Предсказание содержания белка по результату спектрограммы

Алексей Усачев, Валерий Бабушкин

Данные

Тренировочная выбрка: 5620 строк (содержание белка) по 330 параметров (показатели спектрометра на разных частотах). Все значения float.

Тестовая выборка: 458 строк, то же количество параметров.

ВАЖНО:объекты тестового множества относятся к другому подклассу, чем объекты обучающего

Для очистки данных использовался признак: выбросами считаются значения, отличающиеся от среднего больше, чем СКО*3. После нее осталось 5606 значений.

Для повторной очистки использовалось расстояние Махаланобиса.

Очистка привела к некоторому улучшению моделию

Распределение образцов в тренировочном наборе

Распределение образцов в тренировочном наборе после очистки

Histogram of train\$Protein

Распределение образцов в тренировочном наборе после очистки

Histogram of train\$Protein

Задача регрессии

- Относится к машинному обучению и решается несколькими способами:
- Деревья решений
- Линейная регрессия
- Нейронные сети

Метрикой качества берем среднеквадратическое отклонение предсказаний на тестовом множестве.

Методы

- Линейная регрессия после очистки данных дала результат 0.74 на тренировочных данных и 1.41 на тестовых.
- Деревья и ridge-регрессия не подошли
- Лучшим решением оказалась нейронная сеть,

RMSEP 1.896502 - test(2.886988)

RMSEP 0.6179767 train (.8111362) NN

RMSEP 1.351587 (1.568266)

RMSEP 1.236491

RMSEP 0.95 4 нейрона, 198 итераций

