Linear Programming and Game Theory Library for Xcas and the HP Prime

Nikolaus Henderson (ftneek)

2023 - 2024-12-06

Overview

This library contains a linear program solver (**simplex()**) capable of solving mixed constraint problems with integer variables, binary variables, and unrestricted variables through the use of the two-phase Simplex, Dual Simplex, and Gomory Plane Cutting algorithms, as well as game theory commands capable of solving two-person zero-sum games (**solveGame()**).

Contents

1	$\begin{tabular}{ll} \textbf{Installation and Verification} \\ test_simplex() \ \dots \ $
2	Linear Programming
	simplex(a, [dir], [integers], [binary], [unrestricted])
	$simplex_core(a, bv, art, ign, P)$
	simplex_int(a, bv, art, ign, P, integers)
	basis_to_id(Basis, n)
	$id_to_basis(ID,n,b) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
3	
	$pureCheck(p) \ \dots $
	$dominance(p) \ \dots $
	$two by two (p) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	$simplex_game(p) \dots $
	$verify Security Levels (p,X,Y) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
1	Acknowledgments References

1 Installation and Verification

- 1. Download the attached zip file.
- 2. To use in Xcas [1]: Click File >Open >File and select the simplex.xws file. You may need to click 'OK' in the 3 program editor cells.
 - To use on an HP Prime: Use the Connectivity Kit to transfer the three .hpprgm files (in the hpprgm folder) to the HP Prime.
- 3. Verify everything is working correctly by running the test_simplex() command.

test_simplex()

Solves a set of linear programming problems and returns a list of 1's or 0's (true or false) depending on whether or not the corresponding test's output matched the expected result.

Example:

Note: 1 test (for the game theory commands) failed in an Xcas web session, but everything works in Xcas and on the HP Prime.

2 Linear Programming

simplex(a, [dir], [integers], [binary], [unrestricted])

Solves a linear program by using the Simplex Algorithm or Gomory's Plane Cutting Algorithm. Accepts 1-5 arguments:

- a: The linear program as an augmented matrix of the form $\begin{bmatrix} A & b \\ c & -z_0 \end{bmatrix}$, where A is the constraint matrix, b is the right hand side of the constraints as a column, c is the objective function row, and z_0 is the constant coefficient of the objective function. Any = constraints should be the first rows of the matrix. Any \leq constraints should be the next rows. Any \geq constraints should be the last rows. The objective function is always the final row, with z_0 negated. This means that you should put the constraints in this order to create the augmented matrix: $=, \leq, \geq$, objective function.
- dir: A list of 2 items; the number of = constraints and the number of \geq constraints. Uses maximization if the first value is positive, and minimization if it is negative. If there are no = constraints, you can use \pm inf for min or max. If there are no \geq constraints, you can omit the list delimiters and provide only the first value.
- integers: a list of integer variable indices.
- binary: a list of binary variable indices.

• unrestricted: a list of variable indices without nonnegative restriction.

Returns [z, m, bv, P, X]. z is the optimal value, m is the final matrix tableau, bv is the list of final basic variable indices, P is the tally of pivot1 operations, X is a matrix whose columns are the vertices of the basic feasible solution.

Example: min 2x+5y subject to $3x-y=1, x-y\leq 5$, where x,y are nonnegative and integer.

```
a:=[[3,-1,1],[1,-1,5],[2,5,0]];
dir:=[-1,0]; // (or we can use dir:=-1 as a shortcut)
integers:=[1,2];
simplex(a,dir,integers)
```

$$\begin{bmatrix} 12, \begin{bmatrix} 1 & 0 & 0 & -1 & 1 & 1 \\ 0 & 0 & 1 & -2 & 1 & 6 \\ 0 & 1 & 0 & -3 & 2 & 2 \\ 0 & 0 & 0 & 17 & -12 & -12 \end{bmatrix}, [1, 3, 2], 2, \begin{bmatrix} 1 \\ 2 \\ 6 \\ 0 \\ 0 \end{bmatrix}].$$

Therefore, the minimum value of 12 occurs at x = 1 and y = 2.

