

A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces, *Dokl. Akad. Nauk SSSR*, 1958, Volume 119, Number 5, 861–864

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details:

IP: 131.111.5.182

November 13, 2018, 16:40:17

MATEMATUKA

Академик А. Н. КОЛМОГОРОВ

НОВЫЙ МЕТРИЧЕСКИЙ ИНВАРИАНТ ТРАНЗИТИВНЫХ ДИНАМИЧЕСКИХ СИСТЕМ И АВТОМОРФИЗМОВ ПРОСТРАНСТВ ЛЕБЕГА

Хорошо известно, что значительная часть метрической теории динамических систем может быть изложена как абстрактная теория «потоков» $\{S_t\}$ на «пространствах Лебега» M с мерой μ в терминах, инвариантных по отношению к «изоморфизмам по модулю нуль» (см. обзорную статью В. А. Рохлина $(^1)$, к которой дальнейшее изложение примыкает в отношении определений и обозначений). Меру на M мы будем предполагать нормированной условием

$$\mu\left(M\right) = 1\tag{1}$$

и нетривиальной (т. е. предполагать существование множества $A \subseteq M$ с $0 < \mu(A) < 1$). Известно много примеров транзитивных автоморфизмов и транзитивных потоков с так называемым «счетнократным лебеговским спектром» (для автоморфизмов см. (1), § 4, для потоков (2^{-5})). Со спектральной точки зрения мы имеем здесь один тип автоморфизмов \mathfrak{L}_0^ω и один тип потоков \mathfrak{L}^{ω} . Вопрос о том, не являются ли все автоморфизмы типа \mathfrak{L}_0^{ω} (соответственно, потоки типа \mathfrak{L}^{ω}) друг другу изоморфными mod 0, оставался до сих пор открытым. Мы показываем в §§ 3—4, что ответ на этот вопрос отрицателен как в случае автоморфизмов, так и в случае потоков. Новый инвариант, позволяющий расщепить класс автоморфизмов \mathfrak{L}_0^{ω} и класс потоков \mathfrak{L}^{ω} на континуум инвариантных подклассов, есть энтропия на единицу времени. В § 1 излагаются необходимые сведения из теории информации (вводимые здесь понятия условной энтропии и условной информации и их свойства имеют, вероятно, и более широкий интерес, хотя все изложение непосредственно примыкает к определению количества информации из (7) и многочисленным работам, развивающим это определение. В § 2 дается определение характеристики h и доказывается ее инвариантность. В §§ 3—4 указываются примеры автоморфизмов и потоков с произвольными значениями h в пределах $0 < h \le \infty$. В случае автоморфизмов дело идет о примерах давно построенных, в случае потоков построение примеров с конечным h — задача более деликатная и связанная с некоторыми любопытными вопросами теории марковских процессов.

§ 1. Свойства условной энтропии и условного количества информации. В соответствии с (1), обозначаем через $\mathfrak S$ булевскую алгебру измеримых множеств пространства M, рассматриваемых $\mathrm{mod}\,0$. Пусть $\mathfrak S$ — замкнутая в метрике $\rho(A,B)=\mu((A-B)\cup(B-A))$ подалгебра алгебры $\mathfrak S$. Она порождает определенное $\mathrm{mod}\,0$ разбиение $\mathfrak K_{\mathfrak S}$ пространства M, определяемое тем условием, что $A \in \mathfrak S$ в том и только в том случае, когда $\mathrm{mod}\,0$ все A может быть составлено из полных элементов разбиения $\mathfrak K_{\mathfrak S}$. На элементах C разбиения $\mathfrak K_{\mathfrak S}$ определяется «каноническая система мер $\mathfrak L_{\mathcal S}$ » (1). Для любого $\mathfrak X \in C$ будем считать

$$\mu_{x}(A \mid \mathfrak{C}) = \mu_{C}(A \cap C). \tag{2}$$

 ${f C}$ точки зрения теории вероятностей (где любая измеримая функция элемента $x \in M$ называется «случайной величиной») случайная величина $\mu_{\mathbf{x}}(A \mid \mathbf{\mathfrak{C}})$ есть «условная вероятность» события А при известном исходе «испытания» **С** ((6), гл. I, § 7).

