Chapitre 7

Limites de fonctions

I. Limite à l'infini

1) Limite infinie

Dire qu'une fonction f admet pour limite $+\infty$ en $+\infty$ signifie que f(x) peut être « aussi grand que l'on veut » dès que x est « assez grand ».

Définition:

Si tout intervalle de la forme A; + ∞ [où A est un réel, contient tous les f(x) lorsque x est α suffisamment grand α , alors α admet pour limite α en + ∞ .

$$\lim_{x \to +\infty} f(x) = +\infty$$

Exemples:

Fonctions de référence :

$$\lim_{x \to +\infty} x = +\infty \; ; \; \lim_{x \to +\infty} x^2 = +\infty \; ; \; \lim_{x \to +\infty} x^n = +\infty \; \text{pour } n \in \mathbb{N}^* \; ; \; \lim_{x \to +\infty} \sqrt{x} = +\infty \; ; \; \lim_{x \to +\infty} e^x = +\infty$$

Remarque:

$$\overline{\lim_{x \to +\infty} f(x) = +\infty} \text{ se traduit par : } \forall M \in \mathbb{R}, \exists x_0 \in \mathbb{R}, x > x_0 \Rightarrow f(x) > M.$$

Interprétation graphique:

La courbe représentative de la fonction f dans un repère est au-dessus de toute droite parallèle à l'axe des abscisses pour x « suffisamment grand ».

Pour $M = M_1$: pour tout $x > x_1$, on a f(x) > M. Pour $M = M_2$: pour tout $x > x_2$, on a f(x) > M. Pour $M = M_3$: pour tout $x > x_3$, on a f(x) > M.

De la même façon, on définit les autres limites infinies :

Définition:

 $\lim_{x \to +\infty} f(x) = -\infty$ se traduit par :

 $\forall M \in \mathbb{R}, \exists x_0 \in \mathbb{R}, x > x_0 \Rightarrow f(x) < M$.

Exemple:

$$\lim_{x \to \infty} -x = -\infty$$

Définition:

 $\lim_{x \to -\infty} f(x) = +\infty \text{ se traduit par :}$

 $\forall M \in \mathbb{R}$, $\exists x_0 \in \mathbb{R}$, $x < x_0 \Rightarrow f(x) > M$.

Exemple:

f est la fonction définie sur \mathbb{R} par $f(x)=x^2$.

Prouvons que $\lim_{x \to -\infty} f(x) = +\infty$, c'est-à-dire que pour tout nombre M strictement positif,

 $f(x) \in M$; $+\infty$ dès que x est inférieur à un certain nombre A.

La condition f(x)>M s'écrit $x^2>M$. ceci équivaut à $x<-\sqrt{M}$ ou $x>\sqrt{M}$.

On peut donc prendre $A = -\sqrt{M}$ et $\lim_{x \to -\infty} f(x) = +\infty$.

 $\lim_{x \to -\infty} f(x) = -\infty \text{ se traduit par :}$

 $\forall M \in \mathbb{R}$, $\exists x_0 \in \mathbb{R}$, $x < x_0 \Rightarrow f(x) < M$.

Exemple:

$$\lim_{x \to -\infty} x^3 = -\infty$$

2) Limite finie

Si f(x) est « aussi proche de L que l'on veut » dès que x est « assez grand », on dit que la fonction f admet pour limite L en $+\infty$.

Définition:

Si tout intervalle ouvert contenant L contient tous les f(x) dès que x est « assez grand », on dit que la fonction f admet pour limite L en $+\infty$. On note:

$$\lim_{x \to +\infty} f(x) = L$$

Exemples:

• Soit f la fonction définie sur \mathbb{R}^* par $f(x)=2+\frac{1}{x}$.

Quel que soit le réel k>0, il existe un réel A>0, tel que si x>A alors $f(x) \in]2-k$; 2+k[.

En effet, il suffit de prendre $x > \frac{1}{k}$.

On a alors
$$0 < \frac{1}{x} < k$$

D'où
$$2 < 2 + \frac{1}{x} < 2 + k$$
.

