Logique des propositions

▶ La logique des propositions est un langage formel constitué d'une syntaxe et d'une sémantique.

- La syntaxe décrit l'ensemble des formules qui appartiennent au langage.
- La sémantique permet de donner un sens aux formules du langage.

- Le vocabulaire de la logique des propositions est constitué :
 - d'atomes, ou propositions que l'on désignera par les lettres minuscules de l'alphabet a,b,c,d,\ldots,z
 - de connecteurs logiques $(\neg, \lor, \land, \rightarrow, \leftrightarrow)$,
 - de parenthèses

•

Les règles de formation des formules de la logique des proposition sont :

- Tout atome est une formule
- si E_1 et E_2 sont des formules alors

$$\neg E_1$$
 est une formule

$$E_1 \vee E_2$$
 est une formule

$$E_1 \wedge E_2$$
 est une formule

$$E_1 \rightarrow E_2$$
 est une formule

$$E_1 \leftrightarrow E_2$$
 est une formule

- ullet si E est une formule alors (E) est une formule.
- rien d'autre n'est une formule.

On définit un ordre de précédence entre les connecteur :

$$\neg$$
 > \wedge > \vee > \rightarrow > \leftrightarrow

Exemples de formules :

$$\begin{array}{ll} a \\ a \lor b \\ \neg a \lor b \\ a \lor b \land c \\ a \lor b \rightarrow c \land d \end{array} \equiv \begin{array}{ll} (\neg a) \lor b \\ a \lor (b \land c) \\ (a \lor b) \rightarrow (c \land d) \end{array}$$

• L'ensemble des formules peut être généré à l'aide de la grammaire hors-contexte $G = \langle \Sigma, \{F\}, P, F \rangle$ où :

$$\Sigma = \{a, b, \dots, z, (,), \neg, \wedge, \vee, \rightarrow, \leftrightarrow\}$$

$$F \rightarrow a|b| \dots |z|$$

$$F \rightarrow \neg F$$

$$F \rightarrow F \vee F$$

$$F \rightarrow F \wedge F$$

$$F \rightarrow F ' \rightarrow' F$$

$$F \rightarrow F \leftrightarrow F$$

$$F \rightarrow (F)$$

• Le même langage peut être généré par la grammaire non ambiguë $G' = \langle \Sigma, \{F, G, H, I, J, K\}, P, F \rangle$ où :

$$\Sigma = \{a, b, \dots, z, (,), \neg, \wedge, \vee, \rightarrow, \leftrightarrow\}$$

$$\begin{cases}
F \to F \leftrightarrow G & | G \\
G \to G' \to' H & | H \\
H \to H \vee I & | I \\
I \to I \wedge J & | J \\
J \to \neg J & | K \\
K \to (F) \\
K \to a|b|\dots|z
\end{cases}$$

- m G et G' sont faiblement équivalentes :
 - Elles reconnaissent le même langage.
 - Mais peuvent associer des arbres différents à un même mot.

Logique des propositions - sémantique

- La sémantique consiste à donner un sens aux différents éléments du langage :
 - on donne à chaque atome une valeur de vérité : vrai (v) ou faux (f)
 - on associe à chaque connecteur une table de vérité.
- La valeur d'une formule peut être calculée à partir des valeurs de vérité des atomes, grâce aux tables de vérité des connecteurs.

Logique des propositions

•

- ▶ La table de vérité d'un connecteur unaire o_1 permet de calculer la valeur de o_1F étant donné la valeur de F.
- ▶ La table de vérité d'un connecteur binaire \circ_2 permet de calculer la valeur de $F_1 \circ_2 F_2$ étant donné les valeurs de F_1 et F_2 .