Для трех подалгебр \mathfrak{A} , \mathfrak{B} и \mathfrak{C} алгебры \mathfrak{S} и $\mathfrak{c} \in \xi_{\mathfrak{C}}$ положим:

$$I_{C}(\mathfrak{A}, \mathfrak{B} \mid \mathfrak{C}) = \sup \sum_{i,j} \mu_{x} (A_{i} \cap B_{j}) \log \frac{\mu_{x} (A_{i} \cap B_{j})}{\mu_{x} (A_{i}) \mu_{x} (B_{j})}, \qquad (3)$$

где верхняя грань берется по всем конечным разложениям $M = A_1 \cup A_2 \cup \dots$ A_n , $M=B_1\cup B_2\cup\ldots\cup B_n$, для которых $A_i\cap A_j=N$, $B_i\cap B_j=N$, $i\neq j$, $A_i\in\mathfrak{A}$ $B_j\in\mathfrak{B}(N-n)$ стое множество). Если \mathfrak{C} есть тривиальная алгебра $\mathfrak{N}=\{N,\,M\}$, то (3) переходит в определение безусловной информации $I(\mathfrak{A},\,\mathfrak{B})$ из приложения 7 к (7)*. Сама величина (3) интерпретируется как «количество информации в результатах испытания 🎗 относительно испытания $\mathfrak B$ при известном исходе C испытания $\mathfrak C$ ». Если не фиксировать $C \in \xi_{\mathbf{G}}$, то естественно рассматривать случайную $I\left(\mathfrak{A},\,\mathfrak{B}\,|\,\mathfrak{C}
ight)$, которая при $x\in C$ равна $I_{x}\left(\mathfrak{A},\,\mathfrak{B}\,|\,\mathfrak{C}
ight)=I_{C}\left(\mathfrak{A},\,\mathfrak{B}\,|\,\mathfrak{C}
ight)$. Далее мы будем иметь дело с ее математическим ожиданием

$$\mathbf{M} I(\mathfrak{A}, \mathfrak{B} \mid \mathfrak{C}) = \int_{\mathfrak{M}} I_{x}(\mathfrak{A}, \mathfrak{B} \mid \mathfrak{C}) \mu(dx). \tag{4}$$

Не требуют особых пояснений определения условной энтропии и средней условной энтропии $H(\mathfrak{A} \mid \mathfrak{C}) = I(\mathfrak{A}, \mathfrak{A} \mid \mathfrak{C}), \ \mathbf{M} H(\mathfrak{A}, \mathfrak{C}) = \int_{M} H_{x}(\mathfrak{A} \mid \mathfrak{C}) \mu(dx).$

Отметим те свойства условного количества информации и условной энтропии, которые нам понадобятся далее. Свойства (α) и (δ) для случая безусловных количества информации и энтропии общеизвестны, свойство (в) для безусловного количества информации составляет содержание теоремы 2 из заметки (8). Свойства (β) и (γ) доказываются без труда. По поводу свойства (β) следует лишь заметить, что аналогичное предложение для количества информации (из $\mathfrak{C} \supseteq \mathfrak{C}'$ вытекает: $I(\mathfrak{A},\mathfrak{B}|\mathfrak{C}) \leqslant I(\mathfrak{A},\mathfrak{B}|\mathfrak{C}')$) было бы уже ошибочным. С этим связано то обстоятельство, что в свойстве (ζ) стоит нижний предел и знак >: соответствующий предел может не существовать, а нижний предел может в некоторых случаях оказаться больше $MI(\mathfrak{A},\mathfrak{B}|\mathfrak{C})$.

(α) $I(\mathfrak{A},\mathfrak{B}|\mathfrak{C}) \leqslant H(\mathfrak{A}|\mathfrak{C})$, равенство заведомо достигается при $\mathfrak{B}\supseteq \mathfrak{A}$. (β) Если $\mathfrak{C}\supseteq \mathfrak{C}'$, то $H(\mathfrak{A}|\mathfrak{C}) \leqslant H(\mathfrak{A}|\mathfrak{C}')$, mod 0. (γ) Если $\mathfrak{B}\supseteq \mathfrak{B}'$, то $MI(\mathfrak{A},\mathfrak{B}|\mathfrak{C})=MI(\mathfrak{A},\mathfrak{B}'|\mathfrak{C})+MI(\mathfrak{A},\mathfrak{B}|\mathfrak{C}\vee\mathfrak{B})$,

еде $\mathfrak{C} \vee \mathfrak{B}'$ — минимальная замкнутая алеебра, содержащая \mathfrak{C} и \mathfrak{B}' .