C'est-à-dire $f(x) \in]2-k; 2+k[$. On a donc $\lim_{x \to +\infty} f(x) = 2$.

• Fonctions de référence :

$$\lim_{x \to +\infty} \frac{1}{x} = 0 \; ; \; \lim_{x \to +\infty} \frac{1}{x^2} = 0 \; ; \; \lim_{x \to +\infty} \frac{1}{x^n} = 0 \; \text{ pour } n \in \mathbb{N}^* \; ; \; \lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0 \; ; \; \lim_{x \to +\infty} e^{-x} = 0$$

Remarque:

 $\lim_{x \to +\infty} f(x) = L \text{ se traduit par}: \ \forall \epsilon > 0, \ \exists x_0 \in \mathbb{R}, \ x > x_0 \Rightarrow |f(x) - L| < \epsilon.$

Interprétation graphique:

La courbe représentant la fonction f dans un repère devient « aussi proche que l'on veut » de la droite d'équation y=L lorsque x est « assez y=L $y=L-\varepsilon$ grand ».

3

Définition:

Lorsque $\lim_{x\to +\infty} f(x)=L$, on dit que, dans un repère, la droite d'équation y=L est **asymptote** horizontale en $+\infty$ à la courbe représentative de f.

Remarque:

Pour étudier la position relative de la courbe \mathcal{C}_f par rapport à la droite d d'équation y=L, on étudie le signe de la différence f(x)-L.

Exemple:

 $\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0 \text{ donc l'axe des abscisses est asymptote horizontale en } +\infty \text{ à la courbe représentative de } \frac{1}{\sqrt{x}}.$ De plus, pour tout x > 0, $\frac{1}{\sqrt{x}} > 0$ donc la courbe est située au-dessus de l'asymptote.

De la même façon, on a :

$$\lim_{x \to -\infty} \frac{1}{x} = 0$$

II. Limite infinie en un point

Définition:

Soit f une fonction et a un nombre réel, borne de l'ensemble de définition de f n'appartenant pas à cet ensemble.

Si f(x) est « aussi grand que l'on veut » dès que x est « assez proche » de a, on dit que la limite en a de la fonction f est $+\infty$.

On note:

$$\lim_{x \to a} f(x) = +\infty$$

Remarque:

En pratique, on est parfois amené à étudier séparément les limites de f pour x>a et pour x<a. On parle alors de « limite de f à droite en a », notée $\lim_{x\to a^+} f(x)$ ou $\lim_{x\to a} f(x)$ et de « limite de f à gauche en a », notée $\lim_{x\to a} f(x)$ ou $\lim_{x\to a} f(x)$.

Exemples:

- Soit f la fonction définie sur $\mathbb{R}\setminus\{1\}$ par $f(x)=\frac{3}{(x-1)^2}$. Montrons que $\lim_{x\to 1} f(x)=+\infty$. Soit un réel m>0, déterminons un réel h>0 tel que $x\in]1-h;1+h[\Rightarrow f(x)>m$. $\frac{3}{(x-1)^2}>m\Leftrightarrow (x-1)^2<\frac{3}{m}\Leftrightarrow |x-1|<\sqrt{\frac{3}{m}}$. Pour tout $x\in]1-\sqrt{\frac{3}{m}};1+\sqrt{\frac{3}{m}}$, on a f(x)>m, c'est-à-dire $\lim_{x\to 1} f(x)=+\infty$.
- Fonctions de référence : $\lim_{x \to 0^+} \frac{1}{x} = +\infty \; ; \; \lim_{x \to 0^+} \frac{1}{x^n} = +\infty \text{ pour } n \in \mathbb{N}^* \; ; \; \lim_{x \to 0^+} \frac{1}{\sqrt{x}} = +\infty \; .$

Remarque:

$$\lim_{x \to a} f(x) = +\infty$$
 se traduit par : $\forall M \in \mathbb{R}$, $\exists \alpha > 0$, $|x - a| < \alpha \Rightarrow f(x) > M$.

