BSTT536: Survival Data Analysis

Instructor: Hua Yun Chen, PhD

Division of Epidemiology and Biostatistics School of Public Health University of Illinois at Chicago Table of Content

Kaplan-Meier Estimator

Other Estimators

Median Survival Time

Derivations

Nonparametric Estimator of Distribution Function

- 1. Observed survival data: (X_i, δ_i) , $i = 1, \dots, n$. We can sort the data based on X_i , $i = 1, \dots, n$. Let t_1, \dots, t_K denote all distinctive uncensored event times. Let d_k denote the number of subjects having event time t_k . Let n_k denote the number of subjects having event time equal to or greater than t_k .
- 2. If all $\delta=1$, then a nonparametric estimation of distribution is

$$\hat{F}(t) = \frac{1}{n} \sum_{i=1}^{n} 1_{\{X_i \le t\}}$$

When n is large, \hat{F} tends to the true distribution. When censoring is present, consistentency does not hold.

Estimate the conditional probability

Time	d_k	n_k	ĝ	$Var(\hat{p})$
1	3	48	3/48	$3 \times 45/48^{3}$
4	2	44	2/44	$2 \times 42/44^{3}$
5	4	42	4/42	$4 \times 38/42^{3}$
6	2	38	2/38	$2 \times 36/38^{3}$
8	1	35	1/35	$1 \times 34/35^{3}$

The estimated quantity is

$$P(T < t + \Delta | T \ge t) \approx h(t)\Delta.$$

Estimate the conditional probability

1. The survival function

$$S(t) = P(T > t)$$

$$= P(T \ge t_1 | T \ge t_0 = 0) \times P(T \ge t_2 | T \ge t_1)$$

$$\times \cdots \times P(T \ge t | T \ge t_k)$$

$$= \{1 - P(T < t_1 | T \ge t_0)\} \times \{1 - P(T < t_2 | T \ge t_1)$$

$$\times \cdots \times \{1 - P(T < t | T \ge t_k)\}.$$

Kaplan-Meier Estimator of Survival Function

1. Kaplan-Meier (also called product-limit) estimator of the survival function

$$\hat{S}(t) = \prod_{\{k \mid t_k \leq t\}} \left(1 - \frac{d_k}{n_k}\right).$$

This estimator is consistent.

2. Variance estimate of $\hat{S}(t)$

$$\hat{V}\left\{\hat{S}(t)\right\} = \hat{S}^2(t) \sum_{\{k|t_k \leq t\}} \frac{d_k}{n_k(n_k - d_k)}.$$

This is called Greenwood variance formula.

Example: Kaplan-Meier Estimator for Myeloma Data

Time	d_k	n_k	KME	$\sqrt{V\{log(KME)\}}$	$\sqrt{V(KME)}$
1	3	48	0.9375	0.0373	0.0349
4	2	44	0.8949	0.0497	0.0445
5	4	42	0.8097	0.0706	0.0571
6	2	38	0.7670	0.0802	0.0616
8	1	35	0.7451	0.0853	0.0636
10	4	34	0.6575	0.1058	0.0696
12	1	28	0.6340	0.1119	0.0710
13	1	26	0.6096	0.1186	0.0723
14	1	25	0.5852	0.1254	0.0734
15	1	24	0.5608	0.1324	0.0743
16	2	22	0.5098	0.1486	0.0758
17	1	20	0.4844	0.1572	0.0762

Example: Kaplan-Meier Estimator for Myeloma Data(Continuing)

Time	d_k	n_k	KME	$\sqrt{V\{log(KME)\}}$	$\sqrt{V(KME)}$	
18	2	19	0.4334	0.1758	0.0762	
23	1	15	0.4045	0.1889	0.0764	
24	1	14	0.3756	0.2029	0.0762	
36	1	13	0.3467	0.2181	0.0756	
40	2	12	0.2889	0.2535	0.0732	
50	1	9	0.2568	0.2795	0.0718	
51	1	8	0.2247	0.3098	0.0696	
65	1	5	0.1798	0.3821	0.0687	
66	1	4	0.1348	0.4789	0.0646	
88	1	2	0.0674	0.8540	0.0576	
91	1	1	0	Inf	NaN	

