通信与网络作业

1. (1) 为满足二进制降序条件, 我们有

回忆课件例题中,G的行变换不会影 响HT的行顺序,因此G的答案不唯一

(2) 编码后

$$c = dG = [0\ 1\ 1\ 0\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0]. \tag{2}$$

(3) 由 $\mathbf{r}\mathbf{H}^T = [0\ 1\ 1\ 0]$ 得,第10位出错,纠错后得

$$[1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 0\ 1\ 1] \tag{3}$$

译码输出后得码字为

$$d = [1\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0\ 0] \tag{4}$$

(4)汉明码纠正一位错,因此

$$P_e = 1 - (1 - \varepsilon)^{15} - {15 \choose 1} \varepsilon (1 - \varepsilon)^{14} \approx 0.035$$
 (5)

- 2. (1) 由 $t+e+1 \leq d_H^{\min}$ 得,e <= 3,即重量不超过3位的误码图案可以检出
 - (3) 先给出(3)的答案

发生0或1位错误,进行纠错,正确概率 $P_c=(1-\varepsilon)^{15}+\binom{15}{1}\varepsilon(1-\varepsilon)^{14}\approx 0.965$

发生2或3位差错时,认为可以检出错误,进行重传。检出概率(下界) $P_d=\binom{15}{2}\varepsilon^2(1-\varepsilon)^{13}+\binom{15}{3}\varepsilon^3(1-\varepsilon)^{12}\approx 0.035$

发生4位以上差错时,认为漏检,漏检概率(上界) $P_m = \sum_{i=4}^{15} {15 \choose i} \varepsilon^i (1-\varepsilon)^{15-i} \approx 1.83 \times 10^{-4}$ (2)给出(2)的答案,由检错概率 $P_d \approx 0.035$,每个信息块的平均传输次数为

$$(1 - Pd) \sum_{i=0}^{\infty} (i+1)P_d^i = \frac{1}{1 - P_d} \approx 1.036$$
 (6)

(4) 传输一次码块,占用n次BSC信道。因此,每个信息数据块,平均信道使用次数为 $\frac{n}{1-P_d}$ 。一个码块承载k个比特。因此,平均每次信道使用可传输的信息bit数为

$$\frac{k(1 - P_d)}{n} \approx 0.45\tag{7}$$

(5) 当t=0时,e=4。此时,正确概率 $P_c=(1-\varepsilon)^{15}\approx 0.739$ 。检错概率 $P_d=\sum_{i=1}^4 {15 \choose i} \varepsilon^i (1-\varepsilon)^i \approx 0.261$ 。漏检概率 $P_m\approx\sum_{i=5}^{15} {15 \choose i} \varepsilon^i (1-\varepsilon)^i \approx 8.13\times 10^{-6}$ 。平均传输次数 $\frac{1}{1-P_d}\approx 1.353$ 当t=2时,e=2。此时,正确概率 $P_c=\sum_{i=0}^2 {15 \choose i} \varepsilon^i (1-\varepsilon)^i \approx 0.997$ 。检错概率 $P_d=0$ 。漏检概率 $P_m\approx\sum_{i=3}^{15} {15 \choose i} \varepsilon^i (1-\varepsilon)^i \approx 0.003$ 。平均传输次数 $\frac{1}{1-P_d}=1$

第一题

(1)
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$Q = \left[\begin{array}{c} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{array} \right]$$

$$\mathbf{H}^{\top} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

计田田古

	许用码子	
000000	101100	110011
011101	011111	110001
101110	000010	

(3)

标准阵列

	差错图样							
许用码字	000000	011101	110011	101100	101110	011111	110001	000010
	000001	011100	110010	101101	101111	011110	110000	000011
	000100	011001	110111	101000	101010	011011	110101	000110
	001000	010101	111011	100100	100110	010111	111001	001010
	010000	001101	100011	111100	111110	001111	100001	010010
	100000	111101	010011	001100	001110	111111	010001	100010
	001001	010100	111010	100101	100111	010110	111000	001011
	000101	011000	110110	101001	101011	011010	110100	000111

$$(4) d_{\rm H}^{min} = 1$$

(5)
$$d_{1} = [1 \ 0 \ 0]$$

$$d_{2} = [0 \ 1 \ 0]$$

$$d_{3} = [0 \ 0 \ 1]$$

$$\tilde{d}_i = d_i A^{-1} \qquad A^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \qquad \begin{array}{c} \tilde{d}_1 = [0 & 0 & 1] \\ \tilde{d}_2 = [1 & 0 & 0] \\ \tilde{d}_3 = [1 & 1 & 1] \end{array}$$

第二题

(1)选取第一,二,四个码字。经高斯变换后得到系统码生成矩阵

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \qquad H^{\top} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

由于校验矩阵前三位和后三位对应的校正子相同,因此本题的答案不唯一。

若取前三位来遍历校正子的 $\{0, 1\}^3$ 空间, 若取前三位来遍历校正子的 $\{0, 1\}^3$ 空间, 则差错图样与校正子的对应关系如下:

则差错图样与校正子的对应关系如下:

许用码字

差错图样	校正子	差错图样	校正子	000000
00000	000	00000	000	001001
001000	001	000001	001	010010
010000	0 1 0	000010	010	011011
100000	100	000100	100	
011000	0 1 1	000011	011	100100
101000	101	000101	101	101101
110000	110	000110	110	110110
111000	111	000111	111	111111

(2) 根据差错图样与校正子的对应关系,标准阵列如下(<mark>以下采用前三位来遍历校正子的 $\{0, 1\}^3$ 空间</mark>,得到的标准阵列。 采用后三位来遍历校正子的 $\{0, 1\}^3$ 空间亦可,相应的答案请参考此情况下差错图样与校正子之间的对应关系)

	差错图样							
许用码字	000000	001001	010010	011011	100100	101101	110110	111111
	001000	000001	011010	010011	101111	100101	111110	110111
	010000	011001	000010	001011	110100	111101	100110	101111
	100000	101001	110010	111011	000100	001101	010110	011111
	011000	010001	001010	000011	111100	110101	101110	100111
	101000	100001	111010	110011	001100	000101	011110	010111
	110000	111001	100010	101011	010100	011101	000110	001111
	111000	110001	101010	100011	011100	010101	001110	000111

(3) 根据以上标准阵列图可知,当r=[111000]时对应发送的码字为c=[000000]。然而,实际由于标准阵 列并不唯一,特别是无法区分1-4,2-5,3-6位的错误。无法进行可靠译码,此题没有正确答案。