PAT-NO:

JP02001283161A

DOCUMENT-IDENTIFIER:

JP 2001283161 A

TITLE:

NON-CONTACT CARD READER/WRITER

PUBN-DATE:

October 12, 2001

INVENTOR-INFORMATION:

NAME

COUNTRY

SATO, KATSUNORI

N/A

INT-CL (IPC): G06K017/00, B42D015/10

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a non-contact card reader/writer capable of properly receiving a response signal from an IC card.

SOLUTION: A non-contact card reader/writer 1 is provided with a control part 11, a transmitting circuit 20, an antenna 13 for transmission, an antenna 14 for reception, and a receiving circuit 30. The control part 11 is provided with a counter 15 for starting count since the transmission of an instruction signal is started, and when the counter 15 reaches a prescribed count value Con, the control part 11 decides that a prescribed time passes, and outputs an operation permission signal to a receiving circuit 30. When the operation permission signal is inputted from the control part 11, the receiving circuit 30 shifts to the state capable of the reception data outputting operation that converts a response signal into reception data, and outputs the reception data to the control part 11.

COPYRIGHT: (C) 2001, JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-283161 (P2001-283161A)

(43)公開日 平成13年10月12日(2001.10.12)

(51) Int.CL'	識別記号	ΡI	テーマコード(参考)
G06K 17/00		G 0 6 K 17/00	F 2C005
B 4 2 D 15/10	521	B42D 15/10	521 5B058

審査請求 未請求 請求項の数2 OL (全 9 頁)

(21)出顧番号	特顧2000-89185(P2000-89185)	(71)出題人 000143396
		株式会社高見沢サイパネティックス
(22)出顧日	平成12年3月28日(2000.3.28)	東京都中野区中央2丁目48番5号 中野平
		和ビル
		(72)発明者 佐藤 勝則
		東京都中野区中央二丁目48番5号 中野平
		和ビル 株式会社高見沢サイパネティック
		ス内
		(74)代理人 100088155
		弁理士 長谷川 芳樹 (外2名)
		Fターム(参考) 20005 MA22 MA25 NA09 SA05 SA06
		TAD3 TA22
		5B058 CA17 CA23 KA02 KA04

(54) 【発明の名称】 非接触型カードリードライト装置

(57)【要約】

【課題】 ICカードからの応答信号を適切に受信する ことが可能な非接触型カードリードライト装置を提供す スニレ

【解決手段】 非接触型カードリードライト装置1は、制御部11と、送信回路20と、送信用アンテナ13と、受信用アンテナ14と、受信回路30とを備えている。制御部11は、命令信号の送信開始からカウントを開始するカウンタ15を有し、カウンタ15が所定のカウント値Conに達したときに、所定時間が経過したとして受信回路30に動作許可信号を出力する。受信回路30は、制御部11から動作許可信号が入力されることにより、応答信号を受信データへ変換して制御部11に出力する受信データ出力動作が可能な状態に移行する。

【特許請求の範囲】

【請求項1】 電磁波を送受信することによって離隔し た位置に配された I Cカードとデータの授受を行う非接 触型カードリードライト装置であって、

所定の送信データを出力する制御部と、

前記制御部からの前記所定の送信データを変調して命令 信号へ変換する送信回路と、

前記送信回路からの前記命令信号を電磁波として前記 I Cカードに送信する送信用アンテナと、

前記ICカードからの電磁波を受信して、前記受信した 10 電磁波を応答信号へ変換する受信用アンテナと、

前記受信用アンテナからの前記応答信号を復調して受信 データへ変換し、前記受信データを前記制御部に出力す る受信回路と、を備え、

前記制御部は、前記命令信号の送信開始から所定時間経 過後に前記受信回路に動作許可信号を出力し、

前記受信回路は、前記制御部から前記動作許可信号が入 力されることにより、前記応答信号を前記受信データへ 変換して前記制御部に出力する受信データ出力動作が可 能な状態に移行することを特徴とする非接触型カードリ ードライト装置。

