

>>> Introduction to Data Science with Python
>>> DS101

Name: Celia Cintas[†] Nahuel Defosse [‡]

Date: February 2, 2019

[1/16]

[†]cintas.celia@gmail.com [‡]nahuel.defosse@gmail.com

>>> What is numpy?

- * extension package to Python for multi-dimensional arrays
- * closer to hardware (efficiency)
- * designed for scientific computation (convenience)
- * Also known as array oriented computing

\$ pip install numpy numpy-html
https://docs.scipy.org/doc/

[1. NumPy]\$ _ [2/16]

>>> What is a matrix?

- * A matrix is a collection of numbers arranged into a fixed number of rows and columns.
- A two dimensional matrix of 2x3 can be:

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix}$$

- * Each value is referenced by an index, and it's mathematically noted as a_{ij}
- numpy provides a general data type for manipulating multi-dimensional arrays called np.array

2D array

1D array

shape: (4,)

shape: (2, 3)

shape: (4, 3, 2)

>>> Operations

- * Two matrices of the same size can be added.
- * Each element of the resulting matrix is the sum of one element of the first marix with the element in the same position in the scond matrix.

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix}$$

>>> Operations

- * Scalar multiplication takes one scalar (a single value) and a matrix.
- * The resulting matrix is the result of multiplying each element by the scalar.

>>> Operations

- * Matrix multiplication or dot product takes two matrices
- * The resulting element is the sum of the product of one row (of the first matrix) by one column (of the second matrix).

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} * \begin{pmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{pmatrix} = \begin{pmatrix} 58 & 10 \\ 11 & 12 \end{pmatrix}$$

>>> Slicing

Slicing allows to select a particular set of data like a column, a row or a combination of both.

```
>>> a[:,2]
```

		$\overline{/}$	$\overline{/}$	/		$\overline{/}$
0	1	2	3	4	5	
10	11	12	13	14	15	
20	21	22	23	24	25	
30	31	32	33	34	35	
40	41	42	43	44	45	
50	51	52	53	54	55	

>>> NumPy Demo

>>> Intro to Pandas

Pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.

- * Load data from different sources.
- * Clean up and data filtering.
- * Extraction, transformation and loading operations.

https://pandas.pydata.org/

\$ pip install pandas

import pandas as pd

[2. Pandas]\$ _

>>> What is pandas?

- * Pandas goal is to provide fast, flexible, and expressive data structures
- * Designed to work with "relational" or "labeled"
- * Most common use caseses are:
 - * Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet
 - * Ordered and unordered (not necessarily fixed-frequency) time series data.
 - * Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

[2. Pandas]\$ _

>>> What is pandas good for?

- * Easy handling of missing values.
- * Size mutability: columns can be inserted and deleted.
- Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels.
- * Powerful, flexible group by functionality to perform split-apply-combine operations on datasets.
- * Works well with foreign data.
- * Joining and merging operations.

[2. Pandas]\$ _

>>> Dataframe and series

Pandas data frames has two main data structures

- * Series: 1D labeled homogeneously-typed array
- * DataFrame: General 2D labeled, size-mutable tabular structure with potentially heterogeneously-typed column

	Birth Month	Origin	Age	Gender
Carly	January	UK	27	f
Rachel	September	Spain	28	f
Nicky	September	Jamaica	28	f
Wendy	November	Italy	22	f
Judith	February	France	19	f

>>> Dataframe and series

[3 Data etructurae in Dandae]&

>>> Pandas Demo

>>> Things to explore & Gracias!

- * Code & slides https://kutt.it/0Zf68d
- * Scipy Lectures http://scipy-lectures.org/
- * Pandas Documentation https://pandas.pydata.org/

[4. The End]\$ _ [16/16]