kmu Technical Documentation

KMU Next-Generation System - Technical Overview

프로젝트 개요

기간: 2021.09 ~ 2022.04 (8개월) **소속**: ㈜조인트리 **역할**: 인프라·시스템 엔지니어 **프로젝트**: 국민대학교 차세대 정보시스템 구축 **규모**: 대학 전체 IT 인프라 차세대 시스템 전환

시스템 아키텍처

네트워크 세분화 (Micro-Segmentation)

기술 스택: VMware NSX-T, UTM (Unified Threat Management)

구성: - Zone-based Segmentation: 업무 특성에 따른 네트워크 zone 분리 - Micro-segmentation: 애 플리케이션 레벨 트래픽 제어 - Zero Trust 아키텍처: 모든 트래픽 검증 및 제어

효과: - 측면 이동(Lateral Movement) 공격 차단 - 네트워크 장애 영향 범위 최소화 - 보안 정책 세밀화

보안 솔루션 통합 운영

1. NAC (Network Access Control)

목적: 단말 접속 제어 및 보안 정책 준수

기능: - 단말 인증 및 등록 관리 - 보안 정책 준수 검사 (백신, 패치 상태) - 비인가 단말 접속 차단 - MAC 주소 기반 접근 제어

성과: - 비인가 단말 접속 차단율 95% - 단말 보안 정책 준수율 90% 이상

2. DLP (Data Loss Prevention)

목적: 민감정보 유출 방지

기능: - 개인정보(주민등록번호, 계좌번호 등) 탐지 - 이메일/USB/네트워크 경로 차단 - 민감 문서 암호화 강제 - 실시간 콘텐츠 검사

성과: - 민감정보 탐지율 20% 향상 (탐지 누락 50건 → 10건/월) - DLP 룰 재설계로 오탐 30% 감소

3. APT (Advanced Persistent Threat) 방어

목적: 지능형 지속 위협 탐지 및 대응

기능: - 샌드박스 기반 악성코드 분석 - 제로데이 공격 탐지 - C&C (Command & Control) 통신 차단 - 행위 기반 위협 분석

성과: - 월 평균 200건 위협 차단 - 침해사고 예방률 80% 달성

오픈소스 기반 보안 모니터링

OSS (Open Source Software) 모니터링 시스템 구축

기술 스택: - ELK Stack: Elasticsearch, Logstash, Kibana - Grafana: 실시간 대시보드 - Prometheus: 메트릭 수집 및 알림 - Zabbix: 인프라 모니터링

구성: 1. **로그 수집**: Logstash를 통한 보안 장비 로그 수집 2. **로그 분석**: Elasticsearch 기반 로그 분석 및 검색 3. **시각화**: Kibana 대시보드를 통한 실시간 모니터링 4. **알림**: Prometheus AlertManager를 통한 이벤트 알림

효과: - 보안 이벤트 탐지 시간 70% 단축 - 통합 대시보드를 통한 가시성 확보 - 상용 솔루션 대비 비용 절감

주요 성과

1. 안정성 향상

목표: 시스템 안정성 및 가용성 향상

구현: - 네트워크 세분화를 통한 장애 격리 - 이중화 아키텍처 구축 - 실시간 모니터링 체계 구축

성과: - 네트워크 장애율 25% 감소 (월 12건 \rightarrow 9건) - 서비스 가용률 99.9% 유지 (연간 다운타임 8.7시간 이하) - 장애 복구 시간(MTTR) 40% 단축

2. 보안 강화

목표: 다층 보안 체계 구축 및 위협 대응 능력 향상

구현: - NAC, DLP, APT 통합 운영 - Zero Trust 네트워크 아키텍처 - 실시간 위협 모니터링

성과: - 침해사고 예방률 80% 달성 (월 200건 위협 차단) - 민감정보 유출 시도 100% 차단 - 보안 이벤트 대응 시간 50% 단축

3. 정책 최적화

목표: 보안 정책 정교화 및 운영 효율성 향상

구현: - DLP 룰 재설계 (패턴 최적화) - NAC 정책 정비 (단말 그룹별 차별화) - 네트워크 세분화 정책 수립

성과: - DLP 오탐률 30% 감소 - NAC 정책 적용 시간 50% 단축 - 보안 정책 준수율 90% 이상

4. 고가용성 구현

목표: 무중단 서비스 제공

구현: - Active-Active 이중화 - Load Balancer 구성 - Failover 자동화

성과: - 연간 다운타임 8.7시간 이하 (99.9% 가용성) - Failover 시간 30초 이내 - 장애 영향 범위 최소화

기술 스택

Network Security

• Micro-Segmentation: VMware NSX-T

• **UTM**: Unified Threat Management

• Firewall: Next-Generation Firewall

Endpoint Security

• NAC: Network Access Control

• **DLP**: Data Loss Prevention

• APT: Advanced Persistent Threat Defense

Monitoring & Logging

• ELK Stack: Elasticsearch, Logstash, Kibana

• Grafana: Metrics Visualization

• Prometheus: Metrics Collection & Alerting

• Zabbix: Infrastructure Monitoring

Infrastructure

• Virtualization: VMware vSphere

Load Balancer: F5 BIG-IPStorage: Enterprise SAN

핵심 역량

- 1. **네트워크 세분화**: VMware NSX-T 기반 Micro-segmentation 설계 및 구축
- 2. **통합 보안 운영**: NAC, DLP, APT 등 다층 보안 솔루션 통합 관제
- 3. OSS 모니터링: ELK Stack, Grafana 기반 실시간 보안 모니터링 시스템 구축
- 4. 고가용성 아키텍처: 이중화 및 Failover 자동화를 통한 99.9% 가용성 달성
- 5. 정책 최적화: 보안 정책 정교화를 통한 오탐 감소 및 운영 효율성 향상

교훈 및 인사이트

1. 네트워크 세분화의 중요성

VMware NSX-T를 활용한 Micro-segmentation은 측면 이동 공격을 효과적으로 차단하고, 장애 영향 범위를 최소화합니다. Zero Trust 아키텍처의 핵심 요소입니다.

2. 통합 보안 운영의 효율성

NAC, DLP, APT를 통합 운영하여 월 200건의 위협을 차단했습니다. 각 솔루션의 로그를 ELK Stack으로 통합하여 가시성을 확보한 것이 핵심입니다.

3. OSS 기반 모니터링의 장점

상용 SIEM 솔루션 대신 ELK Stack과 Grafana를 활용하여 비용을 절감하고, 커스터마이징을 통해 유연한 모니터링 체계를 구축했습니다.

4. 정책 최적화의 실질적 효과

DLP 룰 재설계로 민감정보 탐지율을 20% 향상시키고 오탐을 30% 감소시켰습니다. 보안 정책은 지속적인 최적화가 필요합니다.

문서 작성일: 2025-10-20 작성자: 이재철 (인프라·보안 엔지니어)