1.1 Probability Space

Luning Li

2020/10/3

1.1.1

- (i) If F_i, i ∈ I are σ-fields, then ⋂_{i∈I} F_i is. Here I = ∅ is an arbitrary index set (i.e., possibly uncountable).
 (ii) Use the result in (i) to show that if we are given a set Ω and a collection A of subsets of A, then there is a smallest σ-field containing A. We will call this the σ-field generated by A and denote it by σ(A).
- (ii) Denote $\mathcal{F} := \bigcap_{i \in I} \mathcal{F}_i$.

Take $A \in \mathcal{F}$, then $A \in \mathcal{F}_i$ for all i = 1, 2, ... Then $A^C \in \mathcal{F}_i$ for all i = 1, 2, ..., because \mathcal{F}_i 's are σ -fields. Therefore, $A^C \in \bigcap_{i \in I} \mathcal{F}_i = \mathcal{F}$.

Take a countable sequence of sets $A_j \in \mathcal{F}$ for j = 1, 2, ..., then $A_j \in \mathcal{F}_i$ for all i = 1, 2, ... and j = 1, 2, ... Then $\bigcup_i A_j \in \mathcal{F}_i$ for i = 1, 2, ... Therefore, $\bigcup_i A_j \in \bigcap_i \mathcal{F}_i = \mathcal{F}$.

Then we can conclude that \mathcal{F} is a σ -field.

(ii) Define \mathcal{F} to be the intersection of all σ -field that contains \mathcal{A} . Then by (i), \mathcal{F} is a σ -field. And by its definition, every σ -field that contains \mathcal{F} contains \mathcal{F} . That means: \mathcal{F} is the smallest σ -field containing \mathcal{A} .

1.1.2

Let $\Omega = \mathbb{R}, \mathcal{F} = \text{all subsets so that } A \text{ or } A^C \text{ is countable, } P(A) = 0 \text{ in the first case and } = 1 \text{ in the second.}$ Show that (Ω, \mathcal{F}, P) is a probability space.

Proof: First we show that \mathcal{F} is a σ -field:

Take $A \in \mathcal{F}$, then $A = (A^C)^C$ or A is countable. This means that $A^C \in \mathcal{F}$.

Take a countable sequence of sets $A_i \in \mathcal{F}$ for all $i=1,2,\ldots$ Then either A_i or A_i^C is countable. If all A_i 's are countable, then $\bigcup_i A_i$ is countable, because countable union of countable sets is still countable. Otherwise, there exists uncountable A_j for some j, then we have A_j^C is countable. Then $(\bigcup_i A_i)^C = \bigcap_i A_i^C \subset A_j^C$ is countable. Then $\bigcup_i A_i \in \mathcal{F}$.

Therefore, \mathcal{F} is a σ -field.

Second, we show that P is a measure:

For any $A \in \mathcal{F}$, $P(A) \geq 0 = P(\emptyset)$ by the definition of P. Take a countable sequence of disjoint sets $A_i \in \mathcal{F}$. If all A_i 's are countable, then $\bigcup_i A_i$ is also countable. Then $P(\bigcup_i A_i) = 0$, and $P(A_i) = 0$ for all i. Therefore, we have $P(\bigcup_i A_i) = 0 = \sum_i P(A_i)$. Otherwise, there exists an uncountable A_j for some j. Because A_i 's are disjoint, $A_i \subset A_j^C$ for all $i \neq j$. $A_j \in \mathcal{F}$ and A_j is uncountable, then A_j^C is countable. Then $A_i \subset A_j^C$ is countable for all $i \neq j$, which means that $P(A_j) = 1$ and $P(A_i) = 0$ for all $i \neq j$. Moreover, we have $A_j \subset \bigcup_i A_i$, and therefore, $\bigcup_i A_i$ is uncountable, and then $P(\bigcup_i A_i) = 1$. Then we have $P(\bigcup_i A_i) = 1 = 1 + 0 = P(A_j) + \sum_{i \neq j} P(A_i) = \sum_i P(A_i)$.

Therefore, P is a measure with $P(\Omega) = P(\mathbb{R}) = 1$. Then P is a probability.