AWS Solution Analysis and Recommendation for GOGREEN Insurance

Team 14

D. Doan

V.Lopez

S.Rajan

C.Williams

Dr. J.C. Martinez Class 3367 Team 14- 4/4/2022

Contents

Solution – Identify AWS Services	4
Solution – User Authentication	5
Design: Web Tier	
Design: Application Tier	
Design: Database Tier	g
Design – Network	10
Design – Security	
Design – Encryption	12
Design – Instance Details	13
Design: Recovery Point Objective	14
Design: Document Storage	

Solution – Identify AWS Services

Potential services and the purpose of each service that will be used to move GO Green's current

- environment to AWS.
 - Amazon CloudFront
 - Amazon CloudFormation
 - S3 Simple Storage
 - AWS DB Migration Service
 - IAM
 - Amazon CloudWatch
 - Autoscaling feature
 - Load Balancer
 - Amazon DynamoDB
 - Network Access control list
 - AWS Management Console
 - MFA Token
 - EC2
 - VPC
 - SNS

Solution - User Authentication

GO Green Insurance Company Account

Group/Role #	Group/Role Name	Permissions	
Group	Sys Admin	AWS SDKs, IAM HTTPS API,	
		AWS Management Console	
Group	DB Admin	AWS SDKs, IAM HTTPS API,	
		AWS Management Console	
Group	Monitoring	EC2, S3, RDS	
Group	Other	AWS Management Console	

Following the User authentication requirement, users are put into groups which would limit their user access depending on which groups they are in, this is identity-based policies to limit

user access to resources. Permissions are assigned as GoGreen Also, generated a random code for any Admin by MFA.

Requirement	Solution
Should be at least 8 characters and have 1	Create IAM password policy/rules to require
uppercase, 1 lowercase, 1 special character,	8 characters, 1 uppercase, 1 lowercase, 1
and a number.	special character, and a number.
Change passwords every 90 days and ensure	Create IAM password policy/rule to require
that the previous three passwords can't be	password change every 90 days and require
reused.	to not be the past 3 passwords.
All administrators require programmatic	Allow Admin groups to have access to Access
access.	Management Console, AWS SDKs, IAM HTTPS
	API.
Administrator sign-in to the AWS	Enable and require the use of AWS Multi
Management Console requires the use of	Factor Authenticator to login.
Virtual MFA.	

By using different services, we should allow the specific groups only to access specific things on AWS. Also, using Amazon Identity and Access Management policies will allow us to set up rules for the user account to follow.

Design: Web Tier

Requirement	Solution
Architecture must be flexible and handle any	Use Load balancer and AutoScaling to scale
peak in traffic or performance.	up during high traffic hours
The overall acceptable incoming network	Use Cloudwatch to watch over acceptable
bandwidth is between 300 Mbps and 750	bandwidth.
Mbps.	
Application administrators want to be	Use Cloudwatch alarm to setup SNS
notified by email if there are more than 100	notification
"400 HTTP errors" per minute in the	
application.	
Web Tier instances should be tagged as	Use autoscaling group tags Key=Name and
"Key=Name" and "Value=web-tier	Value = web-tier

Using Load balancer and autoscaling will help with being flexible and be able to handle high traffic amount. Also using CloudWatch will enable the company to watch over acceptable bandwidth amount. CloudWatch can also be setup for HTTP Error and send SNS notification when a limit is met. Also during the autoscaling, there is parameter where the minimum and maximum can be set.

Design: Application Tier

Requirement	Solution
Architecture must be flexible and handle any	Use Autoscaling and Load balancer
peak in traffic or performance.	
Server capacity should be between 50% and	Create a metric for cloudwatch to oversee
60%.	then use auto scaling policy to setup when
	limit is reach
Overall memory and CPU utilization should	Autoscaling policy to more than 75% add
not go above 80% and 75% respectively or	one, then if less than 30%, minus one
below 30% for either.	
Internet access is required for patching and	Security Group SSH with VPN Gateway
updates without exposing the servers.	
Application Tier instances should be tagged	Autoscaling tag Key=Name Value=app-tier
as "Key=Name" and "Value=app-tier".	

