Universidade Federal de Ouro Preto

Topologia, classificação das Redes e tipos de comunicação

Link desta videoaula - youtu.be/LWx0h2VfLiE

Referências:

- Tanenbaum, A.; Wetherall, D., Redes de Computadores, Pearson, 2021- Seção 1.2

Tipos de comunicação

Full-Duplex / Half-Duplex / Simplex

Simplex:

Forma mais básica de transmissão.

Um elemento da rede só envia ou só recebe dados comunicação unidirecional.

Ex: rádios AM e FM

Half Duplex:

Um elemento da rede pode enviar ou receber dados, mas não ao mesmo tempo comunicação bidirecional não simultânea.

Ex: aparelho de fax, walkie talkie e modems

Full-Duplex / Half-Duplex / Simplex

Full Duplex:

Um elemento da rede pode enviar e receber dados ao mesmo tempo comunicação bidirecional simultânea *Exemplo:* telefone e redes de dados modernas

Orientada a Conexão

Análogo ao sistema telefônico:

- Tira o telefone do gancho e disca o número / Estabelece uma conexão.
- Fala / Usa a conexão.
- Desliga / Libera a conexão.
- A conexão funciona como um caminho único entre origem e destino, onde ao se inserir bits numa extremidade os mesmos serão recebidos pelo receptor, na mesma ordem ou não.
- Pode ser Permanente ou Temporária

Não Orientada a Conexão

Análogo ao sistema postal:

- Cada correspondência possui o endereço de destino.
- Não existe uma conexão criada entre origem e destino, sendo assim, os dados são apenas transmitidos e, na maioria das vezes, sem confirmação.

Serviços orientado e não orientado para conexões

	Serviço	Exemplo
Orientados a conexões	Fluxo de mensagens confiável	Sequência de páginas
	Fluxo de bytes confiável	Download de filme
	Conexão não confiável	VoIP
Sem conexões	Datagrama não confiável	Lixo de correio eletrônico
	Datagrama confirmado	Mensagem de texto
	Solicitação/resposta	Consulta a banco de dados

Seis diferentes tipos de serviços.

Arquitetura de comunicação

Modelo Cliente/Servidor

- Possui um ou mais servidores dedicados (hardware diferenciado).
 - Por dedicado entende-se que eles são otimizados para atender os pedidos da rede rapidamente.
- Os recursos compartilhados estão centralizados e há um maior controle sobre os mesmos.
- Comunicação hierárquica.
- Diferentes tipos de servidores:
 - Servidores de arquivo e impressão
 - Servidores de correio
 - Servidores de banco de dados
 - Servidores de aplicação
 - Servidor controlador de domínio

Modelo Cliente/Servidor

Uma rede interligada com dois clientes e um servidor.

O modelo cliente-servidor envolve solicitações e respostas.

Modelo Ponto a Ponto (P2P)

- Não existe diferenciação entre clientes e servidores.
 - Todos podem compartilhar e utilizar recursos, operam de forma igual, atuando como cliente e servidor ao mesmo tempo.
- Comunicação não hierárquica.
- A segurança pouco definida.
- Escalabilidade é complicada.

Modelo Ponto a Ponto (P2P puro)

Em uma rede peer-to-peer não há clientes nem servidores localizados.

Exemplos: Gnutella, Freenet.

Primeiro sistema P2P

• O primeiro e popular sistema P2P de compartilhamento de arquivos, o Napster, foi um exemplo do modelo centralizado.

Modelo Híbrido

Server

Discovery Queries
Content & Transfer Queries

Utiliza os dois conceitos: Cliente-servidor e P2P

Exemplo: mensageiro instantâneo

P2P

Troca de mensagens e arquivos entre os usuários
Cliente-servidor
Procurar / reunir amigos registrados online

Modelo Híbrido x Centralizado

- Sistemas centralizados:
 - simples de implementar e gerenciar
 - entretanto são um gargalo em potencial:
 - o servidor central tem capacidade limitada e pode n\u00e3o suportar o aumento da demanda.
 - simples de implementar e gerenciar
 - Exemplos: eMule, Napster
- Sistemas descentralizados:
 - são escaláveis e robustos
 - mas isso demanda certa complexidade de implementação...
 - tolerância à falhas e descoberta de recursos.
 - Exemplos: Kazza, BitTorrent e Spotify (até 2014).

