Data Mining and Analysis Finding similar items

CSCE 676 :: Fall 2019

Texas A&M University

Department of Computer Science & Engineering

Prof. James Caverlee

Resources

MMDS Chapter 3 + slides

http://i.stanford.edu/~ullman/mmds/ch3n.pdf

http://www.mmds.org/mmds/v2.1/ch03lsh.pdf

Carlos Castillo course on Data Mining [https://github.com/chatox/data-mining-course]

How to avoid permuting rows?

Generating lots of permutations for min-hashing is expensive.

Instead, hash rows —> one-pass implementation

Single-pass method

```
for each row r
  for each hash function hi
    compute h_i(r)
  for each column c
    if c has 1 in row r
       for each hash function has
         if h_i(r) < M(i,c)
         then M(i,c) < -h_i(r)
```

Single-pass method: Example

Row	C1	C2	h(x)	g(x)
1	1	0	1	3
2	0	1	2	0
3	1	1	3	2
4	1	0	4	4
5	0	1	0	1

$$h(x) = x \mod 5$$

 $g(x) = (2x+1) \mod 5$

	M(i,C1)	M(i,C2)
initial	Int.MAX	Int.MAX
initial	Int.MAX	Int.MAX
h(1)=1	1	Int.MAX
g(1)=3	3	Int.MAX
h(2)=2	1	2
g(2)=0	3	0
h(3)=3	1	2
g(3)=2	2	0
h(4)=4	1	2
g(4)=4	2	0
h(5)=0	1	0
h(5)=0 g(5)=1	2	0

Row	C1	C2	h(x)	g(x)
1	1	0	1	3
2	0	1	2	0
3	1	1	3	2
4	1	0	4	4
5	0	1	0	1

Locality-sensitive hashing

(Focus on pairs of signatures likely to be from similar documents)

So far ...

We have converted documents into sets of shingles

We have transformed these sets into signatures using min-hash

where the signatures preserve the similarity in the original shingle space

But, we still need to compare all pairs of signatures to find similar items!

Today: LSH to focus on pairs of signatures likely to be from similar documents

LSH: first idea

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)
- LSH General idea: Use a function f(x,y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated
- For Min-Hash matrices:
 - Hash columns of signature matrix M to many buckets
 - Each pair of documents that hashes into the 2 1 4 same bucket is a candidate pair

Selecting Candidates

- Pick a similarity threshold s (0 < s < 1)
- Columns x and y of M are a candidate
 pair if their signatures (M (i, x) = M (i, y))
 agree on at least fraction s of their rows
- We expect documents x and y to have the same (Jaccard) similarity as their signatures

Signature matrix M

2	1	4	1
1	2	1	2
2	1	2	1

Creating buckets of similar documents

- Big idea: Hash columns of signature matrix M several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the

same bucket

8.16	icai (- 1110	
2	1	4	1
1	2	1	2
2	1	2	1

Partition M into b bands of size r

Partition M into b bands of size r

- Partition matrix M into b bands of r rows
- For each band, hash its portion of each column to a hash table with k bucket
 - Make k as large as possible
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band
- Tune b and r to catch most similar pairs,
 but few non-similar pairs

Hashing bands

Simplifying assumption: no collisions (no false positives)

- We assume there are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

Example

- Assume the following case:
 - Suppose 100,000 columns of M (100k docs)
 - Signatures of 100 integers (rows)
 (Therefore, signatures take 40Mb)
 - Choose b = 20 bands of r = 5 integers/
 band
- Goal: Find pairs of documents that
 are at least s = 0.8 similar

Example: Suppose $sim(C_1,C_2) = 0.8$

- Find pairs of \geq s=0.8 similarity, set b=20, r=5
- Since $sim(C_1, C_2) \ge s$, we want C_1, C_2 to be a candidate pair:
 - We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$
- Probability C_1 , C_2 are **not** similar in all of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - i.e., about 1/3000th of the 80%-similar column pairs are **false negatives** (we miss them)
 - We would find 99.965% pairs of truly similar documents

Example: Suppose $sim(C_1,C_2) = 0.3$

- Find pairs of \geq s=0.8 similarity, set b=20, r=5
- Since $sim(C_1, C_2) < s$ we want C_1, C_2 to hash to NO common buckets (all bands should be different)
- Probability C_1 , C_2 identical in one particular band: $(0.3)^5 = 0.00243$
- Probability C_1 , C_2 identical in at least 1 of 20 bands: 1 $(1 0.00243)^{20} = 0.0474$
- In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs
- They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

LSH involves a trade-off

• Pick:

- The number of Min-Hashes (rows of M)
- The number of bands b, and
- The number of rows r per band to balance false positives/negatives
- Example: If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up