Assignment 2 TTK4215 Elias Olsen Almenningen Version: 1.0 Date: September 4, 2023

$Contents \\ Problem 1 \dots \dots 2$

Problem 1

We have the following definitions:

$$y(t) = \theta^* \phi(t)$$

$$\tilde{\theta}(t) = \theta(t) - \theta^*$$

$$\varepsilon(t) = y(t) - \theta(t)\phi(t) = -\tilde{\theta}(t)\phi(t)$$

$$\dot{\theta}(t) = \gamma \varepsilon(t)\phi(t)$$

where $\theta(t)$ is an estimate of θ^* , making $\tilde{\theta}(t)$ the parameter estimation error, and $\varepsilon(t)$ the estimation error. $\dot{\theta}(t)$ is an adaption law.

The Lyapunov function is

$$V = \frac{1}{2\gamma}\tilde{\theta}^2(t) \tag{1}$$

Differentiating (1) gives:

$$\dot{V} = \frac{1}{\gamma}\tilde{\theta}(t)\dot{\tilde{\theta}}(t)$$

$$= \frac{1}{\gamma}\tilde{\theta}(t)\left(\gamma\varepsilon(t)\phi(t)\right)$$

$$= \tilde{\theta}(t)\varepsilon(t)\phi(t)$$

$$= -\tilde{\theta}(t)\tilde{\theta}(t)\phi(t)\phi(t)$$

$$= -\tilde{\theta}^{2}(t)\phi^{2}(t)$$

$$= -\varepsilon^{2}(t)$$

which is negative semi-definite, since \dot{V} can be ≤ 0 even though $\tilde{\theta}$ is not.

1. $\theta \in \mathcal{L}_{\infty}$

Since (1) is positive definite, its lower bounded by zero, and negative semi-definite, V is non-increasing. Therefore (1) is bounded and in \mathcal{L}_{∞} . If $V \in \mathcal{L}_{\infty}$, then $\tilde{\theta} \in \mathcal{L}_{\infty} \Longrightarrow \theta \in \mathcal{L}_{\infty}$

2. $\varepsilon \in \mathcal{L}_2$

Since the Lyapunov function is negative semi-definite, Lemma A.4.5 states that y(t) converges to a limit as $t \to \infty$. Hence, $\varepsilon \in \mathcal{L}_2$

- 3. $\varepsilon \in \mathcal{L}_{\infty}$, provided $\phi \in \mathcal{L}_{\infty}$ Since $\varepsilon = -\tilde{\theta}(t)\phi(t)$, and both $\tilde{\theta}(t), \phi(t) \in \mathcal{L}_{\infty}$, ε also has to be \mathcal{L}_{∞} .
- 4. $\varepsilon \to 0$, provided $\phi, \dot{\phi} \in \mathcal{L}_{\infty}$ Lemma A.4.7 states that if $f, \dot{f} \in \mathcal{L}_{\infty}$ and $f \in \mathcal{L}_p, p \in [1, \infty)$, then $f(t) \to 0$ as $t \to \infty$. To prove this is the case for ε , we have to check if $\dot{\varepsilon} \in \mathcal{L}_{\infty}$.

 $\dot{\varepsilon} = -\dot{\tilde{\theta}}(t)\phi(t) - \tilde{\theta}\dot{\phi}(t)$. $\phi, \dot{\phi} \in \mathcal{L}_{\infty}$, so we need to check if $-\dot{\tilde{\theta}}(t) \in \mathcal{L}_{\infty}$. $\dot{\theta}(t) = \gamma \varepsilon(t)\phi(t)$, and both $\varepsilon(t), \phi(t) \in \mathcal{L}_{\infty}$. Therefore $-\dot{\tilde{\theta}}(t) \in \mathcal{L}_{\infty} \implies \dot{\varepsilon} \in \mathcal{L}_{\infty}$.

Then we have that $\varepsilon, \dot{\varepsilon} \in \mathcal{L}_2 \cap \mathcal{L}_{\infty} \implies \varepsilon \to 0$ as $t \to \infty$.

Argue why you cannot conclude that $\theta(t) \to \theta^*$. This can be proven by a counterexample:

If $\phi(t)=0$ and our guess for $\theta(t=0)$ is bad/wrong, then $\theta(t)$ not $\to \theta^*$, even though $\varepsilon\to 0$.