Package 'MUVR2'

September 16, 2024

```
Title Multivariate Methods with Unbiased Variable Selection
```

Version 0.1.0

Author Carl Brunius [aut], Yingxiao Yan [aut, cre]

Maintainer Yingxiao Yan <yingxiao@chalmers.se>

Description Predictive multivariate modelling for metabolomics.

Types: Classification and regression.

Methods: Partial Least Squares, Random Forest ans Elastic Net

Data structures: Paired and unpaired Validation: repeated double cross-validation (Westerhuis et al. (2008)<doi:10.1007/s11306-007-0099-

6>, Filzmoser et al. (2009)<doi:10.1002/cem.1225>)

Variable selection: Performed internally, through tuning in the inner cross-validation loop.

URL https://github.com/MetaboComp/MUVR2

BugReports https://github.com/MetaboComp/MUVR2/issues

Depends R (>= 3.5.0)

Imports stats, graphics, randomForest, ranger, pROC, doParallel, foreach, caret, glmnet, splines, dplyr, psych, magrittr, mgcv, grDevices, parallel

License GPL-3

LazyData true

RoxygenNote 7.3.2

Encoding UTF-8

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Repository CRAN

Date/Publication 2024-09-16 07:50:11 UTC

2 Contents

Contents

Index

biplotPLS	3
checkinput	4
confusionMatrix	5
crispEM	6
customParams	6
getBER	8
getMISS	9
getVar	10
getVIRank	11
get_rmsep	12
HO_reference	12
HO_test	13
IDR	
IDR2	14
mergeModels	15
MUVR2	15
MUVR2_EN	17
nearZeroVar	19
onehotencoding	20
permutationPlot	21
plotMV	22
plotPCA	23
plotPerm	24
plotPred	25
plotStability	26
plotVAL	
plotVIRank	28
pPerm	29
predMV	30
preProcess	31
Q2_calculation	32
qMUVR2	32
rdCV	33
rdcvNetParams	35
sampling_from_distribution	
varClass	36
Xotu	
XRVIP	38
XRVIP2	38
Yotu	38
YR	38
YR2	39

40

biplotPLS 3

|--|

Description

Makes a biplot of a fitted object (e.g. from a MUVR with PLS core).

Usage

```
biplotPLS(
   fit,
   comps = 1:2,
   xCol,
   labPlSc = TRUE,
   labs,
   vars,
   labPlLo = TRUE,
   pchSc = 16,
   colSc,
   colLo = 2,
   supLeg = FALSE
)
```

Arguments

fit	A PLS fit (e.g. from MUVRclassObject\$Fit[[2]])
comps	Which components to plot
xCol	(Optional) Continuous vector for grey scale gradient of observation (sample) color (e.g. Y vector in regression analysis)
labPlSc	Boolean to plot observation (sample) names (defaults to TRUE)
labs	(Optional) Label names
vars	Which variables to plot (names in rownames(loadings))
labPlLo	Boolean to plot variable names (defaults to TRUE)
pchSc	Plotting character for observation scores
colSc	Colors for observation scores (only if xCol omitted)
colLo	Colors for variable loadings (defaults to red)
supLeg	Boolean for whether to suppress legends

Value

A PLS biplot

4 checkinput

Examples

```
data("freelive2")
nRep <- 2 # Number of MUVR2 repetitions
nOuter <- 3 # Number of outer cross-validation segments
varRatio <- 0.75 # Proportion of variables kept per iteration
method <- 'PLS' # Selected core modeling algorithm</pre>
regrModel <- MUVR2(X = XRVIP2,</pre>
                  Y = YR2,
                  nRep = nRep,
                  nOuter = nOuter,
                  method = method,
                  modReturn = TRUE)
biplotPLS(regrModel$Fit[[2]],
          comps = 1:2,
          xCol = YR2,
          labPlSc = FALSE,
          labPlLo = FALSE)
```

checkinput

Check input

Description

This can be run to test if the command input of parameters contradict each other and check the structure of the data. If something goes wrong, warning messages are given.

Usage

```
checkinput(
   X,
   Y,
   ML,
   DA,
   method,
   fitness,
   nInner,
   nOuter,
   varRatio,
   scale,
   modReturn,
   logg,
   parallel
)
```

confusionMatrix 5

Arguments

X The original data of X, not the result after onehotencoding

Y The original data of Y

ML in MUVR2
DA DA in MUVR2

method RF or PLS so far in MUVR2

fitness in MUVR2
nInner nInnerin MUVR2
nOuter nOuter in MUVR2
varRatio varRatio in MUVR2

scale scale

modReturn modReturn in MUVR2

logg logg in MUVR2 parallel parallel in MUVR2

Value

correct_input: the original input(call) and the real input used in MUVR2 when you enter your input

Examples

confusionMatrix

Confusion matrix

Description

Make a confusion matrix from a MUVR object.

