5.4 Chi square distribution

Test for goodness of fit

Conditions to apply χ^2 test for goodness of fit:

- * The observations should be independent.
- The total frequency N should be large.
- \bullet If any E_i is less than 5, it should be pooled with the adjacent frequency.
- If any parameter is estimated, corresponding to every such estimation, one degree of freedom should be lessened.

Working rule:

Assume:

Expected frequency distribution is a good fit to the observed frequency distribution.

Calculated value:

Under H₀,
$$\chi^2 = \sum \frac{(o_i - E_i)^2}{E_i}$$
 with $n - c$ degrees of freedom.

Where O_i — Observed frequency or tabulated frequency

 E_i – Expected frequency or theoretical frequency

n – number of terms, c – number of constraints

Critical value:

Level of significance $\alpha = 0.05 \text{ or } 0.01$ (Always upper tailed)

Degrees of freedom
$$\gamma = n - c$$
. Where $c = \begin{cases} 1, & In \ general \\ 2, \ For \ Poisson \ distribution \\ 3, \ For \ normal \ distribution \end{cases}$

Conclusion:

If calculated value < critical value, the expected frequency distribution is <u>a good fit</u> to the observed frequency distribution.

If calculated value > critical value, the expected frequency distribution <u>is not a good</u> fit to the observed frequency distribution.

Critical values of chi square distribution

				_			
d	0.05	0.01	0.001	d	0.05	0.01	0.001
1	3.841	6.635	10.828	11	19.675	24.725	31.264
2	5.991	9.210	13.816	12	21.026	26.217	32.910
3	7.815	11.345	16.266	13	22.362	27.688	34.528
4	9.488	13.277	18.467	14	23.685	29.141	36.123
5	11.070	15.086	20.515	15	24.996	30.578	37.697
6	12.592	16.812	22.458	16	26.296	32.000	39.252
7	14.067	18.475	24.322	17	27.587	33.409	40.790
8	15.507	20.090	26.125	18	28.869	34.805	42.312
9	16.919	21.666	27.877	19	30.144	36.191	43.820
10	18.307	23.209	29.588	20	31.410	37.566	45.315

1. A die is thrown 60 times and the frequency distribution for the number appearing on the face x is given by the following table:

 $x: 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$

f: 15 6 4 7 11 17

Test the hypothesis that the die is unbiased.

$$[\chi_{0.05}(5) = 11.07]$$

x = Number appearing on the face

$$= \{1, 2, 3, 4, 5, 6\}$$

 $P(x) = \frac{1}{6}$, Total frequency N = 60.

$$f(x) = N \times P(x) = 60 \times \left(\frac{1}{6}\right) = 10$$

Put x = 1, 2, 3, 4, 5, 6 to get E_i

<u>+</u>					
	\boldsymbol{x}	O_i	E_i	$(O_i - E_i)^2$	$(O_i - E_i)^2$
	(i)				$\overline{E_i}$
	1	15	10	25	2.5
	2	6	10	16	1.6
	3	4	10	36	3.6
	4	7	10	9	0.9
	5	11	10	1	0.1
	6	17	10	49	4.9
					13.6

 H_0 : The die is unbiased.

$$\chi^2 = \sum_{i=1}^{\frac{(O_i - E_i)^2}{E_i}} = 13.6$$

Calculated value = 13.6

Degrees of freedom= n - 1 = 6 - 1 = 5

Critical value =
$$\chi_{0.05}(5) = 11.07$$

∴ Calculated value > Critical Value.

Reject H_o .

Therefore, the die is not unbiased.

2. The following table gives the number of road accidents that occurred in a large city during the various days of a week. Test the hypothesis that the accidents are uniformly distributed over all the days of a week. $[\chi_{0.05}(6) = 12.59]$

Day: Sun Mon Tue Wed Thu Fri Sat Total

No. of accidents: 14 16 8 12 11 9 14 84

x =Various days of a week

 $= \{Sun, Mon, Tue, Wed, Thu, Fri, Sat\}$

$$P(x) = \frac{1}{7}$$
, Total frequency $N = 84$

$$f(x) = N \times P(x) = 84 \times \left(\frac{1}{7}\right) = 12$$

For x = Sun, Mon, ... we get E_i

x	O_i	E_i	$(O_i - E_i)^2$	$(O_i - E_i)^2$
(i)				$\overline{E_i}$
Sun	14	12	4	4/12
Mon	16	12	16	16/12
Tue	8	12	16	16/12
Wed	12	12	0	0
Thu	11	12	1	1/12
Fri	9	12	9	9/12
Sat	14	12	4	4/12
				50/12

 H_o : Accidents are uniformly distributed

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} = \frac{50}{12}$$

Calculated value = 4.165

Degrees of freedom= n - 1 = 7 - 1 = 6

Critical value= $\chi_{0.05}(6) = 12.59$

∴ Calculated value < Critical Value.

Accept H_o .

Therefore, the accidents are uniformly distributed.

3. A set of 5 similar coins is tossed 320 times and the result is

Number of heads: 0 1 2 3 4 5

Frequency: 6 27 72 112 71 32

Test the hypothesis that the data follows a binomial distribution. $[\chi_{0.05}(5) = 11.07]$

By data,
$$n = 5$$
, $p = \frac{1}{2}$, $q = \frac{1}{2}$, $N = 320$
 $x = \text{Number of heads} = \{0, 1, 2, 3, 4, 5\}$
 $f(x) = \text{N} \times P(x)$
 $= 320 \times nC_x p^x q^{n-x}$
 $= 320 \times 5C_x \left(\frac{1}{2}\right)^x \left(\frac{1}{2}\right)^{n-x}$
 $= 320 \times \frac{1}{32} \times 5C_x$
 $= 10 \times 5C_x$

Put x = 0, 1, 2, 3, 4, 5 to get E_i

x	O_i	E_i	$(O_i - E_i)^2$	$(O_i - E_i)^2$
(i)				$\overline{E_i}$
0	6	10	16	1.6
1	27	50	529	10.58
2	72	100	784	7.84
3	112	100	144	1.44
4	71	50	441	8.82
5	32	10	484	48.4
				78.68

 H_o : The data follows Binomial distribution.

