

Механико-математический факультет

Линейная алгебра и геометрия, 2 семестр, 2 поток

Преподаватель: Чубаров Игорь Андреевич

Студент: Молчанов Вячеслав

Группа: 108

Контакт: Мой телеграм для связи

Последняя компиляция: 28 марта 2025 г.

Содержание

1	Векторное пространство 1.1 Изменение координат вектора при замене базиса	2 5
2	Векторные подпространства 2.1 Примеры	5 5
3	Пересечение и сумма подпространств	8
4	Прямая сумма подпространств и пространств	10
5	Линейные отображения и функции	14
6	Линейные функции	15
7	Линейные отображения и их матрицы	18
8	Матрицы линейного отображения 8.1 Изменение матрицы линейного отображения при замене координат	19 19
9	Линейные операторы	21
10	Действия над линейными отображениями	24
11	Собственные векторы и собственные значения оператора	26
12	Диагонализируемость 12.1 Собственное подпространство линейного оператора, заданное собственным значением	27 28
13	Анулирующие многочлены линейных операторов 13.1 Минимальный анулирующий многочлен линейного оператора	32 34
14	Корневые подпространства	36
15	Теорема Жордана 15.1 Изображение разложения корневых подпространств 15.2 Решение СЛАУ 15.3 Решение СЛДУ 15.4 Функции от матриц 15.5 Вычисление корня и экспоненты	38 42 45 45 46 47
16	Биленейные и квадратичные формы 16.1 Запись билинейной функции в координатах	48 48 49 51 54

1 Векторное пространство

Определение. Множество V называется векторным пространством над полем F, если заданы операции "+" и "·" : $V \times V \to V$, $F \times V \to V$ и выполнены следующие аксиомы:

1.
$$\forall v_1, v_2, v_3 \in V : (v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$$

$$2. \ \exists \ \vec{0} \in V: \ \forall v \in V : \ v + \vec{0} = v$$

3.
$$\forall v \in V \ \exists -v \in V : v + (-v) = \vec{0}$$

4.
$$\forall v_1, v_2 \in V : v_1 + v_2 = v_2 + v_1$$

5.
$$\forall \alpha, \beta \in F, v \in V : (\alpha \beta)v = \alpha(\beta v)$$

6.
$$\forall v \in V \exists 1 \in F : 1 \cdot v = v$$

7.
$$\forall \alpha, \beta \in F, v \in V : (\alpha + \beta)v = \alpha v + \beta v$$

8.
$$\forall \alpha \in F, v_1, v_2 \in V : \alpha(v_1 + v_2) = \alpha v_1 + \alpha v_2$$

Загадка: Одна из этих аксиом - следствие других. Какая?

Доказательство. Сначала докажем два свойства.

1.
$$0 \cdot \overline{a} = 0 \cdot \overline{a} + \overline{0} = 0 \cdot \overline{a} + (0 \cdot \overline{a} + (-0 \cdot \overline{a})) = (0 \cdot \overline{a} + 0 \cdot \overline{a}) + (-0 \cdot \overline{a})$$
 (по аксиоме ассоциативности) $= 0 \cdot \overline{a} + (-0 \cdot \overline{a}) = \overline{0}$

2.
$$(-1)\overline{a}+\overline{0}=(-1)\overline{a}+(\overline{a}+(-\overline{a}))=((-1)\overline{a}+\overline{a})+(-\overline{a})$$
 (по аксиоме ассоциативности) $=0\cdot\overline{a}+(-\overline{a})=-\overline{a}.$

Теперь докажем первую аксиому (аксиому коммутативности).

$$(\overline{a} + \overline{b}) + \overline{0} = (\overline{a} + \overline{b}) + (-(\overline{b} + \overline{a}) + (-(-(\overline{b} + \overline{a}))) =$$

(по второму свойству)

$$=(\overline{a}+\overline{b})+(-(\overline{b}+\overline{a})+(\overline{b}+\overline{a}))=$$

(по аксиоме ассоциативности)

$$= (\overline{a} + \overline{b} + (-(\overline{b} + \overline{a}))) + (\overline{b} + \overline{a}) = (((\overline{a} + \overline{b}) + (-(\overline{b}))) + (-\overline{a})) + (\overline{b} + \overline{a}) =$$

$$= ((\overline{a} + (\overline{b} + (-(\overline{b})))) + (-\overline{a})) + (\overline{b} + \overline{a}) = ((\overline{a} + \overline{0}) + (-\overline{a})) + (\overline{b} + \overline{a}) =$$

$$(\overline{a} + (-\overline{a})) + (\overline{b} + \overline{a}) = \overline{0} + (\overline{b} + \overline{a}) = \overline{b} + \overline{a}$$

Замечание. Любое поле можно рассматривать как векторное пространство над собой размерности 1: $V_2 = \mathbb{F}, \ \dim V_2 = 1.$

Определение. $U \subset V$ - векторное подпространство пространства V, если оно само является пространством относительно тех же операций в V.

Утверждение. Определение 2 эквивалентно:

- 1. $U \neq \emptyset$
- 2. $\forall u_1, u_2 \in U : u_1 + u_2 \in U$
- 3. $\forall u \in U, \ \lambda \in F : \lambda u \in U$

Определение. Векторы $v_1,...,v_n\in V$ называются линейно зависимыми, если $\exists \ \lambda_1,...,\lambda_n \ (\text{не все равные } 0) \ : \ \lambda_1v_1+...+\lambda_nv_n=\vec{0}$

Утверждение. Определение $3 \iff (n \ge 2)$ хотя бы один вектор из векторов v_i выражается как линейная комбинация остальных.

Определение. Упорядоченный набор векторов $e = (e_1, ..., e_n), e_k \in V$ называется базисом V, если e - максимальный ЛНЗ набор веторов из V.

Утверждение. e - basuc $\mathit{eV} \Longleftrightarrow$

1.
$$e_1, ..., e_n$$
 - ЛНЗ

2.
$$\forall x \in V \exists x_1, ..., x_n \in F : x = x_1 e_1 + ... + x_n e_n = \sum_{i=1}^n x_i e_i$$

Следствие. Разложение любого вектора в базисе единственно.

Доказательство. Если
$$x=\sum\limits_{i=1}^n x_ie_i=\sum\limits_{i=1}^n x_i'e_i$$
, то $\vec{0}=x-x=\sum\limits_{i=1}^n (x_i'-x_i)e_i$ Из ЛНЗ все коэффициенты равны

Обозначаем:
$$X_e = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in F^n$$
, тогда $x = eX_e = e_1x_1 + ... + e_nx_n$
$$\boxed{x = eX_e} \tag{1}$$

Теорема. Если в $V \equiv 6$ азис из k векторов, то любой базис V содержит k векторов.

Доказательство.

Если \exists базис $e_1',...,e_m' \in V$, где m>n, то по ОЛЛЗ $e_1',...,e_m'$ - ЛЗ, т.е. не базис. Если же m< n, то по ОЛЛЗ (в другую сторону) $e_1,...,e_n$ - ЛЗ \Longrightarrow не базис. \square

Свойства. матриц перехода

- 1. $\det C \neq 0$
- 2. $C_{e'\to e} = (C_{e\to e'})^{-1}$
- 3. $C_{e \to e''} = C_{e \to e'} \cdot C_{e' \to e''}$

Доказательство.

- 1) Столбцы координаты ЛНЗ векторов $e_1',...,e_n'\Longrightarrow rkC=n\Longrightarrow \det C\neq 0$
- 2) Перепишем определение матрицы перехода в матричный вид. По определению:

$$e' = (e'_1, ..., e'_n) = (e_1, ..., e_n)C_{e \to e'}, \text{ r.e. } e' = eC_{e \to e'}$$

$$e' = eC_{e \to e'}$$
(2)

С другой стороны

$$e = e'C_{e' \to e} = eC_{e \to e'}C_{e' \to e} \Longrightarrow C_{e \to e'}C_{e' \to e} = E$$

ввиду единственности разложения векторов по базису, т.е.

$$C_{e \to e'} = (C_{e' \to e})^{-1}$$

3)
$$e'' = e'C_{e' \to e''} = e(C_{e \to e'}C_{e' \to e''}) = eC_{e \to e''}$$

В силу единственности разложения $C_{e o e''} = C_{e o e'} C_{e' o e''}$

Алгоритм. Как вычислить матрицу перехода, если известны координаты векторов e_i и e'_j в некотором универсальном базисе? $e' = eC_{e \to e'}$ можно рассмотреть как матричное уравнение:

$$(e_1^{\uparrow}, ..., e_n^{\uparrow})C = (e_1^{\prime \uparrow}, ..., e_n^{\prime \uparrow})$$
$$[e_1^{\uparrow}, ..., e_n^{\uparrow} \mid e_1^{\prime \uparrow}, ..., e_n^{\prime \uparrow}] \stackrel{cmpo\kappa}{\leadsto} [E \mid C_{e \to e^{\prime}}]$$

1.1 Изменение координат вектора при замене базиса

Теорема. Формула изменения координат вектора при замене базиса:

$$X_e = C_{e \to e'} X_{e'} \tag{3}$$

Доказательство.

$$\forall x \in V : x = eX_e = e'X_{e'} = eC_{e \to e'}X_{e'}$$
$$\Longrightarrow X_e = C_{e \to e'}X_{e'}$$

2 Векторные подпространства

2.1 Примеры

- 1. Геометрические векторы
- 2. F^n пространство столбцов (строк) высоты (длины) n с естественными операциями $(+, \cdot \lambda)$

Базис
$$\vartheta = \left\{ \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix}, ..., \begin{pmatrix} 0\\0\\\vdots\\1 \end{pmatrix} \right\}$$
 (можно взять столбцы любой

невырожденной матрицы порядка n)

 $\it 3амечание.$ Доказать, что если e - базис, C - невырожденная матрица, то eC - тоже базис (из (2))

Упражнение. Пусть |F| = q, $\dim_F V = n \Longrightarrow |V| = q^n$ $\dim M_{m,n} = mn$, стандартный базис - $\{E_{ij}\}$, где E_{ij} содержит 1 на ij-ой позиции и 0 на остальных.

3. $V = \{F: \underset{(X \subseteq \mathbb{R})}{X} \to \mathbb{R}\}$ с операциями сложения и λF

Оно бесконечномерно, если X бесконечно.

Если $\lambda_1,...,\lambda_n$ - попарно различные числа, то $y_1=e^{\lambda_1 x},...,y_n=e^{\lambda_n x}$ ЛНЗ Допустим, что:

$$\begin{cases} C_1 y_1 + \dots + C_n y_n \equiv 0 \\ C_1 y_1' + \dots + C_n y_n' \equiv 0 \\ \vdots \\ C_1 y_1^{(n-1)} + \dots + C_n y_n^{(n-1)} \equiv 0 \end{cases} \implies \begin{cases} C_1 e^{\lambda_1 x} + \dots + C_n e^{\lambda_n x} \equiv 0 \\ \lambda_1 C_1 e^{\lambda_1 x} + \dots + \lambda_n C_n e^{\lambda_n x} \equiv 0 \\ \vdots \\ \lambda_1^{n-1} C_1 e^{\lambda_1 x} + \dots + \lambda_n^{n-1} C_n e^{\lambda_n x} \equiv 0 \end{cases}$$

$$\Delta = V(\lambda_1, ..., \lambda_n) \neq 0 \Longrightarrow C_1 = ... = C_n = 0$$

4. F[t] с естественными операциями сложения и умножения на скаляр - бесконечномерное пространство, т.к.: $\forall n \in N_0: 1, t, t^2, ...$ - линейно независимы. $F[t]_n = \{a_0 + a_1t + a_2t^2 + ... + a_nt^n \mid a_k \in F, \ k = 0, ..., n; \ n \in N_0\}$ - подпространство, $\dim U = n + 1$, базис: $1, t, ..., t^n$ Тейлоровский базис: $1, t - t_0, ..., (t - t_0)^n$; $\sum_{k=0}^n \frac{f^{(k)}(t_0)}{k!} (t - t_0)^k$

5. $\Omega \neq 0$, $V = 2^{\Omega}$ с операциями вместо сложения:

$$A \triangle B = (A \cap \overline{B}) \cup (B \cap \overline{A}) \ \forall A, B \subseteq \Omega$$

 $F = \mathbb{Z}_2, \ 0 \cdot A = \emptyset, \ 1 \cdot A = A$

Упражнение. Доказать, что V - векторное пространство над \mathbb{Z}_2

2.2 Два основных способа задания подпространства в V

1. Линейная оболочка семейства векторов $S \subset V$:

$$\langle S \rangle = \{ \sum_{i \in I} \lambda_i s_i \text{ (канонические суммы) } | s_i \in S, \lambda_i \in F \}$$

Частный случай:

$$\langle a_1, ..., a_m \rangle = \{ \sum_{i=1}^m \lambda_i a_i \mid \lambda_i \in F \} = U$$

Утверждение. $\langle a_1,...,a_m\rangle\subseteq V\Longrightarrow \dim\langle a_1,...,a_m\rangle=rk\{a_1,...,a_m\}$

Доказательство.

$$\mu \sum_{i=1}^{m} \lambda_i a_i = \sum_{i=1}^{m} (\mu \lambda_i) a_i$$
$$\sum_{i=1}^{m} \mu_i a_i + \sum_{i=1}^{m} \lambda_i a_i = \sum_{i=1}^{m} (\mu_i + \lambda_i) a_i \in U$$

Если $r=rk\langle a_1,...,a_m\rangle$, то $a_{j1},...,a_{jr}$ - базисные, то $\forall a_i$ через них тоже выражается

$$\forall \sum_{i=1}^m \lambda_i a_i \Longrightarrow \{a_{j1},...,a_{jr}\}$$
 — базис U

Алгоритм. Алгоритм вычисления $\dim \langle a_1, ..., a_m \rangle$ и базиса, если известны координаты этих векторов:

1) Cocmasums mampuny: $(a_1^{\uparrow},...,a_m^{\uparrow}) \xrightarrow[cmpo\kappa]{j_1 \cdots j_r} \begin{pmatrix} 1 & 0 & \\ & \ddots & \\ 0 & & 1 \\ \hline & 0 & & 0 \end{pmatrix}$

- 2) Столбцы с номерами $j_1, ..., j_r$ базис в U, разложение оставшихся векторов можно сразу считать из преобразованной матрицы
- **2.** $(\dim V = n, \text{ известны координаты в некотором базисе})$

$$\forall \sum_{i=1}^{n} x_i e_i = eX, \ X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

 $W = \{x = eX \mid x \in V, \ AX = 0\}$ — задание с помощью ОСЛУ

Утверждение. W - подпространство в V, $\dim W = n - rkA$, базис - любая ΦCP (это переход от **2.** к **1.** способу задания подпространства).

Теорема. Линейную оболочку конечного числа векторов в конечномерном векторном пространстве V можно задать с помощью OCJY.

Доказательство. Два способа:

1) Вектор
$$x$$
 (со столбцом координат $X = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$):

$$x \in \langle a_1, ..., a_m \rangle = U$$

$$\iff$$
 $\exists \ \alpha_1,...,\alpha_m \in F: \sum_{i=1}^m \alpha_i a_i = x, \$ или в координатах: $\sum_{i=1}^m \alpha_1 a_i^{\uparrow} = x$

т.е. СЛУ с
$$\widetilde{A}=(a_1^\uparrow,...,a_m^\uparrow\mid \begin{pmatrix} x_1\\ \vdots\\ x_m\end{pmatrix})$$
 совместна \Longleftrightarrow после алгоритма Гаусса:

$$\widetilde{A} \longrightarrow \begin{pmatrix} K & \sum_{j} C_{kj} x_{j} \\ 0 & \sum_{j} C_{r+1,j} x_{j} = 0 \\ \sum_{j} C_{nj} x_{j} = 0 \end{pmatrix}$$

$$\left(K\right)$$
 имеет ступенчатый вид, а $\left(\sum C_{r+1,j}x_j=0\right)$ - нужная нам система.

Упражнение. Доказать, что эти уравнения ЛНЗ.

