1. Look at the piece $A^c \cap B \cap C$. It obviously isn't in A. So it isn't in both A and $B \cup C$. Thus it isn't in the second set. But, it is in C. So, it is in at least one of the two sets $A \cap B$ and C, and thus it is in the union. So this piece is in the first set but not the second. So

$$(A \cap B) \cup C \neq A \cap (B \cup C)$$

- 2. (a) $P(\lbrace 7 \rbrace)$ is undefined
 - (b) true
 - (c) If $\{2,4,6\} \in \mathcal{A}$ then $\{1,3,5\} \in \mathcal{A}$.
 - (d) $\emptyset \in \mathcal{A}$.
 - (e) true
 - (f) true
 - (g) If $A \subset \Omega$ then if \mathcal{A} includes all subsets of Ω then $A \in \mathcal{A}$. (Note: There are many other ways of correcting this statement. I couldn't think of any creative ones.)
 - (h) If $\{5\} \in \mathcal{A} \text{ then } P(\{5\}) \le 1/3.$
 - (i) true
- 3. Here are the steps in creating the tables:

s in creating the tables.											
		$G \cap$		E^c	$G^c \cap E^c$	$G \cap$	$\cap E$	G^c ($\cap E$		
•	1	M									
•	N	I^c									
		0.		.98	.95 * .98	.05 ×	× .02	.95 ×	∗ .02		
		$G \cap E^c$		$G^c \cap E^c$			$G \cap E$		$G^c \cap E$		
\overline{M}		.9 * .05		1/Million *.93			.5 * .001		.5 * .02		
M^c		.1 * .05		(1 - 1/million)*.93			.5 * .001		.5 * .02		
		.05		.93			.001		.02		
		G	$E \cap E^c$		$G^c \cap E^c$	$G \cap E$		$G^c\cap A$	E		
1	\overline{M}		.045	1/	1 Million	.0005		.01		.0555	_
\overline{N}	M^c		.005		.93	.0005		.01		.9455	
			.05		.93	.001		.02		1	_

The rest is details.

4. The correct answer is P(D=2) = 1/4, P(D=1) = 1/2, P(D=0) = 1/4. Dean is using equally likely when equally likely isn't the right thing to do. Bob is forgetting that in 8 hours, there is a good chance that the two cars will have arrived at different times and hence the lane they pick is independent.

5. For the first box: $P(2 \text{ caramels} - \text{first box}) = (8/12) \times (7/11)$.

For the second box: $P(2 \text{ caramels} - \text{second box}) = (5/10) \times (4/9)$.

The chance of getting two caramels (summing over disjoint events–Ommm) is: $(8/12) \times (7/11) \times .5 + (5/10) \times (4/9) \times .5$.

Now desired probability:

$$P(\text{second box} - 2 \text{ caramels}) = \frac{(5/10)*(4/9)*.5}{(8/12)*(7/11)*.5 + (5/10)*(4/9)*.5}.$$