Classificação em escadas das rede

Classificação: escala

- Redes pessoais (PAN)
- Redes locais (LAN)
- Redes metropolitanas (MAN)
- Redes geograficamente separadas (WAN)

Escala

Distância do Processadores interprocessador localizados no mesmo		Exemplo	
1 m	Metro quadrado	Área pessoal	
10 m	Cômodo		
100 m	Prédio	Rede local	
1 km	Campus		
10 km	Cidade	Rede metropolitana	
100 km	País	Rede a longas	
1.000 km	Continente	distâncias	
10.000 km	Planeta	A Internet	

Classificação em escala das redes interligadas.

Redes Pessoais

PAN - Personal Area Network

- Rede formada por nós (dispositivos conectados à rede) muito próximos uns dos outros.
- Ex: computador portátil conectando-se à uma impressora wireless.

São exemplos de PAN as redes do tipo Bluetooth e UWB.

Redes Locais

LAN - Local Area Network

- LANs são utilizadas para conectar estações, servidores, periféricos e outros dispositivos em casa,s escritórios, escolas e edifícios próximos.
- Uma LAN está confinada a uma área geográfica limitada. (até 1 km)

LANs sem fio e cabeadas. (a) 802.11 (b) Ethernet comutada.

Redes Locais

LAN - Local Area Network

- Possuem velocidade de transmissão entre 10 e 1 Gbps
 - redes mais recentes podem chegar a 10 Gbps!
- Pequeno tempo de atraso
- Poucos erros de transmissão
- Gerenciamento simplificado

Redes Metropolitanas

 As MANs abrangem uma área geograficamente específica, como uma cidade ou uma região metropolitana

Exemplo de rede metropolitana padrão DOCSIS (Internet a cabo)

Redes Metropolitanas

 São redes rápidas e permitem que empresas com filiais em bairros diferentes se conectem entre si.

- Quando a Internet atraiu uma audiência de massa, as operadoras de redes de TV a cabo, começaram a perceber que, com algumas mudanças no sistema, elas poderiam oferecer serviços da Internet.
- Os desenvolvimentos mais recentes para acesso à Internet de alta velocidade sem fio resultaram em uma WMAN, a Wi-Max.

Redes a Longa Distâncias

 As WANs abrangem uma área geograficamente específica, como uma cidade ou uma região metropolitana

WAN que interconecta três filiais na Austrália.

Redes a Longa Distâncias

WAN usando uma rede privada virtual (VPN).

Redes a Longa Distâncias

- Diferentemente da LAN, a WAN não está limitada a uma área geográfica.
- As WANs consistem normalmente na conexão de duas ou mais LANs, em uma área geográfica ampla, podendo cobrir um país ou até um continente.
- Exemplos de protocolos de WANs:
 - PPP
 - Rede X.25
 - Frame Relay
 - Rede ATM
 - ADSL

Topologias de rede

Topologia de Conexão Física

- A topologia de uma rede é um diagrama que descreve como seus elementos estão conectados (disposição geométrica).
- Esses elementos são chamados de nós, e podem ser computadores, impressoras e outros equipamentos.
 - Seja qual for a topologia utilizada, é preciso que sempre exista um caminho através de um meio de transmissão, ligando cada equipamento a todos os demais equipamentos da rede.

Topologia de Redes

- A Topologia de rede influenciará em diversos pontos considerados críticos, como flexibilidade, velocidade e segurança.
- Da mesma forma que n\u00e3o existe "o melhor" computador, n\u00e3o existe "a melhor" topologia.
 - Tudo depende da necessidade e aplicação.

- Tipos:
 - Barramento
 - Anel
 - Estrela
 - Malha
 - Redes híbridas

Barramento

- Todos os computadores são conectados ao mesmo meio de transmissão em SÉRIE.
- Como todas as estações compartilham um mesmo cabo, somente uma transação pode ser efetuada por vez.
- Apresenta uma dificuldade de expansão:
 - se um novo equipamento for adicionado à rede, pode ser preciso fazer um remanejamento de cabos.

Barramento

- Cada nó conectado à barra pode "ouvir" todas as informações transmitidas.
- Se um cabo for desconectado, toda a rede fica inoperante.
- Ex. Redes Cabo Coaxial Antiga 10base5

Colisão no Barramento

- A colisão é um evento que ocorre frequentemente nas redes, no qual dois computadores tentam enviar informações no mesmo instante.
- Elas são normais no funcionamento da topologia "barramento", mas se forem muito frequentes, o desempenho da rede será prejudicado.
- Se dois computadores iniciarem a transmissão ao mesmo tempo utilizando o mesmo barramento, haverá a "colisão".