2) Пусть дана ОСЛУ: $\underset{(r \times n)}{C} X = 0, rkC = r$

$$C \xrightarrow[\text{строк}]{\Theta\Pi} \left(E_r \mid D \right) = C'$$

$$\begin{cases} x_1 = -(d_{1,r+1}x_{1,r+1} + \dots + d_{1n}x_n) \\ \vdots \\ x_k = -(d_{k,r+1}x_{k,r+1} + \dots + d_{kn}x_n) \end{cases}$$
 $k = 1, \dots, r$

Фундаментальная матрица: $\mathcal{F} = \left(\frac{-D}{E_{n-r}}\right)$

$$C' \cdot \mathcal{F} = E_r \cdot (-D) + D \cdot E_{n-r} = -D + D = 0$$

Рассмотрим матрицу из строк координат векторов $a_1, ..., a_r$:

$$\begin{pmatrix} a_1^{\rightarrow} \\ \vdots \\ a_r^{\rightarrow} \end{pmatrix} \xrightarrow{\text{улучшенный вид}} \begin{pmatrix} M \mid E_r \end{pmatrix} \xrightarrow{\text{Транспонируем}} \begin{pmatrix} M^T \\ E_r \end{pmatrix} = \mathcal{F}$$

Тогда искомая система будет иметь матрицу: $C = (E_{n-r} \mid -M^T)$ Пространство $\{X \mid CX = 0\}$ имеет размерность n - (n-r) = r

3 Пересечение и сумма подпространств

Утверждение.

- 1. Если U_i $(i \in I)$ подпространство V, то $W = \bigcap_{i \in I} U_i$ тоже подпространство V
- 2. Объединение подпространств может НЕ быть подпространством даже для двух подпространств.

Доказательство. 1. $\overline{0} \in W$, т.к. $\overline{0} \in U_i$, $\forall i \in I$.

Если
$$x, y \in U_i, \ \forall i \in I \Longrightarrow x + y \in U_i, \ \forall i \in I \Longrightarrow x + y \in \bigcap_{i \in I} U_i$$

Если $x \in U_i, \ \forall i \in I, \ \forall \lambda \in F \Longrightarrow \lambda x \in U_i, \ \forall i \in I \Longrightarrow \lambda x \in \bigcap_{i \in I} U_i$

Замечание. Если U_1, U_2 - подпространства в V и Q - любое подпространство, которое содержит U_1 и U_2 , то оно содержит и сумму u_1+u_2 , если $u_i\in U_i,\ i=1,2$

Определение. Суммой подпространств $U_1, ..., U_m \subseteq V$ назовем:

$$U_1 + \ldots + U_m = \{x_1 + \ldots + x_m \mid x_i \in U_i\}$$

Утверждение. $U_1 + ... + U_m$ - nodnpocmpancmeo в V

Теорема. (Формула Грассмана)

Eсли U_1, U_2 - $no\partial npocmpaнcmea$ в $V, \dim U_1 < \infty, \dim U_2 < \infty, mo$

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$$

Доказательство. Пусть $\dim U_i = n_i$, $\dim(U_1 \cap U_2) = s$ Выберем $c_1, ..., c_s$ - базис $U_1 \cap U_2$, дополним до базиса в U_1 векторами $a_1, ..., a_{n_1-s}$ и до базиса в U_2 векторами $b_1, ..., b_{n_2-s}$.

Тогда векторы $c_1,...,c_s,a_1,...,a_{n_1-s},b_1,...,b_{n_2-s}$ - образуют базис в U_1+U_2

1. Они порождают $U_1 + U_2$:

$$\forall u = u_1 + u_2 = \left(\sum \alpha_i a_i + \sum x_i c_i\right) + \left(\sum \beta_i b_i + \sum \delta_i c_i\right)$$

2. Они ЛНЗ. Рассмотрим линейную комбинацию:

$$\sum_{i=1}^{n_1-s} \alpha_i a_i + \sum_{k=1}^{n_2-s} \beta_k b_k + \sum_{j=1}^s \gamma_j c_j = 0$$

$$\sum_{i=1}^{n_1-s} \alpha_i a_i = -\sum_{k=1}^{n_2-s} \beta_k b_k - \sum_{j=1}^s \gamma_j c_j \in U_1 \cap U_2$$

Левая часть должна раскладываться по $\{c_j\} \Longrightarrow \sum_{i=1}^{n_1-s} \alpha_i a_i = 0 \Longrightarrow a_i$ - ЛНЗ $\Longrightarrow \forall i: \ \alpha_i = 0$

Тогда
$$\sum_{k=1}^{n_2-s}\beta_k b_k + \sum_{j=1}^s \gamma_j c_j = 0 \Longrightarrow \{b_k,\gamma_j\}$$
 - ЛНЗ $\Longrightarrow \forall k,j: \ \beta_k = \gamma_j = 0$

Алгоритм. Пусть $U_1 = \langle a_1, ..., a_{n_1} \rangle$, $U_2 = \langle b_1, ..., b_{n_2} \rangle$ известны координаты. Составим матрицу:

$$(A \mid B) = (a_1^{\uparrow}, ..., a_{n_1}^{\uparrow} \mid b_1^{\uparrow}, ..., b_{n_2}^{\uparrow})$$

 $\dim(U_1 + U_2) = rk(A|B)$

$$\begin{pmatrix} A \mid B \end{pmatrix} \xrightarrow[cmpo\kappa]{} \stackrel{\partial\Pi}{\longrightarrow} \begin{pmatrix} a_1^{\uparrow}, ..., a_{n_1}^{\uparrow} \mid \underbrace{b_1^{\uparrow}, ..., b_m^{\uparrow}}_{nonano\ e\ basuc}, b_{m+1}^{\uparrow}, ..., b_{n_2-m}^{\uparrow} \end{pmatrix}$$

Можно записать:

$$b_{j} = \sum_{i=1}^{n_{1}} \alpha_{i} a_{i} + \sum_{k=1}^{m} \beta_{k_{j}} b_{k} \Longrightarrow b_{j} - \sum_{k=1}^{m} \beta_{k_{j}} b_{k} = \sum_{i=1}^{n_{1}} \alpha_{i} a_{i} \in U_{1} \cap U_{2}$$

Упражнение. Верна ли аналогичная формула для трех подпространств?

4 Прямая сумма подпространств и пространств

Определение. Сумма $U_1 + ... + U_m$ подпространств $U_i \subset V$, $1 \leq i \leq m$ называется прямой суммой, если $\forall u \in U_1 + ... + U_m$ представим в виде: $u = u_1 + ... + u_m \; (u_i \in U_i)$ единственным образом

Пусть m=2,V - конечномерное пространство, $U_{1,2}$ - подпространства V

Теорема. Следующие условия равносильны:

1.
$$U = U_1 + U_2$$
 - прямая сумма

2.
$$U_1 \cap U_2 = \{0\}$$

3.
$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2$$

4. $\mathit{Basuc}\ U_1 + U_2$ - объединение базисов слогаемых

Доказательство.

$$1. \to 2.$$
 Допустим $v \in U_1 \cap U_2 \Longrightarrow v = \underset{\in U_1}{v} + 0 = 0 + \underset{\in U_2}{v} \Longrightarrow v = 0$

 $2. \rightarrow 3.$ По формуле Грассмана:

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \underbrace{\dim(U_1 \cap U_2)}_{0}$$

 $3. \to 4.$ Ввиду доказательства формулы Грассмана. Если

$$\sum_{i} \alpha_i a_i + \sum_{j} \beta_j b_j = 0 \Longrightarrow \sum_{i} \alpha_i a_i = \sum_{j} (-\beta_j) b_j \in U_1 \cap U_2 = \{0\}$$

 \Longrightarrow все α_i и β_i равны нулю

 $4. \to 1. \ \forall u \in U_1 + U_2:$

$$u = (\sum_{i} \alpha_i a_i) + (\sum_{i} \beta_j b_j)$$

- разложение по базису единственно

Теорема. Следующие условия равносильны:

1.
$$U = U_1 + U_2 + ... + U_n$$
 - прямая сумма

2.
$$\forall i, 1 \leq i \leq m, U_i \cap (\sum_{j \neq i} U_j) = \{0\}$$

3.
$$\dim(U_1 + U_2 + ... + U_n) = \dim U_1 + \dim U_2 + ... + \dim U_n$$

4. Базис
$$U_1+U_2+...+U_n$$
 - объединение базисов слогаемых

Упражнение. Доказать

Пример. того, что условия $U_i \cap U_j = \{0\}, i \neq j$ недостаточно для прямой суммы: (РИСУНОК)

 v_1, v_2, v_3 - ЛЗ \Longrightarrow представление не единственным образом

Лемма. Любой ЛНЗ набор векторов $a_1, ..., a_m$ в n-мерном векторном пространстве V (m < n) можно дополнить до базиса в V.

Доказательство. 1. Пусть известны координаты векторов в некотором базисе $e_1, ..., e_n \Longrightarrow rk\{a_1, ..., a_m, e_1, ..., e_n\} = n$

2. Составим матрицу:

$$\left(a_1^{\uparrow} \cdots a_m^{\uparrow} \mid E_n\right) \xrightarrow{\exists \Pi \text{ строк матрицы}} \left(a_1^{\uparrow} \cdots a_m^{\uparrow} \mid e_{i,1}^{\uparrow} \mid e_{j,n-m}^{\uparrow} \cdots\right)$$

Тогда к векторам $a_1,, a_m$ надо добавить $e_{j,1}, ..., e_{j,n-m}$

Определение. Если U - подпр-во в V $(0 \neq U \neq V)$ и $\exists W \subset V : V = U \oplus W$, то W - прямое дополнение к U.

Следствие. Для любого подпространства в конечномерном векторном пространстве \exists прямые дополнения.

Доказательство.
$$U=\langle a_1,...,a_m\rangle \Longrightarrow \exists \ a_{m+1},...,a_n : \langle a_1,...,a_n\rangle$$
 - базис в V , тогда $W=\langle a_{m+1},...,a_n\rangle$

Определение. Пусть $V_1,...,V_k$ $(k\geq 2)$ - векторы пространства над одним и тем же полем $\mathbb F$, тогда:

$$V = V_1 \times ... \times V_k = \{(v_1, ..., v_k) \mid v_i \in V_i, 1 \le i \le k\}$$
 — внешняя прямая сумма Обозначение: \oplus

Замечание. Внешнюю прямую сумму $V = V_1 \oplus ... \oplus V_k$ можно превратить в прямую сумму подпространства:

$$\forall i \ {
m paccmotpum} \ V_i' = \{0,...,.v_i,....,0\} - \ {
m подпространство} \ {
m B} \ V$$

Запись $v_1,...,v_k \stackrel{\text{единственно}}{=} (v_1,0,0,...,0) + (0,v_2,0,...,0) + ... + (0,0,0,...,v_k)$ по-казывает, что $V=V_1'\oplus...\oplus V_k'$ - единственно.

В частности
$$\dim(V_1 \oplus ... \oplus V_k) = \sum_{i=1}^n \dim V_i$$

Факторпространства

Определение. Пусть $U\subset V$ - подпространство, $v_1,v_2\in V$. Говорят, что $v_1\sim v_2$ по модулю U, если $v_1-v_2\in U$. Классы эквивалентности имеют вид:

$$v+U=\{v+u\mid u\in U\}$$

- смежные классы по U, где v - представитель

$$* V/U = \{\underbrace{v + U}_{\pi} \mid u \in U\}$$

Утверждение. $v_1 \sim v_2 \Leftrightarrow v_1 + U = v_2 + U$

Доказательство.

 \Rightarrow : Если $v_1 \sim v_2$, то $\exists u_0 \in V : v_2 = v_1 + u_0$

$$\forall u \in U \ v_2 + u = v_1 + (u_0 + u) \Longrightarrow v_2 + U \subseteq v_1 + U$$

$$v_1 = v_2 - u_0$$
; $\forall u \in U \ v_1 + u = v_2 + (u - u_0) \Longrightarrow v_1 + U \subseteq v_2 + U$

 \leq : Если $v_1 + U = v_2 + U$, то $\exists u_1 \in U : v_1 = v_2 + u_1 \Longrightarrow v_1 - v_2 = u_1 \in U$

Определение. v+U - смежный класс элемента v по U : $\bar{v}:=v+U$

Определение. $V/U=\{\bar{v}\mid v\in V\}$ - факторпространство V по U.

Определение. Структура векторного пространства на V/U:

$$\overline{v}_1 + \overline{v}_2 = \overline{v_1 + v_2}; \quad \lambda \overline{v}_1 = \overline{\lambda v_1};$$

Определение. $\dim(V/U)$ называется коразмерностью подпространства U в V Обозначается: $\mathrm{Codim}_V U$

Пример. Пусть V = C[a, b]

$$U = \{f(x) \mid f(x_0) = 0, \ x_0 \in [a, b]\} \Longrightarrow \operatorname{Codim}_V U = 1$$

Теорема.

- 1. Данные операции задают на V/U векторное пр-во;
- 2. Если $\dim V < \infty$, то $\dim(V/U) = \dim V \dim U$

Доказательство.

1) Проверим корректность введённых операций: Если $v_1'=v_1+u_1,\ v_2'=v_2+u_2,\ u_1,u_2\in U$:

$$v_1' + v_2' = v_1 + v_2 + (u_1 + u_2)$$

$$v_1' + v_2' \sim v_1 + v_2$$
, T.e. $v_1' + v_2' + U = v_1 + v_2 + U \Rightarrow \overline{v_1' + v_2'} = \overline{v_1 + v_2}$

$$\overline{v_1'} + \overline{v_2'} = \overline{v_1' + v_2'} = \overline{v_1 + v_2} = \overline{v_1} + \overline{v_2}$$

т.е. сложение не зависит от выбора элементов в классах.

Если

$$v' = v + u, \ u \in U \Longrightarrow \lambda v' = \lambda v + \lambda u \in \lambda v + U$$

 $v \sim v' \Longrightarrow \lambda v \sim \lambda v'; \ \overline{0} \in U; \ -\overline{v} = \overline{-v}$

Все аксиомы выполенены, т.к. действия над смежными классами выражаются через действия над векторами.

2) Выберем базис $a_1,...,a_m$ в U Если U=V, т.е. $m=n=\dim V$, то $V\setminus U=\{0\}\Longrightarrow \dim(V\setminus U)=n-n=0$ Если же m< n, то можно дополнить базис U векторами $a_{m+1},....,a_n$ до базиса в V, тогда классы $\overline{a_{m+1}},....,\overline{a_n}$ образуют базис в $V\setminus U$:

$$\forall v \in V : v = \sum_{i=1}^{m} \alpha_i a_i + \sum_{j=m+1}^{n} \alpha_j a_j$$

$$\overline{v} = v + U = \sum_{j=m+1}^{n} \overline{\alpha_j a_j} = \sum_{j=m+1}^{n} \alpha_j \overline{a_j}$$

 $\Longrightarrow \overline{a_{m+1}},....,\overline{a_n}$ порождают $V\setminus U$

Проверим ЛНЗ:

$$\exists \ \lambda_j \in \mathbb{F} : \sum_{j=m+1}^n \lambda_j \overline{a_j} = \overline{0} \Longleftrightarrow \sum_{j=m+1}^n \lambda_j a_j \in U$$

$$\exists \mu_i \in \mathbb{F} : \sum_{j=m+1}^n \alpha_j a_j - \sum_{i=1}^n \mu_i a_i = 0$$

Т.к. $\{a_1,...,a_n\}$ ЛНЗ, то $\lambda_j=0,~\mu_i=0,~\forall i,j\Longrightarrow \overline{a_{m+1}},....,\overline{a_n}$ - ЛНЗ

5 Линейные отображения и функции

Пусть V_1, V_2 - векторные пространства над полем $\mathbb{F}.$

Определение. Отображение $\varphi: V_1 \to V_2$ называется линейным отображением V_1 в V_2 , если:

1.
$$\forall v_1, v_1' \in V_1 : \varphi(v_1 + v_1') = \varphi(v_1) + \varphi(v_1');$$

2. $\forall v \in V_1, \lambda \in \mathbb{F} : \varphi(\lambda v) = \lambda \varphi(v);$

Из курса I семестра известно, что $\varphi(0_{v_1}) = 0_{v_2}$

Определение. Ядром φ называется множество $\mathrm{Ker}(\varphi) = \{v \in V_1 \mid \varphi(v) = 0_{v_2}\}.$ Образом φ называется множество $\mathrm{Im}(\varphi) = \varphi(V_1).$

6 Линейные функции

Пусть V - векторное пространство над $\mathbb F$

Определение. Отображение $f:V\to \mathbb{F}$ - линейная функция со значениями в $\mathbb{F},$ если:

- 1. $\forall v_1, v_2 \in V : f(v_1 + v_2) = f(v_1) + f(v_2)$
- 2. $\forall v \in V, \forall \lambda \in \mathbb{F}: f(\lambda v) = \lambda f(v)$

Обозначается: $V^* = \{f: V \to \mathbb{F}\}$ - множество линейных функций на V

Лемма. $Ecnu \ f \not\equiv 0$, $mo \ \dim (V/\mathrm{Ker} f) = 1$.

