# 誰是時間管理大師

R 程式設計期末報告 第14組

指導老師:李百靈 老師

學生:數學四 407190023 吳依潔

數學四 407190049 趙方于

數學四 407190163 陳愷晴

## 目錄

| 第一章 | 绪論            | 3  |
|-----|---------------|----|
| 1-1 | 研究動機          | 3  |
| 1-2 | 研究目的          | 3  |
| 第二章 | 問卷設計的概念與架構    | 4  |
| 2-1 | 概念            | 4  |
| 2-2 | 問卷內容          | 4  |
| 2-3 | 抽樣方法          | 5  |
| 2-4 | 資料結構          | 5  |
| 2-5 | 資料篩選及轉換       | 6  |
| 第三章 | 分析結果與結論       | 7  |
| 3-1 | <b>叙述統計</b>   | 7  |
| 3-2 | 假設檢定          | 11 |
| 3-3 | 迴歸分析          | 13 |
| 3-4 | ANOVA         | 22 |
| 3-5 | 卡方獨立性檢定       | 25 |
| 3-6 | 對整體的結論        | 26 |
| 第四章 | 附錄            | 27 |
| 4-1 | 問卷網址          | 27 |
| 4-2 | 問卷網址所有步驟的R程式碼 | 27 |

## 第一章 緒論

## 1-1 研究動機

我們想以教授的角度去思考:在學期結束時,班上學生學習成績不如預期,想知道是什麼影響成績,是否會因為學院不同、課餘時間的分配、讀書的習慣、 睡眠的時間、上課專心度等影響學期成績。

## 1-2 研究目的

- 1. 學生學習成績為什麼會不如預期,時間分配是否會影響成績
- 2. 比較商、理學院的總平均差異
- 3. 學生該如何有效安排時間
- 4. 教授是否要根據性別或是年級做出不同的教學方式
- 5. 利用什麼讀書習慣和花多少讀書時間能達到最高效率

## 第二章 問卷設計的概念與架構

## 2-1 概念

因為想要討論課後娛樂時間、讀書方法和時間分配是否會影響成績,所以問卷內容包括成績、GPA、課後的一些時間分配的問題。

## 2-2 問卷內容

- 1. 基本資料
  - (1) 性別:男/女
  - (2) 學院:商學院/理學院
  - (3) 年級:大一/大二/大三/大四/大五/大六/碩一/碩二

#### 2. 成績

- (1) 110 年度第1 學期學分數
- (2) 110 年度第1學期學業平均
- (3) 學業總平均
- (4) GPA
- (5) 讀書習慣:紙本講義(課本、老師自編講義、手寫筆記…)/電子講義 (平版、電腦…)/紙本講義電子講義並用
- (6) 是否有被當的科目:是/否

#### 3. 時間

- (1) 每天睡眠時間
- (2) 一週讀書時間
- (3) 一週使用手機時間(玩遊戲、滑社群…)
- (4) 一週娛樂時間(看電影、出去玩、逛街…)
- (5) 這題請選指定答案男生請選1女生請選0:0/1

#### 4. 自我約束力

- (1) 一週參加社團時間
- (2) 一週運動時間
- (3) 一週打工時間
- (4) 幾點上床睡覺 是否常常熬夜
- (5) 是否通勤:是/否

- (6) 作業繳交時間:提早3天以上交/當天在時間內交/壓線到最後一刻交/ 直接忘記 或 不交
- (7) 這題請選指定答案男生請選1女生請選0:0/1
- (8) 上課專注度 0/1/2/3/4/5/6/7/8/9/10

## 2-3 抽樣方法

研究的母體為淡江大學理學院和商學院的學生,並設計 Google 表單 蒐集想要的資訊,利用便利抽樣的方式找數學系上的學生填寫,簡單隨機 抽樣的方式放在網路平台給淡江大學的學生填寫。

## 2-4 資料結構

一開始利用 Google 表單蒐集的資料是 Excel 檔(圖 A 為前 10 筆的 EXCEL 資料), 陣列型資料結構,將檔案讀入 R 後,變成資料框架,而每個變數名稱和一開始的型態如下

- 1. 基本資料
- ▶ 性別:文字型
- ▶ 學院:文字型
- ▶ 年級:文字型
- 2. 成績
- ▶ 第一學期學分數:數值型
- ▶ 第一學期平均:數值型
- ▶ 總平均:數值型
- ▶ GPA: 數值型
- ▶ 讀書習慣:文字型
- ▶ 是否被當:文字型
- 3. 時間
- ▶ 睡覺時間:數值型
- ▶ 讀書時間:數值型
- ▶ 滑手機時間:數值型
- ▶ 娛樂時間:數值型
- ▶ 社團時間:數值型

