Álgebra Linear para Computação Suzana M. F. de Oliveira

Índice

- Revisão
- Transformações lineares arbitrárias
 - Exemplos
 - Núcleo e imagem
- Resumo
- Bibliografia

Revisão

Revisão

- Diagonalização
 - Matrizes semelhantes
 - B = P-1AP
 - Existem propriedades invariantes por semelhança
 - Processo de diagonalização
 - Achar n autovalores e n autovetores
 - Potências de uma matriz
 - A matriz diagonal semelhante D, e a matriz P que diagonaliza A, diminuem o custo do cálculo de potencias altas
 - Multiplicidades geométrica e algébrica
 - Dimensão do autoespaço e multiplicidade no polinômio
 - Para A ser diagonalizável, é preciso que sejam iguais

Definição 1

- Se T : V → W for uma função de um espaço vetorial V num espaço vetorial W,
- então T é denominada transformação linear de V em W se as duas propriedades seguintes forem válidas com quaisquer vetores u e v em V e qualquer escalar k

(i)
$$T(k\mathbf{v}) = kT(\mathbf{v})$$
 [Homogeneidade]
(ii) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ [Aditividade]

 No caso especial em que V = W, a transformação linear é denominada operador linear do espaço vetorial V

- Propriedades
 - Podem ser usadas de forma combinada
 - Se v₁ e v₂ forem vetores em V e k₁ e k₂ escalares quaisquer, então

$$T(k_1\mathbf{v}_1 + k_2\mathbf{v}_2) = k_1T(\mathbf{v}_1) + k_2T(\mathbf{v}_2)$$

De forma geral: Se v₁, v₂, ..., v_n forem vetores em V e k₁, k₂,..., k_n escalares quaisquer, então

$$T(k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + \cdots + k_r\mathbf{v}_r) = k_1T(\mathbf{v}_1) + k_2T(\mathbf{v}_2) + \cdots + k_rT(\mathbf{v}_r)$$

Teorema 1:

- Se T : V → W for uma transformação linear, então
 (a) T(0) = 0.
 - (b) $T(\mathbf{u} \mathbf{v}) = T(\mathbf{u}) T(\mathbf{v})$, para quaisquer $\mathbf{u} \in \mathbf{v}$ em V

Teorema 1:

- Se T : V → W for uma transformação linear, então
 (a) T(0) = 0.
 - (b) $T(\mathbf{u} \mathbf{v}) = T(\mathbf{u}) T(\mathbf{v})$, para quaisquer $\mathbf{u} \in \mathbf{v}$ em V
- Demonstração (a)
 - Seja **u** um vetor qualquer em V.
 - A partir da propriedade de homogeneidade, tem-se

Observar que toda transformação linear tem T(0) = 0 e pode ser usado para verificar se uma transformação é linear ou não!

$$T(0) = T(0\mathbf{u}) = 0T(\mathbf{u}) = \mathbf{0}$$

- Teorema 1:
 - Se T : V → W for uma transformação linear, então
 (a) T(0) = 0.
 - (b) $T(\mathbf{u} \mathbf{v}) = T(\mathbf{u}) T(\mathbf{v})$, para quaisquer $\mathbf{u} \in \mathbf{v}$ em V
- Demonstração (b)
 - Reescrevendo

$$T(\mathbf{u} - \mathbf{v}) = T(\mathbf{u} + (-1)\mathbf{v})$$
$$= T(\mathbf{u}) + (-1)T(\mathbf{v})$$
$$= T(\mathbf{u}) - T(\mathbf{v})$$

Com isso, tente provar que $T(-\mathbf{v}) = -T(\mathbf{v})$ em casa

- Exemplo: A transformação nula
 - Sejam V e W dois espaços vetoriais quaisquer.
 - A aplicação T : V → W tal que T(v) = 0, qualquer que seja o vetor v em V, é a transformação linear denominada transformação nula ou zero.
 - Para T ser linear, observe que

$$T(\mathbf{u} + \mathbf{v}) = \mathbf{0}, \quad T(\mathbf{u}) = \mathbf{0}, \quad T(\mathbf{v}) = \mathbf{0} \quad \text{e} \quad T(k\mathbf{v}) = \mathbf{0}$$

