INTEGER ARITHMETIC

Lecture-7

OPERATORS

```
ap_int<32> a;
ap_int<32> b;
ap_int<32> c;
a = 12;
b = 345;
c = a * b;
```

RESOURCE ALLOCATION Addition (+) Subtraction (-) Multiplication (*) Division (/) Modulus (%) Operator #pragma HLS RESOURCE variable= f core=...

BASIC ARITHMETIC OPERATORS

Addition	a+b
Subtraction	a-b
Multiplication	a*b
Division	a/b
Modulus (Reminder)	a%b

Basic arithmetic operators can almost applied on all data types defined in HLS.

For user defined data type the operators should be implemented by users.

C-based native data types are all on 8-bit boundaries:

8-bit							
8-bit	8-bit						
8-bit	8-bit	8-bit	8-bit				
8-bit							

BASIC ARITHMETIC OPERATORS EXAMPLES

```
typedef int DTYPE;
void arith (
DTYPE A, DTYPE B, DTYPE C, DTYPE D,
DTYPE *out1, DTYPE *out2,
DTYPE *out3, DTYPE *out4
  // Basic arithmetic operations
  *out1 = A * B;
  *out2 = B + A;
  *out3 = C / A;
  *out4 = D % A;
```

```
typedef int DTYPE1;
typedef short DTYPE2;
typedef char DTYPE3;
void arith (
DTYPE3 A, DTYPE2 B, DTYPE1 C, DTYPE3 D,
DTYPE1 *out1, DTYPE1 *out2,
DTYPE1 *out3, DTYPE1 *out4
  // Basic arithmetic operations
  *out1 = A * B;
  *out2 = B + A;
  *out3 = C / A;
  *out4 = D % A;
```

ADD/SUB/MUL INTEGER ARITHMETIC OPERATORS

Data type	Bit width
bool	1
char	8
unsigned char	8
short int	16
unsigned short int	16
int	32
unsigned int	32
long int	32
unsigned long int	32
long long int	64
unsigned long long int	64

Addition (+)
Subtraction (-)
Multiplication (*)

Design
Clock period > propagation
delay
Resource Con

Addition (+)
Subtraction (-)
Multiplication (*)

Design
Clock period < propagation
delay

Resource Co

ADD/SUB/MUL INTEGER ARITHMETIC OPERATORS

Resource Constraint

OPERATOR OVERLOADING

Standard binary integer arithmetic operators are overloaded to provide arbitrary precision arithmetic.

```
ap_int<32> a;
ap_int<32> b;
ap_int<32> c;
a = 12;
b = 345;
c = a * b;
```

Two operands of ap_[u]int, or One ap_[u]int type and one C/C++ basic integer data type

```
ap_int<32> a;
int b;
long long int c;
a = 12;
b = 345;
c = a * b;
```

DIFFERENT DATATYPE VERSIONS

```
void arith32 (
  int A, int B,
  int C, int D,
  int *out1, int *out2,
  int *out3
) {
  // Basic arithmetic operations
  *out1 = A + B;
  *out2 = A - B;
  *out3 = C * D;
}
```

PERFORMANCE COMPARISON

arith32

arith20

⊟ Timing

Summary

Clock	ock Target Estimated		Uncertainty		
ap_clk	10.00 ns	8.470 ns	1.25 ns		

□ Latency

Utilization Estimates

Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP					
Expression	*	3	0	99	
FIFO		in .			**
Instance				(*/)	
Memory			(*)		
Multiplexer					
Register		- 12			
Total	0	3	0	99	0
Available	100	90	41600	20800	0
Utilization (%)	0	3	0	-0	0

i in ammites

⊟ Timing

Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00 ns	5.850 ns	1.25 ns

⊞ Lated

Utilization Estimates

Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP		-		-	
Expression		2	0	66	
FIFO	5.00		820		
Instance	(*)				
Memory		- 1		-	
Multiplexer	340			-	
Register			-	-	
Total	0	2	0	66	0
Available	100	90	41600	20800	0
Utilization (%)	0	2	0	-0	0

