XMC2GO Labs

- * xmc2go_basic_lab1: Software/GPIO blink of two (2) LEDs
- * xmc2go_basic_lab2: Hardware/PWM blink of (2) LEDs
- * xmc2go_basic_lab3: UART and USB Host Communication
- * xmc2go_basic_lab4 : SysTick Timer Interrupts
- * xm2go_basic_lab5: Typical System Configuration with ADC
- * xmc2go_rtxrtos_lab1: Four (4) RTX RTOS threads with two(2) UARTs
- * xmc2go_freertos_lab1: Two (2) Tasks with Send and Receive Queues

Start the DAVE IDE

- * All Programs → DAVE-4.1.2 → DAVE_4.1.2
- * Set the workspace to C:\Workspaces\xmc2go_basic

Open a DAVE CE Perspective

File → Import → DAVE project

File → Import (Select Copy)

main.c template

```
#include <DAVE.h>
int main(void)
 DAVE STATUS t status;
 /** Initialize the DAVE APP run-time and return status */
 status = DAVE_Init();
 if(status == DAVE_STATUS_FAILURE)
   /* Placeholder for error handler code. */
   /* The while loop below can be replaced with a user defined error handler. */
   XMC DEBUG("DAVE APPs initialization failed\n");
   while(1U)
            /* XMC DEBUG("Dave's not here, man...\n"); */
 /* Placeholder for user application code. */
 /* The while loop below can be replaced with user application code. */
 while(1U)
```

main.c xmc2go_basic_lab1

Creates a simple back and forth blinking of the two LEDs

- 1) Generate Code (Runs the DAVE Hardware Solver)
- 2) Build Active Project (Runs the C/C++ Compiler and Linker)

Debug: Configuration

Debug: Run/Step

- * xmc2go_basic_lab2: Hardware/PWM blink of (2) LEDs
- * "Hardware" based solution, starts automatically
- * PWM o is set to blink LED1 at a 1 Hz rate
- * PWM 1 is set to blink LED2 at a 2Hz rate

- * Build the project and enter the Debug Perspective
- * Resume (F8) program execution and observe LEDs

* Using the PWM_1 APP GUI, change the rate to 4 Hz

- * We will add two (2) UARTs to the previous lab
- * UART_o will be connected to the USB CDC/Debugger
- * UART_o will use P2.1 (TXDo) and P2.2 (RXDo)
- * UART 1 will be available to use for a target device
- * UART_1 will use Po.6 (TXD1) and Po.7 (RXD1)
- * Both UARTS are set to 9600 baud, N, 8, 1 (open a terminal emulator to connect)

* SysTick and Timer Interrupts
 (how to register a callback for timer interrupts)

```
void MySysTimer_Handler(void) {
             /* Toggle PORT1_0 every time we are called */
             DIGITAL IO ToggleOutput(&LED1);
}
/* init the SYSTIMER (i.e. SysTick) */
  SYSTIMER STATUS t SysTimer status;
  SysTimer_status = (SYSTIMER_STATUS_t)SYSTIMER_Init(&SYSTIMER_0); // Initialization of SYSTIMER APP
  if (SysTimer_status != SYSTIMER_STATUS SUCCESS) {
               XMC DEBUG("DAVE SYSTIMER Initialization Failed!\n");
  }
  /* create a software timer instance */
  uint32 t SysTimerId;
  SysTimerId = (uint32 t)SYSTIMER_CreateTimer(1000000U, SYSTIMER_MODE_PERIODIC, (void*)MySysTimer_Handler,
NULL);
  if (SysTimerId == 0U) {
               XMC_DEBUG("DAVE SYSTIMER CreateTimer Initialization Failed\n");
  }
  /* start the software timer instance */
  SysTimer status = SYSTIMER StartTimer(SysTimerId);
  if (SysTimer_status != SYSTIMER_STATUS_SUCCESS) {
               XMC DEBUG("DAVE SYSTIMER StartTimer failed\n");
  }
```

- * Lab5: Putting it all together to make a usable system
- * We already have GPIO, PWM's, Systick Timer, and dual UART channels wired up and working
- * Now add ADC_Measurement with six (6) Channels
- * Read out ADC measurement to the UART/CDC interface and display on the terminal emulator

xmc2go_rtxrtos_lab1

- * Add ARM RTS RTOS and ARM DSP APP to project
- * Gives you the basis for starting real projects
- * Adds Floating Point printf/scanf functionality (just to give you an idea of full function sizes)
- * Project creates four (4) "threads" of execution

```
void thread_task_1(void const *args) {
  while (1) {
    DIGITAL_IO_ToggleOutput(&DIGITAL_IO_1);
    osDelay(500);
  }
}
osThreadDef(thread_task_1, osPriorityNormal, 1, 0);
```

xmc2go_rtxrtos_lab1

- * Build the project and start the debug perspective
- * Threads 1,2,3 each toiggle an I/O output (LEDs)
- * Thread 4 will output messages to the UART/CDC

Hand's On Lab Time

- * Suggestions for other labs?
- * What Applications (i.e. components) do you need?
- * Do the Applications (i.e. components) meet your specs?
- * Select the XMC4500 in a new project to see more Apps (tip: Start with a larger model to see more Apps...)

More PA Workshops Coming

Please join the PatternAgents.com mailing lists to get early notice:

- * Motor & Motion Control Workshop (Steppers, H-Bridge, and Brush-less Motor Control)
- * Analog Design Workshop (Low Noise Analog and Mixed-Signal design)
- * Blue tooth Low Energy Workshop (BTLE and Cloud integration and design)
- * Other Topics (please give us feedback...)