Permutations and Combinations Exam Questions (From OCR 4732)

Q1, (Jun 2005, Q7)

Q1, (Jun 2005, Q7)	i		
(i) ${}^{18}C_7$ or ${}^{18!}/_{(11! \times 7!)}$	M1		
= 31824	A1	2	cao
(ii) ${}^5C_2 \times {}^6C_2 \times {}^7C_3$ or 5250	M2		M1: 1 correct ${}^{n}C_{r}$ or mult any three ${}^{n}C_{r}$ s
÷ 31824	M1		Divide by their (i). Indep
= 875/5304 or 5250/31824 oe			If cancelled, must be clear have ÷ 31824
or 0.165 (3 sfs)	A1	4	
			5 x 4 x 6 x 5 x 7 x 6 x 5 x 7!
			$18x17x 16 x 15 x 14 x 13 x 12 x 2!^2x3!$
			Correct 7 fractions mult: M1
			x7!: M1}
			\div (2! ² x3!): M1}both dep any 7 fracts mult
(iii) 5 from W & 2 from (G + H)	M1		Seen or implied, eg by combs or list
$^{7}C_{5} \times ^{11}C_{2}$ or 1155	M1		B: :1.1. d.: (2.1.1
÷ 31824	M1		Divide by their (i). Indep
= 385/10608 or $1155/31824$ oe		4	
or 0.0363 (3 sfs)	A1		
			7 x 6 x 5 x 4 x 3 x 11 x 10 x 7! 18x17x16 x 15 x 14 x 13 x 12 x 5! x 2!
			Correct 7 fractions mult: M1
			x 7!: M1} ÷ (5! x 2!): M1} both dep any 7 fracts mult
(iv) (2, 2, 3) or (2, 3, 2) or (3, 2, 2)	M1	l	Any one. Seen or implied eg by combs
(17) (2, 2, 3) or (2, 3, 2) or (3, 2, 2)	IVII		Any one. Seen of implied eg by comos
${}^{5}C_{2} \times {}^{6}C_{2} \times {}^{7}C_{3} + {}^{5}C_{2} \times {}^{6}C_{3} \times {}^{7}C_{2}$			M1: one correct product.
$C_2 \times C_2 \times C_3 + C_2 \times C_3 \times C_2 + {}^5C_3 \times {}^6C_2 \times {}^7C_2$	M2		NOT ${}^5C_2 \times {}^6C_2 \times {}^7C_2$
$+ C_3 \times C_2 \times C_2$	1412		$NO1 C_2 \times C_2 \times C_2$
(, 21924)			(No mlr for + 21924)
(÷ 31824)			(No mk for ÷ 31824)
= 175/442 or 12600/31824 oe	A1	4	
or 0.396 (3 sfs)	AI	7	Equiv method; ((ii) + etc) can imply M mks
			Equivalence; ((11) etc) can imply ivi inks
			5 x 4 x 6 x 5 x 7 x 6 x 7!
			$\frac{3 \times 4 \times 6 \times 3 \times 7 \times 6 \times 7!}{18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 2!^2 \times 3!}$
			Correct 6 fractions mult: M1
			x 7!: M1}
			$\div (2!^2 \times 3!)$: M1} both dep any 6 fracts mult
			÷ (2! x 3!) . Will both dep any o fracts muit
			Complement method:
			Triple with total 7, incl at least one 0 or 1
			or $(0, 7)$ or $(1, 6)$ seen or implied: M1
			or (o, 7) or (1, 0) seen or implied.
			One correct prod seen, eg ⁵ C ₀ x ⁶ C ₂ x ⁷ C ₅ M1
			one correct prod seen, eg. Cox C2x C5 WII
			Full correct method, incl "1 –" M1
			Tun contect method, men
	14	Т	
	1	1	I

Q2, (Jan 2006, Q6)

