

Analyse Syntaxique

- On a vu les outils de l'analyse lexicale :
 - type de langages : réguliers ;
 - description : expressions régulières ;
 - formalisme sous-jacent : AF(N)D.
- Ces outils ne suffisent pas pour l'analyse syntaxique :
 - type de langages : algébriques ;
 - description : grammaires algébriques ;
 - formalisme sous-jacent : automate a pile (cours ultérieur).

Grammaire algébrique: Définition

- Une grammaire algébrique ou hors-contexte est un quadruplet
- $G = (V_T, V_N, P, S)$
- V_T et V_N sont des vocabulaires disjoints $V_T \cap V_N = \emptyset$:
 - V_T est l'ensemble des terminaux,
 - V_N l'ensemble des non-terminaux ;
- $P \subseteq V_N \times (V_N \cup V_T)^*$ est l'ensemble des (règles de) productions
- S ∈ V_N est l'axiome, ou symbole de départ.

Grammaire algébrique : Définition

$$P \subseteq V_N \times (V_N \cup V_T)^*$$

- Une règle de production α → β indique que la séquence de symboles α ∈ (V_N) peut être remplacée par la séquence de symboles ∈ (V_N∪ V_T)*
- α est appelé partie gauche de la production β est appelé partie droite

Conventions:

Majuscules non-terminaux

Minuscule du début de l'alphabet terminaux

Minuscule de la fin de l'alphabet chaîne de terminaux

Lettres grecques chaîne de terminaux et non-terminaux

Grammaire algébrique : Exemple

- $G = (V_T, V_N, P, S)$ $P \subseteq V_N \times (V_N \cup V_T)^*$
- $V_T = \{ il, elle , parle, devient, est, court, sympathique \}$
- V_N = { PHRASE, PRONOM, VERBE, COMPLEMENT, VERBEETAT, VERBEACTION }
- P = { PHRASE → PRONOM VERBE COMPLEMENT, PRONOM → il | elle VERBE → VERBEETAT | VERBEACTION VERBEETAT → est | devient | reste VERBEACTION → parle | court COMPLEMENT → vite | sympathique
- \cdot S = PHRASE

Grammaire algébrique: Remarques

- Plutôt que d'écrire plusieurs productions du type α→β et α → γ on écrit α →β | γ. Notations de type BNF (Backus-Naur Form) et EBNF (Extended BNF) qui introduit en plus des [] pour les éléments optionnels et *?...
- L'application de plusieurs productions successive s'appelle dérivation $\alpha \rightarrow \beta$ puis $\beta \rightarrow \gamma$ peut se traduire $\alpha \rightarrow^2 \gamma$ une dérivation avec 2 productions $\alpha \rightarrow^* \gamma$ une dérivation de plusieurs productions
- On remarquera que « il court vite » est un mot de 3 lettres pour l'analyseur syntaxique ce sont les 3 lexèmes fourni par l'analyseur lexical pour lequel, il s'agit de 3 mots de 2, 5 et 4 lettres
 - la désignation mot/lettre est donc tout à fait relative

Grammaire algébrique: Exemple

- « il court vite » est-il syntaxiquement correct ? correspond-il à la grammaire précédente ?
- On part de l'axiome :
 - S = PHRASE
 - → PRONOM VERBE COMPLEMENT
 - → PRONOM VERBEACTION COMPLEMENT
 - → il VERBEACTION COMPLEMENT
 - → il court COMPLEMENT
 - → II court vite
- En partant de l'axiome, on arrive, en appliquant les bonnes productions à la phrase testée
- Lorsqu'on procède dans ce sens, on parle d'analyse descendante

Hiérarchie de Chomsky

Une grammaire est dite:

- de type 3 ou rationnelle si chaque production est de la forme A → wB ou A → w où A et B sont des non terminaux et w est un terminal;
- de type 2 ou **algébrique** ou **non contextuelle** si chaque production est de la forme $\mathbf{A} \to \alpha$ ou \mathbf{A} est un non terminal et α est une séquence de terminaux ou non terminaux ;
- de type 1 ou **contextuelle** si chaque production est de la forme $\alpha \mathbf{A}\beta \to \alpha \gamma \beta$ ou α , β et γ sont des séquences de terminaux ou non terminaux et $\gamma \neq \epsilon$;
- de type 0 ou générale si chaque production est de la forme α → β sans autre contrainte.

