PageRank: Matrix Formulation

- Stochastic adjacency matrix M
 - Let page i has d_i out-links
 - If $i \to j$, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$
 - M is a column stochastic matrix
 - Columns sum to 1
- Rank vector r: vector with an entry per page
 - $lackbox{\hspace{0.1cm}$\hspace{0.1cm}$} oldsymbol{r_i}$ is the importance score of page $oldsymbol{i}$
 - $\sum_i r_i = 1$
- The flow equations can be written

$$r = M \cdot r$$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

Example

Remember the flow equation: $r_j = \sum_{i \to j} \frac{r_i}{d_i}$ Flow equation in the matrix form

$$M \cdot r = r$$

Suppose page i links to 3 pages, including j

Eigenvector Formulation

The flow equations can be written

$$r = M \cdot r$$

NOTE: *x* is an eigenvector with the corresponding eigenvalue λ if:

 $Ax = \lambda x$

- So the rank vector r is an eigenvector of the stochastic web matrix M
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1
 - Largest eigenvalue of M is 1 since M is column stochastic
 - Why? We know r is unit length and each column of M sums to one, so $Mr \leq 1$
- We can now efficiently solve for r!
 The method is called Power iteration

Example: Flow Equations & M

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

$$\begin{array}{c|ccccc} & y & a & m \\ y & \frac{1}{2} & \frac{1}{2} & 0 \\ a & \frac{1}{2} & 0 & 1 \\ m & 0 & \frac{1}{2} & 0 \end{array}$$

$$r = M \cdot r$$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$