【請求項2】 前記制御部は、前記命令信号の送信開始 からカウントを開始して前記命令信号の変調周波数下に 対してN倍(但し、Nは整数)の周波数F。で動作する カウンタを有し、前記カウンタが所定のカウント値Con $=C_{st}+(N\times B)-(T_r\times F_c+C_n)$ (但し、 C_{st} はカウンタ初期値、Bは前記命令信号のビット数、Tr は前記応答信号の送信開始から前記命令信号の送信終了 までの時間、Caは所定のマージン値)に達したとき に、前記所定時間が経過したとして前記受信回路に動作 30 許可信号を出力することを特徴とする請求項1に記載の 非接触型カードリードライト装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、通信媒体として電 磁波を使用した非接触型カードリードライト装置に関す

[0002]

【従来の技術】従来から、ICカードと離隔した状態で 内部のデータを読み書き可能な非接触型カードリードラ 40 イト装置が知られている。非接触でICカードと通信を 行って、ICカード内部のデータを読み書きする技術の 一つに誘導電磁界を利用したものがある。

【0003】上述したような誘導電磁界を利用した非接 触型カードリードライト装置は、例えば次のように構成 され、動作する。非接触型カードリードライト装置及び ICカードは、ともにコイルからなるアンテナを備え る。そして、非接触型カードリードライト装置のアンテ ナに所定周波数の交流を導通させることによって誘導電 磁界を形成すると、ICカードのアンテナには誘導電流 50 信データへ変換して制御部に出力する受信データ出力動

が誘起される。これにより、非接触型カードリードライ ト装置とICカードとが離隔した状態で通信が可能とな

【0004】具体的には、非接触型カードリードライト 装置は、送信データを変調して、所定周波数又は所定振 幅の搬送波にのせて送信データをICカードに送信す る。一方、ICカードは誘導電磁界によって誘起された 電力を使ってICカードを駆動し、送信データに対応し た応答データを非接触型カードリードライト装置に送信 する。

[0005]

【発明が解決しようとする課題】ところで、上述した構 成の非接触型カードリードライト装置は、送信回路から 送信用アンテナを介して命令信号をICカードに送信 し、ICカードから受信用アンテナを介して上記命令信 号に対応した応答信号を受信回路に送信するように構成 されているが、命令信号を送信した際の変調された電磁 波の影響によって受信回路に不要な信号が入り込み、受 信回路にてICカードからの応答信号ではない信号ある いはノイズ等を受信してしまうという問題点を有してい ることが判明した。

【0006】本発明は上述の点に鑑みてなされたもの で、ICカードからの応答信号を適切に受信することが 可能な非接触型カードリードライト装置を提供すること を目的とする。

[0007]

20

【課題を解決するための手段】本発明に係る非接触型力 ードリードライト装置は、電磁波を送受信することによ って離隔した位置に配されたICカードとデータの授受 を行う非接触型カードリードライト装置であって、所定 の送信データを出力する制御部と、制御部からの所定の 送信データを変調して命令信号へ変換する送信回路と、 送信回路からの命令信号を電磁波としてICカードに送 信する送信用アンテナと、ICカードからの電磁波を受 信して、受信した電磁波を応答信号へ変換する受信用ア ンテナと、受信用アンテナからの応答信号を復調して受 信データへ変換し、受信データを制御部に出力する受信 回路と、を備え、制御部は、命令信号の送信開始から所 定時間経過後に受信回路に動作許可信号を出力し、受信 回路は、制御部から動作許可信号が入力されることによ り、応答信号を受信データへ変換して制御部に出力する 受信データ出力動作が可能な状態に移行することを特徴 としている。

【0008】本発明に係る非接触型カードリードライト 装置では、上述したように、制御部と、送信回路と、送 信用アンテナと、受信用アンテナと、受信回路とを備 え、制御部は命令信号の送信開始から所定時間経過後に 受信回路に動作許可信号を出力し、受信回路は制御部か ら動作許可信号が入力されることにより、応答信号を受

