Examen partiel

Département de génie électrique et de génie informatique

GEL-3000 – Électronique des composants intégrés

Le 4 mars 2022

Documentation permise : 1 feuille de notes recto-verso et 1 calculatrice.

Durée de l'examen : 1 heure 50 (10h30 – 12h20).

1. (30 points) Questions à courts développements

- a) Expliquez le fonctionnement du circuit montré à la Figure 1 et donnez sa sortie v_o pour une entrée v_i = $2cos(\omega t)$. Tracez l'entrée et la sortie en fonction du temps pour quelques périodes de v_i .
- b) Soit le circuit montré à la Figure 2. Expliquez sont fonctionnement et tracez quelques périodes de v₊, v₋ et v₀ si v₀ est initialement saturé à L₊. Expliquer le rôle de R₁ et R₂.
- c) Soit le circuit de la Figure 3 pour lequel $R_1 = 100 \Omega$ et $R_2 = 900 \Omega$, et dont la fréquence de gain unitaire $f_t = 10$ MHz. Donnez la fréquence de coupure f_{-3dB} de ce circuit.
- d) Donnez une façon de limiter l'impact de la tension de décalage dans le circuit de la Figure 3.
- e) Donnez une façon de limiter l'impact des courants de polarisation dans le circuit de la Figure 3.

Figure 1.

Figure 2.

Figure 3.

2. (30 points) Analyse de circuits

Soit le circuit montré à la Figure 4. La sortie $v_o = v_{od} + v_{ocm}$ se compose d'une partie différentielle et d'une partie mode commun. On note que $v_{id} = 5$ mV et $v_{icm} = 100$ mV. Le circuit possède un gain différentiel (A_d) global de 100 V/V.

Figure 4.

Répondez aux questions suivantes :

- a) Nommez ce circuit et déterminez les valeurs de toutes les résistances pour obtenir un gain différentiel (A_d) global de 100 V/V, dont 10 V/V seront fournis par le 1^{er} étage et 10 V/V seront fournis par le 2^e étage. Justifiez votre réponse.
- b) Calculez la valeur de v_{od} à la sortie v_o.
- c) Si on mesure $v_{ocm} = 1$ mV à la sortie v_o , calculez le TRMC de ce circuit.
- d) Donnez l'impédance d'entrée Z_{in} de ce circuit et justifiez votre réponse.
- e) Donnez le gain mode commun du premier étage et justifiez votre réponse.
- f) (BONUS) Pour les gains d'étages mentionnés en (a) et un TRMC de 60 dB, si $v_{id} = 0.005 \cdot cos(\omega_1 t)$ et $v_{icm} = 0.1 \cdot cos(\omega_2 t)$, donnez les tensions aux points v_1 , v_2 , v_{o1} , v_{o2} et v_o montrés à la Figure 4. Donnez toutes les traces de votre démarche.

3. (40 points) Conception d'un filtre actif

Concevez un filtre passe-bas Butterworth constitué de plusieurs sections cascadées respectant les spécifications suivantes (référez-vous à la Figure A1 de l'annexe):

- Une fréquence de coupure f_p de 5 kHz.
- Une atténuation $A_{max} = 0.5 \text{ dB}.$
- Une fréquence de bande d'arrêt f_s de 15 kHz.
- Une atténuation $A_{min} = 25 \text{ dB}$.

– Notes :

- o Utilisez uniquement des condensateurs de 1 nF.
- Utilisez au moins une section Sallen-Key et au moins une section à inductance simulée.
- o Utilisez un gain DC unitaire pour chaque section cascadée.
- Donnez toutes les étapes de votre démarche et <u>factorisez vos fonctions</u> de transfert au maximum.
- a) Déterminez l'ordre minimum du filtre à concevoir. Laissez toutes les traces de votre démarche.
- b) Donnez la fonction de transfert complète du filtre à réaliser. Note : donnez le polynôme dénormalisé à partir de la Table A1 de l'Annexe exprimé en fonction de ω_0 .
- c) Dessinez le schéma électrique complet du filtre passe-bas et calculez les valeurs de tous ses éléments passifs.
- d) Dessinez la réponse en fréquence du filtre (Magnitude en fonction de la fréquence en Hz).
- e) Transformez votre section Sallen-Key passe-bas en section Sallen-Key passe-haut sans changer la valeur des éléments passifs. Dessinez le Sallen-Key passe haut et donnez sa fréquence de coupure.

Aide-mémoire

Largeur de bande grand signal:

$$f_{M} \leq \frac{SR}{2\pi V_{omex}}$$

Réponse en fréquence de l'ampli inverseur/non-inverseur:

$$\frac{V_{o}(s)}{V_{i}(s)} \cong \frac{1 + R_{2} / R_{1}}{1 + (s / \omega_{t}) \left(1 + \frac{R_{2}}{R_{1}}\right)}$$

Pour un ampli-op en boucle ouverte : $\omega_t = A_0 \omega_b$ où ω_b est la fréquence de coupure.

Pour un ampli-op en <u>boucle fermée</u> : $\omega_{-3dB} = \omega_t / A_{BF}$ où ω_{-3dB} est la fréquence de coupure et A_{BF} est le gain en boucle fermée.

