COT 2000 Foundations of Computing

Summer 2024

Lecture 3 – part 1

Homework 1 - Due:05/24/24 Lab 2 Lecture 3 – part 2

Review

Review

- What are ordered pairs?
- What is the Cartesian product?
- What is the Cartesian plane?
- What is the concept of relations in set theory?
- What are arrow diagrams of relations?
- What is a function in set theory?
- What are the two conditions for a function?
- What are function machines?

Ordered pairs

An ordered pair is a set of the form {{a}, {a, b}}.

The usual notation is more simply as (a, b).

Two ordered pairs (a, b) and (c, d) are equal if, and only if, a = c and b = d.

Cartesian Product

$$A \times B = \{ (a,b) \mid a \in A \text{ and } b \in B \}$$

A cross B equals the set of all ordered pairs (a, b) such that a is an element of A and b is an element of B.

For
$$A=\{1, 2, 3\}$$
 and $B=\{a, b\}$,

$$A \times B = \{ (1,a), (1,b), (2,a), (2,b), (3,a), (3,b) \}$$

Cartesian Plane

 $\mathbf{R} \times \mathbf{R}$ is the set of all ordered pairs (x, y) where both x and y are real numbers.

Relations

$$R \subseteq A \times B$$

R is a subset of the Cartesian product $A \times B$, and it contains the specific ordered pairs that are related according to R.

x R y means that $(x,y) \in R$

$$A = \{ 1,2,3 \}, B = \{ 3,4 \}$$

$$R = \{ (x, y) \mid x \in A, y \in B, \text{ and } x < y \}$$

$$R = \{ (1,3), (1,4), (2,3), (2,4), (3,4) \}$$

Functions

A **function** F from a set A to a set B is a relation with **domain** A and **co-domain** B that satisfies the following two properties:

- 1. For every element x in A, there is an element y in B such that $(x, y) \in F$.
- 2. For all elements x in A and y and z in B, if $(x, y) \in F$ and $(x, z) \in F$, then y = z.

Property 1 means that each element in the domain *A* must be associated with some element in the co-domain *B*.

Property 2 means that each element in the domain A can be paired with **only one** unique element in the codomain B.

In essence, a function ensures that each input (from set A) is related to exactly one output (from set B), and no input is related to more than one output.

Lecture 3 – part 3

Logic of compound statements

Logic

- Aristotle's Influence: Pioneered rules for deductive reasoning across all knowledge branches.
- Leibniz's Vision: Proposed using symbols to mechanize deductive reasoning, akin to algebra.
- 19th Century Realization: Boole & De Morgan established modern symbolic logic.
- Symbolic Logic's Evolution: Research ongoing and continuously expanding.
- Modern Application: Forms the theoretical basis for areas like digital logic circuit design in computer science.

https://en.wikipedia.org/wiki/Aristotle

Statements or propositions

Definition

A **statement** (or **proposition**) is a sentence that is true or false but not both.

"Two plus two equals four" (True)
"Two plus two equals five" (False)

"He is a college student"
$$x + y > 0$$
"

Compound Statements

Europa supports life or Mars support life Mars support life or Europa supports life

Compound Statements

The symbol ~denotes *not*,

A denotes *and*,

and V denotes *or*.

Propositions
p, q, r
h,s

$$\sim p \land q = (\sim p) \land q$$

$$p \land q \lor r$$

$$(p \land q) \lor r \text{ or } p \land (q \lor r)$$

Example

Write each of the following sentences symbolically, letting: h = "It is hot" and s = "It is sunny."

- a. It is not hot but it is sunny.
- b. It is neither hot nor sunny.
- a) "It is not hot and it is sunny" $\sim h \wedge s$
- b) "it is not hot and it is not sunny" $\sim h \land \sim s$

Notation for Inequalities

$$x \le a$$
 means $x < a$ or $x = a$ $a \le x \le b$ means $a \le x$ and $x \le b$.

Suppose *x* is a particular real number.

Let p, q, and r symbolize "0 < x," "x < 3," and "x = 3," respectively.

