Residues

Weight Distribution of Types

MechCivil

Туре	Name	May 2018	Nov 2018	May 2019	Nov 2019	May 2022	Nov 2022	May 2023	Dec 2023	May 2024	Dec 2024
I	Calculation of Residues										
II	Cauchy Residue Thm				04						
Total Marks		00	00	00	04	00	00	00	00	00	00

Comp/IT/AI

Type	Name	May	Nov	May	Nov	May	Nov	May	Dec	May	Dec
		2018	2018	2019	2019	2022	2022	2023	2023	2024	2024
I	Calculation of Residues					02					
II	Cauchy Residue Thm					05	06	06		08	
Total Marks		00	00	00	00	07	06	06	00	08	00

Extc

Type	Name	May	Nov	May	Nov	May	Nov	May	Dec	May	Dec
		2018	2018	2019	2019	2022	2022	2023	2023	2024	2024
1	Calculation of Residues		-			02					
II	Cauchy Residue Thm		06	06	06		06	06	06	06	06
Total	Total Marks		06	06	06	02	06	06	06	06	06

Elect

Type	Name	May	Nov	May	Nov	May	Nov	May	Dec	May	Dec
		2018	2018	2019	2019	2022	2022	2023	2023	2024	2024
1	Calculation of Residues					05					
II	Cauchy Residue Thm			06	06	05		05	06	06	06
Total Marks		00	00	06	06	10	00	05	06	06	06

1 S.E/Paper Solutions By: Kashif Shaikh

Type I: Calculation of Residues at Poles

Determine the pole of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and also find the residue at each pole.

[N13/Chem/6M]

Solution:

We have,
$$f(z) = \frac{z^2}{(z-1)^2(z+2)}$$

For singularity,

$$(z-1)^2(z+2) = 0$$

$$z = 1, 1, -2$$

z = -2 is a simple pole and z = 1 is a pole of order 2

Residue of
$$f(z)$$
 at $(z = -2) = \lim_{z \to -2} (z + 2) f(z)$

$$= \lim_{z \to -2} (z + 2) \frac{z^2}{(z-1)^2(z+2)}$$

$$= \lim_{z \to -2} \frac{z^2}{(z-1)^2}$$

$$= \frac{(-2)^2}{(-2-1)^2}$$

$$= \frac{4}{9}$$

Residue of
$$f(z)$$
 at $(z = 1) = \frac{1}{1!} \lim_{z \to 1} \frac{d}{dz} [(z - 1)^2 f(z)]$

$$= \lim_{z \to 1} \frac{d}{dz} [(z - 1)^2 \frac{z^2}{(z - 1)^2 (z + 2)}]$$

$$= \lim_{z \to 1} \frac{d}{dz} \left[\frac{z^2}{z + 2} \right]$$

$$= \lim_{z \to 1} \left[\frac{(z + 2)(2z) - z^2(1)}{(z + 2)^2} \right]$$

$$= \frac{(1 + 2)(2) - 1^1}{(1 + 2)^2}$$

$$= \frac{5}{1}$$

Find the poles and calculate the residues at them for $f(z) = \frac{z}{(z-1)(z+2)^2}$ 2.

[N15/ChemBiot/6M]

Solution:

We have,
$$f(z) = \frac{z}{(z-1)(z+2)^2}$$

For singularity,

$$(z-1)(z+2)^2 = 0$$

$$z = 1, z = -2, -2$$

z = 1 is a simple pole and z = -2 is a pole of order 2

Residue of
$$f(z)$$
 at $(z = 1) = \lim_{z \to 1} (z - 1) f(z)$

$$= \lim_{z \to 1} (z - 1) \frac{z}{(z - 1)(z + 2)^2}$$

$$= \lim_{z \to 1} \frac{z}{(z + 2)^2}$$

$$= \frac{1}{(1 + 2)^2}$$

$$= \frac{1}{9}$$

Residue of
$$f(z)$$
 at $(z = -2) = \frac{1}{1!} \lim_{z \to -2} \frac{d}{dz} [(z + 2)^2 f(z)]$

$$= \lim_{z \to -2} \frac{d}{dz} [(z + 2)^2 \frac{z}{(z - 1)(z + 2)^2}]$$

$$= \lim_{z \to -2} \frac{d}{dz} \left[\frac{z}{(z - 1)} \right]$$

$$= \lim_{z \to -2} \left[\frac{(z - 1)(1) - (z)(1)}{(z - 1)^2} \right]$$

$$= \frac{(-2 - 1) - (-2)}{(-2 - 1)^2}$$

$$= -\frac{1}{6}$$

Find the residues of the following functions at their poles: (i) $\frac{1}{(z^2+1)^3}$ (ii) $z^2e^{\frac{1}{z}}$ 3.

Solution:

(i) let
$$f(z) = \frac{1}{(z^2+1)^3}$$

For singularity, put $(z^2 + 1)^3 = 0$

$$z^{2} = -1$$

$$z = \sqrt{-1}$$

$$z = +i$$

$$z = \pm i, \pm i, \pm i$$

Thus, z = i is a pole of order 3 and z = -i is also a pole order 3 Res of f(z) at pole of order m,

$$R_1 = \frac{1}{(m-1)!} \lim_{z \to z_0} \left[\frac{d^{m-1}}{dz^{m-1}} (z - z_0)^m f(z) \right]$$

$$R_1 = \frac{1}{2!} \lim_{z \to i} \left[\frac{d^2}{dz^2} (z - i)^3 \cdot \frac{1}{(z+i)^3 (z-i)^3} \right]$$

$$R_1 = \frac{1}{2} \lim_{z \to i} \left[\frac{d^2}{dz^2} \frac{1}{(z+i)^3} \right]$$

$$R_1 = \frac{1}{2} \lim_{z \to i} \left[\frac{d^2}{dz^2} (z + i)^{-3} \right]$$

$$R_1 = \frac{1}{2} \lim_{z \to i} \left[\frac{d}{dz} (-3(z+i)^{-4}) \right]$$

$$R_1 = \frac{1}{2} \lim_{z \to i} \left[-3 \times -4(z+i)^{-5} \right]$$

$$R_1 = \frac{1}{2} [12(i+i)^{-5}]$$

$$R_1 = 6(2i)^{-5}$$

$$R_1 = \frac{6}{(2i)^5} = \frac{6}{(2i)^2 \times (2i)^3} = -\frac{3i}{16}$$

Thus, Residue at
$$z = i$$
 is $\frac{-3i}{16}$

Thus, Residue of z = -i is $\frac{+3i}{16}$

(ii)
$$z^2 e^{\frac{1}{z}}$$

Let
$$f(z) = z^2 e^{\frac{1}{z}}$$

Note:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$
....

$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \cdots$$

$$sinx = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$cosx = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

$$f(z) = z^{2} \left[1 + \frac{1}{z} + \frac{\left(\frac{1}{z}\right)^{2}}{2!} + \frac{\left(\frac{1}{z}\right)^{3}}{3!} + \frac{\left(\frac{1}{z}\right)^{4}}{4!} + \cdots \dots \right]$$

$$f(z) = z^2 + \frac{z^2}{z} + \frac{z^2}{2! \times z^2} + \frac{z^2}{3! \times z^3} + \frac{z^2}{4! \times z^4} + \cdots \dots$$

$$f(z) = z^2 + z + \frac{1}{2} + \frac{1}{6z} + \frac{1}{24z^2} + \cdots \dots$$
 The above is a Laurent's expansion about $z = 0$

Residue = coefficient of $\frac{1}{z}$ in a Laurent's Series

 $R = \frac{1}{6}$ and z = 0 is an isolated essential singularity.

Prove that the sum of residues of the function $f(z) = \frac{e^z}{z^2 + a^2}$ is $\frac{\sin a}{a}$ 4.

$$f(z) = \frac{e^z}{z^2 + a^2}$$

For singularity,

Put
$$z^2 + a^2 = 0$$

 $z^2 = -a^2$

$$z = \sqrt{-a^2}$$

$$z = \pm ia$$

$$z = ai, z = -ai$$

Thus, z = ai, z = -ai are simple poles

$$R_1 = \lim_{z \to z_0} (z - z_0) f(z)$$

$$R_1 = \lim_{z \to ai} (z - ai) \frac{e^z}{z^2 + a^2}$$

$$R_1 = \lim_{z \to ai} \frac{(z - ai)e^z}{(z + ai)(z - ai)}$$

$$R_1 = \lim_{z \to ai} \frac{(z-ai)e^z}{(z+ai)(z-ai)}$$

$$R_1 = \lim_{z \to ai} \frac{e^z}{z + ai}$$

$$R_1 = \frac{e^{ai}}{2ai}$$

$$R_1 = \frac{e^{ai}}{2ai}$$

Thus, residue of f(z) at z = ai is $R_1 =$

Thus, residue of f(z) at z = -ai is $R_2 = \frac{e^{-ai}}{-2ai}$

Therefore,

Sum of residues =
$$R_1 + R_2$$

$$= \frac{e^{ai}}{2ai} + \frac{e^{-ai}}{-2ai}$$

$$= \frac{e^{ai}}{2ai} - \frac{e^{-ai}}{2ai}$$

$$= \frac{e^{ai} - e^{-ai}}{2ai}$$

$$= \frac{1}{a} \left[\frac{e^{ai} - e^{-ai}}{2i} \right]$$

$$= \frac{1}{a} [\sin a]$$

$$= \frac{\sin a}{a}$$

$$\because \frac{e^{i\theta} - e^{-i\theta}}{2i} = \sin \theta$$

Determine the nature of the poles & find sum of residues at each pole $\frac{z}{az^2+hz+c}$ 5.

[M19/Chem/5M]

Solution:

We have,
$$f(z) = \frac{z}{az^2 + bz + c} = \frac{z}{a(z^2 + \frac{b}{a}z + \frac{c}{a})}$$

For singularity,

$$a\left(z^2 + \frac{b}{a}z + \frac{c}{a}\right) = 0$$

Let $z = \alpha$ and $z = \beta$ be the roots of the above equation and hence are simple poles

Residue of
$$f(z)$$
 at $(z = \alpha) = \lim_{z \to \alpha} (z - \alpha) f(z)$

$$= \lim_{z \to \alpha} (z - \alpha) \frac{z}{a(z - \alpha)(z - \beta)}$$
$$= \lim_{z \to \alpha} \frac{z}{a(z - \beta)} = \frac{\alpha}{a(\alpha - \beta)}$$

Residue of
$$f(z)$$
 at $(z = \alpha) = \lim_{z \to \alpha} (z - \alpha) f(z)$

$$= \lim_{z \to \alpha} (z - \alpha) \frac{z}{a(z - \alpha)(z - \beta)}$$

$$= \lim_{z \to \alpha} \frac{z}{a(z - \beta)} = \frac{\alpha}{a(\alpha - \beta)}$$

$$\therefore \text{ Residue of } f(z) \text{ at } (z = \beta) = \frac{\beta}{a(\beta - \alpha)} = -\frac{\beta}{a(\alpha - \beta)}$$

Sum of Residues =
$$\frac{\alpha}{a(\alpha-\beta)} + \frac{-\beta}{a(\alpha-\beta)}$$

= $\frac{\alpha-\beta}{a(\alpha-\beta)} = \frac{1}{a}$

The function $f(z) = \frac{z^2}{(z+2)(z-1)^2}$ has 6.

