Topología
– 2° cuatrimestre 2015

TEOREMA VAN KAMPEN

Ejercicio para entregar

Demostración Vamos por partes!

Sea $p = (1,0,0) \in S^2$, $U = B(p,\epsilon) \cap S^2$ con $\epsilon > 0$ decentemente pequeño para no tocar los polos; y sea $V = X - \overline{B(p,\epsilon-\epsilon')} \cap S^2$ con $0 < \epsilon - \epsilon' < \epsilon$. Entonces notemos que $U \cap V$ es el anillo rodeando a p sobre S^2 ; entonces tenemos que $U, V, U \cap V$ son abiertos arco-conexos no vacíos. Por el teorema de Van-Kampen tenemos que $\pi_1(X) = \pi_1(U) * \pi_1(V) / (i^{-1}([\omega])j([\omega]))$, $[\omega] \in \pi_1(U \cap V) >$, y nos basta calcular estos grupos!

1. $\pi_1(U)$

Notemos que $U \simeq \{*\}$ y por ende $\pi_1(U) = \pi_1(\{*\}) = 0$

2. $\pi_1(U \cap V)$

Es simple ver que $U \cap V \simeq S^1$ el círculo rodeando a p. Por ende $\pi_1(U \cap V) = \pi_1(S^1) = \mathbb{Z}$

3. $\pi_1(V)$

En general uno tiene que $S^2-\{p\}\simeq\mathbb{R}^2\simeq D^2$ y por ende $V-\{\{0\}\times\{0\}\times(-1,1)\}\simeq D^2$. Ahora si seguimos la deformación de los polos uno ve que esta recta se va deformando en una manija uniendo los dos puntos internos! Llamemos α a esta manija entre los puntos internos de D^2 a donde paran los polos, lo que decimos es que $V\simeq D^2\cup\alpha$. Ahora si es fácil ver que $D^2\cup\alpha\simeq[-1,1]\times\{0\}\times\{0\}\cup\{x^2+y^2=1$, y>0, $z=0\}$ porque aplastamos el disco al eje x (que se puede por ser contráctil) y la manija la rotamos al plano z=0. Pero $[-1,1]\times\{0\}\times\{0\}\cup\{x^2+y^2=1$, y>0, $z=0\}\simeq S^1$ y entonces tenemos que $V\simeq S^1$ y entonces $\pi_1(V)=\pi_1(S^1)=\mathbb{Z}$

4. Hallemos la presentación de $\pi_1(X)$

Como $\pi_1(U \cap V) = < [\omega] >$ donde ω es el lazo de los puntos a distancia chica en la esfera, ie : $\omega = B(p,\delta) \cap S^2 \subset U \cap V$. Ahora como $\omega(t) \notin \{0\} \times \{0\} \times [-1,1] \ \forall t \in I$ tenemos que (si llamamos f a la equivalencia homotópica entre V y el disco con manija) $[i([\omega])] = [f([\omega])] = [\omega']$ donde $\omega' \subset D^2$ y por ende es un lazo null-homotópico, o sea $i([\omega]) = 0$. Como trivialmente $j^{-1}([\omega]) = 0$ pues U es contráctil tenemos que N = 0 y por ende $\pi_1(X) = \mathbb{Z} * 0/0 = \mathbb{Z}$

Teorema de Van Kampen

- 1. Determine los grupos fundamentales de los siguientes espacios:
 - a) $T^2 \{\overline{p}\}$

Demostración Hagamos la identificación $T^2=I\times I$ / \sim donde \sim es la conocida (Como se hacen los dibujitos de cuadrados con flechitas Ximee???). Notemos que vía la homotopía lineal podemos asumir que $\overline{p}=q((\frac{1}{2},\frac{1}{2}))=q(p)$ donde $q(x)=[x]_{\sim}$. Ahora sea $f(x)=\frac{x}{\|x\|_{\infty}}$ es claro que $f:I\times I\to \partial(I\times I)$ y es continua, veamos que es una equivalencia homotópica con inversa i(x)=x!

Notemos que fi(x) = f(x) = x pues $\|x\|_{\infty} = 1$ y por ende $fi = 1_{\partial(I \times I)}$

Por otro lado $if(x) = \frac{x}{\|x\|_{\infty}}$, sea $H: (I \times I) \times I \to I \times I$ dada por H((x,t),s) = s*(x,t) + (1-s)(f(x,t)) entonces como $(x,t) \neq (0,0)$ H esta bien definida y es continua. Además tenemos que $H_0 = if$ y $H_1 = 1_{I \times I}$, por ende f es equivalencia homotópica.

