Explanation of Gaussian Quadrature in Finite Element Method

Submitted by,

Asif Istiak; ID: 20205083

Mechanical Design Engineering

Andong National University

Submitted to,

Professor See Jo Kim

Mechanical Design Engineering

Andong National University

Contents

- > Abstract
- > Introduction
- > Examples
- > Concluding Remarks
- > Reference

Abstract

Gaussian Quadrature:

- One of the Numerical Integration Method
- ❖ Applicable in solving FEA problems using Natural co-ordinates.
- ❖ Gauss quadrature, often known as "the" Gaussian quadrature or Legendre quadrature, is a numerical integration method. A Gaussian quadrature with a weighting function, W(x)=1 over the interval[-1,1]. The roots of the Legendre polynomials, Pn(x), which occur symmetrically around 0, provide the abscissas for quadrature order.

Introduction

Gaussian Quadrature

In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. An n-point Gaussian quadrature rule is a quadrature rule constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable choice of the nodes xi and weights wi for i = 1, ..., n. The most common domain of integration for such a rule is taken as [−1, 1], so the rule is stated as

$$\int_{-1}^1 f(x) dx \approx \sum_{i=1}^n w_i f(x_i),$$

Topic

- Basic Concept
- > Problem-solving
- Application in FEM(2D)

Gauss Quadrature-Single integral

$$\int_{-1}^1 f(x) dx \approx \sum_{i=1}^n w_i f(x_i),$$

Gauss Quadrature-Double integral

$$\int_{-1}^{1} \int_{-1}^{1} f(x, y) dx dy = w_1^2 f(x_1, y_1) + w_1 w_2 f(x_1, y_2) + w_2 w_1 f(x_2, y_1) + w_2^2 f(x_2, y_2)$$

Gauss-Jacobi Quadrature

$$\int_{-1}^1 f(x)\,dx = \int_{-1}^1 \left(1-x
ight)^lpha (1+x)^eta g(x)\,dx pprox \sum_{i=1}^n w_i'g\left(x_i'
ight) \qquad \qquad lpha,eta>-1,$$

Table

Number of points, n	Points, x_i		Weights	s, w _i
1	0		2	
2	$\pm \frac{1}{\sqrt{3}}$ ± 0.57735		1	
	0		$\frac{8}{9}$	0.888889
3	$\pm\sqrt{rac{3}{5}}$	±0.774597	$\frac{5}{9}$	0.555556
4	$\pm\sqrt{\frac{3}{7}-\frac{2}{7}\sqrt{\frac{6}{5}}}$	±0.339981	$\frac{18+\sqrt{30}}{36}$	0.652145
	$\pm\sqrt{\frac{3}{7}+\frac{2}{7}\sqrt{\frac{6}{5}}}$	±0.861136	$\frac{18-\sqrt{30}}{36}$	0.347855
	0		$\frac{128}{225}$	0.568889
5	$\pm\frac{1}{3}\sqrt{5-2\sqrt{\frac{10}{7}}}$	±0.538469	$\frac{322+13\sqrt{70}}{900}$	0.478629
	$\pm\frac{1}{3}\sqrt{5+2\sqrt{\frac{10}{7}}}$	±0.90618	$\frac{322 - 13\sqrt{70}}{900}$	0.236927

The weights are given by the formula

$$w_i = rac{2}{\left(1-x_i^2
ight)\left[P_n'(x_i)
ight]^2}$$

Gauss Quadrature-Single integral
$$\int_{-1}^{1} f(x) \, dx pprox \sum_{i=1}^{n} w_i f(x_i),$$

Consider Sigle Integral of the form

Table

Number of points, n	Points, x_i		Weights	s, w _i
1	0		2	
2	$\pm \frac{1}{\sqrt{3}}$ ± 0.57735 1		1	
_	0		$\frac{8}{9}$	0.888889
3	$\pm\sqrt{rac{3}{5}}$	±0.774597	$\frac{5}{9}$	0.555556
4	$\pm\sqrt{\frac{3}{7}-\frac{2}{7}\sqrt{\frac{6}{5}}}$	±0.339981	$\frac{18+\sqrt{30}}{36}$	0.652145
	$\pm\sqrt{\frac{3}{7}+\frac{2}{7}\sqrt{\frac{6}{5}}}$	±0.861136	$\frac{18-\sqrt{30}}{36}$	0.347855
	0		$\frac{128}{225}$	0.568889
5	$\pm\frac{1}{3}\sqrt{5-2\sqrt{\frac{10}{7}}}$	±0.538469	$\frac{322 + 13\sqrt{70}}{900}$	0.478629
	$\pm\frac{1}{3}\sqrt{5+2\sqrt{\frac{10}{7}}}$	±0.90618	$\frac{322 - 13\sqrt{70}}{900}$	0.236927

