Copyright @ 2022 ML6. All rights reserved. ML6 Public Information. Photo by Jesús Rocha on Unsplash.

The importance and pitfalls of pseudonymization

Lisa Becker

Machine Learning Engineer Working Group Lead - Speech / Audio

"> 99% of U.S. population is uniquely identified by 15 random quasi-identifiers in any dataset."

(Rocher et al., 2019)

General Data Protection Regulation in a nutshell

- Enforceable since 2018
- Regulates EU/EEA law on data protection and privacy
- Goal: Enhancing the individual's control and rights over their personal data:
- "Any information from which a person (a data subject) can be identified or potentially identified" needs to be pseudonymized, for example:

Names, nicknames, ID numbers, location, physical, physiological, genetic, mental, economic data, or cultural or social identity

- Exceptions:
 - Explicit consent, social security & protection, substantial public interest, trade unions or religions, doctors, courts or lawyers
 - If identifiable information is permanently removed
- GDPR does not prescribe pseudonymization technique

Difference between pseudonymization and anonymization

Pseudonymization:

data can be <u>re-identified</u> with the help of an identifier (=additional information) → stays personal data

On this day, 17th of April 2021
Before me, Note spqyuayeahre
Appeared: Abe Ross, John Oliver
born on 12th of December 1975, ...

Anonymization:

permanent replacement of sensitivedata with unrelated characters→ no personal data anymore

On this day, 17th of April 2021 Before me, Notary Danny McGraw,

Appeared: John Oliver born on 12th of December 1975, ...

3 pillars of pseudonymization

What to pseudonymize <

How to pseudonymize 🞲

Averting attacks !

What to pseudonymize

RegExes:

- E-Mail-Addresses
- Phone numbers
- Date / Time
- Events / Companies / ...?
- Names?
- Addresses? \rightarrow different countries?
- Models
- Combination of both

3 pillars of pseudonymization

What to pseudonymize <

How to pseudonymize ***

Averting attacks !

How to pseudonymize 🎲

Single identifier pseudonymization

- Counter
- Random number generators
- Cryptographic hash functions
- Message authentication code (MAC)

How to pseudonymize 🎲

Pseudonymization policy

- Deterministic pseudonymization (same across documents))
- Document-randomized pseudonymization(samewithindocument))
- Fully-randomized pseudonymization (never same)

```
On this day, 17th of April 2021

Refore me Notary Danny McGraw,

John Oliver

Appeared: Abe Ross, born on 12th of

December 1975,

John Oliver

Abe Ross declares to have sufficient funds.

On this day, 27th of March 1995

Tim Esser

Appeared: Abe Ross, born on 12th of December 1975,

To buy the property, located at 123 Fake Street, Phoenix, for the agreed upon price of €125.000.
```

How to pseudonymize 🎲

Other problems:

- Gender
 - Coreference
 - E-Mail-Addresses
- Scanned documents:
 - OCR errors: L1sa → might not be identified as name
- Black boxes instead of text
 - Missing information
 - Length of original data known

privacy versus utility

3 pillars of pseudonymization

What to pseudonymize

How to pseudonymize ***

Averting attacks 1

Averting attacks /

Linkage Attacks

- Re-identification
- Combining data by linking multiple datasets
- Quasi-identifiers: Pieces of information that aren't themselves unique identifiers but become so through combination
- Example:

Averting attacks 1

k-anonymity:

Quasi-identifiers have to reach **k-anonymity** through transformation

 Even with auxiliary information, each individual is still indistinguishable from at least k-1 other individuals

2 common methods:

- Suppression: Replacement of values of certain attributes with the same value (like nationality through *)
- Generalization: Replacement of values of certain attributes with broader category (like numbers through number ranges: 28 through <30)

	N	Sensitive		
	Zip Code	Age	Nationality	Condition
1	130**	< 30	*	Heart Disease
2	130**	< 30	*	Heart Disease
3	130**	< 30	*	Viral Infection
4	130**	< 30	*	Viral Infection
5	1485*	≥ 40	*	Cancer
6	1485*	≥ 40	*	Heart Disease
7	1485*	≥ 40	*	Viral Infection
8	1485*	≥ 40	*	Viral Infection
9	130**	3*	*	Cancer
10	130**	3*	*	Cancer
11	130**	3*	*	Cancer
12	130**	3*	*	Cancer

Averting attacks 1

Table is 4 anonymous (zip-code, age, nationality):

For any combination of these attributes, there are at least 3 rows with those exact attributes.

