1 Legislative constraint

Legislative constraint as a function of e

- I thought it would be positive at e = 0 and turn negative as e increases
- What does it mean that for some values it's negative at 0, becomes positive, and then goes negative again?
 - For sure I have to be careful in numerical examples

2 Numerical examples

$$\delta_L = \delta_{ML} = .95$$
 E=.35 E=.4 E=.41 E=.42 E=.45 au^{tw} .074 .0654 e^{tw} .00123 T = 2 .07500 .057407 T = 3 .074716 .070243 .066284 .0570802 T = 4 .074708 .070233 .066275 .0570806 T = 5 .074795 .07033 .06638 .057185 T = 6 .1080 .07492 T = 7 .1081 .057

I have another sheet of notes that conflicts with the first column. It just says " δ = .95":

$$\begin{array}{ccc} & & \text{E=.35} \\ \tau^{tw} & .1213 \\ e^{tw} & .006003 \\ T=3 & .1023044 \\ T=4 & .1022411 \\ T=5 & .1022427 \\ T=6 & .10227 \\ T=7 & .102305 \\ \end{array}$$

This one just says " $\delta = .99$ ":

This has the note, "This at least works in the direction I thought it would" with " $\delta_L = .94$, $\delta_{ML} = .95$ ":

$$\begin{array}{c} & \text{E=.4} \\ \tau^{tw} \\ e^{tw} \\ \text{T} = 4 & .07464 \\ \text{T} = 5 & .07421 \\ \text{T} = 6 & .07481 \\ \text{T} = 7 & .07492 \end{array}$$

("Really want to know if reducing δ_L — making future term less important — will give me the σ result I've been after; really, no result at all; depends on other parameters.)

Some summaries

- $E = .4, \, \delta_L = .99, \, \delta_{ML} = .95, \, e_{tw} = .00232, \, \tau^{tw} = .08185.$ Optimal $\tau^a = .07494$ at T = 3.
- E=.5, assume I kept $\delta_L=.99$, $\delta_{ML}=.95$. Optimal $\tau^a=.04864$ at T=3.
- E = .4, $\delta_L = \delta_{ML} = .99$, $e_{tw} = .00232$, $\tau^{tw} = .08185$. Optimal $\tau^a = .07470$ at T = 3.
- E = .4, $\delta_L = .99$, $\delta_{ML} = .5$, $e_{tw} = .00232$, $\tau^{tw} = .08185$. Optimal $\tau^a = .07802$ at T = 2.
- E = .4, $\delta_L = .99$, $\delta_{ML} = .75$, $e_{tw} = .00232$, $\tau^{tw} = .08185$. Optimal $\tau^a = .07629$ at T = 3.

3 How does Optimal T vary with political strength?

Trying to understand what is really going on with constraint in terms of T

- Want to get good intuition for why T can go up as $\sigma \downarrow$.
 - Not obvious that it always does; I think it's possible that the direction of T in response to σ is indeterminant
- I think I need to show effect of σ on \overline{e} first (I have informally that $\sigma \uparrow \Rightarrow \overline{e} \downarrow$)
 - Then, impact of σ on τ^a . Next look to see if net profits at τ^a increase more than those at τ^{tw} , then lobby's future incentives are muted

Result 1. $\frac{d\overline{e}}{d\sigma} > 0$

Proof: Corollary 4 shows that $\frac{d\overline{e}}{d\gamma} < 0$. All that is left is to show that $\frac{d\gamma}{d\sigma} < 0$.

• The derivative of $\gamma = 1 + \frac{1}{\sigma}e^{\sigma}$ w.r.t. σ is

$$\frac{1}{\sigma}\ln\sigma e^{\sigma} + e^{\sigma}\left(-\frac{1}{\sigma^2}\right)$$

Both terms are negative given $\sigma \in (0,1)$ and $e \geq 0$. QED.

