ALGORITMOS E LÓGICA DE PROGRAMAÇÃO

Prof. Nilton

AULA DE HOJE

- Conceitos Básicos de Tecnologia da Informação
 - Representação Binária da Informação

REPRESENTAÇÃO BINÁRIA DE INFORMAÇÕES

O número é um conceito abstrato que representa a ideia de quantidade, portanto, é um conceito fundamental para a área de computação.

Um sistema de numeração é o conjunto de símbolos utilizados para representar quantidades e as regras que definem a forma de representação.

Um sistema de numeração é determinado fundamentalmente pela Base, que indica a quantidade de símbolos e o valor de cada símbolo. Matematicamente escrevemos um número em função da potência de sua base.

REPRESENTAÇÃO BINÁRIA DE INFORMAÇÕES

Exemplo:

Número decimal 578.490

5	7	8	4	9	0
105	104	10 ³	102	10¹	10°

... mil cem dez um

 $5 \times 100.000 + 7 \times 10.000 + 8 \times 1000 + 4 \times 100 + 9 \times 10 + 0 \times 1 \rightarrow 578.490$

BASES PRINCIPAIS

• Decimal (base 10): Símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; Exemplos: $111 \rightarrow 1x10^2 + 1x10^1 + 1x10^\circ$ $4.345 \rightarrow 4x10^3 + 3x10^2 + 4x10^1 + 5x10^\circ$

• Binário (base 2):

Simbolos: 0, 1;

Exemplo:

 $110 \rightarrow 1x2^2 + 1x2^1 + 0x2^\circ$ (Equivalente a 6 em decimal) $1011 \rightarrow 1x2^3 + 0x2^2 + 1x2^1 + 1x2^\circ$ (Equivalente a 11 em decimal)

BASES PRINCIPAIS

Octal (base 8):

Simbolos: 0, 1, 2, 3, 4, 5, 6, 7;

• Hexadecimal (base 16):

Simbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F;

SISTEMAS DIGITAIS

Em sistemas digitais, o sistema de numeração utilizado é o binário. Como são usados apenas os símbolos 0 e 1, fica mais fácil de ser representado por circuitos eletrônicos (presença ou não de tensão, chave aberta ou fechada, etc.).

Compreendendo o "desmenbramento" dos números em base decimal mostrado acima, fica mais fácil entender os números binários. Cada casa binária terá um "peso" individual, sempre relativo à potência de 2.

COMPARAÇÃO

Decimal	Binário	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Uma das formas de converter um número decimal para binário é utilizar divisões sucessivas por 2 até que o quociente seja menor que a base, e escrever de modo inverso os restos de cada divisão.

Exemplos:

Outra forma é utilizar a tabela de potências descendentes da base utilizada.

Liste as potências de dois em uma "tabela binária", da direita para a esquerda. Faça a lista até ter alcançado um número muito próximo do número decimal que você deseja converter.

Exemplo:

Converter o número deciamal 156 para binário.

Escolha o maior número que caberá naquele que você está convertendo. 128 é o maior produto que caberá em 156, então escreva l abaixo dessa caixa em sua tabela para o dígito binário mais à esquerda. Depois, subtraia 128 do seu número inicial. Agora você tem 28.

156 - 128 = 28

Usando seu novo número (28), vá descendo pela tabela, marcando quantas vezes cada potência de 2 cabe em seu dividendo. 64 não cabe em 28, então escreva um 0 abaixo dessa caixa para o próximo dígito binário à direita. Continue até alcançar um número que possa caber no 28.

128	64	32	16	8	4	2	1
1	0	0					

16 cabe em 28, então você escreverá 1 na caixa dele e subtrairá 16 de 28.

128	64	32	16	8	4	2	1
1	0	0	1			-	

$$28 - 16 = 12$$

$$12 - 8 = 4$$

$$4 - 4 = 0$$

Agora você tem 12. 8 cabe em 12, então escreva 1 abaixo da caixa do 8 e subtraia esse valor de 12. Agora, você tem 4, então escreva 1 abaixo da caixa do 4 e subtraia esse valor de 4. O valor ficou 0.

128	64	32	16	8	4	2	1
1	0	0	1	1	1	0	0

156 (decimal) = 10011100 (binário)

CONVERSÃO DE BINÁRIO PARA DECIMAL

Uma das formas para converter um número binário para decimal devemos identificar a posição de cada um dos algarismos dentro do número, lembrando que as posições são definidas da direita para a esquerda, sendo que a primeira posição é 0. Definidas as posições, o passo seguinte é multiplicar cada um dos algarismos pela base original (nesse caso binária) elevada a respectiva posição. O último passo é somar os valores das multiplicações.

CONVERSÃO DE BINÁRIO PARA DECIMAL

Exemplo:

Resultado= 155

CONVERSÃO DE BINÁRIO PARA DECIMAL

Uma outra forma é utilizar a tabela de descendentes da base utilizada.

128	64	32	16	8	4	2	1
-----	----	----	----	---	---	---	---

Exemplo:

Converter o número binário 10011100 para decimal.

128	64	32	16	8	4	2	1
1	0	0	1	1	1	0	0

$$128 + 16 + 8 + 4 = 156$$
 (decimal)

EXERCÍCIOS

Faça a conversão dos números decimais para números binários utilizando as duas formas apresentadas em aula:

- a) 4323
- **b**) 190
- c) 12789
- d) 456978
- e) 8

EXERCÍCIOS

Faça a conversão dos números binários para números decimais utilizando as duas formas apresentadas em aula:

- a) 1001
- **b**) 1101001
- c) 0011101
- d) 01011101
- e) 11010111

Unidade	Símbolo	Valor Equivalente	Múltiplo
Bit	b*		
Byte	B*	8 bits	10°
Kilobyte	KB	1024 B	10 ³
Megabyte	MB	1024 KB	10 ⁶
Gigabyte	GB	1024 MB	10 ⁹
Terabyte	TB	1024 GB	10 ¹²
Petabyte	PB	1024 TB	10 ¹⁵
Exabyte	EB	1024 PB	10 ¹⁸
Zettabyte	ZB	1024 EB	1021
Yottabyte	YB	1024 ZB	10 ²⁴

 Unidades de medida Computacional

Nome	Símbolo	Potências binárias e valores decimais
byte	В	20 = 1
Kbyte	КВ	2 ¹⁰ = 1 024
Megabyte	MB	2 ²⁰ = 1 048 576
Gigabyte	GB	2 ³⁰ = 1 073 741 824
Terabyte	TB	2 ⁴⁰ = 1 099 511 627 776
Petabyte	PB	2 ⁵⁰ = 1 125 899 906 842 624
Exabyte	EB	2 ⁶⁰ = 1 152 921 504 606 846 976
Zettabyte	ZB	2 ⁷⁰ = 1 180 591 620 717 411 303 424
Yottabyte	YB	2 ⁸⁰ = 1 208 925 819 614 629 174 706 176

• Unidades de medida computacional.