Heurističko rešavanje problema minimalnog broja zadovoljivih formula

Aleksa Papić Aleksandar Stefanović

17. septembar 2022.

Sadržaj

1	$\mathbf{U}\mathbf{v}$ o	\mathbf{d}		2
2	Opi	s algori	itama	2
	2.1	Kodira	nje jedinki	. 2
	2.2	Ocena	kvaliteta jedinki	. 2
	2.3	Rešavai	nje algoritmom grube sile	. 3
	2.4		nje genetskim algoritmom	
			Operator selekcije	
			Operator ukrštanja	
			Operator mutacije	
			Uslov zaustavljanja	
	2.5	Rešavai	nje memetskim algoritmom	. 4
			Operator optimizacije	
3	Rez	ultati		7
4	Zak	ljučak		7

1 Uvod

Problem minimalne zadovoljivosti iskazne formule f (eng. MIN-SAT) je optimizaciona varijanta problema zadovoljivosti (eng. SAT) u kojoj se traži valuacija v takva da je broj klauza formule f tačnih u valuaciji v minimalan. Poznato je da je ovaj problem NP-težak [1].

 ${\bf U}$ ovom radu ćemo posmatrati naredno modifikaciju ovog problema datu u [2]:

Definicija 1.1 (Problem minimalnog broja zadovoljivih formula). Neka je dat par (U,C) gde je U skup iskaznih promenljivih, a C skup iskaznih formula u 3KNF (eng. 3CNF). Rešenje problema minimalnog broja zadovoljivih formula nad (U,C) je valuacija v za promenljive iz skupa U takva da je broj formula iz skupa C zadovoljenih tom valuacijom minimalan.

Iz definicije se može zaključiti da svaka instanca MIN-SAT problema odgovara nekoj instanci problema 1.1 u kojoj je broj klauza svake formule iz C jednak jedan.

Razmotrićemo i uporediti performanse jednog genetskog algoritma i više varijanti memetičkih algoritama za rešavanje problema 1.1.

2 Opis algoritama

U ovom poglavlju ćemo dati opis nekoliko pristupa u rešavanju problema 1.1.

2.1 Kodiranje jedinki

Pre razmatranja konkretnih algoritama, opisaćemo način kodiranja jedinki, tj. način predstavljanja konkretnih valuacija u okviru problema 1.1.

Definicija 2.1 (Kodiranje jedinki). Neka je dat par (U, C) kao u 1.1 i neka je skup promenljivih $U = \{p_1, ..., p_n\}$. Tada je valuacija v nad skupom promenljivih U niz binarnih brojeva $(x_1, ..., x_n) \in \{0, 1\}^n$ takav da x_i odgovara konkretizovanoj vrednosti promenljive p_i .

2.2 Ocena kvaliteta jedinki

Ocenu kvaliteta jedinki u okviru problema 1.1 ćemo zadati preko tzv. fitnes funkcije jedinke.

Definicija 2.2 (Fitnes funkcija). Neka je v neka jedinka, tj. konkretna valuacija (2.1) za par (U, C) definisan kao u problemu 1.1. Fitnes funkcija

 $fitness: \{0,1\}^n \to (0,1]$ je zadata sa $fitness(v) = \frac{1}{sat(v)+1}$, gde je sat(v) broj iskaznih formula iz C zadovoljenih u valuaciji v.

Iz date definicije se može zaključiti da je jedinka v_1 bolja od jedinke v_2 u kontekstu problema 1.1 ako i samo ako je $fitness(v_1) > fitness(v_2)$.

Broj zadovoljenih formula u valuaciji v se može dobiti kao $sat(v) = \frac{1}{fitness(v)} - 1$, ali se zbog računa u pokretnom zarezu predlaže zaokruživanje na najbliži ceo broj, tj. $sat(v) = round(\frac{1}{fitness(v)} - 1)$.

2.3 Rešavanje algoritmom grube sile

Naivni algoritam kojim se problem rešava grubom silom proverava sve moguće valuacije u problemu. Ukoliko je U skup promenljivih u problemu 1.1, takvih valuacija je $2^{|U|}$. Iako je egzaktan, ovaj algoritam je praktično neprimenljiv za sve osim najmanje probleme zbog svoje eksponencijalne složenosti.

