Europäisches Patentamt **European Patent Office** Office européen des brevets

① Veröffentlichungsnummer: 0 475 160 A1

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 91114163.8

(5) Int. Cl.5: A61K 9/127

Anmeldetag: 23.08.91

3 Priorität: 24.08.90 DE 4026833 24.08.90 DE 4026834 06.03.91 DE 4107153 06.03.91 DE 4107152

43 Veröffentlichungstag der Anmeldung: 18.03.92 Patentblatt 92/12

Benannte Vertragsstaaten: AT BE CH DE DK ES FR GB GR IT LI LU NL SE 71 Anmelder: Cevc, Gregor, Prof. Dr. **Gruber Strasse 62** W-8011 Heimstetten(DE)

Erfinder: Cevc, Gregor, Prof. Dr. **Gruber Strasse 62** W-8011 Heimstetten(DE)

Vertreter: Eisenführ, Speiser & Strasse Balanstrasse 55 W-8000 München 90(DE)

Präparat zur Wirkstoffapplikation in Kleinsttröpfchenform.

Die Erfindung betrifft ein Präparat zur Applikation von Wirkstoffen in Form kleinster, insbesondere mit einer membranartigen Hülle aus einer oder wenigen Lagen amphiphiler Moleküle bzw. mit einer amphiphilen Trägersubstanz versehenen Flüssigkeitströpfchen, insbesondere zum Transport des Wirkstoffes in und durch natürliche Barrieren und Konstriktionen wie Häute und dergleichen. Das Präparat weist einen Gehalt einer randaktiven Substanz auf, der bis zu 99 Mol.-% des Gehaltes dieser Substanz entspricht, durch den der Solubilisierungspunkt der Tröpfchen erreicht wird. Das Präparat eignet sich zur nichtinvasiven Verabreichung von Antidiabetica, insbesondere von Insulin. Die Erfindung betrifft außerdem ein Verfahren zur Herstellung solcher Präparate.

Die Erfindung betrifft neue Präparate zur Applikation von Wirkstoffen in Form kleinster, insbesondere mit einer membranartigen Hülle aus einer oder wenigen Lagen amphiphiler Moleküle bzw. mit einer amphiphilen Trägersubstanz versehen, Flüssigkeitströpfchen, insbesondere zum Transport des Wirkstoffes in und durch natürliche Barrieren und Konstriktionen wie Häute und dergleichen. Außerdem betrifft die Erfindung ein Verfahren zur Herstellung solcher Präparate, insbesondere zur nichtinvasiven Verabreichung von antidiabetischen Wirkstoffen, speziell von Insulin.

Die Anwendung von Wirkstoffen wird häufig durch Barrieren eingeschränkt, die zuwenig durchlässig für diese Wirkstoffe sind. Bedingt durch die Undurchdringlichkeit der Haut müssen zum Beispiel die meisten gängigen Therapeutika entweder peroral oder parenteral (i.v., i.m., i.p.) verabreicht werden. Intrapulmonale und intranasale Anwendung von Aerosolen, der Einsatz von Rektalzäpfchen, die Applikation von Schleimhautgelen, occularen Präparaten usw. lassen sich nur an bestimmten Stellen und nicht mit allen Wirkstoffen realisieren. Das Einbringen von Wirkstoffen in das pflanzliche Gewebe unterliegt aufgrund der kuticulären Wachsschichten noch stärkeren Beschränkungen.

Nichtinvasive Wirkstoffapplikationen durch Permeabilitätsbarrieren wären in vielen Fällen vorteilhaft. Bei Mensch und Tier würde beispielsweise eine perkutane Applikation der Agentien die verabreichten Wirkstoffe vor der Zersetzung im Gastrointestinaltrakt schützen und ggf. eine modifizierte Agensverteilung im Körper zur Folge haben; sie würde die Pharmakokinetik der Droge beeinflussen und sowohl häufige, als auch einfache, nichtinvasive Behandlung erlauben (Karzel K., Liedtke, R.K. (1989) Arzneim. Forsch./Drug Res. 39, 1487-1491). Bei Pflanzen könnte eine verbesserte Penetration durch oder in die Kuticula die erforderliche Wirkstoffkonzentration senken und die Umweltbelastung signifikant herabsetzen (Price, C.E. (1981) In: The plant cuticle (D.F. Cutler, K.L. Alvin, C.E. Price, Hrsgb.), Academic, New York, pp 237-252).

Bestrebungen, die Hautdurchlässigkeit durch geeignete Maßnahmen zu beeinflussen, sind vielfach besprochen worden (siehe z.B. Karzel und Liedtke, op. cit.). Besonders erwähnenswert sind z.B. Jetinjektion (Siddiqui & Chien (1987) Crit. Rev. Ther. Drug. Carrier. Syst. 3, 195-208.), der Einsatz von elektrischen Feldem (Burnette & Ongpipattanakul (1987) J. Pharm. Sci. 76, 765-773) oder die Verwendung von chemischen Additiva, wie z.B. von Lösungsmitteln oder Tensiden. Eine lange Liste von Hilfsstoffen, die zwecks der Erhöhung von Penetration eines wasserlöslichen Wirkstoffs (Nolaxon) in die Haut getestet wurden, ist z.B. in der Arbeit von Aungst et al. (1986, Int. J. Pharm. 33, 225-234) enthalten. Diese Liste umfaßt nichtionische Substanzen (darunter langkettige Alkohole, Tenside, zwitterionische Phospholipide, usw), anionische Stoffe (besonders Fettsäuren), kationische langkettige Amine, Sulfoxide, sowie diverse Aminoderivate; auch amphothere Glycinate und Betaine sind angeführt. Trotz allem ist jedoch das Problem der Wirkstoffpenetration in die Haut bisher nicht - oder nicht befriedigend - gelöst worden.

Eine Übersicht der Maßnahmen, die zwecks Erhöhung der Wirkstoffpenetration durch die pflanzliche Kuticula eingesetzt werden, ist in der Arbeit von Price (1981, op.cit.) zusammengefaßt. Wenn chemische Penetrationsverstärker verwendet wurden, ist es bisher üblich gewesen, diese dem wirkstoffhaltigen Gemisch einfach hinzuzufügen; lediglich im Falle von menschlicher Haut wurden Additiva manchmal auch vorab, in Form einer organischen Lösung, aufgetragen. Diese Darbringungsform hing mit den bisher untersuchten und diskutierten Wirkungsprinzipien von Additiven zusammen: Im allgemeinen ging man davon aus, daß die verstärkte Agenspenetration einerseits auf der Aufweichung (Fluidisierung) der Haut basiert (Golden et al., (1987) J. Pharm. Sci. 76, 25-28). (Diese geht in der Regel mit einer Zerstörung der Hautoberfläche und ihren schützenden Barriereeigenschaften einher und ist folglich unerwünscht.) Andererseits wurde gezeigt, daß manche Wirkstoffe durch die Haut in Form von niedrigmolekularen Komplexen mit den Zusatzmolekülen permeiren (Green et al., (1988) Int. J. Pharm. 48, 103-111).

Von diesen Konzepten abweichende Vorschläge brachten bisher wenig Verbesserung. Der von mehreren Autoren theoretisch diskutierte perkutane Einsatz von Trägern auf Lipidbasis, den Liposomen (Patel, Bioch. Soc. Trans., 609th Meeting, 13, 513-517, 1985, Mezei, M. Top. Pharm. Sci. (Proc. 45th Int. Congr. Pharm. Sci.F.I.P.,) 345-58 Elsevier, Amsterdam, 1985) zielte hauptsächlich auf die Beeinflussung der Wirkstoffkinetik. Es war vom Einsatz von herkömmlichem Lipidvesikeln die Rede, die die Haut nicht oder extrem unvollkommen passieren, wie in dieser Anmeldung gezeigt ist. JP 61/271204 A2 [86/271204] griff die Verwendung von Liposomen im ähnlichen Sinne auf, durch Verwendung von Hydrochinon-Glucosidal als wirkstoffstabilitätserhöhende Maßnahme.

Die bisherigen Präparate für perkutane Applikation wurden zumeist occlusiv angewandt; im Falle von liposomenhaltigen Präparationen war das sogar die Regel. Solche Präparate enthielten dabei ausschließlich kleine oder lipophile Wirkstoffe, sowie einige hautfluidisierende Additiva. Sie gewährleisteten daher nur eine begrenzte Kontrolle über die pharmakokinetischen Eigenschaften der Formulierung. Als Verbesserung wurde in WO 87/1938 A1 vorgeschlagen, die wirkstoffbeladenen Lipidvesikel zusammen mit einem Gelbildner in Form von 'transdermal patches' zu verwenden. Die Wirkzeit konnte auf diese Weise verlängert, die Penetrationsfähigket des Wirkstoffs jedoch kaum erhöht werden. Durch massiven Einsatz von penetration-

förderndem Polyethylenglycol und Fettsäuren zusammen mit Lipidvesikeln gelang es Gesztes und Mezei (1988, Anesth. Analg. 67, 1079-1081) eine lokale Analgesie mit lidocainhaltigen Trägern zu erreichen, allerdings erst nach mehreren Stunden occlusiver Applikation und in geringem Maßstab.

· Mit einer Spezialformulierung konnten wir die Ergebnisse von Gesztes und Mezei erstmalig dramatisch übertreffen. Diese Trägerformulierung enthielt filtrierte, detergenshaltige Lipidvesikel (Liposomen) mit einem deklarierten optimalen Lipid/Tensid Gehalt von 1-40/1, in der Praxis zumeist um 4/1.

Diese Ergebnisse waren die Grundlage der deutschen Patentanmeldung P 40 26 834.9-41, die auf die Patentanmeldung P 40 26 833.0-43 über die Liposomenherstellung Bezug nimmt.

Nun wurde überraschenderweise gefunden, daß alle solche Träger für eine Penetration in und durch die Permeabilitätsbarrieren geeignet sind, die sich durch besondere, in dieser Anmeldung beschriebene Eigenschaften auszeichnen. Die Hauptanforderung an solche Träger, im folgenden als Transfersomen bezeichnet, ist, daß sie genügend elastisch sind, um durch die Konstriktionen in der Barriere, z.B. in der Haut, durchdringen zu können. Für Transfersomen aus Phosphatidylcholin und Natriumcholat wird diese Bedingung erfüllt, wenn die Randspannung unterhalb von 10 Piconewton ist; ähnliche Werte gelten auch für andere verwandte Systeme. Wenn die Träger nach der Applikation selbst einen Gradienten aufbauen, werden sie besonders nützlich, da sie in diesem Fall zur spontanen Penetration der Permeabilitätsbarriere tendieren.

Es ist daher eine Aufgabe der Erfindung, neue Präparationen für verschiedenste Wirkstoffe und andere Substanzen anzugeben, die deren schnellen und wirksamen Transport durch Barrieren und Konstriktionen gestatten.

Eine weitere Aufgabe besteht in der Schaffung von neuen Präparationen zum Wirkstofftransport durch menschliche, tierische und pflanzliche Hautschichten, die eine verbesserte Verfügbarkeit des Wirkstoffes am Wirkungsort ergeben.

Es ist eine weitere Aufgabe der Erfindung, Präparate zur nichtinvasiven Verabreichung von antidiabetischen Wirkstoffen, besonders von Insulin, zu schaffen, die eine verbesserte, therapeutisch ausreichende und reproduzierbare Wirkstoffapplikation ermöglichen.

Aufgabe der Erfindung ist es weiterhin, ein Verfahren zur Herstellung solcher Präparate anzugeben.

Zur Lösung dieser Aufgaben dienen die Merkmale der unabhängigen Ansprüche.

Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.

30

Die erfindungsgemäßen Transfersomen unterscheiden sich in mindestens drei Grundeigenschaften von den bisher beschriebenen Liposomen für die topische Anwendung und von sonstigen verwandten Trägern. Erstens können sie aus beliebigen Amphiphilen bestehen, einschließlich Ölen. Zweitens können sie auf beliebige Weise hergestellt werden: ihre Penetrationsfähigkeit ist nicht von der Präparationsmethode abhängig. Drittens: Die Penetrationsfähigkeit von bisher beschriebenen, für die Hautapplikationen optimierten Liposomen (cf. Patentanmeldung P 40 26 834.9-41), basiert auf einem optimalen Lipid/Tensid-Verhältnis im Bereich L/T = 1-40/1. Von Transfersomen wird jedoch hauptsächlich eine bestimmte Elastizität verlangt, die eine ausreichende Permeationsfähihkeit vermittelt. Wenn diese Charakteristik der Träger durch den Einsatz von randaktiven Substanzen gewährleistet wird, kann die erforderliche Gesamtmenge des randaktiven Stoffes im System L/T-Werten unterhalb von 1/500 (im Falle von klassischen Tensiden unterhalb von 1/50 bis 1/100) entsprechen. Der Wirkungsbereich von Transfersomen sprengt somit die bisher bekannten Grenzen um mehrere Zehntausend Prozent.

Transfersomen unterscheiden sich in mindestens zwei Grundsätzen von mizellenartigen Trägerformulierungen. Erstens sind sie in der Regel viel größer als die Mizellen und unterliegen daher anderen Diffusionsgesetzen. Zweitens - und noch viel wichtiger - enthalten die vergleichbaren Transfersomen typischerweise einen hydrophilen Kern (das Innere von Vesikeln), in den fast beliebige wasserlösliche Substanzen eingeschlossen und somit über die Permeationsbarriere transportiert werden können. Gleichzeitig sind die Transfersomen auch für den Transport von amphiphilen und lipophilen Substanzen geeignet.

Wenn die Träger nicht von sich aus ausreichend deformierbar sind und ihre Permeationsfähigkeit durch den Zusatz von randaktiven Stoffen erreicht werden soll, entspricht die Konzentration dieser Stoffe vorzugsweise 0.1 % bis 99 % der Menge, die für eine Solubilisierung der Träger erforderlich wäre. Häufig liegt das Optimum zweckmäßig und wirkstoffabhängig in einem Bereich zwischen 1 und 80 %, besonders häufig zwischen 10 und 60 % und ganz bevorzugt zwischen 20 und 50 Mol.-%.

Die neuen Transfersomen sind zum Wirkstofftransport durch fast beliebige Permeationshindernisse tauglich, z.B. für eine perkutane Medikamentenapplikation. Sie können wasserlösliche oder fettlösliche Agentien transportieren und erreichen je nach ihrer Zusammensetzung, Applikationsmenge und Form unterschiedliche Penetrationstiefen. Die Spezialeigenschaften, die einen Träger zum Transfersom machen, können sowohl von phospholipidhaltigen Vesikeln, als auch von anderen Amphiphilaggregaten erreicht werden.

In dieser Anmeldung wird erstmalig gezeigt, daß mittels Transfersomen ein Großteil von Wirkstoffmolekülen nich nur in die Barriere, z.B. in die Haut, sondern auch in die Tiefe getragen werden kann und dort systemisch aktiv ist. Transfersomen tragen z.B. Polypeptidmoleküle 1000-fach effizienter durch die Haut als das bisher mit Hilfe von permeationfördernden strukturlosen Stoffen möglich war. Mit Transfersomen eingebrachte Substanzen können im Menschen fast 100 % des maximal erreichbaren biologischen oder therapeutischen Potentials entfalten: ein Effekt, der bisher nur invasiv mit Injektionen erreicht wurde.

Überraschend wurde gefunden, daß durch den Einsatz dieser neuartigen Wirkstoffträger Antidiabetesmittel ohne Spritzen oder Begleitmaßnahmen durch die Haut in das Blut eingeschleust werden können. So erreichen z.B. regelmäßig mehr als 50%, häufig mehr als 90%, der perkutan applizierten Insulinmoleküle ihren Bestimmungsort im Körper, wenn sie mittels Transfersomen angebracht wurden. Insulinhaltige Transfersomen, die auf die Haut aufgetragen werden, können folglich erfolgreich das Spritzen von Insulinlösungen ersetzen.

Durch diese Erfindung wurde somit ein Weg gefunden für die einfache, nichtinvasive und vollkommen schmerzlose Therapie von Typ II Diabetes: Transfersomen können alleine oder in Kombination mit beliebigen Dosiergeräten zur problemlosen akuten und/oder chronischen Diabetesbehandlung eingesetzt werden.

Träger gemäß dieser Anmeldung können aus einer oder mehreren Substanzen bestehen. Am häufigsten verwendet man ein Gemisch von Grundsubstanz(en), einer oder mehreren randaktiven Substanzen und von Wirkstoffen. Die geeignetsten Grundsubstanzen sind Lipide und andere Amphiphile; bevorzugte randaktive Substanzen sind Tenside oder geeignete Lösungsmittel; diese können mit den Wirkstoffmoleküle in bestimmten Verhältnissen gemischt werden, die sowohl von der Wahl der Substanzen als auch von ihren absoluten Konzentrationen abhängig sind. Es kann vorkommen, daß eine oder mehrere Präparationskomponenten erst nachträglich (z.B. durch eine chemische oder biochemische Abwandlung ex tempore und/oder in situ) randaktiv werden.

Transfersomen öffnen somit einen eleganten, einheitlich und allgemein nützlichen Weg für den Transport von diversen Wirkstoffen über die Permeabilitätsbarrieren. Diese neuentdeckten Träger eignen sich für den Einsatz in Human- und Tiermedizin, Dermatologie, Kosmetik, Biologie, Biotechnologie, Agrartechnologie und anderen Gebieten.

Ein Transfersom umfaßt einen erfindungsgemäßen Träger, der sich durch seine Fähigkeit auszeichnet, unter der Wirkung eines Gradienten durch und/oder in Permeabilitätsbarrieren kommen bzw. diffundieren zu können und dabei Stoff zu transportieren.

Ein solcher (Wirkstoff)Träger entspricht vorzugsweise einem molekularen Homo- oder Heteroaggregat oder einem Polymer. Das Trägeraggregat setzt sich erfindungsgemäß aus mehreren bis vielen, gleichen oder unterschiedlichen Molekülen zusammen, die physiko-chemisch, physikalisch, thermodynamisch, und häufig funktionell, eine Einheit bilden. Einige Beispiele solcher Aggregate sind Mizellen, Diskmizellen, Öltröpfchen (Nanoemulsionen), Nanopartikel, Vesikel oder 'partikuläre Emulsionen'. Aggregatteile können miteinander auch nichtkovalent verknüpft sein. Die optimale Trägergröße ist eine Funktion der Barrierecharakteristika. Sie hängt auch von der Polarität (Hydrophilie), Mobilität (Dynamik), und Ladung sowie von der Elastizität der Träger(oberfläche) ab. Ein Transfersom ist vorteilhaft zwischen 10 und 10 000 nm groß.

Für die dermatologischen Applikationen werden z.B. vorzugsweise als Träger Partikel oder Vesikel in der Größenordnung von 100-10000 nm, häufig von 100 bis 400 nm, besonders häufig von 100 bis 200 nm verwendet.

Für die Applikationen an Pflanzen werden zweckmäßig zumeist relativ kleine Träger, vorwiegend mit einem Durchmesser unter 500 nm eingesetzt.

DEFINITIONEN

LIPIDE

45

55

Ein Lipid im Sinne dieser Erfindung ist jede Substanz, die fettartige oder fettähnliche Eigenschaften besitzt. In der Regel besitzt es einen ausgedehnten apolaren Rest (die Kette, X) und zumeist auch einen wasserlöslichen, polaren, hydrophilen Teil, die Kopfgruppe (Y) und hat die Grundformel 1

$X - Y_n$ (1)

worin n größer oder gleich null ist. Lipide mit n=0 werden als apolare Lipide bezeichnet, Lipide mit n>=1 polare Lipide genannt. In diesem Sinne können alle Amphiphile, wie zum Beispiel Glyceride, Glycerophospholipide, Glycerophosphonolipide, Sulfolipide, Sphingolipide, Isoprenoidlipide,

Steroide, Sterine oder Sterole und kohlehydrathaltige Lipide, schlicht als Lipide bezeichnet werden. Ein Phospholipid ist beispielsweise eine Verbindung der Formel 2

10

(2)

worin n und R_4 die unter Formel 8 genannten Bedeutungen haben, aber R_1 , R_2 nicht Wasserstoff, OH oder kurzkettiger Alkylrest sein kann und R_3 meist Wasserstoff oder OH ist. R_4 ist außerdem durch Trikurzkettiges-Alkylammonio, z.B. Trimethylammonio, oder Amino substituiertes kurzkettiges Alkyl, z.B. 2-Trimethylammonioethyl (Cholinyl).

Ein Lipid ist vorzugsweise eine Substanz gemäß der Formel 2, worin n = eins, R_1 und R_2 Hydroxyacyl, R_3 Wasserstoff und R_4 2-Trimethylammonioethyl (das letztere entspricht der Phosphatidylcholinkopfgruppe), 2-Dimethylammonioethyl, 2-Methylammonioethyl oder 2-Aminoethyl (entsprechend Phosphatidylethanolaminkopfgruppe) darstellen.

Ein solches Lipid ist z.B. ein natürliches Phosphatidylcholin - veraltet auch Lecithin genannt. Es kann z.B. gewonnen werden aus Ei (reich an Arachidonsäure), Sojabohne (reich an C-18 Ketten), Kokosnuß (reich an gesättigten Ketten), Oliven (reich an einfach ungesättigten Ketten), Safran (Saflor) und Sonnenblumen (reich an n-6 Linoleinsäure), Leinsamen (reich an n-3 Linolensäure), aus Walfett (reich an einfach ungesättigten n-3 Ketten), Nachtkerze oder Primel (reich an n-3 Ketten). Bevorzugte natürliche Phosphatidylethanolamine (veraltet auch Kephaline genannt) stammen häufig aus Ei oder Sojabohnen.

Außerdem sind als Lipide synthetische Phosphatidylcholine (R4 in der Formel 2 entspricht 2-Trimethylammonioethyl), synthetische Phosphatidylethanolamine (R4 gleich 2-Aminoethyl), synthetische Phosphatidsäuren (R4 ist ein Proton) oder ihre Ester (R4 entspricht z.B. einem kurzkettigen Alkyl, wie Methyl oder Äthyl), synthetische Phosphatidylserine (R. gleich L- oder D-Serin), oder synthetische Phosphatidyl(poly)alkohole, wie z.B. Phosphatidylglycerol (R₄ gleicht L-oder D-Glycerol), bevorzugt, worin R₁ und R₂ identische Acyloxyreste, z.B. Lauroyl, Oleoyl, Linoyl, Linoleoyl oder Arachinoyl bedeuten, z.B. Dilauroyl-, Dimyristoyl-, Dipalmitoyl-, Distearoyl-, Diarachinoyl-, Dioleoyl-, Dilinoyl-, Dilinoyl-, oder Diarachinoylphosphatidylcholin oder -ethanolamin, oder verschiedene Acylreste, z.B. R₁ = Palmitoyl und R₄ = Oleoyl, z.B. 1-Palmitoyl-2-oleoyl-3-glycerophosphocholin; oder verschiedene Hydroxyacylreste, z.B. R₁ = Hydroxypalmitoyl und R4 = Hydroxyoleoyl; oder Gemische davon, z.B. R1 = Hydroxypalmitoyl und R4 = Oleoyl usw. sind. Ferner kann R₁ Alkenyl und R₂ identische Hydroxyalkylreste bedeuten, wie z.B. Tetradecylhydroxy oder Hexadecylhydroxy, z.B. in Ditetradecyl- oder Dihexadecylphosphatidylcholin oder -ethanolamin, R1 kann Alkenyl und R₂ Hydroxyacyl, z.B. ein Plasmalogen (R₄ Trimethylammonioethyl), oder R₁ ein Acyl z.B. 40 Myristoyl oder Palmitoyl, und R2 Hydroxy sein; so z.B. in natürlichen oder synthetischen Lysophosphatidylcholinen oder Lysophosphatidylglycerolen oder Lysophosphatidylethanolaminen, z.B. 1-Myristoyl- oder 1-Palmitoyllysophosphatidylcholin oder - phosphatidylethanolamin sein; R3 stellt häufig Wasserstoff dar.

Ein geeignetes Lipid im Sinne dieser Erfindung ist auch ein Lipid der Formel 2, worin n = 1 ist, R₁ einen Alkenylrest, R2 einen Acylamidorest, R₃ Wasserstoff und R₄ 2-Trimethylammonioethyl (Cholinrest) darstellen. Ein solches Lipid ist unter dem Namen Sphingomyelin bekannt.

Ein geeignetes Lipid ist außerdem ein Lysophosphatidylcholin-Analog, z.B. 1-Lauroyl-1,3-propandiol-3-phosphorylcholin, ein Monoglycerid, z.B. Monoolein oder Monomyristin, ein Cerebrosid, ein Gangliosid oder ein Glycerid, welches keine freie oder veresterte Phosphoryl- oder Phosphonogruppe oder Phosphinogruppe in 3-Stellung enthält. Ein solches Glycerid ist beispielsweise ein Diacylglycerid oder 1-Alkenyl-1-hydroxy-2-acylglycerid mit beliebigen Acyl- bzw. Alkenylgruppen, worin die 3-Hydroxygruppe durch einen der genannten Kohlenhydratreste, z.B. einen Galactosylrest, verethert ist, wie z.B. in einem Monogalactosylglycerin.

Lipide mit erwünschten Kopf- oder Kettengruppen-Eigenschaften können auch auf biochemischem Wege, z.B. mittels Phospholipasen (wie Phospholipase A1, A2, B, C, und besonders D), Desaturasen, Elongasen, Acyl-Transferasen, usw. aus natürlichen oder synthetischen Prekursoren gebildet werden.

Ein geeignetes Lipid ist ferner ein jedes Lipid, welches in biologischen Membranen enthalten und mit Hilfe von apolaren organischen Lösungsmitteln, z.B. Chloroform, extrahierbar ist. Zu solchen Lipiden gehören außer der bereits erwähnten Lipide beispielsweise auch Steroide, z.B. Oestradiol, oder Sterine, z.B.

Cholesterin, beta-Sitosterin, Desmosterin, 7-Keto-Cholesterin oder beta-Cholestanol, fettlösliche Vitamine, z.B. Retinoide, Vitamine, z.B. Vitamin A1 oder A2, Vitamin E, Vitamin K, z.B. Vitamin K1 oder K2 oder Vitamin D1 oder D3, usw.

RANDAKTIVE SUBSTANZEN

Randaktive Substanz im Sinne dieser Anmeldung ist ein Stoff, der dem Trägersystem die Fähigkeit verleiht, oder diese Fähigkeit erhöht, Ränder, Ausläufer, oder relativ stark gekrümmte Flächen zu bilden; diese Eigenschaft manifestiert sich auch in der Fähigkeit, in einem höheren Konzentrationsbereich Poren in Lipidphasen, z.B. Membranen, zu bilden oder gar Solubilisierung (Lyse) zu bewirken. Im engeren Sinne handelt es sich dabei um Stoffe, die sich dadurch auszeichnen, daß sie sich an den Rändern zwischen den polaren und apolaren Molekülteilen und/oder an den Rändern zwischen den polaren und apolaren Teilen der supramolekularen Aggregate bevorzugt ansammeln und dadurch die freie Energie für die Bildung von Rändern oder stark gekrümmten Flächen herabsetzen. Alle Tenside ebenso wie viele Lösungsmittel sowie asymmetrische, und daher amphiphile, Moleküle oder Polymere, wie z.B. manche Oligo- und Poly-Kohlenhydrate, Oligo-und Polypeptide, Oligo- und Polynukleotide oder ihre Derivate gehören in diese Kategorie.

Die Randaktivität der verwendeten 'Lösungsmittel', Tenside, Lipide, oder Wirkstoffe hängt von der effektiven, relativen Hydrophilie/Hydrophobie des jeweiligen Moleküls ab, ist aber auch von der Wahl der sonstigen Systemkomponenten und Randbedingungen im System (Temperatur, Salzgehalt, pH-Wert, usw.) abhängig. Funktionelle Gruppen, z.B. Doppelbindungen im hydrophoben Rest, welche den hydrophoben Charakter dieses Restes abschwächen, erhöhen die Randaktivität; Verlängerung oder raumbeanspruchende Substituenten im hydrophoben Rest, z.B. in aromatischem Rest, erniedrigen die Randaktivität einer Substanz. Geladene oder stark polare Gruppen in der Kopfgruppe, bei gleichbleibender hydrophoben Kette, tragen normalerweise zu einer höheren Randaktivität der Moleküle bei. Direkte Bindungen zwischen den lipophilen und/oder amphiphilen Systemkomponenten haben eine entgegengesetzte Wirkung.

Zu den Lösungsmitteln, die lediglich in bestimmten Konzentrationsbereichen eine gewisse Randaktivität besitzen, gehören einfache, besonders kurzkettige, Alkohole wie z.B. Methanol, Ethanol, n-Propanol, 2-Propen-1-ol (Allylalkohol), n-Butanol, 2-Buten-1-ol, n-Pentanol (Amylalkohol), n-Hexanol, n-Heptanol, n-Octanol und n-Decanol, ferner iso-Propanol, iso-Butanol oder iso-Pentanol. Noch tauglicher sind die höheren Alkohole, wie z.B. Ethandiol (Ethylenglycol), 1,2-Propandiol (Propylenglycol), 1,3-Propandiol, 1,3-Butandiol, 2,3-Butandiol, Propantriol (Glycerol), 2-Buten-1,4-diol, 1,2,4-Butantriol, 1,3,4-Butantriol, 1,2,3-Butantriol, Butantetraol (Erythritol), 2,2-bis(Hydroxymethyl)1,3-propandiol (Pentaerythritol), 2,4-Pentadiol und andere Pentadiole oder Pentendiole, 1,2,5-Pentantriol und andere Pentantriole oder Pententriole, Pentantetraol, 1,2,6-Hexantriol und andere Hexantriole, Hexantetraole und -pentaole, Heptandiol, - triol, -tetraol, -pentaol und -hexaol, 1,4-Butandiol-diglycidyl-ether, usw. Auch kurzkettige, Di-, Tri-, Tetra-, Penta- und Hexa-Oxyethylenglycole und -Ethylenglycole gehören in diese Kategorie; außerdem cyclische Alkohole, wie z.B. Benzylalkohol, Cyclopentanol, Cyclohexanol, 3-, 4-, 5-Cyclohexanol, Cyclohexylalkohol, Aryl-alkohole, wie z.B. Phenyl-Ethanol, usw.

Randaktive Lösungsmittel, die erfindungsgemäß eingesetzt werden können, umfassen ferner Lösungen von kurzkettigen Acyl-,Alkyl-, Alkenyl, Hydroxyacyl-, Alkenyloxy- sowie Arylderivate von diversen Säuren und Basen, z.B. von Essig-, Ameisen- oder Propionsäure, Butensäure, Pentensäure, usw., von manchen Aminosäuren, von Benzoesäure, Phosphor- und Schwefelsäure, von Ammoniak, Purin, Pyrimidin, usw., insofern sie die chemische Integrität der Träger und Wirkstoffmoleküle nicht unannehmbar beeinträchtigen.

Eine nichtionische randaktive Substanz ist ein Stoff, der mindestens eine, zumeist jedoch mehrere, stark hydrophile Gruppe(n) enthält und mindestens einen, manchmals auch mehrere relativ hydrophobe(n), wasserunlösliche(n) Rest(e). 'Nichtionische' randaktive Substanzen können zwitterionisch oder nichtionisch sein.

Ladungsfrei und randaktiv sind z.B. die lipidähnlichen Stoffe mit der Grundformel 3

$$R_1 - ((X_i - Y_j)_k - Z_l)_m - R_2$$
 (3)

50

worin X, Y und Z unterschiedliche polare (hydrophile) oder apolare (hydrophobe) Gruppen sind, die dem Gesamtmolekül einen amphiphilen Charakter verleihen. Z ist zumeist ein wasserlöslicher Rest und i, j, k, l und m sind größer oder gleich Null. R₁ und R₂ sind zwei beliebige Reste, der erste jedoch zumeist polar oder sehr kurzkettig, der zweite apolar.

Die Reste R₂ oder X in solchen Lipiden sind häufig eine Acyl-, Alkyl-, Alkenyl-, Hydroxyalkyl-, Hydroxyalkenyl- oder Hydroxyacyl-Kette mit 8-24 Kohlenstoffatomen. Besonders häufig werden n-Hexyl, n-

Heptyl, n-Octyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tetradecyl oder n-Tetradecenoyl, n-Hexadecyl, n-Octadecenoyl, n-Octadecenoyl und n-Octadecendienyl, n-Octadecentrienyl, usw, verwendet.

Sorbitol ist ein möglicher Beispiel für den Rest Z. (X_i - Y_j) kann z.B. ein Polyen, Polyoxyalken, wie z.B. Polyoxyethylen, Polyalkohol, z.B. Polyglycol, oder Polyether sein. (X_i - Y_j) enthält vorzugsweise 1-20, besonders häufig 2-10 Einheiten, wie z.B. in Ethylenglycol, Di- und Triglycol (Oligoglycol) oder Polyethylenglycol.

Bei einfachen Substanzen gemäß Formel 3 ist der Rest R₁ oder R₂ häufig eine Alkyl-, Alkenyl-, Hydroxyalkyl-, Alkenylhydroxy- oder Hydroxyacyl-Kette mit 1-24 Kohlenstoffatomen. Sehr gut geeignet sind z.B. n-Dodecyl (Lauryl-ether), n-Tetradecyl (Myristoyl-ether), n-Pentadecyl (Cetyl-ether), n-Hexadecyl (Palmitoyl-ether), n-Octadecyl (Stearoyl-ether), n-Tetradecenoyl (Myristoleoyl-ether), n-Hexadecenoyl (Palmitoleoyl-ether) oder n-Octadecenoyl (Oleoyl-ether). Aufgrund ihrer guten Zugänglichkeit werden beispielsweise häufig verwendet: 4-Lauryl-Ether (Brij 30), 9-Lauryl-Ether, 10-Lauryl-Ether, 23-Lauryl-Ether (Brij 35), 2-Cetyl-Ether (Brij 52), 10-Cetyl-Ether (Brij 56), 20-Cetyl-Ether (Brij 58), 2-Stearyl-Ether (Brij 72), 10-Stearyl-Ether (Brij 76), 20-Stearyl-Ether (Brij 78), 21-Stearyl-Ether (Brij 721), 2-Oleoyl-Ether (Brij 92), 10-Oleoyl-Ether (Brij 96) und 20-Oleoyl-Ether (Brij 78), worin die steigende Anfangszahl auf die zunehmende Kopfgruppengröße hindeutet. Geeignete Substanzen sind unter den Bezeichnungen GENAPOL, THESIT und LUBROL im Handel erhältlich.

Zu den bekanntesten entsprechenden veresterten nichtionischen Tensiden gehören Substanzen mit dem Handelsnamen Myri, wie z. B. Polyoxyethylen(8)-Stearat (Myrj45), Polyoxyethylen(20)-Stearat (Myrj49), Polyoxyethylen(30)-Stearat (Myrj51), Polyoxyethylen(40)-Stearat (Myrj52), Polyoxyethylen(50)-Stearat (Myrj53), Polyoxyethylen(100)-Stearat (Myrj59), usw. Weitere Produkte dieser Substanzklassen werden z.B. unter dem Handelsnamen Cirrasol ALN vertrieben; übliche Polyoxyethylen-Alkylamide sind z.B. Tenside mit dem Handelsnamen Atplus.

Bei einer weiteren wichtige Spezialform der nichtionischen randaktiven Substanz gemäß Strukturformel 3 ist der Rest R₁ zumeist eine Hydroxylgruppe, der Rest R₂ zumeist ein Wasserstoffatom. Die Reste X und Z sind häufig eine Alkoxy- oder Alkenoxy-, im Prinzip auch Hydroxyalkyl-, Hydroxyalkenyl- oder Hydroxyacyl-Kette mit 4-100 Kohlenstoffatomen. Auch der Rest Y ist häufig eine Alkoxy-, Alkenoxy-, Hydroxyalkyl-, Hydroxyalkenyl- oder Hydroxyacyl-Kette, die allerdings zumeist verzweigt ist und eine Methyl- bzw. Ethyl-Seitenkette trägt. Zu den verbreitesten randaktiven Substanzen dieser Klasse gehören die Tenside, die unter der Bezeichnung "Pluronic" im Handel erhältlich sind.

Weitere, häufig verwendete Spezialformen von nichtionischen randaktiven Substanzen sind unter der Bezeichnung "TWEEN" erhältlich. Sie haben als zyclischen Teil häufig einen Sorbitolring. Die Reste R₁, R₂, R₃ und R₄ sind häufig vom Alkoxy- oder Alkenoxy-, noch häufiger vom Polyen-, Polyoxyalken-, wie z.B. Polyoxyethylen-, Polyalkohol-, wie z.B. Polyglycol-, oder Polyether-Typ. Manche dieser Ketten können apolar sein, z.B. eine Acyl-, Alkyl-, Alkenyl-, Hydroxyalkyl-, Hydroxyalkenyl- oder Hydroxyacyl-Kette mit 8-24 Kohlenstoffatomen. Wenn keiner der Reste R₁, R₂, R₃ oder und R₄ apolar ist, liegt ein hydrophober Rest als Seitenkette an einer verzweigten Kette oder als Terminalrest vor.

Besonders häufig treten in Substanzen vom TWEEN-Typus Polyoxyethylen-Ketten auf. Diese enthalten zumeist einen terminalen Wasserstoff, seltener eine Methoxy-Gruppe. Eine der Polyoxyethylen-Ketten ist jedoch mit einem hydrophoben Rest versehen, der vorzugsweise eine Acyl-, Alkyl-, Alkenyl-, Hydroxyalkyl-, Hydroxyalkenyl- oder Hydroxyacyl-Kette mit 4-24, insbesondere 12-18 Kohlenstoffatomen ist.

Auch randaktive Substanzen, die unter der Bezeichnung "TRITON" erhältlich sind, sind erfindungsgemäß verwendbar.

Polyalkoholreste R₂ sind vorzugsweise verestert oder verethert; sie können jedoch auch über ein Stickstoffatom an die hydrophobe Kette geknüpft sein. Sie sind sehr häufig Ethylenglycol-, Glycerol-, Erythritol- Pentaerythritol-Addukte, wie z.B. 1-Alkyl-, 1-Alkenoyl-, 1-Hydroxyalken-Glycerol, oder entsprechende 1,2-, oder 1,3-Diglyceride (z.B. 1-Alkyl,2-Alkyl-, 1-Alkenyl-, 1-Alkenyl,2-Alkyl-, 1-Alkenyl,2-Alkyl-, 1-Alkenyl,2-Alkyl-, 1-Alkenyl,2-Alkyl-, 1-Alkenyl,2-Hydroxyalkyl-, 1-Hydroxyalkyl-, 1-Hydroxyalkyl-, 1-Hydroxyalkyl-, 1-Hydroxyalkyl-, 1-Alkyl,3-Alkyl-, 1-Alkenyl,3-Alkenyl-, 1-Alkenyl,3-Alkyl-, 1-Alkenyl,3-Alkyl-, 1-Alkenyl-, 1-Alkenyl,3-Hydroxyalkyl-,1-Hydroxyalkyl-,3-Alkenyl-, 1-Alkyl,3-Hydroxyalkyl-,1-Hydroxyalkyl-,3-Alkenyl-, 1-Alkenyl,3-Hydroxyalken- oder 1-Hydroxyalken,3-Alkenyl-). An Stelle des Glycerols kann auch ein anderer höherwertigen Alkohol, z.B. Erythritol, Pentantriol, Hexantriol, retraol oder -pentaol, usw. auftreten, woraus sich eine Vielfalt an Verknüpfungsmöglichkeiten ergibt.

Z oder R₂ können ferner aus einem oder mehreren 1-10, vorzugsweise 1-6, ganz besonders häufig 1-3 Kohlenhydratresten oder ihren Derivaten bestehen. Die Bezeichnung Kohlenhydratrest hat dabei die bereits beschriebene Bedeutung und steht vorzugsweise für alpha oder beta und L- oder D-Allosid, -Altrosid, -Fucosid, -Furanosid, -Galactosid, - Galactopyranosid, -Glucopyranosid, - Lactopyranosid, - Mannopyranosid, -Psicosid, Sorbosid, -Tagatosid, -Talosid; häufig verwendete Derivate von

Disacchariden sind L- oder D-Maltopyranosid, -Maltosid, Lactosid, -Malto-oder -Lactobionamid; auch ent-sprechende Derivate von Maltotriose oder -tetraose sind nützlich.

Der Kohlenhydrat-Rest kann außerdem schwefelhaltig sein, wie z.B. in beta-L- oder D-Thioglucopyranosid oder -Thioglycosid.

Zwitterionische Tenside sind z.B. sulfonathaltige Substanzen wie (3-((3-cholamidopropyl)-dimethylyammonio)-1-propansulfonat (CHAPS) und (3-((3-cholamidopropyl)-dimethylyammonio)-2-hydroxy-1-propansulfonat (CHAPSO) oder N-octyl-N,N-dimethyl-3-ammonio-1-propansulfonat, N-dodecyl-N,N-dimethyl-3-ammonio-1-propansulfonat (Lauryl-sulfobetain), N-tetradecyl-N,N-dimethyl-3-ammonio-1-propansulfonat (Palmityl-sulfobetain), N-octadecyl-N,N-dimethyl-3-ammonio-1-propansulfonat (Stearyl-sulfobetain), 'N-octadecenoyl-N,N-dimethyl-3-ammonio-1-propansulfonat (Oleoyl-Sulfobetain) usw.

Zwitterionische Tenside sind ferner Substanzen mit der Formel 4

20

45

55

(4)

worin n eins oder null ist. Eine von beiden Seitenketten R₁ und R₂ enthält eine Acyl-, Alkyl-, Alkenyl-, Alkenoyl-, Hydroxyalkyl-, Hydroxyalkenyl- oder Hydroxyacyl-, bzw. Alkoxy-Kette mit je 8-24 Kohlenstoffatomen; die andere besteht aus Wasserstoff, Hydroxygruppe oder kurzkettigem Alkylrest. R₃ stellt normalerweise ein Wasserstoffatom oder eine kurze Alkylkette dar. X ist zumeist anionisch, z.B. ein Phosphat- oder Sulfat-Rest. Der Rest R₄ jst dann kationisch, um den zwitterionischen Charakter zu gewährleisten. Am häufigsten handelt es sich hierbei um gegebenenfalls substituierte Ammonio-alkylderivate, z.B. Ethanol-, Propanol-, Butanol-, Pentanolamin, Hexanolamin, Heptanolamin oder Octanolamin, N-Methyl-, N,N-Dimethyl, oder N,N,N-Trimethyl-ammonio-alkyl, N-Ethyl-, N,N-Diethyl, oder N,N,N-Triethyl-amino-alkyl, ungleiche N,Alkyle, z.B. N,N-Methyl-ethyl-ammonio-alkyl oder entsprechende Hydroxyalkylsubstanzen. (Einkettige (Lyso)-Derivate sämtlicher biologischer zwitterionischen Phospholipide sowie ihre Abwandlungen (z.B. Platelet-Activating-Factor und seine Analoga) gehören in diese Kategorie.). R₄ kann auch ein positiv geladener Kohlenhydratrest sein, z.B. ein Aminozucker oder seine Derivate. Die Positionen von R₄ und X können vertauscht sein.

Eine ionische randaktive Substanz ist ein Stoff, der zumindest eine positive oder negative Ladung trägt sowie mindestens einen wenig wasserlöslichen Rest. Eine anionische Substanz dieser Art kann auch mehrere Ladungen tragen, besitzt jedoch eine negative Gesamtladung; die Gesamtladung einer kationischen Substanz ist positiv.

Zu anionischen randaktiven Substanzen gehören Stoffe mit der Grundformel 5:

$$R_1 - C - O G^{\dagger}$$
 (5)

worin R₁ ein gegebenenfalls substituierter Kohlenwasserstoffrest ist und G^{*} ein einwertiges Gegenion darstellt, vorwiegend ein Alkalimetallkation (z.B. Lithium, Natrium, Kalium, Rubidium, oder Cäsium), ein Ammoniumion bzw. ein niedermolekulares Tetraalkylammonium-lon, z.B. Tetramethylammonium oder Tetraethylammonium.

Der Kohlenwasserstoffrest R₁ in einem anionischen Tensid der Formel 5 ist zumeist ein geradkettiges oder verzweigtes Acyl, Alkyl oder Alkenoyl, bzw. oxidierte oder hydroxygenierte Derivate davon; der Rest R₁ kann auch cyclische Teile haben.

Die Kette R₁ enthält 6-24, sehr häufig 10-20, besonders häufig 12-18, Kohlenstoffatome; falls ungesättigt, enthält sie 1-6, besonders häufig 1-3, Doppelbindungen in n-3- oder n-6-Position.

Bevorzugte Hydroxyalkylketten sind in diesem Fall: n-Dodecylhydroxy (Hydroxylauryl), n-Tetradecylhydroxy (Hydroxymyristyl),n-Hexadecylhydroxy (Hydroxycetyl), n-Octadecylhydroxy (Hydroxystearyl), n-Eico-

sylhydroxy oder n-Docosyloxy. Von Hydroxyacylketten seien genannt Hydroxylauroyl, Hydroxymyristoyl, Hydroxypalmitoyl, Hydroxystearoyl, Eicosoylhydroxy oder Docosoyloxy-Ketten; von Hydroxyalken-Resten die Hydroxydodecen, Hydroxytetradecen, Hydroxyhexadecen, Hydroxyoctadecen, Hydroxyeicosen, Hydroxydocosen, ganz besonders häufig 9-cis,12-hydroxy-Octadecenyl (Ricinolenyl) oder 9-trans,12-hydroxy-Octadecenyl (Ricinelaidyl), 5-cis,8-cis,11-cis,14-cis,15-hydroxy-Eicosatetraenyl (15-hydroxy-Arachidonyl), 5-cis,8-cis,11-cis,14-cis,15-hydroxy,17-cis-Eicosapentaenyl, 4-cis,7-cis,10-cis,15-hydroxy,16-cis-Docosapentaenyl und 4-cis,7-cis,10-cis,13-cis,15-hydroxy,16-cis,19-cis-Docosahexaenyl.

Ein weitere Klasse anionischer, randaktiven Substanz entspricht der Formel 6

$$\sigma (R_1 - (O - X) - Y)^- G^{\bullet} (6)$$

R₁ bedeutet hier einen gegebenenfalls substituierten Kohlenwasserstoffrest; X steht für einen kurzkettigen Alkylrest und Y kennzeichnet eine Sulfonat-, Sulfat-, Phosphat-, Phosphonat oder Phosphinatgruppe. G ist ein zumeist einwertiges Gegenion (Kation).

Durch eine Etherbindung verknüpft, und zu diesem Grundtypus gehörend, sind Alkalimetall-alkyl- oder -alkenylethersulfonate oder -phosphate. Beispiele dafür sind Natrium- oder Kalium-n-dodecyloxyethylsulfat, -n-tetradecyloxyethylsulfat, -n-hexadecyl-oxyethylsulfat oder -n-octadecyloxyethylsulfat oder ein Alkalimetall-alkansulfonat, z.B. Natrium- oder Kalium-n-hexansulfonat, n-octansulfonat, n-decansulfonat, n-dodecansulfonat, -n-tetradecansulfonat, -n-hexadecansulfonat oder -n-octadecan-sulfonat.

Verwandt mit den Verbindungen des Typs 6 sind die Substanzen der allgemeinen Formel 7

$$(R_1 - Y)^- G^+$$
 (7)

-20

25

40

die analog zu den Substanzen der Formel 6 gebildet werden, jedoch durch direkte Bindung der geladenen Kopfgruppe an die Kette.

Besonders geeignete anionische, randaktive Substanzen der obigen Formel 6 sind Alkalimetall-alkylsulfate. Einige Beispiele solcher Substanzen sind: Natrium oder Kalium-n-Dodecyl (Lauryl)-sulfat, -n-Tetradecyl (Myristyl)-sulfat, -n-Hexadecyl (Palmityl)-sulfat, -n-Octadecyl (Stearyl)-sulfat, n-Hexadecylen(Palmitolein)-sulfat und n-Octadecylen(Olein)sulfat. Anstelle der Sulfatgruppe können z.B. auch Sulfonat, n-Methyl- oder n-Ethylglycin verwendet werden.

Ferner kommen die Salze der Bis-(2-alkyl-alkyl)-sulfosuccinate für eine Anwendung im Sinne dieser Anmeldung in Frage. Sie werden vorzugsweise als Lithium-, Natrium-, Kalium-, oder Tetramethylammonium-bis-(2-ethyl-hexyl)-sulfosuccinat verwendet.

Weitere geeignete Substanzen sind Sarkoside, Alkyl- oder Alkenoyl-Sulfochloridderivate der Eisweiskondensate, Sulfonamidseifen, sulfatierte oder phosphorylierte Alkoholester, sulfatierte oder phosphorylierte Amide bzw. Monoglyceride. Fettsäurenalkylamide, Sulfo- oder Phosphobernsteinsäureester, Tauride, Alkylphenol-, Alkylbenzol-, Alkylnapthalin-ethersulfonate usw.

Eine wichtige Gruppe anionischer randaktiven Substanzen sind die Derivate von Cholsäure. Ihre Grundformel ist

worin R₁ einem Proton, einer OH- oder oder einer Carbonylgruppe entspricht und R₂ beispielsweise Derivate von Taurin und Glycokoll kennzeichnet. Vorzugsweise werden Salze der Cholsäure (Gallensäure, 3alpha, 7alpha,12alpha-trihydroxy-5beta-Cholan-24-oin-säure), Deoxycholsäure (Salpha,12alpha-dihydroxy-5beta-Cholan-24-oin-säure), Chenodeoxycholsäure, Glycocholsäure (N-(3alpha,12alpha-trihydroxy-24-oxycholan-24-yl-)glycin), Deoxycholsäure, Glycodeoxycholsäure (N-(3alpha,12alpha-dihydroxy-24-oxycholan-24-yl-)glycin), Glycochenodeoxycholsäure, Glycolitocholsäure, Glycoursodeoxycholsäure, Litocholsäure, Taurodeoxycholsäure, Taurocholsäure, (3alpha,7alpha,12alpha-trihydroxy-5beta-Cholan-24-oin-säure-N-(sulfoethyl)amid), Taurochenodeoxycholsäure, Tauroglycocholsäure, Taurolitocholsäure,

Taurolitocholsäure-3-Sulfat, Tauroursodeoxycholsäure, Ursocholansäure, Ursodeoxycholsäure (3alpha,7beta-dihydroxy-5beta-cholansäure), verwendet, wobei als Ion zumeist Natrium oder Kalium fungiert.

Des weiteren besitzen diverse Cholsäureester, wie z.B. Cholesteryl-Alkyl-, -Alkenyl-, -Hydroxyalkyl-, -Hydroxyalken-ester oder Cholesterylsulfate und -sulfonate eine gewisse Randaktivität im Sinne dieser Erfindung.

Auch verwandte synthetische Addukte der CHAPS-Klasse sind verwendbar; hier ist R₂ häufig NH-(CH₂)₃-N',N'-(CH₂)₂(CH₂)₂-R₃-CH₂-SO₃, während R₃ ein Proton oder Carbonylgruppe sein kann. Am häufigsten treten auch hier Natrium oder Kalium als Gegenionen auf.

Digitonine sowie Saponine, z.B. Quillajasäure, haben im Kern eine ähnliche Struktur wie die Cholsäure-Derivate und kommen ebenfalls für eine Verwendung im Sinne dieser Erfindung in Frage.

Die summarische Formel für phosphorhaltige anionische randaktive Substanzen ist

15

20

(8)

Der Wert von n ist null oder eins. Eine von beiden Seitenketten R₁ und R₂ besteht aus Wasserstoff, Hydroxygruppe oder kurzkettigem Alkylrest; die andere enthält eine Alkyl-, Alkenyl-, Hydroxyalkyl-, Hydroxyalkenyl- oder Hydroxyacyl-Kette (bzw. einen Alkenyl-, Alkoxy-, Alkenyloxy- oder Acyloxy-Rest) mit 8-24 Kohlenstoffatomen. Der Rest R₃ entspricht in der Regel Wasserstoff oder einer Alkyl-Kette mit weniger als 5 Kohlenstoffatomen. R₄ kann anionischer Sauerstoff oder eine Hydroxygruppe sein oder eine Alkylkette mit bis zu 8 C-Atomen; oder ein anderer Kohlenhydratrest mit bis zu 12 Kohlenstoffatomen; oder, wenn sowohl R₁ als auch R₂ Wasserstoff und/oder Hydroxygruppe sind, ein Steroidrest, ein Zuckerderivat, eine aminogruppenhaltige Kette, usw. Alkylreste können auch substituiert sein.

Zu den geeignetsten Tensiden dieser Substanzklassen gehören: n-Tetradecyl(= Myristoyl)-glycero-phosphatidsäure, n-Hexadecyl(= Plamityl)-glycero-phosphatidsäure, n-Octadecyl(= Stearyl)glycero-phosphatidsäure, n-Hexadecylen(= Palmitoleil)-glycero-phosphatidsäure, n-Octadecylen(= Oleil)-glycero-phosphatidsäure, n-Tetradecyl-glycero,phosphoglycerol, n-Hexadecyl-glycero-phosphoglycerol, n-Octadecylen-glycero-phosphoserin, n-Hexadecyl-glycero-phosphoserin, n-Octadecylen-glycero-phosphoserin, n-Hexadecylen-glycero-phosphoserin.

Entsprechende Lyso-Sulfolipide, Phosphono- bzw. Phosphino-Lipide kommen auch für eine Anwendung im Sinne dieser Erfindung in Frage.

Als Gegenion tritt zumeist ein Alkalimetalkation (z.B. Lithium, Natrium, Kalium, Cäsium) oder ein wasserlösliches Tetraalkylammonium-lon auf (z.B. Tetramethylammonium, Tetrathylammonium).

Für den Kohlenwasserstoffrest R1 gilt dasselbe, was bereits im Zusammenhang mit den Tensiden der Formel 3 gesagt wurde. Dieser Rest ist zumeist ein geradkettiges oder verzweigtes Alkyl oder Alkenoyl mit 6-24, sehr häufig 10-20, insbesondere 12-18, Kohlenstoffatomen und 1-6, besonders häufig 1-3, Doppelbindungen in n-3- oder n-6- Position.

Sehr gut geeignet als Alkyl-Reste R₁ oder R₂ sind zum Beispiel n-Dodecyl, n-Tetradecyl, n-Hexadecyl, n-Octadecyl, n-Eicosyl oder n-Docosyl-Ketten. In Frage kommen jedoch auch n-Nonyl, n-Undecyl, n-Tridecyl, n-Pentadecyl, n-Heptadecyl und n-Nonadecyl.

Alkenyl in Stellung R₁ oder R2 ist vorzugsweise ein 9-cis-Dodecenyl (Lauroleyl), 9-cis-Tetradecenyl (Myristoleyl), 9-cis-Hexadecenyl (Palmitoleoyl), 6-cis-Octadecenyl (Petroselinyl), 6-trans-Octadecenyl (Petroselaidinyl), 9-cis-Octadecenyl (Oleyl), 9-trans-Octadecenyl (Elaidinyl), 11-cis-Octadecenyl (Vaccenyl), 9-cis-Eicosenyl (Gadoleinyl), 13-cis-Docosenyl, 13-trans-Docosenyl oder 15-cis-Tetracosenyl.

Höhere, in Frage kommende ungesättigte Alkenyle sind: 9-cis,12-cis-Octadecendienyl, 9-trans,12-trans-Octadecendienyl, 9-cis,12-cis,15-cis-Octadecentrienyl, 6-cis,9-cis,12-cis-Octadecentrienyl, 11-cis,14-cis,17-cis-Eicosatrienyl, 6-cis,9-cis,12-cis,15-cis-Octadecentetraenyl, 5-cis,8-cis,11-cis,14-cis-Eicosatetraenyl, 5-cis,8-cis,11-cis,14-cis-Eicosatetraenyl, 4-cis,7-cis,10-cis,13-cis,16-cis,19-cis-Docosahexaenyl.

Bevorzugte Beispiele für die Reste R₁ oder R₂ der Hydroxyalkyl-Klasse sind: n-Decylhydroxy, n-Dodecylhydroxy (Hydroxylauryl), n-Tetradecylhydroxy (Hydroxymyristyl), n-Hexadecylhydroxy

(Hydroxycetyl), n-Octadecylhydroxy (Hydroxystearyl) und n-Eicosylhydroxy (Hydroxyarachinyl)-Ketten.

Alkenylhydroxy-R₁ oder R₂ ist vorzugsweise 9-cis-Dodecenylhydroxy (Hydroxylauroleyl), 9-cis-Tetradecenylhydroxy (Hydroxymyristoleyl), 9-cis-Hexa- decenylhydroxy (Hydroxypalmitoleinyl), 6-cis-Octadecenylhydroxy (Petroselinylhydroxy), 6-trans-Octadecenylhydroxy (Hydroxypetroselaidinyl), 9-cis-Octadecenylhydroxy (Hydroxyoleyl), 9-trans-Octadecenylhydroxy (Hydroxyelaidinyl) und 9-cis-Eicosenyl (Hydroxygadoleinyl).

Alkanoylhydroxy- R_1 oder R_2 ist vorzugsweise n-Decanoylhydroxy, n-Dodecanoylhydroxy (Lauroylhydroxy), n-Tetradecanoylhydroxy (Myristoylhydroxy), n-Hexadecanoylhydroxy, n-Hexadecanoylhydroxy (Palmitoylhydroxy), n-Octadecanoylhydroxy (Stearoylhydroxy) und n-Eicosoylhydroxy (Arachinoylhydroxy).

Alkenoylhydroxy-R₁ oder R₂ ist vorzugsweise 9-cis-Dodecenylhydroxy (Lauroleoylhydroxy), 9-cis-Tetra-decenoylhydroxy (Myristoleoylhydroxy), 9-cis-Hexadecenoylhydroxy (Palmitoleinoylhydroxy), 6-cis-Octadecenoylhydroxy (Peteroselinoylhydroxy), 9-cis-Octadecenoylhydroxy (Petroselaidinoylhydroxy), 9-cis-Octadecenoylhydroxy (Oleoylhydroxy), 9-trans-Octadecenoylhydroxy (Elaidinoylhydroxy) und 9-cis-Eicosenoyl (Gadoleinoylhydroxy).

Beispiele für den kurzkettigen Alkylrest, der meistens als Rest R₄ auftritt, sind Methylen-, Ethylen-, n-Propylen-, iso-Propylen-, n-Butylen- oder iso-Butylen- sowie n-Pentylen- oder n-Hexylen-Gruppen. Als Rest R₄ können auch z.B. Carboxy- oder Sulfo-Gruppen, saure und basische Gruppen, z.B. Carboxy- und Amino-Gruppen, fungieren; die Aminogruppe steht in einem solchen Fall stets in alpha-Stellung, bezogen auf die Carboxygruppe. Ein weiterer Beispiel für den R₄-Rest sind freie oder veretherte Hydroxygruppen (zwei veretherte Hydroxygruppen können dabei durch einen divalenten Kohlenwasserstoffrest, wie z.B. Methylen, Ethyliden, 1,2-Propylen oder 2,2- Propylen, miteinander verbunden sein). Der Rest R₄ kann ferner durch Halogen, z.B. Chlor oder Brom, Niederalkoxycarbonyl, z.B. Methoxy- oder Ethoxycarbonyl, oder durch Niederalkansulfonyl, z.B. Methansulfonyl, substituiert sein.

Substituiertes kurzkettiges Alkyl-R₄ mit 1-7 C-Atomen ist vorzugsweise Carboxy-kurzkettiges Alkyl, z.B. Carboxymethyl, Carboxyethyl- oder 3-Carboxy-n-propyl, omega-Amino-m-carboxy-kurzkettiges Alkyl, z.B. 2-Amino-2- carboxyethyl oder 3-Amino-3-carboxy-n-propyl, Hydroxy-kurzkettiges Alkyl, z.B. 2-Hydroxyethyl oder 2,3-Dihydroxypropyl, Niederalkoxynieder- 3-Methoxy-n-propyl, kurzkettiges Alkylendioxy-kurzkettiges Alkyl, z.B. 2,3- Ethylendioxypropyl oder 2,3-(2,2-Propylen)-dioxypropyl, oder Halogen-kurzkettiges Alkyl, z.B. Chlor- oder Brommethyl, 2-Chlor- oder 2-Bromethyl, 2- oder 3-Chlor- oder 2-oder 3-Brom-n-propyl.

Ein Kohlenhydratrest-R₄ mit 5-12 C-Atomen ist beispielsweise ein natürlicher Monosaccharidrest, der sich von einer als Aldose oder Ketose vorliegenden Pentose oder Hexose ableitet.

Ein Kohlenhydratrest-R₄ ist ferner ein natürlicher Disaccharidrest, z.B. ein Disaccharidrest, der sich aus zwei Hexosen, wie bereits beschrieben, gebildet hat. Außerdem kann ein Kohlenhydratrest R₄ ein derivatisierter Mono-, Di- oder Oligosaccharidrest sein, in dem beispielsweise die Aldehydgruppe und/oder ein oder zwei endständige Hydroxygruppen zu Carboxygruppen oxydiert sind, z.B. ein D-Glucon-, D-Glucar- oder D-Glucoronsäurerest, welcher vorzugsweise als cyklischer Lactonreste vorliegt. Ebenso können in einem derivatisierten Mono- oder Disaccharidrest Aldehyd- oder Ketogruppen zu Hydroxygruppen reduziert sein, z.B. Inosit, Sorbit oder D-Mannit, oder Hydroxygruppen durch Wasserstoff, z.B. Desoxyzucker, z.B. 2-Desoxy-D-ribose, L-Rhamnose oder L-Fucose, oder durch Aminogruppen, z.B. Aminozucker, z.B. D-Glucosamin oder D-Galactosamin, ersetzt sein.

 R_4 kann auch ein Steroidrest oder Sterinrest sein. Wenn R_4 einen Steroidrest darstellt, ist R_3 Wasserstoff, während R_1 und R_2 vorzugsweise einer Hydroxygruppe entsprechen.

Das Gegenion ist vorzugsweise Ammonium, Natrium oder Kalium.

In einem anionischen Tensid der Formel 8 ist vorzugsweise n=1, R_1 Alkyl, z.B. n-Dodecyl (Lauryl), n-Tridecyl, n-Tetradecyl (Myristyl), n-Pentadecyl, n-Hexadecyl (Cetyl), n-Heptadecyl oder n-Octadecyl (Stearyl), Hydroxyalkyl, z.B. n-Dodecylhydroxy (Hydroxylauryl), n-Tetradecylhydroxy (Hydroxymyristyl), n-Hexadecylhydroxy (Hydroxycetyl), oder n-Octadecylhydroxy (Hydroxystearyl), Hydroxyacyl, z.B. Hydroxylauroyl, Hydroxymyristoyl, Hydroxypalmitoyl oder Hydroxystearoyl, R_2 Wasserstoff oder Hydroxy, R_3 Wasserstoff oder kurzkettiges Alkyl, z.B. Methyl, R_4 kurzkettiges Alkyl, z.B. Methyl oder Ethyl, kurzkettiges Alkyl substituiert durch saure und basische Gruppen, z.B. Carboxy und Amino, z.B. omega-Amino-omega-carboxy-kurzkettiges Alkyl, z.B. 2-Amino-2-carboxyethyl oder 3-Amino-3-carboxy-n-propyl, Hydroxy-kurzkettiges Alkyl, z.B. 2-Hydroxyethyl oder 2,3-Hydroxypropyl, kurzkettiges Alkylendioxy-kurzkettiges Alkyl, z.B. 2,3-Ethylendioxypropyl oder 2,3-(2,2-Propylen)-dioxypropyl, Halogen-kurzkettiges Alkyl, z.B. 2-Chlor- oder 2-Bromethyl, ein Kohlenhydratrest mit 5-12 C-Atomen, z.B. Inosit, oder ein Steroidrest, z.B. ein Sterin, z.B. Cholesterin, und G^+ = Natrium-, Kalium- oder Ammonium-lon.

Ein anionisches Tensid der Formel 8 ist in erster Linie das Natrium-oder Kaliumsalz des Lysophosphatidylserins, z.B. das Natrium- oder Kaliumsalz des Lysophosphatidylserins aus dem Rinderhirn oder das

Natrium-oder Kaliumsalz eines synthetischen Lysophosphatidylserins, z.B. Natrium-oder Kalium-1-myristoyloder -1-palmitoyllysophosphatidylserin, oder das Natrium- oder Kaliumsalz des Lysophosphatidylglycerins. Das Wasserstoffatom an der Phosphatgruppe kann durch ein zweites Kation G oder das Calcium-, Magnesium-, Mangan-lon, usw. ersetzt sein.

In einem anionischen Tensid der Formel 8 ist vorzugsweise R₁ Alkyl, z.B. n-Dodecyl (Lauryl), n-Tridecyl, n-Tetradecyl (Myristoyl), n-Pentacedyl, n-Hexadecyl (Cetyl), n-Heptadecyl oder n-Octadecyl (Stearyl), Hydroxyalkyl, z.B. n-Dodecylhydroxy (Hydroxyalauryl), n-Tetradecylhydroxy (Hydroxymyristyl), n-Hexadecylhydroxy (Hydroxycetyl), oder n-Octadecylhydroxy (Hydroxystearyl), Hydroxyacyl, z.B. Hydroxylauroyl, Hydroxymyristoyl, Hydroxypalmitoyl oder Hydroxystearoyl, R₂ Wasserstoff oder Hydroxy und R₃ Wasserstoff oder kurzkettiges Alkyl, z.B. Methyl. G + ist vorzugsweise Ammonium, Natrium, Kalium oder Tetramethylammonium.

Ein anionisches Tensid der Formel 8 ist ferner das Natrium- oder Kaliumsalz einer natürlichen Phosphatidsäure, z.B. Ei-Phosphatidsäure, das Natrium- oder Kaliumsalz einer natürlichen Lysophosphatidsäure, z.B. Ei-Lysophosphatidsäure, das Natrium- oder Kaliumsalz einer synthetischen Lysophosphatidsäure, z.B. 1-Lauroyl-, 1-Myristoyl-, 1-Palmitoyl- und 1-Oleoyl-Lysophosphatidsäure.

Zu den wichtigsten Klassen von kationischen Tensiden gehören: Ammoniumsalze, quartäre Ammoniumsalze, Salze von heterozyklischen Basen, wie z.B. Aklkylpyridium-, Imidazol-, oder Imidazolinium-Salze, Salze von Alkylamiden und Polyaminen, Salze von acylierten Diaminen und Polyaminen, Salze von acylierten Alkanolaminen, Salze der Ester und Ether von Alkanolaminen, usw.

Ein kationisches Tensid ist beispielsweise eine Verbindung der Formel 9

20

25

30

(9)

worin R₁ einen gegebenenfalls substituierten Kohlenwasserstoffrest kennzeichnet. R₂ steht für ein kurzkettiges Alkyl, Phenyl-kurzkettiges-Alkyl oder Wasserstoff. R₃ und R₄ bedeuten jeweils einen kurzkettigen Alkylrest. R₂ und R₃ zusammen mit dem Stickstoffatom stellen einen gegebenenfalls an einem Kohlenstoffatom substituierten, aliphatischen Heterocyclus und R₄ ein kurzkettiges Alkyl dar; R₂, R₃ und R₄ zusammen mit dem Stickstoffatom können auch einen gegebenenfalls an einem Kohlenstoffatom substituierten, aromatischen Heterocyclus bilden. G⁻ entspricht einem Anion.

In einem kationischen Tensid der Formel 9 ist ein gegebenenfalls substituierter, aliphatischer Kohlenwasserstoffrest R₁ beispielsweise durch Aryloxy-kurzkettiges-alkoxy- substituiertes kurzkettiges Alkyl, geradkettiges oder verzweigtes Alkyl mit 7-22, insbesondere 12-20, Kohlenstoffatomen, oder Alkenyl mit 8-20, insbesondere 12-20, Kohlenstoffatomen und 1-4 Doppelbindungen.

Bevorzugt werden geradkettige Alkyle mit einer geraden Anzahl von 12-22 Kohlenstoffatomen, beispielsweise n-Dodecyl, n-Tetradecyl, n-Hexadecyl, n-octadecyl, n-Eicosyl oder n-Docosyl eingesetzt.

Alkenyl mit 8-24, insbesondere 12-22, Kohlenstoffatomen und 0-5, insbesondere 1-3, Doppelbindungen ist beispielsweise 1-Octenyl, 1-Nonenyl, 1-Decenyl, 1-Undecenyl, 1-Dodecenyl, 9-cis-Dodecenyl (Lauroleyl), 1-Tridecenyl, 1-Tetradecenyl, 9-cis-Tetradecenyl (Myristoleyl), 1-Pentadecenyl, 1-Hexadecenyl, 9-cis-Hexadecenyl (Palmitoleinyl), 1-Heptadecenyl, 1-Octadecenyl, 6-cis-Octadecenyl (Petroselinyl), 6-trans-Octadecenyl (Petroseliadinyl), 9-cis-Octadecenyl (Oleyl), 9-trans-Octadecenyl (Elaidinyl), 9-cis-12-cis-Octadecadienyl (Linoleyl), 9-cis-11- trans-13-trans-Octadecatrienyl (alpha-Eläostearinyl), 9-trans-11-trans-13-trans-Octadecatrienyl (beta-Eläostearinyl), 9-cis-12-15-cis-Octadecatrienyl (Linolenyl), 9-, 11-, 13-, 15-Octadecatetraenyl (Parinaryl), 1-Nonadecenyl, 1-Eicosenyl, 9-cis-Eicosenyl (Gadoleinyl), 5-, 11-, 14-Eicosatrienyl oder 5-, 8-, 11-, 14-Eicosatetraenyl (Arachidonyl).

Bevorzugt ist Alkenyl mit 12-20 Kohlenstoffatomen und einer Doppelbindung, beispielsweise 9-cis-Dodecenyl (Lauroleyl), 9-cis-Tetradecenyl (Myristoleyl), 9-cis-Hexadecenyl (Palmitoleinyl), 6-cis-Octadecenyl (Petroselinyl), 6-trans-Octadecenyl (Petroselaidinyl), 9-cis-Octadecenyl (Oleyl), 9-trans-Octadecenyl (Elaidinyl) oder 9-cis-Eicosenyl (Gadoleinyl).

Methyl oder Ethyl sind zwei Beispiele für kurzkettiges Alkyl R₂, R₃ oder R₄ in Substanzen gemäß Formel 9.

Zwei Beispiele für Phenyl-kurzkettiges-alkyl in R_2 sind Benzyl oder 2-Phenylethyl.

Ein aliphatischer Heterocyclus, welcher von R₂ und R₃ zusammen mit dem Stickstoffatom gebildet wird, ist beispielsweise ein monocyclischer, fünf- oder sechsgliedriger Aza-, Oxaaza- oder Thiazacyclylrest, z.B. Piperidino, Morpholino oder Thiamorpholinio.

Substituenten dieses Heterocylus sind die Substituenten R₁ und R₄ am Stickstoff sowie gegebenenfalls an einem Kohlenstoffatom Nieder- alkyl, z.B. Methyl, Ethyl, n-Propyl oder n-Butyl.

Ein Heterocyclus, welcher von R₂ und R₃ zusammen mit dem Stickstoffatom gebildet wird und an einem Kohlenstoffatom durch kurzkettiges Alkyl substituiert ist, ist z.B. 2-, 3- oder 4-Methylpiperidinio, 2-, 3- oder 4-Ethylpiperidinio oder 2- oder 3-Methylmorpholinio.

Ein aromatischer Heterocyclus, welcher von R₂, R₃ und R₄ zusammen mit dem Stickstoffatom gebildet wird, ist beispielsweise ein monocyclischer, fünf-oder sechsgliedriger, Aza-, Diaza-, Oxaaza- oder Thiazacyclylrest, z.B. Pyridinio, Imidazolinio, Oxazolinio oder Thiazolinio oder beispielsweise ein benzokondensierter Monoazabicyclylrest, z.B. Chinolinio oder Isochinolinio.

Substituenten solcher Heterocyclen sind der Rest R₁ am Stickstoffatom sowie gegebenenfalls an einem Kohlenstoffatom kurzkettiges Alkyl, z.B. Methyl oder Ethyl, Hydroxy-kurzkettiges Alkyl, z.B. Hydroxymethyl oder 2-Hydroxyethyl, Oxo, Hydroxy oder Halogen, z.B. Chlor oder Brom.

Ein Heterocyclus, welcher von R₂, R₃ und R₄ zusammen gebildet wird und an einem Kohlenstoffatom durch die genannten Reste substituiert ist, ist beispielsweise ein 2- oder 4-kurzkettiges-Alkylpyridinio, z.B. 2- oder 4-Methyl oder 2- oder 4-Ethylpyridinio, Di-kurzkettiges-Alkylpyridinio, z.B. 2,6-Dimethyl-, 2-Methyl-3-ethyl-, 2-Methyl-5-ethyl-, oder 2-Methyl-6-ethylpyridinio, 2-, 3- oder 4-Halogen-pyridinio, z.B. 2-, 3- oder 4-Chlorpyridinio oder 2-, 3- oder 4-Brompyridinio, 2-kurzkettiges Alkylimidazolinio, -oxazolinio oder -thiazolinio, z.B. 2-Methyl- oder 2-Ethylimidazolinio, -oxazolinio oder -thiazolinio oder 2-kurzkettiges Alkyl-8-halogenchinolinio, z.B. 2-Methyl-8-chlorchinolinio.

Ein kationisches Tensid der Formel 9 ist vorzugsweise N-Benzyl-N,N-dimethyl-N-2-(2-(4-(1,1,3,3-tetra-N-Benzyl-N,N-dimethyl-N-2-(2-(3(methyl-4methylbutyl)-phenhydroxy)-ethhydroxy)-ethylammoniochlorid, (1,1,3,3-tetramethylbutyl)-phenhydroxy)-ethydroxy)-ethylammoniochlorid (Methylbenzethoniumchlorid), n-Dodecyltrimethylammoniochlorid oder -bromid, Trimethyl-n-tetradecylammoniochlorid oder - bromid, n-Hexadecyltrimethylammoniochlorid oder -bromid (Cetyltrimethyl-ammoniumchlorid oder -bromid), Trimethyl--bromid, Ethyl-n-dodecyldimethylammoniochlorid oder -bromid, n-octadecylammoniochlorid oder Ethyldimethyl-n-tetradecylammoniochlorid oder -bromid, Ethyl-n-hexadecyldimethylammoniochlorid oder bromid, Ethyldimethyl-n-octadecylammoniochlorid oder -bromid, n-Alkylbenzyldimethyl-ammoniochlorid oder -bromid (Benzalkoniumchlorid oder -bromid), z.B. Benzyl-n-dodecyldimethylammoniochloridoder bromid, Benzyldimethyl-n-tetradecylammoniochlorid oder -bromid, Benzyl-n-hexadecyldimethyl-ammoniochlorid oder -bromid oder Benzyldimethyl-n-octadecylammonio-chlorid oder -bromid, N-(n-Decyl)-pyridiniochlorid oder -bromid, N-(n-Dodecyl)-pyridiniochlorid oder -bromid, N-(n-Tetradeyl)-pyridiniochlorid oder -bromid, N-(n-Hexadecyl)-pyridiniochlorid oder -bromid (Cetylpyridiniumchlorid) oder N-(n-Octadecyl)-pyridinio-chlorid oder -bromid oder eine Mischung von diesen randaktiven Substanzen.

