## Cauchy's Theorem and Applications

Cauchy's Theoren: If 5:12->6 is holomorphiz on a simply connected open set or, then for any simple closed contour y c or, (f(z)ebz = 2.



Sketch pf 1 If we also assume that first is continuous on so, there is a simple proof using Green's formula + Cauchy-Rrenown.

Sf(z) olz = S(usiv) (chroidy) = S(udn-voly)+i S(udy+voln)

Green's

There = - S((2xv+2,u)dxdy + i (S(2,u-2,v)dxdy
int(y))

Comban

Archegan's = 2

One can prove Cauchy's then whomat assuming & (2) continuous, and Canchy's then actually implies that f'(2) is continuous (Cauchy integral formulas). The interior of y must be in simply connected so.

Example: Consider 
$$f(z)=z$$
,  $g(z)=z^{-1}$ 

$$\begin{cases} 2\pi z & dz \\ (e^{i\theta})(ie^{i\theta}d\theta) \end{cases}$$

$$8=\left\{e^{i\theta}:\theta\in[0,2\pi]\right\}$$

$$=i\left\{e^{2i\theta}d\theta=0\right\}$$

$$=i\left\{e^{2i\theta}d\theta=0\right\}$$

$$\int_{\mathcal{S}} z^{-1} dz = \int_{\mathcal{S}} (e^{i\theta}) (ie^{i\theta}) d\theta = i \int_{\mathcal{S}} d\theta = 2\pi i$$

2-1 is holomorphie in C/(03), so int(x) not simp com.

## Contour Deformation

Cauchy's theorem allows us to evaluate trocky integrals by choosing "better" contours for the integration in the complex plane.



by "deforming" the contour from y, to ye.

Because é<sup>nz²</sup>is hibrogophe in C, integration between points -Ris and Rres is independent of contour.

Example: 
$$\int_{3}^{1-\cos x} \frac{1-\cos x}{x^2} = \lim_{\epsilon \to 0} \int_{\epsilon}^{R} \frac{1-\cos x}{x^2} dx$$

Range

Range

Refer Take  $F(z)$ :  $\frac{1-e^{iz}}{z^2}$  and earstler

-R -\ell +\ell +R \( \frac{\x}{x}(z) dz \) \( \frac{\x}{x}(z) \) \( \frac{

$$\left(\frac{1-e^{ix}}{x^2}dx + \left(\frac{1-e^{ix}}{z^2}dx + \left(\frac{1-e^{ix}}{z^2}dx$$

Along 12, we have 15(2) 12 1 - e'2 15 1212 - 70 R-300.

We are beff with

$$\int \frac{1-e^{ix}}{x^2} dx = -\int \frac{1-e^{iz}}{z^2} dz.$$

$$|x|_{2} \in \mathcal{S}_{\epsilon}$$

Non re reed to compute hu ( 1-eiz dz

and we have that 
$$\frac{1-e^{i2}}{z^2} = \frac{1}{2^2} \left(i2 - \frac{z^2}{2} - i\frac{z^3}{6} + \cdots\right)$$
.

$$\frac{1-e^{iz}}{z^{2}}dz = \int_{\xi_{i}}^{-\frac{i}{2}}dz + \int_{\xi_{i}}^{-\frac{g(z)}{2}}dz. \qquad \frac{g(z)}{\omega + z-30}$$

Now, | \( \frac{-9(e)}{2^2} dz \) \( \tau \)

and 
$$\int_{i}^{-\frac{i}{2}} dz^{2} \int_{0}^{\pi} \frac{(-i)}{e^{i\theta}} ie^{i\theta} d\theta : \int_{0}^{\pi} d\theta = \pi.$$
 $z=e^{i\theta}, dz:ie^{i\theta}d\theta$ 

$$\lim_{\epsilon \to 0} \int \frac{1 - e^{iR}}{x^2} dx = \pi$$

Take real part and use even integrand: 10 1-cos x dx = 17.

In general, when chossing how to "letorm" contour:

=> hook to exploit regions where
integrand decays and contribution
to integral becomes negligible.
=> Watch out for singularities near or on
contour, which contribute to integral.

We'll nake this strategy systemede /"restelve calentes."

## Cauchy? Integral Formhuls?

From Cauchy? theorem, we can derive one of the most important representations of bilo. F(2).

The Suppose of is holomorphize in shiply connected open set ICC that contains a Comostheld simple closed Forder curve of. Then for ZGind(y),

$$f(z) = \frac{1}{2\pi i} \left\{ \frac{f(\xi)}{\xi - 2} d\xi \right\}$$