



# Poisson Algebras II, Non-commutative Algebra

Maram Alossaimi (Supervisor: Prof. Vladimir Bavula)

School of Mathematics and Statistics, malossaimi1@sheffield.ac.uk\maram.alosaimi@gmail.com



## 1. Introduction

A commutative algebra D over a field K is called a *Poisson algebra* if there exists a bilinear product  $\{\cdot,\cdot\}:D\times D\to D$ , called a *Poisson bracket*, such that

1.  $\{a,b\} = -\{b,a\}$  for all  $a,b \in D$  (anti-commutative),

2.  $\{a, \{b, c\}\} + \{b, \{c, a\}\} + \{c, \{a, b\}\} = 0$  for all  $a, b, c \in D$  (Jacobi identity), and

3.  $\{ab,c\} = a\{b,c\} + \{a,c\}b$  for all  $a,b,c \in D$  (Leibniz rule).

Definition. Let D be a Poisson algebra. An ideal I of the algebra D is a *Poisson ideal* of D if  $\{D,I\}\subseteq I$ . We denote by  $\langle a \rangle$  the Poisson ideal of D generated by the element a. Moreover, a Poisson ideal P of the algebra D is a *Poisson prime ideal* of D provided

$$IJ \subseteq P \Rightarrow I \subseteq P \quad \text{or} \quad J \subseteq P$$

where I and J are Poisson ideals of D. A set of all Poisson prime ideals of D is called the *Poisson spectrum* of D and is denoted by  $\mathsf{PSpec}(D)$ .

Definition. Let D be a Poisson algebra over a field K. A K-linear map  $\alpha: D \to D$  is a *Poisson derivation* of D if  $\alpha$  is a K-derivation of D and

$$\alpha(\{a,b\}) = \{\alpha(a),b\} + \{a,\alpha(b)\} \text{ for all } a,b \in D.$$

A set of all Poisson derivations of D is denoted by  $\operatorname{PDer}_K(D)$ .

## 2. How do we get our Poisson algebra class A?

Lemma. [Oh] Let D be a Poisson algebra over a field K,  $c \in K$ ,  $u \in D$  and  $\alpha$ ,  $\beta \in \mathrm{PDer}_K(D)$  such that

$$\alpha\beta = \beta\alpha \quad and \quad \{d, u\} = (\alpha + \beta)(d)u \quad for \, all \, d \in D.$$
 (1)

Then the polynomial ring D[x,y] becomes a Poisson algebra with Poisson bracket

$$\{d,y\} = \alpha(d)y, \quad \{d,x\} = \beta(d)x \quad and \quad \{y,x\} = cyx + u \quad for \, all \, d \in D.$$
 (2)

The Poisson algebra D[x,y] with Poisson bracket (2) is denoted by  $(D;\alpha,\beta,c,u)$ .

### 3. How do we classify A?

We aim to classify all the Poisson algebra's  $\mathcal{A} = (K[t]; \alpha, \beta, c, u)$ , where K is an algebraically closed field of characteristic zero and K[t] is the polynomial Poisson algebra (with necessarily trivial Poisson bracket, i.e.  $\{a,b\}=0$  for all  $a,b\in K[t]$ ). Notice that, it follows from the second part of equality (1) that

$$0 = \{d, u\} = (\alpha + \beta)(d)u \text{ for all } d \in K[t],$$

which implies that precisely one of the three cases holds:

(Case I:  $\alpha + \beta = 0$  and u = 0), (Case II:  $\alpha + \beta = 0$  and  $u \neq 0$ ) or (Case III:  $\alpha + \beta \neq 0$  and u = 0).

## 4. What have we done so far?

The next lemma states that in order to complete the classification of Poisson algebra class  $\mathcal{A}$ . This lemma describes all commuting pairs of derivations of the polynomial Poisson algebra K[t].

Lemma. Let K[t] be the polynomial Poisson algebra with trivial Poisson bracket and  $\alpha, \beta \in PDer_K = Der_K(K[t]) = K[t]\partial_t$  such that  $\alpha = f\partial_t$  and  $\beta = g\partial_t$ , where  $f, g \in K[t] \setminus \{0\}, \partial_t = d/dt$  then

$$\alpha\beta = \beta\alpha$$
 if and only if  $g = \frac{1}{\lambda}f$  for some  $\lambda \in K^{\times} := K \setminus \{0\}.$  (3)

By using the previous lemma, we can assume that  $\alpha = f\partial_t$ ,  $\beta = \frac{1}{\lambda}f\partial_t$ ,  $c \in K$ ,  $u \in K[t]$ , where  $f \in K[t]$  and  $\lambda \in K^{\times}$ . Then we have the class of Poisson algebras  $\mathcal{A} = K[t][x,y] = (K[t]; \alpha = f\partial_t, \beta = \frac{1}{\lambda}f\partial_t, c, u)$  with Poisson bracket defined by the rule:

$$\{t,y\} = fy, \qquad \{t,x\} = \frac{1}{\lambda}fx \quad \text{ and } \quad \{y,x\} = cyx + u.$$
 (4)

## The first case of the classification

The first case (Case I) of the Poisson algebra class A has two main subcases: Case I.1 and Case I.2. The results were indicated in these six subcases  $A_2$ ,  $A_3$ ,  $A_6$ ,  $A_7$ ,  $A_9$  and  $A_{10}$ . Also, we presented some of their Poisson spectrum in diagrams in the poster called 'Poisson Algebras I' see the diagram 1.



