NENI 2057 - ESCUELA Nº675 POSADAS - MISIONES

MEMORIA DE CÁLCULO ACCIÓN DEL VIENTO

У

ESTRUCTURA DE TECHOS

CALCULO DE LA ACCION DEL VIENTO

 Largo de la construcción/lado mayor "a"
 19,90 m

 Flecha "f"
 2,60 m

 Pendiente "i"
 27,18 %

 Angulo "α"
 15,21 grados

 Altura de la construcción "h"
 5,80 m

 Ancho de la construcción/lado menor "b"
 19,13 m

CALCULO DE LA PRESION DINAMICA BASICA

Velocidad Básica

Para Zona de Posadas:

V = 45 m/seg

Presión Dinámica:

 $qz = 0.0613 \times Kz \times Kzt \times Kd \times V^{2} \times I (Kg/m^{2})$

Kz = 0,90 (Exposición C y H=6,00m) Kzt = 1,00 (Terreno llano) Kd = 1,00 I = 1,00 (Caso II)

qz = 128,48

CALCULO DE ACCIONES UNITARIAS

Análisis de una construcción prismática de base cuadrangular

Características de la construcción

Coef. De Forma γ : para construcciones apoyadas en el suelo

 λa : h/a = 0,30 γ λb : h/b = 0,29 γ γ adoptado = 0,87

 γ ao1 (viento normal a la cara mayor)= γ ao2 (viento normal a la cara menor)= γ

Coeficientes de acciones exteriores ce p/Paredes:

Ce a Barlovento = 0,80 Ce a Sotavento = -0,33

Coeficientes de acciones exteriores p/Cubiertas:

Para cub. planas con f<h/2 en función de γ y α :

Para viento perpendicular a las generatrices:

Ce a Barlovento = -0,30 Ce a Sotavento = -0,30

Para viento paralelo a las generatrices:

Ce = -0,32

Coeficientes de acciones interiores p/Cubiertas:

Cálculo c/una pared abierta con perm. μ =16,37%:

Considerando la situación más desfavorable: pared abierta a barlovento

 $\begin{array}{ll} \mbox{Para} \; \mu = \! 5\% \mbox{: Ci =} & 0,30 \\ \mbox{Para} \; \mu = \! 35\% \mbox{: Ci =} & 0,80 \\ \end{array}$

--> Ci = 0,49

Coeficientes de presión definitivos:

C = Ce-Ci (mín. +/-0.30)

C Barlovento -0,79
C Sotavento -0,79

Acciones Unitarias Resultantes para Cubierta:

Wrz = (Ce-Ci) x qz

Wrz a barlovento =	-101,50 kg/m2
Wrz a sotavento =	-101,50 kg/m2

ESFUERZOS EN CORREAS

ANALISIS DE CARGAS

Luz de cálculo	3,95 m
Angulo de pend. Techo	15,21 grados
Separación e/correas (planta)	0,85 m
Separación e/correas real (Sep. / cos áng.)	0,88 m
Peso propio chapa H°G° n°25	5,00 kg/m2
Peso propio correas	3,09 kg/m
Peso propio cielorraso	10,00_kg/m2
TOTAL PESO PROPIO	16,30 kg/m

Sobrecarga reglamentaria s/proyección de la cubierta 96,00 kg/m2
TOTAL PESO PROPIO + SOBRECARGA 100,86 kg/m

ESTADOS DE CARGA

1.-Peso Propio + Sobrecarga 100,86 kg/m

2.-Peso Propio + Sob. s/elem. Estr. 100kg 16,30 kg/m 100,00 kg

3.-Peso Propio + Acción del Viento (Succión) -73,10 kg/m

SOLICITACIONES

1.-PESO PROPIO + SOBRECARGA

1. I LOO I KOI IO : CODILLOAKOA	
Mto. Flector plano Eje Y	189,83 kgm
Mto. Flector plano Eje X	51,60 kgm
Corte Eje Y	192,23 kg
Corte Eje X	52,25 kg
Reacción Vertical	199.21 kg

2.-PESO PROPIO + SOBRECARGA 100kg

Mto. Flector Eje Y	125,97 kgm
MIO. FIECIOI EJE 1	125,97 Kgiii
Mto. Flector Eje X	34,24 kgm
Corte Eje Y	79,32 kg
Corte Eje X	21,56 kg
Reacción Vertical	82.20 kg

3.-PESO PROPIO + VIENTO SUCCION

Mto. Flector Eje Y	-137,58 kgm
Mto. Flector Eje X	-37,40 kgm
Corte Eje Y	-139,32 kg
Corte Eje X	-37,87 kg
Reacción Vertical	-144,37 kg

CONCLUSION

Se observa que las mayores solicitaciones ocurren con el estado 2 de cargas, por lo tanto se dimensionará el perfil con dichos valores.

