

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 442 607 A1

EUROPEAN PATENT APPLICATION

(21) Application number: 91300274.7

(51) Int. Cl.5: C09D 175/04, C08J 7/04,
C09D 7/12, G11B 5/704,
//C08K5/521

(22) Date of filing: 15.01.91

(30) Priority: 08.02.90 GB 8002833

(31) Date of publication of application:
21.08.91 Bulletin 91/34

(32) Designated Contracting States:
AT BE CH DE FR GB IT LI LU NL

(11) Applicant: IMPERIAL CHEMICAL INDUSTRIES PLC
Imperial Chemical House, Millbank
London SW1P 3JF(GB)

(21) Inventor: Baba, Tsuyoshi
89 Thames Avenue
Guisborough, Cleveland(GB)
Inventor: Waldron, Roger
22 Sorrell Grove
Guisborough, Cleveland(GB)

(24) Representative: Rhind, John Lessells et al
Imperial Chemical Industries PLC Legal
Department Patents Po Box 6
Welwyn Garden City Herts, AL7 1HD(GB)

(25) Polymeric film.

(26) A primed film comprises a polymeric film substrate layer and an adherent layer comprising (a) a polyurethane resin which is the reaction product of (i) a polyfunctional organic isocyanate and (ii) a polymeric polyol, and (b) at least one phosphate ester of the formula:

wherein

R is an unreactive hydrocarbon radical optionally containing unreactive substituents and having a total of not more than 10 carbon atoms;

R' is an unreactive hydrocarbon radical optionally containing unreactive substituents and having a total of not more than 10 carbon atoms or is alkali metal, ammonium, an amine cation, or hydrogen; and

M is alkali metal, ammonium, an amine cation, or hydrogen.

EP 0 442 607 A1

Fig. 1

POLYMERIC FILM

This invention relates to a primed polymeric film, and in particular to a product made therefrom.

The tendency of polymeric films to accumulate detrimental static electrical charges on surfaces thereof is well known. The presence of such charges creates a variety of problems including the attraction of dust and other contaminants to the film surface, the creation of a potential explosion hazard in the presence of organic solvents, difficulties in feeding the films through film handling and treating equipment, blocking, ie the adhesion of the film to itself or to other films, and the risk of fogging subsequently applied light-sensitive coating layers. Antistatic agents can be applied to a polymeric film from a suitable coating or priming composition, but the relatively high concentration at which such agents must be present to provide effective antistatic behaviour is usually such as will interfere with the adhesion promoting properties of the primer layer.

Polymeric films are often used with other materials, for example by coating or laminating polymeric films to form a laminate or composite which exhibits improved properties, compared to the component materials. It is well known in the art that many coating or adhesive compositions do not adhere well to various types of polymeric film. In addition, inks and lacquers do not generally adhere well to polymeric films. The adhesive property of polymeric base films can be improved by applying a primer layer of an adherent material which is more receptive to subsequently applied coating layers.

There is a particular need to provide a primer layer which is receptive to both a graphics layer and a magnetic layer, for example in the production of a magnetic card, such as a credit card, and in particular a "pre-paid card", eg a telephone card, and an "intelligent card", which is, for example, capable of storing information relating to a number of financial transactions. A magnetic card generally comprises (i) a magnetic layer, for storing the relevant information, (ii) a plastic film substrate layer, for example polyethylene terephthalate, and (iii) a graphics layer or printing layer, which provides visual information, such as the type of card, owner etc. A range of conventional binders may be used for the magnetic coating materials, which are well-known to the man skilled in the art. A wide range of inks and lacquers may be used in the graphics layer, such as aqueous and organic solvent-based materials, particularly electron beam and UV-curable inks.

We have now devised a polymeric film primed with an adherent layer which exhibits antistatic properties and improved adhesion between the primed polymeric film and with subsequently applied additional layers.

Accordingly, the present invention provides a primed film comprising a polymeric film substrate layer having on at least one surface thereof an adherent layer comprising (a) a polyurethane resin which is the reaction product of (i) a polyfunctional organic isocyanate and (ii) a polymeric polyol, and (b) at least one phosphate ester of the formula:

36

40

45 wherein

R is an unreactive hydrocarbon radical optionally containing unreactive substituents and having a total of not more than 10 carbon atoms;

R¹ is an unreactive hydrocarbon radical optionally containing unreactive substituents and having a total of not more than 10 carbon atoms or is alkali metal, ammonium, an amine cation, or hydrogen; and

50 M is alkali metal, ammonium, an amine cation, or hydrogen.

The invention also provides a method of producing a primed film by forming a substrate layer of polymeric material, and applying to at least one surface thereof an adherent layer comprising (a) a polyurethane resin which is the reaction product of (i) a polyfunctional organic isocyanate and (ii) a polymeric polyol, and (b) at least one phosphate ester of the formula:

10
wherein

R is an unreactive hydrocarbon radical optionally containing unreactive substituents and having a total of not more than 10 carbon atoms;

R' is an unreactive hydrocarbon radical optionally containing unreactive substituents and having a total of not more than 10 carbon atoms or is alkali metal, ammonium, an amine cation, or hydrogen; and

M is alkali metal, ammonium, an amine cation, or hydrogen.

The Invention also provides a magnetic card comprising a primed film as herein described, or produced as herein described, associated with a magnetic layer and a graphics layer.