Ahora vamos a probar que f baja al cociente como equivalencia homotópica (porúnica vez modulo parcial estas cuentas)

Nosotros sabemos que $qf: I \times I \to \partial(I \times I) / \sim$ es continua, además si $x \sim y$ entonces $x, y \in \partial(I \times I)$ y por ende $f(x) = x \sim f(y) = y$, o sea que qf respeta q_{\sim} .

Entonces tenemos el siguiente diagrama:

$$\begin{array}{ccc} I\times I-\{p\} & \stackrel{f}{----} & \partial(I\times I) \\ & & q_{\sim} \Big\downarrow & & \\ I\times I-\{p\} & /{\sim} & \stackrel{\overline{f}}{---} & \partial(I\times I) & /{\sim} \end{array}$$

Finalmente sea $\overline{H}(\overline{(x,t)},s)=s\overline{(x,t)}+(1-s)\overline{f}(\overline{(x,t)})$ es fácil ver que H bajaba al cociente y entonces \overline{H} es continua y hace que $1_{I\times I-\{p\}}/\sim \simeq i\overline{f}$ (\overline{H}) pues $f(\overline{(x,t)})=f(x,t)$. Entonces tenemos que $I\times I-\{p\}/\sim \simeq \partial(I\times I)/\sim$.

Ahora por la práctica sabemos que $\partial(I\times I)$ / $\sim \simeq S^1\vee S^1$ y entonces tenemos que $T^2-\{p\}\simeq S^1\vee S^1$ y entonces $\pi_1(T^2-\{p\})\simeq \mathbb{Z}*\mathbb{Z}$

Observación Hagamos de yapa el $T^2 - \{p_1, ..., p_k\}!!$

Demostración Vía la misma idea ubiquemos a todos los $\{p_1,...,p_k\} \in B((\frac{1}{2},\frac{1}{2}),\frac{1}{2}) \subset I \times I$ con $p:=p_1=(\frac{1}{2},\frac{1}{2})$ y ahora si sea $A:=\{r\in I \mid \{p_1,...,p_k\}\subset B(p,r) \mid p \mid B(p,r)\subset I\times I\}$, sabemos que A está acotado y es no vacío pues, por ejemplo $\frac{1}{2}\in A$ entonces sea y $r=\inf A+\epsilon'$. Sea U=B(p,r) y sea $V=I\times I-\overline{B(p,r')}$ con r' tal que $\inf A< r'< r$ que existe por la propiedad delínfimo; entonces tenemos que $U,V,U\cap V$ son abiertos no vacíos arco-conexos, por el teorema de Van Kampen tenemos que $\pi_1(T^2-\{p_1,...,p_k\})=\pi_1(U)*\pi_1(V)$ /N veamos cada uno para dar una presentación!!

- 1) $\pi_1(U)$ Sean $S_i = \partial(B(p_i, \epsilon))$ con $\epsilon > 0$ tal que $S_i \cap S_j = \emptyset$ y sean α_i caminos tal que $\alpha_i(0) \in S_i$, $\alpha_i(t) \notin S_i \ \forall i \in \{1, ..., k\}$, $\forall t \in (0, 1)$, $\alpha(1) \in S_{i+1}$, $\alpha_i(t) \neq \alpha_j(t)$ (o sea los caminos disjuntos que unen estas esferas). Entonces como D^2 es contráctil tenemos que $U \simeq \bigcup_{i=1}^k S_i \cup \bigcup_{i=1}^{k-1} \alpha_i(I)$, ahora uno puede ir contrayendo los $\alpha_i(I)$ de a uno y entonces obtenemos que $U \simeq S_1 \vee_1 (S_2 \vee_2 (... \vee_k S_k))$, o sea la primera wedge la segunda, y estas dos wedge por otro punto diferente a una tercera y asi iterativamente. Entonces por el corolario de la teórica tenemos que $\pi_1(U) = \pi_1(S_1) * \pi_1(S_2 \vee_2 (S_3 \vee_3 ...)) = \pi_1(S_1) * \pi_1(S_2) * ... * \pi_1(S_k)$, esto podemos usar inducción simplemente. Ahora como $S_j \simeq S^1 \ \forall j \in \{1, ..., k\}$ tenemos que $\pi_1(U) = *_{i=1}^k \mathbb{Z}$
- 2) $\pi_1(V)$ Es claro que aquí aplica lo hecho anteriormente y por ende $\pi_1(V) = \mathbb{Z} * \mathbb{Z}$
- 3) $\pi_1(U \cap V)$ Como antes es fácil ver que $U \cap V \simeq S^1$ y por ende $\pi_1(U \cap V) = \mathbb{Z}$
- 4) Hallemos la presentación! Agarremos el lazo $\omega = \epsilon * e^{2\pi i t} + p$ o sea el círculo rodeando a p que es el generador de $\pi_1(U \cap V)$ y veamos que le pasa en ambos grupos!
 - Notemos que $i([\omega]) = [1][2]...[k]$ si notamos $\langle [i] \rangle = \pi_1(S_i)$ pues dar una vuelta por el círculo grande es lo mismo que dar una vuelta por cada círculito pequeño.

