ITCS 532: W4 Homework Solutions

Rob Egrot

Q1

Let L_1 and L_2 be disjoint r.e. languages. Suppose $L_1 \cup L_2$ is recursive. Prove that L_1 and L_2 are both recursive.

We will describe an algorithm for deciding L_1 .

- 1. Given a string x we can decide if $x \in L_1 \cup L_2$, as this language is recursive.
- 2. If $x \notin L_1 \cup L_2$ then $x \notin L_1$, so reject.
- 3. If $x \in L_1 \cup L_2$ then it must be in either $L_1 \setminus L_2$, or $L_2 \setminus L_1$. Use dovetailing to simultaneously run the algorithms that semidecide L_1 and L_2 on x.
- 4. If $x \in L_1$ then accept.
- 5. If $x \in L_2$ then reject.

We can decide L_2 similarly.

Let D be the decision problem "Given a Turing machine T and input I, does T(I) halt within 100 steps?". Then there is an associated formal language

$$L_D = \{ \mathbf{code}(T, I) : T \text{ halts on } I \text{ within } 100 \text{ steps} \}$$

Which of the following is true? i) L_D is recursive, ii) L_D is r.e but not recursive, iii) L_D is not r.e.

- ► *L*_D is recursive.
- ► To decide L_D we use a Turing machine that, given input code(T, I) simulates T(I), and also maintains a counter track of the number of steps that have been simulated.
- ▶ If this simulation halts before the counter reaches 100 then the input is accepted.
- If it does not (or if the input is not in the correct format), then it rejects.

Let D be the decision problem "Given a Turing machine T, does T halt on every input I within 100 steps?". What is the formal language L_D associated with D?

 $\{\mathbf{code}(T): T \text{ is a Turing machine and } T(I) \text{ halts within 100 steps for all } I\}.$

With D as in Q3 prove that L_D is recursive.

- Note that T(I) halts for all I within 100 steps if and only if T(I) halts for all I of length ≤ 100 within 100 steps, as T can never read past the first 100 symbols within 100 steps.
- Now, the number of strings over a finite alphabet whose length is ≤ 100 is finite, so we can check T(I) for each such string I using the algorithm from Q2.
- If the answer is no for any I we reject code(T), and if the answer is yes for all I we accept code(T).

Let HAI be the decision problem "Given T does T halt for all inputs?". Then an instance of HAI is a Turing machine T.

- a) What is an 'instance' of the Halting Problem?
- b) If M is a Turing machine and I is an input for M let M_I be a machine that first erases its input then simulates M(I). Show that M(I) halts if and only if $M_I(J)$ halts for all inputs J, and M(I) runs forever if and only if $M_I(J)$ runs forever for all J.
- c) Prove that the Halting Problem reduces to HAI.
- d) What does this tell us about the decidability of HAI?

- a) What is an 'instance' of the Halting Problem?
- A pair (M, I) where M is a Turing machine and I is a finite string over its alphabet.
- b) If M is a Turing machine and I is an input for M let M_I be a machine that first erases its input then simulates M(I). Show that M(I) halts if and only if $M_I(J)$ halts for all inputs J, and M(I) runs forever if and only if $M_I(J)$ runs forever for all J.
- ▶ By definition M(I) halts if and only if $M_I(J)$ halts for all J.
- So the contrapositive statement says that M(I) runs forever if and only if $M_I(J)$ runs forever for some J.
- ▶ But $M_I(J)$ does the same thing for all J.
- ▶ So M(I) runs forever if and only if $M_I(J)$ runs forever for all J.

- c) Prove that the Halting Problem reduces to HAI.
- ▶ Given an instance (M, I) of HP we construct an instance M_I of HAI as described.
- We have just proved that (M, I) is a yes instance of HP if and only if M_I is a yes instance of HAI.
- d) What does this tell us about the decidability of HAI?
- As HP ≤ HAI, and HP is undecidable, it follows that HAI is undecidable.