The polyfunctional organic isocyanate of component (a) of the polyurethane resin may be a alicyclic, araliphatic, aromatic or preferably an aliphatic polyisocyanate. Examples of suitable polyfunctional isocyanates include ethylene disiocyanate, 1,6-hexamethylene diisocyanate, isophorone diisocyanate, cyclohexane-1,4-diisocyanate,

4,4'-dicyclohexylmethane diisocyanate, p-xylylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, polymethylene polyphenyl polyisocyanates and 1,5-naphthylene diisocyanates. 1,6-hexamethylene diisocyanate is particularly preferred. Mixtures of polyfunctional isocyanates may be used and also polyfunctional isocyanates which have been modified by the introduction of urethane, aliphatic, urea, biuret, carbodiimide, uretonimine or isocyanurate residues.

The polymeric polyol component of the polyurethane resin may be a member of any of the chemical classes of polymeric polyols used or proposed to be used in polyurethane formulations. For example, the polymeric polyol may be a polycarbonate, polyesteramide, polyether, polythioether, polyacetal or polyolefin, but preferably a polyester.

The polyester suitably comprises a copolyester, preferably derived from one or more, preferably aromatic, polycarboxylic acids and one or more polyhydric alcohols.

Suitable aromatic polycarboxylic acids for incorporation into the polyester portion of the polyurethane resin include phthalic acid, isophthalic acid and terephthalic acid, or the acid anhydrides or lower-alkyl (up to 10 carbon atoms) esters thereof. Mixtures of two or more thereof, particularly those containing a predominant amount (>50 mole %) of terephthalic acid and/or isophthalic acid may also be employed. The aromatic dicarboxylic acid components may be present in an amount greater than 50 mole %, and preferably greater than 80 mole %, of the total acidic components of the polyester.

The polyester may comprise at least one aliphatic or cycloaliphatic dicarboxylic acid, such as cyclohexane-1,4-dicarboxylic acid, adipic acid, sebacic acid, trimellitic acid and/or itaconic acid, and/or polyester-forming equivalents thereof. Adipic acid is particularly preferred. The aliphatic or cycloaliphatic dicarboxylic acid components may be present in an amount of up to about 30 mole %, preferably from 0 to 45 mole %, of the total acidic components of the polyester.

The polyester may additionally comprise a sulfonated polycarboxylic acid, for example, the ammonium and alkali metal, particularly sodium, salts of 4-sulphophthalic acid, 5-sulpho-isophthalic acid and sulphoterephthalic acid, or the acid anhydrides or lower alkyl (up to 10 carbon atoms) esters thereof. Such acids, or derivatives, are available as alkali metal salts, particularly the sodium sulphonic salt, and are conveniently incorporated in salt form into the polyester portion of the polyurethane resin. The concentration of the sulphonic acid component is preferably present in a concentration of from 0 to 20 mole %, particularly from 1 to 10 mole %, of the total acidic components of the polyester.

Suitable polyhydric alcohols for incorporation into the polyester include aliphatic, cycloaliphatic and aromatic alkylene glycols, such as ethylene glycol, 1,2-propylene glycol, neopentyl glycol, cyclohexane-1,4-dimethanol and 1,3-propane diol, and particularly aliphatic alkylene-oxy-glycols, such as ethylene glycol and diethylene glycol. Mixtures of two or more thereof, particularly those containing a predominant amount (>50 mole %) of ethylene glycol and/or diethylene glycol may also be employed. The polyhydric alcohol is present in a stoichiometrically equivalent amount of approximately 100 mole %.

If desired, the polyester may be modified by the inclusion therein of one or more monohydric alcohols, such as ethylene glycol monobutyl ether, benzyl alcohol and cyclohexanol.

A preferred polyester for incorporation into the polyurethane resin of component (a) comprises residues of terephthalic acid, isophthalic acid, ethylene glycol, diethylene glycol and optionally a sulphonated polycarboxylic acid. Adipic acid may also be included in the polyester component.

Preferably, the polymeric polyol is of low molecular weight, particularly from about 450 to 9000, and particularly from about 900 to 4500.

If desired, the polyurethane resin may also comprise one or more compounds containing a plurality of isocyanate-reactive groups. A suitable additional isocyanate-reactive compound comprises an organic polyol, particularly a short chain aliphatic polyol, preferably neopentyl glycol. An organic diamine, particularly an aliphatic diamine, may also be included either independently or together with the organic polyol.

If desired, a catalyst for urethane formation, such as dibutyltin dilaurate and/or stannous octoate may be used to assist formation of the resin, and a non-reactive solvent may be added before or after formation of the medium to control viscosity. Suitable non-reactive solvents which may be used include acetone, methylethylketone, dimethylformamide, ethylene carbonate, propylene carbonate, diglyme, N-methylpyrrolidone, ethyl acetate, ethylene and propylene glycol diacetates, alkyl ethers of ethylene and propylene glycol monoacetates, toluene, xylene and sterically hindered alcohols such as t-butanol and dicetone alcohol. The preferred solvents are water-miscible solvents such as N-methylpyrrolidone, dimethyl sulphoxide and dialkyl ethers of glycol acetates or mixtures of N-methylpyrrolidone and methyl ethyl ketone. Other suitable solvents include vinyl monomers which are subsequently polymerised.

The polyurethane resins of the invention are water dispersible, and a medium comprising an aqueous polyurethane dispersion may be prepared by dispersing the water dispersible, polyurethane resin in an aqueous medium, preferably in the presence of an effective amount of a polyfunctional active hydrogen-containing chain extender.

The resin may be dispersed in water using techniques well known in the art. Preferably, the resin is added to the water with agitation or, alternatively, water may be stirred into the resin.

The polyfunctional active hydrogen-containing chain extender, if employed, is preferably water-soluble, and water itself may be effective. Other suitable extenders include a polyol, an amino alcohol, ammonia, a primary or secondary aliphatic, alicyclic, aromatic, araliphatic or heterocyclic amine especially a diamine, hydrazine or a substituted hydrazine.

