Übungsblatt 6

Computerphysik WS 2009/2010

Dozent: PD Dr. Daniel Sebastiani

Ausgabe: Montag, 30.11.2009 **Abgabe:** Sonntag, 6.12.2009

6.1 Summierte Quadraturen

(aufgabe6_1.c, aufgabe6_1.pdf, 2 Punkte)

Schreiben Sie eine C-Routine für die numerische Integration nach der Trapez-Regel sowie eine Routine für die Simpsonsche Regel. Berechnen Sie π durch numerische Näherung der beiden folgenden Integrale nach der Simpsonschen Regel mit N=10, 100 und 1000 Punkten:

$$\pi = 4 \int_0^1 \sqrt{1 - x^2} \, dx \tag{1}$$

$$\pi = 4 \int_0^1 \frac{1}{1+x^2} \, dx \tag{2}$$

Beachten Sie, dass N die Gesamtzahl der Punkte darstellt, an denen der Integrand berechnet werden soll (und nicht die Anzahl der Teilintervalle). Vergleichen Sie die jeweiligen relativen Fehler.

6.2 Numerische Integration nach Gauss

(aufgabe6_2.pdf, 4 Punkte)

Betrachten Sie den eindeutigen Satz von normierten orthogonalen Polynomen $p_n(x)$ zur Gewichtsfunktion $\omega(x)=1$ mit den Integrationsgrenzen $a=-1,\ b=1$. Berechnen Sie (analytisch) die nächsten vier Polynome aus diesem Satz $\{p_n(x), n=1,2,3,4\}$ nach der Rekursionsformel aus der Vorlesung (also mit Hilfe der λ_{n+1} und γ_{n+1}^2).

Bestimmen Sie weiterhin die Nullstellen $x_i^{(n)}$ dieser Polynome (analytisch).

Zeigen Sie allgemein, dass die durch $L_k(x) := \frac{d^k}{dx^k} (x^2 - 1)^k$ definierten Polynome für $\omega(x) = 1$ orthogonal sind, d.h. dass $\langle L_m | L_n \rangle = 0$ für $n \neq m$. Welche Beziehung muss zwischen $p_n(x)$ und $L_n(x)$ bestehen? Weshalb? Wie lautet diese Beziehung genau?

Hinweis: Nehmen Sie n > m an und führen Sie eine n-fache partielle Integration durch.

6.3 Harmonischer Oszillator, Fehlerfunktion (aufgabe6_3.c, aufgabe6_3.pdf, 3 Punkte)

Ein quantenmechanisches Teilchen mit der Masse m befinde sich in einem eindimensionalen harmonischen Potential $V(x)=\frac{1}{2}m\omega^2x^2$. Berechnen Sie numerisch die Wahrscheinlichkeiten, dass sich das Teilchen außerhalb des klassisch erlaubten Bereichs für Zustände mit den Quantenzahlen $n=0,\ldots,5$ befindet. Verwenden Sie dafür eine der Integrationsroutinen aus Aufgabe 6.1. Vergrößern Sie die Anzahl der Integrationspunkte so lange, bis sich das Ergebnis bei Verdoppelung der Punktanzahl um nicht mehr als 10^{-5} ändert. Plotten Sie die Wellenfunktionen $\varphi_n(x)$ $(n=0,\ldots,5)$ und kennzeichnen Sie die Grenzen der klassisch erlaubten Bereiche.

Nur für Drittsemester und Informatiker: Fragen Sie Ihren Tutor nach der QM-freien Formulierung der Aufgabe.