Approximations de filtres

Figure A1.

Réponse Butterworth:

$$|T(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \left(\frac{\omega}{\omega_p}\right)^{2N}}}$$

Réponse Chebyshev:

$$|T(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \cos^2[N \cos^{-1}(\omega / \omega_p)]}}, \ \omega \le \omega_p$$

$$|T(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \cosh^2[N \cosh^{-1}(\omega / \omega_p)]}}, \ \omega \ge \omega_p$$

Atténuation maximum d'un filtre dans la bande passante :

$$A_{\max} = 20\log\sqrt{1+\varepsilon^2}$$

Dénormalisation:

$$\omega_0 = \omega_p (1/\varepsilon)^{1/N}$$

L'atténuation ($|T(j\omega)|^{-1}$) d'un filtre à $\omega = \omega_s$:

$$A(j\omega_s) = -20\log\left[1/\sqrt{1+\varepsilon^2(\omega_s/\omega_p)^{2N}}\right]$$
$$= 10\log\left[1+\varepsilon^2(\omega_s/\omega_p)^{2N}\right]$$

Table A1. Réponse Butterworth: polynôme normalisé

n	Polynôme normalisé
1	(1+s)
2	$(1+1.414s+s^2)$
3	$(1+s)(1+s+s^2)$
4	$(1+0.765s+s^2)(1+1.848s+s^2)$
5	$(1+s)(1+0.618s+s^2)(1+1.618s+s^2)$
6	$(1+0.518s+s^2)(1+1.414s+s^2)(1+1.932s+s^2)$
7	$(1+s)(1+0.445s+s^2)(1+1.247s+s^2)(1+1.802s+s^2)$
8	$(1+0.390s+s^2)(1+1.111s+s^2)(1+1.663s+s^2)(1+1.962s+s^2)$
9	$(1+s)(1+0.347s+s^2)(1+s+s^2)(1+1.532s+s^2)(1+1.879s+s^2)$

10
$$(1+0.313s+s^2)(1+0.908s+s^2)(1+1.414s+s^2)(1+1.782s+s^2)(1+1.975s+s^2)$$

Conception de filtres

Filtre passe-bas à base d'inductance simulée:

Figure A2.

$$T(s) = \frac{1/LC}{s^2 + s(1/RC) + (1/LC)} = \frac{KR_2 / C_4 C_6 R_1 R_3 R_5}{s^2 + s(1/R_6 C_6) + (R_2 / C_4 C_6 R_1 R_3 R_5)}$$

où $R = R_6$, $C = C_6$ et $L = C_4 R_5 R_3 R_1 / R_2$.

Filtre Sallen-Key passe-bas:

Figure A3.

$$T(s) = \frac{aKG_{1}G_{2} / C^{2}}{s^{2} + s[G_{1} + G_{2}(2 - K)] / C + G_{1}G_{2} / C^{2}} = \frac{a_{0}}{s^{2} + s(\omega_{0} / Q) + \omega_{0}^{2}}$$
où
$$Q = \sqrt{G_{1}G_{2}} / [G_{1} + G_{2}(2 - K)]$$

Par ailleurs, si $R_1 = R_2 = R$, on obtient K = 3-1/Q.

Or,
$$K = 1 + R_B/R_A$$
, soit $R_B = (2-1/Q)R_A$.

Fonctions d'ordre 1:

Fonctions d'ordre 2:

LMC6482

SNOS674G -NOVEMBER 1997-REVISED APRIL 2020

LMC6482 CMOS Dual Rail-to-Rail Input and Output Operational Amplifier

6.6 Electrical Characteristics for V* = 3 V

Unless otherwise specified all limits specified for $T_1 = 25^{\circ}C$ $V^{+} = 3$ V $V^{-} = 0$ V $V_{OV} = V_{O} = V^{+}/2$ and $R_1 > 1$ MO

Unless otherwise specified, all limits specified for $T_J = 25$ C, $V = 3$ V, $V = 0$ V, $V_{CM} = V_0 = V$ /2 and $R_L > 1$ Ms2.												
PARAMETER		TEST CONDITIONS		T _J = 25°C			AT TEMPERATURE EXTREMES ⁽¹⁾			UNIT		
				MIN	TYP ⁽²⁾	MAX ⁽³⁾	MIN	TYP ⁽²⁾	MAX ⁽³⁾			
DC ELECTRICAL CHARACTERISTICS												
Vos	Input offset voltage	LMC6482AI			0.9	2			2.7			
		LMC6482I		0.9	3			3.7	m∨			
		LMC6482M			0.9	3			3.8			
TCVos	Input offset voltage average drift				2					μV/°C		
IB	Input bias current				0.02					pA		
los	Input offset current				0.01					pA		
CMRR	Common mode rejection ratio	0 V ≤ V _{CM} ≤ 3 V	LMC6482AI	64	74							
			LMC6482I	60	74					dB		
			LMC6482M	60	74	·						

Typical Characteristics (continued)

at V_s = 15 V, single supply, and T_A = 25°C (unless otherwise specified)