3

2100000 kg/cm2

1,6

Dimensionamiento Correas

(Tramos continuos)

CARACTERISTICAS TECNICAS DEL PERFIL ADOPTADO

Ala "a"	50,00 mm
Alma "h"	100,00 mm
Labio "d"	15,00 mm
Espesor "e"	2,00 mm
Peso "e"	3,47 kg/m
Area "F"	4,34 cm2
Mto. Inercia "x"	69,23 cm4
Wx	13,85 cm3
Mto. Inercia "y"	14,98 cm4
Wy	4,57 cm3

TENSIONES

Tens. De Fluencia adoptada	2350,00 kg/cm2
Tens. Basica de Diseño (σbd)	1468,75 kg/cm2
Función característica de tensiones (g)	37.81
Función característica de tensiones fluencia (af)	29.89

LUCES - CARGAS - SOLICITACIONES

Luz de Cálculo	3,95 m
Angulo de inclinación de Cubierta	15,21 grados
Carga repartida	101,00 kg/m
Carga puntual en el centro del tramo	0 kg
Mto Flector "Y"	120,62 kgm
Mto Flector "X"	32,79 kgm
Esf. De Corte "Y"	144,75 kg
Esf. De Corte "X"	

VERIFICACION DE FLECHA

	VERIFICA
Flecha real	1,12 cm
Flecha máxima admisible: luz/200	1,98 cm

VERIFICACION DEL ALA

Coeficiente de minoración de Tensiones "q"	1,00
Ancho real del ala	42,00 mm
Relación de ancho de cálculo ala "B"	21,00
Relación de ancho efectivo de ala "1.30*g"	49,16
Relación de ancho adoptado "Be"	21,00
Bmáx a Flexión	150,00
	VERIFICA

VERIFICACION DEL LABIO

Altura necesaria del labio	14,07 mm
Altura mínima del labio	3,41 mm
Altura real del labio	15,00 mm
Relación de ancho de cálculo labio	7,50
Coeficiente minoración de tensiones	1,00
Sobrecarga reglamentaria s/proyección de la cubierta (10°< áng. <1	22,00 kg/cm2
	VERIFICA

VERIFICACION DEL ALMA

VEINI IOAOION DEL ALMA	
CORTE	
Altura real alma	92,00 mm
Relación altura de cálculo alma "H"	46,00
Tensión de Corte alma "τ"	0,79 kg/mm2
Tensión máx. Corte de comparación "τ máx1"	9,40 kg/mm2
Tensión máx. Corte de comp.según/H "τ máx2"	13,44 kg/mm2
Tensión Corte a adoptar "τ máx adm"	9,40 kg/mm2
	VERIFICA
FLEXION	

Tensión de Flexión eje Y del perfil (My/Wx) "σy"	
Tensión de Flexión eje X del perfil (Mx/Wy) "σx"	

Tension de Fiexion Oblicua "Omaxt"
Tens. Máx. de Flexión alma (p/h) "σmáx"
Tens. Comparación de Flexión alma "σmáx1"

Combinación de Tens. De Flexión y Corte

JUAN AN IONIO P. VITALE INGENERO CIVIL Mai: PFGE 2316

17466,92 kg/cm2 1,00 kg/cm2 VERIFICA

870,91 kg/cm2 717,61 kg/cm2 1588,52 kg/cm2 **1461,44** kg/cm2

4

ACCIONES EN VIGAS METALICAS

ANALISIS DE CARGAS

ANALIGIO DE CARCAC	
Angulo de pend. Techo	15,21 grados
Separación e/Vigas	3,95 m
Peso propio chapa H°G° n°25	5,00 kg/m ²
Peso propio correas	3,09 kg/m
Peso propio cielorraso	10,00 kg/m ²
Peso propio est. Vigas	11,13 kg/m
TOTAL PESO PROPIO	21,33 kg/m ²
Sobrecarga reglamentaria	57,60 kg/m ²
TOTAL PESO PROPIO + SOBRECARGA	78,93 kg/m ²

ESTADOS DE CARGA

1.-PESO PROPIO + SOBRECARGA

2.-PESO PROPIO + VIENTO

78,93	kg/m²
-80,17	kg/m²

Acero ADN 420 (σ fluencia 4200kg/cm2)

E (mod. Elasticidad)	2100000 kg/cm2
γ (coef. De seguridad)	1,60
Tens. Admisible	2625,00 kg/cm2

GEOMETRIA DE LA VIGA

Ancho b	20,00 cm
Altura h	40,00 cm
Diám. Barra cordón superior	16,00 mm
Diám. Barra cordón inferior	16,00 mm
Diám. Barra diagonal vert. ppal.	12,00 mm
Diám. Barra diagonal horiz. secund.	10,00 mm
Area Total "At"	8,04 cm2
Long. Cordón sup. "s"	30,00 cm
Long. Diagonal "Id"	42,72 cm
Angulo e/cordón y diagonal "α"	69,4440 grados
Mto. Inercia "Iy" {h2 x (Asup x Ainf)}	3216,99 cm4
Radio de Inercia "iy"	14,10 cm
Mto. Inercia "Iz" {b2 x (Ader x Aizq)}	400,00 cm4
Radio de Inercia "iz"	7,05 cm

SOLICITACIONES

Luz de Cálculo	13,03 m
Mto Flector: M	1320,00 kgm
Esf. Normal: N	-3900,00 kg
Esf. De Corte: Q	960,00 kg

RELACIONES GEOMETRICAS Y ESBELTECES

Elementos rectos Esbeltez I/h máximo

35,00 Esbeltez real I/h 32,58 VERIFICA 20,00 cm Ancho mín. (mayor h/2 y/o l/75) VERIFICA

VERIFICACION DEL PANDEO LOCAL EN BARRAS

Cordón Superior

Area barra cordón superior: Ai 2,01 cm2 -2625,00 kg $Ncs = (N \times Ai / At) - (M / h / n)$ Esbeltez $\lambda = 4xSk/d$ 75,00 $\omega = 1,91$ σcomp = ω x Ncs / Ai -2493,63 kg/cm2

Cordón Inferior

Area barra cordón inferior: Ai $Nci = (N \times Ai / At) + (M / h / n)$

σtracc = Nci / Ai

Diagonales

Area barra diagonal: Ai Long. de pandeo diag.: Sk = Id*0.75Nd = Q / n / sen α Esbeltez $\lambda = 4xSk/d$ σ comp = ω x Nd / Ai

335,72 kg/cm2 VERIFICA 1,13 cm2 32,04 cm 512,64 kg 106,80 → ω= 3.31 1500,34 kg/cm2 VERIFICA

2,01 cm2

675,00 kg

VERIFICA

Acero ADN 420 (σ fluencia 4200kg/cm2)

GEOMETRIA DE LA VIGA

Ancho b	20,00 cm
Altura h	40,00 cm
Diám. Barra cordón superior	20,00 mm
Diám. Barra cordón inferior	20,00 mm
Diám. Barra diagonal vert. ppal.	12,00 mm
Diám. Barra diagonal horiz. secund.	10,00 mm
Area Total "At"	12,57 cm2
Long. Cordón sup. "s"	30,00 cm
Long. Diagonal "ld"	42,72 cm
Angulo e/cordón y diagonal "α"	69,4440 grados
Mto. Inercia "Iy" {h2 x (Asup x Ainf)}	5026,55 cm4
Radio de Inercia "iy"	11,28 cm
Mto. Inercia "Iz" {b2 x (Ader x Aizq)}	400,00 cm4
Radio de Inercia "iz"	5,64 cm

SOLICITACIONES

 Luz de Cálculo
 13,03 m

 Mto Flector: M
 2390,00 kgm

 Esf. Normal: N
 -6100,00 kg

 Esf. De Corte: Q
 1660,00 kg

RELACIONES GEOMETRICAS Y ESBELTECES

 Elementos rectos

 Esbeltez I/h máximo
 35,00

 Esbeltez real I/h
 32,58

 VERIFICA

 Ancho mín. (mayor h/2 y/o I/75)
 20,00 cm

 VERIFICA

VERIFICACION DEL PANDEO LOCAL EN BARRAS

Cordón Superior

Area barra cordón superior: Ai Ncs = (N x Ai / At) - (M / h / n) Esbeltez λ = 4xSk/d σ comp = ω x Ncs / Ai

Cordón Inferior

Area barra cordón inferior: Ai Nci = (N x Ai / At) + (M / h / n)

σtracc = Nci / Ai

Diagonales

Area barra diagonal: Ai Long. de pandeo diag.: $Sk = Id^*0.75$ $Nd = Q / n / sen \alpha$ Esbeltez $\lambda = 4xSk/d$ $Gcomp = \omega x Nd / Ai$

3,14 cm2
-4512,50 kg
60,00 → ω= 1,6
-2312,56 kg/cm2
VERIFICA

3,14 cm2
1462,50 kg
465,53 kg/cm2
VERIFICA

1,13 cm2
32,04 cm
886,44 kg

→ ω= 3.31

106,80

VERIFICA

2594,33 kg/cm2

Acero ADN 420 (σ fluencia 4200kg/cm2)

E (mod. Elasticidad)	2100000 kg/cm2
γ (coef. De seguridad)	1,60
Tens. Admisible	2625,00 kg/cm2

GEOMETRIA DE LA VIGA

Ancho b	20,00 cm
Altura h	40,00 cm
Diám. Barra cordón superior	20,00 mm
Diám. Barra cordón inferior	20,00 mm
Diám. Barra diagonal vert. ppal.	12,00 mm
Diám. Barra diagonal horiz. secund.	10,00 mm
Area Total "At"	12,57 cm2
Long. Cordón sup. "s"	30,00 cm
Long. Diagonal "ld"	42,72 cm
Angulo e/cordón y diagonal "α"	69,4440 grados
Mto. Inercia "Iy" {h2 x (Asup x Ainf)}	5026,55 cm4
Radio de Inercia "iy"	11,28 cm
Mto. Inercia "Iz" {b2 x (Ader x Aizq)}	400,00 cm4
Radio de Inercia "iz"	5,64 cm

SOLICITACIONES

Luz de Cálculo	12,10 m
Mto Flector: M	2330,00 kgm
Esf. Normal: N	-6000,00 kg
Esf. De Corte: Q	1600,00 kg

RELACIONES GEOMETRICAS Y ESBELTECES

Elementos rectos 35,00 Esbeltez I/h máximo 30,25 Esbeltez real I/h VERIFICA 20,00 cm Ancho mín. (mayor h/2 y/o l/75) VERIFICA

VERIFICACION DEL PANDEO LOCAL EN BARRAS

Cordón Superior

Area barra cordón superior: Ai $Ncs = (N \times Ai / At) - (M / h / n)$ -4412,50 kg Esbeltez $\lambda = 4xSk/d$ σcomp = ω x Ncs / Ai

Cordón Inferior

Area barra cordón inferior: Ai $Nci = (N \times Ai / At) + (M / h / n)$ σtracc = Nci / Ai

Diagonales

Area barra diagonal: Ai Long. de pandeo diag.: Sk = Id*0.75 Nd = Q / n / sen α Esbeltez $\lambda = 4xSk/d$ σ comp = ω x Nd / Ai

-2261,31 kg/cm2 VERIFICA 3,14 cm2 1412,50 kg 449,61 kg/cm2 VERIFICA 1,13 cm2 32,04 cm 854,40 kg

→ ω= 1,61

 \rightarrow $\omega = 3.31$

3,14 cm2

60,00

106,80

VERIFICA

2500,56 kg/cm2

Acero ADN 420 (σ fluencia 4200kg/cm2)

E (mod. Elasticidad)	2100000 kg/cm2
γ (coef. De seguridad)	1,60
Tens. Admisible	2625,00 kg/cm2

GEOMETRIA DE LA VIGA

Ancho b	20,00 cm
Altura h	40,00 cm
Diám. Barra cordón superior	25,00 mm
Diám. Barra cordón inferior	25,00 mm
Diám. Barra diagonal vert. ppal.	12,00 mm
Diám. Barra diagonal horiz. secund.	10,00 mm
Area Total "At"	19,63 cm2
Long. Cordón sup. "s"	30,00 cm
Long. Diagonal "ld"	42,72 cm
Angulo e/cordón y diagonal "α"	69,4440 grados
Mto. Inercia "Iy" {h² x (Asup x Ainf)}	7853,98 cm4
Radio de Inercia "iy"	9,03 cm
Mto. Inercia "Iz" {b2 x (Ader x Aizq)}	400,00 cm4
Radio de Inercia "iz"	4,51 cm

SOLICITACIONES

Luz de Cálculo	9,46 m
Mto Flector: M	2860,00 kgm
Esf. Normal: N	-8100,00 kg
Esf. De Corte: Q	1870,00 kg

RELACIONES GEOMETRICAS Y ESBELTECES

Elementos rectos

Esbeltez I/h máximo Esbeltez real I/h 35,00 23,65 VERIFICA 20,00 cm Ancho mín. (mayor h/2 y/o l/75) VERIFICA

VERIFICACION DEL PANDEO LOCAL EN BARRAS

Cordón Superior

Area barra cordón superior: Ai 4,91 cm2 -5600,00 kg $Ncs = (N \times Ai / At) - (M / h / n)$ Esbeltez $\lambda = 4xSk/d$ 48,00 σcomp = ω x Ncs / Ai -1631,38 kg/cm2

Cordón Inferior

Area barra cordón inferior: Ai $Nci = (N \times Ai / At) + (M / h / n)$

σtracc = Nci / Ai

Diagonales

Area barra diagonal: Ai Long. de pandeo diag.: Sk = Id*0.75Nd = Q / n / sen α

Esbeltez $\lambda = 4xSk/d$ σ comp = ω x Nd / Ai

1550,00 kg 315,76 kg/cm2

VERIFICA

Acero ADN 420 (σ fluencia 4200kg/cm2)

GEOMETRIA DE LA VIGA

GEOMETRIA DE LA VIGA	
Ancho b	20,00 cm
Altura h	40,00 cm
Diám. Barra cordón superior	20,00 mm
Diám. Barra cordón inferior	20,00 mm
Diám. Barra diagonal vert. ppal.	12,00 mm
Diám. Barra diagonal horiz. secund.	10,00 mm
Area Total "At"	12,57 cm2
Long. Cordón sup. "s"	30,00 cm
Long. Diagonal "ld"	42,72 cm
Angulo e/cordón y diagonal "α"	69,4440 grados
Mto. Inercia "Iy" {h2 x (Asup x Ainf)}	5026,55 cm4
Radio de Inercia "iy"	11,28 cm
Mto. Inercia "Iz" {b2 x (Ader x Aizq)}	400,00 cm4
Radio de Inercia "iz"	5,64 cm

SOLICITACIONES

 Luz de Cálculo
 16,02 m

 Mto Flector: M
 2460,00 kgm

 Esf. Normal: N
 -6200,00 kg

 Esf. De Corte: Q
 1640,00 kg

RELACIONES GEOMETRICAS Y ESBELTECES

Elementos rectos

 Esbeltez I/h máximo
 35,00

 Esbeltez real I/h
 32,04

 VERIFICA
 VERIFICA

 Ancho mín. (mayor h/2 y/o I/75)
 21,36 cm

 NO VERIFICA
 NO VERIFICA

VERIFICACION DEL PANDEO LOCAL EN BARRAS

Cordón Superior

Area barra cordón superior: Ai Ncs = (N x Ai / At) - (M / h / n) Esbeltez λ = 4xSk/d σ comp = ω x Ncs / Ai

Cordón Inferior

Area barra cordón inferior: Ai Nci = (N x Ai / At) + (M / h / n) Otracc = Nci / Ai

Diagonales

Area barra diagonal: Ai Long. de pandeo diag.: $Sk = Id^*0.75$ $Nd = Q / n / sen \alpha$ Esbeltez $\lambda = 4xSk/d$ $Gcomp = \omega x Nd / Ai$

3,14 cm2 -4625,00 kg $60,00 \longrightarrow \omega = 1,61$ -2370,21 kg/cm2VERIFICA 3,14 cm2 1525,00 kg

485,42 kg/cm2

VERIFICA

1,13 cm2 32,04 cm 875,76 kg 106,80 → ω= 3,31 2563,07 kg/cm2 VERIFICA

Acero ADN 420 (σ fluencia 4200kg/cm2)

GEOMETRIA DE LA VIGA

GEOMETRIA DE LA VIGA	
Ancho b	20,00 cm
Altura h	40,00 cm
Diám. Barra cordón superior	16,00 mm
Diám. Barra cordón inferior	16,00 mm
Diám. Barra diagonal vert. ppal.	12,00 mm
Diám. Barra diagonal horiz. secund.	10,00 mm
Area Total "At"	8,04 cm2
Long. Cordón sup. "s"	30,00 cm
Long. Diagonal "ld"	42,72 cm
Angulo e/cordón y diagonal "α"	69,4440 grados
Mto. Inercia "Iy" {h2 x (Asup x Ainf)}	3216,99 cm4
Radio de Inercia "iy"	14,10 cm
Mto. Inercia "Iz" {b2 x (Ader x Aizq)}	400,00 cm4
Radio de Inercia "iz"	7,05 cm

SOLICITACIONES

Luz de Cálculo	16,02 m
Mto Flector: M	1240,00 kgm
Esf. Normal: N	-3160,00 kg
Esf. De Corte: Q	830,00 kg

RELACIONES GEOMETRICAS Y ESBELTECES

Elementos rectos

 Esbeltez I/h máximo
 35,00

 Esbeltez real I/h
 32,04

 VERIFICA
 VERIFICA

 Ancho mín. (mayor h/2 y/o I/75)
 21,36 cm

 NO VERIFICA
 NO VERIFICA

VERIFICACION DEL PANDEO LOCAL EN BARRAS

Cordón Superior

Cordón Inferior

Area barra cordón inferior: Ai Nci = (N x Ai / At) + (M / h / n)

σtracc = Nci / Ai

 σ comp = ω x Nd / Ai

Diagonales

Area barra diagonal: Ai Long. de pandeo diag.: Sk = $Id^*0.75$ Nd = Q / n / sen α Esbeltez λ = 4xSk/d

JUAN ANIONIO P. VITAI INGENERO CIVIL MAI PAGE 2316

2,01 cm2

760,00 kg 377,99 kg/cm2

VERIFICA

 $\omega = 1,91$

Acero ADN 420 (σ fluencia 4200kg/cm2)

2100000 kg/cm2 E (mod. Elasticidad) γ (coef. De seguridad) 1,60 Tens. Admisible 2625,00 kg/cm2

GEOMETRIA DE LA VIGA

GEOMETRIA DE LA VIGA	
Ancho b	20,00 cm
Altura h	40,00 cm
Diám. Barra cordón superior	20,00 mm
Diám. Barra cordón inferior	20,00 mm
Diám. Barra diagonal vert. ppal.	12,00 mm
Diám. Barra diagonal horiz. secund.	10,00 mm
Area Total "At"	12,57 cm2
Long. Cordón sup. "s"	30,00 cm
Long. Diagonal "ld"	42,72 cm
Angulo e/cordón y diagonal "α"	69,4440 grados
Mto. Inercia "Iy" {h2 x (Asup x Ainf)}	5026,55 cm4
Radio de Inercia "iy"	11,28 cm
Mto. Inercia "Iz" {b2 x (Ader x Aizq)}	400,00 cm4
Radio de Inercia "iz"	5,64 cm

SOLICITACIONES

Luz de Cálculo 13,03 m Mto Flector: M 2010,00 kgm Esf. Normal: N -5700,00 kg Esf. De Corte: Q 1460,00 kg

RELACIONES GEOMETRICAS Y ESBELTECES

Elementos rectos Esbeltez I/h máximo Esbeltez real I/h

35,00 32,58 VERIFICA 20,00 cm Ancho mín. (mayor h/2 y/o l/75) VERIFICA

VERIFICACION DEL PANDEO LOCAL EN BARRAS

Cordón Superior

Area barra cordón superior: Ai $Ncs = (N \times Ai / At) - (M / h / n)$ Esbeltez $\lambda = 4xSk/d$ σcomp = ω x Ncs / Ai

Cordón Inferior

Area barra cordón inferior: Ai $Nci = (N \times Ai / At) + (M / h / n)$

σtracc = Nci / Ai

Diagonales

Area barra diagonal: Ai Long. de pandeo diag.: Sk = Id*0.75Nd = Q / n / sen α Esbeltez $\lambda = 4xSk/d$ σ comp = ω x Nd / Ai

3,14 cm2 -3937,50 kg 60,00 -2017,89 kg/cm2 VERIFICA 3,14 cm2 1087,50 kg 346,16 kg/cm2 VERIFICA

1,13 cm2 32,04 cm 779,64 kg 106,80 → ω= 3.31 2281,76 kg/cm2 VERIFICA

Acero ADN 420 (σ fluencia 4200kg/cm2)

E (mod. Elasticidad) 2100000 kg/cm2 γ (coef. De seguridad) 1.60 2625,00 kg/cm2 Tens. Admisible

GEOMETRIA DE LA VIGA

Ancho b	20,00 cm
Altura h	40,00 cm
Diám. Barra cordón superior	12,00 mm
Diám. Barra cordón inferior	12,00 mm
Diám. Barra diagonal vert. ppal.	10,00 mm
Diám. Barra diagonal horiz. secund.	10,00 mm
Area Total "At"	4,52 cm2
Long. Cordón sup. "s"	30,00 cm
Long. Diagonal "ld"	42,72 cm
Angulo e/cordón y diagonal "α"	69,4440 grados
Mto. Inercia "Iy" {h2 x (Asup x Ainf)}	1809,56 cm4
Radio de Inercia "iy"	18,81 cm
Mto. Inercia "Iz" {b2 x (Ader x Aizq)}	400,00 cm4
Radio de Inercia "iz"	9,40 cm

SOLICITACIONES

Luz de Cálculo 6,20 m Mto Flector: M 750,00 kgm -130,00 kg Esf. Normal: N Esf. De Corte: Q 490,00 kg

RELACIONES GEOMETRICAS Y ESBELTECES

Elementos rectos Esbeltez I/h máximo 35,00 Esbeltez real I/h 15,50 VERIFICA Ancho mín. (mayor h/2 y/o l/75) 20,00 cm VERIFICA

VERIFICACION DEL PANDEO LOCAL EN BARRAS

Cordón Superior
Area barra cordón superior: Ai
Ncs = (N x Ai / At) - (M / h / n)
Esbeltez λ = 4xSk/d 1,13 cm2 -970,00 kg 100,00 → ω= 2.89 -2478,66 kg/cm2 σ comp = ω x Ncs / Ai VERIFICA

Cordón Inferior

Area barra cordón inferior: Ai $Nci = (N \times Ai / At) + (M / h / n)$ σtracc = Nci / Ai

Diagonales

 σ comp = ω x Nd / Ai

Area barra diagonal: Ai Long. de pandeo diag.: Sk = Id*0.75 Nd = Q / n / sen α Esbeltez $\lambda = 4xSk/d$