F_1	F_2	$F_1 \vee F_2$	$F_1 \wedge F_2$	$\neg F_1$	$F_1 \to F_2$	$F_1 \leftrightarrow F_2$
v	$\mid v \mid$	v	v	f	v	v
\overline{v}	f	v	f	f	f	f
f	v	v	f	v	v	f
f	f	f	f	v	\overline{v}	v

Logique des propositions - sémantique

- Les tables de vérité des connecteurs sont toujours les mêmes.
- Les valeurs de atomes peuvent changer, elles sont déterminées par une fonction d'évaluation.
- On appelle fonction d'évaluation d'un ensemble d'atomes A, une fonction V de A dans $\{v, f\}$.
- Pour évaluer une formule F, il faut définir une fonction d'évaluation des atomes qui figurent dans F.
- On dit que V satisfait F si l'évaluation de F étant donné V est égale à v.

Logique des propositions

.

• $V = \{(a, v), (b, f), (c, v)\}$ ne satisfait pas $a \lor b \land \neg c$

Logique des propositions

.

• $V = \{(a, v), (b, f), (c, f)\}$ satisfait $a \lor b \land \neg c$

En logique des prédicats, les éléments de base du langage ne sont plus des propositions mais des prédicats.

la mer est bleue sujet prédicat

- Un prédicat peut être vu comme une fonction propositionnelle bleu(x) qui prend la valeur v lorsque x est la mer et f lorsque x est le soleil.
- Le prédicat aimer prend deux arguments : l'être aimant et l'être ou la chose aimée.
- On appellé arité d'un prédicat, le nombre d'argument qu'il requiert.

- Le vocabulaire de la logique des prédicats est constitué de cinq classes de symboles :
 - les constantes $(a, b, c, d \dots)$
 - les variables $(w, x, y \dots)$
 - les symboles de prédicats d'arité positive ou nulle (A, B . . .)
 - les connecteurs logiques
 - Jes quantificateurs (∀, ∃)
 - → est appelé le quantificateur universel
 - ∃ est appelé le quantificateur existentiel

- Un terme est :
 - une variable
 - ou une constante
- Si $t_1 ldots t_n$ sont des termes et si A est un prédicat d'arité n, alors $A(t_1, \ldots, t_n)$ est un atome ou formule atomique.

- une formule est définie récursivement :
 - tout atome est une formule
 - si φ et ψ sont des formules, alors : $\varphi \lor \psi$, $\varphi \land \psi$, $\varphi \to \psi$, $\varphi \leftrightarrow \psi$ sont des formules.
 - si φ est une formule alors $\neg \varphi$ est un formule.
 - si φ est une formule et si x est une variable, alors $\forall x \varphi$ et $\exists x \varphi$ sont des formules. φ est appelé la **portée** du quantificateur $\forall x$ et $\exists x$.
 - toute formule est obtenue par l'application des règles précédentes un nombre fini de fois.

Logique des prédicats - syntaxe

On définit un ordre de précédence entre les connecteur :

$$\forall,\exists > \neg > \land > \lor > \rightarrow > \leftrightarrow$$

Exemples de formules :

$$\forall x A(x) \qquad \equiv \forall x (A(x))$$

$$\forall x \exists y B(y) \lor H(a) \qquad \equiv \forall x (\exists y (B(y))) \lor H(a)$$

$$\neg \forall x H(x) \to P(x) \qquad \equiv \neg (\forall x (H(x))) \to P(x)$$

- **●** Dans la formule $\forall xJ(x,y)$, x est dans la portée du quantificateur universel. Elle est dite liée, la variable y est libre.
- L'ensemble des variables liées d'une formule φ (noté $\mathcal{B}(\varphi)$) se définit de la façon suivante :
 - si φ est un atome, $\mathcal{B}(\varphi) = \emptyset$
 - si φ est de la forme $\chi \vee \psi$, $\chi \wedge \psi$, $\chi \to \psi$, $\chi \leftrightarrow \psi$ alors $\mathcal{B}(\varphi) = \mathcal{B}(\chi) \cup \mathcal{B}(\psi)$.
 - si φ est de la forme $\neg \psi$ alors $\mathcal{B}(\varphi) = \mathcal{B}(\psi)$
 - si φ est de la forme $\forall x\psi$ ou $\exists x\psi$ alors $\mathcal{B}(\varphi) = \{x\} \cup \mathcal{B}(\psi)$

