Math 550 Homework 6

Dr. Fuller Due October 9

- 1. Let S^2 denote the unit sphere in \mathbf{R}^3 . Give a basis for the tangent space S_p^2 at any $p \in S^2$.
- 2. Let V be a k-dimensional vector subspace of \mathbf{R}^n .
 - (a) Prove that V is a k-dimensional manifold in \mathbb{R}^n .
 - (b) Let V_p denote the tangent space to V at $p \in V$. Prove that $V_p = V$.
- 3. Suppose that M is a k-dimensional manifold in \mathbb{R}^n . Prove that the tangent bundle

$$TM = \{(p, v) \in M \times \mathbf{R}^n : v \in M_p\}$$

is a 2k-dimensional manifold in \mathbb{R}^{2n} .

- 4. Let M be a k-dimensional manifold-with-boundary. Prove that ∂M is a (k-1)-dimensional manifold.
- 5. Let $f: U \to f(U)$ and $g: V \to g(V)$ be two parameterizations of S = f(U) = g(V) in \mathbb{R}^n , where $U, V \subset \mathbb{R}^k$. Let $\omega \in \Omega^k(S)$ be any k-form which is non-zero at $x \in S$. Prove that f and g induce the same orientation on S_x if and only if $f^*\omega(e_1, \ldots, e_k)$ and $g^*\omega(e_1, \ldots, e_k)$ have the same sign. (Hint: Recall Problem 2 from Homework 4.)
- 6. Let $f(\theta, \varphi) = (\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi)$ with $0 < \theta < 2\pi$ and $0 < \varphi < \pi$. Let $g(u, v) = (u, \sqrt{1 u^2 v^2}, v)$ for $\{(u, v) : u^2 + v^2 < 1\}$. Do f and g induce the same orientation on $\{(x, y, z) \in S^2 : y > 0\}$? (Hint: Regard the previous problem as a criterion to compare orientations. You pick the form ω and the point of evaluation.)
- 7. The manifold $\partial \mathbf{H}^k$ can be oriented as the boundary of \mathbf{H}^k with the usual orientation. It can also be oriented using the usual orientation of \mathbf{R}^{k-1} (using the obvious identification of $\partial \mathbf{H}^k$ with \mathbf{R}^{k-1}). Prove that these orientations agree if and only if k is even.