Exercise Sheet 7

Notation

- 1. Let $\langle x, x' \rangle$ denote the scalar product of points $x, x' \in \mathbb{R}^d$.
- 2. The sign function is defined as

$$\operatorname{sgn}: \mathbb{R} \to \mathbb{R}, \quad u \mapsto \left\{ \begin{array}{ll} +1 & : & u \ge 0 \\ -1 & : & u < 0 \end{array} \right.$$

Exercise 1

The hypothesis class of homogeneous halfspaces (linear classifiers without bias) in \mathbb{R}^d is defined by

$$\mathcal{H} = \{ f : \mathbb{R}^d \to \{\pm 1\} : \exists w \in \mathbb{R}^d \text{ s.t. } f(x) = \operatorname{sgn}(\langle w, x \rangle) \}.$$

Show that the VC dimension of \mathcal{H} is d.

Hints: First show (a) that \mathcal{H} shatters d points in \mathbb{R}^d . Next show (b) that \mathcal{H} cannot shatter any set of d+1 points in \mathbb{R}^d . Exploit linear independence in (a) and linear dependence in (b).

Exercise 2

The hypothesis class of inhomogeneous halfspaces (linear classifiers) in \mathbb{R}^d is defined by

$$\mathcal{H} = \{ f : \mathbb{R}^d \to \{ \pm 1 \} : \exists w \in \mathbb{R}^d, \exists b \in \mathbb{R} \text{ s.t. } f(x) = \operatorname{sgn}(\langle w, x \rangle + b) \}.$$

Show that the VC dimension of \mathcal{H} is d+1.

Exercise 3

Let \mathcal{X} be a space endowed with a metric $\delta: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. What is the VC dimension of the 1-nearest-neighbor classifier in (\mathcal{X}, δ) ? Discuss the implications of your result.

Note: You can think of (\mathcal{X}, δ) as the Euclidean space $(\mathbb{R}^d, \|\cdot\|_2)$.

Exercise 4

Plot the VC bound as a function of the sample size n and as function of the error tolerance ε for VC dimensions 1, 3 and 5.