Demonstrações dos Teoremas - Unidade $2\,$

Convergência Estocástica e Resultados Limite Todas as Provas Apresentadas em Aula

Curso de Inferência Estatística

Outubro 2025

Sumário

1	Intr	odução	2					
2	Resi	o 1P: Lei Fraca dos Grandes Números (Versão Simples) 2						
3	Resi	Resultado 2P: Convergência via Momentos						
4	Resultado 3P: Lei Fraca dos Grandes Números de Khinchin							
5	Resultado 5P: Teorema da Função Contínua							
6	Teo	Teorema de Slutsky (Resultado $3D/39$)						
7	Teo	Teorema Central do Limite (Resultado 3.7.6.1(a))						
8	Teo	Teorema de Mann-Wald / Método Delta (3.7.6.2(a))						
9	Ran 9.1	king de Prioridade das Demonstrações	9					
		Tabela de Avaliação	9					
	0.2		9					
		· · · · · · · · · · · · · · · · · · ·	10					
			10					
		9.2.4 4º Lugar: LFGN de Khinchin (Nota: 8.05)	10					
		9.2.5 5º Lugar: Teorema da Função Contínua (Nota: 7.40)						
	9.3	Estratégia de Estudo Recomendada						
	9.4	Observações Finais	11					

1 Introdução

Este documento contém todas as demonstrações de teoremas apresentadas nas aulas da Unidade 2. O objetivo é fornecer um material de estudo organizado para preparação para as avaliações, onde demonstrações são frequentemente cobradas.

Ao final do documento, apresentamos um **ranking de prioridade** das demonstrações mais importantes para estudo, considerando complexidade técnica, importância fundamental e aplicabilidade em questões.

2 Resultado 1P: Lei Fraca dos Grandes Números (Versão Simples)

Teorema 2.1 (LFGN - Versão Simples). Sejam X_1, \ldots, X_n v.a.'s i.i.d. com $\mathbb{E}(X_i) = \mu < \infty$ e $\text{Var}(X_i) = \sigma^2 < \infty$. Então:

$$\overline{X}_n \xrightarrow{P}_{n \to \infty} \mu$$

Demonstração. Para um $\varepsilon > 0$ qualquer, pela desigualdade de Chebyshev:

$$P(|\overline{X}_n - \mu| \ge \varepsilon) = P((\overline{X}_n - \mu)^2 \ge \varepsilon^2)$$
(1)

$$\leq \varepsilon^{-2} \mathbb{E} \left[\left(\overline{X}_n - \mu \right)^2 \right]$$
(2)

$$= \varepsilon^{-2} \operatorname{Var}(\overline{X}_n) \tag{3}$$

$$= \varepsilon^{-2} \operatorname{Var} \left(\frac{1}{n} \sum_{i=1}^{n} X_i \right) \tag{4}$$

$$= \varepsilon^{-2} \cdot \frac{1}{n^2} \sum_{i=1}^{n} \operatorname{Var}(X_i) \quad \text{(independência)}$$
 (5)

$$=\varepsilon^{-2}\cdot\frac{n\sigma^2}{n^2}\tag{6}$$

$$= \frac{\sigma^2}{n\,\varepsilon^2} \xrightarrow{n \to \infty} 0 \tag{7}$$

Logo,
$$\overline{X}_n \xrightarrow{P}_{n \to \infty} \mu$$
.

Observação 2.2 (Pontos-chave da demonstração). 1. Uso da desigualdade de Chebyshev para limitar a probabilidade

- 2. Cálculo da variância da média amostral: $\operatorname{Var}(\bar{X}_n) = \sigma^2/n$
- 3. A taxa de convergência é O(1/n)

3 Resultado 2P: Convergência via Momentos

Teorema 3.1 (Convergência via Momentos). Sejam $\{T_n, n \geq 1\}$ uma sequência de variáveis aleatórias tais que para algum $r \geq 0$ e $a \in \mathbb{R}$ vale:

$$\mathbb{E}\left[|T_n - a|^r\right] \xrightarrow{n \to \infty} 0$$

 $Ent\tilde{a}o\ T_n \xrightarrow{P}_{n\to\infty} a.$

Demonstração. Para qualquer $\varepsilon > 0$, pela desigualdade de Markov:

$$P\{|T_n - a| \ge \varepsilon\} = P\{|T_n - a|^r \ge \varepsilon^r\}$$
(8)

$$\leq \frac{\mathbb{E}[|T_n - a|^r]}{\varepsilon^r} \tag{9}$$

Como por hipótese $\mathbb{E}[|T_n - a|^r] \xrightarrow{n \to \infty} 0$, temos:

$$P\{|T_n - a| \ge \varepsilon\} \le \frac{\mathbb{E}[|T_n - a|^r]}{\varepsilon^r} \xrightarrow{n \to \infty} 0$$

Portanto,
$$T_n \xrightarrow{P}_{n \to \infty} a$$
.

