Gaussian Elimination and PLU-factorization

Tom Lyche

University of Oslo Norway

Linear Equations

Component form:

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$
 \vdots \vdots \vdots \vdots \vdots \vdots $a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$

n equations in n unknowns.

Matrix form

$$A\boldsymbol{x} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \boldsymbol{b}.$$

- Assume $A \in \mathbb{R}^{n,n}$ or $A \in \mathbb{C}^{n,n}$ is nonsingular. The system then has a unique solution.
- Consider for simplicity $A \in \mathbb{R}^{n,n}$.

Perturbation Example

Consider the system of two linear equations

$$x_1 + x_2 = 20$$

 $x_1 + 0.999x_2 = 19.99$

- The exact solution is $x_1 = x_2 = 10$.
- Suppose we replace the second equation by

$$x_1 + 1.001x_2 = 19.99,$$

- the exact solution changes to $x_1 = 30$, $x_2 = -10$.
- ▲ A small change in one of the coefficients, from 0.999 to 1.001, changed the exact solution by a large amount.

Ill Conditioning

- A mathematical problem in which the solution is very sensitive to changes in the data is called ill-conditioned.
- Such problems are difficult to solve on a computer.
- If at all possible, the mathematical model should be changed to obtain a more well-conditioned or properly-posed problem.

Pertubed System

- We consider what effect a small change (perturbation) in the data A, b has on the solution x of a linear system Ax = b.
- Suppose y solves (A + E)y = b + e where E is a (small) $n \times n$ matrix and e a (small) vector.
- lacksquare How large can y-x be?
- To measure this we use vector and matrix norms.

Conditions on the norms

- $\|\cdot\|$ will denote a vector norm on \mathbb{C}^n and also a submultiplicative matrix norm on $\mathbb{C}^{n,n}$ which in addition is subordinate to the vector norm.
- Thus for any $A, B \in \mathbb{C}^{n,n}$ and any $\boldsymbol{x} \in \mathbb{C}^n$ we have

$$||AB|| \le ||A|| \, ||B|| \text{ and } ||Ax|| \le ||A|| \, ||x||.$$

- This is satisfied if the matrix norm is the operator norm corresponding to the given vector norm.
- Another example: $||A\boldsymbol{x}||_2 \le ||A||_F ||\boldsymbol{x}||_2$

Absolute and Relative error

■ The difference $\|y-x\|$ measures the absolute error in y as an approximation to x, while $\|y-x\|/\|x\|$ or $\|y-x\|/\|y\|$ is a measure for the relative error.

Right hand side

We consider first a perturbation in the right-hand side b.

Theorem 1. Suppose $A\in\mathbb{C}^{n,n}$ is invertible, $b,e\in\mathbb{C}^n$, $b\neq 0$ and Ax=b, Ay=b+e. Then

$$\frac{1}{K(A)} \frac{\|\boldsymbol{e}\|}{\|\boldsymbol{b}\|} \le \frac{\|\boldsymbol{y} - \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \le K(A) \frac{\|\boldsymbol{e}\|}{\|\boldsymbol{b}\|}, \quad K(A) = \|A\| \|A^{-1}\|. \tag{1}$$

Proof: Subtracting Ax = b from Ay = b + e we have A(y - x) = e or $y - x = A^{-1}e$. Thus $||y - x|| = ||A^{-1}e|| \le ||A^{-1}|| ||e||$. Moreover, $||b|| = ||Ax|| \le ||A|| ||x||$ or $1/||x|| \le ||A||/||b||$. Therefore

$$\frac{\|\boldsymbol{y} - \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \le \|A^{-1}\| \|A\| \frac{\|\boldsymbol{e}\|}{\|\boldsymbol{b}\|},$$

which proves the rightmost inequality in (1). Since A(y-x)=e and $x=A^{-1}b$, we have $\|e\|\leq \|A\|\,\|y-x\|$ and $\|x\|\leq \|A^{-1}\|\,\|b\|$. This gives

$$\frac{\|\boldsymbol{y} - \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \ge \frac{1}{\|A\| \|A^{-1}\|} \frac{\|\boldsymbol{e}\|}{\|\boldsymbol{b}\|},$$

