pictures/logo.JPG

Université Catholique de Louvain

LFSAB1503 PROJET 3

Thématique 2 : Gestion de la production

Groupe 12.64

ASSELBERGHS Paul
BERTIN Brice
COUPLET Adrien
CREUPELANDT Grégory
GATIN Anthony
GENNART Antoine
GILLARD Juline
MARTIN Pierre

Table des matières

Ι	Bilan de matière	
1	Calcul analytique des débits	
	.1 Unité ATR	
	1.1.1 Zone de combustion	
	1.1.2 Zone de reformage	
	.2 Water Gas Shift (WGS)	
	.3 Condensation et absorption	
	.4 Synthèse de l'ammoniac	
	.5 Air séparation unit	
2	Calcul numérique des débits	
	2.1 ATR	
	2.1.1 Zone de combustion	
	2.1.2 Zone de reformage	
	2.2 Water Gas Shift (WGS)	
	3.3 Condensation et absorption	
	3.4 Synthèse de l'ammoniac	
	2.5 Calcul des excès	
II	Bilan d'énergie dans l'ATR	
3	Méthode	
4	Résulats	
	.1 Zone de combustion	
	Zone de reformage	
	3 Total	

Pour faciliter nos calculs nous considérons le symbole \dot{n} comme étant le nombre de Mmol (1 × 10⁶ mol) produit par jour. Les débits molaires que nous utilisons dans nos calculs dépendent de la zone dans laquelle ils sont calculés. Par exemple le $\dot{n}_{\rm CH_4}$ de la zone de combustion n'est pas le même que celui de la zone de reformage.

Première partie

Bilan de matière

Dans cette partie nous calculerons pour toutes les étapes du procédé les bilans de matière. À base de ceux-ci nous déterminerons les débits de production d'ammoniac, d'alimentation d'air, ainsi que tous les débits intermédiares entres les unités opérationnelles. Nous étudierons aussi un cas de production d'ammoniac avec des paramètres donnés.

1 Calcul analytique des débits

1.1 Unité ATR

1.1.1 Zone de combustion

Nous commencons par la zone de combustion où se produit la réaction chimique suivante :

$$\mathrm{CH_4} + 2\mathrm{O_2} \longrightarrow \mathrm{CO_2} + 2\mathrm{H_2O} \tag{1}$$

On considère la réaction comme étant complète avec un excès de CH₄.

Table 1 – Avancement de la combustion

1.1.2 Zone de reformage

Deux équilibres chimiques ont lieu dans la zone de reformage. Ces deux réactions se déroulant simultanément, on ne peut les considérer séparement :

$$CH_4 + H_2O \rightleftharpoons 3H_2 + CO$$
 (2)

$$CO + H_2O \rightleftharpoons H_2 + CO_2 \tag{3}$$

Table 2 – Avancement du premier équilibre chimique

Table 3 – Avancement du deuxième équilibre chimique

On déduit ensuite pour chaque équilibre l'expression de la constante d'équilibre :

$$K_1 = \frac{(\xi - \beta)(3\xi + \beta)^3}{(\dot{n}_{\text{H}_2\text{O}} - \xi - \beta)(\dot{n}_{\text{CH}_4} - \beta)} \cdot \frac{p_t^2}{(\dot{n}_{\text{CH}_4} + \dot{n}_{\text{H}_2\text{O}} + \dot{n}_{\text{CO}_2} + 2\xi)^2}$$
(4)

$$K_2 = \frac{(\dot{n}_{\text{CO}_2} + \beta)(3\xi + \beta)}{(\xi - \beta)(\dot{n}_{\text{H}_2\text{O}} - \xi - \beta)}$$
 (5)

À partir de formules connues et de la température dans l'ATR donnée en paramètre nous pouvons déterminer les valeurss de K_1 et K_2 :

$$\begin{cases} K_1 &= 10^{\left(\frac{-11650}{T} + 13.076\right)} \\ K_2 &= 10^{\left(\frac{1910}{T} - 1.764\right)} \end{cases}$$

Nous avons alors un système de deux équations à deux inconnues (ξ et β). Nous résolvons ce système à l'aide du logiciel Matlab avec la fonction suivante :

