Modelos lineales generalizados

CEPAL

7/3/2022

Lectura de la base

```
encuesta <- readRDS("../Data/encuesta.rds")
data("BigCity", package = "TeachingSampling")</pre>
```

Definir diseño de la muestra con srvyr

```
library(srvyr)

diseno <- encuesta %>%
  as_survey_design(
    strata = Stratum,
    ids = PSU,
    weights = wk,
    nest = T
)
```

definir nuevas variables

```
diseno <- diseno %>% mutate(
   pobreza = ifelse(Poverty != "NotPoor", 1, 0),
   desempleo = ifelse(Employment == "Unemployed", 1, 0))
```

Tablas de doble entrada para el tamaño

	Sex	factor(pobreza)0	factor(pobreza)1	se1	se2
Female	Female	47993	31197	2489	2352
Male	Male	38930	32146	2370	3588

```
(tab <- svytable(~pobreza + Sex, design = diseno))</pre>
```

pobreza/Sex	Female	Male
0	47993	38930
1	31197	32146

Tablas de doble entrada para el proporción

```
(tab_pobreza_sexo <- svyby(~factor(pobreza), ~Sex,
    FUN = svymean, design = as.svrepdesign(diseno),
    se=F, na.rm=T, ci=T, keep.var=TRUE))</pre>
```

	Sex	factor(pobreza)0	factor(pobreza)1	se1	se2
Female	Female	0.6060	0.3940	0.0273	0.0273
Male	Male	0.5477	0.4523	0.0377	0.0377

```
prop.table(tab, margin = 2)
```

pobreza/Sex	Female	Male
0	0.606	0.5477
1	0.394	0.4523

$$\hat{\pi}_{rc} = \frac{n_{r+}}{n_{++}} \times \frac{n_{+c}}{n_{++}}$$

$$\chi^2_{pearsom} = n_{++} \times \sum_r \sum_c \left(\frac{(p_{rc} - \hat{\pi}_{rc})^2}{\hat{\pi}_{rc}} \right)$$

$$G^2 = 2 \times n_{++} \times \sum_r \sum_c p_{cr} \times \ln\left(\frac{p_{rc}}{\hat{\pi}_{rc}}\right)$$

donde, R es el número de filas y C representa el número de columnas, la prueba tiene $(R-1)\times(C-1)$ grados de libertad.

$$\chi^2_{(R-S)} = \chi^2_{(Pearson)}/GDEFF$$

$$G_{(R-S)}^2 = G^2/GDEFF$$

con GDEFF el efecto generalizado del diseño, esta dado por

$$GDEFF = \frac{\sum_{r} \sum_{c} (1 - p_{rc}) d^{2} (p_{rc}) - \sum_{r} (1 - p_{r+}) d^{2} (p_{r+}) - \sum_{c} (1 - p_{+c}) d^{2} (p_{+c})}{(R - 1) (C - 1)}$$

$$F_{R-S,Pearson} = \chi^2_{R-S} / \left[(R-1) (C-1) \right] \sim F_{(R-1)(C-1),(R-1)(C-1)df}$$

$$F_{R-S,LRT} = G_{R-S}^2 / (C-1) \sim F_{(C-1),df}$$

donde C es el número de columnas de la tabla cruzada

```
summary(tab, statistic = "Chisq")
         Sex
##
## pobreza Female Male
##
        0 47993 38930
##
        1 31197 32146
##
##
   Pearson's X^2: Rao & Scott adjustment
##
## data: NextMethod()
## X-squared = 8.4, df = 1, p-value = 0.006
```

```
summary(tab, statistic = "F")
         Sex
##
## pobreza Female Male
##
        0 47993 38930
##
        1 31197 32146
##
## Pearson's X^2: Rao & Scott adjustment
##
## data: NextMethod()
## F = 7.7, ndf = 1, ddf = 119, p-value = 0.007
```

Estadístico de Wald

$$Q_{wald} = \hat{oldsymbol{Y}}^t \left(oldsymbol{H} \hat{oldsymbol{V}} \left(\hat{oldsymbol{N}}
ight) oldsymbol{H}^t
ight)^{-1} \, \hat{oldsymbol{Y}}$$

donde,

$$\hat{\mathbf{Y}} = (\hat{\mathbf{N}} - \mathbf{E})$$

es un vector de $R \times C$ de diferencias entre los recuentos de celdas observadas y esperadas, esto es, $\hat{N}_{rc} - E_{rc}$

La matriz $\hat{H}\hat{V}(\hat{N})\hat{H}^t$, representa la matriz de varianza-covarianza estimada para el vector de diferencias.

