PSALTer results panel

 $0^+\mathcal{F}^{\parallel}$ 0^+f^{\parallel} 0^+f^{\perp} 0 \mathcal{F}^{\parallel}

 $S = \iiint (\frac{1}{6} \left(6 \ \mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + 6 \ f^{\alpha\beta} \ \tau \left(\Delta + \mathcal{K}\right)_{\alpha\beta} + 8 \ r_{2} \ \partial_{\beta} \mathcal{A}_{\alpha_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 4 \ r_{2} \ \partial_{\beta} \mathcal{A}_{\alpha\theta_{i}} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} + 4 \ r_{2} \ \partial_{\beta} \mathcal{A}_{\alpha_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 2 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha_{\beta\theta}} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} + 2 \ r_{2} \ \partial_{\theta} \mathcal{A}_{\alpha\beta_{i}} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\theta_{i}} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 2 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} + 2 \ r_{2} \ \partial_{\theta} \mathcal{A}_{\alpha\beta_{i}} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 4 \ r_{2} \ \partial_{\theta} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}\theta} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}\theta} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}\theta} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}\theta} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}\theta} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}\theta} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}\theta} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}\theta} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}\theta} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}\theta} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}\theta} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}\theta} - 4 \ r_{2} \ \partial_{\alpha} \mathcal{A}_{\alpha\beta_{i}\theta} \ \partial^{\alpha} \mathcal{A}_{\alpha\beta_{i}$

Wave operator

		٠,	٠,											
$^{0,^{+}}\mathcal{H}^{\parallel}$ †	-2 k ² (r 2 r.)	0	0	0										
0.+ <i>f</i> †	0	0	0	0										
$0.^{+}f^{\perp}$ †	0	0	0	0										
^{0.} 'Æ [∥] †	0	0	0	$k^2 r_{.} + t_{.}$	$\overset{1^{+}}{\cdot}\mathcal{A}^{\parallel}{}_{\alpha\beta}$	$\overset{1^{+}}{\cdot} \mathscr{H}^{\scriptscriptstyle \perp}{}_{\alpha\beta}$	$^{1^{+}}f^{\parallel}_{\alpha\beta}$	${}^1\mathcal{A}^{\parallel}{}_{lpha}$	$^1\mathcal{H}^{\scriptscriptstyle\perp}{}_{\alpha}$	$\frac{1}{2}f^{\parallel}_{\alpha}$	$\frac{1}{2}f_{\alpha}^{\perp}$			
				$^{1.}^{+}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$k^2 (2rr.) + \frac{2t.}{3}$	$\frac{\sqrt{2} t.}{3}$	$\frac{1}{3}i\sqrt{2}kt.$	0	0	0	0			
				$^{1^+}\mathcal{A}^{\scriptscriptstyle\perp}\dagger^{^{lphaeta}}$	3	$\frac{t}{2}$	$\frac{i kt.}{2}$	0	0	0	0			
				$\overset{1}{\cdot}^{\dagger}f^{\parallel}\uparrow^{\alpha\beta}$	$-\frac{1}{3}i\sqrt{2}kt.$	$-\frac{1}{3}ikt$.	$\frac{k^2t_{\cdot}}{3}$	0	0	0	0			
				$^{1}\mathcal{A}^{\parallel}$ \dagger^{lpha}	0	0	0	0	0	0	0			
				$^{1}\mathcal{A}^{\scriptscriptstyle \perp}\dagger^{\scriptscriptstyle lpha}$	0	0	0	0	0	0	0			
				$^{1}f^{\parallel}\dagger^{\alpha}$	0	0	0	0	0	0	0			
				$^{1}f^{\perp}\dagger^{\alpha}$	0	0	0	0	0	0	0			$^{2}\mathcal{H}^{\parallel}_{\alpha\beta\chi}$
											$^{2.}\mathcal{H}^{\parallel}\dagger^{\alpha\beta}$	$k^2 \left(-2r. + r.\right)$	0	0
											$\overset{2}{\cdot}f^{\parallel}\uparrow^{\alpha\beta}$	0	0	0
											$2^{-}\mathcal{A}^{\parallel} + \alpha^{\beta\chi}$	0	0	0