Für biologische Zwecke werden besonders häufig die folgenden Tenside verwendet: N,N-bis(3-Dglucon-amidopropyl)cholamid (BigCHAP), Bis(2-ethylhexyl)natrium-sulfosuccinat, Cetyltrimethyl-ammonium-3-((Cholamidopropyl)-dimethylammonio)-2-hydroxy-1-propansulfonat (CHAPSO), (Cholamidopropyl)-dimethylammonio)-1-propansulfonat (CHAPS), Cholat- Natriumsalz, Decaoxyethylendodecyl-ether (Genapol C-100), Decaethylen-isotridecyl-ether (Genapol X-100), Decanoyl-N-methyl-glucamid (MEGA-10), Decyl-glucosid, Decyl-maltosid, 3-(Decyldimethylammonio)-propan-sulfonat (Zwittergent 3-10), Deoxy-bigCHAP, Deoxycholat, Natriumsalz, Digitonin, 3-(Dodecyldimethylammonio)-propan-sulfonat (Zwittergent 3-12), Dodecyl-dimethyl-amin-oxid (EMPIGEN), Dodecyl-maltosid, Dodecylsulfat, Glyco-cholat, Natriumsalz, Glyco-deoxycholat, Natriumsalz, Heptaethylen-glycol-octyl-phenyl-ether (Triton X-114), Heptylglucosid, Heptyl-thioglucosid, 3-(Hexadecyldimethylammonio)-propan-sulfonat (Zwittergent 3-14), Hexyl-glucosid, Dodecyl-dimethyl-amin-oxid (Genaminox KC), N-Dodecyl-N,N-dimethylglycin (Empigen BB), N-Decylsulfobetain (Zwittergent 3-10), N-Dodecyl-sulfobetain (Zwittergent 3-12), N-Hexadecyl-sulfobetain (Zwittergent 3-16), N-Tetradecyl-sulfobetain (Zwittergent 3-14), N-Octyl-sulfobetain (Zwittergent 3-08), Nonaethylen-glycol-mono-dodecyl-äther. (THESIT), Nonaethylen-glycol-octyl-phenol-ether (Triton X-100), Nonaethylen-glycol-octyl-phenyl-ether (NP-40, Nonidet P-40), Nonaethylen-dodecyl-äther, Nonanoyl-Nmethyl-glucamid (MEGA-9), Nonaoxyethylen-dodecyl-ether (Lubrol PX, Thesit), Nonyl-glucosid, Octaethylen-glycol-isotridecyl-ether (Genapol X-080), Octaethylen-dodecyl-ether, Octanoyl-N-methyl-glucamid (MEGA-8), 3-(Octyldimethylammonio)-propan-sulfonat (Zwittergent 3-08), Octyl-glucosid, Octyl-thioglucosid, Pentadecaethylen-isotridecyl-ether (Genapol X-150), Polyethylen-polypropylen-glycol (Pluronic F-127), Polyoxyethylen-sorbitan-monooleat (Tween 20), Polyoxyethylen-sorbitan-monooleat (Tween 80), Taurodeoxycholat-Natriumsalz, Taurocholat-Natriumsalz, 3-(Tetradecyldimethylammonio)-propan-sulfonat (Zwittergent 3-14), usw.

Für pharmakologische Zwecke sind besonders gut geeignet: Cetyl-trimethyl-ammonium-salze (z.B. Hexadecyltrimethylammoniumbromid, Trimethylhexadecylamin-Bromsalz), Cetylsulfatsalze (z.B. Na-Salz, Lanette E), Cholatsalze (z.B. Na- und Ammonium-Form) Decaoxyethylen-dodecyl-ether (Genapol C-100), Deoxycholatsalze, Dodecyl-dimethyl-amin-oxid (Genaminox KC, EMPIGEN), N-Dodecyl-N,N-dimethylgiycin (Empigen BB), 3-(Hexadecyldimethylammonio)-propan-sulfonat (Zwittergent 3-14), Fettsäuresalze und Fettalkohole, Glyco-deoxycholatsalze, Laurylsulfatsalze (Natrium Dodecylsulfat, Duponol C, SDS, Texapon K12), N-Hexadecyl-sulfobetain (Zwittergent 3-16), Nonaethylen-glycol-octyl-phenyl-ether (NP-40, Nonidet P-40), Nonaethylen-dodecyl-äther, Octaethylen-glycol-isotridecyl-ether (Genapol X-080), Octaethylen-dodecylether, Polyethylenglykol-20-Sorbitan-Monolaurat (Tween 20), Polyethylenglykol-20-Sorbitan-Monostearat (Tween 60), Polyethylenglykol-20-Sorbitan-Monooleat (Tween 80), Polyhydroxyethylen-Cetylstearylether (Cetomacrogo, Cremophor O, Eumulgin, C 1000) Polyhydroxyethylen-4-Laurylether (Brij 30), Polyhydroxyethylen-23-Laurylether (Brij 35), Polyhydroxyethylen-8-Stearat (Myrj 45, Cremophor AP), Polyhydroxyethylen-40-Stearat (Myrj 52), Polyhydroxyethylen-100-Stearat (Myrj 59), polyethoxyliertes Rizinusöl 40 (Cremophor EL), polyäthoxyliertes hydriertes Rizinsöl (Cremophor RH 40, Cremophor RH 60) polyethoxylierte pflanzliche Öle (Lebrafils), Sorbitan-Monolaurat (Arlacel 20, Span 20), Taurodeoxycholatsalze, Taurocholatsalze, Polyethylenglykol-20-Sorbitan-Palmitat (Tween 40), Myrj 49 und Polyethylenglykolderivate des Ricinols usw.

WIRKSTOFFE:

20

25

30

35

40

45

50

55

Die erfindungsgemäßen Transfersomen eignen sich zur Applikation unterschiedlichster Wirkstoffe, insbesondere z. B. zu therapeutischen Zwecken. So können erfindungsgemäße Präparate enthalten:

- mindestens einen adrenocorticostatischen Wirkstoff, insbesondere Metyrapon;
- mindestens einen Trägerstoff, Zusatzstoff oder Wirkstoff, der zu den beta-Adrenolytica (Beta blocking agents) gehört, insbesondere Acetobol, Alprenolol, Bisoprololfumarat, Bupranolol, Carazolol, Celiprolol, Mepindolsulfat, Metipranolol, Metoprolotartat, Nadolol, Oxyprenolol, Pindolol, Sotalol, Tertatolol, Timolohydrogenmaleat und Toliprolol, besonders bevorzugt Atenolol oder Propranolol;
- mindestens einen Trägerstoff, Zusatzstoff oder Wirkstoff, der zu den Androgenen oder Antiandrogenen gehört, insbesondere Drostanolonpropionat, Mesterolon, Testosteronundecanoat, Testolacton, Yohimbin, beziehungsweise Chloramidinonacetat, Cyproteronacetat, Ethinylestradiol oder Flutamid;
- mindestens einen Trägerstoff, Zusatzstoff oder Agens mit antiparasitärer Wirkung, insbesondere Phanquinon, Benzyobenzoat, Bephenium-hydroxy-naphthoat, Crotamiton, Diäthylcarbamazin, Levamisol, Lindan, Malathion, Mesulfen (2,7-Dimethylantren), Metronidazol oder Tetramisol;
- mindestens einen anabolischen Wirkstoff, insbesondere Clostebolacetat, Cyanocobolamin, Folsäure, Mestanolon, Metandienon, Metenolon, Nandrolon, Nandrolondecanoat, Nandrolon-hexyloxyphenylpropionat, Nandrolon-phenyl-propionat, Norethandrolon, Oxaboloncipionat, Piridoxin oder Stanozolol;
- mindestens einen Wirkstoff, der zu einer systemischen Anästhesie oder Analgesie beiträgt, insbesondere Chlorobutanol, Ketamin, Oxetacain, Propanidid und Thiamylal, Aminophenol-Derivate, Aminophenazol-Derivate, Antraniisäure- und Arylpropionsäurederivate, Azapropazon, Bumadizon, Chloroquin- und Codein-Derivate, Diclophenac, Fentanil, Ibuprofen, Indometacin, Ketoprofen, Methadon-Substanzen, Morazon, Morphin und seine Derivate, Nifenazon, Nifluminsäure, Pentazozin, Pethidin, Phenazopyridin, Phenylbutazon-Derivate (wie z.B. 3,5 Pyrazolidindion), Pherazon, Piroxicam, Propoxyphen, Propyphenazon, Pyrazol- und Phenazon-Derivate (Aminophenazon, Metamizol, Monophenylbutazon, Oxyphenbutazon, Phenylbutazon bzw. Phenazon-Salyzilat), Salicylsäure-Derivate, Sulfasalazin, Tilidin; Acetylsalicylsäure, Äthylmorphin, Alclofenac, Alphaprodin, Aminophenazon, Anileridin, Azapropazon, Benfotiamin, Benorilat, Benzydamin, Cetobemidon, Chlorphenesincarbamat, Chlorthenoxazin, Codein, Dextromoramid, Dextropropoxyphen, Ethoheptazin, Fentanyl, Fenyramidol, Fursultiamin, Flupirtinmaleat, Glafenin, Hydromorphon, Lactylphenetidin, Levorphanol, Mefenamsäure, Meptazonol, Methadon, Mofebutazon, Nalbufin, Na-Salz des Noramidopyrinium-methansulfonats, Nefopam, Normethadon, Oxycodon, Paracetamol, Pentazocin, Pethidin, Phenacetin, Phenazocin, Phenaperidin, Pholcodin, Piperylon, Piritramid, Procain, Propyphenazon, Salicylamid, Thebacon, Tiemonium-jodid,
- mindestens einen Stoff aus der Klasse der Analeptica, z.B. Aminophenazol, Bemegrid, Coffein, Doxapram, Ephedrin, Prolintan, bzw. Nialamid und Tranylcypromin; außerdem Vitamine, pflanzliche Extrakte aus Baldrian, Semen Colae, Campher, Menthol;
- mindestens einen Stoff aus der Klasse der Antiallergica, z. B. Agentien aus den Klassen der Globuline, Korticoide oder Antihistaminica (wie z.B. Beclometason-, Betametason-Cortison-, Dexametason-Derivate, usw.), ferner Bamipinacetat, Buclizin, Clemastin, Clemizol, Cromoglicinsäure,

Cyproheptadin, Diflucorolonvalerat, Dimetotiazin, Diphenhydramin, Diphenylpyralin, Ephedrin, Fluocinolan, Histapyrrodin, Isothipendyl, Methadilazin, Oxomemazin, Paramethason, Predniliden, Theophillin, Tolpropamin Tritoqualin, usw. eingesetzt. Zu bevorzugten Wirkstoffe gehören ferner Agentien, die dadurch gekennzeichnet sind, daß sie mit der Produktion immunologisch aktiver Substanzen, z.B. Interleukinen, Interferonenen, Leukotrienen, Prostaglandinen, usw. interferieren. Dazu gehören auch bestimmte Lipide und Lipoide, z.B. Phosphatidylcholin, Diacylglycerole, oder Fettsäuren und ihre Ester, die Ketten mit mehreren, bevorzugt 3-6, besonders häufig 3 oder 4, Doppelbindungen haben, vorzugsweise vom n-3 Typus, und/oder hydroxygeniert, verzweigt oder zu einem (Teil)Ring geschlossen sind.

- mindestens einen Stoff, der eine antiarrhythmische Wirkung aufweist, wie z.B. Cardiaca und beta-Blocker, Ajmalin, Bupranolol, Chinidin, Digoxinderivate, Diltiazem, Disopyramiddihydrogensulphat, Erythromycin, Disopyramid, Gallopamil, Ipratropiumbromid, Lanatosid, Lidocain, Lorcainid, Orciprenalinsulfat, Procainamid, Propafenon, Sparteinsulfat, Verapamil, Toliprolol;
 - ein Antiarterioscleroticum, wie z.B. Clofibrat.

20

25

30

35

40

45

50

- mindestens eine Substanz, die zu den Antiasthmatica und/oder Bronchospasmolytica gehört, z.B.
 Amiodaron, Carbuterol, Fenoterol, Orciprenalin, Sotalol, oder Theophillin-Derivate, sowie Corticoide (wie z.B. Beclomethason, Dexamethason, Hydrocortison, Prednisolon), häufig in Kombinationen mit Purinen;
 - mindestens einen Stoff aus der Klasse der Antibiotica, z.B. Actinomycin, Alamethicin, Alexidin, 6-Aminopenicillan Säure, Amoxicillin, Amphotericin, Ampicillin, Anisomycin, Antiamoebin, Antimycin, Aphidicolin, Azidamfenicol, Azidocillin, Bacitracin, Beclomethason, Benzathin, Benzylpenicillin, Bleomycin, Bleomycin sulfat, Calcium Ionophor A23187, Capreomycin, Carbenicillin, Cefacetril, Cefaclor, Cefamandole nafat, Cefazolin, Cefalexin, Cefaloglycin, Cefaloridin, Cefalotin, Cefapirin, Cefazolin, Cefoperazon, Ceftriaxon, Cefuroxim, Cephalexin, Cephaloglycin, Cephalothin, Cephapirin, Cerulenin, Chloramphenicol, Chlortetracyclin, Chloramphenicol diacetat, Ciclaciliin, Clindamycin, Chlormadinone Acetat, Chlorpheniramin, Chromomycin A3, Cinnarizin, Ciprofloxacin, Clotrimazol, Cloxacillin, Colistin methanesulfonat, Cycloserin, Deacetylanisomycin, Demeclocyclin, 4,4'-Diaminodiphenyl sulfon, Diaveridin, Dicloxacillin, Dihydrostreptomycin, Dipyridamol, Doxorubicin, Doxycyclin, Epicillin, Erythromycin, Erythromycinstolat, Erythromycinethylsuccinat, Erythromycin stearat, Ethambutol, Flucloxacillin, Fluocinolone Acetonid, 5-Fluorocytosin, Filipin, Formycins, Fumaramidomycin, Furaltadon, Fusid Säure, Geneticin, Gentamycin, Gentamycin sulfat, Gliotoxin, Gfamicidin, Griseofulvin, Helvol Säure, Hemolysin, Hetacillin, Kasugamycin, Kanamycin (A), Lasalocid, Lincomycin, Magnesidin, Melphalan, Metacyclin, Meticillin, Mevinolin, Mikamycin, Mithramycin, Mithramycin A, Mithramycin complex, Mitomycin, Minocyclin, Mycophenol Säure, Myxothiazol, Natamycin, Nafcillin, Neomycin, Neomycin sulfat, 5-Nitro-2-furaldehydsemicarbazon, Novobiocin, Nystatin, Oleandomycin, Oleandomycin phosphat, Oxacihin, Oxytetracyclin, Paromomycin, Penicillin, Pecilocin, Pheneticillin, Phenoxymethylpenicillin, Phenyl Aminosalicylat, Phleomycin, Pivampicillin, Polymyxin B, Propicillin, Puromycin, Puromycin Aminonucleosid, Puromycin Aminonucleosid 5'-monophosphat, Pyridinol carbamat, Rolitetracyclin, Rifampicin, Rifamycin B, Rifamycin SV, Spectinomycin, Spiramycin, Streptomycin, Streptomycin sulfat, Sulfabenzamid, Sulfadimethoxin, Sulfamethizol, Sulfamethoxazol, Tetracyclin, Thiamphenicol, Tobramycin, Troleandomycin, Tunicamycin, Tunicamycin A1-Homolog, Tunicamycin A2-Homolog, Valinomycin, Vancomycin, Vineomycin A1, Virginiamycin M1, Viomycin, Xylostasin;
 - mindestens einen Stoff, der zu den Antidepressiva oder Antipsychotica gehört, z.B. diverse Monoaminoxidase-Hemmer, Tri- und Tetrazyclische Antideptressiva, usw. Häufig werden Alprazolam, Amitriptylin, Chlorpromazin, Clomipramin, Desipramin, Dibenzepin, Dimetacrin, Dosulepin, Doxepin, Fluvoxaminhydrogenmaleat, Imipramin, Isocarboxazid, Lofepramin, Maprotilin, Melitracen, Mianserin, Nialamid, Noxiptilin, Nomifensin, Nortriptylin, Opipramol, Oxypertin, Oxytriptan, Phenelzin, Protriptylin, Sulpirid, Tranylcypromin, Trosadon, Tryptophan, Vitoxazin, usw. verwendet.
 - mindestens einen Stoff, der zu den Antidiabetica gehört, wie z.B. Acetohexamid, Buformin, Carbutamid, Chlorpropamid, Glibenclamid, Glibornurid, Glymidine, Metformin, Phenformin, Tolazamid, Tolbutamid;
 - mindestens einen Stoff, der als Gegengift (Antidot) dient, beispielsweise gegen Metallvergiftungen, Insektizidvergiftungen, Drogen, gegen Blutgifte usw. Einige Beispile sind z.B. diverse Chelatoren, Amiphenazol Obidoxim-chlorid, D-Penicillamin, Tiopromin, usw;
 - mindestens einen Stoff, der zu den Antiemetica gehört. Geeignete Wirkstoffe dafür sind z.B. Alizaprid, Benzquinamid, Betahistidin-Derivate, Cyclizin, Difenidol, Dimenhydrinat, Haloperidol, Meclozin, Metoclopramid, Metopimazin, Oxypendyl, Perphenazin, Pipamazin, Piprinhydrinat,, Prochlorperazin, Promazin, Scopolamin, Sulpirid, Thiethylperazin, Thioproperazin, Triflupromazin, Trimethobenzamid, usw, die

häufig in Kombination mit Vitaminen und/oder Antiallergica verwendet werden;

5

10

15

20

25

30

35

40

45

50

55

- mindestens einen Stoff, der zu den Antiepileptica gehört. Geeignete Wirkstoffe dafür sind z.B. Barbexaclon, Barbiturate, Beclamid, Carbamazepin, Chloralhydrat, Clonazepam, Diazepam, Ethosuximid, Ethylphenacemid, Lorazepam, Mephenytoin, Mesuximid, Oxazolidine, Phenaglycodol, Phensuximid, Phenytoin, Primidon, Succinimid-Derivate, Sultiam, Trimethadion, Yalproinsäure, usw. Häufig gehören die Zutaten in die Klasse der Hypnotica und Sedativa. Besonders häufig wird Carbamazepin verwendet.
- mindestens einen Stoff mit antifibrinolytischer Wirkung, z.B. Aminocapronsäure oder Tranexamsäure.
- mindestens einen Stoff, der zu den Anticonvulsiva gehört, z.B. Beclamid, Carbamazepin, Clomethiazol, Clonazepam, Methylphenobarbital, Phenobarbital oder Sultiam;
- mindestens einen Stoff, der in den Cholinhaushalt eingreift, z.B. eine anticholinergische Wirkung ausübt. Als Cholinergica können unter anderem verwendet werden: Aubenoniumchlorid, Carbachol, Cerulezid, Dexpanthenol und Stigmin-Derivate (z.B. Distigminbromid, Neostigminmethylsulfat, Pyridostigminbromid) Als Anticholinergica dienen häufig Atropin, Atropinmethonitrat, Benactyzin, Benzilonium-bromid, Bevonium-methylsulfat, Chlorbenzoxamin, Ciclonium-bromid, Clidinium-bromid, Dicycloverin, Diphemanil-methylsulfat, Fenpiverinium-bromid, Glycopyrroniumbromid, Isopropamidjodid, Mepenzolat-bromid, Octatropin-methylbromid, Oxyphencyclimin, Oxyphenonium-bromid, Pentapiperid, Pipenzolat-bromid, Piperidolat, Pridinol, Propanidid, Tridihexethyl-jodid und Trospiumchlorid als Agenzien für diesen Zweck benutzt. Auch Cholinesterase-Inhibitoren, wie z.B. Ambenoniumchlorid, Demecarium-bromid, Echothiopate-jodid, usw. sind für diesen Zweck nützlich;
- mindestens einen Stoff zur Beeinflußung, zumeist Herabsetzung, der Wirkung oder Konzentration von Histamin (Antihistaminika). Bevorzugt werden hypoallergisch wirkende Träger oder randaktive Stoffe mit n-3 (omega-3), seltener mit oder n-6 (omega-6), mit zumeist mehreren, häufig 3-6 Doppelbindungen, gelegentlich auch mit Hydroxy, seltener Methyl-, oder Oxo-Seitengruppen, bzw. in Epoxykonfiguration, eingesetzt. Weitere geeignete Wirkstoffe sind unter anderem Aethylendiamin, Alimemazin, Antazolin, Bamipin, Bromazin, Brompheniramin, Buclizin, Carbinoxamin, Chlorcyclizin, Chloropyramin, Chlorphenanin, Chlorphenoxamin, Cimetidin, Cinnarizin, Clemastin, Clemizol, Colamin (z.B. Diphenhydramin), Cyclizin, Dexbrompheniramin, Dexchlorpheniramin, Difenidol, Dimetinden, Dimetotiazin, Diphenhydramin, Diphenylpyralin, Dixyrazin, Doxylamin, Histapyrrodin, Isothipendyl, Mebhydrolin, Meclozin, Medrylamin, Mepyramin, Methdilazin, Pheniramin, Piperacetazin, Piprinhydrinat, Pyrilámin (Mepyramin), Promethazin, Propylamin, Pyrrobutanin, Thenalidin, Tolpropamin, Tripelennamin, Triprolidin, usw;
- mindestens einen Stoff, der zu den Antihypertonica gehört, z.B. viele alpha-Rezeptoragonisten, Aldosteron-Antagonisten, Angiotensin-Converting-Enzyme-Hemmer, Antisymphaticotonica, beta-Blokker, Calzium-Antagonisten, Diuretica, Vasodilatoren, usw. Geeignete Wirkstoffe dafür sind z.B. Alpenolol, Atenolol, Bendroflumethiazid, Betanidin, Butizid, Chlortalidon, Clonidin, Cycletanin, Cyclopenthiazid, Debrisoquin, Diazoxid, Dihydralazin, Dihydroergotaminmethansulfonat, Doxazinmesilat, Guanethidin, Guanoclor, Guanoxan, Hexamethonium-chlorid, Hydralazin, Labetalol, Mecanylanin, Methyldopa, Pargylin, Phenoxybenzamin, Prazosin, Quinethazon, Spironolacton, Bescinnamin, Reserpin, Trichlormethiazid oder Vincamin;
- mindestens einen Stoff, der ein Inhibitor biologischer Aktivität ist, z.B. Actinomycin C1, alpha-Amanitin, Ampicillin, Aphidicolin, Aprotinin, Calmidazolium (R24571), Calpain-Inhibitor I, Calpain-Inhibitor II, Castanospermin, Chloramphenicol, Colcemid, Cordycepin, Cystatin, 2,3-Dehydro-2-desoxy-1-Desoxynojirimy-1-Desoxymannojirimycin-hydrochlorid, cin, Diacylglycerolkinase-Inhibitor, P1, P5-Di(adenosin-5'-)pentaphosphat, Ebelacton A, Ebelacton B, N-acetyl-neuraminsäure, Erythromycin, Ethidiumbromid, N-Hydroxyharnstoff, Hygromycin B, Kanamycinsulfat, alpha2-Macroglobulin, N-Methyl-1-desoxynojirimycin, Mitomycin C, Myxothiazol, Novobiocin, Phalloidin, Phenylmethylsulfonylfluorid, Puromycin-dihydrochlorid, Rifampicin, Staurosporin, Streptomycinsulfat, Streptozotocin, g-Strophanthin, Swainsonin, Tetracyclin-hydrochlorid, Trifluoperazin-dihydrochlorid, Tunicamycin, usw. Nützliche Proteinasen Inhibitoren sind z.B. (4-Amidinophenyl)-methansulfonylfluorid (APMSF), Antipain-dihydrochlorid, Antithrombin III, alphal-Antitrypsin, Aprotinin, Bestatin, Calpain-Inhibitor I, Calpain-Inhibitor II L-1-Chlor-3-(4-tosylamido)-7-amino-2-heptanon-hydrochlorid (TLCK), L-1-Chlor-3-(4-tosylamido)-4-phenyl-2-butanon (TPCK), Chymostatin, Cystatin, 3,4-Dichlorisocoumarin, E 64, Elastatinal, Hirudin, Kallikrein-Inhibitor (Aprotinin) L-Leucinthiol, Leupeptin, Pepstatin, Phenylme
 - phenylalanin-chlormethylketon), Trypsin-Inhibitoren, usw; mindestens einen Stoff, der zu den Antihypotonica gehört. Häufig sind die entsprechenden Agenzien gleichzeitig auch Analeptica, Kardiaca oder Corticoide. Zu den gut geeigneten Wirkstoffen gehören

thylsulfonylfluorid (PMSF), Phosphoramidon, TLCK (Tosyl-lysin-chlormethylketon), TPCK(Tosyl-

- unter anderem Angiotensinamid, Cardaminol, Dobutamin, Dopamin, Etifelmin, Etilefrin, Gepefrin, Heptaminol, Midodrin, Oxedrin, usw., ganz besonders Norfenefrin;
- mindestens einen Stoff, der zu den Antikoagulantien gehört. Zu den dafür geeigneten Wirkstoffen gehören aus den Klassen der Coumarin-Derivate, Heparin und Heparinoide, Hirudin und verwandte Stoffe, Dermatansulfat usw. Häufig werden verwendet Acenocumarin, Anisindion, Diphenadion, Ethylbiscoumacetat, Heparin, Hirudin, Phenprocoumon sowie Warfarin;

5 .

10

15

20

25

30

35

-50

- mindestens einen Stoff, der zu den Amtimycotica gehört. Zu den dafür gut geeigneten Wirkstoffe gehören z.B. Amphotericin, Bifanozol, Buclosamid, Chinolin-sulfat Chlormidazol, Chlorphenesin, Chlorquinaldol, Clodantoin, Cloxiquin, Cyclopiroloxamin, Dequaliniumchlorid, Dimazol, Fenticlor, Flucytosin, Griseofulvin, Ketoconazol, Miconazol, Natamycin, Sulbentin, Tioconazol, Tolnaftat, usw. Besonders häufig werden Amphotericin, Clotrimazol oder Nystatin verwendet;
- mindestens einen Stoff, der zu der Klasse der Antimyasthenica gehört, wie z.B. Pyridostigmin-bromid;
- mindestens einen Stoff, der wirksam gegen morbus Parkinson ist, z.B. Amantadin, Benserazid, Benzatropin, Biperiden, Cycrimin, Levodopa, Metixen, Orphenadrin, Phenglutarimid, Pridinol, Procyclidin, Profenamin oder Trihexyphenidyl;
- mindestens einen Stoff, der ein Antiphlogisticum ist, z.B. Aescin, Acetylsalicylsäure, Alclofenac, Aminophenazon, Azapropazon, Benzydamin, Burnadizon, Chlorthenoxazin, Diclofenac, Flufenaminsäure, Glafenin, Ibuprofen, Indometacin, Kebuzon, Mefenamsäure, Metiazinsäure, Mesalazin, Mofebutazon, Naproxen, Nifluminsäure, Salze, z.B. Na-Salz, von Noramidopyrinium-methan-sulfonat, Orgotein, Oxyphenbutazon, Phenylbutazon, Propyphenazon, Pyridoxin, Tolmetin, usw. Besonders häufig wird Ibuprofen verwendet. Häufig haben die für diesen Zweck verwendeten Wirkstoffe auch eine antihistaminische oder analgetische Wirkung oder gehören in die Klassen der Corticoide, Venenmittel, Opthalmica oder Otologica;
- mindestens ein Antipyreticum ist, z.B. Acetylsalicylsäure, Alclofenac, Aminophenazon, Benzydamin, Bumadizon, Chinin, Chlorthenoxazin, Lactylphenetidin, Meprob, Paracetamol, Phenacetin, Propyphenazon oder Salicylamid verwendet;
- mindestens einen Stoff mit antirheumatischer Wirkung, z.B. Acetylsalicylsäure, Benorilat, Chloroquin, Diclofenac, Fenoprofen, Flufenaminsäure, Ibuprofen, Kebuzon, Lactylphenetidin, Mefenamsäure, Mofebutazon, Naproxen, Natriumaurothiomalat, Nifenazon, Nifluminsäure, D-Penicillamin und Salicylamid. Bevorzugt werden hypoallergisch wirkenden randaktiven Stoffe, Träger und/oder Wirkstoffe, z.B. aus den Klassen der Analgetika, ferner Cortikoide und Glucokortikoide, Enzyme oder Vitamine, usw., verwendet; außerdem Antiphlogistika wie z.B. Chinin, Nikotinsäure-, Nonylsäure- sowie Salicylsäure-Derivate, Meprobamat, usw;
- mindestens ein Antisepticum wie Acriflaviniumchlorid, Cetalkonium-chlorid, Cetylpyridinium-chlorid, Chlorhexidin, Chlorquinaldol, Dequaliniumchlorid, Domiphen-bromid, Ethacridin, Hexetidin, Merbromin, Nitrofural, Oxyquinol, Phanquinon, Phenazopyridin oder Phenylmercuriborat, sowie Fetsäuren mit einer ungeraden Zahl der Kohlenstoffatome;
- mindestens ein Atemanalepticum oder Atemstimulans, z.B. Amiphenazol, Ascorbinsäure, Coffein, Cropropamid, Crotethamid, Etamivan, Ephedrin, Fominoben, Nicethamid; bzw. z.B. Aminophenazol oder Doxapram;
- mindestens ein Broncholyticum, wie Bamifyllin, Beclometason, Dexometason (wie z.B. in Dexometason-21-isonicotinat), Diprophyllin, Ephinedrin (z.B. Ephinedrinhydrogentartrat), Fenoterol, Hexoprenalin, Ipratropium-bromid, Isoetarin, Isoprenalin, Orciprenalin, Protokylol, Proxyphyllin, Reproterol, Salbutamol, Terbutalin, Tetroquinol, Theophyillin, usw., und biologische Extrakte, z.B. aus Anis, Eukalyptus, Thymian, usw;
- ein Cardiotonicum, besonders Aminophyllin, Benfurodilhemisuccinat, Etofyllin, Heptaminol, Protheobromin oder Proxyphyllin;
- mindestens einen Stoff aus der Klasse der Chemotherapeutica wie etwa Acediasulfon, Acriflavinium-chlorid, Ambazon, Dapson, Dibrompropamidin, Furazolidon, Hydroxymethyinitrofurantoin, Idoxuridin, Mafenid u. Sulfatolamid, Mepacrin, Metronidazol, Nalidixinsäure, Nifuratel, Nifuroxazid, Nifurazzin, Nifurtimox, Ninorazol, Nitrofurantoin, Oxolinsäure, Pentamidin, Phenazopyridin, Phthalylsulfathiazol, Pyrimethamin, Salazosulfapyridin, Sulfacarbamid, Sulfacetamid, Sulfachlorpyridazin, Sulfadiazin, Sulfadicramid, Sulfadimethoxin, Sulfaethidol, Sulfafurazol, Sulfaguanidin, Sulfaguanol, Sulfamethizol, Sulfamethoxydiazin, Sulfamethoxypyridazin, Sulfamoxol, Sulfanilamid, Sulfaperin, Sulfaphenazol, Sulfathiazol, Sulfisomidin, Tinidazol, Trimethoprim, usw.;
- mindestens einen Stoff aus der Klasse der Coronardilatatoren. z.B. Bamifyllin, Benziodaron, Carbochromen, Dilazep, Dipyridamol, Etafenon, Fendilin, Hexobendin, Imolamin, Lidoflazin, Nifedipin, Oxyfedrin, Pentaerythrityltetranitrat, Perhexilin, Prenylamin, Propatylnitrat, Racefemin, Trolnitrat, Verapamil,

Visnadin, usw.;

5

10

15

20

25

45

50

- mindestens ein Cytostaticum, z.B. aus den Klassen der Alkylantien, Antibiotica, Platinderivate, Hormone und ihrer Hemmer, Interferone, usw. Sehr häufig werden verwendet: Aclarubicin, Azathioprin, Bleomycin, Busulfan, Calciumfolinat, Carboplatin, Carmustin, Chlorambucil, Cis-Platin, Cyclophosphamid, Cytarabin, Daunorubicin, Epirubicin, Fluorouracil, Fosfestrol, Hydroxycarbamid, Ifosfamid, Lomustin, Melphalan, Mercaptopurin, Methotrexat, Mitomycin C, Mitopodozid, Mitramicyn, Nimustin, Pipobroman, Prednimustin, Procarbazin, Testolacton, Theosulfan, Thiotepa, Tioguanin, Triaziquon, Trofosfamid, Vincristin, Vindesin, Vinblastin, Zorubicin, usw.;
- ein Darmantisepticum, wie z.B. Broxyquinolin, Clioquinol, Diodohydroxyquinolin, Halquinol, usw.;
- mindestens ein Diureticum, z.B. Acetazolamid, Aminophyllin, Bendroflumethiazid, Burnetanid, Butizid, Chlorazanil, Chlormerodrin, Chlorothiazid, Chlortalidon, Clopamid, Clorexolon, Cyclopenthiazid, Cyclothiazid, Etacrynsäure, Furosemid, Hydrochlorothiazid, Hydroflumethiazid, Mefrusid, Methazolamid, Paraflutizid, Polythiazid, Quinethazon, Spironolacton, Triamteren, Trichlormethiazid, Xipamid, usw.;
 - mindestens einen Ganglienblocker, z.B. Gallamintriethiodid, Hexamethonium-chlorid, Mecamylamin,
 - mindestens einen Stoff zur Behandlung von Gicht, bevorzugt Analgetika, ferner, z.B. Allopurinol, Benzbromaron, Colchicin, Benziodaron, Probenecid, Sulfinpyrazon, Tenoxicam, usw. und ganz besonders häufig Allopurinol;
- mindestens ein Glucocorticoid, z.B. Beclomethason, Betamethason, Clocortolon, Cloprednol, Cortison, Dexamethason (z.B. als Dexamethasonphosphat), Fludrocortison, Fludrocycortid, Flumetason, Fluocinolonacetonid, Fluocinonid, Fluocortolon (z.B. als Fluocortoloncapronat oder Fluocortolontrimethyl-Fluorometholon, Fluprednidenacetat, Hydrocortison (auch Hydrocortison-21-acetat, Hydrocortison-21-phosphat, usw.), Paramethason, Prednisolon (z.B. als Methylprednisolon, Prednisolon-21-phosphat, Prednisolon-21-sulfobenzoat, usw.), Prednison, Prednyliden, Pregnenolon, Triamcinolon, Triamcinolonacetonid, usw.;
 - mindestens ein Grippetherapeuticum, wie z.B Moroxydin.
 - mindestens ein Hämostaticum wie Adrenalon, Ascorbinsäure, Butanol, Carbazochrom, Etamsylat, Protamin, Samatostatin, usw. Auch Hypophisen-Hormone und Vitamine können für diesen Zweck gut eingesetzt werden;
- mindestens ein Hypnoticum, z.B. aus der Klasse der Barbiturate, Benzodiazepine, Bromverbindungen, Ureide, usw. Häufig werden für diesen Zweck Acecarbromal, Alimemazintartrat Allobarbital, Amobarbi-30 tal, Aprobarbital, Barbital, Bromisoval, Brotizolam, Carbromal, Chloralhydrat, Chloralodol, Chlorobutanol, Clomethiazol, Cyclobarbital, Diazepam, Diphenhydramin, Doxylamin, Estazolam, Ethchlorvynol, Ethinamat, Etomidat, Flurazepam, Glutethimid, Heptabarb, Hexobarbital, Lormetazepam, Malperol, Meclozin, Medozin, Methaqualon, Methyprylon, Midazolam, Nitrazepam, Oxazepam, Pentobarbital, Phenobarbital, Promethazin, Propallylonal, Pyrithyldion, Secbutabarbital, Secobarbital, Scopolamin, 35 Temazepam, Triazolam, Vinylbital, usw; außerdem werden Extrakte aus Melisse, Baldrian, Passiflora verwendet;
- mindestens ein Immunglobulin, z.B. aus den Klassen IgA, IgE, IgD, IgG, IgM, oder ein Immunglobulinfragment, z.B. ein Fab- oder Fab2-Fragment, oder die entsprechende variable bzw. hypervariable Region, gegebenenfalls kombiniert mit anderen Stoffen und/oder chemisch, biochemisch oder gen-40 technisch manipuliert;
 - Ein Immunglobulin kann vom Typ IgA, IgD und IgE, IgG (z.B. Ig G1, Ig G2, Ig G3, Ig G4) oder IgM sein. In dieser Anmeldung werden darunter auch chemische oder biochemische Abbauprodukte der Immunglobuline (lg) verstanden, lg G, gamma-Kette, lg G, F(ab')2 Fragment, lg G, F(ab) Fragment, lg G, Fc Fragment, Ig kappa-Kette, leichte Ketten von Ig-s (z.B. kappa und lambda-Kette), aber auch noch kleinere Immunglobulinteile, wie z.B. die variable oder hypervariable Region, oder künstliche Abwandlungen von irgendeiner dieser Substanzen.
 - mindestens einen Stoff mit Wirkung zur Immunstimulation, Immunsuppression, Erzeugung von Immunglobulinen oder sonstigen immunologisch wirksamen Substanzen (Endotoxinen, Cytokinen, Lymphokinen, Prostaglandinen, Leukotrienen, anderen Immunmodulantien oder biologischen Botstoffen), einschließlich Vakzinen. Ebenso können Antikörper gegen irgendeine dieser Substanzen verwendet werden. Bevorzugt werden Immuntransfersomen mit oder ohne Endotoxinen, Cytokinen, Prostaglandinen, Leukotrienen, mit anderen Immunmodulantien, immunologisch wirksammen Zell- oder Molekülfragmenten, sowie entsprechenden Antagonisten, Derivaten oder Vorläufern eingesezt. Besonders bevorzugt sind dabei Lipid A und andere Glycolipide, Muraminsäurenderivate, Trehalosederivate, Phythämagglutinine, Lectine, Polyinosin, Polycytidylsäure (Poli I:C), Dimepranol-4-acetamidobenzoat, Erythropoietin, 'Granulocyte-Macrophage Colony Stimulating Factor' (GM-CSF), Interleukine I und II, III

und VI, Interferone alpha, β und/oder gamma, Leukotriene A, B, C, D, E und F, Propandiamin, Prostaglandine A, B, C, D, E, F, und I (Prostacyclin), Tumor Necrose Faktor-alpha (TNF-alpha), Thromboxan B, sowie Immunglobuline der Klassen IgA, IgE, IgD, IgG, IgM; aber auch Gewebsextrakte und Pflanzenextrakte, ihre chemische, biochemische oder biologische Nachahmungen bzw. ihre Teile, z.B. charakteristische Peptidketten. Zur Immunsupression werden häufig Ganciclovir, Azathiiprin, Cyclosporin, FK 506 usw. verwendet;

- mindestens ein Kontrazeptivum, wie z.B. Medroxyprogesteronacetat, Lynesterol, Lvonorgestrel, Norethisteron, usw:
- mindestens ein Kreislaufanalepticum wie Cafedrin, Etamivan, Etilefrin, Norfenefrin, Pholedrin, Theodrenalin, usw;
 - mindestens ein Lebertherapeuticum wie Orazamid, Silymarin, oder Tiopromin;
 - mindestens ein Stoff mit einer lichtschützenden Funktion, wie z.B. Mexenon;

5

15

20

25

30

35

40

45

- mindestens ein Antimalariamittel, wie z.B. Amodiaquin, Hydroxychloroquin oder Mepacrin;
- mindestens einen Stoff als Mittel gegen Migräne oder Schizophrenie, z.B. Analeptica, beta-Blocker, Clonidin, Dimetotiazin, Ergotamin, Lisurid(hydrogenmaleat), Methysergid, Pizotifen, Propranolol, Proxibarbal, usw. Noch besser geeignet sind jedoch Serotonin-Antagonisten oder Blocker eines Serotonin-Rezeptors, z.B. vom 5-HT1, 5-HT2 oder 5-HT3 ist. Gut geeignet für die Verwendung im Sinne dieser Erfindung sind ferner Rezeptor-Blocker AH21467 (Glaxo), AH25086 (Glaxo), GR43175 (Glaxo), GR38032 (Glaxo, = Ondansetron), 5-Hydroxytriptamin, Ketanserin, Methiothepin, alpha-Methyl-5HT, 2-Methyl-5HT, usw.;
- mindestens ein Mineralcorticoid, wie z.B. Aldosteron, Fludrocortison, Desoxycortonacetat, ihre Derivate, usw.;
- mindestens einen Morphin-Antagonisten (wie z.B. Amiphenazol, Lealvallorphan, Nalorphin) oder einen Stoff mit morphinähnlichen Eigenschaften (wie z.B. Casomorphin, Cyclo(Leu-Gly), Dermorphin, Met-Enkephalin, Methorphamid
 - (Tyr-Gly-Gly-Phe-Met-Arg-Arg-Val), Morphiceptin, Morphine modulierendes Neuropeptid (Ala-Gly-Glu-Gly-Leu-Ser-Ser-Pro-Phe-Trp-Ser-Leu-Ala-Pro-Gln-Arg-Phe-NH2) usw.;
- mindestens ein Muskelrelaxans, häufig aus den Gruppen von kompetitiv oder depolarisierend wirkenden Curare-Stoffen, Myotonolytika oder Analgetica. Zu geeigneten Stoffen mit dieser Wirkung gehören z.B. Acetylsalicilsäure, Alcuronium-chlorid, Azapropazon, Atracuriumbesilat, Baclofen, Carisoprodol, Chininderivate, Chlormezanon, Chlorphenesincarbamat, Chlorzoxazon, Dantrolen, Decamethoniumbromid, Dimethyltubocurariniumchlorid, Fenyramidol, Gallamintriethiodid, Guaiphensin, Hexafluoreniumbromid, Hexacarbacholinbromid, Memantin, Mephenesin, Meprobamat, Metamisol, Metaxalon, Methocarbamol, Orphenadrin, Paracetamol, Phenazon, Phenprobamat, Suxamethoniumchlorid, Tetrazepam, Tizanidin, Tubocurarinchlorid, Tybamat, usw.;
- mindestens ein Narkoticum, z.B. Alfentanil, Codein, Droperidol, Etomidat, Fentanil, Flunitrazepam, Hydroxybuttersäure, Ketamin, Methohexital, Midazolam, Thebacon, Thiamylal, Thiopental, usw. und die entsprechenden Derivate;
- mindestens einen Stoff mit neuraltherapeutischer Wirkung wie z.B. Anästhetica und Vitamine, Atropin-Derivate, Benfotiamin, Cholin-Derivate, Coffein, Cyanocobolamin, alpha-Liponsäure, Mepivacain, Phenobarbital, Scopolamin, Thiaminchloridhydrochlorid, usw., und ganz besonders Procain;
- mindestens ein Neurolepticum, z.B. Butyrophenon-Derivate, Phenotiazin-Derivate, trizyklische Neuroleptika, ferner Acetophenazin, Benperidol, Butaperazin, Carfenazin, Chlorpromazin, Chlorprothixen, Clopenthixol, Clozapin, Dixyrazin, Droperidol, Fluanison, Flupentixol, Fluphenazin, Fluspirilen, Haloperidol, Homofenazin, Levomepromazin, Melperon, Moperon, Oxipertin, Pecazin, Perfluridol, Periciazin, Perphenazin, Pimozid, Pipamperon, Piperacetazin, Profenamin, Promazin, Prothipendyl, Sulforidazin, Thiopropazat, Thioproperazin,
 - Thioridazin, Tiotixen, Trifluperazin, Trifluperidol, Triflupromazin, usw. Besonders häufig werden Haloperidol und Sulperid verwendet;
- mindestens einen Neurotransmitter oder seinen Antagonisten. Vorzugsweise werden Acetylcholin, Adrenalin, Curare (und z.B. sein Antagonist Edrophonium-chlorid), Dopamin, Epehdrin, Noradrenalin, Serotonin, Strychnin, Vasotonin, Tubocurarin, Yohimbin, usw., verwendet;
 - mindestens ein Opthalmicum, häufig aus den Gruppen der Anästhetica, Antibiotica, Corticoida, Augentonica, Chemotherapeutica, Glaukommittel, Virustatica, Antiallergica, eine gefäßerweiternde Substanz, oder ein Vitamin;
 - mindestens ein Parasympathicomimeticum (z.B. Bethanechol-chlorid, Carbachol, Demecarium-bromid, Distigmin-bromid, Pyridostigmin-bromid, Scopolamin) oder ein Parasympathicolyticum (wie z.B. Benzatropin, Methscopolamin-bromid, Pilocarpin oder Tropicamid);

5

10

15

35

- mindestens ein Mittel zur Behandlung von Psoriasis und/oder Neurodermitis. Bevorzugt werden hypoallergisch wirkenden Träger oder randaktive Stoffe mit n-3 (omega 3), seltener mit oder n-6 (omega 6), mit zumeist mehreren, häufig 3-6 Doppelbindungen und/oder Hydroxy, seltener Methyl-, oder Oxo-Seitengruppen; diese können auch als Seitenketten an weiteren Wirkstoffmolekülen auftreten. Seitengruppen am 15-Kohlenstoffatom sind besonders wirksam. Als zusätzliche Wirkstoffe können unter anderem auch Antimycotica, Cytostatica, Immunsuppressiva oder Antibiotica verwendet werden.
- mindestens ein pupillenerweiterndes Medikament (Mydriaticum), wie z.B. Atropin, Atropinmethonitrat,
 Cyclopentolat, Pholedrin, Scopolamin oder Tropicamid;
- mindestens einen Stoff mit psychostimulierender Wirkung. Gut geeignet für solche Anwendung sind z.B. Amphetaminil, Fencamfamin, Fenetyllin, Meclofenoxat, Methamphetamin, Methylphenidat, Pemolin, Phendimetrazin, Phenmetrazin, Prolintan oder Viloxazin;
- mindestens ein Rhinologicum, wie z.B. Buphenin, Cafaminol, Carbinoxamid, Chlorphenamim, Chlortenoxazin, Clemastin, Dextromethorpan, Etilefrin, Naphazolin, Norephedrin, Oxymetazolin, Phenylaprhin, Piprinydrinat, Pseudoephedrin, Salicylamid, Tramazolin, Triprolidin, Xylometazolin, usw, und aus biologischen Quellen besonders Radix Gentiane Extrakt;
- mindestens ein Schlafmittel (wie z.B. schlafinduzierendes Peptid (Trp-Ala-Gly-Gly-Asp-Ala-Ser-Gly-Glu)), oder einen Schlafmittel-Antagonisten (wie z.B. Bemegrid);
- mindestens ein Sedativum oder ein Beruhigungsmittel (Tranquilizer), z.B. als Sedativa Acecarbromal, Alimemazin, Allobarbital, Aprobarbital, Benzoctamin, Benzodiazepin-Derivate, Bromisoval, Carbromal, 20 Chlorpromazin, Clomethiazol, Diphenyl-Methan-Derivate, Estazolam, Fenetyllin, Homofenazin, Mebutamat, Mesoridazin, Methylpentynol, Methylphenobarbital, Molindon, Oxomemazin, Perazin, Phenobarbital, Promethazin, Prothipendyl, Scopolamin, Secbutabarbital, Trimetozin, usw. und als Tranquilizer Azacyclonol, Benactyzin, Benzoctamin, Benzquinamid, Bromazepam, Chlordiazepoxid, Chlorphenesincarbanat, Cloxazolam, Diazepam, Dikalium-chlorazepat, Doxepin, Estazolam, Hydroxyzin, Lorazepam, 25 Medazepam, Meprobamat, Molindon, Oxazepam, Phenaglycodol, Phenprobamat, Prazepam, Prochlorperazin, Rescinnamin, Reserpin oder Tybamat. Auch Drogen, wie z.B. Distraneurin, Hydantoinderivate, Malonylharnsäure-Derivate (Barbiturate), Oxazolidin-Derivate, Scopolamin, Valepotriat, Succinimid-Derivate, oder Hypnotika (z.B. Diureide (wie Barbiturate)), Methaqualon, Meprobromat, Monoureide (wie Carbromal), Nitrazepam, oder Piperidin-dione, können für diesen Zweck verwendet werden. Als 30 Antidepressiva werden bevorzugt unter anderem Thymoleptika, wie z.B. Librium oder Tofranil,
 - einen Stoff aus der Klasse der Spasmolytica, z.B. Adiphenin, Alverin, Ambicetamid, Aminopromazin, Atropin, Atropinmethonitrat, Azintamid, Bencyclan, Benzaron, Bevonium-methylsulfat, Bietamiverin, Butetamat, Butylscopolammoniumbromid, Camylofin, Carzenid, Chlordiazepoxid, Cionium-bromid, Cyclandelat, Cyclopentolat, Dicycloverin, Diisopromin, Dimoxylin, Diphemanil-methylsulfat, Ethaverin, Ethenzamid, Fencarbamid, Fenpipramid, Fenpivennum-bromid, Gefarnat, Glycopyrroniumbromid, Hexahydroadiphenin, Hexocycliummethylsulfat, Hymecromon, Isomethepten, Isopropamidjodid, Levomethadon, Mebeverin, Metamizon, Methscopolamin-bromid, Metixen, Octatropin-methylbromid, Oxazepam, Oxybutin, Oxyphenonium-bromid, Papaverin, Paracetamol, Pentapiperid, Penthienat-methobromid, Pethidin, Pipenzolat-bromid, Piperidolat, Pipoxolan, Propanthelin-bromid, Propylphenazon, Propyromazin-bromid, Racefemin, Scopolamin, Sulpirid, Tiemonium-jodid, Tridihexethyljodid, Tropenzilinbromid, Tropinbenzilat, Trospiumchlorid, Valethamatbromid, usw.; ferner Belladona Alkaloide, Papaverin und seine Derivate, usw.;
- mindestens ein Sympathicolyticum, z.B. Azapetin oder Phentolamin;
 - mindestens ein Sympathicomimeticum, z.B. Bamethan, Buphenin, Cyclopentamin, Dopamin, L-(-)Ephedrin, Epinephrin, Etilefrin, Heptaminol, Isoetarin, Metaraminol, Methamphetamin, Methoxamin,
 Norfenefrin, Phenylpropanolamin, Pholedrin, Propylhexedrin, Protokylol oder Synephrin;
- mindestens ein Tuberkulostaticum, z.B. Antibiotica, p-Aminosalicylsäure, Capreomycin, Cycloserin,
 Dapson, Ethambutol, Glyconiazid, Iproniazid, Isoniazid, Nicotinamid, Protionamid, Pyrarinamid, Pyrodoxin, Terizidon, usw., davon ganz besonders bevorzugt Ethambitol und Isoniazid;
 - mindestens ein Urologicum, z.B. ein Blasenatoniemittel (wie Cholincitrat, Distigminbromid, Yohimbin), ein Harninfektionstherapeuticum (Antibioticum, Chemotherapeuticum, bzw. Nitrofurantoid-, Chinolon-, oder Sulfonamid-Derivat oder); ferner Adipinsäure, Methionin, Methenamin-Derivate, usw.;
- mindestens einen Stoff, der zu den Vasoconstrictoren z\u00e4hlt. H\u00e4ufig werden f\u00fcr diesen Zweck Adrenalon, Epinephrin, Felypressin, Methoxamin, Naphazolin, Oxymetazolin, Tetryzolin, Tramazolin ode Xylometazolin benutzt;
 - mindestens einen Stoff, der ein Vasodilatator ist, wie beispielsweise Azapetin, Banethan, Bencyclan,

Benfurodilhemisuccinat, Buphenin, Butalamin, Cinnarizin, Diprophyllin, Hexyltheobromin, Ifenprodil, Isoxsuprin, Moxisylyt, Naftidrofuryl, Nicotinylalkohol, Papaverin, Phenoxybenzamin, Piribedil, Primaperon, Tolazolin, Trimetazidine, Vincamin oder Xantinol-nicotinat;

- mindestens ein Venenmittel, z.B. Aescin, Benzaron, Calcium-Dobesilat, Dihydroergotaminmesilat, Diosmin, Hyydroxyethylrutosid, Pignogenol, Rutosid-aesinat, Tribenosid, Troxerutin, usw.;
- mindestens ein Virustaticum, z.B. immunstimulierende Präparate, die durch die Verwendung von zusätzlichen Medikamenten, wie z.B. Moroxydin oder Tromantadin noch wirksamer sein können;
- ein Wundenbehandlungsmittel, z.B. Dexpanthenol; Wachstum stimulierende Faktoren, Enzyme oder Hormone, besonders wenn sie in Kombination mit Trägern, die essenziellen Stoffe enthalten, sind jedoch zumeist noch wirksamer. Auch Povidon-Jod, ungeradkettige Fettsäuren, Cetylpyridiniumchlorid, Chinolin-Derivate bekannter Antibiotica und Analgetica sind nützlich.
- mindestens einen Stoff, der toxisch wirkt oder selbst ein Toxin ist;
 Toxine aus pflanzlichen oder mikrobiellen Quellen, insbesondere 15-Acetoxyscirpenol, 3-Acetyldeoxynivalenol, 3alpha-Acetyldiacetoxyscirpenol, Acetyl T-2 toxin, Aflatoxicol I, Aflatoxicol II, Aflatoxin B1, Aflatoxin B2, Aflatoxin B2alpha, Aflatoxin G1, Aflatoxin G2, Aflatoxin G2alpha, Aflatoxin M1, Aflatoxin M2, Aflatoxin P1, Aflatoxin Q1, Alternariol monomethyl ether, Aurovertin B, Botulinum toxin D, Cholera toxin, Citreoviridin, Citrinin, Cyclopiazonsäure, Cytochalasin A, Cytochalasin B, Cytochalasin C, Cyrochalasin D, Cytochalasin, Cytochalasin H, Cytochalasin J, Deoxynivalenol, Diacetoxyscirpenol, 4,15-Diacetylverrucarol, Dihydrocytochalasin B, Enterotoxin STA, Fusarenon X, Iso T-2 Toxin, O-Methylsterigmatocystin, Moniliformin, Monoacetoxyscirpenol, Neosolaniol, Ochratoxin A, Patulin, Penicilinsäure, Pertussis toxin, Picrotoxin, Pr-toxin, Prymnesin, Radicinin, Roridin A, Rubratoxin B, Scirpentriol, Secalonsäure D, Staphylococcalenterotoxin B, Sterigmatocystin, Streptolysin O, Streptolysin S, Tentoxin, Tetrahydrodeoxyaflatoxin B1, Toxin A, Toxin II, HT-2 toxin, T-2-tetraol, T-2 toxin, Trichothecolon, T-2 triol, Verrucarin A, Verrucarol, Vomitoxin, Zearalenol und Zearalenon.
 mindestens eine bei Mensch und Tier wachstumsbeeinflußende Substanz, z.B. Basic Fibroblast
- Growth Factor (bFGF), Endothelial Cell Growth Factor (ECGF), Epidermal Growth Factor (EGF), Fibroblast Growth Factor (FGF), Insulin, Insulin-like Growth Factor I (IGF I), Insulin-like Growth Factor II (IGFII), Nerven Wachstums-Faktorbeta (NGF-beta), Nerven Wachstums-Faktor 2,5S (NGF 2,5S), Nerven Wachstums-Faktor 7S (NGF 2,5S), Wachstums-Faktor aus Plättchen (Platelet-Derived Growth Factor (PDGF)), usw.;
- einen Träger und/oder Wirkstoff, der auf und in der Barriere, z.B. Haut, eine Schutzschicht gegen Gift, Licht-, UV-, gamma - bzw. sonstige Strahlung oder gegen biologischen Schadstoffe, wie z.B. Viren, Bakterien, Toxine, usw., bildet. Die Träger und/oder Wirkstoffe können dabei die schädliche Wirkung chemisch, biochemisch oder biologisch hemmen, oder aber die Penetration solcher Schadstoffe verringern oder verhindern;
- mindestens ein Fungizid, Herbizid, Pestizid, oder Insektizid;

10

15

20

25

30

35

40

45

50

- mindestens ein Pflanzenhormon, z.B. Abscisinsäure, Abscisinsäure-Methylester, 3-Acetyl-4thiazolidine-carboxylsäure, 1-Allyl-1-(3,7-dimethyloctyl)-piperidinium bromid, 6-Benzylaminopurin, 6-Benzylaminopurin 9-(beta - glucosid), Butanediosäure mono(2,2-dimethyl hydrazid), Chlorocholin chlorid, 2-Chloroethyl-tris-(2'-methoxyethoxy)silan, 2-(o-Chlorophenoxy)-2-methylpropionsäure, :2-(p-Chlorophenoxy)-2-methylpropionsäure, 2-(o-Chlorophenoxyipropionsäure, 2-(m-Chlorophenoxy)propionsäure, Clofibrinsäure, Colchicin, o-coumarinsäure, p-coumarinsäure, Cycloheximid, alpha,betadichloroisobuttersäure, 2-(2,4-dichlorophenoxy)propanolsäure, 2,3-dihydro-5,6-diphenyl 1,4-oxathiin, 6-(gamma.gamma-Dimethylallylamino)purin ribosid, 3-(2-[3,5-Dimethyl-2-Dihvdrozeatin. oxocyclohexyl-2-hydroxyethyl])-glutarimid, Trans-2-dodecenediosäure, Ethyl-8-chloro-1 H-indazol-3-ylacetat, N6-Furfuryladenosin, 6-Furfurylaminopurinribosid, Gibberellinsäure Methylester, Gibberellin A3-Acetat, Gibberellin A1 Methylester, Gibberellin A4 Methylester, Gibberellin A5 Methylester, Gibberellin A7 Methylester, Gibberellin A9 Methylester, Gibberellin A3 Methylester 3,13-diacetat gibberinsäure, Allo-gibberinsäure, Gibberinsäure Methylester, Glyoxim, 22(S),23(S)-Homobrassinolid, 9-Hydroxyfluoren 9-Carboxylat, Indol-3-acetsäure, Indol-3-acetsäure ethylester, Indol-3-propanosäure, N6-(2-isopentenyl)adenin, N6-(2-isopentenyl)adenosin, 2-Isopropyl-4-dimethylamino-5-methylphenyl-1-piperidinecarboxylat Methylchlorid, Kinetinglucosid, Kinetinribosid, Melissylalkohol, 1-Methyladenin, Methyl 2chloro-9-hydroxy-fluorene-9-carboxylat, Methyl 3,6-Dichloro-O-anisat, 6-Methylmercaptopurin, 1-Naphthylacetamid, Nonanosäure Methylester, 6-Piperidino-1-purin, N-Triacontanol, (-)-Xanthoxin, Zeatin glucoside, etc.;
- mindestens ein Pheromon oder einen pheromonähnlichen Stoff, unter anderen (-)-Bornyl Acetat, trans-5-Decenol, cis-5-Decenyl Acetat, trans-5-Decenyl Acetat, 2,6-Dichlorophenol, 1,7-Dioxaspiro[5.5]-undecan, trans-8,trans-10-Dodecadienol([E,E]-8,10-DDDOL), trans-7,cis-9-Dodecadienyl Acetat ([E,Z]-

7,9-DDDA), trans-8,trans-10-Dodecadienyl Acetat ([E,E]-8,10-DDDA), cis-7-Dodecen-1-ol (Z-7-DDOL), trans-10-Dodecenol, cis-7-Dodecenyl Acetat (Z-7-DDA), cis-8-Dodecenyl Acetat, trans-8-Dodecenyl Acetat, trans-8-Dodecenyl Acetat, 11-Dodecenyl Acetat, cis-7,8-Epoxy-2-methyl-octadecan, cis-9-Heneicosen, cis-7,cis-11-Hexadecadienylacetat ([Z,Z]-7,11-HDDA), cis-7,trans-11- Hexadecadienyl Acetat ([Z,E)-7,11-HDDA), cis-9-Hexadecenal (Z-9-HDAL), cis-11-Hexadecenal (Z-11-HDAL), cis-11-Hexadecenol (Z-11-HDOL), cis-11-Hexadecenyl Acetat (Z-11-HDA), trans-2-Hexenyl Acetat, cis-7-Tetradecenal (Z-7-TDAL), cis-9-Tetradecenol (Myristoleyl alcohol; Z-9-TDOL), cis-7-Tetradecenol (Z-7-TDOL), cis-11-Tetradecenol, cis-7-Tetradecenyl Acetat (Z-7-TDA), cis-9-Tetradecenyl Acetat (Myristoleyl Acetat; Z-9-TDA), cis-11-Tetradecenyl Acetat (Z-11-TDA), trans-11-Tetradecenyl Acetat (E-11-TDA), cis-9-Tetradecenyl formate (Myristoleyl-Format; Z-9-TDF), isoamyl Acetat (acetic acid 3-methylbutyl ester), 2-Methyl-3-buten-2-ol, 3-Methyl-2-cyclohexen-1-ol, cis-14-Methyl-8-Hexadecenal, cis-2-Methyl-7-octadecen, 4-Methylpyrrole-2-carboxylsäuremethyl Ester (Methyl 4-methylpyrrole 2-carboxylate) cis-13octaDecenal 13-Octadecyn-1-ol, 2-(Phenyl)ethyl propionate (Phenylethanolpropanoat), Propyl cyclohexylacetat, cis-9,trans-11-Tetradecadienol ([Z,E]-9,11-TDDOL), cis-9,trans-11-Tetradecadienyl Acetat (-[Z,E]-9,11-TDDA), cis-9,trans-12-Tetradecadienyl Acetat ([Z,E]-9,12-TDDA), Trichloroessigsäure Ester, cis-9-Tricosen, Undecanal, etc.;

mindestens einen Farbstoff;

5

10

15

20

25

30

35

40

45

50

55

mindestens ein Kohlenhydrat;.

Ein Kohlenhydrat hat normalerweise die Grundformel C_x(H₂O)_y, wie z.B. in Zucker, Stärke, Zellulose, kann aber auch auf vielfaltige Weise derivatisiert sein.

Ein monomerer Kohlenhydratrest ist beispielsweise ein natürlicher Monosaccharidrest, der zumeist ein Addukt einer als Aldose oder Ketose vorliegenden Pentose oder Hexose ist und im Prinzip in L- oder D-Konfiguration vorliegen kann. Aus Platzgründen, und wegen deren besonderer biologischen Relevanz, sind die folgenden Aufzählungen lediglich auf die zweitgenannten beschränkt.

Eine Aldose mit fünf Kohlenstoffatomen (Aldo-Pentose, oder einfach Pentose) ist z.B. D-Arabinose, D-Lyxose, D-Ribose oder D-Xylose.

Eine Ketose mit fünf Kohlenstoffatomen (Keto-Pentose) ist z.B. D-Ribulose oder D-Xylulose. Eine Aldose mit sechs Kohlenstoffatomen (Aldo-Hexose, auch einfach Hexose) ist z.B. D-Allose, D-Altrose, D-Galactose, D-Glucose, D-Mannose oder D-Talose. Eine Ketose mit sechs Kohlenstoffato-

men (oder einfach Keto-Hexose) ist z.B. D-Fructose, D-Psicose, D-Sorbose oder D-Tagatose.

Eine Hexose befindet sich besonders häufig in cyklischer Form, liegt z.B. als Pyranose (Aldose) vor; alpha- oder beta-D-Glucopyranose sind zwei Beispiele dafür. Ein weiterer Hexose-Typ ist Furanose, beispielsweise in einer alpha- oder beta-D-Fructose. Der Pyranosylrest ist vorzugsweise durch eine Hydroxygruppe verestert, die sich in der 1- oder 6-Stellung befindet; der Furanosylrest ist vorzugsweise durch entsprechende Gruppen in 1- oder 5-Stellung verestert.

Ein Kohlenhydratrest ist ferner ein natürlicher Disaccharidrest, z.B. ein aus zwei Hexosen gebildeter Disaccharidrest. Ein solcher Disaccharidrest entsteht beispielsweise durch Kondensation von zwei Aldosen, z.B. D-Galactose oder D-Glucose, oder einer Aldose, z.B. D-Glucose mit einer Ketose, z.B. Fructose. Aus Zwei Aldosen gebildete Disaccharide, z.B. Lactose oder Maltose, sind vorzugsweise über die Hydroxygruppe, die sich in 6-Stellung des betreffenden Pyranosylrests befindet, mit der Phosphatidylgruppe verestert. Aus einer Aldose und einer Ketose gebildete Disaccharide, z.B. Saccharose, sind vorzugsweise über die in 6-Stellung des Pyranosylrests oder über die in 1-Stellung des Furanosylrest befindliche Hydroxygruppe verestert.

Ein Kohlenhydratrest ist außerdem ein derivatisierter Mono-, Di- oder Oligosaccharidrest, worin beispielsweise die Aldehydgruppe und/oder ein oder zwei endständige Hydroxygruppen zu Carboxygruppen oxydiert siud, z.B. ein D-Glucar-, D-Glucon- oder D-Glucoronsäurerest, welche vorzugsweise als zyklische Lactonreste vorliegen. Ebenso können in einem derivatisierten Mono- oder Disaccharidrest Aldehyd- oder Ketogruppen zu Hydroxygruppen reduziert sein, z.B. in Inosit, Sorbit oder D-Mannit. Ferner können die Hydroxygruppen durch Wasserstoff, z.B. in Desoxyzucker, wie 2-Desoxy-D-ribose, L-Fucose oder L-Rhamnose, oder durch Aminogruppen, z.B. in Aminozucker, wie D-Galactosamin oder D-Glucosamin, ausgetauscht sein.

Ein Kohlenhydrat kann auch ein Spaltprodukt sein, daß sich durch Umsetzung eines der genannten Mono- oder Disaccharide mit einem starken Oxidationsmittel, z.B. Perjodsäure, gebildet hat. Zu den wichtigen biologisch aktiven oder biologisch bedeutenden Kohlenhydraten gehören z.B. 2-Acetamido-N-(epsilon-amino-caproyl)-2-deoxy-beta-gluccopyranosylamin, 2-Acetamido-1-amino-1,2dideoxy-beta-glucopyranose, 2-Acetamido-1-beta-(aspartamido)-1,2-dideoxyglucose, 2-Acetamido-4,6-dideoxyglucose, 2-Acetamido-1-beta-(aspartamido)-1,2-dideoxyglucose, 2-Acetamido-4,6-dideoxyglucose, 2-Acetamido-1-beta-(aspartamido)-1,2-dideoxyglucose, 2-Acetamido-4,6-dideoxyglucose, 2-Acetamido-1-beta-(aspartamido)-1,2-dideoxyglucose, 2-Acetamido-4,6-dideoxyglucose, 2-Acetamido-6,0-dideoxyglucose, 2-Acetamido-6,0-dideoxyglucose, 2-Acetamido-6,0-dideoxyglucose, 2-Acetamido-6, O-benzyliden-2-deoxy-beta-glucopyranose, 2-Acetamido-2-deoryallose, 3-Acetamido-3-deoxyallose, 2-2-Acetamido-2-deoxy-4-O-([4-O-Acetamido-2-deoxy-3-O-(beta-galactopyranosyl)-galactopyranose,

10

15

20

25

30

35

40

45

beta-galactopyranosyl-beta-galactopyranosyl]-beta-galactopyranosyl)-glucopyranose, 2-Acetamido-2deoxy-3-O-(beta-galactopyranosyl)-alpha - glucopyranose, 6-O-(2-acetamido-2-deoxy-4-O-[betagalactopyranosyl]-beta-glucopyranosyl)-galactopyranose, 4-O-Acetamido-2-deoxy-6-O-(beta-galacto-4-O-(6-O-[2-acetamido-2-deoxy-beta-glucopyranosyl]-beta - galactopyranosyl) glucopyranose, 2-Acetamido-2-deoxygalactose, 2-Acetamido-2-deoxyglucose, 3-Acetamido-3-deoxyglucose pyranose, 2-Acetamido-2-deoxy-1-thio-beta-6-O-(2-acetamido-2-deoxy-beta-glucopyranosyl)-galactopyranose, glucopyranose 3,4,6-triacetat, Acetopyruvat Säure, N-Acetylchondrosamin, N-Acetylgalactosamin, N-Acetylglucosamin, N-Acetyl-alpha-glucosamin 1-phosphat, N-Acetylglucosamin 6-phosphat, N-Acetylglucosamin 3-sulfat, N-Acetylglucosamin 6-sulfat, N-Acetylheparin, N-Acetyllactosamin, N-Acetyl-betamannosamin, N-Acetylneuramin Säure, N-Acetylneuramin-lactose, 1-O-Acetyl-2,3,5-tri-O-benzoyl-betaribofuranose, trans-Aconit Säure, Adenine-9-beta-arabinofuranosid, Adenosin 5'-diphospho-glucose, Adenosin 5'-diphosphomannose, Adonit, Adonitol, Adonose, Agar, Algin, Algin Säure, Beta-allose, Alpha glycerophosphat, Alpha ketoglutar Säure, Altrose, (-)-Altrose, p-Aminobenzyl-1-thio-2acetamido-2-deoxy-beta-glucopyranosid, N-epsilon-Aminocaproyl-beta-fucopyranosylamin, N-epsilonminocaproyl-alpha-galactopyranosylamin, 2-Amino-2-deoxygalactopyranose, 6-Amino-6-deoxyglucopyranose, 1-Amino-1-deoxy-beta-glucose, 6-Aminohexyl-N-acetyl-beta-thioglucosaminid, 6-Aminohexyl-1-thio-beta-galactopyranosid, 5-Aminoimidazole-4-carboxamidoxime-1-beta-ribofuranosyl 3':5'-cyclo-Monophosphat, delta-Aminolevulin Säure, p-Aminophenyl-2-acetamido-2-deoxy-beta-glucopyranosid, p-Aminophenyl-2-acetamido-2-deoxy-1-thio-beta-glucopyranosid, p-Aminophenyl-alpha-fucopyranosid, p-Aminophenyl-alpha-galactopyranosid, p-Aminophenyl-beta-galactopyranosid, p-Aminophenyl-alpha-C-Aminophenyl-beta-glucuronid, p-Aminophenyl-beta -glucopyranosid, glucopyranosid. Aminophenyl-1-thio-beta-glucuronid, p-Aminophenyl-beta-lactopyranosid, p-Aminophenyl-alpha-mannopyranosid, p-Aminophenyl-beta-thiofucopyranosid, p-Aminophenyl-1-thio-beta-galactopyranosid, p-Aminophenyl-1-thlo-beta-glucopyranosid, p-Aminophenyl-1-thlo-beta-xylopyranosid, p-Aminophenylbeta-xylopyranosid, 5-Amino-1-(beta-ribofuranosyl)imidazole 4-carboxamid, Amygdalin, N-amyl betaglucopyranosid, Amylopectin, Amylose, Apigenin 7-O-hesperidosid, Arabinitol, Arabinocytidin, 9-beta -Arabinofuranosyladenin, 1-beta-Arabinofuranosylcytosin, Arabinose, Arabinose 5-phosphaT, Arabinosylcytosin, Arabit, Arabitol, Arbutin, Atp-ribose, Atractylosid, Aurothioglucose, n-Butyl 4-O-beta galactopyranosyl-beta-glucopyranosid, Calcium gluconat, Calcium heptagluconat, Carboxyatractylosid, Carboxymethylamylose, Carboxymethylcellulose, Carboxyethylthioethyl-2-acetamido-2-deoxy- 4-Obeta-galacto pyransol-beta-glucopyranosid, Carboxyethylthioethyl 4-O-(4-O-[6-O-alpha-glucopyranosylalpha-glucopyranosyl]-alpha-glucopyranosyl)-beta-glucopyranosid, 4-O-(4-O-[6-O-beta-D-Galactopyranosyl-beta-D-galactopyranosyl]-D-glucopyranose, Carrageenan, D(+)Cellobiose, D(+)-Cellopentaose, D(+)Cellotetraose, D(+)Cellotriose, Cellulose, Cellulose caprat, Cellulose carbonat, Chitin, Chitobiose, Chitosan, Chitotriose, alpha-Chloralose, beta-Chloralose, 6-Chloro-6-deory-alphaglucopyranose, Chondroitin sulfat, Chondrosamin, Chondrosin, Chrysophan Säure, Colomin Säure, Convallatoxin, alpha-Cyclodextrin, beta-Cyclodextrin, Cytidin 5'-diphosphoglucose, Cytosin 1-betaarabinofuranosid, Daunosamin, n-Decyl-beta-glucopyranosid, 5-Deoxyarabinose, 2-Deoxy-2-fluoroglucose, 3-Deoxy-3-fluoroglucose, 4-Deoxy-4-fluoroglucose, 6-Deoxygalacto pyranose, 2-Deoxygalactose, 1-Deoxyglucohex-1-eno-pyranose tetrabenzoat, 2-Deoxyglucose, 6-Deoxyglucose, 2-Deoxyglucose 6phosphat, 1-Deoxymannojerimycin, 6-Deoxymannose, 1-Deoxy-1-morpholinofructose, 1-Deoxy-1-nitroalutol, 1-Deoxy-1-nitroaltitol, 1-Deoxy-1-nitrogalactitol, 1-Deoxy-1-nitromannitol, 1-Deoxy-1-nitrosorbitol, 1-Deoxy-1-nitrotalitol, Deoxynojirimycin, 3-Deoxy-erythro-pentose, 2-Deoxy-6-phosphoglucon Säure, 2-Deoxyribose, 3-Deoxyribose, 2-Deoxy-alpha-risose 1-phosphat, 2-Deoryribose 5-phosphat, 5-Deoxyxylofuranose, Dextran, Dextransulfat, Dextrin, Dextrose, Diacetonefructose, Diacetonemannitol, 3,4-Di-O-acetyl-6-deoxyglucal, Di-O-acetylrhamnal, 2,3-Diamino-2,3-dideoxy-alpha-glucose, 6,9-Diamino-2-ethoxyacridin lactat, 1,3:4,6-Di-O-benzylidenemannitol, 6,6'-Dideoxy-6,6'-difluorotrehalose, Digalactosyl Diglycerid, Digalacturon Säure, (+)Digitoxose, 6,7-Dihydrocoumarin-9-glucosid, Dihydroxyaceton, Dihydroxyaceton phosphat, Dihydroxyfumar in Säure, Dihydroxymale Säure, Dihydroxytartar Säure, Dihydrozeatinribosid, 2,3-Diphosphoglycerol Säure, Dithioerythritol, Dithiothreitol, n-Dodecyl beta-glucopyranosid, n-Dodecyl beta-maltosid, Dulcitol, Elemigummi, Endotoxin, Epifucose, Errthritol, erythro-Pentulose, Erythrose, Erythrose 4-phosphat, Erythrulose, Esculin, 17-beta-Estradiol-3-glucuronid 17-sulfat, Estriol glucuronid, Estron beta-glucuronid, Ethodin, Ethyl 4-O-beta-D-Galactopyranosyl)-beta-D-glucopyranosid. Ethyl2-acetamido-4-O-(2-acetamido-2-deoxy-beta-glucopyranosyl)-6-O-(alpha -fucopyranosyl)-2-deoxy-beta-glucopyranosid, Ethyl2-acetamido-2-deoxy-4-O-(4-O-alphagalactopyranosyl-beta-galactopyranosyl)-beta-glucopyranosid, Ethyl cellulose ethylen glycol chitln, Ethyl 4-O-(4-O-alpha-galacto-pyranosyl-beta-galactopyranosyl)-beta-glucopyranosid, Ethyl 4-O-betagalactopyranosyl-beta-glucopyranosid, Ethyl pyruvat, Ethyl beta -thioglucosid, Etiocholan-3alpha-ol-17-

