H24VSP Project 3

PRACTICAL PPP WITH VERIPOS DL5^a

Lukasz K Bonenberg 28th November 2018

NGI

^aHistory of changes at https://github.com/DfAC/TeachingSlides/.

Introduction

In last practical of the H24VSP module we will explore the capacities of the Precise Point Positoning (PPP) by comparing it with real-time kinematic double-differenced positioning (RTK) that you are already familiar with. During practical we will be using **Leica GS10** receiver and maritime¹ **Veripos LD5** receiver using AsterRx chipset.. We are interested in assessing difference between:

- convergence time;
- precision estimated and actual after convergence;
- accuracy after convergence.

¹For application examples see www.veripos.com/applications

Data Collection

You will collect:

- RTK GPS solution;
- RTK GPS+GLO solution;
- Network RTK GPS solution;
- Network RTK GPS+GLO solution.

The PPP data will be provided for you at the end of practical. It is your task to **select most appropriate RTK observation point and time span** to carry out comparison between RTK and PPP solutions.

Practice layout

- LD5 will be restarted at 08:00. This will allow for PPP convergence.
- You will collect RTK data between 09:20-10:40 and 11:20-12:40, using Leica GS10 receiver.
- You will also get Veripos NMEA strings for Ultra and Apex² (LD5).
- Before you leave make sure that Veripos NMEA file has been split into \$GPGGA and \$GPGST.

Veripos Services

Veripos Services I

Veripos is a commercial company providing high accuracy GNSS positioning, offering both hardware (receivers) and correction services:

Apex Service uses Veripos own Orbit and Clock
 Determination System (OCDS) and their network of reference stations². Apex utilises dual-frequency GPS, APEX²
 dual-frequency GPS/GLONASS and APEX⁵ dual-frequency GPS/GLONASS/Beidou/Galileo/QZSS receivers observations for dm level accuracy.

Veripos Services II

- Ultra Service uses JPL Orbit and Clock Determination System (OCDS) which uses data from JPL network³. Ultra utilises dual-frequency GPS and Ultra² GPS and GLONASS.
- Standard Service provide high integrity, meter level service.
 Standard provide single frequency code DGPS and Standard² single frequency code GPS and GLONASS DGPS.

All corrections are transmitted via Inmarsat geostationary satellites - 25E, 98W, 143.5E, AORE, AORW, IOR, POR. All coordinates provided are in ITRF2014.

²www.veripos.com/about/coverage

³http://bit.ly/JPLnetwork

Standard Service I

Single frequency code GPS DGPS.

- Provides RTCM Type 1⁴, 3⁵ messages.
- Normal accuracy: 1-2m.
- Typical latency: 4 seconds⁶.
- Single difference code solution (DGPS) using GPS C/A code on L1 frequency.

⁴DGPS corrections.

⁵GPS reference station parameters.

⁶Average age received 10s. Typical correction update interval is 15 seconds.

Standard² service

Single frequency code GPS and GLONASS DGPS.

- Provides RTCM Type 1, 3, 31⁷, 32⁸ messages.
- Normal accuracy: 1-2m.
- Typical latency: 4 seconds.
- Single difference code solution (DGPS) using GPS and GLONASS C/A code (L1/G1)⁹.

⁷DGPS GLONASS corrections.

⁸GPS GLONASS reference station parameters.

⁹It is possible to calculate position using only GLONASS with this service.

Veripos Ultra and Apex²

- Orbit and clock corrections in JPL GDGPS format.
- Nominal accuracy: 0.10m planar.
- Typical latency: 2 seconds with 30 s update rate.
- Precise Point Positioning (PPP) using C/A and P code and L1/L2 carrier phase for GPS and GLONASS G1/G2.

- Orbit and clock corrections in Veripos OCDS format.
- Nominal accuracy: 0.05m planar.
- Typical latency: 2 seconds with 30 s update rate.
- PPP, code and carrier phase on GPS L1/L2, GLONASS G1/G2, BeiDou B1/B2, Galileo E1/E5b, QZSS L1C/L2L (exact corrections depend on the service type).

Veripos Standard and Ultra comparison

Figure 1: Standard and Ultra solutions at a monitor site in Singapore.

Veripos demo

Practical work

Point	Frame	Lat $\phi[deg]$	Long $\lambda[{ m deg}]$	EllHt[m]	Notes
NGB5	ETRF97	52 57 7.05304	01 11 1.44953	91.212	at point
NGB5	ETRF97	52 57 7.05304	01 11 1.44953	91.392	at ARP
NGB5	ETRF97	52 57 7.05304	01 11 1.44953	91.434	at antenna PCO ^a
NGB5	ITRF2014	52 57 7.07209	01 11 1.42505 W	91.488	at antenna PCO^b
NGB5	ITRF2014	5257.117868	0111.023751 W	91.488	at antenna PCO ^c

Table 1: Coordinates of NGB5

^aAntenna offset for ionsphere free solution is $2.545L_1 - 1.545L_2 =$

^{2.545 * 55.3 - 1.545 * 64.2 = 41.5}mm.

^bConverted from ETRF97 to ITRF2014 at epoch 2018-12-05.

^cTo calculate error in meters at latitude ϕ of NGI, use $(\lambda_{NMEA} - \lambda_{truth}) * 1800$ and $(\phi_{NMEA} - \phi_{truth}) * 1200$. The 6th decimal place of GGA string is equivalent to 1.8mm for N(ϕ) and 1.2mm for E(λ).

Veripos \$GPGGA NMEA strings

In Verpos provides two types of NMEA strings \$GPGGA and \$GPGST. \$GPGGA will behave differently in PPP mode with QA flag always 2 or 5. To obtain any information about solution we need to examine last flag before CRC(*).

Example

\$GPGGA,183324.00,5257.1178371,N,00111.0236798,W,**5**,17,0.7,42.76,M,49.01,M,30.5,**0268***54.

Values for the flag indicate:

0068 ULTRA

0268 *ULTRA*²

0081 APEX

0281 APEX²

1006 Standard²

Veripos \$GPGST NMEA strings

Example

\$GPGST,140545.00,3.81,0.02,0.01,81.00,0.02,0.01,0.02*57.

Cell	Notes
0	Message ID \$GPGST
1	UTC of position fix ^a
2	RMS value of the pseudorange or carrier phase (RTK/PPP) residuals
3	Error ellipse semi-major axis 1 sigma error, in meters
4	Error ellipse semi-minor axis 1 sigma error, in meters
5	Error ellipse orientation, degrees from true north
6	Latitude 1 sigma error, in meters
7	Longitude 1 sigma error, in meters
8	Height 1 sigma error, in meters
9	The checksum data, always begins with st

^aNotice 18s offset to GPS time.