[M22/Elex/2M]

Solution:

We have,
$$f(z) = \frac{z^2}{(z+2)(z-1)^2}$$

For singularity,

$$(z+2)(z-1)^2 = 0$$

$$\therefore z = -2, z = 1, 1$$

$$\therefore f(z) = \frac{z^2}{(z+2)(z-1)^2}$$
 has simple pole at $z=-2$ & pole of order 2 at $z=1$

If $f(z) = \frac{3z^2 + z}{z^2 - 1}$ then residue of f(z) at z = -1 is 7.

[M22/CompITAI/2M]

Solution:

We have,
$$f(z) = \frac{3z^2 + z}{z^2 - 1}$$

For singularity,

$$z^2 - 1 = 0$$

$$(z+1)(z-1) = 0$$

z = 1 is a simple pole and z = -1 is also a simple pole

Residue of
$$f(z)$$
 at $(z = -1) = \lim_{z \to -1} (z + 1) f(z)$

$$= \lim_{z \to -1} (z+1) \frac{3z^2 + z}{(z+1)(z-1)}$$

$$= \lim_{z \to -1} \frac{3z^2 + z}{z-1}$$

$$= \frac{3(-1)^2 + (-1)}{-1 - 1} = \frac{2}{-2} = -1$$

The function $f(z) = \frac{2}{(z+5)^3(z-2)^4}$ has poles at z=-5 of order ___ and z=2 of order __ 8.

[M22/Extc/2M]

Solution:

The function $f(z) = \frac{2}{(z+5)^3(z-2)^4}$ has poles at z=-5 of order 3 and z=2 of order 4

Find the residues at their poles $f(z) = \frac{z}{(z+3)(z-1)^2}$ 9.

[M22/Elect/5M]

Solution:

We have,
$$f(z) = \frac{z}{(z+3)(z-1)^2}$$

For singularity,

$$(z-1)^2(z+3) = 0$$

$$z = 1, 1, -3$$

 $\therefore z = -3$ is a simple pole and z = 1 is a pole of order 2

Residue of
$$f(z)$$
 at $(z = -3) = \lim_{z \to -3} (z + 3) f(z)$

$$= \lim_{z \to -3} (z + 3) \frac{z}{(z + 3)(z - 1)^2}$$

$$= \lim_{z \to -3} \frac{z}{(z - 1)^2}$$

$$= \frac{-3}{(-3 - 1)^2} = -\frac{3}{16}$$
Residue of $f(z)$ at $(z = 1) = \frac{1}{1!} \lim_{z \to 1} \frac{d}{dz} [(z - 1)^2 f(z)]$

$$= \lim_{z \to 1} \frac{d}{dz} [(z - 1)^2 \frac{z}{(z + 3)(z - 1)^2}]$$

$$= \lim_{z \to 1} \frac{d}{dz} \left[\frac{z}{z + 3} \right]$$

$$= \lim_{z \to 1} \left[\frac{(z + 3)(1) - z(1)}{(z + 3)^2} \right]$$

$$= \frac{(1 + 3)(1) - 1}{(z + 3)^2} = \frac{3}{16}$$

10. Find the residues of the function $f(z) = \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)^2}$ at their poles.

[N15/MechCivil/6M]

Solution:

We have,
$$f(z) = \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)^2}$$

For singularity,

$$(z-1)(z-2)^2 = 0$$

$$z = 1, z = 2,2$$

 $\therefore z = 1$ is a simple pole and z = 2 is a pole of order 2

$$\therefore z = 1 \text{ is a simple pole and } z = 2 \text{ is a pole of order 2}$$

$$\text{Residue of } f(z) \text{ at } (z = 1) = \lim_{z \to 1} (z - 1) f(z)$$

$$= \lim_{z \to 1} (z - 1) \frac{\sin \pi z^2 + \cos \pi z^2}{(z - 1)(z - 2)^2}$$

$$= \lim_{z \to 1} \frac{\sin \pi z^2 + \cos \pi z^2}{(z - 2)^2}$$

$$= \frac{\sin \pi + \cos \pi}{(1 - 2)^2}$$

$$= \frac{0 - 1}{(-1)^2} = -1$$

Residue of
$$f(z)$$
 at $(z = 2) = \frac{1}{1!} \lim_{z \to 2} \frac{d}{dz} [(z - 2)^2 f(z)]$

$$= \lim_{z \to 2} \frac{d}{dz} \Big[(z - 2)^2 \frac{\sin \pi z^2 + \cos \pi z^2}{(z - 1)(z - 2)^2} \Big]$$

$$= \lim_{z \to 2} \frac{d}{dz} \Big[\frac{\sin \pi z^2 + \cos \pi z^2}{(z - 1)} \Big]$$

$$= \lim_{z \to 2} \Big[\frac{(z - 1)(\cos \pi z^2 \times 2\pi z - \sin \pi z^2 \times 2\pi z) - (\sin \pi z^2 + \cos \pi z^2)(1)}{(z - 1)^2} \Big]$$

$$= \Big[\frac{(1)(4\pi \cos 4\pi - 4\pi \sin 4\pi) - (\sin 4\pi + \cos 4\pi)}{(2 - 1)^2} \Big]$$

$$= 4\pi - 1$$

11. Determine the nature of poles of the following functions and find the residue of each pole $f(z) = \frac{\sin \pi z}{(z-1)^2(z-2)}$.

[N17/N18/Biot/6M]

Solution:

We have,
$$f(z) = \frac{\sin \pi z}{(z-1)^2(z-2)}$$

For singularity,

$$(z-1)^2(z-2) = 0$$

$$z = 1, 1, z = 2$$

z = 2 is a simple pole and z = 1 is a pole of order 2

Residue of
$$f(z)$$
 at $(z = 2) = \lim_{z \to 2} (z - 2) f(z)$

$$= \lim_{z \to 2} (z - 2) \frac{\sin \pi z}{(z - 1)^2 (z - 2)}$$

$$= \lim_{z \to 2} \frac{\sin \pi z}{(z - 1)^2}$$

$$= \frac{\sin 2\pi}{(z - 1)^2}$$

$$= 0$$

Residue of
$$f(z)$$
 at $(z = 1) = \frac{1}{1!} \lim_{z \to 1} \frac{d}{dz} [(z - 1)^2 f(z)]$

$$= \lim_{z \to 1} \frac{d}{dz} [(z - 1)^2 \frac{\sin \pi z}{(z - 1)^2 (z - 2)}]$$

$$= \lim_{z \to 1} \frac{d}{dz} \left[\frac{\sin \pi z}{(z - 2)} \right]$$

$$= \lim_{z \to 1} \left[\frac{(z - 2)(\cos \pi z \times \pi) - (\sin \pi z)(1)}{(z - 2)^2} \right]$$

$$= \left[\frac{(-1)(\pi \cos \pi) - (\sin \pi)}{(-1)^2} \right]$$

12. Find the sum of residues at singular points of $f(z) = \frac{z-4}{z(z-1)(z-2)}$

[M17/ElexExtcElectBiomInst/6M]

Solution:

We have,
$$f(z) = \frac{z-4}{z(z-1)(z-2)}$$

For singularity,

$$z(z-1)(z-2)=0$$

$$z = 0, z = 1, z = 2$$

∴ all are simple poles

Residue of
$$f(z)$$
 at $(z = 0) = \lim_{z \to 0} (z - 0) f(z)$

$$= \lim_{z \to 0} (z - 0) \frac{z^{-4}}{z(z^{-1})(z^{-2})}$$

$$= \lim_{z \to 0} \frac{z^{-4}}{(z^{-1})(z^{-2})}$$

$$= \frac{-4}{(-1)(-2)}$$

$$= -2$$

Residue of
$$f(z)$$
 at $(z = 1) = \lim_{z \to 1} (z - 1) f(z)$

$$= \lim_{z \to 1} (z - 1) \frac{z - 4}{z(z - 1)(z - 2)}$$

$$= \lim_{z \to 1} \frac{z - 4}{z(z - 2)}$$

$$= \frac{-3}{(1)(-1)}$$

$$= 3$$

Residue of
$$f(z)$$
 at $(z = 2) = \lim_{z \to 2} (z - 2) f(z)$

$$= \lim_{z \to 2} (z - 2) \frac{z - 4}{z(z - 1)(z - 2)}$$

$$= \lim_{z \to 2} \frac{z - 4}{z(z - 1)}$$

$$= \frac{-2}{(2)(1)}$$

$$= -1$$

Sum of residues = -2 + 3 - 1 = 0

13. Find the sum of residues at singular points of $f(z) = \frac{z}{(z-1)^2(z^2-1)}$

[N14/ChemBiot/7M][N16/ElexExtcElectBiomInst/6M] **Solution:**

We have,
$$f(z) = \frac{z}{(z-1)^2(z^2-1)}$$

For singularity,

$$(z-1)^{2}(z^{2}-1) = 0$$

(z-1)²(z-1)(z+1) = 0

$$z = 1,1,1,-1$$

 $\therefore z = -1$ is a simple pole and z = 1 is a pole of order 3

Residue of
$$f(z)$$
 at $(z = -1) = \lim_{z \to -1} (z + 1) f(z)$

$$= \lim_{z \to -1} (z + 1) \frac{z}{(z - 1)^2 (z^2 - 1)}$$

$$= \lim_{z \to -1} \frac{z}{(z - 1)^3}$$

$$= \frac{-1}{(-1 - 1)^3}$$

$$= \frac{1}{8}$$

Residue of
$$f(z)$$
 at $(z = 1) = \frac{1}{2!} \lim_{z \to 1} \frac{d^2}{dz^2} [(z - 1)^3 f(z)]$

$$= \frac{1}{2} \lim_{z \to 1} \frac{d^2}{dz^2} [(z - 1)^3 \frac{z}{(z - 1)^3 (z + 1)}]$$

$$= \frac{1}{2} \lim_{z \to 1} \frac{d^2}{dz^2} \left[\frac{z}{z + 1} \right]$$

$$= \frac{1}{2} \lim_{z \to 1} \frac{d}{dz} \left[\frac{(z + 1)(1) - z(1)}{(z + 1)^2} \right]$$

$$= \frac{1}{2} \lim_{z \to 1} \frac{d}{dz} \left[\frac{1}{(z + 1)^2} \right]$$

$$= \frac{1}{2} \lim_{z \to 1} - \frac{2}{(z + 1)^3}$$

$$= \frac{1}{2} \cdot - \frac{2}{(1 + 1)^3}$$

$$= -\frac{1}{2}$$

Sum of Residues $=\frac{1}{8} - \frac{1}{8} = 0$

14. The distance between z_0 and the nearest singularity of f(z) is called as [M22/Chem/2M] Ans. Radius of convergence

S.E/Paper Solutions 13 By: Kashif Shaikh

Type II: Cauchy's Residue Theorem

Using Cauchy's residue theorem, evaluate $\int_{c} \frac{12z-7}{(z-1)^{2}(2z+3)} dz$ where C is the circle