(8) Если $\mathfrak{B} \supseteq \mathfrak{B}'$, то $MI(\mathfrak{A}, \mathfrak{B} | \mathfrak{C}) \geqslant MI(\mathfrak{A}, \mathfrak{B}' | \mathfrak{C})$.

(8) Если $\mathfrak{A}_1 \subseteq \ldots \subseteq \mathfrak{A}_n \subseteq \ldots, \cup \mathfrak{A}_n = \mathfrak{A}$, то $\lim_{n \to \infty} MI(\mathfrak{A}_n, \mathfrak{B} | \mathfrak{C}) = MI(\mathfrak{A}_n, \mathfrak{B} | \mathfrak{C})$.

(4) Если $\mathfrak{C}_1 \supseteq \mathfrak{C}_2 \supseteq \ldots \supseteq \mathfrak{C}_n \supseteq \ldots, \bigcap_{n \to \infty} \mathfrak{C}_n = \mathfrak{C}$, то $\lim_{n \to \infty} \inf MI(\mathfrak{A}_n, \mathfrak{B} | \mathfrak{C}_n) \geqslant 0$.

 \gg M $I(\mathfrak{A},\mathfrak{B}|\mathfrak{C})$.

§ 2. Определение инварианта h. Будем говорить, что поток $\{S_t\}$ квазирегулярен (имеет тип \Re), если ** существует замкнутая подалгебра \mathfrak{S}_0 алгебры \mathfrak{S} , сдвиги которой $\mathfrak{S}_t = S_t \mathfrak{S}_0$ обладают следующими свойствами: (I) $\mathfrak{S}_t \subseteq \mathfrak{S}_{t'}$, если $t \leqslant t'$. (II) $\bigcup_t \mathfrak{S}_t = \mathfrak{S}$. (III) $\bigcap_t \mathfrak{S}_t = \mathfrak{R}$.

** Это условие значительно слабее, чем условия «регулярности», обычно упот-ребляемые в теории случайных процессов. См. об этом в конце § 4.

^{*} Авторы заметки (8) не обратили своевременно внимания на приложение 7 к (7), не включенное в русский перевод (9). Заметка (8) должна была бы начинаться со ссылки

При интерпретации потока как стационарного случайного процесса \mathfrak{S}_t может рассматриваться как алгебра событий, «зависящих лишь от течения процесса до момента времени t». Легко доказывается, что потоки типа \mathfrak{R} транзитивны, а из результатов Плеснера (10 , 11) можно вывести, что они имеют однородный лебеговский спектр. Если кратность спектра равна \mathfrak{V} ($\mathfrak{V}=1,2,\ldots,\omega$), то отнесем поток к типу $\mathfrak{R}^{\mathfrak{V}}$. Очевидно, что $\mathfrak{R}^{\mathfrak{V}} \subseteq \mathfrak{L}^{\mathfrak{V}}$, где $\mathfrak{L}^{\mathfrak{V}}$ — класс потоков с лебеговским спектром однородной кратности \mathfrak{V} . Возможно, впрочем, что все $\mathfrak{L}^{\mathfrak{V}}$ (и, следовательно, $\mathfrak{R}^{\mathfrak{V}}$), кроме $\mathfrak{L}^{\mathfrak{W}}(\mathfrak{R}_{\mathfrak{Q}}^{\mathfrak{W}})$, пусты и что $\mathfrak{R}^{\mathfrak{W}}=\mathfrak{L}^{\mathfrak{W}}$.

Теорема 1. Если для потока $\{S_t\}$ существует \mathfrak{S}_0 , удовлетворяющее условиям (I) — (III), то при $\Delta > 0$ **М** $H(\mathfrak{S}_{t+\Delta} \mid \mathfrak{S}_t) = h\Delta$, где h — констан-

та, лежащая в пределах $0 < h \leqslant \infty$.

Теорема 2. Константа h для данного потока $\{S_t\}$ не зависит от выбора \mathfrak{S}_0 , удовлетворяющего условиям (I)—(III).