Observação 3.2 (Utilidade). Este resultado é muito útil porque:

- 1. Basta verificar convergência de momentos (mais fácil de calcular)
- 2. Funciona para qualquer r > 0, incluindo r = 2 (convergência em média quadrática)
- 3. É frequentemente usado para provar que $S_n^2 \xrightarrow{P} \sigma^2$

4 Resultado 3P: Lei Fraca dos Grandes Números de Khinchin

Teorema 4.1 (LFGN de Khinchin). Sejam X_1, \ldots, X_n v.a.'s reais i.i.d. com $E[X_i] = \mu < \infty$. Então:

$$\overline{X}_n \xrightarrow{P}_{n \to \infty} \mu$$

Demonstração. Sejam $M_{\overline{X}_n}(t)$ e $M_{X_i}(t)$ as f.m.g. de $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ e X_i , respectivamente.

Para $t \in \mathbb{R}$:

$$M_{\overline{X}_n}(t) = M_{\frac{S_n}{n}}(t) = \mathbb{E}\left[e^{t\frac{S_n}{n}}\right]$$
(10)

$$= \mathbb{E}\left[e^{\frac{t}{n}\sum_{i=1}^{n}X_{i}}\right] \tag{11}$$

$$= \prod_{i=1}^{n} M_{X_i} \left(\frac{t}{n} \right) \quad \text{(independência)} \tag{12}$$

$$= \left[M_{X_1} \left(\frac{t}{n} \right) \right]^n \quad \text{(identicamente distribuídas)} \tag{13}$$

Expandindo $M_{X_1}\left(\frac{t}{n}\right)$ em série de Taylor em torno de zero até a 1ª ordem: Dado que $M_{X_1}(0) = 1$ e $M'_{X_1}(0) = \mu$, temos:

$$M_{X_1}\left(\frac{t}{n}\right) = M_{X_1}(0) + M'_{X_1}(0)\frac{t}{n} + o\left(\frac{t}{n}\right)$$
(14)

$$=1+\mu\frac{t}{n}+o\left(\frac{t}{n}\right)\tag{15}$$

Portanto:

$$M_{\overline{X}_n}(t) = \left[1 + \frac{\mu t}{n} + o\left(\frac{t}{n}\right)\right]^n$$

Usando o resultado limite (R.3): $\left(1+\frac{k}{n}\right)^n \xrightarrow{n\to\infty} e^k$:

$$M_{\overline{X}_n}(t) \xrightarrow{n \to \infty} e^{t\mu} = M_{\mu}(t)$$

Como a variável limite é degenerada em μ , temos $\overline{X}_n \xrightarrow{P}_{n \to \infty} \mu$.

Observação 4.2 (Vantagem sobre Resultado 1P). Esta versão não requer variância finita, apenas média finita. É mais geral e poderosa!

5 Resultado 5P: Teorema da Função Contínua

Teorema 5.1 (Teorema da Função Contínua para Convergência em Probabilidade). Sejam $\{U_n, n \geq 1\}$ uma sequência de v.a.'s tal que $U_n \xrightarrow{P} u$ e $g(\cdot)$ uma função contínua. Então:

$$g(U_n) \xrightarrow{P} n \to \infty g(u)$$

Demonstração. Note que se g(x) é contínua em x=u, então pela definição de continuidade: dado algum $\varepsilon > 0$, existe $\delta > 0$ tal que

$$|x - u| < \delta \quad \Rightarrow \quad |g(x) - g(u)| < \varepsilon$$

Equivalentemente, pela contrapositiva:

$$|q(x) - q(u)| > \varepsilon \quad \Rightarrow \quad |x - u| > \delta$$

Portanto, para n suficientemente grande:

$$0 \le P\left(|g(U_n) - g(u)| \ge \varepsilon\right) \tag{16}$$

$$\leq P\left(|U_n - u| \geq \delta\right) \tag{17}$$

Como $U_n \xrightarrow{P} u$, sabemos que $P(|U_n - u| \ge \delta) \xrightarrow{n \to \infty} 0$. Pelo teorema do confronto (squeeze theorem):

$$P(|g(U_n) - g(u)| \ge \varepsilon) \xrightarrow{n \to \infty} 0$$

Portanto,
$$g(U_n) \xrightarrow{P} n \to \infty g(u)$$
.

