## 116 - Further reductions in NP

### Ⅰ从最优化到决策

- **优化问题**:我们面对一个优化问题 *P*,通常是求最小化的问题
  - 举例来说,问题是找到一个图的最小顶点覆盖
- 我们引入一个阈值 k
- **决策问题**:决策版本的问题被记作  $P_d$ ,具体描述为:给定一个优化问题 P 的实例和一个阈值 k,询问是否存在一个解,使得 P 的值至多为 k
  - 例如,在这里的上下文中,问题变为是否存在一个大小最多为 k 的顶点覆盖

### ■优化问题与决策问题

- 如果我们可以在多项式时间内解决优化问题 P,那么我们也可以在多项式时间内解决其决策版本  $P_d$ 
  - 这是因为决策问题通常是检查是否存在某种满足特定条件的解。如果我们能高效地找到最优解, 那么比较这个解与给定的阈值 k 通常是简单的
- 同样,如果决策问题是 NPH 的,那么其对应的优化问题通常也是 NPH 的
  - 因为决策问题的解通常可以用来构建优化问题的解

## ▋顶点覆盖大小问题

顶点覆盖大小问题 (优化版本)

• 输入: 一个图 G = (V, E)

• 输出: 最小的顶点覆盖的大小

顶点覆盖问题(决策版本)

• 输入: 一个图 G = (V, E) 和一个数字 k

• 输出:是否存在大小至多为 k 的顶点覆盖

### 解决顶点覆盖问题:

- 使用适用于顶点覆盖决策问题  $VC_d$  的算法来找到最小顶点覆盖的值  $k^*$
- 在图中选择一个顶点 v
  - 将顶点 v 及其连接的边移除,得到新的图  $G \{v\}$
  - 如果顶点 v 在任何最小顶点覆盖中,那么新的图  $G \{v\}$  将具有大小为  $k^* 1$  的最小顶点覆盖
  - 检查新的图  $G \{v\}$  是否有大小至多为  $k^* 1$  的顶点覆盖
    - 如果存在这样的顶点覆盖,包含 v 在顶点覆盖中
    - 如果不存在这样的顶点覆盖,不包含 v 在顶点覆盖中
    - 继续选择下一个顶点,重复上述步骤,直到处理完所有顶点

# **|** 子集和问题

优化版本:

• 描述:

- 我们给定一个包含n个物品的集合 $\{1,2,\ldots,n\}$
- 每个物品i有一个非负整数权重 $w_i$
- 我们还给定一个整数上限W
- 目标:
  - 选择一个物品的子集S,使得
    - 子集中所有物品的权重之和不超过 W,即  $\sum_{i \in S} w_i \leq W$
    - 子集中所有物品的权重之和最大化,即最大化 $\sum_{i \in S} w_i$

#### 决策版本:

- 描述:
  - 我们给定一个包含 n 个物品的集合  $T: \{1, 2, ..., n\}$
  - 每个物品 i 有一个非负整数权重  $w_i$
  - 我们还给定一个整数上限 W
- 目标:
  - 决定是否存在一个物品的子集 S,使得该子集的总重量恰好等于 W,即  $\sum_{i \in S} w_i = W$

### 子集和问题的 P/NP

- 属于 NP
  - NP 类问题是指能够在多项式时间内验证其解的正确性的问题
  - 如果我们给定一个候选解S(即一个子集),我们可以轻松验证这个子集是否满足以下条件:

$$\sum_{i \in S} w_i = W$$

- 属于 NPhard
  - 我们将通过从 3-SAT 问题进行归约来证明这一点
  - 给定一个 3CNF 公式  $\varphi$  (包含 m 个子句和 n 个变量),我们将构造一个子集和问题的实例  $\langle T,W\rangle$  ,使得
    - $\varphi$  是可满足的,当且仅当存在一个子集 S 使得 T 的元素和恰好为 W
  - 不失一般性,我们假设:
    - 每个变量都会在某个子句中出现
    - 每个子句中不同时包含同一个变量的肯定与否定形式

#### 规约过程

我们将创建包含 m+n 位数字的整数,其中 m 表示子句的数量,n 表示变量的数量

$$arphi = (x_1 ee \neg x_2 ee \neg x_3) \wedge (\neg x_1 ee \neg x_2 ee \neg x_3) \wedge (\neg x_1 ee x_2 ee x_3) \wedge (x_1 ee x_2 ee x_3)$$

