

Generator DDS

Projektowanie Urządzeń Elektronicznych Prowadzący : dr inż. Cezary Worek

> Paweł Waśniowski Elektronika III rok Wydział Informatyki Elektroniki i Telekomunikacji Akademia Górnicza-Hutnicza Kraków, 2020

Spis treści

Idea i założenia projektowe	2
Teoria generatorów DDS	3
Zasilanie	4
Złącze USB	4
Zabezpieczenie OverVoltage -NCP346	4
Tranzystor sterujący	5
Inwerter napięcia LM27761	5
Filtracja zasilania 2x 100n 1x 10uF	6
Generator	6
Filtr wyjściowy sygnału	6
Level Shifter	7
Mikrokontroler sterujący	7
Arduino NANO	7
Wyświetlanie danych i sterowanie	8
HD44870 wyświetlacz	8
I2C konwerter	8
Sterowanie	9
Schemat blokowy	9
Schemat ideowy	10
Zasilanie	10
Generator	11
Offset sygnału	11
Procesor i wyświetlacz	12
Symulacje	13
Symulacja filtru:	13
Schemat filtru	13
Symulacja pasma	13
Symulacja Level Shifter:	14
Schemat Level Shifter	14
Symulacja offsetu	14
Płytka PCB	15
Warstwa górna:	16
Warstwa dolna:	17
Model 3D:	18

Idea i założenia projektowe

Celem projektu jest stworzenie niedrogiego generatora funkcyjnego z bezpośrednią syntezą cyfrową dającego początkującym elektronikom, lub hobbystom możliwość posiadania jednego z podstawowych narzędzi w swoim warsztacie elektronicznym. Urządzenie może być rozwijane i personalizowane do własnych potrzeb przez wiele osób przez zastosowanie oprogramowania "open source", w łatwym środowisku programistycznym Arduino IDE.

Założenia:

- Niedrogie
- Urządzenie zasilane ładowarką do telefonu (5V)
- Generowane sygnaty:
 - Sinus 1 40MHz
 - Square 1 40 MHz
- Krok regulacji częstotliwości wyjściowej 1Hz
- Impedancja wyjściowa 50 Ohm
- Wbudowany wyświetlacz LCD, klawiatura i Enkoder

Teoria generatorów DDS

Wytwarzanie sygnału wyjściowego odbywa się na drodze bezpośredniej syntezy cyfrowej – czyli przetwarzaniu ciągu wartości reprezentujących sygnał w postaci cyfrowej zostaje skonwertowany, przez przetwornika A/C, na sygnał analogowy. Synteza cyfrowa oparta jest na programowanym liczniku nazywanym akumulatorem fazy, który generuje rosnące liczby. Wartości te są okresowe i reprezentują chwilową fazę fali wyjściowej, od zera do 2π radianów. Są one traktowane jako wejście adresowe do pamięci próbek przekształcającej wartości w falę sinusoidalną. Dane wyjściowe tabeli wyszukiwania faz do amplitudy są przesyłane do przetwornika cyfrowo-analogowego (DAC) i przekształcane w nim na przebieg analogowy. Ponieważ na wyjściu przetwornika występują skoki napięcia wynikające z kroku kwantyzacji, na koniec wymagany jest filtr dolnoprzepustowy tłumiący niepożądane odpowiedzi spektralne. Wyjściowy sygnał zawiera również wiele harmonicznych związanych z mechanizmem syntezy DDS. Także zegar taktujący wprowadza niepożądane komponenty widmowe. Żeby skutecznie pozbyć się niechcianych aliasów w sygnale stosuje się filtry zestrojone poniżej częstotliwości Nyquista zegara taktującego.

Zasilanie

Do zasilania układu zdecydowaliśmy się użyć zewnętrznej ładowarki do telefonu, podyktowane to było zmniejszeniem kosztów urządzenia i powszechną obecnością takich urządzeń. Obecnie te urządzenia są w stanie dostarczać bezproblemowo 10W mocy, co jest zupełnie wystarczające do mojego projektu. Jako wtyk zasilający użyłem gniazda typu microUSB typ B, podyktowane to było popularnością tego złącza

Złącze USB

W celu zasilenie układu napięcie podawane jest przez ładowarkę telefonową na złącze USB typu B micro. Powodem zastosowania takiego rozwiązania jest powszechność używania takich złącz.

