

As claimed
circuit,

wherein said first signal has a reversed phase relation with said second signal.

A2
5 6. (Amended) A device according to claim 1, wherein said circuit for producing said phase difference in said second signal produces a phase difference corresponding to at least a signal rise time period (tr) of said first signal or a signal fall time period (tf) of said first signal.

Please add new claims 8-38 as follows.

Sub B2
panel;

8. An image display device comprising:
a liquid crystal panel having a switching element for every pixel electrode;
a scanning line driving circuit for driving scanning lines of said liquid crystal panel;
a signal line driving circuit for driving signal lines of said liquid crystal panel;
a control circuit for controlling driving said liquid crystal panel;
a video signal processing circuit; and
a circuit for producing a phase difference in a second signal with respect to a phase of a first signal which is input to said signal line driving circuit or to said scanning line driving circuit,

wherein each of said first signal and said second signal is a clock signal.

A3 cont 8, 9. 7
A device according to claim 8, wherein said first signal has a reversed phase relation with said second signal.

9 10. 7 A device according to claim 8, wherein said first signal has a different rise time period (tr) and a different signal fall time period (tf) from said second signal.

11. A device according to claim 8, wherein a signal rise time period (tr) or a signal fall time period (tf) is equal to or shorter than one half of a signal holding time period (tc).

10 11. 7 A device according to claim 8, wherein said circuit for producing said phase difference in said second signal produces a phase difference corresponding to at least a signal rise

time period (tr) of said first signal or a signal fall time period (tf) of said first signal.

11. 13. A device according to claim 8, wherein said image display device is a projection type display apparatus including a transmission type liquid crystal panel and a light source for projection.

*Sub
B3*

14. An image display device comprising:
a liquid crystal panel having a switching element for every pixel electrode;
a scanning line driving circuit for driving scanning lines of said liquid crystal panel;
a signal line driving circuit for driving signal lines of said liquid crystal panel;
a control circuit for controlling driving said liquid crystal panel;
a video signal processing circuit; and
a circuit for producing a phase difference in a second signal with respect to a phase of a first signal which is input to a shift register circuit.

*A3
CMT*

13. 15. A device according to claim 14, wherein said first signal has a reversed phase relation with said second signal.

14. 16. A device according to claim 14, wherein each of said first signal and second signal is a clock signal.

15. 17. A device according to claim 14, wherein said first signal has a different rise time period (tr) and a different signal fall time period (tf) from said second signal.

18. A device according to claim 14, wherein a signal rise time period (tr) or a signal fall time period (tf) is equal to or shorter than one half of a signal holding time period (tc).

16. 19. A device according to claim 14, wherein said circuit for producing said phase difference in said second signal produces a phase difference corresponding to at least a signal rise time period (tr) of said first signal or a signal fall time period (tf) of said first signal.

Sub BH
17 20. A device according to claim 14, wherein said image display device is a projection type display apparatus including a transmission type liquid crystal panel and a light source for projection.

21 21. An image display device comprising:
a liquid crystal panel having a switching element for every pixel electrode;
a scanning line driving circuit for driving scanning lines of said liquid crystal panel;
a signal line driving circuit for driving signal lines of said liquid crystal panel;
a control circuit for controlling driving said liquid crystal panel;
a video signal processing circuit; and
a circuit for producing a phase difference in a second signal with respect to a phase of a first signal which is input to a latch circuit.

A3 Cmt
19 22. A device according to claim 21, wherein said first signal has a reversed phase relation with said second signal.

20 23. A device according to claim 21, wherein said first signal has a different rise time period (tr) and a different signal fall time period (tf) from said second signal.

24. A device according to claim 21, wherein a signal rise time period (tr) or a signal fall time period (tf) is equal to or shorter than one half of a signal holding time period (tc).

21 25. A device according to claim 21, wherein said circuit for producing said phase difference in said second signal produces a phase difference corresponding to at least a signal rise time period (tr) of said first signal or a signal fall time period (tf) of said first signal.

22 26. A device according to claim 21, wherein said image display device is a projection type display apparatus including a transmission type liquid crystal panel and a light source for projection.

Sub B5
~~27.~~ A method of driving an image display device comprising the steps of:
driving scanning lines of a liquid crystal panel including a switching element for
every pixel electrode;

~~driving signal lines of said liquid crystal panel;
controlling driving said liquid crystal panel; and
producing a phase difference in a second signal with respect to a phase of a first
signal which is input to said signal line driving circuit or to said scanning line driving circuit,
wherein said first signal has a reversed phase relation with said second signal.~~

23
~~24~~ ~~28.~~ A method according to claim ~~27~~, wherein each of said first signal and said second
signal is a clock signal.

23
~~25~~ ~~29.~~ A method according to claim ~~27~~, wherein said first signal has a different rise time
period (tr) and a different signal fall time period (tf) from said second signal.

a3 cmx
26 ~~30.~~ A method according to claim ~~27~~, wherein a signal rise time period (tr) or a signal
fall time period (tf) is equal to or shorter than one half of a signal holding time period (tc).

23
~~27~~ ~~31.~~ A method according to claim ~~27~~, wherein said circuit for producing said phase
difference in said second signal produces a phase difference corresponding to at least a signal rise
time period (tr) of said first signal or a signal fall time period (tf) of said first signal.

23
~~28~~ ~~32.~~ A method according to claim ~~27~~, wherein said image display device is a projection
type display apparatus including a transmission type liquid crystal panel and a light source for
projection.

Sub B6
~~33.~~ A method of driving an image display device comprising the steps of:
driving scanning lines of a liquid crystal panel including a switching element for
every pixel electrode;

~~driving signal lines of said liquid crystal panel;
controlling driving said liquid crystal panel; and~~