- Portanto

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 e $T(k\mathbf{v}) = kT(\mathbf{v})$

Propriedade de aditividade

Propriedade de homogeneidade

- Exemplo: Operadores dilatação e contração
 - Se V for um espaço vetorial e k um escalar qualquer.
 - Aplicação T : V → V dada por T(x) = kx (para k>0)
 é um operador linear de V, pois, dados um escalar c e vetores u e v em V quaisquer, então

$$T(c\mathbf{v}) = k(c\mathbf{v}) = c(k\mathbf{v}) = cT(\mathbf{v})$$

 $T(\mathbf{u} + \mathbf{v}) = k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v} = T(\mathbf{u}) + T(\mathbf{v})$

Dizemos que T é uma contração de V de fator k se
 0 < k < 1 e uma dilatação de V de fator k se k > 1

- Exemplo: Produto interno
 - Dados um espaço com produto interno V e um vetor \mathbf{v}_0 qualquer fixado em V, seja T : V \rightarrow R a transformação $T(\mathbf{x}) = \langle \mathbf{x}, \mathbf{v}_0 \rangle$
 - que associa a cada vetor \mathbf{x} o seu produto interno com \mathbf{v}_0 .
 - Essa transformação é linear, pois, dados qualquer escalar k e quaisquer vetores u e v em V, das propriedades de produtos internos decorre que

$$T(k\mathbf{v}) = \langle k\mathbf{v}, \mathbf{v}_0 \rangle = k\langle \mathbf{v}, \mathbf{v}_0 \rangle = kT(\mathbf{v})$$

$$T(\mathbf{u} + \mathbf{v}) = \langle \mathbf{u} + \mathbf{v}, \mathbf{v}_0 \rangle = \langle \mathbf{u}, \mathbf{v}_0 \rangle + \langle \mathbf{v}, \mathbf{v}_0 \rangle = T(\mathbf{u}) + T(\mathbf{v})$$

- Exercício: Transformações de espaços matriciais
 - Seja M_{nn} o espaço vetorial das matrizes n×n.
 - Determine se a transformações são lineares.

(a)
$$T_1(A) = A^T$$

(b)
$$T_2(A) = \det(A)$$

- Exercício: Transformações de espaços matriciais
 - Seja M_{nn} o espaço vetorial das matrizes n×n.
 - Determine se a transformações são lineares.

(a)
$$T_1(A) = A^T$$
 (b) $T_2(A) = \det(A)$

- Demonstração (a) É linear $T_1(kA) = (kA)^T = kA^T = kT_1(A)$ $T_1(A + B) = (A + B)^T = A^T + B^T = T_1(A) + T_1(B)$
- Contraexemplo (b) Não é linear

$$T_2(kA) = \det(kA) = k^n \det(A) = k^n T_2(A)$$

Teorema 2:

Se V → W for uma transformação linear,
 V um espaço vetorial de dimensão finita e
 S = {v₁, v₂, ..., vₙ} uma base de V, então a imagem de qualquer vetor v em V pode ser escrita como

$$T(\mathbf{v}) = c_1 T(\mathbf{v}_1) + c_2 T(\mathbf{v}_2) + \dots + c_n T(\mathbf{v}_n)$$

em que $c_1, c_2, ..., c_n$ são os coeficientes que expressam \mathbf{v} como uma combinação linear dos vetores em S.

Teorema 2:

Se V → W for uma transformação linear,
 V um espaço vetorial de dimensão finita e
 S = {v₁, v₂, ..., vₙ} uma base de V, então a imagem de qualquer vetor v em V pode ser escrita como

$$T(\mathbf{v}) = c_1 T(\mathbf{v}_1) + c_2 T(\mathbf{v}_2) + \dots + c_n T(\mathbf{v}_n)$$

em que $c_1, c_2, ..., c_n$ são os coeficientes que expressam \mathbf{v} como uma combinação linear dos vetores em S.

