Self-study: Semi-discrete Optimal Transport

Tianpei Xie

Aug. 19th., 2022

Contents

1	Opt	imal transport, entropy regularization, c-transform	2
2	Semidiscrete optimal transport		4
	2.1	semidiscrete problem formulation	4
	2.2	K-means via semi-discrete optimal transport	6
	2.3	Entropic regularization	7

1 Optimal transport, entropy regularization, c-transform

• For discrete measures, $\alpha = \sum_{i=1}^n a_i \delta_{x_i}$ and $\beta := \sum_{i=1}^m b_i \delta_{y_i}$, the primal problem for optimal transport is

$$\min_{\boldsymbol{P} \in \mathbb{R}_{+}^{n \times m}} \langle \boldsymbol{P}, \boldsymbol{C} \rangle = \sum_{i,j} C_{i,j} P_{i,j}$$
 (1)

$$s.t. P1_m = a$$
 (2)

$$\mathbf{P}^T \mathbf{1}_n = \mathbf{b}$$

$$P_{i,j} \ge 0$$
(3)

where $C_{n,m} := [C_{i,j}]_{i \in [1:n], j \in [1:m]}, C_{i,j} := c(\boldsymbol{x}_i, \boldsymbol{y}_j) \ge 0$. The feasible set is defined as

$$U(\boldsymbol{a}, \boldsymbol{b}) := \left\{ \boldsymbol{P} \in \mathbb{R}_{+}^{n \times m} : \boldsymbol{P} \boldsymbol{1}_{m} = \boldsymbol{a}, \ \boldsymbol{P}^{T} \boldsymbol{1}_{n} = \boldsymbol{b} \right\}$$
(4)

• the corresponding dual problem with respect to primal problem is

$$\max_{\boldsymbol{\lambda} \in \mathbb{R}^n, \boldsymbol{\mu} \in \mathbb{R}^m} \langle \boldsymbol{\lambda} , \boldsymbol{a} \rangle + \langle \boldsymbol{\mu} , \boldsymbol{b} \rangle \tag{5}$$

s.t.
$$\lambda_i + \mu_j \le C_{i,j} \quad \forall i \in [1:n], j \in [1:m]$$
 (6)

where $\lambda = [\lambda_i]_n$, $\mu = [\mu_j]_m$ are **dual variables** (slack variables) for marginal distribution constrain \boldsymbol{a} and \boldsymbol{b} . We denote $\lambda \oplus \mu := \lambda \mathbf{1}_m^T + \mathbf{1}_n \mu^T \in \mathbb{R}^{n \times m}$ so that the linear constraints is $\lambda \oplus \mu \leq \boldsymbol{C}$. Such dual variables λ , μ are often referred to as "Kantorovich potentials." The feasible set of the dual problem is defined as

$$R(C) := \{ \lambda \in \mathbb{R}^n, \mu \in \mathbb{R}^m : \lambda \oplus \mu \le C \}$$
 (7)

where $\lambda \oplus \mu = \lambda \mathbf{1}_m + \mathbf{1}_n \mu^T$.

• The **probability interpretation** of original primal and dual Kantorovich optimal transport problem:

(P)
$$\mathcal{L}_c(\alpha, \beta) = \min_{(X,Y) \sim \pi} \mathbb{E}_{(X,Y)} [c(X,Y)]$$
 s.t. $X \sim \alpha$, $Y \sim \beta$

(D)
$$\mathcal{L}_{c}(\alpha, \beta) = \max_{(\lambda, \mu) \in \mathcal{C}(\mathcal{X}) \times \mathcal{C}(\mathcal{Y})} \mathbb{E}_{X \sim \alpha} \left[\lambda(X) \right] + \mathbb{E}_{Y \sim \beta} \left[\mu(Y) \right]$$
s.t.
$$\lambda(x) + \mu(y) \le c(x, y), \quad \forall x \in \mathcal{X}, y \in \mathcal{Y},$$

• We also have the entropic regularized optimal transport problem

$$L_{\boldsymbol{C}}^{\epsilon}(\boldsymbol{a}, \boldsymbol{b}) = \min_{\boldsymbol{P} \in U(\boldsymbol{a}, \boldsymbol{b})} \langle \boldsymbol{P}, \boldsymbol{C} \rangle - \epsilon H(\boldsymbol{P})$$
(10)

where the second term is entropy

$$H(\mathbf{P}) := -\sum_{i,j} P_{i,j} \left(\log(P_{i,j}) - 1 \right)$$
(11)

This problem has a unique optimal solution (maximum entropy optimal transport plan)

$$P^* = \operatorname{diag}(u) K \operatorname{diag}(v) \tag{12}$$

where $\boldsymbol{u} = [\exp(\lambda_i/\epsilon)] = \exp(\boldsymbol{\lambda}/\epsilon)$ and $\boldsymbol{v} = [\exp(\mu_i/\epsilon)] = \exp(\boldsymbol{\mu}/\epsilon)$.