(i)
$$|z| = \frac{1}{2}$$
 (ii) $|z + i| = \sqrt{3}$

Solution:

We have,
$$I = \int \frac{12z-7}{(z-1)^2(2z+3)} dz$$

For singularity,

Put
$$(z-1)^2(2z+3)=0$$

$$z = 1, 1, -\frac{3}{2}$$

(i)
$$|z| = \frac{1}{2}$$

We see that z = 1, $z = -\frac{3}{2}$ both lies outside C hence they are not poles

By CIT,

$$\int \frac{12z-7}{(z-1)^2(2z+3)} dz = 0$$

(ii)
$$|z + i| = \sqrt{3}$$

For
$$z = 1$$
, LHS = $|1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2} < \sqrt{3} < RHS$

Thus, z = 1 lies inside C hence z = 1 is a pole of order 2

For
$$z = -\frac{3}{2}$$
, LHS = $\left| -\frac{3}{2} + i \right| = \sqrt{\left(-\frac{3}{2} \right)^2 + 1^2} = 1.80 > \sqrt{3} > RHS$

Thus, $z = -\frac{3}{2}$ lies outside C hence $z = -\frac{3}{2}$ is not a pole

Res of f(z) at z = 1,

$$R = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} (z - z_0)^m f(z)$$

$$R = \frac{1}{1!} \lim_{z \to 1} \frac{d}{dz} \left[(z - 1)^2 \cdot \frac{12z - 7}{(z - 1)^2 \cdot (2z + 3)} \right]$$

$$R = \lim_{z \to 1} \frac{d}{dz} \left[\frac{12z - 7}{2z + 3} \right]$$

$$R = \lim_{z \to 1} \frac{d}{dz} \left[\frac{12z - 7}{2z + 3} \right]$$

$$R = \lim_{z \to 1} \left[\frac{(2z + 3)[12 - 0] - (12z - 7)[2 + 0]}{(2z + 3)^2} \right]$$

$$R = 2$$

By CRT,

$$\int \frac{12z-7}{(z-1)^2(2z+3)} dz = 2\pi i [R] = 2\pi i [2] = 4\pi i$$

Using Cauchy's residue theorem, evaluate $\int_{C} \frac{(z+4)^2}{z^4+5z^3+6z^2} dz$ where C is |z|=12.

[M23/CompIT/6M]

Solution:

$$I = \int_{C} \frac{(z+4)^2}{z^4 + 5z^3 + 6z^2} dz$$

For singularity or pole,

Put
$$z^4 + 5z^3 + 6z^2 = 0$$

$$z^2(z^2 + 5z + 6) = 0$$

$$z^2 = 0$$
, $z^2 + 5z + 6 = 0$

$$z = 0.0, z = -3, z = -2$$

C is
$$|z| = 1$$

We see that z=0 is only inside C. thus z=0 is a pole of order 2

Residue of
$$f(z)$$
 at $(z = 0) = \frac{1}{1!} \lim_{z \to 0} \frac{d}{dz} \left[(z - 0)^2 \cdot \frac{(z+4)^2}{z^2 (z^2 + 5z + 6)} \right]$

$$= \lim_{z \to 0} \frac{d}{dz} \left[\frac{(z+4)^2}{z^2 + 5z + 6} \right]$$

$$= \lim_{z \to 0} \left[\frac{(z^2 + 5z + 6)\{2(z+4)\} - (z+4)^2 \{2z + 5 + 0\}}{(z^2 + 5z + 6)^2} \right]$$

$$= -\frac{8}{9}$$

By CRT,

By CRT,
$$\int_{C} \frac{(z+4)^{2}}{z^{4}+5z^{3}+6z^{2}} dz = 2\pi i R = 2\pi i \left[-\frac{8}{9} \right] = -\frac{16\pi i}{9}$$

Evaluate $\oint_C e^{-\frac{1}{z}} \sin\left(\frac{1}{z}\right) dz$ where C is |z| = 1

Solution:

We have,
$$I = \int e^{-\frac{1}{z}} \sin(\frac{1}{z}) dz$$

Here,

$$f(z) = e^{-\frac{1}{z}} \sin\left(\frac{1}{z}\right) = \left[1 - \frac{1}{z} + \frac{\left(\frac{1}{z}\right)^2}{2!} - \frac{\left(\frac{1}{z}\right)^3}{3!} + \cdots\right] \left[\frac{1}{z} - \frac{\left(\frac{1}{z}\right)^3}{3!} + \frac{\left(\frac{1}{z}\right)^5}{5!} - \cdots\right]$$

$$f(z) = \left[1 - \frac{1}{z} + \frac{1}{2z^2} - \frac{1}{6z^3} + \cdots\right] \left[\frac{1}{z} - \frac{1}{6z^3} + \frac{1}{120z^5} - \cdots\right]$$

$$f(z) = \frac{1}{z} - \frac{1}{6z^3} + \frac{1}{120z^5} - \frac{1}{z^2} + \frac{1}{6z^4} - \frac{1}{120z^6} + \frac{1}{2z^3} - \frac{1}{12z^5} + \cdots$$

$$f(z) = \frac{1}{z} - \frac{1}{z^2} - \frac{1}{6z^3} + \frac{1}{2z^3} + \frac{1}{6z^4} + \cdots$$

$$f(z) = \frac{1}{z} - \frac{1}{z^2} + \frac{1}{3z^3} + \frac{1}{6z^4} + \cdots$$

Residues = coefficient of $\frac{1}{z} = 1$

By CRT,

$$\int e^{-\frac{1}{z}} \sin\left(\frac{1}{z}\right) dz = 2\pi i \left[R\right] = 2\pi i \left[1\right] = 2\pi i$$

Evaluate $\int_C z^6 e^{-\frac{1}{z}} dz$; c: |z| = 14.

Solution:

We have,
$$I = \int_{\mathcal{C}} z^6 e^{-\frac{1}{z}} dz$$

$$f(z) = z^6 e^{-\frac{1}{z}}$$

$$f(z) = z^{6} \left[1 - \frac{1}{z} + \frac{\left(\frac{1}{z}\right)^{2}}{2!} - \frac{\left(\frac{1}{z}\right)^{3}}{3!} + \frac{\left(\frac{1}{z}\right)^{4}}{4!} - \frac{\left(\frac{1}{z}\right)^{5}}{5!} + \frac{\left(\frac{1}{z}\right)^{6}}{6!} - \frac{\left(\frac{1}{z}\right)^{7}}{7!} + \cdots \right]$$

$$f(z) = z^{6} \left[1 - \frac{1}{z} + \frac{1}{2z^{2}} - \frac{1}{6z^{3}} + \frac{1}{24z^{4}} - \frac{1}{120z^{5}} + \frac{1}{720z^{6}} - \frac{1}{5040z^{7}} + \cdots \right]$$

$$f(z) = z^6 - z^5 + \frac{z^4}{2} - \frac{z^3}{6} + \frac{z^2}{24} - \frac{z}{120} + \frac{1}{720} - \frac{1}{5040z} + \cdots \dots$$
Residues = coefficient of $\frac{1}{z} = -\frac{1}{5040}$

Residues = coefficient of
$$\frac{1}{z} = -\frac{1}{5040}$$

$$\int_{C} z^{6} e^{-\frac{1}{z}} dz = 2\pi i \left[R \right] = 2\pi i \left[-\frac{1}{5040} \right] = -\frac{\pi i}{2520}$$

Using Cauchy's residue theorem, evaluate $\int_{C} \csc z \ dz$ where c is |z| = 15.

Solution:

$$I = \int \csc z \ dz = \int \frac{1}{\sin z} dz$$

For singularity,

Put
$$\sin z = 0$$

$$z = 0, \pm \pi, \pm 2\pi, \pm 3\pi, \dots \dots$$

C is
$$|z| = 1$$

We see that, z = 0 is inside C hence it is a simple pole.

$$R = \lim_{z \to z_0} (z - z_0) f(z)$$

$$R = \lim_{z \to 0} (z - 0) \cdot \frac{1}{\sin z}$$

$$R = \lim_{z \to 0} \frac{z}{\sin z} \left[\frac{0}{0} \right]$$

$$R = \lim_{z \to 0} \frac{z}{\sin z} \left[\frac{0}{0} \right]$$

Applying L-Hospital rule,

$$R = \lim_{z \to 0} \frac{1}{\cos z}$$

$$R = \frac{1}{\cos 0} = \frac{1}{1} = 1$$

$$R = \frac{1}{\cos 0} = \frac{1}{1} = 1$$

$$\int \csc z \ dz = 2\pi i [R] = 2\pi i [1] = 2\pi i$$

Evaluate $\oint_C \tan z \, dz$ where c is (i) is the circle |z| = 2 (ii) is the circle |z| = 1. 6.