■ En V:

Acá es fácil ver que $j([\omega]) = aba^{-1}b^{-1}$ por lo mismo que vimos en la práctica al calcular el $\pi_1(T^2)$

Entonces tenemos que $\pi_1(T^2 - \{p_1,...,p_k\}) = \langle a,b,1,2,...,k|aba^{-1}b^{-1}*12...k = 0 \rangle$ Y dios sabe que tan lindo sea eso...

b) $\mathbb{R}P^2 - \{\overline{p}\}$

Demostración Recordemos que podemos representar a $\mathbb{R}P^2 \simeq I \times I / \sim$ donde ahora \sim es la de lados cruzados (Quiero poder escribir el dibujito y no se hacerloo =(). Entonces igual que antes con el toro, podemos decir que $p=(\frac{1}{2},\frac{1}{2})$ y entonces, por el item anterior tenemos que $I \times I / \sim \simeq \partial(I \times I) / \sim$. Ahora notemos que en este caso por la práctica tenemos que $\partial(I \times I) / \sim \simeq S^1$ y entonces tenemos que $\mathbb{R}P^2 - \{\overline{p}\} \simeq S^1$ y por ende $\pi_1(\mathbb{R}P^2 - \{\overline{p}\}) = \mathbb{Z}$

Observación Acá mucho sentido no tiene para mí calcular el $\pi_1(\mathbb{R}P^2 - \{p_1, ..., p_n\})$ pues es la misma idea que antes.

c) $S^n \vee S^n$

Demostración Acá podemos hacerlo de dos maneras!

1) Usando el siguiente corolario de la teórica:

Corolario 0.1 Sean X, Y espacio topológicos con $x_0 \in X$ y $y_0 \in Y$ tal que $\{x_0\} \subset X$ y $\{y_0\} \subset Y$ son cerrados. A su vez sean $U \subset X$ y $V \subset Y$ abiertos tal que $\{x_0\} \subset U$ y $\{y_0\} \subset Y$ son RDF. Entonces si consideramos $X \vee_{x_0 \sim y_0} Y$ resulta que tenemos que $\pi_1(X \vee Y, \overline{x_0}) = \pi_1(X, x_0) * \pi_1(Y, y_0)$

Pues si notamos al punto de adjunción como $\{(0,...,0)\}$, que es cerrado, entonces si llamamos $U = S^n - \{(-2,0,...,0)\}$ y $V = S^n - \{(2,0,...,0)\}$ entonces tenemos que U y V son RDF de $\{(0,0,...,0)\}$ (Por la práctica 6) y entonces tenemos por 0.1 que $\pi_1(S^n \vee S^n) = \pi_1(S^n) * \pi_1(S^n) = \mathbb{Z} * \mathbb{Z} \chi_{\{n=1\}}$

2) Usando Van Kampen

Pues aquí llamo a $U = X - \{(-1,0,...,0)\}$ y $V = X - \{(1,0,...,0)\}$ entonces $U \simeq S^n$ y $V \simeq S^n$ (a los dos distintos) y $U \cap V \simeq \{x_0\}$; por lo que $\pi_1(S^n \vee S^n) = \pi_1(U) * \pi_1(V)/0 = \pi_1(S^n) * \pi_1(S^n) = \mathbb{Z} * \mathbb{Z} \chi_{\{n=1\}}$

