Многочлен от одной переменной. Деление с остатком. Наибольший общий делитель многочленов. Алгоритм Евклида. Схема Горнера. Теорема Безу. Основная теорема алгебры.

Определение. Многочленом с действительными коэффициентами $a_0, a_1, ..., a_{n-1}, a_n$ называется выражение вида $a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$.

Определение. Пусть имеем два многочлена $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$ и $g(x) = b_0 x^m + b_1 x^{m-1} + ... + b_{m-1} x + b_m$.

Тогда $f(x) = g(x) \Leftrightarrow m = n, a_0 = b_0, a_1 = b_1, ..., a_{n-1} = b_{n-1}, a_n = b_n.$

Определение. Разделить многочлен f(x) на многочлен g(x) с остатком значит найти такие многочлены q(x) и h(x), что $f(x) = q(x) \cdot g(x) + h(x)$, причем степень h(x) меньше степени g(x).

Замечание. q(x) – неполное частное, h(x) – остаток.

Теорема (о делении с остатком). Пусть f(x) и g(x) — произвольные многочлены с действительными коэффициентами. Тогда можно разделить с остатком, причем единственным образом, многочлен f(x) на многочлен g(x).

Пример. Разделить с остатком многочлен $f(x) = 4x^5 + 3x^3 - x^2 + 5$ на многочлен $g(x) = x^3 - 3x + 1$. **Решение.**

$$4x^{5} + 3x^{3} - x^{2} + 5 = (4x^{2} + 15)(x^{3} - 3x + 1) - 5x^{2} + 45x - 10$$

$$q(x) = 4x^{2} + 15$$

$$h(x) = -5x^{2} + 45x - 10$$

Теорема (o делении многочлена на (x - a).

Пусть f(x) — произвольный многочлен, a — число. Тогда этот многочлен можно единственным образом представить в виде $f(x) = q(x) \cdot (x-a) + c$, где c = f(a).

		Схема Горнера					
	a_0	a_1	a_2		a_{n-1}	a_n	
\overline{a}	$b_0 = a_0$	$b_1 = ab_0 + a_1$	$b_2 = ab_1 + a_2$		$b_{n-1} = ab_{n-2} + a_{n-1}$	$c = ab_{n-1} + a_n$	

Пример.

$$q(x) = 7x^4 + 11x^3 + 22x^2 + 42x + 87$$
 $c = 173$

2) Найти f(2). f(2) = c = 173 (по теореме).

Теорема (Безу). Число a – корень многочлена f(x) (т.е. f(a) = 0) $\Leftrightarrow f(x)$ делится на (x-a).

Определение. Число a — корень многочлена f(x). Если f(x) делится без остатка на $(x-a)^k$ $(k \ge 1)$, но не делится на $(x-a)^{k+1}$, то a называется корнем кратности k. Корни кратности 1 называются простыми корнями.

Пример.

1) $f(x) = x^5 - 5x^4 + 7x^3 - 2x^2 + 4x - 8$. Проверить, является ли 2 корнем многочлена f(x).

				1 1 .			
		1	-5	7	-2	4	-8
	2	1	-3	1	0	4	0 - остаток

Вывод: 2 является корнем многочлена.

2) Определить кратность корня 2.

, -	1	-5	7	-2	4	-8
2	1	-3	1	0	4	0 - остаток
2	1	-1	-1	-2	0	
2	1	1	1	0		
2	1	3	7	14		

Вывод: 2 – корень кратности три.

Определение. Многочлен $\varphi(x)$ называется общим делителем для многочленов f(x) и g(x), если он служит делителем каждого из этих многочленов.

Определение. Наибольшим общим делителем отличных от нуля многочленов f(x) и g(x) называется такой многочлен d(x), который является их общим делителем и сам делится на любой другой общий делитель этих многочленов.

Обозначение. (f(x), g(x))

Для нахождения наибольшего общего делителя используется *алгоритм Евклида (алгоритм последовательного деления)*

Пример.
$$f(x) = x^4 + 3x^3 - x^2 - 4x - 3$$
 $g(x) = 3x^3 + 10x^2 + 2x - 3$ Найти $(f(x), g(x))$.

$$\begin{array}{c|c}
3x^{3} + 10x^{2} + 2x - 3 & |x^{2} + 5x + 6 \\
\underline{3x^{3} + 15x^{2} + 18x} \\
-5x^{2} - 16x - 3 \\
\underline{-5x^{2} - 25x - 30} \\
9x + 27 & \times \left(\frac{1}{9}\right)
\end{array}$$

$$\begin{array}{c|c}
x^{2} + 5x + 6 & x + 3 \\
\underline{x^{2} + 3x} & x + 2 \\
\hline
2x + 6 & x + 2 \\
\hline
2x + 6 & 0 \\
(f(x), g(x)) = x + 3
\end{array}$$

Основная теорема алгебры. Всякий многочлен с любыми числовыми коэффициентами, степень которого не меньше единицы, имеет хотя бы один корень, в общем случае комплексный.

Следствие. Всякий многочлен f(x) степени n (n≥1) с любыми числовыми коэффициентами имеет n корней, если каждый из корней считать столько раз, какова его кратность.

Утверждение. Если $\frac{p}{q}$ — несократимая рациональная дробь, являющаяся корнем многочлена

 $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$ с целыми коэффициентами, то:

- 1) q есть делитель a_0 ;
- 2) p есть делитель a_n ;
- 3) p mq есть делитель f(m) при любом целом m.

В частности, p-q есть делитель f(1), p+q есть делитель f(-1).

Следствие. Если p — целый корень многочлена $f(x) = x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$ с целыми коэффициентами, то p — есть делитель a_n .

Упражнения

- 1. Пользуясь алгоритмом Евклида, найти наибольший общий делитель многочленов f(x) и g(x), если: $f(x) = 3x^4 + 2x^3 + 11x^2 + 8x 4$, $g(x) = x^5 + 6x^3 + x^2 + 8x + 4$
- 2. Пользуясь схемой Горнера
- а) разделить многочлен $f(x) = 5x^4 + 3x^3 4x^2 + 6x 1$ на двучлен (x+3); б) найти f(-3)
- 3. Отделить кратные множители многочлена $f(x) = x^6 3x^5 + 10x^3 15x^2 + 9x 2$.
- 4. Найти рациональные корни многочлена $f(x) = 6x^4 + 19x^3 7x^2 26x + 12$

- 2. Пользуясь схемой Горнера
- а) разделить многочлен $f(x) = x^5 + 7x^4 + 16x^3 + 8x^2 16x 16$ на двучлен (x+2); б) найти f(-2)
- 3. Отделить кратные множители многочлена $f(x) = x^6 + 2x^5 5x^4 20x^3 25x^2 14x 3$.
- 4. Найти рациональные корни многочлена $f(x) = x^4 2x^3 8x^2 + 13x 24$

^{1.} Пользуясь алгоритмом Евклида, найти наибольший общий делитель многочленов f(x) и g(x), если: $f(x) = 5x^4 + x^3 - 9x^2 - 2x - 1$, $g(x) = x^5 - 5x^3 + x^2 + 6x - 2$