Міністерство освіти і науки України Харківський національний університет радіоелектроніки

Факультет	Інфокомунікацій
•	(повна назва)
Кафедра	Інфокомунікаційної інженерії імені В.В. Поповського
1 1	(повна назва)

3ВІТ з лабораторної роботи №1

з дисципліни

Прогнозування та моделювання в соціальній сфері

Тема: «Методи прогнозування» Варіант №10

Виконав:	
студент 2 курсу, групи КУІБ-1	9-2
Нестеренко Є.В.	
(прізвище, ініціали)	
Перевірив: завідувач кафедри ІКІ ім. В	.В. Поповсь-
ΚΟΓΟ	
Лемешко О.В.	
(посада, прізвище, ініціали)	

МЕТА РОБОТИ

Здобуття практичних навичок з побудови прогнозів на основі наївної моделі (НМ) з модифікаціями (НММ1 та НММ2). Оцінка точності побудови прогнозів за множиною показників. Проведення порівняльного аналізу ефективності досліджуваних методів прогнозування за якісними та кількісними критеріями.

ХІД ВИКОНАННЯ

Завдання 1. Отримання індивідуального варіанту завдань, представленого часовим рядом

Варіант завдання, представлений у вигляді часового ряду представлений.

Таблиця 1 – Індивідуальні значення для побудови прогнозу

Період	Завдання 10			
	Середня заробітна плата в Україні (екв.			
	дол.)			
на 31.12.2009	239,5			
на 31.12.2010	289,3			
на 31.12.2011	340,7			
на 31.12.2012	375,3			
на 31.12.2013	393,8			
на 31.12.2014	213,8			
на 31.12.2015	173,4			
на 31.12.2016	221,5			
на 31.12.2017	275,3			
на 31.12.2018	332,3			
на 31.12.2019	430,5			
на 31.12.2020	437,6			

Завдання 2. Опис моделей

Опис наївної моделі

При створенні «наївних» моделей передбачається, що деякий основний період прогнозованого тимчасового ряду краще всього описує майбутнє цього прогнозованого ряду, тому в цих моделях прогноз, як правило, ϵ дуже простою функцією від значень прогнозованої змінної в недалекому минулому.

Цей метод має такий вигляд:

$$\hat{\mathbf{y}}_{t+1} = \mathbf{y}_t. \tag{2.1}$$

Опис наївної моделі (модифікація 1) та наївної моделі (модифікація 2)

Якщо значення величини змінюється з часом, то її називають нестаціонарною, або має тренд. Рівняння наївною моделі дає дуже низьку ступінь передбачення.

Дану методику можна пристосувати до обліку можливого тренда, приплюсувавши різницю між поточним і попереднім періодами. Метод наївної моделі (модифікація 1) (НММ1) має такий вигляд:

$$\hat{y}_{t+1} = y_t + (y_t - y_{t-1}). \tag{2.1}$$

Іноді знання швидкості зміни може виявитися кращим, ніж знання абсолютної величини зміни. У цьому випадку метод наївної моделі (модифікація 2) (НММ2) має наступний вигляд:

$$\hat{y}_{t+1} = y_t \frac{y_t}{y_{t-1}}. (2.2)$$

Завдання 3. Програмна реалізація моделей.

Реалізація наївної моделі

На рис. 3.1, наведена ілюстрація програмної реалізації наївної моделі, де У – вхідні дані.

```
%Наївна модель

for i=(n):N-1

Y naive(i+1-n)=Y(i) %наївна

Y naive2(i+1-n)=Y(i)+(Y(i)-Y(i-1)) %модифікована 1

Y naive3(i+1-n)=Y(i)*(Y(i)/Y(i-1)) %модифікована 2

Y naive4(i+1-n)=((Y(i)+Y(i-1))/(Y(i-1)))*((Y(i)+Y(i-1))/4) %сезонні коливання end
```

Рисунок 3.1 — Графічна ілюстрація програмної реалізації наївної моделі.

Завдання 4. Отримання результатів досліджень

Результати досліджень наведені на рис. 4.1.