6(i)	${}^{4}C_{3} \times {}^{7}C_{4}$ = 140	M1M1 A1	3	M1 either comb. 140/330: M1M1
(ii)	${}^{3}C_{2} \times {}^{6}C_{4}$ or ${}^{3}C_{2} \times {}^{6}C_{4}$ or ${}^{6}C_{4} \times {}^{6}C_{4}$	M1		or ${}^{3}C_{2}(x)$ /"140" or $(x){}^{6}C_{4}$ /"140" or $({}^{3}C_{2}+{}^{6}C_{4})$ /"140" or $(3+15)$ /"140" or ${}^{3}/_{4}$ or $1-{}^{4}/_{7}$ seen
	$\frac{{}^{3}C_{2} \times {}^{6}C_{4}}{{}^{"}140"} \qquad \text{or} {}^{3}/_{4} \times (1 - {}^{4}/_{7})$	M1	•	all correct
	$= \frac{9}{28}$ oe or 0.321 (3 sfs)	_ _A1	3_	
(iii)	${}^{3}C_{2}x {}^{6}C_{4}$ (or i x ii) or $({}^{3}C_{3}x){}^{7}C_{4}$ or 45 or 35 or ${}^{1}/_{4}x {}^{4}C_{3}x {}^{7}C_{4}$ or ${}^{3}/_{4}x {}^{4}C_{3}x {}^{6}C_{4}$	M1		1 correct prod or "140" – any prod
	${}^{3}C_{2}x^{6}C_{4}+({}^{3}C_{3}x)^{7}C_{4} \text{ or "}140" - {}^{3}C_{2}x^{6}C_{3}$ = 80	M1 A1ft	3	or $^{1}/_{4}x^{4}C_{3}x^{7}C_{4} + ^{3}/_{4}x^{4}C_{3}x^{6}C_{4}$ ft only "140"
Total		9		
Q3, (Jun 2	006, Q3)			_
3(i)	7!	M1M1		M1: $7!/(a \text{ factorial})$; or ÷ $(3! \times 2(!))$
	3! x 2(!) = 420	A1	3	M1: all correct
	- 420	AI	3	
(ii)	<u>5!</u>	M1		M1: 5! seen (not part of a C) or 5 x 4!
	2(!)			or 120 seen or ÷ 2(!) alone
	= 60	A1	2	
(iii)	$\frac{1 - \sqrt[4]{7} x^{3}/_{6} \text{ or } 1 - \sqrt[4]{C_{2}}/\sqrt[7]{C_{2} \text{ or } 1 - \sqrt[4]{P_{2}}/\sqrt[7]{P_{2}}}{\text{ or } \sqrt[3]{7} x^{2}/_{6} + \sqrt[3]{7} x^{4}/_{6} + \sqrt[4]{7} x^{3}/_{6} \text{ oe }}{\text{ or } \sqrt[3]{C_{2}}/\sqrt[7]{C_{2}} + \sqrt[3]{C_{1}}x^{4}C_{1}/\sqrt[7]{C_{2}}}$	MIMI		M1:1- prod or 1/ 7 C ₂ or 1- 4 C ₂ / (or Ps) or add 3 prods or add 2 correct prods or 3 C ₂ / 7 C ₂ or 3 C ₁ x 4 C ₁ / 7 C ₂ or add \geq 5 out of 7 correct prods M1: all correct
	$= \frac{5}{7}$ or 0.714 (3 sfs)	A1	3	
Total	., 0. 0 (0 0.0)	8		
Q4, (Jan 2	007, Q3)			ı
i	120	B1 1	n	not just 5!
iia	3 x 4! or 72 (÷ 5!)	M1	1	
	$\frac{3}{5}$ oe	A1 2	c	$e, eg^{72}/_{120}$
b	Starts 1 or 21 (both)	M1	1	12,13,14,15, (≥2 of these incl 21, or allow 1 extra) can be implied by wking
	$^{1}/_{5} + ^{1}/_{5} \times ^{1}/_{4}$	M1		or $5x 3!$ or $4! + 3!$ (÷5!)
•	$= \frac{1}{4}$ oe	A1 3	;	complement: full equiv steps for Ms
Q5, (Jun 2				
1	, , , , , , , , , , , , , , , , , , , ,	M1		
		A1 2		
ii		M1	Al	lone except allow $\div {}^{15}C_7$ $r^6P_3 \times {}^9P_4$ or ${}^{6!}/_{3!} \times {}^{9!}/_{5!}$ Allow $\div {}^{15}P_7$
	2520	. 1		NB not $^{6!}/_{3!} \times ^{9!}/_{4!}$
		A1	36	52880
		2	ļ	

