PEU 356 Assignment 8

Mohamed Hussien El-Deeb (201900052)

May 25, 2024

Contents

1	6.4.2	3
	1.1 Problem	3
	1.2 Solution	
2	6.4.3	5
	2.1 Problem	5
	2.2 Solution	5
3	6.4.5	6
	3.1 Problem	6
	3.2 Solution	
4	6.4.6	7
	4.1 Problem	7
	4.2 Solution	
	4.2.1 Part (a)	7
		8
5	6.5.2	9
	5.1 Problem	9
	5.2 Solution	
6	6.5.5	10
	6.1 Problem	10
	6.2 Solution	

7	6.5.	1	2
	7.1	Problem	2
	7.2	Solution	.2
8	6.5.	·	.3
	8.1	Problem	.3
	8.2	Solution	.3
		8.2.1 Part (a)	.3
		8.2.2 $\operatorname{Part}(b)$.3
		8.2.3 $\operatorname{Part}(c)$	
		8.2.4 Part (d)	
9	6.5.	7 1	5
	9.1	Problem	.5
	9.2	Solution	

1.1 Problem

As a converse of the theorem that Hermitian matrices have real eigenvalues and that eigenvectors corresponding to distinct eigenvalues are orthogonal, show that if

- (a) the eigenvalues of a matrix are real and
- (b) the eigenvectors satisfy $\mathbf{x}_i^{\dagger} \mathbf{x}_j = \delta_{ij}$,

then the matrix is Hermitian.

1.2 Solution

Let M be a matrix with real eigenvalues and eigenvectors that satisfy $\mathbf{x}_i^{\dagger}\mathbf{x}_j = \delta_{ij}$. We want to show that M is Hermitian.

Let λ_i be the eigenvalues of M and \mathbf{x}_i be the eigenvectors of M and U being the diagonalization matrix. Since the eigenvalues of M are real, we have

$$\lambda_{i} = \lambda_{i}^{*}$$

$$\langle \mathbf{x}_{i} | \mathbf{x}_{j} \rangle = \delta_{ij}$$

$$M | \mathbf{x}_{i} \rangle = \lambda_{i} | \mathbf{x}_{i} \rangle$$

$$UMU^{-1} = D$$

$$\therefore D = \operatorname{diag}(\lambda_{1}, \lambda_{2}, \dots, \lambda_{n})$$

$$\therefore D = D^{\dagger}$$

$$\therefore UMU^{-1} = \left(U^{-1}\right)^{\dagger} M^{\dagger} U^{\dagger}$$

Since M has orthogonal eigenvectors and the Diagonal matrix D's eigenvectors are the standard basis vectors which are orthogonal, U is a unitary matrix.

$$\therefore UMU^{-1} = UM^{\dagger}U^{-1}$$

$$\therefore M = M^{\dagger}$$

2.1 Problem

Show that a real matrix that is not symmetric cannot be diagonalized by an orthogonal or unitary transformation.

Hint. Assume that the nonsymmetric real matrix can be diagonalized and develop a contradiction.

2.2 Solution

Let A be a real matrix that is not symmetric, U be the orthogonal or unitary matrix that diagonalizes A, and D be the diagonal matrix.

$$UAU^{\dagger} = D$$

$$A = U^{\dagger}DU$$

$$A^\dagger = U^\dagger D^\dagger U$$

$$A^{\dagger} = U^{\dagger} D^* U$$

If we assume that eigenvalues of A are real, then the entries of D are real.

$$A^{\dagger} = U^{\dagger}DU$$

We know that A is not symmetric. Therefore, A is not equal to A^{\dagger} . This is a contradiction.

Note: If we assume an orthogonal transformation we don't need to assume that the eigenvalues are real.

3.1 Problem

A has eigenvalues λ_i and corresponding eigenvectors $|\mathbf{x}_i\rangle$. Show that \mathbf{A}^{-1} has the same eigenvectors but with eigenvalues λ_i^{-1} .

3.2 Solution

$$A |\mathbf{x}_i\rangle = \lambda_i |\mathbf{x}_i\rangle$$

$$A^{-1}A |\mathbf{x}_i\rangle = A^{-1}\lambda_i |\mathbf{x}_i\rangle$$

$$|\mathbf{x}_i\rangle = \lambda_i A^{-1} |\mathbf{x}_i\rangle$$

Since A is invertible, we can be sure that $\lambda_i \neq 0$.

$$A^{-1} |\mathbf{x}_i\rangle = \lambda_i^{-1} |\mathbf{x}_i\rangle$$

4.1 Problem

A square matrix with zero determinant is labeled singular.

