Wstęp do informatyki wylkad 2, Systemy liczbowe z ograniczoną długością rejestru.

Rafał Grot

October 14, 2022

Contents

1	$\mathbf{System} \ \mathbf{NKB}_{(N)}$	2
2	$\mathbf{System} \ \mathbf{U2}_{(N)}$	2
3	$\mathrm{DEC} \to \mathrm{NKB}_{(\mathbf{N})}$	2
4	$\mathbf{NKB}_N \to \mathbf{DEC}$	2
5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3 3 3 3 3 3
6	$\mathbf{NKB}_N \to \mathbf{U2}_N$	4
7	$\mathbf{NKB}_N o \mathbf{U2}_M, M > N$	4
8	$\mathbf{U2}_{(N)} o \mathbf{NKB}_{(N)}$	4
9	$\mathbf{U2}_{(M)} o \mathbf{NKB}_{(N)}$	4
10	Jakieś pierdoły	4
11	$\mathbf{NKB}_N o \mathbf{NKB}_{(8)}, M > N$	4

$$\begin{aligned} \mathbf{12} \ \mathbf{NKB}_{(N)} & \rightarrow \mathbf{NKB}_{(M)}, M < N \\ \mathbf{i} \ \mathbf{U2}_{(N)} & \rightarrow \mathbf{U2}_{(M)}, M < N \end{aligned}$$

5

1 System $NKB_{(N)}$

Rejestr:
$$\begin{array}{c|ccccc} \operatorname{Rejestr:} & a_{N-1} & a_{N-2} & \dots & a_1 & a_0 \\ \operatorname{Wagi\ cyfr:} & 2^{N-1} & 2^{N-2} & 2^1 & 2^0 \\ \operatorname{Zakres:} & \operatorname{L}_{\operatorname{NKB}}(N) = [0, 2^N - 1] \end{array}$$

2 System $U2_{(N)}$

Rejestr:
$$\begin{bmatrix} a_{N-1} & a_{N-2} & \dots & a_1 & a_0 \end{bmatrix}$$

Wagi cyfr: $-2^{N-1} & 2^{N-2} & 2^1 & 2^0 \end{bmatrix}$
Zakres: $L_{U2(N)} = [-2^{N-1}, 2^{N-1} - 1]$

$3 \quad \mathrm{DEC} o \mathrm{NKB}_{\mathrm{(N)}}$

$$L_{\text{DEC}}: 2 = W_0 \qquad R_0$$

$$W_0: 2 = W_1 \qquad R_1$$

$$\vdots \qquad \vdots$$

$$\frac{W_{N-2}: 2 = W_{N-1}}{W_{N-1}: 2 = W_N} \qquad R_N$$

$$W_N: 2 = W_{N+1} \qquad R_{N+1}$$

$$\vdots \qquad \vdots$$

$$W_{M-1}: 2 = 0 \qquad R_{M-1}$$

$\mathbf{4}\quad \mathbf{NKB}_N \to \mathbf{DEC}$

$$L_{DEC} = \sum_{i=0}^{N-1} a_i \times 2^i$$

${f 5} \quad {f DEC} ightarrow {f U2}_{(N)}$

- 1. $DEC \rightarrow NKB_{(N)}$
- 2. Dla $L_{DEC \geq 0}$ KONIEC;

$\bullet\,$ Dla L $_{\rm DEC<0}$ Zamiana znaku

5.1 Zamiana znaku

5.2 Warunek

$$L_{\text{DEC}} = \left[-2^{N-1}, 2^{N-1} - 1 \right]$$

Innaczej się nie zmieści w rejestrze

5.3 Przykłady

$5.3.1 \quad L_{\mathrm{DEC}} = 127$

$$\begin{array}{ll} L_{NKB} & = 011111111 \\ L_{U2} & = 01111111 \end{array}$$

$5.3.2 \quad L_{\rm DEC} = \text{-}127$

$$|\mathcal{L}_{\mathrm{DEC}}| = L_{\mathrm{NKB(8)}} = 01111111$$
 10000000
 $+ 0000001$
 $10000001_{\mathrm{U2(8)}} = -128$

$5.3.3 \quad L_{\rm DEC} = 128$

$$\begin{split} L_{NKB(8)} &= 10000000_{NKB(8)} \\ L_{U2(8)} &\neq 10000000_{U2(8)} = -128_{DEC} \end{split}$$

5.3.4 $L_{ m DEC}=$ -128

$$\begin{split} |L_{DEC}| = & 10000000 \\ 01111111 \\ + & 00000001 \\ \hline & 10000000_{U2(8)} \end{split} = -128 \end{split}$$

6 NKB $_N \rightarrow U2_N$

Nie istnieje!

Zmiana Interpretacji

7 NKB_N
$$\rightarrow$$
 U2_M, $M > N$

Istneje

8
$$U2_{(N)} \rightarrow NKB_{(N)}$$

Nie istnieje

$$\mathbf{9}\quad \mathbf{U2}_{(M)}\to \mathbf{NKB}_{(N)}$$

Nie istnieje dla dowolnego M>0, N>0 .

10 Jakieś pierdoły

- $A_{\rm DEC} = 128$
- $B_{\rm DEC} = 127$
- $A_{U2(8)} > B_{U2(8)} = FALSE$
- $A_{\text{U2(16)}} > B_{\text{U2(16)}} = \text{TRUE}$

11 $\mathbf{NKB}_N \to \mathbf{NKB}_{(8)}, M > N$

•

$$\mathbf{L}_{\mathrm{NKB}_{(N)}} = \left[\begin{array}{c|cccc} \mathbf{a}_{N-1} & \mathbf{a}_{N-2} & \dots & \mathbf{a}_1 & \mathbf{a}_0 \end{array}\right]_{\mathrm{NKB}(N)}$$

ullet

$$L_{NKB(M)} = \begin{bmatrix} 0 & 0 & \dots & a_{N-1} & a_{N-2} & \dots & a_1 & a_0 \end{bmatrix}_{NKB(N)}$$

$$\begin{aligned} \mathbf{12} \quad \mathbf{NKB}_{(N)} &\to \mathbf{NKB}_{(M)}, M < N \\ \mathbf{i} \ \mathbf{U2}_{(N)} &\to \mathbf{U2}_{(M)}, M < N \end{aligned}$$

$$L_{NKB(N)} = \begin{bmatrix} a_{N-1} & a_{N-2} & \dots & a_1 & a_0 \\ L_{NKB(M)} = \begin{bmatrix} a_{M-2} & \dots & a_1 & a_0 \end{bmatrix}$$