TUTORIUM ZUR HAUPTKOMPONENTENANALYSE UNTER ANWENDUNG VON R

HENK VAN ELST*
parcIT GmbH, Erftstraße 15, 50672 Köln, Germany

21. November 2020

1 Einführung

Dieses Tutorium demonstriert die wesentlichen theoretischen und praktischen Schritte der **Hauptkomponentenanalyse** eines multivariaten, metrisch skalierten Datenssatzes, und einer aus dieser gegebenenfalls abgeleiteten **Dimensionsreduktion** des betrachteten Datensatzes. Das Tutorium basiert auf einer transparenten Darstellung aller relevanten Berechnungen mithilfe eines **R-Skripts**; vgl. R Core Team (2020) [15].

Die Grundüberlegungen zur **Hauptkomponentenanalyse** und der **Dimensionsreduktion** wurden im Wesentlichen von Pearson (1901) [14], Hotelling (1933) [8] und Kaiser (1960) [12] angestellt; siehe auch Hatzinger *et al* (2014) [7], Hair *et al* (2010) [6] oder Jolliffe (2002) [11].

Die nachfolgenden Ausführungen gliedern sich in drei Teile. Zunächst wird ein **trivariater Beispieldatensatz** mit **Messwerten** zu drei metrisch skalierten **Variablen** geladen und mit Standardmethoden der **Beschreibenden Statistik** quantitativ charakterisiert und visualisiert (Abschnitte 2 bis 5). Dann wird die in der **Linearen Algebra** angesiedelte Methodik einer **Hauptkomponentenanalyse** bereitgestellt. Es handelt sich hierbei um die **Eigenwertanalyse** symmetrischer quadratischer Matrizen und deren Diagonalisierung durch bestimmte, aus den **Eigenvektoren** konstruierten **Rotationstransformationen** (Abschnitte 6 bis 10). (In der Analytischen Geometrie ist die hier angewendte Methodik als Hauptachsentransformation bekannt; vgl. Bronstein *et al* (2005) [2].) Schließlich wird das auf der **Eigenwertanalyse** der **Korrelationsmatrix** aufbauende Verfahren der **Dimensionsreduktion** eines multivariaten Datensatzes dargestellt, hier für den Fall des **trivariaten Beispieldatensatzes** (Abschnitt 11).

Die nachfolgenden Ergebnisse werden erstellt mit R Version 4.0.2.

2 Laden der benötigten R-Pakete

Für die Durchführung der Berechnungen und die Erstellung der Grafiken in diesem Tutorium werden die folgenden R-Pakete geladen:

```
library(tidyverse)

## - Attaching packages ------ tidyverse
1.3.0 -
## v ggplot2 3.3.2 v purrr 0.3.4
## v tibble 3.0.3 v dplyr 1.0.0
```

^{*}ePost: Henk.van.Elst@parcIT.de

```
## v tidyr 1.1.0 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.5.0
## - Conflicts -----
tidyverse_conflicts() -
## x dplyr::filter() masks stats::filter()
                  masks stats::lag()
## x dplyr::lag()
library(zinsszenarien)
library (plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
##
      last_plot
## The following object is masked from 'package:stats':
##
##
      filter
## The following object is masked from 'package:graphics':
##
##
      layout
library (psych)
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
      %+%, alpha
##
library(REdaS)
## Loading required package: grid
library (GGally)
## Warning: package 'GGally' was built under R version 4.0.3
## Registered S3 method overwritten by 'GGally':
## method from
## + .gg ggplot2
```

3 Laden des trivariaten Beispieldatensatzes (X-Matrix)

Der in diesem Tutorium als konkretes Beispiel herangezogene **trivariate Datensatz** umfasst **Messwerte** zu den drei metrisch skalierten **Variablen** Körpergröße [cm], Masse [kg] und Alter [yr] für eine Stichprobe von 187 volljährigen Frauen umfasst. Diese Information befindet sich in einem größeren Datensatz nach Howell (2001) [9], der nun geladen wird.¹

```
load("testData.RData")
str(object = testData)
```

¹Der vollständige Originaldatensatz ist unter der URL tspace.library.utoronto.ca/handle/1807/10395 verfügbar.

```
## 'data.frame': 544 obs. of 4 variables:
## $ height: num 152 140 137 157 145 ...
## $ weight: num 47.8 36.5 31.9 53 41.3 ...
## $ age : num 63 63 65 41 51 35 32 27 19 54 ...
## $ male : int 1 0 0 1 0 1 0 1 ...
```

Es folgt das Ausfiltern des eigentlichen **trivariaten Datensatzes**, den **Messwerten** zu den drei **Variablen** Körpergröße [cm], Masse [kg] und Alter [yr] für eine Stichprobe von Frauen ab 18 Jahren.

```
X <- testData %>% filter(.data = ., age >= 18 & male == 0)
colnames(X) <- c("height [cm]", "mass [kg]", "age [yr]", "male")
str(object = X)

## 'data.frame': 187 obs. of 4 variables:
## $ height [cm]: num 140 137 145 149 148 ...
## $ mass [kg] : num 36.5 31.9 41.3 38.2 34.9 ...
## $ age [yr] : num 63 65 51 32 19 47 73 20 65.3 31 ...
## $ male : int 0 0 0 0 0 0 0 0 0 ...</pre>
```

Die **Datenmatrix** X ist die Rohdatenmatrix der in diesem Tutorium beschriebenen theoretischen und praktischen Betrachtung.

