SENSORS & SYSTEMS

By far the better solution

Sensors Opto series • Eddy series

- (ILD, ODC, IFD, ILR)
- Capa series

Interfaces

- RS232
- IF2004 (RS422)
- IF2008 (RS422)
- USB
- TCP/IP

Data Acquisition Library

Micro-Epsilon

Data Acquisition Library X9751165

Programming language interface for accessing digital sensors 2.1.3.7684

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Strasse 15

D-94496 Ortenburg

Tel. +49/85 42/ 168-0 Fax +49/85 42/ 168-90 e-mail info@micro-epsilon.de www.micro-epsilon.de

3

Contents

1	Intro	oduction	19
2	Inst	allation	20
3	Acc : 3.1	Setting up Visual Studio	21 21 21 21
4	Usir 4.1	ng MEDAQLib Block based acquisition	22 22
	4.2	Polling	22
5	Sam	ıples	23
•	5.1	C#Example	23
	5.2	DelphiExample	23
	5.3 5.4	DLLExample	23 23
	5.5	LibExample	23
	5.6	UnicodeExample	23
	5.7	VBAExample	24
	5.8	VB6.0Example	24
	5.9	VB2008Example	24
6	Fun	ction Reference	25
	6.1	Opening the Driver	25
	6.2	Releasing Driver	25
	6.3	Set parameters	26
	6.4	Retrieving sensor answer	31
	6.5	Clear internal parameter buffer	36
	6.6	Connecting to the sensor	36
	6.7	Closing connection to sensor	37
	6.8	Sending commands to the sensor	37
	6.9	Polling data from sensor	38 39
		Block wise data acquisition from sensor	39 40
		Get additional error information	41
		Get version of MEDAQLib dll	42
Α	Para	ameters	44
^	A.1	Interface parameters	44
		A.1.1 All Interfaces	44
		A.1.2 RS232	48
		A.1.3 IF2004	49
		A.1.4 IF2008	50
		A.1.5 TCP/IP	52
		A.1.6 DriverX_USB	52
		A.1.7 USBIO	53
	A.2	Communication via SensorCommand	54
	A.3	Sensor commands valid for each sensor	58
		A.3.1 Use_Defaults	58
		A.3.2 SettingsChanged	60

X9751165

	_ 5	60
	A.3.4 Cmd_Generic	62
	A.3.5 Clear_Buffers	62
	A.3.6 DataAvail Event	63
В	Commands for ILR110x_115x	64
	B.1 Get_Parameters (GAP)	64
	B.2 Get_Energy (GDB)	67
		68
		68
		68
		68
	B.7 Set_Offset (IDO)	69
	_	69
	B.9 Set HysteresisQ1 (IH1)	69
		09 69
		70
		70
		70
		70
		71
		71
	B.17 Set_ModeQ1 (IM1)	71
		71
		72
		72
		. – 72
		, <u> </u>
		72
		73
	0_ 0_ /	
		73
	B.26 Save_Parameters (EPW)	73
_	Commands for ILR118x	74
		74
		74 74
		74 74
		74
		74
		74
		74
		75
		75
	C.10 Set_ScaleFactor (SF)	75
	C.11 Get_ScaleFactor (SF)	75
		76
		76
		. o 76
		, o 76
		77
		, , 77
		78 70
	C.19 Set_AlarmStart (AC)	78

	C.20 Get_AlarmStart (AC)	78
	C.21 Set_AlarmHysteresis (AH)	78
	C.22 Get AlarmHysteresis (AH)	79
	C.23 Set_AlarmWidth (AW)	79
	C.24 Get_AlarmWidth (AW)	79
	C.25 Set RangeBegin4mA (RB)	79
	C.26 Get_RangeBegin4mA (RB)	80
	C.27 Set RangeEnd20mA (RE)	80
	C.28 Get RangeEnd20mA (RE)	80
	C.29 Set AverageValue (SA)	80
	_ ` ' '	
	C.30 Get_AverageValue (SA)	81
	C.31 Set_MeasureTime (ST)	81
	C.32 Get_MeasureTime (ST)	81
	C.33 Set_TriggerDelay (TD)	81
	C.34 Get_TriggerDelay (TD)	82
	C.35 Set_TriggerMode (TM)	82
	C.36 Get_TriggerMode (TM)	82
	C.37 Set_Baudrate (BR)	83
	C.38 Get_Baudrate (BR)	83
	C.39 Set_Autostart (AS)	83
	C.40 Get_Autostart (AS)	84
	C.41 Get_Info (ID)	84
	C.42 Get_AllParameters (PA)	84
	C.43 Get_Temperature (TP)	87
	C.44 Reset Parameters (PR)	87
	0.44 Neset_1 didineters (FTI)	07
D	Commands for ILR1191	91
	D.1 DistanceTracking (DT)	91
	D.2 DistanceTriggered (DF)	91
	D.3 DistanceMeasure (DM)	91
		91
	D.4 SpeedMeasure (VM)	
	D.5 SpeedTracking (VT)	91
	D.6 StopTracking (<esc>)</esc>	91
	D.7 Set_OutputFormat (SD)	92
	D.8 Get_OutputFormat (SD)	92
	D.9 Set_TerminatingChar (TE)	92
	D.10 Get_TerminatingChar (TE)	93
	D.11 Set_FormatSSI (SC)	93
	D.12 Get_FormatSSI (SC)	93
	D.13 Set_ScaleFactor (SF)	94
	D.14 Get_ScaleFactor (SF)	94
	D.15 Set_Offset (OF)	94
	D.16 Get_Offset (OF)	94
	D.17 CurrentDistAsOffset (SO)	95
	D.18 Set_ErrorMode (SE)	95
	D.19 Get_ErrorMode (SE)	95
	D.20 Set_MeasureWindow (MW)	95
	D.21 Get_MeasureWindow (MW)	96
	D.22 Set_AnalogOutLimits (QA)	96
	D.23 Get_AnalogOutLimits (QA)	96
	D.24 Set_Out1Parameters (Q1)	97
	D.25 Get_Out1Parameters (Q1)	97
		~~
	D.26 Set_Out2Parameters (Q2)	98

	D.27 Get_Out2Parameters (Q2)		99
	D.28 Set AverageValue (SA)		99
	D.29 Get AverageValue (SA)		99
	D.30 Set TriggerDelay (TD)		100
	D.31 Get TriggerDelay (TD)		100
	D.32 Set Baudrate (BR)		100
	D.33 Get Baudrate (BR)		101
	D.34 Set_Autostart (AS)		101
	D.35 Get Autostart (AS)		102
	D.36 Set MeasFreq (MF)		103
	D.37 Get MeasFreq (MF)		103
			103
	D.38 Set_PilotLaser (PL)		
	D.39 Get_PilotLaser (PL)		103
	D.40 Get_Info (ID)		104
	D.41 Get_AllParameters (PA)		104
	D.42 Get_Temperature (TP)		108
	D.43 Get_HWDignosis (HW)		108
	D.44 Reset_Parameters (PR)		108
	D.45 Trigger_ColdStart (DR)		112
	D.46 Use_Defaults		113
	D.47 Get_DrvSetting		114
Е	0.0000000000000000000000000000000000000		116
	E.1 Get_Info		116
	E.2 Get_Settings		119
	E.3 Set_KeyLock		121
	E.4 Dat_Out_Off		121
	E.5 Dat_Out_On		121
	E.6 Set_Av		122
	E.7 Set Baudrate		122
	E.8 Set ErrorHandler		122
	E.9 Laser_Off		123
	E.10 Laser_On		123
	E.11 ASCII_Output		123
	E.12 Set_OutputType		123
	E.13 Reset Boot		123
	E.14 Set Default		123
	E.15 Set_OutputMode		123
	E.16 Set_OutputTime	•	124
	E.17 Set_SaveSettingsMode		124
	E.18 Set ExtInputMode		124
	E.19 Set TeachValue		124
	E.20 Reset TeachValue		125
	E.21 Set_PeakSearching		125
	E.22 Set_Threshold		125
	E.23 Get_Video		125
	E.24 Use_Defaults		125
	E.25 Get_DrvSetting		126

F	Con		127
	F.1	-	127
	F.2	Get_Version	127
	F.3	Get_Info	127
	F.4	Set OutputChannel	128
	F.5	SaveLastMV	128
	F.6		129
	F.7		129
	F.8		129
		Congression of the congress of	
G	Con		130
	G.1	Dat_Out_Off	130
	G .2	Dat_Out_On	130
	G .3	Set_ControllerReset	130
	G.4		130
	G .5		131
	G .6		131
	G .7		132
	G.8	-	132
			132
			132
		_	133
		-	133
		_	133
			133
		-	
	G. 15	Set_OutputChannel	133
Н	Con	nmands for ILD1402	134
	H.1	Get Info	134
	H.2	Get Settings	137
	H.3		140
	H.4		140
	H.5		140
	H.6	· · · · · · · · · · · · · · · · · · ·	140
	H.7	_	141
	H.8		141
	H.9		141
			141
			142
		_	142
		_ '	
		1 _ 21	142
		-	142
			142
			142
		_ '	143
		_ '	143
			143
	H.20	Set_ExtInputMode	143
			144
	H.22	Reset TeachValue	144
		-	144
		_	144
			145
		-	

		Use_Defaults	5
	H.27	Get_DrvSetting	6
ı	0	amondo for II D4700	_
•	Lon 1.1	Imands for ILD1700 14 Get MeasValue 14	
		-	
	1.2	-	
	1.3		_
	1.4	Set_KeyLock	
	1.5	WriteFlashZero	
	1.6	Set_Av0	
	1.7	Set_Av1	
	1.8	Set_Av2	-
	1.9	Set_Av3	
	I.10	Set_AvX	
	1.11	Dat_Out_Off	
	I.12	Dat_Out_On	
	I.13	Set_Av_T 15	
	I.14	Set_Limits 15	
	l.15	Set_Baudrate 15	6
	I.16	Set_ErrorHandler	6
	1.17	Set_Sync_TrgMode	6
	I.18	Set_UpperLimit_F1	7
	I.19	Set_LowerLimit_F1 15	7
	1.20	Set_Speed	7
	I.21	Laser_Off	7
		Laser On	7
		ASCII_Output	
	1.24	Set_OutputType	
	1.25	Set_ErrorOutput	
		Reset Boot	
	1.27	-	
	1.28	Set VideoMode	
	1.20	Get Video	
	1.31		
	1.31	Get_DrvSetting 16	U
J	Com	nmands for ILD1800	1
_	J.1		1
	J.2	Get Version	2
	J.3	Zero	
	J.4	Set Av0	
	J.5	Set Av1	
	J.6	Set Av2	
	J.7	Set Av3	
	J.8	Set AvX	
		-	
	J.9	Dat_Out_Off	
		Dat_Out_On	
		Displacement	
		Thickness	
		Multilayer	
		Refraction	
		Set_Av_T	
	J.16	Reset_Boot	4

K			165
	K.1		165
	K.2	Save_EEPROM	165
L	Com	nmands for ILD2200	166
_	L.1		166
	L.2		167
	L.3		169
		-	169
	L.4	_ ,	
	L.5		169
	L.6	-	169
	L.7	-	169
	L.8	-	169
	L.9	-	169
		-	170
			170
		· · · · - · · -	170
	L.13	Set_Av_T	170
	L.14	Laser_Off	170
	L.15	Laser On	170
	L.16	Transmit Intensity	170
		-	171
N/I	Com	nmands for IFD2400	172
IVI			172 172
			172 172
			172 172
	IVI.3	_ '	
			173
			173
			173
		/	173
			174
		//	174
		_ , , , , , , , , , , , , , , , , , , ,	174
			174
	M.12		175
			175
			175
	M.15	Get_RefractIndex (SRI?)	175
	M.16	SSet_Threshold (THR)	176
	M.17	Get Threshold (THR?)	176
	M.18	BSet KeyLock (LOC)	176
	M.19	Get KeyLock (LOC?)	176
			177
			177
			177
		<u> </u>	. <i></i> 177
		- • • • • • • • • • • • • • • • • • • •	177
			177 178
			178 178
		= 90	178 178
			178 178
	WI.29	Get_Version (VER)	180

	M.30 Set_OutputData (SOD)	180
	M.31 Get_OutputData (SOD?)	180
	M.32 Set_Ascii (ASC)	181
	M.33 Set_Binary (BIN)	181
	M.34Set_AnalogOut (ANA)	181
	M.35 Get AnalogOut (ANA?)	182
	M.36 Save Setup (SSU)	183
	M.37 Get_CCD (CCD)	183
	M.38 End CCD	183
	M.39 Get_Memory (DEB)	183
	M.40 Upload_CalibTable	184
	M.41 Use Defaults	184
	M.42 Get DrvSetting	185
	W.42 dot_bivoctung	100
N	Commands for IFD2401	187
	N.1 Set ActiveSensor (SEN)	187
	N.2 Get_ActiveSensor (SEN?)	187
	N.3 Get_Range (SCA)	187
	N.4 Get_AllRanges (LUL)	188
	N.5 Acquire_DarkSig (DRK)	188
	N.6 FastDark (FDK)	188
	N.7 Set AutoDark (ADK)	188
	N.8 Get AutoDark (ADK)	189
		189
	N.9 Set_SRIndex (SRA)	
	N.10 Get_SRIndex (SRA?)	189
	N.11 Set_FreeSR (FRQ)	189
	N.12 Get_FreeSR (FRQ?)	190
	N.13 Set_Exposure (TEX)	190
	N.14 Get_Exposure (TEX?)	190
	N.15 Get_MinSR (FRM)	191
	N.16 Set_DoubleFreq (DFA)	191
	N.17 Get_DoubleFreq (DFA?)	191
	N.18 Set_Frequencies (DFF)	191
	N.19 Get_Frequencies (DFF?)	192
	N.20 Set_IntensityMode (DFI)	192
	N.21 Get_IntensityMode (DFI?)	192
	N.22 Set_MeasureMode (MOD)	193
	N.23 Get_MeasureMode (MOD?)	193
	N.24 Set_RefractIndex (SRI)	193
	N.25 Get_RefractIndex (SRI?)	193
	N.26 Set_Threshold (MNP)	194
	N.27 Get_Threshold (MNP?)	194
	N.28 Set HoldLastValid (HLV)	194
	N.29 Get HoldLastValid (HLV?)	194
	N.30 Set_Threshold1 (SPP)	195
	N.31 Get Threshold1 (SPP?)	195
	N.32 Set Threshold2 (SDP)	195
	N.33 Get Threshold2 (SDP?)	195
	N.34 Set FirstPeakMode (MSP)	196
	N.35 Get_FirstPeakMode (MSP?)	196
	N.36 Set DataScale (CEE)	196
	N.37 Get_DataScale (CEE?)	196
	N.38 Set BarycenterSca (CEB)	190
	14.00 Oct Daily Centeroca (OLD)	10/

N.39 Get_BarycenterSca (CEB?)	197
N.40 Set_BarycenterOff (CRB)	197
N.41 Get_BarycenterOff (CRB?)	197
N.42 Set_LampTest (SLP)	198
N.43 Get_LampTest (SLP?)	198
N.44 Set LampTestThr (CSL)	198
N.45 Get LampTestThr (CSL?)	198
N.46 Set LEDIntensity (LED)	199
N.47 Get LEDIntensity (LED?)	199
N.48 Set AutoAdaptLED (AAL)	199
N.49 Get_AutoAdaptLED (AAL?)	199
N.50 Set_AdaptLEDThr (VTH)	200
N.51 Get AdaptLEDThr (VTH?)	
N.52 Set IntLightSrc (CCL)	
N.53 Get IntLightSrc (CCL?)	
N.54 Set_RefldxFile (INF)	
N.55 Get_RefldxFile (INF?)	
N.56 Upload_RefldxFile	
N.57 RecenterEncoder (RCD)	
N.58 Set_MissingSignal (RSP)	
N.59 Get_MissingSignal (RSP?)	
N.60 Set_Reverse (RVS)	
N.61 Get_Reverse (RVS?)	
N.62 Set_Averaging (AVR)	
N.63 Get_Averaging (AVR?)	
N.64 Set_SpectralAv (AVS)	
N.65 Get_SpectralAv (AVS?)	205
N.66 Continue (CTN)	205
N.67 Start_Trigger (TRG)	205
N.68 End Trigger	205
N.69 SingleShot Trg (TRE)	205
N.70 Set_TrgMode_Edge (TRS)	
N.71 Set TrgMode State (TRN)	
N.72 Set ActiveEdge (TRF)	
N.73 Get ActiveEdge (TRF?)	
N.74 Software_Trigger (STR)	
N.75 Set Watchdog (WDE)	
N.76 Get Watchdog (WDE?)	
N.77 Set WatchdogPrd (WDP)	207
N.78 Get WatchdogPrd (WDP?)	207
N.79 Get Status (STS)	207
N.80 Get Version (VER)	209
	209
N.81 Set_OutputData (SOD)	
N.82 Get_OutputData (SOD?)	210
N.83 Set_Ascii (ASC)	210
N.84 Set_Binary (BIN)	210
N.85 Set_AnalogOut (ANA)	210
N.86 Get_AnalogOut (ANA?)	211
N.87 Set_AnalogZero (SOF)	212
N.88 Set_Baudrate (BAU)	212
N.89 Get_Baudrate (BAU?)	213
N.90 Save_Setup (SSU)	213
N 91 Reset (RST)	213

	N.92 Get_CCD (CCD)	
	N.93 Get_DarkSig (SGD)	
	N.94 Get_WhiteRef (SGW)	214
	N.95 Get_NormSig (SGN)	214
	N.96 Get_CalibTable (SGC)	214
	N.97 Start Spectrum	214
	N.98 Get Spectrum	
	N.99 End Spectrum	
	N.100Upload CalibTable	
	N.101Jse Defaults	
	N.102Get DrvSetting	
	_	
0	Commands for IFD2430	220
	O.1 Set_ActiveSensor (SEN)	
	O.2 Get_ActiveSensor (SEN?)	
		220
	1 _ 0 \ /	221
		221
	_	221
	0.7 Get_SRIndex (SRA?)	222
		222
		223
		223
		223
		223
		224
		224
		224
		224
		225
	0.17 Get_TilleSticid (MNF:)	
		225
		225
		225
	O.21 Get_Averaging (AVR?)	
	O.22 Continue (CTN)	
	O.23 Start_Trigger (TRG)	
	O.24 End_Trigger	226
	O.25 Get_Status (STS)	226
	O.26 Get_Version (VER)	227
	O.27 Set OutputData (SOD)	228
	O.28 Get_OutputData (SOD?)	228
	O.29 Set_Ascii (ASC)	228
	O.30 Set Binary (BIN)	229
	O.31 Set_IPAddress (IPA)	229
	O.32 Get IPAddress (IPA?)	229
	O.33 Set Baudrate (BAU)	229
	-	
	O.34 Get_Baudrate (BAU?)	229
	0.35 Save_Setup (SSU)	230
	0.36 Get_CCD (CCD)	230
	0.37 Get_DarkSig (SGD)	230
	0.38 Get_WhiteRef (SGW)	230
	O.39 Get_NormSig (SGN)	231
	O.40 Get CalibTable (SGC)	231

	O.41 Upload_CalibTable	
	0.42 Use_Defaults	
	O.43 Get_DrvSetting	233
_		
P	Commands for IFD2431	234
	P.1 Set_ActiveSensor (SEN)	234
	P.2 Get_ActiveSensor (SEN?)	234
	P.3 Get_Range (SCA)	234
	P.4 Get_AllRanges (LUL)	235
	P.5 Acquire DarkSig (DRK)	235
	P.6 FastDark (FDK)	235
		235
		236
		236
		236
		237
	P.12 Get_FreeSR (FRQ?)	237
	P.13 Set_Exposure (TEX)	237
	P.14 Get_Exposure (TEX?)	238
	P.15 Get_MinSR (FRM)	238
	P.16 Set MeasureMode (MOD)	238
	P.17 Get_MeasureMode (MOD?)	238
	P.18 Set_RefractIndex (SRI)	239
		239
	P.20 Set Threshold (MNP)	239
	P.21 Get_Threshold (MNP?)	239
	P.22 Set_HoldLastValid (HLV)	240
	P.23 Get_HoldLastValid (HLV?)	240
	P.24 Set_Threshold1 (SPP)	240
	P.25 Get_Threshold1 (SPP?)	240
	P.26 Set Threshold2 (SDP)	241
	P.27 Get_Threshold2 (SDP?)	241
	P.28 Set_FirstPeakMode (MSP)	241
	P.29 Get_FirstPeakMode (MSP?)	241
		242
	P.31 Get_DataScale (CEE?)	
	P.32 Set_BarycenterSca (CEB)	
		242
	P.33 Get_BarycenterSca (CEB?)	242
		243
	P.35 Get_BarycenterOff (CRB?)	
	P.36 Set_RefldxFile (INF)	243
	P.37 Get_RefldxFile (INF?)	244
	P.38 Upload_RefldxFile	245
	P.39 RecenterEncoder (RCD)	245
	P.40 Set_MissingSignal (RSP)	245
	P.41 Get_MissingSignal (RSP?)	246
	P.42 Set_Reverse (RVS)	246
	P.43 Get_Reverse (RVS?)	246
	P.44 Set_Binning (FBH)	246
	P.45 Get_Binning (FBH?)	247
	P.46 Set_Averaging (AVR)	247
	P.47 Get_Averaging (AVR?)	247
	P.48 Set SpectralAv (AVS)	247

	P.49 Get_SpectralAv (AVS?)	
	P.50 Continue (CTN)	248
	P.51 Start_Trigger (TRG)	
	P.52 End Trigger	
	P.53 SingleShot_Trg (TRE)	
	P.54 Set_TrgMode_Edge (TRS)	
	P.55 Set_TrgMode_State (TRN)	
	P.56 Set_ActiveEdge (TRF)	
	P.57 Get_ActiveEdge (TRF?)	
	P.58 Software_Trigger (STR)	249
	P.59 Set Watchdog (WDE)	249
	P.60 Get Watchdog (WDE?)	
	P.61 Set WatchdogPrd (WDP)	
	P.62 Get WatchdogPrd (WDP?)	
	P.63 Get_Status (STS)	
	P.64 Get_Version (VER)	
	P.65 Set_OutputData (SOD)	
	P.66 Get_OutputData (SOD?)	
	P.67 Set Ascii (ASC)	253
	P.68 Set Binary (BIN)	253
	P.69 Set AnalogOut (ANA)	
	P.70 Get AnalogOut (ANA?)	
	P.71 Set AnalogZero (SOF)	
	P.72 Set_Baudrate (BAU)	
	P.73 Get_Baudrate (BAU?)	
	P.74 Save_Setup (SSU)	
	P.75 Reset (RST)	
	P.76 Get_CCD (CCD)	256
	P.77 Get DarkSig (SGD)	256
	P.78 Get WhiteRef (SGW)	257
	P.79 Get NormSig (SGN)	
	P.80 Get CalibTable (SGC)	
	P.81 Start Spectrum	
	P.82 Get_Spectrum	
	P.83 End_Spectrum	
	P.84 Upload_CalibTable	
	P.85 Use_Defaults	260
	P.86 Get_DrvSetting	261
Q	Commands for ODC2500	263
	Q.1 Reset_Boot	263
	Q.2 Get Info	263
	Q.3 Dat Out Off	264
	Q.4 Dat Out On	264
	Q.5 Choose MeasProg	264
	Q.6 Switch Edge	264
	Q.7 Read_OptionData	265
	Q.8 Read_MeasProgData	268
	Q.9 Write_OptionData	271
	Q.10 Write_MeasProgData	273
	Q.11 Save_OptionData	276
	Q.12 Save MeasProgData	276
	Q.13 Read MinMax	

	Q.14 Read_MinMaxReset	277
	Q.15 Use_Defaults	278
	Q.16 Get_DrvSetting	278
R		279
	R.1 Reset_Boot	
	R.2 Get_Info	
	R.3 Dat_Out_Off	
	R.4 Dat_Out_On	280
	R.5 Choose_MeasProg	280
	R.6 Switch Edge	280
	R.7 Read OptionData	282
	R.8 Read MeasProgData	
	R.9 Write OptionData	
	R.10 Write MeasProgData	
	R.11 Save OptionData	
	R.12 Save MeasProgData	
	R.13 Triggermode Reset	
	R.14 Triggermode Trigger	
	R.15 Set LightRef	
	R.16 Reset LightRef	
	R.17 Read MinMax	
	R.18 Read MinMaxReset	
	R.19 Use_Defaults	
	R.20 Get_DrvSetting	290
S	Commands for ESC4912	299
S		299
S	S.1 Set_SRIndex (SRA)	299
S	S.1 Set_SRIndex (SRA)	299 299
S	S.1 Set_SRIndex (SRA) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG)	299 299 300
S	S.1 Set_SRIndex (SRA) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG) S.4 Get_Trigger (TRG?)	299 299 300 300
S	S.1 Set_SRIndex (SRA) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG) S.4 Get_Trigger (TRG?) S.5 Get_Measure (GMD)	299 299 300 300 300
S	S.1 Set_SRIndex (SRA) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG) S.4 Get_Trigger (TRG?) S.5 Get_Measure (GMD) S.6 Set_AvrType (AVT)	299 299 300 300 300 300
S	S.1 Set_SRIndex (SRA) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG) S.4 Get_Trigger (TRG?) S.5 Get_Measure (GMD) S.6 Set_AvrType (AVT) S.7 Get_AvrType (AVT?)	299 299 300 300 300 300 300
S	S.1 Set_SRIndex (SRA) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG) S.4 Get_Trigger (TRG?) S.5 Get_Measure (GMD) S.6 Set_AvrType (AVT) S.7 Get_AvrType (AVT?) S.8 Set_AvrNbr (AVN)	299 299 300 300 300 300 300 301
S	S.1 Set_SRIndex (SRA) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG) S.4 Get_Trigger (TRG?) S.5 Get_Measure (GMD) S.6 Set_AvrType (AVT) S.7 Get_AvrType (AVT?) S.8 Set_AvrNbr (AVN) S.9 Get_AvrNbr (AVN?)	299 299 300 300 300 300 301 301
S	S.1 Set_SRIndex (SRA) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG) S.4 Get_Trigger (TRG?) S.5 Get_Measure (GMD) S.6 Set_AvrType (AVT) S.7 Get_AvrType (AVT?) S.8 Set_AvrNbr (AVN) S.9 Get_AvrNbr (AVN?) S.10 ChannelStatus (CHS)	299 299 300 300 300 300 301 301 301
S	S.1 Set_SRIndex (SRA) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG) S.4 Get_Trigger (TRG?) S.5 Get_Measure (GMD) S.6 Set_AvrType (AVT) S.7 Get_AvrType (AVT?) S.8 Set_AvrNbr (AVN) S.9 Get_AvrNbr (AVN?) S.10 ChannelStatus (CHS) S.11 Set_Channel (CHT)	299 299 300 300 300 300 301 301 301 301
S	S.1 Set_SRIndex (SRA) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG) S.4 Get_Trigger (TRG?) S.5 Get_Measure (GMD) S.6 Set_AvrType (AVT) S.7 Get_AvrType (AVT?) S.8 Set_AvrNbr (AVN) S.9 Get_AvrNbr (AVN?) S.10 ChannelStatus (CHS) S.11 Set_Channel (CHT) S.12 Get_Channel (CHT?)	299 299 300 300 300 301 301 301 301 302
S	S.1 Set_SRIndex (SRA) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG) S.4 Get_Trigger (TRG?) S.5 Get_Measure (GMD) S.6 Set_AvrType (AVT) S.7 Get_AvrType (AVT?) S.8 Set_AvrNbr (AVN) S.9 Get_AvrNbr (AVN?) S.10 ChannelStatus (CHS) S.11 Set_Channel (CHT?) S.12 Get_Channel (CHT?) S.13 Set_LinMode (LIN)	299 299 300 300 300 301 301 301 301 302 302
S	S.1 Set_SRIndex (SRA) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG) S.4 Get_Trigger (TRG?) S.5 Get_Measure (GMD) S.6 Set_AvrType (AVT) S.7 Get_AvrType (AVT?) S.8 Set_AvrNbr (AVN) S.9 Get_AvrNbr (AVN?) S.10 ChannelStatus (CHS) S.11 Set_Channel (CHT) S.12 Get_Channel (CHT?) S.13 Set_LinMode (LIN) S.14 Get_LinMode (LIN?)	299 299 300 300 300 301 301 301 302 302 302
S	S.1 Set_SRIndex (SRA) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG) S.4 Get_Trigger (TRG?) S.5 Get_Measure (GMD) S.6 Set_AvrType (AVT) S.7 Get_AvrType (AVT?) S.8 Set_AvrNbr (AVN) S.9 Get_AvrNbr (AVN?) S.10 ChannelStatus (CHS) S.11 Set_Channel (CHT) S.12 Get_Channel (CHT?) S.13 Set_LinMode (LIN) S.14 Get_LinMode (LIN?) S.15 Set_LinPoint (SLP)	299 299 300 300 300 301 301 301 302 302 302 303
S	S.1 Set_SRIndex (SRA) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG) S.4 Get_Trigger (TRG?) S.5 Get_Measure (GMD) S.6 Set_AvrType (AVT) S.7 Get_AvrType (AVT?) S.8 Set_AvrNbr (AVN) S.9 Get_AvrNbr (AVN?) S.10 ChannelStatus (CHS) S.11 Set_Channel (CHT) S.12 Get_Channel (CHT?) S.13 Set_LinMode (LIN?) S.14 Get_LinMode (LIN?) S.15 Set_LinPoint (SLP) S.16 Get_LinPoint (GLP)	299 299 300 300 300 301 301 301 302 302 302 303 303
S	S.1 Set_SRIndex (SRA) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG) S.4 Get_Trigger (TRG?) S.5 Get_Measure (GMD) S.6 Set_AvrType (AVT) S.7 Get_AvrType (AVT?) S.8 Set_AvrNbr (AVN) S.9 Get_AvrNbr (AVN?) S.10 ChannelStatus (CHS) S.11 Set_Channel (CHT) S.12 Get_Channel (CHT?) S.13 Set_LinMode (LIN) S.14 Get_LinMode (LIN?) S.15 Set_LinPoint (SLP) S.16 Get_LinPoint (GLP) S.17 Get_Status (STS)	299 299 300 300 300 301 301 301 302 302 302 303 303 304
S	S.1 Set_SRIndex (SRA) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG) S.4 Get_Trigger (TRG?) S.5 Get_Measure (GMD) S.6 Set_AvrType (AVT) S.7 Get_AvrType (AVT?) S.8 Set_AvrNbr (AVN) S.9 Get_AvrNbr (AVN?) S.10 ChannelStatus (CHS) S.11 Set_Channel (CHT) S.12 Get_Channel (CHT?) S.13 Set_LinMode (LIN) S.14 Get_LinMode (LIN?) S.15 Set_LinPoint (SLP) S.16 Get_Status (STS) S.17 Get_Status (STS) S.18 Get_Version (VER)	299 299 300 300 300 301 301 301 302 302 302 303 303 304 305
S	S.1 Set_SRIndex (SRA?) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG) S.4 Get_Trigger (TRG?) S.5 Get_Measure (GMD) S.6 Set_AvrType (AVT) S.7 Get_AvrType (AVT?) S.8 Set_AvrNbr (AVN) S.9 Get_AvrNbr (AVN?) S.10 ChannelStatus (CHS) S.11 Set_Channel (CHT) S.12 Get_Channel (CHT?) S.13 Set_LinMode (LIN) S.14 Get_LinMode (LIN?) S.15 Set_LinPoint (SLP) S.16 Get_Status (STS) S.17 Get_Status (STS) S.18 Get_Version (VER) S.19 Save_Setup (SSU)	299 299 300 300 300 301 301 301 302 302 302 303 303 304 305
S	S.1 Set_SRIndex (SRA) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG) S.4 Get_Trigger (TRG?) S.5 Get_Measure (GMD) S.6 Set_AvrType (AVT) S.7 Get_AvrType (AVT?) S.8 Set_AvrNbr (AVN) S.9 Get_AvrNbr (AVN?) S.10 ChannelStatus (CHS) S.11 Set_Channel (CHT) S.12 Get_Channel (CHT?) S.13 Set_LinMode (LIN) S.14 Get_LinMode (LIN?) S.15 Set_LinPoint (SLP) S.16 Get_LinPoint (GLP) S.17 Get_Status (STS) S.18 Get_Version (VER) S.19 Save_Setup (SSU) S.20 Read_Setup (RSU)	299 299 300 300 300 301 301 301 302 302 302 303 303 304 305
S	S.1 Set_SRIndex (SRA) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG) S.4 Get_Trigger (TRG?) S.5 Get_Measure (GMD) S.6 Set_AvrType (AVT) S.7 Get_AvrType (AVT?) S.8 Set_AvrNbr (AVN) S.9 Get_AvrNbr (AVN?) S.10 ChannelStatus (CHS) S.11 Set_Channel (CHT) S.12 Get_Channel (CHT?) S.13 Set_LinMode (LIN) S.14 Get_LinMode (LIN?) S.15 Set_LinPoint (SLP) S.16 Get_LinPoint (GLP) S.17 Get_Status (STS) S.18 Get_Version (VER) S.19 Save_Setup (SSU) S.20 Read_Setup (RSU) S.21 Factory_Defaults (FDE)	299 299 300 300 300 301 301 301 302 302 302 303 303 304 305
S	S.1 Set_SRIndex (SRA) S.2 Get_SRIndex (SRA?) S.3 Set_Trigger (TRG) S.4 Get_Trigger (TRG?) S.5 Get_Measure (GMD) S.6 Set_AvrType (AVT) S.7 Get_AvrType (AVT?) S.8 Set_AvrNbr (AVN) S.9 Get_AvrNbr (AVN?) S.10 ChannelStatus (CHS) S.11 Set_Channel (CHT) S.12 Get_Channel (CHT?) S.13 Set_LinMode (LIN) S.14 Get_LinMode (LIN?) S.15 Set_LinPoint (SLP) S.16 Get_LinPoint (GLP) S.17 Get_Status (STS) S.18 Get_Version (VER) S.19 Save_Setup (SSU) S.20 Read_Setup (RSU)	299 299 300 300 300 301 301 301 302 302 302 303 304 305 305

ı	Commands for D16100	309
	T.1 Set_SRIndex (SRA)	309
	T.2 Get_SRIndex (SRA?)	309
	T.3 Set_Trigger (TRG)	310
	T.4 Get Trigger (TRG?)	310
	T.5 Get_Measure (GMD)	
	T.6 Set_Coefficient (SCO)	310
	T.7 Get_Coefficient (GCO)	311
	T.8 Set_AvrType (AVT)	
	T.9 Get_AvrType (AVT?)	
	T.10 Set AvrNbr (AVN)	
	T.11 Get AvrNbr (AVN?)	
	T.12 Set LinMode (LIN)	
	T.13 Get LinMode (LIN?)	
	T.14 Set_LinPoint (SLP)	
	T.15 Get LinPoint (GLP)	
	T.16 Get_Status (STS)	
	T.17 Get_Version (VER)	
	T.18 Save_Setup (SSU)	
	T.19 Read_Setup (RSU)	
	T.20 Factory_Defaults (FDE)	
	T.21 Use_Defaults	
	T.22 Get_DrvSetting	316
U	Commands for KSS6380	317
	U.1 Set SRIndex (SRA)	
	U.2 Get SRIndex (SRA?)	
	U.3 Set_Trigger (TRG)	
	U.4 Get Trigger (TRG?)	
	U.5 Get_Measure (GMD)	
	U.6 Set_TempCoeff (STC)	318
	U.7 Get_TempCoeff (GTC)	318
	U.8 Get UnlinEddyVal (GUE)	319
	U.9 Set_AvrType (AVT)	
	U.10 Get_AvrType (AVT?)	
	U.11 Set_AvrNbr (AVN)	
	U.12 Get_AvrNbr (AVN?)	
	U.13 ChannelStatus (CHS)	
	U.14 Set_Channel (CHT)	
	U.15 Get_Channel (CHT?)	
	U.16 Set_LinPoint (SLP)	
	U.17 Get_LinPoint (GLP)	
	U.18 Get_Status (STS)	
	U.19 Get_Version (VER)	
	U.20 Save_Setup (SSU)	
	U.21 Read_Setup (RSU)	
	U.22 Factory_Defaults (FDE)	324
	U.23 Use_Defaults	325
	U.24 Get DrvSetting	

٧	Commands for DT6500	327
	V.1 Set SRIndex (SRA)	327
	V.2 Get SRIndex (SRA?)	
	V.3 Set Trigger (TRG)	
	V.4 Get Trigger (TRG?)	
	V.5 Get Measure (GMD)	
	V.6 Set AvrType (AVT)	
	V.7 Get AvrType (AVT?)	
	V.8 Set_AvrNbr (AVN)	
	V.9 Get AvrNbr (AVN?)	
	V.10 ChannelStatus (CHS)	
	V.11 Set_Channel (CHT)	
	V.12 Get Channel (CHT?)	
	V.13 Set_Display (DIS)	
	V.14 Get Display (DIS?)	
	V.15 Set MathFunction (SMF)	
		331
	_	332
	_	332
	_ /	333
	_	333
	_ /	333
	_	334
	_	336
	V.24 Save_Setup (SSU)	336
	V.25 Read Setup (RSU)	336
	V.26 Factory_Defaults (FDE)	336
	V.27 Use Defaults	
	V.28 Get_DrvSetting	
W	Commands for EncoderIF2004	340
	W.1 Use_Defaults	
	W.2 Enc_ClearCounter	
	W.3 Enc_LoadCounter	
	W.4 Enc_LatchCounter	
	W.5 Enc_UnlockTraceC	342
	W.6 Enc IsFirstRef	342
	W.7 Enc IsSecondRef	342
	W.8 Enc GetLatchReg	342
	W.9 Enc_SetLoadReg	342
	W.10IF2004_SystemReset	343
	W.11IF2004 CheckGate	343
	W.12Enc CheckRef	343
	W.13IF2004 SensorReset12	343
	W.14IF2004 SensorReset34	343
	W.15Get FPGAVersion	344
	W.15det_FFGAVersion	344
X	Commands for PCICard_IF2008	345
	X.1 Use Defaults	345
	X.2 Get DrvSetting	346
	X.3 Use Gate	
	X.4 Set TimerFrequency	
	X.5 Set EncoderInterpolation	348
	A.J OEL ETICOUCHTICODOLOUT	U40

X.6 Get_EncoderInterpolation	. 349
X.7 Set_EncoderDirection	. 349
X.8 Get_EncoderDirection	. 350
X.9 Set_EncoderMode	. 350
X.10 Get_EncoderMode	. 350
X.11 Set_EncoderLatchSource	. 351
X.12 Get_EncoderLatchSource	. 351
X.13 Set_EncoderPreload	
X.14 Set_DigitalOutSource	. 352
X.15 Get_DigitalOutSource	. 353
X.16 Set_TxDSource	. 353
X.17 Get_TxDSource	. 353
X.18 Set_TrgSource	. 354
X.19 Get TrgSource	. 354
X.20 Set DigitalInLatchSource	. 354
X.21 Get DigitalInLatchSource	. 355
X.22 Set ADCLatchSource	. 355
X.23 Get_ADCLatchSource	. 356
X.24 Get FPGAVersion	. 356
X.25 ls_Channel56Available	. 356
X.26 Is ADCAvailable	. 357
X.27 Is DigitallOAvailable	. 357
X.28 Clear Encoder	. 357
X.29 Load Encoder	. 357
X.30 Latch Encoder	. 358
X.31 EnableRef Encoder	. 358
X.32 Get_EncoderValue	. 358
X.33 Get_EncoderReference	. 359
X.34 Get ADCValue	. 359
X.35 Get_DigitalInValue	. 360
X.36 Get RxDValue	. 360
X.37 Set DigitalOutValue	. 360
X.38 Get DigitalOutValue	. 360
X.39 Set TxDValue	. 361
X.40 Get TxDValue	
X.41 Set TrgValue	
X.42 Get_TrgValue	

1 Introduction

MEDAQLib is a software library for easy data acquisition and communication with digital Micro-Epsilon sensors. The library is independent from any communication protocol or hardware interface, i.e. all sensors or controllers are accessed from your program in the same way independent whether via TCP/IP or USB or serial communication.

Currently the following sensors are supported:

ILR sensors: optoNCDT110x, optoNCDT115x, optoNCDT118x, optoNCDT1191.

ILD sensors: optoNCDT1302, optoNCDT1401, optoNCDT1401-Controller, optoNCDT1402, optoNCDT1700, optoNCDT1800, optoNCDT2000, optoNCDT2200 (including optoNCDT2220).

IFD sensors: optoNCDT2400, optoNCDT2401, optoNCDT2430, optoNCDT2431.

ODC sensors: optoCONTROL2500, optoCONTROL2600.

Eddy sensors: eddyNCDT4912.

Capa sensors: capaNCDT6100, capaNCDT6500.

PCI cards: Encoder of IF2004 and IF2008 PCI card. Digital OUT/IN, Analog IN of

IF2008 PCI card.

The sensors can be accessed through interfaces RS232, USB (Converter from RS422), USB (via DriverX or USBIO), IF2004 and IF2008 PCI card (RS422) and TCP/IP.

The software consists of a DLL to be imported into your data acquisition project. As programming languages C/C++, Visual Basic, Delphi and many other languages are supported. For C/C++ an additional include file is provided to get you started.

More than one sensor can be used over different interfaces at the same time (from one or several applications).

The functions of MEDAQLib are thread-safe, so you can call any function at the same time from concurrent threads.

Additionally Micro-Epsilon provides ICONNECT having special modules to access all the features of these sensors. ICONNECT is a programming environment giving you the possibility to develop applications without the need to "real programming".

2 Installation

MEDAQLib comes as one zip file. On extracting the zip file to some directory on your hard disk the following directory structure and files will be created:

Release\MEDAQLib.dll	the driver dll.
Release\MEDAQLib.lib	linker library for Visual C/C++ projects.
MEDAQLib.h	include file for C/C++ projects.
ErrCodes.h	list of all error codes.
Documentation\MEDAQLib.pdf	the reference guide you are currently reading.
Documentation\Version History.txt	changes between the different released versions.
Samples	examples showing usage of MEDAQLib.

Nothing has to be installed into some Windows directory. Nothing has to be changed in your Windows registry.

In addition the following drivers are included in the zip file:

for accessing the IFD2401/IFD2431 over USB.
for accessing the IF2004 PCI card.
for accessing the IF2008 PCI card.
for accessing the ILD-1401-Controller over USB
the driver for the RS422 to USB converter from FTDI, version 2.0

These drivers are also included in the driver CD supplied with your hardware.

3 Accessing MEDAQLib in Visual C/C++

3.1 Setting up Visual Studio

For accessing MEDAQLib from Visual Studio copy the file MEDAQLib.h into your project directory, add it to your project (Project->Add Files) and include it in your C/C++ source file as follows:

```
#include "MEDAQLib.h"
```

Now you are able to compile your project accessing MEDAQLib. For linking in MEDAQLib.dll there are two possibilities:

3.1.1 Using MEDAQLib.lib, static approach

Copy the file MEDAQLib.lib into your project directory and add it to your project (Project->Add Files). Now you are able to also link your project.

3.1.2 Using MEDAQLib.dll, dynamic approach

Do not link your project against MEDAQLib.lib. For accessing the functions you have to load the MEDAQLib.dll using

```
HINSTANCE hInstance = LoadLibrary("MEDAQLib.dll");
```

and get the functions pointers like

```
CREATESENSORINSTANCE pCreateSensorInstance= (CREATESENSORINSTANCE)
GetProcAddress (hInstance, "CreateSensorInstance");
```

```
RELEASESENSORINSTANCE pReleaseSensorInstance= (RELEASESENSORIN-STANCE) GetProcAddress (hInstance, "ReleaseSensorInstance");
```

Please check any return codes after calling these functions, which is not shown here. Calling a function then is done like

```
DWORD result = pCreateSensorInstance(SENSOR_ILD2000);
```


4 Using MEDAQLib

MEDAQLib continuously collects all data from sensor in an own thread or timer and stores it into the internal ring buffer. No function call from user to MEDAQLib does interrupt reading the data, so no data is lost. For reading the data from MEDAQLib to host application, MEDAQLib supports two operation modes:

4.1 Block based acquisition

The measurement values are collected and processed in large data blocks. The advantage of this method is that the transfer cycles do not have to be so fast and often. Because of this normally there is no loss of data.

4.2 Polling

Using this method only the very last measurement value is returned to the caller. So the response time is very short, but you may miss some data on not polling often enough.

Both modes may be used simultanously because polling for data does not change any internal buffer of MEDAQLib.

The function DataAvail can be used to retrieve the number of available values in buffer.

To wait for enough data, the user can call DataAvail in a loop (combined with a Sleep function) or he can use the DataAvail event (A.3.6).

5 Samples

For real examples please take a look at the given examples in subdirectory samples. They show you different possibilities on using MEDAQLib:

5.1 C#Example

This example shows how to access an ILD-1401 via TCP/IP from C#. Before using it please change the IP address to suit your settings.

5.2 DelphiExample

This example shows how to access an ILD-1401 via RS232 from Delphi. Before using it please change the COM port number to suit your settings.

5.3 DLLExample

This example shows how to access an ILD-2200 via IF2004 hardware card from Visual C++. In addition it shows how to access the functions from MEDAQLib without using MEDAQLib.lib, but using the dynamic approach using LoadLibrary and GetProcAddress.

5.4 LabView

This example shows how to access an ILD-1700 via RS232 from LabView 8.6 (and exported to 8.5 and 8.2). Before using it please change the COM port number to suit your settings. Several VI's with base functionality are included which can be used for own applications.

5.5 LibExample

This example shows how to access an ILD-1700 via RS232 from Visual C++. Before using it please change the COM port number to suit your settings. In contrast to the DLLExample is links against the MEDAQLib.lib library directly.

5.6 UnicodeExample

This example shows how to access an IFC2401 via USB (DriverX_USB) from Visual C++. It uses the MEDAQLib dynamically and can be compiled for ANSI and UNICODE. To wait for data it uses event handling.

5.7 VBAExample

This example shows how to access an ODC-2600 via RS232 from Excel speaking Visual Basic for Applications. Before using it please change the COM port number to suit your settings. To see the code please right click the "Table 1" tab at the bottom of Excel. In the context menu select "Show code". The second example (VBAExample2.xls) does the same but with sensor ILD1700.

5.8 VB6.0Example

This example shows how to access an IFC-2430 via TCP/IP using Visual Basic 6.0. Before using it please change the IP address to suit your settings.

5.9 VB2008Example

This example shows how to access an ILD1700 via IF2004 using Visual Basic 2008.

sensor

Function Reference

6.1 Opening the Driver

Name: CreateSensorInstance CreateSensorInstance

Description:

Opens the driver and creates an instance for the sensor.

Attention! Please don't forget to release the instance at the end. Otherwise there will be memory and handle leaks.

Declaration:

```
DWORD CreateSensorInstance (ME_SENSOR sensor);
```

Parameter: ME_SENSOR sensor

Direction: [IN] Valid values:

SENSOR_ILR110x_115x (19)

SENSOR ILR118x (20)

SENSOR ILR1191 (21)

SENSOR ILD1302 (24)

SENSOR ILD1401 (1)

CONTROLLER ILD1401 (14)

SENSOR ILD1402 (23)

SENSOR ILD1700 (2)

SENSOR ILD1800 (3)

SENSOR ILD2000 (4)

SENSOR ILD2200 (5)

SENSOR IFD2400 (6) SENSOR_IFD2401 (12)

SENSOR IFD2430 (7)

SENSOR IFD2431 (13)

SENSOR_ODC2500 (8)

SENSOR ODC2600 (9)

CONTROLLER ESC4912 (17)

SENSOR ASP5500 (11)

SENSOR DT6100 (16)

CONTROLLER DT6500 (15)

CONTROLLER KSS6380 (18)

ENCODER IF2004 (10)

PCI CARD IF2008 (22)

Description: Type of sensor used.

Returns: Number of the created sensor instance or zero, if parameter sensor is not valid.

6.2 Releasing Driver

Name: ReleaseSensorInstance ReleaseSensorInstance

Description:

Free the specified sensor instance.

X9751165 25

instanceHandle

instanceHandle

paramName

paramValue

Declaration:

ERR_CODE ReleaseSensorInstance (DWORD instanceHandle);

Parameter: DWORD instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Returns:

ERR NOERROR (0) on success.

ERR_INSTANCE_NOT_EXIST (-24) if instanceHandle is not valid.

6.3 Set parameters

Before connecting to the sensor (OpenSensor) or sending commands to the sensor (SensorCommand) parameters for both functions can be specified. Each parameter can be set by one of following functions.

Name: SetParameterInt SetParameterInt

Description:

Set a 4 Byte integer parameter.

Declaration:

ERR_CODE SetParameterInt (DWORD instanceHandle, LPCTSTR paramName,
 int paramValue);

Parameter: DWORD instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: LPCTSTR paramName

Direction: [IN]

Valid value: All available values are listed at chapter A.1 and A.2 and

following.

Description: Name of the parameter as string.

Parameter: int paramValue

Direction: [IN]

Description: Value of the parameter.

Returns:

ERR NOERROR (0) on success.

ERR_INSTANCE_NOT_EXIST (-24) if instanceHandle is not valid.

instanceHandle

paramName

paramValue

instanceHandle

paramName

paramValue

Name: SetParameterIntU SetParameterIntU

Description:

Set a 4 Byte integer parameter (Unicode version).

Declaration:

ERR_CODE SetParameterIntU (DWORD instanceHandle, LPCWSTR paramName,
 int paramValue);

Parameter: DWORD instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: LPCWSTR paramName

Direction: [IN]

Valid value: All available values are listed at chapter A.1 and A.2 and

following.

Description: Name of the parameter as unicode string.

Parameter: int paramValue

Direction: [IN]

Description: Value of the parameter.

Returns:

ERR NOERROR (0) on success.

ERR_WRONG_PARAMETER (-18) if unicode conversion failed. ERR INSTANCE NOT EXIST (-24) if instanceHandle is not valid.

Name: SetParameterDWORD SetParameterDWORD

Description:

Set a 4 Byte unsigned integer parameter.

Declaration:

Parameter: DWORD instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

Create Sensor Instance.

Parameter: LPCTSTR paramName

Direction: [IN]

Valid value: All available values are listed at chapter A.1 and A.2 and

following.

Description: Name of the parameter as string.

Parameter: DWORD paramValue

Direction: [IN]

Description: Value of the parameter.

Returns:

ERR_NOERROR (0) on success.

ERR INSTANCE NOT EXIST (-24) if instanceHandle is not valid.

Name: SetParameterDWORDU SetParameterDWORDU

Description:

Set a 4 Byte unsigned integer parameter (Unicode version).

Declaration:

Parameter: DWORD instanceHandle instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: LPCWSTR paramName paramName

Direction: [IN]

Valid value: All available values are listed at chapter A.1 and A.2 and

following.

Description: Name of the parameter as unicode string.

Parameter: DWORD paramValue paramValue

Direction: [IN]

Description: Value of the parameter.

Returns:

ERR NOERROR (0) on success.

ERR_WRONG_PARAMETER (-18) if unicode conversion failed. ERR INSTANCE NOT EXIST (-24) if instanceHandle is not valid.

Name: SetParameterDouble SetParameterDouble

Description:

Set a 8 Byte double parameter.

Declaration:

Parameter: DWORD instanceHandle instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: LPCTSTR paramName paramName

Direction: [IN]

Valid value: All available values are listed at chapter A.1 and A.2 and

following.

Description: Name of the parameter as string.

Parameter: double paramValue paramValue

Direction: [IN]

Description: Value of the parameter.

Returns:

ERR NOERROR (0) on success.

ERR_INSTANCE_NOT_EXIST (-24) if instanceHandle is not valid.

Name: SetParameterDoubleU SetParameterDoubleU

Description:

Set a 8 Byte double parameter (Unicode version).

Declaration:

Parameter: DWORD instanceHandle

instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: LPCWSTR paramName

paramName

Direction: [IN]

Valid value: All available values are listed at chapter A.1 and A.2 and

following.

Description: Name of the parameter as unicode string.

Parameter: double paramValue

paramValue

Direction: [IN]

Description: Value of the parameter.

Returns:

ERR NOERROR (0) on success.

ERR_WRONG_PARAMETER (-18) if unicode conversion failed. ERR INSTANCE NOT EXIST (-24) if instanceHandle is not valid.

Name: SetParameterString SetParameterString

Description:

Set a string (pointer to a character array) parameter.

Declaration:

Parameter: DWORD instanceHandle

instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: LPCTSTR paramName

paramName

Direction: [IN]

Valid value: All available values are listed at chapter A.1 and A.2 and

following.

Description: Name of the parameter as string.

Parameter: LPCTSTR paramValue

paramValue

Direction: [IN]

Description: Value of the parameter.

Returns:

ERR NOERROR (0) on success.

ERR INSTANCE NOT EXIST (-24) if instanceHandle is not valid.

Name: SetParameterStringU SetParameterStringU

Description:

Set a string (pointer to a character array) parameter (Unicode version).

Declaration:

Parameter: DWORD instanceHandle instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: LPCWSTR paramName paramName

Direction: [IN]

Valid value: All available values are listed at chapter A.1 and A.2 and

following

Description: Name of the parameter as unicode string.

Parameter: LPCWSTR paramValue paramValue

Direction: [IN]

Description: Value (as unicode) of the parameter.

Returns:

ERR_NOERROR (0) on success.

ERR_WRONG_PARAMETER (-18) if unicode conversion failed. ERR INSTANCE NOT EXIST (-24) if instanceHandle is not valid.

Name: SetParameterStringL SetParameterStringL

Description:

Set a binary string (pointer to a character array, including zero characters) parameter with length.

Declaration:

Parameter: DWORD instanceHandle instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: LPCTSTR paramName paramName

Direction: [IN]

Valid value: All available values are listed at chapter A.1 and A.2 and

following.

Description: Name of the parameter as string. Usefull for the parameter

SP_CmdStr (in Cmd_Generic)

Parameter: DWORD len len

Direction: [IN]

Description: Length of the binary string.

Parameter: LPCTSTR paramValue paramValue

Direction: [IN]

Description: Value of the parameter.

Returns:

ERR NOERROR (0) on success.

ERR INSTANCE NOT EXIST (-24) if instanceHandle is not valid.

6.4 Retrieving sensor answer

After sending a command to a sensor (SensorCommand) the answer can be retrieved at same manner as setting parameters.

Name: GetParameterInt GetParameterInt

Description:

Get a 4 Byte integer parameter.

Declaration:

ERR_CODE GetParameterInt (DWORD instanceHandle, LPCTSTR paramName,
 int *paramValue);

Parameter: DWORD instanceHandle instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: LPCTSTR paramName paramName

Direction: [IN]

Valid value: All available values are listed at chapter A.1.

Description: Name of the parameter as string.

Parameter: int * paramValue paramValue

Direction: [OUT]

Description: Pointer to a vaiable retrieving the parameter

Returns:

ERR NOERROR (0) on success.

ERR INSTANCE NOT EXIST (-24) if instanceHandle is not valid.

ERR_NOT_FOUND (-25) if the parameter (specified by paramName) is not

found.

ERR_WRONG_PARAMETER (-18) if the pointer to paramValue is NULL.

Name: GetParameterIntU GetParameterIntU

Description:

Get a 4 Byte integer parameter (Unicode version).

Declaration:

ERR_CODE GetParameterIntU (DWORD instanceHandle, LPCWSTR paramName,

int *paramValue);

Parameter: DWORD instanceHandle instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: LPCWSTR paramName paramName

Direction: [IN]

Valid value: All available values are listed at chapter A.1. **Description:** Name of the parameter as unicode string.

Parameter: int * paramValue paramValue

Direction: [OUT]

Description: Pointer to a vaiable retrieving the parameter

Returns:

ERR NOERROR (0) on success.

ERR_WRONG_PARAMETER (-18) if the pointer to paramValue is NULL or unicode conversion failed.

ERR INSTANCE NOT EXIST (-24) if instanceHandle is not valid.

ERR_NOT_FOUND (-25) if the parameter (specified by paramName) is not found.

Name: GetParameterDWORD GetParameterDWORD

Description:

Get a 4 Byte unsigned integer parameter.

Declaration:

ERR_CODE GetParameterDWORD (DWORD instanceHandle, LPCTSTR paramName,

DWORD *paramValue);

Parameter: DWORD instanceHandle instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: LPCTSTR paramName paramName

Direction: [IN]

Valid value: All available values are listed at chapter A.1.

Description: Name of the parameter as string.

Parameter: DWORD * paramValue paramValue

Direction: [OUT]

Description: Pointer to a vaiable retrieving the parameter

Returns:

ERR NOERROR (0) on success.

ERR INSTANCE NOT EXIST (-24) if instanceHandle is not valid.

ERR_NOT_FOUND (-25) if the parameter (specified by paramName) is not

found.

ERR_WRONG_PARAMETER (-18) if the pointer to paramValue is NULL.

Name: GetParameterDWORDU GetParameterDWORDU

Description:

Get a 4 Byte unsigned integer parameter (Unicode version).

Declaration:

 ${\tt ERR_CODE} \ \ {\tt GetParameterDWORDU} \ \ ({\tt DWORD} \ \ {\tt instanceHandle}, \ \ {\tt LPCWSTR} \ \ {\tt paramName},$

DWORD *paramValue);

Parameter: DWORD instanceHandle instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: LPCWSTR paramName paramName

Direction: [IN]

Valid value: All available values are listed at chapter A.1. **Description:** Name of the parameter as unicode string.

Parameter: DWORD * paramValue paramValue

Direction: [OUT]

Description: Pointer to a vaiable retrieving the parameter

Returns:

ERR NOERROR (0) on success.

 ${\sf ERR_WRONG_PARAMETER} \ \ (\text{-}18) \ \ \text{if the pointer to paramValue is NULL or}$

unicode conversion failed.

ERR INSTANCE NOT EXIST (-24) if instanceHandle is not valid.

ERR_NOT_FOUND (-25) if the parameter (specified by paramName) is not

found.

Name: GetParameterDouble GetParameterDouble

Description:

Get a 8 Byte double parameter.

Declaration:

ERR_CODE GetParameterDouble (DWORD instanceHandle, LPCTSTR paramName,

double *paramValue);

Parameter: DWORD instanceHandle instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: LPCTSTR paramName paramName

Direction: [IN]

Valid value: All available values are listed at chapter A.1.

Description: Name of the parameter as string.

Parameter: double * paramValue paramValue

Direction: [OUT]

Description: Pointer to a vaiable retrieving the parameter

Returns:

ERR NOERROR (0) on success.

ERR INSTANCE NOT EXIST (-24) if instanceHandle is not valid.

ERR_NOT_FOUND (-25) if the parameter (specified by paramName) is not

found.

ERR WRONG PARAMETER (-18) if the pointer to paramValue is NULL.

Name: GetParameterDoubleU GetParameterDoubleU

Description:

Get a 8 Byte double parameter (Unicode version).

Declaration:

Parameter: DWORD instanceHandle instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: LPCWSTR paramName paramName

Direction: [IN]

Valid value: All available values are listed at chapter A.1. **Description:** Name of the parameter as unicode string.

Parameter: double * paramValue paramValue

Direction: [OUT]

Description: Pointer to a vaiable retrieving the parameter

Returns:

ERR_NOERROR (0) on success.

ERR_WRONG_PARAMETER (-18) if the pointer to paramValue is NULL or

unicode conversion failed.

ERR INSTANCE NOT EXIST (-24) if instanceHandle is not valid.

ERR_NOT_FOUND (-25) if the parameter (specified by paramName) is not found.

Name: GetParameterString GetParameterString

Description:

Get a string (character array) parameter.

Declaration:

Parameter: DWORD instanceHandle instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: LPCTSTR paramName paramName

Direction: [IN]

Valid value: All available values are listed at chapter A.1.

Description: Name of the parameter as string.

Parameter: LPTSTR paramValue paramValue

Direction: [OUT]

Description: Pointer to a vaiable (character buffer) retrieving the param-

eter.

Parameter: DWORD * maxLen
Direction: [IN/OUT]

maxLen

Description: The buffer must be allocated by the application. The size of the buffer is specified at maxLen. If the resulting string is larger than maxLen, it is truncated and ERR_NOMEMORY is returned. The real length of the string (maybe truncated) is returned in maxLen too. If LPTSTR paramValue is NULL, the length of the containing string is returned in maxLen.

