Overview of Regression & ANOVA Different Names for the Same Thing

Ryne Estabrook

Department of Psychology University of Virginia

July 24, 2009

Goals of Today's Talk

- Today, I'll be giving an overview of regression and ANOVA.
- Topics we'll go over:
 - Some background knowledge.
 - Basics of regression & ANOVA as GLM simplifications.
 - Model selection, nonlinearity, diagnostics.
- Oh, and a few things about this talk:
 - Interrupt with questions as you have them.
 - ► This isn't inherently a programming talk, but I'd be happy to answer whatever questions you may have about your statistical program(s) of choice.
- More talks to come!

Whad'Ya know?

Not much, you?

- There are a few mathematical & statistical concepts that you need to know to understand regression, ANOVA & statistics in general.
- I'll start with a quick review of these topics:
 - Measurement.
 - Statistics as a concept.
 - Descriptive statistics.
 - Distributions.
 - Degrees of freedom.
- Then we'll move on to the topics of the day.

on GLM Regression ANOVA Assessing Fit Nonlinearity Diagnostics References

Measurement

Measurement is "the assignment of numbers to things according to a rule (Stevens, 1939)."

- The numbers we assign have some property that exists in our data.
 - We identify Nominal, Ordinal, Interval and Ratio scales, which correspond to specific mathematical properties.
 - ► These properties can be summarized as Equality, Order, Addition, & Multiplication.
- We can then use the mathematics to take advantage of those numerical properties.
 - Its not that we use numbers just because we like numbers, but the relationships in data can be described by the relationships between numbers.

Regression & ANOVA

Regression ANOVA Assessing Fit Nonlinearity Diagnostics References

Statistics

- Statistics is the branch of mathematics that deals with data.
 - There's already a lot of math out there, that describes any relationship you can put in appropriate numerical terms.
 - ► Think of math as a language you can co-op, rather than reinventing the wheel for every new construct or topic.
- There are two general classes of statistics:
 - Descriptive Statistics, which I'll review now, and
 - Inferential Statistics, which includes regression and ANOVA.

stabrook University of V

Descriptive Statistics

- Descriptive statistics are used to describe data.
 - Wow, that's really deep.
 - You may also hear the term summary statistics.
 - The point of these statistics is to take more data than you can hold in your head at once, and reduce it in such a way that you understand as much of the data as possible with as few numbers as possible.
- The most common descriptive statistics are measures of central tendency:
 - Mode: any scale of measurement, not often analyzed.
 - Median: Ordinal-Ratio scales, used in non-parametric statistics.
 - (Arithmetic) Mean: Interval & Ratio scales, used in parametric statistics, has units, tied to distributions.

Comparing Measures of Central Tendency

Aspect	Mode	Median	Mean
Scales	Nominal, Ordinal, Interval & Ratio	Ordinal, Interval & Ratio	Interval, & Ratio
Observations Used	Varies	1-2	All
Formula	No	"Sorta"	Yes
Advanced Statistical Properties	No	Some	Lots
Sensitive To Extreme Observations	No	No	Yes

prook University of Virginia

roduction GLM Regression ANOVA Assessing Fit Nonlinearity Diagnostics References

Descriptive Statistics

No one is average

- The other class of descriptive stats you need to know are measures of spread.
 - I won't focus on ranges or quantiles, the measures of spread tied to the median and non-parametric statistics.
- If you use the mean for central tendency, you'll likely use variance & covariance as measures of spread.
 - Variance is the sum of squared deviations from the mean for any variable.
 - Standard deviation is the (positive) square root of variance.
 - Covariance is the sum of the products of the deviations from the mean for two variables.
 - ▶ The covariance of any variable with itself is its variance.
 - Correlation is covariance in standard units.

Regression & ANOVA

oduction GLM Regression ANOVA Assessing Fit Nonlinearity Diagnostics Reference

Normal Distribution

- ► The Normal Distribution is defined by mean and variance, and symmetric around the mean.
 - ► The mean is the most value of X with the highest probability.
- The Normal Distribution is scaled by the standard deviation.
 - ▶ If you multiply X by 2, both the mean and standard deviation double, and the variance quadruples.
 - ▶ 68.2% falls between $\mu \pm \sigma$, 95.4% between $\mu \pm 2\sigma$
- ► The Normal Distribution is defined from inf to inf.
 - Most computer approximations of the normal distribution place a cutoff beyond which the probability of X is zero.

abrook University of Virginia

roduction GLM Regression ANOVA Assessing Fit Nonlinearity Diagnostics References

Normal Distribution, Probability Density Function

University of Virginia

roduction GLM Regression ANOVA Assessing Fit Nonlinearity Diagnostics References

The χ^2 Distribution

▶ The χ^2 distribution is the square of the normal distribution.

▶ The version of the normal distribution used in the χ^2 is the standard normal, with μ =0 and σ^2 =1.

$$X^{\sim}N(0,1)$$
$$\chi_1^2 = X^2$$

- ▶ This version of the χ^2 distribution has 1 degree of freedom.
- ► The χ^2 distribution with k degrees of freedom is the sum of k independent squared standard normal distributions.
- ► The F distribution with (d_1, d_2) degrees of freedom is the ratio of two χ^2 distributions, divided by their df.

roduction GLM Regression ANOVA Assessing Fit Nonlinearity Diagnostics Reference

Degrees of Freedom

- Degrees of Freedom (df) is an important & confusing statistical topic.
- Mathy Definition:
 - Dimensionality of a random vector.
 - Refers to how many components of a vector need to be known before a vector is determined.
- Less-Mathy Definition:
 - The number of (remaining) unique pieces of information in a set or system.
 - df are the units by which we measure information.
 - Most often, we'll talk about the dimensionality of data in terms of number of subjects.

GLM Regression ANOVA Assessing Fit Nonlinearity Diagnostics References

Other Stuff

- I may hint at some matrix operations.
 - If you're unfamiliar or rusty, a matrix is a rectangular table of numbers, on which you can do various types of math (including special types of addition and multiplication).
 - A vector is a matrix with either one column (column vector) or one row (row vector), and a scalar is a matrix with one row and one column (just a number).
- I also assume some knowledge of probability and distributions.
 - ► The distributions I just referenced are the basic ones.
 - Advanced distributions and probability knowledge is very useful.
- Any other questions before we move on?

General Linear Model

- ➤ The general linear model is a very general model that describes linear relationships between variables.
- It is typically expressed in matrix terms:

$$\mathbf{Y} = \mathbf{X}\beta + \mathbf{E}$$

- where:
 - ▶ **Y** is an *n* x *k* matrix of dependent variables,
 - ▶ **X** is an *n* x *p* matrix of independent variables,
 - β is an p x k matrix of estimated terms that define the relationships between X & Y, and
 - ▶ **E** is an *n* x *p* matrix of residuals or errors.

General Linear Model

Univariate

- ► This model can be used for a large variety of data types and models, especially multivariate models.
 - Multivariate means multiple dependent variables, and doesn't relate to number of independent variables.
- If you want to do univariate analyses, it gets simpler.

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{E}$$

- where:
 - ▶ **Y** is a vector of length *n* of dependent variables,
 - ▶ **X** is an *n* x *p* matrix of independent variables,
 - β is a vector of length p estimated terms that define the relationships between X & Y, and
 - **E** is a vector of length *n* of residuals or errors.

