Angewandte mathematische Statistik

2. Aufgabenblatt

1. Aufgabe ("German tank problem")

Es seien $X_1, \ldots, X_n \sim \mathcal{U}([0, \theta])$. Schätzen Sie θ via $\hat{\theta}_1 := \max X_i$ (MLE), $\hat{\theta}_2 := \frac{n+1}{n} \max X_i$ (UMVUE) und $\hat{\theta}_3 := 2\bar{X}$ (Momentenschätzer) für n = 10, 100, 1000, 10000 und berechnen Sie jeweils das quadratische Risiko.

2. Aufgabe (iterierter Logarithmus)

Das schwache Gesetz der großen Zahlen suggeriert, dass die Abweichungen des Stichprobenmittelwerts $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ vom Erwartungswert mit der Rate $\frac{1}{\sqrt{n}}$ gegen Null gehen. Für die fast sichere Konvergenz sind die Abschätzungen jedoch zu grob – vielmehr ist die Rate beim starken Gesetz der großen Zahlen geringfügig kleiner, nämlich

$$\left| \bar{X}_n - \mathbb{E}[X_1] \right| = \mathcal{O}\left(\sqrt{\frac{2\log\log n}{n}}\right).$$

Illustrieren Sie diese Kovergenzrate im Vergleich zur Rate $\frac{1}{\sqrt{n}}$ in einem Plot, indem Sie etwa i.i.d. standardnormalverteilte Zufallsvariablen X_i wählen.

3. Aufgabe (Zentraler Grenzwertsatz)

Erzeugen Sie K=1000 mal jeweils n Zufallszahlen der Poissonverteilung zum Parameter $\lambda=0.4$, wobei n=10,100,500,1000. Speichern Sie die Zufallszahlen jeweils als $n\times K$ -Matrix. Bilden Sie zu jeder Stichprobengröße n spaltenweise die standardisierten Mittel und vergleichen Sie jeweils die empirischen Quantile mit den Quantilen der Standardnormalverteilung.

4. Aufgabe (Erwartungstreue)

Es seien $X_1, \ldots, X_n \sim \operatorname{Exp}(\lambda)$ i.i.d. Vergewissern Sie sich, dass $\hat{\lambda} := \frac{1}{\bar{X}}$ Maximum-Likelihood-Schätzer ist, wobei $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, und dass $\mathbb{E}[\hat{\lambda}] = \frac{n}{n-1}\lambda$ gilt. Der Schätzer $\frac{1}{\hat{\lambda}} := \bar{X}$ hingegen ist erwartungstreu für $\frac{1}{\lambda}$. Illustrieren Sie dies in einem Plot, indem Sie hinreichend viele Schätzer simulieren und $n \in \{2, \ldots, 10\}$ variieren.

5. Aufgabe (MLE-Asymptotik)

Es seien $X_1, \ldots, X_n \sim \text{Pois}(\lambda)$ i.i.d. mit der Dichte $p(k; \lambda) = \frac{\lambda^k e^{-k}}{k!}$. Bestimmen Sie den Maximum-Likelihood-Schätzer sowie die Fischer-Informationsmatrix und illustrieren sie die MLE-Asymptotik $\sqrt{n}(\hat{\lambda}_{\text{MLE}} - \lambda) \to \mathcal{N}(0, I(\lambda)^{-1})$.