Lecture 3B Deep Learning for Computer Vision – The Basics

15.S04: Hands-on Deep Learning

Spring 2023

Farias, Ramakrishnan

Representing Images Digitally

How Grayscale Images are Represented

	[,1] [[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]	[,13]	[,14]	[,15]	[,16]	[,17]	[,18]	[,19]	[,20]	[,21]	[,22]	[,23]	[,24]	[,25]	[,26]	[,27] [,28]
[1,]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[2,]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[3,]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[4,]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[5,]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[6,]	0	0	0	0	0	0	0	0	0	0	0	0	3	18	18	18	126	136	175	26	166	255	247	127	0	0	0	0
[7,]	0	0	0	0	0	0	0	0	30	36	94	154	170	253	253	253	253	253	225	172	253	242	195	64	0	0	0	0
[8,]	0	0	0	0	0	0	0	49	238	253	253	253	253	253	253	253	253	251	93	82	82	56	39	0	0	0	0	0
[9,]	0	0	0	0	0	0	0	18	219	253	253	253	253	253	198	182	247	241	0	0	0	0	0	0	0	0	0	0
[10,]	0	0	0	0	0	0	0	0	80	156	107	253	253	205	11	0	43	154	0	0	0	0	0	0	0	0	0	0
[11,]	0	0	0	0	0	0	0	0	0	14	1	154	253	90	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[12,]	0	0	0	0	0	0	0	0	0	0	0	139	253	190	2	0	0	0	0	0	0	0	0	0	0	0	0	0
[13,]	0	0	0	0	0	0	0	0	0	0	0	11	190	253	70	0	0	0	0	0	0	0	0	0	0	0	0	0
[14,]	0	0	0	0	0	0	0	0	0	0	0	0	35	241	225	160	108	1	0	0	0	0	0	0	0	0	0	0
[15,]	0	0	0	0	0	0	0	0	0	0	0	0	0	81	240	253	253	119	25	0	0	0	0	0	0	0	0	0
[16,]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	45	186	253	253	150	27	0	0	0	0	0	0	0	0
[17,]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	93	252	253	187	0	0	0	0	0	0	0	0
[18,]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	249	253	249	64	0	0	0	0	0	0	0
[19,]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	46	130	183	253	253	207	2	0	0	0	0	0	0	0
[20,]	0	0	0	0	0	0	0	0	0	0	0	0	39	148	229	253	253	253	250	182	0	0	0	0	0	0	0	0
[21,]	0	0	0	0	0	0	0	0	0	0	24	114	221	253	253	253	253	201	78	0	0	0	0	0	0	0	0	0
[22,]	0	0	0	0	0	0	0	0	23	66	213	253	253	253	253	198	81	2	0	0	0	0	0	0	0	0	0	0
[23,]	0	0	0	0	0	0	18	171	219	253	253	253	253	195	80	9	0	0	0	0	0	0	0	0	0	0	0	0
[24,]	0	0	0	0	55	172	226	253	253	253	253	244	133	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[25,]	0	0	0	0	136	253	253	253	212	135	132	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[26,]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[27,]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ28. T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

How Grayscale Images are Represented

- A grayscale image is a rectangular array of pixels
- The light intensity of each pixel is a number between 0 and 255. As the number increases from 0 to 255, the pixel goes from black through gray to white
- Each cell of the matrix shows the light intensity of the pixel at that location

How Color Images are Represented

Each pixel of a color image is represented by three
intensities (not one), corresponding to the pixel's "redness", "blueness" and "greenness" (RGB)

Each light intensity is still a number between 0 and 255

 Thus color images are represented as 3 matrices of numbers, corresponding to the Red, Green and Blue "channels" respectively.

