

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DOCENTE: CARLOS ROMÁN

AYUDANTE: SANTIAGO GONZÁLEZ

MAT2505 - Ecuaciones Diferenciales Parciales

Tarea 3 - Sebastián Sánchez

PROBLEMA 1 Sea $T>0, U\subset \mathbb{R}^n$ un abierto y $u\in \mathcal{C}^{(1,2)}(U_T)$ una solución de la ecuación del calor en U_T . Pruebe que para todo par de enteros k,ℓ no negativos existen constantes $C=C(k,\ell,n)$ tales que

$$\max_{C(x,t;r/2)} \left| D_x^k D_t^\ell u \right| \le \frac{C}{r^{k+2\ell}} \max_{C(x,t;r)} |u|,$$

para todos los cilindros $C(x,t;r/2) \subset C(x,t;r) \subset U_T$.

Deduzca que si $u \in \mathcal{C}^{(1,2)}(\mathbb{R} \times \mathbb{R}^n)$ es una solución de la ecuación del calor tal que $u = \mathcal{O}(|t|^{\ell} + |x|^k)$, entonces u es un polinomio de grado a lo más $k + 2\ell$.

SOLUCIÓN Por el teorema de estimación sobre las derivadas tenemos que

$$\max_{C(r/2)} \left| D_x^{\alpha} D_t^{\ell} v \right| \leq \frac{C_{k,\ell}}{r^{2\ell+k+n+2}} \|u\|_{L^1(C(r))}.$$

Dado que u es continua y C(r) es compacto, u alcanza su máximo. Se sigue que

$$||u||_{L^1(C(r))} \le r^{n+2} \alpha(n) \max_{C(r)} |u|.$$

donde $r^{n+2}\alpha(n)$ es el volumen del cilindro C(r). Juntando ambas desigualdades se sigue el resultado:

$$\max_{C(r/2)} \left| D_x^{\alpha} D_t^{\ell} u \right| \leq \frac{C_{k,\ell} \alpha(n)}{r^{2\ell+k}} \max_{C(r)} |u| = \frac{C_{k,\ell,n}}{r^{2\ell+k}} \max_{C(r)} |u|.$$

Supongamos ahora que $u \in \mathcal{C}^{(1,2)}(\mathbb{R}_{>0} \times \mathbb{R}^n)$.

PROBLEMA 2 Sea $\Omega \subset \mathbb{R}^n$ un abierto acotado con frontera de clase \mathcal{C}^1 y $u \in H^1(\Omega)$.

(a) Demuestre que $|u| \in H^1(\Omega)$ y que

$$\nabla |u|(x) = \operatorname{signo}(u(x)) \nabla u(x)$$
 c.t.p. en Ω ,

donde $\operatorname{signo}(s) = 1, 0, -1 \text{ si } s > 0, s = 0 \text{ o } s < 0, \text{ respectivamente.}$

- (b) Demuestre que $u^+(x) := \max\{u(x), 0\}$ y $u^-(x) := \min\{u(x), 0\}$ pertenecen a $H^1(\Omega)$. Sugerencia: considere la sucesión de funciones $u_{\epsilon}(x) := \sqrt{\epsilon^2 + u(x)^2} \epsilon$.
- (c) Demuestre que $\nabla u(x)=0$ para casi todo $x\in\Omega$ tal que u(x)=0, y que si $u\in H^1_0(\Omega)$ entonces $|u|,u^\pm\in H^1_0(\Omega)$.

