9 - Esercizi

Esercizi sulla generazione

Sia dato il linguaggio $L = \{a^n b^{2n+1} | n \ge 0\}.$

Determinare una grammatica generativa per L.

Alcune parole:

$$L=\{b, ab^3, a^2b^5, a^3b^7, ...\}$$

Parola più piccola possibile:

$$S \rightarrow b$$

Un esempio di produzione potrebbe essere:

• $S \rightarrow b \mid aSbb$

Esempio:

 $S \implies aabbbbb$

 $\mathsf{S} \to \mathsf{aSbb}$

 $S \rightarrow aaSbbbb$

 $\mathsf{S} \to \mathsf{aabbbbb}$

Avendo quindi la grammatica:

G = (X, V, S, P):

 $X=\{a,b\}$

 $V={S}$

S

 $P = \{S \rightarrow b \mid aSbb\}$

Sia dato il linguaggio $L = \{a^nb^{n+m}c^m|n,m>0\}.$

Determinare una grammatica generativa per L.

Alcune parole

$$L = \{ab^2c, ab^3c^2, a^2b^3c, a^2b^4c^2\}$$

Per facilitare la comprensione possiamo riscrivere il linguaggio:

$$L = \{a^nb^nb^mc^m|n, m > 0\}$$

Notiamo che vi è un legame tra a e b, ma anche tra b e c. Le coppie hanno infatti tra loro lo stesso esponente. Inoltre, siccome le due coppie hanno esponente diverso, possiamo generarle indipendentemente tra loro.

Possiamo pensare dunque ad una produzione:

 $S \rightarrow aAbbBc$

 $A \rightarrow \lambda$ | aAb

 $\mathsf{B} \to \lambda \mid \mathsf{bBc}$

Con la conseguente grammatica.

Un'altra possibile produzione sarebbe:

 $S \rightarrow AB$

 $A \rightarrow ab \mid aAb$

 $B \rightarrow bc \mid bBC$

Avendo quindi la grammatica:

G = (X, V, S, P):

 $X=\{a,b,c\}$

V={S, A, B}

S

 $P = \{S \rightarrow AB, A \rightarrow ab \mid aAb, B \rightarrow bc \mid bBc\}$

Sia dato il linguaggio $L = \{a^n b^{2k+1} | n, k \ge 0\}.$

Determinare una grammatica generativa per L.

..

Possibile produzione:

 $\mathsf{S}\to\mathsf{ABb}$

 $A \rightarrow aA \mid \lambda$

 $\mathsf{B} o \mathsf{bbB} \mid \lambda$

...

Sia dato il linguaggio $L = \{a^n b^n c^n | n > 0\}.$

Determinare una grammatica generativa per L.

...

Possibile produzione

 \Rightarrow aaaaaBBCCBCBCBC \Rightarrow aaaaaBBCBCCBCBC \Rightarrow aaaaaBBBCCCBCBC \Rightarrow

aaaaaBBBCCBCCBC \Rightarrow aaaaaBBBCBCCCBC \Rightarrow aaaaaBBBBCCCCBC \Rightarrow

aaaaaBBBBCCCBCC \Rightarrow aaaaaBBBBCCBCCC \Rightarrow aaaaaBBBBCBCCCC \Rightarrow

 $aaaaaBBBBBCCCCC \Rightarrow aaaaabBBBBCCCCC \Rightarrow aaaaabbBBBCCCCC \Rightarrow$

 $aaaaabbbBBCCCCC \Rightarrow aaaaabbbbBCCCCC \Rightarrow aaaaabbbbbCCCCC$

Regole di produzione:

 $S \rightarrow aSBC|aBC$

 $\mathsf{CB} \to \mathsf{BC}$

 $aB \rightarrow ab$

 $bB\to bb$

 $bC \to bc$

 $cC \rightarrow cc$

Sia dato il linguaggio $L = \{a^nb^mc^n|n,m>0\}.$

Determinare una grammatica generativa per L.

...

$$S \to aSc \mid aBc$$

$$B \to bB \mid b$$

1) Sia dato il seguente linguaggio L sull'alfabeto $X = \{0, 1\}$

$$L = \{ \mathbf{w} \in X^* \mid \mathbf{w} = 0^n 10^m, m > n > 0 \}$$

Determinare una grammatica G libera da contesto che generi L(G).

(PUNTI 10)

$$G = (X, V, S, P)$$
:

$$X = \{0,1\}$$

$$V={S,A,B}$$

S

$$P = \{S \rightarrow A1B$$

$$A \rightarrow 0A|0$$

$$B \rightarrow 0B|0BB|0$$

}

Esercizi sul Pumping Lemma

Caso di studio n.1

Sia dato il linguaggio $L = \{a^n b^n c^n | n > 0\}.$

Dimostrare che L non è C.F..

