ASSOCIATION ANALYSIS

Association Rule Mining

association analysis: useful for discovering interesting relationships (Association Rules) hidden in large data sets

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

$$\{Diaper\} \rightarrow \{Beer\},\$$

Implication means co-occurrence, not causality!

Problem Definition

Binary Representation

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

TID	Bread	Milk	Diapers	Beer	Eggs	Cola
1	1	1	0	0	0	0
2	1	0	1	1	1	0
3	0	1	1	1	0	1
4	1	1	1	1	0	0
5	1	1	1	0	0	1

$$I = \{i_1, i_2, \dots, i_d\}$$

 $T = \{t_1, t_2, \dots, t_N\}$

$$T = \{t_1, t_2, \dots, t_N\}$$

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items
 - transaction tj contains an itemset
- □ Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$
- Support
 - Fraction of transactions that contain an itemset
 - E.g. $s({Milk, Bread, Diaper}) = 2/5$
- Frequent Itemset
 - An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form
 X → Y, where X and Y are itemsets
- Example: {Milk, Diaper} → {Beer}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

Confidence,
$$c(X \longrightarrow Y) = \frac{\sigma(X \cup Y)}{\sigma(X)}$$
.

Support, $s(X \longrightarrow Y) = \frac{\sigma(X \cup Y)}{N}$

Example: Milk Diane

 $\{\text{Milk , Diaper }\} \Rightarrow \text{Beer}$

$$s = \frac{\sigma(\text{Milk , Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Mining Association Rules

- ✓ a rule that has very low support may occur simply by chance
- ✓ Confidence measures the reliability of the inference made by a rule

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk,Diaper} \rightarrow {Beer} (s=0.4, c=0.67)

{Milk,Beer} \rightarrow {Diaper} (s=0.4, c=1.0)

{Diaper,Beer} \rightarrow {Milk} (s=0.4, c=0.67)

{Beer} \rightarrow {Milk,Diaper} (s=0.4, c=0.67)

{Diaper} \rightarrow {Milk,Beer} (s=0.4, c=0.5)

{Milk} \rightarrow {Diaper,Beer} (s=0.4, c=0.5)
```

Observations:

- •Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - \square support $\ge minsup$ threshold
 - \square confidence $\ge minconf$ threshold

$$R = 3^d - 2^{d+1} + 1$$

- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Mining Association Rules

If the itemset is infrequent, then all candidate rules can be pruned immediately without compute their confidence values

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

- □ Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Expensive!!!

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of Candidates

□ Apriori principle:

- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

Support of an itemset never exceeds the support of its subsets

Illustrating Apriori Principle

Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Minimum Support=0.6(3)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
(Milk,Diaper)	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Triplets (3-itemsets)

Itemset	Count
{Bread,Milk,Diaper}	3

Apriori Algorithm

- Method:
 - Let k=1
 - Generate frequent itemsets of length 1
 - Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent
 - k=k+1

$F_{k-1} \times F_{1}$ Method

$Fk-1\times Fk-1$ Method

Reducing Number of Comparisons

- Candidate counting:
 - Scan the database of transactions to determine the support of each candidate itemset
 - To reduce the number of comparisons, store the candidates in a hash structure
 - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Generate Hash Tree

Suppose you have 15 candidate itemsets of length 3:

You need:

- Hash function
- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

Subset Operation

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Rule Generation

- □ Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \to L f$ satisfies the minimum confidence requirement
 - □ If {A,B,C,D} is a frequent itemset, candidate rules:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB,

□ If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

Rule Generation

Rule Generation

- confidence of rules generated from the same itemset has an anti-monotone property
 - E.g., Suppose {A,B,C,D} is a frequent 4-itemset:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

frequent itemset

Theorem 6.2. If a rule $X \longrightarrow Y - X$ does not satisfy the confidence threshold, then any rule $X' \longrightarrow Y - X'$, where X' is a subset of X, must not satisfy the confidence threshold as well.

$$X \longrightarrow Y - X$$
 $\sigma(Y)/\sigma(X)$ $\sigma(X') \ge \sigma(X)$ $X' \longrightarrow Y - X'$ $\sigma(Y)/\sigma(X')$

Rule Generation in Apriori Algorithm

- level-wise approach for generating association rules
- all the high-confidence rules that have only one item in the rule consequent are extracted
- These rules are then used to generate new candidate rules

Rule Generation for Apriori Algorithm

FP-growth Algorithm

FP-growth Algorithm

- Use a compressed representation of the database using an FP-tree
- Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets
- determine the support count of each item
- Infrequent items are discarded
- frequent items are sorted in decreasing support counts

FP-tree construction

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	{B,C,E}

After reading TID=1:

After reading TID=2:

FP-Tree Construction

FP-Growth Algorithm

- ✓ FP-growth is an algorithm that generates frequent itemsets from an FP-tree by exploring the tree in a bottom-up fashion
- ✓ algorithm looks for frequent itemsets ending in e first, followed by d, c, b, and finally,
 a.

Table 6.6. The list of frequent itemsets ordered by their corresponding suffixes.

Suffix	Frequent Itemsets
e	$\{e\}, \{d,e\}, \{a,d,e\}, \{c,e\}, \{a,e\}$
d	$\{d\}, \{c,d\}, \{b,c,d\}, \{a,c,d\}, \{b,d\}, \{a,b,d\}, \{a,d\}$
c	$\{c\}, \{b,c\}, \{a,b,c\}, \{a,c\}$
b	$\{b\}, \{a,b\}$
a	{a}

FP-Growth Algorithm

(b) Paths containing node d

(c) Paths containing node c

d) Paths containing node b

FP-Growth Algorithm

(a) Paths containing node e

(b) Conditional FP-tree for e

(c) Prefix paths ending in de

(d) Conditional FP-tree for de

(e) Prefix paths ending in ce

(f) Prefix paths ending in ae

Compact Representation of frequent itemsets

Maximal Frequent Itemset

- number of frequent itemsets produced from a transaction data set can be very large
- identify a small representative set of itemsets from which all other frequent itemsets can be derived
- > Two such representations
 - maximal frequent itemsets
 - closed frequent itemsets.

An itemset is maximal frequent if none of its immediate supersets is frequent

Maximal Frequent Itemset

Maximal Frequent Itemset

- √ Maximal frequent itemsets effectively provide a compact representation of frequent itemsets
- √ they form the smallest set of itemsets from which all frequent
 itemsets can be derived
- ✓ an efficient algorithm exists to explicitly find the maximal frequent itemsets without having to enumerate all their subsets
- ✓ Despite providing a compact representation, maximal frequent itemsets do not contain the support information of their subsets

a minimal representation of frequent itemsets that preserves the support information

Closed Itemset

 An itemset is closed if none of its immediate supersets has the same support as the itemset

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,B,C,D\}$
4	$\{A,B,D\}$
5	$\{A,B,C,D\}$

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
$\{A,B,C\}$	2
$\{A,B,D\}$	3
$\{A,C,D\}$	2
$\{B,C,D\}$	3
$\{A,B,C,D\}$	2

Closed Itemsets

Frequent Closed Itemsets

Maximal vs Closed Itemsets

Frequent Closed Itemsets

Use closed frequent itemsets to determine the support counts for the non-closed