Observação 5.2 (Aplicação Importante). Este teorema permite:

- 1. Se $\bar{X}_n \xrightarrow{P} \mu$, então $(\bar{X}_n)^2 \xrightarrow{P} \mu^2$
- 2. Se $S_n^2 \xrightarrow{P} \sigma^2$, então $S_n \xrightarrow{P} \sigma$
- 3. Transformações de estimadores consistentes são consistentes

6 Teorema de Slutsky (Resultado 3D/39)

Teorema 6.1 (Teorema de Slutsky). Sejam $\{U_n, n \geq 1\}$ e $\{V_n, n \geq 1\}$ duas sequências de v.a. 's tais que

$$U_n \xrightarrow{d} U \quad e \quad V_n \xrightarrow{p} v \quad (constante)$$

Então:

1.
$$U_n + V_n \xrightarrow{d} U + v$$

2.
$$U_n V_n \xrightarrow{d} U \cdot v$$

3.
$$U_n/V_n \xrightarrow{d} U/v$$
, assumindo que $P(V_n = 0) = 0$, $\forall n \in v \neq 0$

Esboço da prova do item (ii). Vamos provar que $U_n V_n \xrightarrow{d} U \cdot v$.

Podemos escrever:

$$U_n V_n = U_n v + U_n (V_n - v)$$

Precisamos mostrar que:

1. $U_n v \xrightarrow{d} Uv$ (multiplicação por constante preserva convergência em distribuição)

2.
$$U_n(V_n-v) \xrightarrow{P} 0$$

Para o item (2): Como $U_n \xrightarrow{d} U$, a sequência $\{U_n\}$ é limitada em probabilidade, isto é, para qualquer $\eta > 0$, existe M > 0 tal que $P(|U_n| > M) < \eta$ para n suficientemente grande.

Como $V_n \xrightarrow{p} v$, para qualquer $\delta > 0$, temos $P(|V_n - v| > \delta) \to 0$.

Portanto:

$$P(|U_n(V_n - v)| > \varepsilon) \le P(|U_n| > M) + P(|U_n| \le M, |V_n - v| > \varepsilon/M)$$
(18)

$$<\eta + P(|V_n - v| > \varepsilon/M)$$
 (19)

$$\rightarrow \eta$$
 quando $n \rightarrow \infty$ (20)

Como η é arbitrário, $U_n(V_n - v) \xrightarrow{P} 0$.

Pelo teorema de Slutsky para soma, $U_n V_n = U_n v + U_n (V_n - v) \xrightarrow{d} U v + 0 = U v$. \square

Observação 6.2 (Importância Prática). O Teorema de Slutsky é essencial para:

- Substituir σ por S_n em estatísticas assintóticas
- Construir intervalos de confiança com parâmetros estimados
- Desenvolver testes de hipóteses práticos

7 Teorema Central do Limite (Resultado 3.7.6.1(a))

Teorema 7.1 (TCL - Lindeberg-Lévy). Sejam X_1, \ldots, X_n v.a.'s i.i.d. com $\mu = \mathbb{E}\{X_i\} < \infty$ e $\sigma^2 = \text{Var}\{X_i\} < \infty$. Então:

$$Z_n = \sqrt{n} \left(\frac{\bar{X}_n - \mu}{\sigma} \right) = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \xrightarrow{d} N(0, 1), \quad n \to \infty$$

Esboço usando função geradora de momentos. Defina $Y_i = \frac{X_i - \mu}{\sigma}$, então Y_i são i.i.d. com $\mathbb{E}[Y_i] = 0$ e $\text{Var}(Y_i) = 1$.

Note que:

$$Z_n = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} = \sqrt{n} \cdot \frac{1}{n} \sum_{i=1}^n \frac{X_i - \mu}{\sigma} = \frac{1}{\sqrt{n}} \sum_{i=1}^n Y_i$$

A f.m.g. de Z_n é:

$$M_{Z_n}(t) = \mathbb{E}\left[\exp\left(\frac{t}{\sqrt{n}}\sum_{i=1}^n Y_i\right)\right]$$
 (21)

$$= \prod_{i=1}^{n} \mathbb{E}\left[\exp\left(\frac{t}{\sqrt{n}}Y_i\right)\right] \tag{22}$$

$$= \left[\mathbb{E} \left[e^{\frac{t}{\sqrt{n}}Y_1} \right] \right]^n \tag{23}$$

$$= \left[M_{Y_1} \left(\frac{t}{\sqrt{n}} \right) \right]^n \tag{24}$$

Expandindo $M_{Y_1}(s)$ em série de Taylor em torno de s=0:

$$M_{Y_1}(s) = M_{Y_1}(0) + M'_{Y_1}(0)s + \frac{M''_{Y_1}(0)}{2}s^2 + o(s^2)$$

Como $\mathbb{E}[Y_1] = 0$ e $Var(Y_1) = 1$:

- $M_{Y_1}(0) = 1$
- $M'_{Y_1}(0) = \mathbb{E}[Y_1] = 0$
- $M_{Y_1}''(0) = \mathbb{E}[Y_1^2] = 1$

