Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (Национальный исследовательский университет)»

Физтех-школа аэрокосмических технологий Кафедра вычислительной физики

Направление подготовки: 03.03.01 Прикладные математика и физика (бакалавриат) **Направленность(профиль) подготовки:** Вычислительные технологии

математического моделирования

Повышение порядка аппроксимации многомерного уравнения переноса на нерегулярной расчётной сетке

(бакалаврская работа)

Студент:
Смирнов Иван Евгеньевич
Научный руководитель:
Васюков Алексей Викторович
кандидат физмат. наук

1 Аннотация

В работе рассматривается задача построения численного метода для решения многомерного уравнения переноса на неструктурированной расчётной сетке с порядком выше первого без использования вспомогательных точек на рёбрах и гранях. Уравнения данного вида возникают как составная часть полной численной схемы при решении динамических задач механики деформируемого твёрдого тела. Поставленная в данной работе цель не использовать вспомогательные точки на рёбрах и гранях связана с тем, что это позволит упростить топологию расчётной сетки при её движении. Для численного решения используется сеточно-характеристический численный метод. Новизна предложенного подхода заключается в том, что для повышения порядка интерполяции значения функции в точки пересечения характеристики с временным слоем используется аналог расширения сеточного шаблона, реализованный в данном случае для неструктурированной сетки. В рамках работы выполнена серия численных экспериментов для различных начальных условий. Рассмотрены непрерывно дифференцируемые, непрерывные, разрывные решения. Для непрерывных и непрерывно дифференцируемых начальных условий получен фактический порядок аппроксимации выше 2, для разрывных – выше 1.4. Построенная численная схема может быть в дальнейшем использована при решении динамических многомерных задач прочности в сложных областях интегрирования при наличии конечных деформаций. Возможно дальнейшее повышение порядка за счёт использования большего количества соседних точек и полиномов более высокого порядка.

Содержание

1	Анн	отация	2		
2	Введение				
	2.1	Цель и задачи работы	5		
	2.2	Объект исследования	5		
	2.3	Актуальность работы	5		
3	Teo	ретические сведения	8		
	3.1	Дискретизация	8		
	3.2	Расщепление по пространству	8		
	3.3	Сеточно - характеристический метод	8		
	3.4	Аппроксимация значений функции	10		
		3.4.1 Использование производных в вершинах	10		
		3.4.2 Обратно взвешенные расстояния(IDW)	11		
		3.4.3 Безье-поверхности	11		
		3.4.4 Построение интерполяционного полиному по k ближайшим точкам	12		
		3.4.5 Используемый метод аппроксимации	12		
	3.5	Расчёт порядка аппроксимации	14		
		3.5.1 Аналитическое решение	14		
		3.5.2 Невязка	14		
		3.5.3 Нормы ошибки	14		
		3.5.4 Алгоритм расчёта порядка аппроксимации	15		
4	Описание алгоритма 16				
	4.1	Постановка задачи	16		
	4.2	Начальные и граничные условия	17		
	4.3	Нахождение значения функции в точке	17		
5	Результаты численного эксперимента 19				
	5.1	Гладкая шапочка	19		
	5.2	Быстро спадающая экспонента	21		
	5.3	Конус	23		
	5.4	Шапочка-корень	25		
	5.5	Ступенька	27		

6	Заключение	29
7	Список литературы	30

2 Введение

2.1 Цель и задачи работы

Целью данной работы является реализация численного метода для решения многомерного уравнения переноса на неструктурированной расчётной сетке с порядком выше первого без использования вспомогательных точек на рёбрах и гранях.

Задачи работы:

- сформулировать и программно реализовать численный метод на сетке из треугольников;
- рассмотреть гладкие и разрывные начальные условия;
- визуализировать решения, оценить фактический порядок аппроксимации.

2.2 Объект исследования

В данной работе рассматривается численное решение двумерного уравнения переноса на двумерных нерегулярных расчётных сетках. Решаемое уравнение для функции u(x,y,t) в квадрате $[-1,1] \times [-1,1]$ с периодическими граничными условиями имеет следующий вид:

$$\begin{cases} u_{t} + \lambda_{x} u_{x} + \lambda_{y} u_{y} = 0 \\ u(x, y, t) \Big|_{t=0} = F(x, y) \\ u(a \cdot T_{x} + x, b \cdot T_{y} + y, t) = u(x, y, t) \end{cases}$$

$$T_{x} = T_{y} = 2; \ a, b \in Z$$

$$x \in [-1, 1], \ y \in [-1, 1]$$
(1)

Здесь F(x,y) - функция начальных условий; $T_x,\ T_y$ - период функции u(x,y,t); $\lambda_x,\ \lambda_y$ - скорости по соответствующим направлениям.