Usage

```
confusionMatrix(MVObj, model = "mid")
```

Arguments

MV0bj A MUVR object (classification analysis)

model min, mid or max model

6 customParams

Value

A confusion matrix of actual vs predicted class

Examples

```
data("mosquito")
data("crisp")
nRep <- 2 # Number of MUVR2 repetitions
nOuter <- 4 # Number of outer cross-validation segments
varRatio <- 0.6 # Proportion of variables kept per iteration
classModel <- MUVR2_EN(X = Xotu,</pre>
                      Y = Yotu,
                      nRep = nRep,
                      nOuter = nOuter,
                      DA = TRUE,
                      modReturn = TRUE)
confusionMatrix(classModel)
MLModel <- MUVR2(X = crispEM,
                 ML = TRUE,
                 nRep = nRep,
                 nOuter = nOuter,
                 varRatio = varRatio,
                 method = "RF",
                 modReturn = TRUE)
 confusionMatrix(MLModel)
```

crispEM

Effect matrix for the crisp multilevel tutorial

Description

Effect matrix for the crisp multilevel tutorial

Usage

```
data(crisp)
```

 ${\tt customParams}$

Make custom parameters for internal modelling

Description

Make custom parameters for MUVR internal modelling, not rdCV. Please note that, at present, there is no mtryMax for the outer (consensus) loop in effect.

customParams 7

Usage

```
customParams(
  method = c("RF", "PLS", "SVM", "ANN"),
  robust = 0.05,
  ntreeIn = 150,
  ntreeOut = 300,
  mtryMaxIn = 150,
  compMax = 5,
  nodes = 200,
  threshold = 0.1,
  stepmax = 1e+08,
  neuralMaxIn = 10,
  kernel = "notkernel",
  nu = 0.1,
  gamma = 1,
  degree = 1,
  oneHot,
  NZV,
  rfMethod = c("randomForest", "ranger"),
svmMethod = c("svm", "ksvm", "svmlight"),
  annMethod = c("nnet", "neuralnet")
)
```

Arguments

method	PLS or RF (default)
robust	Robustness (slack) criterion for determining \min and \max knees (defaults to $0.05)$
ntreeIn	RF parameter: Number of trees in inner cross-validation loop models (defaults to 150)
ntreeOut	RF parameter: Number of trees in outer (consensus) cross-validation loop models (defaults to 300)
mtryMaxIn	RF parameter: Max number of variables to sample from at each node in the inner CV loop (defaults to 150). Will be further limited by standard RF rules (see randomForest documentation)
compMax	PLS parameter: Maximum number of PLS components (defaults to 5)
nodes	ann parameter:
threshold	ann parameter:
stepmax	ann parameter:
neuralMaxIn	ann parameter: Maximum number of ANN (defaults to 20)
kernel	svm parameter: kernal function to use, which includes sigmoid, radical, polynomial
nu	svm parameter: ratios of errors allowed in the training set range from 0-1
gamma	svm parameters: needed for "vanilladot", "polydot", "rbfdot" kernel in svm

8 getBER

degree svm parameter: needed for polynomial kernel in svm
oneHot TRUE or FALSE using onehot endcoding or not
NZV TRUE or FALSE using non-zero variance or not

rfMethod randomforest method, which includes randomForest and ranger svmMethod support vector machine method, which includes svm, ksvm, s

annMethod artificial neural network method which includes 2 different ann methods

Value

```
a 'methParam' object
```

Examples

```
# Standard parameters for random forest
methParam <- customParams() # or
methParam <- customParams('RF')
# Custom ntreeOut parameters for random forest
methParam <- customParams('RF',ntreeOut=50) # or
methParam <- customParams('RF')
methParam$ntreeOut <- 50
methParam</pre>
```

getBER Get BER

Description

Get Balanced Error Rate (BER) in classification.

Usage

```
getBER(actual, predicted, weigh_added = FALSE, weighing_matrix)
```

Arguments

actual Vector of actual classifications of samples

predicted Vector of predicted classifications of samples

weigh_added To add a weighing matrix when it is classification

weighing_matrix

The matrix used to get a misclassification score

Value

BER

getMISS 9

Examples

```
data("mosquito")
actual <- Yotu
predicted <- sampling_from_distribution(actual)
getBER(actual, predicted)</pre>
```

getMISS

Get number of misclassifications

Description

Get number of misclassifications from classification analysis.

Usage

```
getMISS(actual, predicted, weigh_added = FALSE, weighing_matrix)
```

Arguments

actual Vector of actual classifications of samples
predicted Vector of predicted classifications of samples

weigh_added Boolean, add a weighing matrix when it is classification

 $weighing_matrix$

The matrix used to get a misclassification score

Value

number of misclassifications

```
data("mosquito")
actual <- Yotu
predicted <- sampling_from_distribution(actual)
getMISS(actual, predicted)</pre>
```

10 getVar

getVar

Get min, mid or max model from Elastic Net modelling

Description

Obtain the min, mid, or max number of variables for an object generated from the rdCVnet() function.

