Rovnovážné modely v teorii portfolia

Lenka Křivánková

31. května 2016, Bratislava

Obsah

Portfolio a jeho charakteristiky

Definice portfolia

Výnosnost a riziko aktiv

Výnosnost a riziko portfolia

Klasická teorie portfolia

Markowitzův model

Tobinův model

CAPM - model oceňování kapitálových aktiv

Dynamická teorie portfolia

Mertonův model

Ohlson-Rosenbergův Paradox

Stochastická teorie portfolia

Rovnovážný model s výnosností závislou na ceně

Portfolio a jeho charakteristiky

Obsah

Portfolio a jeho charakteristiky

Definice portfolia

Výnosnost a riziko aktiv

Výnosnost a riziko portfolia

CAPM - model oceňování kapitálových aktiv

Definice portfolia

Portfolio a jeho charakteristiky

Portfolio

množina aktiv (akcií, dluhopisů, peněz...)

Finanční trh

Portfolio a jeho charakteristiky

Portfolio

aktivum

Váhy portfolia

relativní podíly aktiv obsažených v portfoliu

aktivum

$$ullet$$
 $oldsymbol{X}=(X_1,\ldots,X_n)^{\mathrm{T}}$, kde $\sum_{j=1}^n X_j=1$

Lenka Křivánková

Definice portfolia

000

Výnosnost a riziko

Portfolio a jeho charakteristiky

•0

Portfolio a jeho charakteristiky

Výnosnost aktiva

Míra výnosnosti

- relativní zisk nebo ztráta z investice
- náhodná veličina r_i
- ightharpoonup očekávaná výnosnost $\mathsf{E}(r_i) = \mu_i$
- rozptyl výnosnosti $D(r_i) = \sigma_i^2$
- $ightharpoonup r_j(t, t + \Delta t) = \frac{P_j(t + \Delta t) P_j(t)}{P_j(t)}$

Výnosnost a riziko aktiv

0

Riziko aktiva

Portfolio a jeho charakteristiky

Riziko

směrodatná odchylka výnosnosti aktiva

00

Portfolio a jeho charakteristiky

Výnosnost portfolia

Výnosnost portfolia

- náhodná veličina $r_p = \sum_{i=1}^n X_i r_i$
- očekávaná výnosnost portfolia $E(r_p) = \mu_p = \sum_{i=1}^n X_i \mu_i$
- rozptyl výnosnosti portfolia $D(r_p) = \sigma_p^2$

00

Portfolio a jeho charakteristiky

Riziko portfolia

Riziko

- ightharpoonup směrodatná odchylka výnosnosti portfolia $\sqrt{\mathsf{D}(r_p)} = \sigma_p$
- kde $C(r_i, r_k) = \sigma_{ik}$ je kovariance výnosností aktiva j a aktiva k

Obsah

Výnosnost a riziko aktiv

Klasická teorie portfolia

Markowitzův model

Tobinův model

CAPM - model oceňování kapitálových aktiv

Moderní teorie portfolia

- Harry Markowitz (1952)
- ► Tobinův model (1958)
- ► CAPM Sharpe (1964), Lintner (1965) a Mossin (1966)

Markowitzův model

Markowitzova teorie portfolia

prostor výnosnost-riziko

Markowitzův model

Markowitzova teorie portfolia

množina přípustných portfolií

Markowitzova teorie portfolia

množina efektivních portfolií

Tobinův model

rizikově neutrální aktivum

Tobinův model

množina efektivních portfolií

Tobinův model

tangenciální portfolio

Tobinův model

lacktriangle tangenciální portfolio ightarrow separační věta

CAPM

- zkoumá chování trhu
- vychází z Tobinova modelu

Předpoklady modelu:

- investoři při sestavování portfolia využívají Markowitzův přístup
- investoři mají homogenní očekávání

CAPM

▶ tržní portfolio

Důsledky CAPM

Důsledkem CAPM je tržní rovnováha a separační věta.

Věta (Separační věta)

Všichni investoři drží portfolia se stejnými relativními podíly rizikových aktiv bez ohledu na svou rizikovou averzi a své portfolio doplňují bezrizikovým aktivem dle svých rizikových preferencí.

