代码补全的预训练模型评估

目录:

- 性能对比的Benchmark
- 1 PyCodeGPT
- 2、GPT-NEO
- 3 CodeGen
- 4\ InCoder
- 预训练模型的本地部署实践

CodeGen(已验证:可行)InCoder (已验证:可行)

作为对比的Benchmark:

· GitHub Copilot

1、PyCodeGPT(结论: 暂未验证可用性)

地址: https://github.com/microsoft/PyCodeGPT

• PyCodeGPT-110M

Evaluation

1. Install requirements (python 3.7)

```
$ pip install -r requirements.txt
```

- 1. Install HumanEval
- Note that you can successfully evaluate your model after uncommenting 58th line of human-eval/human_eval/execution.py

```
$ git clone https://github.com/openai/human-eval
$ pip install -e human-eval
```

- 1. Run eval_human_eval.py to generate programs
 - Arguments
 - model_name_or_path : Path to the model checkpoint to be evaluated.
 - output_dir : Path to save generated programs
 - num_completions : The number of program to be generated
 - temperature : Temperature for sampling
 - top_p : p value for nucleus sampling
 - max_new_tokens : Maximum number of generated token
 - Example usage

```
$ python eval_human_eval.py \
    --model_name_or_path PyCodeGPT-110M/ \
    --output_dir results/ \
    --num_completions 100 \
    --temperature 0.2 \
    --top_p 0.95 \
    --max_new_tokens 100 \
    --gpu_device 0
```

2. Evaluate functional correctness

```
$ evaluate_functional_correctness <samples_path>
# Example
$ evaluate_functional_correctness
results/human_eval.t0.2.p0.95.l100.n100.samples.jsonl
```

2、GPT-NEO(结论:不可用)

预训练模型已下载:

• GPT-NEO, 体积较大。

说明:

• 使用Mesh-tensorflow库的模型并行GPT-2和GPT-3式模型的实现。

此处的预训练模型为在The Pile数据集上进行训练的模型,无法直接进行代码补全的推理使用。

3、CodeGen(结论:可直接使用)

地址: https://github.com/salesforce/CodeGen

HuggingFace

The model is available on the HuggingFace Hub with a Colab demo here.

说明:

CODEGEN-NL模型为在ThePile数据集上训练的模型;

CODEGEN-MULTI模型为在BigQuery数据集上训练的多语言模型;

CODEGEN-MONO模型为在单一数据集BIGPYTHON上训练的单语言模型;

Model	pass@k [%]		
	k = 1	k = 10	k = 100
GPT-NEO 350M	0.85	2.55	5.95
GPT-NEO 2.7B	6.41	11.27	21.37
GPT-J 6B	11.62	15.74	27.74
CODEX 300M	13.17	20.37	36.27
Codex 2.5B	21.36	35.42	59.50
CODEX 12B	28.81	46.81	72.31
CODEGEN-NL 350M	2.12	4.10	7.38
CODEGEN-NL 2.7B	6.70	14.15	22.84
CODEGEN-NL 6.1B	10.43	18.36	29.85
CODEGEN-MULTI 350M	6.67	10.61	16.84
CODEGEN-MULTI 2.7B	14.51	24.67	38.56
CODEGEN-MULTI 6.1B	18.16	28.71	44.85
CODEGEN-MONO 350M	12.76	23.11	35.19
CODEGEN-MONO 2.7B	23.70	36.64	57.01
CODEGEN-MONO 6.1B	26.13	42.29	65.82
CodeGen-Mono 16.1B	29.28	49.86	75.00

- codegen-350M-multi
- · codegen-350M-mono
- · codegen-2B-nl
- codegen-2B-multi
- · codegen-2B-mono
- codegen-6B-nl
- · codegen-6B-multi
- · codegen-6B-mono
- codegen-16B-nl
- codegen-16B-multi
- codegen-16B-mono

```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-2B-mono")
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen-2B-mono")
inputs = tokenizer("# this function prints hello world", return_tensors="pt").to(0)
sample = model.generate(**inputs, max_length=128)
print(tokenizer.decode(sample[0], truncate_before_pattern=[r"\n\n^#", "^'''",
"\n\n\n"]))
```

Colab

This Google Colab notebook allows for sampling from the CodeGen models.

4、InCoder(结论:可直接使用)

Github地址: https://github.com/dpfried/incoder/blob/main/README.md

官网地址: https://sites.google.com/view/incoder-code-models

Demo: https://huggingface.co/spaces/facebook/incoder-demo

Models

You can obtain the models from HuggingFace's hub:

- 6.7B parameter model: facebook/incoder-6B
- 1.3B parameter model: facebook/incoder-1B