 $d) S^1 \cup \mathbb{R}_{\geq 0} \times \{0\}$

Demostración 1) A lo práctica 6

Recordemos que $\mathbb{R}_{\geq 0} \times \{0\} \simeq \mathbb{R}_{\geq 0}$ y entonces es contráctil, más aún tenemos que $\{1\}$ es un RDF de $\mathbb{R}_{\geq 0}$ y entonces tenemos que $\mathbb{R}_{\geq 0} \times \{0\}$ es un RDF del $\{(1,0)\}$. Probemoslo! Sea $H: \mathbb{R}_{\geq 0} \times \{0\} \times I \to \mathbb{R}_{\geq 0} \times \{0\}$ dada por H((x,0),t) = (x,0) * t + (1-t)(1,0) entonces H es continua y $H_1 = 1_{\mathbb{R}_{\geq 0} \times \{0\}}$ y $H_0 = C_{(1,0)}$ y $H_{(1,0)} = (1,0)$, que prueba lo dicho. Afirmo que si extiendo H a $S^1 \cup \mathbb{R}_{\geq 0} \times \{0\}$ como la identidad, entonces \widetilde{H} será la homotopía buscada entre S^1 y $S^1 \cup \mathbb{R}_{\geq 0} \times \{0\}$. En efecto pues S^1 y $\mathbb{R}_{\geq 0} \times \{0\}$ son cerrados que generan al espacio, $\widetilde{H}|_{S^1} = 1_{S^1}$ es continua, $\widetilde{H}|_{\mathbb{R}_{\geq 0} \times \{0\}} = H$ es continua y $\widetilde{H}|_{S^1 \cap \mathbb{R}_{\geq 0} \times \{0\}} = \widetilde{H}|_{(1,0)} = \widetilde{H}|_{(1,0$

al espacio, $H|_{S^1} = 1_{S^1}$ es continua, $H|_{\mathbb{R}_{\geq 0} \times \{0\}} = H$ es continua y $H|_{S^1 \cap \mathbb{R}_{\geq 0} \times \{0\}} = H|_{(1,0)} = (1,0)$ o sea que es compatible. Entonces por el lema del pegado $\widetilde{H}: S^1 \cup \mathbb{R}_{\geq 0} \times \{0\}$ es continua. Notemos que $\widetilde{H}_0 = f$ y $\widetilde{H}_1 = 1_{S^1 \cup \mathbb{R}_{\geq 0} \times \{0\}}$ con $f = 1_{S^1} * \chi_{S^1} + C_{(1,0)} * \chi_{\mathbb{R}_{\geq 0} \times \{0\}}$ por lo que $S^1 \sim S^1 \cup \mathbb{R}_{\geq 0} \times \{0\}$ y entonces $\pi_1(S^1 \cup \mathbb{R}_{\geq 0} \times \{0\}) = \mathbb{Z}$

 $S^1 \simeq S^1 \cup \mathbb{R}_{\geq 0} \times \{0\}$ y entonces $\pi_1(S^1 \cup \mathbb{R}_{\geq 0} \times \{0\}) = \mathbb{Z}$

2) Usando Van Kampen

Sea $U = X - \{(0,0)\}$ y $V = B((0,0),\epsilon) \cap X$ entonces $U,V,U \cap V$ son abiertos arco-conexos y además por la práctica 6 tenemos que $U \simeq S^1, \ V \simeq \{*\}$ y $U \cap V \simeq \{*\}$, entonces por Van Kampen tenemos que $\pi_1(X) = \pi_1(S^1) * 0/0 = \pi_1(S^1) = \mathbb{Z}$

e) $S^1 \cup (\mathbb{R}_{\geq 0} \times \mathbb{R});$

Demostración Inspirados en el anterior, sea $U = X \setminus \{(0,0)\}$ y $V = B((0,0),\epsilon) \cap X$ entonces $U, V, U \cap V$ son abiertos arco-conexos. Además tenemos que V y $U \cap V$ son contráctiles y por la práctica 0 $U \simeq S^1$ vía $f = \frac{x}{\|x\|_2}$. Entonces si juntamos todo tenemos que $\pi_1(X) = \pi_1(S^1) * 0/0 = \pi_1(S^1) = \mathbb{Z}$

f) $S^1 \cup (\mathbb{R} \times \{0\});$

Demostración X resulta mas interesante, porque si primero usamos (usando la f de antes) $\widetilde{f} = f\chi_{\|x\|_2 \ge 1} + 1_X\chi_{\|x\|_2 \le 1}$ entonces $\widetilde{f}|_{\|x\|_2 \ge 1} = f$ es continua, $\widetilde{f}|_{\|x\|_2 \le 1} = 1_X$ es continua y $\widetilde{f}|_{\|x\|_2 = 1} = 1_X$ es compatible. Entonces por el lema del pegados sobre los cerrados $F_1 = \{\|x\|_2 \ge 1\}$ y $F_2 = \{\|x\|_2 \le 1\}$ uno tiene que \widetilde{f} es continua. Más aún si tomamos $H = t1_X + (1-t)\widetilde{f}$ entonces vía \widetilde{f} uno tiene que $X \simeq S^1 \cup [-1,1] \times \{0\}$ (rel $S^1 \cup [-1,1] \times \{0\}$). Ahorá si retraemos este último espacio al (0,0) por el eje x afirmo que $X \simeq S^1 \vee S^1$ (rel $S^1 \vee S^1$) y entonces $\pi_1(X) = \mathbb{Z} * \mathbb{Z}$

Afirmación $S^1 \cup [-1,1] \times \{0\} \simeq S^1 \vee S^1$

Demostración Lo haremos en dos partes:

- 1) $q: X \to X/[-1,1] \times \{0\}$ es equivalencia homotópica. Esta es resultado de tomar la homotopía que retrae el eje x al punto (0,0) de forma continua, entonces esta homotopía cumple las hipótesis del ejercicio 6 de la práctica 6, por ende q es equivalencia homotópica.
- 2) $X/[-1,1] \times \{0\} \simeq S^1 \vee S^1$ Estoy seguro que debe valer pero no lo se probar...

Observación No se me ocurrieron abiertos para usar Van Kampen y evitar las cuentas...

 $g) \mathbb{R}^2 \setminus (\mathbb{R}_{\geq 0} \times \{0\}).$

Demostración Sea $U=\{(x,y)\in\mathbb{R}^2\ /\ y>0\}$ y $V=\{(x,y)\in\mathbb{R}^2\ /\ y<0\ o(\ x<0\ ,\ y<1\)\},$ entonces $U,V,U\cap V$ son abiertos arco-conexos no vacíos y $\pi_1(U)=0$ y $\pi_1(V)=0$ por lo que $\pi_1(X)=0$

2. Sea $n \geq 3$ y sea $A \subseteq \mathbb{R}^n$ un conjunto finito. Pruebe que $\mathbb{R}^n \setminus A$ es simplemente conexo.

Demostración Sea $A = \{p_1, ..., p_k\}$ y $V_i \ni p_i$ dada por $V_i = S_{\epsilon}(p_i)$ y sean $\alpha_{i,i+1}$ el camino que una a los entornos V_i con V_{i+1} . Sea $B = \bigcup_{i=1}^k V_i \cup \bigcup_{j=1}^{k-1} \alpha_{j,j+1}$ (Los entornos unidos por los caminos), entonces B es arco-conexo y $\mathbb{R}^n - A \simeq B$. Ahora es claro que $B \simeq S_1 \vee_1 (S_2 \vee_2 (S_3 \vee_3 ...))$ (contraemos los $\alpha_{i,i+1}(I)$ a un punto) entonces por inducción tenemos que $\pi_1(\mathbb{R}^n \setminus A) = \pi_1(B) = *_{i=1}^k \pi_1(S^n) = *_{i=1}^k \mathbb{Z} \chi_{n=1}$

3. Sea $X \subseteq \mathbb{R}^m$ la unión de abiertos convexos $X_1 \cdots X_n$ tales que $X_i \cap X_j \cap X_k \neq \emptyset$ para todo i, j, k. Muestre que X es simplemente conexo.

Demostración Hagamoslo por inducción!

k=2

Aquí usemos el argumento clave que si $A \subset \mathbb{R}^n$ es convexo y abierto entonces $A \simeq D^n \simeq \{*\}$. Entonces tomamos $U = X_1$ y $V = X_2$ entonces como por hipótesis $U \cap V \neq \emptyset$ y es abierto y convexo trivialmente, tenemos que $U, V, U \cap V$ son abiertos arco-conexos, no vacíos y simplemente conexos, entonces $\pi_1(X_1 \cup X_2) = 0$ por Van Kampen.

- $k \rightarrow k+1$
 - Sea $U = X_{k+1}$ y $V = \bigcup_{i=1}^k X_k$ entonces U y V son abiertos arco-conexos y simplemente conexos por hipótesis inductiva; bastaría ver que $U \cap V$ es abierto arco-conexo no vacío. Notemos que $U \cap V = \bigcup_{i=1}^k X_i \cap K_{k+1}$, pero dado $i, j \in \{1, \ldots, k\}$ uno tiene que $X_i \cap X_j \cap X_{k+1} \neq \emptyset$ y entonces sea $x_0 \in X_i \cap X_j \cap X_{k+1}$, como $X_i \cap X_{k+1}$ es arco-conexo $\exists \alpha_i$ camino de algún punto x_1 a x_0 , y análogo con $x_2 \in X_j \cap X_{k+1}$, por lo que $\alpha_1 * \alpha_2$ es un camino de algún punto de $X_i \cap X_{k+1}$ a $X_j \cap X_{k+1}$ por lo que $U \cap V$ es arco-conexo. Por Van Kampen $\pi_1(X) = 0$
- 4. Para cada $n \in \mathbb{N}$ sea C_i la circunferencia en \mathbb{R}^2 con centro en (n,0) y radio n. Sea $X = \bigcup_{n \in \mathbb{N}} C_n \subseteq \mathbb{R}^2$ y sea $x_0 = (0,0) \in X$. Pruebe que $\pi_1(X,x_0)$ es el grupo libre $*_{n \in \mathbb{N}} \pi_1(C_n)$, el mismo que el grupo fundamental del wedge infinito $\bigvee_{n \in \mathbb{N}} S^1$. Muestre que X y $\bigvee_{n \in \mathbb{N}} S^1$ son homotópicamente equivalentes, pero no homeomorfos.