Доказательство. $f \not\equiv 0 \Rightarrow \exists v_1 \in V, \ f(v_1) \not= 0.$ Пусть $v \in V$, либо $v \in \mathrm{Ker}(f)$, либо $f(v) = \alpha \not= 0$

$$\beta = f(v_1) \neq 0 \Longrightarrow f(\frac{v_1}{\beta}) = 1, \ f(\frac{\alpha}{\beta}v_1) = \alpha$$

Рассмотрим выражение $f(v-\frac{\alpha}{\beta}v_1)$:

$$f(v - \frac{\alpha}{\beta}v_1) = f(v) - f(\frac{\alpha}{\beta}v_1) = \alpha - \alpha = 0$$

 $\Longrightarrow v - \frac{\alpha}{\beta}v_1 \in \operatorname{Ker}(f)$ и $v = \frac{\alpha}{\beta}v_1 + u, \ u \in \operatorname{Ker}(f)$

Замечание. $\forall x \in V: (f_1 + f_2)(x) = f_1(x) + f_2(x)$ и $(\lambda f)(x) = \lambda f(x)$

Лемма. Множество V^* с введенными операциями - векторное пространство.

Определение. V^* - векторное пространство, сопряженное с V (двойственное для V)

Зафиксируем базис $e=(e_1,...,e_n)$ в V и линейную функцию $f:V\to F$

$$\forall x \in V: \ x = \sum_{i=1}^n x_i e_i \Rightarrow f(x) = \sum_{i=1}^n x_i f(e_i) = \sum_{i=1}^n a_i x_i, \ \text{где } a_i = f(e_i)$$

Удобно записывать это так:
$$f(x) = \begin{pmatrix} a_1 & \cdots & a_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Определение. Координатные функции - функции вида:

$$f_i: f_i(x) = x_i$$

Будем использовать обозначение: $e^i = f_i$

В частности:
$$f_i(e_j) = e^i(e_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Утверждение. Функции e^i - базис в V^*

Доказательство.

Докажем ЛНЗ: Пусть $\exists \lambda_1,...,\lambda_n: \sum_{i=1}^n \lambda_i e^i \equiv 0$. Подставим e_j :

$$\left(\sum_{i=1}^{n} \lambda_i e^i\right)(e_j) = \sum_{i=1}^{n} \lambda_i e^i(e_j) = \lambda_j = 0$$

Отсюда после подстановки всех $e_1,...,e_n$ получим, что $\forall i=1,...,n: \lambda_i=0.$ Разложим произвольную функцию $f\in V^*$:

$$f(x) = \sum_{i=1}^{n} a_i x_i = \sum_{i=1}^{n} a_i e^i(x) = (\sum_{i=1}^{n} a_i e^i)(x) \implies f \equiv \sum_{i=1}^{n} a_i e^i$$

Следствие. $\mathit{Ecnu} \, \dim V < \infty, \, \mathit{mo} \, V^* \cong V, \, \mathit{m.\kappa.} \, \dim V^* = \dim V.$

Определение. Базис $e^* = (e^1, ..., e^n)$ называется базисом V^* , сопряжённым (дуальным, двойственным, биортогональным) к базису e в V.

Посмотрим, как изменится строка координат функции $f \in V^*$ при замене базиса e в V.

Пусть $e'=(e'_1,...,e'_n)=e\cdot C_{e\to e'}$ - новый базис в V. Как известно, $X=C_{e\to e'}\cdot X'$. Отсюда если $x=\sum_{i=1}^n x_ie_i=\sum_{i=1}^n x'_ie'_i$, то $\forall f\in V^*$:

$$f(x) = \sum_{i=1}^{n} a'_{i}x'_{i} = (a'_{1}, ..., a'_{n})X'$$

С другой стороны

$$f(x) = (a_1, ..., a_n)X = (a_1, ..., a_n)(C_{e \to e'}X') = ((a_1, ..., a_n)C_{e \to e'})X'$$

Отсюда

$$\forall X' \in \mathbb{F}^n \ ((a_1, ..., a_n) C_{e \to e'}) X' = ((a'_1, ..., a'_n)) X'$$

Подставляя по очереди $X' = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$, в итоге получим равенство $(a_1, ..., a_n)C_{e \to e'} = (a'_1, ..., a'_n)$

Пример. Возьмём $V=\mathbb{R}[t]_n=\{p(t)\in\mathbb{R}[t]\mid\deg p=n\}$

Выберем в нём базис $\{1, (t-t_0), ..., (t-t_0)^n\} \Longrightarrow p(t) = \sum_{i=0}^n \frac{p^{(i)}(t_0)}{i!} (t-t_0)^i$

Если
$$e_i = (t - t_0)^i$$
, $0 \leqslant i \leqslant n$, то $e^i(p) = \frac{p^{(i)}(t_0)}{i!}$

Определение. Вторым сопряжённым пространством к V (обозначается V^{**}) называется пространство, сопряженное к V^* - пространство линейных функций от линейных функций над V.

$$V^{**} = \{ \varphi : V^* \to \mathbb{F} \}$$

Лемма. f - интекция $\iff Ker(f) = \{0\}$

Теорема. Если $\dim V < \infty$, то $V^{**} \cong V$, причём изоморфизм не зависит от выбора базиса (такой изоморфизм называется каноническим).

Доказательство. Рассмотрим отображение:

$$\varphi: V \to V^{**}: \ \varphi(x) = \varphi_x \in V^{**}: \ \forall f \in V^*, \varphi_x(f) = f(x)$$

Это линейное отображение:

- $\forall f \in V^*, \ \varphi_{x_1+x_2}(f) = f(x_1 + x_2) = f(x_1) + f(x_2) = \varphi_{x_1}(f) + \varphi_{x_2}(f) \Longrightarrow \varphi(x_1 + x_2) = \varphi(x_1) + \varphi(x_2);$
- $\forall f \in V^*, \ \varphi_{\lambda x}(f) = f(\lambda x) = \lambda f(x) = \lambda \varphi_x(f) \Longrightarrow \varphi(\lambda x) = \lambda \varphi(x);$

Чтобы проверить, что φ - биекция, достаточно проверить, что $\mathrm{Ker}(\varphi) = \{0\}$ (так как сюръекцию имеем из $\dim V^{**} = \dim V$).

Пусть $x \in \text{Ker}(\varphi)$, т.е. $\varphi_x \equiv 0$. Значит, $\forall f \in V^*: f(x) = 0$

Если $x \neq 0$, то его можно дополнить до базиса: $x, e_2, ..., e_n$, где $n = \dim V$.

Тогда
$$e^1(x)=1 \neq 0$$
 - противоречие с условием $\forall f \in V^*: \ f(x)=0.$

 $3a\partial a$ ча. Доказать, что $a_1,...,a_n \in V$ ЛНЗ $\Leftrightarrow \exists$ лин. ф-ции $f^1,...,f^n \in V^*$ такие, что $\det(f^i(a_i)) \neq 0$.

3амечание. Если $dimV=\infty$, то $V^*\ncong V$ в общем случае.

Пример. $V = \mathbb{Q}[t]$ - V счётно. Зафиксируем число $t \in \mathbb{Q}$ и рассмотрим произвольную $f \in V^*$:

 $f(t^k) = b_k \Rightarrow f \leftrightarrow (b_0, b_1, ..., b_k, ...) \Rightarrow V^*$ континуально.

Отсюда мощность V^* больше мощности V, и они, очевидно, не изоморфны.

7 Линейные отображения и их матрицы

Пусть V_1, V_2 - векторные пространства, $\varphi: V_1 \to V_2$ - линейное отображение.

Пример.

 $V_1 = D(a, b)$ - множество функций над полем \mathbb{R} , дифференцируемых на (a, b);

 $V_2 = F(a, b)$ - множество функций над полем \mathbb{R} , опреелённых на (a, b);

 $\varphi(f)=rac{df}{dt},\ arphi:\ V_1 o V_2$ - линейное отображение, ${
m Ker}(arphi)=\{const\}$

Частный случай: $V_1 = \mathbb{R}[t]_n, \ V_2 = \mathbb{R}[t]_{n-1}$

 $\varphi(f)=f'$ - линейное отображение (взяли производную)

 $\operatorname{Ker}(\varphi)=\{const\}$. Является ли φ сюрьекцией?

 $\forall p(t) = a_0 + a_1 x + \dots + a_{n-1} t^{n-1}$

$$\exists f(t) = a_0t + a_1rac{t^2}{2} + ... + a_{n-1}rac{t^n}{n}: f'(t) = p(t) \Longrightarrow arphi$$
 - сюрьекция

Теорема. Если $\varphi: V_1 \to V_2$ - линейное отображение, $\dim V_1 < \infty$, то

$$\dim(\operatorname{Im}\varphi) = \dim V_1 - \dim(\operatorname{Ker}\varphi)$$

Доказательство. Пусть $\dim(\operatorname{Im}\varphi) = m \ (m \leq n = \dim V_1)$

Выберем $c_1,...,c_m$ - базис в $\operatorname{Im}\varphi\Longrightarrow\exists\ a_1,...,a_m\in V_1:\ \varphi(a_i)=c_i,\ i=\overline{1,m}$

Так же выберем базис $b_1,...,b_k$ в $\operatorname{Ker} \varphi$ (если $\operatorname{Ker} \varphi=\{0\}$, то $\operatorname{Im} \varphi\cong V_1$)

Покажем, что $\{a_1,...,a_m,b_1,...,b_k\}$ - базис в V_1 :

Пусть
$$\alpha_i$$
, β_j : $\sum_{i=1}^m \alpha_i a_i + \sum_{j=1}^k \beta_j b_j = 0_{v_1}$, тогда:

$$\varphi(\sum_{i=1}^{m} \alpha_i a_i + \sum_{j=1}^{k} \beta_j b_j) = \sum_{i=1}^{m} \alpha_i \varphi(a_i) + \underbrace{\sum_{j=1}^{k} \beta_j \varphi(b_j)}_{0_{v_2}} = \sum_{i=1}^{m} \alpha_i c_i = \varphi(0_{v_1}) = 0_{v_2}$$

Т.к.
$$c_i$$
 - ЛНЗ $\Longrightarrow \forall i = \overline{1,m}: \ \alpha_i = 0 \Longrightarrow \sum_{j=1}^k b_j \beta_j = 0$

Т.к. b_i - ЛНЗ $\Longrightarrow \forall j = \overline{1,k}: \ \beta_j = 0$

$$\forall v \in V_1: \ \varphi(v) = \sum_{l=1}^m \gamma_l c_l = \varphi(\sum_{l=1}^m \gamma_l a_l) \Longrightarrow v - \sum_{l=1}^m \gamma_l a_l \in \operatorname{Ker} \varphi$$

$$\Longrightarrow \exists \beta_j \in \mathbb{F}: \ v = \sum_{l=1}^m \gamma_l a_l + \sum_{j=1}^k \beta_j b_j$$

Матрицы линейного отображения 8

Пусть: $\mathcal{E} = \{e_1, ..., e_n\}$ - базис в V_1 ; $\mathcal{F} = \{f_1, ..., f_m\}$ - базис в V_2

$$\forall x \in V_1: \ x = \sum_{j=1}^n x_j e_j \Longrightarrow \varphi(x) = \sum_{j=1}^n x_j \varphi(e_j) =$$
$$= \{ \varphi(e_j) = \sum_{i=1}^m a_{ij} f_i \} = \sum_{j=1}^n \sum_{i=1}^m x_j a_{ij} f_i$$

Определение. Назовем $A=(a_{ij})=A_{\varphi,e,f}$ - матрицей φ в базисах $\mathcal E$ и $\mathcal F$. Обозначается: $Y_f = A_{\varphi,e,f} \cdot X_e$ (где Y - столбец координат $\varphi(x)$).

3амечание. Для линейного оператора $\varphi:\ V o V,\ A_{\varphi,e}\equiv A_{\varphi,e,e}$

Алгоритм. Вычисление $Ker \varphi u Im \varphi c$ помощью матрицы A_{φ} :

1.
$$Ker \varphi = \{x = \mathcal{E} \cdot x_{\mathcal{E}} : A_{\varphi} \cdot x_{\mathcal{E}} = 0\}; \dim(Ker \varphi) = n - rkA_{\varphi}$$

- 2. $Im \varphi = \langle \varphi(e_1), ..., \varphi(e_n) \rangle = \{ y = f \cdot Y_f : Y_f = A_\varphi \cdot x_{\mathcal{E}} \}$ $Y \in Im \varphi \iff CJIY A_{\varphi} \cdot x_{\mathcal{E}} = Y \ coвместна \implies \dim(Im \varphi) = rkA_{\varphi}$ (m.e. не зависит от базиса);
- 3. $\dim(\operatorname{Im}\varphi) + \dim(\operatorname{Ker}\varphi) = \dim V_1$

Изменение матрицы линейного отображения при за-8.1мене координат

Утверждение. Пусть $\mathcal{E} = (e_1, ..., e_n)$ - старый, а $\mathcal{E}' = (e'_1, ..., e'_n)$ - новый базисы в V_1 и $\mathcal{F}=(f_1,...,f_n)$ - старый , а $\mathcal{F}'=(f_1',...,f_n')$ - новый базисы в V_2 , C - матрица перехода из $\mathcal E$ в $\mathcal E'$, а D - матрица перехода из $\mathcal F$ в $\mathcal F'$. Тогда:

$$A_{\varphi,\mathcal{E}',\mathcal{F}'} = D^{-1} \cdot A_{\varphi,\mathcal{E},\mathcal{F}} \cdot C$$

Доказательство. Воспользуемся формулами связи координат векторов:

$$\forall x \in V_1: \ x_{\mathcal{E}} = \underbrace{C_{\mathcal{E} \to \mathcal{E}'}}_{C} \cdot x_{\mathcal{E}'}$$
 и $\forall y \in V_2: \ y_{\mathcal{F}} = \underbrace{C_{\mathcal{F} \to \mathcal{F}'}}_{D} \cdot x_{\mathcal{F}'}$ Тогда формулы имеют вид:

$$Y_{\mathcal{F}} = A_{\varphi,\mathcal{E},\mathcal{F}} \cdot x_{\mathcal{E}}$$
 и $Y_{\mathcal{F}'} = A_{\varphi,\mathcal{E}',\mathcal{F}'} \cdot x_{\mathcal{E}'}$

$$(*)$$

Умножим (*) слева на D^{-1} , а также запишем выражение $x_{\mathcal{E}}$ через $x_{\mathcal{E}'}$: $\forall x_{\mathcal{E}'} \in F^n$:

$$D^{-1} \cdot Y_{\mathcal{F}} = D^{-1} \cdot (A_{\varphi,\mathcal{E},\mathcal{F}} \cdot C) \cdot x_{\mathcal{E}'} \Longleftrightarrow Y_{\mathcal{F}'} = (D^{-1} \cdot A_{\varphi,\mathcal{E},\mathcal{F}} \cdot C) \cdot x_{\mathcal{E}'}$$

Возьмем $x_{\mathcal{E}'} = E_j, \ j = 1, ..., n$

3амечание. Для линейного оператора $\varphi: V \to V:$

$$A_{\varphi,\mathcal{E}'} = C_{\mathcal{E}\to\mathcal{E}'}^{-1} \cdot A_{\varphi,\mathcal{E}} \cdot C_{\mathcal{E}\to\mathcal{E}'}$$

Следствие.

1. Для любого линейного отображения ранг его матрицы инвариантен при замене базиса

$$rk A_{\varphi,\mathcal{E}',\mathcal{F}'} = rk A_{\varphi,\mathcal{E},\mathcal{F}};$$

2. Для любого линейного оператора оперделитель и след его матрицы инвариантны при замене базиса

$$\det(A_{\varphi,\mathcal{E}'}) = \det(A_{\varphi,\mathcal{E}})$$

$$tr(A_{\varphi,\mathcal{E}'}) = tr(A_{\varphi,\mathcal{E}})$$

Доказательство.

1. Матрицы C и D невырождены, значит достаточно доказать, что $\operatorname{rk} A = \operatorname{rk} (AC)$, где C - невыроджена.

$$\begin{cases} B = A \cdot C \Longrightarrow \operatorname{rk} B \le \operatorname{rk} A \\ A = (A \cdot C) \cdot C^{-1} \Longrightarrow \operatorname{rk} A \le \operatorname{rk} (AC) \end{cases} \Longrightarrow \underbrace{\operatorname{rk} (AC) \le \operatorname{rk} A \le \operatorname{rk} (AC)}_{\operatorname{rk} (AC) = \operatorname{rk} A}$$

2. $\det(C^{-1}AC) = \det C^{-1} \cdot \det A \cdot \det C = \det A$

3.
$$\operatorname{tr}(AC) = \operatorname{tr}(CA) \Longrightarrow \operatorname{tr}\left[C^{-1} \cdot (AC)\right] = \operatorname{tr}\left[(AC) \cdot C^{-1}\right] = \operatorname{tr}A$$

Теорема. Пусть $a_1, ..., a_n$ - ЛНЗ векторы в V_1 (dim $V_1 = n$), $b_1, ..., b_n$ - случайные векторы в V_2 (dim $V_2 = m$). Тогда $\exists !$ линейное отображение $\varphi : V_1 \to V_2 : \varphi(a_j) = b_j, \ j = 1, ..., n$

Доказательство.

