1. For ϵ_r close to 1, the discussion about Born approximation from section 10.2B applies. The differential scattering cross section is given by (10.28)

$$\frac{d\sigma}{d\Omega} = \frac{|\boldsymbol{\epsilon}^* \cdot \mathbf{A}_{\text{sc}}|^2}{|\mathbf{D}^{(0)}|^2} \tag{1}$$

where to the first order of $\epsilon_r - 1$,

$$\frac{\boldsymbol{\epsilon}^* \cdot \mathbf{A}_{sc}}{D^{(0)}} = k^2 (\boldsymbol{\epsilon}_r - 1) (\boldsymbol{\epsilon}^* \cdot \boldsymbol{\epsilon}_0) \left[\frac{\sin(qa) - qa\cos(qa)}{q^3} \right]$$
 (2)

and

$$\mathbf{q} = k\left(\mathbf{n}_0 - \mathbf{n}\right) \tag{3}$$

Recall that

$$j_1(x) = \frac{\sin x}{x^2} - \frac{\cos x}{x} \tag{4}$$

then (2) can be written as

$$\frac{\epsilon^* \cdot A_{sc}}{D^{(0)}} = k^2 a^3 (\epsilon_r - 1) (\epsilon^* \cdot \epsilon_0) \left[\frac{j_1(qa)}{qa} \right]$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.1$$

$$0.6$$

$$12$$

$$18$$

$$24$$

$$30$$

From the diagram of $j_1(x)/x$ above, we see that the contribution comes mainly from the range where x is small. Qualitatively, when $ka \gg 1$, we must have a small angle between \mathbf{n} and \mathbf{n}_0 for qa to be small, i.e., forward scattering is dominant. The next part has the exact calculation of total scattering cross section.

x

2. Let θ be the angle between \mathbf{n} and \mathbf{n}_0 , then $q = 2k\sin(\theta/2)$, thus (1) becomes

$$\frac{d\sigma}{d\Omega} = k^4 a^6 (\epsilon_r - 1)^2 |\epsilon^* \cdot \epsilon_0|^2 \left[\frac{j_1 \left(2ka \sin \frac{\theta}{2} \right)}{2ka \sin \frac{\theta}{2}} \right]^2$$
 (6)

Summing over all scattered polarizations turns $|\epsilon^* \cdot \epsilon_0|^2$ into $(1 + \cos^2 \theta)/2$ (see (10.6), (10.10)). With $z \equiv 2ka$, (6) can be written as

$$\frac{d\sigma}{d\Omega} = k^4 a^6 (\epsilon_r - 1)^2 \left(\frac{1 + \cos^2 \theta}{2}\right) \left[\frac{j_1 \left(z \sin \frac{\theta}{2}\right)}{z \sin \frac{\theta}{2}}\right]^2$$

$$= k^4 a^6 (\epsilon_r - 1)^2 \left(1 - 2\sin^2 \frac{\theta}{2} + 2\sin^4 \frac{\theta}{2}\right) \left[\frac{j_1 \left(z \sin \frac{\theta}{2}\right)}{z \sin \frac{\theta}{2}}\right]^2$$
(7)

Denote $u \equiv z \sin(\theta/2)$, then the total scattering cross section can be obtained as

$$\sigma = \int \frac{d\sigma}{d\Omega} d\Omega = 2\pi k^4 a^6 (\epsilon_r - 1)^2 \int_0^{\pi} \left(1 - \frac{2u^2}{z^2} + \frac{2u^4}{z^4} \right) \left[\frac{j_1(u)}{u} \right]^2 \cdot \frac{4u du}{z^2}$$

$$= \frac{8\pi k^4 a^6}{z^2} (\epsilon_r - 1)^2 \int_0^z \left(1 - \frac{2u^2}{z^2} + \frac{2u^4}{z^4} \right) \frac{j_1^2}{u} du$$

$$= \frac{\pi}{2} k^2 a^4 (\epsilon_r - 1)^2 \cdot \underbrace{\int_0^z \left(\frac{4}{u} - \frac{8u}{z^2} + \frac{8u^3}{z^4} \right) j_1^2 du}_{F(z)}$$
(8)

