Задание №3 «Метод перевала»

Задача 3.1. Определить асимптотическое поведение интеграла

$$I(a,b) = \int_0^\infty e^{-ax^2 - b/x^2} dx, \quad a, b > 0$$

при $a \to +\infty$. Затем вычислите интеграл точно (используйте дифференцирование по параметру).

Задача 3.2. Определить асимптотическое поведение интеграла при $k \to +\infty$

$$I(k) = \int_{-\infty}^{\infty} \frac{\cos kz}{\sqrt{1 + z^{2n}}} dz, \quad n \in \mathbb{N}_{+}.$$

Задача 3.3. Построить полный асимптотический ряд при $\lambda \to +\infty$ для интеграла

$$I(\lambda) = \int_{-\infty}^{\infty} \frac{\cos \lambda x}{x^2 + 1} e^{-\lambda x^2/2} dx.$$

Задача 3.4 (*). Найти полный асимптотический ряд функции Макдональда $K_0(z)$ при $\operatorname{Re} x \to +\infty$.

$$K_0(x) = \int_0^\infty e^{-x \cot t} dt.$$

Задача 3.5 (*). Найти первые два члена асимптотического разложения интеграла

$$I(\lambda) = \int_{-\infty}^{\infty} \cos(\lambda \cos t) \frac{\sin t}{t} dt, \quad \lambda \to +\infty.$$

Задача 3.6 (*). Описать поведение перевального интеграла при изменении параметров, приводящих к прохождению полюса подынтегральной функции через контур интегрирования.

Рассмотрите функцию определяемую интегралом

$$I(\lambda, a) = \int_{-\infty}^{\infty} \frac{e^{-\lambda x^2/2}}{x - ia} dx, \quad a > 0.$$
(3.1)

Постройте аналитическое продолжение на отрицательные a. И посмотрите на асимптотическое поведение $I(\lambda \to +\infty, a)$ при $a>0, \ a<0$ в предположении, что $|a|\gg 1/\sqrt{\lambda}$. Условно оба случая можно объединить формулой

$$I(\lambda \to +\infty, a) = 2\pi i \theta(-a) e^{\lambda a^2/2} + \frac{i}{a} \sqrt{\frac{2\pi}{\lambda}} \left(1 + \mathcal{O}\left(\frac{1}{\lambda}\right) \right),$$

где на самом деле стоит некоторая регуляризация θ -функции с масштабом $1/\sqrt{\lambda}$. Вычислите интеграл (3.1) и найдите данную регуляризацию.