Portanto:

$$M_{Y_1}\left(\frac{t}{\sqrt{n}}\right) = 1 + 0 + \frac{1}{2} \cdot \frac{t^2}{n} + o\left(\frac{t^2}{n}\right) = 1 + \frac{t^2}{2n} + o\left(\frac{1}{n}\right)$$

Logo:

$$M_{Z_n}(t) = \left[1 + \frac{t^2}{2n} + o\left(\frac{1}{n}\right)\right]^r$$

Usando o fato que $\left(1 + \frac{a}{n}\right)^n \to e^a$:

$$M_{Z_n}(t) \xrightarrow{n \to \infty} e^{t^2/2} = M_Z(t)$$

onde $Z \sim N(0,1)$.

Pelo teorema de continuidade de Lévy, $Z_n \xrightarrow{d} N(0,1)$.

Observação 7.2 (Complexidade da Demonstração). Esta é uma das provas mais técnicas do curso, envolvendo:

- 1. Manipulação de funções geradoras de momentos
- 2. Expansão em série de Taylor
- 3. Resultados limites clássicos
- 4. Teorema de continuidade de Lévy

8 Teorema de Mann-Wald / Método Delta (3.7.6.2(a))

Teorema 8.1 (Teorema de Mann-Wald (Método Delta)). $Seja \{T_n, n \geq 1\}$ uma sequência de v.a. 's reais tais que

$$\sqrt{n} (T_n - \theta) \xrightarrow{n \to \infty} N (0, \sigma^2(\theta))$$

Seja $g(\cdot)$ uma função contínua de valor real com derivada $g'(\theta)$ finita e não nula. Então:

$$\sqrt{n} \left[g(T_n) - g(\theta) \right] \xrightarrow{n \to \infty} N \left(0, \sigma^2(\theta) \left[g'(\theta) \right]^2 \right)$$

Demonstração. Considere:

$$\sqrt{n}\left[g(T_n) - g(\theta)\right] = U_n \cdot V_n$$

onde

$$U_n = \sqrt{n}(T_n - \theta)$$
 e $V_n = \frac{g(T_n) - g(\theta)}{T_n - \theta}$

Por hipótese, $U_n \xrightarrow{d} N(0, \sigma^2(\theta))$.

Note que:

$$T_n - \theta = \frac{U_n}{\sqrt{n}}$$

Como $U_n \xrightarrow{d} N(0, \sigma^2)$ (limitado em distribuição) e $\frac{1}{\sqrt{n}} \xrightarrow{P} 0$, pelo Teorema de Slutsky:

$$T_n - \theta = U_n \cdot \frac{1}{\sqrt{n}} \xrightarrow{P} 0$$

Portanto, $T_n \xrightarrow{P} \theta$.

Agora, pela definição de derivada:

$$g'(\theta) = \lim_{x \to \theta} \frac{g(x) - g(\theta)}{x - \theta}$$

Como $T_n \xrightarrow{P} \theta$ e a função $h(x) = \frac{g(x) - g(\theta)}{x - \theta}$ tem limite $g'(\theta)$ quando $x \to \theta$ (por continuidade de g' em θ), temos:

$$V_n = h(T_n) \xrightarrow{P} g'(\theta)$$

Aplicando o Teorema de Slutsky com $U_n \xrightarrow{d} N(0, \sigma^2)$ e $V_n \xrightarrow{P} g'(\theta)$:

$$\sqrt{n}\left[g(T_n) - g(\theta)\right] = U_n \cdot V_n \xrightarrow{d} N(0, \sigma^2) \cdot g'(\theta) = N\left(0, \left[g'(\theta)\right]^2 \sigma^2\right)$$

Observação 8.2 (Estrutura da Prova). A prova combina elegantemente:

- 1. Aproximação de Taylor de primeira ordem (implicitamente via definição de derivada)
- 2. Teorema de Slutsky (duas vezes!)
- 3. Teorema da função contínua

É uma demonstração que sintetiza várias ferramentas do curso.

9 Teorema Central do Limite para Variância Amostral (3.7.6.3(a))

Teorema 9.1 (TCL para S_n^2). Sejam X_1, \ldots, X_n v.a.'s i.i.d. com média μ , variância σ^2 e $\mu_4 = \mathbb{E}[(X_1 - \mu)^4]$. Assuma que $0 < \mu_4 < \infty$ e $\mu_4 > \sigma^4$ (curtose > 1). Então:

$$\sqrt{n}\left(S_n^2 - \sigma^2\right) \xrightarrow[n \to \infty]{d} N\left(0, \mu_4 - \sigma^4\right)$$

