Aula 04

DSc. Eng. Samuel Moreira Duarte Santos Engenheiro Mecânico CREA MG 106478D

Rio de Janeiro, 24 de abril 2023

Agenda

• Estudo de caso.

Uma indústria necessita de uma bomba para água com uma vazão horária de 36 m³. A altura estática de sucção da bomba é de 3 m e a de recalque e de10 m, conforme esquema:

- a) Determinar o diâmetro econômico das tubulações;
- b) Escolher a bomba capaz de executar este serviço;
- c) Determinar a potência do motor de acionamento, admitindo para a bomba escolhida um rendimento de 65%.

D = K
$$\sqrt{Q}$$
 K = 0,90
D = 0,90 $\sqrt{0,010}$: D = 0,90 x 0,1 = 0,09 m
D = 90 mm
75 < D < 100 (D em mm)
 ϕ recalque ϕ sucção

• Diâmetro de sucção e recalque:

D = K
$$\sqrt{Q}$$
 K = 0,90
D = 0,90 $\sqrt{0,010}$: D = 0,90 x 0,1 = 0,09 m
D = 90 mm
75 < D < 100 (D em mm)
 ϕ recalque ϕ sucção

• Velocidade na sucção e recalque:

$$V_{S} = \frac{Q}{A_{S}} = \frac{0,010}{0,008} \cong 1,27 \text{ m/s}$$

$$V_{R} = \frac{Q}{A_{R}} = \frac{0,010}{0,004} \cong 2,26 \text{ m/s}$$

$$A_{S} = \frac{\pi d_{S}^{2}}{4} \cong 0,008 \text{ m}^{2} \qquad A_{R} \cong \frac{\pi d_{r}^{2}}{4} = 0,004 \text{ m}^{2}$$

• Perda de carga localizada:

Válvu Curva

PERDAS DE CARGA LOCALIZADAS

VALORES APROXIMADOS DE K

 $\triangle H = K - \frac{V^2}{2g}$

2,50 0,40

2,90

n

PEÇA	к	PEÇA	K
AMPLIAÇÃO GRADUAL	0,30*	JUNÇÃO	0,40
BOCAIS	2,75	MEDIDOR VENTURI	2,50**
COMPORTA ABERTA	1,00	REDUÇÃO GRADUAL	0,15*
CONTROLADOR DE VAZÃO	2,50	REGISTRO DE ÂNGULO ABERTO	5,00
COTOVELO DE 90*	0,90	REGISTRO DE GAVETA ABERTO	0,20
COTOVELO DE 45*	0,40	REGISTRO DE GLOBO ABERTO	10,00
CRIVO	0,75	SAIDA DE CANALIZAÇÃO	1,00
CURVA DE 90*	0,40	TE PASSAGEM DIRETA	0,60
CURVA DE 45°	0,20	TE SAIDA DE LADO	1,30
CURVA DE 22,5*	0,10	TE SAIDA BILATERAL	1,80
ENTRADA NORMAL EM CANALIZAÇÃO	0,50	VÁLVULA DE PÉ	1,75
ENTRADA DE BORDA	1,00	VÁLVULA DE RETENÇÃO	2,50
EXISTÊNCIA DE PEQUENA DERIVAÇÃO	0,03	VELOCIDADE	1,00

 $[\]Delta H_1$

^{*} COM BASE NA VELOCIDADE MAIOR (SEÇÃO MENOR)

^{**}RELATIVA A VELOCIDADE NA CANALIZAÇÃO

• Perda de carga localizada na sucção:

Válvula de pé Curva de 90 ⁰	com cri	vo · · ·		•		 :			•				 						2, 0,	50 40	
														٠	Σ	K	=	;	2.9	90	_