Для решения данной задачи используется неструктурированная расчётная сетка из треугольников.

2.3 Актуальность работы

Уравнения данного вида возникают при численном решении многих динамических задач механики деформируемого твёрдого тела [1]. Определяющая система уравнений в

Рис. 1: Пример сетки, scale = 0.05

частных производных, описывающая динамические процессы в деформируемом твёрдом теле имеет следующий характерный вид:

$$\frac{\partial \vec{w}}{\partial t} + A_x \cdot \frac{\partial \vec{w}}{\partial x} + A_y \cdot \frac{\partial \vec{w}}{\partial y} + A_z \cdot \frac{\partial \vec{w}}{\partial z} = 0$$
 (2)

В этой записи \vec{w} - вектор неизвестных, A_x , A_y , A_z - постоянные матрицы. В данном случае приведена система уравнений для случая трёх пространственных переменных, для двумерных задач запись будет аналогичной. Точный вид \vec{w} , A_i зависит от конкретной задачи, в том числе от её размерности и используемых реологических моделей.

Известно, что для многих практически значимых постановок существует разложение матриц [2, 3]:

$$A_i = \Omega_i^{-1} \cdot \Lambda_i \cdot \Omega_i \tag{3}$$

Для решения многомерной системы уравнений можно использовать расщепление по направлениям [4, 5]. Для пространственной производной по одному из направлений можно записать:

$$\frac{\partial \vec{w}}{\partial t} + \Omega^{-1} \cdot \Lambda_x \cdot \Omega \cdot \frac{\partial \vec{w}}{\partial x} = 0 \tag{4}$$

откуда следует

$$\Omega \cdot \frac{\partial \vec{w}}{\partial t} + \Lambda_x \cdot \Omega \cdot \frac{\partial \vec{w}}{\partial x} = 0 \tag{5}$$

Если ввести обозначение $\vec{u}=\Omega\cdot\vec{w}$, исходная система распадается на независимые уравнения вида:

$$\frac{\partial u_i}{\partial t} + \lambda_{i_x} \cdot \frac{\partial u_i}{\partial x} = 0 \tag{6}$$

В силу изложенного в рамках данной работы не рассматривается точный вид \vec{w} , A_i , а численно решается уравнение переноса, которое лежит в основе полной численной

схемы для многомерных динамических задач механики деформируемого твёрдого тела. Для решения используется сеточно-характеристический численный метод, который ранее многократно успешно применялся для задач динамической прочности сложных инженерных объектов [6] и гетерогенных материалов [7].

При практической реализации численных схем частым их желательным свойством является обеспечение разумно высокого порядка аппроксимации без необходимости использования большого сеточного шаблона. Одним из традиционных подходов к этой задаче является использованием компактных продолженных схем [8]. Для сеточнохарактеристического метода на структурированных расчётных сетках данный подход также применим [9, 10].

Однако, при выполнении расчётов для иженерных объектов сложной формы область интегрирования описывается, как правило, с использованием неструктурированной расчётной сетки, в двухмерном случае — из треугольников, в трёхмерном — из тетраэдров. Таким образом, требуется численно решать уравнения переноса на данной сетке с высоким порядком аппроксимации.

Очевидным образом на треугольниках и тетраэдрах можно обеспечить интерполяцию с первым порядком для значений в произвольной точке по значениям в вершинах. Традиционным способом повышения порядка является введение дополнительных точек на рёбрах и гранях элементов сетки [11, 12]. Этот подход хорошо показал себя в решении многих задач. Однако, он также содержит и некоторые недостатки.

Так, при расчётах задач прочности возникает необходимость описывать значительные деформации объекта, что требует перемещения узлов расчётной сетки. В этом случае использование вспомогательных расчётных узлов, которые жёстко зафиксированы на рёбрах и гранях, приводит к значительным сложностям. Либо расчёт перемещений данных узлов де-факто не выполняется, а их движение интерполируется по «основным» узлам в вершинах. Либо при движении узлов существенно нарушается исходная топология элементов расчётной сетки, что резко усложняет построение численной схемы для неё.

В силу этого в данной работе ставится задача исследовать для уравнения переноса на неструктурированной расчётной сетке возможность построения численного метода с порядком выше первого без использования вспомогательных точек на рёбрах и гранях.

