MAT237 notes

Mark Wang

September 28, 2016

Contents

1	Structures in \mathbb{R}^n	2
2	Open, closed and everything in between	5
3	etst	6

1 Structures in \mathbb{R}^n

Definition 1.1. A **Vector Space** is a collection of objects called vectors, which may be added together and multiplied ("scaled") by numbers, called scalars in this context. The set V and the operations of addition and multiplication must adhere to a number of requirements called axioms. let u, v and w be arbitrary vectors in V, and a and b scalars in F. First of all $u + v \in V$ and $au \in V$ and

$$u + (v + w) = (u + v) + w \tag{1}$$

$$u + v = v + u \tag{2}$$

$$\exists 0 \in V, v + 0 = v \forall v \in V \tag{3}$$

$$\forall v, \exists -v, v + (-v) = 0 \tag{4}$$

$$a(bv) = (ab)v (5)$$

$$1v = v \tag{6}$$

$$a(u+v) = au + av (7)$$

$$(a+b)v = av + bv (8)$$

Definition 1.2. The **Euclidean inner product**, or dot product given two vectors $x = (x_1, \ldots, x_n)$, and $y = (y_1, \ldots, y_n)$ in \mathbb{R}^n , which are two equal-length sequences of numbers, and returns a single number.

Algebraically, it is the sum of the products of the corresponding entries of the two sequences of numbers.

$$\langle x, y \rangle = x \cdot y := \sum_{i=1}^{n} x_i y_i = x_1 y_2 + x_2 y_2 + \dots + x_n y_n$$

Geometrically, it is the product of the Euclidean magnitudes of the two vectors and the cosine of the angle between them.

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos(\theta)$$

where ||x|| is the length of x, ||y|| is the length of y, θ is the angle between x, y.

Note.

When $a \cdot b = 0$, a and b are **orthogonal**.

When $a \cdot b = ||a|| ||b||$, a and b are **co-directional**.

Here is a list of properties of the **inner product space**. Given $a, b, c \in V$ and $r \in \mathbb{R}$

$$a \cdot b = b \cdot a$$
 (Commutative)
 $a \cdot (b+c) = a \cdot b + a \cdot c$ (Distributive over vector addition)
 $a \cdot (rb+c) = r(a \cdot b) + (a \cdot c)$ (Bilinear)
 $(c_1a) \cdot (c_2b) = c_1c_2(a \cdot b)$ (Scalar multiplication)
two non-zero vectors are orthogonal $\iff a \cdot b = 0$ (Orthogonality)
 $a \cdot b = a \cdot c$ does not imply $b = c$ (No cancellation)
 $a \cdot b \geq 0$ and is equal to zero if and only if $x = 0$ (Non-negative)

Remark. Mostly proved by using algebraic definition of inner dot product

Definition 1.3. The scalar projection is

$$comp_b a = \frac{a \cdot b}{\|b\|}$$

Proof. $b \cdot (a - b) = 0$ because they are orthogonal to each other. Arrange and with Biliear property for inner dot product we arrive at $comp_b a = \frac{a \cdot b}{\|b\|}$

Then the projection of a into b is the scalar projection multiply by the unit vector $\frac{b}{\|b\|}$

$$proj_b a = \frac{\langle a, b \rangle}{\|b\|^2} b$$

Definition 1.4. Norm is a way of measuring the length of a vector. Here we define $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ as the function

$$||x|| := \sqrt{\langle x, x \rangle} = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2} = \sqrt{(x_1^2 + x_2^2 + \dots + x_n^2)}$$

Proof. Use the algebraic definition of inner product $\mathbf{x} \cdot x = ||x|| \ ||x|| \cos(0) = ||x||^2$

The **normed space** has the following properties. Let $x, y \in \mathbb{R}^n$ and $c \in R$,

$$\begin{split} \|x\| &\geq 0 \text{ with equality if and only if } x = 0 \\ \|cx\| &= |c|\|x\| \\ \|x+y\| &\leq \|x\| + \|y\| \end{split} \qquad \text{(Normality)}$$

$$\|x+y\| \leq \|x\| + \|y\| \qquad \text{(Triangle Inequality)}$$

$$|\langle x,y\rangle| \leq \|x\| \|y\| \qquad \text{(Couchy Schwarz Inequality)}$$

Remark. proofs for Couchy Schwarz Inequality can be derived from geometric definition of inner dot product on the condition that $cos(x) \leq 1$. Proofs for Triangle Inequality requires Couchy Schwarz Inequality.

Definition 1.5. Metric is a method for determining the distance between the two vectors.

$$d(x,y) = ||x - y|| = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2} = \sqrt{(x_1 - x_2)^2 + \dots + (x_n - y_n)^2}$$

The metric space satisfies the following properties. Let $x, y, z \in \mathbb{R}^n$

$$d(x,y) = d(y,x)$$
 (Symmetry)
 $d(x,y) \ge 0$ with equality if and only if $x = y$ (Non-degeneracy)
 $d(x,z) \le d(x,y) + d(y,z)$ (Triangle Inequality)

Definition 1.6. In \mathbb{R}^3 the cross product of two vectors is a way of determining a third vector which is orthogonal of the original two. If $v = (v_1, v_2, v_3)$ and $w = (w_1, w_2, w_3)$ then

$$v \times w = (v_2w_3 - w_2v_3, w_1v_3 - v_1w_3, v_1w_2 - w_1v_2))$$

or we can use determinants to solve $v \times w$. Here i, j, k represent standard unit vectors in \mathbb{R}^3

$$v \times w = \det \begin{pmatrix} i & j & k \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix} = i \begin{pmatrix} v_2 & v_3 \\ w_2 & w_3 \end{pmatrix} - j \begin{pmatrix} v_1 & v_3 \\ w_1 & w_3 \end{pmatrix} + k \begin{pmatrix} v_1 & v_2 \\ w_1 & w_2 \end{pmatrix}$$

Note. Determinants of 2X2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is ad - bc

2 Open, closed and everything in between

Definition 2.1. Let \mathbb{X} be a big (topological space) set. Let $S \subseteq \mathbb{X}$. Let fixed $x \in \mathbb{X}$ and fixed $r \in \mathbb{R}, r > 0$

We define the open ball of radius r at the point x as

$$B = B_r(x) = \{ y \in \mathbb{X} : d(x, y) < r \}$$

Remark. Here d(x,y) means distance, i.e. d(x,y) = ||x-y||

Definition 2.2. The boundary of the open ball, ∂B , is the set

$$\partial B = \{ y \in \mathbb{X} : d(y, x) = r \}$$

Definition 2.3. The closed ball, denoted \overline{B} , is defined as

$$\overline{B} = B \cup \partial B \qquad = \{ y \in \mathbb{X} : d(y, x) \le r \} \tag{9}$$

Definition 2.4. A set $S \subseteq \mathbb{X}$ is bounded if there exists a big enough ball $B \in \mathbb{X}$ that contains S

Definition 2.5. Let $x \in \mathbb{X}$, $S \in \mathbb{X}$

- 1. x is said to be an interior point of S if \exists an open ball: $B = B_r(x)$ such that $B \in S$
- 2. x is said to be a boundary point of S if for every open ball

3 etst