Generative Large Language Models

Lesson Overview

Key Topics Covered:

1. LLM Theory

- From Discriminative to Generative Models
 - Understanding the shift from BERT to GPT-style architectures
 - Key differences in purpose and training objectives
- Model Parameters Deep Dive
 - Understanding model size and resource requirements
 - Generation parameters (temperature, top-k, top-p)

2. LLM Ecosystem

- Closed Models vs Open Models
- Comparison of proprietary and open-source options

3. Context and Prompting

- Understanding Context Windows
- Context window limitations and implications
- In-Context Learning

4. Practical Workshop

- Prompting with LLMs
- In-Context Learning
- Sentiment Analysis and Comparisons
- Using Tools
- And more

1. From Discriminative to Generative Models

Discrimitave Models (e.g., BERT)

- Purpose: Classify or predict specific labels
- Training Objective: Masked world prediction
- Context Direction: Bidirectional
- Can't generate new text

From Hands-On Large Language Models: Language Understanding and Generation.

Generative Models (e.g., GPT)

- Purpose: Generate new content
- Training Objective: Next world Prediction
- Context Direction: Undirectional From left to right

Keywords

Luigi Serreli Text Classification and NLP Seminar 3/17

With generative large language models this is no longer valid.

1.2 Understanding Parameters: Model parameters

Definition: The weights learned during the training

Examples: GPT-3 reached 175B parameters

Memory Requirements (estimation):

1B parameters ≈ 4GB

70B parameters ≈ 280GB in

• • • •

1.3 Understanding Parameters: Generation Parameters

Controlling LLM Output

Parameter	Range	Description	Effects
Temperature	0.0 - 1.0	Controls randomness in token selection	Low: Deterministic, repetitive
			High: More diverse, less reliable
Top-k	1 - 100	Limits selection to k most likely tokens	Low: Conservative outputs
			High: More diverse
Тор-р	0.0 - 1.0	Cumulative probability threshold for token selection	Low: Stable, conservative
			High: More unexpected tokens
Max Tokens	Model dependent	Maximum length of generated response	Too low: Truncated output
			Too high: Wasted compute
Presence Penalty	-2.0 to 2.0	Penalizes tokens already used	Low: May repeat themes High:
			More diverse but might lose
			focus
Frequency Penalty	-2.0 to 2.0	Penalizes tokens based on frequency	Low: Natural language
			High: More unique vocabulary

Luigi Serreli Text Classification and NLP Seminar 6/<u>17</u>

1.4 Understanding Parameters: Generation Parameters

Controlling LLM Output

Example Use Case	Temperature	Тор_р	Description
Poetry Writing	High	High	Maximum creativity for generating unique verses and metaphors. Produces diverse poetic expressions with unexpected word combinations and original imagery.
API Documentation	Low	Low	Highly precise and consistent technical writing. Generates standardized documentation with exact terminology and predictable formatting.
Blog Writing	High	Low	Creative content generation with controlled vocabulary. Creates engaging articles while maintaining consistent tone and subject focus.
Language Translation	Low	High	Accurate translation with flexible word choice. Maintains original meaning while exploring different ways to express concepts in the target language.

Luigi Serreli Text Classification and NLP Seminar 7/<u>17</u>

1.5 The LLM Ecosystem

Open Models

- Model weights publicly downloadable
- Architecture fully documented
- Clear licensing terms
- User can host it with his own hardware
- Companies made the inferencing available through APIs
 - Llama
 - Mistral
 - o Gemma
 - o Etc
- Key Aspects:
 - Can be fine-tuned
 - Local deployment possible
 - Full control

Hosted by user

Closed Models (Proprietary)

- Model weights & architecture not accessible
- Available only through APIs
- Training data & methods are not public
- Examples:
 - o GPT
 - Claude
 - o Gemini
 - o Etc
- Key Aspects:
 - User-based pricing
 - No direct model control
 - Provider handls security and updates

2. Prompts and Generation

How does the model generate?

2.1 Prompts and Generation

How does the model generate?

3. Context – What is and what is its purpose?

CONTEXT

From TRECCANI.it

Linguistic Context

- textual elements surrounding a word or phrase within discourse.
- The meaning of a word can change based on the sentences that precede or follow it

MATTERS

Extralinguistic Context

- This includes the physical, temporal, social, and cultural circumstances in which communication occurs
- Factors such as location, time, relationships between participants, and cultural norms play a crucial role in interpreting messages

What about LLMs?

The context window is the amount of text (tokens) an LLM can "see" and process at once to generate meaningful responses.