5

10

15

20

25

30

35

40

45

50

55

on glucuronid, Ficoll, 6-Fluoro-6-deoxyglucose, Frangulosid, Fraxin, Fructosazin, beta -(-)Fructose, Fructose-1,6-diphosphat, Fructose-2,6-diphosphat, Fructose-1-phosphat, Fructose-6-phosphat, Fucoidan, Fucose, alpha -(-)-Fucose-1-phosphat, Fucosylamin, 2'-Fucosyllactose, 3-Fucosyllactose, Fumarat Säure, Galactal, Galactitol, Galactopyranosylamin, 3-O-beta -Galactopyranosyl-arabinose, 4-O-beta-Galactopyranosyl-fructofuranose, 4-O-(4-O-beta-Galactopyranosyl beta-galactopyranosyl)-glucopyranose, 4-O-alpha-Galactopyranosylgalactopyranose, 6-O-beta-Galactopyranosylgalactose, 4-O-(beta-Galactopyranosyl)-aipha-mannopyranose, alpha-Galactopyranosyl 1-phosphat, Galactopyranosyl-betathiogalactopyranosid, (+)Galactosamin, alpha-Galactosamin 1-phosphat, alpha-Galactose 1-phosphat, Galactose 6-phosphat, Galactose 6-sulfat, 6-(alpha-Galactosido)glucose, Galacturon Säure, beta-Gentiobiose, Glucan, Glucitol, Glucohepton Säure, Glucoheptose, Glucoheptulose, Gluconat 6-phosphat, Glucon Säure, 1-O-alpha-Glucopyranosyl-beta-fructofuranosid, 6-O-alpha-Glucopyranosylfructose, 1-O-alpha-Glucopyranosyl-alpha-glucopyranosid, 4-O-beta-Glucopyranosylglucopyranose, 4-O-(4-O-[6-O-alpha-Glucopyranosyl-alpha-glucopyranosyl]-alpha-glucopyranosyl) glucopyranose, (+)Glucosamin, alpha-Glucosamin 6-2,3-disulfat, alpha-Glucosamin 1-phosphat, Glucosamin 6-phosphat, Glucosamin 2-sulfat, alpha-Glucosamin 3-sulfat, Glucosamin 6-sulfat, Glucosamin Säure, Glucose, alpha-Glucose 1,6-diphosphat, Glucose 1-phosphat, Glucose 6-phosphat, Glucose 6-sulfat, Glucuronamid, Glucuron Säure, alpha-Glucuron Säure 1-phosphat, Glyceraldehyd, Glyceraldehyd 3-phosphat, Glycerat 2,3diphosphat, Glycerat 3-phosphat, Glyceral Säure, alpha-Glycerophosphat, beta-Glycerophosphat, Glycogen, Glycolaldehyd, Glycol chitosan, N-glycolylneuramin Säure, Glycyrrhiz Säure, Glyoxyl Säure, Guanosin, 5'-diphosphoglucose, Gulose, Gummis (accroides, Agar, Arab, Carrageenan, Damar, Elemi, Ghatti, Guaiac, Guar, Karaya, Locust bonne, Mast, Pontianak, Storax, Tragacanth, Xanthan), Heparin und heparin-ähnliche Substanzen (Mesoglycan, Sulodexid, usw.), Heptakis (2,3,6-tri-O-methyl)-betacyclodextrin, Heptanoyl-N-methylglucamid, n-Heptyl beta-glucopyranosid, Hesperidin, N-Hexyl-betaglucopyranosid, Hyaluron Saure, 16alpha-Hydroxyestronglucuronid, 16-beta-Hydroxyestron glucuronid, Hydroxyethyi Stärke, Hydroxypropylmethylcellulose, 8-Hydroxyquinolin-beta-glucopyranosid, 8-Hydroryquinolin glucuronid, Idose, (-)-Idose, Indole-3-lactat Säure, Indoxyl-beta-glucosid, epi-Inositol, myo-Inositol, myo-Inositol bisphosphat, myo-Inositol-1,2-cyl phosphat, scyllo-Inositol, Inositolhexaphosphat, inositolhexasulfat, myo-insoitol 2-monophosphat, myo-inositol trisphosphat, (q)-epi-inosose-2, scyllo-Inosose, Inulin, Isomaltose, Isomaltotriose, Isosorbid dinitrat, 11-Ketoandrosteron beta-glucuronid, 2-Ketoglucon Säure, 5-Ketoglucon Säure, alpha-Ketopropion Säure, Lactal, Lactat Säure, Lactitol, Lactobion Säure, Lacto-N-tetraose, Lactose, alpha-lactose 1-phosphat, Lactulose, Laminaribiose, Laminnarin, Levoglucosan, beta-levulose, Lichenan, Linamarin, Lipopolysaccharides, Lithiumlactat, Lividomycin a, Lyxose, Lyxosylamin, Maltitol, Maltoheptaose, Maltohexaose, Maltooligosaccharid, Maltopentaose, Maltose, alpha-(+)Maltose 1-phosphat, Maltotetraose, Maltotriose, Malvidin-3,5-diglucosid, Mandelonitril beta-glucosid, Mandelonitril glucuron-Säure, Mannan, Mannitol, Mannitol 1-phosphat, alpha-mannoheptitol, Mannoheptulose, 3-O-alpha-Mannopyranosyl-mannopyranose, alpha-(+)Mannopyranosyl-1-phosphat, Mannosamin, Mannosan, Mannose, a(+)Mannose 1-phosphat, Mannose 6-phosphat, (+)Melezitose, a(+)Melibiose, Mentholglucuron Säure, 2-(3'-Methoxyphenyl)-Nacetylneuramin Säure, Methyl 3-O-(2-acetamido-2-deoxy-beta-galactopyranosyl)-alpha-galactopyranosid, Methyl 4-O-(3-O-[2-acetamido-2-deoxy-4-O-beta-galactopyranosyl]-beta-galactopyranosyl]-beta-galactopyranosyl)-beta-glucopyranosid, Methyl 2-acetamido-2-deoxy-beta-glucopyranosid, Methyl3-O-(2-Methyl6-O-(2-acetamido)-2-deoxyacetamido-2-deoxy-beta-glucopyranosyl)-beta-galactopyranosid, Methyl alpha-altropyranosid, beta-glucopyranosyl)-alpha-mannopyranosid, Methyl acosaminid, Methyl beta-arabinopyranosid, Methyl 4.6-O-Methyl3-amino-3-deoxy-alpha-mannopyranosid, benzyliden-2,3-di-O-toluenesulfonyl-alpha-galactopyranosid, Methyl 4,6-O-benzylidene-2,3-di-O-ptoluenesulfonyl-alpha-glucopyranosid, Methyl cellulose, Methyl alpha-daunosaminid, Methyl6-deoryalpha-galactopyranosid, Methyl 6-deoxy-beta-galactopyranosid, Methyl 6-deoxy-alpha-glucopyranosid, Methyl 6-deoxy-beta-glucopyranosid, Methyl 3,6-di-O-(alpha-mannopyranosyl)-alpha-mannopyranosid, 1-O-Methyl-beta-galactopyranosid, Methyl 1-O-Methyl-alpha-galactopyranosid, galactopyranosyl-alpha-galactopyranosid, Methyl-3-O-beta-galactopyranosyl-beta-galactopyranosid, 4-O-(2-O-Methyl-beta-galactopyranosyl) glucopyranose, Methyl 4-O-beta-galactopyranosyl-beta-glucopyranosid, Methyl-4-O-(beta-galactopyranosyl-alpha-mannopyranosid, 5-5-Methylgalacto pyranose, Methylgalactosid, N-Methylglucamin, 3-O-Methyl-alpha-glucopyranose, 1-O-Methyl-alpha-glucopyranosid, 1-O-Methyl-beta-glucopyranosid, alpha-Methyl glucosid, beta-Methyl glucosid, Methyl glycol chitosan, Methyl-alpha- mannopyranosid, Methyl-2-O-alpha-mannopyranosyl-alpha-mannopyranosid, Methyl 3-O-alpha -mannopyranosyl-alpha-mannopyranosid, Methyl-4-O-alpha-mannopyranosyl-alpha-mannopyranosid, Methyl 6-O-alpha-mannopyranosyl-alpha-mannopyranosid, Methyl alpha-rhamnopyranosid, Methyl alpha-ribofuranosid, Methyl beta-ribofuranosid, Methylbeta-thiogalactosid, Methyl 2,3,5-tri-O-

10

15

20

25

30

35

40

45

50

55

4-methylumbelliferyl2-acetamido-4,6-O-benzylidene-2-deoxy-betabenzoyl-alpha-arabinofuranosid, glucopyranosid, 4-Methylumbelliferyl N-acetyl-beta-galactosaminid, 4-methylumbelliferyl N-acetylalpha-glucosaminid, 4-methylumbelliferyl-N-acetyl-beta-glucosaminid, 4-methylumbelliferyl-alpha-arabinofuranosid, 4-methylumbelliferyl-alpha-arabinopyranosid, 4-methylumbelliferyl-beta-cellobiosid, 4methylumbelliferyl-beta -N,N'-diacetylchitobiosid, 4-methylumbelliferyl alpha-fucosid, 4-methylumbelliferyl-beta feryl beta-fucosid, 4-methylumbelliferyl alpha - galactopyranosid, 4-methylumbelliferyl beta-galactopyranosid, 4-methylumbelliferyl alpha-galactosid, 4-methylumbelliferyl beta -glucopyranosid, 4-methylumbelliferyl alpha-glucosid, 4-methylumbelliferyl beta-glucosid, 4-methylumbelliferyl beta -glucuronid, 4-methylumbelliferyl beta-mannopyranosid, 4-methylumbelliferylbeta-N,N',n"-triacetylchitotriose, 4methylumbelliferyl2,3,5-tri-O-benzyl-alpha-arabinofuranosid, 4-methylumbelliferyl beta-xylosid, Methyl beta-xylopyranosid, 2-O-Methylxylose, alpha-Methylxylosid, beta-Methylxylosid, Metrizamid, 2'-Monophosphoadenosin 5'-diphosphoribose, 2'-Monophosphoinosin 5'-diphosphoribose, Mucin, Muramin-Säure, Naringin, Natrium Lactat, Natrium Polypectat, Natrium Pyruvat, Neoagarobiose, Neoagarohebeta-Neocarrabiose, Neocarrabiose Neoagarotetraose, Neoagarohexaose, Neocarrahexaose(2/4,4/1,4/3,4/5)-tetrasulfat, Neocarratetraose (4/1,4/3)-disulfat, Neocarratetraose(4/1)sulfat, Neohesperidin, Dihydrochalcon, Neohesperidose, Neuramin Säure, Neuramin Säure betamethylglycosid, Neuramin-lactose, Nigeran, Nigerantetrasaccharid, Nigerose, n-Nonyl glucosid, n-Nonylbeta-glucopyranosid, Octadecylthioethyl 4-O-alpha-galactopyranosyl-beta -galactopyranosid, Oc-4-O-(4-O-[6-O-alpha-glucopyranosyl-alpha-glucopyranosyl]-alpha-glucopyranosyl)beta-glucopyranosid, Octanoyl n-methylglucamid, n-Octyl alpha-glucopyranosid, N-Octyl beta-glucopyranosid, Oxidierte Stärke Pachyman, Palatinose, Panose, Pentaerythritol, Pentaerythritol diformal, 1,2,3,4,5-Pentahydroxy, Capronsäure, Pentosanpolysulfat, Perseitol, Phenolphthalein glucuronsäure, 2-acetamido-2-deoxy-alpha-galactopyranosid, mono-beta-glucosiduron Phenyl Phenyl2-acetamido-2-deoxy-alpha-glucopyranosid, alpha-Phenyl-N-acetyl-glucosaminid, beta-Phenyl N-acetyl-glucosaminid, Phenylethyl beta-galactosid, Phenyl beta-galactopyranosid, Phenyl beta-galactosid; Phenyl alpha-glucopyranosid, Phenyl beta-glucopyranosid, Phenyl alpha-glucosid, Phenyl betaglucosid, Phenyl beta-glucuronid, beta-phenyllactat Säure, Phenyl alpha-mannopyranosid, beta-phenylpyruvat Säure, Phenyl beta-thiogalactopyranosid, Phenyl beta-thiogalactosid, Phospho(enol)pyruvat, (+)2-Phosphoglycer Säure, (-)3-Phosphoglycer Säure, Phosphohydroxypyruv Säure, 5phosphorylribose 1-pyrophosphat, Phyt Säure, Poly-N-acetylglucosamin, Polygalacturon Säure, Polygalacturon Säure methyl ester, Polypectate, sodium, Polysaccharid, 5beta-Pregnane-3alpha,2oalphadiol glucuronid, n-Propyl4-O-beta-galactopyranosyl-beta-glucopyranosid, Prunasin, Psicose, Pullulan, Quinolyl-8beta-glucuron Säure, (+)Raffinose, alpha-Rhamnose, Rhapontin, Ribitol, Ribonolacton, Ribose, d-2-Ribose, alpha-Ribose 1-phosphat, Ribose 2-phosphat, Ribose 3-phosphat, Ribose 5-phosphat, Ribulose, Ribulose-1,5-diphosphat, Ribulose 6-phosphat, Sacchar Säure, Saccharolactat Säure, Saccharose, Salicin, Sarcolactat Säure, Schardinger-alpha-dextrin, Schardinger-beta-dextrin, Sedoheptulosan, Sedoheptulose 1,7-diphosphat, Sial Säure, Sialyllactose, Sinigrin, Sorbitol, Sorbitol 6-phosphat, (+)-Sorbose, (-)Sorbose, Stachyose, Stärke, Storax, Styrax, Sucrose, Sucrose monocaprat, Tagatose, alpha-Talose, (-)-Talose, Tartar Säure, Testosterone-beta-glucuronid, 2,3,4,6-Tetra-O-methyl-glucopyranose, Thiodiglucosid, 1-Thio-beta-galactopyranose, beta-Thioglucose, 5-Thioglucose, 5-Thioglucose 6-phosphat, Threitol, Threose, (+)Threose, (-)Threose, Thymidin 5'-diphosphoglucose, Thymin 1-betaarabinofuranosid, Tragacanth, (+)Trehalose, Trifluorothymin, Deoxyribosid, 3,3',5-trihydrory-4'methoxy-stilbene-3-O-beta-glucosid, Trimethylsilyl(+)arabinose, Trimethylsilyldulcitol, Trimethylsilylbeta (-) fructose, Trimethylsilyl(+) galactose, Trimethylsilyl-alpha -(+)-glucose, Trimethylsilyl(+) mannitol, Trimethylsilyl(+]rhamnose, Trimethylsilyl(-) sorbitol, Trimethylsilyl(+)xylose, rac-1-O-Tritylglycerol, (+)Turanose, N-Undecyl beta-glucopyranosid, Uracil beta-arabinofuranosid, Uridin 5'diphospho-N-acetylglucosamin, Uridin 5'-diphosphogalactose, Uridin 5'-diphosphoglucose, Uridin5'diphospho-glucuron Säure, Uridin 5'-diphosphomannose, Uridin 5'-diphosphoxylose, Vancomycin, Xanthan gum, Xylan, Xylit, Xylitol, Xylobiose, alpha-xylopyranosyl 1-phosphat, Xylose, alpha-xylose 1phosphat, Xylose 5-phosphat, Xylotriose, Xylulose, Xylulose 5-phosphat, Yacca, Zeatin ribosid, Zinclactat, Zymosan A, usw. Die Bezeichnungen Desoxyribonuclein- (DNA) und Ribonucleinsäure (RNA) haben die übliche Bedeutung; vorzugsweise werden DNA und RNA, oder ihre Antagonisten, zumeist mit einer ausgeprägten biologischen Wirkung eingesetzt.

mindestens ein Nukleotid, Peptid, Protein und dergleichen;

Nukleotide, die in und mittels Transfersomen transportiert werden können, sind unter anderen Adenin, Adenosin, Adenosin-3',5'-zyklischer Monophosphat, N6,O2'-dibutyryl, Adenosin-3',5'-zyklischer Monophosphat, N6,O2'-dioctanoyl, Adenosin, N6-cyclohexyl, Salze von Adenosin-5'-diphosphat, Adenosin-5'-monophosphorsäure, Adenosin-5'-O-(3-thiotriphosphat), Salze von Adenosin-5'-triphosphat, 9-beta-

5

10

15

20

25

30

35

40

45

50

55

D-Arabinoturanosyladenin, 1-beta-D-Arabinoturanosylcytosin, 9-beta-D-Arabinoturanosylguanin, 9-beta-D-Arabinoturanosylguanin 5'-Triphosphat, 1-beta-D-Arabinoturanosylthymine, 5-Azacytidin, 8-Azaguanin, 3'-Azido-3'-deoxythymidin, 6-Beniylaminopurine, Cytidin Phosphoramidit, beta-Cyanoethyl Diisopropyl, 249802Cytidin-5'-triphosphat, 2'-Deoxyadenosin, 2'-Deoxyadenosin 5'-Triphosphat, 2'-Deoxycytidin, 2'-Deoxycytidin 5'-Triphosphat, 2'-Deoxyguanosin, 2'-Deoxyguanosin 5'-Triphosphat, 2',3'-Dideoxyadenosin, 2',3'-Dideoxyadenosin 5'-Triphosphat, 2',3'-Dideoxycytidin, 2',3'-Dideoxycytidin 5'-Triphosphat, 2',3'-Dideoxyguanosin, 2',3'-Dideoxyguanosin 5'-Triphosphat, 2',3'-Dideoxyinosine, 2',3'-Dideoxythymidin, 2',3'-Dideoxythymidin 5'-Triphosphat, 2',3'-Dideoxyuridin, N6-Dimethylallyladenin, 5-Fluoro-2'-deoxyuridin, 5-Fluorouracil, 5-Fluorouridin, 5-Fluorouridin 5'-Monophosphat, Formycin A 5'-Triphosphat, Formycin B, Guanosin-3'-5'-zyklischer Monophosphat, Guanosin-5'-diphosphat-3'-diphosphat, Guanosin-5'-O-(2-thiotriphosphat), Guanosin-5'-O-(3'-thiotriphosphat), Guanosin 5'-Triphosphat, 5'-Guanylyl-imidodiphosphat, Inosine, 5-lodo-2'-deoxyuridin, Nicotinamide-Adenin Dinucleotide, Nicotinamide-Adenin Dinucleotide, Nicotinamide-Adenin Dinucleotide Phosphat, Oligodeoxythymidyl Säure, (p(dT)10), Oligodeoiythymidyl Säure (p(dT)12-18), Polyadenylsäure (poly A), Polyadenylsäure-Oligodeoxythymidynsäure, Polycytidylsäure, Poly(deoxyadenyl-deoxiythymidyl-Säure, Polydeoxyadenyl-Säure-Oligodeoxythymidynsäure, Polydeoxythymidylinsäure, Polyinosinsäure-Polycytidylsäure, Polyuridynsäure, Ribonucleinsäure, Tetrahydrouridin, Thymidin, Thymidin-3',5'-diphosphat, Thymidin Phosphoramidit, beta-Cyanoethyl Diisopropyl, 606102 Thymidin 5'-Triphosphat, Thymin, Thymine Ribosid, Uracil, Uridin, Uridin-5'-diphosphoglucose, Uridin 5'-Triphosphat, Xanthin, Zeatin, Transeatin Ribosid, usw. Weitere nützliche Polymere sind: Poly(dA) ss, Poly(A) ss, Poly(C) ss, Poly(G) ss, Poly(U) ss, Poly(dA)-(dT) ds, komplementare Homopolymere, Poly (d(A-T)) ds, Copolymer, Poly(dG)*(dC) ds, komplementäre Homopolymere, Poly (d(G-C)) ds, Copolymer, Poly (d(I-C)) ds, Copolymer, Poly(I)-Poly(C) ds, usw. Ein Oligopeptid oder ein Polypeptid besteht vorzugsweise aus 3-250, häufig aus 4-100, sehr häufig 4-50, Aminosäuren, die mittels Peptidbrücken miteinander verknüpft sind. Aminosäuren sind zumeist vom Typ alpha- und linksdrehend; Ausnahmen, wie z.b. in Dermorphin, sind jedoch möglich.

Peptide, die biologisch und/oder therapeutisch bedeutend sind und sich gut für den Einsatz in Methylester, N-Acetyl-Ala-Ala-Ala-Ala, N-Acetyl-Asp-Glu, N-Acetyl-Gly-Leu, Nalpha-Acetyl-Gly-Lys Methylester Acetat, Acetyl-hirudin-Fragment, Acetyl-5-hydroxy-Trp-5-hydroxy-Trp Amid, Des-Acetylalpha-melanocyte stimulierender Hormon, N-Acetyl-Met-Asp-Arg-Val-Leu-Ser-Arg-Tyr, N-Acetyl-Met-Leu-Phe, Acetyl-muramyl-Ala-isoGln, N-Acetyl-Phe-Tyr, N-Acetyl-Phe-norLeu-Arg-Phe Amid, N-Acetyl-Phe-norLeu-Arg-Phe Amid, N-Acetyl-Phe-Tyr, N-Acetyl-Phe-norLeu-Arg-Phe Amid, N-Acetyl-Phe-Tyr, N-Acetyl-Phe-norLeu-Arg-Phe Amid, N-Acetyl-Phe-Tyr, N-Acetyl-Phe-norLeu-Arg-Phe Amid, N-Acetyl-Phe-norLeu-Arg-Phe Amid, N-Acetyl-Phe-Tyr, N-Acetyl-Phe-norLeu-Arg-Phe Amid, N-Acetyl-Phe-norLeu-Arg-Phe Amid, N-Acetyl-Phe-norLeu-Arg-Pherenin substrate tetradecaPeptid, N-Acetyl-transformierender Wachstumfaktor, Adipokinetischer Hormon II, Adjuvant Peptid, Adrenal peptide E, Adrenocorticotroper Hormon (ACTH 1-39, Corticotropin A) und seine Fragmente wie z.B. 1-4 (Ser-Tyr-Ser-Met), 1-10 (Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly), 1-17, 1-24 and 1-39, 1-24 and 1-39, 11-24, 18-39, Ala-Ala, beta-Ala-Ala, Ala-Ala-Ala, Ala-Ala-Ala thylcoumarin, Ala-Ala-Phe p-nitroanilid, Ala-Ala-Val-Ala p-nitroanilid, Ala-Arg-Pro-Gly-Tyr-Leu-Ala-Phe-Pro-Arg-Met Amid, beta-Ala-Arg-Ser-Ala-Pro-Thr-Pro-Met-Ser-Pro-Tyr, Ala-Asn, Ala-Asp, Ala-Glu, Alagamma-Gin-Lys-Ala-Ala, Ala-Giy, beta-Ala-Giy, Ala-Giy-Glu-Gly-Leu-Ser-Ser-Pro-Phe-Tyr-Ser-Leu-Ala-AlaPro-Gln-Arg-Phe Amid, Ala-Gly-Gly, Ala-Gly-Ser-Glu, Ala-His, beta-Ala-His, Ala-isoGln-Lys-Ala-Ala, Ala-Ile, Ala-Leu, beta-Ala-Leu, Ala-Leu-Ala, Ala-Leu-Ala-Leu, Ala-Leu-Gly, Ala-Lys, beta-Ala-Lys, Ala-Met, N-beta-Ala-1-methyl-His, Ala-norVal, Ala-Phe, beta-Ala-Phe, Ala-Phe-Lys 7-amido-4-methylcou-Thr-Asn-Tyr-Thr Amid, Ala-Thr, Ala-Trp, beta-Ala-Trp, Ala-Tyr, Ala-Val, beta-Ala-Val, beta-Ala-Trp-Met-Asp-Phe Amid, Alytesin, Amanitin, Amastatin, Angiotensin I (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu), II II (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe), III und verwandte Peptide, Angiotensin II Antagonist, Angiotensin II Rezeptor bindendes Protein, Angiotensin konvertierendes Enzym und seine Inhibitoren (z.B. Entipain, Bestatin, Chymostatin, E-64, Elastatinal, usw.) Anserin, Antid, Aprotinin, Arginine vasopressin-Ala-Gly, Arg-Ala, Arg-Arg-Leu-Ile-Glu-Asp-Ala-Glu-Tyr-Ala-Ala-Arg-Gly, Arg-Asp, Arg-Glu, Arg-Gly, Arg-Gly-Asp, Arg-Gly-Asp-Ser, Arg-Gly-Asp-Ser-Pro-Ala-Ser-Ser-Lys-Pro, Arg-Gly-Glu-Ser, Arg-Gly-Phe-Phe-Tyr-Thr-Pro-Lys-Ala, Arg-His-Phe, Arg-Ile, Arg-Leu, Arg-Lys, Arg-Lys-Asp-Val-Tyr, Arg-Phe, Arg-Phe-Asp-Ser, Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg, Arg-Ser-Arg, Arg-Ser-Arg-His-Phe, Arg-Vai, Asn-Pro-Asn-Ala-Asn-Pro-Asn-Ala, Asn-Pro-Asn-Ala-Asn-Pro-Asn-Ala-Asn-Pro-Asn-Ala, alpha-Asp-Ala, Asp-Ala-Giu-Asn-Leu-Ile-Asp-Ser-Phe-Gin-Giu-Ile-Val, Asp-Asp, alpha-Asp-Giu, alpha-Asp-Gly, beta-Asp-Gly, beta-Asp-His, Asp-Leu Amid, beta-Asp-Leu, alpha-Asp-Lys, alpha-Asp-Phe Amid, alpha-Asp-Phe, alpha-Asp-Phe Methylester, beta-Asp-Phe Methylester, alpha-Asp-Ser-Asp-Pro-Arg, Asp-Val, beta-Asp-Val, 'Atrial natriuretic peptid', besonders seine Fragmente 1-32 und 5-28, Atriopep10

15

20

25

30

35

40

45

50

tin I, II, und III, Auriculin A und B, Beauvericin, Beniotript, Bestatin, N-benzylierte Peptide, Big gastrin I, Bombesin, (D-Phe12,Leu14) (Tyr4), Lys3-Bombesin, Tyr4-Bombesin, Docosapeptid und Dodecapeptid aus adrenalen Medulla, Bradykinin (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) und verwandte Peptide, Bradykinin-Verstärker, gehirnnatriuretisches Peptid, Buccalin, Bursin, S-t-butyl-Cys, Caerulein, Calcitonin, 'Calcitonin gene related peptide' I und II, calmodulinbindende Domäne, N-Carboxymethyl-Phe-Leu, N-((R,S)-2-Carboxy-3-pheenyl-propionyl)-Leu, kardioaktive Peptide A und B, Caronosin, beta-Casomorphin, CD4, Cerebellin, N-Chloroacetyl-Gly-Gly, chemotaktische Peptide, wie z.B. formylierte Substanzen, Cholecystokinin-Fragmente, z.B. Cholecystokinin Oktapeptid, Coherin, usw.

Ebenfalls erwähnenswert sind Collagen Peptide, Conicostatin, Conicotropin auslösender Faktor, Conotoxin G1, M1 und GVIA, Corticotropin ähnliches Peptid aus dem intermediärem Lobus, Corticotropin auslösender Faktor und verwandte Peptide, C-Peptid, Tyr-C-Peptid, Peptide, die mit cyclischem Calcitonin verwandt sind, Cyclo(His-Phe-), Cyclo(His-Pro-), Cyclo(Leu-Gly-), Cyclo(Pro-Gly-), Cys-Asp-Pro-Gly-Tyr-lle-Ser-Arg Amid, Cys-Gln-Asp-Ser-Glu-Thr-Arg-Thr-Phe-Tyr, DAGO, Delta-sleep inducing Peptid, Dermorphin, (Ser(Ac)7)-dermorphin, Diabetesassoziierte Peptide und ihre Amide, Nalpha, Nepsilon-diacetyl-Lys-Ala-Ala, N-2,4-Dinitrophenyl-Pro-Gln-Gly-Ile-Ala-Gly-Gln-Arg, Diprotin A, Dynorphine, wie z.B. Dynorphin A(Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys-Trp-Asp-Asn-Gln), Fragmente 1-6 (Leucine Enkephalin-Arg), 1-8, 1-13 or E-64, Dynorphin B, Ebelactone (e.g. A und B) Ecarin, Elastatinal, Eledoisin und verwandte Peptide, alpha-, beta- und gamma-Endorphin, Endothelins, Endorphine (z.B. alpha (beta-Lipotropin 61-76), (Tyr-Gy-Gly-Pze-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr) beta (beta-Lipotropin 61-91) und andere beta-Lipotrophin-Fragmente, Enkephalin und Leu-Enkephalin (Tyr-Gly-Gly-Phe-Leu) und verwandte Peptide, Enkephalinase-Inhibitoren (z.B. Epiamastatin, Epibestatin, Foroxymithin, Leupeptin, Pepstatin, Nle-Sta-Ala-Sta), "Eosinophilotactic tetrapeptid", Epiamastatin, Epibestatin, Cys(Acm)20,31-epidermaler Wachstumsfaktor und seine Fragmente oder Rezeptoren, Épidermalmitose inhibierendes Pentapeptid, Trans-epoxysuccinyl-Leu amido-(4-guanidino)butan, Erythropoietin und Fragment, S-Ethylglutathion, Fibrinogenverwandtes Peptid, Fibrinopeptide A und B, Tyr-Fibrinopeptid A, (Glu1)-Fibrinopeptid S, Fibrinopeptid B-Tyr, Fibroblasten Wachstumsfaktor Fragment 1-11, Folliculares Gonadotropin freisetzendes Peptid, N-formylierte Peptide, Foroxymithin, N-(3(2-furyl)acryloyl) Peptid-Derivat, Galanin, GAP 1-13, Gastrisches inhibierendes Polypeptid, Gastrinverwandte Peptide und ihre Abwandlungen, "Gastrin releasing peptide", Gastrointestinalpeptide (z.B. Ala-Trp-Met-Asp-Phe-Amid, Bombesin, Caerulein, Cholecystokinin, Gelanin, Gastrin, Glucagon, Motilin, Neuropeptid K, Pancreatischer Polypeptid, Pancreozymin, Phi-27, Sekretin, Valosin, usw.), Gln-Ala-Thr-Val-Gly-Asp-Val-Asn-Thr-Asp-Arg-Pro-Gly-Leu-Leu-Asp-Leu-Lys, (des-His1, Glu9)-Glucagon Amid, Glucagon (1-37), Glucagon ähnliches Peptid I, alpha-Glu-Ala, Glu-Ala-Glu, Glu-Aia-Glu-Asn, alpha-Glu-Glu, gamma-Glu-Glu, gamma-Glu-Gln, gamma-Glu-Gly, PGlu-Gly-Arg-Phe Amid, alpha-Glu-Gly-Phe, gamma-Glu-His, gamma-Glu-Leu, alpha-Glu-alpha-Lys, gamma-Glu-epsilon-Lys, N-gamma-Glu-Phe, PGlu-Ser-Leu-Arg-Trp Amid, alpha-Glu-Trp, gamma-Glu-Trp, gamma-Glu-Tyr, alpha-Glu-Val, gamma-Glu-Val, PGlu-Val-Asn-Phe-Ser-Pro-Gly-Trp-Gly-Thr Amid, A-Glu-Val-Phe, Glutathione und verwandte Peptid, Giutathionsulfonsäure, Gly-Ala, Gly-beta-Ala, Gly-Ala-Ala, Gly-Ala-Ala-Ala-Ala, Gly-Ala-Tyr, Gly-alpha-aminobutyric acid, Gly-gamma-aminobutyric acid, Gly-Arg-Ala-Asp-Arg-Gly-Asp-Ser-OH, Gly-Arg-Gly-Asp-Ser-Pro-Lys, Gly-Arg-Gly-Asp-Ser-Pro-OH, Gly-Arg-Gly-Asp-Thr-Pro, Gly-Arg-Gly-Asp-Thr-Pro-OH, Gly-Arg p-nitroanilid, Gly-Arg-Gly-Asp, Gly-Arg-Gly-Asp-Ser, Gly-Asn, Gly-Asp, Gly-Asp-Asp-Asp-Asp-Lys, Gly-Glu, Gly-Gly und ihre Derivate, wie z.B. Methyl-, Gly-Gly-Gly, Gly-Gly-Gly-Gly-Gly, Gly-Gly-lle, Gly-Gly-Leu, Gly-Gly-Phe, Gly-Gly-Phe-Leu, Gly-Gly-Gly-Phe-Leu, Gly-Gly-Gly-Phe, Gly-Gly-Phe-Leu, Gly-Gly-Gly-Phe-Leu, Gly-Gly-Gly-Phe-Leu, Gly-Gly-Phe-Leu, Gly-Phe-Leu, Gly-P Gly-Phe-Leu Amid, Gly-Gly-Phe-Met, Gly-Gly-Phe-Met Amid, Gly-Gly-sarcosin, Gly-Gly-Tyr-Arg, Gly-Gly-Val, Gly-His, Gly-His-Arg-Pro, Gly-His-Gly, Gly-His-Lys, Gly-His-Lys-OH, Gly-lle, Gly-Leu Amid, Gly-Leu, Gly-Leu-Ala, Gly-Leu-Phe, Gly-Leu-Tyr, Gly-Lys, Gly-Met, Gly-norLeu, Gly-norVal, Gly-Phe Amid, Gly-Phe, Gly-Phe-Ala, Gly-Phe-Arg, Gly-Phe-Leu, Gly-Phe-Phe, Gly-Pro, Gly-Pro-Ala, Gly-Pro-Arg, Gly-Pro-Arg-Pro, Gly-Pro-Arg-Pro-OH, Gly-Pro-Gly-Gly, Gly-Pro-hydroxy-Pro, Gly-sarcosin, Gly-Ser, Gly-Ser-Phe, Gly-Thr, Gly-Trp, Gly-Tyr Amid, Gly-Tyr, Gly-Tyr-Ala, Gly-Val, Gly-Phe-Ser, Granuliberin R, Wachstumshormon freisetzender Faktor und seine Fragmente, Hexa-Ala, Hexa-Gly, Hippuryl-Arg (Hip-Arg), Hippuryl-Gly-Gly (Hip-Gly-Gly), Hippuryl-His-Leu (Hip-His-Leu), Hippuryl-Lys, Hippuryl-Phe, Hirudin und seine Fragmente, His-Ala, His-Gly, His-Leu, His-Leu-Gly-Leu-Ala-Arg, His-Lys, His-Phe, His-Ser, His-Tyr, HIV Hüllenprotein (GP120), Hydra-Peptide, P-hydroxyhippuryl-His-Leu, Hypercalcemie-Malignitäts Faktor (1-40), Insulinketten B und C, P-iodo-Phe, Ile-Asn, Ile-Pro-Ile, Insulinähnlicher Wachstumsfaktor I (besonders Fragment 1-70), Insulinähnlicher Wachstumsfaktor II (besonders Fragment 33-40), Interleukin-1B Fragment 163-171, Isotocin, Kassinin (As-Val-Pro-Lys-Ser-

5

10

15

20

25

30

35

40

45

50

55

Asp-AGlön-he-Val-Gly-Leu-Met-NH2), Katacalcin (Calcitonin Vorläufer-Peptid), Tyr-Katacalcin, Kemptid, Kentsin, Kyotorphin, Laminin Nonapeptid, Laminin Pentapeptid, Laminin Pentapeptidamid, Leucine Enkephalin und verwandte Peptide, Leucopyrokinin, Leu-Ala, Leu-beta-Ala, Leu-Arg, Leu-Asn, Leucokinin I(Asp-Pro-Ala-Phe-Asn-Ser-Trp-Gly-NH2) und II, Leucin-Enkephalinamid (Leu-Enkephalinamid) und verwandte Peptide, Leu-Gly, Leu-Gly-Gly, Leu-Gly-Phe, Leu-Leu Amid, Leu-Leu, Leu-Leu Amid, Leu-Leu-Leu, Leu-Leu-Phe Amid, Leu-Leu-Tyr, Leu-Lys-Lys-Phe-Asn-Ala-Arg-Arg-Lys-Leu-Lys-Gly-Ala-ile-Leu-Thr-Thr-Met-Leu-Ala, Leu-Met, Leu-Met-Tyr-Pro-Thr-Tyr-Leu-Lys, Leu-Phe, Leu-Pro, Pro-Pro-Ser-Arg, Leu-Ser, Leu-Ser-Phe, Leu-Trp, Leu-Tyr, Leu-Val, Leukotrien, Leu-Leu Methylester, Leupeptin, Leu-Ser-p-nitro-Phe-Nle-Ala-Leu Methylester, beta-Lipotropin-Fragment, Litorin, Luteinizing Hormon freisetzendes Hormon und verwandte Peptide, Lymphocyte Activating Pentapeptid, Lys-Ala, Lys-Ala-7-amido-4-methylcoumarin, Lys-Asp, Lys-Cys-Thr-Cys-Cys-Ala, Lys-Glu-Glu-Ala-Glu, Lys-Gly, Lys-Leu, Lys-Lys, Lys-Met, Lys-Phe, Lys-Pro-Pro-Pro-Pro-Pro-Glu-Pro-Glu-Thr, Lys-Serum thymischer Faktor, Lys-Trp-Lys, Lys-Tyr-Trp-Phe Amid, Lys-Val, Macrophagen inhibierendes Peptid (Tuftsinfragment 1-3, Thr-Lys-Pro), Magainin I und II, Mastzellen degranulierendes Peptid, Mastoparan, 'alphal-mating factor', Melanin-Concentrating Hormon, MCD Peptid, alpha-, beta-, gamma-, and delta-Melanocyt-stimulierendes Hormon und verwandte Peptide, Melittin, Mesotocin, Met-beta-Ala, Met-Asn-Tyr-Leu-Ala-Phe-Pro-Arg-Met Amid, Methionin-Enkephalin und verwandte Peptide, Met-Ala, Met-Ala-Ser, Met-Asn, Methionin-Enkephalin (Met-Enkephalin, Tyr-Gly-Gly-Phe-Met) und verwandte Peptide, Methionin-Enkephalinamide (Met-Enkephalinamide, Tyr-Gly-Gly-Phe-Met-NH2) und verwandte Peptide, Met-Gln-Trp-Asn-Ser-Thr-Thr-Phe-His-Gln-Thr-Leu-Gln-Asp-Pro-Arg-Val-Arg-Gly-Leu-Tyr-Phe-Pro-Ala-Gly-Gly, Met-Glu, Met-Gly, Met-Leu, Met-Leu-Phe, Met-Lys, Met-Met, Metorphamid, Met-Phe, Met-Pro, Met-Ser, Met-Tyr-Phe Amid, Met-Val, N-Methoxycarbonyl-Nle-Gly-Arg, P-Nitroanilin, Methoxysuccinyl-Ala-Ala-Pro-Val, Methoxysuccinyl-Ala-Ala-Pro-Val 7-amido-4-methylcoumarin, Metsomatotropin, Mollusken-cardioexzitatorisches Peptid, Morphiceptin, (Val3)-Morphiceptin, Motilin, MSH-Freisetzung inhibierender Faktor, 'Myelin basic protein ' und seine Fragment, Naphthylamid-Derivate diverser Peptide, beta-naphthyl-Ala-Cys-Tyr-Trp-Lys-Val-Cys-Thr Amid, alpha- und beta-Necendorphin, alpha-Neurokinin, Neurokinin A (Substance K, Neuromedin L) and B, Necendorphin (alpha: Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Tyr-Pro, beta, usw.), Neuromedin B, C, K, U8, U-25, usw., Neurokinin A und B, Neuropeptide K und Y, Neurophysin I und II, Neurotensin und verwandte Peptide, Nitroanilidderivate von Peptiden, NIe-Sta-Ala-Sta, NorLeu-Arg-Phe Amid, Opioidpeptide (z.B. Adrenopeptid E, Ala-Gly-Glu-Gly-LEu-Ser-Ser-Pro-Pze-Trp-Ser-Leu-Ala-Ala-Pro-Gln-Arg-Phe-Amide, Casein-Fragmente, Casomorphin, N-CBZ-Pro-D-Leu, Dermorphin, Kyotorphin, Morphiceptin (Tyr-Pro-Phe-Pro-NH2), Meorphamide (Tar-Gly-Gly-Phe-Met-Arg-Arg-Val, Adrenorphin), Osteocalcin (bes. Fragment 7-19), Oxytocin und verwandte Peptide, Pancreastatin und Fragmente davon, wie z.B. 33-49, Pancreatisches Polypeptid, Pancreozymin, Parathyroidea-Hormon (Schilddrüsenhormon) und seine Fragment, besonders 1-34 and 1-84, Penta-Ala, Penta-Gly, Penta-Phe, Pepstatin A, Peptid YY, Peptid T, Phalloidin, Phe-Ala-Ala-p-nitro-Phe-Phe-Val-Leu 4-pyridyl Methylester, Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe Amid, Phe-Ala, Phe-Gly, Phe-Gly-Gly, Phe-Gly-Phe, Phe-Gly-Phe-Gly, Phe-Leu Amid, Phe-Pro, Phe-Ser-Trp-Gly-Ala-Glu-Gly-Gln-Arg, Phe-Tyr, Phe-Val, PHI-27, PHM-27, Phosphoramidon, Physalaemin (pGlu-Ala-Asp-Pro-Asn-Lys-Phe-Tyr-Gly-Leu-Met-NH2), Preproenkephalin Fragment 128-140, Pressinoinsäure und verwandte Peptide, Pro-Asn, Proctolin (Arg-Tyr-Leu-pro-Thr), Proenkephalin, Pro-His-Pro-Phe-His-Phe-Phe-Val-Tyr-Lys, Pro-Ala, Pro-Arg 4-methoxy-beta-naphthylAmid, Pro-Asp, Pro-Ala, Pro-Asp, Pro-Ala, Pro-Asp, Pro glumid, Pro-Gly, Pro-Gly-Gly, Pro-hydroxy-Pro, Pro-Ile, Pro-Leu, Pro-Leu-Gly Amid, Pro-Met, Pro-Phe Amid, Pro-Phe, Pro-Phe-Arg 7-amido-4-methylcoumarin, Pro-Phe-Gly-Lys, Pro-Trp, Pro-Tyr, Pro-Val, von cyclischer AMP-abhängige Proteinkinase und ihre Inhibitoren, PyroGlu-Ala-Glu, PyroGlu-Ala, PyroGlu-Ala-Glu, PyroGlu-Asn-Gly, PyroGlu-Gly-Arg p-Nitroanilid, PyroGlu-His-Gly Amid, PyroGlu-His-Gly, PyroGlu-His-Pro Amid, PyroGlu-His-Pro, PyroGlu-Lys-Trp-Ala-Pro, Ranatensin, Reninsubstrat Tetradecapeptid, N-(alpha-rhamnoyranosyloxyhydroxyphosphinyl) Leu-Trp, Sarcosyl-Pro-Arg p-nitroanilid, Sauvagin, schlafauslösendes Peptid (Trp-Ala-Gly-Gly-Asp-Ala-Ser-Gly-Glu), Secretin und verwandte Peptide, Ser-Ile-Gly-Ser-Leu-Ala-Lys, Ser-Ser-Ser, Serum thymic Faktor, Ser-Ala, Ser-beta-Ala, Ser-Asn, Ser-Asp, Ser-Asp-Gly-Arg-Gly, Ser-Glu, Ser-Gln, Ser-Gly, Ser-His, Ser-Leu, Ser-Met, Phe, Ser-Ser-Ser, Ser-Tyr, schlafauslösendes Peptid, Somatostatin und verwandte Peptide (z.B. Clyclo(p-Trp-Lys-Trh-Phe-Pro-Phe), Steroidogenese aktivierendes Polypeptid, Substanz-P (Arg-Pro-Lys-Pro-Gin-Gin-Phe-Phe-Gly-Leu-Met-NH2) und verwandte Peptide, N-Succinyl-Derivate diverser Peptide, Syndyphalin-20 (Tyr-D-Met(O)-Gly-Phe-ol), Tentoxin, Tetra-Ala, Tetra-Gly, Thiostrepton, DL-Thiorphan (Enkephalinase Inhibitor), Thr-beta-Ala, Thr-Asp, Thr-Leu, Thr-Lys-Pro-Arg, Thr-Ser, Thr5

10

15

20

25

30

35

40

45

50

55

Ser-Lys, Thr-Tyr-Ser, Thr-Val-Leu, Thymopoietin-Fragment, Thymosin alphal und seine Fragmente Thymus zirkulierender Faktor, Thyrocalicitonin, Thyrotropin freisetzender Hormon, Tocinoinsäure, Tosylierte Peptide, Transformierende Wachstumsfaktoren, Tri-Ala, Tri-Ala Methylester, Trp-Ala, Trp-Ala-Trp-Phe Amid, Trp-Glu, Trp-Gly, Trp-Gly-Gly, Trp-His-Trp-Leu-Gln-Leu, Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr, Trp-His-Trp-Leu-Ser-Phe-Ser-Lys-Gly-Glu-Pro-Met-Tyr, Trp-Leu, Trp-Met-Asp-Phe Amid, Trp-norLeu-Arg-Phe Amid, Trp-Phe, Trp-Trp, Trp-Tyr, Tuftsin (Thr-Lys-Pro-Arg) und seine Fragmente, Tyr-Ala, Tyr-Ala-Gly, Tyr-Ala-Gly-Ala-Val-Val-Asn-Asp-Leu, Tyr-Ala-Gly-Nmethyl-Phe 2-hydroxyethylAmid, Tyr-Ala-Phe-Met Amid, Tyr-Arg, Tyr-atriopeptin II, Tyr-Glu, Tyr-Gly, Tyr-Gly-Ala-Val-Val-Asn-Asp-Leu, Tyr-Gly-Gly, Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Arg, Tyr-Gly-Gly-Phe-Met-Arg-Arg-Val Amid, Tyr-Gly-Trp-Phe-Phe Amid, Tyr-Leu, Tyr-Phe, Tyr-Phe-Met-Arg-Phe Amid, Tyr-Phe-Phe Amid, Tyr-Pro-Leu-Gly Amid, Tyr-Pro-Phe-Pro Amid, Tyr-Pro-Val-Pro Amid, Tyr-Thr-Gly-Leu-Phe-Thr, Tyr-Tyr-Phe Amid, Tyr-Trp-Ala-Trp-Phe Amid, Tyr-Trp-Ala-Trp-Phe methylAmid, Tyr-Tyr-Leu, Tyr-Tyr-Phe, Tyr-Tyr, Tyr-Tyr-Tyr Methylester, Tyr-Tyr-Tyr-Tyr-Tyr, Tyr-Val Amid, Tyr-Val, Tyr-Val-Gly, Urodilatin, Urotensin II, Valosin, Val-Ala, Val-Ala p-Nitroanilid,d, Val-Ala-Ala-Phe, Val-Asp, Val-Glu, Val-Gln, Val-Glu-Glu-Ala-Glu, Val-Glu-Ser-Ser-Lys, Val-Gly, Val-Gly-Asp-Gln, Val-Giy-Giy, Val-Gly-Ser-Glu, Val-Gly-Val-Ala-Pro-Gly, Val-His-Leu-Thr-Pro, Val-His-Leu-Thr-Pro-Val-Glu-Lys, Val-Leu, Val-Lys, Val-Met, Val-Phe, Val-Pro, Val-Pro-Asp-Pro-Arg, Val-Pro-Leu, Val-Ser, Val-Thr, Val-Trp, Val-Tyr, Val-Tyr-Val, Val-Val, vasoaktive intestinale Peptide und verwandte Peptide, vasopressinverwandte Peptide, Vasotocin und verwandte Peptide, Xenopsin, usw.

Größere Polypeptide werden normalerweise unabhängig von ihrer Konformation als Proteine bezeichnet. Als ein Protein wird in dieser Beschreibung vorzugsweise ein Enzym oder Koenzym, ein Adhäsions- oder Erkennungsmolekül, wie z.B. ein CAMP oder OMP bzw. Lectin, ein Histokompatibilitätskomplex, wie z.B. MHC-II bzw. MHC-II, oder ein Immunglobulin (Antikörper) - oder aber (bio)-chemische oder molekulargenetische Abwandlungen davon bezeichnet. Für die Anwendung im Sinne dieser Erfindung kommen von (bio)chemisch modifizierten Proteinen besonders (aber nicht ausschließlich) solche mit einem apolaren Rest, wie z.B. einer Alkyl, Acyl, Alkenoyl, usw. Kette, in Frage.

Ein Enzym ist ein katalytisch aktives Protein. Enzyme werden in der Regel nach ihren Funktionen gruppiert. Die erfindungsgemäß wichtigsten sind (E.C. Nummern in Klammern):

Oxidoreductasen, wie z.B.: Alcohol dehydrogenase (1.1.1.1), Alcohol dehydrogenase (NADP abhängige) (1.1.1.2), Glycerol dehydrogenase (1.1.1.6), Glycerophosphat dehydrogenase (1,1.1.8), Xylulose reductase (1.1.1.10), Polyol dehydrogenase (1.1.1.14), Sorbitol dehydrogenase (1.1.1.14), myo-inositol dehydrogenase (1.1.1.18), Uridin 5'-diphosphoglucose dehydrogenase (1.1.1.22), Glyoxalat reductase (1.1.1.26), Lactat dehydrogenase (1.1.1.27), Lactat dehydrogenase (1.1.1.28), Glycerat dehydrogenase (1.1.1.29), beta-Hydroxybutyrat dehydrogenase (1.1.1.30), beta-hydroxyacyl coa dehydrogenase (1.1.1.35), Malat dehydrogenase (1.1.1.37), Malat enzyme (1.1.1.40), Isocitrische dehydrogenase (1.1.1.42), 6-Phosphogluconat dehydrogenase (1.1.1.44), Glucose dehydrogenase (1.1.1.47), beta-Galactose dehydrogenase (1.1.1.48), Glucose-6-phosphat dehydrogenase (1.1.1.49), 3alpha-hydroxysteroid dehydrogenase (1.1.1.50), 3beta-Hydroxysteroid dehydrogenase (1.1.1.51), 3alpha,2betahydroxysteroid dehydrogenase (1.1.1.53), 3-phosphoglycerat dehydrogenase (1.1.1.95), Fucose dehydrogenase (1.1.1.122), Lactat dehydrogenase (cytochrom) (1.1.2.3), Glucose oxidase (1.1.3.4), Cholesterol oxidase (1.1.3.6), Galactose oxidase (1.1.3.9), Alcohol oxidase (1.1.3.13), Glycolat oxidase (1.1.3.15), Choline oxidase (1.1.3.17), Glycerol-3-phosphat oxidase (1.1.3.21), Xanthine oxidase (1.1.3.22), Alcohol dehydrogenase (1.1.99.8), Fructose dehydrogenase (1.1.99.11), Formaldehyde dehydrogenase (1.2.1.1), Format dehydrogenase (1.2.1.2), Aldehyde dehydrogenase (1.2.1.5), Glyceraldehyde-3-phosphat dehydrogenase (1.2.1.12), Gabase (1.2.1.16), Pyruvat oxidase (1.2.3.3), Oxalat oxidase (1.2.3.4), Dihydroorotat dehydrogenase (1.3.3.1), Lipoxidase (1.3.11.12), Alanine dehydrogenase (1.4.1.1), Glutamische dehydrogenase (1.4.1.3), Glutamat dehydrogenase (NADP) (1.4.1.4), L-aminosäuren oxidase (1.4.3.2), D-aminosäuren oxidase (1.4.3.3), Monoaminoxidase (1.4.3.4), Diaminoxidase (1.4.3.6), Dihydrofolat reductase (1.5.1.3), 5,10-Methylenetetrahydrofolat dehydrogenase (1.5.1.5), Saccharopin dehydrogenase NAD+ (1.5.1.7), Octopin dehydrogenase (1.5.1.11), Sarcosin oxidase (1.5.3.1), Sarcosin dehydrogenase (1.5.99.1), Glutathion reductase (1.6.4.2), Ferridoxin-NADP+ reductase (1.6.7.1), NADPH-FMN oxidoreductase (1.6.99.1), Cytochrom c reductase (1.6.99.3), NADH-FMN oxidoreductase (1.6.99.3), Dihydropteridin reductase (1.6.99.7), Uricase (1.7.3.3), Diaphorase (1.8.1.4), Lipoamid dehydrogenase (1.8.1.4), Cytochrom oxidase (1.9.3.1), Nitrat reductase (1.9.6.1), Phenolase (1.10.3.1), Ceruloplasmin (1.10.3.2), Ascorbat oxidase (1.10.3.3), NADH peroxidase (1.11.1.1), Catalase (1.11.1.6), Lactoperoxidase (1.11.1.7), Myeloperoxidase (1.11.1.7), Peroxidase (1.11.1.7), Glutathione peroxidase (1.11.1.9), Chloroperoxidase (1.11.1.10), Lipoxidase (1.13.1.12), Protocatechuat 3,4-dioxygenase (1.13.11.3), Luciferase (Leuchtkäffer) (1.13.12.7), Salicylat

5

10

15

20

25

30

35

40

45

50

55

hydroxylase (1.14.13.7), p-Hydroxybenzoat hydroxylase (1.14.13.2), Luciferase (bacterielle) (1.14.14.3), Phenylalanine hydroxylase (1.14.16.1), Dopamine-beta-hydroxylase (1.14.17.1), Tyrosinase (1.14.18.1), Superoxid Dismutase (1.15.1.1), Ferredoxin-NADP reductase (1.18.1.2), usw. Transferasen, wie z.B.: Catechol o-methyltransferase (2.1.1.6), Phenylethanolamine n-methyl-transferase (2.1.1.28), Aspartat transcarbamylase (2.1.3.2), Ornithine carbamyltransferase (2.1.3.3), Transketolase (2.2.1.1), Transaldolase (2.2.1.2), Choline acetyltransferase (2.3.1.6), Carnitine acetyltransferase (2.3.1.7), Phosphotransacetylase (2.3.1.8), Chloramphenicol acetyltranferase (2.3.1.28), Kanamycin 6'-acetyltransferase (2.3.1.55), Gentamicin acetyltransferase (2.3.1.60), Transglutaminase (2.3.2.13), gammaglutamyl transpeptidase (2.3.2.2), Phosphorylase A (2.4.1.1), Phosphorylase B (2.4.1.1), Dextransucrase (2.4.1.5), Sucrose phosphornase (2.4.1.7), Glycogen synthase (2.4.1.11), Uridin 6'-diphosphoglucuronyltransferase (2.4.1.17), Galactosyl transferase (2.4.1.22), Nucleoside phosphorylase (2.4.2.1), Orotidine-5'-monophosphat pyrophosphorylase (2.4.2.10), Glutathion s-transferase (2.5.1.18), Glutamin-oxalat transaminase (2.6.1.1), Glutamic-pyruvat transaminase (2.6.1.2), Gabase (2.6.1.19), Hexokinase (2.7.1.1), Galactokinase (2.7.1.6), Fructose-9-phosphat kinase (2.7.1.11), Gluconat kinase (2.7.1.12), Phosphoribulokinase (2.7.1.19), NAD kinase (Nicotinamid adenine dinucleotide kinase) (2.7.1.23), Glycerokinase (2.7.1.30), Choline kinase (2.7.1.32), Protein kinase (3':5'-cyclischer-AMP abhängige) (2.7.1.37), Phosphorylase kinase (2.7.1.38), Pyruvat kinase (2.7.1.40), Fructose-9-phosphat kinase (Pyrophosphat abhängige) (2.7.1.50), Acetat kinase (2.7.2.1), Carbamat kinase (2.7.2.2), 3phosphoglycerische phosphokinase (2.7.2.3), Creatine phosphokinase (2.7.3.2), usw.

Transpeptidase, wie z.B.: Esterase (3.1.1.1), Lipase (3.1.1.3), Phospholipase a (3.1.1.4), Acetylesterase (3.1.1.6), Cholinesterase, acetyl (3.1.1.7), Cholinesterase, butyryl (3.1.1.8), Pectinesterase (3.1.1.11), Cholesterol Esterase (3.1.1.13), Glyoxalase ii (3.1.2.6), Phosphatase, alkaline (3.1.3.1), Phosphatase acid (3.1.3.2), 5'-Nucleotidase (3.1.3.5), 3'-Nucleotidase (3.1.3.6), Glucose-6-phosphatase (3.1.3.9), Fructose-1,6-diphosphatase (3.1.3.11), Phytase (3.1.3.26), Phosphodiesterase i (3.1.4.1), Glycerophosphorylcholin (3.1.4.2), Phospholipase c (3.1.4.3), Phospholipase d (3.1.4.4), Deoxyribonuclease I (3.1.4.5), Deoxyribonuclease II (3.1.4.6), Ribonuclease N1 (3.1.4.8), Sphingomyelinase (3.1.4.12), Phosphodiesterase 3':5'-cyclische (3.1.4.17), Phosphodiesterase II (3.1.4.18), Endonuclease (3.1.4.21), Ribonuclease A (3.1.4.22), Ribonuclease B (3.1.4.22), 3'-Phosphodiesterase 2':3'-cyclic nucleotide (3.1.4.37), Sulfatase (3.1.6.1), Chondro-4-sulfatase (3.1.6.9), Chondro-6-sulfatase (3.1.6.10), Ribonuclease T2 (3.1.27.1), Ribonuclease T1 (3.1.27.3), Ribonuclease U2 (3.1.27.4), Nuclease (3.1.30.1), Nuclease, (aus Micrococcen) (3.1.31.1), alpha-Amylase (3.2.1.1), beta-Amylase (3.2.1.2), Amyloglucosidase (3.2.1.3), Cellulase (3.2.1.4), Laminarinase (3.2.1.6), Dextranase (3.2.1.11), Chitinase (3.2.1.14), Pectinase (3.2.1.15), Lysozyme (3.2.1.17), Neuraminidase (3.2.1.18), alpha-Glucosidase, Maltase (3.2.1.20), beta-Glucosidase (3.2.1.21), alpha-Galactosidase (3.2.1.22), beta-Galactosidase (3.2.1.23), alpha-Mannosidase (3.2.1.24), beta-Mannosidase (3.2.1.25), Invertase (3.2.1.26), Trehalase (3.2.1.28), beta-n-Acetylglucosaminidase (3.2.1.30), beta-Glucuronidase (3.2.1.31), Hyaluronidase (3.2.1.35), beta-Xylosidase (3.2.1.37), Hesperidinase (3.2.1.40), Pullulanase (3.2.1.41), alpha-Fucosidase (3.2.1.51), Mycodextranase (3.2.1.61), Agarase (3.2.1.81), Endoglycosidase F (3.2.1.96), Endoalpha-n-acetylgalactosaminidase (3.2.1.97), NADase (nicotinamide adenine glycopeptidase) F (3.2.2.5), Dinucleotidase (3.2.2.18), Thiogluc (3.2.3.1), S-adenosylhomocysteinhydrolase (3.3.1.1), Leucin-aminopeptidase, (aus Cytosol) (3.4.11.1), Leucin-aminopeptidase, microsomale (3.4.11.2), Pyroglutamataminopeptidase (3.4.11.8), Carboxypeptidase A (3.4.12.2), Carboxypeptidase B (3.4.12.3), Prolidase (3.4.13.9), Cathepsin C (3.4.14.1), Carboxypeptidase W (3.4.16.1), Carboxypeptidase A (3.4.17.1), Carboxypeptidase B (3.4.17.2), alpha-Chymotrypsin (3.4.21.1), beta-Chymotrypsin (3.4.21.1), gamma-Chymotrypsin (3.4.21.1), delta-Chymotrypsin (3.4.21.1), Trypsin (3.4.21.4), Thrombin (3.4.21.5), Plasmin (3.4.21.7), Kallikrein (3.4.21.8), Enterokinase (3.4.21.9), Elastase, pancreatische (3.4.21.11), Protease (Subtilisin) (3.4.21.14), Urokinase (3.4.21.31), Elastase,leukocyte (3.4.21.37), Cathepsin B (3.4.22.1), Papain (3.4.22.2), Ficin (3.4.22.3), Bromelain (3.4.22.4), Chymopapain (3.4.22.6), Clostripain (3.4.22.8), Proteinase A (3.4.22.9), Pepsin (3.4.23.1), Renin (3.4.23.4), Cathepsin D (3.4.23.5), Protease (Aspergillopeptidase) (3.4.23.6), Collagenase (3.4.24.3), Collagenase (3.4.24.8), Pinguinain (3.4.99.18), Renin (3.4.99.19), Urokinase (3.4.99.26), Asparaginase (3.5.1.1), Glutaminase (3.5.1.2), Urease (3.5.1.5), Acylase I (3.5.1.14), Cholylglycine hydrolase (3.5.1.24), Urease(atp-hydrolyzing) (3.5.1.45), Penicillinase (3.5.2.6), Cephalosporinase (3.5.2.8), Creatininase (3.5.2.10), Arginase (3.5.3.1), Creatinase (3.5.3.3), Guanase (3.5.4.3), Adenosin-deaminase (3.5.4.4), 5'-Adenylatsaure-deaminase (3.5.4.6), Creatinine deiminase (3.5.4.21), Anorganische Pyrophosphatase (3.6.1.1), Adenosine 5'-triphosphatase (3.6.1.3), Apyrase (3.6.1.5), Pyrophosphatase, Nucleotid (3.6.1.9), usw.

Lyasen, wie z.B.: Pyruvat-decarboxylase (4.1.1.1), Oxalat decarboxylase (4.1.1.2), Oxalacetat decarboxylase (4.1.1.3), Glutamische decarboxylase (4.1.1.15), Ornithine decarboxylase (4.1.1.17),

5

10

15

20

25

30

35

40

45

50

55

Lysine decarboxyla (4.1.1.18), Arginin decarboxylase (4.1.1.19), Histidin decarboxylase (4.1.1.22), Orotidin 5'-monophosphat decarboxylase (4.1.1.23), Tyrosin decarboxylase (4.1.1.25), Phospho(enol) pyruvat carboxylase (4.1.1.31), Ribulose-1,5-diphosphat carboxylase (4.1.1.39), Phenylalanin decarboxylase (4.1.1.53), Hydroxymandelonitrilelyase (4.1.2.11), Aldolase (4.1.2.13), N-Acetylneuraminsäure aldolase (4.1.3.3), usw. Citrat lyase (4.1.3.6), Citrat synthase (4.1.3.7), Tryptophanase (4.1.99.1), Isozyme der carbonischen Anhydrase (4.2.1.1), Fumarase (4.2.1.2), Aconitase (4.2.1.3), Enolase (4.2.1.11), Crotonase (4.2.1.17), delta-Aminolevulinat dehydratase (4.2.1.24), Chondroitinase ABC (4.2.2.4), Chondroitinase AC (4.2.2.5), Pectolyase (4.2.2.10), Aspartase (4.3.1.1), Histidase (4.3.1.3), Phenylalanin Ammoniak-lyase (4.3.1.5), Argininosuccinate lyase (4.3.2.1), Adenylosuccinate lyase (4.3.2.2), Glyoxalase II (4.4.1.5), Isomerasen, wie z.B.: Ribulose-5'-phosphate 3-epimerase (5.1.3.1), Uridine 5'-diphosphogalactose 4-epimerase (5.1.3.2), Mutarotase (5.1.3.3), Triosephosphate isomerase (5.3.1.1), Phosphoriboisomerase (5.3.1.6), Phosphoglucomutase (5.3.1.8), Phosphoglucose isomerase (5.3.1.9), Tautomerase (5.3.2.1), Phosphoglucomutase (5.4.2.2), Ligasen, wie z.B.: Aminoacyl-tRNA synthetase (6.1.1), S-acetyl coenzyme A synthetase (6.2.1.1), Succinic thiokinase (6.2.1.4), Glutamine synthetase (6.3.1.2), Pyruvat carboxylase (6.4.1.1),

Als Proteasen werden bezeichnet unter anderen Aminopeptidase M, Aminosäure-Arylamidase, Bromelain, Carboxypeptidase A, Carboxypeptidase B, Carboxypeptidase P, Carboxypeptidase Y, Cathepsin C, Chymotrypsin, Collagenasen, Collagenase /Dispase, Dispase, Elastase, Endoproteinase Arg-C, Endoproteinase Asp-N sequencing grade, Encloproteinase Glu-C (Proteinase V8), Endoproteinase Glu-C sequencing grade, Endoproteinase Lys-C, Endoproteinase Lys-C sequencing grade, Endoproteinasen, Faktor Xa, Ficin, Kallikrein, Leucin-Aminopeptidase, Papain, Pepsin, Plasmin, Pronase, Proteinase K, Proteinase V8 (Endoproteinase Glu-C), Pyroglutamat-Aminopeptidase, Pyroglutamat-Aminopeptidase, Restrictionsprotease Faktor Xa, Subtilisin, Thermolysin, Thrombin, Trypsin, usw.

Ein Koenzym im Sinne dieser Erfindung ist eine jede Enzymaktivität unterstützende Substanz. Zu den biologisch wichtigen Koenzymen gehören z.B. Acetyl-Coenzym A, Acetylpyridin-adenin-dinucleotid, Coenzym A, Flavin-adenin-dinucleotid, Flavin-mononucleotid, NAD, NADH, NADPH, Nicotinamid-mononucleotid, S-Palmitoyl-Coenzym A, Pyridoxal-5'-phosphorsäure, usw.

Eine weitere Klasse der Proteine, die für diese Anwendung wichtig ist, sind Lektine. Als Quellen für Lektine kommen sowohl Pflanzen als auch tierisches Gewebe in Frage; besonders häufig werden jedoch verwendet: Abrus pregatorius, Agarigus bisporus, Agrostemma githago, Anguilla anguilla, Arachis hypogaea, Artogarpus integrifolia, Bandeiraea simplicifolia BS-I und BS-II, (Griffonia simplicifolia), Banhlula purpurea, Caragana arborescens, Cicer arietinum, Canavalia ensiformis (Jack Bean), Caragana arborescens (Siberian pea tree), Codium fragile (Grüne Meeressalgen), Concanavalin A (Con A), Cytisus scoparius, Datura stramonium, Dolichos biflorus, Erythrina corallodendron, Euonymus europaeus, Gelonium multiflorum, Glycine max (Soja), Griffonia simplicifolia, Helix aspersa (Gartenschnecke), Helix pomatia (Weinbergschnecke), Laburnum alpinum, Lathyrus odoratus, Lens culinaris (Linse), Limulus polyphemus (Pfeilschwanzkrebs), Lycopersicon esculentum (Tomate), Lotus tetragonolobus, Luffa aegyptiaca, Maclura pomifera (Osaga Orange), Momordica charantia (Bitter pear melon), Naja mocambique (Mozambiqanische cobra), Naja Naja kaouthia, Mycoplasma gallisepticum, Perseau americana (Avocado), Phaseolus coccineus (Bohnen), Phaseolus limensis, Phaseolus lunatus, Phaseolus vulgaris, Phytolacga americana, Pseudomonas aeruginosa PA-I, Pisum sativum (Pea), Ptilota plumosa (Rote Meeresalgen), Psophocarpus tetragonolobus (Winged bean), Ricinus communis (Castor bean), Robinia pseudoacacia (False acacia, black locust), Sambucus nigra (Efeu), Saponaria officinalis, Solanum tuberosum (Kartoffel), Sophora japonica (Japanischer Pagodenbaum), Tetragonolobus purpureas (Winged or asparagus pea), (Lotus tetragonolobus), Tritigum vulgaris (Weizen(keime)-), Ulex europaeus, Vicia faba, Vicia sativa, Vicia villosa, Vigna radiata, Viscum album (Mistel), Wisteria floribunda, usw.

Weitere interessante Proteine sind z.B. Aktivator des Gewebe-Plasminogens, Insulin, Kallikrein, Keratin, Kininogen, Lactoterrin, Laminarin, Laminin, alpha2-Macroglobulin, alphal-Microglobulin, F2-Microglobulin, Lipoproteine hoher Dichte basischer Myelin-Protein, Myoglobin, Neurofilament I, II, and III, Neurotensin, Oxytocin, Pancreatischer Oncotetaler Antigen, Parvalbumin, Plasminogen, Plättchen Faktor 4, 'Pokeweed Antiviral Protein', Porphobilinogen, Prealbumin, Prostate Specitic Antigen, Protamine Sulfate, Protein C, Protein C Activator, Protein S, Prothrombin, Retinol bindender Protein, S-100 Protein, Schwangershaftsprotein-1, Serum Amyloid A, Serum Amyloid P Komponente, Tenascin, Testosteron-Estradiol bindendes Globulin, Thioredoxin, Thrombin, Thrombocytin, beta-Thromboglobulin, Thromboplastin, mikrosomales Antigen aus Thyroidea Thyroidea stimulierender Hormon, Thyroxin bindendes Globulin, Transcortin, Transferrin, Ubiquitin, Vimentin, Vinculin, Vitronectin, usw.

Typische Beispiele von tierischen und menschlichen Hormonen als erfindungsgemäße Wirkstoffe

sind z.B. Adrenalin, Adrenocortischerotroper Hormon, Angiotensin, Antidiuretischer Hormon, Cholecystokinin, Chorionic gonadotropin, Corticotropin A, Danazol, Diethylstilbestrol, Diethylstilbestrol glucuronid, 13,14-dihydro-15-keto-prostaglandine, 1-(3',4'-dihydroxyphenyl)-2-aminoethanol, 5,6-dihydroxytryptamin, Epinephrin, Follikelstimulierender Hormon, Gastrin, Gonadotropin, β-Hypophamin, Insulin, Juveniler Hormon, 6-Ketoprostaglandine, 15-Ketoprostaglandine, LTH, Luteinizing Hormon auslösender Hormon, Luteotroper Hormon, alpha-Melanocyten stimulierender Hormon, gamma-Melanocyten stimulierender Hormon, Noradrenalin, Norepinephrin, Oxytocin, Parathyroid Hormon, Parathyroide Stoffe, Prolactin, Prostaglandine, Secretin, Somatostatin, Somatotropin (STH), Thymosin alpha 1, Thyrocalcitonin, Thyroglobulin, Thyroidea stimulierender Hormon, Thyrotroper Hormon, Thyrotropin auslösender Hormon, 3,3',5-Triiodothyroacetosäure, 3,3',5'-Triiodothyronin, TSH, Vasopressin, etc.

Oestrogene sind zumeist Steroidhormone mit 18 Kohlenstoffatomen und einem ungesättigten (aromatischen) Ring. Zu den wichtigsten Oestrogenen gehören Chlorotrianisen, Diencestrol, Diethylstilboestrol, Diethylstilboestrol-dipropionat, Diethylstilboestroldisulfat, Dimestrol, Estradiol-benzoat, Estradiolundecylat, Estriolsuccinat, Estron, Ethinglestradiol, Nexoestrol, Nestranol, Oestradiol-valerat, Oestriol und Chinestrol. Gestagene sind zumeist synthetische Hormone mit zumeist progesteron-ähnlichen Eigenschaften; die wichtigsten Stoffe aus dieser Substanzklasse sind Allylestrenol, Chlormadinonacetat, Dimethisteron, Ethisteron, Hydroxyprogesteron-caproat, Lynestrenol, Medrogeston, Medroxyprogesteron-acetat, Megestrolacetat, Methyloestrenolon, Norethisteron, Norethisteron-acetat und Norgestrel.

Als Wirkstoffe können auch biologische Extrakte dienen. Als Quellen biologischer, pharmakologisch wirksamer Extrakte, die mittels Transfersomen als 'Wirkstoffe' durch die Haut transportiert werden können, verdienen besondere Erwähnung Acetobacter pasteurianum, Acokanthera ouabaio cathel, Aesculus hippocastanum, Ammi visnaga Lam., Ampi Huasca, Apocynum Cannabium, Arthrobotrys superba var. oligospora (ATCC 11572), Atropa belladonna, Bacillus Lentus, Bacillus polymyxa, Bacillus sphaericus, Castilloa elastica cerv., Chondrodendron tomentosum (Ampi Huasca), Convallaria majalis, Coronilla-Enzyme, Corynebacterium hoagii (ATCC 7005), Corynebacterium simplex, Curvularia lunata (Wakker) Boadijn, Cylindrocarpon radicola (ATCC 11011), Cynara scolymus, Datura Metel, Didymella, Digitaliase, Digitalis Lanata, Digitalis purpurea, Duboisia, Flavobacterium dehydrogenans, Fusarium exquiseti saccardo, Hyoscyamus niger, Jaborandi-Blätter (P. microphyilus Stapf), Mariendistel, Micromonosporapurpurea u. echinospora, Paecilomyces varioti Bainier var. antibioticus, Penicillium chrysogenum Thom, Penicillium notatum Westling, Penicillium patulum, Rauwolfia serpentina Benth., Rhizopus arrhizus Fischer (ATCC-11145), Saccharomyces cerevisiae, Schizomycetes ATCC-7063, Scilla maritima L., Scillarenase, Septomyxa affinis (ATCC 6737), Silybum marianum Gaertn. (Mariendistel), Streptomyces ambofaciens, Strophantusgratus, Strophantus Kombe, Thevetia peruviana, Vinca minor L. und Vinca rosea.

Falls nicht anders spezifiziert, können alle angegebenen Substanzen, Tenside, Lipide, Wirkstoffe oder Zusatzstoffe mit einem oder mehreren chiralen Kohlenstoffatom entweder als racemische Mischungen oder als optisch reine Enantiomere verwendet werden.

40 WIRKPRINZIP

45

50

10

15

20

Im Falle von Permeations-Barrieren kann der Wirkstofftransport durch solche Träger bewältigt werden, die die folgenden Grundkriterien erfüllen:

- Die Träger sollen einen Gradienten spüren oder aufbauen, der sie in oder über die Barriere treibt, z.B. von der K\u00f6rperoberfl\u00e4che in und unter die Haut, von der Blattoberfl\u00e4che in das Blattinnere, von einer Seite der Barriere zur anderen;
- Der Permeationswiderstand, den die Träger in der Barriere spüren, soll möglichst klein sein im Vergleich zu der treibenden Kraft;
- Die Träger sollen fähig sein, in und/oder durch die Barriere zu permeiren, ohne dabei die eingeschlossenen Wirkstoffe unkontrolliert zu verlieren.

Ferner sollen die Träger vorzugweise eine Kontrolle über die Wirkstoffverteilung, die Wirkstoffeffekte sowie den zeitlichen Wirkungsablauf erlauben. Sie sollen fähig sein, im Bedarfsfall das Material auch in die Tiefe der Barriere und über diese hinweg zu bringen und/oder einen solchen Transport zu katalysieren. Und nicht zuletzt sollen die Träger den Wirkungsbereich und die Wirkungstiefe sowie - in günstigen Fällen - die Art der Zellen, Gewebsteile, Organe, oder Systemabschnitte, die erreicht oder behandelt werden, beeinflussen

In erster Hinsicht kommen für die biologischen Anwendungen die chemischen Gradienten in Frage. Besonders geeignet sind die physiko-chemischen Gradienten, wie z.B. der (De)Hydratationsdruck

(Feuchtigkeitsgradient) oder ein Konzentrationsunterschied zwischen dem Applikations- und Wirkungsort; aber auch elektrische oder magnetische Felder sowie thermische Gradienten sind in dieser Hinsicht interessant. Für technologische Anwendungen sind ferner der applizierte hydrostatische Druck oder ein bestehender Druckunterschied wichtig.

Um die zweite Bedingung zu erfüllen, müssen die Träger auf der mikroskopischen Skala ausreichend 'dünnflüssig' sein; nur dann können sie durch die Konstriktionen innerhalb der Permeabilitätsbarriere

Der Permeationswiderstand nimmt verständlicherweise mit der Trägergröße ab. Aber auch die treibende Kraft ist häufig von der Trägergröße abhängig; bei größenunabhängigem Druck nimmt diese Kraft mit der Größe typischerweise ab. Darum ist die Übertragungeffizienz keine einfache Funktion der Größe, sondern weist häufig ein von der Wahl der Träger- und Wirkstoffe abhängiges Maximum auf.

Im Falle von molekularen Aggregaten wird der Permeationswiderstand zumeist durch die mechanische Elastizität und die Verformbarkeit des Trägers bestimmt; aber auch die Viskosität der Gesamtpräparation ist wichtig: die erste muß hoch genug, die andere ausreichend niedrig sein.

Als ein Kriterium für die Optimierung von supramolekularen Trägern im Sinne dieser Erfindung kann daher die Größe, aber noch mehr die Verformbarkeit dienen; beispielhaft für die letzte kann die Trägerfähigkeit betrachtet werden, sich zu krümmen oder Ausläufer zu bilden - als Funktion von allen relevanten Systemvariablen. (In der Praxis reicht es bereits aus, nur diejenigen Variablen zu untersuchen, die für eine kontrollierte Anwendung in Frage kommen. Die in dieser Anmeldung angeführten Beispiele umfassen daher lediglich die Variation der Konzentration von randaktiven Komponenten und die absolute Trägerkonzentration, die eine erzwungene Verkleinerung von Lipidvesikeln oder Vesikelpermeation beeinflussen.) Das gilt z.B. für eine transkutane oder transkutikale Stoffübertragung, aber auch für den Stofftransport durch die Lungenalveoli, in das Haar, in Gele und dergleichen.

Bezüglich des dritten Kriteriums spielt die Wahl der Träger, Wirkstoffe und Zusatzstoffe, sowie die applizierte Trägermenge oder Konzentration eine Rolle. Niedrige Dosierung führt meistens zu einer oberflächlichen Behandlung: Stoffe, die schlecht wasserlöslich sind, bleiben dabei zumeist in der apolaren Region der Permeabilitätsbarriere (z.B. in den Membranen der Epidermis) hängen; gut lösliche Wirkstoffe, die leicht aus den Trägern diffundieren, können eine andere Verteilung haben als die Träger; für solche Stoffe ist also auch die Durchläßigkeit der Transfersomen-Membrane wichtig. Randaktive Substanzen, die dazu neigen, aus den Trägern in die Barriere überzutreten, führen zu einer örtlich variablen Trägerzusammensetzung, usw. Diese Zusammenhänge sollen vor jeder Applikation überdacht und berücksichtigt werden. Bei der Suche nach Bedingungen, unter denen die einfachen Trägervesikeln zu Transfersomen werden, kann die folgende Faustregel verwendet werden.

 Als erstes werden die Bedingungen gesucht, unter denen die Trägervesikeln durch die Wirkung von randaktiven Substanzen solubilisiert werden. An diesem kritischen Punkt sind die 'Vesikel' maximal deformierbar, da sie im stetten Zusammenbau und Abbau begriffen sind. Gleichzeitig sind sie aber auch unstabil und unfähig, wasserlösliche Substanzen zu enthalten und zu übertragen.

