Technological Institute of the Philippines	Quezon City - Computer Engineering
Course Code:	CPE 019
Code Title:	Emerging Technologies in CpE 2
Summer Semester	AY 2024-2024
Hands-on Activity 4.1: Advanced Data Analytics and Machine Learning	
Name	Ramos, William Laurence M.
Section	CPE32S1
Date Performed:	06/20/24
Date Submitted:	06/20/24
Instructor:	Engr. Roman Richard

PART 1: Do the following objectives:

Part 1: Import the Libraries and Data

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
titanicFrame = pd.read_csv('/content/titanic_test.csv')
titanicFrame = pd.read_csv('/content/titanic_train.csv')
titanicall = pd.read_csv('/content/titanic_all.csv', delimiter=';')
print (titanicFrame)
print (titanicFrame2)
    886
                 887
                             0
    887
                 888
    888
                 889
                            0
    889
                 890
                            1
    890
                 891
                                                                   Age SibSp \
                                                     Name
                                                              Sex
                                  Braund, Mr. Owen Harris
    0
                                                             male 22.0
    1
         Cumings, Mrs. John Bradley (Florence Briggs Th...
                                                           female
                                                                   38.0
    2
                                   Heikkinen, Miss. Laina female 26.0
    3
              Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0
    4
                                 Allen, Mr. William Henry
                                                             male 35.0
                                                                            0
                                                     . . .
                                                             . . .
                                                                   . . .
                                                            male 27.0
    886
                                    Montvila, Rev. Juozas
                                                                            0
    887
                              Graham, Miss. Margaret Edith
                                                           female
                                                                  19.0
                                                                            0
                  Johnston, Miss. Catherine Helen "Carrie"
                                                                   NaN
                                                           female
    889
                                    Behr, Mr. Karl Howell
                                                            male 26.0
                                                                            0
    890
                                      Dooley, Mr. Patrick
                                                            male 32.0
                                                                            0
         Parch
                         Ticket
                                    Fare Cabin Embarked
                      A/5 21171
                                  7.2500
    0
            0
                                           NaN
    1
             0
                       PC 17599 71.2833
                                           C85
                STON/02. 3101282
                                  7.9250
                                           NaN
                         113803 53.1000
                                           C123
    3
    4
             0
                         373450 8.0500
                                           NaN
                                                      S
                          211536 13.0000
                                           NaN
    887
             0
                         112053 30.0000
                                           B42
    888
             2
                      W./C. 6607 23.4500
                                           NaN
                                                      S
                        111369 30.0000
    890
                          370376 7.7500
                                           NaN
    [891 rows x 12 columns]
         PassengerId Pclass
                                                                    Name Sex \
                892
                                                         Kelly, Mr. James
                                                                            0
```

414 415 416 417		1306 1307 1308 1309	1 3 3 3		ether, Mr. War	Simon e, Mr.	a. Fermina Sivertsen Frederick Michael J	1 0 0 0
0 1 2 3 4	Age 34.5 47.0 62.0 27.0 22.0	SibSp 0 1 0 0 1 0	Parch 0 0 0 0 1 0	330911 363272 240276 315154 3101298	Fare 7.8292 7.0000 9.6875 8.6625 12.2875 8.0500	NaN NaN NaN NaN	Embarked Q S Q S S	
414 415	39.0 38.5	0	0	PC 17758	108.9000 7.2500	C105 NaN	C S	

Part 2: Plot the Data

```
sns.countplot(data=titanicFrame, x='Sex')
plt.xlabel('Sex')
plt.ylabel('Count')
plt.title('Distribution of Sex')
plt.show()
```