作が可能な状態に移行するので、所定時間が経過して動作許可信号が入力されるまでの間、受信回路は受信データ出力動作が禁止されることになる。これにより、命令信号を送信した際の変調された電磁波の影響によって受信回路に不要な信号が入り込み、受信回路が応答信号ではない信号あるいはノイズ等を受信するのを抑制することができる。この結果、受信回路はICカードからの応答信号を適切に受信することができる。

【0009】また、制御部は、命令信号の送信開始から カウントを開始して命令信号の変調周波数Fに対してN 倍(但し、Nは整数)の周波数F。で動作するカウンタ を有し、カウンタが所定のカウント値Con=Cst+(N ×B) - (Tr×Fc+Ca) (但し、Cstはカウンタ初 期値、Bは命令信号のビット数、Trは応答信号の送信 開始から命令信号の送信終了までの時間、Caは所定の マージン値) に達したときに、所定時間が経過したとし て受信回路に動作許可信号を出力することが好ましい。 このように、制御部が、命令信号の送信開始からカウン トを開始して命令信号の変調周波数Fに対してN倍(但 し、Nは整数)の周波数Fcで動作するカウンタを有 し、カウンタが所定のカウント値Con=Cst+(N× B) - (Tr×Fc+Ca) (但し、Cstはカウンタ初期 値、Bは命令信号のビット数、Trは応答信号の送信開 始から命令信号の送信終了までの時間、Caは所定のマ ージン値) に達したときに、所定時間が経過したとして 受信回路に動作許可信号を出力することにより、制御部 はICカードから応答信号が送信される直前に動作許可 信号を確実に出力することができ、受信回路はICカー ドからの応答信号をより一層適切に受信することができ る.

[0010]

【発明の実施の形態】以下、図面を参照しながら本発明 による非接触型カードリードライト装置の好適な実施形 態について詳細に説明する。

【0011】図1は、本発明の実施形態に係る非接触型カードリードライト装置の構成を示すブロック図であり、図2は、同じく送信回路を示すブロック図であり、図4は、同じく「Cカードの構成を示すブロック図であら、図5は、同じく受信回路を示すブロック図である。【0012】非接触型カードリードライト装置1は、図1に示されるように、上位アプリケーションである図示しないCPUからの命令に従って非接触型カードリードライト装置1を制御する制御部11と、「Cカード2との間で電磁波を送受信する2本のアンテナ13、14を含むインターフェース部12は、送信用アンテナ13に接続される送信回路20と、受信用アンテナ14に接続される受信回路30とを備えている。制御部11は、所定の送信データとしてのデジタルデータを出力するようにも構成されている。

とは、ループ状に形成されており、装置の小型化を図る ため互いに近接して設けられている。

【0013】送信回路20は、制御部11からのデジタルデータを変調して命令信号へ変換するものであり、図2に示されるように、制御部11からのデジタルデータをアナログデータに変換するDAコンバータ(DAC)21と、搬送波を生成する発振器22と、DAコンバータ21で変換されたアナログデータと発振器22から出力された搬送波の平衡をとり、混合して変調を行う二重平衡変調器(Double Balanced Modulation、以下「DBM」という)24とを備えており、DBM24で変調された変調信号(命令信号)が送信用アンテナ13に伝達される。

【0014】DAコンバータ21とDBM24との間には、DAコンバータ21からの出力信号をDBM24に入力可能なレベルに調節するレベルシフト23が接続されている。また、DBM24と送信用アンテナ13の間には、変調信号を増幅する増幅器25が接続されている。

