Artificial Intelligence II Multi-Agent Systems

Working together:
Distributed Constraint Optimization
(Complete approaches)

Alessandro Farinelli, Luca Iocchi, Daniele Nardi

Outline

- Introduction
 - DCOP for MAS
 - how to model problems in the DCOP framework
- Solution Techniques for DCOPs
 - Exact algorithms (DCSP, DCOP)
 - DPOP
 - Approximate Algorithms (without/with quality guarantees)
 - DSA, MGM, Max-Sum, k-optimality, bounded max-sum

Working together

Coordination problem:

Choose agent's <u>individual actions</u> so to maximise a <u>system-wide objective</u> (<u>benevolent agents</u>)

Task allocation:

individual actions: which fire to tackle

<u>system-wide objective</u>: minimise total extinguish time

solution: a joint action

Decentralised Coordination

- <u>Decentralised coordination:</u> Local decision with local information
- Why Decentralised coordination ?
 - In general no benefit for computation or solution quality
 - Robustness
 - avoid single point of failure
 - Scalability
 - Not enough bandwidth to communicate/process all information
 - Leads to problem decomposition
 - Each agent cares only of local neighbours

Decentralized Coordination: example

Issues:

No central controller: distributed knowledge

Information sharing:
limited
communication

Complex system:
difficult to
design/analyse

Decentralized Coordination: issues

- No central controller: distributed knowledge
- Information sharing: limited communication

Complex system: difficult to design/analyse

DCOPs for Decentralized Coordination

Why DCOPs for decentralized coordination?

- Well defined problem
 - Clear mathematical formulation that captures most important aspects
 - Many solution techniques
 - Optimal: ABT, ADOPT, DPOP, ...
 - Approximate: DSA, MGM, Max-Sum, ...
- Solution techniques can handle large problems
 - compared for example to CNP and other sequential dec.
 making (MDP, POMDP)

Reference Applications

Incident Management

Environment monitoring

Cooperative Exploration

Energy management

Modeling Problems as DCOP

Surveillance

Meeting Scheduling

Target Tracking

- Why decentralize
 - Robustness to failure and message loss

Target Tracking - DCOP

- Variables -> Cameras
- Domains -> Camera actions
 - look left, look right
- Constraints
 - One constraint per target
 - Better assessment with more cameras
- Maximise "observation"

Meeting Scheduling

- Why decentralize
 - Privacy

Meeting Scheduling - DCOP

Constraint Networks

$$X = \{X_1, ..., X_n\}$$
 a set of variables (e.g. meetings)

$$D = \{D_1, ..., D_n\}$$
 a set of discrete variable domains (e.g. time slots)

$$oldsymbol{C} = \{oldsymbol{C}_1, ..., oldsymbol{C}_m\}$$
 a set of `constraints` (e.g., equality, non overlap,)

$$S_i \subseteq X$$
 Scope of constraint C_i

Hard constraints

R_i	Xj	X _k
	0	1
	1	0

Soft constraint

F_i	Xj	x_k
2	0	0
0	0	1
0	1	0
1	1	1

Objectives for constraint networks

- Constraint Satisfaction Problem (CSP)
 - Objective: <u>find an assignment</u> for all the variables in the network that satisfies <u>all constraints</u>
- Constraint Optimization Problems (COP)
 - Objective: <u>find an assignment</u> for all the variables in the network that satisfies all <u>constraints and optimizes a global</u> <u>objective function</u>

$$X^* = \arg\max_{X} \left(\sum_{i} F_i(X_i) \right)$$

Global function: an aggregation (i.e., sum) of local functions $F_i(X_i)$

Benchmarking problems

Motivations

- Analysis of complexity and optimality is not enough
- Need to empirically evaluate algorithms on the same problem

Graph coloring

- Simple to formalise very hard to solve
- Well known parameters that influence complexity
 - Number of nodes, number of colors, density (number of link/number of nodes)
- Many versions of the problem
 - CSP, MaxCSP, COP

Graph Coloring

- Network of nodes
- Nodes can take on various colors
- Adjacent nodes should not have the same color
 - If it happens this is a conflict

Graph Coloring - MaxCSP

- Optimization Problem
- Natural extension of CSP
- Minimise number of conflicts

Weighted Graph Coloring - COP

- Optimization Problem
- Conflicts have a weight
- Maximise the sum of weights of violated constraints

Distributed COP

- We focus on optimization
- DCOP = Constraint Network + Agents $A = \{A_1, ..., A_k\}$
- Where each agent:
 - Controls a subset of the variables (typically just one)
 - Is only aware of constraints that involve the variables it controls
 - Communicates only with neighbors

Performance measures

- Solution quality (the higher the better)
 - Optimality not always achievable,
 - Optimality Guarantees
- Coordination Overhead (the lower the better)
 - Computation: computation effort (time complexity)
 - Communication: number and size of messages (network load)
- <u>Desirable properties</u> (hard to quantify)
 - Robustness to failures, parallelism, flexibility, privacy maintenance, etc.