Gauss Quadrature-Single integral

$$\int_{-1}^1 f(x) dx \approx \sum_{i=1}^n w_i f(x_i),$$

Function at one point(n=1)

Result-Y(x) is the first-order polynomial(exact)

Number of points, <i>n</i>	Points, x_i		Weights	w_i
1	0		2	
2	$\pm \frac{1}{\sqrt{3}}$ ± 0.57735		1	
	0		$\frac{8}{9}$	0.888889
3	$\pm\sqrt{\frac{3}{5}}$	±0.774597	$\frac{5}{9}$	0.555556
4	$\pm\sqrt{\frac{3}{7}-\frac{2}{7}\sqrt{\frac{6}{5}}}$	±0.339981	$\frac{18+\sqrt{30}}{36}$	0.652145
	$\pm\sqrt{\frac{3}{7}+\frac{2}{7}\sqrt{\frac{6}{5}}}$	±0.861136	$\frac{18-\sqrt{30}}{36}$	0.347855
	0		$\frac{128}{225}$	0.568889
5	$\pm\frac{1}{3}\sqrt{5-2\sqrt{\frac{10}{7}}}$	±0.538469	$\frac{322+13\sqrt{70}}{900}$	0.478629
	$\pm\frac{1}{3}\sqrt{5+2\sqrt{\frac{10}{7}}}$	±0.90618	$\frac{322 - 13\sqrt{70}}{900}$	0.236927

Table

Gauss Quadrature-Single integral

$$\int_{-1}^1 f(x) dx \approx \sum_{i=1}^n w_i f(x_i),$$

Function at one point(n=1)

Result-Y(x) is the first-order polynomial(exact)

Number of points, n	Points, x_i	Weights, w_i
1	0	2

Gauss Quadrature-Single integral

$$\int_{-1}^1 f(x) dx \approx \sum_{i=1}^n w_i f(x_i),$$

Function at two points (n=2)

Result-Y(x) is the 3rd-order polynomial(exact)

Number of points, n	Points, x_i		Weights, w_i
1	0		2
2	$\pm \frac{1}{\sqrt{3}}$	±0.57735	1

Gauss Quadrature-Single integral

$$\int_{-1}^1 f(x)\,dx pprox \sum_{i=1}^n w_i f(x_i),$$

Function at three points (n=3)

Result-Y(x) is the 5th-order polynomial(exact)

Number of points, n	Points, x_i		Weights	, w _i
1	0		2	
2	$\pm \frac{1}{\sqrt{3}}$	±0.57735	1	
	0		8 0	0.888889
3			9	

Example $\int_{-1}^{1} (x^4 - 3x + 7) dx.$

problem

Gauss Quadrature-Single integral

$$\int_{-1}^{1} f(x) dx \approx \sum_{i=1}^{n} w_i f(x_i),$$

Example

$$F(x) = \int_{-1}^{1} x^4 - 3x + 7$$

$$F(x_2) = \int_{-1}^{1} x_2^4 - 3x_2 + 7 = 5.036$$

$$F(x_3) = \int_{-1}^{1} x_3^4 - 3x_3 + 7 = 9.6837$$

$$F(x) = \int_{-1}^{1} x^4 - 3x + 7 = W_1 F(x_1) + W_2 F(x_2) + W_3 F(x_3) = 14.40$$

Number of points, n	Points, x_i		Weights	w_i
1	0		2	
2	$\pm \frac{1}{\sqrt{3}}$	±0.57735	1	
_	0		<u>8</u> 9	0.888889
3	$\pm\sqrt{\frac{3}{5}}$	±0.774597	$\frac{5}{9}$	0.555556

4=2*n*-1=Higher-order

n=2.5≈ 3(three point quadrature point)

$$x_2 = 0; x_3 = +\sqrt{\frac{3}{5}}; x_1 = -\sqrt{\frac{3}{5}}$$

$$W_2 = 8/9; W_1, W_3 = 5/9$$

Problem

Gauss Quadrature-Double integral

$$\int_{-1}^{1} \int_{-1}^{1} F(x) dx dy \approx \sum_{i} \sum_{j} W_{i} W_{j} F(dx, dy)$$