Confidence intervals for Kaplan-Meier Curve

1. Confidence interval for $\hat{S}(t)$ can be obtained directly by the approximation

$$\hat{S}(t) - S(t) \sim N\left(0, V\{\hat{S}(t)\}\right).$$

2. Confidence interval for $\hat{S}(t)$ can be obtained indirectly by the approximation

$$\log \hat{S}(t) - \log S(t) \sim N\left(0, V\{\log \hat{S}(t)\}\right).$$

Confidence intervals for Kaplan-Meier Curve (Continuing)

1. The variance for $\log\{-\log \hat{S}(t)\}$,

$$V\left[\log\{-\log \hat{S}(t)\}\right] = V\left\{\log \hat{S}(t)\right\} / \left[\log \hat{S}(t)\right]^2.$$

2. Confidence interval for $\hat{S}(t)$ can also be obtained indirectly by the approximation

$$\log[-\log \hat{S}(t)] - \log[-\log S(t)] \sim N\left(0, V\{\log[-\log \hat{S}(t)]\}\right).$$

Inference on the Survival Function

1. 95% confidence interval for S(t)

$$\hat{S}(t) \pm 1.96 \sqrt{\hat{V}\left\{\hat{S}(t)
ight\}}.$$

2. 95% confidence interval for S(t) based on inversion of log S(t)

$$\hat{S}(t) \exp \left[\pm 1.96 \sqrt{\hat{V}\left\{\log \hat{S}(t)
ight\}}
ight].$$

3. 95% confidence interval for S(t) based on inversion of $\log\{-\log S(t)\}$

$$\left\{\hat{S}(t)\right\}^{\exp\left(\mp1.96\sqrt{\hat{V}\left[\log\{-\log\hat{S}(t)\}
ight]}
ight)}$$
.

Comparison of the Confidence Intervals

- 1. Which one is better? The one with a better normal approximation.
- 2. The first can have bounds below 0 or above 1. The second can have upper bound above 1 but the low bound is always greater than 0. The third have bounds always in [0,1].

95% confidence intervals for Kaplan-Meier curve

Figure: Three different ways to construct confidence intervals

Other estimators for Survival Function and Hazard Functions

1. Lifetable estimates

$$\widetilde{S}(t) = \prod_{\{k \mid t_k \leq t\}} \left(1 - \frac{d_k}{n_k - m_k/2}\right).$$

2. Nelson-Aalen estimator of the cumulative hazard

$$\hat{H}(t) = \sum_{\{k \mid t_k \leq t\}} \frac{d_k}{n_k}.$$

3. The variance of the Nelson-Aalen estimator can be estimated by

$$\hat{V}\{\hat{H}(t)\} = \sum_{\{k|t_k \leq t\}} \frac{d_k(n_k - d_k)}{n_k^3}.$$

4. A 95% confidence interval for H(t)

$$\hat{H}(t) \pm 1.96 \sqrt{\hat{V}\{\hat{H}(t)\}}.$$

Example: Cumulative Hazard Function Estimates (Nelson-Aalen Estimator)

T_k	d_k	n_k	d_k/n_k	CH	V(CH)
1	3	48	0.0625	0.0625	0.0349
4	2	44	0.0455	0.1080	0.0470
5	4	42	0.0952	0.2032	0.0653
6	2	38	0.0526	0.2558	0.0746
8	1	35	0.0286	0.2844	0.0798
10	4	34	0.1176	0.4020	0.0970
12	1	28	0.0357	0.4378	0.1032
13	1	26	0.0385	0.4762	0.1099
14	1	25	0.0400	0.5162	0.1166
15	1	24	0.0417	0.5579	0.1236
16	2	22	0.0909	0.6488	0.1379
17	1	20	0.0500	0.6988	0.1463

Example: Cumulative Hazard Function Estimates (Nelson-Aalen Estimator)

T_k	d_k	n_k	d_k/n_k	CH	V(CH)
18	2	19	0.1053	0.8041	0.1623
23	1	15	0.0667	0.8707	0.1747
24	1	14	0.0714	0.9422	0.1877
36	1	13	0.0769	1.0191	0.2018
40	2	12	0.1667	1.1857	0.2286
50	1	9	0.1111	1.2969	0.2515
51	1	8	0.1250	1.4219	0.2774
65	1	5	0.2000	1.6219	0.3300
66	1	4	0.2500	1.8719	0.3947
88	1	2	0.5000	2.3719	0.5299
91	1	1	1	3.3719	0.5299