Definice (Tržní rovnováha)

Pojem tržní rovnováha označuje takovou situaci, při které je nabídka vyrovnána s poptávkou.

Obsah

Výnosnost a riziko aktiv

Markowitzův model

CAPM - model oceňování kapitálových aktiv

Dynamická teorie portfolia

Mertonův model

Ohlson-Rosenbergův Paradox

Stochastická teorie portfolia

Rovnovážný model s výnosností závislou na ceně

Dynamická teorie portfolia

Klasická teorie portfolia x Dynamická teorie portfolia

	Klasická teorie	Dynamická teorie
	portfolia	portfolia
čas	diskrétní	spojitý
výhody	intuitivní	realistický
nevýhody	nezohledňuje	složitý
	změny	

Mertonův model

- předpokládá rovnováhu na trhu (CAPM)
- Model pro proces ceny aktiva P(t) je dán

$$dP(t) = P(t)\mu dt + P(t)\sigma dW(t),$$

kde P(t) je cena podkladového aktiva v čase t a W(t) je Wienerův proces.

separační věta – bezrizikové aktivum & tržní portfolio

Bezrizikové aktivum & Tržní portfolio

Cena bezrizikového aktiva se řídí následujícím modelem

$$\mathrm{d}B(t)=B(t)r_f(t)\mathrm{d}t,$$

kde B(t) je cena bezrizikového aktiva v čase t, $r_f(t)$ je míra výnosnosti bezrizikového aktiva.

Cena tržního portfolia P(t) se řídí modelem

$$dP(t) = P(t)\mu_{p}dt + P(t)\sigma_{p}dW(t),$$

kde W(t) je Wienerův proces a μ_p , σ_p jsou konstanty.

Optimální portfolio

Investorovo bohatství w(t) je proces popsaný modelem

$$\frac{\mathrm{d}w(t)}{w(t)} = X_p(t)\frac{\mathrm{d}P(t)}{P(t)} + (1 - X_p(t))r_f\mathrm{d}t,$$

kde $X_p(t)$ označuje váhu pro tržní portfolio a $X_f = (1 - X_p(t))$ označuje váhu pro bezrizikové aktivum.

Merton odvodil explicitní řešení pro případ, kdy charakteristiky (očekávaná hodnota a rozptyl) výnosností aktiv jsou konstanty.

Ohlson-Rosenbergův Paradox

- Rosenberg and Ohlson (1976)
- objevili nekonzistenci Mertonova modelu
- rozpor mezi předpoklady:

 μ_p , σ_p jsou konstanty & tržní rovnováhou

Předpoklady

Definice (Dynamická rovnováha)

Kapitálový trh je v dynamické rovnováze právě tehdy, když v každém čase t, pro každé aktivum j a každého investora i existuje vektor cen aktiv $\boldsymbol{P}(t)$ takový, že

$$\sum_{i\in I} w_j(i,t) = N_j(t)P_j(t) = V_j(t),$$

kde $V_j(t)$ je tržní hodnota aktiva j v čase t a $w_j(i,t)$ je optimální množství bohatství investované investorem i do aktiva j v čase t. Ceny $\boldsymbol{P}(t)$ se nazývají tržní ceny.

Předpoklady

Definice (Vlastnost separace)

Vektorová funkce pro optimální alokaci investorových prostředků do všech aktiv na trhu $\boldsymbol{w}(i,t)$ respektuje *vlastnost separace* právě tehdy, když existuje vektor $\boldsymbol{X} = (X_1, \dots, X_n)^{\mathrm{T}}$ takový, že $\sum_{j=1}^n X_j = 1$, a existují skalární parametry $\lambda(i,t)$ takové, že

$$w(i,t) = \lambda(i,t)X,$$

pro všechny $i \in I$ a všechny $t \in T$.