3.1 Visualisieren der Daten in X per 3D-Streudiagramm

Der **trivariate Datensatz** in X wird zunächst über ein **3D-Streudiagramm** visualisiert. Dies wird ermöglicht durch die Funktion plot_ly() aus dem Paket plotly. (Zu beachten ist hier die Tatsache einer nicht der mathematischen Konvention entsprechenden Orientierung der Maßskala entlang der "x-Achse; das resultierende Koordinatensystem ist nicht rechtshändisch orientiert.)

Rohdaten in X (Originalmaßskalen)

3.2 Visualisieren der Daten in X per Streudiagrammmatrix

Der **trivariate Datensatz** in X wird mithilfe einer **Streudiagrammmatrix** visualisiert. Hierfür wird die Funktion ggpairs () aus dem Paket GGally verwendet.

Wie die Diagramme auf der Diagonalen der **Streudiagrammmatrix** qualitativ suggerieren, erscheinen die Messwerte zu den **Variablen** Körpergröße [cm] und Masse [kg] in der Stichprobe **näherungsweise normalverteilt** zu sein, jene zu der **Variablen** Alter [yr] hingegen nicht.

3.3 Beschreibende Statistik und Ausreißerbetrachtung für die Daten in X

Für die **Messwerte** zu jeder der drei **Variablen** in **X** werden die folgenden beschreibenden statistischen Kennzahlen berechnet:

1. Mittelwert und Standardabweichung:

```
apply(X = X[, 1:3], MARGIN = 2, FUN = mean)

## height [cm] mass [kg] age [yr]

## 149.51352 41.81419 40.71230

apply(X = X[, 1:3], MARGIN = 2, FUN = sd)

## height [cm] mass [kg] age [yr]

## 5.084577 5.387917 16.219897
```

2. Standardisierte **Schiefe-** und **Wölbungsmaße**; vgl. Joanes und Gill (1998) [10] und van Elst (2019) [4]:

```
zinsszenarien:::stand.schiefe(X[, 1:3])

## height [cm] mass [kg] age [yr]
## 0.0205191 1.7939789 3.3003240

zinsszenarien:::stand.woelbung(X[, 1:3])

## height [cm] mass [kg] age [yr]
## -0.6688236 -0.9719034 -1.3598265
```

Sofern sowohl das standardisierte Schiefe- als auch das standardisierte Wölbungsmaß einen Wert vom Betrag kleiner 1,96 gemäß den Grenzen $Q_{0,025}=-1,96$ und $Q_{0,975}=+1,96$ des zentralen 95%-Bereichs einer standardnormalverteilten Größe annehmen, kann von **näherungsweise normalverteilten** univariaten Daten ausgegangen werden; vgl. Hair *et al* (2010) [6]. Wie die erhaltenen Ergebnisse zeigen, trifft das im betrachteten **trivariaten Datensatz** für die Variablen Körpergröße [cm] und Masse [kg] zu, nicht aber für die Variable Alter [yr]; siehe oben.

3. Anzahlen von **Ausreißern**, **Extremwerten** und **6-sigma-Ereignissen**; vgl. Toutenburg (2004) [16]:

```
zinsszenarien:::ausreisser(X[, 1:3])
## height [cm]
             mass [kg]
                          age [yr]
            \cap
                       1
zinsszenarien:::extremwerte(X[, 1:3])
             mass [kg]
## height [cm]
                          age [yr]
     0
##
                 0
                                  0
zinsszenarien:::sechs_sigma_ereignisse(X[, 1:3])
## height [cm] mass [kg]
                          age [yr]
```

4 Standardisieren des trivariaten Datensatzes (Z-Matrix)

Es folgt die Transformation der Rohdaten in X auf eine gemeinsame dimensionslose Maßskala, auf welcher Messwerte als Abweichungen vom Mittelwert in Vielfachen der Standardabweichung kodiert werden.

```
Z \leftarrow scale(x = X[, c("height [cm]", "mass [kg]", "age [yr]")], center = TRUE, scale(x = X[, c("height [cm]", "mass [kg]", "age [yr]")],
colnames(Z) <- c("height_std [1]", "mass_std [1]", "age_std [1]")</pre>
dim(Z)
## [1] 187
head(x = Z)
         height_std [1] mass_std [1] age_std [1]
             -1.9300562 -0.9889505
## [1,]
                                          1.3740963
## [2,]
              -2.5544936
                             -1.8466045
                                            1.4974016
## [3,]
             -0.8060688
                             -0.0997265
                                            0.6342642
                             -0.6627263
                                           -0.5371365
## [4,]
              -0.0567439
## [5,]
              -0.3065189
                             -1.2888663
                                           -1.3386213
## [6,]
               0.9423560
                             1.4998244
                                          0.3876535
```

Als Folge des **Standardisierens** haben die univariaten Daten zu jeder der drei **Variablen** in der **Datenmatrix** Z einen **Mittelwert** von 0 und eine **Standardabweichung** von 1. Dieser Sachverhalt wird in Kürze explizit betrachtet werden.

Die **Datenmatrix** Z der **standardisierten Messwerte** ("z-Werte") bildet die Grundlage der nachfolgenden Analyseschritte.