Usage

```
getVar(
  rdCVnetObject,
  option = c("quantile", "fitness"),
  fit_curve = c("loess", "gam"),
  span = 1,
  k = 5,
  outlier = c("none", "IQR", "residual"),
  robust = 0.05,
  quantile = 0.25
)
```

Arguments

an object obtained from the rdCVnet() function rdCVnetObject option quantile or fitness: which way to perform variable selection gam or loess method for fitting the curve in the fitness option fit_curve parameter for using loess to fit curve in the fitness option: how smooth the curve span needs to be parameter for using gam to fit curve in the fitness option outlier if remove outlier variables or not. There are 3 options: "none", "IRQ", "residual" robust if the option is fitness, robust parameter decides how much deviation it is allowed from the optimal perdiction performance for min and max variabel selecif the option is quantile, this value decides the cut for the first quantile, ranging quantile from 0 to 0.5

Value

```
a rdCVnet object
```

```
data("mosquito")
nRep <- 2
nOuter <- 4</pre>
```

getVIRank 11

getVIRank

Get variable importance

Description

Extract autoselected variables from MUVR model object.

Usage

```
getVIRank(MUVRclassObject, model = "mid", n, all = FALSE)
```

Arguments

MUVRclassObject

an object of MUVR class

model which model to use ("min", "mid" (default), or "max")

n customize values

all logical, to get the ranks of all variable or not

Value

data frame with order, name and average rank of variables ('order', 'name' & 'rank')

H0_reference

get_rmsep

Get RMSEP

Description

Get Root Mean Square Error of Prediction (RMSEP) in classification.

Usage

```
get_rmsep(actual, predicted)
```

Arguments

actual Vector of actual classifications of samples
predicted Vector of predicted classifications of samples

Value

RMSEP

Examples

```
data("mosquito")
actual <- YR2
predicted <- sampling_from_distribution(actual)
get_rmsep(actual, predicted)</pre>
```

H0_reference

Get reference distribution for resampling tests

Description

Make reference distribution for resampling tests to assess overfitting.

Usage

```
H0\_reference(Y, n = 1000, fitness = c("Q2", "BER", "MISS", "AUROC"), ...)
```

Arguments

Y the target variable

n number of permutations to run

fitness number of repetitions for each permutation (defaults to value of actual model)

... additional arguments for sampling from distribution

H0_test 13

Value

a histogram of reference distribution

Examples

```
data("freelive2")
H0_reference(YR2)
```

H0_test

Perform permutation or resampling tests

Description

This function will extract data and parameter settings from a MUVR object and run standard permutation or resampling test. This will fit a standard case of multivariate predictive modelling in either a regression, classification or multilevel case. However, if an analysis has a complex sample dependency which requires constrained permutation of your response vector or if a variable pre-selection is performed for decreased computational burden, then permutaion/resampling loops should be constructed manually. In those cases, View(H0_test) can be a first start from which to build custom solutions for permutation analysis.

Usage

```
H0_test(
   MUVRclassObject,
   n = 50,
   nRep,
   nOuter,
   varRatio,
   parallel,
   type = c("resampling", "permutation")
)
```

Arguments

MUVRclassObject

a 'MUVR' class object

n number of permutations to run

nRep number of repetitions for each permutation (defaults to value of actual model)
nOuter number of outer validation segments for each permutation (defaults to value of

actual model)

varRatio varRatio for each permutation (defaults to value of actual model)

parallel whether to run calculations using parallel processing which requires registered

backend (defaults to parallelization for the actual model)

type either permutation or resampling, to decide whether the permutation sampling is

performed on original Y values or the probability(If Y categorical)/distributions(If

Y continuous) of Y values

IDR2

Value

permutation_output: A permutation matrix with permuted fitness statistics (nrow=n and ncol=3 for min/mid/max)

Examples

IDR

Subject identifiers for the rye metabolomics regression tutorial

Description

Subject identifiers for the rye metabolomics regression tutorial

Usage

```
data(freelive)
```

IDR2

Subject identifiers for the rye metabolomics regression tutorial, using unique individuals

Description

Subject identifiers for the rye metabolomics regression tutorial, using unique individuals

Usage

```
data(freelive2)
```

mergeModels 15

mergeModels

Merge two MUVR class objects

Description

Merge two MUVR class objects that use regression for PLS or RF methods. The resultant MUVR class object has the same indata except that nRep is different.

Usage

```
mergeModels(MV1, MV2)
```

Arguments

```
MV1 a MUVR class Object
MV2 a MUVR class Object
```

Value

A merged MURV class object

Examples

MUVR2

MUVR2 with PLS and RF

Description

"Multivariate modelling with Unbiased Variable selection" using PLS and RF. Repeated double cross validation with tuning of variables in the inner loop.