Demonstração. Considere

$$W_n \triangleq (n-1)n^{-1}S_n^2$$
, $Y_i \triangleq (X_i - \mu)^2$ para $i = 1, \dots, n$

e

$$\overline{Y}_n = n^{-1} \sum_{i=1}^n Y_i.$$

Assim,

$$W_n = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X}_n)^2$$
 (25)

$$= \frac{1}{n} \sum_{i=1}^{n} \left(X_i - \mu + \mu - \overline{X}_n \right)^2 \tag{26}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[(X_i - \mu)^2 + 2(X_i - \mu)(\mu - \overline{X}_n) + (\mu - \overline{X}_n)^2 \right]$$
 (27)

$$= \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2 - 2(\overline{X}_n - \mu)^2 + (\overline{X}_n - \mu)^2$$
 (28)

$$=\overline{Y}_n - (\overline{X}_n - \mu)^2 \tag{29}$$

Assim, vale-se

$$\sqrt{n} (W_n - \sigma^2) = \sqrt{n} (\overline{Y}_n - \sigma^2) - \sqrt{n} (\overline{X}_n - \mu)^2$$

$$= U_n + V_n$$
(30)

Note que $\{Y_i\}$ $\stackrel{\text{i.i.d.}}{\sim} [\mathbb{E}[Y_i] = \sigma^2, \text{ Var}(Y_i) = \mu_4 - \sigma^4].$ Daí, pelo Teorema Central do Limite:

$$U_n \xrightarrow[n \to \infty]{d} N(0, \mu_4 - \sigma^4)$$
 como já discutido,

 \mathbf{e}

$$U_n \xrightarrow[n \to \infty]{P} 0$$

Daí, pelo Teorema de Slutsky:

$$\sqrt{n} \left(W_n - \sigma^2 \right) \xrightarrow[n \to \infty]{d} N(0, \mu_4 - \sigma^4)$$

Agora escrevemos

$$\sqrt{n}\left(S_n^2 - \sigma^2\right) = \sqrt{n}\left(\frac{n}{n-1}W_n - \sigma^2\right) \tag{32}$$

$$=\sqrt{n}\left(\frac{n}{n+1}-1+1\right)\left(W_n-\sigma^2\right) \tag{33}$$

$$= \sqrt{n} \left(W_n - \sigma^2 \right) + \frac{\sqrt{n}}{n-1} W_n \tag{34}$$

Como

$$\sqrt{n} \left(W_n - \sigma^2 \right) \xrightarrow[n \to \infty]{d} N(0, \mu_4 - \sigma^4),$$

$$W_n \xrightarrow[n \to \infty]{P} \sigma^2, \quad \frac{\sqrt{n}}{n-1} \xrightarrow[n \to \infty]{0}, \quad \text{e} \quad \frac{\sqrt{n}}{n-1} W_n \xrightarrow[n \to \infty]{P} 0,$$

então, do Teorema de Slutsky:

$$\sqrt{n} \left(S_n^2 - \sigma^2 \right) \xrightarrow[n \to \infty]{d} N(0, \mu_4 - \sigma^4)$$

Observação 9.2 (Importância Prática). Este teorema permite construir intervalos de confiança e testes de hipóteses para σ^2 sem assumir normalidade da população, apenas usando propriedades assintóticas.

10 Teorema da Função Contínua para Convergência em Distribuição (3.7.6.4(a))

Teorema 10.1 (Teorema da Função Contínua para Convergência em Distribuição). Sejam $\{U_n, n \geq 1\}$ uma sequência de v.a.'s reais e U uma variável real. Seja $g(\cdot)$ uma função contínua de valor real. Se $U_n \xrightarrow[n \to \infty]{d} U$, então:

$$g(U_n) \xrightarrow[n \to \infty]{d} g(U)$$

Observação 10.2. Este é o análogo para convergência em distribuição do Resultado 5P (para convergência em probabilidade). É essencial para transformações de estatísticas que convergem em distribuição.

Exercício (11) Q: Aplicação do Teorema

Enunciado: Sejam X_1, \ldots, X_n v.a.'s i.i.d. reais tais que $\mu = \mathbb{E}\{X_i\} < \infty$ e $\sigma^2 = \text{Var}\{X_i\} < \infty$. Mostre que

$$n\left(\frac{\overline{X}_n - \mu}{\sigma}\right)^2 \xrightarrow[n \to \infty]{d} Q,$$

tal que $Q \sim \chi_1^2$.

Solução: Defina $Z_n \triangleq \sqrt{n} \left(\frac{\overline{X}_n - \mu}{\sigma} \right)$. Pelo TCL, tem-se

$$Z_n \xrightarrow[n \to \infty]{d} Z \sim N(0,1).$$

Pelo Teorema (3.7.6.4(a)), como $g(x) = x^2$ é uma função contínua,

$$g(Z_n) = n \left(\frac{\overline{X}_n - \mu}{\sigma}\right)^2 \xrightarrow[n \to \infty]{d} Z^2,$$

isto é, converge para $Q \sim \chi_1^2$ (pois o quadrado de uma N(0,1) tem distribuição quiquadrado com 1 grau de liberdade).