運動時間:數值型打工時間:數值型

4. 自我約束力

※接著利用附錄的 R 程式碼將資料框架內的變數型態做轉換,並且刪除無效的資料。

| 1                      | 時間戳記                                   | 1. 性別 2. 學院別 | 3. 年級                     | 4. 110年度第1學期4                                         | 學5.110年度第1學期                 | 學第6.學業總平均 7.     | GPA 8. 讀書習f | 9                               | 9. 是否有被當的科                                                                             | 10. 每天睡                                                 | 眠時間11.                                                          | 一週讀書時間12                                                                 | 一週使用手機時間 13. 一                  | 週娛樂時間(看 #這題                                   |
|------------------------|----------------------------------------|--------------|---------------------------|-------------------------------------------------------|------------------------------|------------------|-------------|---------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------|-----------------------------------------------|
| 2                      | 4/14/2022 11:30:28                     | 女理學院         | 大四                        |                                                       | 13                           | 95 86.46         | 3.758 紙本講義+ | 電子講話                            | 否                                                                                      |                                                         | 8                                                               | 45                                                                       | 50                              | 18                                            |
| 3                      | 4/14/2022 11:35:47                     | 女 理學院        | 大四                        |                                                       | 19 91                        | .37 80.47        | 3.303 紙本講義+ | 電子講話                            | 否                                                                                      |                                                         | 8                                                               | 18                                                                       | 14                              | 10                                            |
| 4                      | 4/14/2022 12:25:27                     | 女 商學院        | 大四                        |                                                       | 11 82                        | .45 75.57        | 2.848 紙本講義+ | 電子講長                            | 是                                                                                      |                                                         | 5                                                               | 0.5                                                                      | 24                              | 5.5                                           |
| 5                      | 4/14/2022 15:29:03                     | 男 理學院        | 大四                        | :                                                     | 30 63                        | .03 68.68        | 2.269 紙本講義  | [課本、長                           | 是                                                                                      |                                                         | 6                                                               | 0                                                                        | 15                              | 10                                            |
| 6                      | 4/14/2022 16:40:24                     | 男 理學院        | 碩一                        |                                                       | 11 92                        | .91 92.91        | 4 電子講義      | (平版、 る                          | 否                                                                                      |                                                         | 5                                                               | 5                                                                        | 20                              | 0                                             |
| 7                      | 4/14/2022 18:42:36                     | 男 理學院        | 大二                        |                                                       | 12 54                        | .25 50.6         | 2.4 電子講義    | (平版、具                           | 是                                                                                      |                                                         | 8                                                               | 3                                                                        | 38.5                            | 4                                             |
| 8                      | 4/14/2022 19:10:18                     | 男 理學院        | 大三                        | :                                                     | 22 69                        | .73 61.78        | 1.712 紙本講義+ | 電子講話                            | 否                                                                                      |                                                         | 8                                                               | 14                                                                       | 30                              | 25                                            |
| 9                      | 4/14/2022 19:15:06                     | 女 理學院        | 大一                        |                                                       | 18 75                        | .35 75.35        | 2.882 紙本講義  | [課本、]                           | 否                                                                                      |                                                         | 6.5                                                             | 7.5                                                                      | 12                              | 4                                             |
| 10                     | 4/14/2022 19:16:35                     | 男 理學院        | 大四                        |                                                       | 14 80                        | .65 83.74        | 2.875 電子講義  | (平版、具                           | 是                                                                                      |                                                         | 6.5                                                             | 3                                                                        | 50                              | 2                                             |
|                        |                                        |              |                           |                                                       |                              |                  |             |                                 |                                                                                        |                                                         |                                                                 |                                                                          |                                 |                                               |
| 1 1                    | 2. 一週使用手機時間                            | 13. 一週娛樂時間   | (看#這題                     | 請選指定答案 14.                                            | 一週參加社團時間 15                  | 5. 一週運動時間        | 16. 一週打工時間  | 17. 刹                           | 幾點上床睡覺 是否                                                                              | 18. 是否通勤                                                | 助                                                               | 19. 作業繳交時間                                                               | 智#這題請填指定數字20.                   | 上課專注度                                         |
| 1 1                    | <ol> <li>2. 一週使用手機時間<br/>50</li> </ol> |              | (看'#這題<br>18              | 請選指定答案 14.<br>0                                       | 一週參加社團時間 15                  | 5. 一週運動時間<br>0.5 |             | 17. ¾                           |                                                                                        |                                                         |                                                                 | 19. 作業繳交時間<br>當天在時間內交                                                    |                                 | 上課專注度                                         |
| 1 1 2 3                |                                        |              | (看 #這題<br>18<br>10        | 請選指定答案14.00                                           | 一週參加社團時間 15<br>0<br>4        |                  |             | 17. ¾<br>0<br>0                 | 11:30:00 PM                                                                            | 通勤 (住家                                                  | 裡 需要搭頭                                                          |                                                                          |                                 | 上課專注度<br>8<br>9                               |
| 1 1 2 3 4              | 50                                     |              | (看 #這題<br>18<br>10<br>5.5 | 請選指定答案 14.<br>0<br>0<br>0                             | 一週參加社團時間 15<br>0<br>4<br>0.5 |                  |             | 17. 频<br>0<br>0<br>0            | 11:30:00 PM<br>12:00:00 AM                                                             | 通勤(住家<br>通勤(住家                                          | 裡 需要搭頭裡 需要搭頭                                                    | <b>『</b> 當天在時間內交                                                         | 0                               | 上課專注度<br>8<br>9<br>7                          |
| 1 1<br>2 3<br>4 5      | 50<br>14                               |              | 18<br>10                  | 請選指定答案 14.<br>0<br>0<br>0<br>0                        | 0                            |                  |             | 17. ¾ 0 0 0 0                   | 11:30:00 PM<br>12:00:00 AM<br>01:30:00 AM                                              | 通勤(住家<br>通勤(住家<br>通勤(住家                                 | 裡 需要搭頭裡 需要搭頭裡 需要搭頭                                              | ■當天在時間內交<br>■提早3天以上交                                                     | 0                               | 上課專注度<br>8<br>9<br>7<br>1                     |
| 1 1<br>2 3<br>4 5<br>6 | 50<br>14<br>24                         |              | 18<br>10<br>5.5           | 請選指定答案 14.<br>0<br>0<br>0<br>1<br>1                   | 0                            | 0.5<br>4<br>0    |             | 17.  \$\frac{4}{9}\$ 0 0 0 0 21 | 11:30:00 PM<br>12:00:00 AM<br>01:30:00 AM<br>02:00:00 AM                               | 通勤(住家<br>通勤(住家<br>通勤(住家<br>通勤(住家                        | 裡 需要搭頭裡 需要搭頭裡 需要搭頭裡 需要搭頭裡 需要搭頭                                  | ■當天在時間內交<br>■提早3天以上交<br>■當天在時間內交                                         | 0                               | 上課專注度<br>8<br>9<br>7<br>1<br>8                |
| 1 1 2 3 4 5 6 7        | 50<br>14<br>24<br>15                   |              | 18<br>10<br>5.5           | 請選指定答案 14.<br>0<br>0<br>0<br>1<br>1<br>1              | 0                            | 0.5<br>4<br>0    |             | 0<br>0<br>0<br>0                | 11:30:00 PM<br>12:00:00 AM<br>01:30:00 AM<br>02:00:00 AM                               | 通勤(住家:<br>通勤(住家:<br>通勤(住家:<br>通勤(住家:<br>通勤(住家:          | 裡 需要搭<br>裡 需要搭<br>裡 需要搭<br>裡 需要搭<br>裡 需要搭<br>裡 需要搭              | E 當天在時間內交<br>E 提早3天以上交<br>E 當天在時間內交<br>E 提早3天以上交                         | 0<br>0<br>0<br>1<br>1           | 上課專注度<br>8<br>9<br>7<br>1<br>8<br>5           |
| 1 1 2 3 4 5 6 7 8      | 50<br>14<br>24<br>15<br>20             |              | 18<br>10<br>5.5           | 請選指定答案 14.<br>0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0                            | 0.5<br>4<br>0    |             | 0<br>0<br>0<br>0                | 11:30:00 PM<br>12:00:00 AM<br>01:30:00 AM<br>02:00:00 AM<br>01:30:00 AM                | 通勤(住家:<br>通勤(住家:<br>通勤(住家:<br>通勤(住家:<br>通勤(住家:<br>住宿(學校 | 裡 需要搭頭裡 需要搭頭裡 需要搭頭裡 需要搭頭裡 需要搭頭裡 需要搭頭裡 需要搭頭裡 需要搭頭                | E 當天在時間內交<br>E 提早3天以上交<br>E 當天在時間內交<br>E 提早3天以上交<br>E 提早3天以上交            | 0<br>0<br>0<br>1<br>1           | 上課專注度<br>8<br>9<br>7<br>1<br>8<br>5           |
| 1 1 2 3 4 5 6 7 8 9    | 50<br>14<br>24<br>15<br>20<br>38.5     |              | 18<br>10<br>5.5           | 請選指定答案 14.<br>0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 | 0                            | 0.5<br>4<br>0    |             | 0<br>0<br>0<br>0                | 11:30:00 PM<br>12:00:00 AM<br>01:30:00 AM<br>02:00:00 AM<br>01:30:00 AM<br>01:00:00 PM | 通勤(住家:<br>通勤(住家:<br>通勤(住家:<br>通勤(住家:<br>住宿(學校<br>住宿(學校  | 裡 需要搭導<br>裡 需要搭導<br>需要搭導<br>需要搭導<br>裡 需要搭<br>裡 無<br>附<br>近<br>) | E 當天在時間內交<br>E 提早3天以上交<br>E 當天在時間內交<br>E 提早3天以上交<br>E 提早3天以上交<br>壓線到最後一刻 | 0<br>0<br>0<br>1<br>1<br>1<br>1 | 上課專注度<br>8<br>9<br>7<br>1<br>8<br>5<br>5<br>8 |

圖 A

## 2-5 資料篩選及轉換

- 1. 資料篩選掉的部分
  - (1) 填答時間、防亂答(皆問性別)填的不一樣的
  - (2) 重複率高的內容(第一學期學分數、第一學期平均、總平均和 GPA),因為填答的時間非常接近,絕大部分差不到一分鐘。
  - (3) 總平均的離群值(在下一章會詳細解釋刪除的原因)
- 2. 轉換:幾點睡覺原始填答為準確的時間(例如 23:00),以 22:00~00:00、00:01~04:00、04:01~07:00 及 07:01~21:59 依序分為早睡、熬夜、通宵與其他

## 第三章 分析結果與結論

## 3-1 敘述統計

#### 1. 性別



圖 B

由圖 B 得知資料中的男女比大約為 1:1.5 , 蒐集到的資料女生比較多 , 和淡江大學理學院加商學院的男女比有一點落差 , 實際的男女比大約是 1:1。

#### 2. 學院



圖 C

由圖 C 得知資料中的學院比例大約為 1:2, 蒐集到的資料商學院的人數相對較多,但和淡江大學理學院、商學院的人數比有一點落差,實際比例大約是1:7.5,沒有和實際上的比例相同。