Au final, nous obtenons à la sortie de la zone de reformage les débits suivants :

$$\begin{split} & \dot{n'}_{\mathrm{CH_4}} = \dot{n}_{\mathrm{CH_4}} - \xi \\ & \dot{n'}_{\mathrm{H_2O}} = \dot{n}_{\mathrm{H_2O}} - \xi - \beta \\ & \dot{n'}_{\mathrm{CO_2}} = \dot{n}_{\mathrm{CO_2}} + \beta \\ & \dot{n'}_{\mathrm{CO}} = \xi - \beta \\ & \dot{n'}_{\mathrm{H_2}} = 3\xi + \beta \end{split}$$

1.2 Water Gas Shift (WGS)

Dans la zone de reformage se déroule déjà une réaction Water Gas Shift. Cette réaction se déroule de manière incomplète mais dans cette unité opérationnelle nous la considérons comme complète :

$$CO + H_2O \longrightarrow CO_2 + H_2$$
 (6)

Table 4 – Avancement de la réaction Water Gas Shift

1.3 Condensation et absorption

Durant cette étapes aucune réaction chimique n'a lieu. Cette étape permet de retirer tout l' $\rm H_2O$ et le $\rm CO_2$ pour la suite du procédé. On considère que cette étape s'effectue complètement et qu'il ne reste plus aucune trace d' $\rm H_2O$ ou de $\rm CO_2$.

1.4 Synthèse de l'ammoniac

Durant la dernière étape du procédé, nous synthétisons de l'ammoniac à partir d'hydrogène et d'azote :

$$3H_2 + N_2 \longrightarrow 2NH_3$$
 (7)

Table 5 – Avancement de la synthèse de l'ammoniac

1.5 Air séparation unit

Maintenant que nous connaissons les quantités nécessaires de N_2 ainsi que celles de O_2 qui interviennent dans l'ATR, nous pouvons déterminer la quantité d'air entrant dans l'unité de séparation d'air. Dans cette unité rentre de l'air composé de O_2 , N_2 et H_2O . En pourcentage cela nous donne : 21% de N_2 et 79% de O_2 . L'eau contenue dans l'air est négligeable et ressort directement après séparation. Le débit d'air entrant ainsi que les excès seront calculés numériquement dans la section suivante.

2 Calcul numérique des débits

Nos paramètres ainsi que leurs valeurs pour le cas précis sont les suivants :

Paramètre	Valeur	Unité	Description
\dot{m}_{CH_4}	800	t/j	Débit massique d'alimentation de CH_4
O_2/CH_4	0.6	-	Rapport ${\rm ^{O_2\!/CH_4}}$ à l'entrée de l'ATR
$^{\mathrm{H_{2}O/CH_{4}}}$	1.5	-	Rapport ${\rm H_2O/CH_4}$ à l'entrée de l'ATR
$T_{ m ATR}$	1200	K	Température de la zone reforming de l'ATR
$p_{ m ATR}$	50	bar	Pression d'opération de l'ATR

Table 6 – Paramètres influant le fonctionnement du procédé

2.1 ATR

2.1.1 Zone de combustion

		CH_4	$+ 2\mathrm{O}_2$	$\longrightarrow \mathrm{CO}_2$	$+ 2 \mathrm{H_2O}$
\dot{m}_i	[t/j]	800	960	0	1350
\dot{m}_i	$[\mathrm{kg/s}]$				
\dot{n}_i	$\left[\mathrm{Mmol/j}\right]$	50	30	0	75
\dot{m}_f	[t/j]	560	0	660	1890
\dot{m}_f	$[\mathrm{kg/s}]$				
\dot{n}_f	$\left[\mathrm{Mmol/j}\right]$	35	0	15	105

Table 7 – Résultat de la combustion

2.1.2 Zone de reformage

Suite à la résolution des équations nous obtenons les valeurs suivantes pour ξ et β :

$$\begin{cases} \xi &= 28.992 \, \mathrm{Mmol/j} \\ \beta &= 1.025 \, \mathrm{Mmol/j} \end{cases}$$

		CH_4	+	${\rm H_2O}$	\rightleftharpoons	$3\mathrm{H}_2$	+	CO
\dot{m}_i	[t/j]							_
\dot{m}_i	$[\mathrm{kg/s}]$							
\dot{n}_i	$\left[\mathrm{Mmol/j}\right]$	35		105		0		0
\dot{m}_f	[t/j]							
\dot{m}_f	$[\mathrm{kg/s}]$							
\dot{n}_f	$\left[\mathrm{Mmol/j}\right]$	6.008		74.983		88.001		27.967