- 将目标和 W 设置为在所有"变量位"上为 1,在所有"子句位"上为 4
  - 在每个变量位上,我们期望选择的子集中的元素权重和为1
  - 在每个子句位上,我们期望选择的子集中的元素权重和为4
- 为每个变量  $x_i$  创建两个整数  $z_i$  和  $y_i$ 
  - 这两个整数分别代表变量  $x_i$  及其否定  $\neg x_i$
  - 每个整数在对应的"变量位"上为1,在其他"变量位"上为0
    - 例如,整数 z<sub>i</sub>和 y<sub>i</sub>在第1位上为1,其余变量位上为0
  - 如果文字  $x_i$  出现在子句  $C_j$  中,整数  $z_i$  在对应的"子句位"上为 1

- 如果文字 $x_i$ 出现在子句 $x_i$ 中,整数 $x_i$ 在对应的"子句位"上为 $x_i$
- 其他所有的"子句位"均设置为 0
- 对于每个子句  $C_j$ ,创建两个整数  $s_j$  和  $t_j$ 
  - 这两个整数在子句位  $C_j$  上有特定的值,在其他位上为 0
  - $s_j$ 在对应的"子句位"上为 1
  - $t_j$ 在对应的"子句位"上为 2

|            | V4 | Va         | V2         | C <sub>1</sub> | C <sub>2</sub> | <b>C</b> <sub>3</sub> | C <sub>4</sub> |                | X1 | <b>X</b> 2 | <b>X</b> 3 | C <sub>1</sub> | C <sub>2</sub> | <b>C</b> <sub>3</sub> | C <sub>4</sub> |            | X1 | <b>X</b> 2 | Х3 | C <sub>1</sub> | C <sub>2</sub> | <b>C</b> <sub>3</sub> | C <sub>4</sub> |
|------------|----|------------|------------|----------------|----------------|-----------------------|----------------|----------------|----|------------|------------|----------------|----------------|-----------------------|----------------|------------|----|------------|----|----------------|----------------|-----------------------|----------------|
|            | X1 | <b>X</b> 2 | <b>X</b> 3 | 01             | 02             | Us                    | U4             |                | A1 | AZ         | Λ3         | 01             | 02             | 03                    | 04             |            | Λ1 | <b>N</b> 2 | Λ3 | 01             | 02             | 03                    | 04             |
|            |    |            |            |                |                |                       |                | Z1             | 1  | 0          | 0          |                |                |                       |                | Z1         | 1  | 0          | 0  | 1              | 0              | 0                     | 1              |
|            |    |            |            |                |                |                       |                | y1             | 1  | 0          | 0          |                |                |                       |                | y1         | 1  | 0          | 0  | 0              | 1              | 1                     | 0              |
|            |    |            |            |                |                |                       |                | <b>Z</b> 2     | 0  | 1          | 0          |                |                |                       |                | <b>Z</b> 2 | 0  | 1          | 0  | 0              | 0              | 0                     | 1              |
|            |    |            |            |                |                |                       |                | <b>y</b> 2     | 0  | 1          | 0          |                |                |                       |                | y2         | 0  | 1          | 0  | 1              | 1              | 1                     | 0              |
|            |    |            |            |                |                |                       |                | <b>Z</b> 3     | 0  | 0          | 1          |                |                |                       |                | <b>Z</b> 3 | 0  | 0          | 1  | 0              | 0              | 1                     | 1              |
|            |    |            |            |                |                |                       |                | у3             | 0  | 0          | 1          |                |                |                       |                | у3         | 0  | 0          | 1  | 1              | 1              | 0                     | 0              |
|            |    |            |            |                |                |                       |                |                |    |            |            |                |                |                       |                |            |    |            |    |                |                |                       |                |
|            |    |            |            |                |                |                       |                |                |    |            |            |                |                |                       |                |            |    |            |    |                |                |                       |                |
|            |    |            |            |                |                |                       |                |                |    |            |            |                |                |                       |                |            |    |            |    |                |                |                       |                |
|            |    |            |            |                |                |                       |                |                |    |            |            |                |                |                       |                |            |    |            |    |                |                |                       |                |
|            |    |            |            |                |                |                       |                |                |    |            |            |                |                |                       |                |            |    |            |    |                |                |                       |                |
|            |    |            |            |                |                |                       |                |                |    |            |            |                |                |                       |                |            |    |            |    |                |                |                       |                |
|            |    |            |            |                |                |                       |                |                |    |            |            |                |                |                       |                |            |    |            |    |                |                |                       |                |