Рисунок 4.1 – Графічна ілюстрація заданого часового ряду та прогнозування, створеного на основі НМ, НММ1 та НММ2

Завдання 5. Оцінка точності побудованого прогнозу за множиною показників. Занесення отриманих результатів розрахунку в порівняльну таблицю.

Оцінка точності прогнозів проводиться за такими ознаками:

1. Помилка прогнозу:

$$e_j = y_j - \hat{y}_j. \tag{5.1}$$

2. Абсолютна помилка прогнозу:

$$\Delta_j = |y_j - \hat{y}_j|. \tag{5.2}$$

3. Середня абсолютна помилка прогнозу:

$$MAE = \left(\frac{\sum_{j=1}^{N} |y_j - \hat{y}_j|}{N}\right). \tag{5.3}$$

4. Відносна похибка прогнозу:

$$\varepsilon_{j} = \left(\frac{|y_{j} - \hat{y}_{j}|}{y_{j}}\right) \cdot 100. \tag{5.4}$$

5. Середня абсолютна відсоткова помилка:

$$MAPE = \frac{1}{N} \cdot \left(\sum_{j=1}^{N} \frac{\left| y_j - \hat{y}_j \right|}{y_j} \right) \cdot 100\%.$$
 (5.5)

6. Середня відсоткова помилка:

MPE =
$$\frac{1}{N} \cdot \left(\sum_{j=1}^{N} \frac{(y_j - \hat{y}_j)}{y_j} \right) \cdot 100\%.$$
 (5.6)

7. Коефіцієнт детермінації:

$$R^{2} = 1 - \frac{\sum_{t=1}^{N} (e_{t}^{2})}{\sum_{t=1}^{N} (y_{t} - \bar{y}_{t})^{2}}.$$
 (5.7)

Таблиця 2 – Отримані у результаті розрахунків дані

Метод прогнозу /показник точності прогнозу	Прогноз (на один часовий інтервал вперед)	Помилка прогнозу	Абсол. помилка прогнозу	Відн. помилка прогнозу	Сер. абс. помилка прогнозу	Сер. абс. відсоткова помилка прогнозу	Сер. відсотк. помилка прогнозу	Коеф. детерм.
Метод крайніх точок	208,6600	-35,26	35,26	0,2033	127,71	35,4561	28,678	0,22
Метод середніх точок	310,5028	-137,1028	137,1028	0,7907	87,6083	32,4343	-11,7763	0,0133
ЛМ	327,5562	-154,1562	154,1562	0,8890	84,6940	34,5528	34,5528	0,0631
ПМ	188,4434	-15,0434	15,0434	0,0868	788,6305	217,8830	217,8830	- 64,347
EM	313,1069	-139,7069	139,7069	0,8057	82,0277	31,8018	31,8018	0,0844
НМ	213,8	-40,4	40,4	0,233	50,7667	17,6905	9,9243	-4,1575
HMM1	33,8	139,6	139,6	0,8051	61,55	25,6474	18,708	-0,8708
HMM2	116,0753	57,3247	57,3247	0,3306	50,8698	18,2653	7,2002	-1,3474

ВИСНОВКИ

Середня абсолютна відсоткова помилка прогнозу НМ дорівнює 17,6905%, що знаходиться у проміжку між 10 та 20 відсотками і ϵ гарним результатом. Помилка прогнозу на 1 крок вперед склала 40,4.

Середня абсолютна відсоткова помилка прогнозу НММ1 дорівнює 25,6474%, що знаходиться у проміжку між 20 та 50 відсотками і є задовільним результатом. Помилка прогнозу на 1 крок вперед склала 139,6.

Середня абсолютна відсоткова помилка прогнозу НММ2 дорівнює 18,2653%, що знаходиться у проміжку між 10 та 20 відсотками і є гарним результатом. Помилка прогнозу на 1 крок вперед склала 57,3247

Помилка прогнозу на 1 крок та середня абсолютна відсоткова помилка у НМ ϵ найнижчою серед досліджених у цій роботі. НММ1 показала найгірший результат. НММ2 має кращий результат аніж НММ1, але гірший чим результат НМ.

Отже, HM, HMM1 та HMM2 показують найкращі показники середньої абсолютної відсоткової помилки у порівнянні з методами розглянутими раніше.