Assignment 3: Data Exploration

Leyi Ruan

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on Data Exploration.

Directions

- 1. Change "Student Name" on line 3 (above) with your name.
- 2. Work through the steps, **creating code and output** that fulfill each instruction.
- 3. Be sure to **answer the questions** in this assignment document.
- 4. When you have completed the assignment, **Knit** the text and code into a single PDF file.
- 5. After Knitting, submit the completed exercise (PDF file) to the dropbox in Sakai. Add your last name into the file name (e.g., "Salk_A03_DataExploration.Rmd") prior to submission.

The completed exercise is due on <>.

Set up your R session

1. Check your working directory, load necessary packages (tidyverse), and upload two datasets: the ECOTOX neonicotinoid dataset (ECOTOX_Neonicotinoids_Insects_raw.csv) and the Niwot Ridge NEON dataset for litter and woody debris (NEON_NIWO_Litter_massdata_2018-08_raw.csv). Name these datasets "Neonics" and "Litter", respectively.

```
library(tidyverse)
getwd()
```

[1] "/Users/ruanleyi/Documents/Year2/872 Environmental Data Analytics/Environmental_Data_Analytics_2

```
Neonics<-read.csv("../Data/Raw/ECOTOX_Neonicotinoids_Insects_raw.csv")
Litter<-read.csv("../Data/Raw/NEON_NIWO_Litter_massdata_2018-08_raw.csv")
```

Learn about your system

- 2. The neonicotinoid dataset was collected from the Environmental Protection Agency's ECOTOX Knowledgebase, a database for ecotoxicology research. Neonicotinoids are a class of insecticides used widely in agriculture. The dataset that has been pulled includes all studies published on insects. Why might we be interested in the ecotoxicologoy of neonicotinoids on insects? Feel free to do a brief internet search if you feel you need more background information.
 - Answer: They are absorbed by plants and can be present in pollen and nectar, making them toxic to bees. There was uncertainty about the impact these insecticides were having on bees.
- 3. The Niwot Ridge litter and woody debris dataset was collected from the National Ecological Observatory Network, which collectively includes 81 aquatic and terrestrial sites across 20 ecoclimatic domains. 32 of these sites sample forest litter and woody debris, and we will focus on the Niwot Ridge long-term ecological research (LTER) station in Colorado. Why might we be interested in studying litter and woody debris that falls to the ground in forests? Feel free to do a brief internet search if you feel you need more background information.

Answer: Plant debris, including woody debris and litter, is an essential but frequently overlooked component of carbon (C) storage in forest ecosystems.

4. How is litter and woody debris sampled as part of the NEON network? Read the NEON_Litterfall_UserGuide.pdf document to learn more. List three pieces of salient information about the sampling methods here:

Answer: * The litterfall and fine woody debris sampling data products provide mass data for plant functional groups from individual sampling bouts. * Spatial Sampling Design * Temporal Sampling Design

Obtain basic summaries of your data (Neonics)

5. What are the dimensions of the dataset?

dim(Neonics)

[1] 4623 30

6. Using the summary function on the "Effects" column, determine the most common effects that are studied. Why might these effects specifically be of interest?

summary(as.factor(Neonics\$Effect))

## ##	Accumulation 12	Avoidance 102	Behavior 360	Biochemistry
##	Cell(s)	Development	Enzyme(s)	Feeding behavior
## ##	9 Genetics	136 Growth	62 Histology	255 Hormone(s)
##	82	38	5	1
## ##	Immunological 16	Intoxication 12	Morphology 22	Mortality 1493
## ##	Physiology 7	Population 1803	Reproduction 197	

Answer: Population is the most common effect that are studied

7. Using the summary function, determine the six most commonly studied species in the dataset (common name). What do these species have in common, and why might they be of interest over other insects? Feel free to do a brief internet search for more information if needed.

summary(as.factor(Neonics\$Species.Common.Name))

##	Honey Bee	Parasitic Wasp
##	667	285
##	Buff Tailed Bumblebee	Carniolan Honey Bee
##	183	152
##	Bumble Bee	Italian Honeybee
##	140	113
##	Japanese Beetle	Asian Lady Beetle
##	94	76
##	Euonymus Scale	Wireworm
##	75	69
##	European Dark Bee	Minute Pirate Bug
##	66	62
##	Asian Citrus Psyllid	Parastic Wasp
##	60	58
##	Colorado Potato Beetle	Parasitoid Wasp
##	57	51
##	Erythrina Gall Wasp	Beetle Order

