TE2003B

SoC design: Computer organization & architecture Course introduction

Isaac Pérez Andrade

ITESM Guadalajara
Department of Engineering & Architecture
Department of Computer Science

February - June 2021

Objective

Main objective

• To analyse, design and successfully implement basic embedded system.

Professors

- Dr. Isaac Pérez Andrade (Intel).
- Dr. Gilberto Ochoa Ruiz (ITESM).
- Dr. Luis Fernando González Pérez (A2E Technologies).

Lecturer's background

Dr. Isaac Pérez Andrade

- BSc Electronics (ITE) ITESM GDA 2009.
- MSc System-on-Chip University of Southampton, UK 2011.
- PhD Electronic Eng. University of Southampton, UK 2016.
 - Timing-error-tolerant iterative decoders.
 - Digital integrated circuits design for LTE and 4G wireless communications standards.
- Digital IC Design Engineer Accelercomm, Southampton, UK
 2017 2018.
 - Analysis, design and implementation of error correction code algorithms for 5G New Radio standard.
- IP logic designer Intel GDC 2018 present.

Methodology

Methodology

- Project-based learning.
- Self-based learning.
 - Prepare before lectures by completing reading materials.
 - Independent research.
- Office hours for solving specific questions.
 - Office hours are intended to provide quick guidance.
 - Students should not expect lecturers to solve their assignments.

Structure

- TE2003B System-on-Chip design comprises four modules.
 - 1. Computer organisation & architecture.
 - Prof. Isaac Pérez Andrade Weeks 7 11.
 - 2. Microcontrollers.
 - Prof. Gilberto Ochoa Weeks 7 11.
 - 3. Real-Time Operating System (RTOS).
 - Prof. Gilberto Ochoa Weeks 13 17.
 - 4. Embedded Linux.
 - Prof. Luis González Weeks 13 17.
- Over the ten weeks of this course, you will develop a final project in which you will apply topics learned in the four modules described above.
- Intel will provide guidance over selected engineering topics.

Structure

Course chronogram

Hrs	s07	s08	s09*	s10	s11*	s12	s13	s14	s15*	s16	s17*
1	1.1	1.3	1.4	1.5			3.1	3.3	3.5	3.7	
2	1.1	1.3	1.4	1.5			3.1	3.3	3.5	3.7	
3	1.2	1.3	1.4	1.5			3.2	3.4	3.6	3.8	
4	1.2	1.3	1.4	1.5			3.2	3.4	3.6	3.8	
5											
6											
7											
8											
9											
10	2.1	2.3	2.4	2.4			4.1	4.3	4.4	4.5	
11	2.1	2.3	2.4	2.4			4.1	4.3	4.4	4.5	
12	2.2	2.3	2.4	2.4			4.2	4.3	4.4	4.5	
13	2.2	2.3	2.4	2.4			4.2	4.3	4.4	4.5	
14	2.2	2.3	2.4	2.4			4.2	4.3	4.4	4.5	
15	2.2	2.3	2.4	2.4			4.2	4.3	4.4	4.5	
16	2.2	2.3	2.4	2.4			4.2	4.3	4.4	4.5	

• Course topics are detailed in Canvas. https://experiencia21.tec.mx/courses/140282/modules

Evaluation

Modules	45%
Project	55%
TOTAL	100%

Evaluation

Modules evaluation

Module	Weight
Computer organisation & architecture	15%
Microcontrollers	15%
RTOS	10%
Embedded Linux	5%
TOTAL	45%

Project & evidences evaluation

Evidence	Competences	Weight
Evidence 1	STE0101.B, STE0204.B, STE0302.A	25%
Evidence 2	STE0102.B, STE0103.B, STE0303.A, SEG0702.B	30%
	TOTAL	55%

Competences

- STE0101B. Modela sistemas embebidos con capacidad de interacción que dan solución a una problemática determinada.
- STE0102B. Implementa sistemas embebidos considerando especificaciones y restricciones del entorno.
- STE0103B. Valida el funcionamiento de sistemas embebidos tomando en cuenta la eficiencia, costos y estándares.
- STE0204B. Elige la unidad de procesamiento acorde a requerimientos.
- STE0302B. Selecciona el protocolo de comunicación de acuerdo a su aplicación.
- STE0303A. Genera la interacción inteligente entre una unidad de procesamiento y sus periféricos.
- SEG0702B. Evalúa diversas tecnologías, con apertura a la búsqueda e implementación de alternativas relevantes en la transformación de la práctica profesional.

Computer organisation & architecture contents

- 1. Instruction set architecture.
- 2. Computer arithmetic.
- 3. Processor: Datapath and control.
- 4. Pipeline.
- 5. Memory hierarchy and Input/Output (IO) interfaces.

Course policies

Policies

Web conference lectures

- Just as in face-to-face lectures, our behaviour shall be based on discipline, responsibility and respect.
- Lectures shall commence at 07:10 and end at 08:50 hours.
- Students are encouraged to join the zoom session on time.
- Students **must** have their webcam on during the lecture.
- Lectures will be recorded. Please remind your lecturer if you notice the lecture is not being recorded.
- Adhering to Tecnólogico de Monterrey ethics code, students pledge that their behaviour shall be ruled by academic honesty.

Policies

Coursework and assignments

- For individual assignments, students are encouraged to discuss ideas with other students. However, it is expected that each student submits their own individual and original work.
- Students should not submit work from external sources such as websites, books or other students.
- For group assignments, the policy for individual assignments apply. Moreover, students must disclose the collaboration percentage of each team member.
- For both individual and group assignments, if there's evidence of students submitting other work than their own, the involved students will automatically fail the assignment.

Policies

Coursework and assignments

- Late submissions will not be tolerated.
- Late submissions will be automatically assigned a grade of 0.
- If a submission is on time but not in the specified format, the submission will be penalised by 30%.
 - For example, if an activity is requested to be submitted through Canvas but a student submits their work through email or Google drive, the possible maximum grade for the submission will 70.

Resources

Suggested literature

- J. L. Hennessy and D. A. Patterson, Computer architecture and design: The hardware and software interface ARM edition, Morgan Kaufmann, 2017.
- S. L. Harris and D. M. Harris, *Digital design and computer architecture ARM edition*, Morgan Kaufmann, 2016.
- J. Yiu, The definitive guide to ARM Cortex-M0 and Cortex-M0+ processors, Second edition, Elsevier, 2015.

All these resources are available in *Biblioteca Digital* (editions may vary).

Contact information

- Zoom
 - Course (lectures) https://itesm.zoom.us/j/6215756089.
 - Personal (asesorías) https://itesm.zoom.us/j/7558517847.
- Remind: socgdaarq
- Email: isaac.perez.andrade@tec.mx
- Office hours (asesorías): No fixed schedule. However, we can schedule face-to-face sessions as needed, please send an email or Remind message with your request and proposed schedule at least 24 hours in advance.

System-on-Chips

System-on-Chip (SoC)

• A single Integrated Circuit (IC), also known as *chip*, that *integrates* several subsystems and components that are part of a computing system.

Figure 1: Qualcomm Snapdragon 865+5G SoC.

System-on-Chips

- How do SoCs differ from the following?
 - Microprocessors (μ Ps).
 - Microcontrollers (μ Cs).
 - Embedded systems.
 - Field-Programmable Gate Arrays (FPGAs).
 - Application Specific Integrated Circuits (ASICs).
- Despite its name, this course will focus on embedded systems, which are a vital part of consumer electronics.
- Have a look at https://www.ifixit.com/Teardown in order to observe the complexity of various consumer electronic products.