

Overview

- Motivation: why not conventional shading?
 - Shader permutation problem
 - Combinatorial explosion
- Deferred shading method
- G-Buffers
- Other post-processing effects
- Advantages/disadvantages

Conventional Forward Rendering

- After rasterization
- Shading calculations in fixed function pipeline or fragment shader
- Complexity = O(Light sources * Objects)

Overdraw

- Complex scenes, large virtual environments → overdraw
- Why shade a pixel, if it gets overdrawn in final image?
- Idea: perform shading at the end of rendering
 we need only one shading operation per pixel

Intermediate:

Final:

Basic Deferred Rendering

Split rendering pipeline in two separate stages

1. Geometry transformation and rasterization

Lighting and Shading Stage

Split rendering pipeline in two separate stages

1. Geometry transformation and rasterization

2. Shading

Post-Processing

In an optional final stage, apply image post-processing

G-Buffers

G-Buffers pass data from one stage to next

Types of G-Buffers

G-Buffers store per pixel:

- Color
- Depth
- Normal vector
- Position
- Object identity
- etc.

- DR is a framework supporting various effects
 - Screen-space ambient occlusion
 - Non photo-realistic rendering
 - High-dynamic range rendering
 - Deferred shading

— ...

- Implemented as a post-processing effect
- Most important sub-type: deferred shading

Deferred Shading

- Geometry stage as usual
 - 1. Geometry transformations
 - 2. Rasterization
 - 3. Material, texturing, but no shading
- Instead of shading,
 store intermediate results in G-buffers
 - Diffuse color
 - Depth
 - Position
 - Normal vectors

Actual Shading Stage

Render screen-sized quad

Fragment shader reads G-Buffers

Perform shading and postprocessing

Store result in framebuffer

13

Screen-filling Primitives

Deferred Rendering Advantages

- Render geometry only once
- Perform complex shading and post-processing per pixel
- Complexity O(Light sources + Objects) instead of O(Lights*Objects)
- Independent of geometry and depth complexity
- Time for shading can be predicted well
 - → good for games

- Requires more memory and frequent read/write operations
- Advanced effects (transparency, ghostings) require per-pixel sorting
- Cannot use hardware anti-aliasing
- Forward shading may be faster, if
 - Low number of light sources
 - Low depth complexity
 - No need for post-processing effects