Example

$$F(x)=2x^2-3xy+4y^2$$

· · · · · · · · · · · · · · · · · · ·
$F(x_{l}, y_{l}) = \int_{-1}^{1} 2x_{1}^{2} - 3x_{1}y_{l} + 4y_{1}^{2} = 3$
$F(x_{1}, y_{2}) = \int_{-1}^{1} 2x_{1}^{2} - 3x_{1}y_{2} + 4y_{2}^{2} = 1$ $F(x_{2}, y_{1}) = \int_{-1}^{1} 2x_{2}^{2} - 3x_{2}y_{1} + 4y_{1}^{2} = 1$
$F(x_{2}, y_{1}) = \int_{-1}^{1} 2x_{2}^{2} - 3x_{2}y_{1} + 4y_{1}^{2} = 1$
$F(x_{2}, y_{2}) = \int_{-1}^{1} 2x_{2}^{2} - 3x_{2}y_{2} + 4y_{2}^{2} = 3$
1 1

Number of points, n	Points, x_i		Weights, w_i
1	0		2
2	$\pm \frac{1}{\sqrt{3}}$	±0.57735	1

2=2n-1=Higher-ordern=1.5 \approx 2(two point quadrature point)

$$x_2 = +\sqrt{\frac{1}{3}} = y_2; x_1 = -\sqrt{\frac{1}{3}} = y_1$$

 $W_1, W_2 = 1$

$$f(x,y) dx dy = w_1^2 f(x_1, y_1) + w_1 w_2 f(x_1, y_2) + w_2 w_1 f(x_2, y_1) + w_2^2 f(x_2, y_2) = 8$$

Application in FEA(2D)

2D Integration- 1 Integration Point

Quadrature approach is applied to both integrals while evaluating both integral.

Number of points, n	Points, x_i		Weights	s, w _i
1	0		2	
2	$\pm \frac{1}{\sqrt{3}}$	±0.57735	1	
	0		$\frac{8}{9}$	0.888889
3	$\pm\sqrt{rac{3}{5}}$	±0.774597	$\frac{5}{9}$	0.555556

Application in FEA(2D)

2D Integration-2x2 Integration Point

Full integration for a linear (Q4)element(exact good Result)

Reduced Integration — Q8 element(Incomplete Result)

$$\int_{-1}^{1} \int_{-1}^{1} f(x, y) dx dy = w_1^2 f(x_1, y_1) + w_1 w_2 f(x_1, y_2) + w_2 w_1 f(x_2, y_1) + w_2^2 f(x_2, y_2)$$
4 points locations

Problem

Gauss Quadrature Double integral

$$\int_{-1}^{1} \int_{-1}^{1} F(x) dx dy \approx \sum_{i} \sum_{j} W_{i} W_{j} F(dx, dy)$$

Example

$$F(x)=2x^2-3xy+4y^2$$

· · · · · · · · · · · · · · · · · · ·	
$F(x_{l}, y_{l}) = \int_{-1}^{1} 2x_{1}^{2} - 3x_{1}y_{l} + 4y_{1}^{2} =$	3
$F(x_{1}, y_{2}) = \int_{1}^{1} 2x_{1}^{2} - 3x_{1}y_{2} + 4y_{2}^{2} = F(x_{2}, y_{1}) = \int_{-1}^{1} 2x_{2}^{2} - 3x_{2}y_{1} + 4y_{1}^{2} = F(x_{2}, y_{2}) = \int_{-1}^{1} 2x_{2}^{2} - 3x_{2}y_{1} + 4y_{1}^{2} = F(x_{2}, y_{2}) = \int_{-1}^{1} 2x_{2}^{2} - 3x_{2}y_{1} + 4y_{1}^{2} = F(x_{2}, y_{2}) = \int_{-1}^{1} 2x_{2}^{2} - 3x_{2}y_{1} + 4y_{1}^{2} = F(x_{2}, y_{2}) = \int_{-1}^{1} 2x_{2}^{2} - 3x_{2}y_{1} + 4y_{1}^{2} = F(x_{2}, y_{2}) = \int_{-1}^{1} 2x_{2}^{2} - 3x_{2}y_{1} + 4y_{1}^{2} = F(x_{2}, y_{2}) = F(x_{2}, y_{2}$	1
$F(x_2, y_1) = \int_{-1}^{1} 2x_2^2 - 3x_2y_1 + 4y_1^2 =$	1
$F(x_2, y_2) = \int_{-1}^{1} 2x_2^2 - 3x_2y_2 + 4y_2^2 = 1$	3
1.15	