Saturated propagator

	$^{0.}$ σ^{\parallel}	⁰ . τ	$0^+\tau^{\perp}$	$0^{\circ}\sigma^{\parallel}$										
^{0,+} σ †	$\frac{1}{-2 k^2 r. +4 k^2 r.}$	0	0	0										
$^{0.^{+}}\tau^{\parallel}$ †	0	0	0	0										
$0.^+\tau^{\perp}$ †	0	0	0	0										
⁰⁻ σ †	0	0	0	$\frac{1}{k^2 r. + t.}$	$\overset{1,^{+}}{\cdot}\sigma^{\parallel}{}_{\alpha\beta}$		$\overset{1,^{+}}{\cdot}\tau^{\parallel}{}_{\alpha\beta}$		$a^{1}\sigma^{\perp}$	$1^{-}\tau^{\parallel}_{\alpha}$	1. τ [⊥] α			
				$^{1^{+}}\sigma^{\parallel}$ $\dagger^{lphaeta}$	$\frac{1}{k^2(2rr.)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2rr.)\atop 3\ 4}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2rr.)\atop 34}$	0	0	0	0			
				$1.^+\sigma^{\perp}$ †	$-\frac{\sqrt{2}}{k^2(1+k^2)(2rr.)\atop 3}$	$\frac{k^2 (6r3r.)+2t.}{(k+k^3)^2 (2rr.)t.}$	$\frac{i(k^2(6r3r.)+2t.)}{k(1+k^2)^2(2rr.)t.}$	0	0	0	0			
				$1.\tau^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i \sqrt{2}}{k (1+k^2) (2rr.)}_{3 4}$	$-\frac{i(k^2(6r3r.)+2t.)}{k(1+k^2)^2(2rr.)t.}$	$\frac{\frac{1}{r_{1}} + \frac{3k^{2}}{t_{1}}}{\frac{r_{1} - \frac{4}{2}}{(1 + k^{2})^{2}}}$	0	0	0	0			
				$\frac{1}{2}\sigma^{\parallel}\uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{2}\sigma^{\perp} + \alpha$	0	0	0	0	0	0	0			
				$1^{-}\tau^{\parallel} + \alpha$	0	0	0	0	0	0	0			
				$1 \tau^{\perp} + \alpha$	0	0	0	0	0	0	0	$^{2^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	$2^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}\sigma^{\parallel}$ †	$\frac{1}{k^2 (-2r.+r.)}$	0	0
											2^+ τ^{\parallel} $\dagger^{\alpha\beta}$	0	0	0
											$2^{-}\sigma^{\parallel} + \alpha \beta \chi$	0	0	0

Source constraints

Spin-parity form	Covariant form	Multiplicities			
$0.^{+}\tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1			
$0^+_{\cdot}\tau^{\parallel}==0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$	1			
$\frac{1}{\tau^{\perp}} \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3			
1. τ ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3			
1-σ ¹ == 0	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}=0$	3			
1- _σ ^α == 0	$\partial_{\delta}\partial^{\alpha}\sigma_{\chi}^{\chi}{}^{\delta} + \partial_{\delta}\partial^{\delta}\sigma_{\chi}^{\alpha}{}_{\chi} == \partial_{\delta}\partial_{\chi}\sigma^{\chi\alpha\delta}$	3			
$\overline{i k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0}$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\delta\delta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta}==$	3			
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$				
$2 \sigma^{\parallel \alpha \beta \chi} == 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{ \ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\delta \alpha \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \alpha \delta} +$	5			
	$4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\alpha}\sigma^{\delta}_{\delta}{}^{\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\delta\beta\epsilon} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta\alpha}_{\delta} = =$				
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}_{ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$				
	$2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\beta\alpha\chi} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\chi\alpha\beta} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\beta}\sigma^{\delta}_{\delta}{}^{\epsilon} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta\beta}_{\delta}$				
$2^+_{\tau} \eta^{\alpha\beta} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} = 0$	5			
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau(\Delta+\mathcal{K})^{\chi}_{\chi}$				
Total expected gauge generators:					

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{r_{\cdot}^{2}} > 0$
Square mass:	$\frac{t}{r} > 0$
Spin:	0
Parity:	Odd

Massless spectrum

(No particles)

Unitarity conditions

r. < 0 &&t. > 0