## 3. 年級



圖 D

由圖 D 得知蒐集來的樣本接近一半是大四的學生,第二多的是大三,而大一和大二人數差不多,大五以上較少。

| 大一 | 大二 | 大三 | 大四 | 大五 | 大六 | 碩一 | 碩二 |
|----|----|----|----|----|----|----|----|
| 18 | 17 | 33 | 46 | 1  | 2  | 4  | 0  |

表(一)

## 4. 總平均(此報告主要使用的數值型變數)

| Min.  | 1st Qu. | Median | Mean           | 3rd Qu.        | Max.  | std   |
|-------|---------|--------|----------------|----------------|-------|-------|
| 16.30 | 70.00   | 78.00  | 75 <b>.</b> 61 | 82 <b>.</b> 30 | 92.91 | 10.92 |

表(二)

## 總平均直方圖



圖 E

由圖 E 得知總平均多數為 75 到 85 分,且分佈有些微的左偏

### GPA和總平均的散佈圖



圖 F

由圖 F 得知總平均和 GPA 呈正向關係,整體的相關係數為 0.730695,理學院的相關係數為 0.7665512,商學院的相關係數為 0.6950785,代表兩者高度相關;理學院的分佈較商學院分散,商學院分數高於 70 分的人佔大多數且集中在 80 分上下。

先篩過重複性太高的資料統計表

| 分數組距<br>學院 | 11~20 | 41~50 | 51~60 | 61~70 | 71~80 | 81~90 | 91~100 |
|------------|-------|-------|-------|-------|-------|-------|--------|
| 理學院        | 0     | 1     | 6     | 14    | 8     | 12    | 2      |
| 商學院        | 1     | 0     | 0     | 8     | 33    | 37    | 4      |

表(三)

離群值對迴歸分析影響很大,所以使用箱形圖法[Q1-1.5\*(Q3-Q1), Q3+1.5\*(Q3-Q1)] 來刪除離群值以降低誤差。



删除離群值後的統計表

| 分數組距學院 | 51~60 | 61~70 | 71~80 | 81~90 | 91~100 |  |  |
|--------|-------|-------|-------|-------|--------|--|--|
| 理學院    | 4     | 14    | 8     | 12    | 2      |  |  |
| 商學院    | 0     | 8     | 33    | 37    | 4      |  |  |

表(四)

總平均以10分為單位類別化,比較容易看得出成績的人數分佈情形。由表(四)可知,商學院的總平均大多數都是71到90分,而理學院可能是因為難度較高,所以有一點分散,不過比較多人是分佈在61到90分。

## 3-2 假設檢定

利用假設檢定來了解淡江大學理學院和商學院的總平均是否有差異

利用 Shapiro-Wilk 常態性檢定理學院和商學院的總平均是否符合常態分配 (1) 理學院:

| Shapiro-Wilk normality test |                              |  |  |  |  |  |
|-----------------------------|------------------------------|--|--|--|--|--|
| da                          | ata: S_DATA\$總平均             |  |  |  |  |  |
| W = 0.96256                 | W = 0.96256 p-value = 0.2169 |  |  |  |  |  |

表(五)

由表 (五)可知 p-value = 0.2169 > 0.05 故理學院的總平均是常 熊分配

### (2) 商學院:

| Shapiro-Wilk normality test   |      |  |  |  |  |  |
|-------------------------------|------|--|--|--|--|--|
| data: B_DATA\$總平均             |      |  |  |  |  |  |
| W = 0.96463 p-value = 0.02326 |      |  |  |  |  |  |
|                               | 丰(上) |  |  |  |  |  |

表(六)

由表(六)可知 p-value=0.02326 沒有很小,因此商學院的總平 均是常態分配

#### 利用 Z 檢定來分析淡江大學理學院和商學院的總平均是否有差異? ii. H<sub>0</sub>: 雨學院總平均相同 v.s. H<sub>1</sub>: 雨學院總平均不同

data: S\_DATA\$總平均 和 B\_DATA\$總平均 Ζ值 -3.4630.0005342 p-value 95%信賴區間的上界 -2.44980195%信賴區間的下界 -8.838836 mean of x=72.87897sample estimates mean of y=78.52329means is not equal to 0

表(七)

iii. 結果:由假設檢定得知,95%信賴區間不包含 0 且 p-value=0.0005342 小於 0.05,拒絕虛無假設,表示有足夠證據顯示理學院和商學院的總平均有差 異。

## 3-3 迴歸分析

- 1. 複迴歸:利用所有變數來看哪些變數對總平均有顯著的影響,以及預測使成 績增加的方法
  - I. 檢查迴歸的前提假設:

常態性:利用直方圖(圖 I)、qq 圖(圖 J)和偏度來檢驗總平均是否符合常態性,其中偏度-0.493<0,稍微左偏。

三者皆顯示總平均不是常態分佈,所以需要把總平均標準化,使數據 較集中、對稱。

標準化規則:S = (總平均-mean(總平均))/std(總平均),標準化後的直方圖為圖 K

| Min.           | 1st Qu. | Median | Mean | 3rd Qu. | Max.  | sd |
|----------------|---------|--------|------|---------|-------|----|
| -2 <b>.</b> 51 | -0.773  | 0.197  | 0    | 0.667   | 1.856 | 1  |

表(八)



圖 I



13

#### 對總平均標準化後的直方圖



II. 檢驗有無共線性:利用變異數膨脹因子(VIF)檢驗

模型為 lm(formula=S~as.factor(學院)+as.factor(年級)+第一學期學分數+第一學期平均+GPA+as.factor(讀書習慣)+讀書時間+社團時間+運動時間+打工時間+as.factor(通勤)+as.factor(sleep)+上課專注度,Data = drop\_DATA),類別變數在程式裡直接用 as.factor 會自動轉成虛擬變數。

自由度是 1 時,GVIF 就是 VIF,不是 1 時要取  $GVIF^{^{^{^{^{^{^{^{^{^{}}}}}}}}}(1/(2*Df))$  的平方看是否小於  $5((GVIF^{^{^{^{^{^{^{^{}}}}}}}(2*Df)})^2 < 5$ 等同於 VIF < 5),全部都沒有大於 5,所以沒有共線性的問題。

|                 | GVIF  | Df | GVIF <sup>(1/(2*Df))</sup> | [GVIF^(1/(2*Df))]^2 |
|-----------------|-------|----|----------------------------|---------------------|
| as.factor(性別)   | 1.717 | 1  | 1.310                      |                     |
| as.factor(學院)   | 1.969 | 1  | 1.403                      |                     |
| as.factor(年級)   | 6.885 | 6  | 1.174                      | 1.378               |
| 第一學期學分數         | 1.536 | 1  | 1.239                      |                     |
| 第一學期平均          | 3.123 | 1  | 1.767                      |                     |
| GPA             | 2.852 | 1  | 1.689                      |                     |
| as.factor(讀書習慣) | 2.039 | 2  | 1.195                      | 1.428               |

内容過多,只放前幾筆

#### Ⅲ. 選定模型

使用 Step 函數逐步選取法來決定模型,會自動判別向前選取、 向後消去,使所有變數對總平均皆顯著為止。

結果共有7種模型,表(九)僅放AIC的值,以及選定最小AIC的部分結果

| 1       | 2       | 3       | 4       | 5       | 6       | 7       |
|---------|---------|---------|---------|---------|---------|---------|
| -171.97 | -173.92 | -175.87 | -177.71 | -179.34 | -180.55 | -181.44 |

表(九)

Step: AIC=-181.44

S~ as.factor(學院) + as.factor(年級) + 第一學期學分數 + 第一學期平均 + GPA + as.factor(讀書習慣) + 讀書時間 + 社團時間 + 運動時間 + 打工時間 + as.factor(通勤) + as.factor(sleep) + 上課專注度

