UNIDAD II: COORDENADAS POLARES

2.5 RECTAS TANGENTES EN EL POLO

Si $f(\alpha) = 0$ y $f'(\alpha) \neq 0$, entonces la recta $\theta = \alpha$ es tangente en el polo a la gráfica $r = f(\theta)$.

En otras palabras para que una recta $\theta=\alpha$ sea una recta tangente en el polo tiene que hacer cero la ecuación polar (la gráfica debe pasar por el polo) y ser distinto de cero al evaluar $\theta=\alpha$ en la derivada de la ecuación polar. Por ejemplo, la recta $\theta=\frac{\pi}{2}$ es una recta tangente al polo de la gráfica de $r(\theta)=2Cos(\theta)$, o simplemente $r=2Cos(\theta)$.

En efecto,

$$r = 2Cos\left(\frac{\pi}{2}\right)$$

$$r = 2(0)$$

$$r = 0$$

Es decir que $heta=rac{\pi}{2}$ hace "cero" la ecuación polar Además, r(heta)=2Cos(heta), entonces la derivada es r'(heta)=-2Sen(heta)

Ahora si se evalúa $\theta=\frac{\pi}{2}$ en la derivada debe de dar distinto de cero. En efecto:

$$r'\left(\frac{\pi}{2}\right) = -2Sen\left(\frac{\pi}{2}\right) = -2 \neq 0$$

Procedimiento para determinar las tangentes en el polo de una ecuación polar.

Paso 1: Se hace r=0 para determinar los valores que hacen "cero" la ecuación polar. (posibles tangentes al polo).

Paso 2: Se sustituye los valores encontrados en el paso anterior en $r' = f'(\theta)$ y si dan valores distintos de cero entonces los valores encontrados en el paso anterior, son tangentes al polo.

Ejemplo:

Determinar las tangentes al polo de $r = 2Sen(\theta)$ **Solución**:

Se hace r = 0, entonces:

$$2Sen(\theta) = 0$$

$$Sen(\theta) = \frac{0}{2}$$

$$Sen(\theta) = 0$$

Ahora se analiza para qué valores de ángulos θ el seno es cero, y puede verse que es para $\theta=0$, $\theta=\pi$, $\theta=2\pi$, $\theta=-\pi$, $\theta=-2\pi$, etcétera, siendo la misma recta.

Entonces $\theta = 0$ es la única posible tangente al polo.

$$r = 2Sen(\theta)$$

$$r' = 2Cos(\theta)$$

Evaluando $\theta = 0$ en $r'(\theta) = 2Cos(\theta)$

$$r'(0) = 2Cos(0) = 2 \neq 0$$

Por lo tanto, $\theta = 0$ es tangente en el polo de $r = 2Sen(\theta)$

Ejemplo:

Encontrar las rectas tangentes en el polo de $r = 2Sen(3\theta)$ **Solución**:

Primero se hace r = 0, entonces:

$$2Sen(3\theta) = 0$$

$$Sen(3\theta) = \frac{0}{2} = 0$$

$$Sen(3\theta) = 0$$

Para que el seno de un ángulo sea cero, éste tiene que medir 0, π , 2π , 3π , 4π , etc. O también negativos. Pero para este problema el ángulo es 3θ , o sea que:

$$3\theta = 0$$

$$3\theta = \pi$$

$$3\theta = 2\pi$$

$$3\theta = 3\pi$$

$$3\theta = 4\pi$$

Y así sucesivamente. Lo mismo es con los negativos. Luego se despeja heta en cada caso para obtener las posibles tangentes al polo

$$3\theta = 0 \to \theta = 0$$

$$3\theta = \pi \to \theta = \frac{\pi}{3}$$

$$3\theta = 2\pi \to \theta = \frac{2\pi}{3}$$

$$3\theta = 3\pi \to \theta = \pi$$

$$3\theta = 4\pi \to \theta = \frac{4\pi}{3}$$

Se observa que a partir de la recta $\theta=\pi$, se repiten. Ya que la recta $\theta=\pi$ es la misma recta que $\theta=0$ y la recta $\theta=\frac{4}{3}\pi$ es la misma recta que $\theta=-\frac{\pi}{3}$, etc.

Entonces, las posibles tangentes al polo solamente son $\theta=0$, $\theta=\frac{\pi}{3}$ y $\theta=\frac{2\pi}{3}$

Segundo, hay que ver que cada uno de estos 3 valores evaluados en la derivada de r resulte distinto de cero

$$r = 2Sen(3\theta)$$

$$r' = 6Cos(3\theta)$$

Para $\theta = 0$

$$r' = 6Cos[3(0)]$$

$$r' = 6Cos(0) = 6(1)$$

$$r' = 6 \neq 0$$

Luego la recta
$$\theta=0$$
 (eje polar) es tangente al polo

$$_{\mathsf{Para}}\theta = \frac{\pi}{3}$$

$$r'\left(\frac{\pi}{3}\right) = 6\cos\left[3\left(\frac{\pi}{3}\right)\right]$$

$$r^{'} = 6Cos(\pi) = 6(-1)$$

$$r^{'} = -6 \neq 0$$

Luego la recta $heta=rac{\pi}{3}$ es tangente al polo también

Para $\theta = \frac{2\pi}{3}$

$$r'(\frac{2\pi}{3}) = 6\cos[3(\frac{2\pi}{3})]$$

$$r^{'} = 6Cos(2\pi) = 6(1)$$

$$r^{'} = 6 \neq 0$$

Luego la recta $\theta = \frac{2\pi}{3}$ es tangente al polo también

Por lo tanto las rectas heta=0, $heta=rac{\pi}{3}$ y $heta=rac{2\pi}{3}$ son tangentes al polo de la gráfica de r=2Sen(3 heta)