Moto di un volano

Dipartimento di Fisica E.Fermi - Università di Pisa

Di Ubaldo Gabriele

Indice

1	Introduzione]
	1.1 Teoria	
	1.2 Apparato sperimentale	2
	Esperimento	2
	2.1 Acquisizione misure	2
	2.2 Analisi Dati	2
3	Conclusione	6

1 Introduzione

1.1 Teoria

Obiettivo: Misurare il momento della forza di atttrito nel moto di un volano libero e la velocità angolare sotto l'azione di una forza esterna.

Moto libero: Lùnica forza esterna è la forza di attrito data dai cuscinetti a sfera che non smorzano l'attrito perfettamente ma ne trasformano gran parte in attrito volvent, significativamente minore del radente. Per misurare il momento τ_{att} misuriamo l'accelerazione angolare del moto supponendo che la forza di attrito non dipenda da ω . Nel nostro modello infatti l'atrito da misurare è solo volvente perchè tracuriamo l'attrito viscoso dell'aria proporzionale a ω .

$$\omega(t) = \omega_0 - \frac{\tau_{att}}{I}t\tag{1}$$

Il momento d'inerzia di un disco è $\frac{1}{2}mr^2$.

Moto forzato: Le equazioni cardinali del sistema sono le seguenti:

$$m\ddot{z} = mg - T \tag{2}$$

$$I\alpha = Tr - \tau_{att} \tag{3}$$

Siccome il filo è inestensibile la sua accelerazione è uguale a quella del disco:

$$\ddot{z} = \alpha r \tag{4}$$

La soluzione per l'accelerazione angolare è:

$$\alpha = \frac{\pm mgr - \tau_{att}}{I + mr^2} \tag{5}$$

Il + coincide con la discesa ($\alpha > 0$) e il - con la salita ($\alpha < 0$))

1.2 Apparato sperimentale

- Volano dotato di encoder
- Piattino appeso al volano
- Serie di pesetti
- Programma di acquisizione

2 Esperimento

2.1 Acquisizione misure

Moto libero Abbiamo dato una spinta iniziale al disco prima senza piattello e poi con per poter verificare se effettivamente il piattello è trascurabile. Per misurare la massa del disco abbiamo misurato col calibro le dimensioni del disco, trovato il volume e moltiplicato per la densità dell'alluminio: il raggio del volano è $r_v = 16.1 \pm 0.1cm$, lo spessore è $h = 1.35 \pm 0.005cm$ Abbiamo pesato il piattello in una bilancia di precisione trovando $m_p = 23.224 \pm 0.001g$.

Moto forzato Il braccio della tensione è 1.28 ± 0.03 . Abbiamo misurato la velocità del volano attraverso Arduino e il programma di acquisizione dati Plasduin. Le misure fatte corrispondono a pesi di 50, 100, 200, 300, 350g per ognuna delle quali riportiamo il grafico con le misure. La massa del volano è:

$$V = \pi r_v^2 h \rho = 2.968kg \quad \Delta V = 2\pi \rho r_v h \Delta r_v + \pi \rho r_v^2 \Delta h = 0.038kg \tag{6}$$

2.2 Analisi Dati

Il grafico del moto libero è il seguente:

Il coefficiente della retta best fit è $m=-0.08\pm0.09\%$ che possiamo moltiplicare per il momento di inerzia per trovare il momento della forza di attrito.

(7)

La velocità iniziale è data dall'intersezione con l'asse y cioe $w_0=6.83\pm0.03\%$. Per il fit si ha $\chi 2=853.18$ e $\chi^2_r=0.95$. Per calcolare τ_{att} usiamo le seguenti:

$$\Delta I = \frac{r^2}{2} \Delta m + mr \Delta r \qquad \tau_{att} = -aI \qquad \Delta \tau_{att} = a\Delta I + I\Delta a$$
 (8)

Quindi il momento di inerzia è $I=0.038\pm0.001kg*m^2$ e otteniamo $\tau_{att}=0.0030\pm0.00003N*m$ Vediamo invece che la presenza del piattello perturba notevolmente il moto del volano in quanto non essendo un peso abbastanza grande, durante il moto tende a oscillare.

I diversi grafici dei moti forzati sono i seguenti:

Possiamo osservare che per m che aumenta i triangoli diventano isosceli cioè la differenza tra il valore assoluto delle pendenze tende a 0 per m che tende a ∞ :

$$\lim_{m \to \infty} \alpha_d + \alpha_s = \lim_{m \to \infty} \frac{-2\tau_{att}}{I + mr^2} = 0$$
 (9)

Abbiamo preso le misure per 350g per la prima discesa e la prima salita e abbiamo fatto il fit per ottenere l'accelerazione angolare in entrambi. I grafici sono i seguenti:

L'accelerazione angolare è data dal coefficiente della retta: $\alpha=1.24\pm0.08\%$. Per il fit si ha $\chi^2=297.6$ e $\chi 2_r=1.16$.

L'accelerazione angolare è data dal coefficiente della retta: $\alpha = -1.47 \pm 0.11\%$. Per il fit si ha $\chi^2 = 433.19$ e $\chi 2_r = 2.00$. (Se hai voglia potresti fare la differenza tra le accelerazioni per ogni grafico e fittare quei punti con 1/m.)

3 Conclusione

Dato il valore del χ^2 ottenuto possiamo concludere che il nostro modello teorico descrive accuratamente il fenomeno, inoltre il progressivo divenire isosceli dei triangoli è un'altra conferma della validità del nostro modello.