Solution:

$$I = \int \tan z \ dz = \int \frac{\sin z}{\cos z} dz$$

For singularity,

Put $\cos z = 0$

$$z = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \dots \dots$$

(i) C is
$$|z| = 2$$

We see that $z = \frac{\pi}{2}$, $z = -\frac{\pi}{2}$ both lies inside C hence they are simple poles

$$R_1 = \lim_{z \to z_0} (z - z_0) f(z)$$

$$R_1 = \lim_{z \to \frac{\pi}{2}} \left(z - \frac{\pi}{2} \right) \cdot \frac{\sin z}{\cos z}$$

$$R_1 = \lim_{z \to \frac{\pi}{2}} \frac{\left(z - \frac{\pi}{2}\right) \sin z}{\cos z}$$

Applying L-Hospital rule,

$$R_{1} = \lim_{z \to \frac{\pi}{2}} \frac{\left(z - \frac{\pi}{2}\right) [\cos z] + \sin z [1 - 0]}{-\sin z}$$

$$R_{1} = \frac{\left(\frac{\pi}{2} - \frac{\pi}{2}\right) \left[\cos\frac{\pi}{2}\right] + \sin\frac{\pi}{2}[1]}{-\sin\frac{\pi}{2}}$$

$$R_1 = -1$$

$$R_2 = \lim_{z \to -\frac{\pi}{2}} \left(z - -\frac{\pi}{2} \right) \cdot \frac{\sin z}{\cos z}$$

$$R_2 = \lim_{z \to -\frac{\pi}{2}} \frac{\left(z + \frac{\pi}{2}\right) \sin z}{\cos z}$$

Applying L-Hospital rule,

$$R_2 = \lim_{z \to -\frac{\pi}{2}} \frac{\left(z + \frac{\pi}{2}\right) [\cos z] + \sin z [1 + 0]}{-\sin z}$$

$$R_2 = \frac{\left(-\frac{\pi}{2} + \frac{\pi}{2}\right)\left[\cos\left(-\frac{\pi}{2}\right)\right] + \sin\left(-\frac{\pi}{2}\right)[1]}{-\sin\left(-\frac{\pi}{2}\right)}$$

$$R_2 = -1$$

By CRT,

$$\int \tan z \ dz = 2\pi i \left[R_1 + R_2 \right] = 2\pi i [-1 - 1] = -4\pi i$$

(ii)
$$C$$
 is $|z| = 1$

We see that no points lies inside C and hence there are no poles

By CIT,

$$\int \tan z \ dz = 0$$

Evaluate $\int_{c} \frac{dz}{\sinh z}$ where c is $x^2 + 2y^2 = 16$ and define simple pole. 7.

Solution:

$$I = \int \frac{1}{\sinh z} dz$$

For singularity,

Put
$$sinh z = 0$$

$$\frac{e^z - e^{-z}}{2} = 0$$

$$e^z - e^{-z} = 0$$

$$e^z = e^{-z}$$

$$z = -z$$

$$z + z = 0$$

$$2z = 0$$

$$z = 0$$
 Note that $z = 0$ implies $x = 0$, $y = 0$

C is
$$x^2 + 2y^2 = 16$$

LHS =
$$x^2 + 2y^2 = (0)^2 + 2(0)^2 = 0 < 16 < RHS$$

Thus, z = 0 lies inside C and hence it is a simple pole

$$R = \lim_{z \to 0} (z - 0) \cdot \frac{1}{\sinh z}$$

$$R = \lim_{z \to 0} \frac{z}{\sinh z}$$

Applying L-hospital rule

$$R = \lim_{z \to 0} \frac{1}{\cosh z} = \frac{1}{\cosh 0} = \frac{1}{1} = 1$$

$$\int \frac{1}{\sinh z} dz = 2\pi i R = 2\pi i [1] = 2\pi i$$

Evaluate by using Residue theorem $\int_{c} \operatorname{sech} z \, dz$ where c is |z| = 28.

Solution:

$$I = \int \operatorname{sech} z \ dz = \int \frac{1}{\cosh z} dz$$

For singularity,

Put cosh z = 0

$$\frac{e^z + e^{-z}}{2} = 0$$

$$e^z + e^{-z} = 0$$

$$e^z = -e^{-z}$$

$$e^z = -\frac{1}{e^z}$$

$$e^{2z} = -1$$

$$e^{2z} = e^{i\pi}$$

$$e^{-}=e^{\cdot}$$

$$2z = i\pi$$
$$z = \frac{i\pi}{2}$$

$$|z|^{2} - \frac{1}{2}$$

C is $|z| = 2$

We see that $z = \frac{i\pi}{2}$ lies inside C and it is a simple pole

$$R = \lim_{z \to \frac{\pi i}{2}} \left(z - \frac{\pi i}{2} \right) \cdot \frac{1}{\cosh z}$$

$$R = \lim_{z \to \frac{\pi i}{2}} \frac{\left(z - \frac{\pi i}{2}\right)}{\cosh z}$$

Applying L-Hospital rule,

$$R = \lim_{z \to \frac{\pi i}{\sinh z}} \frac{1 - 0}{\sinh z}$$

$$R = \lim_{z \to \frac{\pi i}{2}} \frac{1 - 0}{\sinh z}$$

$$R = \frac{1}{\sinh \frac{i\pi}{2}} = \frac{1}{i \sin \frac{\pi}{2}} = \frac{1}{i}$$

 $: \sinh i\theta = i \sin \theta$

 $since, -1 + 0i = \cos \pi + i \sin \pi = e^{i\pi}$

$$\int \operatorname{sech} z \ dz = 2\pi i \ R = 2\pi i \left[\frac{1}{i}\right] = 2\pi$$

Evaluate $\int_{c} \frac{\cos z}{z} dz$ where C is the ellipse $9x^2 + 4y^2 = 1$ 9.

[N17/CompIT/6M][N19/Extc/6M]

Solution:

We have,
$$f(z) = \frac{\cos z}{z}$$

For singularity,

$$z = 0$$

$$z=0$$
 is a simple pole Residue of $f(z)$ at $(z=0)=\lim_{z\to 0}(z-0)f(z)$
$$=\lim_{z\to 0}(z-0)\frac{\cos z}{z}$$

$$=\lim_{z\to 0}\cos z$$

$$=\cos 0$$

$$=1$$

$$\oint_{\mathcal{C}} \frac{\cos z}{z} dz = 2\pi i \ (1) = 2\pi i$$

10. Evaluate $\oint_C \frac{z^2}{(z-1)^2(z+1)} dz$ where c is |z| = 2 using residue theorem

[N16/CompIT/6M]

Solution:

We have,
$$f(z) = \frac{z^2}{(z-1)^2(z+1)}$$

For singularity,

$$(z-1)^2(z+1) = 0$$

∴
$$z = 1,1,-1$$

z = -1 is a simple pole and z = 1 is a pole of order 2

Residue of
$$f(z)$$
 at $(z = -1) = \lim_{z \to -1} (z + 1) f(z)$

$$= \lim_{z \to -1} (z + 1) \frac{z^2}{(z - 1)^2 (z + 1)}$$

$$= \lim_{z \to -1} \frac{z^2}{(z - 1)^2}$$

$$= \frac{(-1)^2}{(-1 - 1)^2} = \frac{1}{4}$$
Residue of $f(z)$ at $(z = 1) = \frac{1}{1!} \lim_{z \to 1} \frac{d}{dz} [(z - 1)^2 f(z)]$

Residue of
$$f(z)$$
 at $(z = 1) = \frac{1}{1!} \lim_{z \to 1} \frac{d}{dz} [(z - 1)^2 f(z)]$

$$= \lim_{z \to 1} \frac{d}{dz} [(z - 1)^2 \frac{z^2}{(z - 1)^2 (z + 1)}]$$

$$= \lim_{z \to 1} \frac{d}{dz} \left[\frac{z^2}{z + 1} \right]$$

$$= \lim_{z \to 1} \left[\frac{(z + 1)(2z) - z^2(1)}{(z + 1)^2} \right]$$

$$= \frac{4 - 1}{(1 + 1)^2}$$

$$= \frac{3}{4}$$

Sum of Residues
$$=\frac{1}{4} + \frac{3}{4} = 1$$

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

by Cauchy's Residue Theorem,
$$\int_{c} f(z)dz = 2\pi i \left[sum \ of \ residues\right]$$

$$\oint_{c} \frac{z^{2}}{(z-1)^{2}(z+1)} dz = 2\pi i \ (1) = 2\pi i$$

11. Evaluate $\oint_C \frac{z^2}{(z-1)^2(z-2)} dz$ where c is |z|=2.5 using Cauchy's residue theorem

[N19/Chem/6M]

Solution:

We have,
$$f(z) = \frac{z^2}{(z-1)^2(z-2)}$$

For singularity,

$$(z-1)^2(z-2) = 0$$

∴
$$z = 1,1,2$$

z = 1 is a pole of order 2 and z = 2 is a simple pole

Residue of
$$f(z)$$
 at $(z = 2) = \lim_{z \to 2} (z - 2) f(z)$

$$= \lim_{z \to 2} (z - 2) \frac{z^2}{(z-1)^2(z-2)}$$

$$= \lim_{z \to 2} \frac{z^2}{(z-1)^2}$$

$$= \frac{z^2}{(2-1)^2} = 4$$

Residue of
$$f(z)$$
 at $(z = 1) = \frac{1}{1!} \lim_{z \to 1} \frac{d}{dz} [(z - 1)^2 f(z)]$

$$= \lim_{z \to 1} \frac{d}{dz} [(z - 1)^2 \frac{z^2}{(z - 1)^2 (z - 2)}]$$

$$= \lim_{z \to 1} \frac{d}{dz} \left[\frac{z^2}{z - 2} \right]$$

$$= \lim_{z \to 1} \left[\frac{(z - 2)(2z) - z^2(1)}{(z - 2)^2} \right]$$

$$= \frac{-2 - 1}{(-1)^2}$$

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\oint_C \frac{z^2}{(z-1)^2(z-2)} dz = 2\pi i (4-3) = 2\pi i$$

12. Evaluate $\oint_c \frac{z^2}{(z-1)(z-2)} dz$ where c is circle |z|=2.5 using Cauchy's residue theorem

[M22/Chem/5M]

Solution:

We have,
$$f(z) = \frac{z^2}{(z-1)(z-2)}$$

For singularity,

$$(z-1)(z-2)=0$$

$$\therefore z = 1,2$$

z = 1 is a simple pole and z = 2 is a simple pole

Residue of
$$f(z)$$
 at $(z = 1) = \lim_{z \to 1} (z - 1) f(z)$

$$= \lim_{z \to 1} (z - 1) \frac{z^2}{(z - 1)(z - 2)}$$

$$= \lim_{z \to 1} \frac{z^2}{(z - 2)}$$

$$= \frac{1^2}{(1 - 2)} = -1$$
Pasidue of $f(z)$ at $(z - 2) = \lim_{z \to 1} (z - 2) f(z)$

Residue of
$$f(z)$$
 at $(z = 2) = \lim_{z \to 2} (z - 2) f(z)$

$$= \lim_{z \to 2} (z - 2) \frac{z^2}{(z - 1)(z - 2)}$$

$$= \lim_{z \to 2} \frac{z^2}{(z - 1)}$$

$$= \frac{z^2}{(z - 1)} = 4$$

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\oint_C \frac{z^2}{(z-1)(z-2)} dz = 2\pi i (-1+4) = 6\pi i$$