Now for the result on τ^a . Differentiating the lobby's condition with respect to σ , we have

$$\frac{\partial \Pi}{\partial \tau^a} \frac{\mathrm{d}\tau^a}{\mathrm{d}\gamma} \frac{\mathrm{d}\gamma}{\mathrm{d}\sigma} + \frac{\partial \Pi}{\partial \overline{e}} \frac{\mathrm{d}\overline{e}}{\mathrm{d}\gamma} \frac{\mathrm{d}\gamma}{\mathrm{d}\sigma} + \frac{\partial \Pi}{\partial\gamma} \frac{\mathrm{d}\gamma}{\mathrm{d}\sigma} = 0$$

$$\frac{\mathrm{d}\tau^a}{\mathrm{d}\gamma}\frac{\mathrm{d}\gamma}{\mathrm{d}\sigma} = \left[-\frac{\frac{\partial\Pi}{\partial\bar{e}}\frac{\mathrm{d}\bar{e}}{\mathrm{d}\gamma} + \frac{\partial\Pi}{\partial\gamma}}{\frac{\partial\Pi}{\partial\tau^a}} \right] \frac{\mathrm{d}\gamma}{\mathrm{d}\sigma} \tag{1}$$

We know from Corollary 5 that $\frac{d\tau^a}{d\gamma}$ is positive, and we've just shown that $\frac{d\gamma}{d\sigma}$ is negative. Thus $\frac{d\tau^a}{d\sigma} < 0$.

Write constraint:

$$\overline{e}(\tau^a) - \pi(\tau^b(\overline{e}(\tau^a))) + \pi(\tau^a) - e_a - \frac{\delta_{\mathcal{L}} + \delta_{\mathcal{L}}^{T+1}}{1 - \delta_{\mathcal{L}}} \left[\pi(\tau^{tw}) - e_{tw} - \pi(\tau^a) + e_a \right] = 0$$

For now, assume this has an interior solution so calculus works.

First, what does T do to $\overline{e}(\tau^a)$?

By the Implicit Function Theorem:

$$\frac{\mathrm{d}\overline{e}}{\mathrm{d}T} = -\frac{\frac{\partial\Omega}{\partial T}}{\frac{\partial\Omega}{\partial\overline{e}}} = -\frac{\frac{\delta_{\mathrm{ML}}^{T+1}\ln\delta_{\mathrm{ML}}}{1-\delta_{\mathrm{ML}}} \left[W_{\mathrm{ML}}(\gamma(\overline{e}), \boldsymbol{\tau^a}) - W_{\mathrm{ML}}(\gamma(\overline{e}), \boldsymbol{\tau^{tw}}) \right]}{\frac{\delta_{\mathrm{ML}} - \delta_{\mathrm{ML}}^{T+1}}{1-\delta_{\mathrm{ML}}} \frac{\partial\gamma}{\partial\overline{e}} \left[\pi(\tau^a) - \pi(\tau^{tw}) \right] - \frac{\partial\gamma}{\partial\overline{e}} \left[\pi(\tau^b(\overline{e})) - \pi(\tau^a) \right]} > 0$$
(2)

So if $T \uparrow$ then $\overline{e} \uparrow$.

Now, want to know about effect of T on τ^a .

$$\frac{\partial \Pi}{\partial \tau^a} \frac{\mathrm{d}\tau^a}{\mathrm{d}T} + \frac{\partial \Pi}{\partial \overline{e}} \frac{\mathrm{d}\overline{e}}{\mathrm{d}T} + \frac{\partial \Pi}{\partial T} = 0$$

Because $\frac{\partial \Pi}{\partial T} = \frac{\ln \delta_{L} \delta_{L}^{T+1}}{1-\delta_{L}} [\pi(\tau^{tw}) - e_{tw} - \pi(\tau^{a}) + e_{a}],$ we are looking for

$$\frac{\mathrm{d}\tau^{a}}{\mathrm{d}T} = -\frac{\frac{\partial\Pi}{\partial\overline{e}}\frac{\mathrm{d}\overline{e}}{\mathrm{d}T} + \frac{\partial\Pi}{\partial\overline{T}}}{\frac{\partial\Pi}{\partial\tau^{a}}} = \frac{-\left(1 - \frac{\mathrm{d}\pi}{\mathrm{d}\overline{e}}\right) \cdot \frac{\mathrm{d}\overline{e}}{\mathrm{d}T} - \frac{\ln\delta_{L}\delta_{L}^{T+1}}{1 - \delta_{L}} \left[\pi(\tau^{tw}) - e_{tw} - \pi(\tau^{a}) + e_{a}\right]}{\left(1 + \frac{\delta_{L} - \delta_{L}^{T+1}}{1 - \delta_{L}}\right) \left[\frac{\partial\pi(\tau^{a})}{\partial\tau^{a}} - \frac{\partial e_{a}}{\partial\tau^{a}}\right]} \tag{3}$$

The proof of Corollary 3 shows that $\left(1 - \frac{d\pi}{d\bar{e}}\right)$ is positive, and the above result shows that $\frac{d\bar{e}}{dT}$ is positive. The second term is positive since net profits are maximized at e_{tw} and $\delta_L < 1$ so that its log is negative. With the leading negative signs, the numerator has both a negative and a positive part. This is not changed by the denominator, as the arguments given in the proof of Corollary 1 show that the denominator is positive.

