

Description

The VSM2N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 100V, I_D = 2A$ $R_{DS(ON)} < 240mΩ @ V_{GS} = 10V$ (Typ:210mΩ)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM2N10-T9	VSM2N10	TO-92	-	-	-

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	100	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous	I _D	2	Α
Drain Current-Pulsed (Note 1)	I _{DM}	5	Α
Maximum Power Dissipation	P _D	1.25	W
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}$ C

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ heta JA}$	100	°C/W

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics							
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100	110	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μA	

Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	age $V_{GS(th)}$ $V_{DS}=V_{GS},I_D=250\mu A$		1.2	1.8	2.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	$R_{DS(ON)}$ V_{GS} =10V, I_D =1A		210	240	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =1A	1	-	-	S
Dynamic Characteristics (Note4)				•		
Input Capacitance	C _{lss}	V _{DS} =50V.V _{GS} =0V.	-	190	-	PF
Output Capacitance	C _{oss}	F=1.0MHz	-	22	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.UIVITZ	-	13	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	6	-	nS
Turn-on Rise Time	t _r	V _{DD} =50V,I _D =1.3A,R _L =39Ω		10	-	nS
Turn-Off Delay Time	$t_{d(off)}$	V_{GS} =10V, R_{G} =1 Ω	-	10	-	nS
Turn-Off Fall Time	t _f		1	6	-	nS
Total Gate Charge	Qg	\/ -E0\/1 -1.34	-	5.2		nC
Gate-Source Charge	Q_{gs}	$V_{DS}=50V,I_{D}=1.3A,$ $V_{GS}=10V$	-	0.75	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} -10V	-	1.4	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	Forward Voltage ^(Note 3)		-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	2	Α

Notes:

- $\textbf{1.} \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature}.$
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- **3.** Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2\%$.
- 4. Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} test circuit

2) Gate charge test circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

Figure 10 Power De-rating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance