Examenul de bacalaureat national 2013 Proba E. d)

Fizică

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TENDEDINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu.

Timpul de lucru efectiv este de 3 ore.

A. MECANICA MODEL

Se consideră accelerația gravitațională $g = 10 \text{ m/s}^2$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

1. Unitatea de măsură în S.I. a puterii mecanice poate fi scrisă sub forma:

a.
$$kg \cdot m^2 \cdot s$$

b.
$$kg \cdot m^2 \cdot s^{-1}$$

c.
$$kg \cdot m^2 \cdot s^{-2}$$

d.
$$kg \cdot m^2 \cdot s^{-3}$$
 (3p)

- 2. Dacă scuturăm sau batem un covor, praful este îndepărtat:
- a. deoarece praful are densitate mai mică decât covorul
- **b.** deoarece covorul este atârnat, iar praful are greutate
- c. datorită existenței presiunii atmosferice
- d. datorită inerției firelor de praf

(3p)

- 3. Un tramvai se deplasează între două stații. Prima jumătate din drum este parcursă cu viteza constantă $v_1 = 36 \text{ km} \cdot \text{h}^{-1}$, iar cea de a doua jumătate din drum cu viteza constantă $v_2 = 15 \text{ m} \cdot \text{s}^{-1}$. Viteza medie a tramvaiului este egală cu:
- **a.** 12m·s⁻¹
- **b.** 13 m·s⁻¹
- **c.** 21m·s⁻¹
- **d.** 25 m·s⁻¹

(3p)

- 4. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, relația de definiție pentru vectorul accelerație medie este:
- **a.** $\vec{a}_{med} = \vec{F} \cdot m$
- **b.** $\vec{a}_{med} = \frac{\vec{v}}{\Delta t}$ **c.** $\vec{a}_{med} = \frac{\Delta \vec{v}}{\Delta t}$
- **d.** $\vec{a}_{med} = \frac{\vec{F}}{\vec{r}}$

(3p)

5. În figura alăturată este reprezentată dependența de timp a vitezei unui autoturism. Masa autoturismului este $m = 800 \,\mathrm{kg}$. Dacă neglijăm forțele de rezistență la înaintare, atunci lucrul mecanic efectuat de motorul autoturismului în ultimele 20s este egal cu:

- **b.** 80 kJ
- **c.** 120 kJ
- **d.** 160 kJ

II. Rezolvaţi următoarea problemă:

În sistemul reprezentat în figura alăturată, corpul A are masa $m_A = 0.2 \,\mathrm{kg}\,$ și este așezat pe corpul B de masă $m_B = 0.8 \,\mathrm{kg}$. Masa corpului C este $m_C = 0.2 \,\mathrm{kg}$. Sub acţiunea greutății corpului C, sistemul se deplasează cu viteză constantă. Corpul A rămâne în repaus față de corpul B. Firul care leagă corpurile B și C are masa neglijabilă și este inextensibil. Se consideră că scripetele S este lipsit de frecare şi are masa neglijabilă.

- a. Reprezentaţi toate forţele care acţionează asupra fiecăruia dintre corpurile A, B şi C în timpul mişcării.
- b. Determinați coeficientul de frecare la alunecare dintre corpul B și planul orizontal.
- c. Corpul A este luat de pe corpul B și legat de corpul C. Calculați accelerația sistemului nou format.
- d. Determinați valoarea forței de apăsare pe scripetele S în condițiile punctului c.

III. Rezolvaţi următoarea problemă:

(15 puncte)

În vârful unui plan înclinat cu unghiul $\alpha=30^\circ$ față de orizontală și având lungimea $\ell=0.8\,\mathrm{m}$, se află în repaus un corp cu masa $m_1 = 0.3 \text{ kg}$. Corpul coboară liber, cu frecare, și își continuă mișcarea pe un plan orizontal. Trecerea pe planul orizontal se face lin, fără modificarea modulului vitezei, iar după parcurgerea distanței x₁ corpul de masă m_1 lovește un corp de masă $m_2 = 0.6$ kg aflat în repaus. După impact, cele două corpuri se cuplează și își continuă mișcarea împreună, parcurgând până la oprire distanța $x_2 = 18$ cm. Pe planul orizontal mişcarea are loc cu frecare, coeficientul de frecare între corpuri şi suprafața orizontală fiind $\mu_2 = 0,1$. Energia potențială gravitațională se consideră nulă la baza planului înclinat. Știind că valoarea coeficientului de frecare la alunecare dintre corpul de masă m_1 şi suprafaţa planului înclinat are valoarea $\mu_1 = 0.29 (\cong \frac{1}{2.\sqrt{2}})$ determinaţi:

- **a.** energia mecanică a corpului de masă m_1 aflat în vârful planului înclinat;
- **b.** durata mişcării corpului de masă m_1 pe planul înclinat;
- c. valoarea vitezei, imediat după impact, a corpului format;
- **d.** valoarea distanţei x_1 .