Assignment 1

C.H.Alankritha Roll no. EE19BTECH11037 Department of Electrical Engineering IIT Hyderabad

September 8, 2020

- 1 Problem
- 2 Solution
 - Analyzing the given system
 - Forces on each body
 - Writing the equations of motion
 - Answer
- 3 Plot

Problem Statement

In the system shown in Figure , the inertia, J, of radius, r, is constrained to move only about the stationary axis A. A viscous damping force of translational value f_v exists between the bodies J and M. If an external force, f(t), is applied to the mass, find the transfer function, $G(s) = \frac{Q(s)}{F(s)}$.

Analyzing the given system

In the given system, there are 2 bodies whose motion must be analysed.

- Body 1- Body of mass M which is connected to the spring (spring constant K) - This body has only translational motion and no rotational motion.
- Body 2- Body of inertia J which is constrained to move about stationary axis A - This body has rotational motion and no translational motion.

We are already given that the viscous drag force is f_v in translational domain.

And force is applied on Body-1 , transfer function which must be found is $G(s)=\frac{Q(s)}{F(s)}$.

Forces on body 1

Let us assume that displacement of Body-1=x(t) whose Laplace transform is X(s). All the forces are written in Laplace domain. Force on body-1 due to its own motion.(Body-1 has translational motion)

- Force due to its mass : $Ms^2X(s)$ (opposite to the direction of motion)
- Force due to spring : KX(s)(opposite to the direction of motion)
- Force due to viscous drag force : f_vsX(s)(opposite to the direction of motion)
- Force acting on the body-1 : $\mathcal{L}(f(t)) = F(s)$ (in the direction of motion)

Force on body-1 due to the motion of body-2. Force due to viscous drag is given by $f_v v(t) = f_v \frac{d \times (t)}{dt}$ Velocity of body-2 at the point of contact with body-1 $v(t) = r \frac{d\Theta(t)}{dt}$ Thus force $= f_v r \frac{d\Theta(t)}{dt}$ Laplace transform $= \mathcal{L}(f_v r \frac{d\Theta(t)}{dt}) = f_v r s \Theta(s)$ (in the direction of motion)

Forces on body-2

Body-2 has angular displacement $= \Theta(t)$ whose Laplace transform is $\mathcal{L}(\Theta(t)) = \Theta(s)$. All torques are written in Laplace domain. Torque on body-2 because of its own motion. (Body-2 has rotational motion).

- Torque due to its inertia : $Js^2\Theta(s)$ (opposite to the direction of motion)
- Torque due to viscous drag :
 Torque = rxF
 Force due to viscous drag = f_vv(t) where v(t) = r dΘ/dt
 Torque = rf_vr dΘ/dt
 Laplace transform = L(rf_vr dΘ/dt) = f_vr²sΘ(s)(opposite to the direction of motion)

Torque on body-2 because of body-1 Torque = $\mathbf{r} \times \mathbf{F}$ Force due to viscous drag = $f_v v(t) = f_v \frac{dx(t)}{dt}$ Torque = $rf_v \frac{dx(t)}{dt}$ Laplace Transform = $\mathcal{L}(rf_v \frac{dx(t)}{dt}) = f_v rsX(s)$ (in the direction of motion)

For body-1:

$$(Ms^2 + K + f_v s)X(s) - F(s) - f_v rs\Theta(s) = 0$$
 (2.1)

$$(Ms^2 + K + f_v s)X(s) - f_v rs\Theta(s) = F(s)$$
 (2.2)

For body-2:

$$(Js^{2} + f_{v}r^{2}s)\Theta(s) - f_{v}rsX(s) = 0$$
 (2.3)

$$-f_{v}rsX(s) + (Js^{2} + f_{v}r^{2}s)\Theta(s) = 0$$
 (2.4)

We have to solve for $G(s) = \frac{\Theta(s)}{F(s)}$

We can write the equations using this formula too.

[Sum of impedances connected to the motion of body-1]X(s) - [Sum of impedances between body-1 and body-2] $\Theta(s)$ = Force acting on body-1

- [Sum of impedances between body-1 and body-2]X(s)+ [Sum of impedances connected to the motion of body-2] Θ (s) = Torque acting on body-2

We need to solve for $G(s) = \frac{\Theta(s)}{F(s)}$ Using the formula (Co-factor matrix), we can find $\Theta(s)$ in terms of F(s):-

$$\Theta(s) = \frac{\begin{vmatrix} Ms^2 + 2f_v s + K & F(s) \\ -f_v rs & 0 \end{vmatrix}}{\begin{vmatrix} Ms^2 + 2f_v s + K & -f_v rs \\ -f_v rs & Js + f_v r^2 s \end{vmatrix}}$$

On solving, we get

$$\Theta(s) = \frac{f_{v} rsF(s)}{JMs^{3} + (2Jf_{v} + Mf_{v}r^{2})s^{2} + (JK + f_{v}^{2}r^{2})s + Kf_{v}r^{2}}$$
(2.5)

Transform Function

$$G(s) = \frac{\Theta(s)}{F(s)} = \frac{f_{v}rs}{JMs^{3} + (2Jf_{v} + Mf_{v}r^{2})s^{2} + (JK + f_{v}^{2}r^{2})s + Kf_{v}r^{2}}$$
(2.6)

Plot of Transfer function

Code in github plots the following fig.

The following plot shows the impulse response of transform function when J = 1; r = 1; M = 1; K= 1; $f_v = 1$; Transform function = $\frac{s}{s^3+3s^2+2s+1}$

Plot of Transfer function

Code in github plots the following fig.

The following plot shows the step response of transform function when J = 1; r = 1; M = 1; K= 1; $f_v = 1$; Transform function = $\frac{s}{s^3+3s^2+2s+1}$