4.1 Visualisieren der Daten in Z per 3D-Streudiagramm

Standardisierte Daten in Z (Einheitsmaßskala)

4.2 Visualisieren der Daten in Z per Streudiagrammmatrix

Wie diese **Streudiagrammmatrix** im Vergleich zu jener oben für die ursprünglichen **Messwerte** qualitativ zeigt, sind durch das **Standardisieren** deren zentrale uni- und bivariate (und trivariate) Verteilungseigenschaften unverändert geblieben. (Andernfalls würde es sich um einen illegitimen Analyseschritt handeln.) Diesen Sachverhalt belegt auch der nächste Analyseschritt.

4.3 Beschreibende Statistik für die Daten in Z

Erneut werden beschreibende statistische Kennzahlen berechnet, nun für die Daten in Z ("z-Werte"):

1. Mittelwert und Standardabweichung:

```
apply(X = Z, MARGIN = 2, FUN = mean) %>% round(x = ., digits = 4)
## height_std [1] mass_std [1] age_std [1]
## 0 0 0
```

```
apply(X = Z, MARGIN = 2, FUN = sd)

## height_std [1] mass_std [1] age_std [1]
## 1 1 1
```

2. Standardisierte **Schiefe-** und **Wölbungsmaße**; vgl. Joanes und Gill (1998) [10] und van Elst (2019) [4]:

```
zinsszenarien:::stand.schiefe(Z)

## height_std [1] mass_std [1] age_std [1]
## 0.0205191 1.7939789 3.3003240

zinsszenarien:::stand.woelbung(Z)

## height_std [1] mass_std [1] age_std [1]
## -0.6688236 -0.9719034 -1.3598265
```

5 Untersuchen der Eignung des trivariaten Datensatzes in Z für eine Hauptkomponentenanalyse

Die Eignung des **trivariaten Datensatzes** für eine **Hauptkomponentenanalyse** wird mit Bartletts (1951) [1] **Test auf Sphärizität** sowie mit den standardisierten **KMO-** und **MSA-Maßen** nach Kaiser, Meyer und Olkin (KMO) untersucht; vgl. Kaiser (1970) [12], Guttman (1953) [5] und Hatzinger *et al* (2014) [7]. Hierfür werden die Funktionen bart_spher() und KMO() aus dem Paket REdaS verwendet.

Bartletts (1951) [1] frequentistischer **Nullhypothesentest** unterzieht die Grundannahme der Sphärizität der **Einhüllenden** der durch die Daten in Z gegebenen **Punktewolke** im Euklidischen Raum \mathbb{R}^3 einer empirischen Überprüfung. Im vorliegenden Fall liefert dies das folgende Resultat:

```
bart_spher(x = Z)

## Bartlett's Test of Sphericity
##

## Call: bart_spher(x = Z)
##

## X2 = 100.12
## df = 3
## p-value < 2.22e-16</pre>
```

Entsprechend dem erhaltenen p-Wert kann die Nullhypothese zu einem Signifikanzniveau von $\alpha=0,01$ verworfen werden. Mit großer Wahrscheinlichkeit ist die empirisch attestierte Deformation der **Einhüllenden** nicht zufälliger Natur. Von Nichtspherizität der **Einhüllenden** kann ausgegangen werden, was in diesem Beispiel für die grundsätzlich Sinnhaftigkeit der Durchführung einer **Hauptkomponentenanalyse** spricht. 2

Die standardisierten KMO- und MSA-Maße nehmen für die Daten in Z folgende Werte an:

 $^{^2}$ Die Nichtspherizität der Einhüllenden der durch die Daten in Z gegebenen Punktewolke ließ sich bereits im oben erstellten 3D-Streudiagramm erkennen.

```
kmoZ <- KMOS(x = Z)
print(x = kmoZ, stats = "KMO")

##
## Kaiser-Meyer-Olkin Statistic
## Call: KMOS(x = Z)
##
## KMO-Criterion: 0.5478232

print(x = kmoZ, stats = "MSA", sort = TRUE, digits = 7, show = 1:3)

##
## Kaiser-Meyer-Olkin Statistics
##
## Call: KMOS(x = Z)
##
## Measures of Sampling Adequacy (MSA):
## mass_std [1] height_std [1] age_std [1]
## 0.5309161 0.5327821 0.7749174</pre>
```

Das **KMO-Maß** bezieht sich auf den gesamten (hier trivariaten) **Datensatz**, das **MSA-Maß** individuell jede der beteiligten **Variablen**. Empfohlen werden für die standardisierten **KMO-** und **MSA-Maße**, deren Wertespektra sich über das Intervall [0; 1] erstrecken, Werte zwischen 0, 8 und 1, 0; vgl. Hatzinger *et al* (2014) [7] und Hair *et al* (2010) [6]. In dieser Hinsicht stellt der hier betrachtete **trivariate Datensatz** in **Z** ein *Negativbeispiel* bzgl. der Eignung für eine **Hauptkomponentenanalyse** dar.

$oldsymbol{6}$ Berechnen der Korrelationsmatrix $oldsymbol{R}$ und ihrer Inversen $oldsymbol{R}^{-1}$

Die Korrelationsmatrix R des betrachteten trivariaten Datensatzes in X ist gegeben durch

$$\boldsymbol{R} = \frac{1}{n-1} \, \boldsymbol{Z}^{\top} \boldsymbol{Z}$$

also

Die Korrelationsmatrix R besitzt eine von Null verschiedene Determinante und ist somit regulär. Folglich existiert eine Inverse, R^{-1} , die hier der Vollständigkeit halber angegeben wird.

```
det (x = Rmat)

## [1] 0.5806328

RmatInv <- solve(Rmat)
RmatInv</pre>
```

Die Spur der Korrelationsmatrix R beträgt

```
sum(diag(x = Rmat))
## [1] 3
```

Sie entspricht somit genau der Anzahl von Variablen im betrachteten trivariaten Datensatz in X.

