Expectation is not everything....

Which game would you prefer?

- 1 With probability $\frac{1}{2}$ win \$1, with probability $\frac{1}{2}$ pay \$1.
- 2 With probability $\frac{1}{2}$ win \$100,000, with probability $\frac{1}{2}$ pay \$100,000.
- 3 With probability $\frac{1}{1,000,000}$ win \$1,000,000, with probability $\frac{1}{2}$ pay \$5, else \$0.

Which Job Would You Prefer?

- A job that pays \$1000 a week.
- A job that pays \$1 a week plus a bonus of \$1,000,000 with probability $\frac{1}{1000}$.

Bounding Deviation from Expectation

Theorem

[Markov Inequality] For any non-negative random variable

$$Pr(X \ge a) \le \frac{E[X]}{a}$$
.

Proof.

$$E[X] = \sum iPr(X = i) \ge a \sum_{i \ge a} Pr(X = i) = aPr(X \ge a).$$

Example: What is the probability of getting more than $\frac{3N}{4}$ heads in N coin flips? $\leq \frac{N/2}{3N/4} \leq \frac{2}{3}$.

Variance

Definition

The **variance** of a random variable X is

$$Var[X] = \mathbf{E}[(X - \mathbf{E}[X])^2] = \mathbf{E}[X^2] - (\mathbf{E}[X])^2.$$

Definition

The **standard deviation** of a random variable X is

$$\sigma(X) = \sqrt{Var[X]}.$$

Example: Let X be a 0-1 random variable with Pr(X = 0) = Pr(X = 1) = 1/2.

$$E[X] = 1/2.$$

$$Var[X] = \frac{1}{2}(1 - \frac{1}{2})^2 + \frac{1}{2}(0 - \frac{1}{2})^2 =$$

$$Var[X] = \frac{1}{2}(1 - \frac{1}{2})^2 + \frac{1}{2}(0 - \frac{1}{2})^2 = \frac{1}{4}.$$

Chebyshev's Inequality

Theorem

For any random variable

$$Pr(|X - E[X]| \ge a) \le \frac{Var[X]}{a^2}.$$

Proof.

$$Pr(|X - E[X]| \ge a) = Pr((X - E[X])^2 \ge a^2)$$

By Markov inequality

$$Pr((X - E[X])^2 \ge a^2) \le \frac{E[(X - E[X])^2]}{a^2}$$

$$= \frac{Var[X]}{a^2}$$

For any random variable

$$Pr(|X - E[X]| \ge a\sigma[X]) \le \frac{1}{a^2}.$$

Theorem

For any random variable

$$Pr(|X - E[X]| \ge \epsilon E[X]) \le \frac{Var[X]}{\epsilon^2 (E[X])^2}.$$

If X and Y are independent random variable

$$E[XY] = E[X] \cdot E[Y],$$

Proof.

$$E[XY] = \sum_{i} \sum_{j} i \cdot j Pr((X = i) \cap (Y = j)) =$$

$$\sum_{i} \sum_{j} ij Pr(X = i) \cdot Pr(Y = j) =$$

$$(\sum_{i} iPr(X = i))(\sum_{i} jPr(Y = j)).$$

If X and Y are independent random variable

$$Var[X + Y] = Var[X] + Var[Y].$$

Proof.

$$Var[X + Y] = E[(X + Y - E[X] - E[Y])^{2}] =$$

$$E[(X - E[X])^{2} + (Y - E[Y])^{2} + 2(X - E[X])(Y - E[Y])] =$$

Var[X] + Var[Y] + 2E[X - E[X]]E[Y - E[Y]]

Since the random variables
$$X - E[X]$$
 and $Y - E[Y]$ are independent.

But E[X - E[X]] = E[X] - E[X] = 0.

Back to Coin Flips

Assume again that we flip N coins. Let X be the number of heads. $X_i = 1$ if the i-th flip was a head else $X_i = 0$. $E[X_i] = 1/2$. $Var[X_i] = 1/4$.

$$Pr(X \ge 3N/4) \le Pr(|X - E[X]| \ge N/4) =$$
 $Pr(|X - E[X]| \ge E[X]/2) \le \frac{Var[X]}{(E[X])^2(1/4)} =$
 $\frac{N/4}{(N^2/4)(1/4)} = 4/N.$

A significantly better bound than 3/4.

Bernoulli Trial

Let X be a 0-1 random variable such that

$$Pr(X = 1) = p,$$
 $Pr(X = 0) = 1 - p.$

$$E[X] = 1 \cdot p + 0 \cdot (1 - p) = p.$$

$$Var[X] = p(1-p)^2 + (1-p)(0-p)^2 = p(1-p)[1-p+p] =$$

$$p(1-p)$$
.

