PUNE INSTITUTE OF COMPUTER TECHNOLOGY

DHANKAWADI, PUNE –43

SCHEDULE OF LAB ASSIGNMENTS

ACADEMIC YEAR: 2020-2021

Department: Computer Engineering. Date: 04/08/2020

Class: B.E Semester: I

Subject: Laboratory Practice I (410246) Examination scheme:

TW-50, PR-50

1 W-50, FK-50			
Group	A: 4102	41:High Performance Computing	
Four a	ssignme	nts individually and any one mini-project with group of 2-3	
studen	ts.		
Sr.No	Assign	Problem Statement	Last Date for
•	. No.		Performance
1	A1	a) Implement Parallel Reduction using Min, Max, Sum and	21/08/2020
		Average operations.	
		b) Write a CUDA program that, given an N-element vector, find-	
		The maximum element in the vector	
		The minimum element in the vector	
		The arithmetic mean of the vector	
		The standard deviation of the values in the vector	
		Test for input N and generate a randomized vector V of length N	
		(N should be large). The program should generate output as the	
		two computed maximum values as well as the time taken to find	
		each value.	
2	A2	Vector and Matrix Operations-	04/09/2020
		Design parallel algorithm to	
		1. Add two large vectors	
		2. Multiply Vector and Matrix	

		3. Multiply two N × N arrays using n ² processors	
3	A3	Parallel Sorting Algorithms-	14/08/2020
		For Bubble Sort and Merger Sort, based on existing sequential	
		algorithms, design and implement parallel algorithm utilizing all	
		resources available.	
4	A4	Parallel Search Algorithm-	
		Design and implement parallel algorithm utilizing all resources	
		available. for	
		1. Binary Search for Sorted Array	
		2. Best-First Search that (traversal of graph to reach a target	
		in the shortest possible path)	
		Group A: Sample Mini Projects	
1		Compression Module (Image /Video)	31/10/2020
		Large amount of bandwidth is required for transmission or storage	
		of images. This has driven the research area of image compression	
		to develop parallel algorithms that compress images.	
		OR	
		For video: RGB To YUV Transform concurrently on many core	
		GPU	
2		Generic Compression: Run length encoding concurrently on	31/10/2020
		many core GPU	
3		Encoding: Huffman encoding concurrently on many core GPU	31/10/2020
	-	242: Artificial Intelligence & Robotics	
Four	assignm	ents individually and any one mini-project with group of 2-3	
stude	_		11/00/2022
5	B1	Solve 8-puzzle problem using A* algorithm. Assume any initial	11/09/2020
		configuration and define goal configuration clearly.	
		OR	
		Solve following 6-tiles problem stepwise using A* algorithm,	
		Initial Configuration	

		B W B W
		Final configuration:
		B B W W W
		Constraint: Tiles can be shifted left or right 1 or 2 positions with
	B2	cost 1 and 2 respectively. Implement any one of the following Expert System: 25/09/2020
6		1. Medical Diagnosis of 10 diseases based on adequate
		symptoms
		2. Identifying birds of India based on characteristics
		OR
		Develop elementary chatbot for suggesting investment as per the
		customers need.
7	В3	Implement goal stack planning for the following configurations 10/10/2020
		from the blocks world,
		B C D B A D Start Goal
		OR
		Implement syntax analysis for the assertive English statements.
		The stages to be executed are,
		Sentence segmentation
		Word tokenization
		Part-of-speech/morpho syntactic tagging
		Syntactic parsing (Use any of the parser like Stanford)
8	B4	Constraint Satisfaction Problem: 24/10/2020
		Implement crypt-arithmetic problem or n-queens or graph coloring

		problem (Branch and Bound and Backtracking)	
		OR	
		Use Heuristic Search Techniques to Implement Hill-Climbing	
		Algorithm.	
Group	BAIR	Mini-project	31/10/2020
Group	C: 4102	43-Data Analytics	
Four a	ssignme	nts individually and any one mini-project with group of 2-3	
studen	ıts.		
	C1	Download the Iris flower dataset or any other dataset into a	07/08/2020
9		DataFrame. (eg https://archive.ics.uci.edu/ml/datasets/Iris) Use	
		Python/R and Perform following –	
		 How many features are there and what are their types (e.g., 	
		numeric, nominal)?	
		Compute and display summary statistics for each feature	
		available in the dataset. (eg. minimum value, maximum	
		value, mean, range, standard deviation, variance and	
		percentiles	
		 Data Visualization-Create a histogram for each feature in 	
		the dataset to illustrate the feature distributions. Plot each	
		histogram.	
		 Create a boxplot for each feature in the dataset. All of the 	
		•	
		boxplots should be combined into a single plot. Compare	
		distributions and identify outliers.	
	C2	Download Pima Indians Diabetes dataset. Use Naive Bayes"	18/09/2020
10		Algorithm for classification Load the data from CSV file and split	
		it into training and test datasets. Summarize the properties in the	
		training dataset so that we can calculate probabilities and make	
		predictions. Classify samples from a test dataset and a summarized	
		training dataset.	
11	C3	Bigmart Sales Analysis: For data comprising of transaction	05/10/2020

		records of a sales store. The data has 8523 rows of 12 variables.	
		Predict the sales of a store. Sample Test data set available here	
		https://datahack.analyticsvidhya.com/contest/practice-problem-	
		big-mart-sales-iii/	
12	C4	Twitter Data Analysis: Use Twitter data for sentiment analysis.	16/10/2020
		The dataset is 3MB in size and has 31,962 tweets. Identify the	
		tweets which are hate tweets and which are not. Sample Test	
		data set available here	
		https://datahack.analyticsvidhya.com/contest/practice-problem-	
		twitter-sentiment-analysis/	
			31/10/2020
		Group C: Sample Miniprojects	
	1	Use Movies Dataset. Write the map and reduce methods to	
		determine the average ratings of movies. The input consists of a	
		series of lines, each containing a movie number, user number,	
		rating, and a timestamp: The map should emit movie number and	
		list of rating, and reduce should return for each movie number a	
		list of average rating.	
	2	Time Series Analysis: Use time series and forecast traffic on a	
		mode of transportation. Use at least two methods.	
		Sample Test data set available here	
		https://datahack.analyticsvidhya.com/contest/practice-problem-	
		time-series-2/	
	3	Trip History Analysis: Use trip history dataset that is from a bike	
		sharing service in the United States. The data is provided quarter-	
		wise from 2010 (Q4) onwards. Each file has 7 columns. Predict	
		the class of user. Make use of at least two classification algorithms	
		and provide comparative analysis. Sample Test data set available	
		here https://www.capitalbikeshare.com/trip-history-data	

Subject Coordinator (Hemlata P. Channe)

Head, Dept. of Computer Engg. (Prof.M.S.Takalikar)