7 Eigenwerte und Eigenvektoren: Eigenorthonormalbasis der Korrelationsmatrix

Die drei Eigenwerte der Korrelationsmatrix R sind

```
evAnaCor <- eigen(x = Rmat, symmetric = "TRUE")
evAnaCor$values

## [1] 1.7382412 0.8838105 0.3779482

sum(evAnaCor$values)

## [1] 3</pre>
```

und summieren sich genau zu der Anzahl von Variablen im betrachteten trivariaten Datensatzes in X. Die drei paarweise orthogonalen, normierten Eigenvektoren der Korrelationsmatrix R sind (spaltenweise von links nach rechts)³

```
## [,1] [,2] [,3]
## [1,] -0.6504363 0.3033698 0.69634715
## [2,] -0.6625952 0.2215906 -0.71544756
## [3,] 0.3713492 0.9267494 -0.05688085
```

Diese werden auch die **Hauptkomponenten** der **Korrelationsmatrix** R genannt. Sie spannen die **Eigenorthonormalbasis** der **Korrelationsmatrix** R im Euklidischen Raum \mathbb{R}^3 auf; vgl. Bronstein *et al* (2005) [2].

Mit Bezug auf Kaisers (1960) [12] **Eigenwertkriterium** wird festgestellt, dass im vorliegenden Beispiel nur einer der drei **Eigenwerte** der **Korrelationsmatrix** R größer 1 ist, dementsprechend also nur eine **dominante Hauptkomponente** der **Korrelationsmatrix** R vorliegt.

Der Erklärungswert der einzelnen Eigenwerte (Hauptkomponenten) an der Gesamtvarianz des betrachteten standardisierten trivariaten Datensatzes in Z beläuft sich auf

³Bedauerlicherweise spukt R hier die Komponenten der drei Eigenvektoren nicht der mathematischen Konvention entsprechend als rechtshändisch orientierte Orthonormalbasis aus.

```
round (evAnaCor$values/sum (evAnaCor$values), 4)
## [1] 0.5794 0.2946 0.1260
```

also 57, 94 %, 29, 46 % und 12, 60 %, und kumuliert auf

```
round(cumsum(evAnaCor$values)/sum(evAnaCor$values), 4)
## [1] 0.5794 0.8740 1.0000
```

Auf die Interpretation dieser Eigenwerte wird im nachfolgenden Abschnitt eingegangen.

8 Rotationsmatrix V, Eigenwertdiagonalmatrix Λ und inverse Eigenwertdiagonalmatrix Λ^{-1}

Aus den drei Eigenvektoren der Korrelationsmatrix R wird eine orthogonale Rotationsmatrix V bebildet, mithilfe welcher Transformationen in die rechtshändisch orientierte Eigenorthonormalbasis der Korrelationsmatrix R vorgenommen werden können. Die Determinante der Rotationsmatrix V hat den Wert 1

Transformationen mit der **Rotationsmatrix** V sind folglich *Volumen erhaltend*.

Per Konstruktion genügt die Rotationsmatrix V den beiden Orthonormalitätstests

$$\mathbf{1} = \boldsymbol{V}^{\top}\boldsymbol{V} = \boldsymbol{V}\boldsymbol{V}^{\top}$$

also

```
round(t(rotMatCor) %*% rotMatCor, 4)
       [,1] [,2] [,3]
## [1,]
         1
              0
## [2,]
         0
              1
## [3,]
        0
             0
round(rotMatCor %*% t(rotMatCor), 4)
##
       [,1] [,2] [,3]
## [1,] 1 0 0
## [2,]
        0
             1
## [3,] 0 0
```

Durch **Diagonalisieren** der **Korrelationsmatrix** R über Transformation mit der **Rotationsmatrix** V gelangt man zur **Eigenwertdiagonalmatrix** Λ gemäß

$$\Lambda = V^{\top}RV$$

also

```
LambdaCor <- t(rotMatCor) %*% Rmat %*% rotMatCor
round(LambdaCor, 7)

## [,1] [,2] [,3]
## [1,] 1.738241 0.0000000 0.0000000
## [2,] 0.000000 0.8838105 0.0000000
## [3,] 0.000000 0.0000000 0.3779482
```

Die **Eigenwertdiagonalmatrix** Λ ist nichts anderes als die Darstellung der **Korrelationsmatrix** R bzgl. ihrer **Eigenorthonormalbasis**.

Es folgt ein Konsistenztest für die Eigenwertdiagonalmatrix Λ ,

$$\mathbf{0} = \mathbf{\Lambda} - \operatorname{diag}(\lambda_1, \dots, \lambda_m)$$

also

```
round(LambdaCor - diag(x = evAnaCor$values), 4)

## [,1] [,2] [,3]
## [1,] 0 0 0
## [2,] 0 0 0
## [3,] 0 0 0
```

Die Inverse, Λ^{-1} , der Eigenwertdiagonalmatrix Λ wird durch

```
LambdaCorInv <- diag(x = (1/evAnaCor$values))
LambdaCorInv

## [,1] [,2] [,3]
## [1,] 0.5752941 0.000000 0.000000
## [2,] 0.0000000 1.131464 0.000000
## [3,] 0.0000000 0.000000 2.645865
```

berechnet.