. IFI Dotal

GOOD PRACTICE

types.h

```
typedef char type1;
typedef short type2;
typedef int type3;
```

arith.cpp

```
#include "types.h"
void arith (
 type1 A, type1 B,
 type2 C, type2 D,
 type3 *out1, type3 *out2,
 type2 *out3, type2 *out4
  // Basic arithmetic operations
  *out1 = A + B;
  *out2 = A - B;
  *out3 = C / D;
```

DESIGN CLOCK CONSTRAINT

There is a clock constraints assigned To each HLS design.

f: Frequency (MHz) =
$$\frac{1}{T}$$

Clock

- Period in units of ns or Frequency value in MHz suffix
- Uncertainty

DESIGN CLOCK CONSTRAINT

ADD/SUB/MULINTEGER ARITHMETIC OPERATORS

Data type	Bit width
bool	1
char	8
unsigned char	8
short int	16
unsigned short int	16
int	32
unsigned int	32
long int	32
unsigned long int	32
long long int	64
unsigned long long int	64

DSP RESOURCES

ARITHMETIC RESOURCES

Addition (+)
Subtraction (-)
Multiplication (*)
Division (/)
Modulus (%)

Logic-Gates in the form of LUTs

DSP

The DSP48 block is the most complex computational block available in a Xilinx FPGA.

DSP STRUCTURE

DSP EXAMPLE В X A*B f = A*BA

DSP EXAMPLE

$$f = (A+D)*B$$

LUT VS DSP

Combinational

LUT

Pipelined

DSP

ARITHMETIC RESOURCES

Vivado Hardware Implementation Resources

HLS Description

Elaboration

internal database

Mapping

Cores

add mul sdiv srem sub udiv urem ashr dadd dmul

The operators represent operations in the C code such as additions, multiplications, array reads, and writes.

Vivado-HLS

Cores are the specific hardware components used to create the design (such as adders, multipliers, pipelined multipliers, and block RAM).

AddSub AddSubnS AddSub_DSP DivnS **DSP48** MulnS Mul_LUT

COMPILER DIRECTIVES

RESOURCE

The RESOURCE directive is used to explicitly specify which core to use for specific operations.

CORES

AddSub	This core is used to implement both adders and subtractors.
AddSubnS	N-stage pipelined adder or subtractor. Vivado HLS determines how many pipeline stages are required.
A COLONIA DE LA COLONIA DE	This core ensures that the add or sub operation is implemented using a DSP48 (Using the adder or subtractor inside the DSP48).
DivnS	N-stage pipelined divider.
DSP48	Multiplications with bit-widths that allow implementation in a single DSP48.

CORES

Mul	Combinational multiplier with bit-widths that exceed the size of a standard DSP48 macrocell. Multipliers that can be implemented with a single DSP48 macrocell are mapped to the DSP48 core.
MulnS	N-stage pipelined multiplier with bit-widths that exceed the size of a standard DSP48 macrocell. Multiplications which are >= 10 bits are implemented on a DSP48 macro cell. Multiplication lower than this limit are implemented using LUTs. Multipliers that can be implemented with a single DSP48 macrocell are mapped to the DSP48 core.
Mul_LUT	Multiplier implemented with LUTs. Note: This only applies to C POD (plain old data) types. This cannot be used with Vivado HLS types (ap_int, ap_fixed, etc).

RESOURCE PRAGMA


```
f = a + b
#pragma HLS RESOURCE variable=f core=AddSub_DSP

r = a * b
#pragma HLS RESOURCE variable=r core=Mul_LUT
```

RESOURCE PRAGMA

```
r = a + c*b

t = c*b
r = a + t;
#pragma HLS RESOURCE variable=t core=Mul_LUT
#pragma HLS RESOURCE variable=r core=AddSub_DSP
```

VIVADO-HLS IDE

f = a*b + a*c + a*d + a*b*c*d;

TAKEAWAY

By adding the RESOURCE directive, we can guide the HLS tool to select the desired hardware resource for implementing operators.

