A point in \mathbb{P}^n is written as $[a_0 : \cdots : a_n] = \overline{(a_0, \dots, a_n)}$.

Definition 2.2. A graded ring R is a ring together with a decomposition

$$R = \bigoplus_{d>0} R_d,$$

where R_d are abelian groups and $R_k \cdot R_t \subseteq R_{k+t}$.

Example 2.3. $K[x_0,\ldots,x_n]$ is a graded ring, where R_d are monomials of degree d.

Notation 2.4. Let A be $K[x_0, \ldots, x_n]$ without the grading and S be $K[x_0, \ldots, x_n]$ as a graded ring.

Definition 2.5. An ideal $I \subseteq S$ is homogeneous if

$$I = \bigoplus_{d \ge 0} \left(I \cap S_d \right).$$

If $f = f_0 + \cdots + f_d$, then $f_i \in I$.

Remark 2.6. I is homogeneous if and only if $I = \langle f_0, \dots, f_n \rangle$, where f_i are homogeneous.

Lemma 2.7. If I, J are homogeneous then

- 1. I + J is homogeneous,
- 2. IJ is homogeneous,
- 3. $I \cap J$ is homogeneous, and
- 4. \sqrt{I} is homogeneous.

Proof.

4. Let $f = f_0 + \cdots + f_d \in \sqrt{I}$ then

$$f^n = (f_0 + \dots + f_d)^n = f_d^n + \dots \in I \implies f_d^n \in I \implies f_d \in \sqrt{I},$$

so $f - f_d \in \sqrt{I}$, by induction $f_i \in \sqrt{I}$.

Definition 2.8. If f is homogeneous of degree k then

$$f(\lambda \cdot x) = \lambda^k \cdot f(x),$$

in particular f(x) = 0 if and only if $f(\lambda \cdot x) = 0$, so it makes sense to define

$$Z(f) = \{x \in \mathbb{P}^n \mid f(x) = 0\}.$$

More generally, if $I \subseteq S$ is a homogeneous ideal then

$$Z(I) = \{x \in \mathbb{P}^n \mid f \in I \text{ homogeneous}, f(x) = 0\}.$$

Definition 2.9. A subset $X \subseteq \mathbb{P}^n$ is called a **projective variety** if X = Z(T) for some homogeneous ideal T.

Proposition 2.10.

- $Z(S) \cup Z(T) = Z(ST)$.
- $\bigcap_{\alpha} Z(S_{\alpha}) = Z(\bigcup_{\alpha} S_{\alpha}).$
- $Z(0) = \mathbb{P}^n$ and $Z(1) = \emptyset$.

Definition 2.11. We define the **Zariski topology** on \mathbb{P}^n by taking closed sets to be Z(T) for some T.

Definition 2.12.

- A projective variety is **irreducible** if it is an irreducible topological space.
- An open subset of a projective variety is called a quasi-projective variety.
- The **dimension** of a projective variety is its dimension as a topological space.
- If $T \subseteq S$ then

$$I(T) = \langle f \in S \mid f \text{ homogeneous}, \forall p \in T, f(p) = 0 \rangle.$$

Definition 2.13. If X is a projective variety the homogeneous coordinate ring is

$$S(X) = \frac{S}{I(X)}.$$

Definition 2.14. If $f \in S$ is linear and homogeneous, we call Z(f) a hyperplane.

Lecture 5 Monday 21/01/19

Proposition 2.15.

$$\phi_{i}: U_{i} = \mathbb{P}^{n} \setminus Z(x_{i}) \rightarrow \mathbb{A}^{n}$$
$$[x_{0}: \dots : x_{n}] \mapsto \left(\frac{x_{0}}{x_{i}}, \dots, \frac{x_{n}}{x_{i}}\right)$$

is a homeomorphism in the Zariski topology.

Proof. Let $\phi = \phi_0$ and $U = U_0$, let $C \subseteq \mathbb{A}^n$ be a closed set then we claim that $\phi^{-1}(C)$ is closed. Indeed, let C = Z(S), then $\phi^{-1}(C) = Z(S') \cup U$ where

$$S' = \left\{ x_0^d \cdot f\left(\frac{x_1}{x_0}, \dots, \frac{x_n}{x_0}\right) \mid f \in S \right\}.$$

Similarly, let $A \subseteq U$ is closed, we claim that $\phi(A)$ is closed. Let \overline{A} be its closure in \mathbb{P}^n , then $\overline{A} = Z(B)$, so $\phi(A) = Z(B')$ where

$$B' = \{ f(1, x_1, \dots, x_n) \mid f \in B \}.$$

So we conclude that ϕ is a homeomorphism.

Note. $\langle 1 \rangle = S$ and $\langle x_0, \dots, x_n \rangle \subsetneq S$ map to \emptyset under Z. So in order to have a one-to-one correspondence we need the following.

- $Z(I) = \emptyset$ if and only if $\sqrt{I} \supseteq \langle x_0, \dots, x_n \rangle$. If we consider Z(I) in \mathbb{A}^{n+1} , note that $x \in Z(I)$ if and only if $\lambda x \in Z(I)$. So $Z(I) = \emptyset$ if and only if $Z(I) \subseteq \{0\}$. So $\sqrt{I} \supseteq \langle x_0, \dots, x_n \rangle$.
- $I(Z(J)) = \sqrt{J}$ if $Z(J) \neq \emptyset$, since $I(Z(J)) = I(Z_a(J)) = \sqrt{J}$.

Corollary 2.16.

$$\{ \text{ projective varieties } \iff \{ \text{ homogeneous radical ideals not } \langle x_0, \dots, x_n \rangle \},$$
 $\{ \text{ irreducible projective varieties } \} \iff \{ \text{ homogeneous radical prime ideals } \}.$

Example 2.17. \mathbb{P}^n is irreducible.

Proposition 2.18.

- \mathbb{P}^n is Noetherian, that is satisfies the descending chain condition.
- Every projective variety can be written as a unique union of irreducible projective varieties. We call irreducible components the irreducible varieties in that decomposition.