Write the following inequalities symbolically:

a.
$$x \leq 3$$

a.
$$x \le 3$$
, b. $0 < x < 3$, c. $0 < x \le 3$

c.
$$0 < x \le 3$$

Solution

a.
$$q \vee r$$

a.
$$q \vee r$$
 b. $p \wedge q$

$$c. p \land (q \lor r)$$

Truth Values

Negation

Definition

If p is a statement variable, the **negation** of p is "not p" or "It is not the case that p" and is denoted $\sim p$. It has opposite truth value from p: if p is true, $\sim p$ is false; if p is false, $\sim p$ is true.

Truth Table for $\sim p$

p	~p
Т	F
F	T

Truth Values

Conjunction

Definition

If p and q are statement variables, the **conjunction** of p and q is "p and q," denoted $p \wedge q$. It is true when, and only when, both p and q are true. If either p or q is false, or if both are false, $p \wedge q$ is false.

Truth Table for $p \land q$

p	\boldsymbol{q}	$p \wedge q$
T	T	
T	F	
F	T	
F	F	

Truth Values

Disjunction

Definition

If p and q are statement variables, the **disjunction** of p and q is "p or q," denoted $p \lor q$. It is true when either p is true, or q is true, or both p and q are true; it is false only when both p and q are false.

Truth Table for $p \lor q$

$$egin{array}{ccccc} oldsymbol{p} & oldsymbol{q} & oldsymbol{p} ee oldsymbol{q} \\ oldsymbol{T} & oldsymbol{T} \\ oldsymbol{F} & oldsymbol{T} \\ oldsymbol{F} & oldsymbol{F} \end{array}$$

Proposition forms

$$(p \lor q) \land \sim (p \land q)$$

Definition

A **statement form** (or **propositional form**) is an expression made up of statement variables (such as p, q, and r) and logical connectives (such as \sim , \wedge , and \vee) that becomes a statement when actual statements are substituted for the component statement variables. The **truth table** for a given statement form displays the truth values that correspond to all possible combinations of truth values for its component statement variables.

True Table for Exclusive OR

"p or q but not both"

"p or q and not both p and q,"

$$(p \lor q) \land \sim (p \land q)$$

р	q	pvq	рΛq	~(p ∧ q)	(p∨q) ∧ ~(p∧q)
Т	Т				
Т	F				
F	Т				
F	F				

Example

Truth Table for ($p \land q$) $V \sim r$

р	q	r	рΛq	~r	(p ∧ q) V ~r

Logical Equivalence

6 is greater than 2 and 2 is less than 6

(1) Dogs bark and cats meow and (2) Cats meow and dogs bark

p	q	$p \wedge q$	$q \wedge p$
T	T	Т	T
T	F	F	F
F	T	F	F
F	F	F	F

Example

• Are $\sim (p \land q)$ and $\sim p \land \sim q$ logically equivalent?

p	\boldsymbol{q}	~ <i>p</i>	~ q	$p \wedge q$	$\sim (p \wedge q)$		$\sim p \wedge \sim q$
T	T	F	F	T	F		F
T	F	F	T	F	T	\neq	F
F	Т	T	F	F	T	\neq	F
F	F	T	T	F	T		T

 $\sim (p \wedge q)$ and $\sim p \wedge \sim q$ have different truth values in rows 2 and 3,

so they are not logically equivalent

De Morgan's Laws

"John is tall and Jim is redheaded"

"John is not tall or Jim is not redheaded."

$\sim (p \land q)$ and $\sim p \lor \sim q$ are logically equivalent

p	\boldsymbol{q}	~ <i>p</i>	~q	$p \wedge q$	$\sim (p \wedge q)$	$\sim p \vee \sim q$
T	T	F	F	T	F	F
T	F	F	T	F	T	T
F	T	T	F	F	T	T
F	F	T	T	F	T	T

 $\sim (p \land q)$ and $\sim p \lor \sim q$ always have the same truth values, so they are logically equivalent

De Morgan's Laws

Symbolically,

$$\sim (p \wedge q) \equiv \sim p \vee \sim q.$$

$$\sim (p \lor q) \equiv \sim p \land \sim q.$$

De Morgan's Laws

The negation of an *and* statement is logically equivalent to the *or* statement in which each component is negated.