How Color Images are Represented

killian.jpeg JPEG image - 6 KB

Tags Add Tags...
Created Today, 4:30 PM
Modified Today, 4:30 PM
Content created Friday, April 3, 2020 at 4:30 PM
Dimensions 200×200
Color space RGB

	\
Red	\
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]	
[1,] 147 131 138 144 131 134 144 135 133 145	
[2,] 140 131 141 149 138 138 143 132 136 146 Gree	ր ՝
[3,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]	\
[4,] [1,] 186 171 179 185 171 172 180 171 168 180	1
[5,] [2,] 177 169 180 188 176 175 178 167 169 180	1.
[6,] [3,] 175 160 174 176 160 173 170 173 171 103	Blue
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]	[,10]
[8,] [1,] 251 232 233 237 230 243 255 255 250	246
[9,] [6,] [2,] 248 234 239 245 238 246 255 251 246	243
[10,] [3,] 255 241 238 236 229 241 253 249 238	234
[8,] [4,] 255 252 243 233 228 237 242 234 218	205
[9,] [5,] 255 255 249 231 228 231 224 215 204	166
[10,] [6,] 255 255 230 192 189 202 205 205 204	147
[7,] 231 231 188 140 138 152 156 159 177	136
[8,] 155 172 149 114 113 111 93 82 119	115
[9,] 107 130 108 93 113 100 67 66 81	95
[10,] 84 104 90 69 69 61 52 63 59	46

Key Tasks in Computer Vision

Image Classification

Classification and Localization

Classification + Localization

Object Detection

Object Detection

<u>Image Source</u> 10

Semantic Segmentation

Every pixel needs to be classified into one of N categories

Image Source 11

Instance Segmentation

Every pixel needs to be classified into one of N categories and

Different instances (e.g., Sheep 1, Sheep 2, Sheep 3) of the same category (e.g., Sheep) need to be identified

Image Source 12

Image Classification

Motivating application: Fashion MNIST

The fashion-mnist dataset consists of 70,000 images of clothing items across 10 categories.

We will build a deep learning network <u>from</u> <u>scratch</u> to classify clothing into these 10 categories with over 90% accuracy!

A simple NN to classify grayscale clothing images

A simple NN to classify grayscale clothing images

Multi-Class Classification

Suppose the output variable is categorical with 10 levels

We know how to output 10 numbers

We know how to output 10 probabilities

How do we output 10 probabilities that sum to 1.0?

The Softmax Layer

softmax takes in *n* arbitrary numbers and converts them to *n* probabilities

Summary: Output Layers for Regression and Classification

Output Variable	Output Layer
Single number (regression with a single output)	
Single probability (binary classification)	
Vector of <i>n</i> numbers (regression with multiple outputs)	Stack of
Vector of n probabilities that add up to 1 (multi-class classification)	Softmax

Refresher: How binary and categorical variables are encoded

BINARY CLASSIFICATION EXAMPLE

RAW DATA	ONE-HOT ENCODED VERSION
Yes	1
No	0

Refresher: How binary and categorical variables are encoded

BINARY CLASSIFICATION EXAMPLE

RAW DATA	ONE-HOT ENCODED VERSION
Yes	1
No	0

MULTI-CLASS CLASSIFICATION EXAMPLE

RAW DATA	SPARSE ENCODED VERSION
T-shirt/top	0
Trouser	1
Pullover	2
Dress	3
Coat	4
Sandal	5
Shirt	6
Sneaker	7
Bag	8
Ankle boot	9

Refresher: How binary and categorical variables are encoded

BINARY CLASSIFICATION EXAMPLE

RAW DATA	ONE-HOT ENCODED VERSION
Yes	1
No	0

MULTI-CLASS CLASSIFICATION EXAMPLE

RAW DATA	SPARSE ENCODED VERSION	O	ONE-HOT ENCODED VERSION									
T-shirt/top	0	1	0	0	0	0	0	0	0	0	0	
Trouser	1	0	1	0	0	0	0	0	0	0	0	
Pullover	2	0	0	1	0	0	0	0	0	0	0	
Dress	3	0	0	0	1	0	0	0	0	0	0	
Coat	4	0	0	0	0	1	0	0	0	0	0	
Sandal	5	0	0	0	0	0	1	0	0	0	0	
Shirt	6	0	0	0	0	0	0	1	0	0	0	
Sneaker	7	0	0	0	0	0	0	0	1	0	0	
Bag	8	0	0	0	0	0	0	0	0	1	0	
Ankle boot	9	0	0	0	0	0	0	0	0	0	1	

