

INDEX

1st 머신러닝이란?

7nd Feature

3rd 지도학습

4th 비지도학습

5th 강화학습

6th 머신러닝의 과정

7th 머신러닝의 한계

ORIENTATION

	운영진			
김진호	이승학	이효빈	주민지	윤성식
	월	lB		
전동균	김지민	한윤지	임지연	윤성식
	월	C		
황태균	이수현	이승준	박선혜	장성민
	월	D		
이성규	정승민	최여진	김태양	장성민
홍종현	이정호	하서경	이수빈	김예원
윤한빈	이예진	김희운	이현지	김예원

	운영진			
이상준	이상우	김나은	도지은	한보혜
	회	-D		
이경욱	한병규	구준회	이상현	한보혜
	수	A		
고민성	김은욱	최영재	유수빈	조영진
	수	:B		
최민석	김건우	김진비	천예은	조영진
장성현	조문주	김현지	이수민	마민정
나요셉	권유진	권수연	이태범	마민정

ORIENTATION

사시	날짜	수업내용	발표자
1	09/09	OT, 머신러닝 기초 (정의, 종류, 과정, 피처)	김예원
2	09/16	모델링1 (경사하강법, 회귀&분류 모델, 파라미터 튜닝1)	마민정
3	09/23	교차검증, 평가지표 (회귀&분류 평가지표)	김예원,한보혜
4	09/30	데이터 전처리 (결측치, 이상치, Scailing, Corr, PCA, FS)	윤성식
5	10/07	모델링2 (배깅, 랜덤포레스트, 파라미터 튜닝2)	조영진
6	10/28	컴페티션1 (Adaboost, GBM, XGB, LGBM)	장성민
7	11/04	컴페티션2 (Word Embedding)	윤성식
8	11/11	컴페티션3 (Ensemble, Voting, Stacking)	장성민
9	11/18	컴페티션4 (머신러닝 활용사례)	한보혜
10	11/25	컴페티션 최종 발표	-

1 머신러닝이란?

머신러닝이란?

- Machine learning, 단어 그대로 해석하면 기계 학습
- 기계가 일일이 코드로 명시하지 않은 동작을 데이터로부터 학습하여 실행할 수 있도록 하는 알고리즘을 개발하는 연구 분야라고 정의하기도 함
- 컴퓨터가 학습데이터를 통해 스스로 규칙을 찾을 수 있도록 하는 것이 머신러닝
- 우리 학과에서는 머신러닝을 통해 특정 값을 예측하는 방법을 배우게 됨

머신러닝이란?

기존 프로그래밍

- 스팸 메일의 일반적인 형태를 파악
- 스팸 메일로 예상되는 패턴을 컴퓨터에 직접 입력
- 프로그램을 테스트 하면서 위의 과정을 반복

- 모든 패턴을 수동으로 찾는 것은 불가
- 프로그램이 너무 길어짐

[규칙을 사용자가 입력]

머신러닝

- 일반적인 메일과 비교해 스팸 메일의 패턴을 컴퓨터가 학습을 통해 발견함
- Ex) 공짜, 대출 등의 키워드

- 많은 패턴을 발견해 사용 가능
- 프로그램이 짧아 관리에 용이함

[규칙을 컴퓨터가 찾음]

1 머신러닝이란?

머신러닝의 기본 구조

예측하고자 하는 값을 잘 찾을 수 있는 유의미한 feature 만들기

feature들을 모델에 넣어 학습 시키기

모델에서 예측한 값과 실제 값을 비교해 모델의 성 ____ 능 평가

Feature

- 특색, 관찰 대상에게서 발견된 개별적이고 측정가능한 경험적 속성
- 원시 데이터의 숫자적인 표현
- Feature는 모델에 학습시킬 데이터의 특성을 알려주는 정보로 머신러닝에서 모델의 성 능을 가장 크게 좌우하는 부분
- 우리가 배운 파이썬 문법을 활용해 feature를 만들어 모델로 학습시키면 찾고자 하는 예 측값을 얻을 수 있음
- 크게 범주형, 수치형 데이터로 나뉘고 일반적으로 데이터 전처리를 하는 데이터는 수치형 데이터!