06	lan.	2008,	011
Ųσ,	(Jan	2000,	α_{II}

Total

Q6, (Jan 2	008, Q1)				
ia	5! or ³ P ₅			M1	
	= 120			A1 2	
b	4! or ⁴ P ₄ seen			M1	or 2 × 3! or 2! × 3! or $2! \times {}^{3}P_{3}$
	$4! \times 2$			M1dep	$2 \times 3! \times 4$
	48			A1 $\frac{1}{3}$	
ii	$1/^{5}C_{2}$ or $1/_{5} \times 1/_{4} \times 2$ or 0.4×0.25 or $2/_{5P}$			M1	Allow M1 for ⁵ C ₂ or ¹ / ₅ x ¹ / ₄ or ¹ / ₂₀
	7 62 61 73 74 74 2 61 6.1 4 6.25 61 739	2		1411	or $\frac{1}{5} \times \frac{1}{5} \times 2$ or $\frac{2}{5}$ oe
	$= \frac{1}{10}$			A1 2	01 73 73 2 01 725 00
07 / 1 2				/ L	
Q7, (Jun 2	70 - 80		Ι.	M1	7C = 8C == 1176 · M1
(i)	$\frac{C_2 \times C_3}{150}$			M1	$^{7}\text{C}_{2} \times ^{8}\text{C}_{3} \text{ or } 1176 : M1$
	1.C ₅		1	M1	$(Any C or P)^{15}C_5$: M1 (dep < 1)
					or $\frac{7}{15} \times \frac{6}{14} \times \frac{8}{13} \times \frac{7}{12} \times \frac{6}{11}$ or 0.0392: M1
					\times ⁵ C ₂ or \times 10 : M1 (dep \geq 4 probs mult)
	56 1176		Ι,	A1 3	^ C ₂ OI ^ IO . IVII (dep ≥4 probs mult)
	$= \frac{56}{143}$ or $\frac{1176}{3003}$ or 0.392 (3sfs)		1	41 3	if 2 2 trant on MP man M1M1
···	21 21 3D 2D		+-;	4 1	if 2↔3, treat as MR max M1M1
(ii)	$3! \times 2!$ or ${}^3P_3 \times {}^2P_2$ not in denom			M1	BABAB seen: M1
	= 12		F	A1 2	120-12: M1A0
l					$NB^{4!}/_{2!} = 12$: M0A0
Q8, (Jan 2	<u>009, Q6)</u>				
6 (i) (a)	8!	M1			Allow ⁴ P ₄ & ³ P ₃ instead of
	= 40320	A1	2		3! & 4! thro'out Q6
(b)	$^{4}/_{8} \times ^{4}/_{7} \times ^{3}/_{6} \times ^{3}/_{5} \times ^{2}/_{4} \times ^{2}/_{3} \times ^{1}/_{2}$	M1		4! × 4! ÷	
	× 2	M1de	p	× 2	÷ 8!
	1, 0,000,000		_		ow 1 – above for M1 only
	$= \frac{1}{35}$ or 0.0286 (3 sfs)	A1	3	oe, eg ¹	40320
(;;)(a)	4! × 4!	M1		allary 41	× 4! × 2: M1
(ii)(a)	= 576	A1	2	allow 4!	× 4! × 2. MH
(b)	$\frac{1}{1}$ ₁₆ or 0.0625	B1			
(c)	Separated by 5 or 6 qus stated or illus	M1	<u>.</u>	allow 5	only or 6 only or (4, 5 or 6)
(c)	Separated by 5 of 6 qus stated of finds	IVII		anow 5	can be impl by next M2 or M1
	$^{1}/_{4} \times ^{1}/_{4} \times 3 \text{ or } ^{1}/_{16} \times 3$	M2		3! × 3! ×	
	$(^{1}/_{4} \times ^{1}/_{4} \text{ or } ^{1}/_{16} \text{ alone or } \times (2 \text{ or } 6):$	1112			\times 3! alone or \times (2 or 6); or (3! + 3!) \times 3: M1)
	M1)			(0.	(÷ 576)
	/	A1	4		(2,2)
	$^{3}/_{16}$ or 0.1875 or 0.188			correct a	ins, but clearly B, J sep by 4: M0M2A0
				1- P(sep	by 0, 1, 2, 3, (4)) M1 ${}^{4+1}_{/4} \times {}^{3}_{/4} + {}^{1}_{/4} \times {}^{1}_{/2}$) ${}^{1}_{/4} \times {}^{1}_{/4} + {}^{1}_{/2} \times {}^{1}_{/4} + {}^{3}_{/4} \times {}^{1}_{/4} + 1 \times {}^{1}_{/4} + {}^{3}_{/4} \times {}^{1}_{/4}$) M2
				$1-(^{1}/_{4}+^{1}/_{4})$	$(4^{+1}/4 \times 3/4 + 1/4 \times 1/2)$
				or 1–($(1/4 \times 1/4 + 1/2 \times 1/4 + 3/4 \times 1/4 + 1 \times 1/4 + 3/4 \times 1/4)$ M2