General Linear Model

Univariate, no matrices

- We still have that pesky X matrix.
- ► If we have p independent variables, we can split that into p lists or vectors, and get this:

$$\mathbf{Y} = \mathbf{X_1}\beta_1 + \mathbf{X_2}\beta_2 + \ldots + \mathbf{X_p}\beta_p + \mathbf{E}$$

- where:
 - ▶ **Y** is a vector of length *n* of dependent variables,
 - X₁ Xp are vectors of length n of independent variables,
 - ▶ β_1 β_p are scalar estimated terms that define the relationships between **X** & **Y**, and
 - **E** is a vector of length *n* of residuals or errors.

GLM Regression ANOVA Assessing Fit Nonlinearity Diagnostics References

General Linear Model

- ► That should look pretty familiar, and can be used for a great many things, depending on how **X** and **Y** look.
- Stuff we need to know to estimate this model:
 - The characteristics of X and Y, including scale of measurement and distributional characteristics.
 - Some treatment for residuals or the conditional distribution of Y given X.
 - ▶ A method for estimation, or a way to pick β .
- Today, we're talking about two different applications of the GLM, defined by the characteristics above: ANOVA & regression.

Regression & ANOVA

duction GLM Regression ANOVA Assessing Fit Nonlinearity Diagnostics References

Regression

Little bit of history

- So some of the first people to use this method were interested in "regression to the mean."
 - Galton (Darwin's cousin) was interested in why the offspring of tall people were shorter than their parents.
 - Legendre and Gauss began the use of the method of least squares for estimation problems.
- Regression analysis is fundamentally about prediction:
 - If a horse can run X mph, how fast will his offspring run?
 - For any set of values on some predictors or independent variables, what is my predicted value of a dependent variable?
 - When X goes up 1 unit, how does Y move?
- ▶ And of course, it's now recognized as a subset of the GLM.

Regression Lines

- Being GLM, we're going to fit some lines.
- More accurately, the formula we're using for prediction consists of linear combinations.
- The equation for simple regression looks like so:

$$Y = b_0 + b_1 X + e$$

$$\hat{Y} = b_0 + b_1 X$$

- Y & X are observed variables, b₀ & b₁ define the predicted relationships.
 - e is our error or residual term, and \hat{Y} is the predicted value of Y (Y-e).
- ► For those who've forgotten, the equation for a line is:

Regression Lines

This is a line

picture of a line

duction GLM Regression ANOVA Assessing Fit Nonlinearity Diagnostics References

Regression Lines

"Multivariate Lines"

- ► We can have however many predictors we want, which means we don't have lines anymore.
- With two predictors, we have a regression plane.
 - ▶ We have three variables (2 IV, 1 DV), we have to make three dimensional plots (plot in 3-space).
- With three or more predictors, we have a regression hyperplane.
 - ▶ We have four or more variables (3+ IV, 1 DV), we have to make high-dimensional plots.
 - These plots (in 4-space), are hard to draw. In 4-space, you can try to animate to use time, but that's more flashy than useful.

uction GLM Regression ANOVA Assessing Fit Nonlinearity Diagnostics References

Fitting Models

Something's missing

- ➤ The "goal" of regression is to yield some estimates for our parameters.
 - What's a parameter? Its a value that is fixed for a given sample or experiment, and is the "best" estimate of that value in the population being applied to.
 - Y and X aren't parameters, because they each vary.
 - ► The relationship between Y and X (b₁) and the intercept of Y (b₀) are, because they're fixed for the sample (we just don't know them yet).
- ➤ To get parameter estimates, we need some criterion by which to pick estimates (a method of estimation).
- ► This criterion is known as an estimator or objective function. In general, we're looking to have the lowest difference between Y and Ŷ, however we define that.

Fitting Models

Something's missing

- So we want to make the smallest errors possible. $e = Y - \hat{Y}$
- How do we do that?
 - We can't take a raw difference, as $\hat{Y} = \inf$ gives the lowest possible error.
 - Smallest absolute error underlies non-parametric stats.
 - ► Smallest squared error, or $(Y \hat{Y})^2$ underlies parametric stats.
- ► This least-squares criterion is the most common way to find parameters and solve regression problems.

Regression & ANOVA

uction GLM Regression ANOVA Assessing Fit Nonlinearity Diagnostics References

(Ordinary) Least Squares Estimation: OLS

It's SLO backwards

- Why use least squares?
 - It forces all errors to be positive, making minimization meaningful.
 - By the Gauss-Markov theorum, OLS estimation yields the best linear unbiased estimates of parameters, errors are homoskestastic and have an expectation of zero.
 - It is equivalent to maximum likelihood estimation, which has additional assumptions.
- Maximum likelihood?
 - Assumes DV is normally distributed with unknown mean and variance.
 - Just as the mean is the value at which variance is minimized, maximum likelihood estimate minimizes squared error (residual variance).

ion GLM **Regression** ANOVA Assessing Fit Nonlinearity Diagnostics References

More OLS

You're SLO backwards!

- It's the distributional assumptions that make OLS and ML really flexible.
 - ▶ If errors are normally distributed, then regression becomes a statement of *mean structure*.
 - Normality assumptions, like those in the Central Limit Theorum, get at standard errors.
 - CLT assumptions and random sampling allow us to generalize our regression parameters as parameter estimates that apply to the populations we study.
 - Under OLS, regression becomes a function of the covariance matrix of the independent and dependent variables.

DOOK University of VI

Expressing Regression using Covariance

You're SLO backwards?

- Here, I'll distinguish between raw units regression parameters (b_i) and standardized parameters (β_i).
- Under simple regression, the regression parameters can be expressed as:

$$b_1 = r_{XY} * \frac{\sigma_Y}{\sigma_X} = \frac{Cov(X, Y)}{Var(X)}$$

$$b_0 = \bar{Y} - b_1 * \bar{X}$$

 Under multiple regression, the regression parameters can be expressed much more complexly.

- We're trying to predict a dependent variable, and we express that variable's mean structure as a function of a set of independent or predictor variables.
- Alternately, the DV is normally distributed, with parameters:

$$Y \sim N(b_0 + b_1 X_1 \dots b_j X_j, \sigma_e^2), OR$$

 $Y = b_0 + b_1 X_1 \dots b_j X_j + e, e N(0, \sigma_e^2)$

• We estimate the b or β parameters by minimizing the variance of the residuals.

▶ Let's interpret this regression equation:

$$Y = 19.47 + 1.04 * X_1 - 0.43 * X_2 + e$$

 $Var(e) = 3.43$

▶ Let's interpret this regression equation:

$$Y = 19.47 + 1.04 * X_1 - 0.43 * X_2 + e$$

 $Var(e) = 3.43$

▶ When X_1 and X_2 are zero, the predicted value of Y is 19.47.

▶ Let's interpret this regression equation:

$$Y = 19.47 + 1.04 * X_1 - 0.43 * X_2 + e$$

 $Var(e) = 3.43$

- ▶ When X_1 and X_2 are zero, the predicted value of Y is 19.47.
- ▶ Y goes up 1.04 units for every unit X_1 increases.

Let's interpret this regression equation:

$$Y = 19.47 + 1.04 * X_1 - 0.43 * X_2 + e$$

 $Var(e) = 3.43$

- ▶ When X_1 and X_2 are zero, the predicted value of Y is 19.47.
- \triangleright Y goes up 1.04 units for every unit X_1 increases.
- ▶ Y goes down 0.43 units for every unit X_2 increases.