1,13 cm2

905,00 kg 800,20 kg/cm2

VM9: VIGA METALICA TUBO 2C

CARACTERISTICAS TECNICAS DEL PERFIL ADOPTADO

E (mod. Elasticidad)	2100000 kg/cm2
γ (coef. De seguridad)	1,6

	,
Ala "a"	50,00 mm
Alma "h"	100,00 mm
Labio "d"	15,00 mm
Espesor "e"	2,00 mm
Peso "e"	6,81 kg/m
Area "F"	8,68 cm2
Mto. Inercia "x"	138,49 cm4
Wx	27,70 cm3
Mto. Inercia "y"	122,99 cm4
Wy	24,60 cm3

Tens. De Fluencia adoptada Tens. Basica de Diseño (σbd)	2350,00 kg/cm2 1468,75 kg/cm2
Función característica de tensiones (g)	37,81
Función característica de tensiones fluencia (gf)	29,89

LUCES - CARGAS - SOLICITACIONES

Luz de Cálculo	5,80 m
Carga repartida (p.p. + reacción correas)	220,00 kg/m
Carga puntual en el centro del tramo	0 kg
Mto Flector "Y"	110,00 kgm
Esf. De Corte "Y"	320,00 kg
Esf. Normal	1370,00 kg
VEDICION DE EL COLA	

VERIFICACION DE FLECHA

Flecha máxima admisible: luz/200	2,90 cm
Flecha real	1,33 cm

VERIFICACION DEL ALA

Coeficiente de minoración de Tensiones "q"	1,00
Ancho real del ala	42,00 mm
Relación de ancho de cálculo ala "B"	21,00
Relación de ancho efectivo de ala "1.30*g"	49,16
Relación de ancho adoptado "Be"	21,00
Bmáx a Flexión	150,00

VERIFICACION DEL LABIO

Altura necesaria del labio	14,07 mm
Altura mínima del labio	10,00 mm
Altura real del labio	15,00 mm
Relación de ancho de cálculo labio	7,50
Coeficiente minoración de tensiones	1,00
Tensión admisible labio	1468,75 kg/cm2

VERIFICACION DEL ALMA

CORTE	
Altura real alma	92,00 mm
Relación altura de cálculo alma "H"	46,00
Tensión de Corte alma "τ"	1,74 kg/mm2
Tensión máx. Corte de comparación "τ máx1"	9,40 kg/mm2
Tensión máx. Corte de comp.según/H "τ máx2"	13,44 kg/mm2
Tensión Corte a adoptar "τ máx adm" FLEXION	9,40 kg/mm2

Tensión de Flexión eje Y del perfil (My/Wx) "σy"

Tens. Máx. de Flexión alma (p/h) "ơmáx" Tens. Comparación de Flexión alma "σmáx1"

Combinación de Tens. De Flexión y Corte

744,35 kg/cm2 **684,80** kg/cm2 17466,92 kg/cm2

0,25 kg/cm2 VERIFICA

VM10: VIGA METALICA TUBO 2C

CARACTERISTICAS TECNICAS DEL PERFIL ADOPTADO

E (mod. Elasticidad) γ (coef. De seguridad)

Ala "a"	60,00 mm
Alma "h"	140,00 mm
Labio "d"	20,00 mm
Espesor "e"	2,00 mm
Peso "e"	9,01 kg/m
Area "F"	11,15 cm2
Mto. Inercia "x"	352,89 cm4
Wx	50,41 cm3
Mto. Inercia "y"	243,31 cm4
Wv	40.55 cm3

2100000 kg/cm2

1,6

TENSIONES

2350,00 kg/cm2 Tens. De Fluencia adoptada Tens. Basica de Diseño (σbd) 1468,75 kg/cm2 Función característica de tensiones (q) 37,81 Función característica de tensiones fluencia (gf) 29.89

LUCES - CARGAS - SOLICITACIONES

Luz de Cálculo 3,95 m Carga repartida (p.p. + reacción correas) 220,00 kg/m Carga puntual en el centro del tramo 0 kg Mto Flector "Y" 740,00 kgm Esf. De Corte "Y" 320,00 kg Esf. Normal 0,00 kg

VERIFICACION DE FLECHA

1.98 cm Flecha máxima admisible: luz/200 Flecha real 1,62 cm

VERIFICACION DEL ALA

Coeficiente de minoración de Tensiones "q" 1.00 Ancho real del ala 52,00 mm 26,00 Relación de ancho de cálculo ala "B" Relación de ancho efectivo de ala "1.30*g" 49,16 Relación de ancho adoptado "Be" 26,00 Bmáx a Flexión 150,00

VERIFICACION DEL LABIO

Altura necesaria del labio 15,53 mm Altura mínima del labio 10,00 mm Altura real del labio **20,00** mm Relación de ancho de cálculo labio 10,00 Coeficiente minoración de tensiones 1,00 Tensión admisible labio 1468,75 kg/cm2

