1987 FI5.4

附圖中,ST與圓相切於P。若 $\angle MQP = 70^\circ$, $\angle QPT = c^\circ = 25^\circ$ 及 $\angle MRQ = d^\circ$,求d的值。 In the figure, ST is a tangent to the circle at P. If $\angle MQP = 70^\circ$, $\angle QPT = c^\circ = 25^\circ$ and $\angle MRQ = d^\circ$, find the value of d.

1991 HG10

在圖中,弦 $AOB \cdot COD$ 相交於 $O \circ 若過$ A 的 切綫與過 C 的切綫相交於 X,過 B 的切綫與過 D 的切綫相交於 Y,且 $\angle AXC = 130^\circ \cdot \angle AOD = 120^\circ \cdot \angle BYD = k^\circ$,求 k 的值。 In the figure, two chords AOB, COD cut at O. If the tangents at A and C meet at X, the tangents at B and D meet at Y and $\angle AXC = 130^\circ$, $\angle AOD = 120^\circ$, $\angle BYD = k^\circ$, find the value of k.

1996 FI5.4

在右圖中,PC 是圓 (圓心為 O) 的切綫,切點在 $P \circ \Delta ABO$ 是等腰三角形,AB = OB, $\angle PCO = \frac{10}{21}$ 及 $d = \angle QPC$,其中 $c \cdot d$ 為弧度。 求 d 的值。(取 $\pi = \frac{22}{7}$)

In the following diagram, PC is a tangent to the circle (centre O) at the point P, and $\triangle ABO$ is an isosceles triangle, AB = OB, $\angle PCO = \frac{10}{21}$ and $d = \angle QPC$,

where c, d are radian measures. Find the value of d. (Take $\pi = \frac{22}{7}$)

1998 FI2.2

在圖中,PA 切圓 ABC 於 $A \circ PBC$ 為一直綫、 $AB = BP \cdot \angle ACB = 38^{\circ} \circ \angle ABP = b^{\circ}$, 求 b 的值。

2001 HI2

如圖,ABC 為一直綫,AB = AD, $\angle BDC = 38^{\circ}$,CD 切圓 ABD 於 D。 設 $\angle BCD = x^{\circ}$,求 x 的值。

2019 HI5

在圖二中,AB 為半圓的直徑,C 為半圓的圓心。有一圓形,圓心 O 切 AB 於 C 及 交半圓於 E 和 F。若 AE 交此圓形於 D、 $\angle DOE = 156$ °及 $\angle BAE = x$ °,求 x 的值。 In Figure 2, AB is the diameter of the semi-circle, C is the centre of the semi-circle. A circle with centre at O, A touching the semi-circle at C and cutting it at E and F. If AE cuts the circle at D, $\angle DOE = 156$ ° and $\angle BAE = x$ °, find the value of x.

Created by Mr. Francis Hung

Last updated: 2020-11-14

Answers

1987 FI5.4	1991 HG10	1996 FI5.4 $\frac{23}{28}$	1998 FI2.2	2001 HI2
95	110		104	33
2019 HI5 26				