

Randomness in Computing

LECTURE 1

Randomness in Computing

- Course information
- Verifying polynomial identities
- Probability Amplification
 Probability Review

Sofya Raskhodnikova

Course information

- 1. Course staff
- 2. Course website(s)
- 3. Piazza bonus
- 4. Prerequisites
- 5. Textbook(s)

- 6. Syllabus
- 7. Homework logistics
- 8. Collaboration policy
- 9. Exams and grading

Tips for the course

- Concepts in this course take some time to sink in: be careful not to fall behind.
- Do the assigned reading on each topic before the corresponding lecture.
- Attend the lectures: most of the material will be presented on the blackboard (and some of it is not in the book).
- Attend the discussions: practice problem solving.
- Take advantage of office hours.
- Be active in lectures and on piazza.
- Allocate lots of time for the course: comparable to a project course, but spread more evenly.

Tips for the course: HW

- Start working on HW early.
- Spread your HW time over multiple days.
- You can work in groups (up to 4 people), but spend 1-2 hours thinking about it on your own before your group meeting.

Tips: learning problem solving

To learn problem solving, you have to do it:

- Try to think how you would solve any presented problem before you read/hear the answer.
- Do exercises in addition to HW.

Tips: how to read a math text

- Not like reading a mystery novel.
- The goal is not to get the answers, but to learn the techniques.
- Always try to foresee what is coming next.
- Always think how you would approach a problem before reading the solution.
- This applies to things that are not explicitly labeled as problems.

Skills we will work on

- Mathematical reasoning
- Expressing your ideas
 - abstractly (suppress inessential details)
 - precisely (rigorously)
- Probabilistic thinking
- Algorithmic thinking
- Problem solving
- Having FUN with all of the above!!!

Uses of Randomness in Computing

- To speed up algorithms.
- To enable new applications:
 - Symmetry breaking in distributed algorithms, cryptography, privacy, online games and gambling.
- To simulate real world events in physical systems: model them as happening randomly.
- To analyze algorithms when data is generated from some distribution:
 - learning theory, data compression.
- To analyze algorithms when errors happen randomly
 - error-correcting codes.
- Analyzing statistics from sampling.

§1.1 (MU) Verifying Polynomial Identities

• $(x+1)(x-2)(x+3)(x-4)(x+5)(x-6) \equiv x^6 - 7x + 37$

Task: Given two polynomials F(x) and G(x), verify if $F(x) \equiv G(x)$.

Idea 1 (deterministic): Convert both polynomials to canonical form $\sum_{i=0}^{d} c_i x^i$.

• If F(x) is given as $\Pi_{i=1}^d(x-a_i)$, conversion by consecutively multiplying monomials requires $\Theta(d^2)$ multiplications of coefficients.

§1.1 (MU) Verifying Polynomial Identities

Task: Given two polynomials F(x) and G(x), verify if $F(x) \equiv G(x)$.

Idea 2 (randomized): Evaluate the polynomials on random integers.

Let $d = \max \text{ degree of } F(x) \text{ and } G(x)$

- 1. Pick r uniformly from $\{1, ..., 100d\}$.
- 2. Compute F(r) and G(r).
- 3. reject if $F(r) \neq G(r)$; o. w. accept.

O(d) ops for product form

Error Analysis: Probability of accepting incorrectly

Fundamental Theorem of Algebra

A polynomial of degree d has at most d roots.

1-sided error

Review: Axioms of Probability

Probability space has three components

- Sample space Ω
- Family of allowable events $E \subseteq \Omega$
- A probability function Pr that maps events E to $\mathbb R$ such that
 - $ightharpoonup \Pr(E) \in [0,1]$ for any event E;
 - $ightharpoonup \Pr(\Omega) = 1;$
 - For any finite or countable sequence of pairwise disjoint events $E_1, E_2, ...$,

$$\Pr\left(\bigcup_{i\geq 1} E_i\right) = \sum_{i\geq 1} \Pr(E_i).$$

Review: Inclusion-Exclusion Principle

For any two events E_1 and E_2 ,

$$\Pr(E_1 \cup E_2) = \Pr(E_1) + \Pr(E_2) - \Pr(E_1 \cap E_2)$$
.