 $Y = -5.916817 + 0.30931D_1 - 0.165488D_{21} - 0.528992D_{23}$   $- 0.422192D_{24} - 0.478178D_{25} - 1.483458D_{26}$   $- 0.342143D_{27} - 0.022005 \times$  第一學期學分數  $+ 0.068593 \times$  第一學期平均 +  $0.509172 \times$  GPA  $- 0.223224 \times D_{31} - 0.083149 \times D_{32}$   $- 0.009546 \times$  讀書時間  $- 0.028003 \times$  社團時間  $+ 0.015398 \times$  運動時間  $- 0.011428 \times$  打工時間  $+ 0.130989D_4 + 0.771407D_{51} - 0.699387D_{52}$   $- 0.160591D_{53} - 0.034305 \times$  上課專注度  $+ \epsilon$ 

其中Y為總平均、 $\epsilon$ 為隨機誤差項且 $\epsilon \sim N(0,76.47394)$ 

| 學院  | $D_1$ |
|-----|-------|
| 理學院 | 0     |
| 商學院 | 1     |

虛擬變數表(1)

## 2**→**6**→**3**→**4**→**5**→**1**→**碩 1

| 年級 | D <sub>26</sub> | D <sub>23</sub> | D <sub>24</sub> | D <sub>25</sub> | D <sub>21</sub> | D <sub>27</sub> |
|----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 大二 | 0               | 0               | 0               | 0               | 0               | 0               |
| 大六 | 1               | 0               | 0               | 0               | 0               | 0               |
| 大三 | 0               | 1               | 0               | 0               | 0               | 0               |
| 大四 | 0               | 0               | 1               | 0               | 0               | 0               |
| 大五 | 0               | 0               | 0               | 1               | 0               | 0               |
| 大一 | 0               | 0               | 0               | 0               | 1               | 0               |
| 碩一 | 0               | 0               | 0               | 0               | 0               | 1               |
| 碩二 | 0               | 0               | 0               | 0               | 0               | 0               |

虚擬變數表(2)

沒有碩二的資料,因此也是()

| 讀書習慣      | D <sub>31</sub> | D <sub>32</sub> |
|-----------|-----------------|-----------------|
| 電子講義      | 0               | 0               |
| 紙本講義      | 1               | 0               |
| 紙本講義+電子講義 | 0               | 1               |

虚擬變數表(3)

|    | $D_4$ |
|----|-------|
| 通勤 | 0     |
| 住宿 | 1     |

虛擬變數表(4)

| 就寢情況 | D <sub>51</sub> | D <sub>52</sub> | D <sub>53</sub> |
|------|-----------------|-----------------|-----------------|
| 熬夜   | 0               | 0               | 0               |
| 其他   | 1               | 0               | 0               |
| 通宵   | 0               | 1               | 0               |
| 早睡   | 0               | 0               | 1               |

虛擬變數表(5)



圖 L

左上:非線性(獨立)

左下:同質性(變異數一致)

右上:殘差服從常態分配

右下:無異常值

綜合以上四張圖,可知模型符合迴歸假設

#### V. 模型結論:

| Residual standard error | 0.4355 on 99 degrees of freedom |
|-------------------------|---------------------------------|
| Multiple R- squared     | 0.8435                          |
| Adjusted R-squared      | 0.8104                          |
| F-statistic             | 25.42 on 21 and 99 DF           |
| p-value                 | < 2.2e-16                       |

表(十)

使用的自變數很多,會使自由度減少、對 $R^2$ 高估,因此看調整後的 $R^2$ ,由表(+)可知 $\overline{R}^2$ =0.8104和 $R^2$ =0.8435差異不大,模型使用的自變數沒有太多,解釋力高。

F = 25.42, p-value 很小,代表迴歸的解釋力好。

| Analysis of Variance Table |         |        |     |        |            |
|----------------------------|---------|--------|-----|--------|------------|
|                            | SS      | MS     | Df  | F      | Р          |
| Regression                 | 101.235 | 4.8207 | 21  | 25.417 | 7.7814e-31 |
| Error                      | 18.777  | 0.1897 | 99  |        |            |
| Total                      | 120.012 | 1.0001 | 120 |        |            |

表(十一)

由模型可知:商學院的學生比理學院的總平均高一點;讀大一的人比 讀大二的對總平均有一點負向影響,讀大三到大六的人比讀大二的負 向影響較大,推測大三的課可能難度是比較高的,所以成績較差;在 固定第一學期學分數外的變數下,前一學期每多一學分,總平均會減 少 0.022005 分;固定第一學期平均外的變數下,前一學期平均每多一 分,總平均會增加 0.068593 分;固定 GPA 外的變數下,GAP 每增加 1 單位,總平均會增加 0.509172 分;習慣用紙本做筆記的人以及習慣用 紙本和電子講義的人相對於習慣用電子講義的人總平均比較差一點; 固定讀書時間外的變數下,每增加一小時讀書,總平均會減少 0.009546分;固定社團時間外的變數下,每增加一小時參加社團,總 平均會減少 0.028003 分;固定運動時間外的變數下,每增加一小時去 運動,總平均會增加 0.015398 分;固定打工時間外的變數下,每增加 一小時的打工,總平均會減少 0.011428 分;住宿的人比通勤的總平均 高 0.130989 分;在其他時間睡覺的人比熬夜的總平均高 0.771407 分, 通宵比熬夜的總平均低 0.699387 分,早睡比熬夜的總平均低 0.160591 分;固定上課專注度外的變數下,每多專注一點,總平均會減少 0.034305 分。

#### **總結**:

- 1. 商學院的學生成績表現比理學院好
- 2. 就讀越高年級成績越差一些,可能是因為課程難度提升,成 績會下降
- 3. 前一學期的學分數、社團及打工時間越多,對成績會有負向 的影響
- 4. 前一學期平均和 GPA 會直接影響總平均,所以一定是正向關係
- 5. 只用電子講義比其他兩種讀書習慣的人成績較好一點,猜測 是因為使用電子產品的效率比較高,做筆記時會比較有系 統,節省一些印講義或是找筆記內容等等的時間
- 6. 上課專注度比較差一點成績未必比較差,猜測可能是跟老師 的教學風格差異有關,或是覺得自己看就好,所以沒有很認 真上課等等的因素
- 7. 住宿的人因為少了通勤時間,所以能充分使用的時間相對於 通勤生多,因此成績會比較高
- 8. 在其他時間 (7:00~22:00) 睡的人比熬夜 (0:00~4:00)的成績高,熬夜的人比早睡 (22:00~0:00)的成績還要好,可能睡覺時間的總時數比幾點睡來得重要
- 9. 花一點時間運動有助於提升成績表現

2. 羅吉斯迴歸:分析性別跟有無被當是否有相關,並且利用性別來預測是否 有被當。

|    |   | 是否有 | 被當 |
|----|---|-----|----|
|    |   | 是   | 否  |
| 性別 | 女 | 18  | 52 |
|    | 男 | 28  | 23 |

性別和是否被當的列聯表(表十二)

## I. 模型:

log(odds) = log
$$\left(\frac{p(x)}{1-p(x)}\right)$$
 =  $-0.1967 + 1.2576x + \epsilon$ ,其中 $x = \begin{cases} 1, 女生\\ 0, 男生 \end{cases}$ 

### II. 結論:

從表(十四)的 p-value=0.00135 顯著得知解釋變數(性別)的效應是顯著的,表示性別對於有沒有被當有影響,使用OR值=exp(參數估計值)來作勝算比較:exp(性別的參數估計值)=exp(1.2576)=3.5169082,男生被當的勝算比大約是女生的3.52倍

| Deviance Residuals: |        |        |       |       |
|---------------------|--------|--------|-------|-------|
| Min                 | 1Q     | Median | 3Q    | Max   |
| -1.648              | -1.095 | 0.771  | 0.771 | 1.262 |

表(十三)

| Coefficients: | Estimate | Std. Error | z value | Pr(> z )                   |
|---------------|----------|------------|---------|----------------------------|
| (Intercept)   | -0.1967  | 0.2814     | -0.699  | 0.48454                    |
| gen 女         | 1.2576   | 0.3924     | 3.205   | 0 <b>.</b> 00135 <b>**</b> |

