Assignment 7 KEY

36 points total, 2 points per problem part unless otherwise noted.

4 18.5 1.84

qplot(x = sex, y = mean, group = species, color = species, data = SumStats) +

PCB (2x2 factorial)

```
library(dplyr)
library(ggplot2)
library(car)
library(emmeans)
PCBdata <- read.csv("~/Dropbox/STAT512/Assigns/Assign7/PCB.csv")
#str(PCBdata)
PCBdata$species <- as.factor(PCBdata$species)</pre>
A. Summary Statistics and Graph (4pts)
SumStats <- summarize(group_by(PCBdata, sex, species),</pre>
                      n = n(),
                      mean = mean(pcb),
                      sd = sd(pcb))
SumStats
## # A tibble: 4 x 5
## # Groups: sex [2]
##
     sex
          species
                       n mean
##
     <fct> <fct> <int> <dbl> <dbl>
## 1 f
          1
                       4 15.1 1.24
## 2 f
           2
                          13.7 1.21
## 3 m
           1
                          21.2 1.33
```



```
B. One-way ANOVA table
```

```
options(contrasts=c("contr.sum","contr.poly"))
Model1 <- lm(pcb ~ group, data = PCBdata)
Anova(Model1, type = 3)
## Anova Table (Type III tests)
##
## Response: pcb
##
              Sum Sq Df F value
                                    Pr(>F)
## (Intercept) 4695.7 1 2309.112 4.317e-15 ***
## group
              137.3 3
                          22.508 3.230e-05 ***
## Residuals
                24.4 12
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
 C. One-way pairwise comparisons
emmeans(Model1, pairwise ~ group)
## $emmeans
                       SE df lower.CL upper.CL
   group emmean
  sp1f 15.075 0.7130115 12 13.52148 16.62852
## sp1m 21.200 0.7130115 12 19.64648 22.75352
   sp2f 13.725 0.7130115 12 12.17148 15.27852
## sp2m 18.525 0.7130115 12 16.97148 20.07852
##
## Confidence level used: 0.95
##
## $contrasts
## contrast
             estimate
                              SE df t.ratio p.value
## sp1f - sp1m -6.125 1.008351 12 -6.074 0.0003
## sp1f - sp2f
                  1.350 1.008351 12
                                      1.339 0.5576
## sp1f - sp2m
                 -3.450 1.008351 12 -3.421 0.0227
                 7.475 1.008351 12
                                      7.413 <.0001
## sp1m - sp2f
                  2.675 1.008351 12
## sp1m - sp2m
                                      2.653 0.0857
## sp2f - sp2m
                 -4.800 1.008351 12 -4.760 0.0023
##
## P value adjustment: tukey method for comparing a family of 4 estimates
 D. Two-way ANOVA table
Model2 <- lm(pcb ~ sex*species, data = PCBdata)</pre>
Anova(Model2, type =3)
## Anova Table (Type III tests)
##
## Response: pcb
              Sum Sq Df
                          F value
                                     Pr(>F)
## (Intercept) 4695.7 1 2309.1121 4.317e-15 ***
               119.4 1
## sex
                          58.6935 5.839e-06 ***
                16.2 1
                           7.9667
                                    0.01539 *
## species
## sex:species
                1.8 1
                           0.8633
                                    0.37112
## Residuals
                24.4 12
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
 E. Two-way pairwise comparisons (Interaction)
```

```
emmeans(Model2, pairwise ~ sex*species)
## $emmeans
   sex species emmean
                             SE df lower.CL upper.CL
##
   f
        1
               15.075 0.7130115 12 13.52148 16.62852
##
               21.200 0.7130115 12 19.64648 22.75352
##
   f
       2
               13.725 0.7130115 12 12.17148 15.27852
               18.525 0.7130115 12 16.97148 20.07852
##
##
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate
                            SE df t.ratio p.value
   f,1 - m,1 -6.125 1.008351 12
                                  -6.074 0.0003
## f,1 - f,2
              1.350 1.008351 12
                                    1.339 0.5576
## f,1 - m,2
              -3.450 1.008351 12 -3.421 0.0227
## m, 1 - f, 2
              7.475 1.008351 12
                                    7.413 <.0001
## m,1 - m,2
                                    2.653 0.0857
                2.675 1.008351 12
## f,2 - m,2
              -4.800 1.008351 12 -4.760 0.0023
##
## P value adjustment: tukey method for comparing a family of 4 estimates
F. Two-way pairwise comparisons (Species Main Effect)
emmeans(Model2, pairwise ~ species)
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##
   species emmean
                          SE df lower.CL upper.CL
           18.1375 0.5041753 12 17.0390 19.2360
            16.1250 0.5041753 12 15.0265 17.2235
##
## Results are averaged over the levels of: sex
## Confidence level used: 0.95
##
## $contrasts
##
  contrast estimate
                            SE df t.ratio p.value
              2.0125 0.7130115 12
                                    2.823 0.0154
## Results are averaged over the levels of: sex
```

G. The SE is smaller for the main effect comparison corresponding to species. We have higher power corresponding to the main effect comparisons because we are averaging over the other factor.