Demostración a) $\pi_1(\bigcup_{n\in\mathbb{N}} C_n) \simeq *_{n\in\mathbb{N}} \pi_1(C_n)$

Hallemos un isomorfismo entre $\pi_1(\bigcup_{n\in\mathbb{N}} C_n)$ y $*_{n\in\mathbb{N}}\pi_1(C_n)!!$

Como nosotros tenemos la intuición que, si llamamos $\alpha_n: I \to C_n$ al lazo que recorre una vez $C_n, <\alpha_n>_{n\in\mathbb{N}}=*_{n\in\mathbb{N}}\pi_1(C_n)$ entonces notemos que $i_{n_*}:\pi_1(C_n,(0,0))\to\pi_1(X)$ es morfismo de grupos $\forall n\in\mathbb{N}$. Por la propiedad universal del coproducto $\exists \phi:*_{n\in\mathbb{N}}\pi_1(C_n)\to\pi_1(X)$. Veamos que ϕ es iso!

- \bullet ϕ es epi
 - Para eso sea $[\omega] \in \pi_1(X)$ notemos que $\omega(I)$ es compacto pues ω es continua, y entonces $\omega(I)$ es acotado, supongamos que $\|\omega(I)\| \leq N$. Llamemos $r_N : X \to \bigcup_{i=1}^N C_n$ retracción dada por $r_N = 1_X \ \chi_{\bigcup_{n \leq N} C_n} + C(0,0) \ \chi_{\bigcup_{n \geq N} C_n}$, entonces por lo dicho anteriormente $\omega \simeq r_N \omega$ y por ende $[\omega] \in \pi_1(\bigcup_{i=1}^N C_N) = *_{i=1}^N \mathbb{Z} = *_{i=1}^N \pi_1(C_n)$ donde la última igualdad es por inducción. Por ende $\phi([r_N \omega]) = [\omega]$ y ϕ es epi.
- ϕ es mono Supongamos que $\phi([\omega]) = 0$, entonces $\exists H : I \times I \to \bigcup_{n \in \mathbb{N}} C_n$ continua tal que $H_0 = C_{(0,0)}$ y $H_1 = \omega$. Pero $H(I \times I)$ también es compacto y por ende acotado, por lo que $H \simeq r_{N'}H$ con N' el máximo entre el N de ω y el de H! Pero entonces $\omega \simeq r_{N'}\omega \simeq C_{(0,0)}$ pues la primer equivalencia es dada por la retracción de $r_{N'}$ y la segunda por $r_{N'}H$, entonces $[\omega] = 0$ en $*_{i=1}^{N'}\pi_1(C_n)$, pero como ya era cero para $n \geq N'$, entonces $[\omega] = 0$ en $*_{n \in \mathbb{N}}\pi_1(C_n)$ y ϕ es mono
- b) X y $\bigvee_{n\in\mathbb{N}} S^1$ son homotópicamente equivalentes. Notemos que dado un C_n , $\exists r_n:C_n\to S^1$ dado por $r_n=\frac{x}{n}-(n-1,0)$, entonces si identificamos S_n^1 como el elemento n-ésimo del wedge, tenemos $i_n:S^1\to\bigvee_{n\in\mathbb{N}} S^1$ y entonces tenemos $h_n=i_nr_n:C_n\to\bigvee_{n\in\mathbb{N}} S^1$ $\forall n\in\mathbb{N}$ pues $h_n|_{(0,0)}=(0,0)$. Sea $h:\bigcup_{n\in\mathbb{N}} C_n\to\bigvee_{n\in\mathbb{N}} S^1$ el morfismo inducido por las h_n dado por $h=\sum h_n$ χ_{C_n} , afirmo que h es equivalencia homotópica! En efecto, para cada n $\exists k_n:S_n^1\to C_n$ inversa homotópica de h_n , y entonces induce una $g_n=ik_n:S_n^1\to\bigcup C_n$. Por propiedad universal del coproducto $\exists g:\coprod_{n\in\mathbb{N}} S_n^1\to\bigcup C_n$ y como g manda el punto en común al mismo (0,0), baja al cociente y $\exists w:\bigvee_{n\in\mathbb{N}} S^1\to\bigcup_{n\in\mathbb{N}} C_n$. Notemos que $wh=\sum wh_n$ $\chi_{C_n}=\sum k_nh_n$ $\chi_{C_n}\simeq\sum\chi_{C_n}\simeq 1_{\bigcup C_n}$, y análogo al revés pues $h_nk_n\simeq 1_{S_n^1}$, por lo que $hw\simeq 1_{\bigvee S^1}$ y resulta que $\bigcup_{n\in\mathbb{N}} C_n\simeq\bigvee_{n\in\mathbb{N}} S^1$
- c) Pero no son homeomorfos!
 - En efecto notemos que X al tener la topología subespacio de \mathbb{R}^n cumple que es 1 contable, mientras que un entorno de abiertos del (0,0) en el wedge es no contable. En efecto supongamos que $\mathcal{B} := \{\mathcal{B}_i\}_{i\in\mathbb{N}}$ es una base de entornos abiertos del (0,0), para cada i elegimos $V_i \subset S^1$ tal que $p_i(\mathcal{B}_i) \not\subset V_i$ y tomamos $V := \bigvee_{i\in\mathbb{N}} V_i \subset \bigvee_{n\in\mathbb{N}} S^1$, por la construcción tenemos que $\not\supseteq B_i \in \mathcal{B} / B_i \subset V$, por ende $|\mathcal{B}| > \aleph_0$
- 5. Para cada $n \in \mathbb{N}$ sea C_i la circunferencia en \mathbb{R}^2 con centro en (1/n,0) y radio 1/n. Sea $X = \bigcup_{n \in \mathbb{N}} C_n \subseteq \mathbb{R}^2$ y sea $x_0 = (0,0) \in X$. Pruebe que $\pi_1(X,x_0)$ es un grupo no numerable.