De la même façon, on a :

Définition:

$$\lim_{x \to a} f(x) = -\infty \text{ se traduit par} : \forall M \in \mathbb{R}, \exists \alpha > 0, |x - a| < \alpha \Rightarrow f(x) < M.$$

Exemple:

$$\lim_{x\to 0^{-}}\frac{1}{x}=-\infty$$

Interprétation graphique :

La courbe représentant f peut être « aussi proche que l'on veut » de la droite d'équation x=a.

Définition:

Lorsqu'une fonction f admet une limite infinie en un réel a (ou à droite en a ou à gauche en a) on dit que la droite d'équation x=a est **asymptote verticale** à la courbe représentative de la fonction f.

Exemple:

 $\lim_{x\to 0^{+}} \frac{1}{x} = -\infty \quad \text{ou} \quad \lim_{x\to 0^{+}} \frac{1}{\sqrt{x}} = +\infty \quad \text{donc l'axe des ordonnées est asymptote verticale à la courbe représentative de ces fonctions.}$

III. Opérations sur les limites

1) Limite d'une somme, d'un produit, d'un quotient

a désigne un réel ou $+\infty$ ou $-\infty$. L et L' désignent des réels.

Somme

$\operatorname{Si} \lim_{x \to a} f(x) =$	L	L	L	+∞	-∞	+∞
et $\lim_{x \to a} g(x) =$	L'	+∞	-∞	+∞	-∞	-∞
alors $\lim_{x \to a} (f + g)(x) =$	L + L'	+∞	-∞	+∞	∞	On ne peut pas conclure directement

Exemple:

On cherche la limite en $+\infty$ de $h(x)=x^2+x$. On pose h(x)=f(x)+g(x) où $f(x)=x^2$ et g(x)=x.

$$\lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to +\infty} g(x) = +\infty \text{ , donc } \lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} f(x) + \lim_{x \to +\infty} g(x) = +\infty \text{ .}$$

Remarque:

Dans le cas où l'on ne peut pas conclure, on dit que l'on a une forme indéterminée.

Produit

$\operatorname{Si} \lim_{x \to a} f(x) =$	L	$L > 0$ ou $+\infty$	$L < 0$ ou $-\infty$	$L > 0$ ou $+\infty$	$L < 0$ ou $-\infty$	0
et $\lim_{x \to a} g(x) =$	L'	+∞	+8	∞	∞	+∞ ou -∞
alors $\lim_{x \to a} (fg)(x) =$	$L \times L'$	+∞	∞	∞	+∞	On ne peut pas conclure directement

Exemple:

On cherche la limite en $+\infty$ de $h(x)=x^2-x$.

On pose
$$h(x)=f(x)+g(x)$$
 où $f(x)=x^2$ et $g(x)=-x$.

 $\lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to +\infty} g(x) = -\infty, \text{ on about it à une forme indéterminée pour la limite de } h(x).$

Pour lever l'indétermination, on factorise la fonction h(x)=x(x-1).

On pose
$$h(x)=f(x)\times g(x)$$
 avec $f(x)=x$ et $g(x)=x-1$. $\lim_{x\to +\infty}f(x)=+\infty$ et $\lim_{x\to +\infty}g(x)=+\infty$, donc $\lim_{x\to +\infty}h(x)=\lim_{x\to +\infty}f(x)\times \lim_{x\to +\infty}g(x)=+\infty$.

Quotient

• Cas où $\lim_{x \to a} g(x) \neq 0$

$\operatorname{Si} \lim_{x \to a} f(x) =$	L	L	+∞	+∞	-∞	-∞	∞
$\operatorname{et} \lim_{x \to a} g(x) =$	<i>L</i> '≠0	+∞ ou -∞	L'>0	L'<0	L'>0	L'<0	∞
alors $\lim_{x \to a} \left(\frac{f}{g} \right) (x) =$	$\frac{L}{L}$	0	+∞	-∞	∞	+∞	On ne peut pas conclure directement