(one omit: M1)

12

${\bf ALevel Maths Revision.com}$

Q9, (Jan 2010, Q8)

(3)	5!/2		M1		Allow 5P3	
(i)					Allow Jr J	
	= 60		A1 2	2		
(**)	4!		3.61		A11 0 41	
(ii)		M1		Allow 2×4!		
	= 24		A1 2 M1	٤		
(iii) $\frac{^{2}}{_{5}} \times \frac{^{3}}{_{4}} \text{ or } \frac{3}{5} \times \frac{2}{4}$					allow M1 for $^2/_5 \times ^3$	$^{2}/_{5} \times 2 \text{ or }^{12}/_{25}$
	$\times 2$		M1		or $(6\times3!)\div(i)$ M2	or
	$= {}^{3}/_{5}$ oe		A1 3	3	$3! \div (i), 6 \div (i), (6+6) \div (i)$	i),6k÷(i) or 6×6 or
					36 or 1-correct answ	
					$(k,integer \leq 5)$	
Total			[7]		(11,11110)	
	ın 2009, Q7)		1/1			
7i	⁸ C ₃		M1	ı		
/1	= 56		A1 2			
	- 30		AI Z			
ii	$^{7}\text{C}_{2}$ or or $^{7}\text{P}_{2}$ / $^{8}\text{P}_{3}$	¹ / ₈ not from incorrect	M1	_	${}^{8}C_{1}+{}^{7}C_{1}+{}^{6}C_{1}$ or 21	$^{7}/_{8} \times ^{6}/_{7} \times ^{5}/_{6}$
11	C2 01 01 12/ 13	78 not from meorieet	1411		or $8\times7\times6$	/8 / / / 6
		× 3 only			or"/ $_8$ ×"/ $_7$ ×"/ $_6$	
	÷(8C or "56") only	or	M1		01/8/////6	1 – prod 3 probs
	$=\frac{3}{4}$	$\frac{1}{1} + \frac{7}{1} \times \frac{1}{1} + \frac{7}{1} \times \frac{6}{1} \times \frac{1}{1}$	A1 3		indep, dep ans < 1	1 prod 5 proos
	- 78	× 3 only or $\frac{1}{8} + \frac{7}{8} \times \frac{1}{7} + \frac{7}{8} \times \frac{6}{7} \times \frac{1}{7}$	AIS		mucp, ucp ans < 1	
iii	⁸ P ₃ or 8×7×6 or ⁸ C	1.6.	M1		$^{1}/_{8} \times ^{1}/_{7} \times ^{1}/_{6}$ only M	l [2 If × or ∸: M1
111	13 010//0001 C	1. C1. C1 01 330	141.1		78 ~ 77 ~ 76 OHLY W	$(\frac{1}{8})^3$ M1
	$1 \div {}^8P_3$ only		M1			(/8) 1411
	rf)	A1 3				
Foto1	$= \frac{1}{336}$ or 0.00298 (3 s	51)		\dashv		
Γotal			8			

