Gør tanke til handling

VIA University College

Functions

Definition of a function

A function from a set X to a set Y is an assignment of **exactly one** element of Y to each element of X.

We write $f(x_1) = y_3$ if y_3 is the element of Y assigned to the element x_1 of A (which is the case in function above).

Domain, codomain and range

X is called the **domain** of the function. This is the set the function is from.

Y is called the **codomain** of the function. This is the set the function is to.

The *subset* of the codomain which is "hit" by the function is called the **range** of the function – in this case, the range is $\{y_1, y_3, y_4\}$.

Real functions

A **real function** is a function from \mathbb{R} (or some subset of \mathbb{R}) to \mathbb{R} .

<u>Examples</u>

- f(x) = 3x 5 is a real function from \mathbb{R} to \mathbb{R}
- $g(x) = \sqrt{x}$ is a real function from $\mathbb{R}_{\geq 0}$ to \mathbb{R}

Real numbers larger than or equal to 0.

• $h(x) = \frac{1}{x} + 2$ is a real function from $\mathbb{R} \setminus \{0\}$ to \mathbb{R} . Real numbers except 0.

The domain of a real function

The domain of a real function can only include values for which the function is actually defined.

- That's why the domain of $g(x) = \sqrt{x}$ from the last slide was $\mathbb{R}_{\geq 0}$: you cannot take the square root of a negative number, so these have to be excluded from the domain.
- Likewise, you cannot divide by 0, so the domain of $h(x) = \frac{1}{x} + 2$ is $\mathbb{R} \setminus \{0\}$.

The range of a real function

The **range** of a real function is the set of all numbers that the function can output. A couple of examples:

- The function f(x) = 3x 5 can output all real numbers, so the range of f is \mathbb{R} .
- The function $g(x) = \sqrt{x}$ can only output real numbers equal to a larger than 0, so the range of g is $\mathbb{R}_{\geq 0}$.
- The function $h(x) = \frac{1}{x} + 2$ can output all real numbers except 2, so the range of h is $\mathbb{R} \setminus \{2\}$.

Real numbers except 2.

Examples

1) What is the domain and range of the function $f(x) = \frac{1}{x-5}$?

Answer: Domain: All real numbers except 5: $\mathbb{R}\setminus\{5\}$

Range: All real numbers except 0: $\mathbb{R}\setminus\{0\}$

2) What is the domain and range of the function $g(x) = \sqrt{x+3}$?

Answer: Domain: All real numbers greater than or equal to -3: $[-3, \infty)$

Range: All positive real number:

The graph of a real function

A great way to visualize a real function is by drawing it's graph.

Example:

To the left is shown the graph of the function $f(x) = x^2$ from \mathbb{R} to $\mathbb{R}_{>0}$

The graph of
$$f(x) = x^2$$

Important real functions

In the following slides, a number of especially important functions will be introduced.

Linear functions

A linear function is a function of the form

$$f(x) = ax + b$$

Example:

Polynomials

A linear function, y = ax + b, is actually a special case of the class of functions called **polynomials.** These are functions of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Example

Power functions

Power-functions are functions of the form

$$f(x) = a \cdot x^b$$

Example

Exponential functions

Exponential functions are functions of the form

$$f(x) = a \cdot b^x$$

Example

The graph of $f(x) = e^x$.

Logarithms

Logarithmic functions are functions of the form:

$$f(x) = \log_b(x).$$

In this expression, \log_b is called the **logarithm of base** b.

Note that the logarithm is only defined for positive values of x!

Composite functions

Composite functions

Consider the functions f and g below:

The range of the function f is part of the domain of the function g. Therefore, it is possible to take any output of f and use that as an input to the function g. The function obtained by doing this is called **the composition between f and g**, and is denoted $g \circ f$:

Composite functions

If the range of one function (f) is a subset of the domain of another function (g), we can take the output of f and put that into g. For example:

$$f(x) = 8x^2$$
 from \mathbb{R} to \mathbb{R}^+
 $g(x) = x + 1$ from \mathbb{R} to \mathbb{R} .

$$g(f(x)) = g(8x^2) = 8x^2 + 1.$$

We denote the composite function $g \circ f$, i.e. $(g \circ f)(x) = g(f(x))$.

Example

Consider the real functions f and g given by

$$f(x) = x^2$$
 and $g(x) = 2x + 4$.

Since the range of g is equal to the domain of f, we can construct the composite function $f \circ g$:

1) Construct the composite function $f \circ g$.

Answer:
$$(f \circ g)(x) = f(g(x)) = f(2x+4) = (2x+4)^2 = 4x^2 + 16x + 16$$
.

2) What is the domain and range of $f \circ g$?

Answer: The domain is the domain of g, \mathbb{R} , and the range is the range of f, \mathbb{R}^+

3) Find the value of $(f \circ g)(3)$.

Answer:
$$(f \circ g)(3) = (2 \cdot 3 + 4)^2 = 10^2 = 100$$
.

The inverse of a function

The inverse of a function

The inverse of a function f is the function, f^{-1} , whose domain is equal to the range of f and whose range is equal to the domain of f, and goes the opposite way of f.

Find the inverse function by turning each arrow around:

NOTE: It is only possible to find an inverse of f if

- f's range is equal to its codomain (if this is the case, we say that f is "onto")
- f maps all inputs to different outputs (if this is the case, we say that f is "one-to-one")

The graph of the inverse function

Consider the function $f: [3, \infty[\to \mathbb{R}_{\geq 0} \text{ given by } f(x) = \sqrt{x-3}.$

The function f^{-1} has the domain $\mathbb{R}_{\geq 0}$ and the range $[3, \infty[$, and for each output y of f, f^{-1} outputs the value x that produces that output.