Theorem 2.19. Let $Y \subseteq \mathbb{P}^n$ be an irreducible projective variety. Then

$$\dim (S(Y)) = \dim (Y) + 1.$$

Proof. Let

$$\phi_i: \quad U = \mathbb{P}^n \setminus Z(x_i) \quad \to \quad \mathbb{A}^n$$
$$[x_0: \dots: x_n] \quad \mapsto \quad \left(\frac{x_0}{x_i}, \dots, \frac{x_n}{x_i}\right) ,$$

and $Y_i = \phi_i (Y \cap U_i)$. Let

$$K[x_1, \dots, x_n] \rightarrow (S(Y)_{x_i})_0$$

$$f(x_1, \dots, x_n) \mapsto \frac{x_i^{\partial f} f\left(\frac{x_1}{x_i}, \dots, \frac{x_n}{x_i}\right)}{x_i^{\partial f}},$$

then

$$A(Y_i) = \frac{K[x_1, \dots, x_n]}{I(Y_i)} \cong (S(Y)_{x_i})_0,$$

moreover $S(Y)_{x_i} \cong A(Y_i)[x_i, x_i^{-1}]$. So

$$\dim (S(Y)) = \dim (S(Y)_{x_i}) = \dim (A(Y_i) [x_i, x_i^{-1}]) = tra(K(Y_i) (x_i)) = \dim (Y_i) + 1.$$

Therefore if $Y_i \neq \emptyset$, dim $(Y_i) = \dim(S(Y)) - 1$ for all i, but since U_i cover Y we have dim $(Y) = \max\{\dim(Y_i)\}$. (Exercise: if $\{U_n\}_n$ is a finite cover of a topological space Y then dim $(Y) = \max\{\dim(Y_i)\}$) Since dim (Y_i) are the same if $Y_i \neq \emptyset$, we conclude that dim $(Y) = \dim(Y_d)$ for some d.

Lecture 6 Tuesday 22/01/19

Proposition 2.20. Every Noetherian topological space is compact.

Proof. Let X be a Noetherian topological space and let $\{U_n\}$ be a cover of X. So consider C, the collection of the union of finitely many open sets of $\{U_n\}$. Since X is Noetherian C has a maximum element, say $U_1 \cup \cdots \cup U_n$. If $U_1 \cup \cdots \cup U_n \subsetneq X$ then there is $x \in X$ not in the union, and we can find another $U_{\alpha_0} \ni x$. But then

$$U_1 \cup \cdots \cup U_n \cup U_{\alpha_0} \supseteq U_1 \cup \cdots \cup U_n$$

a contradiction. So $X = U_1 \cup \cdots \cup U_n$.

Corollary 2.21. \mathbb{P}^n , \mathbb{A}^n , affine varieties, and projective varieties are all compact in the Zariski topology.

Definition 2.22. A variety X is **complete** if for any other variety Y, the projection $X \times Y \to Y$ is closed.

Example 2.23. \mathbb{P}^n is complete. \mathbb{A}^n is not complete.

3 Morphisms

Definition 3.1. Suppose Y is a quasi-affine variety and $p \in Y$. We say that a function $f: Y \to \mathbb{A}^1$ is **regular** at p if there are $g, h \in K[x_1, \ldots, x_n]$ and $U \ni p$ such that f = g/h in U with $h \neq 0$. A function is **regular** if it is regular for every $p \in Y$.

Example 3.2. Local is not global. Let $X = Z(x_1x_4 - x_2x_3) \subseteq \mathbb{A}^4$ and $U = X \setminus Z(x_2, x_4)$. Then

$$\phi: \qquad U \to \mathbb{A}^1 \\ (x_1, x_2, x_3, x_4) \mapsto \begin{cases} \frac{x_1}{x_2} & x_2 \neq 0 \\ \frac{x_3}{x_4} & x_4 \neq 0 \end{cases}$$

is a regular function.

Definition 3.3. Let Y be a quasi-projective variety, $f: Y \to \mathbb{A}^1$, and $p \in Y$. We say that f is **regular** at p if there are g, h homogeneous polynomials of the same degree and an open set $U \ni p$ such that f = g/h on U and $h \neq 0$.

Lemma 3.4. A regular function is continuous.

Proof. It is enough to show that $f^{-1}(p)$ is closed. Since f is regular f = g/h on some neighbourhood U, then $f^{-1}(p) \cap U = Z(g - ph) \cap U$.

Remark 3.5. If X is irreducible then f = g on $U \subseteq X$, then f = g on X. Because the set where f - g = 0 is closed and dense.

Definition 3.6. We will use the term **variety** to denote an affine, quasi-affine, projective, or quasi-projective variety.

Definition 3.7. A morphism is $f: X \to Y$ if f is continuous and for every $U \subseteq Y$ and every function $g: U \to \mathbb{A}^1$ the composition $g \circ f$ is regular.

Remark 3.8.

- Let $f: X \to Y$ and $g: Y \to Z$ then the composition $g \circ f$ of these two morphisms is the composition of f and g as functions.
- A morphism $f: X \to Y$ is an **isomorphism** if there is a morphism $g: Y \to X$ such that $f \circ g = id$ and $g \circ f = id$.

Definition 3.9. Let X be a variety. Denote the set of all regular functions of X by $\mathcal{O}(X)$. If $p \in X$ the local ring at $p \in X$ is

$$\mathcal{O}_{p} = \varinjlim_{U \ni p} \left(\mathcal{O} \left(U \right) \right).$$

An element of \mathcal{O}_p is a pair (U, f), where $p \in U$ and f is regular at p, moreover $(U, f) \sim (V, g)$ if f = g on $U \cap V$.

Lecture 7 Friday 25/01/19

Definition 3.10. Let Y be an irreducible variety, the **function field** K(Y) of Y is the field whose elements are pairs (U, f) where U is open and f is regular on U, and

$$(U, f) + (V, g) = (U \cap V, f + g).$$

Remark 3.11.

- $K\left(Y\right)$ is indeed a field for if $\left(U,f\right)\neq0$ then $U^{-1}=U\setminus Z\left(f\right),$ so $\left(U^{-1},1/f\right)$ is the inverse to $\left(U,f\right).$
- K(Y) is the quotient field of A(Y) or S(Y).
- $\mathcal{O}(Y) \hookrightarrow \mathcal{O}_p \hookrightarrow K(Y)$ for all $p \in Y$.

Theorem 3.12. If $Y \subseteq \mathbb{A}^n$ is an irreducible affine variety with coordinate ring A(Y) then

- 1. O(Y) = A(Y),
- 2. for all $p \in Y$, if $\mathfrak{m}_p = \{ f \in A(Y) \mid f(p) = 0 \}$ then we have a one-to-one correspondence

$$\left\{ \begin{array}{ccc} points \ of \ Y \end{array} \right\} \qquad \Longleftrightarrow \qquad \left\{ \begin{array}{ccc} maximal \ ideals \ of \ A \left(Y \right) \end{array} \right\},$$

- 3. for all $p \in Y$, $\mathcal{O}_p \cong A(Y)_{\mathfrak{m}_p}$ and $\dim(\mathcal{O}_p) = \dim(Y)$, and
- 4. K(Y) is the quotient field of A(Y).