Grammaire algébrique : Définition

- On note L(G) le langage généré par la grammaire G et défini par {w ∈ (V_T)* tq S →* w}
- On appelle arbre de dérivation (ou arbre syntaxique) un arbre tel que :
 - La racine est l'axiome
 - Les feuilles sont les symboles terminaux
 - Les nœuds sont les symboles non-terminaux
 - Les fils d'un nœud X sont α_0 ,..., α_n ssi X $\rightarrow \alpha_0$... α_n est une production [$\alpha_i \in (V_N \cup V_T)$]

Grammaire algébrique: Exemple

$$G = (V_T, V_N, P, S)$$
 avec

- $V_T = \{a,b\}$
- $V_N = \{S\}$
- Axiome S
- $P: S \rightarrow \epsilon \mid a S b$

$$S \rightarrow aSb \rightarrow aaSbbb \rightarrow aaaSbbb \rightarrow aaaebbb$$

$$L(G) = \{a^nb^n, n \ge 0\}$$

Arbre de dérivation

- $G=({a,b,c},{S,T},(S \rightarrow aTb|c,T \rightarrow cSS|S),S)$
- Arbre de dérivation pour accacbb

S \rightarrow aTb \rightarrow acSb \rightarrow accaTbb \rightarrow accaSbb accacbb acSaTbb \rightarrow acSaSbb \rightarrow acSacbb \uparrow 110

Grammaire algébrique: ambiguë

- Les 2 dérivations (à gauche et à droite) précédentes conduisent au même arbre.
- Ce n'est pas toujours le cas:
 On dit que la grammaire G est ambiguë s'il existe un mot de L(G) qui a plusieurs arbres syntaxique
- Prenons l'exemple de l'INSTRUCTION conditionnelle de java, c, pascal ...
- Elle existe sous 2 formes : avec ou sans partie sinon

if TEST INSTRUCTION

if TEST INSTRUCTION else INSTRUCTION

Grammaire algébrique: ambiguë

- Un extrait de la grammaire G
- $V_T = \{if, else\} = \{a,b\}$
- $V_N = \{INSTRUCTION, TEST\} = \{S,T\}$
- $S \rightarrow aTS|aTSbS|...$
- T → ...
- L'instruction :
 if test1 if test2 instruction1 else instruction2
 correspond-elle à S → aTS → aTaTSbS
 ou S → aTSbS → aTaTSbS
 autrement dit le else correspond-il au premier ou au second if?

Grammaire algébrique : ambiguë

• $S \rightarrow aTS \rightarrow aTaTSbS$ $S \rightarrow aTSbS \rightarrow aTaTSbS$

Grammaire algébrique : Analyse descendante

- Principe : construire l'arbre en partant de la racine (
 l'axiome) vers les feuilles (les unités lexicales)
- Méthode : on place l'axiome à la racine puis on lit les lettres du mot à tester et on avance pas à pas dans la construction
- Exemple:
- Le mot accbbadbc appartient-il au langage défini par la grammaire d'axiome S

$$S \rightarrow aSbT \mid cT \mid d$$

T $\rightarrow aT \mid bS \mid c$

Analyse descendante: Exemple 1

- $\begin{array}{c}
 \cdot \\
 S \rightarrow aSbT \mid cT \mid d \\
 T \rightarrow aT \mid bS \mid c
 \end{array}$
- accbbadbc $S \rightarrow aSbT$ accbbadbc $S \rightarrow cT$ accbbadbc $T \rightarrow c$ accbbadbc $T \rightarrow bS$ accbbadbc $S \rightarrow aSbT$ accbbadbc $S \rightarrow d$ accbbadbc $S \rightarrow c$

a

Analyse descendante: Exemple 2

$$\begin{array}{c}
\cdot \mid S \to aTb \\
T \to cd \mid c
\end{array}$$

acb appartient-il au langage?

acb S → aTb
 acb T → cd ou T → c??

 Il faut lire la lettre suivante pour savoir quelle règle appliquer!

