ADボード DV14U25 仕様書

概要

DV14U25 高速 A Dボードの仕様です。 アナログ信号を高速ADで変換したデータを、PCに取り込む事が出来ます。 AD変換データの記憶容量は、512Kデータと大容量となっています。

ボードの構成

AD ボードのブロックを図 1 に示します。 アナログ信号は、A/D 変換した後メモリに記憶されます。 PC から USB 経由で、波形メモリのデータを取得する事が出来ます。

図1.ADボード ブロック図

2.レジスタマップ

表1にレジスタ マップを示します。

表 1. レジスタ マップ

アドレス	内容	В7	B6	B5	B4	В3	B2	B1	В0
20	STATUS	0	PLL	SOVF	COVF	0	END	BUSY	SP
21	コントロール	0	0	0	TEST	0	0	S.TRG	SP ON
22	MODE	0	INV	TC1	TC0	CS	C2	C1	C0
23	CLOCK	CK7	CK6	CK5	CK4	CK3	CK2	CK1	CK0
24	サンプル数	S7	S6	S5	S4	S3	S2	S1	S0
25	サンプル数	S15	S14	S13	S12	S11	S10	S9	S8
26	サンプル数	0	0	0	0	0	S18	S17	S16
28	積算回数	D7	D6	D5	D4	D3	D2	D1	D0
29	積算回数	D15	D14	D13	D12	D11	D10	D9	D8
2A	積算回数	0	0	0	0	0	0	D17	D16
2C	フレーム数	F7	F6	F5	F4	F3	F2	F1	F0
30	COS RAM ADDR	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
31	COS RAM ADDR	CA15	CA14	CA13	CA12	CA11	CA10	CA9	CA8
32	COS RAM ADDR	0	0	0	0	0	CA18	CA17	CA16
34	SIN RAM ADDR	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0
35	SIN RAM ADDR	SA15	SA14	SA13	SA12	SA11	SA10	SA9	SA8
36	SIN RAM ADDR	0	0	0	0	0	SA18	SA17	SA16
38	COS RAM DATA	CD7	CD6	CD5	CD4	CD3	CD2	CD1	CD0
39	SIN RAM DARA	SD7	SD6	SD5	SD4	SD3	SD2	SD1	SD0
3A	COS AD DATA	CAD7	CAD6	CAD5	CAD4	CAD3	CAD2	CAD1	CAD0
3B	COS AD DATA	0	0	CAD13	CAD12	CAD11	CAD10	CAD9	CAD8
3C	SIN AD DATA	SAD7	SAD6	SAD5	SAD4	SAD3	SAD2	SAD1	SAD0
3D	SIN AD DATA	0	0	SAD13	SAD12	SAD11	SAD10	SAD9	SAD8
3E	REV	REV7	REV6	REV5	REV4	REV3	REV2	REV1	REV0
3F	名称	ID7	ID6	ID5	ID4	ID3	ID2	I D 1	ID0

2-1. STATUSレジスタ

AD ボードの状態を調べるためのレジスタです。

読み込み専用です。

アドレス	内容	B7	B6	B5	B4	B3	B2	B1	B0
20	STATUS	0	PLL	SOVF	COVF	0	END	BUSY	SP

SP:サンプリング状態を示す。

CD	0	AD 停止状態
SF	1	AD サンプリング中

BUSY:サンプル開始コマンドを受けてから終了するまでの状態を示す。

DUCV	0	AD 停止状態
D 031	1	待機 + 動作中

END:サンプル終了の状態を示す。

END	0	AD サンプル未完了			
END	1	AD サンプル終了			

COVF: COS側ADが、過入力の状態を示す。

COVF	0	COS AD 入力レベルが、適正レベル			
COVI	1	COS AD 入力レベルが、過入力			

SOVF: SIN 側 AD が、過入力の状態を示す。

SOVE	0	SIN AD 入力レベルが、適正レベル
SOVI	1	SIN AD 入力レベルが、過入力

PLL: PLL 回路の状態を示す。

	7 1.11 7 1.10 = 10 7 0			
DI I	0	PLL Lock 状態 (正常)		
FLL	1	PLL Unlock 状態 (異常)		

2 - 2. コントロールレジスタ

AD ボードの制御用レジスタです。

アドレス	内容	B7	B6	B5	B4	B3	B2	B1	B0
21	コントロール	0	0	0	TEST	0	0	S.TRG	SP ON

SP:ADのサンプル開始を設定します。

SP ON	0	AD 停止		
SF ON	1	AD サンプル開始		

S.TRG: SOFT トリガ信号を設定します。

S TRG	0	SOFT トリガ信号'0'
S. IKG	1	SOFT トリガ信号' 1 '