13. Evaluate $\int_{c} \frac{z+3}{(z-1)(z-4)} dz$ where c is the circle |z-1|=2

[D24/ElectECS/6M]

Solution:

We have,
$$f(z) = \frac{z+3}{(z-1)(z-4)}$$

For singularity,

$$(z-1)(z-4)=0$$

$$\therefore z = 1.4$$

 $\therefore z = 1$ is a simple pole as it lies inside C: |z - 1| = 2 and

$$z = 4$$
 lies outside $C: |z - 1| = 2$

Residue of
$$f(z)$$
 at $(z = 1) = \lim_{z \to 1} (z - 1) f(z)$

$$= \lim_{z \to 1} (z - 1) \frac{z+3}{(z-1)(z-4)}$$

$$= \lim_{z \to 1} \frac{z+3}{(z-4)}$$

$$= \frac{4}{(1-4)} = -\frac{4}{3}$$

$$\int_{c} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\oint_C \frac{z+3}{(z-1)(z-4)} dz = 2\pi i \left(-\frac{4}{3}\right) = -\frac{8\pi i}{3}$$

14. Evaluate the following integral by Cauchy's residue theorem $\int_C \frac{e^{2z}}{(z-1)(z-2)} dz$ where C is the circle |z| = 3

[N22/Chem/5M]

Solution:

We have,
$$f(z) = \frac{e^{2z}}{(z-1)(z-2)}$$

For singularity,

$$(z-1)(z-2)=0$$

$$\therefore z = 1,2$$

 $\therefore z = 1$ is a simple pole and z = 2 is a simple pole

Residue of
$$f(z)$$
 at $(z = 1) = \lim_{z \to 1} (z - 1) f(z)$

$$= \lim_{z \to 1} (z - 1) \frac{e^{2z}}{(z - 1)(z - 2)}$$

$$= \lim_{z \to 1} \frac{e^{2z}}{(z - 2)}$$

$$= \frac{e^2}{(1 - 2)} = -e^2$$
Residue of $f(z)$ at $(z = 2) = \lim_{z \to 2} (z - 2) f(z)$

$$= \lim_{z \to 2} (z - 2) \frac{e^{2z}}{(z - 2)}$$

$$= \lim_{z \to 2} (z - 2) \frac{e^{2z}}{(z - 1)(z - 2)}$$

$$= \lim_{z \to 2} \frac{e^{2z}}{(z - 1)}$$

$$= \frac{e^4}{(z - 1)} = e^4$$

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\int_C \frac{e^{2z}}{(z-1)(z-2)} dz = 2\pi i \left(-e^2 + e^4 \right) = 2\pi i \left[e^4 - e^2 \right]$$

15. Evaluate $\oint_C \frac{z^2}{(z+1)^2(z-2)} dz$ where c is |z| = 1.5

[N19/MechCivil/4M]

Solution:

We have,
$$f(z) = \frac{z^2}{(z+1)^2(z-2)}$$

for singularity,

$$(z+1)^2(z-2) = 0$$

$$z = -1, -1, 2$$

 $\therefore z = -1$ is a pole of order 2 and z = 2 is outside C

Residue of
$$f(z)$$
 at $(z = -1) = \frac{1}{1!} \lim_{z \to -1} \frac{d}{dz} [(z+1)^2 f(z)]$

$$= \lim_{z \to -1} \frac{d}{dz} [(z+1)^2 \frac{z^2}{(z+1)^2 (z-2)}]$$

$$= \lim_{z \to -1} \frac{d}{dz} \left[\frac{z^2}{z-2} \right]$$

$$= \lim_{z \to -1} \left[\frac{(z-2)(2z) - z^2(1)}{(z-2)^2} \right]$$

$$= \frac{6-1}{(-3)^2}$$

$$= \frac{5}{2}$$

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\oint_C \frac{z^2}{(z+1)^2(z-2)} dz = 2\pi i \left(\frac{5}{9}\right) = \frac{10\pi i}{9}$$

16. Using Cauchy's Residue Theorem evaluate $\int_{c} \frac{z-1}{(z+1)^{2}(z-2)} dz$ where C is |z|=4

[M19/Extc/6M]

Solution:

We have,
$$f(z) = \frac{z-1}{(z+1)^2(z-2)}$$

For singularity,

$$(z+1)^2(z-2) = 0$$

$$z = -1, -1, 2$$

z = 2 is a simple pole and z = -1 is a pole of order 2

Residue of
$$f(z)$$
 at $(z = 2) = \lim_{z \to 2} (z - 2) f(z)$

$$= \lim_{z \to 2} (z - 2) \frac{z - 1}{(z + 1)^2 (z - 2)}$$

$$= \lim_{z \to 2} \frac{z - 1}{(z + 1)^2}$$

$$= \frac{2 - 1}{(2 + 1)^2}$$

$$= \frac{1}{9}$$

$$=\frac{1}{0}$$

Residue of
$$f(z)$$
 at $(z = -1) = \frac{1}{1!} \lim_{z \to -1} \frac{d}{dz} [(z+1)^2 f(z)]$

$$= \lim_{z \to -1} \frac{d}{dz} [(z+1)^2 \frac{z-1}{(z+1)^2 (z-2)}]$$

$$= \lim_{z \to -1} \frac{d}{dz} \left[\frac{z-1}{z-2} \right]$$

$$= \lim_{z \to -1} \left[\frac{(z-2)(1) - (z-1)(1)}{(z-2)^2} \right]$$

$$= \frac{-3+2}{-1}$$

Sum of Residues
$$=\frac{1}{9} - \frac{1}{9} = 0$$

$$\int_{c} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\oint_{c}^{c} \frac{z-1}{(z+1)^{2}(z-2)} dz = 2\pi i \ (0) = 0$$

17. Using Cauchy's Residue Theorem evaluate $\int_{c} \frac{z-1}{(z+1)^{2}(z-2)} dz$ where C is |z-i|=2

[M23/Extc/6M]

Solution:

We have,
$$f(z) = \frac{z-1}{(z+1)^2(z-2)}$$

For singularity,

$$(z+1)^2(z-2) = 0$$

∴
$$z = -1, -1, 2$$

C is
$$|z - i| = 2$$

For
$$z=-1$$
, LHS = $|-1-i|=\sqrt{(-1)^2+(-1)^2}=\sqrt{2}<2<{
m RHS}$

z = -1 lies inside C

For
$$z = 2$$
, LHS = $|2 - i| = \sqrt{(2)^2 + (-1)^2} = \sqrt{5} > 2 > \text{RHS}$

z = 2 lies outside C

$$\therefore z = -1$$
 is a pole of order 2

Residue of
$$f(z)$$
 at $(z = -1) = \frac{1}{1!} \lim_{z \to -1} \frac{d}{dz} [(z+1)^2 f(z)]$

$$= \lim_{z \to -1} \frac{d}{dz} [(z+1)^2 \frac{z-1}{(z+1)^2 (z-2)}]$$

$$= \lim_{z \to -1} \frac{d}{dz} \left[\frac{z-1}{z-2} \right]$$

$$= \lim_{z \to -1} \left[\frac{(z-2)(1)-(z-1)(1)}{(z-2)^2} \right]$$

$$= \frac{-3+2}{(-1-2)^2}$$

$$= \frac{-1}{0}$$

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\oint_{C} \frac{z-1}{(z+1)^{2}(z-2)} dz = 2\pi i \left(-\frac{1}{9}\right) = -\frac{2\pi i}{9}$$

18. Evaluate using Cauchy's residue theorem $\int_{c} \frac{12z-7}{z(2z+1)(z+2)} dz$ where C is |z|=1

[M16/ComplT/6M]

Solution:

We have,
$$f(z) = \frac{12z-7}{z(2z+1)(z+2)}$$

For singularity,

$$z(2z+1)(z+2)=0$$

$$\therefore z = 0, z = -\frac{1}{2}, z = -2$$

We see that z=0 and $z=-\frac{1}{2}$ both lies inside C: |z|=1 and hence are simple poles.

Residue of
$$f(z)$$
 at $(z = 0) = \lim_{z \to 0} (z - 0) f(z)$

$$= \lim_{z \to 0} (z - 0) \frac{12z - 7}{z(2z + 1)(z + 2)}$$

$$= \lim_{z \to 0} \frac{12z - 7}{(2z + 1)(z + 2)}$$

$$= \frac{0 - 7}{(0 + 1)(0 + 2)} = -\frac{7}{2}$$

Residue of
$$f(z)$$
 at $\left(z = -\frac{1}{2}\right) = \lim_{z \to -\frac{1}{2}} \left(z + \frac{1}{2}\right) f(z)$

$$= \lim_{z \to -\frac{1}{2}} \left(z + \frac{1}{2}\right) \frac{12z - 7}{z(2z+1)(z+2)}$$

$$= \lim_{z \to -\frac{1}{2}} \frac{2z+1}{2} \cdot \frac{12z - 7}{z(2z+1)(z+2)}$$

$$= \frac{1}{2} \lim_{z \to -\frac{1}{2}} \frac{12z - 7}{z(z+2)}$$

$$= \frac{1}{2} \cdot \frac{12\left(-\frac{1}{2}\right) - 7}{-\frac{1}{2}\left(-\frac{1}{2} + 2\right)}$$

$$= \frac{1}{2} \cdot \frac{-13}{-\frac{3}{4}}$$

$$= \frac{26}{4}$$

$$\int_{c} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\int_{C} \frac{12z-7}{z(2z+1)(z+2)} dz = 2\pi i \left[-\frac{7}{2} + \frac{26}{3} \right] = 2\pi i \left[\frac{31}{6} \right] = \frac{31\pi i}{3}$$

19. Evaluate using Cauchy's residue theorem $\int_{c} \frac{2z-1}{z(2z+1)(z+2)} dz$ where C is |z|=1

[M19/Elect/6M][N22/MTRX/8M][M24/CompITAI/8M] **Solution:**

We have,
$$f(z) = \frac{12z-1}{z(2z+1)(z+2)}$$

For singularity,

$$z(2z+1)(z+2)=0$$

$$z = 0, z = -\frac{1}{2}, z = -2$$

We see that z=0 and $z=-\frac{1}{2}$ both lies inside C: |z|=1 and hence are simple poles.