Analyse descendante: Exemple 3

- S → aSb | aSc | d et w = aaaaaaadbbcbbbc
- Dans cet exemple il faut lire la dernière lettre pour savoir qu'il faut appliquer S → aSc
- C'est facile lorsqu'il y a peu de règle et peu de choix par règles
- On va donc construire une table appelée table d'analyse LL(1) qui permettra de savoir, avec certitude, quelle règle appliquer lorsque l'on lit un symbole
- Pour cela, on va construire 2 ensembles : PREMIER et SUIVANT

Table d'analyse LL(1): Calcul de PREMIER

PREMIER(α)={a $\in V_T$ tq $\alpha \rightarrow^*$ a β où α , $\beta \in V_N \cup V_T$ }

$$\varepsilon \in \mathsf{PREMIER}(\alpha) \Leftrightarrow \alpha \to^* \varepsilon$$

PREMIER(α) est l'ensemble des terminaux qui peuvent commencer une chaîne qui dérive de α

Table d'analyse LL(1) : Exemple de PREMIER

- S →Ta T → cU | bU | U | ε U → dS
- $S \rightarrow Ta \rightarrow \epsilon a = a$ $S \rightarrow Ta \rightarrow bUa$ $S \rightarrow Ta \rightarrow cUa$ $S \rightarrow Ta \rightarrow Ua \rightarrow dSa$
- Premier(S)={a,b,c,d}
- Premier(T)= $\{\epsilon,b,c,d\}$
- Premier(aT)={a}
- Premier(TS)={a,b,c,d} TS → εS →Ta → εa =a

Table d'analyse LL(1) : Algorithme de PREMIER

Si $\alpha \in V_N$ et $\alpha \to \alpha_1 \alpha_2 \dots \alpha_n$ une production où $\alpha_i \in V_N \cup V_T \Rightarrow \mathsf{PREMIER}(\alpha_1) - \{\epsilon\} \subseteq \mathsf{PREMIER}(\alpha)$

- $\begin{array}{ll} & \text{Si } \exists \ j \in [2..n] \ tq \ \forall \ i \in [1..j\text{-}1] \ et \ \epsilon \in \mathsf{PREMIER}(\alpha_i) \\ \Rightarrow \mathsf{PREMIER}(\alpha_i)\text{-}\{\epsilon\} \subseteq \mathsf{PREMIER}(\alpha) \end{array}$
- Si ε ∈ PREMIER(α_j) \forall i ∈[1..n] ⇒ ε ∈ PREMIER(α)
- Si α → ε est une production ⇒ ε ∈ PREMIER(α)

Si
$$\alpha \in V_T \Rightarrow PREMIER(\alpha) = \alpha$$

Table d'analyse LL(1) : Algorithme de PREMIER

Autre formulation:

- Si X est un terminal alors Premier(X) est juste X!
- S'il y a une production $X \to \varepsilon$ alors ajouter ε à Premier(X)
- S'il y a une production $X \to \alpha_1 \alpha_2 ... \alpha_n$ alors ajoutez Premier($\alpha_1 \alpha_2 ... \alpha_n$) à Premier(X)
- Premier($\alpha_1 \alpha_2 ... \alpha_n$) est **soit**
 - Premier(α_1) (si Premier(α_1) ne contient pas de ε)
 - **Sinon** (si Premier(α_1) contient ε) Premier($\alpha_1 \alpha_2 ... \alpha_n$) = (Premier(α_1) – {ε}) \cup Premier($\alpha_2 ... \alpha_n$)
 - Si Premier(α_1) Premier(α_2) .. Premier(α_n) contiennent tous ε alors ε appartient à Premier($\alpha_1 \alpha_2 ... \alpha_n$) aussi.

