

MATEMÁTICAS

Límites de Funciones Reales II

Prof. Dr. Jorge Crespo Álvarez

Objetivo

Continuar el estudio de los Límites de funciones reales de una variable

- Definición precisa de límite
- Límites laterales
- Límites infinitos
- Límites en el infinito

2 Definición precisa de un límite Sea f la función definida sobre algún intervalo abierto que contiene el número a, excepto posiblemente en a misma. Entonces, se dice que el **límite de** f(x) **cuando** x **tiende a** a **es** L, y se expresa como

$$\lim_{x \to a} f(x) = L$$

si para cada número $\varepsilon > 0$ existe un número $\delta > 0$ tal que

si
$$0 < |x - a| < \delta$$
 entonces $|f(x) - L| < \varepsilon$

 $(x \neq a)$

Ejemplo:

Pruebe que $\lim_{x\to 3} (4x - 5) = 7$

si
$$0 < |x-3| < \delta$$

entonces

$$|(4x-5)-7|<\varepsilon$$

Límites Laterales

3 Definición de límite por la izquierda

$$\lim_{x \to a^{-}} f(x) = L$$

Si para todo número $\varepsilon > 0$ existe un número $\delta > 0$ tal que

si $a - \delta < x < a$ entonces $|f(x) - L| < \varepsilon$

4 Definición de límite por la derecha

$$\lim_{x \to a^+} f(x) = L$$

Si para todo número $\varepsilon > 0$ existe un número $\delta > 0$ tal que

si $a < x < a + \delta$ entonces $|f(x) - L| < \varepsilon$

Límites Infinitos

Definición precisa de un límite infinito Sea f una función definida sobre algún intervalo abierto que contiene al número a, excepto posiblemente en a misma. Entonces

$$\lim_{x \to a} f(x) = \infty$$

significa que para todo número positivo M existe un número positivo tal que

si
$$0 < |x - a| < \delta$$
 entonces $f(x) > M$

Límites Infinitos

7 Definición Sea f una función definida sobre algún intervalo abierto que contiene el número a, excepto posiblemente en a misma. Entonces

$$\lim_{x \to a} f(x) = -\infty$$

significa que para todo número negativo N existe un número positivo δ tal que

si
$$0 < |x - a| < \delta$$
 entonces $f(x) < N$

Ejemplo:

Investigue el comportamiento de la función $f(x) = \frac{x^2-1}{x^2+1}$ conforme x se hace grande.

х	f(x)
0	-1
±1	0
±2	0.600000
±3	0.800000
±4	0.882353
±5	0.923077
±10	0.980198
±50	0.999200
±100	0.999800
±1000	0.999998

$$\lim_{x \to \infty} \frac{x^2 - 1}{x^2 + 1} = 1$$

1 Definición intuitiva de un límite al infinito Sea f una función definida en algún intervalo (a, ∞) . Entonces

$$\lim_{x \to \infty} f(x) = L$$

significa que los valores de f(x) se pueden aproximar arbitrariamente a L tanto como se quiera, eligiendo a x suficientemente grande.

Definición Sea f una función definida en algún intervalo $(-\infty, a)$. Entonces

$$\lim_{x \to -\infty} f(x) = L$$

significa que los valores de f(x) se pueden hacer arbitrariamente cercanos a L haciendo que x sea suficientemente negativa.

Definición La recta y = L se llama asíntota horizontal de la curva y = f(x) si

$$\lim_{x \to \infty} f(x) = L \qquad \text{o} \qquad \lim_{x \to -\infty} f(x) = L$$

Asíntotas inclinadas

Algunas curvas tienen asíntotas que son *oblicuas*, esto es, no son horizontales ni verticales. Si

$$\lim_{x \to \infty} [f(x) - (mx + b)] = 0$$

donde $m \neq 0$, entonces la recta y = mx + b se llama **asíntota inclinada** (oblicua) porque la distancia vertical entre la curva y = f(x) y la recta y = mx + b tiende a cero,

Ejemplo:

Encuentre los límites infinitos, los límites en el infinito y las asíntotas para la función cuya gráfica se muestra a continuación.

Ejemplo:

Encuentre las asíntotas horizontales y verticales de la función:

$$f(x) = \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

Ejemplo:

Encuentre las asíntotas oblicuas de la función:

$$f(x) = \frac{x^3}{x^2 + 1}$$

7 Definición precisa de un límite al infinito Sea f una función definida sobre algún intervalo (a, ∞) . Entonces

$$\lim_{x\to\infty}f(x)=L$$

significa que para toda $\varepsilon > 0$ existe un correspondiente número N tal que

si
$$x > N$$
 entonces $|f(x) - L| < \varepsilon$

8 Definición Sea f una función definida sobre algún intervalo $(-\infty, a)$. Entonces

$$\lim_{x \to -\infty} f(x) = L$$

significa que para todo $\varepsilon > 0$ existe un correspondiente número N tal que

si x < N entonces $|f(x) - L| < \varepsilon$

9 Definición de un límite infinito al infinito Sea f una función definida sobre algún intervalo (a, ∞) . Entonces

$$\lim_{x \to \infty} f(x) = \infty$$

significa que para todo número positivo M existe un correspondiente número positivo N tal que

si
$$x > N$$
 entonces $f(x) > M$

Ejemplo:

Utilice la definición 7 para demostrar que $\lim_{x\to\infty}\frac{1}{x}=0$:

si
$$x > N$$
 entonces $\left| \frac{1}{x} - 0 \right| < \varepsilon$