11 Estimadores Consistentes (Seção 3.7)

11.1 Definição de Consistência

Definição 11.1 (Consistência no Sentido Fraco (3.7.1)). Seja

$$\{T_n = T_n(X_1, \dots, X_n); n \ge 1\}$$

uma sequência de estimadores para $\tau(\theta)$ tal que $\theta \in \Theta \subset \mathbb{R}^p$.

 T_n é consistente no sentido fraco para $\tau(\theta)$ se, e só se

$$T_n \xrightarrow[n \to \infty]{P} \tau(\theta)$$

 T_n é **inconsistente** para $\tau(\theta)$ se T_n não converge em probabilidade para $\tau(\theta)$.

Observação 11.2 (Observação 1). Dados $\varepsilon > 0$ e $\delta \in (0,1)$, existe $n_0 = n_0(\varepsilon, \delta, \theta)$ tal que:

$$P_{\theta}\{|T_n - \theta| > \varepsilon\} \le \delta \iff P_{\theta}\{|T_n - \theta| \le \varepsilon\} \ge 1 - \delta, \quad \forall n \ge n_0$$

Observação 11.3 (Observação 2). T_n é consistente se, e só se

$$\lim_{n \to \infty} P_{\theta}\{|T_n - \theta| > \varepsilon\} = 0$$

ou equivalentemente

$$\lim_{n \to \infty} P_{\theta}\{|T_n - \theta| \le \varepsilon\} = 1$$

Observação 11.4 (Consistência via EQM). $T_n \xrightarrow[n \to \infty]{P} \theta$ se $EQM_{\theta}[T_n] \xrightarrow[n \to \infty]{} 0$.

Isto pode ser verificado pela desigualdade de Chebyshev. Para qualquer $\varepsilon > 0$ e $\theta \in \Theta$:

$$P_{\theta}(|T_n - \theta| > \varepsilon) \le \frac{E_{\theta}[(T_n - \theta)^2]}{\varepsilon^2} = \frac{EQM_{\theta}[T_n]}{\varepsilon^2} \xrightarrow[n \to \infty]{} 0$$

Deste último resultado, $T_n \xrightarrow[n \to \infty]{P} \theta$ implica que se T_n é centrado, basta checar $Var_{\theta}[T_n] \xrightarrow[n \to \infty]{P} 0$.

11.2 Exemplo: Consistência do Máximo da Uniforme

Questão (3.23): Sejam X_1, \ldots, X_n uma amostra de $X \sim U(0, \theta)$. Mostre que o estimador de MV para θ , $T_n = X_{n:n}$, é consistente para θ .

Solução: A função de distribuição de $T_n = X_{n:n}$ é:

$$F_{T_n}(t) = P_{\theta}(T_n \le t) = P_{\theta} \left\{ \bigcap_{i=1}^n X_i \le t \right\} = [F_{X_1}(t)]^n = \begin{cases} 0, & t < 0, \\ \left(\frac{t}{\theta}\right)^n, & 0 \le t \le \theta, \\ 1, & t > \theta \end{cases}$$

Para $\varepsilon > 0$:

$$P_{\theta}\{|X_{n:n} - \theta| < \varepsilon\} = P_{\theta}\{\theta - \varepsilon < X_{n:n} < \theta + \varepsilon\}$$
(35)

$$= P_{\theta} \left\{ \theta - \varepsilon < X_{n:n} < \theta \right\} \tag{36}$$

$$= F_{X_{n:n}}(\theta) - F_{X_{n:n}}(\theta - \varepsilon) \tag{37}$$

$$= \begin{cases} 1, & \varepsilon \ge \theta, \\ 1 - \left(\frac{\theta - \varepsilon}{\theta}\right)^n, & \varepsilon < \theta \end{cases}$$
 (38)

Portanto:

$$\lim_{n \to \infty} P_{\theta} \{ |X_{n:n} - \theta| < \varepsilon \} = 1$$

Logo,
$$X_{n:n} \xrightarrow[n \to \infty]{P} \theta$$
.

Observação 11.5 (Tamanho Amostral Mínimo). Um fato interessante é que se pode obter o tamanho amostral mínimo n_0 tal que

$$P(|X_{n:n} - \theta| < \varepsilon) \ge 1 - \delta,$$

em que $\varepsilon > 0$ e $\delta \in (0,1)$ são constantes pré-especificadas para $\varepsilon < \theta$.

