

دانشکده مهندسی برق

گزارش کار آزمایشگاه الکترونیک ۱ آزمایش شماره ۱: تقویت کننده کلکتور مشترک

تهیه کننده و نویسنده:

رضا آدینه پور

استاد مربوطه:

جناب اقای مهندس میثمی فر

تاریخ تهیه و ارائه:

آذر ماه ۱۴۰۰

مداری مطابق با شکل زیر در نرم افزار می بندیم:

مدار را از لحاظ تئوری برسی می کنیم:

= 0.5 IE

یک سیگنال سینوسی با دامنه پیک تو پیک ۱ ولت با فرکانس ۵ کیلو هر تز به مدار اعمال کنید. گین ولتاژ را بدست آورید:

سیگنال خروجی مدار (سیگنال قرمز) و سیگنال ورودی مدار (سبز) به صورت زیر هستند:

ماکزیمم دامنه سیگنال خروجی از سمت بالا ۱۰۲ میلی ولت (۱۰۲۰۰ ولت) است.

ماکزیمم دامنه سیگنال ورودی ۵۰۰ میلی ولت است.

گین ولتاژ مدار به صورت زیر تعریف می شود:

$$Av = \frac{Vout}{Vin} = \frac{102}{500} = 0.204$$

برای به دست آوردن گین جریان ابتدا مقاومت های ورودی و خروجی مدار را به دست می اوریم و از فرمول زیر استفاده می کنیم:

$$Ai = Av \times \frac{Rin}{Rout}$$

برای بدست اور دن مقاومت خروجی ابتدا منبع ورودی را زمین می کنیم و یک منبع dc با مقدار ۱۰ ولت در خروجی می گذاریم و نسبت Vdc به Vdc را که همان مقاومت خروجی است را به دست می آوریم.

$$Rout = \frac{Vdc}{Idc} = \frac{10}{20m} = 0.5 Kohm$$

برای بدست اوردن مقاومت ورودی، منبع dc را در ورودی مدار می گذاریم و نسبت ولتاژ به جریان آن را حساب می کنیم:

$$Rin = \frac{Vdc}{Idc} = \frac{10}{6.226m} = 1.6 \text{ ohm}$$

گین جریان به صورت زیر به دست می آید:

$$Ai = Av \times \frac{Rin}{Rout} = 0.204 \times \frac{1.6}{500} = 0.00065$$

اختلاف فاز بین ورودی و خروجی: ورودی و خروجی با هم همفاز هستند

با تغییر فرکانس منبع ورودی و ثابت نگه داشتن دامنه (۵۰۰ میلی ولت) جدول زیر را تکمیل کنید.

f	100Hz	200Hz	500Hz	1K	5K	10K	20K	100K	300K	500K	700K	1M	1.5M
Vi	500m												
Vo	268	389	452	461	469	474	479	483	484	491	484	484	484
Av	0.536	0.778	0.904	0.922	0.938	0.947	0.958	0.966	0.968	0.982	0.968	0.968	0.968

برای به دست آوردن فرکانس های قطع پایین و بالا، ابتدا پاسخ فرکانسی مدار را رسم می کنیم. بدین منظور ابتدا یک منبع AC در ورودی مدار قرار داده و تحلیل AC Sweep را انتخاب می کنیم. پاسخ فرکانسی مدار به صورت زیر است:

فرکانس قطع بالای مدار به صورت زیر به دست می آید.

$$f_{cutof-High} = \frac{1}{\sqrt{2}} \times 992m = 701 \, mHz$$

فركانس قطع پايين نيز، ۷۰۱ ميلي هرتز به دست مي آيد