

4. Sensitivity analysis

Structural Dynamics part of 4DM00

dr.ir. R.H.B. (Rob) Fey, ir. D.W.M. (Daniël) Veldman

Sensitivity analysis

General problem:

How does the dynamic behavior change when a specific design parameter value changes?

Possible design parameters:

point mass, spring stiffness, plate thickness, Youngs' modulus, radius of cylinder.

Sensitivity analysis

Problem: How do the dynamic characteristics (eigenvalues λ_k and eigenmodes v_k) change when a design parameter value changes?

We consider a general viscous damping model:

$$(\lambda_k C + D)v_k = 0$$

Design parameters are denoted by: p_{α} , p_{β} , ...

Matrices *C* and *D* depend on design parameters,

$$C = C(p_{\alpha}, p_{\beta}, ...), \qquad D = D(p_{\alpha}, p_{\beta}, ...)$$

Partial derivative of a matrix $A(p_{\alpha},p_{\beta},...)$ w.r.t. design parameter p_{α} is denoted by

$$A_{,\alpha} = \frac{\partial A}{\partial p_{\alpha}}$$

Problem: find $\lambda_{k,\alpha}$ and $v_{k,\alpha}$ (and $w_{k,\alpha}$)

Adjoint method (eigenvalue sensitivity)

Eigenvalue problem

$$(\lambda_k C + D)v_k = 0$$

• Differentiate w.r.t. p_{α}

$$(\lambda_{k,\alpha}C + \lambda_kC_{,\alpha} + D_{,\alpha})v_k + (\lambda_kC + D)v_{k,\alpha} = 0$$

• Premultiply with w_k^{T} (which satisfies $w_k^{\mathsf{T}}(\lambda_k C + D) = 0^{\mathsf{T}}$)

$$w_k^{\mathsf{T}} (\lambda_{k,\alpha} C + \lambda_k C_{,\alpha} + D_{,\alpha}) v_k = 0.$$

$$\lambda_{k,\alpha} = -\frac{w_k^{\mathsf{T}} (\lambda_k C_{,\alpha} + D_{,\alpha}) v_k}{w_k^{\mathsf{T}} C v_k}$$

Adjoint method (right eigenvector sensitivity)

$$(\lambda_{k,\alpha}C + \lambda_kC_{,\alpha} + D_{,\alpha})v_k + (\lambda_kC + D)v_{k,\alpha} = 0$$

Write $v_{k,\alpha}$ in terms of eigenvectors v_k $v_{k,\alpha} = \sum_{n=1}^{\infty} a_{kp} v_p$

Insert and premultiply with w_i^{T}

$$w_l^{\mathsf{T}} (\lambda_{k,\alpha} C + \lambda_k C_{,\alpha} + D_{,\alpha}) v_k + \sum_{p=1}^{2N} w_l^{\mathsf{T}} (\lambda_k C + D) a_{kp} v_p = 0$$
 For $l \neq k$, the bi-orthogonality property shows that $w_l^{\mathsf{T}} C v_k = w_l^{\mathsf{T}} D v_k = 0$

- $w_l^{\mathsf{T}}(\lambda_k C_{\alpha} + D_{\alpha})v_k + a_{kl}w_l^{\mathsf{T}}(\lambda_k C + D)v_l = 0$
- Finally, as $w_l^{\mathsf{T}} D v_l = -\lambda_l w_l^{\mathsf{T}} C v_l$, we can rewrite $w_l^{\mathsf{T}} (\lambda_k C + D) v_l = (\lambda_k \lambda_l) w_l^{\mathsf{T}} C v_l$

$$a_{kl} = -\frac{w_l^{\mathsf{T}} (\lambda_k C_{,\alpha} + D_{,\alpha}) v_k}{(\lambda_k - \lambda_l) w_l^{\mathsf{T}} C v_l}$$
 $(k \neq l)$