Q11, (Jan 2011, Q6)

6i	7! ÷ 3! 7! ÷ 2!	M1	But NOT 'P ₄ or 7!/(7-4)! if seen	$\frac{7!}{3!+2!}$: M1M0
	÷ 2! ÷ 3!	M1dep		$\frac{7!}{3! \times n!}$ any n : M1M0
iia	= 420 ${}^{5}C_{3}$ or ${}^{10}C_{4}$ seen ${}^{5}C_{3} \times {}^{10}C_{4}$	A1 3 M1 M1	or 10 or 210	$\frac{{}^{5}\text{C}_{3} \times {}^{10}\text{C}_{4}}{\text{anything}} \text{M1M1A0}$
	= 2100	A1 3		⁵ P ₃ × ¹⁰ P ₄ or 60 × 5040 or 302400: SC B1
b	${}^{4}C_{2} \times {}^{9}C_{4} \text{ or } {}^{4}C_{3} \times {}^{9}C_{3}$ or 756 or 336	M1 M1	$\frac{3}{5}$ or $\frac{4}{10}$ oe $\frac{3}{5} \times (1 - \frac{4}{10})$ or $(1 - \frac{3}{5}) \times \frac{4}{10}$	Not from incorrect wking SC $\frac{1}{5} \times \frac{9}{10}$ or $\frac{4}{5} \times \frac{1}{10}$ M1
	${}^{4}C_{2} \times {}^{9}C_{4} + {}^{4}C_{3} \times {}^{9}C_{3}$ or 1092 ÷ 2100 or ÷ (iia) dep ≥ one M1 scored	M1dep	2 4	$\frac{1}{5} \times \frac{9}{10} + \frac{4}{5} \times \frac{1}{10} M1$
	$=\frac{13}{25}$ or 0.52	A1 4	$=\frac{13}{25}$	$(=\frac{13}{50} \text{ A0})$
			$\frac{3}{5}$ or $\frac{4}{10}$ oe M1	Not from incorrect wking
	"2100" – (${}^{4}C_{3} \times {}^{9}C_{4} \text{ or } {}^{4}C_{2} \times {}^{9}C_{3}$) or "2100" – (504 or 504) M1		$\frac{\frac{3}{5} + \frac{4}{10} - \frac{3}{5} \times \frac{4}{10}}{\frac{3}{5} + \frac{4}{10} - \frac{3}{5} \times \frac{4}{10} - \frac{3}{5} \times \frac{4}{10}}$ M1	ie P(WA or GA or both) Must be correct figures ie P(WA or GA but not both) Must be correct figures
	"2100" – (304 of 304) M1 "2100" – (${}^{4}C_{3} \times {}^{9}C_{4} + {}^{4}C_{2} \times {}^{9}C_{3}$) M1 ÷ "2100" or (iia) dep \geq M1 M1		$=\frac{13}{25}$ A1	CC: 4D 9D 4D 9D M1
				SC: ${}^{4}P_{2} \times {}^{9}P_{4} + {}^{4}P_{3} \times {}^{9}P_{3}$: M1 ÷ (iia) M1dep
		10		Careful: 336 or 756 can be obtained by incorrect methods.
Total		10		