MUVR2

Usage

```
MUVR2(
 Χ,
 Υ,
  ID,
  scale = TRUE,
  nRep = 5,
 nOuter = 6,
 nInner,
 varRatio = 0.75,
 DA = FALSE,
 fitness = c("AUROC", "MISS", "BER", "RMSEP", "wBER", "wMISS"),
 method = c("PLS", "RF", "ANN", "SVM"),
 {\tt methParam},
 ML = FALSE,
 modReturn = FALSE,
  logg = FALSE,
  parallel = TRUE,
 weigh_added = FALSE,
 weighing_matrix = NULL,
  keep,
  . . .
)
```

Arguments X

	fiers. NAs not allowed in data. For multilevel, only the positive half of the difference matrix is specified.
Υ	Response vector (Dependent variable). For classification, a factor (or character) variable should be used. For multilevel, Y is calculated automatically.
ID	Subject identifier (for sampling by subject; Assumption of independence if not specified)
scale	If TRUE, the predictor variable matrix is scaled to unit variance for PLS modeling.
nRep	Number of repetitions of double CV. (Defaults to 5)
nOuter	Number of outer CV loop segments. (Defaults to 6)
nInner	Number of inner CV loop segments. (Defaults to nOuter - 1)
varRatio	Ratio of variables to include in subsequent inner loop iteration. (Defaults to 0.75)
DA	Boolean for Classification (discriminant analysis) (By default, if Y is numeric \rightarrow DA = FALSE. If Y is factor (or character) \rightarrow DA = TRUE)
fitness	Fitness function for model tuning (choose either 'AUROC' or 'MISS' (default) for classification; or 'RMSEP' (default) for regression.)
method	Multivariate method. Supports 'PLS' and 'RF' (default)

Predictor variables. NB: Variables (columns) must have names/unique identi-

MUVR2_EN 17

methParam List with parameter settings for specified MV method (see function code for

details)

ML Boolean for multilevel analysis (defaults to FALSE)

modReturn Boolean for returning outer segment models (defaults to FALSE). Setting mod-

Return = TRUE is required for making MUVR predictions using predMV().

logg Boolean for whether to sink model progressions to 'log.txt'

parallel Boolean for whether to perform 'foreach' parallel processing (Requires a regis-

tered parallel backend; Defaults to 'TRUE')

weigh_added To add a weighing matrix when it is classfication

weighing_matrix

The matrix used for get a miss classfication score

keep Confounder variables can be added. NB: Variables (columns) must match col-

umn names.

... additional argument

Value

A 'MUVR' object

Examples

MUVR2_EN

MUVR2 with EN

Description

"Multivariate modelling with Unbiased Variable selection" using Elastic Net (EN). Repeated double cross validation with tuning of variables using Elastic Net.

18 MUVR2_EN

Usage

```
MUVR2_EN(
 Χ,
 Υ,
 ID,
 alow = 1e-05,
 ahigh = 1,
 astep = 11,
 alog = TRUE,
 nRep = 5,
 nOuter = 6,
 nInner,
 NZV = TRUE,
 DA = FALSE,
 fitness = c("AUROC", "MISS", "BER", "RMSEP", "wBER", "wMISS"),
 methParam,
 ML = FALSE,
 modReturn = FALSE,
 parallel = TRUE,
 keep = NULL,
 weigh_added = FALSE,
 weighing_matrix = NULL,
)
```

Arguments

X	Predictor variables. NB: Variables (columns) must have names/unique identifiers. NAs not allowed in data. For multilevel, only the positive half of the difference matrix is specified.
Υ	Response vector (Dependent variable). For classification, a factor (or character) variable should be used. For multilevel, Y is calculated automatically.
ID	Subject identifier (for sampling by subject; Assumption of independence if not specified)
alow	alpha tuning: lowest value of alpha
ahigh	alpha tuning: highest value of alpha
astep	alpha tuning: number of alphas to try from low to high
alog	alpha tuning: Whether to space tuning of alpha in logarithmic scale (TRUE; default) or normal/arithmetic scale (FALSE)
nRep	Number of repetitions of double CV. (Defaults to 5)
nOuter	Number of outer CV loop segments. (Defaults to 6)
nInner	Number of inner CV loop segments. (Defaults to nOuter-1)
NZV	Boolean for whether to filter out near zero variance variables (defaults to TRUE)
DA	Boolean for Classification (discriminant analysis) (By default, if Y is numeric -> DA=FALSE. If Y is factor (or character) -> DA=TRUE)

nearZeroVar 19

fitness Fitness function for model tuning (choose either 'AUROC' or 'MISS' (default)

for classification; or 'RMSEP' (default) for regression.)

methParam List with parameter settings for specified MV method (see function code for

details)

ML Boolean for multilevel analysis (defaults to FALSE)

modReturn Boolean for returning outer segment models (defaults to FALSE). Setting mod-

Return=TRUE is required for making MUVR predictions using predMV().

parallel Boolean for whether to perform 'foreach' parallel processing (Requires a regis-

tered parallel backend; Defaults to 'TRUE')

keep A group of confounders that you want to manually set as non-zero

weigh_added weigh_added

weighing_matrix

weighing_matrix

... Pass additional arguments

Value

A MUVR object

Examples

nearZeroVar

Identify variables with near zero variance

Description

Adapted and stripped down from mixOmics v 5.2.0 (https://cran.r-project.org/web/packages/mixOmics/).