Upper bound

$$\frac{\|\boldsymbol{y} - \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \le K(A) \frac{\|\boldsymbol{e}\|}{\|\boldsymbol{b}\|}, \quad K(A) = \|A\| \|A^{-1}\|.$$

 $\|e\|/\|b\|$ is a measure for the size of the perturbation e relative to the size of b. $\|y-x\|/\|x\|$ can in the worst case be

$$K(A) = ||A|| ||A^{-1}||$$

times as large as $\|e\|/\|b\|$.

Condition number

- ullet K(A) is called the **condition number with respect to inversion of a matrix**, or just the condition number, if it is clear from the context that we are talking about solving linear systems or inverting a matrix.
- The condition number depends on the matrix A and on the norm used. If K(A) is large, A is called **ill-conditioned** (with respect to inversion).
- \blacksquare If K(A) is small, A is called well-conditioned (with respect to inversion).

Condition number 2

- Since $||A|| ||A^{-1}|| \ge ||AA^{-1}|| = ||I|| \ge 1$ we always have $K(A) \ge 1$.
- $\|I\| \ge 1$ since subordinance implies $\|x\| = \|Ix\| \le \|I\| \|x\|$ for any x.
- Since all matrix norms are equivalent, the dependence of K(A) on the norm chosen is less important than the dependence on A.
- Sometimes we choose the 2-norm when discussing properties of the condition number, and the 1- and $\infty-$ norm when we compute it or estimate it.

The 2-norm

- Suppose A has singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n > 0$. We have $K_2(A) = \|A\|_2 \|A^{-1}\|_2 = \frac{\sigma_1}{\sigma_n}$ if the 2 norm is used.
- A normal matrix A can be diagonalized by a unitary similarity transformation. $U^HAU=D$, where U is unitary and D is diagonal with the eigenvalues of A on the diagonal. It follows that UDU^H is the singular value decomposition of A and $\sigma_i=|\lambda_i|$, where $|\lambda_1|\geq \cdots \geq |\lambda_n|>0$ are the absolute values of the eigenvalues of A.
- Thus $K_2(A) = ||A||_2 ||A^{-1}||_2 = \frac{|\lambda_1|}{|\lambda_n|}$, A normal.
- It follows that A is ill-conditioned with respect to inversion if and only if σ_1/σ_n is large, or $|\lambda_1|/|\lambda_n|$ is large when A is normal.

Continuity of the inverse

The next result shows that small changes in A gives small changes in the inverse.

- Suppose $A \in \mathbb{C}^{n,n}$ is nonsingular and let $\|\cdot\|$ be a submultiplicative matrix norm on $\mathbb{C}^{n,n}$. If $E \in \mathbb{C}^{n,n}$ is so small that $r := \|A^{-1}E\| < 1$ then:
- $\|(A+E)^{-1}\| \le \frac{\|A^{-1}\|}{1-r}.$

Perturbation in A

We consider next a perturbation in A.

Theorem 2. Suppose $A, E \in \mathbb{C}^{n,n}$, $\mathbf{b} \in \mathbb{C}^n$ with A invertible and $\mathbf{b} \neq \mathbf{0}$. If $r:=\|A^{-1}E\|<1$ for some norm then A+E is invertible. If $A\mathbf{x}=\mathbf{b}$ and $(A+E)\mathbf{y}=\mathbf{b}$ then

$$\frac{\|\boldsymbol{y} - \boldsymbol{x}\|}{\|\boldsymbol{y}\|} \leq r \leq K(A) \frac{\|E\|}{\|A\|}. \tag{2}$$

$$\frac{\|y - x\|}{\|x\|} \le \frac{r}{1 - r} \le \frac{K(A)}{1 - r} \frac{\|E\|}{\|A\|}.$$
 (3)

