ANÁLISIS DE COMPONENTES PRINCIPALES

CLASIFICACIÓN DE EMPRESAS FRAUDULENTAS: UN ESTUDIO DE CASO DE UN AUDITORÍA

YULEIDIS MESA

Clasificación de empresas fraudulentas: un estudio de caso de un Auditoría

Este documento es un estudio de caso de una visita a una empresa de auditoría externa. Se recogieron 777 datos anuales de 46 ciudades y en empresas de 14 sectores diferentes de la economía y su objetivo consiste en construir un modelo de clasificación que pueda predecir si una empresa es fraudulenta sobre la base del riesgo actual e histórico de factores (26 atributos).

Se encontraron dos registros de NaN en la base de datos, por lo que se trabajó finalmente con 775 observaciones.

Componentes principales

PC1

variable

TOTAL 0.254699
Score 0.290865
Inherent_Risk 0.267209
Name: PC1, dtype: float64

PC2

variable

History 0.355749 Risk_F 0.360233 CONTROL_RISK 0.425589 Name: PC2, dtype: float64

PC3

variable

PARA_B 0.392435 Risk_B 0.392700 TOTAL 0.367227 Audit_Risk 0.366455 Name: PC3, dtype: float64

Gráfico Scree (prueba del codo)

Al observar los cambios de forma acumulada vemos que a partir de la quinta componente se explica un poco mas del 70% de la variabilidad de datos.

Regresión

```
OLS Regression Results
  Dep. Variable:
                 Risk0
                                    R-squared:
                                                  0.716
     Model:
                  OLS
                                  Adj. R-squared: 0.714
                 Least Squares
     Method:
                                    F-statistic:
                                                  322.3
                 Sat, 04 Jun 2022 Prob (F-statistic): 6.44e-206
      Date:
      Time:
                 20:14:44
                                  Log-Likelihood: -57.091
No. Observations: 775
                                       AIC:
                                                  128.2
  Df Residuals:
                                        BIC:
                                                  160.8
                 768
    Df Model:
Covariance Type: nonrobust
                                   P>|t| [0.025 0.975]
              coef std err
             -0.9308 0.038 -24.498 0.000 -1.005 -0.856
   const
             -0.0116 0.003 -3.800 0.000 -0.018 -0.006
   Risk B
   TOTAL
             0.0063 0.002 3.451 0.001 0.003 0.010
 Score MV 0.8401 0.091 9.223
                                  0.000 0.661 1.019
             0.2968 0.019 15.591 0.000 0.259 0.334
   Score
District Loss 0.1073 0.008 13.602 0.000 0.092 0.123
             -0.0106 0.019 -0.562 0.575 -0.047 0.026
   History
   Omnibus:
               81,497 Durbin-Watson: 1,831
Prob(Omnibus): 0.000 Jarque-Bera (JB): 117.169
               0.766
     Skew:
                          Prob(JB):
                                       3.61e-26
```

Cond. No.

602

4.131

Kurtosis:

Conforme a los resultados obtenidos del análisis de componentes principales, de 26 variables, nos quedamos con 6 variables.

Se encontró un R ajustado de 0.716, lo cual indica una buena medida de ajuste, la variable Risk_B tiene una relación inversa con el riesgo de fraude en empresas y las variables TOTAL, Score_MV, Score, District_Loss e History tienen una relación directa con el riesgo.

Finalmente, la matriz de confusión muestra que la regresión explica el 93% de las veces el comportamiento de las datos originales