

Network Analysis

Héctor Corrada Bravo

University of Maryland, College Park, USA DATA606 2020-04-05

Genetic Interaction Network

- Yeast high-throuput doubleknockdown assay
- ~5000 genes
- ~800k interactions

http://www.geneticinteractions.org/

Costanzo et al. (2016) Science. DOI: 10.1126/science.aaf1420

Genetic Interaction Network

- Yeast high-throuput doubleknockdown assay
- ~5000 genes
- ~800k interactions

http://www.geneticinteractions.org/

Costanzo et al. (2016) Science. DOI: 10.1126/science.aaf1420

Genetic Interaction Network

• Number of vertices: 2803

• Number of edges: 67,268

Preliminaries

Network: abstraction of entities and their interactions
Graph: mathematical representation

vertices: nodes

edges: links

Undirected graph

Preliminaries

Network: abstraction of entities and their interactions
Graph: mathematical representation

vertices: nodes

edges: links

Directed graph

Number of vertices: n

In our example: *number of genes*

Number of vertices: n

In our example: *number of genes*

Number of edges: m

In our example: *number of genetic interactions*

Number of vertices: *n*

In our example: *number of genes*

Number of edges: m

In our example: *number of genetic interactions*

Degree of vertex i: k_i

Number of genetic interactions for gene i

On the board:

- ullet Calculate number of edges m using degrees k_i (for both directed and undirected networks)
- Calculate *average degree c*
- Calculate *density* ρ

On the board:

• Calculate number of edges m using degrees k_i (for both directed and undirected networks)

- Calculate *average degree c*
- Calculate *density* ρ

In our example:

Average degree: 47.9971459

Density: 0.0171296

(On the board)

Number of edges using degrees (undirected)

$$m=rac{1}{2}\sum_{i=1}^n k_i$$

Number of edges using degrees (directed)

$$m = \sum_{i=1}^n k_i^{ ext{in}} = \sum_{i=1}^n k_i^{ ext{out}}$$

(On the board)

Average degree

$$c = rac{1}{n} \sum_{i=1}^n k_i$$

Density

$$ho=rac{m}{inom{n}{2}}=rac{2m}{n(n-1)}=rac{c}{n-1}pproxrac{c}{n}$$

Degree distribution

Fundamental analytical tool to characterize networks

 p_k : probability randomly chosen vertex has degree k

On the board: how to calculate p_k and how to calculate average degree c using degree distribution.

(On the board)

Degree distribution

$$p_k = rac{n_k}{n}$$

 n_k : number of nodes in graph with degree k

Degree Distribution

Paths and Distances

Distance d_{ij} : length of shortest path between vertices i and j.

Paths and Distances

Distance d_{ij} : length of shortest path between vertices i and j.

Diameter. longest shortest path $\max_{ij} d_{ij}$

Paths and Distances

Distance d_{ij} : length of shortest path between vertices i and j.

On the board: average path length

(On the board)

Average path length

$$\overline{d} = rac{1}{n(n-1)} \sum_{i,j;i
eq j} d_{ij}$$

Distance Distribution

By convention: if there is no path between vertices i and j then $d_{ij}=\infty$

By convention: if there is no path between vertices i and j then $d_{ij}=\infty$

Vertices i and j are connected if $d_{ij} < \infty$

By convention: if there is no path between vertices i and j then $d_{ij}=\infty$

Vertices i and j are connected if $d_{ij} < \infty$

Graph is connected if $d_{ij} < \infty$ for all i,j

By convention: if there is no path between vertices i and j then $d_{ij}=\infty$

Vertices i and j are connected if $d_{ij} < \infty$

Graph is connected if $d_{ij} < \infty$ for all i,j

Components maximal subset of connected components

Components

Clustering Coefficient

Another quantity of interest: how dense is the neighborhood around vertex i?

Do the genes that interact with me also interact with each other?

Related to the *locality* property.

Definition on the board

(On the board)

Clustering coefficient

$$c_i = rac{2m_i}{k_i(k_i-1)}$$

 m_i : number of edges between neighbors of vertex i

Clustering coefficient

Adjacency Matrix

Undirected graph

Adjacency Matrix

On the board:

- Definition
- Computing degree with adj.
 matrix
- ullet Computing num. edges m with adj. matrix
- Computing paths with adj. matrix

Adjacency Matrix

Directed graph

Edges are assigned a weight indicating quantitative property of interaction

Edges are assigned a weight indicating quantitative property of interaction

- Strength of genetic interaction (evidence from experiment)
- Rates in a metabolic network
- Spatial distance in an ecological network

Edges are assigned a weight indicating quantitative property of interaction

- Strength of genetic interaction (evidence from experiment)
- Rates in a metabolic network
- Spatial distance in an ecological network

Adjacency matrix contains weights instead of 0/1 entries

Edges are assigned a weight indicating quantitative property of interaction

- Strength of genetic interaction (evidence from experiment)
- Rates in a metabolic network
- Spatial distance in an ecological network

Adjacency matrix contains weights instead of 0/1 entries

Path lengths are the sum of edge weights in a path

Hypergraphs

Edges connect more than two vertices

A Protein-protein interaction network

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000385

Trees

Acyclic graphs

Single path between any pair of vertices

We use an *Incidence Matrix* B instead of *Adjacency Matrix*

(On the board): definition

Projections

 $\mathit{vertex\ projection}$: P_{ij} , num. of groups in which vertices i and j co-occur

group projection: P_{ij}^{\prime} , num. of members groups i and j share

Projections

 $vertex\ projection$: P_{ij} , num. of groups in which vertices i and j co-occur

group projection: P_{ij}^{\prime} , num. of members groups i and j share

(On the board)

$$P = B^T B$$

$$P' = BB^T$$

Centrality

What are the *important* nodes in the network?

What are *central* nodes in the network?

Centrality

Undirected Graphs

• Eigenvalue Centrality

Directed Graphs

- Katz Centrality
- Pagerank

Centrality

Betweenness

What are the *important* edges in the network?

What are edges that may connect clusters of nodes in the network?

Betweenness

Girvan-Newman Algorithm hierarchical method to
partition nodes into
communities using edge
betweenness

Girvan-Newman Algorithm

Two phases:

Phase One: Compute betweenness for every edge

Phase Two: Discover communities by removing *high* betweenness

edges (similar to hierarchical clustering)

Girvan-Newman Algorithm

Calculating Betweenness

Formally, $\operatorname{betweenness}(e)$: fraction of node pairs (x,y) where shortest path crosses edge e

For each node x, use breadth-first-search to count number of shortest paths through each edge in graph

Sum result across nodes, and divide by two

Girvan-Newman Algorithm

Example

Resources

Cross-language

igraph: http://igraph.org/

Resources

R

Workhorses:

- igraph
- Rgraphviz

Tidyverse (https://tidyverse.org):

- tidygraph
- ggraph

Resources

Python

- igraph
- networkx