2. Roadway damage 2X3 Factorial with Blocking

```
library(dplyr)
library(ggplot2)
library(car)
library(emmeans)
options(contrasts=c("contr.sum", "contr.poly"))
InData <- read.csv("~/Dropbox/STAT512/Assigns/Assign7/Ex15-14.csv", header = TRUE)
str(InData)</pre>
```

```
30 obs. of 4 variables:
## 'data.frame':
##
   $ Roadway
                   : int 1 1 1 1 1 1 2 2 2 2 ...
   $ cracks
                   : int 37 49 43 47 27 33 39 50 42 48 ...
  $ Treatment
                   : Factor w/ 3 levels "CaCl", "NaCl", ...: 2 2 1 1 3 3 2 2 1 1 ...
##
    \ Concentration: Factor w/ 2 levels "High", "Low": 2 1 2 1 2 1 2 1 2 1 ...
InData$Roadway <- as.factor(InData$Roadway)</pre>
A. Blocking structure: Randomized Complete Bock.
Treatment Structure: 2-way factorial
Concentration (High,Low) by Treatment (CaCL, NaCl, Sand)
В.
SumStats <- summarize(group_by(InData, Treatment, Concentration),</pre>
                           = n(),
                      mean = mean(cracks),
                      sd
                          = sd(cracks))
SumStats
## # A tibble: 6 x 5
               Treatment [3]
## # Groups:
                                  n mean
##
     Treatment Concentration
##
     <fct>
               <fct>
                              <int> <dbl> <dbl>
## 1 CaCl
               High
                                  5
                                     52.4 6.50
## 2 CaCl
               Low
                                  5
                                     46.6 5.59
## 3 NaCl
               High
                                  5
                                     55.2
                                           7.79
## 4 NaCl
                                  5
                                     44.4 6.88
               Low
## 5 Sand
               High
                                  5
                                     36.4 4.98
## 6 Sand
                                  5
                                     33.8 7.46
               Low
qplot(x = Treatment, y = mean, colour = Concentration, group = Concentration, data = SumStats) + geom_1
               55 -
```


C. The Diagnostics plot were not requested, but its a good idea to take a look at them. They'll be requested on the final.

```
RoadModel <- lm(cracks ~ Roadway + Treatment*Concentration, data = InData)
par(mfrow = c(1,2))
plot(RoadModel, which =1);plot(RoadModel, which =2)</pre>
```


Anova(RoadModel, type = 3)

```
## Anova Table (Type III tests)
## Response: cracks
                           Sum Sq Df
                                       F value
                                                   Pr(>F)
## (Intercept)
                            60211
                                  1 15999.433 < 2.2e-16 ***
## Roadway
                                        64.646 3.740e-11 ***
                              973
                             1412
                                   2
                                       187.573 1.103e-13 ***
## Treatment
                              307
                                        81.630 1.694e-08 ***
## Concentration
                                   1
## Treatment:Concentration
                               85 2
                                        11.346 0.0005091 ***
## Residuals
                               75 20
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
D. Blocking was effective (F = 64.462, p < 0.001)
E.
```

emmeans(RoadModel, pairwise ~ Concentration|Treatment)

```
## $emmeans
## Treatment = CaCl:
   Concentration emmean
                                SE df lower.CL upper.CL
##
   High
                    52.4 0.8675636 20 50.59029 54.20971
                    46.6 0.8675636 20 44.79029 48.40971
##
  Low
##
## Treatment = NaCl:
   Concentration emmean
                                SE df lower.CL upper.CL
  High
                   55.2 0.8675636 20 53.39029 57.00971
                    44.4 0.8675636 20 42.59029 46.20971
## Low
##
## Treatment = Sand:
  Concentration emmean
                                SE df lower.CL upper.CL
                    36.4 0.8675636 20 34.59029 38.20971
##
  High
##
  Low
                    33.8 0.8675636 20 31.99029 35.60971
##
## Results are averaged over the levels of: Roadway
## Confidence level used: 0.95
##
## $contrasts
## Treatment = CaCl:
```

```
contrast
             estimate
                           SE df t.ratio p.value
                   5.8 1.22692 20
                                   4.727 0.0001
##
  High - Low
##
## Treatment = NaCl:
##
   contrast estimate
                           SE df t.ratio p.value
  High - Low 10.8 1.22692 20
                                   8.803 <.0001
##
##
## Treatment = Sand:
   contrast estimate
                           SE df t.ratio p.value
## High - Low
                  2.6 1.22692 20
                                   2.119 0.0468
##
## Results are averaged over the levels of: Roadway
```

Average number of cracks for High is significantly higher than Low for each of the 3 Treatments. F.

emmeans(RoadModel, pairwise ~ Treatment|Concentration)

```
## $emmeans
## Concentration = High:
## Treatment emmean
                           SE df lower.CL upper.CL
           52.4 0.8675636 20 50.59029 54.20971
              55.2 0.8675636 20 53.39029 57.00971
## NaCl
##
   Sand
               36.4 0.8675636 20 34.59029 38.20971
##
## Concentration = Low:
## Treatment emmean
                           SE df lower.CL upper.CL
   CaCl
             46.6 0.8675636 20 44.79029 48.40971
##
## NaCl
              44.4 0.8675636 20 42.59029 46.20971
              33.8 0.8675636 20 31.99029 35.60971
##
   Sand
##
## Results are averaged over the levels of: Roadway
## Confidence level used: 0.95
##
## $contrasts
## Concentration = High:
  contrast
             estimate
                             SE df t.ratio p.value
## CaCl - NaCl
                   -2.8 1.22692 20
                                   -2.282 0.0817
## CaCl - Sand
                   16.0 1.22692 20 13.041 <.0001
## NaCl - Sand
                   18.8 1.22692 20 15.323 <.0001
##
## Concentration = Low:
##
   contrast estimate
                             SE df t.ratio p.value
## CaCl - NaCl
                    2.2 1.22692 20
                                    1.793 0.1974
  CaCl - Sand
                   12.8 1.22692 20 10.433 <.0001
  NaCl - Sand
                   10.6 1.22692 20
                                   8.640 <.0001
##
## Results are averaged over the levels of: Roadway
## P value adjustment: tukey method for comparing a family of 3 estimates
```

Discussion: At Low concentration, average number of cracks for Sand is significantly lower than both CaCl and NaCl. There is not a statistically significant difference between CaCl and NaCl.