MA1521 Calculus for Computing

AY 24/25 Sem 1 — github/omgeta

1. Limits

Limit of a function f(x) is given by:

i.
$$\lim_{x \to \infty} f(x) = L$$

i.
$$\lim_{x \to c^{-}} f(x) = L$$
 $(f(x) \to L \text{ from left})$

ii.
$$\lim_{x \to c^+} f(x) = I$$

ii.
$$\lim_{x \to c^+} f(x) = L$$
 $(f(x) \to L \text{ from right})$

iii.
$$\lim_{x \to c} f(x) = L$$

$$(f(x) \to L \text{ from both})$$

Function f(x) is continuous at x = c if and only if it is differentiable at c or $\lim_{x\to c} f(x)$ exists and $\lim_{x\to c} f(x) = f(c)$.

Laws of Limits:

i.
$$\lim_{x \to c} (f(x) \pm g(x)) = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$$

ii.
$$\lim_{x \to c} kf(x) = k \lim_{x \to c} f(x)$$

iii.
$$\lim_{x \to c} (f(x)g(x)) = (\lim_{x \to c} f(x))(\lim_{x \to c} g(x))$$

iv.
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$$

v.
$$g$$
 is continuous at $x = b \land \lim_{x \to c} f(x) = b$
 $\implies \lim_{x \to c} g(f(x)) = g(b) = g(\lim_{x \to c} f(x))$

Squeeze Theorem:

$$\begin{split} g(x) \leq f(x) \leq h(x) \wedge \lim_{x \to c} g(x) &= \lim_{x \to c} h(x) = L \\ &\implies \lim_{x \to c} f(x) = L \end{split}$$

Intermediate Value Theorem:

f is continuous on $[a,b] \wedge k$ is between f(a) and f(b) $\implies f(c) = k \text{ for some } c \in [a, b]$

Trignometric Identities:

$$\lim_{x \to c} g(x) = 0$$

$$\implies \lim_{x \to c} \frac{g(x)}{\sin(g(x))} = \lim_{x \to c} \frac{\sin(g(x))}{g(x)} = 1$$

$$\implies \lim_{x \to c} \frac{g(x)}{\tan(g(x))} = \lim_{x \to c} \frac{\tan(g(x))}{g(x)} = 1$$

L'Hôpital's Rule

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{0}{0} \text{ or } \frac{\infty}{\infty} \implies \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

2. Differentiation

Derivative of a function f at $x = x_0$ is given by:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Derivative of a parametric function in t is given by:

$$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}, \quad \frac{dy^2}{dx^2} = \frac{d}{dt}(\frac{dy}{dx}) \div \frac{dx}{dt}$$

Critical points at x = c of function f are non-endpoints where f'(c) is 0 or does not exist.

First Derivative Test:

i.
$$f'(c^-) > 0 \land f'(c^+) < 0$$
 (Local maximum)

ii.
$$f'(c^-) < 0 \land f'(c^+) > 0$$
 (Local minimum)

Second Derivative Test:

i.
$$f''(c) < 0$$
 (Local maximum)

ii.
$$f''(c) > 0$$
 (Local minimum)

Rolle's Theorem:

f continuous on [a, b], differentiable on $(a, b) \land f(a) = f(b)$ $\implies f'(c) = 0 \text{ for some } c \in [a, b]$

Mean Value Theorem:

f is continuous on $[a,b] \wedge f$ is differentiable on (a,b) $\implies f'(c) = 0 \text{ for some } c \in [a, b]$