35

40

45

- Als nächstes wird die Trägerzusammensetzung bzw. Konzentration durch die Verringerung der Randaktivität im System so angepasst, daß die Vesikel sowohl eine ausreichende Stabilität als auch eine ausreichende Deformierbarkeit, und daher zweckmäßige Permeationsfähigkeit, ausweisen. Unter Stabilität wird in dieesr Anmeldung neben dem mechanischem "Zusammenhalt" auch verstanden, daß sich der Substanz-, insbesondere der Wirkstoffgehalt der Trägerzusammensetzung beim Transport, insbesondere beim Permeationsvorgang, nicht oder nicht wesentlich ändert. Die Position des gesuchten Optimums ist dabei von einer Vielzahl der Randbedingungen abhängig. Die Art der Wirkstoffmoleküle spielt auch eine wichtige Rolle: je kleiner und je hydrophiler sind die zu übertragenden Agenzien, desto weiter muß das Trägersystem von dem Solubilisierungspunkt entfernt werden; auch die angepeilte Lagerungsfähigkeit der Träger ist wichtig: mit der Nähe zum Solubilisierungspunkt kann die Tendenz der Transfersomen, größere Partikel zu bilden, zunehmen, und die Lagerungsstabilität der Träger abnehmen.
- Abschließend werden die Systemparameter unter Berücksichtigung der angestrebten Applikationsmodi und Ziele nachoptimiert. Für eine rasche Wirkung ist hohe Permeationsfähigkeit erforderlich; für langsame Wirkstoffreisetzung eine allmähliche Barrieren-Penetration und entsprechend eingestellte Membranpermeabilität vorteilhaft; für die Tiefenwirkung ist eine hohe Dosis, für möglichst breite Verteilung eine nicht zu hohe Trägerkonzentration angeraten.

In dieser Anmeldung werden relevante Eigenschaften von Transfersomen als Träger für die Lipidveşikel besprochen. Die meisten Beispiele beziehen sich beispielhaft auf die Träger aus Phospholipiden, wobei jedoch die allgemeine Gültigkeit der Schlußfolgerungen nicht auf diese Trägerklasse oder Moleküle beschränkt ist. Die Lipidvesikel-Beispiele illustrieren lediglich die Eigenschaften, die zur Penetration durch

die Permeabilitätsbarrieren, wie z.B. Haut, benötigt werden. Dieselben Eigenschaften ermöglichen Trägertransport auch durch die tierische oder menschliche Epidermis, Schleimhäute, pflanzliche Kuticula, über anorganische Membranen, usw.

Der wahrscheinliche Grund für die spontane Permeation von Transfersomen durch die 'Poren' in der Hornhautzellenschicht ist vermuttich, daß diese auf einer Seite in einem wässrigen Kompartment, der Subcutis, münden; die Transfersomen werden dabei durch den osmotischen Druck getrieben. Alternativ kann aber zusätzlich ein externer, z.B. hydrostatischer oder elektroosmotischer Druck appliziert werden.

Je nach Vesikelmenge können nach einer perkutanen Applikation die Lipidvesikel bis in die Subkutis gelangen. Die Wirkstoffe werden dabei, je nach der Größe, Zusammensetung und Formulierung der Träger oder Agentien, entweder lokal freigesetzt, proximal angereichert, oder aber über die Blutgefäße bzw. Lymphgefäße weitergeleitet und über den Körper verteilt.

Manchmals ist es angebracht, den pH-Wert der Formulierung gleich nach der Herstellung oder unmittelbar vor der Anwendung anzupassen. Eine solche Anpassung soll die Zerstörung der Systemkomponenten und/oder der Wirkstoffträger unter den anfänglichen pH-Bedingungen verhindern und die physiologische Verträglichkeit der Formulierung gewährleisten. Zur Neutralisierung werden zumeist physiologisch verträgliche Säuren oder Basen bzw. Pufferlösungen mit einem pH-Wert von 3-12, vorzugsweise 5 bis 9, besonders häufig 6-8, je nach dem Zweck und Ort der Applikation, verwendet. Physiologisch verträgliche Säuren sind beispielsweise verdünnte wässrige Mineralsäuren, wie z.B. verdünnte Salzsäure, Schwefelsäure oder Phosphorsäure, oder organische Säuren, z.B. Alkancarbonsäuren, wie Essigsäure. Physiologisch verträgliche Laugen sind z.B. verdünnte Natronlauge, entsprechend ionisierte Phosphorsäure, usw.

Die Herstellungstemperatur wird normalerweise den eingesetzten Substanzen angepaßt und liegt für die wässrige Präparationen üblicherweise zwischen 0 und 95 °C. Vorzugsweise arbeitet man in einem Temperaturbereich von 18-70 °C; besonders bevorzugt für die Lipide mit fluiden Ketten ist der Temperaturbereich zwischen 15 und 55 °C; für die Lipide mit geordneten Ketten zwischen 45 und 60 °C. Andere Temperaturbereiche sind für die nichtwässrigen Systeme oder für Präparationen, die Kryo- oder Hitzekonservantien enthalten, möglich.

Falls die Empfindlichkeit der Systemkomponenten das verlangt, können die Formulierungen kühl (z.B. bei 4°C) gelagert werden. Sie können auch unter Inertgas-, z.B. Stickstoffatmosphäre, hergestellt und aufbewahrt werden. Die Lagerungsdauer kann durch die Verwendung von Substanzen ohne Mehrfachbindungen sowie durch das Eintrocknen und Verwendung von Trockensubstanz, die erst an Ort und Stelle aufgelöst und aufgearbeitet wird, weiter erhöht werden.

In den meisten Fällen findet die Applikation der Träger bei Raumtemperatur statt. Einsätze bei tieferen Temperaturen oder bei höheren Temperaturen mit synthetischen Substanzen noch höhere Temperaturen sind indes durchaus möglich.

Die Präparate können im voraus oder an Ort und Stelle der Anwendung vorbereitet werden, wie das z.B. in P 40 26 833.0-43 oder anhand mehrerer Beispiele im Handbuch 'Liposomes' (Gregoriadis, G., Hrsg., CRC Press, Boca Raton, Fl., Vols 1-3, 1987) im Buch 'Liposomes as drug carriers' (Gregoriadis, G., Hrsg., John Wiley & Sons, New York, 1988), oder im Laboratoriumshanduch 'Liposomes. A Practical Approach' (New, R., Oxford-Press, 1989) beschrieben ist. Falls erforderlich, kann eine Wirkstoffsuspension unmittelbar vor dem Gebrauch verdünnt oder aufkonzentriert (z.B. per Ultrazentrifugation oder Ultrafiltration) bzw. mit weiteren Zusatzstoffen vermengt werden. Dabei muß jedoch die Möglichkeit einer Verschiebung des Optimums für die Trägerpermeation ausgeschlossen oder einkalkuliert werden.

Die Transfersomen gemäß dieser Anmeldung sind als Träger von lipophilen Stoffen, z.B. fettlöslichen biologischen Wirkstoffen, Therapeutika und Giften, usw. geeignet; von einem noch größeren praktischen Wert ist jedoch ihre Anwendung im Zusammenhang mit wasserlöslichen Substanzen, besonders wenn deren Molmasse größer als 1000 ist.

Die Transfersomen können ferner zur Stabilisierung von hydrolyseempfindlichen Stoffen beitragen und eine verbesserte Verteilung von Agentien in der Probe und am Ort der Applikation ermöglichen, sowie einen günstigeren zeitlichen Verlauf der Wirkstoffwirkung gewährleisten. Die Grundsubstanz, aus der die Träger bestehen, kann selbst eine vorteilhafte Wirkung haben. Die wichtigste Trägereigenschaft ist jedoch, den Materialtransport in und durch die Permeabilitätsbarriere zu ermöglichen, und somit Applikationen zu erlauben, die vor dieser Erfindung nicht durchführbar waren.

Die beschriebenen Formulierungen sind erfindungsgemäß optimiert für die topische Applikation an oder in der Nähe von - Permeabilitätsbarrieren. Besonders interessant dürfte das Auftragen auf die Haut oder auf die pflanzliche Kuticula sein. (Sie sind aber auch für eine orale (p.o.) oder parenterale (i.v. i.m. oder i.p.) Applikation gut geeignet, besonders wenn die randaktiven Substanzen so gewählt sind, daß die Verluste am Applikationsort klein sind.) Randaktive Substanzen, die am Applikationsort weniger randaktiv, bevorzugt abgebaut, besonders stark aufgenommen oder verdünnt werden, sind in letzter Hinsicht beson-

ders wertvoll.

Im dermatologischen Bereich werden bevorzugt bis zu 50, häufig bis zu 10, besonders häufig weniger als 2.5 oder sogar weniger als 1 mg Trägersubstanz pro cm² Hautfläche aufgetragen; die optimale Menge hängt von der Trägerzusammensetzung, angepeilten Wirktiefe und Wirkdauer, sowie von dem Applikationsort. Im agrotechnischen Bereich liegen Applikationsmengen typischerweise niedriger, häufig unter 0.1g pro m².

Je nach der angestrebten Anwendung können die Formulierungen erfindungsgemäß auch geeignete Lösungsmittel bis zu einer Konzentration, die durch die jeweilige physikalische (keine Solubilisierung oder nennenswerte Optimumverschiebung), chemische (keine Beeinträchtigung der Stabilität), oder biologische bzw. physiologische (wenig unerwünschte Nebeneffekte) Verträglichkeit bestimmt wird.

Vorzugsweise kommen dabei unsubstituierte oder substituierte, z.B. halogenierte, aliphatische, cycloaliphatische, aromatische oder aromatisch-aliphatische Kohlenwasserstoffe, z.B. Benzol, Toluol, Methylenchlorid oder Chloroform, Alkohole, z.B. Methanol oder Ethanol, Propandiol, Erithritol, Niederalkancarbonsäureester, z.B. Essigsäurealkylester, z.B. Diethylether, Dioxan oder Tetrahydrofuran, oder Mischungen dieser Lösungsmittel, in Frage.

Übersichten der Lipide und Phospholipide, die zusätzlich zu den vorstehend genanntnen für eine Verwendung im Sinne dieser Anmeldung geeignet sind, sind in 'Form and Function of Phospholipids' (Ansell & Hawthorne & Dawson, Verfasser), 'An Introduction to the Chemistry and Biochemistry of Fatty acids and Their Glycerides' von Gunstone und in anderen Übersichtswerken enthalten. Die erwähnten Lipide und Tenside sowie andere, in Frage kommende randaktive Stoffe, und ihre Herstellung, sind bekannt. Ein Überblick der käuflich erhältlichen Tenside, sowie die Warenzeichen, unter denen diese Tenside von den Herstellerfirmen vertrieben werden, ist im Jahrbuch 'Mc Cutcheon's, Emulsifiers & Detergents', Manufacturing Confectioner Publishing Co, angegeben. Ein aktuelles Verzeichnis der pharmazeutisch akzeptablen Wirkstoffe ist z. B. dem 'Deutschen Arzneibuch' (und der jeweiligen Jahresausgabe der 'Rote Liste'), ferner aus British Pharmaceutical Codex, European Pharmacopoeia, Farmacopoeia Ufficiale della Republica Italiana, Japanese Pharmacopoeia, Nederlandse Pharmacopoeia, Pharmacopoeia Helvetica, Pharmacopee Francaise, The United States Pharmacopoeia, The United States NF, usw., entnehmbar. Ein ausführliches Verzeichnis der erfindungsgemäß geeigneten Enzyme ist in dem Band 'Enzymes', 3rd Edition (M. Dixon un E.C. Webb, Academic, San Diego, 1979) enthalten, aktuelle Neuentwicklungen sind der Reihe 'Methods in Enzymology' zu entnehmen. Zuckererkennende Proteine, die im Zusammenhang mit dieser Erfindung interessant sind, sind in dem Buch 'The Lectins: Properties, Functions, and Applications in Biology and Medicine' (I.E. Liener, N. Sharon, I.T. Goldstein, Eds. Academic, Orlando, 1986) sowie in aktuellen Fachpublikationen beschrieben; Agrotechnisch interessante Substanzen sind in 'The Pesticide Manual (C.R. Worthing, S.B. Walker, Eds. British Crop Protection Council, Worcestershire, England, 1986, z.B. 8th edition) und in 'Wirkstoffe in Pflanzenschutz und Schädlingsbekämpfung', herausgegeben durch den Industrie-Verband Agrar (Frankfurt) angeführt; käuflich erhältliche Antikörper sind in dem Katalog 'Linscott's Directory', die wichtigsten Neuropeptide in 'Brain Peptides' (D.T. Krieger, M.J. Brownstein, J.B. Martin, Eds. John Wiley, New York, 1983), entsprechenden Ergänzungsbänden (z.B. 1987) und anderen Fachpublikationen aufgelistet.

Herstellungstechniken für Liposome, die sich überwiegend auch für die Herstellung von Tranfersomen eignen, sind in 'Liposome Technology' (Gregoriadis, Ed., CRC Press) oder in älteren Nachschlagewerken, z.B. in 'Liposomes in Immunobiology' (Tom & Six, Eds., Elsevier), in 'Liposomes in Biological Systems' (Gregoriadis & Allison, Eds., Willey), in 'Targeting of Drugs' (Gregoriadis & Senior & Trouet, Plenum), usw., sowie in der einschlägigen Patentliteratur beschrieben.

Die folgenden Beispiele veranschaulichen die Erfindung, ohne sie zu beschränken. Temperaturen sind in Grad Celsius, Trägergrößen in Nanometer, Drucke in Pascal und sonstige Größen in üblichen SI Einheiten angegeben.

Verhältnis- und Prozentangaben sind molar, sofern nicht anders angegeben.

Beispiele 1-13:

Zusammensetzung:

250-372 mg Phosphatidylcholin aus Sojabohnen (+95 % = PC)
55 187-34.9 mg Ölsäure (+99 %)
0.312-0.465 ml Ethanol, absolut
10 mM Hepes

Herstellung:

In unterschiedliche Volumina von alkoholischen PC-Lösungen, die 75 Mikromol Lipid enthalten, werden zunehmende Mengen von Ölsäure pipettiert, so daß eine Konzentrationsreihe von Lipid/Tensid-Verhältnissen entsteht, die beginnend mit einem Verhältnis 0.5 jeweils um einen Wert von 0.2 ansteigt. Anschließend werden zu jeder Lipidprobe 4.5 ml einer sterilen Pufferlösung zugespritzt und die Gemische bei 4 °C einen Tag lang inkubiert. Wenn der pH Wert durch die Zugabe von 1 M NaOH eingestellt werden muß, wird mit weiterer Behandlung noch 24 Stunden gewartet. Zur endgültigen Liposomenbildung werden die Proben durchmischt, durch einen Polycarbonatfilter (0.45 Mikrometer) gedrückt und in verschlossenen Glasröhrchen bei 4 °C aufbewahrt.

Charakterisierung:

Der Permeationswiderstand wird dem relativen Druck, mit dem sich die Proben einer weiteren Filtration durch ein 0.2 Mikrometer-Filter widersetzen, gleichgesetzt. In dieser Anmeldung ist dieser Widerstand in relativen Einheiten von 1 bis 10 angegeben.

Die Vesikelgröße wird mittels dynamischer Lichtstreuung bei 33 °C mit einem Zeta-Sizer Gerät der Fa. Malvern bestimmt. Zur Analyse der Korrelationskurven wird eine Abwandlung des Programmes "Contin" verwendet.

In dieser Versuchsreihe liegt die Vesikelgröße ziemlich unabhängig von der Menge der randaktiven Substanz zwischen 300 und 350 nm.

Permeation:

Der Permeationswiderstand nimmt mit fallender relativen Konzentration von Fettsäure in den Transfersomen zunächst zu. Dieser Trend ist jedoch nicht monoton. Bei einem Lipid/Tensid-Verhältnis von ca. 2 werden die Liposomen wieder permeationsfähiger, bis sie oberhalb von L/T = 3 die Konstriktionen fast nicht mehr passieren können. Die Vesikel mit einem Lipid/Tensid Molverhältnis von 1/2 sind jedoch perfekt permeationsfähig. (Eine 8 % Lipidsuspension ist in diesem Fall fast so leicht filtrierbar wie Wasser.) Bei dieser Konzentration, die ungefähr 30 % der Solubilisierungsdosis der Fettsäure im alkalischen entspricht, werden die Liposomen also zu optimalen Transfersomen.

Die genauen Daten (0) sind in Abbildung 1 gezeigt. Die angegebenen Durchmesser wurden nach dem Permeationsversuch gemessen.

5 Beispiele 14-20:

Zusammensetzung:

349-358 mg Phosphatidylcholin aus Sojabohnen (+95 % = PC) 63.6-52.2 mg Ölsäure (+99 %)

10 mM Hepes

Herstellung:

Zu entsprechenden Mengen vom Lipid und Fettsäure, die eine relative Konzentrationsreihe von L/T = 1.92 bis 2.4 in Schritten von 0.08 ergeben, werden 4.5 ml Puffer pipettiert; der pH-Wert wird auf 7.2-7.3 eingestellt. Nach 6 tägiger Inkubation bei 4 Grad werden die Liposomen beschallt, bis ihr mittlerer Durchmesser cca. 0.8 Mikrometer beträgt.

Permeation und Charakterisierung:

Der Permeationswiderstand wird wie in den Beispielen 1-13 ermittelt. Seine Werte in Abhängigkeit von der Menge der randaktiven Substanzen ähneln Resultaten aus den Versuchen 1-13. Die Vesikel sind jedoch etwas größer (um 500 nm), was die vergleichsweise niedrige Flußgeschwindigkeit beim Passieren des Filters in diesem Versuch erklären läßt.

Die entsprechenden Meßdaten (+) sind in der Abbildung 1 dargestellt.

Beispiele 21-31:

Zusammensetzung:

322.6-372 mg

Phosphatidycholin aus Sojabohnen (+95 % = PC)

96.8-34.9 mg

Ölsäure (+99 %)

0.403-0.465 ml

Ethanol, absolut

10 mM 130 mM Hepes NaCl, p.a.

Herstellung:

10

5

Es wird im wesentlichen wie bei den Beispielen 14-20 verfahren. Der Unterschied besteht darin, daß die Elektrolytlösung isotonisch mit Blut ist.

Permeation und Charakterisierung:

15

20

Der Permeationswiderstand entspricht im Rahmen der Meßfehler den Ergebnissen aus den Beispielen 1-13. Auch die Vesikelgrößen sind ähnlich. Gleich nach der Herstellung liegen sie im Bereich von 320-340 nm. 8 Tage später sind die Vesikel jedoch auf ca. 440 nm gewachsen.

Die entsprechenden Meßdaten sind in der Abbildung 2 dargestellt.

Beispiele 32-39:

Zusammensetzung:

25 184.5-199.8 mg

Phosphatidylcholin aus Sojabohnen (+95 % = PC)

20.5-22.2 mg

Phosphatidylglycerol aus Ei-PC (reinst, Na-Salz, = PG)

44.9-26.1 µl

Ölsäure (+99 %)

0.165-0.178 ml

Ethanol, absolut

4.5 ml

Hepes, 10 mM

30

40

Herstellung:

Trockenes PG und alkoholische PC-Lösung werden durchgemischt, bis eine klare Lösung mit 90 % PC und 10 % PG vorliegt. Zu dieser Lösung wird Ölsäure hinzupipettiert; die resultierenden Lipid/Tensid-Verhältnise liegen zwischen 1.6 und 2.8; zusätzlich wird auch eine isomolare Probe gemacht. Diese Gemische werden mit jeweils 4.5 ml einer sterilen Pufferlösung vermengt (Lipidkonzentration 4 %) und nach dem Einstellen des pH-Wertes mit NaOH 3 Tage stehengelassen.

Permeation und Trägercharakteristika:

Der Permeationswiderstand wird wie in den Beispielen 1-13 ermittelt. Die gemessenen Werte sind in der Regel kleiner als diejenigen, die für die ungeladenen Träger mit einem vergleichbarem L/T-Verhältnis charakteristisch sind; die niedrigere Lipidkonzentration spielt diesbezüglich eine untergeordnete Rolle, wie Experimente mit 4 % Suspension von PC und Olsäure gezeigt haben.

Auch im Falle von 4 % PC/PG-Gemischen ist ein Widerstandminimum zu finden; dieser liegt jedoch bei L/T-Werten, die um 20 % höher sind, als im Falle einer 8 % Lipidsuspension. Die Vesikeldurchmesser unterscheiden sich dagegen kaum von denjenigen, die in Beispielen 1-13 gemessen wurden.

Die genauen Permeationsdaten sind in Abbildung 3 gezeigt. Die angegebenen Durchmesser wurden nach dem Permeationsversuch gemessen. Am Tag 40 nach der Herstellung sind sie jedoch kaum größer als am Anfang; Abbildung 4 illustriert das.

Beispiele 40-49:

Zusammensetzung:

55

301.3-335.4 mg

Phosphatidylcholin aus Sojabohnen (+95 % = PC)

123.3-80.8 μΙ

Tween 80 (reinst)

0.38-0.42 ml

Ethanol, absolut

4.5 ml

Phosphatpuffer, isotonisch, steril

Herstellung:

In die entsprechenden Volumina einer alkoholischen PC-Lösung werden zunehmende Mengen von Tween 80 pipettiert. Dadurch entseht eine Konzentrationsreihe mit 12.5 bis 25 mol% Tensid (L/T = 4-8). Zusätzlich werden auch noch Probem mit L/T = 2 und 3 hergestellt. Nach der Zugabe von Puffer entstehen Liposomen, die gleich danach mit Hilfe eines 0.8 Mikrometer-Filters etwas verkleinert werden.

70 Permeation und Trägercharakteristika:

Der Permeationswiderstand wird auf die bereits beschriebene Weise gemessen. Die entsprechenden Werte (0) sind in dem linken Teil der Abbildung 5 gezeigt. Wie im Falle von ölsäurehaltigen Transfersomen ist relativ weit entfernt von dem Solubilisierungspunkt ein Bereich anomal hoher Permeationsfähigkeit (bei L/T = 6) zu sehen. Maximale Permeationsfähigkeit wird jedoch erst unterhalb von L/T = 4 erreicht; das Transfersomenoptimum liegt also in einem Bereich, der sich um den Faktor 1.5-2 von dem Solubilisierungbereich unterscheidet.

Die genauen Permeationsdaten sind in Abbildung 5 gezeigt (breite Linien, linkes Bild). Die Meßdaten im rechten Bild dokumentierten die nach dem Permeationsversuch gemessenen Vesikeldurchmesser.

Beispiele 50-61:

Zusammensetzung:

314.2-335.4 mg

Phosphatidylcholin aus Sojabohnen (+95 % = PC)

107.2-80.8 ய

Tween 80 (reinst)

4.5 ml

Phosphatpuffer, isotonisch, steril

Herstellung:

30

20

Zu entsprechenden Mengen von PC werden zunächst Tween 80 und dann Phosphatpuffer, pipettiert. Das Gemisch wird auf einem Schüttler 4 Tage bei der Raumtemperatur gemischt. Danach wird wie in den Beispielen 40-49 verfahren.

Permeation und Trägercharakteristika:

Die entsprechenden Permeabilitätsdaten sind in Abbildung 5 (dünne Striche) wiedergegeben. Sie bestätigen im wesentlichen die Ergebnisse der Beispiele 40-49.

40 Beispiele 62-75:

Zusammensetzung:

193-361 mg

Phosphatidylcholin aus Soja-Bohnen (Grade I, S100)

207.2-38.8 mg

Na-Cholat, puriss.

4.5 ml

Phosphatpuffer (isoton mit physiologischer Lösung)

Ethanol, absolut

Herstellung:

50

45

Zu jeweils 0.5 mL einer heißen S100-Lösung in Ethanol (2/1, M/V) werden solche Mengen von Gallensäuresalz hinzugegeben, daß eine Reihe mit steigendem Lipid/Tensid-Verhältnis zwischen 1/2 und 5/1 entsteht. Die Gesamtlipidkonzentration am Ende ist jeweils 8 %.

Vesikel-Permeation durch die Kontriktionen und Vesikel-Solubilisierung:

Der Permeationswiderstand der Proben wird wie in Beispielen 1-13 gemessen. Die Vesikelgröße wird mittels dynamischer Lichtstreuung bestimmt. (Radii von Teilchen, die kleiner sind als 5 nm, sind aufgrund

der kleinen Leistung des verwendeten Lasers nicht erfaßbar.)

Die Meßergebnisse sind in Abb. 6 dargestellt. Sie zeigen, daß der Permeationswiderstand von Transfersomen mit einem L/T-Verhältnis unterhalb von 3.5/1 sehr klein ist, danach aber merklich zunimmt (linkes Bild); der Anstieg des mittleren Vesikeldurchmessers oberhalb von L/T = 2.75 (rechtes Bild) ist wahrscheinlich eine Folge verminderter Durchflußgeschwindigkeit (und daher verminderter hydrodynamischen Zerrkraft), die durch den gestiegenen Permeationswiderstand in diesem Konzentrationsbereich verursacht wird.

Unmittelbar oberhalb der Solubilisierungsgrenze (bei L/T zwischen 1.25/1 und 2.5/1) sind die Lipidvesikel bereits einige Stunden nach der Herstellung signifikant größer als in der Nähe des 'Transfersomen-Optimums'. Solche unerwünschte Folge der Tensidaktivität (siehe z.B. Fromherz, P. in: 'Galstone Disease, Pathopyxiology and Therapeutic Approaches, pp 27-33, Springer, Berlin, 1990) sollte immer berücksichtigt werden. Bei L/T von ca. 1.25/1 setzt die Solubilisierung ein, die zur Entstehung von kleinen, hier nicht mehr erfaßbaren, etwa 5 nm großen Mischmizellen führt.

5 Beispiele 76-91:

Zusammensetzung:

1.627-0.5442 g

Phosphatidylcholin aus Soja-Bohnen (Grade I, S100)

4.373-0.468 g

Na-Cholat, puriss.

60 ml

20

Phosphatpuffer (physiologisch)

Herstellung:

Eine 10 % Suspension von S100 in Phosphatpuffer wird bei Raumtemperatur mit Ultraschall behandelt, bis die mittlere Vesikelgröße ungefähr 350 nm erreicht hat.

Die Suspension wird in drei gleiche Volumenteile geteilt, die 10 %, 1% und 0.2 % Phospholipid enthalten. Aus diesen Volumina werden Aliquote mit je 5 ml Suspension gebildet. Diese werden mit steigenden Mengen von Natriumcholat versetzt (teilweise aus einer konzentrierten Mizellensuspension), die L/T-Verhältnise zwischen 1/5 und 5/1 ergeben. Vor jeder Permeations- und Solubilisierungsmessung werden die Ausgangs-Suspensionen 1 Woche bei 4°C gealtert.

Vesikel-Permeation durch die Konstriktionen und Solubilisierung:

Um den Permeationswiderstand der Proben zu erfaßen, werden zwei Verfahren verwendet.

Im ersten Testansatz werden die Suspensionen unmittelbar vor jeder Messung auf die Lipidkonzentration von 0,2 % gebracht und anschließend mit einem kleinen Überdruck durch Filter mit 0,1 Mikrometer Porendurchmesser gepreßt. Der Widerstand wird dem Umkehrwert des Volumens, das innerhalb von 5 Minuten durch die Poren dringt, gleichgesetzt.

Im zweiten Testansatz wird der Permeationswiderstand der Proben wie in Beispielen 1-13 ermittelt und jeweils durch Division der Werte mit der Lipidkonzentration normiert.

Die entsprechenden Messdaten zeigen, daß sowohl die Solubilisierungsgrenze als auch die Position des 'Transfersomen-Optimums', ausgedrückt in Form des bevorzugten L/T-Verhältnisses, von der Lipidkonzentration abhängit: im Falle einer 10 % Suspension betragen die entsprechenden Werte um 1/1 und 2.75/1; für die 0,2 % Suspension steigen sie auf 1/4 und 1/1.

Beispiele 92-98:

Zusammensetzung:

50

16.3-5.4 mg Phosphatidylcholin aus Soja-Bohnen (Grade I, S100)

41.5-5.5 mg

Na-Desoxycholat, puriss.

5 ml

Phosphatpuffer (physiologisch)

Herstellung:

Eine 1 % Suspension von desoxycholathaltigen Vesikeln wird wie in den Beispielen 76-91 beschrieben hergestellt.

Vesikel-Permeation durch die Konstriktionen und Solubilisierung:

Die Messungen dieser Versuchsreihe zeigen, daß die desoxycholathaltigen Vesikel bereits bei L/T um 1/2, d.h. bei einem um den Faktor 2-3 niedrigeren L/T-Verhältnis, solubilisiert und permeationsfähig werden als die \$100/Na-Cholat Vesikel.

Beispiele 99-107:

Zusammensetzung:

Suspension von Phosphatidylcholin aus Soja-Bohnen (Grade I, S100) in Phosphatpuffer Na-3 mM Cholat, puriss.

Herstellung:

15

10

Eine 3 mM Suspension von S100 in Phosphatpuffer wird bei Raumtemperatur vorhomogenisiert. Zu je 3 ml dieser Suspension werden zunehmende Mengen von Natriumcholat gegeben, damit eine Reihe mit L/T-Verhältnisen zwischen 1/2 und 12/1 entsteht. Nach 3 tägiger Inkubation werden diese Aliquots bei 55°C im Pulsmodus beschallt und gleichzeitig die optische Dichte bei 400 nm aufgezeichnet. Die Analyse der Meßergebnisse mit einem biexponentiellen Modell ergibt zwei charakteristische Vesikularisierungswerte (tau 1 und tau 2), die die temporale Abhängigkeit der Vesikelschalenzahl (tau 1) und der Vesikelgröße (tau 2) charakterisieren.

Vesikel-Charakteristika und Deformierbarkeit:

Die in Abb. 7 dargestellten Werte von tau 1 und tau 2 zeigen, daß die mechanische Eigenschaften von Transfersomen, die sich in dem Parameter tau 2 widerspiegeln, eine ähnliche L/T-Abhängigkeit aufweisen wie die Solubilisierung und Permeationsfähigkeit (vgl. Abb. 6). Für die hier untersuchte 0.2 % Suspension bedarf es ungefähr 1 Cholatmoleküls/Lipid, damit die Vesikularisierung (Bildung von geschlossenen, vorwiegend einschaligen Vesikeln) rasch vorangehen kann.

Beispiele 108-119:

Zusammensetzung:

35

55

121,2-418,3 mg

Phosphatidylcholin aus Soja-Bohnen (Grade I, PC)

378,8-81,7 mg

Triton X-100

4.5 ml

0.9 % NaCl Lösung in Wasser

Herstellung:

Eine 10 % PC-Suspension in isotonischer Kochsalzlösung wird bei 22°C homogenisiert, bis die mittlere Vesikelgröße ungefähr 400 nm beträgt. Diese Suspension wird in Aliquots von ca. 4,8 ml verteilt. Zu jedem von diesen Aliquots wird solches Volumen von Triton hinzugefügt, daß eine Reihe mit nominalem PC/Triton Verhältnis von 0,25 bis 4 in Schritten von 0,5 entsteht. Alle Suspensionen werden gelegentlich durchmischt und insgesamt 14 Tage bei 4°C gealtert.

Vesikel-Solubilisierung:

Die optische Dichte (OD (400 nm)) von (1/10 verdünnten) Lipid-Triton-Gemischen, die einen Einblick in die Vesikelsolubilisierung gibt, ist in dem rechten Teil von Abb. 8 dargestellt. Die Solubilisierungsgrenze 50 liegt bei ungefähr 2 Tritonmolekülen je PC-Molekül. Unmittelbar unterhalb dieser Grenze sind die OD(400 nm) und daher die Vesikeldiameter am größten; oberhalb von PC/Triton 2,5/1 ist die Veränderung der optischen Dichte nur noch minimal.

Vesikel-Permeation und -Charakteristika:

Um die Permeationsfähigkeit von entstandenen Lipidvesikeln und Transfersomen zu erfassen, wurden

alle Suspensionen, wie in Beispielen 1-13 beschrieben, durch feinporige (0,22 Mikrometer) Filter gepreßt. Der dafür erforderliche Überdruck steigt graduell mit abnehmender Triton-Konzentration in der Suspension, und beschränkt oberhalb von L/T = 2/1 die Permeationsfähigkeit der Träger zusehends.

Die entsprechenden Ergebnisse sind in linken Hälfte der Abb. 8 zusammengefaßt.

Beispiele 120-128:

Zusammensetzung:

403,5-463,1 mg

Dipalmitoylweinsäureester, Na-Salz

96,5-36,9 mg 4,5 ml

Laurylsulfat, Na-Salz (SDS) Triäthanolamin Puffer, pH 7.5

Herstellung:

15

30

10

In dieser Versuchsreihe wurde ein synthetisches Lipid, das in biologischen Systemen nicht vorkommt, als Grundlage für die Transfersomen eingesetzt. Für die Experimente wurden entsprechende Mengen von Trockenlipid in Glasgefäßen mit je 4,5 ml Puffer gemischt. In diesem Puffer war so viel von Natriumdodecylsulfat (SDS) enthalten, daß das L/T-Verhältnis zwischen 2/1 und 6/1 variierte. Gut durchmischte Suspensionen wurden zuerst 24 Stunden bei Raumtemperatur gelagert und anschließend nochmals gut gemischt.

Permeationsfähigkeit und Vesikelcharakteristika:

Die Liposomen werden durch ein 0,2 Mikrometer Filter gedrückt. Dabei wird der Permeationswiderstand gemessen. Vesikel mit einem L/T-Verhältnis unterhalb von 4/1 passieren sehr leicht die Membranporen, während die Vesikel mit einem geringeren Tensidgehalt oder Vesikel ohne Zusatz von randaktiven Komponenten nur schwer (erst bei einem Überdruck von mehr als 5 MPa) oder gar nicht (die Membranen platzen) durch die Konstriktionen gelangen.

Beispiele 129-136:

Zusammensetzung:

101,6-227 mg 35

Phosphatidylcholin aus Soja-Bohnen

148,4-22,2 mg

Octyl-glucopyranosid (β -Octylglucosid), puriss.

9,85 ml

Phosphatpuffer, pH 7,3

Ethanol, absolut

Herstellung:

Phosphatidylcholin in Ethanol (50 %) und Octyl-glucopyranosid werden in unterschiedlichen relativen Mengen gemischt, um eine steigende Konzentrationsreihe mit L/T zwischen 1/4 und 2/1 (und einem Endlipidgehalt von 2,5 %) herzustellen. Zu jedem Lipidgemisch werden in einem Glasgefäß 4,5 ml Puffer hinzugefügt. Die Suspension wird auf einem Schüttler bei 25°C 48 Stunden lang gemischt. Ihre Trübung nimmt mit abnehmender Menge von Octylglucosid in der Probe zu. In den stehenden Proben bildet sich ein feiner Niederschlag. Vor Permeationsmessung wird jede Probe gut durchgemischt.

Vesikel-Permeation und -Charakteristika:

50

55

Alle Suspensionen lassen sich mit einem minimalen Überdruck unterhalb von 0,1-0.2 MPa problemlos durch ein Filter mit einem Porendurchmesser von 0,2 Mikrometer durchdrücken; lediglich die beiden Proben mit dem niedrigsten Tensidgehalt weisen einen kleinen Widerstand auf, der auf der renormierten Skala (gemäß Abbildungen 1-5) Werte um 1 und 2,5 annimt. Die Meßergebnisse sind in Abb. 9 präsentiert.

Wird der Porendurchmesser auf 0,05 Mikrometer herabgesetzt, sind nur noch die Suspensionen mit einem L/T-Verhältnis unterhalb von 2/1 filtrierbar.

Unabhängig von der verwendeten Porengröße sind die Präparationen mit einem L/T Verhältnis unterhalb von 2/1 jodoch nicht stabil; nach wenigen Tagen kommt es zu einer Phasentrennung zwischen einer

mizellenreichen und einer visikelreichen Phase.

Beispiele 137-138:

Zusammensetzung:

43,3 mg, 50 mg

Phosphatidylcholin aus Soja-Bohnen Phosphatidylethanolamin-N-Fluorescein

0,5 mg 6,7 mg, 0 mg

Cholat, Na-Salz, p.a.

5 ml

Hepes-Puffer, pH 7,3

Herstellung:

Phosphatidylcholin mit 1 %-Zusatz eines fluoreszierenden Lipidmarkers mit oder ohne Desoxycholat werden in 5 ml Puffer aufgenommen. Das Lipid/Tensid-Verhältnis liegt bei 3,5/1 bzw. 1/0. Beide 1 %-Suspensionen werden in einem Glasgefäß 1,5 bzw. 15 Minuten lang ultrabeschallt (25 W, 20 °C), bis sie nur noch Vesikel mit mittleren Durchmesser von ca. 100 nm enthalten.

Spontane Vesikel-Permeation:

20

Auf je ein Millipore-Filter mit Porendurchmesser von 0,3 Mikrometer in Swinney-Halterung, von der unteren Seite benetzt und zur Hälfte mit Wasser gefüllt, werden durch die obere Öffnung jeweils 50 Mikroliter der Lipidsuspension pipettiert. Durch leichtes Schwenken wird die Probe möglichst gleichmäßig verteilt und für 30 Minuten stehengelassen. Nach vorsichtigem Öffnen der Halterung trocknet der Lipidfilm innerhalb von 60 Minuten aus. Danach wird das Wasser, das sich in der Halterung unter der Membran befindet, abgezogen und fluoreszenzspektrometrisch untersucht (Exzitation 490 nm, Emission 590 nm). (Die gemessene Lichtintensität ist ein Maß für die Permeationsfähigkeit.)

Der durch die tensidhaltigen Transfersomen vermittelte Fluoreszenzmarkertransport führt zu einem Fluoreszenzsignal von 89,5; der Kontrollwert beträgt 44,1. Das zeigt, daß die Transfersomen fähig sind, die eingeschlossenen Stoffe effizient über die Permeabilitätsbarrieren zu transportieren.

Beispiele 137-139:

Zusammensetzung:

35

40

43,5, 45,3, 50 mg

Phosphatidylcholin aus Soja-Bohnen Phosphatidylethanolamin-N-Fluorescein

6,5, 4,7, 0 mg

Desoxycholat, Na-Salz, p.a.

5 ml

0.5 mg

Hepes-Puffer, pH 7,3

Herstellung und Resultate:

Die Lipidvesikel werden wie in Beispielen 137-138 beschrieben hergestellt und getestet. Die Messungen zeigen, daß die desoxycholathaltigen Transfersomen bereits bei einem charakteristischen Verhältnis L/T = 5/1 ähnlich gute Ergebnisse liefern wie cholathaltigen Transfersomen mit L/T = 3.5.

Beispiele 140-142:

Zusammensetzung::

50

50 mg; 43,3 mg; 15,9 mg

Phosphatidylcholin aus Soja-Bohnen Phosphatidylethanolamin-N-Fluorescein

0,5 mg

0 mg; 6,7 mg; 34,1 mg Ch

Cholat, Na-Salz, p.a.

5 ml

Hepes-Puffer, pH 7,3

55 Herstellung:

Lipidvesikel aus Phosphatidylcholin mit fluoreszierendem Lipidzusatz werden wie in Beispielen 137-138

hergestellt. Für den Versuch werden Suspensionen mit einem Lipid/Tensid-Verhältnis von 1/0, 4/1 und 1/4 verwendet. Die ersten beiden Proben enthalten fluoreszierende Lipid-Vesikel, die letzte Probe eine Mizellensuspension.

Spontane Penetration in Pflanzenblätter:

Eine frische Zwiebel wird vorsichtig zerpflückt, um einzeln Schalen, die chlorophyllarmen Pflanzenblättern entsprechen, zu gewinnen. Jeweils 25 Mikroliter der fluoreszierenden Suspension werden auf die konkave Innenseite der Zwiebelknollenschalen aufgetragen; sie bilden dort einen konvexen Tropfen mit ca. 0,25 Quadratzentimeter Fläche. (Die tensidhaltigen Träger sind an ihrem besseren Benetzungsvermögen leicht erkennbar.) Nach 90 Minuten wird der (makroskopisch) trockengewordene Lipidfilm mittels Wasserstrahl aus einer Spritzflasche mit jeweils 50 mL abgespült.

Die 'Blattoberfläche' erscheint nach dieser Behandlung im Falle von tensidhaltigen Transfersomen bzw. Mizellen makroskopisch leicht rötlich. Blätter, die mit tensidfreien Vesikeln inkubiert waren, sind von den nichtbehandelten Blättern nicht zu unterscheiden.

Fluoreszenzmikroskopische Untersuchungen durch ein Rotfilter (Anregung durch ein Blaufilter in Auflicht) zeigen, daß die Blätter, die mit Transfersomen bedeckt waren, über die ganze behandelte Fläche intensiv fluoreszieren; an einigen Stellen sind extrem brilliante Aggregate zu erkennen, die wahrscheinlich den nichtentfernten Vesikel-Clustern entsprechen.

Die Fluoreszenz der Blätter, die mit der Tensidlösung behandelt waren, ist an manchen Stellen vergleichbar intensiv, andererorts etwas schwächer als die Fluoreszenz der mit Transfersomen behandelten Blätter.

Die Blätter, die mit normalen Lipidvesikeln behandelt waren, fluoreszieren nicht. Sie sind über weite Teile der Oberfläche nicht von den Blatt-Teilen, die nicht behandelt waren, zu unterscheiden.

Das zeigt, daß Transfersomen im Stande sind, lipophile Substanzen spontan und irreversibel in das Blatt oder seine Oberfläche zu transportieren. In dieser ihrer Eigenschaft übertreffen sie die Präparate mit hochkonzentrierten Tensiden, d. h. anerkannten 'Membranfluidisatoren'.

Beispiele 143-145:

Zusammensetzung:

50 mg; 43,5mg; 17,1 mg

0.5 mg

30

35

40

50

55

0 mg; 4,7 mg; 32,9 mg

5 ml

Phosphatidylcholin aus Soja-Bohnen Phosphatidylethanolamin-N-Fluorescein

Desoxycholat, Na-Salz, p.a.

Hepes-Puffer, pH 7,3

Herstellung und Resultate:

Die Herstellung und die Ergebnisse sind im wesentlichen identisch mit denen aus Versuchen 140-142.

Beispiele 146-148:

Zusammensetzung:

50 mg; 36,4; 20 mg

Phosphatidylcholin aus Soja-Bohnen Phosphatidylethanolamin-N-Fluorescein

0 mg; 13,6 mg; 30 mg

Wasser

Brij 35

Herstellung und Resultate:

Die Herstellung und die Ergebnisse sind vergleichbar den Resultaten der Versuche 140-142 und 143-145

Beispiele 146-150:

Zusammensetzung:

84,2 bis 25 mg

Phosphatidylcholin aus Soja-Bohnen 80%

75 kBq

Giberellin A4, 3H-markiert

15,8 bis 75 mg

Polyoxyäthylen (23)-Lauryläther (Brij 35)

1 ml

5

20

30

Wasser

Ethanol, absolut

Herstellung:

Ethanolische Lipidlösung (50%) wird mit der entsprechender Menge einer ethanolischen Giberellinlösung vermischt und in 1 ml Wasser bzw. in entsprechende Volumina von Tensidsuspensionen gespritzt, die 10 %-Lipidkonzentration und L/T-Verhältnise von 8/1, 4/1, 2/1, 1/1 und 1/2 gewährleisten. Die Suspension wird mit Ultraschall kurz homogenisiert, damit die mittlere Vesikelgröße immer unter 300 nm ist.

Trägersuspensionen werden über die Oberfläche von jeweils 3 Blättern eines Ficus Benjaminii verteilt; dort trocknen sie 6 Stunden lang. Nach dem anschließenden, intensiven Waschen der Blattoberflächen mit jeweils 5 ml Wasser pro Quadratzentimeter Fläche wird nach dem Entfärben der Blätter mit Peroxid die Radioaktivität in dem Blatthomogenisat szintigraphisch in einem Beta-Zähler bestimmt.

Wirkstofftransport in Pflanzenblätter:

Die Messungen zeigen, ähnlich wie bei Beispielen 140-142, daß Wirkstoffmoleküle mittels Transfersomen wesentlich effizienter als mit einer Mizellenlösung in die Blattoberfläche getragen werden.

Beispiele 151-157:

Zusammensetzung:

32,8-0,64 mg

Phosphatidylcholin aus Soja-Bohnen (reiner als 95 %, PC)

75 kBa

Dipalmitoylphosphatidylcholin, Tritium-markiert

2,2-34,4 mg

Gallensäure, Na-Salz, p.a.

0,32 ml

Phosphatpuffer, pH 7,3

Herstellung:

Jeweils 35 mg Lipid werden mit Tritium-markiertem Dipalmitoylphosphatidylcholin in Chloroform vermischt. Nach dem Vakuumtrocknen werden die Gemische in 0,32 ml Puffer suspergiert; die nominalen Tensid/Lipid-Verhältnise betragen 0; 0,125; 0,167; 0,263; 0,5 und 1 mol/mol. Die Suspensionen werden beschallt, bis sie alle (bis auf die letzte, klare Mizellensuspension) vergleichbar opaleszent sind. (Die erforderlichen Beschallungszeiten nehmen mit dem steigenden T/L-Verhältnis ab.) Vergleichsmessungen mit kalten Suspensionen zeigen, daß die mittlere 'Teilchen'-Größe in den Proben um 100 nm sein muß. Für die Experimente werden 1 Tag alte Suspensionen verwendet.

Penetration in und durch die Haut:

Auf dem Rücken einer mit Äther narkotisierten, immobilisierten Nacktmaus werden sechs 1x1 cm große Areale markiert. Auf jedes von diesen werden in 3x5 Minuten Abständen jeweils 20 Mikroliter der Trägersuspension aufgetragen. Nach 60 Minuten wird die Maus getötet. Von jedem Hautareal wird eine Probe entnommen, die verkleinert, aufgelöst und entfärbt wird. Die hautassoziierte Radioaktivität wird szintigraphisch bestimmt.

Die entsprechenden Ergebnisse sind in Abb. 10 zusammengefaßt. Als Vergleich ist die normalisierte Wirkung angegeben, die aus unserer Patentanmeldung zur Verwendung von Liposomen zur örtlichen Betäubung übernommen ist. Optimierte Transfersomen sind den nichtoptimalen, aber tensidhaltigen Präparaten klar überlegen.

Beispiele 158-162:

55

Zusammensetzung:

31 mg Phosphatidylcholin aus Soja-Bohnen (reiner als 95 %, PC)

75 kBq Dipalmitoylphosphatidylcholin, Tritium-markiert

4 mg Deoxycholat, Na-Salz, p.a. 0,32 ml Phosphatpuffer, pH 7,3

: Herstellung:

15

20

Jeweils 35 mg Lipid (PC und Deoxycholat) werden mit Tritium-markiertem Dipalmitoylphosphatidylcholin in Chloroform vermischt. Das Lipidgemisch wird getrocknet und in 30 Mikroliter warmem, absoluten Ethanol aufgenommen. Diese Lösung wird mit 0,32 ml Puffer (Phosphat 10 mm, 0,9 % NaCl) vermengt; das entspricht L/T = 4/1. Die entstandene Suspension wird kräftig durchgeschüttelt und anschließend sequentiell durch 0,8; 0,45; 0,22 und 0,1 Mikrometer-Filter gepreßt, um Lipidvesikel mit einem Durchmesser von ca. 800, 400, 200 bzw. 100 nm zu erzeugen (Suspensionen A, B, C, D).

Penetration in und durch die Haut:

Die Schwänze von je 2 narkotisierten Mäusen werden über einen Zeitraum von 15 min mit jeweils 50 Mikroliter von entsprechenden Vesikelsuspension bestrichen. Zwei Kontrolltiere erhalten eine i.v. Injektion von 0,2 ml 1/10 verdünnter Suspension B. Nach 30, 60, 120, 180, 240 und 360 Minuten werden aus der Schwanzspitze Blutproben entnommen. Die Radioaktivität dieser Proben, die mittels

Betastrahlenszintigraphie besttimmt wird, wiederspiegelt die systemische Konzentration von trägerassoziiertem, radioaktiv markierten Lipid.

Die Messdaten zeigen (Abb. 11), daß systemisch verabreichte Transfersomen vergleichbar schnell aus dem Blut entfernt werden wie Standardliposomen. Die Trägergröße scheint die spontane Penetration der Haut nicht signifikant zu beeinflußen. Alle in dieser Versuchsreihe untersuchten Transfersomen dringen nach 4 Stunden zu ca. 1 Träger in die Tiefe des Körpers, Tendenz steigend.

Beispiele 163-165:

Zusammensetzung:

88 mg Phosphatidylcholin aus Soja-Bohnen (reiner als 95 %, PC)
75 kBq Inulin, Tritium markiert
12 mg Deoxycholat, Na-Salz, p.a.
100 ml Ethanol, absolut
35 0,9 ml Isotonische Kochsalzlösung

Herstellung:

100 mg PC in 100 ml warmem Ethanol, oder eine entsprechende PC/Deoxycholat Lösung (L/T = 4,5), werden in jeweils 0,9 ml isotonischer Kochsalzlösung aufgenommen (Suspensionen A und B, respektive). Jede Suspension wird beschallt, bis die Vesikelgröße um 150 nm ist.

Zu 38 Mikrolitern von frischer Suspension leerer Liposomen (A) oder Transfersomen (B) werden 12 Mikroliter einer wässrigen Lösung von Tritium-markiertem Inulin pipettiert. Die Gemische werden ansschließend in verschlossenen Gefäßen 60 Minuten im Ultraschallbad bei Raumtemperatur nachbeschallt und 24 Stunden später für die Versuche verwendet.

Spontane Inulinübertragung durch die Haut:

Auf die (3 Tage vorher) mit Pinzette enthaarten Bäuche von narkotisierten NMRI-Mäusen werden auf ca. 1 cm² Fläche jeweils zweimal 10 Mikroliter der inulinhaltigen Vesikel in 3-5 minütigem Abstand aufgetragen. Nach 15, 30, 60, 120, 180, 240, 300 und 360 Minuten werden jeweils 0,05 ml Blut aus dem Schwanz entnommen und szintigraphisch untersucht. Nach 6 Stunden wird subcutanes Gewebe der Auftragsstelle, sowie die Leber und Milz der Versuchstiere entnommen; nach dem Auflösen und Entfärben werden diese Organe ebenfalls szintigraphiert.

Die Versuchsergebnisse sind in Abb. 12 zusammengefaßt. Sie zeigen, daß normale Liposomen keine perkutane inulinaufnahme vermitteln. Im Gegensatz dazu gelangen nach 6 Stunden ca. 1,4 % des mittels Transfersomen applizierten Markers ins Blut. Die Übertragung setzt nach etwa 2-3 Stunden ein und ist nach 6 Stunden noch nicht abgeschlossen.

Nach 6 Stunden sind im Falle von Transfersomen durchschnittlich 0,8 % (das entspricht 24,1 % der wiedergefundenen Dosis) in der Haut der Auftragsstelle; 0,9 % werden in der Leber gefunden; in der Milz sind weniger als 0,1 % der absoluten Dosis enthalten. Im Körper (Blut, Milz, Leber) befinden sich also 73,8 % der wiedergefundenen Dosis.

Im Gegensatz dazu sind ungefähr 2 % von den normalen Liposomen an der Auftragsstelle wiederzufinden, während die Dosis in

Leber und Milz unterhalb von 0,1 % liegt. Das entspricht 95,3 % der wiedergefundenen Dosis an der Auftragsstelle und 6,7 % solcher Dosis im Körper der Versuchsmaus.

10 Beispiel 166:

Zusammensetzung:

15	386 mg 58,5 mg	Phosphatidylcholin aus Sojabohnen (reiner als 95 %) Natrium-Cholat (L/T = 3,5)
	500 ul	Ethanol (96 %)
	2,25 ml	n 9 % NaCl-Lösung (pro Injekt.)
	2,25 ml	Actrapid HM 40 (entspricht 90 I.U. rekombinantes Humaninsulin)

20 Herstellung:

Die Herstellung erfolgt im wesentlichen wie in Beispielen 62-75 beschrieben. Zu der Lipidlösung im Ethanol wird ein Gemisch von wässriger Lösung aus Kochsalz und humanem, rekombinanten Insulin (mit 6,75 mg m-Cresol) hinzugefügt. Es entsteht eine trübe Suspension, die über Nacht gealtert wird. Nach 12 Stunden wird diese Suspension mittels Stickstoffgas mit einem Druck von 0,25 MPa unter sterilen Bedingungen durch ein Sterilfilter (Anodisc, Porendurchmesser 0.2 Mikrometer) gepreßt und anschließend abgepackt.

Das nominale Lipid/Tensidverhältnis beträgt 3,5, die berechnete molare Tensidkonzentration in der Lipiddoppelschicht ca. 5/1. Das entspricht 50 % der Solubilisierungskonzentration.

Der mittlere Vesikelradius der fertigen Suspension in dieser Präparation beträgt 97 nm.

Anwendung:

30

0,5 ml einer frischen, insulinhaltigen Transfersomen-Suspension werden auf die unvorbehandelte Haut am linken Unterarm einer informierten, freiwilligen, gesunden, männlichen, seit 18 Stunden nüchternen Testperson (37 Jahre) aufgetragen und über ca. 10 cm² verteilt. 5 Minuten später werden noch 300 Mikroliter derselben Suspension zu jeweils einer Hälfte auf den Unter- und Oberarm plaziert. 5-10 Minuten später ist die Suspension am Oberarm (Dosis ca. 2,5 mg/cm²) nicht mehr sichtbar, also vollkommen eingedrungen, während am Unterarm (Dosis ca 7,5 mg/cm²) sind zu diesem Zeitpunkt die Lipidreste noch gut sichtbar.

Wirkung:

Um die Insulinwirkung zu erfaßen, wird am rechten Handgelenk ca. 2 Stunden vor dem Probeauftrag ein i.v. Katheter positioniert. In Zeitabständen von 15-45 Minuten werden jeweils 1-1,5 ml Blut gezapft; die ersten 0,5-1 ml davon werden verworfen und die restlichen 0,5 ml für den üblichen enzymatischen Glucosetest verwendet. Es werden jeweils drei Bestimmungen mit drei bis vier unabhängigen Proben durchgeführt. Die Messergebnisse sind in der Abbildung 13 zusammengefaßt. Sie zeigen, daß mittels Transfersomen ca. 90 Minuten nach dem Auftrag eine signifikante Blutglucosesenkung eintritt, die ungefähr 2 Stunden dauert und ca. 50 % der Höhe und 200 % der Dauer der Wirkung einer vergleichbaren subkutanen Insulinapplikation erbringt.

Beispiel 167-172:

55 Zusammensetzung:

956 mg	Phosphatidylcholin aus Sojabohnen (+95 %)
0-26 ma	Natrium-Deoxycholat

1 mg Prostaglandin E1 1 ml Ethanol absolut

50 ml 0,9 % NaCl-Lösung (pro Injekt.)

5 Herstellung:

In ein Glasfläschchen mit 1 mg Prostaglandin wird 1 ml Ethanol pipettiert. Nach Durchmischen wird die Prostaglandinlösung zu dem Trockenlipid in einem anderen Glasgefäß übertragen. Mit der neuen Lipid/Prostaglandinlösung wird das ursprüngliche Fläschchen nochmals gespült und anschließend mit 6 ml einer isotonischer Kochsalzlösung versetzt. Das Prostaglandin-Fläschchen wird mit weiteren 2x2 ml von 0,9 % NaCl gewaschen und dies mit der ursprünglichen Lipidsuspension vermischt. Die Probe wird fünfgeteilt; in die einzelnen Aliquots wird Natrium-Desoxycholat eingewogen und zwar 0; 1,6; 3,25; 6,5 bzw. zweimal 13 mg/ml.

Die resultierenden 10 % Suspensionen werden 24 Stunden gealtert und anschließend, je nach dem Desoxycholatgehalt, ultrabeschallt bzw. manuell durch ein 0,2 Mikrometer-Filter gepreßt. Die Proben mit dem höchsten Tensidgehalt werden entweder mittels Filtration oder mit Ultraschall erzeugt. Zuletzt werden die Suspensionen auf 20 Mikrogramm PGE1/ml verdünnt und in dunklen Spritzflaschen im Kühlschrank aufbewahrt. Der Vesikelradius gleich nach der Herstellung war 85 nm, nach 2 Monaten 100 nm.

20 Anwendung und Wirkung:

Jeweils 0,25 ml der Lipidsuspensionen werden auf benachbarte, aber nicht zusammenhängenden Areale der Bauchhaut augetragen. Nach 10 Minuten ist die Hautoberfläche trocken; nach 15 Minuten ist an einigen Applikationsstellen leichte Rötung zu beobachten, die nach Probandenbericht mit einem stumpfen Schmerzgefühl einhergeht. Der Rötungsgrad wurde mit 0, 0, 0, 0-1, 3 und 3 Punkten (auf einer Skala von 1-10) eingestuft.

Dieses Ergebnis zeigt, daß lediglich Transfersomen, nicht aber normale Liposomen oder unoptimierte, detergenshaltigen Vesikel für die Wirkstoffpenetration taugen. Die Herstellungsart ist für diese Anwendung irrelevant.

Beispiele 173-175:

30

35

40

55

Zusammensetzung:

79,4 mg; 88,5 mg Phosphatdylcholin aus Sojabohnen (+95%)

20,6 mg, 11,5 mg Natrium-Deoxycholat

10 μg Hydrocortison

0,1 ml Ethanol absolut

1 ml Phosphatpuffer, physiologisch

Herstellung:

Lipide und Hydrocortison werden als ca. 50 % ethanolische Lösung gemischt und anschließend mit 0,95 ml Phosphatpuffer versetzt. Die dabei entstehende, sehr heterogene Suspension wird mittels Utraschall (25 W, 3-5 min) nachbehandelt. Proben mit L/T-Verhältnis von 2/1 lassen sich gut , Proben mit L/T = 4/1 dagegen vergleichsweise schlecht homogenisieren.

Proben mit 1 und 2,5 Gew.-% ergeben unabhängig von dem L/T Verhältnis stabile Suspensionen; 10 Gew.-% Wirkstoff lassen sich nicht stabil in Transfersomen der gegebenen Zusammensetzung einarbeiten.

50 Beispiele 175-200:

Zusammensetzung;

1,1 - 2mg Phosphatidylcholin aus Sojabohnen (+95% = PC)

0 - 32,5 mol% Tween 80

ph 7.2 isotoner Phosphatpuffer

Herstellung:

In jeweils 25 ml Puffer werden unterschiedliche Mengen von Phospholipid und Tensid eingewogen bzw. einpipettiert, damit eine Konzentrationsreihe mit 0 - 32,5 Mol% Tween 80 bei gleichbleibender 2% Gesamtlipidkonzentration entsteht. Die Proben werden steril abgefüllt und 4 bis 34 Tage gealtert. Anschließend wird ihre optische Dichte bestimmt. Diese ist stark vom Tensidgehalt, aber im Rahmen der Meßbedingungen kaum zeitabhängig.

Charakterisierung:

Jeweils 23 Proben von je 3 ml aus einzelnen Lipidsuspensionen werden in verschlossenen Gefäßen in einem Utraschallbad beschallt. Nach drei, vier und sechs Stunden wird ihre Trübung gemessen. Dieser Vorgang wird mit einer neuen Versuchsreihe wiederholt, wobei die Positionen von einzelnen Probem systematisch variiert werden; die Trübungsmessung erfolgt wieder nach drei, vier und sechs Stunden. Die entsprechenden, zu einer Konzentration gehörenden Werte werden gemittelt und als Maßstab für die Vesikularisierungsfähigkeit der Probe betrachtet.

Dieses Verfahren kann als eine Ergänzung bzw. Alternative zur Resistenzmessung, wie sie in Beispielen 40.49 beschrieben ist, betrachtet werden. Abb. 16 zeigt z.B., daß die für eine gute mechanische Deformierbarkeit erforderliche Tensidmenge im Falle von Tween 80 etwa 2- bis 3-fach niedriger ist, als die entsprechende Solubilisierungsmenge. Dieses Ergebnis ist um guten Einklang mit den Resultaten der Permeationsversuche.

Beispiele 201-215

20

25

35

55

Zusammensetzung:

256,4-447 mg Phosphatidylcholin aus Sojabohnen (+95% = PC)

243,6-53,1 mg Brij 96

0,26-0,45 ml Ethanol, absolut

4,5 ml Phosphatpuffer, ph 6,5, 10 mM

30 Herstellung:

In die entsprechenden Volumina einer alkoholischen PC-Lösung werden zunehmende Mengen von Brij 96 pipettiert. Dadurch entsteht eine Konzentrationsreihe mit L/T zwischen 1/1 und 1/8. Nach der Zugabe von Puffer entstehen sehr heterogene Liposomen, die mittels Filtration durch einen 0,2 µm Filter homogenisiert werden.

Permeation und Trägercharakteristika:

Für die Messung des Permeationswiderstandes wird die bereits beschriebene Methode verwendet. Die entsprechenden Werte sind in dem linken Teil der Abb. 14 als Kreise bzw. Kreuze (zwei unabhängige Versuchsreihen) gezeigt. Der Verlauf der Permeationsresistenz als Funktion des L/T Verhältnisses ist ähnlich wie im Falle von etwaigen Transfersomen und ist in der rechte Hälfte der Abb. 14 dargestellt. Maximale Permeationsfähigkeit wird erst unterhalb von L/T = 3 erreicht.

45 Beispiele 216-235

Zusammensetzung:

202,0-413 mg Phosphatidylcholin aus Sojabohnen (+95% = PC)

50 298,0-87,0 mg Myrj 49

0,26-0,45 ml Ethanol, absolut

4,5 ml Phosphatpuffer, pH 6,5, 10 mM

Herstellung und Charakterisierung:

Die Transfersomen werden wie in Beispielen 201-215 beschrieben hergestellt und charakterisiert. Ihre Permeationseigenschaften in Abhängigkeit von der relativen Tensidkonzentration in den Proben ist in der linken Seite der Abb. 15 dargestellt. Die rechte Seite enthält die entsprechenden Gleichgewichtsdaten, die

jedoch über die Vesikelfähigkeit zur Permeation und Wirkstoffübertragung keine Auskunft geben können.

Beispiel 236:

5 Zusammensetzung:

144,9 mg Phosphatidylcholin aus Sojabohnen 24,8 mg Desoxycholat, Na-Salz 1,45 ml Actrapid HM 100 (145 I.U.) 0,16 ml Ethanol, absolut

Herstellung.

Beide Lipide werden in entsprechenden Mengen im Ethanol gelöst und mit handelsüblicher Insulinlössung versetzt. Nach 12 Stunden wird die grobe Trägersuspension durch Filtration feinzerteilt und homogenisiert. Der mittlere Vesikeldurchmesser beträgt 225 ± 61 nm. Die nominale Insulin-Konzentration ist 83 I.U. Auf den rechten Unterarm werden über eine Fläche von ca. 10 Quadratzentimeter 0,36 ml (30 I.U.) von Insulin Transfersomen verteilt. Die Blutproben werden alle 10 Minuten über einen heparinisierten Dauerkatheter aus einer Vene am rechten Unterarm entnommen; die ersten 0,5 ml werden jeweils verworfen; die anschließenden 0,5-0,8 ml von jeder Probe werden sedimentiert und sofort eingefroren; mit dem restlichen Volumen wird die Glucosekonzentration bestimmt.

Wirkung:

Diese tensidhaltigen Liposomen sind nur wenig im Stande, Insulin über die Haut zu tragen, wie aus Abbildung 17 ersichtlich ist. Je nach Wahl des auszuwertenden Bereiches beträgt die Senkung des Blutglucosespiegels, die sie vermitteln, zwischen 2 und 5 mg/dl für die Dauer von höchstens 30-40 Minuten. Mit vergleichbarer subkutaner Injektion wäre der Effekt um den Faktor von 50-200 höher. Detergensreiche Liposomen, die nicht hinsichtlich ihrer transfersomalen Eigenschaften optimiert sind, sind folglich als Träger für perkutane Applikation wenig geeignet. Der Tensidgehalt solcher Träger kann keine optimale Agenspermeation durch die Haut vermitteln.

Dies zeigt, daß erfindungsgemäße Präparate zwar auch dann (noch) wirksam sein können, selbst wenn sie hinsichtlich des Gehaltes an randaktiver Substanz nicht optimiert sind; die maximalen Vorteile der Erfindung werden aber nur erreicht, wenn der größtmögliche Permeationsfähigkeit gewährleistende Gehalt an randaktiver Substanz erfindungsgemäß ermittelt und eingehalten wird.

Die vorstehend an den Beispielen 166 und 236 schon gezeigte Möglichkeit, Antidiabetica und insbesondere Insulin nichtinvasiv zu applizieren, sofern dafür erfindungsgemäß optimierte Transfersomen eingesetzt werden, wird im folgenden eingehender untersucht.

Bestrebungen, antidiabetische Stoffe in den Körper zu bringen, ohne die übliche Injektionsnadel zu verwenden, bestehen schon lange (siehe z.B. die Übersicht von Lassmann-Vague, (Diabete. Metab. 14,728,1989). So wurde z.B. vorgeschlagen, implantierbare Vorratsbehälter (Wang, P.Y. Biomaterials 10, 197, 1989) oder Pumpen (Walter, H et al., Klin. Wochenschr. 67, 583, 1989) zu benutzen, eine Insulinlösung transnasal (Mishima et al., J. Pharmacobio.-Dynam. 12, 31, 1989), perocular (Chiou et al., J. Ōcul. Pharmacol. 5, 81, 1989), peroral in einer Liposomensuspension (Rowland & Woodley, Biosc. Rep. 1, 345, 1981) oder transrectal zu applizieren; wenn die Insulinmoleküle durch die Haut eingebracht werden sollen, wurde die Agenslösung z.B. transcutan mittels Jetinjektion (Siddiqui & Chien, Crit. Rev. Ther. Drug. Carrier. Syst. 3, 195, 1987), mit Hilfe von kleinen Injektoren (Fisken, Lancet 1, 787, 1989), von elektrischen Feldern (Burnette & Ongpipattanakul, J. Pharm. Sci. 76, 765, 1987; Meyer, B.R et al., Amer. J. Med. Sci. 297, 321, 1989) bzw. von chemischen Additiva permeationsmäßig unterstützt.

Alle diese Verfahren haben aber kaum eine Erleichterung für den Diabeteskranken gebracht - vielleicht mit der Ausnahme der Jetinjektion, die jedoch nur eine verfeinerte, technisch sehr aufwendige Form der Injektion ist und daher wenig verbreitet. Der Alltag eines jeden insulinabhängigen Patienten beinhaltet weiterhin das tägliche Injizieren einer Insulinlösung unter die Haut bzw. in das Muskelgewebe (De Meijer, P. et al., Neth. J Med. 34, 210, 1989).

Lipide wurden bisher als Excipienten für die verzögerte Freisetzung von Insulinimplantaten diskutiert (Wang, P.Y Int. J Pharm. 54, 223, 1989) oder, in Form von Liposomen, als Vehikel für die perorale Applikation vorgeschlagen (Patel, 1970), ohne daß jedoch die Ergebnisse reproduzierbar wären (Biochem. Int. 16, 983, 1988). Weitere Arbeiten auf dem Gebiet der insulinhaltigen Liposomen befaßten sich mit

methodologischen, nicht therapeutischen Fragen (Wiessner, J. H. und Hwang, K. J. Biochim. Biophys. Acta 689, 490 1982; Sarrach, D. Stud. Biophys. 100, 95, 1984; Sarrach, D. und Lachmann, U. Pharmazie 40, 642, 1985; Weingarten, C. et al. Int. J. Pharm. 26, 251, 1985; Sammins, M.C. et al., J. Pharm. Sci. 75, 838, 1986; Cervato, G. et al., Chem. Phys. Lipids 43, 135, 1987).

Erfindungsgemäß werden die schon vorstehend beschriebenen Transfersomen zur nichtinvasiven Verabreichung von Antidiabetica, insbesondere Insulin, eingesetzt, und zwar in für diesen Zwecke optimierter Ausbildung.

Vorteilhaft ist hierzu mindestens eine Trägersubstanz ein physiologisch verträgliches polares oder nichtpolares Lipid oder eine andere pharmakologisch unbedenkliche amphiphile Substanz; die geeigneten Moleküle sind dadurch gekennzeichnet, daß sie stabile wirkstofftragende Aggregate bilden. Die bevorzugte Aggregatform sind Lipidvesikel, die bevorzugte Membranstruktur ist eine Doppelschicht.

Vorteilhaft wird weiter vorgesehen, daß mindestens eine solche Substanz ein Lipid oder Lipoid aus biologischer Quelle oder ein entsprechendes synthetisches Lipid ist, bzw. eine Abwandlung solcher Lipide, zum Beispiel ein Glycerid, Glycerophospholipid, Sphingolipid, Isoprenoidlipid, Steroid, Sterin oder Sterol, ein schwefel- oder kohlehydrathaltiges Lipid, oder aber ein beliebiges anderes Lipid, das stabile Doppelein schwefel- oder kohlehydrathaltiges Lipid, oder aber ein beliebiges anderes Lipid, das stabile Doppelschichten bildet, z.B. eine halbprotonierte fluide Fettsäure. So werden Lipide aus Ei, Sojabohne, Kokosnuß, Schichten bildet, Sennenblumen, Leinsamen, Walfett, Nachtkerze oder Primel verwendet, mit natürlich belassenen oder, teilweise oder voll hydrogenierten (gehärteten), bzw. ausgetauschten Ketten. Besonders häufig finden die entsprechenden Phosphatidylcholine Anwendung; aber auch Phosphatidylethanolamine, Phosphatidylglycerole, Phosphatidylinositole, Phosphatidsäuren und Phosphatidylserine, sowie Sphingo-myeline oder Sphingophospholipide, Glykosphingolipide (z.B. Cerebroside, Ceramidpolyhexoside, Sulfatide, Sphingoplasmalogene), Ganglioside oder andere Glycolipide sind für die Anwendung im Sinne dieser Erfindung gut geeignet. Von synthetischen Lipiden werden vorzugsweise die entsprechenden Dioleoyl-, Dilinolenyl-, Dilinolenyl-, Diaracidonyl-, Dimyristoyl-, seltener Dipalmitoyl-, Distearoyl-, phospholipide oder die entsprechenden Sphingosinderivate, Glykolipide oder sonstige Diacyl- bzw. Dialkyl-Lipide verwendet; auch beliebige Kombinationen der erwähnten Substanzen sind geeignet.

Vorteilhaft ist die randaktive Substanz ein nichtionisches, ein zwitterionisches, ein anionisches oder ein kationisches Tensid. Sie kann einen Alkoholrest enthalten. Gerne werden langkettige Fettsäuren oder Fettalkohole, Alkyl-trimethylammonium-Salze, Alkylsulfat-Salze, Cholat-, Deoxycholat-, Glycodeoxycholat-, Taurodeoxycholat-Salze, Dodecyl-dimethylaminoxid, Decanoyl- oder Dodecanoyl-N-methylglucamid (MEGA 10. MEGA 12), N-Dodecyl-N,N-dimethylglycin, 3-(Hexadecyldimethylammonio)-propansulfonat, N-Hexadecylsulfobetain, Nonaethylenglykol-octylphenylether, Nonaethylendodecylether, Octaethylenglykol-isotridecylether, Octaethylen-dodecylether, Polyethylenglykol-20-Sorbitan-Monolaurat (Tween 20), Polyethylenglykol-20-Sorbitan-Monooleat (Tween 80), Polyhydroxyethylen-cetylstearylether (Cetomacrogo, Cremophor O, Eumulgin, C 1000) Polyhydroxyethylen-4-laurylether (Brij 30), Polyhydroxyethylen-23-laurylether (Brij 35), Polyhydroxyethylen-8-stearat (Myrj 45, Cremophor AP), Polyhydroxyethylen-40-stearat (Myrj 52), Polyhydroxyethylen-100-stearat (Myrj 59), polyethoxyliertes Rizinußöl 40 (Cremophor EL), polyethoxyliertes hydriertes Rizinußöl, Sorbitan-monolaurat (Arlacel 20, Span 20), besonders bevorzugt Decanoyl- oder Dodecanoyl-N-methylglucamid, Lauryl- oder Oleoylsulfat-Salze, Natriumdeoxycholat, Natriumglycodeox-Natriumelaidat, Natriumlinoleat, Natriumlaurat, Nonaethylendodecylether, Natriumoleat, Polyethylenglykol-20-Sorbitan-Monooleat (Tween 80), Polyhydroxyethylen-23-Laurylether (Brij 35), Polyhydroxyethylen-40-Stearat (Myrj 52), Sorbitan-Monolaurat (Arlacel 20, Span 20), usw. verwendet.

Zu den geeignetsten Tensiden dieser Substanzklassen gehören: n-Tetradecyl(=Myristoyl)-glycero-phosphatidsäure, n-Hexadecyl(=Palmityl)-glycero-phosphatidsäure, n-Octadecylen(=Oleil)-glycero-phosphatidsäure, n-Octadecylen(=Oleil)-glycero-phosphatidsäure, n-Tetradecyl-glycero-phosphoglycerol, n-Hexadecyl-glycero-phosphoglycerol, n-Octadecylen-glycero-phosphoglycerol, n-Octadecylen-glycero-phosphoglycerol, n-Tetradecyl-glycero-phosphoserin, n-Hexadecyl-glycero-phosphoserin, n-Octadecyl-glycero-phosphoserin, n-Hexadecyl-glycero-phosphoserin, n-Hexadecyl-glycero-phosphoserin, n-Hexadecyl-glycero-phosphoserin, n-Hexadecyl-glycero-phosphoserin.

Die Gesamtkonzentration der Trägersubstanz beträgt zweckmäßig 0,1 bis 30 Gew.-%. Vorzugsweise beträgt diese Konzentration zwischen 0,1 und 15 %, besonders häufig zwischen 5 und 10 %.

Die Gesamtmenge des randaktiven Stoffes im System beträgt zweckmäßig 0,1 % bis 99 Mol-% der Menge, die für eine Solubilisierung der Träger erforderlich wäre. Häufig liegt das Optimum wirkstoffabhängig in einem Bereich zwischen 1 und 80 Mol.-%, bevorzugt zwischen 10 und 60 Mol.-%; besonders bevorzugt werden Werte zwischen 20 und 50 Mol.-%.

Die Wirkstoffkonzentration liegt für Insulin zumeinst bei 1 bis 500 l.U./ml; vorzugsweise liegt die Konzentration darunter zwischen 20 und 100 l.U./ml. Die Trägerkonzentration liegt dann vorzugsweise im Bereich von 0,1-20 Gew.-%, häufig zwischen 0,5 und 15 Gew.-%, besonders häufig zwischen 2,5 und 10

Gew.-%.

Für die Herstellung werden die Trägersubstanzen, insbesondere Lipide, entweder als solche oder gelöst in einem physiologisch verträglichen, mit Wasser mischbaren Lösungsmittel oder Lösungsvermittler mit einer polaren Lösung kombiniert und so die Trägerbildung eingeleitet.

Vorteilhaft ist, daß die polare Lösung die randaktiven Substanzen enthält. Diese können auch in den

Lipiden bzw. deren Lösung enthalten sein.

Die Trägerbildung wird bevorzugt durch Einrühren, mittels Verdampfung aus einer Umkehrphase, durch ein Injektions- oder Dialyseverfahren, durch mechanische Einwirkung, z.B. durch Schütteln, Rühren, Homogenisieren, Ultrabeschallen, Reiben, Frieren bzw. Auftauen, durch Hoch- und Niedrigdruck-Filtration oder sonstige Energiezufuhr herbeigeführt.

Es kann vorteilhaft sein, wenn der Wirkstoffeinschluß nach der Trägerbildung erfolgt.

Bei der Herstellung der Transfersomen durch Filtration wird bevorzugt, daß das Filtermaterial eine Porengröße von 0,1 - 0,8 Mikrometer, insbesondere 0,15-0,3, und besonders bevorzugt 0,22 Mikrometer hat, wobei auch mehrere Filter hintereinander verwendet werden können.

Im Falle einer Transfersomenherstellung mittels Ultraschall werden vorzugsweise Energiedichten von 10-50 kW/Liter/Minute verwendet; in mechanischen Rührwerken sind z.B. typischerweise Umdrehungsbereiche von 1000 bis 5000 pro Minute für die Herstellung von Transfersomen gut geeignet: in Hochdruckhomogenisatoren gewährleisten Drucke von 300-900 Bar nach einer Passage ausreichende Transfersomenhomogenität und -qualität, wobei auch Suspensionen mit 20-30 % Lipid problemlos bearbeitet werden können.

Es ist oft zweckmäßig, die Transfersomen kurz vor der Anwendung aus einem Konzentrat oder Lyophilisat herzustellen.

Kryopreservantien, wie z.B. Oligosaccharide, erleichtern dabei die Transfersomenbildung aus dem Lyophylisat.

Übliche Wirk-, Hilfs-oder Zusatzstoffe, vorzugsweise Stabilisatoren, Konservierungsmittel, Konsistenzbildner, oder Marker können im Erfindungszusammenhang verwendet werden.

