Université Hassiba Benbouali de Chlef Faculté des Sciences Exactes et Informatique Département de Mathématiques

Année Universitaire : 2020-2021 Module : Analyse fonctionnelle Niveau : Master 1

Feuille de TD 2

Exercice 1.

a. Soit X un espace vectoriel normé sur \mathbb{C} , et soit f une forme linéaire sur X. Montrer que soit f est identiquement nulle, ou soit elle est surjective.

b. Montrer que si f et g sont deux formes linéaires non nulles sur X, alors

$$(\ker f = \ker g) \iff (\exists \lambda \in \mathbb{C}, \lambda \neq 0 : g = \lambda f)$$

Exercice 2.

Considérons les espaces vectoriels normés ℓ_1 et ℓ_{∞} munis des normes $\|x\|_1 = \sum_{n=1}^{+\infty} |x_n|$ et $\|x\|_{\infty} = \sup_{n\geq 1} |x_n|$, $x = (x_n)_n \subset \mathbb{C}$ respectivement. On note \mathcal{C}_0 le sous-espace de ℓ_{∞} constitué des suites qui convergent vers 0, et \mathcal{P} l'ensemble des suites complexes nulles à partir d'un certain rang, i.e.

$$C_0 = \left\{ x = (x_n)_n \subset \ell_\infty : \lim_{n \to +\infty} x_n = 0 \right\}$$

$$P = \left\{ x = (x_n)_n \subset \mathbb{C} , \exists N_0 \in \mathbb{N} / \forall n \ge N_0 : x_n = 0 \right\}$$

- 1. Vérifier les inclusions $\mathcal{P} \subset \ell_1 \subset \mathcal{C}_0 \subset \ell_{\infty}$.
- 2. Comparer sur ℓ_1 la norme $\|.\|_1$ avec la restriction de $\|x\|_{\infty}$ de ℓ_{∞} à ℓ_1 .
- 3. Montrer que \mathcal{P} est une partie dense de $(\ell_1, \|.\|_1)$.
- 4. Montrer que \mathcal{P} est une partie dense de $(\mathcal{C}_0, \|.\|_{\infty})$.
- 5. Montrer que \mathcal{P} n'est pas une partie dense de $(\ell_{\infty}, \|.\|_{\infty})$. (Utiliser la suite constante $x_n = 1, n \geq 1$)
- 6. Montrer que l'application $\Phi \colon \mathcal{C}_{0}^{'} \to \ell_{1}$ définie par $f \mapsto \Phi(f) = (f(e_{k}))_{k \geq 1}$ où $e_{n} = (\delta_{nk})_{k \geq 1}$, $\delta_{nk} = \begin{cases} 1, & \text{si } n = k \\ 0, & \text{si } n \neq k \end{cases}$ est un isomprphisme isométrique. Que peut-on déduire pour l'espace ℓ_{1} ?

Exercice 3.

a. Soit Ω un sous-ensemble de \mathbb{R}^n dont la mesure de Lebesgue est finie, i.e. $\mu(\Omega) < +\infty$, et soit pour tout $p, 1 \leq p < +\infty$, l'espace vectoriel normé

$$L_{p}(\Omega) = \left\{ f : \Omega \to \mathbb{R}, \int_{\Omega} |f(x)|^{p} dx < +\infty \right\}$$

et $L_{\infty}(\Omega)$ se note à l'espace des fonctions essentiellement bornées sur Ω , i.e.

$$L_{\infty}(\Omega) = \left\{ f \colon \Omega \to \mathbb{R}, \sup_{x \in \Omega} |f(x)| < +\infty \right\}$$

munis des normes $\|f\|_p = (\int\limits_{\Omega} |f(x)|^p dx)^{\frac{1}{p}}, (1 \le p < +\infty)$ et $\|.\|_{\infty} = \sup\limits_{x \in \Omega} |f(x)|$ respectivement. - Montrer que $L_p(\Omega) \subset L_q(\Omega)$ si q < p. En particulier, on a pour 1 :

$$L_{\infty}(\Omega) \subset L_q(\Omega) \subset L_2(\Omega) \subset L_p(\Omega) \subset L_1(\Omega)$$

$$(\bigstar \bigstar)$$
 b. Soit $E=L_p([0,1]), (1 \leq p < +\infty)$, et soit l'application $A\colon E \to E, \ u \mapsto Au$ où
$$Au(x)=xu(x), \ x \in [0,1]$$

Montrer que $A \in \mathcal{L}(E)$, puis donner un majorant de sa norme.