SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA

A State University recognized under Section 2 (f) & 12 (B) of UGC Act of 1956 Soft Computing (CSP 3035) Lab Exam Quiz **AY Answer Key**

Q.	1	In perceptron weight update rule $\Delta w_i = \eta(t-o)x_i$, if target $t=1$, output $o=0$, learning rate $\eta=0.1$, and input $x_i=5$, what is Δw_i ?
		 a) 0.5 b) -0.5 c) 0.1 d) 5
Q.	2	In the MP model, what happens if an inhibitory input is active (i.e., set to 1)?
		 a) The neuron fires if excitatory sum exceeds threshold b) The neuron fires regardless of inhibition c) The neuron will not fire, regardless of excitatory inputs d) The neuron output is random
Q.	3	If the presynaptic neuron fires (input $= 1$) and the postsynaptic neuron does not (output $= 0$), what is the weight change according to Hebb's rule?
		 ○ a) Positive ○ b) Negative ● c) Zero ○ d) Random
Q.	4	Consider a network using Hebbian learning with $\eta = 0.1$. If the presynaptic input is 0.7 and the postsynaptic output is 0.9, what is the weight change Δw ?
		 a) 0.07 b) 0.16 c) 0.63 d) 0.09
Q.	5	For a perceptron with $\eta=0.2$, input $[3,-1]$, $target=1$, and $output=0$, the weight correction Δw is?
		 a) [0.6, -0.2] b) [0.2, -0.2] c) [0.6, 0] d) [0.3, -0.1]
Q.	6	In Adaline, weights are updated using which formula?
		$ \bigcirc a) \ \Delta w_i = \eta(t - o)x_i \bullet b) \ \Delta w_i = \eta(t - zin)x_i \bigcirc c) \ \Delta w_i = \eta \times y_i \times y_j \bigcirc d) \ \Delta w_i = \eta(t - o)o(1 - 0)x_i $
Q.	7	In Madaline Rule I with AND logic at the output, if the target output is -1 but the actual output is 1, which Adaline units will have their weights updated?
		 a) All Adaline units in the network b) Only the Adaline units with positive Zin values c) Only the Adaline units with negative Zin values d) Only the Adaline unit with Zin closest to zero
Q.	8	If a Madaline network with 3 Adaline units in the hidden layer produces Zin values of [0.7 -0.3, 0.5] and uses a threshold activation function, what will be the hidden layer outputs?

In backpropagation, the weight update for the output layer is calculated as?
$ \bigcirc a) \ \Delta w_{ik} = \eta \times \delta_k \times y_j \bigcirc b) \ \Delta w_{jk} = \eta \times \delta_j \times x_k \bigcirc c) \ \Delta w_{jk} = \eta \times \delta_k \times (1 - \delta_k) \times y_j \bullet d) \ \Delta w_{jk} = \eta \times (t_k - o_k) \times o_k \times (1 - o_k) \times y_j $
For a hidden layer neuron with $\delta = 0.05$, output $\delta_k = [0.1, -0.2]$, and weights $w = [0.4, -0.3]$ the error term δ_j is?
$ \bigcirc a) \ 0.05 \times (0.1 \times 0.4 + (-0.2) \times (-0.3)) $ $ \bigcirc b) \ (0.1 + (-0.2)) \times 0.05 $ $ \bigcirc c) \ 0.05 \times (0.4 - 0.3) $ $ \blacksquare d) \ 0.1 \times 0.4 + (-0.2) \times (-0.3) $
When using a Madaline with OR logic at the output layer, if target = -1, output = 1, and Z_i values for the three Adaline units are [0.7, -0.4, 0.2], weights attached to which Zin values wi be updated?
 a) 0.7 and 0.2 only. b) -0.4 only c) 0.7 only d) All of them
In a genetic algorithm with population size 100, if the selection uses roulette wheel metho and the fitness values are all equal, what is the probability of any individual being selected?
 a) 1% b) 5% c) 10% d) cannot be determined
How is the bias term incorporated into the perceptron's weight vector?
 a) Treated as a weight with input fixed to 1 b) Added after computing w · x c) Multiplied by a dummy feature d) Multiplied by a dummy feature
Given $\mu A(x) = 0.4$, $\mu B(x) = 0.6$, what is $\mu A \cup B(x)$ using the algebraic sum operator?
 ○ a) 0.6 ○ b) 1.0 ● c) 0.76 ○ d) 0.24
A fuzzy set over a, b, c has $\mu(a) = 0.4$, $\mu(b) = 1$, $\mu(c) = 0$. Which is true about its cardinality
 ○ a) 1 ● b) 1.4 ○ c) 2 ○ d) 0.4

Q. 9

Q. 10

Q. 11

Q. 12

Q. 13

Q. 14

Q. 15