Comments for Lecture 29 3.18.2010

A Zoo of Vector Spaces.

NOTE: In the following examples I do not verify all 10 axioms of a vector space are satisfied. This is left to the motivated reader.

Example 0: The most trivial vector space is the *zero vector space* $\{0\}$. This is a vector space over \mathbb{R} (but actually over any field).

Example 1: Our old friend *Euclidean space* (or *real coordinate space*) \mathbb{R}^n is a vector space over \mathbb{R} with vector addition and scalar multiplication as defined on p38.

Example 2: The set of all polynomials with coefficients in \mathbb{R} of degree less than or equal to n (where n is a nonnegative integer) is a vector space over \mathbb{R} with vector addition defined as addition of polynomials and scalar multiplication defined as scalar multiplication of polynomials. In the book this set is denoted P_n .

Formally: The set

$$P_n = \{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \mid a_0, a_1, a_2, \dots, a_n \in \mathbb{R}\}\$$

is a vector space over \mathbb{R} with vector addition and scalar multiplication defined as follows

<u>Vector addition</u>: let $p(x), q(x) \in P_n$. So we can write: $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ and $q(x) = b_0 + b_1x + b_2x^2 + \cdots + b_nx^n$ where each $a_j \in \mathbb{R}$ and each $b_k \in \mathbb{R}$ for $j, k = 0, 1, 2, \ldots, n$. Then

$$p(x) + q(x) = (a_0 + a_1x + a_2x^2 + \dots + a_nx^n) + (b_0 + b_1x + b_2x^2 + \dots + b_nx^n)$$

= $(a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \dots + (a_n + b_n)x^n$

Scalar multiplication: let $p(x) \in P_n$ and let $\alpha \in \mathbb{R}$. So we can write: $p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$ where each $a_j \in \mathbb{R}$ for $j = 0, 1, 2, \ldots, n$. Then

$$\alpha p(x) = \alpha(a_0 + a_1x + a_2x^2 + \dots + a_nx^n)$$

= $\alpha a_0 + \alpha a_1x + \alpha a_2x^2 + \dots + \alpha a_nx^n$

Example 3: The set of polynomials with coefficients in \mathbb{R} is a vector space over \mathbb{R} with vector addition defined as addition of polynomials and scalar multiplication defined as scalar multiplication of polynomials. This vector space is often denoted $\mathbb{R}[x]$.

Example 4: The set of all $m \times n$ matrices with entries in \mathbb{R} is a vector space over \mathbb{R} with vector addition defined as matrix addition and scalar multiplication defined as scalar

multiplication of matrices. This vector space is sometimes denoted M(m,n) or $M_{n,m}(\mathbb{R})$ or $\mathbb{R}^{m\times n}$.

Example 5: The set of all functions from \mathbb{R} to \mathbb{R} is a vector space over \mathbb{R} with vector addition defined as function addition and scalar multiplication defined as scalar multiplication of functions.

Formally: The set $F = \{f: \mathbb{R} \to \mathbb{R}\}$ is a vector space over \mathbb{R} with vector addition and scalar multiplication defined as follows

<u>Vector addition</u>: let $f, g \in F$. Then

$$(f+g)(x) = f(x) + g(x)$$
 for all $x \in \mathbb{R}$

Scalar multiplication: let $f \in F$ and let $\alpha \in \mathbb{R}$. Then

$$(\alpha f)(x) = \alpha f(x)$$
 for all $x \in \mathbb{R}$

Example 6: The set of all continuous functions from [0,1] to \mathbb{R} is a vector space over \mathbb{R} with vector addition defined as function addition and scalar multiplication defined as scalar multiplication of functions.

Formally: The set $C[0,1] = \{f:[0,1] \to \mathbb{R} \mid f \text{ is continuous}\}$ is a vector space over \mathbb{R} with vector addition and scalar multiplication defined as in example 5.