Пусть в некотором базисе ${\mathcal E}$ пространства V_1 вектор $a_j \sim a_j^{\uparrow}$ - столбец координат,

в базисе f пространства V_2 вектор $b_j \sim b_j^{\uparrow}$ По условию, $\forall j=1,...,n: A_{\varphi}\cdot a_j^{\uparrow}=b_j^{\uparrow} \Longrightarrow A_{\varphi}(a_1^{\uparrow},...,a_n^{\uparrow})=(b_1^{\uparrow},...,b_n^{\uparrow})$ или $A_{\varphi} \cdot A = B$, где A_{φ} - искомая матрица.

Отсюда получаем, что $A_{\varphi} = B \cdot A^{-1}$ (т.к. $a_1, ..., a_n$ ЛНЗ).

$$\frac{\left(A\right)}{B} \xrightarrow[\text{строк}]{\Im\Pi} \left(\frac{E}{A_{\varphi}}\right), \ \left(\frac{A}{B}\right) \rightarrow \left(\frac{A}{B}\right) \cdot C_{\text{эл}} = \left(\frac{AC}{BC}\right)$$
 Если $AC = E$, то $C = A^{-1}$ и $BC = BA^{-1} = A_{\varphi}$

Теорема. Если $\dim V_1 < \infty, \ \varphi: \ V_1 \to V_2$ - линейное отображение, то

$$Im \varphi \cong V_1/Ker \varphi$$

Доказательство. Базис ядра дополним до базиса пространства V_1 векторами $e_1,...,e_s$. Тогда любой $v \in V_1$ можно записать в виде:

$$v = \sum_{i=1}^{s} x_i e_i + u$$
, где $u \in \operatorname{Ker} \varphi$

По этому в факторпространстве базис составляет классы $\overline{v} + u = \sum_{i=1}^{s} x_i \overline{e_i}$ Рассмотрим отношение $\overline{\varphi}: V_1/u \to V_2$, где $\overline{\varphi}(\overline{v}) = \overline{\varphi}(v+u) := \varphi(v)$ Отсюда $w = \overline{\varphi}(\overline{v})$. Получаем, что φ - сюръективное линейное отображение (т.к. $\forall w \in V_2 \; \exists \; v \in V_1 : \; \varphi(v) = w$). Также $\operatorname{Ker} \overline{\varphi} = \{0\} = \{\operatorname{Ker} \varphi\}$, потому что если $\overline{\varphi}(\overline{v})=0$, то $\varphi(v)=0$, т.е. $v\in \operatorname{Ker} \varphi=u\Longrightarrow v\in U\Longrightarrow \overline{v}=u=\{0\}$

Линейные операторы 9

Определение. Линейное отображение $\varphi: V \to V$ называется линейным оператором

Далее рассматриваем линейные операторы.

Утверждение.

- 1. $Ker \varphi$ nodnpocmpaнcmeo в <math>V
- $2.~Im\, arphi$ nodnpocmpancmbo в <math>V

3. Если $U \subset V$, то $\varphi(U)$ - подпространство в V

Определение. Подпространство $U \subset V$ называется инвариантным относительно φ (или φ - инвариантным), если:

$$\forall u \in U : \varphi(u) \in U$$
, r.e. $\varphi(U) \subseteq U$

Примеры.

- 1. Пусть $V=U\oplus W$. Рассмотрим $\varphi:V\to W$. Пусть $\varphi(u+w)=u$ проекция V на U вдоль W. Тогда U и W φ инвариантные продрпостранства и $\forall u\in U: \ \varphi(u)=u, \ \text{а также}\ \forall w\in W: \ \varphi(w)=w.$ Итак: $U\cong V/W$
- 2. Пусть $V = \mathbb{R}[t], \ \varphi = \frac{d(...)}{dt}$ и $p(t) \to p'(t)$. Здесь инвариантным является подпространство $\mathbb{R}[t]_n \supset \mathbb{R}[t]_{n-1}, \ n \in \mathbb{N} \cup \{0\}$

Теорема. Если $\varphi: V \to V$ - линейный оператор, $\dim V = n$, U - инвариантное подпространство, то существует базис, в котором A_{φ} имеет блочный вид:

$$A_{\varphi} = \begin{pmatrix} B & D \\ \hline 0 & C \end{pmatrix}$$

 $\Gamma \partial e \ B \ u \ C$ - квадратные: $B_{m \times m}, \ m = \dim U$

 \mathcal{A} оказательство. Выберем базис $e_1,...,e_m$ в U и дополним до базиса в V. Тогда в полученном базисе A_{φ} имеет нужный вид.

3амечание. Пусть $U \in V$ - инвариантное подпространство для линейного оператора $\varphi: V \to V$

Ограничение φ на подпространство U:

$$\varphi|_u: U \to U; \quad \forall u \in U: \ \varphi|_u(u) = \varphi(u)$$

Рассмотрим факторпространтсво:

$$\overline{V} = V/U : \{ v + u \mid u \in U \}$$

и фактор-оператор:

$$\overline{\varphi}(\overline{v}) := \overline{\varphi(v)}$$

 $\forall v' \in \overline{V}: \ v' = v + u, \ u \in U \Longrightarrow \varphi(\overline{v}) = \varphi(v) + \varphi(u) \in U \Longrightarrow \varphi(\overline{v}) = \varphi(v)$ Т.о. $\overline{\varphi}: \ \overline{V} \to \overline{V}$ - линейный оператор.

Теорема.

1. Если существует инвариантное подпространство $U \subset V$, то в подходящем базисе:

$$A_{\varphi} = \begin{pmatrix} B & D \\ 0 & C \end{pmatrix} \tag{I}$$

 $\Gamma \partial e \ B_{m \times m}, \ m = \dim U, \ a \ moчнее: B$ - матрица оператора $\varphi|_u,$ C - матрица оператора $\overline{\varphi}$

2. Если $V=U\oplus W,\ U$ и W - инвариантные для $\varphi,\ mo\ в\ noдходящем$ базисе:

$$A_{\varphi} = \begin{pmatrix} B & 0 \\ \hline 0 & C \end{pmatrix} \tag{II}$$

Причем $B=A_{\varphi|_u},\ C=_{\varphi|_w}.$

Верно и обратное, если в некотором базисе матрица A_{φ} имеет вид (I), то для $\varphi \exists$ инвариантное подпространство, а если A_{φ} имеет вид (II), то V - прямая сумма двух инвариантных подпространств.

Доказательство. Обозначим $\dim V = n, \dim U = m, 0 < m < n$

1. Выберем базис в $U: e_1,...,e_m$ и произвольно дополним его до базиса V векторами $e_{m+1},...,e_n$.

$$\forall u \in U : u = \sum_{i=1}^{m} u_i e_i \Longrightarrow \varphi(u) = \sum_{i=1}^{m} u_i \varphi(e_i)$$

В частности, столбцы $\varphi(e_1)^{\uparrow},...,\varphi(e_m)^{\uparrow}$ имеют вид: $\begin{pmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{pmatrix}$ \Longrightarrow они состав-

ляют матрицу $\binom{B}{0}$. Столбцы матрицы $\varphi(e_{m+1}^{\uparrow},...,e_{n}^{\uparrow})$ соответствуют номерам координат. Видно, что:

$$B = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mm} \end{pmatrix} = A_{\varphi|_u}$$

 $\overline{e_j}=e_j+U,\ j=m+1,...,n$ - базис в факторпространстве $\overline{V}=V/U.$

$$\overline{\varphi(e_j)} = \sum_{i=1}^m a_{ij} e_i + \sum_{k=m+1}^n a_{kj} e_k + U = \sum_{k=m+1}^n a_{kj} e_k + U = \sum_{k=m+1}^n a_{kj} \overline{e_k}$$

$$\Longrightarrow C = \begin{pmatrix} a_{m+1,m+1} & \cdots & a_{m+1,n} \\ \vdots & & \vdots \\ a_{n,m+1} & \cdots & a_{nn} \end{pmatrix}$$
 — матрица оператора $\overline{\varphi}$

2. Если $V = U \oplus W$, векторы $e_{m+1}, ..., e_n$ надо выбирать в W. Остальное аналогично.

Теорема. (Обратная)

Для второго случая, если в базисе $e_1, ..., e_n$ матрица имеет вид (II), то положим $U := \langle e_1, ..., e_m \rangle$, $W := \langle e_{m+1},, e_n \rangle$

Из определения матрицы $A_{\varphi,e}$ следует, что U,W - инвариантные относительно $\varphi,\ \varphi|_u$ имеет матрицу $B,\ \varphi|_w$ - матрицу C.

Замечание. В общем случае, если $V = U_1 \oplus ... \oplus U_s$, U_i - инвариантны относительно $\varphi: V \to V$, то в базисе, согласованным с этим разложением:

$$A_{\varphi} = \begin{pmatrix} B_1 & & 0 \\ & \ddots & \\ 0 & & B_s \end{pmatrix}$$

где B_i - матрица $arphi|_{u_i}$.

Примеры. $\varphi:\ V \to V$

- 1. Кег φ , Im φ , любое подпространство $U \supseteq \operatorname{Im} \varphi$ инвариантны.
- 2. Если $U_1, U_2 \varphi$ -инвариантные подпространства, то $U_1 + U_2$ и $U_1 \cap U_2$ инвариантны

10 Действия над линейными отображениями

Пусть $\varphi:\ V_1 o V_2$ - линейное отображение, $\forall x \in V_1$

- 1. $\forall \lambda \in \mathbb{F} : (\lambda \varphi)(x) = \lambda \varphi(x)$
- 2. Если $\psi: V_1 \to V_2$, то $(\varphi + \psi)(x) = \varphi(x) + \psi(x)$

Утверждение. (1) Относительно этих операций множество $Z(V_1, V_2)$ линейных отображений из V_1 в V_2 является векторным пространством.

Утверждение. (2) Если dim $V_1 = n$, dim $V_2 = m$, mo $Z(V_1, V_2) \cong M_{m \times n}(\mathbb{F})$

Доказательство. Зафиксируем базисы в V_1 и V_2 : e и f соответственно, тогда $\forall \varphi$ взаимооднозначно соответствует его матрица $A_{\varphi,e,f}$ относительно базисов e

и f. $A_{\lambda\varphi} = \lambda A_{\varphi} \ \forall \lambda \in \mathbb{F} \ (\lambda\varphi)(e_j) = \lambda\varphi(e_j) \Longrightarrow$ все столбцы A_{φ} умножаются на $\lambda \Longrightarrow A_{\varphi}$ умножается на λ .

$$\forall j = 1, ..., m : (\varphi + \psi)(e_j) = \varphi(e_j) + \psi(e_j)$$

 \Longrightarrow столбцы $A_{\varphi+\psi}$ имеют вид $\varphi(e_i) + \psi(e_i)$.

Обозначение: $L(V_1, V_2) = \mathfrak{T}(V_1, V_2) = \text{Hom}(V_1, V_2)$.

 $\mathfrak{T}(V)$ - множество линейных операторов на V.

Определение. Произведением линейных операторов $\varphi: V_1 \to V_2$ и $\psi: V_1 \to V_2$ называется их композиция:

$$(\varphi \circ \psi)(x) = \psi(\varphi(x))$$
, где $x \in V_1$

Утверждение. (3) Композиция линейных отображений является линейным отображением, а композиция линейных операторов - линейным оператором.

Утверждение. (4) Пусть V_1, V_2, V_3 - конечномерные векторные пространства, $\psi: V_1 \to V_2, \ \varphi: V_2 \to V_3$ - линейные отображения, тогда, если зафиксировать базисы в этих пространствах, матрица композиции:

$$A_{\psi \circ \varphi} = A_{\psi} \cdot A_{\varphi}$$

Доказательство.

Утверждение (3) - упражнение.

Утверждение (4): Пусть e - базис в V_1 , f - базис в V_2 , g - базис в V_3 .

$$A_{\varphi} = (\varphi(e_1)^{\uparrow} \dots \varphi(e_n)^{\uparrow})$$
 в базисе f

$$A_{\psi} = (\psi(f_1)^{\uparrow} \dots \psi(f_m)^{\uparrow})$$
 в базисе g

 $\forall x=eX,$ обозначим $y=\varphi(x),\ z=\psi(y)$ со столбцами координат Y и Z соответственно. Тогда:

$$Y = A_{\varphi}X, \ Z = A_{\psi}Y = A_{\psi}(A_{\varphi}X) = (A_{\psi}A_{\varphi})X = A_{\psi \circ \varphi}X$$

Теорема. Множество L(V) с операциями $+, \cdot \lambda, \cdot$ является ассоциативной алгеброй с единицей, равной $\mathrm{id}\,V$. Если $\mathrm{dim}\,V = n, \ mo\ L(V) \cong M_n(\mathbb{F})$.

Доказательство. Следует из утверждений (1) - (4).

Утверждение. Если φ - линейный оператор на V, то $\forall k \in \mathbb{N}$ подпространства $Ker \varphi^k$ и $Im \varphi^k$ - инварианты. При этом:

$$\{0\} \subseteq \operatorname{Ker} \varphi \subseteq \operatorname{Ker} \varphi^2 \subseteq \dots$$
$$V \supset \operatorname{Im} \varphi \supset \operatorname{Im} \varphi^2 \dots$$

11 Собственные векторы и собственные значения оператора

Пусть $\varphi:V o V$ - линейный оператор над полем $\mathbb F$

Определение. Вектор $x \in V$ называется собственным вектором оператора φ , если $x \neq 0$ и

$$\exists \lambda \in \mathbb{F}: \ \varphi(x) = \lambda \cdot x \tag{1}$$

Где λ - называется собственным значением оператора φ , соответствующим вектору x.

Пусть $\dim V = n, \ e$ - базис в V, в нём $\forall x = e \cdot X,$ тогда равенство из вышеуказанного определения равносильно:

$$A_{\varphi}X = \lambda X \Longleftrightarrow (A_{\varphi} - \lambda E)X = 0 \tag{2}$$

- это СЛУ для нахождения вектора x, если известна λ . Система (2) имеет ненулевое решение, только если:

$$\det(A_{\varphi} - \lambda E) = 0 \tag{3}$$

Равенство (3) называется характеристическим уравненением. Собственными значениями могут быть только корни характеристического уравнения.

Примеры.

1. $V = D^{\infty}(\mathbb{R})$ - множество бесконечно дифференцируемых функций.

$$\varphi = \frac{d}{dx}, \ \forall f(x) : \ \varphi(f) = f'(x)$$

$$\forall \lambda \in \mathbb{R} : \ (e^{\lambda x})' = \lambda e^x$$

Доказательство. Если $f'(x) = \lambda \cdot f(x)$, то $f(x) = C \cdot e^{\lambda x}$, где $C \neq 0$. Рассмотрим $(f(x)e^{-\lambda x})' = f'(x)e^{-\lambda x} - \lambda f(x)e^{-\lambda x} = 0 \Longrightarrow f(x)e^{-\lambda x} = C$. \square

2. $A_{\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$

Упражнение. Какие существуют собственные векторы и собственные значения у φ во втором примере?

Определение.

$$\chi_A(\lambda) = |A - \lambda E| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} =$$

 $=(a_{11}-\lambda)\cdot(a_{11}-\lambda)\cdot\cdot\cdot(a_{11}-\lambda)+\dots=(-\lambda)^n+(a_{11}+\dots+a_{nn})(-\lambda)^{n-1}+\dots+\det A$ $\chi_A(\lambda)$ - характеристический многочлен матрицы A

Утверждение. (1) $\chi_A(\lambda)$ - не зависит от базиса.

 \mathcal{A} оказательство. В новом базисе: $A_{\varphi}' = C^{-1} \cdot A_{\varphi} \cdot C$

$$\chi_{A'_{\varphi}}(\lambda) = \det(C^{-1}A_{\varphi}C - \lambda E) = \det(C^{-1}(A_{\varphi} - \lambda E)C) = \det(A_{\varphi} - \lambda E)$$

Определение. Вместо $\chi_{A_{\varphi}}(\lambda)=\chi_{\varphi}(\lambda)$ и называется характеристическим многочленом оператора φ

12 Диагонализируемость

Пусть $\varphi:\ V o V$ - линейный оператор

Лемма. Если $a_1,...,a_m \in V$ - собственные векторы оператора φ с собственными значениями $\lambda_1,...,\lambda_m$, причем $\forall i \neq j: \lambda_i \neq \lambda_j$, то $a_1,...,a_m$ - ЛНЗ.