Proof.

1. Notice that there is a natural map $A \to \mathcal{O}(Y)$ with kernel I(Y), so there is an injection $A(Y) \hookrightarrow \mathcal{O}(Y)$, that is

$$A\left(Y\right)\subseteq\mathcal{O}\left(Y\right)\subseteq\bigcap_{p\in Y}\mathcal{O}_{p}=\bigcap_{\mathfrak{m}_{p}}A\left(Y\right)_{\mathfrak{m}_{p}}=A\left(Y\right),$$

so
$$A(Y) = \mathcal{O}(Y)$$
.

- 2. We know that points of Y correspond to maximal ideals $\mathfrak{m}_p \supseteq I(Y)$. Taking the quotient, we get maximal ideals inside A(Y).
- 3. There is a natural map $A(Y)_{\mathfrak{m}_p} \to \mathcal{O}_p$, which is injective by $\alpha : A(Y) \hookrightarrow \mathcal{O}(Y)$, and it is surjective by definition of \mathcal{O}_p . Moreover,

$$\dim (\mathcal{O}_p) = \dim (A_p)_{\mathfrak{m}_p} = height(\mathfrak{m}_p) = \dim (Y).$$

4. The quotient field of A(Y) is the quotient field of \mathcal{O}_p for all p, by 3, which is K(Y) by definition.

Theorem 3.13. Let $Y \subseteq \mathbb{P}^n$ be irreducible and projective. Then

- 1. O(Y) = K,
- 2. for all $p \in Y$, \mathfrak{m}_p as before, $\mathcal{O}_p \cong \left(S(Y)_{\mathfrak{m}_p}\right)_0$, and
- 3. $K(Y) \cong \left(S(Y)_{(0)}\right)_0$.

Proof. Recall that

$$\phi_i: U_i = \mathbb{P}^n \setminus Z(x_i) \rightarrow \mathbb{A}^n$$

$$[x_0: \dots : x_n] \mapsto \left(\frac{x_0}{x_i}, \dots, \frac{x_n}{x_i}\right)$$

gives $\phi_i^* : A(Y_i) \cong (S(Y)_{x_i})_0$ and $Y_i = \phi_i (Y \cap U_i)$.

1. $K \subseteq \mathcal{O}(Y)$. Take $f \in \mathcal{O}(Y)$, so f is regular at each Y_i , but $\mathcal{O}(Y_i) \cong A(Y_i)$, also by ϕ_i^* , $A(Y_i) \cong (S(Y)_{x_i})_0$. Thus $f = g_i/x_i^{n_i}$, where $n_i = \deg(g_i)$, in particular $x_i^{n_i} f \in S(Y)_{n_i}$. Now, set $N \ge \sum_i n_i$, then $S(Y)_N \cdot f \subseteq S(Y)_N$, so we can iterate this process to obtain $S(Y)_N \cdot f^q \subseteq S(Y)_N$. In particular $x_0^N f \subset S$, hence S(Y)[f] is contained in $x_0^{-N} S(Y)$. Therefore f is integral since S(Y)[f] is finitely generated. There are $a_i \in S$ such that

$$f^k + a_1 f^{k-1} + \dots + a_k = 0.$$

Since f is homogeneous of degree zero we can take the constant terms of a_i and still have an equation, hence $a_i \in K$.

- 2. Let $p \in Y$, then $p \in Y_i$, by the previous theorem we know that $\mathcal{O}_p \cong A(Y_i)_{\mathfrak{m}_p}$. By ϕ_i^* , $\mathcal{O}_p \cong \left(\left(S(Y)_{x_i}\right)_{\mathfrak{m}_p}\right)_0$, but since $x_i \notin \mathfrak{m}_p$, hence $\mathcal{O}_p \cong \left(S(Y)_{\mathfrak{m}_p}\right)_0$.
- 3. Recall that the quotient field of Y is $K(Y) = K(Y_i)$, but $K(Y_i)$ is the quotient field of the coordinate ring $A(Y_i)$, by ϕ_i^* , this is $\left(S(Y)_{(0)}\right)_0$.

Lecture 8 Monday 28/01/19

Proposition 3.14. Let X be an irreducible variety and Y be an irreducible affine variety, then we have a bijection

$$\alpha: Hom(X,Y) \xrightarrow{\sim} Hom(A(Y), \mathcal{O}(X)),$$

the set of morphisms from X to Y to the set of K-algebra homomorphisms.

Proof. Given a morphism $\phi: X \to Y$, by definition of morphism, ϕ takes regular functions at Y to regular functions at X. So if $f \in A(Y)$ then $\phi \circ f \in \mathcal{O}(X)$. Conversely, let $h: A(Y) \to \mathcal{O}(X)$ be a homomorphism of K-algebras. Recall that $A(Y) = A/I(Y) = k[x_1, \dots, x_n]/I(Y)$. Take $\overline{x_i} \in A(Y)$ and let $y_i = h(\overline{x_i}) \in \mathcal{O}(X)$ and define

$$\psi: X \to \mathbb{A}^n p \mapsto (y_1(p), \dots, y_n(p)) .$$

We claim that $Im(\psi) \subseteq Y$, but since Y = Z(I(Y)), it is enough to show that if $f \in I(Y)$ then $f(\psi(p)) = 0$.

$$f(\psi(p)) = f(y_1(p), \dots, y_n(p)) = f(h(\overline{x_1}(p)), \dots, h(\overline{x_n}(p))) = h(f(x_1, \dots, x_n))(p) = 0.$$

Lemma 3.15. If X, Y are as before then $\psi : X \to Y$ is a morphism if and only if $\psi_i = x_i \circ \psi$ are regular functions.

Proof. Suppose ψ_i are regular functions, then if p is a polynomial $p \circ \psi$ is regular, but since regular functions are quotients of polynomials, we conclude that $f \circ \psi$ is regular for any regular function f.

Corollary 3.16. If X, Y are affine then $X \cong Y$ if and only if $A(X) \cong A(Y)$.

Corollary 3.17. The correspondence $X \mapsto A(X)$ induces an arrow reversing correspondence between the category of affine varieties and the category of K-integral domains.