- 20 【0015】ここで、図3(a)及び図3(b)に示す 具体的な波形信号を参照しながら、DBM24から出力 される変調信号について説明する。図3(a)はDAコ ンバータ21から出力される電圧信号、図3(b)はD BM24から出力される変調信号を示している。図3 (a)に示すようにDAコンバータ21は、0~Vcc [V]の電圧信号を出力可能である。DAコンバータ2 1からの入力がVcc[V]であるとき(t1)に、D BM24から出力される変調信号の振幅は最大となる (T1)。DAコンバータ21からの出力が低下する 30 (t2)に従って、変調信号の振幅は減少し(T2)、
 - (t2)に使って、変調信号の振幅は減少し(12)、DAコンバータ21からの入力がVcc/2[V]のときに、DBM24からの出力はOとなる。そして、DBM24から出力がVcc/2[V]より更に低下する(t3)と、DBM24から出力される変調信号の位相は180°シフトし、DAコンバータ21からの入力が低下するに従って、出力される変調信号の振幅は大きくなる(T3)。そして、DAコンバータ21からの入力がO[V]のとき(t4)に、DBM24から出力される変調信号は、DAコンバータ21からの入力がVcc[V]のときと同じ振幅で、位相が180°シフトした波形となる(T4)。

【0016】次に、ICカード2の構成について説明すると、ICカード2は、図4に示されるように、非接触型カードリードライト装置1からの送信電磁波(命令信号)を受信するアンテナ41と、送信電磁波として送信された命令信号を検波(復調)する検波回路(整流器)42と、ICカード2からの応答信号を生成するためのスイッチング回路43と、これらを制御する制御部44とから構成されている。

る。また、送信用アンテナ13と、受信用アンテナ14 50 【0017】アンテナ41にて受信された送信電磁波

(命令信号)は、検波回路42にて検波され、検波回路42から検波信号(命令信号)として制御部44に出力される。なお、この検波信号は、ICカード2内の電源として兼用される。制御部44は、検波回路42からの検波信号(命令信号)に対応する所定の応答データをスイッチング回路43に出力する。スイッチング回路43は、制御部44からの所定の応答データに対応したスイッチング動作を行い、応答信号を生成する。スイッチング回路43にて生成された応答信号はアンテナ41に伝達されて、応答電磁波として非接触型カードリードライト装置1に送られる。

【0018】次に、受信回路30について図5を参照しながら説明する。受信回路30は、受信用アンテナ14からの応答信号を増幅する増幅器31と、応答信号を復調する検波回路32と、検波回路32からの出力と基準電圧発生器34とを比較演算する比較器(オペアンプ)33とから構成されている。比較器33のマイナス端子に検波回路32が、プラス端子に基準電圧発生器34が接続されている。また、比較器33の出力端子は制御部11に接続されており、応答信号は制御部11へと伝達20される。基準電圧発生器34は、検波回路32にて検波された応答信号(アナログ信号)を比較器33にて比較して復調するための基準となる電圧を出力する。

【0019】受信用アンテナ14にて受信されたICカード2からの応答電磁波(応答信号)は、増幅器31に送られて所定の電圧レベルまで増幅される。検波回路32は、増幅器31にて増幅された応答信号から決められた所定の周波数を検波して、検波された応答信号を比較器33に出力する。比較器33に出力された応答信号は、基準電圧発生器34からの基準電圧と比較されることにより復調されて受信データ(デジタルデータ)に変換される。変換された受信データ(デジタルデータ)は、制御部11に出力される。

【0020】ここで、図6 (a)~(j)に示された波 形信号を参照しながら、非接触型カードリードライト装 置1と I Cカード2との間における変調及び復調方式の 関係を説明するための線図である。 図6 (a)は制御部 11から出力される送信データ、図6 (b) はDAC2 1から出力されるベースバンド信号、図6 (c)はDB M24から出力される変調信号(命令信号)、図6 (d)はICカード2にて復調された非接触型カードリ ードライト装置1からの送信データ、図6 (e)は制御 部44から出力される応答データ、図6(f)はスイッ チング回路43の動作信号、図6(g)はICカード2 から出力される変調信号(応答信号)、図6(h)は検 波回路32から出力される応答信号、図6(i)は制御 部11に入力される受信データ、図6(j)は制御部1 1に入力される受信データ(但し、図6(a)~(d) と同じタイムスケールにて記載)、を示している。

