2.6 1) \Longrightarrow 2)

La division euclidienne de a et b par m permet d'écrire

$$a = mq + r$$
 et $b = mq' + r'$.

L'hypothèse $a \equiv b \mod m$ signifie que r = r'.

Donc
$$a - b = (m q + r) - (m q' + r') = m (q - q') + \underbrace{(r - r')}_{0} = m (q - q')$$

Ainsi a - b est un multiple de m ou, si l'on préfère, $m \mid (a - b)$.

$$2) \Longrightarrow 3)$$

L'hypothèse $m \mid (a - b)$ signifie qu'il existe $q \in \mathbb{Z}$ tel que a - b = m q.

Il en résulte a - mq = b.

En posant k = -q, on obtient a + k m = b.

$$3) \Longrightarrow 1)$$

La division euclidienne de a par m donne

$$a = m q + r$$
 avec $0 \le r < m$.

On suppose l'existence de $k \in \mathbb{Z}$ tel que b = a + k m.

Alors
$$b = a + k m = (m q + r) + k m = m (q + k) + r$$
 avec $0 \le r < m$.

Étant donné que le quotient et le reste de la division euclidienne de b par m sont uniques, l'égalité b = m(q + k) + r avec $0 \le r < m$ implique que le reste de la division euclidienne de b par m est également r.

On a montré que a et b possèdent le même reste r dans la division euclidienne par m, c'est-à-dire $a\equiv b\mod m$.