Usage

```
nearZeroVar(x, freqCut = 95/5, uniqueCut = 10)
```

Arguments

x a numeric vector or matrix, or a data frame with all numeric data.

freqCut the cutoff for the ratio of the most common value to the second most common

value.

uniqueCut the cutoff for the percentage of distinct values out of the number of total samples.

20 onehotencoding

Value

nzv object

Examples

```
data("freelive2")
nearZeroVar(XRVIP2)
data("mosquito")
nearZeroVar(Xotu)
```

onehotencoding

One hot encoding

Description

Each factor and character variable with n categories(>2) will be transformed to n variables. Each factor and character variable with 2 categories will be transformed to one 01 numeric dummy variable. Each factor and character variable with 1 categories will be transformed to one numeric variable that only has value 1. Each factor and character variable with 0 categories will be transformed to one numeric variable that only has value -999. Each logical variable will be transformed to one 01 numeric dummy variable.

Usage

onehotencoding(X)

Arguments

Χ

data frame data with numeric, factor, character and/or logical variables

Value

matrix with all variables transformed to numeric variables

permutationPlot 21

permutationPlot

Plot permutation analysis

Description

Plot permutation analysis using actual model and permutation result. This is basically a wrapper for the MUVR2::plotPerm() function using model objects to make coding nicer and cleaner.

Usage

```
permutationPlot(
   MUVRclassObject,
   permutation_result,
   model = "Mid",
   type = "t",
   side = c("greater", "smaller"),
   pos,
   xlab = NULL,
   xlim,
   ylim = NULL,
   breaks = "Sturges",
   main = NULL
)
```

Arguments

MUVRclassObject
A 'MUVR' class object
permutation_result

A permutation result. It is a list of 1 items: permutation_output

model 'Min', 'Mid', or 'Max'

type 't' (default; for Student's t) or 'non' for "non-parametric" (i.e. rank) studen'ts side 'smaller' for actual lower than H0 or 'greater' for actual larger than H0 (auto-

matically selected if not specified)

22 plotMV

pos	which side of actual to put p-value on
xlab	optional xlabel
xlim	optional x-range
ylim	otional y-range
breaks	optional custom histogram breaks (defaults to 'sturges')
main	optional plot title (or TRUE for autoname)
breaks	optional custom histogram breaks (defaults to 'sturges'

Value

A permutation plot

Examples

plotMV

Plot predictions

Description

Plot predicted and actual target variables, with different plots depending on modelling approach.

Usage

```
plotMV(MUVRclassObject, model = "min", factCols, sampLabels, ylim = NULL)
```

Arguments

MUVRclassObject

An MUVR class object

model What type of model to plot ('min', 'mid' or 'max'). Defaults to 'mid'.

factCols An optional vector with colors for the factor levels (in the same order as the

levels)

sampLabels Sample labels (optional; implemented for classification)

ylim Optional for imposing y-limits for regression and classification analysis

plotPCA 23

Value

A plot of results from multivariate predictions

Examples

plotPCA

PCA score plot

Description

Customised PCA score plots with the possibility to choose PCs, exporting to png and the possibility to add color or different plotting symbols according to variable.

Usage

```
plotPCA(pca, PC1 = 1, PC2 = 2, file, colVar, symbVar, main = "")
```

Arguments

рса	A 'prcomp' object
PC1	Principal component on x-axis
PC2	Principal component on y-axis
file	If specified provides the name of a png export file. Otherwise normal plot.
colVar	Continuous variable for coloring observations (40 cuts)
symbVar	Categorical/discrete variable for multiple plot symbols
main	If provided provides a main title of the plot

Value

A PCA score plot. Exported as png if 'file' specified in function call.

24 plotPerm

Examples

```
data("freelive2")
pca_object<-prcomp(XRVIP2)
plotPCA(pca_object)</pre>
```

plotPerm

Plot for comparison of actual model fitness vs permutation/resampling

Description

Plots histogram of null hypothesis (permutation/resampling) distribution, actual model fitness and cumulative p-value. Plot defaults to "greater than" or "smaller than" tests and cumulative probability in Student's t-distribution.