Number of points, n	Points, x_i		Weights, w_i
1	0		2
2	$\pm \frac{1}{\sqrt{3}}$	±0.57735	1

2=2n-1=Higher-ordern=1.5≈ 2(two point quadrature point)

$$x_1 = +\sqrt{\frac{1}{3}} = y_1; x_2 = -\sqrt{\frac{1}{3}} = y_2$$

 $W_1, W_2 = 1$

$$\int_{-1}^{1} f(x,y) \, dx \, dy = w_1^2 \, f(x_1,y_1) + w_1 \, w_2 f(x_1,y_2) + w_2 \, w_1 f(x_2,y_1) + w_2^2 \, f(x_2,y_2) = 8$$

Application in FEA(2D)

2D Integration-2x2 Integration Point

Full integration for a linear (Q4)element(exact good Result)

Reduced Integration – Q8 element(Incomplete Result)

$$\int_{-1}^{1} \int_{-1}^{1} f(x, y) dx dy = w_1^2 f(x_1, y_1) + w_1 w_2 f(x_1, y_2) + w_2 w_1 f(x_2, y_1) + w_2^2 f(x_2, y_2) + w_2^2 f(x_3, y_4) + w_3^2 f(x_3, y_4) + w_$$

$$x_2 = +\sqrt{\frac{1}{3}} = y_2; x_1 = -\sqrt{\frac{1}{3}} = y_1$$

 $W_1, W_2 = 1$

Problem

Gauss Quadrature Double integral

$$\int_{-1}^{1} \int_{-1}^{1} F(x) dx dy \approx \sum_{i} \sum_{j} W_{i} W_{j} F(dx, dy)$$

Example

$$\int_{-1}^{1} \int_{-1}^{1} (2x^2 + 3xy + 4y^2) dx dy$$

$$F(x)=2x^2-3xy+4y^2$$

▼
$F(x_{l}, y_{l}) = \int_{-1}^{1} 2x_{1}^{2} - 3x_{1}y_{l} + 4y_{1}^{2} = 3$
$F(x_{1}, y_{2}) = \int_{1}^{1} 2x_{1}^{2} - 3x_{1}y_{2} + 4y_{2}^{2} = 1$ $F(x_{2}, y_{1}) = \int_{-1}^{1} 2x_{2}^{2} - 3x_{2}y_{1} + 4y_{1}^{2} = 1$
$F(x_2, y_1) = \int_{-1}^{12} 2x_2^2 - 3x_2y_1 + 4y_1^2 = 1$
$F(x_{2}, y_{2}) = \int_{-1}^{1} 2x_{2}^{2} - 3x_{2}y_{2} + 4y_{2}^{2} = 3$
1.15

Number of points, n	Points, x_i		Weights, w_i	
1	0		2	
2	$\pm \frac{1}{\sqrt{3}}$	±0.57735	1	

2=2n-1=Higher-ordern=1.5≈ 2(two point quadrature point)

$$x_1 = +\sqrt{\frac{1}{3}} = y_1; x_2 = -\sqrt{\frac{1}{3}} = y_2$$

 $W_1, W_2 = 1$

$$f(x,y) dx dy = w_1^2 f(x_1, y_1) + w_1 w_2 f(x_1, y_2) + w_2 w_1 f(x_2, y_1) + w_2^2 f(x_2, y_2) = 8$$

Problem

Gauss Quadrature ntegral

$$\int_{-1}^{1} \int_{-1}^{1} F(x) dx dy \approx \sum_{i} \sum_{j} W_{i}W_{j}F(dx, dy)$$

Example

$$F(x) = 2x^3 - 3xy + 4y^2$$

Number of points, n	Points, x_i		Weights, w_i	
1	0		2	
2	$\pm \frac{1}{\sqrt{3}}$	±0.57735	1	
	0		$\frac{8}{9}$	0.888889
3	$\pm\sqrt{rac{3}{5}}$	±0.774597	$\frac{5}{9}$	0.555556

 $n=2.5\approx 3$ (two point quadrature point)

$$\int_{-1}^{1} \int_{-1}^{1} F(x) dx dy \approx \sum_{i} \sum_{j} W_{i}W_{j}F(dx, dy)$$

$$x_1 = -\sqrt{\frac{3}{5}} = y_1; x_2 = 0 = y_2; x_3 = +\sqrt{\frac{3}{5}} = y_3$$