Доказательство.

m = 1: Один вектор $a_1 \neq 0$ ЛНЗ

m>1: Предположение индукции: Любые m-1 вектор, отвечающих попарно различным собственным значениям - ЛНЗ

Запишем: $a_1\alpha_1 + ... + a_{m-1}\alpha_{m-1} + a_m\alpha_m = 0$

Подействуем оператором $\varphi: a_1\lambda_1\alpha_1+...+a_{m-1}\lambda_{m-1}\alpha_{m-1}+a_m\lambda_m\alpha_m=0 \Longrightarrow$

$$a_1(\lambda_1 - \lambda_m)\alpha_1 + \dots + a_{m-1}(\lambda_{m-1} - \lambda_m)\alpha_{m-1} = 0$$

По предположению индукции $\forall i=1,...,m-1:\ \alpha_i(\lambda_i-\lambda_m)=0\Longrightarrow\alpha_i=0$ Остается $\alpha_m a_m=0\Longrightarrow\alpha_m=0$

Следствие. Если φ имеет n попарно различных совственных значений $(\dim V = n)$, то соответствующее собственные векторы, взятые по одному для каждого собственного значения, образуют базис в V (Базис из собственных векторов или собственный базис).

Вид матрицы A_{φ} в базисе из собственных векторов:

Обозначаем базис $\{e_1, ..., e_n\} \in V$, $\varphi(e_j) = \lambda_j e_j$, $j = \overline{1, n}$ $\forall x \in V : \varphi(x) = A_{\varphi,e} \cdot X_e$. Столбец вектора $\varphi(e_1) = \begin{pmatrix} \lambda_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$, $\varphi(e_2) = \begin{pmatrix} 0 \\ \lambda_2 \\ \vdots \\ 0 \end{pmatrix}$,...

$$A_{arphi,e} = egin{pmatrix} \lambda_1 & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & & \lambda_n \end{pmatrix}$$

- диагональная, причем на диагонали находятся собственные значения с учетом нумерации векторов

12.1 Собственное подпространство линейного оператора, заданное собственным значением

Фиксируем собственное значение $\lambda_0 \in \mathbb{F}$ так, что $\exists \ v \in V, v \neq 0 : \ \varphi(v) = \lambda_0 v$ Обозначается: $V_{\lambda_0} = \{v \in V \mid \varphi(v) = \lambda_0 V\}$

Утверждение. (1) V_{λ_0} - $nodnpocmpancmeo\ e\ V,\ V_{\lambda_0} = Ker(\varphi - \lambda_0 \cdot \mathrm{id})$

Если A_{φ} - матрица оператора φ , то в координатах V_{λ_0} - множество всех решений СЛУ.

$$(A_{\varphi} - \lambda_0 E) \cdot X = 0 \Longrightarrow \dim V_{\lambda_0} = n - \operatorname{rk} (A_{\varphi} - \lambda_0 E)$$

Определение.

 $\dim V_{\lambda_0}$ - геометрическая кратность характеристического корня $\lambda = \lambda_0$. Имеет смысл и алгебраическая кратность λ_0 характеристического корня $\chi_{\varphi}(\lambda)$:

$$\chi_{\varphi}(\lambda) = (\lambda_0 - \lambda)^k p(\lambda_0), \ P(\lambda_0) \neq 0, \ k$$
 – алгебраическая кратность

Лемма. Для любого собственного значения λ_0 оператора φ : $\dim V_{\lambda_0} \leq \text{алгебраическая кратность корня } \lambda = \lambda_0 \text{ в } \chi_\varphi(\lambda)$

 \mathcal{A} оказательство. Пусть $\dim V_{\lambda_0}=m\leq n$, выберем базис в $V_{\lambda_0}:\{e_1,...,e_m\}$ и произвольно дополним его до базиса в V (при m< n) векторами $e_{m+1},...,e_n\Longrightarrow$

$$A_{\varphi,e} = \begin{pmatrix} \lambda_1 & 0 & \\ & \ddots & & C \\ 0 & \lambda_m & \\ \hline & 0 & B \end{pmatrix} \Longrightarrow$$

$$|A_{\varphi,e} - \lambda E| = \begin{pmatrix} (\lambda_1 - \lambda) & 0 & \\ & \ddots & \\ 0 & (\lambda_m - \lambda) & \\ \hline & 0 & B - \lambda E \end{pmatrix} = (\lambda_0 - \lambda)^m \cdot |B - \lambda E| = 0$$

Не исключено, что $\lambda=\lambda_0$ - корень уравнения $|B-\lambda E|=0$

3амечание. Любое собственное подпространство V_{λ_0} является φ - инвариантным:

$$\forall v \in V_{\lambda_0}: \ \varphi(v) = w: \ \varphi(w) = \varphi(\varphi(v)) = \lambda_0 \varphi(v) = \lambda_0 w$$

Либо w = 0, либо является собственным вектором.

Следствие. 2 из Леммы о ЛНЗ:

Пусть $\lambda_1,...,\lambda_r$ - все попарно различные собственные значения оператора $\varphi,$ тогда $V_{\lambda_1}+...+V_{\lambda_r}$ - является прямой суммой, т.е.:

$$\forall i = 1, ..., n : V_{\lambda_i} \cap (\sum_{j \neq i} V_{\lambda_j}) = \{0\}$$

Доказательство. Допустим, что $\exists w \in V_{\lambda_i} \cap (\sum_{i \neq i} V_{\lambda_j})$, тогда:

$$w = v_i = \sum_{j \neq i} v_j \Longrightarrow (\sum_{j \neq i} v_j) - v_i = 0$$

Где $(\sum_{j \neq i} v_j)$ - попарно различные собственные значения, т.е. либо 0, либо противоречие с ЛНЗ $\Longrightarrow v_i = w = 0$

Скажем, что φ (или его матрица) приводится к диагональному виду (т.е. диагонализируема), если в V \exists базис, в котором A_{φ} диагональна.

Теорема. Для линейного оператора $\varphi: V \to V(\dim V < \infty)$ следующие условия эквивалентни:

1. A_{φ} - диагонализируема

- 2. $BV \exists basuc us cobcmeeнных векторов$
- 3. Вся характеристические корни принадлежат \mathbb{F} и $\forall i=1,...,r$:

 $\dim V_{\lambda_i} =$ алгебраической кратности корня λ_i

4.
$$V = V_{\lambda_1} \oplus \ldots \oplus V_{\lambda_r}$$

Доказательство.

 $1 \Rightarrow 2$: Если $A_{\varphi} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$, это значит, что:

$$\varphi(e_j)^{\uparrow} = \begin{pmatrix} \lambda_1 & 0 \\ \vdots \\ 0 & \lambda_n \end{pmatrix} \cdot \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ \lambda_j \\ \vdots \\ 0 \end{pmatrix}$$

 $\Longrightarrow arphi(e_j) = \lambda_j e_j$, т.е. e_j - собственный вектор с собственным значением λ_j

 $\underline{2\Rightarrow 1}$: В базисе из собственных векторов марица A_{arphi} диагональна

 $1 \cup 2 \Rightarrow 3$: Выберем базис из собственных векторов $\{f_1, ..., f_n\}$ так, чтобы:

$$\{f_1, ..., f_{m_1}, f_{m_1+1}, ..., f_{m_1+m_2}, ...\}$$

В этом базисе матрица $A_{\varphi,f}$ выглядит:

$$\begin{pmatrix} \lambda_1 & & & & & \\ & \ddots & & & & \\ & & \lambda_2 & & & \\ & & & \ddots & & \\ & & & & \lambda_2 & & \\ & & & & \ddots & \\ & & & & \lambda_r & \\ & & & & & \lambda_r \\ & & & & & \lambda_r \end{pmatrix}$$

 $\implies m_1 + ... + m_r = n$. С другой стороны, если k_i - алгебраическая кратность корня λ_i , то:

$$n = \sum_{i=1}^{n} m_i \le \sum_{i=1}^{r} k_i = \deg[\chi_{\varphi}(\lambda)] = n$$

 $3 \Rightarrow 4: \sum_{i=1}^{r} \dim V_{\lambda_i} = n \Longrightarrow V = V_{\lambda_1} \oplus ... \oplus V_{\lambda_r}$

 $4\Rightarrow 1$: Базис в V - объединение базисов слагаемых

Существование двумерного инвариантного подпространства для линейного оператора над \mathbb{R} , отвечающего мнимому корню характеристического многочлена.

Пусть $\varphi:V\to V$ - линейный оператор, $\dim V=n$, тогда в некотором базисе $V,\, \varphi$ действует матрицей $Y=A_{\varphi}\cdot X$, где $X\in\mathbb{R}^n$, а Y - столбец образа этого вектора $(y=\varphi(x))$. Пусть $\lambda=\alpha+i\beta$ $(\beta\neq 0)$ - корень характеристического многочлена.

Рассмотрим линейный оператор над полем \mathbb{C} , действующий при той же матрице:

$$A_{\varphi}: \forall Z \in \mathbb{C}^n, \ Z \to A_{\varphi} \cdot Z$$

Соответствующий оператор будем обозначать той же буквой. Так как \mathbb{C} алгебраически замкнуто, то \exists собственный вектор Z_0 , отвечающий выбранному λ . Это значит, что:

$$A_{\varphi}Z_0 = \lambda Z_0, \ Z_0 = X_0 + iY_0, \ \text{где } X_0, Y_0 \in \mathbb{R}^n$$

$$\implies A_{\varphi}Z_0 = A_{\varphi}X_0 + iA_{\varphi}Y_0 = (\alpha + i\beta)(X_0 + iY_0) =$$

$$= (\alpha X_0 - \beta Y_0) + i(\beta X_0 + \alpha Y_0) \implies$$

$$\implies \begin{cases} A_{\varphi}X_0 = \alpha X_0 - \beta Y_0 \\ A_{\varphi}Y_0 = \beta X_0 + \alpha Y_0 \end{cases}$$

Обозначим x_0 и $y_0 \in V$ векторы со столбцами координат X_0 и Y_0 соответственно, тогда:

$$\begin{cases} \varphi(x_0) = \alpha x_0 - \beta y_0 \\ \varphi(y_0) = \beta x_0 + \alpha y_0 \end{cases} \implies \text{подпространство } U := \langle x_0, y_0 \rangle \subset V$$

 $\Longrightarrow U$ является инвариантным подпространством для φ .

Теперь докажем, что $\dim U = 2$

Доказательство. Предположим, что dim U=1, то есть $y_0=\mu x_0$, где $\mu\in\mathbb{R}$. Тогда $\varphi(x_0)=(\alpha-\beta\mu)x_0\Longrightarrow$ если $x_0\neq 0$, то x_0 - собственный вектор для φ (для y_0 аналогично). Но эти векторы не были собственными для φ .

$$A_{arphi|_U}=egin{pmatrix} lpha & eta \ -eta & lpha \end{pmatrix}$$
 имеет корни $lpha\pm ieta
otin\mathbb{R}$ — противоречие

Теорема. Любой линейный оператор в конечномерном вещественном векторном пространстве имеет одномерное или двумерное подпространство.

Доказательство. Если $\exists \ \lambda \in \mathbb{R}$ - корень характерического многочлена, ему отвечает собственный вектор $u_i \in V, \ u_i \neq 0, \Longrightarrow \langle u_i \rangle$ - одномерное инвариантное подпространство.

Если $\forall \lambda \in \mathbb{C} \setminus \mathbb{R}$, то $\exists U$ - двумерное инвариантное подпространство. \square

Вместо диагонализируемости можно использовать следующее утверждение:

$$A'_{\varphi} = \begin{pmatrix} \lambda_1 & & & & \\ & \ddots & & & & \\ & & \lambda_r & & & \\ & & & \lambda_r & & & \\ & & & \alpha_1 & \beta_1 & & \\ & & & -\beta_1 & \alpha_1 & & \\ & & & & \ddots & \\ & & & & \alpha_m & \beta_m \\ & & & -\beta_m & \alpha_m \end{pmatrix}$$

где $\lambda_i \in \mathbb{R}, \ i = \overline{1,r}, \ a \beta_j \neq 0, \ j = \overline{1,m}$

13 Анулирующие многочлены линейных операторов

Пусть $\varphi:\ V \to V$ - линейный оператор над полем $\mathbb{F}.$

Определение. Линейный оператор $\varphi: V \to V$ такой, что $\forall v \in V: \varphi(v) = v$, называется тождественным оператором и обозначается id.

Определение. Многочлен $f(t) = a_0 + a_1 t + \ldots + a_m t^m \in \mathbb{F}[t]$, где $a_1 \ldots a_m \in \mathbb{F}$, называется анулирующим многочленом оператора φ

$$f(\varphi) = a_0 \cdot \mathrm{id} + a_1 \varphi + \ldots + a_m \varphi^m = 0 \Longrightarrow f(A_\varphi) = 0$$

$$\Longrightarrow A_{f(\varphi)} = f \cdot A_{\varphi} = a_0 E + a_1 A_{\varphi} + \ldots + a_m A_{\varphi}^m.$$

Пример. $V = \mathbb{R}[t]_n, \ \ \varphi = \frac{d}{dt}$

$$\varphi^n(t^n)=n!,\; \varphi^{n+1}\equiv 0\Longrightarrow$$
 для $\varphi=rac{d}{dt}t^{n+1}$ — анулирующий многочлен

Утверждение. Eсли $\dim V=n\Longrightarrow \exists$ многочлен $\deg \leq n^2$, анулирующий $\varphi.$

Доказательство. $\dim L(V)=n^2,\ L(V)\cong M_n(\mathbb{F})\Longrightarrow$ операторы $\{Id,\ \varphi,\ \varphi^2,\ \dots,\ \varphi^{n^2}\}$ - линейно зависимы, так как их больше $n^2\Longrightarrow$

$$\exists a_0, ..., a_{n^2} \in \mathbb{F} : a_0 \cdot id + a_1 \varphi + ... + a_{n^2} \varphi^{n^2} = 0$$

 $\Longrightarrow a_0 + a_1 t + \ldots + a_{n^2} t^{n^2}$ - анулирующий многочлен для φ

Определение. Многочленной матрицей (матричным многочленом) называется матрица $P=(P_{ij}(\lambda))$, где $P_{ij}(\lambda)$ - многочлены над полем, над которым задано векторное пространство.

Пример.

$$P = \begin{pmatrix} 1 - \lambda^2 & 2\lambda + 1 \\ 3\lambda^2 & \lambda^2 + \lambda + 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix} \cdot \lambda + \begin{pmatrix} -1 & 0 \\ 3 & 1 \end{pmatrix} \cdot \lambda^2$$

- многочлен от λ с матричными коэффициентами.

Определение. Оператор $\varphi:V\to V$ называется нулевым оператором, если образом любого вектора является нулевой вектор.

Определение. Для матрицы $A = (a_{ij})$ присоединённой матрицей называется матрица $\widehat{A} = (A_{ij})$, то есть $\widehat{a_{ij}} = A_{ji}$.

Свойство.

$$A \cdot \widehat{A} = \begin{pmatrix} |A| & & \\ & \ddots & \\ & & |A| \end{pmatrix} = |A| \cdot E$$

Теорема. Гамильтона-Кэли

Характеристический многочлен $\chi_{\varphi}(\lambda)$ является анулирующим многочленом для линейного оператора φ , то есть $\chi_{\varphi}(\varphi)=0$, где θ - нулевой оператор. В матричной форме:

$$\forall A \in M_n(\mathbb{F}): \ \chi_A(A) = 0$$

 \mathcal{A} оказательство. Пусть A - данная матрица, тогда:

$$\chi_A(\lambda)|A - \lambda E| = \sum_{i=0}^n p_i \lambda^i$$

$$p_i \in \mathbb{F}, \ p_n = (-1)^n, \ \chi_A(A) = \sum_{i=0}^n p_i A^i$$
 (считаем, что $A^0 = E$)

Составим матрицу:

$$\widehat{A-\lambda E}=\sum_{j=0}^{n-1}D_j\lambda^j$$
, где $D_j\in M_n(\mathbb{F})$

Рассмотрим равенство:

$$(A - \lambda E)(\widehat{A - \lambda E}) = \chi_A(\lambda)E$$

$$(A - \lambda E) \cdot \sum_{j=0}^{n-1} D_j \lambda^j = \sum_{j=0}^{n-1} (AD_j \lambda^j) - \sum_{j=0}^{n-1} D_j \lambda^{j+1} =$$

$$= AD_0 + \sum_{j=1}^{n-1} (AD_j - D_{j-1}) \lambda^j - D_{n-1} \lambda^n = \chi_A(\lambda) E = (\sum_{j=0}^n p_j \lambda^j) E$$

Приравняем матричные коэффициенты при соответствующих степенях λ :

$$E \cdot \begin{vmatrix} \lambda^0 : & AD_0 = P_0E \\ A \cdot & \lambda^1 : & AD_1 - D_0 = P_1E \\ \vdots & & & \\ A^j \cdot & \lambda^j : & AD_j - D_{j-1} = P_jE \\ \vdots & & & \\ A^n \cdot & \lambda^n : & AD_n - D_{n-1} = P_nE \end{vmatrix}$$

Домножим равенства с любой стороны на соответствующие степени A и сложим:

$$\Longrightarrow \chi_A(A)E = 0$$

13.1 Минимальный анулирующий многочлен линейного оператора

Определение. Минимальным анулирующим многочленом линейного оператора $\varphi: V \to V$ - это анулирующий многочлен минимальной степени, анулирующий φ

Обозначается: $\mu_{\varphi}(\lambda)$ (Зачастую его выбирают со старшим коэффициентом = 1) Ясно, что:

$$m = \deg \mu_{\varphi}(\lambda) \le n \le \deg \chi_{\varphi}(\lambda)$$

Теорема.

