1. Funkcje trygonometryczne

Korzystając z wzoru Eulera

$$e^{ix} = \cos x + i \sin x$$
$$e^{-ix} = \cos x - i \sin x$$

można przedstawić funkcje trygonometryczne:

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$
 $\cos x = \frac{e^{ix} + e^{-ix}}{2}$

2. Funkcje hiperboliczne

funkcje zmiennej rzeczywistej określone są następująco:

• sinus hiperboliczny: (oznaczany również $\sh x$)

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

• cosinus hiperboliczny: (oznaczany również $\operatorname{ch} x$)

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

• tangens hiperboliczny: (oznaczany również h x lub anh x)

$$tgh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

• cotangens hiperboliczny: (oznaczany również $\coth x$ lub $\coth x$)

$$\operatorname{ctgh} x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

3. Wykresy funkcji hiperbolicznych

Wykres funkcji sinh(x):

Wykres funkcji cosh(x)

ma kształt linii łańcuchowej.

Wykresy funkcji sinh(x), cosh(x), tanh(x)

4. Wzór jedynkowy:

• Zbiór punktów płaszczyzny o współrzędnych postaci (cos x, sin x) jest okręgiem.

$$\sin^2 x + \cos^2 x = 1$$

• Zbiór punktów o współrzędnych postaci (cosh(x), sinh(x)) wyznacza hiperbolę.

Wynika to z tożsamości, znanej jako jedynka hiperboliczna:

$$\cosh^2 x - \sinh^2 x = 1$$