TEST: TEST 用 DATA を RAM に転送開始する

ТЕСТ	0	通常
TEST	1	TEST 用データ転送開始

2 - 3. MODE 設定レジスタ

AD ボードのモードの設定するためのレジスタです。

アドレス	内容	B7	B6	B5	B4	B3	B2	B1	B0
22	MODE	0	INV	TC1	TC0	CS	C2	C1	C0

AD のクロック分周比を設定します。

AD クロック (MHz) = 25 (MHz)/(クロック分周比 C*クロック分周比 CK)

C 2	C 1	C 0	クロック分周比 C
0	0	0	1
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	1 6
1	0	1	3 2
1	1	0	6 4
1	1	1	1 2 8

CS: CLOCK 選択を行います。

S TRG	0	内部クロック
0.110	1	外部クロック

TC0~TC1:トリガ条件を設定します。

TC1	TC0	トリガ条件
0	0	ソフトウェアトリガ
0	1	外部トリガ:TTL立ち下がり
1	0	外部トリガ:TTL立ち上がり
1	1	設 定 禁 止

INV:積算時に符号反転を行う設定をします。

		, = 10 0 111 11 = = 1 1 1 0
INV	0	通常加算モード
IIV	1	反転加算モード

2 - 4. CLK 分周設定レジスタ

AD ボードのモードの設定するためのレジスタです。

アドレス	内容	B7	B6	B5	B4	B3	B2	B1	B0
23	CLOCK	CK7	CK6	CK5	CK4	CK3	CK2	CK1	CK0

AD のクロック分周比を設定します。

AD クロック (MHz) = 25 (MHz) / (クロック分周比 C*クロック分周比 CK)

_									
	CK7	CK6	CK5	CK4	CK3	CK2	CK1	CK0	クロック分周比 CK
	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	1	2
	0	0	0	0	0	0	1	0	3
	0	0	0	0	0	0	1	1	4
	0	0	0	0	0	1	0	0	5
	0	0	0	0	0	1	0	1	6
	1	1	1	1	1	1	1	0	255
	1	1	1	1	1	1	1	1	256

2 - 5. サンプル数設定レジスタ

1回の取り込みサンプル数を設定します。1以上の数値を設定してください。

アドレス	内容	B7	B6	B5	B4	B3	B2	B1	В0
24		S7	S6	S5	S4	S3	S2	S1	S0
25	サンプル数	S15	S14	S13	S12	S11	S10	S9	S8
26		0	0	0	0	0	S18	S17	S16

2 - 6. 積算回数設定レジスタ

積算回数を設定します。1以上の数値を設定してください。

16Bit の AD の場合は、D15~D0 の範囲の設定になります

アドレス	内容	B7	B6	B5	B4	В3	B2	B1	B0
28		D7	D6	D5	D4	D3	D2	D1	D0
29	積算回数	D15	D14	D13	D12	D11	D10	D9	D8
2A		0	0	0	0	0	0	D17	D16

2 - 7. フレーム数設定レジスタ

フレーム数の設定します。

アドレス	内容	B7	B6	B5	B4	B3	B2	B1	В0
2C	フレーム数	F7	F6	F5	F4	F3	F2	F1	F0

F7	F6	F5	F4	F3	F2	F1	F0	フレーム数
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1	2
0	0	0	0	0	0	1	0	3
1	1	1	1	1	1	1	1	256

例1)積算回数2回、フレーム数3の設定

1回の積算を行う時、サンプルの個数をフレーム数として、定義します。 積算は、SP1A + SP1B、SP2A + SP2B、SP3A + SP3B の計算をします。

SP1A	SP2A	SP3A	SP1B	SP2B	SP3B							
サンプル	サンプル	サンプル	サンプル	サンプル	サンプル							
*												
	積算1回目	1		積算2回目								

2 - 8. COS RAM アドレス設定レジスタ

COS 側の RAM アドレスを設定します。

サンプル開始時、RAM データ取得開始前に設定して下さい

アドレス	内容	B7	B6	B5	B4	B3	B2	B1	B0
30	COS RAM	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
31	ADDR	CA15	CA14	CA13	CA12	CA11	CA10	CA9	CA8
32	ADDIX	0	0	0	0	0	CA18	CA17	CA16