| W          | 1  | 1          | 1          | 4              | 4              | 4                     | 4              | W              | 1  | 1          | 1          | 4              | 4              | 4                     | 4              | W          | 1  | 1          | 1  | 4              | 4              | 4                     | 4              |
|            | X1 | <b>X</b> 2 | <b>X</b> 3 | C <sub>1</sub> | C <sub>2</sub> | <b>C</b> 3            | C4             |                | X1 | <b>X</b> 2 | <b>X</b> 3 | C <sub>1</sub> | C <sub>2</sub> | <b>C</b> 3            | C4             |            |    |            |    |                |                |                       |                |
|            |    |            |            |                |                |                       |                |                |    |            |            |                |                |                       |                |            |    |            |    |                |                |                       |                |
| Z1         | 1  | 0          | 0          | 1              | 0              | 0                     | 1              | Z1             | 1  | 0          | 0          | 1              | 0              | 0                     | 1              |            |    |            |    |                |                |                       |                |
| у1         | 1  | 0          | 0          | 0              | 1              | 1                     | 0              | <b>y</b> 1     | 1  | 0          | 0          | 0              | 1              | 1                     | 0              |            |    |            |    |                |                |                       |                |
| <b>Z</b> 2 | 0  | 1          | 0          | 0              | 0              | 0                     | 1              | <b>Z</b> 2     | 0  | 1          | 0          | 0              | 0              | 0                     | 1              |            |    |            |    |                |                |                       |                |
| y2         | 0  | 1          | 0          | 1              | 1              | 1                     | 0              | <b>y</b> 2     | 0  | 1          | 0          | 1              | 1              | 1                     | 0              |            |    |            |    |                |                |                       |                |
| <b>Z</b> 3 | 0  | 0          | 1          | 0              | 0              | 1                     | 1              | <b>Z</b> 3     | 0  | 0          | 1          | 0              | 0              | 1                     | 1              |            |    |            |    |                |                |                       |                |
| уз         | 0  | 0          | 1          | 1              | 1              | 0                     | 0              | у3             | 0  | 0          | 1          | 1              | 1              | 0                     | 0              |            |    |            |    |                |                |                       |                |
| S1         | 0  | 0          | 0          |                | 0              | 0                     | 0              | S1             | 0  | 0          | 0          | 1              | 0              | 0                     | 0              |            |    |            |    |                |                |                       |                |
| t1         | 0  | 0          | 0          |                | 0              | 0                     | 0              | t1             | 0  | 0          | 0          | 2              | 0              | 0                     | 0              |            |    |            |    |                |                |                       |                |
| S2         | 0  | 0          | 0          | 0              |                | 0                     | 0              | <b>S</b> 2     | 0  | 0          | 0          | 0              | 1              | 0                     | 0              |            |    |            |    |                |                |                       |                |
| t2         | 0  | 0          | 0          | 0              |                | 0                     | 0              | t <sub>2</sub> | 0  | 0          | 0          | 0              | 2              | 0                     | 0              |            |    |            |    |                |                |                       |                |
| <b>S</b> 3 | 0  | 0          | 0          | 0              | 0              |                       | 0              | <b>S</b> 3     | 0  | 0          | 0          | 0              | 0              | 1                     | 0              |            |    |            |    |                |                |                       |                |
| t3         | 0  | 0          | 0          | 0              | 0              |                       | 0              | t3             | 0  | 0          | 0          | 0              | 0              | 2                     | 0              |            |    |            |    |                |                |                       |                |
| S4         | 0  | 0          | 0          | 0              | 0              | 0                     |                | \$4<br>•       | 0  | 0          | 0          | 0              | 0              | 0                     | 1              |            |    |            |    |                |                |                       |                |
| t4         | 0  | 0          | 0          | 0              | 0              | 0                     | 4              | t4<br>W        | 1  | 1          | 1          | 4              | 4              | 4                     | 4              |            |    |            |    |                |                |                       |                |
| W          | 1  | 1          | 1          | 4              | 4              | 4                     | 4              | VV             | '  |            |            | 4              | 4              | 4                     | 4              |            |    |            |    |                |                |                       |                |

