Ravninske krivulje s pitagorejskim hodogramom

Jan Fekonja, Anže Marinko IŠRM2, FMF

Predmet: Geometrijsko podprto računalniško oblikovanje

december 2018

Kazalo

1	Uvod	1
2	Ravninske krivulje s Pitagorejskim hodogramom	1
3	Bézierjeve kontrolne točke krivulj s PH	2
4	Parametrična hitrost in dolžina loka	3

1 Uvod

Hodogram parametrične krivulje r(t) v \mathbb{R}^n je samo njen odvod r'(t) podan kot parametrična krivulja. Polinomska krivulja r(t) v \mathbb{R}^n je krivulja s Pitagorejskim hodografom (PH), če so n koordinatnih komponent njenega hodograma elementi Pitagorejskega nabora (n+1) polinomov oziroma če vsota njihovih kvadratov sovpada s kvadratom drugega polinoma $\sigma(t)$. Krivulje s PH v \mathbb{R}^2 in \mathbb{R}^3 zahtevajo precej drugačne pristope njihove karakterizacije, saj Pitagorejski nabori treh in štirih polinomov vključujejo različne algebraične strukture. Ogledali si bomo ravninske krivulje s PH.

2 Ravninske krivulje s Pitagorejskim hodogramom

Ključna lastnost, ki razlikuje ravninsko krivuljo s PH r(t) = (x(t), y(t)) od "navadne"polinomske krivulje je privzeta vključitev Pitagorejske strukture v svoj hodogram, in sicer komponente r'(t) = (x'(t), y'(t)) morajo zadoščati pogoju

$$x'^{2}(t) + y'^{2}(t) = \sigma^{2}(t)$$

za nek polinom $\sigma(t)$. To lastnost je dosežena z upoštevanjem sledeče karakterizacije Pitagorejskih trojic polinomov.

Izrek 1. Pitagorejski pogoj

$$a^{2}(t) + b^{2}(t) = c^{2}(t) \tag{1}$$

izpolnjujejo polinomi a(t), b(t), c(t) natanko tedaj, ko jih lahko izrazimo z drugimi polinomi u(t), v(t), w(t) v obliki

$$a(t) = [u^{2}(t) - v^{2}(t)]w(t),$$

$$b(t) = 2u(t)v(t)w(t),$$

$$c(t) = [u^{2}(t) + v^{2}(t)]w(t),$$
(2)

 $kjer\ imata\ u(t)\ in\ v(t)\ paroma\ različne\ ničle.$

Dokaz. Očitno je pogoj2 zadosten za 1. Potrebnost pogoja pa je dokazana v [1]na strani 382. $\hfill\Box$

Opomba 1. Rešitve, kjer je w(t) konstantna, imenujejo primitivne Pitagorejske troiice.

Tedaj je ravninska krivulja PH r(t) = (x(t), y(t)) definirana z nadomestitvijo treh polinomov u(t), v(t), w(t) v izrazih

$$x'(t) = [u^2(t) - v^2(t)]w(t)$$
 (3)
 $y'(t) = 2u(t)v(t)w(t)$

in z integriranjem. Vsak nekonstantni skupni faktor u(t) in v(t) lahko absorbiramo v w(t). Poleg tega moramo dopustiti določene izbire za w(t), u(t), v(t), ki dajejo "degenerirane"krivulje s PH:

- 1. če je w(t) = 0 ali u(t) = v(t) = 0, je dobljeni hodogram x'(t) = y'(t) = 0 definira eno točko namesto zveznega loka,
- 2. če so w(t), u(t), v(t) vse konstante (z w in vsaj eno od u, v neničelno) dobimo enakomerno parametrizirano premico, trivialno krivuljo s PH,
- 3. če sta u(t) in v(t) konstanti, kjer je vsaj ena različna od nič in w(t) ni konstanta, je dobljen lok spet linearen, vendar njegova parametrična hitrost ni konstantna (v splošnem),
- 4. prav tako nastanejo nekonstantno parametrizirani linearni loki (vzporedni z osjo x), če je $w(t) \neq 0$ in je eden od u(t) in v(t) nič.

V nadaljevanju bomo obravnavali le primere, kjer so w(t), u(t), v(t) vse neničelne, in u(t), v(t) nista obe konstanti.

Opomba 2. Če je w polinom stopnje λ in je μ večja izmed stopenj polinomov u in v, je krivulja s PH dobljena z integracijo hodograma (3) stopnje $n = \lambda + 2\mu + 1$.

