

in linkedin.com/in/romansyasetyo/

- 1. What is Classification
- 2. Examples of Classification Projects
- 3. K-Nearest Neighbors
- 4. Decision Trees
- 5. Random Forest
- 6. Evaluation Metrics

Hands on using Python

What is Classification?

Classification Model

A model that will predict the class labels/categories

for the new data

Tables
Text
Images
Audio
Video

MACHINE LEARNING

Class
Label
Category

Examples of Classification Projects

Input

Machine Learning Model

if banyaknya roda >2:

Mobil

else:

Motor

Output

Banyaknya Roda (2,3,4,6,8)

Mobil atau Motor

OUTPUT

Classification: KNN

K-Nearest Neighbors

- K-NN is an algorithm that define class of an entity based on the closest neighbors
- It uses distance algorithm to define the class

- Closest neighbor is identified based on the distance
- There are several method to measure distance. The popular one is Euclidean.

Illustration

$$(x1, y1) = (1, 2)$$

$$(x2, y2) = (5, 4)$$

Euclidean distance

$$=\sqrt{(5-1)^2+(4-2)^2}$$

$$=\sqrt{(4)^2+(2)^2}$$

$$= \sqrt{20}$$

Issue with Distance

- Given X is Area with unit of hectare
- Given Y is Corn Production with unit of kg.

Illustration

$$(x1, y1) = (3, 2000)$$

$$(x2, y2) = (5, 4000)$$

Euclidean distance

$$= \sqrt{(5-3)^2 + (4000 - 2000)^2}$$

$$=\sqrt{(2)^2+(2000)^2}$$

$$=\sqrt{4\ 000\ 004}$$

= 2000

Issue with Distance: Solution

Scaling / Normalization

Simple Illustration

Misalnya ada sebuah rumah yang berada tepat di tengah perbatasan antara Kota Bandung dan Kabupaten Bandung, sehingga pemerintah kesulitan untuk menentukan apakah rumah tersebut termasuk kedalam wilayah Kota Bandung atau Kabupaten Bandung.

Rumah	Lat	Long	Lokasi
Α	11	26	Kota
В	15	29	Kota
С	19	28	Kota
D	18	30	Kota
E	16	26	Kota
F	23	25	Kabupaten
G	25	22	Kabupaten
Н	21	24	Kabupaten
1	23	25	Kabupaten
J	29	24	Kabupaten
Χ	19	25	?

Simple Illustration

Step 1: Pilih jumlah K

Step 2 : Hitung jarak dan urutkan dari jarak terkecil

Step 3 : Dari K neighbor yang paling
dekat, terlihat bahwa 1 rumah
berada di Kabupaten sedangkan
2 rumah berada di Kota

Step 4 : Kesimpulannya, rumah X berada di Kota

7 15 25

Rumah	Lat	Long	Jarak Terhadap Rumah X
Н	21	24	2.24
С	19	28	3.00
Е	16	26	3.16
F	23	25	4.00
	23	25	4.00
D	18	30	5.10
В	15	29	5.66
G	25	22	6.71
Α	11	26	8.06
J	29	24	10.05

Classification: Decision Tree

- Decision tree learning is a method commonly used in machine learning.
- Basically the algorithm divide a condition into two choices. And it happens until can't be divided.

Contoh Kasus Pola Prediksi: Decision Tree

STEP 1

Gender	Age	App
F	15	.
F	25	<u>Q</u>
M	32	<u> </u>
F	40	<u>Q</u>
M	12	.
М	14	.

	-	
Gender	Age	App
F	15	
F	25	<u>Q</u>
М	32	<u>₽</u>
F	40	<u>Q</u>
М	12	.
M	14	.

Gender	Age	App
F	15	
F	25	<u>Q</u>
M	32	<u> B</u>
F	40	<u>Q</u>
M	12	.
M	14	.
) M L J	() I L

STEP 2

Gender	Age	App
acriaci	Ado	7,55
F	25	<u> </u>
M	32	8
F	40	<u>Q</u>

Test Subject

Decision Tree: Entropy

- Entropy is measure of Heterogeneity/Impurity.
- Entropy is o if the outcome is certain. Entropy
 is maximum if we have no knowledge of the
 system (outcome is equally possible)
- Entropy is used to calculate Information Gain.
- Information Gain is measure of Homogeneity.

Decision Tree: Information Gain

Entropy

Given a dataset D, contains YES and NO

$$P(YES) = p$$
, and $P(NO) = 1-p$

Entropy of D, E(D)

Information Gain

Dataset D split into D1, D2, ..., Dk based on variable V

Entropy of each Di can be calculated as E(Di)

Information Gain IG(D,V)

$$E(D) = -p \log_2(p) - (1-p)\log_2(1-p)$$

$$IG(D,V) = E(D) - \sum_{i=1}^{k} \frac{|D_i|}{|D|} E(D_i)$$

Perform 3 steps for every single Node and its splitting result

• Step-1

Find best splitter on each variable

• Step-2

Select best variable for splitting

• Step-3

Perform splitting based on result on Step-2.

Check if the splitting should stop.

Classification: Random Forest

Random Forest

- Random Forests are made out of decision trees.
- Decision trees inside random forest are composed of different bootstrapped data
- Random Forest combine simplicity of decision trees with flexibility resulting in a vast improvement in accuracy

Random Forest: Bootstrap

Bootstrap is used to estimate parameter by using sampling with replacement.

Random Forest

Evaluation Metrics

Confusion Matrix

N x N matrix where N is the number of classes being predicted.

Some definitions:

- Accuracy
- Precision (Positive Predictive Value)
- Sensitivity (Recall)
- Specificity

TN	True Negative
FP	False Positive
FN	False Negative
TP	True Positive

Proportion of total number of correct prediction

Accuracy (Correct Rate) = (TP + TN)/N

From all predicted "Yes", how many actually "Yes"

From all actual "Yes", how many predicted as "Yes"

Sensitivity = TP / (TP + FN)

Thank You