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} = 78.68$$

Calculated value = 78.68

Degrees of freedom= n - 1 = 6 - 1 = 5

Critical value= $\chi_{0.05}(5) = 11.07$

∴ Calculated value > Critical Value.

Reject H_o .

Therefore, the data does not follow Binomial distribution.

4. Fit a Poisson distribution to the following data and test for its goodness of fit at level of significance 0.05.

x: 0 1 2 3 4

f: 419 352 154 56 19

$$[\chi_{0.05}(3) = 7.82]$$

$$x = \{0, 1, 2, 3, 4\}$$

 $m = mean = \frac{\Sigma f x}{\Sigma f} = \frac{904}{1000} = 0.904$

$$e^{-m} = e^{-0.904} = 0.4049$$

$$P(x) = \frac{e^{-m}m^x}{x!}$$
$$= \frac{(0.4049)(0.904)^x}{x!}$$

$$f(x) = 1000 \times P(x)$$
$$= 404.9 \frac{(0.904)^x}{x!}$$

Put
$$x = \{0, 1, 2, 3, 4\}$$
 to get E_i

x	O_i	E_i	$(O_i - E_i)^2$	$(O_i - E_i)^2$
(<i>i</i>)				$\overline{E_i}$
0	419	405+1	169	0.4033
1	352	366	196	0.5355
2	154	165	121	0.7333
3	56	50	36	0.7200
4	19	11+2	36	2.7692
				5.1613

Numbers added in E_i only to preserve totality.

 H_o : The data follows Poisson distribution.

$$\chi^2 = \sum_{E_i} \frac{(O_i - E_i)^2}{E_i} = 5.1613$$

Calculated value = 5.1613

Degrees of freedom= n - 2 = 5 - 2 = 3

(: It follows Poisson distribution)

Critical value = $\chi_{0.05}(3) = 7.82$

∴ Calculated value < Critical Value.

Accept H_o .

Therefore, the data follows Poisson distribution.

5. Genetic theory states that children having one parent of blood type M and other blood type N will always be one of the three types M, MN, N and that the proportion of these types will on average 1:2:1. A report says that out of 300 children having one M parent and one N parent, 30% were found to be type M, 45% of type MN and remainder of type N. Test the hypothesis by χ^2 test. $[\chi_{0.05}(2) = 5.99]$

x is a set of type	s of blood

$$x = \{M, MN, N\}$$

$$P(M) = \frac{1}{4}$$

$$P(MN) = \frac{2}{4}$$

$$P(N) = \frac{1}{4}$$

$$P(N) = \frac{1}{4}$$

$$f(x) = 300 \times P(x)$$

Put x = M, MN, N to get E_i

x	O_i	E_i	$(O_i - E_i)^2$	$(O_i - E_i)^2$
(i)				$\overline{E_i}$
M	30% of 300 = 90	$300 \times \frac{1}{4}$ $= 75$	225	3
MN	45% of 300 = 135	$300 \times \frac{2}{4}$ $= 150$	225	1.5
M	25% of 300 = 75	$300 \times \frac{1}{4}$ $= 75$	0	0
				4.5

 H_0 : The proportion of these types is on average 1:2:1

$$\chi^2 = \sum_{i=0}^{10(1-E_i)^2} = 4.5$$

Calculated value = 4.5

Degrees of freedom= n - 1 = 3 - 1 = 2,

Critical value= $\chi_{0.05}(2) = 5.99$

∴ Calculated value < Critical Value.

Accept H_0 .

The proportion of these types is on average 1:2:1

6. In experiments on Pea breading, the following frequencies of seeds were obtained:

Round	Wrinkled	Round	Wrinkled	Total
and yellow	and yellow	and green	and green	
315	101	108	32	556

Theory predicts that the frequencies should be in proportions 9: 3: 3: 1. Examine the correspondence between theory and experiment. $[\chi_{0.05}(3) = 7.82]$

$$x = Set \ of \ types \ of \ seeds$$

$$= \{RY, WY, RG, WG\}$$

$$P(RY) = \frac{9}{16}, P(WY) = \frac{3}{16},$$

$$P(RG) = \frac{3}{16}, P(WG) = \frac{1}{16}$$

$$f(x) = 556 \times P(x)$$

Put x = RY, WY, RG, RY to get E_i

x	O_i	E_i	$(O_i - E_i)^2$	$(O_i - E_i)^2$
(i)				$\overline{E_i}$
RY	315	313	4	0.0128
WY	101	104	9	0.0865
RG	108	104	16	0.1538
WG	32	35	9	0.2571
				0.5102

 H_o : The frequencies are in proportions 9: 3: 3: 1

$$\chi^2 = \sum_{E_i} \frac{(O_i - E_i)^2}{E_i} = 0.5102$$

Calculated value = 0.5102

Degrees of freedom= n - 1 = 4 - 1 = 3

Critical value= $\chi_{0.05}(3) = 7.82$

∴ Calculated value < Critical Value.

Accept H_o .

The frequencies should be in proportions 9: 3: 3: 1