Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	6
1.2 Описание выходных данных	7
2 МЕТОД РЕШЕНИЯ	8
3 ОПИСАНИЕ АЛГОРИТМОВ	9
3.1 Алгоритм конструктора класса Cls	9
3.2 Алгоритм деструктора класса Cls	9
3.3 Алгоритм конструктора класса Cls	9
3.4 Алгоритм метода m1 класса Cls	10
3.5 Алгоритм метода m2 класса Cls	10
3.6 Алгоритм метода m3 класса Cls	11
3.7 Алгоритм метода input класса Cls	11
3.8 Алгоритм конструктора класса Cls	12
3.9 Алгоритм функции main	12
3.10 Алгоритм функции func	13
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	14
5 КОД ПРОГРАММЫ	21
5.1 Файл Cls.cpp	21
5.2 Файл Cls.h	22
5.3 Файл main.cpp	23
6 ТЕСТИРОВАНИЕ	24
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОИНИКОВ	25

1 ПОСТАНОВКА ЗАДАЧИ

Дан объект следующей конструкции:

В закрытом доступе имеется массив целого типа и поле его длины. Количество элементов массива четное и больше двух. Объект имеет функциональность:

- Конструктор по умолчанию, в начале работы выдает сообщение;
- Параметризированный конструктор, передается целочисленный параметр. Параметр должен иметь значение больше 2 и быть четным. По значению параметра определяется размерность целочисленного массива из закрытой области. В начале работы выдает сообщение;
- Метод деструктор, который выдает сообщение что он отработал;
- Метод ввода данных для созданного массива;
- Метод 1, который суммирует значения очередной пары элементов и сумму присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение. Например, пусть массив состоит из элементов {1,2,3,4}. В результате суммирования пар получим массив {3,2,7,4};
- Метод 2, который умножает значения очередной пары элементов и результат присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение. Например, пусть массив состоит из элементов {1,2,3,4}. В результате умножения пар получим массив {2,2,12,4};
- Метод который, суммирует значения элементов массива и возвращает это значение.

Разработать функцию, которая в качестве параметра получает объект по значению. Функция вызывается метод 2, далее выводит сумму элементов массива

с новой строки.

В основной функции реализовать алгоритм:

- 1. Ввод размерности массива.
- 2. Если размерность массива некорректная, вывод сообщения и завершить работу алгоритма.
- 3. Вывод значения размерности массива.
- 4. Создание объекта с аргументом размерности массива.
- 5. Вызов метода для ввода значений элементов массива.
- 6. Вызов функции передача в качестве аргумента объекта.
- 7. Вызов метода 1 от имени объекта.
- 8. Вывод суммы элементов массива объекта с новой строки.

Разработать конструктор копии объекта для корректного выполнения вычислений. В начале работы конструктор копии выдает сообщение с новой строки.

1.1 Описание входных данных

```
Первая строка:
«целое число»

Вторая строка:
«целое число» «целое число» . . . .

Пример:
```

1 2 3 4 5 6 7 8

1.2 Описание выходных данных

Если введенная размерность массива допустима, то в первой строке выводится это значение:

«Целое число»

Если введенная размерность массива не больше двух или нечетная, то в первой строке выводится некорректное значение и вопросительный знак:

«Целое число»?

Конструктор по умолчанию в начале работы с новой строки выдает сообщение:

Default constructor

Параметризированный конструктор в начале работы с новой строки выдает сообщение:

Constructor set

Конструктор копирования в начале работы с новой строки выдает сообщение:

Copy constructor

Деструктор в начале работы с новой строки выдает сообщение:

Destructor

Пример вывода:

8 Constructor set Copy constructor 120 Destructor 56 Destructor

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект obj класса Cls предназначен для Объект для решения задачи;
- функция func для Демонстрация работы деконструктора и копирования;
- cin/cout объекты стандартного потока ввода вывода;
- if..else условный оператор;
- new/delete операторы выделения/освобождения динамической памяти.

Класс Cls:

- свойства/поля:
 - о поле Массив чисел:
 - наименование arr;
 - тип int*;
 - модификатор доступа private;
 - о поле Длина массива:
 - наименование length;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод Cls Конструктор по умолчанию;
 - о метод Cls Параметризированный конструктор;
 - о метод ~Cls Деструктор;
 - о метод Cls Конструктор копирования;
 - о метод input Метод ввода данных в массив;
 - о метод m1 Метод сложения чисел в массиве;
 - о метод m2 Метод умножения чисел в массиве;
 - о метод m3 Метод возврата суммы чисел в массиве.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса Cls

Функционал: Конструктор по умолчанию.

Параметры: нет.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса Cls

Nο	Предикат	Действия	No
			перехода
1		Вывод Default constructor	Ø

3.2 Алгоритм деструктора класса Cls

Функционал: Деструктор.

Параметры: нет.

Алгоритм деструктора представлен в таблице 2.

Таблица 2 – Алгоритм деструктора класса Cls

N₂	Предикат	Действия	No
			перехода
1		Вывод Destructor	2
2		Освобождение памяти по указателю arr	Ø

3.3 Алгоритм конструктора класса Cls

Функционал: Параметризированный конструктор.

Параметры: int n - размер массива.

Алгоритм конструктора представлен в таблице 3.

Таблица 3 – Алгоритм конструктора класса Cls

N₂	Предикат	Действия	N₂
			перехода
1		Вывод Constructor set	2
2		legth = n	3
3		Выделение памяти по указателю arr размером n	Ø

3.4 Алгоритм метода m1 класса Cls

Функционал: Метод сложения чисел в массиве.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 4.

