Învățare automată pentru matematică simbolică

Adrian Manea

510, SLA

Scopul și metoda

Generarea expresiilor matematice folosind tehnici de NLP.

Odată obținut un corpus de expresii matematice, pot fi testate dacă satisfac ecuații complicate (ODE, PDE, int).

Metoda: traducere automată (seq2seq) + beam search ([Chollet, 2017]).

Expresii în forma prefixată (poloneză):

$$2+3\cdot(5+2)\mapsto [+2*3+52].$$

Scopul și metoda

Ilustrație: Arbore binar pentru expresia [+ 2 * 3 + 5 2]

Scopul și metoda

Illustrație: Arbore binar pentru expresia $\frac{\partial^2 u}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$

Probleme si solutii: EDO & EI

Generare directă (FWD):

$$LC \to f(x) \xrightarrow{CAS} \int f(x)dx.$$

Generare inversă (BWD):

$$LC \to f(x) \xrightarrow{CAS} f'(x).$$

Generare inversă și integrare prin părți (IBP):

$$\int Fg = FG - \int fG.$$

$$F, G \xrightarrow{\mathsf{BWD}} f, g \to fG \xrightarrow{\mathsf{FWD}} Fg.$$

Rezultate, concluzii și critici [Davis, 2019]

Rezultatele sînt comparabile cu Mathematica, Matlab, Maple ($\pm 10\%$).

Nu "știe matematică": simplificări, expresii echivalente, expresii fără sens.

Modelul nu este verificat formal (se speră la dezvoltarea SymPy).

Algoritmii se bazează pe CAS \Rightarrow comparația nu are sens și elementul de noutate este minimizat.

Bibliografie

Chollet, F. (2017).

A ten-minute introduction to sequence-to-sequence learning in Keras.

Davis, E. (2019).

The use of deep learning for symbolic integration: A review of (Lample and Charton, 2019).

arXiv.

https://arxiv.org/abs/1912.05752.

Lample, G. and Charton, F. (2019).

Deep learning for symbolic mathematics.

ICLR 2020.

https://arxiv.org/abs/1912.01412.