Interpolação de perfis de aerofólios de aeronaves

Matheus Oliveira da Silva

23 de setembro de 2023

Resumo

O presente artigo visa informar o desenvolvimento e os resultados obtidos do primeiro trabalho computacional do curso de Fundamentos de Análise Numérica na Universidade de São Paulo, ministrado por Prof. Dr. Luis Carlos de Castro Santos.

1 Introdução

Três perfis de aerofólios foram escolhidos no site do departamento de engenharia aeroespacial de Illinois. Os três perfis escolhidos são:

- NACA M16 AIRFOIL;
- OAF128 AIRFOIL;
- NASA SC(2)-0402 AIRFOIL.

No site, cada perfil possui um arquivo .dat com coordenadas do perfil e um arquivo .gif com a imagem do perfil. Este trabalho utiliza o método de natural cubic splines para interpolar e estimar os valores entre os pontos dos arquivos .dat. E, assim, consegue reproduzir a imagem encontrada no arquivo .gif somente pelos dados do arquivo .dat. E, por fim, é calculado o valor de maior espessura do aerofólio e o ponto onde se encontra.

2 Desenvolvimento

2.1 Coeficientes

Para construir o interpolador [BF89] cubic spline S para a função f, definida nos números $x_0 < x_1 < \ldots < x_n$, satisfazendo $S''(x_0) = S''(x_n) = 0$:

Entrada: n; $x_0, x_1, ..., x_n$; $a_0 = f(x_0), a_1 = f(x_1), ..., a_n = f(x_n)$.

Saída: $a_j, b_j, c_j, d_j \text{ para } j = 0, 1, ..., n - 1.$

(Observação: $S(x) = S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$ para $x_j \le x \le x_{j+1}$).

Passo 1: Para i = 0, 1, ..., n - 1, defina $h_i = x_{i+1} - x_i$.

Passo 2: Para i = 1, 2, ..., n - 1, defina

$$\alpha_i = \frac{3}{h_i}(a_{i+1} - a_i) - \frac{3}{h_{i-1}}(a_i - a_{i-1}).$$

Passo 3: Defina $l_0 = 1$, $\mu_0 = 0$, $z_0 = 0$.

Passo 4: Para i = 1, 2, ..., n - 1, defina

$$l_i = 2(x_{i+1} - x_{i-1}) - h_{i-1}\mu_{i-1}, \quad \mu_i = \frac{h_i}{l_i}, \quad z_i = \frac{\alpha_i - h_{i-1}z_{i-1}}{l_i}.$$

Passo 5: Defina $l_n = 1, z_n = 0, c_n = 0.$

Passo 6: Para j = n - 1, n - 2, ..., 0, defina

$$c_j = z_j - \mu_j c_{j+1}, \quad b_j = \frac{a_{j+1} - a_j}{h_j} - \frac{h_j (c_{j+1} + 2c_j)}{3}, \quad d_j = \frac{c_{j+1} - c_j}{3h_j}.$$

Passo 7: SAÍDA $(a_i, b_i, c_i, d_i \text{ para } j = 0, 1, ..., n - 1).$

Todos os passos estão identificados em comentários no algoritmo, na função *coeficientes*. Seguindo os passos acima, obtemos os coeficientes para:

$$S_i(x) = a_i + b_i(x - x_0) + c_i(x - x_0)^2 + d_i(x - x_0)^3$$
(1)

2.2 Cálculo do y

Utilizando uma lista de 500 valores de x definidos por:

$$x = \frac{1}{2}(1 - \cos\theta), \theta = [0, \pi]$$
 (2)

Verifica-se para cada $x \in lista$ qual índice satisfaz $x_i \le x \le x_i + 1$ com $x_i \in tabela.dat$. A partir de i pode-se calcular $S_i(x)$ (1). Obtendo, dessa forma, o valor estimado de y no ponto x. E, portanto, obtêm-se as coordenadas do aerofólio sendo (x,y), x calculado por (2) e y calculado por (1).

O cálculo no algoritmo é feito duas vezes para cada perfil, uma para a parte do extradorso e uma para a parte do intradorso.

2.3 Cálculo da espessura

Para calcular a espessura, é calculado a diferença entre os y das coordenadas (x, y do extradorso) e (x, y do intradorso) para os mesmos valores de x, a maior diferença é chamada de espessura.

2.3.1 Precisão

Sendo a primeira espessura definidar por espessura_max, calculada entre os primeiros 500 x gerados por (2), um novo cálculo é feito para aumentar a precisão.

Procura-se o intervalo de interesse tal qual $x_i \leq x daes pessura_max \leq x_i + 1$ com $x_i \in lista.dat$. Um número n_prec de pontos (escolhido arbitráriamente pelo usuário) são gerados nesse intervalo. Para cada novo ponto gerado calcula-se o novo valor de y utilizando $S_i(x)$ (1). E, assim, podemos calcular a maior espessura entre esses novos n_prec pontos e verificar que a espessura precisa foi maior do que a espessura inicial. Isso ocorre devido ao fato de ser possível encontrar uma coordenada com valor de y maior entre duas coordenadas de nossa lista inicial de 500 pontos.

3 Resultados

3.1 M₁₆

Para o primeiro perfil temos a seguinte imagem:

Figura 1: m16.gif

As coordenadas, obtidas com o algoritmo, plotadas geram:

Figura 2: m16 obtido

A maior espessura inicial é de 0.06192715168786219, no ponto $\mathbf{x}=0.3466895194061127$. Para um n_prec de 1000, a nova maior espessura é de 0.0619274781963106, no ponto $\mathbf{x}=0.3481337875751503$.

3.2 OAF128

Para o segundo perfil temos a seguinte imagem:

Figura 3: oaf128.gif

As coordenadas, obtidas com o algoritmo, plotadas geram:

Figura 4: oaf128 obtido

A maior espessura inicial é de 0.12795793688387996, no ponto $\mathbf{x}=0.24096854493319464$. Para um n_prec de 1000, a nova maior espessura é de 0.12795892279461948, no ponto $\mathbf{x}=0.24194597597597595$.

3.3 SC20402

Para o terceiro perfil temos a seguinte imagem:

Figura 5: sc20402.gif

As coordenadas, obtidas com o algoritmo, plotadas geram:

Figura 6: sc20402 obtido

A maior espessura inicial é de 0.019954132327475116, no ponto x=0.39532581046441984. Para um n_prec de 1000, a nova maior espessura é de 0.019954292094649, no ponto x=0.3962062062062062

4 Conclusões

A interpolação a partir dos pontos tabelados foi de grande sucesso, visto que a imagem gerada é muito semelhante com a imagem oficial.

O cálculo de espessura é feito de forma a tentar criar uma continuidade entre os pontos interpolados. E, dessa forma, quanto maior for a capacidade computacional maior pode-se escolher o valor de $n_p rec$ e maior será a precisão como observado nos resultados.

Referências

[BF89] Richard L. Burden and J. Douglas Faires. *Numerical Analysis*. The Prindle, Weber and Schmidt Series in Mathematics. PWS-Kent Publishing Company, Boston, fourth edition, 1989.