Classification and Prediction

Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- □ Classification by decision tree induction
- Bayesian Classification
- Other Classification Methods
- Prediction

What is Bayesian Classification?

- Bayesian classifiers are statistical classifiers
- For each new sample they provide a probability that the sample belongs to a class (for all classes)
- Example:
 - sample John (age=27, income=high, student=no, credit_rating=fair)
 - P(John, buys_computer=yes) = 20%
 - P(John, buys_computer=no) = 80%

Bayesian Classification: Why?

- Probabilistic learning: Calculate explicit probabilities for hypothesis, among the most practical approaches to certain types of learning problems
- Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct. Prior knowledge can be combined with observed data.
- Probabilistic prediction: Predict multiple hypotheses, weighted by their probabilities
- Standard: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Bayes' Theorem

 \blacksquare Given a data sample X, the posteriori probability of a hypothesis h, P(h|X) follows the Bayes theorem

$$P(h|X) = \frac{P(X|h)P(h)}{P(X)}$$

- Example:
 - Given that for John (X) has
 - age=27, income=high, student=no, credit_rating=fair
 - We would like to find P(h):
 - P(John, buys_computer=yes)
 - P(John, buys_computer=no)
- For P(John, buys_computer=yes) we are going to use:
 - P(age=27 ∧ income=high ∧ student=no ∧ credit_rating=fair) given that P(buys_computer=yes)
 - P(buys_computer=yes)
 - $P(age=27 \land income=high \land student=no \land credit_rating=fair)$
- Practical difficulty: require initial knowledge of many probabilities, significant computational cost

Naïve Bayesian Classifier

■ A simplified assumption: attributes are conditionally independent:

$$P(C_j | X) = P(C_j) \prod_{i=1}^{n} P(v_i | C_j)$$

- \blacksquare Notice that the class label $\overset{\scriptscriptstyle i=1}{C_j}$ plays the role of the hypothesis.
- The denominator is removed because the probability of a data sample P(X) is constant for all classes.
- Also, the probability $P(X/C_j)$ of a sample X given a class C_j is replaced by:
 - $P(X/C_i) = \prod P(v_i/C_i), X=v_1 \land v_2 \land \dots \land v_n$
- This is the naive hypothesis (attribute independence assumption)

Naïve Bayesian Classifier

- Example:
 - Given that for John (X)
 - age=27, income=high, student=no, credit_rating=fair
 - P(John, buys_computer=yes) =
 P(buys_computer=yes) *
 - P(buys_computer=yes)*
 - P(age=27|buys_computer=yes)*
 - P(income=high |buys_computer=yes)*
 - P(student=no |buys_computer=yes)*
 - P(credit_rating=fair |buys_computer=yes)
- Greatly reduces the computation cost, by only counting the class distribution.
- Sensitive to cases where there are strong correlations between attributes
 - E.g. P(age=27 ∧ income=high) >> P(age=27)*P(income=high)

play tennis?

Naive Bayesian Classifier Example

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast		high	false	P
rain	mild	high	false	Р
rain	cool	normal	false	P
rain	cool	normal	true	N
overcast		normal	true	P
sunny	mild	high	false	N
sunny	cool	normal	false	P
rain	mild	normal	false	P
sunny	mild	normal	true	P
overcast		high	true	P
overcast		normal	false	P
rain	mild	high	true	N

Naive Bayesian Classifier Example

Outlook	Temperature	Humidity	Windy	Class	
overcast	hot	high	false	Р	1
rain	mild	high	false	Р	l
rain	cool	normal	false	Р	
overcast	cool	normal	true	Р	
sunny	cool	normal	false	Р	\
rain	mild	normal	false	Р	1
sunny	mild	normal	true	Р	
overcast	mild	high	true	Р	
overcast	hot	normal	false	Р	J

Outlook	Temperature	Humidity	Windy	Class	
sunny	hot	high	false	N	
sunny	hot	high	true	N	
rain	cool	normal	true	N	> 5
sunny	mild	high	false	N	
rain	mild	high	true	N	J

Naive Bayesian Classifier Example

□ Given the training set, we compute the probabilities:

Outlook	Р	N	Humidity	Р	N
sunny	2/9	3/5	high	3/9	4/5
overcast	4/9	0	normal	6/9	1/5
rain	3/9	2/5			
Tempreature			W indy		
hot	2/9	2/5	true	3/9	3/5
m ild	4/9	2/5	false	6/9	2/5
cool	3/9	1/5			