##	49	47
##	Snout Beetle Family, Weevil	Sevenspotted Lady Beetle
##	47	46
##	True Bug Order	Buff-tailed Bumblebee
##	45	Galdania I aman
##	Aphid Family	Cabbage Looper
##	38 Creative to Unitedly	Bracerid Hear
##	Sweetpotato Whitefly 37	Braconid Wasp 33
##	Cotton Aphid	Predatory Mite
##	33	33
##	Ladybird Beetle Family	Parasitoid
##	30	30
##	Scarab Beetle	Spring Tiphia
##	29	29
##	Thrip Order	Ground Beetle Family
##	29	27
##	Rove Beetle Family	Tobacco Aphid
##	27	27
##	Chalcid Wasp	Convergent Lady Beetle
##	25	25
##	Stingless Bee	Spider/Mite Class
##	25	24
##	Tobacco Flea Beetle	Citrus Leafminer
##	24	23
##	Ladybird Beetle 23	Mason Bee 22
##		
##	Mosquito 22	Argentine Ant 21
##	Beetle	Flatheaded Appletree Borer
##	21	20
##	Horned Oak Gall Wasp	Leaf Beetle Family
##	20	20
##	Potato Leafhopper	Tooth-necked Fungus Beetle
##	20	20
##	Codling Moth	Black-spotted Lady Beetle
##	19	18
##	Calico Scale	Fairyfly Parasitoid
##	18	18
##	Lady Beetle	Minute Parasitic Wasps
##	18	18
##	Mirid Bug	Mulberry Pyralid
## ##	18 Silkworm	18 Vedalia Beetle
##	18	vedalia beetle 18
##	Araneoid Spider Order	Bee Order
##	17	17
##	Egg Parasitoid	Insect Class
##	17	17
##	Moth And Butterfly Order	Oystershell Scale Parasitoid
##	17	17
##	Hemlock Woolly Adelgid Lady Beetle	Hemlock Wooly Adelgid
##	16	16
##	Mite	Onion Thrip

##	16	16
##	Western Flower Thrips	Corn Earworm
##	15	14
##	Green Peach Aphid	House Fly
##	14	14
##	Ox Beetle	Red Scale Parasite
##	14	14
##	Spined Soldier Bug	Armoured Scale Family
##	14	13
##	Diamondback Moth	Eulophid Wasp
##	13	13
##	Monarch Butterfly	Predatory Bug
##	13	13
##	Yellow Fever Mosquito	Braconid Parasitoid
##	13	12
##	Common Thrip	Eastern Subterranean Termite
##	12	12
##	Jassid	Mite Order
##	12	12
##	Pea Aphid	Pond Wolf Spider
##	12	12
##	Spotless Ladybird Beetle	Glasshouse Potato Wasp
##	11	10
##	Lacewing	Southern House Mosquito
##	10	10
##	Two Spotted Lady Beetle	Ant Family
##	10	9
##	Apple Maggot	(Other)
##	9	670

Answer: Honey Bee, Parasitic Wasp, Buff Tailed Bumblebee, Carniolan Honey Bee, Bumble Bee, Italian Honeybee. They are all in the bees category. They are of interest over other insects because bees are greatly impacted by the intesticides.

8. Concentrations are always a numeric value. What is the class of Conc.1..Author. in the dataset, and why is it not numeric?

<pre>summary(as.factor(Neonics\$Conc.1Author.))</pre>								
##	0.37/	10/	NR/	NR	1	1023	0.40/	2/
##	208	127	108	94	82	80	69	63
##	10	0.053/	100	50/	0.5/	0.03	0.05/	0.45
##	62	59	56	51	45	44	43	43
##	0.1/	0.45/	1.0/	2.27/	50	0.125	500/	0.5
##	42	40	40	40	36	33	33	32
##	0.048/	0.15/	1/	48	25.0/	12/	0.027	2.4
##	30	30	30	30	28	27	26	26
##	0.2/	0.56/	100/	3	0.01/	1000/	3/	0.336
##	25	24	23	23	22	22	22	21
##	1.5/	0.05	1.5	2.60/	20.0/	6	6.80/	62.5/
##	21	20	20	20	20	20	20	20
##	0.005	0.4/	0.18/	0.3/	1000	40	0.00355/	0.1
##	18	18	17	17	17	17	16	16
##	0.4	150/	300	80/	0.053	0.24	0.28	125/
##	16	16	16	16	15	15	15	15
##	9	0.0001	0.0004/	0.084/	0.15	0.6	12.5/	144.0/