Graphically, this is obtained by interchaning the x- and y-axis in the graph of f, and reflecting the function in the line x=y:

The inverse of a real function

Consider the function f(x) = 3x + 1. We can determine the inverse function by isolating x in the expression y = 3x + 1:

$$x = \frac{y-1}{3}.$$

This expression tells us how to obtain x if we know y.

At last, we write it as a function:

$$f^{-1}(x) = \frac{x-1}{3}.$$

Composition of f and f^{-1}

What do you get if you take $(f \circ f^{-1})(4)$? How about $(f^{-1} \circ f)(a)$? Answer: $(f \circ f^{-1})(4) = 4$ and $(f^{-1} \circ f)(a) = a$.

General rule: For any (onto and one-to-one) function f,

$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = x \text{ and } (f^{-1} \circ f)(x) = f^{-1}(f(x)) = x.$$

Checking the inverse

We can use the general rule from the last slide to check if the inverse function is correct.

Example

Consider the function f(x) = 5x + 7. To check if $f^{-1}(x) = \frac{1}{5}x - \frac{7}{5}$ is the inverse function, try to use the composition between f and f^{-1} :

$$(f\circ f^{-1})(x)=f\Big(f^{-1}(x)\Big)=f\left(\frac{1}{5}x-\frac{7}{5}\right)=5\cdot\left(\frac{1}{5}x-\frac{7}{5}\right)+7=x.$$

This shows that f^{-1} is indeed the inverse function to f.

More about logarithms and exponential functions

Exponents and logarithms

Remember:

The logarithm was first introduced in order to be able to isolate \boldsymbol{x} in expressions like

$$a = b^{x}$$

We do this by taking the logarithm of base b on both sides:

$$\log_b(a) = x$$

This implies that logarithms are the inverse of exponential functions.

Conventions

The most used logarithms are the logarithm of base 2, the logarithm of base $e=2.718\ldots$ and the logarithm of base 10. We will use the following conventions:

 \log_2 will be written as \lg

log_e will be written as ln

 \log_{10} will be written as \log

The logarithm of base e is also known as "the natural logarithm".

Example: The inverse of an exponential functions

Find the inverse of the exponential function $f(x) = 2^x$

Solution

We isolate x:

$$y = 2^x \Leftrightarrow \lg(y) = x$$

So
$$f^{-1}(x) = \lg(x)$$
.

Calculation rules for exponents and logarithms

Below is a collection of useful calculation rules for exponents and logarithms.

$$b^m \cdot b^n = b^{m+n}$$

$$\frac{b^m}{b^n} = b^{m-n}$$

$$(b^m)^r = b^{m \cdot r}$$

$$b^0 = 1$$

$$b^1 = b$$

Radicals (roots):

$$a^{\frac{1}{y}} = \sqrt[y]{a}$$

$$\log_b(mn) = \log_b m + \log_b n$$

$$\log_b\left(\frac{m}{n}\right) = \log_b m - \log_b n$$

$$\log_b(m^r) = r \cdot \log_b m$$

$$\log_b 1 = 0$$

$$\log_b b = 1$$

Base-conversion:

$$\log_b m = \frac{\log_q m}{\log_q b}$$

Exponents and logarithms in practice

In the last slides we will see a few examples of where exponential functions and logarithms are used in practice.

Example – exponential growth

Imagine that you have a balance of 93 cents on your bank account on January 1^{st} year 2000. The account has an interest of 2.25% which is compounded annually,

- a) After how many years will the account balance exceed 2\$?
- b) What will the account balance be on January 1st year 3000?

Solution

We first find a functional expression for the account balance after x years:

$$f(x) = 0.93 \cdot 1.0225^x$$

a) We solve the equation $2 = 0.93 \cdot 1.0225^x$:

a)
$$2 = 0.93 \cdot 1.0225^x \Leftrightarrow \frac{2}{0.93} = 1.0225^x \Leftrightarrow x = \log_{1.0225} \left(\frac{2}{0.93}\right)$$

We can evaluate the last expression by using the base-conversion formula $\log_b(m) = \frac{\log_q(m)}{\log_q(b)}$

with
$$b = 1.0225$$
, $m = \frac{2}{0.93}$ and (e.g.) $q = 10$: $x = \log_{1.0225} \left(\frac{2}{0.93}\right) = \frac{\log(2/0.93)}{\log(1.0225)} = 34.4$

So the balance will exceed 2\$ after 35 years.

b) We insert
$$x = 3000 - 2000 = 1000$$
: $f(1000) = 0.93 \cdot 1.0225^{1000} = 4.28 \cdot 10^9$

So the balance on the 1st of January year 3000 will be 4.28 billion dollars.

Example - time complexity of an algorithm

The *time complexity* of an algorithm describes the amount of time it takes to run an algorithm expressed as a function of the size of the input. Typically, one compute the *worst case* time it will take to run the algorithm.

Example

Say you have a sorted list of n=13 grades given in a specific class, and you want to search through these to see whether any student got the grade 10.

- The most straight-forward way of doing this is simply to scan through the numbers one by one, until you find the number you want (or hit the end). This is called **linear search**, and the time it takes as the function of input size is linear; it could e.g. be f(n) = 2n (measured in ms, i.e. milli-seconds).
- Alternatively, one could use a **binary search**. The time it takes in this case as a function of input size is logarithmic and could e.g. be $f(n) = \lg(n)$
- a) How long time does it take to search through the list if you use a linear search? How long time does it take using the bineary search?
- b) What if the input size increases to n = 10,000?

Answers:

a) Linear search: 26 ms; Binary search: 3.7 ms;

b) Linear search: 20,000 ms = 20 seconds; Binary search: 13 ms

Reference: https://www.qeeksforgeeks.org/linear-search-vs-binary-search/