Lecture 2: Review of basic maths

Population genetic PCB4553/6685

Part 1: Probability

- Evolution is fundamentally a random process.
 - Mendelian transmission is random
 - Mutation is random
 - Mating and reproduction is random
 - Allele frequency changes in finite population is a random process
 - Many results in popgen rely on probabilistic processes in their core arguments

Random variables

- A random variable X, roughly, is a variable that takes on values drawn randomly from a sample space, with the likelihood of each outcome specified by some function
 - Example: a six-sided die
 - Sample space: set of all possible outcomes, e.g. {1, 2, 3, 4, 5, 6}
 - Probability of each number occurring is 1/6

Types of random variables

- Discrete random variables take on a countable number of values
 - Probability mass function
 - $\mathbb{P}[X=x_i]=p_i$ "the probability that X equals x_i is p_i "
- Continuous random variables, which can take on values on a continuum, e.g. real number line
 - Examples: height of a person, time until the next incoming call, etc.
 - Probability density function
 - $\mathbb{P}[a \leq X \leq b] = \int_a^b p(x) dx$ "the probability that X is interval [a, b] equals the area under the curve p(x) from a to b"

Events

- An event is a subset of the sample space
- Example 1: "a 6-sided die lands on an even number" = $\{2,4,6\} \subset \{1,2,3,4,5,6\}$
- Example 2: "a person's height is between 160 and 165cm" = [160, 165] $\subset \mathbb{R}^+$

Algebra of events

•
$$P(A) = 1 - P(A')$$

•
$$P(A \cup B) = P(A) + P(B)$$
 if $A \cap B = \emptyset$

intersection: A ∩ B

complement of A: A'

union: A ∪ B

mutually exclusive (disjoint)

Exercise

- P(Dog) = ?
- P(Dog or not dog) = ?
- P(Dog or Lizard) = ?
- P(Dog or cat) = ?

Conditional probability

• conditional probability: the probability of an event conditional on some other particular event happening.

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(\operatorname{cat}|\operatorname{dog}) = \frac{P(\operatorname{cat}\cap\operatorname{dog})}{P(\operatorname{dog})}$$

Joint probability

•
$$P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

- $P(\text{cat}) = P(\text{cat} \cap \text{dog}) + P(\text{cat} \cap \text{not dog})$
- P(cat | dog)P(dog) + P(cat | dog)P(not dog)

Law of total probability

- The total probability of an event A can be obtained by summing over all of the L mutually exclusive ways that A can happen
- B_1, B_2, \dots, B_L are disjoint events, so that their union is the whole sample space

$$P(A) = \sum_{i=1}^{L} P(A \mid B_i) P(B_i) = \sum_{i=1}^{L} P(A \cap B_i)$$

 $\sum_{i=1}^{L} \text{ is the sigma notation}$

Laws of total probability

Exercise:

- Suppose that two factories supply light bulbs to the market. Factory X's bulbs work for over 5000 hours in 99% of cases, whereas factory Y's bulbs work for over 5000 hours in 95% of cases.
- It is known that factory X supplies 60% of the total bulbs available and Y supplies 40% of the total bulbs available. What is the chance that a purchased bulb will work for longer than 5000 hours?

$$P(A) = \frac{99}{100} \cdot \frac{6}{10} + \frac{95}{100} \cdot \frac{4}{10} = \frac{594 + 380}{1000} = \frac{974}{1000}$$

$$P(A) = \sum_{i=1}^{L} P(A \mid B_i) P(B_i) = \sum_{i=1}^{L} P(A \cap B_i)$$

Laws of total probability

$$P(A) = \sum_{i=1}^{L} P(A \mid B_i) P(B_i) = \sum_{i=1}^{L} P(A \cap B_i)$$

What is the sample space?

•

Independence

- Two events are independent of each other if
 - $P(A \cap B) = P(A)P(B)$
 - P of flip a coin twice, get tails both times = $1/2 \times 1/2 = 1/4$

Expectation

- Expected value is a weighted average with weights given by the probability distribution
- Informally, the expected value is the arithmetic mean of a large number of independently selected outcomes of a random variable.
- Can be defined for any function f of the random variable x
- Discrete random variable: $\mathbb{E}[f(x)] = \sum_{x} f(x)p(x)$
- Continuous random variable: $\mathbb{E}[f(x)] = \int f(x)p(x)dx$

Expectation

- Moments: expectations of special functions of the random variable x
 - First moment (mean) μ :

$$\mathbb{E}[x] = \int xp(x)dx \text{ or } \mathbb{E}[x] = \sum_{x} xp(x)$$

• Second centered moment (variance) σ^2 :

•
$$\mathbb{E}[(x-\mu)^2] = \int (x-\mu)^2 p(x) dx$$
 or $\mathbb{E}[(x-\mu)^2] = \sum_x (x-\mu)^2 p(x)$