Table 8 – Résultat de la combustion

		СО	+	${\rm H_2O}$	\rightleftharpoons	${\rm H}_2$	+	CO_2
\dot{m}_i	[t/j]							
\dot{m}_i	$[\mathrm{kg/_S}]$							
\dot{n}_i	$\left[\mathrm{Mmol/j}\right]$	0		105		0		15
\dot{m}_f	[t/j]							
\dot{m}_f	$[\mathrm{kg/s}]$							
\dot{n}_f	$\left[\mathrm{Mmol/j} \right]$	27.967		74.983		88.001		16.025

Table 9 – Résultat de la combustion

2.2 Water Gas Shift (WGS)

		CO	+	${\rm H_2O}$	\longrightarrow	CO_2	+	${\rm H}_2$
\dot{m}_i	[t/j]							
\dot{m}_i	$[\mathrm{kg/s}]$							
\dot{n}_i	$\left[\mathrm{Mmol/j}\right]$	27.967		74.983		16.025		88.001
\dot{m}_f	[t/j]							
\dot{m}_f	$[\mathrm{kg/s}]$							
\dot{n}_f	$\left[\mathrm{Mmol/j}\right]$	0		47.016		43.992		115.969

Table 10 – Résultat de la combustion

2.3 Condensation et absorption

$$\begin{cases} \dot{n}_{\rm H_2O} &= 47.016 \\ \dot{n}_{\rm CO_2} &= 43.992 \end{cases}$$

2.4 Synthèse de l'ammoniac

		$3\mathrm{H}_2$	+	${\rm N}_2$	\longrightarrow	$2\mathrm{NH}_3$
\dot{m}_i	[t/j]					
\dot{m}_i	[kg/s]					
\dot{n}_i	$\left[\mathrm{Mmol/j}\right]$	115.969		38.656		0
\dot{m}_f	[t/j]					
\dot{m}_f	$[\mathrm{kg/s}]$					
\dot{n}_f	$\left[\mathrm{Mmol/j}\right]$	0		0		77.312

Table 11 – Résultat de la combustion

2.5 Calcul des excès

Pour l'O $_2$ nous remarquons que nous n'avons pas d'excès. Car tout l'O $_2$ présent dans l'air réagit dans l'ATR. Par contre pour le N $_2$ la quantité présente dans l'air est de $112.857\,\mathrm{^{Mmol}/_{j}}$ et nous n'en utilisons que $38.656\,\mathrm{^{Mmol}/_{j}}$. Nous avons donc un excès de $74.201\,\mathrm{^{Mmol}/_{j}}$.

Deuxième partie

Bilan d'énergie dans l'ATR

3 Méthode

Afin de déterminer la température d'entrée, on calcule l'enthalpie totale dégagée dans l'ATR et avec la formule 8 on peut déterminer la température initiale connaissant la température finale.

$$\Delta H_{\text{tot}} = c_{p,g} \Delta T \tag{8}$$

4 Résulats

4.1 Zone de combustion

$$\begin{split} 2\mathrm{O}_2 + \mathrm{CH}_4 &\longrightarrow \mathrm{CO}_2 + 2\mathrm{H}_2\mathrm{O} \\ \Delta H_{\mathrm{CH}_4}^0 &= -803\,\mathrm{kJ/mol} \\ \Delta \dot{H} &= -28.105 \times 10^9\,\mathrm{kJ/j} \end{split} \tag{9}$$

4.2 Zone de reformage

$$\begin{split} \mathrm{CH_4} + \mathrm{H_2O} &\rightleftharpoons 3\mathrm{H_2} + \mathrm{CO} \\ \Delta H_{\mathrm{SMR}}^0 &= 224.0\,\mathrm{^{kJ}/mol} \\ \Delta \dot{H} &= 6.4942 \times 10^9\,\mathrm{^{kj}/j} \end{split} \tag{10}$$

$$\begin{split} \mathrm{CO} + \mathrm{H_2O} & \rightleftharpoons \mathrm{H_2} + \mathrm{CO_2} \\ \Delta H_{\mathrm{WGS}}^0 &= -37.3\,\mathrm{^{kJ}/mol} \\ \Delta \dot{H} &= -38.2325 \times 10^6\,\mathrm{^{kj}/d} \end{split} \tag{11}$$

4.3 Total

$$\Delta \dot{H}_{\rm tot} = \sum \Delta \dot{H}$$

$$= -26.15 \times 10^9 \,\text{kJ/j} = -26.15 \times 10^{12} \,\text{J/j}$$

$$T_i = \frac{-\Delta \dot{H}_{\rm tot} + c_{p,g} \dot{m}_{\rm tot} T_f}{c_{p,g} \dot{m}_{\rm tot}}$$