3 Теоретические сведения

3.1 Дискретизация

Для дискритизации уравнения по времени используется равномерная сетка по времени с шагом τ , такая что $T=N\cdot \tau$. Где число N - количество слоёв по времени.

На каждом слое по времени используется неравномерная сетка из треугольников, генерируемая при помощи таких алгоритмов как *Delaunay, MeshAdapt, Frontal-Delanay*.

3.2 Расщепление по пространству

Сначала задача расщепляется по пространственным переменным на два независимых уравнения, решаемых последовательно на каждой временной итерации.

$$\begin{cases} \frac{\partial u}{\partial t} + \lambda_x \cdot \frac{\partial u}{\partial x} = 0\\ \frac{\partial u}{\partial t} + \lambda_y \cdot \frac{\partial u}{\partial y} = 0 \end{cases}$$

Для решения каждого из получившихся одномерных уравнений переноса с постоянными коэффициентами, используется классический подход - *сеточно-характеристический метод*.

3.3 Сеточно - характеристический метод

Рассмотрим данных метод на примере уравнения для x координаты относительно w(x, y, t):

$$\frac{\partial w}{\partial t} + \lambda_x \cdot \frac{\partial w}{\partial x} = 0$$

Он заключается в сведении дифференциального уравнения первого порядка в частных производных к обыкновенному дифференциальному уравнению вдоль характеристики:

$$\frac{dx}{dt} = \lambda_x$$

Тогда:

$$\frac{\partial w}{\partial t} + \lambda_x \cdot \frac{\partial w}{\partial x} = 0 \to \frac{\partial w}{\partial t} + \frac{dx}{dt} \cdot \frac{\partial w}{\partial x} = 0 \to \frac{dw}{dt} = 0$$

То есть вдоль характеристики $dx/dt = \lambda_x$ решение не зависит от времени:

$$w(x, y, t) \Big|_{dx/dt = \lambda_x} = w(x, y)$$

Для нахождения значения функции в момент времени t^{n+1} , опускается характеристика(прямая, задаваемая уравнением $x=\lambda_x\cdot t$) на предыдущий слой по времени t^n . В точке пересчения $(x_0,\ y_0,\ t^n)$ этой прямой с плоскостью $t=t^n=\tau\cdot n=const$ аппроксимируется значение функции, с использованием известных значений в точках на данном слое по времени. Далее это значение переносится в точку $(x_0+\lambda_x\cdot \tau,\ y_0,\ t^{n+1})$.

Рис. 2: Пример действия сеточно-характеристического метода

3.4 Аппроксимация значений функции

Для аппроксимации значения функции на предыдущем слое по времени в точке, полученной при помощи сеточно-характеристического метода можно использовать несколько подходов.

3.4.1 Использование производных в вершинах

- Определяется треугольник, в который попадает характеристика, опущенная на предыдущий слой по времени.
- Необходимо определить коэффициенты интерполяционного полинома

$$P(x,y) = \alpha \cdot x^2 + \beta \cdot y^2 + \gamma \cdot xy + \delta \cdot x + \epsilon \cdot y + \zeta$$

$$\alpha, \beta, \gamma, \delta, \epsilon, \zeta \in \mathbb{R}$$

Известны значения функции u в точках $u_1=u(x_1,y_1),u_2=u(x_2,y_2),u_3=u(x_3,y_3)$

• Составляется система уравнений:

$$\begin{cases} P(x_1, y_1) = u_1 \\ P(x_2, y_2) = u_2 \\ P(x_3, y_3) = u_3 \\ \frac{\partial P(x, y)}{\partial x} \bigg|_{(x_1, y_1)} = (u_1)'_x \\ \frac{\partial P(x, y)}{\partial x} \bigg|_{(x_2, y_2)} = (u_2)'_x \\ \frac{\partial P(x, y)}{\partial x} \bigg|_{(x_3, y_3)} = (u_3)'_x \\ \frac{\partial P(x, y)}{\partial y} \bigg|_{(x_1, y_1)} = (u_1)'_y \\ \frac{\partial P(x, y)}{\partial y} \bigg|_{(x_2, y_2)} = (u_2)'_y \\ \frac{\partial P(x, y)}{\partial y} \bigg|_{(x_3, y_3)} = (u_3)'_y \end{cases}$$

• Видно, что получается переопределённая система (9 уравнений, 6 неизвестных).

