

What is claimed is:

1. A method for selecting a swapping technique from a group consisting of a bit-swapping and a gain-swapping techniques in a discrete multi-tone (DMT) system having multiple sub-channels, gain factor constraints, a threshold index value (T),
5 and a maximum mean square error (MSE_{max}) and a minimum mean square error (MSE_{min}), the method comprising:
determining a first index value (I) and a second index value (J) based on MSE_{max} ,
 MSE_{min} and said gain factor constraints according to a predetermined manner, I
denoting range of improvement when adopting the gain-swapping as the swapping
10 technique, and J denoting range of improvement when adopting a combination of
the gain-swapping and the bit-swapping as the swapping technique;
determine whether larger one of I and J is larger than T;
if the larger one of I and J is larger than T, determining whether I is equal to or
larger than J; and selecting the gain-swapping as the swapping technique if I is
15 equal to or larger than J.
2. The method as recited in claim 1, further comprising a step of
selecting a combination of gain-swapping and bit-swapping as the swapping
technique if I is smaller than J.
20
3. The method as recited in claim 1, wherein the gain factor constraints have a
maximum gain factor constraint (G_{cm}) and a minimum gain factor constraint
(G_{cn}), g_{max} denotes the gain of the sub-channel respecting MSE_{max} , g_{min} denotes the
gain of the sub-channel respecting MSE_{min} , said predetermined manner comprises

the steps of:

obtaining a first gain margin value (Gmv1) by subtracting g_{\max} from Gcm, and
obtaining a second gain margin value (Gmv2) by subtracting Gcn from g_{\min} ;

obtaining a first parameter (P1) by subtracting MSE_{\min} from MSE_{\max} ; and

5 obtaining the I by doubling a smallest one of the group consisting of Gmv1, Gmv2
and (0.5*P1).

4. The method as recited in claim 1, wherein the gain factor constraints have a
maximum gain factor constraint (Gcm) and a minimum gain factor constraint

10 (G_{cn}), g_{\max} denotes the gain of the sub-channel respecting MSE_{\max} , g_{\min} denotes the
gain of the sub-channel respecting MSE_{\min} , MSE_{avgbs} denotes an arithmetic average
of MSE_{\max} and MSE_{\min} after bit-swapping and MSE_{maxbs} denotes MSE_{\max} after bit-
swapping, and as MSE_{maxbs} is smaller than MSE_{avgbs} , the predetermined manner
comprises the steps of:

15 obtaining a third gain margin value (Gmv3) by subtracting Gcn from g_{\max} , and
obtaining a fourth gain margin value (Gmv4) by subtracting g_{\min} from Gcm;

obtaining a second parameter (P2) by subtracting MSE_{maxbs} from MSE_{minbs} ;

obtaining a third parameter (P3) by subtracting MSE_{maxbs} and a smallest one of the
group, consisting of Gmv3, Gmv4 and (0.5*P2), from MSE_{avgbs} ; and

20 obtaining the J by subtracting MSE_{\min} and (2*P3) from MSE_{\max} .

5. The method as recited in claim 1, wherein the gain factor constraints have a
maximum gain factor constraint (Gcm) and a minimum gain factor constraint
(G_{cn}), g_{\max} denotes the gain of the sub-channel respecting MSE_{\max} , g_{\min} denotes the

gain of the sub-channel respecting MSE_{min} , MSE_{avgbs} denotes the arithmetic average of MSE_{max} and MSE_{min} after bit-swapping and MSE_{maxbs} denotes MSE_{max} after bit-swapping and MSE_{minbs} denotes MSE_{min} after bit-swapping, and as MSE_{maxbs} is not smaller than MSE_{avgbs} , the predetermined manner comprises the

5 steps of:

obtaining a fifth gain margin value (Gmv5) by subtracting g_{max} from Gcm , and

obtaining a sixth gain margin value (Gmv6) by subtracting Gcn from g_{min} ;

obtaining a fourth parameter (P4) by subtracting MSE_{minbs} from MSE_{maxbs} ;

obtaining a fifth parameter (P5) by subtracting MSE_{avgbs} and a smallest one of the

10 group, consisting of Gmv5, Gmv6 and $(0.5*P4)$, from MSE_{maxbs} ; and

obtaining the J by subtracting MSE_{min} and $(2*P5)$ from MSE_{max} .

6. The method as recited in claim 1, wherein the gain factor constraints have a maximum gain factor constraint (Gcm) and a minimum gain factor constraint

15 (Gcn), g_{max} denotes the gain of the sub-channel respecting MSE_{max} , g_{min} denotes the gain of the sub-channel respecting MSE_{min} , MSE_{avgbs} denotes the arithmetic average of MSE_{max} and MSE_{min} after bit-swapping, MSE_{maxbs} denotes MSE_{max} after bit-swapping, MSE_{minbs} denotes MSE_{min} after bit-swapping, and as MSE_{maxbs} is smaller than MSE_{avgbs} , the predetermined manner comprises the steps of:

20 obtaining a seventh gain margin value (Gmv7) by subtracting Gcn from g_{max} , and obtaining a eighth gain margin value (Gmv8) by subtracting g_{min} from Gcm ;

obtaining a sixth parameter (P6) by subtracting MSE_{maxbs} from MSE_{minbs} ;

obtaining a seventh parameter (P7) by subtracting a smallest one of the group, consisting of Gmv7, Gmv8 and $(0.5*P6)$, and MSE_{avgbs} from MSE_{minbs} ; and

obtaining the J by subtracting MSE_{min} and $(2*P7)$ from MSE_{max} .

