FM FRONT END

The KA22495 is a monolithic integrated circuit designed for the RONT FM front end of portable radio cassettes or music centers.

It consists of RF AMP, local OSC, OSC buffer and mixer. Retc. Compared with conventional types, it is improved in the follownaracing characteristics:

- 1) Low supply voltage.
- 2) Strong input.
- 3) Spurious radiation.

9 SIP

14 SOP

FEATURES

- Wide supply voltage range: V_{CC} = 1.6V ~ 6.0V
- Low local oscillation stop voltage: V_{STOP} = 0.9V (Typ)
- Improved inter-modulation characteristics by double balanced type mixer circuit.
- . Low spurious radiation.
- Built-in clamping diode in the mixer output stage.

ORDERING INFORMATION

Device	Package	Operating Temperature	
KA22495	9 SIP	- 25°C ~ + 75°C	
KA22495D	14 SOP		

BLOCK DIAGRAM

Fig. 1

(): KA22495D

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol		Value	Unit	
Supply Voltage	V _{cc}		8	V	
		KA22495	600		
Power Dissipation	P _D	KA22495D	300	mW	
Operating Temperature	T _{OPR}		−25 ~ +75	°C	
Storage Temperature	T _{STG}		-55 ~ +150	°C	

^{*:} Derated above $Ta = 25^{\circ}C$ in the proportion of $4mW/^{\circ}C$.

ELECTRICAL CHARACTERISTICS

(Ta = 25°C, V_{∞} = 5V, f = 98MHz, fm = 1KHz, $\triangle f = \pm 22.5$ KHz, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Quiescent Circuit Current	Icca	V ₁ = 0		5.0	8.0	mA
- 3dB Limiting Sensitivity	V _{I (LIM)}	V_D ($V_I = 60 dB \mu$) – 3dB Down		3.0	7.0	dΒμ
Conversion Gain	Gν	$V_1 = 60 dB\mu$	25	31		dB
Usable Sensitivity	Susa	S/N = 30dB		11		dΒμ
Oscillation Voltage	Vosc	f _{osc} = 108MHz	90	165	250	mV
Oscillation Stop Voltage	V _{STOP}			0.9	1.3	٧

TEST CIRCUIT 1

 $(I_{CCQ}, V_{I(LIM)}, S_{USA}, G_V, V_{OSC}, V_{STOP})$

Fig. 2

When using the KA22471 for the IF stage.

Fig. 3

COIL SPECIFICATIONS (BOTTOM VIEW)

T1 FM RF

f (MHz)	Qo	Turns
98	100	4

* In a Diameter of 5.5mm

0.8mm ø UEW

T2 FM OSC

f (MHz)	Qo	Turns
98	100	3

* In a Diameter of 5.5mm

0.8mm ø UEW

T3 FM IFT

	Co (pF)	f	Qo	Tu	rns
	1 – 3	(MHz)	1 – 3	1 – 3	4 – 6
-	75	10.7	115	12	1

KOREA TOKO 0.12mm ø UEW

T4 FM IFT (DET)

C ₀ (pF)	f	Q _o	Turns
	(MHz)	1 – 3	1 – 3
56	10.7	95	12

KOREA TOKO 0.12mm ø UEW

T5 FM IFT (DET)

C _o (pF)	f	Q ₀ 4-6	Turns
4 – 6	(MHz)		4 – 6
47	10.7	115	14

KOREA TOKO 0.12mm ø UEW

APPLICATION INFORMATION

1. RF AMP

The RF AMP is a common base type, so the operating frequency range is improved. The GND of the bypass capacitor (Pin2) should be located closely at Pin 5 (GND). When using the bypass capacitor at $V_{\rm cc}$ -line of Pin 3, we can expect an improvement of the S/N ratio.

2. MIXER

The mixer stage uses a double balanced type in order to protect the leakage of OSC, spurious radiation. Also, this is built into the limiter in order to improve the strong input characteristic.

LOCAL OSCILLATION

The local oscillator uses a colpitts oscillator for stable oscillation at high frequency. This is built into the OSC buffer in order to stably operate the OSC frequency and OSC voltage at strong input.