Adjoint method (left eigenvector sensitivity)

$$w_k^{\mathsf{T}} \left(\lambda_{k,\alpha} C + \lambda_k C_{,\alpha} + D_{,\alpha} \right) + w_{k,\alpha}^{\mathsf{T}} \left(\lambda_k C + D \right) = 0$$

Write $w_{k,\alpha}$ in terms of eigenvectors w_k $w_{k,\alpha} = \sum_{m=1}^{\infty} b_{kp} w_p$

Insert and postmultiply with v_I

$$w_k^{\mathsf{T}} (\lambda_{k,\alpha} C + \lambda_k C_{,\alpha} + D_{,\alpha}) v_l + \sum_{n=1}^{\mathsf{T}} b_{kp} w_p^{\mathsf{T}} (\lambda_k C + D) v_l = 0$$

- $w_k^{\mathsf{T}} \big(\lambda_{k,\alpha} C + \lambda_k C_{,\alpha} + D_{,\alpha} \big) v_l + \sum_{p=1}^{2N} b_{kp} w_p^{\mathsf{T}} (\lambda_k C + D) v_l = 0$ For $l \neq k$, the bi-orthogonality property shows that $w_l^{\mathsf{T}} C v_k = w_l^{\mathsf{T}} D v_k = 0$ $w_k^{\mathsf{T}} \big(\lambda_k C_{,\alpha} + D_{,\alpha} \big) v_l + b_{kl} w_l^{\mathsf{T}} (\lambda_k C + D) v_l = 0$
- Finally, as $w_i^T D v_i = -\lambda_i w_i^T C v_i$

$$b_{kl} = -\frac{w_k^{\mathsf{T}} (\lambda_k C_{,\alpha} + D_{,\alpha}) v_l}{(\lambda_k - \lambda_l) w_l^{\mathsf{T}} C v_l}$$
 $(k \neq l)$

What are a_{kk} and b_{kk} ?

Formulas for a_{kl} and b_{kl} on previous slides are not well-defined for k=l.

Two options to choose a_{kk} and b_{kk} .

OPTION 1: $a_{kk} = b_{kk} = 0$.

Motivation: If v_k is an eigenmode, then zv_k is also an eigenmode for any $z \in \mathbb{C}$.

When $|a_{kk}|$ compared to the other coefficients a_{kl} ,

 $v_{k,\alpha} \approx a_{kk}v_k$ only shows a rescaling of v_k (not a true change in the eigenmode).

Setting $a_{kk} = 0$ gives a better idea about the change in shape.

Easy to implement.

Is equivalent to requiring that $w_k^{\mathsf{T}} \mathcal{C} v_{k,\alpha} = 0$ and $v_k^{\mathsf{T}} \mathcal{C} w_{k,\alpha} = 0$.

Normalization rule

OPTION 2: Choose a_{kk} and b_{kk} according to normalization rule.

Depends on the **normalization rule** for the eigenvectors v_k and w_k . We normalize

- v_k such that $v_k[i_{max,k}] = 1$ where $i_{max,k} = \max_i |v_k[i]|$ and
- w_k such that $w_k[l_{max,k}] = 1$ where $l_{max,k} = \max_l |w_k[l]|$.

(Element of largest magnitude in v_k and w_k is scaled to 1)

MATLAB:

[~,imaxk]=max(vk)

Warning: other normalization rules such as

- $w_k^{\mathsf{T}} C v_k = 1$ and $v_k^H v_k = w_k^H w_k$ or
- $v_k^H v_k = 1$ and $w_k^H w_k = 1$

do not allow to determine a_{kk} and b_{kk} uniquely (see slides at the end).

