2019 年 CCF 非专业级软件能力认证第二轮 提高级

2019 CCF CSP-S2

day2

时间: 2019 年 11 月 17 日 08:30 ~ 12:00

题目名称	Emiya 家今天的饭	划分	树的重心
题目类型	传统型	传统型	传统型
目录	meal	partition	centroid
可执行文件名	meal	partition	centroid
输入文件名	meal.in	partition.in	centroid.in
输出文件名	meal.out	partition.out	centroid.out
每个测试点时限	1.0 秒	2.0 秒	3.0 秒
内存限制	256 MiB	1 GiB	256 MiB
子任务数目	25	25	20
测试点是否等分	是	是	是

提交源程序文件名

对于 C++ 语言	meal.cpp	partition.cpp	centroid.cpp
对于 C 语言	meal.c	partition.c	centroid.c
对于 Pascal 语言	meal.pas	partition.pas	centroid.pas

编译选项

对于 C++ 语言	-lm
对于 C 语言	-lm
对于 Pascal 语言	

注意事项与提醒(请选手务必仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须 是 0。
- 3. 提交的程序代码文件的放置位置请参照各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题,申诉时一律不予受理。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。

- 6. 程序可使用的栈内存空间限制与题目的内存限制一致。
- 7. 全国统一评测时采用的机器配置为: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, 内存 32GB。上述时限以此配置为准。
- 8. 只提供 Linux 格式附加样例文件。
- 9. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以其为准。
- 10. 最终评测时所用的编译命令中不含任何优化开关。
- 11. \sum 是求和运算符, $\sum_{i=1}^{n} a_i$ 的值等于 $a_1 + a_2 + \cdots + a_n$ 。

Emiya **家今天的饭**(meal)

【题目描述】

Emiya 是个擅长做菜的高中生,他共掌握 n 种**烹饪方法**,且会使用 m 种**主要食材** 做菜。为了方便叙述,我们对烹饪方法从 $1 \sim n$ 编号,对主要食材从 $1 \sim m$ 编号。

Emiya 做的每道菜都将使用**恰好一种**烹饪方法与**恰好一种**主要食材。更具体地,Emiya 会做 $a_{i,j}$ 道不同的使用烹饪方法 i 和主要食材 j 的菜 $(1 \le i \le n, 1 \le j \le m)$,这也意味着 Emiya 总共会做 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a_{i,j}$ 道不同的菜。

Emiya 今天要准备一桌饭招待 Yazid 和 Rin 这对好朋友,然而三个人对菜的搭配有不同的要求,更具体地,对于一种包含 k 道菜的搭配方案而言:

- Emiya 不会让大家饿肚子,所以将做**至少一道菜**,即 $k \ge 1$
- Rin 希望品尝不同烹饪方法做出的菜,因此她要求每道菜的烹饪方法互不相同
- Yazid 不希望品尝太多同一食材做出的菜,因此他要求每种**主要食材**至多在一半的菜(即 [½] 道菜)中被使用
 - 这里的 |x| 为下取整函数,表示不超过 x 的最大整数

这些要求难不倒 Emiya,但他想知道共有多少种不同的符合要求的搭配方案。两种方案不同,当且仅当存在至少一道菜在一种方案中出现,而不在另一种方案中出现。

Emiya 找到了你,请你帮他计算,你只需要告诉他符合所有要求的搭配方案数对质数 998,244,353 取模的结果。

【输入格式】

从文件 meal.in 中读入数据。

第 1 行两个用单个空格隔开的整数 n, m。

第 2 行至第 n+1 行,每行 m 个用单个空格隔开的整数,其中第 i+1 行的 m 个数依次为 $a_{i1},a_{i2},\ldots,a_{im}$ 。

【输出格式】

输出到文件 meal.out 中。

仅一行一个整数,表示所求方案数对 998,244,353 取模的结果。

【样例 1 输入】

2 3

1 0 1

0 1 1

【样例 1 输出】

3

【样例1解释】

由于在这个样例中,对于每组 i, j,Emiya 都最多只会做一道菜,因此我们直接通过给出烹饪方法、主要食材的编号来描述一道菜。

符合要求的方案包括:

- 做一道用烹饪方法 1、主要食材 1 的菜和一道用烹饪方法 2、主要食材 2 的菜
- 做一道用烹饪方法 1、主要食材 1 的菜和一道用烹饪方法 2、主要食材 3 的菜
- 做一道用烹饪方法 1、主要食材 3 的菜和一道用烹饪方法 2、主要食材 2 的菜 因此输出结果为 3 mod 998,244,353 = 3。

需要注意的是,所有只包含一道菜的方案都是不符合要求的,因为唯一的主要食材在超过一半的菜中出现,这不满足 Yazid 的要求。

【样例 2 输入】

- 3 3
- 1 2 3
- 4 5 0
- 6 0 0

【样例 2 输出】

190

【样例 2 解释】

Emiya 必须至少做 2 道菜。

做 2 道菜的符合要求的方案数为 100。

做 3 道菜的符合要求的方案数为 90。

因此符合要求的方案数为 100 + 90 = 190。

【样例3输入】

5 5

10011

0 1 0 1 0

1 1 1 1 0

10101

0 1 1 0 1

【样例3输出】

742

【样例 4】

见选手目录下的 *meal/meal4.in* 与 *meal/meal4.ans*。

【样例 5】

见选手目录下的 *meal/meal5.in* 与 *meal/meal5.ans*。

【数据范围】

测试点编号	n =	m =	$a_{i,j}$ <
1	2	2	
2		3	
3	5	2	2
4		3	<u> </u>
5	10	2	
6		3	
7	10	2	
8	10	3	
9~12		2	1000
13~16	40	3	
17~21		500	
22~25	100	2000	998, 244, 353

对于所有测试点,保证 $1 \le n \le 100$, $1 \le m \le 2000$, $0 \le a_{i,j} < 998, 244, 353$ 。

划分 (partition)

【题目描述】

2048 年,第三十届 CSP 认证的考场上,作为选手的小明打开了第一题。这个题的样例有 n 组数据,数据从 $1 \sim n$ 编号,i 号数据的规模为 a_i 。

小明对该题设计出了一个暴力程序,对于一组规模为 u 的数据,该程序的运行时间为 u^2 。然而这个程序运行完一组规模为 u 的数据之后,它将在任何一组规模小于 u 的数据上运行错误。样例中的 a_i 不一定递增,但小明又想在不修改程序的情况下正确运行样例,于是小明决定使用一种非常原始的解决方案:将所有数据划分成若干个数据段,段内数据编号连续,接着将同一段内的数据合并成新数据,其规模等于段内原数据的规模之和,小明将让新数据的规模能够递增。

也就是说,小明需要找到一些分界点 $1 \le k_1 < k_2 < \cdots < k_p < n$,使得

$$\sum_{i=1}^{k_1} a_i \le \sum_{i=k_1+1}^{k_2} a_i \le \dots \le \sum_{i=k_p+1}^n a_i$$

注意 p 可以为 0 且此时 $k_0 = 0$,也就是小明可以将所有数据合并在一起运行。 小明希望他的程序在正确运行样例情况下,运行时间也能尽量小,也就是**最小化**

$$(\sum_{i=1}^{k_1} a_i)^2 + (\sum_{i=k_1+1}^{k_2} a_i)^2 + \dots + (\sum_{i=k_n+1}^{n} a_i)^2$$

小明觉得这个问题非常有趣,并向你请教: 给定 n 和 a_i ,请你求出最优划分方案下,小明的程序的最小运行时间。

【输入格式】

从文件 partition.in 中读入数据。

由于本题的数据范围较大, 部分测试点的 a_i 将在程序内生成。

第一行两个整数 n, type。n 的意义见题目描述,type 表示输入方式。

- 1. 若 type = 0,则该测试点的 a_i 直接给出。输入文件接下来: 第二行 n 个以空格分隔的整数 a_i ,表示每组数据的规模。
- 2. 若 type = 1,则该测试点的 a_i 将特殊生成,生成方式见后文。输入文件接下来:第二行六个以空格分隔的整数 x,y,z,b_1,b_2,m 。接下来 m 行中,第 i $(1 \le i \le m)$ 行包含三个以空格分隔的正整数 p_i,l_i,r_i 。