Die folgenden Beispiele veranschaulichen die Erfindung, ohne sie zu beschränken. Temperaturen sind in Grad Celsius, Trägergrößen in Nanometer, und sonstige Größen in üblichen SI Einheiten angegeben.

Beispiel 237:

30

35

Zusammensetzung:

120 mg	Phosphatidylcholin aus Sojabohnen (reiner als 95 %)
20 mg	Natrium-Cholat p.a. (L/D = 3,2)
150 μΙ	Ethanol (96 %)
1,45 ml	Actrapid HM 100 (rekombinantes Humaninsulin 100 I.U./ml)

Herstellung:

Die Herstellung erfolgt mit kleinen Abwandlungen wie im Beispiel 166 beschrieben. Der Unterschied besteht darin, daß das Lipid/Insulingemisch bereits einige Minuten nach der Zubereitung mittels einer 1 ml Einmalspritze durch einen 0,22 µm Polycarbonatfilter (Sartorius) handfiltriert wird. Das Endvolumen der Suspension beträgt 1,2 ml; das Lipid/Cholatverhältnis ist nominal 2,8/1, in der Membran ca. 2,4/1. Die Endkonzentration von Insulin entspricht 83 I.U./ml; der Vesikelradius beträgt einen Tag nach der Herstellung im Durchschnitt 94 nm; eine Woche danach 170 nm.

Anwendung:

Anderthalb Stunden nach Versuchsbeginn werden 240 µl der frischen, sterilen Suspension von insulinhaltigen Transfersomen entnommen (20 I.U.). Diese werden auf die Innenfläche des rechten Unterarms eines männlichen, seit 18 Stunden nüchternen Probanden aufgetragen und zu ca. 0,7 mg/cm² gleichmäßig verteilt. 5 Minuten später ist die Haut makroskopisch trocken; 45 Minuten später ist keine Spur des Auftrages mehr zu sehen.

55 Wirkung:

Durch einen i.v. Katheter im linken Unterarm werden in ungleichmäßigen Zeitabständen alle 15 bis 40 Minuten Blutproben entnommen. Die Blutglukosebestimmung erfolgt wie im Beispiel 166 beschrieben.

Der zeitliche Ablauf der transfersombedingten Hypoglykemie ist in der Abbildung 18 dargestellt. Der Blutglukosespiegel sinkt nach anderthalb Stunden um 10 mg/ml ab; diese künstliche Hypoglykemie dauert mindestens 4 Stunden an und erreicht somit 70-80 % des Wertes, der mittels herkömmlicher subkutaner Insulinapplikation mit dem Arzneimittel Actrapid erreicht wird. Die Kontrollergebnisse, bei einer solcher s.c. Insulinapplikation (von Transfersomen) erzielt, sind in diesem Bild als Kreuze dargestellt; die Gesamtwirkung entspricht dabei der für die freie Substanz erwarteten.

Beispiel 238:

zusammensetzung:

	216 mg 27 mg	Phosphatidylcholin aus Sojabohnen (487 µl einer 50% Lösung in absolutem Äthanol) Phosphatidylglycerol aus Ei (98 %)
15	29.45 mg	Ölsäure, puriss.
	3 ml	Actrapid HM 100 (rekombinantes Humaninsulin 100 I.U./ml)
	40 µl	1 N NaOH
	20 ц1	1 N NaCl

Herstellung:

20

25

Die Lipide werden gemischt, bis die Lösung klar erscheint. Nach der Zugabe von Actrapid-Lösung, Lauge und Salzlösung entsteht eine trübe Suspension. Nach dem Durchpressen dieser Suspension durch ein Polycarbonatfilter mit Porendurchmesser von 0,2 µm entsteht eine nur wenig opaleszente Suspension. Diese besteht aus Vesikeln(Transfersomen) mit einem mittleren Durchmesser von 320 nm.

Anwendung:

Die Ausgangskonzentration von Glukose im Blut eines Probanden (70 kg, 37 Jahre, normoglykemisch, 24 Stunden nüchtern) wird über 90 Minuten als Referenz gemessen. Anschließend wird die oben beschriebene Transfersomen-Suspension mit nominal 85 I.U. Insulin/ml, die 12 Stunden bei 4°C gelagert wurde, auf den rechten Unterarm aufgetragen (ca. 330 µl auf 15 cm²); das entspricht einem Auftrag von 28 I.U.

Wirkung:

Die Blutproben werden über einen heparinisierten Dauerkatheter aus einer Vene am linken Unterarm entnommen; 0,5 ml von jeder Probe werden sedimentiert und sofort eingefroren; mit dem restlichen Volumen wird die Glucosekonzentration enzymatisch bestimmt. Diese Konzentration fällt nach ca. 2,5 Stunden um ungefähr 8 mg/dl ab und bleibt über 4,4 Stunden herabgesetzt. Das entspricht 75 % des maximal erreichbaren, im Kontrollversuch durch eine s.c. Injektion verursachten Effekts. Die Pharmakokinetik dieser Versuchsreihe ist in der Abb. 19 präsentiert.

In Abb. 20 sind die Resultate von drei beispielsgemäßen perkutanen Insulinapplikationen mit Transfersomen und von zwei s.c. Injektionen zusammengefaßt.

Beispiel 239:

45

55

Zusammensetzung:

50	143 mg 18 mg 19,6 mg 2 ml 25 µl	Phosphatidylcholin aus Sojabohnen Phosphatidylglycerol aus Ei (98 %) Ölsäure, puriss. Actrapid HM 100 (200 I.U.) 1 N NaOH

Herstellung:

Die Lipide werden in ein Glasgefäß eingewogen und mit der handelsüblichen Insulinlösung versetzt. Die entstandene trübe Suspension wird direkt mit einer Titanspitze ultrabeschallt (ca. 5 W, 3x5 Sekunden bei 22°C mit jeweils 60 Sekunden Zeitabstand). Die resultierende, optisch klare Suspension enthält Vesikel mit

einem mittleren Radius von 114 ± 17 nm.

Anwendung und Wirkung:

Die Ergebnisse sind innerhalb der Meßgenauigkeit identisch mit den im Beispiel 238 angeführten.

Beispiel 240:

Zusammensetzung:

10

Phosphatidylcholin aus Sojabohnen 143 mg Phosphatidylglycerol aus Ei (98 %) 18 mg Natrium-Oleat 20,5 mg

2 ml

Actrapid HM 100 (200 I.U.)

15

Herstellung:

Die Lipide werden in einem Glasgefäß in 0,15 ml abs. Ethanol aufgelöst und mit der handelsüblichen Insulinlösung versetzt. Ansonsten wird wie in Beispiel 239 verfahren.

20

Anwendung und Wirkung:

Auf der Probanden-Unterarmhaut wird auf einer Fläche von ca. 5 cm² ein feines Kunststoffgewebe befestigt. Dieses wird anschließend mit 350 µl der insulinhaltigen Transfersomensuspension beschichtet und offen gelassen.

Die Senkung des Blutglucosespiegels beträgt nach 4 Stunden 7,8 mg/dl und nach 6 Stunden 8,5 mg/dl. Sie ist somit vergleichbar der im Beispiel 238 erzielten.

Beispiel 241:

30

Es wird zunächst wie im Beispiel 238 verfahren, wobei jedoch die Zugabe von Kochsalzlösung ausgelassen wird; die trübe, unvorbehandelte Transfersomensuspension wird zweigeteilt. 50 % des Gesamtvoluments werden sterilfiltriert; der Rest wird 15 Sekunden lang bei Raumtemperatur mit 5 W beschallt. Der mittlere Vesikeldurchmesser in beiden Hälften ist ähnlich, 300 nm bzw. 240 nm.

35

Beispiel 242:

Es wird wie in Beispielen 238 und 240 verfahren. Transfersomen werden jedoch einmal, zweimal, oder dreimal nacheinander filtriert. Die mittleren Durchmesser betragen 300, 240, und 200 nm.

Die Transfersomen gemäß Beispielen 241 und 242 lassen sich mit vergleichbarem Ergebnis gemäß Beispiel 238 anwenden.

Beispiel 243:

Zusammensetzung:

144,9;152 mg Phosphatidylcholin aus Sojabohnen Desoxycholat, Na-Salz 24,8;17,6 mg Actrapid HM 100 (145 I.U.) 1,45;1,55 ml

Ethanol, absolut

50

0,16 ml

Herstellung:

Die Lipide werden in Glasgefäße eingewogen, in Ethanol gelöst und mit der Insulinlösung versetzt. Die entstandene trübe Suspension wird über Nacht gealtert und anschließend nach 12 Stunden durch einen 0.22 Mikrometer Filter gepreßt. Die nominale Insulin-Konzentration beträgt 83 bzw. 84 l.U. Der mittlere Vesikelradius ist in beiden Fällen 112 nm.

Anwendung und Wirkung:

Die allgemeinen Versuchsbedingungen sind wie in den Beispielen 237-239. Die Transfersomensuspensionen (0.36 ml, entspricht 30 I.U.) werden auf jeweils eine Arminnenseite aufgetragen; die Blutproben werden aus dem anderen Arm durch eine Dauerkanüle entnommen.

Die Ergebnisse sind in der Abbildung 21 dargestellt. Sie zeigen, daß die Präparation mit einem vergleichsweise hohen Tensidgehalt (Probe 1, L/T=3/1) lediglich eine kaum signifikante Senkung im Blutglucosespiegel bewirken kann; die beinahe optimalen Transfersomen dagegen, mit einem um 30% geringeren relativen Tensidgehalt von L/T=4.5/1, erzeugen eine sehr ausgeprägte 'Hypoglykemie', die über viele Stunden Bestand hat.

Das ist ein weiterer Beweis dafür, daß die Transfersomen den Wirkstoff nach einem ganz anderen, neuen Wirkprinzip durch die Haut tragen als klassische Formulierungen.

Dieses Beispiel zeigt weiterhin, im Anschluß an Beispiel 236, daß im hier untersuchten System zwar auch solche Tensidgehalte verwendbar sind, die vom Optimum entfernt liegen, daß aber besonders vorteilhafte Ergebnisse erzielt werden, wenn der Tensidgehalt bestimmt und gewählt wird, der eine maximale Elastizität und damit Permeationsfähigheit der Transfersomen bei gleichzeitiger (noch) ausreichender Stabilität gegenüber Auflösung, Platzen, Werkstoffverlust usw. ergibt.

Patentansprüche

20

- Präparat zur Applikation von Wirkstoffen im Form kleinster, insbesondere mit einer membranartigen Hülle aus einer oder wenigen Lagen amphiphiler Moleküle bzw. mit einer amphiphilen Trägersubstanz versehenen Flüssigkeitströpfichen, insbesondere zum Transport des Wirkstoffes in und durch natürliche Barrieren und Konstriktionen wie Häute und dergleichen,
- dadurch gekennzeichnet, daß das Präparat einen Gehalt einer randaktiven Substanz aufweist, der bis zu 99 Mol.-% des Gehaltes dieser Substanz entspricht, durch den der Solubilisierungspunkt der Tröpfchen erreicht wird.
- Präparat nach Anspruch 1,
 dadurch gekennzelchnet, daß der Gehalt wenigstens 0,1 Mol.-%, insbesondere zwischen 1 und 80 Mol.-%, vorzugsweise zwischen 10 und 60 Mol.-% und besonders bevorzugt zwischen 20 und 50 Mol.-% des die Solubilisierung bewirkenden Gehalts an randaktiver Substanz ausmacht, wobei die Randspannung im Tröpfchen vorzugsweise bei etwa 10 Piconewton oder darunter liegt.
- 35 3. Präparat nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Präparat einen Gehalt einer amphiphilen Substanz als Träger bzw. zur Bildung einer membranartigen Hülle um eine Tröpfchenmenge hydrophiler Flüssigkeit aufweist, wobei der Wirkstoff in der Trägersubstanz, in der Hülle und/oder der Tröpfchenmenge enthalten ist.
- Präparat nach Anspruch 3, dadurch gekennzeichnet, daß das Präparat als amphiphile Substanz eine lipidartige Substanz und als randaktive Substanz vorzugsweise ein Tensid aufweist.
- Präparat nach einem der Ansprüche 1 bis 4,
 dadurch gekennzeichnet, daß der Gehalt amphiphiler Substanz zur Applikation auf menschlicher und tierischer Haut zwischen 0,01 und 30 Gew.-% des Präparates, vorzugsweise zwischen 0,1 und 15 Gew.-% und besonders bevorzugt zwischen 5 und 10 Gew.-% beträgt.
- Präparat nach einem der Ansprüche 1 bis 4,
 dadurch gekennzeichnet, daß der Gehalt an amphiphiler Substanz zur Applikation bei Pflanzen 0,000001 bis 10 Gew.-%, vorzugsweise zwischen 0,001 und 1 Gew.-% und besonders bevorzugt zwischen 0,01 und 0,1 Gew.-% beträgt.
- Präparat nach einem der vorstehenden Ansprüche,
 dadurch gekennzeichnet, daß es als Wirkstoff ein Adrenocorticostaticum, β-Adrenolyticum, Androgen oder Antiandrogen, Antiparasiticum, Anabolicum, Anästheticum oder Analgesicum, Analepticum, Antiallergicum, Antiarrhythmicum, Antiartiroscleroticum, Antiasthmaticum und/oder Bronchospasmolyticum, Antibioticum, Antidrepressivum und/oder Antipsychoticum, Antidiabeticum, Antidotum, Antiemeticum,

Antiepilepticum, Antifibrinolyticum, Anticonvulsivum, Anticholinergicum, Enzym, Koenzym oder einen entsprechenden Inhibitor, ein Antihistaminicum, Antihypertonicum, einen biologischen Aktivitätsinhibitor, ein Antihypotonicum, Antikoagulans, Antimycoticum, Antimyasthenicum, einen Wirkstoff gegen morbus Parkinson, ein Antiphlogisticum, Antipyreticum, Antirheumaticum, Antisepticum, Atemanalepticum oder Atemstimulanz, Broncholyticum, Cardiotonicum, Chemotherapeuticum, einen Coronardilatator, ein Cytostaticum, Diureticum, einen Ganglienblocker, ein Glucocorticoid, Grippetherapeuticum, Hämostaticum, Hypnoticum, Immumglobulin bzw. -fragment oder eine andere immunologische Substanz, ein bioaktives Kohlehydrat(derivat), ein Kontrazeptivum, ein Migränemittel, ein Mineralcorticoid, einen Morphin-Antagonisten, ein Muskelrelaxans, Narcoticum, Neuraltherapeuticum, ein Nukleotid, Neurolepticum, einen Neurotransmitter oder entsprechenden Antagonisten, ein Peptid(derivat), ein Opthalmicum, (Para)-Protein(derivat), (Para)Sympathicolyticum, ein Sympaticomimeticum oder Psoriasis/Neurodermitismittel, Mydriaticum, Psychostimulanz, Rhinologicum, Schlafmittel oder dessen Antagonisten, ein Sedativum, Spasmolyticum, Tuberlostaticum, Urologicum, einen Vasoconstrictor oder -dilator, ein Virustaticum oder ein Wundenheilmittel oder mehrere solcher Agentien enthält.

15

10

- Präparat nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Wirkstoff eine wachstumsbeeinflussende Substanz für Lebewesen ist.
- Präparat nach einem der Ansprüche 1 bis 6, dadurch gekennzelchnet, daß der Wirkstoff biozide Eigenschaften hat, insbesondere ein Insektizid, Pestizid, Herbizid oder Fungizid ist.
- 10. Präparat nach einem der Ansprüche 1 bis 6,
 dadurch gekennzeichnet, daß der Wirkstoff ein Lockstoff, insbesondere ein Pheromon ist.
 - 11. Verfahren zur Herstellung eines Präparates zur Applikation von Wirkstoffen in Form kleinster, insbesondere mit einer membranartigen Hülle aus einer oder wenigen Lagen amphiphiler Moleküle bzw. mit einer amphiphilen Trägersubstanz versehenen Flüssigkeitströpfchen, insbesondere zum Transport des Wirkstoffes in und durch natürliche Barrieren und Kontriktionen wie Häute und dergleichen, dadurch gekennzeichnet, daß man den Gehalt an randaktiver Substanz bestimmt, bei dem die Tröpfchen solubilisiert werden und dem Präparat einen diesem Gehalt so nahekommenden Gehalt an randaktiver Substanz zusetzt, daß die Tröpfchen bei noch ausreichender Stabilität maximale Permeationsfähigkeit aufweisen.

30

30

12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß man Stabilität und Permeationsfähigkeit mittels Filtration, ggf, unter Druck, durch ein feinporiges Filter oder durch anderweitige kontrollierte mechanische Zerkleinerung bestimmt.

40

45

- 13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß der Gehalt an randaktiver Substanz zwischen 0,1 und 99 Mol.-%, insbesondere zwischen 1 und 80 Mol.-%, bevorzugt zwischen 10 und 60 Mol.-% und besonders bevorzugt zwischen 20 und 50 Mol.-% des Gehaltes ausmacht, bei dem der Solubilisierungspunkt der Tröpfchen erreicht wird.
- 14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß das Substanzgemisch zur Erzeugung des Präparates einer Filtration, Ultraschallbehandlung, Rühren, Schütteln oder anderen mechanischen Zerteilungseinwirkungen ausgesetzt wird.
- 15. Präparat nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Präparat zur nichtinvasiven Verabreichung einen Gehalt an mindestens einem antidiabetischen Wirkstoff, besonders Insulin, aufweist.

55

16. Präparat nach Anspruch 15, dadurch gekennzeichnet, daß es als amphiphile Trägersubstanz ein physiologisch verträgliches polares oder nichtpolares Lipid enthält, wobei die Membranstruktur vorzugsweise eine Doppelschicht ist.

5

10

45

- 17. Präparat nach Anspruch 16,
 - dadurch gekennzeichnet, daß die amphiphile Substanz ein Lipid oder Lipoid biologischer Herkunft oder ein entsprechendes synthetisches Lipid ist, bzw. eine Abwandlung solcher Lipide, insbesondere ein Glycerid, Glycerophospholipid, Isoprenoidlipid, Sphingolipid, Steroid, Sterin oder Sterol, ein schwefel- oder kohlenhydrathaltiges Lipid, oder aber ein anderes Lipid, das stabile Doppelschichten bildet, vorzugsweise eine halbprotonierte fluide Fettsäure, insbesondere ein Phosphatidylcholin, Phosphatidylethanolamin, Phosphatidylglycerol, Phosphatidylinositol, eine Phosphatidsäure, ein Phosphatidylserin, ein Sphingomyelin oder Sphingophospholipid, Glykosphingolipid (z.B. Cerebrosid, Ceramidpolyhexosid, Sulfatid, Sphingoplasmalogen), Gangliosid oder anderes Glycolipid umfaßt oder ein synthetisches Lipid, vorzugsweise ein Dioleoyl-, Dilinoleyl-, Dilinolenyl-, Dilinolenoyl-, Diarachidoyl-, Dimyristoyl-, Dipalmitoyl-, Distearoyl, phospholipid oder entsprechendes Sphingosinderivat, Glykolipid oder anderes Diacyl- bzw. Dialkyl-Lipid umfaßt.
- 18. Präparat nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, daß es mehrere randaktive Substanzen umfaßt.
- 19. Präparat nach einem der Ansprüche 15 bis 18,
- dadurch gekennzeichnet, daß die randaktive Substanz ein nichtionisches, ein zwitterionisches, ein anionisches oder ein kationisches Tensid umfaßt, insbesondere eine langkettige Fettsäure oder einen 20 langkettigen Fettalkohol, ein Alkyl-trimethyl-ammonium-Salz, Alkylsulfat-Salz, Cholat-, Deoxycholat-, Glycodeoxycholat-, Taurodeoxycholat-Salz, Dodecyl-dimethyl-aminoxid, Decanoyl- oder Dodecanoyl-Nmethylglucamid (MEGA 10, MEGA 12), N-Dodecyl-N,N-dimethylglycin, 3-(Hexadecyldimethylammonio)propan-sulfonat, N-Hexadecyl-sulfobetain, Nonaethylen-glykol-octylphenylether, Nonaethylen-dodecylether, Octaethylenglykol-isotridecylether, Octaethylen-dodecylether, Polyethylenglykol-20-Sorbitan-Mono-25 laurat (Tween 20), Polyethylenglykol-20-Sorbitan-Monooleat (Tween 80), Polyhydroxyethylen-Cetylstearylether (Cetomacrogo, Cremophor O, Eumulgin, C 1000) Polyhydroxyethylen-4-Laurylether (Brij 30), Polyhydroxyethylen-23-Laurylether (Brij 35), Polyhydroxyethylen-8-Stearat (Myrj 45, Cremophor AP), Polyhydroxyethylen-40-Stearat (Myrj 52), Polyhydroxyethylen-100-Stearat (Myrj 59), polyethoxyliertes Rizinußöl 40 (Cremophor EL), polyethoxyliertes hydriertes Rizinußöl, Sorbitan-Monolaurat (Arlacel 20, 30 Span 20), besonders bevorzugt Decanoyl- oder Dodecanoyl-N-methylglucamid, Lauryl- oder Oleoylsulfat-Salze, Natriumdeoxycholat, Natriumglycodeoxycholat, Natriumoleat, Natriumelaidat, Natriumlinoleat, Natriumlaurat, Nonaethylen-dodecyl-ether, Polyethylenglykol-20-Sorbitan-Monooleat (Tween 80), Polyhydroxyethylen-23-Laurylether (Brij 35), Polyhydroxyethylen-40-Stearat (Myrj 52) und/oder Sorbitan-Monolaurat (Arlacel 20, Span 20) und Lysophospholipide wie n-Octadecylen(=Oleoyl)-glycero-35 phosphatidsäure, -phosphorylglycerol, oder -phosphorylserin, n-Dilauryk-glycero-phosphatidsäure, phosphorylglycerol, oder -phosphorylserin, n-Tetradecyl-glycero-phosphatidsäure, -phosphorylglycerol, oder -phosphorylserin und entsprechende Palmitoeloyl-, Elaidoyl-, Vaccenyl-Lysophospholipide.
 - 20. Präparat nach einem der Ansprüche 15 bis 19, dadurch gekennzeichnet, daß es als Wirkstoff 1 bis 500 I.U.Insulin/ml, vorzugsweise zwischen 20 und 100 I.U./ml enthält und die Konzentration der Trägersubstanz im Präparat im Bereich von 0,1 bis 20 Gew.-%, insbesondere zwischen 0,5 und 15 Gew.-%, besonders bevorzugt zwischen 2,5 und 10 Gew.-% beträgt.
 - 21. Präparat nach einem der Ansprüche 15 bis 20, dadurch gekennzeichnet, daß es als amphiphile Substanz Phosphatidylcholin und/oder Phosphatidylglykol und als randaktive Substanz eine Lysophosphatidsäure oder Lysophosphoglycerol, ein Deoxycholat-, Glycodeoxycholat- oder Cholatsalz, ein Laurat, Myristat, Oleat, Palmitoleat, bzw- entsprechendes Phosphat- oder Sulfat-Salz, und/oder ein Tween- oder Myrj-Tensid sowie als Wirkstoff 50 rekombinantes Humaninsulin enthält.
 - 22. Präparat nach einem der Ansprüche 15 bis 21, dadurch gekennzeichnet, daß der Vesikelradius der Präparat-Tröpfchen zwischen etwa 50 und etwa 55 200 nm, vorzugsweise zwischen etwa 100 und etwa 180 nm liegt.
 - 23. Verfahren zur Herstellung eines Präparates zur nichtinvasiven Verabreichung von antidiabetischen

Wirkstoffen, dadurch gekennzeichnet, daß man aus wenigstens einer amphiphilen Substanz, wenigstens einer hydrophilen Flüssigkeit, wenigstens einer randaktiven Substanz und wenigstens einem antidiabetischen Wirkstoff liposomenartige Tröpfchen erzeugt, die das Präparat bilden.

5 24. Verfahren nach Anspruch 23,

10

15

40

45

55

- dadurch gekennzeichnet, daß man separat jeweils die randaktive Substanz mit der amphiphilen Substanz und die hydrophile Substanz mit dem Wirkstoff vermischt und ggf. zur Lösung bringt, die Gemische bzw. Lösungen dann zu einer Mischung zusammenführt und in dieser durch Zufuhr von insbesondere mechanischer Energie die Tröpfchenbildung bewirkt.
- 25. Verfahren nach Anspruch 23 oder 24, dadurch gekennzeichnet, daß die amphiphile Substanz entweder als solche oder gelöst in einem physiologisch verträglichen, mit hydrophilen Flüssigkeiten, insbesondere Wasser mischbaren Lösungsmittel oder Lösungsvermittler mit einer polaren Lösung zusammengegeben wird.
- 26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, daß die polare Lösung mindestens eine randaktive Substanz enthält.
- 27. Verfahren nach einem der Ansprüche 23 bis 26, dadurch gekennzeichnet, daß die Tröpfchenbildung durch Einrühren, mittels Verdampfung aus einer Umkehrphase, durch ein Injektions- oder Dialyseverfahren, durch mechanische Beanspruchung wie Schütteln, Rühren, Homogenisieren, Ultrabeschallen, Reiben, Frieren bzw. Auftauen oder Hoch- oder Niedrigdruck-Filtration herbeigeführt wird.
- 28. Verfahren nach Anspruch 27,
 dadurch gekennzeichnet, daß die Tröpfchenbildung durch Filtration bewirkt wird und das Filtermaterial eine Porengröße von 0,1 bis 0,8 μm, insbesondere 0,15 bis 0,3 μm und besonders bevorzugt 0,22 μm aufweist, wobei ggf. mehrere Filter hintereinandergeschaltet verwendet werden.
- 29. Verfahren nach einem der Ansprüche 23 bis 28, dadurch gekennzeichnet, daß der Wirkstoffeinschluß wenigstens teilweise nach der Tröfchenbildung erfolgt.
- 30. Verfahren nach einem der Ansprüche 23 bis 29,
 dadurch gekennzeichnet, daß die liposomenartigen Tröpfchen kurz vor der Anwendung aus einem Konzentrat oder Lyophilisat zubereitet werden.

57

Dosis im Blut (%)

Glukoseabnahme im Blut (mg/dl)

Abbildung 17

Glukoseabnahme im Blut (mg/dl)

EUROPÄISCHER RECHERCHENBERICHT

ΕP 91 11 4163

Kategorie	Kennzeichnung des Dokumen der maßgeblich	ts mit Angabe, soweit erforderlich, en Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. CL.5)	
			1	A61K9/127	
x	JOURNAL OF CONTROLLED RE		•	701R3/12/	
	Bd. 12, Nr. 1, Marz 1990	, AMSTERUAM NL			
	Seiten 25 - 30;	77 d door outside from			
	V.M. KNEPP ET AL: 'contr	_		•	
	a novel liposomal delive	•			
	transdermal delivery cha				
	*insbesondere seite 29 , abb. 5				
	* das ganze Dokument *		1		
	TD 4 0 100 204 (CTD4 CET	CV 4C3	1-30		
^	EP-A-0 102 324 (CIBA-GEI		1-30		
	* Seite 18, Zeile 24 - S				
	* Seite 23, Zeile 6 *				
,	WO-A-8 807 362 (LIPOSOME	TECHNOLOGY THE 1	1-30		
^	* Seite 27 - Seite 29; 8		1-30		
^	Selte 2/ - Selte 29; /D	etshiele tes			
	EP-A-0 280 492 (TAKEDA C	HEMICAL INDUSTRIES LITH	1-30		
^	* das ganze Dokument *	HERETE SHOW HARD, EIN,			
	* Anspruch 12 *				
	- Atsprach 12 ,				
_Α	EP-A-0 220 797 (NIKKO CH	EMICALS CO LTD ET AL)	1-30	RECHERCHIERTE	
^		<u> </u>		SACHGEBIETE (Int. Cl.5	
A	EP-A-0 211 647 (ALLERGAN	PHARMACEUTICALS, INC)	1-30		
	* Seite 14, Zeile 15 - Z			A61K	
A	ÚS-A-4 937 078 (MEZEI ET	1-30			
·	* Spalte 6; Beispiel 1 *				
·					
l	-		- [
			1		
- 1					
			1		
				•	
,					
		G P. Datasta			
Der vo	rliegende Recherchenbericht wurde				
	Recharchement	Abschluddatum der Recherche		Pritikr	
	DEN HAAG	22 NOVEMBER 1991	BENZ	K.F.	
· ·	ATEGORIE DER GENANNTEN DO	KUMENTE T : der Erfindun	g zugrunde liegende l	Theorien oder Grundsätze	
			tdokument, das jodoc	Theorien oder Grundsätze ch erst am oder utlicht worden ist	
Y:voa	besonderer Bedeutung allein betrachtet besonderer Bedeutung in Verbindung n	nit einer D: in der Anme	nach dem Anmeldedatum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : ans andern Gründen angeführtes Dokument		
ande	ren Veröffentlichung derselben Katego	rie L: aus andern (
A : tech	nologischer Hintergrund itschriftliche Offenbarung		gleichen Patentfamil		

- X: von besonderer Bedeutung allein betrachtet Y: von besonderer Bedeutung in Verbindung mit einer anderen Vertiffentlichung derselben Kategorie A: technologischer Hintergrund O: nichtschriftliche Offenbarung P: Zwischenliteratur

- if eer Erfindung zugrunde liegende I neorien oder Gr
 E illters Patentdokument, das Jedoch erst am oder
 nach dem Anneldedatum veröffentlicht worden ist
 D: in der Anneldung angeführtes Dokument
 L: aus andern Gründen angeführtes Dokument

- à : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

		- ·-
		•

Intellectuelle du Canada

Un organisme d'Industrie Canada Intellectual Property Office An agency of Industry Canada

(11)(21) 2 067 754

(12) BREVET CANADIEN CANADIAN PATENT

(13) C

(86) Date de dépôt PCT/PCT Filing Date: 1991/08/22

(87) Date publication PCT/PCT Publication Date: 1992/03/05

(45) Date de délivrance/Issue Date: 2002/06/04

(85) Entrée phase nationale/National Entry: 1992/03/31

(86) N° demande PCT/PCT Application No.: EP 1991/001596

(87) N° publication PCT/PCT Publication No.: 1992/003122

(30) Priorités/Priorities: 1990/08/24 (P 40 26 834.9) DE;

1990/08/24 (P 40 26 833.0) DE; 1991/03/06 (P 41 07 152.2) DE; 1991/03/06 (P 41 07 153.0) DE (51) Cl.Int.⁵/Int.Cl.⁵ A61K 9/127

(72) Inventeur/Inventor: Cevc, Gregor, DE

(73) Propriétaire/Owner: IDEA AG, DE

(74) Agent: KIRBY EADES GALE BAKER

(54) Titre: PREPARATION VISANT L'APPLICATION D'AGENTS SOUS FORME DE MINI-GOUTTELETTES

(54) Title: PREPARATION FOR THE APPLICATION OF AGENTS IN MINI-DROPLETS

(57) Abrégé/Abstract:

The invention relates to a preparation for the application of agents in the form of minuscule droplets of fluid, in particular provided with membrane-like structures consisting of one or several layers of amphiphilic molecules, or an amphiphilic carrier substance, in particular for transporting the agent into and through natural barriers such as skin and similar materials. The preparation contains a concentration of edge active substances which amounts to up to 99 mol-% of the agent concentration which is required for the induction of droplet solubilization. Such preparations are suitable, for example, for the non-invasive applications of antidiabetics, in particular of insulin. The invention, moreover, relates to the methods for the preparation of such formulations.

Abstract

The invention relates to a preparation for the application of agents in the form of minuscule droplets of fluid, in particular provided with membrane-like structures consisting of one or several layers of amphiphilic molecules, or an amphiphilic carrier substance, in particular for transporting the agent into and through natural barriers such as skin and similar materials. The preparation contains a concentration of edge active substances which amounts to up to 99 mol-% of the agent concentration which is required for the induction of droplet solubilization. Such preparations are suitable, for example, for the non-invasive applications of antidiabetics, in particular of insulin. The invention, moreover, relates to the methods for the preparation of such formulations.

CEVC, Gregor.

International patent application

C 7041

Preparation for the application of agents in mini-droplets

The present invention relates to a novel type of preparations suitable for the application of different agents in the form of a minuscule droplet or, in particular, a vesicle consisting of one or a few membrane-like amphiphile assemblies. These can mediate the transport of agents into and through a series of natural permeability barriers or through the constrictions in such barriers; for example, through intact skin or similar organs. The invention further relates to a procedure for the large-scale production of such carriers. As a special example, non-invasive application of antidiabetics is described for the case of insulin.

The application of various agents is often hampered by the presence of barriers with a low permeability to such agents. Owing to skin impermeability, for example, many common therapeutic agents must be applied per os or parenterally (i.v., i.m., i.p.). Intrapulmonary and intranasal applications of aerosols, the use of rectal formulations, gels for mucous applications, or use of occular formulations are only practicable in certain areas and not for all types of drugs. The transport of different agents into plant tissues is subject to even more severe constraints due to the high permeability barrier of the cuticular wax layers.

Noninvasive drug application through permeability barriers thus would be advantageous in many cases. In humans and animals one would expect such a percutaneous application of agents to protect the agents from degradation in the gastro-intestinal tract; modified drug distribution could possibly also be achieved. Such drug application, moreover, would influence the pharmacokinetics of the agent molecules and permit simple as well as multiple noninvasive therapy. (Karzel K., Liedtke, R.K. (1989) Arzneim. Forsch./Drug Res. 39, 1487-1491). In the case of plants, improved penetration

into or through the cuticle could reduce the drug concentration required for a given application and thus significantly diminish pollution problems (Price, C.E. (1981) In: The plant cuticle (D.F. Cutler, K.L. Alvin, C.E. Price, Edits.), Academic, New York, pp. 237-252).

There are many reports on different attempts to increase the permeability of intact skin by suitable manipulations (cf. Karzel und Liedtke, op. cit.). Jet injection (Siddiqui & Chien (1987) Crit. Rev. Ther. Drug. Carrier. Syst. 3, 195-208.), the use of electric fields (Burnette & Ongpipattanakul (1987) J. Pharm. Sci. 76, 765-773) or chemical penetration enhancers, such as solvents and surfactants, are particularly worth mentioning. A long list of additives which have been used to enhance the penetration of one particular water soluble agent (Nolaxon) into skin, for example, is given in the work by Aungst et al. (1986, Int. J. Pharm. 33, 225-234). This list encompasses nonionic substances (including long-chain alcohols, surfactants, zwitterionic phospholipids, etc.), anionics (most notably fatty acids), cationic long-chain amines, sulfoxides as well as different amino-derivatives; amphotheric glycinates and betaines are also mentioned. Despite all this, the problem of agent penetration into skin has as yet not at all - or not satisfactorily - been solved.

A survey of procedures used for increasing the penetration of agents through a plant cuticle is given in the work by Price (1981, op.cit.). To date it has been common to simply add chemical penetration enhancers to the mixture of agent and other molecules; applications to human skin were the only case in which additives were sometimes applied in advance, in the form of an organic solution. The reason for this application form was the current concept for the action of penetration enhancers: to date one has studied, discussed, and believed

that, in general, any facilitated agent penetration is a consequence of skin fluidization, on the one hand (Golden et al., (1987) J. Pharm. Sci. 76, 25-28). (This phenomenon is normally associated with a destruction of the skin surface and of its protective shield and thus is undesired.) On the other hand, it has been shown that some agents can permeate through skin in the form of low-molecular weight complexes with added molecules (Green et al., (1988) Int. J. Pharm. 48, 103-111).

Methods deviating from the ones already described have brought little improvement to date. The use of lipoidal carriers, the liposomes, on intact skin, which has been theoretically discussed by several authors, was mainly aimed at modifying the agent's pharmacokinetics (Patel, Bioch. Soc. Trans., 609th Meeting, 13, 513-517, 1985, Mezei, M. Top. Pharm. Sci. (Proc. 45th Int. Congr. Pharm. Sci.F.I.P.) 345-58 Elsevier, Amsterdam, 1985). Thus far, all proposal of this kind, moreover, involved the use of standard lipid vesicles (liposomes) which cannot penetrate the skin at all or permeate through the skin very inefficiently, as is shown in this patent application. Patent applications nos. JP 61/271204 A2 [86/271204] refer to a related use of liposomes in which hydrochinonglucosidal is employed to improve the stability of the agent.

Hitherto available preparations for percutaneous use have mostly been applied under occlusion; in the case of liposomal preparations, this was even a general rule. The corresponding preparations only contained small or lipophilic substances, as well as a limited number of skin-fluidizing additives. Correspondingly, they afforded only partial control over the pharmacokinetic properties of final preparations. In an attempt to improve this situation a proposal was made (WO 87/1938 A1) to use drug-carrying lipid vesicles in combination with a gelatinizing agent as a transdermal patch. This has

prolonged drug action but has not increased the skinpenetration capability of the drug itself. Through massive
use of penetration enhancers (polyethylene glycol and fatty
acids) and of lipid vesicles, Gesztes and Mezei (1988, Anesth.
Analg. 67, 1079-1081) have succeeded in inducing local
analgesia with lidocaine-containing carriers; however, the
overall effectiveness of the drug in this preparation was
relatively low and its effects were only observed several
hours after the beginning of an occlusive application.

By a specially designed formulation we have succeeded in obtaining results which were dramatically better than those of Gesztes and Mezei. Our carrier formulations consisted of filtered lipid vesicles (liposomes) which also contained some detergents, with a declared optimum lipid/surfactant content of 1-40/1, in practice mainly around 4/1.

These results provided a basis for German patent application P 40 26 834.9-41 which also refers to German patent application P 40 26 833.0-43; the latter deals with the problem of liposome fabrication.

Since then, we have unexpectedly discovered that certain criteria, described in this application, may be formulated for the qualification of drug carriers as suitable for the penetration into and through a permeability barrier. The main requirement of such a drug carrier - which in the following is called a transfersome - is that it is sufficiently elastic to penetrate through the constrictions in a barrier, such as skin. In the case of transfersomes consisting of phosphatidylcholine and sodium cholate this condition is fulfilled when the surface-tension of a carrier is below 10 Piconewton; similar values are also likely to pertain to other, related systems. Carriers which are capable of creating a gradient after an application are particularly

useful; this is due to the fact that they have a spontaneous tendency for penetration through permeability barriers.

It is, therefore, an object of the present invention to specify the properties of novel preparations which are suitable for the mediation of rapid transport of diverse agents and other substances through permeability barriers and constrictions.

A further object of this invention is to introduce a new class of carrier preparations for the transport of drugs through human, animal or plant skin, which result in a characteristic improved availability of the agent molecules at the target site.

It is yet another object of this invention to prepare formulations for non-invasive application of antidiabetics, most notably of insulin; these should ensure an improved, therapeutically sufficient, and reproducible form of drug application.

A further object of this invention is to provide procedures for the production of such preparations.

These objects have been accomplished through the features of the independent claims.

Advantageous embodiments are mentioned in the subclaims.

Brief Description of the Drawings

Figure 1 is a graph showing the permeation resistance (left plot) and the size distribution (right plot) of vesicles according to Examples 1 to 13 (o) and Examples 14 to 20 (+).

Figure 2 shows the size of vesicles according to Examples 21 to 31.

Figure 3 is a graph showing the permeation resistance (left plot) and the size distribution (right plot) of vesicles according to Examples 32 to 39. The sizes have been measured after permeation.

Figure 4 shows the vesicle size distribution of Examples 32 to 39 after 2 and 40 days.

Figure 5 shows the permeation resistance (left plot) and the size distribution after permeation (right plot) of vesicles according to Examples 40 to 49 (broad lines in left plot) and of Examples 50 to 61 (thin line in left plot).

Figure 6 shows graphs of the permeation resistance (left plot) and size distribution (right plot) of vesicles according to Examples 62 to 75.

Figure 7 is a graph showing characteristics and deformability of vesicles in a bilayer analysis of the data points of Examples 99 to 107.

Figure 8 is a graph showing the permeation resistance (left plot) and size distribution (right plot) of vesicles according to Examples 108 to 119.

Figure 9 is a graph showing the permeation resistance (left plot) and size distribution (right plot) of vesicles according to Examples 129 to 136.

Figure 10 is a graph showing the percutaneous absorption of inventive transfersomes by skin according to Examples 151 to 157.

Figure 11 is a graph showing the dosage of systematically administered transfersomes in blood according to Examples 158 to 162.

Figure 12 shows the concentration of tritium insulin in blood, which was administered percutaneously via inventive transfersomes, in comparison to conventional liposomes according to Examples 163 to 165.

Figure 13 shows the effect of percutaneously administered insulin on the glucose concentration in blood according to Example 166.

Figure 14 is a graph showing the permeation resistance (left plot) and the size distribution (right plot) of vesicles according to Example 201 to 215.

Figure 15 is a graph showing the permeation resistance (left plot) and size distribution (right plot) of vesicles according to Examples 216 to 235.

Figure 16 is a graph showing the outer diameter in relation to the Tween 80 content of the vesicles between solubilization and vesicularization according to Examples 173 to 175.

Figure 17 shows the glucose uptake in blood after insulin administration with liposomes containing surface active agents according to Example 236.

Figure 18 is a graph showing the glucose uptake in blood after insulin administration via transfersomes according to Example 237.

Figure 19 is a graph showing the glucose uptake in blood after insulin administration via transfersomes according to Example 238.

Figure 20 shows the results of three percutaneous applications of insulin with transfersomes compared with two subcutaneous injections of insulin according to Example 238.

Figure 21 is a graph showing the glucose uptake in blood after administration of insulin via transfersomes according to Example 243.

The transfersomes according to this invention differ from the liposomes hitherto described for topical application and from other related carriers in at least three basic features. Firstly, they can consist of an arbitrary amphiphile, including oils. Secondly, they can be made in arbitrary fashion: their penetration capacity does not depend on the

manufacturing procedure. Thirdly, the penetration capability of the previously described liposomes optimized for application on skin (cf. patent application P 40 26 834.9-41) was based on the use of a carrier composition with an optimal lipid/surfactant ratio in the range of L/S=1-40/1. However, a transfersome must mainly have an optimal elasticity, which ensures a sufficiently high permeation capability of such a carrier. If this basic requirement is fulfilled by the addition of surface-active substances to a basic transfersome component, the necessary total amount of the surface-active substance can correspond to L/S values below 1/500 (in the case of classical surfactants below 1/50 to 1/100). The range of concentrations suitable for making transfersomes is thus by several thousand percent higher than previously believed.

Transfersomes also differ from micellar carrier formulations in at least two basic features. Firstly, a transfersome is, as a rule, far bigger than a micelle; consequently, it also obeys different diffusion laws. Secondly, and more importantly, a transfersome typically contains a water-filled central core (the inner lumen of a vesicle). Nearly all water soluble substances can be incorporated in the core of a transfersome and thus transported across a permeability barrier. Transfersomes are suitable for transporting amphiphilic and lipophilic substances.

If simple carriers are not sufficiently deformable and their permeation capacity must be achieved by using certain surface active additives, the concentration of the latter is then preferably in the range between 0.1 and 99% of the quantity which would be required for carrier solubilization.

Frequently, the optimum - depending on the purpose and the drug used - is located in the range between 1 and 80%, most frequently between 10 and 60% of the solubilization dose; the

concentration range between 20 and 50 mol-% is the most preferred dose.

Our novel transfersomes can mediate transport of agents through essentially all permeability barriers and are suitable, for example, for percutaneous (dermal) applications of medical agents. Transfersomes can carry water— or fat—soluble agents to various depths at the application site, depending on the transfersomal composition, application dose, and form. Special properties which cause a carrier to behave as a transfersome can be realized for phospholipid vesicles as well as for other types of amphiphile aggregates.

In this application it is shown for the first time that by means of suitably formulated transfersomes, a major proportion of the drugs applied can be introduced not only into a permeability barrier, such as skin, but, moreover, can be transported into the deeper tissues where they become systemically active. Transfersomes can carry polypeptides, for example, through intact skin at an effectiveness which is a 1,000 times higher than was previously possible when using structureless penetration enhancers. Transfersomally formulated substances can reach nearly 100 % of the corresponding biological or therapeutical maximum efficacy after applications on human skin. Similar effects, to date, have only been achievable by using an injection needle.

In the course of this study, it has surprisingly been found that through use of such novel drug carriers, antidiabetics can be brought into the blood through intact skin without the necessity of auxiliary measures such as an injection. After a dermal application of insulin applied in the form of transfersomes, more than 50 % and often more than 90 % of the applied drug dose are routinely found in the destined organs of the body. Insulin-containing, dermally applied

transfersomes can thus successfully replace injections of insulin solutions.

The present invention, consequently, opens up a way for simple, noninvasive and completely painless therapy of type II diabetes: transfersomes can be used alone or in combination with an arbitrary dosing means for non-problematic therapy of acute and/or chronical diabetes.

Carriers according to this invention can consist of one or several components. Most commonly, a mixture of basic substances, one or several surface-active substances and agents is used. Lipids and other amphiphiles are best suited basic substances; surfactants or suitable solvents are the best choice from the point of view of surface-active substances. All these can be mixed with agents in certain proportions depending both on the choice of the starting substances and on their absolute concentrations. It is possible that one or several preparation components are only made surface-active by subsequent chemical or biochemical modification of a preparation (ex tempore and/or in situ).

Transfersomes thus offer an elegant, uniform and generally useful means of transport across permeability barriers for diverse agents. These newly developed carriers are perfectly suited for use in human and animal medicine, dermatology, cosmetics, biology, biotechnology, agrotechnology and other fields.

A transfersome according to this invention comprises any carrier with a special capability to get or diffuse into or through a permeability barrier under the effect of a gradient and by so doing to transport material between the application and destination sites.

A (drug) carrier of this type preferably corresponds to a molecular homo- or hetero-aggregate or to a polymer. The carrier aggregate, according to this invention, consists of a few or many, identical or different molecules; these form a physico-chemical, physical, thermodynamical and, quite frequently, functional unity. Some examples of corresponding aggregates are micelles, disk-micelles, oil-droplets (nanoemulsions), nanoparticles, vesicles or 'particulate emulsions'; parts of an aggregate can also be held together by (a) non-covalent force(s). The optimal carrier size is also a function of the barrier properties. Furthermore, it is influenced by the polarity (hydrophilicity), mobility (dynamics), and charge density as well as the elasticity of an carrier (surface). Advantageous sizes of transfersomes are in the range of 10 nm to 10,000 nm.

For dermal applications, for example, preferably particles or vesicles with a diameter of the order of 100-10,000 nm, frequently in the range of 100 to 400 nm, and most frequently with sizes between 100 and 200 nm are used as carriers.

For the use in plants, relatively small carriers, depending on the details of each individual application, should be used, most frequently with diameters below 500 nm.

DEFINITIONS

LIPIDS

A lipid in the sense of this invention is any substance with characteristics similar to those of fats or fatty materials. As a rule, molecules of this type possess an extended apolar region (chain, X) and, in the majority of cases, also a water-soluble, polar, hydrophilic group, the so-called head-group (Y). The basic structural formula 1 for such substances reads

$$X - Y_n \tag{1}$$

where n is greater or equal zero. Lipids with n=0 are called apolar lipids; those with n >= 1 are polar lipids. In this context, all amphiphiles, such as glycerides, glycerophospholipids, glycerophosphinolipids, glycerophosphonolipids, sulfolipids, sphingolipids, isoprenoidlipids, steroids, sterines or sterols and lipids containing carbohydrate residues, can simply be referred to as lipids.

A phospholipid, for example, is any compound of formula 2

$$\begin{array}{c|c}
H & R_3 & O_n \\
 & | & | & | & \\
R_1 - C - C - O - P - R_4 \cdot G^{\oplus} \\
 & | & | & | & \\
H & R_2 & O^{\ominus}
\end{array}$$
(2)

In this formula, n and R_4 have the same significance as in formula 8 except that R_1 and R_2 cannot be hydrogen, an OH-group or a short chain alkyl residue; R3 is a hydrogen atom or an OH-group, in the majority of cases. In addition, R_4 can be a short chain alkyl group substituted by three short chain alkylammonium residues, e.g. trimethylammonium, or an aminosubstituted short chain alkyl, e.g. 2-trimethylammonioethyl (cholinyl).

A lipid is preferably any substance according to formula 2, in which n=1, R_1 and R_2 is hydroxyacyl, R_3 is a hydrogen atom and R_4 is a 2-trimethylammonioethyl (the last compound corresponding to the phosphatidylcholine headgroup), 2-dimethylammonioethyl, 2-methylammonioethyl or 2-aminoethyl (corresponding to

a phosphatidylethanolamine headgroup).

A lipid of this kind is, for example, phosphatidylcholine from natural sources, in the old nomenclature also called lecithin. This can be obtained, for example, from eggs (then being rich in arachidic acid), soy-bean (rich in C-18 chains), coconuts (rich in saturated chains), olives (rich in monounsaturated chains), saffron, safflower and sunflowers (rich in n-6 linolenic acid), linseed (rich in n-3 linolenic acid), from whale-oil (rich in monounsaturated n-3 chains), from Nachtkerze or primrose (rich in n-3 chains), etc. Preferred natural phospsphatidylethanolamines (in the old nomenclature also called cephalins), frequently stem from egg or soy-beans.

Further preferred lipids are synthetic phosphatidylcholines (R_4 in formula 2 corresponding to 2-trimethylammonioethyl), synthetic phosphatidylethanolamines ($\mathtt{R_4}$ being identical to 2aminoethyl), synthetic phosphatidic acids (R_4 being a proton) or their esters (R4 corresponding e.g. to a short chain alkyl, such as methyl or ethyl), synthetic phosphatidylserines (R_{Δ} corresponding to an L- or D-serine), or synthetic phosphatidyl(poly)alcohols, such as phosphatidylglycerol (R_4 being identical to L-or D-glycerol). In this case, $\mathbf{R_1}$ and $\mathbf{R_2}$ are identical acyloxy residues such as lauroyl, oleoyl, linoyl, linoleoyl or arachinoyl, e.g. dilauroyl-, dimyristoyl-, dipalmitoyl-, distearoyl-, diarachinoyl-, dioleoyl-, dilinoyl-, dilinoleoyl-, or diarachinoylphosphatidylcholine or -ethanolamine, or different acyl residues, e.g. $R_1 =$ palmitoyl and R_4 = oleoyl, e.g. 1-palmitoyl-2-oleoyl-3glycerophosphocholine; or different hydroxyacyl residues, e.g. R_1 = hydroxypalmitoyl and R_4 = hydroxyoleoyl; or mixtures thereof, e.g. R_1 = hydroxypalmitoyl and R_4 = oleoyl etc. R_1 can also signify an alkenyl and R_2 identical hydroxyalkyl residues, such as tetradecylhydroxy or hexadecylhydroxy, e.g.

in ditetradecyl- or dihexadecylphosphatidylcholine or -ethanolamine, R_1 can be an alkenyl and R_2 a hydroxyacyl, e.g. a plasmalogen (R_4 = trimethylammonioethyl), or R_1 can be an acyl, e.g. myristoyl, or palmitoyl, and R_2 a hydroxy, e.g. in natural or synthetic lysophosphatidylcholines or lysophosphatidylglyceroles or lysophosphatidylethanolamines, e.g. 1-myristoyl- or 1-palmitoyllysophosphatidylcholine or -phosphatidylethanolamine; R_3 is frequently hydrogen.

A convenient lipid according to this invention is also a lipid of the basic formula 2, in which n=1, R_1 is an alkenyl residue, R_2 is an acylamido residue, R_3 is a hydrogen atom and R_4 is 2-trimethylammonioethyl (choline residue). A lipid of this kind is known under the term sphingomyeline.

Furthermore, suitable lipids are analogs of lysophosphatidyl-choline, such as 1-lauroyl-1,3-propandiol-3-phosphorylcholine, monoglycerides, such as monoolein or monomyristin, a cerebroside, a ganglioside or a glyceride which contain no free or esterified phosphoryl- or phosphono group or a phosphino group in the position 3. One example of such glyceride is diacylglyceride or 1-alkenyl-1-hydroxy-2-acylglyceride with arbitrary acyl or alkenyl groups, the 3-hydroxy group in these then being ether-bonded to one of the mentioned carbohydrate residues, such as a galactosyl residue, for example in monogalactosylglycerol.

Lipids with desired head or chain group properties can also be prepared biochemically, using e.g. phospholipases (such as phospholipase A1, A2, B, C, and especially D), desaturases, elongases, acyl-transferases, etc., starting with any natural or synthetic precursor.

Suitable lipids, furthermore, are all lipids found in

biological membranes and extractable with suitable apolar organic solvents, such as chloroform. In addition to the lipids already mentioned, this group of lipids also encompasses steroids, such as cestradiols, or sterines, such as cholesterin, beta-sitosterine, desmosterine, 7-keto-cholesterin or beta-cholestanol, fat-soluble vitamins, such as retinoids, vitamins, such as vitamin A1 or A2, vitamin E, vitamin K, such as vitamin K1 or K2, or vitamin D1 or D3, etc.

EDGE ACTIVE SUBSTANCES

An edge active substance according to this application is any substance which is capable of inducing or increasing the carrier system's capacity to form edges, protrusions or relatively strongly curved surfaces; this property also manifests itself in the capability to induce pores in lipid structures, such as membranes, or even provoke a solubilization (lysis) in the higher concentrations ranges. More strictly speaking, all such substances are considered edge-active which exhibit a tendency to accumulate at or near the edges between the polar and apolar parts of molecules and/or near or at the edges between the polar and apolar parts of the supramolecular aggregates, thereby lowering the free energy for the formation of edges and/or strongly curved surfaces. All surfactants and many solvents as well as asymmetric, and thus amphiphatic, molecules or polymers, such as many oligo- and polycarbohydrates, oligo- and polypeptides, oligo- and polynucleotides or their derivatives also belong to this category.

The edge activity of the used 'solvents', surfactants, lipids, or agents depends on the effective relative hydrophilicity or hydrophobicity of each molecule, and can also be modified by the choice of further system components and boundary conditions in the system (temperature, salt content, pH value,

etc.). Functional groups, such as double bonds in the hydrophobic part of molecules, which lower the hydrophobicity of this molecular region, increase edge activity; elongation or space-demanding substituents in the hydrophobic molecular parts, e.g. in the aromatic part, lower the edge activity of a substance. Charged or strongly polar groups in the headgroup normally increase the edge activity provided that the hydrophobic molecular part has remained the same. Direct connections between the lipophilic and/or amphiphilic system components have the reverse effect.

Solvents which are to some extent edge active only in certain concentration ranges encompass simple, especially short chain, alcohols, such as methanol, ethanol, n-propanol, 2-propen-1ol (allylalcohol), n-butanol, 2-buten-1-ol, n-pentanol (amylalcohol), n-hexanol, n-heptanol, n-octanol and n-decanol; furthermore, iso-propanol, iso-butanol or iso-pentanol. Higher alcohols are even more potent, for example, ethandiol (ethylene glycol), 1,2-propane diol (propylene glycol), 1,3propane diol, 1,3-butane diol, 2,3-butane diol, propane triol (glycerol), 2-butene-1,4-diol, 1,2,4-butane triol, 1,3,4butane triol, 1,2,3-butane triol, butane tetraol (erythritol), 2,2-bis(hydroxymethyl)1,3-propane diol (pentaerythritol), 2,4pentadiol and other pentadiols or pentendiols, 1,2,5pentantriol and other pentantriols or pententriols, pentantetraol, 1,2,6-hexane triol and other hexane triols, hexane tetraol and -pentaol, heptane diol, - triol, -tetraol, -pentaol and -hexaol, 1,4-butane diol- diglycidylether, etc. Short-chain, di-, tri-, tetra-, penta- and hexaoxyethylene glycols and -ethylene glycols are also suitable for the present purpose as well as cyclic alcohols, such as benzylalcohol, cyclopentanol, cyclohexanol, 3-, 4-, 5cyclohexanol, cyclohexylalcohol, aryl-alcohols, such as phenyl-ethanol, etc.

Edge active solvents which can be used according to this invention include, furthermore, short-chain acyl-, alkyl-, alkenyl, hydroxyacyl-, alkenyloxy- as well as aryl derivatives of different acids and bases, such as acetic acid, formic acid, propionic acid, butenoic acid, pentenoic acid, etc. of many amino acids, benzoic acid, phosphoric- and sulphuric acid, of ammonia, purine, pyrimidine, etc., provided that they do not impair the chemical integrity of the carriers and the agent molecules to an inacceptable extent.

A nonionic edge active substance is any material which contains at least one, and in the majority of cases several, strongly hydrophilic groups and at least one, sometimes also several relatively hydrophobic, water insoluble residues.
'Nonionic' edge active substances can be zwitterionic or truly non-ionic.

Free of any charge and edge active are e.g. the lipoidal substances of the basic formula 3

$$R_1 - ((X_i - Y_j)_k - Z_1)_m - R_2$$
 (3)

in which X, Y and Z are different polar (hydrophilic) or apolar (hydrophobic) groups, which confer an amphiphatic character to the whole molecule. Z ist mainly a water soluble residue and i, j, k, l and m are greater or equal zero. R_1 and R_2 are two arbitrary residues; the first is mostly polar or very short; the second apolar.

The residues R₂ or X in such lipids often represent an acyl-, alkyl-, alkenyl-, hydroxyalkyl-, hydroxyalkenyl- or hydroxyacyl-chain with 8-24 carbon atoms. Very frequently, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tetradecyl or n-tetradecenoyl, n-hexadecyl, n-

hexadecenoy1, n-octadecy1, n-octadecenoy1 and n-octadecendieny1, n-octadecentrieny1, etc. are used.

Sorbitol is one possible example of residue Z. $(X_i - Y_j)$ can be a polyene, polyoxyalkene, such as polyoxyethylene, polyalcohol, such as polyglycol, or polyether. $(X_i - Y_j)$ mainly contain 1-20 and very frequently 2-10 units, e.g. in ethylene glycol, di- and triglycol (oligoglycol) or polyethylene glycol.

In simple substances according to formula 3, the residue R, or R, is frequently an alkyl-, alkenyl-, hydroxyalkyl-, alkenylhydroxy- or hydroxyacyl-chain with 1-24 carbon atoms. Very suitable are substances such as n-dodecyl (lauryl-ether), ntetradecyl (myristoyl-ether), n-pentadecyl (cetyl-ether), nhexadecyl (palmitoyl-ether), n-octadecyl (stearoyl-ether), ntetradecencyl (myristolecyl-ether), n-hexadecencyl (palmitoleoyl-ether) or n-octadecenoyl (oleoyl-ether). Owing to their good availability, the following substances are, amongst others, frequently used: 4-lauryl-ether (Brij 30), 9-laurylether, 10-lauryl-ether, 23-lauryl-ether (Brij 35), 2-cetylether (Brij 52), 10-cetyl-ether (Brij 56), 20-cetyl-ether (Brij 58), 2-stearyl-ether (Brij 72), 10-stearyl-ether (Brij 76), 20-stearyl-ether (Brij 78), 21-stearyl-ether (Brij 721), 2-oleoyl-ether (Brij 92), 10-oleoyl-ether (Brij 96) and 20oleoyl-ether (Brij 78), the increasing number in their names indicating an increasing headgroup length. Suitable substances of this class are marketed under the names GENAPOLTM, THESITTM and LUBROLTM.

Amongst the most common nonionic surfactants of the ether-type which are suitable for the present purpose are the substances of the Myrj trademark, such as polyoxyethylene(8)-stearate (Myrj45), polyoxyethylene(20)-stearate (Myrj49), polyoxy-

ethylene(30)-stearate (MyrjTM51), polyoxyethylene(40)-stearate (Myrj52), polyoxyethylene(50)-stearate (Myrj53), polyoxyethylene(100)-stearate (Myrj59), etc. Further products of these classes are sold under the trademark Cirrasol ALN; common polyoxyethylene-alkylamides are e.g. surfactants of the trademark Atplus.

Another important special form of the nonionic edge active substance according to basic formula 3 most frequently contains a hydroxyl group in the position of residue R₁ and a hydrogen atom in the position of residue R₂, by and large. Residues X and Z are frequently an alkoxy- or alkenoxy-, in principle also a hydroxyalkyl-, hydroxyalkenyl- or hydroxy-acyl-chain with 4-100 carbon atoms. Residue Y, too, is frequently an alkoxy-, alkenoxy-, hydroxyalkyl-, hydroxy-alkenyl- or hydroxyacyl-chain but one which is often branched and carries one methyl-or ethyl-side chain. Perhaps the most widely used edge active substances of this class are the surfactants which are marketed unter the trademark "Pluronic".

Further, very commonly used special forms of non-ionic edge active substances are sold under the trademark "TWEEN". The cyclic part of this substance class is frequently a sorbitol ring. Residues R₁, R₂, R₃ and R₄ are frequently of the alkoxyor alkenoxyor, and even more commonly of the polyeneor, polyoxyalkeneor, such as polyoxyethyleneor, polyalcoholor, such as polyglycolor, or polyether type. Some of these chains can be apolar, corresponding to e.g. an acylor, alkylor, alkenylor, hydroxyalkylor, hydroxyalkenylor or hydroxyacylochain with 8-24 carbon atoms. If none of residues R₁, R₂, R₃ or R₄ is apolar, one of the side-chains of a branched chain or one of the termini must be hydrophobic.

Chains in the substances of TWEEN type are very frequently of

the polyoxyethylene class. They mainly contain one terminal hydrogen atom and more rarely a methoxy group. One of the polyoxyethylene chains, however, contains a hydrophobic residue which preferably corresponds to an acyl-, alkyl-, alkenyl-, hydroxyalkyl-, hydroxyalkenyl- or hydroxyacyl-chain with 4-24, and in particular 12-18 carbon atoms.

Edge active substances which are sold under the trademark "TRITON" are also useful according to this invention.

Polyalcohol residues R, are most frequently esterified or etherified; however, in some cases they can also be bound to the hydrophobic chain through a nitrogen atom. They are very often adducts of ethyleneglycol, glycerol, erythritol, or pentaerythritol, for example 1-alkyl-, 1-alkenoyl-, 1hydroxyalkene-glycerol, or corresponding 1,2-, or 1,3diglycerides (for example, 1-alkyl, 2-alkyl-, 1-alkyl, 2alkenyl-, 1-alkenyl,2-alkyl-, 1- alkenyl,2-alkenyl-, 1alkenyl,2-hydroxyalkyl-, 1-hydroxyalkyl,2-alkenyl-, 1-alkyl,2hydroxyalkyl-, 1-hydroxyalkyl,2-alkyl-, 1-alkenyl,2hydroxyalkene-, 1-hydroxyalkene,3-alkenyl-, 1-alkyl,3-alkyl-, 1-alkyl,3-alkenyl-, 1-alkenyl,3-alkyl-, 1-alkenyl,3-alkenyl-, 1-alkenyl, 3-hydroxyalkyl-, 1-hydroxyalkyl, 3-alkenyl-, 1alkyl,3-hydroxyalkyl-, 1-hydroxyalkyl,3-alkyl-, 1-alkenyl,3hydroxyalkene- or 1-hydroxyalkene,3-alkenyl-). Glycerol can be replaced by another oligo- or polyalcohol, such as erythritol, pentantriol, hexantriol, -tetraol or -pentaol, etc., resulting in a wide variety of linkage possibilities.

Z or R₂, moreover, can contain one or more 1-10, preferably 1-6, most frequently 1-3 carbohydrate residues or their derivatives. 'Carbohydrate residue' in this context has the meaning as already described and is an alpha or beta and L- or D-alloside, -altroside, -fucoside, -furanoside, -galactoside,

-galactopyranoside, -glucoside, -glucopyranoside, -lactopyranoside, -mannoside, -mannopyranoside, -psicoside, sorboside,
-tagatoside, -taloside; frequently used derivatives of
disaccharides are L- or D-maltopyranoside, -maltoside, -lactoside, malto- or -lactobionamide; the corresponding derivatives
of maltotriose or -tetraose are also useful.

The carbohydrate residue can also contain a sulfur atom, e.g. in beta-L- or D-thioglucopyranoside or -thioglycoside.

Zwitterionic surfactants are substances, for example, which contain a sulphonate group, such as (3-((3-cholamidopropyl)-dimethylyammonio)-1-propanesulfonate (CHAPS) and (3-((3-cholamidopropyl)-dimethylyammonio)-2-hydroxy-1-propane-sulfonate (CHAPSO) or N-octyl-N,N-dimethyl-3-ammonio-1-propane-sulfonate, N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (lauryl-sulfobetaine), N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (myristyl-sulfobetaine), N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (palmityl-sulfobetaine), N-octadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (stearyl-sulfobetaine), 'N-octadecenoyl-N,N,-dimethyl-3-ammonio-1-propanesulfonate (oleoyl-sulfobetaine) etc.

Zwitterionic surfactants are also substances with the basic formula 4

$$\begin{array}{c|c}
 & H & R_3H \\
 & | & | & | \\
 & | & | & | \\
 R_1-C-C-C-X\Theta-R_4\Theta \\
 & | & | & | \\
 & | & | & | \\
 & | & | & |
\end{array}$$
(4)

in which n is one or zero. One of both side chains R_1 and R_2 contains one acyl-, alkyl-, alkenyl-, alkenyl-, hydroxyal-kyl-, hydroxyalkenyl- or hydroxyacyl-, or alkoxy chain with 8-24 carbon atoms each; the other residue corresponds to a hydrogen, to a hydroxy group or to a short chain alkyl

residue. R, normally represents a hydrogen atom or a short alkyl chain. X is most frequently anionic, e.g. in a phosphate- or sulfate-residue. The residue R4 in this case is cationic, in order to ensure that the whole molecule is zwitterionic. Most frequently, ammonio-alkyl derivatives, such as ethanol-, propanol-, butanol-, pentanolamine, hexanolamine, heptanolamine or octanolamine, N-methyl-, N,Ndimethyl, or N,N,N-trimethyl-ammonio-alkyl, N-ethyl-, N,Ndiethyl, or N,N,N-triethyl-amino-alkyl, unequal N-alkyles, such as N,N-methyl-ethyl-ammonio-alkyl, or corresponding hydroxyalkyl substances are used, sometimes in a substituted (Single chain (lyso) derivatives of all biological zwitterionic phospholipids as well as their modified forms (such as Platelet-Activating-Factor and its analogs) also belong to this category.) R_4 can also be a positively charged carbohydrate residue, such as an aminosugar or one of its derivatives. R_4 and X, moreover, can exchange positions.

An ionic edge active substance is any material which contains at least one positive or negative charge and at least one segment which is poorly water soluble. An anionic substance of this kind can also contain several charges but must have a negative total charge. The total charge of any cationic substance must be positive.

Anionic edge active substances are for example the substances described by the basic formula 5:

$$\begin{bmatrix} & & \circ \\ R_1 - C - \circ \end{bmatrix} \stackrel{\Theta}{G}$$
 (5)

in which R1 is an organic hydrocarbon residue, which can also be substituted, and G^{\dagger} is a monovalent counterion, chiefly an alkali metal cation (such as lithium, sodium, potassium,

rubidium, or cesium), an ammonium ion or a low weight tetraalkylammonium-ion, such as tetramethylammonium or tetraethylammonium.

The hydrocarbon residue R_1 in an anionic surfactant of the basic formula 5 is frequently a straight chain or branched acyl, alkyl or alkenoyl, or oxidized or hydroxygenated derivative thereof; the residue R_1 can also contain one or several cyclic segments.

 R_1 chain frequently contains 6-24, more frequently 10-20, and most frequently 12-18 carbon atoms; if unsaturated, it contains 1-6, and even more frequently 1-3, double bonds in n-3- or n-6- position.

The following hydroxyalkyl chains are preferred for the present purpose: n-dodecylhydroxy (hydroxylauryl), ntetradecylhydroxy (hydroxymyristyl), n-hexadecylhydroxy (hydroxycetyl), n-octadecylhydroxy (hydroxystearyl), neicosylhydroxy or n-docosyloxy. Amongst the hydroxyacyl chains, the hydroxylauroyl, hydroxymyristoyl, hydroxypalmitoyl, hydroxystearcyl, eicoscylhydroxy or docoscyloxy chains are especially worth mentioning; particularly interesting amongst the hydroxyalkene-residues are the hydroxydodecen, hydroxytetradecen, hydroxyhexadecen, hydroxyoctadecen, hydroxyeicosen, hydroxydocosen, most notably 9-cis,12-hydroxyoctadecenyl (ricinolenyl) or 9-trans, 12-hydroxy-octadecenyl (ricinelaidyl), 5-cis,8-cis,11-cis,14-cis,15-hydroxyeicosatetraenyl (15-hydroxy-arachidonyl), 5-cis,8-cis,11cis,14-cis,15-hydroxy,17-cis-eicosapentaenyl, 4-cis,7-cis,10cis, 13-cis, 15-hydroxy, 16-cis-docosapentaenyl and 4-cis, 7cis, 10-cis, 13-cis, 15-hydroxy, 16-cis, 19-cis-docosahexaenyl.

Another class of anionic, edge active substances corresponds

to basic formula 6

$$(R_1 - (0 - X) - Y)^- G^+$$
 (6)

here, R_1 is a hydrocarbon residue which can also be substituted; X is a short-chain alkyl residue and Y denotes a sulfonate-, sulfate-, phosphate-, phosphonate or phosphinate group. G^+ is a mostly monovalent counterion (cation).

Alkali metal alkyl- or -alkenylethersulfonates or -phosphates belong to this class of ether-bonded molecules. Special examples are sodium-or potassium-n-dodecyloxyethylsulfate, -n-tetradecyloxyethylsulfate, -n-hexadecyl-oxyethylsulfate or -n-octadecyloxyethylsulfate or an alkali metal alkane sulfonate, such as sodium- or potassium-n-hexanesulfonate, n-octansulfonate, n-decansulfonate, n-dodecansulfonate, -n-tetradecansulfonate, -n-hexadecansulfonate or -n-octadecansulfonate.

The substances of general formula 7

$$(R_1 - Y)^{\Theta} G^{\Theta}$$
 (7)

are related to the compounds of basic type 6. These are analogous to the substances of formula 6 but contain a directly (covalently) coupled charged headgroup.

Particularly useful anionic, edge active substances of above formula 6 are alkali metal-alkylsulfates. To mention just a few examples: sodium or potassium-n-dodecyl (lauryl)-sulfate, -n-tetradecyl (myristyl)-sulfate, -n-hexadecyl (palmityl)-sulfate, -n-octadecyl (stearyl)-sulfate, n-hexadecylen (palmitolein)-sulfate and n-octadecylen (olein)-sulfate. Instead of a sulfate group, sulfonate, n-methyl- or n-ethylglycine for example can also be used.

Various salts of bis-(2-alkyl-alkyl)-sulfosuccinate are also suitable for the applications as described in this work. Preferably, these are used as lithium-, sodium-, potassium-, or tetramethylammonium-bis-(2-ethyl-hexyl)-sulfosuccinate.

Furthermore, sarcosides, as well as alkyl- or alkenoyl-sulfochloride derivatives of the protein condensates, sulfonamide soaps, sulfatated or phosphorylated alcoholesters, sulfatated or phosphorylated amides or monoglycerides, moreover, fatty acid alkylamides, sulfo- or phospho-succinic acid esters, taurides, alkylphenol-, alkylbenzol-, alkylnapthaline-ethersulfonates etc., are also all useful.

Another important group of anionic edge active substances are the derivatives of cholic acid. Their basic formula reads

here, R₁ corresponds to a proton, an OH- or a carbonyl group and R₂ can be a derivative of taurine or glycocoll, for example. Particularly suitable are various salts of cholic acid (bile acid, 3alpha,7alpha,12alpha-trihydroxy-5beta-cholane-24-oin-acid), deoxycholic acid (3alpha,12alpha-dihydroxy-5beta-cholane-24-oin-acid), chenodeoxycholic acid, glycocholic acid (N-(3alpha,7alpha,12alpha-trihydroxy-24-oxycholane-24-yl-)glycine), deoxycholic acid, glycodeoxycholic acid (N-(3alpha,12alpha-dihydroxy-24-oxycholane-24-yl-) glycine), glycochenodeoxycholic acid, glycolitocholic acid, glycoursodeoxycholic acid, litocholic acid, taurodeoxycholic

acid, taurocholic acid (3alpha,7alpha,12alpha-trihydroxy-5beta-cholan-24-oin-acid-N-(sulfoethyl)amide), taurochenodeoxycholic acid, tauroglycocholic acid, taurolitocholic acid, taurolitocholic acid, taurolitocholic acid, ursocholanic acid, ursodeoxycholic acid (3alpha,7beta-dihydroxy-5beta-cholanic acid), the most common counterions being sodium or potassium.

Diverse cholic acid esters, such as cholesteryl-alkyl-, -alkenyl-, -hydroxyalkyl-, -hydroxyalkene-esters or cholesterylsulfates and -sulfonates are also edge active according to this invention.

Related synthetic adducts of the CHAPS class can also be used; in this case, R_2 is frequently an NH-(CH₂)₃-N',N'-(CH₂)₂(CH₂)₂- R_3 -CH₂-SO₃ segment, whilst R_3 can be a proton or a carbonyl group. Again, sodium or potassium are the most commonly used counterions.

Digitonines as well as saponines, such as Quillaja acid, have similar basic structures in their cores as the cholic acid derivatives; consequently, they can also be used as edge active substances according to this invention.

The basic formula of the phosphorus-containing anionic edge active substances is

in which n is zero or one. One of the two side chains R_1 and R_2 contains hydrogen, a hydroxy group or a short chain alkyl residue; the other contains an alkyl-, alkenyl-, hydroxy-

alkyl-, hydroxyalkenyl- or hydroxyacyl-chain (or an alkenyl-, alkoxy-, alkenyloxy- or acyloxy-residue) with 8-24 carbon atoms. The R_3 residue, as a rule, corresponds to hydrogen or an alkyl chain with less than 5 carbon atoms. R_4 can be an anionic oxygen or a hydroxy group; an alkyl chain with up to 8 C-atoms can also appear as well as another carbohydrate residue with up to 12 carbon atoms; if R_1 as well as R_2 are hydrogen and/or hydroxy groups, a steroid residue, a sugar derivative, a chain containing an amino group, etc., can also appear. Alkyl residues can also be substituted.

Amongst the most suitable surfactants of this substance class are: n-tetradecyl(=myristoyl)-glycero-phosphatidic acid, n-hexadecyl-(=plamityl)-glycero-phosphatidic acid, n-octadecyl(=stearyl)-glycero-phosphatidic acid, n-hexadecylene(=palmitoleil)-glycero-phosphatidic acid, n-octadecylene(=oleil)-glycero-phosphatidic acid, n-tetradecyl-glycero,phosphoglycerol, n-hexadecyl-glycero-phosphoglycerol, n-octadecylene-glycero-phosphoglycerol, n-tetradecyl-glycero-phosphoserine, n-hexadecyl-glycerophosphoserine, -n-octadecyl-glycero-phosphoserine and n-octadecylene-glycero-phosphoserine.

The corresponding lyso-sulfolipids, phosphono- or phosphinolipids are also suitable edge active compounds according to this invention.

Counterion in these compounds is most frequently an alkali metal cation (such as lithium, sodium, potassium, cesium) or a water soluble tetraalkylammonium-ion (such as tetramethylammonium, tetrathylammonium, etc.).

All corresponding statements made above for surfactants of basic formula 3 also pertain to the carbohydrate residue R_1 .

This residue in the majority of cases is a straight chain or branched alkyl or alkenoyl chain with 6-24, very frequently 10-20, in particular 12-18, carbon atoms and 1-6, especially frequently 1-3, double bonds in n-3- or n-6- positions.

Very convenient alkyl-residues R_1 or R_2 are, for example, n-dodecyl, n-tetradecyl, n-hexadecyl, n-octadecyl, n-eicosyl or n-docosyl chains. N-nonyl, n- undecyl, n-tridecyl, n-pentadecyl, n-heptadecyl and n-nonadecyl, however, are equally useful.

An alkenyl in position R₁ or R₂ is preferably a 9-cis-dodecenyl (lauroleyl), 9-cis-tetradecenyl (myristoleyl), 9-cis-hexadecenyl (palmitoleoyl), 6-cis-octadecenyl (petroselinyl), 6-trans-octadecenyl (petroselaidinyl), 9-cis-octadecenyl (oleyl), 9-trans-octadecenyl (elaidinyl), 11-cis-octadecenyl (vaccenyl), 9-cis-eicosenyl (gadoleinyl), 13-cis-docosenyl, 13-trans-docosenyl or 15-cis-tetracosenyl, etc.