##	15	14	14	14	14	14	14	14
##	350/	40.0/	48/	56	84/	0.17/	125	14
##	14	14	14	14	14	13	13	13
##	16	17	0.047/	0.25/	0.28/	1.28/	1.81/	112
##	13	13	12	12	12	12	12	12
##	150	2.5/	25	60/	75/	0.02/	0.025/	0.29
##	12	12	12	12	12	11	11	11
##	37.5/	4/	5	(Other)				
##	11	11	11	1817				

Answer: Conc.1..Author is character variable. It is not numeric because concentrains are based on various levels.

Explore your data graphically (Neonics)

9. Using ${\tt geom_freqpoly}$, generate a plot of the number of studies conducted by publication year.

```
ggplot(Neonics)+
  geom_freqpoly(aes(x=Publication.Year), bins= 20)
```


10. Reproduce the same graph but now add a color aesthetic so that different Test.Location are displayed as different colors.

```
ggplot(Neonics)+
geom_freqpoly(aes(x=Publication.Year, color=Test.Location), bins= 20)
```


Interpret this graph. What are the most common test locations, and do they differ over time?

Answer: Lab is the most common test locations. They do differ over time, difference between number of tests conducted in Lab and other locations are getting larger.

11. Create a bar graph of Endpoint counts. What are the two most common end points, and how are they defined? Consult the ECOTOX_CodeAppendix for more information.

```
ggplot(Neonics, aes(x =Endpoint)) +
geom_bar()
```


summary	(as.factor((Neonics\$End	point))
---------	-------------	---------------	---------

##	EC10	EC50	IC50	LC10	LC20	LC25	LC30	LC50	LC75	LC90
##	6	11	6	15	5	1	6	327	1	37
##	LC95	LC99	LD05	LD30	LD50	LD90	LD95	LOEC	LOEL	LT25
##	36	2	1	1	274	6	7	17	1664	1
##	LT50	LT90	LT99	NOEC	NOEL	NR	NR-LETH	NR-ZERO		
##	65	7	2	19	1816	167	86	37		

Answer: LOEL and NOEL are two most common points. They are defined lowest-observable-effect-level, and no-observed-effects-residue.

Explore your data (Litter)

12. Determine the class of collectDate. Is it a date? If not, change to a date and confirm the new class of the variable. Using the unique function, determine which dates litter was sampled in August 2018.

class(Litter\$collectDate)

[1] "character"

Litter\$collectDate<- as.Date(Litter\$collectDate, format = "%Y-%m-%d")
class(Litter\$collectDate)</pre>

[1] "Date"

unique(Litter\$collectDate)

[1] "2018-08-02" "2018-08-30"

13. Using the unique function, determine how many plots were sampled at Niwot Ridge. How is the information obtained from unique different from that obtained from summary?

```
unique(Litter$plotID)
```

```
## [1] "NIWO_061" "NIWO_064" "NIWO_067" "NIWO_040" "NIWO_041" "NIWO_063" ## [7] "NIWO_047" "NIWO_051" "NIWO_058" "NIWO_046" "NIWO_062" "NIWO_057" summary(Litter$plotID)
```

```
## Length Class Mode
## 188 character character
```

Answer: unique function gives the values that plotID can be; summary function returns the class, mode, and length of plotID, which is not what we need.

14. Create a bar graph of functionalGroup counts. This shows you what type of litter is collected at the Niwot Ridge sites. Notice that litter types are fairly equally distributed across the Niwot Ridge sites.

```
ggplot(Litter, aes(x = functionalGroup)) +
geom_bar()
```


15. Using geom_boxplot and geom_violin, create a boxplot and a violin plot of dryMass by functional-Group.

```
ggplot(Litter) +
geom_boxplot(aes(x = functionalGroup, y = dryMass))
```


Why is the boxplot a more effective visualization option than the violin plot in this case?

Answer: because violin chart cannot reflect how the drymass data is distributed on each functional group.

What type(s) of litter tend to have the highest biomass at these sites?

Answer: Needles