Rozpor mezi předpoklady

Věta

Nechť P(t) pro všechny $t \in T$ jsou rovnovážné ceny. Dále předpokládejme, že na trhu platí vlastnost separace (definice 4). Pak

$$\Pr\left(\frac{N_j(s)P_j(s)}{N_j(t)P_j(t)} = \frac{N_k(s)P_k(s)}{N_k(t)P_k(t)}\right) = 1 \tag{1}$$

00000

pro všechny časy $s, t \in T$ a pro každé aktivum j a k.

Důkaz.

Jednoduchý důkaz nalezneme v článku [Rosenberg and Ohlson (1976)].

Důsledek

Budeme-li předpokládat $N_i(t) = N_i$ pro každé aktivum i a všechna $t \in T$, z předchozí věty plyne

$$\Pr\left(r_j(t,t+\Delta t)=r_k(t,t+\Delta t)\right)=1,$$

pro všechna $t \in T$ a pro všechna aktiva į a k.

Proto jsou aktiva j a k vzájemně dokonale zastupitelné. \Rightarrow degenerace trhu

000

Stochastická teorie portfolia

Robert Fernholz (2002)

Předpoklady modelu:

- parametry procesu ceny aktiva jsou také stochastické procesy
- nepředpokládá tržní rovnováhu
- nepředpokládá neexistenci arbitráže

Logaritmický model cen aktiv

Fernholz používá logaritmický model

$$d \log P_j(t) = \gamma_j(t) dt + \sum_{k=1}^n \xi_{jk}(t) dW_k(t),$$

kde $P_j(t)$ je cena aktiva j v čase t, $\gamma_j(t)$ a $\xi_{jk}(t)$ jsou stochastické procesy a $\boldsymbol{W}(t) = (W_1(t), \dots, W_n(t))^{\mathrm{T}}$ je n-rozměrný Wienerův proces.

- $\gamma_j(t)$ se nazývá *tempo růstu*
- $\xi_{ik}(t)$ se nazývá proces *volatility*

Tempo růstu a volatilita

► Tempo růstu a míra výnosnosti jsou spolu ve vztahu

$$\mu_j(t) = \gamma_j(t) + \frac{1}{2} \sum_{k=1}^n \xi_{jk}^2(t).$$

000

ightharpoonup Volatilita ξ je maticová odmocnina kovarianční matice Σ ,

$$\mathbf{\Sigma} = \boldsymbol{\xi} \boldsymbol{\xi}^{\mathrm{T}}.$$

0000000000

Rovnovážný model s očekávanou výnosností závislou na ceně aktiva

Předpoklady modelu:

- očekávaná výnosnost není konstantní (je funkcí ceny)
- tržní rovnováha

000000000

Ceny aktiv

Předpokládáme, že ceny aktiv splňují stochastickou diferenciální rovnici (SDE)

$$dP_{j}(t) = P_{j}(t)\mu_{j}(t) dt + P_{j}(t) \sum_{k=1}^{n} \xi_{jk}(t) dW_{k}(t), \qquad (2)$$

kde $\boldsymbol{W}(t)=(W_1(t),\ldots,W_n(t))^{\mathrm{T}}$ je *n*-rozměrný Wienerův proces, $\mu_j(t)$ je očekávaná výnosnost aktiva j a $\xi_{jk}(t)$ jsou volatility aktiv.

Váhy tržního portfolia

► Pro vektor vah tržního portfolia uvažujeme následující vztah

$$\mathbf{X} = \frac{\mathbf{\Sigma}^{-1} \boldsymbol{\mu}}{\mathbf{1}^{\mathrm{T}} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}},\tag{3}$$

0000000000

kde ${\bf 1}$ je vektor jedniček, ${\boldsymbol \mu}=(\mu_1,\dots,\mu_n)^{\rm T}$ je vektor očekávaných výnosností aktiv a ${\bf \Sigma}$ je kovarianční matice výnosností aktiv.

váhy tržního portfolia jsou rovny relativní tržní hodnotě

$$X = \frac{V}{1^{\mathrm{T}}V} \tag{4}$$

Stochastický proces pro očekávané výnosnosti

Rozdělme proces očekávané výnosnosti aktiv na dvě složky:

$$\mu(t) = \tilde{\mu}(t) \cdot r(t) \tag{5}$$

- relativní vztahy mezi jednotlivými očekávanými výnosnostmi aktiv v portfoliu $(\tilde{\mu}(t) = \boldsymbol{X}(t))$
- výnosnost celého trhu dynamicky se měnící v čase
- multiplikativní vztah

