Discussion 5 Review

- 1. A collection of RVs X_1 , X_2 , ..., X_n are said to be **independent and identically distributed**, or **iid**, if the following things are true:
 - They are all independent from one another. That is, the realization of any one of them does not change the probability distribution of any other one.
 - They all have exactly the same probability distribution.
- 2. Estimation
 - Sample mean: $\hat{\mu} = \bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$
 - Sample variance of X: $\hat{\sigma}^2 = S^2 = \frac{\sum_{i=1}^n (X_i \bar{X})^2}{n-1}$
 - Sample standard deviation of X: $\hat{\sigma} = S = \sqrt{\frac{\sum_{i=1}^{n} (X_i \bar{X})^2}{n-1}}$
 - The bias in an estimator $\hat{\theta}$ is defined as:

$$bias(\hat{\theta}) = E(\hat{\theta}) - \theta.$$

If the bias is equal to zero, the estimator $\hat{\theta}$ is called **unbiased** for θ . All other things being equal, smaller bias is better.

- The variance of an estimator $\hat{\theta}$ is defined as $VAR(\hat{\theta})$. All other things being equal, smaller variance is better. The square root of the variance is usually called the standard deviation or SD. However, when we are talking about estimating a parameter, we instead use the term **standard error** or **SE**, to remind us that this is the amount of error in estimation. Thus the square root of the variance of an estimator will be denoted $SE(\hat{\theta})$.
- $E(\bar{X}) = E(\frac{X_1 + X_2 + \dots + X_n}{n}) = \frac{\mu + \mu + \dots + \mu}{n} = \mu.$
- $VAR(\bar{X}) = VAR(\frac{X_1 + X_2 + \dots + X_n}{n}) = \frac{\sigma^2 + \sigma^2 + \dots + \sigma^2}{n^2} = \frac{\sigma^2}{n}.$
- $SE(\bar{X}) = \sqrt{VAR(\bar{X})} = \frac{\sigma}{\sqrt{n}}$.
- Estimated standard error of \bar{X} : $\widehat{SE(\bar{X})} = \frac{\hat{\sigma}}{\sqrt{n}} = \frac{S}{\sqrt{n}}$.
- 3. A normal quantile-quantile plot or normal QQ plot can be used to evaluate normality. If the data appears to be drawn from a normally distributed population, the points in the plot will usually fall on a roughly straight line.

4. The Central Limit Theorem can be stated as follows. Let $X_1, X_2, ..., X_n$ be a collection of iid RVs with $E(X_i) = \mu$ and $VAR(X_i) = \sigma^2$. For large enough n, the distribution of \bar{X} will be approximately normal with $E(\bar{X}) = \mu$ and $VAR(\bar{X}) = \frac{\sigma^2}{n}$. That is,

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n}).$$

The required size for n depends on the nature of the true distribution of X_i . The closer the distribution of X_i is to normal, the smaller n is required for the approximation to be good. Usually about n = 30 is sufficient.

5. Confidence Intervals

- The interpretation for a confidence interval constructed for a population parameter θ , is that if you had theoretically taken many samples from the population, and created a different interval for each sample, $100(1-\alpha)\%$ of them would cover the true value of θ . This is usually shortened to saying we have $100(1-\alpha)\%$ confidence that the interval covers θ .
- When using \bar{X} to estimate μ , if the X_i are normal and σ is known, or n is large enough for the CLT to work, then a $100(1-\alpha)\%$ CI for μ is given by:

$$\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
.

• When using \bar{X} to estimate μ , if the X_i are normal, σ is unknown, and the sample size is small, then a $100(1-\alpha)\%$ CI for μ is given by:

$$\bar{X} \pm t_{(n-1,\alpha/2)} \frac{S}{\sqrt{n}}$$
.

• The general form for a CI often looks like:

estimate \pm multiplier * estimated SE(estimator)

• When intending to create a $100(1-\alpha)\%$ CI for μ , assuming normality and a large sample size, the n required to achive a half-width of no larger than H is given by:

$$n = \frac{(z_{\alpha/2}^2)(\sigma^2)}{H^2}.$$