N	a	m	e	•

Quiz # 2

CSE 330 (01)

Marks:

MCQ: Choose Only One Answer.

1.	A	data set has	three values.	The	Vandermonde	Matrix	corresponding to	these	data	values	is c	of or	rder
----	---	--------------	---------------	-----	-------------	--------	------------------	-------	------	--------	------	-------	------

C. 2×3 .

D. 3×2

2. Which of the following methods is useful for a dynamic system?

A. Lagrange method.

B. Newton's divided/difference method.

C. Vandermonde matrix method.

D. All of the above methods are useful.

2. 13

3. A system is solved by Vandermonde matrix method where the Vandermonde matrix, V, is of order 3×3 . If the same system is solved by the Lagrange method, how many Lagrange basis elements will be needed?

4. The Lagrange basis element, $l_3(x)$, of a system with two nodes is a

A. linear function of x.

B. quadratic function of x.

C. cubic function of x.

ID#

D. It does not exist.

5. The Lagrange basis element, $l_1(x)$, of a system with four nodes is a

A. cubic function of x.

B. quadratic function of x.

C. linear function of x.

D. None of the above.

6. Consider a system with four nodes: x_0 , x_1 , x_2 and x_3 . The Newton basis element $n_2(x)$ is expressed as

A. $(x-x_0)$. **B.** $(x-x_0)(x-x_1)$. **C.** $(x-x_0)(x-x_1)(x-x_2)$. **D.** $(x-x_0)(x-x_1)(x-x_2)(x-x_3)$.

6. B

Problems: Marks are as indicated

7. (4 marks) Consider the function $f(x) = e^{-x}$ with nodes at 0, 1 and 2 in the interval [-0.25, 2.25]. Working to 3 significant figures, compute the upper bound of the estimated error if f(x) is interpolated by a degree two polynomial.

Solution: mere: N=2 & I= [0.25, 0,25], 4 f(4) = ex

Upper bond = (n+1), 5"(=). W3(x) | max < 1 | f"(=) | max (x) | max

Now. [f"(3)] max = [d3(=3)] max = [4) = 3 = = (-25)

ad for W3: W3(x)=0 > \da(x-0)(x-2)

=> of (x3-3x+2x)=0 =>3x2+6x+2=0

But 10th =0.326, 0.753 & I. So, (W3(x)) mas = (W(0,25)) = 0703

.: Upper Bond & f (1.284) (0,703) = 0,150

D)71= -6±√36-24 2.3 -1± 3=7 = -0528, -1,471