"Разработка генератора псевдослучайных чисел"

Основная задача

Разработать генератор псевдослучайных чисел. Построить графики зависимостей \mathbf{L} - \mathbf{k} (длины апериодичности от кол-ва знаков после запятой) и \mathbf{P} - \mathbf{k} (длины от кол-ва знаков после запятой). Проверить гипотезу равномерности распределения сгенерированной выборки.

Полученные элементы последовательности должны быть распределены равномерно.

Длина L строго больше1500.

Инструменты разработки

Язык программирования: Python

Среда разработки: Microsoft Visual Studio Community 2019 Версия 16.11.10

Метод работы

Программа работает на основе метод вычетов.

Формула нахождения элементов псевдослучайной последовательности:

$$a_{i+1} = 10^{-k} \coprod (10^k \coprod (ga_i)), i = 0...c$$

Обзор программы

Последовательно заносим данные: стартовое значение a_0 , большое целое число g, точность значений k, количество элементов c.

```
#Start number
a = float(0.753951)
print("Start number ", a)

#Big integer
g = int(578744)
print("Big integer ", g)

#Tochnost
k = int(8)
print("Tochnost ", k)

#Kол-во чисел
c = int(5000)
print("Кол-во чисел ", c)
```

```
Далее создаем пустой список для сохранения наших значений.
list = []
#f = open('C:/random.txt','w+') ←
                                                                                       Предусмотрена
 #wstr = ""
                                                                                      возможность записи
#s1 = " "
                                                                                      значений в файл.
\#s2 = "\n"
В цикле вычисляем элементы последовательности записывая их в список.
#Random process
∃for i in range (c):
    list.append(a)
    #print(i + 1, ")", list[i]) ←
    \#wstr = s1 + str(list[i]) + s2
    #f.write(wstr)
    a = int(((g * a) % 1) * pow(10, k)) / pow(10, k)
    a = round(a, k)
#f.close()
Затем находим и выводим L и P. Так же выводим выводим фразу "Малый объем выборки", если L = 0.
L = int(0)
P = int(0)
i = int(0)
j = int(0)
uwu = int(0)
tmp = float(0)
while(i < len(list)):</pre>
```

tmp = list[i]

j += 1

if(uwu == 1):
 break
i += 1

print("P - ", "", P)

print("L - ", "", L)

j = 0

if(L == 0):

while(j < len(list)):
 if(i != j):</pre>

if(tmp == list[j]):
 L = j
 P = j - i
 uwu = 1
 break

print("", "Малый объем выборки")

Далее вычисляем и выводим: r - интервал, p_i - вероятность попадания случайной величины в интервал, s - число степеней свободы, и значение X^2 .

```
#Interval
 r = int(1 + 3.3 * math.log10(c))
 print("r - ", "", r)
 #Probability PI
 p = float(1 / r)
 print("p - ", "", p)
 #Svoboda
 s = int(r - 1)
 print("s - ", "", s)
 #Xi^2
 xi = float(0.0)
 shag = float(1 / r)
 count = int(0)
 i = 0
 j = 0
∃while(i < r):
    while(j < c):
        if((shag * i) <= list[j] <= (shag * (i + 1))):
            count += 1
        j += 1
    j = 0
     print("_", count, "")
     xi += pow((count - c * p), 2) / (c * p)
     count = 0
    if(shag * (i + 1) > 1):
        break
     i += 1
 print("xi - ", "", xi)
```

Зависимости L - k и P - k

Для построения графика проведем 5 экспериментов с 15000 значений. В каждом из них будем изменять k и стартовое значение a_0 .

	k	2	3	4	5	6	7	8
	a ₀							
1	a ₀ =0.75395186	P = 1	P = 1	P = 52	P = 183	P = 84	P = 1	P = 886
	g = 378744	L= 1	L= 18	L= 75	L= 202	L = 101	L= 392	L = 3511
2	a ₀ =0.95969472	P = 1	P = 5	P = 85	P = 5	P = 556	P = 312	P = 4848
	g = 9845326	L= 8	L= 37	L= 95	L= 358	L= 573	L= 1193	L = 10372
3	a ₀ =0.18462579	P = 2	P = 45	P = 82	P = 276	P = 481	P = 270	P = 1881
	g = 65248598	L = 17	L= 63	L= 86	L= 326	L= 851	L= 451	L= 3332
4	a ₀ =0.395654	P = 8	P = 4	P = 51	P = 12	P = 149	P = 166	P = 436
	g = 354682	L= 7	L= 18	L= 65	L= 26	L= 351	L= 4900	L= 1371
5	a ₀ =0.159845022	P = 10	P = 8	P = 28	P = 49	P = 742	P = 2252	P = 6939
	g = 3623459	L = 18	L = 16	L = 100	L= 145	L= 1649	L= 6803	L= 14312

Проверка равномерного распределения

Введем начальные данные: **a**₀ - 0.159845022; **g** - 3623459; **k** - 8; Всего значений - 15000

```
Start number 0.159845022
Big integer 3623459
Tochnost 8
Кол-во чисел 15000
P = 6939
L = 14312
r - 14
s - 13
p - 0.07142857142857142
```

Получим: L - 14312; P - 6939; r - 14; s - 13; p - 0.07142857142857142

Выведем значения попавшие в интервал и значение X²:

```
1066
1092
1078
1065
1050
1077
1083
1016
1089
1066
1096
1060
1039
1123
       8.41626666666669
xi -
```

 $X_H^2 = 8.41626666666669$

Попадание значений в интервалы:

Вывод

При некоторых начальных значениях $\mathbf{a_0}$, \mathbf{g} , \mathbf{k} получили значение $X_{H}{}^2 = 8.416266666666669$, \mathbf{r} - 14. Сверяясь с таблицей распределения \mathbf{X}^2 с доверительной вероятностью 0.95 получаем $\mathbf{X}_{H}{}^2 > \mathbf{X}_{KP}{}^2$, то есть мы не можем принять гипотезу о равномерном распределении.