▶ Let's interpret this regression equation:

$$Y = 19.47 + 1.04 * X_1 - 0.43 * X_2 + e$$

 $Var(e) = 3.43$

- ▶ When X_1 and X_2 are zero, the predicted value of Y is 19.47.
- ▶ Y goes up 1.04 units for every unit X_1 increases.
- ▶ Y goes down 0.43 units for every unit X_2 increases.
- ► The residual variance of Y (variance around regression line) is 3.43.

Lotabroon

oduction GLM Regression ANOVA Assessing Fit Nonlinearity Diagnostics Reference

Question Slide

- This is a question slide.
- Stuff we've learned:
 - ▶ The basics of regression analysis, both simple and multiple.
 - How we estimate regression parameters.
 - Very basic interpretation.
- Stuff we haven't learned:
 - Advanced interpretation.
 - Model diagnostics.
 - Other flavors of the GLM.
- So, ask some questions already.

Analysis of Variance

- ► ANOVA was developed by R.A. Fisher in the late 1910s, published in 1921 and 1925.
- His goal and application was agribusiness, specifically Guinness brewing, which was one of the driving forces behind finite statistics.
 - ► The driving force behind infinite statistics was 16th-17th mathematicians making money counseling gamblers. Quant is really about gambling and beer.
- One of the benefits (if not the principle benifit) of ANOVA is that it is easy to do by hand, and is built for small samples.
- It became an often used technique in experimental psychology for the same reasons.
 - ANOVA then "expanded" to deal with more complex issues.
- Let's see how it works, analyzing variance from a GLM perspective.

oduction GLM Regression ANOVA Assessing Fit Nonlinearity Diagnostics References

Approaching the GLM from Variance

We're sneaking up on it!

- ▶ Lets return to that GLM formula, considering a single dependent variable (y) and a single predictor (x).
- We can parse the variance of something into two components: the part shared or caused by something else, and the unique part.
- ▶ We typically use a coefficient (b) to describe the variance in Y that is shared with X.

$$y = b * x + e$$

 $Var(y) = Var(b * x) + Var(e)$

If you squint, you can see that this is regression, with some assumptions and transformations.

University of Virginia

Approaching the GLM from Variance

▶ If we assume that we have groups and some DV (Y), then we can approach this like so:

$$Var(Y) = Var(GroupMeans) + Var(WithinGroups)$$

- ► This formula is a part of the GLM when we define "group means" and "within groups" a very specific way:
 - Var(Group Means) is the variance of each person's group mean from the mean for all people.
 - Var(Within Groups) is the variance of each person's score from their respective group mean.
 - I'll clear up the math very soon. We have to be careful about adding & subtracting variances.
- Let's introduce this with an example.

Example: Height

- Let's say I wanted to know the heights of some group of people.
 - ▶ I know that the mean is my best guess for the height of any one of them, if my criteria is "lowest squared deviation."
- So we know that the mean and variance aren't perfect in this case, because we know there are robust height differences between the sexes
 - Put another way, we know that the mean isn't really a great way to describe this distribution. Each group should have a mean.
- How can we include that information?

Example: Height

- ▶ How can we include it?
 - ► *t*-tests evaluate the difference in group means.
 - Regression would predict height from an intercept and slope (e.g., β_0 =mean female height, β_1 =sex difference).
- But we can also analyze this via variance, hence the term analysis of variance (ANOVA).
- ► Some of the variance in Y is not best described as variance in Y, but variance in the group means.

Var(Y) = Var(GroupMeans) + Var(AroundGroupMeans)

A Note About Variances.

 E^b

- Variances are a real pain to add and subtract, especially when we're parsing them into parts.
 - We would have to invoke the kind of formulas used when creating pooled variances.
 - Luckily, there is an easier way.
- Another word for variance is mean squared error, often MS in ANOVA terminology.
 - $Y_i \bar{Y}$ is error, then we square it and take the mean.
 - The standard deviation is root mean squared error.

$$Var(Y) = MS_y = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}{df_V}$$

Estabrook

A Note About Variances.

E#?

$$Var(Y) = MS_y = rac{\displaystyle\sum_{i=1}^n (Y_i - \bar{Y})^2}{df_y}$$

- Another way to talk about the "squared-error" component is as sums of squares, or SS.
 - Sums of squares (around the mean) are usually subscripted by the variable and/or group they come from.
- We can now simplify the formula for variance even further.
 - In a minute, this will make ANOVA pretty easy.

$$Var(Y) = MS_y = \frac{SS_y}{df_y}$$

ANOVA

 $B^{\phi 13}$

▶ If we throw the variance formulas into our ANOVA.

$$\begin{array}{rcl} \textit{Var}(\textit{Y}) & = & \textit{Var}(\textit{GroupMeans}) + \textit{Var}(\textit{WithinGroups}) \\ \frac{\sum_{i=1}^{n}(\textit{Y}_{i} - \bar{\textit{Y}})^{2}}{\textit{df}_{\textit{y}}} & = & \frac{\sum_{i=1}^{n}(\textit{Y}_{i} - \bar{\textit{Y}}_{\textit{group}})^{2} + \sum_{i=1}^{n}(\bar{\textit{Y}}_{\textit{group}} - \bar{\textit{Y}})^{2}}{\textit{df}_{\textit{y}}} \end{array}$$

▶ If we cancel out the degrees of freedom from both sides and rename the sums of squares, we get:

$$SS_y = SS_{betweengroups} + SS_{withingroups}$$

Now it's starting to look like ANOVA.

ANOVA

Height Example

	Sex					
	Female	Male	Total			
Mean	65.07	68.50	66.79			
Var (MS)	16.12	15.46	18.60			
n	50	50	100			

- Ok, let's think about that height example again.
- We need to calculate three things:
 - ▶ The sums of squares for the total sample (SS_y)
 - ► The sums of squares between or across the groups $(SS_{between}, or \sum (\bar{Y}_{group} \bar{Y})^2)$
 - ► The sums of squares within the groups or from the respective group means $(SS_{within} \text{ or } \sum (Y_i \bar{Y}_{group})^2)$

University of Virginia

ANOVA

Sums of Squares of Y

- ▶ The sums of squares of Y are pretty easy to calculate.
 - ► If MS = $\frac{SS}{df}$, then SS = MS*df
- We already have the mean squares of Y; they're the variance!

$$SS_y = MS_y * df_y$$

= $Var(Y) * (n-1)$
= $18.60 * (100 - 1) = 1841.18$

ANOVA

SS_{withingroup}

- The sums of squares within each group are pretty easy to calculate as well.
- We already have the mean squares of Y for each group; they're the within group variances.
- ▶ In the same way that $SS_v = MS_v * df_v$, SS_{within} is calculated for each group, summing across all groups (from j=1 to k).

$$SS_{within} = \sum_{j=1}^{K} MS_{j} * df_{j}$$

$$= Var(Y|F) * (n_{F} - 1) + Var(Y|M) * (n_{M} - 1)$$

$$= 16.12 * (50 - 1) + 15.46 * (50 - 1) = 1547.18$$

ANOVA

SS_{betweengroups}

- ► So the SS_{betweengroups} is the deviation of the group means from the *grand mean* for each person.
- ► That means the deviation of groups from the grand mean must be weighted by sample size.

$$SS_b = \sum_{i=1}^{n} (\bar{Y}_{ij} - \bar{Y})^2 = \sum_{j=1}^{k} n_j (\bar{Y}_j - \bar{Y})^2$$

$$= (n_F) * (\bar{Y}_F - \bar{Y})^2 + (n_M) * (\bar{Y}_M - \bar{Y})^2$$

$$= 50 * (65.07 - 66.79)^2 + 50 * (68.50 - 66.79)^2 = 294.00$$

Estabrook

ANOVA

Ta-Da!