Estadístico de Wald

La matriz \boldsymbol{H} es la inversa de la matriz \boldsymbol{J} dada por:

$$oldsymbol{J} = -\left[rac{\delta^2 \ln PL(oldsymbol{B})}{\delta^2 oldsymbol{B}}\right] \mid oldsymbol{B} = \hat{oldsymbol{B}}$$

$$\sum_{h} \sum_{a} \sum_{i} x_{hai}^{t} x_{hai} w_{hai} \hat{\pi}_{hai} \left(\boldsymbol{B} \right) \left(1 - \hat{\pi}_{hai} \left(\boldsymbol{B} \right) \right)$$

Bajo la hipótesis nula, el estadístico

$$Q_{wald} \sim \chi^2_{(R-1)\times(C-1)}$$

Estadístico de Wald

$$F_{wald} = Q_{wald} imes rac{df - (R-1)(C-1) + 1}{(R-1)(C-1)df} \sim F_{(R-1)(C-1),df - (R-1)(C-1) + 1}$$

```
summary(tab, statistic = "Wald")
##
         Sex
## pobreza Female Male
##
        0 47993 38930
##
        1 31197 32146
##
##
   Design-based Wald test of association
##
## data: NextMethod()
## F = 7.1, ndf = 1, ddf = 119, p-value = 0.009
```

Prueba de independencia adjWald

```
summary(tab, statistic = "adjWald")
##
         Sex
## pobreza Female Male
##
        0 47993 38930
##
        1 31197 32146
##
##
   Design-based Wald test of association
##
## data: NextMethod()
## F = 7.1, ndf = 1, ddf = 119, p-value = 0.009
```

Prueba de independencia lincom

```
summary(tab, statistic = "lincom")
##
         Sex
## pobreza Female Male
##
        0 47993 38930
##
        1 31197 32146
##
##
   Pearson's X^2: asymptotic exact distribution
##
## data: NextMethod()
## X-squared = 8.4, p-value = 0.007
```

Prueba de independencia saddlepoint

```
summary(tab, statistic = "saddlepoint")
##
         Sex
## pobreza Female Male
##
        0 47993 38930
##
        1 31197 32146
##
##
   Pearson's X^2: saddlepoint approximation
##
## data: NextMethod()
## X-squared = 8.4, p-value = 0.007
```

$$\log(p_{ijk}) = \mu + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY},$$

donde:

- $ightharpoonup p_{ijk} =$ la proporción esperada en la celda bajo el modelo.
- $\blacktriangleright \ \mu = \log(p_0) = \frac{1}{\# \ de \ celdas}$

```
mod2 <- svyloglin(~pobreza+Sex, diseno)
(s2 <- summary(mod2))

## Loglinear model: svyloglin(~pobreza + Sex, diseno)
## coef se p
## pobreza1 0.15822 0.06378 0.01311
## Sex1 0.05405 0.02454 0.02765</pre>
```

anova(mod1, mod2)

```
## Analysis of Deviance Table
## Model 1: y ~ pobreza + Sex
## Model 2: y ~ pobreza + Sex + pobreza:Sex
## Deviance= 8.422 p= 0.006573
## Score= 8.422 p= 0.006572
```

