

La Descripción de una variable cuantitativa (una medida)

Las herramientas descriptivas para observar las características de 1 variable cuantitativa

¿Que vas a ver en este bloque?

- Los objetivos de la descripción de medidas
- Las herramientas descriptivas

Los objetivos de la descripción de medidas

Qué es lo que pretendemos en esta etapa de descripción

Los objetivos

- Observar los estadísticos descriptivos más relevantes:
 - Centralidad
 - Dispersión
 - Posición
 - Forma
 - IC
- Observar la distribución de las variables
- Encontrar valores atípicos

Las herramientas descriptivas para las medidas

El mapa de las descripción paso a paso

Los estadísticos o resumen numérico

- Observar los estadísticos descriptivos más relevantes:
 - Centralidad
 - Media
 - Mediana
 - Moda
 - Dispersión
 - Desviación estándar
 - Error estándar
 - Amplitud
 - Máximo y mínimo
 - Posición
 - Cuartiles y percentiles
 - Forma
 - Simetría y Kurtosis
 - IC de la media

	Sepal.Length	Sepal.Width $^{\diamondsuit}$	Petal.Lengtĥ	Petal.Width $^{\diamondsuit}$
mean	5.84333333	3.05733333	3.758000	1.19933333
Desv.Estandar	0.82806613	0.43586628	1.765298	0.76223767
Mediana	5.80000000	3.00000000	4.350000	1.30000000
IQR	1.30000000	0.50000000	3.500000	1.50000000
Min	4.30000000	2.00000000	1.000000	0.10000000
Max	7.90000000	4.40000000	6.900000	2.50000000
Rango	3.60000000	2.40000000	5.900000	2.40000000
Cuartil1	5.10000000	2.80000000	1.600000	0.30000000
Cuartil3	6.40000000	3.30000000	5.100000	1.80000000
N	150.00000000	150.00000000	150.000000	150.00000000
ErrorEstandar	0.06761132	0.03558833	0.144136	0.06223645
IC95MediaLower	5.71081515	2.98758020	3.475493	1.07734990
IC95MediaUpper	5.97585151	3.12708647	4.040507	1.32131677
Varianza	0.68569351	0.18997942	3.116278	0.58100626
Suma	876.50000000	458.60000000	563.700000	179.90000000

Histograma

- Escoge el número de clases adaptándote a cada variable:
 - Si tienes muchas observaciones podrás crear más clases (barras)
 - Si tienes menos observaciones deberás hacer menos grupos
- Fíjate en la centralidad, la forma y la dispersión del histograma
- (Puedes extraer la tabla de frecuencias si lo prefieres) (Conceptosclaros)

OBJETIVO:

distribución, qué

se concentra la

distribución, qué

Histograma de densidad

- Escoge el número de clases adaptándote a cada variable:
 - Si tienes muchas observaciones podrás crear más clases (barras)
 - Si tienes menos observaciones deberás hacer menos grupos
- Cálculo el contorno del distribución con funciones Kernel
- Recuerda que el histograma de densidad se puede utilizar para comparar distribuciones en un mismo gráfico

(las funciones Kernel te permiten dibujar matemáticamente la línea de la distribución de densidad de frecuencia)

Boxplot

- Observar la distribución con medidas de posición (cuartiles)
- Centralidad = mediana = centro de la caja
- Dispersión = IQR = distancia caja
- Valores atípicos = los puntos

OBJETIVO: Observa la distribución (dónde

se concentra la

distribución, qué

Boxplot+ stripchart

- Además del boxplot podemos añadir los puntos de las variables
- Es interesante para observar si se forma grupos dentro de la variable cuantitativa

Petal.Length

Título Eje X

- En inglés, quantile quantile plot
- Eje horizontal percentiles de una distribución conocida (normalmente la distribución normal, pero puede ser otra)
- Eje vertical percentiles de la variable cuantitativa
- Objetivo: comparar la distribución de la medida con una distribución teórica

OBJETIVO:

Comparar si la distribución de la variable cuantitativa es similar a una

Take away

El resumen de la lección

Lo más importante de la lección

- El objetivo de la descripción de una variable cuantitativa (medida) son:
 - Observar la distribución (centralidad, dispersión, forma)
 - Qué tipo de distribución es (más o menos)
 - Valores atípicos (anómalos)
- Las herramientas son:

Tú turno

Describe las variables cuantitativas de la tabla de datos

A poner en práctica lo que has visto

• Descarga la hoja de trabajo y describe las variables cuantitativas de la tabla de datos

• Resume las conclusiones que has visto

• ¡A por ello!