Diagram 1: The 'Poisson Algebras I' poster

The first part of second case (Case II) of the classification is presented in this poster and the next diagram shows the second case structure.



 $\operatorname{Diagram} 2$ : Structure of the second case of Poisson algebra class  ${\mathcal A}$ 

Case II: 
$$\alpha + \beta = f\partial_t + \frac{1}{\lambda}f\partial_t = (1 + \frac{1}{\lambda})f\partial_t = 0$$
 and  $u \neq 0$ 

#### Case II.1:

If f = 0, i.e.  $\alpha = \beta = 0$  and  $u \in K[t] \setminus \{0\}$  then we have the Poisson algebra  $\mathcal{A}_{11} = (K[t]; 0, 0, c, u)$  with Poisson bracket

$$\{t,y\} = 0, \qquad \{t,x\} = 0 \qquad \text{and} \qquad \{y,x\} = cyx + u.$$
 (5)

There are two subcases: c = 0 and  $c \in K^{\times}$ .

Case II.1.1: If c = 0 then we have the Poisson algebra  $A_{12} = (K[t]; 0, 0, 0, u)$  with Poisson bracket

$$\{t,y\} = 0, \qquad \{t,x\} = 0 \qquad \text{and} \qquad \{y,x\} = u.$$
 (6)

There are two subcases:  $u \in K[t] \setminus K$  and  $u \in K^{\times}$ .

#### Case II.1.1.1:

If  $u \in K[t] \setminus K$  and  $R_u = \{\lambda_1, \dots, \lambda_s\}$  is the set of distinct roots of u then  $A_{13} = (K[t]; 0, 0, 0, u)$  is a Poisson algebra with Poisson bracket (6), we found  $PSpec(A_{13})$ , see diagram 3.



 ${f Diagram~3:}$  The containment information between Poisson prime ideals of  ${\cal A}_{13}$ 

#### Case II.1.1.2:

If  $u = a \in K^{\times}$ , i.e.  $R_a = \emptyset$  then we have the Poisson algebra  $A_{14} = (K[t]; 0, 0, 0, a)$  with Poisson bracket

$$\{t,y\} = 0, \qquad \{t,x\} = 0 \qquad \text{and} \qquad \{y,x\} = a.$$

The PSpec $(A_{14}) = \{0, (t - \nu) \mid \nu \in K\} \subseteq PSpec(A_{13}).$ 

Case II.1.2: If  $c \in K^{\times}$  then we have the Poisson algebra  $A_{15} = (K[t]; 0, 0, c, u)$  with Poisson bracket

$$\{t,y\} = 0, \qquad \{t,x\} = 0 \qquad \text{and} \qquad \{y,x\} = cyx + u := \rho.$$

There are two subcases:  $u \in K[t] \setminus K$  and  $u \in K^{\times}$ .

#### Case II.1.2.1:

If  $u \in K[t] \setminus K$  and  $R_u = \{\lambda_1, \dots, \lambda_s\}$  is the set of distinct roots of u then  $A_{16} = (K[t]; 0, 0, c, u)$  is a Poisson algebra with Poisson bracket

$$\{t,y\} = 0, \qquad \{t,x\} = 0 \qquad \text{and} \qquad \{y,x\} = \rho.$$
 (9)

It follows that the element  $\rho = cyx + u$  is an irreducible polynomial in  $\mathcal{A}_{16}$ . Moreover, we found  $PSpec(\mathcal{A}_{16})$ , see diagram 4



 ${f Diagram~4:}$  The containment information between Poisson prime ideals of  ${\cal A}_{16}$ 

## Case II.1.2.2:

If  $u = a \in K^{\times}$ , i.e.  $R_a = \emptyset$  then we have the Poisson algebra  $A_{17} = (K[t]; 0, 0, c, a)$  with Poisson bracket

$$\{t,y\} = 0, \qquad \{t,x\} = 0 \qquad \text{and} \qquad \{y,x\} = \rho.$$
 (10)

It follows that  $A_{17} = K[t] \otimes K[x,y]$  is a tensor product of the trivial Poisson algebra K[t] and the Poisson algebra K[x,y] with  $\{y,x\} = \rho$ . The element  $\rho = cyx + a$  is an irreducible polynomial in  $A_{17}$ . Moreover, we found  $PSpec(A_{17})$ , see diagram 5.



 ${f Diagram~5:}$  The containment information between Poisson prime ideals of  ${\cal A}_{17}$ 

## 5. Conclusion / Future research

A classification of Poisson prime ideals of  $\mathcal{A}$  was obtained in 10 cases out of 22. We will complete the classification of  $\mathcal{A}$ . Then we aim to classify some simple finite dimension modules over the class  $\mathcal{A}$ .

# Acknowledgements

I would like to thank my supervisor Vladimir for providing guidance and feedback throughout this research. Also, I would like to thank my sponsor the University of Imam Mohammad Ibn Saud Islamic.

## References

[Bav1] V. V. Bavula, The Generalized Weyl Poisson algebras and their Poisson simplicity criterion. Letters in Mathematical Physics, 110 (2020), 105 - 119.

[Bav2] V. V. Bavula, The PBW Theorem and simplicity criteria for the Poisson enveloping algebra and the algebra of Poisson differential operators, submitted, arxiv.2107.00321.

[GoWa] K. R. Goodearl and R. B. Warfield. An introduction to noncommutative noetherian rings. 2nd ed. New York: Cambridge University Press. (2004), pages 1-85, 105-122 and 166-186.

[Oh] S.-Q. Oh, Poisson polynomial rings. Communications in Algebra, **34** (2006), 1265 – 1277.