Demostración Sea $H = \prod_{n \in \mathbb{N}} \mathbb{Z}/2\mathbb{Z}$, entonces es claro que $|H| > \aleph_0$; sea $s \in H$, $s = (a_s)_{s \in \mathbb{N}}$ y contruimos $\alpha_s : I \to X$ dado por $\alpha_s = \sum_{n \in \mathbb{N}} (cte\chi_{a_n=0} + l_n \ \chi_{a_n=1})\chi_{[\frac{n-1}{n},\frac{n}{n+1}]}$ donde l_n es el lazo estándar en C_n y cte es para que α_s sea continua; veamos que $[\alpha_s] \neq [\alpha_t]$ si $s \neq t!!$ Supongamos que $s \neq t$, entonces $\exists N \ / \ a_N = 1$, $b_N = 0$ y sea $q_N = 1_X \ \chi_{C_N}$ entonces $[q_N\alpha_s] \neq [q_N\alpha_t]$ pues $[q_N\alpha_s] = [l_N] \neq [0]$ y $[q_N\alpha_t] = [0]$; entonces $\alpha : H \to X$ dado por $\alpha(s) := \alpha_s$ es inyectiva y entonces $|X| > \aleph_0$

6. Sea $n \in \mathbb{N}$ y sea $Y_n = \{x \in \mathbb{R}^2 / \exists j \in \{1, \dots, n\} , d(x, (j - \frac{1}{2}, 0)) = \frac{1}{2} \}$. Determine $\pi_1(Y_n, 0)$.

Demostración Notemos que $Y_n = \bigcup_{i=1}^n S((n-\frac{1}{2},0),\frac{1}{2})$ y entonces $Y_n \simeq S^1 \vee_1 (S^1 \vee_2 (... \vee_n S^1))$ y entonces, por lo visto antes, $\pi_1(Y_n) = *_{i=1}^n \mathbb{Z}$

7. Sea $n \in \mathbb{N}$. Sea $X \subseteq \mathbb{R}^3$ la unión de n rectas por el origen. Calcule $\pi_1(\mathbb{R}^3 \setminus X)$

Demostración Notemos que vía $f = \frac{x}{\|x\|_2}$ tenemos que $X \simeq S^2 \setminus A$ donde $A = \{x_1, \dots, x_{2n}\}$ con $\{x_i, x_{2i}\} = L_i \cap S^2$, y luego si fijamos un punto x_1 como el polo norte y llamamos p la proyección estereográfica entonces $S^2 \setminus A \simeq \mathbb{R}^2 \setminus \{y_1, \dots, y_{2n-1}\}$, y como ya vimos $\mathbb{R}^2 \setminus \{y_1, \dots, y_{2n-1}\} \simeq \bigvee_{i=1}^{2n-1} S^1$ y entonces $\pi_1(X) = \pi_1(\bigvee_{i=1}^{2n-1} S^1) = *_{i=1}^{2n-1} \mathbb{Z}$

8. Sea X el espacio cociente de S^2 que se obtiene de identificar el polo norte y el polo sur en un punto. Calcule $\pi_1(X)$.

