Lecture 5: Solving LPs – the simplex method

- Brief recap previous lecture
- The geometry of the feasible set
- Basic feasible points, "The fundamental theorem of linear programming"
- The simplex method
- Example 13.1
- Some implementation issues

Reference: N&W Ch.13.2-13.3, also 13.4-13.5

Linear programming, standard form and KKT: recap

LP:
$$\min_{x \in \mathbb{R}^n} c^T x \quad \text{subject to} \quad \begin{cases} a_i x = b_i, & i \in \mathcal{E} \\ a_i x \geq b_i, & i \in \mathcal{I} \end{cases}$$
 LP, standard form:
$$\min_{x \in \mathbb{R}^n} c^T x \quad \text{subject to} \quad \begin{cases} Ax = b \\ x \geq 0 \end{cases}$$

Lagrangian: $\mathcal{L}(x,\lambda,s) = c^T x - \lambda^T (Ax - b) - s^T x$

KKT-conditions (LPs: necessary and sufficient for optimality):

$$A^{T}\lambda^{*} + s^{*} = c,$$

 $Ax^{*} = b,$
 $x^{*} \ge 0,$
 $s^{*} \ge 0,$
 $x_{i}^{*}s_{i}^{*} = 0, \quad i = 1, 2, ..., n$

Duality

Primal problem

$$\min_{x} \quad c^{\top} x$$

s.t.
$$Ax = b$$

$$x \ge 0$$

Dual problem

$$\max_{\lambda,s} b^{\top} \lambda$$
s.t. $A^{\top} \lambda + s = c$

$$s \ge 0$$

- Identical KKT conditions!
- Equal optimal value: $c^{\top}x^* = b^{\top}\lambda^*$
- Weak duality: $c^{\top}\bar{x} \geq c^{\top}x^* = b^{\top}\lambda^* \geq b^{\top}\bar{\lambda}$
- Duality gap: $c^{\top}\bar{x} b^{\top}\bar{\lambda}$
- Strong duality (Thm 13.1):
 - i) If primal or dual has finite solution, both are equal
 - ii) If primal or dual is unbounded, the other is infeasible

LP: Geometry of the feasible set

 $\min_{x} \quad c^{\top} x$

s.t. Ax = b

$$x \ge 0$$

- Basic optimal point (BOP)Basic feasible point (BFP)(if they exist)
- In general, the BFP has at most *m* non-zero components

LP KKT conditions (necessary&sufficient)

Simplex method iterates BFPs until one that fulfills KKT is found.

$$A^{T}\lambda + s = c,$$
 (KKT-1)
 $Ax = b,$ (KKT-2)
 $x \ge 0,$ (KKT-3)
 $s \ge 0,$ (KKT-4)
 $x_{i}s_{i} = 0, \quad i = 1, 2, ..., n$ (KKT-5)

• Each step is a move from a vertex to a neighboring vertex (one change in the basis), that decreases the objective

Check KKT-conditions for BFP

• Given BFP x, and corresponding basis $\mathcal{B}(x)$. Define

$$\mathcal{N}(x) = \{1, 2, \dots, n\} \setminus \mathcal{B}(x)$$

Partition x, s and c:

$$x_B = [x_i]_{i \in \mathcal{B}(x)}$$
 $x_N = [x_i]_{i \in \mathcal{N}(x)}$

KKT conditions

KKT-2:
$$Ax = Bx_B + Nx_N = Bx_B = b$$
 (since x is BFP) KKT-3: $x_B = B^{-1}b \ge 0$, $x_N = 0$ (since x is BFP) KKT-5: $x^\top s = x_B^\top s_B + x_N^\top s_N = 0$ if we choose $s_B = 0$ KKT-1: $\begin{bmatrix} B^T \\ N^T \end{bmatrix} \lambda + \begin{bmatrix} s_B \\ s_N \end{bmatrix} = \begin{bmatrix} c_B \\ c_N \end{bmatrix} \Rightarrow \begin{cases} \lambda = B^{-T}c_B \\ s_N = c_N - N^T\lambda \end{cases}$ KKT-4: Is $s_N \ge 0$?

- If $s_N \geq 0$, then the BFP x fulfills KKT and is a solution
- If not, change basis, and try again
 - E.g. pick smallest element of s_N (index q), increase x_q along Ax=b until x_p becomes zero. Move q from $\mathcal N$ to $\mathcal B$, and p from $\mathcal B$ to $\mathcal N$. This guarantees decrease of objective, and no "cycling" (if non-degenerate).

Example 13.1 – figure

Simplex in 3D

wikipedia.org

Linear algebra – LU factorization

- Two linear systems must be solved in each iteration:
 - $-B^{\mathsf{T}}\lambda = c_B$
 - $Bd = A_q$ (to find the direction to check when inreasing x_q)
 - We also had $Bx_B = b$. Since x_B is not needed in the iterations, we don't need to solve this (apart from in the final iteration)
 - This is the major work per iteration of simplex, efficiency is important!
- B is a general, non-singular matrix
 - Guaranteed a solution to the linear systems
 - LU factorization is the appropriate method to use (same for both systems)
 - Don't use matrix inversion!
- In each step of Simplex method, one column of B is replaced:
 - Can update ("maintain") the LU factorization of B in a smart and efficient fashion
 - No need to do a new LU factorization in each step, save time!

Other practical implementation issues (Ch. 13.5)

- Selection of "entering index" q
 - Dantzig's rule: Select the index of the most negative element in s_N
 - Other rules have proved to be more efficient in practice
- Handling of degenerate bases/degenerate steps (when a positive x_q is not possible)
 - If no degeneracy, each step leads to decrease in objective $c^{\top}x$ and convergence in finite number of iterations is guaranteed (Theorem 13.4)
 - Degenerate steps lead to no decrease in objective. Not necessarily a problem, but can lead to cycling (we end up in the same basis as before)
 - Practical algorithms uses perturbation strategies to avoid this

Starting the simplex method

- We assumed an initial BFP available but finding this is as difficult as solving the LP
- Normally, simplex algorithms have two phases:
 - · Phase I: Find BFP
 - · Phase II: Solve LP
- Phase I: Design other LP with trivial initial BFP, and whose solution is BFP for original problem

$$\min e^{\top} z$$
 subject to $Ax + Ez = b$, $(x, z) \ge 0$

$$e = (1, 1, \dots, 1)^{\top}, \quad E \text{ diagonal matrix with } \begin{cases} E_{jj} = 1 \text{ if } b_j \ge 0 \\ E_{jj} = -1 \text{ if } b_j < 0 \end{cases}$$

- Presolving (Ch. 13.7)
 - Reducing the size of the problem before solving, by various tricks to eliminate variables and constraints. Size reduction can be huge. Can also detect infeasibility.

Simplex – an active set method

- Complexity:
 - Typically, at most 2m to 3m iterations
 - Worst case: All vertices must be visited (exponential complexity in n)
 - Compare interior point method: Guaranteed polynomial complexity, but in practice hard to beat simplex on many problems
- Active set methods (such as simplex method):
 - Maintains explicitly an estimate of the set of inequality constraints that are active at the solution (the set N for the simplex method)
 - Makes small changes to the set in each iteration (a single index in simplex)
- Next week: Active set method for QP