<u>Important</u>: Pick the Keras crossentropy loss function that matches the encoding

BINARY CLASSIFICATION EXAMPLE

RAW DATA	ONE-HOT ENCODED VERSION
Yes	1
No	0

binary_crossentropy

MULTI-CLASS CLASSIFICATION EXAMPLE

RAW DATA	SPARSE ENCODED VERSION	E ENCODED VERSION ONE-HOT ENCODED VERSION									
T-shirt/top	0	1	0	0	0	0	0	0	0	0	0
Trouser	1	0	1	0	0	0	0	0	0	0	0
Pullover	2	0	0	1	0	0	0	0	0	0	0
Dress	3	0	0	0	1	0	0	0	0	0	0
Coat	4	0	0	0	0	1	0	0	0	0	0
Sandal	5	0	0	0	0	0	1	0	0	0	0
Shirt	6	0	0	0	0	0	0	1	0	0	0
Sneaker	7	0	0	0	0	0	0	0	1	0	0
Bag	8	0	0	0	0	0	0	0	0	1	0
Ankle boot	9	0	0	0	0	0	0	0	0	0	1

Important: Pick the Keras crossentropy loss function that matches the encoding

BINARY CLASSIFICATION EXAMPLE

RAW DATA	ONE-HOT ENCODED VERSION	_	binary crossentropy
Yes	1		billary_crosseritropy
No	0		

MULTI-CLASS CLASSIFICATION EXAMPLE

RAW DATA	SPARSE ENCODED VERSION	ONE-HOT ENCODED VERSION											
T-shirt/top	0	1	0	0	0	0	0	0	0	0	0		
Trouser	1	0	1	0	0	0	0	0	0	0	0		
Pullover	2	0	0	1	0	0	0	0	0	0	0		
Dress	3	0	0	0	1	0	0	0	0	0	0		
Coat	4	0	0	0	0	1	0	0	0	0	0		
Sandal	5	0	0	0	0	0	1	0	0	0	0		
Shirt	6	0	0	0	0	0	0	1	0	0	0		
Sneaker	7	0	0	0	0	0	0	0	1	0	0		
Bag	8	0	0	0	0	0	0	0	0	1	0		
Ankle boot	9	0	0	0	0	0	0	0	0	0	1		

sparse_categorical_crossentropy

Important: Pick the Keras crossentropy loss function that matches the encoding

BINARY CLASSIFICATION EXAMPLE **RAW DATA** ONE-HOT ENCODED VERSION binary crossentropy Yes No 0 MULTI-CLASS CLASSIFICATION EXAMPLE **RAW DATA** SPARSE ENCODED VERSION ONE-HOT ENCODED VERSION T-shirt/top 0 Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot sparse categorical crossentropy categorical crossentropy

Important: Pick the Keras crossentropy loss function that matches the encoding

BINARY CLASSIFICATION EXAMPLE **RAW DATA** ONE-HOT ENCODED VERSION binary crossentropy Yes No 0 MULTI-CLASS CLASSIFICATION EXAMPLE **RAW DATA** SPARSE ENCODED VERSION ONE-HOT ENCODED VERSION T-shirt/top 0 Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot sparse categorical crossentropy categorical crossentropy

Summary: Loss functions for different output layers

Output Variable	Output Layer	Loss Function
Single number (regression with a single output)		Mean squared error
Single probability (binary classification)		Binary cross-entropy
Vector of <i>n</i> numbers (regression with multiple outputs)	Stack of	Mean squared error
Vector of n probabilities that add up to 1 (multi-class classification)	Softmax	Categorical cross- entropy

Let's translate this NN to Keras and train it!

Colab