• Cas où $\lim_{x \to a} g(x) = 0$

$\operatorname{Si} \lim_{x \to a} f(x) =$	$L > 0$ ou $+\infty$	<i>L</i> <0 ou -∞	$L > 0$ ou $+\infty$	<i>L</i> <0 ou -∞	0
et $\lim_{x \to a} g(x) =$	0+	0+	0^{-}	0^{-}	0
alors $\lim_{x \to a} \left(\frac{f}{g} \right) (x) =$	+∞	-∞	-8	+∞	On ne peut pas conclure directement

Remarque:

 $\lim_{x \to a} g(x) = 0^+$ signifie que la limite de g en a est nulle et pour x « aussi proche de a que l'on veut », g(x) est positif.

Exemple:

On cherche la limite en $+\infty$ de $h(x) = \frac{(x+1)^2}{x}$.

On pose $h(x) = \frac{f(x)}{g(x)}$ avec $f(x) = (x+1)^2$ et g(x) = x. $\lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to +\infty} g(x) = +\infty \text{ , on aboutit à une forme indéterminée pour la limite de } h(x) \text{ .}$

Pour lever l'indétermination, on développe la fonction $h(x) = \frac{(x^2 + 2x + 1)}{x} = x + 2 + \frac{1}{x}$.

On pose h(x)=f(x)+g(x) avec f(x)=x+2 et $g(x)=\frac{1}{x}$.

 $\lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to +\infty} g(x) = 0 \text{ , donc } \lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} \int_{-\infty}^{\infty} f(x) + \lim_{x \to +\infty} g(x) = +\infty \text{ .}$

Propriétés:

- Une **fonction polynôme** a même limite en $-\infty$ et en $+\infty$ que son terme de plus haut degré.
- Une fonction rationnelle a même limite en $-\infty$ et en $+\infty$ que le quotient des termes de plus haut degré de son numérateur et son dénominateur.

Exemple:

$$\lim_{x \to -\infty} \frac{2x^2 + x - 3}{3x + 4} = \lim_{x \to -\infty} \frac{2x^2}{3x} = \lim_{x \to -\infty} \frac{2}{3}x = -\infty$$

2) Composée de deux fonctions

Définition:

Soit f une fonction définie sur un ensemble E à valeurs dans un ensemble F et g définie sur un ensemble F.

La fonction $g \circ f$, définie pour tout x de E par $g \circ f(x) = g(f(x))$, est appelée **composée** de f suivie de g.

Exemple:

Soit f et g les fonctions définies sur \mathbb{R} par $f(x)=3x^4+5x-1$ et $g(x)=x^2$. Alors, pour tout réel x, $g \circ f(x) = g(f(x)) = g(3x^4 + 5x - 1) = (3x^4 + 5x - 1)^2$.

Remarque:

Attention à l'ordre des lettres pour la composée : en général $g \circ f \neq f \circ g$.

Propriété (admise) :

a, b et c désignent des nombres réels ou $+\infty$ ou $-\infty$, f et g sont des fonctions. Si $\lim_{x \to a} f(x) = b$ et $\lim_{X \to b} g(X) = c$ alors $\lim_{x \to a} g[f(x)] = c$.

Exemple:

$$\frac{\lim_{x \to +\infty} \left(\frac{1}{x} + 5 \right)}{\lim_{x \to +\infty} \left(\frac{1}{x} + 5 \right)} = 5 \text{ et } \lim_{x \to +\infty} X^2 = 25 \text{ donc } \lim_{x \to +\infty} \left(\frac{1}{x} + 5 \right)^2 = 25.$$

Remarque:

Si x se rapproche de a, f(x) se rapproche de b et pour les X proches de b, g(X) se rapproche de c. Donc en posant X = f(x), on obtient que g(f(x)) se rapproche de c lorsque x se rapproche de a.

8

Limite de la composée d'une suite et d'une fonction

Propriété:

f est une fonction définie sur un intervalle I . (v_n) est une suite dont tous les termes appartiennent à l'intervalle I .

b et c désignent soit des nombres, soit $+\infty$, soit $-\infty$.