The negation of an *or* statement is logically equivalent to the *and* statement in which each component is negated.

https://en.wikipedia.org/wiki/Augustus De Morgan

Example

Use De Morgan's laws to write the negation of $-1 < x \le 4$.

$$-1 < x$$
 and $x \le 4$.

The negation is:

$$-1 \not< x$$
 or $x \not\le 4$,

Equivalent to:

$$-1 \ge x$$
 or $x > 4$.

Tautologies and Contradictions

Example:

The statement form $p \lor \sim p$ is a tautology and the statement form $p \land \sim p$ is a contradiction.

p	~ <i>p</i>	$p \vee \sim p$	$p \wedge \sim p$
T	F	Т	F
F	T	Т	F
		↑	↑
		all T's so	all F's so
		$p \lor \sim p$ is a tautology	$p \land \sim p$ is a contradiction

Definition

A **tautology** is a statement form that is always true regardless of the truth values of the individual statements substituted for its statement variables. A statement whose form is a tautology is a **tautological statement**.

A **contradication** is a statement form that is always false regardless of the truth values of the individual statements substituted for its statement variables. A statement whose form is a contradication is a **contradictory statement**.

Example

If **t** is a tautology and **c** is a contradiction, show that $p \land \mathbf{t} \equiv p$ and $p \land \mathbf{c} \equiv \mathbf{c}$.

Solution

Logical Equivalences

Theorem 2.1.1 Logical Equivalences

Given any statement variables p, q, and r, a tautology \mathbf{t} and a contradiction \mathbf{c} , the following logical equivalences hold.

1. Commutative laws:
$$p \wedge q \equiv q \wedge p$$
 $p \vee q \equiv q \vee p$

2. Associative laws:
$$(p \land q) \land r \equiv p \land (q \land r)$$
 $(p \lor q) \lor r \equiv p \lor (q \lor r)$

3. Distributive laws:
$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$
 $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$

4. Identity laws:
$$p \wedge \mathbf{t} \equiv p$$
 $p \vee \mathbf{c} \equiv p$

5. Negation laws:
$$p \lor \sim p \equiv \mathbf{t}$$
 $p \land \sim p \equiv \mathbf{c}$

6. Double negative law:
$$\sim (\sim p) \equiv p$$

7. Idempotent laws:
$$p \wedge p \equiv p$$
 $p \vee p \equiv p$

8. Universal bound laws:
$$p \lor \mathbf{t} \equiv \mathbf{t}$$
 $p \land \mathbf{c} \equiv \mathbf{c}$

9. De Morgan's laws:
$$\sim (p \land q) \equiv \sim p \lor \sim q$$
 $\sim (p \lor q) \equiv \sim p \land \sim q$

10. Absorption laws:
$$p \lor (p \land q) \equiv p$$
 $p \land (p \lor q) \equiv p$

11. Negations of
$$\mathbf{t}$$
 and \mathbf{c} : $\sim \mathbf{t} \equiv \mathbf{c}$ $\sim \mathbf{c} \equiv \mathbf{t}$

Simplifying Statements Forms

Verify the logical equivalence of:

$$\sim (\sim p \land q) \land (p \lor q) \equiv p.$$

Solution:

$$\sim(\sim p \land q) \land (p \lor q) \equiv (\sim(\sim p) \lor \sim q) \land (p \lor q) \qquad \text{by De Morgan's laws}$$

$$\equiv (p \lor \sim q) \land (p \lor q) \qquad \text{by the double negative law}$$

$$\equiv p \lor (\sim q \land q) \qquad \text{by the distributive law}$$

$$\equiv p \lor (q \land \sim q) \qquad \text{by the commutative law for } \land$$

$$\equiv p \lor \mathbf{c} \qquad \text{by the negation law}$$

$$\equiv p \qquad \text{by the identity law.}$$