表(十四)

| (Dispersion parameter for binomial family taken to be 1) |              |             |            |  |
|----------------------------------------------------------|--------------|-------------|------------|--|
| Null deviance:                                           | 160.72 on 12 | 0 degrees o | f freedom  |  |
| Residual deviance                                        | 150.02 on 11 | 9 degrees o | of freedom |  |
| AIC:                                                     | 154.02       | o degrees o | 1 Treedom  |  |
| Number of Fisher                                         | 4            |             |            |  |
| Scoring iterations                                       |              |             |            |  |
|                                                          |              |             |            |  |
|                                                          | OR           | 2.5 %       | 97.5 %     |  |
| (Intercept)                                              | 0.8214286    | 0.4691598   | 1.423844   |  |
| gen 女                                                    | 3.5169082    | 1.6482387   | 7.715954   |  |

表(十五)

## 3-4 ANOVA

I. 利用 ANOVA 分析不同年級的學生總平均是否無差異,分成一到四年級 以上(大四到碩二分成一群)

|      | 人數 | 中位數   | 標準差   |
|------|----|-------|-------|
| 大一   | 18 | 79.78 | 7.261 |
| 大二   | 17 | 79.55 | 7.965 |
| 大三   | 33 | 76    | 9.123 |
| 大四以上 | 53 | 78.9  | 9.148 |

表(十六)



圖 M

一到四年級(含以上)的箱形圖



- II. H<sub>0</sub>:不同年級的學生總平均無差異 v.s. H<sub>1</sub>:不同年級的學生總平均有差
- III. 檢驗大一到大四(含以上)四群是否互相獨立、變異數相同及是否為常態
  - i. 不同年級的總平均是否符合常態分配
  - 大一

| Shapiro-Wilk normality test   |  |  |  |
|-------------------------------|--|--|--|
| data: 總平均[which(gradel == 1)] |  |  |  |
| W = 0.9594 p-value = 0.5901   |  |  |  |
| <br>表 ( 十七 )                  |  |  |  |

### - 大二

| Shapiro-Wilk normality test   |  |  |  |
|-------------------------------|--|--|--|
| data: 總平均[which(grade1 == 2)] |  |  |  |
| W = 0.95195 p-value = 0.488   |  |  |  |
| 表(十八)                         |  |  |  |

## - 大三

| Shapiro-Wilk normality test   |  |  |  |
|-------------------------------|--|--|--|
| data: 總平均[which(grade1 == 3)] |  |  |  |
| W = 0.95282 p-value = 0.1607  |  |  |  |
| 表(十九)                         |  |  |  |

## - 大四(含以上)

| Shapiro-Wilk normality test   |  |  |
|-------------------------------|--|--|
| data: 總平均[which(grade1 == 4)] |  |  |
| W = 0.95455 p-value = 0.04233 |  |  |
| 表 ( 二十 )                      |  |  |

表(十七)到表(十九)中的 p-value 皆大於 0.05,所以大一到大三的分佈為常態,而表(二十)的 p-value=0.04233 不夠顯著,因此大肆(含以上)的分佈也是常態。

## ii. 檢驗大一到大四(含以上)四群的變異數是否相同

| Leve       | Levene's Test for Homogeneity of Variance (center = median: |         |         |  |  |  |
|------------|-------------------------------------------------------------|---------|---------|--|--|--|
| drop_DATA) |                                                             |         |         |  |  |  |
|            | Df                                                          | F value | Pr (>F) |  |  |  |
| group      | 3                                                           | 0.8044  | 0.4939  |  |  |  |
|            | 117                                                         |         |         |  |  |  |

表(二十一)

由表 (二十一)的 F value =0.8044, p-value=0.4939>0.05 可知, 大一到大四(含以上)四群的變異數相同

## iii. 檢驗大一到大四(含以上)四群是否互相獨立

| lag                              | Autocorrelation | D-W Statistic | p-value |  |  |
|----------------------------------|-----------------|---------------|---------|--|--|
| 1                                | 0.001715504     | 1.986378      | 0.856   |  |  |
| Alternative hypothesis: rho != 0 |                 |               |         |  |  |

由表 (二十二 )的 D-W Statistic=1.986378, p-value=0.856>0.05 可知,大一到大四(含以上)四群互相獨立

由 i.~i i i.三個檢驗,可確定符合 ANOVA 的定義

IV. 模型:  $Y_{ij} = \mu_i + \epsilon_{ij}$ ,  $\epsilon_{ij}^{iid} N(0,76.47394)$ , i = 1,2,3,4 (年級) j = 各年級的樣本數, 其中 $\mu_i$ 為第 i 年級的母體平均, $\epsilon_{ij}$ 為第 i 年級第 j 個樣本的誤差效應

Anova Table

|           | Df  | Sum Sq | Mean Sq | F value | Pr(>F) |
|-----------|-----|--------|---------|---------|--------|
| grade1    | 3   | 251    | 83.63   | 1.096   | 0.354  |
| Residuals | 117 | 8926   | 76.29   |         |        |

表(二十三)

V. 結論:由表(二十三)的F value=1.096, p-value>0.05 不顯著,不拒絕 $H_0$ ,所以不同年級之間的總平均沒有差異。

## 3-5 卡方獨立性檢定

- I. 利用獨立性檢定分析讀書習慣和讀書時間的多寡是否有關
- II. 獨立性檢定為類別分析,所以事先把讀書時間依四分位數轉成類別型,分別用第一分位數、中位數、第三分位數分成"幾乎無", "少", "中等", "多"四類。

| Min. | 1st Qu. | Median | Mean           | 3rd Qu. | Max. |
|------|---------|--------|----------------|---------|------|
| 0    | 2       | 8      | 8 <b>.</b> 223 | 10      | 45   |

表(二十四)

III. H<sub>0</sub>:讀書習慣和讀書時間的多寡無關 v.s. H<sub>1</sub>:讀書習慣和讀書時間的多寡有關

|     |                       |     | S  | tudy |    |
|-----|-----------------------|-----|----|------|----|
|     |                       | 幾乎無 | 少  | 中等   | 多  |
| 7∓  | 紙本講義(課本、老師自編講義、手寫筆記…) | 14  | 19 | 18   | 9  |
| 讀書習 | 電子講義(平版、電腦…)          | 5   | 7  | 3    | 3  |
| 習   | 紙本講義+電子講義 並用          | 13  | 10 | 5    | 15 |

讀書習慣和讀書時間列聯表(表二十五)

IV. 因表(二十五)的格子內樣本數有小於5的,要改用費雪精確獨立性檢定。

| 費雪精確獨立性檢定              |             |  |  |
|------------------------|-------------|--|--|
| data                   | study.table |  |  |
| p-value                | 0.1128      |  |  |
| alternative hypothesis | two.sided   |  |  |

表(二十六)

V. 結論:由表 (二十六 )的 p-value = 0.1128 > 0.05,得知不拒絕 $H_0$ ,表示讀書習慣和讀書時間的多跟少無關。

## 3-6 對整體的結論

1. 以淡江大學理學院和商學院的學生來說,商學院學生的成績會比理學院的來得好,且不同年級的總平均差異不大,但男生比女生被當的機率較高

## 2. 對於成績表現

- I. 每週花一些時間運動以及在經濟許可下,通勤時間很多,會影響到時間分配的話,住宿有助於提升成績
- II. 應該避免修太多課、花太多時間在社團或打工上,會使成績變差
- III. 男生被當的勝算比是女生的 3.5 倍, 所以男生對於課業要多用心

## 第四章 附錄

## 4-1 問卷網址

https://docs.google.com/forms/d/1JnkZfJdg3dQrALWsXUH1LLqj7EHa0dJ5LH1eJ1PP V4/viewform?hl=zh-tw&hl=zh-tw&edit requested=true

