Inhaltsverzeichnis

Inhaltsverzeichnis							
1. Gruppen							
	1.1	Gruppe	2				
		Zykelgruppe Beispiel					
		$\label{thm:continuous} \mbox{Untergruppe} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $					
		Erzeugnis					
	1.8	Ordnung	3				
	1.10	Gruppenhomomorphismus	4				
		Lemma					
	1.12	Satz	5				
	1.13	Satz von Lagrange	5				

§1 Gruppen

1.1 Gruppe Eine nicht leere Menge G mit einer Verknüpfung \circ (\circ $G \times G \to G$) heißt Gruppe falls:

Assoziativität $(a \circ b) \circ c = a \circ (b \circ c) \ \forall \ a, b, c \in G$

Neutrales Element Es gibt ein $e \in G$ mit $e \circ a = a \circ e = a \ \forall \ a \in G$

Inverses Element Zu jedem $a \in G$ gibts ein $a' \in G$, mit $a \circ a' = a' \circ a = e$

Gilt zudem $a \circ b = b \circ a \ \forall \ a,b \in G$ so nennen wir (G,\circ) abelsch

Beispiele

- $(\mathbb{Z},+), (\mathbb{Q}\setminus\{0\},\times), (V,+)$ für Vektorraum V abelsche Gruppe.
- $(\mathbb{Z}/_m\mathbb{Z} \text{ zyklische Gruppe}, S_n \text{ symmetrische Gruppe} (\text{ für } n \geq 3 S_n \text{ist nicht abelsch})$

1.3 Bemerkung

Wir schreiben a^{-1} für das inverse Element und 1_G für das neutrale Element in G.

1.4 Zykelgruppe Beispiel

Für eine Menge $X \neq \emptyset$ definiert man: $S_n = \{f : X \to X | bijektiv\}$ eine Gruppe bezuglich \circ mit id_X als neutrales Element (Umkehrabbildung = Inverses Element)

Bei X = 1, ..., n schreiben wir S_n statt S_x (symmetrische Gruppe von Grad n) $|S_n| = n$

Zykelschreibweise:

Sei $\pi \in S_n$, wir schreiben (a_1, \ldots, a_n) für π falls

$$\pi(a_i) = \begin{cases} a_{i+1}, & \text{falls } 1 \le i \le r \\ a_1, & \text{falls } i = r \end{cases}$$

3 Gruppen

$$\pi(x) = \begin{cases} x, & \text{falls } x \notin a_1, \dots, a_r \end{cases}$$

Zum Beispiel:

$$S_3 \ni (1 \, 2) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

 $S_3 \ni (1 \, 2 \, 3) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$

(123)(45) ist kein Zykel, aber das Produkt zweir disjunkter Zykel

1.5 Untergruppe Sei (G, \circ) eine Gruppe und $U \subset G$. Diese Teilmenge U heißt Untergruppe (UG) von Gruppe G (geschrieben $U \leq G$, falls:

- $1_G \in U$
- $\bullet \ U^{-1} \in U \ \forall \ u \in U$
- $u \circ u' \in U \ \forall \ u, u' \in U$

1.6 Bemerkung

- 1. U ist selbst eine Gruppe $G \leq G \& \{1_G\} \leq G$
- 2. Für eine Familie $\{U_i\}_{i\in I}$ von Untergruppe von G ist $\bigcap_{i\in I}U_i$ eine Untergruppe von G
- 3. $\bigcup_{i \in I} U_i$ ist **keine** Untergruppe

1.7 Erzeugnis Sei (G, \circ) eine Gruppe und $S \subseteq G$ eine Menge. Weiterhin sei $\{S_i\}$ die Familie von aller möglichen Untergruppen von G. Dann heißt die Untergruppe $\langle S \rangle = \bigcap S_i$ erzeugte Untergruppe oder das Erzeugnis von S

Beispiel

- $\langle \emptyset \rangle \{1_G\}$
- $\langle G \rangle = G$
- $S_n = \langle Zykel \rangle = \langle \{i, j | i \neq j; i, j \in \{1, \dots, n\} \} \rangle = \langle \{(i, i+1) | 1 \leq i \leq n\} \rangle = \langle \{(1, 2)(1, 2, \dots, n) \} \rangle$.

Sei (G, \circ) eine Gruppe und $g \in G$. Dann $\langle g \rangle := \langle \{g\} \rangle$. Es gilt $\langle g \rangle = \{g^i : i \in \mathbb{Z}\}$

$$g^{i} = \begin{cases} \underbrace{g \cdot g \dots g}_{i \text{ mal}}, & \text{falls } i > 0 \\ 1_{G}, & \text{falls } i = 0 \\ (g^{-i})^{-1}, & \text{falls} i < 0 \end{cases}$$

1.8 Ordnung Für eine Gruppe (G, \circ) mit $g \in G$ heißt |G| die Ordnung von Gund $|\langle g \rangle|$ die Ordnung von g. Wir schreiben $ord(g) = |\langle g \rangle|$.