Adjoint method (coefficients a_{kk} and b_{kk})

The coefficient a_{kk} now follows from

$$v_k[i_{max,k}] = 1,$$
 $v_{k,\alpha}[i_{max,k}] = \sum_{p=1}^{2n} a_{kp} v_p[i_{max,k}] = 0,$

so that

Similarly,

$$a_{kk} = -\sum_{\substack{p=1,\\n\neq k}}^{2n} a_{kp} v_p [i_{max,k}].$$

$$b_{kk} = -\sum_{\substack{p=1,\\n\neq k}}^{2n} b_{kp} w_p [l_{max,k}].$$

Remark: adjoint method can be used to find higher-order derivatives, but formulas are complicated.

Direct method (eigenvalue+right eigenvector)

- Differentiate $(\lambda_k C + D)v_k = 0$ w.r.t. p_α : $(\lambda_{k,\alpha} C + \lambda_k C_{,\alpha} + D_{,\alpha})v_k + (\lambda_k C + D)v_{k,\alpha} = 0$
- Collects unknowns $v_{k,\alpha}$ and $\lambda_{k,\alpha}$ on the left hand side

$$\begin{bmatrix} \lambda_k C + D & C v_k \end{bmatrix} \begin{bmatrix} v_{k,\alpha} \\ \lambda_{k,\alpha} \end{bmatrix} = -(\lambda_k C_{,\alpha} + D_{,\alpha}) v_k$$

2n equations, 2n + 1 unknowns.

• Remove one unknown with normalization rule $v_k[i_{max,k}]=1 \Rightarrow v_{k,\alpha}[i_{max,k}]=0$. Solve 2n equations

 $By_{,\alpha}=r_{\alpha}$

for the 2n unknowns y_{α} where

- B is equal to $[\lambda_k C + D \quad Cv_k]$ with the $i_{max,k}$ -th column removed
- $y_{,\alpha}$ is equal to $\begin{bmatrix} v_{k,\alpha} \\ \lambda_{k,\alpha} \end{bmatrix}$ with the $i_{max,k}$ -th element removed

•
$$r_{\alpha} = -(\lambda_k C_{,\alpha} + D_{,\alpha}) v_k$$

Remarks on the direct method

- Similar derivation possible for eigenvalue λ_k and left eigenvectors w_k
- Higher-order derivatives such as $\lambda_{k,\alpha\beta}$, $v_{k,\alpha\beta}$, and $w_{k,\alpha\beta}$ can be obtained similarly. Example for the right-eigenvector approach:

$$By_{,\alpha\beta} = r_{\alpha\beta}$$

where

- B is equal to $[\lambda_k C + D \quad Cv_k]$ with the i_{mk} -th column removed (same as before!)
- $y_{,\alpha\beta}$ is equal to $\begin{bmatrix} v_{k,\alpha\beta} \\ \lambda_{k,\alpha\beta} \end{bmatrix}$ with the i_{mk} -th element removed

•
$$r_{\alpha\beta} = -(\lambda_{k,\alpha}C_{,\beta} + \lambda_{k,\beta}C_{,\alpha} + \lambda_kC_{,\alpha\beta} + D_{\alpha\beta})v_k - (\lambda_{k,\alpha}C + \lambda_kC_{,\alpha} + D_{,\alpha})v_{k,\beta} - (\lambda_{k,\beta}C + \lambda_kC_{,\beta} + D_{,\beta})v_{k,\alpha}$$

Comparison

Adjoint Method	Direct Method
$C_{,\alpha}$ and $D_{,\alpha}$ needed	$C_{,\alpha}$ and $D_{,\alpha}$ needed
Calculation of $\lambda_{k,\alpha}$ for a single k is cheap, only the corresponding λ_k, v_k , and w_k are needed Calculation of $v_{k,\alpha}$ and $w_{k,\alpha}$ is expensive,	For each single k : Calculation of $\lambda_{k,\alpha}$, $v_{k,\alpha}$, and $w_{k,\alpha}$ requires λ_k , v_k , and w_k and the solution of a set of linear algebraic equations
solution of complete eigenvalue problem is needed	
More than 1 design parameter does not need much additional effort	More than 1 design parameter has only consequences for right hand side
	Second-order derivatives are easily obtained

System matrix derivatives

Note that:

$$C_{,\alpha} = \begin{vmatrix} B_{,\alpha} & M_{,\alpha} \\ M_{,\alpha} & O \end{vmatrix}, \qquad D_{,\alpha} = \begin{vmatrix} K_{,\alpha} & O \\ O & M_{,\alpha} \end{vmatrix}$$

So we need to determine M_{α} , B_{α} and K_{α} .