So we have all of the sums of squares! We've done ANOVA!

$$SS_y = SS_{between} + SS_{within}$$

1841.18 = 294.00 + 1547.18

- Are there sex differences in height?
- Answer: 294.

Question Slide

- ANOVA is just a permutation of the GLM.
- Instead of talking about predictor variables, we're talking about splitting a sample into unordered (nominal) groups.
- Stuff we know:
 - We can get all of the components we need for ANOVA from sample statistics.
 - ANOVA just parses variance into stuff due to group differences and other variance.
- Stuff we don't know:
 - How to turn 294 into an answer.
- Questions?

Back to GLM

- ► The point I've been hammering on is that, as special cases of the GLM with specific types of data, regression & ANOVA are the same thing.
 - ANOVA is restricted to categorical (& unrelated) predictors, but otherwise is OLS regression.
 - As implied before, we can include categorical predictors in regression, using a coding scheme.
 - When R runs an ANOVA, it turns your equation into a regression, runs that, then translates it back.
- ► From here on out, I'll talk about the two models as a single model!
 - We'll work through the height example from both regression and ANOVA frameworks.
 - Next on the docket: model fit & inference.

Assessing fit

Decisions, decisions

- The decision framework typically employed in basic statistics is null hypothesis testing (NHT).
 - We formulate two mutually exclusive and exhaustive hypothesis about the relationship between predictor(s) and dependent variables.
 - ► The null hypothesis is often one of no relationship.
- How does it work?
 - We get some estimate of the IV-DV relationship.
 - We use the parameters to estimate the probability of a relationship this strong or stronger occurring if none actually existed.
 - We decide to retain or reject the null hypothesis of no relationship, based on a criterion.
 - This criterion is an error rate (α) , saying that any outcome less likely than α leads to rejection of the null hypothesis.

Assessing fit

Height Data Redux

Height: ANOVA Version							
Female Male Total							
Mean	65.07	68.50	66.79				
Var (MS)	16.12	15.46	18.60				
n	50	50	100				

Cov	Height	Sex
Height Sex	18.60 0.86	0.25
Means	66.79	0.50
r	/	100

 $I_{Height,Sex} = 0.400$

- Here's the data again, with some additional information.
- So let's run the analyses, both from ANOVA and regression.

Regression & ANOVA

Assessing fit

Height Data Redux

ANOVA

$$SS_y = SS_{between} + SS_{within}$$

1841.18 = 294.00 + 1547.18

Regression

$$Y = b_0 + b_1 * Sex$$
,
 $Sex = 0$ for Females, 1 for Males
 $Y = 65.07 + 3.43 * Sex$

- ▶ Ok, we've run ANOVA and regression.
- ▶ Let's run some tests and evaluate these models.

F-test

The first test we'll run will be the F-test, which can be applied to either regression or ANOVA.

- What if there is no effect of the grouping variable?
 - ► In that case, we would expect the variance or MS between groups to be equal to the variance or MS within groups.
 - Alternatively, we would expect the ratio of the between group MS to the within group MS to be one.

Test Statistic =
$$\frac{MS_b}{MS_w} = \frac{\frac{SS_b}{df_b}}{\frac{SS_w}{df_w}}$$

- Wait, isn't SS the sum of independent squared deviations from the normal distribution?
- ► That sounds a whole lot like the ratio of two χ^2 distributions. That's the F-distribution!

University of Virginia

F-test

$$F - Statistic = \frac{MS_b}{MS_w} = \frac{\frac{SS_b}{df_b}}{\frac{SS_w}{df_w}}$$

- ▶ If there is no effect of grouping, we'd expect MS_b and MS_w to be equally valid estimates of the sample variance.
- ▶ If there is an effect, then *MS_b* will be bigger.
- ► The same logic applies to regression, too.

tabrook University of Vir

ANOVA Table

May be familiar

Effect	SS	df	MS	F	р
Between Within	294.00 1547.18	-	294.00 15.79	18.62	<.001
Total	1841.18	99			

- ▶ We've split df into df_b (1 because we're estimating one more mean with two groups than with one), and df_w (100 people-2 estimated means=98).
- We get an F ratio of 18.62, which on 1 and 98 degrees of freedom has a probability of .0000381369.
- If we set a criterion of .05, then we would reject the null hypothesis of no relationship.

Regression Table

May be familiar

Effect	Est	SE	t	р	β
Intercept					
Slope	3.43				
R ² - 222 Resid	Jual Varianca -	15 70 D	cidus	1 df _ 0	Ω

- Here are the incomplete regression results.
- ▶ We do have a residual variance (15.79), which can become a residual sums of squares (RSS=15.79*98=1547.18).
- ▶ Hey, that is exactly the SS_w from the ANOVA! We had SS_v before we started, and we split up degrees of freedom based on parameters instead of means.

$$F - Statistic = \frac{\frac{SS_y - RSS}{df_{total} - df_e}}{\frac{RSS}{df_e}} = \frac{\frac{1841.18 - 1547.18}{99 - 98}}{\frac{1547.18}{98}} = \frac{\frac{294}{1}}{\frac{1547.18}{98}} = 18.62$$

Nesting

Its how you make a house a home

- ▶ The F-test was secretly our first test of *nested models*.
- Two models are nested when one is a special case of the other, or when all of the parameters in the littler one are in the big one.
- When this occurs, we can attribute all improvements in fit to the different parameters in the larger model.
- In the last model, we were actually comparing two models:
 - Null Model: Height = b_0 + e
 - ► Alt. Model: Height = $b_0 + b_1$ * Sex + e
- ▶ The null model is the alternative, with *b*₁ set to zero.
- Nested models can only be compared on the exact same data.

Nesting

Redoing the F-test

- Instead of a simple test, we can think of the F-test for regression as a way to compare two nested models.
- If the smaller model is N and the larger is A, then the F statistic becomes:

$$F - Statistic = \frac{\frac{RSS_N - RSS_A}{df_N - df_A}}{\frac{RSS_A}{df_A}} = \frac{\frac{1841.18 - 1547.18}{99 - 98}}{\frac{1547.18}{98}} = \frac{\frac{294}{1}}{\frac{1547.18}{98}} = 18.62$$

➤ The answer didn't change, because the residual variance of the null model (called an intercept-only model) is the variance in Y.

Other Nested Model Tests

The Likelihood Ratio Test

- One common test is the likelihood ratio test (LR).
 - Any model estimated with maximum likelihood gets a likelihood value.
 - The ratio of these two likelihoods provides another nested model test.
 - -2 times the natural log of this ratio is χ^2 distributed, with *df* equal to the difference in number of parameters.
 - ▶ Because of the properties of the logarithm, this is expressed more simply as -2LL_A- -2LL_N.
- Why use this over the F-test?
 - F-test only works for residual variances.
 - LR test can work for any model using ML.

$$-2LL = -2 * \log L(\beta|y, X) = n \left[\log \left(\frac{2\pi RSS}{n} \right) + 1 \right]$$

University of Virginia

Other Nested Model Tests

More Height Example

Model	-2LL
Intercept-Only	575.04
Sex	557.64

- $\chi_1^2 = 17.40$, p=0.000030.
- What do you know, the same answer (within 6 digits of rounding error)!
 - All of your significance tests should come out the same, because they're all testing the same thing!
 - If they don't, check your math and assumptions.

