Corso di Algebra per Informatica

Lezione 31: Esercizi

In questi esercizi, una volta fissato senza ambiguità un intero positivo n, denoteremo $[m]_n$ con \overline{m} .

- (1) Se $(A, +\cdot)$ è un anello commutativo unitario, dimostrare che anche $(A[x], +\cdot)$ è un anello commutativo unitario.
- (2) Trovare quattro polinomi $a, b, c, d \in \mathbb{Z}_8$ tutti diversi tra loro, tali che $f = \overline{2}x 1 \in \mathbb{Z}_8$ si possa scrivere come f = ab e f = cd.
- (3) Sia n > 1 un numero intero e sia $f_n = \overline{3}x^4 + \overline{15}x^3 + \overline{60}x^2 + \overline{6}x + \overline{3} \in \mathbb{Z}_n[x]$. Qualora possibile, stabilire per quali valori di n ha grado 4, per quali valori di n ha grado $-\infty$, per quali valori di n ha grado 3.
- (4) Sia $f = \overline{3}x^2 + 1 \in \mathbb{Z}_{14}[x]$ e sia g un polinomio di grado 3 in $\mathbb{Z}_{14}[x]$. Possiamo dire qual è il grado di fg? E se $h = \overline{2}x^2 + 1$ possiamo dire qual è il grado di gh?
- (5) Trovare un polinomio monico che sia prodotto di due polinomi non monici in $\mathbb{Z}_7[x]$
- (6) Effettuare la divisione lunga tra i polinomi $4x^4 + 3x + 1$ e $x^2 + x$ in $\mathbb{Q}[x]$ e in $\mathbb{Z}[x]$.
- (7) Effettuare la divisione lunga tra i polinomi $\overline{4}x^4 + \overline{3}x + \overline{1}$ e $\overline{2}x^2 + x$ in $\mathbb{Z}_2[x]$
- (8) Trovare in $(\mathbb{Z}_4[x], +, \cdot)$ un polinomio invertibile e non costante.