Si
$$\lim_{n \to +\infty} v_n = b$$
 et $\lim_{x \to b} f(x) = c$ alors $\lim_{n \to +\infty} f(v_n) = c$.

Exemple:

Cherchons la limite éventuelle de la suite (u_n) définie sur \mathbb{N} par $u_n = \sqrt{\frac{3n+2}{n+1}}$.

$$u_n = \sqrt{v_n}$$
 avec $v_n = \frac{3n+2}{n+1}$. Or $\lim_{n \to +\infty} v_n = 3$ et $\lim_{x \to 3} \sqrt{x} = \sqrt{3}$, donc $\lim_{n \to +\infty} u_n = \sqrt{3}$.

Cas particulier:

f est une fonction définie sur un intervalle de la forme A; + ∞ [et (u_n) est la suite définie pour tout entier nature $n \ge A$, par $u_n = f(n)$.

La lettre L désigne soit un nombre, soit $+\infty$, soit $-\infty$.

Si
$$\lim_{x \to +\infty} f(x) = L$$
, alors $\lim_{n \to +\infty} u_n = L$.

Exemple:

Considérons la suite (u_n) définie pour tout entier naturel n non nul par $u_n = \frac{\sin(n)}{n}$.

 $u_n = f(n)$ où f est la fonction définie sur $]0; +\infty[$ par $f(x) = \frac{\sin(x)}{x}$.

Or $\lim_{x \to +\infty} f(x) = 0$ (voir plus loin), donc $\lim_{x \to +\infty} u_n = 0$.

IV. <u>Limites et comparaison</u>

1) Théorèmes de comparaison

Théorème de minoration :

Soient deux fonctions f et g définies sur un intervalle de la forme $[a;+\infty[$ telles que pour tout réel x>a, $f(x) \le g(x)$.

Si
$$\lim_{x \to +\infty} f(x) = +\infty$$
 alors $\lim_{x \to +\infty} g(x) = +\infty$.

Démonstration :

Puisque $\lim_{x\to +\infty} f(x) = +\infty$, tout intervalle $A : +\infty$ (avec A un nombre réel) contient tous les f(x) pour x supérieur à un nombre réel M.

D'après $f(x) \leq g(x)$, pour tout x > a, $f(x) \leq g(x)$.

Donc pour tout x supérieur à la fois à M et a, $g(x) \ge f(x) > A$.

Donc, tout intervalle $A :+\infty$ contient tous les g(x) pour x

assez grand et $\lim_{x \to +\infty} g(x) = +\infty$.

Théorème de majoration :

Soient deux fonctions f et g définies sur un intervalle de la forme $[a; +\infty[$ telles que pour tout

réel
$$x > a$$
, $f(x) \le g(x)$.
Si $\lim_{x \to +\infty} g(x) = -\infty$ alors $\lim_{x \to +\infty} f(x) = -\infty$

Exemple:

f est la fonction définie sur \mathbb{R} par $f(x) = -2x + \sin x$.

Pour tout nombre réel x, $\sin x \le 1$, donc $f(x) \le -2x+1$.

Or
$$\lim_{x \to +\infty} (-2x+1) = -\infty$$
 donc $\lim_{x \to +\infty} f(x) = -\infty$.

Remarque:

Ces deux propriétés s'étendent aux cas des limites en $-\infty$ et en un point en changeant l'ensemble de validité et l'inégalité.

2) <u>Théorème des gendarmes</u>

Théorème:

On considère trois fonctions f, g et h définies sur un intervalle de la forme $[a; +\infty[$ telles que :

pour tout réel x>a,

$$g(x) \leq f(x) \leq h(x)$$
.

On suppose que:

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} h(x) = L \text{ (où } L \text{ est un nombre réel.)}$$

Alors
$$f$$
 admet pour limite L en $+\infty$: $\lim_{x \to +\infty} f(x) = L$

Démonstration :

Soit $\epsilon > 0$ un réel quelconque.