- L'ensemble des variables libres d'une formule φ (noté $\mathcal{F}(\varphi)$) se définit de la façon suivante :
 - si φ est un atome, $\mathcal{F}(\varphi)$ est égal à l'ensemble des variables apparaissant dans φ
 - si φ est de la forme $\chi \vee \psi$, $\chi \wedge \psi$, $\chi \to \psi$, $\chi \leftrightarrow \psi$ alors $\mathcal{F}(\varphi) = \mathcal{F}(\chi) \cup \mathcal{F}(\psi)$.
 - si φ est de la forme $\neg \psi$ alors $\mathcal{F}(\varphi) = \mathcal{F}(\psi)$
 - si φ est de la forme $\forall x\psi$ ou $\exists x\psi$ alors $\mathcal{F}(\varphi) = \mathcal{F}(\psi) \{x\}$
- Une formule φ telle que $\mathcal{F}(\varphi) = \emptyset$ est dite close ou fermée.

Domaine de discours, interprétation, modèle

- Pour évaluer la formule $\forall x H(x)$ il faut connaître l'ensemble des valeurs que peut prendre la variable x.
- ullet Cet ensemble est appelé le domaine de discours, noté ${\mathcal D}$
- ullet L'évaluation d'une formule φ nécessite la spécification d'un domaine de discours $\mathcal D$ et d'une fonction d'interprétation I qui associe :
 - ullet à chaque symbole de constante un élément de ${\mathcal D}$
 - à chaque symbole de prédicat P d'arité n, la définition d'une fonction de $\mathcal{D}^n \to \{v, f\}$ définissant P.
- Un domaine de discours et une fonction d'interprétation constituent un modèle.

Assignation

•

- Pour évaluer une formule comportant des variables, il est nécessaire de donner à ces dernières des valeurs dans D.
- On appelle assignation, une fonction qui associe à toute variable une valeur dans \mathcal{D} .
- Etant donné l'assignation g, on note $g[y \leftarrow d]$ l'assignation g' qui associe la valeur d à la variable g et associe les mêmes valeurs que g à toutes les autres variables.

Evaluation d'une formule

- L'évaluation d'une formule nécessite la spécification de :
 - Un modèle M
 - Une fonction d'assignation g

Interprétation de termes

• Si t est un terme, on définit la fonction d'interprétation, étant donné un modèle $M=\langle \mathcal{D},I\rangle$ et une assignation g, de la manière suivante :

$$[[t]]_{\langle M,g \rangle} = \left\{ egin{array}{ll} I(t) & \mbox{si } t \mbox{ est une constante} \\ g(t) & \mbox{si } t \mbox{ est une variable} \end{array}
ight.$$

Evaluation

•

- $V_{\langle M,g\rangle}(P(t_1,\ldots,t_n))=v$ ssi $\langle [[t_1]]_{\langle M,g\rangle},\ldots,[[t_n]]_{\langle M,g\rangle} \rangle \in [[P]]_{\langle M,g\rangle}$
- $V_{\langle M,g\rangle}(\neg\varphi)=v$ ssi $V_{\langle M,g\rangle}(\varphi)=f$
- $V_{\langle M,g\rangle}(\varphi \wedge \psi) = v$ ssi $V_{\langle M,g\rangle}(\varphi) = v$ et $V_{\langle M,g\rangle}(\psi) = v$

- $V_{\langle M,g\rangle}(\forall x\varphi)=v$ ssi pour tout $d\in\mathcal{D}$, $V_{\langle M,g[x\leftarrow d]\rangle}(\varphi)=v$
- $V_{\langle M,g\rangle}(\exists x\varphi)=v$ s'il existe au moins un $d\in\mathcal{D}$ tel que $V_{\langle M,g[x\leftarrow d]\rangle}(\varphi)=v$