DEPARTMENT OF MATHEMATICS & STATISTICS

MT251P

Homework 3

Due by 4 p.m. on November 25, 2022

- **1.** Suppose $\underline{u} = 3i + j 3k$ and $\underline{w} = 6j + 2k$. Find $2\underline{w} 4\underline{u}$, $||\underline{u} \underline{w}||$, $\underline{u} \cdot \underline{w}$ and the angle between \underline{u} and \underline{w} .
- **2.** Prove that $|\underline{u} \underline{w}|| \ge ||\underline{u}|| ||\underline{w}||$, for all $\underline{u}, \underline{w} \in \mathbb{R}^n$, for $n \ge 1$.
- **3.** In each case below, state whether the statement is true or false. Justify your answer in each case.
- (i) $(\underline{a} \times \underline{b}) + (\underline{b} \times \underline{a}) = \underline{a} \times 2\underline{a}$, for all $\underline{a}, \underline{b} \in \mathbb{R}^3$.
- (ii) There are vectors $\underline{a}, \underline{b} \in \mathbb{R}^3$ such that $(\underline{a} \times \underline{b}).(\underline{a} \times \underline{b}) < 0$.
- **4.** Find the equation of the plane containing the points (2,1,-1), (0,-2,0), (1,-1,2).
- **5.** Find the parametric equation of the line that is the intersection of the planes 2x + 4y 4z + 16 = 0 and 5z 2y + 2x = -4.