Returns:

ERR_NOERROR (0) on success.

ERR_WRONG_PARAMETER (-18) if the pointer to paramValue or the pointer to maxLen is NULL.

ERR_NOMEMORY (-19) if the buffer is too short to hold the complete answer. ERR_INSTANCE_NOT_EXIST (-24) if instanceHandle is not valid.

ERR_NOT_FOUND (-25) if the parameter (specified by paramName) is not found.

Name: GetParameterStringU

GetParameterStringU

Description:

Get a string (character array) parameter (Unicode version).

Declaration:

Parameter: DWORD instanceHandle

instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: LPCWSTR paramName

paramName

Direction: [IN]

Valid value: All available values are listed at chapter A.1. **Description:** Name of the parameter as unicode string.

Parameter: LPWSTR paramValue

paramValue

Direction: [OUT]

Description: Pointer to a vaiable (unicode buffer) retrieving the parame-

ter.

Parameter: DWORD * maxLen

maxLen

Direction: [IN/OUT]

Description: The buffer must be allocated by the application. The size of the buffer is specified at maxLen. If the resulting string is larger than maxLen, it is truncated and ERR_NOMEMORY is returned. The real length of the string (maybe truncated) is returned in maxLen too. If LPTSTR paramValue is NULL, the length of the containing string is

returned in maxLen.

Returns:

ERR NOERROR (0) on success.

ERR_WRONG_PARAMETER (-18) if the pointer to paramValue or the pointer to maxLen is NULL or conversion to unicode failed.

ERR_NOMEMORY (-19) if the buffer is too short to hold the complete answer. ERR INSTANCE NOT EXIST (-24) if instanceHandle is not valid.

ERR_NOT_FOUND (-25) if the parameter (specified by paramName) is not found.

6.5 Clear internal parameter buffer

Before building up a new command using the SetParameter... functions, the internal parameter buffer should be cleared. This avoids parameter mismatch between several commands.

Name: ClearAllParameters ClearAllParameters

Declaration:

ERR_CODE ClearAllParameters (DWORD instanceHandle);

Parameter: DWORD instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Returns:

ERR_NOERROR (0) on success.
ERR_INSTANCE_NOT_EXIST (-24) if instanceHandle is not valid.

6.6 Connecting to the sensor

Name: OpenSensor OpenSensor

Description:

Establish the connection to the sensor.

After connecting to the sensor, all internal parameters starting with SP_, CP_ and IP_ are cleared (like at function ClearAllParameters).

Attention! Please don't forget to close the connection at the end. Otherwise it can come to unpredictable behaviour when resources leave open.

Declaration:

ERR_CODE OpenSensor (DWORD instanceHandle);

Parameter: DWORD instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

instanceHandle

instanceHandle

Returns:

ERR NOERROR (0) on success.

ERR INSTANCE NOT EXIST (-24) if instanceHandle is not valid.

ERR ALREADY OPEN (-11) if the specified connection is already open.

ERR_INTERFACE_NOT_SUPPORTED (-10) if the specified interface (parameter "IP Interface") is not supported.

ERR_CANNOT_CREATE_INTERFACE (-12) if the interface cannot be created. ERR_CANNOT_OPEN (-2) if interface cannot be opened.

ERR_WRONG_PARAMETER (-18) if a parameter is not valid (e.g. out of range).

ERR_NOMEMORY (-19) if there is not enough memory to allocate driver memory.

ERR APPLYING PARAMS (-4) if parameters cannot applied to driver.

6.7 Closing connection to sensor

Name: CloseSensor CloseSensor

Description:

Close the connection to the sensor.

Declaration:

ERR_CODE CloseSensor (DWORD instanceHandle);

Parameter: DWORD instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Returns:

ERR NOERROR (0) on success.

ERR INSTANCE NOT EXIST (-24) if instanceHandle is not valid.

6.8 Sending commands to the sensor

Name: SensorCommand SensorCommand

Description:

Before sending a command to the sensor the command and parameters must be specified with SetParameter... functions. After the command is executed the answer can be read using GetParameter... functions.

At start of this function, all internal parameters starting with SA_, and IA_ are cleard (like at function ClearAllParameters).

At end of this function, all internal parameters starting with SP_, CP_, and IP_ are cleared (like at function ClearAllParameters).

Declaration:

ERR_CODE SensorCommand (DWORD instanceHandle);

Parameter: DWORD instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

instanceHandle

instanceHandle

Returns:

ERR NOERROR (0) on success.

ERR INSTANCE NOT EXIST (-24) if instanceHandle is not valid.

ERR NOT OPEN (-3) if connection is not established

ERR_UNKNOWN_SENSOR_COMMAND (-14) if parameter "S_Command" is not valid.

ERR_BAUDRATE_TOO_LOW (-22) if at sensor IFD2430 over RS232 with Baudrate < 38400 the CCD line (Get_CCD) or other binary data (Get_DarkSig, Get ...) should be read.

ERR_APPLYING_PARAMS (-4) if interface parameters changed by command (e.g. change baudrate) and cannot be applied.

ERR_NO_ANSWER_RECEIVED (-20) if no answer but other data is received within answer time.

ERR_TIMEOUT_READING_FROM_SENSOR (-8) if no answer is received within answer time.

ERR_CLEARUNG_BUFFER (-6) for command "Clear_Buffers" if specified device could not be cleared.

ERR_NOMEMORY (-19) if a data buffer could not be allocated.

ERR_UNKNOWN_SENSOR_ANSWER (-15) if sensor answer is not an answer to a command.

ERR_SENSOR_ANSWER_ERROR (-16) if sensor answer cannot be interpreted or sensor returned an error number.

ERR SENSOR ANSWER TOO SHORT (-17) if sensor answer is too short.

ERR_SENSOR_ANSWER_DOES_NOT_MATCH_COMMAND (-21) if answer does not match the command.

6.9 Polling data from sensor

Name: Poll Poll

Description:

Get the latest values from sensor.

Declaration:

ERR_CODE Poll (DWORD instanceHandle, int *rawData, double *scaledData,
 int maxValues);

Parameter: DWORD instanceHandle

instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: int * rawData

rawData

Direction: [OUT]

Description: Pointer to value (or array of values) to retrieve latest data

frame from sensor as raw values.

Parameter: double * scaledData

scaledData

Direction: [OUT]

Description: Pointer to value (or array of values) to retrieve latest data frame from sensor scaled by sensor range. If rawData is null of scaledData is null, no data is transferred for this parameter.

maxValues

instanceHandle

avail

Parameter: int maxValues

Direction: [IN]

Description: Length of rawData and scaledData. Some sensors can measure more than one value per measure cycle (e.g. IFD's which measures distance, intensity, ... or ODC's which can measure two segments). In this case maxValues can be set up to frame size (values per measure cycle).

If maxValues is smaller than frame size only the first maxValues values are transferred.

If maxValues is greater than frame size, values of more than one frame are transferred.

Returns:

ERR NOERROR (0) on success.

ERR INSTANCE NOT EXIST (-24) if instanceHandle is not valid.

ERR NOT OPEN (-3) if connection is not established

ERR_NO_SENSORDATA_AVAILABLE (-13) if the receive buffer does not contain any value from sensor.

6.10 Number of values available to read

Name: DataAvail DataAvail

Description:

The values available returned may be divided by frame size to calculate the number of frames available. A frame is the set of values transmitted by the sensor for each one measurement.

Declaration:

ERR_CODE DataAvail (DWORD instanceHandle, int *avail);

Parameter: DWORD instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: int * avail

Direction: [OUT]

Description: Pointer to value to retrieve number of values available from

sensor

Returns:

ERR_NOERROR (0) on success.

ERR_INSTANCE_NOT_EXIST (-24) if instanceHandle is not valid.

ERR NOT OPEN (-3) if connection is not established.

ERR WRONG PARAMETER (-18) if avail is null.

6.11 Block wise data acqusition from sensor

Name: TransferData TransferData

Description:

Transfer the data from driver to application.

Declaration:

ERR_CODE TransferData (DWORD instanceHandle, int *rawData, double *scaledData,
 int maxValues, int *read);

Parameter: DWORD instanceHandle instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: int * rawData rawData

Direction: [OUT]

Description: Pointer to array of values to retrieve data from sensor as

raw values

Parameter: double * scaledData scaledData

Direction: [OUT]

Description: Pointer to array of values to retrieve data frame from sensor

scaled by sensor range.

If rawData is null or scaledData is null, no data is transferred for this parameter. If both parameters are null all buffers used are emptied.

Parameter: int maxValues maxValues

Direction: [IN]

Description: Length of rawData and scaledData. It should be a multiple of frame size, otherwise the rest of the last frame is lost, because

TransferData always starts with frame start.

Parameter: int * read read

Direction: [OUT]

Description: Real number of values transferred.

Returns:

ERR_NOERROR (0) on success.

ERR INSTANCE NOT EXIST (-24) if instanceHandle is not valid.

ERR NOT OPEN (-3) if connection is not established.

ERR_NO_SENSORDATA_AVAILABLE (-13) if no values per data frame are specified in driver. Either use 'Use_Defaults' or read information from sensor to set this value.

6.12 Get additional error information

Name: GetError GetError

Description:

Get the last error in driver.

This function can be used after an error return from function OpenSensor,

CloseSensor, SensorCommand, DataAvail, TransferData and Poll.

For all functions above and error code ERR_INSTANCE_NOT_EXIST this func-

tion does not return an error text.

For function DataAvail and error code ERR WRONG PARAMETER this func-

tion does not return an error text.

Declaration:

ERR_CODE GetError (DWORD instanceHandle, LPTSTR errText, DWORD maxLen);

Parameter: DWORD instanceHandle instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: LPTSTR errText errText

Direction: [OUT]

Description: String buffer to get extended error string.

Parameter: DWORD maxLen maxLen

Direction: [IN]

Description: Length of string buffer. If the error text is longer as maxLen

it is truncated. The string is null terminated.

Returns:

ERR NOERROR (0) on success.

ERR_OVERFLOW (-23) if there was a buffer overflow or data could not be

interpreted.

ERR_INSTANCE_NOT_EXIST (-24) if instanceHandle is not valid.

Any other error value returned by previous function.

Name: GetErrorU GetErrorU

Description:

Get the last error in driver (Unicode version). Rest of functionality is identical to GetError.

Declaration:

ERR_CODE GetErrorU (DWORD instanceHandle, LPWSTR errText, DWORD maxLen);

Parameter: DWORD instanceHandle instanceHandle

Direction: [IN]

Description: Number of the sensor instance, previously returned by

CreateSensorInstance.

Parameter: LPWSTR errText errText

Direction: [OUT]

Description: Unicode string buffer to get extended error string.

Parameter: DWORD maxLen maxLen

Direction: [IN]

Description: Length of string buffer. If the error text is longer as maxLen

it is truncated. The string is null terminated.

Returns:

ERR NOERROR (0) on success.

ERR_WRONG_PARAMETER (-18) if conversion to unicode failed.

ERR_OVERFLOW (-23) if there was a buffer overflow or data could not be interpreted

ERR_INSTANCE_NOT_EXIST (-24) if instanceHandle is not valid.

Any other error value returned by previous function.

6.13 Get version of MEDAQLib dll

Name: GetDLLVersion GetDLLVersion

Description:

Retrievs the version of the MEDAQLib dll.

This function can be called at any time, no sensor instance is needed. The version is stored in versionStr and is limited to length of maxLen (should be at least 11 bytes).

Declaration:

ERR_CODE GetDLLVersion (LPTSTR versionStr, DWORD maxLen);

Parameter: LPTSTR versionStr versionStr

Direction: [OUT]

Description: String buffer to get version info.

Parameter: DWORD maxLen maxLen

Direction: [IN]

Description: Length of string buffer. If the version info is longer as

maxLen it is truncated. The string is null terminated.

Returns:

ERR_NOERROR (0) on success.

Name: GetDLLVersionU GetDLLVersionU

Description:

Retrievs the version of the MEDAQLib dll (Unicode version). Rest of functionality is identical to GetDLLVersion.

Declaration:

ERR_CODE GetDLLVersionU (LPWSTR versionStr, DWORD maxLen);

Parameter: LPWSTR versionStr versionStr

Direction: [OUT]

Description: Unicode string buffer to get version info.

Parameter: DWORD maxLen maxLen

Direction: [IN]

Description: Length of string buffer. If the version info is longer as

maxLen it is truncated. The string is null terminated.

Returns:

ERR_NOERROR (0) on success.
ERR_WRONG_PARAMETER (-18) if conversion to unicode failed.
Any other error value returned by previous function.

A Parameters

Parameters for opening the interface (Interface parameters, IP_...) are used in the Function OpenSensor.

Parameters for communicating with the sensor (Sensor parameters, SP_...) and answer from sensor (Sensor answer, SA ...) are used in Function SensorCommand.

Direction in parameters is defined as follows:

Down: From application to driver or sensor.

Up: From sensor or driver to application.

Parameters without a default value are obligatory and must be specified. For the other parameters, the default value is used if not specified.

When a parameter contains two periods (e.g. SP_X1..16), it stands for a sequence of parameters.

A.1 Interface parameters

A.1.1 All Interfaces

Parameter: String IP_Interface

IP_Interface

```
Direction: Down
Valid values:

"RS232"

"IF2004"

"IF2008"

"TCP/IP"

"DriverX USB"
```

"USBIO"

Description: Interface type where the sensor is plugged on. If the RS422/USB converter is used "RS232" must be set, because a RS232 interface is emulated.

With an RS422/RS232 to Ethernet converter additional sensors (except IFD2430) can be connected via "TCP/IP".

Parameter: int IP_ScaleErrorValues

IP_ScaleErrorValues

```
Direction: Down Valid values:
```

1 = "last valid value"

2= "set to -1"

3= "set to negative error value"

Default: 1

Description: Attention! Normal sensor values can get negative too, so check raw values for errors additionally.

If sensor values are not valid, they cannot be scaled. So invald values can be set to the last valid value or can be set to -1 or can be set to a negative error value:

For ODC's:

-10	DSP No edge
-11	DSP At the beginning of the picture
-12	DSP At the end of the picture
-13	DSP Dark - bright edge
-14	DSP Bright - dark edge
-15	DSP Min. number of edges
-16	DSP Max. number of edges
-17	DSP Invalid measuring program
-18	DSP Segment 1st edge >= 2nd edge
-19	DSP Segment number of edges < last edge
-20	DSP Invalid working distance
-22	ARM Laser off
-23	ARM Invalid float
-24	ARM DMA setup error
-90	ASCII mode at IF2004 not supported

For ILD's (not every sensor supports all errors):

-1	F1 bad objekt (no objekt cognizable)
-2	F2 out of range + (to near at sensor)
-3	F3 out of range - (to far from sensor)
-4	F4 poor target (objekt not evaluable)
-5	F5 Laser off (external laser off)

For SENSOR_ILR118x: For error values, scaled values are set to 0, raw values are set to positive error values:

X9751165 45

15	E15 - Excessively poor reflexes. Distance sensor (Front edge) against target < 0.1m.
16	E16 - Excessively strong reflexes.
17	E17 - Too much steady light (for example sun).
18	E18 - Only in DX mode (50 Hz): Too much difference between measured and pre-calculated value.
19	E19 - Only in DX mode (50 Hz): Target motion speed > 10 m/s.
23	E23 - Temperature below -10 °C
24	E24 - Temperature above +60 °C
31	E31 - Faulty EEPROM checksum, hardware error.
51	E51 - Failure to set avalanche voltage of diode laser. 1. straylight or 2. hardware error.
52	E52 - Laser current too high / laser defective.
53	E53 - One or more parameters in the EEPROM not set (Consequence: Division by 0).
54	E54 - Hardware error (PLL).
55	E55 - Hardware error.
61	E61 - Used parameter is inadmissible, invalid commandsent.
62	E62 - 1. Hardware error 2. wrong value in interface communication (Parity error SIO).
63	E63 - SIO overflow.
64	E64 - Framing-Error SIO.

For SENSOR ILR1191:

For error values, scaled values are set to 0, raw values are set to positive error values:

2	E02 - No target.
4	E04 - Laser defect.

Parameter: int IP_RingBufferSize

Direction: Down Valid values: Minimum: 512 Maximum: 10485760

Unit: Bytes

Default: SENSOR_ILR110x_115x: 8 KB,

SENSOR_ILR118x: 4 KB, SENSOR_ILR1191: 40 KB,

SENSOR_ILD1302: 10 KB,

SENSOR ILD1401: 4 KB, CONTROLLER ILD1401: 20 KB,

SENSOR ILD1402: 20 KB,

SENSOR_ILD1700: 30 KB, SENSOR_ILD1800: 20 KB, SENSOR_ILD2000: 40 KByte, SENSOR_ILD2200: 240 KB, SENSOR_IFD2400: 20 KB, SENSOR_IFD2401: 2 MB, SENSOR_IFD2430: 3 MB, SENSOR_IFD2431: 10 MB, SENSOR_ODC2500: 40 KB, SENSOR_ODC2600: 40 KB,

CONTROLLER_ESC4912: 500 KB,

SENSOR_DT6100: 62 KB, CONTROLLER_DT6500: 500 KB,

IP_RingBufferSize

CONTROLLER KSS6380: 32 KB,

ENCODER IF2004: 80 KB, PCI CARD IF2008: 160 KB

Description: Data (values and sensor answer) is collected from sensor into a ring buffer. From there it is converted (value) or interpreted (sensor answer). If the ring buffer size is too small and data is not transferred fast enough an overflow occur. The buffer must be large enough to hold a complete sensor answer (especially IFD's with command Get_CCD or Get DarkSig, ...).

Parameter: int IP_LogType

IP_LogType

Direction: Down **Valid values:**

A bit combination of following values:

0= LOG NONE (No logging)

1= HIGH TYPE (User <--> MEDAQLib)

2= MIDDLE_TYPE (Sensor layer <--> Interface layer)
4= LOW_TYPE (MEDAQLib <--> Hardware driver)
8= ERROR_TYPE (Any errors reported by MEDAQLib)

16= DRIVER_TYPE (Hardware driver <--> Sys driver)

Default: LOG NONE

Description: This paramenter enables logging to file for debugging purposes.

Parameter: int IP_LogLevel

IP_LogLevel

Direction: Down **Valid values:**

A bit combination of following values:

1 = EMERGENCY LEVEL (logging emerging errors)

2= CRITICAL LEVEL (logging critical errors)

4= ERROR LEVEL (logging errors which occurs)

8= WARNING LEVEL (logging warnings from MEDAQLib)

16= NOTICE LEVEL (logging notices)

32= TRACE LEVEL (logging function calls)

64= DATA_LEVEL (logging data in binary mode)

Description: This paramenter specifies the kind of event to log.

If IP LogType is set to LOG NONE, this parameter is not obligatory.

Parameter: String IP_LogFile

IP_LogFile

Direction: Down **Valid values:**

File name of log file.

Description: This paramenter specifies the file where to log.

If IP LogType is set to LOG NONE, this parameter is not obligatory.

Parameter: int IP_LogAppend

IP_LogAppend

Direction: Down Valid values: 0= FALSE 1= TRUE Default: 1

Description: This paramenter specifies if the logfile should be cleared at opening or if the new data should be appended to file.

IP_LogFlush

IP_MaxPacketSize

IP_PacketDelay

Parameter: int IP_LogFlush

Direction: Down
Valid values:
0 = FALSE
1 = TRUE

Default: 0

Description: This paramenter specifies if the logfile should be flushed after each output. In this case, it is sure that all information is stored to logfile before proceeding. But depending on the storage device it can slow down the MEDAQLib.

Parameter: int IP_MaxPacketSize

Direction: Down Valid values: Minimum: 1

Maximum: INT MAX (2147483647)

Unit: Bytes

Default: SENSOR ILD1401: 1, otherwise INT MAX

Description: Maximum size of a block which can be transferred to the sensor at once. Because of a small receive FIFO in ILD1401 only 1 Byte after

another can be sent to sensor with a break between.

Parameter: int IP_PacketDelay

Direction: Down **Valid values: Minimum:** 0

Maximum: INT MAX (2147483647)

Unit: ms

Default: SENSOR ILD1401: 1 (RS232) or 3 (TCP/IP), otherwise 0

Description: Break time between sending two blocks to a sensor (see

IP_MaxPacketSize).

A.1.2 RS232

Following sensors supports this interface:

SENSOR_ILD1401, SENSOR_ILD1800, SENSOR_ODC2500, SENSOR_ODC2600, SENSOR_IFD2400, SENSOR_IFD2430, SENSOR_ASP5500, SENSOR_IFD2401, SENSOR_IFD2431, SENSOR_ILR110x_115x, SENSOR_ILR118x, SENSOR_ILR1191 (native).

SENSOR_ILD1302, SENSOR_ILD1402, SENSOR_ILD1700, SENSOR_ILD2200 (additional, e.g. RS422_USB-Converter and RS232 high level interface).

Parameter: String IP_Port

Direction: Down Valid values: "COM1" "COM2"

Description: Name of the serial interface. Before opening the interface using CreateFile, the string is prefixed with "\\.\".

X9751165 48

IP_Port

IP_Stopbits

IP_Parity

IP_ByteSize

A Parameters

Parameter: int IP_Baudrate IP_Baudrate

Direction: Down Valid values: Minimum: 0 Unit: Baud

Default: SENSOR_ILR110x_115x: 38400, SENSOR_ILR118x: 9600, SENSOR_ILD1401: 38400, SENSOR_ILD2200: 691500, otherwise 115200

Description: Baudrate of the serial connection.

Parameter: int IP_Stopbits

Direction: Down **Valid values:**

0= ONESTOPBIT 1= ONE5STOPBITS 2= TWOSTOPBITS

Default: SENSOR ODC2500 and SENSOR ODC2600: 2 (RS232) or 0 (oth-

ers), otherwise 0

Description: Number of stop bits of the serial connection.

Parameter: int IP_Parity

Direction: Down **Valid values:**

0= NOPARITY

1 = ODDPARITY

2= EVENPARITY

3= MARKPARITY

4= SPACEPARITY

Default: SENSOR_ILR110x_115x: 2, otherwise 0 **Description:** Parity of the serial connection.

Parameter: int IP_ByteSize

Direction: Down

Valid values:

7

8 **Unit:** Bit

Default: SENSOR ILR110x 115x: 7, otherwise 8

Description: Number of data bits per byte of the serial connection.

A.1.3 IF2004

Following sensors supports this interface:

SENSOR_ILD1302, SENSOR_ILD1402, SENSOR_ILD1700, SENSOR_ILD1800, SENSOR_ILD2000, SENSOR_ODC2500, SENSOR_ODC2600, SENSOR_ILD2000, ENCODER IF2004 (native).

Parameter: int IP_CardInstance

IP_CardInstance

Direction: Down Valid values: Minimum: 0 Maximum: 15

Default: 0

Description: Instance number of the IF2004 Interface card. The cards are enumerated by the OS and the only way to distinguish is the card instance number. It does not change at least there are no changes at the PCI bus.

Direction: Down **Valid values:**

Minimum: ENCODER IF2004: -1, otherwise 0

Maximum: 3

Default: ENCODER IF2004: 3, otherwise obligatory

Description: Channel nummer on IF2004 Interface card. If the Encoder on the IF2004 card should be used to store values synchronously to a sensor, the channel number 3 is reserved for it. Otherwise the FIFO cannot be

used for Encoder. Sensors can be carried on each channel.

Parameter: int IP_UseGate IP_UseGate

Direction: Down Valid values: 0= FALSE 1= TRUE

Default: 0

Description: The gate input of the card (5V TTL signal) can be used to lock or free the FIFO for data from sensors. This parameter affects always two channels (0+1 or 2+3) because they are on the same connector. The

encoder can be locked for FIFO too.

Parameter: int IP_Baudrate IP_Baudrate

Direction: Down **Valid values**:

SENSOR ILD1302, SENSOR ILD1402, SENSOR ILD1700, SENSOR ODC2500

and SENSOR_ODC2600: 115200

SENSOR ILD1800, SENSOR ILD2000, SENSOR_ODC2500 and SEN-

SOR ODC2600: 691200

SENSOR_ILD2200: 691200 or 1250000

Unit: Baud

Default: SENSOR ILD1302, SENSOR ILD1402, SENSOR ILD1700: 115200,

otherwise 691200

Description: Speed of the RS422 serial connection. Only the ODC sensors

can be used with different baud rates.

A.1.4 IF2008

Following sensors supports this interface:

SENSOR_ILD1401 (for sensor ILD1402 in compatibility mode). SENSOR_ILD1302, SENSOR_ILD1402, SENSOR_ILD1700, SENSOR_ILD2200, SENSOR_ODC2500, SENSOR_ODC2600, PCI_CARD_IF2008, SENSOR_IFD2401, SENSOR_IFD2431, SENSOR_ILR110x_115x, SENSOR_ILR118x, SENSOR_ILR1191 (native).

Parameter: int IP_CardInstance

IP_CardInstance

Direction: Down Valid values: Minimum: 0 Maximum: 15

Default: 0

Description: Instance number of the IF2008 Interface card. The cards are enumerated by the OS and the only way to distinguish is the card instance number. It does not change at least there are no changes at the PCI bus.

Direction: Down **Valid values:**

Condition: SENSOR_ILD1302, SENSOR_ILD1402, SENSOR_ILD1700, SENSOR_ILD2200, SENSOR_ODC2500, SENSOR_ODC2600, SENSOR_IFD2401, SENSOR_IFD2431, SENSOR_ILR110x_115x, SENSOR_ILR118x, SENSOR_ILR1191

0= Sensor 1 (Base Board, Connector X1)

1 = Sensor 2 (Base Board, Connector X1)

2= Sensor 3 (Base Board, Connector X2)

3= Sensor 4 (Base Board, Connector X2)

4= Sensor 5 (Extension Board, Connector X1)

5= Sensor 6 (Extension Board, Connector X1)

Valid values:

Condition: PCI_CARD_IF2008 -1 = No data acquisition

6= Encoder 1

7= Encoder 2

8= Digital IN

9= Digital RxD

10= ADC 1 (Analog/Digtal converter)

11 = ADC 2 (Analog/Digtal converter)

Description: Channel nummer on IF2008 Interface card. Attention! Sensor 5 and 6 are only available if IF2008E extension card is installed. Digital IN is only available if IF2008E extension card or IF2008IO extension slot is installed. ADC is only available if IF2008E extension card is installed.
-1 means, no data channel is written to FIFO and can be read using TransferData or Poll. This mode can be used if IF2008 should only be parametrized.

Parameter: int IP_Baudrate IP_Baudrate

Direction: Down **Valid values:**

SENSOR ILD1401: 38400

SENSOR ILD1302, SENSOR ILD1402: 115200, 57600, 38400, 19200,

9600

SENSOR ILD1700: 115200, 57600, 19200, 9600

SENSOR ILD2200: 691200, 1250000

SENSOR IFD2401, SENSOR IFD2431: 460800, 230400, 115200, 57600,

38400, 19200, 9600

SENSOR_ODC2500, SENSOR_ODC2600: 115200, 691200

SENSOR ILR110x 115x: 57600, 38400, 19200, 9600, 4800

SENSOR ILR118x: 38400, 19200, 9600, 4800, 2800

SENSOR_ILR1191: 460800, 230400, 115200, 57600, 38400, 19200,

9600

Unit: Baud

Default: SENSOR_ILD1401, SENSOR_ILR118x: 38400,

SENSOR ILD1302, SENSOR ILD1402, SENSOR ILD1700, SENSOR IFD2401,

SENSOR IFD2431, SENSOR ILR1191: 115200,

SENSOR ILD2200, SENSOR ODC2500, SENSOR ODC2600: 691200,

SENSOR ILR110x 115x: 57600

Description: Speed of the RS422 serial connection.

Parameter: int IP_Parity IP_Parity

Direction: Down **Valid values**:

SENSOR ILR110x 115x: 2= EVENPARITY

SENSOR ODC2500, SENSOR ODC2600: 0= NOPARITY, 2= EVEN-

PARITY

otherwise: 0= NOPARITY

Default: SENSOR_ILR110x_115x: 2, otherwise 0 **Description:** Parity of the RS422 serial connection.

A.1.5 TCP/IP

Following sensors supports this interface:

SENSOR_ILD1800 (additional, e.g. RS232 to TCP/IP comm server and RS232 high level interface).

SENSOR_ILD1401, SENSOR_ILD1302, SENSOR_ILD1402, SENSOR_ILD1700, SENSOR_ILD2200, SENSOR_ODC2500, SENSOR_ODC2600, SENSOR_IFD2400, SENSOR_SOR_ASP5500, SENSOR_IFD2401, SENSOR_IFD2431, SENSOR_ILR110x_115x, SENSOR_ILR118x, SENSOR_ILR1191 (additional, e.g. RS232/RS422 to TCP/IP comm server and RS232 high level interface).

SENSOR_IFD2430, CONTROLLER_ESC4912, SENSOR_DT6100, CONTROLLER_KSS6380, CONTROLLER_DT6500 (native).

Parameter: String IP_RemoteAddr

IP_RemoteAddr

Direction: Down **Valid value:** IP address

Description: IP address of the remote sensor (server). It has to be change in

any case because the default address is not valid!

Parameter: int IP_RemotePort IP_RemotePort

Direction: Down Valid values: Minimum: 1 Maximum: 65535

Default: SENSOR_IFD2430: 50/1000, otherwise 10001

Description: TCP port of the remote sensor (server). For IFD2430 this parameter is not used. Because sensor uses two ports (port 50 for data, port 1000 for commands), two interfaces (with this fixed ports) are

generated by the driver.

A.1.6 DriverX USB

Following sensors supports this interface:

SENSOR_IFD2401, SENSOR_IFD2431 (native).

Attention! This driver allows opening the same device twice, but communication does not work in this case.

Parameter: int IP_DeviceInstance

IP_DeviceInstance

Direction: Down **Valid values:**

Minimum: 0 Maximum: 255

Default: 0

Description: Instance number of the USB device. The devices are enumerated by the OS and the only way to distinguish is the device instance number. It does not change at least there are no changes at the USB bus

(plug/unplug devices).

Parameter: int IP_UsbReadBufCnt

IP_UsbReadBufCnt

Direction: Down Valid values: Minimum: 2 Maximum: 32

Default: 4

Description: Number of buffers for read operations on USB.

Parameter: int IP_UsbReadBufSize

IP_UsbReadBufSize

Direction: Down **Valid values:**

Minimum: 512 Maximum: 65536

Unit: Bytes Default: 512

Description: Buffer size for read operations on USB. The value is always ceiled to the next power of two (512, 1024, 2048, ..., 32768, 65526).

A.1.7 USBIO

Following sensors supports this interface:

CONTROLLER_ILD1401 (native).

Parameter: int IP_DeviceInstance

IP_DeviceInstance

Direction: Down Valid values: Minimum: 0 Maximum: 255

Default: 0

Description: Instance number of the USB device. The devices are enumerated by the OS and the only way to distinguish is the device instance number. It does not change at least there are no changes at the USB bus (plug/unplug devices).

Parameter: int IP_UsbReadBufCnt

IP UsbReadBufCnt

Direction: Down **Valid values:**

Minimum: CONTROLLER_ILD1401: 0, otherwise 2

Maximum: 32

Default: CONTROLLER_ILD1401: 0 (fixed), otherwise 4 **Description:** Number of buffers for read operations on USB.

Parameter: int IP_UsbReadBufSize

IP_UsbReadBufSize

S_Command

Direction: Down Valid values: Minimum: 2 Maximum: 65536

Unit: Bytes

A Parameters

Default: CONTROLLER ILD1401: 10, otherwise 512

Description: Buffer size for read operations on USB. The value is always

ceiled to the next even number (2, 4, 6, ..., 65534, 65536).

A.2 Communication via SensorCommand

The function SensorCommand always must have one obligatory parameter:

Parameter: String S_Command

Direction: Down **Valid for sensor:** all

Valid value: See commands for sensors.

Default: "" (nothing, not valid)

Description: The command to execute is specified by this parameter. Some commands are for the driver, the most commands are processed by the

sensor.

The following parameters are used for each call to SensorCommand so they are described only once:

Parameter: int CP_SensorAnswerTimeout

CP_SensorAnswerTimeout

Direction: Down
Valid for sensor: all
Valid values:
Minimum: 0

Maximum: INT_MAX (2147483647)

Unit: ms

Default: Depending on sensor and command.

Description: The timeout waiting for the complete answer from sensor.

Parameter: String SA_CompleteAnswer

Direction: Up

Valid for sensor: all

Description: The raw (not interpreted) answer (to a command) from the

sensor is stored here.

Parameter: int SA_ErrorNumber

SA_ErrorNumber

SA_CompleteAnswer

Direction: Up Valid for sensor:

SENSOR_ILD1302 SENSOR ILD1401

SENSOR ILD1402

OENOOR_ILD1702

SENSOR_ILD1700

SENSOR_ILD1800

SENSOR_ILD2200

SENSOR_ODC2500 SENSOR_ODC2600

Valid values:

Minimum: 0 Maximum: 255

Description: Error number returned by any sensor if a command was not

successful.

Parameter: String SA_ErrorText

SA_ErrorText

Direction: Up Valid for sensor:

SENSOR ILR118x SENSOR ILR1191 SENSOR_ILD1302 SENSOR_ILD1402 SENSOR_ILD1700 SENSOR ILD1800 SENSOR ILD2000 SENSOR_ILD2200 SENSOR IFD2400 SENSOR IFD2430 SENSOR_IFD2401 SENSOR_IFD2431 SENSOR ODC2500 SENSOR ODC2600

CONTROLLER_ESC4912

SENSOR DT6100 CONTROLLER DT6500

Description: Clear text for specific error number.

Following error numbers and strings can be set by ILD1401:

0x02	"Command error"
0x03	"Faulty number of parameters"
0x04	"Timeout"

Following error numbers and strings can be set by ILD1302, ILD1402, ILD1700, ILD1800 and ILD2200:

0x01	"Command unknown"
0x02	"Incorrect parameter value"
0x03	"Invalid parameter"
0x04	"Timeout"
0x05	"Command failed"
0x06	"Warning for averaging type and averaging number"

Following error strings can be set by ILR110x 115x:

"NAK" (Error in command)

Following error strings can be set by ILR118x:

X9751165 55

"E15" (Excessively poor reflexes. Distance sensor (Front edge) against target < 0.1m.)
"E16" (Excessively strong reflexes.)
"E17" (Too much steady light (for example sun).)
"E18" (Only in DX mode (50 Hz): Too much difference between measured and pre-calculated value.)
"E19" (Only in DX mode (50 Hz): Target motion speed > 10 m/s.)
"E23" (Temperature below -10 °C)
"E24" (Temperature above +60 °C)
"E31" (Faulty EEPROM checksum, hardware error.)
"E51" (Failure to set avalanche voltage of diode laser. 1. straylight or 2. hardware error.)
"E52" (Laser current too high / laser defective.)
"E53" (One or more parameters in the EEPROM not set (Consequence: Division by 0).)
"E54" (Hardware error (PLL).)
"E55" (Hardware error.)
"E61" (Used parameter is inadmissible, invalid commandsent.)
"E62" (1. Hardware error 2. wrong value in interface communication (Parity error SIO).)
"E63" (SIO overflow.)
"E64" (Framing-Error SIO.)

Following error strings can be set by ILR1191:

"?" (Unknown command)

Following error strings can be set by ILD2000:

"Timeout"
"Wrong checksum"
"Too much data"
"Error writing to EEPROM"

Following error strings can be set by IFD2400, IFD2430, IDF2401 and IFD2431:

"error"
"not valid"

Following error numbers and strings can be set by ODC2500 and ODC2600:

A Parameters

0x01	"Error destination"
0x02	"Error source"
0x03	"Error length"
0x04	"Too much data received"
0x06	"Flash access error"
0x07	"Error erase flash"
0x08	"Error flash sector"
0x09	"Error Video"
0x0a	"Error on writing to the RAM"
0x0b	"Incorrect data transmitted, see 'Valid values'"
0x0c	"Incorrect measurement program number"
0x0d	"Error light reference tuning"

Following error strings can be set by ESC4912, DT6100 and DT6500:

"UNKNOWN COMMAND"
"WRONG PARAMETER"
"TIMEOUT"
"ERROR NO CH1"
"ERROR DATARATE TO HIGH"

Following parameters affects the driver and interface (when communicating with the sensor):

Parameter: int IP_ClearRingBuffer

Direction: Down Valid Interface: all Valid for sensor: all

Valid values: 0= FALSE 1= TRUE

Description: Clears the ring buffer before sending the command to the sensor. The containing data is discarded. So the next data in the ring buffer is the sensor answer. For IF2004 card, the ring buffer is cleared after reading the answer too.

Parameter: int IP_ClearSendBuffer

Direction: Down Valid Interface: all Valid for sensor: all

Valid values: 0= FALSE 1= TRUE Default: 1

Description: Clears the send buffer (PurgeComm (PURGE_TXCLEAR)) before sending the command to the sensor.

X9751165 57

 ${\tt IP_ClearRingBuffer}$

IP_ClearSendBuffer


```
Parameter: int IP_ClearReceiveBuffer
```

IP_ClearReceiveBuffer

```
Direction: Down
Valid Interface:
RS232
IF2004
```

Valid for sensor: all

Valid values: 0= FALSE 1= TRUE

Description: Clears the receive buffer (PurgeComm (PURGE_RXCLEAR) for RS232, reading the FIFO for IF2004 and IF2008) before sending the command to the sensor.

This example shows how to set measure speed of ILD1700

```
SetParameterString (instance, "S_Command", "Set_Speed");
SetParameterInt (instance, "SP_Speed", 1); \ 1 is 1.25 kHz
err= SensorCommand (instance);
/* error handling, if err!=ERR_SUCCESS*/
```

The next example shows how to get information from IFD2401

```
int sensor;
SetParameterString (instance, "S_Command", "Get_Status");
err= SensorCommand (instance);
/* error handling, if err!=ERR_SUCCESS*/
GetParameterInt (instance, "SA_Sensor", &sensor);
```

A.3 Sensor commands valid for each sensor

Commands are stored in Parameter S_Command. Following chapters describe commands and the parameters for each command.

A.3.1 Use Defaults

This command tells the driver to use default values to operate with sensor data. If some parameters are not specified they are not changed. The sensor is not affected by this command.

Hint! The normal way to tell the driver the sensor information is calling the command Get_Settings or Get_Info (depending on sensor). This command should only be used if bidirectional communication with the sensor is not possible or must be avoided.

The following parameters are interface parameters and already described at chapter A.1: IP_ScaleErrorValues and IP_RingBufferSize. They are valid for each sensor and interface and can be changed using this command (not only when opening the driver).

The other parameters are sensor parameters (used by the sensor interface part of MEDAQLib).

Parameters only valid for a specific sensor are not described here but at command Use_Defaults of specific sensor chapter.

A Parameters

```
Parameter: int IP_CheckRingBufferOverflow
     Direction: Down
                                                                                   IP_CheckRingBufferOverflow
     Valid for sensor: all
     Valid values:
           0 = off
     Description: If it is set to 1, the ring buffer is monitored. If there is an overflow,
          an error is returned by GetError function.
Parameter: int IP_DataOn
                                                                                    IP_DataOn
     Direction: Down
     Valid for sensor: all
     Valid values:
          0 = off
           1 = on
     Description: Tells the driver if sensor is sending data. If it is 0 no timeout
          check is performed. If data (values, no answer) from sensor is received it
          is automatically turned on.
Parameter: double IP_Samplerate
                                                                                    IP_Samplerate
     Direction: Down
     Valid for sensor: all
     Valid values:
          Minimum: 0
     Unit: Hz
     Description: Tells the driver the samplerate of the sensor.
Parameter: double IP_Datarate
                                                                                    IP_Datarate
     Direction: Down
     Valid for sensor: all
     Valid values:
          Minimum: 0
     Unit: Hz
     Description: Tells the driver the datarate (output rate) of the sensor. It is used
          for timeout check. If it is zero, no timeout check is performed.
Parameter: double IP_Range
                                                                                    IP_Range
     Direction: Down
     Valid for sensor:
           SENSOR ILD1302
           SENSOR ILD1401
           SENSOR ILD1402
           SENSOR ILD1700
           SENSOR ILD1800
           SENSOR_ILD2000
           SENSOR ILD2200
           SENSOR IFD2400
           SENSOR IFD2401
           SENSOR IFD2430
           SENSOR IFD2431
           SENSOR DT6100
     Valid values:
          Minimum: 0
     Unit: mm (for SENSOR_ILD...), \mu m (for SENSOR_IFD...), either mm or \mu m or
          any other (for SENSOR DT6100)
```

X9751165 59

Description: Tells the driver the range of sensor. It is used to scale the raw sensor values into mm or μm . If it is zero, no scaling is done.

Parameter: int IP_ASCII IP_ASCII

Direction: Down Valid for sensor:

SENSOR_ILD1302 SENSOR_ILD1402 SENSOR_ILD1700 SENSOR_IFD2400 SENSOR_IFD2431 SENSOR_IFD2431 SENSOR_ODC2600

Valid values:

0= Binary 1= ASCII

Description: Tells the driver if the sensor is sending data in ASCII or binary format. It is used to at conversion of data bytes into values.

A.3.2 SettingsChanged

Checks if sensor or driver settings have changed since last call of Get DrvSetting.

Parameter: int IA_SettingsChanged

Direction: Up Valid values: 0= FALSE

1= TRUE

Description: TRUE when settings have changed.

A.3.3 Get_DrvSetting

Returns the current settings of the driver used for operating with sensor data. It is the opposite of Use Defaults. The sensor is not affected by this command.

The following parameters returned, are already described at chapter A.1 (but instead of IP_... for interface parameter is is called now IA_... for interface answer): IA ScaleErrorValues and IA RingBufferSize.

They are returned for each sensor and interface.

The other return values does result from sensor parameters (used by the sensor interface part of MEDAQLib).

Parameters only valid for a specific sensor are not described here but at command Get DrvSetting of specific sensor chapter.

Parameter: int IA_CheckRingBufferOverflow

Direction: Up Valid for sensor: all Valid values:

0= off 1= on

Description: If it is set to 1, the ring buffer is monitored. If there is an overflow, an error is returned by GetError function.

 ${\tt IA_CheckRingBufferOverflow}$

IA_SettingsChanged

A Parameters

Parameter: int IA_DataOn IA_DataOn

Direction: Up Valid for sensor: all Valid values: 0= off 1= on

Description: Specifies if the driver expects data from sensor. If not no timeout check is performed. If data (values, no answer) from sensor is received it

is automatically turned on.

Parameter: double IA_Samplerate IA_Samplerate

Direction: Up Valid for sensor: all

Unit: Hz

Description: The samplerate of the sensor used by driver. 0 means the

samplerate is not known.

Parameter: double IA_Datarate IA_Datarate

Direction: Up Valid for sensor: all

Unit: Hz

Description: The datarate (output rate) of the sensor used by driver to check

timeout from sensor. 0 means the datarate is not known.

Parameter: double IA_Range IA_Range

Direction: Up **Valid for sensor:**

SENSOR_ILD1302
SENSOR_ILD1401
CONTROLLER_ILD1401
SENSOR_ILD1402
SENSOR_ILD1700
SENSOR_ILD1800
SENSOR_ILD2000
SENSOR_ILD2200
SENSOR_IFD2400
SENSOR_IFD2401
SENSOR_IFD2431
SENSOR_IFD2431
SENSOR_ODC2500

SENSOR_ODC2600 SENSOR_DT6100 ENCODER IF2004

Unit: mm (for SENSOR_ILD...), μm (for SENSOR_IFD...), either mm or μm or any other (for SENSOR_DT6100 or ENCODER_IF2004)

Description: The range of sensor. It is used to scale the raw sensor values. If it is zero, no scaling is done.

For ENCODER_IF2004, it is the distance per count of the encoder used by the driver for scaling data.

A Parameters

Parameter: int IA_ASCII IA_ASCII

Direction: Up Valid for sensor:

SENSOR ILD1302 SENSOR ILD1402 SENSOR ILD1700 SENSOR IFD2400 SENSOR IFD2401 SENSOR IFD2430 SENSOR IFD2401 SENSOR_ODC2600

Valid values:

0= Binary 1 = ASCII

Description: Returns the conversion mode which is used by the driver to convert data bytes into values.

A.3.4 Cmd Generic

With Cmd Generic, any data can be sent to the sensor.

Parameter: String SP_CmdStr

Direction: Down

Description: The command string as it is sent to the sensor. E.g. for ILD sensors it always starts with "+++\rlLD1" ('\r' is carrige return, 0x0d).

Parameter: int CP_SensorAnswerTimeout

CP_SensorAnswerTimeout

Direction: Down Valid values: Minimum: 0

Maximum: INT_MAX (2147483647)

Unit: ms Default: 500

Description: The timeout waiting for the complete answer from sensor.

Parameter: String SA_CompleteAnswer

Direction: Up

Description: The raw (not interpreted) answer (to a command) from the

sensor is stored here.

A.3.5 Clear_Buffers

This command is executed by the driver and does not affect the sensor. It erases the ring buffer and the input and output buffer of the interface.

Parameter: int SP_AllDevices

SP_AllDevices

SA_CompleteAnswer

SP_CmdStr

Direction: Down Valid values: 0= FALSE 1= TRUE Default: 0

Description: If it is set to 1, not only this instance but all instances created from this driver are cleared. It can be used to synchonize data acquisition from several sensors because after clearing all buffers the next data from all sensors have same timestamp.

X9751165 62

A.3.6 DataAvail_Event

This command registers an event which will be set when new data is available. The event can be used to wait for new data in your application.

Parameter: int IP_EventOnAvailableValues

Direction: Down **Valid values:**

Minimum: -1

Maximum: INT MAX (2147483647)

Default: -1

Description: If it is set to -1, the event is not set by this condition.

Otherwise the event is set if at least so many values are available as

specified here.

Parameter: double IP_EventOnBufferFillsize

Direction: Down **Valid values:**

Minimum: 0.0 Maximum: 1.0

Default: 1.0

Description: If it is set to 1.0, the event is not set by this condition.

Otherwise the event is set if the ring buffer fill size is at least as high as

specified here.

For setting the ring buffer size please refer to chapter A.1.1.

Parameter: DWORD IA_DataAvailEvent

Direction: Up

Description: The event handle for data avail.

If IP_EventOnAvailableValues is -1 (default) and IP_EventOnBufferFillsize

is 1.0 (default), the event is released and the value is 0.

Example how to use the event:

```
SetParameterString (instance, "S_Command", "DataAvail_Event");
SetParameterInt (instance, "IP_EventOnAvailableValues", 1024);
DWORD err= SensorCommand (instance);
/* error handling, if err!=ERR_SUCCESS */
HANDLE event= NULL;
GetParameterDWORD (instance, "IA_DataAvailEvent", &event);

while (true)
{
    /* timeout is 1000 ms */
    if (WaitForSingleObject (event, 1000)==WAIT_OBJECT_O)
        err= TransferData (instance, raw, scaled, 1024, &read);
    /* error handling, verify that read==1024, process data */
}
```

X9751165 63

IP_EventOnAvailableValues

IP_EventOnBufferFillsize

IA_DataAvailEvent

B Commands for ILR110x_115x

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

RS232 (native).

TCP/IP (additional, e.g. RS232/RS422 to TCP/IP comm server and RS232 high level interface).

IF2008 (native).

B.1 Get_Parameters (GAP)

Retrieve all parameters from the sensor.

Parameter: String SA_Version SA_Version

Direction: Up

Description: Firmware version.

Parameter: int SA_PilotLaser SA_PilotLaser

Direction: Up **Valid values:** 0= off 1= on

Description: Pilot laser behaviour.

Parameter: int SA_SensorBaudrate SA_SensorBaudrate

Direction: Up **Valid values:**4800
9600
19200
38400
57600

Description: Sensor baudrate.

Parameter: int SA_SensorDatabits SA_SensorDatabits

Direction: Up Valid values: 7 8

Description: Sensor data bits.

Parameter: int SA_SensorStopbits SA_SensorStopbits

Direction: Up Valid values: 1 2

Description: Sensor stop bits.

B Commands for ILR110x_115x

Parameter: int SA_ContinuousMode SA_ContinuousMode

Direction: Up Valid values:

0= continuous 1= single

Description: Sensor is sending data continuous or only single values.

Parameter: int SA_Q1Value SA_Q1Value

Direction: Up **Valid values:** 0= low 1= high

Description: The actual state of output Q1.

Parameter: int SA_ModeQ1 SA_ModeQ1

Direction: Up
Valid values:
0= not active
1= switching point
2= switching points

Description: The mode of output Q1.

Parameter: int SA_LimitQ1-1 SA_LimitQ1-1

Direction: Up Valid values:

Minimum: -48000 Maximum: 96000

Description: The limit 1 of output Q1.

Parameter: int SA_LimitQ1-2 SA_LimitQ1-2

Direction: Up Valid values:

Minimum: -48000 Maximum: 96000

Description: The limit 2 of output Q1.

Parameter: int HysteresisQ1 HysteresisQ1

Direction: Up Valid values: Minimum: 0 Maximum: 999

Description: The hysteresis of output Q1.

Parameter: int SA_NormQ1 SA_NormQ1

Direction: Up Valid values: 0= normal 1= inverted

Description: Specifies if output Q1 is normal or inverted.

Parameter: int SA_Q2Value SA_Q2Value

Direction: Up Valid values: 0= low 1= high

Description: The actual state of output Q2.

B Commands for ILR110x_115x

Parameter: int SA_ModeQ2 SA_ModeQ2

Direction: Up **Valid values:** 0= not active

1= switching point 2= switching points

Description: The mode of output Q2.

Parameter: int SA_LimitQ2-1 SA_LimitQ2-1

Direction: Up Valid values:

> Minimum: -48000 Maximum: 96000

Description: The limit 1 of output Q2.

Parameter: int SA_LimitQ2-2 SA_LimitQ2-2

Direction: Up Valid values:

Minimum: -48000 Maximum: 96000

Description: The limit 2 of output Q2.

Parameter: int HysteresisQ2 HysteresisQ2

Direction: Up Valid values: Minimum: 0 Maximum: 999

Description: The hysteresis of output Q2.

Parameter: int SA_NormQ2 SA_NormQ2

Direction: Up
Valid values:
0 = normal
1 = inverted

Description: Specifies if output Q2 is normal or inverted.

Parameter: int SA_AnalogValue SA_AnalogValue

Direction: Up Valid values: Minimum: 0 Maximum: 4095

Description: The actual value of analog output.

Parameter: int SA_LimitQA-1 SA_LimitQA-1

Direction: Up Valid values:

> Minimum: -48000 Maximum: 96000

Description: The limit 1 of analog output.

Parameter: int SA_LimitQA-2 SA_LimitQA-2

Direction: Up Valid values:

Minimum: -48000 Maximum: 96000

Description: The limit 2 of analog output.

SA_OutputFormat

SA_Energy

Parameter: int SA_NormQA SA_NormQA

Direction: Up
Valid values:
0= normal
1= inverted

Description: Specifies if analog output is normal or inverted.

Parameter: int SA_OutputFormat

Direction: Up Valid values: 0= mm 1= inch*100

Description: Output format of measured values.

Parameter: int SA_Offset SA_Offset

Direction: Up Valid values:

Minimum: -48000 Maximum: 48000 Description: Offset value.

Parameter: int SA_Password SA_Password

Direction: Up Valid values: 0= disabled 1= enabled

Description: Password protection for sensor menu.

Parameter: int SA_ErrorStatus SA_ErrorStatus

Direction: Up Valid values:

Minimum: 0x00 Maximum: 0xff

Description: Error status as 8 bit field.

00000000: no error.

00000010: PLL UNLOCKED - Counter error.

00000100: LOW VOLT - Error in supply voltage: voltage too low (or error

in measurement of supply voltage).

00101000: OVERTEMP - Temperature too high (above 85 $^{\circ}$ C inside);

Measurement switched off.

00010000: Dist (mm) > Maximum - No target in range or sensor badly

aliane.

00100000: Temperature warning (below -10 °C or above 70 °C). 01000000: BLINDING - External light too strong or internal error.

10000000: LAS.ERR. - Measurement laser faulty.

B.2 Get_Energy (GDB)

Get the amount of receiving by sensor.

Parameter: int SA_Energy

Direction: Up Unit: dB Valid values:

Minimum: -120 Maximum: 0

Description: Energy value.

SA_Temperature

B.3 Get SerialNbr (GNR)

Get the serial number of sensor.

Parameter: String SA_SerialNumber SA_SerialNumber

Direction: Up

Description: Serial number.

B.4 Get ErrorStatus (GSI)

Get error status from the sensor.

Parameter: int SA_ErrorStatus SA_ErrorStatus

Direction: Up Valid values:

Minimum: 0x00 Maximum: 0xff

Description: Error status as 8 bit field.

00000000: no error.

00000010: PLL UNLOCKED - Counter error.

00000100: LOW VOLT - Error in supply voltage: voltage too low (or error

in measurement of supply voltage).

00101000: OVERTEMP - Temperature too high (above 85 °C inside);

Measurement switched off.

00010000: Dist (mm) > Maximum - No target in range or sensor badly

aligne.

00100000: Temperature warning (below -10 $^{\circ}$ C or above 70 $^{\circ}$ C). 01000000: BLINDING - External light too strong or internal error.

10000000: LAS.ERR. - Measurement laser faulty.

B.5 Get_Temperature (GTE)

Retrieve the temperature inside of the sensor.

Parameter: int SA_Temperature

Direction: Up Unit: °C

Description: Sensor temperature.

B.6 Get Version (GVE)

Get the version of sensor firmware.

Parameter: String SA_Version SA_Version

Direction: Up

Description: Firmware version.

B.7 Set Offset (IDO)

Set the offset which is added by the sensor to distance values.

Parameter: int SP_Offset SP_Offset

Direction: Down Valid values:

Minimum: -12000 [mm] or -48000 [100*inch] **Maximum:** 12000 [mm] or 48000 [100*inch]

Description: Offset value.

B.8 Set VisibleLaser (IVL)

Set the behaviour of the pilot laser of the sensor.

Parameter: int SP_PilotLaser SP_PilotLaser

Direction: Down Valid values: 0= off 1= on

Description: Pilot laser behaviour.

B.9 Set HysteresisQ1 (IH1)

Hysteresis setting around the switching point Q1 in [mm] or [100*inch].

Parameter: int SP_HysteresisQ1 SP_HysteresisQ1

Direction: Down **Valid values**:

Minimum: 0 [mm] / [100*inch]

Maximum: 254 [mm] or 999 [100*inch]

Description: Hysteresis Q1.

B.10 Set_HysteresisQ2 (IH2)

Hysteresis setting around the switching point Q2 in [mm] or [100*inch].

Parameter: int SP_HysteresisQ2 SP_HysteresisQ2

Direction: Down **Valid values:**

Minimum: 0 [mm] / [100*inch]

Maximum: 254 [mm] or 999 [100*inch]

Description: Hysteresis Q2.

B.11 Set_LimitQ1-1 (IL1)

Setting of the first switch point of Q1 in [mm] or [100*inch].

Parameter: int SP_LimitQ1-1 SP_LimitQ1-1

Direction: Down Valid values:

Minimum: Offset [mm] / [100*inch]

Maximum: 12000+Offset [mm] or 48000+Offset [100*inch]

Description: Limit Q1-1.

B.12 Set_LimitQ2-1 (IL2)

Setting of the first switch point of Q2 in [mm] or [100*inch].

Parameter: int SP_LimitQ2-1 SP_LimitQ2-1

Direction: Down **Valid values:**

Minimum: Offset [mm] / [100*inch]

Maximum: 12000+Offset [mm] or 48000+Offset [100*inch]

Description: Limit Q2-1.

B.13 Set_LimitQA-1 (IL1)

Setting of the 0% point of the analog characteristic. Only valid for sensors ILR1100 and ILR1150 (with analog output).

Parameter: int SP_LimitQA-1 SP_LimitQA-1

Direction: Down **Valid values:**

Minimum: Offset

Maximum: 12000+Offset **Description:** Limit QA-1.

B.14 Set LimitQ1-2 (IL4)

Setting of the second switch point of Q1 in [mm] or [100*inch].

Parameter: int SP_LimitQ1-2 SP_LimitQ1-2

Direction: Down **Valid values:**

Minimum: Offset [mm] / [100*inch]

Maximum: 12000+Offset [mm] or 48000+Offset [100*inch]

Description: Limit Q1-2.

B.15 Set LimitQ2-2 (IL2)

Setting of the second switch point of Q2 in [mm] or [100*inch].

Parameter: int SP_LimitQ2-2 SP_LimitQ2-2

Direction: Down Valid values:

Minimum: Offset [mm] / [100*inch]

Maximum: 12000+Offset [mm] or 48000+Offset [100*inch]

Description: Limit Q2-2.

B.16 Set LimitQA-2 (IL6)

Setting of the 100% point of the analog characteristic. Only valid for sensors ILR1100 and ILR1150 (with analog output).

Parameter: int SP_LimitQA-2 SP_LimitQA-2

Direction: Down **Valid values:**

Minimum: Offset

Maximum: 12000+Offset **Description:** Limit QA-2.

B.17 Set ModeQ1 (IM1)

Set the mode of output Q1.

Parameter: int SP_ModeQ1 SP_ModeQ1

Direction: Down
Valid values:
0 = not active
1 = switching point
2 = switching points

Description: The mode of output Q1.

B.18 Set_ModeQ2 (IM2)

Set the mode of output Q2.

Parameter: int SP_ModeQ2 SP_ModeQ2

Direction: Down
Valid values:
0 = not active
1 = switching point
2 = switching points

Description: The mode of output Q2.

B.19 Set NormQA (INA)

Set the norm of analog output. Only valid for sensors ILR1100 and ILR1150 (with analog output).

Parameter: int SP_NormQA SP_NormQA

Direction: Down Valid values: 0= normal 1= inverted

Description: Specifies if analog output is normal or inverted.

B.20 Set NormQ1 (IN1)

Set the norm of output Q1.

Parameter: int SP_NormQ1 SP_NormQ1

Direction: Down Valid values: 0= normal 1= inverted

Description: Specifies if output Q1 is normal or inverted.

B.21 Set_NormQ2 (IN2)

Set the norm of output Q2.

Parameter: int SP_NormQ2 SP_NormQ2

Direction: Down Valid values: 0= normal 1 = inverted

Description: Specifies if output Q2 is normal or inverted.

B.22 Set ContinousMode (ICM)

Set the measurement mode.

Parameter: int SP_ContinuousMode SP_ContinuousMode

Direction: Down Valid values: 0= continuous

1= single

Description: Sensor is sending data continuous or only single values.

B.23 Exec ContMeasure (ECM)

Continuous measurement output ist set and triggered by the next request for measured values (ESM).

X9751165 72

SP_Stand-by

B.24 Trg_SingleMeasure (ESM)

Request for measured value with single measurement output.

B.25 Set_Stand-by (ISB)

Set the sensor in stand-by mode or reactivates it.

Parameter: int SP_Stand-by

1 = stand-by

Direction: Down Valid values: 0= operation

Description: Sensor stand-by mode.

B.26 Save_Parameters (EPW)

Store all actual parameters in sensor memory.

X9751165 73

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

RS232 (native).

TCP/IP (additional, e.g. RS232/RS422 to TCP/IP comm server and RS232 high level interface).

IF2008 (native).

C.1 DistanceTracking (DT)

Start distance tracking mode.

C.2 DistanceTracking7m (DS)

Start distance tracking (7 m) mode.

C.3 DistanceTracking10Hz (DW)

Start distance tracking (10 Hz) mode. Only valid for ILR1181.

C.4 DistanceTracking50Hz (DX)

Start distance tracking (10 Hz) mode. Only valid for ILR1182.

C.5 DistanceTriggered (DF)

Start distance tracking (with external trigger) mode.

C.6 DistanceMeasure (DM)

Measure one distance value.

C.7 StopTracking (<ESC>)

Stop any tracking mode.

C.8 Set OutputFormat (SD)

Set the output format how values are sent from sensor.

Parameter: int SP_OutputFormat

SP_OutputFormat

Direction: Down
Valid values:
0 = decimal
1 = hex
2 = binary

Description: Output format of values.

Mode binary is currently not supported by MEDAQLib. So if it is selected,

no values can be read.

C.9 Get_OutputFormat (SD)

Get the output format how values are sent from sensor.