2 Feature

Feature 例人

70	cust_id	tran_date	store_nm	goods_id	gds_grp_nm	gds_grp_mclas_nm	amount
0	0	2007-01-19 00:00:00	강남점	127105	기초 화장품	화장품	850000
1	0	2007-03-30 00:00:00	강남점	342220	니트	시티웨어	480000
2	0	2007-03-30 00:00:00	강남점	127105	기초 화장품	화장품	3000000
3	0	2007-03-30 00:00:00	강남점	342205	니트	시티웨어	840000
4	0	2007-03-30 00:00:00	강남점	342220	상품군미지정	기타	20000
	(See	18.05	1999	180	(444)	See S	(444)
163553	5981	2007-01-12 00:00:00	영등포점	50105	일반가공식품	가공식품	209000
163554	5981	2007-01-12 00:00:00	영등포점	50109	상품군미지정	기타	7150
163555	5981	2007-01-12 00:00:00	영등포점	50105	햄	축산가공	9500
163556	5981	2007-01-12 00:00:00	영등포점	50105	상품군미지정	기타	9500
163557	5981	2007-03-16 00:00:00	영등포점	77198	수입식품	차/커피	174800
395562 r	ows × 7	columns					

ì	cust_id	총구매액	구매건수	평균구매액	최대구매액
0	0	68282840	74	922741	11264000
1	1	2136000	3	712000	2136000
2	2	3197000	4	799250	1639000
3	3	16077620	44	365400	4935000
4	4	29050000	3	9683333	24000000
•••	***	***	***	(made	
5977	5977	82581500	14	5898679	23976000
5978	5978	480000	1	480000	480000
5979	5979	260003790	71	3662025	25750000
5980	5980	88991520	18	4943973	18120000
5981	5981	623700	10	62370	209000
5982 rd	ows × 5	columns			

raw data

feature

머신러닝의 유형

머신러닝의 유형 - 지도학습

지도 학습

- 지도 학습은 학습 데이터와 결과가 있을 때 학습하는 방법
- 정답이라 가정한 내용에 맞게 컴퓨터가 예측할 수 있도록 하는 과정
- 지도 학습은 분류와 회귀 문제로 나누어집니다.

분류

- 지도 학습 결과가 이산형, 범주형인 변수
- Ex) 성별 예측, 연령대 예측 등

회귀

- 지도 학습 결과가 연속형인 변수
- Ex) 키 예측, 가격 예측 등

머신러닝의 유형 - 비지도학습

비지도 학습

- 비지도 학습은 학습 데<u>이터만 있고 결과가 없을 때 학습하는 방법</u>
- 컴퓨터가 스스로 학습하는 것이라 평가하는 것이 쉽지 않음

군집

- 데이터를 비슷한 것들끼리 모으는 분석 방법
- Ex) 뉴스 기사 분류, 블로그 글의 주제 구분 등

차원 축소

- 변수의 차원을 줄이는 방법
- Ex) 시각화를 위해 데이터를 2차원으로 바꾸는 것, 많은 텍스트에서 주제 찾기 등

머신러닝의 유형 - 강화학습

강화 학습

- 강화 학습은 행동에 대한 보상을 받으며 학습하는 것
- 보상을 최대화하는 행동, 행동 순서를 선택하는 방법
- 대표적으로 게임이 있으며 게임에서 이기면 보상이 주어지는 것과 같은 원리

테트리스, 공으로 천장뚫기와 같은 게임들을 학습시키면 성능이 잘 나올 가능성이 높음!

강화학습 예시 영상 – 자동차 게임

stage 1

Domain Understanding and Data Collection stage 2

Data
Preprocessing

stage 3

Modeling and Ensemble stage 4

Prediction

Evaluation

stage 5

Deployment

stage 6

Domain Understanding and Data Collection

- 진행하고자 하는 프로젝트에 대해 전반적으로 이해하고 앞으로의 계획을 세움
- 어떤 데이터를 통해 어떤 예측값을 결과로 만들어낼 지에 대해 이해