Наметим здесь доказательство теоремы 2. Пусть двум \mathfrak{S}_0 и \mathfrak{S}_0' соответствуют $h < \infty$ и h'. В силу теоремы 1 и лемм (α) и (ϵ) для любого $\epsilon > 0$ можно найти такое k, что

$$h = \mathbf{M} H (\mathfrak{S}_{t+1} | \mathfrak{S}_t) = \mathbf{M} I (\mathfrak{S}_{t+1}, \mathfrak{S} | \mathfrak{S}_t) \leqslant \mathbf{M} I (\mathfrak{S}_{t+1}, \mathfrak{S}'_{t+k} | \mathfrak{S}_t) + \varepsilon.$$
 (5)

Из (5), в силу леммы (ζ), вытекает существование такого m, что

$$h \leqslant \mathbf{M} I\left(\mathfrak{S}_{t+1}, \mathfrak{S}'_{t+k} \middle| \mathfrak{S}_{t} \bigvee \mathfrak{S}'_{s}\right) + 2\varepsilon$$
 при $t - s \geqslant m$. (6)

Из (6) и лемм (δ), (γ), (α), (β) (применять в указанном порядке!):

$$nh \leqslant \sum_{t=0}^{n-1} \mathbf{M} I \left(\mathfrak{S}_{t+1}, \, \mathfrak{S}'_{t+h} \, \middle| \, \mathfrak{S}_{t} \bigvee \mathfrak{S}'_{-m} \right) + 2n\varepsilon \leqslant$$

$$\leqslant \sum_{t=0}^{n-1} \mathbf{M} I \left(\mathfrak{S}_{t+1}, \, \mathfrak{S}'_{n+h} \, \middle| \, \mathfrak{S}_{t} \bigvee \mathfrak{S}'_{-m} \right) + 2n\varepsilon =$$

$$(\delta)$$

$$= \mathbf{M} I (\mathfrak{S}_{x}, \mathfrak{S}'_{n+k} | \mathfrak{S}_{0} \vee \mathfrak{S}'_{-m}) + 2n\varepsilon \leqslant (\gamma)$$

$$(\alpha)$$

$$\leqslant$$
 M $H (\mathfrak{S}'_{n+k} | \mathfrak{S}_0 \bigvee \mathfrak{S}'_{-m}) + 2 \mathfrak{s} n \leqslant (\beta)$

$$\leqslant \mathbf{M} H \left(\mathfrak{S}'_{n+k} \middle| \mathfrak{S}'_{-m} \right) + 2n\varepsilon =
= (n+k+m)h' + 2n\varepsilon,
h \leqslant \frac{n+k+m}{n}h' + 2\varepsilon.$$
(7)

Так как $\epsilon > 0$ и n произвольны (причем n выбирается после фиксирования k и m), то из (7) вытекает неравенство $h \leqslant h'$. Это неравенство вполне аналогично доказывается и в случае $h = \infty$. Аналогично доказывается обратное неравенство $h' \leqslant h$, чем и заканчивается доказательство теоремы 2.

§ 3. Инварианты автоморфизмов. Если в § 2 считать, что t принимает только целые значения, то $\{S_t\}$ однозначно определяется автоморфизмом $T = S_1$. В силу теорем 1 и 2 существует инвариант $0 < h(T) \le \infty$.

Легко доказывается, что любой автоморфизм типа \Re_0 (индекс стоит для отличия от случая потоков с непрерывным временем) имеет счетно-кратный лебеговский спектр, т. е. из классов \Re_0^{\vee} не пуст только класс $\Re_0^{\omega} \subseteq \Omega_0^{\omega}$. Он распадается по значениям h(T) на классы $\Re_0^{\omega}(h)$.

 \overline{T} е о р е м а 3. Для любого h, $0 < h \leqslant \infty$, существует автоморфизм, принадлежащий $\mathfrak{R}_0^{\omega}(h)$.

Соответствующие примеры хорошо известны и получаются, например,

из схемы независимых случайных испытаний $\mathfrak{L}_{-1},\,\mathfrak{L}_{0},\,\mathfrak{L}_{1},\,\ldots,\,\mathfrak{L}_{t},\ldots$ с распределением вероятностей исхода ξ_t испытания \mathfrak{L}_t

$$\mathbf{P}\{\xi_t = a_i\} = p_i, \quad -\sum_{i=1}^{\infty} p_i \log p_i = h.$$
 (8)

Пространство M составляется из последовательностей $x=(\ldots,\,x_{-1},\,x_0,\,x_1,\ldots,\,x_t,\ldots),\,x_t=a_1,\,a_2,\ldots,$ а сдвиг Tx=x' определяется формулой $x_{t}^{'}=x_{t-1}$. Мера μ на M определяется как прямое произведение вероятностных мер (8).