Proof: The matrix A+E is invertible since r<1. (2) follows easily by taking norms in the equation $\boldsymbol{x}-\boldsymbol{y}=A^{-1}E\boldsymbol{y}$ and dividing by $\|\boldsymbol{y}\|$. Solving the equation $\boldsymbol{x}-\boldsymbol{y}=A^{-1}E\boldsymbol{y}$ for \boldsymbol{y} we find $\boldsymbol{y}=(I+A^{-1}E)^{-1}\boldsymbol{x}$ and hence $\boldsymbol{x}-\boldsymbol{y}=A^{-1}E(I+A^{-1}E)^{-1}\boldsymbol{x}$. Taking norms and using $\|(A+E)^{-1}\|\leq \frac{\|A^{-1}\|}{1-r}$ we obtain (3).

Comments

$$\frac{\|y - x\|}{\|y\|} \le K(A) \frac{\|E\|}{\|A\|}.$$

- \blacksquare ||E||/||A|| is a measure of the size of the perturbation E in A relative to the size of A.
- The condition number again plays a crucial role.
- It can be shown that the upper bound can be attained for any A and any b.

The Residual

Suppose we have computed an approximate solution y to Ax = b. The vector r(y:) = Ay - b is called the **residual vector**, or just the residual. We can bound x-y in term of r(y).

Theorem 3. Suppose $A\in\mathbb{C}^{n,n}$, $b\in\mathbb{C}^n$, A is nonsingular and $b\neq 0$. Let r(y)=Ay-b for each $y\in\mathbb{C}^n$. If Ax=b then

$$\frac{1}{K(A)} \frac{\| \boldsymbol{r}(\boldsymbol{y}) \|}{\| \boldsymbol{b} \|} \le \frac{\| \boldsymbol{y} - \boldsymbol{x} \|}{\| \boldsymbol{x} \|} \le K(A) \frac{\| \boldsymbol{r}(\boldsymbol{y}) \|}{\| \boldsymbol{b} \|}. \tag{4}$$

Comments

$$\frac{1}{K(A)} \frac{\| \boldsymbol{r}(\boldsymbol{y}) \|}{\| \boldsymbol{b} \|} \le \frac{\| \boldsymbol{y} - \boldsymbol{x} \|}{\| \boldsymbol{x} \|} \le K(A) \frac{\| \boldsymbol{r}(\boldsymbol{y}) \|}{\| \boldsymbol{b} \|}$$

- $\| y x \| / \| x \| pprox \| r(y) \| / \| b \|$ if A is well-conditioned, .
- In other words, the accuracy in y is about the same order of magnitude as the residual (as long as $||b|| \approx 1$).
- lacksquare If A is ill-conditioned, anything can happen.
- We can for example have an accurate solution even if the residual is large.

Gaussian elimination

- start with a system Ax = b. Set $A^{(1)} = A$ and $b^{(1)} = b$.
- LU-factorization: generate a sequence of systems $A^{(k)}x = b^{(k)}$ for k = 2, ..., n.
- solution: find x from $A^{(n)}x = b^{(n)}$ by back substitution

Pivotelement

Permutation Matrices

Definition 1. Suppose $p = (i_1, \dots, i_n)$ is a permutation of the integers $1, 2, \dots, n$. A permutation matrix is a matrix of the form

$$P = I(:, \mathbf{p}) = [\mathbf{e}_{i_1}, \mathbf{e}_{i_2}, \dots, \mathbf{e}_{i_n}] \in \mathbb{R}^{n,n},$$

where e_{i_1},\ldots,e_{i_n} is a permutation of the unit vectors $e_1,\ldots,e_n\in\mathbb{R}^n$.

- Since P has orthonormal columns it is orthogonal. Thus $P^TP = PP^T = I$, $P^{-1} = P^T$, and P^T is also a permutation matrix.
- Post-multiplying a matrix A by a permutation matrix results in a permutation of the columns, $AP = [Ae_{i_1}, \ldots, Ae_{i_n}] = A(:, p)$
- pre-multiplying by a permutation matrix gives a permutation of the rows. In symbols $P^TA = (A^TP)^T = (A^T(:,p))^T = A(p,:)$.