DIVISION & REMAINDER

Division (/) Returns the quotient of two integer values

Modulus (%) Returns the modulus, or remainder of integer division, for two integer values.

DIVIDE BY A CONSTANT

const int n = 128405; r = a / n;

Performance Estimates

- Timing

Summary

Clock	Target	Estimated	Uncertainty
ap_clk	0.20 us	15.544 ns	25.00 ns

■ Latency

Summary

Latency (cycles)		ency (cycles) Latency (absolute)		Interval (cycles)		
min	max	min	max	min	max	Туре
0	0	0 ns	0 ns	0	0	none

Detail

Utilization Estimates

□ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP				8.0	
Expression	-20	4	0	197	4
FIFO	25		72	- 22	- 0
Instance	19	5	35	353	- 15
Memory			-		
Multiplexer	25	12)	12	-	12
Register	70	- 65	- 7		175
Total	0	4	0	197	0
Available	100	90	41600	20800	0
Utilization (%)	0	4	0	~0	0

Interface

Summary

RTL Ports	Dir	Bits	Protocol	Source Object	C Type
a	in	32	ap_none	a	scalar
b	in	32	ap_none	b	scalar
r	out	32	ap_none	r	pointer

Export the report(.html) using the Export Wizard

Open Analysis Perspective Analysis Perspective

#pragma HLS RESOURCE variable=r core=DivnS

Performance Estimates

□ Timing

─ Summar

Clock	Target	Estimated	Uncertainty
ap_clk	0.20 us	4.157 ns	25.00 ns

■ Latency

Summary

Latency (cycles)		Latency (absolute)		Interval (cycles)			
min	max	min	max	min	max	Туре	
35	35	7.000 us	7.000 us	35	35	none	

Detail

Utilization Estimates

= Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP		-			• :
Expression	-				- 1
FIFO			(m)	5-31	-83
Instance		(a	2283	1738	+8
Memory		-	1.000		-2
Multiplexer		2	-	165	
Register		-	36	-	-
Total	0	0	2319	1903	0
Available	100	90	41600	20800	0
Utilization (%)	0	0	5	9	

nterface

Summar

RTL Ports	Dir	Bits	Protocol	Source Object	C Type
ap_clk	in	- 1	ap_ctrl_none	integer_division	return value
ap_rst	in	1	ap_ctrl_none	integer_division	return value
a	in	32	ap_none	a	scalar
b	in	32	ap_none	b	scalar
r	out	32	ap_none	r	pointer

Export the report(.html) using the Export Wizard

Open Analysis Perspective Analysis Perspective

DIVIDE BY A VARIABLE

r = a / b;

Performance Estimate

⊟ Timing

Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00 ns	4.148 ns	1.25 ns

⊟ Latency

Summary

Latency (cycles)		Latency (absolute)		Interval (cycles)			
min	max	min	max	min	max	Туре	
35	35	0.350 us	0.350 us	35	35	none	

Utilization Estimates

Summary

Jummary	1				
Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	85	157	
Expression	-	-	-0_		-
FIFO		-	22	G.	90
Instance			394	238	-
Memory			- 5		-
Multiplexer		-	*	165	-
Register		-	36	٠.	2
Total	0	C	430	403	0
Available	100	90	41600	20800	0
Utilization (%)	0	C	1	1	0
	-				

nterface

□ Summar

DTI Docte	Die	Dite	Destacal	Source Object	CType
ap_clk	in	1	ap_ctrl_none	integer_division	return value
ap_rst	in	1	ap_ctrl_none	integer_division	return value
a	ın	32	ap_none	a	scalar
b	in	32	ap_none	b	scalar
r	out	32	ap_none	r	pointer