VERIFICACION DEL ALMA

CORTE

Altura real alma 132,00 mm Relación altura de cálculo alma "H" 66,00 Tensión de Corte alma "τ" 1,21 kg/mm2 Tensión máx. Corte de comparación "τ máx1" 9,40 kg/mm2 Tensión máx. Corte de comp.según/H "τ máx2" 9,37 kg/mm2 Tensión Corte a adoptar "τ máx adm" 9,37 kg/mm2

FLEXION

Tensión de Flexión eje Y del perfil (My/Wx) "Gy" Tens. Máx. de Flexión alma (p/h) "σmáx"

Tens. Comparación de Flexión alma "Omáx1"

Combinación de Tens. De Flexión y Corte

1467,96 kg/cm2 1384,08 kg/cm2 8484,85 kg/cm2

0,90 kg/cm2 VERIFICA

VM11: VIGA METALICA TUBO 2C

CARACTERISTICAS TECNICAS DEL PERFIL ADOPTADO

E (mod. Elasticidad)	2100000 kg/cm2
γ (coef. De seguridad)	1,6

Ala "a"	60,00 mm
Alma "h"	140,00 mm
Labio "d"	20,00 mm
Espesor "e"	2,00 mm
Peso "e"	9,01 kg/m
Area "F"	11,15 cm2
Mto. Inercia "x"	352,89 cm4
Wx	50,41 cm3
Mto. Inercia "y"	243,31 cm4
Wv	40.55 cm3

TENSIONES

Tens. De Fluencia adoptada	2350,00 kg/cm2
Tens. Basica de Diseño (σbd)	1468,75 kg/cm2
Función característica de tensiones (g)	37,81
Función característica de tensiones fluencia (gf)	29,89
LIGHT CARCAG COLLOITACIONES	

LUCES - CARGAS - SOLICITACIONES

Luz de Calculo	3,95 M
Carga repartida (p.p. + reacción correas)	220,00 kg/m
Carga puntual en el centro del tramo	0 kg
Mto Flector "Y"	730,00 kgm
Esf. De Corte "Y"	320,00 kg
Esf. Normal	7,00 kg

VERIFICACION DE FLECHA

Flecha máxima admisible: luz/200	1,98 cm
Flecha real	1,60 cm

VERIFICACION DEL ALA

Coeficiente de minoración de Tensiones "q"	1,00
Ancho real del ala	52,00 mm
Relación de ancho de cálculo ala "B"	26,00
Relación de ancho efectivo de ala "1.30*g"	49,16
Relación de ancho adoptado "Be"	26,00
Bmáx a Flexión	150,00

VERIFICACION DEL LABIO

Altura necesaria del labio	15,53 mm
Altura mínima del labio	10,00 mm
Altura real del labio	20,00 mm
Relación de ancho de cálculo labio	10,00
Coeficiente minoración de tensiones	1,00
Tensión admisible labio	1468,75 kg/cm2

VERIFICACION DEL ALMA

CORTE

Altura real alma	132,00 mm
Relación altura de cálculo alma "H"	66,00
Tensión de Corte alma "τ"	1,21 kg/mm2
Tensión máx. Corte de comparación "τ máx1"	9,40 kg/mm2
Tensión máx. Corte de comp.según/H "τ máx2"	9,37 kg/mm2
Tensión Corte a adoptar "τ máx adm"	9,37 kg/mm2

FLEXION

Tensión de Flexión eje Y del perfil (My/Wx) "Gy" Tens. Máx. de Flexión alma (p/h) "ơmáx"

Tens. Comparación de Flexión alma "σmáx1"

Combinación de Tens. De Flexión y Corte

1449,51 kg/cm2 1366,68 kg/cm2 **8484,85** kg/cm2

0,88 kg/cm2 VERIFICA

DIMENSIONAMIENTO DE COLUMNA METÁLICA Ø4" 3,0mm

Acero F24 (σ fluencia 2400kg/cm2)	2400,00 kg/cm2
E (mód. Elasticidad)	2100000 kg/cm2
γ (coef. de seguridad)	1,6
Tens. Admisible	1500,00 kg/cm2

GEOMETRIA DE LA COLUMNA

Diámetro 5"	12,70 cm
Espesor	2,00 mm
Peso (h = 4,50m)	18,46 kg
Area Total "At"	7,85 cm2
Mto. Inercia "I"	156,29 cm4
Módulo Resistente "W"	24,61 cm3
Radio de Inercia "i"	4,46 cm

SOLICITACIONES

Altura de Cálculo	3,00 m
Mto Flector: M	0,00 kgm
Esf. Normal: N	-2000,00 kg
Esf. De Corte: Q	0,00 kg

RELACIONES GEOMETRICAS Y ESBELTECES

150,00
67,26
VERIFICA

Coeficiente de pandeo ω 1,58

VERIFICACION A COMPRESIÓN

Nmáx = N x ω σcomp = ω x N / At

-3160,00 kg -402,34 kg/cm2 VERIFICA