2.4 Rešavanje genetskim algoritmom

Prvi heuristički algoritam koji ćemo razmotriti je genetski algoritam. Opisaćemo operatore koje ćemo koristiti, kao i uslov zaustavljanja. Detaljan opis algoritma i mogućih modifikacija se može videti u [3].

```
Algoritam 1: Genetski algoritam
```

```
t \leftarrow 0;
P_0 \leftarrow generisi \ populaciju();
\mathbf{while} \ nije \ ispunjen \ uslov \ zaustavljanja \ \mathbf{do}
\begin{vmatrix} P_{sel} \leftarrow selekcija(P_t); \\ P_{t+1} \leftarrow ukrstanje(P_{sel}); \\ P_{t+1} \leftarrow mutacija(P_{t+1}); \\ t \leftarrow t+1; \\ \mathbf{end} \end{vmatrix}
```

2.4.1 Operator selekcije

Za selekciju jedinki za reprodukciju koristićemo ruletsku selekciju. Verovatnoća izbora neke jedinke v jednaka je $\frac{fitness(v)}{\sum_{u \in P_t} fitness(u)}$, gde je P_t populacija jedinki u tekućoj iteraciji algoritma 1.

2.4.2 Operator ukrštanja

Za ukrštanje jedinki prilikom reprodukcije koristićemo jednopoziciono ukrštanje. Dve jedinke, $r_1 = (x_1, ..., x_n)$ i $r_2 = (y_1, ..., y_n)$, izabrane za roditelje u fazi selekcije kreiraće dva potomka, p_1 i p_2 , izborom tačke preseka k iz diskretne uniformne raspodele nad vrednostima $\{1, ..., n\}$. Tada će važiti $p_1 = (x_1, ..., x_k, y_{k+1}, ..., y_n)$ i $p_2 = (y_1, ..., y_k, x_{k+1}, ..., x_n)$.

2.4.3 Operator mutacije

Operator mutacije koji ćemo koristiti sa nekom verovatnoćom $p \in U(0,1)$, koja se zadaje kao parametar algoritma 1, invertuje jedan od bitova jedinke nad kojom se sprovodi mutacija.

2.4.4 Uslov zaustavljanja

Kao uslov zaustavljanja koristićemo maksimalni broj iteracija algoritma 1, kao i maksimalni broj iteracija bez promene u najboljoj jedinki. Obe vrednosti se zadaju kao parametri algoritma.

2.5 Rešavanje memetskim algoritmom

Još jedan tip algoritama koje ćemo razmotriti su memetski algoritmi. Ovi algoritmi predstavljaju kombinaciju više različitih heurističkih pristupa rešavanju problema [4].

Konkretna implementacija koju ćemo razmotriti kombinuje genetski algoritam opisan u prethodnom poglavlju sa nekom S-metaheuristikom, a mi ćemo ih obraditi tri. Sledi uopšteni algoritam:

Algoritam 2: Memetski algoritam

```
\begin{array}{l} t \leftarrow 0; \\ P_0 \leftarrow generisi \; populaciju(); \\ \textbf{while} \; nije \; ispunjen \; uslov \; zaustavljanja \; \textbf{do} \\ \mid P_{sel} \leftarrow selekcija(P_t); \\ P_{t+1} \leftarrow ukrstanje(P_{sel}); \\ P_{t+1} \leftarrow mutacija(P_{t+1}); \\ P_{t+1} \leftarrow optimizacija(P_{t+1}); \\ t \leftarrow t+1; \\ \textbf{end} \end{array}
```

Jedina razlika u odnosu na genetski algoritam 1 je novouvedeni operator optimizacije. Svi ostali operatori su implementirani identično kao u prethodnom poglavlju.

2.5.1 Operator optimizacije

Uloga operatora optimizacije je da se potencijalno poboljša svaka pojedinačna jedinka iz novonastale populacije. Ovo se suštinski postiže pozivanjem neke S-metaheuristike, koja je zadata kao parametar algoritma, nad svakom jedinkom.

Lokalna pretraga kao operator optimizacije Najjednostavnija S-metaheuristika koju ćemo koristiti je lokalna pretraga. Kriterijum zaustavljanja je broj iteracija koji se prosleđuje kao parametar algoritmu.

```
Algoritam 3: Lokalna pretraga

Data: pocetna \ jedinka

Result: najbolja \ jedinka

trenutna \ jedinka \leftarrow pocetna \ jedinka;

while nije \ ispunjen \ uslov \ zaustavljanja \ do

nova \ jedinka \leftarrow invertuj(trenutna \ jedinka);

if fitness(nova \ jedinka) > fitness(trenutna \ jedinka) \ then

trenutna \ jedinka \leftarrow nova \ jedinka;

end

end

najbolja \ jedinka \leftarrow trenutna \ jedinka;
```

Simulirano kaljenje kao operator optimizacije Verovatnoća kaljenja se računa po formuli $\frac{1}{t^s}$, gde se broj s prosleđuje kao parametar algoritma. Kriterijum zaustavljanja je broj iteracija koji se takođe prosleđuje kao parametar.

Redukovana metoda promenljivih okolina kao operator optimizacije Okolina veličine k neke jedinke v predstavlja skup jedinki koje se mogu dobiti invertovanjem tačno k bitova u reprezentaciji jedinke v. Maksimalna veličina okoline se prosleđuje kao parametar algoritma, kao i broj iteracija algoritma koji predstavlja kriterijum zaustavljanja.