Higher unsaturated alkenyls which also can be used for the present purpose are, amongst others: 9-cis,12-cis-octadecendienyl, 9-trans,12-trans-octadecendienyl, 9-cis,12-cis,15-cis-octadecentrienyl, 6-cis,9-cis,12-cis-octadecentrienyl, 11-cis,14-cis,17-cis-eicosatrienyl, 6-cis,9-cis,12-cis,15-cis-octadecentetraenyl, 5-cis,8-cis,11-cis,14-cis-eicosatetraenyl, 5-cis,8-cis,11-cis,14-cis-eicosatetraenyl, 4-cis,7-cis,10-cis,10-cis,13-cis,16-cis-docosapentaenyl and 4-cis,7-cis,10-cis,13-cis,16-cis-docosapentaenyl.

R₁ and R₂ are preferably chosen from the substances of the hydroxyalkyl-class, in which case they correspond, for example, to n-decylhydroxy, n-dodecylhydroxy (hydroxylauryl), n-tetradecylhydroxy (hydroxymyristyl), n-hexadecylhydroxy (hydroxycetyl), n-octadecylhydroxy (hydroxystearyl) and n-

A 19 .

eicosylhydroxy (hydroxyarachinyl) chains.

An alkenylhydroxy in R₁ or R₂ is preferably a 9-cis-dodecenylhydroxy (hydroxylauroleyl), 9-cis-tetradecenylhydroxy (hydroxymyristoleyl), 9-cis-hexadecenylhydroxy (hydroxy-palmitoleinyl), 6-cis-octadecenylhydroxy (petroselinylhydroxy), 6-trans-octadecenylhydroxy (hydroxypetroselaidinyl), 9-cis-octadecenylhydroxy (hydroxyoleyl), 9-trans-octadecenylhydroxy (hydroxyoleyl), 9-trans-octadecenylhydroxy (hydroxyelaidinyl) and 9-cis-eicosenyl (hydroxy-gadoleinyl) chain.

An alkanoylhydroxy in R₁ or R₂ is preferably an n-decanoyl-hydroxy, n-dodecanoylhydroxy (lauroylhydroxy), n-tetradecanoylhydroxy (myristoylhydroxy), n-hexadecanoylhydroxy, n-hexadecanoylhydroxy (palmitoylhydroxy), n-octadecanoylhydroxy (stearoylhydroxy) and n-eicosoylhydroxy (arachinoylhydroxy) chain.

An alkenoylhydroxy in R₁ or R₂ is preferably a 9-cis-dodecenylhydroxy (lauroleoylhydroxy), 9-cis-tetradecenoylhydroxy (myristoleoylhydroxy), 9-cis-hexadecenoylhydroxy (palmitoleinoylhydroxy), 6-cis-octadecenoylhydroxy (peteroselinoylhydroxy), 6-trans-octadecenoylhydroxy (petroselaidinoylhydroxy), 9-cis-octadecenoylhydroxy (oleoylhydroxy), 9-trans-octadecenoylhydroxy (elaidinoylhydroxy) and 9-cis-eicosenoyl (gadoleinoylhydroxy) chain.

Some examples for the short chain alkyl residue, which often appear in the R_4 residue, are methylene-, ethylene-, n-propylene-, iso-propylene-, n-butylene- or iso-butylene- as well as n-pentylene- or n-hexylene-groups. R_4 can also be a carboxy- or a sulfo-group, an acid or alkaline group, such as carboxy- and amino-group; the amino group in such case is always in the alpha-position relative to the carboxy group.

Another example for the R_4 residue are free or etherified hydroxy groups (two ether-bonded hydroxy groups, in such case, can be connected by one divalent hydrocarbon residue, such as methylene, ethylene, ethylidene, 1,2-propylene or 2,2-propylene). R_4 , furthermore, can be substituted by a halogen atom, such as chlorine or bromine, a low weight alkoxy-carbonyl, such as methoxy- or ethoxycarbonyl, or by a low weight alkansulfonyl-, such as methansulfonyl.

A substituted short chain alkyl residue R₄ with 1-7 C-atoms is preferably carboxy-short-chain alkyl, such as carboxy-methyl, carboxyethyl- or 3-carboxy-n-propyl, omega-amino-n-carboxy- a short-chain alkyl, such as 2-amino-2-carboxyethyl or 3-amino-3-carboxy-n-propyl, hydroxy-short-chain alkyl, such as 2-hydroxyethyl or 2,3-dihydroxypropyl, a short-chain alkoxy-3-methoxy-n-propyl, a short-chain alkylendioxy-short-chain alkyl, such as 2,3-ethylenedioxypropyl or 2,3-(2,2-propylene)-dioxypropyl, or halogen-short-chain alkyl, such as chloro- or bromo-methyl, 2-chloro- or 2-bromo-ethyl, 2- or 3-chloro- or 2-or 3-bromo-n-propyl.

A carbohydrate residue R_4 with 5-12 C-atoms is, for example, a natural monosaccharide residue stemming from a pentose or a hexose in the aldose or ketose form.

A carbohydrate residue R₄, moreover, can be a natural disaccharide residue, such as a disaccharide residue formed from two hexoses, in the described sense. A carbohydrate residue R₄ can also be a derivatised mono-, di- or oligosaccharide residue, in which an aldehyde group and/or one or two terminal hydroxy groups are oxidized to a carboxy group, e.g. a D-glucon-, D-glucar- or D-glucoron acid residue; this preferably appears in the form of a cyclic lactone residue. The aldehyde- or keto-groups in a derivatised mono-

or disaccharide residue can also be reduced to a hydroxy group, e.g. in inositol, sorbitol or D-mannitol; also, one or several hydroxy groups can be replaced by a hydrogen atom, e.g. in desoxysugars, such as 2-desoxy-D-ribose, L-rhamnose or L-fucose, or by an amino group, e.g. in aminosugars, such as D-glucosamine or D-galactosamine.

 R_4 can also be a steroid residue or a sterine residue. If R_4 is a steroid residue, R_3 is a hydrogen atom, whilst R_1 and R_2 in such case preferably correspond to a hydroxy group.

The counterion in such cases is preferably an ammonium, sodium or potassium ion.

In an anionic surfactant of formula 8, the following values of parameters are preferred: n = 1, R_1 is an alkyl, such as n-1dodecyl (lauryl), n-tridecyl, n-tetradecyl (myristyl), npentadecyl, n-hexadecyl (cetyl), n-heptadecyl or n-octadecyl (stearyl), hydroxyalkyl, such as n-dodecylhydroxy (hydroxylauryl), n-tetradecylhydroxy (hydroxymyristyl), n-hexadecylhydroxy (hydroxycetyl), or n- octadecylhydroxy (hydroxystearyl), hydroxyacyl, such as hydroxylauroyl, hydroxymyristoyl, hydroxypalmitoyl or hydroxystearoyl, R2 is a hydrogen atom or a hydroxy group, R_3 is a hydrogen atom or a short-chain alkyl, such as methyl, R, is a short-chain alkyl, e.g. methyl or ethyl, short-chain alkyl substituted by an acid or an alkaline group, such as a carboxy and amino group, e.g. omega-amino-omega-carboxy-short-chain alkyl, such as 2amino-2-carboxyethyl or 3-amino-3-carboxy-n-propyl, hydroxyshort-chain alkyl, such as 2-hydroxyethyl or 2,3hydroxypropyl, short-chain alkylenedioxy-short-chain alkyl, e.g. 2,3-ethylenedioxypropyl or 2,3-(2,2-propylene)dioxypropyl, halogen-short-chain alkyl, such as 2-chloro- or 2-bromo-ethyl group, a carbohydrate residue with 5-12 C-

atoms, e.g. in inositol, or a steroid residue, such as a sterol, e.g. cholesterin, and \boldsymbol{G}^{\dagger} is a sodium-, potassium- or ammonium-ion.

An anionic surfactant of formula 8, in many cases, is a sodium— or potassium salt of lysophosphatidylserine, such as the sodium— or potassium salt of lysophosphatidylserine from bovine brain or the sodium— or potassium salt of a synthetic lysophosphatidylserine, such as sodium— or potassium—1— myristoyl— or -1-palmitoyl—lysophosphatidylserine, or a sodium— or potassium salt of lysophosphatidylglycerols. The hydrogen atom on the phosphate group can be replaced by a second cation, G⁺ or calcium—, magnesium—, manganese—ion, etc.

An anionic surfactant of formula 8 preferably contains an alkyl chain, such as n-dodecyl (lauryl), n-tridecyl, n-tetradecyl (myristoyl), n-pentacedyl, n-hexadecyl (cetyl), n-heptadecyl or n-octadecyl (stearyl), a hydroxyalkyl chain, such as n-dodecylhydroxy (hydroxylauryl), n-tetradecylhydroxy (hydroxymyristyl), n-hexadecylhydroxy (hydroxycetyl), or n-octadecylhydroxy (hydroxystearyl), a hydroxyacyl chain, such as hydroxylauroyl, hydroxymyristoyl, hydroxypalmitoyl or hydroxystearoyl in position R₁, a hydrogen atom or a hydroxy group in position R₂, and a hydrogen atom or a short-chain alkyl, such as methyl group, in position R₃. G⁺ is preferably an ammonium, sodium, potassium or tetramethylammonium ion.

An anionic surfactant of formula 8 can, furthermore, be a sodium- or potassium salt of a natural phosphatidic acid, such as egg-phosphatidic acid, a sodium- or potassium salt of a natural lysophosphatidic acid, such as egg-lysophosphatidic acid, a sodium- or potassium salt of a synthetic lysophosphatidic acid, such as 1-lauroyl-, 1-myristoyl-, 1-palmitoyl- or 1-oleoyl-lysophosphatidic acid, etc.

NVUIIUW

The most important classes of cationic surfactants encompass: ammonium salts, quarternary ammonium salts, salts of heterocyclic bases, such as alkylpyridium-, imidazole-, or imidazolinium salts, salts of alkylamides and polyamines, salts of acylated diamines and polyamines, salts of acylated alkanolamines, salts of alkanolamine esters and ethers, etc.

A cationic surfactant is, for example, any substance corresponding to the formula:

$$\begin{array}{c}
R_{2} \\
R_{1}-N^{\Theta}-R_{4} \cdot G^{\Theta} \\
R_{3}
\end{array}$$
(9)

in which R_1 is a hydrocarbon residue which can also be substituted. R_2 denotes a short-chain alkyl, phenyl-short-chain-alkyl or hydrogen atom. R_3 and R_4 correspond to a short-chain alkyl residue. R_2 and R_3 , together with the nitrogen atom, represent an aliphatic heterocycle, which can also be substituted on a carbon atom; R_4 is a short-chain alkyl; R_2 , R_3 and R_4 , together with the nitrogen atom, can also form an aromatic heterocycle, which, moreover, can be substituted on one of the carbon atoms. G corresponds to an anion.

In a cationic surfactant of basic formula 9, R₁ represents an aliphatic hydrocarbon residue, which can also be substituted, for example, by an aryloxy- short-chain-alkoxy-, a substituted short-chain alkyl, a straight chain or branched chain alkyl with 7-22, and in particular 12-20, carbon atoms, or an alkenyl with 8-20, or in particular 12-20, carbon atoms and 1-4 double bonds.

Particularly preferred for use are straight chain alkyles with an even number of 12-22 carbon atoms, such as n-dodecyl, n-tetradecyl, n-hexadecyl, n-octadecyl, n-eicosyl or n-docosyl.

An alkenyl with 8-24, in particular 12-22, carbon atoms and 0-5, in particular 1-3, double bonds is e.g. 1-octenyl, 1nonenyl, 1-decenyl, 1-undecenyl, 1-dodecenyl, 9- cis-dodecenyl (lauroleyl), 1-tridecenyl, 1-tetradecenyl, 9-cis-tetradecenyl (myristoleyl), 1-pentadecenyl, 1-hexadecenyl, 9-cis-hexadecenyl (palmitoleinyl), 1-heptadecenyl, 1-octadecenyl, 6-cisoctadecenyl (petroselinyl), 6-trans-octadecenyl (petroselaidinyl), 9-cis-octadecenyl (oleyl), 9-trans-octadecenyl (elaidinyl), 9-cis-12-cis-octadecadienyl (linoleyl), 9-cis-11trans-13-trans-octadecatrienyl (alpha-elaostearinyl), 9-trans-11-trans-13-trans-octadecatrienyl (beta-elaostearinyl), 9-cis-12-15-cis-octadecatrienyl (linolenyl), 9-, 11-, 13-, 15-octadecatetraenyl (parinaryl), 1-nonadecenyl, 1eicosenyl, 9-cis-eicosenyl (gadoleinyl), 5-, 11-, 14eicosatrienyl or 5-, 8-, 11-, 14-eicosatetraenyl (arachidonyl).

Preferred alkenyls contain 12-20 carbon atoms and one double bond, e.g. 9-cis-dodecenyl (lauroleyl), 9-cis-tetradecenyl (myristoleyl), 9-cis-hexadecenyl (palmitoleinyl), 6-cis-octadecenyl (petroselinyl), 6-trans-octadecenyl (petroselaidinyl), 9-cis-octadecenyl (oleyl), 9-trans-octadecenyl (elaidinyl) or 9-cis-eicosenyl (gadoleinyl).

Methyl or ethyl are two examples of short-chain alkyl residues R_2 , R_3 or R_4 which appear in substances of formula 9.

Two examples of phenyl-short-chain-alkyl groups in R₂ are benzyl or 2-phenylethyl.

An aliphatic heterocycle, which can form from R_2 and R_3 together with the nitrogen atom is, for example, a monocyclic, five- or six-member aza-, oxaaza- or thiazacyclyl residue, as in piperidino, morpholino or thiamorpholinio groups.

Substituents of this heterocycle are the substituents R_1 and R_4 on the nitrogen as well as, in some cases, on the carbon atom; they are, most frequently, of the short-chain alkyl, such as methyl, ethyl, n-propyl or n-butyl type.

A heterocycle, which is formed from R_2 and R_3 together with nitrogen and is substituted on a carbon atom through a short-chain alkyl, is e.g. of the 2-, 3- or 4-methylpiperidinio, 2-, 3- or 4-ethylpiperidinio or 2- or 3-methylmorpholinio type.

An aromatic heterocycle, formed from R₂, R₃ and R₄ together with the nitrogen atom, is, for example, a monocyclic five- or six-member aza-, diaza-, oxaaza- or thiazacyclyl residue, such as pyridinio, imidazolinio, oxazolinio or thiazolinio or, for example, a benzocondensed monoazabicyclyl residue, such as chinolinio or iso-chinolinio group.

Substituents of such heterocycles are the residue R₁ on the nitrogen atom as well as a short-chain alkyl, such as methyl or ethyl, hydroxy-short-chain alkyl, such as hydroxymethyl or 2-hydroxyethyl, oxo-, hydroxy- or halogen, such as chloro- or bromo-compounds, which can also be substituted on a carbon atom.

A heterocycle, formed from R_2 , R_3 and R_4 and substituted on a carbon atom through the mentioned residues is, for example, a 2- or 4-short-chain-alkylpyridinio, e.g. 2- or 4-methyl or 2- or 4-ethylpyridinio, di-short-chain-alkylpyridinio, e.g. 2,6-

dimethyl-, 2-methyl-3-ethyl-, 2-methyl-4-ethyl-, 2-methyl-5-ethyl-, or 2-methyl-6-ethylpyridinio, 2-, 3-or 4-halogen-pyridinio, e.g. 2-, 3- or 4-chloropyridinio or 2-, 3- or 4-bromo-pyridinio, 2-short-chain alkylimidazolinio, -oxazolinio or -thiazolinio, such as 2-methyl- or 2-ethylimidazolinio, -oxazolinio or -thiazolinio or 2-short-chain alkyl-8-halogenchinolinio, such as 2-methyl-8-chlorochinolinio group.

A cationic surfactant of formula 9 is preferably an N-benzyl-N, N-dimethyl-N-2-(2-(4-(1,1,3,3-tetramethylbutyl)phenhydroxy) -ethhydroxy) -ethylammoniochloride, N-benzyl-N,Ndimethyl-N-2-(2-(3(methyl-4-(1,1,3,3-tetramethylbutyl)phenhydroxy) -ethhydroxy) -ethylammoniochloride (methylbenzethoniumchloride), n-dodecyltrimethylammoniochloride or -bromide, trimethyl-n-tetradecylammoniochloride or -bromide, n-hexadecyltrimethylammoniochloride or -bromide (cetyltrimethyl-ammoniumchloride or -bromide), trimethyl-noctadecylammoniochloride or -bromide, ethyl-n-dodecyldimethylammoniochloride or -bromide, ethyldimethyl-ntetradecylammoniochloride or -bromide, ethyl-nhexadecyldimethylammoniochloride or -bromide, ethyldimethyln-octadecylammoniochloride or -bromide, n-alkyl-benzyldimethyl-ammoniochloride or -bromid (benzalkoniumchloride or -bromide), such as benzyl-n-dodecyldimethylammoniochloride or bromide, benzyldimethyl-n-tetradecylammoniochloride or bromide, benzyl-n-hexadecyldimethyl-ammoniochloride or bromide or benzyldimethyl-n-octadecylammonio-chloride or bromide, N-(n-decyl)-pyridiniochloride or -bromide, N-(ndodecyl)-pyridiniochloride or -bromide, N-(n-tetradeyl)pyridiniochloride or -bromide, N-(n-hexadecyl) pyridiniochloride or -bromide (cetylpyridiniumchloride) or N-(n-octadecyl)-pyridinio-chloride or -bromide. Mixtures of these or other edge active substances are also suitable.

The following surfactants are especially useful for biological

purposes: N, N-bis(3-D-glucon-amidopropyl)cholamide (BigCHAP), Bis(2-ethylhexyl)sodium-sulfosuccinate, cetyl-trimethylammonium-bromide, 3-((cholamidopropyl)-dimethylammonio)-2hydroxy-1-propane sulfonate (CHAPSO), 3-((cholamidopropyl)dimethylammonio)-1-propane sulfonate (CHAPS), cholate-sodium salt, decaoxyethylene-dodecyl-ether (Genapol C-100), decaethylene-isotridecyl-ether (Genapol X-100), decanoyl-Nmethyl-glucamide (MEGATM-10), decyl-glucoside, decyl-maltoside, 3-(decyldimethylammonio)-propane-sulfonate (Zwittergent 3-10), deoxy-bigCHAP, deoxycholate, sodium salt, digitonin, 3-(dodecyldimethylammonio)-propane-sulfonate (Zwittergent 3-12), dodecyl-dimethyl-amine-oxide (EMPIGENTM), dodecylmaltoside, dodecylsulfate, glyco-cholate, sodium salt, glycodeoxycholate, sodium salt, heptaethylene-glycol-octyl-phenylether (triton™ X-114), heptyl-glucoside, heptyl-thioglucoside, 3-(hexadecyldimethylammonio)-propane-sulfonate (Zwittergent 3-14), hexyl-glucoside, dodecyl-dimethyl-amine-oxide (Genaminox KC), N-dodecyl-N, N-dimethylglycine (Empigen BB), Ndecyl-sulfobetaine (Zwittergent 3-10), N-dodecyl-sulfobetaine (Zwittergent 3-12), N-hexadecyl-sulfobetaine (Zwittergent 3-16), N-tetradecyl-sulfobetaine (Zwittergent 3-14), N-octylsulfobetaine (Zwittergent 3-08), nonaethylene-glycol-monododecyl-ether (THESIT), nonaethylene-glycol-octyl-phenol-ether (triton X-100), nonaethylene-glycol-octyl-phenyl-ether (NP-40, Nonidet P-40), nonaethylene-dodecyl-ether, nonanoyl-N-methylglucamide (MEGA-9), nonaoxyethylene-dodecyl-ether (Lubrol PX, Thesit), nonyl-glucoside, octaethylene-glycol-isotridecylether (Genapol X-080), octaethylene-dodecyl-ether, octanoyl-N-methyl-glucamide (MEGA-8), 3-(octyldimethylammonio)-propanesulfonate (Zwittergent 3-08), octyl-glucoside, octylthioglucoside, entadecaethylene-isotridecyl-ether (Genapol X-150), polyethylene-polypropylene-glycol (Pluronic F-127), polyoxyethylene-sorbitane-monolaurate (Tween 20), polyoxyethylene-sorbitane-monooleate (Tween 80), taurodeoxycholatesodium salt, taurocholate-sodium salt, 3-(tetradecyldimethylammonio)-propane-sulfonate (Zwittergent 3-14), etc.

Particularly suitable for pharmacological purposes are: cetyl-trimethyl-ammonium-salts (such as hexadecyltrimethylammoniumbromide, trimethylhexadecylaminebromo-salt), cetylsulfate salts (such as Na-salt, Lanette E), cholate salts (such as Na- and ammonium-form) decaoxyethylenedodecyl-ether (GenapolTM C-100), deoxycholate salts, dodecyldimethyl-amine-oxide (Genaminox KC, EMPIGEN), N-dodecyl-N,Ndimethylglycine (Empigen BB), 3-(hexadecyldimethylammonio)propane-sulfonate (Zwittergent TM 3-14), fatty acid salts and fatty alcohols, glyco-deoxycholate salts, laurylsulfate salts (sodium dodecylsulfate, Duponol™ C, SDS, Texapon™ K12), Nhexadecyl-sulfobetaine (Zwittergent 3-16), nonaethyleneglycol-octyl-phenyl-ether (NP-40, Nonidet P-40), nonaethylenedodecyl-ether, octaethylene-glycol-isotridecyl-ether (Genapol X-080), octaethylene-dodecyl-ether, polyethylene glycol-20sorbitane-monolaurate (Tween 20), polyethylene glycol-20sorbitane-monostearate (Tween 60), polyethylene glycol-20sorbitane-monooleate (Tween 80), polyhydroxyethylenecetylstearylether (Cetomacrogo[™], Cremophor[™] O, Eumulgin[™], C 1000) polyhydroxyethylene-4-laurylether (Brij 30), polyhydroxyethylene-23-laurylether (Brij 35), polyhydroxyethylene-8stearate (Myrj 45, Cremophor AP), polyhydroxyethylene-40stearate (Myrj 52), polyhydroxyethylene-100-stearate (Myrj 59), polyethoxylated castor oil 40 (Cremophor EL), polyethoxylated hydrogenated castor oil (Cremophor RH 40. Cremophor RH 60) polyethoxylated plant oils (Lebrafils TM), sorbitane-monolaurate (Arlacel 20, Span 20), taurodeoxycholate salts, taurocholate salts, polyethylene glycol-20-sorbitanepalmitate (Tween 40), Myrj 49 and polyethylene glycol derivatives of ricinols, etc.

AGENTS:

Transfersomes as described in this invention are suitable for the application of many different agents and, in particular, for therapeutic purposes, for example. The preparations according to this invention can contain the following:

- at least one adrenocorticostatic agent, in particular metyrapon;
- at least one carrier substance, additive or agent, belonging to the class of beta-adrenolytics (beta blocking agents), very frequently acetobol, alprenolol, bisoprololfumarate, bupranolol, carazolol, celiprolol, mepindolsulfate, metipranolol, metoprolotartat, nadolol, oxyprenolol, pindolol, sotalol, tertatolol, timolohydrogen maleate and toliprolol, especially preferred, atenolol or propranolol;
- at least one carrier substance, additive or agent, belonging to the androgenes or antiandrogenes, in particular drostanolonpropionate, mesterolon, testosteronundecanoate, testolacton, yohimbine, or chloroamidinonacetate, cyproteronacetate, ethinylestradiol or flutamide;
- at least one carrier substance, additive or agent with an antiparasitic action, frequently phanquinone, benzyobenzoate, bephenium-hydroxy-naphthoate, crotamitone, diethylcarbamazine, levamisol, lindane, malathione, mesulfene (2,7-dimethylantren), metronidazol or tetramisol;
- at least one anabolic agent, in particular clostebolacetate, cyanocobolamine, folic acid, mestanolone, metandienone, metenolone, nandrolone, nandrolondecanoate, nandrolone-hexyloxyphenylpropionate,

nandrolon-phenyl-propionate, norethandrolone, oxaboloncipionate, piridoxine or stanozolole;

- at least one agent which can induce systemic anesthesia or analgesia, e.g. chlorobutanol, ketamine, oxetacaine, propanidide and thiamylal, aminophenol-derivatives, aminophenazol-derivatives, antranilic acid- and arylpropione acid derivatives, azapropazone, bumadizone, chloroquin- and codeine-derivatives, diclophenac, fentanil, ibuprofen, indometacine, ketoprofen, methadonesubstances, morazone, morphine and its derivatives, nifenazone, niflumin acid, pentazozine, pethidine, phenazopyridine, phenylbutazone-derivatives (such as 3,5 pyrazolidine dion), pherazone, piroxicam, propoxyphene, propyphenazon, pyrazol- and phenazone-derivatives (aminophenazone, metamizole, monophenylbutazone, oxyphenebutazone, phenylbutazone or phenazonesalyzilate), salicylic acid-derivatives, sulfasalazine, tilidine; acetylsalicylic acid, ethylmorphine, alclofenac, alphaprodine, aminophenazone, anileridine, azapropazone, benfotiamine, benorilate, benzydamine, cetobemidone, chlorophenesincarbamate, chlorothenoxazine, codeine, dextromoramide, dextro-propoxyphene, ethoheptazine, fentanyl, fenyramidol, fursultiamine, flupirtinmaleate, glafenine, hydromorphone, lactylphenetidine, levorphanol, mefenamic acid, meptazonol, methadone, mofebutazone, nalbufine, Na-salt of noramidopyrinium-methanesulfonate, nefopam, normethadone, oxycodone, paracetamol, pentazocine, pethidine, phenacetine, phenazocine, phenoperidine, pholcodine, piperylone, piritramide, procaine, propyphenazone, salicylamide, thebacone, tiemonium-odide, tramadone;
- at least one substance from the class of analeptics, such

as aminophenazole, bemegride, caffeine, doxapram, ephedrine, prolintane, or nialamide and tranylcypromine; but also vitamins, plant extracts from semen colae, camphor, menthol;

- at least one substance from the class of antiallergics: e.g. agents from the globuline family, corticoids or antihistaminics (such as beclometasone-, betametasonecortisone-, dexametasone-derivatives, etc.) as well as bamipinacetate, buclizine, clemastine, clemizole, cromoglicinic acid, cyproheptadine, diflucorolonvalerate, dimetotiazine, diphenhydramine, diphenylpyraline, ephedrine, fluocinolane, histapyrrodine, isothipendyle, methadilazine, oxomemazine, paramethasone, prednilidene, theophilline, tolpropamine tritoqualine, etc. are used; amongst the preferred agents in this class are the substances characterized by their capacity to interfere (stimulate or suppress) the production of immunologically active substances, such as interleukines, interferones, leucotrienes, prostaglandines, etc. Amongst others, certain lipids and lipoids, such as phosphatidylcholines and diacylglycerols, or fatty acids and their esters, with chains containing several, preferably 3-6, most very frequently 3 or 4, double bonds, preferably of the n-3 type, are used for this purpose; the latter may also be hydroxygenated, branched or (partially) derivatized into ring structures.
- at least one substance with antiarrhythmic action, such as most of the cardiacs and beta-blockers, ajmaline, bupranolol, chinidine, digoxine derivatives, diltiazem, disopyramidedihydrogensulfate, erythromycine, disopyramide, gallopamil, ipratropiumbromide, lanatoside, lidocaine, lorcainide, orciprenalinesulfate, procaine amide, propafenone, sparteinesulfate, verapamil,

toliprolol.

- an antiarteriosclerotic, such as clofibrate.
- at least one substance belonging to the antiasthmatics and/or bronchospasmolytics, such as amiodarone, carbuterol, fenoterol, orciprenalin, sotalol, or theophilline-derivatives, as well as corticoids (such as beclomethasone, dexamethasone, hydrocortisone, prednisolone), frequently in combination with purines;
- at least one substance from the class of antibiotics, such as actinomycine, alamethicine, alexidine, 6aminopenicillanic acid, moxicilline, amphotericine, ampicilline, anisomycine, antiamoebine, antimycine, aphidicoline, azidamfenicol, azidocilline, bacitracine, beclomethasone, benzathine, benzylpenicilline, bleomycine, bleomycine sulfate, calcium ionophor A23187, capreomycine, carbenicilline, cefacetril, cefaclor, cefamandole nafate, cefazoline, cefalexine, cefaloglycine, cefaloridine, cefalotine, cefapirine, cefazoline, cefoperazone, ceftriaxone, cefuroxim, cephalexine, cephaloglycine, cephalothine, cephapirine, cerulenine, chloroamphenicol, chlorotetracycline, chloroamphenicol diacetate, ciclaciline, clindamycine, chloromadinone acetate, chloropheniramine, chromomycine A3, cinnarizine, ciprofloxacine, clotrimazole, cloxacilline, colistine methanesulfonate, cycloserine, deacetylanisomycine, demeclocycline, 4,4'-diaminodiphenyl sulfone, diaveridine, dicloxacilline, dihydrostreptomycine, dipyridamol, doxorubicine, doxycycline, epicilline, erythromycine, erythromycinestolate, erythromycinethylsuccinate, erythromycine stearate, ethambutol, flucloxacilline, fluccinolone acetonide, 5-fluorocytosine, filipine, formycine,

fumaramidomycine, furaltadone, fusidic acid, geneticine, gentamycine, gentamycine sulfate, gliotoxine, gfamicidine, griseofulvine, helvolic acid, hemolysine, hetacillin, kasugamycine, kanamycine (A), lasalocide, lincomycine, magnesidine, melphalane, metacycline, meticilline, mevinoline, micamycine, mithramycine, mithramycine A, mithramycine complex, mitomycine, minocycline, mycophenolic acid, myxothiazol, natamycine, nafcilline, neomycine, neomycine sulfate, 5-nitro-2furaldehydesemicarbazone, novobiocine, nystatine, oleandomycine, oleandomycine phosphate, oxacihine, oxytetracycline, paromomycine, penicilline, pecilocine, pheneticilline, phenoxymethylpenicilline, phenyl aminosalicylate, phleomycine, pivampicilline, polymyxine B, propicilline, puromycine, puromycine aminonucleoside, puromycine aminonucleoside 5'-monophosphate, pyridinol. carbamate, rolitetracycline, rifampicine, rifamycine B, rifamycine SV, spectinomycine, spiramycine, streptomycine, streptomycine sulfate, sulfabenzamide, sulfadimethoxine, sulfamethizol, sulfamethoxazol, tetracycline, thiamphenicol, tobramycine, troleandomycine, tunicamycine, tunicamycine Al-homologs, tunicamycine A2-homolog, valinomycine, vancomycine, vineomycine Al, virginiamycine Ml, viomycine, xylostasine;

at least one substance with an antidepressive or antipsychotic action, such as diverse monoaminoxidase—suppressors, tri—and tetracyclic antidepressives, etc. Very frequently used agents of this class are alprazolame, amitriptyline, chloropromazine, clomipramine, desipramine, dibenzepine, dimetacrine, dosulepine, doxepine, fluvoxaminhydrogenmaleate, imipramine, isocarboxazide, lofepramine, maprotiline, melitracene, mianserine, nialamide, noxiptiline,

nomifensine, nortriptyline, opipramol, oxypertine, oxytriptane, phenelzine, protriptyline, sulpiride, tranylcypromine, trosadone, tryptophane, vitoxazine, etc.

- at least one antidiabetic agent, such as acetohexamide, buformine, carbutamide, chloropropamide, glibenclamide, glibornuride, glymidine, metformine, phenformine, tolazamide, tolbutamide;
- at least one substance acting as an antidote, for example, against the heavy metal poisoning, poisoning with insecticides, against drugs, blood poisons, etc. A few examples are different chelators, amiphenazol obidoxim-chloride, D-penicillamine, tiopromine, etc.;
- at least one substance from the class of antiemetics:
 some of such suitable agents are alizapride, benzquinamide, betahistidine-derivatives, cyclizine, difenidol,
 dimenhydrinate, haloperidol, meclozine, metoclopramide,
 metopimazine, oxypendyl, perphenazine, pipamazine,
 piprinhydrinate, prochloroperazine, promazine,
 scopolamine, sulpiride, thiethylperazine, thioproperazine, triflupromazine, trimethobenzamide, etc., which
 are frequently used in combination with vitamins and/or
 antiallergics;
- at least one substance with an antiepileptic action, such as barbexaclone, barbiturate, beclamide, carbamazepine, chloroalhydrate, clonazepam, diazepam, ethosuximide, ethylphenacemide, lorazepam, mephenytoine, mesuximide, oxazolidine, phenaglycodol, phensuximide, phenytoine, primidone, succinimide-derivatives, sultiam, trimethadione, yalproinic acid, etc.; additives are commonly chosen from the classes of hypnotics and sedatives; an especially commonly used agent of this kind is

carbamazepine.

- at least one substance with antifibrinolytic activity, such as aminocapronic acid or tranexamic acid.
- at least one anticonvulsive agent, such as beclamide, carbamazepine, clomethiazole, clonazepam, methylpheno-barbital, phenobarbital or sultiam;
- at least one substance which modifies choline concentration, by having an anticholinergic activity, for example. The following substances can be used, amongst others, as cholinergics: aubenoniumchloride, carbachol, cerulezide, dexpanthenol and stigmine-derivatives (such as distigminebromide, neostigminemethylsulfate, pyridostigmine-bromide); frequently used as anticholinergics are especially atropine, atropinmethonitrate, benactyzine, benzilonium-bromide, bevonium-methylsulfate, chlorobenzoxamine, ciclonium-bromide, clidinium-bromide, dicycloverine, diphemanil-methylsulfate, fenpiveriniumbromide, glycopyrroniumbromide, isopropamide-iodide, mepenzolate-bromide, octatropine-methylbromide, oxyphencyclimine, oxyphenonium-bromide, pentapiperide, pipenzolate-bromide, piperidolate, pridinol, propanidide, tridihexethyl-iodide and trospiumchloride; cholinesterase inhibitors, such as ambenonium-chloride, demecariumbromide, echothiopate-iodide, etc., are also useful for this purpose;
- at least one substance which can change, in the majority of cases diminish, the effect or concentration of histamine (antihistaminics). Preferred are hypoallergic carriers or hypoallergic edge active substances with n-3 (omega-3), less frequently with n-6 (omega-6), and mainly several, often 3-6 double bonds; such substances are

occasionally employed with hydroxy, more rarely methyl-, or oxo-side groups, or in an epoxy configuration; further suitable agents of this class are, among other substances, aethylenediamine, alimemazine, antazoline, bamipine, bromo-azine, bromo-pheniramine, buclizine, carbinoxamine, chlorocyclizine, chloropyramine, chlorophenanine, chlorophenoxamine, cimetidine, cinnarizine, clemastine, clemizol, colamine (such as diphenhydramine), cyclizine, dexbrompheniramine, dexchloropheniramine, difenidol, dimetindene, dimetotiazine, diphenhydramine, diphenylpyraline, dixyrazine, doxylamine, histapyrrodine, isothipendyl, mebhydroline, meclozine, medrylamine, mepyramine, methdilazine, pheniramine, piperacetazine, piprinhydrinate, pyrilamine (mepyramine), promethazine, propylamine, pyrrobutanine, thenalidine, tolpropamine, tripelennamine, triprolidine, etc.;

- at least one substance belonging to the class of antihypertonics, such as many alpha-receptor agonists, aldosterone-antagonists, angiotensine-converting-enzyme-blockers, antisymphaticotonics, beta-blockers, calcium-antagonists, diuretics, vasodilators, etc.; suitable agents for this purpose are for example alpenolol, atenolol, bendroflumethiazide, betanidine, butizide, chlorotalidone, clonidine, cycletanine, cyclopenthiazide, debrisoquine, diazoxide, dihydralazine, dihydroergo-taminmethanesulfonate, doxazinmesilate, guanethidine, guanoclor, guanoxane, hexamethonium-chloride, hydralazine, labetalol, mecanylanine, methyldopa, pargyline, phenoxybenzamine, prazosine, quinethazone, spironolactone, bescinnamine, reserpine, trichloromethiazide or vincamine;
- at least one substance which is an inhibitor of biological activity, such as actinomycine C1, alpha-

amanitine, ampicilline, aphidicoline, aprotinine, calmidazolium (R24571), calpaine-inhibitor I, calpaineinhibitor II, castanospermine, chloroamphenicol, colcemide, cordycepine, cystatine, 2,3-dehydro-2-desoxyn-acetyl-neuraminic acid, 1-desoxymannojirimycinehydrochloride, 1-desoxynojirimycine, diacylglycerolkinase-inhibitor, P1, P5-di(adenosine-5'-)-pentaphosphate, ebelactone A, ebelactone B, erythromycine, ethidiumbromide, N-hydroxyurea, hygromycine B, kanamycine sulfate, alpha2-macroglobuline, N-methyl-1-desoxynojirimycine, mitomycine C, myxothiazol, novobiocine, phalloidine, phenylmethylsulfonylfluoride, puromycine-dihydrochloride, rifampicine, staurosporine, streptomycine sulfate, streptozotocine, G-strophanthine, swainsonine, tetracycline-hydrochloride, trifluoperazine-dihydrochloride, tunicamycine, etc.; useful proteinase inhibitors are, for example, (4-amidinophenyl) methanesulfonylfluoride (APMSF), antipaine-dihydrochloride, antithrombine III, alpha-1-antitrypsine, aprotinine, bestatine, calpaine-inhibitor I, calpaineinhibitor II, L-1-chloro-3-(4-tosylamido)-7-amino-2heptanone-hydrochloride (TLCK), L-1-chloro-3-(4tosylamido) -4-phenyl-2-butanone (TPCK), chymostatine, cystatine, 3,4-dichlorisocoumarin, E 64, selastatinal, hirudin, kallikrein-inhibitor (aprotinine) L-leucinthiol, leupeptine, pepstatine, phenylmethylsulfonylfluoride (PMSF), phosphoramidone, TLCK (tosyl-lysine-chloromethylketone), TPCK (tosyl-phenylalanine-chloromethyl-ketone), trypsine-inhibitors, etc.;

at least one substance acting as an antihypotonic agent; quite frequently the corresponding drugs are from the classes of analeptics, cardiacs or corticoids. Suitable agents for this purpose are, for example, angiotensineamide, cardaminol, dobutamine, dopamine, etifelmine, etilefrine, gepefrine, heptaminol, midodrine, oxedrine, etc., especially norfenefrine;

- at least one substance from the group of anticoagulants. Among other substances, some coumarin-derivatives are suitable for this purpose, as well as heparine and heparinoids, hirudine and related substances, dermatansulfate etc.; most frequently used agents of this class are acenocumarin, anisindione, diphenadione, ethylbiscoumacetate, heparine, hirudine, phenprocoumon, as well as warfarine;
- at least one substance from the class of amtimycotics; well-suited examples of such agents include: amphotericine, bifanozol, buclosamide, chinoline-sulfate chloromidazol, chlorophenesine, chloroquinaldol, clodantoine, cloxiquine, cyclopiroloxamine, dequaliniumchloride, dimazol, fenticlor, flucytosine, griseofulvine, ketoconazol, miconazol, natamycine, sulbentine, tioconazol, tolnaftate, etc.; particularly frequently, amphotericine, clotrimazol or nystatine are likely to be used for this purpose;
- at least one substance from the class of antimyasthenics,
 such as pyridostigmine-bromide;
- at least one substance which is active against morbus parkinson, such as amantadine, benserazide, benzatropine, biperidene, cycrimine, levodopa, metixene, orphenadrine, phenglutarimide, pridinol, procyclidine, profenamine or trihexyphenidyl;
- at least one substance with an antiphlogistic activity,
 such as aescine, acetylsalicylic acid, alclofenac,
 aminophenazone, azapropazone, benzydamine, bumadizone,

chlorothenoxazine, diclofenac, flufenaminic acid, glafenine, ibuprofene, indometacine, kebuzone, mefenam acid, metiazic acid, mesalazine, mofebutazone, naproxene, niflumine acid, salts, such as Na-salt, noramido-pyrinium-methane-sulfonate, orgoteine, oxyphenbutazone, phenylbutazone, propyphenazone, pyridoxine, tolmetine, etc.; very suitable is, for example, ibuprofen; some of the agents commonly used as antiphlogistics also exhibit an antihistaminic or analgetic activity and belong to the classes of corticoids, vasoactiva, opthalmics or otologics;

- at least one substance which is an antipyretic, such as acetylsalicylic acid, alclofenac, aminophenazone, benzydamine, bumadizone, chinine, chlorinethenoxazine, lactylphenetidine, meprob, paracetamol, phenacetine, propyphenazone or salicylamide;
- at least one substance with an antirheumatic activity, such as acetylsalicylic acid, benorilate, chloroquine, diclofenac, fenoprofene, flufenaminic acid, ibuprofene, kebuzone, lactylphenetidine, mefenamic acid, mofebutazone, naproxene, sodiumaurothiomalate, nifenazone, nifluminic acid, D-penicillamine and salicylamide. Edge active substances, carriers and/or agents, with a hypoallergic action, for example from the groups of analgetics, corticoids and glucocorticoids, enzymes or vitamins, etc., are preferred for this purpose, as well as antiphlogistics, such as quinine, nicotinic acid-, nonylic acid-, or salicylic acid-derivatives, meprobamate, etc.;
- at least one antiseptic such as acriflaviniumchloride,
 cetalkonium-chloride, cetylpyridinium-chloride,
 chlorohexidine, chloroquinaldol, dequaliniumchloride,

domiphene-bromide, ethacridine, hexetidine, merbromine, nitrofural, oxyquinol, phanquinone, phenazopyridine or phenylmercuriborate, as well as fatty acids with an uneven number of carbon atoms;

- at least one respiratory analeptic or respiration stimulant, such as amiphenazol, ascorbic acid, caffeine, cropropamide, crotethamide, etamivane, ephedrine, fominobene, nicethamide; or aminophenazol and doxaprame, for example;
- at least one broncholytic, such as bamifylline, beclometasone, dexometasone (e.g. in dexometasone-21-isonicotinate), diprophylline, ephinedrine (e.g. in ephinedrinehydrogentartrate), fenoterol, hexoprenaline, ipratropium-bromide, iso-etarine, isoprenaline, orciprenaline, protocylol, proxyphylline, reproterol, salbutamol, terbutaline, tetroquinol, theophyilline, etc.; and biological extracts, for example from anis, eucalyptus, thyme, etc.;
- one cardiotonic, especially aminophylline, benfurodilhemisuccinate, etofylline, heptaminol, protheobromine or proxyphylline;
- at least one substance from the class of chemotherapeutic agents, for example, acediasulfone, acriflavinium—chloride, ambazone, dapsone, dibrompropamidine, furazolidone, hydroxymethyinitrofurantoine, idoxuridine, mafenide and sulfateolamide, mepacrine, metronidazol, nalidixinic acid, nifuratel, nifuroxazide, nifurazzine, nifurtimox, ninorazol, nitrofurantoine, oxolinic acid, pentamidine, phenazopyridine, phthalylsulfatehiazole, pyrimethamine, salazosulfapyridine, sulfacarbamide, sulfacetamide, sulfachloropyridazine, sulfadiazine,

sulfadicramide, sulfadimethoxine, sulfaethidol, sulfafurazol, sulfaguanidine, sulfaguanol, sulfamethizol, sulfamethoxazol and cotrimoxazol, sulfamethoxydiazine, sulfamethoxypyridazine, sulfamoxol, sulfanilamide, sulfaperine, sulfaphenazol, sulfatehiazol, sulfisomidine, tinidazol, trimethoprim, etc.;

- at least one substance from the class of coronary dilatators, such as bamifylline, benziodarone, carbochromes, dilazep, dipyridamol, etafenone, fendiline, hexobendine, imolamine, lidoflazine, nifedipine, oxyfedrine, pentaerythrityltetranitrate, perhexiline, prenylamine, propatylnitrate, racefemine, trolnitrate, verapamil, visnadine, etc.;
- at least one cytostatic, for example, from the group of alkylating agents, antibiotics, platinum compounds, hormones and their inhibitors, interferones, etc.; very frequently used substances of this kind are: aclarubicine, azathioprine, bleomycine, busulfane, calciumfolinate, carboplatinum, carmustine, chloro-ambucil, cis-platinum, cyclophosphamide, cyt-arabine, daunorubicine, epirubicine, fluorouracil, fosfestrol, hydroxycarbamide, ifosfamide, lomustine, melphalane, mercaptopurine, methotrexate, mitomycine C, mitopodozide, mitramicyne, nimustine, pipobromane, prednimustine, procarbazine, testolactone, theosulfane, thiotepa, tioguanine, triaziquone, trofosfamide, vincristine, vindesine, vinblastine, zorubicine, etc.;
- an intestinal antiseptic, such as broxyquinoline, clioquinol, diodohydroxyquinoline, halquinol, etc.;
- at least one diuretic, such as acetazolamide, aminophylline, bendroflumethiazide, bumetanide, butizide,

chloroazanile, chloromerodrine, chlorothiazide, chlorotalidone, clopamide, clorexolone, cyclopenthiazide, cyclothiazide, etacrynic acid, furosemide, hydrochlorothiazide, hydroflumethiazide, mefruside, methazolamide, paraflutizide, polythiazide, quinethazone, spironolactone, triamterene, trichloromethiazide, xipamide, etc.;

- at least one ganglion blocker, such as gallamintriethiodide, hexamethonium-chloride, mecamylamine, etc.;
- at least one substance for the therapy of arthritis, preferably analgetics or for example allopurinol, benzbromarone, colchicine, benziodarone, probenecide, sulfinpyrazone, tenoxicam, etc.; in very many cases allopurinol;
- at least one glucocorticoid, such as beclomethason, betamethason, clocortolone, cloprednol, cortison, dexamethason (e.g. as a dexamethasonephosphate), fludrocortison, fludroxycortide, flumetason, fluocinolonacetonide, fluocinonide, fluocortolon (e.g. as a fluocortoloncapronate or fluocortolontrimethylacetate), fluorometholon, fluprednidenacetate, hydrocortison (also as a hydrocortison-21-acetate, hydrocortison-21-phosphate, etc.), paramethason, prednisolon (e.g. in the form of methylprednisolon, prednisolon-21-phosphate, prednisolon-21-sulfobenzoate, etc.), prednison, prednyliden, pregnenolon, triamcinolon, triamcinolonacetonide, etc.;
- at least one agent with a putative anti-flew action, such as moroxydine;
- at least one haemostatic, such as adrenalon, ascorbic

acid, butanol, carbazochrome, etamsylate, protamine, samatostatine etc.; thyroidal hormones and vitamins can be employed for this purpose as well;

- at least one hypnotic, from the class of barbiturates, benzodiazepines, bromo-compounds, ureids, etc., for example; quite commonly applied for this purpose are, e.g. acecarbromal, alimemazintartrate allobarbital, amobarbital, aprobarbital, barbital, bromo-isoval, brotizolam, carbromal, chloroalhydrate, chloroalodol, chlorobutanol, clomethiazol, cyclobarbital, diazepam, diphenhydramine, doxylamine, estazolam, ethchlorvynol, ethinamate, etomidate, flurazepam, glutethimide, heptabarb, hexobarbital, lormetazepam, malperol, meclozine, medozine, methaqualon, methyprylon, midazolam, nitrazepam, oxazepam, pentobarbital, phenobarbital, promethazine, propallylonal, pyrithyldion, secbutabarbital, secobarbital, scopolamine, temazepam, triazolam, vinylbital, etc.; various extracts from balmmint, valerian, and passiflora are also used;
- at least one immunoglobuline, from the IgA, IgE, IgD,
 IgG, IgM classes or an immunoglobuline fragment, such as
 a Fab- or Fab2-fragment, or the corresponding variable or
 hypervariable region, if required in combination with
 other agents and/or chemically, biochemically or
 genetically manipulated;

An immunoglobuline can be of the IgA, IgD and IgE, IgG (e.g. Ig G1, Ig G2, Ig G3, Ig G4) or IgM type. In the context of this application, any chemical or biochemical derivative of any immunoglobuline (Ig) is considered useful, for example, an Ig G-gamma chain, an Ig G-F(ab')2 fragment, an Ig G-F(ab) fragment, an Ig G-Fc fragment, an Ig-kappa chain, a light chain of Ig-s (e.g. a kappa and

lambda chain), but also even smaller immunoglobuline fragments, such as the variable or hypervariable regions, or artificial modifications of any of these substances.

at least one substance with an immunostimulating activity, with an immunosuppressive potency, with a capability to give rise to the production of immunoglobulines or other immunologically active substances (endotoxines, cytokines, lymphokines, prostaglandines, leucotrienes, other immuno modulators or biological messengers), including vaccines. Antibodies against any of these substances can also be used; preferred are immunotransfersomes with or without endotoxines, cytokines, prostaglandines, leucotrienes, with other immunomodulators, immunologically active cellular or molecular fragments, as well as corresponding antagonists, derivatives or precursors; particularly preferred compounds are lipid A and other glycolipids, muraminic acid derivatives, trehalose derivatives, phythaemaglutinines, lectins, polyinosine, polycytidylic acid (poli I:C), dimepranol-4-acetamidobenzoate, erythropoietin, 'granulocyte-macrophage colony stimulating factor' (GM-CSF), interleukine I and II, III and VI, interferon alpha, beta and/or gamma, leucotriene A, B, C, D, E and F, propandiamine, prostaglandine A, B, C, D, E, F, and I (prostacycline), tumor necrosis factoralpha (TNF-alpha), thromboxan B, as well as immunoglobulines of types IgA, IgE, IgD, IgG, IgM; furthermore, suitable tissue and plant extracts, their chemical, biochemical or biological derivatives or replacements, their parts, such as characteristic peptide chains, etc.; as immunosuppressives, ganciclovir, azathiiprin, cyclosporin, FK 506 etc. are frequently used;