De $1 - \left(\frac{\theta - \varepsilon}{\theta}\right)^n \ge 1 - \delta$, obtemos $\left(\frac{\theta - \varepsilon}{\theta}\right)^n \le \delta$, logo:

$$n \geq \frac{\log \delta}{\log \left(\frac{\theta - \varepsilon}{\theta}\right)}$$

Assim:

$$n_0 = \left\lceil \frac{\log \delta}{\log \left(\frac{\theta - \varepsilon}{\theta} \right)} \right\rceil + 1$$

Para $\theta \leq \varepsilon$: $n_0 = 1$.

12 Propriedades Assintóticas dos EMVs (Seção 3.8)

12.1 Eficiência Relativa Assintótica

Definição 12.1 (Eficiência Relativa Assintótica (3.4.1)). Se dois estimadores $T_n^{(1)}$ e $T_n^{(2)}$ para $g(\theta)$ são ambos assintoticamente normais:

$$\sqrt{n} \left(T_n^{(1)} - g(\theta) \right) \xrightarrow[n \to \infty]{d} N \left(0, \sigma_1^2(\theta) \right)$$

e

$$\sqrt{n} \left[T_n^{(2)} - g(\theta) \right] \xrightarrow[n \to \infty]{d} N \left(0, \sigma_2^2(\theta) \right),$$

então a eficiência relativa assintótica de $T^{(2)}$ com respeito a $T^{(1)}$ é definida como

$$\frac{\sigma_1^2(\theta)}{\sigma_2^2(\theta)}$$

Observação 12.2. Os EMVs são assintoticamente eficientes, ou seja, atingem a menor variância assintótica possível (o limite inferior de Cramér-Rao assintótico).

12.2 Teorema Central do Limite para EMVs

Teorema 12.3 (TCL para os EMVs (3.8.1)). Sejam X_1, \ldots, X_n uma amostra de X com fdp (ou fmp) $f(x; \theta)$ para $x \in \mathbb{X} \subset \mathbb{R}$ e $\theta \in \Theta \subset \mathbb{R}$ tal que Θ é um intervalo aberto. Assuma que:

- (A1) $\theta \mapsto f(x;\theta)$ é três vezes diferenciável sobre Θ , $\forall x \in \mathbb{X}$.
- (A2) Condições de regularidade para troca de derivação e integração:

$$\int_{\mathbb{X}} \frac{\partial}{\partial \theta} f(x; \theta) \, dx = 0 \quad e \quad \int_{\mathbb{X}} \frac{\partial^2}{\partial \theta^2} f(x; \theta) \, dx = 0$$

(A3) A informação de Fisher é finita e positiva:

$$0 < I_X(\theta) \triangleq \mathbb{E}_{\theta} \left[\left(\frac{\partial \log f(x; \theta)}{\partial \theta} \right)^2 \right] < \infty, \quad \forall \theta \in \Theta$$

(A4) Para cada $\theta_0 \in \Theta$, existe $\varepsilon = \varepsilon(\theta_0) > 0$ tal que

$$\left| \frac{\partial^3 \log f(x; \theta)}{\partial \theta^3} \right| \le g(x), \quad \forall \theta \in [\theta_0 - \varepsilon, \theta_0 + \varepsilon],$$

em que $\int_X g(x)f(x;\theta) dx < \infty$.

(A5) A equação de verossimilhança

$$\frac{\partial l(\theta)}{\partial \theta} = 0 \quad \Leftrightarrow \quad \sum_{i=1}^{n} \frac{\partial \log f(x_i; \theta)}{\partial \theta} = 0$$

tem uma solução consistente $\hat{\theta}_n$.

Então:

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow[n \to \infty]{d} N(0, I_X^{-1}(\theta_0)).$$

Observação 12.4 (Interpretação). Este teorema fundamental estabelece que, sob condições de regularidade:

- 1. Os EMVs são assintoticamente não-viesados
- 2. Os EMVs são assintoticamente normais
- 3. Os EMVs atingem a variância assintótica mínima (limite de Cramér-Rao)
- 4. A taxa de convergência é \sqrt{n}

Estas propriedades justificam a popularidade do método de máxima verossimilhança na prática estatística.

13 Ranking de Prioridade das Demonstrações

Esta seção apresenta um ranking das demonstrações mais importantes para estudo, considerando três critérios com pesos diferentes:

- Complexidade Técnica (30%): Dificuldade matemática e número de passos
- Importância Fundamental (40%): Base para outros resultados e centralidade no curso
- Aplicabilidade em Questões (30%): Frequência de uso em exercícios e exames