Two situations:

1. Analytical expressions:

$$M_{,lpha}=rac{\partial M}{\partial p_lpha}$$
 , etc.

Examples: discrete mass, discrete spring stiffness, discrete viscous damping constant, Young's modulus, mass density. 2. Numerical approximations:

$$M_{,lpha}pprox rac{\Delta M}{\Delta p_{lpha}}=rac{M(p_{lpha}+\Delta p_{lpha})-M(p_{lpha})}{\Delta p_{lpha}}$$
, etc.

Examples: radius of cylinder, distance between plate stiffeners

Example 1: Portal frame with point mass

Design parameter is discrete mass m.

Example 2: Milling machine

$$K_{,\alpha} = j \begin{bmatrix} \ddots & & & \\ & 1 & -1 & \\ & -1 & 1 & \\ & & \ddots \end{bmatrix}$$

$$M_{,\alpha} = B_{,\alpha} = 0$$

Design parameter is axial stiffness k of (massless) spring between nodes j and l.

Example 3: Bell

Only numerical approximations are possible:

$$M_{,\alpha} \approx \frac{\Delta M}{\Delta p_{\alpha}}$$

$$K_{,\alpha} pprox rac{\Delta K}{\Delta p_{lpha}}$$

The 3 design parameters are the radii at three axial positions

Example: sensitivity analysis

Beam model

- 8 elements, 18 DOFs
- $\begin{array}{ll} \bullet & l_{tot} = 1 \text{ m,} \\ \rho A = 7 \text{ kg/m,} \\ EI = 1.5 \cdot 10^4 \text{ Nm}^2, \\ k_o = 2 \cdot 10^6 \text{ N/m,} \\ b_o = 2 \cdot 10^3 \text{ Ns/m.} \end{array}$

$$\lambda_1 = -18.43 + 404.3j$$

(first bending mode, weakly damped)

$$\partial \lambda_1 / \partial m = +6.5 - 53j$$

$$\partial \lambda_1 / \partial b = -0.13 - 0.01j$$

Sensitivity of first eigenmode

 $a_{kk} = 0$ according to OPTION 1

Figures show the real parts (solid lines) and imaginary parts (dashed lines)

Adding mass m increases bending, adding damping b decreases bending.

Sensitivity of first eigenmode

 a_{kk} according to OPTION 2

Figures show the real parts (solid lines) and imaginary parts (dashed lines)

Adding mass m increases bending, adding damping b decreases bending.

Linear approximations

Solid lines: exact eigenvalue: $\lambda_1(m)$ linear approximation: $\lambda_1(m=0) + \frac{\partial \lambda_1}{\partial m}(m=0)m$

Accurate approximation for eigenvalue λ_1 if m < 0.5 kg For comparison $\rho A l_{tot} = 7 \text{ kg}$

4b. Model updating

Model updating using eigenvalue sensitivity

Given: λ_e , a column of e experimentally measured eigenvalues.

Given: a numerical model $(\lambda_k C(p) + D(p))v_k = 0$

depending on a vector of q parameters p.

Note: typically, q < 2e.

Problem: find/adapt the parameter values p such that $\lambda_n = \lambda_n(p)$, a vector containing e

eigenvalues of the numerical model, match with λ_e .

Note: Corresponding eigenmodes should be similar.