Examples of suitable chain extenders useful herein include ethylene diamine, diethylene triamine, triethylene tetramine, propylene diamine, butylene diamine, hexamethylene diamine, cyclohexylene diamine, piperazine, 2-methyl piperazine, phenylene diamine, tolylene diamine, xylylene diamine, tris (2-aminoethyl) amine,

3,3'-dinitrobenzidine,
4,4'-methylenebis(2-chloroaniline),
3,3'-dichloro-4,4'-bi-phenyl diamine,
2,6-diaminopyridine, 4,4'-diaminodiphenylmethane,
methane diamine, m-xylene diamine, isophorone diamine,
and adducts of diethylene triamine with acrylate or its hydrolyzed products. Also materials such as hydrazine, azines such as acetone azine, substituted hydrazines such as, for example, dimethyl hydrazine, 1,6-hexamethylene-bis-hydrazine, carbodihydrazine, hydrazides of dicarboxylic acids and sulfonic acids such as adipic acid mono- or dihydrazide, oxalic acid dihydrazide, isophthalic acid dihydrazide, tartaric acid dihydrazide, 1,3-phenylene disulfone acid dihydrazide, omega-amino-caprylic acid dihydrazide, hydrazides made by reacting lactones with hydrazines such as gamma-hydroxybutyric hydrazide, bis-semi-carbazide, bis-hydrazide carbonic esters of glycols such as any of the glycols mentioned above.

Where the chain extender is other than water, for example a diamine or hydrazine, it may be added to the aqueous dispersion of polyurethane resin or, alternatively, it may already be present in the aqueous medium when the resin is dispersed therein.

Desirably, the polyfunctional chain extender should be capable of intra-molecular cross-linking, to improve durability and resistance to solvents. Suitable resinous intra-molecular cross-linking agents comprise epoxy resins, alkyd resins and/or condensation products of an amine, e.g. melamine, diazine, urea, cyclic ethylene urea, cyclic propylene urea, thiourea, cyclic ethylene thiourea, alkyl melamines, aryl melamines, benzo guanamines, guanamines, alkyl guanamines and aryl guanamines with an aldehyde, e.g. formaldehyde. A useful condensation product is that of melamine with formaldehyde. The condensation product may optionally be partially or totally alkoxylated, the alkoxyl group preferably being of low molecular weight, such as methoxy, ethoxy, n-butoxy or iso-butoxy. A hexamethoxymethyl melamine condensate is particularly suitable. Another particularly suitable cross-linking agent is a polyaziridine.

Such polyfunctional extenders preferably exhibit at least trifunctionality (ie three functional groups) to promote inter-molecular cross-linking with the functional groups present in the polyurethane resin and improve adhesion of the release medium layer to the receiving layer.

The chain extension may be conducted at elevated, reduced or ambient temperatures. Convenient temperatures are from about 5° to 95°C or more, preferably from about 10° to about 45°C.

The amount of chain extender employed should be approximately equivalent to the free-NCO groups in the resin, the ratio of active hydrogens in the chain extender to NCO groups in the resin preferably being in the range from 1.0 to 2.0:1.

If desired, and preferably, the antistatic adherent layer may be cross-linked to improve its durability, hardness, cohesive strength and adhesion to the substrate, and to provide resistance to attack by solvents. Cross-linking may be promoted by incorporation into the antistatic adherent composition of any cross-linking agent known to be effective in polyurethanes. Suitable cross-linking agents include the condensation product of an amine with an aldehyde. For example, melamine, diazine, urea, cyclic propylene urea, thiourea, cyclic ethylene thiourea, an alkyl melamine, such as butyl melamine, an aryl melamine, a guanamine, an alkylguanamine, an aryl guanamine, a benzoguanamine, or glycoluril, may be condensed with an aldehyde, such as formaldehyde. The condensation product is preferably alkoxylated, eg ethoxylated. A preferred cross-linking agent is a methylated melamine-formaldehyde resin.

The amount of cross-linking agent necessary to promote the required degree of cross-linking may be readily determined by simple experimentation. In general, the cross-linking agent suitably comprises up to 20%, and preferably from 2 to 10%, by weight of the total components of the antistatic adherent composition.

Acceleration of the cross-linking may be effected, if desired, by adding a suitable catalyst to the antistatic adherent composition. A preferred catalyst for use with an amine-formaldehyde cross-linking agent comprises ammonium chloride, ammonium nitrate, phosphoric acid, citric acid, p-tolueno sulphonate acid or p-dodecylbenzenesulphonic acid.

The phosphate ester of component (b) may be added to aqueous coating compositions such as aqueous latices of component (a) without causing the polyurethane resin to coagulate or interfering with its film-forming properties. The phosphate esters may also be subjected to the temperatures which are normally applied to the film after application of the coating composition for instance for orientation and possibly heat setting without volatilisation, decomposition, absorption into the thermoplastics film or chemical reaction with the film or the polyurethane component of the coating composition.

Each of R and R' in the defined phosphate ester structure of component (b) preferably comprises at least 2 carbon atoms and preferably not more than 7 carbon atoms. R and R' may each, for example, represent an alkyl group containing up to 7 carbon atoms, an aryl or substituted aryl group or an aralkyl group. Preferred alkyl groups for use as R and R' preferably comprise 1 to 5 carbon atoms and are most preferably selected from ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl and tert-butyl, the preferred aryl or substituted aryl groups for use as R and R' are phenyl which may be substituted with one or more alkyl groups containing up to 10 carbon atoms (especially methyl) and/or one or more halogen (especially chlorine) atoms, and the preferred aralkyl group is benzyl. Long chain alkyl groups containing more than 7 carbon atoms, if present as R and R', tend to modify undesirably the coating and film-forming properties of the coating composition thereby resulting in coating quality defects such as non-uniformities and streaks.