Export the report(.html) using the Export Wizard

Open Analysis Perspective

Analysis Perspective

#pragma HLS RESOURCE variable=r core=DivnS

Performance Essimate

Timir

Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00 ns	4.157 ns	1,25 ns

■ Latency

Summary

Latency	Latency (cycles)		Latency (absolute)		Interval (cycles)	
min	max	min	max	min	max	Туре
35	35	0.350 us	0.350 us	35	35	none

- Detail

Utilization Estimates

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-		
Expression					- 5
FIFO		- 34	-	-	- 0
Instance		- 3	2283	1738	- 2
Memory	-	- 8	2	-	- 5
Multiplexer		- 2		165	
Register	-2		36		22
Total	0	0	2319	1903	0
Available	100	90	41600	20800	0
Itilization (%)	0	0	5	0	

Det.

Interface

Summary

0.00		D.	- O-market	-	
INFLOIG	DII	DIES	riotocor	Source object	c iype
ap_clk	in	1	ap_ctrl_none	integer_division	return value
ap_rst	in	1	ap_ctrl_none	integer_division	return value
a	in	32	ap_none	a	scalar
b	in	32	ap_none	b	scalar
r	out	32	ap_none	r	pointer

Export the report(.html) using the Export Wizard

Open Analysis Perspective Analysis Perspective

REMAINDER SYNTHESIS

const int
$$n = 128405$$
; $r = a \% n$;

r = a % b;

Performance Estimates

Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00 ns	4.148 ns	1.25 ns

Latency

Latency (cycles)		Latency (absolute)	Interval	erval (cycles)	
min	max	min	max	min	max	Type
35	35	0.350 us	0.350 us	35	35	none

Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP			-		
Expression	153				:51
FIFO	75	358	-		
Instance		0.00	394	238	
Memory				- 12	5.46
Multiplexer				165	
Register			36	-	
Total	0	0	430	403	0
Available	vailable 100		41600	20800	0
Utilization (%)	0	0	1	1	0

RTL Ports	Dir	Bits	Protocol	Source Object	С Туре
ap_clk	in	1	ap_ctrl_none	integer_division	return value
ap_rst	in	1	ap_ctrl_none	integer_division	return value
a	in	32	ap_none	a	scalar
b	in	32	ap_none	b	scalar
r	out	32	ap_none	r	pointer

Export the report(.html) using the Export Wizard Open Analysis Perspective Analysis Perspective

#pragma HLS RESOURCE variable=r core=DivnS

Clock	Target	Estimated	Uncertainty
ap_clk	10.00 ns	4.157 ns	1,25 ns

- Latency

Latency	ency (cycles) Latency (absolute)		Interval			
min	max	min	max	min	max	Type
35	35	0.350 us	0.350 us	35	35	none

Utilization Estimates

Name	BRAM_18K	DSP48E	FF	LUT	URAM	
DSP	-	-	4	121		
Expression		- 5	27	258	- 1	
FIFO		-		- 93		
Instance		- 2283		1738	*	
Memory		-		(4)		
Multiplexer		2	-	165	- 22	
Register	23	22	36	- 2		
Total	0	0	2319	1903	(
Available	100	90	41600	20800	0	
Utilization (%)	0	0	5	9	(

RTL Ports	Dir	Bits	Protocol	Source Object	C Type
ap_clk	in	1	ap_ctrl_none	integer_division	return value
ap_rst	in	1	ap_ctrl_none	integer_division	return value
a	în	32	ap_none	a	scalar
b	in	32	ap_none	b	scalar
r	out	32	ap_none	1	pointer

Export the report(.html) using the Export Wizard Open Analysis Perspective

REMAINDER COMBINATIONAL

```
const int n = 128405; r = a \% n;
```

$$r = a - n*(a / n);$$

Any Question...

Thank you