Stopky

Ondřej Nedojedlý*

25. Listopadu, 2023

Obsah

1	Zadání Teoretický rozbor					
2						
	2.1	Popis přípravku	2			
		2.1.1 LCD	3			
	2.2	Popis softwaru	3			
		2.2.1 RTOS	4			
	2.3	Vývojový diagram	4			
3	Řešení					
	3.1	Zdrojový kód	5			
4	Hoo	dnocení	6			
	4.1	Úspěchy/neúspěchy	6			
	4.2	Další rozšížení	7			
\mathbf{S}	ezn	am obrázků				
	1	STM32F4 discovery kit	2			
	2	Vývojový diagram	4			
\mathbf{S}	ezn	am tabulek				
	1	Připojení LCD k STM32F4 Discovery	3			
	2	Připojení dalších pinů LCD	3			

^{*}SPŠ elektrotechnická, Makarenkova 1; Mgr. Tomáš Michalek

1 Zadání

Vytvoření programu na přípravku **STM32F407VGT6U** s **RTOS-RTX4**, jež bude fungovat jako jednoduché stopky. Porgram bude zobrazovat na prvním řádku LCD čas, který začně běžet od začátku programu. Čas bude ve formátu:

MM:SS:mmm

kde:

M jsou minuty,

S jsou sekundy,

m jsou millisekundy.

Po zmáčknutí uživatelského tlačítka, se na druhý řádek LCD dispeje zobrazí čas v okamžiku zmáčknutí tlačítka. Nová časová stopa se nahraje až při opětovném zmáčknutí uživatelského talačítka; při držení se nenahrává stále nová časová stopa.

2 Teoretický rozbor

Pro pochopení běhu programu, jeho funkcionality a možných problému je nutno míti solidní základy teoriteckého rázu, jinak bude zpracováni úlohy problematické.

2.1 Popis přípravku

Jak avizováno výše, jedná se o přípravek STM32F407VTG6U od firmy STMicroelectronics. Přípravek je 32-bitový ArmR CortexR-M4 architektury RISC, přípravek je zaobalen ve STM32F4-DISCOVERY kitu (Obrázek 1).

Obrázek 1: STM32F4 discovery kit

STM32F4xx podporuje:

- Analogový generátor náhodných čísel,
- 15 komunikačních sběrnic,
- Dva 12-bitové DA převodníky,
- Tři 12-bitové AD převodníky,
- 17 časovačů,
- 1-MB flash paměti,
- 132-KB RAM paměti,
- ST-LINK, pro nahrávání programů,
- ..

Jedná periferie, kterou je nutno připojit jest LCD.

2.1.1 LCD

Připojení LCD k STM32F4-Discovery je provedeno přes piny dle tabulky 1. Jedná se konkrétně LCD 1602A verze 1.3.

			LCD	připojení
LCD	STM32F4			
			VSS	GND
RS	PE3		VDD	+5v
RW	PE4		D0	NC
\mathbf{E}	PE5		D1	NC
D4	PE6		D2	NC
D5	PE7		D3	NC
D6	PE8		A	+5v
D7	PE9		K	+5v
1	' D~' ' / I	CD 1	V0	Napěťový dělič

Tabulka 1: Připojení LCD k STM32F4 Discovery

Tabulka 2: Připojení dalších pinů LCD

Pro funkčnost LCD je nutno ještě zapojit piny dle tabulky 2, jinak nebude nice zobrazeno.

2.2 Popis softwaru

Vývoj je činěn v μVision IDE. Jako knihovny použijeme:

stm32_kit Knihovna nám umožní provést abstrakci nad CMIS;

RTX4 Vytvoření RTOS, namísto superloopy;

2.2.1 RTOS

Real-Time Operační Systém je druh operačních systému který nám umožňuje práci s kriticky náročnými požadavky, jelokož u GPOS není zaručeně dáno (kromě IRS), že se činnost provede do času k. RTOS definuje tasky 1 , které jsou zaměňovány dle R-R algoritmu.

2.3 Vývojový diagram

Obrázek 2: Vývojový diagram

 $^{^1\}mathrm{N}\check{\mathrm{e}}\mathrm{k}\mathrm{d}\mathrm{y}$ je "task"
chápán jako synonymum ke slovu "thread".

3 Řešení

Vytvořil jsem dva tasky, kde: první počítá oběhnuté millisekundy, druhý task zobrazuje na LCD uběhnutý čas, a kontroluje zmáčknutí uživatelského tlačítka.

3.1 Zdrojový kód

```
#include "stm32_kit.h"
#include "stm32_kit/lcd.h"
#include "stm32_kit/keypad.h"
#include "stm32_kit/button.h"
#include "stm32_kit/led.h"
#include <stdio.h>
OS_TID g_t[2];
size_t millicesocds = 0;
void showMilli(int millisecods, int line){
           \begin{array}{ll} \textbf{char} & \textbf{buff} \, [\text{LCD\_COLS}+1] = \{0\}; \\ \textbf{snprintf} \, (\, \textbf{buff} \, , \, \, \textbf{LCD\_COLS}, \, \, "\%02u:\%02u:\%02u" \, , \end{array}
           (\text{millisecods}/(1000*60))\%60,
           (millisecods/1000)\%60,
           millisecods\%1000
           );
           if(line == 0) LCD_set(LCD_LINE1);
           if (line == 1) LCD_set(LCD_LINE2);
           LCD_print(buff);
}
_task void counter() {
      millicesocds = 0;
     \mathbf{while}(1) {
           millicesocds++;
           delay_ms(1);
}
__task void show() {
      size_t mili_stamp = 0;
     \mathbf{while}(1)
```

```
showMilli(millicesocds, 0);
           \mathbf{i} \, \mathbf{f} \, (\, \mathbf{io} \, \underline{\hspace{0.1em}} \, \mathbf{r} \, \mathbf{e} \, \mathbf{a} \, \mathbf{d} \, \, (\mathbf{USER\_BUTTON}) \, )
                 if (!mili_stamp)
                      mili_stamp = millicesocds;
                 showMilli(mili_stamp, 1);
                continue;
           mili_stamp = 0;
           delay_ms(70);
      }
}
__task void setup() {
     LCD_setup();
     LCD_set(LCD_CUR_NO_BLINK);
     LCD_set(LCD_CUR_OFF);
     KBD_setup();
     LED_setup();
     BTN_setup();
     g_t[0] = os_tsk_create(counter, 0);
     g_t[1] = os_tsk_create(show, 0);
      os_tsk_delete_self();
}
int main()
      os_sys_init(setup);
```

4 Hodnocení

Výsledek hodnotím kladně, podařilo se vyřešit zadání, v jednoduchém kódu.

4.1 Úspěchy/neúspěchy

Uspěšnost vidím ve splnění zadání, neúspěchy mohou být viděny v neoriginalitě řešení.

4.2 Další rozšížení

Jako dalši rozšíření vidím:

- Přidání historie časů, a jejich ásledné prohlížení;
- Počítaní doby, jež uběhla mezi časy;
- Uživatelské tlačitkop bude v separátním tasku.