LL(1) Algorithme de PREMIER : application

Exemple 1

```
• S → TUBe

T → aT | ε

U → bU | cU | ε

B → de | da | dT
```

- PREMIER(B) ={d}
 PREMIER(T) ={ε,a}
 PREMIER(U) ={ε,b,c}
- PREMIER(T)-{ε}={a} ⊆ PREMIER(S)
 ε ∈ PREMIER(T) ⇒ PREMIER(U)-{ε}={b,c} ⊆ PREMIER(S)
 ε ∈ PREMIER(U) ⇒ PREMIER(B)-{ε}={d} ⊆ PREMIER(S)
 ε ∉ PREMIER(e)={e} et ∄ S → ε ⇒ ε ∉ PREMIER(S)
- Donc PREMIER(S) = {a,b,c,d}

Table d'analyse LL(1) : Calcul de SUIVANT

$$\forall A \in V_T$$
 SUIVANT(A) = {a \in V_T tq S \rightarrow^* \alpha A a \beta où \alpha, \beta \in V_N \cup V_T }

SUIVANT(A) est l'ensemble des terminaux qui peuvent apparaître à droite de A dans une dérivation de l'axiome S

Table d'analyse LL(1): Exemple

de Suivant

- S → Sc | Ta T → TUa | bUb | U | ε U → dS
- S → Sc
 S → Ta → Ua → dSa
 S → Ta → bUba → bdSba
 S → Ta → TUaa → UUaa → dSdSaa
- SUIVANT(S)={a,b,c,d}
- S →Ta; S →Ta → TUaa → TdSaa
- $\{a,b\} \subseteq SUIVANT(T)$
- c ∈ SUIVANT(T) ? d ∈ SUIVANT(T) ?
 →Trouver la dérivation qui va bien ???

Table d'analyse LL(1) : Algorithme de SUIVANT

- Ajouter un marqueur de fin de chaîne (symbole \$ par exemple) à SUIVANT(S) (où S est l'axiome de départ de la grammaire)
- S'il y a une production $A \to \alpha B\beta$ où B est un non-terminal, alors ajouter le contenu de PREMIER(β) à SUIVANT(B), sauf ϵ
- S'il y a une production $A \rightarrow \alpha B$, alors ajouter SUIVANT(A) à SUIVANT(B)
- S'il y a une production $A \to \alpha B\beta$ avec $\epsilon \in \mathsf{PREMIER}(\beta)$, alors ajouter SUIVANT(A) à SUIVANT(B)
- Recommencer à partir de l'étape 3 jusqu'à ce qu'on n'ajoute rien de nouveau dans les ensembles SUIVANT.

LL(1) Algorithme de SUIVANT:

application

• Exemple 1:

$$\begin{cases} S \rightarrow aSb \mid cd \mid SAe \\ A \rightarrow aAdB \mid \epsilon \\ B \rightarrow bb \end{cases}$$

• $S \rightarrow aSb$

 $PREMIER(b) \subseteq SUIVANT(S)$ (2)

• $A \rightarrow aAdB$

 $PREMIER(d) \subseteq SUIVANT(A)$ (2)

 $SUIVANT(A) \subseteq SUIVANT(B)$ (3)

• $S \rightarrow SAe$

 $PREMIER(e) \subseteq SUIVANT(A)$ (2)

PREMIER(A)- $\{\epsilon\} \subseteq SUIVANT(S)$ (2)

	PREMIER	SUIVANT
S	a c	\$ <i>b</i> a
Α	аε	e d
В	b	e d

LL(1) Algorithme de SUIVANT:

application
Exemple 2: axiome E

$$\begin{array}{c}
E \rightarrow TE' \\
E' \rightarrow +TE' \mid -TE' \mid \varepsilon \\
T \rightarrow FT' \\
T' \rightarrow *FT' \mid /FT' \mid \varepsilon \\
F \rightarrow (E) \mid nb
\end{array}$$

• $T \rightarrow FT'$

 $PREMIER(T') \subset SUIVANT(F)$ (2)

 $SUIVANT(T) \subset SUIVANT(T')$ (3)

 $SUIVANT(T) \subset SUIVANT(F)$ (4)

PREMIER(E) = PREMIER(T)

 $PREMIER(T) = PREMIER(F) = \{(,nb)\}$

• $E \rightarrow TE'$

 $PREMIER(E') \subset SUIVANT(T)$ (2)

 $SUIVANT(E) \subseteq SUIVANT(E')$ (3)

 $SUIVANT(E) \subset SUIVANT(T)$ (4)

