

$$\frac{dL}{dm} = 0 , \frac{dL}{db} = 0$$

N = Total no of data points.

Random var - you can specify its prob die tribu" not the value

12,22? =? 991. 132??

m= M=12.3, S=0.05= Sm Lsi venknown,

m = 12.3 I 0.15

$$V(\lambda) = \Lambda(x) + \Lambda(c)$$

$$S_b^2 = \frac{(S_{00})^2 \Xi_{0i}}{N \Xi_{0i} - (\Sigma_{0i})^2}$$

obs	ov:	a,	= vivo	9:2	Res
1	0.19	8.8	6.722	0.030	-0.90
2 3 4 5 6 7 8	0.40	10.4	4.16	0.16	1.85
	0.63	12.1	9.513	0.3969	2-34
	9.60	9.3	5.58	6.34	
	0.78	14.6	11.388	0.6084	
	1.65	20.9	21.945	1.1025	
	1.74	31.3	54.412	3.0276	
	1.62	32.7	52.974	2.6244	
N=8 6.23 138.1		160.744	8.3159		

$$m = -162.006827$$

$$b = \frac{146.99067}{-2.6269} = -55.955$$

$$Q_{0} = mq_{1}' + b$$

$$m = 18.28 + 2m =$$

$$b = 1.211 + 3b =$$

$$S_{0}^{2} = \frac{(270)^{2}}{N29i - (29i)^{2}}$$

$$S_{0}^{2} = \frac{(270)^{2}}{N29i - (29i)^{2}}$$

$$S_{0}^{2} = \frac{1}{N-2} 2[(mq_{1}+b) - 20]^{2} = 4.2543$$

$$N = 8$$

$$N = 8$$

$$m = 18.28 \pm 3 \text{ (bm)} = 120.18.28 \pm 4.2$$

 $b = 1.24 \pm 3 \text{ (5b)} = 1.24 \pm 3.9$

$$Sq = 24.61, \quad \alpha_{i} = 1.2781$$

$$Sq_{i} = \frac{Sq_{0}^{2}}{m^{2}} = 6.0127$$

$$Sq_{i} = 0.1128$$

$$\therefore \quad q_{i} = 1.2781 = 3(Sq_{i})$$

$$= 1.2781 = 0.339$$

DAE

Flux = velocity x Density

flux -> flow rate area

Lead - acid battery:

Model Equations Develop

- ions will accelerate towards the electrode. till they seach achieve terminal velocity. they stop beer of drag force. - due to presence of ions - due to viscosity of the medium

$$\phi(x=0)$$

$$(Pb^{24})$$

$$(Pb^{24})$$

$$Ni = -\Omega i \frac{\partial \alpha'}{\partial x} + ($$

Migration flux =
$$-Z_i Die Fide Ci(Ne)$$

RT on Lymolar conc

$$\frac{\partial e'}{\partial t} = -\frac{\partial}{\partial n} \left[-\frac{\partial}{\partial n} \frac{\partial e'}{\partial n} - \frac{Zi Ci Di F}{RT} \frac{\partial \phi}{\partial n} \right]$$

4 unk .: 6 3 egr :

Electroneutrality condn: IziG=0 Poissons ean: $\nabla^2 \phi = \frac{-iF}{e} \sum zici$ 3 1016 (v. large) ∑ zici ≌o 9) formulale ter DAE. f - har of feed vapowies fel volatility is cont. For a binary sytem, unk: 28,40, D,B. given: f, f, Zt, &k mele frair of more volatile compr. in the feed. F = D+B F = (F+1) B Fact Dy BY (F-D) 2B Fzf = DyD + BxB > => Ezf = Bfys+ Zf=fyo+(1-1) 2B: 4 Write model a 7 D, y Write the transient: M = Mv + ML d (MV+ML) = F-D-B dMi = Fzi-Dyi - Bxi

(Hw) Lete

Frankient Mess balance for this flesh vessel & formulate the clased set of D. A. E for this case.

$$\frac{\partial_{1} \frac{\partial u}{\partial x}}{\partial x} + \frac{\partial}{\partial x} \frac{Z_{1} Q_{1} P_{1}}{RT} \frac{\partial p}{\partial x} = K_{2}$$

$$\frac{\partial_{2} \frac{\partial u}{\partial x}}{\partial x} + \frac{Z_{2} C_{2} D_{2} P_{1}}{RT} \frac{\partial p}{\partial x} = K_{2}$$

$$\frac{\partial_{3} \frac{\partial C_{3}}{\partial x}}{\partial x} + \frac{Z_{3} C_{3} Q_{3} P_{1}}{RT} \frac{\partial p}{\partial x} = K_{3}$$

$$\frac{Z_{1} Q_{1} Q_{2} Q_{2} P_{1}}{RT} \frac{\partial p}{\partial x} = K_{3}$$

$$\frac{Z_{1} Q_{1} Q_{2} Q_{2} P_{1}}{RT} \frac{\partial p}{\partial x} = K_{3}$$

$$\frac{\partial u}{\partial x} = \int_{1}^{2} (x_{1}, x_{2}, x_{3}, t)$$

$$\frac{\partial u}{\partial x} = \int_{2}^{2} (x_{1}, x_{2}, x_{3}, t)$$

$$\frac{\partial u}{\partial x} = \int_{3}^{2} (x_{1}, x_{2}, x_{3}, t)$$

$$\frac{\partial u}{\partial x} = \int_{3}^{2} (x_{1}, x_{2}, x_{3}, t)$$

$$\frac{\partial u}{\partial x} = \int_{3}^{2} (x_{1}, x_{2}, x_{3}, t)$$

$$\frac{\partial u}{\partial x} = \int_{3}^{2} (x_{1}, x_{2}, x_{3}, t)$$

Stiff -> Rising sharply.