Portfolio Optimization

Jaehyun Park Ahmed Bou-Rabee Stephen Boyd

EE103 Stanford University

November 22, 2014

Outline

Single asset investment

Portfolio investment

Portfolio optimization

Return of an asset over one period

- asset can be stock, bond, real estate, commodity, . . .
- ▶ invest in a single asset over period (quarter, week, day, . . .)
- ightharpoonup buy q shares at price p (at beginning of investment period)
- h = pq is dollar value of holdings
- ▶ sell q shares at new price p^+ (at end of period)
- ▶ profit is $qp^+ qp = q(p^+ p) = \frac{p^+ p}{p}h$
- define **return** $r = (p^+ p)/p$
- return = $\frac{\text{profit}}{\text{investment}}$
- ightharpoonup profit = rh
- example: invest h = \$1000 over period, r = +0.03: profit = \$30

Short positions

- **b** basic idea: holdings h and share quantities q are **negative**
- ► called *shorting* or *taking a short position on* the asset (*h* or *q* positive is called a *long position*)
- how it works:
 - you borrow q shares at the beginning of the period and sell them at price p
 - at the end of the period, you have to buy q shares at price p^+ to return them to the lender
- ▶ all formulas still hold, e.g., profit = rh
- example: invest h = -\$1000, r = -0.05: profit = +\$50
- no limit to how much you can lose when you short assets
- normal people (and mutual funds) don't do this; hedge funds do

Return of an asset over multiple periods

- ▶ invest over periods t = 1, 2, ..., T (quarters, trading days, minutes, seconds ...)
- $ightharpoonup p_t$ is price at the beginning of period t
- lacktriangledown return over period t is $r_t = rac{p_{t+1} p_t}{p_t}$
- lacktriangle invest dollar amount h_t in period t, or share number $q_t=h_t/p_t$
- ▶ profit over period t is $r_t h_t$
- ▶ total profit is $\sum_{t=1}^{T} r_t h_t$
- lacktriangle per period profit is $\frac{1}{T}\sum_{t=1}^{T}r_{t}h_{t}$

stock prices of BP (BP) and Coca-Cola (KO) for last 10 years

price changes over a few weeks

returns of the assets over the same period

Buy and hold

- ightharpoonup a very simple choice of h_t
- $ightharpoonup q_t = q$ for all $t = 1, 2, \dots, T$
 - buy q shares at the beginning of period 1
 - sell q shares at the end of period T
- ▶ hence $h_t = p_t q$
- profit is

$$\sum_{t=1}^{T} r_t h_t = \sum_{t=1}^{T} \left(\frac{p_{t+1} - p_t}{p_t} \right) (p_t q) = q(p_{T+1} - p_1)$$

ightharpoonup same as combining periods $1,\ldots,T$ into a single period

Cumulative value plot

plot of $h_t = p_t q$ versus t ($h_1 = \$10,000$ by tradition)

Constant value

- ▶ another simple choice of h_t : $h_t = h$, t = 1, ..., T
- ▶ number of shares $q_t = h/p_t$ (which varies with t)
- requires buying or selling shares every period to keep value constant
- ightharpoonup profit is $\sum_{t=1}^{T} r_t h$
- ▶ per period profit is $(1/T)\sum_{t=1}^{T} r_t h = \mathbf{avg}(r_t) h$ (in \$)
- ▶ mean return is $\mathbf{avg}(r_t)$ (fractional; often expressed in %)
- ▶ profit standard deviation is $std(r_th) = std(r_t)h$ (in \$)
- **risk** is $\mathbf{std}(r_t)$ (fractional)
- want per period profit high, risk low

Annualizing return and risk

- mean return and risk are often expressed in annualized form (i.e., per year)
- ▶ if there are P trading periods per year
 - annualized return = $P \operatorname{avg}(r_t)$
 - annualized risk = $\sqrt{P} \operatorname{std}(r_t)$

(the squareroot in risk annualization comes from the assumption that the fluctuations in return around the mean are independent)

- ▶ if t denotes trading days, with 250 trading days in a year
 - annualized return = $250 \operatorname{avg}(r_t)$
 - annualized risk = $\sqrt{250} \operatorname{std}(r_t)$

Risk-return plot

annualized risk versus annualized return of various assets up (high return) and left (low risk) is good