2 - 9. SIN RAM アドレス設定レジスタ

SIN 側の RAM アドレスを設定します。

サンプル開始時、RAM データ取得開始前に設定して下さい

アドレス	内容	B7	B6	B5	B4	B3	B2	B1	B0
34	SIN RAM	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0
35	ADDR	SA15	SA14	SA13	SA12	SA11	SA10	SA9	SA8
36	ADDIX	0	0	0	0	0	SA18	SA17	SA16

2 - 1 0. COS RAM データ読み出しレジスタ

COS の RAM データを取得します。

USB のバーストモードで読み出す事で、高速読み出しが可能になります。

アドレス	内容	B7	B6	B5	B4	B3	B2	B1	В0
38	RAM DATA	CD7	CD6	CD5	CD4	CD3	CD2	CD1	CD0

・読み出し時のデータの順番

読み出すごとに下位の桁のデータから順に読み出されます。 4 バイトのデータを読み終わると RAM アドレスを自動インクリメントします。 そのため、次アドレスの下位の桁から順にデータを読む事が出来ます。

読み出し	RAM アドレス	データ
1		CD0 7-0
2	アドレス+0	CD0 14-8
3		CD0 23-16
4		CD0 31-24
5		CD1 7-0
6	アドレス + 1	CD1 14-8
7	アトレス・1	CD1 23-16
8		CD1 31-24
9	アドレス+2	CD2 7-0

2 - 1 1. SIN RAM データ読み出しレジスタ

SIN の RAM データを取得します。

USB のバーストモードで読み出す事で、高速読み出しが可能になります。

アドレス	内容	B7	B6	B5	B4	B3	B2	B1	В0
39	RAM DATA	SD7	SD6	SD5	SD4	SD3	SD2	SD1	SD0

・読み出し時のデータの順番

読み出すごとに下位の桁のデータから順に読み出されます。 4 バイトのデータを読み終わると RAM アドレスを自動インクリメントします。 そのため、次アドレスの下位の桁から順にデータを読む事が出来ます。

読み出し	RAM アドレス	データ
1		SD0 7-0
2	アドレス+0	SD0 14-8
3		SD0 23-16
4		SD0 31-24
5		SD1 7-0
6	アドレス + 1	SD1 14-8
7		SD1 23-16
8		SD1 31-24
9	アドレス+2	SD2 7-0

2 - 1 2. COS AD DATA 読み出しレジスタ

COS 側の AD データを取得する事が出来ます。

読み出す前に、アドレス3A(H)に0を書き込む作業を行って下さい。

書き込み時のタイミングで COS 側の AD 値が、読み出しレジスタに転送します。

アド	レス	内容	B7	B6	B5	B4	B3	B2	B1	B0
3	8A	COS AD	CAD7	CAD6	CAD5	CAD4	CAD3	CAD2	CAD1	CAD0
3	B	DATA	0	0	CAD13	CAD12	CAD11	CAD10	CAD9	CAD8

2 - 1 3. SIN AD DATA 読み出しレジスタ

SIN 側の AD データを取得する事が出来ます。

読み出す前に、アドレス3C(H)に0を書き込む作業を行って下さい。

書き込み時のタイミングで SIN 側の AD 値が、読み出しレジスタに転送します。

アドレス	内容	B7	B6	B5	B4	B3	B2	B1	B0
3C	SIN AD	SAD7	SAD6	SAD5	SAD4	SAD3	SAD2	SAD1	SAD0
3D	DATA	0	0	SAD13	SAD12	SAD11	SAD10	SAD9	SAD8

2 - 1 4. REV データ読み出しレジスタ

ボードのレビジョンを取得します。

アドレス	内容	B7	B6	B5	B4	B3	B2	B1	B0
3E	REV	REV7	REV6	REV5	REV4	REV3	REV2	REV1	REV0

2-15. ボード名称レジスタ

ボードの名称を取得します。

読み出し毎に、次の文字を取得できます。

終了コードは、0(H)です。

さらに読み出すと、先頭の文字が読み出されます。

アドレス	内容	B7	B6	B5	B4	B3	B2	B1	В0
3F	REV	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0

読み出し	データ	コード
1	ID0 7-0	"D"
2	ID1 7-0	"V"
3	ID2 7-0	"1"
4	ID3 7-0	"4"
5	ID4 7-0	"U"
	ID5 7-0	
45	ID44 7-0	00(H)

文字例) DV14U25 ,101025,CLK=25MHZ,BIT=14,RAM=524288,