Usage

```
plotPerm(
  actual,
  distribution,
  xlab = NULL,
  side = c("greater", "smaller"),
  type = "t",
  ylab = NULL,
  xlim,
 ylim = NULL,
  breaks = "Sturges",
  pos,
 main = NULL,
 permutation_visual = "none",
  curve = TRUE,
  extend = 0.1,
 multiple_p_shown = NULL,
  show_actual_value = TRUE,
  show_p = TRUE,
  round_number = 4
)
```

Arguments

actual	Actual model fitness (e.g. Q2, AUROC or number of misclassifications)
distribution	Null hypothesis (permutation) distribution of similar metric as 'actual'
xlab	Label for x-axis (e.g. 'Q2 using real value',"Q2 using distributions","BER" 'AUROC', or 'Misclassifications')
side	Cumulative p either "greater" or "smaller" than H0 distribution (defaults to side of $median(H0)$)
type	c('t','non',"smooth","rank","ecdf")

plotPred 25

ylab label for y-axis

xlim Choice of user-specified x-limits (if default is not adequate)
ylim Choice of user-specified y-limits (if default is not adequate)

breaks Choice of user-specified histogram breaks (if default is not adequate)

pos Choice of position of p-value label (if default is not adequate)

main Choice of user-specified plot title

permutation_visual

choice of showing median or mean or none

curve if add curve or not base on the mid

extend how many percentage of the original range do we start

multiple_p_shown

show many p values

show_actual_value

show the actual value on the vertical line or not

show_p if p value is added to the figure round_number How many digits does it keep

Value

Plot

Examples

```
data("freelive2")
actual <- sample(YR2, 1)
distribution <- YR2
plotPerm (actual, distribution)</pre>
```

plotPred

Plot predictions for PLS regression

Description

At present, this function only supports predictions for PLS regression type problems.

Usage

```
plotPred(Ytrue, Ypreds)
```

Arguments

Ytrue True value of Y, should be a vector

Ypreds Predicted value of Y can be a vector or data frame with the same number of rows

26 plotStability

Value

A plot, plot the prediction

Examples

```
data("freelive2")
Ytrue<-YR2
Ypreds<-sampling_from_distribution(YR2)</pre>
plotPred(Ytrue, Ypreds)
Ytrue<-YR2
nRep <- 2
nOuter <- 4
varRatio <-0.6
regrModel <- MUVR2(X = XRVIP2,</pre>
                    Y = YR2
                    nRep = nRep,
                    nOuter = nOuter,
                    varRatio = varRatio,
                    method = "PLS",
                    modReturn = TRUE)
Ypreds<-regrModel$yPred
plotPred(Ytrue, Ypreds)
```

plotStability

Plot stability

Description

Plot stability of selected variables and prediction fitness as a function of number of repetitions.

Usage

```
plotStability(MUVRrdCVclassObject, model = "min", VAll, nVarLim, missLim)
```

Arguments

MUVRrdCVclassObject

MUVR class object or rdCV object

model 'min' (default), 'mid' or 'max'

VAll Option of specifying which variables (i.e. names) to consider as reference set.

Defaults to variables selected from the 'model' of the 'MUVRrdCVclassObject'

nVarLim Option of specifying upper limit for number of variables

missLim Option of specifying upper limit for number of misclassifications

Value

Plot of number of variables, proportion of variables overlapping with reference and prediction accuracy (Q2 for regression; MISS otherwise) as a function of number of repetitions.

plotVAL 27

Examples

plotVAL

Plot validation metric

Description

Produces a plot of validation metric vs number of variables in model (inner segment).

Usage

```
plotVAL(MUVRclassObject, show_outlier = TRUE)
```

Arguments

```
{\tt MUVRclassObject}
```

An object of class 'MUVR'

show_outlier Boolean, show outliers

Value

A plot

28 plotVIRank

```
plotVAL(regrModel)
```

plotVIRank

Plot variable importance ranking

Description

Plot variable importance ranking in MUVR object. Regardless of MV core method, variables are sorted by rank, where lower is better. 'plotVIRank' produces boxplots of variable rankings for all model repetitions.

Usage

```
plotVIRank(
   MUVRclassObject,
   n,
   model = "min",
   cut,
   maptype = c("heatmap", "dotplot"),
   add_blank = 4,
   cextext = 1
)
```

Arguments

MUVRclassObject

An MUVR class object only applied to PLS, RF not rdCVnet

Number of top ranking variables to plot (defaults to those selected by MUVR2)

model Which model to choose ('min', 'mid' (default) or 'max')

cut Optional value to cut length of variable names to 'cut' number of characters

maptype for rdCvnet dot plot or heat map

add_blank put more blank when the rownames is too long,

cextext the cex of the text

Value

Barplot of variable rankings (lower is better)

```
data("freelive2")
nRep <- 2
nOuter <- 4
varRatio <-0.6
regrModel <- MUVR2(X = XRVIP2,</pre>
```

pPerm 29

```
Y = YR2,
nRep = nRep,
nOuter = nOuter,
varRatio = varRatio,
method = "PLS",
modReturn = TRUE)
plotVIRank(regrModel, n=20)
```

pPerm

Calculate permutation p-value Calculate perutation p-value of actual model performance vs null hypothesis distribution. 'pPerm' will calculate the cumulative (1-tailed) probability of 'actual' belonging to 'permutation_distribution'. 'side' is guessed by actual value compared to median(permutation_distribution). Test is performed on original data OR ranked for non-parametric statistics.