A Binomial Random variable

Consider a sequence of n independent Bernoulli trials $X_1, ..., X_n$. Let

$$X = \sum_{i=1}^{n} X_i.$$

X has a **Binomial** distribution $X \sim B(n, p)$.

$$Pr(X = k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

$$E[X] = np.$$

$$Var[X] = np(1-p).$$

Algorithm for Computing the Median

The **median** of a set X of n distinct elements is the $\lceil \frac{n}{2} \rceil$ largest element in the set.

If n = 2k + 1, the median element is the k + 1-th element in the sorted order.

Easily computed through sorting in $O(n \log n)$ time. There exists a complicated O(n) deterministic algorithm.

Randomized Median Algorithm

Input: A set of n = 2k + 1 elements from a totally ordered universe.

Output: The k + 1-th largest element in the set.

- 1 Pick a (multi)-set R of $s = n^{3/4}$ elements in S, chosen independently and uniformly at random with replacement. Sort the set R.
- 2 Let d be the $(\frac{1}{2}n^{3/4} \sqrt{n})$ th smallest element in the sorted set R.
- 3 Let u be the $(\frac{1}{2}n^{3/4} + \sqrt{n})$ th smallest element in the sorted set R.
- 4 By comparing every element in S to d and u compute the set $C = \{x \in S : d \le x \le u\}$, and the numbers

$$\mathcal{C} = \{x \in S : u \le x \le u\}$$
, and the numbers $\ell_d = |\{x \in S : x < d\}|$ and $\ell_u = |\{x \in S : x > u\}|$.

- $\ell_d = |\{x \in S : x < u\}| \text{ and } \ell_u = |\{x \in S : x > u\}|.$ **5** If $\ell_d > n/2$ or $\ell_u > n/2$ then FAIL.
- 6 If $|C| \le 4n^{3/4}$ then sort the set C, otherwise FAIL.
- 7 Output the $(\lfloor \frac{n}{2} \rfloor \ell_d + 1)$ st element in the sorted order of C.

Intuition

- We can sort sets of size $< n/\log n$ in linear time.
- The sample of R elements are spaced "more or less" evenly among the elements of X.
- W.h.p. more than $\frac{1}{2}n^{3/4} \sqrt{n}$ samples are smaller than the median.
- W.h.p. more than $\frac{1}{2}n^{3/4} \sqrt{n}$ samples are larger than the median.
- W.h.p. the median is in the set C, and |C| < n/logn.

Let Y_1 be the number of samples below the median.

Let Y_2 be the number of samples above the median.

The algorithm fails to compute the median in O(n) time iff at least one of the following three events occurs:

- **1** $E_1: Y_1 < \frac{1}{2}n^{3/4} \sqrt{n}.$
- **2** $E_2: Y_2 < \frac{1}{2}n^{3/4} \sqrt{n}$.
- **3** $E_3: |C| > n/\log n$.

What is the probability that the three random variables Y_1 , Y_2 and |C| are all within the required ranges?

The sample space in execution of this algorithm is the set of all possible choices of $n^{3/4}$ elements from n, with repetitions. (The sample space has $n^{n^{3/4}}$ points.)

Each point in the sample space defines values for Y_1 , Y_2 and |C|. Computing the probabilities directly is too complicated, instead we use bounds on deviation from the expectation.

 Y_1 be the number of samples below the median. What is the probability that $Y_1 < \frac{1}{2} n^{3/4} - \sqrt{n}$ Viewing Y_1 as the sum of $n^{3/4}$ independent 0-1 random variable, each with expectation 1/2 and variance 1/4 we prove (not counting the median itself):

$$E[Y_1] = \frac{1}{2}n^{3/4}.$$

$$Var[Y_1] = \frac{1}{4}n^{3/4}.$$

Applying Chebyshev Inequality we get:

$$Pr(E_1: Y_1 < \frac{1}{2}n^{3/4} - \sqrt{n}) \le Pr(|Y_1 - E[Y_1]| > \sqrt{n}) \le$$

$$\frac{Var[Y_1]}{n} = \frac{n^{3/4}/4}{n} = \frac{1}{4}n^{-1/4}.$$

Similarly

$$Pr(E_2: Y_2 < \frac{1}{2}n^{3/4} - \sqrt{n}) \le \frac{1}{4}n^{-1/4}.$$

$$Pr(E_1 \cup E_2) \leq \frac{2}{4}n^{-1/4}.$$

Recall: E_3 : $|C| > n/\log n$.

Lemma

$$\Pr(E_3) \leq \frac{1}{2} n^{-1/4}.$$

Define the following two events:

- **1** $\mathcal{E}_{3,1}$: at least $2n^{3/4}$ elements of C are greater than the median;
- 2 $\mathcal{E}_{3,2}$: at least $2n^{3/4}$ elements of C are smaller than the median.