	PREMIER	SUIVANT
E	(nb	\$)
E'	3 - +	\$)
T	(nb	\$)+-
T'	*/ε	\$)+-
F	(nb	\$)+-*/

Construction de la table d'analyse

LL

- C'est un tableau T à 2 dimensions qui indique pour chaque A ∈ V_N et chaque a ∈ V_T ou \$ la règle de production à appliquer
- Pour chaque production A → α :
 ∀a≠ ε et a ∈ PREMIER(α) ⇒ T[A,a] = A → α
 ∀a ∈ SUIVANT(A) et ε ∈ PREMIER(α) ⇒ T[A,a] = A → α
- Chaque cellule vide T[A,a] est une erreur de syntaxe

Pour chaque $A \rightarrow \alpha$

$$\forall a \neq \epsilon \text{ et } a \in PREMIER(\alpha) \Rightarrow T[A,a] = A \rightarrow \alpha$$

$$\begin{cases} E \rightarrow TE' \\ E' \rightarrow +TE' \mid -TE' \mid \epsilon \\ T \rightarrow FT' \\ T' \rightarrow *FT' \mid /FT' \mid \epsilon \\ F \rightarrow (E) \mid nb \end{cases}$$

	PREMIER	SUIVANT
Ε	(nb	\$)
E'	3 - +	\$)
Т	(nb	\$)+-
T'	*/ε	\$)+-
F	(nb	\$)+-*/

$$\forall a \in SUIVANT(A) \text{ et } \varepsilon \in PREMIER(\alpha) \Rightarrow$$

$$T[A,a] = A \rightarrow \alpha$$

	nb	+	-	*	/	()	\$
Е	E→ TE'					E→ TE'		
E'		E' → +TE'	E' → -TE'				E' → ε	E' → ε
Т	T → FT'					T → FT'		
T'		$T' \to \epsilon$	$T' \to \epsilon$	T' → *FT'	T' → /FT'		T' → ε	$T' \to \epsilon$
F	F → nb					F → (E)		

Table d'analyse LL:

Utilisation/Algorithme Utilisation d'une pile initialisée avec \$ et l'axiome \$

- et un pointeur p sur la première lettre du mot à analyser (terminé par \$)
- Répéter X le symbole au sommet de pile a la lettre pointée par p Si $X \in V_N$ alors Si T[X,a]= $X \rightarrow \alpha_1 \alpha_2 ... \alpha_n$ dépiler X empiler $\alpha_n \dots \alpha_2 \alpha_1$ sinon ERREUR fsi sinon Si X=\$ alors Si A=\$ alors ACCEPTER sinon ERREUR fsi Sinon Si X=a alors depiler X; avancer ps Sinon ERREUR fsi fsi fsi

jusqu'à ERREUR ou ACCEPTER

Pile	Entrée	Sortie
\$E	3+4*5\$	

	nb	+	-	*	/	()	\$
Е	E→ TE'					E→ TE'		
E'		E' → +TE'	E' → -TE'				$E'\to\epsilon$	$E'\to\epsilon'$
Т	T → FT'					T → FT'		
T'		$T' \to \epsilon$	$T' \to \epsilon$	T' → *FT'	T' → /FT'		$T'\to\epsilon$	$T'\to\epsilon$
F	F → nb					F → (E)		

E

Pile	Entrée	Sortie
\$E	3 +4*5\$	$E \to TE'$

	nb	+	-	*	/	()	\$
Е	E→ TE'					E→ TE'		
E'		E' → +TE'	E' → -TE'				$E'\to\epsilon$	$E'\to\epsilon'$
Т	T → FT'					T → FT'		
T'		$T' \to \epsilon$	$T'\to\epsilon$	T' → *FT'	T' → /FT'		$T'\to\epsilon$	$T' \to \epsilon$
F	F → nb					F → (E)		

Pile	Entrée	Sortie
\$E	3 +4*5\$	$E \to TE'$
\$E \$E'T	3+4*5\$	

	nb	+	-	*	/	()	\$
Е	E→ TE'					E→ TE'		
E'		E' → +TE'	E' → -TE'				$E'\to\epsilon$	$E' \to \epsilon'$
Т	T → FT'					T → FT'		
T'		$T' \to \epsilon$	$T' \to \epsilon$	T' → *FT'	T' → /FT'		$T'\to\epsilon$	$T' \to \epsilon$
F	$F \rightarrow nb$					F → (E)		