Parameter: int SA_OutputFormat

SA_OutputFormat

Direction: Up Valid values: 0= decimal 1= hex 2= binary

Description: Output format of values.

C.10 Set_ScaleFactor (SF)

Set the scaling factor how the sensor scale distance values.

Parameter: double SP_ScaleFactor

SP_ScaleFactor

Direction: Down **Valid values:**

Minimum: -1000.0 Maximum: 1000.0 Description: Scaling factor.

C.11 Get_ScaleFactor (SF)

Get the scaling factor how the sensor scale distance values.

Parameter: double SA_ScaleFactor

 $SA_ScaleFactor$

Direction: Up **Valid values:**

Minimum: -1000.0 Maximum: 1000.0 Description: Scaling factor.

C.12 Set Offset (OF)

Set the offset which is added by the sensor to distance values.

Parameter: double SP_Offset SP_Offset

Direction: Down **Valid values:**

Minimum: -150000.0 Maximum: 150000.0 Description: Offset value.

C.13 Get_Offset (OF)

Get the offset which is added by the sensor to distance values.

Parameter: double SA_Offset SA_Offset

Direction: Up Valid values:

Minimum: -150000.0 Maximum: 150000.0 Description: Offset value.

C.14 CurrentDistAsOffset (SO)

Set the current distance value as offset.

Parameter: double SA_Offset SA_Offset

Direction: Up Valid values:

Minimum: -150000.0 **Maximum:** 150000.0

Description: Offset value which is set.

C.15 Set_RemovalMeasVal (RM)

Set how invalid measure values should be treated by the sensor.

Parameter: int SP_PrecedingValues SP_PrecedingValues

Direction: Down Valid values: Minimum: 1 Maximum: 10

Description: Designates the number of preceding measuring values that will

be evaluated in the case of non-conforming measurement.

Parameter: double SP_ValidRange SP_ValidRange

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT MAX (3.402823466e+38)

Description: Defines the range of permissible values. If this range is exceeded in negative or positive direction, the respective measuring value will be

corrected accordingly.

SA_PrecedingValues

SP_ErrorMode

Parameter: int SP_InvalidValues SP_InvalidValues

Direction: Down
Valid values:
Minimum: 0
Maximum: 100

Description: Stands for the number of values that are out of the permissible value range; in the event of out-of-tolerance values arriving in succession, the most recently corrected value will be included in the correction

process for the next out-of-tolerance value.

C.16 Get RemovalMeasVal (RM)

Parameter: int SA_PrecedingValues

Get how invalid measure values should be treated by the sensor.

•

Direction: Up Valid values: Minimum: 1 Maximum: 10

Description: Designates the number of preceding measuring values that will

be evaluated in the case of non-conforming measurement.

Parameter: int SA_ValidRange SA_ValidRange

Direction: Up **Valid values**:

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT MAX (3.402823466e+38)

Description: Defines the range of permissible values. If this range is exceeded in negative or positive direction, the respective measuring value will be

corrected accordingly.

Parameter: int SA_InvalidValues SA_InvalidValues

Direction: Up Valid values: Minimum: 0 Maximum: 100

Description: Stands for the number of values that are out of the permissible value range; in the event of out-of-tolerance values arriving in succession, the most recently corrected value will be included in the correction

process for the next out-of-tolerance value.

C.17 Set ErrorMode (SE)

Set the behaviour of digital and analog outputs in case of an error.

Parameter: int SP_ErrorMode

Direction: Down **Valid values:**

0= last valid value 1= switch to bounds

2= switch to negated bounds

Description: Error mode.

C.18 Get_ErrorMode (SE)

Get the behaviour of digital and analog outputs in case of an error.

Parameter: int SA_ErrorMode

SA_ErrorMode

Direction: Up **Valid values**:

0= last valid value 1= switch to bounds

2= switch to negated bounds

Description: Error mode.

C.19 Set AlarmStart (AC)

Sets the beginning of the distance range, for which the switching output will be turned active.

Parameter: double SP_AlarmStart

SP_AlarmStart

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38) Maximum: FLT MAX (3.402823466e+38)

Description: Alarm start.

C.20 Get AlarmStart (AC)

Gets the beginning of the distance range, for which the switching output will be turned active.

Parameter: double SA_AlarmStart

SA_AlarmStart

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT_MAX (3.402823466e+38)

Description: Alarm start.

C.21 Set_AlarmHysteresis (AH)

Set the switching hysteresis at the beginning and the end point of the active range of the switching output.

Parameter: double SP_AlarmHysteresis

SP_AlarmHysteresis

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT_MAX (3.402823466e+38)

Description: Alarm hysteresis.

C.22 Get AlarmHysteresis (AH)

Get the switching hysteresis at the beginning and the end point of the active range of the switching output.

Parameter: double SA_AlarmHysteresis

SA_AlarmHysteresis

Direction: Up **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Alarm hysteresis.

C.23 Set_AlarmWidth (AW)

Set the length of the active range for the switching output.

Parameter: double SP_AlarmWidth

SP_AlarmWidth

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Alarm width.

C.24 Get AlarmWidth (AW)

Get the length of the active range for the switching output.

Parameter: double SA_AlarmWidth

SA_AlarmWidth

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT MAX (3.402823466e+38)

Description: Alarm width.

C.25 Set_RangeBegin4mA (RB)

Set the starting point of the distance range that is provided at the analog output.

Parameter: double SP_RangeBegin

SP_RangeBegin

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Range begin.

C.26 Get RangeBegin4mA (RB)

Get the starting point of the distance range that is provided at the analog output.

Parameter: double SA_RangeBegin

SA_RangeBegin

Direction: Up **Valid values**:

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT_MAX (3.402823466e+38)

Description: Range begin.

C.27 Set RangeEnd20mA (RE)

Set the end point of the distance range that is provided at the analog output.

Parameter: double SP_RangeEnd

SP_RangeEnd

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Range end.

C.28 Get_RangeEnd20mA (RE)

Get the end point of the distance range that is provided at the analog output.

Parameter: double SA_RangeEnd

SA_RangeEnd

SP_Average

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Range end.

C.29 Set_AverageValue (SA)

Set the average value for floating averaging.

Parameter: int SP_Average

Direction: Down Valid values:
Minimum: 1

Maximum: 20

Description: Average value.

C.30 Get AverageValue (SA)

Get the average value for floating averaging.

Parameter: int SA_Average

Direction: Up Valid values: Minimum: 1 Maximum: 20

Description: Average value.

C.31 Set_MeasureTime (ST)

Set an index for measure time of one distance value.

Parameter: int SP_MeasureTime

Direction: Down Valid values: Minimum: 0 Maximum: 25

Description: Measure time index.

C.32 Get_MeasureTime (ST)

Get an index for measure time of one distance value.

Parameter: int SA_MeasureTime

Direction: Up Valid values: Minimum: 0 Maximum: 25

Description: Measure time index.

C.33 Set_TriggerDelay (TD)

Set the behaviour of the trigger input.

Parameter: int SP_TriggerDelay

Direction: Down

Unit: ms
Valid values:
 Minimum: 0
 Maximum: 9999
Description: Trigger delay.

Parameter: int SP_TriggerEdge

Direction: Down **Valid values:** 0= falling 1= rising

Description: Trigger edge.

SA_Average

SP_MeasureTime

SA_MeasureTime

SP_TriggerDelay

SP_TriggerEdge

X9751165

81

SA_AutostartTrigger

C.34 Get_TriggerDelay (TD)

Get the behaviour of the trigger input.

Parameter: int SA_TriggerDelay SA_TriggerDelay

Direction: Up
Unit: ms
Valid values:
 Minimum: 0
 Maximum: 9999
Description: Trigger delay.

Parameter: int SA_TriggerEdge SA_TriggerEdge

Direction: Up Valid values: 0= falling 1= rising

Description: Trigger edge.

C.35 Set_TriggerMode (TM)

Set parameters for the auto-start trigger function which allows external triggering of the auto-start command that was set via parameter AS.

Parameter: int SP_AutostartTrigger SP_AutostartTrigger

Direction: Down **Valid values:** 0= off 1= on

Description: Autostart trigger.

Parameter: int SP_AutostartEdge SP_AutostartEdge

Direction: Down **Valid values:** 0= falling 1= rising

Description: Autostart trigger edge.

C.36 Get TriggerMode (TM)

Get parameters for the auto-start trigger function which allows external triggering of the auto-start command that was set via parameter AS.

Parameter: int SA_AutostartTrigger

Direction: Up **Valid values:** 0= off 1= on

Description: Autostart trigger.

SA_AutostartEdge

Parameter: int SA_AutostartEdge

Direction: Up **Valid values:** 0= falling 1= rising

Description: Autostart trigger edge.

C.37 Set Baudrate (BR)

Set the baudrate of the sensors serial interface.

Attention! To avoid synchronisation problems, sending data by sensor should be disabled first (sensor command StopTracking).

Parameter: int SP_SensorBaudrate

Direction: Down Valid values: 2400 4800 9600 19200

38400 **Description:** Sensor baudrate.

C.38 Get Baudrate (BR)

Get the baudrate of the sensors serial interface.

Parameter: int SA_SensorBaudrate

Direction: Up **Valid values:**2400
4800
9600
19200
38400

Description: Sensor baudrate.

C.39 Set Autostart (AS)

Set which function will be carried out when power becomes available to the sensor.

Parameter: int SP_AutostartCommand

Direction: Down **Valid values:**

0= DT

1= DS

2= DW

3= DX

4= DF

5= DM

6= TP

7= ID

Description: Autostart command.

X9751165 83

 ${\tt SP_SensorBaudrate}$

SA_SensorBaudrate

SP_AutostartCommand

SA_AutostartCommand

C.40 Get Autostart (AS)

Get which function will be carried out when power becomes available to the sensor.

Parameter: int SA_AutostartCommand

Direction: Up Valid values:

0= DT

1= DS

2= DW

3= DX

4= DF 5= DM

6= TP

7= ID

-1= unknown

Description: Autostart command.

C.41 Get Info (ID)

Retrieve information (like serial number) of the sensor.

Parameter: String SA_Version

Direction: Up

Description: Firmware version.

C.42 Get AllParameters (PA)

Retrieve all parameters from the sensor.

•

Direction: Up Valid values: Minimum: 1 Maximum: 20

Parameter: int SA_Average

Description: Average value.

Parameter: int SA_OutputFormat

Direction: Up Valid values: 0= decimal 1= hex

2= binary **Description:** Output format of values.

Parameter: int SA_MeasureTime

Direction: Up Valid values: Minimum: 0 Maximum: 25

Description: Measure time index.

SA_Average

SA_Version

SA_OutputFormat

SA_MeasureTime

Parameter: double SA_ScaleFactor SA_ScaleFactor

Direction: Up Valid values:

Minimum: -1000.0 Maximum: 1000.0 Description: Scaling factor.

Parameter: int SA_ErrorMode SA_ErrorMode

Direction: Up Valid values:

0= last valid value 1= switch to bounds

2= switch to negated bounds

Description: Error mode.

Parameter: double SA_AlarmStart SA_AlarmStart

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT MAX (3.402823466e+38)

Description: Alarm start.

Parameter: double SP_AlarmHysteresis SP_AlarmHysteresis

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT MAX (3.402823466e+38)

Description: Alarm hysteresis.

Parameter: double SA_AlarmWidth SA_AlarmWidth

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Alarm width.

Parameter: double SA_RangeBegin SA_RangeBegin

Direction: Up **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT MAX (3.402823466e+38)

Description: Range begin.

Parameter: double SA_RangeEnd SA_RangeEnd

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Range end.

Parameter: int SA_PrecedingValues SA_PrecedingValues

Direction: Up Valid values: Minimum: 1 Maximum: 10

Description: Designates the number of preceding measuring values that will

be evaluated in the case of non-conforming measurement.

SA_TriggerDelay

SA_AutostartTrigger

C Commands for ILR118x

Parameter: int SA_ValidRange SA_ValidRange

Direction: Up **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT MAX (3.402823466e+38)

Description: Defines the range of permissible values. If this range is exceeded in negative or positive direction, the respective measuring value will be

corrected accordingly.

Parameter: int SA_InvalidValues SA_InvalidValues

Direction: Up Valid values: Minimum: 0 Maximum: 100

Description: Stands for the number of values that are out of the permissible value range; in the event of out-of-tolerance values arriving in succession, the most recently corrected value will be included in the correction

process for the next out-of-tolerance value.

Parameter: int SA_TriggerDelay

Direction: Up
Unit: ms
Valid values:
 Minimum: 0
 Maximum: 9999
Description: Trigger delay.

Parameter: int SA_TriggerEdge SA_TriggerEdge

Direction: Up **Valid values:** 0= falling 1= rising

Description: Trigger edge.

Parameter: int SA_AutostartTrigger

Direction: Up **Valid values:** 0= off 1= on

Description: Autostart trigger.

Parameter: int SA_AutostartEdge SA_AutostartEdge

Direction: Up **Valid values:** 0= falling 1= rising

Description: Autostart trigger edge.

Parameter: int SA_SensorBaudrate SA_SensorBaudrate

Direction: Up **Valid values:**2400
4800
9600
19200
38400

Description: Sensor baudrate.

Parameter: int SA_AutostartCommand SA_AutostartCommand

Direction: Up Valid values:

0= DT 1= DS

2= DW 3= DX

4= DF 5= DM 6= TP

7= ID -1= unknown

Description: Autostart command.

Parameter: double SA_Offset SA_Offset

Direction: Up Valid values:

Minimum: -150000.0 **Maximum:** 150000.0

Description: Offset value which is set.

C.43 Get_Temperature (TP)

Retrieve the temperature inside of the sensor.

Parameter: double SA_Temperature SA_Temperature

Direction: Up **Unit**: °C

Description: Sensor temperature.

C.44 Reset_Parameters (PR)

Reset all parameters of sensor to factory defaults and return new parameters.

Parameter: int SA_Average SA_Average

Direction: Up Valid values: Minimum: 1 Maximum: 20

Description: Average value.

Parameter: int SA_OutputFormat SA_OutputFormat

Direction: Up Valid values: 0= decimal 1= hex 2= binary

Description: Output format of values.

Parameter: int SA_MeasureTime SA_MeasureTime

Direction: Up Valid values: Minimum: 0 Maximum: 25

Description: Measure time index.

Parameter: double SA_ScaleFactor SA_ScaleFactor

Direction: Up Valid values:

Minimum: -1000.0 Maximum: 1000.0 Description: Scaling factor.

Parameter: int SA_ErrorMode SA_ErrorMode

Direction: Up Valid values:

0= last valid value 1= switch to bounds

2= switch to negated bounds

Description: Error mode.

Parameter: double SA_AlarmStart SA_AlarmStart

Direction: Up **Valid values**:

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT MAX (3.402823466e+38)

Description: Alarm start.

Parameter: double SP_AlarmHysteresis SP_AlarmHysteresis

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Alarm hysteresis.

Parameter: double SA_AlarmWidth SA_AlarmWidth

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Alarm width.

Parameter: double SA_RangeBegin SA_RangeBegin

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Range begin.

Parameter: double SA_RangeEnd SA_RangeEnd

Direction: Up **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT MAX (3.402823466e+38)

Description: Range end.

Parameter: int SA_PrecedingValues

SA_PrecedingValues

Direction: Up Valid values: Minimum: 1 Maximum: 10

Description: Designates the number of preceding measuring values that will

be evaluated in the case of non-conforming measurement.

Parameter: int SA_ValidRange

SA_ValidRange

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Defines the range of permissible values. If this range is exceeded in negative or positive direction, the respective measuring value will be

corrected accordingly.

Parameter: int SA_InvalidValues

SA_InvalidValues

Direction: Up Valid values: Minimum: 0 Maximum: 100

Description: Stands for the number of values that are out of the permissible value range; in the event of out-of-tolerance values arriving in succession, the most recently corrected value will be included in the correction

process for the next out-of-tolerance value.

Parameter: int SA_TriggerDelay

SA_TriggerDelay

Direction: Up
Unit: ms
Valid values:
 Minimum: 0
 Maximum: 9999
Description: Trigger delay.

Parameter: int SA_TriggerEdge

SA_TriggerEdge

Direction: Up **Valid values:** 0= falling 1= rising

Description: Trigger edge.

Parameter: int SA_AutostartTrigger

 ${\tt SA_AutostartTrigger}$

Direction: Up **Valid values:** 0= off 1= on

Description: Autostart trigger.

Parameter: int SA_AutostartEdge

SA_AutostartEdge

Direction: Up **Valid values:** 0= falling 1= rising

Description: Autostart trigger edge.

Parameter: int SA_SensorBaudrate SA_SensorBaudrate **Direction:** Up Valid values: 2400 4800 9600 19200 38400 **Description:** Sensor baudrate. Parameter: int SA_AutostartCommand $SA_AutostartCommand$ **Direction:** Up Valid values: 0= DT 1= DS 2= DW 3= DX 4= DF 5= DM 6= TP 7= ID -1= unknown **Description:** Autostart command. Parameter: double SA_Offset SA_Offset

Direction: Up **Valid values:**

Minimum: -150000.0 **Maximum:** 150000.0

Description: Offset value which is set.

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

RS232 (native).

TCP/IP (additional, e.g. RS232/RS422 to TCP/IP comm server and RS232 high level interface).

IF2008 (native).

D.1 DistanceTracking (DT)

Start distance tracking mode.

D.2 DistanceTriggered (DF)

Start distance tracking (with external trigger) mode.

D.3 DistanceMeasure (DM)

Measure one distance value.

D.4 SpeedMeasure (VM)

Measure one speed (velocity) value.

Attention! Too leave that mode with StopTracking, there is a delay of average value (SA) / measure frequency (MF) seconds.

For example, if average value is 20 and measure frequency is 10 Hz, it takes 2 seconds to leave this mode. In extreme case, this could be 30000/1 seconds, more than 8 hours.

D.5 SpeedTracking (VT)

Start speed (velocity) tracking mode.

D.6 StopTracking (<ESC>)

Stop any tracking mode.

D.7 Set_OutputFormat (SD)

Set the output format how values are sent from sensor.

Parameter: int SP_OutputFormat

Direction: Down **Valid values:** 0= decimal

1= hex 2= binary

Description: Output format of values.

Parameter: int SP_OutputContent

Direction: Down **Valid values:**

0= Measuring value

1 = Measuring value, signal strength

2= Measuring value, sensor temperature

3= Measuring value, signal strength, sensor temperature

Description: Set which data is transmitted by sensor.

D.8 Get_OutputFormat (SD)

Get the output format how values are sent from sensor.

Parameter: int SA_OutputFormat

Direction: Up
Valid values:
0= decimal
1= hex

2= binary

Description: Output format of values.

Parameter: int SA_OutputContent

Direction: Up Valid values:

0= Measuring value

1= Measuring value, signal strength2= Measuring value, sensor temperature

3= Measuring value, signal strength, sensor temperature

Description: Get which data is transmitted by sensor.

D.9 Set_TerminatingChar (TE)

Set the termination character of each measurement.

Parameter: int SP_TerminationChar

Direction: Down **Valid values:** 0= <CRLF>

X9751165

SP_TerminationChar

92

SP_OutputContent

SP_OutputFormat

SA_OutputFormat

SA_OutputContent


```
1= <CR>
2= <LF>
3= <STX>
4= <ETX>
5= Tabulator
6= Space
```

7= Comma

8= Colon 9= Semicolon

Description: Termination character.

D.10 Get_TerminatingChar (TE)

Get the termination character of each measurement.

Parameter: int SA_TerminationChar

Direction: Up Valid values:

0= <CRLF>

1= <CR>

2= <LF>

3= <STX> 4= <ETX>

5= Tabulator

6= Space

7= Comma

8= Colon

9= Semicolon

Description: Termination character.

D.11 Set_FormatSSI (SC)

Set the transmission format of SSI output.

Parameter: int SP_SSIFormat

Direction: Down **Valid values:**

aliu values.

0= binary

1= grey code

Description: SSI transmission format.

D.12 Get FormatSSI (SC)

Get the transmission format of SSI output.

Parameter: int SA_SSIFormat

Direction: Up

Valid values:

0= binary

1= grey code

Description: SSI transmission format.

SA_TerminationChar

SP_SSIFormat

SA_SSIFormat

D.13 Set_ScaleFactor (SF)

Set the scaling factor how the sensor scale distance values.

Parameter: double SP_ScaleFactor SP_ScaleFactor

Direction: Down **Valid values:**

Minimum: -10.0 Maximum: 10.0

Description: Scaling factor.

D.14 Get_ScaleFactor (SF)

Get the scaling factor how the sensor scale distance values.

Parameter: double SA_ScaleFactor SA_ScaleFactor

Direction: Up Valid values:

Minimum: -10.0 Maximum: 10.0 Description: Scaling factor.

D.15 Set_Offset (OF)

Set the offset which is added by the sensor to distance values.

Parameter: double SP_Offset SP_Offset

Direction: Down **Valid values**:

Minimum: -5000.0 Maximum: 5000.0 Description: Offset value.

D.16 Get_Offset (OF)

Get the offset which is added by the sensor to distance values.

Parameter: double SA_Offset SA_Offset

Direction: Up Valid values:

Minimum: -5000.0 Maximum: 5000.0 Description: Offset value.

D.17 CurrentDistAsOffset (SO)

Set the current distance value as offset.

Parameter: double SA_Offset SA_Offset

Direction: Up Valid values:

Minimum: -5000.0 **Maximum:** 5000.0

Description: Offset value which is set.

D.18 Set_ErrorMode (SE)

Set the behaviour of digital and analog outputs in case of an error.

Parameter: int SP_ErrorMode SP_ErrorMode

Direction: Down Valid values:

0= last valid value 1= switch to bounds

2= switch to negated bounds

Description: Error mode.

D.19 Get ErrorMode (SE)

Get the behaviour of digital and analog outputs in case of an error.

Parameter: int SA_ErrorMode SA_ErrorMode

Direction: Up Valid values:

> 0= last valid value 1= switch to bounds

2= switch to negated bounds

Description: Error mode.

D.20 Set_MeasureWindow (MW)

Set a metrological range by definition of a starting point x and an end point as limits for output of measured values.

Parameter: double SP_WindowMin SP_WindowMin

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Window minimum value.

Parameter: double SP_WindowMax SP_WindowMax

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT_MAX (3.402823466e+38)

Description: Window maximum value.

D.21 Get_MeasureWindow (MW)

Get a metrological range by definition of a starting point x and an end point as limits for output of measured values.

Parameter: double SA_WindowMin SA_WindowMin

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT MAX (3.402823466e+38)

Description: Window minimum value.

Parameter: double SA_WindowMax SA_WindowMax

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT_MAX (3.402823466e+38)

Description: Window maximum value.

D.22 Set_AnalogOutLimits (QA)

Set parameters of the analog output QA.

Parameter: double SP_RangeBegin SP_RangeBegin

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT_MAX (3.402823466e+38)

Description: Lower limit value.

Parameter: double SP_RangeEnd SP_RangeEnd

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38) Maximum: FLT MAX (3.402823466e+38)

Description: Upper limit value.

D.23 Get_AnalogOutLimits (QA)

Get parameters of the analog output QA.

Parameter: double SA_RangeBegin SA_RangeBegin

Direction: Up **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT MAX (3.402823466e+38)

Description: Lower limit value.

Parameter: double SA_RangeEnd SA_RangeEnd

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT_MAX (3.402823466e+38)

Description: Upper limit value.

D.24 Set Out1Parameters (Q1)

Set parameters of the switching outputs Q1.

Parameter: double SP_Q1Start SP_Q1Start

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT MAX (3.402823466e+38)

Description: Start value.

Parameter: double SP_Q1Width SP_Q1Width

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38) Maximum: FLT_MAX (3.402823466e+38)

Description: Width.

Parameter: double SP_Q1Hysteresis SP_Q1Hysteresis

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT MAX (3.402823466e+38)

Description: Hysteresis.

Parameter: int SP_Q1Negation SP_Q1Negation

Direction: Down Valid values: 0= false 1= true

Description: Negation.

D.25 Get Out1Parameters (Q1)

Get parameters of the switching outputs Q1.

Parameter: double SA_Q1Start SA_Q1Start

Direction: Up **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT_MAX (3.402823466e+38)

Description: Start value.

Parameter: double SA_Q1Width SA_Q1Width

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT_MAX (3.402823466e+38)

Description: Width.

Parameter: double SA_Q1Hysteresis SA_Q1Hysteresis

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT_MAX (3.402823466e+38)

Description: Hysteresis.

Parameter: int SA_Q1Negation SA_Q1Negation

Direction: Up **Valid values:** 0= false 1= true

Description: Negation.

D.26 Set_Out2Parameters (Q2)

Set parameters of the switching outputs Q2.

Parameter: double SP_Q2Start SP_Q2Start

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT MAX (3.402823466e+38)

Description: Start value.

Parameter: double SP_Q2Width SP_Q2Width

Direction: Down **Valid values**:

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Width.

Parameter: double SP_Q2Hysteresis SP_Q2Hysteresis

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Hysteresis.

Parameter: int SP_Q2Negation SP_Q2Negation

Direction: Down Valid values: 0= false 1= true

Description: Negation.

D.27 Get Out2Parameters (Q2)

Get parameters of the switching outputs Q2.

Parameter: double SA_Q2Start SA_Q2Start

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT_MAX (3.402823466e+38)

Description: Start value.

Parameter: double SA_Q2Width SA_Q2Width

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT MAX (3.402823466e+38)

Description: Width.

Parameter: double SA_Q2Hysteresis SA_Q2Hysteresis

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Hysteresis.

Parameter: int SA_Q2Negation SA_Q2Negation

Direction: Up **Valid values:** 0= false 1= true

Description: Negation.

D.28 Set AverageValue (SA)

Set the average value for block wise averaging.

Parameter: int SP_Average SP_Average

Direction: Down
Valid values:
 Minimum: 1
 Maximum: 30000
Description: Average value.

D.29 Get AverageValue (SA)

Get the average value for block wise averaging.

Parameter: int SA_Average SA_Average

Direction: Up
Valid values:
 Minimum: 1
 Maximum: 30000
Description: Average value.

SP_TriggerDelay

SP_TriggerEdge

SA_TriggerDelay

SA_TriggerEdge

D.30 Set TriggerDelay (TD)

Set the behaviour of the trigger input.

Parameter: double SP_TriggerDelay

Direction: Down

Unit: ms
Valid values:

Minimum: 0.0 Maximum: 300.0 Description: Trigger delay.

Parameter: int SP_TriggerEdge

Direction: Down **Valid values:** 0= falling 1= rising

Description: Trigger edge.

D.31 Get_TriggerDelay (TD)

Get the behaviour of the trigger input.

Parameter: double SA_TriggerDelay

Direction: Up Unit: ms Valid values:

Minimum: 0.0 Maximum: 300.0 Description: Trigger delay.

Parameter: int SA_TriggerEdge

Direction: Up **Valid values:** 0= falling 1= rising

Description: Trigger edge.

D.32 Set_Baudrate (BR)

Set the baudrate of the sensors serial interface.

Attention! If baudrate is set to 9600, the command ID? (currently set to supported) will timeout.

If Set_Autostart is set to ID?, the sensor reboots cyclic and must be send back to manufacturer.

Attention! If baudrate is set to a baudrate, which the computer does not support (e.g. 230400 or 460800), it cannot be changed back and must be send back to manufacturer.

Attention! To avoid synchronisation problems, sending data by sensor should be disabled first (sensor command StopTracking).

 Parameter:
 int SP_SensorBaudrate

 Direction:
 Down

 Valid values:
 9600

 19200
 38400

 57600
 115200

 230400
 460800

D.33 Get_Baudrate (BR)

Get the baudrate of the sensors serial interface.

Description: Sensor baudrate.

```
Parameter: int SA_SensorBaudrate

Direction: Up

Valid values:

9600
19200
38400
57600
115200
230400
460800

Description: Sensor baudrate.
```

D.34 Set Autostart (AS)

Set which function will be carried out when power becomes available to the sensor.

```
Parameter: int SP_AutostartCommand
                                                                           SP_AutostartCommand
    Direction: Down
    Valid values:
         0= ID
         1= DM
         2= DT
         3= DF
         4= VM
         5= VT
         6= TP
         7= HW
         8= PA
         9= MF
         10= DT
         11 = SA
         12= SF
         13= MW
         14= OF
         15= SE
```



```
16= Q1

17= Q2

18= QA

19= BR

20= SD

21= TE

22= BB

23= AB

24= SC

25= PL

26= AS
```

Description: Autostart command.

D.35 Get_Autostart (AS)

Get which function will be carried out when power becomes available to the sensor.

Parameter: int SA_AutostartCommand

SA_AutostartCommand

```
Direction: Up
Valid values:
    0= ID
     1= DM
    2= DT
    3= DF
    4= VM
    5= VT
    6= TP
    7= HW
    8= PA
    9= MF
    10= DT
    11 = SA
    12= SF
    13= MW
    14= OF
    15= SE
     16= Q1
     17= Q2
    18= QA
    19= BR
    20= SD
    21 = TE
    22= BB
    23 = AB
    24= SC
    25= PL
    26= AS
```

Description: Autostart command.

-1= unknown

SP_MeasFrequency

SA_MeasFrequency

D.36 Set MeasFreq (MF)

Set the measure frequency of the sensor.

Parameter: int SP_MeasFrequency

Direction: Down
Valid values:
Minimum: 1
Maximum: 2000

Description: Measure frequency.

D.37 Get MeasFreq (MF)

Get the measure frequency of the sensor.

Parameter: int SA_MeasFrequency

Direction: Up Valid values: Minimum: 1 Maximum: 2000

Description: Measure frequency.

D.38 Set_PilotLaser (PL)

Set the behaviour of the pilot laser of the sensor.

Parameter: int SP_PilotLaser

Direction: Down **Valid values:**

0 = off1 = on

2= flashing (2 Hz) 3= flashing (5 Hz)

Description: Pilot laser behaviour.

D.39 Get_PilotLaser (PL)

Get the behaviour of the pilot laser of the sensor.

Parameter: int SA_PilotLaser

Direction: Up **Valid values:**

0 = off

1 = on

2= flashing (2 Hz) 3= flashing (5 Hz)

Description: Pilot laser behaviour.

SP_PilotLaser

SA_PilotLaser

D.40 Get Info (ID)

Retrieve information (like serial number) of the sensor.

Parameter: String SA_Version SA_Version

Direction: Up

Description: Firmware version.

D.41 Get_AllParameters (PA)

Retrieve all parameters from the sensor.

Parameter: int SA_MeasFrequency SA_MeasFrequency

Direction: Up Valid values: Minimum: 1 Maximum: 2000

Description: Measure frequency.

Parameter: double SA_TriggerDelay SA_TriggerDelay

Unit: ms
Valid values:
Minimum: 0.0
Maximum: 300.0
Description: Trigger delay.

Parameter: int SA_TriggerEdge SA_TriggerEdge

Direction: Up **Valid values:** 0= falling 1= rising

Direction: Up

Description: Trigger edge.

Parameter: int SA_Average SA_Average

Direction: Up
Valid values:
 Minimum: 1
 Maximum: 30000
Description: Average value.

Parameter: double SA_ScaleFactor SA_ScaleFactor

Direction: Up Valid values:

Minimum: -10.0
Maximum: 10.0
cription: Scaling for

Description: Scaling factor.

Parameter: double SA_WindowMin SA_WindowMin

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT_MAX (3.402823466e+38)

Description: Window minimum value.

Parameter: double SA_WindowMax SA_WindowMax

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT_MAX (3.402823466e+38)

Description: Window maximum value.

Parameter: double SA_Offset SA_Offset

Direction: Up **Valid values**:

Minimum: -5000.0 **Maximum:** 5000.0

Description: Offset value which is set.

Parameter: int SA_ErrorMode SA_ErrorMode

Direction: Up Valid values:

0= last valid value 1= switch to bounds

2= switch to negated bounds

Description: Error mode.

Parameter: double SA_Q1Start SA_Q1Start

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT_MAX (3.402823466e+38)

Description: Start value.

Parameter: double SA_Q1Width SA_Q1Width

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Width.

Parameter: double SA_Q1Hysteresis SA_Q1Hysteresis

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Hysteresis.

Parameter: int SA_Q1Negation SA_Q1Negation

Direction: Up **Valid values:** 0= false 1= true

Description: Negation.

Parameter: double SP_Q2Start SP_Q2Start

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT MAX (3.402823466e+38)

Description: Start value.

Parameter: double SP_Q2Width SP_Q2Width **Direction:** Down Valid values: Minimum: -FLT MAX (-3.402823466e+38) Maximum: FLT MAX (3.402823466e+38) **Description:** Width. Parameter: double SP_Q2Hysteresis SP_Q2Hysteresis **Direction**: Down Valid values: Minimum: -FLT MAX (-3.402823466e+38) Maximum: FLT MAX (3.402823466e+38) **Description:** Hysteresis. Parameter: int SP_Q2Negation SP_Q2Negation **Direction**: Down Valid values: 0= false 1= true **Description:** Negation. Parameter: double SA_RangeBegin ${\tt SA_RangeBegin}$ Direction: Up Valid values: Minimum: -FLT MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38) **Description:** Lower limit value. Parameter: double SA_RangeEnd SA_RangeEnd Direction: Up Valid values: Minimum: -FLT MAX (-3.402823466e+38) Maximum: FLT MAX (3.402823466e+38) **Description:** Upper limit value. Parameter: int SA_SensorBaudrate SA_SensorBaudrate **Direction:** Up Valid values: 9600 19200 38400 57600 115200 230400 460800 **Description:** Sensor baudrate. Parameter: int SA_OutputFormat SA_OutputFormat Direction: Up Valid values: 0= decimal 1 = hex2= binary

X9751165 106

Description: Output format of values.

10= DT

Parameter: int SA_OutputContent SA_OutputContent Direction: Up Valid values: 0= Measuring value 1 = Measuring value, signal strength 2= Measuring value, sensor temperature 3= Measuring value, signal strength, sensor temperature **Description:** Get which data is transmitted by sensor. Parameter: int SA_TerminationChar SA_TerminationChar Direction: Up Valid values: 0= <CRLF> 1= <CR> 2= <LF> 3= <STX> 4= <ETX> 5= Tabulator 6= Space 7= Comma 8= Colon 9= Semicolon **Description:** Termination character. Parameter: int SA_SSIFormat SA_SSIFormat Direction: Up Valid values: 0= binary 1= grey code **Description:** SSI transmission format. Parameter: int SA_PilotLaser SA_PilotLaser **Direction:** Up Valid values: 0 = off1 = on2= flashing (2 Hz) 3= flashing (5 Hz) Description: Pilot laser behaviour. Parameter: int SA_AutostartCommand SA_AutostartCommand Direction: Up Valid values: 0 = ID1= DM 2= DT 3= DF 4= VM 5= VT 6= TP 7= HW 8= PA 9= MF


```
11= SA
```

12= SF

13= MW

14= OF

15= SE

16= Q1

17= Q2

18= QA

19= BR

20= SD

21= TE

22= BB

23= AB

24= SC

25= PL

26= AS

-1= unknown

Description: Autostart command.

D.42 Get Temperature (TP)

Retrieve the temperature inside of the sensor.

Parameter: double SA_Temperature

Direction: Up

Unit: °C

Description: Sensor temperature.

D.43 Get_HWDignosis (HW)

Retrieve internal sensor diagnostic information.

Parameter: String SA_Dignosis

Direction: Up

Description: Sensor diagnostic information.

D.44 Reset_Parameters (PR)

Reset all parameters of sensor to factory defaults and return new parameters.

Parameter: int SA_MeasFrequency

Direction: Up Valid values: Minimum: 1 Maximum: 2000

Description: Measure frequency.

SA_MeasFrequency

SA_Temperature

SA_Dignosis

Parameter: double SA_TriggerDelay SA_TriggerDelay

Direction: Up Unit: ms Valid values:

Minimum: 0.0 Maximum: 300.0 Description: Trigger delay.

Parameter: int SA_TriggerEdge SA_TriggerEdge

Direction: Up **Valid values:** 0= falling 1= rising

Description: Trigger edge.

Parameter: int SA_Average SA_Average

Direction: Up
Valid values:
 Minimum: 1
 Maximum: 30000
Description: Average value.

Parameter: double SA_ScaleFactor SA_ScaleFactor

Direction: Up Valid values:

Minimum: -10.0 Maximum: 10.0 Description: Scaling factor.

Parameter: double SA_WindowMin SA_WindowMin

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Window minimum value.

Parameter: double SA_WindowMax SA_WindowMax

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Window maximum value.

Parameter: double SA_Offset SA_Offset

Direction: Up Valid values:

Minimum: -5000.0 **Maximum:** 5000.0

Description: Offset value which is set.

Parameter: int SA_ErrorMode SA_ErrorMode

Direction: Up Valid values:

> 0= last valid value 1= switch to bounds

2= switch to negated bounds

Description: Error mode.

Parameter: double SA_Q1Start SA_Q1Start

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT_MAX (3.402823466e+38)

Description: Start value.

Parameter: double SA_Q1Width SA_Q1Width

Direction: Up **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Width.

Parameter: double SA_Q1Hysteresis SA_Q1Hysteresis

Direction: Up Valid values:

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Hysteresis.

Parameter: int SA_Q1Negation SA_Q1Negation

Direction: Up **Valid values:** 0= false 1= true

Description: Negation.

Parameter: double SP_Q2Start SP_Q2Start

Direction: Down **Valid values**:

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT MAX (3.402823466e+38)

Description: Start value.

Parameter: double SP_Q2Width SP_Q2Width

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38) **Maximum:** FLT_MAX (3.402823466e+38)

Description: Width.

Parameter: double SP_Q2Hysteresis SP_Q2Hysteresis

Direction: Down **Valid values:**

Minimum: -FLT_MAX (-3.402823466e+38)
Maximum: FLT_MAX (3.402823466e+38)

Description: Hysteresis.

Parameter: int SP_Q2Negation SP_Q2Negation

Direction: Down Valid values: 0= false 1= true

Description: Negation.


```
Parameter: double SA_RangeBegin
                                                                                SA_RangeBegin
     Direction: Up
     Valid values:
         Minimum: -FLT MAX (-3.402823466e+38)
         Maximum: FLT MAX (3.402823466e+38)
     Description: Lower limit value.
Parameter: double SA_RangeEnd
                                                                                SA_RangeEnd
     Direction: Up
     Valid values:
         Minimum: -FLT MAX (-3.402823466e+38)
         Maximum: FLT MAX (3.402823466e+38)
     Description: Upper limit value.
Parameter: int SA_SensorBaudrate
                                                                                SA_SensorBaudrate
     Direction: Up
     Valid values:
          9600
          19200
          38400
          57600
          115200
          230400
          460800
     Description: Sensor baudrate.
Parameter: int SA_OutputFormat
                                                                                SA_OutputFormat
     Direction: Up
     Valid values:
          0= decimal
          1 = hex
          2= binary
     Description: Output format of values.
Parameter: int SA_OutputContent
                                                                                SA_OutputContent
     Direction: Up
     Valid values:
          0= Measuring value
          1 = Measuring value, signal strength
          2= Measuring value, sensor temperature
          3= Measuring value, signal strength, sensor temperature
     Description: Get which data is transmitted by sensor.
Parameter: int SA_TerminationChar
                                                                                {\tt SA\_TerminationChar}
     Direction: Up
     Valid values:
          0= <CRLF>
          1= <CR>
          2= <LF>
          3= <STX>
          4= <ETX>
          5= Tabulator
          6= Space
          7= Comma
          8= Colon
          9= Semicolon
```

X9751165 111

Description: Termination character.


```
Parameter: int SA_SSIFormat
                                                                              SA_SSIFormat
    Direction: Up
     Valid values:
          0= binary
          1= grey code
     Description: SSI transmission format.
Parameter: int SA_PilotLaser
                                                                              SA_PilotLaser
     Direction: Up
     Valid values:
          0 = off
          1 = on
          2= flashing (2 Hz)
          3= flashing (5 Hz)
     Description: Pilot laser behaviour.
Parameter: int SA_AutostartCommand
                                                                              SA_AutostartCommand
     Direction: Up
     Valid values:
          0= ID
          1= DM
          2= DT
          3= DF
          4= VM
          5= VT
          6= TP
          7= HW
          8= PA
          9= MF
          10= DT
          11= SA
          12= SF
          13= MW
          14= OF
          15= SE
          16= Q1
          17= Q2
          18= QA
          19= BR
          20= SD
          21 = TE
          22= BB
          23= AB
          24= SC
          25= PL
          26= AS
          -1= unknown
```

D.45 Trigger_ColdStart (DR)

Description: Autostart command.

Reboots the sensor and executes the autostart command.

D.46 Use Defaults

This command tells the driver to use default values to operate with sensor data. If some parameters are not specified they are not changed. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.1.

The other parameters are:

Parameter: int IP_OutputFormat

IP_OutputFormat

Direction: Down
Valid values:
0= decimal
1= hex
2= binary

Description: Tells the driver the output format of values.

Parameter: int IP_OutputContent

IP_OutputContent

Direction: Down **Valid values:**

0= Measuring value

1 = Measuring value, signal strength

2= Measuring value, sensor temperature

3= Measuring value, signal strength, sensor temperature **Description:** Tells the driver which data is transmitted by sensor.

Parameter: int IP_DistanceTracking

IP_DistanceTracking

Direction: Down Valid values: 0= no 1= yes

Description: Tells the driver if sensor is in DistanceTracking (DT) mode.

Parameter: int IP_SpeedMeasure

IP_SpeedMeasure

Direction: Down **Valid values:** 0= no 1= yes

Description: Tells the driver if sensor is in SpeedMeasure (VM) mode.

Parameter: int IP_SpeedTracking

IP_SpeedTracking

Direction: Down **Valid values:** 0= no 1= yes

Description: Tells the driver if sensor is in SpeedTracking (VT) mode.


```
Parameter: int IP_TerminationChar
Direction: Down
```

Valid values:

0= <CRLF> 1= <CR>

2= <LF>

3= <STX>

4= <ETX>

5= Tabulator

6= Space

7= Comma

8= Colon

9= Semicolon

Description: Tells the driver which termination char (TE) the sensor is using.

D.47 Get_DrvSetting

Returns the current settings of the driver used for operating with sensor data. It is the opposite of Use_Defaults. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.3.

The other parameters are:

Parameter: int IA_OutputFormat

IA_OutputFormat

Direction: Up

Valid values:

0= decimal

1 = hex

2= binary

Description: Setting used by driver which output format is used.

Parameter: int IA_OutputContent

IA_OutputContent

Direction: Up Valid values:

0= Measuring value

1 = Measuring value, signal strength

2= Measuring value, sensor temperature

3= Measuring value, signal strength, sensor temperature

Description: Setting used by driver which data is transmitted by sensor.

Parameter: int IA_DistanceTracking

IA_DistanceTracking

Direction: Up Valid values:

0 = no1 = yes

Description: Setting used by driver if sensor is in DistanceTracking (DT)

mode

Parameter: int IA_SpeedMeasure

IA_SpeedMeasure

Direction: Up **Valid values:** 0= no 1= yes

Description: Setting used by driver if sensor is in SpeedMeasure (VM) mode.

Direction: Up **Valid values:** 0= no 1= yes

Description: Setting used by driver if sensor is in SpeedTracking (VT) mode.

Parameter: int IA_TerminationChar IA_TerminationChar

Direction: Up
Valid values:

0 = < CRLF >
1 = < CR >
2 = < LF >
3 = < STX >
4 = < ETX >
5 = Tabulator
6 = Space
7 = Comma

8= Colon 9= Semicolon

Description: Setting used by driver which termination char (TE) the sensor is using.

SA_Sensor

SA_SensorType

E Commands for ILD1302

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

RS232 (additional, e.g. RS422_USB-Converter and RS232 high level interface).

IF2004 (native).

TCP/IP (additional, e.g. RS232/RS422 to TCP/IP comm server and RS232 high level

interface).

IF2008 (native).

E.1 Get_Info

Retrieve some information about the sensor.

Parameter: String SA_Sensor

Direction: Up

Description: Name of the sensor.

Parameter: String SA_SensorType

Direction: Up

Description: Type of the sensor.

Parameter: String SA_ArticleNumber SA_ArticleNumber

Direction: Up

Description: Article number of the sensor.

Parameter: String SA_Option SA_Option

Direction: Up

Description: Option of the sensor.

Parameter: String SA_SerialNumber SA_SerialNumber

Direction: Up

Description: Serial number of the sensor.

Parameter: double SA_Range SA_Range

Direction: Up Valid values: 20 50

200 (or other on further versions)

Unit: mm

Description: Range of the sensor.

Parameter: String SA_Softwareversion SA_Softwareversion

Direction: Up

Description: Software version of the sensor.

Parameter: String SA_BootLoaderVer SA_BootLoaderVer

Direction: Up

Description: Boot loader version of the sensor.

Direction: Up Valid values:

0= continuous 1= timed 2= triggered

Description: The output mode of the sensor.

Parameter: String SA_Date SA_Date **Direction:** Up Description: Software release date of the sensor. Parameter: int SA_OutputType SA_OutputType Direction: Up Valid values: 0= current (4..20mA) 1= RS422 **Description:** Data output (only values, not answer) interface of the sensor. Parameter: int SA_ErrorHandler SA_ErrorHandler **Direction:** Up Valid values: 0= hold last value 1 = error values 2..99= hold last valid for n values Description: If the sensor cannot measure values, it can output the last valid value or it can output an error values. Parameter: int SA_AvType SA_AvType **Direction:** Up Valid values: 0= moving 1 = Median **Description:** The averaging type. Parameter: int SA_MovingCount SA_MovingCount **Direction:** Up Valid values: Minimum: 1 Maximum: 128 **Description:** The moving averaging value, if AvType is moving. Parameter: int SA_MedianIndex SA MedianIndex Direction: Up Valid values: 3 5 7 **Description:** The Median value, if AvType is Median. Parameter: int SA_ASCII SA_ASCII Direction: Up Valid values: 0= off (binary 2 bytes/value) 1 = on (ASCII 6 bytes/value) **Description:** Returns the mode the sensor is sending data (only values). Parameter: int SA_OutputMode SA_OutputMode

Parameter: int SA_Keylock SA_Keylock

Direction: Up Valid values:

0= off (keys enabled) 1= on (keys locked)

2= auto (locked after 5 minutes)

Description: The keypad state at the sensor.

Parameter: int SA_SaveSettingsMode SA_SaveSettingsMode

Direction: Up Valid values:

0= temporary in RAM 1= persistant in Flash

Description: The mode if parameters should be temporay or stored persistant.

Parameter: int SA_ExtInputMode SA_ExtInputMode

Direction: Up **Valid values:**

0= used for teaching 1= used as trigger

Description: Specifies if the external input is used for teaching or as trigger

input.

Parameter: int SA_PeakSearching SA_PeakSearching

Direction: Up **Valid values:**

0= global maximum

1= first peak 2= last peak

Description: Specifies how the peak searching algorithm does work.

Parameter: int SA_Threshold SA_Threshold

Direction: Up
Valid values:
0= lower
1= normal
2= higher
2= highest

Description: Specifies the spectral threshold.

Parameter: double SA_TeachValue1 SA_TeachValue1

Direction: Up Valid values: Minimum: 0.0 Maximum: 16368.0

Description: The lower teach limit.

Parameter: double SA_TeachValue2 SA_TeachValue2

Direction: Up Valid values: Minimum: 0.0 Maximum: 16368.0

Description: The higher teach limit.

E.2 Get Settings

Retrieve detailed information about the sensor.

Parameter: int SA_OutputType SA_OutputType

Direction: Up Valid values:

0= current (4..20mA)

1= RS422

Description: Data output (only values, not answer) interface of the sensor.

Parameter: double SA_TeachValue1 SA_TeachValue1

Direction: Up Valid values: Minimum: 0.0 Maximum: 16368.0

Description: The lower teach limit.

Parameter: double SA_TeachValue2 SA_TeachValue2

Direction: Up Valid values: Minimum: 0.0 Maximum: 16368.0

Description: The higher teach limit.

Parameter: int SA_ErrorHandler SA_ErrorHandler

Direction: Up Valid values:

0= hold last value 1= error values

2..99= hold last valid for n values

Description: If the sensor cannot measure values, it can output the last valid

value or it can output an error values.

Parameter: int SA_AvType SA_AvType

Direction: Up Valid values: 0= moving 1= Median

Description: The averaging type.

Parameter: int SA_MovingCount SA_MovingCount

Direction: Up Valid values: Minimum: 1 Maximum: 128

Description: The moving averaging value, if AvType is moving.

Parameter: int SA_MedianIndex SA_MedianIndex

Direction: Up Valid values: 3 5 7

Description: The Median value, if AvType is Median.

Parameter: int SA_SensorBaudrate SA_SensorBaudrate

Direction: Up **Valid values:**

0= 115200 Baud 1= 57600 Baud 2= 38400 Baud 3= 19200 Baud 4= 9600 Baud

Description: The serial connection baudrate of the sensor.

Parameter: int SA_ASCII SA_ASCII

Direction: Up Valid values:

0= off (binary 2 bytes/value) 1= on (ASCII 6 bytes/value)

Description: Returns the mode the sensor is sending data (only values).

Parameter: int SA_OutputMode SA_OutputMode

Direction: Up **Valid values:**

0= continuous 1= timed 2= triggered

Description: The output mode of the sensor.

Parameter: int SA_OutputTime SA_OutputTime

Direction: Up Valid values: Minimum: 0 Maximum: 65536

Unit: ms

Description: Data output time of the sensor. It is used for timeout check.

Parameter: int SA_Keylock SA_Keylock

Direction: Up **Valid values**:

0= off (keys enabled) 1= on (keys locked)

2= auto (locked after 5 minutes) **Description:** The keypad state at the sensor.

Parameter: int SA_SaveSettingsMode SA_SaveSettingsMode

Direction: Up **Valid values:**

0= temporary in RAM 1= persistant in Flash

Description: The mode if parameters should be temporary or stored persistant.

Parameter: int SA_ExtInputMode SA_ExtInputMode

Direction: Up Valid values:

0= used for teaching 1= used as trigger

Description: Specifies if the external input is used for teaching or as trigger

input.

Parameter: int SA_PeakSearching SA_PeakSearching

Direction: Up Valid values:

0= global maximum 1= first peak

2= last peak

Description: Specifies how the peak searching algorithm does work.

Parameter: int SA_Threshold SA_Threshold

Direction: Up
Valid values:
0 = lower
1 = normal
2 = higher
2 = highest

Description: Specifies the spectral threshold.

Parameter: int SA_Reserved1 SA_Reserved1

Direction: Up

Description: Reserved for further use.

Parameter: int SA_Reserved2 SA_Reserved2

Direction: Up

Description: Reserved for further use.

E.3 Set KeyLock

Locks/Unlocks the keypad of sensor.

Parameter: int SP_Keylock SP_Keylock

Direction: Down **Valid values:**

0= off (keys enabled) 1= on (keys locked)

2= auto (locked after 5 minutes)

Description: The keypad state at the sensor.

E.4 Dat_Out_Off

Switch off data output from sensor.

E.5 Dat_Out_On

Switch on data output from sensor.

E.6 Set Av

Set averaging type and value of sensor.

Parameter: int SP_AvType

SP_AvType

Direction: Down **Valid values:** 0= moving 1= Median

Description: The averaging type.

Parameter: int SP_MovingCount

SP_MovingCount

Direction: Down Valid values: Minimum: 1 Maximum: 128

Description: The moving averaging value, if AvType is moving.

Parameter: int SP_MedianIndex

SP_MedianIndex

Direction: Down **Valid values:**

3 5

7

Description: The Median value, if AvType is Median.

E.7 Set_Baudrate

Set the baudrate of the serial interface of sensor.

Attention! To avoid synchronisation problems, sending data by sensor should be disabled first (sensor command Dat Out Off).

Parameter: int SP_SensorBaudrate

SP_SensorBaudrate

Direction: Down **Valid values:**

0= 115200 Baud 1= 57600 Baud 2= 38400 Baud 3= 19200 Baud 4= 9600 Baud

Description: The serial connection baudrate of the sensor.

E.8 Set_ErrorHandler

Set the behaviour on invalid values at sensor.

Parameter: int SP_ErrorHandler

SP_ErrorHandler

Direction: Down **Valid values:**

0= hold last value 1= error values

2..99= hold last valid for n values

Description: If the sensor cannot measure values, it can output the last valid value or it can output an error values.

SP_ASCII

SP_OutputType

E.9 Laser Off

Switch the laser off.

E.10 Laser_On

Switch the laser on.

E.11 ASCII_Output

Set digital data transfer (only values, no sensor answer) to ASCII or binary.

Parameter: int SP_ASCII

Direction: Down **Valid values:**

0= off (binary 2 bytes/value) 1= on (ASCII 6 bytes/value)

Description: Returns the mode the sensor is sending data (only values).

E.12 Set_OutputType

Set the output type of sensor.

Parameter: int SP_OutputType

Direction: Down **Valid values:**

0= current (4..20mA)

1= RS422

Description: Data output (only values, not answer) interface of the sensor.

E.13 Reset_Boot

Resets the sensor.

E.14 Set_Default

Resets the sensor to factoy settings.

E.15 Set_OutputMode

Set the output mode of sensor.

Parameter: int SP_OutputMode

Direction: Down **Valid values:**

0= continuous 1= timed 2= triggered

Description: Data output mode of the sensor.

SP_OutputMode

E.16 Set OutputTime

Set the output time of sensor.

Parameter: int SP_OutputTime SP_OutputTime

Direction: Down Valid values: Minimum: 0 Maximum: 65536

Unit: ms

Description: Data output time of the sensor.

E.17 Set_SaveSettingsMode

Set the save settings mode of sensor.

Parameter: int SP_SaveSettingsMode SP_SaveSettingsMode

Direction: Down **Valid values:**

0= temporary in RAM 1= persistant in Flash

Description: The mode if parameters should be temporay or stored persistant.

E.18 Set_ExtInputMode

Set the mode of external input at sensor.

Parameter: int SP_ExtInputMode SP_ExtInputMode

Direction: Down Valid values:

0= used for teaching 1= used as trigger

Description: Specifies if the external input is used for teaching or as trigger

input.

E.19 Set_TeachValue

Set the teaching values at sensor.

Parameter: double SP_TeachValue1 SP_TeachValue1

Direction: Down
Valid values:
Minimum: 0.0
Maximum: 16368.0

Description: The lower teach limit.

Parameter: double SP_TeachValue2 SP_TeachValue2

Direction: Down
Valid values:
Minimum: 0.0
Maximum: 16368.0

Description: The higher teach limit.

E.20 Reset_TeachValue

Reset the teaching values at sensor.

E.21 Set_PeakSearching

Set the mode of external input at sensor.

Parameter: int SP_PeakSearching

Direction: Down **Valid values:**

0= global maximum

1= first peak 2= last peak

Description: Specifies how the peak searching algorithm does work.

E.22 Set_Threshold

Set the spectral threshold of sensor.

Parameter: int SP_Threshold

Direction: Down Valid values: 0= lower 1= normal

2= higher 2= highest

Description: Specifies the spectral threshold.

E.23 Get_Video

Get recent video signal from sensor.

Parameter: String (binary, with 0x00) SA_VideoSignal

Direction: Up Valid values: 256 bytes

convertable to 128 WORDS. **Description:** Raw video signal

E.24 Use_Defaults

This command tells the driver to use default values to operate with sensor data. If some parameters are not specified they are not changed. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.1.

The other parameters are:

Parameter: int IP_OutputType

Direction: Down **Valid values:**

0= current (4..20mA)

1= RS422

Description: Tells the driver the data output (only values, not answer) interface of the sensor. It is used for timeout check.

of the sensor, it is used for timeout check.

SP_PeakSearching

SP_Threshold

SA_VideoSignal

IP_OutputType

Parameter: int IP_OutputMode

IP_OutputMode

Direction: Down **Valid values:**

0= continuous 1= timed 2= triggered

Description: Tells the driver the data output mode of the sensor. It is used for

timeout check.

Parameter: int IP_OutputTime

IP_OutputTime

Direction: Down
Valid values:
Minimum: 1
Maximum: 65535

Unit: ms

Description: Tells the driver the data output time of the sensor. It is used for

timeout check.

E.25 Get_DrvSetting

Returns the current settings of the driver used for operating with sensor data. It is the opposite of Use_Defaults. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.3.

The other parameters are:

Parameter: int IA_OutputType

IA_OutputType

Direction: Up Valid values:

0= current (4..20mA)

1= RS422

Description: The data output (only values, not answer) interface of the sensor

assumed by the driver for timeout check.

Parameter: int IA_OutputMode

IA_OutputMode

Direction: Up **Valid values**:

0= continuous 1= timed 2= triggered

Description: The data output mode of the sensor.

Parameter: int IA_OutputTime

IA_OutputTime

Direction: Up Valid values: Minimum: 1 Maximum: 65535

Unit: ms

Description: The data output time of the sensor.

SA_Softwareversion

SA_ArticleNumber

SA_SerialNumber

SA_Option

SA_Range

Commands for ILD1401

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

RS232 (native).

TCP/IP (additional, e.g. RS232/RS422 to TCP/IP comm server and RS232 high level interface).

IF2008 (for sensor ILD1402 in compatibility mode).

F.1 Reset_Boot

Resets the sensor. This command has no parameters.

F.2 Get_Version

Retrieve the sensor software version.

Parameter: String SA_Softwareversion

Direction: Up

Description: Software version of the sensor.

F.3 Get_Info

Retrieve some information about the sensor.

Parameter: String SA_ArticleNumber

Direction: Up

Description: Article number of the sensor

Parameter: String SA_Option

Direction: Up

Description: Option of the sensor

Parameter: String SA_SerialNumber

Direction: Up

Description: Serial number of the sensor

Parameter: double SA_Range

Direction: Up

Valid values:

5

10

20

50

100

200

250 (or other on further versions)

Unit: mm

Description: Range of the sensor

X9751165 127

Parameter: String SA_Softwareversion SA_Softwareversion

Direction: Up

Description: Software version of the sensor

Parameter: String SA_Date SA_Date

Direction: Up

Description: Software release date of the sensor

Parameter: int SA_OutputType SA_OutputType

Direction: Up Valid values: 0= analog 1= RS232

Description: Data output (only values, not answer) interface of the sensor

Parameter: int SA_ErrorHandler SA_ErrorHandler

Direction: Up Valid values:

0= hold last value 1= error values

Description: If the sensor cannot measure values, it can output the last valid

value or it can output an error value (only at analog output).

Parameter: int SA_Median_OnOff SA_Median_OnOff

Direction: Up Valid values: 0= none 1= Median 3

Description: The sensor can perform averaging (Median over 3 values).

F.4 Set OutputChannel

Set the output channel of the sensor.

Parameter: int SP_OutputType SP_OutputType

Direction: Down Valid values: 0= analog 1= RS232

Description: Specifies data output (only values, not answer) interface of the

sensor.

F.5 SaveLastMV

Specifies the error handling of sensor if it cannot measure values.

Parameter: int SP_ErrorHandler SP_ErrorHandler

Direction: Down **Valid values**:

0= hold last value 1= error values

Description: If the sensor cannot measure values, it can output the last valid

value or it can output an error value (only at analog output).

F.6 Set Median

Set the internal averaging mode of the sensor.

Parameter: int SP_Median_OnOff

SP_Median_OnOff

Direction: Down
Valid values:
0= none
1= Median 3

Description: The sensor can perform averaging (Median over 3 values).

F.7 Use Defaults

This command tells the driver to use default values to operate with sensor data. If some parameters are not specified they are not changed. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.1.

The other parameters are:

Parameter: int IP_Option

IP_Option

Direction: Down Valid values: Minimum: 0 Maximum: 999

Description: Tells the driver the sensor option. It is used for data scaling.

F.8 Get_DrvSetting

Returns the current settings of the driver used for operating with sensor data. It is the opposite of Use Defaults. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.3.

The other parameters are:

Parameter: int IA_Option

IA_Option

Direction: Up Valid values: Minimum: 0 Maximum: 999

Description: The option of the sensor assumed by the driver for data scaling.

SA_Major

G Commands for ILD1401-Controller

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

USBIO (native).

G.1 Dat_Out_Off

Controller_ILD1401 does not send data periodically, so the driver has to poll for data in an own thread. This command stops polling data from the controller. The normal polling intervall is up to 1000 Hz (depending on computer and USB speed), but it can be changed using the sensor command Use_Defaults (parameter IP_Samplerate).