## 4-2 問卷網址所有步驟的 R 程式碼

〈程式碼〉

```
#install.packages("openxlsx")
library(openxlsx)
#install.packages("readxl")
library(readxl)
#install.packages("dplyr")
library(dplyr)
#DATA=read excel("/Users/chaofangyu/Desktop/R/期末報告/20220529
原.xlsx")
DATA=read excel("/Users/paulawu/PAULAPAULA/R 期末報告/20220605 誰是
時間管理大師.xlsx")
DATA=DATA[-1];DATA
colnames(DATA)=c('性別','學院','年級','第一學期學分數','第一學期平均','總平
均','GPA',
               '讀書習慣',是否被當',睡覺時間',讀書時間',滑手機時間',娛
樂時間'.
               '性別 1','社團時間','運動時間','打工時間','幾點睡覺','是否通
勤′,
               '交作業時間','性別_2','上課專注度')
x=c('女','男')
DATA$性別 1=x[as.numeric(DATA$性別 1)+1]
#y=ifelse(DATA$性別=='女','0.0','1.0')
y=ifelse(DATA$性別=='女','0','1')
#改外星人那筆
```

DATA[which(DATA\$性别=='外星人'),'性别']='男'

## #改每天幾小時那筆

DATA[which(DATA\$滑手機時間=='每天至少 10 小時'),'滑手機時間']='10' DATA[which(DATA\$娛樂時間=='每天 5 小時'),'娛樂時間']='5'

### #改5-6那筆

DATA[which(DATA\$睡覺時間=='5-6'),'睡覺時間']='5.5' DATA[which(DATA\$讀書時間=='5-6'),'讀書時間']='5.5'

#### #改有寫單位的

DATA [which(DATA \$睡覺時間=='9 小時'),'睡覺時間']='9'

DATA [ which ( DATA \$ 讀書時間=='15 小時'),'讀書時間']='15'

DATA [ which ( DATA\$ 滑手機時間=='85 小時'),'滑手機時間']='85'

DATA[which(DATA\$娛樂時間=='2 小時'),'娛樂時間']='2'

DATA「which(DATA\$運動時間=='3 小時').'運動時間']='3'

DATA [which(DATA\$第一學期學分數=='16 學分'),第一學期學分數']='16'

DATA\$GPA=as.numeric(DATA\$GPA)

DATA\$第一學期學分數=as.numeric(DATA\$第一學期學分數)

DATA\$第一學期平均=as.numeric(DATA\$第一學期平均)

DATA\$總平均=as.numeric(DATA\$總平均)

DATA\$睡覺時間=as.numeric(DATA\$睡覺時間)

DATA\$讀書時間=as.numeric(DATA\$讀書時間)

DATA\$滑手機時間=as.numeric(DATA\$滑手機時間)

DATA\$娛樂時間=as.numeric(DATA\$娛樂時間)

#### #無轉成 ()

DATA [ which ( DATA \$ 社團時間=='無'),'社團時間']='0.0'

DATA [which (DATA\$運動時間=='無'),'運動時間']='0.0'

DATA [which(DATA\$打工時間=='無').'打工時間']='0.0'

DATA\$社團時間=as.numeric(DATA\$社團時間)

DATA\$運動時間=as.numeric(DATA\$運動時間)

DATA\$打工時間=as.numeric(DATA\$打工時間)

#### #上床睡覺時間

DATA\$幾點睡覺=sub("1899-12-31","", DATA\$幾點睡覺)

#(DATA2=>159 筆)

DATA2=DATA

###(new DATA=>146 筆)

new DATA=DATA2 %>%

filter(性別==性別\_1,性別\_2==y,第一學期學分數<=30,

!is.na(GPA) & GPA<=4 ,!is.na(睡覺時間),

!is.na(讀書時間),!is.na(滑手機時間).

!is.na(娛樂時間),!is.na(社團時間),

!is.na(運動時間),!is.na(打工時間)) %>%

select(一性別\_1,一性別\_2);new\_DATA

#write.xlsx(new\_DATA, file="/Users/chaofangyu/Desktop/R/期末報告/20220515 篩.xlsx")

### #篩出女生 20/85/80/3 =>有 13 筆

g1=filter(new\_DATA, new\_DATA\$性別=="女", new\_DATA\$第一學期學分數 ==20,

new DATA\$第一學期平均==85, new DATA\$總平均==80,

new DATA\$GPA==3);g1

G1=which(new\_DATA\$性別=="女" & new\_DATA\$第一學期學分數==20 & new DATA\$第一學期平均==85

& new DATA\$總平均==80 & new DATA\$GPA==3);G1

#### #篩出 85/82/3 (都女生) =>有7筆

g2=filter(new\_DATA, new\_DATA\$第一學期平均==85 & new\_DATA\$總平均==82

& new DATA\$GPA==3); g2

G2=which(new\_DATA\$第一學期平均==85 & new\_DATA\$總平均==82 & new\_DATA\$GPA==3);G2

```
#刪除女生 20/85/80/3 和 85/82/3 =>刪除 20 筆(剩 126 筆)
drop DATA=new DATA[-c(G1,G2),]
#write.xlsx(drop_DATA, file="/Users/chaofangyu/Desktop/R/期末報告
/20220517drop.xlsx")
#--
# plot--中文
#install.packages("showtext")
library(showtext)
showtext auto(enable = TRUE)
font add('新細明體')
par(family='STKaiti')
#---
# 刪掉總平均的 outlier
# 用合鬚圖找 outlier
#1.原始的 drop DATA(126 筆)
boxplot(drop_DATA[, 6], xlab = "總平均", col="#E8CCFF", main="原始
的 drop DATA")
summary(drop DATA[, 6])
#---
# 離群值的上下界
outlier_more <- 82.3 + 1.5*(82.3-70); outlier_more ##100.75
outlier less <- 70 - 1.5*(82.3-70); outlier less
                                               ##51.55
A = which(new DATA$總平均<51.55); A ##位置 6 10 39 138
B = which(new DATA$第一學期平均<40);B ##位置 39 41
#2.新的 drop DATA:刪掉離群值 =>剩 121 筆
drop DATA=new DATA [-c(G1,G2, A, B),]
```

```
boxplot(drop DATA[, 6], xlab = "總平均", col="#CCDDFF", main="刪除
離群值後的 drop DATA")
summary(drop DATA[,6])
# outlier more1 <- 82+1.5*(82-72.94); outlier more1
# outlier less1 <- 70-1.5*(82-72.94); outlier less1
# B = which(new DATA$總平均<51.55); B
# drop DATA=new DATA[-B,]
table(drop DATA$性別, drop DATA$學院)
    商學院 理學院
##
       52
             18
##女
## 男
       30
             21
#最後刪完的資料 (=>剩 121 筆)
write.xlsx(drop DATA, file="/Users/paulawu/PAULAPAULA/R 期末報告
/20220605 誰是時間管理大師 drop.xlsx")
#######
# 分析 #
########
B_DATA=filter(drop_DATA, drop_DATA$學院=="商學院")
S DATA=filter(drop DATA, drop DATA$學院=="理學院")
summary(B DATA)
summary(S DATA)
#簡化變數名稱
性別=drop DATA$性別
# 性別=ifelse(性別=="男",1,0);性別
學院=drop DATA$學院
年級=drop DATA$年級
年級=factor(年級,levels=c("大一","大二","大三","大三","大五","大
六","碩一","碩二"))
```

GPA=drop\_DATA\$GPA 第一學期學分數=drop\_DATA\$第一學期學分數 第一學期平均=drop\_DATA\$第一學期平均 總平均=drop\_DATA\$總平均 上課專注度=drop\_DATA\$上課專注度