Non-Nested Model Tests

More Height Example

- We've been discussing global model comparison of nested models.
- What if your models aren't nested? Here are two MI -based tools
 - Akaike's Information Criterion (AIC), defined as -2LL + 2*number of parameters.
 - Bayesian Information Criterion (BIC), defined as -2LL + log(n)*number of parameters.
- Simply compare the values: lowest AIC or BIC wins.
- Compare as many models at once as you like.
- Never use AIC or BIC to compare nested models.

Parameter Model Tests

Standard Errors

- We've been discussing global model comparison.
- We also can test individual parameters using their standard errors.
 - Standard errors are the standard deviations of a sampling distribution.
 - We can then express any regression effect as so many standard errors (SDs) away from zero.
 - This is just a t-test (remember, the t distribution is just the normal distribution with a sampling correction).
- Caveat: judging the significance of effects based on their values can be affected by multicolinearity.

Regression & ANOVA

Regression Table

May be familiar...again.

Effect	Est	SE	t	р	β
Intercept	65.07	0.56	116.19	<.001	
Slope	3.43	0.80	4.29	<.001	.400

 R^2 = .160, Residual Variance = 15.79, Residual df = 98.

- Here are the complete regression results.
- We can run a t-test on the slope coefficient, with df equal to the residual df.
- We get the same answer, because the only parameter we're really testing is the sex effect.

Estabrool

Actually assessing fit

It's about time!

- All of the tests we've run so far are simple accept-reject decisions.
 - They don't tell us how big an effect is, only if it's larger than we would expect by chance.
 - "Chance" will move with sample size.
- Null hypothesis testing is at best, incomplete, and at worst, evil.
 - Cohen's (1994) "The earth is round, p<.05" is a classic critique of NHT.
 - ▶ I think NHT should be a necessary but not sufficient condition for accepting a new hypothesis.
- We need tools that actually assess fit, typically referred to as effect size.

Confidence intervals

OK, not actually "fit" yet.

- Instead of simply stating a p-value, we can express regression effects in terms of confidence intervals.
 - Our parameter estimate or point estimate will be surrounded by a CI.
 - We'll typically use a 95% CI, to match NHT conventions.
- Cls are often built using the standard error.
 - ▶ For a 95% CI, find the 97.5th and 2.5th percentiles of the reference (t) distribution.
 - Go that many standard errors above and below the parameter estimate.

Regression & ANOVA

Confidence Intervals

May be familiar...again again.

				CI			
Effect	Est	SE	t	р	Lower	Upper	
Intercept	65.07	0.56	116.19	<.001	63.96	66.18	
Slope	3.43	0.79	4.33	<.001	1.86	5.00	.400

 R^2 = .160, Residual Variance = 15.79, Residual df = 98.

- ▶ We're 95% sure the intercept is between 63.96 and 66.18 inches.
- ▶ We're 95% sure the sex difference in heights is between 1.86 and 5.00 inches.
- We can talk about raw units a little more clearly here. Despite a ridiculously low p-value, we can still only nail down the sex differences in height to a 3.14 inch range.

University of Virginia

Fit Effect size

- Two other measures of effect size I want to discuss.
- Coefficient of determination: R²
 - This is the proportion of variance explained in a regression, compared to the baseline model.
 - ANOVA calls this η².
- Standardzied regression weights:
 - Typically marked using β.
 - This is the regression weight if all variables are standardized.

Regression & ANOVA

Fit

Should be familiar.

				CI			
Effect	Est	SE	t	р	Lower	Upper	
Intercept	65.07	0.56	116.19	<.001	63.96	66.18	
Slope	3.43	0.79	4.33	<.001	1.86	5.00	.400

 R^2 = .160, Residual Variance = 15.79, Residual df = 98.

- Sex accounts for 16% of the variance in height.
- Moving one standard deviation on the sex variable (.5 sexes, which makes no sense), corrosponds to a .4 SD change in height.
 - Alternatively, sex differences in height are .8 standard deviations.

Other Fun Regression Problems

Laundry List

- Correlated predictors (multicollinearity) is a problem.
 - As the correlations between predictors gets more extreme, it gets harder to tell them apart. If your predictors are correlated, it may be hard to assess fit in either variable.
 - ANOVA assumes independence of predictors.
- If any IV can be completely accounted for (is linearly dependent) on some combination of other IVs, regression breaks.
 - Example: if you try and predict weight from both height in inches and height in meters, you can never assign a regression weight to either of them without knowing the other. There's no unique solution.

stabrook Univ

on ANOVA Assessing Fit Nonlinearity Diagnostics References

Other Fun Regression Problems

Laundry List

- You can't have more predictors (and intercepts) than observations.
 - ► There's no point in explaining *n* pieces of information with *n* or more parameters.
 - When the number of observations and number of predictors (including intercept) are the same, model fit is perfect.
- ► There's still other assumptions we haven't talked about:
 - Violations of homoscedasticity and normality of residuals, error in predictors and proper specification are all important to varying degrees.
 - We'll get to them in the Model Diagnostics section.

brook University of Virginia

Questions

- ANOVA and regression are equivalent provided the data match up.
- We need to rely on distributional tests to decide whether the effect of a predictor is greater than we would expect from chance.
 - There are more than a few of them.
- We need to make sure we answer "how big is the effect." not just "is it there?"
- Regression and ANOVA have some other assumptions we haven't dealt with yet.

Regression & ANOVA

Nonlinearity & Interactions

- Not everything is a nice linear relationship.
 - Length, area and volume all have perfect & nonlinear relationships.
 - I'm sure there are examples in your data too.
 - So all we have to do is include nonlinear components.
- So what's nonlinearity doing in the general linear model?
 - The model defines linear relationships, but may specify linear relationships between nonlinear transformations.
 - We'll also discuss polynomial terms & interactions.

Regression & ANOVA

Nonlinearity & Interactions

- There are four general approaches to analyzing non-linear relationships:
 - Monotonic nonlinear transformations.
 - Polynomial terms/polynomial regression.
 - Nonlinear regression.
 - Nonparametric regression.
- So what should you use?
 - The first two are certainly the most common.
 - Nonlinear regression and nonparametric regression are topics for another day.

Nonlinearity & Interactions

Transformations

- Why bother?
 - Incorrect model specification is an assumption violation. Think of it like leaving out a predictor.
 - Transformed variables can show you relationships you wouldn't have otherwise seen.
 - It's really not that hard!
- So how do we do it?
 - Add new variables to the model that are functions of existing variables.

Nonlinearity & Interactions

Linear Transformations

- What's a linear transformation?
 - It's a transformation you make either by adding a constant to a variable, multiplying it by something, or both.
 - It's that equation for a line again $(X_{new}=m^*X_{old}+b)$.
 - It will have zero effect on model fit.
- Why do it?
 - It can aid interpretation, especially for polynomials and interactions.
 - Centering and standardization are two forms of linear transformations.

troduction GLM Regression ANOVA Assessing Fit **Nonlinearity** Diagnostics References

What do we do with this?

stabrook University of Virgin

What do we do with this?