7. The method as recited in claim 1, wherein the gain factor constraints have a maximum gain factor constraint (Gcm) and a minimum gain factor constraint
5 (Gcn), g_{max} denotes the gain of the sub-channel respecting MSE_{max} , g_{min} denotes the gain of the channel respecting MSE_{min} , MSE_{avgbs} denotes the arithmetic average of MSE_{max} and MSE_{min} after bit-swapping, MSE_{maxbs} denotes MSE_{max} after bit-swapping, MSE_{minbs} denotes MSE_{min} after bit-swapping, and as MSE_{maxbs} is not smaller than MSE_{avgbs} , the predetermined manner comprises the steps of:
10 obtaining a ninth gain margin value ($Gmv9$) by subtracting g_{max} from Gcm , and obtaining a tenth gain margin value ($Gmv10$) by subtracting Gcn from g_{min} ;
obtaining a eighth parameter ($P8$) by subtracting MSE_{minbs} from MSE_{maxbs} ;
obtaining a ninth parameter ($P9$) by subtracting MSE_{minbs} and a smallest one of the group, consisting of $Gmv9$, $Gmv10$ and $(0.5*P8)$, from MSE_{avgbs} ; and
15 obtaining the J by subtracting MSE_{min} and $(2*P9)$ from MSE_{max} .
8. A method for performing gain-swapping in a discrete multi-tone (DMT) system having multiple sub-channels, gain factor constraints, and a maximum mean square error (MSE_{max}) and a minimum mean square error (MSE_{min}), wherein the
20 gain factor constraints have a maximum gain factor constraint (Gcm) and a minimum gain factor constraint (Gcn), g_{max} denotes the gain of the sub-channel respecting MSE_{max} , g_{min} denotes the gain of the channel respecting MSE_{min} , said method comprising the steps of:
obtaining an eleventh gain margin value ($Gmv11$) by subtracting g_{max} from Gcm ,

and obtaining a twelfth gain margin value (Gmv12) by subtracting Gcn from g_{\min} ;

obtaining a tenth parameter (P10) by subtracting MSE_{\min} from MSE_{\max} ;

obtaining the value MIN of the smallest one of the group consisting of Gmv11, Gmv12 and (0.5*P10); and

5 adding gain in amount of MIN to the sub-channel having MSE_{\max} and subtracting gain in amount of MIN from the sub-channel having MSE_{\min} .

9. A swapping technique selector for selecting an optimal swapping technique from a group consisting of a bit-swapping and a gain-swapping techniques in a discrete 10 multi-tone (DMT) system having multiple sub-channels, gain factor constraints, and a threshold index value (T) and a maximum mean square error (MSE_{\max}) and a minimum mean square error (MSE_{\min}), the swapping technique selector comprising:

15 a performance improvement pre-calculator for determining a first index value (I) and a second index value (J) based on MSE_{\max} , MSE_{\min} and said gain factor constraints according to a predetermined manner, I denoting range of improvement when adopting the gain-swapping as the optimal swapping technique, and J denoting range of improvement when adopting a combination of the gain-swapping and the bit-swapping as the optimal swapping technique;

20 a threshold comparator, connected to the performance improvement pre-calculator, for determining whether the larger one of I and J is larger than T;

a performance improvement comparator, connected to the threshold comparator, for selectively determining whether I is equal to or larger than J; and

a swapping technique selection device, connected to the performance

improvement comparator, for selecting either the gain-swapping or the combination of gain-swapping and bit-swapping as the optimal swapping technique.

10. The selector of claim 9, wherein the gain factor constraints have a maximum

5 gain factor constraint (G_{cm}) and a minimum gain factor constraint (G_{cn}), g_{max} denotes the gain of the sub-channel respecting MSE_{max} , g_{min} denotes the gain of the sub-channel respecting MSE_{min} , said predetermined manner comprises the steps of: obtaining a first gain margin value ($Gmv1$) by subtracting g_{max} from G_{cm} , and obtaining a second gain margin value ($Gmv2$) by subtracting G_{cn} from g_{min} ;

10 obtaining a first parameter ($P1$) by subtracting MSE_{min} from MSE_{max} ; and obtaining the I by doubling a smallest one of the group consisting of $Gmv1$, $Gmv2$ and $(0.5*P1)$.