Таблица 4 – Алгоритм метода т1 класса Cls

N₂	Предикат	Действия	N₂
			перехода
1		Инициализация i = 0 типа int	2
2	i < length	arr[i] = arr[i] + arr[i + 1]	3
		Возврат значения вызова метода m3	Ø
3		i += 2	2

3.5 Алгоритм метода m2 класса Cls

Функционал: Метод умножения чисел в массиве.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 5.

Таблица 5 – Алгоритм метода т2 класса Cls

No	Предикат	Действия	No
			перехода
1		Инициализация i = 0 типа int	2
2	i < length	arr[i] = arr[i] * arr[i + 1]	3
		Возврат значения вызова метода m3	Ø
3		i += 2	2

3.6 Алгоритм метода m3 класса Cls

Функционал: Метод возврата суммы чисел в массиве.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 6.

Таблица 6 – Алгоритм метода т3 класса Cls

N₂	Предикат	Действия	N₂
			перехода
1		Инициализация sum = 0 типа int	2
2		Инициализация i = 0 типа int	3
3	i < length	sum += arr[i]	4
		Возврат sum	Ø
4		i++	3

3.7 Алгоритм метода input класса Cls

Функционал: Метод ввода данных в массив.

Параметры: нет.

Возвращаемое значение: void.

Алгоритм метода представлен в таблице 7.

Таблица 7 – Алгоритм метода input класса Cls

N₂	Предикат	Действия	No
			перехода
1		Инициализация i = 0 типа int	2
2	i < length	Ввод значения arr[i]	3
			Ø
3		i++	2

3.8 Алгоритм конструктора класса Cls

Функционал: Конструктор копирования.

Параметры: const Cls &ob.

Алгоритм конструктора представлен в таблице 8.

Таблица 8 – Алгоритм конструктора класса Cls

N₂	Предикат	Действия	No
			перехода
1		Вывод Copy constructor	2
2		length = ob.length	3
3		Выделение памяти по указателю arr размером ob.length	4
4		Инициализация i = 0 типа int	5
5	i < length	arr[i] = ob.arr[i]	6
			Ø
6		i++	5

3.9 Алгоритм функции main

Функционал: Основная функция программы.

Параметры: нет.

Возвращаемое значение: int - код ошибки.

Алгоритм функции представлен в таблице 9.

Таблица 9 – Алгоритм функции таіп

N₂	Предикат	Действия	
			перехода
1		Объявление n типа int	2
2		Ввод значения п	3
3	n % 2 != 0 n <= 2	Вывод п?	10
			4
4		Вывод п	5
5		Создание объекта obj класса Cls с передачей	
		аргумента п	
6		Вызов метода input() объекта obj	7
7		Вызов функции func с передачей аргумента obj	8
8		Вызов метода m1() объекта obj	9
9		Вывод значения вызова метода m3() объекта obj	
10		Возврат значения 0	

3.10 Алгоритм функции func

Функционал: Вызов метода у obj для демонстрации копироавния.

Параметры: Cls obj.

Возвращаемое значение: void.

Алгоритм функции представлен в таблице 10.

Таблица 10 – Алгоритм функции func

N₂	Предикат	Действия	No
			перехода
1		Инициализация s типа int значением вызова метода obj.m2();	2
2		Вывод ѕ	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-7.

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

Рисунок 4 – Блок-схема алгоритма

Рисунок 5 – Блок-схема алгоритма

Рисунок 6 – Блок-схема алгоритма

Рисунок 7 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл Cls.cpp

Листинг 1 – Cls.cpp

```
#include "Cls.h"
#include <iostream>
using namespace std;
Cls::Cls()
  cout << endl << "Default constructor";</pre>
Cls::Cls(int n)
  cout << endl << "Constructor set";</pre>
  length = n;
  arr = new int[n];
Cls::~Cls()
  cout << endl << "Destructor";</pre>
  delete arr;
Cls::Cls(const Cls & ob)
  cout << endl << "Copy constructor";</pre>
  length = ob.length;
  arr = new int[ob.length];
  for(int i = 0; i < length; i++)
      arr[i] = ob.arr[i];
void Cls::input()
  for(int i = 0; i < length; i++)
      cin >> arr[i];
int Cls::m1()
```

```
{
    for(int i = 0; i < length; i+=2)
    {
        arr[i] = arr[i] + arr[i + 1];
    }
    return m3();
}
int Cls::m2()
{
    for(int i = 0; i < length; i+=2)
    {
        arr[i] = arr[i] * arr[i + 1];
    }
    return m3();
}
int Cls::m3()
{
    int sum = 0;
    for(int i = 0; i < length; i++)
    {
        sum += arr[i];
    }
    return sum;
}</pre>
```

5.2 Файл Cls.h

Листинг 2 – Cls.h

```
#ifndef __CLS__H
#define __CLS__H
class Cls
private:
  int* arr;
int length;
public:
  Cls();
  Cls(int n);
  ~Cls();
  Cls(const Cls &ob);
  void input();
  int m1();
  int m2();
  int m3();
};
#endif
```

5.3 Файл таіп.срр

Листинг 3 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include "Cls.h"
#include <iostream>
using namespace std;
void func(Cls obj){
  int s = obj.m2();
  cout << endl << s;</pre>
}
int main()
  int n;
  cin >> n;
  if(n % 2 != 0 || n <= 2){
      cout << n << "?";
      return(0);
  }
  cout << n;
  Cls obj(n);
  obj.input();
  func(obj);
  obj.m1();
  cout << endl << obj.m3();</pre>
  // program here
  return(0);
}
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 11.

Таблица 11 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
8 1 2 3 4 5 6 7 8	8 Constructor set Copy constructor 120 Destructor 56 Destructor	8 Constructor set Copy constructor 120 Destructor 56 Destructor
7	7?	7?

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).