$$I^{G}(J^{PC}) = 1^{-}(4^{+})$$

a₄(2040) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN CHG	COMMENT
1995 + 10 OUR	AVERAGE	Error includes s	cale fa	actor of 1.1.	
1900^{+80}_{-20}		ADOLPH	15	COMP	$191 \ \pi^- p \rightarrow \ \eta^{(\prime)} \pi^- p$
$1885\pm13^{+50}_{-2}$	420k	ALEKSEEV	10	COMP	$190 \begin{array}{c} \pi^- Pb \rightarrow \\ \pi^- \pi^- \pi^+ Pb' \end{array}$
$1985 \pm 10 \pm 13$	145k	LU	05	B852	$18 \pi^{-} \stackrel{\pi}{p} \rightarrow \omega \pi^{-} \pi^{0} p$
$1996\!\pm\!25\!\pm\!43$		CHUNG	02	B852	$18.3 \pi^- p \rightarrow 3\pi p$
2005^{+25}_{-45}		¹ ANISOVICH	01F	SPEC	$2.0 \overline{p} p \rightarrow 3\pi^0, \pi^0 \eta,$
$2000 \pm 40 {+} 60 \\ -20$		IVANOV	01	B852	$18 \pi^- p \rightarrow \eta' \pi^- p$
1944 \pm 8 \pm 50		² AMELIN	99	VES	$37 \pi^- A \rightarrow \omega \pi^- \pi^0 A^*$
2010 ± 20		³ DONSKOV	96	GAM2 0	$38 \pi^- p \rightarrow \eta \pi^0 n$
2040 ± 30		⁴ CLELAND	82B	SPEC \pm	$50 \pi p \rightarrow K_S^0 K^{\pm} p$
2030 ± 50		⁵ CORDEN	7 8C	OMEG 0	$15 \pi^- p \rightarrow 3\pi n$
• • • We do not use the following data for averages, fits, limits, etc. • •					
2004± 6	80k	⁶ UMAN	06	E835	$5.2 \overline{p} p \rightarrow \eta \eta \pi^0$
1903 ± 10		⁷ BALDI	78	SPEC -	$10 \pi^- p \rightarrow p K_S^0 K^-$

 $^{^{}m 1}$ From the combined analysis of ANISOVICH 99C, ANISOVICH 99E, and ANISOVICH 01F.

a₄(2040) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN CHG	COMMENT
257 ⁺ 25 OUR	AVERAGE	Error includes s	cale fa	actor of 1.3. S	ee the ideogram below.
300^{+80}_{-100}		ADOLPH	15	COMP	$191 \ \pi^- p \rightarrow \ \eta^{(\prime)} \pi^- p$
$294\pm\ 25{+46\atop -19}$	420k	ALEKSEEV	10	COMP	$ \begin{array}{c} 190 \ \pi^{-} Pb \to \\ \pi^{-} \pi^{-} \pi^{+} Pb' \\ 18 \ \pi^{-} p \to \omega \pi^{-} \pi^{0} p \end{array} $
$231\pm\ 30\pm46$	145k	LU	05	B852	$18 \pi^- p \rightarrow \omega \pi^- \pi^0 p$
$298 \pm 81 \pm 85$		CHUNG	02	B852	$18.3 \pi^- p \rightarrow 3\pi p$
$180\pm~30$		$^{ m 1}$ ANISOVICH	01F	SPEC	$2.0 \ \overline{p}p \rightarrow 3\pi^0, \pi^0\eta,$
					$\pi^0 \eta'$

Created: 5/30/2017 17:20

² May be a different state.

 $^{^3}$ From a simultaneous fit to the G_+ and G_0 wave intensities.

 $^{^4}$ From an amplitude analysis. 5 $J^P=4^+$ is favored, though $J^P=2^+$ cannot be excluded.

 $^{^6}$ Statistical error only. 7 From a fit to the Y_8^0 moment. Limited by phase space.

$350\pm100^{+70}_{-50}$	IVANOV	01	B852	$18 \pi^- p \rightarrow \eta' \pi^- p$
$324\pm\ 26\pm75$	² AMELIN	99	VES	$37 \pi^- A \rightarrow \omega \pi^- \pi^0 A^*$
370± 80	³ DONSKOV	96	GAM2 0	$38 \pi^- p \rightarrow \eta \pi^0 n$
380 ± 150	⁴ CLELAND	82B	SPEC \pm	$50 \pi p \rightarrow K_S^0 K^{\pm} p$
510 ± 200	⁵ CORDEN	78 C	OMEG 0	$15 \pi^- \rho \rightarrow 3\pi n$
• • • We do not use the fo	ollowing data for a	verag	es, fits, limits,	etc. • • •
401± 16 80k	⁶ UMAN	06	E835	$5.2 \overline{p} p \rightarrow \eta \eta \pi^0$
166± 43	⁷ BALDI	78	SPEC -	$10 \pi^{-} p \rightarrow p K_{S}^{0} K^{-}$

 $^{^{}m 1}$ From the combined analysis of ANISOVICH 99C, ANISOVICH 99E, and ANISOVICH 01F.

 $^{^6}$ Statistical error only. 7 From a fit to the Y_8^0 moment. Limited by phase space.

a₄(2040) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	KK	seen
Γ_2	$\pi^+\pi^-\pi^0$	seen
Γ3	$ ho\pi$	seen
Γ_4	$f_2(1270)\pi$	seen

HTTP://PDG.LBL.GOV

Page 2

Created: 5/30/2017 17:20

 $[\]frac{2}{2}$ May be a different state.