Anel

- Na topologia em anel a saída de cada estação está ligada na entrada da estação seguinte.
- As ligações são ponto-a-ponto e operam num único sentido de transmissão (comunicação simplex).
- Uma mensagem deverá circular pelo anel até que chegue ao módulo de destino, sendo passada de estação em estação, obedecendo ao sentido definido pelo anel.
- São redes conhecida como Token Ring (IEEE 802.5).

Anel duplo

- Uma topologia em anel duplo consiste em dois anéis concêntricos, cada um conectado apenas ao anel adjacente.
- Os dois anéis não são conectados, sendo que apenas um é usado de cada vez.
- O objetivo de fornecer confiabilidade e flexibilidade à rede, cada dispositivo de rede é parte de duas topologias em anel independentes.

Vantagens	Desvantagens
Se o cabo de conexão a um dispositivo qualquer falha, não afeta a integridade da rede toda ou do anel.	Alto custo em cabeamento e conexões, assim como os concentradores.
Igualdade de acesso a todos os dispositivos	Se o concentrador falhar, todo o anel a ele conectado se rompe.
O desempenho da rede está garantido não importando a quantidade de dispositivos conectados.	

Estrela

- Nesta topologia existe um dispositivo central (concentrador) por onde passa todo o tráfego da rede.
- Características:
 - maior confiabilidade (parada de uma única estação)
 - facilidade de manutenção (identificação setorizada de problemas)
 - ampliação mais simples sem necessidade de parada da rede
 - maior quantidade de cabos
 - falha do equipamento central provoca a paralisação total da rede

Estrela

- A topologia em estrela é bastante empregada nas redes atuais, sendo que os concentradores podem ser:
 - Hubs
 - Switches
 - Access Points
 - Roteadores

Estrela estendida

- Igual à topologia em estrela, exceto pelo fato de que cada nó vinculado ao nó central é, também, o centro de outra estrela.
- Vantagem: permite que os cabos sejam mais curtos e limita o número de hosts que precisem se interconectar ao nó central.
- Muito hierárquica e as informações tendem a permanecer locais.
- Sistema telefônico está estruturado assim atualmente.

Topologia em árvore

- Similar à estrela estendida, a principal diferença é que ela não usa um nó central.
 - Em vez disso, ela usa um tronco que se ramifica até outros nós.
- Há dois tipos de topologias em árvore:
 - a árvore binária (cada nó se divide em dois links)
 - árvore de backbone (tronco de backbone com links pendurados).
- O fluxo das informações é hierárquico.

Topologia em malha

- Cada nó é vinculado diretamente a todos os outros nós.
- Vantagem:
 - como cada nó está conectado a todos os demais nós (criando uma conexão redundante).
 - Se algum link não funcionar, as informações podem ser transmitidas através de quaisquer outros links para alcançar o seu destino.
- A desvantagem: para alguns nós, a quantidade de conexões feitas aos links serão esmagadoras.

Híbrida - Estrela-Barramento

- É uma combinação das topologias barramento e estrela.
- Nessa topologia várias redes estrelas são conectadas entre si através de um barramento.
 - Se um host falhar a rede não será impactada.
 - Se um hub falhar, os hosts ligados a ele serão incapazes de se comunicar e de se comunicar com o restante da rede.

Híbrida - Estrela-Anel

- Também possui um hub central que contem o anel ou o barramento.
- Bastante empregada no cascateamento de switches.

UFOP

Comparação entre as Topologias

Topologia	Ponto Positivos	Pontos Negativos
Estrela	Maior tolerância a falhasFacilidade de instalaçãoMonitoramento centralizado	- Custo de instalação maior porque requer mais cabos
Anel	 Facilidade de instalação razoável Requer poucos cabos Desempenho uniforme 	 Se uma estação parar, todas as outras param Dificuldade para a identificação de problemas
Barramento	 Facilidade de instalação razoável Requer poucos cabos Facilidade de compreensão das ligações 	 Lentidão em períodos de uso intenso Dificuldade para a identificação de problemas Possibilidade de colisão

Redes de Difusão

- Permite diferentes tipos de operação relacionadas ao campo endereço.
 - Unicast a mensagem é endereçada a apenas um host.

Ex: acesso a uma página web, envio de e-mail, ftp...

 Broadcast – a mensagem é endereçada à todas as máquinas da rede.

Ex: descoberta de hosts e servidores na rede 255.255.255.0

 Multicast – a mensagem é endereçada à um grupo específico de máquinas da rede

Ex: Serviço de video sobre demanda, jogos multiusuários...

Network protocols visually explained

