

3D-StyleGAN: A Style-Based Generative Adversarial Network for Generative Modeling of Three-Dimensional Medical Images

Sungmin Hong

Postdoctoral Research Fellow
JPK Stroke Research Center
Massachusetts General Hospital
Harvard Medical School

Collaborators

Razvan Marinescu, PhD (MIT)

Adrian V. Dalca, PhD (HMS, MIT)

Martin Bretzner, MD (HMS)

Anna Bonkhoff, MD (HMS)

Natalia S. Rost, MD, MPH (HMS)

Polina Golland, PhD (MIT)

Generative Modeling of 2D Natural Images

Randomly Generated Human Face Images*

^{*} Karras, et al., "Analyzing and Improving the Image Quality of StyleGAN," CVPR 2020.

Generative Modeling of 2D Natural Images

Expression Transfer Example*

Image Enhancement Example**

super-

** Marinescu, et al., "Bayesian Image Reconstruction using Deep Generative Models," ArXiv 2020.

^{*} Abdal, et al., "Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space?," ICCV 2019.

Generative Modeling of 2D Medical Images

2D Medical Image Synthesis Examples*

Real Generated (FID: 9.2)

Real Generated (FID: 7.3)

* Marinescu, et al., "Bayesian Image Reconstruction using Deep Generative Models," ArXiv 2020.

Generative Modeling of 3D Medical Images

Full 3D Medical Image Synthesis Examples*,**

3D-VAE-GAN

Kwon, et al. MICCAI 2019

3Dα-GAN

3D VAE

Kwon, et al. MICCAI 2019

Volokitin, et al. MICCAI 2020

Real

^{*} Kwon, et al., "Generation of 3D Brain MRI Using AE GAN," MICCAI 2019

^{**} Volokitin, et al., "Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE," MICCAI 2020

Standard GAN Architecture*

^{*} Modified from Course Slide, Ava Soleimany, MIT 6.S191 Introduction to Deep Learning, Deep Generative Models.

3D-StyleGAN Generator Architecture

Results – Uncurated Generated Images

2mm Resolution

Results – Uncurated Generated Images

1mm Resolution

Qualitative Comparisons

Kwon, et al. MICCAI 2019*

* !! Figures captured from their original papers

Volokitin, et al. MICCAI 2020*

3D-StyleGAN

Image Synthesis over Training Iterations

Latent Space Projection and Reconstruction

Unseen Real

Proj.

Style Mixing Examples

High Resolution Layer Projection

Low Resolution Layer Projection

High Resolution Layer Projection

Low Resolution Layer Projection

Discussion

- We proposed 3D-StyleGAN for the generative modeling of full 3D medical images
- High quality generated brain T1 MR images
- The controllability and interpretability of 3D-StyleGAN
 - Latent Space Projection and Reconstruction
 - Style Mixing
- Can impact..
 - Downstream Tasks: Image Enhancement, Motion Correction, Disease Modeling
- GitHub Repo
 - https://github.com/sh4174/3DStyleGAN

Latent Space Statistics with Deep Generative Models

^{*} Shao, et al., "The Riemannian Geometry of Deep Generative Models," CVPR Workshops, 2018

^{**} Kuhnel, et al., "Latent Space Non-Linear Statistics," ArXiv, 2018.

Latent Space Statistics with Deep Generative Models

- Atlas / Intrinsic Mean
- Conditional Atlas / Regression

Geometric Atlas Estimation*

* Dalca, et al., "Learning Conditional Deformable Templates with Convolutional Networks," NeurIPS 2019.

Latent Space Statistics with Deep Generative Models

- Atlas Estimation for Brain Images with Pathology
- Geometric atlas estimation does not reflect non-geometric pathological lesions in images.