```
sns.countplot(data=titanicFrame2, x='Pclass')
plt.xlabel('Ticket Class')
plt.ylabel('Count')
plt.title('Distribution of Ticket Classes')
plt.show()
```

Distribution of Ticket Classes

sns.countplot(data=titanicFrame, x='Survived')
plt.xlabel('Survived')
plt.ylabel('Count')
plt.title('Distribution of Survival')
plt.show()

₹

Distribution of Survival

sns.histplot(titanicFrame2['Age'], bins=20, kde=True)
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.title('Age Distribution')
plt.grid(True)
plt.show()

Part 3: Perform Simple Linear Regression on the SURVIVAL feature column (you can check the internet on how you can perform simple linear regression)

prin ⁻	t (ti	tanicF	rame2)			
\rightarrow		Passe	ngerId	Pclass	Name	Sex \
_	0		892	3	Kelly, Mr. James	NaN
	1		893	3		NaN
	2		894	2	,	NaN
	3		895	3		NaN
	4		896	3	, , , , , , , , , , , , , , , , , , , ,	NaN
	413		1305	3	Spector, Mr. Woolf	NaN
	414		1306	1	Oliva y Ocana, Dona. Fermina	NaN
	415		1307	3	Saether, Mr. Simon Sivertsen	NaN
	416		1308	3	Ware, Mr. Frederick	NaN
	417		1309	3	Peter, Master. Michael J	NaN
		Age	SibSp	Parch	Ticket Fare Cabin Embarked	
	0	34.5	0	0	330911 7.8292 NaN Q	
	1	47.0	1	0	363272 7.0000 NaN S	
		62.0	0	0	240276 9.6875 NaN Q	
		27.0	0	0	315154 8.6625 NaN S	
	4	22.0	1	1	3101298 12.2875 NaN S	
			_			
	412	NoN			A E 2226 9 AEAA NaN C	
	413	NaN	0	0	A.5. 3236 8.0500 NaN S	
	414	39.0	0	0	PC 17758 108.9000 C105 C	
	415	38.5	0	0	SOTON/O.Q. 3101262 7.2500 NaN S	
	416	NaN	0	0	359309 8.0500 NaN S	
	417	NaN	1	1	2668 22.3583 NaN C	

[418 rows x 11 columns]

```
titanicFrame['Sex'] = titanicFrame['Sex'].map({'male': 0, 'female': 1})
x = titanicFrame['Sex']
y = titanicFrame['Survived']
# coefficients of the regression line
coefficients = np.polyfit(x, y, 1)
m, b = coefficients
regression\_line = m * x + b
# Plotting
plt.scatter(x, y, color='blue', label='Data Points')
plt.plot(x, regression_line, color='red', label='Regression Line')
plt.xlabel("Sex (0 - Male, 1 - Female)")
plt.ylabel("Survival")
plt.title('Survival vs Sex')
plt.legend()
plt.grid(True)
plt.show()
```



```
x = titanicFrame['Pclass']
y = titanicFrame['Survived']

# coefficients of the regression line
coefficients = np.polyfit(x, y, 1)
m, b = coefficients
regression_line = m * x + b

# Plotting
plt.scatter(x, y, color='blue', label='Data Points')
plt.plot(x, regression_line, color='red', label='Regression Line')
plt.xlabel("Ticket Class")
plt.ylabel("Survival")
plt.title('Survival vs Ticket Class')
plt.legend()
plt.grid(True)
plt.show()
```



```
x = titanicFrame['Fare']
y = titanicFrame['Survived']

# coefficients of the regression line
coefficients = np.polyfit(x, y, 1)
m, b = coefficients
regression_line = m * x + b

# Plotting
plt.scatter(x, y, color='blue', label='Data Points')
plt.plot(x, regression_line, color='red', label='Regression Line')
plt.xlabel("Fare")
plt.xlabel("Fare")
plt.ylabel("Survival")
plt.title('Survival vs Fare')
plt.legend()
plt.grid(True)
plt.show()
```



```
titanicFrame = titanicFrame.dropna(subset=['Age', 'Survived'])
x = titanicFrame['Age']
y = titanicFrame['Survived']
# coefficients of the regression line
coefficients = np.polyfit(x, y, 1)
m, b = coefficients
regression\_line = m * x + b
# Plotting
plt.scatter(x, y, color='blue', label='Data Points')
plt.plot(x, regression_line, color='red', label='Regression Line')
plt.xlabel("Age")
plt.ylabel("Survival")
plt.title('Survival vs Age')
plt.legend()
plt.grid(True)
plt.show()
```


Survival vs Age 1.0 0.8 0.6 0.4 0.2 0.0 0.10 20 30 40 50 60 70 80 Age

```
x = titanicFrame['SibSp']
y = titanicFrame['Survived']