G.2 Dat_Out_On

Starts polling data from controller.

G.3 Set_ControllerReset

Resets the controller. This command has no parameters.

G.4 Get_FirmwareVersion

Returns the version of the controller.

Direction: Up

Parameter: String SA_Major

Description: Firmware major version.

Parameter: String SA_Minor SA_Minor

Direction: Up

Description: Firmware minor version.

Parameter: String SA_Version SA_Version

Direction: Up

Description: Firmware version.

Parameter: String SA_Revision SA_Revision

Direction: Up

Description: Firmware revision.

G.5 Get Settings

Get the settings and state of controller and sensor.

Parameter: int SA_OutOfRange

SA_OutOfRange

Direction: Up
Valid values:
0= in range
1= out of range

Description: The sensor is in range or out of range.

Parameter: int SA_OutputType

SA_OutputType

Direction: Up Valid values: 0= digital 1= analog

Description: The output type of the sensor.

Parameter: int SA_ZeroSet

SA ZeroSet

Direction: Up **Valid values:** 0= off 1= on

Description: Original measured value or with offset.

Parameter: int SA_Direction

SA_Direction

Direction: Up Valid values: 0= normal 1= inverse

Description: The measured value can be output normal or subtracted from

whole measure range.

Parameter: int SA_Unit

SA_Unit

Direction: Up **Valid values:** 0= metric 1= inch

Description: The measured value can be output in mm or inch.

G.6 Get BatteryCharge

Get the battery charge state of controller.

Parameter: double SA_BatteryCharge

SA_BatteryCharge

Direction: Up Valid values: Minimum: 0 Maximum: 100

Unit: %

Description: The charge state of battery.

G.7 Get Version

Retrieve the sensor software version.

Parameter: String SA_Softwareversion SA_Softwareversion

Direction: Up

Description: Software version of the sensor.

G.8 Get ValueMedian

Retrieve the averaged measured value.

Parameter: double SA_ValueMedian SA_ValueMedian

Direction: Up **Valid values**:

Minimum: -measure range **Maximum:** +measure range

Unit: mm or inch

Description: Averaged measured value.

G.9 Get_ValueActual

Retrieve the recent measured value.

Parameter: double SA_ValueActual SA_ValueActual

Direction: Up Valid values:

Minimum: -measure range **Maximum:** +measure range

Unit: mm or inch

Description: Recent measured value.

G.10 Get_SensorRange

Retrieve the measure range of sensor.

Parameter: double SA_Range SA_Range

Direction: Up Valid values:

5

10

20

50

100 200

250 (or other on further versions)

Unit: mm

Description: Range of the sensor.

SP_Unit

SP_Direction

SP_OutputType

G.11 Reset Boot

Resets the sensor. This command has no parameters.

G.12 Set_Zero

Set the actual value to 0. The offset is subtracted from all following values.

G.13 Set Unit

Set the unit in controller.

Parameter: int SP_Unit
Direction: Down

Valid values:

0= metric 1= inch

Description: The measured value can be output in mm or inch.

G.14 Set_Direction

Set the direction of measured values.

Parameter: int SP_Direction

Direction: Down **Valid values:**

0= normal 1= inverse

Description: The measured value can be output normal or subtracted from

whole measure range.

G.15 Set_OutputChannel

Set the output channel of the sensor.

Parameter: int SP_OutputType

Direction: Down **Valid values:**

0= digital 1= analog

Description: The output type of the sensor.

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

RS232 (additional, e.g. RS422_USB-Converter and RS232 high level interface). IF2004 (native).

TCP/IP (additional, e.g. RS232/RS422 to TCP/IP comm server and RS232 high level interface).

IF2008 (native).

H.1 Get_Info

Retrieve some information about the sensor.

Parameter: String SA_Sensor SA_Sensor

Direction: Up

Description: Name of the sensor.

Parameter: String SA_SensorType SA_SensorType

Direction: Up

Description: Type of the sensor.

Parameter: String SA_ArticleNumber SA_ArticleNumber

Direction: Up

Description: Article number of the sensor.

Parameter: String SA_Option SA_Option

Direction: Up

Description: Option of the sensor.

Parameter: String SA_SerialNumber SA_SerialNumber

Direction: Up

Description: Serial number of the sensor.

Parameter: double SA_Range SA_Range

Direction: Up Valid values:

5

10

20

50

100

200

250 (or other on further versions)

Unit: mm

Description: Range of the sensor.

Parameter: String SA_Softwareversion SA_Softwareversion

Direction: Up

Description: Software version of the sensor.

4= 50Hz

Description: The output speed of the sensor.

Parameter: String SA_BootLoaderVer SA_BootLoaderVer **Direction:** Up **Description:** Boot loader version of the sensor. Parameter: String SA_Date SA_Date Direction: Up **Description:** Software release date of the sensor. Parameter: int SA_OutputType SA_OutputType Direction: Up Valid values: 0= current (4..20mA) 1= RS422 **Description:** Data output (only values, not answer) interface of the sensor. Parameter: int SA_ErrorHandler SA_ErrorHandler **Direction:** Up Valid values: 0= hold last value 1 = error values 2..99= hold last valid for n values Description: If the sensor cannot measure values, it can output the last valid value or it can output an error values. Parameter: int SA_AvType SA_AvType **Direction:** Up Valid values: 0= moving 1 = Median **Description:** The averaging type. Parameter: int SA_MovingCount SA_MovingCount Direction: Up Valid values: Minimum: 1 Maximum: 128 **Description:** The moving averaging value, if AvType is moving. Parameter: int SA_MedianIndex SA_MedianIndex **Direction:** Up Valid values: 3 5 7 **Description:** The Median value, if AvType is Median. Parameter: int SA_Speed SA_Speed **Direction:** Up Valid values: 0 = 1.5kHz1 = 1.0kHz2= 750Hz 3 = 375Hz

Parameter: int SA_ASCII SA_ASCII

Direction: Up Valid values:

0= off (binary 2 bytes/value) 1= on (ASCII 6 bytes/value)

Description: Returns the mode the sensor is sending data (only values).

Parameter: int SA_OutputMode SA_OutputMode

Direction: Up Valid values:

0= continuous 1= timed 2= triggered

Description: The output mode of the sensor.

Parameter: int SA_Keylock SA_Keylock

Direction: Up **Valid values:**

0= off (keys enabled) 1= on (keys locked)

2= auto (locked after 5 minutes) **Description:** The keypad state at the sensor.

Parameter: int SA_SaveSettingsMode SA_SaveSettingsMode

Direction: Up Valid values:

> 0= temporary in RAM 1= persistant in Flash

Description: The mode if parameters should be temporay or stored persistant.

Parameter: int SA_ExtInputMode SA_ExtInputMode

Direction: Up Valid values:

> 0= used for teaching 1= used as trigger

Description: Specifies if the external input is used for teaching or as trigger

input.

Parameter: int SA_PeakSearching SA_PeakSearching

Direction: Up **Valid values:**

0= global maximum

1= first peak 2= last peak

Description: Specifies how the peak searching algorithm does work.

Parameter: int SA_Threshold SA_Threshold

Direction: Up Valid values: 0= lower 1= normal 2= higher

2= highest

Description: Specifies the spectral threshold.

Parameter: double SA_TeachValue1 SA_TeachValue1

Direction: Up Valid values: Minimum: 0.0 Maximum: 16368.0

Description: The lower teach limit.

Parameter: double SA_TeachValue2 SA_TeachValue2

Direction: Up Valid values: Minimum: 0.0 Maximum: 16368.0

Description: The higher teach limit.

H.2 Get_Settings

Retrieve detailed information about the sensor.

Parameter: int SA_OutputType SA_OutputType

Direction: Up Valid values:

0= current (4..20mA)

1= RS422

Description: Data output (only values, not answer) interface of the sensor.

Parameter: double SA_TeachValue1 SA_TeachValue1

Direction: Up Valid values: Minimum: 0.0 Maximum: 16368.0

Description: The lower teach limit.

Parameter: double SA_TeachValue2 SA_TeachValue2

Direction: Up Valid values: Minimum: 0.0 Maximum: 16368.0

Description: The higher teach limit.

Parameter: int SA_ErrorHandler SA_ErrorHandler

Direction: Up **Valid values:**

0= hold last value 1= error values

2..99= hold last valid for n values

Description: If the sensor cannot measure values, it can output the last valid

value or it can output an error values.

Parameter: int SA_AvType SA_AvType

Direction: Up Valid values: 0= moving 1= Median

Description: The averaging type.


```
Parameter: int SA_MovingCount
                                                                                  SA_MovingCount
     Direction: Up
     Valid values:
         Minimum: 1
         Maximum: 128
     Description: The moving averaging value, if AvType is moving.
Parameter: int SA_MedianIndex
                                                                                  SA_MedianIndex
     Direction: Up
     Valid values:
          3
          5
          7
          9
     Description: The Median value, if AvType is Median.
Parameter: int SA_Speed
                                                                                  SA_Speed
     Direction: Up
     Valid values:
          0= 1.5kHz
          1= 1.0kHz
          2= 750Hz
          3= 375Hz
          4= 50Hz
     Description: The output speed of the sensor.
Parameter: int SA_SensorBaudrate
                                                                                  SA_SensorBaudrate
     Direction: Up
     Valid values:
          0= 115200 Baud
          1 = 57600 Baud
          2= 38400 Baud
          3= 19200 Baud
          4= 9600 Baud
     Description: The serial connection baudrate of the sensor.
Parameter: int SA_ASCII
                                                                                  SA_ASCII
     Direction: Up
     Valid values:
          0= off (binary 2 bytes/value)
          1 = on (ASCII 6 bytes/value)
     Description: Returns the mode the sensor is sending data (only values).
Parameter: int SA_OutputMode
                                                                                  SA_OutputMode
     Direction: Up
     Valid values:
          0= continuous
          1 = timed
          2= triggered
```

X9751165 138

Description: The output mode of the sensor.

Parameter: int SA_OutputTime SA_OutputTime

Direction: Up Valid values: Minimum: 0 Maximum: 65536

Jnit: ms

Description: Data output time of the sensor. It is used for timeout check.

Parameter: int SA_Keylock SA_Keylock

Direction: Up Valid values:

> 0= off (keys enabled) 1= on (keys locked)

2= auto (locked after 5 minutes) **Description:** The keypad state at the sensor.

Parameter: int SA_SaveSettingsMode SA_SaveSettingsMode

Direction: Up Valid values:

0= temporary in RAM 1= persistant in Flash

Description: The mode if parameters should be temporary or stored persistant.

Parameter: int SA_ExtInputMode SA_ExtInputMode

Direction: Up Valid values:

0= used for teaching 1= used as trigger

Description: Specifies if the external input is used for teaching or as trigger

input.

Parameter: int SA_PeakSearching SA_PeakSearching

Direction: Up Valid values:

0= global maximum 1= first peak

2= last peak

Description: Specifies how the peak searching algorithm does work.

Parameter: int SA_Threshold SA_Threshold

Direction: Up
Valid values:
0= lower
1= normal
2= higher
2= highest

Description: Specifies the spectral threshold.

Parameter: int SA_Reserved1 SA_Reserved1

Direction: Up

Description: Reserved for further use.

Parameter: int SA_Reserved2 SA_Reserved2

Direction: Up

Description: Reserved for further use.

SP_Keylock

SP_AvType

SP_MovingCount

SP_MedianIndex

H.3 Set KeyLock

Locks/Unlocks the keypad of sensor.

Parameter: int SP_Keylock

Direction: Down **Valid values:**

0= off (keys enabled) 1= on (keys locked)

2= auto (locked after 5 minutes)

Description: The keypad state at the sensor.

H.4 Dat_Out_Off

Switch off data output from sensor.

H.5 Dat_Out_On

Switch on data output from sensor.

H.6 Set_Av

Set averaging type and value of sensor.

Parameter: int SP_AvType

Direction: Down **Valid values:** 0= moving

1= Median

Description: The averaging type.

Parameter: int SP_MovingCount

Direction: Down Valid values: Minimum: 1 Maximum: 128

Description: The moving averaging value, if AvType is moving.

Parameter: int SP_MedianIndex

Direction: Down **Valid values:**

3

5

7

9

Description: The Median value, if AvType is Median.

H.7 Set Baudrate

Set the baudrate of the serial interface of sensor.

Attention! To avoid synchronisation problems, sending data by sensor should be disabled first (sensor command Dat Out Off).

Parameter: int SP_SensorBaudrate

SP_SensorBaudrate

Direction: Down **Valid values:**

0= 115200 Baud 1= 57600 Baud 2= 38400 Baud 3= 19200 Baud 4= 9600 Baud

Description: The serial connection baudrate of the sensor.

H.8 Set ErrorHandler

Set the behaviour on invalid values at sensor.

Parameter: int SP_ErrorHandler

SP_ErrorHandler

SP_Speed

Direction: Down **Valid values:**

0= hold last value 1= error values

2..99= hold last valid for n values

Description: If the sensor cannot measure values, it can output the last valid value or it can output an error values.

H.9 Set_Speed

Set the data acquisition speed of the sensor.

Parameter: int SP_Speed

meter: int SP_Speed
Direction: Down

Valid values:

0 = 1.5kHz

1= 1.0kHz

2= 750Hz

3 = 375Hz

4= 50Hz

Description: The output speed of the sensor.

H.10 Laser_Off

Switch the laser off.

SP ASCII

SP_OutputType

H.11 Laser On

Switch the laser on.

H.12 ASCII_Output

Set digital data transfer (only values, no sensor answer) to ASCII or binary.

Parameter: int SP_ASCII

Direction: Down **Valid values:**

0= off (binary 2 bytes/value) 1= on (ASCII 6 bytes/value)

Description: Returns the mode the sensor is sending data (only values).

H.13 Set_OutputType

Set the output type of sensor.

Parameter: int SP_OutputType

Direction: Down **Valid values:**

0= current (4..20mA)

1= RS422

Description: Data output (only values, not answer) interface of the sensor.

H.14 Reset Boot

Resets the sensor.

H.15 Set_Default

Resets the sensor to factoy settings.

H.16 Set_CIMode_1401

Set the sensor in compatibility mode for ILD1401. No other commands expect Set_CIMode_1402 will work now.

Attention! If the interface is IF2004, the sensor cannot be accessed any longer, because IF2004 does not support 38400 Baud (Baudrate of ILD1401).

H.17 Set OutputMode

Set the output mode of sensor.

Parameter: int SP_OutputMode

Direction: Down **Valid values:**

0= continuous 1= timed 2= triggered

Description: Data output mode of the sensor.

H.18 Set_OutputTime

Set the output time of sensor.

Parameter: int SP_OutputTime

Direction: Down Valid values: Minimum: 0 Maximum: 65536

Unit: ms

Description: Data output time of the sensor.

H.19 Set SaveSettingsMode

Set the save settings mode of sensor.

Parameter: int SP_SaveSettingsMode

Direction: Down **Valid values:**

0= temporary in RAM 1= persistant in Flash

Description: The mode if parameters should be temporay or stored persistant.

H.20 Set_ExtInputMode

Set the mode of external input at sensor.

Parameter: int SP_ExtInputMode

Direction: Down **Valid values:**

0= used for teaching 1= used as trigger

Description: Specifies if the external input is used for teaching or as trigger

input.

SP_OutputMode

SP_OutputTime

SP_SaveSettingsMode

SP_ExtInputMode

H.21 Set TeachValue

Set the teaching values at sensor.

Parameter: double SP_TeachValue1 SP_TeachValue1

Direction: Down
Valid values:
Minimum: 0.0
Maximum: 16368.0

Description: The lower teach limit.

Parameter: double SP_TeachValue2 SP_TeachValue2

Direction: Down
Valid values:
Minimum: 0.0
Maximum: 16368.0

Description: The higher teach limit.

H.22 Reset TeachValue

Reset the teaching values at sensor.

H.23 Set PeakSearching

Set the mode of external input at sensor.

Parameter: int SP_PeakSearching SP_PeakSearching

Direction: Down **Valid values:**

0= global maximum 1= first peak 2= last peak

Description: Specifies how the peak searching algorithm does work.

H.24 Set_Threshold

Set the spectral threshold of sensor.

Parameter: int SP_Threshold SP_Threshold

Valid values: 0= lower 1= normal 2= higher 2= highest

Direction: Down

Description: Specifies the spectral threshold.

H.25 Get Video

Get recent video signal from sensor.

Parameter: String (binary, with 0x00) SA_VideoSignal

SA_VideoSignal

Direction: Up Valid values: 256 bytes

convertable to 128 WORDS. **Description:** Raw video signal

H.26 Use Defaults

This command tells the driver to use default values to operate with sensor data. If some parameters are not specified they are not changed. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.1.

The other parameters are:

Parameter: int IP_Speed

IP_Speed

Direction: Down

Valid values: 0= 1.5kHz 1= 1.0kHz

> 2= 750Hz 3= 375Hz 4= 50Hz

Description: Tells the driver the measure speed of the sensor. It is used for timeout check.

Parameter: int IP_OutputType

IP_OutputType

Direction: Down **Valid values:**

0= current (4..20mA)

1= RS422

Description: Tells the driver the data output (only values, not answer) interface

of the sensor. It is used for timeout check.

Parameter: int IP_OutputMode

IP_OutputMode

Direction: Down **Valid values:**

0= continuous 1= timed 2= triggered

Description: Tells the driver the data output mode of the sensor. It is used for

timeout check.

Parameter: int IP_OutputTime

IP_OutputTime

Direction: Down
Valid values:
Minimum: 1
Maximum: 65535

Unit: ms

Description: Tells the driver the data output time of the sensor. It is used for

timeout check.

IA_Speed

H.27 Get DrvSetting

Returns the current settings of the driver used for operating with sensor data. It is the opposite of Use Defaults. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.3.

The other parameters are:

Parameter: int IA_Speed
Direction: Up

Valid values: 0= 1.5kHz 1= 1.0kHz 2= 750Hz 3= 375Hz

4= 50Hz

Description: The output speed of the sensor assumed by the driver for timeout check.

Parameter: int IA_OutputType IA_OutputType

Direction: Up Valid values:

0= current (4..20mA)

1= RS422

Description: The data output (only values, not answer) interface of the sensor

assumed by the driver for timeout check.

Parameter: int IA_OutputMode IA_OutputMode

Direction: Up Valid values: 0= continuous

1= timed 2= triggered

Description: The data output mode of the sensor.

Parameter: int IA_OutputTime IA_OutputTime

Direction: Up Valid values: Minimum: 1 Maximum: 65535

Unit: ms

Description: The data output time of the sensor.

SP_MeasValue

SA_Sensor

SA_SensorType

SA_OutputType

SA_Softwareversion

I Commands for ILD1700

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

RS232 (additional, e.g. RS422_USB-Converter and RS232 high level interface). IF2004 (native).

TCP/IP (additional, e.g. RS232/RS422 to TCP/IP comm server and RS232 high level interface). IF2008 (native).

I.1 Get_MeasValue

Is only useful in trigger mode (ErrorOutput is 2 or 3).

Tells the sensor to measure values without hardware trigger condition (software trigger).

Parameter: int SP_MeasValue

Direction: Down **Valid values: Minimum:** 0

Maximum: INT_MAX (2147483647)

Description: The number of values to measure.

I.2 Get Info

Retrieve some information about the sensor.

Direction: Up

Parameter: String SA_Sensor

Description: Name of the sensor.

Parameter: String SA_SensorType

Direction: Up

Description: Type of the sensor.

Parameter: String SA_Softwareversion

Direction: Up

Description: Software version of the sensor.

Parameter: int SA_OutputType

Direction: Up **Valid values:**

0= current (4..20mA) 1= voltage (0..10V)

2= RS422

Description: Data output (only values, not answer) interface of the sensor.

Parameter: int SA_ErrorOutput SA_ErrorOutput Direction: Up Valid values: 0= sync error mode 1 = sync switch mode 2= trigger error mode 3= trigger switch mode **Description:** Sync/trigger and error/switch mode respectively of the sensor. Parameter: int SA_Speed SA_Speed **Direction:** Up Valid values: 0 = 2.5 kHz1= 1.25kHz 2= 625Hz 3 = 312.5HzDescription: The output speed of the sensor. Parameter: double SA_Samplerate SA_Samplerate Direction: Up Valid values: 2500 1250 625 312.5 (or other on specific sensor settings) Unit: Hz **Description:** The output speed of the sensor. Parameter: int SA_AvType SA_AvType Direction: Up Valid values: 0= recursive 1 = moving 2= Median **Description:** The averaging type. Parameter: int SA_AvIndex SA_AvIndex **Direction:** Up Valid values: Minimum: 0 Maximum: 15

Parameter: int SA_ErrorHandler SA_ErrorHandler

Direction: Up **Valid values:**

0= error values 1= hold last value

Description: If the sensor cannot measure values, it can output the last valid value or it can output an error values.

Description: The averaging index. Averaging $N=2^{AvIndex}$.


```
Parameter: int SA_Sync_TrgMode
                                                                                    SA_Sync_TrgMode
     Direction: Up
     Valid values:
          Condition: at sync mode (ErrorOutput is 0 or 1):
          0= synchronous master off
           1 = synchronous master on
           2= slave
           3= alternating synchronous master
     Valid values:
          Condition: at trigger mode (ErrorOutput is 2 or 3):
          0= edge L/H
           1= edge H/L
           2= level H
           3= level L
     Description: The sync mode or the trigger mode of the sensor.
Parameter: int SA_ASCII
                                                                                    SA_ASCII
     Direction: Up
     Valid values:
           0= off (binary 2 bytes/value)
           1 = on (ASCII 6 bytes/value)
     Description: Returns the mode the sensor is sending data (only values).
Parameter: int SA_Keylock
                                                                                    SA_Keylock
     Direction: Up
     Valid values:
          0= off (keys enabled)
           1 = on (keys locked)
     Description: The keypad state at the sensor.
Parameter: double SA_Range
                                                                                    SA_Range
     Direction: Up
     Valid values:
          2
           10
           20
           50
           100
          200
           250
           500
           750 (or other on further versions)
     Unit: mm
     Description: Range of the sensor.
Parameter: String SA_SerialNumber
                                                                                    SA_SerialNumber
     Direction: Up
     Description: Serial number of the sensor.
Parameter: String SA_Option
                                                                                    SA_Option
     Direction: Up
```

X9751165 149

Description: Option of the sensor.

Parameter: String SA_ArticleNumber SA_ArticleNumber

Direction: Up

Description: Article number of the sensor.

Parameter: String SA_Date SA_Date

Direction: Up

Description: Software release date of the sensor.

Parameter: String SA_BootLoaderVer SA_BootLoaderVer

Direction: Up

Description: Boot loader version of the sensor.

Parameter: String SA_SWType SA_SWType

Direction: Up

Description: Software type of the sensor.

Parameter: int SA_EnableFlash SA_EnableFlash

Direction: Up Valid values: 0= locked 1= enabled

Description: The flash is locked or enabled for writing.

I.3 Get_Settings

Retrieve detailed information about the sensor.

Parameter: int SA_OutputType SA_OutputType

Direction: Up Valid values:

0= current (4..20mA) 1= voltage (0..10V)

2= RS422

Description: Data output (only values, not answer) interface of the sensor.

Parameter: int SA_Speed SA_Speed

Direction: Up Valid values: 0= 2.5kHz 1= 1.25kHz 2= 625Hz 3= 312.5Hz

Description: The output speed of the sensor.

Parameter: int SA_AvIndex SA_AvIndex

Direction: Up Valid values: Minimum: 0 Maximum: 15

Description: The averaging index. Averaging $N=2^{AvIndex}$.


```
Parameter: int SA_ErrorHandler
                                                                                   SA_ErrorHandler
     Direction: Up
     Valid values:
          0= error values
           1= hold last value
     Description: If the sensor cannot measure values, it can output the last valid
         value or it can output an error values.
Parameter: int SA_Sync_TrgMode
                                                                                   SA_Sync_TrgMode
     Direction: Up
     Valid values:
          Condition: at sync mode (ErrorOutput is 0 or 1):
          0= synchronous master off
           1 = synchronous master on
           2= slave
           3= alternating synchronous master
     Valid values:
          Condition: at trigger mode (ErrorOutput is 2 or 3):
          0= edge L/H
           1= edge H/L
           2= level H
           3= level L
     Description: The sync mode or the trigger mode of the sensor.
Parameter: int SA_AvType
                                                                                   SA_AvType
     Direction: Up
     Valid values:
          0= recursive
           1 = movina
           2= Median
     Description: The averaging type.
Parameter: int SA_ErrorOutput
                                                                                   SA_ErrorOutput
     Direction: Up
     Valid values:
          0= sync error mode
           1 = sync switch mode
           2= trigger error mode
           3= trigger switch mode
     Description: Sync/trigger and error/switch mode respectively of the sensor.
Parameter: int SA_SensorBaudrate
                                                                                   SA_SensorBaudrate
     Direction: Up
     Valid values:
           0= 115200 Baud
           1= 57600 Baud
          2= 19200 Baud
           3= 9600 Baud
     Description: The serial connection baudrate of the sensor.
Parameter: int SA_ASCII
                                                                                   SA_ASCII
     Direction: Up
     Valid values:
```

X9751165 151

Description: Returns the mode the sensor is sending data (only values).

0= off (binary 2 bytes/value) 1= on (ASCII 6 bytes/value)

Parameter: int SA_Upper_limit SA_Upper_limit SA_Upper_limit

Direction: Up Valid values: Minimum: 0 Maximum: 16368

Description: The upper limit of the sensor.

Parameter: int SA_Lower_limit SA_Lower_limit

Direction: Up Valid values: Minimum: 0 Maximum: 16368

Description: The lower limit of the sensor.

Parameter: int SA_Upper_hysteresis SA_Upper_hysteresis

Direction: Up Valid values: Minimum: 0 Maximum: 16368

Description: The upper hysteresis of the sensor.

Parameter: int SA_Lower_hysteresis SA_Lower_hysteresis

Direction: Up Valid values: Minimum: 0 Maximum: 16368

Description: The lower hysteresis of the sensor.

Parameter: int SA_Master_value SA_Master_value

Direction: Up Valid values: Minimum: 0 Maximum: 16368

Description: The master value of the sensor.

Parameter: int SA_Master_MidPoint_Setup SA_Master_MidPoint_Setup

Direction: Up Valid values:

Condition: switch mode: 0/2= Not mastered 1/3= Mastered

Valid values:

Condition: error mode: 0/1 = mid-point value not set 2/3 = mid-point value set

Description: The master and midpoint of the sensor.


```
Parameter: double SA_Range
                                                                                   SA_Range
     Direction: Up
     Valid values:
           10
           20
           50
           100
          200
           250
           500
           750 (or other on further versions)
     Unit: mm
     Description: Range of the sensor.
Parameter: int SA_AssignLimits_ErrorOutput
     Direction: Up
                                                                                  SA_AssignLimits_ErrorOutput
     Valid values:
          0= Set LowerLimit F1
           1 = Set UpperLimit F1
     Description: The assignment of the error outputs of the sensor.
Parameter: int SA_Keylock
                                                                                   SA_Keylock
     Direction: Up
     Valid values:
          0= off (keys enabled)
           1 = on (keys locked)
     Description: The keypad state at the sensor.
Parameter: int SA_DatOut
                                                                                   SA_DatOut
     Direction: Up
     Valid values:
          0= Dat_Out_Off
           1= Dat Out On
     Description: Data output from sensor.
Parameter: int SA_LaserState
                                                                                   SA_LaserState
     Direction: Up
     Valid values:
          0= Laser_Off
           1= Laser On
     Description: Laser state of sensor.
Parameter: int SA_EnableFlash
                                                                                   SA_EnableFlash
     Direction: Up
     Valid values:
          0= locked
           1 = enabled
     Description: The flash is locked or enabled for writing.
```


SP_Keylock

SP_EnableFlash

I.4 Set KeyLock

Locks/Unlocks the keypad of sensor.

Parameter: int SP_Keylock

Direction: Down **Valid values:**

0= off (keys enabled) 1= on (keys locked)

Description: The keypad state at the sensor.

I.5 WriteFlashZero

Locks/enables the flash of sensor for writing.

Parameter: int SP_EnableFlash

Direction: Down **Valid values:** 0= locked 1= enabled

Description: The flash is locked or enabled for writing.

I.6 Set Av0

Set averaging index AvIndex = 0, Averaging N = 1.

I.7 Set_Av1

Set averaging index AvIndex= 2, Averaging N= 4.

I.8 Set_Av2

Set averaging index AvIndex= 5, Averaging N=32.

I.9 Set_Av3

Set averaging index AvIndex= 7, Averaging N= 128.

I.10 Set_AvX

Set averaging index of sensor.

Parameter: int SP_AvIndex

Direction: Down Valid values: Minimum: 0 Maximum: 15

Description: The averaging index. Averaging $N=2^{AvIndex}$.

SP_AvIndex

I.11 Dat Out Off

Switch off data output from sensor.

I.12 Dat_Out_On

Switch on data output from sensor.

I.13 Set Av T

Set averaging type of sensor.

Parameter: int SP_AvType SP_AvType

Direction: Down
Valid values:
0= recursive
1= moving
2= Median

Description: The averaging type.

I.14 Set_Limits

Set sensor limits.

Parameter: int SP_Upper_limit SP_Upper_limit

Direction: Down
Valid values:
 Minimum: 0
 Maximum: 16368
Description: Upper limit.

Parameter: int SP_Lower_limit SP_Lower_limit

Direction: Down
Valid values:
 Minimum: 0
 Maximum: 16368
Description: Lower limit.

Parameter: int SP_Upper_hysteresis SP_Upper_hysteresis

Direction: Down Valid values: Minimum: 0 Maximum: 16368

Description: Upper hysteresis.

Parameter: int SP_Lower_hysteresis SP_Lower_hysteresis

Direction: Down Valid values: Minimum: 0 Maximum: 16368

Description: Lower hysteresis.

Parameter: int SP_Master_value SP_Master_value

Direction: Down
Valid values:
 Minimum: 0
 Maximum: 16368
Description: Master value.

I.15 Set_Baudrate

Set the baudrate of the serial interface of sensor.

Attention! To avoid synchronisation problems, sending data by sensor should be disabled first (sensor command Dat_Out_Off).

Parameter: int SP_SensorBaudrate

SP_SensorBaudrate

Direction: Down **Valid values:**

0= 115200 Baud 1= 57600 Baud 2= 19200 Baud 3= 9600 Baud

Description: The serial connection baudrate of the sensor.

I.16 Set_ErrorHandler

Set the behaviour on invalid values at sensor.

Parameter: int SP ErrorHandler

SP_ErrorHandler

Direction: Down Valid values:

0= error values 1= hold last value

Description: If the sensor cannot measure values, it can output the last valid

value or it can output an error values.

I.17 Set Sync TrgMode

Set the synchonisation and trigger mode respectivly.

Parameter: int SP_Sync_TrgMode

SP_Sync_TrgMode

Direction: Down Valid values:

Condition: at sync mode (ErrorOutput is 0 or 1):

0= synchronous master off

1 = synchronous master on

2= slave

3= alternating synchronous master

Valid values:

Condition: at trigger mode (ErrorOutput is 2 or 3):

0= edge L/H

1= edge H/L

2= level H

3= level L

Description: The sync mode or the trigger mode of the sensor.

I.18 Set UpperLimit F1

Assign the upper limit of sensor to error output 1 and lower limit to error output 2.

I.19 Set LowerLimit F1

Assign the lower limit of sensor to error output 1 and upper limit to error output 2.

I.20 Set Speed

Set the data acquisition speed of the sensor.

Parameter: int SP_Speed
Direction: Down
Valid values:

0= 2.5kHz 1= 1.25kHz

2= 625Hz 3= 312.5Hz

Description: The output speed of the sensor.

I.21 Laser Off

Switch the laser off.

I.22 Laser On

Switch the laser on.

I.23 ASCII_Output

Set digital data transfer (only values, no sensor answer) to ASCII or binary.

Parameter: int SP_ASCII

Direction: Down

Valid values:

0= off (binary 2 bytes/value) 1= on (ASCII 6 bytes/value)

Description: Returns the mode the sensor is sending data (only values).

I.24 Set_OutputType

Set the output type of sensor.

Parameter: int SP_OutputType

Direction: Down **Valid values:**

0= current (4..20mA)

1 = voltage (0..10V)

2= RS422

Description: Data output (only values, not answer) interface of the sensor.

X9751165 157

SP_Speed

SP ASCII

SP_OutputType

I.25 Set_ErrorOutput

Set the synchonisation or trigger mode and set the error or switch mode.

Parameter: int SP_ErrorOutput

SP_ErrorOutput

Direction: Down **Valid values:**

0= sync error mode 1= sync switch mode 2= trigger error mode 3= trigger switch mode

Description: Sync/trigger and error/switch mode respectively of the sensor.

I.26 Reset_Boot

Resets the sensor.

I.27 Set_Default

Resets the sensor to factoy settings.

I.28 Set_VideoMode

Enter/Leave the video mode of the sensor.

Parameter: int SP_VideoMode

SP_VideoMode

Direction: Down **Valid values:** 0= off 1= on

Description: Switch video mode on or off.

I.29 Get_Video

Get recent video signal from sensor.

Parameter: String (binary, with 0x00) SA_VideoSignal

SA_VideoSignal

Direction: Up Valid values: 512 bytes

each byte is an intensity value. **Description:** Raw video signal

IP_Speed

IP_ErrorOutput

IP_Sync_TrgMode

I.30 Use Defaults

This command tells the driver to use default values to operate with sensor data. If some parameters are not specified they are not changed. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.1.

The other parameters are:

```
Parameter: int IP_Speed
Direction: Down
Valid values:

0 = 2.5kHz
1 = 1.25kHz
2 = 625Hz
```

Description: Tells the driver the measure speed of the sensor. It is used for timeout check.

Parameter: int IP_ErrorOutput
Direction: Down

Valid values:

3 = 312.5Hz

0= sync error mode 1= sync switch mode 2= trigger error mode 3= trigger switch mode

Description: Tells the driver the sync/trigger and error/switch mode respectively of the sensor. It is used for timeout check.

Parameter: int IP_Sync_TrgMode

Direction: Down

Valid values:

Condition: at sync mode (ErrorOutput is 0 or 1):

0= synchronous master off 1= synchronous master on 2= slave

3= alternating synchronous master

Valid values:

Condition: at trigger mode (ErrorOutput is 2 or 3):

0= edge L/H 1= edge H/L 2= level H 3= level L

Description: Tells the driver the sync mode or the trigger mode of the sensor.

It is used for timeout check.

Parameter: int IP_OutputType

Direction: Down **Valid values:**

0= current (4..20mA) 1= voltage (0..10V) 2= RS422

Description: Tells the driver the data output (only values, not answer) interface

of the sensor. It is used for timeout check.

IP_OutputType

I.31 Get DrvSetting

Returns the current settings of the driver used for operating with sensor data. It is the opposite of Use_Defaults. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.3.

The other parameters are:

Description: The output speed of the sensor assumed by the driver for timeout

```
check.

Parameter: int IA_ErrorOutput

Direction: Up

Valid values:

0 = sync error mode
1 = sync switch mode
2 = trigger error mode
3 = trigger switch mode

Description: The sync/trigger and error/switch mode respectively of the sensor assumed by the driver for timeout check.
```

```
Parameter: int IA_Sync_TrgMode

Direction: Up
```

Direction: Up Valid values:

```
Condition: at sync mode (ErrorOutput is 0 or 1):
```

```
0= synchronous master off
1= synchronous master on
```

2= slave

3= alternating synchronous master

Valid values:

```
Condition: at trigger mode (ErrorOutput is 2 or 3):
```

```
0= edge L/H
1= edge H/L
2= level H
3= level L
```

Description: The sync mode or the trigger mode of the sensor assumed by the driver for timeout check.

```
Parameter: int IA_OutputType
Direction: Up
Valid values:
```

0= current (4..20mA) 1= voltage (0..10V) 2= RS422

Description: The data output (only values, not answer) interface of the sensor assumed by the driver for timeout check.

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

RS232 (native, but not with a RS422_USB-Converter and RS232 high level interface). IF2004 (native).

TCP/IP (additional, e.g. RS232 to TCP/IP comm server and RS232 high level interface).

J.1 Get_Info

Retrieve some information about the sensor.

```
Parameter: String SA_Sensor
                                                                                  SA_Sensor
     Direction: Up
     Description: Name of the sensor.
Parameter: String SA_SensorType
                                                                                  SA_SensorType
     Direction: Up
     Description: Type of the sensor.
Parameter: double SA_Samplerate
                                                                                  SA_Samplerate
     Direction: Up
     Valid values:
          5000
          2500
     Unit: Hz
     Description: The output speed of the sensor.
```

Parameter: double SA_Range SA_Range

Direction: Up
Valid values:

2
10
20
50
100
200
500
750 (or other on further versions)
Unit: mm
Description: Range of the sensor.

Parameter: String SA_Option SA_Option

Direction: Up

Description: Option of the sensor.

Parameter: String SA_SerialNumber SA_SerialNumber

Direction: Up

Description: Serial number of the sensor.

Parameter: int SA_AvIndex SA_AvIndex

Direction: Up Valid values: Minimum: 0 Maximum: 15

Description: The averaging index. Averaging $N = 2^{AvIndex}$.

Parameter: int SA_Output_Analog SA_Output_Analog

Direction: Up Valid values: 0= not avail 1= voltage (0..10V)

Description: The analog output type.

Parameter: int SA_Output_Digital SA_Output_Digital

Direction: Up Valid values: 0= not avail 1= RS232 2= RS422

Description: The digital output type.

J.2 Get_Version

Retrieve the sensor software version.

Parameter: String SA_Softwareversion SA_Softwareversion

Direction: Up

Description: Software version of the sensor.

J.3 Zero

Autozero the analog output value.

J.4 Set Av0

Set averaging index AvIndex = 0, Averaging N = 1.

J.5 Set_Av1

Set averaging index AvIndex= 2, Averaging N=4.

J.6 Set_Av2

Set averaging index AvIndex= 5, Averaging N=32.

SP_AvIndex

J.7 Set Av3

Set averaging index AvIndex= 7, Averaging N= 128.

J.8 Set AvX

Set averaging index of sensor.

Parameter: int SP_AvIndex

Direction: Down Valid values: Minimum: 0 Maximum: 15

Description: The averaging index. Averaging $N=2^{AvIndex}$.

J.9 Dat Out Off

Switch off data output from sensor.

J.10 Dat_Out_On

Switch on data output from sensor.

J.11 Displacement

With special option this sensor can do thickness measurement. This command switch the sensor back to displacement measurement.

J.12 Thickness

With special option this sensor can do thickness measurement. This command switch the sensor to thickness measurement.

J.13 Multilayer

With special option this sensor can do thickness measurement. This command switch the sensor to multilayer measurement.

J.14 Refraction

With special option this sensor can do thickness measurement. This command sets the refraction index for multilayer measurement.

Parameter: double SP_RefractIndex

Direction: Down **Valid values:**

Minimum: 0.001 Maximum: 9.999

Description: The refractive index.

SP_RefractIndex

 ${\tt SP_AvType}$

J.15 Set_Av_T

Set averaging type of sensor.

Parameter: int SP_AvType

Direction: Down **Valid values:**

0= recursive 1= moving 2= Median

Description: The averaging type.

J.16 Reset_Boot

Resets the sensor.

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

IF2004 (native).

K.1 Set_AvX

Set averaging index of sensor.

Parameter: int SP_AvIndex SP_AvIndex

Direction: Down Valid values: Minimum: 0 Maximum: 15

Description: The averaging index. Averaging $N=2^{AvIndex}.$

K.2 Save_EEPROM

Store sensor settings in EEPROM.

See sensor manual for detailed description of sensor commands. Driver for ILD2200 also includes ILD2220 support.

This sensor supports following interfaces:

RS232 (additional, e.g. RS422_USB-Converter and RS232 high level interface). IF2004 (native).

TCP/IP (additional, e.g. RS232/RS422 to TCP/IP comm server and RS232 high level interface). IF2008 (native).

L.1 Get_Info

Retrieve some information about the sensor.

Parameter: String SA_Sensor SA_Sensor

Direction: Up

Description: Name of the sensor.

Parameter: String SA_SensorType SA_SensorType

Direction: Up

Description: Type of the sensor.

Parameter: double SA_Samplerate SA_Samplerate

Direction: Up Valid values: 20000 10000 5000 2500 Unit: Hz

Description: The output speed of the sensor.

Parameter: double SA_Range SA_Range

Direction: Up Valid values: 2

10

20

40 50

50 100

200 (or other on further versions)

Unit: mm

Description: Range of the sensor.

Parameter: String SA_Option SA_Option

Direction: Up

Description: Option of the sensor.

Parameter: String SA_SerialNumber SA_SerialNumber

Direction: Up

Description: Serial number of the sensor.

Parameter: int SA_AvIndex SA_AvIndex

Direction: Up Valid values: Minimum: 0 Maximum: 15

Description: The averaging index. Averaging $N=2^{AvIndex}$.

Parameter: int SA_Output_Analog SA_Output_Analog

Direction: Up **Valid values:** 0= not avail 1= voltage (+-5V)

Description: The analog output type.

Parameter: int SA_Output_Digital SA_Output_Digital

Direction: Up Valid values: 0= not avail 2= RS422

Description: The digital output type.

L.2 Get_Settings

Retrieve detailed information about the sensor.

Parameter: int SA_Speed SA_Speed

Direction: Up Valid values: 0= 10kHz 1= 5kHz 2= 2.5kHz 3= 20kHz

Description: The output speed of the sensor.

Parameter: int SA_AvIndex SA_AvIndex

Direction: Up Valid values: Minimum: 0 Maximum: 15

Description: The averaging index. Averaging $N=2^{AvIndex}$.

Parameter: int SA_ErrorHandler SA_ErrorHandler

Direction: Up Valid values:

0= error values 1= hold last value

Description: If the sensor cannot measure values, it can output the last valid

value or it can output an error values.


```
Parameter: int SA_AvType
                                                                                   SA_AvType
     Direction: Up
     Valid values:
          0= recursive
           1 = moving
           2= Median
     Description: The averaging type.
Parameter: double SA_OffsetValue
                                                                                   SA_OffsetValue
     Direction: Up
     Valid values:
          Minimum: -50.0
          Maximum: +50.0
     Unit: %
     Description: The offset value of the sensor.
Parameter: int SA_ZeroPoint
                                                                                   SA_ZeroPoint
     Direction: Up
     Valid values:
          0= absolute
           1 = relative (zero is set)
     Description: Autozero off/on.
Parameter: double SA_Range
                                                                                   SA_Range
     Direction: Up
     Valid values:
          2
           10
           20
           50
           100
          200
          500
           750 (or other on further versions)
     Unit: mm
     Description: Range of the sensor.
Parameter: int SA_Keylock
                                                                                   SA_Keylock
     Direction: Up
     Valid values:
          0= off (keys enabled)
           1 = on (keys locked)
     Description: The keypad state at the sensor.
Parameter: int SA_DatOut
                                                                                   SA_DatOut
     Direction: Up
     Valid values:
          0= Dat_Out_Off
           1 = Dat_Out_On
     Description: Data output from sensor.
```


SA_LaserState

SA_Softwareversion

SP_Keylock

L Commands for ILD2200

Parameter: int SA_LaserState

Direction: Up Valid values:

> 0= Laser_Off 1= Laser On

Description: Laser state of sensor.

L.3 Get_Version

Retrieve the sensor software version.

Parameter: String SA_Softwareversion

Direction: Up

Description: Software version of the sensor.

L.4 Set_KeyLock

Locks/Unlocks the keypad of sensor.

Parameter: int SP_Keylock

Direction: Down **Valid values:**

0= off (keys enabled)

1 = on (keys locked)

Description: The keypad state at the sensor.

L.5 Zero

Autozero the analog output value.

L.6 Set Av0

Set averaging index AvIndex= 0, Averaging N=1.

L.7 Set Av1

Set averaging index AvIndex= 2, Averaging N=4.

L.8 Set_Av2

Set averaging index AvIndex= 5, Averaging N=32.

L.9 Set_Av3

Set averaging index AvIndex= 7, Averaging N= 128.

L.10 Set_AvX

Set averaging index of sensor.

Parameter: int SP_AvIndex SP_AvIndex

Direction: Down Valid values: Minimum: 0 Maximum: 15

Description: The averaging index. Averaging $N=2^{AvIndex}$.

L.11 Dat_Out_Off

Switch off data output from sensor.

L.12 Dat_Out_On

Switch on data output from sensor.

L.13 Set_Av_T

Set averaging type of sensor.

Parameter: int SP_AvType SP_AvType

Direction: Down
Valid values:
0= recursive
1= moving
2= Median

Description: The averaging type.

L.14 Laser_Off

Switch off the laser.

L.15 Laser_On

Switch om the laser.

L.16 Transmit_Intensity

Tells the sensor to transmit the intesity value after each distance value.

This command is only available with sensor option 204.

This setting will not be stored persistently in the sensor so it has to be set after each reset or power on.

Parameter: int SP_TransmitIntensity

Direction: Down

Valid values: 0= no

1= yes

Description: Transmit intensitiy value.

SP_TransmitIntensity

L.17 Reset_Boot

Resets the sensor.

M Commands for IFD2400

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

RS232 (native).

TCP/IP (additional, e.g. RS232/RS422 to TCP/IP comm server and RS232 high level interface).

M.1 Set_ActiveSensor (SEN)

Set the active sensor (up to 6 sensors can be stored in controller) for measurement. After this command, the internal range is resetted because the old one is no longer valid and the new one is not known until command Get_Range or Get_Status is called.

Parameter: int SP_Sensor

Direction: Down Valid values: Minimum: 0 Maximum: 5

Description: Number of active sensor.

M.2 Get ActiveSensor (SEN?)

Get the active sensor.

Parameter: int SA_Sensor

Direction: Up Valid values: Minimum: 0 Maximum: 5

Description: Number of active sensor.

M.3 Get Range (SCA)

Get the range of active sensor.

Parameter: double SA_Range

Description: Range of active sensor.

X9751165 172

SP_Sensor

SA_Sensor

SA_Range

M.4 Acquire DarkSig (DRK)

Aquire dark signal.

Parameter: int SA_MinSRIndex SA_MinSRIndex

Direction: Up Valid values: 3= 30 Hz 4= 100 Hz 5= 300 Hz 6= 1000 Hz

Description: Minimal samplerate index.

M.5 FastDark (FDK)

Aquire dark signal for active sensor and samplerate.

Parameter: int SP_AveragingForDark SP_AveragingForDark

Direction: Down Valid values: Minimum: 1 Maximum: 99

Description: Averaging factor for dark.

Parameter: int SP_Weighting SP_Weighting

Direction: Down
Valid values:
 Minimum: 1
 Maximum: 32767
Description: Weighting factor

Description: Weighting factor.

M.6 Set_SRIndex (SRA)

Set the samplerate for data acquisition.

Parameter: int SP_SRIndex SP_SRIndex

Direction: Down
Valid values:
3= 30 Hz
4= 100 Hz
5= 300 Hz
6= 1000 Hz

Description: Samplerate index.

M.7 Get SRIndex (SRA?)

Get the current samplerate.

Parameter: int SA_SRIndex SA_SRIndex

Direction: Up Valid values: 3= 30 Hz 4= 100 Hz 5= 300 Hz 6= 1000 Hz

Description: Samplerate index.

M.8 Set SumFreq (SHZ)

Set the sum frequency (only for sensors with option double frequency).

Parameter: int SP_SumFreq

 $SP_SumFreq$

Direction: Down Valid values: Minimum: 1 Maximum: 490

Unit: Hz

Description: Sum Frequency.

M.9 Get SumFreq (SHZ?)

Get the current sum frequency (only for controller with option double frequency).

Parameter: int SA_SumFreq

SA_SumFreq

Direction: Up Valid values: Minimum: 1 Maximum: 490

Unit: Hz

Description: Sum Frequency.

M.10 Set DutyCycle (DCY)

Set the duty cycle (only for controller with option double frequency).

Parameter: int SP_DutyCycle

SP_DutyCycle

Direction: Down Valid values: Minimum: 1 Maximum: 100

Unit: %

Description: Sum Frequency.

M.11 Get_DutyCycle (DCY?)

Get the current duty cycle (only for sensors with option double frequency).

Parameter: int SA_DutyCycle

SA_DutyCycle

Direction: Up Valid values: Minimum: 1 Maximum: 100

Unit: %

Description: Sum Frequency.

M.12 Set MeasureMode (MOD)

Set the measure mode.

Parameter: int SP_MeasureMode

SP_MeasureMode

Direction: Down
Valid values:
0= Distance
1= Thickness

Description: Measure mode of the controller.

M.13 Get MeasureMode (MOD?)

Get the current measure mode.

Parameter: int SA_MeasureMode

SA_MeasureMode

Direction: Up
Valid values:
0= Distance
1= Thickness

Description: Measure mode of the controller.

M.14 Set_RefractIndex (SRI)

Set the refraction index for thickness measurement.

Parameter: double SP_RefractIndex

SP_RefractIndex

Direction: Down **Valid values**:

Minimum: 0.001 Maximum: 9.999

Description: Refractive index used by the controller for thickness measure-

ment.

M.15 Get_RefractIndex (SRI?)

Get the current refraction index.

Parameter: double SA_RefractIndex

SA_RefractIndex

Direction: Up Valid values:

Minimum: 0.001 Maximum: 9.999

Description: Refractive index used by the controller for thickness measure-

ment.

M.16 Set_Threshold (THR)

Set the detection threshold.

Parameter: int SP_Threshold SP_Threshold

Direction: Down Valid values: Minimum: 0 Maximum: 4094

Description: Threshold of the controller.

M.17 Get_Threshold (THR?)

Get the current detection threshold.

Parameter: int SA_Threshold SA_Threshold

Direction: Up Valid values: Minimum: 0 Maximum: 4094

Description: Threshold of the controller.

M.18 Set_KeyLock (LOC)

Locks/Unlocks the keypad of controller.

Parameter: int SP_Keylock SP_Keylock

Direction: Down Valid values:

0= off (keys enabled) 1= on (keys locked)

Description: The keypad state at the controller.

M.19 Get_KeyLock (LOC?)

Returns the lock state of controller keypad.

Parameter: int SA_Keylock SA_Keylock

Direction: Up Valid values:

0= off (keys enabled) 1= on (keys locked)

Description: The keypad state at the sensor.

M.20 Set_Averaging (AVR)

Set data averaging at controller.

Note! Acquisition speed will be reduced.

Parameter: int SP_Averaging SP_Averaging

Direction: Down Valid values: Minimum: 1 Maximum: 999

Description: Data averaging factor.

M.21 Get_Averaging (AVR?)

Returns current data averaging at controller.

Parameter: int SA_Averaging SA_Averaging

Direction: Up Valid values: Minimum: 1 Maximum: 999

Description: Data averaging factor.

M.22 Set_SpectralAv (AVS)

Set spectral data averaging at controller. Note! Acquisition speed will be reduced.

Parameter: int SP_SpectralAv SP_SpectralAv

Direction: Down Valid values: Minimum: 1 Maximum: 999

Description: Spectral data averaging factor.

M.23 Get SpectralAv (AVS?)

Returns current spectral data averaging at controller.

Parameter: int SA_SpectralAv SA_SpectralAv

Direction: Up Valid values: Minimum: 1 Maximum: 999

Description: Spectral data averaging factor.

M.24 Continue (CTN)

Continues data acquition (after a trigger command or an error).

M.25 Start Trigger (TRG)

Starts the trigger mode at controller.

M.26 End_Trigger

Stops the trigger mode at controller.

M.27 SingleShot_Trg (TRE)

Starts the single shot trigger mode at controller (only for sensors with option single shot trigger).

M.28 Get_Status (STS)

Retrieve detailed information about the controller and sensor.

Parameter: int SA_SRIndex

Direction: Up Valid values:

3 = 30 Hz4= 100 Hz

5 = 300 Hz

6= 1000 Hz

Description: Samplerate index.

Parameter: int SA_MeasureMode

Direction: Up

Valid values:

0= Distance

1 = Thickness

Description: Measure mode of the controller.

Parameter: int SA_Sensor

Direction: Up

Valid values:

Minimum: 0

Maximum: 5

Description: Number of active sensor.

Parameter: int SA_ASCII

Direction: Up

Description: Data Transfer mode (values) of controller.

Parameter: int SA_Averaging

Direction: Up Valid values:

Minimum: 1

Maximum: 999

Description: Data averaging factor.

X9751165 178

SA_MeasureMode

SA_SRIndex

SA_Sensor

SA_ASCII

SA_Averaging

Parameter: int SA_X1..8 SA_X1..8

Direction: Up Valid values: 0= off 1= RS232

Description: Selection of data used by the sensor. This is necessary for data

conversion and scaling.

Depending on measure mode (distance / thickness) the selected value have different meaning. The following list shows the meaning for X1..8.

X1 means (Distance / Thickness).
X2 means (not used / Distance1).
X3 means (not used / Distance2).
X4 means (Intensity / not used).
X5 means (not used / Intensity1).
X6 means (not used / Intensity2).
X7 means (Barycenter / Barycenter1).
X8 means (not used / Barycenter2).

Parameter: int SA_0_SOD SA_0_SOD

Direction: Up Valid values: Minimum: 0 Maximum: 7

Description: Analog out BNC1: 0 = X1, 1 = X2, ..., 7 = X8.

Parameter: int SA_0_0V SA_0_0V

Direction: Up Valid values: Minimum: 0 Maximum: 32767

Description: Analog out BNC1: Specifies the value which shoul output 0 V.

Parameter: int SA_0_10V SA_0_10V

Direction: Up Valid values: Minimum: 0 Maximum: 32767

Description: Analog out BNC1: Specifies the value which should output 10 V.

Parameter: int SA_1_SOD SA_1_SOD

Direction: Up Valid values: Minimum: 0 Maximum: 7

Description: Analog out BNC2: 0= X1, 1= X2, ..., 7= X8.

Parameter: int SA_1_0V SA_1_0V

Direction: Up Valid values: Minimum: 0 Maximum: 32767

Description: Analog out BNC2: Specifies the value which should output 0 V.

M Commands for IFD2400

SA_Range

Parameter: int SA_1_10V SA_1_10V

Direction: Up Valid values: Minimum: 0 Maximum: 32767

Description: Analog out BNC2: Specifies the value which should output 10 V.

Parameter: double SA_Range

Direction: Up Unit: μm

Description: Range of active sensor.

M.29 Get Version (VER)

Get the software version of the controller.

Parameter: String SA_Version SA_Version

Direction: Up

Description: Software version of controller.

M.30 Set OutputData (SOD)

Select the data to be output from controller.

Parameter: int SP_X1..8 SP_X1..8

Direction: Down Valid values: 0 = off1 = RS232

Description: Selection of data used by the sensor. This is necessary for data conversion and scaling.

Depending on measure mode (distance / thickness) the selected value have different meaning. The following list shows the meaning for X1..8.

X1 means (Distance / Thickness). X2 means (not used / Distance1).

X3 means (not used / Distance2).

X4 means (Intensity / not used).

X5 means (not used / Intensity1).

X6 means (not used / Intensity2).

X7 means (Barycenter / Barycenter1).

X8 means (not used / Barycenter2).

Get OutputData (SOD?) M.31

Get the data output from controller.

Parameter: int SA_X1..8 SA_X1..8

Direction: Up Valid values: 0 = off

X9751165 180

SP_OutNr

SP_SOD

SP_OV

1= RS232

Description: Selection of data used by the sensor. This is necessary for data conversion and scaling.

Depending on measure mode (distance / thickness) the selected value have different meaning. The following list shows the meaning for X1..8.

X1 means (Distance / Thickness).

X2 means (not used / Distance1).

X3 means (not used / Distance2).

X4 means (Intensity / not used).

X5 means (not used / Intensity1). X6 means (not used / Intensity2).

X7 means (Barycenter / Barycenter1).

X8 means (not used / Barycenter2).

M.32 Set_Ascii (ASC)

Set digital data transfer (only values, no sensor answer) to ASCII mode.

M.33 Set_Binary (BIN)

Set digital data transfer (only values, no sensor answer) to binary mode.

M.34 Set_AnalogOut (ANA)

Setup the analog outputs.

Parameter: int SP_OutNr

Direction: Down **Valid values:** 0= BNC1

1 = BNC2

Description: Number of analog output.

Parameter: int SP_SOD

Direction: Down Valid values: Minimum: 0 Maximum: 7

Description: Specifies the number (X1..X8) to output at analog out.

Parameter: int SP_0V

Direction: Down Valid values: Minimum: 0 Maximum: 32767

Description: Specifies the value which shoud output 0 V.

M Commands for IFD2400

Parameter: int SP_10V SP_10V

Direction: Down
Valid values:
Minimum: 0
Maximum: 32767

Description: Specifies the value which shoul output 10 V.

M.35 Get_AnalogOut (ANA?)

Get settings of analog outputs.

Parameter: int SA_0_SOD SA_0_SOD

Direction: Up Valid values: Minimum: 0 Maximum: 7

Description: Analog out BNC1: 0= X1, 1= X2, ..., 7= X8.

Parameter: int SA_0_0V SA_0_ov

Direction: Up Valid values: Minimum: 0 Maximum: 32767

Description: Analog out BNC1: Specifies the value which should output 0 V.

Parameter: int SA_0_10V SA_0_10V

Direction: Up Valid values: Minimum: 0 Maximum: 32767

Description: Analog out BNC1: Specifies the value which should output 10 V.

Parameter: int SA_1_SOD SA_1_SOD

Direction: Up Valid values: Minimum: 0 Maximum: 7

Description: Analog out BNC2: 0= X1, 1= X2, ..., 7= X8.

Parameter: int SA_1_0V SA_1_0V

Direction: Up Valid values: Minimum: 0 Maximum: 32767

Description: Analog out BNC2: Specifies the value which should output 0 V.

Parameter: int SA_1_10V SA_1_10V

Direction: Up Valid values: Minimum: 0 Maximum: 32767

Description: Analog out BNC2: Specifies the value which should output 10 V.

M.36 Save Setup (SSU)

Save the current setup of controller to flash.

M.37 Get_CCD (CCD)

Returns current CCD data.

Parameter: String (binary, with 0x00) SA_CCD SA_CCD

Direction: Up Valid values: 4096 bytes

convertable to 2048 WORDS.

Description: Raw CCD line

M.38 End_CCD

Stop reading CCD line, continue sending normal sensor values.

M.39 Get_Memory (DEB)

Returns a memory range of controller. This is an internal command. It should not be used by the customer.

Parameter: int SP_Offset SP_Offset

Direction: Down **Valid values**: **Minimum**: 0

Maximum: INT_MAX (2147483647)

Description: Memory offset

Parameter: int SP_Length SP_Length

Direction: Down
Valid values:
 Minimum: 1
 Maximum: 2048
Description: Memory I

Description: Memory length

Parameter: String (binary, with 0x00) SA_DEB SA_DEB

Direction: Up Valid values:

SP_Length bytes

convertable to SP_Length/2 WORDS.

Description: Memory dump.

M.40 Upload CalibTable

Send a calibration table for selected sensor to the controller. This is an internal command. It should not be used by the customer.

Parameter: String (binary, with 0x00) SP_CalibTable

SP_CalibTable

Direction: Down **Valid values:**

1024 values of datatype float (4 byte).

Description: Calibration table for selected sensor.

Parameter: double SP_FullRange

SP_FullRange

 $\begin{array}{ll} \textbf{Direction:} \ \ \textbf{Down} \\ \textbf{Unit:} \ \ \mu m \\ \textbf{Valid values:} \\ \textbf{Minimum:} \ \ \textbf{1} \end{array}$

Maximum: 1000000

Description: Measure range of selected sensor.

M.41 Use Defaults

This command tells the driver to use default values to operate with sensor data. If some parameters are not specified they are not changed. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.1.

The other parameters are:

Parameter: double IP_RefractIndex

IP_RefractIndex

Direction: Down **Valid values:**

Minimum: 0.001 Maximum: 9.999

Description: Tells the driver the refractive index used by the controller for

thickness measurement.

Parameter: int IP MeasureMode

IP MeasureMode

Direction: Down
Valid values:
0 = Distance
1 = Thickness

Description: Tells the driver the measure mode of the controller.

Parameter: int IP_Averaging

IP_Averaging

Direction: Down Valid values: Minimum: 1 Maximum: 999

Description: Tells the driver the averaging used by the controller. It is used

for timeout check.