• The dual problem of the maximum entropy optimal transport problem:

$$L_{C}^{\epsilon}(\boldsymbol{a}, \boldsymbol{b}) = \max_{\boldsymbol{\lambda} \in \mathbb{R}^{n} \ \boldsymbol{\mu} \in \mathbb{R}^{m}} \langle \boldsymbol{\lambda}, \boldsymbol{a} \rangle + \langle \boldsymbol{\mu}, \boldsymbol{b} \rangle - \epsilon \langle \exp(\boldsymbol{\lambda}/\epsilon), \boldsymbol{K} \exp(\boldsymbol{\mu}/\epsilon) \rangle$$
(13)

where $K = \exp(-C/\epsilon)$ is the Gibbs distribution.

• The **probability interpretation** of primal and dual maximum entropy optimal transport problem:

$$(P) \quad \mathcal{L}^{\epsilon}(\alpha, \beta) := \min_{(X,Y) \sim \pi} \mathbb{E}_{(X,Y)} \left[c(X,Y) \right] + \epsilon I(X;Y)$$
s.t. $X \sim \alpha$

$$Y \sim \beta$$

$$(14)$$

where $I(X;Y) := \mathbb{KL}(\pi \parallel \alpha \otimes \beta)$ is the mutual information between X and Y.

$$(D) \quad \mathcal{L}^{\epsilon}(\alpha, \beta) := \sup_{(\lambda, \mu) \in \mathcal{C}(\mathcal{X}) \times \mathcal{C}(\mathcal{Y})} \mathbb{E}_{X \sim \alpha} \left[\lambda(X) \right] + \mathbb{E}_{Y \sim \beta} \left[\mu(Y) \right] - \epsilon \mathbb{E}_{X \sim \alpha, Y \sim \beta} \left[\exp \left(\frac{-c(X, Y) + \lambda(X) + \mu(Y)}{\epsilon} \right) \right]. \quad (15)$$

• Given a cost function $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$, $f: \mathcal{X} \to \mathbb{R}$, the *c-transform* of f is defined as

$$f^{c}(y) := \inf_{x \in \mathcal{X}} c(x, y) - f(x) \tag{16}$$

The function $f^c: \mathcal{Y} \to \mathbb{R}$ is also called the *c-conjugate function* of f. For discrete case, we have C-transform vector for cost matrix $C = [C_{i,j}]_{n \times m}$ and vector $f = [f_1, \dots, f_n] \in \mathbb{R}^n$,

$$\boldsymbol{f}_{j}^{\boldsymbol{C}} := \min_{i \in [1:n]} C_{i,j} - \boldsymbol{f}_{i} \tag{17}$$

The vector $f^C \in \mathbb{R}^m$ is also called the *C*-conjugate vector of f.

Similarly, $g: \mathcal{Y} \to \mathbb{R}$, the \bar{c} -transform of g is defined as

$$g^{\bar{c}}(x) := \inf_{y \in \mathcal{Y}} c(x, y) - g(y) \tag{18}$$

For discrete case, we have \bar{C} -transform vector $g^{\bar{C}} \in \mathbb{R}^n$ for cost matrix $C = [C_{i,j}]_{n \times m}$ and vector $g = [g_1, \dots, g_m] \in \mathbb{R}^m$,

$$\boldsymbol{g}_{i}^{\bar{\boldsymbol{C}}} := \min_{j \in [1:m]} C_{i,j} - \boldsymbol{g}_{j} \tag{19}$$

A function $\psi : \mathcal{X} \to \mathbb{R}$ is c-concave if there exists some function $\phi : \mathcal{Y} \to \mathbb{R}$ and cost function $c : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$ so that ψ is the \bar{c} -transform of ϕ , i.e. $\psi = \phi^{\bar{c}}$. Denote ψ as c-concave(\mathcal{X}).