Lecture 9 is a problem class. Lecture 10 is a problem class. Lecture 9 Tuesday 29/01/19 Lecture 10 Friday 01/02/19

4 Rational maps

Definition 4.1. Let X, Y be varieties. A **rational map** $f: X \dashrightarrow Y$ is a pair (U, f_U) where $U \subseteq X$ is open and f_U is a morphism on U and we identify $(U, f_U) \sim (V, g_V)$ if $f_U = g_V$ on $U \cap V$.

Lecture 11 Monday 04/02/19

Lemma 4.2. If X, Y are varieties and $\phi, \psi : X \to Y$ such that $\phi = \psi$ on $U \subseteq X$, then $\phi = \psi$ on X.

Proof. We can assume that $Y \subseteq \mathbb{P}^n$ for some n, and hence we reduce to the case where $Y = \mathbb{P}^n$. So the product is $\phi \times \psi : X \to \mathbb{P}^n \times \mathbb{P}^n$. Let $\Delta \subseteq \mathbb{P}^n \times \mathbb{P}^n = Z(x_iy_j - x_jy_i)$. Since $\phi = \psi$ on U, $(\phi \times \psi)(U) \subseteq A$, so $(\phi \times \psi)(\overline{U}) = (\phi \times \psi)(X) \subseteq \Delta$.

Definition 4.3.

- A dominant rational map is a rational map $f: X \dashrightarrow Y$, such that $f_U(U)$ is dense for some, and hence all, (U, f_U) .
- A birational map is a dominant rational map $f: X \dashrightarrow Y$ such that f admits an inverse $g: Y \dashrightarrow X$.

Theorem 4.4. For any two varieties X, Y we have a correspondence

 $\left\{ \begin{array}{ll} \textit{dominant rational maps } f: X \rightarrow Y \end{array} \right\} \qquad \leftrightsquigarrow \qquad \left\{ \begin{array}{ll} \textit{K-algebra homomorphisms } K\left(Y\right) \rightarrow K\left(X\right) \end{array} \right\}.$

Proof. Given a rational map $f: X \dashrightarrow Y$ and let $g \in K(Y)$. Let f_U be a representative of f then we have that if $(V,g) = g, g \circ f_U \in K(X)$. Since we can cover Y using affine varieties, we can assume Y is affine then K(Y) = K(A(Y)). If we start with a homomorphism $\theta: K(Y) \to K(X)$, let $y_1, \ldots, y_n \in A(Y)$ be the generators of A(Y), then $\theta(y_i) \in K(X)$. We can find U such that $\theta(y_i)$ are regular at U. Then this induces a map $A(Y) \to \mathcal{O}(U)$. But then we have a morphism $U \to Y$, and moreover this is the inverse of the map we defined previously.

Definition 4.5.

- A field extension L/K is **separably generated** if there is a transcendence basis $\{x_i\}$ for L/K such that L is a separable algebraic extension of $K(\{x_i\})$.
- Primitive element theorem. If L/K is finite and separable then L/K (α) for some $\alpha \in L$. If L is infinite and β_1, \ldots, β_n are generators for L/K then $\alpha = c_1\beta_1 + \cdots + c_n\beta_n$ for $c_i \in K$.
- If K is perfect, any finitely generated extension L/K is separably generated.

Theorem 4.6. Any variety X of dimension n is birational to a hypersurface $Y \subseteq \mathbb{P}^{n+1}$.

Proof. Since K(X) = K is finitely generated, by the theorem above it is separably generated. So we can find a transcendence basis $x_1, \ldots, x_n \in K$ such that $K/k(x_1, \ldots, x_n)$ is finite and separable. By the primitive element theorem, $K = k(x_1, \ldots, x_n, y)$ for some y which is algebraic over $k(x_1, \ldots, x_n)$, so y is the solution of a polynomial equation f in $k(x_1, \ldots, x_n)$. In particular if we clear denominators we get a polynomial $f(x_1, \ldots, x_n, y)$ in \mathbb{A}^{n+1} , by taking Z(f) we get a hypersurface and taking its projective closure we get a hypersurface in \mathbb{P}^n .

Lecture 12 Tuesday 05/02/19

Corollary 4.7. The following are equivalent.

- $F: X \dashrightarrow Y$ is birational.
- There exist U, V such that $F: U \to V$ is an isomorphism.
- $K(Y) \cong K(X)$.

Definition 4.8. The blow-up of \mathbb{A}^n at the origin 0, denoted by $\widetilde{\mathbb{A}^n}$, is $Z(x_iy_j - x_jy_i) \subseteq \mathbb{A}^n \times \mathbb{P}^{n-1}$.

Proposition 4.9.

1. Let $P \in \mathbb{A}^n$, if $P \neq 0$ then $\pi^{-1}(P)$ is a single point, and $\widetilde{\mathbb{A}^n} \setminus \pi^{-1}(0) \cong \mathbb{A}^n \setminus \{0\}$.

2.
$$\pi^{-1}(0) \cong \mathbb{P}^{n-1}$$
.

3. Points of $\pi^{-1}(0)$ are in one-to-one correspondence with the set of lines through the origin.

4. $\widetilde{\mathbb{A}^n}$ is irreducible.

Proof.

1. If $P \neq 0$ then $y_j = x_j y_i / x_i$ and this is true for every j, so this gives a unique point in \mathbb{P}^{n-1} .

2. Obvious.

3. A line through the origin is given by $x_i = ta_i$ for $t \neq 0$. Taking π^{-1} of this line we get $x_i = ta_i$ and $y_i = ta_i = a_i$. In other words if $x \neq 0$, $\pi^{-1}(X) = (X, [X])$.

4. $\widetilde{\mathbb{A}^n} \setminus \pi^{-1}(0) \cong \mathbb{A}^n \setminus \{0\}$ is dense and irreducible, by 3.

Definition 4.10. If $Y \ni 0$ is a closed subvariety of \mathbb{A}^n we define the **blow-up** of Y at 0 by $\widetilde{Y} = \overline{\pi^{-1}(Y \setminus \{0\})}$. More generally, we can blow-up any point by taking an affine change of coordinates. We also get a birational map $\pi : \widetilde{Y} \to Y$.