- We also have the probabilities
 - P = 9/14
 - N = 5/14

Naive Bayesian Classifier Example

- The classification problem is formalized using aposteriori probabilities:
- P(C|X) = prob. that the sample tuple $X = \langle x_1, ..., x_k \rangle$ is of class C.
- E.g. P(class=N | outlook=sunny,windy=true,...)
- Assign to sample X the class label C such that P(C|X) is maximal
- Naïve assumption: attribute independence $P(x_1,...,x_k|C) = P(x_1|C) \cdot ... \cdot P(x_k|C)$

Naive Bayesian Classifier Example

- To classify a new sample X:
 - outlook = sunny
 - temperature = cool
 - humidity = high
 - windy = false
- Prob(P|X) =
 Prob(P)*Prob(sunny|P)*Prob(cool|P)*
 Prob(high|P)*Prob(false|P) =
 9/14*2/9*3/9*3/9*6/9 = 0.01
- Prob(N|X) =
 Prob(N)*Prob(sunny|N)*Prob(cool|N)*
 Prob(high|N)*Prob(false|N) =
 5/14*3/5*1/5*4/5*2/5 = 0.013
- Therefore X takes class label N

Naive Bayesian Classifier Example

- Second example X = <rain, hot, high, false>
- □ $P(X|p) \cdot P(p) =$ $P(rain|p) \cdot P(hot|p) \cdot P(high|p) \cdot P(false|p) \cdot P(p) =$ $3/9 \cdot 2/9 \cdot 3/9 \cdot 6/9 \cdot 9/14 = 0.010582$
- □ $P(X|n) \cdot P(n) =$ $P(rain|n) \cdot P(hot|n) \cdot P(high|n) \cdot P(false|n) \cdot P(n) =$ $2/5 \cdot 2/5 \cdot 4/5 \cdot 2/5 \cdot 5/14 = 0.018286$
- Sample X is classified in class N (don't play)

Categorical and Continuous Attributes

- Naïve assumption: attribute independence $P(x_1,...,x_k|C) = P(x_1|C) \cdot ... \cdot P(x_k|C)$
- □ If i-th attribute is categorical: P(x_i|C) is estimated as the relative freq of samples having value x_i as i-th attribute in class C
- □ If i-th attribute is continuous:
 P(x_i|C) is estimated thru a Gaussian density function
- Computationally easy in both cases

The independence hypothesis...

- ... makes computation possible
- ... yields optimal classifiers when satisfied
- ... but is seldom satisfied in practice, as attributes (variables) are often correlated.
- Attempts to overcome this limitation:
 - Bayesian networks, that combine Bayesian reasoning with causal relationships between attributes
 - Decision trees, that reason on one attribute at the time, considering most important attributes first

Bayesian Belief Networks (I)

- A directed acyclic graph which models dependencies between variables (values)
- If an arc is drawn from node Y to node Z, then
 - Z depends on Y
 - Z is a child (descendant) of Y
 - Y is a parent (ancestor) of Z
- Each variable is conditionally independent of its nondescendants given its parents

Bayesian Belief Networks (III)

- Using Bayesian Belief Networks:
 - $P(v_1, ..., v_n) = \prod P(v_i/Parents(v_i))$
- Example:
 - P(LC = yes ∧ FH = yes ∧ S = yes) =
 P(FH = yes)* P(S = yes)*
 P(LC = yes|FH = yes ∧ S = yes) =

P(FH = yes)* P(S = yes)*0.8

Bayesian Belief Networks (IV)

- Bayesian belief network allows a *subset* of the variables conditionally independent
- A graphical model of causal relationships
- Several cases of learning Bayesian belief networks
 - Given both network structure and all the variables: easy
 - Given network structure but only some variables
 - When the network structure is not known in advance

Instance-Based Methods

- Instance-based learning:
 - Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- Typical approaches
 - <u>k-nearest neighbor approach</u>
 - Instances represented as points in a Euclidean space.
 - Locally weighted regression
 - Constructs local approximation
 - Case-based reasoning
 - Uses symbolic representations and knowledgebased inference

The k-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space.
- The nearest neighbor are defined in terms of Euclidean distance.
- □ The target function could be discrete- or real- valued.
- For discrete-valued function, the *k*-NN returns the most common value among the k training examples nearest to *xq*.
- Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples.