对于 type = 1 的 $23 \sim 25$ 号测试点, a_i 的生成方式如下:

给定整数 x, y, z, b_1, b_2, m ,以及 m 个三元组 (p_i, l_i, r_i) 。

保证 $n \ge 2$ 。 若 n > 2,则 $\forall 3 \le i \le n$, $b_i = (x \times b_{i-1} + y \times b_{i-2} + z) \mod 2^{30}$ 。

保证 $1 \le p_i \le n$, $p_m = n$ 。 令 $p_0 = 0$,则 p_i 还满足 $\forall 0 \le i < m$ 有 $p_i < p_{i+1}$ 。

对于所有 $1 \le j \le m$, 若下标值 i $(1 \le i \le n)$ 满足 $p_{i-1} < i \le p_i$, 则有

$$a_i = (b_i \mod (r_j - l_j + 1)) + l_j$$

上述数据生成方式仅是为了减少输入量大小,标准算法不依赖于该生成方式。

【输出格式】

输出到文件 *partition.out* 中。 输出一行一个整数,表示答案。

【样例 1 输入】

5 0

5 1 7 9 9

【样例 1 输出】

247

【样例1解释】

最优的划分方案为 $\{5,1\},\{7\},\{9\},\{9\}$ 。由 $5+1 \le 7 \le 9 \le 9$ 知该方案合法。 答案为 $(5+1)^2+7^2+9^2+9^2=247$ 。

虽然划分方案 $\{5\}$, $\{1\}$, $\{7\}$, $\{9\}$, $\{9\}$ 对应的运行时间比 247 小,但它不是一组合法方案,因为 5 > 1。

虽然划分方案 {5},{1,7},{9},{9} 合法,但该方案对应的运行时间为 251,比 247 大。

【样例 2 输入】

10 0

5 6 7 7 4 6 2 13 19 9

【样例 2 输出】

1256

【样例2解释】

最优的划分方案为 {5},{6},{7},{7},{4,6,2},{13},{19,9}。

【样例3输入】

10000000 1

123 456 789 12345 6789 3

2000000 123456789 987654321

7000000 234567891 876543219

10000000 456789123 567891234

【样例3输出】

4972194419293431240859891640

【样例 4】

见选手目录下的 *partition/partition4.in* 与 *partition/partition4.ans*。

【样例 5】

见选手目录下的 *partition/partition5.in* 与 *partition/partition5.ans*。

【数据范围】

测试点编号	<i>n</i> ≤	$a_i \leq$	type =
1 ~ 3	10	10	
4 ~ 6	50	10^{3}	
7 ~ 9	400	10^{4}	0
10 ~ 16	5000	10^{5}	
17 ~ 22	5×10^5	10^{6}	
23 ~ 25	4×10^7	10^{9}	1

所有测试点满足: $type \in \{0,1\}$, $2 \le n \le 4 \times 10^7$, $1 \le a_i \le 10^9$, $1 \le m \le 10^5$, $1 \le l_i \le r_i \le 10^9$, $0 \le x,y,z,b_1,b_2 < 2^{30}$ 。

树的重心 (centroid)

【题目描述】

小简单正在学习离散数学,今天的内容是图论基础,在课上他做了如下两条笔记:

- 1. 一个大小为n 的树由n 个结点与n-1 条无向边构成,且满足任意两个结点间**有且仅有**一条简单路径。在树中删去一个结点及与它关联的边,树将分裂为若干个子树;而在树中删去一条边(保留关联结点,下同),树将分裂为**恰好**两个子树。
- 2. 对于一个大小为 n 的树与任意一个树中结点 c,称 c 是该树的**重心**当且仅当在树中删去 c 及与它关联的边后,分裂出的所有子树的大小均**不起过** $\lfloor \frac{n}{2} \rfloor$ (其中 $\lfloor x \rfloor$ 是下取整函数)。对于包含至少一个结点的树,它的重心只可能有 1 或 2 个。

