Einführung in die Algebra

BLATT 4

Jendrik Stelzner

9. November 2013

Aufgabe 4.1.

Aufgabe 4.2.

(i)

Es ist nach Definition

$$\operatorname{ord} \pi = \min\{n \in \mathbb{N}, n \ge 1 : \pi^n = \operatorname{id}\}. \tag{1}$$

Nun sind die x_i paarweise verschieden, und $\pi(x_i)=x_{i+1}$ für $i=1,\ldots,r-1$ und $\pi(x_r)=x_1$. Daher ist für $n=1,\ldots,r-1$

$$\pi^n(x_1) = x_{1+n} \neq x_1,$$

also $\pi^n \neq \text{id}$. Da allerdings für $i = 1, \dots, n$

$$\pi^r(x_i) = x_i$$

ist ord $\pi = r$ nach (1). Analog ergibt sich, dass ord $\tau = s$.

Da π und τ fremd sind, kommutieren sie miteinander (aus der Vorlesung bekannt). Es kommutieren daher π^n und τ^m ist daher für alle $n,m\in\mathbb{N}$, da

$$\pi^{n} \tau^{m} = \prod_{i=1}^{n} \pi \cdot \prod_{i=1}^{m} \tau = \tau \cdot \prod_{i=1}^{n} \pi \cdot \prod_{i=1}^{m-1} \tau = \tau^{2} \cdot \prod_{i=1}^{n} \pi \cdot \prod_{i=1}^{m-2} \tau$$
$$= \dots = \prod_{i=1}^{m-1} \tau \cdot \prod_{i=1}^{n} \pi \cdot \tau = \prod_{i=1}^{m} \tau \cdot \prod_{i=1}^{n} \pi = \tau^{m} \pi^{n}.$$

Auch folgt aus der Fremdheit von π und τ , dass $\langle \pi \rangle \cap \langle \tau \rangle = \{1\}$: Für $\sigma \in \langle \pi \rangle \cap \langle \tau \rangle$ ist $\pi^n = \sigma = \tau^m$ für passende $n, m \in \mathbb{N}$ mit $0 \le n \le r-1$ und $0 \le m \le s-1$. Es ist dann für $i=1,\ldots,r$

$$x_i = \pi^r(x_i) = \pi^{r-n}(\pi^n(x_i)) = \pi^{r-n}(\tau^m(x_i)) = \pi^{r-n}(x_i),$$

weshalb r-n ein Teiler von r sein muss; wegen $r-n \le r$ muss also r-n=r und daher n=0 und $\sigma=\pi^n=\mathrm{id}.$

Für alle $t \in \mathbb{N}, t \geq 1$ mit $(\pi \tau)^t = \mathrm{id}$ ist

$$\pi^t \tau^t = (\pi \tau)^t = \mathrm{id},$$

also $\pi^t=(\tau^t)^{-1}=\tau^{s-t}\in\langle \tau\rangle$. Wie oben bemerkt ist daher $\pi^t=\operatorname{id}$, also t ein Vielfaches von ord $\pi=r$. Analog ergibt sich, dass t auch ein Vielfaches von ord $\tau=s$ ist. Also ist $t\geq \operatorname{kgV}(r,s)$. Andererseits ist

$$(\pi\tau)^{\mathrm{kgV}(r,s)} = \pi^{\mathrm{kgV}(r,s)} \tau^{\mathrm{kgV}(r,s)} = \mathrm{id}^2 = \mathrm{id}$$
 .

Also ist ord $\pi \tau = \text{kgV}(r, s)$.

(ii)

Es ist

$$\sigma := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 4 & 1 & 10 & 11 & 8 & 9 & 7 & 2 & 3 & 6 & 5 \end{pmatrix}$$
$$= \underbrace{\begin{pmatrix} 1 & 4 & 11 & 5 & 8 & 2 \end{pmatrix}}_{=:\pi} \underbrace{\begin{pmatrix} 3 & 10 & 6 & 9 \end{pmatrix}}_{=:\tau}.$$

Nach Aufgabenteil (i) ist ord $\pi=6$ und ord $\tau=4$. Da π und τ fremde Zykeln sind ist daher

$$\begin{split} \sigma^{2013} &= (\pi\tau)^{2013} = \pi^{2013} \; \tau^{2013} = \pi^3 \tau \\ &= \begin{pmatrix} 1 & 4 & 11 & 5 & 8 & 2 \end{pmatrix}^3 \begin{pmatrix} 3 & 10 & 6 & 9 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 5 \end{pmatrix} \begin{pmatrix} 2 & 11 \end{pmatrix} \begin{pmatrix} 4 & 8 \end{pmatrix} \begin{pmatrix} 3 & 10 & 6 & 9 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 5 & 11 & 10 & 8 & 1 & 9 & 7 & 4 & 3 & 6 & 2 \end{pmatrix}. \end{split}$$

Aufgabe 4.3.

Aufgabe 4.4.

Aufgabe 4.5.