Property:

$$\mathbb{E}[aX + bY + c] = a\mathbb{E}[X] + b\mathbb{E}[Y] + c$$

$$\mathbb{E}[(x-\mu)^2] = \mathbb{E}[x^2] + \mathbb{E}[x]^2$$

Multivariate distributions

- Given two random variables X and Y, the sample space is all ordered pairs (x, y)
- Probability distribution
 - Assume independence: p(x, y) = p(x)p(y)
 - Non-independence: $p(x, y) = p_{XY}(x, y)$
- Discrete joint distribution:
 - $p_{i,j} = \mathbb{P}[X = x_i, Y = x_j]$ "the probability that X equals x_1 and Y equals x_2 "
- Continuous joint distribution:

$$\mathbb{P}[a \le X \le b, c \le Y \le d] = \int_a^b \int_c^d p(x, y) \, dx \, dy.$$

Multivariate distributions

- Examples:
 - the outcome of flipping three dice (X_1, X_2, X_3)
 - the body mass of a parent and a child $(M_{\mbox{\footnotesize{parent}}}, M_{\mbox{\footnotesize{child}}})$
 - If a patient is a smoker, and if they have cancer $(I_{\mathrm{smoker}}, I_{\mathrm{cancer}})$
 - An individual's two homologous alleles at a locus (A_{mom} , A_{dad})
- Which examples are (likely) independent?

Multivariate distributions

Expectation

Discrete:
$$\mathbb{E}[f(X, Y)] = \sum_{x,y} f(x, y)p(x, y)$$

• Continuous:
$$\mathbb{E}[f(X, Y)] = \iint f(x, y)p(x, y)dxdy$$

Covariance

$$\mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \sum_{x,y} (x - \mu_X)(y - \mu_Y)p(x,y)$$

•
$$\mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \iint (x - \mu_X)(y - \mu_Y)p(x, y)dxdy$$

Variance is the covariance of X with itself: $\mathbb{E}[(X - \mu_X)(X - \mu_X)] = \sum_{x,y} (x - \mu_X)^2 p(x)$

Some discrete probability distributions

- Bernoulli
 - Flipping a coin: P(heads) = p, P(tails) = 1 p
- Binomial
 - Flipping n coins: $P(k \text{ heads}) = p^k (1-p)^{n-k} \binom{n}{k}$
- Geometric
 - Number of tosses until the coin lands on heads
 - $P(X = k) = (1 p)^{k-1}p$
- Poisson

$$P(X=k) = \frac{\lambda^k \exp^{-\lambda}}{k!}$$

- Example: number of mutations in time interval [0,T]
- Limit of binomial as $n \to \infty$, $p \to 0$

https://en.wikipedia.org/wiki/Poisson_limit_theorem

Continuous probability distributions

• Uniform:

$$f(x) = \frac{1}{b-a}$$

Normal

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

- Exponential
 - $f(x) = \lambda \exp^{-\lambda x}$

Exponential distribution

- Dividing the interval [0,t] in to n small intervals, each with width $\delta=1/n$
- Assume an outcome (e.g. a light bulb burns out) happens in a small interval at rate $= \lambda \times 1/n$
- Probability that the outcome doesn't happen between 0 and $t = (1 \frac{\lambda}{n})^{n \times t}$
- Use the fact that $(1 + \frac{x}{n})^n$ approximates e^x as x goes to zero
- $P(\text{outcome does not happen}) \rightarrow e^{-\lambda t}$
- $P(T < t) = 1 e^{-\lambda t}$, Cumulative distribution function (CDF)
- $f(t) = \lambda e^{-\lambda t}$, Density function (PDF)

- Law of segregation
 - During gamete formation, the alleles for each gene segregate from each other so that each gamete carries only one allele for each gene.

- Law of segregation
 - During gamete formation, the alleles for each gene segregate from each other so that each gamete carries only one allele for each gene.
 - Sample space: {B, b}
 - P(B) = P(b) = 1/2

- Law of segregation and mating
 - Sample space: {(B, B), (B, b), (b, B), (b, b)}
 - P(gamete ♀, gamete ♂) = P(gamete ♀) P(gamete ♂) = 1/4

- Law of dominance and uniformity
 - Some alleles are dominant while others are recessive; an organism with at least one dominant allele will display the effect of the dominant allele.
 - Event: "a seedling has purple flower" = {BB, Bb, bB}
 - P "a seedling has purple flower" = 3/4
 - Conditional probability
 - P(homozygous for B | purple flower)
 - $= P(BB)/P(\{BB, Bb, bB\}) = 1/3$

- Law of independent assortment
 - Genes of different traits can segregate independently during the formation of gametes.
 - Locus 1 {r, R}; Locus 2{y, Y}
 - Sample space: {ry,Ry, rY, RY}
 - P(allele at locus 1, allele at locus 2)
 =P(allele at locus1)*P(allele at locus2)
 =1/4
 - Rule is violated if two alleles are linked

- Two traits and mating
 - Sample space= {ry,Ry, rY, RY} x {ry,Ry, rY, RY}
 - R is dominant over r
 - Y is dominant over y
 - Event A = "wrinkled green pods", P(A) = 3/4
 - Event B = "green pods", P(B) = 3/4
 - Event C = "wrinkled, green pods" = $P(A\&B) = P(A) \times P(B) = 9/16$
 - Overall ratio is 9:3:3:1

