Date your Data!

1

Chapter 2. Getting to Know Your Data

■ Data Objects and Attribute Types

- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary

2

Attributes

- Attribute (or dimensions, features, variables)
 - □ A data field, representing a characteristic or feature of a data object.
 - E.g., customer_ID, name, address
- Types:
 - □ Nominal (e.g., red, blue)
 - Binary (e.g., {true, false})
 - Ordinal (e.g., {freshman, sophomore, junior, senior})
 - Numeric: quantitative (discrete vs continuous)
 - Text
- Q1: Is student ID a nominal, ordinal, or interval-scaled data (measured on a scale of equal-sized units and the order matters)?
- Q2: What about eye color? Or color in the color spectrum of physics?

9

Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity or Dissimilarity

Summary

54

54

Similarity, Dissimilarity, and Proximity

- □ Similarity measure or similarity function
 - ☐ A real-valued function that quantifies the similarity between two objects
 - Measure how two data objects are alike: The higher value, the more alike
 - □ Often falls in the range [0,1]: 0: no similarity; 1: 100% similar
- □ **Dissimilarity** (or **distance**) measure
 - Numerical measure of how different two data objects are
 - ☐ In some sense, the inverse of similarity: The lower, the more alike
 - ☐ Minimum dissimilarity is often 0 (i.e., completely similar)
 - □ Range [0, 1] or $[0, \infty)$, depending on the definition
- Proximity usually refers to either similarity or dissimilarity

55

Data Matrix and Dissimilarity Matrix

- Data matrix
 - ☐ A data matrix of n data points with / dimensions

- ☐ Dissimilarity (distance) matrix (n by n)
 - n data points, but registers only the distance d(i, j) (typically metric)
 - ☐ Usually symmetric, thus a triangular matrix
 - □ Distance functions are usually different for real, boolean, categorical, ordinal, ratio, and vector variables
 - Weights can be associated with different variables based on applications and data semantics

poolean, $\begin{pmatrix} 0 \\ d(2,1) & 0 \\ \vdots & \vdots & \ddots \\ d(n,1) & d(n,2) & \dots & 0 \end{pmatrix}$

56

56

Standardizing Numeric Data

- □ **Z-score**: $z = \frac{x \mu}{\sigma}$
 - $\hfill \square$ X: raw score to be standardized, μ : mean of the population, σ : standard deviation
 - □ the distance between the raw score and the population mean in units of the standard deviation
 - □ negative when the raw score is below the mean, "+" when above
- ☐ An alternative way: Calculate the mean absolute deviation

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

where

$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + ... + x_{nf}).$$

- standardized measure (z-score): $z_{if} = \frac{x_{if} m_f}{s_f}$
- ☐ Using mean absolute deviation is more robust than using standard deviation

Z-score - An example

- ☐ John gets a mark of 64 in a physics test, where the mean is 50 and the standard deviation is 8.
- ☐ Jane gets a mark of 74 in a chemistry test, where the mean is 58 and the standard deviation is 10.

Who has a better class performance?

- \square John's z = (64 50) / 8 = 1.75
- \square Jane's z = (74 58) / 10 = 1.6
- ☐ Although Jane's score is higher, John's score is further above the mean, and it might be concluded that John has achieved greater success.

58

58

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
<i>x1</i>	1	2
x2	3	5
х3	2	0
x4	4	5

Dissimilarity Matrix (by Euclidean Distance)

	<i>x1</i>	<i>x2</i>	<i>x3</i>	x4
<i>x1</i>	0			
x2	3.61	0		
<i>x3</i>	2.24	5.1	0	
x4	4.24	1	5.39	0

Distance on Numeric Data: Minkowski Distance

■ Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p}$$

where $i = (x_{i1}, x_{i2}, ..., x_{il})$ and $j = (x_{j1}, x_{j2}, ..., x_{jl})$ are two *l*-dimensional data objects, and p is the order (the distance so defined is also called L-p norm)