讀書習慣=drop DATA\$讀書習慣 被當=drop DATA\$是否被當 通勤=drop DATA\$是否通勤 交作業=drop DATA\$交作業時間 幾點睡覺=drop DATA\$幾點睡覺 #上床睡覺時間 #DATA\$幾點睡覺=sub("1899-12-31", "", DATA\$幾點睡覺) sl=as.numeric(substr( 幾點睡覺, 2, 3));sl s2=as.numeric(substr( 幾點睡覺,5,6));s2 SS=ifelse((s1%in%c(22,23) & s2%in%c(0:59))|(s1==0 & s2==0), 1,ifelse(( s1==0 & s2%in%c(1:59) )|( s1%in%c(1:4) & s2%in%c(0:59)), 2,ifelse(( s1==4 & s2%in%c(1:59) )|( s1%in%c(5:7) & s2%in%c(0:59)), 3, 4)));SSsleep=ifelse(SS==1,"早睡",ifelse(SS==2,"熬夜",ifelse(SS==3, "通宵", "其他")));sleep

#cbind(幾點睡覺, SS, sleep)#檢查

睡覺時間=drop\_DATA\$睡覺時間 讀書時間=drop\_DATA\$讀書時間 滑手機時間=drop\_DATA\$滑手機時間 娛樂時間=drop\_DATA\$娛樂時間 社團時間=drop\_DATA\$社團時間 運動時間=drop\_DATA\$運動時間 打工時間=drop\_DATA\$打工時間

aggregate(cbind(GPA,第一學期學分數,第一學期平均,總平均)~性

```
别 , data=drop DATA , FUN=mean)
aggregate(cbind(GPA,第一學期學分數,第一學期平均,總平均)~學
院 , data=drop DATA , FUN=mean)
aggregate(cbind(GPA,第一學期學分數,第一學期平均,總平均)~年
級 , data=drop DATA , FUN=mean)
gap = 1*(總平均<=10)+2*(總平均>10&總平均<=20)+3*(總平均>20&總平均
<=30)+4*(總平均>30&總平均<=40)+
     5*(總平均>=40&總平均<50)+6*(總平均>=50&總平均<60)+7*(總平均
>=60&總平均<70)+
     8*(總平均>=70&總平均<80)+9*(總平均>=80&總平均<90)+10*(總平均
>=90); gap
gap = ifelse(gap =="1", "0~10", ifelse(gap =="2", "11~20",
ifelse(gap =="3", "21^{\sim}30",
     ifelse(gap == "4", "31~40", ifelse(gap == "5", "41~50",
ifelse(gap == "6", "51~60",
     ifelse(gap == "7", "61~70", ifelse(gap == "8", "71~80",
ifelse(gap == "9", "81~90", "91~100")))))))
table(學院, gap)
#---
#1.兩母體平均差
# 先檢定是否服從常態分配
## 在本報告中的分析方法所有 \alpha 皆設定為 0.05
#1.商學院
shapiro.test(B DATA$總平均)
# p-value = 0.02326 沒有很小 算是常態
hist(B DATA$總平均, ylim=c(0,30), col="#9999FF", main="商學院的直
方圖")
ggnorm(B DATA$總平均, col="#5500DD", main="商學院 QQ-plot")
```