Discussion on the k-NN Algorithm

- Distance-weighted nearest neighbor algorithm
 - \blacksquare Weight the contribution of each of the k neighbors according to their distance to the query point x_q
 - give greater weight to closer neighborsSimilarly, for real-valued target functions

$$w = \frac{1}{d(x_q, x_i)^2}$$

- Robust to noisy data by averaging k-nearest neighbors
- Curse of dimensionality: distance between neighbors could be dominated by irrelevant attributes.
 - To overcome it, axes stretch or elimination of the least relevant attributes.

What Is Prediction?

- Prediction is similar to classification
 - First, construct a model
 - Second, use model to predict unknown value
 - Major method for prediction is regression
 - Linear and multiple regression
 - Non-linear regression
- Prediction is different from classification
 - Classification refers to predict categorical class label
 - Prediction models continuous-valued functions

Predictive Modeling in Databases

- Predictive modeling: Predict data values or construct generalized linear models based on the database data.
- One can only predict value ranges or category distributions
- Method outline:
 - Minimal generalization
 - Attribute relevance analysis
 - Generalized linear model construction
 - Prediction
- Determine the major factors which influence the prediction
 - Data relevance analysis: uncertainty measurement, entropy analysis, expert judgement, etc.

Regress Analysis and Log-Linear Models in Prediction

- □ Linear regression: $Y = \alpha + \beta X$
 - lacktriangle Two parameters , α and β specify the line and are to be estimated by using the data at hand.
 - using the least squares $(x_1, y_1), (x_2, y_2), \dots, (x_s, y_s)$: $\beta = \frac{\sum_{i=1}^{s} (x_i \overline{x})(y_i \overline{y})}{\sum_{i=1}^{s} (x_i \overline{x})^2} \qquad a = \overline{y} \beta \overline{x}$ using the least squares criterion to the known values of

$$\beta = \frac{\sum_{i=1}^{s} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{s} (x_i - \overline{x})^2} \qquad a = \overline{y} - \beta \overline{x}$$

- Multiple regression: Y = b0 + b1 X1 + b2 X2.
 - Many nonlinear functions can be transformed into the above. E.g., $Y=b0+b_1X+b_2X^2+b_3X^3$, X1=X, $X2=X^2$, $X3=X^3$
- Log-linear models:
 - The multi-way table of joint probabilities is approximated by a product of lower-order tables.
 - Probability: $p(a, b, c, d) = \alpha ab \beta ac \chi ad \delta bcd$

Boosting

- Boosting increases classification accuracy
 - Applicable to decision trees or Bayesian classifiers
- Learn a series of classifiers, where each classifier in the series pays more attention to the examples misclassified by its predecessor
- Boosting requires only linear time and constant space

Boosting Technique (II) — Algorithm

- Assign every example an equal weight 1/N
- \Box For t = 1, 2, ..., T Do
 - Obtain a hypothesis (classifier) h(t) under w(t)
 - Calculate the error of h(t) and re-weight the examples based on the error
 - Normalize w^(t+1) to sum to 1
- Output a weighted sum of all the hypothesis, with each hypothesis weighted according to its accuracy on the training set

□ Find a linear hyperplane (decision boundary) that will separate the data

Support Vector Machines

One Possible Solution

- □ Which one is better? B1 or B2?
- How do you define better?

Support Vector Machines

□ Find hyperplane maximizes the margin => B1 is better than B2

Support Vector Machines

- $Margin = \frac{2}{\|\vec{w}\|^2}$ ■ We want to maximize:
 - Which is equivalent to minimizing:

■ But subjected to the following constraints:
$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \bullet \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \bullet \vec{x}_i + b \le -1 \end{cases}$$

- This is a constrained optimization problem
 - Numerical approaches to solve it (e.g., quadratic programming)

■ What if the problem is not linearly separable?

Support Vector Machines

- What if the problem is not linearly separable?
 - Introduce slack variables
 - Need to minimize:

$$L(w) = \frac{||\vec{w}||^2}{2} + C\left(\sum_{i=1}^{N} \xi_i^k\right)$$

Subject to:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 - \xi_i \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 + \xi_i \end{cases}$$

