1 Examples using method of bounded differences

Theorem 1.1 (Method of bounded differences, from last class). $\xi_1, \xi_2, \dots, \xi_n$ independent, $Z = f(\xi_1, \dots, \xi_n)$ where f has the property

$$|\{i: x_i \neq y_i\}| = 1 \implies |f(\tilde{x}) - f(\tilde{y})| \le 1 \tag{1.1}$$

Then

$$P(|Z - \mathbb{E}Z| \ge \lambda \sqrt{n}) \le 2e^{-\lambda^2/2}, \quad \lambda > 0$$
 (1.2)

Example 1.2. Put *n* balls "at random" into *m* boxes.

Consider Z(m, n) = # empty boxes.

From combinatorics, $\mathbb{E}Z(n,m) = m(1-1/m)^n$.

Apply to ξ_i = box containing ball i, $1 \le i \le n$. Equation (1.1) holds.

Example 1.3 (Simple open (unsolvable?) problem). Take 2 independent Bernoulli(1/2) sequences of length n.

Want to match digits between two strings such that no lines are crossing (i.e. longest common subsequence). In example 1.3, this is 01010.

Let Z_n = length of longest common subsequence.

Fact: $n^{-1}Z_n \stackrel{\text{a.s.}}{\to} c$ as $n \to \infty$, no formula for c.

Take $\xi_i = (\dot{})$ at position i.

Any change $\tilde{x} \rightarrow \tilde{y}$ has

$$f(\tilde{y}) - f(\tilde{x}) \ge -2 \tag{1.3}$$

$$f(\tilde{y}) - f(\tilde{x}) \ge -2$$

$$\iff f(\tilde{x}) - f(\tilde{y}) \le 2$$

$$(1.3)$$

$$(1.4)$$

So $Z_n/2$ satisfies eq. (1.1).

Definition 1.4. A *c-coloring of a graph G* is a function color : $V(G) \rightarrow \{1, 2, ..., c\}$ such that $(v_1, v_2) \in E(G) \implies \operatorname{color}(v_1) \neq \operatorname{color}(v_2).$

The *chromatic number* $\chi(G) = \min\{c : \exists c \text{-coloring of } G\}$

Definition 1.5. The *Erdös-Renyi random graph model* G(n, p) has n vertices with each of the $\binom{n}{2}$ possible edges present with probability p.

Let $Z = \chi(\mathcal{G}(n, p))$. Order vertices arbitrarily 1, 2, . . . , n.

For $i \ge 2$, let $\xi_i = (1_{(i,1) \in E(G)}, \dots, 1_{(i,i-1) \in E(G)})$. Since we can always just add a color when we increment i, eq. (1.1) holds for $Z = f(\xi_1, \dots, \xi_n)$.

Example 1.6. Put *n* points IID uniform in unit square. Fix 0 < c < 1. Let $Z(n, c) = \max$ number of disjoint $c \times c$ squares containing 0 points.

Moving any single point can only reduce Z(n,c) by 1, so eq. (1.1) holds.

Reversed martingales

Consider sub- σ -fields, $\mathcal{G}_0 \supset \mathcal{G}_1 \supset \mathcal{G}_2 \supset \ldots$, $\mathcal{G}_{\infty} = \cap_n \mathcal{G}_n$. In Durrett, $\mathcal{G}_n = \mathcal{F}_{-n}$.

Definition 2.1. (X_n, \mathcal{G}_n) is a reversed martingale if

- (a) $\mathbb{E}|X_n| < \infty$
- (b) $\mathbb{E}(X_m \mid \mathcal{G}_n) = X_n, m \leq n$

(c) (X_n) adapted to (\mathcal{G}_n) Together, these imply $X_n = \mathbb{E}[X_0 \mid \mathcal{G}_n]$

Reversed martingales are in some sense easier, since we are given that the limit X_0 always exists

Theorem 2.2. For a reversed MG, $X_n \to \mathbb{E}[X_0 \mid \mathcal{G}_0]$ a.s. and in L^1 .

Proof. $(X_N, X_{N-1}, ..., X_0)$ is a MG. Let $U_N = \#$ upcrossings of $(X_N, ..., X_0)$ over [a, b]. By the upcrossing inequality

$$\mathbb{E}U_n \le \frac{\mathbb{E}|X_0| + |a|}{b - a} \tag{2.1}$$

[As in proof for MGs] $U_N \uparrow U_\infty$, so

$$\mathbb{E}U_{\leq} \frac{\mathbb{E}|X_0| + a}{b - a} \implies U_{\infty} < \infty \text{ a.s.}$$
 (2.2)

So $X_n \stackrel{\text{a.s.}}{\to} X_{\infty}$ for some $X_{\infty} \in [-\infty, \infty]$.

But $X_n = \mathbb{E}[X_0 \mid \mathcal{G}]$ implies (X_n) is UI, which implies $X_n \stackrel{L^1}{\to} X_\infty$, $\mathbb{E}|X_\infty| < \infty$. Need to show $X_\infty = \mathbb{E}[X_0 \mid \mathcal{G}_\infty]$.

$$X_n \in \mathcal{G}_n \subset \mathcal{G}_k \qquad n > k$$
 (2.3)

$$n \to \infty$$
 $X_{\infty} \in \mathcal{G}_k$ (2.4)

$$k \to \infty$$
 $X_{\infty} \in \mathcal{G}_{\infty}$ (2.5)

So X_{∞} is \mathcal{G}_{∞} -measurable.