- Remember simplified version where actors are infinitely patient
- Can play around with trick of looking for minimum τ^a by setting this equal to zero

As $\sigma \downarrow$, $\overline{e} \downarrow$ for a given τ^a .

- Remember that change in \overline{e} is really a change in the $(\tau^a, \overline{e}(\tau^a))$ schedule that derives from legislature's constraint
- So τ^a has to be raised to satisfy lobby's constraint

- Net profits are greatest at τ^{tw} , so relative gap between net profits at τ^a and τ^{tw} (future) closes faster than that between break profits and trade agreement profits (present)
- How much τ^a adjusts depends on magnitude of $\frac{\delta_L + \delta_L^{T+1}}{1 \delta_L}$
- $\pi(\tau^b(\overline{e}(\tau^a))) \overline{e}(\tau^a)$ is negative, gets less negative when \overline{e} is reduced.
- $\pi(\tau^a) e_a$ is positive, becomes larger as τ^a rises

$$0 \ge -\left[\overline{e}(\tau^a) - \pi(\tau^b(\overline{e}(\tau^a))) + \pi(\tau^a) - e_a\right] + \frac{\delta_{\mathcal{L}} + \delta_{\mathcal{L}}^{T+1}}{1 - \delta_{\mathcal{L}}} \left[\pi(\tau^{tw}) - e_{tw} - \pi(\tau^a) + e_a\right]$$

Where present part of constraint in on left and future part is on right. Remember present part must be negative.

Let
$$\gamma(e) = 1 + \frac{1}{1-\theta}e^{1-\theta}$$
. Or $\gamma(e) = 1 + \frac{1}{\sigma}e^{\sigma}$.

- $\frac{\partial \gamma}{\partial e} = e^{\sigma 1} > 0 \ \forall \sigma$
- $\frac{\partial^2 \gamma}{\partial \sigma \partial e} = \ln e \cdot e^{\sigma 1} < 0 \text{ for } e < 1$

i.e. as $\sigma \downarrow$, $\frac{\partial \gamma}{\partial e} \uparrow$.

Can I show that the optimal T can go either way when σ changes? That is, a counterexample to my quasi-result?

- My result says that as lobby gets stronger $(\frac{\partial \gamma}{\partial e} \uparrow)$, so $\sigma \downarrow$, T should have to decrease.
- If optimal T increases when σ decreases (i.e. if T is decreasing in σ), this is a counterexample.
 - I think it's possible that both cases can happen depending on other parameters, like δ

Look at legislature's constraint:

$$\frac{\delta_{\mathrm{ML}} - \delta_{\mathrm{ML}}^{T+1}}{1 - \delta_{\mathrm{ML}}} \left[W_{\mathrm{ML}}(\gamma(e_b), \boldsymbol{\tau^a}) - W_{\mathrm{ML}}(\gamma(e_b), \boldsymbol{\tau^{tw}}) \right] \ge W_{\mathrm{ML}}(\gamma(e_b), \tau^b(e_b), \tau^b(e_b), \tau^{*a}) - W_{\mathrm{ML}}(\gamma(e_b), \boldsymbol{\tau^a})$$

If T is too small, future gap can be smaller than current-period gap. So if T gets too short, can't enforce on legislature.

Note that changing σ changes τ^{tw}

- e_{tw} is solution to $\frac{\partial \pi}{\partial \tau} \frac{\partial \tau}{\partial \rho} \frac{\partial \gamma}{\partial e} = 1$; or $\frac{\partial \pi}{\partial \tau} \frac{\partial \tau}{\partial \rho} = \frac{1}{\frac{\partial \gamma}{\partial e}}$
- When $\frac{\partial \gamma}{\partial e} \uparrow$, RHS \downarrow , so LHS must go down.