Model updating using eigenvalue sensitivity

Iterative approach: $p_{(i)}$ denotes the parameter values at iteration i

For small parameter variations $\Delta p_{(i)}$ around $p_{(i)}$

$$\lambda_{n}(p_{(i)} + \Delta p_{(i)}) \approx \lambda_{n}(p_{(i)}) + \frac{\partial \lambda_{n}}{\partial p} \bigg|_{p=p_{(i)}} \Delta p_{(i)} =: \lambda_{n(i)} + S_{(i)} \Delta p_{(i)},$$

$$\lambda_{n(i)} := \lambda_{n}(p_{(i)}), \qquad S_{(i)} = \frac{\partial \lambda_{n}}{\partial p} \bigg|_{p=p_{(i)}}.$$

Note: $S_{(i)}$ is computed using sensitivity analysis.

Introduce

where

$$\Delta \lambda_{(i)} \coloneqq \lambda_e - \lambda_{n(i)} - S_{(i)} \Delta p_{(i)}$$

Note: $\Delta \lambda_{(i)} \neq \lambda_e - \lambda_n (p_{(i)} + \Delta p_{(i)})$, but $\Delta \lambda_{(i)} \approx \lambda_e - \lambda_n (p_{(i)} + \Delta p_{(i)})$ for small $\Delta p_{(i)}$.

Model updating using eigenvalue sensitivity

The number of parameters q is typically small (i.e. q < 2e). \Rightarrow it is typically impossible to achieve $\lambda_n(p) = \lambda_e$.

Least squares approach: Minimize

$$\varepsilon_{(i)} = \Delta \lambda_{(i)}^H W \ \Delta \lambda_{(i)}$$

- $\varepsilon_{(i)}$ is a scalar-valued cost function
- $\Delta \lambda_{(i)} = \lambda_e \lambda_{n(i)} S_{(i)} \Delta p_{(i)}$
- W is a real, positive definite, symmetric (often diagonal) weighting matrix.

Optimal
$$\Delta p_{(i)}$$
: $\partial \varepsilon$

$$\frac{\partial \varepsilon}{\partial \Delta p_{(i)}} = 0, \quad \text{Re}(S_{(i)}^H W S_{(i)}) \Delta p_{(i)} = \text{Re}(S_{(i)}^H W (\lambda_e - \lambda_{n(i)}))$$
Undate: Parameter undate $n_{i+1} = n_{i+1} + \Delta n_{i+1}$ and model undate $\lambda_{i+1} = n_{i+1} + \Delta n_{i+1}$

Update: Parameter update $p_{(i+1)} = p_{(i)} + \Delta p_{(i)}$ and model update $\lambda_{n(i+1)}$ and $S_{(i+1)}$.

Stop when $\varepsilon_{(i)}$ and/or the relative changes $\Delta p_{\alpha(i)}/p_{\alpha(i)}$ ($\alpha=1,...,q$) are small enough.

Problems with normalization rule 3

$$v_k^H v_k = 1$$
 and $w_k^H w_k = 1$

The normalization rule does not uniquely define the eigenvectors:

- Set $\tilde{v}_k = \mu v_k$ for some $\mu \in \mathbb{C}$.
- $\tilde{v}_k^H \tilde{v}_k = \bar{\mu} v_k^H \mu v_k = |\mu|^2 v_k^H v_k$, so only absolute value of μ is fixed by normalization rule.
- Still leaves the possibility to set $\mu = e^{i\theta}$ for some $\theta \in \mathbb{R}$.

The rule is also not sufficient to determine a_{kk} and b_{kk} .

Illustration for a_{kk} :

• Differentiate
$$v_k^H v_k = 1$$
 w.r.t. p_α
$$v_{k,\alpha}^H v_k + v_k^H v_{k,\alpha} = 2 \text{Re} \big(v_k^H v_{k,\alpha} \big) = 0$$

• Expand $v_{k,\alpha}$ in the eigenmodes v_p : $v_{k,\alpha} = \sum_{p} \sum_{p} a_{kp} v_p$

$$2\operatorname{Re}(a_{kk})v_k^H v_k = -2\sum_{\substack{p=1\\p\neq k}}\operatorname{Re}(a_{kp}v_k^H v_p).$$

• So only the real part of a_{kk} is determined. Imaginary part is still free!