Pile	Entrée	Sortie
\$E \$E'T	3 +4*5\$	
\$E'T	3 +4*5\$	T → FT'

	nb	+	-	*	/	()	\$
Е	E→ TE'					E→ TE'		
E'		E' → +TE'	E' → -TE'				$E'\to\epsilon$	$E' \to \epsilon'$
Т	T → FT'					T → FT'		
T'		$T'\to\epsilon$	$T' \to \epsilon$	T' → *FT'	T' → /FT'		$T' \to \epsilon$	$T' \to \epsilon$
F	F → nb					F → (E)		

Pile	Entrée	Sortie			
\$E	3+4*5\$	$E \to TE'$			
\$E \$E'T \$E'T'F	3+4*5\$	$T \rightarrow FT'$			
\$E'T'F	3+4*5\$	$F \rightarrow nb$			
\$E'T'3	3+4*5\$				

	nb	+	-	*	/	()	\$
Е	E→ TE'					E→ TE'		
E'		E' → +TE'	E' → -TE'				$E'\to\epsilon$	$E'\to\epsilon'$
Т	T → FT'					T → FT'		
T'		$T' \to \epsilon$	$T' \to \epsilon$	T' → *FT'	T' → /FT'		$T' \to \epsilon$	$T' \to \epsilon$
F	F → nb					F → (E)		

Pile	Entrée	Sortie			
\$E	3+4*5\$	$E \to TE'$			
\$E'T	3+4*5\$	$T \rightarrow FT'$			
\$E'T'F	3+4*5\$	$F \rightarrow nb$			
\$E'T'3 \$E'T' \$E'	3+4*5\$				
\$E'T'	+4*5\$	$T' \to \epsilon$			
\$E'	+4*5\$	$E' \rightarrow +TE'$			
\$E'T+	+4*5\$				

	nb	+	-	*	/	()	\$
Е	E→ TE'					E→ TE'		
E'		E' → +TE'	E' → -TE'				$E'\to\epsilon$	$E' \to \epsilon'$
Т	T → FT'					T → FT'		
T'		$T' \to \epsilon$	$T' \to \epsilon$	T' → *FT'	T' → /FT'		$T' \to \epsilon$	$T' \to \epsilon$
F	F → nb					F → (E)		

Table d'analyse LL: Application

Pile	Entrée	Sortie
\$E	3+4*5\$	$E \to TE'$
\$E'T	3+4*5\$	$T \rightarrow FT'$
\$E'T'F	3+4*5\$	$F \rightarrow nb$
\$E'T'3	3+4*5\$	
\$E'T'	+4*5\$	$T' \to \epsilon$
\$E'T'3 \$E'T' \$E'	+4*5\$	$E' \rightarrow +TE'$
\$E'T+	+4*5\$	
\$E'T	4*5\$	$T \rightarrow FT'$
\$E'T'F	4*5\$	$F \rightarrow nb$
\$E'T'4	4*5\$	
\$E'T'	*5\$	

	nb	+	1	*	/	()	\$
Ш	E→ TE'					E→ TE'		
Ë		E' → +TE'	E' → -TE'				$E'\to\epsilon$	$E' \to \epsilon'$
T	T → FT'					T → FT'		
T'		$T' \to \epsilon$	$T' \to \epsilon$	T' → *FT'	T' → /FT'		$T' \to \epsilon$	$T'\to\epsilon$
F	F → nb					F → (E)		

Table d'analyse LL: Application

Pile	Entrée	Sortie
\$E	3+4*5\$	E → TE'
\$E'T	3+4*5\$	$T \rightarrow FT'$
\$E'T'F	3+4*5\$	$F \rightarrow nb$
\$E'T'3 \$E'T' \$E'	3+4*5\$	
\$E'T'	+4*5\$	$T' \rightarrow \epsilon$
\$E'	+4*5\$	$E' \rightarrow +TE'$
\$E'T+	+4*5\$	
\$E'T	4*5\$	$T \rightarrow FT'$
\$E'T \$E'T'F \$E'T'4	4*5\$	$F \rightarrow nb$
\$E'T'4	4*5\$	
\$E'T'	*5\$	$T' \rightarrow *FT'$
\$E'T'F*	*5\$	
\$E'T'F	5\$	$F \rightarrow nb$
\$E'T'5	5\$	
\$E'T'	\$	