4 Optimal T result with perfect patience

November 13, 2015

- I know that $\frac{\partial \tau^a}{\partial T}$ has both a negative and positive part.
 - Shown for the general case where δ is anything.
- Now I want to know if/when $\frac{\partial^2 \tau^a}{\partial T^2}$ is positive so that I could set $\frac{\partial \tau^a}{\partial T} = 0$ and optimal T (the one that minimizes τ^a)
 - Would need to be careful of corner solutions
 - Will do this for case where $\delta \to 1$
 - * This means $\frac{\delta \delta^{T+1}}{1 \delta} \to T$ and $-\frac{\delta^{T+1} \ln \delta}{1 \delta} \to 1$

Start with simplifying result for $\frac{d\tau^a}{dT}$.

Again:

$$\frac{\partial \Pi}{\partial \tau^a} \frac{\mathrm{d}\tau^a}{\mathrm{d}T} + \frac{\partial \Pi}{\partial \overline{e}} \frac{\mathrm{d}\overline{e}}{\mathrm{d}T} + \frac{\partial \Pi}{\partial T} = 0 \tag{4}$$

$$\frac{\mathrm{d}\tau^{a}}{\mathrm{d}T} = -\frac{\frac{\partial\Pi}{\partial\bar{e}}\frac{\mathrm{d}\bar{e}}{\mathrm{d}T} + \frac{\partial\Pi}{\partial\bar{T}}}{\frac{\partial\Pi}{\partial\tau^{a}}} = \frac{-\left(1 - \frac{\mathrm{d}\pi}{\mathrm{d}\bar{e}}\right) \cdot \frac{\mathrm{d}\bar{e}}{\mathrm{d}T} + \left[\pi(\tau^{tw}) - e_{tw} - \pi(\tau^{a}) + e_{a}\right]}{\left(1 + T\right) \left[\frac{\partial\pi(\tau^{a})}{\partial\tau^{a}} - \frac{\partial e_{a}}{\partial\tau^{a}}\right]}$$
(5)

- $\left(1 \frac{\mathrm{d}\pi}{\mathrm{d}\overline{e}}\right)$ is positive
- $\frac{d\overline{e}}{dT}$ is positive:

$$\frac{\mathrm{d}\overline{e}}{\mathrm{d}T} = -\frac{\frac{\partial\Omega}{\partial\overline{T}}}{\frac{\partial\Omega}{\partial\overline{C}}} = \frac{W_{\mathrm{ML}}(\gamma(\overline{e}), \boldsymbol{\tau^a}) - W_{\mathrm{ML}}(\gamma(\overline{e}), \boldsymbol{\tau^{tw}})}{T\frac{\partial\gamma}{\partial\overline{e}}[\pi(\tau^{tw}) - \pi(\tau^a)] + \frac{\partial\gamma}{\partial\overline{e}}[\pi(\tau^b(\overline{e})) - \pi(\tau^a)]} > 0$$
(6)

 \bullet denominator is positive (proof of Corollary 1)

Now, on to $\frac{\mathrm{d}^2 \tau^a}{\mathrm{d} T^2}$

$$\frac{\partial}{\partial T} \left[\frac{\partial \Pi}{\partial \tau^a} \frac{\mathrm{d}\tau^a}{\mathrm{d}T} + \frac{\partial \Pi}{\partial \overline{e}} \frac{\mathrm{d}\overline{e}}{\mathrm{d}T} + \frac{\partial \Pi}{\partial T} \right] = 0$$

$$\frac{\partial \Pi}{\partial \tau^a} \frac{\mathrm{d}^2 \tau^a}{\mathrm{d}T^2} + \frac{\partial^2 \Pi}{\partial T \partial \tau^a} \frac{\mathrm{d}\tau^a}{\mathrm{d}T} + \frac{\partial \Pi}{\partial \overline{e}} \frac{\mathrm{d}^2 \overline{e}}{\mathrm{d}T^2} + \frac{\partial^2 \Pi}{\partial T \partial \overline{e}} \frac{\mathrm{d}\overline{e}}{\mathrm{d}T} + \frac{\partial^2 \Pi}{\partial T^2} = 0$$
(7)

