LITERATURE SURVEY'S - EVISION PROJECT

S.No	Paper Title & Link	Key Features in That Paper	What You Introduced in Evision Drive
1	Intelligent Monitoring Systems for Electric Vehicle Charging (MDPI, 2023)	- IoT-based charging infrastructure- Real-time station monitoring- Smart data handling with cloud	- No IoT — used offline-capable Python & MongoDB- Recharge alerts based on battery %- Redirects to full-stack EV recharge portal with login/signup, location-based station search (e.g., Hyderabad), and OTP-verified slot booking via Twilio
2	Evaluation of EV Charging Usage and Driver Activity (MDPI, 2022)	- Driver behavior analysis during charging- Charging station preference analysis- Adaptive schedules for grid management	- Added battery-level tracking within the vehicle- Combined with drowsiness/emotion detection system- Introduced voice-based proactive alerts
3	Challenges of Driver Drowsiness Prediction (arXiv, 2021)	- Drowsiness detection using eye-blink, head pose-Behavioral & physiological methods- Implementation barriers (real-time speed, privacy)	- Used FER to detect mood- Voice feedback and mood-based music suggestions- No hardware sensors; only webcam/vision
4		- Eye tracking, yawning detection, fatigue metrics- ML-based classifiers- Focus on safety systems	- Integrated with EV monitoring + recharge alert- Multi-feature real-time support in one compact system- Offline, no internet dependency
5	Smart Charging for Electric Vehicles (arXiv, 2016)	- Charging algorithms- Grid- side load balancing- Demand- response scheduling	- Focused on driver-side smart alerts- Used battery % logic + real-time response- Built with Python, Express.js, MongoDB

2016)