

Các kỹ thuật dò biên

- ➤ Biên: thay đổi đột ngột trong mức xám
 - Nếu là ảnh đen trắng thì điểm biên là điểm đen có ít nhất điểm trắng bên cạnh
 - Tập hợp các điểm biên là đường biên bao quanh đối tượng
- ➤ Phát hiện biên:
 - Phát hiện biên trực tiếp
 - Phát hiện biên gián tiếp

Slide 2

Bộ lọc đơn

Phát hiện biên trực tiếp

- Làm nổi biên dựa vào biến thiên mức xám của ảnh.
- Kỹ thuật chủ yếu dùng để phát hiện biên là lấy đạo hàm
 - Đạo hàm bậc nhất (kỹ thuật Gradient): thể hiện cạnh trong bức ảnh
 - Đạo hàm bậc 2 (kỹ thuật Laplace): thể hiện rõ các chi tiết mịn hoặc điểm cô lập
- => hiệu quả, ít chịu ảnh hưởng của nhiễu nếu biến đổi mức xám là đột ngột.

Slide 7

7

Phát hiện biên gián tiếp

- Nếu ảnh hưởng có thể được phân vùng thì ranh giới giữa các vùng là biên.
- Có thể dùng được trong trường hợp biến thiên của mức xám không đột ngột.

Slide 8

Kỹ thuật phát hiện biên Gradient

f(x,y)

Làm nổi đường
biên

Sơ đồ khối tổng quát của hệ thống phát hiện đường biên

- Ành gốc f (x, y) được đưa vào khối làm nổi đường biên.
- Anh G (x, y) là ảnh gốc đã được tang cường biên độ đường biên giữa các vùng ảnh.
- Tại khối so sánh, người ta so sánh giá trị các điểm ảnh G (x, y) với mức ngưỡng T để xác định vị trí các điểm có mức thay đổi độ chói lớn.

Slide 14

Kỹ thuật phát hiện biên Gradient

- ➤ Việc lựa chọn giá trị ngưỡng rất quan trọng trong quá trình xác định đường biên:
 - Khi giá trị T quá cao, các đường biên có độ tương phản thấp sẽ bị mất đi.
 - Khi T quá thấp, dễ xảy ra hiện tượng xác định biên sai dưới tác động của nhiễu.

Slide 15

15

Segmentation Examples Slide 16

Phát hiện????

- Points
- Lines
- Edges

Slide 17

17

Point Detection

Point detection can be achieved simply using the mask below:

-1	-1	-1		
-1	8	-1		
-1	-1	-1		

Points are detected at those pixels in the subsequent filtered image that are above a set threshold

Slide 18

Edge Detection Problems

- ➤Often, problems arise in edge detection in that there are is too much detail
- ➤One way to overcome this is to smooth images prior to edge detection

Slide 29

29

Original Image Horizontal Gradient Component Vertical Gradient Component Combined Edge Image Slide 30

Laplacian Edge Detection

➤ We encountered the 2nd-order derivative based Laplacian filter already

0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

The Laplacian is typically not used by itself as it is too sensitive to noise

➤ Usually hen used for edge detection the Laplacian is combined with a smoothing Gaussian filter

Slide 31

31

Laplacian Of Gaussian

The Laplacian of Gaussian (or Mexican hat) filter uses the Gaussian for noise removal and the Laplacian for edge detection

0 0 -1 0 0 0 -1 -2 -1 0 -1 -2 16 -2 -1 0 -1 -2 -1 0 0 0 -1 0 0

Slide 32