Problems with normalization rule 1

$$w_k^{\mathsf{T}} C v_k = 1$$
 and $v_k^H v_k = w_k^H w_k$

The normalization rule does not uniquely define the eigenvectors:

- Assume v_k and w_k satisfy the normalization rule, i.e. $w_k^{\mathsf{T}} \mathcal{C} v_k = 1$ and $v_k^H v_k = w_k^H w_k$.
- Set $\tilde{v}_k = \mu_1 v_k$ and $\tilde{w}_k = \mu_2 w_k$ for some $\mu_1, \mu_2 \in \mathbb{C}$.
- Requiring that $\tilde{v}_k^H \tilde{v}_k = \tilde{w}_k^H \tilde{w}_k$ implies that $|\mu_1|^2 v_k^H v_k = |\mu_2|^2 w_k^H w_k$.
- Because $v_k^H v_k = w_k^H w_k$, it follows that $|\mu_1| = |\mu_2|$.
- So we can write $\mu_1=re^{i heta_1}$ and $\mu_2=re^{i heta_2}$ for some $r\geq 0$ and $heta_1$, $heta_2\in\mathbb{R}$.
- Requiring $1 = \widetilde{w_k}^{\mathsf{T}} \widetilde{C} \widetilde{v}_k = r^2 e^{i(\theta_1 + \widetilde{\theta}_2)} w_k^{\mathsf{T}} C v_k = r^2 e^{i(\theta_1 + \overline{\theta}_2)}$ shows that r = 1 and $\theta_2 = -\theta_1$.
- Still leaves the possibility to choose any $\theta_1 \in \mathbb{R}$.

Problems with normalization rule 1

$$w_k^{\mathsf{T}} C v_k = 1$$
 and $v_k^H v_k = w_k^H w_k$

The rule is also not sufficient to determine a_{kk} and b_{kk} .

From the book we find the conditions

$$a_{kk} + b_{kk} = -w_k^{\mathsf{T}} C_{,\alpha} v_k, \qquad \operatorname{Re}(v_{k,\alpha}^H v_k) = \operatorname{Re}(w_{k,\alpha}^H w_k).$$

• Writing $v_{k,\alpha} = \sum_p a_{kp} v_p$ and $w_{k,\alpha} = \sum_p b_{kp} w_p$, the latter condition can be rewritten as

$$2\operatorname{Re}(a_{kk})v_k^H v_k - 2\operatorname{Re}(b_{kk})w_k^H w_k = -2\sum_{\substack{p=1\\p\neq k}}^{2R} \operatorname{Re}(a_{kp}v_k^H v_p) + 2\sum_{\substack{p=1\\p\neq k}}^{2R} \operatorname{Re}(b_{kp}w_k^H w_p).$$

- There are 4 unknowns (Re (a_{kk}) , Im (a_{kk}) , Re (b_{kk}) , Im (b_{kk})) but only 3 equations.
- Imaginary parts of a_{kk} and b_{kk} are not uniquely determined. Solution set is of the form:

$$a_{kk} = a_{kk,0} + jC$$
, $b_{kk} = b_{kk,0} - jC$, $C \in \mathbb{R}$.