SOLUCIÓN

(a) Primero notemos que $u \in H^1(\Omega)$ si y solo si

$$\left(\sum_{|\alpha| \le 1} \|D^{\alpha}u\|_{L^2(\Omega)}^2\right)^{1/2} < \infty.$$

Dado que $\alpha = (0, 0, \dots, 0), (1, 0, \dots, 0), \dots, (0, \dots, 1)$ son las únicas posibilidades para α , podemos reescribir la condición como

$$||u||_{L^2(\Omega)}^2 + |||\nabla u|||_{L^2(\Omega)}^2 < \infty.$$

De esta forma, solo debemos mostrar que |u| está controlado por las estimaciones de u. Probaremos el resultado para $u \in \mathcal{C}^{\infty} \cap H^1(\Omega)$ y luego usaremos densidad para extenderlo. Sea entonces $u \in \mathcal{C}^{\infty}(\Omega) \cap H^1(\Omega)$. Tenemos que

$$|||u|||_{L^2(\Omega)}^2 = \int_{\Omega} |u|^2 = \int_{\Omega} u^2 = ||u||_{L^2(\Omega)}^2$$

y (tomando la derivada c.t.p.)

$$\begin{split} \partial_{x_i} |u| &= \operatorname{signo}(u) \partial_{x_i} u \Rightarrow \nabla |u| = \operatorname{signo}(u) \nabla u \\ &\Rightarrow \||\nabla |u||\|_{L^2(\Omega)}^2 = \int_{\Omega} |\nabla |u||^2 \\ &= \int_{\Omega} |\operatorname{signo}(u) \nabla u|^2 = \int_{\Omega} |\nabla u|^2 = \||\nabla u|\|_{L^2(\Omega)}^2. \end{split}$$

Así que $|u| \in H^1(\Omega)$ para funciones $u \in \mathcal{C}^{\infty}(\Omega) \cap H^1(\Omega)$. Si $u \in H^1(\Omega)$, existe una sucesión de funciones suaves¹ $(u_m)_{m \in \mathbb{N}}$ tal que $(u_m) \to u$ en $H^1(\Omega)$. Luego,

$$|||u|||_{L^{2}(\Omega)}^{2} = |||\lim_{m \to \infty} u_{m}|||_{L^{2}(\Omega)}^{2} = \lim_{m \to \infty} ||u_{m}||_{L^{2}(\Omega)}^{2} = \lim_{m \to \infty} ||u_{m}||_{L^{2}(\Omega)}^{2} = ||u||_{L^{2}(\Omega)}^{2}.$$

De manera análoga concluimos que $\||\nabla |u||\|_{L^2(\Omega)}^2 = \||\nabla u|\|_{L^2(\Omega)}^2$.

(b) Debemos probar que $\|u^{\pm}\|_{L^2(\Omega)}^2 + \|Du^{\pm}\|_{L^2(\Omega)} < 0$. Para ello necesitamos obtener la derivada débil de u^{\pm} .

Sea Ω^+ el dominio donde $u(x) \geq 0$ o equivalentemente $u^+ = u$. Un candidato natural a derivada débil es la función

$$v = \begin{cases} Du & , \text{ en } \Omega^+ \\ 0 & , \text{ fuera de } \Omega^+. \end{cases}$$

Y en efecto, se tiene que

$$\int_{\Omega} u^{+} D\psi = \int_{\Omega^{+}} u D\psi = -\int_{\Omega^{+}} Du\psi = -\int_{\Omega} v\psi \quad \forall \psi \in \mathcal{C}^{\infty}_{C}(\Omega).$$

¹Aproximación global por funciones suaves

Así que podemos denotar con propiedad $Du^+ = v$. De manera análoga definimos Du^- . Para finalizar, notemos que

$$\|u^{\pm}\|_{L^{2}(\Omega)}^{2} \le \|u\|_{L^{2}(\Omega)}^{2} < \infty$$
 y $\|Du^{\pm}\|_{L^{2}(\Omega)}^{2} \le \|Du\|_{L^{2}(\Omega)}^{2} < \infty$.

Así que $u^{\pm} \in H^1(\Omega)$.

