## 2023 Vill. Mat A2 – 3. gyakorlat

(Inhomogén lineáris e.r., inverz, leképezés mártixa, bázisváltás)



1. Legyen  $A \in \mathbb{R}^{n \times m}$ ,  $b \in \mathbb{R}^n$  és  $x_0 \in \mathbb{R}^m$  olyan, hogy  $Ax_0 = b$ . Igazoljuk, hogy

$$\{\boldsymbol{x} \in \mathbf{R}^m \mid \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}\} = \operatorname{Ker}(\boldsymbol{A}) + \{\boldsymbol{x}_0\}$$

Az a valós paraméter mely értékeire lesz az alábbi egyenletrendszereknek megoldása? Amikor van, írjuk fel a megoldáshalmazt  $Ker(A) + \{x_0\}$  alakban!

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & a & b \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} \qquad \mathbf{hf.:} \ \mathbf{A} = \begin{bmatrix} 1 & -1 & a & b \\ 1 & 3 & 1 & 0 \\ 0 & 4 & 2 & 2 \\ 0 & 2 & 1 & 1 \end{bmatrix}$$

**2.** Az a valós paraméter mely értékeire invertálhatóak az alábbi mátrixok és amikor igen, mi az inverzük?

a) 
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & a \end{bmatrix}$$
 b)  $\mathbf{B} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 3 & a \\ 0 & 1 & 1 \end{bmatrix}$  hf.:  $\mathbf{A} = \begin{bmatrix} 1 & -1 & a \\ 1 & 3 & 1 \\ 0 & 4 & 2 \end{bmatrix}$ 

a = 0 esetén számoljuk ki az inverzet az ()<sup>-1</sup> = adj()/det() képlettel is!

- 3. Legyen  $\boldsymbol{A} \in \mathbf{R}^{3\times3}$  a z tengely körül +90°-kal forgató, és  $\boldsymbol{B} \in \mathbf{R}^{3\times3}$  az xy síkra tükröző leképezés mátrixa. Mik az alábbi mátrixok? a)  $\boldsymbol{A}^{-1}$  b)  $\boldsymbol{B}^{-1}$ , c)  $\boldsymbol{A}\boldsymbol{B}$ , d)  $\boldsymbol{B}\boldsymbol{A}$ , e)  $\boldsymbol{A}^{2023} \cdot \boldsymbol{B}^{2023}$ ?
- 4. Legyen az A leképezés mátrixa a sztenderd bázisban:

$$\mathbf{A} = \begin{bmatrix} 4 & 4 \\ 3 & 3 \end{bmatrix}$$

Írjuk fel  $\mathcal{A}$  mátrixát a  $B = \left( \begin{pmatrix} 4 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right)$  bázisban! (A bázisáttérés mátrixának felhasználásával is!) Mi  $\mathbf{A}^{100}$ ?

iMSc. Az  $A, B \in \mathbb{R}^{n \times n}$  mátrixok *hasonlók*, ha van olyan  $C \in \mathbb{R}^{n \times n}$  invertálható mátrix, hogy  $C^{-1}AC = B$ . Igazak-e? Hasonló mátrixok a) oszloptereinek dimenziója ugyanaz, b) oszlopterei ugyanazok, c) sortereinek dimenziója ugyanaz, d) sorterei ugyanazok?