Parameter: int IP_SpectralAv IP_SpectralAv

Direction: Down Valid values: Minimum: 1 Maximum: 999

Description: Tells the driver the spectral averaging used by the controller. It

is used for timeout check.

Parameter: int IP_X1..8 IP_X1..8

Direction: Down
Valid values:
0 = off
1 = RS232

Description: Tells the driver the selection of data used by the sensor. This is necessary for data conversion and scaling.

Depending on measure mode (distance / thickness) the selected value have different meaning. The following list shows the meaning for X1..8.

X1 means (Distance / Thickness).
X2 means (not used / Distance1).
X3 means (not used / Distance2).
X4 means (Intensity / not used).
X5 means (not used / Intensity1).
X6 means (not used / Intensity2).
X7 means (Barycenter / Barycenter1).
X8 means (not used / Barycenter2).

M.42 Get_DrvSetting

Returns the current settings of the driver used for operating with sensor data. It is the opposite of Use Defaults. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.3.

The other parameters are:

Direction: Up Valid values:

Minimum: 0.001 Maximum: 9.999

Description: Refractive index of sensor assumed by the driver for thickness

measurement.

Parameter: int IA_MeasureMode IA_MeasureMode

Direction: Up Valid values: 0= Distance 1= Thickness

Description: Measure mode of the sensor assumed by the driver.

Parameter: int IA_Averaging IA_Averaging

Direction: Up Valid values: Minimum: 1 Maximum: 999

Description: Averaging of the sensor assumed by the driver. It is used for

timeout check.

Parameter: int IA_SpectralAv IA_SpectralAv

Direction: Up Valid values: Minimum: 1 Maximum: 999

Description: Spectral averaging of the controller assumed by the driver. It is

used for timeout check.

Parameter: int IA_X1..8 IA_X1..8

Direction: Up Valid values: 0= off 1= RS232

Description: Selection of data of the sensor assumed by the driver. This is necessary for data conversion and scaling.

Depending on measure mode (distance / thickness) the selected value have different meaning. The following list shows the meaning for X1..8.

X1 means (Distance / Thickness).

X2 means (not used / Distance1).

X3 means (not used / Distance2).

X4 means (Intensity / not used).

X5 means (not used / Intensity1).

X6 means (not used / Intensity2).

X7 means (Barycenter / Barycenter1).

X8 means (not used / Barycenter2).

N Commands for IFD2401

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

RS232 (native).

TCP/IP (additional, e.g. RS232/RS422 to TCP/IP comm server and RS232 high level

interface). DriverX (native).

IF2008 (native).

N.1 Set_ActiveSensor (SEN)

Set the active sensor (up to 20 sensors can be stored in controller) for measurement. After this command, the internal range is resetted because the old one is no longer valid and the new one is not known until command Get_Range or Get_Status is called.

Parameter: int SP_Sensor

Direction: Down Valid values: Minimum: 0 Maximum: 19

Description: Number of active sensor.

N.2 Get_ActiveSensor (SEN?)

Get the active sensor.

Parameter: int SA_Sensor

Direction: Up Valid values: Minimum: 0 Maximum: 19

Description: Number of active sensor.

N.3 Get_Range (SCA)

Get the range of active sensor.

Parameter: double SA_Range

Direction: Up Unit: μm

Description: Range of active sensor.

X9751165 187

SP_Sensor

SA_Sensor

SA_Range

N.4 Get AllRanges (LUL)

Get the ranges of all calibrated sensors.

Parameter: String SA_Ranges

SA_Ranges

Direction: Up

Unit: μm (after conversion from string to int or double)

Description: Ranges of all 20 sensors in a string, separated by commas.

N.5 Acquire_DarkSig (DRK)

Aquire dark signal.

Parameter: int SA_MinSRIndex

SA_MinSRIndex

Direction: Up Valid values: 1= 100 Hz

2= 200 Hz 3= 400 Hz 4= 1000 Hz 5= 2000 Hz

Description: Minimal samplerate index.

N.6 FastDark (FDK)

Aquire dark signal for active sensor and samplerate.

Parameter: int SP_AveragingForDark

SP_AveragingForDark

Direction: Down Valid values: Minimum: 1 Maximum: 99

Description: Averaging factor for dark.

Parameter: int SP_Weighting

SP_Weighting

Direction: Down Valid values: Minimum: 1 Maximum: 100

Description: Weighting factor.

N.7 Set AutoDark (ADK)

Enables/Disables the "Automatic Fast Dark" mode.

Parameter: int SP_AutoDark

SP_AutoDark

Direction: Down Valid values: 0= off 1= on

Description: Automatic Fast Dark.

N.8 Get AutoDark (ADK?)

Get the state of the "Automatic Fast Dark" mode.

Parameter: int SA_AutoDark SA_AutoDark

Direction: Up **Valid values:** 0= off 1= on

Description: Automatic Fast Dark.

N.9 Set_SRIndex (SRA)

Set the samplerate for data acquisition.

Parameter: int SP_SRIndex SP_SRIndex

Direction: Down Valid values:

0= Free samplerate

1= 100 Hz 2= 200 Hz 3= 400 Hz 4= 1000 Hz 5= 2000 Hz

Description: Samplerate index.

N.10 Get_SRIndex (SRA?)

Get the current samplerate.

Parameter: int SA_SRIndex SA_SRIndex

Direction: Up Valid values:

0= Free samplerate

1= 100 Hz 2= 200 Hz 3= 400 Hz 4= 1000 Hz 5= 2000 Hz

Description: Samplerate index.

N.11 Set_FreeSR (FRQ)

Set free samplerate value for data acquisition.

Parameter: int SP_FreeSR SP_FreeSR

Direction: Down Valid values: Minimum: 100 Maximum: 2000

Unit: Hz

Description: Free Frequency.

Parameter: int SA_FreeSR SA_FreeSR

Direction: Up Valid values: Minimum: 100

Maximum: 2000

Unit: Hz

Description: Free Samplerate.

N.12 Get_FreeSR (FRQ?)

Get free samplerate value.

Parameter: int SA_FreeSR SA_FreeSR

Direction: Up Valid values: Minimum: 100 Maximum: 2000

Unit: Hz

Description: Free Samplerate.

N.13 Set_Exposure (TEX)

Set free exposure time for data acquisition.

Parameter: int SP_Exposure SP_Exposure

Direction: Down
Valid values:
Minimum: 500
Maximum: 10000

Unit: μs

Description: Free Exposure time.

Parameter: int SA_Exposure SA_Exposure

Direction: Up Valid values: Minimum: 500 Maximum: 10000

Unit: μs

Description: Free Exposure time.

N.14 Get Exposure (TEX?)

Get free exposure time.

Parameter: int SA_Exposure SA_Exposure

Direction: Up Valid values: Minimum: 500 Maximum: 10000

Unit: μs

Description: Free Exposure time.

N.15 Get_MinSR (FRM)

Get the minimum authorized samplerate.

Parameter: int SA_MinSR SA_MinSR

Direction: Up
Valid values:

Minimum: 100 Maximum: 2000

Unit: Hz

Description: Minimum samplerate (determined by dark signal).

N.16 Set_DoubleFreq (DFA)

Enables or disables the double frequency mode.

Parameter: int SP_DoubleFrequency SP_DoubleFrequency

Direction: Down **Valid values:** 0= Disable 1= Enable

Description: Double frequency mode.

N.17 Get_DoubleFreq (DFA?)

Get the double frequency mode.

Parameter: int SA_DoubleFrequency SA_DoubleFrequency

Direction: Up Valid values: 0= Disable 1= Enable

Description: Double frequency mode.

N.18 Set_Frequencies (DFF)

Set the frequencies for double frequency mode.

Parameter: int SP_LowFrequency SP_LowFrequency

Direction: Down Valid values:

Minimum: 100 Maximum: 1850

Unit: Hz

Description: Low frequency.

Parameter: int SP_HighFrequency SP_HighFrequency

Direction: Down Valid values: Minimum: 100

Maximum: 1850

Unit: Hz

Description: High frequency.

N.19 Get_Frequencies (DFF?)

Get the frequencies of double frequency mode.

Parameter: int SA_LowFrequency SA_LowFrequency

Direction: Up Valid values: Minimum:

Minimum: 100 Maximum: 1850

Unit: Hz

Description: Low frequency.

Parameter: int SA_HighFrequency SA_HighFrequency

Direction: Up Valid values:

Minimum: 100 Maximum: 1850

Unit: Hz

Description: High frequency.

N.20 Set IntensityMode (DFI)

Set normalized or raw intensity to transmit.

Parameter: int SP_TransmitIntensity SP_TransmitIntensity

Direction: Down **Valid values**:

0= Normalized 1= Raw

Description: Intensity mode.

N.21 Get_IntensityMode (DFI?)

Get if normalized or raw intensity is transmitted.

Parameter: int SA_TransmitIntensity SA_TransmitIntensity

Direction: Up Valid values:

0= Normalized

1= Raw

Description: Intensity mode.

N.22 Set_MeasureMode (MOD)

Set the measure mode.

Parameter: int SP_MeasureMode

SP_MeasureMode

Direction: Down
Valid values:
0 = Distance
1 = Thickness

Description: Measure mode of the sensor.

N.23 Get_MeasureMode (MOD?)

Get the current measure mode.

Parameter: int SA_MeasureMode

SA_MeasureMode

Direction: Up
Valid values:
0= Distance
1= Thickness

Description: Measure mode of the sensor.

N.24 Set_RefractIndex (SRI)

Set the refraction index for thickness measurement.

Parameter: double SP_RefractIndex

SP_RefractIndex

Direction: Down **Valid values**:

Minimum: 0.001 Maximum: 9.999

Description: Refractive index used by the sensor for thickness measurement.

N.25 Get_RefractIndex (SRI?)

Get the current refraction index.

Parameter: double SA_RefractIndex

SA_RefractIndex

Direction: Up Valid values:

Minimum: 0.001 Maximum: 9.999

Description: Refractive index used by the sensor for thickness measurement.

N.26 Set_Threshold (MNP)

Set the detection threshold for distance mode.

Parameter: double SP_Threshold SP_Threshold

Valid values:
Minimum: 0.0
Maximum: 1.0

Description: Threshold of the sensor.

N.27 Get_Threshold (MNP?)

Get the current detection threshold for distance mode.

Parameter: double SA_Threshold SA_Threshold

Direction: Up Valid values: Minimum: 0.0 Maximum: 1.0

Description: Threshold of the sensor.

N.28 Set HoldLastValid (HLV)

Enable/Disable the "Hold Last Value" mode.

Parameter: int SP_LastValid SP_LastValid

Direction: Down Valid values: Minimum: 0 Maximum: 999

Description: Max number of points to hold.

N.29 Get_HoldLastValid (HLV?)

Get the current "Hold Last Value" mode.

Parameter: int SA_LastValid SA_LastValid

Direction: Up Valid values: Minimum: 0 Maximum: 999

Description: Max number of points to hold.

SP_Threshold1

SA_Threshold1

N.30 Set Threshold1 (SPP)

Set the detection threshold for the strongest peak in thickness mode.

Parameter: double SP_Threshold1

Direction: Down Valid values: Minimum: 0.0 Maximum: 1.0

Description: Threshold of the sensor.

N.31 Get_Threshold1 (SPP?)

Get the current detection threshold for the strongest peak in thickness mode.

Parameter: double SA_Threshold1

Direction: Up Valid values: Minimum: 0.0 Maximum: 1.0

Description: Threshold of the sensor.

N.32 Set_Threshold2 (SDP)

Set the detection threshold for the second peak in thickness mode.

Parameter: double SP_Threshold2

Direction: Down Valid values: Minimum: 0.0 Maximum: 1.0

Description: Threshold of the sensor.

N.33 Get_Threshold2 (SDP?)

Get the current detection threshold for the second peak in thickness mode.

Parameter: double SA_Threshold2

Direction: Up Valid values: Minimum: 0.0 Maximum: 1.0

Description: Threshold of the sensor.

X9751165 195

SP_Threshold2

SA_Threshold2

N.34 Set FirstPeakMode (MSP)

Enable/Disable the "First peak" mode.

Parameter: int SP_FirstPeak SP_FirstPeak

Direction: Down Valid values: Minimum: 0 Maximum: 1

Description: First peak state.

N.35 Get_FirstPeakMode (MSP?)

Get the current "First peak" mode.

Parameter: int SA_FirstPeak SA_FirstPeak

Direction: Up Valid values: Minimum: 0 Maximum: 1

Description: First peak state.

N.36 Set DataScale (CEE)

Set the scaling factor for X1, X2 and X3 in thickness mode. This is an internal command. It should not be used by the customer.

Parameter: double SP_DataScale SP_DataScale

Direction: Down Valid values: Minimum: 1.0 Maximum: 5.0

Description: Scaling factor of the sensor.

N.37 Get_DataScale (CEE?)

Get the scaling factor for X1, X2 and X3 in thickness mode.

Parameter: double SA_DataScale SA_DataScale

Direction: Up Valid values: Minimum: 1.0 Maximum: 5.0

Description: Scaling factor of the sensor.

N.38 Set BarycenterSca (CEB)

Set the scaling factor for barycenter values. This is an internal command. It should not be used by the customer.

Parameter: double SP_BarycenterScale

SP_BarycenterScale

Direction: Down **Valid values:**

Minimum: 32.0 Maximum: 32.0

Description: Scaling factor for Barycenter.

N.39 Get_BarycenterSca (CEB?)

Get the scaling factor for barycenter values. This is an internal command. It should not be used by the customer.

Parameter: double SA_BarycenterScale

SA_BarycenterScale

Direction: Up Valid values:

Minimum: 32.0 Maximum: 32.0

Description: Scaling factor for Barycenter.

N.40 Set BarycenterOff (CRB)

Set the offset values for barycenter values. This is an internal command. It should not be used by the customer.

Parameter: double SP_BarycenterOffset

SP_BarycenterOffset

Direction: Down Valid values: Minimum: 0.0

Maximum: 1023.9

Description: Offset for Barycenter.

N.41 Get_BarycenterOff (CRB?)

Get the offset value for barycenter values. This is an internal command. It should not be used by the customer.

Parameter: double SA_BarycenterOffset

SA_BarycenterOffset

Direction: Up Valid values: Minimum: 0.0 Maximum: 1023.9

Description: Offset for Barycenter.

SP_LampTest

N.42 Set_LampTest (SLP)

Enable/Disable the "Lamp Test" mode.

Parameter: int SP_LampTest

Direction: Down Valid values: Minimum: 0 Maximum: 1

Description: Lamp Test state.

N.43 Get_LampTest (SLP?)

Get the current "Lamp Test" mode.

Parameter: int SA_LampTest SA_LampTest

Direction: Up Valid values: Minimum: 0 Maximum: 1

Description: Lamp Test state.

N.44 Set LampTestThr (CSL)

Set the threshold for "Lamp Test" mode.

Parameter: int SP_LampTestThr SP_LampTestThr

Direction: Down Valid values: Minimum: 0 Maximum: 998

Description: Lamp Test threshold.

N.45 Get_LampTestThr (CSL?)

Get the threshold for "Lamp Test" mode.

Parameter: int SA_LampTestThr SA_LampTestThr

Direction: Up Valid values: Minimum: 0 Maximum: 998

Description: Lamp Test threshold.

N.46 Set_LEDIntensity (LED)

Set the LED intensity level.

Parameter: int SP_LEDIntensity SP_LEDIntensity

Direction: Down
Valid values:
Minimum: 0
Maximum: 100

Description: LED intensity.

N.47 Get_LEDIntensity (LED?)

Get the LED intensity level.

Parameter: int SA_LEDIntensity SA_LEDIntensity

Direction: Up Valid values: Minimum: 0 Maximum: 100 Description: LED intensity.

N.48 Set AutoAdaptLED (AAL)

Enable/Disable the "Auto-Adaptive LED" mode.

Parameter: int SP_AutoAdaptLED SP_AutoAdaptLED

Direction: Down Valid values: Minimum: 0 Maximum: 1

Description: Auto-Adaptive LED state.

N.49 Get_AutoAdaptLED (AAL?)

Get the "Auto-Adaptive LED" mode.

Parameter: int SA_AutoAdaptLED SA_AutoAdaptLED

Direction: Up Valid values: Minimum: 0 Maximum: 1

Description: Auto-Adaptive LED state.

SP_AutoAdaptLEDThr

N.50 Set AdaptLEDThr (VTH)

Set the threshold value for the auto-adaptive LED mode.

Parameter: int SP_AutoAdaptLEDThr

Direction: Down Valid values: Minimum: 0 Maximum: 4095

Description: Auto-Adaptive LED threshold.

N.51 Get AdaptLEDThr (VTH?)

Get the threshold value for the auto-adaptive LED mode.

Parameter: int SA_AutoAdaptLEDThr

Direction: Up Valid values: Minimum: 0 Maximum: 4095

Description: Auto-Adaptive LED threshold.

N.52 Set IntLightSrc (CCL)

Set the state of the internal light source (LED).

Parameter: int SP_LED_Off

Direction: Down Valid values: Minimum: 0 Maximum: 1

Description: LED on (0) or off (1).

N.53 Get_IntLightSrc (CCL?)

Get the state of the internal light source (LED).

Parameter: int SA_LED_Off

Direction: Up Valid values: Minimum: 0 Maximum: 1

Description: LED on (0) or off (1).

X9751165 200

SA_AutoAdaptLEDThr

SP_LED_Off

SA_LED_Off

SP_RefractIndexFileIdx

SA_RefractIndexFileIdx

SA_RefractIndexFileName

N.54 Set RefldxFile (INF)

Set the refractive index file.

Parameter: int SP_RefractIndexFileIdx

Direction: Down Valid values: Minimum: 0 Maximum: 8

Description: Refractive index file index.

Parameter: int SA_RefractIndexFileIdx

Direction: Up Valid values: Minimum: 0 Maximum: 8

Description: Refractive index file index.

Parameter: String SA_RefractIndexFileName

Direction: Up

Description: Refractive index file name.

Parameter: double SA_MinRefractIndex SA_MinRefractIndex

Direction: Up **Valid values**:

Minimum: 0.0001 Maximum: 9.9999

Description: Minimum refractive index.

Parameter: double SA_MaxRefractIndex SA_MaxRefractIndex

Direction: Up Valid values:

Minimum: 0.0001 **Maximum:** 9.9999

Description: Maximum refractive index.

Parameter: double SA_AvgRefractIndex SA_AvgRefractIndex

Direction: Up Valid values:

Minimum: 0.0001 **Maximum:** 9.9999

Description: Averaging refractive index.

N.55 Get RefldxFile (INF?)

Request the selected refractive index file.

Parameter: int SA_RefractIndexFileIdx SA_RefractIndexFileIdx

Direction: Up Valid values: Minimum: 0 Maximum: 8

Description: Refractive index file index.

N Commands for IFD2401

Parameter: String SA_RefractIndexFileName SA_RefractIndexFileName

Direction: Up

Description: Refractive index file name.

Parameter: double SA_MinRefractIndex SA_MinRefractIndex

Direction: Up **Valid values:**

Minimum: 0.0001 Maximum: 9.9999

Description: Minimum refractive index.

Parameter: double SA_MaxRefractIndex SA_MaxRefractIndex

Direction: Up **Valid values**:

Minimum: 0.0001 **Maximum:** 9.9999

Description: Maximum refractive index.

Parameter: double SA_AvgRefractIndex SA_AvgRefractIndex

Direction: Up **Valid values:**

Minimum: 0.0001 **Maximum:** 9.9999

Description: Averaging refractive index.

N.56 Upload_RefldxFile

Send a refractive index file to the controller. This is an internal command. It should not be used by the customer.

Direction: Down Valid values: Minimum: 1 Maximum: 8

Description: Index on which position the file should be stored.

Parameter: String SP_RefractIndexFile SP_RefractIndexFile

Direction: Down

Description: Refractive index file with 2049 lines. First line is a name, the

other lines are refractive index values with precision four.

N.57 RecenterEncoder (RCD)

Recenter encoder position.

Parameter: int SP_Encoder1 SP_Encoder1

Direction: Down Valid values: Minimum: 0 Maximum: 1

Description: Recenter Encoder 1.

N Commands for IFD2401

Parameter: int SP_Encoder2 SP_Encoder2

Direction: Down
Valid values:
Minimum: 0
Maximum: 1

Description: Recenter Encoder 2.

Parameter: int SP_Encoder3 SP_Encoder3

Direction: Down Valid values: Minimum: 0 Maximum: 1

Description: Recenter Encoder 3.

N.58 Set_MissingSignal (RSP)

Set behaviour for missing second peak in thickness mode.

Parameter: int SP_Option SP_Option

Direction: Down Valid values: Minimum: 0 Maximum: 1

Description: Mode for behaviour.

N.59 Get_MissingSignal (RSP?)

Returns behaviour for missing second peak in thickness mode.

Parameter: int SA_Option SA_Option

Direction: Up Valid values: Minimum: 0 Maximum: 1

Description: Mode for behaviour.

N.60 Set_Reverse (RVS)

Reverse the distance signal.

Parameter: int SP_Reverse SP_Reverse

Direction: Down Valid values:

0= Normal direction 1= Reverse direction

Description: In reverse mode, measure range - distance is transmitted.

SA_Reverse

SP_Averaging

SA_Averaging

N.61 Get_Reverse (RVS?)

Returns setting for reverse mode.

Parameter: int SA_Reverse

Direction: Up Valid values:

0= Normal direction 1= Reverse direction **Description:** Reverse mode

N.62 Set_Averaging (AVR)

Set data averaging at controller. Note! Acquisition speed will be reduced.

Parameter: int SP_Averaging

Direction: Down Valid values: Minimum: 1 Maximum: 9999

Description: Data averaging factor.

N.63 Get_Averaging (AVR?)

Returns current data averaging at controller.

Parameter: int SA_Averaging

Direction: Up Valid values: Minimum: 1 Maximum: 999

Description: Data averaging factor.

N.64 Set_SpectralAv (AVS)

Set spectral averaging at controller. Note! Acquisition speed will be reduced.

Parameter: int SP_Averaging

Direction: Down Valid values: Minimum: 1 Maximum: 9999

Description: Data averaging factor.

SP_Averaging

SA_Averaging

N.65 Get_SpectralAv (AVS?)

Returns current spectral averaging at controller.

Parameter: int SA_Averaging

Direction: Up Valid values: Minimum: 1 Maximum: 999

Description: Data averaging factor.

N.66 Continue (CTN)

Continues data acquition (after a trigger commands SingleShot_Trg, Trigger-Mode_Edge, TriggerMode_State or an error).

N.67 Start_Trigger (TRG)

Starts the trigger mode at controller.

N.68 End_Trigger

Stops the trigger mode at controller (after Start Trigger).

N.69 SingleShot_Trg (TRE)

Starts the single shot trigger mode at controller.

Parameter: int SP_NumberOfPoints

Direction: Down Valid values: Minimum: 0 Maximum: 9999

Description: Number of values to read.

N.70 Set_TrgMode_Edge (TRS)

Enable/Disable the "Start/Stop on Edge Trigger" mode.

Parameter: int SP_TriggerMode_Edge

Direction: Down Valid values: Minimum: 0 Maximum: 1

Description: Start/Stop on Edge Trigger state.

X9751165 205

SP_NumberOfPoints

SP_TriggerMode_Edge

N.71 Set TrgMode State (TRN)

Enable/Disable the "Start/Stop on State Trigger" mode.

Parameter: int SP_TriggerMode_State

SP_TriggerMode_State

Direction: Down Valid values: Minimum: 0 Maximum: 1

Description: Start/Stop on State Trigger state.

N.72 Set_ActiveEdge (TRF)

Set the active edge or state for Start_Trigger, TriggerMode_Edge or Trigger-Mode_State.

Parameter: int SP_ActiveEdge

SP_ActiveEdge

Direction: Down **Valid values**:

0= rising edge or high state 1= falling edge or low state **Description:** Active state or edge.

N.73 Get_ActiveEdge (TRF?)

Get the active edge or state for Start_Trigger, TriggerMode_Edge or Trigger-Mode State.

Parameter: int SA_ActiveEdge

SA_ActiveEdge

Direction: Up Valid values:

0= rising edge or high state 1= falling edge or low state **Description:** Active state or edge.

N.74 Software_Trigger (STR)

Simulates an hardware trigger (SYNC IN) for trigger commands SingleShot_Trg, TriggerMode_Edge or TriggerMode_State.

N.75 Set Watchdog (WDE)

Enable/Disable the Watchdog.

Parameter: int SP_Watchdog

SP_Watchdog

Direction: Down Valid values: Minimum: 0 Maximum: 1

Description: Watchdog state.

SA_Watchdog

N.76 Get_Watchdog (WDE?)

Get the Watchdog state.

Parameter: int SA_Watchdog

Direction: Up Valid values: Minimum: 0 Maximum: 1

Description: Watchdog state.

N.77 Set_WatchdogPrd (WDP)

Set the Watchdog period.

Parameter: int SP_WatchdogPeriod

Direction: Down

Unit: s Valid values: Minimum: 10 Maximum: 255

Description: Watchdog period.

N.78 Get_WatchdogPrd (WDP?)

Get the Watchdog period.

Parameter: int SA_WatchdogPeriod

Direction: Up Unit: s Valid values: Minimum: 10 Maximum: 255

Description: Watchdog period.

N.79 Get_Status (STS)

Retrieve detailed information about the controller and sensor.

Parameter: int SA_SRIndex

Direction: Up Valid values:

0= Free samplerate

1= 100 Hz 2= 200 Hz 3= 400 Hz 4= 1000 Hz 5= 2000 Hz

Description: Samplerate index.

X9751165 207

SA_WatchdogPeriod

SP_WatchdogPeriod

SA_SRIndex

Parameter: int SA_MeasureMode SA_MeasureMode

Direction: Up Valid values: 0= Distance 1 = Thickness

Description: Measure mode of the sensor.

Parameter: int SA_Sensor SA_Sensor

Direction: Up Valid values: Minimum: 0 Maximum: 19

Description: Number of active sensor.

Parameter: int SA_ASCII SA_ASCII

Direction: Up

Description: Data Transfer mode (values) of sensor.

Parameter: int SA_Averaging SA_Averaging

Direction: Up Valid values: Minimum: 1 Maximum: 999

Description: Data averaging factor.

Parameter: int SA_X1..16 SA_X1..16

Direction: Up Valid values: 0 = off

1 = RS232/RS422

9= USB

Description: Selection of data of the sensor. This is necessary for data conversion and scaling.

Depending on measure mode (distance / thickness) the selected value have different meaning. The following list shows the meaning for X1..16.

X1 means (Distance / Thickness).

X2 means (not used / Distance1).

X3 means (not used / Distance2).

X4 means (Intensity / not used).

X5 means (not used / Intensity1).

X6 means (Counter / Intensity2).

X7 means (Barycenter / Barycenter1).

X8 means (not used / Barycenter2).

X9 means (State Flags / State Flags).

X10 means (not used / Counter).

X11 means (Encoder 1 LSB / Encoder 1 LSB).

X12 means (Encoder 1 MSB / Encoder 1 MSB).

X13 means (Encoder 2 LSB / Encoder 2 LSB).

X14 means (Encoder 2 MSB / Encoder 2 MSB).

X15 means (Encoder 3 LSB / Encoder 3 LSB).

X16 means (Encoder 3 MSB / Encoder 3 MSB).

X9751165 208

SA_Range

Parameter: double SA_Range

Direction: Up Unit: μm

Description: Range of active sensor.

N.80 Get_Version (VER)

Get the software version of the controller.

Parameter: String SA_Version SA_Version

Direction: Up

Description: Software version of sensor.

N.81 Set_OutputData (SOD)

Select the data to be output from controller.

Parameter: int SP_X1..16 SP_X1..16

Direction: Down Valid values:

0 = off

1= RS232/RS422

9= USB

Description: Selection of data of the sensor. This is necessary for data conversion and scaling.

Depending on measure mode (distance / thickness) the selected value have different meaning. The following list shows the meaning for X1..16.

X1 means (Distance / Thickness).

X2 means (not used / Distance1).

X3 means (not used / Distance2).

X4 means (Intensity / not used).

X5 means (not used / Intensity1).

X6 means (Counter / Intensity2).

X7 means (Barycenter / Barycenter1).

X8 means (not used / Barycenter2).

X9 means (State Flags / State Flags).

X10 means (not used / Counter).

X11 means (Encoder 1 LSB / Encoder 1 LSB).

X12 means (Encoder 1 MSB / Encoder 1 MSB).

X13 means (Encoder 2 LSB / Encoder 2 LSB).

X14 means (Encoder 2 MSB / Encoder 2 MSB).

X15 means (Encoder 3 LSB / Encoder 3 LSB).

X16 means (Encoder 3 MSB / Encoder 3 MSB).

N.82 Get OutputData (SOD?)

Get the data output from controller.

Parameter: int SA_X1..16

SA_X1..16

SP_OutNr

Direction: Up Valid values:

0 = off

1= RS232/RS422

9= USB

Description: Selection of data of the sensor. This is necessary for data conversion and scaling.

Depending on measure mode (distance / thickness) the selected value have different meaning. The following list shows the meaning for X1..16.

X1 means (Distance / Thickness).

X2 means (not used / Distance1).

X3 means (not used / Distance2).

X4 means (Intensity / not used).

X5 means (not used / Intensity1).

X6 means (Counter / Intensity2).

X7 means (Barycenter / Barycenter1).

X8 means (not used / Barycenter2).

X9 means (State Flags / State Flags).

X10 means (not used / Counter).

X11 means (Encoder 1 LSB / Encoder 1 LSB).

X12 means (Encoder 1 MSB / Encoder 1 MSB).

X13 means (Encoder 2 LSB / Encoder 2 LSB).

X14 means (Encoder 2 MSB / Encoder 2 MSB).

X15 means (Encoder 3 LSB / Encoder 3 LSB).

X16 means (Encoder 3 MSB / Encoder 3 MSB).

N.83 Set Ascii (ASC)

Set digital data transfer (only values, no sensor answer) to ASCII mode.

N.84 Set Binary (BIN)

Set digital data transfer (only values, no sensor answer) to binary mode.

N.85 Set AnalogOut (ANA)

Setup the analog outputs.

Parameter: int SP_OutNr

Direction: Down

Valid values:

0= BNC1

1= BNC2

Description: Number of analog output.

N Commands for IFD2401

Parameter: int SP_SOD SP_SOD

Direction: Down Valid values: Minimum: 0 Maximum: 7

Description: Specifies the number (X1..X16) to output at analog out.

Parameter: int SP_0V SP_0V

Direction: Down Valid values: Minimum: 0 Maximum: 99999

Description: Specifies the value which shoud output 0 V.

Parameter: int SP_10V SP_10V

Direction: Down
Valid values:
Minimum: 0
Maximum: 99999

Description: Specifies the value which shoud output 10 V.

N.86 Get_AnalogOut (ANA?)

Get settings of analog outputs.

Parameter: int SA_0_SOD SA_0_SOD

Direction: Up Valid values: Minimum: 0 Maximum: 7

Description: Analog out BNC1: 0= X1, 1= X2, ..., 15= X16.

Parameter: int SA_0_0V SA_0_0V

Direction: Up Valid values: Minimum: 0 Maximum: 99999

Description: Analog out BNC1: Specifies the value which shoul output 0 V.

Parameter: int SA_0_10V SA_0_10V

Direction: Up Valid values: Minimum: 0 Maximum: 99999

Description: Analog out BNC1: Specifies the value which should output 10 V.

Parameter: int SA_1_SOD SA_1_SOD

Direction: Up Valid values: Minimum: 0 Maximum: 7

Description: Analog out BNC2: 0= X1, 1= X2, ..., 15= X16.

Parameter: int SA_1_0V SA_1_0V

Direction: Up Valid values: Minimum: 0 Maximum: 99999

Description: Analog out BNC2: Specifies the value which should output 0 V.

Parameter: int SA_1_10V SA_1_10V

Direction: Up Valid values: Minimum: 0 Maximum: 99999

Description: Analog out BNC2: Specifies the value which should output 10 V.

N.87 Set_AnalogZero (SOF)

Set analog output to zero.

Parameter: int SP_Zero SP_Zero

Direction: Down Valid values: 0= normal 1= set

Description: Set/reset the analog output 0V value.

N.88 Set_Baudrate (BAU)

Set the baudrate of the serial interface of controller.

Attention! To avoid synchronisation problems, sending data by sensor should be disabled after changing baudrate for a short time (sensor command Start_Trigger).

Parameter: int SP_SensorBaudrate SP_SensorBaudrate Direction: Down

Description: Baudrate of controller.

N.89 Get_Baudrate (BAU?)

Get the baudrate of the serial interface of controller.

Parameter: int SA_SensorBaudrate
Direction: Up
Valid values:
9600
19200
38400
57600
115200

Description: Baudrate of controller.

N.90 Save_Setup (SSU)

230400 460800

Save the current setup of controller to flash.

N.91 Reset (RST)

Reset the controller and set the default parameter values.

N.92 Get_CCD (CCD)

Returns current CCD data.

Parameter: String (binary, with 0x00) SA_CCD

Direction: Up Valid values:

4096 bytes

convertable to 2048 WORDS.

Description: Raw CCD line.

Parameter: String (binary, with 0x00) SA_PreTreated

Direction: Up Valid values:

4096 bytes

convertable to 2048 WORDS.

Description: Raw CCD line.

N.93 Get_DarkSig (SGD)

Get the dark signal table of controller.

Parameter: String (binary, with 0x00) SA_DarkSig

Direction: Up Valid values: 4096 bytes

convertable to 2048 WORDS. **Description:** Dark signal table.

______X9751165

SA_SensorBaudrate

SA_CCD

SA_PreTreated

SA_DarkSig

213

N.94 Get WhiteRef (SGW)

Get the white reference table table of controller. This is an internal command. It should not be used by the customer.

Parameter: String (binary, with 0x00) SA_WhiteRef

SA_WhiteRef

Direction: Up **Valid values:** 4096 bytes

convertable to 2048 WORDS. **Description:** White reference table.

N.95 Get_NormSig (SGN)

Get the norm signal table of controller. This is an internal command. It should not be used by the customer.

Parameter: String (binary, with 0x00) SA_NormSig

SA_NormSig

Direction: Up **Valid values:** 4096 bytes

convertable to 2048 WORDS. **Description:** Norm signal table.

N.96 Get_CalibTable (SGC)

Get the calibration table of controller.

Parameter: String (binary, with 0x00) SA_CalibTable

SA_CalibTable

Direction: Up Valid values: 4096 bytes

convertable to 2048 WORDS. **Description:** Calibration table.

N.97 Start Spectrum

Start the spectrum mode in controller. Only work via USB connection. On firmware versions below 1.2.36 the spectrum is shifted 8 bytes to left.

Parameter: int IP_UsbReadBufSize

IP_UsbReadBufSize

Direction: Down Unit: Bytes Valid values:

Minimum: 512 Maximum: 65536

Default: 8192

Description: Buffer size for read operations on USB, while spectrum mode is active. The value is always ceiled to the next power of two (512, 1024,

2048, ..., 32768, 65536).

Direction: Down

Unit: ms
Valid values:

-1= Do not set timer resolution.
0= Use greatest possible accuracy.
1..255= Resolution in milliseconds.

Unit: ms Default: 0

Description: Timer resolution (for Windows scheduler, set by timeBeginPe-

riod).

It is automatically reset at End Spectrum.

N.98 Get Spectrum

Read one Spectrum (PreTreated Signal). It is returned with a frequency of Samplerate devided by Spectral Averaging.

Parameter: int SP_WaitSpectrumTimeout

Direction: Down

Unit: ms Valid values: Minimum: 0

Maximum: 1000000000

Description: Timeout to wait for a spectrum.

Parameter: int SP_ReadMode

Direction: Down **Valid values:**

0= Each spectrum

1 = Only newest spectrum

2= Automatic

Description: This mode specifies if each spectrum should be read or only the latest one. If set to automatic each spectrum is read until the buffer does not overflow. If the buffer becomes full one or more spectra are

discarded.

Parameter: String (binary, with 0x00) SA_Spectrum

Direction: Up Valid values:

4096 bytes

convertable to 2048 WORDS. **Description:** PreTreated Signal.

Parameter: double SA_Timestamp

Direction: Up

Valid values: Minimum: 0

Unit: ms

Description: Timestamp of the signal. It starts from 1970 Jan 01 at 01:00. It is

generated when the spectrum is read from USB

SP_WaitSpectrumTimeout

SP_ReadMode

SA_Spectrum

SA_Timestamp

IP_UsbReadBufSize

Parameter: int SA_SkippedSpectra SA_SkippedSpectra

Direction: Up Valid values: Minimum: 0

Maximum: INT MAX (2147483647)

Description: Number of skipped spectra, if SP_NewestSpectrum is set to 1.

N.99 End Spectrum

End the spectrum mode in controller.

Parameter: int IP_UsbReadBufSize

Direction: Down Unit: Bytes Valid values:

Minimum: 512 Maximum: 65536

Description: Buffer size for read operations on USB, after spectrum mode was finished. The value is always ceiled to the next power of two (512,

1024, 2048, ..., 32768, 65536).

N.100 Upload_CalibTable

Send a calibration table for selected sensor to the controller. This is an internal command. It should not be used by the customer.

Parameter: int SP_BlockSize

Direction: Down Unit: Values Valid values: Minimum: 1 Maximum: 999

Default: 64

Description: Size of blocks in which the calibration table is separated before

Parameter: String (binary, with 0x00) SP_CalibTable

Direction: Down Valid values:

2048 values of datatype float (4 byte).

Description: Calibration table for selected sensor.

Parameter: double SP_FullRange

Direction: Down Unit: μm Valid values: Minimum: 1

Maximum: 1000000

Description: Measure range of selected sensor.

SP_BlockSize

SP_CalibTable

SP_FullRange

X9751165 216

N.101 Use Defaults

This command tells the driver to use default values to operate with sensor data. If some parameters are not specified they are not changed. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.1.

The other parameters are:

Parameter: double IP_RefractIndex

IP_RefractIndex

Direction: Down **Valid values:**

Minimum: 0.001 Maximum: 9.999

Description: Tells the driver the refractive index used by the controller for

thickness measurement.

Parameter: int IP_MeasureMode

IP_MeasureMode

Direction: Down
Valid values:
0 = Distance
1 = Thickness

Description: Tells the driver the measure mode of the controller.

Parameter: int IP_Averaging

IP_Averaging

Direction: Down Valid values: Minimum: 1 Maximum: 999

Description: Tells the driver the averaging used by the controller. It is used

for timeout check.

Parameter: int IP_SpectralAv

IP_SpectralAv

Direction: Down Valid values: Minimum: 1 Maximum: 999

Description: Tells the driver the spectral averaging used by the controller. It

is used for timeout check.

Parameter: int IP_X1..16

IP_X1..16

Direction: Down Valid values: 0= off 1= RS232 9= USB

Description: Tells the driver the selection of data used by the sensor. This is necessary for data conversion and scaling.

Depending on measure mode (distance / thickness) the selected value have different meaning. The following list shows the meaning for X1..16.

X1 means (Distance / Thickness). X2 means (not used / Distance1).

X3 means (not used / Distance2).

X4 means (Intensity / not used).

IA_RefractIndex

IA MeasureMode

IA_Averaging

IA_SpectralAv

X5 means (not used / Intensity1).
X6 means (Counter / Intensity2).
X7 means (Barycenter / Barycenter1).
X8 means (not used / Barycenter2).
X9 means (State Flags / State Flags).
X10 means (not used / Counter).
X11 means (Encoder 1 LSB / Encoder 1 LSB).
X12 means (Encoder 1 MSB / Encoder 1 MSB).
X13 means (Encoder 2 LSB / Encoder 2 LSB).
X14 means (Encoder 2 MSB / Encoder 2 MSB).
X15 means (Encoder 3 LSB / Encoder 3 LSB).
X16 means (Encoder 3 MSB / Encoder 3 MSB).

N.102 Get DrvSetting

Returns the current settings of the driver used for operating with sensor data. It is the opposite of Use_Defaults. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.3.

The other parameters are:

Parameter: double IA_RefractIndex

Direction: Up

Valid values:
Minimum: 0.001
Maximum: 9.999

Description: Refractive index of sensor assumed by the driver for thickness

measurement.

Parameter: int IA_MeasureMode

Direction: Up
Valid values:
0 = Distance
1 = Thickness

Description: Measure mode of the sensor assumed by the driver.

Parameter: int IA_Averaging

Direction: Up Valid values: Minimum: 1 Maximum: 999

Description: Averaging of the sensor assumed by the driver. It is used for

timeout check.

Parameter: int IA_SpectralAv

Direction: Up Valid values: Minimum: 1 Maximum: 999

Description: Spectral averaging of the controller assumed by the driver. It is

used for timeout check.


```
Parameter: int IA_X1..16
Direction: Up
```

Valid values:

0 = off

1= RS232 9= USB

Description: Selection of data of the sensor assumed by the driver. This is necessary for data conversion and scaling.

Depending on measure mode (distance / thickness) the selected value have different meaning. The following list shows the meaning for X1..16.

X1 means (Distance / Thickness).

X2 means (not used / Distance1).

X3 means (not used / Distance2).

X4 means (Intensity / not used).

X5 means (not used / Intensity1).

X6 means (Counter / Intensity2).

X7 means (Barycenter / Barycenter1).

X8 means (not used / Barycenter2).

X9 means (State Flags / State Flags).

X10 means (not used / Counter).

X11 means (Encoder 1 LSB / Encoder 1 LSB).

X12 means (Encoder 1 MSB / Encoder 1 MSB).

X13 means (Encoder 2 LSB / Encoder 2 LSB).

X14 means (Encoder 2 MSB / Encoder 2 MSB).

X15 means (Encoder 3 LSB / Encoder 3 LSB).

X16 means (Encoder 3 MSB / Encoder 3 MSB).

O Commands for IFD2430

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

RS232 (native). TCP/IP (native).

O.1 Set_ActiveSensor (SEN)

Set the active sensor (up to 20 sensors can be stored in controller) for measurement. After this command, the internal range is resetted because the old one is no longer valid and the new one is not known until command Get_Range or Get_Status is called.

Parameter: int SP_Sensor

Direction: Down Valid values: Minimum: 0 Maximum: 19

Description: Number of active sensor.

O.2 Get ActiveSensor (SEN?)

Get the active sensor.

Parameter: int SA_Sensor

Direction: Up Valid values: Minimum: 0 Maximum: 19

Description: Number of active sensor.

O.3 Get Range (SCA)

Get the range of active sensor.

Parameter: double SA_Range

Direction: Up Unit: μm

Description: Range of active sensor.

SA_Range

SP_Sensor

SA_Sensor

O.4 Acquire DarkSig (DRK)

Aquire dark signal.

Parameter: int SA_MinSRIndex SA_MinSRIndex

Direction: Up
Valid values:

1 = 100 Hz
2 = 200 Hz
3 = 400 Hz
4 = 1000 Hz
5 = 2000 Hz
6 = 4000 Hz
7 = 6250 Hz
8 = 10000 Hz
9 = 15625 Hz
10 = 20000 Hz
11 = 25000 Hz

12= 31250 Hz

Description: Minimal samplerate index.

O.5 FastDark (FDK)

Aquire dark signal for active sensor and samplerate.

Parameter: int SP_AveragingForDark SP_AveragingForDark

Valid values:
Minimum: 1
Maximum: 99

Description: Averaging factor for dark.

Parameter: int SP_Weighting SP_Weighting

Direction: Down Valid values: Minimum: 1 Maximum: 32767

Description: Weighting factor.

O.6 Set_SRIndex (SRA)

Set the samplerate for data acquisition.

Parameter: int SP_SRIndex SP_SRIndex

Direction: Down Valid values: 1= 100 Hz 2= 200 Hz 3= 400 Hz 4= 1000 Hz 5= 2000 Hz


```
6= 4000 Hz
7= 6250 Hz
8= 10000 Hz
9= 15625 Hz
10= 20000 Hz
11= 2500 Hz
12= 31250 Hz
```

Description: Samplerate index.

O.7 Get_SRIndex (SRA?)

Get the current samplerate.

Parameter: int SA_SRIndex SA_SRIndex

Direction: Up
Valid values:

1 = 100 Hz
2 = 200 Hz
3 = 400 Hz
4 = 1000 Hz
5 = 2000 Hz
6 = 4000 Hz
7 = 6250 Hz
8 = 10000 Hz
9 = 15625 Hz
10 = 20000 Hz
11 = 2500 Hz

Description: Samplerate index.

12= 31250 Hz

O.8 Set_FreeSR (FRQ)

Set free samplerate value for data acquisition.

Parameter: int SP_FreeSR SP_FreeSR

Direction: Down
Valid values:
Minimum: 100
Maximum: 31250
Unit: Hz

OIIII. ⊓Z

Description: Free Frequency.

Parameter: int SA_FreeSR SA_FreeSR

Direction: Up Valid values: Minimum: 100 Maximum: 31250

Unit: Hz

Description: Free Samplerate.

O.9 Get FreeSR (FRQ?)

Get free samplerate value.

Parameter: int SA_FreeSR SA_FreeSR

Direction: Up Valid values: Minimum: 100

Maximum: 31250

Unit: Hz

Description: Free Samplerate.

O.10 Set Exposure (TEX)

Set free exposure time for data acquisition.

Parameter: int SP_Exposure SP_Exposure

Direction: Down
Valid values:
Minimum: 32
Maximum: 10000

Unit: μs

Description: Free Exposure time.

Parameter: int SA_Exposure SA_Exposure

Direction: Up Valid values: Minimum: 32 Maximum: 10000

Unit: μs

Description: Free Exposure time.

O.11 Get_Exposure (TEX?)

Get free exposure time.

Parameter: int SA_Exposure SA_Exposure

Direction: Up Valid values: Minimum: 32 Maximum: 10000

Unit: μs

Description: Free Exposure time.

O.12 Set_MeasureMode (MOD)

Set the measure mode.

Parameter: int SP_MeasureMode SP_MeasureMode

Direction: Down
Valid values:
0 = Distance
1 = Thickness

Description: Measure mode of the sensor.

O.13 Get_MeasureMode (MOD?)

Get the current measure mode.

Parameter: int SA_MeasureMode

SA_MeasureMode

Direction: Up
Valid values:
0= Distance
1= Thickness

Description: Measure mode of the sensor.

O.14 Set RefractIndex (SRI)

Set the refraction index for thickness measurement.

Parameter: double SP_RefractIndex
 Direction: Down

Valid values:
Minimum: 0.001
Maximum: 9.999

Description: Refractive index used by the sensor for thickness measurement.

O.15 Get_RefractIndex (SRI?)

Get the current refraction index.

Parameter: double SA_RefractIndex

SA_RefractIndex

SP_RefractIndex

Direction: Up Valid values:

Minimum: 0.001 Maximum: 9.999

Description: Refractive index used by the sensor for thickness measurement.

O.16 Set_Threshold (MNP)

Set the detection threshold.

Parameter: double SP_Threshold

SP_Threshold

Direction: Down Valid values: Minimum: 0.0 Maximum: 1.0

Description: Threshold of the sensor.

O.17 Get Threshold (MNP?)

Get the current detection threshold.

Parameter: double SA_Threshold SA_Threshold

Direction: Up Valid values: Minimum: 0.0 Maximum: 1.0

Description: Threshold of the sensor.

O.18 Set_KeyLock (LOC)

Locks/Unlocks the keypad of controller.

Parameter: int SP_Keylock SP_Keylock

Direction: Down Valid values:

0= off (keys enabled) 1= on (keys locked)

Description: The keypad state at the sensor.

O.19 Get_KeyLock (LOC?)

Returns the lock state of controller keypad.

Parameter: int SA_Keylock SA_Keylock

Direction: Up Valid values:

0= off (keys enabled) 1= on (keys locked)

Description: The keypad state at the sensor.

O.20 Set_Averaging (AVR)

Set data averaging at controller. Note! Acquisition speed will be reduced.

Parameter: int SP_Averaging SP_Averaging

Direction: Down Valid values: Minimum: 1 Maximum: 999

Description: Data averaging factor.

O.21 Get Averaging (AVR?)

Returns current data averaging at controller.

Parameter: int SA_Averaging

SA_Averaging

Direction: Up Valid values: Minimum: 1 Maximum: 999

Description: Data averaging factor.

O.22 Continue (CTN)

Continues data acquition (after a trigger command or an error).

O.23 Start_Trigger (TRG)

Starts the trigger mode at controller.

O.24 End_Trigger

Stops the trigger mode at controller.

O.25 Get_Status (STS)

Retrieve detailed information about the controller and sensor.

```
Parameter: int SA_SRIndex
```

SA_SRIndex

Direction: Up Valid values: 1= 100 Hz 2= 200 Hz 3= 400 Hz 4= 1000 Hz 5= 2000 Hz 6= 4000 Hz

> 7= 6250 Hz 8= 10000 Hz 9= 15625 Hz 10= 20000 Hz 11= 2500 Hz 12= 31250 Hz

Description: Samplerate index.

Parameter: int SA_MeasureMode

SA_MeasureMode

Direction: Up
Valid values:
0 = Distance
1 = Thickness

Description: Measure mode of the sensor.

O Commands for IFD2430

Parameter: int SA_Sensor SA_Sensor

Direction: Up Valid values: Minimum: 0 Maximum: 19

Description: Number of active sensor.

Parameter: int SA_ASCII SA_ASCII

Direction: Up

Description: Data Transfer mode (values) of sensor.

Parameter: int SA_Averaging SA_Averaging

Direction: Up Valid values: Minimum: 1 Maximum: 999

Description: Data averaging factor.

Parameter: int SA_X1..8 SA_X1..8

Direction: Up Valid values: 0= off 1= RS232 9= TCP/IP

Description: Selection of data of the sensor (Distance / Thickness). This is

necessary for data conversion and scaling.

Depending on measure mode (distance / thickness) the selected value have different meaning. The following list shows the meaning for X1..8.

X1 means (Distance / Thickness).
X2 means (not used / Distance1).
X3 means (not used / Distance2).
X4 means (Intensity / not used).
X5 means (not used / Intensity1).
X6 means (not used / Intensity2).
X7 means (Barycenter / Barycenter1).
X8 means (not used / Barycenter2).

Parameter: double SA_Range SA_Range

 $\begin{array}{ll} \textbf{Direction:} \ \ \mathsf{Up} \\ \textbf{Unit:} \ \ \mu m \end{array}$

Description: Range of active sensor.

O.26 Get_Version (VER)

Get the software version of the controller.

Parameter: String SA_Version SA_Version

Direction: Up

Description: Software version of sensor.

O.27 Set OutputData (SOD)

Select the data to be output from controller.

```
Parameter: int SP_X1..8
                                                                                     SP_X1..8
     Direction: Down
     Valid values:
           0 = off
           1= RS232
           9= TCP/IP
     Description: Selection of data of the sensor (Distance / Thickness). This is
          necessary for data conversion and scaling.
          Depending on measure mode (distance / thickness) the selected value
          have different meaning. The following list shows the meaning for X1..8.
          X1 means (Distance / Thickness).
          X2 means (not used / Distance1).
          X3 means (not used / Distance2).
          X4 means (Intensity / not used).
          X5 means (not used / Intensity1).
          X6 means (not used / Intensity2).
          X7 means (Barycenter / Barycenter1).
          X8 means (not used / Barycenter2).
```

O.28 Get OutputData (SOD?)

Get the data output from controller.

```
Parameter: int SA_X1..8
                                                                                      SA_X1..8
     Direction: Up
     Valid values:
           0 = off
           1= RS232
           9= TCP/IP
     Description: Selection of data of the sensor (Distance / Thickness). This is
          necessary for data conversion and scaling.
          Depending on measure mode (distance / thickness) the selected value
          have different meaning. The following list shows the meaning for X1..8.
          X1 means (Distance / Thickness).
          X2 means (not used / Distance1).
          X3 means (not used / Distance2).
          X4 means (Intensity / not used).
          X5 means (not used / Intensity1).
          X6 means (not used / Intensity2).
          X7 means (Barycenter / Barycenter1).
          X8 means (not used / Barycenter2).
```

O.29 Set Ascii (ASC)

Set digital data transfer (only values, no sensor answer) to ASCII mode.

O.30 Set Binary (BIN)

Set digital data transfer (only values, no sensor answer) to binary mode.

O.31 Set IPAddress (IPA)

Set the IP-Adress of the ethernet interface of controller.

Parameter: String SP_IPAddress

SP_IPAddress

Direction: Down

Description: IP-Address of controller. The format must be xx.xx.xx.xx! It has to be change in any case because the default address is not valid!

O.32 Get IPAddress (IPA?)

Get the IP-Adress of the ethernet interface of controller.

Parameter: String SA_IPAddress

SA_IPAddress

Direction: Up

Description: IP-Address of controller.

O.33 Set_Baudrate (BAU)

Set the baudrate of the serial interface of controller.

Attention! To avoid synchronisation problems, sending data by sensor should be disabled after changing baudrate for a short time (sensor command Start Trigger).

Parameter: int SP_SensorBaudrate

SP_SensorBaudrate

Direction: Down **Valid values:**9600
19200
38400
57600

115200

Description: Baudrate of controller.

O.34 Get Baudrate (BAU?)

Get the baudrate of the serial interface of controller.

Parameter: int SA_SensorBaudrate

SA_SensorBaudrate

Direction: Up **Valid values:** 9600 19200 38400 57600 115200

Description: Baudrate of controller.

O.35 Save Setup (SSU)

Save the current setup of controller to flash.

O.36 Get_CCD (CCD)

Returns current CCD data.

Parameter: String (binary, with 0x00) SA_CCD SA_CCD

Direction: Up Valid values: 4096 bytes

convertable to 2048 WORDS **Description:** Raw CCD line.

Parameter: String (binary, with 0x00) SA_PreTreated SA_PreTreated

Direction: Up Valid values: 4096 bytes

convertable to 2048 WORDS. **Description:** Raw CCD line.

O.37 Get_DarkSig (SGD)

Get the dark signal table of controller.

Parameter: String (binary, with 0x00) SA_DarkSig SA_DarkSig

Direction: Up Valid values: 2048 bytes

convertable to 1024 WORDS **Description:** Dark signal table.

O.38 Get_WhiteRef (SGW)

Get the white reference table table of controller. This is an internal command. It should not be used by the customer.

Parameter: String (binary, with 0x00) SA_WhiteRef SA_WhiteRef

Direction: Up Valid values: 2048 bytes

convertable to 1024 WORDS **Description:** White reference table.

O.39 Get NormSig (SGN)

Get the norm signal table of controller. This is an internal command. It should not be used by the customer.

Parameter: String (binary, with 0x00) SA_NormSig

SA_NormSig

Direction: Up Valid values: 2048 bytes

convertable to 1024 WORDS **Description:** Norm signal table.

O.40 Get_CalibTable (SGC)

Get the calibration table of controller.

Parameter: String (binary, with 0x00) SA_CalibTable

SA_CalibTable

Direction: Up **Valid values:** 2048 bytes

convertable to 1024 WORDS **Description:** Calibration table.

O.41 Upload CalibTable

Send a calibration table for selected sensor to the controller. This is an internal command. It should not be used by the customer.

Parameter: int SP_BlockSize

SP_BlockSize

Direction: Down
Unit: Values
Valid values:
Minimum: 1
Maximum: 999

Description: Size of blocks in which the calibration table is separated before

sending.

Parameter: String (binary, with 0x00) SP_CalibTable

SP_CalibTable

Direction: Down **Valid values:**

1024 values of datatype float (4 byte). **Description:** Calibration table for selected sensor.

Parameter: double SP_FullRange

SP_FullRange

Direction: Down Unit: μm Valid values:

Minimum: 1

Maximum: 1000000

Description: Measure range of selected sensor.

O.42 Use Defaults

This command tells the driver to use default values to operate with sensor data. If some parameters are not specified they are not changed. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.1.

The other parameters are:

Parameter: double IP_RefractIndex

IP_RefractIndex

Direction: Down **Valid values:**

Minimum: 0.001 Maximum: 9.999

Description: Tells the driver the refractive index used by the controller for

thickness measurement.

Parameter: int IP_MeasureMode

IP_MeasureMode

Direction: Down
Valid values:
0 = Distance
1 = Thickness

Description: Tells the driver the measure mode of the controller.

Parameter: int IP_Averaging

IP_Averaging

Direction: Down Valid values: Minimum: 1 Maximum: 999

Description: Tells the driver the averaging used by the controller. It is used

for timeout check.

Parameter: int IP_X1..8

IP_X1..8

Direction: Down Valid values: 0= off

1= RS232 9= TCP/IP

Description: Tells the driver the selection of data used by the sensor. This is necessary for data conversion and scaling.

Depending on measure mode (distance / thickness) the selected value have different meaning. The following list shows the meaning for X1..8.

X1 means (Distance / Thickness).

X2 means (not used / Distance1).

X3 means (not used / Distance2). X4 means (Intensity / not used).

X5 means (not used / Intensity1).

X6 means (not used / Intensity?).

X7 means (Barycenter / Barycenter 1).

X8 means (not used / Barycenter2).

IA_RefractIndex

IA_MeasureMode

IA_Averaging

IA_X1..8

O.43 Get DrvSetting

Returns the current settings of the driver used for operating with sensor data. It is the opposite of Use Defaults. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.3.

The other parameters are:

Parameter: double IA_RefractIndex

Direction: Up

Valid values:

Minimum: 0.001 Maximum: 9.999

Description: Refractive index of sensor assumed by the driver for thickness

measurement.

Parameter: int IA_MeasureMode

Direction: Up Valid values:

> 0= Distance 1= Thickness

Description: Measure mode of the sensor assumed by the driver.

Parameter: int IA_Averaging

Direction: Up Valid values:

Minimum: 1 Maximum: 999

Description: Averaging of the sensor assumed by the driver. It is used for

timeout check.

Parameter: int IA_X1..8

Direction: Up Valid values:

0 = off

1 = RS232

9= TCP/IP

Description: Selection of data of the sensor assumed by the driver. This is necessary for data conversion and scaling.

Depending on measure mode (distance / thickness) the selected value have different meaning. The following list shows the meaning for X1..8.

X1 means (Distance / Thickness).

X2 means (not used / Distance1).

X3 means (not used / Distance2).

X4 means (Intensity / not used).

X5 means (not used / Intensity1).

X6 means (not used / Intensity2).

X7 means (Barycenter / Barycenter1).

X8 means (not used / Barycenter2).

P Commands for IFD2431

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

RS232 (native).

TCP/IP (additional, e.g. RS232/RS422 to TCP/IP comm server and RS232 high level

interface). DriverX (native).

IF2008 (native).

P.1 Set_ActiveSensor (SEN)

Set the active sensor (up to 20 sensors can be stored in controller) for measurement. After this command, the internal range is resetted because the old one is no longer valid and the new one is not known until command Get_Range or Get_Status is called.

Parameter: int SP_Sensor

Direction: Down Valid values: Minimum: 0 Maximum: 19

Description: Number of active sensor.

P.2 Get_ActiveSensor (SEN?)

Get the active sensor.

Parameter: int SA_Sensor

Direction: Up Valid values: Minimum: 0 Maximum: 19

Description: Number of active sensor.

P.3 Get_Range (SCA)

Get the range of active sensor.

Parameter: double SA_Range

Direction: Up Unit: μm

Description: Range of active sensor.

X9751165 234

SP_Sensor

SA_Sensor

SA_Range

P.4 Get_AllRanges (LUL)

Get the ranges of all calibrated sensors.

Parameter: String SA_Ranges

Direction: Up

Unit: μm (after conversion from string to int or double)

Description: Ranges of all 20 sensors in a string, separated by commas.

P.5 Acquire_DarkSig (DRK)

Aquire dark signal.

Parameter: int SA_MinSRIndex

Direction: Up Valid values:

1 = 500 Hz

2= 1000 Hz

 $3 = 2000 \; Hz$

4= 5000 Hz

5= 10000 Hz 6= 15625 Hz

7= 20000 Hz

8= 25000 Hz

9= 31250 Hz

Description: Minimal samplerate index.

P.6 FastDark (FDK)

Aquire dark signal for active sensor and samplerate.

Parameter: int SP_AveragingForDark

Direction: Down **Valid values:**

Minimum: 1 Maximum: 99

Description: Averaging factor for dark.

Parameter: int SP_Weighting

Direction: Down **Valid values**:

Minimum: 1 Maximum: 100

Description: Weighting factor.

P.7 Set AutoDark (ADK)

Enables/Disables the "Automatic Fast Dark" mode.