Again, the use of autoscaling and the load balancer will help with being flexible and allow the application to be used during high traffic hours. Server capacity can be met using CloudWatch to check CPU usage and keep it between a certain amount by utilizing an autoscaling policy. For updating servers without exposing it, the company can set up a security group SSH using a VPN Gateway.

Design: Database Tier

Requirement	Solution
Database needs consistent storage	Use AWS RDS with MySQL 5.7.22
performance at 21,000 IOPS.	
High availability is a requirement.	Use DB with a standby DB on different
	availability zone
No change to the database schema can be	AWS database migration service – schema
made at this time.	conversion tool

Go Green can setup their DB using the same DB that they have been using. They should utilize AWS Database Migration Service to move their database over without touching any schema related.

Design - Network

VPC	Region	Purpose	Subnets	AZs	CIDR Range
1	US West	HQ	Hq-public,	Us-west-1	172.31.0.0/16
			hq-private		
2	EU	Production	Eu-public,	Eu-west-1	172.32.0.0/16
			eu-private		
3	South	Production	Sa-public, sa-	Sa-east-1	172.33.0.0/16
	America		private		

Three VPC will be needed since they are in 3 different zones in the world. They should each have different subnet for each and availability zone also.

Subnet Name	VPC	Subnet Type	AZ	Subnet Address
		(Public/private)		
Hq-public	#1	Public	Us-west-1	172.31.0.0/20
Hq-private	#1	Private	Us-west1	172.31.64.0/20
Eu-public	#2	Public	Eu-west-1	172.32.0.0/20
Eu-private	#2	Private	Eu-west-1	172.32.64.0/20
Sa-public	#3	Public	Sa-east-1	172.33.0.0/20
Sa-private	#3	Private	Sa-east-1	172.33.64.0/20

Each VPC will have at least two subnet, one private and one public.

Design – Security

Security Group (SG)	SG Name	Rule	Source
ELB Load Balancer	Elb-sg	None?	
Web Tier	Web-sg	Can receive request on 80 and 443	Anywhere
App Tier	App-sg	Can receive request on 443 and SSH	Webserver
Database Tier	Db-sg	Can receive request on 443	App server

Security group should be made with the company usage in mind. Following direction, only HTTPs should be used as data going in and out would be encrypted.

Other Security Options	Justification
S3 bucket encryption	Data Leaks

Using encryption on the S3 Bucket would allow the prevention of compromise data leaks.

Design – Encryption

Requirement	Solution
Encryption option for data at rest	RDS > enable encryption
Encryption option for data in transit	HTTPs traffic only

Using RDS and encrypting its data will take care of data at rest while only utilizing HTTPs will allow for encryption of data in transit.

Design – Instance Details

Tier	AMI	Tag	Туре	Size	Justification	# of
			71-			instances
Web	Red Hat Enterprise Linux 7.0 (HVM)	Key: Name Value: app-tier	M4	xlarge	High network performance	6
Арр	Red Hat Enterprise Linux 7.0 (HVM)	Key: Name Value: web-tier	T2	Xlarge	Meet client requirement	5
DB	Red Hat Enterprise Linux 7.0 (HVM)	N/A	M5	2xLarge	Meet client requirement	2

Size and type should be put into consideration since Go Green only need a certain amount of storage and size of all the application which should be using EC2, the number of instances should be the same as the one they are currently having. AMI should fit the same system they are using which is Red Hat Linux 7.5.

Design: Recovery Point Objective

Q. How would you achieve a Recovery Point Objective (RPO) of four hours?

A. Use AWS Backup

Usage of AWS Backup will allow for the achievement of RPO of 4 hours if correct setup is made.

Design: Document Storage

Storage/Archive Option	Detail
AWS S3	For frequently accessed data
AWS S3 – Infrequent access	For infrequently accessed data

Use S3 Bucket for document both infrequent and frequently accessed as it's the one that offer the cheapest and easiest to use.

Additional AWS Services

Route 53 – it's the DNS and it routes to different services and the using the of CloudFront RDS is just the services used for our database.

RDS for storage and route 53 for large DNS service.

Transit Gateway is used to connect between the three region allows the communication in between the regions, specifically for the database data.