3.4.2 Обратно взвешенные расстояния(IDW)

- Выбирается какая-то область вокруг точки, в которой(точке) необходимо определить значение функции.
 - Область окружность определённого радиуса, либо иная геометрия по характеру задачи.
- Точки с данными внутри области участвуют в расчётах. Значение функции в точке вычисляется по следующей формуле:

$$f = \sum_{i} u_i \cdot \omega_i, \ \omega_i = d^{-p}$$

Где ω_i - весовой коэффициент для каждой используемой точки с данными, d - расстояние от точки с неизвестым значением до данной, p>1 - степень - подбирается экспериментально.

3.4.3 Безье-поверхности

- Параметризуем область $(x,y) \longrightarrow (u,v)$ так, чтобы $(u,v) = [0,1] \times [0,1]$.
- Определим поверхность Безье порядка (n,m) (задаётся $(n+1)\cdot (m+1)$ контрольными точками $P_{i,j}$):

$$P(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{m} B_{i}^{n}(u) \cdot B_{j}^{m}(v) \cdot P_{i,j}$$

• B - многочлены Берштейна:

$$B_i^n(u) = \frac{n!}{i!(n-i)!} \cdot u^i \cdot (1-u)^{n-1}$$

• Есть готовые реализации данного подхода, например алгоритм Клафа-Точера

3.4.4 Построение интерполяционного полиному по к ближайшим точкам

• Необходимо определить коэффициенты интерполяционного полинома

$$P(x,y) = \alpha \cdot x^2 + \beta \cdot y^2 + \gamma \cdot xy + \delta \cdot x + \epsilon \cdot y + \zeta$$

$$\alpha, \beta, \gamma, \delta, \epsilon, \zeta \in \mathbb{R}$$

Видно, что полином 2 порядкаа требует 6 коэфициентов, для лучшей точности можно использовать полином 3 порядка, для которого понадобиться 10 коэффициентов.

• Находятся ближайшие 6 точек к данной и по значением в них строится следующая система:

$$\begin{cases} P(x_1, y_1) = u_1 \\ P(x_2, y_2) = u_2 \\ P(x_3, y_3) = u_3 \\ P(x_4, y_4) = u_4 \\ P(x_5, y_5) = u_5 \\ P(x_6, y_6) = u_6 \end{cases}$$

$$(7)$$

Это также можно записать в виде: $A\cdot\vec{x}=\vec{u}$, где \vec{x} - вектор, составленный из выбранных ближайших точек, A - матрица из коэффициентов интерполяционного полинома, \vec{u} - вектор, составленный из значений функции в выбранных точках.

• Решая эту СЛАУ, находятся необходимые коэффициенты, и определяется значение функции в требуемой точке.

3.4.5 Используемый метод аппроксимации

В работе используется именно последний подход. Он хорошо действует на функциях начальных условий из класса C^1 , но хуже на разрывных - если рвётся производная функции или сама функция.

Для решения этой проблемы применялся подход с размытием места разрыва. А именно на первых итерациях по времени определялись места разрыва, и на них проводилась аппроксимация первым порядком. Места разрыва оценивались по первым и вторым производным функции(полученным из формального дифференцирования интерполяционного полинома вторй степени). То есть алгоритм был следующим:

Algorithm 1 Размытие разрывного решения

```
1: while n < N do
2:
      for all Points do
          P2 = Make2orderPolinom(n, Point)
3:
          Der = DetermineDerivatives(P2)
4:
          if RoughPoint(Der) and n < N_0 then
5:
              P1 = Make1orderPolinom(n, Point)
6:
              CalculateValue(P1, Point)
7:
          else
8:
9:
             CalculateValue(P2, Point)
```

- Количество первых шагов по времени N_0 , на которых производилось размытие решений, определялось экспериментально, но не превышало 20% от общего времени расчёта.
- Условия разрывности RoughPoint() также подбирались самостоятельно. Сначала на разрывных решениях строилась картина производных, затем визуально определялись места разрыва, и из значений производных в этих точках составлялся критерий разрыва.

К сожалению размытие начальных условий не давало существенных улучшений на разрывных решениях, но портило гладкие задачи. Поэтому было решено отказаться от этого и использовать второй порядок точности на всех решениях.

Главная особенность подхода «Построение интерполяционного полиному по k ближайшим точкам» - не используются вспомагательные точки на рёбрах или гранях сетки в расчётной области. В задаче используются только узлы данной сетки.