Modelo de regresión logistica

$$g(\pi(x)) = logit(\pi(x)) = z = \ln\left(\frac{\pi(x)}{1 - \pi(x)}\right) = B_0 + B_1 x_1 + \dots + B_p x_p$$

$$\hat{\pi}(\mathbf{x}) = \frac{\exp\left(\mathbf{X}\hat{\mathbf{B}}\right)}{1 - \exp\left(\mathbf{X}\hat{\mathbf{B}}\right)} = \frac{\exp\left(\hat{B}_0 + \hat{B}_1 x_1 + \dots + \hat{B} x_p\right)}{1 - \exp\left(\hat{B}_0 + \hat{B}_1 x_1 + \dots + \hat{B} x_p\right)}$$

$$PL(\mathbf{B} \mid X) = \prod_{i=1}^{n} \left\{\pi(x_i)^{y_i} (1 - \pi(x_i))^{1 - y_i}\right\}^{w_i}$$

con

$$\pi(x_i) = \frac{\exp(x_i \mathbf{B})}{1 - \exp(x_i \mathbf{B})}$$
$$var(\hat{\mathbf{B}}) = \mathbf{J}^{-1} var(S(\hat{\mathbf{B}})) \mathbf{J}^{-1}$$

Modelo de regresión logistica

$$S\left(B\right) = \sum_{h} \sum_{a} \sum_{i} w_{hai} \boldsymbol{D}_{hai}^{t} \left[\left(\pi_{hai}\left(\boldsymbol{B}\right)\right) \left(1 - \pi_{hai}\left(\boldsymbol{B}\right)\right) \right]^{-1} \left(y_{hai} - \pi_{hai}\left(\boldsymbol{B}\right)\right) = 0$$

$$D_{ extit{hai}} = rac{\delta \left(\pi_{ extit{hai}}\left(oldsymbol{B}
ight)
ight)}{\delta B_{i}}$$

$$j=0,\ldots,p$$

Prueba de Wald para los parámetros del modelo

$$G = -2 \ln \left[rac{L \left(\hat{eta}_{MLE}
ight)_{reduced}}{L \left(\hat{eta}_{MLE}
ight)_{full}}
ight]$$
 $\hat{\psi} = \exp \left(\hat{B}_1
ight)$

 $CI(\psi) = \exp\left(\hat{B}_j \pm t_{df,1-\frac{\alpha}{2}} se\left(\hat{B}_j\right)\right)$

Tablas de contingencia

Sex	pobreza	se	ci_l	ci_u
Female Male	0.00.0	0.0273 0.0377	0.0.00	0

Zone	pobreza	se	ci_l	ci_u
Rural	0.4498	0.0551	0.3417	0.5579
Urban	0.3955	0.0307	0.3352	0.4557

Region	pobreza	se	ci_l	ci_u
Norte	0.5882	0.0571	0.4762	0.7002
Sur	0.3917	0.0594	0.2752	0.5082
Centro	0.2370	0.0437	0.1514	0.3227
Occidente	0.3602	0.0435	0.2750	0.4455
Oriente	0.4978	0.0929	0.3156	0.6799

```
## Pearson's X^2: Rao & Scott adjustment
pobreza_sex <- svychisq(
  formula = ~pobreza + Sex, design = diseno)
tidy( pobreza_sex)</pre>
```

ndf	ddf	statistic	p.value	method
1	119	7.653	0.0066	Pearson's X^2: Rao & Scott adjustment

```
pobreza_Zona <- svychisq(
   formula = ~pobreza + Zone, design = diseno)
tidy(pobreza_Zona) %>% select(-method)
```

ndf	ddf	statistic	p.value
1	119	0.7523	0.3875

```
pobreza_Region <- svychisq(
  formula = ~pobreza + Region, design = diseno)
  tidy(pobreza_Region) %>% select(-method)
```

ndf	ddf	statistic	p.value
2.885	343.3	4.221	0.0067

Modelo log lineal ajustado

```
mod_loglin <- svyglm(
  pobreza ~ Sex + Zone + Region,
    family=quasibinomial, design=diseno)
tidy(mod_loglin)</pre>
```

term	estimate	std.error	statistic	p.value
(Intercept)	0.2202	0.2519	0.8743	0.3838
SexMale	0.2621	0.0832	3.1515	0.0021
ZoneUrban	0.0283	0.2496	0.1134	0.9099
RegionSur	-0.8033	0.3418	-2.3505	0.0205
RegionCentro	-1.5413	0.3473	-4.4378	0.0000
RegionOccidente	-0.9381	0.3013	-3.1140	0.0023
RegionOriente	-0.3586	0.4348	-0.8249	0.4112

