Premier University, Department of CSE

Spring 2024, 4th Semester, Assignment

Course Title: Algorithms, Course Code: CSE 2415

Course Outcome: CO3, Total Marks: 10

Problem scenario:

In a country, there are several cities (preferably 8 nodes from A to H, 17 edges), each named after a unique character. The cities and their connections are represented as a graph, where you need to put weights (all odd if your ID number is odd and vice versa) in each edge. A person wants to send a message from a source city to a destination city. The frequency of a character in a given text is represented by the shortest distance from the source city to the city which is named after that character.

Objectives:

- 1. To implement a solution to determine the minimum cost (in terms of total frequency) to send the message from the source city to the destination city.
- 2. To find out the message.
- 3. To encode the entire message optimally.
- 4. To decode it back to its original form.

Design considerations:

<u>Algorithm Choice</u>: Utilize basic algorithms covered in the course to create solutions that align with the specified objectives.

<u>Graph Representation</u>: Provide a representation of the city's graph structure that includes nodes (places) and edges (transportation paths) with relevant attributes.

<u>Data Structures</u>: Design appropriate data structures to represent the graph, places, and edges, ensuring efficient retrieval and manipulation of information.

Evaluation:

Students should show the -

- ✓ Validation of the system's functionality
- ✓ Step by step representation of chosen algorithms
- ✓ Validation of the chosen algorithms

Deliverables:

A printed assignment reporting the following tasks:

- (i) A properly justified system with logical algorithm choice and data structure that were covered in the course.
- (ii) Briefly address the complex problem-solving questions:
 - a. Does the solution need in-depth engineering knowledge?
 - b. Does the solution involve wide-ranging or conflicting technical, engineering, and other issues?
 - c. Is the solution well-known, or does it require abstract thinking and analysis to formulate?
 - d. Does the solution involve infrequently encountered issues?
 - e. Does the solution need adherence to standards and codes of practice?
 - f. Does the solution involve stakeholders with conflicting technical requirements?

g. Does the solution involve interdependence between sub-problems or parts?

Rubrics for Assignment marking:

Rubrics for Assignment

Task	Criteria	Good (4-5)	Moderate (2-3)	Poor (1)
i.	 Problem Analysis (5): Validation of the system's functionality Responsiveness to real-time data updates 	In-depth analysis	Shallow analysis	Incomplete analysis
ii.	Problem Solution (5): Step by step representation of chosen algorithms	Properly or near appropriately reasoned solution	Appropriate solution for some cases	Inappropriate or no solution

Graph Representation: Any graph representation with specified constraints

<u>Data Structures</u>: Minimum priority queue can be used

<u>Dynamic Updates</u>: Continuous iteration of the algorithm with dynamic input output can be written