Homework 2

Drew Dahlquist

2/3/2022

1.

- (a) $\theta = 16/23 = 0.6956522$. The MLE of θ is slightly greater than the posterior mean estimate under a Beta(1,1) prior which was 0.68.
- (b) w = 2/25 = 0.08. This suggests more weight from the data.
- (c) 95% CI = (0.5076022, 0.8837022)
- (d) Using a Beta(1,1) prior, the 95% credible interval = (0.4890522, 0.8436977).
- (e) The Monte Carlo sampled estimates are often very near the analytic results we would expect. Both sample means are often correct to two decimal places, however when S=100 the sample variance and 95% credible interval tend to vary quite a lot which doesn't happen as often when S=10000.

	mean	variance	95% credible interval
S = 100 $S = 10000$ Analytic	0.6430163 0.6456745 0.6451613	$\begin{array}{c} 0.0069842 \\ 0.0070643 \\ 0.007154 \end{array}$	(0.4939099, 0.81603) (0.4718217, 0.7996407) (0.47188, 0.8007014)

(f) The 95% HPD interval is very slightly shifted to the right on both sides when compared to the 95% central interval.

```
## lower upper ## 0.4866890 0.8114397 ## attr(,"credMass") ## [1] 0.95  (g) \ y^* = 0, 1, 2, 3, 4, 5.
```

(h)

(i)

2.

(a) Gamma(188, 6.3)

$$= \frac{\lambda^{9}e^{\lambda}}{y_{0}^{2}} \dots \frac{\lambda^{9}e^{\lambda}}{y_{0}^{2}} \cdot \frac{\lambda^{9}e^{\lambda}}{Ma_{0}^{2}} \lambda^{-1} e^{-b\lambda}$$

$$\times \lambda^{-1+\sum y_{0}} e^{-n\lambda-b\lambda}$$

$$= \lambda^{(a+\sum y_{0})-1} e^{-(n+b)\lambda} = G_{camma}(a+\sum y_{0}, n+b)$$

(b) Yes, there is evidence of Bayesian learning. We have become much more certain about what the true value of λ is.

(c) Posterior mean = 29.8412698, variance = 4.7367095, 90% central credible interval = (0.9443522, 0.9853581), 90% HPD interval = (0.9476744, 0.9873332).

3.

gamma(56.25, 0.75)

4.

(a)
$$c = 1$$
 and $a = b = 0.2$
 $P[\sigma^2 > 1] = 0.2263547$

(b)
$$c = 1$$
 and $a = b = 2.0$
 $P[\sigma^2 > 1] = 0.2480104$

(c)
$$c = 2$$
 and $a = b = 0.2$
 $P[\sigma^2 > 2] = 0.0051231$

(d)
$$c = 2$$
 and $a = b = 2.0$
$$P[\sigma^2 > 2] = 0.0036806$$

$$c = 1, a = b = 0.2 / a = b = 2.0 : 0.9126822$$

c = 2, a = b = 0.2 / a = b = 2.0: 1.3919144

$$= \frac{1}{\sigma \sqrt{2\pi}} \cdot \frac{1}{e^{\frac{1}{2}(\sqrt{2} - M)^{2}}} \cdot \frac{1}{e^{\frac{1}{2}(\sqrt{2} - M)^{2} - K}} \cdot \frac{1}{e^{\frac{1}{2}($$

The results for c=2 are sensitive to the choice of prior since the ratio of probabilities between the two choices of prior is approx. 1.4. Whereas the ratio of probabilities for c=1 is pretty close to 1.