Topics to discuss

Master Theorem / Master Method Some More Examples

Master Theorem or Master Method:

General Form, $T(n) = aT(\frac{n}{b}) + f(n)$, where $f(n) = \theta(n^k \log^k n)$. so, if become, $T(n) = aT(\frac{n}{b}) + \theta(n^k \log^k n)$ where, $a \ge 1$, b > 1, $k \ge 0$ and b = 1 is real number.

Case I: If a > bk, then T(n) = O(n loga)

case II: If $a=b^k$ a) if b>-1 then $T(n)=\theta(n\log a\log n)$ b) if b=-1 then $T(n)=\theta(n\log a\log n)$ c) if b<-1 then $T(n)=\theta(n\log a\log n)$

Case III: If $a < b^{k}$ a) If $b \ge 0$ then $T(n) = \theta(n^{k} \log^{k} n)$ b) If b < 0 then $T(n) = \theta(n^{k})$

Solve $T(n) = 6T(\frac{n}{3}) + n^2 \log n$ using master theorem. Solution. $T(n) = \alpha T(\frac{n}{b}) + \theta(n^k \log^p n)$. a=6, b=3, $f(n)=\Theta(n^2 \log^2 n)$ K=2 > = 1 a=6 2 bK = 3 = 9 => a < bK & p>0 Case III (a): T(n) = O(n'hapn) = O(n² log¹n)

T(n) = 0 (m² kgn)

Solve $T(n) = \sqrt{2}T(\frac{n}{2}) + \log n$ using Master Theorem $T(n) = aT(\frac{h}{b}) + \theta(n^k \log^p n)$ $a=\sqrt{2}$, b=2, $f(n)=\Theta(n^0 \log^n)$ K=0, P=1 So, $a = \sqrt{2}$ Then, $T(n) = \Theta(n^{\frac{1}{2}})$ $= \Theta(n^{\frac{1}{2}})$ $= \Theta(n^{\frac{1}{2}})$

Solve $T(n) = 2^n T(\frac{n}{2}) + n^n$ Using mosters theorem. $a = 2^n$ So, master theorem is not applicable.

 $8:-T(m) = 0.7T(\frac{n}{4}) + \frac{1}{m}$ a = 0.7 Not applicable.

 $0:-T(m)=4T(\frac{m}{8})-m^2$ Not applicable.

Follow Now

Start Practicing

i._am._arfin

Arfin Parween