Standard Derivatives

$\mathbf{f}(\mathbf{x})$	$\mathbf{f'}(\mathbf{x})$
$\tan(g(x))$	$g'(x)\sec^2(g(x))$
sec(g(x))	$g'(x)\sec(g(x))\tan(g(x))$
$\csc(g(x))$	$-g'(x)\operatorname{cosec}(g(x))\operatorname{cot}(g(x))$
$\cot(g(x))$	$-g'(x)\csc^2(g(x))$
$\sin^{-1}(g(x))$	$\frac{g'(x)}{\sqrt{1-g(x)^2}}$
$\cos^{-1}(g(x))$	$-\frac{g'(x)}{\sqrt{1-g(x)^2}}$
$\tan^{-1}(g(x))$	$\frac{g'(x)}{1+g(x)^2}$
$\cot^{-1}(g(x))$	$-\frac{g'(x)}{1+g(x)^2}$
$\sec^{-1}(g(x))$	$\frac{g'(x)}{ g(x) \sqrt{g(x)^2 - 1}}, g(x) > 1$
$\csc^{-1}(g(x))$	$-\frac{g'(x)}{ g(x) \sqrt{g(x)^2-1}}, g(x) > 1$
a^x	$a^x \ln(a)$

3. Integration

Definite integrals of function f have Riemann Sum:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{b-a}{n} f\left(a + (b-a)\frac{i}{n}\right)$$

Integration by substitution involves choosing u = q(x) and replacing all original variables, limits and dx.

Integration by parts for $\int f(x)q(x)dx$ involves choosing u and $\frac{dv}{dx}$ (u by LIATE) so $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$

Volume of revolution about same axis, in a disk:

$$V = \pi \int_{a}^{b} [f(x)]^{2} dx, \quad V = \pi \int_{c}^{d} [g(y)]^{2} dy$$

Volume of revolution about diff. axis, in a cylindrical shell:

$$V = 2\pi \int_a^b x |f(x)| dx, \quad V = 2\pi \int_c^d y |g(y)| dy$$

Arc length of a curve measured along x or y:

$$l = \int_a^b \sqrt{1 + [f'(x)]^2} dx, \quad l = \int_c^d \sqrt{1 + [g'(y)]^2} dy$$

Standard Integrals

$\mathbf{f}(\mathbf{x})$	$\mathbf{F}(\mathbf{x}) - \mathbf{C}$
$[f(x)]^n, n \neq -1$	$\frac{[f(x)]^{n+1}}{(n+1)f'(x)}$
$\tan(f(x))$	$\frac{1}{f'(x)}\ln \sec(f(x)) $
$\sec(f(x))$	$\frac{1}{f'(x)}\ln \sec(f(x)) + \tan(f(x)) $
cosec(f(x))	$-\frac{1}{f'(x)}\ln \operatorname{cosec}(f(x)) + \cot(f(x)) $
$\cot(f(x))$	$-\frac{1}{f'(x)}\ln \operatorname{cosec}(f(x)) $
$\sec^2(f(x))$	$\frac{1}{f'(x)}\tan(f(x))$
$\csc^2(f(x))$	$-\frac{1}{f'(x)}\cot(f(x))$
$\sec(f(x))\tan(f(x))$	$\frac{\overline{f'(x)}}{f'(x)} \sec(f(x))$
$\csc(f(x))\cot(f(x))$	$-\frac{1}{f'(x)}\operatorname{cosec}(f(x))$
$\frac{1}{a^2 + [f(x)]^2}$	$\frac{1}{af'(x)}\tan^{-1}\left(\frac{f(x)}{a}\right)$
$\frac{1}{\sqrt{a^2 - [f(x)]^2}}$	$\frac{1}{f'(x)}\sin^{-1}\left(\frac{f(x)}{a}\right)$
$-\frac{1}{\sqrt{a^2-[f(x)]^2}}$	$\frac{1}{f'(x)}\cos^{-1}\left(\frac{f(x)}{a}\right)$
$\frac{1}{a^2 - [f(x)]^2}$	$\frac{1}{2af'(x)}\ln\left \frac{f(x)+a}{f(x)-a}\right $
$\frac{1}{[f(x)]^2 - a^2}$	$\frac{1}{2af'(x)}\ln\left \frac{f(x)-a}{f(x)+a}\right $
$\frac{1}{\sqrt{[f(x)]^2 + a^2}}$	$\frac{1}{f'(x)} \ln f(x) + \sqrt{[f(x)]^2 + a^2} $
$\frac{1}{\sqrt{[f(x)]^2 - a^2}}$	$\frac{1}{f'(x)} \ln f(x) + \sqrt{[f(x)]^2 - a^2} $
$\sqrt{a^2-x^2}$	$\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}(\frac{x}{a})$
$\sqrt{x^2-a^2}$	$\frac{x}{2}\sqrt{x^2-a^2} + \frac{a^2}{2}\ln x+\sqrt{x^2-a^2} $