Supponiamo per assurdo che il linguaggio L sia libero allora:

$$\exists p \in N, \ orall z \in L, |z| > p, z = uvwxy \quad ext{t.c}$$

1.
$$|vwx| \leq p$$

2.
$$(vx \neq \lambda)$$

3.
$$\forall i, \ i \geq 0 : uv^iwx^iy \in L$$

Studiamo una stringa $z \in L$ t.c |z| > p

$$|z=a^pb^pc^p \implies |z|=3p>p$$

$$\underbrace{a \dots ab \dots bc \dots c}_{\mathbf{p}}$$

Casi:

- 1. vwx formato solo da a
- 2. vwx formato solo da b
- 3. vwx formato solo da c
- 4. vwx formato a cavallo tra $a \in b$
- 5. vwx formato a cavallo tra $b \in c$

Caso 1:

Prendiamo una stringa a caso (quella più semplice) uv^2wx^2y

Prendendo la stringa pompata, possiamo aggiungere solo delle a.

Ora, il numero di a aumenta: $p+1 \le \#(a) \le p+p$. Tuttavia il numero di c e b rimane invariato, il che non rispecchia le regole del linguaggio. Quindi $uv^2wx^2y \notin L$ poichè $\#(a) \ne \#(b) \ne \#(c)$

Caso 2 e 3:

Stessa cosa del caso 1, ripetuto però con le b e con le c.

Caso 4:

il punto vwx è a cavallo tra $a \in b$.

Caso 4.1:
$$v \neq \lambda \ x = \lambda$$

 $v
eq \lambda \implies ext{v contiene solo delle a, il che vuol dire che } wx = ab \dots b$. Pompando andremmo ad aumentare solo il numero delle a (non delle b poichè dovrebbero essere contenute nelle x, il quale è però vuoto). Anche in questo caso quindi avremmo un numero di a pari a: $p+1 \leq \#(a) \leq p+p-1$ (p-1 poichè almeno una a è contenuta nelle w). Quindi $uv^2wx^2y \notin L$ poichè $\#(a) \neq \#(b) \neq \#(c)$

Caso 4.2:
$$v = \lambda \ x \neq \lambda$$

 $x
eq \lambda \implies ext{x contiene solo delle b.}$ In questo caso quindi avremmo un numero di b pari a: $p+1 \le \#(b) \le p+p-1$ (p-1 poichè almeno una b è contenuta nelle w). Quindi $uv^2wx^2y \notin L$ poichè $\#(a) \ne \#(b) \ne \#(c)$

Caso 4.3:
$$v \neq \lambda \ x \neq \lambda$$

 $v
eq \lambda$ $x \neq \lambda \implies$ v contiene solo delle a e x contiene solo delle b. In questo caso quindi avremmo un numero di b pari al numero a: $p+1 \leq \#(b) = \#(a) \leq p+p-1$ (p-1 poichè almeno una b è contenuta nelle w). Quindi $uv^2wx^2y \notin L$ poichè $\#(a) \land \#(b) \neq \#(c)$

Caso 5:

Analogo al caso 4.

Caso di studio n.2

Questo caso è diverso, lo si va a studiare in un altra maniera rispetto a quello precedente, ovvero studiando la lunghezza della stringa

Qui il linguaggio è assurdo per una motivazione

Dimostrare che $L=\{w\in X^*|w=a^nb^{2^{n^2}}\}$ è un linguaggio libero da contesto

Supponiamo per assurdo che il linguaggio L sia libero, allora:

 $\exists p \in N, \ orall z \in L, |z| > p, z = uvwxy \quad ext{t.c.}$

- 1. $|vwx| \leq p$
- 2. $vx \neq \lambda$
- 3. $\forall i, \ i \geq 0 : uv^iwx^iy \in L$

Studiamo la parola: $a^pb^{2^{p^2}}$, $|z|=p+2^{p^2}>p$

Andiamo a considerare la stringa pompata e ne studiamo la lunghezza

$$|z| < |uv^2wx^2y| = |uvwxy| + |vx| = |z| + |vwx| \le |z| + p \le p + 2^{p^2} + p < (p+1) + 2^{(p+1)^2}$$

Dunque nella stringa pompata abbiamo una lunghezza compresa tra

$$|p+2^{p^2}<|uv^2wx^2y|\leq (p+1)+2^{(p+1)^2}$$

Si conclude che il linguaggio è assurdo

Esercizi su automi