Example 4.11. Let $Y = Z(y^2 - x^2(x+1))$. The equations of the blow-up are

$$\begin{cases} y^2 = x^2 (x+1) \\ xu = yt \end{cases},$$

where $[t:u] \in \mathbb{P}^1$. Suppose $t \neq 0$.

$$\begin{cases} y^2 = x^2 (x+1) \\ y = xu \end{cases} \Longrightarrow (xu)^2 = x^2 (x+1) \Longrightarrow x^2 (u^2 - x - 1) = 0.$$

Example 4.12. Let $y^2 = x^3$.

$$\begin{cases} y^2 = x^3 \\ y = xu \end{cases} \Longrightarrow (xu)^2 = x^3 \Longrightarrow x^2 (u^2 - x) = 0.$$

5 Nonsingular varieties

Definition 5.1. Let $Y \subseteq \mathbb{A}^n$ be an affine variety of dimension r, and suppose $I(Y) = \langle f_1, \dots, f_k \rangle$. Y is **nonsingular** at $P \in Y$ if $rank\left(\frac{\partial f_i(P)}{\partial x_j}\right) = n - r$. Y is **nonsingular** if it is nonsingular at every $P \in Y$.

Lecture 13 Friday 08/02/19

Example 5.2. Let $x^2 = x^4 + y^4 \subseteq \mathbb{A}^2$, so $f = x^2 - x^4 - y^4$.

$$\frac{\partial f}{\partial x} = 2x - 4x^3 = 0 \qquad \Longrightarrow \qquad x\left(1 - 2x^2\right) = 0 \qquad \Longrightarrow \qquad x = 0 \text{ or } 2x^2 = 1,$$

$$\frac{\partial f}{\partial y} = -9y^3 = 0$$
 \Longrightarrow $y = 0$ \Longrightarrow $x^2 = x^4$ \Longrightarrow $x = 0 \text{ or } x^2 = 1$,

so $Sing(Y) = \{(0,0)\}.$

Example 5.3. Let $Y = Z(f) = Z(y^2 - x^3)$.

$$\frac{\partial f}{\partial x} = -3x^2 = 0, \qquad \frac{\partial f}{\partial y} = 2y = 0,$$

so $Sing(Y) = \{(0,0)\}.$

Definition 5.4. Let A be a Noetherian local ring with maximal ideal \mathfrak{m} , and residue field $A/\mathfrak{m} = K$. A is a **regular local ring** if $\dim_K (\mathfrak{m}/\mathfrak{m}^2) = \dim(A)$.

Note. $(\mathfrak{m}/\mathfrak{m}^2)^*$ is called the **Zariski-tangent space**.

Claim that $\mathfrak{m}/\mathfrak{m}^2$ is a K-vector space for $K = A/\mathfrak{m}$.

Theorem 5.5. Let $Y \subseteq \mathbb{A}^n$ be an affine variety. Then Y is nonsingular at P if and only if \mathcal{O}_P is a regular local ring.

Proof. Let $P = (a_1, \ldots, a_n) \in Y$ with corresponding maximal ideal $I_P = \langle x_1 - a_1, \ldots, x_n - a_n \rangle$. We define a map

$$\theta_P: A = K[x_1, \dots, x_n] \rightarrow K^n$$

$$f \mapsto \left(\frac{\partial f(P)}{\partial x_1}, \dots, \frac{\partial f(P)}{\partial x_n}\right).$$

Note that $\theta\left((x_i - a_i)(x_j - a_j)\right) = 0$, hence $\theta_P\left(I_P^2\right) = 0$, in particular we have an isomorphism $I_P/I_P^2 \cong K^n$. By the isomorphism, if $\alpha = I\left(Y\right) = \langle f_1, \dots, f_t \rangle$ then the rank of $\frac{\partial f_i(P)}{\partial x_j}$ corresponds to the dimension of α under the isomorphism, which is $\overline{\alpha}$ in I_P/I_P^2 , $(\alpha + I_P)/I_P^2$. Now $\mathcal{O}_P = (A/\alpha)_{I_P}$. If $\mathfrak{m} = (I_P + \alpha)/\alpha$ then $\mathfrak{m}^2 = (I_P^2 + \alpha)/\alpha$, so $\mathfrak{m}/\mathfrak{m}^2 = I_P/(I_P^2 + \alpha)$. So

$$r = \dim\left(\frac{\mathfrak{m}}{\mathfrak{m}^2}\right) = \dim\left(\frac{I_P}{I_P^2 + \alpha}\right) = \dim\left(\frac{I_P}{I_P^2}\right) - \dim\left(\frac{I_P^2 + \alpha}{I_P^2}\right) = n - rank\left(\frac{\partial f_i}{\partial x_j}\right).$$

So \mathcal{O}_P is regular if and only if $rank\left(\frac{\partial f_i}{\partial x_j}\right) = n - r$.

Definition 5.6. Let X be a variety. X is **nonsingular** at P if \mathcal{O}_P is a regular local ring.

Theorem 5.7. Let Y be a variety. Then Sing(Y) is a proper and closed set. The set of nonsingular points of Y is open and dense.

Proof. Prove that Sing(Y) is closed, first. We know that the rank of the Jacobian is at most n-r, therefore the singular points occurs when the rank is less than n-r, which is to say that Sing(Y) is given by the vanishing of the $(n-r)\times (n-r)$ minors of $\frac{\partial f_i}{\partial x_j}$ and I(Y), hence is closed. To prove that it is proper $Sing(Y) \subseteq Y$.

Lecture 14 is a problem class.

Lecture 15 is a problem class.

Lecture 14 Monday 11/02/19 Lecture 15 Tuesday 12/02/19

6 Intersections in projective space

Theorem 6.1. Let $Y, Z \subseteq \mathbb{A}^n$ be varieties, with $\dim(Y) = r$ and $\dim(Z) = s$ then every irreducible component has dimension at least r + s - n.

Lecture 16 Friday 15/02/19

Proof. Suppose Z is a hypersurface. Then if $Y \subseteq Z$ the theorem holds, and if $Y \nsubseteq Z$ the theorem is true by homework 1. Let Z be general. Consider the diagonal in \mathbb{A}^{2n} given by the image of the isomorphism $P \mapsto P \times P$, then $Y \cap Z$ corresponds to $(Y \times Z) \cap \Delta$. Recall that

$$\Delta = Z(x_1 - y_1) \cap \cdots \cap Z(x_n - y_n),$$

by the first case n times we have that each irreducible component has dimension

$$(r+s) - n - 2n = r + s - n.$$

Theorem 6.2. Let $Y, Z \subseteq \mathbb{P}^n$ be varieties, where $\dim(Y) = r$ and $\dim(Z) = s$, then each irreducible component of $Y \cap Z$ has dimension at least r + s - n. Moreover, if $r + s - n \ge 0$ then $Y \cap Z \ne \emptyset$.