- First come up with some transformations to test.
 - I'll test a linear model, as well as a model with the IV squared and the log of the IV.
- So how do we do it?
 - We'll fit models with each of these variables, compare them, and pick the best fitting.

First we pick a model

Model	-2LL	df	AIC
Intercept	283.11	2	287.11
Χ	157.29	3	163.29
log(x)	44.10	3	50.10
$x + x^2$	98.31	4	106.31
x + log(x)	43.76	4	51.76
$x + x^2 + \log(x)$	43.76	5	53.76

- ► The natural log of x is the clear winner here.
- We should compare everything with the intercept model, and anything with x to the simple x model, but none are close to the critical value (95th percentile for χ_1^2 =3.84).
- df includes a term for residual variance, which is consistent with GLM/SEM specification of regression. It just adds 1 to every df calculation.

oduction GLM Regression ANOVA Assessing Fit **Nonlinearity** Diagnostics Reference

Then we analyze it

					CI		
Effect	Est	SE	t	р	Lower	Upper	
Intercept	2.42	0.05	45.20	<.001	2.31	2.53	
log(x)	1.03	0.03	31.17	<.001	0.96	1.09	.95

 $R^2 = 0.91$, Residual Variance = 0.30, Residual df = 98.

- ► This model fits really well.
- You will never get a fit like this without simulated data.
- ▶ How do we interpret this?

abrook University of Virgini

Picking Transformations

- How can one go about picking how to transform data?
 - Sight. Plot the data, see what you see.
 - Theory.
 - Common non-linear functions: logarithms, powers, trigonometric functions.
- Polynomial terms are a flexible way for including curvature in effects.
 - Add additional transformations of the linear effect, starting with squaring (X^2) .
 - One version of power transformations, or power polynomials.

Polynomial Terms

- Power polynomials, or polynomial regression, involves adding power transformations of a variable in a specific order.
- One begins with a simple linear model

$$\hat{Y} = b_0 + b_1 X$$

Then, add additional variables to the model, with the new variables being X raised to the next power.

•
$$\hat{Y} = b_0 + b_1 X + b_2 X^2$$

$$\hat{Y} = b_0 + b_1 X + b_2 X^2 + b_3 X^3$$

$$\hat{Y} = b_0 + b_1 X + b_2 X^2 + \ldots + b_j X^j$$

Use nested model comparisons and residual checks (coming soon) to select a model.

troduction GLM Regression ANOVA Assessing Fit **Nonlinearity** Diagnostics References

Polynomial Terms

-10

2

3 IV

0 0

0

First we pick a model

Model	-2LL	df	δ -2LL	δ df
Intercept	822.14	2		
X	750.15	3	71.99	1
$x + x^2$	744.73	4	5.42	1
$x + x^2 + x^3$	744.71	5	0.02	1

- Adding X improves fit over an intercept only model,
 - $\chi_1^2 = 71.99, p < .001.$
- Adding X² improves fit over a linear model,
 - $\chi_1^2 = 5.42$, p=.020.
- ► Adding X³ improves fit over a quadratic model,
 - $\chi_1^2 = 0.02$, p=.889.

luction GLM Regression ANOVA Assessing Fit **Nonlinearity** Diagnostics References

Let's look at that model

				CI			
Effect	Est	SE	t	р	Lower	Upper	β
Intercept	3.34	1.81	1.86	0.07	-0.24	6.92	
X	0.40	1.28	0.31	0.76	-2.12	2.92	-0.10
X^2	-0.50	0.22	-2.33	0.02	-0.93	-0.08	-0.73

 R^2 = .403, Residual Variance=2.926, Residual df=147.

▶ How should we interpret this?

obrook University of Virginia

Other Notes about Polynomials

- You should always include all lower order terms.
 - If you have a quadratic term, you should include the linear as well, regardless of its predictive ability.
 - Higher order terms are only reflective of whatever curvature they display if all lower terms are present.
- Polynomial terms tend to be multicollinear.
 - ▶ In the last analysis, X and X² had a .98 correlation.
 - Odd-even terms (say X and X²) can be forced to zero covariance by centering.
 - ► This won't affect odd-odd or even-even relationships.

roduction GLM Regression ANOVA Assessing Fit **Nonlinearity** Diagnostics References

Let's look at that model

I've centered X

				CI			
Effect	Est	SE	t	р	Lower	Upper	β
Intercept	0.15	0.30	0.50	0.62	-0.45	0,75	
Χ	-2.56	0.26	-9.86	<.001	-3.08	-2.05	-0.63
X ²	-0.50	0.22	-2.33	0.02	-0.93	-0.08	-0.15

 R^2 = .403, Residual Variance=2.926, Residual df=147.

- ► First, I subtracted the mean from X. Then I squared it to create X².
- ▶ Notice what did change (Intercept, X and β s).
- ▶ Notice what didn't (model fit and X²).

Regression ANOVA Assessing Fit Nonlinearity Diagnostics References

Interactions

- ▶ The last topic for this section is interaction.
- What is interaction?
 - It's typically shorthand for multiplicative interaction, although there are other types.
 - ▶ It's also known as moderation (Baron & Kenny, 1986).
 - It's a way to have the effect of one IV depend on other IVs.
 - People tend to have difficulty interpreting them.
- ► Let's look at one, shall we?

$$Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_1 X_2 + e$$

What's going on here?

$$Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_1 X_2 + e$$

- What's going on here?
 - We've added a new variable, which is the product of X_1 and X_2 .
 - This variable is very often difficult to interpret, in no small part because the units are ridiculous (inch-pounds, anyone?).
 - And because this variable is not only correlated with each of the variables that it consists of, but you literally can't affect X_1 without affecting X_1X_2 , neither X_1 nor X_2 can be interpreted independently.
 - What to do now?

$$Y = b_0 + b_1 X_1 + (b_2 + b_3 X_1) X_2 + e$$

- Let's throw some parentheses in.
 - ▶ The effect of X_2 depends on X_1 .

Estabrook

$$Y = b_0 + b_2 X_2 + (b_1 + b_3 X_2) X_1 + e$$

- Let's throw some parentheses in.
 - ▶ The effect of X_1 depends on X_2 .

Estabrook

$$Y = b_0 + b_1 X_1 + (b_2 + b_3 X_1) X_2 + e$$

 $Y = b_0 + b_2 X_2 + (b_1 + b_3 X_2) X_1 + e$

- Now we can interpret the interaction easier.
 - ▶ The effects of either X variable depend on the other one.
 - You wouldn't worry about describing b₁ or b₂ by themselves, because that's only part of the effect!
- Let's look at some graphs to see if this sinks in.

troduction GLM Regression ANOVA Assessing Fit **Nonlinearity** Diagnostics References

Interactions

X is Interval, C is Categorical

stabrook University of Virgin

- This is the classic example.
- What's the effect of X on Y?
 - The effect is 0.5-c.
 - The "intercept" is 5+c.
 - Many people break this into two regression equations (one for c=0, another for c=1), but I think that makes generalizing to higher order interactions difficult.
- We could also interpret the effects of c (1-X, with an "intercept" of 5+.5X).

Question Slide

- Just because we're using the GLM doesn't mean that we can't model nonlinear effects.
 - We can add nonlinear transformations, either one-off or polynomial versions.
 - We can use multiplicative interactions to create dependencies between the effects.
- Just be careful about interpretation!
- Questions?