§ 4. Йнварианты потоков. Теорема 4. Для любого h, $0 < h < \infty$, существует поток класса $\mathfrak{R}^{\omega}\left(h
ight),\; \pmb{m.~e.}$ поток со счетнократным лебеговским спектром и заданным значением константы h.

По аналогии с § 3 естественно возникает идея — воспользоваться для доказательства теоремы 4 вместо схемы дискретных независимых испытаний схемой «процессов с независимыми приращениями», или обобщенных процессов «с независимыми значениями» (12, 13). Однако этот путь приводит лишь к потокам класса $\Re^{\omega}(\infty)$ (5). Для получения конечных значений hприходится воспользоваться более искусственным построением. В этой заметке возможно только дать описание одного из таких построений.

Определим взаимно независимые случайные величины ξ_n , соответствующие всем целым n, распределениями их значений: $P(\xi_0 = k) = 3/4^k$, k = 1, $2,\dots$, а при $n \neq 0$ $\mathbf{P}\{\xi_n = k\} = 1/2^k$, $k = 1, 2, \dots$ Точку τ_0 на оси t расположим в случае $\xi_0 = k$ с равномерным распределением вероятностей на отрезке $-u/2^k \leqslant \tau_0 \leqslant 0$, а точки τ_n при $n \neq 0$ определим из соотношения $\tau_{n+1} = \tau_n + u/2^{\xi_n}.$

Положим $\varphi(t)=\xi_n$ при $\tau_n \leqslant t < \tau_{n+1}$. Легко проверить, что распределение случайной функции $\varphi\left(t
ight)$ инвариантно по отношению к сдвигам $S_t \varphi \left(t_0 \right) = \varphi \left(t_0 - t \right)$. Йегко подсчитать, что $h \left\{ S_t \right\} = 6/u$ (на единицу времени падает в среднем 3/u точек τ_n , а на каждое ξ_n приходится энтропия

$$\sum_{k=1}^{\infty} \frac{k}{2^k} = 2 \right).$$

Можно получить более наглядное представление о нашем случайном процессе, если включить в описание его состояния $\omega(t)$ в момент времени t, кроме величины $\varphi(t)$, еще значение $\delta(t) = t - \tau^*(t)$ разности между t и ближайшей слева от t точки τ_n . При таком способе описания наш процесс оказывается стационарным марковским процессом. Он заслуживает лишь название «квазирегулярного», так как, хотя соответствующая ему динамическая система транзитивна, значение разности $f(\omega(t),t)=$ $= au^{ullet}(t)=t-\delta(t)$ определяется с то ч н о с ть ю до д в о и ч н о р а ц и о н а л ьного слагаемого поведением реализации процесса в сколь угодно далеком прошлом.

Поступило 21 I 1958

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. А. Рохлин, Усп. матем. наук, 4, 2 (30) (1949). ² И. М. Гельфанд, С. В. Фомин, Усп. матем. наук, 7, 1 (47) (1952). ³ С. В. Фомин, Укр. матем. журн., 2, № 2, (1950). ⁴ К. І t ô, Japan J. Math., 22, 63 (1952). ⁵ К. І t ô, Trans. Am. Math. Soc., 81, 253 (1956). ⁶ Дж. л. Дуб, Вероятностные процессы, ИЛ, 1956. ⁷ С. Е. S hannon, W. Weaver, The Mathematical Theory of Communications, 1949. ⁸ И. М. Гельфанд, А. Н. Колмогоров, А. М. Яглом, ДАН, 111, №4 (1956). ⁸ К. Шэннон, Сборн. Теория передачи электрических сигналов при наличии помех, ИЛ, 1953. ¹⁰ А. И. Плеснер, ДАН, 23, № 4 (1939). ¹¹ А. И. Плеснер, ДАН, 25, № 9 (1939). ¹² К. І t 8, Мет. Coll. Sci. Univ. Kyoto, 18, № 3 (1954). ¹³ И. М. Гельфанд, ДАН, 100, № 5 (1955).