第8讲:集合及其运算

姓名: 林凡琪 学号: <u>21240042</u>

评分: _____ 评阅: ____

2021年11月25日

请独立完成作业,不得抄袭。 若得到他人帮助,请致谢。 若参考了其它资料,请给出引用。 鼓励讨论,但需独立书写解题过程。

- 集合作为数学的基础
- 基础不牢, 地动山摇

1 作业(必做部分)

题目 1 (UD Problem 6.6 (f, g))

解答:

第一张图:

 $C_X(A \cup B)$

第二张图:

 $C_X(A \cup B) \cup (A \cap B)$

题目 2 (UD Problem 7.1 (d, f))

解答:

(d) 必要性: $x \in A \Rightarrow x \in B$ 其逆否命题 $x \notin B \Rightarrow x \notin A$ 也成立 充分性: $x \notin B \Rightarrow x \notin A$ 其逆否命题 $x \in A \Rightarrow x \in B$ 也成立

 $\text{(f)if } A \cup B = B \text{ } \mathbb{H} \text{ } x \in B \Rightarrow x \in A \\ \mathbb{H} \text{ } B \subseteq A$

题目 3 (UD Problem 7.2)

证明:

 $A \cup B = \emptyset \Rightarrow x \in B \ x \notin A \ \mathbb{H} \ B \subseteq (X/A)$

图 1: "左边说得在理, 我深有体会"

题目 4 (UD Problem 7.14)

解答:

(a) 若 $x \in A \setminus B$, 则 $x \in A$ 且 $x \notin B$ 所以不存在 $x \in B$ 使得 $x \in A \setminus B$

(b) 若 $x \in A \cup B$ 那么 $x \in A$ 或者 $x \in B$ 若 $x \in (A \setminus B) \cup B$ 那么 $x \in A$ 如者 $x \in B$ 即 $x \in A$ 或者 $x \in B$ 由此可证 $A \cup B = (A \setminus B) \cup B$

题目 5 (UD Problem 7.19)

证明:

题目 6 (UD Problem 7.20)

证明:

如果 $x \in (A \cup B) \setminus (C \cup D)$ 则 $x \in A$ 或 $x \in B$ 并且 $x \notin C, x \notin D$ 如果 $x \in (X \in (A \setminus (C \cup D)) \cup (B \setminus (C \cup D)))$ 则 $x \in A$ 并且 $x \notin C, x \notin D$; 或者 $x \in B$ 并且 $x \notin C, x \notin D$ 与 $x \in A$ 或 $x \in B$ 并且 $x \notin C, x \notin D$ 等价则证得 $(A \cup B) \setminus (C \cup D) = (A \setminus (C \cup D)) \cup (B \setminus (C \cup D))$

题目 7 (UD Problem 8.1 (a, b))

解答:

题目 8 (UD Problem 8.14)

解答:

(a)[0, 1); [0, 1]; (0, 1) (b)0, 0, \emptyset

解答:

Guess: $A = 2n|n \in Z$

proof:R\2n 即为所有非偶数的实数的集合

 $\mathbb{Q}\setminus\cap(R\setminus 2n)$ 即代表, 集合里的元素是有理数, 但不是非偶数的实数, 所以集合里的元素就是偶数.

题目 10 (UD Problem 9.8)

证明:

如果 $A \subseteq B$ 即 $x \in A$ 都满足 $x \in B$

而如果 $x \in A$, 则 $x \in P(A)$; 如果 $x \in B$, 则 $x \in P(B)$, 所以 $A \subseteq B$ 则 $P(A) \subseteq P(B)$. □

题目 11 (UD Problem 9.9)

证明:

 $P(A_{\alpha}) \subseteq P(\cup A_{\alpha})$ 所以 $\cup P(A_{\alpha}) \subseteq P(\cup A_{\alpha})$

题目 12 (UD Problem 9.10)

证明:

若 $x \subseteq P(\cap A_{\alpha})$ 则 $x \subseteq \cap A_{\alpha}$ 即 $x \subseteq P(\cap A_{\alpha})$

若 $x \subseteq P(\cap A_{\alpha})$ 则 $x \subseteq \cap A_{\alpha}$ 所以 $x \subseteq P(\cap A_{\alpha})$

题目 13 (改编自 UD Problem 9.19)

请证明: $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$

证明:

设 (x, y),

 $A\times(B\setminus C)$ 即 $x\in A,y\in B\setminus C,$ 即 $x\in A,y\in B,y\notin C$ $(A\times B)\setminus(A\times C)$ 即 $x\in A,y\in B$ 且不存在 $x\in A,y\in C,$ 即 $x\in A,y\in B,y\notin C$ 可知两种情况等价

2 作业 (选做部分)

题目 1 (UD Problem 9.23)

解答:

3 Open Topics

4 订正

5 反馈