Demostración Notemos que $S^2 / S^0 \simeq X$ con X el espacio del ejercicio para entregar, entonces tenemos que $\pi_1(S^2 / S^0) = \mathbb{Z}$

Afirmación $S^2 / S^0 \simeq S^2 \vee S^1$

Demostración ???? Ximeeeee ayudaaaaa!!!!

- 9. a) Si $L \subseteq \mathbb{R}^n$ es una variedad lineal de dimensión k, con $0 \le k \le n-2$, determine el grupo $\pi_1(\mathbb{R}^n \setminus L)$
 - b) Si $C \subseteq \mathbb{R}^3$ es una circunferencia, entonces $\pi_1(\mathbb{R}^3 \setminus C) = \mathbb{Z}$.

Demostración a) Podemos suponer, vía una traslación, que L es un subespacio de dimensión k; entonces $L = \{L_1 = 0, \dots, L_{n-k} = 0\}$ donde $L_i \in (\mathbb{R}^n)^*$, más aún podemos suponer que $L_i = x_i!$ Con lo que $L \simeq \mathbb{R}^k$, entonces tenemos:

Afirmación
$$\mathbb{R}^n \setminus \mathbb{R}^k \simeq S^{n-(k+1)} \times \mathbb{R}^k$$

Por lo que
$$\pi_1(\mathbb{R}^n \setminus L) = \pi_1(S^{n-(k+1)}) = \mathbb{Z} \chi_{\{n=k-2\}}$$

Demostración de la Afirmación

Tomar
$$f = (\frac{x_1}{\|x\|_2}, \dots, \frac{x_{n-k}}{\|x\|_2}, x_{n-k+1}, \dots, x_n)$$

b) Notemos que $\mathbb{R}^3 \setminus A \cup \{\infty\} \simeq S^3 \setminus A$ y entonces por Van Kampen $\pi_1(\mathbb{R}^3 \setminus A) = \pi_1(S^3 \setminus A)$, pero $S^3 \setminus A \simeq \mathbb{R}^3 \setminus \{y = 0, z = 0\}$ pues tomo la proyección estereográfica por un punto de A. Pero trivialmente $\mathbb{R}^3 \setminus \mathbb{R} \times \{0\} \times \{0\} \simeq S^1 \times \mathbb{R}$ por $f = (\frac{x}{\|(x,y,z)\|_2}, \frac{y}{\|(x,y,z)\|_2}, z)$ y $S^1 \times \mathbb{R} \simeq S^1$ por el ejercicio 1, por lo que $\pi_1(\mathbb{R}^3 \setminus A) = \mathbb{Z}$

Afirmación
$$\mathbb{R}^3 \setminus A \simeq S^2 \vee S^1$$

Demostración ?????? Idem antes Ximeeee ayuda!!

10. Sea $K = I \times I / \sim$ donde $(x, y) \sim (x', y')$ si se satisface alguna de las siguientes condiciones:

$$(x=x' \;,\; y=y') \; \circ \; (\{y,y'\}=\{0,1\} \; \mathrm{y} \; x=x') \; \circ \; (\{x,x'\}=\{0,1\} \; \mathrm{e} \; y+y'=1)$$

El espacio K es la Botella de Klein. Calcule (una presentación d)el grupo fundamental de K.

Demostración Hagamos como el toro! Sea $U=I\times I-\{(\frac{1}{2},\frac{1}{2})\}$ y $V=B((\frac{1}{2},\frac{1}{2}),\epsilon)$ entonces, de la misma manera que en el ejercicio 1 con el toro, tenemos que $U/\sim \simeq S^1\vee S^1$ y $V\simeq \{*\}$. Por otro lado $\pi_1(U\cap V)\simeq S^1$ y lo único que nos va a diferenciar del toro va a ser en la presentación!

Aquí sea $\alpha = \epsilon * e^{2\pi it}$ el lazo generador de $\pi_1(U \cap V)$ entonces $\alpha = ab^{-1}ab!$

Entonces tenemos, por el teorema de Van Kampen, que $\pi_1(K) = \mathbb{Z} * \mathbb{Z} * 0/ < ab^{-1}ab = 1 > = < a, b > / < ab^{-1}ab = 1 >$