A function $\phi: \mathcal{Y} \to \mathbb{R}$ is \bar{c} -concave if there exists some function $\psi: \mathcal{X} \to \mathbb{R}$ and cost function $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$ so that ϕ is the c-transform of ψ , i.e. $\phi = \psi^c$. Denote ϕ as \bar{c} -concave(\mathcal{Y})

For distance c = d, $f^c = f^{\bar{c}}$, thus we drop their distinctions.

- Suppose that $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$ is real valued.
 - 1. For any $f_1: \mathcal{X} \to \mathbb{R}$ and $f_2: \mathcal{X} \to \mathbb{R}$, $f_1 \leq f_2 \Leftrightarrow f_1^c \geq f_2^c$
 - 2. For any $f: \mathcal{X} \to \mathbb{R}$ and $g: \mathcal{Y} \to \mathbb{R}$, $f^{c\bar{c}} \geq f$, $g^{\bar{c}c} \geq g$ In general, $f^{c\bar{c}}$ is the smallest c-concave function larger than f
 - 3. $f^{c\bar{c}c} = f^c$ and $g^{\bar{c}c\bar{c}} = g^{\bar{c}}$; in other words, $f^{c\bar{c}} = f$ if and only if f is a c-concave function
- Proposition 1.1 If $c: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a distance, then the function $f: \mathcal{X} \to \mathbb{R}$ is c-concave if and only if f is Lipschitz continuous with Lipschitz constant less than 1 w.r.t. the distance c. We will denote by Lip₁ the set of these functions. Moreover, for every $f \in Lip_1$, i.e. $||f||_L \leq 1$, we have the c-transform of f, $f^c = -f$. [Santambrogio, 2015]
- Thus the dual problem (5) is equivalent to an unconstrained optimization problem

$$\mathcal{L}_c(\alpha, \beta) := \max_{\lambda \in \mathcal{C}(\mathcal{X})} \int_{\mathcal{X}} \lambda d\alpha + \int_{\mathcal{Y}} \lambda^c d\beta$$
 (20)

$$= \max_{\mu \in \mathcal{C}(\mathcal{Y})} \int_{\mathcal{X}} \mu^{\bar{c}} d\alpha + \int_{\mathcal{Y}} \mu d\beta \tag{21}$$

2 Semidiscrete optimal transport

2.1 semidiscrete problem formulation

Given discrete measure $\beta := \sum_{i=1}^m b_i \delta_{y_i}$, the \bar{c} -transform of dual potential μ is defined by restricting the minimization to the support (y_i) of β

$$\boldsymbol{\mu}^{\bar{c}}(\boldsymbol{x}) = \min_{j=1,\dots,m} \left(c(\boldsymbol{x}, \boldsymbol{y}_j) - \mu_j \right), \quad \forall \boldsymbol{x} \in \mathcal{X}, \forall \boldsymbol{\mu} \in \mathbb{R}^m$$
 (22)

Note that this is imposing that the support of β is equal to \mathcal{X} . The \bar{c} -transform map a vector $\boldsymbol{\mu}$ to $\boldsymbol{\mu}^{\bar{c}}(\boldsymbol{x}) \in \mathcal{C}(\mathcal{X})$, a smooth function on \mathcal{X} .

With \bar{c} -transform, we can apply the unconstrained dual formulation (21) and the problem becomes

$$\mathcal{L}_{c}(\alpha, \beta) := \max_{\mu \in \mathcal{C}(\mathcal{Y})} \int_{\mathcal{X}} \mu^{\bar{c}} d\alpha + \int_{\mathcal{Y}} \mu d\beta$$

$$= \max_{\mu \in \mathbb{R}^{m}} \int_{\mathcal{X}} \mu^{\bar{c}}(\boldsymbol{x}) d\alpha(\boldsymbol{x}) + \langle \boldsymbol{\mu}, \boldsymbol{b} \rangle$$
(23)

We can define the **Laguerre cells** associated to the dual weights μ

$$\mathbb{L}_{j}(\boldsymbol{\mu}) := \left\{ \boldsymbol{x} \in \mathcal{X} : c(\boldsymbol{x}, \boldsymbol{y}_{j}) - \mu_{j} \leq c(\boldsymbol{x}, \boldsymbol{y}_{j'}) - \mu_{j'}, \ \forall j' \neq j \right\}$$

$$= \left\{ \boldsymbol{x} \in \mathcal{X} : \boldsymbol{\mu}^{\bar{c}}(\boldsymbol{x}) = c(\boldsymbol{x}, \boldsymbol{y}_{j}) - \mu_{j} \right\}$$

$$(24)$$

We see that $\mathcal{X} = \bigcup_{j=1}^m \mathbb{L}_j$, also $\mathbb{L}_j \cap \mathbb{L}_{j'} = \emptyset$. Therefore $\{\mathbb{L}_j, j = 1, ..., m\}$ is a **partition** of \mathcal{X} . When $\boldsymbol{\mu}$ is constant, the Laguerre cells decomposition corresponds to the **Voronoi diagram** partition of the space. Each cell corresponds to a discrete mass (b_j, \boldsymbol{y}_j) of β .