3.5 Расчёт порядка аппроксимации

3.5.1 Аналитическое решение

Для рассматриеваемой задачи существует аналитическое решение:

$$u_{analitic}(x, y, t) = F(x - \lambda_x \cdot t, y - \lambda_y \cdot t)$$

3.5.2 Невязка

Численное решение связано с точным аналитическим решение следующим образом:

$$u_{numeric} = u_{analutic} + R(h)$$

Где R(h) - невязка - функция от мелкости пространственной сетки h.

В качестве h используется:

- Обратный масштаб сетки 1/scale (scale наибольший линейный размер ячеек).
- Обратный корень количества точек сетки $1/\sqrt{\text{dots num}}$.

Предполагается, что:

$$R(h) = h^p + o(h^p)$$

Таким образом, порядок аппроксимации p может быть определён следующим образом:

$$\Delta = |u_{numeric} - u_{analytic}| = h^p + o(h^p) \rightarrow \ln \Delta / \ln h \simeq p$$

3.5.3 Нормы ошибки

Для определения Δ используются несколько норм векторов(предполагается что значения в точках на каждом слое по времени можно занумеровать):

• Максимум модуля ошибки:

$$\Delta_1 = \Delta_{\infty} = \max(|u_{numeric}[i] - u_{analytic}[i]|).$$

• Среднее арифмитическое модулей ошибок:

$$\Delta_2 = \sum_{i=0}^{N} |u_{numeric}[i] - u_{analytic}[i]|/N$$

• Евклидова норма:

Евклидова норма.
$$\Delta_3 = \sqrt{\sum_{i=0}^{N} \left(u_{numeric}[i] - u_{analytic}[i]\right)^2}/N$$

3.5.4 Алгоритм расчёта порядка аппроксимации

То есть для определения порядка сходимости решения строилось аналитическое решение в узлах сетки, затем вычислялись численные значения в этих же узлах. После этого рассчитывался вектор ошибки(невязки) - предполагается что все точки уникальные(их можно занумеровать и поместить по порядку в вектор). Определяются нормы этого вектора, как написанно в предыдущем пункте. Такие действия проделываются на каждом слое по времени, и в итоге по результатам норм векторов ошибок на нескольких сетках(с известными величинами шага по времени h) строится прямая в координатах ($\ln \Delta, \ln h$) - по её наклону определяется порядок аппроксимации p.

Данную прямую можно построить с помощью метода наименьших квадратов. Пусть прямая имеет вид: $y=a+p\cdot h$. Тогда наилучшая прямая(в смысле $\sum_i |y_i-\ln \Delta_i| \to min$) будет при:

•

$$p = \frac{\langle \ln h_i \cdot \ln \Delta_i \rangle - \langle \ln h_i \rangle \cdot \langle \ln \Delta_i \rangle}{\langle \ln^2 h_i \rangle - \langle \ln h_i \rangle^2}$$

•

$$a = \langle \ln \Delta_i \rangle - p \langle \ln h_i \rangle$$

Где скобками $\langle ... \rangle$ обозначено среднее арифметическое значение выражения. Реально порядок аппроксимации оценивался не на всех итерациях по времени, а только на последнем слое.

4 Описание алгоритма

4.1 Постановка задачи

Перед расчётом необходимо определить функцию начальных условий F(x,y), числа λ_x, λ_y , шаг по времени τ , количество шагов по времени N, построить сетку в рассматриеваемой области.

На каждом слое по времени определяются значения функции в точках сетки(также предполагается, что все точки можно занумеровать - их количество не превосходит M).

Algorithm 2 Постановка задачи

```
1: TimeLays[N][M]
2: while n < N do
      t_{cur} = \tau \cdot n
3:
      for all Points do
4:
          if n == 0 then
5:
              TimeLays[0][Point] = InitialCondition(Point)
6:
7:
          else
              TimeLays[n][Point] = CalculateFunctionValueInPoint(n, Point)
8:
9:
      n = n + 1
```

Массив TimeLays[N][M] содержит значения искомой функции в точках сетки (Point = (x, y)) на каждом слое по времени, при этом используются:

- функции начальных и граничных условий (в данной работе граничные условия для всех задач одни, а начальные уловия различаются)
- функция вычисления значения функции на *n-ом* слое по времени

4.2 Начальные и граничные условия

Для решения поставленной задачи с заданным начальным условием F(x,y) и периодическими граничными условиями с периодом $T=T_x=T_y=2$ в области $[-1,1]\times[-1,1]$, применяются следующие условия:

Algorithm 3 Начальные и граничные условия

- 1: **function** InitialCondition((x, y))
- 2: return F(x, y)
- 3: **function** BoundaryConditions((x, y))
- 4: $T = T_x = T_y = 2$
- 5: $x = x \operatorname{sign}(x) \cdot T_x \cdot \operatorname{int}(x/T_x)$
- 6: **if** |x| > 1 **then**
- 7: $x = x \operatorname{sign}(x) \cdot T_x$
- 8: $y = y \operatorname{sign}(y) \cdot T_y \cdot \operatorname{int}(y/T_y)$
- 9: **if** |y| > 1 **then**
- 10: $y = y \operatorname{sign}(y) \cdot T_y$
- 11: return(x, y)

4.3 Нахождение значения функции в точке

- Для нахождения значения функции в точке (x,y) используется точка (x_0,y_0) падения характеристики на слой по времени $t_{cur}-\tau$ с учётом периодических граничных условий.
- В данной работе используется структура хранения данных *K-D Tree* со встроенным поиском ближайших соседей.
- Так как найденные k-nearest точки располагаются близко к (x_0, y_0) , применяется переход к локальной системе координат(отображение на единичный квадрат) вблизи этой точки.
- Число *k* выбирается несколько больше, чем необходимое количество точек для выбранного порядка аппроксимации, для возможность перебрать их комбинации и выбрать ту, которая даёт наибольший детерминант матрицы системы.

Algorithm 4 Определение значения функции в точке

- 1: **function** CalculateFunctionValueInPoint(n, (x, y))
- 2: $x_0 = x \lambda_x \cdot \tau$
- 3: $y_0 = y \lambda_y \cdot \tau$
- 4: $(x_0, y_0) = \text{BoundaryConditions}((x_0, y_0))$
- 5: $dots = FindKNearest((x_0, y_0))$
- 6: values = GetValuesFromTimeLay(n, dots)
- 7: $w = InterpolateFunctionValue(dots, values, (x_0, y_0))$
- 8: **return** w

5 Результаты численного эксперимента

Расчётная область квадрат $[-1,1] \times [-1,1]$. Количество слоёв по времени N=51, время моделирования T=1, постоянный шаг по времени $\tau=T/(N-1)=0.02$.

Скорости распространения возмущений по осям OX и OY соответственно равны: $\lambda_x = -2, \lambda_y = 5.$

5.1 Гладкая шапочка

Начальное условие

$$F(x,y) = \cos^4(x \cdot \pi/2) \cdot \cos^4(y \cdot \pi/2) \tag{8}$$

Визуализация решения

Ниже приведено решение в разные моменты времени, указан номер шага по времени $n \in [0, N-1]$ и фактическое время $t = n \cdot au$.

Рис. 3: t = 0.0, n = 0

Рис. 4: t = 0.22, n = 11

Рис. 5: t = 0.52, n = 26

Рис. 6: t = 1.0, n = 50

Порядок сходимости

При использовании в качестве аналога шага по пространству $1/\sqrt{\text{dots number}}$ получены наиболие репрезентативные результаты порядка сходимости, ниже приведён график для второй и третьей норм.

Рис. 7: График порядка сходимости численного решения для начальных условий типа «гладкая шапочка». Вторая норма - порядок сходимости 2.687, третья 3.581.

Результаты всех вычисляемых норм проиллюстрированны в таблице ниже. В первом столбце в качестве шага по пространству используется $h_{dots}=1/\sqrt{\text{dots number}}$, во втором $h_{scale}=1/\text{scale}$

	$1/\sqrt{\text{dots number}}$	1/scale
e_1	1.914	1.864
e_2	2.687	2.610
e_3	3.581	3.479

Таблица 1: Таблица с результатами расчётов порядка сходимости с помощью различных типов норм и аналогов шагов по пространству для начальных условий типа «гладкая шапочка».

5.2 Быстро спадающая экспонента

Начальное условие

$$F(x,y) = \begin{cases} \exp(-84 \cdot (x^2 + y^2)), (x,y) \in [-0.2, 0.2] \times [-0.2, 0.2] \\ 0, (x,y) \notin [-0.2, 0.2] \times [-0.2, 0.2] \end{cases}$$
(9)

Визуализация решения

Рис. 8: Быстро спадающая экспонента в начальный момент времени

Рис. 9: Быстро спадающая экспонента в конечный момент времени

Порядок сходимости

При использовании в качестве аналога шага по пространству $1/\sqrt{\text{dots number}}$ получены наиболие репрезентативные результаты порядка сходимости, ниже приведён график для второй и третьей норм.