Algoritam 4: Simulirano kaljenje

```
Data: pocetna jedinka
Result: najbolja jedinka
trenutna\ jedinka \leftarrow pocetna\ jedinka;
najbolja\ jedinka \leftarrow pocetna\ jedinka;
t \leftarrow 1;
while nije ispunjen uslov zaustavljanja do
    nova\ jedinka \leftarrow invertuj(trenutna\ jedinka);
   if fitness(nova\ jedinka) > fitness(trenutna\ jedinka) then
       trenutna\ jedinka \leftarrow nova\ jedinka;
       if fitness(nova\ jedinka) > fitness(najbolja\ jedinka) then
           najbolja\ jedinka \leftarrow nova\ jedinka;
        end
    else
       p \leftarrow \frac{1}{t^s};
       if q \in U(0,1) < p then
         trenutna\ jedinka \leftarrow nova\ jedinka;
       end
    end
   t \leftarrow t + 1;
end
```

Algoritam 5: Redukovana metoda promenljivih okolina

```
Data: pocetna jedinka
Result: najbolja jedinka
trenutna jedinka \leftarrow pocetna jedinka;
while nije ispunjen uslov zaustavljanja do

| for k \leftarrow 1 to maks. okolina do
| nova jedinka \leftarrow invertuj(trenutna jedinka, k);
| if fitness(nova jedinka) > fitness(trenutna jedinka) then
| trenutna jedinka \leftarrow nova jedinka;
| break;
| end
| end
end
najbolja jedinka \leftarrow trenutna jedinka;
```

Instanca	small1-50-7-1	small2-50-7-2	small3-50-10-1	small4-50-10-3	small5-50-15-1	small6-50-15-4
U	7	7	10	10	15	15
C	50	50	50	50	50	50
BF opt.	40	29	37	23	34	17
GA najbolje	40	29	37	23	34	17
GA prosek	40.0	29.0	37.17	23.1	34.38	18.37
GA najgore	40	29	39	27	36	21
MA(LS) najbolje	40	29	37	23	34	17
MA(LS) prosek	40	29.0	37.03	23.0	34.43	18.19
MA(LS) najgore	40	29	38	23	36	20
MA(SA) najbolje	40	29	37	23	34	17
MA(SA) prosek	40.0	29.0	37.01	23.0	34.56	18.17
MA(SA) najgore	40	29	38	23	36	20
MA(RVNS) najbolje	40	29	37	23	34	17
MA(RVNS) prosek	40.0	29.0	37.0	23.0	34.34	17.83
MA(RVNS) najgore	40	29	37	23	35	19
t BF	< 0.01	0.01	0.04	0.07	1.18	2.70
t GA	0.03	0.06	0.05	0.08	0.05	0.11
t MA(LS)	0.11	0.16	0.13	0.24	0.15	0.34
t MA(SA)	0.11	0.16	0.14	0.24	0.16	0.34
t MA(RVNS)	0.24	0.35	0.26	0.46	0.32	0.72

3 Rezultati

4 Zaključak

Instanca	medium1-100-30-5	medium2-150-50-5	medium3-150-75-5	
U	30	50	75	
C	100	150	150	
BF opt.	-	-	-	
GA najbolje	23	34	21	
GA prosek	26.1	38.8	30.9	
GA najgore	31	43	37	
MA(LS) najbolje	23	37	29	
MA(LS) prosek	26.45	43.05	36.2	
MA(LS) najgore	32	51	49	
MA(SA) najbolje	23	36	28	
MA(SA) prosek	26.4	41.85	36.55	
MA(SA) najgore	30	45	46	
MA(RVNS) najbolje	23	40	27	
MA(RVNS) prosek	27.7	45.05	38.95	
MA(RVNS) najgore	31	52	49	
t BF	-	-	-	
t GA	1.47	2.66	3.50	
t MA(LS)	7.75	15.26	18.95	
t MA(SA)	8.08	16.99	21.19	
t MA(RVNS)	17.49	35.20	44.72	

Reference

- [1] Rajeev Kohlit, Ramesh Krishnamurti, Prakash Mirchandani, *The minimum satisfiability problem.* SIAM J. Discrete Math. Vol. 7, No. 2, pp. 275-283, May 1994.
- [2] Viggo Kann, Polynomially bounded minimization problems that are hard to approximate. Nordic Journal of Computing 1(1994), 317–331.
- [3] Engelbrecht, Andries P. Computational intelligence: an introduction / Andries P. Engelbrecht. 2nd ed.
- [4] Pablo Moscato, Carlos Cotta, Alexandre Mendes, Memetic Algorithms.