Q12, Jun 2011, Q6)

iia	5040	B1 1			
b	6! or 5!×6 or 720	M1		¹ / ₇ × ¹ / ₆ M1*	NOT 6! in denom
	÷ 7! or ÷ "5040" or 1440 or (5! or 6!) × 2	M1	Any ÷ 7! or "5040" but NOT any × 2	× 6 or × 2 M1 dep*	eg $^{6!}/_{5040}$ or $^{1}/_{7}$ or 0.143 or $^{1}/_{21}$ (3 sfs): M1M1A0
	$= \frac{2}{7}$ oe or 0.286 (3 sf)	A1 3	but ivo i any × 2	l	
iia	3! × 4! alone or 144	M1	$^{4}/_{7}\times^{3}/_{6}\times^{3}/_{5}\times^{2}/_{4}\times^{2}/_{3}\times^{1}/_{2}$ oe	or 7C3or7C4	Not $3! \times 4! \times$ (eg not $3! \times 4! \times 5$) not $\frac{1}{3! \times 4!}$, not $\frac{1}{144}$
	(÷ 7! or "5040")				31×4! , not 144
	$= \frac{1}{35}$ oe or 0.0286 (3sf)	A1 2			NB no mark for ÷ 7! or "5040" in this part
b	5 seen or 5! seen	M1			or GGGBBBB, BGGGBBB, BBBGGGB, BBBBGGG
	$3! \times 4! \times 5$ or $5! \times 3!$ or 720 or 5×144	M1	or $5 \times \frac{3}{7} \times \frac{2}{6} \times \frac{1}{5} \left(\times \frac{4}{4} \times \frac{3}{4} \right)$	$(_3 \times ^2/_2)$ oe: M2	
			or $5 \times \frac{1}{7C3 \text{or } 7C4}$:	M2	NB no mark for ÷ 7! or "5040" in this part
	(÷7! or "5040")		or 5 × "(iia)":	M2	
	$= \frac{1}{7}$ oe or 0.143 (3 sf)	A1 3			
Total		9			

Q13, (Jan 2012, Q9)

