Esercitazione 2: Cinematica

1. Un oggetto si muove lungo una linea γ con la seguente legge del moto:

$$s(t) = -1\frac{m}{s^3}t^3 + 3\frac{m}{s^2}t^2 + 9\frac{m}{s}t + 5m$$
 con $t \ge 0$

Si determini:

- (a) l'espressione della velocità istantanea per $t \geq 0$, e la si rappresenti graficamente.
- (b) l'espressione della accelerazione istantanea.
- (c) l'istante t_M in cui l'oggetto raggiunge la sua velocità positiva massima, il valore di tale velocità, la posizione e l'accelerazione all'istante t_M
- (d) la posizione dell'oggetto quando la sua velocità è nulla.
- (e) la velocità media fino a quell'istante.

$$v(t) = -3\frac{m}{s^3}t^2 + 6\frac{m}{s^2}t + 9\frac{m}{s}, \ a(t) = -6\frac{m}{s^3}t + 6\frac{m}{s^2}$$

$$t_M = 1s, \ v_M = v_{\max} = 12\frac{m}{s}, \ a(t_M) = 0, \ s(v = 0) = 32m, \ v_{\text{media}} = 9\frac{m}{s}$$

2. Un sasso viene lasciato cadere da fermo da un alto ponte; dopo un tempo T=5s si sente il rumore del suo urto al suolo. Sapendo che la velocità del suono è 340m/s, calcolare l'altezza del ponte.

h = 107.56m

- 3. Nel momento in cui il semaforo diventa verde, un'auto parte da ferma con accelerazione costante $a=2.2m/s^2$. Nello stesso istante, un autocarro si trova 10m più indietro rispetto all'automobile e sta viaggiando a una velocità costante di 9.5m/s.
 - (a) In quali istanti e a quale distanza dall'incrocio i due mezzi si supereranno?
 - (b) Quale è la velocità dell'auto durante i sorpassi?

(a)
$$t_1 = 1.227s$$
, $t_2 = 7.4s$; (b) $v(t_1) = 2.7m/s$, $v(t_2) = 16.28m/s$

4. Nello sfasciodromo di Phoenix, Johnny sta viaggiando a una velocità $v_J=320km/h$. Davanti a lui, ad una distanza d=650m, c'è Charlie con la macchina in panne, che avanza con velocità costante $v_C=120km/h$; qual è la decelerazione minima costante che dovrà tenere Johnny per non finire contro Charlie?

$$a = 2.37 m/s^2$$

- 5. Un punto si muove di moto armonico con pulsazione $\omega = \sqrt{3}/6$ rad/s attorno al punto x = 0. All'istante t = 0, il corpo si trova presso x = 2m e si muove con velocità v = 1m/s. Si calcoli:
 - (a) la legge oraria del moto;

(b) in quale istante il punto passa per la prima volta per il centro delle oscillazioni.

$$x(t) = 4m \cdot \cos(\omega t - \pi/3); \quad t_0 = \cdot s$$

- 6. Un punto si muove secondo la legge $\vec{r}(t) = A \cdot t \cdot \hat{u}_x + B \cdot t^2 \cdot \hat{u}_y$ con A = 1m/s e $B = 1m/s^2$ costanti. Si determinino:
 - (a) l'equazione cartesiana della traiettoria;
 - (b) i moduli dei vettori velocità e accelerazione, in ogni istante;
 - (c) i moduli dell'accelerazione normale e tangenziale, in ogni istante
 - (d) l'istante in cui velocità e accelerazione sono ortogonali.

(a)
$$y = \frac{B}{A^2}x^2$$
; (b) $|v(t)| = \sqrt{A^2 + 4B^2t^2}$, $|a(t)| = 2B$; (c) $a_t = \frac{4B^2t}{\sqrt{A^2 + 4B^2t^2}}$, $a_n = \frac{2AB}{\sqrt{A^2 + 4B^2t^2}}$ (d) $t = 0$

- 7. In un bar, il barista lancia lungo il bancone un boccale di birra verso un cliente, che non vede il boccale e lo lascia cadere al suolo, ad una distanza d = 1.4m dal bancone. Se l'altezza del bancone è h = 0.86m, calcolare:
 - (a) la velocità del boccale nell'istante in cui si stacca dal bancone;
 - (b) la direzione della velocità del boccale all'impatto con il suolo;

(a)
$$v = 3.3m/s$$
; (b) $\alpha = 51^{\circ}$

8. Uno sciatore salta dal trampolino dei salti con una velocità $v_0 = 90km/h$ e con un'inclinazione iniziale $\alpha = 10^{\circ}$, atterrando poi su una pista inclinata di $\beta = 30^{\circ}$ con l'orizzontale. Calcolare la lunghezza L del salto, nonché la velocità e l'angolo γ d'impatto rispetto alla pista.

$$L = 107.53m, \gamma = 23^{\circ}, v = 40.96m/s$$

9. Si calcoli la velocità v con cui un corpo deve muoversi di moto rettilineo uniforme lungo una guida orizzontale per essere colpito da un grave che viene lasciato cadere verticalmente da un'altezza h=120 m. All'inizio della caduta il corpo si trova a distanza d=70 m dalla vertical di caduta del grave.

$$v = 0.14 \text{ m/s}$$

10. Un oggetto viene lanciato da terra ad una velocità v_0 diretta verticalmente verso l'alto, ed è soggetto all'accelerazione gravitazionale g, diretta verso il basso. Quanto vale la quota massima raggiunta? Dopo quanto tempo l'oggetto torna a terra? Calcolare la velocità finale dell'oggetto un attimo prima di toccare il suolo.