If R' is an alkali metal it is preferably potassium or sodium.

In the above defined phosphate ester structures which contain both R and R' groups as hydrocarbon radicals, those groups may be the same or different.

If M is an alkali metal it is preferably potassium or sodium.

Antistatic properties are provided by the presence in the coating layer of the phosphate ester which may comprise one compound or a mixture of two or more compounds chosen from the structures defined above. Such esters may be present in the free acid form or in the partially or completely neutralised forms as sodium or potassium salts. The phosphate ester employed in the coating composition may comprise one or more of the defined phosphate esters, for example, those selected from the salts of monoalkyl acid esters, dialkyl acid esters, monoaryl acid esters, diaryl acid esters and alkyl aryl acid esters.

Butyl phosphate ester salts have been found to provide a particularly effective balance of properties. Such salts may be derived from dibutyl hydrogen phosphate or butyl dihydrogen phosphate or a mixture thereof.

Component (b) preferably comprises an additional phosphate ester to those described above, wherein R and/or R' comprise a polyether block preferably formed from one or more polyether glycols, particularly containing from 2 to 4 carbon atoms between ether groups; for example polypropylene glycol, and especially polyethylene glycol. Butyl polyethylene glycol and/or oleyl polyethylene glycol are particularly

suitable as R and/or R' groups, especially when the polyethylene glycol component comprises 5 to 15, preferably 7 to 9 ethylene glycol units.

A preferred phosphate ester mixture of component (b) comprises dibutyl phosphate ester : monobutyl phosphate ester : monobutyl poly(8)ethylene glycol, monooleyl poly(8)ethylene glycol phosphate ester, preferably in a ratio of 8.0 to 1.0 : 0.5 to 1.0, and especially an approximate ratio of 4.7 : 1.2 : 1.0.

Amounts of the phosphate ester, expressed as the weight of the corresponding unneutralised acid phosphate ester and based upon the weight of polyurethane in the coating composition, are preferably in the range 12.5 to 100%, and more preferably 50 to 75% by weight, and provide effective antistatic properties in dried coating layers having a thickness in the range 0.01 to 1.0 μm , preferably 0.01 to 0.5 μm , after completion of the molecular orientation of the thermoplastics film by stretching.

Coating layers comprising partial salts of an acidic phosphate ester (ie incompletely neutralised materials), especially of an acidic alkyl phosphate ester, exhibit a useful combination of antistatic properties, coat quality and adhesion to superimposed layers. Partial salts may be obtained by partially neutralising the acidic alkyl phosphate ester, eg with potassium hydroxide or sodium hydroxide, in an aqueous medium. When the polyurethane component of the coating composition is cross-linkable in the presence of an acidic alkyl phosphate ester, a satisfactory combination of properties can be obtained when the aqueous partially neutralised acidic phosphate ester, preferably an alkyl phosphate ester, has a pH in the range 1.7 to 8.0 (in the absence of any other materials that might influence pH) prior to addition to the polyurethane component. At a pH less than 1.7 the amount of potassium or sodium ion in the partial salt is generally insufficient to provide a substantial reduction in surface resistivity although the antistatic properties are modified to the extent that the propensity to accumulate electrostatic charges is reduced especially at relative humidities of at least 30% at 20°C. The cross-linking activity of cross-linkable polyurethanes and cross-linkable agents, namely cross-linking agents which cross-link under acidic conditions such as 20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490
9495
9500
9505
9510
9515
9520
9525
9530
9535
9540
9545
9550
9555
9560
9565
9570
9575
9580
9585
9590
9595
9600
9605
9610
9615
9620
9625
9630
9635
9640
9645
9650
9655
9660
9665
9670
9675
9680
9685
9690
9695
9700
9705
9710
9715
9720
9725
9730
9735
9740
9745
9750
9755
9760
9765
9770
9775
9780
9785
9790
9795
9800
9805
9810
9815
9820
9825
9830
9835
9840
9845
9850
9855
9860
9865
9870
9875
9880
9885
9890
9895
9900
9905
9

phosphate ester salt alkaline, preferably to a pH in the range 7.5 to 10, by treatment with a volatile base prior to the addition of the other components of the coating composition, namely the cross-linkable components such as a cross-linkable polyurethane and the cross-linking condensation product. The base is chosen to be volatile at the temperatures prevailing during the stretching and/or, if employed, heat-setting steps after the application of the coating latex, eg ammonium hydroxide, triethylamine or morpholine. Volatilisation of the base at the stretching and/or heat-setting temperatures restores the desired acidic conditions for cross-linking thereby enabling the cross-linking reaction to proceed.

The relative proportions of the respective components of the antistatic adherent layer may vary within a wide range, and desirably should be selected by simple experimentation to provide an antistatic layer which confers upon the film a Surface Resistivity not exceeding 12, and preferably less than 10.5 log ohms/square at 50% relative humidity.

The adherent layer may be formed on a surface of the substrate by conventional techniques - for example, it is preferred, particularly in the case of a polyester film whose formation requires relatively high extrusion temperatures, to deposit the antistatic adherent layer directly onto at least one surface of a preformed film substrate from a solution or dispersion in a suitable volatile medium - preferably, for economy and ease of application, from an aqueous medium. Application from an aqueous medium is economically advantageous, avoids the potential explosive and toxicity hazards associated with the use of volatile organic solvents, and eliminates the problem of residual odour frequently encountered when an organic solvent is employed.