Zabezpieczenie OverVoltage -NCP346

Układ NCP346 jest to układ zabezpieczenia przeciwprzepięciowego. Z wyjścia OUT steruje zewnętrznym tranzystorem typu P i odcina napięcie podawane do obwodu układu. Nominalne napięcia przepięć wynoszą 4,45 i 5,5V i mogą być regulowane w górę przy pomocy dzielnika rezystorowego wpiętego pomiędzy zasilanie i masę, w jago wyjście podajemy na pin IN.

Tranzystor sterujący

Jako klucz dołączający i odcinający napięcie został użyty tranzystor MOSFET P-kanałowy zgodny z wymaganiami z noty aplikacyjnej układy NCP346

Inwerter napięcia LM27761

Niskoszumowy regulowany inwerter napięcia LM27761 – służy w projekcie do dostarczania napięcia ujemnego do wzmacniacza wyjściowego pozwalając na prace w dodatnich i ujemnych zakresach napięcia.

Napięcie wyjściowe może operować w zakresie od -1,5 do -5V i jego prąd wyjściowy to 250 mA.

Filtracja zasilania 2x 100n 1x 10uF

Do filtrowania napięcia wyjściowego dodatniego zostały użyte dwa kondensatory ceramiczne (typu SMD) o pojemności 100nF i kondensator tantalowy o pojemności 10uF. Także do każdego z układów zostały podpięte te odpowiednie kondensatory filtrujące w zależności od zaleceń w notach katalogowych.

Generator

AD9850 – zintegrowane urządzenie korzystające z technologii DDS w połączeniu z wysokiej jakości przetwornikami C/A, programowalnym syntezerem częstotliwości. Układ ten umożliwia nam wygenerowaniu sygnału sinusoidalnego, który następnie możemy podać na wyjście układu lub przez użyciu komparatorów zamienić na sygnał prostokątny. Podstawowe parametry układu to: zasilanie 3,3V lub 5V, SFDR >50dB dla częstotliwości do 40MHz.

Filtr wyjściowy sygnału

Filtr na wyjściu fali sinusoidalnej to eliptyczny filtr 5-rzędu zbudowany z elementów pasywnych (RLC). Zapewnia on tłumienie niepożądanych sygnałów, powstających na skutek syntezy cyfrowej, wpływu generatora taktującego i innych niepożądanych efektów.

Jego częstotliwość odcięcia f_{cut}=56MHz zapewnia generowanie sygnału o wystarczająco czystej, jak dla amatora/hobbysty, charakterystyce spektralnej.

Level Shifter

Level Shifter – układ przesunięcia offsetu, daje nam możliwość dodania składowej stałej do sygnału wyjściowego. Został on zrealizowany przy użyciu wzmacniacza i potencjometry cyfrowego. Przy pomocy MCP4651T (potencjometr), wpiętego między dodatnie i ujemne szyny zasilania, generujemy na odczepie środkowym pożądane napięcie przesunięcia, które jest podawane na wejście wzmacniacza. AD8030ARZ (wzmacniacz) jako układ wzmacniacza sumującego, dodaje napięcie wyjściowe sygnału generowanego do napięcia offsetu, a następnie jest podawane na wyjście układu.

MCP4651T-503E/ML – potencjometr sterowany cyfrowo, za pomocą protokołu I2C, o rezystancji 50k Ohm, dający możliwość regulacji wartości z 8-bitową rozdzielczością (257 kroków).

AD8030ARZ – układ podwójnego wzmacniacza operacyjnego low-power, z wyjściem typu rail-to-rail. Wartość GBW to 125MHz, zakres napięć zasilania 2,7-12V. Wzmacniacz dostępny w obudowach: **SOIC-8**(użyta do projektu), SC70-6,SOT23-8, SOIC-14, TSSOP-14

Mikrokontroler sterujący

Arduino NANO – jako jednostka sterująca zostało wybrane Arduino NANO. Wybór ten był podyktowany możliwościami jakie daje nam środowisko Arduino IDE, oraz łatwy i lubiany przez wielu początkujących, język Arduino. Zastosowanie go, oraz udostępnienie oprogramowania podstawowego na licencji openSource, daje użytkownikom możliwości personalizacji układu oraz rozbudowy o nowe funkcjonalności.

Wyświetlanie danych i sterowanie

Jako interfejs użytkownik-mikrokontroler posłużyłem się wyświetlaczem alfanumerycznym HD44870 wraz z konwerterem I2C. Do obsługi i nastawiania parametrów zostały Zastosowane 3 przyciski typu micro switch i Enkoder inkrementalny

HD44870 wyświetlacz

Wyświetlacz ciekłokrystaliczny z matrycą alfanumeryczną. Daje możliwość wyświetlania 32 znaków, po 16 w każdej linii, zakodowanych w systemie ASCII.