Parameter: int SP_AutoDark

Direction: Down

Valid values: 0= off

0= 011

1= on

Description: Automatic Fast Dark.

SA_Ranges

SA MinSRIndex

SP_Weighting

SP_AveragingForDark

SP_AutoDark

P.8 Get AutoDark (ADK?)

Get the state of the "Automatic Fast Dark" mode.

Parameter: int SA_AutoDark

SA_AutoDark

SP_SRIndex

Direction: Up **Valid values:** 0= off 1= on

Description: Automatic Fast Dark.

P.9 Set_SRIndex (SRA)

Set the samplerate for data acquisition.

Parameter: int SP_SRIndex

Direction: Down **Valid values**:

0= Free samplerate

1= 500 Hz

2= 1000 Hz

3= 2000 Hz

4= 5000 Hz

5= 10000 Hz

6= 15625 Hz

7= 20000 Hz 8= 25000 Hz

9= 31250 Hz

Description: Samplerate index.

P.10 Get_SRIndex (SRA?)

Get the current samplerate.

Parameter: int SA_SRIndex

 ${\tt SA_SRIndex}$

Direction: Up Valid values:

0= Free samplerate

1 = 500 Hz

2= 1000 Hz

3= 2000 Hz

 $4 = 5000 \; Hz$

5= 10000 Hz 6= 15625 Hz

0= 13025 HZ

7= 20000 Hz

8= 25000 Hz

9= 31250 Hz

Description: Samplerate index.

P.11 Set FreeSR (FRQ)

Set free samplerate value for data acquisition.

Parameter: int SP_FreeSR SP_FreeSR

Direction: Down
Valid values:
Minimum: 100
Maximum: 31250

Unit: Hz

Description: Free Frequency.

Parameter: int SA_FreeSR SA_FreeSR

Direction: Up Valid values:

Minimum: 100 Maximum: 31250

Unit: Hz

Description: Free Samplerate.

P.12 Get_FreeSR (FRQ?)

Get free samplerate value.

Parameter: int SA_FreeSR SA_FreeSR

Direction: Up Valid values:

Minimum: 100 Maximum: 31250

Unit: Hz

Description: Free Samplerate.

P.13 Set_Exposure (TEX)

Set free exposure time for data acquisition.

Parameter: int SP_Exposure SP_Exposure

Direction: Down Valid values: Minimum: 32 Maximum: 2000

Unit: μs

Description: Free Exposure time.

Parameter: int SA_Exposure SA_Exposure

Direction: Up Valid values: Minimum: 32 Maximum: 2000

Unit: μs

Description: Free Exposure time.

SA_Exposure

SA_MinSR

P.14 Get_Exposure (TEX?)

Get free exposure time.

Parameter: int SA_Exposure

Direction: Up Valid values: Minimum: 32 Maximum: 2000

Unit: μs

Description: Free Exposure time.

P.15 Get_MinSR (FRM)

Get the minimum authorized samplerate.

Parameter: int SA_MinSR

Direction: Up Valid values: Minimum: 100

Maximum: 31250

Unit: Hz

Description: Minimum samplerate (determined by dark signal).

P.16 Set_MeasureMode (MOD)

Set the measure mode.

Parameter: int SP_MeasureMode

Direction: Down
Valid values:
0= Distance
1= Thickness

Description: Measure mode of the sensor.

P.17 Get_MeasureMode (MOD?)

Get the current measure mode.

Parameter: int SA_MeasureMode

Direction: Up
Valid values:
0= Distance
1= Thickness

Description: Measure mode of the sensor.

SA_MeasureMode

SP_MeasureMode

P.18 Set_RefractIndex (SRI)

Set the refraction index for thickness measurement.

Parameter: double SP_RefractIndex SP_RefractIndex

Direction: Down **Valid values:**

Minimum: 0.001 Maximum: 9.999

Description: Refractive index used by the sensor for thickness measurement.

P.19 Get RefractIndex (SRI?)

Get the current refraction index.

Parameter: double SA_RefractIndex SA_RefractIndex

Direction: Up Valid values:

Minimum: 0.001 Maximum: 9.999

Description: Refractive index used by the sensor for thickness measurement.

P.20 Set Threshold (MNP)

Set the detection threshold for distance mode.

Parameter: double SP_Threshold SP_Threshold

Direction: Down Valid values: Minimum: 0.0 Maximum: 1.0

Description: Threshold of the sensor.

P.21 Get_Threshold (MNP?)

Get the current detection threshold for distance mode.

Parameter: double SA_Threshold SA_Threshold

Direction: Up Valid values: Minimum: 0.0 Maximum: 1.0

Description: Threshold of the sensor.

P.22 Set HoldLastValid (HLV)

Enable/Disable the "Hold Last Value" mode.

Parameter: int SP_LastValid SP_LastValid

Direction: Down Valid values: Minimum: 0 Maximum: 999

Description: Max number of points to hold.

P.23 Get HoldLastValid (HLV?)

Get the current "Hold Last Value" mode.

Parameter: int SA_LastValid SA_LastValid

Direction: Up Valid values: Minimum: 0 Maximum: 999

Description: Max number of points to hold.

P.24 Set Threshold1 (SPP)

Set the detection threshold for the strongest peak in thickness mode.

Parameter: double SP_Threshold1 SP_Threshold1

Direction: Down Valid values: Minimum: 0.0 Maximum: 1.0

Description: Threshold of the sensor.

P.25 Get_Threshold1 (SPP?)

Get the current detection threshold for the strongest peak in thickness mode.

Parameter: double SA_Threshold1 SA_Threshold1

Direction: Up Valid values: Minimum: 0.0 Maximum: 1.0

Description: Threshold of the sensor.

P.26 Set Threshold2 (SDP)

Set the detection threshold for the second peak in thickness mode.

Parameter: double SP_Threshold2 SP_Threshold2

Direction: Down
Valid values:
Minimum: 0.0
Maximum: 1.0

Description: Threshold of the sensor.

P.27 Get_Threshold2 (SDP?)

Get the current detection threshold for the second peak in thickness mode.

Parameter: double SA_Threshold2 SA_Threshold2

Direction: Up Valid values: Minimum: 0.0 Maximum: 1.0

Description: Threshold of the sensor.

P.28 Set FirstPeakMode (MSP)

Enable/Disable the "First peak" mode.

Parameter: int SP_FirstPeak SP_FirstPeak

Direction: Down Valid values: Minimum: 0 Maximum: 1

Description: First peak state.

P.29 Get_FirstPeakMode (MSP?)

Get the current "First peak" mode.

Parameter: int SA_FirstPeak SA_FirstPeak

Direction: Up Valid values: Minimum: 0 Maximum: 1

Description: First peak state.

P.30 Set DataScale (CEE)

Set the scaling factor for X1, X2 and X3 in thickness mode. This is an internal command. It should not be used by the customer.

Parameter: double SP_DataScale SP_DataScale

Direction: Down Valid values: Minimum: 1.0 Maximum: 5.0

Description: Scaling factor of the sensor.

P.31 Get DataScale (CEE?)

Get the scaling factor for X1, X2 and X3 in thickness mode.

Parameter: double SA_DataScale SA_DataScale

Direction: Up Valid values: Minimum: 1.0 Maximum: 5.0

Description: Scaling factor of the sensor.

P.32 Set BarycenterSca (CEB)

Set the scaling factor for barycenter values. This is an internal command. It should not be used by the customer.

Parameter: double SP_BarycenterScale SP_BarycenterScale

Direction: Down Valid values: Minimum: 32.0

Maximum: 32.0

Description: Scaling factor for Barycenter.

Get_BarycenterSca (CEB?)

Get the scaling factor for barycenter values. This is an internal command. It should not be used by the customer.

Parameter: double SA_BarycenterScale SA_BarycenterScale

Direction: Up Valid values: Minimum: 32.0

Maximum: 32.0

Description: Scaling factor for Barycenter.

X9751165 242

P.34 Set_BarycenterOff (CRB)

Set the offset values for barycenter values. This is an internal command. It should not be used by the customer.

Parameter: double SP_BarycenterOffset

SP_BarycenterOffset

Direction: Down Valid values: Minimum: 0.0 **Maximum:** 1023.9

Description: Offset for Barycenter.

P.35 Get BarycenterOff (CRB?)

Get the offset value for barycenter values. This is an internal command. It should not be used by the customer.

Parameter: double SA_BarycenterOffset

SA_BarycenterOffset

Direction: Up Valid values: Minimum: 0.0

Maximum: 1023.9

Description: Offset for Barycenter.

P.36 Set RefldxFile (INF)

Set the refractive index file.

Parameter: int SP_RefractIndexFileIdx

 ${\tt SP_RefractIndexFileIdx}$

Direction: Down Valid values: Minimum: 0 Maximum: 8

Description: Refractive index file index.

Parameter: int SA_RefractIndexFileIdx

SA RefractIndexFileIdx

SA_RefractIndexFileName

Direction: Up Valid values: Minimum: 0 Maximum: 8

Description: Refractive index file index.

Parameter: String SA_RefractIndexFileName

Direction: Up

Description: Refractive index file name.

Parameter: double SA_MinRefractIndex SA_MinRefractIndex

Direction: Up Valid values:

> Minimum: 0.0001 Maximum: 9.9999

Description: Minimum refractive index.

X9751165 243

P Commands for IFD2431

Parameter: double SA_MaxRefractIndex SA_MaxRefractIndex

Direction: Up Valid values:

Minimum: 0.0001 **Maximum:** 9.9999

Description: Maximum refractive index.

Parameter: double SA_AvgRefractIndex SA_AvgRefractIndex

Direction: Up Valid values:

Minimum: 0.0001 **Maximum:** 9.9999

Description: Averaging refractive index.

P.37 Get_RefldxFile (INF?)

Request the selected refractive index file.

Parameter: int SA_RefractIndexFileIdx SA_RefractIndexFileIdx

Direction: Up Valid values: Minimum: 0 Maximum: 8

Description: Refractive index file index.

Parameter: String SA_RefractIndexFileName SA_RefractIndexFileName

Direction: Up

Description: Refractive index file name.

Parameter: double SA_MinRefractIndex SA_MinRefractIndex

Direction: Up Valid values:

Minimum: 0.0001 **Maximum:** 9.9999

Description: Minimum refractive index.

Parameter: double SA_MaxRefractIndex SA_MaxRefractIndex

Direction: Up Valid values:

Minimum: 0.0001 **Maximum:** 9.9999

Description: Maximum refractive index.

Parameter: double SA_AvgRefractIndex SA_AvgRefractIndex

Direction: Up Valid values:

Minimum: 0.0001 Maximum: 9.9999

Description: Averaging refractive index.

P.38 Upload RefldxFile

Send a refractive index file to the controller. This is an internal command. It should not be used by the customer.

Direction: Down Valid values: Minimum: 1 Maximum: 8

Description: Index on which position the file should be stored.

Parameter: String SP_RefractIndexFile SP_RefractIndexFile

Direction: Down

Description: Refractive index file with 1025 lines. First line is a name, the

other lines are refractive index values with precision four.

P.39 RecenterEncoder (RCD)

Recenter encoder position.

Parameter: int SP_Encoder1 SP_Encoder1

Direction: Down
Valid values:
Minimum: 0
Maximum: 1

Description: Recenter Encoder 1.

Parameter: int SP_Encoder2 SP_Encoder2

Direction: Down Valid values: Minimum: 0 Maximum: 1

Description: Recenter Encoder 2.

Parameter: int SP_Encoder3 SP_Encoder3

Direction: Down Valid values: Minimum: 0 Maximum: 1

Description: Recenter Encoder 3.

P.40 Set MissingSignal (RSP)

Set behaviour for missing second peak in thickness mode.

Parameter: int SP_Option SP_Option

Direction: Down Valid values: Minimum: 0 Maximum: 1

Description: Mode for behaviour.

P.41 Get MissingSignal (RSP?)

Returns behaviour for missing second peak in thickness mode.

Parameter: int SA_Option

SA_Option

Direction: Up Valid values: Minimum: 0 Maximum: 1

Description: Mode for behaviour.

P.42 Set Reverse (RVS)

Reverse the distance signal.

Parameter: int SP_Reverse

SP_Reverse

Direction: Down **Valid values**:

0= Normal direction1= Reverse direction

Description: In reverse mode, measure range - distance is transmitted.

P.43 Get_Reverse (RVS?)

Returns setting for reverse mode.

Parameter: int SA_Reverse

SA_Reverse

Direction: Up Valid values:

0= Normal direction1= Reverse directionDescription: Reverse mode

P.44 Set_Binning (FBH)

Set the binning value.

This is an internal command. It should not be used by the customer.

Parameter: int SP_Binning

SP_Binning

Direction: Down Valid values: Minimum: 1 Maximum: 2

Description: Binning value

P.45 Get_Binning (FBH?)

Get the binning value.

This is an internal command. It should not be used by the customer.

Parameter: int SA_Binning

SA_Binning

Direction: Up Valid values: Minimum: 1 Maximum: 2

Description: Binning value

P.46 Set_Averaging (AVR)

Set data averaging at controller. Note! Acquisition speed will be reduced.

Parameter: int SP_Averaging

SP_Averaging

Direction: Down Valid values: Minimum: 1 Maximum: 9999

Description: Data averaging factor.

P.47 Get_Averaging (AVR?)

Returns current data averaging at controller.

Parameter: int SA_Averaging

SA_Averaging

Direction: Up Valid values: Minimum: 1 Maximum: 999

Description: Data averaging factor.

P.48 Set_SpectralAv (AVS)

Set spectral averaging at controller. Note! Acquisition speed will be reduced.

Parameter: int SP_Averaging

SP_Averaging

Direction: Down Valid values: Minimum: 1 Maximum: 9999

Description: Data averaging factor.

P.49 Get SpectralAv (AVS?)

Returns current spectral averaging at controller.

Parameter: int SA_Averaging

SA_Averaging

Direction: Up Valid values: Minimum: 1 Maximum: 999

Description: Data averaging factor.

P.50 Continue (CTN)

Continues data acquition (after trigger commands SingleShot_Trg, TriggerMode_Edge, TriggerMode_State or an error).

P.51 Start Trigger (TRG)

Starts the trigger mode at controller.

P.52 End_Trigger

Stops the trigger mode at controller (after Start Trigger).

P.53 SingleShot_Trg (TRE)

Starts the single shot trigger mode at controller.

Parameter: int SP_NumberOfPoints

SP_NumberOfPoints

SP_TriggerMode_Edge

Direction: Down Valid values: Minimum: 0 Maximum: 9999

Description: Number of values to read.

P.54 Set_TrgMode_Edge (TRS)

Enable/Disable the "Start/Stop on Edge Trigger" mode.

Parameter: int SP_TriggerMode_Edge

Direction: Down Valid values:

Minimum: 0
Maximum: 1

Description: Start/Stop on Edge Trigger state.

P.55 Set TrgMode State (TRN)

Enable/Disable the "Start/Stop on State Trigger" mode.

Parameter: int SP_TriggerMode_State

SP_TriggerMode_State

Direction: Down Valid values: Minimum: 0 Maximum: 1

Description: Start/Stop on State Trigger state.

P.56 Set_ActiveEdge (TRF)

Set the active edge or state for Start_Trigger, TriggerMode_Edge or Trigger-Mode_State.

Parameter: int SP_ActiveEdge

SP_ActiveEdge

Direction: Down **Valid values:**

0= rising edge or high state 1= falling edge or low state **Description:** Active state or edge.

P.57 Get_ActiveEdge (TRF?)

Get the active edge or state for Start_Trigger, TriggerMode_Edge or Trigger-Mode State.

Parameter: int SA_ActiveEdge

SA_ActiveEdge

Direction: Up Valid values:

0= rising edge or high state 1= falling edge or low state **Description:** Active state or edge.

P.58 Software Trigger (STR)

Simulates an hardware trigger (SYNC IN) for trigger commands SingleShot_Trg, TriggerMode_Edge or TriggerMode_State.

P.59 Set Watchdog (WDE)

Enable/Disable the Watchdog.

Parameter: int SP_Watchdog

SP_Watchdog

Direction: Down **Valid values: Minimum:** 0 **Maximum:** 1

Description: Watchdog state.

SA_Watchdog

P.60 Get_Watchdog (WDE?)

Get the Watchdog state.

Parameter: int SA_Watchdog

Direction: Up Valid values: Minimum: 0 Maximum: 1

Description: Watchdog state.

P.61 Set_WatchdogPrd (WDP)

Set the Watchdog period.

Parameter: int SP_WatchdogPeriod SP_WatchdogPeriod

Direction: Down Unit: s
Valid values:

Minimum: 10
Maximum: 255

Description: Watchdog period.

P.62 Get_WatchdogPrd (WDP?)

Get the Watchdog period.

Parameter: int SA_WatchdogPeriod SA_WatchdogPeriod

Direction: Up
Unit: s
Valid values:
Minimum: 10

Maximum: 255

Description: Watchdog period.

P.63 Get Status (STS)

Retrieve detailed information about the controller and sensor.

Parameter: int SA_SRIndex SA_SRIndex

Direction: Up
Valid values:

0= Free samplerate

1= 500 Hz

2= 1000 Hz

3= 2000 Hz

4= 5000 Hz

5= 10000 Hz

6= 15625 Hz

7= 20000 Hz

8= 25000 Hz

9= 31250 Hz

Description: Samplerate index.

P Commands for IFD2431

Parameter: int SA_MeasureMode SA_MeasureMode

Direction: Up Valid values: 0= Distance 1 = Thickness

Description: Measure mode of the sensor.

Parameter: int SA_Sensor SA_Sensor

Direction: Up Valid values: Minimum: 0 Maximum: 19

Description: Number of active sensor.

Parameter: int SA_ASCII SA_ASCII

Direction: Up

Description: Data Transfer mode (values) of sensor.

Parameter: int SA_Averaging SA_Averaging

Direction: Up Valid values: Minimum: 1 Maximum: 999

Description: Data averaging factor.

Parameter: int SA_X1..16 SA_X1..16

Direction: Up Valid values: 0 = off

1 = RS232/RS422

9= USB

Description: Selection of data of the sensor. This is necessary for data conversion and scaling.

Depending on measure mode (distance / thickness) the selected value have different meaning. The following list shows the meaning for X1..16.

X1 means (Distance / Thickness).

X2 means (not used / Distance1).

X3 means (not used / Distance2).

X4 means (Intensity / not used).

X5 means (not used / Intensity1).

X6 means (Counter / Intensity2).

X7 means (Barycenter / Barycenter1).

X8 means (not used / Barycenter2).

X9 means (State Flags / State Flags).

X10 means (not used / Counter).

X11 means (Encoder 1 LSB / Encoder 1 LSB).

X12 means (Encoder 1 MSB / Encoder 1 MSB).

X13 means (Encoder 2 LSB / Encoder 2 LSB).

X14 means (Encoder 2 MSB / Encoder 2 MSB).

X15 means (Encoder 3 LSB / Encoder 3 LSB).

X16 means (Encoder 3 MSB / Encoder 3 MSB).

X9751165 251

Parameter: double SA_Range SA_Range

Description: Range of active sensor.

P.64 Get_Version (VER)

Get the software version of the controller.

Parameter: String SA_Version SA_Version

Direction: Up

Description: Software version of sensor.

P.65 Set OutputData (SOD)

Select the data to be output from controller.

Parameter: int SP_X1..16 SP_X1..16

Direction: Down Valid values:

0 = off

1= RS232/RS422

9= USB

Description: Selection of data of the sensor. This is necessary for data conversion and scaling.

Depending on measure mode (distance / thickness) the selected value have different meaning. The following list shows the meaning for X1..16.

X1 means (Distance / Thickness).

X2 means (not used / Distance1).

X3 means (not used / Distance2).

X4 means (Intensity / not used).

X5 means (not used / Intensity1).

X6 means (Counter / Intensity2).

X7 means (Barycenter / Barycenter1).

X8 means (not used / Barycenter2).

X9 means (State Flags / State Flags).

X10 means (not used / Counter).

X11 means (Encoder 1 LSB / Encoder 1 LSB).

X12 means (Encoder 1 MSB / Encoder 1 MSB).

X13 means (Encoder 2 LSB / Encoder 2 LSB).

X14 means (Encoder 2 MSB / Encoder 2 MSB).

X15 means (Encoder 3 LSB / Encoder 3 LSB).

X16 means (Encoder 3 MSB / Encoder 3 MSB).

SA_X1..16

P.66 Get OutputData (SOD?)

Get the data output from controller.

Parameter: int SA_X1..16

Direction: Up

Valid values:

0 = off

1= RS232/RS422

9= USB

Description: Selection of data of the sensor. This is necessary for data

conversion and scaling.

Depending on measure mode (distance / thickness) the selected value have different meaning. The following list shows the meaning for X1..16.

X1 means (Distance / Thickness).

X2 means (not used / Distance1).

X3 means (not used / Distance2).

X4 means (Intensity / not used).

X5 means (not used / Intensity1).

X6 means (Counter / Intensity2).

X7 means (Barycenter / Barycenter1).

X8 means (not used / Barycenter2).

X9 means (State Flags / State Flags).

X10 means (not used / Counter).

X11 means (Encoder 1 LSB / Encoder 1 LSB).

X12 means (Encoder 1 MSB / Encoder 1 MSB).

X13 means (Encoder 2 LSB / Encoder 2 LSB).

X14 means (Encoder 2 MSB / Encoder 2 MSB).

X15 means (Encoder 3 LSB / Encoder 3 LSB).

X16 means (Encoder 3 MSB / Encoder 3 MSB).

P.67 Set Ascii (ASC)

Set digital data transfer (only values, no sensor answer) to ASCII mode.

Set Binary (BIN)

Set digital data transfer (only values, no sensor answer) to binary mode.

P.69 Set AnalogOut (ANA)

Setup the analog outputs.

Parameter: int SP_OutNr

Direction: Down Valid values:

> 0= BNC1 1 = BNC2

Description: Number of analog output.

X9751165 253

SP_OutNr

P Commands for IFD2431

Parameter: int SP_SOD SP_SOD

Direction: Down Valid values: Minimum: 0 Maximum: 7

Description: Specifies the number (X1..X16) to output at analog out.

Parameter: int SP_0V SP_0V

Direction: Down Valid values: Minimum: 0 Maximum: 99999

Description: Specifies the value which shoud output 0 V.

Parameter: int SP_10V SP_10V

Direction: Down
Valid values:
Minimum: 0
Maximum: 99999

Description: Specifies the value which shoud output 10 V.

P.70 Get_AnalogOut (ANA?)

Get settings of analog outputs.

Parameter: int SA_0_SOD SA_0_SOD

Direction: Up Valid values: Minimum: 0 Maximum: 7

Description: Analog out BNC1: 0= X1, 1= X2, ..., 15= X16.

Parameter: int SA_0_0V SA_0_0V

Direction: Up Valid values: Minimum: 0 Maximum: 99999

Description: Analog out BNC1: Specifies the value which shoul output 0 V.

Parameter: int SA_0_10V SA_0_10V

Valid values:
Minimum: 0
Maximum: 99999

Description: Analog out BNC1: Specifies the value which should output 10 V.

Parameter: int SA_1_SOD SA_1_SOD

Direction: Up Valid values: Minimum: 0 Maximum: 7

Description: Analog out BNC2: 0 = X1, 1 = X2, ..., 15 = X16.

P Commands for IFD2431

Parameter: int SA_1_0V SA_1_0V

Direction: Up Valid values: Minimum: 0 Maximum: 99999

Description: Analog out BNC2: Specifies the value which should output 0 V.

Parameter: int SA_1_10V SA_1_10V

Direction: Up Valid values: Minimum: 0 Maximum: 99999

Description: Analog out BNC2: Specifies the value which should output 10 V.

P.71 Set AnalogZero (SOF)

Set analog output to zero.

Parameter: int SP_Zero SP_Zero

Direction: Down **Valid values:** 0= normal 1= set

Description: Set/reset the analog output 0V value.

P.72 Set_Baudrate (BAU)

Set the baudrate of the serial interface of controller.

Attention! To avoid synchronisation problems, sending data by sensor should be disabled after changing baudrate for a short time (sensor command Start_Trigger).

Parameter: int SP_SensorBaudrate SP_SensorBaudrate

Direction: Down

Description: Baudrate of controller.

P.73 Get Baudrate (BAU?)

Get the baudrate of the serial interface of controller.

Parameter: int SA_SensorBaudrate
Direction: Up
Valid values:

Description: Baudrate of controller.

P.74 Save_Setup (SSU)

Save the current setup of controller to flash.

P.75 Reset (RST)

Reset the controller and set the default parameter values.

P.76 Get_CCD (CCD)

Returns current CCD data.

Parameter: String (binary, with 0x00) SA_CCD SA_CCD

Direction: Up **Valid values:** 2048 bytes

convertible to 1024 WORDS. **Description:** Raw CCD line.

Parameter: String (binary, with 0x00) SA_PreTreated SA_PreTreated

Direction: Up Valid values: 2048 bytes

convertible to 1024 WORDS. **Description:** Raw CCD line.

P.77 Get_DarkSig (SGD)

Get the dark signal table of controller.

Parameter: String (binary, with 0x00) SA_DarkSig SA_DarkSig

Direction: Up Valid values: 2048 bytes

convertible to 1024 WORDS. **Description:** Dark signal table.

P.78 Get_WhiteRef (SGW)

Get the white reference table table of controller. This is an internal command. It should not be used by the customer.

Parameter: String (binary, with 0x00) SA_WhiteRef

SA_WhiteRef

Direction: Up Valid values: 2048 bytes

convertible to 1024 WORDS. **Description:** White reference table.

P.79 Get_NormSig (SGN)

Get the norm signal table of controller. This is an internal command. It should not be used by the customer.

Parameter: String (binary, with 0x00) SA_NormSig

SA_NormSig

Direction: Up **Valid values:** 2048 bytes

convertible to 1024 WORDS. **Description:** Norm signal table.

P.80 Get_CalibTable (SGC)

Get the calibration table of controller.

Parameter: String (binary, with 0x00) SA_CalibTable

SA_CalibTable

Direction: Up Valid values: 2048 bytes

convertible to 1024 WORDS. **Description:** Calibration table.

P.81 Start_Spectrum

Start the spectrum mode in controller. Only work via USB connection. On firmware versions below 1.2.36 the spectrum is shifted 8 bytes to left. This mode does work up to 4.7 kHz only. For higher samplerates data will be lost and the spectrums are corrupted. To avoid this, increase spectral averaging.

Parameter: int IP_UsbReadBufSize

IP_UsbReadBufSize

Direction: Down Unit: Bytes Valid values:

Minimum: 512 Maximum: 65536

Default: 8192

Description: Buffer size for read operations on USB, while spectrum mode is active. The value is always ceiled to the next power of two (512, 1024,

2048, ..., 32768, 65536).

Direction: Down

Unit: ms Valid values:

-1 = Do not set timer resolution.
0 = Use greatest possible accuracy.
1..255 = Resolution in milliseconds.

Unit: ms Default: 0

Description: Timer resolution (for Windows scheduler, set by timeBeginPe-

riod).

It is automatically reset at End Spectrum.

P.82 Get_Spectrum

Read one Spectrum (PreTreated Signal). It is returned with a frequency of Samplerate devided by Spectral Averaging.

Parameter: int SP_WaitSpectrumTimeout

Direction: Down

Unit: ms Valid values: Minimum: 0

Maximum: 1000000000

Description: Timeout to wait for a spectrum.

Parameter: int SP_ReadMode

Direction: Down **Valid values:**

0= Each spectrum

1 = Only newest spectrum

2= Automatic

Description: This mode specifies if each spectrum should be read or only the latest one. If set to automatic each spectrum is read until the buffer does not overflow. If the buffer becomes full one or more spectra are

discarded.

Parameter: String (binary, with 0x00) SA_Spectrum

Direction: Up Valid values: 2048 bytes

convertible to 1024 WORDS.

Description: PreTreated Signal.

_

Parameter: double SA_Timestamp

Direction: Up Valid values: Minimum: 0

Unit: ms

Description: Timestamp of the signal. It starts from 1970 Jan 01 at 01:00. It is

generated when the spectrum is read from USB

SP_WaitSpectrumTimeout

SP_ReadMode

SA_Spectrum

 ${\tt SA_Timestamp}$

Parameter: int SA_SkippedSpectra

SA_SkippedSpectra

Direction: Up Valid values: Minimum: 0

Maximum: INT MAX (2147483647)

Description: Number of skipped spectra, if SP_NewestSpectrum is set to 1.

P.83 End Spectrum

End the spectrum mode in controller.

Parameter: int IP_UsbReadBufSize

IP_UsbReadBufSize

Direction: Down Unit: Bytes Valid values:

Minimum: 512 Maximum: 65536

Default: 512

Description: Buffer size for read operations on USB, after spectrum mode was finished. The value is always ceiled to the next power of two (512,

1024, 2048, ..., 32768, 65536).

P.84 Upload CalibTable

Send a calibration table for selected sensor to the controller. This is an internal command. It should not be used by the customer.

Parameter: int SP_BlockSize

SP_BlockSize

Direction: Down
Unit: Values
Valid values:
Minimum: 1
Maximum: 999

Default: 64

Description: Size of blocks in which the calibration table is separated before

sending.

Parameter: String (binary, with 0x00) SP_CalibTable

SP_CalibTable

Direction: Down **Valid values:**

1024 values of datatype float (4 byte).

Description: Calibration table for selected sensor.

Parameter: double SP_FullRange

SP_FullRange

Maximum: 1000000

Description: Measure range of selected sensor.

P.85 Use Defaults

This command tells the driver to use default values to operate with sensor data. If some parameters are not specified they are not changed. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.1.

The other parameters are:

Parameter: double IP_RefractIndex

IP_RefractIndex

Direction: Down **Valid values:**

Minimum: 0.001 Maximum: 9.999

Description: Tells the driver the refractive index used by the controller for

thickness measurement.

Parameter: int IP_MeasureMode

IP_MeasureMode

Direction: Down
Valid values:
0 = Distance
1 = Thickness

Description: Tells the driver the measure mode of the controller.

Parameter: int IP_Averaging

IP_Averaging

Direction: Down Valid values: Minimum: 1 Maximum: 999

Description: Tells the driver the averaging used by the controller. It is used

for timeout check.

Parameter: int IP_SpectralAv

IP_SpectralAv

Direction: Down Valid values: Minimum: 1 Maximum: 999

Description: Tells the driver the spectral averaging used by the controller. It

is used for timeout check.

Parameter: int IP_X1..16

IP_X1..16

Direction: Down
Valid values:
0 = off
1 = RS232
9 = USB

Description: Tells the driver the selection of data used by the sensor. This is

necessary for data conversion and scaling.

Depending on measure mode (distance / thickness) the selected value have different meaning. The following list shows the meaning for X1..16.

X1 means (Distance / Thickness). X2 means (not used / Distance1). X3 means (not used / Distance2).

X4 means (Intensity / not used).

X5 means (not used / Intensity1).
X6 means (Counter / Intensity2).
X7 means (Barycenter / Barycenter1).
X8 means (not used / Barycenter2).
X9 means (State Flags / State Flags).
X10 means (not used / Counter).
X11 means (Encoder 1 LSB / Encoder 1 LSB).
X12 means (Encoder 1 MSB / Encoder 1 MSB).
X13 means (Encoder 2 LSB / Encoder 2 LSB).

X14 means (Encoder 2 MSB / Encoder 2 MSB). X15 means (Encoder 3 LSB / Encoder 3 LSB). X16 means (Encoder 3 MSB / Encoder 3 MSB).

Parameter: int IP_Binning

IP_Binning

Direction: Down Valid values: Minimum: 1 Maximum: 2

Description: Tells the driver the binning value used by the controller.

This is an internal parameter. It should not be used by the customer.

P.86 Get_DrvSetting

Returns the current settings of the driver used for operating with sensor data. It is the opposite of Use Defaults. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.3.

The other parameters are:

Parameter: double IA_RefractIndex

IA_RefractIndex

Direction: Up Valid values:

Minimum: 0.001 Maximum: 9.999

Description: Refractive index of sensor assumed by the driver for thickness

measurement.

Parameter: int IA_MeasureMode

IA_MeasureMode

Direction: Up Valid values: 0= Distance 1= Thickness

Description: Measure mode of the sensor assumed by the driver.

Parameter: int IA_Averaging

IA_Averaging

Direction: Up Valid values: Minimum: 1 Maximum: 999

Description: Averaging of the sensor assumed by the driver. It is used for

timeout check.

Parameter: int IA_SpectralAv IA_SpectralAv

Valid values:
Minimum: 1
Maximum: 999

Description: Spectral averaging of the controller assumed by the driver. It is

used for timeout check.

Parameter: int IA_X1..16 IA_X1..16

Direction: Up Valid values: 0= off 1= RS232 9= USB

Description: Selection of data of the sensor assumed by the driver. This is necessary for data conversion and scaling.

Depending on measure mode (distance / thickness) the selected value have different meaning. The following list shows the meaning for X1..16.

X1 means (Distance / Thickness). X2 means (not used / Distance1). X3 means (not used / Distance2).

X4 means (Intensity / not used).

X5 means (not used / Intensity1).

X6 means (Counter / Intensity2).

X7 means (Barycenter / Barycenter1).

X8 means (not used / Barycenter2).

X9 means (State Flags / State Flags).

X10 means (not used / Counter).

X11 means (Encoder 1 LSB / Encoder 1 LSB).

X12 means (Encoder 1 MSB / Encoder 1 MSB).

X13 means (Encoder 2 LSB / Encoder 2 LSB).

X14 means (Encoder 2 MSB / Encoder 2 MSB).

X15 means (Encoder 3 LSB / Encoder 3 LSB).

X16 means (Encoder 3 MSB / Encoder 3 MSB).

Parameter: int IA_Binning IA_Binning

Direction: Up Valid values: Minimum: 1 Maximum: 2

Description: Binning value of the controller assumed by the driver.

This is an internal parameter. It should not be used by the customer.

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

RS232 (native).

IF2004 (native).

TCP/IP (additional, e.g. RS232/RS422 to TCP/IP comm server and RS232 high level

interface).

IF2008 (native).

Q.1 Reset_Boot

Resets the sensor. This command has no parameters.

Q.2 Get Info

Retrieve some information about the sensor.

Parameter: String SA_SerialNumber SA_SerialNumber

Direction: Up

Description: Serial number of the sensor.

Parameter: String SA_Option SA_Option

Direction: Up

Description: Option of the sensor.

Parameter: double SA_Range SA_Range

Direction: Up Unit: mm

Description: Range of the sensor.

Parameter: int SA_Reserve_1 SA_Reserve_1

Direction: Up

Description: Reserved.

Parameter: String SA_SoftArtBoot SA_SoftArtBoot

Direction: Up

Description: Sensor software versions.

Parameter: String SA_SoftArtArm SA_SoftArtArm

Direction: Up

Description: Sensor software versions.

Parameter: String SA_SoftArtDSP SA_SoftArtDSP

Direction: Up

Description: Sensor software versions.

Parameter: String SA_SoftVerBoot SA_SoftVerBoot

Direction: Up

Description: Sensor software versions.

Parameter: String SA_SoftVerArm SA_SoftVerArm

Direction: Up

Description: Sensor software versions.

Parameter: String SA_SoftVerDSP SA_SoftVerDSP

Direction: Up

Description: Sensor software versions.

Q.3 Dat_Out_Off

Switch off data output from sensor.

Q.4 Dat_Out_On

Switch on data output from sensor.

Q.5 Choose MeasProg

Select the measurement program of sensor.

Parameter: int SP_MeasProgNumber SP_MeasProgNumber

Direction: Down **Valid values**:

0= EdgeHL

1= EdgeLH

2= DIA

3= GAP

4= SEG_2_4

5= 2-SEG

6= USER1

7= USER2

8= USER3

9= USER4

Description: Measure program of sensor.

Q.6 Switch Edge

Select the edges to measure.

Parameter: int SP_FrontEdge_Seg1 SP_FrontEdge_Seg1

Direction: Down Valid values: Minimum: 0 Maximum: 32

Description: Front edge of segment 1.

Parameter: int SP_FrontEdge_Seg2 SP_FrontEdge_Seg2

Direction: Down Valid values: Minimum: 0 Maximum: 32

Description: Front edge of segment 2.

Parameter: int SP_RearEdge_Seg1 SP_RearEdge_Seg1

Direction: Down Valid values: Minimum: 0 Maximum: 32

Description: Rear edge of segment 1.

Parameter: int SP_RearEdge_Seg2 SP_RearEdge_Seg2

Direction: Down Valid values: Minimum: 0 Maximum: 32

Description: Rear edge of segment 2.

Q.7 Read_OptionData

Read the option data from sensor.

Parameter: int SA_MeasProgNumber SA_MeasProgNumber

Direction: Up Valid values:

0 to 5= Standard 6 to 9= User defined

Description: Measure program of sensor.

Parameter: int SA_Language SA_Language

Direction: Up Valid values: 0= German 1= English

Description: Language of sensor.

Parameter: int SA_DispMeasUnit SA_DispMeasUnit

Direction: Up Valid values: 0= mm 1= inch

Description: Display measurement unit of sensor.

Parameter: int SA_ErrorHandler SA_ErrorHandler

Direction: Up Valid values:

0= error output 1= retain last value

Description: If the sensor cannot measure values, it can output the last valid

value or it can output an error values.

Parameter: int SA_Reserve_2 SA_Reserve_2

Direction: Up Valid values: Minimum: 0 Maximum: 65535 Description: Reserved.

Parameter: int SA_Ext_LaserSwitch SA_Ext_LaserSwitch

Direction: Up
Valid values:
0 = not active
1 = active

Description: Enable/Disable external laser switch.

Parameter: int SA_LaserIntensity SA_LaserIntensity

Direction: Up Valid values: Minimum: 0 Maximum: 100

Unit: %

Description: No effect.

Parameter: int SA_Contrast SA_Contrast

Direction: Up Valid values: Minimum: 0 Maximum: 100

Unit: %

Description: Display contrast.

Parameter: int SA_Reserve_3 SA_Reserve_3

Direction: Up Valid values: Minimum: 0 Maximum: 65535 Description: Reserved.

Parameter: int SA_ActiveSerialIf SA_ActiveSerialIf

Direction: Up Valid values: 0= RS422 1= RS232

Description: Active serial interface of sensor.

Parameter: int SA_RS232_Baudrate SA_RS232_Baudrate

Direction: Up **Valid values:** 9600 19200 38400 115200

115200 **Unit:** Baud

Description: Baudrate of RS232 interface of sensor.

2

Description: Stop bits of RS422 interface of sensor.

```
Parameter: int SA_RS232_Parity
                                                                                  SA_RS232_Parity
     Direction: Up
     Valid values:
          0 = none
          1= even
          2 = odd
     Description: Parity of RS232 interface of sensor.
Parameter: int SA_RS232_StopBits
                                                                                  SA_RS232_StopBits
     Direction: Up
     Valid values:
          1
          2
     Description: Stop bits of RS232 interface of sensor.
Parameter: int SA_RS232_TimeoutSend
                                                                                  SA_RS232_TimeoutSend
     Direction: Up
     Valid values:
         Minimum: 0
         Maximum: 65535
     Description: No effect.
Parameter: int SA_RS232_TimeoutRecv
                                                                                  SA_RS232_TimeoutRecv
     Direction: Up
     Valid values:
         Minimum: 0
         Maximum: 65535
     Description: No effect.
Parameter: int SA_RS422_Baudrate
                                                                                  SA_RS422_Baudrate
     Direction: Up
     Valid values:
          9600
          19200
          38400
          115200
          691200
     Unit: Baud
     Description: Baudrate of RS422 interface of sensor.
Parameter: int SA_RS422_Parity
                                                                                  SA_RS422_Parity
     Direction: Up
     Valid values:
          0= none
          1= even
          2 = odd
     Description: Parity of RS422 interface of sensor.
Parameter: int SA_RS422_StopBits
                                                                                  SA_RS422_StopBits
     Direction: Up
     Valid values:
```


Parameter: int SA_RS422_TimeoutSend SA_RS422_TimeoutSend

Direction: Up Valid values: Minimum: 0 Maximum: 65535 Description: No effect.

Parameter: int SA_RS422_TimeoutRecv SA_RS422_TimeoutRecv

Direction: Up Valid values: Minimum: 0 Maximum: 65535 Description: No effect.

Q.8 Read_MeasProgData

Read the measurement program data from sensor.

Parameter: int SA_UserMeasProgNumber SA_UserMeasProgNumber

Direction: Up Valid values: Minimum: 6

Maximum: 9= User1 to User4

Description: User measure program of sensor.

Parameter: String SA_MeasProgName SA_MeasProgName

Direction: Up

Description: Measure program name of sensor.

Parameter: double SA_AnalogOffset SA_AnalogOffset

Direction: Up Valid values:

Minimum: -10.0 Maximum: 10.0

Unit: V

Description: Analog output offset of sensor.

Parameter: double SA_AnalogGain SA_AnalogGain

Direction: Up Valid values: Minimum: -3.4

Maximum: 3.4

Description: Analog output gain of sensor.

Parameter: double SA_DisplayOffset SA_DisplayOffset

Direction: Up Valid values:

Minimum: -99.99 Maximum: 99.99

Unit: mm

Description: Display offset of sensor.

Parameter: double SA_DisplayGain SA_DisplayGain

Direction: Up Valid values: Minimum: -2.0 Maximum: 2.0

Description: Display gain of sensor.

Parameter: double SA_UpperLimit SA_UpperLimit

Direction: Up Valid values:

Minimum: -168.876 **Maximum:** 168.876

Unit: mm

Description: Upper limit of sensor.

Parameter: double SA_LowerLimit SA_LowerLimit

Direction: Up **Valid values:**

Minimum: -168.876 **Maximum:** 168.876

Unit: mm

Description: Lower limit of sensor.

Parameter: double SA_UpperWarning SA_UpperWarning

Direction: Up Valid values:

Minimum: -168.876 **Maximum:** 168.876

Unit: mm

Description: Upper warning of sensor.

Parameter: double SA_LowerWarning SA_LowerWarning

Direction: Up Valid values:

Minimum: -168.876 **Maximum:** 168.876

Unit: mm

Description: Lower warning of sensor.

Parameter: int SA_Target_Distance SA_Target_Distance

Direction: Up Valid values: 0= 20 mm 1= 50 mm 2= 100 mm

2= 100 mm 3= 150 mm

Description: Target distance of sensor.

Parameter: int SA_Average_for_reading SA_Average_for_reading

Direction: Up **Valid values:**

1 to 128 sliding 129 to 4096 recursive

Description: Averaging mode and number of sensor.

SA_Reserve_4

Q Commands for ODC2500

Parameter: int SA_Reserve_4

Direction: Up Valid values: Minimum: 0 Maximum: 65535 **Description:** Reserved.

Parameter: int SA_MeasObject SA_MeasObject

Direction: Up Valid values: 1 = EdgeHL 2= EdgeLH 3= DIA 4= GAP 5= SEG 2 4 6= 2-SEG

Description: Measurement program.

Parameter: int SA_FrontEdge_Seg1 SA_FrontEdge_Seg1

Direction: Up Valid values: Minimum: 0 Maximum: 32

Description: Front edge of segment 1.

Parameter: int SA_FrontEdge_Seg2 SA_FrontEdge_Seg2

Direction: Up Valid values: Minimum: 0 Maximum: 32

Description: Front edge of segment 2.

Parameter: int SA_RearEdge_Seg1 SA_RearEdge_Seg1

Direction: Up Valid values: Minimum: 0 Maximum: 32

Description: Rear edge of segment 1.

Parameter: int SA_RearEdge_Seg2 SA_RearEdge_Seg2

Direction: Up Valid values: Minimum: 0 Maximum: 32

Description: Rear edge of segment 2.

Parameter: double SA_MasterValue SA_MasterValue

Direction: Up Valid values:

Minimum: -34.0 Maximum: 34.0

Unit: mm

Description: Master value of sensor.

X9751165 270

Q.9 Write OptionData

Write the option data to sensor.

Parameter: int SP_MeasProgNumber SP_MeasProgNumber

Direction: Down **Valid values:**

0..5= Standard 6..9= User defined

Description: Measure program of sensor.

Parameter: int SP_Language SP_Language

Direction: Down Valid values: 0= German 1= English

Description: Language of sensor.

Parameter: int SP_DispMeasUnit SP_DispMeasUnit

Direction: Down Valid values: 0= mm 1= inch

Description: Display measurement unit of sensor.

Parameter: int SP_ErrorHandler SP_ErrorHandler

Direction: Down **Valid values:**

0= error output 1= retain last value

Description: If the sensor cannot measure values, it can output the last valid

value or it can output an error values.

Parameter: int SP_Reserve_2 SP_Reserve_2

Direction: Down
Valid values:
 Minimum: 0
 Maximum: 65535
Description: Reserved.

Parameter: int SP_Ext_LaserSwitch SP_Ext_LaserSwitch

Direction: Down
Valid values:
0 = not active
1 = active

Description: Enable/Disable external laser switch.

Parameter: int SP_LaserIntensity SP_LaserIntensity

Direction: Down
Valid values:
Minimum: 0
Maximum: 100

Unit: %

Description: No effect.

Parameter: int SP_Contrast SP_Contrast

Direction: Down
Valid values:
Minimum: 0
Maximum: 100

Unit: %

Description: Display contrast.

Parameter: int SP_Reserve_3 SP_Reserve_3

Direction: Down
Valid values:
 Minimum: 0
 Maximum: 65535
Description: Reserved.

Parameter: int SP_ActiveSerialIf SP_ActiveSerialIf

Direction: Down Valid values: 0= RS422 1= RS232

Description: Active serial interface of sensor.

Parameter: int SP_RS232_Baudrate SP_RS232_Baudrate

Direction: Down **Valid values:**9600
19200
38400
115200

Unit: Baud

Description: Baudrate of RS232 interface of sensor.

Parameter: int SP_RS232_Parity SP_RS232_Parity

Direction: Down Valid values: 0= none 1= even 2= odd

Description: Parity of RS232 interface of sensor.

Parameter: int SP_RS232_StopBits SP_RS232_StopBits

Direction: Down Valid values: 1 2

Description: Stop bits of RS232 interface of sensor.

Parameter: int SP_RS232_TimeoutSend SP_RS232_TimeoutSend

Direction: Down
Valid values:
 Minimum: 0
 Maximum: 65535
Description: No effect.

SP_UserMeasProgNumber

Q Commands for ODC2500

Parameter: int SP_RS232_TimeoutRecv SP_RS232_TimeoutRecv **Direction:** Down Valid values: Minimum: 0 Maximum: 65535 Description: No effect. Parameter: int SP_RS422_Baudrate SP_RS422_Baudrate **Direction:** Down Valid values: 9600 19200 38400 115200 691200 Unit: Baud **Description:** Baudrate of RS422 interface of sensor. Parameter: int SP_RS422_Parity SP_RS422_Parity **Direction:** Down Valid values: 0= none 1= even 2 = odd**Description:** Parity of RS422 interface of sensor. Parameter: int SP_RS422_StopBits SP_RS422_StopBits **Direction:** Down Valid values: Description: Stop bits of RS422 interface of sensor. Parameter: int SP_RS422_TimeoutSend SP_RS422_TimeoutSend **Direction:** Down Valid values: Minimum: 0 **Maximum:** 65535 Description: No effect. Parameter: int SP_RS422_TimeoutRecv $SP_RS422_TimeoutRecv$ **Direction:** Down Valid values: Minimum: 0 Maximum: 65535 Description: No effect.

Q.10 Write MeasProgData

Write the measurement program data to sensor.

Parameter: int SP_UserMeasProgNumber

Direction: Down **Valid values: Minimum:** 6

Maximum: 9= User1 to User4

Description: User measure program of sensor.

Parameter: String SP_MeasProgName SP_MeasProgName

Direction: Down

Description: Measure program name of sensor.

Parameter: double SP_AnalogOffset SP_AnalogOffset

Direction: Down **Valid values:**

Minimum: -10.0 Maximum: 10.0

Unit: V

Description: Analog output offset of sensor.

Parameter: double SP_AnalogGain SP_AnalogGain

Direction: Down Valid values:

Minimum: -3.4 Maximum: 3.4

Description: Analog output gain of sensor.

Parameter: double SP_DisplayOffset SP_DisplayOffset

Direction: Down **Valid values:**

Minimum: -99.99 Maximum: 99.99

Unit: mm

Description: Display offset of sensor.

Parameter: double SP_DisplayGain SP_DisplayGain

Direction: Down Valid values: Minimum: -2.0 Maximum: 2.0

Description: Display gain of sensor.

Parameter: double SP_UpperLimit SP_UpperLimit

Direction: Down **Valid values:**

Minimum: -168.876 **Maximum:** 168.876

Unit: mm

Description: Upper limit of sensor.

Parameter: double SP_LowerLimit SP_LowerLimit

Direction: Down **Valid values:**

Minimum: -168.876 Maximum: 168.876

Unit: mm

Description: Lower limit of sensor.

Parameter: double SP_UpperWarning SP_UpperWarning

Direction: Down **Valid values:**

Minimum: -168.876 **Maximum:** 168.876

Unit: mm

Description: Upper warning of sensor.

Parameter: double SP_LowerWarning SP_LowerWarning

Direction: Down **Valid values**:

Minimum: -168.876 **Maximum:** 168.876

Unit: mm

Description: Lower warning of sensor.

Parameter: int SP_Target_Distance SP_Target_Distance

Direction: Down Valid values: 0= 20 mm 1= 50 mm 2= 100 mm 3= 150 mm

Description: Target distance of sensor.

Parameter: int SP_Average_for_reading SP_Average_for_reading

Direction: Down **Valid values:**

1 to 128 sliding 129 to 4096 recursive

Description: Averaging mode and number of sensor.

Parameter: int SP_Reserve_4 SP_Reserve_4

Direction: Down
Valid values:
 Minimum: 0
 Maximum: 65535
Description: Reserved.

Parameter: int SP_MeasObject SP_MeasObject

Direction: Down
Valid values:

1 = EdgeHL
2 = EdgeLH
3 = DIA
4 = GAP
5 = SEG_2_4
6 = 2-SEG

Description: Measurement program.

Parameter: int SP_FrontEdge_Seg1 SP_FrontEdge_Seg1

Direction: Down Valid values: Minimum: 0 Maximum: 32

Description: Front edge of segment 1.

Parameter: int SP_FrontEdge_Seg2 SP_FrontEdge_Seg2

Direction: Down Valid values: Minimum: 0 Maximum: 32

Description: Front edge of segment 2.

Parameter: int SP_RearEdge_Seg1 SP_RearEdge_Seg1

Direction: Down Valid values: Minimum: 0 Maximum: 32

Description: Rear edge of segment 1.

Parameter: int SP_RearEdge_Seg2 SP_RearEdge_Seg2

Direction: Down Valid values: Minimum: 0 Maximum: 32

Description: Rear edge of segment 2.

Parameter: double SP_MasterValue SP_MasterValue

Direction: Down Valid values:

Minimum: -34.0 Maximum: 34.0

Unit: mm

Description: Master value of sensor.

Q.11 Save_OptionData

Save the option data to flash.

Q.12 Save_MeasProgData

Save the measure program data to flash.

Q.13 Read MinMax

Read the minimum and maximum values from sensor.

Parameter: int SA_MinRaw SA_MinRaw

Direction: Up Valid values: Minimum: 0 Maximum: 65535

Description: Minimum raw value.

Parameter: int SA_MaxRaw SA_MaxRaw

Direction: Up Valid values: Minimum: 0 Maximum: 65535

Description: Maximum raw value.

Parameter: int SA_MinScaled SA_MinScaled

Direction: Up Valid values: Minimum: 0.0

Maximum: 34.0

Unit: mm

Description: Minimum scaled value.

Parameter: int SA_MaxScaled SA_MaxScaled

Direction: Up Valid values: Minimum: 0.0 Maximum: 34.0

Unit: mm

Description: Maximum scaled value.

Q.14 Read_MinMaxReset

Read the minimum and maximum values from sensor and reset the values.

Parameter: int SA_MinRaw SA_MinRaw

Direction: Up Valid values: Minimum: 0 Maximum: 65535

Description: Minimum raw value.

Parameter: int SA_MaxRaw SA_MaxRaw

Direction: Up Valid values: Minimum: 0 Maximum: 65535

Description: Maximum raw value.

Parameter: int SA_MinScaled SA_MinScaled

Direction: Up Valid values: Minimum: 0.0

Maximum: 0.0 Maximum: 34.0

Unit: mm

Description: Minimum scaled value.

Parameter: int SA_MaxScaled SA_MaxScaled

Direction: Up Valid values: Minimum: 0.0 Maximum: 34.0

Unit: mm

Description: Maximum scaled value.

Q.15 Use Defaults

This command tells the driver to use default values to operate with sensor data. If some parameters are not specified they are not changed. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.1.

The other parameters are:

Parameter: int IP_NumberOfSegments

Direction: Down Valid values:

1 for EdgeHL, EdgeLH, DIA, GAP and SEG 2 4

2 for 2-SEG

Description: Tells the driver the number of segments measured by the sensor.

Q.16 Get_DrvSetting

Returns the current settings of the driver used for operating with sensor data. It is the opposite of Use_Defaults. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.3.

The other parameters are:

Parameter: int IA_NumberOfSegments

Direction: Up **Valid values:**

1 for EdgeHL, EdgeLH, DIA, GAP and SEG_2_4

2 for 2-SEG

Description: Number of segments used by driver.

IP_NumberOfSegments

IA_NumberOfSegments

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

RS232 (native).

IF2004 (native).

TCP/IP (additional, e.g. RS232/RS422 to TCP/IP comm server and RS232 high level

interface).

IF2008 (native).

R.1 Reset_Boot

Resets the sensor. This command has no parameters.

R.2 Get Info

Retrieve some information about the sensor.

Parameter: String SA_ArticleNumber SA_ArticleNumber

Direction: Up

Description: Article number of the sensor.

Parameter: String SA_SerialNumber SA_SerialNumber

Direction: Up

Description: Serial number of the sensor.

Parameter: String SA_Option SA_Option

Direction: Up

Description: Option of the sensor.

Parameter: double SA_Range SA_Range

Direction: Up Unit: mm

Description: Range of the sensor.

Parameter: int SA_Reserve_1 SA_Reserve_1

Direction: Up

Description: Reserved.

Parameter: String SA_SoftArtBoot SA_SoftArtBoot

Direction: Up

Description: Sensor software versions.

Parameter: String SA_SoftArtArm SA_SoftArtArm

Direction: Up

Description: Sensor software versions.

Parameter: String SA_SoftArtDSP SA_SoftArtDSP

Direction: Up

Description: Sensor software versions.

Parameter: String SA_SoftVerBoot SA_SoftVerBoot

Direction: Up

Description: Sensor software versions.

Parameter: String SA_SoftVerArm SA_SoftVerArm

Direction: Up

Description: Sensor software versions.

Parameter: String SA_SoftVerDSP SA_SoftVerDSP

Direction: Up

Description: Sensor software versions.

R.3 Dat_Out_Off

Switch off data output from sensor.

R.4 Dat_Out_On

Switch on data output from sensor.

R.5 Choose_MeasProg

Select the measurement program of sensor.

Parameter: int SP_MeasProgNumber SP_MeasProgNumber

Direction: Down Valid values:

0= EdgeHL

1 = EdgeLH

2= DIA

3= GAP

4= SEG_2_4

5= MULTISEG

6= USER1

7= USER2

8= USER3

9= USER4

Description: Measure program of sensor.

R.6 Switch_Edge

Select the edges to measure.

Parameter: int SP_FrontEdge_Seg1 SP_FrontEdge_Seg1

Direction: Down Valid values: Minimum: 0 Maximum: 80

Description: Front edge of segment 1.

Parameter: int SP_FrontEdge_Seg2 SP_FrontEdge_Seg2

Direction: Down Valid values: Minimum: 0 Maximum: 80

Description: Front edge of segment 2.

Parameter: int SP_FrontEdge_Seg3 SP_FrontEdge_Seg3

Direction: Down Valid values: Minimum: 0 Maximum: 80

Description: Front edge of segment 3.

Parameter: int SP_FrontEdge_Seg4 SP_FrontEdge_Seg4

Direction: Down Valid values: Minimum: 0 Maximum: 80

Description: Front edge of segment 4.

Parameter: int SP_RearEdge_Seg1 SP_RearEdge_Seg1

Direction: Down Valid values: Minimum: 0 Maximum: 80

Description: Rear edge of segment 1.

Parameter: int SP_RearEdge_Seg2 SP_RearEdge_Seg2

Direction: Down Valid values: Minimum: 0 Maximum: 80

Description: Rear edge of segment 2.

Parameter: int SP_RearEdge_Seg3 SP_RearEdge_Seg3

Direction: Down Valid values: Minimum: 0 Maximum: 80

Description: Rear edge of segment 3.

Parameter: int SP_RearEdge_Seg4 SP_RearEdge_Seg4

Direction: Down Valid values: Minimum: 0 Maximum: 80

Description: Rear edge of segment 4.

R.7 Read OptionData

Read the option data from sensor.

Parameter: int SA_MeasProgNumber SA_MeasProgNumber

Direction: Up Valid values:

0 to 5= Standard 6 to 9= User defined

Description: Measure program of sensor.

Parameter: int SA_Language SA_Language

Direction: Up Valid values: 0= German 1= English

Description: Language of sensor.

Parameter: int SA_DispMeasUnit SA_DispMeasUnit

Direction: Up **Valid values:** 0= mm 1= inch

Description: Display measurement unit of sensor.

Parameter: int SA_ErrorHandler SA_ErrorHandler

Direction: Up Valid values:

0= error output 1= retain last value

Description: If the sensor cannot measure values, it can output the last valid

value or it can output an error values.

Parameter: int SA_SerialOutFormat SA_SerialOutFormat

Direction: Up **Valid values:** 0= binary 1= ASCII

Description: Serial output format of sensor.

Parameter: int SA_Ext_LaserSwitch SA_Ext_LaserSwitch

Direction: Up Valid values: 0= not active 1= active

Description: Enable/Disable external laser switch.

Parameter: int SA_LaserIntensity SA_LaserIntensity

Direction: Up Valid values: Minimum: 0 Maximum: 100

Unit: %

Description: No effect.

SA_Contrast

R Commands for ODC2600

Direction: Up Valid values: Minimum: 0 Maximum: 100

Parameter: int SA_Contrast

Unit: %

Description: Display contrast.

Parameter: int SA_EdgeDetectThreshold SA_EdgeDetectThreshold

Direction: Up Valid values: Minimum: 20 Maximum: 90

Unit: %

Description: Contrast for edge detection.

Parameter: int SA_Reserve_2 SA_Reserve_2

Direction: Up Valid values: Minimum: 0 Maximum: 65535 Description: Reserved.

Parameter: int SA_ActiveSerialIf SA_ActiveSerialIf

Direction: Up Valid values: 0= RS422 1= RS232

Description: Active serial interface of sensor.

Parameter: int SA_RS232_Baudrate SA_RS232_Baudrate

Direction: Up Valid values: 9600 19200 38400 115200 Unit: Baud

Description: Baudrate of RS232 interface of sensor.

Parameter: int SA_RS232_Parity SA_RS232_Parity

Direction: Up Valid values: 0= none 1= even 2= odd

Description: Parity of RS232 interface of sensor.

Parameter: int SA_RS232_StopBits SA_RS232_StopBits

Direction: Up Valid values:

2

Description: Stop bits of RS232 interface of sensor.

Valid values:

Minimum: 0 Maximum: 65535 Description: No effect.

Parameter: int SA_RS232_TimeoutSend SA_RS232_TimeoutSend **Direction:** Up Valid values: Minimum: 0 **Maximum:** 65535 Description: No effect. Parameter: int SA_RS232_TimeoutRecv SA_RS232_TimeoutRecv Direction: Up Valid values: Minimum: 0 Maximum: 65535 Description: No effect. Parameter: int SA_RS422_Baudrate SA_RS422_Baudrate Direction: Up Valid values: 9600 19200 38400 115200 691200 Unit: Baud Description: Baudrate of RS422 interface of sensor. Parameter: int SA_RS422_Parity SA_RS422_Parity Direction: Up Valid values: 0= none 1= even 2 = odd**Description:** Parity of RS422 interface of sensor. Parameter: int SA_RS422_StopBits SA_RS422_StopBits Direction: Up Valid values: 1 2 Description: Stop bits of RS422 interface of sensor. Parameter: int SA_RS422_TimeoutSend SA_RS422_TimeoutSend **Direction:** Up Valid values: Minimum: 0 Maximum: 65535 Description: No effect. Parameter: int SA_RS422_TimeoutRecv $SA_RS422_TimeoutRecv$ Direction: Up

R.8 Read MeasProgData

Read measurement program data from sensor

Parameter: int SA_UserMeasProgNumber SA_UserMeasProgNumber

Direction: Up Valid values: Minimum: 6

Maximum: 9= User1 to User4

Description: User measure program of sensor.