3 Bézierjeve kontrolne točke krivulj s PH

Osredotočimo se predvsem na primitivne Pitagorejske hodograme (u in v brez skupne ničle, w(t) = 1). Taki hodogrami definirajo regularne krivulje s PH, ki zadoščajo $r'(t) \neq 0$ za vse t. Točka na parametrični krivulji, kjer je r'(t) = 0, je neregularna točka - običajno je to konica ali nenaden obrat tangente. Uporaba ne-konstantnega polinoma w(t) naredi konice (nezaželena značilnost) na

ustrezni krivulji s PH, če ima w(t) realne ničle znotraj domene parametra krivulje. Krivulje s PH definirane z integracijo (3) primitivnih hodogramov so lihe stopnje, $n=2\mu+1$.

Najenostavnejše netrivialne krivulje s PH dobljene z w(t)=1 in linearnih Bernsteinovih polinomov:

$$u(t) = u_0 B_0^1(t) + u_1 B_1^1(t),$$

$$v(t) = v_0 B_0^1(t) + v_1 B_1^1(t),$$

ki zadoščajo $u_0v_1-u_1v_0\neq 0$ in $(u_1-u_0)^2+(v_1-v_0)^2\neq 0$, tako da imata u(t),v(t) različne ničle in nista obe konstanti, nam dajo hodogram

$$x'(t) = (u_0^2 - v_0^2)B_0^2(t) + (u_0u_1) - v_0v_1)B_1^2(t) + (u_1^2 - v_1^2)B_2^2(t),$$

$$y'(t) = 2u_0v_0B_0^2(t) + (u_0v_1 + u_1v_0)B_1^2(t) + 2u_1v_1B_2^2(t).$$

Z integracijo tega hodograma dobimo kubično krivuljo s PH z Bézierjevimi kontrolnimi točkami oblike

$$\begin{aligned} \mathbf{p}_1 &= \mathbf{p}_0 + \frac{1}{3}(u_0^2 - v_0^2, 2u_0v_0), \\ \mathbf{p}_2 &= \mathbf{p}_1 + \frac{1}{3}(u_0u_1 - v_0v_1, u_0v_1 + u_1v_0), \\ \mathbf{p}_3 &= \mathbf{p}_2 + \frac{1}{3}(u_1^2 - v_1^2, 2u_1v_1), \end{aligned}$$

kjer je kontrolna točka \mathbf{p}_0 definirana z integracijsko konstanto prosto izbrana. Krivulje pete stopnje s PH pa lahko definiramo s kvadratičnimi polinomi:

$$u(t) = u_0 B_0^2(t) + u_1 B_1^2(t) + u_2 B_2^2(t),$$

$$v(t) = v_0 B_0^2(t) + v_1 B_1^2(t) + v_2 B_2^2(t),$$

in z integracijo dobimo Bézierjeve kontrolne točke oblike:

$$\mathbf{p}_{1} = \mathbf{p}_{0} + \frac{1}{5}(u_{0}^{2} - v_{0}^{2}, 2u_{0}v_{0}),$$

$$\mathbf{p}_{2} = \mathbf{p}_{1} + \frac{1}{5}(u_{0}u_{1} - v_{0}v_{1}, u_{0}v_{1} + u_{1}v_{0}),$$

$$\mathbf{p}_{3} = \mathbf{p}_{2} + \frac{2}{15}(u_{1}^{2} - v_{1}^{2}, 2u_{1}v_{1}) + \frac{1}{15}(u_{0}u_{2} - v_{0}v_{2}, u_{0}v_{2} + u_{2}v_{0}),$$

$$\mathbf{p}_{4} = \mathbf{p}_{3} + \frac{1}{5}(u_{1}u_{2} - v_{1}v_{2}, u_{1}v_{2} + u_{2}v_{1}),$$

$$\mathbf{p}_{5} = \mathbf{p}_{4} + \frac{1}{5}(u_{2}^{2} - v_{2}^{2}, 2u_{2}v_{2}),$$

kjer je \mathbf{p}_0 ponovno poljubna, velja pa

$$(u_2v_0 - u_0v_2)^2 \neq 4(u_0v_1 - u_1v_0)(u_1v_2 - u_2v_1).$$

4 Parametrična hitrost in dolžina loka

Parametrična hitrost regularne krivulje s PH r(t) = (x(t), y(t)) je podana s

$$\sigma(t) = |r'(t)| = \sqrt{x'^2(t) + y'^2(t)} = u^2(t) + v^2(t),$$

in je polinom v t. Če je r(t) (lihe) stopnje n, morata biti u(t) in v(t) stopinje $m=\frac{1}{2}(n-1)$ in je lahko zapisan v Bernsteinovi obliki kot