PERDAS DE CARGA LOCALIZADAS

VALORES APROXIMADOS DE K

2		K	=	∆Н
	_	K	=	∆Н

PEÇA	к	PEÇA	К
AMPLIAÇÃO GRADUAL	0,30*	JUNÇÃO	0,40
BOCAIS	2,75	MEDIDOR VENTURI	2,50**
COMPORTA ABERTA	1,00	REDUÇÃO GRADUAL	0,15*
CONTROLADOR DE VAZÃO	2,50	REGISTRO DE ÂNGULO ABERTO	5,00
COTOVELO DE 90*	0,90	REGISTRO DE GAVETA ABERTO	0,20
COTOVELO DE 45*	0,40	REGISTRO DE GLOBO ABERTO	10,00
CRIVO	0,75	SAIDA DE CANALIZAÇÃO	1,00
CURVA DE 90*	0,40	TE PASSAGEM DIRETA	0,60
CURVA DE 45°	0,20	TE SAIDA DE LADO	1,30
CURVA DE 22,5*	0,10	TE SAIDA BILATERAL	1,80
ENTRADA NORMAL EM CANALIZAÇÃO	0,50	VÁLVULA DE PÉ	1,75
ENTRADA DE BORDA	1,00	VÁLVULA DE RETENÇÃO	2,50
EXISTÊNCIA DE PEQUENA DERIVAÇÃO	0,03	VELOCIDADE	1,00

^{*} COM BASE NA VELOCIDADE MAIOR (SEÇÃO MENOR)

^{**}RELATIVA A VELOCIDADE NA CANALIZAÇÃO

• Perda de carga localizada na sucção:

$$\Delta H_{L} = \Sigma K \cdot \frac{V^{2}}{2g}$$

$$\Delta H_L = \frac{2,90 \times 1,27^2}{20} = 0,23 : \Delta H_L = 0,23 m$$

• Perda de carga contínua e total na sucção:

• Perda de carga contínua e total na sucção:

Re =
$$\frac{V \cdot D}{\nu}$$
 = $\frac{1,27 \times 0,100}{10^{-6}}$ = 1,27 x 10⁵ (Movimento turbulento).
 $\frac{\epsilon}{D}$ = $\frac{0,30}{100}$ = 0,003 No ábaco de Moody (Ábaco 2):
 f = 0026
 ΔH_C = f x $\frac{L}{D}$ x $\frac{V^2}{2g}$ = 0,026 x $\frac{7}{0,100}$ x $\frac{1,27^2}{20}$ = 0,15 m
 ΔH_S = ΔH_L + ΔH_C = 0,23 + 0,15 = 0,38 m
 ΔH_S = 0,38 m

• Perda de carga contínua e total no recalque:

 $\triangle H = \triangle H_S + \triangle H_R = 0.38 + 3.02 = 3.40 \text{ m}$

• Altura manométrica total:

```
Hman = 13 + 3.74 = 16.74 \cong 17.0
Para Hman = 17.0 \,\text{m} e Q = 10 \,\ell/\text{s} = 600 \,\ell/\text{min}, temos (por exemplo):
```

• Potência do motor:

Potência calculada	Margem de segurança (recomendavel)
até 2 CV	50%
de 2 a 5 CV	30%
de 5 a 10 CV	20%
de 10 a 20 CV	15%
acima de 20 CV	10%

$$N = \frac{\gamma \text{ Q Hman}}{75 \times \eta} = \frac{10^3 \times 10 \times 10^{-3} \times 17}{75 \times 0.65} = 3.48 \text{ CV}$$

Considerando uma margem de segurança de 30% (tabela 7) e as potências dos motores comerciais existentes

$$N_{instalada} = 1,30 \times 3,48 = 4,53 \text{ CV} \approx 5 \text{ CV}$$

Bibliografia

Bibliografia

CARVALHO, Djalma Francisco. **Instalações elevatórias bombas**. Universidad Catolica Minas Gerais, 1979.

MACINTYRE, Archibald Joseph. Bombas e instalações de bombeamento. **Rio de Janeiro: Guanabara Dois**, 1982.

ÇENGEL, Yunus A.; BOLES, Michael A.; BUESA, Ignacio Apraiz. termodinâmica. São Paulo: McGraw-Hill, 2006.

G. Van Wylen, C. Borgnakke, and R. E. Sonntag. Fundamentos da Termodinâmica. Editora Edigar Blucher, 8^a edição, 2013.

MORAN, Michael J.; SHAPIRO, Howard N.; BOETTNER, Daisie D. Princípios de termodinâmica para engenharia . Grupo Gen-LTC, 2000.

DSc. Eng. Samuel Moreira Duarte Santos CREA 106478D

samuelmoreira@id.uff.br

(21) 980031100

https://www.linkedin.com/in/samuel-moreira-a3669824/

http://lattes.cnpq.br/8103816816128546