Assessing the Predictive Performance of Seldonian Algorithms: A Simulation Study

Dasha Asienga & Professor Katharine Correia

The Department of Mathematics and Statistics, Amherst College

MOTIVATION

Using the standard machine learning (ML) approach for real-life applications can result in <u>algorithmic</u> <u>bias</u>: a situation where an algorithm's predictions systematically discriminate against a demographic group. Seldonian algorithms offer a way to address this problem by incorporating <u>probabilistic constraints</u> on undesirable behavior (mathematically defined) in the search for an optimal solution.

OBJECTIVES

The primary objective of the simulation study is to investigate the efficacy and applicability of

Seldonian algorithms in practical classification settings along three key performance measures:

- → convergence (probability of a solution)
- fairer (less discriminatory)
 outcomes
- predictive accuracy

METHODS

Data Generation: this study is a proof of concept, so the data-generation mechanism follows a realistic design. The COMPAS recidivism data set (collected in Broward County, Florida, 2013-2014) is used nationwide to predict recidivism by defendants, but it exhibits racial discrepancies. The response variable in this study is modeled as a linear combination of the COMPAS variables such that the complex social relationships that may be expected in the real world are retained.

Methodology: 1 <u>logistic regression</u> and 4 <u>Seldonian algorithms</u> (with different fairness constraints ϵ as an upper bound of the total absolute difference in error rates between Black and White defendants: $\epsilon = 0.2$, 0.1, 0.05, 0.01) are fit on 250 simulated data sets of size n = 500, 1000, 2500, 5000 [1000 total data sets] and results compared. $\delta = 0.05$ to ensure 95% confidence that the Seldonian solution will satisfy the specified fairness constraint.

HPC CLUSTER USE

DATA GENERATION

Generate 1000 simulated data sets

MODEL FITTING

(5000 models)

In an *sbatch* file, loop through all 1000 data sets, running a *Python script* on each set and appending results to a global data frame as a row

for file in \$files; do
 srun ./seldonian_sim.py "\$folder\$file" &
done

CONCLUSIONS

- 1. There is an <u>accuracy-fairness</u> <u>trade-off</u>.
- 2. Seldonian solutions are <u>not</u>
 guaranteed and <u>may still yield unfair</u>
 results, though it's less probable.