Residue of
$$f(z)$$
 at $(z = 0) = \lim_{z \to 0} (z - 0) f(z)$

$$= \lim_{z \to 0} (z - 0) \frac{12z - 1}{z(2z + 1)(z + 2)}$$

$$= \lim_{z \to 0} \frac{12z - 1}{(2z + 1)(z + 2)}$$

$$= \frac{0 - 1}{(0 + 1)(0 + 2)}$$

$$= -\frac{1}{2}$$

Residue of
$$f(z)$$
 at $\left(z = -\frac{1}{2}\right) = \lim_{z \to -\frac{1}{2}} \left(z + \frac{1}{2}\right) f(z)$

$$= \lim_{z \to -\frac{1}{2}} \left(z + \frac{1}{2}\right) \frac{12z - 1}{z(2z+1)(z+2)}$$

$$= \lim_{z \to -\frac{1}{2}} \frac{2z+1}{2} \cdot \frac{12z-1}{z(2z+1)(z+2)}$$

$$= \frac{1}{2} \lim_{z \to -\frac{1}{2}} \frac{12z-1}{z(z+2)}$$

$$= \frac{1}{2} \cdot \frac{12\left(-\frac{1}{2}\right) - 1}{-\frac{1}{2}\left(-\frac{1}{2}+2\right)} = \frac{1}{2} \cdot \frac{-7}{-\frac{3}{4}}$$

$$= \frac{14}{2}$$

By Cauchy's Residue Theorem,

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\int_{C} \frac{12z-1}{z(2z+1)(z+2)} dz = 2\pi i \left[-\frac{1}{2} + \frac{14}{3} \right] = 2\pi i \left[\frac{25}{6} \right] = \frac{25\pi i}{3}$$

S.E/Paper Solutions 30 By: Kashif Shaikh 20. Evaluate $\int_{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)(z-2)} dz$ where C is the circle |z| = 3

[M15/ElexExtcElectBiomInst/6M]

Solution:

We have,
$$f(z) = \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)}$$

For singularity,

$$(z-1)(z-2)=0$$

$$\therefore z = 1, z = 2$$

We see that z = 1 and z = 2 both lies inside C: |z| = 3 and hence are simple poles.

Residue of
$$f(z)$$
 at $(z = 1) = \lim_{z \to 1} (z - 1) f(z)$

$$= \lim_{z \to 1} (z - 1) \frac{\sin \pi z^2 + \cos \pi z^2}{(z - 1)(z - 2)}$$

$$= \lim_{z \to 1} \frac{\sin \pi z^2 + \cos \pi z^2}{(z - 2)}$$

$$= \frac{\sin \pi + \cos \pi}{(1 - 2)}$$

$$= \frac{0 - 1}{-1} = 1$$

Residue of
$$f(z)$$
 at $(z = 2) = \lim_{z \to 2} (z - 2) f(z)$

$$= \lim_{z \to 2} (z - 2) \frac{\sin \pi z^2 + \cos \pi z^2}{(z - 1)(z - 2)}$$

$$= \lim_{z \to 2} \frac{\sin \pi z^2 + \cos \pi z^2}{(z - 1)}$$

$$= \frac{\sin 4\pi + \cos 4\pi}{(z - 1)}$$

$$= \frac{0 + 1}{1} = 1$$

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\int_{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)(z-2)} dz = 2\pi i \left[1 + 1 \right] = 4\pi i$$

21. Using Cauchy's Residue theorem evaluate $\int_{c} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$ where C is the circle

$$|z| = 3$$

[N18/Elex/6M]

Solution:

We have,
$$f(z) = \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)}$$

For singularity,

$$(z-1)^2(z-2) = 0$$

$$\therefore z = 1, 1, z = 2$$

We see that z=1 and z=2 both lies inside C:|z|=3 and hence z=1 is a pole of order 2 and z = 2 is a simple pole

Residue of
$$f(z)$$
 at $(z = 1) = \frac{1}{1!} \lim_{z \to 1} \frac{d}{dz} [(z - 1)^2 f(z)]$

$$= \lim_{z \to 1} \frac{d}{dz} \Big[(z - 1)^2 \frac{\sin \pi z^2 + \cos \pi z^2}{(z - 1)^2 (z - 2)} \Big]$$

$$= \lim_{z \to 1} \frac{d}{dz} \Big[\frac{\sin \pi z^2 + \cos \pi z^2}{(z - 2)} \Big]$$

$$= \lim_{z \to 1} \Big[\frac{(z - 2)(\cos \pi z^2 \times 2\pi z - \sin \pi z^2 \times 2\pi z) - (\sin \pi z^2 + \cos \pi z^2)(1)}{(z - 2)^2} \Big]$$

$$= \frac{(-1)(\cos \pi \times 2\pi) - (\cos \pi)}{(1 - 2)^2}$$

$$= 2\pi + 1$$

Residue of
$$f(z)$$
 at $(z = 2) = \lim_{z \to 2} (z - 2) f(z)$

$$= \lim_{z \to 2} (z - 2) \frac{\sin \pi z^2 + \cos \pi z^2}{(z - 1)^2 (z - 2)}$$

$$= \lim_{z \to 2} \frac{\sin \pi z^2 + \cos \pi z^2}{(z - 1)^2}$$

$$= \frac{\sin 4\pi + \cos 4\pi}{(2 - 1)^2} = \frac{0 + 1}{1} = 1$$

By Cauchy's Residue Theorem,

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\int_{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)^{2}(z-2)} dz = 2\pi i \left[2\pi + 1 + 1 \right] = 2\pi i (2\pi + 2)$$

S.E/Paper Solutions 32 By: Kashif Shaikh 22. Using Cauchy's Residue theorem evaluate $\int_{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-2)^{2}(z-1)} dz$ where C is the circle |z| =

[D23/ElectECS/6M]

Solution:

We have,
$$f(z) = \frac{\sin \pi z^2 + \cos \pi z^2}{(z-2)^2(z-1)}$$

For singularity,

$$(z-2)^2(z-1) = 0$$

$$\therefore z = 2, 2, z = 1$$

We see that z=1 and z=2 both lies inside C:|z|=3 and hence z=2 is a pole of order 2 and z = 1 is a simple pole

Residue of
$$f(z)$$
 at $(z = 2) = \frac{1}{1!} \lim_{z \to 2} \frac{d}{dz} \left[(z - 2)^2 f(z) \right]$

$$= \lim_{z \to 2} \frac{d}{dz} \left[(z - 2)^2 \frac{\sin \pi z^2 + \cos \pi z^2}{(z - 2)^2 (z - 1)} \right]$$

$$= \lim_{z \to 2} \frac{d}{dz} \left[\frac{\sin \pi z^2 + \cos \pi z^2}{(z - 1)} \right]$$

$$= \lim_{z \to 2} \left[\frac{(z - 1)(\cos \pi z^2 \times 2\pi z - \sin \pi z^2 \times 2\pi z) - (\sin \pi z^2 + \cos \pi z^2)(1)}{(z - 1)^2} \right]$$

$$= \frac{(1)(\cos 4\pi \times 4\pi) - (\cos 4\pi)}{(2 - 1)^2}$$

$$= 4\pi - 1$$

Residue of
$$f(z)$$
 at $(z = 1) = \lim_{z \to 1} (z - 1) f(z)$

$$= \lim_{z \to 1} (z - 1) \frac{\sin \pi z^2 + \cos \pi z^2}{(z - 2)^2 (z - 1)}$$

$$= \lim_{z \to 1} \frac{\sin \pi z^2 + \cos \pi z^2}{(z - 2)^2}$$

$$= \frac{\sin \pi + \cos \pi}{(1 - 2)^2} = \frac{0 - 1}{1} = -1$$

By Cauchy's Residue Theorem,

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\int_{c}^{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-2)^{2}(z-1)} dz = 2\pi i \left[4\pi - 1 - 1 \right] = 2\pi i (4\pi - 2)$$

S.E/Paper Solutions 33 By: Kashif Shaikh 23. Evaluate $\int_{c} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-2)(z-3)} dz$ where C is the circle (i) |z| = 1 (ii) |z| = 4

[N22/Extc/6M]

Solution:

We have,
$$f(z) = \frac{\sin \pi z^2 + \cos \pi z^2}{(z-2)(z-3)}$$

For singularity,

$$(z-2)(z-3)=0$$

$$\therefore z = 2, z = 3$$

(i)
$$|z| = 1$$

We see that z=2 and z=3 both lies outside C:|z|=1

By Cauchy's theorem

$$\int_{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-2)(z-3)} dz = 0$$

(ii)
$$|z| = 4$$

We see that z=2 and z=3 both lies inside $\mathcal{C}\colon |z|=4$ and hence they are simple poles

Residue of f(z) at $(z = 2) = \lim_{z \to 2} (z - 2) f(z)$

$$= \lim_{z \to 2} (z - 2) \frac{\sin \pi z^2 + \cos \pi z^2}{(z - 2)(z - 3)}$$

$$= \lim_{z \to 2} \frac{\sin \pi z^2 + \cos \pi z^2}{(z - 3)}$$

$$= \frac{\sin 4\pi + \cos 4\pi}{(z - 3)}$$

$$= \frac{0 + 1}{-1} = -1$$

Residue of f(z) at $(z = 3) = \lim_{z \to 3} (z - 3) f(z)$

$$= \lim_{z \to 3} (z - 3) \frac{\sin \pi z^2 + \cos \pi z^2}{(z - 2)(z - 3)}$$

$$= \lim_{z \to 3} \frac{\sin \pi z^2 + \cos \pi z^2}{(z - 2)}$$

$$= \frac{\sin 9\pi + \cos 9\pi}{(3 - 2)}$$

$$= \frac{0 - 1}{1} = -1$$

$$\int_c f(z)dz = 2\pi i \ [sum \ of \ residues]$$

$$\int_{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-2)(z-3)} dz = 2\pi i \left[-1 - 1 \right] = -4\pi i$$

24. By using Cauchy's Residue theorem evaluate $\int_{c} \frac{\sin \pi z + \cos \pi z}{(z-1)(z-2)} dz$ where C is the circle

$$|z| = 3$$

[M19/Inst/6M][M19/Biom/6M]

Solution:

We have,
$$f(z) = \frac{\sin \pi z + \cos \pi z}{(z-1)(z-2)}$$

For singularity,

$$(z-1)(z-2)=0$$

$$\therefore z = 1, z = 2$$

We see that z=1 and z=2 both lies inside C:|z|=3 and hence z=1 and z=2 are simple poles