Demonstração

- Escreva **v** e use a linearidade de T

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

- Exercício: Calculando com imagens de vetores de base
 - Considere a base $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ de \mathbb{R}^3

$$\mathbf{v}_1 = (1, 1, 1), \quad \mathbf{v}_2 = (1, 1, 0), \quad \mathbf{v}_3 = (1, 0, 0)$$

- Seja T : \mathbb{R}^3 → \mathbb{R}^2 a transformação linear tal que

$$T(\mathbf{v}_1) = (1, 0), \quad T(\mathbf{v}_2) = (2, -1), \quad T(\mathbf{v}_3) = (4, 3)$$

– Encontre uma fórmula para $T(x_1, x_2, x_3)$ e use essa fórmula para calcular T(2, -3, 5).

Processo: Escreva x em função da base e depois aplique a transformação

- Exercício: Calculando com imagens de vetores de base
 - Considere a base $S = \{v_1, v_2, v_3\}$ de \mathbb{R}^3 $v_1 = (1, 1, 1), v_2 = (1, 1, 0), v_3 = (1, 0, 0)$
 - Seja T : $\mathbb{R}^3 \to \mathbb{R}^2$ a transformação linear tal que $T(\mathbf{v}_1) = (1,0), \quad T(\mathbf{v}_2) = (2,-1), \quad T(\mathbf{v}_3) = (4,3)$
 - Encontre uma fórmula para $T(x_1, x_2, x_3)$ e use essa fórmula para calcular T(2, -3, 5).
 - Escrevendo x em função da base

$$(x_1, x_2, x_3) = c_1(1, 1, 1) + c_2(1, 1, 0) + c_3(1, 0, 0)$$

$$c_1 + c_2 + c_3 = x_1$$

$$c_1 + c_2 = x_2$$

$$c_1 = x_3$$

$$(x_1, x_2, x_3) = x_3(1, 1, 1) + (x_2 - x_3)(1, 1, 0) + (x_1 - x_2)(1, 0, 0)$$

= $x_3 \mathbf{v}_1 + (x_2 - x_3)\mathbf{v}_2 + (x_1 - x_2)\mathbf{v}_3$

- Exercício: Calculando com imagens de vetores de base
 - Considere a base $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ de \mathbb{R}^3

$$\mathbf{v}_1 = (1, 1, 1), \quad \mathbf{v}_2 = (1, 1, 0), \quad \mathbf{v}_3 = (1, 0, 0)$$

Seja T : R³ → R² a transformação linear tal que

$$T(\mathbf{v}_1) = (1, 0), \quad T(\mathbf{v}_2) = (2, -1), \quad T(\mathbf{v}_3) = (4, 3)$$

- Encontre uma fórmula para $T(x_1, x_2, x_3)$ e use essa fórmula para calcular T(2, -3, 5).
 - Aplicando a transformação

$$T(x_1, x_2, x_3) = x_3 T(\mathbf{v}_1) + (x_2 - x_3) T(\mathbf{v}_2) + (x_1 - x_2) T(\mathbf{v}_3)$$

$$= x_3 (1, 0) + (x_2 - x_3)(2, -1) + (x_1 - x_2)(4, 3)$$

$$= (4x_1 - 2x_2 - x_3, 3x_1 - 4x_2 + x_3)$$

Calculando T(2, -3, 5)

$$T(2, -3, 5) = (9, 23)$$

- Definição 2:
 - Seja T : V → W uma transformação linear.
 - O conjunto dos vetores em V que T transforma em 0 é denominado núcleo de T e é denotado por √(T), Nuc(T) ou Ker(T).
 - O conjunto de todos os *vetores em W* que são imagem por T de pelo menos um vetor em V é denominado **imagem** de T e é denotado por \(\mathcal{R}(T) \) ou Im(T).