Die drei **Eigenwerte** der **Korrelationsmatrix** R entsprechen den **Varianzen** der Daten in Z entlang jeder der durch die **Eigenorthonormalbasis** der **Korrelationsmatrix** R vorgegebenen drei Richtungen im Euklidischen Raum \mathbb{R}^3 . Die nächste Betrachtung verdeutlicht diesen Sachverhalt. Transformation der Daten in Z in die **Eigenorthonormalbasis** der **Korrelationsmatrix** R führt zur Datenmatrix

$$Z_{
m rot} = ZV$$

also

```
Zrot <- Z %*% rotMatCor
```

und eine daran anschließende Visualisierung der resultierenden Daten in $oldsymbol{Z}_{\mathrm{rot}}$ per $oldsymbol{3D ext{-}Streudiagramm}$ liefert

Standardisierte Daten bzgl. Eigenorthonormalbasis von R

Die nun ausgeführte Berechnung der **Varianzen** der Daten in Z_{rot} führt zu

```
apply(X = Zrot, MARGIN = 2, FUN = var)
## [1] 1.7382412 0.8838105 0.3779482
```

also zu dem behaupteten Ergebnis. Beachte: Die Daten in $oldsymbol{Z}_{\mathrm{rot}}$ sind paarweise unkorrelliert

```
round(cor(x = Zrot), 4)

## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
```

9 Hauptkomponentenladungsmatrix A

Die **Hauptkomponentenladungsmatrix** A liefert die Antwort auf die Frage: Wie stark korrelieren die drei **Ausgangsvariablen** Körpergröße, Masse und Alter mit den hier bestimmten drei **Hauptkomponenten** (Eigenvektoren der Korrelationsmatrix R)?

```
AmatCor <- rotMatCor %*% LambdaCor^(1/2)

rownames(AmatCor) <- c("height", "mass", "age")

colnames(AmatCor) <- c("PC1", "PC2", "PC3")

AmatCor
```

```
## height 0.8575507 -0.2852016 -0.42809679

## mass 0.8735813 -0.2083199 0.43983925

## age -0.4895956 -0.8712482 0.03496889
```

Dass die **Hauptkomponentenladungsmatrix** A in der Tat formal als eine Korrelationsmatrix interpretiert werden, wird weiter unten deutlich werden.

Die Hauptkomponentenladungsmatrix A erfüllt zwei Konsistenztests:

1. Die **Korrelationsmatrix** *R* lässt sich mithilfe der **Hauptkomponentenladungsmatrix** *A* faktorisieren,

$$0 = R - AA^{\top}$$

also

2. Die Eigenwertdiagonalmatrix Λ lässt sich mithilfe der Hauptkomponentenladungsmatrix A faktorisieren,

$$\mathbf{0} = \mathbf{\Lambda} - \mathbf{A}^{ op} \mathbf{A}$$

also

```
round (LambdaCor - t (AmatCor) %*% AmatCor, 4)

##     PC1     PC2     PC3
##     PC1     0     0     0
##     PC2     0     0     0
##     PC3     0     0     0
```

10 Standardisierter Datensatz in der Eigenorthonormalbasis der Korrelationsmatrix (F-Matrix)

Es folgt die **Transformation** des standardisierten **trivariaten Datensatzes** in Z in die **Eigenorthonormalbasis** der **Korrelationsmatrix** R mit der einer Konvention der Statistik entsprechenden Maßgabe, dass die resultierenden Daten gleichfalls standardisiert sind. Für die Umsetzung dieses Anliegens wird eine durch die **Rotationsmatrix** V beschriebene, Volumen erhaltende **Drehung** des Ausgangskoordinatensystems⁴ mit einer Volumen verändernden **Reskalierung** der Koordinatenachsen mithilfe der (Wurzel der) **Inversen** Λ^{-1} der **Eigenwertdiagonalmatrix** Λ kombiniert. Diese kombinierte **Transformation** definiert die F-Matrix,⁵

$$F = ZV\Lambda^{-1/2}$$

⁴Die Auswirkungen alleine dieser Rotationstransformation auf die Daten in **Z** waren zuvor in Abschnitt 8 beschrieben und visualisiert worden.

 $^{^5}$ Äquivalent kann die F-Matrix auch unter Einbinden der Hauptkomponentenladungsmatrix A über $F = ZA\Lambda^{-1}$ berechnet werden.

also

```
FmatCor <- Z %*% rotMatCor %*% LambdaCorInv^(1/2)
colnames (FmatCor) <- c("PC1_std [1]", "PC2_std [1]", "PC3_std [1]")</pre>
dim (FmatCor)
## [1] 187
head(x = FmatCor)
##
        PC1_std [1] PC2_std [1] PC3_std [1]
## [1,] -1.8362245 -0.4986426 1.1623874
## [2,] -2.6100451 -0.2165376
                                 0.8829885
## [3,]
        -0.6264361 \quad -0.3416280
                                 0.8556499
## [4,]
        -0.2097674
                    0.7040217 - 0.7566757
## [5,] -0.4219218
                    1.7223008
                                 -1.2765885
## [6,] 1.1094795 -1.0397559 0.7139017
```

die standardisierte und per Konstruktion paarweise unkorrelierte, so genannte "f-Werteënthält.

