Signal Processing - | by One

Sibi Raj B. Pillai Dept of Electrical Engineering IIT Bombay

Outline

- So Far: Impulse, Sampling, Convolution and Interpolatio
- Previous Week: Fourier Series
- Previous Class: Uniqueness of Fourier Series
- Today: Fourier Transform

Outline

- So Far: Impulse, Sampling, Convolution and Interpolatio
- Previous Week: Fourier Series
- Previous Class: Uniqueness of Fourier Series
- Today: Fourier Transform

$$y(t) = \int_{\tau \in \mathbb{R}} h(\tau) x(t-\tau) d\tau = \int_{\tau \in \mathbb{R}} x(\tau) h(t-\tau) d\tau.$$

$$y(t) = \int_{\tau \in \mathbb{R}} h(\tau) x(t-\tau) d\tau = \int_{\tau \in \mathbb{R}} x(\tau) h(t-\tau) d\tau.$$

Time Invariance:

$$X(t-\tau)$$
 \longrightarrow $h(t)$ $y(t-\tau)$

$$y(t) = \int_{\tau \in \mathbb{R}} h(\tau) x(t-\tau) d\tau = \int_{\tau \in \mathbb{R}} x(\tau) h(t-\tau) d\tau.$$

Time Invariance:

$$x(t-\tau)$$
 \longrightarrow $h(t)$ $y(t-\tau)$

Causal Systems $\Rightarrow h(t) = 0, \forall t < 0.$

Definition:

We say that a function h(t) is integrable if $\int_{\mathbb{R}} |h(t)| dt < \infty$.

For h(t) integrable, x(t)*h(t) is well defined for **bounded** x(t)

Definition:

We say that a function h(t) is integrable if $\int_{\mathbb{R}} |h(t)| dt < \infty$.

For h(t) integrable, x(t)*h(t) is well defined for **bounded** x(t).

Definition:

We say that a function h(t) is integrable if $\int_{\mathbb{R}} |h(t)| dt < \infty$.

For h(t) integrable, x(t)*h(t) is well defined for **bounded** x(t).

$$\exp(j2\pi f t)$$
 \longrightarrow $h(t)$ $y(t) = h(t) * \exp(j2\pi f t)$

Definition:

We say that a function h(t) is integrable if $\int_{\mathbb{R}} |h(t)| dt < \infty$.

For h(t) integrable, x(t)*h(t) is well defined for **bounded** x(t).

$$\exp(j2\pi f t)$$
 \longrightarrow $h(t)$ $y(t) = h(t) * \exp(j2\pi f t)$

$$y(t) = \int_{\tau \in \mathbb{R}} h(\tau) \exp(j2\pi f(t-\tau)) d\tau$$

$$= \exp(j2\pi f t) \int_{\tau \in \mathbb{R}} h(\tau) \exp(-j2\pi f \tau) d\tau$$

$$= X(t) \int_{\tau \in \mathbb{R}} h(\tau) \exp(-j2\pi f \tau) d\tau.$$

Definition:

We say that a function h(t) is integrable if $\int_{\mathbb{R}} |h(t)| dt < \infty$.

For h(t) integrable, x(t)*h(t) is well defined for **bounded** x(t).

$$\exp(j2\pi f t)$$
 \longrightarrow $h(t)$ $y(t) = h(t) * \exp(j2\pi f t)$

$$y(t) = \int_{\tau \in \mathbb{R}} h(\tau) \exp(j2\pi f(t-\tau)) d\tau$$
$$= \exp(j2\pi f t) \int_{\tau \in \mathbb{R}} h(\tau) \exp(-j2\pi f \tau) d\tau$$
$$= x(t) \int_{\tau \in \mathbb{R}} h(\tau) \exp(-j2\pi f \tau) d\tau.$$

Fourier Transform:

$$H(f) := \int_{t \in \mathbb{R}} h(t) \exp(-j2\pi f t) dt.$$

$$H(f) = |H(f)| \exp[j\theta(f)]$$

Thus for a pure sinusoidal input $\exp(j2\pi f t)$ to the LTI system h(t):

- 1. The amplitude will be scaled by |H(f)|.
- 2. Phase will be shifted by $\theta(f) \in [-\pi, \pi]$.
- 3. But frequency is unchanged, unless H(f) = 0.

Closely related to Laplace Transform for solving ODEs.

Fourier Transform:

$$H(f) := \int_{t \in \mathbb{R}} h(t) \exp(-j2\pi f t) dt.$$

$$H(f) = |H(f)| \exp[j\theta(f)].$$

Thus for a pure sinusoidal input $\exp(i2\pi f t)$ to the LTI system h(t):

- 1. The amplitude will be scaled by |H(f)|.
- 2. Phase will be shifted by $\theta(f) \in [-\pi, \pi]$
- 3. But frequency is unchanged, unless H(f) = 0.

Closely related to Laplace Transform for solving ODEs.

Fourier Transform:

$$H(f) := \int_{t \in \mathbb{R}} h(t) \exp(-j2\pi f t) dt.$$

$$H(f) = |H(f)| \exp[j\theta(f)].$$

Thus for a pure sinusoidal input $\exp(j2\pi f t)$ to the LTI system h(t):

- 1. The amplitude will be scaled by |H(f)|.
- 2. Phase will be shifted by $\theta(f) \in [-\pi, \pi]$.
- 3. But frequency is unchanged, unless H(f) = 0.

Closely related to Laplace Transform for solving ODEs

Fourier Transform:

$$H(f) := \int_{t \in \mathbb{R}} h(t) \exp(-j2\pi f t) dt.$$

$$H(f) = |H(f)| \exp[j\theta(f)].$$

Thus for a pure sinusoidal input $\exp(j2\pi f t)$ to the LTI system h(t):

- 1. The amplitude will be scaled by |H(f)|.
- 2. Phase will be shifted by $\theta(f) \in [-\pi, \pi]$.
- 3. But frequency is unchanged, unless H(f) = 0.

Closely related to Laplace Transform for solving ODEs.

Example-1

$$X(f) = \int_{\mathbb{R}} x(t) \exp(-j2\pi f t) dt$$

$$= \frac{1}{-j2\pi f} \left(\exp(-j2\pi f \frac{\tau}{2}) - \exp(j2\pi f \frac{\tau}{2}) \right)$$

$$= \frac{\sin(\pi f \tau)}{\pi f}$$

$$= \tau \operatorname{sinc}(f \tau).$$

Example-1:Plot

Example-2

