Antenna Array Design

6.2400 Quantum Systems Engineering
Daniel Sanango

Approach

Define a qubit as an antenna

- N qubits → N antennas
- All start at |0>

IFT result → "strength" of signal

Apply cost function

 Checks error between original and new structure

Cost Function

$$\Psi (\mathbf{B}) = \int_{-1}^{1} \left| \mathbb{G} \left\{ \mathcal{A} (u \mid \mathbf{B}) \right\} - \mathbb{G} \left\{ \mathcal{A}^{ref} (u) \right\} \right|^{2} du.$$

IQFT In Action

QFT example:

$$|110\rangle \rightarrow \frac{1}{\sqrt{8}}(10) + \underbrace{e^{2\pi i \, 0.0}}_{=1}|1\rangle)(10) + \underbrace{e^{2\pi i \, 0.10}}_{0.10_{(S_{IN})} = 0.5_{(06C)}}|1\rangle)...(10) + \underbrace{e^{2\pi i \, 0.10}}_{0.11_{(S_{IN})} = 0.75_{(06C)}}$$

QFT High-Level Use [CNOT]

Encodes qubit data in phase

IQFT does opposite

ULTIMATELY: can find weaker and stronger antenna contributions

Thinning IQFT Circuit

$$R_k = \left(egin{array}{cc} 1 & 0 \ 0 & e^{i2\pi/2^k} \end{array}
ight).$$

Implementation

From literature...

Bit flip rate: 0.2%

Phase flip rate: 0.5%

Other parameters:

Threshold: 20% deviation

Test Case: random pattern

Results: Random Runs

Random runs

Phase error on Qubit 4 (extra Z gate)

Bit flip error on Qubit 2 (extra X gate)

Results: Random Runs

Results: Extreme Case (Z)

Extreme case: phase error on antenna with high w

Results: Extreme Case (X)

Extreme case: bit flip error on antenna with high w

How did IQFT do?

Limitations

- Max of N=8: RAM limitations
 - Gate operations ∞ N!
 - N=30 very prone to errors

Analysis

- Error rates VERY low
 - Numerous runs to get even one error
- Z errors:
 - Acts on high probability → Failed thinning
 - Acts on intermediate probability → Decent thinning
- X errors:
 - Generally doesn't change much
- For small N, running a couple times probably gets rid of errors

Concluding Thoughts

For small N,...

- Works well!
- Error so small, just run again

For large N,...

- Cannot make assertive claim (RAM limitations), but based on trends:
 - Z error appears catastrophic
 - X error appears somewhat fine to have

Ultimately,...

- Better simulator setup could give insight on large N
- Explore more complex arrays (i.e. 3-D arrays, non-dipole antennas)