Arif Ali - MS Analytics, Georgetown 2111 Wisconsin Ave. #415 Washington, DC 20007

09/02/15 Analytics 511
G.W. Leibniz on Computing, 1685
<u>'</u>
D. Benoulli on Probabilistic Models, 1713
A D 44.
A. Be Moivre on Statistics, 1718
(outin's of the course.
· Probabilistic modeling: about four weeks
· Basic Stutistical, Methods: about four weeks
· Some advanced topics: whout weeks
Connection to other courses
· Needed for all other Proba Stut courses
· Optimization-methods
· Stutistical beauting theory, simulation, Regression
extends knowledge
them to succeed in this course
- OH/text/ virtual OH (BKype?)
- Weekly HW assignments (luss pout lipation
- (luss participation
- Midterm exam (60 minutes in-class / take home partium)
- Final Exum (in class and take-home)
- tulie home like home, but no dvill problem
Collaboration Rules
- check link

For HW, collaborate, don't hand in the same solution
- Form study group
- try problems by yourself first
- then ask for help, critize hum
Take-home exam
- no human vesource (no forum),
- we notes, books, black bound
, , , , , , , , , , , , , , , , , , , ,
Exum, no electronics, no notes
Frum, no electronics, no notes possible one page of notes
Huward surress 1,2,3,4,5 P(6) = 100
Jushua surress 4,5,6,7,11
, , , ,
A Probabilistic Model
- define success
- each event 12 independent?
- each event 12 independent? - success huppen with a fixed probability p
Reduction of data = for oft sumething, but is it important?
,
Implement this in R
mytoss = function (p) &
IN = VINIA F ()
x = as. numeric (uep)
return(x)
3

Computer represent numbers in bits 4 E (0,1) ~ 260 × 1018 vunif 1) has x 10'2 possibe values 7 (100+1) - 100 Vesult sums for 100 & 1000 7 (10¹20+1) - 10¹20 10¹20 1000 10¹20 1000 10/20 isn't stoved juto computer so computer has a represented umber 7 ((0 470+10000)-10 × 20 [] 163 N8 27 M The one wou't offect the value A function that simulates tosses until the first success and veturns the number of altempts my attempts = function (p) } (ounter < - 1 wh.le (mytoss(p) = = 0) { (outly - (outle + / } vetury (conter)

Probability theory

$$P'_{3} = P(1-p)^{3-1} \longrightarrow \text{seametric distribution}$$

$$for_{3} = 1,2,3,...$$

Expected

Let λ be a random variable

$$E(\lambda) = \sum_{j=1}^{\infty} j \cdot P(\lambda = j) = \sum_{j=1}^{\infty} j P(1-p)^{-1} = 1/p$$

Fix k

$$Y = \lambda_{1} + \lambda_{2} + \dots + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^{\infty} (X_{k}) = 1/p$$

$$E(\lambda) = \sum_{j=1}^{\infty} (X_{k}) + \sum_{j=1}^$$