	nb	+	1	*	/	()	\$
Е	E→ TE'					E→ TE'		
Ë		E' → +TE'	E' → -TE'				$E'\to\epsilon$	$E'\to\epsilon'$
Т	T → FT'					T → FT'		
T'		$T'\to\epsilon$	$T' \to \epsilon$	T' → *FT'	T' → /FT'		$T'\to\epsilon$	$T' \to \epsilon$
F	$F \rightarrow nb$					F → (E)		

Table d'analyse LL: Application

Pile	Entrée	Sortie
\$E	3+4*5\$	$E \to TE'$
\$E'T	3+4*5\$	$T \rightarrow FT'$
\$E'T	4*5\$	$T \rightarrow FT'$
\$E'T'F	4*5\$	$F \rightarrow nb$
\$E'T'4	4*5\$	
\$E'T'	*5\$	$T' \rightarrow *FT'$
\$E'T'F*	*5\$	
\$E'T'F	5\$	$F \rightarrow nb$
\$E'T'5	5\$	
\$E'T'	\$	
\$E'T' \$E' \$	\$	$T' \to \epsilon$
\$E'	\$	E' → ε
\$	\$	ACCEPTER

	nb	+	-	*	/	()	\$
Е	E→ TE'					E→ TE'		
E'		E' → +TE'	E' → -TE'				E' → ε	$E'\to\epsilon'$
Т	T → FT'					T → FT'		
T'		$T' \to \epsilon$	$T' \to \epsilon$	T' → *FT'	T' → /FT'		$T' \to \epsilon$	$T' \to \epsilon$
F	F → nb					F → (E)		

Grammaire LL(1)

- S'il y a plusieurs productions dans les cellules de la table d'analyse, l'algorithme précédent ne pourra être appliqué :
 - On appelle grammaire LL(1) une grammaire pour laquelle la table d'analyse contient au plus une production
- LL(1) signifie que l'on parcourt l'entrée de gauche (Left) à droite et que l'on utilise des dérivation gauches (Leftmost) et un seul symbole est nécessaire pour utiliser la table d'analyse
- Une grammaire <u>n'est pas</u> LL(1) lorsqu'elle est ambiguë ou récursive à gauche ou non factorisée à gauche.

<u>140</u>

Récursivité à gauche

- Définition : une grammaire est immédiatement récursive à gauche si elle contient $A \in V_N$ tq $A \to A\alpha$
- Exemple:

```
\begin{cases} S \rightarrow SaT \mid U \\ T \rightarrow Tc \mid \epsilon \\ U \rightarrow Ub \mid d \end{cases}
```


Récursivité à gauche immédiate : Élimination

• Remplacer toutes les règles de la forme: $A \rightarrow A\alpha | \beta$

par:

$$\begin{cases} A \rightarrow \beta \ A' \\ A' \rightarrow \alpha \ A' \mid \epsilon \end{cases}$$

• Exemple:

$$\begin{cases} S \rightarrow SaT \mid U \\ T \rightarrow Tc \mid \epsilon \end{cases}$$

$$U \rightarrow Ub \mid d \mid e$$

$$\begin{array}{c} \bullet \quad S \rightarrow US' \\ S' \rightarrow aTS' \mid \epsilon \\ T \rightarrow T' \\ T' \rightarrow cT' \mid \epsilon \\ U \rightarrow dU' \mid eU' \\ U' \rightarrow bU' \mid \epsilon \\ \end{array}$$
 Ou
$$\begin{array}{c} \bullet \quad S \rightarrow US' \\ S' \rightarrow aTS' \mid \epsilon \\ T \rightarrow cT \mid \epsilon \\ U \rightarrow dU' \mid eU' \\ \end{array}$$

 $U' \rightarrow bU' \mid \epsilon$

Récursivité à gauche

- Définition : une grammaire est récursive à gauche si elle contient A ∈ V_N tq A →+ Aα
- Exemple:

$$\begin{cases} S \rightarrow Ta \mid b \\ T \rightarrow Tc \mid Sd \mid c \end{cases}$$

