ECO 602 Analysis of Environmental Data

FALL 2019 - UNIVERSITY OF MASSACHUSETTS DR. MICHAEL NELSON

Deterministic Functions: Part 2

Announcement: no peer-assessment on group projects.

Today's Agenda

- 1. Function terminology recap
- 2. Families of functions
- 3. Quiz/activity
- 4. Categorical variables
- 5. Fitting model to data
- 6. Chapter 4 highlights

Key terms for deterministic functions

- 1. Monotonic
- 2. Continuous
- 3. Smooth
- 4. Asymptotic
- 5. Linear/nonlinear
- 6. Parameters/variables

Intuition from graphs and equations

Distinguishing variables from parameters

Long-term behavior

- 1. Increase/decrease without bound
- 2. Asymptotic?
- 3. Periodic?
- 4. Chaotic?

What happens at zero? this is **super important** when considering probability distributions

Linear function intuition

- 1. Intercept moves the line up/down
- 2. Slope defines magnitude of relationship
- 3. Rate of change is constant

Non-linear function intuition

- 1. Intercept moves the curve up/down
- 2. Slope of tangent line is magnitude of association at a given value of the predictor
- 3. Rate of change is not constant

Families of functions

- 1. Rational (includes linear)
- 2. Exponential
- 3. Piecewise
- 4. Combination/hybrid functions

Rational functions

- 1. The **variable** is the **base**, power is **parameter**
- 2. Polynomial functions have integer powers
- 3. Rational functions have fractional (decimal) powers. Can lead to **complex numbers**.

Deterministic Functions... bestiary of functions

Rational functions (polynomials in fractions):

- Flexible, with finite limits (asymptotes)
- Often have mechanistic interpretation arising from simple models of biological processes such as competition and predation
- Can be complicated to analyze (e.g., difficult to estimate asymptotes)

Polynomial functions

- 1. Special cases of rational functions with positive integer powers.
- 2. Degree: the highest power in the function.
- 3. Linear functions are a special case of polynomial functions with degree = 1.
- 4. Even and odd functions

Deterministic Functions... bestiary of functions

Piecewise polnomial functions:

- Flexible for thresholdlike patterns and for setting function limits
- Easy to understand
- Probably unrealistic in most cases, since abrupt thresholds are unlikely in ecological systems

Exponential

- 1. The variable is the exponent, the base is parameter.
- 2. Most common base is **e**
- 3. Straightforward formula for change of base
- 4. Exponential functions eventually grow faster than any rational function.

Deterministic Functions... bestiary of functions

Functions based on exponential functions:

- Familar and popular functions (logistic)
- Flexible, with finite limits (asymptotes)
- Often have mechanistic interpretation arising from simple models of biological processes such as population growth

Power-law functions are scale invariant

Exponential function is not scale-invariant

Combination functions

- 1. Combine any of the previous function types
- 2. Model terms
 - 1. Each term might have a mechanistic interpretation (or it might not)
 - 2. Terms can be combined by multiplication, addition, exponentiation, etc.

Logistic functions

- 1. Ratio of two exponential functions
- 2. Characteristic sigmoid shape
- 3. Has upper and lower asymptotes
- 4. Useful for logistic regression: binary categorical variables

Functions: graphical intuition

- 1. Tangent lines, derivatives
- 2. What does a slope of zero mean?
- 3. When is the slope equal to zero?

Deterministic functions: local linearity and long-term behavior

- 1. Asymptotic
- 2. Increase/decrease without bound
- 3. Periodic
- 4. Bounded but chaotic
- 5. We usually only care about a restricted portion of the domain!

Always start with a linear model.

It may not be realistic, but it is a good starting point.

Consider several alternative models:

- 1. Multiple predictors
- 2. Nonlinear terms

Deterministic function activity/quiz

Hypothesize an association in any system.

1. Briefly describe your system/association

Propose 2 different mechanistic models.

For each mechanistic model, create

- 1. Verbal description of association
- 2. Sketch of the predictor/response curve
- 3. List of candidate model terms

Phenomenological

1. Try different functions until you find a best* fit

Mechanistic

1. You can hypothesize the type of function from knowledge of the system.

^{*} There are many possible criteria for model goodness-of-fit

How do we evaluate a model fit?

Usually we define a type of error then choose a function that minimizes it.

Most common is the sum of squared errors: **SSE**

There are other possibilities ... such as sum of absolute error.

Tradeoff between model complexity and generality.

Overfitting

- A model is overfit if it describes a particular set of data very well but is a poor fit to additional samples.
- We'll consider model comparison later.

Residuals and errors

- 1. Difference between predicted and observed values.
- 2. Ordinary Least Squares OLS regression minimizes the sum of squared residuals

Linear model fit example: guessing

Linear model fit example: OLS

- 1. Ordinary Least Squares
- 2. Minimizes the sum of squared errors
- 3. Uses linear algebra tools to find exact parameter values.

Categorical variables: dummy variables

Dummy variables: extra columns added to table of data.

Dummy variable for each level, after the first, of the categorical variable.

Category: iris species

	(Intercept)	Sepal.Width	Speciesversicolor	Speciesvirginica
1	1	3.5	0	0
2	1	3	0	0
3	1	3.2	0	0
50	1	3.3	0	0
51	1	3.2	1	0
52	1	3.2	1	0
53	1	3.1	1	0
147	1	2.5	0	1
148	1	3	0	1
149	1	3.4	0	1
150	1	3	0	1

Category: iris species

Dual model paradigm

- 1. Deterministic model
 - 1. Pattern
 - 2. Prediction
 - 3. Mean, central tendency
- 2. Stochastic model
 - 1. Noise
 - 2. Uncertainty
 - 3. Variability, spread

For next time:

McGarigal Chapter 5a: Probability Distributions

Read sections 1 - 2

This chapter is dense, try not to get caught up on the details.

Key ideas to review: Probability mass function, cumulative mass function