(a)~(d)及び図6(j)に示された波形信号のタイムスケールと図6(e)~(i)に示された波形信号のタイムスケールとは異なっている。このようにタイムスケールが異なっているのは、非接触型カードリードライト装置1からのデータ送信時の通信速度と、ICカード2でのデータ送受信時の通信速度及び非接触型カードリードライト装置1でのデータ受信時の通信速度とが異なるためである。たとえば、非接触型カードリードライト装置1におけるデータ1ビット当りの送信時間は90μs程度であるのに対して、ICカード2におけるデータ1ビット当りの送信時間は5μs程度であり、ICカード2からのデータの送信速度は非接触型カードリードライト装置1からのデータの送信速度に比して速い通信速度に設定されている。

【0022】送信データが、図6(a)に示されるように、所定の時点Aにおいて制御部11から送信回路20(DAC21)への出力が開始されると、制御部11からの送信データは、図6(b)に示されるように、DAC21によりベースバンド信号に変換される。このベースバンド信号の波形変化は、送信データを確実に変換すると共に送信データとの同期を取るために、送信データの中央部分にて行っている。DBM24でベースバンド信号と発振器22からの搬送波とが混合されて、命令信号とで送信用アンテナ13に送られる。命令信号は、図6(c)に示されるように、ベースバンド信号の変化に対応させて変調(PSK)がかけられている。命令信号は、所定の時点Aから所定の時点Bまでの間にわたって送信される。

器33に出力する。比較器33に出力された応答信号 【0023】命令信号は非接触型カードリードライト装は、基準電圧発生器34からの基準電圧と比較されるこ 20 置1の送信用アンテナ13から送信され、ICカード2とにより復調されて受信データ(デジタルデータ)に変 ぬきれた受信データ(デジタルデータ)に 20020】ここで、図6(a)~(j)に示された波 で令信号は検波回路42にて受信された。 2にて受信された命令信号は検波回路42にて全波整流 されることにより、検波された受信信号は、図6(c) 電1とICカード2との間における変調及び復調方式の に示される波形の変調部分が包格した波形となる。

【0024】ICカード2の制御部44は、検波回路42にて検波された受信信号の波形を復調する。復調された送信データのICカード2の制御部44へのデータ入りは、検波回路42にて検波された受信信号の波形の復調と同時になされるので、非接触型カードリードライト装置1側の変調方式とICカード2側の変調方式との違いにより、図6(d)に示されるように、非接触型カードリードライト装置1の制御部11からの送信データの出力完了よりも早く行われる。

らの応答データに対応して、図6(f)に示されるよう に、スイッチング(オン/オフ)動作を行う。スイッチ ング回路43のスイッチング (オン/オフ) 動作により アンテナ41の負荷が変動することになり、このアンテ ナ41の負荷変動により応答データが、図6(g)に示 されるように、応答信号へ変調(ASK)される。スイ ッチング回路43が動作しない場合には、非接触型カー ドリードライト装置1からの所定周波数の信号がそのま ま反射されるのに対して、スイッチング回路43のスイ ッチング (オン/オフ) 動作により、非接触型カードリ ードライト装置1からの所定周波数の信号に変調をかけ ることが可能となる。

【0026】変調された応答信号は、ICカード2のア ンテナ41から非接触型カードリードライト装置1に送 られる。ICカード2から送信された応答信号は、非接 触型カードリードライト装置1の受信用アンテナ14に て受信され、増幅器31にて増幅された後に検波回路3 2に入力される。検波回路32に入力された応答信号 は、図6(h)に示されるように、検波される。

