Referencias e índices

Milton Torres

7 de abril de 2017

Índice

1.	Topologia	J
2.	Continuidad y otros	2

1. Topología

Definición 1.1 (Espacio topológico). Una familia \mathcal{T} de partes de un conjunto X define una topología sobre X si las tres condiciones son verificadas:

- 1. El conjunto vacío \emptyset y el conjunto X pertenecen a \mathcal{T} ;
- 2. la intersección finita de elementos de \mathcal{T} pertenece a \mathcal{T} ; y
- 3. la reunión cualquiera de elementos de \mathcal{T} pertenece a \mathcal{T} .

Los elementos de \mathcal{T} son llamados *conjuntos abiertos*, sus complementarios, *cerrados*; y el espacio (X, \mathcal{T}) , espacio topológico.

Esto se lo pude encontrar en [Komornik, 1997], o más precisamente en [Komornik, 1997, p. 3].

Definición 1.2 (Espacio métrico). Un espacio métrico (E, d_E) está dado por un conjunto E dotado de una aplicación $d_E : E \times E \longrightarrow [0, +\infty[$, llamada distancia o métrica, que verifica las siguientes propiedades:

- D.1 Simetría: para todo $x, y \in E$, $d_E(x, y) = d_E(y, x)$.
- D.2 **Separabilidad**: $d_E(x,y) = 0$ si y solo si x = y.
- D.3 **Desigualdad triangular**: para todo $x, y, z \in E$,

$$d_E(x,y) \le d_E(x,z) + d_E(z,y).$$

A los elementos de un espacio métrico se los denomina puntos.

2. Continuidad y otros

Proposición 2.1. Una aplicación f de (E, d_E) en (F, d_F) es continua si y solo sí para toda sucesión convergente $(x_n)_{n\in\mathbb{N}}$ de los elementos de E se tiene

$$f\left(\lim_{n\to+\infty}x_n\right) = \lim_{n\to+\infty}f(x_n)$$

La verificación de este se lo apreciar en [Kreyszing., 1989].

Teorema 2.2 (Teorema fundamental del cálculo). Si $f:[a,b] \to \mathbb{R}$ es continua y si $A(x) = \int_a^x f(t) dt$, entonces A' = f. Es decir,

$$A'_{+}(a) = f(a), \quad A'_{-}(b) = f(b)$$

 $y \ para \ todo \ x \in]a,b[$

$$A'(x) = f(x)$$

Demostración. Esta demostración se la pude encontrar en [Rojas, 2010, pp. 42–43].

Referencias

[Apostol, 2008] Apostol, T. (2008). Calculus. Editorial Reverté S.A., Quito.

[Greenwade, 1993] Greenwade, G. D. (1993). The Comprehensive Tex Archive Network (CTAN). TUGBoat, 14(3):342–351.

[Komornik, 1997] Komornik, V. (1997). Précis d'analyse réelle. ellipses, Strasbourg.

[Kreyszing., 1989] Kreyszing., E. (1989). Introductory functional analysis with application. University of Windsor.

[Rojas, 2010] Rojas, G. (2010). Cálculo en una variable (Cálculo integral). Escuela Politécnica Nacional, Quito.