Рис. 10: График порядка сходимости численного решения для начальных условий типа «быстро спадающая экспонента». Вторая норма - порядок сходимости 1.899, третья 2.615.

Результаты всех вычисляемых норм проиллюстрированны в таблице ниже. В первом столбце в качестве шага по пространству используется $h_{dots}=1/\sqrt{\text{dots number}}$, во втором $h_{scale}=1/\text{scale}$

	$1/\sqrt{\text{dots number}}$	1/scale
e_1	1.242	1.203
e_2	1.899	1.842
e_3	2.615	2.537

Таблица 2: Таблица с результатами расчётов порядка сходимости с помощью различных типов норм и аналогов шагов по пространству для начальных условий типа «быстро спадающая экспонента».

5.3 Конус

Начальное условие

$$F(x,y) = \begin{cases} (1-5 \cdot |x|) \cdot (1-5 \cdot |y|), (x,y) \in [-0.2, 0.2] \times [-0.2, 0.2] \\ 0, (x,y) \notin [-0.2, 0.2] \times [-0.2, 0.2] \end{cases}$$
(10)

Визуализация решения

Рис. 11: Конус в начальный момент времени

Рис. 12: Конус в конечный момент времени

Порядок сходимости

При использовании в качестве аналога шага по пространству $1/\sqrt{\text{dots number}}$ получены наиболие репрезентативные результаты порядка сходимости, ниже приведён график для второй и третьей норм.

Рис. 13: График порядка сходимости численного решения для начальных условий типа «конус». Вторая норма - порядок сходимости 1.793, третья 2.482.

Результаты всех вычисляемых норм проиллюстрированны в таблице ниже. В первом столбце в качестве шага по пространству используется $h_{dots}=1/\sqrt{\text{dots number}}$, во втором $h_{scale}=1/\text{scale}$

	$1/\sqrt{\text{dots number}}$	1/scale
e_1	0.888	0.861
e_2	1.793	1.739
e_3	2.482	2.408

Таблица 3: Таблица с результатами расчётов порядка сходимости с помощью различных типов норм и аналогов шагов по пространству для начальных условий типа «конус».

5.4 Шапочка-корень

Начальное условие

$$F(x,y) = \begin{cases} \sqrt{(1-25 \cdot x^2) \cdot (1-25 \cdot y^2)}, (x,y) \in [-0.2, 0.2] \times [-0.2, 0.2] \\ 0, (x,y) \notin [-0.2, 0.2] \times [-0.2, 0.2] \end{cases}$$
(11)

Визуализация решения

X

Рис. 14: Шапочка-корень в начальный момент времени

Рис. 15: Шапочка-корень в конечный момент времени

Порядок сходимости

При использовании в качестве аналога шага по пространству $1/\sqrt{\text{dots number}}$ получены наиболие репрезентативные результаты порядка сходимости, ниже приведён график для второй и третьей норм.

Рис. 16: График порядка сходимости численного решения для начальных условий типа «шапочка-корень». Вторая норма - порядок сходимости 1.439, третья 1.993.

Результаты всех вычисляемых норм проиллюстрированны в таблице ниже. В первом столбце в качестве шага по пространству используется $h_{dots}=1/\sqrt{\text{dots number}}$, во втором $h_{scale}=1/\text{scale}$

	$1/\sqrt{\text{dots number}}$	1/scale
e_1	0.500	0.487
e_2	1.439	1.397
e_3	1.993	1.935

Таблица 4: Таблица с результатами расчётов порядка сходимости с помощью различных типов норм и аналогов шагов по пространству для начальных условий типа «шапочка-корень».

5.5 Ступенька

Начальное условие

$$F(x,y) = \begin{cases} 1, \max(|x|, |y|) \le 0.5\\ 0, \max(|x|, |y|) > 0.5 \end{cases}$$
 (12)

Визуализация решения

Рис. 17: Ступенька после первого шага по времени

Рис. 18: Ступенька в конечный момент времени

Порядок сходимости

При использовании в качестве аналога шага по пространству $1/\sqrt{\text{dots number}}$ получены наиболие репрезентативные результаты порядка сходимости, ниже приведён график для второй и третьей норм.

Рис. 19: График порядка сходимости численного решения для начальных условий типа «ступенька». Вторая норма - порядок сходимости 0.956, третья 1.477.