- 1. $\mu_{\varphi}(\lambda)$ делит анулирующий многочлен оператора φ (в частности $\chi_{\varphi}(\lambda)$)
- 2. Если $\mu_{\varphi}(\lambda)$ тоже минимальный многочлен φ , то:

$$\mu'_{\varphi}(\lambda) = \alpha \mu_{\varphi}(\lambda), \ \alpha \neq 0$$

Он определен единственным образом с условием, что страший коэффииент = 1

3. Если все корни λ_i характеристического многочлена принадлежат \mathbb{F} , то они являются и корнями минимального многочлена

Доказательство.

1. Пусть $p(\varphi) = 0$, для некоторого $p(\lambda) \in \mathbb{F}[\lambda]$ Разделим p с остатком на μ_{φ} :

$$p(\lambda) = \mu_{\varphi}(\lambda) \cdot p(\varphi) + r(\varphi) \Longrightarrow r(\varphi) = 0$$
$$\Longrightarrow \deg \mu_{\varphi}(\lambda) = \min \Longrightarrow r(\lambda) = 0$$

- 2. Т.к. $\mu_{\varphi}(\lambda) \mid \mu'_{\varphi}(\lambda)$ и $\mu'_{\varphi}(\lambda) \mid \mu_{\varphi}(\lambda) \Longrightarrow \frac{\mu'_{\varphi}}{\mu_{\varphi}} = \alpha \in \mathbb{F}^* = \mathbb{F} \setminus \{0\}$ Если $\mu_{\varphi}(\lambda) = \lambda^m + \dots$ и $\mu'_{\varphi}(\lambda) = \lambda^m + \dots \Longrightarrow \alpha = 1$
- 3. Допустим, что $\exists j: \ \mu_{\varphi}(\lambda_j) \neq 0$, т.е. в разложение μ_{φ} не входит $(\lambda \lambda_j)$ $\Longrightarrow \exists$ вектор $v \in V: \ \varphi(v) = \lambda_j r$

$$0 = \mu_{\varphi}(\lambda)(v) = \prod_{i \neq j} (\varphi - \lambda_i)(v) \neq 0$$

- противоречие

Примеры.

1.

$$A_{\varphi} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}, \ \chi_{\varphi}(\lambda) = (2 - \lambda)^{3}$$

$$A_{\varphi} - 2E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ (A - 2E)^2 \neq 0, \ (A - 2E)^3 = 0 \Longrightarrow \mu_{\varphi} = -\chi_{\varphi}$$

2.

$$A_{\varphi} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \chi_{\varphi} = (2 - \lambda)^{2} (1 - \lambda)$$
$$(A_{\varphi} - 2E)(A_{\varphi} - E) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0 \Longrightarrow \mu_{\varphi}(\lambda) = (\lambda - 2)(\lambda - 1)$$

Вопросы:

- 1. Для каких операторов φ (или A_{φ}) $\chi_{\varphi}(\lambda) = \pm \mu_{\varphi}(\lambda)$?
- 2. Для каких φ корни $\mu_{\varphi}(\lambda)$ простые?

Определение. Оператор φ нильпотентный, если:

$$\exists L \in \mathbb{N}: \ \varphi^L = 0$$

Если L - минимальный с этим условием, то L - индекс нильпотентности

Пример. $D=rac{d}{dt}$ в пространстве $\mathbb{R}[t]_n$, то $D^{n+1}=0$

Утверждение. Все собственные значения нильпотельного оператора = 0

Доказательство. Если $v \neq 0, \ \varphi(v) = \lambda v$:

$$\Longrightarrow \varphi^L = \lambda^L v \neq 0 \Longrightarrow \lambda = 0 \Longrightarrow \chi_{\varphi}(\lambda) = \pm \lambda^n$$

14 Корневые подпространства

 $\varphi:\ V o V$ - линейный оператор над $\mathbb{F},\ \dim V=n$

Все корни характеристического многочлена для φ принадлежат F так, что:

$$\chi_{\varphi}(\lambda) = (-1)^n (\lambda - \lambda_1)^{k_1} \cdots (\psi - \psi_s), \ (\lambda - \lambda_j^{k_s}, \ \forall i \neq j: \ \lambda_i \neq \lambda_j, \ \sum_{i=1}^s k_i = n$$

Рассмотрим:

$$\frac{1}{\chi_{\varphi}(\lambda)} = \frac{f_1(\lambda)}{(\lambda - \lambda_1)^{k_1}} + \dots + \frac{f_s(\lambda)}{(\lambda - \lambda_s)^{k_s}} \mid \cdot \chi_{\varphi}(\lambda)$$

$$\Longrightarrow 1 = f_1(\lambda) \prod_{i \neq 1} (\lambda - \lambda_i)^{k_i} + \dots + f_s(\lambda) \prod_{i \neq s} (\lambda - \lambda_i)^{k_i}$$

$$1 = q_1(\lambda) + \dots + q_s(\lambda) \Longrightarrow \mathrm{id} = q_1(\lambda) + \dots + q_s(\lambda) = Q_1 + \dots + Q_s$$

$$\forall x \in V : Q_1(x) + \dots + Q_s(x) \Longrightarrow V = \mathrm{id}Q_1 + \dots + Q_s$$

Обратим внимание, что:

$$\forall i \neq j: \ Q_i Q_j = Q_j Q_i = 0$$

Т.к. в $q_i(\lambda)q_j(\lambda)$ входят все множители, входящие в разложение $\chi_{\varphi}(\lambda) \Longrightarrow$ по теореме Гамильтона-Кэли:

$$q_i(\varphi)q_j(\varphi) = 0$$

Умножим равентсво $id = Q_1 + ... + Q_i + ... + Q_s$ на Q_i :

$$\Longrightarrow idQ_i = Q_i = Q_iQ_1 + \dots + Q_iQ_i + \dots = Q_iQ_s \Longrightarrow Q_i^2 = Q_i$$

Определение. $Q_i^2 = Q_i$ - идемпотентный оператор

Разложение \forall вектора x в сумму: $Q_1(x)+...+Q_s(x)$ - единстванно Докажем равенство: $x=y_1+...+y_s$, надо доказать, что $y_i=x_i$ Из равенства $x=Q_1(x_1)+...+Q_s(x_s) \Longrightarrow Q_i(x)=Q_i(Q_i(x))=Q_i(x_i) \Longrightarrow x_i=y_i$, где $y_i \in \mathrm{Im} Q_i$

Введем обозначение $K_i = \operatorname{Im} Q_i$

Докажем, что $V=K_1\oplus ...\oplus K_s$

Определение. Подпространство $K_i = {\rm Im} Q_i$ назовем корневым подпространством, отвечающим корню λ_i

$$q_i(\lambda) = \frac{f_i(\lambda) \cdot \chi_{\varphi}(\lambda)}{(\lambda - \lambda_i)^{k_i}}$$

Утверждение.

1. Корневые подпространства инвариантны

2.
$$K_i = Ker(\varphi - \lambda_i \cdot id)^{k_i}, \ 1 \le i \le s$$

Доказательство.

1. Для линейного оператора φ и линейного $q(\lambda)$ подпространство $q(\varphi)(V)$ инвариантно

$$q(\lambda) = a_0 + a_1 \lambda + \dots + a_m \lambda^m, \quad q(\varphi) = a_0 + a_1 \varphi + \dots + a_m \varphi^m$$

Возьмем $v={\rm Im}q(v)\Longrightarrow\exists\;u\in V:\;v=q(\varphi)(u)\Longrightarrow\varphi(v)=(\varphi\cdot q(\varphi))(u)=q(\varphi)(\varphi(u))\in{\rm Im}q(u)$ Оператор φ и любой $q(\varphi)$ перестановочны

2. $\forall x_i \in \operatorname{Im} Q_i \Longrightarrow x_i = Q_i(u_i)$

$$(\varphi - \lambda_i \cdot \mathrm{id})^{k_i} = (\varphi - \lambda_i \cdot \mathrm{id})^{k_i} \cdot \prod_{j \neq i} (\varphi - \lambda_j E)^{k_j} (u_i) = 0$$

$$\chi_{\varphi}(\varphi)$$

$$\Longrightarrow K_i \subseteq \operatorname{Ker}(\varphi - \lambda_i \cdot \operatorname{id})^{k_i}$$

15 Теорема Жордана

Основное условие: $\varphi: V \to V$ - линейный оператор, все его корни $\in \mathbb{F}$

$$\chi_{\varphi}(\lambda) = (-1)^n (\lambda - \lambda_1)^{k_1} \cdot \ldots \cdot (\lambda - \lambda_s)^{k_s} \ (\forall i \neq j : \ \lambda_i \neq \lambda_j \ \text{и} \ \sum_{i=1}^s k_i = \dim V)$$

$$V=K_1\oplus\ldots\oplus K_s$$
, где $K_i=\mathrm{Ker}(\varphi-\lambda_{\mathrm{id}}d)^{k_i}$ — корневое подпространство $V_{\lambda_i}=\{x\in V|\varphi(x)=\lambda_ix\},\ \dim V_{\lambda_i}\leqslant k_i=\dim K_i$

Так как K_i - инвариантное подпространство относительно оператора φ , можно рассмотреть ограничение:

$$(\varphi - \lambda_i \text{ id})|_{K_i} := B_i$$

Из определения k_i следует, что $B_i^{k_i}=0$, то есть B_i - нильпотентный оператор. Обозначим h_i - показатель нильпотентности оператора, т.е. $B_i^{h_i}=0$, но $B_i^k \neq 0 \ \forall k < h_i$

В базисе, согласованном с этим разложением:

$$A_{\varphi} = \begin{pmatrix} \boxed{A_1} & & & \\ & \boxed{A_2} & & \\ & & \ddots & \\ & & \boxed{A_s} \end{pmatrix}$$

где $A_i = A_{\varphi_{k_i}}$ - марица порядка $k_i, \ A_i - \lambda_i E_{k_i} = B_i, \ B_i^{k_i} = 0$ Обозначим $K_i := K, \ B_i := B, \ k_i := k, \$ тогда:

$$\forall \bar{x} \in K : B^k(x) = 0$$

если $x \neq 0$, то \exists наименьшее значение m:

$$B^{m}(x) = 0, \ B^{m-1}(x) \neq_{0} \ (m \leqslant h)$$

Назовём это высотой вектора x.

Для фиксированного вектора $x \neq 0$ (высоты m) рассмотрим векторы:

$$x, B^0x, Bx, \dots, B^{m-1}x, B^mx = 0$$

Определение. Векторы $\{x, B^0x, Bx, \dots, B^{m-1}x = 0\}$ называются жордановой цепочкой.

Лемма. Вышеуказанные векторы являются линейно независимыми.

Доказательство. Предположим, что:

$$\alpha_0 x + \alpha_1 B^0 x + \ldots + \alpha_{m-1} B^{m-1} x = 0$$

Подействуем на это равенство оператором B^{m-1} :

$$\alpha_0 B^{m-1} x = 0 \implies \alpha_0 = 0$$

На оставшиеся векторы подействуем оператором B^{m-2} :

$$\alpha_1 B^{m-1} x = 0 \implies \alpha_1 = 0$$

и т.д. Получим, что $\forall i=\overline{0,m-1}: \ \alpha_i=0 \implies$ векторы являются линейно независимыми.

Определение. Подпространство, натянутое на эти векторы:

$$\langle x, B^0 x, Bx, \dots, B^{m-1} x \rangle$$

называется циклическим подпространством, порождённым жордановой цепочкой. Данное подпространство обозначим $U, \dim U_x = m$.

Обычно векторы жордановой цепочки нумеруют с конца, то есть:

$$a_1 = B^{m-1}x, \ a_2 = B^{m-2}x, \dots, a_m = x$$

Тогда a_1 - собственный вектор для B, и для $\forall j=\overline{2,m}:\ a_{j-1}=Ba_j$ Векторы a_j называются присоединёнными к вектору a_{j-1} К вектору a_1 : a_2 - присоединённый, a_3 - второй присоединённый и т.д.

Определение.

Матрица ограничения оператора B на подпространство $U_x = \langle a_1 \dots a_m \rangle$:

$$B|_{U_x} = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ & & & & 0 \end{pmatrix} = J_k(0)$$

называется жордановой клекткой с собственным значением $\lambda=0$

$$\lambda = \lambda_i: \ A_{arphi|_{U_x}} = egin{pmatrix} \lambda_i & 1 & & & & \ & \lambda_i & 1 & & & \ & & \ddots & \ddots & & \ & & & \lambda_i & 1 & \ & & & & \lambda_i & 1 \ & & & & & \lambda_i \end{pmatrix} = J_k(\lambda_i)$$

- жорданова клектка с собственным значением $\lambda = \lambda_i$, где:

$$\varphi(a_2) = a_1 + \lambda_i a_2, \ \varphi(a_{j+1}) = a_j + \lambda_i a_{j+1}$$

Теорема. Жордана

Если все характеристические корни опертора $\varphi: V \to V$ принадлежат полю \mathbb{F} , то V является прямой суммой циклических подпространств для оператора φ . Это равносильно тому, что в V существует базис, составленный из жордановых цепочек. Такой базис называется жордановым базисом.

Если жордановый бадис уже построен: Пусть имеются r жордановых цепочек, отвечающих собственным значениям $\lambda_1, \ldots, \lambda_r$, необязательно различным, длины которых m_1, \ldots, m_r соответственно, тогда в этом базисе:

$$A_{\varphi} = \begin{pmatrix} \boxed{J_{m_1}(\lambda_1)} & & & 0 \\ & \boxed{J_{m_2}(\lambda_2)} & & \\ & & \ddots & \\ 0 & & \boxed{J_{m_r}(\lambda_r)} \end{pmatrix} \quad \sum_{i=1}^r m_i = n = \dim V$$

- жорданова матрица - жорданова нормальная форма (ЖНФ) матрицы A_{φ} .

Теорема. Жордана (матричная формулировка)

Для любой матрицы $A \in M_n(\mathbb{F})$, все характеристические корни которой $\in \mathbb{F}$, \exists матрица C (det $C \neq 0$) такая, что:

$$C^{-1}AC = J$$

жорданова матрица. При этом жордановы клетки определены для матрицы
 А единственным образом с точностью до расположения клеток на диагонали жордановой матрицы.

 $\it Замечание.$ Матрицу $\it A$ можно интерпретировать как матрицу линейного оператора $\it \varphi$, для него верна теорема Жордана.

Доказательство. (См. Шафаревич И.Р. "Линейная алгебра") Доказательство достаточно провести для ограничения оператора на каждое корневое подпространство K_i , в этом случае обозначаем $B=(\varphi-\lambda_i\mathrm{id}),$ где B - нильпотентный оператор

 $oldsymbol{\Pi}$ емма. Eсли B - mакой оператор в пространстве V, что:

$$ImB = B(V) \subset V$$

 $mo\ V\ oбладаеm\ (n-1)$ -мерным инвариантным noдnpocmpancmsom.

