PRACOVNÍ LIST – KAPALINY

- Na drátěném rámečku s pohyblivou příčkou je napnuta mydlinová blána. Povrchové napětí mýdlového roztoku je 0,04 N·m⁻¹, dělka příčky je 0,08 m. Uvědomte si, že mydlinová blána má dva povrchy.
- Jak velká síla udrží pohyblivou příčku v rovnováze? B. 0,50 N

C. 0,0064N

D. 0,0032N

2 Jaký je přínistek povrchové energie obou stran blány, posuneme-li příčku o 0,05 m? A. $1,6\cdot 10^{-4}$ J B. $3,2\cdot 10^{-4}$ J C. $6,4\cdot 10^{-4}$ J D. $4,0\cdot 10^{-2}$ J

- o poloměru 5 · 10[→] m. • Kapilára je zasumuta do nádoby s kapalinou o hustotě 800 kg · m $^{-3}$, jejíž povrchové napětí je 6 · 10^{-2} N · m $^{-1}$. V kapiláře se vytvoří dutý kulový povrch kapaliny
- Jaký kapilární dak vyvolá dutý povrch kapaliny v kapiláře?
 A. 60 Pa
 B. 120 Pa
 C. 240 Pa

Do jaké výšky nad volný povrch kapaliny v nádobě vystoupí kapalina v kapiláře? Dosazujte $g = 10 \,\mathrm{m} \cdot \mathrm{s}^{-2}$ D. 7,5 mm

B. 24 mm 6. 15 mm

A. 30 mm

• V kapiláře q^{\dagger} vnitřním poloměru r vystoupila kapalina o hustotě q a povrchovém napětí σ do výšky 4 mm nad úroveň volné hladiny.

🖪 Do jaké výšky vystoupí v této kapiláře kapalina o hustotě ϱ a povrchovém na pětí 2σ? D. 16 mm

🖪 Do jaké výšky vystoupí v této kapiláře kapalina o hustotě 20 a povrchovém A. 2 mm B. 4 mm C. 8 mm

A. 2 mm

8. 4 mm

C. 8 mm

D. 16 mm

napětí σ'i

s mýdlovou blánou je v rovnovážné poloze, je-li zatížena závažím o hmotnosti 320 mg (obr. 25). Pohyblivá příčka AB délky 40 mm na rámečku příčku, a povrchové napětí mýdlového roztoku ve styku se vzduchem. Tíhové zrychlení je 10 m·s⁻² Určete velikost povrchové síly, která působí na Hmotnost příčky je vzhledem k hmotnosti závaží

Obt. 25

[40 mN·m]

a směr síly působící na sirku. Povrchové napětí vose sirka na povrchu vody pohybovat směrem od na jednu stranu povrchu vody rozděleného sirkou Sirka o délce 4 cm plave na povrchu vody. Jestliže dy je 73 m $N \cdot m^{-1}$, mýdlového roztoku 40 m $N \cdot m^{-1}$ mýdlového roztoku k čisté vodě. Určete velikost nalijeme opatrně trochu mýdlového roztoku, začne

€)

Obr. 26

se od povrchu roztoku odtrhl? Povrchové napětí mýdlového roztoku ve vodě je 40 mN·m $^{-1}$, tíhové zrychlení 10 m·s $^{-2}$ povrchu mýdlového roztoku. Jakou silou je třeba působit na prstenec, aby Tenký hliníkový prstenec o poloměru 7,8 cm a hmotnosti 7 g se dotýká

(4)

PRACOVNI LIST - KAPALINY

(9)

kapiláry; stykový úhel $\vartheta = 0^{\circ}$.

Jaký tlak má vzduch v kulové bublině o průměru 10⁻³ mm v hloubce 2 m pod volnou hladinou vody, je-li atmosférický tlak 1 000 hPa? Povrchové napětí vody ve styku sé vzduchem je 73 mN·m⁻¹, hustota vody 10³ kg·m⁻³ a tíhové zrychlení 10 m·s⁻².

Určete hmotnost vody, která v důsledku kapilární elevace vystoupí v kapiláře o vnitřním průměru 0,5 mm. Povrchové napětí vody je 73 mN·m⁻¹, tíhové zrychlení 9,81 m·s⁻². Předpokládáme, že voda dokonale smáči stěny

a 1,5 mm. Vypočtěte povrchové napětí vody, je-li rozdíl výšek vodních hladin při kapilární elevaci v obou kapilárách 4,9 mm. Hustota vody je $10^3~{\rm kg\cdot m^{-3}}$, tíhové zrychlení 9,81 m·s $^{-2}$. Předpokládáme, že voda dokonale smáčí stěny kapilár. Do vody jsou svisle zasunuty dvě skleněné kapiláry s poloměry 1 mm

6

Z nádoby vytéká svislou kapilárou o poloměru 1 mm líh. Za každou sekundu odpadne jedna kapka. Za jakou dobu vyteče z nádoby líh o hmotnosti 10 g? Povrchové napětí líhu je $22\cdot 10^{-3}$ N·m⁻¹, tíhové znychlení 9,81 m·s⁻².

(t)