#### ┃ 证明 NP-hard

#### ▋其中一种思路

 $\varphi$  是可满足的  $\Rightarrow$  存在一个子集 S 使得 T 的元素和恰好为 W

$$arphi = (x_1 ee 
eg x_2 ee 
eg x_3) \wedge (
eg x_1 ee 
eg x_2 ee 
eg x_3) \wedge (
eg x_1 ee x_2 ee x_3) \wedge (x_1 ee x_2 ee x_3)$$

通过z和y的构造,变量位的总和总是等于111

因为所有子句都得到满足,所以我们在子句位上至少得到一个"1",这个"1"来自于那些在x中被设置为"0"的变量

在这里我们假设 $\neg x_1, \neg x_2, x_3$ 是正确的

如果我们需要 1 个或 2 个更多的 "1" 让 C 的总和达到 "4",我们需要选择合适的  $s_i$  或  $y_i$  ; 同理需要 3 个……

|            | X1 | <b>X</b> 2 | <b>X</b> 3 | C <sub>1</sub> | C <sub>2</sub> | Сз | C4             |            | X1 | <b>X</b> 2 | <b>X</b> 3 | C <sub>1</sub> | C <sub>2</sub> | <b>C</b> 3 | C <sub>4</sub> |            | <b>X</b> 1 | <b>X</b> 2 | Х3 | C <sub>1</sub> | C <sub>2</sub> | <b>C</b> 3 | C <sub>4</sub> |
|------------|----|------------|------------|----------------|----------------|----|----------------|------------|----|------------|------------|----------------|----------------|------------|----------------|------------|------------|------------|----|----------------|----------------|------------|----------------|
|            |    |            |            |                |                |    |                |            |    |            |            |                |                |            |                |            |            |            |    |                |                |            |                |
| Z1         | 1  | 0          | 0          | 1              | 0              | 0  | 1              | Z1         | 1  | 0          | 0          | 1              | 0              | 0          | 1              | Z1         | 1          | 0          | 0  | 1              | 0              | 0          | 1              |
| y1         | 1  | 0          | 0          | 0              | 1              | 1  | 0              | <b>y</b> 1 | 1  | 0          | 0          | 0              | 1              | 1          | 0              | <b>y</b> 1 | 1          | 0          | 0  | 0              | 1              | 1          | 0              |
| <b>Z</b> 2 | 0  | 1          | 0          | 0              | 0              | 0  | 1              | <b>Z</b> 2 | 0  | 1          | 0          | 0              | 0              | 0          | 1              | <b>Z</b> 2 | 0          | 1          | 0  | 0              | 0              | 0          | 1              |
| <b>y</b> 2 | 0  | 1          | 0          | 1              | 1              | 1  | 0              | <b>y</b> 2 | 0  | 1          | 0          | 1              | 1              | 1          | 0              | <b>y</b> 2 | 0          | 1          | 0  | 1              | 1              | 1          | 0              |
| <b>Z</b> 3 | 0  | 0          | 1          | 0              | 0              | 1  | 1              | <b>Z</b> 3 | 0  | 0          | 1          | 0              | 0              | 1          | 1              | <b>Z</b> 3 | 0          | 0          | 1  | 0              | 0              | 1          | 1              |
| у3         | 0  | 0          | 1          | 1              | 1              | 0  | 0              | у3         | 0  | 0          | 1          | 1              | 1              | 0          | 0              | уз         | 0          | 0          | 1  | 1              | 1              | 0          | 0              |
| S1         | 0  | 0          | 0          | 1              | 0              | 0  | 0              | S1         | 0  | 0          | 0          | 1              | 0              | 0          | 0              | S1         | 0          | 0          | 0  | 1              | 0              | 0          | 0              |
| t1         | 0  | 0          | 0          | 2              | 0              | 0  | 0              | t1         | 0  | 0          | 0          | 2              | 0              | 0          | 0              | t1         | 0          | 0          | 0  | 2              | 0              | 0          | 0              |
| <b>S</b> 2 | 0  | 0          | 0          | 0              | 1              | 0  | 0              | <b>S</b> 2 | 0  | 0          | 0          | 0              | 1              | 0          | 0              | <b>S</b> 2 | 0          | 0          | 0  | 0              | 1              | 0          | 0              |
| t2         | 0  | 0          | 0          | 0              | 2              | 0  | 0              | t2         | 0  | 0          | 0          | 0              | 2              | 0          | 0              | <b>t</b> 2 | 0          | 0          | 0  | 0              | 2              | 0          | 0              |
| <b>S</b> 3 | 0  | 0          | 0          | 0              | 0              | 1  | 0              | <b>S</b> 3 | 0  | 0          | 0          | 0              | 0              | 1          | 0              | <b>S</b> 3 | 0          | 0          | 0  | 0              | 0              | 1          | 0              |
| tз         | 0  | 0          | 0          | 0              | 0              | 2  | 0              | t3         | 0  | 0          | 0          | 0              | 0              | 2          | 0              | t3         | 0          | 0          | 0  | 0              | 0              | 2          | 0              |
| S4         | 0  | 0          | 0          | 0              | 0              | 0  | 1              | S4         | 0  | 0          | 0          | 0              | 0              | 0          | 1              | S4         | 0          | 0          | 0  | 0              | 0              | 0          | 1              |
| t4         | 0  | 0          | 0          | 0              | 0              | 0  | 2              | t4         | 0  | 0          | 0          | 0              | 0              | 0          | 2              | t4         | 0          | 0          | 0  | 0              | 0              | 0          | 2              |