- Properties
 - \Box d(i, j) > 0 if i \neq j, and d(i, i) = 0 (Positivity)
 - \Box d(i, j) = d(j, i) (Symmetry)
 - \Box d(i, j) \leq d(i, k) + d(k, j) (Triangle Inequality)
- ☐ A distance that satisfies these properties is a metric
- □ Note: There are nonmetric dissimilarities, e.g., set differences

60

60

Special Cases of Minkowski Distance

- \square p = 1: (L₁ norm) Manhattan (or city block) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors $d(i,j) = |x_{i1} x_{j1}| + |x_{i2} x_{i2}| + \cdots + |x_{il} x_{jl}|$
- \square p = 2: (L₂ norm) Euclidean distance

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{il} - x_{jl}|^2}$$

- - ☐ The maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{p \to \infty} \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p} = \max_{f=1}^l |x_{if} - x_{jf}|$$

61

Example: Minkowski Distance at Special Cases

point	attribute 1	attribute 2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

iviannattan (L ₁)					
L	x1	x2	х3	x4	
x1	0				
x2	5	0			
х3	3	6	0		
x4	6	1	7	0	

Euclidean (L₂)

L2	x1	x2	х3	x4
x1	0			
x2	3.61	0		
х3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum (L__)

•	٠ س٠			
L∞	x1	x2	х3	x4
x1	0			
x2	3	0		
х3	2	5	0	
x4	3	1	5	0

62

Proximity Measure for Binary Attributes

A contingency table for binary data

q+rObject i

☐ Distance measure for symmetric binary variables

- $d(i,j) = \frac{r+s}{q+r+s+t}$
- Distance measure for asymmetric binary variables: $d(i, j) = \frac{r+s}{q+r+s}$
- □ Jaccard coefficient (*similarity/coherence* measure $sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$ for asymmetric binary variables):
- □ Note: Jaccard coefficient is the same as

(a concept discussed in Pattern Discovery)

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

Example: Dissimilarity between Asymmetric Binary Variables

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

Jack \sum_{col} 3

Mary

- ☐ Gender is a symmetric attribute (not counted in)
- ☐ The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N be 0
- Distance: $d(i, j) = \frac{r+s}{q+r+s}$

d (jack	mary) -	$\frac{0+1}{2+0+1} = 0.$	33
и (јиск	, mary	, –	$\frac{1}{2+0+1} = 0$, 33

$$d(jack , jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, max) = \frac{1+2}{1+1+1} = 0.74$$

		T	1	2	
Jac	<mark>k</mark> 0	1	3	4	
	Σ_{col}	2	4	6	

		ary		
		1	0	Σ_{row}
	1	1	1	2
Jim	0	2	2	4
	Σ_{col}	3	3	6

64

Proximity Measure for Categorical Attributes

- Categorical data, also called **nominal** attributes
 - Example: Body Type (pear, banana, apple 3 nominal states), profession, Color (red, yellow, blue, green), Categories (1, 2, 3), etc.
- Method 1: Simple matching
 - m: # of matches, p: total # of categorical variables

$$d\left(i,j\right) = \frac{p-m}{p}$$

- Method 2: Use a large number of asymmetric binary attributes
 - Creating a new binary attribute for each of the M nominal states

Proximity Measure for Categorical Attributes

- Method 3: Target encoding
 - Group the data by category
 - Calculate the average of the target variable per each group
 - Assign the average to each observation belonging to that group

Country	Target Variable	Target Encoding
United States	1	0.40
Germany	0	0.50
United States	0	0.40
United States	1	0.40
France	1	0.67
Germany	1	0.50
United States	0	0.40
France	1	0.67
United States	0	0.40
France	0	0.67

66

Ordinal Variables

- Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)
- Can be treated like interval-scaled
 - Replace an ordinal variable value by its rank: $r_{if} \in \{1,...,M_f\}$
 - Normalization: Map the range of each variable onto [0, 1] by replacing i-th object in the f-th variable by $z_{if} = \frac{r_{if} - 1}{M_f - 1}$

- Example: freshman: 0; sophomore: 1/3; junior: 2/3; senior 1
 - Then L-1 distance: d(freshman, senior) = 1, d(junior, senior) = 1/3
- Compute the dissimilarity using methods for interval-scaled variables