Figure 5.1: Top: examples of semidiscrete \bar{c} -transforms $\mathbf{g}^{\bar{c}}$ in one dimension, for ground cost $c(x,y) = |x-y|^p$ for varying p (see colorbar). The red points are at locations $(y_j, -\mathbf{g}_j)_j$. Bottom: examples of semidiscrete \bar{c} -transforms $\mathbf{g}^{\bar{c}}$ in two dimensions, for ground cost $c(x,y) = ||x-y||_2^p = (\sum_{i=1}^d |x_i-y_i|)^{p/2}$ for varying p. The red points are at locations $y_j \in \mathbb{R}^2$, and their size is proportional to \mathbf{g}_j . The regions delimited by bold black curves are the Laguerre cells $(\mathbb{L}_j(\mathbf{g}))_j$ associated to these points $(y_j)_j$.

Figure 5.3: Top: examples of entropic semidiscrete \bar{c} -transforms $\mathbf{g}^{\bar{c},\varepsilon}$ in one dimension, for ground cost c(x,y) = |x-y| for varying ε (see colorbar). The red points are at locations $(y_j, -\mathbf{g}_j)_j$. Bottom: examples of entropic semidiscrete \bar{c} -transforms $\mathbf{g}^{\bar{c},\varepsilon}$ in two dimensions, for ground cost $c(x,y) = ||x-y||_2$ for varying ε . The black curves are the level sets of the function $\mathbf{g}^{\bar{c},\varepsilon}$, while the colors indicate the smoothed indicator function of the Laguerre cells χ_j^{ε} . The red points are at locations $y_j \in \mathbb{R}^2$, and their size is proportional to \mathbf{g}_j .

(b)

Figure 1: (a) The \bar{c} -transform of semidiscrete measures. (b)The \bar{c} -transform of semidiscrete measures with entropic regularization

Figure 5.2: Iterations of the semidiscrete OT algorithm minimizing (5.8) (here a simple gradient descent is used). The support $(y_j)_j$ of the discrete measure β is indicated by the colored points, while the continuous measure α is the uniform measure on a square. The colored cells display the Laguerre partition $(\mathbb{L}_j(\mathbf{g}^{(\ell)}))_j$ where $\mathbf{g}^{(\ell)}$ is the discrete dual potential computed at iteration ℓ .

Figure 2: The iteration of gradient descent algorithm and the change of Laguerre cells [Peyr and Cuturi, 2019]

This allows one to conveniently rewrite the minimized energy in (23) as

$$\mathcal{E}(\boldsymbol{\mu}) := \sum_{j=1}^{m} \int_{\mathbb{L}_{j}(\boldsymbol{\mu})} \left(c(\boldsymbol{x}, \boldsymbol{y}_{j}) - \mu_{j} \right) d\alpha(\boldsymbol{x}) + \langle \boldsymbol{\mu}, \boldsymbol{b} \rangle$$
 (25)

The gradient of this objective function is

$$\nabla_{\boldsymbol{\mu}} \mathcal{E}(\boldsymbol{\mu}) = \left[-\int_{\mathbb{L}_{j}(\boldsymbol{\mu})} d\alpha(\boldsymbol{x}) + b_{j} \right]_{j=1}^{m}$$
(26)

We can see that the gradient of objective w.r.t. dual potential μ is the difference between the discrete measure b_j at location y_j and the probabilty measure of Laguerre $\mathbb{L}_j(\mu)$ associated with (b_j, y_j) (i.e. hard assignment). Figure 1 shows the Laguerre cell partition of the space. Given this simple form of gradient, we can directly compute the solution using gradient descent. Figure 2 shows the iterations of gradient desent algorithm and its change of Laguerre cells.