Going to need:

$$\frac{\partial^2 \Pi}{\partial T \partial \tau^a} = \frac{\partial \pi(\tau^a)}{\partial \tau^a} - \frac{\partial e_a}{\partial \tau^a} > 0$$

$$\frac{\partial^2 \Pi}{\partial T \partial \overline{e}} = 0$$
$$\frac{\partial^2 \Pi}{\partial T^2} = 0$$

To get $\frac{\mathrm{d}^2 \overline{e}}{\mathrm{d} T^2}$, have to do a little more work.

$$\frac{\partial}{\partial T} \left[\frac{\partial \Omega}{\partial \overline{e}} \frac{d\overline{e}}{dT} + \frac{\partial \Omega}{\partial T} \right] = 0$$

$$\frac{\partial \Omega}{\partial \overline{e}} \frac{d^2 \overline{e}}{dT^2} + \frac{\partial^2 \Omega}{\partial T \partial \overline{e}} \frac{d\overline{e}}{dT} + \frac{\partial^2 \Omega}{\partial T^2} = 0$$

$$\frac{\partial^2 \Omega}{\partial T^2} = \frac{\partial}{\partial T} \left(\frac{\partial \Omega}{\partial T} \right) = 0$$

$$\frac{\partial^2 \Omega}{\partial T \partial \overline{e}} = \frac{\partial}{\partial T} \left(\frac{\partial \Omega}{\partial \overline{e}} \right) = \frac{\partial \gamma}{\partial \overline{e}} \left[\pi(\tau^a) - \pi(\tau^{tw}) \right] < 0$$

So,

$$\frac{\mathrm{d}^2 \overline{e}}{\mathrm{d}T^2} = \frac{-\frac{\partial^2 \Omega}{\partial T \partial \overline{e}} \frac{\mathrm{d}\overline{e}}{\mathrm{d}T} - \frac{\partial^2 \Omega}{\partial T^2}}{\frac{\partial \Omega}{\partial \overline{e}}} = \frac{-\frac{\partial^2 \Omega}{\partial T \partial \overline{e}} \frac{\mathrm{d}\overline{e}}{\mathrm{d}T}}{\frac{\partial \Omega}{\partial \overline{e}}} < 0$$

Now we have everything we need for $\frac{d^2\tau^a}{dT^2}$. Rearranging Equation 7, we have

$$\frac{\mathrm{d}^2 \tau^a}{\mathrm{d}T^2} = -\frac{\frac{\partial^2 \Pi}{\partial T \partial \tau^a} \frac{\mathrm{d}\tau^a}{\mathrm{d}T} + \frac{\partial \Pi}{\partial \overline{e}} \frac{\mathrm{d}^2 \overline{e}}{\mathrm{d}T^2} + \frac{\partial^2 \Pi}{\partial T \partial \overline{e}} \frac{\mathrm{d}\overline{e}}{\mathrm{d}T} + \frac{\partial^2 \Pi}{\partial T^2}}{\frac{\partial \Pi}{\partial \tau^a}}$$

Elements of the last two terms in the denominator have been shown to be zero when $\delta \to 1$, so we have

$$\frac{\mathrm{d}^2 \tau^a}{\mathrm{d}T^2} = -\frac{\frac{\partial^2 \Pi}{\partial T \partial \tau^a} \frac{\mathrm{d}\tau^a}{\mathrm{d}T} + \frac{\partial \Pi}{\partial \overline{e}} \frac{\mathrm{d}^2 \overline{e}}{\mathrm{d}T^2}}{\frac{\partial \Pi}{\partial \tau^a}}$$

The denominator is positive, so as goes the numerator, so goes the whole thing. So let's write out the numerator:

$$\left(\frac{\partial \pi(\tau^{a})}{\partial \tau^{a}} - \frac{\partial e_{a}}{\partial \tau^{a}}\right) \left[\frac{\left(1 - \frac{\mathrm{d}\pi}{\mathrm{d}\overline{e}}\right) \cdot \frac{\mathrm{d}\overline{e}}{\mathrm{d}T} - \left[\pi(\tau^{tw}) - e_{tw} - \pi(\tau^{a}) + e_{a}\right]}{(1 + T) \left[\frac{\partial \pi(\tau^{a})}{\partial \tau^{a}} - \frac{\partial e_{a}}{\partial \tau^{a}}\right]}\right] - \left(1 - \frac{\mathrm{d}\pi}{\mathrm{d}\overline{e}}\right) \frac{\partial \gamma}{\partial \overline{e}} \left[\pi(\tau^{tw}) - \pi(\tau^{a})\right] \frac{W_{\mathrm{ML}}(\gamma(\overline{e}), \boldsymbol{\tau}^{a}) - W_{\mathrm{ML}}(\gamma(\overline{e}), \boldsymbol{\tau}^{tw})}{\left[T\frac{\partial \gamma}{\partial \overline{e}} \left[\pi(\tau^{tw}) - \pi(\tau^{a})\right] + \frac{\partial \gamma}{\partial \overline{e}} \left[\pi(\tau^{b}(\overline{e})) - \pi(\tau^{a})\right]\right]^{2}}\right] (8)$$