4 Gruppen

1.9 Beispiel

a) Für $G = S_4$ gilt:

$$ord((1\,2)) = 2$$

 $ord((1\,2\,3)) = 3$
 $ord((1\,2\,3\,4)) = 4$

Für $G = S_{10}$ gilt:

$$ord((1\,2\,3\,4\,5)(6\,7)) = 10$$

$$ord(\underbrace{(1\,2\,3\,4\,5)(1\,6)}_{disjunkt}) = ord((1\,6\,2\,3\,4\,5)) = 6$$

b) Gheißt zyklisch, falls $G = \langle g \rangle$ für eine $g \in G$

Alle Untergruppe von $(\mathbb{Z}, +)$

Behauptung: Alle Untergruppe von $\mathbb{Z}, +$) sind in der Form $m\mathbb{Z}$

Beweis. Sei $U \leq \mathbb{Z}$ falls $U = \{0_G\}$ (trivale Untergruppe) dann $U = 0\mathbb{Z}$, ansonsten sei m minimal im $U \cap (\mathbb{N} \ 0)$. Somit $m \in U$ und $m\mathbb{Z} \in U$ da $m + m \in U, 2m + m \in U, -m \in U$.

Sei $n \in U/m\mathbb{Z}$. Dann n = am + r mit $r \in 1, \dots, m-1$ (Kann nicht 0 sein, da $n \in U/m\mathbb{Z}$. Dann $r = n - m\dot{a} = \underbrace{n}_{\in U} + \underbrace{(-ma)}_{\in m\mathbb{Z}} \in U$. Wobei r < m. Wiederspruch zur Definition von m. Also $U = m\mathbb{Z}$

1.10 Gruppenhomomorphismus Seien (G,\cdot) und (H,*) Gruppen. Wir nenne $\gamma:G\to H$ Gruppenhomomorphismus falls

$$\gamma(g_1 \cdot g_2) = \gamma(g_1) * \gamma(g_2) \quad \forall g_1, g_2 \in G$$

 $G \cong H$ (G und H sind isomorph) falls eine bijektiven Gruppenhomomorphismus gibt.

Beispiel

Sei $\gamma: (\mathbb{Z},+) \to (\mathbb{R}_{>0},\circ), \quad x \mapsto e^x$ ist ein Gruppenhomomorphismus

1.11 Lemma Sei $\emptyset \neq S \subset G$ Dann $\langle S \rangle = \{s_1, \dots, s_r | r \leq 1, s_i \in S \cup S^{-1}\} =: H$. Wobei $A^{-1} := \{a^{-1} | a \in A\}$ für $A, B \subset G$ $AB = \{ab | a \in A, b \in B\}$

Beweis. Plan: $H \leq G, S \subseteq H, \langle S \rangle = H$

- $1_G = s_1 s_1^{-1} \in H \text{ für } s_1 \in S$
- $H \cdot H \subseteq H$, da $(s_1, \dots, s_r)(s'_1, \dots s'_2) = s_1, \dots, s_r s'_1, \dots s'_2 \in H$
- Sei $h \in H$ mit $h = s_1 \dots s_r$. Dann $h^{-1} = (s_1, \dots, s_r)^{-1}$. $\underbrace{S_r^{-1}}_{\in S \cup S^{-1}} \dots \underbrace{S_1^{-1}}_{\in S \cup S^{-1}} \in H$.

5 Gruppen

Insgesamt $H \leq G$ und $S \subseteq H$.

Sei U jetzt eine Untergruppe mit $S \subset U$. Dann $H \subseteq U$ (da U ein Gruppe ist.)

$$\langle S \rangle = \bigcap_{\substack{U \leq G \\ S \subset U}} U = H \cap H = H \implies \langle S \rangle = H$$

Bemerkung

Sei $G = \langle g \rangle$ (zyklisch) mit $|G| < \inf$. Gilt $g^n = 1_G$ für ein $n \in \mathbb{Z}$, dann $|G| \mid n$.

Beweis. Sei $d \in \mathbb{N}$ mit $g^d = \{1_G, g^1, g^2, \dots\}$. Division mit Rest liefert wieder $n = a \cdot d + 0$. Somit $d \mid n = 0$

- **1.12** Satz Sei (G, \circ) eine Gruppe und $U \leq G$
 - a) Wir definieren \sim_u auf G

$$a \sim_u b \iff a^{-1}b \in U$$

b) Die Menge der Äquivalenzklassen G/U ist Linksnebenklassen

$$\{aU\mid a\in G\}$$

- c) Ist Teine Vertretungssystem der Äquivalenzklassen, so gilt $G = \bigcup_{t \in T} tU$
- d) $|aU| = |u| \quad \forall a \in G$

Bemerkung

- a) Mit ' \sim_u ' gegeben durch $a \sim_u' b \iff ab^{-1} \in U$ wird wieder eine Äquivalenzrelation auf G definiert mit Ut (Rechtsnebenklassen) als Äquivalenzklassen.
- b) G/U ist die Menge der Linksnebenklassen und U G ist die Menge der Rechtsnebenklassen
- c) |G/U| ist die Index von U in G

1.13 Satz von Lagrange Für eine endliche Gruppe G mit $U \leq G$ gitl $|G| = |U| \, |G/U|$, insbesondere $|U| \, |G|$

Beweis. Sei $T=\{t_1,\ldots,t_r\}$ eine Vertretersystem der Äquivalenzklasse, das heißt $G=UtU \leadsto |G|=\sum_{t\in T}|tU|=\sum_{t\in T}|U|=|T|\,|U|$

Beispiel

- a) Ist $U \le S_3$, dann $|U| \in \{1, 2, 3, 6\}$
- b) Sei $g \in G$, dann $ord(g) = \langle g \rangle \mid |G|$ In S_10 gibt es keine Untergruppe der Ordunug 11

Index

Erzeugnis, 3 Erzeugte Untergruppe, 3

Gruppe, 2 Gruppenhomomorphismus, 4

 ${\bf Gruppen isomorphismus},\ 4$

Untergruppe, 3

Zykelgruppe, 2