Other attacks against k-anonymity:

Homogeneity Attack:

Attacker knows that Bob is admitted to hospital (31 y/o in 13053). Bob's record number is: 9, 10, 11 or 12.

All patients have same condition.

Conclusion: Bob has cancer.

Background Knowledge Attack:

Attacker knows that Umeko (•, 21 y/o in 13068) is at same hospital and heart diseases are rare in Japan. Conclusion: Umeko probably has a viral infection.

	N	lon-Sen	Sensitive	
	Zip Code	Age	Nationality	Condition
1	130**	< 30	*	Heart Disease
2	130**	< 30	*	Heart Disease
3	130**	< 30	*	Viral Infection
4	130**	< 30	*	Viral Infection
5	1485*	≥ 40	*	Cancer
6	1485*	≥ 40	*	Heart Disease
7	1485*	≥ 40	*	Viral Infection
8	1485*	≥ 40	*	Viral Infection
9	130**	3*	*	Cancer
10	130**	3*	*	Cancer
11	130**	3*	*	Cancer
12	130**	3*	*	Cancer

Averting attacks 1

Membership Inference Attacks

- Attacker knows the model's algorithm and architecture or service used to create the model
- Goal: Observing the behavior of target models: prediction of input data
- Training of 'shadow models' to predict whether sample was part of model's training data
- Predictions of 'shadow model(s)' used to train membership inference attack model

Pseudonymization is hard

What to pseudonymize <

How to pseudonymize ***

Averting value attacks 1

There is no 'one-size-fits-all' approach:

- Privacy versus utility
- Depends on the use case

List of geolocations

Random number generator

On this day, 17th of April 2021 Before me, Notary Danny McGraw,

Appeared: Ahe Ross, born on 12th of December 1975, To buy the property, located at 123 Fake Street, Phoenix, for the agreed upon price of €125.000.

On this day, **10th of January 1996** Before me, Notary Danny McGraw,

Appeared: Abe Ross, born on 12th of December 1975, To buy the property, located at **EvenFakerStreet 987**, **New York**, for the agreed upon price of **€285.000**.

For **recognizing** as many names as possible

For **replacing** with names common in Belgium

Short list of names

-requency

Je suis madame Le.

I'm mrs. Le.

→ names shorter than 4 letters not captured by RegEx but NER model.

Ik ben Lisa.

I am Lisa.

Anonymization.

List of geolocations

Random number generator

On this day, 10th of March 1996

Before me, Notary John Oliver,

Pseudonymization demo.

Address NER Model.

(e.g. to improve pseudonymization demo)

Bert model

NER

finetuning

Ultra-Fine Entity Typing dataset

Bert finetuned model

improvements for the future

The first of its kind

Downloads last month **31,134**

Anonymization of video

Human: .99

Scan me to give Lisa feedback! A
Or visit: s.truqu.com/007zxn

Importance:

- Pseudonymization/anonymization is important for the individual's privacy and safety
- GDPR regulates data privacy
- ML6 decides on use-case basis whether data is pseudonymized or anonymized
 - → if pseudonymization: adhere to GDPR (less safe, more useful)
 - → if anonymization: freedom! (more safe, less useful)

Pitfalls:

- Use-case-specific
- Privacy versus utility
- 3 pillars of pseudonymization:
 - What to pseudonymize 🔍
 - How to pseudonymize 🎲
 - Averting attacks 1
- Never 100% rock-solid