- Derivative
- Integral
- Taylor expansion
- Useful taylor expansion
- Common functions
 - Exponential
 - Polynomial
 - Logrithm

Part 2: Calculus

- Derivative
- The derivative of a function f at point x, is the best linear approximation of the function f centered at x

•
$$f'(x)$$
 or $\frac{df(x)}{dx}$

•
$$f(x) \approx f(a) + f'(a)(x - a)$$

Part 2: Calculus

Commonly used derivatives

$$\frac{d}{dx}x^a = ax^{a-1}.$$

$$\frac{d}{dx}e^{x}=e^{x}.$$

$$\frac{d}{dx}\ln(x) = \frac{1}{x}, \qquad x > 0.$$

Integral

• The integral of a function on the interval $\left[a,b\right]$ is the limit of the sum

$$\sum_{i=0}^{n-1} f(t_i) \left(x_{i+1} - x_i \right).$$

- where $a = x_0 < x_1 < x_2 < \dots < x_i < \dots < x_n = b$
- as $n \to \infty$, that is, if we cut the interval [a,b] into increasing smaller pieces
- The integral is written as $\int_{a}^{b} f(x)dx$

Fundamental theorem of calculus

• Let
$$F$$
 be a function $F(x) = \int_a^x f(t) dt$.

- Then F'(x) = f(x)
- F(x) is the antiderivative of f(x)

$$\int_a^b f(x) \, dx = F(b) - F(a) \, .$$

Cumulative and probability density function

- The cumulative distribution function
 - $F_X(x) = P(X \le x)$
- The probability density function
 - $f_{\chi}(t)$
- We have

$$F_X(x) = \int_{-\infty}^x f_X(t) \, dt \, .$$

$$f(x) = \frac{dF(x)}{dx}$$

•
$$P(a < X \le b) = \int_{a}^{b} f_X(x) dx = F_X(b) - F_X(a)$$

Approximating functions by Taylor Series

- Recall the derivative of a function provides the best linear approximation of a function at a point
- $f(x) \approx f(a) + f'(a)(x a)$
- We can generalize this approximation using the Taylor expansion:

•
$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots$$

 Taylor polynomials are approximations of a function, which become generally better as n increases.

Common approximations

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

• $e^x \approx 1 + x$ for x near 0

$$\frac{1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots}{1+x} = 1 + \frac{\frac{x}{2!}+\frac{x^2}{3!}+\cdots}{1+\frac{1}{x}} \to 1$$
as $x \to 0$

Common approximations

•
$$(1+x)^k$$
• $\frac{d(1+x)^k}{dx} = k(1+x)^{k-1}$

$$\frac{d(1+x)^k}{dx} = k(1+x)^{k-1}$$

$$\frac{d(1+x)^k}{dx} = k, \text{ at } x = 0$$

•
$$(1+x)^k \approx 1 + kx \text{ near } 0$$

Part3: Basic combinatorics

- Factorial $n! = n \times (n-1) \times (n-2) \times \cdots \times 1$
 - Number of ways to sort n objects
- Binomial coefficient $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
 - Number of ways to pick k out of n objects

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

Part 4: the exponential function

$$\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

$$\frac{de^x}{dx} = e^x$$

- Connection to e^x
 - $\exp(x)\exp(y) = \exp(xy)$
 - $\exp(n) = (\exp(1))^n$

$$\exp(1) = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + 1 + \frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} + \dots = e$$

- $\exp(n) = e^n$
- $\exp(x) = e^x$

Part 4: the exponential function

•
$$a^x = (e^{\ln a})^x = e^{x \ln a}$$

- Set $y = a^x$, then
- If $\log_a y = x$, then $\ln y = x \ln a$
- Change of base

$$\log_a y = \frac{\ln y}{\ln a}$$

Ways the exponential function arises

- Exponential growth
 - x(t) is a function that describes the size of a population at time t
 - Growth rate is equal to population size (everybody in the population makes one offspring)
 - x'(t) = x(t)
 - $x(t) = ae^t$
 - x(0) = a

Ways the exponential function arises

- Compound interest
 - You have y amount of money in the bank
 - The annual interest rate is *r*
 - After a year you have y(1 + r)
 - Let's say that we divide the whole year into n small intervals of equal sizes, e.g. months, days, minutes, etc. And the interest per unit time is $\frac{r}{n}$
 - So the money you get at the end of year is

•
$$y\left(1+\frac{r}{n}\right)^n$$

• What happens if $n \to \infty$?

Ways the exponential function arise

So the money you get at the end of year is

•
$$y\left(1+\frac{r}{n}\right)^n$$

• What happens if $n \to \infty$?

$$\lim_{n\to\infty} \left(1 + \frac{r}{n}\right)^n$$

$$\left(1 + \frac{r}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{r^k}{n^k} = \sum_{k=0}^n \frac{n!}{(n-k)!k!} \frac{r^k}{n^k}$$

This tends to
$$\sum_{k=0}^{\infty} \frac{r^k}{k!} = e^r \text{ as } n \to \infty$$