Práctica 7: Filtro de Kalman

Departamento de Automática Universidad de Alcalá

Conexión de la unidad de medida GY-87

Conexiones:

- GY-87, VCC_IN → VCC
- O GY-87, GND → GND
- GY-87, SCL → A5
- O GY-87, SDA → A4

fritzing

Estimación de Θ y $\dot{\Theta}_{\mathbf{b}}$

- Estimación del roll (Θ) y del bias de la velocidad angular en X (Θ_b)
- Fase de predicción:
 - Matriz de estado
 - Cálculo de la predicción
 - Cálculo de la matriz de covarianza de error a priori
 - Densidad espectral de ruido del roll (Q_angle): 0.01
 - Densidad espectral de ruido del bias de la velocidad angular (Q_gyro): 0.003
- Fase de actualización:
 - Innovación
 - Innovación en covarianza
 - Varianza de medida del ángulo (R_measure): 0.03
 - Cálculo de la ganancia de Kalman
 - Estimación del estado actual a posteriori
 - Matriz de covarianza de error a posteriori

Representación roll medido/estimación

- Requisitos del programa. Inicialización:
 - O Configuración de la puerta serie a 115200 baudios
 - Configuración del dispositivo GY-87 empleando la biblioteca Wire
 - Configuración del giróscopo con un fondo de escala de ± 250°
 - Configuración del acelerómetro con un fondo de escala de ± 2g
 - Inicialización de estimaciones y covarianzas a 0
- Requisitos del programa: de forma ininterrumpida, el programa debe realizar la estimación de Θ y de $\Theta_{\rm b}$ empleando un filtro de Kalman
- Representación gráfica de las medidas:
 - roll medido directamente con el acelerómetro
 - o roll estimado mediante el filtro de Kalman

© Departamento de Automática. Universidad de Alcalá. Este documento se ha publicado con la licencia Creative Commons Attribution Share-Alike 4.0 (international): https://creativecommons.org/licenses/by-sa/4.0/