90	cust_id	tran_date	store_nm	goods_id	gds_grp_nm	gds_grp_mclas_nm	amount
0	0	2007-01-19 00:00:00	강남점	127105	기초 화장품	화장품	850000
1	0	2007-03-30 00:00:00	강남점	342220	니트	시티웨어	480000
2	0	2007-03-30 00:00:00	강남점	127105	기초 화장품	화장품	3000000
3	0	2007-03-30 00:00:00	강남점	342205	니트	시티웨어	840000
4	0	2007-03-30 00:00:00	강남점	342220	상품군미지정	기타	20000
***	(9.50)	335	1309	1809	(***)	(644)	
163553	5981	2007-01-12 00:00:00	영등포점	50105	일반가공식품	가공식품	209000
163554	5981	2007-01-12 00:00:00	영등포점	50109	상품군미지정	기타	7150

Ex) 고객의 구매정보를 통해 고객의 성별을 예측하는 프로젝트

stage 2 stage 3 stage 4 stage 1 stage 5 stage 6 Domain Modeling Data Understanding **Prediction** and **Evaluation** Deployment Preprocessing and **Ensemble** Data Collection

Domain Understanding and Data Collection

- 프로젝트를 진행할 데이터를 수집하고 이해하는 단계
- 데이터가 가지고 있는 특성을 파악하고 EDA를 통해 데이터를 분석함
- EDA(<mark>탑색적 데이터 분석)</mark>는 데이터를 분석하고 결과를 내는 과정에 있어서 지속적으로 해당 데이터에 대한 '탐색과 이해' 를 기본으로 가져야 한다는 것을 의미
- 데이터 분포, 결측값, 이상치 등을 시각화를 통해 확인하면서 데이터를 분석함
- 데이터 자체에 대한 해석이 잘못되면 이후에 진행되는 모든 과정들이 적절한 방향으로 진행
 될 수 없기 때문에 데이터 전처리 과정, 특히 EDA가 머신러닝에서 매우 중요!

stage 3 stage 2 stage 1 stage 4 stage 5 stage 6 Domain Modeling Data Understanding **Prediction** and **Evaluation** Deployment and Preprocessing **Ensemble Data Collection**

Data Preprocessing (데이터 전처리)

- 데이터 전처리 과정으로 머신러닝에서 가장 많은 시간과 노력을 투자해야하는 단계
- 결측값, 이상치를 처리하고 feature를 만듦. 일반적으로 많은 feature를 만들어 두고 유의 미하다고 판단되는 feature를 feature selection을 통해 걸러내서 사용
- 모델이 값을 잘 예측할 수 있는 유의미한 feature를 제공해야 성능이 좋은 모델을 만들 수 있기 때문에 유의미한 feature를 만드는 것이 가장 중요!
- 예를 들어, 백화점에서 수집한 고객 자료를 토대로 고객의 성별을 예측하는 모델을 만들고
 싶을 때 주방용품 구매 비율 (주방용품 구매 횟수/전체 구매 횟수)과 같은 피처를 만들게 되면 모델이 여성을 잘 구분할 확률이 높아질 수 있음

stage 1	stage 2	stage 3	stage 4	stage 5	stage 6
Domain Understanding and Data Collection	Data Preprocessing	Modeling and Ensemble	Prediction	Evaluation	Deployment

Data Preprocessing (데이터 전처리)

- Feature를 다 만들면 프로젝트에서 설계할 모델을 내부적으로 평가하기 위해 정답으로 가 정할 데이터를 분리함
- 일반적으로 가지고 있는 데이터의 7~80%를 학습데이터로, 2~30%를 평가데이터(정답으로 가정할 데이터)로 사용

train(X_train)	train(y_train)
test(X_test)	test(y_test)

- 위에서 분리한 test는 우리가 만든 모델의 성능을 자체적으로 평가하기 위한 데이터이고 실
 제 데이터의 정답은 따로 있음!
- train_test_split(X_train, y_train, test_size=0.3)

stage 2 stage 3 stage 1 stage 4 stage 5 stage 6 Domain Modeling Data Understanding **Prediction** and **Evaluation** Deployment and Preprocessing Ensemble **Data Collection**