To achieve good wetting and levelling properties of the aqueous adherent composition on a polymeric film substrate, it is desirable that the surface energy of the aqueous composition is less than that of the film substrate.

Suitable reduction in surface tension can be achieved by the addition of one or more surfactants to the aqueous adherent composition. Suitable surfactants include alkylbenzene sulphonates, sodium alkyl sulphonates, alcohol ethoxylates, and ethoxylated alkyl, eg nonyl, phenols. Fluorinated surfactants are particularly preferred.

Deposition of the aqueous solution or dispersion of the adherent composition onto the polymeric substrate layer is effected by a conventional film coating technique - for example, by gravure roll coating, reverse roll coating, dip coating, bead coating, slot coating or electrostatic spray coating. The solution or dispersion is suitably applied in an amount such that the thickness of the adherent layer when dried, for example - by heating the coated substrate, will provide an effective bond to any subsequently applied additional layer. Conveniently, the thickness of the dried, adherent layer is of the order of 1 µm, or less, and preferably in a range of from 10 to 100 nanometres (nm).

The concentration of components (a) and (b) in the liquid coating medium depends, inter alia, on the level of antistatic properties required in the treated film, and on the wet thickness of the applied coating layer, but an effective amount conveniently comprises from about 0.5 to about 10%, preferably from 1 to 5% (weight/volume).

A substrate for use in a primed polymeric film according to the invention may be formed from any suitable film-forming, polymeric material. Thermoplastics materials are preferred, and include a homopolymer or copolymer of 1-olefin, such as ethylene, propylene and but-1-ene, a polyamide, a polycarbonate, and particularly a synthetic linear polyester which may be obtained by condensing one or more dicarboxylic acids or their lower alkyl (up to 6 carbon atoms) diesters, eg terephthalic acid, isophthalic acid, phthalic acid, 2,5-, 2,6- or 2,7-naphthalenedicarboxylic acid, succinic acid, sebacic acid, adipic acid, azelaic acid, 4,4'-diphenyldicarboxylic acid, hexahydro-terephthalic acid or 1,2-bis-p-carboxyphenoxethane (optionally with a monocarboxylic acid, such as pivalic acid) with one or more glycols, particularly an aliphatic glycol, eg ethylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol and 1,4-cyclohexanedimethanol. A polyethylene terephthalate film is particularly preferred, especially such a film which has been biaxially oriented by sequential stretching in two mutually perpendicular directions, typically at a temperature in the range 70 to 125 °C, and preferably heat set, typically at a temperature in the range 150 to 250 °C, for example - as described in British patent GB-A-838708.

The substrate may also comprise a polyarylether or thin analogue thereof, particularly a polyarylether-ketone, polyarylethersulphone, polyaryletheretherketone, polyaryletherethersulphone, or a copolymer or thioanalogue thereof. Examples of these polymers are disclosed in EP-A-1879, EP-A-184458 and US-A-4009203, particularly suitable materials being those sold by ICI PLC under the Registered Trade Mark STABAR. Blends of these polymers may also be employed.

Suitable thermoset resin substrate materials include addition - polymerisation resins - such as acrylics, vinyls, bis-maleimides and unsaturated polyesters, formaldehyde condensate resins - such as condensates with urea, melamine or phenols, cyanate resins, functionalised polyesters, polyamides or polyimides.

The polymeric film substrate for production of a primed film according to the invention may be unoriented, or uniaxially oriented, but is preferably biaxially oriented by drawing in two mutually perpendicular directions in the plane of the film to achieve a satisfactory combination of mechanical and physical properties. Simultaneous biaxial orientation may be effected by extruding a thermoplastics polymeric tube which is subsequently quenched, reheated and then expanded by internal gas pressure to induce transverse orientation, and withdrawn at a rate which will induce longitudinal orientation. Sequential stretching may be effected in a stenter process by extruding the thermoplastics substrate material as a flat extrudate which is subsequently stretched first in one direction and then in the other mutually perpendicular direction. Generally, it is preferred to stretch firstly in the longitudinal direction, i.e. the forward direction through the film stretching machine, and then in the transverse direction. A stretched substrate film may be, and preferably is, dimensionally stabilised by heat-setting under dimensional restraint at a temperature above the glass transition temperature thereof.

In a preferred embodiment of the invention, the primed film comprises an opaque substrate. Opacity depends, inter alia, on the film thickness and filler content, but an opaque substrate film will preferably exhibit a Transmission Optical Density (Sakura Densitometer; type PDA 65; transmission mode) of from 0.75 to 1.75, and particularly of from 1.2 to 1.5.

A film substrate is conveniently rendered opaque by incorporation into the film-forming synthetic polymer of an effective amount of an opacifying agent. However, in a further preferred embodiment of the invention the opaque substrate is voided, i.e. comprises a cellular structure containing at least a proportion of discrete closed cells. It is therefore preferred to incorporate into the polymer an effective amount of an agent which is capable of generating an opaque, voided substrate structure. Suitable voiding agents, which also confer opacity, include an incompatible resin filler, a particulate inorganic filler or a mixture of two or more such fillers.

By an "incompatible resin" is meant a resin which either does not melt, or which is substantially immiscible with the polymer, at the highest temperature encountered during extrusion and fabrication of the film. Such resins include polyamides and olefin polymers, particularly a homo- or co-polymer of a mono-alpha-olefin containing up to 6 carbon atoms in its molecule, for incorporation into polyester films, or polyesters of the kind hereinbefore described for incorporation into polyolefin films.

