

Question 1: Etude d'un transistor NPN

On considère le transistor NPN ayant la caractéristique d'entrée suivante :

Sous Lushprojects, tracer cette caractéristique d'entrée (Retrouver ainsi le graphe ci-dessus). Déterminez les paramètres V_{seuil} et h₁₁ pour V_{BE}=0,6V. Visualisez la caractéristique (O=f(V_{CE}) pour I_B=10 et 30μA.

01:

Equation approchée $I = I_S \left(e^{\frac{V}{U_T}} - 1\right)$ S) Avec : $U_T = \frac{kT}{q} = 25,7 \text{mV}$ à 300K

En polarisation directe $I \# I_S e^{\frac{v}{U_T}}$

Vseuil = 600mV

$$\bar{k}h_{11} = 11$$
 $h_{11} |_{VBE=0.6U} = \frac{\Delta VBE}{\Delta I_B} \approx \frac{100mV}{40MA} = 2.5 kR$

(2) equation approchée: I=Is(etit-1), I→Is, V→UBE En polarisation directe: 7 # 1seur

$$\frac{1}{rd} = \frac{\partial I}{\partial V} = \frac{1}{4r} I_8 e^{\frac{i}{4r}} = \frac{I}{4r} = \frac{1}{4r} = \frac{1}{4r} = \frac{1}{4r} I_8 e^{\frac{i}{4r}} = \frac{1}{4r} I_8 e^{\frac{i}{4r}}$$

Question 2: Inverseur RTL

On considère le montage ci-contre :

Avec V_{CC} =5V R_B = 110 $k\Omega$ et RC=2,4 $k\Omega$

- () Détermine I_{Csat}
- Tracer V_s en fonction de V_e pour $-1V \le V_e \le V_{CC} = 5V$

(3) Simuler sous lushprojects. Estimez V_{CEsat} Conclusion

On remplace le générateur V_e par un générateur « carré », compatible TTL (0-5V) (+LED) Tracer V_s et V_e .

Estimez V_{CEsat}

Conclusion

Question 3: Etude caractéristiques dynamiques

Reprendre la caractéristique $I_C=f(V_{CE})$ pour $I_B=10$, $\underline{20}$ et $30\mu A$, en modifiant le modèle du transistor $(V_{Early}=30V)$.

Déterminer graphiquement h₂₂ pour ces 3 valeurs de courant (on mettra V_{Early} en évidence sur le graphique)

Proposer une méthode pour déterminer h₁₁. On choisira deux valeurs de I_B, que l'on comparera à la valeur théorique.

Estimer la valeur maximale de la tension d'entrée « petits signaux ». Que se passe-t-il alors sur la valeur expérimentale de h₁₁, si on prend V_e>>V_{emax} ?

VEARLY = 艾尔利电压,表示 辅极电压 (VCE) 的变化对集电极电流 (Ic)产生的早期 放应, VEARLY 影响 特性曲线 (Ic-VCE) 的种率,使 Ic-VCE 曲线 的反向延长线在不同 IB下都交子 Ic-VCE 图象 负半轴的一点 - VEARLY

To Tall

UCE

UCE

理想情况: Vearly=0 > h12=0

$$Ic = \beta I_B \Rightarrow I_{BSOH} = \frac{I_{CSN1}}{\beta} = \frac{2.03\text{mA}}{100} = 20.3 \text{ MA}$$

$$Ve = V_{BE} + I_{B}R_{B} \Rightarrow V_{ESOH} = V_{SE} + I_{BSOH} \cdot R_{B} = 0.6 + 20.3 \text{ M} \cdot 110 \text{ K} = 2.8 \text{ U}$$

(3) VCESOT = 121 mV

Vearly VCE

$$I_{0} = 10 \text{ uA}$$
: $h_{12} = \frac{\Delta I_{C}}{\Delta V_{CE}} = \frac{(1.293 - 1.03) \text{ mA}}{8 \text{ V}} \Rightarrow \frac{1}{h_{12}} = 30.4 \text{ kg}$

$$IB = 20 \mu A$$
 = $h_{22} = \frac{258 - 2.06}{8} = \frac{15.4 kn}{1}$

IB = 20,00A :
$$h_{22} = \frac{258-2.06}{8} =$$
 $\rightarrow \frac{1}{h_{22}} = 15.4 \text{ kg}$

IB = 30,00A : $h_{22} = \frac{3.87-3.06}{8} =$ $\rightarrow \frac{1}{h_{22}} = 9.9 \text{ kg}$

petite signal, done, on pout ponce que = $iB = \frac{U_{be}}{h_{11}}$ Mots, en réal : Is H Is $exp(\frac{V_{BE}}{U_{11}})$

ib # Is exp
$$\left(\frac{V_{BE} + U_{DE}}{U_{T}}\right)$$
 - Is exp $\left(\frac{V_{BE}}{U_{T}}\right)$

= Is $\left(\exp\left(\frac{U_{DE}}{U_{T}}\right) - 1\right) \exp\left(\frac{V_{BE}}{U_{T}}\right)$

$$= \sum_{n=0}^{\infty} \frac{f^{(n)}V_{NO}}{v_{NO}} (x-x_{O})$$

$$= \sum_{n=0}^{\infty} \frac{v_{NO}}{v_{NO}} + \frac{1}{2} \left(\frac{v_{NO}}{v_{NO}}\right)^{2} + \frac{1}{2} \left(\frac{v_{NO}}{v_{NO}}\right)^{2} + \frac{1}{2} \left(\frac{v_{NO}}{v_{NO}}\right)^{2}$$

$$= \sum_{n=0}^{\infty} \frac{v_{NO}}{v_{NO}} + \frac{1}{2} \left(\frac{v_{NO}}{v_{NO}}\right)^{2} + \frac{1}{2} \left(\frac{v_{NO}}{v_{NO}}\right)^{2} + \frac{1}{2} \left(\frac{v_{NO}}{v_{NO}}\right)^{2}$$

$$= \sum_{n=0}^{\infty} \frac{v_{NO}}{v_{NO}} + \frac{1}{2} \left(\frac{v_{NO}}{v_{NO}}\right)^{2} + \frac{$$

Vernex pour avoir errour relative de 10%Vernex

Vernex

Vernex

Vernex

Vernex