 $^{^3}$ From a simultaneous fit to the G_+ and G_0 wave intensities.

 $^{^4\,{\}rm From}$ an amplitude analysis. $^5\,J^P=4^+$ is favored, though $J^P=2^+$ cannot be excluded.

Γ_5	$\omega\pi^-\pi^0$	seen
Γ ₆	ωho	seen
Γ_7	$\eta \pi$	seen
Γ ₈	$\eta'(958)\pi$	seen

a₄(2040) BRANCHING RATIOS

$\Gamma(K\overline{K})/\Gamma_{\text{total}}$			Γ_1/Γ
VALUE	DOCUMENT ID	TECN CHO	<u>COMMENT</u>
seen	BALDI 78	SPEC \pm	$10 \pi^- p \rightarrow K_S^0 K^- p$
$\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\rm total}$			Γ ₂ /Γ
VALUE	DOCUMENT ID		<u>CHG</u> <u>COMMENT</u>
seen	CORDEN 7	78C OMEG	$0 15 \pi^- p \rightarrow 3\pi n$
$\Gamma(\rho\pi)/\Gamma(f_2(1270)\pi)$	DOCUMENT ID	TECN	Γ ₃ /Γ ₄
1.1±0.2±0.2	CHUNG	02 B852	
$\Gamma(\eta\pi)/\Gamma_{\text{total}}$	DOCUMENT ID	TECN	Γ ₇ /Γ
$\Gamma(\eta\pi)/\Gamma_{ ext{total}}$ $ extstyle extstyle $	DOCUMENT ID		$ \begin{array}{ccc} & & & & & \Gamma_7/\Gamma \\ & & & \\ & COMMENT & & \\ & & 38 \pi^- p \rightarrow \eta \pi^0 n \end{array} $
VALUE			CHG COMMENT
value seen		96 GAM2 	$ \begin{array}{c c} CHG & \underline{COMMENT} \\ 0 & 38 \pi^- p \rightarrow \eta \pi^0 n \end{array} $ $ \Gamma_8/\Gamma_7 $ $ \underline{I} \underline{COMMENT} $
seen $\Gamma(\eta'(958)\pi)/\Gamma(\eta\pi)$	DONSKOV 9	96 GAM2 	$ \frac{CHG}{0} \frac{COMMENT}{38 \pi^{-} \rho \rightarrow \eta \pi^{0} n} $ $ \Gamma_{8}/\Gamma_{7} $
$rac{VALUE}{ ext{seen}}$ $\Gamma(\eta'(958)\pi)/\Gamma(\eta\pi)$ $rac{VALUE}{ ext{0.23}\pm 0.07}$ $\Gamma(\omega ho)/\Gamma_{ ext{total}}$	DONSKOV 9 <u>DOCUMENT ID</u> ADOLPH	96 GAM2 - <u>TECN</u> 15 CON	$\frac{\text{CHG}}{0} \frac{\text{COMMENT}}{38 \; \pi^- \; p \rightarrow \; \eta \pi^0 \; n}$ $\frac{\Gamma_8/\Gamma_7}{\text{MP}} \frac{\text{COMMENT}}{191 \; \pi^- \; p \rightarrow \; \eta'') \pi^- \; p}$ Γ_6/Γ
$\frac{VALUE}{\text{seen}}$ $\Gamma(\eta'(958)\pi)/\Gamma(\eta\pi)$ $\frac{VALUE}{0.23\pm0.07}$	DONSKOV 9 <u>DOCUMENT ID</u> ADOLPH	96 GAM2 TECM 15 COM	$\frac{\text{CHG}}{0} \frac{\text{COMMENT}}{38 \; \pi^- \; p \rightarrow \; \eta \pi^0 \; n}$ $\frac{\Gamma_8/\Gamma_7}{\text{MP}} \frac{\text{COMMENT}}{191 \; \pi^- \; p \rightarrow \; \eta'') \pi^- \; p}$ Γ_6/Γ

a₄(2040) REFERENCES

ADOLPH	15	PL B740 303	M. Adolph et al.	(COMPASS Collab.)
ALEKSEEV	10	PRL 104 241803	M.G. Alekseev et al.	(COMPASS Collab.)
UMAN	06	PR D73 052009	I. Uman <i>et al.</i>	` (FNAL E835)
LU	05	PRL 94 032002	M. Lu et al.	(BNL È852 Collab.)
CHUNG	02	PR D65 072001	S.U. Chung et al.	(BNL E852 Collab.)
ANISOVICH	01F	PL B517 261	A.V. Anisovich et al.	,
IVANOV	01	PRL 86 3977	E.I. Ivanov et al.	(BNL E852 Collab.)
AMELIN	99	PAN 62 445	D.V. Amelin et al.	` (VES Collab.)
		Translated from YAF	62 487.	` ,
ANISOVICH	99C	PL B452 173	A.V. Anisovich et al.	
ANISOVICH	99E	PL B452 187	A.V. Anisovich et al.	
DONSKOV	96	PAN 59 982	S.V. Donskov et al.	(GAMS Collab.) IGJPC
		Translated from YAF	59 1027.	,
CLELAND	82B	NP B208 228	W.E. Cleland et al.	(DURH, GEVA, LAUS+)
BALDI	78	PL 74B 413	R. Baldi <i>et al.</i>	(GEVA) JP
CORDEN	78C	NP B136 77	M.J. Corden et al.	(BIRM, RHEL, TELA+) JP
				,

Created: 5/30/2017 17:20