95% confidence intervals for cumulative hazard(Nelson-Aalen estimator)

Figure: Cofidence interval for the cumulative hazard function

Median Survival Time

- Mean survival time is not estimable because the survival distribution is estimable only up to the largest uncensored survival time.
- 2. Median survival time is often used in place of the mean survival time. Median survival time denoted by t(0.5) is defined as

$$t(0.5) = S^{-1}(0.5) = \inf\{t | S(t) \le 0.5\},\$$

and is estimated by

$$\hat{t}(0.5) = \min\{t_k | \hat{S}(t_k) \le 0.5\}$$

3. In general, let p be the probability and 100p be the percentile survival time denoted by t(p) is defined as

$$t(p) = S^{-1}(1-p) = \inf\{t|S(t) \le 1-p\}$$

and is estimated by

$$\hat{t}(p) = \min\{t_k | \hat{S}(t_k) \le 1 - p\}$$

Confidence Interval for Median Survival Time

1. The variance of the 100p percentile survival time estimator

$$V\{\hat{t}(p)\} \approx \frac{1}{f^2\{\hat{t}(p)\}} V[\hat{S}\{\hat{t}(p)\}],$$

where $V[\hat{S}\{\hat{t}(p)\}]$ can be estimated by the Greenwood variance formula.

2. $f(\hat{t}(p))$ can be approximated by

$$\hat{f}\{\hat{t}(p)\} = -rac{\hat{S}\{t(p+\epsilon)\} - \hat{S}\{t(p-\epsilon)\}}{t(p+\epsilon) - t(p-\epsilon)},$$

for some small $\epsilon > 0$.

3. The confidence interval for the 100p percentile survival time estimator

$$\hat{t}(p) \pm 1.96 \sqrt{V\{\hat{t}(p)\}}.$$

The confidence interval for the median survival can be obtained by setting p=0.5.

Example: Median survival Time Estimates

1. The median survival time estimate

$$\hat{t}(0.5) = 17,$$

from the table for Kaplan -Meier estimates.

2. The variance

$$V[\hat{S}\{t(0.5)\}] = 0.0762^2$$

from the table.

3. Let $\epsilon = 0.1$. The estimate

$$\hat{f}\{\hat{t}(0.5)\} = -\frac{\hat{S}\{t(0.6)\} - \hat{S}\{t(0.4)\}}{t(0.6) - t(0.4)}$$
$$= -\frac{0.5852 - 0.3756}{14 - 24} = 0.021.$$

4. The 95% confidence interval for the median survival time is

$$17 \pm 1.96 \times \frac{0.0762}{0.021} = 17 \pm 7.11 = (9.89, 24.11).$$

Another calculation of the Median Survival Time Estimates

1. Take the two neighboring values

$$t(1-0.4334) = 18,$$
 $t(1-0.5098) = 16$

2. Estimate

$$\hat{f}\{\hat{t}(0.5)\} = -\frac{\hat{S}\{t(p_2)\} - \hat{S}\{t(p_1)\}}{t(p_2) - t(p_1)}$$
$$= -\frac{0.5098 - 0.4334}{16 - 18} = 0.0382.$$

3. The 95% confidence interval for the median survival time is

$$17 \pm 1.96 \times \frac{0.0762}{0.0382} = 17 \pm 3.91 = (13.09, 20.91).$$

Median Survival Time Estimates Based on Transformation

- The confidence interval for the median survival time can potentially include negative values. Alternative normal approximations may be used.
- 2. The variance based on the log-transformation (the first approximation)

$$V\{\log t(0.5)\} = \frac{V\{t(0.5)\}}{t^2(0.5)} = \frac{0.0762^2}{0.021^2} \times \frac{1}{17^2} = 0.0456.$$

3. The 95% confidence interval for the median survival time based on the log-transformation

$$17 \times \exp(\pm 1.96 \times \sqrt{0.0456}) = (11.19, 25.84).$$

Median Survival Time Estimates Based on Transformation (Continuing)

