The winner of the NFL draft is not necessarily cursed.

Ryan Brill and Abraham Wyner

University of Pennsylvania

Carnegie Mellon Sports Analytics Conference, November 2024

Trades consisting of NFL draft picks

- In football, trading draft picks is a big deal!
- How does a team decide whether a trade of draft picks is good?
- Massey Thaler (2013)
 - Loser's curse top picks aren't as valuable as later picks
 - Draft capital is traded sub-optimally
- Today, we revisit this analysis

Traditional draft value curves

- How much value v(x) do players drafted at draft pick $x \in \{1,...,256\}$ provide?
 - Performance value $Y = \text{observed } 2^{nd} \text{ contract value (relative to the salary cap)}$
 - Expected performance value $v(x) = \mathbb{E}[Y|x]$

Traditional draft value curves

- expected performance
- __ cost
 - expected performance
- minus cost
 - fitted trade market
- (Massey Thaler)
- _ Jimmy Johnson

Implications of Massey Thaler (2013)

- Loser's curse top picks aren't as valuable as later picks
- NFL general managers trade sub-optimally
- Trading down from top picks is incredibly valuable

What piqued our interest

Massey Thaler (2013)

- completely replicates to recent data (2013-2023)
- Even though the work has been public and widely known for a long time, GM draft behavior is largely unchanged!

Why haven't GMs changed?

- Maybe the market is inefficient & GMs are just not wise? or....
- there is a sound economic reason why average future player value (at a draft position) doesn't determine trade value?

What's the problem?

- The goal is to win the Super Bowl
- GMs don't want average players, they want elite players, and they may be willing to pay quite a lot for draft picks that are likely to be elite NFL performers.

Valuing eliteness

- Consider right tail probability, $v(x) \propto \mathbb{P}(Y > r | x)$
 - Tail, not quantile
 - Assign a "value" to any set of players equal to the expected number of elite players (because $\mathbb{E}[1(Y > r | x)] = \mathbb{P}(Y > r | x)$)
 - Model the full conditional density $\mathbb{P}(Y|x)$ with a spline smoothed Beta regression

Right tail probability curves

 $v(x) \propto \mathbb{P}(Y > r \mid x)$

Surplus value

Right tail probability surplus value curves, $v(x) \propto \mathbb{P}(Y - \cos t(x) > r \mid x)$

Adjust for position

Right tail probability surplus value curves by position, $v(x, QB) \propto \mathbb{P}(Y - \cos(x) > r \mid x, QB)$

The winner of the NFL draft is not necessarily cursed.

- If you're looking for an elite quarterback there is no loser's curse at all.
- If you are looking for elite talent, lower draft picks aren't worth much and the high cost of a top draft pick is justified.
- Trade draft picks based on some combination of eliteness and expected value
 - Thank you!
 - Twitter: @RyanBrill_
 - Email: ryguy123@sas.upenn.edu