Devoir Libre nº 2

Exercice 1

Soient f et g deux fonctions définies par : $f(x) = \frac{-x^3}{4}$ et $g(x) = \frac{x+1}{x-2}$.

- 1. Déterminer D_f et D_g les domaines de définition de f et g respectives.
- 2. Donner les tableaux de variations de f et g.
- 3. Tracer (C_f) et (C_g) les courbes représentatives de f et g dans un repère orthonormé $(O; \vec{i}, \vec{j})$.
- 4. Résoudre graphiquement l'inéquation : f(x) < g(x).
- 5. Déterminer $f(]2, +\infty[)$ et f(]-2, 2[).
- 6. Soit h la fonction définie par $:h(x)=(g\circ f)(x).$
 - (a) Déterminer D_h le domaine de définition de h.
 - (b) Montrer que : $\forall x \in D_h$: $h(x) = \frac{x^3 4}{x^3 + 8}$.
 - (c) Montrer que h est majorée par 1 sur $]-2,+\infty[$.
 - (d) Déterminer la monotonie de h sur]-2,2[et $]2,+\infty[$.

Exercice 2

Soit ABC un triangle et G un point du plan tel que $:\overrightarrow{BG} = \frac{1}{3}\overrightarrow{BC}.$

- 1. Déterminer α et β deux réels tels que G est le barycentre de $(B;\alpha)$ et $(C;\beta)$ avec $\alpha+\beta=3.$
- 2. Soit H un point du plan tel que $:\overrightarrow{AH}=2\overrightarrow{AB}+\overrightarrow{AC}$ et K le barycentre de (A;-2) et (C;1).
 - (a) Montrer que H est le barycentre de (A; -2), (B; 2) et (C; 1).
 - (b) Montrer que $\overrightarrow{AK} = -\overrightarrow{AC}$
- 3. Construire le triangle ABC et les points G, H et K.
- 4. Montrer que A ,G et H sont alignés.
- 5. Montrer que H est le barycentre de (K; -1) et (B; 2).
- 6. Déduire que $H \in (KB) \cap (GA)$.
- 7. On suppose que le plan est muni d'un repère orthonormé $(O; \vec{i}; \vec{j})$ et A(2;-1),B(3;1) et C(-2;0). Déterminer les coordonnées du point H.