Plot de la distribución de los betas

Modelo log lineal ajustado

```
bind_cols(
data.frame(exp_estimado = exp(coef(mod_loglin))),
as.data.frame(exp(confint(mod_loglin)))
)
```

	exp_estimado	2.5 %	97.5 %
(Intercept)	1.2464	0.7567	2.0530
SexMale	1.2997	1.1022	1.5325
ZoneUrban	1.0287	0.6274	1.6868
RegionSur	0.4478	0.2275	0.8814
RegionCentro	0.2141	0.1076	0.4260
RegionOccidente	0.3914	0.2155	0.7109
RegionOriente	0.6986	0.2952	1.6532

Estadístico de Wald sobre los parámetros regTermTest(model = mod_loglin, ~Sex)

Wald test for Sex

in svyglm(formula = pobreza ~ Sex + Zone + Region, des:
family = quasibinomial)
F = 9.932 on 1 and 113 df: p= 0.0021

```
regTermTest(model = mod_loglin, ~Zone)
## Wald test for Zone
## in svyglm(formula = pobreza ~ Sex + Zone + Region, des
```

in svyglm(formula = pobreza ~ Sex + Zone + Region, des:
family = quasibinomial)
F = 0.01286 on 1 and 113 df: p= 0.91

```
## F = 0.01286 on 1 and 113 df: p= 0.91
regTermTest(model = mod_loglin, ~Region)
```

Wald test for Region
in svyglm(formula = pobreza ~ Sex + Zone + Region, des:

family = quasibinomial)
F = 5.957 on 4 and 113 df: p= 0.00022

Efecto del modelo.

Efecto del modelo.

Modelo log lineal ajustado con interacciones

term	estimate	std.error	statistic	p.value
RegionCentro	-1.7878	0.3336	-5.359	0.0000
RegionOccidente	-1.0489	0.2696	-3.891	0.0002
RegionSur	-0.8349	0.3301	-2.529	0.0129
SexMale:RegionCentro	0.4813	0.3164	1.521	0.1311
(Intercept)	0.3128	0.2196	1.424	0.1573
SexMale:RegionOriente	0.3323	0.2456	1.353	0.1789

Modelo log lineal ajustado con interacciones

tab_mod %>% slice(7:12)

estimate	std.error	statistic	p.value
-0.5146	0.3918	-1.3134	0.1918
0.2294	0.2586	0.8872	0.3770
0.0600	0.2046	0.2935	0.7697
0.0652	0.2578	0.2527	0.8010
0.0539	0.2417	0.2232	0.8238
-0.0339	0.1609	-0.2104	0.8337
	-0.5146 0.2294 0.0600 0.0652 0.0539	-0.5146 0.3918 0.2294 0.2586 0.0600 0.2046 0.0652 0.2578 0.0539 0.2417	-0.5146 0.3918 -1.3134 0.2294 0.2586 0.8872 0.0600 0.2046 0.2935 0.0652 0.2578 0.2527 0.0539 0.2417 0.2232

Plot de la distribución de los betas

plot_summs(mod_loglin_int, mod_loglin, scale = TRUE, plot.org)

Modelo log lineal ajustado

	exp_estimado	2.5 %	97.5 %
(Intercept)	1.3672	0.8846	2.1131
SexMale	1.0619	0.7079	1.5929
ZoneUrban	1.0554	0.6537	1.7039
RegionSur	0.4339	0.2255	0.8348
RegionCentro	0.1673	0.0864	0.3242
RegionOccidente	0.3503	0.2053	0.5978
RegionOriente	0.5977	0.2749	1.2996
SexMale:ZoneUrban	0.9667	0.7027	1.3298
SexMale:RegionSur	1.0673	0.6403	1.7792
SexMale:RegionCentro	1.6182	0.8643	3.0300
SexMale:RegionOccidente	1.2578	0.7534	2.1000
SexMale:RegionOriente	1.3942	0.8568	2.2687