Attributes of Mixed Type

- A dataset may contain all attribute types
 - □ Nominal, symmetric binary, asymmetric binary, numeric, and ordinal
- One may use a weighted formula to combine their effects:

$$d(i,j) = \frac{\sum_{f=1}^{p} w_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} w_{ij}^{(f)}}$$

- ☐ If f is numeric: Use the normalized distance
- □ If f is binary or nominal: $d_{ij}^{(f)} = 0$ if $x_{if} = x_{jf}$; or $d_{ij}^{(f)} = 1$ otherwise (there are other options ...pp. 75-76)
- \Box If f is ordinal
- Compute ranks z_{if} (where $z_{if} = \frac{r_{if} 1}{M_f 1}$)
- ☐ Treat z_{if} as interval-scaled

68

Example

Object ID	Test 1 (nominal)	Test 2 (ordinal)	Test-3 (numeric)
1	Α	Excellent	45
2	В	Fair	22
3	С	Good	64
4	D	Excellent	28

Cosine Similarity of Two Vectors (commonly used in document comparison)

☐ A **document** can be represented by a bag of terms/words or a long vector (very sparse), with each attribute recording the frequency of a particular term (such as word, keyword, or phrase) in the document

team coach		hockey	baseball	soccer	penalty	score	win	loss	season
5	0	3	0	2	0	0	2	0	0
3	0	2	0	1	1	0	1	0	1
0	7	0	2	1	0	0	3	0	0
0	1	0	0	1	2	2	0	3	0
	5 3 0 0	team coach 5 0 3 0 0 7 0 1	team coach hockey 5 0 3 3 0 2 0 7 0 0 1 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	team coach hockey baseball soccer 5 0 3 0 2 3 0 2 0 1 0 7 0 2 1 0 1 0 0 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	team coach hockey baseball soccer penalty score 5 0 3 0 2 0 0 3 0 2 0 1 1 0 0 7 0 2 1 0 0 0 1 0 0 1 2 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	teamcoach hockey baseball soccer penalty score win loss 5 0 3 0 2 0 0 2 0 3 0 2 0 1 1 0 1 0 0 7 0 2 1 0 0 3 0 0 1 0 1 2 2 0 3

- Other vector objects: Gene features in micro-arrays
- Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.
- $lue{}$ Cosine similarity: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|}$$

where \bullet indicates vector dot product, ||d||: the 'length' (Euclidean Norm) of vector d

70

Example: Calculating Cosine Similarity

$$sim(A, B) = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

- where \bullet indicates vector dot product, ||d||: the length of vector d
- Ex: Find the **similarity** between documents 1 and 2.

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$
 $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

☐ First, calculate vector dot product

$$d_1 \bullet d_2 = 5 \times 3 + 0 \times 0 + 3 \times 2 + 0 \times 0 + 2 \times 1 + 0 \times 1 + 0 \times 1 + 2 \times 1 + 0 \times 0 + 0 \times 1 = 25$$

 \square Then, calculate $||d_1||$ and $||d_2||$

$$||d_1|| = \sqrt{5 \times 5 + 0 \times 0 + 3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0} = 6.481$$

$$||d_2|| = \sqrt{3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 1 \times 1 + 1 \times 1 + 0 \times 0 + 1 \times 1 + 0 \times 0 + 1 \times 1} = 4.12$$

□ Calculate cosine similarity: $\cos(d_1, d_2) = 25/(6.481 \text{ X} 4.12) = 0.94$

KL Divergence: Comparing Two Probability Distributions

- ☐ The Kullback-Leibler (KL) divergence: Measure the difference between two probability distributions over the same variable x
 - From information theory, closely related to relative entropy, information divergence, and information for discrimination
- \Box $D_{\kappa_1}(p(x) \mid \mid q(x))$: divergence of q(x) from p(x), measuring the information lost when q(x) is used to approximate p(x)