Exchange matrix

Definition 2. We define a particularly simple permutation matrix called an (j,k)-Exchange matrix I_{jk} by exchanging column j and k of the identity matrix.

- $I_{jk} = I_{kj}$ and an exchange matrix is symmetric.
- Since we obtain the identity by applying I_{jk} twice we see that $I_{jk}^2 = I$ and an exchange matrix is equal to its own inverse.
- Post-multiplying a matrix by an exchange matrix interchanges two columns of the matrix,
- pre-multiplication interchanges two rows.

Row Interchanges

 \blacksquare Consider the 3×3 system

$$A m{x} = egin{bmatrix} 4 & 1 & 4 \ 2 & -4 & 0 \ 2 & -1 & 1 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = egin{bmatrix} 18 \ -6 \ 3 \end{bmatrix} = m{b}$$

Use row interchanges. They are not necessary in this example, but are included in order to illustrate the general discussion below.

1. A Row Interchange

Interchange rows 1 and 3

$$\begin{bmatrix} 4 & 1 & 4 \\ 2 & -4 & 0 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 18 \\ -6 \\ 3 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & 1 \\ 2 & -4 & 0 \\ 4 & 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -6 \\ 18 \end{bmatrix}.$$

Next we reformulate what we just did to the coefficient matrix in matrix terms . We start with $A^{(1)}:=A.$ We then interchange rows 1 and 3 in $A^{(1)}$ to obtain

$$B^{(1)} := I_{3,1}A^{(1)} = \begin{vmatrix} 2 & -1 & 1 \\ 2 & -4 & 0 \\ 4 & 1 & 4 \end{vmatrix}.$$

2. Elimination in Column 1

We subtract row 1 from row 2 and 2 times row 1 from row 3

$$\begin{bmatrix} 2 & -1 & 1 \\ 2 & -4 & 0 \\ 4 & 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -6 \\ 18 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & 1 \\ 0 & -3 & -1 \\ 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -9 \\ 12 \end{bmatrix}$$

$$A^{(2)} := M_1^{(1)} B^{(1)} = \left[egin{array}{cccc} 2 & -1 & 1 \ 0 & -3 & -1 \ 0 & 3 & 2 \end{array}
ight] \; ext{where} \; M_1^{(1)} := \left[egin{array}{cccc} 1 & 0 & 0 \ -1 & 1 & 0 \ -2 & 0 & 1 \end{array}
ight].$$

$$A^{(2)} := M_1^{(1)} I_{31} A$$

3. Interchange rows 2 and 3

$$\begin{bmatrix} 2 & -1 & 1 \\ 0 & -3 & -1 \\ 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -9 \\ 12 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & 2 \\ 0 & -3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 12 \\ -9 \end{bmatrix}.$$

$$B^{(2)} := I_{32}A^{(2)} = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & 2 \\ 0 & -3 & -1 \end{bmatrix}.$$

$$B^{(2)} := I_{32} M_1^{(1)} I_{31} A$$

4. Elimination in Column 2

4) Finally, we subtract $(-1)\times \text{row 2 from row 3}$:

$$\begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & 2 \\ 0 & -3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 12 \\ -9 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 12 \\ 3 \end{bmatrix}$$

$$A^{(3)} := M_2^{(2)} B^{(2)} = \left[egin{array}{cccc} 2 & -1 & 1 \ 0 & 3 & 2 \ 0 & 0 & 1 \end{array}
ight] ext{ where } M_2^{(2)} := \left[egin{array}{cccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 1 & 1 \end{array}
ight].$$

 $A^{(3)} := M_2^{(2)} I_{32} M_1^{(1)} I_{31} A$ is upper triangular, $U := A^{(3)}$

Upper triangular system

$$\begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 12 \\ 3 \end{bmatrix}$$

Upper triangular system with the same solution set as the original system. Easy to solve $x = (1, 2, 3)^T$