(c) Supongamos que u = 0 c.t.p. en Ω . Luego,

$$0 = \int_{\Omega} u \, D\psi = -\int_{\Omega} Du \, \psi \qquad \forall \psi \in \mathcal{C}_{C}^{\infty}(\Omega)$$

Así deducimos que Du = 0 c.t.p. en Ω . Por otro lado, si $u \in H_0^1(\Omega)$, por los apartados anteriores tenemos que todas las estimaciones sobre |u| y u^{\pm} están controladas por u, así que necesariamente obtienen la regularidad de esta.

PROBLEMA 3 Sea $\Omega \subset \mathbb{R}^n$ un abierto conexo acotado con frontera \mathcal{C}^1 . Demuestre la desigualdad de tipo Poincaré

$$||v||_{L^2(\Omega)} \le C \left(||\nabla v||_{L^2(\Omega)} + ||T(v)||_{L^2(\partial\Omega)} \right) \quad \forall v \in H^1(\Omega).$$
 (1)

donde T(v) denota la traza de v sobre $\partial\Omega$.

Sugerencia: utilice el argumento de compacidad visto en clases. Puede usar **sin demostrar** que el operador de traza $T: H^1(\Omega) \to L^2(\partial\Omega)$ es compacto.

SOLUCIÓN Supongamos que la desigualdad no vale. Entonces para cada $k \in \mathbb{N}$ existe una función $u_k \in H^1$ tal que

$$||u_k||_{L^2(\Omega)} > k \left(||\nabla u_k||_{L^2(\Omega)} + ||Tu_k||_{L^2(\partial\Omega)} \right)$$

Consideremos la sucesión $u'_k = u_k/\|u_k\|_{L^2(\Omega)}$. Se sigue de la desigualdad anterior que

$$\left(\left\|\nabla u_k'\right\|_{L^2(\Omega)} + \left\|Tu_k'\right\|_{L^2(\partial\Omega)}\right) \leq \frac{1}{k}.\tag{**}$$

En particular, se tiene que

$$\|\nabla u_k'\|_{L^2(\Omega)} \xrightarrow{k \to \infty} 0$$

Más aún, dado que la sucesión $(u_k')_{k\in\mathbb{N}}$ es acotada en $H^1(\Omega)$. Dado que $H^1(\Omega) \subset\subset L^2(\Omega)$, existe una subsucesión $(u_k')_{j\in\mathbb{N}}$ que es convergente a $u\in L^2(\Omega)$.

Queremos ver que $u \in H^1(\Omega)$. La fórmula de integración por partes nos dice que para $\psi \in \mathcal{C}^{\infty}_{C}(\Omega)$ se tiene que

$$\left| \int_{\Omega} u \, D\psi \right| = \left| \lim_{k_j \to \infty} \int_{\Omega} u'_{k_j} \, D\psi \right| = \left| \lim_{k_j \to \infty} \int_{\Omega} Du'_{k_j} \, \psi \right| \leq \lim_{k_j \to \infty} C \frac{1}{k_j^2} \to 0.$$

Por lo que $u \in H^1(\Omega)$ con Du = 0 c.t.p. en Ω . Como Ω es conexo, u debe ser constante. Las funciones constantes son suaves hasta la frontera, así que $Tu = u|_{\partial\Omega}$. Pero entonces

$$||u|_{\partial\Omega}||_{L^2(\partial\Omega)} = ||Tu||_{L^2(\partial\Omega)} = \lim_{k_i \to \infty} ||Tu'_k||_{L^2(\partial\Omega)} = 0.$$

Y por lo tanto $u \equiv 0$ en Ω . Esto contradice que $||u||_{L^2(\Omega)} = \lim_{k_j \to \infty} ||u'_k||_{L^2(\Omega)} = 1$, así que la desigualdad (1) debe ser cierta y con ello concluimos el resultado.

