

Самостійна робота №2

Самостійна робота з предмету "Математичний аналіз" студента 2 курсу групи МП-21

Захарова Дмитра

Завдання 1.

Дослідити на збіжність та абсолютну збіжність.

$$S = \sum_{n=1}^{\infty} (-1)^n rac{5n-14}{n(n+2)}$$

Розв'язок. Маємо знакозмінну послідовність, тобто наш ряд можемо записати у вигляді

$$S=\sum_{n=1}^{\infty}(-1)^n\gamma_n,\; \gamma_n=rac{5n-14}{n(n+2)}$$

Для аналізу збіжності скористаємось ознакою Лейбніца, тобто

$$(orall n\in \mathbb{N})\ \{\gamma_n>\gamma_{n+1}>0\} \wedge \lim_{n o\infty}\gamma_n=0 \implies \sum_{n=1}^\infty (-1)^n\gamma_n<+\infty$$

Для цього помітимо, що:

1. $orall n \geq 3, \gamma_n > \gamma_{n+1} > 0$. Дійсно:

$$\Delta_n = \gamma_n - \gamma_{n+1} = rac{5n-14}{n(n+2)} - rac{5n-9}{(n+1)(n+3)} = \ rac{(5n-14)(n+1)(n+3) - n(n+2)(5n-9)}{n(n+1)(n+2)(n+3)} = \ rac{(5n+7)(n-6)}{n(n+1)(n+2)(n+3)}$$

Бачимо, що $\forall n>6, \Delta_n>0$, а отже $\forall n>6: \{\gamma_n-\gamma_{n+1}>0\}$, що рівносильно $\gamma_n>\gamma_{n+1}$. Окрім того, $\forall n\geq 3$ маємо $\gamma_n>0$, а отже отстаточно бачимо:

$$(\forall n > 6) \left\{ \gamma_n > \gamma_{n+1} > 0 \right\}$$

Далі доведемо, що $\lim_{n o \infty} \gamma_n = 0$. Дійсно:

$$\lim_{n o \infty} \gamma_n = \lim_{n o \infty} rac{5n-14}{n(n+2)} = \lim_{n o \infty} rac{rac{5}{n} - rac{14}{n^2}}{1 + rac{2}{n}} = rac{\lim_{n o \infty} rac{5}{n} - \lim_{n o \infty} rac{14}{n^2}}{1 + \lim_{n o \infty} rac{2}{n}} = rac{0}{1} = 0$$

Отже дійсно:

$$(orall n>6)\ \{\gamma_n>\gamma_{n+1}>0\} \wedge \lim_{n o\infty}\gamma_n=0 \implies \sum_{n=6}^\infty (-1)^n\gamma_n<\infty$$

Насправді тут не дуже важливо, що ця умова виконується лише з $n_0=6$, бо ми можемо нашу суму записати як $S=\sum_{n=1}^6 (-1)^n \gamma_n + \sum_{n=1}^7 (-1)^n \gamma_n$ і тоді для другої умови виконується для будь-яких n, а перша сума скінченна.

Дослідимо на абсолютну збіжність, тобто ряд

$$S_+ = \sum_{n=1}^\infty \left| rac{5n-14}{n(n+2)}
ight|$$

Для цього помітимо, що $\gamma_n>0 \; orall n\geq 3$, тому

$$S_+ = \sum_{n=1}^2 \left| rac{5n-14}{n(n+2)}
ight| + \sum_{n=3}^\infty rac{5n-14}{n(n+2)} = a + R_+$$

Тому залишилось розглянути R_+

$$R_+ = \sum_{n=3}^{\infty} rac{5n-14}{n(n+2)} = \sum_{n=1}^{\infty} rac{5n-4}{(n+2)(n+4)} := \sum_{n=1}^{\infty} \gamma_n^+$$

А для цього візьмемо в розглядання гармонійний ряд:

$$H=\sum_{n=1}^{\infty}rac{1}{n}:=\sum_{n=1}^{\infty}h_n$$

Бачимо, що $(\forall n \in \mathbb{N})$ $\{\gamma_n^+ > 0 \land h_n > 0\}$, а отже можемо скористатись другою ознакою порівняння:

$$k:=\lim_{n o\infty}rac{\gamma_n^+}{h_n}=\lim_{n o\infty}rac{n(5n-4)}{(n+2)(n+4)}=\lim_{n o\infty}rac{5-rac{4}{n}}{(1+rac{2}{n})(1+rac{4}{n})}=rac{5}{1}=5$$

Бачимо, що $0<(k=5)<+\infty$, а отже ряди R_+,H збігаються або розбігаються одночасно. Проте, гармонійний ряд розбігається (доволі відомий факт), а тому і R_+ розбігається.