# coefficients of the regression line
coefficients = np.polyfit(x, y, 1)
m, b = coefficients
regression_line = m * x + b

# Plotting
plt.scatter(x, y, color='blue', label='Data Points')
plt.plot(x, regression_line, color='red', label='Regression Line')
plt.xlabel("Number of Siblings/Spouses")
plt.ylabel("Survival")
plt.title('Survival vs Number of Siblings/Spouses')
plt.legend()
plt.grid(True)
plt.show()
```


 $\overline{\mathcal{D}}$


```
x = titanicFrame['Parch']
y = titanicFrame['Survived']

# coefficients of the regression line
coefficients = np.polyfit(x, y, 1)
m, b = coefficients
regression_line = m * x + b

# Plotting
plt.scatter(x, y, color='blue', label='Data Points')
plt.plot(x, regression_line, color='red', label='Regression Line')
plt.xlabel("Number of Parents/Children")
plt.ylabel("Survival")
plt.title('Survival vs Number of Parents/Children')
plt.legend()
plt.grid(True)
plt.show()
```


Part 2: Decision Tree Classification

- · Objectives In this lab, you will use a decision tree classifier model to determine who survived the Titanic cruise ship disaster.
- Part 1: Create a Decision Tree Classifier *
- Part 2: Apply the Decison Tree Model*

• Part 3: Evaluate the Decision Tree Model* Scenario / Background In this lab you will create a decision tree classifier that will work with a data set which contains the details about the more than 1300 hundred passengers who were onboard the passenger liner Titanic on its infamous maiden voyage.

Step 1: Create the dataframe

a.) Import pandas and the csv file

```
# Code Cell 1
#create a pandas dataframe called "training" from the titanic-train.csv file
training = pd.read_csv('/content/titanic_train.csv')
```

b.) Verify the import and take a look at the data.

```
#Code Cell 2
training.info()
```

```
<pr
    RangeIndex: 891 entries, 0 to 890
    Data columns (total 12 columns):
    # Column
                    Non-Null Count Dtype
    0 PassengerId 891 non-null
                                  int64
                    891 non-null
                                  int64
        Survived
        Pclass
                    891 non-null
                                  int64
                    891 non-null
                                  object
        Name
    4
                    891 non-null
        Sex
                                  object
        Age
                    714 non-null
                                  float64
        SibSp
                    891 non-null
                                  int64
                    891 non-null
        Parch
                                  int64
        Ticket
                    891 non-null
                                  object
       Fare
                    891 non-null
                                  float64
    10 Cabin
                    204 non-null
                                  object
    11 Embarked
                    889 non-null
                                  object
    dtypes: float64(2), int64(5), object(5)
    memory usage: 83.7+ KB
```

Are there Missing Values in the dataset?

· Yes, some of the entries are missing, particularly in the cabin number data, which has only 204 entries.

#Code Cell 3 training.head()

$\overrightarrow{\Rightarrow}$		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
	1	2	1	1	Cumings, Mrs. John Bradley (Florence	female	38.0	1	0	PC 17599	71.2833

```
Next steps: Generate code with training

#Code Cell 4
training["Sex"] = training["Sex"].apply(lambda toLabel: 0 if toLabel == 'male' else 1)

#Code Cell 5
training.head()
```

₹	Pas	ssengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Mr. Owen Harris	1	22.0	1	0	A/5 21171	7.2500
	1	2	1	1	Cumings, Mrs. John Bradley (Florence	1	38.0	1	0	PC 17599	71.2833
	4									.	
Next :	steps:	Generate	e code with	training		/iew r	ecomm	nended pl	ots		

c.) Address Missing Values in the Dataset.

```
#code cell 6
training["Age"].fillna(training["Age"].mean(), inplace=True)
```

d) Verify the values have been replaced.