(a) If A is singular, show that there is at least one nonzero column vector \mathbf{v} such that

$$A|\mathbf{v}\rangle = 0.$$

(b) If there is a nonzero vector $|\mathbf{v}\rangle$ such that

$$A|\mathbf{v}\rangle = 0,$$

show that A is a singular matrix. This means that if a matrix (or operator) has zero as an eigenvalue, the matrix (or operator) has no inverse and its determinant is zero.

4.2 Solution

4.2.1 Part (a)

Let A be a singular matrix. Since A is singular, $\det A = 0$.

From the singular equation, we know that there is a nontrivial solution to the equation

$$\det(A - \lambda I) = 0$$

$$\lambda = 0$$

Therefore, there is at least one nonzero column vector \mathbf{v} such that

$$A|\mathbf{v}\rangle = 0.$$

4.2.2 Part (b)

Let there be a nonzero vector $|\mathbf{v}\rangle$ such that

$$A|\mathbf{v}\rangle = 0$$

This means that V is an eigenvector of A with eigenvalue 0.

Since there is an eigenvector of A with eigenvalue 0, det(A) = 0. Therefore, A is a singular matrix.

5.1 Problem

If A is a 2×2 matrix, show that its eigenvalues λ satisfy the secular equation

$$\lambda^2 - \lambda \operatorname{trace}(A) + \det(A) = 0.$$

5.2 Solution

Let A be a 2×2 matrix.

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\det(A) = ad - bc$$

$$trace(A) = a + d$$

$$\det(A - \lambda I) = 0$$

$$\begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = 0$$

$$(a - \lambda)(d - \lambda) - bc = 0$$

$$\lambda^2 - (a+d)\lambda + ad - bc = 0$$

$$\lambda^2 - \operatorname{trace}(A)\lambda + \det(A) = 0$$

$6 \quad 6.5.5$

6.1 Problem

A is an *n* th-order Hermitian matrix with orthonormal eigenvectors $|\mathbf{x}_i\rangle$ and real eigenvalues $\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots \leq \lambda_n$. Show that for a unit magnitude vector $|\mathbf{y}\rangle$,

$$\lambda_1 \leq \langle \mathbf{y} | \mathbf{A} | \mathbf{y} \rangle \leq \lambda_n.$$

6.2 Solution

We start by expanding the vector $|\mathbf{y}\rangle$ in terms of the eigenvectors of A.

$$|\mathbf{y}\rangle = \sum_{i=1}^{n} c_i |\mathbf{x}_i\rangle$$

$$\langle \mathbf{y} | = \sum_{i=1}^{n} c_i^* \langle \mathbf{x}_i |$$

$$\langle \mathbf{y} | \mathbf{y} \rangle = \sum_{i,j=1}^{n} c_i^* c_j \langle \mathbf{x}_i | \mathbf{x}_j \rangle$$

Since the eigenvectors are orthonormal, we have

$$\langle \mathbf{y} | \mathbf{y} \rangle = \sum_{i=1}^{n} |c_i|^2$$

Since the vector $|\mathbf{y}\rangle$ has unit magnitude, we have

$$\sum_{i=1}^{n} |c_i|^2 = 1$$

$$\langle \mathbf{y} | \mathbf{A} | \mathbf{y} \rangle = \sum_{i,j=1}^{n} c_i^* c_j \langle \mathbf{x}_i | \mathbf{A} | \mathbf{x}_j \rangle$$

$$\langle \mathbf{y}|\mathbf{A}|\mathbf{y}\rangle = \sum_{i,j=1}^{n} c_i^* c_j \lambda_j \langle \mathbf{x}_i|\mathbf{x}_j \rangle$$

$$\langle \mathbf{y} | \mathbf{A} | \mathbf{y} \rangle = \sum_{i=1}^{n} |c_i|^2 \lambda_i$$

We can substitute the value of λ_i in the above equation with the smallest and largest eigenvalues.

$$(\langle \mathbf{y}|\mathbf{A}|\mathbf{y}\rangle)_{\min} = \lambda_1 \sum_{i=1}^n |c_i|^2 = \lambda_1$$

$$(\langle \mathbf{y}|\mathbf{A}|\mathbf{y}\rangle)_{\max} = \lambda_n \sum_{i=1}^n |c_i|^2 = \lambda_n$$

$$\lambda_1 \le \langle \mathbf{y} | \mathbf{A} | \mathbf{y} \rangle \le \lambda_n$$

7.1 Problem

A is a normal matrix with eigenvalues λ_n and orthonormal eigenvectors $|\mathbf{x}_n\rangle$. Show that A may be written as

$$A = \sum_{n} \lambda_n |\mathbf{x}_n\rangle \langle \mathbf{x}_n|.$$

Hint. Show that both this eigenvector form of A and the original A give the same result acting on an arbitrary vector $|\mathbf{y}\rangle$.

