Département de Mathématiques et Informatique

Module: Data Mining Année: 2022-2023

Nature de document: TD2-Solution

Niveau: L3-STID M^{me} N.BERMAD

Exercice1:

1. L'algorithme des centres mobiles

	\mathbf{X}_{1}	\mathbf{X}_2
$\mathbf{W_1}$	-2	2
\mathbf{W}_2	-2	-1
\mathbf{W}_3	0	-1
W_4	2	2
\mathbf{W}_{5}	-2	3
W_6	3	0

Etape0:

La matrice des distances entre les individus et les centres C_1^0 de coordonnées (1, 1) et C_2^0 de coordonnées (2,3) est :

	W1	W2	W3	W4	W5	W6
c_1^0	3.16	3.16	2.24	1.41	3.60	2.24
C_2^0	4.12	5.66	4.47	1	4	3.16

En utilisant la distance euclidienne :

$$d(w1, c_1^0) = \sqrt{(-2-1)^2 + (2-1)^2} = 3.16$$

D'où les deux groupes :

$$A = \{W1, W2, W3, W6, W5\}, B = \{W4\}$$

Etape01:

On considère deux nouveaux centres C_1^1 , C_2^1 lesquels sont les centres de gravité des deux groupes A et B. Donc :

$$C_1^1 = \left(\frac{-2 + (-2) + 0 + (-2) + 3}{5}, \frac{2 + (-1) + (-1) + 0}{5}\right) = (-0.6, 0.6)$$

$$C_2^1 = (2,2)$$

Le tableau des distances entre les individus et ces centres est :

Département de Mathématiques et Informatique

Module: Data Mining Année: 2022-2023

Nature de document: TD2-Solution

Niveau: L3-STID M^{me} N.BERMAD

	W1	W2	W3	W4	W5	W6
C 1 1	1.98	2.13	1.71	2.95	2.78	3.65
C_2^1	4	5	3.60	0	4.12	2.24

D'où les deux groupes :

$$A = \{W1, W2, W3, W5\}, B = \{W4, W6\}$$

Etape02:

On considère deux nouveaux centres C_1^2 , C_2^2 lesquels sont les centres de gravité des deux groupes A et B. Donc

$$C_1^2 = \left(\frac{-2 + (-2) + 0 + (-2)}{4}, \frac{2 + (-1) + (-1) + 3}{4}\right) = (-1.5, 0.75)$$

$$C_2^2 = \left(\frac{2+3}{2}, \frac{2+0}{2}\right) = (2.5, 1)$$

Le tableau des distances entre les individus et ces centres est

	W1	W2	W3	W4	W5	W6
C 2	1.34	1.82	2.30	3.72	2.30	4.56
C_2^2	4.61	4.92	3.20	1.12	4.92	1.12

D'où les deux groupes :

$$A = \{W1, W2, W3, W5\}, B = \{W4, W6\}$$

On retrouve la même classification que l'étape précédente, on arrête l'algorithme.

2. a. L'algorithme CAH

Etape0:

On va regrouper les individus avec l'algorithme CAH et la méthode du voisin le plus proche munie de la distance euclidienne. Au départ chaque individu est un cluster, donc :

$$P_0 = \{\{w1\}, \{w2\}, \{w3\}, \{w4\}, \{w5\}\}$$

Département de Mathématiques et Informatique

Module: Data Mining Année: 2022-2023

Nature de document: TD2-Solution

Niveau: L3-STID M^{me} N.BERMAD

• La matrice de distance associée à $P_0 = \{\{w1\}, \{w2\}, \{w3\}, \{w4\}, \{w5\}\}\}$ est :

	w1	w2	w3	w4	w5
w1	0				
w2	5.85	0			
w3	1.41	4.60	0		
w4	3.35	7.07	3.20	0	
w5	4.47	1.50	3.16	5.59	0

Les éléments (individus) w1 et w3 ont l'écart le plus petit : ce sont les éléments les plus proches. On les rassemble pour former le groupe : $A=\{w1, w3\}$. On a une nouvelle partition de P :

$$P_1 = \{\{w2\}, \{w4\}, \{w5\}, A\}$$

Etape1:

• La matrice de distance associée à P₁ est :

	w2	w4	w5	A
w2	0			
w4	7.07	0		
w5	1.50	5.59	0	
A	4.60	3.20	3.16	0

On a:

$$e(w5,A)=Min(e(w5,w1),e(w5,w3))=Min(4.47,3.16)=3.16$$

Les éléments (individus) w2 etw5 sont les plus proches. On les rassemble pour former le groupe : $B = \{w2, w5\}$. On a une nouvelle partition de P :

$$P_2 = \{\{w4\}, A, B\}$$

Département de Mathématiques et Informatique

Module: Data Mining Année: 2022-2023

Nature de document: TD2-Solution

Niveau: L3-STID M^{me} N.BERMAD

Etape2:

• La matrice de distance associée à P_2 est :

	w4	A	В
w4	0		
A	3.2 0	0	
В	5.59	3.16	0

On a:

$$e(B,w4)=Min(e(w2,w4),e(w5,w4))=Min(7.07,5.59)=5.59$$

Et

$$e(B,A)=Min(e(w2,A),e(w5,A))=Min(4.60,3.16)=5.27$$

Les éléments (individus) A et A sont les plus proches. On les rassemble pour former le groupe : $C = \{A, B\} = \{w1, w3, w2, w5\}$. On a une nouvelle partition de P :

$$P_3 = \{w4, C\}$$

Etape3:

• La matrice de distance associée à P_3 est :

	W4	С
W4	0	
С	3.20	0

On a:

Il ne reste plus que 2 éléments, w4 et C; on les regroupe. On obtient la partition $P_4=\{w1,w2,w3,w4,w5\}=P$. Cela termine l'algorithme de CAH.

2. b.Construction du dendrogramme

o Les individus {w1}, {w3} ont été regroupés avec un écart de 1.41

Ministère de l'Enseignement supérieur et de la recherche scientifique Université Abderrahmane Mira de Bejaïa Faculté des Sciences Exactes Département de Mathématiques et Informatique

Module: Data Mining Année: 2022-2023

Nature de document: TD2-Solution

Niveau: L3-STID M^{me} N.BERMAD

- o Les individus {w2}, {w5} ont été regroupés avec un écart de 1.50
- o Les individus A= {w1, w3} et B={w2,w5} ont été regroupés avec un écart de 3.16
- o Les individus C= {A, B} et w4 ont été regroupés avec un écart de 3.20

On peut donc construire le dendrogramme associé:

Exercice 2:

1. La table de contingence (TDC) associée :

	F	Н	R	U	C	M	A
\mathbf{W}_1	0	1	0	1	1	0	0
\mathbf{W}_2	1	0	0	1	1	0	0
W_3	1	0	1	0	0	1	0
W_4	1	0	0	1	0	0	1
W_5	0	1	1	0	0	1	0
W_6	0	1	1	0	0	0	1

Ministère de l'Enseignement supérieur et de la recherche scientifique Université Abderrahmane Mira de Bejaïa

Faculté des Sciences Exactes Département de Mathématiques et Informatique

Module: Data Mining Année: 2022-2023

Nature de document: TD2-Solution

Niveau: L3-STID M^{me} N.BERMAD

$d(w_1, w_2)$:

		W_2					
		1	0	sum			
	1	a _{1,2} =2	b _{1,2} =1	a+b=3			
\mathbf{W}_1	0	c _{1,2} =1	d _{1,2} =3	c+d=4			
	sum	a+c=3	b+d=4				

On a:

$$a_{1,2} = 2$$
, $b_{1,2} = 1$, $c_{1,2} = 1$, et $d_{1,2} = 3$.

Donc

d (w1, w2) =
$$\frac{b_{1,2} + c_{1,2}}{a_{1,2} + b_{1,2} + c_{1,2}} = \frac{2}{4} = 0.5$$
// La distance de Jaccard mésure la

dissimilarité entre les individus(sim(w1,w2)=1-d(w1,w2)=1-0.5=0.5

$d(w_3, w_6)$:

On a:

$$a_{3,6} = 1$$
, $b_{3,6} = 2$, $c_{3,6} = 2$, et $d_{3,6} = 2$.

Donc

d (w₃, w₆) =
$$\frac{b_{3,6} + c_{3,6}}{a_{3,6} + b_{3,6} + c_{3,6}} = \frac{4}{5} = 0.8$$

2. Comme

$$d(w1, w2) < d(w_3, w_6)$$

w₁ est plus proche de w₂ que w₃ de w₆.