Easy

How to find primes?

To determine whether n is a prime, test all divisors from 2 to \sqrt{n}

How to count prime divisors?

Let p be the password Let $r \leftarrow p$ Let the result $m \leftarrow 0$ while $r \neq 1$: Let f be the next prime while f divides r: $r \leftarrow r/f$ $m \leftarrow m + 1$

Now *m* is the # of factors. A password is valid if *m* is prime.

Medium

Obtain the square of the key

Create a map from plaintext chars to cyphertext chars.

Since the plaintext contains all characters, this map is complete.

Compute the "square root"

Write the permutation as a list of cycles.

Reorder odd cycles: Arrows must point (length+1)/2 positions ahead

Hard

Observe that the i-th letter of every text has been encrypted with the same letter of the key.

Because of this, it becomes possible to launch frequency attacks. There are many possible solutions. Here's ours:

Preparation:

Get a large body of text (e.g., text.in)

Compute frequencies for substrings up to a certain length (say 3)

Stochastic optimization:

Start with a random key

Repeat:

Replace a character in the key at random Decrypt, and compute a score:

Each substring receives a score according to its frequency in normal text.

If the score improved, keep the new key

Result after 20'000 iterations:

we_tan_factkvrthe_nuuzer_fiftien_r_th_quantum_himputerspbut eulvr_wouldwtiobablyhbnjoy_thet_njn_his_theorerubecomespa_c theqnice_thery_abouthheeyloq_ms_njn_cryptograpmzrs_can_triv youqdont_wajxrto_buyhy_new_coqput_i_from_a_guyeqho_specyali thehe_are_tssrtypes_wc_cryptokrapcp_the_one_thfn_works_qnd_ thehe_are_tssrtypes_wc_cyptogvaph_is_the_good_thes_and_ihe_ we_tan_see_plw_poinththere_thi_chdg_is_unhappyecf_a_wrocg_b a_phivatekeudwncryptqln_schemi_stwkes_three_allirithms_uach theqconcisewsoforddikqionary_shsisrdefnes_crypyi_as_thepart remvmber_thewrlessonhthen_usirg_avjtream_ciphewunever_uhe_t

Cryptography