 S est récursif à gauche mais pas immédiatement car

$$S \rightarrow Ta \rightarrow Sda$$

Récursivité à gauche : Élimination

Algorithme :

- Ordonner les non-terminaux A₁, A₂, ... A_n
- Pour i de 1 à n faire pour j de 1 à i-1 faire remplacer chaque production $A_i \to A_j \alpha \mid \gamma$ où $A_j \to \beta_1 \mid \ldots \mid \beta_p \text{ par } A_i \to \beta_1 \alpha \mid \ldots \mid \beta_p \alpha \mid \gamma$ fait éliminer les récursivités immédiates gauches des productions A_i fait

Récursivité à gauche : Exemple

Exemple

$$\begin{cases} S \rightarrow Aa \mid b \\ A \rightarrow Ac \mid Sd \mid BA \mid c \\ B \rightarrow SSc \mid a \end{cases}$$

RG : remplacer chaque production Ai \rightarrow Aj α | γ où Aj \rightarrow β 1 |...| β p par Ai \rightarrow β 1 α |...| β p α | γ

RGI : Remplacer toutes les règles de la forme: $A \to A\alpha |\beta \quad par \hbox{:} \quad A \to \beta \ A'$ $A' \to \alpha \ A' \mid E$

- On ordonne $A_1=S$, $A_2=A$, $A_3=B$
- i=1 pas de récursivité immédiate S → Aa | b
- i=2, j=1 A → Ac | Aad | bd | BA | c
 éliminer rec. imm. A → bdA' | BAA' | cA'
 A' → cA' | adA' | ε
- i=3, j=1 B \rightarrow AaSc | bSc | a
- i=3, j=2 B \rightarrow bdA'aSc | BAA'aSc | cA'aSc | bSc | a

Récursivité à gauche : Exemple

(suite)

```
• Exemple  \begin{cases} S \to Aa \mid b \\ A \to Ac \mid Sd \mid BA \mid c \\ B \to SSc \mid a \end{cases}  RGI : Remplacer toutes les règles de la forme: B \to B\alpha \mid \beta par: B \to \beta B' \mid \epsilon
```

- B → bdA'aSc | BAA'aSc | cA'aSc | bSc | a
- Élim. rec. imm. B → bdA'aScB' | cA'aScB' | bScB' | aB'
 B' → AA'aScB' | ε
- $S \rightarrow Aa \mid b$ $A \rightarrow bdA' \mid BAA' \mid cA'$ $A' \rightarrow cA' \mid adA' \mid \epsilon$ $B \rightarrow bdA'aScB' \mid cA'aScB' \mid bScB' \mid aB'$ $B' \rightarrow AA'aScB' \mid \epsilon$

Grammaire propre

- Qui ne contient pas de production $A \rightarrow \epsilon$
- Algorithme pour rendre une grammaire propre :
 En rajoutant, dans chaque production où A apparaît en partie droite et pour chaque A, une production où A est remplacé par ε
- Exemple

$$\begin{cases} S \to aTb \mid aU \\ T \to bTaTa \mid \epsilon \Longrightarrow \begin{cases} S \to aTb \mid ab \mid aU \\ T \to bTaTa \mid baTa \mid bTaa \mid baa \\ U \to aU \mid b \end{cases}$$

Factorisation à gauche

Lorsque l'on a:

```
S → abcdeTb | abcdeUc
T → bA
U → cB
```

- Il faut lire 6 caractères pour savoir quelle production appliquer
- L'idée est de factoriser

$$S \rightarrow abcde(Tb \mid Uc)$$

Afin de différer la décision

Factorisation à gauche : Exemple

```
    S → aUbS | aUbSeT|a

  \begin{cases} T \rightarrow bcU \mid bca \\ U \rightarrow ba \end{cases}
• S \rightarrow a(UbS (\epsilon | eT) | \epsilon)

T' S'
 • T \rightarrow bc (U | a)
 • |S| \rightarrow aS''
   S'' \rightarrow UbS' \mid \epsilon
    S' \rightarrow eT | \epsilon
     T \rightarrow bcT'
     T \rightarrow U \mid a
```