Outline

Single asset investment

Portfolio investment

Portfolio optimization

Portfolio of assets

- ightharpoonup n assets
- ▶ n-vector p_t is prices of assets in period t, t = 1, 2, ..., T
- lacktriangleright n-vector h_t is dollar value holdings of the assets
- total portfolio value: $V_t = \mathbf{1}^T h_t$
- ▶ n-vector q_t is the number of shares: $(q_t)_i = (h_t)_i/(p_t)_i$
- $w_t = (1/\mathbf{1}^T h_t) h_t$ gives **portfolio weights** or **allocation** (fraction of portfolio, defined only for $\mathbf{1}^T h_t > 0$)

- $(h_3)_5 = -1000$ means you short asset 5 in investment period 3 by \$1,000
- $(w_2)_4 = 0.20$ means 20% of total portfolio value in period 2 is invested in asset 4
- $w_t=(1/n,\ldots,1/n)$, $t=1,\ldots,T$ means total portfolio value is equally allocated across assets in all investment periods
- ▶ $\mathbf{1}^T h_t = 0$ means total short positions = total long positions

Portfolio investment 16

Buy and hold portfolio

- same idea as single asset case
- (n-vector) $q_t = q$ for all $t = 1, \ldots, T$
- ▶ holdings given by $(h_t)_i = (p_t)_i q_i$, i = 1, ..., n
- profit is

$$\sum_{t=1}^{T} r_t^T h_t = \sum_{t=1}^{T} \sum_{i=1}^{n} (r_t)_i \left(\frac{(p_{t+1})_i - (p_t)_i}{(p_t)_i} \right) ((p_t)_i q_i) = q^T (p_{T+1} - p_1)$$

Constant value portfolio

- simple choice of h_t : $h_t = h$, t = 1, ..., T
- ightharpoonup requires *rebalancing* (buying and selling) shares to maintain $(h_t)_i=h_i$ every period
- ightharpoonup profit is $\sum_{t=1}^{T} r_t^T h$
- ▶ per period profit is $(1/T)\sum_{t=1}^{T} r_t^T h$ (in \$)
- ▶ mean return is $\mathbf{avg}(r_t^T h)/\mathbf{1}^T h$ (fractional; often expressed in %)
- ▶ profit standard deviation is $std(r_t^T h)$ (in \$)
- ▶ **risk** is $\mathbf{std}(r_t^T h)/\mathbf{1}^T h$ (fractional)

Risk-return plot for constant value portfolio

Portfolio investment 19

Constant weight portfolio with re-investment

- ightharpoonup fix weight vector w
- given initial total investment V_1 , set $h_1 = V_1 w$
- $V_2 = V_1 + r_1^T h_1$
- ightharpoonup set $h_2=V_2w$, i.e., re-invest total portfolio value using allocation w
- and so on . . .
- $V_T = V_1(1 + r_1^T w)(1 + r_2^T w) \cdots (1 + r_T^T w)$
- $lackbox{ }V_t \leq 0$ (or some small value like $0.1V_1$) called **going bust** or **ruin**

Cumulative value plot

uniform portfolio between two assets, with $h_1 = \$10,000$ (by tradition)

Portfolio investment 21

Cumulative value plot

portfolio with large short positions (heavily leveraged) going **bust** (dropping to 10% of starting value)

Portfolio investment 22

Comparison: Re-investment or not

- constant value portfolio (without re-investment) gives total profit $\sum_{t=1}^{T} r_t^T h$
- constant weight portfolio (with re-investment) gives total profit

$$V_T - V_1 = ((1 + r_T^T w) \cdots (1 + r_1^T w) - 1)V_1$$

• for $|r_t^T w|$ all small (say, ≤ 0.01)

$$(1 + r_T^T w) \cdots (1 + r_1^T w) \approx 1 + \sum_{t=1}^T r_t^T w$$

so
$$V_T - V_1 \approx \sum_{t=1}^T r_t^T w V_1$$

▶ profit with constant value $h \approx$ profit with constant weight $w = (1/\mathbf{1}^T h)h$ and initial investment h

Comparison: Re-investment or not

Portfolio investment 24

Outline

Single asset investment

Portfolio investment

Portfolio optimization

Portfolio optimization

- ▶ how should we choose a portfolio value vector *h*, or a portfolio weight vector *w*, over some investment period?
- more generally, these vectors could change with time, as our information or goals changes
- ▶ when we choose h or w, we know past returns ('realized returns') but (of course) not future ones
- ▶ in all cases, we want high (mean) return, low risk

