

1. (2	2)	2. (4)	3. (2)	4. (2)	5. (2)	6. (2)	7. (3)	8. (0.00)
	mathongo		` ´	` ′	` ′	/// mathongo	` ′	` '
	Hence, $x \in$	\in $[-1,1]$ and $\sin^{-1}(2$ $-rac{1}{2},rac{1}{2}]$ and $x\geq -rac{\sqrt{3}}{2}$	///					
	So the domain (4) $\sin^{-1} \sin^{-1} \sin^{$	n is $\left[-\frac{\sqrt{3}}{4}, \frac{1}{2} \right]$ $17 = \sin^{-1} \sin(17 - \frac{1}{2})$	$5\pi + 5\pi$)					
	$\cos^{-1}(\cos 10$ $=\cos^{-1}\cos\{$	$) = \cos^{-1}\cos(10 - 3)$ $3\pi + (10 - 3\pi)$ $\cos(10 - 3\pi)$	$3\pi + 3\pi$) mathongo					
	$= \pi - \cos^{-1}$ = $\pi - (10 - $	(10 0)						
	(2) athongo Given,	/// mathongo						
	and $\cos^{-1}x$ -	$-1 y = \frac{2\pi}{3} \dots (i)$ $-\cos^{-1} y = \frac{\pi}{3} \dots (i)$ $t \sin^{-1} x + \cos^{-1} x = 0$	·· <i>)</i>					
	Using the above $\Rightarrow \left(\frac{\pi}{2} - \sin^{-1} \frac{1}{2}\right)$	ove concept, we can $-1x$ $-\left(\frac{\pi}{2} - \sin^{-1}y\right)$	write mathongo $=\frac{\pi}{3}$					
		$x + \sin^{-1}y = \frac{\pi}{3}$ quation (i) and (iii), $\Rightarrow y = 1$	//// magthongo					
		ag equation (i) from $\Rightarrow \mathbf{x} = \frac{1}{2}$	equation (iii), we ge	t ///. mathongo				
	(2) As we know	mathongo that $\sin^{-1} x + \cos^{-1}$	$x=rac{\pi}{2},\ -1\leq x\leq$	1.				
	(=) 01.01., 1	$\sin^{-1} \frac{1}{2} + \cos^{-1} \frac{1}{2}$ $\sin^{-1} x + \cos^{-1} x = 1$ $+ \frac{\pi}{2} - \sin^{-1} x = \pi$	$\frac{1}{2}\int_{-\infty}^{\infty}\sin\left(\frac{\pi}{2}\right)=1$					
	⇒athongo ⇒ ⇒	$3\sin^{-1}x = \frac{\pi}{6}$ $\sin^{-1}x = \frac{\pi}{6}$ $x = \frac{1}{2}$	$\frac{\pi}{2}$ ///. mathongo					
	$\cot \Big(\cos\!ec^{-1} \Big)$	$\frac{5}{3} + \tan^{-1}\frac{2}{3}$						
	$= \cot \left(\tan^{-1} \right)$ $= \cot \left(\tan^{-1} \right)$	$-\frac{1}{1-\frac{3}{4}\frac{2}{3}}$ dathongo $\frac{17}{12}$ $\frac{1}{2}$						
	,							

Answer Keys and Solutions

Answer Keys and Solutions		JEE Main Crash Course
7. (3) thongo we mathongo we mathongo Let $x = \tan \theta \Rightarrow \theta = \tan^{-1} x$		
$= 3 \tan^{-1} x - 2 \tan^{-1} x, x < \frac{1}{\sqrt{3}}$		
$= \tan^{-1} x$ 8. (0.00) $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$ mathongo $\Rightarrow \sin^{-1} x = \sin^{-1} y = \sin^{-1} z = \frac{\pi}{2}$ $\Rightarrow \cos^{-1} x = \cos^{-1} y = \cos^{-1} z = 0$		
$\Rightarrow \cos^{-1} x = \cos^{-1} y = \cos^{-1} z = 0$ 9. (1) : $\tan^{-1} \left(\frac{1}{1 + r + r^2} \right) = \tan^{-1} \left(\frac{r + 1 - r}{1 + r(r + 1)} \right)$		
$= an^{-1}(r+1) - an^{-1}(r)$ muthongo		
$\therefore \sum_{r=0}^{n} \left[\tan^{-1}(r+1) - \tan^{-1}(r) \right]$ mathongo mathongo mathongo mathongo = $\tan^{-1}(n+1) - \tan^{-1}(0)$		
$= \tan^{-1}(n+1)$ mathongo /// mathongo		
$\Rightarrow \sum_{r=0}^{\infty} \tan^{-1} \left(\frac{1}{1+r+r^2} \right) = \tan^{-1} (\infty) = \frac{\pi}{2}$ 10. (1) $\text{Let } T_r = \sum_{r=1}^{\infty} \cot^{-1} \left(3r^2 - r - \frac{1}{3} \right) = \tan^{-1} \left(\frac{3}{9r^2 - 3r} \right)$		