

Cortana Analytics Workshop

Sept 10 – 11, 2015 • MSCC

Introduction to Data Science with Cortana: Microsoft Azure Machine Learning

Stephen F. Elston Principle Consultant, Quantia Analytics, LLC

Overview

- Introduction to Azure Machine Learning
- Tour of Azure ML Studio
- Building a first Azure ML experiment
- A forecasting example with Azure ML and R
- Publishing a web service

Why Azure ML?

- Quickly deploy production solutions as web services
- Models run in a highly scalable secure cloud environment
- Powerful, efficient built-in algorithms
- Extensible with, SQL, Python, and R
- Integrated in Cortana stack

Cortana Analytics Suite: Transform data into intelligent action

The "Distro" for Intelligence

http://microsoft.com/cortanaanalytics

Why Open-Source Tools?

- R and Python widely used in data science
- Highly interactive
- Good visualization
- Vast packages (libraries) of utilities and machine learning algorithms
- Excellent development environments

Azure ML Free Tier Account

- Free Tier Account
 - http://bit.ly/azureml_login
- Unlimited time, with restricted priority
- Paid account provides full performance

Quick Start Guide to Azure Machine Learning

Azure ML Studio

- Experiments contain workflow
- Experiments constructed of modules
- Experiments in sharable workspace
- Modules transform data, compute models, score models, and evaluate models
- Create custom modules with SQL, R and Python
- Deploy solutions as web services

Azure ML Documentation Resources

Azure ML tutorials and resources:

http://azure.microsoft.com/en-us/documentation/services/machine-learning/

Azure ML Gallery:

http://azure.microsoft.com/en-us/documentation/services/machine-learning/

Documentation and examples for each module

Sample Experiments tab in studio

Azure ML Learning Resources

Book, Microsoft Azure Essentials: Azure Machine Learning http://www.microsoftvirtualacademy.com/ebooks#9780735698178

Data Science in the Cloud Microsoft Azure Machine Learning and R, O'Reilly Media

http://www.oreilly.com/data/free/data-science-in-the-cloud.csp

Azure ML Learning Resources

O'REILLY"

Data Science with Microsoft Azure and R

Working with Cloud-based Predictive Analytics and Modeling

Stephen Elston

VIDEO

http://shop.or eilly.com/prod uct/06369200 40255.do

Data Science and
Machine Learning
Essentials
With
Stephen Elston and
Cynthia Rudin

https://www.edx.org/ course/data-sciencemachine-learningessentials-microsoftdat203x

http://www.amazon.com/
Predictive-AnalyticsMicrosoft-MachineLearning/dp/1484212010/
ref=la_B00NBELJJI_1_1?s=
books&ie=UTF8&qid=14
41060294&sr=1-1

Data Passed from Module to Module in Azure ML Tables

Module

N Columns - M Rows

Equal length columns

Rectangular table

Col1, Col2, Col3,, ColN Val11, Val12, Val13,, Val1N ValM1, ValM2, ValM3,, ValMN

Azure ML Table Data Types

- Numeric: Floating Point
- Numeric: Integer
- Boolean
- String

- Categorical
- Date-time
- Time-Span
- Image

Building a First Model

Building machine learning models

- Define business problem
- Understand data relationships
- Prepare data
- Construct models
- Evaluate models
- Improve models
- (Cross) validate model
- Publish model

Classification

"Science is the systematic classification of experience." George Henry Lewes

- Two class and multi-class
- Examples:
 - Species
 - Move genre
 - Fraud detection

Machine learning workflow

Classification

Formally, given training set $(x_{i,}y_{i})$ for i=1...n, we want to create a classification model f that can predict label y for a new x.

Decision Trees For Classification

Empirical Bayes Model

Metrics for Classification

Confusion matrix

	Predicted Positive	Predicted Negative
Actual Positive	TP	FN
Actual Negative	FP	TN

Metrics for Classification

- Accuracy = TP + TN / (TP + TN + FP + FN)
- Precision or positive predictive value = TP/(TP + FP)
- Recall = TP/(TP + FN)
- F1 = Precision * Recall / (Precision + Recall)

	Predicted Positive	Predicted Negative
Actual Positive	TP	FN
Actual Negative	FP	TN

ROC Curves

For a particular False Positive Rate (FPR), what is the True Positive Rate (TPR)?

Demo: Classification Example

Regression Model Example with Ror Python in Azure ML

Forecasting

- A forecast is a prediction of a future value
- Examples:
 - Inventory levels
 - Utility demand
 - Service requirements

Linear regression

- Need a function that estimates y for a new x.
- The simplest is a linear model.

Time series trend and seasonal variation

Time series trend and seasonal variation

R or Python?

- R and Python are widely used in data science
- Powerful open-source data science tools
- Python tends to be more systematic and faster
- R contains wider range of packages and analytics capabilities
- R support currently deeper in Azure ML

Developing and testing R and Python

- Azure ML is a production environment
- Interactively develop and test in IDE
- Subset data as needed download as .csv
- IDE has powerful editor and debugger
- Cut and paste code into Execute R/Python Script module to test in Azure ML
- Jupyter notebooks in preview (Python only, R coming)

Debugging R and Python in Azure ML

- Code tested in IDE should run in Azure ML, but......
- If error occurs look at the error.log or output.log
- From R use print() function
- From Python use sys.stderr.write() from sys

Execute R Script

Execute Python Script

Python Plotting in Azure ML

```
def azureml main(frame1):
# Set graphics backend: Do this first!
  import matplotlib
  matplotlib.use('agg')
  ## Code to create plots
  ## Save figure in a file for output
  fig.savefig('scatter2.png')
  return frame1
```

Forecasting Regression Example

- Time series regression forecast milk production in the State of California
- In Gallery (R and Python)
- https://gallery.azureml.net/Experiment/e616740e68c647ba9bbefa663d037df5
- https://gallery.azureml.net/Experiment/c8c8fe15c4ee470685cc91d5e19c77dc
- On Github (R and Python)
- https://github.com/Quantia-Analytics/Contana-Data-Science-Example-R
- https://github.com/Quantia-Analytics/Cortana-Data-Science-Example-Python

Demo: Regression Example

Metrics for Classification

Azure ML Web Services Data Flow

Demo: Create Web Service

Building machine learning models

- Define business problem
- Understand data relationships
- Prepare data
- Construct models
- Evaluate models
- Improve models
- (Cross) validate model
- Publish model

Why Azure ML?

- Quickly deploy production solutions as web services
- Models run in a highly scalable secure cloud environment
- Powerful, efficient built-in algorithms
- Extensible with, SQL, Python, and R
- Integrated in Cortana stack