Residue of
$$f(z)$$
 at $(z = 2) = \lim_{z \to 2} (z - 2) f(z)$

$$= \lim_{z \to 2} (z - 2) \frac{\sin \pi z + \cos \pi z}{(z - 1)(z - 2)}$$

$$= \lim_{z \to 2} \frac{\sin \pi z + \cos \pi z}{(z - 1)}$$

$$= \frac{\sin 2\pi + \cos 2\pi}{1} = \frac{0 + 1}{1} = 1$$

Residue of
$$f(z)$$
 at $(z = 1) = \lim_{z \to 1} (z - 1) f(z)$

$$= \lim_{z \to 1} (z - 1) \frac{\sin \pi z + \cos \pi z}{(z - 1)(z - 2)}$$

$$= \lim_{z \to 1} \frac{\sin \pi z + \cos \pi z}{(z - 2)}$$

$$= \frac{\sin \pi + \cos \pi}{-1} = \frac{0 - 1}{-1} = 1$$
By Cauchy's Residue Theorem

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\int_{c}^{c} \frac{\sin \pi z + \cos \pi z}{(z-1)(z-2)} dz = 2\pi i \left[1 + 1 \right] = 4\pi i$$

25. Evaluate $\int_C \frac{dz}{(z^2-4)(z+4)}$ where C is circle |z|=4 using Cauchy's residue theorem

[M22/Elect/5M]

Solution:

We have,
$$f(z) = \frac{1}{(z^2-4)(z+4)}$$

For singularity,

$$(z^2 - 4)(z + 4) = 0$$

$$z = -2.2, -4$$

We see that z=-2 and z=2 both lies inside C:|z|=4 and hence z=-2 and z=2are simple poles

Residue of
$$f(z)$$
 at $(z = 2) = \lim_{z \to 2} (z - 2) f(z)$

$$= \lim_{z \to 2} (z - 2) \frac{1}{(z - 2)(z + 2)(z + 4)}$$

$$= \lim_{z \to 2} \frac{1}{(z + 2)(z + 4)}$$

$$= \frac{1}{24}$$

Residue of
$$f(z)$$
 at $(z = -2) = \lim_{z \to -2} (z + 2) f(z)$

$$= \lim_{z \to -2} (z + 2) \frac{1}{(z - 2)(z + 2)(z + 4)}$$

$$= \lim_{z \to -2} \frac{1}{(z - 2)(z + 4)}$$

$$= \frac{1}{-8}$$

$$\int_{c} f(z)dz = 2\pi i [sum \ of \ residues]$$

$$\int_{C} \frac{1}{(z^{2}-4)(z+4)} dz = 2\pi i \left[\frac{1}{24} - \frac{1}{8} \right] = -\frac{\pi i}{6}$$

26. By using Cauchy's Residue theorem evaluate $\int_{C} \frac{\sin^{6} z}{\left(z - \frac{\pi}{2}\right)^{3}} dz$ where C is the circle |z| = 2

[N19/Elect/6M]

Solution:

We have,
$$f(z) = \frac{\sin^6 z}{\left(z - \frac{\pi}{2}\right)^3}$$

For singularity,

$$\left(z - \frac{\pi}{2}\right)^3 = 0$$

$$\therefore z = \frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}$$

We see that $z = \frac{\pi}{2}$ lies inside C and hence $z = \frac{\pi}{2}$ is a pole of order 3

Residue of
$$f(z)$$
 at $\left(z = \frac{\pi}{2}\right) = \frac{1}{2!} \lim_{Z \to \frac{\pi}{2}} \frac{d^2}{dz^2} \left[\left(z - \frac{\pi}{2}\right)^3 f(z) \right]$

$$= \frac{1}{2} \lim_{Z \to \frac{\pi}{2}} \frac{d^2}{dz^2} \left[\left(z - \frac{\pi}{2}\right)^3 \frac{\sin^6 z}{\left(z - \frac{\pi}{2}\right)^3} \right]$$

$$= \frac{1}{2} \lim_{Z \to \frac{\pi}{2}} \frac{d^2}{dz^2} \left[\sin^6 z \right]$$

$$= \frac{1}{2} \lim_{Z \to \frac{\pi}{2}} \frac{d}{dz} \left[6 \sin^5 z \times \cos z \right]$$

$$= \frac{1}{2} \lim_{Z \to \frac{\pi}{2}} \left[6 \sin^5 z \left(-\sin z \right) + \cos z \left(30 \sin^4 z \times \cos z \right) \right]$$

$$= \frac{1}{2} \left[-6 \right] = -3$$

$$\int_{c} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\int_{c} \frac{\sin^{6} z}{\left(z - \frac{\pi}{2}\right)^{3}} dz = 2\pi i \left[-3 \right] = -6\pi i$$

27. Using Cauchy's residue theorem evaluate $\oint_c \frac{z^2+3}{z^2-1} dz$ where C is the circle (i) |z-1|=1(ii) |z + 1| = 1

[N16/ElexExtcElectBiomInst/8M]

Solution:

We have,
$$f(z) = \frac{z^2 + 3}{z^2 - 1}$$

For singularity,

$$z^2 - 1 = 0$$

$$(z-1)(z+1)=0$$

$$\therefore z = 1, -1$$

(i) C is
$$|z - 1| = 1$$

We see that, z = 1 is a simple pole and z = -1 lies outside C

Residue of
$$f(z)$$
 at $(z = 1) = \lim_{z \to 1} (z - 1) f(z)$

$$z \to 1$$

$$= \lim_{z \to 1} (z - 1) \frac{z^2 + 3}{(z + 1)(z - 1)}$$

$$= \lim_{z \to 1} \frac{z^2 + 3}{z + 1}$$

$$= \frac{4}{2} = 2$$

By Cauchy's Residue Theorem,

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\oint_C \frac{z^2 + 3}{z^2 - 1} dz = 2\pi i \ (2) = 4\pi i$$

(ii) C is
$$|z + 1| = 1$$

We see that, z = -1 is a simple pole and z = 1 lies outside C

Residue of
$$f(z)$$
 at $(z = -1) = \lim_{z \to -1} (z + 1) f(z)$

$$= \lim_{z \to -1} (z + 1) \frac{z^2 + 3}{(z + 1)(z - 1)}$$

$$= \lim_{z \to -1} \frac{z^2 + 3}{z - 1}$$

$$= \frac{4}{-2} = -2$$

$$\int_{c} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\oint_C \frac{z^2 + 3}{z^2 - 1} dz = 2\pi i \ (-2) = -4\pi i$$

28. Evaluate using Cauchy's Residue theorem $\oint_C \frac{1-2z}{z(z-1)(z-2)} dz$ where c is circle |z|=1.5

[N15/CompIT/6M][N22/CompITAI/6M] **Solution:**

We have,
$$f(z) = \frac{1-2z}{z(z-1)(z-2)}$$

For singularity,

$$z(z-1)(z-2)=0$$

$$z = 0, z = 1, z = 2$$

We see that z=0 and z=1 both lies inside C:|z|=1.5 and hence are simple poles.

Residue of
$$f(z)$$
 at $(z = 0) = \lim_{z \to 0} (z - 0) f(z)$

$$= \lim_{z \to 0} (z - 0) \frac{1 - 2z}{z(z - 1)(z - 2)}$$

$$= \lim_{z \to 0} \frac{1 - 2z}{(z - 1)(z - 2)}$$

$$= \frac{1 - 0}{(0 - 1)(0 - 2)}$$

$$= \frac{1}{2}$$
Posidue of $f(z)$ at $(z = 1) = \lim_{z \to 0} (z - 1) f(z)$

Residue of
$$f(z)$$
 at $(z = 1) = \lim_{z \to 1} (z - 1) f(z)$

$$= \lim_{z \to 1} (z - 1) \frac{1 - 2z}{z(z - 1)(z - 2)}$$

$$= \lim_{z \to 1} \frac{1 - 2z}{z(z - 2)}$$

$$= \frac{1 - 2(1)}{1(1 - 2)}$$

$$= \frac{-1}{z} = 1$$

$$\int_{c} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\int_{c}^{c} \frac{1 - 2z}{z(z - 1)(z - 2)} dz = 2\pi i \left[\frac{1}{2} + 1 \right] = 2\pi i \left[\frac{3}{2} \right] = 3\pi i$$

29. Using Residue theorem, evaluate $\int_{c} \frac{e^{z}}{z^{2}+\pi^{2}} dz$ where c is |z|=4

[M17/ElexExtcElectBiomInst/6M]

Solution:

We have,
$$f(z) = \frac{e^z}{z^2 + \pi^2}$$

For singularity,

$$z^2 + \pi^2 = 0$$

$$(z + \pi i)(z - \pi i) = 0$$

$$\therefore z = +\pi i$$

 $z = \pi i$ and $z = -\pi i$ are simple poles

Residue of
$$f(z)$$
 at $(z = \pi i) = \lim_{z \to \pi i} (z - \pi i) f(z)$

$$= \lim_{z \to \pi i} (z - \pi i) \frac{e^z}{(z + \pi i)(z - \pi i)}$$

$$= \lim_{z \to \pi i} \frac{e^z}{z + \pi i}$$

$$= \frac{e^{\pi i}}{2\pi i}$$

Residue of
$$f(z)$$
 at $(z = -\pi i) = \frac{e^{-\pi i}}{-2\pi i}$

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\oint_C \frac{e^z}{z^2 + \pi^2} dz = 2\pi i \left(\frac{e^{\pi i} - e^{-\pi i}}{2\pi i} \right) = 2i \sin \pi = 0$$

30. Using Residue theorem, evaluate $\int_{c} \frac{e^{z}}{(z^{2}+\pi^{2})^{2}} dz$ where c is |z|=4[N16/MechCivil/6M][N18/Extc/6M]

Solution: We have, $f(z) = \frac{e^z}{(z^2 + \pi^2)^2}$

$$(z^2 + \pi^2)^2 = 0$$

$$(z + \pi i)^2 (z - \pi i)^2 = 0$$

$$z = \pm \pi i, \pm \pi i$$

 $z = \pi i$ and $z = -\pi i$ are poles of order 2

Residue of
$$f(z)$$
 at $(z = \pi i) = \frac{1}{1!} \lim_{z \to \pi i} \frac{d}{dz} [(z - \pi i)^2 f(z)]$

$$= \lim_{z \to \pi i} \frac{d}{dz} [(z - \pi i)^2 \frac{e^z}{(z + \pi i)^2 (z - \pi i)^2}]$$

$$= \lim_{z \to \pi i} \frac{d}{dz} \left[\frac{e^z}{(z + \pi i)^2} \right]$$

$$= \lim_{z \to \pi i} \left[\frac{(z + \pi i)^2 (e^z) - e^z \cdot 2(z + \pi i)}{(z + \pi i)^4} \right]$$

$$= \frac{e^{\pi i} (2\pi i - 2)}{(2\pi i)^3}$$

$$= \frac{(\cos \pi + i \sin \pi)(2\pi i - 2)}{8\pi^3 i}$$

$$= \frac{(-1)(2\pi i - 2)}{-8\pi^3 i}$$

$$= \frac{\pi i - 1}{4\pi^3 i}$$

:Residue of
$$f(z)$$
 at $(z = -\pi i) = \frac{-\pi i - 1}{-4\pi^3 i} = \frac{\pi i + 1}{4\pi^3 i}$