Пусть $e_1,...,e_m$ - базис в ${\rm Im}B,\ m< n=\dim V$ Дополним его до базиса в V векторами $e_{m+1},...,e_n$, тогда:

 $\langle e_1, ..., e_{n-1} \rangle$ — инвариантное подпространство:

$$\forall w = \sum_{i=1}^{n-1} \beta_i e_i \Longrightarrow B_w = \sum_{i=1}^{n-1} \beta_i B e_i \in \operatorname{Im} B \subseteq W$$

⇒ W - инвариантное подпространство

Ниже будем считать, что $B:\ V \to V$ - нильпотентный оператор,

 $\dim V = n, \ W - (n-1)$ -мерное инвариантное подпространство в V

Будем проводить индукцию по n:

Если n=1, то B=0 и любой базис - жорданов

Пусть n>1, предположение индукции: в W \exists базис для $B|_w$

Выберем вектора $a \in V \setminus W$. По предположению индукции:

$$W = U_1 \oplus ... \oplus U_r$$

Если вектор a - собственные для B, а т.к. он ЛНЗ с векторами из W, то:

$$V = U_1 \oplus \ldots \oplus U_r \oplus \langle a \rangle$$

- нужное разложение пространства V

Если a - не собственный, то он порождает жорданову цепочку некоторой длины m, которая не содержится в W.

Лемма. Путсь U - циклическое подпространство, порожденное корневым вектором е высоты m. Тогда $\forall y \in U$ представляется в виде:

$$y=f(B)e,\ arepsilon \partial e\ f(t)-$$
 минимальной степени $\leq n-1$

Лемма. Если $U = \langle e, Be, ..., B^{m-1}e \rangle$, то:

$$\forall y \in U \exists f(t) \in F[t] : y = f(B)e, \deg f \le m-1$$

Eсли $f(0) \neq 0$, то высота y = m, то есть y пораждает то же самое циклическое подпространство.

Доказательство. Пусть $B: V \to V$ - нильпотентный оператор, $\dim V = n, \ W - (n-1)$ -мерное подпространство, содержащее $\operatorname{Im} B$. Предположение индукции: $W = U_1 \oplus ... \oplus U_r$, т.е. $\forall w \in W$:

$$w = u_1 + \dots + u_r, \ U_i = \langle e_i, Be_i, \dots \rangle$$

Выбераем вектор $e \in V \setminus W$, тогда e ЛНЗ с векторами из W. Рассмотрим $Be \in W$ так, что $(*)Be = u_1 + ... + u_r, \ u_i \in U_i$. Если Be = 0, то:

$$V = \langle e \rangle \oplus U_1 \oplus ... \oplus U_r$$
 – то, что нам и надо

Если $Be \neq 0$, то найдется i, что $u_i \neq 0$. Тогда h(e) = m+1, т.к. h(Be) = m (это значит, что $B^{m-1}e = 0$, $B^me \neq 0$)

Если в разложении (*) $u_i \in B(U_i) \Longrightarrow \exists v_i : u_i = Bv_i$

Рассмотрим вместо e вектор $e - v_i$: $B(e - v_i) = u_1 + ... + u_i + ... + u_r - u_i \Longrightarrow$ в разложение такого вектора u_i не входит.

Заменяя e на нужные разности $e-v_i$, можно считать либо $u_i \not\in B(U_i)$, либо $u_i=0$

Хотя бы один из векторов $u_i \neq 0$, выберем из них вектор, имеющий максимальную высоту $m \ (m = \max(\dim U_i))$

Скажем, пусть это будет вектор u_1 , тогда h(e) = m + 1

Докажем, что:

$$V = \langle e, Be, ..., B^m e \rangle \oplus U_2 \oplus ... \oplus U_r$$

Сумма размерностей подпространств в правой части:

$$(m_1+1) + \dots + m_r = n = \dim V$$

Достаточно доказать, что:

$$\langle e, Be, ..., B^m e \rangle \cap (U_2 \oplus ... \oplus U_r) = \{0\}$$

Пусть $v = \lambda_1 e + ... + \lambda_{m+1} B^m e \in U_2 \oplus ... \oplus U_r$

Т.к. $e \not\in W$, то $\lambda_1=0$, но $Be_i=u_1+...+u_r$ - проекция разложения на $U_1\Longrightarrow$

$$\lambda_2 u_1 + \lambda_3 B u_1 + \dots + \lambda_{n+1} B^{n-1} u_1 = 0 \Longrightarrow \lambda_2 = \dots = \lambda_{n+1} = 0 \Longrightarrow v_i = 0$$

3 a m e v a n u e . r - количество векторов циклического подпространства в разложении корневого подпространства K, отвечающего корню λ_0 , равно геометрической кратности корня λ_0 характеристического многочлена.

15.1 Изображение разложения корневых подпространств

Обозначим: $r=\dim \operatorname{Ker} B$ - размерность собственного подпространства Занумеруем собственные векторы, входящие в цепочки, располагая цепочки по убыванию высоты. m - максимальная высота цепочки, 1 - минимальная Также введем обозначение для последовательных присоединённых векторов: есть p_1 цепочек высоты m, p_2 - высоты $m-1,\ldots,\,r-(p_1+\ldots+p_{r-1})$ - высоты 1

 $V = U_1 \oplus U_r$, dim $U_{i+1} \le \dim U_i$

$$BV = BU_1 \oplus ... \oplus BU_r$$

$$\vdots$$

$$B^kV = B^kU_1 \oplus ... \oplus B^kU_r$$

Если $\dim U_i = m_i$, $\dim(B_k U_i) = \begin{bmatrix} m_i - k, & \text{если } k < m_i \\ 0, & \text{если } k \ge m_i \end{bmatrix}$

$$\dim(B^k V) = \sum_{i=1}^r \dim B^k U_i = q_{k+1} + 2q_{k^2} + \dots + (m-1)q_m$$

Пусть q_i - число циклических подпространств размерности $i,\ 1 \leq i \leq r$ Обозначим $r_k = \mathrm{rk} B^k$

Для k=0 до m-1 получим равенства:

$$k=0:\ q_1+2q_2+...+mq_m=n$$
 $k=1:\ q_2+2q_3+...+(m-1)q_m=r_1=\mathrm{rk}B$ \ldots $q_m=r_{m-1}=\mathrm{rk}B^{m-1}\neq 0$ $B^m=0$ на корневом подпространстве

Вычитая их каждого уравнения слудующее, получим систему:

$$\begin{cases} q_1 + q_2 + \dots + q_m = n - r_1 \implies q_1 = n - 2r_1 + r_2 \\ q_2 + \dots + q_m = r_1 - r_2 \implies q_2 = r_1 - 2r_2 + r_3 \\ \dots \\ q_m = r_{m-1} - r_m \ (r_m = 0) \\ \implies q_i = r_{i-1} - 2r_i + r_{i+1} \ (i = 1, \dots, m-1) \end{cases}$$

Вывод: количество и порядок (высоты цепочек) однозначно опреледяется по матрице $B=A|_{\varphi-\lambda{\rm id}}$ - эти ранги не зависят от конкретного разложения \Longrightarrow определяются единственным образом.

Следствие. Пусть:

$$\chi_{\varphi} = (-1)^n (\lambda - \lambda_1)^{k_1} \cdot \dots \cdot (\lambda - \lambda_s)^{k_s}$$

- характеристический многочлен

$$\mu_{\varphi} = (\lambda - \lambda_1)^{m_1} \cdot \dots \cdot (\lambda - \lambda_s)^{m_s}$$

- минимальный многочлен

Tогда $\forall i=\overline{1,s}: m_i$ равна \max размерности жордановой клетки, отвечающей корню λ_i

Следствие. Критерий диагонализируемости в терминах тіп многочлена:

Оператор φ диагонализируем $\iff m_1 = ... = m_s = 1$

 \mathcal{A} оказательство. Достаточно доказать для каждого корневого подпространства k_i

$$B = A_{\varphi - \lambda_i \mathrm{id}}|_{k_i}$$

- блочно-диагональная матрица с клетками размера m_j

Переделываем:

Применим оператор B:

$$\begin{cases} \dim V = q_1 + 2q_2 + \dots + (m-1)q_{m-1} + mq_m = n \\ \dim \operatorname{Im} B = q_2 + \dots + (m-2)q_{m-1} + (m-1)q_m = r_1 \\ \vdots \\ \dim \operatorname{Im} B^{m-1} = q_m = r_{m-1} \end{cases}$$

Некоторые применения приведут матрицу к жордановой форме (в частности, диагонализируемости)

15.2 Решение СЛАУ

Пусть дана система AX = B с квадратной матрицей A, все характеристические корни которой $\in \mathbb{R}$.

Сделаем замену:

$$X = CY \Longrightarrow (AC)Y = B \Longleftrightarrow (\underbrace{C^{-1}AC}_{y})Y = C^{-1}b = b'$$

Можно взять C - матрицу перехода к жорданову базису

$$y = \begin{pmatrix} Y_{k_1}(\lambda_1) & 0 \\ & \ddots & \\ 0 & Y_{k_i}(\lambda_i) \end{pmatrix}$$

Если y жорданова клетка, то уравнения:

$$\begin{cases} \lambda x_1 + x_2 = b_1' \\ \lambda x_2 + x_3 = b_2' \end{cases}$$
 легко решить

15.3 Решение СЛДУ

$$X = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}, \quad \frac{dx}{dt} = \begin{pmatrix} \dot{x}_1 \\ \vdots \\ \dot{x}_n \end{pmatrix}$$

 $\dot{X}=AX$, где A - квадратная

$$X = CY \Longrightarrow \dot{X} = C\dot{Y}$$

$$C\dot{Y} = (AC)Y \Longrightarrow \dot{Y} = (C^{-1}AC)Y$$

Если матрица $C^{-1}AC$ диагональная: $C^{-1}AC = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}, \ \lambda_i \neq 0$ получаем систему:

$$\begin{cases} \dot{y}_1 = \lambda_1 y_1 \\ \vdots \\ \dot{y}_n = \lambda_n y_n \end{cases} \Longrightarrow \begin{cases} y_1 = C_1^{\lambda_1 t} \\ \vdots \\ y_n = C_n e^{\lambda_n t} \end{cases}$$

Тогда X = CY

Если

$$C^{-1}AC = J_k(\lambda_0) = \begin{pmatrix} \lambda_1 & 1 & & 0 \\ & \ddots & \ddots & \\ & & \lambda_{n-1} & 1 \\ 0 & & 0 & \lambda_n \end{pmatrix} \Longrightarrow \begin{cases} \dot{y}_1 = \lambda_0 y_1 + y_2 \\ \vdots \\ \dot{y}_{n-1} = \lambda_0 y_{n-1} + y_n \\ \dot{y}_n = \lambda_0 y_n \end{cases}$$

решаем снизу вверх.

15.4 Функции от матриц

$$(C^{-1}AC) = J = \begin{pmatrix} J_{k_1}(\lambda_1) & 0 \\ & \ddots & \\ 0 & J_{k_i}(\lambda_i) \end{pmatrix} \Longrightarrow A = CYC^{-1}$$

$$\Longrightarrow A^n = (CYC^{-1})(CYC^{-1})...(CYC^{-1}) = CY^nC^{-1}$$

$$J^n = \begin{pmatrix} J_{k_1}^n(\lambda_1) & 0 \\ & \ddots & \\ 0 & & J_{k_i}^n(\lambda_i) \end{pmatrix}$$

Для жордановой клетки:

$$\begin{pmatrix} \lambda_1 & 1 & 0 \\ \ddots & \ddots & \\ \lambda_{n-1} & 1 \\ 0 & 0 & \lambda_n \end{pmatrix}^n = \begin{pmatrix} \lambda E + \begin{pmatrix} 0 & 1 & 0 \\ \ddots & \ddots & \\ 0 & 0 & 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \lambda^n & \lambda^{n-1} C_n^1 & \lambda^{n-2} C_n^2 & \cdots \\ \ddots & \ddots & \ddots & \\ & & \lambda^n & \lambda^{n-1} C_n^1 & \lambda^{n-2} C_n^2 \\ & & & \ddots & \\ & & & \lambda^n & \lambda^n \end{pmatrix}$$

Упражнение. Пусть f(t) - многочлен, $J = \begin{pmatrix} \lambda & 1 & 0 \\ \ddots & \ddots & \\ & \ddots & 1 \\ 0 & & \lambda \end{pmatrix}$

Доказать, что:

15.5 Вычисление корня и экспоненты

$$e^{at} = 1 + \frac{at}{1!} + \frac{a^2t^2}{2!} + \dots + \frac{a^{n-1}t^{n-1}}{(n-1)!}$$

$$e^{At} = E + \frac{At}{1!} + \frac{A^2t^2}{2!} + \dots + \frac{A^{n-1}t^{n-1}}{(n-1)!}$$

Для $J_n(\lambda) = \lambda E + B \Longrightarrow$

$$(e^{A+B} = e^a \cdot e^b \iff AB = Ba)$$

Примеры.

1. $(1+t)^{\frac{1}{2}} = 1 + \frac{1}{2}t + \frac{1}{2!} \cdot \frac{1}{2} \cdot (\frac{1}{2} - 1)t^2 + \dots$

3.
$$\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} = \lambda^{\frac{1}{2}} \cdot \begin{pmatrix} 1 & \frac{1}{\lambda} \\ 0 & 1 \end{pmatrix}^{\frac{1}{2}} = \lambda^{\frac{1}{2}} \cdot \begin{pmatrix} 1 & \frac{1}{2\lambda} \\ 0 & 1 \end{pmatrix}, \ \lambda \neq 0$$

16 Биленейные и квадратичные формы

Определение. Функция $b:V\times V\to \mathbb{F}$ называется билинейной функцией, если:

1. аддитивность:

$$\forall x_1, x_2, y : b(x_1 + x_2, y) = b(x_1, y) + b(x_2, y)$$

$$\forall x, y_1, y_2 : b(x, y_1 + y_2) = b(x, y_1) + b(x, y_2)$$

2. однородность:

$$\forall x, y \in V, \ \forall \lambda \in \mathbb{F}: \ b(\lambda x, y) = \lambda b(x, y) = b(x, \lambda y)$$

Определение. b(x,y) - называется симметрической, если:

$$\forall x, y \in V: \ b(y, x) = b(x, y)$$

Примеры.

1. Симметрическая билинейная функция - скалярное произведение

2.
$$V = Mn(\mathbb{F}): b(X,Y) = tr(XY)$$

3.
$$\beta(f,g) = \int_a^b f(x)g(y)dx$$

16.1 Запись билинейной функции в координатах

Пусть в V задан базис $e_1,...,e_n,$ тогда:

$$b(\sum_{i=1}^{m} x_i e_i, \sum_{j=1}^{m} y_j e_j) = \sum_{i,j=1}^{m} b(x_i e_i, y_j e_j) = \sum_{i,j=1}^{m} x_i y_j (e_i, e_j)$$

Определение. Обозначим $b_{ij}=b(e_i,e_j)$, тогда $B_e=b_{ij}$ - матрица билинейной функции b(x,y) в базисе e

Тогда:

$$b(x,y) = \sum_{i,j=1}^{n} x_i b_{ij} y_j = \begin{pmatrix} x_1 & \cdot & x_n \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = X^T B Y$$
 (1)

16.2 Изменение матрицы билинейной формы при замене базиса

Пусть $e'=Ce,\;\;C$ - матрица перехода от e к e' Тогда:

$$X = CX', Y = CY' \tag{2}$$

По определению матрицы билинейной функции, в новом базисе:

$$b(x,y) = X'^T B' Y' \quad (B' = Be')$$

Подставим в формулу (1) выраженеие (2):

$$b(x,y) = X'^T C^T B C Y' = X'^T (C^T B C) Y' = X'^T B' Y' \quad (\forall X', Y' \in \mathbb{F}^n)$$
$$\Longrightarrow B' = C^T B C \quad (\forall i, j : X' := E_i, Y' := E_j)$$

Следствие.

1.
$$rkB' = rkB$$

2.
$$\mathbb{F} = \mathbb{R} \Longrightarrow \operatorname{sgn}(\det B') = \operatorname{sgn}(\det B)$$

Определение. Билинейная функция b(x,y) называется кососимметрической (при char $\mathbb{F} \neq 2$), если:

$$\forall x,y \in V: \ b(x,y) = -b(y,x)$$

Утверждение. (*) Любая билинейная функция над \mathbb{F} : $char\mathbb{F} \neq 2$ единственным образом представляется в виде:

$$b(x,y) = b_{+}(x,y) + b_{-}(x,y), \quad e \partial e \ b_{+}(x,y) \equiv b_{+}(y,x), \ b_{-}(x,y) \equiv -b(y,x)$$

Доказательство. Если же есть равенство:

$$\begin{cases} b(x,y) = b_{+}(x,y) + b_{-}(x,y) \\ b(y,x) = b_{+}(x,y) - b_{-}(x,y) \end{cases} \implies b_{+}(x,y) = \frac{b(x,y) + b(y,x)}{2}, \ b_{-}(x,y) = \frac{b(x,y) - b(y,x)}{2}$$

Утверждение. Билинейная функция b(x,y) симметрична (кососимметрич--на) \iff в любом базисе e:

$$B_e^T = B_e \ (B_e^T = -B_e)$$

49

Доказательство. (Докажем для симметрической, для кососимметрической аналогично)

$$\Longrightarrow$$
 Пусть $B=(b_{ij})$, тогда $b_{ij}=b(e_i,e_j)$.

$$\forall x, y \in V, \ b(x, y) = b(y, x) \Longrightarrow b(e_i, e_i) = b(e_i, e_i)$$

=

$$b(x,y) = X^T B Y, b(y,x) = Y^T B X = (X^T B^T Y)^T = (X^T B Y)^T = b(x,y)$$

Утверждение (1) $\iff \forall$ матрицы B некоторой билинейной функции верно, что $B=B_++B_-$, где B_+ - матрица симметрической билинейной функции, а B_- - матрица кососимметрической билинейной функции.