$$u(t) = \sum_{k=0}^{m} u_k B_k^m(t),$$

$$v(t) = \sum_{k=0}^{m} v_k B_k^m(t).$$

Torej je

$$\sigma(t) = \sum_{k=0}^{n-1} \sigma_k B_k^{n-1}(t),$$

kjer so koeficienti

$$\sigma_k = \sum_{j=\max(0,k-m)}^{\min(m,k)} \frac{\binom{m}{j} \binom{m}{k-j}}{\binom{n-1}{k}} (u_j u_{k-j} + v_j v_{k-j}), \quad k = 0, \dots, n-1.$$

Za kubične krivulje s PH je npr. $\sigma(t)$ kvadratna in ima Bernsteinove koeficiente

$$\sigma_0 = u_0^2 + v_0^2,
\sigma_1 = u_0 u_1 + v_0 v_1,
\sigma_2 = u_1^2 + v_1^2.$$

Za krivulje pete stopnje s PH pa je $\sigma(t)$ kvadratična z Bernsteinovimi koeficienti

$$\sigma_0 = u_0^2 + v_0^2,
\sigma_1 = u_0 u_1 + v_0 v_1,
\sigma_2 = \frac{2}{3} (u_1^2 + v_1^2) + \frac{1}{3} (u_0 u_2 + v_0 v_2),
\sigma_3 = u_1 u_2 + v_1 v_2,
\sigma_4 = u_2^2 + v_2^2.$$

Da bi integrirali $\sigma(t)$ in tako dobili dolžino loka s kot polinomsko funkcijo parametra,

$$s(t) = \int_0^t \sigma(\tau) d\tau,$$

uporabimo integracijsko pravilo za Bernsteinove bazne polinome. To nam da

$$s(t) = \sum_{k=0}^{n} s_k \binom{n}{k} (1-t)^{n-k} t^k,$$

kjer je $s_0=0$ in $s_k=\frac{1}{n}\sum_{j=0}^{k-1}\sigma_j, k=1,\ldots,n.$ Torej je skupna dolžina loka S preprosto $S=s(1)=\frac{\sigma_0+\sigma_1+\ldots+\sigma_{n-1}}{n}$. Za izračun dolžine loka izseka krivulje s PH za $t\in[a,b]$ vzamemo kar razliko

Podobno je veliko preprosteje določiti vrednost parametra t_* , do katerega je dolžina loka (merjeno od t=0) enaka dani vrednosti s_{*} - t.j. rešiti enačbo $s(t_*)=s_*$ za t_* . Običajno se r(t) prikaže z vrednotenjem vrednosti parametrov t_0,\ldots,t_N , ki ustreza enotnemu prirastku parametra $\Delta t=t_k-t_{k-1},k=1,\ldots,N$. Vendar pa s tem dobimo neenakomerno razmaknjene (po dolžini loka) točke $r(t_k)$ na krivulji, saj parametrična hitrost $\sigma(t)$ v splošnem ni konstantna.

Vseeno, če parametrična hitrost krivulje s PH ni konstantna, lahko s s(t) enostavno popravimo to težavo. Naj bodo t_0,\ldots,t_N vrednosti parametrov točk, ki so enakomerno razporejene z razmakom dolžine loka $\Delta s = S/N$, tako da

$$s(t_k) = k\Delta s, k = 1, \dots, N - 1,$$

kjer $t_0=0$ in $t_N=1$. Sedaj iz $\sigma(t)=ds/dt$ in $\sigma(t)$ pozitivno za vse t, ko polinoma u in v nimata nobene skupne ničle, sledi, da je s(t) monotono naraščajoča st in s tem za vsak k vrednost s pri t_k leži med t_{k-1} in 1. Kot začetni približek vzamemo

$$t_k^{(0)} = t_{k-1} + \frac{\Delta s}{\sigma(t_{k-1})}$$

in izbolšujmo rezultat z uporabo Newton-Raphsonove iteracije

$$t_k^{(r)} = t_{k-1}^{(r-1)} + \frac{s(t_k^{(r-1)})}{\sigma(t_k^{(r-1)})}, r = 1, 2, \dots$$

Literatura

[1] R. T. Farouki: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable, poglavje 17 in 19.