Théorème de Wedderburn

On désigne par $\mathbb{Z}[X]$ l'ensemble des polynômes en l'indéterminée X à coefficients entiers relatifs; $\mathbb{Z}[X]$ est un anneau pour la somme et le produit des polynômes.

Toutefois, Z n'étant pas un corps, les propriétés du cours ne s'appliquent pas à $\mathbb{Z}[X]$. En revanche, $\mathbb{Z}[X] \subset \mathbb{Q}[X]$, avec \mathbb{Q} qui lui est bien un corps.

Partie I: Polynômes cyclotomiques

Soit $n \geqslant 1$. On note $V_n \subset \mathbb{U}_n$ l'ensemble des générateurs de \mathbb{U}_n et on l'appelle aussi l'ensemble des racines primitives n-ième de l'unité. Et on définit le n-ième polynôme cyclotomique Φ_n par

$$\Phi_n = \prod_{\zeta \in V_n} (X - \zeta)$$

On note $\omega = e^{\frac{2i\pi}{n}}$, et pour tout $k \in [0, n-1]$, $\omega_k = \omega^k$.

- 1. A quelle condition sur k, ω_k est-elle une racine primitive n-ième?
- 2. Déterminer les racines primitives n-ièmes de l'unité pour n=2,3,4,5,6.
- 3. Déterminer les coefficients de $\Phi_2, \Phi_3, \Phi_4, \Phi_5, \Phi_6$
- 4. Déterminer $\deg \Phi_n$.
- 5. Montrer que pour tout $n \in \mathbb{N}^*$, $X^n 1 = \prod_{d \mid n} \Phi_d$.
- 6. Retrouver la valeur de la somme $\sum_{d|n} \varphi(d)$.
- 7. Soit $A, B \in \mathbb{Z}[X]$. Montrer que, si B est unitaire, alors le quotient et le reste de la division euclidienne de A par B sont encore à coefficients entiers (donner un contre-exemple dans le cas où B n'est pas unitaire).
- 8. En déduire que, pour tout $n \in \mathbb{N}^*$, Φ_n est à coefficients entiers.

Partie II: Théorème de Wedderburn

Soit $(\mathbb{K}, +, \times)$ un anneau fini de cardinal $q \ge 3$ vérifiant $\mathbb{U}(\mathbb{K}) = \mathbb{K} \setminus \{0\}$. On se propose de montrer que $(\mathbb{K}, +, \times)$ est un corps, cela revient à démontrer que $(\mathbb{K}, +, \times)$ est commutatif.

Notons $Z = \{z \in \mathbb{K} \mid \forall x \in \mathbb{K}, zx = xz\}$ le centre de \mathbb{K} . (On souhaite montrer que $Z = \mathbb{K}$).

- 9. Montrer que Z est un sous-corps de \mathbb{K} (forcément commutatif).
- 10. En déduire que \mathbb{K} peut-être muni d'une structure d'espace vectoriel sur Z; et que donc si $p = \mathbf{Card}(Z)$, le cardinal de K est de la forme $q = p^n$ avec $n \ge 1$. On souhaite montrer que n = 1.
- 11. Pour tout $a \in K$, notons $Z_a = \{g \in \mathbb{K} \mid ga = ag\}$ (le normalisateur de a). Expliquer que Z_a est un sous-espace vectoriel de \mathbb{K} et donc qu'il existe $d_a \geqslant 1$ tel que $\mathbf{Card}(Z_a) = p^{d_a}$. Par ailleurs (\mathbb{K} '.) est un groupe fini de cardinal q-1. On définit une relation sur $\mathbb{K}^* = G$:

$$\forall (a,b) \in G^2, \ a \sim b \iff \exists g \in G, b = gag^{-1}.$$

- 12. Montrer que \sim est une relation d'équivalence sur G. Pour tout $a \in G$ on notera \overline{a} la classe d'équivalence de a dans G, et $H_a = \{g \in G \mid gag^{-1} = a\}$ (le stabilisateur de a). On notera \widetilde{G} l'ensemble des classes d'équivalence.
- 13. Expliquer que $H_a = \mathbb{Z}_a^* = Z_a \setminus \{0\}$. En déduire $\mathbf{Card}(H_a)$.
- 14. Soit $a \in G$. Soit $b \in \widetilde{a}$; ainsi il existe $h \in G$ tel que $b = hah^{-1}$. h étant ainsi fixé, montrer que pour tout $g \in G$, $gag^{-1} = b$ si et seulement si $g \in h.H_a$.
- 15. Montrer que $G = \bigcup_{b \in \widetilde{a}} \{g \in G \mid b = gag^{-1}\}$ et que cette union est disjointe. Déduire de la question précédente que chacune des parties de cette union a pour cardinal $\mathbf{Card}(H_a)$. En déduire que $\mathbf{Card}(H_a)$. $\mathbf{Card}(\widetilde{a}) = \mathbf{Card}(G)$.
- 16. Dans le cas où $a \in Z^*$, donner Z_a , H_a et \tilde{a} ?
- 17. Dans le cas général, comme $\mathbf{Card}(H_a)$ divise $\mathbf{Card}(G)$ en déduire que $d_a \mid n$; expliquer que si $a \notin Z^*$, $d_a \neq n$.

Théorème de Wedderburn

18. Expliquer que $\mathbf{Card}(G) = \sum_{\widetilde{a} \in \widetilde{G}} \mathbf{Card}(\widetilde{a}) = \mathbf{Card}(Z^*) + \sum_{\widetilde{a} \in \widetilde{G}, a \notin Z^*} \mathbf{Card}(\widetilde{a})$, et donc que :

$$p^{n} - 1 = p - 1 + \sum_{\tilde{a} \in \tilde{G}, a \notin Z^{*}} \frac{p^{n} - 1}{p^{d_{a}} - 1}$$

- 19. Par l'absurde si n > 1, en déduire que $\Phi_n(p) \mid (p-1)$. Expliquer que nécessairement p = 2 et que l'on aboutit à une contradiction.
- 20. Conclure.