QUANTUM ALGORITHMS HOMEWORK 8 ADDITIONAL PROBLEMS

PROF. MATTHEW MOORE

Due: 2021-04-06

We will consider a generalization of Grover's algorithm. Suppose that we are given the following.

- A, a quantum circuit.
- Basis vector $|\text{start}\rangle$ and quantum state $|\text{end}\rangle$ (i.e. norm 1) with $\mathcal{A}|\text{start}\rangle = |\text{end}\rangle$.
- $|\text{end}\rangle = |A\rangle + |B\rangle$ with $\langle A \mid B\rangle = 0$, $\langle A \mid A\rangle = a$, and $\langle B \mid B\rangle = b = 1 a$.

Let us consider $|A\rangle$ as consisting of a superposition of "correct" outcomes of algorithm A. Upon measuring $|\text{end}\rangle$, the probability of observing $|A\rangle$ is a.

We assume that we have a basis $(\psi_i)_{i\in I}$ such that $I=A\cup B$ and a function $\chi:I\to\{0,1\}$ such that $\chi(A)=1$ and $\chi(B)=0$. Define

$$|\Psi(\alpha,\beta)\rangle = \alpha |A\rangle + \beta |B\rangle$$

and note that $|\Psi(1,1)\rangle = |\text{end}\rangle$. Define $\mathcal{G} = \mathcal{A} \circ D_s \circ \mathcal{A}^{\dagger} \circ D_A$ where D_A is a reflection operator for $|A\rangle$ and D_s is a reflection operator for $|\text{start}\rangle$ (use the phase shift $e^{i\theta}$ for both).

- 1. Draw the circuits for both reflection operators and also write out the operators for them (e.g. $D_0 = (e^{i\theta} 1)|0\rangle\langle 0| + I$ as in the usual Grover's algorithm).
- **2.** Calculate $\mathcal{G} | \Psi(1,1) \rangle$ and write your answer in the form $| \Psi(x,y) \rangle$ for some x,y (you should specify their values).
- **3.** Suppose that \mathcal{A} works with probability 1/4 (i.e. a=1/4). Show that taking $\theta=\pi$ (as in the usual Grover's circuit) makes $\mathcal{G}\circ\mathcal{A}$ acting on $|\mathtt{start}\rangle$ exact (i.e. it produces a correct answer with probability 1).
- **4.** Show that when \mathcal{A} works with probability 1/2 there is a choice of θ so that $\mathcal{G} \circ \mathcal{A}$ acting on $|\mathtt{start}\rangle$ is exact. What is the value of $e^{i\theta}$ in this case?