 $W_1 = W_3 = 5/9; W_2 = 8/9$

$$\approx \frac{\frac{5}{9} \cdot \frac{5}{9} \cdot f(-\sqrt{\frac{3}{5}}, -\sqrt{\frac{3}{5}})}{\frac{5}{9} \cdot \frac{8}{9} \cdot f(-\sqrt{\frac{3}{5}}, 0)} + \frac{\frac{5}{9} \cdot \frac{5}{9} \cdot f(-\sqrt{\frac{3}{5}}, \sqrt{\frac{3}{5}})}{\frac{5}{9} \cdot f(0, -\sqrt{\frac{3}{5}})} + \frac{8}{9} \cdot \frac{8}{9} \cdot f(0, 0) + \frac{8}{9} \cdot \frac{5}{9} \cdot f(0, \sqrt{\frac{3}{5}})$$

$$+ \frac{5}{9} \cdot \frac{5}{9} \cdot f(\sqrt{\frac{3}{5}}, -\sqrt{\frac{3}{5}}) + \frac{5}{9} \cdot \frac{8}{9} \cdot f(\sqrt{\frac{3}{5}}, 0) + \frac{5}{9} \cdot \frac{5}{9} \cdot f(\sqrt{\frac{3}{5}}, \sqrt{\frac{3}{5}})$$

$$+ \frac{5}{9} \cdot \frac{5}{9} \cdot f(\sqrt{\frac{3}{5}}, -\sqrt{\frac{3}{5}}) + \frac{5}{9} \cdot \frac{8}{9} \cdot f(\sqrt{\frac{3}{5}}, 0) + \frac{5}{9} \cdot \frac{5}{9} \cdot f(\sqrt{\frac{3}{5}}, \sqrt{\frac{3}{5}})$$

Application in FEA(2D)

2D Integration-3x3 Integration Point

$$\int_{-1}^{1} \int_{-1}^{1} F(x) \, dx \, dy \approx \sum_{i} \sum_{j} W_{i} W_{j} F(dx, dy)$$

$$\approx \frac{5}{9} \cdot \frac{5}{9} \cdot f\left(-\sqrt{\frac{3}{5}}, -\sqrt{\frac{3}{5}}\right) + \frac{5}{9} \cdot \frac{8}{9} \cdot f\left(-\sqrt{\frac{3}{5}}, 0\right) + \frac{5}{9} \cdot \frac{5}{9} \cdot f\left(-\sqrt{\frac{3}{5}}, \sqrt{\frac{3}{5}}\right)$$

$$+ \frac{8}{9} \cdot \frac{5}{9} \cdot f\left(0, -\sqrt{\frac{3}{5}}\right) + \frac{8}{9} \cdot \frac{8}{9} \cdot f\left(0, 0\right) + \frac{8}{9} \cdot \frac{5}{9} \cdot f\left(0, \sqrt{\frac{3}{5}}\right)$$

$$+ \frac{5}{9} \cdot \frac{5}{9} \cdot f\left(\sqrt{\frac{3}{5}}, -\sqrt{\frac{3}{5}}\right) + \frac{5}{9} \cdot \frac{8}{9} \cdot f\left(\sqrt{\frac{3}{5}}, 0\right) + \frac{5}{9} \cdot \frac{5}{9} \cdot f\left(\sqrt{\frac{3}{5}}, \sqrt{\frac{3}{5}}\right)$$

Conclusions

- ☐ Basic knowledge of Gaussian Quadrature.
- ☐ How to integrate area.
- ☐ How to locate point.

Reference

- 1. <u>Legendre-Gauss Quadrature -- from Wolfram MathWorld</u>
- 2. The deal.II Library: Quadrature < dim > Class Template Reference (dealii.org)
- 3. <u>Implementing an Accurate Generalized Gaussian Quadrature Solution to Find the Elastic Field in a Homogeneous Anisotropic Media</u>
- 4. doi:10.1090/s0025-5718-1965-0178569-1
- 5. doi:10.1090/S0025-5718-1973-0331730-X
- 6. https://www.youtube.com/watch?v=xD10zQB4xkQ
- 7. ID:6697824 (slideserve.com)
- 8. https://www.youtube.com/watch?v=jZAWWE0Jo9w&list=WL&index=1&t=12s

Thank You