Assumptions and Detecting Violations

- Regression and ANOVA have some specific assumptions.
- If you meet them, fantastic!
- If not, that's a problem at some level.
- Now we'll talk about:
 - What they are,
 - How to detect these problems, and
 - What to do if there's a problem.

oduction GLM Regression ANOVA Assessing Fit Nonlinearity **Diagnostics** References

What are the assumptions of regression?

Common Ones.

- Residuals are normally distributed.
 - This is related to the OLS & ML estimators.
 - If we're minimizing squared residuals, we're minimizing variance. If residuals aren't normal, this doesn't work.
 - OLS regression is fairly robust to deviations to normality provided the other assumptions are met.
 - Q-Q plots & histograms are your best tools.
- Residuals are homoscedastic.
 - We only have one residual/error term, and it needs to be equally appropriate over the range of X.
 - Plotting residuals against X is likely the best method.
 - Be careful when the distribution of X isn't symmetric.

oduction GLM Regression ANOVA Assessing Fit Nonlinearity **Diagnostics** References

What are the assumptions of regression?

Uncommon Ones.

- No error in the predictors.
 - All of the "error" is assumed to be in the dependent measure.
 - This can lead to biased or suppressed estimates of the XY effect, especially standardized estimates.
 - Very commonly violated, and rarely talked about (it's pretty robust).
- Independent variables are correctly specified.
 - You have to correctly specify the variables (i.e., include all of the important ones).
 - All relationships must be linear.
- Residuals are independent.
 - No clustered and longitudinal data.

So let's start looking at residuals!

- The short answer to all of these assumptions is to plot your data from every angle and see what you find.
 - We typically look at bivariate plots, involving one independent variable and either a residual or a dependent variable.
 - 3D graphs are typically difficult to read, particularly for diagnosis.
 - Higher order dimensionality is a little tougher.
- What do you look for?
 - Extreme observations.
 - Non-linearity of effects.
 - Unusual distributions.
- You just have to practice.

Extreme Observations

I think you mean Xtreme!

- ► The most common discussion point for residual checks are extreme observations, or outliers.
- We can talk about outliers in a few different ways:
 - Leverage: How extreme is this observation's set of predictor variables?
 - Distance: How far is an observation from the regression line (How big is the residual)?
 - Influence: Combining distance and leverage, how much can this observation move the regression line/plane/n-space term for MR prediction.
- There are approximately 11 pounds of statistics used for the analysis of extreme observations.

- Let's see how big a deal an extreme observation can be before we get started.
 - We'll also hint at future statistical methods for outlier detection.
- I'll make up some data for a simple regression involving x and y.
- Then we'll add an outlier and see what happens.

Simple Illustration

roduction GLM Regression ANOVA Assessing Fit Nonlinearity **Diagnostics** References

Simple Illustration

2010011

- The slope went down a bunch, loosing significance in the process.
 - ▶ Difference of .978 in raw units (1.017-.039).
 - Difference of .606 in standard units (.717-.111).
- ▶ Model fit, as judged by R², fell of the table (.516-.012).
- Oh, and we violated a bunch of assumptions.
- How do we deal with it?
 - Let's diagnose the problems first. They won't all be this obvious.
- In general, residual diagnostics are calculated for every observation.

Leverage

- Leverage describes how unusual an observation is with respect to its set of X variables.
- Leverage is often described by the statistic h_{ii}.
- For one independent variable, leverage can be defined as:

Leverage =
$$h_{ii} = \frac{1}{n} + \frac{(X_i - \hat{\mu}_i)^2}{\sum x^2}$$

► Centered leverage (*h*^{*}_{ii}) is calculated as:

$$h_{ii}^* = h_{ii} - \frac{1}{n} = \frac{(X_i - \hat{\mu}_i)^2}{\sum X^2}$$

 For multivariate predictors, one must consider distance from the centroid (set of means) and the correlations between variables.

Diagnostics References

Leverage

- Greater leverage values have a greater potential to affect the regression equation.
 - ► Think of the regression line as a lever that each data point can push.
 - Higher leverage=greater potential to push the line.
- Which kind of leverage to use?
 - Traditional accounts for sample size, such that a large deviation in a small sample has more leverage than the same deviation in a large sample.
 - Centered is easier to understand, and more useful in other formulas.
 - Leverage usually refers to the basic h_{ii}.

Leverage

Mathy Stuff. Impress your friends.

- ► This *h* is related to something called a hat matrix, which is a crucial part of error variance calculation.
 - $\epsilon_i = \sigma^2 (1 h_{ii})$
 - ▶ The sum of all of the h_{ii} values is n.
- Mahalonobis Distance is a related measure:
 - ▶ $(n-1)*h_{ii}^*$
 - Just in case you see it.

Leverage

Making R work for you.

- You can get leverage and some other residual diagnostics from the influence() function.
 - This function returns several things, one of which is the hat results.
 - You run this function on an lm() object.
 - model<-lm(y~x)</pre>
 - influence (model) \$hat OR hatvalues (model)
- We also need a criterion.
 - ▶ 2(p+1)/n (Belsley, Kuh & Welsch, 1980); good benchmark.
 - → 3(p+1)/n (Stevens, 1992); more stringent for smaller. samples.
 - You should consider deleting or otherwise dealing with residuals above these cut-offs. It's not automatic.

roduction GLM Regression ANOVA Assessing Fit Nonlinearity Diagnostics References

Plotting Leverage Values

Original Example

estabrook University of Virgin

Plotting Leverage Values

With an outlier

Question Slide

Summing up Leverage

- If you want some measure of extremity with regards to your independent variables, leverage (hii) is it.
 - All of the leverage values in your dataset sum to n.
 - We have a few criteria for when leverage is pretty high.
- It's not the end-all, though.
 - You're looking for one (or maybe a few) observations very out of sync with the rest of your data.
 - We still haven't talked about the dependent variable or residuals yet; these are just descriptions of our predictor variables.

Distance

- The simplest way of talking about extreme residuals is distance, or just how big the residual is.
 - Every observation as a residual, which we can calculate and analyze.
 - We can analyze them in raw units, if those are meaningful.
 - $\epsilon_i = V_i \hat{V}_i$
- What if we don't want to look at raw units?
 - We can (and will) look at some type of standardized residual, but the presence of outliers presents a problem.

Distance

Distance

Distance

Distance

- What if we don't want to look at raw units?
 - We can look at some type of standardized residual, but the presence of outliers presents a problem.
 - We can get around this by looking at Studentized residuals, named in honor of William Gosset (Brilliant!).
- There are two types of studentized residuals:
 - Internal Studentized Residuals (shorthand: Standardized) Residuals) compare any one residual to the entire set including itself.
 - External Studentized Residuals (shorthand: Studentized) Residuals) compare any one residual to the entire set excluding itself.

Studentized Residuals

Internally Studentized Residuals compare the value of a residual to the residual variance.

•
$$ISR = \frac{e_i}{\sigma_e \sqrt{1 - h_{ii}}}$$

- ► Pro:
 - Easy to calculate and provides the purest degree of standardization.
- ► Con:
 - ► There's no distribution that will be followed when no outliers exist. It's purely for inspection.

Studentized Residuals

Externally Standardized Residuals compare a residual to the residual variance when that case is excluded.