Particulate inorganic fillers suitable for generating an opaque, voided substrate include conventional inorganic pigments and fillers, and particularly metal or metalloid oxides, such as alumina, silica and titania, and alkaline earth metal salts, such as the carbonates and sulphates of calcium and barium. Barium sulphate is a particularly preferred filler which also functions as a voiding agent.

Suitable fillers may be homogeneous and consist essentially of a single filler material or compound, such as titanium dioxide or barium sulphate alone. Alternatively, at least a proportion of the filler may be heterogeneous, the primary filler material being associated with an additional modifying component. For example, the primary filler particle may be treated with a surface modifier, such as a pigment, soap, surfactant, coupling agent or other modifier to promote or alter the degree to which the filler is compatible with the substrate polymer.

Production of a substrate having satisfactory degrees of opacity, voiding and whiteness requires that the 40 filler should be finely-divided, and the average particle size thereof is desirably from 0.1 to 10 µm provided that the actual particle size of 99.9% by number of the particles does not exceed 30 µm. Preferably, the filler has an average particle size of from 0.1 to 1.0 µm, and particularly preferably from 0.2 to 0.75 µm. Decreasing the particle size improves the gloss of the substrate.

Particle sizes may be measured by electron microscope, coulter counter or sedimentation analysis and 45 the average particle size may be determined by plotting a cumulative distribution curve representing the percentage of particles below chosen particle sizes.

It is preferred that none of the filler particles incorporated into the film substrate according to this invention should have an actual particle size exceeding 30 µm. Particles exceeding such a size may be removed by sieving processes which are known in the art. However, sieving operations are not always 50 totally successful in eliminating all particles greater than a chosen size. In practice, therefore, the size of 99.9% by number of the particles should not exceed 30 µm. Most preferably the size of 99.9% of the particles should not exceed 20 µm.

Incorporation of the opacifying/voiding agent into the polymer substrate may be effected by conventional techniques - for example, by mixing with the monomeric reactants from which the polymer is derived, 55 or by dry blending with the polymer in granular or chip form prior to formation of a film therefrom.

The amount of filler, particularly of barium sulphate, incorporated into the substrate polymer desirably should be not less than 5% nor exceed 50% by weight, based on the weight of the polymer. Particularly satisfactory levels of opacity and gloss are achieved when the concentration of filler is from about 8 to 30%,

and especially from 15 to 20%, by weight, based on the weight of the substrate polymer.

One or more of the layers of a polymeric film according to the invention may conveniently contain any of the additives conventionally employed in the manufacture of polymeric films. Thus, agents such as dyes, pigments, voiding agents, lubricants, anti-oxidants, anti-blocking agents, surface active agents, slip aids, gloss-improvers, prodegradants, ultra-violet light stabilisers, viscosity modifiers and dispersion stabilisers may be incorporated in the substrate and/or antistatic adherent layer as appropriate. The substrate layer may comprise for example, china clay preferably incorporated in amounts of up to 25% to promote voiding, optical brighteners in amounts up to 1500 parts per million to promote whiteness, and dyestuffs in amounts of up to 10 parts per million to modify colour, the specified concentrations being by weight, based on the weight of the substrate polymer. In particular, an adherent layer may comprise a particulate filler, such as silica, of small particle size. Desirably, a filler, if employed in an antistatic adherent layer, should be present in an amount of not exceeding 50% by weight of polymeric material, and the particle size thereof should not exceed 0.5 μm , preferably less than 0.3 μm , and especially from 0.005 to 0.2 μm .

The substrate thickness may vary depending on the envisaged application of the primed film but, in general, is suitably in a range from 12 to 300, particularly from 50 to 250, and especially from 150 to 250 μm .

The adherent composition may be applied to an already oriented film substrate - such as a polyimide film. However, application of the composition is preferably effected before or during the stretching operation.

In particular, it is preferred that the adherent composition should be applied to the film substrate between the two stages (longitudinal and transverse) of a thermoplastics film biaxial stretching operation. Such a sequence of stretching and coating is especially preferred for the production of a coated linear polyester film substrate, such as a coated polyethylene terephthalate film, which is preferably firstly stretched in the longitudinal direction over a series of rotating rollers, coated with the antistatic adherent layer, and then stretched transversely in a slender oven, preferably followed by heat setting.

Prior to deposition of the adherent composition onto the polymeric substrate the exposed surface thereof may, if desired, be subjected to a chemical or physical surface-modifying treatment to improve the bond between that surface and the subsequently applied antistatic adherent layer. A preferred treatment, because of its simplicity and effectiveness, which is particularly suitable for the treatment of a polyolefin substrate, is to subject the exposed surface of the substrate to a high voltage electrical stress accompanied by corona discharge. Alternatively, the substrate may be pretreated with an agent known in the art to have a solvent or swelling action on the substrate polymer. Examples of such agents, which are particularly suitable for the treatment of a polyester substrate, include a halogenated phenol dissolved in a common organic solvent eg a solution of p-chloro-m-cresol, 2,4-dichlorophenol, 2,4- or 2,4,6-trichlorophenol or 4-chlororesorcinol in acetone or methanol.

An adherent layer may be applied to one or each surface of the polymeric substrate. Alternatively, one surface of the substrate may be uncoated, or may be coated with a layer of a material other than the herein specified antistatic adherent composition.

Modification of the surface of the adherent layer, eg by flame treatment, ion bombardment, electron beam treatment, ultra-violet light treatment or preferably by corona discharge, may improve the adhesion of subsequently applied coatings, inks and lacquers, but may not be essential to the provision of satisfactory adhesion.