$$y_{max} = v_0^2/(2g), t = 2v_0/g, v_f = -v_0$$

- 11. Un cannone viene puntato su un bersaglio che è posto in cima ad una torre di altezza h e posta ad una distanza l dal annone. All'istante dello sparo, il bersaglio viene lasciato cadere dalla toree. Dimostrare che, purchè la gittata del cannone non sia inferiore a l, il proiettile colpisce il bersaglio.
- 12. Una sferetta metallica viene lanciata verticalmente verso l'alto con modulo della velocità $v_0 = 14m/s$ da una terrazza a quota $z_0 = 22.4m$. Si calcolino l'altezza massima rispetto al suolo raggiunta dalla sferetta, e l'istante e la velocità di impatto al suolo.

$$z_{\text{max}} = 32.38m, t_s \simeq 4s, v_s = -25.2m/s$$

- 13. Un pallone da pallavolo è lanciato da un giocatore alto y_0 e con alzo α e velocità v.
 - (a) Determinare la quota massima raggiunta dal pallone e la sua gittata
 - (b) Se $y_0 = 2m$ e $\alpha = 30^o$, quanto deve valere la velocità minima v affinchè la palla superi una rete alta h = 3.2m e posta a L = 8m di distanza?

(b)
$$v = 11.6m/s$$

14. In un grande orologio, la punta della lancetta dei minuti ha accelerazione normale che vale $a_n = 6.125 \cdot 10^{-7} m/s^2$. L'orologio segna le ore 12 : 00. Calcolare quanto tempo serve alla lancetta dei minuti per sovrapporsi nuovamente alla lancetta delle ore, e quanto spazio avrà percorso la sua punta.

$$t = 3927.3s, \Delta s = 137.7cm$$

15. Un punto si muove lungo una circonferenza con legge oraria:

$$s(t) = 1\frac{m}{s^3}t^3 + 2\frac{m}{s^2}t^2$$

Se al tempo $\tau=2s$ l'accelerazione vale $a=32m/s^2$, calcolare il raggio R della circonferenza.

$$R = 25/\sqrt{3}m \simeq 14.43m$$

16. Su un piatto che ruota a velocità angolare ω (incognita e costante) è posto un piccolo contenitore. Una biglia è mantenuta ferma a un'altezza h = 1m sopra il disco.

- (a) Quando la biglia si trova esattamente sulla direzione verticale del contenitore, viene lasciata cadere. Determinare quanto deve valere la velocità angolare ω del disco, affinché la biglia entri nella scatola dopo 1 giro.
- (b) Quando la biglia si trova esattamente sulla direzione verticale del contenitore, viene lanciata verso l'alto con velocità v_0 , partendo dalla stessa quota h. Quanto deve valere v_0 affinché la biglia entri nella scatola dopo 2 giri?

$$\omega = 13.93 \,\mathrm{rad}/2, \, v_0 = 3.222 \,\mathrm{m/s}$$

17. Un punto materiale inizia a muoversi lungo una traiettoria circolare di raggio R=1m con velocità angolare iniziale $\omega_0=0.5$ rad/s e accelerazione angolare costante $\alpha_0=1$ rad/s². Calcolare il numero di giri compiuti e la distanza percorsa dopo 10 s e la velocità angolare media nello stesso intervallo.

$$n = 8.753 \text{ giri}, \quad s = 55 \text{m}; \quad \omega_m = 5.5 \text{rad/s}$$

18. In un grande orologio, la punta della lancetta dei minuti ha accelerazione normale che vale $a_n = 6.125 \cdot 10^{-7} m/s^2$. L'orologio segna le ore 12 : 00. Calcolare quanto tempo serve alla lancetta dei minuti per sovrapporsi nuovamente alla lancetta delle ore, e quanto spazio avrà percorso la sua punta.

$$t = 3927.3s, \, \Delta s = 137.7cm$$

19. Un punto si muove lungo una circonferenza con legge oraria:

$$s(t) = 1\frac{m}{s^3}t^3 + 2\frac{m}{s^2}t^2$$

Se al tempo $\tau = 2s$ l'accelerazione vale $a = 32m/s^2$, calcolare il raggio R della circonferenza.

$$R = 25/\sqrt{3}m \simeq 14.43m$$

20. In un giorno di pioggia, un passante ruota il proprio ombrello aperto. L'ombrello ha un raggio R=50cm. Il suo bordo si trova ad una quota h=2m dal suolo, e viene fatto ruotare con una velocità angolare ω incognita. A un certo istante, dal bordo dell'ombrello si stacca una goccia d'acqua, che cade sul terreno a una distanza d=1m dall'asse dell'ombrello. Determinare la velocità angolare ω dell'ombrello.

 $\omega = 2.71 \text{rad/} s = 0.43 \text{giri/} s.$

21. Un punto si muove di moto armonico:

$$x(t) = R\cos(\omega t + \varphi_0)$$

con $\omega = \pi/12$ rad/s. Calcolare:

- (a) la posizione iniziale x_0 espressa in funzione di R, se all'istante t=2s si ha x=R/2 e v<0;
- (b) in quale istante il punto passa per la prima volta per il centro delle oscillazioni.

$$x_0 = R \frac{\sqrt{3}}{2}; \quad t_0 = 4s$$