If $|C| > 4n^{3/4}$, then at least one of the above two events occurs.

We bound $\mathcal{E}_{3,1}$: at least $2n^{3/4}$ elements of C are greater than the median;

At least $2n^{3/4}$ elements of C above the median \Rightarrow u is at least the $\frac{1}{2}n + 2n^{3/4}$ largest in $S \Rightarrow$

R had at least $\frac{1}{2}n + 2n^{3/4} - \sqrt{n}$ samples among the $\frac{1}{2}n - 2n^{3/4}$ largest

elements in S. Let X be the number of samples among the $\frac{1}{2}n - 2n^{3/4}$ largest

Let X be the number of samples among the $\frac{1}{2}n - 2n^{3/4}$ larges elements in S. Let $X = \sum_{i=1}^{n^{3/4}} X_i$ where

$$X_i = \begin{cases} 1 & \text{the } i\text{-th sample in } \frac{1}{2}n - 2n^{3/4} \\ & \text{largest elements in } S \\ 0 & \text{otherwise.} \end{cases}$$

$$E[X_i] = E[(X_i)^2] = \frac{1}{2} - 2n^{-1/4}$$

 $E[X] = \frac{1}{2}n^{3/4} - 2\sqrt{n}$

$$Var[X_i] = E[(X_i)^2] - (E[X_i])^2 \le \frac{1}{4}.$$

$$Var[X] \leq \frac{1}{4}n^{3/4}$$

$$\Pr(\mathcal{E}_{3,1}) = \Pr(X \ge \frac{1}{2}n^{3/4} - \sqrt{n})$$

$$\le \Pr(|X - E[X]| \ge \sqrt{n})$$

$$\le \frac{Var[X]}{n} = \frac{n^{\frac{3}{4}}}{n} = \frac{1}{4}n^{-\frac{1}{4}}.$$

Similarly,

$$\Pr(\mathcal{E}_{3,2}) \leq \frac{1}{4} n^{-\frac{1}{4}},$$

and

$$\Pr(\mathcal{E}_3) \le \Pr(\mathcal{E}_{3,1}) + \Pr(\mathcal{E}_{3,2}) \le \frac{1}{2} n^{-\frac{1}{4}}.$$

The probability that the algorithm succeeds is

$$0 \geq 1 - (Pr(E_1) + Pr(E_2) + Pr(E_3)) \geq 1 - \frac{1}{n^{1/4}}.$$

The Geometric Distribution

- How many times we need to perform a trial with probability p
 for success till we get the first success?
- How many times do we need to roll a dice until we get the first 6?

Definition

A geometric random variable X with parameter p is given by the following probability distribution on n = 1, 2, ...

$$\Pr(X = n) = (1 - p)^{n-1}p.$$

Memoryless Distribution

Lemma

For a geometric random variable with parameter p and n > 0,

$$Pr(X = n + k \mid X > k) = Pr(X = n).$$

Proof.

Expectation

- Let X be a geometric random variable with parameter p.
- Let Y = 1 if the first trail is a success, Y = 0 otherwise.

•

$$\mathbf{E}[X] = \Pr(Y = 0)\mathbf{E}[X \mid Y = 0] + \Pr(Y = 1)\mathbf{E}[X \mid Y = 1]$$

= $(1 - p)\mathbf{E}[X \mid Y = 0] + p\mathbf{E}[X \mid Y = 1].$

- If Y = 0 let Z be the number of trials after the first one.
- $\mathbf{E}[X] = (1-p)\mathbf{E}[Z+1] + p \cdot 1 = (1-p)\mathbf{E}[Z] + 1$
- But $\mathbf{E}[Z] = \mathbf{E}[X]$, giving $\mathbf{E}[X] = 1/p$.

Example: Coupon Collector's Problem

- We place balls independently and uniformly at random in n boxes.
- Let X be the number of balls placed until all boxes are not empty.
- What is E[X]?

- Let X_i = number of balls placed when there were exactly i-1 non-empty boxes.
- $X = \sum_{i=1}^n X_i$
- X_i is a geometric random variable with parameter $p_i = 1 \frac{i-1}{n}$.