The preferred treatment by corona discharge may be effected in air at atmospheric pressure with conventional equipment using a high frequency, high voltage generator, preferably having a power output of from 1 to 20 kw at a potential of 1 to 100 kv. Discharge is conveniently accomplished by passing the film over a dielectric support roller at the discharge station at a linear speed preferably of 1.0 to 500 m per minute. The discharge electrodes may be positioned 0.1 to 10.0 mm from the moving film surface.

Satisfactory adhesion of a range of coating materials applied directly to the surface of the adherent layer can however be achieved without any prior surface modification, eg by corona discharge treatment.

The ratio of substrate to adherent layer thickness may vary within a wide range, although the thickness of the adherent layer preferably should not be less than 0.004% nor greater than 10% of that of the substrate. In practice, the thickness of the adherent layer is desirably at least 0.01 μm and preferably should not greatly exceed about 1.0 μm .

The adherent layer coated films of the present invention have excellent handling properties on account of the antistatic properties provided by the coated layer, and are suitable for continuous feeding through automatic film handling machinery. The coatings also exhibit strong adhesion to the polymeric base film, and to additional coatings superimposed thereon.

Primed polymeric films of the present invention can be used to form various types of composite

structures by coating or laminating additional materials onto the primed substrate film, particularly magnetic cards which preferably comprise, in order, (i) a magnetic layer, (ii) an adherent layer comprising (a) a polyurethane resin which is the reaction product of (i) a polyfunctional organic isocyanate and (ii) a polymeric polyol, and (b) at least one phosphate ester of the formula:

5

10

15

wherein

R is an unreactive hydrocarbon radical optionally containing unreactive substituents and having a total of not more than 10 carbon atoms;

R¹ is an unreactive hydrocarbon radical optionally containing unreactive substituents and having a total of not more than 10 carbon atoms or is alkali metal, ammonium, an amine cation, or hydrogen; and

M is alkali metal, ammonium, an amine cation, or hydrogen, (iii) a polymeric film substrate layer, (iv) an adherent layer as defined (ii) above, and (v) a graphics layer.

A range of conventional binders may be used for the magnetic coating materials, which are well-known to the man skilled in the art. A wide range of inks and lacquers may be used in the graphics layer, such as aqueous and organic solvent-based materials, particularly electron beam- and UV-curable inks. Suitable UV-curable inks are used in the Examples below.

The primed polymeric films can be coated with a range of other materials, for example acrylic coatings, cellulose acetate butyrate lacquer, and diazonium coatings for drawing office applications.

The invention is illustrated by reference to the accompanying drawings in which:

Figure 1 is a schematic sectional elevation, not to scale, of a polymeric film having an adherent layer adhered to each surface thereof.

Figure 2 is a similar schematic elevation of a polymeric film with a graphics layer bonded to a first adherent layer.

Figure 3 is a similar schematic elevation of a polymeric film with a magnetic layer bonded to a second adherent layer.

Referring to Figure 1 of the drawings, the film comprises a polymeric substrate layer (1) having two adherent layers (2 and 3), one such adherent layer being bonded respectively to each of surfaces (4 and 5) thereof.

The film of Figure 2 further comprises an additional graphics layer (6) bonded to the remote surface (7) of the first adherent layer (2).

The film of Figure 3 further comprises an additional magnetic layer (8) bonded to the remote surface (9) of the second adherent layer (3), and is an example of a magnetic card.

The invention is further illustrated by reference to the following Examples, whensin the material identified as "ELFUGIN AKT" (supplied by Sandoz Products Limited), by applicant's analysis contains a mixture by weight of approximately 40% dibutyl phosphate ester, 8.5% monobutyl phosphate ester, 10% monobutyl poly(8)ethylene glycol, monooleyl poly(8)ethylene glycol phosphate ester, 1.5% n-butanol and 40% water. The material identified as "AP 70" (supplied by Dainippon Ink Corporation, Japan), by applicant's analysis is a polyurethane resin comprising residues of terephthalic acid, isophthalic acid, adipic acid, ethylene glycol, diethylene glycol, neopentyl glycol and hexamethylene diisocyanate.

50

Example 1

An antistatic adherent coating composition was formed from the following components:

55

Elfugin AKT (55% w/v)	113 ml
AP 70 (35% w/v)	179 ml
'Synperonic' NP10 (10% w/w aqueous solution of an ethoxylated nonyl phenol, supplied by ICI)	15 ml
Demineralised water	to 2500 ml

15 An amorphous polyethylene terephthalate film (containing by weight relative to polyethylene terephthalate - 7.5% particulate barium sulphate, 7.5% particulate china clay and 0.6% particulate titanium dioxide) was stretched to about 3.2 times its original dimensions in one direction and coated on both surfaces with the above formulation. The adherent layer coated film was passed into a stenter oven, where the film was dried and stretched in the sideways direction to approximately 3.5 times its original 20 dimensions. The biaxially stretched coated film was heat set at a temperature of about 220°C by conventional means. Final film thickness was 188 µm, and the dry coat weight of each antistatic adherent layer was approximately 0.7 mgdm⁻².

The antistatic properties of the coated polymeric film were determined by measuring the surface resistivity (SR) at 30 to 70% relative humidity. A SR not exceeding 12.0, preferably less than 10.5 log ohm/square at greater than 50% relative humidity gives acceptable antistatic properties. The results are given in Table 1.

Ink adhesion to the coated film was determined using three commercially available standard ultra-violet (UV) light cured inks ("Toyo Yellow", "Morohoshi Yellow", and "Morohoshi Black"). The ink was applied to the film to a depth of approximately 2 µm, using a Duncan Lynch machine, and passed through a UV lamp 30 machine (lamp power 300 watts/inch) in less than one second (typically 0.75 seconds). The cured sample was cross-hatched, a piece of Sellotape adhesive tape applied by rubbing down to exclude air bubbles, and the Sellotape adhesive tape rapidly and vigorously removed. The amount of ink remaining after the cross-hatch test is expressed as a percentage of the original ie 100% is excellent adhesion. The results are given in Table 1.