Proof. Take the affine cone of Y and Z, C(Y) and C(Z), since $0 \in C(Y) \cap C(Z)$ we apply the previous theorem to get

$$(r+1) + (s+1) - (n+1) = r + s - n + 1,$$

so therefore $Y \cap Z \neq \emptyset$.

Definition 6.3. A numerical polynomial is a polynomial $f \in \mathbb{Q}[x]$ such that $f(n) \in \mathbb{Z}$ for $n \gg 0$, for n sufficiently large.

Theorem 6.4.

1. If $f \in \mathbb{Q}[x]$ is a numerical polynomial then there are $c_0, \ldots, c_r \in \mathbb{Z}$ such that

$$f(x) = c_0 \begin{pmatrix} x \\ r \end{pmatrix} + \dots + c_r \begin{pmatrix} x \\ 0 \end{pmatrix}.$$

2. If for $n \gg 0$ $\Delta f = f(n+1) - f(n) = q$ and q is a numerical polynomial, then there exists p such that for $n \gg 0$ p(n) = f(n).

Proof.

1. By linear algebra we can find $c_0, \ldots, c_r \in \mathbb{Q}$ such that

$$f(x) = c_0 \begin{pmatrix} x \\ r \end{pmatrix} + \dots + c_r \begin{pmatrix} x \\ 0 \end{pmatrix},$$

then

$$\Delta f = c_0 \begin{pmatrix} x \\ r-1 \end{pmatrix} + \dots + c_{r-1} \begin{pmatrix} x \\ 0 \end{pmatrix}.$$

By induction on the degree of f we have that $c_0, \ldots, c_{r-1} \in \mathbb{Z}$, but since $f(n) \in \mathbb{Z}$ for $n \gg 0$ then $c_r \in \mathbb{Z}$.

2. If

$$q = c_0 \begin{pmatrix} x \\ r \end{pmatrix} + \dots + c_r \begin{pmatrix} x \\ 0 \end{pmatrix},$$

set

$$p = c_0 \begin{pmatrix} x \\ r+1 \end{pmatrix} + \dots + c_r \begin{pmatrix} x \\ 1 \end{pmatrix}.$$

 $\Delta p = q \text{ gives } \Delta (f - p) (n) = 0.$

Definition 6.5.

• Let S be a graded ring. A graded S-module is a module M with a decomposition

$$M = \bigoplus_{d \in \mathbb{Z}} M_d,$$

such that $S_k \cdot M_d \subseteq M_{d+k}$.

- Let $l \in \mathbb{Z}$. The twisted module M(l) is the graded S-module given by $M(l)_k = M_{l+k}$.
- $Ann(M) = \{x \in S \mid xM = 0\}.$

Theorem 6.6. Let M be a finitely generated graded S-module. Then there is a filtration

$$0 = M^0 \subset \cdots \subset M^r = M$$
,

such that $M^i/M^{i-1} \cong (S/\mathfrak{p}_i)$ (l) for some \mathfrak{p}_i prime ideals and $l_i \in \mathbb{Z}$, such that

- prime $\mathfrak{p} \supseteq Ann(M)$ if and only if $\mathfrak{p} \subseteq \mathfrak{p}_i$, that is \mathfrak{p}_i are minimal primes of M, and
- for each minimal prime $\mathfrak p$ of M the number of times $\mathfrak p$ appears in the set $\{\mathfrak p_1,\ldots,\mathfrak p_r\}$ is $len_{S_{\mathfrak p}}(M_{\mathfrak p})$.

Lecture 17 Monday 18/02/19

Definition 6.7. Let \mathfrak{p} be a minimal prime of a graded S-module M. Then the **multiplicity** of M at \mathfrak{p} is $len_{S_{\mathfrak{p}}}(M_{\mathfrak{p}})$.

Definition 6.8. Let M be a graded $S = K[x_1, ..., x_n]$ -module. The **Hilbert function** of M is $\phi_M(l) = \dim_K(M_l)$.

Theorem 6.9. Let M be a graded $S = K[x_1, \ldots, x_n]$ -module. Then for $n \gg 0$, there is a unique polynomial $P_M \in \mathbb{Q}[x]$ such that $\phi_M(n) = P_M(n)$. P_M is called the **Hilbert polynomial**. It is a polynomial of degree $\dim (Z(Ann(M)))$.

Proof. By the previous theorem, M has a filtration

$$0 = M^0 \subseteq \cdots \subseteq M^r = M$$
,

such that M^i/M^{i-1} is of the form $(S/\mathfrak{p}_i)(l_i)$. Without loss of generality we can assume $M=S/\mathfrak{p}$, since l_i amounts to a translation $z\mapsto z+l_i$. If $\mathfrak{p}=\langle x_0,\ldots,x_n\rangle$ then $S/\mathfrak{p}\cong K$, in particular $\phi_M(l_i)=0$ if $l_i>0$, but then take $P_M=0$. We can assume dim (0)=-1 and dim $(\emptyset)=-1$. Suppose $\mathfrak{p}\neq\langle x_0,\ldots,x_n\rangle$. Then there is $x_i\notin\mathfrak{p}$ and consider the short exact sequence

$$0 \to M \xrightarrow{x_i} M \to \frac{M}{x_i M} = M'' \to 0.$$

Taking Hilbert function we get that

$$\phi_{M''}(l) = \phi_M(l) - \phi_M(l-1) = \Delta \phi_M(l-1)$$
.

Note that $Ann(M'') = Ann(M) \cup \{x_i\}$, so $Z(Ann(M'')) = Z(\mathfrak{p}) \cap Z(x_i)$. Note that

$$\dim (Ann (M'')) = \dim (Z (\mathfrak{p})) - 1,$$

so we apply induction over dim (Ann(M)). Thus $\phi_{M''}$ agrees with a polynomial $P_{M''}(n)$ for $n \gg 0$ but then $\Delta \phi_M = P_{M''}$ for $n \gg 0$, so ϕ_M agrees with a polynomial of degree

$$\dim (Ann (M'')) + 1 = \dim (Z (\mathfrak{p})).$$

Definition 6.10. If $Y \subseteq \mathbb{P}^n$ of dimension r, the **Hilbert polynomial** of Y is the Hilbert polynomial of S(Y). The degree of Y is r! times the leading coefficient of P_Y .

Theorem 6.11.

1. If $Y \neq \emptyset$, then deg (Y) is a positive integer.

2.
$$deg(\mathbb{P}^n) = 1$$
.

3. If
$$Y = Y_1 \cup Y_2$$
 with dim $(Y_i) = r$ and dim $(Y_1 \cap Y_2) < r$ then deg $(Y) = \deg(Y_1) + \deg(Y_2)$.

4. If H is a hypersurface generated by f then deg(H) = deg(f).

Proof.