【0027】比較器33により検波された応答信号と基 20 準電圧とが比較され、比較器33での比較結果が、図6 (i) 及び(j) に示されるように、 受信データとして 制御部11に入力される。受信データの非接触型カード リードライト装置1の制御部11へのデータ入力は、非 接触型カードリードライト装置1側の変調方式とICカ ード2個の変調方式との違いにより、変調された波形の 入力と同時に行われる。

【0028】以上の説明から分かるように、非接触型カ ードリードライト装置1からの命令信号の送信が完了す ことになる。したがって、非接触型カードリードライト 装置1からの命令信号の送信が完了する時点Bよりも負 の方向に一定時間Tェが経過したところ、すなわち非接 触型カードリードライト装置 1からの命令信号の送信が 完了する時点Bより一定時間Tェだけ前の時点Cより、*

 $C_{on} = C_{st} + (N \times B) - (T_r \times F_c + C_n)$

Cst:カウンタ初期値

B:命令信号のビット数

Tr:応答信号の送信開始から命令信号の送信終了まで の時間

F_c: カウンタの動作周波数 (=F×N)

Ca: 所定のマージン値

なお、所定のマージンC。値は、実験等により適切な値 が予め求められている。

【0033】次に、本実施形態の非接触型カードリード ライト装置1の動作について、図7及び図8を参照しな がら説明する。 図7は、非接触型カードリードライト装 置1におけるデータ送受信段階の制御を示すフローチャ ートであり、図8は、非接触型カードリードライト装置 1の動作を説明するための線図である。図8(a)は制※50

* I Cカード 2からの応答信号の出力が始まることにな り、非接触型カードリードライト装置1からの命令信号 の送信が完了する時点Bよりも前に、非接触型カードリ ードライト装置1(受信回路30)に応答信号が入力さ れることになる。

【0029】そこで、本実施形態に係る非接触型カード リードライト装置1においては、非接触型カードリード ライト装置 1 からの命令信号の送信が完了する時点Bよ りも前に出力が開始される応答信号を適切に受信するた 10 めに、制御部11は命令信号の送信開始から所定時間経 過後に受信回路30に動作許可信号を出力し、受信回路 30が、制御部11からの動作許可信号が入力されるこ とにより、ICカード2からの応答信号を受信データへ 変換して制御部11に出力する受信データ出力動作が可 能な状態に移行するように構成されている。

【0030】制御部11は、上述した所定時間が経過し たか否かを判断するためのカウンタ15を有している。 カウンタ15は、送信回路20での命令信号の送信開始 からカウントを開始して、命令信号の変調周波数下に対 してN倍(但し、Nは整数)の周波数Fcで動作する。 制御部11は、カウンタ15でのカウント値が所定のカ ウント値Conに達したか否かを判断し、カウンタ15 でのカウント値が所定のカウント値Conに達したとき に、上述した所定時間が経過したとして、受信回路30 に動作許可信号を出力する。

【0031】なお、非接触型カードリードライト装置1 からのデータ送信時よりも、ICカード2でのデータ送 受信時及び非接触型カードリードライト装置 1 でのデー タ受信時におけるデータの通信速度が速く、また、IC る前に、ICカード2個での命令信号の認識が完了する 30 カード2における信号処理は命令信号の周波数を反射す ることから、カウンタ15の動作周波数は、上述したよ うに、命令信号の変調周波数Fに対してN倍(但し、N は整数)に設定されている。

> 【0032】ここで、所定のカウント値Conは、下記の (1) 式で示されるようにして設定されている。

> > ... (1)

- ※御部11から出力される送信データ、図8(b)は制御 部11から出力される動作許可信号、図8(c)は制御 部11に入力される受信データ、を示している。
- 40 【0034】図7に示すデータ送受信段階では、非接触 型カードリードライト装置1からICカード2ヘデータ を送信し、I Cカード 2から応答データを受信する動作 が繰り返し行われる。この動作によって送受信される内 容は、例えば、(1)制御部11からIDを要求するデ ータを送信し、ICカード2からIDを受信する、
 - (2) 制御部11からICカード2に書き込む履歴等の データを送信し、ICカード2から書き込み完了のデー 夕を受信する、(3)制御部11から処理終了を通知 し、ICカード2からの応答を受信する、等である。

