MBA 753 : Causal Inference Methods for Business Analytics

Dr. Nivedita Bhaktha

08.08.2024

Agenda

- Categorical predictors and its interpretation
- Interaction effects and its interpretation
- Experiments

Categorical Predictors

Y= Bo + B1X+ E

Categorical Predictor Variables

- Categorical independent variables can be incorporated into a regression model by converting them into 0/1 ("dummy") variables
 - Involves categorical X variable with two levels
 - Assumes only intercept is different
 - Slopes are constant across categories

3 cak -> 2 DV

Dummy Regressors

- Dummy regressors are easily extended to explanatory variables with more than two categories
 - A variable with m categories has m 1 regressors
 - As with the two-category case, one of the categories is a reference group (coded 0 for all dummy regressors)

	D_1	D_2
Blue Collar	1	0
Professional	0	1
White Collar	0	0

Reference group

Dummy Regression Model

 $Y_i = \alpha + \beta X_i + \gamma_1 D_{i1} + \gamma_2 D_{i2} + \varepsilon_i$

This gives three parallel regression lines

Blue Collar: $Y_i = (\alpha + \gamma_1) + \beta X_i + \varepsilon_i$

Professional: $Y_i = (\alpha + \gamma_2) + \beta X_i + \varepsilon_i$

White Collar: $Y_i = \alpha + \beta X_i + \varepsilon_i$

Interaction Effect and its Interpretation

Interaction Effect

- Two predictor variables "interact" when the partial effect of one variable depends on the value of another variable
 - For example, testing whether age effects are different for men (coded 1) and women (coded 0) — Lyoure
 - Separate models cannot test for differences among groups
 - Testing for differences in slope

Interaction Interpretation

- When the interaction effect is significant
- Vhen the interaction effect is significant $y = x + \beta x + \sqrt{1} + \delta(x \cdot b) +$ longer interpretable just by themselves

Omitting interaction effects can lead to erroneous conclusions

Causality and Empirical Research

Experiments and Causation

- Cause, Effect, and Causal Relationship
 - Causal relationship exists if
 - Cause preceded the effect
 - Cause was related to the effect variation in cause related to variation in effect
 - No other plausible alternative explanation
- Experiments can help study causal descriptions and explanations
 - Experiments: a study in which an intervention is deliberately introduced to observe its effects

Types of Experiments

- Randomized experiment: Units are assigned to receive treatment or an alternative condition through a random process
- Quasi experiment: Units are not assigned to conditions randomly
 - Cause is manipulable and occurs before the effect
- Natural experiment: Cause cannot be manipulated
 - Naturally occurring contrasts between treatment and a comparison condition
- Correlational study: Observational study that records size and direction of relationships among variables
 - Structural features of experiments are missing

Regression to Causality

- Regression helps in understanding associations among variables of interest
 - Conditional Expectation Function: $E(Y|X=x)=\beta_0+\beta_1X_1+...+\beta_pX_p$
 - Regression is causal if CEF is causal
 - CEF is causal when it describes the differences in average potential outcomes for a population

We think of a cause as something that makes a difference, and the difference it makes must be a difference from what would have happened without it.

- David Lewis, Causation, 1973

Potential Outcomes Model

Counterfactuals

- X, is understood to cause Y, if the value for Y would have been different for a different value of X
- Example: Imagine we knew the grade a particular individual would receive for different amounts of study time:
 - Each point on the line represents a potential outcome (the hypothetical outcome associated with each value of our causal factor)
 - Causal effects are defined in terms of potential outcomes

Source: Mix Tape by Scott Cunningham

Potential Outcome

- Potential outcome: difference in the outcomes between the two states of the world
 - Actual state where the person did something
 - Counterfactual state where the person did something else
- Causal inference: The process of drawing conclusions about features/properties of the full set of potential outcomes on the basis of some observed outcomes.

Notation and Terminology

- Treatment: Causal variable of interest
 - Defined for binary case, but we can (and will) generalize to continuous treatments

$$D_i$$
: indicator of treatment
$$D_i = \begin{cases} 1 \text{ if unit i received the treatment} \\ 0 & \text{otherwise} \end{cases}$$

• Outcome: Y_i : Observed outcome variable of interest for unit i

Notation and Terminology

- Potential Outcomes
 - potential outcomes are fixed attributes for each i and represent the outcome that would be observed hypothetically if i were treated/untreated

$$Y_i = \begin{cases} Y_{1i} & \text{if } D_i = 1 \\ Y_{01} & \text{if } D_i = 0 \end{cases}$$

$$Y_i = D_i Y_{1i} + (1 - D_i) Y_{0i}$$

- Y_{0i} and Y_{1i} are potential outcomes (counterfactuals)
- Only one outcome is observed, the other is counterfactual

Notation and Terminology

- Causal Effect
 - For each unit i, the causal effect of the treatment on the outcome is defined as the difference between its two potential outcomes:
 - τ_i is the difference between two hypothetical states of the world
 - One where i receives the treatment
 - One where i does not receive the treatment
 - Fundamental problem of Causal Inference: We cannot observe both potential outcomes (Y_{1i}, Y_{0i}) for the same unit i
 - How do we calculate τ_i ?

Recap

Summary

- MLR fitting the best regression space
- Partial effects are estimated assuming ceteris paribus
- A categorical predictor with m groups will have m-1 regressors
- Interaction effects when effect of one predictor depends on the values of the other
- Objectives achieved:
 - Can understand and interpret "effects" in a MLR model with dummy variables and interactions
 - Can identify different types of experiments

References

- Stock, J. H., Watson, M. W., & Wooldridge, J. M. Introductory Econometrics: A Modern Approach (4th Edition International).
- Neter J, Kutner MH, Nachtsheim CJ, Wasserman W. Applied linear statistical models. McGraw Hill Education.
- Scott Cunningham, Causal Inference: The Mix Tape, Yale University Press.
- Angrist, J. D., & Pischke, J. S. (2009). *Mostly harmless* econometrics: An empiricist's companion. Princeton university press.

Thank You ©