Returns matrix

define returns matrix

$$R = \left[\begin{array}{c} r_1^T \\ \vdots \\ r_T^T \end{array} \right]$$

- ▶ jth column is asset j return time series
- ► *Rh* is profit time series
- ▶ $\mathbf{1}^T Rh$ is total profit
- ightharpoonup $\mathbf{avg}(Rh) = (1/T)\mathbf{1}^TRh$ is per period profit
- ightharpoonup st $\mathbf{d}(Rh)$ is per period risk
- ightharpoonup goal: choose h that makes $\mathbf{avg}(Rh)$ high, $\mathbf{std}(Rh)$ low

Portfolio optimization via least squares on past returns

minimize
$$\mathbf{std}(Rh)^2 = (1/T)\|Rh - \rho B\mathbf{1}\|^2$$

subject to $\mathbf{1}^T h = B$, $\mathbf{avg}(Rh) = \rho B$

- h is holdings vector to be found
- ightharpoonup R is the returns matrix for **past returns**
- ▶ Rh is the (past) profit time series
- require mean (past) profit ρB
- minimize the standard deviation of (past) profit
- we are really asking what would have been the best constant allocation, had we known future returns

Constant weight portfolio optimization

minimize
$$\mathbf{std}(Rw)^2 = (1/T)\|Rw - \rho \mathbf{1}\|^2$$

subject to $\mathbf{1}^Tw = 1$, $\mathbf{avg}(Rw) = \rho$

- very similar to constant weight optimization (in fact the two solutions are the same, except for scaling)
- lacktriangledown w is weight allocation vector to be found
- ▶ Rw is the (past) return time series
- require mean (past) return ρ
- minimize the standard deviation of (past) return

ightharpoonup optimal w for annual return 1% (last asset is risk-less with 1% return)

$$w = (0.0000, 0.0000, 0.0000, \dots, 0.0000, 0.0000, 1.0000)$$

lacktriangle optimal w for annual return 13%

$$w = (0.0250, -0.0715, -0.0454, \dots, -0.0351, 0.0633, 0.5595)$$

lacktriangle optimal w for annual return 25%

$$w = (0.0500, -0.1430, -0.0907, \dots, -0.0703, 0.1265, 0.1191)$$

- asking for higher annual return yields
 - more invested in risky, but high return assets
 - larger short positions ('leveraging')

Cumulative value plots for optimal portfolios

cumulative value plot for optimal portfolios and some individual assets

red curve obtained by solving problem for various values of $\boldsymbol{\rho}$

Optimal portfolios

- perform significantly better than individual assets
- risk-return curve forms a straight line
 - one end of the line is the risk-free asset
- lacktriangle two-fund theorem: optimal portfolio w is an affine function in ho

$$\begin{bmatrix} w \\ \nu_1 \\ \nu_2 \end{bmatrix} = \begin{bmatrix} R^T R & \mathbf{1} & R^T \mathbf{1} \\ \mathbf{1}^T & 0 & 0 \\ \mathbf{1}^T R & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} R^T \mathbf{1} \\ 1 \\ \rho T \end{bmatrix}$$

The big assumption

now we make the big assumption (BA):

future returns will look something like past ones

- you are warned this is false, every time you invest
- it is often reasonably true
- in periods of 'market shift' it's much less true
- ▶ if BA holds (even approximately), then a good weight vector for past (realized) returns should be good for future (unknown) returns
- for example:
 - choose w based on last 2 years of returns
 - then use w for next 6 months

- ▶ trained on 900 days (red), tested on the next 200 days (blue)
- ▶ here BA held reasonably well

corresponding train and test periods

- ▶ and here BA didn't hold so well
- ▶ (can you guess when this was?)

corresponding train and test periods

Rolling portfolio optimization

for each period t, find weight w_t using L past returns

$$r_{t-1},\ldots,r_{t-L}$$

variations:

- update w every K periods (say, monthly or quarterly)
- ▶ add cost term $\kappa \|w_t w_{t-1}\|^2$ to objective to discourage turnover, reduce transaction cost
- add logic to detect when the future is likely to not look like the past
- ▶ add 'signals' that predict future returns of assets

(...and pretty soon you have a quantitative hedge fund)

Rolling portfolio optimization example

- cumulative value plot for different target returns
- update w daily, using L=400 past returns

Rolling portfolio optimization example

 \triangleright same as previous example, but update w every quarter (60 periods)

