Properties of Cantor Set

金弘义 518030910333

March 18, 2020

Exercise 1. 1) Show that the Cantor Set C is nowhere dense in [0,1].

- 2) Find a meager set T in \mathbb{R} such that $T + T = \mathbb{R}$.
- 3) Show that every subset of the real line \mathbb{R} can be partitioned into two sets, one being of first category and the other being negligible.

Proof. 1) Recall the the explicit closed formulas for the Cantor set are:

$$C = [0,1] \setminus \bigcup_{n=0}^{\infty} \bigcup_{k=0}^{3^n-1} (\frac{3k+1}{3^{n+1}}, \frac{3k+2}{3^{n+1}})$$

It's obvious that $(\frac{3k+1}{3^{n+1}}, \frac{3k+2}{3^{n+1}})$ is an open set. Since the union of open sets is an open set, the complement of C is also open, which leads to the fact that C is a closed set. So $\bar{C} = C$.

Note that Cantor set can also be characterized as the set of all number in [0,1] whose base-3 expansion doesn't contain any 1s. Assume there exists an interior point x of C, then there exists a ball B, with radius r>0, which is contained in C. Since $C\subseteq [0,1]$, B is an interval, whose length is 2r. Arbitarily choose $x_1\in B$ and $x_2\in B$ such that $x_1< x_2$ and $x_2-x_1\geq r$. Let $n=\lceil\log_{\frac{1}{3}}r\rceil+2$. Consider $x_3=x_1+(\frac{1}{3})^n, x_4=x_1+2\cdot(\frac{1}{3})^n$. Since $(\frac{1}{3})^n<(\frac{1}{3})^{(\log_{\frac{1}{3}}r)+1}=\frac{1}{3}\cdot(\frac{1}{3})^{(\log_{\frac{1}{3}}r)}=\frac{1}{3}r, x_3, x_4\in B$. It's obvious that one of them conatins 1 in its base-3 expansion, which means one of them doesn't belong to Cantor set. This leads to a contradiction, or equivalently, that there is no interior point of C.

Now we can safely conclude that C is nowhere dense.

2)Let

$$T(n) = \{a + n | a \in C\}$$
$$T = \bigcup_{n \in \mathbb{Z}} T(n)$$

First We will prove T is a meager set. Since T(n) is constructed by translation of all points in C by n, T(n) is also nowhere dense. This leads to the fact that T is a meager set, because \mathbb{Z} is countable.

Then we prove $T+T=\mathbb{R}$. From C+C=[0,2], we can similarly get T(n)+T(n)=[2n,2n+2]. Note that:

$$\bigcup_{n\in\mathbb{Z}}(T(n)+T(n))\subseteq T+T\subseteq\mathbb{R}$$

However,

$$\bigcup_{n\in\mathbb{Z}}(T(n)+T(n))=\bigcup_{n\in\mathbb{Z}}[2n,2n+2]=\mathbb{R}$$

Now we conclude that $T + T = \mathbb{R}$.

3) Method 1:

Pick an enumeration of \mathbb{Q} , named q_n . Let:

$$\begin{split} I_{i,j} &= (q_i - \frac{1}{2^{i+j+2}}, q_i + \frac{1}{2^{i+j+2}}) \\ A_j &= \bigcup_{i \in \mathbb{N}} I_{i,j} \\ B &= \bigcap_{j \in \mathbb{N}} A_j \end{split}$$

For any $\epsilon > 0$, exist $j_0 > 0$ such that $\left| \frac{1}{2^{j_0}} \right| < \epsilon$. So we have :

$$|A_j| \le \sum_{i=0}^{\infty} \frac{1}{2^{i+j+1}} = \frac{1}{2^j}$$

 $|B| \le |A_{j_0}| \le \frac{1}{2^{j_0}} < \epsilon$

This leads to that B is negligible. Then we prove B^C is a meager set.

$$B^C = \bigcup_{j \in \mathbb{N}} A_j^C$$

Since $\mathbb{Q} \subseteq A_j$ and \mathbb{Q} is dense, we can know that A_j is dense. A_j is also open because A_j is the union of open intervals. These 2 properties of A_j can lead to that A_j^C is nowhere dense. So B^C is a meager set, which finishes the proof.

Method 2: Construct a sequence of fat cantor set by the following steps: To construct $C_n (n \ge 2)$, first remove the middle $\frac{1}{2^n}$ from the interval [0,1]. Then in the i^{th} step(i starts from 2), remove subintervals of width $\frac{1}{2n\cdot 4^{i-1}}$ from the middle of each of the 2^{i-1} remaining intervals. We can then calculate

$$|C_n| = 1 - \sum_{i=1}^{\infty} \frac{1}{2n \cdot 4^{i-1}} \cdot 2^{i-1} = 1 - \frac{1}{n}$$

 $|C_n^C| = \frac{1}{n}$

For any $\epsilon > 0$, there exists $n_0 > 0$ such that $\frac{1}{n_0} < \epsilon$. Let $C = \bigcup_{n=2}^{\infty} C_n$, then $C^C = \bigcap_{n=2}^{\infty} C_n$. Note that $|C^C| \le |C_{n_0}^C| = \frac{1}{n_0} < \epsilon$, which leads to that C^C is negligible in [0,1].

By construction, C_n contains no intervals and therefore has empty interior, or equivalently, C_n is nowhere dense in [0,1]. So C is a meager set in [0,1].

We can easily extend this conclusion to \mathbb{R} . Let $C'(i) = \{i + c | c \in C, i \in \mathbb{Z}\}, C' = \bigcup_{i \in \mathbb{Z}} C'(i)$. It's easy to see that C' is a meager set in \mathbb{R} and C'^C is negligible in \mathbb{R} .

Method 3: Let L be the set of Liouville numbers. Recall the first claim of Theorem 3 from notes on March 10, which is: Suppose that ϕ is positive. If $\sum_q \frac{1}{q\phi(q)} < \infty$, then $P(A_\phi) = 0$. A_ϕ is the set of reals x in (0,1] such that $|x - \frac{p}{q}| < \frac{1}{q^2\phi(q)}$. Let $\phi(q) = q$, then $L \subseteq A_\phi$. Since $\sum_q \frac{1}{q^2} < \infty$, $P(A_\phi) = 0$, which leads to that P(L) = 0. Equivalently, L is negligible.

Select an enumeration of \mathbb{Q} , named q_n .Let

$$U_n = \bigcup_{i=0}^{\infty} \{x : q_i = \frac{p}{q}, 0 < |x - \frac{p}{q}| < \frac{1}{q^n}\}$$
$$L = \bigcap_{n=1}^{\infty} U_n$$

 U_n is open, because it's the union of open sets. Since any open set that contains $\frac{p}{q}$ must intersect with $\{x:0<|x-\frac{p}{q}|<\frac{1}{q^n}\}$ and $\mathbb Q$ is dense, it's easy to see that U_n is dense according to the definition of "dense". So U_n^C is nowhere dense, which means $L^C=\bigcup_{n=1}^\infty U_n^C$ is a meager set. This finishes the proof.