【0035】データ送受信段階が開始する(S101)

(6)

10

と、制御部11はカウント値としてカウンタ初期値Cst を設定することによりカウンタ15を初期化する(S1 03)。カウンタ15の初期化が行われると、制御部1 1は送信回路20に対して送信データの出力を開始する (S105)。制御部11からの送信データは、図8 (a) に示されるように、所定の時点Aから送信回路2 0 (DAC21) への出力が開始され、所定の時点Bに おいて送信回路20(DAC21)への出力が終了す る。

【0036】送信回路20では、DAコンバータ21 で、入力されたデジタルの送信データをアナログデータ に変換する。具体的には、デジタルデータの"1"をV cc[V]の出力信号に、"0"を0[V]の出力信号 に変換する。そして、DAコンバータ21から出力され た送信データは、レベルシフト23でレベルを低下させ て、DBM24に入力する。DBM24は、入力された 送信データと発振器22から入力される搬送波とを混合 して変調する。DBM24から出力された変調信号(命 令信号)は、送信用アンテナ13から送信電磁波として その出力が開始される(S107)。送信電磁波がIC カード2に送信されると、ICカード2は受信した変調 信号を復調して送信されたデータを解析し、それに対す る応答データを応答信号として非接触型カードリードラ イト装置1に送信する。

【0037】また、DBM24から出力された変調信号 (命令信号)の出力が開始されると、制御部11はカウ ンタ15のカウントを開始する(S109)。カウンタ 15のカウント値が所定のカウント値Conに達すると (S111)、制御部11は受信回路30に動作許可信 号を出力する(S113)。動作許可信号は、図8 (b) に示されるように、制御部11からの送信データ の出力が終了する時点、すなわち非接触型カードリード ライト装置1からの命令信号の送信が完了する時点Bか ら所定の時間Dだけ早い時点において出力される。ここ で、所定の時間Dは、上述した応答信号の送信開始から 命令信号の送信終了までの時間Trに所定のマージン値 C_mに対応する時間を加算した値となる。

【0038】非接触型カードリードライト装置1の受信 回路30は、制御部11から動作許可信号が入力される と、ICカード2から送信された応答電磁波(応答信 号) を受信したか監視する (S115)。 受信回路30 が応答電磁波 (応答信号)を検出すると (S117)、 受信回路30は、受信用アンテナ14で受信した応答信 号を受信回路30内の増幅器31によって増幅した後、 検波回路32で復調する。そして、復調された応答信号 を比較器33によって基準電圧と比較演算をしてデジタ ルデータに変換した後、受信回路30は受信データの制 御部11への出力を開始する(S119)。受信データ は、図8(c)に示されるように、動作許可信号が制御

て、制御部11に入力される。一方、制御部11が送信 データの出力を開始して送信回路から命令信号の送信が 開始される時点Aから、動作許可信号が受信回路30に 出力されるまでの期間Eにおいては、制御部11への受 信データへの出力が禁止されることになる。

10

【0039】以上のような手順で、非接触型カードリー ドライト装置1とICカード2との間でデータの送受信 が行われる。制御部11は、送信データの出力が完了し たか否かを判断する(S121)。送信データの出力が 完了していない場合は、制御部11は、送信回路20へ の送信データの出力を継続する。送信データの出力が完 了した場合は、制御部11は、受信データの入力が完了 したか否かを判断する(S123)。受信データの入力 が完了していない場合は、制御部11は、受信回路30 における応答信号の受信を継続させる。受信データの入 力が完了した場合は、制御部11はデータ送受信段階を 終了させる(S125)。