Відповідь. Сам ряд $\sum_{n=1}^{\infty} (-1)^n \frac{5n-14}{n(n+2)}$ збігається, але абсолютно розбігається.

Завдання 2.

Дослідити на рівномірну збіжність послідовність на вказаних множинах. Пояснити.

$$f_n=rac{1}{x^3}\cosrac{x}{n},\; E_1=(0,1),\; E_2=(1,+\infty)$$

Розв'язок. Почнемо з E_2 . Скористаємось теоремою, що функціональна послідовність $\{f_n\}_{n=1}^\infty$ є рівномірно збіжною на множині E до функції f тоді й тільки тоді, коли

$$\lim_{n o\infty}\sup_{x\in E}|f_n(x)-f(x)|=0$$

Доведемо, що $f_n
ightharpoonup rac{1}{x^3}$. Маємо:

$$egin{aligned} \delta_n(x) := |f_n(x) - f(x)| &= \left| rac{1}{x^3} \cos rac{x}{n} - rac{1}{x^3}
ight| = \ rac{1}{x^3} \left| \cos rac{x}{n} - 1
ight| &= rac{1}{x^3} \left| 1 - \cos rac{x}{n}
ight| = \ rac{1}{x^3} \left| 2 \sin^2 rac{x}{2n}
ight| &= rac{2}{x^3} \sin^2 rac{x}{2n} \end{aligned}$$

Тут ми скористались фактом, що оскільки $(\forall x \in E_2)$ $\{x>0\} \implies (\forall x \in E_2)$ $\{\frac{1}{x^3}>0\}$, тому $1/x^3$ можна винести за модуль. Отже, нам потрібно дослідити значення

$$k=\lim_{n o\infty}\sup_{x\in(1,+\infty)}rac{2}{x^3}\sin^2rac{x}{2n}$$

Помітимо, що $(\forall x\in(1,+\infty))$ $\{\delta_n(x)<2\sin^2\frac{x}{2n}\}$, оскільки на E_2 функція $2/x^3$ монотонно спадає. Також звісно $\delta_n(x)>0\ \forall x\in E_2$. Звідси випилває

$$orall x \in E_2: 0 < \delta_n(x) < 2 \sin^2 rac{x}{2n}$$

Оскільки $\lim_{n o\infty} 2\sin^2rac{x}{2n}=0$, то маємо $\lim_{n o\infty} \delta_n(x)=0$.

Можемо змінити порядок \sup та \lim (як на мене це доволі неочевидний шаг, проте доводити це окремо не вистачає часу, на жаль. Була ще спроба знайти рівняння $\delta'_n(x_0)=0$, але це приведе до рівняння $\tan\frac{x_0}{2n}=\frac{x_0}{3n}$, яке розглядати не дуже приємно)):

$$k=\sup_{x\in(1,+\infty)}\lim_{n o\infty}\delta_n(x)=\sup_{x\in(1,+\infty)}0=0$$

Оскільки k=0, маємо $f_n
ightharpoonup rac{1}{x^3}.$

Нарешті розглянемо E_1 . Доведемо, що тут ми не будемо мати рівномірно збіжність. Дійсно,

$$k_1 = \lim_{n o \infty} \sup_{x \in E_1} \delta_n(x) = \lim_{n o \infty} \sup_{x \in (0,1)} rac{2}{x^3} \sin^2 rac{x}{2n}$$

Оскільки $\lim_{x \to 0^+} \frac{2}{x^3} \sin^2 \frac{x}{2n} = \lim_{x \to 0^+} \frac{2}{x^3} \lim_{x \to 0^+} \sin^2 \frac{x}{2n} = \lim_{x \to 0^+} \frac{2}{x^3} \cdot (\frac{x}{2n})^2 = +\infty$, тому маємо, що $\sup_{x \in (0,1)} \delta_n(x) = +\infty$ і тому за критерієм послідовність $\{f_n\}_{n=1}^\infty$ рівномірно не збігається.

