Question: Given N, find the no. of factors Any number which divides N is a factor 32: 1, 2, 4, 8, 16, 32 Ours: Is 4 a factor of 24 quotient = 6 4)24 C remainder = 0 Yes! 24 is a factor 24%4 = 0 => Factor Quiz: Check if i is a factor of Ng  $N_0/i = 0$ Rimainder when N is divided by i

Duib: No. 9 factors 9 N=1010: 1, 2, 5, ,10 => 4 factors

=> N iterations

Approach1:

y return count;

Quiz: Time taken to run 109 iterations



Quiz: Time taken to run 10's iterations

$$10^{18} = \frac{10^{10} \times 10^{8}}{10^{10} \times 10^{8}}$$

$$\gamma_{L} = \frac{10^{18}}{10^{8}} \approx 10^{11-8} = 10^{11}$$

$$\int \frac{a^b}{a^c} = a^{b-c}$$

Approach 2.

$$\frac{3}{3}$$
 is a factor of  $\frac{2}{3}$  is a facto

h is a habor of 
$$24 = 0$$

$$\frac{24}{4} = 6$$



$$= \int \frac{i}{x} \left( \frac{N}{x} \right)^{n}$$

y

$$N = 100$$
 $N = 100$ 
 $100/i$ 
 $100/i$ 
 $100/i$ 
 $100/i$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $10$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 
 $100$ 

```
int count = 0;

for C i = 1; i \times i \times N; i++>1

i + C \times N; i = 0 > 1

i + C \times N; i = 0 > 1

i = 0 \times N; i =
```

Mar Ci) = JN

#Iterations = 
$$\sqrt{N}$$
 $N = 10^{18}$  =>

#Iters =  $\sqrt{N}$  =  $\sqrt{10^{18}}$  =  $\sqrt{10^{18}}$  to Seconds

Prime Numbers

2, 3, 5, 7, 11, 13, 17, . . . . .

A number which is divisible only by I and itself.

if factors (N) = Z => Prime Number

iboolen isfrme (int N) {

if (factors (N) = = 2) {

return true;

}

else {

return false;

y

Ourston:

$$A = \begin{bmatrix} 2 & -1 & 0 & 4 & 6 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 0 & N-1 & 1 \\ 0 & N-1 & 1 \\ 0 & 1 & 2 & 4 \end{bmatrix}$$



roid reverse (int 1] A, int N) (

int 
$$p_1 = 0;$$
int  $p_2 = N-1;$ 

return

พ

A :

Ouiston: Revers a part of an array

A: [4, 5, 1, 2, 9, 6, 3, 7]

S = 2 E = 5

 $A^{1}: L y = 6 9 2 1 3 7$ 

S=2, E=6

A= [-3, 4, 7, 8, 7, 9, 6 2, 10]

N=10

```
(roid) reverse (int [] A, int N, int S, int E) (

int p_1 = 9, S

int p_2 = N + 1 = 0

While (p_1 < p_2) (

int temp = A[PI];

A[PI] = A[PI];

A[PI] = temp;

p_1 + + p_2 = 0
```

y return;

auston: Given an array and integer K, right rotate the array K times (KN) EK1: K =3 A : 8 3 K = 1 2 9 6 K>2 5 9 6 8 3 K=3 [6 5 8 3

 $F_{2}:$   $A = \begin{bmatrix} 9 & 5 & 4 & 3 & 2 & 7 \end{bmatrix}$   $K = 1 \qquad 7 \qquad 9 & 5 & 4 & 3 & 2$   $K = 2 \qquad 7 \qquad 9 & 5 & 4 & 3$   $K = 3 \qquad 2 \qquad 7 \qquad 9 & 5 \qquad 4$   $K = 4 \qquad 3 \qquad 2 \qquad 7 \qquad 9 \qquad 5$ 

Approach 1:

Hiter: NXK =) NxK

Approach 2:

A: 
$$\frac{3}{0}$$
  $\frac{-2}{1}$   $\frac{1}{2}$   $\frac{1}{3}$   $\frac{6}{5}$   $\frac{9}{5}$   $\frac{8}{5}$   $\frac{6}{6}$ 

R:  $\frac{3}{0}$   $\frac{-2}{1}$   $\frac{1}{2}$   $\frac{1}{3}$   $\frac{1}{5}$   $\frac{1}{$ 

Observation: When we rotate array by K times, last K elements of original array will come to the Grant



- Steps
  1) Reverse Entire array => reverse(A,O,N-1)
- 2) Rurerse the Girst keles => reverse (A, O, K-I);
- 3) hourse the romaining N-K eles -> reverse (A, K, N-1);

$$A = \begin{cases} 4 & 5 & 6 & 7 \\ 0 & 1 & 2 & 5 & 6 & 7 \end{cases}$$

$$K = 4 = \begin{cases} 0, 4 - 1 \end{cases}$$

void rotate Array ( Int I) A, int N, int K) ?

reverse [A, 0, N-10]

reverse ( A, O, K-1);

reverse CA, K, N-1);

re turni

Z

Question: K > N K = 987 N = 5 A = 0  $A_1 = 0$   $A_2 = 0$   $A_3 = 0$   $A_4 = 0$   $A_5 = 0$   $A_5 = 0$   $A_5 = 0$   $A_1 = 0$   $A_2 = 0$   $A_3 = 0$   $A_4 = 0$   $A_5 = 0$   $A_5 = 0$   $A_1 = 0$   $A_2 = 0$   $A_3 = 0$   $A_4 = 0$   $A_5 = 0$   $A_5 = 0$   $A_1 = 0$   $A_2 = 0$   $A_3 = 0$   $A_4 = 0$   $A_5 = 0$   $A_5 = 0$   $A_5 = 0$   $A_1 = 0$   $A_2 = 0$   $A_3 = 0$   $A_4 = 0$   $A_5 = 0$   $A_5 = 0$   $A_5 = 0$   $A_1 = 0$   $A_2 = 0$   $A_3 = 0$   $A_4 = 0$   $A_5 =$ 

K = 0, 5, 10, 15. 10, 15. 10, 15. 10, 15. 10, 15. 10, 15. 10, 15. 10, 15. 10, 15. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10

K= K%N L SIZE Of ONTAY

- =) Lots of code
- =) Exrors / Wrong Answer / TLE error,

## Steps to Solve a problem

- -) head the Quistin property
- > Sample Input & output
- Take your ours examply and sec what should be the answers
- -) Come up with a Brute Fore (Naive Apro all)
- e) -> Make Observation
  - -) Optimize the code

tempt: 
$$AEN-1J$$
;  
 $for Ci: N-1$ ;  $i \ge 1$ ;  $i - J$ ?  
 $ACiJ = ACi-1J$ ;