10.1 Konsistenztests für die F-Matrix

Folgende Konsistenztests können für die F-Matrix durchgeführt werden:

1. Die "f-Werteßind standardisiert und paarweise unkorreliert,

$$\mathbf{0} = \mathbf{1} - \frac{1}{n-1} \mathbf{F}^{\top} \mathbf{F}$$

also

2. Die Elemente der **Hauptkomponentenladungsmatrix** *A* repräsentieren, als algebraische Projektionen von standardisierten "z-Wertenäuf standardisierte "f-Werte", bivariate Korrelationen zwischen den **Ausgangsvariablen** und den **Hauptkomponenten** (vgl. die Bemerkungen zu Beginn von Abschnitt 9),

$$\boldsymbol{0} = \boldsymbol{A} - \frac{1}{n-1} \, \boldsymbol{Z}^{\top} \boldsymbol{F}$$

also

3. Die "z-Werte"können als Linearkombinationen von "f-Wertenäufgefasst werden,

$$\mathbf{0} = \mathbf{Z} - \mathbf{F} \mathbf{A}^{ op}$$

also

```
head(x = round(Z - FmatCor %*% t(AmatCor), 4))
        height_std [1] mass_std [1] age_std [1]
                       0
                                     0
## [1,]
## [2,]
                       0
                                     0
                                                   0
## [3,]
                       0
                                                   0
## [4,]
                       0
                                     0
                                                   0
## [5,]
                       0
                                     0
                                                   0
                       0
                                     0
## [6,]
tail(x = round(Z - FmatCor %*% t(AmatCor), 4))
           height_std [1] mass_std [1] age_std [1]
## [182,]
                         0
                                        0
                                                     0
## [183,]
                         0
                                        0
                                                     0
## [184,]
                         0
                                        0
                                                     0
## [185,]
                         0
                                        0
                                                     0
## [186,]
                         0
                                        0
                                                     0
## [187,]
```

10.2 Visualisieren der Daten in F per 3D-Streudiagramm

Standardisierte Daten in F (Einheitsmaßskala)

10.3 Visualisieren der Daten in F per Streudiagrammmatrix

Die **Streudiagrammmatrix** verdeutlicht ebenfalls das paarweise Nichtkorreliertsein der den einzelnen **Hauptkomponenten** zugeordneten "f-Werten".

11 Dimensionsreduktion: Extraktion der einzigen dominanten Hauptkomponente

Im Anschluss an die umfangreiche Diskussion der für eine **Hauptkomponentenanalyse** eines multivariaten metrisch skalierten Datensatzes benötigten linear-algebraischen Methodik, wird nun abschließend das Vorgehen bei einer **Dimensionsreduktion** vorgestellt.

Die **Dimensionsreduktion** wird in der Eigenorthonormalbasis der **Korrelationsmatrix** R vorgenommen. Verkürzt dargestellt, werden von den "f-Werten"nur jene beibehalten, welche den **dominanten**

Hauptkomponenten zugeordnet sind. Alle Restlichen werden verworfen; ein damit verbundener Informationsverlust wird zugunsten einer geringeren Komplexität des gegebenen Sachverhalts in Kauf genommen. Die verbleibenden "f-Werte" werden in die **Ausgangsorthonormalbasis** rücktransformiert und dann bezüglich der **Originalmaßskalen** dargestellt. Die so erhaltenen **dimensionsreduzierten Messwerte** bilden den Ausgangspunkt möglicher weiterer statistischer Anwendungen.

11.1 Qualitatives Extraktionskriterium

Das R-Paket psych stellt die Funktion VSS.scree() zur Erstellung eines **Gerölldiagramms** nach Cattell (1966) [3] bereit.

VSS.scree(rx = Z)

scree plot

Zu extrahieren ist nach erfahrungsbasierter Empfehlung jene Anzahl von **Hauptkomponenten**, deren **Eigenwerte** im **Gerölldiagramm** *links* des Ellbogensßu liegen kommen; im betrachteten Beipiel also

 $^{^6}$ Für die Umsetzung einer Dimensionsreduktion werden die F-Matrix bzw. die "f-Werte"nicht wirklich benötigt. Die in die Eigenorthonormalbasis der Korrelationsmatrix R transformierten "z-Werteßind für dieses Anliegen vollkommen ausreichend. Das Standardisieren entspricht lediglich einer in der Statistik gepflegten, da häufig nützlichen, Konvention.

einer. Dieses Resultat ist im vorliegeneden Fall konsistent mit Kaisers (1960) [12] **Eigenwertkriterium**, welches die **Extraktion** aller **Hauptkomponenten** der **Korrelationsmatrix** R mit einem **Eigenwert** größer 1 empfiehlt.

Beispielhaft wird im Rahmen der weiteren Diskussion eine **Dimensionsreduktion** für den gegebenen **trivariaten Datensatz** in X auf Basis der **Extraktion** der einzigen **dominanten Hauptkomponente** der **Korrelationsmatrix** R demonstriert.

11.2 Dimensionsreduzierte Matrizen

Das Vorgehen bei einer **Dimensionsreduktion** spiegelt sich insbesondere in den Matrizen der beschriebenen linear-algebraischen Methodik wieder.