1. The variance based on the log-transformation (the second approximation)

$$V\{\log t(0.5)\} = \frac{V\{t(0.5)\}}{t^2(0.5)} = \frac{0.0762^2}{0.0382^2} \times \frac{1}{17^2} = 0.01377.$$

2. The 95% confidence interval for the median survival time based on the log-transformation

$$17 \times \exp(\pm 1.96 \times \sqrt{0.01377}) = (13.5, 21.4).$$

Median Survival Time Estimate based on exponential model fit

1. The median survival time estimate from an exponential model can be derived from

$$\exp\{-\hat{\lambda}\hat{t}(0.5)\} = 0.5.$$

This implies

$$\hat{t}(0.5) = -\frac{1}{\hat{\lambda}}log(0.5) = \frac{1}{\hat{\lambda}}log(2).$$

2. The variance of the median survival time is thus

$$V\{\hat{t}(0.5)\} = \frac{\{\log(2)\}^2}{\lambda^4}V(\hat{\lambda}).$$

3. A 95% confidence interval for t(0.5) is

$$\hat{t}(0.5) \pm 1.96 \sqrt{\hat{V}\{\hat{t}(0.5)\}} = \frac{log(2)}{\hat{\lambda}} \left(1 \pm \frac{1.96}{\hat{\lambda}} \sqrt{\hat{V}(\hat{\lambda})}\right\}.$$

*Derivation: Kaplan-Meier as the Nonparametric MLE

1. Let the observed data (X_i, δ_i) , $i = 1, \dots, n$

$$\prod_{i=1}^n f^{\delta_i}(X_i) S^{1-\delta_i}(X_i).$$

2. Let the observed data be ordered from the smallest to the largest as

$$0 \leq C_{11} \leq \cdots \leq C_{m_1 1} < T_1$$

$$\leq C_{12} \leq \cdots \leq C_{m_2 2} < T_2$$

$$\cdots$$

$$\leq C_{1K} \leq \cdots \leq C_{m_K K} < T_K$$

$$\leq C_{1(K+1)} \leq \cdots \leq C_{m_{(K+1)}(K+1)}.$$

where T_j , $j=1,\cdots,K$ are distinctive event times, and C_{1j},\cdots,C_{m_jj} are all the censoring times greater than or equal to T_{j-1} and less than T_j .

1. The nonparametric likelihood can be written as

$$\{ \prod_{j=1}^{m_1} S(C_{j1}) \} \{ S(T_1 -) - S(T_1) \}^{d_1}$$

$$\times \{ \prod_{j=1}^{m_2} S(C_{j2}) \} \{ S(T_2 -) - S(T_2) \}^{d_2}$$

$$\cdots$$

$$\times \{ \prod_{j=1}^{m_K} S(C_{jK}) \} \{ S(T_K -) - S(T_K) \}^{d_K}$$

$$\times \{ \prod_{j=1}^{m_{K+1}} S(C_{j(K+1)}) \}.$$

where d_i is the number of observed failures at T_i .

2. The maximum has to satisfy

$$S(T_{k-1})=S(C_{jk})=S(T_k-),$$
 and $S(C_{j1})=1,\,j=1,\cdots,m_1.$

1. The nonparametric likelihood reduces to

$$\prod_{k=1}^{K} \left[\{ S(T_k -) - S(T_k) \}^{d_k} S^{m_k}(T_k) \right].$$

2. Let $\lambda_k = S(T_k -) - S(T_k)$. Then

$$S(T_1) = 1 - \lambda_1$$

$$S(T_2) = 1 - \lambda_1 - \lambda_2$$

...

