

EXERCICE

ELECTROCINETIQUE

-EXERCICE 2.4-

• ENONCE :

« Modèles de Thévenin/Norton et sources liées »

On considère un réseau linéaire, où la source de courant $eta I_{\it R}$ est contrôlée par le courant traversant la résistance R.

On demande de calculer les modèles de Thévenin et de Norton équivalents au dipôle AB.

EXERCICE

ELECTROCINETIQUE

CORRIGE:

- « Modèles de Thévenin/Norton et sources liées »
- ullet Remarque préliminaire : la source de courant $eta I_{\scriptscriptstyle R}$ étant une source liée, on ne doit pas l'éteindre lors du calcul de la résistance R_{ea} équivalente au dipôle AB \Rightarrow cette dernière ne pourra être déterminée par de simples lois d'association des résistances \Rightarrow on calculera d'abord la f.e.m de Thévenin ${\cal E}_{{\scriptscriptstyle Th}}$ et le courant de Norton ${\cal I}_{{\scriptscriptstyle N}}$, puis on écrira :

• Théorème de Norton :

$$I = I_R + \beta I_R + I_N \implies I_N = I - (1 + \beta)I_R$$

Le dipôle étant en court-circuit, on a : $U_{AB}=0 \implies I_{R}=0 \implies I_{N}=I$

• Théorème de Thévenin :

Cette fois, le dipôle AB est à vide, et la loi des noeuds fournit:

$$I = I_R + \beta I_R \implies I_R = \frac{I}{1+\beta}$$

On en déduit:

$$E_{Th} = U_{AB} \text{ (à vide)} = RI_R \quad \Rightarrow \quad \boxed{E_{Th} = \frac{RI}{1+\beta}} \quad \Rightarrow \quad \boxed{R_{eq} = \frac{R}{1+\beta}}$$

Rq: ces sources liées apparaissent fréquemment dans les modèles équivalents de composants comme les transistors ; le paramètre β peut être important (≈ 100) et la résistance équivalente R_{ea} peut être rendue petite : ainsi, dans le modèle de Thévenin du dipôle, le générateur de tension se rapprochera d'une « source de tension », imposant une tension $U_{{\scriptscriptstyle AB}}$ pratiquement constante indépendamment du circuit de charge.