PROBLEMA 4 Sea $\Omega \subset \mathbb{R}^n$ un abierto conexo acotado con frontera \mathcal{C}^1 y $f \in L^2(\Omega)$. Considere el problema

$$\begin{cases}
-\Delta u = f &, \text{ en } \Omega \\
\partial_{\hat{\mathbf{n}}} u + u = 0 &, \text{ en } \partial \Omega.
\end{cases}$$
(2)

Decimos que $u \in H^1(\Omega)$ es una solución débil del problema si

$$\int_{\Omega} \nabla u \, \nabla v + \int_{\partial \Omega} T(u) \, T(v) = \int_{\Omega} fv \quad \forall v \in H^{1}(\Omega).$$

- (a) Demuestre que $u \in C^2(\overline{\Omega})$ es solución clásica de (2) si y sólo si u es solución débil de (2).
- (b) Demuestre que (2) posee una única solución débil en $H^1(\Omega)$. Sugerencia: utilice (1).
- (c) Suponga que existe $w \in H^2(\Omega)$ tal que

$$T(\nabla w) \cdot \hat{\mathbf{n}} = -T(u),$$

donde u es la única solución débil de (2) en $H^1(\Omega)$. Muestre que $h\coloneqq u-w$ es solución débil de

$$\begin{cases} -\Delta h = g &, \text{ en } \Omega \\ \partial_{\hat{\mathbf{n}}} h = 0 &, \text{ en } \partial \Omega, \end{cases}$$

donde g es una función en $L^2(\Omega)$ tal que $\int_\Omega g=0.$

SOLUCIÓN

(a) \Longrightarrow : Supongamos que u es solución clásica. Sea $v\in C^\infty(\overline{\Omega}).$ Luego,

$$-\Delta u = f \Rightarrow -\Delta u \, v = f v$$

$$\Rightarrow -\int_{\Omega} \Delta u \, v = \int_{\Omega} f \, v$$

$$\Rightarrow \int_{\Omega} \nabla u \cdot \nabla v - \int_{\partial \Omega} v \partial_{\hat{\mathbf{n}}} u = \int_{\Omega} f v$$

Usamos la condición de borde $\partial_{\hat{\mathbf{n}}} u = -u$.

$$\Rightarrow \int_{\Omega} \nabla u \cdot \nabla v + \int_{\partial \Omega} v u = \int_{\Omega} f v$$

Como u es continua hasta la frontera, $u|_{\partial\Omega}=Tu$. Lo mismo pasa para v. De esta forma tenemos la formulación buscada para v suave. Si $v\in H^1(\Omega)$, consideremos una

aproximación $(v_n)_{n\in\mathbb{N}}$ por funciones suaves. De esta forma tenemos que

$$\begin{split} &\lim_{n \to \infty} \left(\int_{\Omega} \nabla u \cdot \nabla v_n + \int_{\partial \Omega} T v_n \, T u = \int_{\Omega} f v_n \right) \\ &\Rightarrow \int_{\Omega} \lim_{n \to \infty} \nabla u \cdot \nabla v_n + \int_{\partial \Omega} \lim_{n \to \infty} T v_n \, T u = \int_{\Omega} \lim_{n \to \infty} f v_n \\ &\Rightarrow \int_{\Omega} \nabla u \cdot \nabla v + \int_{\partial \Omega} T v \, T u = \int_{\Omega} f v. \end{split}$$

Donde usamos que el operador de traza es continuo.

←: Supongamos que vale la formulación débil.

$$\int_{\Omega} \nabla u \nabla v + \int_{\partial \Omega} T u \, T v = \int_{\Omega} f \, v \quad \forall v \in H^1(\Omega).$$

Como $u \in \mathcal{C}^2(\overline{\Omega})$ tenemos que

$$\int_{\Omega} \nabla u \, \nabla v = \int_{\Omega} (-\Delta u) \, v + \int_{\Omega} (\partial_{\hat{\mathbf{n}}} T u) \, T v \quad \forall v \in H^1(\Omega).$$

Reemplazando esto en la formulación débil nos deja con

$$\int_{\Omega} (-\Delta u) \, v + \int_{\partial \Omega} (\partial_{\hat{\mathbf{n}}} T u + T u) \, T v = \int_{\Omega} f v \quad \forall v \in H^1(\Omega).$$