11. The selector of claim 9, wherein the gain factor constraints have a maximum

15 gain factor constraint (G_{cm}) and a minimum gain factor constraint (G_{cn}), g_{max} denotes the gain of the sub-channel respecting MSE_{max} , g_{min} denotes the gain of the sub-channel respecting MSE_{min} , MSE_{avgbs} denotes an arithmetic average of MSE_{max} and MSE_{min} after bit-swapping and MSE_{maxbs} denotes MSE_{max} after bit-swapping, and as MSE_{maxbs} is smaller than MSE_{avgbs} , the predetermined manner comprises the 20 steps of:

obtaining a third gain margin value ($Gmv3$) by subtracting G_{cn} from g_{max} , and obtaining a fourth gain margin value ($Gmv4$) by subtracting g_{min} from G_{cm} ;

obtaining a second parameter ($P2$) by subtracting MSE_{maxbs} from MSE_{minbs} ;

obtaining a third parameter ($P3$) by subtracting MSE_{maxbs} and a smallest one of the

group, consisting of Gmv3, Gmv4 and (0.5*P2), from MSE_{avgbs} ; and obtaining the J by subtracting MSE_{min} and (2*P3) from MSE_{max} .

12. The selector of claim 9, wherein the gain factor constraints have a maximum
5 gain factor constraint (Gcm) and a minimum gain factor constraint (Gcn), g_{max} denotes the gain of the sub-channel respecting MSE_{max} , g_{min} denotes the gain of the sub-channel respecting MSE_{min} , MSE_{avgbs} denotes the arithmetic average of MSE_{max} and MSE_{min} after bit-swapping and MSE_{maxbs} denotes MSE_{max} after bit-swapping and MSE_{minbs} denotes MSE_{min} after bit-swapping, and as MSE_{maxbs} is not
10 smaller than MSE_{avgbs} , the predetermined manner comprises the steps of:
obtaining a fifth gain margin value (Gmv5) by subtracting g_{max} from Gcm, and
obtaining a sixth gain margin value (Gmv6) by subtracting Gcn from g_{min} ;
obtaining a fourth parameter (P4) by subtracting MSE_{minbs} from MSE_{maxbs} ;
obtaining a fifth parameter (P5) by subtracting MSE_{avgbs} and a smallest one of the
15 group, consisting of Gmv5, Gmv6 and (0.5*P4), from MSE_{maxbs} ; and
obtaining the J by subtracting MSE_{min} and (2*P5) from MSE_{max} .

13. The selector of claim 9, wherein the gain factor constraints have a maximum gain factor constraint (Gcm) and a minimum gain factor constraint (Gcn), g_{max} denotes the gain of the sub-channel respecting MSE_{max} , g_{min} denotes the gain of the sub-channel respecting MSE_{min} , MSE_{avgbs} denotes the arithmetic average of MSE_{max} and MSE_{min} after bit-swapping, MSE_{maxbs} denotes MSE_{max} after bit-swapping, MSE_{minbs} denotes MSE_{min} after bit-swapping, and as MSE_{maxbs} is smaller than
20 MSE_{avgbs} , the predetermined manner comprises the steps of:

obtaining a seventh gain margin value (Gmv7) by subtracting Gcn from g_{\max} , and
obtaining a eighth gain margin value (Gmv8) by subtracting g_{\min} from Gcm;
obtaining a sixth parameter (P6) by subtracting MSE_{\maxbs} from MSE_{\minbs} ;
obtaining a seventh parameter (P7) by subtracting a smallest one of the group
5 consisting of Gmv7, Gmv8 and $(0.5 \cdot P6)$ and MSE_{\avgbs} from MSE_{\minbs} ; and
obtaining the J by subtracting MSE_{\min} and $(2 \cdot P7)$ from MSE_{\max} .

14. The selector of claim 9, wherein the gain factor constraints have a maximum
gain factor constraint (Gcm) and a minimum gain factor constraint (Gcn), g_{\max}
10 denotes the gain of the sub-channel respecting MSE_{\max} , g_{\min} denotes the gain of the
channel respecting MSE_{\min} , MSE_{\avgbs} denotes the arithmetic average of MSE_{\max} and
 MSE_{\min} after bit-swapping, MSE_{\maxbs} denotes MSE_{\max} after bit-swapping, MSE_{\minbs}
denotes MSE_{\min} after bit-swapping, and as MSE_{\maxbs} is not smaller than MSE_{\avgbs} ,
the predetermined manner comprises the steps of:
15 obtaining a ninth gain margin value (Gmv 9) by subtracting g_{\max} from Gcm, and
obtaining a tenth gain margin value (Gmv10) by subtracting Gcn from g_{\min} ;
obtaining a eighth parameter (P8) by subtracting MSE_{\minbs} from MSE_{\maxbs} ;
obtaining a ninth parameter (P9) by subtracting MSE_{\minbs} and a smallest one of the
group consisting of Gmv9, Gmv10 and $(0.5 \cdot P8)$ from MSE_{\avgbs} ; and
20 obtaining the J by subtracting MSE_{\min} and $(2 \cdot P9)$ from MSE_{\max} .