Vašíčkův model pro míru výnosnosti trhu r(t)

Výnosnost celého trhu

- nevykazuje exponenciální růst, pohybuje se přibližně v nějakém intervalu
- má tendence navracet se k průměrné hodnotě

Vašíčkův model pro míru výnosnosti trhu r(t)

$$dr(t) = \kappa(\theta - r(t)) dt + \sigma dW(t), \tag{6}$$

kde κ , θ a σ jsou konstanty.

Zjednodušující předpoklady pro SDE cen aktiv

Předpoklady modelu:

- ightharpoonup volatility aktiv ξ_{ik} jsou konstantní v čase
- ▶ počty aktiv N_j jsou konstantní v čase

Z těchto předpokladů a z SDE (2) dostáváme

$$dP_{j}(t) = P_{j}(t) \left(\frac{P_{j}(t)N_{j}}{\sum_{i=1}^{n} P_{i}(t)N_{i}} r(t) \right) dt + P_{j}(t) \sum_{k=1}^{n} \xi_{jk} dW_{k}(t).$$
(7)

Soustava je nelineární a neexistuje její analytické řešení.

Data

- ČEZ (největší výrobce elektřiny v Česku)
- O2 (český telefonní operátor ve vlastnictví PPF)
- KB (český bankovní ústav)
- ► PM Philip Morris ČR a.s. (přední výrobce a prodejce cigaret v Česku)
- Pegas Pegas Nonwovens s.r.o. (přední světový výrobce netkaných textilií se sídlem v ČR)
- ► ČT Česká televize (veřejnoprávní televize)
- ► NWR New World Resources (přední producent černého uhlí ve střední Evropě)

Rovnovážný model s výnosností závislou na ceně

Ceny aktiv

4 = 1 + 4 = 1 + 4 = 1 Lenka Křivánková

Fulerova metoda

Eulerova metoda řešení soustavy SDR je pro i-tou složku rovnice definována rekurzívním vztahem

$$X_{n+1}^{i} = X_{n}^{i} + \alpha^{i}(t_{n}, \boldsymbol{X}_{n})\Delta_{n} + \sum_{j=1}^{m} \beta^{i,j}(t_{n}, \boldsymbol{X}_{n})\Delta W_{n}^{j},$$
(8)

kde $\Delta_n = \int_{t_n}^{t_{n+1}} \mathrm{d}t = t_{n+1} - t_n$ je délka časového intervalu (t_n,t_{n+1}) a $\Delta W_n=\int_{t_n}^{t_{n+1}}\mathrm{d}W(t)=W(t_{n+1})-W(t_n)$ je přírůstek Wienerova procesu W v čase (t_n, t_{n+1}) .

Rovnovážný model s výnosností závislou na ceně

Model cen aktiv v portfoliu

SCI MUNI

Lenka Křivánková

Kam dál?

 odhad střední hodnoty a rozptylu ceny aktiva ze simulací

Dynamická teorie portfolia

0000000000

- jiné numerické metody
- ▶ jiný odhad £
- 777

- FABOZZI, F. J. et al. 2008. Bayesian Methods in Finance. Hoboken, New Jersey: John Wiley & Sons. ISBN 978-0-471-92083-0.
- New FERNHOLZ, E. R., 2002. Stochastic Portfolio Theory. New York: Springer-Verlag. ISBN 0-387-95405-8.
- MERTON, R. C., 1971. Optimum Consumption and Portfolio Rules in a Continuous-Time Model. Journal of Economic Theory. 3, p. 373-413.
- ROSENBERG, B., OHLSON, J. A., 1976. The Stationary Distribution of Returns and Portfolio Separation in Capital Markets: A Fundamental Contradiction. Journal of Financial and Quantitative Analysis. 11, p. 393-402.

