Hausaufgabe 5

Aufgabe 5

Wir berechnen: $r_Q(q_0, q_0)$. Mit $x = q_1$ erhalten wir:

$$r_Q(q_0, q_0) = r_{\{q_0\}}(q_0, q_0) + r_{\{q_0\}}(q_0, q_1)r_{\{q_0\}}(q_1, q_1)^*r_{\{q_0\}}(q_1, q_0)$$

Wir berechnen: $r_{\{q_0\}}(q_0, q_0)$. Mit $x = q_0$ erhalten wir:

$$r_{\{q_0\}}(q_0, q_0) = r_{\varnothing}(q_0, q_0) + r_{\varnothing}(q_0, q_0)r_{\varnothing}(q_0, q_0)^* r_{\varnothing}(q_0, q_0)$$
$$= (a + \varepsilon) + (a + \varepsilon)(a + \varepsilon)^*(a + \varepsilon)$$
$$= a^*$$

Wir berechnen: $r_{\{q_0\}}(q_0, q_1)$. Mit $x = q_0$ erhalten wir:

$$r_{\{q_0\}}(q_0, q_1) = r_{\varnothing}(q_0, q_1) + r_{\varnothing}(q_0, q_0)r_{\varnothing}(q_0, q_0)^*r_{\varnothing}(q_0, q_1)$$

$$= (b+c) + (a+\varepsilon)(a+\varepsilon)^*(b+c)$$

$$= (b+c) + a^*(b+c)$$

$$= a^*(b+c)$$

Wir berechnen: $r_{\{q_0\}}(q_1, q_1)$. Mit $x = q_0$ erhalten wir:

$$r_{\{q_0\}}(q_1, q_1) = r_{\varnothing}(q_1, q_1) + r_{\varnothing}(q_1, q_0)r_{\varnothing}(q_0, q_0)^* r_{\varnothing}(q_0, q_1)$$

= $\varepsilon + a(a + \varepsilon)^*(b + c)$
= $\varepsilon + aa^*(b + c)$

Wir berechnen: $r_{\{q_0\}}(q_1, q_0)$. Mit $x = q_0$ erhalten wir:

$$r_{\{q_0\}}(q_1, q_0) = r_{\varnothing}(q_1, q_0) + r_{\varnothing}(q_1, q_0)r_{\varnothing}(q_0, q_0)^*r_{\varnothing}(q_0, q_0)$$

= $a + a(a + \varepsilon)^*(a + \varepsilon)$
= $a + aa^*$
= aa^*

Durch Rückeinsetzen erhalten wir nun:

$$r_Q(q_0, q_0) = r_{\{q_0\}}(q_0, q_0) + r_{\{q_0\}}(q_0, q_1)r_{\{q_0\}}(q_1, q_1)^*r_{\{q_0\}}(q_1, q_0)$$

$$= a^* + a^*(b+c)(\varepsilon + aa^*(b+c))^*aa^*$$

$$= a^* + a^*(b+c)(aa^*(b+c))^*aa^*$$

Aufgabe 6

a) Angenommen, L_1 ist regulär. Wir wählen n zu L_1 gemäß Pumping-Lemma und betrachten das Wort $w=a^nb^nc^{2n}\in L_1$. Das Pumping-Lemma liefert Zerlegung

$$w = xyz$$
 mit $|xy| \le n$ und $y \ne \varepsilon$ sowie $xz = xy^0z \in L_1$

Wegen $|xy| \le n$ und $y \ne \varepsilon$ gilt $x = a^j$ mit $j \ge 0$ und $y = a^k$ mit k > 0. Jedoch:

$$xz = a^{n-k}b^nc^{2n} \notin L_1$$
 weil $k > 0 \implies n - k + n \neq 2n$

Dies führt also zu einem Widerspruch. Folglich ist L_1 nicht regulär.

b) Angenommen, L_2 ist regulär. Wir wählen n zu L_2 gemäß Pumping-Lemma und betrachten das Wort $w = b^n a^{n+1} \in L_2$. Das Pumping-Lemma liefert Zerlegung

$$w = xyz$$
 mit $|xy| \le n$ und $y \ne \varepsilon$ sowie $xy^3z \in L_2$

Wegen $|xy| \le n$ und $y \ne \varepsilon$ gilt $x = b^j$ mit $j \ge 0$ und $y = b^k$ mit k > 0. Jedoch:

$$xy^3z = a^{n+2k}b^{n+1} \notin L_2$$
 weil $k > 0 \implies 2k \ge 2 \implies n+2k \not< n+1$

Dies führt also zu einem Widerspruch. Folglich ist L_2 nicht regulär.

Aufgabe 7

Zuerst bilden teilen wir die Zustände in Endzustände und nicht-Endzustände:

$$\mathcal{B}_1 := \{q_0, q_1, q_5\} \qquad \qquad \mathcal{B}_2 := \{q_2, q_3, q_4\}$$

Wir verfeinern \mathcal{B}_2 bzgl der b-Transition und \mathcal{B}_1 :

$$\mathcal{B}_1 := \{q_0, q_1, q_5\}$$
 $\mathcal{B}_3 := \{q_2\}$ $\mathcal{B}_4 := \{q_3, q_4\}$

Wir verfeinern \mathcal{B}_1 bzgl. der a-Transition und \mathcal{B}_3 :

$$\mathcal{B}_5 := \{q_1\}$$
 $\mathcal{B}_6 := \{q_0, q_5\}$ $\mathcal{B}_3 := \{q_2\}$ $\mathcal{B}_4 := \{q_3, q_4\}$

Es lässt sich nun keine Zustandsmenge noch weiter verfeinern. Der minimale DFA ist dann:

Aufgabe 8