PLU-factorization

- We group the exchange matrices together by the following trick:
- ullet Define $M_2:=M_2^{(2)}$ and $M_1:=I_{32}M_1^{(1)}I_{32}$.
- $U = M_2 I_{32} (I_{32} M_1 I_{32}) I_{31} A = M_2 M_1 I_{32} I_{31} A$
- A = PLU, where $P = I_{31}I_{32}$, $L = M_1^{-1}M_2^{-1}$, and $U = A^{(3)}$.
- The matrix L is obtained easily from M_1 and M_2 . We have

M's

$$M_{1} = I_{32}M_{1}^{(1)}I_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$M_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, M_2^{-1} := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}, L = M_1^{-1} M_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix}$$

and

Elementary Row Operations

The matrices M_1 and M_2 in the previous example can be written in outer product form as

$$M_1 = I - egin{bmatrix} 0 \ 2 \ 1 \end{bmatrix} egin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \ M_2 = I - egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} egin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

In general:

Elementary Row Operations II

For $1 \le k \le n-1$ and $\boldsymbol{l}_k = [l_{k+1,k}, \dots, l_{n,k}]^T \in \mathbb{R}^{n-k}$ we define the matrix

$$M_{k} := I - \begin{bmatrix} \mathbf{0} \\ l_{k} \end{bmatrix} e_{k}^{T} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & -l_{k+1,k} & 1 & \cdots & 0 \\ \vdots & & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -l_{n,k} & 0 & \cdots & 1 \end{bmatrix}, \tag{5}$$

where 0 is the zero vector in \mathbb{R}^k . We call M_k an elementary row operation matrix.

Elementary row operations III

If $A \in \mathbb{R}^{n,n}$ then the *i*th row of M_kA is given by

$$\boldsymbol{e}_{i}^{T} M_{k} A = \boldsymbol{e}_{i}^{T} A - \boldsymbol{e}_{i}^{T} \begin{bmatrix} \mathbf{0} \\ \boldsymbol{l}_{k} \end{bmatrix} \boldsymbol{e}_{k}^{T} A = \begin{cases} \boldsymbol{e}_{i}^{T} A & i = 1, \dots, k, \\ \boldsymbol{e}_{i}^{T} A - l_{ik} \boldsymbol{e}_{k}^{T} A & i = k+1, \dots, n. \end{cases}$$
(6)

Thus M_k leaves the first k rows of A unchanged and row i of M_kA equals row i of A minus l_{ik} times row k of A for $i=k+1,\ldots,n$. By choosing $l_{ik}=a_{ik}/a_{kk}$ the entries in column k of A under the diagonal will be zero. Indeed, for $i=k+1,\ldots,n$

$$(M_k A)_{ik} = \boldsymbol{e}_i^T M_k A \boldsymbol{e}_k = \boldsymbol{e}_i^T A \boldsymbol{e}_k - l_{ik} \boldsymbol{e}_k^T A \boldsymbol{e}_k = a_{ik} - l_{ik} a_{kk} = 0.$$

Elementary Row Operations

Lemma 3. Suppose M_k is given by (5) for $k=1,\ldots,n-1$. Then

$$L_k := M_k^{-1} = I + \begin{bmatrix} \mathbf{0} \\ \mathbf{l}_k \end{bmatrix} \mathbf{e}_k^T, \tag{7}$$

$$L_1 L_2 \cdots L_k = I + \sum_{j=1}^k \begin{bmatrix} \mathbf{0} \\ \mathbf{l}_j \end{bmatrix} e_j^T,$$
 (8)

Proof. (7) follows from the calculation

$$(I + \begin{bmatrix} 0 \\ \boldsymbol{m}_k \end{bmatrix} \boldsymbol{e}_k^T) (I - \begin{bmatrix} 0 \\ \boldsymbol{m}_k \end{bmatrix} \boldsymbol{e}_k^T) = I + \begin{bmatrix} 0 \\ \boldsymbol{m}_k \end{bmatrix} \boldsymbol{e}_k^T - \begin{bmatrix} 0 \\ \boldsymbol{m}_k \end{bmatrix} \boldsymbol{e}_k^T - \begin{bmatrix} 0 \\ \boldsymbol{m}_k \end{bmatrix} \boldsymbol{e}_k^T \begin{bmatrix} 0 \\ \boldsymbol{m}_k \end{bmatrix} \boldsymbol{e}_k^T$$

using that
$$m{e}_k^T m{\mid} m{m}_k = 0$$
. The proof of (8) is similar using induction on k .