7.2 Solution

Lets start by expanding the vector $|\mathbf{y}\rangle$ in terms of the eigenvectors of A.

$$|\mathbf{y}\rangle = \sum_{n} c_{n} |\mathbf{x}_{n}\rangle$$

$$A|\mathbf{y}\rangle = A \sum_{n} c_{n} |\mathbf{x}_{n}\rangle = \sum_{n} c_{n} A |\mathbf{x}_{n}\rangle = \sum_{n} \lambda_{n} c_{n} |\mathbf{x}_{n}\rangle (1)$$

$$\langle \mathbf{x}_{n} | \mathbf{x}_{m}\rangle = \delta_{m}^{n}$$

$$A|\mathbf{y}\rangle = \sum_{n} \lambda_{n} |\mathbf{x}_{n}\rangle \langle \mathbf{x}_{n} | \sum_{m} c_{m} |\mathbf{x}_{m}\rangle$$

$$= \sum_{n} \lambda_{n} c_{m} |\mathbf{x}_{n}\rangle \langle \mathbf{x}_{n} | \mathbf{x}_{m}\rangle = \sum_{n} \lambda_{n} c_{n} |\mathbf{x}_{n}\rangle (2)$$

8.1 Problem

Two matrices U and H are related by

$$U = e^{iaH}$$

with a real.

- (a) If H is Hermitian, show that U is unitary.
- (b) If U is unitary, show that H is Hermitian. (H is independent of a.)
- (c) If trace H = 0, show that $\det U = +1$.
- (d) If $\det U = +1$, show that trace H = 0.

Hint. H may be diagonalized by a similarity transformation. Then U is also diagonal. The corresponding eigenvalues are given by $u_j = \exp(iah_j)$.

8.2 Solution

8.2.1 Part (a)

If H is Hermitian, then $H = H^{\dagger}$.

$$\mathbf{U}^{\dagger}\mathbf{U} = e^{-ia\mathbf{H}^{\dagger}}e^{ia\mathbf{H}} = e^{-ia\mathbf{H} + ia\mathbf{H}} = e^{0} = I$$

$$U^{\dagger} = U^{-1}$$

8.2.2 Part (b)

If U is unitary, then $U^{\dagger}U = I$.

$$\mathbf{U}^{\dagger}\mathbf{U} = e^{-ia\mathbf{H}^{\dagger}}e^{ia\mathbf{H}} = e^{ia\left(\mathbf{H} - \mathbf{H}^{\dagger}\right)} = I = e^{0}$$

$$ia\left(\mathbf{H} - \mathbf{H}^{\dagger}\right) = 0$$

$$\mathbf{H}=\mathbf{H}^{\dagger}$$

8.2.3 Part (c)

$$\det(e^M) = e^{\operatorname{trace}(M)}$$

$$\det(\mathbf{U}) = e^{ia \cdot \operatorname{trace}(\mathbf{H})}$$

If trace H = 0,

$$\det(\mathbf{U}) = e^{ia \cdot 0} = e^0 = 1$$

8.2.4 Part (d)

If det(U) = +1,

$$\det(\mathbf{U}) = e^{ia \cdot \operatorname{trace}(\mathbf{H})}$$

$$e^{ia \cdot \text{trace}(H)} = 1$$

$$ia \cdot \text{trace}(\mathbf{H}) = 0$$

$$trace(H) = 0$$

9.1 Problem

A matrix P is a projection operator satisfying the condition

$$P^2 = P$$
.

Show that the corresponding eigenvalues $(\rho^2)_{\lambda}$ and ρ_{λ} satisfy the relation

$$(\rho^2)_{\lambda} = (\rho_{\lambda})^2 = \rho_{\lambda}.$$

This means that the eigenvalues of P are 0 and 1.

9.2 Solution

$$P | \mathbf{x}_i \rangle = \lambda_i | \mathbf{x}_i \rangle$$

$$PP |\mathbf{x}_i\rangle = \lambda_i^2 |\mathbf{x}_i\rangle$$

Subtracting the above two equations, we get

$$\left(\lambda_i^2 - \lambda_i\right) |\mathbf{x}_i\rangle = 0$$

Since the eigenvectors are non-zero, we have

$$\lambda_i^2 - \lambda_i = 0$$

$$\lambda = 0, 1$$

References

 $[1]\,$ M.H. El-Deeb. PEU-356 Assignments.