DCOP Solution techniques

- Complete approaches
 - Guarantee optimal solution
 - Exponential coordination overhead
 - ADOPT, DPOP, OptAPO
- Heuristics
 - Low coordination overhead
 - No guarantees on optimality
 - DSA, MGM, Max-Sum
- Approximate approaches
 - Low coordination overhead
 - Optimality guarantees
 - Bounded max-sum, k-optimality

Complete Approaches

- ADOPT (Search based) [Modi et al 05]
 - Distributed branch and bound
 - Partial order based on a DFS search
 - Asynchronous (high parallelism, flexible)
 - Number of messages exponential in number of agents
- DPOP (Dynamic programming) [Petcu and Faltings 07]
 - Distributed Bucket Elimination
 - Partial order based on a DFS search
 - Linear number of messages
 - Exponential message size (in width of DFS search tree)
 - DFS-tree width typically much less than number of agents

Dynamic Programming Optimization Protocol

- DFS-tree building (special case of Pseudo tree)
 - Constraint graph → DFS-Tree
 - Token passing
- Utility propagation
 - Compile information to compute optimal value
 - Util messages from leaves to root
- Value Propagation
 - Root chooses optimal value and propagate decision
 - Value messages from root to leaves

DPOP complete example

Value of Each constraint: same color -1 different colors 0

Solve this constraint network with DPOP.
Assume one agent per variable

Pseudotrees: basic concepts

- Pseudotree arrangement of a graph G
 - A rooted tree with the same nodes as G
 - Adjacent nodes in G fall in the same branch of the tree
 - Nodes in different branches do not share direct constraints
 - A DFS visit of a graph induces a Pseudotree
 - Not every pseudotree can be obtained with a DFS visit

Building a DFS tree

- Traverse the graph using a recursive procedure
- Each time we reach Xi from Xj we mark Xi as visited and state that Xj is the father of Xi (and Xi is a children of Xj)
- When a node Xi has a visited neighbor that is not its parent we state that Xj is a pseudo-parent of Xi (and Xi is a pseudochildren of Xj)
- Can be done with a <u>distributed</u> procedure:
 - Each node need only to communicate with neighbors
 - Token passing to propagate information (e.g., visited nodes)

Building a DFS-tree: example

→ token movement

st: first time node received the token

et: last time node sent the token

time++ = each time token moves

Pseudotrees and Separator

Separator

Definition

 Sep_i separator of node X_i : all ancestors (though tree and back edges) which are connected with X_i and with any descendant of X_i

Basic Property

 Sep_i minimal set of ancestors that, if removed, completely disconnects the subtree rooted at node X_i from the rest of the problem

Operative Definition

$$Sep_i = \bigcup_{X_i \in C_i} Sep_j \cup P_i \cup PP_i \setminus X_i$$

Ci: children of node i

Util Propagation

Aim: build a value function so that root agent can make optimal decision.

Dynamic programming: provide only key information

Each agent computes messages for its parent based on messages received from children and relevant constraints.

Each message projects out X_i (by maximisation) and aggregates (by summation) functions received from children and all constraints with ancestors (parents and pseudoparents)

Message Computation

Functions → tables (variable are all discrete)

Aggregation → join operator (relational algebra)

Maximization → projection (keeping most valuable tuples)

The *Util* message $U_{i\rightarrow j}$ that agent A_i sends to its parent A_j can be computed as:

$$U_{i o j}(Sep_i) = \max_{x_i} \left(\bigotimes_{A_k \in C_i} U_{k o i} \otimes \bigotimes_{A_p \in P_i \cup PP_i} F_{i,p} \right)$$

The \otimes operator is a join operator that sums up functions with different but overlapping scores consistently.

Util Propagation: messages

Util Propagation: message comp

Consider the computation of the node x3:

$$U_{3\to 2}(x_1,x_2)=max_{x_3}(F_{1,3}(x_1,x_3)\oplus F_{2,3}(x_2,x_3))$$

- 1. Create F_{1,3}(x₁, x₃) and F_{2,3}(x₂, x₃) by checking the value of the constraints
- 2. Build the table for all the 8 combinations of the variables x₁,x₂, x₃ with the values of F_{1,3} and F_{2,3}
- 3. Sum the values of F_{1,3} and F_{2,3}, (call it V)
- 4. Maximize wrt x3, i.e. for each pair of x1,x2, select the one with the highest value of V

DPOP complete example

Value of Each constraint: same color -1 different colors 0

X1	X2	Х3	F13	F23	F13+F23
0	0	0	-1	-1	-2
0	0	1	0	0	0
0	1	0	-1	0	-1
0	1	1	0	-1	-1
1	0	0	0	-1	-1
1	0	1	-1	0	-1
1	1	0	0	0	0
1	1	1	-1	-1	-2

