Notes

December 8, 2014

14b

```
m\mathbb{Z} \cdot n\mathbb{Z} = (mn)\mathbb{Z}
\subseteq
let x \in (n\mathbb{Z})(m\mathbb{Z}) so x = \sum_{i=1}^k a_i b_i and n|a_i and m|b_i and so nm|a_i b_i and so nm|x and so n\mathbb{Z}m\mathbb{Z} \subseteq nm\mathbb{Z}
\supseteq
let y \in mn\mathbb{Z} and so y = mnz_0 = (n \cdot 1)(m \cdot z_0) \in n\mathbb{Z}m\mathbb{Z}
```

20

```
gaussian integers are "complex" integers \mathbb{Z}[i]/\langle p \rangle = \{[a+bi]|a,b \in \mathbb{Z}\} = \{[a]+[b][i]\} [a]+[b]i=[a']+[b']i \to (a+bi)-(a'+bi) \in \langle p \rangle = p(c+di) \to a-a'=pc \text{ and } b-b'=pd \to a-a' \in \langle p \rangle \to [a]=[a'] \text{ and similarly with b.}
```

define

R comm ring and I ideal where $I \neq R$ then I prime ideal means that $ab \in I \rightarrow a \in I$ or $b \in I$

example

 $R = \mathbb{Z}, p \in \mathbb{Z}$ then $p\mathbb{Z}$ is a prime ideal because if $ab \in I$ then wlog $p|ab \to p|b \to b \in I$.

example

claim $n\mathbb{Z}$ prime ideal then n is prime

assume n not prime and $n \neq 0$. $n = \alpha \beta$ where $1 < \alpha < n, 1 < \beta < n, \alpha, \beta \in \mathbb{Z}$. then $\alpha \beta \in n\mathbb{Z}$ but $\alpha \notin n\mathbb{Z}$ and $\beta \notin n\mathbb{Z}$. notice that $n \neq 0$ is key here.

example

claim $\langle 0 \rangle$ is a prime ideal. $ab = 0 \rightarrow a = 0$ or b = 0 because R is an integral domain observation: R commutative ring theen R is an integral domain iff $\langle 0 \rangle$ is a prime ideal.

 \mathbb{Z}

```
n\mathbb{Z} \subseteq m\mathbb{Z} \Leftrightarrow m|n
taken = p prime nmber. p\mathbb{Z} \subseteq m\mathbb{Z} \Leftrightarrow m|p \Leftrightarrow m \pm 1 or m = \pm p and so m\mathbb{Z} = \mathbb{Z} or m\mathbb{Z} = p\mathbb{Z}
```

definition

if J is an ideal of R and $J \neq R$ we say that J is a maximal ideal of R if for every ideal I of R $j \subseteq I \subseteq R \rightarrow I = J$ or I = R.

$$J = p\mathbb{Z}$$

note that $\langle 0 \rangle$ is not a maximal ideal.

claim

every maximal ideal is a prime ideal

proposition

let I be a proper ideal of a commutative ring R (proper means different from ring itself). then I is maximum ideal iff R/I is a field. also I is a prime ideal iff R/I is an integral domain. finally I maximal implies I is a prime ideal.

proof 1

R/I field iff R/I has only the two trivial ideals (can you prove this?) and this is true iff I is maximal.

proof 2

assume I is a prime ideal. then $[x][y] \in R/I$ then [xy] = [0] in R/I and so $xy \in I$ means that $x \in I$ or $y \in I$ and so [x] = 0 or [y] = 0 so R/I is an integral domain.

proof 3

R/I integral domain

then [xy] = [0] in R/I [x][y] = [0] in R/I so [x] = 0 or [y] = [0] then $x \in I$ or $y \in I$ hence I is a prime ideal.

thrm

if R is a principle ideal domain and P is a prime ideal different from zero, then P is maximal.

proof

 $P \subseteq I \subseteq R$ write P = aR, I = bR. P is non-zero and so $a \neq 0$ and $P \in I \to aR \in bR$. then $a \in bR$ we write a = br, $r \in R$ then $a = br \in P$ and so $b \in P$ or $r \in P$ because P is prime ideal. if $b \in P$ then a|b and so $I \subseteq P$ but $P \subseteq I$ and so I = P. if $r \in P$ then $r \in aR$ and r = as, $s \in R$ and then a = br = b(as) and so a(1 - bs) = 0 but $a \neq 0$ and because we are in an integral domain then 1 - bs = 0. and so $1 = bs \in I$ and $1 \in I$ and so I = R.