Notes: $\operatorname{simplex}()$ uses default settings of minimizing the objective function and all constraints are \leq unless specified by dir , therefore, you can omit the dir arguement for problems aligning with the default settings. You can transform constraints from \geq to \leq and vice versa by multiplying the constraint by -1 to change the problem's form and still arrive at the same solution. The indices stored in **integers**, **binary**, and **unrestricted** start from 1 (variable labeling starts from x_1 instead of x_0). If a variable is **binary**, it is not necessary to indicate it as **integer** (this is done automatically). Currently, using one of the optional arguments requires you to provide all arguments that come before. For example, to enter **unrestricted** variables, you should provide values for **dir**, **integers** and **binary** (even if it is the default value or an empty list). In addition, using **unrestricted** variables currently requires an additional manual step after the final iteration is returned to obtain the final vertex.

simplex_core(a, bv, art, ign, P)

Solves a linear program in canonical form by using the Simplex Algorithm. Accepts 5 arguments:

- a: a matrix contains a linear program in canonical form.
- bv: a list of basic variable indices.
- art: the number of (new or unused) = constraints in the program.
- ign: the number of (old or used) = constraints in the linear program.
- P: the tally of pivot1 operations used so far.

2024-12-06 3

Returns [z, m, bv, P, X]. z is the optimal value, m is the final matrix tableau, bv is the list of final basic variable indices, P is the updated tally of pivot1 operations, X is a matrix whose columns are the vertices where the optimal value occurs.

simplex_int(a, bv, art, ign, P, integers)

Solves an (integer) linear program in canonical form by using Gomory's Plane Cutting Algorithm. Returns the same format as simpelx_core(). Accepts 6 arguments (see simplex_core() for 1-5):

• integers: a list of integer variable indices.

Note: **simplex_core()** and **simplex_int()** are used internally to perform the simplex and cutting plane algoritms. Since they are more complicated to set up, it is recommended to solve linear programs with the **simplex()** command.

basis_to_id(Basis, n)

Maps a basis to an ID. Accepts 2 arguments:

- Basis: a list of basic variable indices.
- n: the total number of variables in the system.

Example:

```
basis_to_id([3,4,5],5)
```

9

Therefore, 9 represents the basis $[x_3, x_4, x_5]$ in a system with 5 variables.

$id_to_basis(ID, n, m)$

Returns the basis mapped to the given ID. Accepts 3 arguments:

- **ID**: an integer representing a unique basis.
- n: the total number of variables in the system.
- m: the number of constraints in the system (number of variables in the target basis).

Example:

```
id_{to}basis(9,5,3)
```

[3, 4, 5]

For a system with 5 variables and 3 constraints, the basis corresponding to an ID of 9 is $[x_3, x_4, x_5]$.

2024-12-06 4

3 Game Theory

solveGame(p)

Solves a two-person zero sum game by incorporating multiple strategies including pure strategies, two-by-two matrix shortcut, dominant reduction, and Simplex Algorithm. Accepts 1 argument:

• **p**: a payoff matrix for a two-person zero sum game.

Returns [v, X, Y].

v is value of the game.

A column of X is a strategy (x) for Player 1, and a column of Y is a strategy (y) for Player 2. For a given set of strategies, x and y, x_i and y_j are the respective probabilities that, for every play of the game, Player 1 should play s_i and Player 2 should play t_j .

Example 9.6.1 [2]:

$$\left[0, \begin{bmatrix} \frac{1}{4} \\ \frac{1}{2} \\ \frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{4} \\ \frac{1}{2} \\ \frac{1}{4} \end{bmatrix}\right].$$

Therefore, the value of the game is 0, meaning neither player is expected to win in the long term (as the number of games approaches infinity). Player 1 and Player 2 should extend 1 finger with probability $\frac{1}{4}$, 2 fingers with probability $\frac{1}{2}$, or 3 fingers with probability $\frac{1}{4}$.

Notes: s_i are actions that can be taken by Player 1, t_j are actions that can be taken by Player 2. Each set of (s_i, t_j) is a strategy pair. As the number of games approaches infinity, the average payoff per game for Player 1 converges to (v) the value of the game (assuming both players always play optimally). Therefore, a positive value of the game indicates, in the long-term average, Player 1 wins v per game (Player 2 loses v per game), while a negative value of the game means, in the long term average, Player 1 loses v per game (Player 2 wins v per game). If the value of the game is 0, neither player is expected to come out ahead in the long run.

pureCheck(p)

Checks a payoff matrix for pure strategies. Accepts 1 argument:

• p: a payoff matrix for a two-person zero sum game.

Returns [v, X, Y] for pure strategies or $[u_1, u_2]$ for no pure strategies. v is value of the game. A column of X or Y is a pure strategy for Player 1 or Player 2, respectively. u_1 is the security level for Player 1, u_2 is the security level for Player 2. One way to check for pure strategies by doing:

2024-12-06 5

```
r:=pureCheck(p); if dim(r(2)) != 1 then // pure strategies exist
```

Example 9.3.1a [2]:

```
pureCheck ([[10,5,5,20,3],[10,15,10,17,25],[7,12,8,9,8],[5,12,9,10,5]])
```

$$[10, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}]$$

Indicates the value of the game is 10, with pure strategies at (s_2, t_1) and (s_2, t_3) . This means that Player 1 should always play s_2 , while Player 2 should always play t_1 or t_3 .