Sachant que $\lim_{x\to +\infty} g(x) = L$, par définition, il existe $A \in I$ tel que pour tout x>A, on ait

 $g(x) \in]L - \epsilon$; $L + \epsilon[$. Sachant aussi que $\lim_{x \to +\infty} h(x) = L$, par définition, il existe $B \in I$ tel que pour tout x > B, on ait $h(x) \in]L - \epsilon$; $L + \epsilon[$.

Pour tout x > C, où C est le plus grand des deux réels A et B, on a g(x) et h(x) dans $]L - \epsilon$; $L + \epsilon[$. On a donc, pour tout x > C: $L - \epsilon \le g(x) \le f(x) \le h(x) \le L + \epsilon.$

C'est-à-dire $\lim_{x \to +\infty} f(x) = L$.

Exemple:

f est la fonction définie sur $]0:+\infty[$ par $f(x)=\frac{\sin x}{x}$.

Pour tout nombre réel x, $-1 \le \sin x \le 1$. Donc, pour tout nombre réel x > 0, $\frac{-1}{x} \le f(x) \le \frac{1}{x}$.

Or
$$\lim_{x \to +\infty} \left(-\frac{1}{x} \right) = 0$$
 et $\lim_{x \to +\infty} \left(\frac{1}{x} \right) = 0$, donc $\lim_{x \to +\infty} f(x) = 0$.

Remarque:

Ce théorème s'étend au cas de limites en $-\infty$ et en un point en changeant l'ensemble de validité de la condition.

V. Croissances comparées

Propriété:

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

Démonstration :

f est la fonction définie sur $[0;+\infty[$ par $f(x)=e^x-\frac{1}{2}x^2]$.

Pour tout nombre réel $x \ge 0$, $f'(x) = e^x - x$ et $f''(x) = e^x - 1$. Sur $[0; +\infty[$, $e^x \ge 1$, donc $f''(x) \ge 0$ et f' est croissante sur $[0; +\infty[$. f'(0) = 1, donc f'(x) > 0 sur $[0; +\infty[$.

Donc, f est croissante sur $[0;+\infty[$. Comme f(0)=1, on en déduit que pour tout $x \ge 0$, f(x) > 0, c'est-à-dire $e^x > \frac{1}{2}x^2$.

Par conséquent, pour tout x>0, $\frac{e^x}{x} > \frac{1}{2}x$. Or $\lim_{x \to +\infty} \left(\frac{1}{2}x\right) = +\infty$ donc d'après le théorème de minoration, $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$.

x	0		$+\infty$
f"(x)	0	+	
f'(x)	1	1	
f(x)	1	1	

11

Propriété:

$$\lim_{x \to -\infty} x e^x = 0$$

Démonstration:

Pour tout nombre réel x, on pose X = -x. Ainsi $xe^x = -Xe^{-X} = -\frac{X}{e^x}$.

 $\lim_{x \to -\infty} -x = +\infty \text{ et d'après la propriété précédente, } \lim_{x \to +\infty} \frac{e^x}{x} = +\infty \text{ , donc } \lim_{x \to +\infty} \left(-\frac{x}{e^x} \right) = 0.$

Donc d'après la propriété de la limite d'une fonction composée, $\lim_{x \to -\infty} xe^x = 0$.

Propriété:

$$\lim_{x \to +\infty} x e^{-x} = 0$$

En effet, en posant X = -x, alors $xe^{-x} = -Xe^{X}$. Or $\lim_{x \to +\infty} -x = -\infty$ et $\lim_{x \to -\infty} Xe^{X} = 0$ donc $\lim_{x \to +\infty} x e^{-x} = 0$.

Généralisation:

Pour tout $n \in \mathbb{N}$,

$$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty \text{ et } \lim_{x \to -\infty} x^n e^x = 0$$

Remarque:

On a bien évidemment :

$$\lim_{x \to +\infty} e^x = +\infty \qquad \text{et} \qquad \lim_{x \to -\infty} e^x = 0$$

VI. Résolution d'équation sur un intervalle ouvert

On généralise le théorème des valeurs intermédiaires sur un intervalle ouvert.