$$\frac{\left(1 - \frac{\mathrm{d}\pi}{\mathrm{d}\overline{e}}\right) \cdot \frac{\mathrm{d}\overline{e}}{\mathrm{d}T} - \left[\pi(\tau^{tw}) - e_{tw} - \pi(\tau^{a}) + e_{a}\right]}{(1 + T)} - \frac{\left(1 - \frac{\mathrm{d}\pi}{\mathrm{d}\overline{e}}\right) \frac{\partial \gamma}{\partial \overline{e}} \left[\pi(\tau^{tw}) - \pi(\tau^{a})\right] \left[W_{\mathrm{ML}}(\gamma(\overline{e}), \boldsymbol{\tau^{a}}) - W_{\mathrm{ML}}(\gamma(\overline{e}), \boldsymbol{\tau^{tw}})\right]}{\left[T \frac{\partial \gamma}{\partial \overline{e}} \left[\pi(\tau^{tw}) - \pi(\tau^{a})\right] + \frac{\partial \gamma}{\partial \overline{e}} \left[\pi(\tau^{b}(\overline{e})) - \pi(\tau^{a})\right]\right]^{2}} \tag{9}$$

4.1 Solutions for optimal T

On the solution(s) to $\frac{d\tau^a}{dT}$:

- $\frac{d^2\tau^a}{dT^2}$ has one term that is positive, one term that reverses the sign of $\frac{d\tau^a}{dT}$
- this means if $\frac{d\tau^a}{dT} = 0$, it can't be a global max
 - The slope would have to start positive, end negative.
 - The second term in $\frac{d^2\tau^a}{dT^2}$ would start negative, end positive, so whole term would be positive as T gets large
 - This means SOC CAN'T be negative everywhere. A contradiction
- It's perfectly consistent to be a global min
 - Let slope start negative, end positive.
 - The second term in $\frac{d^2\tau^a}{dT^2}$ would start positive, end negative, so whole term would start positive. As T gets large, either stay positive (global min), or turn negative
 - If start positive and turn negative, would be an inflection point and slope doesn't actually turn positive
- If $\frac{d^2\tau^a}{dT^2}$ positive everywhere and $\frac{d\tau^a}{dT}$ (0) < 0 then interior min
- We know the negative part of $\frac{\mathrm{d}\tau^a}{\mathrm{d}T}$ gets smaller as $T\uparrow$
 - If negative to start out, eventually becomes positive
 - If positive to start out, gets more positive.
 - * In this case, want T as small as possible.

In line with last point, must fully explore corner solutions

• What is TRUE? (not just what would be convenient for me)

5 Cross Partial w.r.t. σ

$$\frac{\partial \Pi}{\partial \tau^a} \frac{\mathrm{d}^2 \tau^a}{\mathrm{d}\sigma \mathrm{d}T} + \frac{\partial^2 \Pi}{\partial \sigma \partial \tau^a} \frac{\mathrm{d}\tau^a}{\mathrm{d}T} + \frac{\partial \Pi}{\partial \overline{e}} \frac{\mathrm{d}^2 \overline{e}}{\mathrm{d}\sigma \mathrm{d}T} + \frac{\partial^2 \Pi}{\partial \sigma \partial \overline{e}} \frac{\mathrm{d}\overline{e}}{\mathrm{d}T} + \frac{\partial^2 \Pi}{\partial \sigma \partial T} = 0 \tag{10}$$

- Solving for second term
- Already know first (+), fourth (probably convex), fifth (+), eighth (+)
- Leaves four new terms to solve for. Third, sixth, seventh, ninth.