Discrete form
$$D_{KL}(p(x)||q(x)) = \sum_{x \in X} p(x) \ln \frac{p(x)}{q(x)}$$

 $D_{KL}(p(x)||q(x)) = \int_{-\infty}^{\infty} p(x) \ln \frac{p(x)}{q(x)} dx$

Ack.: Wikipedia entry: The Kullback-Leibler (KL) divergence

72

More on KL Divergence $D_{KL}(p(x)||q(x)) = \sum_{x \in X} p(x) \ln \frac{p(x)}{q(x)}$

$$D_{KL}(p(x)||q(x)) = \sum_{x \in X} p(x) \ln \frac{p(x)}{q(x)}$$

- ☐ The KL divergence measures the expected number of extra bits required to code samples from p(x) ("true" distribution) when using a code based on q(x), which represents a theory, model, description, or approximation of p(x)
- ☐ The KL divergence is not a distance measure, not a metric: asymmetric, not satisfy triangular inequality $(D_{KI}(P||Q))$ does not equal $D_{KI}(Q||P)$
- ☐ In applications, P typically represents the "true" distribution of data, observations, or a precisely calculated theoretical distribution, while Q typically represents a theory, model, description, or approximation of P.
- The Kullback–Leibler divergence from Q to P, denoted $D_{KI}(P||Q)$, is a measure of the information gained when one revises one's beliefs from the prior probability distribution Q to the posterior probability distribution P. In other words, it is the amount of information lost when Q is used to approximate P.
- ☐ The KL divergence is sometimes also called the information gain achieved if P is used instead of Q. It is also called the relative entropy of P with respect to Q.

Subtlety at Computing the KL Divergence

- Base on the formula, $D_{KL}(P,Q) \ge 0$ and $D_{KL}(P \mid \mid Q) = 0$ if and only if P = Q
- \Box How about when p = 0 or q = 0?

$$D_{KL}(p(x)||q(x)) = \sum_{x \in Y} p(x) \ln \frac{p(x)}{q(x)}$$

- when $p \neq 0$ but q = 0, $D_{KL}(p \mid \mid q)$ is defined as ∞ , i.e., if one event e is possible (i.e., p(e) > 0), and the other predicts it is absolutely impossible (i.e., q(e) = 0), then the two distributions are absolutely different.
- □ However, in practice, *P* and *Q* are derived from frequency distributions, not counting the possibility of unseen events. Thus *smoothing* is needed
- □ Example: *P* : (*a* : 3/5, *b* : 1/5, *c* : 1/5). *Q* : (*a* : 5/9, *b* : 3/9, *d* : 1/9)
- need to introduce a small constant ϵ , e.g., $\epsilon = 10^{-3}$
- The sample set observed in P, $SP = \{a, b, c\}$, $SQ = \{a, b, d\}$, $SU = \{a, b, c, d\}$
- \square Smoothing, add missing symbols to each distribution, with probability ϵ
- $P': (a: 3/5 \epsilon/3, b: 1/5 \epsilon/3, c: 1/5 \epsilon/3, d: \epsilon)$
- Q': $(a:5/9 \epsilon/3, b:3/9 \epsilon/3, c:\epsilon, d:1/9 \epsilon/3)$
- $D_{\kappa l}(P' \mid\mid Q')$ can then be computed easily

74

Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary

Summary

- □ Data attribute types: nominal, binary, ordinal, interval-scaled, etc.
- ☐ Many types of data sets, e.g., numerical, text, graph, Web, image.
- ☐ Gain insight into the data by:
 - Measure data similarity
- Above steps are the beginning of data preprocessing
- ☐ Many methods have been developed but still an active area of research

76

76

References

- W. Cleveland, Visualizing Data, Hobart Press, 1993
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
- U. Fayyad, G. Grinstein, and A. Wierse. Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001
- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- □ H. V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the Tech. Committee on Data Eng., 20(4), Dec. 1997
- □ D. A. Keim. Information visualization and visual data mining, IEEE trans. on Visualization and Computer Graphics, 8(1), 2002
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- S. Santini and R. Jain," Similarity measures", IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(9), 1999
- E. R. Tufte. The Visual Display of Quantitative Information, 2nd ed., Graphics Press, 2001
- □ C. Yu, et al., Visual data mining of multimedia data for social and behavioral studies, Information Visualization, 8(1), 2009