Quiz 2 (100 pts)

Cpt S 223 - Fall 2013

Due 11-13-2013

You may work with others on this assignment including working together during code implementation. But you may not share the actual code.

Create a program called "peptides" that will create a k-d tree from a peptide database (comma separated value formatted file) based on mass and normalized elution time (NET). The file will contain a list of peptide sequence strings and NET. Your program should compute the mass of a peptide based on the amino acid characters. You must create a hash table, including the hash function, to do so. You may not use a map or data structure from the standard template library. Use the monoisotopic mass from the table at the end of this document.

The program should also read a file containing list of 2-D points of mass and NET, called the *observed* list. Each item in this file will also have a number called the ID (for index).

Then for each item in the observed list, perform a nearest neighbor search returning the closest peptide sequence and elution time. Your program should print (in **CSV** format) to standard output the list of all found peptides. Your distance function should be a Euclidean distance based on mass and NET. (See your notes from class.)

Example data files are given on the course Angel site (lms.wsu.edu).

Your program will be run as following:

> peptides peptideDatabase.csv observedList.csv

Failed inputs should say "usage: peptides databaseFile observedListFile"

Example Output (only showing one hit)

Observed ID, Peptide, NET, Mass, Observed NET, Observed Mass 0, AGGVGGK, 0.1494728, 523.42, .1495, 523.426

Example Peptide Database

Peptide, NET AGGVGGK,0.149476528 AGMFGK,0.148264542 APTAAAK,0.147068828 SSPGGVK,0.149400458 AHYGGF,0.203524396 VFGGGTK,0.199178353 MVPAVR,0.166774005 ADGSPVK,0.084761672

Example Observed List

ID, NET, Mass

0, 0.149, 523.42

0, 0.447, 825.42

0, 0.346, 573.42

Amino Acid Mass Table

1- letter code	3- letter code	Chemical formula	Monoisotopic
Α	Ala	C ₃ H ₅ ON	71.03711
R	Arg	$C_6H_{12}ON_4$	156.10111
N	Asn	$C_4H_6O_2N_2$	114.04293
D	Asp	C ₄ H ₅ O ₃ N	115.02694
С	Cys	C ₃ H ₅ ONS	103.00919
Е	Glu	C ₅ H ₇ O ₃ N	129.04259
Q	Gln	$C_5H_8O_2N_2$	128.05858
G	Gly	C ₂ H ₃ ON	57.02146
Н	His	C ₆ H ₇ ON ₃	137.05891
I	Ile	C ₆ H ₁₁ ON	113.08406
L	Leu	C ₆ H ₁₁ ON	113.08406
K	Lys	$C_6H_{12}ON_2$	128.09496
M	Met	C ₅ H ₉ ONS	131.04049
F	Phe	C ₉ H ₉ ON	147.06841
P	Pro	C ₅ H ₇ ON	97.05276
S	Ser	$C_3H_5O_2N$	87.03203
T	Thr	C ₄ H ₇ O ₂ N	101.04768
W	Trp	$C_{11}H_{10}ON_2$	186.07931
Y	Tyr	C ₉ H ₉ O ₂ N	163.06333
V	Val	C ₅ H ₉ ON	99.06841