In the special case $c(x,y) = \|x-y\|_2^2$, the decomposition in Laguerre cells is also known as a **power** diagram, which is a concept in **computational geometry**. The cells are polyhedral and can be computed efficiently using computational geometry algorithms; see [Aurenhammer, 1987]. The most widely used algorithm relies on the fact that the power diagram of points in \mathbb{R}^d is equal to the projection on \mathbb{R}^d of the convex hull of the set of points $(\boldsymbol{y}_j, \|\boldsymbol{y}_j\|_2^2 - g_j)_{j=1}^m \subset R^{d+1}$. The semidiscrete OT solver can be used in computational geometry. It is also used for solving the Monge-Ampère equation.

2.2 K-means via semi-discrete optimal transport

The k-means algorithm can be re-formulated using the semi-discrete optimal transport. In particular, $\beta = \sum_{i=1}^k a_i \delta_{c_i}$ is constrained to be a **discrete measure** with a finite support of **size up to** k. β is continous on domain $\mathcal{X} = \mathbb{R}^d$, $c(x,y) = ||x-y||_2^2$, we can find β via solving the minimum Kantorvich distance estimation

$$\min_{\beta \in \mathcal{M}_{k,1}(\mathcal{X})} \mathcal{L}_c(\beta, \alpha) = \mathcal{L}_c(\alpha, \beta)$$

Indeed, one can easily show that the *centroids* output $\{c_i, i = 1, ..., k\}$ by the k-means problem correspond to the **support** of the solution α and that its **weights** a_i correspond to the **fraction** of points in β assigned to each centroid [Canas and Rosasco, 2012].

One can show that approximating $\mathcal{L} \approx \mathcal{L}^{\epsilon}$ using entropic regularization results in smoothed out assignments that appear in **soft-clustering** variants of k-means, such as *mixtures of Gaussians*.

2.3 Entropic regularization

Recall from (15) that the dual of entropic regularized optimal transport

$$\mathcal{L}^{\epsilon}(\alpha, \beta) := \max_{(\lambda, \mu) \in \mathcal{C}(\mathcal{X}) \times \mathcal{C}(\mathcal{Y})} \int_{\mathcal{X}} \lambda d\alpha + \int_{\mathcal{Y}} \mu d\beta - \epsilon \int_{\mathcal{X} \times \mathcal{Y}} \exp\left(\frac{-c + \lambda \oplus \mu}{\epsilon}\right) d\alpha d\beta \tag{27}$$

Similarly to the unregularized problem (9), one can minimize explicitly with respect to either λ or μ in (27), which yields a **smoothed** c-transform

$$\lambda^{c,\epsilon}(y) = -\epsilon \log \int_{\mathcal{X}} \exp\left(\frac{-c(x,y) + \lambda(x)}{\epsilon}\right) d\alpha(x), \quad \forall y \in \mathcal{Y}$$
 (28)

$$\mu^{\bar{c},\epsilon}(y) = -\epsilon \log \int_{\mathcal{Y}} \exp\left(\frac{-c(x,y) + \mu(y)}{\epsilon}\right) d\beta(y), \quad \forall x \in \mathcal{X}$$
 (29)

Compare (16) and (18) with (28) and (1), we see that instead of using min operation, in smooth c-transform, we use the <u>soft-min</u>^{ϵ} operator soft-min^{ϵ}(z; b) = $-\epsilon \log \sum_i b_i \exp(-z_i/\epsilon)$ to maintain smoothness of the function.

In the case of a discrete measure $\beta := \sum_{i=1}^m b_i \delta_{y_i}$, the problem simplifies as with (22) to a finite-dimensional problem expressed as a function of the discrete dual potential μ :

$$\mu^{\bar{c},\epsilon}(\boldsymbol{x}) = \operatorname{soft-min}_{j=1,\dots,m}^{\epsilon} \left(c(\boldsymbol{x}, \boldsymbol{y}_j) - \mu_j; \boldsymbol{b} \right), \quad \forall \boldsymbol{x} \in \mathcal{X}, \forall \boldsymbol{\mu} \in \mathbb{R}^m$$

$$= -\epsilon \log \sum_{j=1}^m b_j \exp \left(\frac{-(c(\boldsymbol{x}, \boldsymbol{y}_j) - \mu_j)}{\epsilon} \right)$$
(30)

Similar to (23), we can solve the uncontrained dual problem using the smooth \bar{c} -transfrom

$$\mathcal{L}_{c}^{\epsilon}(\alpha,\beta) = \max_{\boldsymbol{\mu} \in \mathbb{R}^{m}} \int_{\mathcal{X}} \boldsymbol{\mu}^{\bar{c},\epsilon}(\boldsymbol{x}) d\alpha(\boldsymbol{x}) + \langle \boldsymbol{\mu}, \boldsymbol{b} \rangle$$
(31)