| W          | 1  | 1          | 1          | 4              | 4              | 4  | 4              | W          | 1  | 1          | 1          | 4              | 4              | 4          | 4              | W          | 1          | 1          | 1  | 4              | 4              | 4          | 4              |
|            | X1 | <b>X</b> 2 | Х3         | C <sub>1</sub> | C <sub>2</sub> | Сз | C <sub>4</sub> |            | X1 | <b>X</b> 2 | <b>X</b> 3 | C <sub>1</sub> | C <sub>2</sub> | <b>C</b> 3 | C <sub>4</sub> |            |            |            |    |                |                |            |                |
|            |    |            |            |                |                |    |                |            |    |            |            |                |                |            |                |            |            |            |    |                |                |            |                |
| Z1         | 1  | 0          | 0          | 1              | 0              | 0  | 1              | Z1         | 1  | 0          | 0          | 1              | 0              | 0          | 1              |            |            |            |    |                |                |            |                |
| y1         | 1  | 0          | 0          | 0              | 1              | 1  | 0              | y1         | 1  | 0          | 0          | 0              | 1              | 1          | 0              |            |            |            |    |                |                |            |                |
| <b>Z</b> 2 | 0  | 1          | 0          | 0              | 0              | 0  | 1              | <b>Z</b> 2 | 0  | 1          | 0          | 0              | 0              | 0          | 1              |            |            |            |    |                |                |            |                |
| <b>y</b> 2 | 0  | 1          | 0          | 1              | 1              | 1  | 0              | <b>y</b> 2 | 0  | 1          | 0          | 1              | 1              | 1          | 0              |            |            |            |    |                |                |            |                |
| <b>Z</b> 3 | 0  | 0          | 1          | 0              | 0              | 1  | 1              | <b>Z</b> 3 | 0  | 0          | 1          | 0              | 0              | 1          | 1              |            |            |            |    |                |                |            |                |
| у3         | 0  | 0          | 1          | 1              | 1              | 0  | 0              | уз         | 0  | 0          | 1          | 1              | 1              | 0          | 0              |            |            |            |    |                |                |            |                |
| S1         | 0  | 0          | 0          | 1              | 0              | 0  | 0              | S1         | 0  | 0          | 0          | 1              | 0              | 0          | 0              |            |            |            |    |                |                |            |                |
| t1         | 0  | 0          | 0          | 2              | 0              | 0  | 0              | t1         | 0  | 0          | 0          | 2              | 0              | 0          | 0              |            |            |            |    |                |                |            |                |
| <b>S</b> 2 | 0  | 0          | 0          | 0              | 1              | 0  | 0              | S2         | 0  | 0          | 0          | 0              | 1              | 0          | 0              |            |            |            |    |                |                |            |                |
| t2         | 0  | 0          | 0          | 0              | 2              | 0  | 0              | t2         | 0  | 0          | 0          | 0              | 2              | 0          | 0              |            |            |            |    |                |                |            |                |
| <b>S</b> 3 | 0  | 0          | 0          | 0              | 0              | 1  | 0              | <b>S</b> 3 | 0  | 0          | 0          | 0              | 0              | 1          | 0              |            |            |            |    |                |                |            |                |
| tз         | 0  | 0          | 0          | 0              | 0              | 2  | 0              | t3         | 0  | 0          | 0          | 0              | 0              | 2          | 0              |            |            |            |    |                |                |            |                |
| S4         | 0  | 0          | 0          | 0              | 0              | 0  | 1              | S4         | 0  | 0          | 0          | 0              | 0              | 0          | 1              |            |            |            |    |                |                |            |                |
| t4         | 0  | 0          | 0          | 0              | 0              | 0  | 2              | t4         | 0  | 0          | 0          | 0              | 0              | 0          | 2              |            |            |            |    |                |                |            |                |
| W          | 1  | 1          | 1          | 4              | 4              | 4  | 4              | W          | 1  | 1          | 1          | 4              | 4              | 4          | 4              |            |            |            |    |                |                |            |                |