Estadístico de Wald sobre los parámetros regTermTest(model = mod_loglin_int, ~Sex)

Wald test for Sex

in svyglm(formula = pobreza ~ Sex + Zone + Region + Sex design = diseno, family = quasibinomial) ## ## F = 0.08615 on 1 and 108 df: p = 0.77regTermTest(model = mod_loglin_int, ~Zone) ## Wald test for Zone

in svyglm(formula = pobreza ~ Sex + Zone + Region + Se: design = diseno, family = quasibinomial) ## ## F = 0.0498 on 1 and 108 df: p = 0.82regTermTest(model = mod loglin int, ~Region) ## Wald test for Region

in svyglm(formula = pobreza ~ Sex + Zone + Region + Sex design = diseno, family = quasibinomial) ##

F = 8.719 on 4 and 108 df: p = 3.9e - 06

Estadístico de Wald sobre los parámetros

```
regTermTest(model = mod_loglin_int, ~Sex:Zone)
## Wald test for Sex:Zone
## in svyglm(formula = pobreza ~ Sex + Zone + Region + Sex
      design = diseno, family = quasibinomial)
## F = 0.04428 on 1 and 108 df: p = 0.83
regTermTest(model = mod_loglin_int, ~Sex:Region)
## Wald test for Sex:Region
   in svyglm(formula = pobreza ~ Sex + Zone + Region + Sex
      design = diseno, family = quasibinomial)
##
## F = 0.8904 on 4 and 108 df: p = 0.47
```


Modelo log lineal ajustado con Q_Weighting

```
fit_wgt <- lm(wk ~ Sex + Zone + Region , data = encuesta)</pre>
wgt hat <- predict(fit wgt)</pre>
encuesta %<>% mutate(wk2 = wk/wgt hat)
diseno_qwgt <- encuesta %>%
  as_survey_design(
    strata = Stratum,
    ids = PSU,
    weights = wk2,
   nest = T
```

Modelo log lineal ajustado con Q_Weighting

Modelo log lineal ajustado con Q_Weighting

term	estimate	std.error	statistic	p.value
(Intercept)	0.2723	0.2492	1.0928	0.2768
SexMale	0.2374	0.0846	2.8068	0.0059
ZoneUrban	-0.0125	0.2343	-0.0535	0.9574
RegionSur	-0.8380	0.3423	-2.4485	0.0159
RegionCentro	-1.5450	0.3455	-4.4720	0.0000
RegionOccidente	-0.9547	0.3020	-3.1617	0.0020
RegionOriente	-0.3941	0.4457	-0.8843	0.3784

Plot de la distribución de los betas

Modelo log lineal ajustado

exp_estimado	2.5 %	97.5 %
1.3130	0.8014	2.1511
1.2679	1.0723	1.4993
0.9875	0.6208	1.5710
0.4326	0.2196	0.8522
0.2133	0.1076	0.4229
0.3849	0.2116	0.7002
0.6743	0.2788	1.6305
	1.3130 1.2679 0.9875 0.4326 0.2133 0.3849	1.3130 0.8014 1.2679 1.0723 0.9875 0.6208 0.4326 0.2196 0.2133 0.1076 0.3849 0.2116

Estadístico de Wald sobre los parámetros regTermTest(model = mod_loglin_qwgt, ~Sex)

Wald test for Sex

in svyglm(formula = pobreza ~ Sex + Zone + Region, des: family = quasibinomial) ## ## F = 7.878 on 1 and 113 df: p = 0.0059regTermTest(model = mod_loglin_qwgt, ~Zone)

Wald test for Zone ## in svyglm(formula = pobreza ~ Sex + Zone + Region, des: family = quasibinomial) ## ## F = 0.002866 on 1 and 113 df: p = 0.96regTermTest(model = mod loglin qwgt, ~Region)

Wald test for Region

in svyglm(formula = pobreza ~ Sex + Zone + Region, des:

family = quasibinomial) ##

F = 5.87 on 4 and 113 df: p = 0.00025