Завдання 3.

Дослідити на рівномірну збіжність ряд на вказаній множині. Пояснити:

$$\sum_{n=1}^{\infty}\left(rac{x^2}{1+nx^3}
ight)^3,\; E=[0,+\infty)$$

Розв'язок. Позначимо $w_n(x) = \left(rac{x^2}{1+nx^3}
ight)^3$ і $S(x) = \sum_{n=1}^\infty w_n(x).$

Доведемо, що функціональний ряд S(x) є рівномірно збіжним на E. Для цього проаналізуємо $w_n(x)$, а саме знайдемо максимальне значення:

$$rac{dw_n(x)}{dx} = rac{3x^5(2-nx^3)}{(nx^3+1)^4}$$

Бачимо, що в нас є лише одна критична точка $x_0=\sqrt[3]{\frac{2}{n}}$, причому до неї функція спадає (бо $\forall x\in [0,\sqrt[3]{2/n})$ в нас $w_n'(x)>0$), а після цього зростає (бо $\forall x\in (\sqrt[3]{2/n},+\infty)$ в нас $w_n'(x)<0$). Окрім цього $\lim_{x\to\infty}w_n(x)=0$ (оскільки $\lim_{x\to\infty}\frac{x^2}{1+nx^3}=0$, бо в чисельнику маємо поліном 2 ступеня від x, в знаменнику третього, а отже при прямуванні на нескінченність отримаємо 0. Піднесення у 3 ступень при цьому нічого не змінює).

Знайдемо тепер $w_n(x_0)$:

$$w_n\left(\sqrt[3]{rac{2}{n}}
ight) = \left(rac{\left(rac{2}{n}
ight)^{2/3}}{1+n\cdotrac{2}{n}}
ight)^3 = \left(rac{(2/n)^{2/3}}{3}
ight)^3 = rac{\left(rac{2}{n}
ight)^2}{27} = rac{4}{27n^2}$$

Окрім цього $w_n(0)=0\ \forall n\in\mathbb{N}$, а тому можемо зробити висновок, що максимальне значення $w_n(x)$ на E — це $\frac{4}{27n^2}$ для будь-яких $x\in E, n\in\mathbb{N}$. Тому, робимо висновок, що

$$(orall x \in E)(orall n \in \mathbb{N}) \ \left\{ |w_n(x)| \leq rac{4}{27n^2}
ight\}$$

Причому $\sum_{n=1}^{\infty} \frac{4}{27n^2} = \frac{2\pi^2}{81} < \infty$ (насправді можна не використовувати той факт, що $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, а просто знати, що $\sum_{n=1}^{\infty} \frac{1}{n^2}$ збігається). Отже з цього випливає, що наш функціональний ряд є рівномірно збіжним на E.

Завдання 4.

Знайти радіус збіжності та зобразити коло збіжності. Пояснити

$$S = \sum_{n=1}^{\infty} rac{(z+2)^n}{(2n-1)4^n}$$

Розв'язок. Позначимо $z+2=w, \beta_n=rac{1}{(2n-1)4^n}$, тоді отримаємо інший степеневий ряд

$$S=\sum_{n=1}^{\infty}rac{w^n}{(2n-1)4^n}=\sum_{n=1}^{\infty}eta_nw^n$$

Тоді радіус збіжності знайдемо з наступного відношення (доводилось в теорії):

$$R = \lim_{n o \infty} \left| rac{eta_n}{eta_{n+1}}
ight| = \lim_{n o \infty} rac{(2n+1)4^{n+1}}{(2n-1)4^n} = 4 \lim_{n o \infty} rac{2 + rac{1}{n}}{2 - rac{1}{n}} = 4$$

I звичайно радіус збіжності у виразу $\sum_{n=1}^\infty \beta_n (z+2)^n$ та $\sum_{n=1}^\infty \beta_n w^n$ однаковий, проте малюнок буде різним! Для другого ряду це буде коло з центром в (0,0) радіуса 4, а для першого випадку з центром в (-2,0) радіуса 4, тобто малюнок виглядає наступним чином:

Червоним показано область збіжності. По осі Ox маємо Re(z), по осі Oy маємо Im(z)