Eigen-6

Title

Eigenvalue analysis of a cantilever plate

Description

Calculate the natural frequencies of a square cantilever plate.

(b) Structure modeled with plate elements

Structural geometry and analysis model

Model

Analysis Type

3-D eigenvalue analysis

Unit System

in, kip

Dimension

Length 24.0 in Width 24.0 in Thickness 1.0 in Gravitational acceleration $g = 386.4 \text{ in/sec}^2$

Element

Plate element (Thick type)

Material

Modulus of elasticity E = 29.5×10^3 ksi

Poisson's ratio $\nu = 0.3$

Weight density $\gamma = 2.835648 \times 10^{-4} \text{ kips/in}^3$

Element Property

Element size $a \times b = 24.0/19 \text{ in} \times 24.0/19 \text{ in}$

Thickness t = 1.0 in

Boundary Condition

Nodes $1 \sim 20$; Constrain all DOFs. All nodes ; Constrain Dx, Dy and Rz.

Analysis Case

Self weight is converted to nodal masses automatically.

Number of natural frequencies to be computed = 5

Results

Eigenvalue Analysis Results

				E 1	CENV	A 1 11 E	A M	ALVe	1.0				
EIGENVALUE ANALYSIS													
	Mode	Frequ		iency		Period		Tolerance					
	No	(rad/sec)		(cycle/sec)		(sec)							
	1	364,418220		57,998961		0,017242		6,5746e-016					
	2	884,905700		140,837116		0,007100		1,1001e-014					
	3	2212	,058839	352	,060099	C	,002840	9,10	40e-011				
	4	2815	,770830	448	,143846	C	,002231	2,26	71e-007				
	5	3192	,095616	508	,037796	C	,001968	3,18	02e-008				
				MODAL	PARTIC	IPATION	MASSE	S(%) PR	INTOUT				
	Mode	TRAN-X		TRAN-Y		TRAN-Z		ROTN-X		ROTN-Y		ROTN-Z	
	No	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM
	1	0,00	0,00	0,00	0,00	62,72	62,72	0,00	0,00	0,00	0,00	0,00	0,00
	2	0,00	0,00	0,00	0,00	0,00	62,72	0,00	0,00	0,00	0,00	0,00	0,00
	3	0,00	0,00	0,00	0,00	18,00	80,72	0,00	0,00	0,00	0,00	0,00	0,00
	4	0,00	0,00	0,00	0,00	1,65	82,37	0,00	0,00	0,00	0,00	0,00	0,00
	5	0,00	0,00	0,00	0,00	0,00	82,37	0,00	0,00	0,00	0,00	0,00	0,00
	EIGENVECTOR												

Finite element model and the vibration modes

Comparison of Results

Unit : sec

Mode	Natural Period						
Mode	Theoretical	SAP2000	MIDAS/Civil				
1^{st}	0.01790	0.01781	0.01724				
2 nd	0.00732	0.00648	0.00710				
3 rd	0.00292	0.00285	0.00284				
4^{th}	0.00228	0.00223	0.00223				
5 th	0.00201	0.00187	0.00197				

References

Harris, C. M. and Crede, C. E., "Shock and Vibration Handbook", McGraw-Hill, 1976.

"SAP90, A Series of Computer Programs for the Finite Element Analysis of Structures, Structural Analysis Verification Manual", Computer and Structures, Inc., 1992, Example 15.