Parameter: String SA_MeasProgName SA_MeasProgName

Direction: Up

Description: Measure program name of sensor.

Parameter: double SA_AnalogOffset SA_AnalogOffset

Direction: Up Valid values:

Minimum: -10.0 Maximum: 10.0

Unit: \

Description: Analog output offset of sensor.

Parameter: double SA_AnalogGain SA_AnalogGain

Direction: Up Valid values:

Minimum: -4.0 Maximum: 4.0

Description: Analog output gain of sensor.

Parameter: double SA_DisplayOffset SA_DisplayOffset

Direction: Up Valid values:

Minimum: -99.99 Maximum: 99.99

Unit: mm

Description: Display offset of sensor.

Parameter: double SA_DisplayGain SA_DisplayGain

Direction: Up Valid values: Minimum: -2.0 Maximum: 2.0

Description: Display gain of sensor.

Parameter: double SA_UpperLimit SA_UpperLimit

Direction: Up Valid values:

Minimum: -168.876 **Maximum:** 168.876

Unit: mm

Description: Upper limit of sensor.


```
Parameter: double SA_LowerLimit
                                                                               SA_LowerLimit
     Direction: Up
     Valid values:
         Minimum: -168.876
         Maximum: 168.876
     Unit: mm
     Description: Lower limit of sensor.
Parameter: double SA_UpperWarning
                                                                               SA_UpperWarning
     Direction: Up
     Valid values:
         Minimum: -168.876
         Maximum: 168.876
     Unit: mm
     Description: Upper warning of sensor.
Parameter: double SA_LowerWarning
                                                                               SA_LowerWarning
     Direction: Up
     Valid values:
         Minimum: -168.876
         Maximum: 168.876
     Unit: mm
     Description: Lower warning of sensor.
Parameter: int SA_Reserve_3
                                                                               SA_Reserve_3
     Direction: Up
     Valid values:
         Minimum: 0
         Maximum: 65535
     Description: Reserved.
Parameter: int SA_MeasMode
                                                                               SA_MeasMode
     Direction: Up
     Valid values:
          0= Normal
          1 = Max Cont
          2= Min Cont
          3= P-P_Cont
          4= Max Trg
          5= Min Trg
          6= P-P Trg
          7= SC1 Trg
     Description: Measure Mode.
Parameter: int SA_Median
                                                                               SA_Median
     Direction: Up
     Valid values:
          0= no Median
          3
          5
          7
```

X9751165 286

Description: Median over n values.

Parameter: int SA_Average_for_reading SA_Average_for_reading

Direction: Up **Valid values:**

1 to 128 sliding 129 to 4096 recursive

Description: Averaging mode and number of sensor.

Parameter: int SA_Reserve_4 SA_Reserve_4

Direction: Up Valid values: Minimum: 0 Maximum: 65535 Description: Reserved.

Parameter: int SA_MeasObject SA_MeasObject

Direction: Up Valid values: 1 = EdgeHL 2 = EdgeLH 3 = DIA 4 = GAP 5 = SEG_2_4 6 = MULTISEG

Description: Measurement program.

Parameter: int SA_NumberOfSegments SA_NumberOfSegments

Direction: Up Valid values:

1 for EdgeHL, EdgeLH, DIA, GAP and SEG 2 4

2..4 for MULTISEG

Description: Number of segments.

Parameter: int SA_FrontEdge_Seg1 SA_FrontEdge_Seg1

Direction: Up Valid values: Minimum: 0 Maximum: 80

Description: Front edge of segment 1.

Parameter: int SA_FrontEdge_Seg2 SA_FrontEdge_Seg2

Direction: Up Valid values: Minimum: 0 Maximum: 80

Description: Front edge of segment 2.

Parameter: int SA_FrontEdge_Seg3 SA_FrontEdge_Seg3

Direction: Up Valid values: Minimum: 0 Maximum: 80

Description: Front edge of segment 3.

Parameter: int SA_FrontEdge_Seg4 SA_FrontEdge_Seg4

Direction: Up Valid values: Minimum: 0 Maximum: 80

Description: Front edge of segment 4.

Parameter: int SA_Reserve_6 SA_Reserve_6

Direction: Up
Valid values:
 Minimum: 0
 Maximum: 80
Description: Reserved.

Parameter: int SA_Reserve_7 SA_Reserve_7

Direction: Up
Valid values:
 Minimum: 0
 Maximum: 80
Description: Reserved.

Parameter: int SA_RearEdge_Seg1 SA_RearEdge_Seg1

Direction: Up Valid values: Minimum: 0 Maximum: 80

Description: Rear edge of segment 1.

Parameter: int SA_RearEdge_Seg2 SA_RearEdge_Seg2

Direction: Up Valid values: Minimum: 0 Maximum: 80

Description: Rear edge of segment 2.

Parameter: int SA_Reserve_8 SA_Reserve_8

Direction: Up
Valid values:
 Minimum: 0
 Maximum: 80
Description: Reserved.

Parameter: int SA_Reserve_9 SA_Reserve_9

Direction: Up
Valid values:
 Minimum: 0
 Maximum: 80
Description: Reserved.

Parameter: int SA_Reserve_10 SA_Reserve_10

Direction: Up
Valid values:
 Minimum: 0
 Maximum: 80
Description: Reserved.

Parameter: double SA_MasterValue SA_MasterValue

Direction: Up Valid values:

Minimum: -40.0 Maximum: 40.0

Unit: mm

Description: Master value of sensor.

R.9 Write_OptionData

Write option data to sensor.

Parameter: int SP_MeasProgNumber SP_MeasProgNumber

Direction: Down **Valid values:**

0 to 5= Standard 6 to 9= User defined

Description: Measure program of sensor.

Parameter: int SP_Language SP_Language

Direction: Down Valid values: 0= German 1= English

Description: Language of sensor.

Parameter: int SP_DispMeasUnit SP_DispMeasUnit

Direction: Down **Valid values:** 0= mm 1= inch

Description: Display measurement unit of sensor.

Parameter: int SP_ErrorHandler SP_ErrorHandler

Direction: Down **Valid values:**

0= error output 1= retain last value

Description: If the sensor cannot measure values, it can output the last valid

value or it can output an error values.

Parameter: int SP_SerialOutFormat SP_SerialOutFormat

Direction: Down Valid values: 0= binary 1= ASCII

Description: Serial output format of sensor.

Parameter: int SP_Ext_LaserSwitch SP_Ext_LaserSwitch

Direction: Down
Valid values:
0 = not active
1 = active

Description: Enable/Disable external laser switch.

Parameter: int SP_LaserIntensity SP_LaserIntensity

Direction: Down Valid values: Minimum: 0 Maximum: 100

Unit: %

Description: No effect.

Parameter: int SP_Contrast SP_Contrast

Direction: Down Valid values: Minimum: 0 Maximum: 100

Unit: %

Description: Display contrast.

Parameter: int SP_EdgeDetectThreshold SP_EdgeDetectThreshold

Direction: Down Valid values: Minimum: 20 Maximum: 90

Unit: %

Description: Contrast for edge detection.

Parameter: int SP_Reserve_2 SP_Reserve_2

Direction: Down
Valid values:
 Minimum: 0
 Maximum: 65535
Description: Reserved.

Parameter: int SP_ActiveSerialIf SP_ActiveSerialIf

Direction: Down Valid values: 0= RS422 1= RS232

Description: Active serial interface of sensor.

Parameter: int SP_RS232_Baudrate SP_RS232_Baudrate

Direction: Down
Valid values:

9600
19200
38400
115200
Unit: Baud

Description: Baudrate of RS232 interface of sensor.

Parameter: int SP_RS232_Parity SP_RS232_Parity

Direction: Down Valid values: 0= none 1= even 2= odd

Description: Parity of RS232 interface of sensor.

Valid values:

Minimum: 0 Maximum: 65535 Description: No effect.

```
Parameter: int SP_RS232_StopBits
                                                                                 SP_RS232_StopBits
     Direction: Down
     Valid values:
          2
     Description: Stop bits of RS232 interface of sensor.
Parameter: int SP_RS232_TimeoutSend
                                                                                 SP_RS232_TimeoutSend
     Direction: Down
     Valid values:
         Minimum: 0
         Maximum: 65535
     Description: No effect.
Parameter: int SP_RS232_TimeoutRecv
                                                                                 SP_RS232_TimeoutRecv
     Direction: Down
     Valid values:
         Minimum: 0
         Maximum: 65535
     Description: No effect.
Parameter: int SP_RS422_Baudrate
                                                                                 SP_RS422_Baudrate
     Direction: Down
     Valid values:
          9600
          19200
          38400
          115200
          691200
     Unit: Baud
     Description: Baudrate of RS422 interface of sensor.
Parameter: int SP_RS422_Parity
                                                                                 SP_RS422_Parity
     Direction: Down
     Valid values:
          0= none
          1= even
          2 = odd
     Description: Parity of RS422 interface of sensor.
Parameter: int SP_RS422_StopBits
                                                                                 SP_RS422_StopBits
     Direction: Down
     Valid values:
          2
     Description: Stop bits of RS422 interface of sensor.
Parameter: int SP_RS422_TimeoutSend
                                                                                 SP_RS422_TimeoutSend
     Direction: Down
```


Parameter: int SP_RS422_TimeoutRecv SP_RS422_TimeoutRecv

Direction: Down Valid values: Minimum: 0 Maximum: 65535 **Description:** No effect.

R.10 Write MeasProgData

Write measurement program data to sensor.

Parameter: int SP_UserMeasProgNumber SP_UserMeasProgNumber

Direction: Down Valid values: Minimum: 6

Maximum: 9= User1 to User4

Description: User measure program of sensor.

Parameter: String SP_MeasProgName SP_MeasProgName

Direction: Down

Description: Measure program name of sensor.

Parameter: double SP_AnalogOffset SP_AnalogOffset

Direction: Down Valid values:

Minimum: -10.0 Maximum: 10.0

Unit: V

Description: Analog output offset of sensor.

Parameter: double SP_AnalogGain SP_AnalogGain

Direction: Down Valid values: Minimum: -4.0

Maximum: 4.0

Description: Analog output gain of sensor.

Parameter: double SP_DisplayOffset SP_DisplayOffset

Direction: Down Valid values:

> Minimum: -99.99 **Maximum: 99.99**

Unit: mm

Description: Display offset of sensor.

Parameter: double SP_DisplayGain SP_DisplayGain

Direction: Down Valid values: Minimum: -2.0 Maximum: 2.0

Description: Display gain of sensor.

SP_UpperLimit

R Commands for ODC2600

Direction: Down **Valid values:**

Minimum: -168.876 **Maximum:** 168.876

Parameter: double SP_UpperLimit

Unit: mm

Description: Upper limit of sensor.

Parameter: double SP_LowerLimit SP_LowerLimit

Direction: Down Valid values:

Minimum: -168.876 **Maximum:** 168.876

Unit: mm

Description: Lower limit of sensor.

Parameter: double SP_UpperWarning SP_UpperWarning

Direction: Down **Valid values**:

Minimum: -168.876 Maximum: 168.876

Unit: mm

Description: Upper warning of sensor.

Parameter: double SP_LowerWarning SP_LowerWarning

Direction: Down **Valid values:**

Minimum: -168.876 **Maximum:** 168.876

Unit: mm

Description: Lower warning of sensor.

Parameter: int SP_Reserve_3 SP_Reserve_3

Direction: Down
Valid values:
 Minimum: 0
 Maximum: 65535
Description: Reserved.

Parameter: int SP_MeasMode SP_MeasMode

Valid values:

0 = Normal

1 = Max_Cont

2 = Min_Cont

3 = P-P_Cont

4 = Max_Trg

5 = Min_Trg

6 = P-P_Trg

Direction: Down

Description: Measure Mode.

7= SC1 Trg


```
Parameter: int SP_Median
                                                                               SP_Median
     Direction: Down
     Valid values:
          0= no Median
          3
          5
          7
          9
     Description: Median over n values.
Parameter: int SP_Average_for_reading
                                                                               SP_Average_for_reading
     Direction: Down
     Valid values:
          1 to 128 sliding
          129 to 4096 recursive
     Description: Averaging mode and number of sensor.
Parameter: int SP_Reserve_4
                                                                               SP_Reserve_4
     Direction: Down
     Valid values:
         Minimum: 0
         Maximum: 65535
     Description: Reserved.
Parameter: int SP_MeasObject
                                                                               SP_MeasObject
     Direction: Down
     Valid values:
          1 = EdgeHL
          2= EdgeLH
          3= DIA
          4= GAP
          5= SEG 2 4
          6= MULTISEG
     Description: Measurement program.
Parameter: int SP_NumberOfSegments
                                                                               SP_NumberOfSegments
     Direction: Down
     Valid values:
          1 for EdgeHL, EdgeLH, DIA, GAP and SEG 2 4
          2..4 for MULTISEG
     Description: Number of segments.
Parameter: int SP_FrontEdge_Seg1
                                                                               SP_FrontEdge_Seg1
     Direction: Down
     Valid values:
         Minimum: 0
         Maximum: 80
     Description: Front edge of segment 1.
Parameter: int SP_FrontEdge_Seg2
                                                                               SP_FrontEdge_Seg2
     Direction: Down
     Valid values:
         Minimum: 0
         Maximum: 80
```

X9751165 294

Description: Front edge of segment 2.

SP_FrontEdge_Seg3

R Commands for ODC2600

Direction: Down Valid values: Minimum: 0 Maximum: 80

Parameter: int SP_FrontEdge_Seg3

Description: Front edge of segment 3.

Parameter: int SP_FrontEdge_Seg4 SP_FrontEdge_Seg4

Direction: Down Valid values: Minimum: 0 Maximum: 80

Description: Front edge of segment 4.

Parameter: int SP_Reserve_6 SP_Reserve_6

Direction: Down
Valid values:
 Minimum: 0
 Maximum: 80
Description: Reserved.

Parameter: int SP_Reserve_7 SP_Reserve_7

Direction: Down
Valid values:
 Minimum: 0
 Maximum: 80
Description: Reserved.

Parameter: int SP_RearEdge_Seg1 SP_RearEdge_Seg1

Direction: Down Valid values: Minimum: 0 Maximum: 80

Description: Rear edge of segment 1.

Parameter: int SP_RearEdge_Seg2 SP_RearEdge_Seg2

Direction: Down Valid values: Minimum: 0 Maximum: 80

Description: Rear edge of segment 2.

Parameter: int SP_RearEdge_Seg3 SP_RearEdge_Seg3

Direction: Down Valid values: Minimum: 0 Maximum: 80

Description: Rear edge of segment 3.

Parameter: int SP_RearEdge_Seg4 SP_RearEdge_Seg4

Direction: Down Valid values: Minimum: 0 Maximum: 80

Description: Rear edge of segment 4.

Parameter: int SP_Reserve_9 SP_Reserve_9

Direction: Down
Valid values:
 Minimum: 0
 Maximum: 80
Description: Reserved.

Parameter: int SP_Reserve_10 SP_Reserve_10

Direction: Down
Valid values:
 Minimum: 0
 Maximum: 80
Description: Reserved.

Parameter: double SP_MasterValue SP_MasterValue

Direction: Down Valid values:

Minimum: -40.0 Maximum: 40.0

Unit: mm

Description: Master value of sensor.

R.11 Save_OptionData

Save the option data to flash.

R.12 Save_MeasProgData

Save the measure program data to flash.

R.13 Triggermode_Reset

Resets the values at trigger mode.

R.14 Triggermode_Trigger

Activate output in trigger mode.

R.15 Set_LightRef

Set the light reference.

R.16 Reset_LightRef

Reset the light reference.

R.17 Read MinMax

Read the minimum and maximum values from sensor.

Parameter: int SA_MinRaw SA_MinRaw

Direction: Up Valid values: Minimum: 0 Maximum: 65535

Description: Minimum raw value.

Parameter: int SA_MaxRaw SA_MaxRaw

Direction: Up Valid values: Minimum: 0 **Maximum:** 65535

Description: Maximum raw value.

Parameter: int SA_MinScaled SA_MinScaled

Direction: Up Valid values: Minimum: 0.0

Maximum: 40.0

Unit: mm

Description: Minimum scaled value.

Parameter: int SA_MaxScaled SA_MaxScaled

Direction: Up Valid values: Minimum: 0.0 Maximum: 40.0

Unit: mm

Description: Maximum scaled value.

R.18 Read_MinMaxReset

Read the minimum and maximum values from sensor and reset the values.

Parameter: int SA_MinRaw SA_MinRaw

Direction: Up Valid values: Minimum: 0 Maximum: 65535

Description: Minimum raw value.

Parameter: int SA_MaxRaw SA_MaxRaw

Direction: Up Valid values: Minimum: 0 **Maximum:** 65535

Description: Maximum raw value.

Parameter: int SA_MinScaled SA_MinScaled

Direction: Up Valid values: Minimum: 0.0

Maximum: 40.0

Unit: mm

Description: Minimum scaled value.

Parameter: int SA_MaxScaled SA_MaxScaled

Direction: Up Valid values: Minimum: 0.0 Maximum: 40.0

Unit: mm

Description: Maximum scaled value.

R.19 Use_Defaults

This command tells the driver to use default values to operate with sensor data. If some parameters are not specified they are not changed. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.1.

The other parameters are:

Parameter: int IP_NumberOfSegments

Direction: Down **Valid values**:

1 for EdgeHL, EdgeLH, DIA, GAP and SEG 2 4

2..4 for MULTISEG

Description: Tells the driver the number of segments measured by the sensor.

R.20 Get DrvSetting

Returns the current settings of the driver used for operating with sensor data. It is the opposite of Use Defaults. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.3.

The other parameters are:

Parameter: int IA_NumberOfSegments

Direction: Up Valid values:

1 for EdgeHL, EdgeLH, DIA, GAP and SEG_2_4

2..4 for MULTISEG

Description: Number of segments used by driver.

X9751165 298

IP_NumberOfSegments

IA_NumberOfSegments

SP_SRIndex

SA_SRIndex

S Commands for ESC4912

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

TCP/IP (native).

S.1 Set_SRIndex (SRA)

Set the samplerate for data acquisition.

```
Parameter: int SP_SRIndex

Direction: Down

Valid values:

0 = 2.60 Hz
1 = 5.21 Hz
2 = 10.42 Hz
3 = 15.63 Hz
4 = 26.04 Hz
5 = 31.25 Hz
6 = 52.08 Hz
7 = 62.50 Hz
8 = 104.17 Hz
9 = 520.83 Hz
10 = 1041.67 Hz
```

S.2 Get_SRIndex (SRA?)

Description: Samplerate index

Get the current samplerate.

```
Parameter: int SA_SRIndex

Direction: Up

Valid values:

0 = 2.60 Hz
1 = 5.21 Hz
2 = 10.42 Hz
3 = 15.63 Hz
4 = 26.04 Hz
5 = 31.25 Hz
6 = 52.08 Hz
7 = 62.50 Hz
8 = 104.17 Hz
9 = 520.83 Hz
10 = 1041.67 Hz

Description: Samplerate index.
```


S.3 Set_Trigger (TRG)

Activate/disable the trigger at controller.

Parameter: int SP_TrgMode SP_TrgMode

Direction: Down **Valid values:**0 = disabled

1 = active

Description: Trigger active/disabled.

S.4 Get_Trigger (TRG?)

Retrieve the trigger mode at controller.

Parameter: int SA_TrgMode SA_TrgMode

Direction: Up Valid values: 0= disabled 1= active

Description: Trigger active/disabled.

S.5 Get_Measure (GMD)

Retrieve one value from controller, even if trigger is active.

S.6 Set_AvrType (AVT)

Set the averaging type at controller.

Parameter: int SP_AvrType SP_AvrType

Direction: Down **Valid values:** 0= off

1 = Moving average2 = Mean (arithmetic)

3= Median

Description: Averaging type.

S.7 Get_AvrType (AVT?)

Retrieve the averaging type at controller.

Parameter: int SA_AvrType SA_AvrType

Direction: Up Valid values:

0 = off

1 = Moving average2 = Mean (arithmetic)

3= Median

Description: Averaging type at controller.

S.8 Set AvrNbr (AVN)

Set the averaging number at controller.

Parameter: int SP_AvrNbr SP_AvrNbr

Direction: Down Valid values: Minimum: 2 Maximum: 8

Description: Averaging number.

S.9 Get AvrNbr (AVN?)

Retrieve the averaging number at controller.

Parameter: int SA_AvrNbr SA_AvrNbr

Direction: Up Valid values: Minimum: 2 Maximum: 8

Description: Averaging number at controller.

S.10 ChannelStatus (CHS)

Retrieve the available channels at controller.

Parameter: int SA_ChExist1..16 SA_ChExist1..16

Direction: Up Valid values: 0= FALSE 1= TRUE

Description: Channel 1 to 16 is available at controller.

S.11 Set_Channel (CHT)

Set the channels to transmit from controller.

Parameter: int SP_ChTransmit1..16 SP_ChTransmit1..16

Direction: Down **Valid values:** 0= no 1= yes

Description: Channel 1 to 16 is transmitted.

S.12 Get Channel (CHT?)

Get the channels transmitted from controller.

Parameter: int SA_ChTransmit1..16

SA_ChTransmit1..16

Direction: Up **Valid values:** 0= no 1= yes

Description: Channel 1 to 16 is transmitted.

S.13 Set LinMode (LIN)

Set the linearisation mode for a channel at controller. This is an internal command. It should not be used by the customer.

Parameter: int SP_Chan

Direction: Down **Valid values:**

Minimum: 1
Maximum: 16

Description: Channels to be linearized.

Parameter: int SP_LinMode

SP_LinMode

SP_Chan

Direction: Down **Valid values:**

0 = off

1= offset correction
2= 2 point linearization
3= 3 point linearization
4= 5 point linearization

Description: Linearisation mode.

S.14 Get LinMode (LIN?)

Retrieve the linearisation mode for a channel at controller. This is an internal command. It should not be used by the customer.

Parameter: int SA_LinMode1..16

SA_LinMode1..16

Direction: Down **Valid values:**

0 = off

1= offset correction
2= 2 point linearization
3= 3 point linearization
4= 5 point linearization

Description: Linearisation mode for channel 1 to 16.

S.15 Set LinPoint (SLP)

Set a linearisation point for a channel at controller. This is an internal command. It should not be used by the customer.

Parameter: int SP_Chan SP_Chan

Direction: Down Valid values: Minimum: 1 Maximum: 16

Description: Channel to be set for.

Parameter: int SP_LinPos SP_LinPos

Valid values: 1 = at 10% 3 = at 30% 5 = at 50% 7 = at 70% 9 = at 90%

Direction: Down

Description: Linearisation position to be set for.

S.16 Get_LinPoint (GLP)

Get a linearisation point for a channel at controller. This is an internal command. It should not be used by the customer.

Parameter: int SP_Chan SP_Chan

Direction: Down Valid values: Minimum: 1 Maximum: 16

Description: Channel to be get for.

Parameter: int SP_LinPos SP_LinPos

Direction: Down Valid values: 1 = at 10% 3 = at 30% 5 = at 50% 7 = at 70% 9 = at 90%

Description: Linearisation position to be get for.

Parameter: double SA_LinPoint SA_LinPoint

Direction: Up

Description: Linearisation point.

S.17 Get Status (STS)

Retrieve detailed information about the controller.

```
Parameter: int SA_SRIndex
                                                                                    SA_SRIndex
     Direction: Up
     Valid values:
           0 = 2.60 \text{ Hz}
           1= 5.21 Hz
           2 = 10.42 \text{ Hz}
           3= 15.63 Hz
           4= 26.04 Hz
           5= 31.25 Hz
           6= 52.08 Hz
           7= 62.50 Hz
           8= 104.17 Hz
           9= 520.83 Hz
           10= 1041.67 Hz
     Description: Samplerate index.
Parameter: int SA_AvrType
                                                                                    SA_AvrType
     Direction: Up
     Valid values:
           0 = off
           1 = Moving average
           2= Mean (arithmetic)
           3= Median
     Description: Averaging type at controller.
Parameter: int SA_AvrNbr
                                                                                    SA_AvrNbr
     Direction: Up
     Valid values:
          Minimum: 2
          Maximum: 8
     Description: Averaging number at controller.
Parameter: int SA_ChExist1..16
                                                                                    SA_ChExist1..16
     Direction: Up
     Valid values:
           0= FALSE
           1= TRUE
     Description: Channel 1 to 16 is available at controller.
Parameter: int SA_ChTransmit1..16
                                                                                    SA_ChTransmit1..16
     Direction: Up
     Valid values:
           0 = no
           1 = yes
     Description: Channel 1 to 16 is transmitted.
Parameter: int SA_TrgMode
                                                                                    SA_TrgMode
     Direction: Up
     Valid values:
           0= disabled
           1 = active
     Description: Trigger active/disabled.
```


Parameter: int SA_LinMode1..16 SA_LinMode1..16

Direction: Up **Valid values:** 0= off

1= offset correction2= 2 point linearization3= 3 point linearization4= 5 point linearization

Description: Linearisation mode for channel 1 to 16.

S.18 Get_Version (VER)

Retrieve the sensor software version.

Parameter: String SA_Version SA_Version

Direction: Up

Description: Software version of the controller.

S.19 Save_Setup (SSU)

Save the current setup of controller to flash.

S.20 Read_Setup (RSU)

Read the setup from controller flash.

S.21 Factory_Defaults (FDE)

Restore the controller to factory defaults.

To save the default values call Save Setup too. The new parameters are returned.

Parameter: int SA_SRIndex SA_SRIndex

Direction: Up Valid values:

> 0= 2.60 Hz 1= 5.21 Hz

2= 10.42 Hz

3= 15.63 Hz 4= 26.04 Hz

5 = 31.25 Hz

6= 52.08 Hz

6= 52.08 Hz 7= 62.50 Hz

8= 104.17 Hz

9= 520.83 Hz

10= 1041.67 Hz **Description:** Samplerate index.

S Commands for ESC4912

Parameter: int SA_AvrType SA_AvrType

Direction: Up **Valid values:** 0= off

1 = Moving average2 = Mean (arithmetic)

3= Median

Description: Averaging type at controller.

Parameter: int SA_AvrNbr SA_AvrNbr

Direction: Up Valid values: Minimum: 2 Maximum: 8

Description: Averaging number at controller.

Parameter: int SA_ChExist1..16 SA_ChExist1..16

Direction: Up Valid values: 0= FALSE 1= TRUE

Description: Channel 1 to 16 is available at controller.

Parameter: int SA_ChTransmit1..16 SA_ChTransmit1..16

Direction: Up Valid values: 0= no 1= yes

Description: Channel 1 to 16 is transmitted.

Parameter: int SA_TrgMode SA_TrgMode

Direction: Up Valid values: 0= disabled 1= active

Description: Trigger active/disabled.

Parameter: int SA_LinMode1..16 SA_LinMode1..16

Direction: Up
Valid values:
0= off
1= offset correction
2= 2 point linearizat

2= 2 point linearization 3= 3 point linearization 4= 5 point linearization

Description: Linearisation mode for channel 1 to 16.

S.22 Use Defaults

This command tells the driver to use default values to operate with sensor data. If some parameters are not specified they are not changed. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.1.

The other parameters are:

Parameter: double IP_Range1..16

IP_Range1..16

Direction: Down Valid values:

Minimum: 0
Unit: μm or mm

Description: Tells the driver the range of sensor for channel 1 to 16. It is used to scale the raw sensor values into μm or mm. If it is zero, no scaling is

done.

Parameter: int IP_ChExist1..16

IP_ChExist1..16

Direction: Down **Valid values:** 0= FALSE 1= TRUE

Description: Tells the driver if channel 1 to 16 is available.

Parameter: int IP_ChTransmit1..16

IP_ChTransmit1..16

Direction: Down **Valid values:** 0= no 1= yes

Description: Tells the driver if channel 1 to 16 is transmitted.

Parameter: int IP_AvrType

IP_AvrType

Direction: Down
Valid values:

0= off

1 = Moving average2 = Mean (arithmetic)

3= Median

Description: Tells the driver the averaging type of the sensor/controller.

Parameter: int IP_AvrNbr

IP_AvrNbr

Direction: Down Valid values: Minimum: 2 Maximum: 8

Description: Tells the driver the averaging number of the sensor/controller.

S.23 Get DrvSetting

Returns the current settings of the driver used for operating with sensor data. It is the opposite of Use Defaults. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.3.

The other parameters are:

Parameter: double IA_Range1..16

IA_Range1..16

Direction: Up Valid values: Minimum: 0 **Unit:** μm or mm

Description: The range of sensor for channel 1 to 16, used by driver to scale

values into μm or mm.

Parameter: int IA_ChExist1..16

IA_ChExist1..16

Direction: Up Valid values: 0= FALSE 1= TRUE

Description: Setting used by driver if channel 1 to 16 is available.

Parameter: int IA_ChTransmit1..16

IA_ChTransmit1..16

Direction: Up Valid values: 0 = no1 = yes

Description: Setting used by driver if channel 1 to 16 is transmitted.

Parameter: int IA_AvrType

IA_AvrType

Direction: Up Valid values:

0 = off

1 = Moving average 2= Mean (arithmetic)

3= Median

Description: Setting used by driver of the averaging type.

Parameter: int IA_AvrNbr

IA_AvrNbr

Direction: Down Valid values: Minimum: 2 Maximum: 8

Description: Setting used by driver for averaging number.

T Commands for DT6100

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

TCP/IP (native).

T.1 Set_SRIndex (SRA)

Set the samplerate for data acquisition.

```
Parameter: int SP_SRIndex
                                                                                  SP_SRIndex
     Direction: Down
     Valid values:
          0 = 2.60 \text{ Hz}
          1= 5.21 Hz
          2= 10.42 Hz
          3= 15.63 Hz
          4= 26.04 Hz
          5= 31.25 Hz
          6= 52.08 Hz
          7= 62.50 Hz
          8= 104.17 Hz
          9= 520.83 Hz
          10= 1041.67 Hz
          11 = 2083.33 Hz
          12= 3906.25 Hz
          13= 7812.50 Hz
     Description: Samplerate index
```

T.2 Get_SRIndex (SRA?)

Description: Samplerate index.

Get the current samplerate.

```
Parameter: int SA_SRIndex
                                                                                  SA_SRIndex
     Direction: Up
     Valid values:
          0 = 2.60 \text{ Hz}
          1= 5.21 Hz
          2= 10.42 Hz
          3= 15.63 Hz
          4= 26.04 Hz
          5= 31.25 Hz
          6= 52.08 Hz
          7= 62.50 Hz
          8= 104.17 Hz
          9= 520.83 Hz
          10= 1041.67 Hz
          11= 2083.33 Hz
          12= 3906.25 Hz
          13= 7812.50 Hz
```


T.3 Set Trigger (TRG)

Activate/disable the trigger at sensor.

Parameter: int SP_TrgMode SP_TrgMode

Direction: Down **Valid values:** 0= disabled 1= active

Description: Trigger active/disabled.

T.4 Get Trigger (TRG?)

Retrieve the trigger mode at sensor.

Parameter: int SA_TrgMode SA_TrgMode

Direction: Up
Valid values:
0 = disabled
1 = active

Description: Trigger active/disabled.

T.5 Get_Measure (GMD)

Retrieve one value from sensor, even if trigger is active.

T.6 Set Coefficient (SCO)

Set coeffizient at controller. This is an internal command. It should not be used by the customer.

Parameter: int SP_CoeffParam SP_CoeffParam

Direction: Down Valid values: Minimum: 0 Maximum: 16

Description: Coeffizient parameter.

Parameter: double SP_Coeffizient SP_Coeffizient

Direction: Down
Valid values:
 Minimum: 0
 Maximum: 0xffffff
Description: Coeffizient.

SP_CoeffParam

T.7 Get Coefficient (GCO)

Get coeffizient from controller. This is an internal command. It should not be used by the customer.

Parameter: int SP_CoeffParam

Direction: Down Valid values: Minimum: 0 Maximum: 16

Description: Coeffizient parameter.

Parameter: double SA_Coeffizient SA_Coeffizient

Direction: Up

Description: Coeffizient.

T.8 Set AvrType (AVT)

Set the averaging type at controller.

Parameter: int SP_AvrType SP_AvrType

Direction: Down Valid values:

0 = off

1 = Moving average 2= Mean (arithmetic)

3= Median

Description: Averaging type.

T.9 Get AvrType (AVT?)

Retrieve the averaging type at controller.

Parameter: int SA_AvrType SA_AvrType

Direction: Up Valid values: 0 = off

> 1 = Moving average 2= Mean (arithmetic)

3= Median

Description: Averaging type at controller.

T.10 Set AvrNbr (AVN)

Set the averaging number at controller.

Parameter: int SP_AvrNbr SP_AvrNbr

Direction: Down Valid values: Minimum: 2 Maximum: 8

Description: Averaging number.

Get AvrNbr (AVN?) T.11

Retrieve the averaging number at controller.

Parameter: int SA_AvrNbr

SA_AvrNbr

SP_LinMode

Direction: Up Valid values: Minimum: 2 Maximum: 8

Description: Averaging number at controller.

T.12 Set LinMode (LIN)

Set the linearisation mode for sensor.

Parameter: int SP_LinMode

Direction: Down Valid values:

0 = off

1 = offset correction

2= 2 point linearization

3= 3 point linearization

4= 5 point linearization

5= 10 point linearization

Description: Linearisation mode.

Get LinMode (LIN?)

Retrieve the linearisation mode for sensor.

Parameter: int SA_LinMode

SA_LinMode

SP_LinPos

Direction: Up Valid values:

0 = off

1 = offset correction

2= 2 point linearization

3= 3 point linearization

4= 5 point linearization

5= 10 point linearization

Description: Linearisation mode.

T.14 Set_LinPoint (SLP)

Set a linearisation point at sensor.

Parameter: int SP_LinPos

Direction: Down

Valid values:

1= at 10%

2= at 20%

SA_SRIndex

```
3 = at 30\%
     4= at 40%
     5 = at 50\%
     6= at 60%
     7 = at 70\%
     8 = at 80\%
     9= at 90%
      10 = at 100\%
Description: Linearisation position to be set for.
```

T.15 Get LinPoint (GLP)

Get a linearisation point at sensor.

```
Parameter: int SP_LinPos
                                                                                     SP_LinPos
     Direction: Down
     Valid values:
           1 = at 10\%
           2= at 20%
           3 = at 30\%
           4 = at 40\%
           5 = at 50\%
           6= at 60%
           7= at 70%
           8= at 80%
           9 = at 90\%
           10= at 100%
     Description: Linearisation position to be get for.
Parameter: double SA_LinPoint
                                                                                     SA_LinPoint
```

Direction: Up

Description: Linearisation point.

T.16 Get Status (STS)

Retrieve detailed information about the sensor.

13= 7812.50 Hz **Description:** Samplerate index.

```
Parameter: int SA_SRIndex
     Direction: Up
     Valid values:
          0 = 2.60 \text{ Hz}
          1= 5.21 Hz
          2= 10.42 Hz
          3= 15.63 Hz
          4= 26.04 Hz
          5= 31.25 Hz
          6= 52.08 Hz
          7= 62.50 Hz
          8= 104.17 Hz
          9= 520.83 Hz
          10= 1041.67 Hz
          11= 2083.33 Hz
          12= 3906.25 Hz
```


T Commands for DT6100

Parameter: int SA_AvrType SA_AvrType

Direction: Up **Valid values:** 0= off

1 = Moving average2 = Mean (arithmetic)

3= Median

Description: Averaging type at controller.

Parameter: int SA_AvrNbr SA_AvrNbr

Direction: Up Valid values: Minimum: 2 Maximum: 8

Description: Averaging number at controller.

Parameter: int SA_TrgMode SA_TrgMode

Direction: Up **Valid values:** 0= disabled 1= active

Description: Trigger active/disabled.

Parameter: int SA_LinMode SA_LinMode

Direction: Up **Valid values:** 0= off

1= offset correction
2= 2 point linearization
3= 3 point linearization
4= 5 point linearization
5= 10 point linearization **Description:** Linearisation mode.

T.17 Get Version (VER)

Retrieve the sensor software version.

Parameter: String SA_Version SA_Version

Direction: Up

Description: Software version of the controller.

T.18 Save_Setup (SSU)

Save the current setup of controller to flash.

T.19 Read Setup (RSU)

Read the setup from controller flash.

T.20 Factory Defaults (FDE)

Restore the sensor to factory defaults.

Description: Linearisation mode.

To save the default values call Save Setup too. The new parameters are returned.

```
Parameter: int SA_SRIndex
                                                                                     SA_SRIndex
     Direction: Up
     Valid values:
           0 = 2.60 \text{ Hz}
           1= 5.21 Hz
           2= 10.42 Hz
           3= 15.63 Hz
           4 = 26.04 Hz
           5= 31.25 Hz
           6= 52.08 Hz
           7 = 62.50 \, \text{Hz}
           8= 104.17 Hz
           9= 520.83 Hz
           10= 1041.67 Hz
           11 = 2083.33 Hz
           12= 3906.25 Hz
           13= 7812.50 Hz
     Description: Samplerate index.
Parameter: int SA_AvrType
                                                                                     SA_AvrType
     Direction: Up
     Valid values:
           0 = off
           1 = Moving average
           2= Mean (arithmetic)
           3= Median
     Description: Averaging type at controller.
Parameter: int SA_AvrNbr
                                                                                     SA_AvrNbr
     Direction: Up
     Valid values:
          Minimum: 2
          Maximum: 8
     Description: Averaging number at controller.
Parameter: int SA_TrgMode
                                                                                     SA_TrgMode
     Direction: Up
     Valid values:
           0= disabled
           1 = active
     Description: Trigger active/disabled.
Parameter: int SA_LinMode
                                                                                     SA_LinMode
     Direction: Up
     Valid values:
           0 = off
           1= offset correction
           2= 2 point linearization
           3= 3 point linearization
           4= 5 point linearization
           5= 10 point linearization
```


T.21 **Use Defaults**

This command tells the driver to use default values to operate with sensor data. If some parameters are not specified they are not changed. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.1.

The other parameters are:

Parameter: int IP_AvrType **Direction:** Down

Valid values:

0 = off

1 = Moving average

2= Mean (arithmetic)

3= Median

Description: Tells the driver the averaging type of the sensor/controller.

Parameter: int IP_AvrNbr

Direction: Down

Valid values:

Minimum: 2

Maximum: 8

Description: Tells the driver the averaging number of the sensor/controller.

T.22 **Get DrvSetting**

Returns the current settings of the driver used for operating with sensor data. It is the opposite of Use_Defaults. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.3.

The other parameters are:

Parameter: int IA_AvrType

Direction: Up

Valid values:

0 = off

1 = Moving average

2= Mean (arithmetic)

3= Median

Description: Setting used by driver of the averaging type.

Parameter: int IA_AvrNbr

Direction: Down

Valid values:

Minimum: 2 Maximum: 8

Description: Setting used by driver for averaging number.

X9751165 316

IP_AvrNbr

IP_AvrType

IA_AvrType

IA_AvrNbr

SP_SRIndex

SA_SRIndex

SP_TrgMode

U Commands for KSS6380

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

TCP/IP (native).

U.1 Set_SRIndex (SRA)

Set the samplerate for data acquisition.

Parameter: int SP_SRIndex

Direction: Down **Valid values:**

0= 26 Hz

1= 104 Hz

2= 520 Hz

3= 1040 Hz

Description: Samplerate index

U.2 Get_SRIndex (SRA?)

Get the current samplerate.

Parameter: int SA_SRIndex

Direction: Up

Valid values:

0= 26 Hz 1= 104 Hz

2 = 520 Hz

3= 1040 Hz

Description: Samplerate index.

U.3 Set_Trigger (TRG)

Activate/disable the trigger at controller.

Parameter: int SP_TrgMode

Direction: Down

Valid values:

0= disabled

1 = active

Description: Trigger active/disabled.

U.4 Get Trigger (TRG?)

Retrieve the trigger mode at controller.

Parameter: int SA_TrgMode

SA_TrgMode

Direction: Up **Valid values:** 0= disabled 1= active

Description: Trigger active/disabled.

U.5 Get_Measure (GMD)

Retrieve one value from controller, even if trigger is active.

U.6 Set TempCoeff (STC)

Set temperature coeffizient for a channel at controller. This is an internal command. It should not be used by the customer.

Parameter: int SP_Chan SP_Chan

Direction: Down Valid values: Minimum: 1 Maximum: 2

Description: Channel to be set for.

Parameter: int SP_TempCoeffParam SP_TempCoeffParam

Valid values:
Minimum: 0
Maximum: 16

Description: Temperature coeffizient parameter.

Parameter: double SP_TemperatureCoeffizient

Direction: Down SP_TemperatureCoeffizient

Valid values:

Minimum: 0

Maximum: 0xffffff

Description: Temperature coeffizient.

U.7 Get TempCoeff (GTC)

Get temperature coeffizient for a channel at controller. This is an internal command. It should not be used by the customer.

Parameter: int SP_Chan SP_Chan

Direction: Down Valid values: Minimum: 1 Maximum: 2

Description: Channel to be set for.

SA_UnlinearizedEddyValue

U Commands for KSS6380

Parameter: int SP_TempCoeffParam SP_TempCoeffParam

Direction: Down Valid values: Minimum: 0 Maximum: 16

Description: Temperature coeffizient parameter.

Parameter: double SA_TemperatureCoeffizient

Direction: Up SA_TemperatureCoeffizient

Description: Temperature coeffizient.

U.8 Get_UnlinEddyVal (GUE)

Get unlinearized eddy value from controller. This is an internal command. It should not be used by the customer.

Parameter: double SA_UnlinearizedEddyValue

Direction: Up

Description: Unlinearized eddy value.

U.9 Set AvrType (AVT)

Set the averaging type at controller.

Parameter: int SP_AvrType SP_AvrType

Direction: Down **Valid values:** 0= off

1 = Moving average **Description:** Averaging type.

U.10 Get_AvrType (AVT?)

Retrieve the averaging type at controller.

Parameter: int SA_AvrType SA_AvrType

Direction: Up Valid values: 0= off

1 = Moving average

Description: Averaging type at controller.

U.11 Set_AvrNbr (AVN)

Set the averaging number at controller.

Parameter: int SP_AvrNbr SP_AvrNbr

Direction: Down Valid values: Minimum: 2 Maximum: 4

Description: Averaging number.

U.12 Get_AvrNbr (AVN?)

Retrieve the averaging number at controller.

Parameter: int SA_AvrNbr

SA_AvrNbr

Direction: Up Valid values: Minimum: 2 Maximum: 4

Description: Averaging number at controller.

U.13 ChannelStatus (CHS)

Retrieve the available channels at controller.

Parameter: int SA_ChExist1..4

SA_ChExist1..4

Direction: Up Valid values:

0= Channel not avaliable1= Measured channel

Description: Channel 1 to 4 is available at controller.

U.14 Set_Channel (CHT)

Set the channels to transmit from controller.

Parameter: int SP_ChTransmit1..4

SP_ChTransmit1..4

Direction: Down Valid values: 0= no 1= yes

Description: Channel 1 to 4 is transmitted.

U.15 Get_Channel (CHT?)

Get the channels transmitted from controller.

Parameter: int SA_ChTransmit1..4

SA_ChTransmit1..4

Direction: Up **Valid values:** 0= no 1= yes

Description: Channel 1 to 4 is transmitted.

U.16 Set_LinPoint (SLP)

Set a linearisation point for a channel at controller. This is an internal command. It should not be used by the customer.

Parameter: int SP_Chan SP_Chan

Direction: Down Valid values: Minimum: 1 Maximum: 2

Description: Channel to be set for.

Parameter: int SP_LinPos SP_LinPos

Direction: Down Valid values:

0= at 0% 1= at 5%

2= at 10%

3= at 15%

4= at 20%

5= at 25%

6= at 30%

7 = at 35%

8= at 40%

9= at 45% 10= at 50%

11= at 55%

11 – at 55%

12= at 60% 13= at 65%

14= at 70%

15= at 75%

16= at 80%

17= at 85%

18= at 90%

19= at 95%

20= at 100%

Description: Linearisation position to be set for.

U.17 Get_LinPoint (GLP)

Get a linearisation point for a channel at controller. This is an internal command. It should not be used by the customer.

Parameter: int SP_Chan SP_Chan

Direction: Down Valid values: Minimum: 1 Maximum: 2

Description: Channel to be get for.

1 = Moving average

Description: Averaging type at controller.


```
Parameter: int SP_LinPos
                                                                                    SP_LinPos
     Direction: Down
     Valid values:
           0 = at 0\%
           1 = at 5\%
           2 = at 10\%
           3 = at 15\%
           4= at 20%
           5 = at 25\%
           6 = at 30\%
           7 = at 35\%
           8= at 40%
           9= at 45%
           10 = at 50\%
           11 = at 55\%
           12= at 60%
           13= at 65%
           14= at 70%
           15= at 75%
           16= at 80%
           17= at 85%
           18= at 90%
           19= at 95%
           20 = at 100\%
     Description: Linearisation position to be get for.
Parameter: double SA_LinPoint
                                                                                    SA_LinPoint
     Direction: Up
     Description: Linearisation point.
U.18 Get Status (STS)
Retrieve detailed information about the controller.
Parameter: int SA_SRIndex
                                                                                    SA_SRIndex
     Direction: Up
     Valid values:
           0 = 26 \text{ Hz}
           1= 104 Hz
           2= 520 Hz
           3= 1040 Hz
     Description: Samplerate index.
Parameter: int SA_AvrType
                                                                                    SA_AvrType
     Direction: Up
     Valid values:
           0 = off
```


Parameter: int SA_AvrNbr SA_AvrNbr

Direction: Up Valid values: Minimum: 2 Maximum: 4

Description: Averaging number at controller.

Parameter: int SA_ChExist1..4 SA_ChExist1..4

Direction: Up **Valid values:**

0= Channel not avaliable 1= Measured channel

Description: Channel 1 to 4 is available at controller.

Parameter: int SA_ChTransmit1..4 SA_ChTransmit1..4

Direction: Up **Valid values:** 0= no 1= yes

Description: Channel 1 to 4 is transmitted.

Parameter: int SA_TrgMode SA_TrgMode

Direction: Up **Valid values:** 0= disabled 1= active

Description: Trigger active/disabled.

U.19 Get Version (VER)

Retrieve the sensor software version.

Parameter: String SA_Version SA_Version

Direction: Up

Description: Software version of the controller.

U.20 Save_Setup (SSU)

Save the current setup of controller to flash.

U.21 Read_Setup (RSU)

Read the setup from controller flash.

U.22 Factory Defaults (FDE)

Restore the controller to factory defaults.

To save the default values call Save Setup too. The new parameters are returned.

Parameter: int SA_SRIndex SA_SRIndex

Direction: Up Valid values: 0= 26 Hz

1= 104 Hz 2= 520 Hz 3= 1040 Hz

Description: Samplerate index.

Parameter: int SA_AvrType SA_AvrType

Direction: Up **Valid values:** 0= off

1 = Moving average

Description: Averaging type at controller.

Parameter: int SA_AvrNbr SA_AvrNbr

Direction: Up Valid values: Minimum: 2 Maximum: 4

Description: Averaging number at controller.

Parameter: int SA_ChExist1..4 SA_ChExist1..4

Direction: Up **Valid values:**

0= Channel not avaliable 1= Measured channel

Description: Channel 1 to 4 is available at controller.

Parameter: int SA_ChTransmit1..4 SA_ChTransmit1..4

Direction: Up Valid values: 0= no 1= yes

Description: Channel 1 to 4 is transmitted.

Parameter: int SA_TrgMode SA_TrgMode

Direction: Up Valid values: 0= disabled 1= active

Description: Trigger active/disabled.

U.23 Use Defaults

This command tells the driver to use default values to operate with sensor data. If some parameters are not specified they are not changed. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.1.

The other parameters are:

Parameter: double IP_Range1..4

Direction: Down Valid values: Minimum: 0 Unit: μm or mm

Description: Tells the driver the range of sensor for channel 1 to 4. It is used to scale the raw sensor values into μm or mm. If it is zero, no scaling is

done

Parameter: int IP_ChTransmit1..4

Direction: Down **Valid values:** 0= no 1= yes

Description: Tells the driver if channel 1 to 4 is transmitted.

Parameter: int IP_AvrType

Direction: Down **Valid values:** 0= off

1= Moving average

Description: Tells the driver the averaging type of the sensor/controller.

Parameter: int IP_AvrNbr
Direction: Down

Valid values: Minimum: 2 Maximum: 4

Description: Tells the driver the averaging number of the sensor/controller.

U.24 Get DrvSetting

Returns the current settings of the driver used for operating with sensor data. It is the opposite of Use Defaults. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.3.

The other parameters are:

Parameter: double IA_Range1..4

Direction: Up Valid values: Minimum: 0 Unit: μm or mm

Description: The range of sensor for channel 1 to 4, used by driver to scale

values into μm or mm.

X9751165 325

IP ChTransmit1..4

IP_Range1..4

IP_AvrType

IP_AvrNbr

IA_Range1..4

U Commands for KSS6380

Parameter: int IA_ChTransmit1..4

IA_ChTransmit1..4

Direction: Up **Valid values:** 0= no 1= yes

Description: Setting used by driver if channel 1 to 4 is transmitted.

Parameter: int IA_AvrType

IA_AvrType

Direction: Up **Valid values:** 0= off

1 = Moving average

Description: Setting used by driver of the averaging type.

Parameter: int IA_AvrNbr IA_AvrNbr

Direction: Down Valid values: Minimum: 2 Maximum: 4

Description: Setting used by driver for averaging number.

V Commands for DT6500

See sensor manual for detailed description of sensor commands.

This sensor supports following interfaces:

TCP/IP (native).

V.1 Set_SRIndex (SRA)

Set the samplerate for data acquisition.

```
Parameter: int SP_SRIndex
                                                                                  SP_SRIndex
     Direction: Down
     Valid values:
          0 = 2.60 \text{ Hz}
          1= 5.21 Hz
          2= 10.42 Hz
          3= 15.63 Hz
          4= 26.04 Hz
          5= 31.25 Hz
          6= 52.08 Hz
          7= 62.50 Hz
          8= 104.17 Hz
          9= 520.83 Hz
          10= 1041.67 Hz
          11 = 2083.33 Hz
          12= 3906.25 Hz
          13= 7812.50 Hz
     Description: Samplerate index
```

V.2 Get_SRIndex (SRA?)

Description: Samplerate index.

Get the current samplerate.

```
Parameter: int SA_SRIndex
                                                                                  SA_SRIndex
     Direction: Up
     Valid values:
          0 = 2.60 \text{ Hz}
          1= 5.21 Hz
          2= 10.42 Hz
          3= 15.63 Hz
          4= 26.04 Hz
          5= 31.25 Hz
          6= 52.08 Hz
          7= 62.50 Hz
          8= 104.17 Hz
          9= 520.83 Hz
          10= 1041.67 Hz
          11= 2083.33 Hz
          12= 3906.25 Hz
          13= 7812.50 Hz
```


SP_TrgMode

SA_TrgMode

SP_AvrType

V.3 Set Trigger (TRG)

Activate/disable the trigger at controller.

Parameter: int SP_TrgMode

Direction: Down **Valid values:**

0 = Off

1= Rising edge 2= High level

3= Gate at rising edge

Description: Trigger active/disabled.

V.4 Get_Trigger (TRG?)

Retrieve the trigger mode at controller.

Parameter: int SA_TrgMode

Direction: Up Valid values:

0= Off

1= Rising edge 2= High level

3= Gate at rising edge

Description: Trigger active/disabled.

V.5 Get_Measure (GMD)

Retrieve one value from controller, even if trigger is active. To get the values from MEDAQLib, use the functions Poll or TransferData.

V.6 Set_AvrType (AVT)

Set the averaging type at controller.

Parameter: int SP_AvrType

Direction: Down **Valid values:**

0 = off

1 = Moving average2 = Mean (arithmetic)

3= Median

Description: Averaging type.

V.7 Get AvrType (AVT?)

Retrieve the averaging type at controller.

Parameter: int SA_AvrType

SA_AvrType

Direction: Up **Valid values**: 0 = off

1 = Moving average2 = Mean (arithmetic)

3= Median

Description: Averaging type at controller.

V.8 Set_AvrNbr (AVN)

Set the averaging number at controller.

Parameter: int SP_AvrNbr

SP_AvrNbr

Direction: Down Valid values: Minimum: 2 Maximum: 8

Description: Averaging number.

V.9 Get_AvrNbr (AVN?)

Retrieve the averaging number at controller.

Parameter: int SA_AvrNbr

SA_AvrNbr

Direction: Up Valid values: Minimum: 2 Maximum: 8

Description: Averaging number at controller.

V.10 ChannelStatus (CHS)

Retrieve the available channels at controller.

Parameter: int SA_ChExist1..8

SA_ChExist1..8

Direction: Up **Valid values:**

0= Channel not avaliable 1= Measured channel 2= Mathematic channel

Description: Channel 1 to 8 is available at controller.

V.11 Set Channel (CHT)

Set the channels to transmit from controller.

Parameter: int SP_ChTransmit1..8

SP_ChTransmit1..8

Direction: Down **Valid values:** 0 = no

1 = yes

Description: Channel 1 to 8 is transmitted.

V.12 Get_Channel (CHT?)

Get the channels transmitted from controller.

Parameter: int SA_ChTransmit1..8

SA_ChTransmit1..8

Direction: Up Valid values: 0= no 1= yes

Description: Channel 1 to 8 is transmitted.

V.13 Set Display (DIS)

Set the display settings at controller.

Parameter: int SP_ShowChannels

SP_ShowChannels

Direction: Down
Valid values:
0= none
1= all
2= selected

Description: Channels to be displayed.

Parameter: int SP_ShowLinearized

SP_ShowLinearized

Direction: Down **Valid values:** 0= off 1= on

Description: Channels should be displayed linearized.

V.14 Get Display (DIS?)

Retrieve the display settings at controller.

Parameter: int SA_ShowChannels

SA_ShowChannels

Direction: Up Valid values: 0= none 1= all 2= selected

Description: Channels to be displayed.

Parameter: int SA_ShowLinearized

SA_ShowLinearized

SP_Chan

Direction: Up **Valid values:** 0= off 1= on

Description: Channels should be displayed linearized.

V.15 Set_MathFunction (SMF)

Set mathimatic function at controller.

The result of the math function is transmitted like normal sensor data at a specific channel.

Because of the mathematic operations (multiplication, addition) the values can exceed the range of 24 bit. To avoid this, the controller does automatically divide the results by eight (Result= Result/8).

Parameter: int SP_Chan

Direction: Down
Valid values:

Minimum: 1 Maximum: 8

Description: Channels which returns the result.

Parameter: double SP_Offset SP_Offset

Direction: Down **Valid values:**

Minimum: -0xffffff Maximum: 0xffffff

Description: Offset to be added to result.

Parameter: double SP_FactorCh1..8 SP_FactorCh1..8

Direction: Down Valid values: Minimum: -9.9 Maximum: 9.9

Description: Multiplication factor for channel 1 to 8.

V.16 Get_MathFunction (GMF)

Get mathimatic function from controller.

Parameter: int SP_Chan SP_Chan

Direction: Down Valid values: Minimum: 1 Maximum: 8

Description: Channels for which the function should be read.

V Commands for DT6500

Parameter: double SA_Offset SA_Offset

Direction: Up Valid values:

Minimum: -0xffffff Maximum: 0xffffff

Description: Offset to be added to result.

Parameter: double SA_FactorCh1..8 SA_FactorCh1..8

Direction: Up Valid values: Minimum: -9.9 Maximum: 9.9

Description: Multiplication factor for channel 1 to 8.

V.17 Clr_MathFunction (CMF)

Clears mathimatic function at controller.

Parameter: int SP_Chan SP_Chan

Direction: Down Valid values: Minimum: 1 Maximum: 8

Description: Channels for which the function should be cleared.

V.18 Set_LinMode (LIN)

Set the linearisation mode for a channel at controller.

Parameter: int SP_Chan SP_Chan

Direction: Down Valid values: Minimum: 1 Maximum: 8

Description: Channels to be linearized.

Parameter: int SP_LinMode SP_LinMode

Direction: Down **Valid values:** 0= off

1= offset correction2= 2 point linearization3= 3 point linearization

4= 5 point linearization5= 10 point linearizationDescription: Linearisation mode.

V.19 Get LinMode (LIN?)

Retrieve the linearisation mode for a channel at controller.

Parameter: int SA_LinMode1..8

SA_LinMode1..8

SP_Chan

SP_Chan

Direction: Up Valid values:

0 = off

1= offset correction 2= 2 point linearization 3= 3 point linearization 4= 5 point linearization 5= 10 point linearization

Description: Linearisation mode for channel 1 to 8.

V.20 Set_LinPoint (SLP)

Set a linearisation point for a channel at controller.

Parameter: int SP_Chan

Direction: Down Valid values: Minimum: 1 Maximum: 8

Description: Channel to be set for.

Parameter: int SP_LinPos SP_LinPos

Direction: Down Valid values: 1 = at 10%

2= at 20% 3= at 30% 4= at 40%

5= at 50% 6= at 60% 7= at 70%

8= at 80% 9= at 90% 10= at 100%

Description: Linearisation position to be set for.

V.21 Get LinPoint (GLP)

Get a linearisation point for a channel at controller.

Parameter: int SP_Chan

Direction: Down **Valid values:**

Minimum: 1 Maximum: 8

Description: Channel to be get for.


```
Parameter: int SP_LinPos
                                                                                   SP_LinPos
     Direction: Down
     Valid values:
           1= at 10%
          2= at 20%
          3 = at 30\%
          4= at 40%
          5 = at 50\%
          6 = at 60\%
          7 = at 70\%
          8 = at 80\%
          9= at 90%
           10= at 100%
     Description: Linearisation position to be get for.
Parameter: double SA_LinPoint
                                                                                   SA_LinPoint
     Direction: Up
     Description: Linearisation point.
V.22 Get_Status (STS)
Retrieve detailed information about the controller.
Parameter: int SA_SRIndex
                                                                                   SA_SRIndex
     Direction: Up
     Valid values:
          0 = 2.60 \text{ Hz}
           1= 5.21 Hz
          2= 10.42 Hz
          3= 15.63 Hz
          4= 26.04 Hz
          5= 31.25 Hz
          6= 52.08 Hz
          7= 62.50 Hz
          8= 104.17 Hz
          9= 520.83 Hz
           10= 1041.67 Hz
           11= 2083.33 Hz
           12= 3906.25 Hz
           13= 7812.50 Hz
     Description: Samplerate index.
Parameter: int SA_AvrType
                                                                                   SA_AvrType
     Direction: Up
     Valid values:
          0 = off
           1 = Moving average
          2= Mean (arithmetic)
           3= Median
```

Description: Averaging type at controller.

V Commands for DT6500

Parameter: int SA_AvrNbr SA_AvrNbr

Direction: Up Valid values: Minimum: 2 Maximum: 8

Description: Averaging number at controller.

Parameter: int SA_ChExist1..8 SA_ChExist1..8

Direction: Up Valid values:

0= Channel not avaliable 1= Measured channel 2= Mathematic channel

Description: Channel 1 to 8 is available at controller.

Parameter: int SA_ChTransmit1..8 SA_ChTransmit1..8

Direction: Up **Valid values:** 0= no 1= ves

Description: Channel 1 to 8 is transmitted.

Parameter: int SA_TrgMode SA_TrgMode

Direction: Up **Valid values:** 0= Off

1= Rising edge 2= High level

3= Gate at rising edge

Description: Trigger active/disabled.

Parameter: int SA_LinMode1..8 SA_LinMode1..8

Direction: Up **Valid values:** 0= off

1= offset correction
2= 2 point linearization
3= 3 point linearization
4= 5 point linearization

Description: Linearisation mode for channel 1 to 8.

Parameter: int SA_ShowChannels SA_ShowChannels

Direction: Up Valid values: 0= none 1= all 2= selected

Description: Channels to be displayed.