### ▋另外一种思路

存在一个子集 S 使得 T 的元素和恰好为  $W \Rightarrow \varphi$  是可满足的

$$arphi = (x_1 ee 
eg x_2 ee 
eg x_3) \wedge (
eg x_1 ee 
eg x_2 ee 
eg x_3) \wedge (
eg x_1 ee x_2 ee x_3) \wedge (x_1 ee x_2 ee x_3)$$

集合 S 必须在每个索引 i 上只包含  $z_i$  或  $y_i$  之一,不能同时包含或都不包含。否则,总和将无法等于 W 如果集合 S 包含  $z_i$ ,则设  $x_i=1$ ;否则,设  $x_i=0$ 

考虑任意子句  $C_j$ ; 考虑对应的"子句位" 因为这些子句位的总和必须达到 4,它们必定至少从选择的 z 或 y 数字中接收到一个"1" 这意味着在每个子句位上,至少有一个文字为真

|            | X1 | <b>X</b> 2 | Х3 | C <sub>1</sub> | C <sub>2</sub> | <b>C</b> 3 | C <sub>4</sub> |            | X1 | <b>X</b> 2 | <b>X</b> 3 | C <sub>1</sub> | C <sub>2</sub> | <b>C</b> <sub>3</sub> | C <sub>4</sub> |
|------------|----|------------|----|----------------|----------------|------------|----------------|------------|----|------------|------------|----------------|----------------|-----------------------|----------------|
|            |    |            |    |                |                |            |                |            |    |            |            |                |                |                       |                |
| Z1         | 1  | 0          | 0  | 1              | 0              | 0          | 1              | Z1         | 1  | 0          | 0          | 1              | 0              | 0                     | 1              |
| y1         | 1  | 0          | 0  | 0              | 1              | 1          | 0              | y1         | 1  | 0          | 0          | 0              | 1              | 1                     | 0              |
| <b>Z</b> 2 | 0  | 1          | 0  | 0              | 0              | 0          | 1              | <b>Z</b> 2 | 0  | 1          | 0          | 0              | 0              | 0                     | 1              |
| <b>y</b> 2 | 0  | 1          | 0  | 1              | 1              | 1          | 0              | <b>y</b> 2 | 0  | 1          | 0          | 1              | 1              | 1                     | 0              |
| <b>Z</b> 3 | 0  | 0          | 1  | 0              | 0              | 1          | 1              | <b>Z</b> 3 | 0  | 0          | 1          | 0              | 0              | 1                     | 1              |
| уз         | 0  | 0          | 1  | 1              | 1              | 0          | 0              | у3         | 0  | 0          | 1          | 1              | 1              | 0                     | 0              |
| S1         | 0  | 0          | 0  | 1              | 0              | 0          | 0              | S1         | 0  | 0          | 0          | 1              | 0              | 0                     | 0              |
| t1         | 0  | 0          | 0  | 2              | 0              | 0          | 0              | t1         | 0  | 0          | 0          | 2              | 0              | 0                     | 0              |
| <b>S</b> 2 | 0  | 0          | 0  | 0              | 1              | 0          | 0              | <b>S</b> 2 | 0  | 0          | 0          | 0              | 1              | 0                     | 0              |
| t2         | 0  | 0          | 0  | 0              | 2              | 0          | 0              | t2         | 0  | 0          | 0          | 0              | 2              | 0                     | 0              |
| <b>S</b> 3 | 0  | 0          | 0  | 0              | 0              | 1          | 0              | <b>S</b> 3 | 0  | 0          | 0          | 0              | 0              | 1                     | 0              |
| t3         | 0  | 0          | 0  | 0              | 0              | 2          | 0              | tз         | 0  | 0          | 0          | 0              | 0              | 2                     | 0              |
| S4         | 0  | 0          | 0  | 0              | 0              | 0          | 1              | S4         | 0  | 0          | 0          | 0              | 0              | 0                     | 1              |
| t4         | 0  | 0          | 0  | 0              | 0              | 0          | 2              | t4         | 0  | 0          | 0          | 0              | 0              | 0                     | 2              |
| W          | 1  | 1          | 1  | 4              | 4              | 4          | 4              | W          | 1  | 1          | 1          | 4              | 4              | 4                     | 4              |