12C konwerter

Konwerter I2C do wyświetlaczy ze sterownikiem HD44870. Daje on możliwość sterowania układem przy użyciu protokołu I2C, przy użyciu dwóch połączeń sygnałowych, zasilania i masy, zamiast szesnastu.

Sterowanie

Enkoder

Microswitch

Schemat blokowy

Projekt składa się z następujących bloków funkcjonalnych:

- podpięcia zasilania wraz z zabezpieczeniem overvoltage
- inwertera napięcia
- kontroler Arduino Nano wraz z przyciskami i enkoderem do kontroli
- Generator DDS AD9850
- filtr low-pass
- Level shifter
- Wyświetlacz alfanumeryczny 2x16 znaków wraz z konwerterem I2C

Schemat ideowy

Zasilanie

Supply Section

Generator

Offset sygnału

Signal level and offset

Procesor i wyświetlacz

MCU procesor

LCD display

Symulacje

Symulacja filtru:

Schemat filtru

Symulacja pasma

Symulacja Level Shifter:

Schemat Level Shifter

Symulacja offsetu

Płytka PCB

Płytka PCB:

- Rozmiar: 10x10 [cm]
- Dwuwarstwowa o grubości 1,6mm
- Tworzywo włókno szklane
- Dolna warstwa rozlana powierzchnia masy

Warstwa górna:

Warstwa dolna:

Model 3D:

Kosztorys

Półprzewodniki:	Cena/sztuka	cena/urządzenie	cena(2000 sztuk)
Arduino nano	14,9	14,9	29 800,00 zł
AD9850BRSZ – DDS Chip	26,86	26,86	53 720,00 zł
MCP4651T-503E/ML – potencjometr I2C(x2)	2,96	5,92	11 840,00 zł
FDD306P	2,75	2,75	5 500,00 zł
NCP346SN1T1G	1,5	1,5	3 000,00 zł
AD8030ARZ	7,14	7,14	14 280,00 zł
Inne:			
Wyświetlacz LCD 2x16 (10)	6,8	6,8	13 600,00 zł
Konwerter I2C – do wyświetlacza	3,9	3,9	7 800,00 zł
Microswitch(1301.9302) x 3	0,9	2,7	5 400,00 zł
Enkoder(EC12E24104A6)	2,13	2,13	4 260,00 zł
Gnaizdo USB	1,1976	1,1976	2 395,20 zł
Złącza BNC (5-1634556-0)(x3)	5,98	17,94	35 880,00 zł
Generator kwarcowy (do AD9850) (IM802C-32-AH-125.0)	6,47	6,47	12 940,00 zł
Elementy pasywne:			
Rezystory 0805(x15)	0,00609	0,09135	182,70 zł
Kondensatory elektrolity(x4)	0,10564	0,42256	845,12 zł
Kondensatory ceramiczne(x14)	0,0207	0,2898	579,60 zł
Kondensatory tantalowe (x1) Capacitor_Tantalum_SMD:CP_EIA-7343-31_Kemet-D	1,69431	1,69431	3 388,62 zł
Cewki (x3)	0,287	0,861	1 722,00 zł
Druk PCB:			
Wydruk PCB		4000-8000	6 000,00 zł
Podsumowanie			
Cena		106,57 zł	213 133,24 zł

Bibliografia

- » https://www.analog.com/media/en/technical-documentation/data-sheets/AD9850.pdf
- » https://reference.digilentinc.com/reference/instrumentation/analog-discovery/reference-manual
- » https://ep.com.pl/files/10605.pdf
- » https://www.analog.com/media/en/technical-documentation/data-sheets/AD8029-8030-8040.pdf
- » https://pl.mouser.com/datasheet/2/268/DS-22096a-36447.pdf
- http://www.farnell.com/datasheets/2250862.pdf? ga=2.162899132.1644011594.15921630 98-
 - $\frac{1258742088.1592163098\&\ gac=1.52001499.1592168196.CjwKCAjwlZf3BRABEiwA8Q0qq1W}{Oehlg60aEfsuEhqNMdtqZ2Om7t9NfSn-xTemp1J12J8p156DJRRoCQZsQAvD_BwE}$
- » https://4donline.ihs.com/images/VipMasterIC/IC/ONSM/ONSMS12668/ONSMS12668-1.pdf?hkey=EC6BD57738AE6E33B588C5F9AD3CEFA7