1. Obvious.

2.

$$\phi_{\mathbb{P}^n}(z) = {z+n \choose n} = \frac{1}{n!}(z)\dots(n+1) = \frac{1}{n!}z^n + \dots$$

3. Let I = I(Y), $I_1 = I(Y_1)$, and $I_2 = I(Y_2)$. Consider the short exact sequence

$$0 \to \frac{S}{I} \to \frac{S}{I_1} \oplus \frac{S}{I_2} \to \frac{S}{I_1 + I_2} \to 0.$$

Taking Hilbert function,

$$\phi_{\frac{S}{I_1+I_2}} = \phi_{\frac{S}{I_1} \oplus \frac{S}{I_2}} - \phi_{\frac{S}{I}}.$$

Since $Z(I_1 + I_2) = Y_1 \cap Y_2$ and $\dim(Y_1 \cap Y_2) < r$ we have that $\phi_{S/I_1 \oplus S/I_2}$ and $\phi_{S/I}$ have the same leading coefficients, hence $\deg(Y) = \deg(Y_1) + \deg(Y_2)$.

4. Suppose deg(f) = d then consider the short exact sequence

$$0 \to S(-d) \xrightarrow{f} S \to \frac{S}{\langle f \rangle} \to 0.$$

Taking Hilbert functions,

$$\phi_{\underline{S}(f)}(z) = \phi_S(z) - \phi_S(z - d) = {z + n \choose n} - {z - d + n \choose n} = \frac{d}{(n-1)!}z^{n-1} + \dots$$

Lecture 18 Tuesday 19/02/19

Let $Y \subseteq \mathbb{P}^n$ be a projective variety and H a hypersurface then $Y \cap H = Z_1 \cup \cdots \cup Z_k$, where each Z_j has dimension $r-1 = \dim(Y) - 1$. Suppose $I(Z_j) = \mathfrak{p}_j$, then each \mathfrak{p}_j is a minimal prime of $S/(I_Y + I_H)$, then the **intersection multiplicity** $i(Y, H; Z_j)$ is the multiplicity of $S/(I_Y + I_H)$ at \mathfrak{p}_j .

Theorem 6.12. Let $Y \subseteq \mathbb{P}^n$ be a variety and H a hypersurface such that $Y \nsubseteq H$. If $Y \cap H = Z_1 \cup \cdots \cup Z_k$ then

$$\sum_{j=1}^{k} i(Y, H; Z_j) \deg(Z_j) = \deg(Y) \deg(H).$$

Corollary 6.13 (Bézout's theorem). If $Y, H \subseteq \mathbb{P}^2$ are curves and $Y \cap H = \{P_1, \dots, P_k\}$ then

$$\sum_{j=1}^{k} i(Y, H; P_j) = \deg(Y) \deg(H).$$

Proof. Suppose H is generated by f, where $\deg(f) = d$, and let I = I(Y).

$$0 \to \left(\frac{S}{I}\right)(-d) \xrightarrow{f} \frac{S}{I} \to \frac{S}{I+I_H} \to 0.$$

Taking Hilbert polynomials we get

$$\phi_{\frac{S}{I_1+I_2}}(z) = \phi_{\frac{S}{I_Y}}(z) + \phi_{\frac{S}{I_Y}}(z-d).$$

Let deg(Y) = e, then the right hand side is

$$\frac{e}{r!}z^r + \dots - \left(\frac{e}{r!}(z-d)^r + \dots\right) = \frac{de}{(r-1)!}z^{r-1} + \dots$$

Now on the left hand side, by the structure theorem, there is a filtration

$$0 = M^0 \subseteq \dots \subseteq M^s = M,$$

where $M = S/(I_Y + I_H)$. Then

$$P_M = \sum_{i=1}^{s} P_i = \sum_{i=1}^{s} P_{\frac{M^i}{M^{i-1}}},$$

where each $M^i/M^{i-1} = (S/\mathfrak{p}_i)(l_i)$. Since we want to compare the leading coefficient from this with the one from the right hand side, we only care about the P_i 's with degree r-1. So the $\mathfrak{p}_j = I(Z_j)$ and the leading term is

$$\frac{\sum_{j=1}^{k} i(Y, H; Z_j) \deg(Z_j)}{(r-1)!} + \dots$$

7 The 27 lines on a cubic surface

Theorem 7.1. Let $S \subseteq \mathbb{P}^3$ be a nonsingular cubic surface given by a polynomial f(x, y, z, t). Then S has exactly 27 lines.

Lecture 19 Friday 22/02/19

We start with a lemma.

Lemma 7.2.

- 1. Given a point $p \in S$ then there are at most three lines through p. If there are two or three they must be spheres.
- 2. Every plane π intersect S in
 - an irreducible cubic,
 - a conic and a line, or
 - three distinct lines.

Proof.

- 1. $l \subseteq S$ gives $T_p(l) = l \subseteq T_p(S)$, by 2 $T_p(S)$ intersect S in at most three lines.
- 2. We have to prove that there are no multiple lines in the intersection $S \cap \pi$. Changing coordinates if necessary, we can suppose $\pi = \{f = 0\}$ and $l = \{z = 0\}$ is the line in the intersection.

$$f = z^2 \cdot a(x, y, z, t) + t \cdot b(x, y, z, t).$$

Claim that S is singular at z = t = b = 0.

$$Jac(f) = \begin{pmatrix} z^2a_x + tb_x & z^2a_y + tb_y & 2za + z^2a_z + tb_z & z^2a_t + b + tb_t \end{pmatrix}.$$

Since S is smooth there are no multiple lines.

Lemma 7.3. S has a line.

Proof. Let $P \in S$ and consider $T_P(S)$. Then $T_P(S)$ intersects S in a plane cubic $C = S \cap T_P(S)$ which is singular at P. Otherwise we are done. Then C has to be a nodal or a cuspidal curve. So assume that C is a cuspidal curve, and change coordinates if necessary, assume that P = [0:0:1:0] and $T_P(S) = \{t=0\}$. So the equation of f has the shape

$$f = x^2 z - y^3 + gt,$$

for some g of homogeneous degree two. We consider the point $P_{\alpha} = [1 : \alpha : \alpha^3 : 0] \in C \subset S$, consider the plane x = 0 and the line $P_{\alpha}Q$ in \mathbb{P}^3 passing through P_{α} and intersecting this plane x = 0 at Q = (0, y, z, t). The line through P_{α} and Q is $\lambda P_{\alpha} + \mu Q$ and it lies inside S if

$$f\left(\lambda P_{\alpha} + \mu Q\right) = 0.$$

After expanding this we have

$$P_{\alpha}Q \subset S \iff A(y,z,t) = B(y,z,t) = C(y,z,t) = 0,$$

for A,B,C to be determined. There is a polynomial $R\left(\alpha\right)$ of degree 27 such that $R\left(\alpha\right)=0$ if and only if A=B=C have a common zero.