qqline(B DATA\$總平均, col = "#FF8800", lwd=2)

```
#2.理學院
shapiro.test(S DATA$總平均)
# p-value = 0.2003 > 0.05 是常態
#install.packages("BSDA")
library(BSDA)
z.test(x = S_DATA$總平均, y = B_DATA$總平均, alternative =
"two.sided", mu = 0,
      sigma.x = sd(B_DATA$總平均), sigma.y = sd(S_DATA$總平均),
conf.level = 0.95
#---
# 2.Regression
set.seed(12)
#install.packages("psych")
library(psych)
pairs.panels(drop_DATA[, c("GPA","第一學期學分數","第一學期平均","總
平均","上課專注度")])
# 先檢驗總平均是不是常態
hist(x = 總平均, ylim=c(0,0.08), freq = FALSE, col="#CCDDFF",
main="總平均直方圖")
lines(density(總平均), col = "blue", lwd=2)
qqnorm(總平均 , col="#000088", main="總平均 QQ-plot")
qqline(總平均, col = "#FF8800", lwd=2)
#install.packages("moments")
library(moments) # 偏度鋒度計算
skewness(總平均)
# -0.5036863 左偏
# 標準化轉成常態分配的樣子(不會改變原先的分配 所以偏度會一樣)
S <- round(scale(總平均, mean(總平均), sd(總平均)), 3): S
hist(S, col="#E8CCFF", main="對總平均標準化後的直方圖")
```

```
qqnorm(S, col="#66009D", main="對總平均標準化後的 QQ-plot")
qqline(S, col = "#FF8800", lwd=2)
skewness(S)
summary(S); sd(S)
model1\_S \leftarrow lm(S^a as.factor(性別) + as.factor(學院) + as.factor(年
級)+第一學期學分數+
               第一學期平均 + GPA + as.factor(讀書習慣)+
as.factor(被當)+
               睡覺時間 + 讀書時間 + 滑手機時間 + 娛樂時間 + 社團
時間 + 運動時間+
               打工時間 + as.factor(通勤)+ as.factor(sleep) +
as.factor(交作業) + 上課專注度, data = drop DATA)
summary(model1 S)
anova(model1 S)
# 檢驗共線性
round(car::vif(model1 S), 3)
# df 非 1 要看 GVIF<sup>(1/(2*Df))</sup>的平方是否小於 5
# 雙向
step(model1_S, direction = "both")
# BIC 最小的模型
model13 <- lm(formula = S~ as.factor(學院) + as.factor(年級) + 第一
學期學分數 +
              第一學期平均 + GPA + as.factor(讀書習慣) + 讀書時間
+
              社團時間 + 運動時間 + 打工時間 + as.factor(通勤) +
              as.factor(sleep) + 上課專注度, data = drop DATA)
summary(model13)
anova (model13)
# 畫 ANOVA table
anova alt = function (object, reg collapse=TRUE,...)
```

```
if (length(list(object, ...)) > 1L)
    return(anova.lmlist(object, ...))
  if (!inherits(object, "lm"))
    warning("calling anova.lm(<fake-lm-object>) ...")
  w <- object$weights</pre>
  ssr <- sum(if (is.null(w)) object$residuals^2 else w *
object$residuals^2)
  mss <- sum(if (is.null(w)) object$fitted.values^2 else w *</pre>
                object$fitted.values^2)
  if (ssr < 1e-10 * mss)
    warning("ANOVA F-tests on an essentially perfect fit are
unreliable")
  dfr <- df.residual(object)</pre>
  p <- object$rank</pre>
  if (p > 0L) {
    p1 <- 1L:p
    comp <- object$effects[p1]</pre>
    asgn <- object$assign[stats:::qr.lm(object)$pivot][p1]</pre>
    nmeffects <- c("(Intercept)", attr(object$terms, "term.labels"))</pre>
    tlabels <- nmeffects[1 + unique(asgn)]</pre>
    ss <- c(vapply(split(comp^2, asgn), sum, 1), ssr)
    df <- c(lengths(split(asgn, asgn)), dfr)</pre>
    if(reg collapse){
      if(attr(object$terms, "intercept")){
        collapse_p < -2: (length(ss)-1)
        ss<-c(ss[1],sum(ss[collapse p]),ss[length(ss)])
        df<-c(df[1],sum(df[collapse p]),df[length(df)])
        tlabels<-c(tlabels[1],"Source")</pre>
      } else{
        collapse_p < -1: (length(ss)-1)
        ss<-c(sum(ss[collapse p]),ss[length(ss)])
        df<-c(df[1],sum(df[collapse p]),df[length(df)])</pre>
        tlabels<-c("Regression")</pre>
      }
    }
  }else {
    ss <- ssr
    df <- dfr
```

```
tlabels <- character()
    if(reg collapse){
      collapse_p < -1: (length(ss)-1)
      ss<-c(sum(ss[collapse_p]),ss[length(ss)])
      df<-c(df[1],sum(df[collapse_p]),df[length(df)])</pre>
  }
  ms < - ss/df
  f \leftarrow ms/(ssr/dfr)
  P <- pf(f, df, dfr, lower.tail = FALSE)
  table <- data.frame(df, ss, ms, f, P)
  table <- rbind(table,
                  colSums(table))
  if (attr(object$terms, "intercept")){
    table$ss[nrow(table)]<- table$ss[nrow(table)] - table$ss[1]
  }
  table$ms[nrow(table)]<-
table$ss[nrow(table)]/table$df[nrow(table)]
  table \lceil length(P): (length(P)+1), 4:5 \rceil \leftarrow NA
  dimnames(table) <- list(c(tlabels, "Error", "Total"),</pre>
                            c("Df","SS", "MS", "F",
                              "P"))
  if (attr(object$terms, "intercept")){
    table <- table[-1,]
    table$MS[nrow(table)]<-
table$MS[nrow(table)]*(table$Df[nrow(table)])/(table$Df[nrow(table
) -1)
    table$Df[nrow(table)]<-table$Df[nrow(table)]-1
  structure(table, heading = c("Analysis of Variance Table\n"),
            class = c("anova", "data.frame"))
anova alt(model13)
# 殘差診斷
plot(model13)
```

```
#---
# 3.logistic
# 性別跟有無被當是否有相關
# 1 -> 女, 0 -> 男
gen = as.factor(性別)
fail = as.factor(被當)
fail = ordered(fail, levels = c("是", "否"))
table(gen, fail)
model = glm(fail ~gen, family = binomial(link = logit), data =
drop DATA)
summary(model)
exp(coef(model))
exp(cbind(OR = coef(model), confint(model)))
#---
# 4.ANOVA
# 檢定不同年級的學生總平均是否相同
grade = ifelse(年級 == "大一", 1, ifelse(年級 == "大二", 2,
ifelse(年級 == "大三", 3, 4)))
grade1 = as.factor(grade)
\#grade = ordered(grade, levels = c(1,2,3,4))
shapiro.test(總平均[which(grade1==1)])
shapiro.test(總平均[which(grade1==2)])
shapiro.test(總平均[which(grade1==3)])
shapiro.test(總平均[which(grade1==4)])
# 齊一性
leveneTest(總平均, gradel, data = drop DATA)
one.way <- aov(總平均~ gradel, data = drop_DATA)
# 獨立性檢定
durbinWatsonTest(one.way)
```

```
summary(one.way)
table(gap, grade)
人數 = tapply(grade, grade1, length); 人數
中位數 <- tapply(總平均, gradel, median): 中位數
標準差 <- tapply(總平均, gradel, sd); 標準差
tab = data.frame(人數, 中位數,標準差)
tab = round(tab, 3): tab
boxplot(總平均 ~ grade, xlab="年級", col=c("#FFCCCC", "#FFDDAA",
"#CCFF99", "#CCEEFF"), main="一到四年級(含以上)的箱型圖")
#---
# 5.chi-square
# 讀書習慣和讀書時間的多寡是否有關
summary(讀書時間)
stu = 1*(讀書時間<=2) + 2*(讀書時間>2 & 讀書時間<=8) + 3*(讀書時間
>8 & 讀書時間<=10) + 4*(讀書時間>10)
study = ifelse(stu =="1", "幾乎無", ifelse(stu =="2", "少",
ifelse(stu =="3", "中等", "多"))) # 讀書時間轉成類別
study = as.factor(study)
study = ordered(study, levels = c("幾乎無", "少", "中等", "多"))
讀書習慣 = as.factor(讀書習慣)
讀書習慣 = ordered(讀書習慣, levels = c("紙本講義(課本、老師自編講
義、手寫筆記…)","電子講義(平版、電腦…)","紙本講義+電子講義 並
用"))
study.table = table(讀書習慣, study); study.table
#prop.table(study.table,margin=1)
#prop.table(study.table,margin=2)
chisq.test(study.table)
# 有格子樣本數小於 5, 改費雪檢定
fisher.test(study.table)
\#p\text{-value} = 0.5079 > 0.05
```

```
#######
# 圖形 #
#######
library(colorspace)
library(ggplot2)
# 男女比
gender = as.factor(性別)
tapply(gender, gender, length)
levels(gender)
gender1 = c(51, 70)
group = c("男", "女")
gender2 = data.frame(group, gender1); gender2
attach(gender2)
gender3 = sum(gender2$gender1); gender3
男女比 <- gender2$gender1*100/gender3;男女比
ggplot(drop_DATA, aes(x="", y="性別比", fill=性別)) +
 geom_bar(stat="identity", width=1)+
 coord_polar(theta = "y")+
  theme void() +
  theme(text = element_text(family = "Heiti TC Light", size =
30))+
  scale fill discrete sequential(palette = "Purples 3",
                                nmax = 6,
                                rev = FALSE,
                                order = 3:5.
                                labels = pasteO(group, round(男女
比,2), "%"))
# 學院比
```

```
major = as.factor(學院)
tapply(major, major, length)
levels(major)
major1 = c(39, 82)
group1 = c("理學院", "商學院")
major2 = data.frame(group1, major1); major2
attach(major2)
major3 = sum(major2$major1); major3
學院比 <- major2$major1*100/major3;學院比
ggplot(drop_DATA, aes(x="", y="學院比", fill=學院)) +
  geom bar(stat="identity", width=1)+
  coord polar (theta = "y")+
  theme void() +
  theme(text = element text(family = "Heiti TC Light", size =
25))+
  scale fill discrete sequential(palette = "Blues 3",
                               nmax = 6,
                               rev = FALSE,
                               order = 2:4.
                               labels = pasteO(group1, round(學院
比.2). "%"))
# 年級比(1~4)
年級 = ifelse(年級 == "大一", 1, ifelse(年級 == "大二", 2,
ifelse(年級 == "大三", 3, 4)))
年級 = as.factor(年級)
tapply(年級_,年級_,length)
levels(年級)
grade 1 = c(18, 17, 33, 53)
group3 = c("大一", "大二", "大三", "大四(含以上)")
grade 2 = data.frame(group3, grade 1); grade 2
attach(grade 2)
grade 3 = sum(grade 2$grade 1); grade 3
年級比 <- grade 2$grade 1*100/grade 3
ggplot(drop_DATA, aes(x="", y="年級比", fill=年級_ )) +
```

```
geom bar(stat="identity", width=1)+
  coord polar(theta = "y")+
  theme void() +
  theme(text = element_text(family = "Heiti TC Light", size =
15))+
  scale fill discrete sequential(palette = "Oranges",
                                rev = TRUE,
                                labels = paste0(group3, round(年級
比.2). "%"))
#年級比
#年級=drop DATA$年級
#年級=factor(年級, levels=c("大一", "大二", "大三", "大四", "大五", "大
六","碩一","碩二"))
tapply(年級, 年級, length)
levels(年級)
grade 4 = c(18, 17, 33, 46, 1, 2, 4, 0)
group4 = c("大一", "大二", "大三", "大四", "大五", "大六", "碩一", "碩二")
grade 5 = data.frame(group4, grade 4); grade 5
attach(grade 5)
grade_6 = sum(grade_5$grade_4); grade_6
年級比2 <- grade 5$grade 4*100/grade 6
ggplot(drop_DATA, aes(x="", y="年級比", fill=年級))+
  geom bar(stat="identity", width=1)+
 coord polar(theta = "y")+
  theme void() +
  theme(text = element text(family = "Heiti TC Light", size =
15))+
  scale fill discrete sequential(palette = "Oranges",
                                rev = TRUE
                                labels = paste0(group4, round(年級
比 2,2), "%"))
# 成績分佈
hist(x = 總平均, ylim=c(0,0.06), freq = FALSE,col="#CCDDFF"
```

```
main="總平均直方圖")
lines(density(總平均), col = "blue", lwd=2)
hist(x = GPA, freq = FALSE, col="#BBFFEE", main="GPA 直方圖")

# 散佈圖
ggplot(drop_DATA)+
geom_point(aes(x = GPA, y = 總平均, color = 學院)) +
theme(text = element_text(family = "Heiti TC Light"))
#scale_color_brewer(palette = "Pastell")
```