- at least one contraceptive agent, such as medroxyprogesteronacetate, lynesterol, lyonorgestrel, norethisteron, etc.;
- at least one circulation analeptic, such as cafedrin, etamivan, etilefrin, norfenefrin, pholedrin, theodrenalin, etc.;
- at least one drug for the therapy of liver diseases, such as orazamide, silymarin, or tiopromin;
- at least one substance with a light-protective function, such as mexenone;
- at least one antimalaria agent, such as amodiaquin,
 hydroxychloroquin or mepacrin;
- at least one substance for migraine or schizophrenia treatment, such as certain analeptics, beta-blockers, clonidin, dimetotiazine, ergotamine, lisurid (hydrogen maleate), methysergide, pizotifen, propranolol, proxibarbal, etc. Even more suitble are the serotonine antagonists or the blockers of serotonin receptors, such as 5-HT1, 5-HT2 or 5-HT3; well suited for use according to this invention are also the receptor blockers AH21467 (Glaxo), AH25086 (Glaxo), GR43175 (Glaxo), GR38032 (Glaxo, = ondansetron), 5-hydroxytriptamine, ketanserine, methiothepin, alpha-methyl-5HT, 2-methyl-5HT, etc.;
- at least one mineral corticoid, such as aldosterone, fludrocortison, desoxycortonacetate, corresponding derivatives, etc.;
- at least one morphine antagonist (such as amiphenazol, lealvallorphane, nalorphine) or some substance with

~~~~~

morphine-like properties such as casomorphine, cyclo(leugly), dermorphine, met-encephaline, methorphamide (tyrgly-gly-phe-met-arg-arg-val), morphiceptine, morphine modulating neuropeptide (ala-gly-glu-gly-leu-ser-ser-prophe-trp-ser-leu-ala-ala-pro-gln-arg-phe-NH<sub>2</sub>) etc.;

- at least one muscle relaxant, which frequently belongs to the groups of competitively or depolarising curareagents, myotonolytics or analgetics; suitable substances with the desired effect are, among other materials, acetylsalicilic acid, alcuronium-chloride, azapropazon, atracuriumbesilate, baclofen, carisoprodol, quinine derivatives, chloromezanon, chlorophenesincarbamate, chlorozoxazon, dantrolen, decamethoniumbromide, dimethyltubocurariniumchloride, fenyramidol, gallamintriethiodide, guaiphensine, hexafluoreniumbromide, hexacarbacholinbromide, memantin, mephenesin, meprobamate, metamisol, metaxalon, methocarbamol, orphenadrin, paracetamol, phenazon, phenprobamate, suxamethoniumchloride, tetrazepam, tizanidin, tubocurarinchloride, tybamate, etc.;
- at least one narcotic, such as alfentanil, codeine, droperidol, etomidate, fentanil, flunitrazepam, hydroxybutiric acid, ketamine, methohexital, midazolam, thebacon, thiamylal, thiopental, etc., as well as corresponding derivatives;
- at least one substance with a neurotherapeutic activity, such as anaesthetics and vitamins, atropine-derivatives, benfotiamine, choline-derivatives, caffeine, cyanocobolamine, alpha-liponic acid, mepivacaine, phenobarbital, scopolamine, thiaminchloride hydrochloride, etc., and, most notably, procaine;

- at least one neuroleptic, e.g. butyrophenon-derivatives, phenotiazin-derivatives, tricyclic neuroleptics, as well as acetophenazine, benperidol, butaperazine, carfenazine, chloropromazine, chloroprothixen, clopenthixol, clozapine, dixyrazine, droperidol, fluanison, flupentixol, fluphenazine, fluspirilen, haloperidol, homofenazine, levomepromazine, melperon, moperon, oxipertin, pecazine, penfluridol, periciazine, perphenazine, pimozide, pipamperon, piperacetazine, profenamine, promazine, prothipendyl, sulforidazine, thiopropazate, thioproperazine, thioridazine, tiotixen, trifluoperazine, trifluperidol, triflupromazine, etc.; in particular, haloperidol and sulperide are often used for this purpose;
- at least one neurotransmitter or one of its antagonists; preferably, acetylcholine, adrenaline, curare (and, e.g. its antagonist edrophonium-chloride), dopamine, ephedrine, noradrenaline, serotonine, strychnine, vasotonine, tubocurarine, yohimbine, etc. are used;
- at least one opthalmic, in many cases from the groups of anaesthetics, antibiotics, corticoids, eye-tonics, chemotherapeutics, glaucome agents, virustatics, antiallergics, vasodilatators, or vitamins;
- at least one parasympathicomimetic (e.g. bethanecholchloride, carbachol, demecarium-bromide, distigminbromide, pyridostigmin-bromide, scopolamine) or at least one parasympathicolytic (such as benzatropine, methscopolamine-bromide, pilocarpine or tropicamide);
- at least one agent for the therapy of psoriasis and/or neurodermitis; particularly well suited for this purpose are carrier substances with a hypoallergic action or the corresponding edge active compounds, with n-3 (omega 3),

less frequently with n-6 (omega 6), mainly with multiple, often 3-6, double bonds and/or hydroxy, more seldom methyl-, or oxo-side groups; these can also appear as side chains on further agent molecules; side groups on the 15th carbon atom are particularly efficient; as additives, amongst other substances, antimycotics, cytostatics, immunosuppressants or antibiotics can be used;

- at least one agent for the dilatation of the iris (mydriatic), such as atropine, atropinemethonitrate, cyclopentolate, pholedrine, scopolamine or tropicamide;
- at least one substance with a psychostimulating action; well suited for this purpose are, for example, amphetaminil, fencamfamine, fenetylline, meclofenoxate, methamphetamine, methylphenidate, pemoline, phendimetrazine, phenmetrazine, prolintane or viloxazine;
- at least one rhinologic, such as buphenine, cafaminol, carbinoxamide, chlorophenamim, chlorotenoxazine, clemastine, dextromethorpane, etilefrine, naphazoline, norephedrine, oxymetazoline, phenylaprhine, piprinydrinate, pseudoephedrine, salicylamide, tramazoline, triprolidine, xylometazoline, etc.; from biological sources especially the radix gentiane extract;
- at least one somnifacient (such as sleep-inducing peptide (trp-ala-gly-gly-asp-ala-ser-gly-glu)), or a corresponding antagonist (such as bemegride);
- at least one sedative or tranquilizer, as the former, for example, acecarbromal, alimemazine, allobarbital, aprobarbital, benzoctamine, benzodiazepine-derivatives,

bromo-isoval, carbromal, chloropromazine, clomethiazol, diphenyl-methane-derivatives, estazolam, fenetylline, homofenazine, mebutamate, mesoridazine, methylpentynol, methylphenobarbital, molindone, oxomemazine, perazine, phenobarbital, promethazine, prothipendyl, scopolamine, secbutabarbital, trimetozine, etc.; as a tranquilizer, for example, azacyclonol, benactyzin, benzoctamine, benzquinamide, bromo-azepam, chlorodiazepoxide, chlorophenesincarbanate, cloxazolam, diazepam, dipotassium-chloroazepate, doxepine, estazolam, hydroxyzine, lorazepam, medazepam, meprobamate, molindone, oxazepam, phenaglycodol, phenprobamate, prazepam, prochloroperazine, rescinnamine, reserpine or tybamate; drugs, such as distraneurine, hydantoinederivatives, malonyl uric acid-derivatives (barbiturates), oxazolidine-derivatives, scopolamine, valepotriate, succinimide-derivatives, or hypnotics (e.g. diureides (such as barbiturates)), methaqualon, meprobromate, monoureides (such as carbromal), nitrazepam, or piperidin-dione, can be used for this purpose; amongst other substances, certain thymoleptics, such as librium or tofranil, can be used as antidepressants;

at least one substance from the class of spasmolytics,
e.g. adiphenine, alverine, ambicetamide, aminopromazine,
atropine, atropine methonitrate, azintamide, bencyclane,
benzarone, bevonium-methylsulfate, bietamiverine,
butetamate, butylscopolammoniumbromide, camylofine,
carzenide, chlorodiazepoxide, cionium-bromide,
cyclandelate, cyclopentolate, dicycloverine,
diisopromine, dimoxyline, diphemanil-methylsulfate,
ethaverine, ethenzamide, fencarbamide, fenpipramide,
fenpivennum-bromide, gefarnate, glycopyrroniumbromide,
hexahydroadiphenin, hexocycliummethylsulfate, hymecromon,

isometheptene, isopropamidiodide, levomethadone, mebeverine, metamizon, methscopolamine-bromide, metixen, octatropine-methylbromide, oxazepam, oxybutin, oxyphenonium-bromide, papaverine, paracetamol, pentapiperide, penthienate-methobromide, pethidine, pipenzolate-bromide, piperidolate, pipoxolane, propanthelin-bromide, propylphenazon, propyromazine-bromide, racefemine, scopolamine, sulpiride, tiemonium-iodide, tridihexethyliodide, tropenzilinbromide, tropinbenzilate, trospiumchloride, valethamatbromide, etc.; furthermore, belladonna alkaloids, papaverine and its derivatives, etc.;

- at least one sympathicolytic, e.g. azapetine or phentolamine;
- at least one sympathicomimetic, e.g. bamethane, buphenine, cyclopentamine, dopamine, L-(-)-ephedrine, epinephrine, etilefrine, heptaminol, isoetarine, metaraminol, methamphetamine, methoxamine, norfenefrine, phenylpropanolamine, pholedrine, propylhexedrine, protokylol or synephrine;
- at least one tuberculostatic, such as an antibiotic, paminosalicylic acid, capreomycine, cycloserine, dapson,
  ethambutol, glyconiazide, iproniazide, isoniazide,
  nicotinamide, protionamide, pyrarinamide, pyrodoxine,
  terizidone, etc., and, particularly preferred thereof,
  ethambitol and isoniazide;
- at least one urologic, e.g. a bladder tension modifying agent (such as cholinecitrate, distigminebromide, yohimbine), a corresponding antiinfection agents (antibiotics, chemotherapeutics, or nitrofurantoid-, chinolone-, or sulfonamide-derivative); furthermore,

adipinic acid, methionine, methenamine-derivatives, etc.;

- at least one substance with a vasoconstricting action; often, adrenalone, epinephrine, felypressine, methoxamine, naphazoline, oxymetazoline, tetryzoline, tramazoline or xylometazoline are used for this purpose;
- at least one substance which is a vasodilatator, such as e.g. azapetine, banethane, bencyclane, benfurodilhemisuccinate, buphenine, butalamine, cinnarizine, diprophylline, hexyltheobromine, ifenprodil, isoxsuprine, moxisylyte, naftidrofuryl, nicotinylalcohol, papaverine, phenoxybenzamine, piribedil, primaperone, tolazoline, trimetazidine, vincamine or xantinol-nicotinate;
- at least one veins agent, e.g. aescine, benzarone, calcium-dobesilate, dihydroergotaminemesilate, diosmine, hyydroxyethylrutoside, pignogenol, rutoside-aesinate, tribenoside, troxerutine, etc.;
- at least one virustatic, e.g. one immunostimulating agent, and/or an additional drug, such as as moroxydine or tromantadine, which may stimulate action of the immunostimulator;
- one agent for the treatment of wounds; for example, dexpanthenol, growth stimulating factors, enzymes or hormones, especially in combination with carriers which contain essential substances; povidon-iodide, fatty acids which are not straight, cetylpyridiniumchloride, chinoline-derivatives of known antibiotics and analgetics are useful;
- at least one substance with a toxic action or a toxin; common toxins from plant or microbial sources in

particular 15-acetoxyscirpenol, 3-acetyldeoxynivalenol, 3-alpha-acetyldiacetoxyscirpenol, acetyl T-2 toxin, aflatoxicol I, aflatoxicol II, aflatoxin B1, aflatoxin B2, aflatoxin B2-alpha, aflatoxin G1, aflatoxin G2, aflatoxin G2-alpha, aflatoxin M1, aflatoxin M2, aflatoxin P1, aflatoxin Q1, alternariol-monomethyl ether, aurovertin B, botulinum toxin D, cholera toxin, citreoviridin, citrinin, cyclopiazonic acid, cytochalasin A, cytochalasin B, cytochalasin C, cyrochalasin D, cytochalasin, cytochalasin H, cytochalasin J, deoxynivalenol, diacetoxyscirpenol, 4,15-diacetylverrucarol, dihydrocytochalasin B, enterotoxin STA, fusarenon X, iso T-2 toxin, O- methylsterigmatocystin, moniliformin, monoacetoxyscirpenol, neosolaniol, ochratoxin A, patulin, penicilinic acid, pertussis toxin, picrotoxin, PR-toxin, prymnesin, radicinin, roridin A, rubratoxin B, scirpentriol, secalonic acid D, staphylococcalenterotoxin B, sterigmatocystin, streptolysin O, streptolysin S, tentoxin, tetrahydrodeoxyaflatoxin B1, toxin A, toxin II, HT-2 toxin, T-2-tetraol, T-2 toxin, trichothecin, trichothecolon, T-2 triol, verrucarin A, verrucarol, vomitoxin, zearalenol and zearalenon.

- at least one substance which affects growth in humans or animals, such as basic fibroblast growth factor (BFGF), endothelial cell growth factor (ECGF), epidermal growth factor (EGF), fibroblast growth factor (FGF), insulin, insulin-like growth factor I (LGF I), insulin-like growth factor II (LGF II), nerves-growth factor-beta (NGF-beta), nerves growth-factor 2,5s (NGF 2,5s), nerves growth-factor 7s (NGF 7s), platelet-derived growth factor (PDGF), etc.;
- a carrier and/or agent which creates a protective layer on and/or in a barrier, such as skin, against poison,

light UV-, gamma- or other radiation; against detrimental biological agents such as viruses, bacteria, toxins, etc.; carrier components and/or agents can hamper the detrimental action by chemical, biochemical, or biological means or else may prevent or diminish the penetration of such adversary agents;

- at least one fungicide, herbicide, pesticide, or insecticide;
- at least one plant hormone, e.g. abscisic acid, abscisic acid-methylester, 3-acetyl-4-thiazolidine-carboxyl acid, 1-allyl-1-(3,7-dimethyloctyl)-piperidinium bromide, 6benzylaminopurine, 6-benzylaminopurine 9-(betaglucoside), butanedio acid mono(2,2-dimethyl hydrazide), chlorocholine chloride, 2-chloroethyl-tris-(2'methoxyethoxy) silane, 2-(o-chlorineophenoxy) -2methylpropionic acid, 2-(p-chlorophenoxy)-2methylpropionic acid, 2-(o-chlorophenoxyipropionic acid, 2-(m-chlorophenoxy) propionic acid, clofibrinic acid, colchicine, o-coumarinic acid, p-coumarinic acid, cycloheximide, alpha, beta-dichloroisobutiric acid, 2-(2,4-dichlorophenoxy) propanoic acid, 2,3-dihydro-5,6diphenyl 1,4-oxathiine, dihydrozeatine, 6-(gamma,gammadimethylallylamino) purino riboside, 3-(2-[3,5dimethyl-2-oxocyclohexyl-2-hydroxyethyl])-glutarimide, trans-2-dodecenedioic acid, ethyl-8-chloro-1-indazol-3yl-acetate, N6-furfuryladenosine, 6-furfurylaminopurineriboside, gibberellic acid methylester, gibberellin A3-acetate, gibberellin A1 methylester, gibberellin A4 methylester, gibberellin A5 methylester, gibberellin A7 methylester, gibberellin A9 methylester, gibberellin A3 methylester 3,13-diacetate gibberinic acid, alloqibberinic acid, qibberinic acid methylester, glyoxim, 22(s),23(s)-homobrassinolide, 9-hydroxyfluorene 9-

carboxylate, indol-3-acetic acid, indol-3-acetic acid ethylester, indol-3-propanoic acid, N6-(2-isopentenyl)adenoine, N6-(2-isopentenyl)adenosine, 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylat methylchloride, kinetinglucoside, kinetinriboside, melissylalcohol, 1-methyladenine, methyl 2-chloro-9-hydroxy-fluorene-9-carboxylate, methyl 3,6-dichloro-o-anisate, 6-methylmercaptopurine, 1-naphthylacetamide, nonanoic acid methylester, 6-piperidino-1-purine, n-triacontanol, (-)-xanthoxine, zeatine glucosides, etc.;

at least one pheromone or one pheromone-like substance, such as (-)-bornyl acetate, trans-5-decenol, cis-5decenyl acetate, trans-5-decenyl acetate, 2,6dichlorophenol, 1,7-dioxaspiro[5.5]undecane, trans-8, trans-10-dodecadienol ([E, E]-8, 10-DDDOL), trans-7, cis-9-dodecadienyl acetate ([E,Z]-7,9-DDDA), trans-8, trans-10-dodecadienyl acetate ([E,E]-8,10-DDDA), cis-7-dodecen-1-ol (Z-7-DDOL), trans-10dodecenol, cis-7-dodecenyl acetate (Z-7-DDA), cis-8dodecenyl acetate, trans-8-dodecenyl acetate, 11dodecenyl acetate, cis-7,8-epoxy-2-methyl-octadecane, cis-9-heneicosene, cis-7, cis-11-hexadecadienylacetate ([Z,Z]-7,11-HDDA), cis-7,trans-11- hexadecadienyl acetate ([Z,E)-7,11-HDDA), cis-9-hexadecenal (Z-9-HDAL), cis-11hexadecenal (Z-11-HDAL), cis-11-hexadecenol (Z-11-HDOL), cis-11-hexadecenyl acetate (Z-11-HDA), trans-2-hexenyl acetate, cis-7-tetradecenal (2-7-TDAL), cis-9tetradecenol (Myristoleyl alcohol; Z-9-TDOL), cis-7tetradecenol (Z-7-TDOL), cis-11-tetradecenol, cis-7tetradecenyl acetate (Z-7-TDA), cis-9-tetradecenyl acetate (Myristoleyl acetate; Z-9-TDA), cis-11tetradecenyl acetate (Z-11-TDA), trans-11-tetradecenyl acetate (E-11-TDA), cis-9-tetradecenyl formate

(Myristoleyl formate; Z-9-TDF), isoamyl acetate (acetic acid 3-methylbutyl ester), 2-methyl-3-buten-2-ol, 3-methyl-2-cyclohexen-1-ol, cis-14-methyl-8-hexadecenal, cis-2-methyl-7-octadecene, 4-methylpyrrole-2-carboxylic acid methyl ester (Methyl 4-methylpyrrole 2-carboxylate) cis-13-octadecenal 13-octadecyn-1-ol, 2-(phenyl)ethyl propionate (phenylethanol propanoate), propyl cyclohexylacetate, cis-9,trans-11-tetradecadienol ([Z,E]-9,11-TDDOL), cis-9,trans-11-tetradecadienyl acetate ([Z,E]-9,12-TDDA), trichloroacetic acid esters, cis-9-tricosene, undecanal, etc.;

- at least one pigment or one colouring substance;
- at least one carbohydrate;

A carbohydrate, normally, has a basic formula  $C_x(H_2O)_y$ , e.g. in sugar, starch, cellulose, and, moreover, can be derivatised in many different ways.

A monomeric carbohydrate residue is, for example, a natural monosaccharide residue, which in many cases is an adduct of a pentose or a hexose in aldose or ketose form which, in principle, can adopt L- or D-configurations. Owing to the space constraints and due to their greater biological relevance, only the latter will be referred to in the following.

An aldose with five carbon atoms (aldo-pentose, or simply pentose) is for example D-arabinose, D-lyxose, D-ribose or D-xylose.

A ketose with five carbon atoms (keto-pentose) is e.g. D-ribulose or D-xylulose.

An aldose with six carbon atoms (aldo-hexose, or simply hexose) is e.g. D-allose, D-altrose, D-galactose, D-glucose, D-mannose or D-talose. A ketose with six carbon atoms (or simply keto-hexose) is e.g. D-fructose, D-psicose, D-sorbose or D-tagatose.

A hexose, very frequently, exists in a cyclic form, as a pyranose (aldose), for example; alpha- or beta-D-glucopyranose are two typical examples for this.

Another type of hexose is furanose, e.g. in an alpha- or beta-D-fructose. The pyranosyl residue is particularly preferably conjugated to a hydroxy group, the latter then being located in 1- or 6-positions; the furanosyl residue is preferably conjugated to the corresponding groups in positions 1- or 5-.

A carbohydrate residue, moreover, can be a natural disaccharide residue, e.g. a disaccharide residue consisting of two hexoses. Such a disaccharide residue arises, for example, through condensation of two aldoses, e.g. D-galactose or D-glucose, or one aldose, e.g. D-glucose and one ketose, e.g. fructose; disaccharides formed from two aldoses, such as lactose or maltose, are preferably conjugated to the phosphatidyl group through the hydroxy group, which is located in position 6- of the corresponding pyranosyl residue. A disaccharide formed from an aldose and a ketose, such as saccharose, is preferably conjugated through a hydroxyl-group in position 6- of the pyranosyl residue or in position 1- of the furanosyl residue.

A carbohydrate residue, moreover, is any derivatised mono-, di- or oligosaccharide residue, in which, for example, an aldehyde group and/or one or two terminal

hydroxy groups are oxidized to carboxy groups, e.g. in a D-glucar-, D-glucon- or D-glucoronic acid residue, all such residues being normally in the form of cyclic lactone residues. The aldehyde- or keto-groups in a derivatised mono- or disaccharide residue, moreover, can be reduced to hydroxy groups, e.g. in inositol, sorbitol or D-mannitol. Furthermore, individual hydroxy groups can be replaced by hydrogen atoms, e.g. in desoxysugars, such as 2-desoxy-D-ribose, L-fucose or L-rhamnose, or through amino groups, e.g. in aminosugars, such as D-galactosamine or D-glucosamine.

A carbohydrate can result from a cleaving action, starting with one of the mentioned mono- or disaccharides, by a strong oxidation agent, such as periodic acid. Amongst the biologically most important or most active carbohydrates are e.g. 2-acetamido-N-(epsilon-amino-caproy1)-2-deoxy-beta-gluccopyranosylamine, 2-acetamido-1-amino-1,2-dideoxy-betaglucopyranose, 2-acetamido-1-beta-(aspartamido)-1,2dideoxyglucose, 2-acetamido-4,6-o-benzyliden-2-deoxybeta-glucopyranose, 2-acetamido-2-deoxyallose, 3acetamido-3-deoxyallose, 2-acetamido-2-deoxy-3-o-(betagalactopyranosyl)-galactopyranose, 2-acetamido-2-deoxy-4o-([4-o-beta-galactopyranosyl-beta-galactopyranosyl]beta-galactopyranosyl)-glucopyranose, 2-acetamido-2deoxy-3-o-(beta-galactopyranosyl)-alpha-glucopyranose, 6o-(2-acetamido-2-deoxy-4-o-[beta-galactopyranosyl]-betaglucopyranosyl)-galactopyranose, 4-o-acetamido-2-deoxy-6o-(beta-galacto-4-o-(6-o-[2-acetamido-2-deoxy-betaglucopyranosyl]-beta-galactopyranosyl) glucopyranose, 2acetamido-2-deoxygalactose, 2-acetamido-2-deoxyglucose, 3-acetamido-3-deoxyglucose pyranose, 6-o-(2-acetamido-2deoxy-beta-glucopyranosyl)-galactopyranose, 2acetamido-2-deoxy-1-thio-beta-glucopyranose 3,4,6-

triacetate, acetopyruvic acid, N-acetylchondrosamine, Nacetylgalactosamine, N-acetylglucosamine, N-acetyl-alphaglucosamine 1-phosphate, N-acetylglucosamine 6-phosphate, N-acetylglucosamine 3-sulfate, N-acetylglucosamine 6sulfate, N-acetylheparine, N-acetyllactosamine, N-acetylbeta- mannosamine, N-acetylneuraminic acid, N-acetylneuramine-lactose, 1-o-acetyl-2,3,5-tri-o-benzoyl-betaribofuranose, trans-aconic acid, adenine-9-beta-arabinofuranoside, adenosine 5'-diphospho-glucose, adenosine 5'diphosphomannose, adonite, adonitol, adonose, agar, algin, alginic acid, beta-allose, alpha glycerophosphate, alpha ketoglutaric acid, altrose, (-)-altrose, p-aminobenzyl-1-thio-2-acetamido-2-deoxy-beta-glucopyranoside, N-epsilon-aminocaproyl-beta-fucopyranosylamine, Nepsilon-aminocaproyl-alpha-galactopyranosylamine, 2amino-2-deoxygalactopyranose, 6-amino-6-deoxyglucopyranose, 1-amino-1-deoxy-beta-glucose, 6-aminohexyl-Nacetyl-beta-thioglucosaminide, 6-aminohexyl-1-thio-betagalactopyranoside, 5-aminoimidazole-4-carboxamidoxime-1beta-ribofuranosyl 3':5'-cyclo-monophosphate, deltaaminolevulinic acid, p-aminophenyl-2-acetamido-2-deoxybeta-glucopyranoside, p-aminophenyl-2-acetamido-2deoxy-1-thio-beta-glucopyranoside, p-aminophenyl-alphafucopyranoside, p-aminophenyl-alpha-galactopyranoside, paminophenyl-beta-galactopyranoside, p-aminophenyl-alphaglucopyranoside, p-aminophenyl-beta-glucopyranoside, caminophenyl-beta-glucuronide, p-aminophenyl-1-thio-betaglucuronide, p-aminophenyl-beta-lactopyranoside, paminophenyl-alpha-mannopyranoside, p-aminophenyl-betathiofucopyranoside, p-aminophenyl-1-thio-betagalactopyranoside, p-aminophenyl-1-thio-betaglucopyranoside, p-minophenyl-1-thio-beta-xylopyranoside, p-aminophenyl-beta-xylopyranoside, 5-amino-1-(betaribofuranosyl) imidazole 4-carboxamide, amygdaline, n-amyl beta-glucopyranoside, amylopectine, amylose, apigenine 7-

o-hesperidoside, arabinitol, arabinocytidine, 9-betaarabinofuranosyladenine, 1-beta-arabinofuranosylcytosin, arabinose, arabinose 5-phosphate, arabinosylcytosine, arabite, arabitol, arbutine, atp-ribose, atractyloside, aurothioglucose, n-butyl 4-o-beta-galactopyranosyl-betaglucopyranoside, calcium gluconate, calcium heptagluconate, carboxyatractyloside, carboxymethylamylose, carboxymethylcellulose, carboxyethylthioethyl-2-acetamido-2-deoxy-4-o-betagalactopyransol-beta-glucopyranoside, carboxyethylthioethyl 4-o-(4-o-[6-o-alpha-glucopyranosylalpha-glucopyranosyl]-alpha-glucopyranosyl)-betaglucopyranoside, 4-o-(4-o-[6-o-beta-D-galactopyranosylbeta-D-galactopyranosyl]-D-glucopyranose, carrageenan, D(+)cellobiose, D(+)cellopentaose, D(+)cellotetraose, D(+)cellotriose, cellulose, cellulose caprate, cellulose carbonate, chitin, chitobiose, chitosan, chitotriose, alpha-chloroalose, beta-chloroalose, 6-chloro-6-deoxyalpha-glucopyranose, chondroitin sulfate, chondrosamine, chondrosine, chrysophanic acid, colominic acid, convallatoxin, alpha-cyclodextrine, beta-cyclodextrine, cytidine 5'-diphosphoglucose, cytosine 1-betaarabinofuranoside, daunosamine, n-decyl-betaglucopyranoside, 5-deoxyarabinose, 2-deoxy-2fluoroglucose, 3-deoxy-3-fluoroglucose, 4-deoxy-4fluoroglucose, 6-deoxygalacto pyranose, 2deoxygalactose, 1-deoxyglucohex-1-eno-pyranose tetrabenzoat, 2-deoxyglucose, 6-deoxyglucose, 2deoxyglucose 6-phosphate, 1-deoxymannojerimycin, 6deoxymannose, 1-deoxy-1-morpholinofructose, 1-deoxy-1nitroalutol, 1-deoxy-1-nitroaltitol, 1-deoxy-1nitrogalactitol, 1-deoxy-1-nitromannitol, 1-deoxy-1nitrosorbitol, 1-deoxy-1-nitrotalitol, deoxynojirimycine, 3-deoxy-erythro-pentose, 2-deoxy-6-phosphogluconic acid, 2-deoxyribose, 3-deoxyribose, 2-deoxy-alpha-ribose 1-

phosphate, 2-deoxyribose 5-phosphate, 5deoxyxylofuranose, dextran, dextransulfate, dextrine, dextrose, diacetonefructose, diacetonemannitol, 3,4-dio-acetyl-6-deoxyglucal, di-o-acetylrhamnal, 2,3diamino-2,3-dideoxy-alpha-glucose, 6,9-diamino-2ethoxyacridine lactate, 1,3:4,6-di-o-benzylidene mannitol, 6,6'-dideoxy-6,6'-difluorotrehalose, digalactosyl diglyceride, digalacturonic acid, (+)digitoxose, 6,7-dihydrocoumarin-9-glucoside, dihydroxyacetone, dihydroxyacetone phosphate, dihydroxyfumaric acid, dihydroxymalic acid, dihydroxytartaric acid, dihydrozeatinriboside, 2,3diphosphoglycerolic acid, dithioerythritol, dithiothreitol, n-dodecyl beta-glucopyranoside, ndodecyl beta-maltoside, dulcitol, elemi-gum, endotoxin, epifucose, erythritol, erythro-pentulose, erythrose, erythrose 4-phosphate, erythrulose, esculin, 17-betaestradiol-3-glucuronide 17-sulfate, estriole glucuronide, estron beta-glucuronide, ethodin, ethyl 4o-beta-D-galactopyranosyl)-beta-D-glucopyranoside, ethyl2-acetamido-4-o-(2-acetamido-2-deoxy-betaglucopyranosyl)-6-o-(alpha -fucopyranosyl)-2-deoxy-betaglucopyranoside, ethyl2-acetamido-2-deoxy-4-o-(4-oalpha-galactopyranosyl-beta-galactopyranosyl)-betaglucopyranoside, ethyl cellulose ethylene glycol chitin, ethyl 4-o-(4-o-alpha-galacto-pyranosyl-betagalactopyranosyl)-beta-glucopyranoside, ethyl 4-o-betagalactopyranosyl-beta-glucopyranoside, ethyl pyruvate, ethyl beta-thioglucoside, etiocholane-3alpha-ol-17-on glucuronide, ficoll, 6-fluoro-6-deoxyglucose, franguloside, fraxin, fructosazine, beta-(-)fructose, fructose-1,6- diphosphate, fructose-2,6-diphosphate, fructose-1-phosphate, fructose-6-phosphate, fucoidan, fucose, alpha -(-)-fucose-1-phosphate, fucosylamine, 2'fucosyllactose, 3-fucosyllactose, fumaric acid, galactal, galactitol, galactopyranosylamine, 3-o-betagalactopyranosyl-arabinose, 4-o-beta-galactopyranosylfructofuranose, 4-o-(4-o-beta-galactopyranosyl betagalactopyranosyl)-glucopyranose, 4-o-alphagalactopyranosyl- galactopyranose, 6-o-betagalactopyranosylgalactose, 4-o-(beta-galactopyranosyl)alpha-mannopyranose, alpha-galactopyranosyl 1-phosphate, galactopyranosyl-beta-thio-galactopyranoside, (+)galactosamine, alpha-galactosamine 1-phosphate, alphagalactose 1-phosphate, galactose 6-phosphate, galactose 6-sulfate, 6-(alpha-galactosido)glucose, galacturonic acid, beta-gentiobiose, glucan, glucitol, glucoheptonic acid, glucoheptose, glucoheptulose, gluconate 6phosphate, gluconic acid, 1-o-alpha-glucopyranosyl-betafructofuranoside, 6-o-alpha-glucopyranosylfructose, 1-oalpha-glucopyranosyl-alpha-glucopyranoside, 4-o-betaglucopyranosylglucopyranose, 4-o-(4-o-[6-o-alphaglucopyranosyl-alpha-glucopyranosyl]-alphaglucopyranosyl) glucopyranose, (+)glucosamine, alphaqlucosamine 6-2,3-disulfate, alpha-glucosamine 1phosphate, glucosamine 6-phosphate, glucosamine 2sulfate, alpha-glucosamine 3-sulfate, glucosamine 6sulfate, glucosaminic acid, glucose, alpha-glucose 1,6diphosphate, glucose 1-phosphate, glucose 6-phosphate, glucose 6-sulfate, glucuronamide, glucuronic acid, alphaglucuronic acid 1-phosphate, glyceraldehyde, glyceraldehyde 3-phosphate, glycerate 2,3-diphosphate, glycerate 3-phosphate, glyceralic acid, alphaglycerophosphate, beta-glycerophosphate, glycogen, glycolaldehyde, glycol chitosan, n-glycolylneuraminic acid, glycyric acid, glyoxylic acid, guanosine, 5'diphosphoglucose, gulose, gums (accroides, agar, arab, carrageenan, damar, elemi, ghatti, guaiac, guar, karaya, locust bonne, mast, pontianac, storax, tragacanth, xanthan), heparin and heparin-like substances WVU1104

(mesoglycan, sulodexide, etc.), heptakis (2,3,6-tri-omethyl)-beta-cyclodextrin, heptanoyl-Nmethylglucamide, n-heptyl beta-glucopyranoside, hesperidin, n-hexyl-beta-glucopyranoside, hyaluronic acid, 16-alpha-hydroxyestronglucuronide, 16-betahydroxyestron glucuronide, hydroxyethyl starch, hydroxypropylmethyl-cellulose, 8-hydroxyquinolin-betaglucopyranoside, 8- hydroxyguinolin glucuronide, idose, (-)-idose, indole-3- lactic acid, indoxyl-betaglucoside, epi-inositol, myo-inositol, myo-inositol bisphosphate, myo-inositol-1,2-cyl phosphate, scyllo-inositol, inositolhexaphosphate, inositolhexasulfate, myo-insoitol 2-monophosphate, myoinositol trisphosphate, (g)-epi-inosose-2, scylloinosose, inulin, isomaltose, isomaltotriose, isosorbid dinitrate, 11-ketoandrosterone beta-glucuronide, 2ketogluconic acid, 5-ketogluconic acid, alphaketopropionic acid, lactal, lactic acid, lactitol, lactobionic acid, lacto-N-tetraose, lactose, alphalactose 1-phosphate, lactulose, laminaribiose, laminnarine, levoglucosan, beta-levulose, lichenan, linamarine, lipopolysaccharides, lithiumlactate, lividomycine A, lyxose, lyxosylamine, maltitol, maltoheptaose, maltohexaose, maltooligosaccharide, maltopentaose, maltose, alpha-(+)maltose 1-phosphate, maltotetraose, maltotriose, malvidine-3,5-diglucoside, mandelonitril beta-glucoside, mandelonitril glucuronic acid, mannan, mannit, mannitol, mannitol 1-phosphate, alpha-mannoheptitol, mannoheptulose, 3-o-alphamannopyranosyl-mannopyranose, alpha(+)mannopyranosyl-1phosphate, mannosamine, mannosan, mannose, A(+) mannose 1phosphate, mannose 6-phosphate, (+) melezitose, A(+)melibiose, mentholglucuronic acid, 2-(3'methoxyphenyl)-N-acetylneuraminic acid, methyl 3-o-(2acetamido-2-deoxy-beta-galactopyranosyl)-alphaqalactopyranoside, methyl 4-o-(3-o-[2-acetamido-2deoxy-4-o-beta-galactopyranosyl beta-glucopyranosyl]beta-galactopyranosyl)-beta-glucopyranoside, methyl 2acetamido-2-deoxy-beta-glucopyranoside, methyl3-o-(2acetamido-2-deoxy-beta-glucopyranosyl)-betagalactopyranoside, methyl6-o-(2-acetamido)-2-deoxy-betaglucopyranosyl) -alpha-mannopyranoside, methyl acosaminide, methyl alpha-altropyranoside, methyl3amino-3-deoxy-alpha-mannopyranoside, methyl betaarabinopyranoside, methyl 4,6-o-benzylidene-2,3-di-otoluenesulfonyl-alpha-galactopyranoside, methyl 4,6-obenzylidene-2,3-di-o-p-toluenesulfonyl-alpha-glucopyranoside, methyl cellulose, methyl alpha-daunosaminide, methyl6-deoxy-alpha-galactopyranoside, methyl 6-deoxybeta-galactopyranoside, methyl 6-deoxy-alphaglucopyranoside, methyl 6-deoxy-beta-glucopyranoside, methyl 3,6-di-o-(alpha-mannopyranosyl)-alphamannopyranoside, 1-o-methyl-alpha-galactopyranoside, 1-o-methyl-beta-galactopyranoside, methyl 3-o-alphagalactopyranosyl-alpha-galactopyranoside, methyl-3-obeta-galactopyranosyl-beta-galactopyranoside, 4-o-(2-omethyl-beta-galactopyranosyl) glucopyranose, methyl 4-obeta-galactopyranosyl-beta-glucopyranoside, methyl-4-o-(beta-galactopyranosyl-alpha-mannopyranoside, 5-5methylgalacto pyranose, methylgalactoside, nmethylglucamine, 3-o-methyl-alpha-glucopyranose, 1-omethyl-alpha-glucopyranoside, 1-o-methyl-betaglucopyranoside, alpha-methyl glucoside, beta-methyl glucoside, methyl glycol chitosan, methyl-alphamannopyranoside, methyl-2-o-alpha-mannopyranosylalpha-mannopyranoside, methyl 3-o-alpha-mannopyranosylalpha-mannopyranoside, methyl-4-o-alpha-mannopyranosylalpha-mannopyranoside, methyl 6-o-alpha-mannopyranosylalpha-mannopyranoside, methyl alpha-rhamnopyranoside, methyl alpha-ribofuranoside, methyl beta-ribofuranoside,

methylbeta-thiogalactoside, methyl 2,3,5-tri-o-benzoylalpha-arabinofuranoside, 4-methylumbelliferyl2acetamido-4,6-o-benzylidene-2-deoxy-beta-glucopyranoside, 4-methylumbelliferyl N-acetyl-beta-galactosaminide, 4methylumbelliferyl N-acetyl-alpha-glucosaminide, 4methylumbelliferyl-N-acetyl-beta-glucosaminide, 4-methylumbelliferyl-alpha-arabinofuranoside, 4-methylum-belliferyl-alpha-arabinopyranoside, 4-methylum-belliferylbeta-cellobioside, 4-methylumbelliferyl-beta-n,n'-diacetylchitobioside, 4-methylumbelliferyl alpha-fucoside, 4methylumbelliferyl beta-fucoside, 4-methylumbelliferyl alpha-galactopyranoside, 4-methylumbelliferyl betagalactopyranoside, 4-methylumbelliferyl alpha-galactoside, 4-methylumbelliferyl beta -glucopyranoside, 4methylumbelliferyl alpha-glucoside, 4-methylumbelliferyl beta-glucoside, 4-methylumbelliferyl beta-glucuronide, 4-methylumbelliferyl beta-mannopyranoside, 4-methylumbelliferylbeta-n,n',n''-triacetylchitotriose, 4-methylumbelliferyl2,3,5-tri-o-benzyl-alpha-arabinofuranoside, 4-methylumbelliferyl beta-xyloside, methyl betaxylopyranoside, 2-o-methylxylose, alpha-methylxyloside, beta-methylxyloside, metrizamide, 2'-monophosphoadenosine 5'-diphosphoribose, 2'-monophosphoinosine 5'diphosphoribose, mucine, muraminic acid, naringine, sodium lactate, sodium polypectate, sodium pyruvate, neoagarobiose, neoagarohexaitol, neoagarohexaose, neoagarotetraose, beta-neocarrabiose, neocarrabiose 4/1-sulfate, neocarrahexaose(2/4,4/1,4/3,4/5)tetrasulfate, neocarratetraose(4/1,4/3)-disulfate, neocarratetraose(4/1)-sulfate, neohesperidin, dihydrochalcon, neohesperidose, neuraminic acid, neuraminic acid beta-methylglycoside, neuramine-lactose, nigeran, nigerantetrasaccharide, nigerose, n-nonyl glucoside, n-nonylbeta-glucopyranoside, octadecylthioethyl 4-o-alpha-galactopyranosyl-beta-galactopyranoside,

octadecylthioethyl 4-o-(4-o-[6-o-alpha-glucopyranosylalpha-glucopyranosyl]-alpha-glucopyranosyl)-betaglucopyranoside, octanoyl n-methylglucamide, n-octyl alpha-glucopyranoside, n-octyl-beta-glucopyranoside, oxidised starch, pachyman, palatinose, panose, pentaerythritol, pentaerythritol diformal, 1,2,3,4,5pentahydroxy, capronic acid, pentosanpolysulfate, perseitol, phenolphthalein glucuronic acid, phenolphthalein mono-beta-glucosiduron phenyl 2acetamido-2-deoxy-alpha-galactopyranoside, phenyl2acetamido-2-deoxy-alpha-glucopyranoside, alpha-phenyl-N-acetyl-glucosaminide, beta-phenyl N-acetylglucosaminide, phenylethyl beta- galactoside, phenyl beta-galactopyranoside, phenyl beta-galactoside, phenyl alpha-glucopyranoside, phenyl beta-glucopyranoside, phenyl alpha-glucoside, phenyl betaglucoside, phenyl beta-glucuronide, beta-phenyllactic acid, phenyl alpha-mannopyranoside, beta-phenylpyruvic acid, phenyl beta-thiogalactopyranoside, phenyl betathiogalactoside, phospho(enol)pyruvate, (+)2phosphoglyceric acid, (-)3-phosphoglyceric acid, phosphohydroxypyruvic acid, 5-phosphorylribose 1pyrophosphate, phytic acid, poly-N-acetylglucosamine, polygalacturonic acid, polygalacturonic acid methyl ester, polypectate, sodium, polysaccharide, 5betapregnane-3alpha, 2oalpha-diol glucuronide, n-propyl4-obeta-galactopyranosyl-beta-glucopyranoside, prunasine, psicose, pullulan, quinolyl-8beta-glucuronic acid, (+)raffinose, alpha-rhamnose, rhapontine, ribitol, ribonolacton, ribose, D-2-ribose, alpha-ribose 1phosphate, ribose 2-phosphate, ribose 3-phosphate, ribose 5-phosphate, ribulose, ribulose-1,5-diphosphate, ribulose 6-phosphate, saccharic acid, saccharolactic acid, saccharose, salicin, sarcolactic acid, schardingersalpha-dextrine, schardingers-beta-dextrine,

sedoheptulosan, sedoheptulose 1,7-diphosphate, sialic acid, sialyllactose, sinigrine, sorbitol, sorbitol 6phosphate, (+)-sorbose, (-)sorbose, stachyose, starch, storax, styrax, sucrose, sucrose monocaprate, tagatose, alpha-talose, (-)-talose, tartaric acid, testosteronebeta-glucuronide, 2,3,4,6-tetra-o- methyl-glucopyranose, thiodiglucoside, 1-thio-beta- galactopyranose, betathioglucose, 5-thioglucose, 5- thioglucose 6-phosphate, threitol, threose, (+)threose, (-)threose, thymidine 5'-diphosphoglucose, thymin 1-beta- arabinofuranoside, tragacanth, (+) trehalose, trifluorothymin, deoxyriboside, 3,3',5-trihydroxy-4'- methoxy-stilbene-3-o-beta-glucoside, trimethylsilyl(+)arabinose, trimethylsilyldulcitol, trimethylsilyl-beta (-) fructose, trimethylsilyl(+) galactose, trimethylsilyl-alpha-(+)-glucose, trimethylsilyl(+) mannitol, trimethylsilyl(+)rhamnose, trimethylsilyl(-) sorbitol, trimethylsilyl(+)xylose, rac-1-otritylglycerol, (+)turanose, n-undecyl beta-glucopyranoside, uracil beta-arabinofuranoside, uridine 5'diphospho-N-acetylglucosamine, uridine 5'-diphosphogalactose, uridine 5'-diphosphoglucose, uridine 5'diphospho-glucuronic acid, uridine 5'-diphosphomannose, uridine 5'-diphosphoxylose, vancomycine, xanthan gum, xylane, xylite, xylitol, xylobiose, alpha-xylopyranosyl 1-phosphate, xylose, alpha-xylose 1-phosphate, xylose 5phosphate, xylotriose, xylulose, xylulose 5-phosphate, yacca, zeatine riboside, zinclactate, zymosan A, etc.

Denotations desoxyribonucleic-(DNA) and ribonucleic acid (RNA) have their common meaning; preferably such DNA or RNA forms, or their antagonists, are used which have a particularly strong biological action.

at least one nucleotide, peptide, protein or a related compound;

Nucleotides, which can be effectively transported with the aid of transfersomes, encompass adenine, adenosine, adenosine-3',5'-cyclic monophosphate, N6,02'-dibutyryl, adenosine-3',5'-cyclic monophosphate, N6,02'-dioctanoyl, adenosine, n6-cyclohexyl, salts of adenosine-5'-diphosphate, adenosine-5'-monophosphoric acid, adenosine-5'-o-(3-thiotriphosphate), salts of adenosine-5'-triphosphate, 9-beta-D-arabinoturanosyladenine, 1-beta-Darabinoturanosylcytosine, 9-beta-D-arabinoturanosylquanine, 9-beta-D-arabinoturanosylguanine 5'-triphosphate, 1-beta-D-arabinoturanosylthymine, 5-azacytidine, 8-azaquanine, 3'-azido-3'-deoxythymidine, 6-beniylaminopurine, cytidine phosphoramidite, beta-cyanoethyl diisopropyl, 249802cytidine-5'-triphosphate, 2'deoxyadenosine, 2'-deoxyadenosine 5'-triphosphate, 2'deoxycytidine, 2'-deoxycytidine 5'-triphosphate, 2'deoxyguanosine, 2'-deoxyguanosine 5'-triphosphate, 2',3'dideoxyadenosine, 2',3'-dideoxyadenosine 5'-triphosphate, 2',3'-dideoxycytidine, 2',3'-dideoxycytidine 5'-triphosphate, 2',3'-dideoxyguanosine, 2',3'-dideoxyguanosine 5'triphosphate, 2',3'-dideoxyinosine, 2',3' dideoxythymidine, 2',3'-dideoxythymidine 5'-triphosphate, 2',3'dideoxyuridine, N6-dimethylallyladenine, 5-fluoro-2'deoxyuridine, 5-fluorouracil, 5-fluorouridin, 5fluorouridine 5'-monophosphate, formycine A 5'-triphosphate, formycine B, guanosine-3'-5'-cyclic monophosphate, guanosine-5'-diphosphate-3'-diphosphate, guanosine-5'-o-(2-thiotriphosphate), guanosine-5'-o-(3'-thiotriphosphate), guanosine 5'-triphosphate, 5'-guanylylimidodiphosphate, inosine, 5-iodo-2'-deoxyuridine, nicotinamide-adenine dinucleotides, nicotinamide-adenine dinucleotides, nicotinamide-adenine dinucleotide phosphate, oligodeoxythymidylic acid, (p(dT)10), oligodeoiythymidylic acid (p(dT)12-18), polyadenylic acid いいひょくりほ

(poly A), polyadenylic acid-oligodeoxythymidynic acid, polycytidylic acid, poly(deoxyadenyl-deoxiythymidylic acid, polydeoxyadenylic-acid-oligodeoxythymidynic acid, polydeoxythymidylic acid, polyinosine acid-polycytidylic acid, polyuridynic acid, ribonucleic acid, tetrahydrouridine, thymidine, thymidine-3',5'-diphosphate, thymidine phosphoramidite, beta-cyanoethyl diisopropyl, 606102 thymidine 5'-triphosphate, thymine, thymine riboside, uracil, uridine, uridine-5'-diphosphoglucose, uridine 5'-triphosphate, xanthine, zeatine, transeatine riboside, etc. Further suitable polymers are: poly(DA) ss, poly(A) ss, poly(C) ss, poly(G) ss, poly(U) ss, poly(DA)-(DT) ds, complementary homopolymers, poly (D(A-T)) ds, copolymers, poly(DG) (DC) ds, complementary homopolymers, poly (d(G-C)) ds copolymers, poly (d(L-C))ds copolymers, poly(I)-poly(C) ds, etc. An oligopeptide or a polypeptide preferably contains 3-250, frequently 4-100, and very often 4-50 amino acids which are mutually coupled via amide-bonds. Suitable amino acids are usually of the alpha- and L-type; exceptions, however, such as in dermorphine are possible.

adrenal peptide E, adrenocorticotropic hormone (ACTH 1-39, Corticotropine A) and its fragments such as 1-4 (Ser-Tyr-Ser-Met), 1-10 (Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly), 1-17, 1-24 and 1-39, 11-24, 18-39, Ala-Ala, beta-Ala-Ala, Ala-Ala-Ala, Ala-Ala-Ala methyl ester, Ala-Ala-Ala-Ala, Ala-Ala-Ala-Ala-Ala, Ala-Ala-Ala-Ala-Ala-Ala, Ala-Ala-Phe, 7-amido-4-methylcoumarin, Ala-Ala-Phe p-nitroanilide, Ala-Ala-Val-Ala p-nitroanilide, Ala-Arg-Pro-Gly-Tyr-Leu-Ala-Phe-Pro-Arg-Met amide, beta-Ala-Arg-Ser-Ala-Pro-Thr-Pro-Met-Ser-Pro-Tyr, Ala-Asn, Ala-Asp, Ala-Glu, Ala-gamma-Gln-Lys-Ala-Ala, Ala-Gly, beta-Ala-Gly, Ala-Gly-Glu-Gly-Leu-Ser-Ser-Pro-Phe-Tyr-Ser-Leu-Ala-Ala-Pro-Gln-Arg-Phe amide, Ala-Gly-Gly, Ala-Gly-Ser-Glu, Ala-His, beta-Ala-His, Ala-isoGln-Lys-Ala-Ala, Ala-Ile, Ala-Leu, beta-Ala-Leu, Ala-Leu-Ala, Ala-Leu-Ala-Leu, Ala-Leu-Gly, Ala-Lys, beta-Ala-Lys, Ala-Met, N-beta-Ala-1-methyl-His, Ala-norVal, Ala-Phe, beta-Ala-Phe, Ala-Phe-Lys 7-amido-4-methylcoumarin, Ala-Pro, Ala-Pro-Gly, Ala-sarcosine, Ala-Ser, Ala-Ser-Thr-Thr-Thr-AsN-Tyr-Thr, Ala-Ser-Thr-Thr-Asn-Tyr-Thr amide, Ala-Thr, Ala-Trp, beta-Ala-Trp, Ala-Tyr, Ala-Val, beta-Ala-Val, beta-Ala-Trp-Met-Asp-Phe amide, alytesine, amanitine, amastatine, angiotensine I (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu), II II (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe), III and related peptides, angiotensine II antagonist, angiotensine II receptor binding protein, angiotensine converting enzyme and its inhibitor (e.g. entipaine, bestatine, chymostatine, E-64, elastatinal, etc.) anserine, antide, aprotinine, arginine, vasopressine-Ala-Gly, Arg-Ala, Arg-Arg-Leu-Ile-Glu-Asp-Ala-Glu-Tyr-Ala-Ala-Arg-Gly, Arg-Asp, Arg-Glu, Arg-Gly, Arg-Gly-Asp, Arg-Gly-Asp-Ser, Arg-Gly-Asp-Ser-Pro-Ala-Ser-Ser-Lys-Pro, Arg-Gly-Glu-Ser, Arg-Gly-Phe-Phe-Tyr-Thr-Pro-Lys-Ala, Arg-His-Phe, Arg-Ile, Arg-Leu, Arg-Lys, Arg-Lys-Asp-Val-Tyr, Arg-Phe, Arg-Phe-Asp-Ser, Arg-Pro-Pro-Gly-Phe-Ser- .

Pro-Phe-Arg, Arg-Ser-Arg, Arg-Ser-Arg-His-Phe, Arg-Val, Asn-Pro-Asn-Ala-Asn-Pro-Asn-Ala, Asn-Pro-Asn-Ala-Asn-Pro-Asn-Ala-Asn-Pro-Asn-Ala, alpha-Asp-Ala, Asp-Ala-Glu-Asn-Leu-Ile-Asp-Ser-Phe-Gln-Glu-Ile-Val, Asp-Asp, alpha-Asp-Glu, alpha-Asp-Gly, beta-Asp-Gly, beta-Asp-His, Asp-Leu amide, beta-Asp-Leu, alpha-Asp-Lys, alpha-Asp-Phe amide, alpha-Asp-Phe, alpha-Asp-Phe methyl ester, beta-Asp-Phe methyl ester, alpha-Asp-Ser-Asp-Pro-Arg, Asp-Val, beta-Asp-Val, atrial natriuretic peptide, especially its fragments 1-32 and 5-28, atriopeptine I, II and III, auriculine A and B, beauvericine, beniotript, bestatine, N-benzylated peptides, big gastrine I, bombesine, (D-Phe12, Leu14) (Tyr4), (Lys3)-bombesine, (Tyr4)-bombesine, adrenal medulla docosapeptide and dodecapeptide, Bradykinine (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) and related peptides, Bradykinine potentiators, brain natriuretic peptide, buccaline, bursine, S-t-butyl-Cys, caeruleine, calcitonine, calcitonine gene related peptide I and II, calmoduline binding domain, N-carboxymethyl-Phe-Leu, N-((R,S)-2-carboxy-3-phenyl-propionyl)Leu, cardioactive peptides A and B, carnosine, betacasomorphine, CD4, cerebelline, N-chloroacetyl-Gly-Gly, chemotactic peptides such as formylated substances, cholecystokinine fragments, e.g., cholecystokinine octapeptide, coherine etc.

Also worth mentioning are the collagen peptides, conicostatine, conicotropine releasing factor, conotoxin G1, M1, and GVIA, corticotropine-like intermediate lobe peptide, corticotropine releasing factor and related peptides, C-peptide, Tyr-C-peptide, cyclic calcitonine gene related peptides, cyclo(His-Phe-), cyclo(His-Pro-), cyclo(Leu-Gly-), cyclo(Pro-Gly-), Cys-Asp-Pro-Gly-Tyr-Ile-Ser-Arg amide, Cys-Gln-Asp-Ser-Glu-Thr-Arg-Thr-Phe-Tyr, DAGO, Delta-sleep inducing peptide, dermorphine,

(Ser(Ac)7)-dermorphine, diabetes associated peptide and its amide, N-alpha, N-epsilon-diacetyl-Lys-Ala-Ala, N-2,4dinitrophenyl-Pro-Gln-Gly-Ile-la-Gly-Gln-Arg, diprotine A, dynorphines such as dynorphine A (Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys-Trp-Asp-sn-Gln), fragments 1-6 (leucine encephaline-Arg), 1-8, 1-13 or E-64, dynorphine B, ebelactones (e.g. A and B) ecarine, elastatinal, eledoisine and related peptides, alpha-, beta- und gamma-endorphine, endothelins, endorphines (e.g. alpha (=beta-Lipotropine 61-76), (Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr), beta (=beta-Lipotropine 61-91) and other beta-lipotropinefragments, encephaline and Leu-encephaline (Tyr-Gly-Gly-Phe-Leu) and related peptides, encephalinase inhibitors (e.g. epiamastatine, epibestatine, foroxymithine, leupeptine, pepstatine, Nle-Sta-Ala-Sta), eosinophilotactic tetrapeptide, epiamastatine, epibestatine, (Cys(Acm)20,31)-epidermal growth factor and its fragments or receptors, epidermal mitosis inhibiting pentapeptide, trans-epoxysuccinyl-Leu amido-(4-guanidino) butane, erythropoietine and fragment, S-ethylglutathione, fibrinogen related peptide, fibrinopeptide A and B, Tyrfibrinopeptide A, (Glu1)-fibrinopeptide S, fibrinopeptide B-Tyr, fibroblast growth factor fragment 1-11, follicular gonadotropine releasing peptide, N-formylated peptides, foroxymithine, N-(3(2-furyl)acryloyl) peptide derivatives, galanine, GAP 1-13, gastric inhibitory polypeptide, gastrine related peptides and derivatives, gastrine releasing peptide, gastrointestinal peptides (e.g. Ala-Trp-Met-Asp-Phe-Amid, bombesine, caeruleine, cholecystokinine, gelanine, gastrine, glucagon, motiline, neuropeptide K, pancreatic polypeptide, pancreozymine, Phi-27, secretine, valosine, etc.), Gln-Ala-Thr-Val-Gly-Asp-Val-Asn-Thr-Asp-Arg-Pro-Gly-Leu-Leu-Asp-Leu-Lys, (des-His1, Glu9)-glucagon amide, glucagon (1-37),

glucagon-like peptide I, alpha-Glu-Ala, Glu-Ala-Glu, Glu-Ala-Glu-Asn, alpha-Glu-Glu, gamma-Glu-Glu, gamma-Glu-Gln, gamma-Glu-Gly, PGlu-Gly-Arg-Phe amide, alpha-Glu-Gly-Phe, gamma-Glu-His, gamma-Glu-Leu, alphaGlu-alpha-Lys, gamma-Glu-epsilon-Lys, N-gamma-Glu-Phe, PGlu-Ser-Leu-Arg-Trp amide, alpha-Glu-Trp, gamma-Glu-Trp, gamma-Glu-Tyr, alpha-Glu-Val, gamma-Glu-Val, PGlu-Val-Asn-Phe-Ser-Pro-Gly-Trp-Gly-Thr amide, A-Glu-Val-Phe, glutathiones and related peptides, glutathionesulfonic acid, Gly-Ala, Glybeta-Ala, Gly-Ala-Ala, Gly-Ala-Ala-Ala-Ala, Gly-Ala-Tyr, Gly-alpha-aminobutyric acid, Gly-gamma-aminobutyric acid, Gly-Arg-Ala-Asp-Ser-Pro-Lys, Gly-Arg-Ala-Asp-Ser-Pro-OH, Gly-Arg-Gly-Asp-Ser, Gly-Arg-Gly-Asp-Asn-Pro-OH, Gly-Arg-Gly-Asp-Ser-OH, Gly-Arg-Gly-Asp-Ser-Pro-Lys, Gly-Arg-Gly-Asp-Ser-Pro-OH, Gly-Arg-Gly-Asp-Thr-Pro, Gly-Arg-Gly-Asp-Thr-Pro-OH, Gly-Arg p-nitroanilide, Gly-Arg-Gly-Asp, Gly-Arg-Gly-Asp-Ser, Gly-Asn, Gly-Asp, Gly-Asp-Asp-Asp-Asp-Lys, Gly-Glu, Gly-Gly and their derivatives such as methyl, ethyl or benzyl esters or amides, Gly-Gly-Ala, Gly-Gly-Arg, Gly-Gly-Gly-Gly-Gly-Gly-Gly-Gly-Gly-Gly, Gly-Gly-Gly-Gly-Gly, Gly-Gly-Ile, Gly-Gly-Leu, Gly-Gly-Phe, Gly-Gly-Phe-Leu, Gly-Gly-Phe-Leu amide, Gly-Gly-Phe-Met, Gly-Gly-Phe-Met amide, Gly-Glysarcosine, Gly-Gly-Tyr-Arg, Gly-Gly-Val, Gly-His, Gly-His-Arg-Pro, Gly-His-Gly, Gly-His-Lys, Gly-His-Lys-OH, Gly-Ile, Gly-Leu amide, Gly-Leu, Gly-Leu-Ala, Gly-Leu-Phe, Gly-Leu-Tyr, Gly-Lys, Gly-Met, Gly-norLeu, GlynorVal, Gly-Phe amide, Gly-Phe, Gly-Phe-Ala, Gly-Phe-Arg, Gly-Phe-Leu, Gly-Phe-Phe, Gly-Pro, Gly-Pro-Ala, Gly-Pro-Arg, Gly-Pro-Arg-Pro, Gly-Pro-Arg-Pro-OH, Gly-Pro-Gly-Gly, Gly-Pro-hydroxy-Pro, Gly-sarcosine, Gly-Ser, Gly-Ser-Phe, Gly-Thr, Gly-Trp, Gly-Tyr amide, Gly-Tyr, Gly-Tyr-Ala, Gly-Val, Gly-Phe-Ser, granuliberine R, growth hormone releasing factor and its fragments, Hexa-Ala, Hexa-Gly, Hippuryl-Arg (Hip-Arg), Hippuryl-Gly-Gly (Hip-

Gly-Gly), Hippuryl-His-Leu (Hip-His-Leu), Hippuryl-Lys, Hippuryl-Phe, hirudine and its fragments, His-Ala, His-Gly, His-Leu, His-Leu-Gly-Leu-Ala-Arg, His-Lys, His-Phe, His-Ser, His-Tyr, HIV envelope protein (gp120), Hydra. peptides, P-hydroxyhippuryl-His-Leu, hypercalcemia malignancy factor (1-40), insulin chains B and C, Piodo-Phe, Ile-Asn, Ile-Pro-Ile, insulin-like growth factor I (especially fragment 1-70), insulin-like growth factor II (especially its fragment 33-40), interleukin-1B fragment 163-171, isotocine, kassinine (Asp-Val-Pro-Lys-Ser-Asp-AGly-n-Phe-Val-Gly-Leu-Met-NH2) katacalcine (calcitonine precursor peptide), Tyr-katacalcine, kemptide, kentsine, kyotorphine, laminine nonapeptide, laminine pentapeptide, laminine pentapeptide amide, leucine encephaline and related peptides, leucopyrokinine, Leu-Ala, Leu-beta-Ala, Leu-Arg, Leu-Asn, leucokinine I (Asp-Pro-Ala-Phe-Asn-Ser-Trp-Gly-NH,) and II, Leucine-encephaline amide (Leu-encephaline amide) and related peptides, Leu-Gly, Leu-Gly-Gly, Leu-Gly-Phe, Leu-Leu amide, Leu-Leu, Leu-Leu-Leu amide, Leu-Leu-Leu, Leu-Leu-Phe amide, Leu-Leu-Tyr, Leu-Lys-Phe-Asn-Ala-Arg-Arg-Lys-Leu-Lys-Gly-Ala-Ile-Leu-Thr-Thr-Met-Leu-Ala, Leu-Met, Leu-Met-Tyr-Pro-Thr-Tyr-Leu-Lys, Leu-Phe, Leu-Pro, Leu-Pro-Pro-Ser-Arg, Leu-Ser, Leu-Ser-Phe, Leu-Trp, Leu-Tyr, Leu-Val, leucotriene, Leu-Leu methyl ester, leupeptin, Leu-Ser-p-nitro-Phe-Nle-Ala-Leu methyl ester, beta-lipotropin fragments, litorine, luteinizing hormone releasing hormone and related peptides, lymphocyte activating pentapeptide, Lys-Ala, Lys-Ala 7-amido-4methylcoumarin, Lys-Asp, Lys-Cys-Thr-Cys-Cys-Ala, Lys-Glu-Glu-Ala-Glu, Lys-Gly, Lys-Leu, Lys-Lys, Lys-Met, Lys-Phe, Lys-Pro-Pro-Pro-Pro-Pro-Glu-Pro-Glu-Thr, Lys-Serum thymic factor, Lys-Trp-Lys, Lys-Tyr-Trp-Trp-Phe amide, Lys-Val, macrophage inhibitory peptide (Tuftsine

fragment 1-3, Thr-Lys-Pro), magainine I and II, mast cell degranulating peptide, mastoparane, alphal-mating factor, Melanine-Concentrating Hormone, MCD peptide, alpha-, beta-, gamma-, and delta-melanocyte stimulating hormones and related peptides, melittine, mesotocine, Met-beta-Ala, Met-Asn-Tyr-Leu-Ala-Phe-Pro-Arg-Met amide, methionine encephaline and related peptides, Met-Ala, Met-Ala-Ser, Met-Asn, methionine-encephaline (Met-encephaline, Tyr-Gly-Gly-Phe-Met) and related peptides, methionineencephaline amide (Met-Encephaline amide, Tyr-Gly-Gly-Phe-Met-NH,) and related peptides, Met-Gln-Trp-Asn-Ser-Thr-Thr-Phe-His-Gln-Thr-Leu-Gln-Asp-Pro-Arg-Val-Arg-Gly-Leu-Tyr-Phe-Pro-Ala-Gly-Gly, Met-Glu, Met-Gly, Met-Leu, Met-Leu-Phe, Met-Lys, Met-Met, Metorphamide, Met-Phe, Met-Pro, Met-Ser, Met-Tyr-Phe amide, Met-Val, N-Methoxycarbonyl-Nle-Gly-Arg, P-nitroaniline, methoxysuccinyl-Ala-Ala-Pro-Val, methoxysuccinyl-Ala-Ala-Pro-Val 7-amido-4-methylcoumarin, Met-somatotropine, molluscan cardioexcitatory peptide, morphiceptine, (Val3)-morphiceptine, motiline, MSH-release inhibiting factor, myeline basic protein or its fragments, naphthylamide-derivatives of various peptides, beta-naphthyl-Ala-Cys-Tyr-Trp-Lys-Val-Cys-Thr amide, alpha-neoendorphine, beta-necendorphine, alpha-neurokinin, neurokinin A, (substance K, neuromedin L) and B, neoendorphine (alpha: Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Tyr-Pro, beta, etc.) neuromedin B, C, K, U8, U-25 etc., neurokinin A and B, neuropeptides K and Y, neurophysin I and II, neurotensine and related peptides, nitroanilide peptide derivatives, Nle-Sta-Ala-Sta, NorLeu-Arg-Phe amide, opioid peptides (e.g. adrenal peptide E, Ala-Gly-Glu-Gly-Leu-Ser-Ser-Pro-Phe-Trp-Ser-Leu-Ala-Ala-Pro-Gln-Arg-Phe-amides, casein fragments, casomorphine, N-CBZ-Pro-D-Leu, dermorphine, kyotorphine, morphiceptine (Tyr-Pro-Phe-Pro-NH2), meorphamide (Tar-Gly-Gly-Phe-Met-Arg-Arg-Val, adrenorphine),

osteocalcin (esp. its fragment 7-19), oxytocine and related peptides, pancreastatine and its fragments, such as 33-49, pancreatic polypeptide, pancreozymin, parathyroid hormone or fragments thereof, especially 1-34 and 1-84, penta-Ala, penta-Gly, penta-Phe, pepstatin A, peptide YY, peptide T, phalloidin, Phe-Ala-Ala-p-nitro-Phe-Phe-Val-Leu 4-pyridylmethyl ester, Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe amide, Phe-Ala, Phe-Gly, Phe-Gly-Gly, Phe-Gly-Gly-Phe, Phe-Gly-Phe-Gly, Phe-Leu amide, Phe-Leu, Phe-Leu-Arg-Phe amide, Phe-Leu-Glu-Glu-Ile, Phe-Leu-Glu-Glu-Leu, Phe-Leu-Glu-Glu-Val, Phe-Met, Phe-Met-Arg-Phe amide, Phe-Phe, Phe-Phe-Phe-Phe-Phe-Phe-Phe-Phe-Phe-Phe, Phe-Pro, Phe-Ser-Trp-Gly-Ala-Glu-Gly-Gln-Arg, Phe-Tyr, Phe-Val, PHI-27, PHM-27, phosphoramidone, physalaemine (pGlu-Ala-Asp-Pro-Asn-Lys-Phe-Tyr-Gly-Leu-Met-NH2), preproencephaline fragment 128-140, pressinoic acid and related peptides, Pro-Asn, proctoline (Arg-Tyr-Leu-Pro-Thr), proencephaline, Pro-His-Pro-Phe-His-Phe-Phe-Val-Tyr-Lys, Pro-Ala, Pro-Arg 4-methoxy-betanaphthylamide, Pro-Asp, proglumide, Pro-Gly, Pro-Gly-Gly, Pro-hydroxy-Pro, Pro-Ile, Pro-Leu, Pro-Leu-Gly amide, Pro-Met, Pro-Phe amide, Pro-Phe, Pro-Phe-Arg 7-amido-4methylcoumarin, Pro-Phe-Gly-Lys, Pro-Trp, Pro-Tyr, Pro-Val, cyclic AMP dependent protein kinase and its inhibitors, PyroGlu-Ala-Glu, PyroGlu-Ala, PyroGlu-Ala-Glu, PyroGlu-Asn-Gly, PyroGlu-Gly-Arg p-nitroanilide, PyroGlu-His-Gly amide, PyroGlu-His-Gly, PyroGlu-His-Pro amide, PyroGlu-His-Pro, PyroGlu-Lys-Trp-Ala-Pro, ranatensine, renine substrate tetradecapeptide, N-(alpharhamnopyranosyloxy-hydroxyphosphinyl) Leu-Trp, sarcosyl-Pro-Arg p-nitroanilide, sauvagine, sleep-inducing peptide (Trp-Ala-Gly-Gly-Asp-Ala-Ser-Gly-Glu), secretine and related peptides, Ser-Ile-Gly-Ser-Leu-Ala-Lys, Ser-Ser-Ser, serum thymic factor, Ser-Ala, Ser-beta-Ala, Ser-Asn, Ser-Asp, Ser-Asp-Gly-Arg-Gly, Ser-Glu, Ser-Gln, Ser-Gly,

Ser-His, Ser-Leu, Ser-Met, Ser-Phe, Ser-Ser-Ser, Ser-Tyr, sleep inducing peptide, somastotine and related peptides (e.g. cyclo(p-Trp-Lys-Trh-Phe-Pro-Phe), steroido-genesis activator polypeptide, substance P (Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2) and related peptides, Nsuccinyl-derivatives of various peptides, syndyphalin-20 (Tyr-D-Met(0)-Gly-Phe-ol), tentoxin, tetra-Ala, tetra-Gly, thiostrepton, DL-thiorphane (encephalinase inhibitor), Thr-beta-Ala, Thr-Asp, Thr-Leu, Thr-Lys-Pro-Arg, Thr-Ser, Thr-Ser-Lys, Thr-Tyr-Ser, Thr-Val-Leu, thymopoietin fragments, thymosin alphal and its fragments, thymus circulating factor, thyrocalicitonin, thyrotropin releasing hormone, tocinoic acid, tosylated peptides, transforming growth factors, Tri-Ala, Tri-Ala methyl ester, Trp-Ala, Trp-Ala-Trp-Phe amide, Trp-Glu, Trp-Gly, Trp-Gly-Gly, Trp-His-Trp-Leu-Gln-Leu, Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr, Trp-His-Trp-Leu-Ser-Phe-Ser-Lys-Gly-Glu-Pro-Met-Tyr, Trp-Leu, Trp-Met-Asp-Phe amide, Trp-norLeu-Arg-Phe amide, Trp-Phe, Trp-Trp, Trp-Tyr, Tuftsin (Thr-Lys-Pro-Arg) and its fragments, Tyr-Ala, Tyr-Ala-Gly, Tyr-Ala-Gly-Ala-Val-Val-Asn-Asp-Leu, Tyr-Ala-Gly-N-methyl-Phe 2-hydroxyethylamide, Tyr-Ala-Phe-Met amide, Tyr-Arg, Tyr-atriopeptin II, Tyr-Glu, Tyr-Gly, Tyr-Gly-Ala-Val-Val-Asn-Asp-Leu, Tyr-Gly-Gly, Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Arg, Tyr-Gly-Gly-Phe-Met-Arg-Arg-Val amide, Tyr-Gly-Trp-Phe-Phe amide, Tyr-Leu, Tyr-Phe, Tyr-Phe-Met-Arg-Phe amide, Tyr-Phe-Phe amide, Tyr-Pro-Leu-Gly amide, Tyr-Pro-Phe-Pro amide, Tyr-Pro-Val-Pro amide, Tyr-Thr-Gly-Leu-Phe-Thr, Tyr-Tyr-Phe amide, Tyr-Trp-Ala-Trp-Phe amide, Tyr-Trp-Ala-Trp-Phe methylamide, Tyr-Tyr-Leu, Tyr-Tyr-Phe, Tyr-Tyr-Tyr, Tyr-Tyr-Tyr methyl ester, Tyr-Tyr-Tyr-Tyr-Tyr, Tyr-Val amide, Tyr-Val, Tyr-Val-Gly, Urodilatin, Urotensin II, Valosin, Val-Ala, Val-Ala p-nitroanilide, Val-Ala-Ala-Phe, Val-Asp, Val-Glu, Val-Gln, Val-Glu-Glu-Ala-Glu, Val-Glu-Ser-Ser-Lys,

Val-Gly, Val-Gly-Asp-Gln, Val-Gly-Gly, Val-Gly-Ser-Glu, Val-Gly-Val-Ala-Pro-Gly, Val-His-Leu-Thr-Pro, Val-His-Leu-Thr-Pro-Val-Glu-Lys, Val-Leu, Val-Lys, Val-Met, Val-Phe, Val-Pro, Val-Pro-Asp-Pro-Arg, Val-Pro-Leu, Val-Ser, Val-Thr, Val-Trp, Val-Tyr, Val-Tyr-Val, Val-Val, vasoactive intestinal peptides and related peptides, vasopressin related peptides, vasotocin and related peptides, xenopsin, etc.

Extended polypeptides are normally called proteins, independent of their detailed conformation. In this description, this term denotes, by and large, an enzyme or a coenzyme, an adhesion— or a recognition molecule, such as a CAMP or an OMP or a lectin, a histocompatibility complex, such as MHC-I or MHC-II, or an immunoglobuline (antibody) — or any (bio)chemical or (molecular)genetic modification thereof. Particularly useful for the applications according to this invention are the (bio)chemical modifications in which individual proteins are substituted with apolar residues, such as an alkyl, acyl, alkenoyl, etc. chains; but this is not a stringent limitation.

An enzyme is a catalytically active protein. Enzymes are normally grouped according to their basic functions. The most important enzymes for this invention are (E.C. numbers are given in brackets):

Oxidoreductases, such as: alcohol dehydrogenase (1.1.1.1), alcohol dehydrogenase (NADP dependent) (1.1.1.2), glycerol dehydrogenase (1.1.1.6), glycerophosphate dehydrogenase (1.1.1.8), xylulose reductase (1.1.1.10), polyol dehydrogenase (1.1.1.14), sorbitol dehydrogenase (1.1.1.14), myo-inositol dehydrogenase (1.1.1.18), uridine 5'-diphosphoglucose dehydrogenase

(1.1.1.22), glyoxalate reductase (1.1.1.26), lactate dehydrogenase (1.1.1.27), lactate dehydrogenase (1.1.1.28), glycerate dehydrogenase (1.1.1.29), betahydroxybutyrate dehydrogenase (1.1.1.30), betahydroxyacyl CoA dehydrogenase (1.1.1.35), malate dehydrogenase (1.1.1.37), malate enzyme (1.1.1.40), isocitric dehydrogenase (1.1.1.42), 6-phosphogluconate dehydrogenase (1.1.1.44), glucose dehydrogenase (1.1.1.47), beta-galactose dehydrogenase (1.1.1.48), glucose-6-phosphate dehydrogenase (1.1.1.49), 3alphahydroxysteroid dehydrogenase (1.1.1.50), 3betahydroxysteroid dehydrogenase (1.1.1.51), 3alpha, 2betahydroxysteroid dehydrogenase (1.1.1.53), 3-phosphoglycerate dehydrogenase (1.1.1.95), fucose dehydrogenase (1.1.1.122), lactate dehydrogenase (cytochrome) (1.1.2.3), glucose oxidase (1.1.3.4), cholesterol oxidase (1.1.3.6), galactose oxidase (1.1.3.9), alcohol oxidase (1.1.3.13), glycolate oxidase (1.1.3.15), choline oxidase (1.1.3.17), glycerol-3-phosphate oxidase (1.1.3.21), xanthine oxidase (1.1.3.22), alcohol dehydrogenase (1.1.99.8), fructose dehydrogenase (1.1.99.11), formaldehyde dehydrogenase (1.2.1.1), formate dehydrogenase (1.2.1.2), aldehyde dehydrogenase (1.2.1.5), glyceraldehyde-3-phosphate dehydrogenase (1.2.1.12), gabase (1.2.1.16), pyruvate oxidase (1.2.3.3), oxalate oxidase (1.2.3.4), dihydroorotate dehydrogenase (1.3.3.1), lipoxidase (1.3.11.12), alanine dehydrogenase (1.4.1.1), glutamic dehydrogenase (1.4.1.3), glutamate dehydrogenase (NADP) (1.4.1.4), Lamino acid oxidase (1.4.3.2), D-amino acid oxidase (1.4.3.3), monoaminoxidase (1.4.3.4), diaminoxidase (1.4.3.6), dihydrofolate reductase (1.5.1.3), 5,10methylenetetrahydrofolat dehydrogenase (1.5.1.5), saccharopine dehydrogenase NAD+ (1.5.1.7), octopine dehydrogenase (1.5.1.11), sarcosine oxidase (1.5.3.1),

sarcosine dehydrogenase (1.5.99.1), glutathione reductase (1.6.4.2), ferridoxin-NADP+ reductase (1.6.7.1), NADPH-FMN oxidoreductase (1.6.99.1), cytochrome c reductase (1.6.99.3), NADH-fmn oxidoreductase (1.6.99.3), dihydropteridin reductase (1.6.99.7), uricase (1.7.3.3), diaphorase (1.8.1.4), lipoamide dehydrogenase (1.8.1.4), cytochrome oxidase (1.9.3.1), nitrate reductase (1.9.6.1), phenolase (1.10.3.1), ceruloplasmine (1.10.3.2), ascorbate oxidase (1.10.3.3), NADH peroxidase (1.11.1.1), catalase (1.11.1.6), lactoperoxidase (1.11.1.7), myeloperoxidase (1.11.1.7), peroxidase (1.11.1.7), glutathione peroxidase (1.11.1.9), chloroperoxidase (1.11.1.10), lipoxidase (1.13.1.12), protocatechuate 3,4-dioxygenase (1.13.11.3), luciferase (glow-worm) (1.13.12.7), salicylate hydroxylase (1.14.13.7), p-hydroxybenzoate hydroxylase (1.14.13.2), luciferase (bacterial) (1.14.14.3), phenylalanine hydroxylase (1.14.16.1), dopamine-betahydroxylase (1.14.17.1), tyrosinase (1.14.18.1), superoxide dismutase (1.15.1.1), ferredoxine-NADP reductase (1.18.1.2), etc.. Transferases, such as: catecholic o-methyltransferase (2.1.1.6), phenylethanolamine N-methyl-transferase (2.1.1.28), aspartate transcarbamylase (2.1.3.2), ornithine carbamyltransferase (2.1.3.3), transketolase (2.2.1.1), transaldolase (2.2.1.2), choline acetyltransferase (2.3.1.6), carnitine acetyltransferase (2.3.1.7), phosphotransacetylase (2.3.1.8), chloroamphenicol acetyltranferase (2.3.1.28), kanamycine 6'-acetyltransferase (2.3.1.55), gentamicine acetyltransferase (2.3.1.60), transglutaminase (2.3.2.13), gamma-glutamyl transpeptidase (2.3.2.2), phosphorylase A (2.4.1.1), phosphorylase B (2.4.1.1), dextransucrase (2.4.1.5), sucrose phosphornase (2.4.1.7), glycogen synthase (2.4.1.11), uridine 6'-diphosphoglucuronyltransferase (2.4.1.17), galactosyl trans-

ferase (2.4.1.22), nucleoside phosphorylase (2.4.2.1), orotidine-5'-monophosphate pyrophosphorylase (2.4.2.10), glutathione s-transferase (2.5.1.18), glutamine-oxalate transaminase (2.6.1.1), glutamic-pyruvate transaminase (2.6.1.2), gabase (2.6.1.19), hexokinase (2.7.1.1), galactokinase (2.7.1.6), fructose-9-phosphate kinase (2.7.1.11), gluconate kinase (2.7.1.12), phosphoribulokinase (2.7.1.19), NAD kinase (nicotinamide adenine dinucleotide kinase) (2.7.1.23), glycerokinase (2.7.1.30), choline kinase (2.7.1.32), protein kinase (3':5'-cyclic-AMP dependent) (2.7.1.37), phosphorylase kinase (2.7.1.38), pyruvate kinase (2.7.1.40), fructose-9-phosphate kinase (pyrophosphate dependent) (2.7.1.50), acetate kinase (2.7.2.1), carbamate kinase (2.7.2.2), 3-phosphoglyceric phosphokinase (2.7.2.3), creatine phosphokinase (2.7.3.2), etc.

Transpeptidases, such as: esterase (3.1.1.1), lipase (3.1.1.3), phospholipase A (3.1.1.4), acetylesterase (3.1.1.6), cholinesterase, acetyl (3.1.1.7), cholineesterase, butyryl (3.1.1.8), pectinesterase (3.1.1.11), cholesterol esterase (3.1.1.13), glyoxalase ii (3.1.2.6), phosphatase, alkaline (3.1.3.1), phosphatase acid (3.1.3.2), 5'-nucleotidase (3.1.3.5), 3'-nucleotidase (3.1.3.6), glucose-6-phosphatase (3.1.3.9), fructose-1,6diphosphatase (3.1.3.11), phytase (3.1.3.26), phosphodiesterase i (3.1.4.1), glycerophosphorylcholine (3.1.4.2), phospholipase C (3.1.4.3), phospholipase D (3.1.4.4), deoxyribonuclease I (3.1.4.5), deoxyribonuclease II (3.1.4.6), ribonuclease N1 (3.1.4.8), sphingomyelinase (3.1.4.12), phosphodiesterase 3':5'-cyclic (3.1.4.17), phosphodiesterase II (3.1.4.18), endonuclease (3.1.4.21), ribonuclease A (3.1.4.22), ribonuclease B (3.1.4.22), 3'phosphodiesterase 2':3'-cyclic nucleotide (3.1.4.37), sulfatase (3.1.6.1), chondro-4-sulfatase (3.1.6.9),

chondro-6-sulfatase (3.1.6.10), ribonuclease T2 (3.1.27.1), ribonuclease T1 (3.1.27.3), ribonuclease u2 (3.1.27.4), nuclease (3.1.30.1), nuclease, (from micrococces) (3.1.31.1), alpha-amylase (3.2.1.1), betaamylase (3.2.1.2), amyloglucosidase (3.2.1.3), cellulase (3.2.1.4), laminarinase (3.2.1.6), dextranase (3.2.1.11), chitinase (3.2.1.14), pectinase (3.2.1.15), lysozyme (3.2.1.17), neuraminidase (3.2.1.18), alpha-glucosidase, maltase (3.2.1.20), beta-glucosidase (3.2.1.21), alphagalactosidase (3.2.1.22), beta-galactosidase (3.2.1.23), alpha-mannosidase (3.2.1.24), beta-mannosidase (3.2.1.25), invertase (3.2.1.26), trehalase (3.2.1.28), beta-N-acetylglucosaminidase (3.2.1.30), beta-glucuronidase (3.2.1.31), hyaluronidase (3.2.1.35), betaxylosidase (3.2.1.37), hesperidinase (3.2.1.40), pullulanase (3.2.1.41), alpha-fucosidase (3.2.1.51), mycodextranase (3.2.1.61), agarase (3.2.1.81), endoglycosidase F (3.2.1.96), endo-alpha-N-acetylgalactosaminidase (3.2.1.97), NADase (nicotinamide adenine glycopeptidase) F (3.2.2.5), dinucleotidase (3.2.2.18), thiogluc (3.2.3.1), s-adenosylhomocystein-hydrolase (3.3.1.1), leucin-aminopeptidase, (from cytosol) (3.4.11.1), leucinaminopeptidase, microsomale (3.4.11.2), pyroglutamateaminopeptidase (3.4.11.8), carboxypeptidase a (3.4.12.2), carboxypeptidase B (3.4.12.3), prolidase (3.4.13.9), cathepsin C (3.4.14.1), carboxypeptidase W (3.4.16.1), carboxypeptidase A (3.4.17.1), carboxypeptidase B (3.4.17.2), alpha-chymotrypsin (3.4.21.1), betachymotrypsin (3.4.21.1), gamma-chymotrypsin (3.4.21.1), delta-chymotrypsin (3.4.21.1), trypsin (3.4.21.4), thrombin (3.4.21.5), plasmin (3.4.21.7), kallikrein (3.4.21.8), enterokinase (3.4.21.9), elastase from pancreas (3.4.21.11), protease (subtilisin) (3.4.21.14), urokinase (3.4.21.31), elastase from leucocytes (3.4.21.37), cathepsin B, (3.4.22.1), papain (3.4.22.2),

ficin (3.4.22.3), bromo-elain (3.4.22.4), chymopapain (3.4.22.6), clostripain (3.4.22.8), proteinase A (3.4.22.9), pepsine (3.4.23.1), renine (3.4.23.4), cathepsin D (3.4.23.5), protease (aspergillopeptidase) (3.4.23.6), collagenase (3.4.24.3), collagenase (3.4.24.8), pinguinain (3.4.99.18), renine (3.4.99.19), urokinase (3.4.99.26), asparaginase (3.5.1.1), glutaminase (3.5.1.2), urease (3.5.1.5), acylase i (3.5.1.14), cholylglycine hydrolase (3.5.1.24), urease(ATP-hydrolyzing) (3.5.1.45), penicillinase (3.5.2.6), cephalosporinase (3.5.2.8), creatininase (3.5.2.10), arginase (3.5.3.1), creatinase (3.5.3.3), guanase (3.5.4.3), adenosine-deaminase (3.5.4.4), 5'adenylate acid-deaminase (3.5.4.6), creatinine deiminase (3.5.4.21), anorganic pyrophosphatase (3.6.1.1), adenosine 5'-triphosphatase (3.6.1.3), apyrase (3.6.1.5), pyrophosphatase, nucleotide (3.6.1.9), etc.

Lyases, such as: pyruvate-decarboxylase (4.1.1.1), oxalate decarboxylase (4.1.1.2), oxalacetate decarboxylase (4.1.1.3), glutamic decarboxylase (4.1.1.15), ornithine decarboxylase (4.1.1.17), lysine decarboxylase (4.1.1.18), arginin decarboxylase (4.1.1.19), histidine decarboxylase (4.1.1.22), orotidine 5'-monophosphate decarboxylase (4.1.1.23), tyrosine decarboxylase (4.1.1.25), phospho(enol) pyruvate carboxylase (4.1.1.31), ribulose-1,5-diphosphate carboxylase (4.1.1.39), phenylalanine decarboxylase (4.1.1.53), hydroxymandelonitrilelyase (4.1.2.11), aldolase (4.1.2.13), N-acetylneuramine acid aldolase (4.1.3.3), etc. citrate lyase (4.1.3.6), citrate synthase (4.1.3.7), tryptophanase (4.1.99.1), isozymes of carbonic anhydrase (4.2.1.1), fumarase (4.2.1.2), aconitase (4.2.1.3), enolase (4.2.1.11), crotonase (4.2.1.17), delta-aminolevulinate dehydratase (4.2.1.24), chondroitinase ABC

(4.2.2.4), chondroitinase AC (4.2.2.5), pectolyase (4.2.2.10), aspartase (4.3.1.1), histidase (4.3.1.3), phenylalanine ammonia-lyase (4.3.1.5), argininosuccinate lyase (4.3.2.1), adenylosuccinate lyase (4.3.2.2), glyoxalase II (4.4.1.5), isomerases, such as: ribulose-5'-phosphate 3-epimerase (5.1.3.1), uridine 5'-diphosphogalactose 4-epimerase (5.1.3.2), mutarotase (5.1.3.3), triosephosphate isomerase (5.3.1.1), phosphoriboisomerase (5.3.1.6), phosphomannose isomerase (5.3.1.8), phosphoglucose isomerase (5.3.1.9), tautomerase (5.3.2.1), phosphoglucomutase (5.4.2.2), ligases, e.g.: aminoacyl-tRNA synthetase (6.1.1), s-acetyl coenzyme A synthetase (6.2.1.1), succinic thiokinase (6.2.1.4), glutamine synthetase (6.3.1.2), pyruvate carboxylase (6.4.1.1), etc.

The following are, amongst others, referred to as proteases: aminopeptidase M, amino acid-arylamidase, bromo-elaine, carboxypeptidase A, carboxypeptidase B, carboxypeptidase P, carboxypeptidase Y, cathepsine C, chymotrypsine, collagenases, collagenase/dispase, dispase, elastase, endoproteinase Arg-c, endoproteinase Asp-n sequencing grade, encloproteinase Glu-c (proteinase V8), endoproteinase Glu-c sequencing grade, endoproteinase Lys-c, endoproteinase Lys-c sequencing grade, endoproteinases, factor Xa, ficine, kallikrein, leucine-aminopeptidase, papaine, pepsine, plasmin, pronase, proteinase K, proteinase V8 (endoproteinase Glu-c), pyroglutamate-aminopeptidase, pyroglutamate-aminopeptidase, restriction protease factor Xa, subtilisine, thermolysine, thrombine, trypsine, etc.

A coenzyme according to this invention is any substance which supports enzyme activity. Amongst the biologically important coenzymes are, for example, acetyl-coenzyme A,

acetylpyridine-adenine-dinucleotide, coenzyme A, flavine-adenine-dinucleotide, flavine-mononucleotide, NAD, NADH, NADP, NADPh, nicotinamide-mononucleotide, s-palmitoyl-coenzyme A, pyridoxal-5'-phosphoric acid, etc.

Another class of proteins, which are important in the context of this invention, are lectins. Plants, and sometimes also animal, tissues are suitable sources of lectins; particularly convenient sources are Abrus pregatorius, Agarigus bisporus, Agrostemma githago, Anguilla anguilla, Arachis hypogaea, Artogarpus integrifolia, Bandeiraea simplicifolia BS-I und BS-II, (Griffonia simplicifolia), Banhlula purpurea, Caragana arborescens, Cicer arietinum, Canavalia ensiformis (jack bean), Caragana arborescens (Siberian pea tree), Codium fragile (green algae), Concanavalin A (Con A), Cytisus scoparius, Datura stramonium, Dolichos biflorus, Erythrina corallodendron, Euonymus europaeus, Gelonium multiflorum, Glycine max (soy), Griffonia simplicifolia, Helix aspersa (garden snail), Helix pomatia (escargot), Laburnum alpinum, Lathyrus odoratus, Lens culinaris (lentil), Limulus polyphemus, Lycopersicon esculentum (tomato), Lotus tetragonolobus, Luffa aegyptiaca, Maclura pomifera (Osaga orange), Momordica charantia (bitter pear melon), Naja mocambique (Mozambiquan cobra), Naja Naja kaouthia, Mycoplasma gallisepticum, Perseau americana (avocado), Phaseolus coccineus (beans), Phaseolus limensis, Phaseolus lunatus, Phaseolus vulgaris, Phytolacga americana, Pseudomonas aeruginosa PA-I, Pisum sativum (pea), Ptilota plumosa (red algae), Psophocarpus tetragonolobus (winged bean), Ricinus communis (castor bean), Robinia pseudoacacia (false acacia, black locust), Sambucus nigra (clematis), Saponaria officinalis, Solanum tuberosum (potato), Sophora japonica, Tetragonolobus purpureas (winged or asparagus pea), (Lotus tetragonolobus), Tritigum vulgaris (wheat germ), Ulex europaeus, Vicia faba, Vicia sativa, Vicia villosa, Vigna radiata, Viscum album (mistle), Wisteria floribunda, etc.

Further interesting proteins are, e.g. the activator of tissue-plasminogen, insulin, kallikrein, keratin, kininogene, lactoterrin, laminarin, laminin, alpha2macroglobuline, alphal-microglobuline, F2-microglobuline, high density lipoproteins, basic myeline-protein, myoglobine, neurofilaments I, II, and III, neurotensine, oxytocine, pancreatic oncofoetal antigen, parvalbumin, plasminogen, platelet factor 4, pokeweed antiviral protein, porphobilinogen, prealbumin, prostate specific antigens, protamine sulfate, protein C, protein C activator, protein S, prothrombin, retinol binding protein, S-100 protein, pregnancy protein-1, serum amyloid A, serum amyloid P component, tenascine, testosterone-estradiol binding globuline, thioredoxine, thrombine, thrombocytine, beta-thromboglobuline, thromboplastine, microsomal antigen from thyroidea, thyroidea stimulating hormone, thyroxine binding globuline, transcortine, transferrine, ubiquitine, vimentine, vinculine, vitronectine, etc.

Some typical examples of human and animal hormones which can be used as agents according to the invention are, for example, acetylcholine, adrenaline, adrenocorticotropic hormone, angiotensine, antidiuretic hormone, cholecystokinine, chorionic gonadotropine, corticotropine A, danazol, diethylstilbestrol, diethylstilbestrol glucuronide, 13,14-dihydro-15-keto-prostaglandins, 1-(3',4'-dihydroxyphenyl)-2-aminoethanol, 5,6-dihydroxytryptamine, epinephrine, follicle stimulating hormone, gastrin, gonadotropin, ß-hypophamine, insulin, juvenile hormone, 6-ketoprostaglandins, 15-ketoprostaglandins,

LTH, luteinizing hormone releasing hormone, luteotropic hormone, α-melanocyte stimulating hormone, gamma-melanocyte stimulating hormone, 5-melanocyte stimulating hormone, noradrenaline, norepinephrine, oxytocine, parathyroid hormone, parathyroid substances, prolactine, prostaglandins, secretine, somatostatine, somatotropine (STH), thymosine alpha 1, thyrocalcitonine, thyroglobuline, thyroid stimulating hormone, thyrotropic hormone, thyrotropine releasing hormone, 3,3',5-triiodothyroacetic acid, 3,3',5'-triiodothyronine, TSH, vasopressine, etc.

Oestrogens are mostly steroid hormones with 18 carbon atoms and one unsaturated (aromatic) ring. Amongst the most important oestrogens are, for example, chlorotrianisene, diencestrole, diethylstilboestrole, diethylstilboestrole, diethylstilboestroldisulfate, dimestrole, estradiole, estradiolbenzoate, estradiolundecylate, estriolsuccinate, estrone, ethinglestradiole, nexoestrole, nestranole, oestradiolvalerate, oestriole and quinestrole.

Gestagenes are typically synthetic hormones, mainly with progesterone-like characteristics; the most important agents belonging to this class are allylestrenole, chloromadinonacetate, dimethisterone, ethisterone, hydroxyprogesteron-caproate, lynestrenole, medrogestone, medroxyprogesteron-acetate, megestrolacetate, methyloestrenolone, norethisterone, norethisterone-acetate, and norgestrel.

Agents can also be parts of a biological extract. As sources of biologically and/or pharmacologically active extracts, the following are worth-mentioning: for example, Acetobacter pasteurianum, Acokanthera ouabaio

## 20695754

cathel, Aesculus hippocastanum, Ammi visnaga Lam., Ampi Huasca, Apocynum Cannabium, Arthrobotrys superba var. oligospora (ATCC 11572), Atropa belladonna, Bacillus Lentus, Bacillus polymyxa, Bacillus sphaericus, Castilloa elastica cerv., Chondrodendron tomentosum (Ampi Huasca), Convallaria majalis, Coronilla-enzymes, Corynebacterium hoagii (ATCC 7005), Corynebacterium simplex, Curvularia lunata (Wakker) Boadijn, Cylindrocarpon radicola (ATCC 11011), Cynara scolymus, Datura Metel, didymella, digilanidase, digitalis Lanata, digitalis purpurea, Duboisia, Flavobacterium dehydrogenans, Fusarium exquiseti saccardo, Hyoscyamus niger, Jaborandi-leaves (P. microphyilus Stapf), Micromonosporapurpurea u. echinospora, Paecilomyces varioti Bainier var. antibioticus, Penicillium chrysogenum Thom, Penicillium notatum Westling, Penicillium patulum, Rauwolfia serpentina Benth., Rhizopus arrhizus Fischer (ATCC-11145), Saccharomyces cerevisiae, Schizomycetes ATCC-7063, Scilla maritima L., Scillarenase, Septomyxa affinis (ATCC 6737), Silybum marianum Gaertn., Streptomyces ambofaciens, Strophantusgratus, Strophantus Kombe, Thevetia peruviana, Vinca minor L., Vinca rosea, etc.

Unless stated otherwise, all substances, surfactants, lipids, agents or additives with one or several chiral carbon atoms can be used either as a racemic mixture or in the form of optically pure enantiomers.

## WORKING PRINCIPLE

The transport of agents through permeation barriers can be mediated by such carriers which fulfill the following basic criteria:

- carriers should experience or create a gradient which drives them into or through a barrier, e.g. from the body surface into or through the skin, or from the surface of a leaf into the depth of a leaf, or from one side of a barrier to the other;
- the resistance to permeation which is felt by the carriers in the barrier should be as small as possible in comparison to the driving force;
- carriers should be capable of permeating in and/or through a barrier without thereby losing their associated agents in an uncontrollable manner.

Carriers, moreover, should preferably provide control of the distribution of agents, as well as over the effectiveness and temporal development of the agents action. They should be capable of bringing materials into the depth of and across a barrier, if so desired, and/or should be capable of catalyzing such a transport. Last but not least, such carriers should affect the range and depth of action as well as the type of cells, tissue parts, organs and or system parts which can be reached or treated, under suitable conditions at least.

In the first respect, chemical gradients are especially convenient for biological applications. Particularly suitable are the physico-chemical gradients, such as the pressure of (de)hydration pressure (humidity gradient) or a difference in concentration between the sites of application and action; however, electrical or magnetic fields as well as thermal gradients are also interesting in this respect. In technological applications, an externally applied pressure or existing hydrostatic pressure difference are also of importance.

In order to fulfill the second condition, carriers must be sufficiently 'fluid' at the microscopic scale; this enables them to easily cross the constrictions in the permeability barrier.

Permeation resistance is a decreasing function of the decreasing carrier size. But also the carrier driving force frequently depends on the size of the permeating particle, droplet or vesicle; when the driving pressure is size-independent, the corresponding force also typically decreases with decreasing carrier size. This causes the transfer effectiveness to be a complex function of the carrier size, often showing a maximum depending on the chosen carrier and/or agent composition.

In the case of molecular aggregates the permeation resistance is largely determined by the mechanical elasticity and deformability of the carrier, the viscosity of the total preparation being also important, however. The former must be sufficiently high, the latter low enough.

Size and, even better, deformability can serve as a criterion for the optimization of the supramolecular carriers according to this invention. As an indication of deformability, the capacity of individual carriers to form protrusions can be studied, as a function of all relevant system parameters. (In practical terms, it is often sufficient to investigate only such variables which come into question for a controllable application. The examples given in this application, therefore, only pertain to varying the concentrations of the edge active components and the absolute carrier concentration which affect the forced diminishment of the lipid vesicle or of vesicle permeation.) This is true e.g. for transcutaneous and transcuticular transport as well as for the transport of agents through the lung alveoly, into the hair, into gels, and

the like.

With regard to the third requirement, the choice of the carriers, agents and additives, as well as the applied carrier dose or concentration all play some role. Low dose, in the majority of cases, gives rise to a predominantly surface treatment: poorly water-soluble substances in such case remain confined largely to the apolar region of a permeability barrier (such as in the epidermal membranes); agents which are highly soluble and can diffuse easily from the carriers can attain a distribution which is different from that of the carrier particles; for such substances, the permeability of a transfersomal membrane is also important. Edge active substances with a tendency to leave carriers and move into a barrier give rise to a locally variable carrier composition, These interdependencies should be thought of and considered prior to each individual application. In the search for a set of conditions under which a simple carrier vesicle becomes a transfersome, the following rules of thumb can be used:

- At first, the conditions are determined under which the carrier vesicles are solubilized by the edge active substances. At this critical point the 'vesicles' are maximally deformable owing to the fact that they are permanently formed and deformed. At the same time, however, they are also unstable and incapable of holding and transferring water soluble substances.
- Next, the carrier composition or concentration is adapted by reducing the edge activity in the system to an extent which ensures the vesicle stability as well vesicle deformability to be sufficiently high; this also ensures the permeation capacity of such carriers to be satisfactory. The term stability in this application implies,

on the one hand, a mechanical tendency of the carrier components to "stay together"; on the other hand, that the carrier composition during the transport, and in particular during the permeation process, does not change at all or not much. The position of the corresponding optimum which one is looking for hereby depends on many boundary conditions. The type of agent molecules also plays an important role in this. The smaller and the more hydrophilic the agent to be transported, the further the carrier system must be spaced from the solubilization point; the desired shelf life of carriers is also important: upon approaching the solubilization point, the tendency of transfersomes to form larger particles may increase and the carrier's storage capacity simultaneously decrease.

with respect to the envisaged modes and goals of a given application. Rapid action requires a high permeation capability; in order to achieve slow drug release, it is advantageous to ensure gradual penetration through the permeability-barrier and a correspondingly 'finely adjusted' membrane permeability; in order to reach deep regions, high doses are needed; in order to obtain a broad distribution, it is recommended to use carrier concentrations which are not too high.

This application describes some relevant properties of the transfersomes as carriers for the lipid vesicles. Most of the examples pertain to carriers made of phospholipids, but the general validity of conclusions is not restricted to this carrier or molecule class. The vesicle examples should only illustrate the requirements which should be fulfilled in order to attain penetration through permeability barriers, such as skin. Similar properties, moreover, ensure carrier transport

;

across animal or human epidermis, mucosa, plant cuticle, inorganic membranes, etc.

The fact that the cells in a horny skin layer continuously merge with the watery compartments of subcutis is probably one reason for the spontaneous permeation of transfersomes through the 'pores' in this layer: during the permeation process transfersomes are propelled by the osmotic pressure. As an alternative, external pressures, such as an electroosmotic or hydrostatic pressure, however, can also be applied in addition.

Depending on the vesicle dose used, the dermally applied carrier particles can penetrate as deep as the subcutaneous layer. Agents can then be locally released, enriched in (the depth of) the application site, or forwarded to other tissues and body systems through a system of blood and lymph vessels, the precise drug fate being dependent on the carrier size, composition and formulation.

It is sometimes convenient to adjust the pH-value of a formulation immediately after it has been prepared or directly prior to an application. Such an adjustment should prevent the deterioration of individual system components and/or drug carriers under the conditions of initial pH; simultaneously, a physiological compatibility should be achieved. For the neutralization of carrier suspensions, physiologically tolerable acids or bases are most frequently used as well as buffers with a pH-value between 3-12, preferably 5 to 9 and most often 6-8, depending on the goal and site of application. Physiologically acceptable acids are, for example, diluted aqueous solutions of mineral acids, such as hydrochloric acid, sulfuric acid, or phosphoric acid, or organic acids, such as carboxyalkane acids, e.g. acetic acid. Physiologically acceptable bases are, for example, diluted sodium hydroxide,

suitably ionized phosphoric acids, etc.

Formulation temperature is normally chosen to be well suited for the given substances; for aqueous preparations it is normally in the range of 0 to 95°C. Whenever possible, one should work in the temperature range 18-70°C; particularly preferred are temperatures between 15 and 55°C for the work with fluid chain lipids; the preferred temperature range for the lipids with ordered chains is from 45 to 60°C. Other temperature ranges are possible, however, most notably for the non-aqueous systems or preparations containing cryo- or heat-stabilizers.

If required by the sensitivity of one of the system components, transfersome formulations can be stored in cold (e.g. at 4°C). It is, moreover, possible to make and keep them under an inert atmosphere, e.g. under nitrogen. Shelf-life, furthermore, can be extended if no substances with multiple bonds are used, and if the formulation is (freeze) dried, or if a kit of dry starting materials is dissolved or suspended and processed at the site of application only.

In the majority of cases, carriers are applied at room temperature. But applications at lower or higher temperatures are also possible, especially when synthetic substances are used.

Transfersomal preparations can be processed previously or at the site of application, as has been described, for example, in our previous German patent application P 40 26 833.0-43, and exemplified in several cases in the handbook on 'Liposomes' (Gregoriadis, G., Edits. CRC Press, Boca Raton, Fl., Vols 1-3, 1987), in the monography 'Liposomes as drug carriers' (Gregoriadis, G., Edits. John Wiley & Sons, New York, 1988), or in the laboratory manual 'Liposomes. A Practical Approach' (New, R., Oxford-Press, 1989). If