13.1 Tabela de Avaliação

Teorema	Compl.	Import.	Aplic.	Nota Final
	(0-10)	(0-10)	(0-10)	(ponderada)
TCL	9.5	10	10	9.85
Método Delta (Mann-Wald)	8.5	9	9.5	8.95
Teorema de Slutsky	7.0	9.5	9.0	8.65
TCL para S_n^2	8.0	8.0	8.5	8.15
LFGN de Khinchin	8.0	8.5	7.5	8.05
Teorema da Função Contínua (Dist.)	5.5	7.5	8.0	7.15
Teorema da Função Contínua (Prob.)	6.0	8.0	8.0	7.40
LFGN Versão Simples	5.0	7.5	7.0	6.65
Convergência via Momentos	4.5	7.0	6.5	6.10

Tabela 1: Avaliação e ranking dos teoremas (atualizado)

13.2 Ranking Final: Top 5 Demonstrações

13.2.1 1º Lugar: Teorema Central do Limite (Nota: 9.85)

Por que estudar em detalhes:

- É o teorema mais importante da estatística
- Demonstração mais complexa e técnica do curso
- Utiliza múltiplas ferramentas: fmg, série de Taylor, resultados limite
- Praticamente garantido ser cobrado em avaliações
- Base para toda inferência estatística assintótica

Dica de estudo: Entenda cada passo da expansão em série de Taylor e como os resultados limite (R.2) e (R.3) são aplicados.

13.2.2 $2^{\underline{0}}$ Lugar: Método Delta / Teorema de Mann-Wald (Nota: 8.95)

Por que estudar em detalhes:

- Síntese elegante de várias técnicas (Slutsky, função contínua)
- Extremamente prático para questões de transformações
- Demonstração que mostra maturidade matemática
- Frequentemente aparece em questões aplicadas

Dica de estudo: Foque na estrutura da prova: decomposição em $U_n \cdot V_n$, depois aplicação dupla de Slutsky.

13.2.3 3° Lugar: Teorema de Slutsky (Nota: 8.65)

Por que estudar em detalhes:

- Ferramenta essencial para questões práticas
- Permite trabalhar com parâmetros desconhecidos
- Prova relativamente acessível mas profunda
- Usado na prova do Método Delta

Dica de estudo: Entenda o conceito de "limitado em probabilidade" e como ele é usado na prova.

13.2.4 $4^{\underline{0}}$ Lugar: TCL para Variância Amostral S_n^2 (Nota: 8.15)

Por que estudar em detalhes:

- Aplicação prática importante do TCL
- Combina múltiplas técnicas: TCL original + Slutsky
- Essencial para inferência sobre variâncias
- Demonstra manipulação algébrica sofisticada
- Muito útil para questões aplicadas

Dica de estudo: Foque na decomposição $W_n = \overline{Y}_n - (\overline{X}_n - \mu)^2$ e como ela leva à aplicação do Teorema de Slutsky.

13.2.5 $5^{\underline{0}}$ Lugar: LFGN de Khinchin (Nota: 8.05)

Por que estudar em detalhes:

- Versão mais geral que a LFGN simples
- Usa técnica de fmg similar ao TCL (boa preparação)
- Demonstração de complexidade média
- Fundamento para consistência de estimadores

Dica de estudo: Compare com a prova do TCL para ver as similaridades e diferenças na técnica.

13.3 Estratégia de Estudo Recomendada

- 1. **Primeira semana:** Estude profundamente o TCL (1^{0} lugar). Refaça a prova múltiplas vezes até dominar.
- 2. **Segunda semana:** Método Delta e Slutsky (2^0 e 3^0 lugares). Veja como trabalham juntos.
- 3. **Terceira semana:** TCL para S_n^2 (4º lugar) observe como combina TCL original e Slutsky. Depois LFGN de Khinchin (5º lugar).
- 4. **Quarta semana:** Estude os novos tópicos: Consistência de estimadores (definições e exemplos como $X_{n:n}$ para uniforme) e propriedades assintóticas dos EMVs.
- 5. **Revisão:** Compare as técnicas comuns entre as provas (Slutsky aparece em várias, incluindo TCL para S_n^2).
- 6. **Prática:** Resolva exercícios aplicando cada teorema para fixar quando usar cada um. Pratique especialmente transformações usando Método Delta e Teorema da Função Contínua.

13.4 Observações Finais

- As provas dos resultados 1P e 2P (LFGN simples e convergência via momentos) são mais diretas e servem como "aquecimento"
- O TCL é o "ápice técnico- domine-o e as outras provas parecerão mais acessíveis
- \bullet O TCL para S_n^2 é uma excelente aplicação que combina múltiplas técnicas estudadas
- Entender por que cada teorema é verdadeiro é tão importante quanto saber os passos da prova
- Em avaliações, provas de TCL e Método Delta geralmente valem mais pontos
- Os novos tópicos de consistência e EMVs são essenciais para a compreensão de inferência assintótica
- O Teorema 3.8.1 (TCL para EMVs) é fundamental mas sua prova completa é muito técnica foque em entender as condições (A1)-(A5) e suas interpretações