Description

Calculate permutation p-value Calculate perutation p-value of actual model performance vs null hypothesis distribution. 'pPerm' will calculate the cumulative (1-tailed) probability of 'actual' belonging to 'permutation_distribution'. 'side' is guessed by actual value compared to median(permutation_distribution). Test is performed on original data OR ranked for non-parametric statistics.

Usage

```
pPerm(
  actual,
  permutation_distribution,
  side = c("smaller", "greater"),
  type = "t",
  extend = 0.1
)
```

Arguments

actual Actual model performance (e.g. misclassifications or Q2)

permutation_distribution

Null hypothesis distribution from permutation test (same metric as 'actual')

side Smaller or greater than (automatically guessed if omitted) (Q2 and AUC is a "greater than" test, whereas misclassifications is "smaller than")

type one of ('t','non',"smooth","ecdf","rank")

extend extend how much it extend

Value

p-value

30 predMV

Examples

```
data("freelive2")
actual <- sample(YR2, 1)
permutation_distribution <- YR2
pPerm(actual, permutation_distribution)</pre>
```

predMV

Predict outcomes Predict MV object using a MUVR class object and a X testing set. At present, this function only supports predictions for PLS regression type problems.

Description

Predict outcomes Predict MV object using a MUVR class object and a X testing set. At present, this function only supports predictions for PLS regression type problems.

Usage

```
predMV(MUVRclassobject, newdata, model = "min")
```

Arguments

MUVRclassobject

An 'MUVR' class object

newdata New data for which to predict outcomes

model What type of model to plot ('min', 'mid' or 'max'). Defaults to 'mid'.

Value

The predicted result based on the MUVR model and the newdata

preProcess 31

nr	eР	rc	ce	ss
PΙ	C.		\sim	

Perform matrix pre-processing

Description

Perform matrix pre-processing

Usage

```
preProcess(
   X,
   offset = 0,
   zeroOffset = 0,
   trans = "none",
   center = "none",
   scale = "none"
)
```

Arguments

X	Data matrix with samples in rows and variables in columns
offset	Add offset to all data points (defaults to 0)
zeroOffset	Add offset to zero data (defaults to 0)
trans	Either 'log', 'sqrt' or 'none' (default is 'none')
center	Either 'mean', 'none' or a numeric vector of length equal to the number of columns of X (defaults to 'none').
scale	Either 'UV', 'Pareto', 'none' or a numeric vector of length equal to the number of columns of X (defaults to 'none').

Value

A pre-processed data matrix

```
data("freelive2")
preProcess(XRVIP2)
```

32 qMUVR2

Q2_calculation

Q2 calculation

Description

Q2 calculation

Usage

```
Q2_calculation(yhat, y)
```

Arguments

yhat prediction values y real values

Value

Q2

Examples

```
data("freelive2")
actual <- YR2
predicted <- MUVR2::sampling_from_distribution(actual)
Q2_calculation(actual, predicted)</pre>
```

qMUVR2

Wrapper for speedy access to MUVR2 (autosetup of parallelization)

Description

Wrapper for speedy access to MUVR2 (autosetup of parallelization)

Usage

```
qMUVR2(
    X,
    Y,
    ML = FALSE,
    method = "RF",
    varRatio = 0.65,
    nCore,
    repMult = 1,
    nOuter = 5,
    ...
)
```

rdCV 33

Arguments

Χ	X-data
Υ	Y-data
ML	Boolean for multilevel
method	'RF' (default) or 'PLS'
varRatio	proportion of variables to keep in each loop of the recursive feature elimination
nCore	Number of threads to use for calculation (defaults to detectCores()-1)
repMult	Multiplier of cores -> nRep = repMult * nCore
nOuter	Number of outer segments
	Additional arguments(see MUVR)

Value

MUVR object

Examples

rdCV

 $Wrapper\ for\ repeated\ double\ cross-validation\ without\ variable\ selection$

Description

Wrapper for repeated double cross-validation without variable selection

Usage

```
rdCV(
    X,
    Y,
    ID,
    nRep = 5,
    nOuter = 6,
    nInner,
    DA = FALSE,
    fitness = c("AUROC", "MISS", "RMSEP", "BER"),
    method = c("PLS", "RF"),
    methParam,
    ML = FALSE,
```

34 rdCV

```
modReturn = FALSE,
logg = FALSE
)
```

Arguments

Χ	Independent variables. NB: Variables (columns) must have names/unique identifiers. NAs not allowed in data. For ML, X is upper half only (X1-X2)	
Υ	Response vector (Dependent variable). For DA (classification), Y should be factor or character. For ML, Y is omitted. For regression, Y is numeric.	
ID	Subject identifier (for sampling by subject; Assumption of independence if not specified)	
nRep	Number of repetitions of double CV.	
nOuter	Number of outer CV loop segments.	
nInner	Number of inner CV loop segments.	
DA	Logical for Classification (discriminant analysis) (Defaults do FALSE, i.e. regression). PLS is limited to two-class problems (see 'Y' above).	
fitness	Fitness function for model tuning (choose either 'AUROC' or 'MISS'or 'BER' for classification; or 'RMSEP' (default) for regression.)	
method	Multivariate method. Supports 'PLS' and 'RF' (default)	
methParam	List with parameter settings for specified MV method (defaults to ???)	
ML	Logical for multilevel analysis (defaults to FALSE)	
modReturn	Logical for returning outer segment models (defaults to FALSE)	