Let f(x, y, z, t) be a polynomial, then the **polar form** of f is

Lecture 20 Monday 25/02/19

$$f_1(x, y, z, t, x', y', z', t') = \frac{\partial f}{\partial x} \cdot x' + \frac{\partial f}{\partial y} \cdot y' + \frac{\partial f}{\partial z} \cdot z' + \frac{\partial f}{\partial t} \cdot t',$$

where P = (x, y, z, t) and Q = (x', y', z', t'). Then

$$f\left(\lambda P + \mu Q\right) = \lambda^{3} f\left(P\right) + \lambda^{2} \mu f_{1}\left(P,Q\right) + \lambda \mu^{2} f_{1}\left(Q,P\right) + \mu^{3} f\left(Q\right).$$

The polar form of $f = x^2z - y^3 + gt$ is

$$f_1 = 2xzx' - 3y^2y' + x^2z' + g(x, y, z, t)t' + tg_1,$$

where g_1 is the polar form of g. Recall $P_{\alpha} = (1, \alpha, \alpha^2, 0)$ and Q = (0, y, z, t), so

$$\{f(\lambda P + \mu Q) = 0\} = PQ \subseteq S \qquad \iff \qquad f(P) = f_1(P,Q) = f_1(Q,P) = f(Q) = 0.$$

Thus

$$\begin{cases} A = z - 3\alpha^{2}y + g(1, \alpha, \alpha^{3}, 0) t \\ B = -3\alpha y^{2} + g_{1}(1, \alpha, \alpha^{3}, 0, 0, y, z, t) t \\ C = -y^{3} + g(0, y, z, t) t \end{cases}.$$

Note that

$$g\left(1,\alpha,\alpha^3,0\right) = a^6 + \dots$$

If l = 0,

$$z = 3\alpha^{2}y + g(P)t = 3\alpha^{2}y + [a^{6}]t.$$

Applying this to B = 0 we have

$$B = -3\alpha y^2 + g_1(1, \alpha, \alpha^3, 0, 0, y, 3\alpha^2 y - [a^6]t, t) t = b_0 y^2 + b_1 y t + b_2 t^2,$$

where

$$b_0 = -3\alpha, \qquad b_1 = 6\alpha^5 + \dots, \qquad b_2 = -2\alpha^9 + \dots$$

Substituting z in C we get

$$C = c_0 y^3 + c_1 y^2 t + c_2 y t^2 + c_3 t^3,$$

where

$$c_0 = -1,$$
 $c_1 = 9\alpha^4 + \dots,$ $c_2 = -6\alpha^8 + \dots,$ $c_3 = \alpha^{12} + \dots$

By Sylvester theorem B and C have a common zero if and only if

$$\det \begin{pmatrix} -3\alpha & 6\alpha^5 & -2\alpha^9 \\ & -3\alpha & 6\alpha^5 & -2\alpha^9 \\ & & -3\alpha & 6\alpha^5 & -2\alpha^9 \\ -1 & 9\alpha^4 & -6\alpha^8 & \alpha^{12} \\ & -1 & 9\alpha^4 & -6\alpha^8 & \alpha^{12} \end{pmatrix} = 0.$$

if and only if

$$\alpha^{27} \det \begin{pmatrix} -3 & 6 & -2 \\ -3 & 6 & -2 \\ & -3 & 6 & -2 \\ -1 & 9 & -6 & 1 \\ & -1 & 9 & -6 & 1 \end{pmatrix} = \alpha^{27} + \dots = 0.$$

This concludes the proof that S has a line because we know that the matrix has at least one root and for each root we get a value of α such that the line $P_{\alpha}Q \subseteq S$.

Proposition 7.4. Let l be a line in S, then there are five pairs of lines (l_i, l'_i) intersecting l such that

Lecture 21 Tuesday 26/02/19

- $l \cup l_i \cup l'_i$ is coplanar, and
- $(l_i \cup l'_i) \cap (l_j \cup l'_j) = \emptyset$.

Proof. Given any plane $\Pi \subseteq \mathbb{P}^3$, if Π contains a line l of S then $\Pi \cap S$ is l and a conic. l is given by z = t = 0.

$$f = Ax^2 + Bxy + Cy^2 + Dx + Ey + F,$$
 $A, B, C, D, E, F \in K[z, t].$

We want to prove that there are exactly five planes Π_i such that $f|_{\Pi_i}$ is a singular conic. The conic given by f is singular if and only if

$$\Delta = \det \begin{pmatrix} A & B & D \\ B & C & E \\ D & E & F \end{pmatrix} = 4ACF + BDE - AE^2 - B^2F - CD^2 = 0.$$

 Δ is four times the usual determinant if $char(K) \neq 2$. Notice that Δ is a form of degree five in two variables z and t. We know that l, l_i, l'_i could be of two types.

1.
$$l:(t=0), l_1:(x=0), l'_1=(y=0).$$

2.
$$l:(t=0), l_1:(x=0), l'_1=(x=t).$$

Assume we are in case 1. Suppose z = 0 is a solution, then we have to prove that z^2 is not a solution. Then the equation of f is

$$f = txy + gz$$
.

So B = t + az, where $a \in K$, then $\Delta \equiv -t^2 F \mod z^2$. If $F \neq 0$ then Δ is nonzero, but F is nonzero because F is nonsingular, thus there are no multiple roots.

Corollary 7.5. S has at least two distinct lines.

Proof. Just take
$$l_1$$
 and l_2 .

Lemma 7.6. If $l_1, \ldots, l_4 \in \mathbb{P}^3$ are disjoint lines then

- either all four lines lie on a smooth quadric and they have an infinite number of transversals,
- or the four lines do not lie in any quadric and they have either one or two common transversals.

Proof. Any three lines lie in a smooth quadric Q.

Lemma 7.7.

- 1. Any line not the seventeen lines intersect exactly three of the lines l_1, \ldots, l_5 .
- 2. Conversely, given $ijk \in \{1, 2, 3, 4, 5\}$ there is a line passing through l_i, l_j, l_k .