【0040】上述したように、非接触型カードリードラ イト装置1にあっては、制御部11と、送信回路20 と、送信用アンテナ13と、受信用アンテナ14と、受 信回路30とを備え、制御部11は命令信号の送信開始 から所定時間経過後に受信回路30に対して動作許可信 号を出力し、受信回路30は制御部11から動作許可信 号が入力されることにより、応答信号を受信データへ変 換して制御部11に出力する受信データ出力動作が可能 な状態に移行するので、所定時間が経過して動作許可信 号が入力されるまでの間(図8(c)における期間 E)、受信回路30は受信データ出力動作が禁止される ことになる。これにより、命令信号を送信した際の変調 30 された電磁波の影響によって受信回路30に不要な信号 が入り込み、受信回路30が応答信号ではない信号ある いはノイズ等を受信するのを抑制することができる。こ の結果、受信回路30はICカード2からの応答信号を 適切に受信することができ、非接触型カードリードライ ト装置1における誤動作等の発生を抑制することができ

【0041】また、制御部11はカウンタ15を有し、 カウンタ15が所定のカウント値Conに達したときに、 所定時間が経過したとして受信回路30に動作許可信号 40 を出力するので、制御部11はICカード2から応答信 号が送信される直前に動作許可信号を確実に出力するこ とができ、受信回路30はICカード2からの応答信号 をより一層適切に受信することができる。

【0042】また、非接触型カードリードライト装置1 とICカード2との間のデータ (信号) の授受は一定の 周波数にて行われているので、命令信号の変調周波数F に対してN倍(但し、Nは整数)の周波数にて動作する カウンタ15を用いることで、制御部11からの送信デ ータの出力が終了する時点、すなわち非接触型カードリ 部11から受信回路30に出力された後の期間Fにおい 50 ードライト装置1からの命令信号の送信が完了する時点

Bを適切に規定することができる。

【0043】以上、本発明の実施形態について詳細に説 明してきたが、本発明は上記実施形態に限定されるもの ではない。

11

【0044】本実施形態においては、所定のカウント値 Conを設定するときに所定のマージン値Cuを加味して いるが、必ずしも所定のマージン値Caを加味する必要 はない。しかしながら、受信回路30は1Cカード2か らの応答信号をより一層適切に受信するためには所定の マージン値Caを加味する方が好ましい。

[0045]

【発明の効果】以上、詳細に説明したように、本発明に よれば、ICカードからの応答信号を適切に受信するこ とが可能な非接触型カードリードライト装置を提供する ことができる。

【図面の簡単な説明】

【図1】本発明の実施形態に係る非接触型カードリード ライト装置の構成を示すブロック図である。

【図2】本発明の実施形態に係る非接触型カードリード

【図3】本発明の実施形態に係る非接触型カードリード ライト装置に含まれる、送信回路のDBMから出力され る変調信号を説明する線図である。

【図4】本発明の実施形態に係る非接触型カードリード ライト装置に用いられる I Cカードの構成を示すブロッ ク図である。

【図5】本発明の実施形態に係る非接触型カードリード ライト装置に含まれる、受信回路を示すブロック図であ

【図6】本発明の実施形態に係る非接触型カードリード ライト装置とICカードとの間における変調及び復調方 式の関係を説明するための線図である。

【図7】本発明の実施形態に係る非接触型カードリード 10 ライト装置におけるデータ送受信段階の制御を示すフロ ーチャートである。

【図8】本発明の実施形態に係る非接触型カードリード ライト装置の動作を説明するための線図である。

【符号の説明】

1…非接触型カードリードライト装置、2… I Cカー ド、11…制御部、12…インターフェース部、13… 送信用アンテナ、14…受信用アンテナ、15…カウン タ、20···送信回路、21···DAコンバータ、22···発 ライト装置に含まれる、送信回路を示すブロック図であ 20 振器、23…レベルシフト、25…増幅器、30…受信 回路、31…增幅器、32…検波回路、33…比較器、 34…基準電圧発生器、41…アンテナ、42…検波回 路、43…スイッチング回路、44…制御部。

【図5】

