<u>Stochastik</u>

- 1. Wahrscheinlichkeiten
- 2. Bedingte Wahrscheinlichkeiten
- 3. Binomialverteilung
- 4. Hypothesentest

1. Wahrscheinlichkeiten:

Wahrscheinlichkeitsverteilung:

- Legt die Wahrscheinlichkeiten der Ergebnisse fest. Hierbei gilt:
 - o Die Wahrscheinlichkeit für ein Ergebnis ist $0 \le X \ge 1$
 - Die Summe aller Wahrscheinlichkeiten ist 1

Baumdiagramm Pfadregeln:

Produktregel: Die Wahrscheinlichkeit eines Ereignisses entspricht dem Produkt von allen dazu führenden Pfaden

Summenregel: Die Wahrscheinlichkeit von 2 verschiedenen Ereignissen ist die Summe der dazugehörenden Wahrscheinlichkeiten

Häufigkeiten:

Absolut: Ist der k-Wert bei einer n-fachen Durchführung

Relativ: Ist der k-Wert durch die Anzahl $\frac{k}{n}$

Laplace-Experiment:

Experimente, bei denen alle Ergebnisse gleich Wahrscheinlich sind (Münzwurf, Würfelwurf)

2. Bedingte Wahrscheinlichkeiten:

Bedingte Wahrscheinlichkeiten:

Ereignisse, bei denen die Wahrscheinlichkeit von mehr als einem Faktor abhängt. (z.B. Lose ziehen oder Urne ohne zurücklegen)

Vierfeldertafel:

	K	Nicht K	
M	P(M &K)	P(M&nK)	P(M)
Nicht M	P(nM&K)	P(nM&nK)	P(nM)
	P(K)	P(nK)	P(Gesamt)

Unabhängige Wahrscheinlichkeiten:

Zwei Ereignisse sind nur dann unabhängig, wenn: $P(A \cap B) = P(A) \cdot P(B)$

3. Binomialverteilung:

Bernoulli-Experiment:

Ein Zufallsexperiment mit genau zwei Ausgängen, die unabhängig voneinander sind. Eine Wiederholung dieses Experimentes nennt man Bernoulli-Kette.

$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}$$

n = Anzahl der Durchführungen

k = Anzahl der gewünschten Ergebnisse

p = Wahrscheinlichkeit für Erfolg

Der Erwartungswert von X berechnet man mit $\mu=n\cdot p$ Die Standardabweichung von X mit $\sigma=\sqrt{n\cdot p\cdot (1-p)}$ (Für absolute Ergebnisse teilt man noch durch n)

Sigma-Regeln:

Je größer σ , desto Breiter das Histogramm.

1.
$$P(\mu - \sigma \le X \ge \mu + \sigma) \approx 68.3\% \rightarrow \sigma$$
-Interval

2.
$$P(\mu - 2\sigma \le X \ge \mu + 2\sigma) \approx 95.4\% \rightarrow 2\sigma$$
-Interval

3.
$$P(\mu - 3\sigma \le X \ge \mu + 3\sigma) \approx 99,7\% \rightarrow 3\sigma$$
-Interval