Regionenbasiertes Feature Matching für repetitive Szenen

Projektpraktikum Capturing Reality WS 14/15 Yannick Drost, Florian Herrmann, Pascal Schardt

Vortrag zum Projektbericht

Prüfer: Dr.-Ing. Michael Goesele Betreuer: M.Sc. Simon Fuhrmann

Übersicht

- 1. Einführung
- 2. Das verwendete Framework
- 3. Problembeschreibung
- 4. Regionenbasiertes Matching
- 5. Evaluation

Einführung

- Analyse von Fotografien
- Auswertung der Beschaffenheit und Lage eines Objektes
- Beispiel: Frankfurter AfE-Turm vor seiner Sprengung
- Problem: Gleichmäßige Struktur
- Problem: Wiederholende Textur
- Lösungsansatz: Regionierung

Das verwendete Framework

- Multi-View Environment (MVE)
 - Geometrische Rekonstruktion
 - End to End Pipeline
- Structure-from-Motion (SfM)
 - Detektierung von Features
 - Zusammenfassung von Views
- Multi-View Stereo (MVS)
 - Tiefenwerte durch Triangulation
 - 2D Punkte → 3D Koordinatensystem

Das verwendete Framework

- Ultimate MVE
 - Benutzeroberfläche auf Qt Basis
- Erweiterung von UMVE um Regionierungsplugin
 - Direkte Integration in die MVE Pipeline
 - Neuer Reiter erhält gewohnte Arbeitsumgebung

Problembeschreibung

- Suche bestmöglich passendes Feature auf zwei Bildern
 - Korrespondierende Bildpunkte
 - Bestimmung der Kamerapositionen
- Problem: wiederholende Textur und Oberflächenstruktur
 - Matching von Punkten die nicht korrespondieren
 - Verschobene und verzerrte Rekonstruktion

Problembeschreibung

Abbildung 1: Fehlerhafte Rekonstruktion des AfE-Turms

Problembeschreibung

- Fehlerhafte Paarbildung im Matching führt zu Lösungsansatz
- Einführung von Regionen beschränkt Menge an Korrespondenzen
- Vermeiden von fehlerhaften Paaren durch unterschiedliche Regionen
- Mehr Zeit durch manuellen Eingriff
- Qualitativ besseres Ergebnis

Einordnung in die Pipeline

Abbildung 2: Einordnung in die Pipeline

Regionierung des Datensatzes

- Zusätzliche Information durch Vorwissen
 - Geometrische Lage bekannt
- Unterteilung der Bilder in Regionen
 - Enthält Teilmenge aller Bildpunkte
 - Polygone Fläche umgeht Verdeckungen
 - Regionen besitzen ID
 - Unmarkierte Bereiche sind Default-Region
- Prüfung nach Strahl-Methode
 - Punkt in Polygon Test nach Jordan

Regionierung des Datensatzes

Abbildung 3: Drei regionierte Bilder des AfE-Turms

Das .rgn Dateiformat

- Speicherformat für Regionen
 - Wiederverwendbarkeit
 - Kapselung
 - Regions ID
 - Relative Eckpunkte

Region n ID

X-Koordinate Punkt 1

Y-Koordinate Punkt 1

• • •

X-Koordinate Punkt n

Y-Koordinate Punkt n

Matchingansatz

- Prüfung der Regionszugehörigkeit für jedes Feature
- Unzutreffende Korrespondenz ausgeschlossen
 - Nur gleiche Regions Ids werden verglichen
- Unmarkierte Bereiche werden immer aufeinander gematcht

- Vergleich von normaler und verbesserter Rekonstruktion
- Zwei Datensätze
 - AfE-Turm
 - Arc de Triumphe (Paris)

Abbildung 4: Fehlerhaftes Matching ohne Regionierung

Abbildung 5: Fehlerhafte Rekonstruktion des AfE-Turms

Einführung – Framework – Problembeschreibung – Regionenbasiertes Matching - Evaluation

Abbildung 6: Seitenansicht der Rekonstruktion mit Regionierung

Einführung – Framework – Problembeschreibung – Regionenbasiertes Matching - Evaluation

Abbildung 7: Draufsicht der Rekonstruktion mit Regionierung

- Zweiter Datensatz: Arc de Triumphe
- Vorder und Rückseite werden bei Rekonstruktion nicht unterschieden
- Regionierung kann das Ergebnis verbessern

Abbildung 8: Gefundene Matches von Vorder- mit Rückseite

Einführung – Framework – Problembeschreibung – Regionenbasiertes Matching - Evaluation

Abbildung 10: Rekonstruktion des Triumphbogens mit Regionierung

Einführung – Framework – Problembeschreibung – Regionenbasiertes Matching - Evaluation

Performanz

- Unterteilung schließt Features vom Matching aus
- Matchingalgorithmus ist zeitkritische Komponente

Performanz

- Testsystem: Intel ® Xeon ® Processor E3-1231 v3 (8M Cache, 3.40 GHz)
- AfE Turm
 - Unbehandelter Datensatz: Laufzeit 50 Minuten
 - Regionierte Bilddaten: Laufzeit 12 Minuten
- Triumphbogen
 - Unbehandelter Datensatz: Laufzeit 23 Minuten
 - Regionierte Bilddaten: Laufzeit 5 Minuten

Ende

Vielen Dank für die Aufmerksamkeit

Weitere Fragen?