

QUESTÃO DISCURSIVA 5 _______

Um processo monitora três parâmetros para controle de qualidade: A, B, C. Cada parâmetro possui um valor na decisão final da qualidade. A existência do parâmetro A pesa 30% na decisão final, enquanto os parâmetros B e C pesam 30% e 40%, respectivamente. O grau de aprovação do processo é dado pela soma dos percentuais desses três parâmetros. O produto gerado pelo processo é considerado aprovado, caso o grau de qualidade seja superior ou igual a 60%, e reprovado, se o grau de qualidade for inferior ou igual a 30%. Caso o grau de qualidade esteja entre 30% e 60%, a decisão de aprovação ou reprovação é indiferente. Por exemplo, se um produto apresentar os parâmetros A e B, terá grau de qualidade de 30%+30% = 60%, levando à sua aprovação.

Com base na situação descrita, projete um circuito lógico com o menor número possível de portas lógicas, para determinar a aprovação ou não do produto de acordo com a presença de seus parâmetros. As entradas do circuito serão os sinais A, B, C, e a saída será um sinal Z. Para atingir esse objetivo, faça o que se pede nos itens a seguir.

- a) Monte uma tabela verdade do sistema com a formação ABC. (valor: 4,0 pontos)
- b) Desenhe o circuito final otimizado utilizando portas lógicas. (valor: 6,0 pontos)

RASCUNHO	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

1

ENGENHARIA DE COMPUTAÇÃO

QUESTÃO 28

As vibrações em um ônibus em movimento serão analisadas através da medida da aceleração durante períodos de tempo, por meio do sistema de aquisição formado por quatro módulos: um sensor de aceleração, um amplificador, um *Sample & Hold* e um conversor A/D, conforme esquema a seguir.

O sensor é um acelerômetro que converte linearmente leituras entre -1,0 m/s² e +1,0 m/s² em sinal de tensão V_{in} entre -800 mV e +800 mV. Esse sinal passa por um amplificador operacional com ganho de tensão dado por $Av = 1 + R_f / R_g$, em que $R_f = R_g = 10 \text{ k}\Omega$. Uma vez amplificado, o sinal V_{out} é submetido a um Sample & Hold, cuja chave de amostragem pode ser controlada por software através de seu ponto de controle "c". O conversor A/D converte linearmente valores entre -2,00 V e + 2,00 V para valores binários que podem, então, ser lidos por software. Com esse sistema de aquisição, serão feitas coletas de dados de 1 000 aquisições a uma taxa de 500 aquisições por segundo, ou seja, cada coleta dura dois segundos.

A análise desse sistema de aquisição de dados revela que

- o amplificador tem ganho unitário e alta impedância de entrada, isolando o sensor do resto do circuito.
- **(B)** o conversor A/D deverá ser de 12 ou mais *bits*, para que as leituras obtidas tenham uma resolução de 0,001 m/s².
- o software que fará o processamento da aquisição necessitará trocar o sinal da leitura feita, já que a montagem do amplificador é inversora.
- a faixa de passagem do amplificador deve ficar pelo menos entre 0 e 250 Hz, correspondentes à taxa de Nyquist, já que ocorrerão 500 aquisições por segundo.
- O Sample & Hold vai ser ligado no início da coleta de dados e desligado ao seu final, com a chave mantida fechada durante todos os 2 segundos de cada coleta.

ÁREA LIVRE _____