4. Sequences and Series

$$n^{\text{th}}$$
 Term: $\lim_{n\to\infty} a_n \neq 0 \Rightarrow \sum_{n=1}^{\infty} a_n$ diverges

Integral Test for $a_n = f(n)$, where f is continuous, positive, decreasing for $x \ge 1$:

$$\int_{1}^{\infty} f(x) \text{ converges } \iff \sum_{n=1}^{\infty} a_n \text{ converges}$$

p-series:
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 converges $\iff p > 1$

Comparison Test for $0 \le a_n \le b_n$:

$$\sum_{n=1}^{\infty} b_n \text{ converges } \Longrightarrow \sum_{n=1}^{\infty} a_n \text{ converges}$$

$$\sum_{n=1}^{\infty} a_n \text{ diverges } \Longrightarrow \sum_{n=1}^{\infty} b_n \text{ diverges}$$

Ratio/Root Test:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L \text{ or } \lim_{n \to \infty} \sqrt[n]{|a_n|} = L$$

- i. $0 \le L < 1$ (Absolute Convergence)
- ii. L > 1 (Divergence)

iii.
$$L = 1$$
 (Inconclusive)

Alternating Series Test for terms $a_n = (-1)^n b_n$ or $a_n = (-1)^{n-1} b_n$, where b_n is decreasing:

$$\lim_{n\to\infty} b_n = 0 \implies \sum_{n=1}^{\infty} a_n \text{ converges}$$

Radius of Convergence $R = \frac{1}{L}$ about x = a for power series $b_n = c_n(x - a)^n$ is interval for absolute convergence:

$$\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = L \text{ or } \lim_{n \to \infty} \sqrt[n]{|c_n|} = L$$

Functions with power series representation for R>0 have:

i.
$$f'(x) = \sum_{n=1}^{\infty} nc_n (x-a)^{n-1}$$

ii. $\int f(x)dx = \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}$

Taylor Series for a function with power series representation is:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x - a)^n$$

with MacLaurin Series at x = 0:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(0)}{n!} x^n$$

5. Vectors

Projection of **b** onto **a** is given by: $\operatorname{proj}_{\mathbf{a}} \mathbf{b} = \operatorname{comp}_{\mathbf{a}} \mathbf{b} \times \hat{\mathbf{a}} = (\mathbf{b} \cdot \hat{\mathbf{a}}) \hat{\mathbf{a}}$

Perpendicular distance from position vector \mathbf{b} to \mathbf{a} is given by:

$$\|\mathbf{b} \times \mathbf{\hat{a}}\|$$

Projection of **b** onto plane $\Pi : \mathbf{r} \cdot \mathbf{n} = D$: $\operatorname{proj}_{\Pi} \mathbf{b} = \mathbf{b} - \operatorname{proj}_{\hat{\mathbf{n}}} \mathbf{b} = \mathbf{b} - (\mathbf{b} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}$ $\|\operatorname{proj}_{\Pi} \mathbf{b}\| = \|\mathbf{b} \times \hat{\mathbf{n}}\|$

Perpendicular distance from position vector **b** to plane $\mathbf{r} \cdot \mathbf{n} = D$:

$$\frac{|D - \mathbf{b} \cdot \mathbf{n}|}{\|\mathbf{n}\|}$$

Dot and Cross product are given by:

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$$
$$\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$$
$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

Vector-valued Functions

Derivative of $r(t) = \langle f(t), g(t), h(t) \rangle$ at t = a is given by:

$$r'(a) = \langle f'(a), g'(a), h'(a) \rangle$$

Arc length of a path measured along t: $l = \int_a^b \sqrt{[f'(t)]^2 + [g'(t)]^2 + [h'(t)]^2} dt$