Logical for whether to sink model progressions to 'log.txt'

Value

logg

An object containing stuff...

rdcvNetParams 35

rdcvNetParams

Make custom parameters for rdcvNet internal modelling

Description

Custom parameters can be set in the function call or by manually setting "slots" in the resulting methParam object.

Usage

```
rdcvNetParams(
  robust = 0.05,
  family = "gaussian",
  nRepInner = 1,
  NZV = TRUE,
  oneHot = TRUE
)
```

Arguments

robust Robustness (slack) criterion for determining min and max knees (defaults to

0.05)

family the options could be "gaussian", "binomial", "poisson", "multinomial", "cox",

"mgaussian"

nRepInner how many nRepInner

NZV NZV

oneHot TRUE or FALSE using onehot endcoding or not

Value

```
a 'methParam' object
```

```
# Standard parameters for rdcvNet
methParam <- rdcvNetParams()</pre>
```

36 varClass

```
sampling_from_distribution
```

Sampling from the distribution of something

Description

Sampling from the distribution of something

Usage

```
sampling_from_distribution(X, upperlimit, lowerlimit, extend, n)
```

Arguments

X a vector (numeric or factor) where the distribution/probility will be generated

upperlimit if X is numeric, set upper limit
lowerlimit if X is numeric, set lower limit

extend If X is numeric, how much you want to extend from the lower and upper existing

Χ.

n How many you want to sample

Value

a resampled thing

Examples

varClass

Report variables belonging to different classes

Description

Reports names and numbers of variables: all as well as optimal (min model), redundant (from min up to max) and noisy (the rest).

Xotu 37

Usage

```
varClass(MUVRclassObject)
```

Arguments

```
MUVRclassObject
```

A MUVR class object

Value

A list with names and numbers of variables: all as well as optimal (Corresponding to 'min' or minial-optimal model), redundant (from 'min' up to 'max' or all-relevant) and noisy (the rest)

Examples

Xotu

Microbiota composition in mosquitos for the classification tutorial

Description

Microbiota composition in mosquitos for the classification tutorial

Usage

```
data(mosquito)
```

38 YR

VD\/	ГΟ

Metabolomics data for the rye metabolomics regression tutorial

Description

Metabolomics data for the rye metabolomics regression tutorial

Usage

```
data(freelive)
```

XRVIP2

Metabolomics data for the rye metabolomics regression tutorial, using unique individuals

Description

Metabolomics data for the rye metabolomics regression tutorial, using unique individuals

Usage

```
data(freelive2)
```

Yotu

Village of capture of mosquitos for the classification tutorial

Description

Village of capture of mosquitos for the classification tutorial

Usage

```
data(mosquito)
```

YR

Rye consumption for the rye metabolomics regression tutorial

Description

Rye consumption for the rye metabolomics regression tutorial

Usage

```
data(freelive)
```

YR2 39

YR2	Rye consumption for the rye metabolomics regression tutorial, using
	unique individuals

Description

Rye consumption for the rye metabolomics regression tutorial, using unique individuals

Usage

data(freelive2)

Index

* data	plotPerm, 24
crispEM, 6	plotPred, 25
IDR, 14	plotStability, 26
IDR2, 14	plotVAL, 27
Xotu, 37	plotVIRank, 28
XRVIP, 38	pPerm, 29
XRVIP2, 38	predMV, 30
Yotu, 38	preProcess, 31
YR, 38	
YR2, 39	Q2_calculation, 32
	qMUVR2, 32
biplotPLS, 3	md0V 22
	rdcV, 33
checkinput, 4	rdcvNetParams, 35
confusionMatrix, 5	sampling_from_distribution, 36
crispEM, 6	Sampling_II om_alser isaction, 50
customParams, 6	varClass, 36
get_rmsep, 12	
getBER, 8	Xotu, 37
getMISS, 9	XRVIP, 38
getVar, 10	XRVIP2, 38
getVIRank, 11	V- t 20
	Yotu, 38
H0_reference, 12	YR, 38
H0_test, 13	YR2, 39
IDR, 14	
IDR2, 14	
mangaMadala 15	
mergeModels, 15	
MUVR2, 15 MUVR2_EN, 17	
MOVRZ_EN, 17	
nearZeroVar, 19	
1 20	
onehotencoding, 20	
permutationPlot, 21	
plotMV, 22	
plotPCA. 23	