<u>ų13,</u>	(Jail Z	<u>012, Q9)</u>			
(i)	(a)	$^{9}P_{4}$ or $^{9!}/_{5!}$ or $^{9}C_{4} \times 4!$	M1	alone	oe eg ${}^{9}C_{1} \times {}^{8}C_{1} \times {}^{7}C_{1} \times {}^{6}C_{1}$ or $9 \times 8 \times 7 \times 6$
		= 3024	A1 [2]		
(i)	(b)	${}^{8}P_{3}$ or $8 \times 7 \times 6$ oe or ${}^{8}C_{3} \times 3!$	M1	Allow × or ÷	
(-)	(-)	× 5 (or ⁵ C ₁)	M1	Correct \times 5 or ${}^8C_3 \times 5$ (or 5C_1)	or (${}^{9}P_{4}$ or " 3024 ") × ${}^{5}/_{9}$ M2
		= 1680	A1	Not ISW, eg 1680/3024 : M1M1A0	
			[2]		
			[3]	SC: consistent use of with replacement in (i)	
				(or if only (a) or (b) attempted)	
				(ia) M0A0	
				(ib) 999 × 5 or 4995 M1	
(ii)	(a)	${}^{5}C_{3} \times {}^{4}C_{1} \text{ or } {}^{5}C_{4} \text{ oe}$	M1	M0A0 $^{5}C_{3} \times ^{4}C_{1} \times 4!$ (or $^{5}P_{3} \times 4 \times 4$) or $5!$ (or $^{5}P_{4}$)	$\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times \frac{4}{6}$ Allow × or +
(11)	(4)	${}^5C_3 \times {}^4C_1 + {}^5C_4$ oe correct method so far	M1	960 + 120 oe correct method so far	× 4 correct method so far
		(- 45)			
		\div ${}^{9}C_{4}$ Allow anything \div ${}^{9}C_{4}$	M1	$^{\circ}$ P ₄ [must involve any P or any !] $^{\circ}$ P ₄	$^{5}/_{9} \times ^{4}/_{8} \times ^{3}/_{7} \times ^{2}/_{6}$ Allow × or +
		$= \frac{5}{14}$ or 0.357 (3 sfs) oe, eg $\frac{35}{98}$ or $\frac{45}{126}$	A1		or: $\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times \frac{4}{6}$ or $\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7}$ M1 $\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times \frac{4}{6} \times 3 + \frac{5}{9} \times \frac{4}{8} \times \frac{3}{7}$ M1
				Marks must come from one method, not	
			[4]	mixture of two methods	NB ${}^{5}/_{9} \times {}^{4}/_{8} \times {}^{3}/_{7} \times 3 = {}^{5}/_{14} \text{ M0M0M0A0}$
(ii)	(b)	9, 8, 7, 4 or 9, 8, 6, 5 No mark yet			
		2	M1	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}$	$4! + 4!$ or $2 \times 4!$ oe
		$\stackrel{2}{\div}{}^{9}C_{4}$ oe Must be (1 or 2 or 4) $\stackrel{\cdot}{\div}{}^{9}C_{4}$	M1	$^{1/9}\times^{1/8}\times^{1/7}\times^{1/6}$ $^{1/9}\times^{1/8}\times^{1/7}\times^{1/6}$ Allow × or + × 4! × 2 × 2 fully correct method	\div ${}^{9}P_{4}$ or \div (i)(a) oe
				,	Must be (96 or 48 or 24) \div ${}^{9}P_{4}$
		$= \frac{1}{63}$ oe or 0.0159 (3 sfs)	A1	ND Marks from an amothed only not mixed	2/ v2/ v1/ v1/ v1/ v1/ v1/
			[3]	NB Marks from one method only, not mixed methods	$^{2}/_{9} \times ^{2}/_{8} \times ^{1}/_{7} \times ^{1}/_{6}$ allow × or + M1 × 4!/4 × 2 fully correct method M1
				SC: consistent use of with replacement in (ii),	1.7.1.2 larry correct incurous 1711
				(or if only (a) or (b) attempted)	
				(iia) $({}^{5}/9)^4$ M1	$1 - ((^{4}/_{9})^{4} + 4(^{4}/_{9})^{3}(^{5}/_{9}) + {}^{4}C_{2}(^{4}/_{9})^{2}(^{5}/_{9})^{2}) \qquad M2$
				$+{}^{4}C_{3}({}^{5}/_{9})^{3}({}^{4}/_{9}) (= 0.400)$ M1 M0A0	One term missing or extra or wrong M1
				(iib) $\binom{1}{9}^4$ (=0.000152) M1	
				attempt find no of gps M1A0	

Q14, (Jan 2013, Q4)

(i)	(a)	6	B1 [1]		
(i)	(b)	3×3×3 = 27	M1 A1 [2]	3! + 7×3 3 + 3×6 + 6 3! × 4 + 3 Complete correct method. Allow methods equiv to these. Only allow other methods if they appear correct	(Explanation for 3! × 4 + 3: 123: 3!, 112 & 122: 3!, 223 & 233: 3!, 331 & 311: 3! 111, 222, 333: 3 Candidates need not include this)
(i)	(c)	(i)(b) - 3 If answer is not 24, this method must be explicitly stated in order to give M1A1ft = 24 ft their (i)(b)	M1 A1ft [2]	or $3! + 6 \times 3$ or $3! + 3! \times 3$ or $6 + 3! \times 3! \div 2!$ or $3! \times 4$ Complete correct method. Allow methods equiv to these. Only allow other methods if they appear correct	or 8 × 3 (Explanation: there are 8 possible orders starting with 1. Candidates need not include this)
(ii)		eg 1123: $\frac{4!}{2!} \times 3$ alone allow M1 for $\frac{4!}{2!} \times 3!$ alone eg 1122: $\frac{4!}{2!2!} \times 3$ alone allow M1 for $\frac{4!}{2!2!} \times 3!$ alone $Total = 54$	M2 M2 A1 [5]	$3! \times {}^{4}C_{1} \times 3$ or $3! \times 12$ M1 $\div 2$ M1dep (= 36) $3! \times {}^{4}C_{2}$ M1 $\div 2$ M1dep (= 18) Allow methods equiv to these, eg correctly listing cases Only allow other methods if they appear correct. NB $3 \times 3 \times 2 \times 2 = 36$ & $3 \times 3 \times 2 \times 1 = 18$ are incorrect methods unless clear justification given	This method only scores if $3\times3\times3\times3$ is used: No. with 4 rep'ns = 3 M1 No. with 3 rep'ns = $\frac{4!}{3!}$ M1 × 6 (= 24) M1 or 8 × 3 M2 81–('3'+'24') or 81–27 M1 (allow 81–3 or 81–24) 18, 36 only score if a correct method seen,, or eg: 18 orders listed starting with "1" or 18 orders listed with two repetitions