Modeling and Ensemble

- 데이터에 적합한 모델을 설계하는 과정으로 feature들이 X(입력값)가 되고 예측할 내용은 y(결과값)가 되어 학습함
- 정답이라고 가정한 데이터의 값과 모델을 통해 예측한 값의 차이가 적어질 수 있도록 학습 데이터를 통해 학습을 진행함
- 모델에서 사용되는 하이퍼파라미터를 조정하기도 함 (* 하이퍼파라미터는 모델링할 때 사용 자가 직접 세팅해주는 값)
- model.fit(X_train, y_train)

stage 1

Domain
Understanding
and
Data Collection

Data Preprocessing

stage 2

Modeling and Ensemble

stage 3

Prediction

stage 4

Evaluation

stage 5

Deployment

stage 6

Prediction

- 학습을 진행한 후에 결과값을 예측하는 단계
- X_train과 y_train으로 모델을 학습시켜 값을 예측할 수 있는 모델을 만들 수 있음
- 학습된 모델에 X_test값을 입력값으로 넣어주면 모델이 예측값을 반환
- model.predict(X_test)

stage 2 stage 3 stage 1 stage 4 stage 5 stage 6 Domain Modeling Data Understanding Prediction Evaluation and Deployment and Preprocessing **Ensemble Data Collection**

Evaluation

- 실제 정답과 모델을 통해 예측한 값의 차이 정도(오차)를 통해 잘 학습된 모델인지 아닌지 평가할 수 있음
- 이 때 과적할에 유의! (과적합 과대적합, 과소적합)
- 과대적합은 모델이 예측을 잘 하지만 너무 복잡해 일반성이 떨어진다는 의미이고 훈련한 데 <u>이터 외에 다른 데이터를 입력하면 성능이 현저히 떨어지</u>는 모습을 보임
- 과소적합은 모델이 너무 단순해서 데이터의 내재된 구조를 학습하지 못하는 것을 의미
- model.score(X_test, y_test)

stage 1

Domain Understanding and Data Collection stage 2

Data Preprocessing

stage 3

Modeling and Ensemble stage 4

Prediction

stage 5

Evaluation

_ _

Deployment

stage 6

Evaluation

- 편향(bias): 예측이 정답에서 얼마나 떨어져 있는지
- 분산(variance): 예측의 변동폭이 얼마나 큰지

Ex) 편향이 크면 과소적합, 분산이 크면 과대적합

stage 1

Domain Understanding and Data Collection stage 2

Data Preprocessing

stage 3

Modeling and Ensemble stage 4

Prediction

stage 5

stage 6

Evaluation Deployment

Evaluation

- 과대적합은 보다 단순한 모델을 사용하거나 feature의 수를 줄이는 등의 방법으로 해결

stage 1

Domain Understanding and Data Collection stage 2

Data Preprocessing

stage 3

Modeling and Ensemble stage 4

Prediction

stage 5

Evaluation

Deployment

stage 6

Deployment

- 머신러닝의 마지막 단계
- 모델을 학습시켰을 때 가장 성능이 좋았던 모델로 예측값을 도출하고 최종 제출할 submission 파일을 생성

7 머신러닝의 한계

- 과적합, 과도한 일반화로 인해 성능 향상에 한계가 있음
- 정답이 있는 대량의 데이터 필요
- 도출 결과의 설명력이 부족
- 기존 학습 모델의 재사용이 어려움 (금융분야에서 학습된 모델을 법률분야에 적용X)

8 과제

파이썬 문법들을 활용해 여러가지 숫자형(numeric) feature 만들어 보기 [10개 이상]

조별로 조 이름과 조장, 스터디 시간, 발표 순서 정해서 스 터디 보고서와 함께 구글 드라이브에 업로드하기

+

깃 강의 영상 시청하기

8 과제

PRODUCT

CLNT_ID	고객 id
SESS_ID	세션 id
HITS_SEQ	하트일련번호
PD_C	상품코드
PD_ADD_NM	상품추가정보
PD_BRA_NM	상품브랜드
PD_BUY_AM	단일상품금액
PD_BUY_CT	구매건수

SEARCH

KWD_NM	검색키워드명	
SEARCH_CNT	검색건수	

MASTER

PD_C	상품코드
PD_NM	상품명
CLAC1_NM	상품대분류명
CLAC2_NM	상품중분류명
CLAC3_NM	상품소분류명

SESSION

SESS_SEQ	세션일련번호
SESS_DT	세션일자
TOP_PAG_VIW_CT	총페이지조회건수
TOT_SESS_HR_V	총세션시간값
DVC_CTG_NM	기기유형
ZON_NM	지역대분류
CITY_NM	지역중분류

THANK YOU