Predictive Modelling of Stress-Related Behaviour Through Gene Expression Following Prenatal Glucocorticoid Exposure

Andrea Constantinof, Vasilis G. Moisiadis, Alisa Kostaki, Stephen G. Matthews

Department of Physiology, OBGYN, Medicine Fraser Mustard Research Institute University of Toronto, Toronto, Canada

Glucocorticoids and Early Life Environment

 The early life environment has long term influences on future health

- Perinatal exposure to high levels of glucocorticoids has been linked to the development of:
 - heart disease
 - diabetes mellitus
 - depression and anxiety disorders

Synthetic Glucocorticoids (sGC)

 Administered to women at risk for pre-term labor (~10% of pregnant women)

Reduces incidence of Respiratory Distress Syndrome

 Hypothalamic Paraventricular Nucleus (PVN) plays a central role in regulating stress response and behaviour

 Highly affected by antenatal synthetic glucocorticoid exposure

Paraventricular

Experimental Method and Model

Behavioural Tests: Startle Response (PND 23)

Open Field (PND 24)

Post-Natal Day 40, PVN RNA was extracted from female offspring

Tophat2 Alignment

Differential Expression Analysis

Antenatal sGC Results in Significant Changes in Behaviour

HPA Response to Open Field Stress

Total Locomotor Activity in the Open Field

Acoustic Startle Response

Antenatal sGC Results in Significant Changes in Gene Expression in PVN

Objective

To determine the relationship between gene expression in the PVN and behaviour

Hypothesis

Transcriptional programming of the PVN by sGC is correlated to behavioural outcomes and can be used in predictive modelling

Methods

- Principal Component Analysis
- Multivariate Linear Regression

Principal Component Analysis (PCA)

- PCA is useful to describe multidimensional data.
- The expression of each gene = a new dimension
- We can reduce the dimensions of the data to the first two Principal Components that describe the majority of variation within the dataset.

PCA of Gene Expression and Behaviour

Circle of Correlations and PCA:

Determine the relationship between gene expression and behaviour

PCA of Gene Expression and Behaviour

PCA suggests that there may exist a relationship between the expression of GREB1L, TRIM66, PRLR and Open Field Activity

 Relationship is tested with Linear Regression

Linear Regression

Normalized Gene Expression (Counts)

Multivariate Linear Regression Results

 Use the expression of 3 genes to model the relationship between gene expression and Open Field Activity

 Determine accuracy of model by plotting predicted value as a function of observed values and measuring R²

Multivariate Linear Regression Cross Validation

- Leave One Out
 Technique: remove
 one sample of your
 dataset to use as
 test' dataset. Repeat
 for all samples
- Obtain focused genes for further investigation

TRIM66: Transcription Regulation

PRLR: Prolactin Receptor

GREB1L: Estrogen Receptor Signaling

These genes are co-expressed

Conclusions and Significance

 PCA and linear regression analyses suggest that a relationship exists between the expression of Greb11, Prlr and Trim66 and behaviour in the Open Field

Additional samples are required to fully validate the model

- Insight into the potential mechanisms of antenatal sGC and how these molecular events may relate to behavior
- Proof-of-Principal for the use of gene expression profiles in disease prediction, detection, and prevention
 - Targeted therapeutic intervention

Acknowledgements

Matthews' lab

- Dr. Stephen Matthews
 Tam Lye
- Dr. Enrrico Bloise
- Mohsen Javam
- Alisa Kostaki
- Vasilis Moisiadis
- Guinevere Imperio
- Stephanie Baello
- Aya Sasaki

- Elizabeth Eng
- Maria Sqapi
- Alex Mouratidis
- Andrada Naghi
- Susmita Sarkar
- Chi-Lan Tran
- Loughlin Kelly