$$S(T_K) = 1 - \lambda_1 - \cdots - \lambda_K.$$

The likelihood can be re-expressed as

$$\prod_{k=1}^K \lambda_k^{d_k} (1 - \lambda_1 - \dots - \lambda_k)^{m_k}.$$

1. The maximizers can be obtained recursively as

$$\hat{\lambda}_{K} = (1 - \lambda_{1} - \dots - \lambda_{K-1}) \frac{d_{K}}{m_{K} + d_{K}},$$

$$\vdots$$

$$\hat{\lambda}_{k} = (1 - \lambda_{1} - \dots - \lambda_{k-1}) \frac{d_{k}}{m_{k} + d_{k} + \dots + m_{K} + d_{K}},$$

$$\vdots$$

$$\hat{\lambda}_{1} = \frac{d_{1}}{n}.$$

1. The maximum likelihood estimator

$$\hat{\lambda}_{1} = \frac{d_{1}}{n_{1}},$$

$$\hat{\lambda}_{2} = (1 - \frac{d_{1}}{n_{1}}) \frac{d_{2}}{n_{2}},$$

$$\vdots$$

$$\hat{\lambda}_{k} = \prod_{j=1}^{k-1} (1 - \frac{d_{j}}{n_{j}}) \frac{d_{k}}{n_{k}},$$

$$\vdots$$

$$\lambda_{K} = \prod_{j=1}^{K-1} (1 - \frac{d_{j}}{n_{j}}) \frac{d_{K}}{n_{K}}.$$

where $n_k = m_k + d_k + \cdots + m_K + d_K$.

*Derivation: Variance of the Kaplan-Meier estimator

1. The maximum likelihood estimator of the survival function

$$\hat{S}(T_1) = 1 - \frac{d_1}{n_1},$$

$$\hat{S}(T_2) = (1 - \frac{d_1}{n_1})(1 - \frac{d_2}{n_2}),$$

$$\dots$$

$$\hat{S}(T_K) = \prod_{i=1}^K (1 - \frac{d_j}{n_j}).$$

2. The log survival function estimator

$$\log \hat{S}(t) = \sum_{\{k \mid T_k < t\}} \log \left(1 - \frac{d_k}{n_k} \right).$$

*Derivation: Variance of the Kaplan-Meier estimator (continuing)

1. The variance for $\log \hat{S}(t)$,

$$\begin{split} V\left\{\log \hat{S}(t)\right\} &= \sum_{\{k\mid T_k\leq t\}} V\left\{\log\left(1-\frac{d_k}{n_k}\right)\right\} \\ &= \sum_{\{k\mid T_k\leq t\}} \left(1-\frac{d_k}{n_k}\right)^{-2} V\left(\frac{d_k}{n_k}\right) \\ &= \sum_{\{k\mid T_k\leq t\}} \left(1-\frac{d_k}{n_k}\right)^{-2} \frac{1}{n_k} \frac{d_k}{n_k} \left(1-\frac{d_k}{n_k}\right) \\ &= \sum_{\{k\mid T_k\leq t\}} \frac{d_k}{n_k(n_k-d_k)} \end{split}$$

2. The variance for $\hat{S}(t)$,

$$V\left\{\hat{S}(t)\right\} = \hat{S}^2(t)V\left\{\log \hat{S}(t)\right\}.$$

1. Note that

$$0 = \hat{S}\{\hat{S}^{-1}(1-p)\} - S\{S^{-1}(1-p)\}$$

$$= \hat{S}\{S^{-1}(1-p)\} - S\{S^{-1}(1-p)\}$$

$$+ S\{\hat{S}^{-1}(1-p)\} - S\{S^{-1}(1-p)\}$$

$$+ \hat{S}\{\hat{S}^{-1}(1-p)\} - \hat{S}\{S^{-1}(1-p)\}$$

$$- S\{\hat{S}^{-1}(1-p)\} + S\{S^{-1}(1-p)\}$$

$$= \hat{S}\{S^{-1}(1-p)\} - S\{S^{-1}(1-p)\}$$

$$- f\{S^{-1}(1-p)\}\{\hat{S}^{-1}(1-p) - S^{-1}(1-p)\} + o_p(1).$$

*Derivation: Confidence Interval for Median Survival Time (Continuing)

1. It follows that

$$\hat{S}^{-1}(1-p) - S^{-1}(1-p) = f^{-1}\{S^{-1}(1-p)\}$$
$$\times \left[\hat{S}\{S^{-1}(1-p)\} - S\{S^{-1}(1-p)\} + o_p(1)\right]$$

2. This leads

$$\hat{t}(p) - t(p) \to N\left(0, f^{-2}\{S^{-1}(1-p)\}V\left[\hat{S}\{S^{-1}(1-p)\}\right]\right).$$