1. Dimensionsreduzierte Rotationsmatrix $V_{\rm red}$ — nur die Eigenvektoren der Korrelationsmatrix R mit Eigenwerten größer 1 werden zur Konstruktion der Rotationsmatrix verwendet:

```
rotMatCorRed <- as.matrix((-1) * evAnaCor$vectors[, 1])
rotMatCorRed

## [,1]
## [1,] 0.6504363
## [2,] 0.6625952
## [3,] -0.3713492
```

2. Dimensionsreduzierte Eigenwertdiagonalmatrix Λ_{red} — erzeugt aus der Korrelationsmatrix R durch Transformation mit der dimensionsreduzierten Rotationsmatrix:

```
LambdaCorRed <- t(rotMatCorRed) %*% Rmat %*% rotMatCorRed
LambdaCorRed

## [,1]
## [1,] 1.738241
```

3. Inverse der dimensionsreduzierten Eigenwertdiagonalmatrix, $\mathbf{\Lambda}_{\mathrm{red}}^{-1}$

```
LambdaCorRedInv <- solve (LambdaCorRed)
LambdaCorRedInv

## [,1]
## [1,] 0.5752941</pre>
```

4. Dimensionsreduzierte Hauptkomponentenladungsmatrix A_{red}

```
AmatCorRed <- rotMatCorRed %*% LambdaCorRed^(1/2)

AmatCorRed

## [,1]

## [1,] 0.8575507

## [2,] 0.8735813

## [3,] -0.4895956
```

5. Dimensions reduzierte F-Matrix, $F_{\rm red}$

```
FmatCorRed <- Z %*% AmatCorRed %*% LambdaCorRedInv
dim(FmatCorRed)

## [1] 187     1

head(x = FmatCorRed)

## [1,] -1.8362245
## [2,] -2.6100451
## [3,] -0.6264361
## [4,] -0.2097674
## [5,] -0.4219218
## [6,]     1.1094795

(1/(nrow(FmatCorRed) - 1)) * t(FmatCorRed) %*% FmatCorRed

## [,1]
## [1,]     1</pre>
```

11.3 Vergleich des trivariaten Beispieldatensatzes mit seiner dimensionsreduzierten Variante

Die in der dimensionsreduzierten F-Matrix, $F_{\rm red}$, verbliebenen "f-Werte"werden in die **Ausgangs-orthonormalbasis** rücktransformiert und bezüglich der **Originalmaßskalen** ausgedrückt. Zu illustrativen Zwecken werden sie hier stichprobenartig mit den nichtdimensionsreduzierten "z-Werten"bzw. den ursprünglichen Messwerten verglichen.

Standardisierte Maßskala

```
oldsymbol{Z}_{	ext{red}} vs oldsymbol{Z}
```

```
Zapprox <- FmatCorRed %*% t(AmatCorRed)
colnames(Zapprox) <- c("height_std [1]", "mass_std [1]", "age_std [1]")</pre>
```

```
head(x = Z)
##
       height_std [1] mass_std [1] age_std [1]
## [1,]
          -1.9300562 -0.9889505 1.3740963
## [2,]
           -2.5544936 -1.8466045 1.4974016
           -0.8060688
## [3,]
                        -0.0997265
                                    0.6342642
## [4,]
           -0.0567439
                        -0.6627263 \quad -0.5371365
## [5,1
           -0.3065189 -1.2888663 -1.3386213
## [6,]
           0.9423560
                        1.4998244 0.3876535
head(x = Zapprox)
```

```
## height_std [1] mass_std [1] age_std [1]
## [1,]
          -1.5746556 -1.6040913 0.8990074
## [2,]
          -2.2382460
                       -2.2800865
                                  1.2778665
## [3,]
          -0.5372007 -0.5472428
                                   0.3067003
## [4,]
          -0.1798862 -0.1832489 0.1027012
## [5,]
          -0.3618193 -0.3685830 0.2065711
          0.9514349
                       0.9692205 -0.5431963
## [6,]
tail(x = Z)
        height_std [1] mass_std [1] age_std [1]
## [182,]
             1.3170185 0.4106565 -0.4754839
## [183,]
            -0.6811813
                        -0.4469974 -0.2042121
## [184,]
            0.5676935
                       -0.1839134 0.5109589
## [185,]
             2.5658933
                        0.9683947 -0.8453999
## [186,]
            -1.3056188
                        -1.4046233 -0.5987892
## [187,]
             1.3170185
                       2.2732915 -1.2153159
tail(x = Zapprox)
         height_std [1] mass_std [1] age_std [1]
##
## [182,]
            ## [183,]
            -0.43150557 -0.43957190 0.24635654
                       0.03819477 -0.02140612
## [184,]
            0.03749388
## [185,]
            1.70709764 1.73900920 -0.97462164
## [186,]
           -1.01309268 -1.03203088 0.57839810
## [187,] 1.83046773 1.86468550 -1.04505648
```

Originalmaßskalen

Dies erfordert eine **Rücktransformation** (Destandardisierung) der Daten in $Z_{\rm red}$ bzw. Z auf die ursprünglich für die drei Variablen Körpergröße, Masse und Alter verwendeten **Maßskalen**:

```
b <- attr(x = Z, "scaled:scale")
a <- attr(x = Z, "scaled:center")
Xapp_int <- Zapprox * rep(b, each = nrow(Zapprox)) + rep(a, each = nrow(Zapprox))
XapproxCor <- data.frame(Xapp_int)
colnames(XapproxCor) <- c("height [cm]", "mass [kg]", "age [yr]")</pre>
```