- Núcleo e imagem
 - Seja A uma matriz m×n.
 - O espaço nulo de A consiste em todos os vetores \mathbf{x} em \mathbb{R}^n tais que $A\mathbf{x}=\mathbf{0}$
 - O espaço coluna de A consiste em todos os vetores b em Rm para os quais existe pelo menos um vetor x em Rn tal que Ax=b
 - Como transformações matriciais
 - O espaço nulo de A consiste em todos os vetores em ℝⁿ que a multiplicação por A transforma em 0
 - O espaço coluna de A consiste em todos os vetores em ℝ^m que são imagem de pelo menos um vetor em ℝⁿ na multiplicação por A

- Núcleo e imagem
 - Exemplo: Transformação matricial
 - Se $T_A: \mathbb{R}^n \to \mathbb{R}^m$ for a multiplicação pela matriz A de tamanho m×n
 - O núcleo de T_A é o espaço nulo de A
 - A imagem de T_A é o espaço coluna de A

- Núcleo e imagem
 - Exemplo: Transformação nula
 - Seja T : V → W a transformação nula.
 - Como T transforma cada vetor em V em 0, segue que Nuc(T) = V.
 - Como 0 é a única imagem por T de vetores em V, segue que Im(T) = {0}.

- Núcleo e imagem
 - Exercício: Qual o núcleo e a imagem da rotação?
 - Seja T : $\mathbb{R}^2 \to \mathbb{R}^2$ o operador linear que gira cada vetor no plano xy pelo ângulo θ .

- Núcleo e imagem
 - Exercício: Qual o núcleo e a imagem da rotação?
 - Seja T : $\mathbb{R}^2 \to \mathbb{R}^2$ o operador linear que gira cada vetor no plano xy pelo ângulo θ .
 - Como *cada* vetor no plano xy pode ser obtido pela rotação de algum vetor pelo ângulo θ , segue que $Im(T) = \mathbb{R}^2$.
 - Além disso, o único vetor que gira em 0 é 0, portanto, Nuc(T) = {0}.

- Propriedades do núcleo e imagem
 - Teorema 3:
 - Seja T : V → W uma transformação linear.
 (a) O núcleo de T é um subespaço de V.
 - (b) A imagem de T é um subespaço de W.

Para mostrar que são subespaços, precisamos mostrar que contém pelo menos um vetor e que é fechado na adição e na multiplicação por escalar.

- Propriedades do núcleo e imagem
 - Teorema 3:
 - Seja T : V → W uma transformação linear. (a) O núcleo de T é um subespaço de V.
 - (b) A imagem de T é um subespaço de W.
- que são subespaços, precisamos mostrar que contém pelo menos um vetor e que é fechado na adição e na multiplicação por escalar.

Para mostrar

- Demonstração (a)
- T(0) = 0 Pelo Teorema 1(a), o vetor 0 está em Nuc(T).
 - Sejam \mathbf{v}_1 e \mathbf{v}_2 vetores em Nuc(T) e k um escalar quaisquer. Então tem-se

$$T(\mathbf{v}_1 + \mathbf{v}_2) = T(\mathbf{v}_1) + T(\mathbf{v}_2) = \mathbf{0} + \mathbf{0} = \mathbf{0}$$

de modo que $\mathbf{v}_1 + \mathbf{v}_2$ está em Nuc(T). Também tem-se

$$T(k\mathbf{v}_1) = kT(\mathbf{v}_1) = k\mathbf{0} = \mathbf{0}$$

de modo que k**v**₁ está em Nuc(T).

