

第6章 卷积神经网络

中科院信息工程研究所第二研究室

胡玥

huyue@iie.ac.cn

自然语言处理课程内容及安排

◇ 课程内容:

自然语言研究层面

内容提要

- 6.0 概述
- 6.1 卷积神经网络结构
- 6.2 卷积神经网络学习
- 6.3 卷积神经网络应用

1. 问题引入:

Why CNN for Image?

[Zeiler, M. D., ECCV 2014]

Represented as pixels

前馈神经网络

Represented as pixels

在全连接前馈神经网络中,如果第I层有n^I个神经元,第I-1层有n^(I-1)个神经元,连接边有n^(I)*n^(I-1)个,也就是权重矩阵有n^(I)*n^(I-1)个参数。 当m 和n 都很大时,权重矩阵的参数非常多,训练的效率会非常低。

设图像 10 x 10 ; 第一隐藏层 1024 个神经元, 该层全连接参数 102400

解决方法: 卷积神经网络

卷积神经网络(Convolutional Neural Networks, CNN)

是一种前馈神经网络。卷积神经网络是受生物学上<mark>感受野</mark>(Receptive Field)的机制而提出的。

感受野(Receptive Field)的机制

感受野主要是指听觉系统、本体感觉系统和视觉系统中神经元的一些性质。比如在视觉神经系统中,一个神经元的感受野是指视网膜上的特定区域,只有这个区域内的刺激才能够激活该神经元。

如何识别?

卷积核 (filter)

原始图片

特征图谱(Feature Map)

运算:卷积运算

2. 卷积运算:

卷积运算:见附录

3. 卷积网:

最早的CNN: LeNet-5

Yann LeCun: Gradient-Based Learning Applied to Document Recognition,1998

内容提要

- 6.0 概述
- 6.1 卷积神经网络结构
- 6.2 卷积神经网络学习
- 6.3 卷积神经网络应用

图像识别

卷积网络是由卷积层、子采样层、全连接层交叉堆叠而成

手写识别

卷积层

卷积层:

输入图像:

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

卷积核:

Filter1的特征图谱

卷积连接:

全连接:

如:图像 10 x 10,第一层神经元 1024

全连接参数 102400

卷积连接: 特点:1局部连接,2权重共享

6 x 6 image

卷积连接:

如:图像 10 x 10,第一层神经元 1024

■ 如 卷积层1024个神经元是用 16 个 3 x 3 滤波器卷积得到

即: 卷积层神经元 16 x (8 x 8) = 1024

卷积层: 参数 9 x 16 = 144

■ 如 卷积层1053个神经元是用 13 个 2 x 2 滤波器卷积得到

即: 巻积层神经元 13 x (9 x 9) = 1053

卷积层: 参数 4 x 13 = 52

卷积层连接可以减少参数的个数

池化层 (Pooling)

卷积层问题:

输入图像:

	1	0	0	0	0	1
ľ	0	1	0	0	1	0
	0	0	1	1	0	0
	1	0	0	0	1	0
	0	1	0	0	1	0
	0	0	1	0	1	0

6 x 6 image

卷积核:

1	-1	-1	
-1	1	-1	
-1	-1	1	

Filter 1

Filter1的特征图谱

卷积层虽然可以显著减少连接的个数,但是每一个特征映射的神经元个数并没有显著减少。

解决方法?

 Subsampling the pixels will not change the object bird

We can subsample the pixels to make image smaller

池化层 (Pooling)

池化: 一种采样操作,用于减少模型参数并保留有效信息避免过拟合,

提高训练速度

常用的池化方法 Max Pooling Mean Pooling

Max Pooling

卷积层+Pooling层 信息传播:

卷积和子采样过程:

- **卷积过程包括**:用一个可训练的滤波器f_x去卷积一个输入的图像、然后加 一个偏置b_x,得到卷积层C_x。
- **子采样过程包括**:每邻域四个像素pooling变为一个像素,然后通过标量 W_{x+1} 加权,再增加偏置 b_{x+1} ,然后通过一个sigmoid激活函数,产生一个大概缩小四倍的特征映射图 S_{x+1} 。