The minimized energy is

$$\mathcal{E}^{\epsilon}(\boldsymbol{\mu}) := \left\{ \int_{\mathcal{X}} \boldsymbol{\mu}^{\bar{c},\epsilon}(\boldsymbol{x}) d\alpha(\boldsymbol{x}) + \langle \boldsymbol{\mu}, \boldsymbol{b} \rangle \right\}$$

$$= -\mathbb{E}_{\alpha} \left[\epsilon \log \sum_{j=1}^{m} b_{j} \exp \left(\frac{-(c(X, \boldsymbol{y}_{j}) - \mu_{j})}{\epsilon} \right) \right] + \langle \boldsymbol{\mu}, \boldsymbol{b} \rangle$$
(32)

This is actually the *expectation* of negative loss function of **multiclass logistic regression problem** w.r.t. α . Note that the LR need to minimize the loss and this is to maximize the energy. Therefore, the dual representation of *semidiscrete optimal transport* with **entropic regularization** is *equivalent* to multi-class logistic regression.

Figure 5.4: Evolution of the energy $\mathcal{E}^{\varepsilon}(\mathbf{g}^{(\ell)})$, for $\varepsilon = 0$ (no regularization) during the SGD iterations (5.14). Each colored curve shows a different randomized run. The images display the evolution of the Laguerre cells $(\mathbb{L}_j(\mathbf{g}^{(\ell)}))_j$ through the iterations.

Figure 3: The iteration of stochastic gradient descent algorithm and the change of Laguerre cells [Peyr and Cuturi, 2019]

The gradient of this functional reads

$$\nabla_{\boldsymbol{\mu}} \mathcal{E}^{\epsilon}(\boldsymbol{\mu}) = \left[-\int_{\mathcal{X}} \sigma_{j}^{\epsilon}(\boldsymbol{x}) d\alpha(\boldsymbol{x}) + b_{j} \right]_{j=1}^{m}$$
(33)

where
$$\sigma_j^{\epsilon}(\boldsymbol{x}) = \frac{\exp\left(\frac{-(c(\boldsymbol{x}, \boldsymbol{y}_j) - \mu_j)}{\epsilon}\right)}{\sum_j \exp\left(\frac{-(c(\boldsymbol{x}, \boldsymbol{y}_j) - \mu_j)}{\epsilon}\right)}$$
 is soft-min function (34)

Note that compare to (26), there is no hard partition of space \mathcal{X} into Laguerre cells since the smoothed potential function is supported on entire domain. Instead, we assign a point \boldsymbol{x} to one region with probability $[\sigma_j^{\epsilon}(\boldsymbol{x}), j = 1, \dots, m] \in \Delta_m$, i.e. **soft-assignment**. The gradient is the **difference** between the **discrete measure** b_j at location \boldsymbol{y}_j and $\mathbb{E}_{\alpha}\left[\sigma_j^{\epsilon}(\boldsymbol{X})\right]$, the expectation of assignment under α .

As stated above, the optimization of discrete β w.r.t. continous $\alpha = \mathcal{N}(m, \sigma^2)$ will result in models such as Gaussian mixtures.

One of important property is that $\nabla_{\mu} \mathcal{E}^{\epsilon}(\mu)$ is $1/\epsilon$ Lipschitz, and the Hessian $H(\mathcal{E}^{\epsilon}(\mu))$ is finite and bounded. Similar to logistic regression, \mathcal{E}^{ϵ} have the properties based on **self-concordance**. We can solve the problem (31) via **second-order methods** such as Newton's method, quasi-Newton such as L-BFGS.

Since both energy functions in (23) and (31) are the *expectation* over α , we can use *stochastic gradient descent* algorithm to solve them.

References

- Franz Aurenhammer. Power diagrams: properties, algorithms and applications. SIAM Journal on Computing, 16(1):78–96, 1987.
- Guillermo Canas and Lorenzo Rosasco. Learning probability measures with respect to optimal transport metrics. Advances in Neural Information Processing Systems, 25, 2012.
- Gabriel Peyr and Marco Cuturi. Computational optimal transport: With applications to data science. Foundations and Trends in Machine Learning, 11(5-6):355-607, 2019. ISSN 1935-8237.
- Filippo Santambrogio. Optimal transport for applied mathematicians, volume 55. Springer, 2015.