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\oint_{C} \frac{e^{z}}{(z^{2} + \pi^{2})^{2}} dz = 2\pi i \left(\frac{\pi i + 1}{4\pi^{3} i} + \frac{\pi i - 1}{4\pi^{3} i} \right) = 2\pi i \left[\frac{2\pi i}{4\pi^{3} i} \right] = \frac{i}{\pi}$$

31. Using Cauchy Residue Theorem evaluate $\int_C \frac{e^{2z}}{(z-\pi i)^3} dz$, C is |z-2i|=4

[M24/D24/Extc/6M]

Solution:

We have,
$$f(z) = \frac{e^{2z}}{(z-\pi i)^3}$$

For singularity,

$$(z - \pi i)^3 = 0$$

$$\therefore z = \pi i, \pi i, \pi i$$

 $\therefore z = \pi i$ is a pole of order 3

Residue of
$$f(z)$$
 at $(z = \pi i) = \frac{1}{2!} \lim_{z \to \pi i} \frac{d^2}{dz^2} [(z - \pi i)^3 f(z)]$

$$= \frac{1}{2} \cdot \lim_{z \to \pi i} \frac{d^2}{dz^2} [(z - \pi i)^3 \frac{e^{2z}}{(z - \pi i)^3}]$$

$$= \frac{1}{2} \cdot \lim_{z \to \pi i} \frac{d^2}{dz^2} [e^{2z}]$$

$$= \frac{1}{2} \cdot \lim_{z \to \pi i} [e^{2z} \times 2^2]$$

$$= \frac{1}{2} \cdot [4e^{2\pi i}]$$

$$= 2(\cos 2\pi + i \sin 2\pi)$$

$$= 2(1 + 0)$$

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\oint_C \frac{e^{2z}}{(z-\pi i)^3} dz = 2\pi i \ (2) = 4\pi i$$

32. Evaluate the integral $\int_C \frac{1}{(z^2+1)(z^2+4)} dz$, C: |z-2i| = 2

[M23/ElectECS/5M]

Solution:

We have,
$$f(z) = \frac{1}{(z^2+1)(z^2+4)}$$

For singularity,

$$(z^2 + 1)(z^2 + 4) = 0$$

 $z^2 = -1, z^2 = -4$
 $\therefore z = \pm i, z = \pm 2i$

We see that z = i, 2i are simple poles since they lie inside C

Residue of
$$f(z)$$
 at $(z = i) = \lim_{z \to i} (z - i) f(z)$

$$= \lim_{z \to i} (z - i) \cdot \frac{1}{(z+i)(z-i)(z+2i)(z-2i)}$$

$$= \lim_{z \to i} \frac{1}{(z+i)(z+2i)(z-2i)}$$

$$= \frac{1}{(2i)(3i)(-i)} = -\frac{i}{6}$$
Residue of $f(z)$ at $(z = 2i) = \lim_{z \to 2i} (z - 2i) f(z)$

$$= \lim_{z \to 2i} (z - 2i) \cdot \frac{1}{(z+i)(z-i)(z+2i)(z-2i)}$$

$$= \lim_{z \to 2i} \frac{1}{(z+i)(z-i)(z+2i)}$$

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\int_{c}^{c} \frac{1}{(z^{2}+1)(z^{2}+4)} dz = 2\pi i \left(-\frac{i}{6} - \frac{i}{12}\right) = 2\pi i \left[-\frac{i}{4}\right] = \frac{\pi}{2}$$

33. Evaluate $\int_C \frac{4z^2+1}{(2z-3)(z+1)^2} dz$, C: |z|=4 using Cauchy's residue theorem

[M22/CompITAI/5M]

Solution:

We have,
$$f(z) = \frac{4z^2+1}{(2z-3)(z+1)^2}$$

For singularity,

$$(2z - 3)(z + 1)^2 = 0$$

$$\therefore z = \frac{3}{2}, -1, -1$$

 $\therefore z = \frac{3}{2}$ is a simple pole and z = -1 is a pole of order 2

Residue of
$$f(z)$$
 at $\left(z = \frac{3}{2}\right) = \lim_{z \to \frac{3}{2}} \left(z - \frac{3}{2}\right) f(z)$

$$= \lim_{z \to \frac{3}{2}} \left(z - \frac{3}{2}\right) \frac{4z^2 + 1}{(2z - 3)(z + 1)^2}$$

$$= \lim_{z \to \frac{3}{2}} \frac{4z^2 + 1}{2(z + 1)^2}$$

$$= \frac{4\left(\frac{3}{2}\right)^2 + 1}{2\left(\frac{3}{2} + 1\right)^2} = \frac{4}{5}$$

Residue of
$$f(z)$$
 at $(z = -1) = \frac{1}{1!} \lim_{z \to -1} \frac{d}{dz} [(z + 1)^2 f(z)]$

$$= \lim_{z \to -1} \frac{d}{dz} [(z + 1)^2 \frac{4z^2 + 1}{(2z - 3)(z + 1)^2}]$$

$$= \lim_{z \to -1} \frac{d}{dz} \left[\frac{4z^2 + 1}{(2z - 3)} \right]$$

$$= \lim_{z \to -1} \left[\frac{(2z - 3)(8z) - (4z^2 + 1)(2)}{(2z - 3)^2} \right]$$

$$= \frac{(-5)(-8) - (5)(2)}{(-5)^2}$$

$$= \frac{30}{25} = \frac{6}{5}$$

$$\int_{c} f(z)dz = 2\pi i [sum \ of \ residues]$$

$$\oint_C \frac{4z^2 + 1}{(2z - 3)(z + 1)^2} dz = 2\pi i \left(\frac{4}{5} + \frac{6}{5}\right) = 2\pi i [2] = 4\pi i$$

34. Using residue theorem evaluate $\int_C \frac{3z^2+z}{z^2-1} dz$ where C is the circle |z|=2

[M22/Elex/5M]

Solution:

We have,
$$f(z) = \frac{3z^2 + z}{z^2 - 1}$$

For singularity,

$$z^2 - 1 = 0$$

$$(z-1)(z+1)=0$$

$$\dot{z} = 1, -1$$

We see that, z = 1 is a simple pole and z = -1 is also a simple pole

Residue of
$$f(z)$$
 at $(z = 1) = \lim_{z \to 1} (z - 1) f(z)$

$$= \lim_{z \to 1} (z - 1) \frac{3z^2 + z}{(z+1)(z-1)}$$

$$= \lim_{z \to 1} \frac{3z^2 + z}{z+1}$$

$$= \frac{4}{2} = 2$$

Residue of
$$f(z)$$
 at $(z = -1) = \lim_{z \to -1} (z + 1) f(z)$

$$= \lim_{z \to -1} (z+1) \frac{3z^2 + z}{(z+1)(z-1)}$$

$$= \lim_{z \to -1} \frac{3z^2 + z}{z - 1}$$
$$= \frac{2}{z^2} = -1$$

$$\int_{C} f(z)dz = 2\pi i [sum \ of \ residues]$$

$$\oint_{\mathcal{C}} \frac{3z^2 + z}{z^2 - 1} dz = 2\pi i (2 - 1) = 2\pi i$$

By using Cauchy Residue theorem, evaluate $\int_{c} \frac{\sin^{3} z}{\left(z - \frac{\pi}{c}\right)^{2}} dz$ where C is the circle |z| = 2

[D23/Extc/6M]

Solution:

We have,
$$f(z) = \frac{\sin^3 z}{\left(z - \frac{\pi}{6}\right)^2}$$

For singularity,

$$\left(z - \frac{\pi}{6}\right)^2 = 0$$

$$\therefore z = \frac{\pi}{6}, \frac{\pi}{6}$$

We see that $z = \frac{\pi}{6}$ lies inside C and hence $z = \frac{\pi}{6}$ is a pole of order 2

Residue of
$$f(z)$$
 at $\left(z = \frac{\pi}{6}\right) = \frac{1}{1!} \lim_{z \to \frac{\pi}{6}} \frac{d}{dz} \left[\left(z - \frac{\pi}{6}\right)^2 f(z) \right]$

$$= \lim_{z \to \frac{\pi}{6}} \frac{d}{dz} \left[\left(z - \frac{\pi}{6}\right)^2 \frac{\sin^3 z}{\left(z - \frac{\pi}{6}\right)^2} \right]$$

$$= \lim_{z \to \frac{\pi}{6}} \frac{d}{dz} \left[\sin^3 z \right]$$

$$= \lim_{z \to \frac{\pi}{6}} \left[3 \sin^2 z \times \cos z \right]$$

$$= 3 \left(\frac{1}{2} \right)^2 \times \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{8}$$

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\int_{C} \frac{\sin^{6} z}{\left(z - \frac{\pi}{2}\right)^{3}} dz = 2\pi i \left[\frac{3\sqrt{3}}{8} \right] = \frac{3\sqrt{3}\pi i}{4}$$

36. Evaluate the following integral using Cauchy Residue theorem $\int_C \frac{1}{z^5} \cdot e^{z^2} dz$, |z| = 1

[M24/ElectECS/6M]

Solution:

$$I = \int_C \frac{1}{z^5} \cdot e^{z^2} dz$$

$$f(z) = \frac{e^{z^2}}{z^5}$$

$$f(z) = \frac{1}{z^5} \left[1 + z^2 + \frac{(z^2)^2}{2!} + \frac{(z^2)^3}{3!} + \frac{(z^2)^4}{4!} + \cdots \right]$$

$$f(z) = \frac{1}{z^5} + \frac{z^2}{z^5} + \frac{z^4}{2z^5} + \frac{z^6}{6z^5} + \frac{z^8}{24z^5} + \cdots$$

$$f(z) = \frac{1}{z^5} + \frac{1}{z^3} + \frac{1}{2z} + \frac{z}{6} + \frac{z^3}{24} + \cdots$$

Residue = coefficient of $\frac{1}{7} = \frac{1}{2}$

$$\int_{C} f(z)dz = 2\pi i \left[sum \ of \ residues \right]$$

$$\int_C \frac{1}{z^5} \cdot e^{z^2} dz = 2\pi i \left[\frac{1}{2} \right] = \pi i$$