For any three events E_1, E_2 and E_3 ,

$$Pr(E_1 \cup E_2 \cup E_3) = Pr(E_1) + Pr(E_2) + Pr(E_3)$$

$$- Pr(E_1 \cap E_2) - Pr(E_1 \cap E_3) - Pr(E_2 \cap E_3)$$

$$+ Pr(E_1 \cap E_2 \cap E_3)$$

For any n events $E_1, E_2, ..., E_n$,

$$\Pr\left(\bigcup_{i\in[n]} E_i\right) = \sum_{i\in[n]} \Pr(E_i) - \sum_{i< j} \Pr(E_i\cap E_j)$$

$$+ \sum_{i < j < k} \Pr(E_i \cap E_j \cap E_k) - \dots + (-1)^{n+1} \Pr\left(\bigcap_{i \in [n]} E_i\right).$$

Review: Union Bound

Union Bound

For finite or countable sequence of events $E_1, E_2, ...,$

$$\Pr\left(\bigcup_{i\geq 1} E_i\right) \leq \sum_{i\geq 1} \Pr(E_i)$$
.

Probability Amplification

• Our algorithm for verifying polynomial identities accepts incorrectly with probability $\leq \frac{1}{100}$

Idea: Repeat the algorithm and accept if all iterations accept.

Pr[error in all *k* iterations]

$$\leq \left(\frac{1}{100}\right)^k$$

Review: Independence

Independent events

- Two events E_1 and E_2 are independent if $\Pr(E_1 \cap E_2) = \Pr(E_1) \cdot \Pr(E_2)$.
- Events E_1, \dots, E_n are mutually independent if,

for every subset $I \in [n]$,

[n] denotes $\{1, 2, ..., n\}$

$$\Pr\left(\bigcap_{i\in I} E_i\right) = \prod_{i\in I} \Pr(E_i).$$

- If all pairs of events among $E_1, ..., E_n$ are independent then $E_1, ..., E_n$ are pairwise independent.
- Pairwise independence does not necessarily imply mutual independence!

Independence: Example

- We toss a fair coin twice.
- Let A be the event that the 1st flip is HEADS.
- Let B be the event that the 2nd flip is HEADS.
- Let C be the event that both flips are the same.

Are events A,B,C pairwise independent?

Are they mutually independent?

Review: Conditional Probability

Conditional Probability

The conditional probability of event E given event F is

$$\Pr(E \mid F) = \frac{\Pr(E \cap F)}{\Pr(F)}.$$

Well defined only if $Pr(F) \neq 0$

• When E and F are independent,

$$\Pr(E \mid F) = \frac{\Pr(E \cap F)}{\Pr(F)} = \frac{\Pr(E) \cdot \Pr(F)}{\Pr(F)} = \Pr(E).$$

CS 537

Review question

- Event E: the numbers on two dice sum to 8.
- Event F: the numbers on two dice are both even.
- What is the probability of E given that F occurred, Pr(E|F)?
- A. Less than 1/3
- B. 1/3
- C. Greater than 1/3, but less than 2/3
- D. 2/3
- E. Greater than 2/3

Review question

Card dealing

We deal two cards. What is the probability that the second card is an ace, given that the first is an ace?

- **A.** 3/52
- B. 3/51
- C. 4/52
- D. 5/52
- E. None of the answers above are correct.

For any two events E_1 and E_2 ,

$$Pr(E_1 \cap E_2) = Pr(E_1) \cdot Pr(E_2 | E_1).$$

For all events E_1, \ldots, E_n ,

$$\Pr(\cap_{i=1}^n E_i) = \Pr(E_1) \cdot \Pr(E_2|E_1) \cdot \dots \cdot (E_n|\cap_{i=1}^{n-1} E_i)$$

Sampling without replacement

• Let E_i be the event that we choose a root in iteration i

$$\Pr[\text{error in all } k \text{ iterations}]$$

$$= \Pr[E_1 \cap \cdots \cap E_k]$$

$$= \Pr[E_1] \cdot \Pr[E_2 | E_1] \cdot \dots \cdot \Pr[E_k | E_1 \cap \cdots \cap E_{k-1}]$$

- It is 0 if k > d.
- If $k \le d$, then $\Pr[E_j | E_1 \cap \dots \cap E_{j-1}] = \frac{d (j-1)}{100d (j-1)}$

$$\Pr[\text{error in all } k \text{ iterations}] \le \left(\frac{1}{100}\right)^k$$