# Computational Social Science Week 9

#### **Samuel Martin-Gutierrrez**

Informatics faculty, TU Wien Complexity Science Hub Vienna

e-mail: samuel.martin-gutierrez@tuwien.ac.at

web: www.networkinequality.com

#### Adjacency matrix



#### **Dataset**



(a) When two user meet, they exchange their Id.



(b) Data on tags are periodically broadcasted to readers.



#### **Dataset**

| tij_Thiers13.dat - Notepad |
|----------------------------|
| File Edit Format View Help |
| 43220 454 640              |
| 43220 1 939                |
| 43220 185 258              |
| 43220 55 170               |
| 43220 9 453                |
| 43220 9 45                 |
| 43220 14 190               |
| 43220 400 637              |
| 43220 255 275              |
| 43220 176 533              |
| 43220 116 533              |
| 43220 151 866              |
| 43220 280 484              |
| 43220 243 687              |
| t Node1 Node 2             |



## Degree centrality

- Popularity?
- Friendliness?
- Sociability?

$$x_i = \sum_j A_{ij}$$

#### Eigenvector centrality

A node is important if its neighbors are.

$$x_i' = \sum_j A_{ij} x_j$$

$$\mathbf{x}' = \mathbf{A}\mathbf{x}$$

$$\mathbf{x}(t) = \mathbf{A}^t \mathbf{x}(0)$$
  $\mathbf{x}(0) = \sum_i c_i \mathbf{v}_i$ 

$$\mathbf{x}(t) = \mathbf{A}^t \sum_i c_i \mathbf{v}_i = \sum_i c_i \kappa_i^t \mathbf{v}_i = \kappa_1^t \sum_i c_i \left[ \frac{\kappa_i}{\kappa_1} \right]^t \mathbf{v}_i \qquad \text{Eigenvalues of A}$$

$$\mathbf{x}(t) \rightarrow c_1 \kappa_1^t \mathbf{v}_1$$

$$\mathbf{A}\mathbf{x} = \kappa_1 \mathbf{x}$$

Eigenvectors of A

Eigenvalues of A

## PageRank centrality

PageRank of site A 
$$PR(A) = \frac{1-d}{N} + d\left(\frac{PR(B)}{L(B)} + \frac{PR(C)}{L(C)} + \frac{PR(D)}{L(D)} + \cdots\right)$$
 Number of outlinks in page B

$$PR(p_i) = rac{1-d}{N} + d\sum_{p_j \in M(p_i)} rac{PR(p_j)}{L(p_j)}$$
 Set of pages that link to  $p_i$ 

$$x_i = \alpha \sum_j A_{ij} \frac{x_j}{k_j^{\text{out}}} + \beta.$$

## PageRank centrality



#### Closeness centrality

How close is a node to everyone else.

$$C_i = \frac{1}{\ell_i} = \frac{n}{\sum_j d_{ij}}$$

#### Betweenness centrality

How many shortest paths pass through a node: central nodes are bridges.



Total number of geodesic paths between *s* and *t* that go through *i* 

Total number of geodesic paths between *s* and *t* 



There are 2 geodesic paths between A and B.

- C is in both.
- D and E are in one each.

# Centrality and Prestige in Undirected Social Graphs [Wasserman Faust 1994]

degree = closeness =
betweenness centrality:

n1>n2,n3,n4,n5,n6,n7

degree= Betweeness centrality = Closeness centrality:

n1=n2=n3=n4=n5=n6=n7

Betweeness centrality:

n1>n2,n3>n4,n5>n6,n7



Fig. 5.1. Three illustrative networks for the study of centrality and prestige

## Clustering coefficient

Investigating friends of friends.





$$\frac{1}{2}k_i(k_i-1)$$



$$c = 1$$



$$c = 1/3$$



$$c = 0$$

# Community detection with Stochastic Block Models (SBM)



Scientific Reports volume 8, Article number: 12997 (2018)

# Community detection with Stochastic Block Models (SBM)



Minimum Description Length = **Quality** of fit – **Complexity** of the model



#### K-core decomposition



#### **Miniproject 1**

- Distribute in pairs.
- Find an interesting dataset.
- Analyze it using the techniques we have seen (plus any other technique that you find relevant).
- Write a report (max. 2000 words) presenting the dataset, explaining the methodology you have used and why you chose to use it, and discuss the implications of the results in terms of the context of the data.
- Submit the dataset, the code, and the report.

#### **Data sources**

http://www.sociopatterns.org/

https://networks.skewed.de/

https://snap.stanford.edu/data/

Beware of large datasets! They are cool but may be difficult to deal with using NetworkX.