6. Multivariate Calculus

Derivative of z = f(x, y) where x = g(t) and y = h(t) is given by:

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Derivative of z = f(x, y) where x = g(s, t) and y = h(s, t) is given by:

$$\frac{\partial z}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s}$$
$$\frac{\partial z}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}$$

Normal vector to the tangent plane for z = f(x, y) at (x_0, y_0) is given by: $\langle f_x(a, b), f_y(a, b), -1 \rangle$

Derivative of z in F(x, y, z) = 0 is given by: $\frac{\partial z}{\partial z} = F_x \quad \frac{\partial z}{\partial z} = F_y$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

Normal vector to the tangent plane for level surface of F(x, y, z) at (x_0, y_0, z_0) is $\nabla F(x_0, y_0, z_0)$

Directional derivative of f at $P = (x_0, y_0)$ in direction of unit vector $\hat{\mathbf{u}}$ is given by:

$$D_{\hat{\mathbf{u}}}f(P) = \nabla f(x_0, y_0) \cdot \hat{\mathbf{u}}$$

where $\nabla f = \langle f_x, f_y \rangle$ is the gradient vector and rate of change is optimized at:

$$\|\nabla f(P)\|$$
 in direction $\nabla f(P)$ (Max.)

$$-\|\nabla f(P)\|$$
 in direction $-\nabla f(P)$ (Min.)

Gradient vector $\nabla f(x_0, y_0) \neq 0$ is normal to level curve f(x, y) = k at (x_0, y_0)

Critical points at (a, b) of function f are non-endpoints where $f_x(a, b) = f_y(a, b) = 0$ or a partial derivative does not exist.

Second Derivative Test:

$$D = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^2$$

- i. $D > 0 \land f_{xx}(a, b) < 0$ (Local max.)
- ii. $D > 0 \land f_{xx}(a,b) > 0$ (Local min.)
- iii. D < 0 (Saddle point)
- iv. D = 0 (Inconclusive)

7. Double Integrals

Double Integral $\iint_R f(x, y) dA$ over rectangular region $R = [a, b] \times [c, d]$:

$$\int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy$$

with special case f(x, y) = g(x)h(y):

$$\int_{a}^{b} g(x)dx + \int_{c}^{d} h(y)dy$$

Area of general plane region $D: \iint_D dA$

Surface area:
$$\iint_D \sqrt{f_x^2 + f_y^2 + 1} dA$$

Polar coordinates: $\iint_D f(r\cos\theta, r\sin\theta)rd\theta dr$

8. ODEs

Separable ODEs, reducing if necessary by $v = \frac{y}{x}$ or u = ax + by: $\frac{dy}{dx} = f(x)g(y) \Rightarrow \int \frac{1}{g(y)} dy = \int f(x)dx + C$

Linear ODEs using
$$I(x) = e^{\int P(x)dx}$$
:
 $\frac{dy}{dx} + P(x)y = Q(x) \Rightarrow yI(x) = \int Q(x)I(x)dx$

Bernoulli equation using $u = y^{1-n}$:

$$\frac{\frac{dy}{dx} + P(x)y = Q(x)y^n}{\Longrightarrow \frac{du}{dx} + (1-n)P(x)u = (1-n)Q(x)}$$

Appendix

 $\sec^2 x - 1 = \tan^2 x$ $\csc^2 x - 1 = \cot^2 x$

 $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$ $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\sin P + \sin Q = 2 \sin \frac{1}{2} (P + Q) \cos \frac{1}{2} (P - Q)$$

$$\sin P - \sin Q = 2 \cos \frac{1}{2} (P + Q) \sin \frac{1}{2} (P - Q)$$

$$\cos P + \cos Q = 2\cos\frac{1}{2}(P+Q)\cos\frac{1}{2}(P-Q)$$
$$\cos P - \cos Q = -2\sin\frac{1}{2}(P+Q)\sin\frac{1}{2}(P-Q)$$