- Propriedades do núcleo e imagem
 - Teorema 3:
 - Seja T : V → W uma transformação linear.
 (a) O núcleo de T é um subespaço de V.
 - (b) A imagem de T é um subespaço de W.
 - Demonstração (b)
 - Pelo Teorema 1(a), o vetor 0 está em Im(T).
 - Se w₁ e w₂ forem vetores em Im(T) e k for um escalar, então existem vetores a e b em V com os quais

$$T(\mathbf{a}) = \mathbf{w}_1 + \mathbf{w}_2$$
 e $T(\mathbf{b}) = k\mathbf{w}_1$

Porém, como w₁ e w₂ estão em Im(T), existem vetores v₁
 e v₂ em V tais que

$$T(\mathbf{v}_1) = \mathbf{w}_1 \quad \mathbf{e} \quad T(\mathbf{v}_2) = \mathbf{w}_2$$

Para mostrar que são subespaços, precisamos mostrar que contém pelo menos um vetor e que é fechado na adição e na multiplicação por escalar.

- Propriedades do núcleo e imagem
 - Teorema 3:
 - Seja T : V → W uma transformação linear.
 (a) O núcleo de T é um subespaço de V.
 - (b) A imagem de T é um subespaço de W.

Para mostrar que são subespaços, precisamos mostrar que contém pelo menos um vetor e que é fechado na adição e na multiplicação por escalar.

- Demonstração (b)
 - Para os vetores a = v₁ + v₂ e b = kv₁ que satisfazem as primeiras equações, tem-se que

$$T(\mathbf{a}) = T(\mathbf{v}_1 + \mathbf{v}_2) = T(\mathbf{v}_1) + T(\mathbf{v}_2) = \mathbf{w}_1 + \mathbf{w}_2$$

 $T(\mathbf{b}) = T(k\mathbf{v}_1) = kT(\mathbf{v}_1) = k\mathbf{w}_1$

Posto e nulidade

- Definição 3:
 - Seja T : V → W uma transformação linear.
 - Se a imagem de T tiver dimensão finita, dizemos que sua dimensão é o posto de T, denotado por posto(T) ou pos(T).
 - Se o núcleo de T tiver dimensão finita, dizemos que sua dimensão é a nulidade de T, denotado por nulidade(T) ou nul(T).

- Posto e nulidade
 - Teorema 4: Teorema da dimensão para transformações lineares
 - Se T: V → W for uma transformação linear de um espaço vetorial V de dimensão n num espaço vetorial W, então

$$pos(T) + nul(T) = n$$

Posto e nulidade

- Teorema 4: Teorema da dimensão para transformações lineares
 - Se T: V → W for uma transformação linear de um espaço vetorial V de dimensão n num espaço vetorial W, então

$$pos(T) + nul(T) = n$$

• No caso especial em que A, for uma matriz $m \times n$ e $T_A: \mathbb{R}^n \to \mathbb{R}^m$ a multiplicação por A, o núcleo de T_A é o espaço nulo de A, e a imagem de T_A é o espaço coluna de A, então

$$pos(T_A) + nul(T_A) = n$$

Resumo

- Transformações lineares
 - Propriedades
 - (i) $T(k\mathbf{v}) = kT(\mathbf{v})$

[Homogeneidade]

(ii) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$

[Aditividade]

- Nuc(T) = $\{v \in V; T(v) = 0\}$
- Im(T): $\{w \in W; T(v) = w, \text{ para algum } v \in V\}$
- Posto e nulidade

$$pos(T) + nul(T) = n$$

Resumo

- Exercícios de fixação:
 - Anton seção 8.1
 - 1-6
 - 9-11
 - 16
 - 20(b) e 21(b)
 - 23 e 24

Resumo

- Próxima aula:
 - Isomorfismo
 - Composições
 - Transformações inversas

Bibliografia

Bibliografia

- Bibliografia básica:
 - ANTON, Howard; RORRES, Chris. Álgebra Linear com Aplicações. 10 ed. Porto Alegre: Bookman, 2012.
 - Seção 8.1
 - DE ARAUJO, Thelmo. Álgebra Linear: Teoria e Aplicações. Rio de Janeiro: SBM, 2014.
 - Capítulo 6