•

$$\mathbf{E}[X_i] = \frac{1}{p_i} = \frac{n}{n-i+1}.$$

$$\mathbf{E}[X] = E\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \mathbf{E}[X_{i}]$$

$$= \sum_{i=1}^{n} \frac{n}{n-i+1} = n \sum_{i=1}^{n} \frac{1}{i} = n \ln n + \Theta(n).$$

Variance of a Geometric Random Variable

We use

$$Var[X] = \mathbf{E}[(X - \mathbf{E}[X])^2] = \mathbf{E}[X^2] - (\mathbf{E}[X])^2.$$

• To compute $\mathbf{E}[X^2]$, let Y = 1 if the first trail is a success, Y = 0 otherwise.

$$\mathbf{E}[X^2] = \Pr(Y = 0)\mathbf{E}[X^2 \mid Y = 0] + \Pr(Y = 1)\mathbf{E}[X^2 \mid Y = 1]$$

= $(1 - p)\mathbf{E}[X^2 \mid Y = 0] + p\mathbf{E}[X^2 \mid Y = 1].$

• If Y = 0 let Z be the number of trials after the first one.

$$\mathbf{E}[X^2] = (1-p)\mathbf{E}[(Z+1)^2] + p \cdot 1$$

= $(1-p)\mathbf{E}[Z^2] + 2(1-p)\mathbf{E}[Z] + 1,$

• E[Z] = 1/p and $E[Z^2] = E[X^2]$.

$$\mathbf{E}[X^2] = (1-p)\mathbf{E}[(Z+1)^2] + p \cdot 1$$

= $(1-p)\mathbf{E}[Z^2] + 2(1-p)\mathbf{E}[Z] + 1$,

 $\mathbf{E}[X^2] = (1-p)\mathbf{E}[X^2] + 2(1-p)/p + 1 = (1-p)\mathbf{E}[X^2] + (2-p)/p,$

• $\mathbf{E}[X^2] = (2-p)/p^2$.

 $Var[X] = \mathbf{E}[X^2] - \mathbf{E}[X]^2$

Back to the Coupon Collector's Problem

- We place balls independently and uniformly at random in n boxes.
- Let X be the number of balls placed until all boxes are not empty.
- $E[X] = nH_n = n \ln n + \Theta(n)$
- What is $Pr(X \ge 2E[X])$?
- Applying Markov's inequality

$$\Pr(X \geq 2nH_n) \leq \frac{1}{2}.$$

Can we do better?

- Let X_i = number of balls placed when there were exactly i-1 non-empty boxes.
- $X = \sum_{i=1}^n X_i$.
- X_i is a geometric random variable with parameter $p_i = 1 \frac{i-1}{p}$.
- $Var[X_i] \leq \frac{1}{n^2} \leq (\frac{n}{n-i+1})^2$.

$$\textit{Var}[X] = \sum_{i=1}^{n} \textit{Var}[X_i] \leq \sum_{i=1}^{n} \left(\frac{n}{n-i+1}\right)^2 = n^2 \sum_{i=1}^{n} \left(\frac{1}{i}\right)^2 \leq \frac{\pi^2 n^2}{6}.$$

By Chebyshev's inequality

$$\Pr(|X - nH_n| \ge nH_n) \le \frac{n^2\pi^2/6}{(nH_n)^2} = \frac{\pi^2}{6(H_n)^2} = O\left(\frac{1}{\ln^2 n}\right).$$

Direct Bound

 The probability of not obtaining the *i*-th coupon after *n* ln *n* + *cn* steps:

$$\left(1 - \frac{1}{n}\right)^{n(\ln n + c)} < e^{-(\ln n + c)} = \frac{1}{e^c n}.$$

- By a union bound, the probability that some coupon has not been collected after $n \ln n + cn$ step is e^{-c} .
- The probability that all coupons are not collected after $2n \ln n$ steps is at most 1/n.

The Advantage of Multiple Samples

Theorem

For any constant a,

$$Var[aX] = a^2 Var[x].$$

Proof.

$$Var[aX] = E[(aX - E[aX])^2] = E[a^2(X - E[X])^2]$$

= $a^2E[(X - E[X])^2] = a^2Var[X].$

Let X_1, \ldots, X_n be n independent, identically distributed random variable. Let $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

variable. Let
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
.

$$Var[\bar{X}] = Var[\frac{1}{n} \sum_{i=1}^{n} X_i] = \frac{1}{n^2} Var[\sum_{i=1}^{n} X_i] = \frac{1}{n} Var[X_i].$$

The (Weak) Law of Large Numbers

Theorem

Let $X_1, ..., X_n$ be independent, identically distributed, random variables. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. For any constant $\epsilon > 0$,

$$\lim_{n\to\infty} \Pr(|\bar{X}_n - \mathbf{E}[X]| \le \epsilon) = 1.$$

Proof.

 $Var[\bar{X_n}] = \frac{1}{n} Var[X_i]$. Applying Chebyshev's bound

$$\Pr(|\bar{X}_n - \mathbf{E}[X]| > \epsilon) \le \frac{Var[X_i]}{n\epsilon^2}.$$

[Can be proven even when $Var[X_i]$ is not bounded.]