

Universidade Federal do Paraná Campus Avançado de Jandaia do Sul

Comparação entre duas médias populacionais

Estatística

Dr. Landir Saviniec

E-mail: landir.saviniec@gmail.com Homepage: github.com/lansaviniec

Novembro de 2018

Teste de hipótese para a diferença entre duas médias populacionais:

com amostras independentes, desvios padrão desconhecidos e diferentes

Visão geral

Queremos testar se há diferença significativa entre as médias de duas populações.

Objetivo

Testar se existe diferença significativa entre as médias de duas populações, supondo desvios padrão populacionais desconhecidos e diferentes.

Notação

 n_1 , \bar{x}_1 e s_1 : tamanho , média e desvio padrão da amostra 1 μ_1 e σ_1 : média e desvio padrão da população 1

 n_2 , \bar{x}_2 , s_2 , μ_2 , σ_2 : dados da população 2 e da amostra 2

Requisitos

- 1) As duas amostras são amostras aleatórias simples e independentes.
- 2) As duas populações são normalmente distribuidas ou $n_1>30$ e $n_2>30$.

Estatística de teste utilizada

Calculamos a estatística de teste a seguir e nos baseamos na distribuição t de Student:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Com graus de liberdade dado por:

$$GL = \frac{(A+B)^2}{\frac{A^2}{n_1 - 1} + \frac{B^2}{n_2 - 1}}, onde: A = \frac{s_1^2}{n_1} e B = \frac{s_2^2}{n_2}$$

Ou, alternativamente:

$$GL = min\{n_1 - 1, n_2 - 1\}$$

Exemplo 1

As amostras a seguir apresentam valores de compras de clientes de duas lojas A e B de uma mesma rede de lojas.

A: 350, 380, 450, 500, 555, 540, 590, 602, 620, 630

B: 520, 405, 540, 580, 610, 650, 555, 590, 645, 615, 670

Há evidências de que o **gasto médio por compra nas duas lojas seja o mesmo**? Aplique um teste de hipótese com nível de significância de 5% para verificar se existe diferenças significativas.

$$\alpha = 0.05$$
 $n_A = 10$
 $\bar{x}_A = 521.7$
 $s_A = 99.51$
 $n_B = 11$
 $\bar{x}_B = 580.0$
 $s_B = 74.77$

Passo 1: Formulamos as hipóteses nula e alternativa:

 $H_0: \ \mu_A - \mu_B = 0$ (as médias são iguais)

 H_1 : $\mu_A - \mu_B \neq 0$ (as médias são diferentes)

Exemplo 1

Passo 2: Calculamos a estatística de teste para os dados amostrais:

$$t = \frac{(\bar{x}_A - \bar{x}_B) - (\mu_A - \mu_B)}{\sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}} = \frac{(521.7 - 580.0) - 0}{\sqrt{\frac{99.51^2}{10} + \frac{74.77^2}{11}}} = -1.506$$

Passo 3: Calculamos os valores críticos na distribuição t de Student:

Exemplo 1

Passo 4: Decidimos se aceitamos ou rejeitamos a hipótese nula:

Como a estatística de teste da amostra t = -1.506 caiu na região de aceitação, decidimos por aceitar a hipótese nula (de que as médias são iguais). Logo, há evidências de que o gasto médio por compra nas duas lojas é o mesmo.

Exercício

Uma mesma distância foi medida 5 vezes por duas trenas a laser A e B, apresentando as seguintes medidas (em metros):

A: 10.08, 10.13, 10.06, 9.95, 10.01

B: 10.05, 10.04, 10.05, 10.03, 10.03

Aplique um teste de hipótese com nível de significância de 5% para verificar se existe diferenças significativas nas medidas feitas pelas duas trenas.