Consideremos $\Omega_{\epsilon} := \{x \in \Omega : \operatorname{dist}(x, \partial \Omega) > \epsilon\}$. Luego,

$$\int_{\Omega_{\epsilon}} (-\Delta u) \, v = \int_{\Omega_{\epsilon}} fv \qquad \forall v \in \mathcal{C}^{\infty} \text{ tal que supp } (v) \subset \Omega_{\epsilon}.$$

Se sigue que $-\Delta u = f$ c.t.p. en Ω_{ϵ} pues podemos aproximar funciones en $H^1(\Omega_{\epsilon})$ por las suaves. Dado que $-\Delta u$ es continua (por hipótesis), la igualdad se mantiene en Ω_{ϵ} . Tomando $\epsilon \to 0$ tenemos que la igualdad vale en todo Ω . En particular se tiene que

$$\int_{\partial\Omega} (\partial_{\hat{\mathbf{n}}} Tu + Tu) \, Tv = 0 \quad \forall v \in H^1(\Omega).$$

De esta forma, u resuelve el sistema $-\Delta u = f$ en Ω y $\partial_{\hat{\mathbf{n}}} u + u = 0$ en $\partial \Omega$.

(b) Sean v y u en H^1 dos soluciones. Luego, para cualquier $\psi \in H^1$ (restando ambas formulaciones) tenemos que

$$\int_{\Omega} (\nabla v - \nabla u) \nabla \psi + \int_{\partial \Omega} (Tv - Tu) T\psi = 0. \tag{*}$$

Por (1) tenemos que

$$||v - u||_{L^2(\Omega)} \le C \left(||\nabla v - \nabla u||_{L^2(\Omega)} + ||Tv - Tu||_{L^2(\partial\Omega)} \right) = 0.$$

Donde la última igualdad se obtiene poniendo $\psi = u - v \in H^1(\Omega)$ en (\star) . De esta forma, dado que las funciones y sus derivadas coinciden c.t.p. en Ω , concluimos que u = v en $H^1(\Omega)$.

(c) No me salió Debemos probar la igualdad

$$\int_{\Omega} \nabla(u - w) \, \nabla v + \int_{\partial \Omega} T(u - w) \, Tv = \int_{\Omega} g \, v \quad \forall v \in H^{1}(\Omega). \tag{PD}$$

Sabemos u es solución débil de (2), por lo tanto:

$$\int_{\Omega} \nabla u \, \nabla v + \int_{\partial \Omega} T u \, T v = \int_{\Omega} f \, v \quad \forall v \in H^{1}(\Omega). \tag{\dagger 1}$$

Además, tenemos que

$$\int_{\Omega} g = 0 \tag{†2}$$

У

$$\partial_{\hat{\mathbf{n}}} T(\nabla w) = -Tu. \tag{\dagger 3}$$

Por otro lado, $w \in H^2(\Omega)$, así que

$$\int_{\Omega} \nabla w \, \nabla v = \int_{\Omega} -\Delta w \, v + \int_{\partial \Omega} \partial_{\hat{\mathbf{n}}} T w \, T v \quad \forall v \in H^{1}(\Omega). \tag{\dagger 4}$$

Notar que $w \in H^1(\Omega)$, así que poniendo v = w en $(\dagger 1)$ tenemos que

$$\int_{\Omega} \nabla u \, \nabla w + \int_{\partial \Omega} T u \, T w = \int_{\Omega} f \, w \tag{\ddagger 1}$$

Reemplazando v = u en (†4) y usando (†2)

$$\int_{\Omega} \nabla w \, \nabla u = \int_{\Omega} -\Delta w \, u - \int_{\partial \Omega} |Tu|^2 \tag{\ddagger 2}$$

Juntando (‡1) y (‡2) tenemos que

$$\int_{\Omega} -\Delta w \, u + \int_{\partial \Omega} (Tw - Tu) Tu = \int_{\Omega} fw$$