

Aula XIV: 1 de 19

Aula 14 – Implementando um processador didático

Aula XIV: 2 de 19

Tópicos da aula

- Caminho de Controle
- Caminho de Dados
- Estrutura de um processador didático

Aula XIV: 3 de 19

Introdução

- Dispositivos lógicos programáveis como o FPGA são muito usados para realizar tarefas intensas
 - Co-processamento
 - Processamento de sinais
- Tipicamente o projeto de um sistema precisa levar em conta o fluxo dos dados ao serem processados
- Este "fluxo de dados" precisa ser controlado de alguma forma

Aula XIV: 4 de 19

Tarefas executadas em um FPGA

Aula XIV: 5 de 19

Caminhos de Dados e Controle

Aula XIV: 6 de 19

Caminhos de Dados e Controle

- O projeto de um sistema Digital complexo deve iniciar pelo Caminho de Dados
- O Caminho de Controle é a última tarefa a ser realizada

Aula XIV: 7 de 19

Construindo um processador

- A construção de um processador também segue esta filosofia de ter um Caminho de Dados e outro de Controle
- A primeira medida a ser tomada é a definição da Arquitetura
- Uma vez definida a Arquitetura do Processador, define-se a sua Organização

Aula XIV: 8 de 19

Definindo uma Arquitetura

- A primeira medida a ser tomada é a definição da Arquitetura. Vamos definir um processador do seguinte modo:
 - Processador terá 4 registradores de uso geral
 - Os registradores serão de 16 bits
 - Inicialmente o processador irá executar Soma e Subtração
 - Comandos Assembly: Carregar valor imediato (LDI); Somar (ADD); Subtrair (SUB)

Aula XIV: 9 de 19

(Tipo III)

(Tipo II)

(Tipo I)

Aula XIV: 10 de 19

Definindo uma Arquitetura

Mnemônico	Opcode (binário)	Tipo	Descrição
STOP	0000	na	"No operation". Processador gasta um ciclo de relógio se fazer nenhuma operação.
LDI	0001	1	Carrega valor imediato contido na instrução (bits de 0 a 9) em um determinado Registrador (R _{S1})
ADD	0010	II	Soma o conteúdo de dois registradores e armazena o resultado em um terceiro registrador.
SUB	0011	III	Subtrai o conteúdo de dois registradores e armazena o resultado em um terceiro registrador.
OUT	0100	ı	Escreve o valor contido em um registrador (R0, R1, R2 ou R3) nos pinos de I/O.

Aula XIV: 11 de 19

Definindo uma Organização

- Agora que temos a Arquitetura definida, é hora de definir a Organização do processador, começando pelo Caminho de Dados
- O Caminho de Dados é basicamente constituído por um Banco de Registradores e uma Unidade Lógica e Aritmética (ULA)
- Demais registradores (IR e PC) serão implementados mais tarde

Aula XIV: 12 de 19

Unidade Lógica e Aritmética (ULA)

Aula XIV: 13 de 19

Programa exemplo $(R_0=2+3)$

LDI	R ₁ ,	2	
LDI	R ₂ ,	3	
ADD	R_0 ,	R ₁ ,	R_2
OUT	R_0		
STOP			

0001 0100 0000 0010	1402h
0001 1000 0000 0011	1803h
0010 0001 1000 0000	2180h
0100 0000 0000 0000	4000h
0000 0000 0000 0000	0000h

Aula XIV: 14 de 19

FIM AULA XIV