PLU-factorization

We obtain the factorization

$$U := A^{(n)} = M_{n-1}^{(n-1)} P_{n-1} \cdots M_2^{(2)} P_2 M_1^{(1)} P_1 A. \tag{9}$$

This can be converted into a PLU-factorization if we define $M_{n-1}:=M_{n-1}^{(n-1)}$ and

$$M_k := P_{n-1} \cdots P_{k+1} M_k^{(k)} P_{k+1} \cdots P_{n-1}, \ k = 1, \dots, n-2.$$
 (10)

 M_k and $M_k^{(k)}$ differs only in that the multipliers under the diagonal in column k has been permuted.

PLU-factorization II

Using repeatedly that $P_k^2 = I$ for all k it follows that

$$U := M_{n-1} \cdots M_1 P_{n-1} \cdots P_1 A \tag{11}$$

$$A = P_1 \cdots P_{n-1} M_1^{-1} \cdots M_{n-1}^{-1} U$$

or A=PLU where $P=P_1\cdots P_{n-1}$ is a permutation matrix, $L=M_1^{-1}\cdots M_{n-1}^{-1}$ is unit lower triangular (and $U=A^{(n)}$ is upper triangular.

PLU-Theorem

The PLU-factorization exists if A is nonsingular

Theorem 4 (The PLU-theorem). A nonsingular matrix A has a factorization A=PLU, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular.

Proof. We use induction on n.

Stability Example

Without row interchanges:

$$10^{-4}x_1 + 2x_2 = 4 \longrightarrow 10^{-4}x_1 + 2x_2 = 4$$
$$x_1 + x_2 = 3 \longrightarrow (1 - 2 \times 10^4)x_2 = 3 - 4 \times 10^4$$

The exact solution is

$$x_2 = \frac{-39997}{-19999} \approx 2, \quad x_1 = \frac{4 - 2x_2}{10^{-4}} = \frac{20000}{19999} \approx 1.$$

Suppose we round the result of each arithmetic operation to three digits. The solutions $fl(x_1)$ and $fl(x_2)$ computed in this way is

$$fl(x_2) = 2, \quad fl(x_1) = 0.$$

The computed value 0 of x_1 is completely wrong.

Stability Example

With row interchanges:

$$x_1 + x_2 = 3$$
 $x_1 + x_2 = 3$
 $10^{-4}x_1 + 2x_2 = 4$ $(2 - 10^{-4})x_2 = 4 - 3 \times 10^{-4}$

Now the solution is computed as follows

$$x_2 = \frac{3.9997}{1.9999} \approx 2, \quad x_1 = 3 - x_2 \approx 1.$$

In this case rounding each calculation to three digits produces $f(x_1) = 1$ and $f(x_2) = 2$ which is quite satisfactory since it is the exact solution rounded to three digits.

Partial Pivoting

- In step k of Gaussian elimination we interchange row k with some row $r_k \ge k$ and then introduce zeros under the diagonal in the permuted matrix.
- The choice

$$r_k := \max\{|a_{i,k}^{(k)}| : k \le i \le n\}$$

with r_k the smallest such index in case of a tie is known as *partial pivoting*.

▶ With partial pivoting we have $|l_{ij}| \le 1$ for all entries l_{ij} in L and this leads to an algorithm with reasonable numerical stability properties.

Solving a linear system

Solving a linear system Ax = b, where $A \in \mathbb{R}^{n,n}$ and $b \in \mathbb{R}^n$ by Gaussian elimination can be formulated as follows:

- 1. Find a PLU-factorization A = PLU of A,
- 2. permute the entries of b: $c := P^T b$,
- 3. solve the triangular system Ly = c,
- 4. solve the triangular system Ux = y.