网络训练时卷积层和池化层作为一个整体

多通道卷积

例:输入为特征图谱 3 维, 2个 filter(每个3维)

输入(3维)

2个 filter(每个3维)

输出(特征映射2)

全连接层

方法:

将最后池化层的单元"平化" 然后组成全连接输入网

CNN网络结构:

输入:X(根据具体需要)

输出:Y(根据具体需要设定)

参数: 各卷积层中各过滤器值和偏置;卷积层到池化层权重和偏置;

全连接输出网各连接权重和偏置

卷积神经网络有三个结构上的特性:

- 1 局部连接
- 2 权重共享
- 3 空间或时间上的次采样

这些特性使得卷积神经网络具有一定程度上的 平移、缩放和扭曲不变性

内容提要

- 6.0 概述
- 6.1 卷积神经网络结构
- 6.2 卷积神经网络学习
- 6.3 卷积神经网络应用

6.2 卷积神经网络学习

CNN-Mnist涉及的变量

超参数

迭代轮数 学习率 batch大小 卷积filter大小 卷积步长 特征图个数 池化大小

权重变量

卷积filter的权值 卷积filter的偏置 全连接的权值

状态变量

输入图片数据 输入图片对应类别

6.2 卷积神经网络学习

CNN-Mnist框架

内容提要

- 6.0 概述
- 6.1 卷积神经网络结构
- 6.2 卷积神经网络学习
- 6.3 卷积神经网络应用

6.3 卷积神经网络应用

CNN在NLP中应用:

- 各种分类任务:文本分析、情感分析、实体关系抽取等等
- 用于其它任务的特征提取

6.3 卷积神经网络应用

例:

16.3 卷积神经网络应用

paper: http://arxiv.org/pdf/1510.03820v4.pdf

code: https://github.com/dennybritz/cnn-text-classification-tf

参考文献:

李宏毅课程

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML16.html

邱锡鹏,《神经网络与深度学习》讲义

刘鹏飞,卷积神经网络和递归 神经网络实践

在此表示感谢!

調調各位!

附录: 卷积运算

卷积:

是分析数学中一种重要的运算(这里只考虑离散序列的情况)。一维卷积经常用在信号处理中。给定一个输入信号序列 x_t , t=1, ..., n, 和滤波器 f_t , t=1, ..., m, 一般情况下滤波器的长度m 远小于信号序列长度n。卷积的输出为:

$$y_t = \sum_{k=1}^{m} f_k \cdot x_{t-k+1}$$

一维卷积示例

当输入长度为 n 时,与输出长度与下列参数有关:

1. 卷积filter大小(Filter size =f)

例:

卷积核为3

卷积核为 5

2. 步长(Stride size=s)

例: 步长为 1

步长为 2

3. 填充 (Padding size = p)

卷积的结果按输出长度不同可以分为两类:

窄卷积:输出长度 (n - f)/s+1, 不补零。

等长卷积:输出长度n,对于不在[1, n]范围之外的 x_t 用零补齐

在这里除了特别声明,我们一般说的卷积默认为窄卷积。

例: 不填充(窄卷积)

填充 (等长卷积)

特征图谱输出长度 = (n+2p-f)/s+1

4. 卷积filter个数

二维卷积

两维卷积经常用在图像处理中。给定一个图像 $x_{ij}, 1 \le i \le M, 1 \le j \le N$,和滤波器 $f_{ij}, 1 \le i \le m, 1 \le j \le n$,一般m << M; n << N。 卷积的输出为:

$$y_{ij} = \sum_{u=1}^{m} \sum_{v=1}^{n} f_{uv} \cdot x_{i-u+1,j-v+1}.$$

二维卷积

例: 步长1 filter个数1 3*3 不填充

步长 = 1

二维卷积

例: 步长2 filter个数1 3*3 填充

三维卷积

二维卷积

三 维卷积

三维卷积

三维卷积

输入特征映射为 3,输出特征映射为2