X1	Х3	F13
0	0	-1
0	1	0
1	0	0
1	1	-1

X2	Х3	F23
0	0	-1
0	1	0
1	0	0
1	1	-1

X1	X2	U32
0	0	0
0	1	-1
1	0	-1
1	1	0

$$U_{3\to 2}(x_1,x_2) = \max_{x_3}(F_{1,3}(x_1,x_3) \oplus F_{2,3}(x_2,x_3))$$

Value util example

X1	X2	F12	U32	U42	F12+U32+F42
0	0	-1	0	0	-1
0	1	0	-1	-1	-2
1	0	0	-1	-1	-2
1	1	-1	0	0	-1

X1	U12
0	-1
1	-1

$$U_{2\to 1}(x_1) = \max_{x_2} (U_{3\to 2}(x_1, x_2) \oplus U_{4\to 2}(x_1, x_2) \oplus F_{1,2}(x_1, x_2))$$

When propagated to the root a decision can be taken on x1

Value Propagation

Aim: inform all agents about decision from above so that they can choose best values for their variables

Root agent A_r computes x_r^* which is the argument that maximises the sum of messages received by all children

It sends a message $V_{r\to c}=\{X_r=x_r^*\}$ containing this value to all children C_r

The generic agent A_i sends a message to each child A_j $V_{i \rightarrow j} = \{X_s = x_s^*\} \cup X_i = x_i^*$, where $X_s \in Sep_i \cap Sep_j$

Value Computation

After receiving a value message from its parent, each agent computes the optimal value for its variable as:

$$x_i^* = arg \max_{x_i} (\sum_{A_j \in C_i} U_{j \to i}(x_p^*) + \sum_{A_j \in P_i \cup PP_i} F_{i,j}(x_i, x_j^*))$$

where $x_p^* = \bigcup_{A_j \in P_i \cup PP_i} \{x_j^*\}$ is the set of optimal values for A_i 's parent and pseudoparents received from A_i 's parent.

Can reuse stored tables for computing util messages

Value Propagation: messages

Value propagation

x1 < -0

X1	X2	F12	U32	U42	F12+U32+F42
0	0	-1	0	0	-1
0	1	0	-1	-1	-2
1	0	0	-1	-1	-2
1	1	-1	0	0	-1

*x*2 <- 0

Value propagation

<i>x</i> 1	<-	0
------------	----	---

X1	X2	Х3	F13	F23	F13+F23
0	0	0	-1	-1	-2
0	0	1	0	0	0
0	1	0	-1	0	-1
0	1	1	0	-1	-1
1	0	0	0	-1	-1
1	0	1	-1	0	-1
1	1	0	0	0	0
1	1	1	-1	-1	-2

DPOP complete example

DPOP analysis

- Synchronous algorithm
- Linear number of messages <u>but exponentially large</u>
- Messages (and computation) is exponential in separators size
- Separator size

 graph induced width with DFS ordering

DFS tree and efficiency

- Depth first order is crucial for DPOP efficiency
- Finding optimal order is hard
 - Optimal → minimize separator size
- Good heuristics:
 - Maximum Connected Node (MCN)
 - Maximum Cardinality Set (MCS) for DFS

DFS tree Pseudotrees

- DPOP would work on any pseudotree arrangement of primal graph
- But DFS induces only a specific set of orderings:
 - Not all pseudotres are DFS trees
- We might <u>loose good orderings</u> to keep <u>computation</u> <u>local</u>
 - Trade-off depends on applications

Summary

- DCOPs, general framework to address Multi-Agent coordination
 - Many solution techniques for (relatively) large scale systems
- Complete approaches
 - Suffer from exponential element (DCOPs are hard problems)
 - ADOPT:
 - search based, asynchronous
 - Small messages but exponentially many

– DPOP:

- Dynamic programming based, synchronous
- Few messages but exponentially large
- Typically much more efficient than ADOPT

References

Multiagent Systems edited by *G. Weiss* MIT Press, 2013, 2nd edition http://www.the-mas-book.info/index.html

Chapter 12 Distributed Constraint Handling and Optimization

A. Farinelli, M. Vinyals, A. Rogers, and N.R. Jenning

FURTHER READING

Constraint Network

• Constraint Processing, R. Dechter, Morgan Kaufmann

<u>ADOPT</u>

[Modi et al., 2005] P. J. Modi, W. Shen, M. Tambe, and M.Yokoo. ADOPT:
 Asynchronous distributed constraint optimization with quality guarantees. Artificial Intelligence Journal, (161):149-180, 2005.

DPOP

[Petcu 2007] A. Petcu. A Class of Algorithms for Distributed Constraint
 Optimization. PhD. Thesis No. 3942, Swiss Federal Institute of Technology
 (EPFL), Lausanne (Switzerland), 2007. (Chapters 2, 3 and 4)