Example 9.3.1b [2]:

Indicates no pure strategies exist, and we must use mixed strategies to solve this game.

dominance(p)

Uses dominant strategies to reduce a payoff matrix to dimensions, stopping when the matrix is no longer reducible or when the dimensions are [2,2]. Accepts 1 argument:

• p: a payoff matrix for a two-person zero sum game.

Returns list of [p', [indices of deleted rows], [indices of deleted columns]]. If no dominant strategies exist, a p' will be unmodified and the lists will be empty.

Example:

$$\begin{bmatrix} -2 & 0 \\ 5 & -1 \end{bmatrix}, [3], [1, 3]$$

Indicating row 3 and columns 1 and 3 have been removed by dominant strategies.

twobytwo(p)

Solves a two-person zero-sum game (with dimensions of [2,2]) by 2x2 shortcut method. Assumes no pure strategies. Accepts 1 argument:

• p: a payoff matrix (with dimensions of [2,2]) for a two-person zero-sum game.

Example:

twobytwo([[1,3],[4,0]])

$$\left[2, \left[\begin{array}{c} \frac{2}{3} \\ \frac{1}{3} \end{array}\right], \left[\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right]\right]$$

$simplex_game(p)$

Solves a two-person zero sum game by Simplex Algorithm. Assumes no possible pure strategies (because only 1 strategy is returned per player when solving by simplex). Accepts 1 argument:

• p: a payoff matrix for a two-person zero sum game.

Returns [v, x, y]. v is value of the game. x_i and y_j is the probability Player 1 and Player 2 should play s_i and t_j , respectively.

Example: see solveGame() Example 9.6.1

verifySecurityLevels(p, X, Y)

Computes bounds for the maximum security level of Player 1 (v_1) when given X, and the minimum security level of Player 2 (v_2) when Y. Accepts 3 arguments:

- p: a payoff matrix for a two-person zero sum game.
- X: a matrix where columns (X_i) are potential mixed strategies for Player 1.
- Y: a matrix where columns (Y_i) are potential mixed strategies for Player 2.

Returns $[v_1, v_2]$, where v_1 will be an empty list if X is an empty list, or v_2 will be an empty list if Y is an empty list.

Note: For Player 1, the security level represents the minimum average amount they can expect to gain by playing strategy X_i . For Player 2, it is the maximum average amount they should expect to lose when playing strategy Y_j . Player 1 wishes to maximize their security level, while Player 2 wishes to minimize theirs. If Y is an empty list, computes only bounds for v_1 . If X is an empty list, computes only bounds for v_2 . When provided both X and Y, computes both v_1 and v_2 . X and Y can each be given multiple strategies (columns), and the strongest bound for the security level of each player will be returned (maximum for Player 1 and minimum for Player 2). If $v_1 = v_2$, that is the value of the game.

Example 9.4.1 [2]:

```
verifySecurityLevels([[1,3],[4,0]],[[1/2],[1/2]],[])
```

$$[\frac{3}{2},[]]$$

Therefore, on average, Player 1 can secure a payoff of at least $\frac{3}{2}$ per game by using the mixed strategy $\left[\frac{1}{2},\frac{1}{2}\right]^T$.

Example (Problem Set 9.4, #1 [2]):

```
a:=[[1,2,3,4],[6,5,2,1],[7,0,1,8]];

x:=[[1/3,2/3],[1/3,1/3],[1/3,0]];

y:=[[1/6,0],[0,1/3],[5/6,1/2],[0,1/6]];

verifySecurityLevels(a,x,[])
```

$$[\frac{8}{3},[]]$$

We conclude $v_1 \geq \frac{8}{3}$ (when Player 1 plays X_2).

```
verifySecurityLevels(a,[],y)
```

$$[[], \frac{8}{3}]$$

We conclude $v_2 \leq \frac{8}{3}$ (when Player 2 plays Y_1). Since $v_1 = v_2$, the value of the game is $\frac{8}{3}$.

4 Acknowledgments

Thanks to Albert Chan for helping investigate bugs, as well as suggesting fixes and improvements, and to Bernard Parisse for creating and maintaining Giac/Xcas, as well as maintaining the HP Prime's CAS.

References

- [1] Giac/Xcas, Bernard Parisse and Renée De Graeve, version 1.9.0 (2024), https://www-fourier.univ-grenoble-alpes.fr/~parisse/giac.html
- [2] An Introduction to Linear Programming and Game Theory 3rd Edition, Paul R. Thie and Gerard E. Keough (ISBN: 978-0470232866)