课后老师给出了一个大小为n的树S,树中结点从 $1\sim n$ 编号。小简单的课后作业是求出S单独删去每条边后,分裂出的两个子树的重心编号和之和。即:

$$\sum_{\substack{1 \leq x \leq n \\ \text{\mathbb{E} x } \neq \text{\mathbb{E} } \mathcal{E}$ }} \left(\sum_{\substack{1 \leq y \leq n \\ \text{\mathbb{E} x } \neq \text{\mathbb{E} } \mathcal{E}$ }} x + \sum_{\substack{1 \leq y \leq n \\ \text{\mathbb{E} y } \neq \text{\mathbb{E} } \mathcal{E}$ }} y \right)$$

上式中,E 表示树 S 的边集,(u,v) 表示一条连接 u 号点和 v 号点的边。 S'_u 与 S'_v 分别表示树 S 删去边 (u,v) 后,u 号点与 v 号点所在的被分裂出的子树。

小简单觉得作业并不简单,只好向你求助,请你教教他。

【输入格式】

从文件 centroid.in 中读入数据。

本题输入包含多组测试数据。

第一行一个整数 T 表示数据组数。

接下来依次给出每组输入数据,对于每组数据:

第一行一个整数 n 表示树 S 的大小。

接下来 n-1 行,每行两个以空格分隔的整数 u_i, v_i ,表示树中的一条边 (u_i, v_i) 。

【输出格式】

输出到文件 centroid.out 中。

共 T 行,每行一个整数,第 i 行的整数表示: 第 i 组数据给出的树单独删去每条边后,分裂出的两个子树的重心编号和之和。

【样例 1 输入】

2

5

- 1 2
- 2 3
- 2 4
- 3 5
- 7
- 1 2
- 1 3
- 1 4
- 3 5
- 3 6
- 6 7

【样例 1 输出】

32

56

【样例 1 解释】

对于第一组数据:

删去边 (1,2), 1 号点所在子树重心编号为 $\{1\}$, 2 号点所在子树重心编号为 $\{2,3\}$ 。 删去边 (2,3), 2 号点所在子树重心编号为 $\{2\}$, 3 号点所在子树重心编号为 $\{3,5\}$ 。 删去边 (2,4), 2 号点所在子树重心编号为 $\{2,3\}$, 4 号点所在子树重心编号为 $\{4\}$ 。 删去边 (3,5), 3 号点所在子树重心编号为 $\{2\}$, 5 号点所在子树重心编号为 $\{5\}$ 。 因此答案为 1+2+3+2+3+5+2+3+4+2+5=32。

【样例 2】

见选手目录下的 *centroid/centroid2.in* 与 *centroid/centroid2.ans*。

【样例 3】

见选手目录下的 centroid/centroid3.in 与 centroid/centroid3.ans。 该数据满足特殊性质 A,具体信息见数据范围中的描述。

【样例 4】

见选手目录下的 centroid/centroid4.in 与 centroid/centroid4.ans。 该数据满足特殊性质 B,具体信息见数据范围中的描述。

【数据范围】

测试点编号	n =	特殊性质
1 ~ 2	7	
3 ~ 5	199	无
6 ~ 8	1999	
9 ~ 11	49991	A
12 ~ 15	262143	В
16	99995	
17 ~ 18	199995	无
19 ~ 20	299995	

表中特殊性质一栏,两个变量的含义为存在一个 $1 \sim n$ 的排列 p_i $(1 \le i \le n)$,使得:

A: 树的形态是一条链。即 $\forall 1 \leq i < n$,存在一条边 (p_i, p_{i+1}) 。

B: 树的形态是一个完美二叉树。即 $\forall 1 \leq i \leq \frac{n-1}{2}$,存在两条边 (p_i, p_{2i}) 与 (p_i, p_{2i+1}) 。对于所有测试点: $1 \leq T \leq 5$, $1 \leq u_i, v_i \leq n$ 。保证给出的图是一个树。