Q15, (Jun 2014, Q8)

(i)	⁵ C ₂ oe seen anywhere or num= 10 alone	M1	$\frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5}$ or $\frac{20}{1680}$ or $\frac{1}{84}$ oe seen	alone or \times eg $\frac{2}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5}$ M1
	$\frac{{}^{5}C_{2}}{{}^{8}C_{4}}$ oe or $\frac{{}^{5}C_{2}\times 4!}{{}^{8}P_{4}}$ oe all correct	M1	$\frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5} \times {}^{4}C_{2} \times 2 \text{ or } \frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5} \times 4! \div 2 \text{ oe}$ or $\frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5} \times 12 \text{ oe all correct}$	$\frac{4}{8} \times \frac{3}{7} \times \frac{4}{6}$ oe all correct M2 NB $\frac{\text{incorrect}}{{}^{8}\text{C}_{4}}$ does not score
	$=\frac{1}{7}$ or 0.143 (3 sf)	A1	Correct ans scores M1M1A1 regardless of method.	
		[3]		
(ii)	$6! \times 2$ alone or $5! \times 6 \times 2$ alone oe	M2	M1 for 6! or 5! × 6 or ⁶ P ₅ or 720 seen NB 5! scores M0 unless 5! × 6 or 5! × 12	M1 for 7! × 2 alone NB 7! scores M0 unless 7! × 2 alone
	= 1440	A1 [3]		
(iii)	$6! \times 4$ alone or $6! \times 2 \times 2$ alone	M2	M1 for 6! or ⁶ P ₅ or 720 seen or 5! × 6 seen but NOT from 5!×3!	5!: M0 unless 5!×6 or 5!×12 or 5!×24
	= 2880	A1 [3]		

Q16, (Jun 2015, Q6)

(i)		7! or 5040 or ⁷ P ₇ seen	M1	or $5! \times (^{6}C_{2} + 6)$ NOT $5! \times ^{6}C_{2}$	or $\frac{2}{7} \times \frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2}$ alone M2
		$1 \div \frac{7!}{2}$ or $\frac{2}{7!}$	M1	$\frac{1}{5 \times (6C2+6)}$	$or \ge 5$ correct fracs mult: or 6 correct fracts mult \times M1
		$=\frac{1}{2520}$ or 0.000397 (3 sf)	A1	or $\frac{2}{5040}$ oe	
			[3]		
(ii)	(a)	5	B1	Ignore any working seen	
			[1]		
(ii)	(b)	5C_2 alone (or $\times {}^2C_2$)	M1	alone, eg NOT ${}^5C_2 \times$ or ${}^5C_2 +$	But allow ⁵ C ₂ as denom of prob M1A0
		${}^{5}C_{2}$ alone (or $\times {}^{2}C_{2}$) or ${}^{6}C_{3} \div 2(!)$ or ${}^{2}_{7} \times {}^{7}C_{3}$ or ${}^{5}P_{2} \div 2$			
		= 10	A1		
			[2]		
(ii)	(c)	"5" + "10" + ⁵ C ₃	M1	or ${}^{6}C_{3}$ + "5" or ${}^{7}C_{3}$ - "10" or ${}^{7}C_{3}$ - ${}^{5}C_{2}$	Allow as denom of a prob M1A0
		= 25	A1f	ft (a) &/or (b) only if working seen	
			[2]		