### ┃其他 NPC 问题

#### 0/1 背包问题

- 定义决策问题,包含性很容易看出
- 我们如何证明其难度?
- 我们应该从哪个问题进行归约?

#### 独立集问题 (Independent Set)

- **图G中的独立集**:在图中找一个节点集合,使得集合中的任意两个节点之间没有边
- 最大独立集: 给定图G, 找到一个最大独立集
- 最大独立集的决策版本: 给定图G和一个整数k,是否存在一个独立集,其大小至少为k?

#### 集合打包问题 (Set Packing)

• 集合打包:给定一个元素集合U,一个子集集合S1, ..., Sm和一个整数k,是否存在至少k个集合,它们两两不相交

#### 集合覆盖问题 (Set Cover)

• **集合覆盖**: 给定一个元素集合U,一个子集集合S1, ..., Sm和一个整数k,是否存在至多k个集合,它们的并集等于U

#### 三维匹配问题 (3-Dimensional Matching)

• **三维匹配**:给定不相交的集合X, Y, Z(每个集合大小为n)和一个有序三元组的集合T(T是X x Y x Z的子集),是否存在n个三元组,使得X, Y, Z中的每个元素都正好在其中一个三元组中出现一次

#### 图的k着色问题 (k-Colouring)

- <mark>图的k着色</mark>: 给定图G,将图中的节点着色,使得任意相邻的节点颜色不同,并且使用的颜色数量不超过k
- 一个函数 f 将图 G 的节点集合 V 映射到集合  $\{1,\ldots,k\}$  中的元素,使得对于图中的每条边 (u,v),我们有  $f(u)\neq f(v)$

### 图的3着色问题 (3-Colouring)

• 图的3着色: 给定图G,是否存在一个3着色方案,使得任意相邻的节点颜色不同?

#### 有向图中的哈密顿回路:

• 在有向图中访问每个顶点恰好一次的回路。

#### 有向图中的哈密顿路径:

• 在有向图中访问每个顶点恰好一次的路径。

#### 哈密顿回路:

• 给定一个有向图 GG,是否存在一个哈密顿回路?

#### 哈密顿路径:

• 给定一个有向图 GG,是否存在一个哈密顿路径?

#### 旅行商问题:

• 参考Kleinberg和Tardos的定义(第474页)。

### **INP完全性问题分类法**

## 【包装问题 (Packing problems)

- 独立集 (Independent Set)
- 集合打包 (Set Packing)

# 【覆盖问题 (Covering problems)

- 顶点覆盖 (Vertex Cover)
- 集合覆盖 (Set Cover)

# 【分割问题 (Partitioning problems)

- 三维匹配 (3D-Matching)
- 图着色 (Graph Colouring)

# I 序列问题 (Sequencing problems)

- 哈密顿回路 (Hamiltonian Cycle)
- 哈密顿路径 (Hamiltonian Path)
- 旅行商问题 (Traveling Salesman)

# ┃数值问题 (Numerical problems)

- 子集和 (Subset Sum)
- 背包问题 (Knapsack)

# ┃约束满足问题 (Constraint Satisfaction problems)

• 3-SAT