Main loop, PLU-factorization

Vectorize main loop

For
$$i = k + 1, \dots, n$$

For $j = k + 1, \dots, n$
 $a_{ij} = a_{ij} - l_{ik}a_{kj}$

The right hand side can be written as an outer product

$$\begin{bmatrix} a_{k+1,k+1} & \cdots & a_{k+1,n} \\ \vdots & & \vdots \\ a_{n,k+1} & \cdots & a_{n,n} \end{bmatrix} - \begin{bmatrix} l_{k+1,k} \\ \vdots \\ l_{n,k} \end{bmatrix} \begin{bmatrix} a_{k,k+1} & \cdots & a_{k,n} \end{bmatrix}$$

$$A(k+1:n,k+1:n) = A(k+1:n,k+1:n) - L(k+1:n,k) * A(k,k+1:n).$$

PLU-factorization with partial pivoting

[PLU with Physical Row Interchanges]

```
piv = 1:n;
for k = 1, 2, ..., n - 1
   [maxv, q] = \max(abs(A(k+1:n, k)));
  r = q + k - 1;
  piv([k \ r]) = piv([r \ k]);
  A([k r]) = A([r k]);
   A(k+1:n,k) = A(k+1:n,k)/A(k,k);
   A(k+1:n, k+1:n) = A(k+1:n, k+1:n) - A(k+1:n, k) * A(k, k+1:n);
end
```

This algorithm requires $\frac{2}{3}n^3$ arithmetic operations.

$\boldsymbol{c} := P^T \boldsymbol{b}$

$$P = I(:, piv) = [e_{i_1}, e_{i_2}, \dots, e_{i_n}] \in \mathbb{R}^{n,n},$$

where e_{i_1}, \dots, e_{i_n} is a permutation of the unit vectors $e_1, \dots, e_n \in \mathbb{R}^n$.

pre-multiplying by a permutation matrix gives a permutation of the rows. In symbols $P^TA = A(piv,:)$.

In particular $\boldsymbol{c} = P^T \boldsymbol{b} = \boldsymbol{b}(piv)$

Forward Substitution

Algorithm 4 (Forward Substitution $L \boldsymbol{y} = \boldsymbol{c}$).

```
for k=1:n y(k) = \big(c(k)-l(k,1{:}k{-}1)*y(1{:}k{-}1)\big)/l(k,k); end
```

This algorithm requires n^2 flops.

Backward Substitution

Algorithm 5 (Backward Substitution Ux = y).

```
for k=n:-1:1 x(k)=\big(y(k)-u(k,k+1:n)*x(k+1:n)\big)/u(k,k); end
```

This algorithm requires n^2 flops.

Storage

The entries of L and U are located under and above the diagonal in A as shown here for n=4

$$A = \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ l_{21} & u_{22} & u_{23} & u_{24} \\ l_{31} & l_{32} & u_{33} & u_{34} \\ l_{41} & l_{42} & l_{43} & u_{44} \end{bmatrix}.$$

Using the Matlab functions tril and triu we recover the matrices P, L, and U such that A = PLU as follows

$$P = I(:, piv), L = I + tril(A, -1), U = triu(A).$$
 (12)

Computing Time

- lacksquare This process can be time consuming if n is large.
- To quantify this we define a flop (floating point operation) as one of the floating point arithmetic operations, ie. multiplication, division, addition and subtraction.
- We denote by #flops the total number of flops in an algorithm, i.e. the the sum of all multiplications, divisions, additions and subtractions.
- In many implementations the computing time T_A for an algorithm A applied to a large problem is proportional to $N_A := \#$ flops.
- If this is true then we typically have $T_A = \alpha N_A$, where α is in the range 10^{-12} to 10^{-9} on a modern computer.

n^2 and n^3

Compare T_{PLU} and T_S Assume

$$T_{PLU} = \alpha \frac{2}{3}n^3$$
, $T_S = \alpha 2n^2$, $\alpha = \frac{3}{2}10^{-9}$

n	T_{PLU}	T_S
10^3	1s	0.003s
10^4	17min.	0.3s
10^{6}	32 years	51min