required any suspension of drugs, moreover, can be diluted or concentrated (e.g. by per ultracentrifugation or ultrafiltration) immediately prior to a final application; additives can also be given into a preparation at this or a previous time. Upon any such manipulation, however, a possible shift of the permeation optimum for a given carrier preparation must be taken into account or prevented.

Transfersomes as described in this applications are well suited to be used as carriers of lipophilic substances, such as fat-soluble biological agents, therapeutics, poisons, etc. But it is quite likely that transfersomes used in combination with water soluble substances, especially when the molecular weight of the latter exceeds 1000 Dt, will be of even greater practical value.

Transfersomes, moreover, can contribute to the stabilization of substances which are sensitive to hydrolysis; they can improve carrier and drug distribution in the specimen and at the site of application and can also ensure a more favourable effect of the drug in time. Basic carrier ingredients can also bring advantages of their own. However, the most important carrier characteristics is the capability of transporting materials into and through a permeability barrier; this opens up a way for applications which prior to this discovery were not feasible.

The specific formulations as described in this invention have been optimized for the topical use on - or in the vicinity of - (a) permeability barrier(s). Particularly interesting barriers of this kind are skin and plant cuticle. (But formulations according to this invention are also well suited for the peroral (p.o) or parenteral (i.v. i.m. or i.p.) application, especially when edge active substances have been chosen in order to keep the drug loss at the site of

NU U I I U -

- 103 -

application low.) Edge active substances which have a diminished activity, are degraded preferentially, are absorbed particularly efficiently or are diluted strongly at the site of application are especially valuable in this last respect.

In dermatology, application doses of up to 50, often up to 10 and very frequently less than 2.5 (or even less than 1 mg) of carrier substance are used per cm<sup>2</sup> of skin surface, the given masses pertaining to the basic carrier substance. The optimal mass depends on the carrier composition, desired penetration depth and duration of action, as well as on the detailed application site. Application doses useful in agrotechnics are typically lower and frequently below 0.1g pro m<sup>2</sup>.

Depending on the goal of application, each formulation can also contain suitable solvents up to a total concentration which is determined by certain plausible physical (no solubilization or appreciable shift of penetration optimum), chemical (no lowering of stability), or biological and physiological (little adversary side effects) formulation requirements.

Quite suitable for this purpose are, for example, the unsubstituted or substituted, e.g. halogenated, aliphatic, cycloaliphatic, aromatic or aromatic-aliphatic hydrocarbons, such as benzol, toluol, methylene chloride or chloroform, alcohols, such as methanol or ethanol, propanediol, erithritol, short-chain alkane carboxylic acid esters, such as acetic acid acid alkylesters, such as diethylether, dioxan or tetrahydrofuran, or mixtures therof.

A survey of the lipids and phospholipids which can be used for the applications as described in this report in addition to the ones already mentioned is given, for example, in 'Form and

function of phospholipids' (Ansell & Hawthorne & Dawson, eds.), 'An Introduction to the Chemistry and Biochemistry of Fatty Acids and Their Glycerides' of Gunstone and in other reference books. All implicitly and explicitly mentioned lipids and surfactants as well as other suitable edge active substances and their preparation are well known. A survey of available surfactants, together with the trademarks under which they are marketed by their manufacturers, is given in the annals 'Mc Cutcheon's, Emulsifiers & Detergents', Manufacturing Confectioner Publishing Co. An up-to-date compilation of the pharmaceutically acceptable agents is given, for example, in 'Deutsches Arzneibuch' (and in the annually updated list 'Rote Liste'); furthermore, in the British Pharmaceutical Codex, European Pharmacopoeia, Farmacopoeia Ufficiale della Repubblica Italiana, Japanese Pharmacopoeia, Nederlandse Pharmacopoeia, Pharmacopoeia Helvetica, Pharmacopée Française, The United States Pharmacopoeia, The United States NF, etc. A concise list of suitable enzymes can be found in the volume on 'Enzymes', 3rd Edition (M. Dixon and E.C. Webb, Academic Press, San Diego, 1979); more recent developments are described in the series 'Methods in Enzymology'. Many examples of the glycohydratebinding proteins which could be interesting for the use in combination with carriers as described in this invention are quoted in 'The Lectins: Properties, Functions, and Applications in Biology and Medicine' (I.E. Liener, N. Sharon, I.T. Goldstein, Eds. Academic Press, Orlando, 1986) as well as in the corresponding special publications; substances which are particularly interesting for agrotechnical applications are described, for example, in 'The Pesticide Manual' (C.R. Worthing, S.B. Walker, Eds. British Crop Protection Council, Worcestershire, Englande, 1986, e.g. 8th edition) and in 'Wirkstoffe in Pflanzenschutz und Schädlingsbekämpfung', Which is published by Industrie-Verband Agrar (Frankfurt); most commonly available antibodies are listed in the catalogue

'Linscott's Directory', the most important neuropeptides in 'Brain Peptides' (D.T. Krieger, M.J. Brownstein, J.B. Martin, Eds. John Wiley, New York, 1983), corresponding supplementary volumes (e.g. 1987) and other special journals.

Methods for the preparation of liposomes, which in the majority of cases can also be used for manufacturing transfersomes, are described, for example, in 'Liposome Technology' (Gregoriadis, Ed., CRC Press) or older books dealing with similar topics, such as 'Liposomes in Immunobiology' (Tom & Six, Eds., Elsevier), 'Liposomes in Biological Systems' (Gregoriadis & Allison, Eds., Willey), 'Targeting of Drugs' (Gregoriadis & Senior & Trouet, Plenum), etc. Corresponding patent publications also are a valuable source of relevant information.

The following examples are aimed at illustrating this invention without restricting it. All temperatures are in degrees Celsius, carrier sizes in nanometers, pressures in Pascal and other units in standard SI system.

Ratios and percentages are given in moles, unless otherwise stated.

## Examples 1-13:

## Composition:

phosphatidylcholine from soy-bean (+95 % = PC)
187-34.9 mg oleic acid (+99 %)
0.312-0.465 ml ethanol, absolute
10 mM Hepes

## Preparation:

Increasing amounts of oleic acid were pipetted into different volumes of alcoholic PC-solutions containing 75 micromoles of lipid so as to create a concentration series with a lipid/surfactant ratio beginning with L/S=0.5 and increasing by 0.2 units in each step. Subsequently, each lipid sample was supplemented with 4.5 ml of sterile buffer solution and the mixtures were incubated at 4°C for one day. When the pH value had to be adjusted by addition of 1 M NaOH, the first incubation period was followed by another incubation for 24 hours. In order to obtain a final liposome suspension, each sample was thoroughly mixed and filtered through a polycarbonate filter (0.45 micrometer) into a glass vial which was then kept closed at 4°C.

#### Characterization:

Permeation resistance is assumed to be proportional to the relative pressure needed to perform a secondary filtration through a 0.2 micrometer filter. In this report this resistance is given in relative units of 1 to 10.

Vesicle size is measured by means of dynamic light scattering at 33 degrees C, using a Malvern Zeta-Sizer instrument. For the analysis of correlation curves, a special variant of the software package "Contin" is employed.

In this experimental series all vesicle sizes are relatively independent of the total concentration of edge active substances, in the range of 300 through 350 nm.

## Permeation:

Permeation resistance first increases with decreasing relative concentration of fatty acid in the transfersomes. This trend is not monotonous, however. At a lipid/surfactant-ratio of

approx. 2, the liposome permeation capacity starts to increase; but it then decreases again until, for L/S above 3, the transfersomes have nearly lost their capability for passing through narrow constrictions. Vesicles with a lipid/surfactant molar ratio of 1/2 are nearly perfectly permeable, however. (A suspension with 8 % lipid in such case can be filtered nearly as easily as pure water.). At this concentration ratio, which corresponds roughly to 30 % of the solubilization dose of fatty acids in an alkaline suspension, liposomes thus appear to correspond to optimal transfersomes.

Specific data points (0) are shown in figure 1. Vesicles diameters were always measured after permeation experiments.

#### Examples 14-20:

#### Composition:

349-358 mg phosphatidylcholine from soy-bean (+95 % = PC) 63.6-52.2 mg oleic acid (+99 %) 10 mM Hepes

## Preparation:

4.5 ml of buffer in each case are pipetted to a corresponding amount of lipids and fatty acids to create a concentration series with L/S = 1.92 through 2.4 in the steps of 0.08 units each; the pH value is set to 7.2-7.3 by 1 M NaOH. Lipid suspension after an incubation for 6 days at 4°C is treated by ultrasonication until vesicles with an average diameter of 0.8 micrometers are formed.

## Permeation and Characterization:

Permeation resistance is determined as described in examples

1-13. Its value, as a function of the concentration of edge active substance in the system resembles the results of measurements 1-13. The resulting vesicles are somewhat larger than in the previous set of experiments, however, having diameters in the order of 500 nm. This can be explained by the relatively slow material flow during filtration.

Corresponding measured points are shown as (+) in figure 1.

## Examples 21-31:

#### Composition:

phosphatidycholine from soy-bean (+95 %=PC)
96.8-34.9 mg oleic acid (+99 %)
0.403-0.465 ml ethanol, absolute
10 mM Hepes
130 mM NaCl, p.a.

## Preparation:

Preparation procedure used essentially corresponds to the one of examples 14-20. The main difference is that the electrolyte concentration in the present case was isotonic with blood.

## Permeation and Characterization:

The measured permeation resistance corresponds, within the limits of experimental error, to the results given in examples 1-13. Vesicle sizes are also similar in both cases. Immediately after the lipid vesicle have been formulated, their diameters are in the range of 320-340 nm. 8 days later, however, the vesicle size has increased to approx. 440 nm.

- 109 -

Corresponding experimental data is given in figure 2.

## Examples 32-39:

#### Composition:

| 184.5-199.8 mg | phosphatidylcholine from soy-bean (+95%=PC) |
|----------------|---------------------------------------------|
| 20.5-22.2 mg   | phosphatidylglycerol from egg PC (puriss.,  |
|                | Na-salt, =PG)                               |
| 44.9-26.1 μl   | oleic acid (+99 %)                          |
| 0.165-0.178 ml | ethanol, absolute                           |
| 4.5 ml         | Hepes, 10 mM                                |

## Preparation:

Anhydrous PG is mixed with an alcoholic solution of PC to give a clear solution with 90 % PC and 10 % PG. Oleic acid is added to this solution; the resulting lipid/surfactant ratios are between 1.6 and 2.8; an isomolar specimen is made in addition to this. All mixtures are suspended in 4.5 ml of a sterile buffer solution to yield a final lipid concentration of 4 % and then left for 3 days, after a pH-value adjustment with NaOH, in order to age.

## Permeation and Carrier Characteristics:

For determining the permeation resistance, the same procedure as in examples 1-13 is used. All measured values are, as a rule, smaller than in the case of carriers which contained no charged species but had a similar L/S-ratio. Based on our experiments with a 4 % suspension of PC and oleic acid we conclude that the relatively low total lipid concentration plays only a minor role in this respect.

As in previous examples, a resistance minimum is observed for

the 4 % PC/PG mixtures; this minimum, however, is found with L/S-ratios which are by some 20 % higher than those measured with 8 % lipid suspensions. Vesicle diameters, however, hardly differ from those measured in examples 1-13.

Precise permeation data is shown in figure 3. All quoted diameters were measured immediately after individual permeation experiments. But even 40 days later, they are hardly bigger than at the beginning; figure 4 illustrates this.

#### Examples 40-49:

#### Composition:

301.3-335.4 mg phosphatidylcholine from soy-bean (+95%=PC)
123.3-80.8 μl Tween 80 (puriss.)
0.38-0.42 ml ethanol, absolute
4.5 ml phosphate buffer, isotonic, sterile

## Preparation:

Increasing volumes of Tween 80 are pipetted into appropriate volumes of an alcoholic PC solution. This gives rise to a concentration series with 12.5 through 25 mol- $\frac{1}{2}$  surfactant (L/S = 4-8). In addition to this, samples with L/S=2 and 3 are also made. After the addition of buffer, lipid vesicles are formed spontaneously: prior to further use, these are made somewhat smaller, with the aid of a 0.8 micrometer filter.

## Permeation and Carrier Characteristics:

Permeation resistance is determined in the previously described manner. The corresponding values (0) are shown in the left part of figure 5. As in the case of transfersomes

which contain oleic acid, a region of anomalously high permeation capability (at L/S=6) can be seen relatively far away from the solubilization point. But it is not before below L/S=4 that a maximum permeability is observed. The transfersomal optimum thus is located in a range which differs by a factor of 1.5-2 from the solubilization point.

Precise permeation data is given in figure 5 (wide lines, left panel). The experimental data in right panel documents the vesicle diameters determined after permeability measurements.

#### Examples 50-61:

## Composition:

314.2-335.4 mg soy-bean phosphatidylcholine (+95 % = PC) 107.2-80.8  $\mu$ l Tween 80 (puriss.) 4.5 ml phosphate buffer, isotonic, sterile

## Preparation:

First Tween 80 and subsequently phosphate buffer are added to appropriate quantities of PC. The resulting mixture is agitated at room temperature for 4 days. The further procedure is as described in examples 40-49.

# Permeation and Carrier Characteristics:

Corresponding permeability data is given in figure 5 (thin lines). It confirms, by and large, the results of experiments nos. 40-49.

#### Examples 62-75:

## Composition:

193-361 mg phosphatidylcholine from soy-bean (grade I,S100) 207.2-38.8 mg Na-cholate, puriss.

4.5 ml phosphate buffer (isotonic with a physiologic solution)
ethanol, absolute

## Preparation:

0.5 ml of a hot solution of S100 in ethanol (2/1, M/V) are mixed with sufficient amounts of bile acid salts which give rise to a concentration series with increasing lipid/surfactant ratio between 1/2 and 5/1. The final total lipid concentration is 8 % in all cases.

<u>Vesicle permeation through constrictions and vesicle</u> <u>solubilization:</u>

The permeation resistance of each sample is measured as in examples 1-13. The vesicle size is determined by means of light scattering. (Radii of particles smaller than 5 nm cannot be measured owing to the insufficient power of the laser source used.)

Corresponding measured data is shown in figure 6. It indicates that the permeation resistance of transfersomes with an L/S ratio below 3.5/1 is very small but that this resistance increases significantly at higher L/S values (left panel); the increase of the mean vesicle diameter above L/S = 2.75 (right panel) is probably a consequence of the decreased flow (and thus of a diminished hydrodynamic shear) caused by the greater permeability resistance in this concentration range.

Within only a few hours after preparation the size of vesicles

just above the solubilization limit (at L/S between 1.25/1 and 2.5/1) is significantly bigger than in the vicinity the 'transfersome optimum'. Such undesired consequences of surfactant activity (cf. Fromherz, P. in: 'Galstone disease, Pathophysiology and Therapeutic Approaches', pp. 27-33, Springer, Berlin, 1990) should always be taken into account. At L/S of approx. 1.25/1, solubilization sets in which leads to the formation of, in our case unmeasurably, small mixed micelles of a size of approximately 5 nm.

## Examples 76-91:

## Composition:

1.627-0.5442 g phosphatidylcholine from soy-bean (gradeI,S100)
4.373-0.468 g Na-cholate, puriss.
60 ml phosphate buffer (physiological)

## Preparation:

A 10 % suspension of S100 in phosphate buffer is ultrasonicated at room temperature until the mean vesicle size is approx. 350 nm.

This suspension is divided into three equal volume parts containing 10 %, 1 % and 0.2 % phospholipids. Starting with these preparations, aliquots containing 5 ml of suspension each are prepared. These are supplemented with increasing amounts of sodium cholate (partly in the form of a concentrated micelle suspension), yielding a concentration series with L/S ratios between 1/5 and 5/1. Prior to each permeation— and solubilization measurement, the starting suspension is aged for 1 week at 4°C.

Vesicle permeation through constrictions and vesicle

## solubilization:

In order to determine the permeation resistance of these samples two different procedures are used.

In the first series, each suspension is diluted prior to an actual measurement to get a final lipid concentration of 0.2 %; subsequently it is pressed through a filter with a pore size of 0.1 micrometers. The sample resistance is identified with the inverse value of the volume which has passed through the filter pores during a period of 5 minutes.

In the second series, the permeation resistance is determined as in examples 1-13 and finally renormalized by dividing the values thus obtained with regard to the final lipid concentration.

The resulting data shows that both the solubilization limit and the position of a 'transfersome optimum' expressed in terms of preferred L/S ratios are dependent on the overall lipid concentration. In the case of a 10 % suspension the corresponding values are approx. 1/1 and 2.75/1, respectively; for the 0.2 % suspension they increase to 1/4 and 1/1, however.

#### Examples 92-98:

#### Composition:

- 41.5-5.5 mg Na-desoxycholate, puriss.
- 5 ml phosphate buffer (physiological)

#### Preparation:

A suspension of 1 % desoxycholate containing vesicles is prepared as described in examples 76-91.

# <u>Vesicle permeation through constrictions and vesicle</u> <u>solubilization:</u>

The measurements of this experimental series show that vesicles containing desoxycholate are solubilized already at L/S ratios near 1/2, i.e. at an L/S ratio which is by a factor of 2-3 lower than in the case of S100/Na-cholate vesicles.

#### Examples 99-107:

## Composition:

3 mM Suspension of phosphatidylcholine from soy-bean (grade I, S100) in phosphate buffer Na-cholate, puriss.

## Preparation:

A 3 mM suspension of S100 in phosphate buffer is partly homogenized at room temperature. 3 ml of this suspension are supplemented each with increasing amounts of sodium cholate in order to create a series with increasing L/S ratios between 1/2 and 12/1. After three days of incubation, these aliquots are ultrasonicated at 55°C, using a 50 % duty-cycle; simultaneously, the optical density at 400 nm of each sample is recorded. An analysis of the resulting experimental data within the framework of a bimodal exponential model reveals two characteristic vesicularization rates (tau 1 and tau 2); these characterize the temporal dependence of the number of lamellae in each vesicle (tau 1) and the changes in the mean size of vesicles (tau 2).

## Vesicle characterization and deformability.

The tau 1 and tau 2 values represented in figure 7 show that the mechanical properties of transfersomes, which are reflected in the value of parameter tau 2, exhibit a similar L/S dependence as the solubilization and permeation tendency (cf. fig. 6). For a 0.2 % suspension investigated in this series 1 cholate molecule per lipid is required for a rapid formation of vesicles (for the formation of largely unilamellar vesicles).

#### Examples 108-119:

#### Composition:

121.2-418.3 mg phosphatidylcholine from soy-bean (Grade I, PC) 378.8-81.7 mg Triton X-100
4.5 ml 0.9 % NaCl solution in water

## Preparation:

A 10 % PC-suspension in isotonic solution of sodium chloride is homogenized at 22°C until the mean size of lipid vesicles is approx. 400 nm. This suspension is then distributed in aliquots of approx. 4.8 ml. A sufficient volume of Triton X-100 is pipetted into each of these aliquots to give a concentration series with nominal PC/Triton ratios in the range of 0.25 through 4 in steps of 0.5. All resulting samples are occasionally mixed and incubated at 4°C for 14 days.

## Vesicle solubilization

The optical density (OD (400 nm)) of a lipid-triton mixture after a 10-fold dilution provides insight into the vesicle

solubilization; this is represented in the right panel of figure 8. The solubilization limit is approx. 2 triton molecules per PC-molecule. Right below this limit, the optical density (OD (400 nm)) - and thus the vesicle diameters - attain the greatest values. At PC/triton ratios higher than 2,5/1, the change in the optical density of given suspensions is only minimal.

## Vesicle permeation and characteristics:

In order to evaluate the permeation capability of the resulting lipid vesicles and transfersomes all suspensions were pressed through fine-pore filters (0.22 micrometer), as described in examples 1-13. The required pressure increases gradually with the decreasing total triton concentration in the suspension; for L/S ratios higher than 2/1 this significantly limits the permeation capability of carriers.

Corresponding results are summarized in the left half of figure 8.

## Examples 120-128:

## Composition:

403,5-463,1 mg dipalmitoyl tartaric acid ester, Na-salt 96,5-36,9 mg laurylsulfate, Na-salt (SDS)
4,5 ml triethanolamine buffer, pH 7.5

## Preparation:

In this test series a synthetic lipid, which is not found in biological systems, was chosen to be the basic transfersome constituent. For each experiment the required dry lipid mass was weighed into a glass vial and mixed with 4.5 ml of buffer.

The latter contained sufficient amounts of sodiumdodecylsulfate (SDS) to give various L/S ratios between 2/1 and 6/1. Well mixed suspensions were first kept at room temperature for 24 hours and subsequently mixed again thoroughly.

## Permeation capacity and vesicle characteristics:

Liposomes were pressed through a 0.2 micrometer filter. Simultaneously, the permeation resistance was measured. Vesicles with an L/S ratio below 4/1 can pass the membrane pores very easily; in contrast to this, all vesicles with lower surfactant concentrations or vesicles without edge active components can pass through the porous constrictions only with difficulty (not before an excess pressure of 5 MPa has been created) or not at all (membranes burst).

## Examples 129-136:

#### Composition:

101,6-227 mg phosphatidylcholine from soy-bean
148,4-22,2 mg octyl-glucopyranoside (B-octylglucoside),
puriss. 9,85 ml phosphate buffer, pH 7,3
ethanol, absolute

#### Preparation:

Phosphatidylcholine in ethanol (50 %) and octylglucopyranoside were mixed in different relative ratios in
order to prepare a concentration series with increasing L/S
values between 1/4 and 2/1 (and a final total lipid
concentration of 2.5 %). Each lipid mixture in a glass vial
was then supplemented with 4.5 ml of buffer. Subsequently,
the resulting suspension was mixed in an agitator for 48 hours

at 25°C. The suspension turbidity was greater for the specimen containing lower amounts of octylglucoside. A fine sediment formed in standing samples. Each suspension was mixed thoroughly before the experiment.

## Vesicle permeation and characteristics:

All suspensions can be filtered without any problem through filters with a pore diameter of 0.22 micrometer, using only minimal excess pressures of less than 0.1-0.2 MPa; the only two exceptions are the samples with the lowest surfactant concentration. These give rise to small permeation resistances which on the renormalized scale (cf. figures 1-5) corresponds to values of approx. 1 and 2.5, respectively. Figure 9 presents said data.

If the pore diameter is reduced to 0.05 micrometers only suspensions with L/S ratios below 2/1 can still be filtered.

Irrespective of the pore size used all preparations with L/S ratios below 2/1 are unstable; after only a few days, a phase separation is observed between a micelle rich and a vesicle rich phase.

## Examples 137-138:

## Composition:

43,3 mg, 50 mg phosphatidylcholine from soy-bean
0.5 mg phosphatidylethanolamine-N-fluorescein
6,7 mg, 0 mg cholate, Na-salt, p.a.
5 ml Hepes-buffer, pH 7,3

## Preparation:

Phosphatidylcholine with the addition of 1 %-fluoresceinated lipids with or without desoxycholate is suspended in 5 ml buffer. The lipid/surfactant ratio is 3.5/1 or 1/0. Both 1 %-suspensions are then ultrasonicated in a glass vial for 1.5 or 15 minutes (25 W, 20°C), until the mean vesicle size is approx. 100 nm.

## Spontaneous vesicle permeation:

Onto a Millipore-filter with 0.3 micrometer pore diameter, mounted into a Swinney-holder, the lower half of which has been wetted and filled with water, 50 microliters of a lipid suspension are pipetted through the upper opening. By a gentle swinging motion, a relatively homogeneous sample distribution on the filter surface is ensured. After 30 minutes, the holder is carefully opened and left to dry for 60 minutes. Subsequently the water from below the filter is collected and checked fluorimetrically (excitation 490 nm, emission 590 nm). (The determined light intensity is a measure of the permeation capacity.)

The transport of fluorescence markers mediated by surfactants containing transfersomes gives rise to a fluorescence signal of 89.5; in control experiment a value of 44.1 is established. This indicates that transfersomes are capable of transporting encapsulated substances across permeability barriers.

## Examples 137-139:

## Composition:

43,5, 45,3, 50 mg 0.5 mg

6,5, 4,7, 0 mg

phosphatidylcholine from soy-bean phosphatidylethanolamine-N-fluorescein desoxycholate, Na-salt, p.a.

Hepes-buffer, pH 7,3

25 ml

# Preparation and results:

Lipid vesicles are made and tested as described in examples 137-138. Measurements show that the transfersomes which contain deoxycholate already show similarly good results at a characteristic L/S ratio of 5/1 as transfersomes which contain cholate at a ratio of L/S=3.5.

# Examples 140-142:

#### Composition:

50 mg; 43,3 mg; 15,9 mg phosphatidylcholine from soy-bean
0.5 mg phosphatidylethanolamine-Nfluorescein
0 mg; 6,7 mg; 34,1 mg cholate, Na-salt, p.a.
5 ml Hepes-buffer, pH 7,3

## Preparation:

Lipid vesicles consisting of phosphatidylcholine and a fluorescent additive were made as in examples 137-138. For this experiment, suspensions with a lipid/surfactant ratio of 1/0, 4/1 and 1/4 were used. The former two contained fluorescent lipid vesicles, the latter a micellar suspension.

# Spontaneous penetration into plant leaves:

A fresh onion is carefully opened in order to gain access to individual leaves; these correspond to low-chlorophyll plant leaves. For each measurement, 25 microliters of a fluorescinated suspension are applied onto the concave (inner or upper) side of each onion leaf; as a result of this a

convex droplet with an area of approx. 0.25 square centimeters is formed. (Carriers which contain surfactants can be easily identified owing to their higher wetting capability.) After 90 minutes the (macroscopically) dry lipid film is eliminated with the aid of a water stream from a jet-bottle with a volume of 50 ml.

After this treatment, the 'leaf surface' attains a slightly reddish appearance in the case of surfactant containing transfersomes as well as mixed micelles. Leaves incubated with surfactant-free vesicles cannot be distinguished from the untreated leaves.

Fluorescence measurements using a red filter (excitation through a blue filter from above) show that leaves which were covered with transfersomes are intensively fluorescent throughout the treated area. In certain places extremely brilliant aggregates are detected; these probably correspond to the non-eliminated vesicle-clusters. The fluorescence of leaves which were treated with a surfactant solution in some places is comparably intensive; at other positions their fluorescence is weaker, however, than in the case of transfersome-treated leaves.

The leaves which were treated with standard lipid vesicles do not fluoresce. Over large surface areas they are indistinguishable from the non-treated leaf regions.

This shows that transfersomes can transfer lipophilic substances spontaneously and irreversibly into a plant leaf or its surface. Their penetration capacity exceeds that of preparations containing highly concentrated surfactants, i.e. well established 'membrane fluidizers'.

## Examples 143-145:

# Composition:

50 mg; 43,5mg; 17,1 mg phosphatidylcholine from soy-bean
0.5 mg phosphatidylethanolamine-N-fluorescein
0 mg; 4,7 mg; 32,9 mg desoxycholate, Na-salt, p.a.
5 ml Hepes-buffer, pH 7,3

# Preparation and results:

The preparation and results are identical with those of experiments 140-142.

## Examples 146-148:

## Composition:

50 mg; 36,4; 20 mg phosphatidylcholine from soy-bean
0.5 mg phosphatidylethanolamine-N-fluorescein
0 mg; 13,6 mg; 30 mg Brij 35
5 ml Water

## Preparation and results:

Preparation and results are comparable to those of experiments 140-142 and 143-145.

## Examples 146-150:

#### Composition:

84,2 to 25 mg phosphatidylcholine from soy-bean 80 %
75 kBq Giberellin A4, 3H-labelled
15,8 to 75 mg polyoxyethylene (23)-laurylether (Brij 35)
1 ml water

#### ethanol, absolute

#### Preparation:

An ethanolic lipid solution (50 %) is mixed with a corresponding amount of an ethanolic solution of giberellin and suspended in 1 ml of water or in appropriate volumes of a surfactant suspension to obtain a total lipid concentration of 10 % and L/S ratios of 8/1, 4/1, 2/1, 1/1 and 1/2. The resulting (mixed) suspension is then briefly homogenized with the aid of ultrasound so that the mean vesicle size is always below 300 nm.

Carrier suspensions are distributed over the surface of 3 leaves of Ficus Benjaminii; there, they are permitted to dry for 6 hours. After subsequent intensive washing of each leaf surface with 5 ml of water per square centimetre and destaining with a peroxide solution, the radioactivity in the homogenized plant material is measured scintigraphically in a beta-counter.

## Agent transport in plant leaves:

Experiments show, as in examples 140-142, that transfersomes can bring the agent molecules into a leaf surface much more effectively than a micellar solution.

## Examples 151-157:

#### Composition:

32,8-0.64 mg phosphatidylcholine from soy-bean

(purity higher than 95 %, PC)

75 kBq dipalmitoylphosphatidylcholine tritium-

labelled

2,2-34,4 mg 0.32 ml bile acid, Na-salt, p.a.
phosphate buffer, pH 7,3

## Preparation:

In each case, 35 mg of lipid are mixed with tritium-labelled dipalmitoylphosphatidylcholine in chloroform. After thorough drying under vacuum, the resulting mixture is suspended in 0.32 ml of buffer; the nominal surfactant/lipid ratios are 0; 0.125; 0.167; 0.263; 0.5 and 1 mol/mol. All suspensions are ultrasonicated until they are comparably opalescent, with the exception of the last, optically clear micellar solution. (The time for efficient necessary sonication decreases with increasing S/L). Control measurements with non-radioactive suspensions indicate that the mean 'particle' size in all samples must be around 100 nm. In all experiments approximately 1 day old suspensions are used.

# Penetration into and through the intact skin:

On the back of an immobilized nude-mouse anaesthesized with ether six areas of 1x1 cm are marked. Each of these areas is covered with 20 microliters of a carrier suspension at 3x5 minutes intervals. 60 minutes later, the mouse is killed. From each treated area a sample is excised which is then cut to pieces, solubilized and de-stained. The skin-associated radioactivity is measured scintigraphically.

The corresponding results are summarized in figure 10. For comparison, the normalized values are also given which were taken from our patent application pertaining to the use of liposomes for topical anaesthesia. Optimal transfersomes are appreciably better than non-optimal preparations containing surfactants.

#### Examples 158-162:

## Composition:

31 mg phosphatidylcholine from soy-bean

(purity higher than 95 %, PC)

75 kBq dipalmitoylphosphatidylcholine tritium-

labelled

4 mg deoxycholate, Na-salt, p.a.

0.32 ml phosphate buffer, pH 7,3

#### Preparation:

In each case 35 mg of lipid (PC and deoxycholate) are mixed with tritium-labelled dipalmitoylphosphatidylcholine in a chloroform solution. The resulting lipid mixture is dried and then dissolved in 30 microliters of warm, absolute ethanol. This solution is then mixed with 0.32 ml of a buffer solution (phosphate buffer, 10 mM, 0.9 % NaCl); this corresponds to a lipid/surfactant ratio of 4/1. The resulting suspension is thoroughly mixed and subsequently filtered through filters with pore sizes of 0.8; 0.45; 0.22 and 0.1 micrometers; this gives rise to vesicles with diameters of approx. 800, 400, 200 or 100 nm (suspensions A, B, C, D).

## Penetration into and through the skin:

Tails of 2 anaesthesized mice are treated with 50 microlitres of a corresponding vesicle suspension for 15 minutes. Two control animals obtain an i.v. injection of 0.2 ml 1/10 diluted suspension B. After 30, 60, 120, 180, 240 and 360 minutes, blood specimens are drawn from the tail-tip. The radioactivity of these samples, which is determined by means of beta-scintigraphy, is a reliable indication of the systemic concentration of carrier-associated, radioactively labelled

## lipids.

Experimental data show (fig. 11) that systemically applied transfersomes are eliminated from blood comparably as rapidly as standard liposomes. The size of carrier particles appears not to affect the spontaneous penetration into skin. All transfersomes investigated in this study can penetrate intact skin and get into the depth of a body quite effectively within a period of 4 hours at approx. 1 carrier; tendency increasing.

## Examples 163-165:

## Composition:

| 88 mg  | phosphatidylcholine from soy-bean (purity higher |
|--------|--------------------------------------------------|
|        | than 95 %, PC)                                   |
| 75 kBq | inulin, tritium labelled                         |
| 12 mg  | deoxycholate, Na-salt, p.a.                      |
| 100 ml | ethanol, absolute                                |
| 0.9 ml | isotonic salt solution                           |

## Preparation:

100 mg of PC dissolved in 100 ml of warm ethanol, or a corresponding PC/deoxycholate solution (L/S=4.5), are mixed with 0.9 ml of an isotonic salt solution (suspensions A and B, respectively). Each suspension is ultrasonicated until the mean vesicle size is about 150 nm.

12 microlitres of an aqueous solution of tritium-labelled inulin are pipetted into 38 microliters of a freshly prepared suspension of empty liposomes (A) or transfersomes (B). Subsequently, all mixtures are sonicated in closed vials for 60 minutes in an ultrasound bath at room temperature; they are all used for experiments within 24 after vesicle preparation.

# Spontaneous inulin transfer through the skin:

On the abdomen of NMRI-mice in general anaesthesia, which three days before were depillated using medical tweezers, 10 microlitres of a vesicle suspension containing inulin in every case are applied twice at time intervals of approx. 3-5 minutes.

15, 30, 60, 120, 180, 240, 300 and 360 minutes later, 0.05 ml of blood are routinely taken from the tail of a each mouse to be then investigated scintigraphically. 6 hours later the subcutaneous tissues at the application site, as well as liver and spleen of all animals of this experiment are collected. After solubilization and decolouring procedures, these organs are also checked scintigraphically.

The results of this study are collected in figure 12. They show that normal liposomes can hardly mediate a percutaneous inulin uptake; in contrast to this, 6 hours later approx.

1.4 % of this marker which was applied in the form of transfersomes are found in the blood. This transfer sets in approximately 2-3 hours after the application and is not yet completed 6 hours after each application.

After 6 hours in the case of transfersomes, an average of 0.8 % (this corresponds to 24.1 % of the recovered dose) are in the skin at the application site; 0.9 % are found in the liver; spleen contains less than 0.1 % of the absolute dose. In the body (blood, spleen, liver) approximately 73.8 % of the recovered dose are thus found again.

In contrast to this, approximately 2 % of the normal liposomes at the application site can be detected by eye, the corresponding doses in the liver and spleen being below 0.1 %. This corresponds to a recovery of 95.3 % at the application site and 6.7 % of this dose in the body of the test animal.

## Example 166:

## Composition:

| 386 mg  | phosphatidylcholine from soy-bean         |
|---------|-------------------------------------------|
|         | (purity > 95 %)                           |
| 58.5 mg | sodium-cholate (L/S = 3,5)                |
| 500 μ1  | ethanol (96 %)                            |
| 2.25 ml | 0.9 % NaCl solution (per inject.)         |
| 2.25 ml | Actrapid HM 40 (corresponds to 90 I.U. of |
|         | recombinant human insulin)                |

## Preparation:

Samples are prepared essentially as described in examples 62-75. A mixture of aqueous salt solution and human recombinant insulin (with 6.75 mg m-cresole) is mixed with a lipid solution in ethanol. The resulting, opaque suspension is aged over night. 12 hours later, this suspension is pressed through a sterile filter (Anodisc<sup>TM</sup>, pore diameter 0.2 micrometers) with the aid of nitrogen gas with excess pressure of 0.25 MPa under sterile conditions to be then filled into the glass container.

The nominal lipid/surfactant ratio is 3.5; the calculated molar surfactant concentration in the lipid double layer is approx. 5/1. This corresponds to 50 % of the concentration required for solubilization.

The mean radius of vesicles in final suspension in this experiment was 97 nm.

## Application:

0.5 ml of a fresh, insulin containing transfersome suspension are applied onto the untreated skin of the left forearm of an informed, healthy male volunteer aged 37 years (starved for 18 hours) and distributed over an area of approx. 10 cm<sup>2</sup>. 5 minutes later, additional 300 microlitres of identical suspension are positioned in two halves on the forearm and upper arm, respectively. 5-10 minutes later, the suspension on the upper arm (dose approx. 2,5 mg/cm<sup>2</sup>) has almost completely disappeared; it has thus nearly completely penetrated into skin. In contrast to this, lipids applied onto the forearm (dose approx. 7.5 mg/cm<sup>2</sup>) are still well perceptible.

#### Activity:

In order to assess the biological activity of insulin, approx. 2 hours before the sample application, a permanent, soft catheter is placed into a vein in the right hand. Every 15-45 minutes, 1-1.5 ml of blood are collected from this catheter; the first 0.5-1 ml thereof are discarded; the remaining 0.5 ml are measured with a standard enzymatic glucose test. In each case three determinations with three to four independent specimens are made. The corresponding experimental data is summarized in figure 13. It shows that transfersomes mediate a significant hypoglycemia in the peripheral blood some 90 minutes after the drug application; this effect lasts for approx. 2 hours and amounts to approx. 50 % of the magnitude of the hypoglycemic effect of a comparable dose of subcutaneously applied insulin; the effect of the former lasts 200 % longer, however.

#### Examples 167-172:

## Composition:

956 mg phosphatidylcholine from soy-bean (+95 %)
0-26 mg sodium-deoxycholate
1 mg prostaglandine E1
1 ml ethanol absolute

50 ml 0.9 % NaCl solution (per inject.)

## Preparation:

1 ml of ethanol is pipetted into a glass flask with 1 mg of prostaglandine. After thorough mixing, the resulting prostaglandine solution is transferred to the appropriate amount of dry lipid in another glass vial. The original flask is flushed once again with the new lipid/prostaglandine solution and subsequently supplemented with 6 ml of an isotonic salt solution. The prostaglandine containing flask is washed twice with 2 ml of 0.9 % NaCl and mixed with the original lipid suspension. The sample is then divided into 5 parts; into individual aliquots sodium-desoxycholate is added at concentrations of 0; 1.6; 3.25; 6.5 or twice 13 mg/ml.

The resulting 10 % suspensions are aged for 24 hours. Subsequently they are either ultrasonicated or filtered manually through a 0.2 micrometer-filter, depending on cholate concentration. The specimens with the highest surfactant concentration are either filtered or ultrasonicated. Finally, the samples are diluted to obtain a final PGE1 concentration of 20 micrograms/ml and kept in dark glass bottles in a refrigerator. Vesicle radius right after sample preparation is 85 nm, two months later 100 nm.

## Application and Action:

In each experiment 0.25 ml of a lipid suspension are applied on neighbouring but not interconnected regions of abdominal skin. 10 minutes later the skin surface is macroscopically dry; 15 minutes later, some of the application sites show a reddish appearance which, according to the test person's statement, is associated with a weak local pain. The intensity of oedema grades as 0, 0, 0, 0-1, 3 and 3 points (on a scale from 1-10).

This shows that merely transfersomes - but not liposomes or sub-optimal surfactant-containing vesicles - can penetrate into intact skin and thereby transfer drugs into body. The precise mode of sample preparation plays no role in this.

### Examples 173-175:

#### Composition:

### Preparation:

Lipids and hydrocortison are mixed as approx. 50 % ethanolic solution and subsequently supplemented with 0.95 ml of phosphate buffer. The resulting, very heterogeneous suspension is treated with ultrasound (25 W, 3-5 min). Specimens with an L/S ratio of 2/1 can be homogenized with ease, specimens with L/S = 4/1 are relatively difficult to homogenize.

Specimens with 1 and 2.5 weight-% result in stable suspensions

independent of the precise L/S ratio; 10 weight-% of agent cannot be incorporated into stable transfersomes of the given composition.

#### Examples 175-200:

# Composition:

1.1 - 2mg phosphatidylcholine from soy-bean (+95%=PC)

0 - 32.5 mol-% Tween 80

pH 7.2 isotonic phosphate buffer

### Preparation:

Different amounts of phospholipid and surfactant in each experiment are weighed or pipetted into 25 ml of buffer at ratios which yield suspensions with 0 -32,5 mol-% of Tween 80 and a constant total lipid concentration of 2 %. Specimens are sterilized by filtering, filled into sterile glass vials and aged for 4 through 34 days. Then, the optical density of each sample is determined. This depends strongly on surfactant concentration but hardly on time within the framework of measuring conditions.

# Characterization:

23 specimens each containing 3 ml of an individual lipid suspension are ultrasonicated in closed vials in a bath sonicator. Three, four and six hours later the samples' optical density is determined. Such measurements are repeated with every new sample series after the relative sample positions were exchanged in a systematic manner; the determination of optical density, again, is performed three, four and six hours after the start of sonication. All values corresponding to one concentration are summed up and divided

by the number of measurements; the resulting value is a measure of the samples' capacity for vesicularization under given conditions.

This procedure is an alternative or a supplement to the permeation resistance measurements as described in examples 40-49. Figure 16 shows, for example, that the amount of surfactant required for good mechanical deformability in the case of Tween 80 is 2-3 times lower than the corresponding solubilization concentration. This result is in good accord with the results of the permeation experiments.

### Examples 201-215

### Composition:

256.4-447 mg phosphatidylcholine from soy-bean (+95% PC)
243.6-53.1 mg Brij 96
0.26-0.45 ml ethanol, absolute
4.5 ml phosphate buffer, pH 6,5, 10 mM

#### Preparation:

Increasing volumes of Brij 96 are pipetted into the corresponding volumes of an alcoholic PC solution. Thus, a concentration series is obtained with L/S values between 1/1 and 1/8. After the addition of a buffer very heterogeneous liposomes are formed which are homogenized by means of filtering through a 0.2  $\mu$ m filter.

# Permeation and carrier characteristics:

The already described method for the determination of suspensions permeability resistance is used. Corresponding values are given in the left panel of figure 14 as circles or

crosses (two independent test series). The functional dependence of the samples' permeability resistance as a function of the L/S ratio is similar to that of comparable transfersomes and is illustrated in the right panel of figure 14. The maximum permeation capacity is not reached before the L/S-value is below 3.

### Examples 216-235

# Composition:

202,0-413 mg phosphatidylcholine from soy-bean (+95%=PC)
298,0-87,0 mg Myrj 49
0.26-0.45 ml ethanol, absolute
4.5 ml phosphate buffer, pH 6,5, 10 mM

# Preparation and Characterization:

Transfersomes are made and characterized as described for examples 201-215. Their permeation properties as a function of the relative surfactant concentration in the individual specimen is given in the left panel of figure 15. The right panel gives corresponding equilibrium values; the latter, however, provide no information about vesicle suitability for permeation and agent transport.

### Example 236:

# Composition:

| 144,9 mg | phosphatidylcholine from soy-bean |
|----------|-----------------------------------|
| 24.8 mg  | desoxycholate, Na-salt            |
| 1.45 ml  | Actrapid HM 100 (145 I.U.)        |
| 0.16 ml  | ethanol, absolute                 |

### Preparation:

Appropriate quantities of both lipids are dissolved in corresponding amounts of ethanol and mixed with a standard solution of insulin. 12 hours later, the crude carrier suspension is homogenized by means of filtration. Average vesicle diameter is 225 ± 61 nm and nominal insulin concentration is 83 I.U. Over an area of appr. 10 square centimeters on the right forearm 0.36 ml (30 I.U.) of insulin in transfersomes are distributed. Blood samples are taken every 10 minutes through a heparinized soft catheter positioned in a vein in the right forearm; the first 0.5 ml are always discarded; the following 0.5-0.8 ml of each sample are sedimented and immediately frozen; the remainder of each sample is used for the determination of blood glucose concentration during the experiment.

### Activity:

These liposomes with a relatively high surfactant concentration have only a very limited capability of transporting insulin across skin, as is seen from figure 17. Depending on the choice of data used for evaluation, the lowering of the blood glucose level does not exceed 2 to 5 mg/dl over a period of 30-40 minutes at the most. The effect of a comparable subcutaneous injection is 50 to 200 times higher. Surfactant-containing liposomes, which have not been optimized with regard to their 'transfersomal' properties, are consequently poorly suited for the use as carriers in the case of dermal applications. Surfactant concentration in such carriers thus cannot mediate an optimal agent permeation through skin.

This shows that formulations prepared according to this invention can (still) have a partial activity even if their

content of edge active substances has not been optimized; however, a maximum advantage can only be achieved after the concentration of an edge active substance requiring maximum permeation has been determined and used as described in this patent application.

Possible use of transfersomes for the application of antidiabetics, most notably of insulin, which has been discussed above in examples 166 and 236, will be investigated in more detail in the following text.

Attempts to bring antidiabetic agents into a body without the use of an injection needle have been known for quite some time already (see, for example, the review article by Lassmann-Vague, Diabete. Metab. 14,728,1989). It has been proposed, for example, to use implantable insulin containers (Wang, P.Y, Biomaterials 10. 197, 1989) or pumps (Walter, H et al., Klin. Wochenschr. 67, 583, 1989), to administer an insulin solution transnasally (Mishima et al., J. Pharmacobio.-Dynam. 12, 31, 1989), perocularly (Chiou et al., J. Ocul. Pharmacol. 5, 81, 1989), perorally in a liposomes suspension (Rowland & Woodley, Biosc. Rep. 1, 345, 1981) or transrectally; in order to introduce insulin molecules through the skin, a corresponding solution was jet-injected (Siddiqui & Chies, Crit. Rev. Ther. Drug. Carrier. Syst. 3, 195, 1987), or brought through the skin with the aid of small injectors (Fiskes, Lancet 1, 787, 1989), electric fields (Burnette & Ongpipattanakul, J. Pharm. Sci. 76, 765, 1987; Meyer, B.R et al., Amer. J. Med. Sci. 297, 321, 1989); chemical additives should also support drug permeation.

All these procedures have hardly brought any real improvements for the therapy of diabetes patients - with the exception of jet injection, perhaps; but the latter is only a very refined, technically extremely complicated form of injection and,

consequently, not very common. The daily therapy of each insulin-dependent patient, consequently, still involves injecting an insulin solution under the skin or into the muscle tissue (De Meijer, P. et al., Neth. J Med. 34, 210. 1989).

Lipids have thus far been discussed as excipients for delayed insulin release in insulin implants (Wang, P.Y Int. J Pharm. 54, 223, 1989); in the form of liposomes they were also suggested for use as vehicles for peroral applications (Patel, 1970), without the therapeutic results really being reproducible, however, (Biochem. Int. 16, 983, 1988). Subsequent publications in the field of insulin containing liposomes, therefore, have dealt with methodological rather than therapeutic issues (Wiessner, J. H. and Hwang, K. J. Biochim. Biophys. Acta 689, 490 1982; Sarrach, D. Stud. Biophys. 100. 95, 1984; Sarrach, D. and Lachmann, U. Pharmazie 40. 642, 1985; Weingarten, C. et al., Int. J. Pharm. 26, 251, 1985; Sammins, M.C. et al., J. Pharm. Sci. 75, 838, 1986; Cervato, G. et al., Chem. Phys. lipids 43, 135, 1987).

According to this invention, the transfersomes described above are used for non-invasive applications of antidiabetic agents, most frequently of insulin, in formulations which were optimized for this purpose.

It is advantageous to use at least one carrier substance for this purpose from the class of physiologically tolerable polar or non-polar lipids or some other pharmacologically acceptable amphiphiles; well-suited molecules are characterized by their ability to form stable agent carrying aggregates. The preferred aggregate form are lipid vesicles, the most preferred membrane structure is a lipid double layer.

It is, furthermore, considered advantageous if at least one

such substance is a lipid or a lipoid from a biological source or some corresponding synthetic lipid; or else, a modification of such lipids, for example a glyceride, glycerophospholipid, sphingolipid, isoprenoidlipid, steroid, sterine or sterol, a sulfur- or carbohydrate-containing lipid, or any other lipid which forms stable double layers; for example, a halfprotonated fluid fatty acid. Lipids from eggs, soy-bean, coconuts, olives, safflower, sunflower, linseed, whale oil, Nachtkerze or primrose oil, etc. can be used, for example, with natural, partly or completely hydrogenated or exchanged chains. Particularly frequently, the corresponding phosphatidylcholines are used; as well as phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidic acids and phosphatidylserines, sphingomyelines or sphingophospholipids, glycosphingolipids (e.g. cerebrosides, ceramidpolyhexosides, sulfateids, sphingoplasmalogenes); gangliosides or other glycolipids are also suitable for the use in transfersomes according to this invention. Amongst the synthetic lipids especially the corresponding diolecyl-, dilinoleyl-, dilinolenyl-, dilinolenoyl-, diaracidonyl-, dimyristoyl-, less frequently dipalmitoyl-, distearoyl-, phospholipide or the corresponding sphingosin derivatives, glycolipids or other diacyl- or dialkyl-lipids are used; arbitrary combinations of the above-mentioned substances are also useful.

It is advantageous if an edge active substance is a nonionic, a zwitterionic, an anionic or a cationic surfactant. It can also contain an alcohol residue; quite suitable components are long-chain fatty acids or fatty alcohols, alkyl-trimethyl-ammonium-salts, alkylsulfate-salts, cholate-, deoxycholate-, glycodeoxycholate-, taurodeoxycholate-salts, dodecyl-dimethyl-aminoxide, decanoyl- or dodecanoyl-N-methylglucamide (MEGA 10, MEGA 12), N-dodecyl-N,N-dimethylglycine, 3- (hexadecyldimethylammonio)-propanesulfonate, N-hexadecyl-

sulfobetaine, nonaethyleneglycol-octylphenylether, nonaethylene-dodecylether, octaethyleneglycol-isotridecylether, octaethylene-dodecylether, polyethylene glycol-20sorbitane-monolaurate (Tween 20), polyethylene glycol-20sorbitane-monooleate (Tween 80), polyhydroxyethylenecetylstearylether (Cetomacrogo, Cremophor O, Eumulgin, C 1000) polyhydroxyethylene-4-laurylether (Brij 30), polyhydroxyethylene-23-laurylether (Brij 35), polyhydroxyethylene-8-stearate (Myrj 45, Cremophor AP), polyhydroxyethylene-40-stearate (Myrj 52), polyhydroxyethylene-100-stearate (Myrj 59), polyethoxylated castor oil 40 (Cremophor EL), polyethoxylated hydrated castor oil, sorbitane-monolaurate (Arlacel 20, Span 20), especially preferred decanoyl- or dodecanoyl-N-methylglucamide, laurylor oleoylsulfate-salts, sodiumdeoxycholate, sodiumglycodeoxycholate, sodiumoleate, sodiumelaidate, sodiumlinoleate, sodiumlaurate, nonaethylene-dodecylether, polethylene-glycol-20-sorbitane-monooleate (Tween 80), polyhydroxyethylene-23-lauryl ether (Brij 35), polyhydroxyethylene-40-stearate (Myrj 52), sorbitane-monolaurate (Arlacel 20, Span 20) etc.

Amongst the most suitable surfactants in these classes of substances are: n-tetradecyl(=myristoyl)-glycero-phosphatidic acid, n-hexadecyl-(=palmityl)-glycero-phosphatidic acid, n-octadecyl(=stearyl)-glycero-phosphatidic acid, n-hexadecylene(=palmitoleil)-glycero-phosphatidic acid, n-octadecylene(=oleil)-glycero-phosphatidic acid, n-tetradecyl-glycero-phosphoglycerol, n-hexadecyl-glycero-phosphoglycerol, n-hexadecyl-glycero-phosphoglycerol, n-hexadecylene-glycero-phosphoglycerol, n-octadecylene-glycero-phosphoserine, n-hexadecyl-glycero-phosphoserine, n-hexadecyl-glycero-phosphoserine and n-octadecylene-glycero-phosphoserine and n-octadecylene-glycero-phosphoserine.

Total concentration of the basic carrier subtance is normally between 0.1 and 30 weight-%; preferably, concentrations between 0.1 and 15 %, most frequently between 5 and 10 % are used.

Total concentration of the edge active substance in the system amounts to 0.1 % through to 99 mol-% of the quantity which is required to solubilize the carrier, depending on each application. Frequently, the optimum is drug dependent — in a concentration range between 1 and 80 mol-%, in particular between 10 and 60 mol-%; most frequently values between 20 and 50 mol-% are favoured.

The concentration of the drug agent in the case of insulin is most frequently in the range between 1 and 500 I.U./ml; concentrations between 20 and 100 I.U./ml are preferred; carrier concentration in the latter case is in the range between 0.1-20 weight-%, frequently between 0.5 and 15 weight-%, most frequently between 2.5 and 10 weight-%.

For preparing a therapeutic formulation, the carrier substances, which are very frequently lipids, are taken as such or dissolved in a physiologically acceptable solvent or a water-miscible solubilizing agent, combined with a polar solution, and made to form carriers.

It is advantageous to use polar solutions containing edge active substances; the latter can also be used with lipids or be contained in a lipid solution.

Carrier formation is preferably initiated by stirring in, by means of evaporation from a reverse phase, by means of an injection or a dialysis procedure, through mechanical agitation, such as shaking, stirring, homogenization,

ultrasonication, friction, shear, freezing-and-thawing, by means of high-and low-pressure filtration, or any other use of energy.

It may be advantageous to incorporate agents only after carrier formation.

If transfersomes are prepared by means of filtration, materials with a pore size of 0.1-0.8 micrometers, very frequently of 0.15-0.3 micrometers, and particularly preferred of 0.22 micrometers are preferably used; several filters can also be used in combination or in a row.

In the case that transfersomes are made by means of ultrasonication, energy densities in the order of 10-50 kW/litre/minute are preferably used; in stirring or rotary machines 1,000 through to 5,000 revolutions per minute are typically used. If high pressure homogenizers are used, pressures in the order of 300-900 Bar normally ensure sufficient transfersome homogeneity and quality after a single passage; in the latter case even suspensions with 20-30 % lipids can be processed without any difficulty.

It is often sensible to prepare transfersomes only shortly before an application from a concentrate or lyophylisate.

Cryopreservatives, such as oligosaccharides, can facilitate the formation of transfersomes from a lyophylisate.

Standard agent, supporting, or additional substances, in particular the stabilizing, protective, gel-forming, appearance-affecting substances and markers can also be used as described in this application.

The following examples illustrate this invention without

implying any limits to its general use. Temperatures are given in degree Celsius, carrier sizes in nanometers, and other quantities in common SI units.

## Example 237:

#### Composition:

### Preparation:

This preparation is produced as described in example 166, with only minor modifications. The main difference is that the lipid/insulin mixture is hand-filtered through a 0.22  $\mu m$  polycarbonate filter (Sartorius) using a 1 ml injection already few minutes after mixture preparation. The final volume of the suspension is 1.2 ml; the nominal lipid/cholate ratio is 2.8/1, in lipid membranes approx. 2.4/1. The final concentration of insulin is approx. 83 I.U./ml; the vesicle radius one day after preparation is 94 nm on the average; one week later, 170 nm.

# Application:

One and half hours after the beginning of the experiment, 240  $\mu$ l of a sterile suspension of insulin containing transfersomes (with 20 I.U.) were taken. These were applied and uniformly smeared at a dose of approx. 0.7 mg lipid/cm<sup>2</sup> over the inner side of the right forearm of a male test person starved for 18

hours prior to experiment. 5 minutes later the skin surface is macroscopically dry. Another 45 minutes later no traces of application are visible anymore.

# Activity:

At irregular intervals of between 15 and 40 minutes, blood samples are drawn from a soft i.v. catheter placed in the left forearm. The determination of the blood glucose level is performed as described in example 166.

The course in time of the transfersome mediated hypoglycemia is represented in figure 18. The blood glucose level decreases approx. 1.5 hours after drug application by some 10 mg/ml; this artificial hypoglycemia lasts for 4 hours at least and thus attains 70-80 % of the value which can be achieved by a subcutaneous application of a comparable amount of the drug Actrapid. The results of control experiments in which the insulin containing transfersomes are injected subcutaneously are shown as crosses in this figure. The total effect in the latter case is similar to that induced by the free drug injected s.c.

# Example 238:

# Composition:

| 216 mg   | phosphatidylcholine from soy-bean (487 $\mu$ l of a |  |
|----------|-----------------------------------------------------|--|
|          | 50 % solution in absolute ethanol)                  |  |
| 27 mg    | phosphatidylglycerol from egg (98 %)                |  |
| 29.45 mg | oleic acid, puriss.                                 |  |
| 3 ml     | Actrapid HM 100 (recombinant human insulin 100      |  |
|          | I.U./ml)                                            |  |
| 40 μl    | 1 N NaOH                                            |  |
| 20 μ1    | 1 N NaCl                                            |  |

### Preparation:

Lipids are mixed until solution is homogeneously clear. After the addition of an actrapid solution, of alkali and salt solution, an optically opalescent suspension is formed. Filtering of this suspension through a polycarbonate filter with a pore diameter of 0.2  $\mu m$  yields a much less opalescent suspension which consists of vesicles (transfersomes) with a mean diameter of 320 nm.

### Application:

Starting glucose concentration in the blood of a test person (70 kg, 37 years, normoglycemic, starved for 24 hours) is measured over a period of 90 minutes for reference. Subsequently, the above-mentioned transfersome suspension with a nominal concentration of 85 I.U. insulin/ml, which has been aged for 12 hours at 4°C, is applied on the right forearm skin (approx. 330  $\mu$ l over an area of approx. 15 cm<sup>2</sup>); this corresponds to a total applied dose of 28 I.U.

### Activity:

Blood specimens are collected through a heparinized, permanent, soft catheter placed in a vein in the left forearm; 0.5 ml of each sample are sedimented and immediately frozen for further use. The remaining volume is used for the in situ determination of the blood glucose concentration by an enzymatic method. The measured glucose concentration decreases by approx. 8 mg/dl after approx. 2.5 hours and remains diminished for more than 4.4 hours. This corresponds to 75 % of the maximally achievable effect, as concluded from control experiments performed by injecting insulin s.c. The pharmacokinetics of this experimental series is represented in

# figure 19.

Figure 20 gives the results of three typical experiments with insulin. They illustrate the results obtained by one percutaneous and two s.c. drug applications.

# Example 239:

## Composition:

| 143 mg  | phosphatidylcholine from soy-bean    |
|---------|--------------------------------------|
| 18 mg   | phosphatidylglycerol from egg (98 %) |
| 19.6 mg | oleic acid, puriss.                  |
| 2 ml    | Actrapid HM 100 (200 I.U.)           |
| 25 μ1   | 1 N NaOH                             |

### Preparation:

Lipids are weighed into a glass vial and mixed with a standard insulin solution. The resulting opaque suspension is ultrasonicated directly, using a titanium probe-tip (approx. 5 W, 3x5 seconds at  $22^{\circ}$ C in 60 seconds intervals). The resulting, optically clear but still opalescent suspension contains vesicles with a mean radius of  $114 \pm 17$  nm.

# Application and Activity:

The results of this test series are within the limits of experimental error identical to those obtained in example 238.

# Example 240:

# Composition:

143 mg phosphatidylcholine from soy-bean

18 mg phosphatidylglycerol from egg (98 %)

20.5 mg sodium oleate

2 ml Actrapid HM 100 (200 I.U.)

# Preparation:

The lipids are dissolved in a glass vial in 0.15 ml abs. ethanol and then combined with a standard insulin solution. Further procedure is as described in example 239.

# Application and Activity:

Over an area of approx.  $5~{\rm cm}^2$  on the forearm skin of a test person a piece of fine-mesh synthetic cloth is fixed. This is then covered with 350  $\mu l$  of an insulin containing transfersome suspension and left uncovered to dry.

The resulting decrease of the blood glucose level after 4 hours amounts to 7.8 mg/dl and after 6 hours to 8.5 mg/dl. It is thus comparable to the result obtained in experiment no. 238.

# Example 241:

The procedure is at first as described in example 238 except that no salt solution is added to the sample suspension; the opaque crude transfersome suspension is divided into two parts. One of these consisting of 50 % of the total volume is passed through a sterile filter; the other half is ultrasonicated for 15 seconds at room temperature at a power of approx. 5 W. The mean diameter of carriers in both halves is similar, 300 nm or 240 nm, respectively.

# Example 242:

The procedure is as described in examples 238 and 240. Transfersomes, however, are filtered one, two and three times in a row. The mean vesicle diameter in the resulting three samples are 300, 240, and 200 nm, resp..

The transfersomes of examples 241 and 242 yield similar hypoglycemic results in biological tests as those of example 238.

# Example 243:

# Composition:

| 144,9;152 mg | phosphatidylcholine from soy-bean |
|--------------|-----------------------------------|
| 24.8;17.6 mg | desoxycholate, Na-salt            |
| 1.45;1.55 ml | Actrapid HM 100 (145 I.U.)        |
| 0.16 ml      | ethanol, absolute                 |

### Preparation:

Lipids are weighed into glass vials, dissolved with ethanol and mixed with an insulin solution. The resulting opaque suspension is aged over night and subsequently filtered through a 0.22 micrometer filter at t=12 hours. The nominal insulin concentration is 83 or 84 I.U; the mean vesicle radius in both cases is 112 nm.

# Application and Activity:

General experimental conditions are as described in examples 237-239. Transfersome suspensions (0.36 ml, corresponds to 30 I.U.) are applied onto the inner side of a forearm skin in both cases; the blood samples are taken from a soft catheter placed in a vein in the other forearm.

The results of these two experiments are given in figure 21. They show that preparations with a relatively high surfactant concentration (Sample 1, L/S=3/1) can cause a hardly significant decrease in the blood glucose level; transfersomes close to their optimum, however, with a surfactant concentration lower by approx. 30 % (L/S=4.5/1), cause a very pronounced 'hypoglycemia' which lasts for many hours.

This is another proof that the transfersomes tend to transport drugs through intact skin according to a completely new principle of action which is dissimilar to that of classical pharmaceutical formulations.

This example, in addition to example 236, furthermore, suggests the following conclusion: for the systems investigated, also surfactant concentrations can be used which are remote from the transfersomal optimum (without the carrier activity being lost completely); notwithstanding this, particularly advantageous results are obtained when the surfactant concentration has been determined and chosen to be in a range which ensures maximum carrier elasticity and thus permeation capability of the transfersomes in combination with sufficiently high carrier stability to dissolution, bursting, agent loss, etc.

#### Claims:

- 1. A preparation for the transport of an agent through a permeability barrier, the preparation being in the form of minute droplets of fluid with a membrane-like coating consisting of one or several layers of amphiphilic molecules or of one amphiphilic carrier substance, wherein the preparation contains a surface-active substance in a concentration that amounts to up to 99 mol % of the concentration of such substance required for droplet solubilization whereby the amount of this substance approaches the solubilization point to an extent that conveys to the droplet a maximum permeation capability while simultaneously maintaining its stability.
- 2. A preparation according to claim 1, wherein the concentration of surface-active substance amounts to at least 0.1 mol % of the solubilization-inducing concentration of surface-active substances.
- 3. A preparation according to claim 1, wherein the concentration of surface-active substance amounts to between 1 and 80 mol % of the solubilization-inducing concentration of surface-active substances.
- 4. A preparation according to claim 1, wherein the concentration of surface-active substance amounts to between 10 and 60 mol % of the solubilization-inducing concentration of surface-active substances.
- 5. A preparation according to claim 1, wherein the concentration of surface-active substance amounts to between 20 and 50 mol % of the solubilization-inducing concentration of surface-active substances.

- 6. A preparation according to any one of claims 1 to 5, wherein the preparation contains an amount of an amphiphilic substance as a carrier or as a basis for the membrane-like coating of the droplet forming hydrophilic fluid, the agent being contained in the carrier substance, in the shell, and/or in the droplet material itself.
- 7. A preparation as claimed in claim 6, wherein said amphiphilic substance is a lipid-like material and said surface-active substance is a surfactant.
- 8. A preparation as claimed in any one of claims 1 to 7, wherein the content of said amphiphilic substance for the applications on human or animal skin amounts to 0.01 through 30 weight % of the preparation mass.
- 9. A preparation as claimed in any one of claims 1 to 7, wherein the content of said amphiphilic substance for the applications on human or animal skin amounts to between 0.1 and 15 weight % of the preparation mass.
- 10. A preparation as claimed in any one of claims 1 to 7, wherein the content of said amphiphilic substance for the applications on human or animal skin amounts to between 5 and 10 weight % of the preparation mass.
- 11. A preparation as claimed in any one of claims 1 to 7, wherein the content of the amphiphilic substance in the formulation for application on plants is 0.000001 through 10 weight %.

- 12. A preparation as claimed in any one of claims 1 to 7, wherein the content of the amphiphilic substance in the formulation for application on plants is between 0.001 and 1 weight %.
- 13. A preparation as claimed in any one of claims 1 to 7, wherein the content of the amphiphilic substance in the formulation for application on plants is between 0.01 and 0.1 weight %.
- A preparation as claimed in any one of claims 1 to 13, 14. wherein the agent is an adrenocorticostatic, a ß-adrenolytic, an androgen or antiandrogen, antiparasitic, anabolic, anaesthetic or analgesic, analeptic, antiallergic, antiarrhythmic, antiarterosclerotic, antiasthmatic and/or bronchospasmolytic, antibiotic, antidepressant and/or antipsychotic, antidiabetic, an antidote, antiemetic, antiepileptic, antifibrinolytic, anticonvulsive, an anticholinergic, and enzyme, coenzyme or a corresponding inhibitor, an antihistaminic, antihypertonic, a biological inhibitor of drug activity, an antihypotonic, anticoagulant, antimycotic, antimyasthenic, an agent against Morbus Parkinson, an antiphlogistic, antipyretic, antirheumatic, antiseptic, a respiratory analeptic or a respiratory stimulant, a bronocholytic, cardiotonic, chemotherapeutic, a coronary dilator, a cytostatic, a diuretic, a ganglium-blocker, a glucocorticoid, an antiflu agent, a haemostatic, hypnotic, an immunoglobuline or its fragment or any other immunologically active substance, a bioactive carbohydrate (derivative), a contraceptive, an antimigraine agent, a mineralcorticoid, a morphineantagonist, a muscle relaxant, a narcotic, a neuraltherapeutic, a nucleotide, a neuroleptic, a neurotransmitter or some of its antagonists, a peptide

(derivative), an opthalmic, (para)-sympaticomimetic or (para)-sympathicolytic, a protein (derivative), a psoriasis/neurodermitis drug, a mydriatic, a psychostimulant, rhinologic, any sleep-inducing agent or its antagonist, a sedating agent, a spasmolytic, tuberlostatic, urologic, a vasoconstrictor or vasodilator, a virustatic or any would-healing substance, or several such agents.

- 15. A preparation as claimed in any one of claims 1 to 11, wherein said agent is a growth modulating substance for living organisms.
- 16. A preparation as claimed in any one of claims 1 to 11, wherein said agent exerts biocidal activity.
- 17. A preparation as claimed in any one of claims 1 to 11, wherein said agent is an insecticide, a pesticide, a herbicide or a fungicide.
- 18. A preparation as claimed in any one of claims 1 to 11, wherein the agent is an attractant.
- 19. A preparation as claimed in any one of claims 1 to 11, wherein the agent is selected from the class of pheromones.
- 20. A method for manufacturing a preparation for the application of an agent in the form of minute droplets of a fluid, the preparation comprising a membrane-like "envelope" consisting of one or several layers of amphiphilic molecules, or supplemented with an amphiphilic carrier substance, for the transport of an agent in and through natural barriers and constrictions, wherein the concentration of a surface-active substance

required for the solubilization of a carrier entity is determined and then an amount of the surface-active substance which is close to the former concentration but still guarantees a sufficient carrier stability and permeation capability is used for the preparation.

- 21. A method according to claim 20, wherein the natural barrier is skin.
- 22. A method as claimed in claim 21, wherein the stability and the permeation capacity of the "droplet" are determined by means of filtration, if required under pressure, through a fine-pore filter or by means of any other controlled mechanical fragmentation.
- 23. A method as claimed in claim 20, 21 or 22, wherein the content of said surface-active substance is between 0.1 and 99 mol %, of the concentration at which solubilization of the carrier is achieved.
- 24. A method as claimed in claim 20, 21 or 22, wherein the content of said surface-active substance is between 1 and 80 mol %, of the concentration at which solubilization of the carrier is achieved.
- 25. A method as claimed in claim 20, 21 or 22, wherein the content of said surface-active substance is between 10 and 60 mol %, of the concentration at which solubilization of the carrier is achieved.
- 26. A method as claimed in claim 20, 21 or 22, wherein the content of said surface-active substance is between 20 and 50 mol %, of the concentration at which solubilization of the carrier is achieved.

- 27. A method as claimed in any one of claims 20 to 26, wherein the preparation is subjected to filtration, ultrasonication, stirring, agitating or any other mechanical fragmentation.
- 28. A preparation as claimed in any one of claims 1 to 19, wherein said preparation comprises at least one antidiabetic agent.
- 29. A preparation as claimed in any one of claims 1 to 19, wherein said preparation comprises insulin.
- 30. A preparation as claimed in claim 28 or 29, wherein it contains a physiologically compatible polar or non-polar lipid as an amphiphilic carrier substance, the carrier membrane having a double layer structure.
- 31. A preparation as claimed in claim 30, wherein the amphiphilic substance is a lipid or a lipoid from any biological source or a corresponding synthetic lipid, or else comprises a modification of such lipids, a glyceride, steroid, sterin or sterol, a sulfur- or carbohydrate-containing lipid, or any other lipid which forms stable double layers, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, a phosphatidic acid, a phosphatidylserin, a sphingomyelin or sphingophospholipid, a glycosphingolipid, a ganglioside or other glycolipid or a synthetic lipid, a dioleoyl-, dilinoleyl-, dilinolenyl-, dilinolenoyl-, diarachidoyl-, dimyristoyl-, dipalmitoyl, distearoly, phospholipid or corresponding sphingosinderivative, a glycolipid or other diacyl- or dialkyl-lipid.

- 32. A preparation as claimed in claim 30, wherein the amphiphilic substance is selected from glycerophospholipid, isoprenoidlipid, sphingolipid, a half-protonated fluid fatty acid, cerebroside, ceramidepolyhexoside, sulfatide and sphingoplasmalogene.
- 33. A preparation as claimed in any one of claims 28 to 32, containing several surface-active substances.
- A preparation as claimed in any one of claims 28 to 33, 34. wherein said surface-active substance is a nonionic, a zwitterionic, an anionic or a cationic surfactant, a long-chain fatty acid or a long-chain fatty alcohol, an alkyl-trimethyl-ammonium-salt, alkylsulfate-salt, cholate, deoxycholate-, glycodeoxycholate-, taurodeoxycholate-salt, dodecyl-dimethyl-aminoxide, decanoyl- or dodecanoyl-N-methylglucamide, N-dodecyl-N, N-dimethylglycine, 3-(hexadecyldimethylammonio)-propanesulfonate, N-hexadecyl-sulfobetaine, nonaethylene-glycoloctylphenylether, nonaethylene-dodecylether, octaethylene-glycol-isotridecylether, octaethylenedodecylether, polyethylene glycol-20-sorbitanemonolaurate, polyethylene glycol-20-sorbitane-monooleate, polyhydroxyethylene-cetylstearyl ether, polyhydroxyethylene-4-laurylether, polyhydroxyethylene-23-laurylether, polyhydroxyethylene-8-stearate, polyhydroxyethylene-40-stearate, polyhydroxyethylene-100stearate, polyethoxylated castor oil 40, polyethoxylated hydrated castor oil, sorbitane-monolaurate, particularly preferred decanoyl- or dodecanoyl-N-methylglucamide, lauryl- or oleoylsulfate-salts, sodiumdeoxycholate, sodiumglycodeoxycholate, sodiumoleate, sodiumelaiate, sodiumlinoleate, sodiumlaurate, nonaethylenedodecylether, polyethylene glycol-20-sorbitanemonooleate, polyhydroxyethylene-23-laurylether,

polyhydroxyethylene-40-stearate and/or sorbitanemonolaurate and lysophosphipids, n-octadecylen(=oleoyl)glycero-phosphatidic acid, -phosphorylglycerol, or
-phosphoryl-serine, n-dilauryl-glycero-phosphatidic acid,
-phosphoryl glycerol, or -phosphorylserine, n-tetradecylglycero-phosphatidic acid, -phosphorylglycerol, or
-phosphorylserine and corresponding palmitoeloyl-,
elaidoyl-, vaccenyl-lysophospholidids.

- 35. A preparation as claimed in any one of claims 28 to 34, comprising 1 through 500 I.U. insulin/ml as agent.
- 36. A preparation as claimed in any one of claims 28 to 34, comprising between about 20 and 100 I.U. insulin/ml.
- 37. A preparation as claimed in any one of claims 28 to 36, wherein the concentration of the carrier substance is in the range of about 0.1 to 20 wt %, based on the weight of the preparation.
- 38. A preparation as claimed in any one of claims 28 to 36, wherein the concentration of the carrier substance is in the range of about 0.5 to 15 wt %, based on the weight of the preparation.
- 39. A preparation as claimed in any one of claims 28 to 36, wherein the concentration of the carrier substance is in the range of about 2.5 to 10 wt %, based on the weight of the preparation.
- 40. A preparation as claimed in any one of claims 28 to 35, wherein a phosphatidylcholine and/or a phosphatidylglycol is used as an amphiphilic substance, and a lysophosphatidic acid or lysophosphoglycerol, a deoxycholate-, glycodeoxycholate- or cholate salt, a

laurate, myristate, oleate, plamitoleate, or a corresponding phosphate- or sulfate-salt, and/or a Tween- or a Myrj-surfactant is used as a surface-active substance.

- 41. A preparation according to claim 40, comprising human insulin as agent.
- 42. A preparation according to claim 41, wherein the insulin is recombinant insulin.
- 43. A preparation as claimed in any one of claims 28 to 42, wherein radius of the droplets is between about 50 and about 200 nm.
- 44. A preparation as claimed in any one of claims 28 to 42, wherein the radius of the droplets is between about 100 and about 180 nm.
- 45. A method for the preparation of a formulation for the non-invasive application of antidiabetic agents, wherein liposome-like droplets are formed from at least one amphiphilic substance, at least one hydrophilic substance, at least one surface-active substance, and at least one antidiabetic agent, comprising the steps of mixing together the surface-active substance and the amphiphilic substance, and separately mixing together the hydrophilic substance and the antidiabetic agent which can be, if required, dissolved in a solution, the resulting mixtures or solutions then being combined as one mixture to induce the formation of carrier particles.
- 46. A method as claimed in claim 45, wherein the mixtures or solutions are combined by action of mechanical energy.

- 47. A method as claimed in claim 45 or 46, wherein said amphiphilic substance is either used as such or dissolved in a physiologically compatible solvent which is very frequently miscible with hydrophilic fluids, or in a solvation mediating agent together with a polar solution.
- 48. A method as claimed in claim 47, wherein the physiological compatible solvent is miscible with water.
- 49. A method as claimed in claim 47 or 48, wherein the polar solution contains at least one surface-active substance.
- 50. A method as claimed in any one of claims 45 to 49, wherein formation of droplets is induced by substance addition into a fluid phase, evaporation from a reverse phase, using an injection- or dialysis procedure, with the aid of mechanical stress such as shaking, stirring, homogenizing, ultrasonication, shear, freezing and thawing, or high- or low-pressure filtration.
- 51. A method as claimed in claim 50, wherein formation of droplets is caused by filtration, the filtering material having pore diameters of 0.1 through 0.8  $\mu m$ .
- 52. A method as claimed in claim 51, wherein the filtering material has a pore diameter of about 0.15 to 0.3 µm.
- 53. A method as claimed in claim 51, wherein the filtering material has a pore diameter of about 0.22 μm.
- 54. A method as claimed in claim 51, 52 or 53, wherein several filters are used in sequence.

- 55. A method as claimed in any one of claims 45 to 54, wherein inclusion of the agent occurs at least partly after the droplet formation.
- 56. A method as claimed in any one of claims 45 to 55, wherein liposome-like droplets are prepared just before their application from a suitable concentrate or a lyophylisate.
- 57. A preparation according to claim 2, wherin the activity of a droplet unit is about 10 Piconewtons or less.
- 58. A preparation according to claim 3, wherein the activity of a droplet unit is about 10 Piconewtons or less.
- 59. A preparation according to claim 4, wherein the activity of a droplet unit is about 10 Piconewtons or less.
- 60. A preparation according to claim 5, wherein the activity of a droplet unit is about 10 Piconewtons or less.

























DOSPGE IN BLOOK(X)















CFUCOSE UPTAKE IN BLOOD





## This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

## IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)