35 The adhesion of a magnetic layer to the coated film was determined by applying a magnetic layer to the coated film, drying the layer and testing the adhesion by using a standard cross-hatch test. The magnetic layer exhibited very good adhesion to the coated film.

Example 2

40 This is a comparative Example not according to the invention. The procedure in Example 1 was repeated except that the polyethylene terephthalate film was not coated with an adherent layer. The SR and ink adhesion results are given in Table 1.

Example 3

This is a comparative Example not according to the invention. The procedure in Example 1 was repeated except that the coating composition did not contain any AP 70. The amount of Elfugin AKT in the coating composition was correspondingly increased in order that the overall solids content remained the same. The SR and ink adhesion results are given in Table 1.

Example 4

55 This is a comparative Example not according to the invention. The procedure in Example 1 was repeated except that the coating composition did not contain any Elfugin AKT. The amount of AP 70 in the coating composition was correspondingly increased in order that the overall solids content remained the same. The SR and ink adhesion results are given in Table 1.

The above examples illustrate the improved properties of adherent layer coated films of the present

invention.

TABLE 1

		<u>EXAMPLE 1</u>	<u>EXAMPLE 2</u>	<u>EXAMPLE 3</u>	<u>EXAMPLE 4</u>
		(Comparative)	(Comparative)	(Comparative)	(Comparative)
<u>SURFACE RESISTIVITY</u>					
(I relative humidity)					
30		13.9	19.6	*	19.6
40		11.3	19.6	10.1	19.6
50		9.4	19.6	8.9	19.6
60		9.2	19.6	8.5	19.6
70		8.9	19.6	8.3	19.6
<u>UV INK ADHESION</u>					
(I ink remaining)					
25	Toyo Yellow	100	0	0	100
Morohoshi Yellow	100	30	0	100	
30	Morohoshi Black	100	0	0	100

* Not tested

Claims

- 40 1. A primed film comprising a polymeric film substrate layer having on at least one surface thereof an adherent layer comprising (a) a polyurethane resin which is the reaction product of (i) a polyfunctional organic isocyanate and (ii) a polymeric polyol, and (b) at least one phosphate ester of the formula:

55 wherein

R is an unreactive hydrocarbon radical optionally containing unreactive substituents and having a total of not more than 10 carbon atoms;

R¹ is an unreactive hydrocarbon radical optionally containing unreactive substituents and having a total of not more than 10 carbon atoms or is alkali metal, ammonium, an amine cation, or hydrogen;

and

M is alkali metal, ammonium, an amine cation, or hydrogen.

2. A primed film according to claim 1 wherein R and R¹ of component (b) of the adherent layer are selected from ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl and tert-butyl.
3. A primed film according to either of claims 1 and 2 wherein the phosphate ester of component (b) comprises a salt of dibutyl hydrogen phosphate, butyl dihydrogen phosphate or a mixture thereof.
4. A primed film according to any one of the preceding claims wherein the polymeric polyol of component (a) of the adherent layer comprises a polyester.
5. A primed film according to claim 4 wherein the polyester comprises residues of terephthalic acid and isophthalic acid.
6. A primed film according to any one of the previous claims wherein the polyurethane resin of component (a) comprises a polyfunctional active hydrogen-containing chain extender.
7. A primed film according to any one of the preceding claims wherein the adherent layer is at least partially cross-linked.
8. A primed film according to any one of the preceding claims wherein the polymeric film substrate comprises biaxially oriented polyethylene terephthalate.
- 20 9. A method of producing a primed film by forming a substrate layer of polymeric material, and applying to at least one surface thereof an adherent layer comprising (a) a polyurethane resin which is the reaction product of (i) a polyfunctional organic isocyanate and (ii) a polymeric polyol, and (b) at least one phosphate ester of the formula:

30

35

40 wherein

R is an unreactive hydrocarbon radical optionally containing unreactive substituents and having a total of not more than 10 carbon atoms;

R¹ is an unreactive hydrocarbon radical optionally containing unreactive substituents and having a total of not more than 10 carbon atoms or is alkali metal, ammonium, an amine cation, or hydrogen; and

45 M is alkali metal, ammonium, an amine cation, or hydrogen.

10. A magnetic card comprising a primed film according to any one of claims 1 to 8, or produced according to claim 9, associated with a magnetic layer and a graphics layer.

50

55

Fig. 1

Fig. 2

Fig. 3

European
Patent Office

EUROPEAN SEARCH REPORT

Application Number

EP 91 30 0274

DOCUMENTS CONSIDERED TO BE RELEVANT					
Category	Citation of document, with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)		
X	EP-A-0 154 827 (VICTOR CO. OF JAPAN) * Claims 1-3,7,8; page 7, lines 18-24; page 9, lines 13-19; page 10, lines 3-6 * - - -	1,4,6,9,10	C 09 D 175/04 C 08 J 7/04 C 09 D 7/12 G 11 B 5/704 // C 08 K 5/521		
A	EP-A-0 143 337 (SONY CORP.) * Abstract * - - - - -	1,10			
TECHNICAL FIELDS SEARCHED (Int. Cl.5)					
C 08 J C 08 G C 08 K C 09 D G 11 B					
The present search report has been drawn up for all claims					
Place of search	Date of completion of search	Examiner			
The Hague	13 May 91	GOERKE H.R.			
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document T: theory or principle underlying the invention					
E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons ----- &: member of the same patent family, corresponding document					