$\boldsymbol{X}_{\mathrm{red}}$ vs \boldsymbol{X}

```
head(x = X[, 1:3])
     height [cm] mass [kg] age [yr]
##
                 36.48581
## 1
         139.700
                                 63
## 2
         136.525
                 31.86484
                                 65
## 3
         145.415
                 41.27687
                                 51
## 4
        149.225 38.24348
                                 32
                                 19
## 5
         147.955 34.86988
## 6 154.305 49.89512
                                 47
```

```
head(x = XapproxCor)
## height [cm] mass [kg] age [yr]
## 1 141.5071 33.17148 55.29411
## 2
      138.1330 29.52927 61.43916
## 3
     146.7821 38.86569 45.68695
     148.5989 40.82686 42.37810
## 4
     147.6738 39.82830 44.06286
## 5
## 6
     154.3512 47.03627 31.90171
tail(x = X[, 1:3])
## height [cm] mass [kg] age [yr]
## 182 156.210 44.02677 33.0
## 183
        146.050 39.40581
                            37.4
## 184
        152.400 40.82328
                            49.0
## 185
        162.560 47.03182
                            27.0
        142.875 34.24620
## 186
                            31.0
        156.210 54.06250
## 187
                           21.0
tail(x = XapproxCor)
## height [cm] mass [kg] age [yr]
## 182 153.8304 46.47414 32.85012
## 183
        147.3195 39.44581 44.70818
## 184
       149.7042 42.01998 40.36509
## 185
       158.1934 51.18383 24.90404
## 186 144.3624 36.25369 50.09386
```

23

11.4 Visualisieren der dimensionsreduzierten Daten per 3D-Streudiagramm Standardisierte Maßskala

Dimensionsreduzierte standardisierte Daten in Zapprox

Originalmaßskalen

Dimensionsreduzierte Daten in XapproxCor (Originalmaßskalen)

11.5 Visualisieren der dimensionsreduzierten Daten per Streudiagrammmatrix Standardisierte Maßskala

12 FAZIT 25

Originalmaßskalen

12 Fazit

Im vorliegenden Beispiel führt die **Dimensionsreduktion** zu einem **Extremfall**; der betrachtete trivariate Datensatz in \boldsymbol{X} wurde zu einem effektiv univariaten Datensatz reduziert, welcher 57,94% der Gesamtvarianz des Ausgangsdatensatzes zu erklären vermag. Im dimensionsreduzierten Datensatz liegen maximal (minimal) mögliche Werte für die bivariaten Korrelationen zwischen den drei Ausgangsvariablen vor.

Danksagung

Hilfreiche Kommentare von Jana Orthey und Laurens van der Woude haben dazu beigetragen, dieses Tutorium adressatengerecht zu gestalten.

LITERATUR 26

Literatur

[1] M S Bartlett (1951) The effect of standardization on a chi square approximation in factor analysis *Biometrika* **38** 337–344

- [2] I N Bronstein, K A Semedjajew, G Musiol und H Mühlig (2005) *Taschenbuch der Mathematik* 6. Aufl. (Frankfurt (Main): Harri Deutsch) ISBN-10: 3817120060
- [3] R B Cattell (1966) The scree test for the number of factors *Multivariate Behavioral Research* **1** 629–637
- [4] H van Elst (2019) Foundations of descriptive and inferential statistics (version 4) *Preprint* ar-Xiv:1302.2525v4 [stat.AP]
- [5] L Guttman (1953) Image theory for the structure of quantitative variates *Psychometrika* **18** 277–296
- [6] J F Hair jr, W C Black, B J Babin and R E Anderson (2010) *Multivariate Data Analysis* 7th Edition (Upper Saddle River, NJ: Pearson) ISBN-13: 9780135153093
- [7] R Hatzinger, K Hornik, H Nagel und M J Maier (2014) *R Einführung durch angewandte Statistik* 2. Aufl. (München: Pearson Studium) ISBN–13: 9783868942507
- [8] H Hotelling (1933) Analysis of a complex of statistical variables into principal components *Journal* of Educational Psychology **24** 417–441
- [9] N Howell (2001) *Demography of the Dobe !Kung* 2nd Edition (Abingdon, Oxon: Routledge) ISBN–13: 9780202306490
- [10] D N Joanes and C A Gill (1998) Comparing measures of sample skewness and kurtosis *The Statistician* 47 183–189
- [11] I T Jolliffe (2002) *Principal Component Analysis* 2nd Edition (New York: Springer) ISBN-10: 0387954422
- [12] H F Kaiser (1960) The application of electronic computers to factor analysis *Educational and Psychological Measurement* **20** 141–151
- [13] H F Kaiser (1970) A second generation little jiffy *Psychometrika* **35** 401–415
- [14] K Pearson (1901) LIII. On lines and planes of closest fit to systems of points in space *Philosophical Magazine Series* 6 **2** 559–572
- [15] R Core Team (2020) R: A language and environment for statistical computing (Wien: R Foundation for Statistical Computing) URL (cited on December 5, 2020): https://www.R-project.org/
- [16] H Toutenburg (2004) Deskriptive Statistik 4. Aufl. (Berlin: Springer) ISBN-10: 3540222332