- The regression is then recalculated without that case, and the residual in question is compared to the new regression line.
- Because of the properties of h_{ii}, there's a way to do this without actually estimating that line.
 - R will do it for you.
 - rstandard() will run the ISRs,
 - ► rstudent() will run the ESRs (Studentized).
- When will this make a difference?
 - When an outlier moves a regression line a lot, ESRs will catch it when ISRs don't.
- ▶ Bonus: this will be t-distributed, with (n-k-1) df.

Internally Standardized Over Case ID

Standardized Residual, Original Data

Internally Standardized Over Case ID

Standardized Residual, Outlier Data

Externally Standardized Over Case ID

Studentized Residual, Original Data

Externally Standardized Over Case ID

Studentized Residual, Outlier Data

Diagnostics Reference

Distance Questions

- The second way to talk about extreme observations is the size of the residual.
- Standardization and Studentization are ways of turning residuals from a raw scale to one with known or interpretable distributional properties.
 - rstudent() and plot.lm() will be your friends here.
- Now we just need some ways to talk about these things together.
- ▶ What observations have a lot of leverage (extremity on X) and a lot of distance (extremity on Y)?

Influence

Influence is a very well named term. It describes the degree to which any observation affects the regression line.

- Why are we talking about this?
 - Because we use regression to describe a population.
 - ▶ If the entirety of an effect is related to one or a few observations, we want to know.
- There are several different measures of influence.
 - Cook's D
 - DFFITS
 - DFBETAS

Influence

Cook's D or Cook's Distance is a global measure of influence, meaning it measures how much an observation influences the model as a whole.

$$Cook'sD = \frac{\sum (\hat{Y} - \hat{Y}_{(i)})}{(k+1)\sigma_e^2} = \frac{h_{ii}}{1 - h_{ii}} ISR_i^2(k+1)$$

- \triangleright \hat{Y} refers to the predicted value of Y for person i when they're included in the model.
- \triangleright $\hat{Y}_{(i)}$ refers to the predicted value of Y for person i when they're omitted from the model (that's what the parentheses around i mean).
 - This looks a little like Studentized Residuals and a little like leverage, because it's proportional to their product.
- ► cooks.distance(), again used on an lm() object.

Influence

DFFITS is a closely related function to Cook's D.

$$DFFITS = \frac{\sum (\hat{Y} - \hat{Y}_{(i)})}{\sqrt{\sigma_{e_{(i)}}^2 h_{ii}}}$$

- ▶ We're scaling in terms of leverage instead of parameters (h_{ii} instead of k).
- ► The residual variance is from the new model (omitting observation *i*), rather than the full model.
- It's more rare, and can be estimated from Cook's D.
- ▶ dffits()

$$Cook'sD = \frac{(DFFITS)^2 \sigma_{e_{(i)}}^2}{(k+1)\sigma_e^2}$$

Influence Criteria

- Cook's D criteria:
 - ▶ 1.0, or:
 - ► The median of an F-distribution (p=.50) for (k+1,n-k-1) df.
- ▶ DFFITS criteria:
 - ▶ 1.0, or:
 - ▶ $2*\sqrt{\frac{k-1}{n}}$
- In all cases, higher values are more influential observations.

Cook's Distance Over Case ID

Cook's Distance Over Case ID

Cook's D, Outlier Data

Specific Measures of Influence

- Cook's D and DFFITS deal with global measures of influence.
- What if you care about specific regression coefficients in multiple regression?
- We have DFBETAS for this, which we calculate for each person (i) and coefficient (j):

$$DFBETAS_{ij} = \frac{\beta_j - \beta_{j(i)}}{SE_{B_{(i)}}}$$

- ▶ While this resembles a *t* or *z*-statistic, common usage treats it more like an effect size, using ± 1 or $\pm \frac{2}{\sqrt{n}}$ as criteria values.
- dfbetas() is your command. dfbeta() gives raw differences, as does influence() \$coefficients.

University of Virginia

DFBETAS Over Case ID

DFBETAS Over Case ID

DFBETA (slope), Original Data

DFBETAS Over Case ID

DFBETA (Intercept), Outlier Data

DFBETAS Over Case ID

DFBETA (slope), Outlier Data

Influence Summary

Questions

- So now we can talk about how extreme observations affect our model.
 - We can combine leverage and (more prominently) distance to describe the influence of every observation on the overall model.
- Cook's Distance is a fairly standard measure of influence.
 - DFFITS is a rarer but equivalent measure, with similar criterion values.
- ▶ DFBETAS allows you to look at how individual parameters are affected by extreme observations.
 - Which helps you understand your data a little better.

What to do with outliers?

It Depends! HAHAHAHA.

- Ok, now what?
- Treat as "contaminated observations."
 - Just delete, because you think it's due to an error or problem.
- Delete, treating these observations as not representative of your data.
- Respecify the model to improve fit, usually through additional variables and transformations.
- Switch to a robust regression approach (LAD, or least absolute deviation regression)

The case for deletion

It's easy!

- If its reasonable to attribute an outlier to a coding problem, participant error or equipment malfunction, there's no problem deleting them.
 - These can be attributed to MCAR in the case of error.
 - If your participant clocked out on you, then that's a sampling issue.
- Just deleting problem people is more of an ordeal.
 - By deleting someone, you're arguing that they're not representative of the population you're studying.
 - You have to be careful that the population you end up with is not "the one who supports my hypothesis."

You can respecify your model

That sounds suspiciously like "work"

- An extreme observation (or observations) can be indicative of several things:
 - Sampling issue or error.
 - A violation of the linearity or specification assumption.
- Different ways you can deal with this:
 - Interaction terms.
 - Transforming one's predictors.
 - Both of which we've just covered.

Questions

Diagnostics

- Regression has assumptions.
 - When we violate them, we can usually spot it in residual diagnostics.
- When we spot a violation (either through simple visual inspection or a diagnostic tool), we have to fix it.
 - Either delete the case or change the model.
- Assumption checking is an important part of running regression or ANOVA.
 - Just because residual checks aren't often published doesn't mean they're not important.

Closing Up

We're done!

- We've covered a whole lot today.
 - Regression and ANOVA are equivalent versions of the GLM.
 - Use whichever you want!
 - I think that regression is the more flexible technique, particularly when you get into complex modeling extensions.
- We can fit models and diagnose them.
 - Use global tests for nested models, and whenever possible.
 - Use model diagnostics to check your models. You may require more terms, transformations, or just a different model.

Closing Up

Stuff we didn't cover

- There's a lot of stuff I didn't even touch.
 - Logistic & Poisson regression.
 - Autoregressive & Difference score models.
 - Automated model selection.
 - Missing Data.
 - Mixed effect/random effect models.
 - And much much more.
- And you should learn these. Why?
 - You shouldn't use the wrong model for your data just because you're most familiar with that model.
- All models are wrong; some are useful.

Closing Up

Books

▶ Texts:

- Cohen, Cohen, Aiken & West: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences.
- ► Hays: Statistics for Psychologists (out of print, I think).
- Howell: Statistical Methods for Psychology.
- Maxwell & Delaney: Designing Experiments and Analyzing Data.
- And don't forget:
 - Wolfram MathWorld.
 - Wikipedia & Google.

Thank you!

- Friday, July 31: SEM.
- Friday, August 7: Survival Analysis.

References

References

- Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173-1182.
- Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49(12), 997-1003.
- Stevens, S. S. (1939). Operationism and logical positivism. Psychological Bulletin, 36, 221–236.