Need to show $\mathbb{E}X_{\infty}1_G = \mathbb{E}X_01_G$, $G \in \mathcal{G}_{\infty}$.

$$X_n = \mathbb{E}[X_0 \mid \mathcal{G}_n] \implies \mathbb{E}X_n 1_G = \mathbb{E}X_0 1_G \qquad G \in \mathcal{G}_{\infty}$$
 (2.6)

$$X_n \stackrel{L^1}{\to} X_\infty \implies \mathbb{E} X_n 1_G \to \mathbb{E} X_\infty 1_G$$
 (2.7)

$$\implies \mathbb{E} X_0 1_G = \mathbb{E} X_\infty 1_G \tag{2.8}$$

(2.9)

3 Exchangeable sequences

Definition 3.1. A sequence of RVs $(X_1, X_2, ...)$ is called *exchangeable* if

$$(X_1, X_2, \dots, X_n) \stackrel{d}{=} (X_{\pi(1)}, X_{\pi(2)}, \dots, X_{\pi(n)})$$
 (3.1)

for all n and all permutations $\pi \in S_n$.

By Kolmogorov's consistency theorem, if this holds for all finite sequences, then it holds for infinite sequences as well.

Theorem 3.2. Suppose $(X_i)_{i=1}^{\infty}$ are exchangeable, \mathbb{R} -valued, and $\mathbb{E}|X_1| < \infty$. Write $S_n =$ $\sum_{i=1}^{n} X_i$.

Then $n^{-1}S_n \to \mathbb{E}[X_1 \mid \tau]$ a.s. and in L^1 , where $\tau = tail(X_i, i \ge 1)$.

Corollary 3.3. *If* (X_i) *IID,* $\mathbb{E}|X_1| < \infty$, then τ is trivial.

 $\Longrightarrow \mathbb{E}[X_1 \mid \tau] = \mathbb{E}X_1 \text{ and Theorem } \Longrightarrow n^{-1}S_n \to \mathbb{E}X_1. \text{ This shows WLLN.}$

Lemma 3.4. If $(Z_1, W) \stackrel{d}{=} (Z_2, W)$ and $\mathbb{E}[Z_1 \mid < \infty$, then $\mathbb{E}[Z_1 \mid W] = \mathbb{E}[Z_2 \mid W]$.

Proof. Q is a kernel assoc with dist(Z_1 , W).

$$\mathbb{E}[Z_1 \mid W] = \phi(W) \quad \text{where } \phi(W) = \int ZQ(W, dz) \tag{3.2}$$

$$\mathbb{E}[Z_2 \mid W] = \phi(W) \tag{3.3}$$

Exercise 3.5. Let $\mathbb{E}|X| < \infty$. If $X \stackrel{d}{=} \mathbb{E}[X \mid \mathcal{G}]$, then $X = \mathbb{E}[X \mid \mathcal{G}]$ a.s. Comment: easy if $\mathbb{E}X^2 < \infty$, more work if only integrable.

Proof of theorem 3.2. Define $\mathcal{G}_n = \sigma(S_n, X_{n+1}, X_{n+2}, \ldots) = \sigma(S_n, S_{n+1}, S_{n+2}, \ldots)$.

Lemma 3.6. $\mathbb{E}[X_i \mid \mathcal{G}_n] \stackrel{a.s.}{=} \mathbb{E}[X_i \mid \mathcal{G}_n], 1 \leq i \leq n.$

Proof. Take permutation π of (1, ..., n).

$$(X_{\pi(1)}, \dots, X_{\pi(n)}, X_{n+1}, X_{n+2}, \dots) \stackrel{d}{=} (X_1, \dots, X_n, X_{n+1}, X_{n+2}, \dots)$$
 (3.4)

Set $W = (S_n, X_{n+1}, X_{n+2}, \ldots)$.

$$\Longrightarrow (X_{\pi(1)}, \dots, X_{\pi(n)}, W) \stackrel{d}{=} (X_1, \dots, X_n, W)$$
 (3.5)

$$\Longrightarrow \qquad (X_{\pi(1)}, W) \stackrel{d}{=} (X_1, W) \tag{3.6}$$

$$\Longrightarrow \qquad (X_i, W) \stackrel{d}{=} (X_1, W) \tag{3.7}$$

Lemma 3.4
$$\Longrightarrow$$
 $\mathbb{E}[X_i \mid W] = \mathbb{E}[X_1 \mid W]$ (3.8)

Can extend with Kolmogorov consistenty to infinite sequences.

 $G_n \supset G_{n+1} \dots$ decreasing.

$$S_n = \mathbb{E}[S_n \mid \mathcal{G}_n] = \sum_{i=1}^n \mathbb{E}[X_i \mid \mathcal{G}_n] = n\mathbb{E}[X_1 \mid \mathcal{G}_n]$$
(3.9)

$$\implies n^{-1}S_n = \mathbb{E}[X_1 \mid \mathcal{G}_n] \to \mathbb{E}[X_1 \mid \mathcal{G}_\infty] \text{ a.s., } L^1$$
(3.10)

Note $\mathcal{G}_{\infty} \supset \tau$. But $\lim n^{-1}S_n$ is τ -measurable, so $\mathbb{E}[X_1 \mid \mathcal{G}_{\infty}]$ is τ -measurable. Combined with the tower property, we have

$$\mathbb{E}[X_1 \mid \tau] = \mathbb{E}[\mathbb{E}[X_1 \mid \mathcal{G}_{\infty}] \mid \tau] = \mathbb{E}[X_1 \mid \mathcal{G}_{\infty}] \tag{3.11}$$