```
#Code Cell 7
training.info()
```

```
<pr
   RangeIndex: 891 entries, 0 to 890
   Data columns (total 12 columns):
                  Non-Null Count Dtype
    # Column
    0 PassengerId 891 non-null
       Survived
                   891 non-null
                                 int64
       Pclass
                   891 non-null
                                 int64
       Name
                   891 non-null
                                 object
                   891 non-null
    5 Age
6 SibSp
                   891 non-null
                                 float64
                   891 non-null
                                 int64
       Parch
                   891 non-null
        Ticket
                   891 non-null
                                 object
    9 Fare
                   891 non-null
                                 float64
    10 Cabin
                   204 non-null
    11 Embarked
                   889 non-null
   dtypes: float64(2), int64(6), object(4)
   memory usage: 83.7+ KB
```

What was the valuie used to replace the missing ages?

· The average of all ages is used to fill the missing ages

```
training["Age"].mean()

29.69911764705882
```

Step 3:Train and Score the Decision Tree Model.

a.) Create an array object with the variable that will be the target for the model.

```
#code cell 8
#create the array for the target values
y_target = training["Survived"].values
```

b.) Create an array of the values that will be the input for the model.

```
#code cell 9
columns = ["Fare", "Pclass", "Sex", "Age", "SibSp"]
#create the variable to hold the features that the classifier will use
X_input = training[list(columns)].values
```

c.) Create the learned model

```
#code cell 10
#import the tree module from the sklearn library
from sklearn import tree
#create clf_train as a decision tree classifier object
clf_train = tree.DecisionTreeClassifier(criterion="entropy", max_depth=3)
#train the model using the fit() method of the decision tree object.
#Supply the method with the input variable X_input and the target variable y_target
clf_train = clf_train.fit(X_input, y_target)

d.) Evaluate the model
#code cell 11
clf_train.score(X_input,y_target)

0.7216610549943884
```

Step 6: Visualize the Tree

a.) Create the intermediate file output

Image("/content/titanic.png")

```
#code cell 12
from six import StringIO
with open("/content/titanic.dot", 'w') as f:
    f = tree.export_graphviz(clf_train, out_file=f, feature_names=columns)

b.) Install Graphviz**
c.) Convert the intermediate file to a graphic
d.) Display the image

#code cell 13
#run the Graphviz dot command to convert the .dot file to .png
!dot -Tpng /content/titanic.dot -o /content/titanic.png

#code cell 14
#import the Image module from the Ipython.display libary
from IPython.display import Image
#display the decison tree graphic
```


What describes the group that had the most deaths by number? which group has the msot survivors?

- According to the decision tree, the individuals with the highest survival rates were those in class 2.5 or higher, who paid a fare of at least 13.646, and were younger than 17.5 years old.
- Conversely, the group with the highest mortality rates comprised those in the lower classes, who paid lower fares, and had an average age of 32.5 years.

Apply the Decision Tree Model.

Step 1: Import and Prepare the Data

a.) Import the data

```
#code cell 15
#import the file into the 'testing' dataframe.
testing = pd.read_csv('/content/titanic_test.csv')
testing.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 418 entries, 0 to 417
    Data columns (total 11 columns):
     # Column
                     Non-Null Count Dtype
     0 PassengerId 418 non-null
                                     int64
        Pclass
                     418 non-null
                                     int64
                      418 non-null
                                     object
                      418 non-null
         Sex
                                     object
                     332 non-null
                                     float64
         Age
        SibSp
                      418 non-null
                                     int64
                      418 non-null
         Parch
                     418 non-null
         Ticket
                                     object
        Fare
                      417 non-null
                                     float64
         Cabin
                      91 non-null
                                     object
     10 Embarked
                     418 non-null
                                     obiect
    dtypes: float64(2), int64(4), object(5)
    memory usage: 36.0+ KB
```

How many records are in the data set?

• 418 records

Which important variables are missing and how many are missing?

• The age variable only has 332 data in it instead of 418 which has 86 missing values.

b) Use a lambda expression to replace the "male" and "female" values with 0 for male and 1 for female.

```
#code cell 16
#replace the Gender labels in the testing dataframe
testing["Sex"] = training["Sex"].apply(lambda toLabel: 0 if toLabel == 'male' else 1)
```

c) Replace the missing age values with the mean of the ages.

```
#code cell 17
#Use the fillna method of the testing dataframe column "Age"
#to replace missing values with the mean of the age values.
testing["Age"].fillna(testing["Age"].mean(), inplace=True)
testing["Fare"].fillna(testing["Fare"].mean(), inplace=True)
testing["Cabin"].fillna("-", inplace=True)
```

d) Verify that the values have been replaced.

.