Propriété:

Soit f une fonction continue et strictement monotone sur un intervalle]a;b[où a désigne un réel ou $-\infty$ et b désigne un réel ou $+\infty$.

On suppose que f admet des limites en a et b, finies ou infinies.

Pour tout k de l'intervalle $\lim_{x\to a} f(x)$; $\lim_{x\to b} f(x)$ ou $\lim_{x\to a} f(x)$; $\lim_{x\to a} f(x)$, l'équation $\lim_{x\to a} f(x)$ admet une unique solution dans l'intervalle $\lim_{x\to a} f(x)$.

Exemple:

La fonction f définie sur \mathbb{R} par $f(x)=x^3+3x+1$ est continue et strictement croissante sur \mathbb{R} et $\lim_{x \to -\infty} f(x)=-\infty$ et $\lim_{x \to +\infty} f(x)=+\infty$. 0 appartient à $]-\infty;+\infty[$ donc l'équation f(x)=0 a une unique solution x_0 sur \mathbb{R} .

Annexe 1 : Prolongement par continuité

Propriété:

Soit f une fonction définie sur $I \setminus \{x_0\}$, non définie en x_0 .

Si
$$f$$
 admet une limite finie $l \in \mathbb{R}$ en x_0 alors la fonction \tilde{f} définie par :
$$\tilde{f}(x) = \begin{cases} f(x) & \text{si } x \in I \setminus \{x_0\} \\ l & \text{si } x = x_0 \end{cases} \text{ est continue en } x_0.$$

C'est le **prolongement par continuité** de f en x_0 .

Si, de plus, f est continue sur $I \setminus \{x_0\}$, alors la fonction prolongée \tilde{f} est définie et continue sur Itout entier.

Exemple:

La fonction $f(x) = \frac{\ln(1+x)}{x}$ est définie sur $D_f =]-1;0[\cup]0;+\infty[$.

Les fonctions $x \mapsto \ln(1+x)$ et $x \mapsto x$ sont continues sur D_f et $\forall x \in D_f$, $x \neq 0$ donc f est continue sur D_f .

Puis $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$ donc la fonction \tilde{f} définie par $\tilde{f}(x) = \begin{cases} f(x) & \text{si } x \in D_f \\ 1 & \text{si } x = 0 \end{cases}$ est continue et définie sur $]-1;\infty[$.

Annexe 2: Asymptote oblique

Propriété:

Si $f(x)=ax+b+\phi(x)$ avec $\lim_{x\to +\infty}\phi(x)=0$, alors \mathcal{C}_f admet en $+\infty$ la droite asymptote:

 $\mathcal{D}: y=ax+b$

 $\lim_{x\to +\infty}\phi(x)=0 \text{ signifie que l'écart entre } \mathcal{C}_f \text{ et } \mathcal{D} \text{ se rapproche de 0 lorsque } x \text{ tend vers } +\infty.$

 $\phi(x)$ représente l'écart algébrique entre les deux courbes, mesuré sur une même verticale d'abscisse x, $|\phi(x)|$ étant l'écart géométrique.

Annexe 3: Fonction puissance

Pour tout $\alpha \in \mathbb{R}^*$, par définition $x^{\alpha} = e^{\alpha \ln(x)}$ donc la fonction $x \mapsto x^{\alpha}$ n'est définie que pour $x \in \mathbb{R}^{+*}$. Et elle est continue sur \mathbb{R}^{+*} comme composée de fonctions usuelles continues.

De plus, $\lim_{\alpha \to 0} \alpha \ln(x) = \mp \infty$ (selon le signe de α).

Donc si
$$\alpha > 0$$
, $\lim_{x \to 0} e^{\alpha \ln(x)} = 0$.

On peut alors prolonger par continuité la fonction « puissance α » en 0.

$$x^{\alpha} = \begin{cases} e^{\alpha \ln(x)} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$$
, fonction continue sur \mathbb{R}^+ .

En revanche si $\alpha < 0$, alors $\lim_{x \to 0} e^{\alpha \ln(x)} = +\infty$ et la courbe représentative de cette fonction admet une asymptote verticale en 0.

