Problem 1

A capacitor consists of two circular plates of radius 5 cm and separation 1.2 mm. (a) Estimate the capacitance. (b) If the field toward the middle of the capacitor is 25 V/m, estimate the charge on the capacitor plates.

Problem 2

A parallel-plate air capacitor of capacitance 400 pF has a charge \pm 500 nC. The plates are 2 mm apart. Find (a) the potential difference, (b) the plate areas, (c) the electric field between the plates, and (d) the surface charge density of the plates.

Problem 3

(a) For capacitors $C_1 = 8\mu F$ and $C_2 = 6\mu F$, find their capacitance in series and in parallel. (b) Find the charge and voltage difference on each capacitor when they are connected in series with a 12 V battery. (c) Find the charge and voltage difference on each capacitor when they are connected in parallel with a 12 V battery.

Problem 4

The figure below gives a circuit containing a number of capacitors, each of capacitance $C = 6 \mu F$. Find the capacitance between the terminals a and b.

Problem 5

What are the charge on and potential difference across each capacitor in the figure below.

Problem 6

Ch 24 # 23

Problem 7

Ch 24 # 87

Problem 8

Ch 24 #89

Problem 9

The voltage across a $100~\mu F$ capacitor takes the following values. Calculate the expression for the current through the capacitor in each case.

a.
$$v_C(t) = 40\cos(20t - \pi/2) \text{ V}$$

b.
$$v_C(t) = 20 \sin 100t \text{ V}$$

c.
$$v_C(t) = -60\sin(80t + \pi/6) \text{ V}$$

d.
$$v_C(t) = 30\cos(100t + \pi/4) \text{ V}$$

Problem 10

The current through a 250-mH inductor takes the following values. Calculate the expression for the voltage across the inductor in each case.

a.
$$i_L(t) = 5 \sin 25t \,A$$

b.
$$i_L(t) = -10\cos 50t \text{ A}$$

c.
$$i_L(t) = 25\cos(100t + \pi/3)$$
 A

d.
$$i_L(t) = 20\sin(10t - \pi/12)$$
 A