Parameter: int SA_ShowLinearized SA_ShowLinearized

Direction: Up **Valid values:** 0= off 1= on

Description: Channels should be displayed linearized.

SA_Version

V.23 Get_Version (VER)

Retrieve the sensor software version.

Parameter: String SA_Version

Direction: Up

Description: Software version of the controller.

V.24 Save_Setup (SSU)

Save the current setup of controller to flash.

V.25 Read_Setup (RSU)

Read the setup from controller flash.

V.26 Factory_Defaults (FDE)

Restore the controller to factory defaults.

To save the default values call Save Setup too. The new parameters are returned.

```
Parameter: int SA_SRIndex
                                                                                  SA_SRIndex
     Direction: Up
     Valid values:
          0 = 2.60 \text{ Hz}
          1= 5.21 Hz
          2= 10.42 Hz
          3= 15.63 Hz
          4= 26.04 Hz
          5 = 31.25 Hz
          6= 52.08 Hz
          7= 62.50 Hz
          8= 104.17 Hz
          9= 520.83 Hz
          10= 1041.67 Hz
          11 = 2083.33 Hz
          12= 3906.25 Hz
          13= 7812.50 Hz
     Description: Samplerate index.
```

Parameter: int SA_AvrType SA_AvrType

Direction: Up
Valid values:
0= off
1= Moving average
2= Mean (arithmetic)
3= Median

Description: Averaging type at controller.

V Commands for DT6500

Parameter: int SA_AvrNbr SA_AvrNbr **Direction:** Up Valid values: Minimum: 2 Maximum: 8 **Description:** Averaging number at controller. Parameter: int SA_ChExist1..8 SA_ChExist1..8 Direction: Up Valid values: 0= Channel not avaliable 1 = Measured channel 2= Mathematic channel **Description:** Channel 1 to 8 is available at controller. Parameter: int SA_ChTransmit1..8 SA_ChTransmit1..8 Direction: Up Valid values: 0 = no1 = yesDescription: Channel 1 to 8 is transmitted. Parameter: int SA_TrgMode SA_TrgMode Direction: Up Valid values: 0 = Off1= Rising edge 2= High level 3= Gate at rising edge Description: Trigger active/disabled. Parameter: int SA_LinMode1..8 SA_LinMode1..8 **Direction**: Up Valid values: 0 = off1 = offset correction 2= 2 point linearization 3= 3 point linearization 4= 5 point linearization Description: Linearisation mode for channel 1 to 8. Parameter: int SA_ShowChannels SA_ShowChannels **Direction:** Up Valid values: 0= none 1 = all

Parameter: int SA_ShowLinearized SA_ShowLinearized

Direction: Up **Valid values:** 0= off 1= on

2= selected

Description: Channels to be displayed.

Description: Channels should be displayed linearized.

V.27 Use Defaults

This command tells the driver to use default values to operate with sensor data. If some parameters are not specified they are not changed. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.1.

The other parameters are:

Parameter: double IP_Range1..8

IP_Range1..8

Direction: Down Valid values:
 Minimum: 0
Unit: μm or mm

Description: Tells the driver the range of sensor for channel 1 to 8. It is used to scale the raw sensor values into μm or mm. If it is zero, no scaling is

done.

Parameter: int IP_ChExist1..8

IP_ChExist1..8

Direction: Down **Valid values:**

0= Channel not avaliable 1= Measured channel 2= Mathematic channel

Description: Tells the driver if channel 1 to 8 is available.

Parameter: int IP_ChTransmit1..8

IP_ChTransmit1..8

Direction: Down **Valid values:** 0= no 1= yes

Description: Tells the driver if channel 1 to 8 is transmitted.

Parameter: int IP_AvrType

IP_AvrType

Direction: Down **Valid values:**

0 = off

1 = Moving average2 = Mean (arithmetic)3 = Median

Description: Tells the driver the averaging type of the sensor/controller.

Parameter: int IP_AvrNbr

IP_AvrNbr

Direction: Down Valid values: Minimum: 2 Maximum: 8

Description: Tells the driver the averaging number of the sensor/controller.

V.28 Get DrvSetting

Returns the current settings of the driver used for operating with sensor data. It is the opposite of Use_Defaults. The sensor is not affected by this command.

Parameters valid for several sensors are not described here but at chapter A.3.3.

The other parameters are:

Parameter: double IA_Range1..8

IA_Range1..8

Direction: Up Valid values: Minimum: 0 Unit: μm or mm

Description: The range of sensor for channel 1 to 8, used by driver to scale

values into μm or mm.

Parameter: int IA_ChExist1..8

IA_ChExist1..8

Direction: Up Valid values:

0= Channel not avaliable1= Measured channel2= Mathematic channel

Description: Setting used by driver if channel 1 to 8 is available.

Parameter: int IA_ChTransmit1..8

IA_ChTransmit1..8

Direction: Up **Valid values:** 0= no 1= yes

Description: Setting used by driver if channel 1 to 8 is transmitted.

Parameter: int IA_AvrType

IA_AvrType

Direction: Up Valid values:

0 = off

1= Moving average2= Mean (arithmetic)

3= Median

Description: Setting used by driver of the averaging type.

Parameter: int IA_AvrNbr

IA_AvrNbr

Direction: Down Valid values: Minimum: 2 Maximum: 8

Description: Setting used by driver for averaging number.

W Commands for EncoderIF2004

See IF2004 manual for detailed description of sensor commands.

Attention! The command Use_Defaults must be called for correct functionality of encoder. Please see the example at command Use_Defaults.

This sensor supports following interfaces:

IF2004 (native).

W.1 Use_Defaults

This command parametrizes the IF2004 PCI card. If same parameters are not specified they are not changed.

Parameters valid for several sensors are not described here but at chapter A.3.1.

The other parameters are:

Parameter: double IP_Range

Direction: Down **Valid values: Minimum:** 0

Description: It is the distance per count of the encoder used by the driver for

scaling data.

If it is zero, no scaling is done.

Parameter: int IP_EncCountMode

Valid values:

0= Counter without phase discriminator (Trace A is direction, Trace B is

pulse, Trace C is load or latch signal).

1 = Counter with phase discriminator and 1-fold discriminator.2 = Counter with phase discriminator and 2-fold discriminator.

3= Counter with phase discriminator and 4-fold discriminator.

Direction: Down

Description: The counting mode of the encoder

Parameter: int IP_EncSwapTraceA_B

Direction: Down **Valid values:** 0= no swap

1 = swap Trace A and B

Description: Trace A and B are swopped which negates the count direction

Parameter: int IP_EncInvertTraceA_B

Direction: Down **Valid values:** 0= no invert

1= invert Trace A and B

Description: Trace A and B are inverted, for Encoders where Trace C is 1

when Trace A and B are 0

IP_Range

IP_EncCountMode

IP_EncSwapTraceA_B

IP_EncInvertTraceA_B


```
Parameter: int IP_EncLatchSrc
                                                                                     IP_EncLatchSrc
     Direction: Down
     Valid values:
           0= Never
           1..4= Latch with start bit on channel 1 to 4.
           5= Latch with next reference on Trace C (if unlocked).
           6= Latch with second reference on Trace C (if unlocked).
           7= Latch with every reference on Trace C (always).
     Description: Specifies when the encoder value should be stored to FIFO
          (only useful when IP_ChannelNumber is 3)
Parameter: int IP_EncLoadOnRef
                                                                                     IP_EncLoadOnRef
     Direction: Down
     Valid values:
           0 = \text{never}
           1 = Noad with next reference on Trace C (if unlocked).
           2= Load with every reference on Trace C (always).
           3= Clear with every reference on Trace C (always) and load when count
     Description: Specifies when the encoder value should be changed by IF2004
          card.
```

Example how to parametrize the encoder:

```
DWORD instance= CreateSensorInstance(ENCODER_IF2004);
SetParameterString (instance, "IP_Interface", "IF2004");
SetParameterInt (instance, "IP_CardInstance", 0);
SetParameterInt (instance, "IP_ChannelNumber", 3);
DWORD err= OpenSensor (instance);
/* error handling, if err!=ERR_SUCCESS */

SetParameterString (instance, "S_Command", "Use_Defaults");
/* Set encoder to increment or decrement each full period */
SetParameterInt (instance, "IP_EncCountMode", 1);
/* Each time when a value arrives at first sensor channel, put the encoder value into FIFO */
SetParameterInt (instance, "IP_EncLatchSrc", 1);
err= SensorCommand (instance);
/* error handling, if err!=ERR_SUCCESS*/
```

W.2 Enc ClearCounter

Clears the counter (set to 0).

W.3 Enc_LoadCounter

Load the counter from the load register.

W.4 Enc LatchCounter

Get the recent counter value to the latch register.

SA IsFirstRef

SA IsSecondRef

W.5 Enc UnlockTraceC

Unlocks Trace C.

W.6 Enc_lsFirstRef

Checks if Ref (Trace C) was reached since last Unlock.

Parameter: int SA_IsFirstRef

Direction: Up

Valid values: 0= FALSE 1= TRUE

Description: True, if it is first reference.

W.7 Enc_IsSecondRef

Checks if Ref (Trace C) was reached twice since last Unlock.

Parameter: int SA_IsSecondRef

Direction: Up Valid values: 0= FALSE 1= TRUE

Description: True, if it is second reference.

W.8 Enc GetLatchReg

Get the counter value from the latch register.

Parameter: int SA_LatchReg

Direction: Up
Valid values:
 Minimum: 0
 Maximum: 65535
Description: Counter value.

W.9 Enc_SetLoadReg

Set the load register for counter.

Parameter: int SP_LoadReg

Direction: Down
Valid values:
 Minimum: 0
 Maximum: 65535
Description: Counter value.

SP_LoadReg

SA_LatchReg

SA_Gate

SA_Ref

SP_SensorReset12

SP_SensorReset34

W.10 IF2004 SystemReset

Make a system reset: Clear FIFO and send a pulse (100 μs) reset line at both sensor connectors.

W.11 IF2004_CheckGate

Checks the actual state of gate.

Parameter: int SA_Gate

Direction: Up Valid values: 0= FALSE 1= TRUE

Description: True if gate is set.

W.12 Enc_CheckRef

Checks the actual state of trace C.

Parameter: int SA_Ref

Direction: Up Valid values:

0= FALSE 1= TRUE

Description: True if reference (trace C) is set.

W.13 IF2004_SensorReset12

Set the reset line of sensor connector 0+1 to specified value.

Parameter: int SP_SensorReset12

Direction: Down **Valid values:** 0= FALSE

1= TRUE

Description: Value for reset line.

W.14 IF2004_SensorReset34

Set the reset line of sensor connector 2+3 to specified value.

Parameter: int SP_SensorReset34

Direction: Down **Valid values:** 0= FALSE

1= TRUE

Description: Value for reset line.

W.15 Get_FPGAVersion

Get the version of the FPGA on the card.

Parameter: int SA_FPGAVersion

Direction: Up Valid values:

> 0= V1.1 1= V1.2 (with ILD1700 support)

2= V1.3 (with 1.25 MBaud support)

Description: Version of the FPGA on the card.

 ${\tt SA_FPGAVersion}$

IP_Encoder1CountFactor

IP Encoder2CountFactor

IP_ADC1Range

X Commands for PCICard_IF2008

See PCICard_IF2008 manual for detailed description of sensor commands.

Attention! The command Use_Defaults must be called if encoder or ADC values should be scaled.

This sensor supports following interfaces:

IF2008 (native).

X.1 Use_Defaults

This command parametrizes the IF2008 PCI card. If same parameters are not specified they are not changed.

Parameters valid for several sensors are not described here but at chapter A.3.1.

The other parameters are:

```
Parameter: double IP_Encoder1CountFactor
```

Direction: Down **Valid for sensor:**

PCI CARD IF2008

Valid values:

Minimum: -DBL_MAX (-1.8e+308)
Maximum: DBL_MAX (1.8e+308)

Default: 1.0

Description: It is the distance per count of the encoder 1 used by the driver

for scaling data. If it is zero, no scaling is done.

```
Parameter: double IP_Encoder2CountFactor
```

Direction: Down **Valid for sensor:**

PCI CARD IF2008

Valid values:

Minimum: -DBL_MAX (-1.8e+308)
Maximum: DBL MAX (1.8e+308)

Default: 1.0

Description: It is the distance per count of the encoder 2 used by the driver

for scaling data. If it is zero, no scaling is done.

Parameter: int IP_ADC1Range

Direction: Down **Valid for sensor:**

PCI CARD IF2008

Valid values:

0 = 0..5V

1 = 0..10V

Description: It is range of ADC 1 used by the driver for scaling data.

2= +-5V 3= +-10V **Default:** 3

X Commands for PCICard IF2008

Parameter: int IP_ADC2Range IP_ADC2Range

Direction: Down **Valid for sensor:**

PCI CARD IF2008

Valid values:

0= 0..5V 1= 0..10V 2= +-5V 3= +-10V

Description: It is range of ADC 2 used by the driver for scaling data.

X.2 Get_DrvSetting

Returns the current settings of the driver used for operating. It is the opposite of Use Defaults.

Parameters valid for several sensors are not described here but at chapter A.3.3.

The other parameters are:

Parameter: double IA_Encoder1CountFactor IA_Encoder1CountFactor

Direction: Up **Valid for sensor:**

PCI_CARD_IF2008

Description: It is the distance per count of the encoder 1 used by the driver

for scaling data. If it is zero, no scaling is done.

Parameter: double IA_Encoder2CountFactor IA_Encoder2CountFactor

Direction: Up **Valid for sensor:**

PCI CARD IF2008

Description: It is the distance per count of the encoder 2 used by the driver

for scaling data. If it is zero, no scaling is done.

Parameter: int IA_ADC1Range IA_ADC1Range

Direction: Up
Valid for sensor:

PCI_CARD_IF2008

Description: It is range of ADC 1 used by the driver for scaling data.

Parameter: int IA_ADC2Range IA_ADC2Range

Direction: Up Valid for sensor:

PCI_CARD_IF2008

Description: It is range of ADC 2 used by the driver for scaling data.

X.3 Use Gate

The digital inputs In 1 to In 4 of the card (5V TTL signal) can be used to lock or free the FIFO for data from specific channels.

Parameter: int SP_GateChannel

SP_GateChannel

Direction: Down **Valid values:**

- 0= Digital In 1 for Sensor channel 1+2 (Base Board, Connector X1)
- 1 = Digital In 1 for Sensor channel 1+2 (Base Board, Connector X1)
- 2= Digital In 2 for Sensor channel 3-6 (Base Board, Connector X2 + Extension Board, Connector X1)
- 3= Digital In 2 for Sensor channel 3-6 (Base Board, Connector X2 + Extension Board, Connector X1)
- 4= Digital In 2 for Sensor channel 3-6 (Base Board, Connector X2 + Extension Board, Connector X1)
- 5= Digital In 2 for Sensor channel 3-6 (Base Board, Connector X2 + Extension Board, Connector X1)
- 6= Digital In 3 for Encoder 1+2
- 7= Digital In 3 for Encoder 1+2
- 8= Digital In 4 for Digital In+RxD, ADC 1+2
- 9= Digital In 4 for Digital In+RxD, ADC 1+2
- 10= Digital In 4 for Digital In+RxD, ADC 1+2
- 11 = Digital In 4 for Digital In+RxD, ADC 1+2

Description: Number of the channel to lock by digital in. Because multiple channels are affected by one digital input, the numbers 0..1, 2..5, 6..7 or 8..11 always affects the same digital input.

Parameter: int SP_ActivateGate

SP_ActivateGate

Direction: Down **Valid values:** 0= off 1= on

Description: Specifies if the gate function is enabled or disabled for the specific digital input.

X.4 Set_TimerFrequency

Set the frequency and pulse width for the timers on the card.

Parameter: int SP_TimerNumber

SP_TimerNumber

Direction: Down **Valid values**:

1 = Timer 1 2 = Timer 2 3 = Timer 3

Description: Number of the timer to parametrize.

Parameter: double SP_TimerFrequency

SP_TimerFrequency

Direction: Down Valid values:

Minimum: 0.01

Maximum: 20000000.0

Unit: Hz

Description: Frequency of the timer.

0.0 means the timer is off.

SA_RealFrequency

SA_RealRatio

SP_EncoderNumber

SP_EncoderInterpolation

Parameter: double SP_TimerRatio SP_TimerRatio

Direction: Down
Valid values:
Minimum: 0.0
Maximum: 1.0

Description: Ratio of the high and low contingent of one period.

If you are unsure, specify a value of 0.5.

If SP_TimerFrequency is 0.0, a value of 0.0 means the timer is low,

otherwise the timer is high.

Parameter: double SA_RealFrequency

Direction: Up Unit: Hz

Description: The real frequency applied to the timer. Because of internal

limitations not each value can be set.

Parameter: double SA_RealRatio

Direction: Up

Description: The real ratio applied to the timer. Because of internal limitations

not each value can be set.

X.5 Set_EncoderInterpolation

Set the interpolation of the encoder.

Parameter: int SP_EncoderNumber

Direction: Down **Valid values:**

6= Encoder 1 7= Encoder 2

Description: Number of the encoder to parametrize.

Parameter: int SP_EncoderInterpolation

Direction: Down **Valid values:**

0= 1 fold (TTL & 1Vss)

1 = 2 fold (TTL & 1Vss)

2= 3 fold (only 1Vss)

3= 4 fold (TTL & 1Vss)

4= 5 fold (only 1Vss)

5= 6 fold (only 1Vss)

6= 8 fold (only 1Vss)

7= 10 fold (only 1Vss)

8= 12 fold (only 1Vss)

9= 16 fold (only 1Vss) 10= 20 fold (only 1Vss)

11 04 fold (only 1)/on

11 = 24 fold (only 1Vss)

12= 32 fold (only 1Vss)

13= 40 fold (only 1Vss)

14= 48 fold (only 1Vss) 15= 64 fold (only 1Vss)

Description: Interpolation mode of the encoder.

Attention! If a encoder with 5V TTL signal is used, only mode 0, 1 and 3 does work. If another mode is selected, the result is unpredictable.

X.6 Get EncoderInterpolation

Get the interpolation of the encoder.

Parameter: int SP_EncoderNumber SP_EncoderNumber

Direction: Down
Valid values:
6= Encoder 1
7= Encoder 2

Description: Number of the encoder to retrieve information.

Parameter: int SA_EncoderInterpolation SA_EncoderInterpolation

Direction: Up Valid values:

0= 1 fold (TTL & 1Vss)
1= 2 fold (TTL & 1Vss)
2= 3 fold (only 1Vss)
3= 4 fold (TTL & 1Vss)
4= 5 fold (only 1Vss)
5= 6 fold (only 1Vss)
6= 8 fold (only 1Vss)
7= 10 fold (only 1Vss)
8= 12 fold (only 1Vss)
9= 16 fold (only 1Vss)
10= 20 fold (only 1Vss)
11= 24 fold (only 1Vss)
12= 32 fold (only 1Vss)
13= 40 fold (only 1Vss)

14= 48 fold (only 1Vss)

15= 64 fold (only 1Vss)Description: Interpolation mode of the encoder.

X.7 Set_EncoderDirection

Set the direction of the encoder.

Parameter: int SP_EncoderNumber SP_EncoderNumber

Direction: Down
Valid values:
6= Encoder 1
7= Encoder 2

Description: Number of the encoder to parametrize.

Parameter: int SP_EncoderDirection SP_EncoderDirection

Direction: Down **Valid values:** 0= normal 1= reverse

Description: Count direction of the encoder.

SP_EncoderNumber

SA_EncoderDirection

SP_EncoderNumber

SP_EncoderMode

X.8 Get EncoderDirection

Get the direction of the encoder.

Parameter: int SP_EncoderNumber

Direction: Down **Valid values**:

6= Encoder 1 7= Encoder 2

Description: Number of the encoder to parametrize.

Parameter: int SA_EncoderDirection

Direction: Up Valid values: 0= normal 1= reverse

Description: Count direction of the encoder.

X.9 Set_EncoderMode

Set the behaviour of the encoder when a reference is reached.

Parameter: int SP_EncoderNumber

Direction: Down Valid values:

6= Encoder 1 7= Encoder 2

Description: Number of the encoder to parametrize.

Parameter: int SP_EncoderMode

Direction: Down **Valid values:**

0= no function

1 = load counter with next reference mark2 = load counter with all reference marks

3= clear counter with all reference marks, load when -1 is reached

4= counter without phase discriminator (pulse counter)

Description: Behaviour when a reference is reached.

X.10 Get_EncoderMode

Get the behaviour of the encoder when a reference is reached.

Parameter: int SP_EncoderNumber

Direction: Down **Valid values:**

6= Encoder 1 7= Encoder 2

Description: Number of the encoder to parametrize.

SP_EncoderNumber

Parameter: int SA_EncoderMode SA_EncoderMode

Direction: Up Valid values:

0= no function

1 = load counter with next reference mark 2= load counter with all reference marks

3= clear counter with all reference marks, load when -1 is reached

4= counter without phase discriminator (pulse counter)

Description: Behaviour when a reference is reached.

X.11 Set EncoderLatchSource

Set the latch source which triggers aquiring one value.

Parameter: int SP_EncoderNumber SP_EncoderNumber

Direction: Down Valid values:

6= Encoder 1 7= Encoder 2

Description: Number of the encoder to parametrize.

Parameter: int SP_EncoderLatchSource SP_EncoderLatchSource

Direction: Down Valid values:

0= never (locked)

1 = Timer 1

2= Timer 2

3= Timer 3 4= Sensor channel 1

5= Sensor channel 2

6= Sensor channel 3

7= Sensor channel 4

8= Sensor channel 5

9= Sensor channel 6

10= Digital In 1

11 = Digital In 2

12= Digital In 3

13= Digital In 4

14= second reference mark

15= all reference marks

Description: Latch source which triggers aquiring one value.

X.12 Get EncoderLatchSource

Get the latch source which triggers aquiring one value.

Parameter: int SP_EncoderNumber SP_EncoderNumber

Direction: Down Valid values: 6= Encoder 1

7= Encoder 2

Description: Number of the encoder to parametrize.

Parameter: int SA_EncoderLatchSource

SA_EncoderLatchSource

SP_EncoderNumber

SP_EncoderPreloadValue

SP_DigitalOut1..4

Direction: Up Valid values:

0= never (locked)

1 = Timer 1

2= Timer 2

3= Timer 3

4= Sensor channel 1

5= Sensor channel 2

6= Sensor channel 3

7= Sensor channel 4

8= Sensor channel 5

9= Sensor channel 6

10= Digital In 1

11= Digital In 2

12= Digital In 3

13= Digital In 4

14= second reference mark

15= all reference marks

Description: Latch source which triggers aquiring one value.

X.13 Set_EncoderPreload

Set the preload value which is used when loading the encoder.

Parameter: int SP_EncoderNumber

Direction: Down

Valid values: 6= Encoder 1

7= Encoder 2

Description: Number of the encoder to parametrize.

Parameter: int SP_EncoderPreloadValue

Direction: Down

Valid values:

Minimum: INT_MIN (-2147483648) Maximum: INT MAX (2147483647)

Description: Preload value which is used when loading the encoder.

X.14 Set_DigitalOutSource

Set the source which is used to output one value.

Attention! This command is only allowed if IF2008E extension card or IF2008IO

extension slot is installed

Parameter: int SP_DigitalOut1..4

Direction: Down **Valid values:**

-1 = leave unchanged0 = user (output function)

SA_DigitalOut1..4

SP_TxDChannel1..6

1= Timer 1 pulse width

2= Timer 2 pulse width

3= Timer 3 pulse width

Description: Source which is used to output one value.

-1 means the value is not set. 0 means the value is set by function Set_DigitalOutValue, Timer 1..3 means the value is equal to the timer value.

X.15 Get_DigitalOutSource

Get the source which is used to output one value.

Attention! This command is only allowed if IF2008E extension card or IF2008IO extension slot is installed

Parameter: int SA_DigitalOut1..4

Direction: Up

Valid values:

-1= leave unchanged

0= user (output function)

1 = Timer 1 pulse width

2= Timer 2 pulse width

3= Timer 3 pulse width

Description: Source which is used to output one value.

X.16 Set_TxDSource

Set the source which is used to output one value.

Parameter: int SP_TxDChannel1..6

Direction: Down

Valid values:

-1 = leave unchanged

0= sensor output (transmitter)

1 = user (output function)

Description: Source which is used to output one value.

-1 means the channel will not be changed. 0 means the value is set by sensor output (if a sensor command is send to the sensor), 1 means the value is set by function Set_TxDValue.

X.17 Get TxDSource

Get the source which is used to output one value.

Parameter: int SA_TxDChannel1..6

Direction: Up Valid values:

-1 = leave unchanged

0= sensor output (transmitter)1= user (output function)

Description: Source which is used to output one value.

SA_TxDChannel1..6

X.18 Set TrgSource

Set the source which is used to output one value.

Parameter: int SP_TrgChannel1..6

SP_TrgChannel1..6

Direction: Down **Valid values:**

-1= leave unchanged 0= user (output function) 1= Timer 1 pulse width 2= Timer 2 pulse width 3= Timer 3 pulse width

Description: Source which is used to output one value.

-1 means the value is not set. 0 means the value is set by function Set_TrgValue, Timer 1..3 means the value is equal to the timer value.

X.19 Get_TrgSource

Get the source which is used to output one value.

Parameter: int SA_TrgChannel1..6

SA_TrgChannel1..6

Direction: Up Valid values:

-1= leave unchanged 0= user (output function) 1= Timer 1 pulse width 2= Timer 2 pulse width 3= Timer 3 pulse width

Description: Source which is used to output one value.

X.20 Set_DigitalInLatchSource

Set the latch source which triggers aquiring one value.

Attention! This command is only allowed if IF2008E extension card or IF2008IO extension slot is installed

Parameter: int SP_DigitalInLatchSource

SP_DigitalInLatchSource

Direction: Down **Valid values:**

0= never (locked)

1 = Timer 1 pulse width

2= Timer 2 pulse width

3= Timer 3 pulse width

4= Sensor channel 1

5= Sensor channel 2

6= Sensor channel 3

7= Sensor channel 4

Description: Latch source which triggers aquiring one value.

X.21 Get DigitalInLatchSource

Get the latch source which triggers aquiring one value.

Attention! This command is only allowed if IF2008E extension card or IF2008IO extension slot is installed

Parameter: int SA_DigitalInLatchSource

SA_DigitalInLatchSource

SP_ADCNumber

SP_ADCLatchSource

Direction: Up Valid values:

0= never (locked)

1 = Timer 1 pulse width

2= Timer 2 pulse width

3= Timer 3 pulse width

4= Sensor channel 1

5= Sensor channel 2

6= Sensor channel 3

7= Sensor channel 4

Description: Latch source which triggers aquiring one value.

X.22 Set_ADCLatchSource

Set the latch source which triggers aquiring one value.

Attention! This command is only allowed if IF2008E extension card is installed

Parameter: int SP_ADCNumber

Direction: Down

Valid values:

10= ADC 1

11= ADC 2

Description: Number of the ADC (Analog/Digital converter) to parametrize.

Parameter: int SP_ADCLatchSource

Direction: Down

Valid values:

0= never (locked)

1 = Timer 1

2= Timer 2

3= Timer 3

4= Sensor channel 1

5= Sensor channel 2

6= Sensor channel 3

7= Sensor channel 4

8= Sensor channel 5

9= Sensor channel 6

10= Digital In 1

11= Digital In 2 12= Digital In 3

13= Digital In 4

Description: Latch source which triggers aquiring one value.

SP_ADCNumber

SA_ADCLatchSource

X.23 Get ADCLatchSource

Get the latch source which triggers aquiring one value.

Attention! This command is only allowed if IF2008E extension card is installed

Parameter: int SP_ADCNumber

Direction: Down

Valid values:

6= ADC 1 7= ADC 2

Description: Number of the ADC (Analog/Digital converter) to parametrize.

Parameter: int SA_ADCLatchSource

Direction: Up **Valid values:**

0= never (locked)

1 = Timer 1

2= Timer 2

3= Timer 3

4= Sensor channel 1

5= Sensor channel 2

6= Sensor channel 3

7= Sensor channel 4

8= Sensor channel 5

9= Sensor channel 6

10= Digital In 1

11= Digital In 2

12= Digital In 3

13= Digital In 4

Description: Latch source which triggers aquiring one value.

X.24 Get_FPGAVersion

Get the version of the FPGA on the card.

Parameter: int SA_FPGAVersion

Direction: Up Valid values:

Minimum: 0 Maximum: 255

Description: Version of the FPGA on the card.

X.25 Is_Channel56Available

Check if additional sensor channels at IF2008E extension card are available.

Parameter: int SA_Channel56Available

Direction: Up

Valid values:

Minimum: 0= no Maximum: 1= yes

Description: Availability of sensor channels at IF2008E extension card.

SA_Channel56Available

SA_FPGAVersion

SA_ADCAvailable

SA_DigitalIOAvailable

X.26 Is ADCAvailable

Check if analog digital converter (ADC) at IF2008E extension card are available.

Parameter: int SA_ADCAvailable

Direction: Up **Valid values**:

Minimum: 0= no Maximum: 1= yes

Description: Availability of analog digital converter (ADC) at IF2008E exten-

sion card

X.27 Is_DigitalIOAvailable

Check if digital IO at IF2008E extension card or IF2008IO extension slot is available.

Direction: Up **Valid values**:

Minimum: 0= no Maximum: 1= yes

Parameter: int SA_DigitalIOAvailable

Description: Availability of digital IO at IF2008E extension card or IF2008IO

extension slot.

X.28 Clear_Encoder

Clears the encoder value (set it to zero).

Parameter: int SP_EncoderNumber

Direction: Down Valid values:

6= Encoder 1 7= Encoder 2

Description: Number of the encoder to clear.

X.29 Load_Encoder

Loads the encoder value with the value set by function Set_EncoderPreload.

Parameter: int SP_EncoderNumber

Direction: Down **Valid values:**

6= Encoder 1 7= Encoder 2

Description: Number of the encoder to load.

SP_EncoderNumber

SP_EncoderNumber

X.30 Latch_Encoder

Valid values:

Latch the encoder (get latest value into encoder register). The value can be retrieved using function Get EncoderVal.

Parameter: int SP_EncoderNumber

Direction: Down

6= Encoder 1 7= Encoder 2

Description: Number of the encoder to latch.

X.31 EnableRef_Encoder

Enable loading encoder value at next reference (set by function Set EncoderMode with parameter next reference).

Parameter: int SP_EncoderNumber

Direction: Down Valid values:

> 6= Encoder 1 7= Encoder 2

Description: Number of the encoder for enabling reference.

X.32 Get EncoderValue

Get the value of encoder register.

This function is usefull in combination with function Get_EncoderVal.

Parameter: int SP_EncoderNumber

Direction: Down Valid values:

> 6= Encoder 1 7= Encoder 2

Description: Number of the encoder to latch.

Parameter: int SA_EncoderRawValue

Direction: Up Valid values:

Minimum: INT_MIN (-2147483648) Maximum: INT_MAX (2147483647) Description: Raw value of encoder register.

Parameter: double SA_EncoderScaledValue

Direction: Up

Description: Scaled value of encoder register.

If IP Encoder1CountFactor or IP Encoder2CountFactor (at command Use Defaults) is not set, the scaled value is equal to the raw value.

SP_EncoderNumber

SP_EncoderNumber

SP_EncoderNumber

SA EncoderRawValue

SA_EncoderScaledValue

SP_EncoderNumber

SA_FirstReference

SA_SecondReference

SP_ADCNumber

SA_ADCRawValue

SA_ADCScaledValue

X.33 Get EncoderReference

Get status if reference was reached first or second times.

Parameter: int SP_EncoderNumber

Direction: Down Valid values:

> 6= Encoder 1 7= Encoder 2

Description: Number of the encoder to latch.

Parameter: int SA_FirstReference

Direction: Up Valid values:

> Minimum: 0= no Maximum: 1 = yes

Description: Reference was reached first time.

Parameter: int SA_SecondReference

Direction: Up

Description: Reference was reached second time.

X.34 Get_ADCValue

Get the value of the ADC.

Attention! This command is only allowed if IF2008E extension card is installed

Parameter: int SP_ADCNumber

Direction: Down Valid values:

> 10= ADC 1 11= ADC 2

Description: Number of the ADC to return value.

Parameter: int SA_ADCRawValue

Direction: Up

Valid values: Minimum: 0 Maximum: 65535

Description: Raw value of ADC.

Parameter: double SA_ADCScaledValue

Direction: Up Valid values:

0-5

0-10

+-5

+-10

Unit: V

Description: Scaled value of ADC.

The range depends on IP_ADC1Range or IP_ADC2Range (at command

Use_Defaults).

X.35 Get DigitalInValue

Get the digital In values.

Attention! This command is only allowed if IF2008E extension card or IF2008IO extension slot is installed

Parameter: int SA_DigitalInValue1..4 Direction: Up Valid values: 0 Description: Digital In value.

SA_DigitalInValue1..4

X.36 Get RxDValue

Get the RxD values.

Parameter: int SA_RxDValue1..6 Direction: Up Valid values: 0 **Description:** Value of the RxD line. SA_RxDValue1..6

X.37 Set DigitalOutValue

Set the digital Out values.

This function does only work when Set DigitalOutSource is set to 0 (output function)

Attention! This command is only allowed if IF2008E extension card or IF2008IO extension slot is installed

Parameter: int SP_DigitalOutValue1..4 **Direction:** Down Valid values: -1 = leave unchanged 0

SP_DigitalOutValue1..4

Description: Digital Out value. -1 menas leave the value unchanged.

X.38 Get DigitalOutValue

Get the digital Out values.

Attention! This command is only allowed if IF2008E extension card or IF2008IO extension slot is installed

Parameter: int SA_DigitalOutValue1..4 Direction: Up Valid values:

SA_DigitalOutValue1..4

0

Description: Digital Out value.

X.39 Set TxDValue

```
Set the values of TxD lines.
```

This function does only work when Set_TxDSource is set to 1 (output function)

```
Parameter: int SP_TxDValue1..6
Direction: Down
Valid values:
-1= leave unchanged
0
1
Description: TxD value.
-1 menas leave the value unchanged.
```

X.40 Get_TxDValue

Get the values of TxD lines.

```
Parameter: int SA_TxDValue1..6
Direction: Up
Valid values:

0
1
Description: TxD value.
```

X.41 Set TrgValue

```
Set the values of Trg lines.
```

This function does only work when Set_TrgSource is set to 0 (output function)

```
Parameter: int SP_TrgValue1..6
Direction: Down
Valid values:
-1= leave unchanged
0
1
Description: TxD value.
-1 menas leave the value unchanged.
```

X.42 Get_TrgValue

Get the values of Trg lines.

```
Parameter: int SA_TrgValue1..6

Direction: Up

Valid values:

0
1

Description: Trg value.
```


Index

avail, 39	IA_OutputFormat, 114
	IA_OutputMode, 126, 146
ClearAllParameters, 36	IA_OutputTime, 126, 146
CloseSensor, 37	IA OutputType, 126, 146, 160
CP_SensorAnswerTimeout, 54, 62	IA Range, 61
CreateSensorInstance, 25	IA_Range116, 308
	IA Range14, 325
DataAvail, 39	IA Range18, 339
	IA RefractIndex, 185, 218, 233, 261
errText, 41	IA Samplerate, 61
0.17111/	IA SettingsChanged, 60
GetDLLVersion, 42	_
GetDLLVersionU, 42	IA_SpectralAv, 186, 218, 262
GetError, 41	IA_Speed, 146, 160
GetErrorU, 41	IA_SpeedMeasure, 114
GetParameterDouble, 33	IA_SpeedTracking, 115
GetParameterDoubleU, 34	IA_Sync_TrgMode, 160
GetParameterDWORD, 32	IA_TerminationChar, 115
GetParameterDWORDU, 33	IA_X116, 219, 262
GetParameterInt, 31	IA_X18, 186, 233
GetParameterIntU, 32	instanceHandle, 2641
GetParameterString, 34	IP_ADC1Range, 345
GetParameterStringU, 35	IP ADC2Range, 346
den didifictoreninge, ee	IP ASCII, 60
HysteresisQ1, 65	IP Averaging, 184, 217, 232, 260
HysteresisQ2, 66	IP AvrNbr, 307, 316, 325, 338
, ,	IP AvrType, 307, 316, 325, 338
IA ADC1Range, 346	IP Baudrate, 4951
IA ADC2Range, 346	IP Binning, 261
IA ASCII, 62	IP ByteSize, 49
IA_Averaging, 186, 218, 233, 261	IP CardInstance, 49, 50
IA AvrNbr, 308, 316, 326, 339	IP ChannelNumber, 50, 51
IA_AvrType, 308, 316, 326, 339	IP CheckRingBufferOverflow, 59
IA_Binning, 262	IP_ChExist116, 307
IA_CheckRingBufferOverflow, 60	-
IA ChExist116, 308	IP_ChExist18, 338
IA ChExist18, 339	IP_ChTransmit116, 307
IA ChTransmit116, 308	IP_ChTransmit14, 325
–	IP_ChTransmit18, 338
IA_ChTransmit14, 326	IP_ClearReceiveBuffer, 58
IA_ChTransmit18, 339	IP_ClearRingBuffer, 57
IA_DataAvailEvent, 63	IP_ClearSendBuffer, 57
IA_DataOn, 61	IP_DataOn, 59
IA_Datarate, 61	IP_Datarate, 59
IA_DistanceTracking, 114	IP_DeviceInstance, 52, 53
IA_Encoder1CountFactor, 346	IP_DistanceTracking, 113
IA_Encoder2CountFactor, 346	IP_EncCountMode, 340
IA_ErrorOutput, 160	IP_EncInvertTraceA_B, 340
IA_MeasureMode, 185, 218, 233, 261	IP_EncLatchSrc, 341
IA_NumberOfSegments, 278, 298	IP EncLoadOnRef, 341
IA_Option, 129	IP Encoder1CountFactor, 345
IA OutputContent, 114	-

IP_Encoder2CountFactor, 345	paramName, 2635
IP_EncSwapTraceA_B, 340	paramValue, 2635
IP ErrorOutput, 159	Poll, 38
IP EventOnAvailableValues, 63	
IP EventOnBufferFillsize, 63	rawData, 38, 40
IP Interface, 44	read, 40
IP_LogAppend, 47	ReleaseSensorInstance, 25
IP_LogFile, 47	
IP_LogFlush, 48	S_Command, 54
IP_LogLevel, 47	SA_0_0V, 179, 182, 211, 254
IP_LogType, 47	SA_0_10V, 179, 182, 211, 254
IP MaxPacketSize, 48	SA_0_SOD, 179, 182, 211, 254
IP_MeasureMode, 184, 217, 232, 260	SA_1_0V, 179, 182, 212, 255
IP NumberOfSegments, 278, 298	SA_1_10V, 180, 182, 212, 255
IP_Option, 129	SA_1_SOD, 179, 182, 211, 254
IP OutputContent, 113	SA_ActiveEdge, 206, 249
IP OutputFormat, 113	SA_ActiveSerialIf, 266, 283
IP OutputMode, 126, 145	SA_ADCAvailable, 357
IP_OutputTime, 126, 145	SA_ADCLatchSource, 356
IP_OutputType, 125, 145, 159	SA ADCRawValue, 359
IP_PacketDelay, 48	SA ADCScaledValue, 359
IP_Parity, 49, 52	SA AlarmHysteresis, 79
IP Port, 48	SA AlarmStart, 78, 85, 88
IP_Range, 59, 340	SA AlarmWidth, 79, 85, 88
IP_Range116, 307	SA_AnalogGain, 268, 285
-	SA AnalogOffset, 268, 285
IP_Range14, 325 IP_Range18, 338	SA AnalogValue, 66
IP_RefractIndex, 184, 217, 232, 260	SA ArticleNumber, 116, 127, 134, 150,
IP RemoteAddr, 52	279
IP RemotePort, 52	SA_ASCII, 117, 120, 136, 138, 149, 151,
IP RingBufferSize, 46	178, 208, 227, 251
	SA_AssignLimits_ErrorOutput, 153
IP_Samplerate, 59	SA_AutoAdaptLED, 199
IP_ScaleErrorValues, 44	SA AutoAdaptLEDThr, 200
IP_SpectralAv, 185, 217, 260	SA AutoDark, 189, 236
IP_Speed, 145, 159	SA AutostartCommand, 84, 87, 90, 102,
IP_SpeedMeasure, 113	107, 112
IP_SpeedTracking, 113	SA_AutostartEdge, 83, 86, 89
IP_Stopbits, 49	SA_AutostartTrigger, 82, 86, 89
IP_Sync_TrgMode, 159	SA_Average, 81, 84, 87, 99, 104, 109
IP_TerminationChar, 114	SA_Average_for_reading, 269, 287
IP_TimerResolution, 215, 258	SA_Averaging, 177, 178, 204, 205, 208,
IP_UsbReadBufCnt, 53	226, 227, 247, 248, 251
IP_UsbReadBufSize, 53, 54, 214, 216,	SA AvgRefractIndex, 201, 202, 244
257, 259	SA AvIndex, 148, 150, 162, 167
IP_UseGate, 50	SA AvrNbr, 301, 304, 306, 312, 314, 315,
IP_X116, 217, 260	320, 323, 324, 329, 335, 337
IP_X18, 185, 232	SA AvrType, 300, 304, 306, 311, 314,
len, 30	315, 319, 322, 324, 329, 334,
, ••	336
maxLen, 35, 4143	SA_AvType, 117, 119, 135, 137, 148,
maxValues, 39, 40	151, 168
	SA BarycenterOffset, 197, 243
OpenSensor, 36	SA DarycenterOnset, 197, 243

SA_BarycenterScale, 197, 242 SA_BatteryCharge, 131	SA_FactorCh18, 332 SA_FirstPeak, 196, 241
SA_Binning, 247	SA_FirstReference, 359
SA_BootLoaderVer, 116, 135, 150	SA_FPGAVersion, 344, 356
SA_CalibTable, 214, 231, 257	SA_FreeSR, 190, 222, 223, 237
SA_CCD, 183, 213, 230, 256	SA_FrontEdge_Seg1, 270, 287
SA_Channel56Available, 356	SA_FrontEdge_Seg2, 270, 287
SA_ChExist116, 301, 304, 306	SA_FrontEdge_Seg3, 287
SA_ChExist14, 320, 323, 324	SA_FrontEdge_Seg4, 288
SA_ChExist18, 329, 335, 337	SA_Gate, 343
SA_ChTransmit116, 302, 304, 306	SA_HighFrequency, 192
SA_ChTransmit14, 320, 323, 324	SA_InvalidValues, 77, 86, 89
SA_ChTransmit18, 330, 335, 337	SA_IPAddress, 229
SA_Coeffizient, 311	SA_IsFirstRef, 342
SA CompleteAnswer, 54, 62	SA IsSecondRef, 342
SA ContinuousMode, 65	SA Keylock, 118, 120, 136, 139, 149,
SA Contrast, 266, 283	153, 168, 176, 225
SA_DarkSig, 213, 230, 256	SA_LampTest, 198
SA DataScale, 196, 242	SA LampTestThr, 198
SA Date, 117, 128, 135, 150	SA_Language, 265, 282
SA DatOut, 153, 168	SA_LaserIntensity, 266, 282
SA DEB, 183	SA LaserState, 153, 169
SA_DigitalInLatchSource, 355	SA LastValid, 194, 240
SA DigitalInValue14, 360	SA LatchReg, 342
SA DigitallOAvailable, 357	SA LED Off, 200
SA DigitalOut14, 353	SA LEDIntensity, 199
SA_DigitalOutValue14, 360	SA_LimitQ1-1, 65
SA Dignosis, 108	SA LimitQ1-2, 65
SA Direction, 131	SA LimitQ2-1, 66
SA DisplayGain, 269, 285	SA LimitQ2-2, 66
SA DisplayOffset, 268, 285	SA LimitQA-1, 66
SA_DispMeasUnit, 265, 282	SA_LimitQA-2, 66
SA_DoubleFrequency, 191	SA_LinMode, 312, 314, 315
SA_DutyCycle, 174	SA_LinMode116, 302, 305, 306
SA_EdgeDetectThreshold, 283	SA_LinMode18, 333, 335, 337
SA_EnableFlash, 150, 153	SA_LinPoint, 303, 313, 322, 334
SA_EncoderDirection, 350	SA_Lower_hysteresis, 152
SA_EncoderInterpolation, 349	SA_Lower_limit, 152
SA_EncoderLatchSource, 352	SA_LowerLimit, 269, 286
SA_EncoderMode, 351	SA_LowerWarning, 269, 286
SA_EncoderRawValue, 358	SA_LowFrequency, 192
SA_EncoderScaledValue, 358	SA_Major, 130
SA_Energy, 67	SA_Master_MidPoint_Setup, 152
SA_ErrorHandler, 117, 119, 128, 135,	SA_Master_value, 152
137, 148, 151, 167, 265, 282	SA_MasterValue, 270, 289
SA_ErrorMode, 78, 85, 88, 95, 105, 109	SA_MaxRaw, 276, 277, 297
SA_ErrorNumber, 54	SA_MaxRefractIndex, 201, 202, 244
SA_ErrorOutput, 148, 151	SA_MaxScaled, 277, 297, 298
SA_ErrorStatus, 67, 68	SA_MeasFrequency, 103, 104, 108
SA_ErrorText, 55	SA_MeasMode, 286
SA_Exposure, 190, 223, 237, 238	SA_MeasObject, 270, 287
SA_Ext_LaserSwitch, 266, 282	SA_MeasProgName, 268, 285
SA_ExtInputMode, 118, 120, 136, 139	SA_MeasProgNumber, 265, 282


```
SA MeasureMode, 175, 178, 193, 208,
                                                209, 220, 227, 234, 252, 263,
        224, 226, 238, 251
SA MeasureTime, 81, 84, 88
                                       SA RangeBegin, 80, 85, 88, 96, 106, 111
SA Median, 286
                                       SA RangeEnd, 80, 85, 88, 97, 106, 111
SA Median OnOff, 128
                                       SA Ranges, 188, 235
SA_MedianIndex, 117, 119, 135, 138
                                       SA RealFrequency, 348
                                       SA RealRatio, 348
SA Minor, 130
SA_MinRaw, 276, 277, 297
                                       SA_RearEdge_Seg1, 270, 288
SA MinRefractIndex, 201, 202, 243, 244
                                       SA RearEdge Seg2, 270, 288
SA MinScaled, 277, 297, 298
                                       SA Ref, 343
SA MinSR, 191, 238
                                       SA RefractIndex, 175, 193, 224, 239
SA MinSRIndex, 173, 188, 221, 235
                                       SA RefractIndexFileIdx, 201, 243, 244
SA ModeQ1, 65
                                       SA RefractIndexFileName, 201, 202, 243,
SA ModeQ2, 66
                                                244
SA MovingCount, 117, 119, 135, 138
                                       SA Reserve 1, 263, 279
SA NormQ1, 65
                                       SA Reserve 10, 288
SA NormQ2, 66
                                       SA Reserve 2, 266, 283
SA NormQA, 67
                                       SA Reserve 3, 266, 286
SA NormSig, 214, 231, 257
                                       SA Reserve 4, 270, 287
                                       SA Reserve 6, 288
SA NumberOfSegments, 287
SA Offset, 67, 76, 87, 90, 94, 95, 105,
                                       SA Reserve 7, 288
        109, 332
                                       SA_Reserve_8, 288
SA OffsetValue, 168
                                       SA Reserve 9, 288
SA Option, 116, 127, 134, 149, 161, 166,
                                       SA Reserved1, 121, 139
        203, 246, 263, 279
                                       SA Reserved2, 121, 139
SA OutOfRange, 131
                                       SA Reverse, 204, 246
SA Output Analog, 162, 167
                                       SA Revision, 130
                                       SA RS232 Baudrate, 266, 283
SA Output Digital, 162, 167
SA OutputContent, 92, 107, 111
                                       SA_RS232_Parity, 267, 283
SA_OutputFormat, 67, 75, 84, 87, 92,
                                       SA_RS232_StopBits, 267, 283
        106, 111
                                       SA_RS232_TimeoutRecv, 267, 284
SA OutputMode, 117, 120, 136, 138
                                       SA RS232 TimeoutSend, 267, 284
                                       SA RS422 Baudrate, 267, 284
SA OutputTime, 120, 139
                                       SA RS422 Parity, 267, 284
SA OutputType, 117, 119, 128, 131, 135,
        137, 147, 150
                                       SA RS422 StopBits, 267, 284
                                       SA_RS422_TimeoutRecv, 268, 284
SA Password, 67
SA PeakSearching, 118, 121, 136, 139
                                       SA_RS422_TimeoutSend, 268, 284
                                       SA RxDValue1..6, 360
SA PilotLaser, 64, 103, 107, 112
SA PrecedingValues, 77, 85, 89
                                       SA Samplerate, 148, 161, 166
SA PreTreated, 213, 230, 256
                                       SA SaveSettingsMode, 118, 120, 136,
SA_Q1Hysteresis, 98, 105, 110
                                                139
SA Q1Negation, 98, 105, 110
                                       SA ScaleFactor, 75, 85, 88, 94, 104, 109
                                       SA SecondReference, 359
SA Q1Start, 97, 105, 110
SA Q1Value, 65
                                       SA Sensor, 116, 134, 147, 161, 166,
SA Q1Width, 98, 105, 110
                                                172, 178, 187, 208, 220, 227,
SA Q2Hysteresis, 99
                                                234, 251
SA Q2Negation, 99
                                       SA SensorBaudrate, 64, 83, 86, 90, 101,
SA Q2Start, 99
                                                106, 111, 120, 138, 151, 213,
SA Q2Value, 65
                                                229, 256
SA Q2Width, 99
                                       SA SensorDatabits, 64
SA Range, 116, 127, 132, 134, 149, 153,
                                       SA SensorStopbits, 64
                                       SA_SensorType, 116, 134, 147, 161, 166
        161, 166, 168, 172, 180, 187,
```


SA_UpperWarning, 269, 286
SA_UserMeasProgNumber, 268, 285
SA ValidRange, 77, 86, 89
SA ValueActual, 132
SA ValueMedian, 132
SA Version, 64, 68, 84, 104, 130, 180
209, 227, 252, 305, 314, 323
336
SA VideoSignal, 125, 145, 158
SA_Watchdog, 207, 250
SA WatchdogPeriod, 207, 250
SA_WhiteRef, 214, 230, 257
SA_WindowMax, 96, 105, 109
SA_WindowMin, 96, 104, 109
SA_X116, 208, 210, 251, 253
SA_X18, 179, 180, 227, 228
SA_ZeroPoint, 168
SA_ZeroSet, 131
scaledData, 38, 40
sensor, 25
SensorCommand, 37
SetParameterDouble, 28
SetParameterDoubleU, 29
SetParameterDWORD, 27
SetParameterDWORDU, 28
SetParameterInt, 26
SetParameterIntU, 27
SetParameterString, 29
SetParameterStringL, 30
SetParameterStringU, 30
SP_0V, 181, 211, 254
SP_10V, 182, 211, 254
SP ActivateGate, 347
SP ActiveEdge, 206, 249
SP_ActiveSerialIf, 272, 290
SP_ADCLatchSource, 355
SP_ADCNumber, 355, 356, 359
SP_AlarmHysteresis, 78, 85, 88
SP_AlarmStart, 78
SP_AlarmWidth, 79
SP_AllDevices, 62
SP_AnalogGain, 274, 292
SP_AnalogOffset, 274, 292
SP_ASCII, 123, 142, 157
SP_AutoAdaptLED, 199
SP_AutoAdaptLEDThr, 200
SP_AutoDark, 188, 235
SP_AutostartCommand, 83, 101
SP_AutostartEdge, 82
SP_AutostartTrigger, 82
-
Sr Average, 80, 99
SP_Average, 80, 99 SP_Average_for_reading, 275, 294


```
SP AveragingForDark, 173, 188, 221,
                                       SP FrontEdge Seg3, 281, 295
                                       SP FrontEdge Seg4, 281, 295
SP AvIndex, 154, 163, 165, 170
                                       SP FullRange, 184, 216, 231, 259
SP AvrNbr, 301, 311, 319, 329
                                       SP GateChannel, 347
SP AvrType, 300, 311, 319, 328
                                       SP HighFrequency, 192
                                       SP HysteresisQ1, 69
SP AvType, 122, 140, 155, 164, 170
SP BarycenterOffset, 197, 243
                                       SP HysteresisQ2, 69
SP BarycenterScale, 197, 242
                                       SP InvalidValues, 77
SP Binning, 246
                                       SP IPAddress, 229
SP BlockSize, 216, 231, 259
                                       SP_Keylock, 121, 140, 154, 169, 176,
SP_CalibTable, 184, 216, 231, 259
                                               225
SP Chan, 302, 303, 318, 321, 331--333
                                       SP_LampTest, 198
SP ChTransmit1..16, 301
                                       SP LampTestThr, 198
SP_ChTransmit1..4, 320
                                       SP_Language, 271, 289
                                       SP LaserIntensity, 271, 290
SP ChTransmit1..8, 330
SP CmdStr, 62
                                       SP LastValid, 194, 240
SP Coeffizient, 310
                                       SP LED Off, 200
SP_CoeffParam, 310, 311
                                       SP LEDIntensity, 199
SP ContinuousMode, 72
                                       SP Length, 183
                                       SP LimitQ1-1, 70
SP Contrast, 272, 290
SP DataScale, 196, 242
                                       SP LimitQ1-2, 70
SP_DigitalInLatchSource, 354
                                       SP_LimitQ2-1, 70
SP DigitalOut1..4, 352
                                       SP LimitQ2-2, 71
SP DigitalOutValue1..4, 360
                                       SP LimitQA-1, 70
SP Direction, 133
                                       SP LimitQA-2, 71
SP DisplayGain, 274, 292
                                       SP LinMode, 302, 312, 332
                                       SP LinPos, 303, 312, 313, 321, 322, 333,
SP DisplayOffset, 274, 292
SP DispMeasUnit, 271, 289
SP_DoubleFrequency, 191
                                       SP LoadReg, 342
SP_DutyCycle, 174
                                       SP_Lower_hysteresis, 155
SP EdgeDetectThreshold, 290
                                       SP Lower limit, 155
SP EnableFlash, 154
                                       SP LowerLimit, 274, 293
SP Encoder1, 202, 245
                                       SP LowerWarning, 275, 293
SP Encoder2, 203, 245
                                       SP LowFrequency, 191
SP Encoder3, 203, 245
                                       SP Master value, 156
                                       SP MasterValue, 276, 296
SP EncoderDirection, 349
SP EncoderInterpolation, 348
                                       SP MeasFrequency, 103
SP EncoderLatchSource, 351
                                       SP MeasMode, 293
SP EncoderMode, 350
                                       SP MeasObject, 275, 294
SP EncoderNumber, 348--352, 357--359
                                       SP MeasProgName, 274, 292
                                       SP MeasProgNumber, 264, 271, 280,
SP EncoderPreloadValue, 352
SP ErrorHandler, 122, 128, 141, 156,
                                               289
        271, 289
                                       SP MeasureMode, 175, 193, 223, 238
SP ErrorMode, 77, 95
                                       SP MeasureTime, 81
SP ErrorOutput, 158
                                       SP MeasValue, 147
SP Exposure, 190, 223, 237
                                       SP Median, 294
SP Ext LaserSwitch, 271, 289
                                       SP Median OnOff, 129
SP ExtInputMode, 124, 143
                                       SP MedianIndex, 122, 140
SP FactorCh1..8, 331
                                       SP ModeQ1, 71
                                       SP ModeQ2, 71
SP FirstPeak, 196, 241
SP FreeSR, 189, 222, 237
                                       SP MovingCount, 122, 140
SP_FrontEdge_Seg1, 264, 275, 280, 294
                                       SP_NormQ1, 72
SP_FrontEdge_Seg2, 265, 275, 281, 294
                                       SP_NormQ2, 72
```



```
SP NormQA, 72
                                       SP Sensor, 172, 187, 220, 234
                                       SP SensorBaudrate, 83, 101, 122, 141,
SP NumberOfPoints, 205, 248
SP NumberOfSegments, 294
                                               156, 212, 229, 255
SP Offset, 69, 76, 94, 183, 331
                                       SP SensorReset12, 343
                                       SP SensorReset34, 343
SP Option, 203, 245
SP OutNr, 181, 210, 253
                                       SP SerialOutFormat, 289
                                       SP ShowChannels, 330
SP OutputContent, 92
SP_OutputFormat, 75, 92
                                       SP ShowLinearized, 330
SP OutputMode, 123, 143
                                       SP SOD, 181, 211, 254
SP OutputTime, 124, 143
                                       SP SpectralAv, 177
SP_OutputType, 123, 128, 133, 142, 157
                                       SP_Speed, 141, 157
SP PeakSearching, 125, 144
                                       SP SRIndex, 173, 189, 221, 236, 299,
SP PilotLaser, 69, 103
                                               309, 317, 327
                                       SP_SSIFormat, 93
SP_PrecedingValues, 76
SP Q1Hysteresis, 97
                                       SP Stand-by, 73
SP Q1Negation, 97
                                       SP SumFreq, 174
SP Q1Start, 97
                                       SP Sync TrgMode, 156
SP Q1Width, 97
                                       SP Target Distance, 275
                                       SP TeachValue1, 124, 144
SP Q2Hysteresis, 98, 106, 110
SP Q2Negation, 98, 106, 110
                                       SP TeachValue2, 124, 144
SP Q2Start, 98, 105, 110
                                       SP TempCoeffParam, 318, 319
SP_Q2Width, 98, 106, 110
                                       SP_TemperatureCoeffizient, 318
SP RangeBegin, 79, 96
                                       SP TerminationChar, 92
SP RangeEnd, 80, 96
                                       SP Threshold, 125, 144, 176, 194, 224,
SP ReadMode, 215, 258
                                               239
SP RearEdge Seg1, 265, 276, 281, 295
                                       SP Threshold1, 195, 240
SP_RearEdge_Seg2, 265, 276, 281, 295
                                       SP Threshold2, 195, 241
SP RearEdge Seg3, 281, 295
                                       SP TimerFrequency, 347
SP_RearEdge_Seg4, 281, 295
                                       SP_TimerNumber, 347
SP RefractIndex, 163, 175, 193, 224, 239
                                       SP_TimerRatio, 348
                                       SP TransmitIntensity, 170, 192
SP RefractIndexFile, 202, 245
SP RefractIndexFileIdx, 201, 202, 243,
                                       SP TrgChannel1..6, 354
                                       SP TrgMode, 300, 310, 317, 328
        245
SP Reserve 10, 296
                                       SP TrgValue1..6, 361
SP Reserve 2, 271, 290
                                       SP TriggerDelay, 81, 100
SP_Reserve_3, 272, 293
                                       SP TriggerEdge, 81, 100
SP Reserve 4, 275, 294
                                       SP TriggerMode Edge, 205, 248
SP Reserve 6, 295
                                       SP TriggerMode State, 206, 249
SP Reserve_7, 295
                                       SP TxDChannel1..6, 353
SP Reserve 9, 296
                                       SP TxDValue1..6, 361
SP Reverse, 203, 246
                                       SP Unit, 133
SP RS232_Baudrate, 272, 290
                                       SP Upper hysteresis, 155
                                       SP Upper limit, 155
SP RS232 Parity, 272, 290
SP RS232 StopBits, 272, 291
                                       SP UpperLimit, 274, 293
                                       SP UpperWarning, 274, 293
SP RS232 TimeoutRecv, 273, 291
SP RS232 TimeoutSend, 272, 291
                                       SP UserMeasProgNumber, 273, 292
SP RS422 Baudrate, 273, 291
                                       SP ValidRange, 76
SP RS422 Parity, 273, 291
                                       SP VideoMode, 158
SP RS422 StopBits, 273, 291
                                       SP WaitSpectrumTimeout, 215, 258
SP RS422 TimeoutRecv, 273, 292
                                       SP Watchdog, 206, 249
SP_RS422_TimeoutSend, 273, 291
                                       SP WatchdogPeriod, 207, 250
SP SaveSettingsMode, 124, 143
                                       SP_Weighting, 173, 188, 221, 235
SP ScaleFactor, 75, 94
                                       SP_WindowMax, 96
```


SP_WindowMin, 95 SP_X1..16, 209, 252 SP_X1..8, 180, 228 SP_Zero, 212, 255

TransferData, 40

versionStr, 42