To evaluate integral F(z), we first note the following recurrence relations for the spherical Bessel function, (see DLMF 10.51.E2):

$$j_1'(u) = j_0(u) - \frac{2j_1(u)}{u} \tag{9}$$

$$j_0'(u) = -j_1(u) \tag{10}$$

The first part of F(z) is

$$F_{1}(z) = 4 \int_{0}^{z} \frac{j_{1}}{u} \cdot j_{1} du \qquad \text{by (9)}$$

$$= 2 \int_{0}^{z} (j_{0} - j'_{1}) j_{1} du \qquad \text{by (10)}$$

$$= 2 \left(- \int_{0}^{z} j_{0} j'_{0} du - \int_{0}^{z} j_{1} j'_{1} du \right)$$

$$= - \left(j_{0}^{2} + j_{1}^{2} \right) \Big|_{0}^{z}$$

$$= - \left[\left(\frac{\sin z}{z} \right)^{2} - 1 + \left(\frac{\sin z}{z^{2}} - \frac{\cos z}{z} \right)^{2} \right]$$

$$= - \left(\frac{1}{z^{2}} - 1 + \frac{\sin^{2} z}{z^{4}} - \frac{\sin 2z}{z^{3}} \right)$$
(11)

and the second part is

$$F_{2}(z) = -\frac{8}{z^{2}} \int_{0}^{z} u j_{1}^{2} du$$
 by (10)
$$= \frac{8}{z^{2}} \int_{0}^{z} u j_{1} j_{0}' du$$

$$= \frac{8}{z^{2}} \left[u j_{1} j_{0} \Big|_{0}^{z} - \int_{0}^{z} j_{0} \left(j_{1} + u j_{1}' \right) du \right]$$
 by (9)
$$= \frac{8}{z^{2}} \left[z j_{1}(z) j_{0}(z) - \int_{0}^{z} j_{0} \left(u j_{0} - j_{1} \right) du \right]$$
 by (10)
$$= \frac{8}{z^{2}} \left[z \left(\frac{\sin z}{z^{2}} - \frac{\cos z}{z} \right) \frac{\sin z}{z} - \int_{0}^{z} u j_{0}^{2} du - \int_{0}^{z} j_{0} j_{0}' du \right]$$

$$= \frac{8}{z^{2}} \left[z \left(\frac{\sin z}{z^{2}} - \frac{\cos z}{z} \right) \frac{\sin z}{z} - \int_{0}^{z} u j_{0}^{2} du - \frac{1}{2} \left(\frac{\sin^{2} z}{z^{2}} - 1 \right) \right]$$

$$= \frac{4 \sin^{2} z}{z^{4}} - \frac{4 \sin 2z}{z^{3}} - \frac{8}{z^{2}} \int_{0}^{z} u j_{0}^{2} du + \frac{4}{z^{2}}$$
 (12)

The third part is a little more involved:

$$F_{3}(z) = -\frac{8}{z^{4}} \left[u^{3} j_{1} j_{0} \Big|_{0}^{z} - \int_{0}^{z} j_{0} \left(3u^{2} j_{1} + u^{3} j_{1}' \right) du \right]$$
 by (9)
$$= -\frac{8}{z^{4}} \left[z^{3} j_{1}(z) j_{0}(z) - \int_{0}^{z} j_{0} \left(u^{3} j_{0} + u^{2} j_{1} \right) du \right]$$
 (13)

where

$$\int_0^z j_0^2 u^3 du = \int_0^z u \sin^2 u du = \frac{z^2}{4} - \frac{z \sin 2z}{4} + \frac{1}{8} - \frac{\cos 2z}{8}$$
 (14)

$$\int_{0}^{z} u^{2} j_{0} j_{1} du = -\int_{0}^{z} u^{2} j_{0} j_{0}' du = -\frac{1}{2} j_{0}^{2} u^{2} \bigg|_{0}^{z} + \int_{0}^{z} u j_{0}^{2} du = -\frac{\sin^{2} z}{2} + \int_{0}^{z} u j_{0}^{2} du$$
 (15)

thus

$$F_3(z) = -\frac{12\sin^2 z}{z^4} + \frac{2\sin 2z}{z^3} + \frac{2}{z^2} + \frac{1 - \cos 2z}{z^4} + \frac{8}{z^4} \int_0^z u j_0^2 du$$
 (16)

Since we can write

$$\int_0^z u j_0^2 du = \int_0^z u \frac{\sin^2 u}{u^2} du = \int_0^z \frac{1 - \cos^2 2u}{2u} du = \frac{1}{2} \int_0^{2z} \frac{1 - \cos t}{t} dt$$
 (17)

then adding (11), (12) and (16) finally yields

$$F(z) = 1 + \frac{5}{z^2} - \frac{7(1 - \cos 2z)}{2z^4} - \frac{\sin 2z}{z^3} - 4\left(\frac{1}{z^2} - \frac{1}{z^4}\right) \int_0^{2z} \frac{1 - \cos t}{t} dt$$
 (18)

We see that up to order $O(z^0)$, $F(z) \approx 1$, and we fall back to part (a)'s result.