

Preliminary Technical Information

Power MOSFET TrenchHV™ HiPerFET™

IXFH160N15T

N-Channel Enhancement Mode Avalanche Rated

$V_{\rm DSS}$	=	150V
I _{D25}	=	160A
R _{DS(on)}	≤	9.6m Ω

Symbol	Test Conditions	Maximum	Ratings	
V _{DSS}	T ₁ = 25°C to 175°C	150	V	
V _{DGR}	$T_J^\circ = 25^\circ C$ to 175°C, $R_{GS} = 1M\Omega$	150	V	
V _{GSM}	Transient	± 30	V	
I _{D25}	T _C = 25°C	160	Α	
ILRMS	Lead Current Limit, RMS	75	Α	
I _{DM}	$T_{\rm C} = 25$ °C, pulse width limited by $T_{\rm JM}$	430	Α	
I _A	T _C = 25°C	5	A	
É _{AS}	$T_{c} = 25^{\circ}C$	1	J	
dV/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 175^{\circ}C$	10	V/ns	
$\overline{P_d}$	$T_{\rm C} = 25^{\circ}{\rm C}$	830	W	
$T_{\rm J}$		-55 +175	°C	
T JM		175	°C	
T _{stg}		-55 +175	°C	
T,	1.6 mm (0.062 in.) from case for 10s	300	°C	
T _{SOLD}	Plastic body for 10 seconds	260	°C	
M _d	Mounting torque	1.13 / 10	Nm/lb.in.	
Weight		6	g	

Symbol (T _J = 25°C t	Test Conditions unless otherwise specified)	Characte Min.	eristic ' Typ.		
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$	150			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1mA$	2.5		5.0	V
I _{gss}	$V_{GS} = \pm 20V, V_{DS} = 0V$			± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0V$ $T_{J} = 150^{\circ}C$			5 250	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$		8.0	9.6	mΩ

TO-247 (IXFH)

G = Gate	D = Drain			
S = Source	TAB = Drain			

Features

- Unclamped Inductive Switching (UIS) rated
- Low package inductance
- easy to drive and to protect
- 175 °C Operating Temperature

Advantages

- Easy to mount
- Space savings
- High power density

Applications

- DC-DC converters
- Battery chargers
- Switched-mode and resonant-mode power supplies
- DC choppers
- AC motor control
- Uninterruptible power supplies
- High speed power switching applications

Symbol Test Conditions Chara		acteristic	: Values		
(T _J = 25°C unless otherwise specified)		Min.	Тур.	Max.	
g _{fs}		$V_{DS} = 10V, I_{D} = 60A, Note 1$	65	105	S
C _{iss})			8800	pF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1 MHz$		1170	pF
C _{rss}	J			150	pF
t _{d(on)})	Resistive Switching Times		21	ns
t _r		$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		21	ns
$\mathbf{t}_{d(off)}$	7			52	ns
t _f)	$R_{_{G}} = 2\Omega \text{ (External)}$		29	ns
Q _{g(on)})			160	nC
Q_{gs}	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 25A$		43	nC
\mathbf{Q}_{gd}	J			46	nC
R _{thJC}					0.18 °C/W
$R_{\scriptscriptstylethCS}$				0.25	°C/W

TO-247AD Outline 0 2 - Drain Terminals: 1 - Gate Tab - Drain 3 - Source Dim. Millimeter Inches Min. Max. Min. Max 4.7 .185 .209 5.3 2.2 2.54 .087 .102 A, 2.2 2.6 .059 .098 b 1.0 1.4 .040 .055 1.65 2.13 .065 .084 b, 2.87 .123 3.12 .113 b_2 С .031 .8 .016 D 20.80 21.46 .819 .845 F 15.75 16.26 .610 .640 0.205 0.225 е 5 20 5 72 L 19.81 20.32 .780 .800

4.50

3.65

6.40

5.49

ÆΡ

Q

R

S

3.55

5.89

4.32

6.15 BSC

.177

.144

.216

.140

.170

0.232 0.252

242 BSC

Source-Drain Diode

Characteristic Values

$(T_{J} = 25^{\circ}C, t)$	ınless otherwise specified)	Min.	Тур.	Max.	
I _s	$V_{GS} = 0V$			160	Α
I _{SM}	Repetitive, pulse width limited by T_{JM}			430	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.2	V
t _{rr}	1 - 804 di/dt - 2004/us		90	160	μs
Q _{RM}	$I_F = 80A$, -di/dt = 200A/ μ s $V_R = 75V$, $V_{GS} = 0V$		12		Α
I _{RM}	н / us		0.55		μС

Notes: 1. Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Fig. 1. Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 150°C

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 80A$ Value vs. Drain Current

Fig. 2. Extended Output Characteristics @ 25°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 80A$ Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case Temperature

Fig. 8. Transconductance $T_{J} = -40^{\circ}C$ 100 80 60 25°C 150°C I_D - Amperes

 $\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