Key Components

- Previous conversation history
- User-provided documents
- System instructions
- Current user query

Importance

- · Enables coherent conversations
- · Helps maintain topic relevance
- Allows document-based responses
- Critical for accuracy

3.1 Context – What is and what is its purpose?

CONTEXT

From TRECCANI.it

Linguistic Context

- textual elements surrounding a word or phrase within discourse.
- The meaning of a word can change based on the sentences that precede or follow it

MATTERS

Extralinguistic Context

- This includes the physical, temporal, social, and cultural circumstances in which communication occurs
- Factors such as location, time, relationships between participants, and cultural norms play a crucial role in interpreting messages

What about LLMs?

The context window is the amount of text (tokens) an LLM can "see" and process at once to generate meaningful responses.

Key Components

- Previous conversation history
- User-provided documents
- System instructions
- Current user query

Importance

- · Enables coherent conversations
- · Helps maintain topic relevance
- Allows document-based responses
- Critical for accuracy

3.2 The Needle in a Haystack

3.3 How to provide context?

In-Context Learning (ICL)

- It consists on feeding context with direct prompts
 - Few shot Learning
 - One shot Learning
 - Zero shot Learning

Retrieval Augemented Generation (RAG)

- The LLM generates responses sing prompts and vectorized documents
- It allows updated knowledge from external sources

Fine-Tuning

- Adapting the model to a specific domain
- Improving it for specific performance
- Incorporates knowledge internally

Tool Augmentation

- Access data in real time
- Integration of APIs and Services
- External Search

Luigi Serreli Text Classification and NLP Seminar 14/<u>17</u>

3.4 In-Context Learning

Zero-shot Learning The model performs a task without any prior examples
☐ The model performs a task without any prior examples.
☐ Relies solely on its pre-trained knowledge.
One-shot Learning
☐ The model is given a single example to understand the task.
☐ Helps the model generalize from minimal context.
Few-shot Learning
☐ The model is given a small number of examples (typically 2-5) to understand the task.
☐ Improves performance by providing more context than one-shot.
Chain of Thought (CoT)
☐ The model breaks down complex problems into intermediate reasoning steps.☐ Mimics human-like problem-solving by "thinking aloud."

Key Differences

- **Zero-shot**: No examples, relies on generalization.
- One-shot: One example, minimal context.
- Few-shot: Few examples, improves with more context.
- **CoT**: Focuses on reasoning steps, ideal for complex tasks.

3.5 Prompting Techniques – In-Context Learning

Zero-shot prompt

Prompting without examples

Classify the review into neutral, negative, or positive.

Text: I think the movie was decent. **Sentiment:** ...

One-shot prompt

Prompting with a single example

Classify the review into neutral, negative, or positive.

Text: I think the movie was okay. **Sentiment:** Neutral

Text: I think the movie was decent. **Sentiment:**

Few-shot prompt

Prompting with more than one example

Classify the review into neutral, negative, or positive.

Text: I think the movie was okay.

Sentiment: Neutral

Text: I think the movie was amazing!

Sentiment: Positive

Text: I think the movie was terrible...
Sentiment: Negative

Text: I think the movie was decent. **Sentiment:**

One-shot prompt

Prompting with a single example

Q:

Marco has 8 colored pencils. His friend gives him 3 more boxes with 2 pencils each. How many pencils does he have now?

Α

The answer is 14.

):

The library has 45 books. They lend 12 books and receive 5 new donations. How many books do they have now?

A:

The answer is 42.

Chain-of-thought prompt

Prompting with a reasoning example

Q

Marco has 8 colored pencils. His friend gives him 3 more boxes with 2 pencils each. How many pencils does he have now?

A:

Marco starts with 8 pencils. He gets 3 boxes of 2 pencils = 6 more pencils. 8 + 6 = 14 pencils total.

The answer is 14.

Q:

The library has 45 books. They lend 12 books and receive 5 new donations. How many books do they have now?

:

The library starts with 45 books.

They lend out 12 books: 45 - 12 = 33 books.

They receive 5 new books: 33 + 5 = 38 books.

The answer is 38.

Luigi Serreli Text Classification and NLP Seminar 16/<u>17</u>

4. Hands-on Workshop: LLMs, Context and (AGAIN) SentimentAnalysis

Objective

- LLM Prompting
 - Working with different LLM providers (Google, MistralAI, Groq)
 - Zero Shot Learning
 - Few Shot Learning
 - CoT
- Adding Memory
- Sentiment Analysis
 - Comparison with RoBERTA
 - Dataset:
 - * Rotten Tomatoes movie reviews
 - Binary classification: positive (1) vs negative (0) reviews
 - Training set + Test set for evaluation
- Using Tools
 - Tavily AI
- Agents

