2.	c \ y 5 \ 2.	4		(1)	(y-y) 0.49
X = 0	5 0	7	X-Adju	1.31	-1.21
	.9 12	.2	, 1	0.7	0.99
	1	()		1.29	
	2	1.6			-0.31
	1.5	1.6		-0.81	
± .	1.1	V-9 V=1.91	·	-0,71	(-1.01

@ Calculate Co-Vanano Matrix:

	Character			
,		A 1	$(x)^2$	(4)
α'	14	/	0.4761	0.2401
0.69	0,49	0.3381		1.464]
	-1.21	1.5851	1.7161	0.9801
-1.31		0.3861	6.1521	1
0.39	0,59	0.0261	0.0001	0.0841
0.09	0.29	1.4061	1.6641	1.1801
1.29	1.09		1	0.6241
0,49	0.79	0.3871	0,2401	0.0961
	-0.31	-0.0589	0.0361	0.6561
0.19	18.0-	0.6561	0.6561	
-C.91		0.0961	0.0961	0.0961
-0.31	-0131	0.7171	0504	1.0201
-0,71	-1.01			6:449
Toloo	\	5-4549 0	5.549	

Cov Matrix =
$$\left(cov(x,x), cov(x,y) \right)$$

$$cov(x_1,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y})$$

$$cov = \begin{bmatrix} 0.5549 & 0.5538 \\ 0.5538 & 0.6448 \end{bmatrix} 2x2$$

(3) Calculate Eigen Verlors & Eigenvalues of Cov Matrix = A

$$\lambda T = \lambda \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$$

$$S_0 A - \lambda I = \begin{cases} 0.5549 & 0.5529 \\ 0.5539 & 0.6449 \end{cases} - \begin{cases} \lambda & 0. \end{cases}$$

$$= \begin{bmatrix} 0.5549 - \lambda & 0.5539 \\ 0.5539 & 0.6449 - \lambda \end{bmatrix}$$

$$det(A-\lambda I) = (0.5549-\lambda)(0.6449-\lambda) - 0.5539 \times 0.5539$$

$$= 0.5549 \times 0.6449 - 0.6449 \lambda - 0.5549 \lambda + \lambda^{2} - (0.5539)^{2}$$

$$= \lambda^2 - 1.1998 \lambda + 0.05705$$

$$(\lambda - 0.04908)(\lambda - 1.2840)$$

$$\lambda = 0.04908$$
) ($\lambda = \lambda_1$) EigenValue, = (0.04908) = λ_1

Now for
$$\lambda_1 = 0.04908$$

Calculating Eigen Vector

 $A - \lambda \mathbf{T} = \begin{bmatrix} 0.5549 - \lambda & 0.5539 \\ 0.55-39 & 0.449 - \lambda \end{bmatrix}$

substitute λ by λ_1 value:

 $A - \lambda \mathbf{T} = \begin{bmatrix} 0.5549 - 0.04908 & 0.5539 \\ 0.5539 & 0.6449 - 0.04908 \end{bmatrix}$

$$= \begin{bmatrix} 0.50582 - 0.5539 \\ 0.59582 \end{bmatrix}$$

B

Now Solve: - $(3x^2 = 0)$ (0.50502) (0.5533) (0.5533) (0.5533) (0.5533) (0.5533)

0.50602 0.5539 0 -> Arymentid Matrix
0.5539 0.59502 0

(0.67787) -0.735726 (0.67787) -0.735726) (4) choosing components 2 princip a feature Vertin > So we have two Eigen Vectors

These two Eigentedors gives two feature of writing according to the Eyenvalues $\lambda_1 > \lambda_2 > \cdots > \lambda_n$ $\left(-0.67787\right) > \left(-0.73518\right)$ $\left(-0.73518\right)$ Verlon than of I we want only I feature $\left(\begin{array}{c} -0.67707\\ -0.73510 \end{array}\right)$

the detaset: To Trampom Row Felme Verton X. Row Date Alg. $\left(-0.67707\right)$ $\left(-0.73510\right)$ 2x1-1.21 99,0 0:39 0.29 0.09 1.09 1,29 079 0.49 -0.31 0119 1000 -0.01 -0.31 -0.31 -1,0] -0171 10+2 -0,17512 -0.8279 014286 Transformed date 2 1.7776 0.38937 -0.9922 0.13042 -0.27421 -0.20949 -1:6758 +0.17528 -0.91295 -0.34982 +0.09911 0.04642 1.1446 0.01776 0.43004 0.01776 0.43805 -0.16267 1.2230

from sheem relines infort adjusted - rand - score r = adjusted-sand-score (Tone-labels, kneems. labels) from shlam. netrus import solhouette-sore sil = sil houette-score (scaled-features, kneem labels)