Определение. Квадратичная функция, порождённая билинейной функцией b(x,y) - это функция на V. Обозчаем: k(x) := b(x,x), если $k(x) \not\equiv 0$.

Если b - кососимметрическая функция, то $b(x,x)=0 \Longrightarrow k(x)\equiv 0$. В общем случае существует бесконечно много билинейных функций, порождающих одну и ту же квадратичную, таких, что:

$$b(x,y) = b_{+}(x,y) + b_{-}(x,y) \Longrightarrow b(x,x) = b_{+}(x,x)$$

Теорема. \forall квадратичной функции \exists ! симметрическая билинейная функция, которая её порождает.

Доказательство. Допустим, что b(x,y)=b(y,x) - симметрическая билинейная функция и k(x)=b(x,x). Тогда $\forall x,y\in V$:

$$k(x+y) = b(x+y, x+y) = b(x,x) + b(x,y) + b(y,x) + b(y,y) =$$
$$= b(x,x) + 2b(x,y) + b(y,y) = k(x) + 2b(x,y) + k(y)$$

Так как $char \mathbb{F} \neq 2$, то:

$$b(x,y) = \frac{k(x+y) - k(x) - k(y)}{2}$$

Определение. Билинейная функция $b(x,y) = \frac{k(x+y)-k(x)-k(y)}{2}$ называется поляризацией квадратичной функции k.

Далее будем считать матрицу квадратичной формы матрицей её полярной симметрической билинейной функции b(x,y)

$$b(x,y) = \sum_{i=1}^{n} b_{ii}x_{i}y_{i} + \sum_{i< j} b_{ij}x_{i}y_{j} + \sum_{i> j} b_{ij}x_{i}y_{j}$$

$$\forall i, j: \ b_{ij} = b_{ji} \Longrightarrow b(x,x) = k(x) = \sum_{i=1}^{n} b_{ii}x_{i}^{2} + \sum_{1 \le i < j \le n} b_{ij}x_{i}x_{j}$$
(1)

Пример. Пусть $k(x_1,x_2,x_3)=3x_1^2+2x_1x_2-x_1x_3+x_2^2+6x_2x_3-7x_3^2$, тогда:

$$B = \begin{pmatrix} 3 & 1 & -\frac{1}{2} \\ 1 & 1 & 3 \\ -\frac{1}{2} & 3 & -7 \end{pmatrix}$$

Определение. Пусть b(x,y) - симметрическая или кососимметрическая билинейная функция и $\emptyset \neq L \leqslant V$. Ортогональным дополнением к L относительно билинейной формы b(x,y) называется:

$$L^{\perp} := \{ y \in V \mid b(x, y) = 0, \ \forall x \in L \}$$

3амечание. Запись $x \perp y$ означает, что b(x,y) = 0.

Определение. $V^{\perp} = \{ y \in V \mid b(x,y) = 0, \ \forall x \in V \}$ - ядро формы.

Определение. Билинейная функция b(x,y) называется невырожденной, если:

$$Kerb = V^{\perp} = \{0\}$$

Упражнение. b(x,y) - невырожденная функция $\iff \det B \neq 0$.

16.3 Квадратичные формы

Определение. Квадратичная форма в некотором базисе называется диагональной, если в этом базисе:

$$k(x_1,\ldots,x_n)=\sum_{i=1}^n \alpha_i x_i^2,$$
 где $\alpha_i\in\mathbb{F}$

Теорема. В конечномерном пространстве V (char $\mathbb{F} \neq 2$) \exists базис, в котором эта форма диагональна.

Доказательство. (Алгоритм Лагранжа - метод выделения полных квадратов) По формуле (1):

$$k(x) = \sum_{i=1}^{n} b_{ii} x_i^2 + \sum_{i < j} b_{ij} x_i x_j$$

1. Основной случай:

 $\exists i: b_{ii} \neq 0 \Longrightarrow$ можно перенумеровать неизвестные x_1, \ldots, x_n , так что $b_{11} \neq 0$. Выделим в k(x) все одночлены, содержащие x_1 :

$$k(x) = \sum_{i=1}^{n} b_{11}x_1^2 + 2x_1 \sum_{i=2}^{n} b_{1i}x_i + \widetilde{k}(x_2, \dots, x_n)$$

и дополним выражение до квадрата:

$$k(x) = b_{11}(x_1^2 + 2x_1 \sum_{i=2}^n \frac{b_{1i}}{b_{11}} x_i + (\sum_{i=2}^n \frac{b_{1i}}{b_{11}} x_i^2)) - \frac{(\sum_{i=2}^n b_{1i} x_i)^2}{b_{11}} + \widetilde{k} =$$

$$= b_{11}(x_1 + \sum_{i=2}^n \frac{b_{1i}}{b_{11}} x_i)^2 + k_2(x_2, \dots, x_n)$$

Затем для формы $k_2(x_2,\ldots,x_n)=\sum_{i=2}^n b'_{ii}x_i^2+\sum_{2\leqslant i< j\leqslant n} b'_{ij}x_ix_j$ найдём коэффициент $b'_{jj}\neq 0$ и выделим квадрат как на предыдущем шаге. На каждом шаге число переменных уменьшается на единицу, а значит, за конечное число шагов (а именно $\leqslant n-2$) форма приобретёт диагональный вид.

2. Особый случай:

 $\forall i: b_{ii} = 0$, но так как $k(x) \not\equiv 0 \Longrightarrow \exists$ индексы i и j такие, что $b_{ij} \not\equiv 0$, то есть в выражение k(x) входит одночлен $2b_{ij}x_ix_j$.

Пусть $x_i = x_i' + x_j'$ и $x_j = x_i' - x_j'$, тогда $x_i x_j = x_i'^2 - x_j'^2$, то есть появился квадрат с коэффициентом, не равным нулю \Longrightarrow можно перейти к общему случаю.

3амечание. В благоприятном случае, когда на первом шаге коэффициент при x_1 не равен нулю, на втором шаге коэффициент при x_2 не равен нулю и т.д., матрица замены будет иметь вид:

$$C_{e \to e'}^{-1} = \begin{pmatrix} 1 & \frac{b_{12}}{b_{11}} & \dots & \frac{b_{1n}}{b_{11}} \\ 0 & 1 & \dots & \frac{b_{2n}}{b_{22}} \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

- матрица с 1 на диагонали $\Longrightarrow |C_{e\to e'}^{-1}| = 1 \neq 0.$

Определение. Форма $k(x_1, \ldots, x_n)$ называется канонической (нормальной), если:

- 1. (над \mathbb{R}) в диагональном виде $\forall \alpha_i$ принимает только значения: -1, 0, 1
- 2. (над \mathbb{C}) в диагональном виде $\forall \alpha_i$ принимает только значения: 0, 1

Примеры.

1. Пусть $\mathbb{F} = \mathbb{R}$:

$$k(x) = b_{11}x_1^2 + b_{22}x_2^2 + \ldots + b_{nn}x_n^2 = \alpha_1x_1^2 + \alpha_2x_2^2 + \ldots + \alpha_nx_n^2$$

Если $rkB = r \Longrightarrow k(x) = \alpha_1 x_1^2 + \alpha_2 x_2^2 + \ldots + \alpha_r x_r^2 (\alpha_{r+1} = \ldots = \alpha_n = 0).$ Если $\alpha_i > 0$, то введём обозначение:

$$\widehat{x}_i = \sqrt{\alpha_i} x_i \Longrightarrow k = \widehat{x}_1^2 + \ldots + \widehat{x}_p^2 - \widehat{x}_{p+1}^2 - \ldots - \widehat{x}_r^2$$

где p - количество коэффициентов $\alpha_i > 0$.

Если $\alpha_i < 0 \Longrightarrow \widehat{x}_i = -\sqrt{\alpha_i} x_i$.

2. Пусть $\mathbb{F} = \mathbb{C}$:

$$\forall i = \overline{1,r} : \widehat{x}_i = \sqrt{\alpha_i} x_i \Longrightarrow k = \widehat{x}_1^2 + \ldots + \widehat{x}_r^2$$

Таким образом, в вещественном случае для любой квадратичной формы k(x) существует замена координат $X=CY(|C|\neq 0)$, такая что в новых координатах $k=\sum_{i=1}^p x_i^2-\sum_{j=p+1}^{p+q} x_j^2.$

Определение. р в такой записи называется положительным индексом инерции, q - отрицательным индексом инерции.

Теорема. единственности (закон инерции)

Если в некоторых базисах квардатичная форма к имеет канонический вид

$$k = \sum_{i=1}^{p} y_i^2 - \sum_{j=p+1}^{p+q} y_j^2 = \sum_{i=1}^{p'} z_i^2 - \sum_{j=p'+1}^{p'+q'} z_j^2$$

 $mo \ p = p', q = q'.$

Доказательство. Так как p+q=rkB=p'+q', достаточно доказать, что p=p'. От противного. пусть p'< p. Пусть параметры p,q форма имеет в базисе $e_1,...e_n$, а параметры p',q' - в базисе $f_1,...,f_n$. Рассмотрим подпространства $U_1=\langle e_1,...,e_p\rangle, U_2=\langle f_{p'+1},...,f_n\rangle$. Очевидно, $\dim U_1=p,\dim U_2=n-p'$.

$$\dim U_1 + \dim U_2 = p - p' + n > n; \quad U_1 + U_2 \subset V \Rightarrow \dim(U_1 + U_2) \le n$$

Из формулы Грассмана:

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2) \Rightarrow \dim(U_1 \cap U_2) > 0$$

Рассмотрим вектор $0 \neq v \in U_1 \cap U_2$:

$$v = \sum_{i=1}^{p} \alpha_i e_i \Rightarrow k(v) = \sum_{i=1}^{p} \alpha_i \ge 0$$

С другой стороны:

$$v = \sum_{k=p'+1}^{n} \beta_k f_k \Rightarrow k(v) = \sum_{k=p'+1}^{n} \beta_k \le 0$$

Противоречие с $v \neq 0$.

Знакоопределённые квадратичные формы 16.4

Определение. Пусть b(x,y) - симметрическая билинейная форма. Векторы u, v называются ортогональными, если b(u, v) = 0. Обозначается $u \perp v$.

Определение. Базис $e_1,...,e_n$ в V - ортогональный, если $b(e_i,e_j)=0 (i \neq j).$

Определение. Для квадратной матрицы B главными минорами (угловыми

минорами) называются миноры
$$\Delta_1, \Delta_2, ..., \Delta_{n-1},$$
 где $\Delta_i = \begin{vmatrix} b_{11} & \dots & b_{1i} \\ \vdots & & \vdots \\ b_{i1} & \dots & b_{ii} \end{vmatrix}$. Опре-

делим $\Delta_n = |B|, \Delta_0 = 1.$

Теорема. Якоби Пусть k(x) (= b(x, x), b - cимм. б. ф.) такова, что главные миноры её матрицы B в нек. базисе $e:\Delta_1,\Delta_2,...,\Delta_{n-1}\neq 0$ Тогда в V существует базис (и замена координат X = CY), в котором

$$k = \sum_{i=1}^{n} \frac{\Delta_i}{\Delta_{i-1}} y_i^2$$

Доказательство. Будем строить базис e' из базиса e, ортогональный относительно b(x,y) (алгоритм ортогонализации Грама/Шмидта).

$$e'_1 := e_1; \quad \forall k \ge 1 \ \langle e'_1, ..., e'_k \rangle = \langle e_1, ..., e_k \rangle$$

причём $b(e_i', e_j') = 0 (1 \le i \ne j \le k)$

Шаг алгоритма: допустим, что k>1 и векторы $e_1',...,e_{k-1}'$ уже построены. Будем искать e'_k в виде

$$e_k' = e_k + \sum_{i=1}^{k-1} \lambda_i e_i'$$

где λ_i найдём из условия $b(e_k',e_j')=0,\; j=0,...,k-1$

$$b(e'_k, e'_j) = b(e_k, e'_j) + \sum_{i=1}^{k-1} \lambda_j b(e'_i, e'_j) = b(e_k, e'_j) + \lambda_j b(e'_j, e'_j) = 0 \Rightarrow \lambda_j = -\frac{b(e_k, e'_j)}{b(e'_j, e'_j)}$$

Покажем по индукции, что $b(e'_j, e'_j) = \frac{\Delta_j}{\Delta_{j-1}} \neq 0.$

Обратим внимание, что матрица перехода от $e_1, ..., e_{k-1}$ к $e'_1, ..., e'_{k-1}$ - верхняя треугольная с 1 по диагонали (предп. индукции). Запишем: $C_{(e_1, ..., e_k) \to (e'_1, ..., e'_k)} =$

$$\begin{pmatrix} C_{k-1} & * \\ 0 & 1 \end{pmatrix}$$
, где по предположению индукции $C_{k-1} = \begin{pmatrix} 1 & & * \\ & \ddots & \\ 0 & & 1 \end{pmatrix}$ B - матрица

билин. формы b(x,y) в базисе e, B' - в базисе e', который мы строим.

$$B'_{k|\langle e'_1, \dots, e'_k \rangle} = C_k^T B_{k|\langle e_1, \dots, e_k \rangle} C_k \Rightarrow \det(B'_{k|\langle e'_1, \dots, e'_k \rangle}) = (\det C_k)^2 \cdot \det B_{k|\langle e_1, \dots, e_k \rangle}$$

$$\Delta'_k = \det(B'_{k|\langle e'_1, \dots, e'_k \rangle}) = b'_{11} \dots b'_{kk} = \Delta_k$$

$$\frac{\Delta_1}{\Delta_0} \cdot \frac{\Delta_2}{\Delta_1} \cdot \dots \cdot \frac{\Delta_k - 1}{\Delta_k - 2} \cdot b_{kk} = \Delta_k \Rightarrow b_{kk} = \frac{\Delta_k}{\Delta_{k-1}}$$

Далее рассматриваем $F = \mathbb{R}$.

Определение. Квадратичная форма k(x) на пр-ве V над \mathbb{R} называется положительно определённой, если $\forall x \neq 0 k(x) > 0$ (обозн. k > 0); отрицательно определённой, если $\forall x \neq 0 k(x) < 0$ (обозн. k < 0); неотрицательно определённой, если $\forall x k(x) \geq 0$ (обозн. $k \geq 0$); неположительно определённой, если $\forall x k(x) \leq 0$ (обозн. $k \leq 0$).

Утверждение. Kвадратичная форма k(x) является

- 1. положительно определённой $\Leftrightarrow p=n, q=0;$
- 2. отрицательно определённой $\Leftrightarrow p=0, q=n;$
- 3. неотрицательно определённой $\Leftrightarrow q=0$;
- 4. неположительно определённой $\Leftrightarrow p=0;$
- 5. знаконе определённой $\Leftrightarrow p, q > 0$.

Доказательство. Очевидно.

Теорема. Критерий Сильвестра

Kвадратичная форма k(x) с матрицей B является

- 1. положительно определённой $\Leftrightarrow \Delta_1 > 0,...,\Delta_n > 0.$
- 2. отрицательно определённой $\Leftrightarrow \forall k \ (-1)^k \Delta_k > 0.$

Доказательство. Достаточность: По теореме Якоби \exists базис, в котором $k = \sum_{i=1}^n \frac{\Delta_i}{\Delta_{i-1}} y_i^2$. Т.к все $\Delta_i > 0$ (знакочередующиеся для отрицательного случая), все коэффициенты > 0 (< 0), т.е. значение формы на любом ненулевом векторе имеет необходимый нам знак.

 $Heoбxoдимость: k>0 \Rightarrow \Delta_1\cdot\Delta_2\cdot\ldots\cdot\Delta_n\neq 0 \Rightarrow$ применима т. Якоби, из которой следуют необходимые нам знаки на всех Δ .

3амечание. Т.к. $b_{ii}=k(e_i)$, у положительно определённой формы все $b_{ii}>0$, у отрицательной все $b_{ii}<0$.