Ninth. Need:

$$\frac{\partial}{\partial \sigma} \left[\frac{\partial \Pi}{\partial T} \right] = \frac{\partial}{\partial \sigma} \left[-\left(\pi(\tau^{tw}) - e_{tw} - \pi(\tau^a) + e_a \right) \right]$$

- σ changes τ^{tw}
- leave τ^a alone as it's an equilibrium object
- also changes how much lobby has to pay for τ^{tw} and τ^a
- Conjecture:
 - When $\sigma \uparrow$, the lobby weakens $\left(\frac{\partial \gamma}{\partial e} \downarrow\right)$. This means $\pi(\tau^{tw}) e_{tw} \downarrow$
 - So probably overall gap goes down because lobby can't get as much in the trade war
 - * i.e. when lobby gets weaker, its future gain is less because it can't exert as much influence in the future (this makes sense)
 - REMEMBER: this enters negatively
 - * smaller gap means tighter constraint
 - * a larger gap would mean a tighter constraint

Third. Need:

$$\frac{\partial}{\partial \sigma} \left[\frac{\partial \Pi}{\partial \tau^a} \right] = \frac{\partial}{\partial \sigma} \left[(1 + T) \left(\frac{\partial \pi(\tau^a)}{\partial \tau^a} - \frac{\partial e_a}{\partial \tau^a} \right) \right]$$

- For any given τ , σ doesn't affect $\pi(\tau)$.
- But it does affect how much has to paid to get τ .
- When $\sigma \uparrow$, have to pay more and more. This is the first derivative.

• As $\tau^a \uparrow$, $e_a \uparrow$, so $-e_a \downarrow$. As $\sigma \uparrow$, $e_a \uparrow$ further, so $-e_a \downarrow$ further. So this term must be negative overall.

Seventh. Note that

$$\frac{\partial \Pi}{\partial \overline{e}} = 1 - \frac{\partial \pi}{\partial \overline{e}} = 1 - \frac{\partial \pi}{\partial \tau} \frac{\partial \tau^b}{\partial \gamma} \frac{\partial \gamma}{\partial \overline{e}}$$

Need

$$\begin{split} \frac{\partial}{\partial \sigma} \left[\frac{\partial \Pi}{\partial \overline{e}} \right] &= \frac{\partial}{\partial \sigma} \left[1 - \frac{\partial \pi}{\partial \tau} \frac{\partial \tau^b}{\partial \gamma} \frac{\partial \gamma}{\partial \overline{e}} \right] = - \frac{\partial}{\partial \sigma} \left[\frac{\partial \pi}{\partial \tau} \frac{\partial \tau^b}{\partial \gamma} \frac{\partial \gamma}{\partial \overline{e}} \right] \\ &= \frac{\partial \pi}{\partial \tau} \left[\frac{\partial \tau^b}{\partial \gamma} \frac{\partial^2 \gamma}{\partial \sigma \partial \overline{e}} + \frac{\partial^2 \tau^b}{\partial \sigma \partial \gamma} \frac{\partial \gamma}{\partial \overline{e}} \right] + \frac{\partial^2 \pi}{\partial \sigma \partial \tau} \frac{\partial \tau^b}{\partial \gamma} \frac{\partial \gamma}{\partial \overline{e}} \end{split}$$

- Since σ is not involved in how τ maps to profits, $\frac{\partial^2 \pi}{\partial \sigma \partial \tau} = 0$ and the second additive term is zero
- We know that $\frac{\partial \pi}{\partial \tau} > 0$, so the sign of the seventh term is determined by the sign of what's inside the square brackets
- $\frac{\partial^2 \tau^b}{\partial \sigma \partial \gamma} = 0$: once γ is determined, it maps directly into τ given the form of the welfare function. σ only controls how e maps into γ .
- So we're left with $\frac{\partial \tau^b}{\partial \gamma} \frac{\partial^2 \gamma}{\partial \sigma \partial \overline{e}}$. We know the first term is positive, so just need to investigate $\frac{\partial^2 \gamma}{\partial \sigma \partial \overline{e}}$.
 - Can't seem to get Young's theorem working on this cross partial. Next steps: keep trying this, develop some intuition
 - Then finish ninth term, develop intuition for full expression

Ninth

$$\frac{\partial^2 \Pi}{\partial \sigma \partial T}$$