FRF derivatives

Sensitivity of FRF due to change in design parameter p_{α} .

$$H(\omega, p_{\alpha}) = \sum_{k=1}^{2n} \frac{A_k(p_{\alpha})}{\left(j\omega - \lambda_k(p_{\alpha})\right)}, \qquad A_k(p_{\alpha}) = \frac{u_k(p_{\alpha})x_k^{\mathsf{T}}(p_{\alpha})}{w_k^{\mathsf{T}}(p_{\alpha})\mathcal{C}v_k(p_{\alpha})}.$$

Differentiate to p_{α} :

$$H_{,\alpha}(\omega) = \sum_{k=1}^{2n} \left[\frac{A_{k,\alpha}}{(j\omega - \lambda_k)} + \frac{A_k \lambda_{k,\alpha}}{(j\omega - \lambda_k)^2} \right].$$

Estimation based on first order Taylor series expansion:

$$H(\omega, p_{\alpha} + \Delta p_{\alpha}) = H(\omega, p_{\alpha}) + H_{\alpha}(\omega, p_{\alpha}) \Delta p_{\alpha} + O\{\Delta p_{\alpha}^{2}\}.$$

Only meaningful if for relatively small Δp_{α} . Not meaningful for weakly damped systems: Higher order terms $\frac{Q(\Delta p_{\alpha})^i}{(j\omega-\lambda_k)^{i+1}}$ will not be small!

Alternative 1: finite difference approximation

- 1. Determine $H(\omega, p_{\alpha})$ using $\lambda_k(p_{\alpha})$, $v_k(p_{\alpha})$, and $w_k(p_{\alpha})$.
- 2. Choose a (sufficiently small) Δp_{α} and determine $H(\omega, p_{\alpha} + \Delta p_{\alpha})$ using $\lambda_k(p_{\alpha} + \Delta p_{\alpha})$, $v_k(p_{\alpha} + \Delta p_{\alpha})$, and $w_k(p_{\alpha} + \Delta p_{\alpha})$.
- 3. Form the differential quotient:

$$H_{,\alpha} pprox rac{H(\omega, p_{\alpha} + \Delta p_{\alpha}) - H(\omega, p_{\alpha})}{\Delta p_{\alpha}} = rac{\Delta H}{\Delta p_{\alpha}}.$$

Alternative 2: implicit differentiation

$$H(\omega, p_{\alpha}) = H = Z^{-1} = [-\omega^{2}M + j\omega B + K]^{-1}$$

Differentiate the relation HZ = I:

$$H_{\alpha}Z + HZ_{\alpha} = 0.$$

It follows that

$$H_{,\alpha} = -HZ_{,\alpha}Z^{-1} = -HZ_{,\alpha}H.$$

It is now only necessary to determine:

$$Z_{,\alpha} = -\omega^2 M_{,\alpha} + j\omega B_{,\alpha} + K_{,\alpha}.$$

This alternative is useful in case of simple discrete design parameters such as masses, springs, dampers between structure and ground. In that case, Z_{α} has only 1 non-zero element and only 1 column/row of H needed.

Example: FRF sensitivity analysis

Beam model

- 8 elements, 18 DOFs
- $\begin{array}{ll} \bullet & l_{tot} = 1 \text{ m,} \\ \rho A = 7 \text{ kg/m,} \\ EI = 1.5 \cdot 10^4 \text{ Nm}^2, \\ k_o = 2 \cdot 10^6 \text{ N/m,} \\ b_o = 2 \cdot 10^3 \text{ Ns/m.} \end{array}$

Consider the FRF

$$H(\omega) = v_4/F_4.$$

Example: FRF sensitivity analysis

- Solid line: FRF $H_0(\omega)$ of system without m
- Dashed-dotted line: FRF $H_{0.15}(\omega)$ with design parameter m=0.15 kg (2% of total beam mass)
- Dashed line: Estimation $H_0(\omega) + H_m(\omega)m$

Estimation and $H_{0.15}(\omega)$ differ near resonance

Example: FRF sensitivity analysis

- Solid line: FRF $H_0(\omega)$ of system without b
- Dashed-dotted line: FRF $H_{50}(\omega)$ with design parameter b=50 Ns/m (2.5% of end dampers)
- Dashed line: Estimation $H_0(\omega) + H_{.b}(\omega)b$

Estimation and $H_{50}(\omega)$ differ near resonance