Результаты всех вычисляемых норм проиллюстрированны в таблице ниже. В первом столбце в качестве шага по пространству используется $h_{dots}=1/\sqrt{\text{dots number}}$, во втором $h_{scale}=1/\text{scale}$

	$1/\sqrt{\text{dots number}}$	1/scale
e_1	-0.003	-0.002
e_2	0.956	0.929
e_3	1.477	1.435

Таблица 5: Таблица с результатами расчётов порядка сходимости с помощью различных типов норм и аналогов шагов по пространству для начальных условий типа «ступенька».

6 Заключение

В рамках работы получены следующие основные результаты:

- 1. Предложена и программное реализована численная схема решения уравнения $\partial_t u + \lambda_x \partial_x u + \lambda_y \partial_y u = 0$ на нерегулярной расчётной сетке с порядком выше первого без использования вспомогательных точек на рёбрах и гранях элементов сетки. Новизна подхода заключается в том, что для повышения порядка используется аналог расширения сеточного шаблона, реализованный в данном случае для неструктурированной сетки.
- 2. Выполнена серия численных экспериментов для различных начальных условий. Рассмотрены непрерывно дифференцируемые, непрерывные, разрывные решения.
- 3. Для непрерывных и непрерывно дифференцируемых начальных условий получен фактический порядок аппроксимации выше 2, для разрывных выше 1.4. Это позволяет говорить о том, что предложенная численная схема действительно обеспечивает требуемый порядок выше первого.
- 4. Построенная численная схема может быть в дальнейшем использована при решении динамических многомерных задач прочности в сложных областях интегрирования при наличии конечных деформаций.

Возможно дальнейшее развитие работы в следующих направлениях:

- 1. С точки зрения общей логики предложенного метода возможно дальнейшее повышение порядка за счёт использования большего количества соседних точек и полиномов более высокого порядка. Практическая реализация и тестирование данной идеи может являться темой отдельной работы.
- 2. В рамках данной работы никак не рассматривалось вычислительная сложность предложенного метода и скорость его работы. В дальнейшем было бы разумно сравнить быстродействие предложенного метода с аналогами. Также было бы интересно изучить возможность алгоритмических оптимизаций этапов расчёта.

7 Список литературы

Список литературы

- [1] Магомедов К. М., Холодов А. С. Сеточно-характеристические численные методы: учебное пособие для бакалавриата и магистратуры. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2019. 313 с.
- [2] Челноков Ф. Б. Явное представление сеточно-характеристических схем для уравнений упругости в двумерном и трехмерном пространствах // Матем. моделирование. 2006. Т. 18, № 6.
- [3] Челноков Ф. Б., Численное моделирование деформационных процессов в средах со сложной структурой, Дисс. . . . канд. физ.-мат. наук, М., 2005
- [4] Федоренко Р.П. Введение в вычислительную физику. М.:Изд-во Моск. физ. -техн. ин-та, 1994, 528 с.
- [5] Петров И. Б., Холодов А. С. Численное исследование некоторых динамических задач механики деформируемого твёрдого тела сеточно-характеристическим методом // Ж. вычисл. матем. и матем. физ. 1984. Т. 24, № 5.
- [6] Беклемышева К. А., Васюков А. В., Голубев В. И., Петров И. Б. Численное моделирование воздействия сейсмической активности на подводный композитный трубопровод // Матем. моделирование, 31:1 (2019), 103–113.
- [7] Беклемышева К. А., Петров И. Б. Моделирование разрушения гибридных композитов под действием низкоскоростного удара // Матем. моделирование, 30:11 (2018), 27–43.
- [8] Рогов Б. В., Михайловская М. Н. Монотонные бикомпактные схемы для линейного уравнения переноса // Математическое моделирование. 2011. Т. 23. №. 6. С. 98-110.
- [9] Голубев В. И., Петров И. Б., Хохлов Н. И. Компактные сеточно-характеристические схемы повышенного порядка точности для трёхмерного линейного уравнения переноса // Математическое моделирование. − 2016. − Т. 28. − №. 2. − С. 123-132.

- [10] Khokhlov N. I., Petrov I. B. On one class of high-order compact grid-characteristic schemes for linear advection // Russian Journal of Numerical Analysis and Mathematical Modelling. − 2016. − T. 31. − № 6. − C. 355-368.
- [11] Агапов П. И., Челноков Ф. Б. Сравнительный анализ разностных схем для численного решения двумерных задач механики деформируемого твердого тела // Моделирование и обработка информации: М., МФТИ. 2003. С. 19—27.
- [12] Петров И.Б., Фаворская А.В. Библиотека по интерполяции высоких порядков на неструктурированных треугольных и тетраэдральных сетках. // Журнал Информационные технологии. 2011. №9. С. 30–32.