```
#importing important libraries
import pandas as pd
import numpy as np
```

#loading the datasets
df_red=pd.read_excel('/content/drive/MyDrive/red_data.xlsx')
df_green=pd.read_excel('/content/drive/MyDrive/green_file.xlsx')
df_white=pd.read_excel('/content/drive/MyDrive/white_file.xlsx')

#lets visualize some data
df_green.sample(8)

		1 to 8 of 8 entries Filter 🔲 😲
index	x	у
15	3	10
2	21	0
14	6	12
0	18	4
17	24	8
1	3	21
6	9	8
12	22	7

Show 25 ✓ per page

Like what you see? Visit the data table notebook to learn more about interactive tables.

```
#we will be using the z score to do the data normalization

df_green['x_zs_green']=(df_green.x-df_green.x.mean())/df_green.x.std()

df_green['y_zs_green']=(df_green.y-df_green.y.mean())/df_green.y.std()

df_green.head()
```

	X	у	x_zs_green	y_zs_green
0	18	4	0.462747	-0.720849
1	3	21	-1.225654	2.002357
2	21	0	0.800427	-1.361603
3	18	2	0.462747	-1.041226
4	3	17	-1.225654	1.361603

```
df_red['x_zs_red']=(df_red.x-df_red.x.mean())/df_red.x.std()
df_red['y_zs_red']=(df_red.y-df_red.y.mean())/df_red.y.std()
df_red.head()
```

```
x y x_zs_red y_zs_red

0 16 14 -0.062179 0.269114
```

```
      1
      22
      11
      0.590701
      -0.260704

      2
      18
      6
      0.155448
      -1.143734

      3
      9
      16
      -0.823872
      0.622326

      4
      0
      16
      -1.803191
      0.622326
```

```
df_white['x_zs_white']=(df_white.x-df_white.x.mean())/df_white.x.std()
df_white['y_zs_white']=(df_white.y-df_white.y.mean())/df_white.y.std()
df_white.head()
```

	X	У	x_zs_white	y_zs_white
0	26	17	1.455112	1.047023
1	9	19	-0.578058	1.402616
2	20	13	0.737523	0.335838
3	13	2	-0.099665	-1.619923
4	17	15	0.378728	0.691431

```
#transforming the data into list values
x_green=[i for i in df_green['x_zs_green']]
y_green=[i for i in df_green['y_zs_green']]
x_green=[i for i in df_green['x']]
y_green=[i for i in df_green['y']]
```

```
x_red=[i for i in df_red['x_zs_red']]
y_red=[i for i in df_red['y_zs_red']]
x_red=[i for i in df_red['x']]
y_red=[i for i in df_red['y']]
```

```
x_white=[i for i in df_white['x_zs_white']]
y_white=[i for i in df_white['y_zs_white']]
x_white=[i for i in df_white['x']]
y_white=[i for i in df_white['y']]
```

```
#iterating through each list
for i in x_white:
    for j in x_green:
        if i == j:
            print (f'This white x value {i} belongs to green area ')

for i in y_white:
    for j in y_green:

    if i == j:
        print (f'This white y value {i} belongs to green area ')
```

```
ilitz miltre x natne a netolik ro ki.eeli al.ea
This white x value 9 belong to green area
This white x value 9 belong to green area
This white x value 20 belong to green area
This white x value 13 belong to green area
This white x value 28 belong to green area
This white x value 28 belong to green area
This white x value 21 belong to green area
This white x value 5 belong to green area
This white y value 17 belong to green area
This white y value 2 belong to green area
This white y value 9 belong to green area
This white y value 10 belong to green area
This white y value 9 belong to green area
This white y value 1 belong to green area
This white y value 21 belong to green area
This white y value 8 belong to green area
This white y value 8 belong to green area
This white y value 8 belong to green area
This white y value 10 belong to green area
This white y value 10 belong to green area
This white y value 3 belong to green area
```

```
for i in x_white:
    for j in x_red:
        if i == j:
            print (f'This white x value {i} belongs to red area ')

for i in y_white:
    for j in y_red:
        if i == j:
            print (f'This white y value {i} belongs to red area ')
```

```
This white x value 26 belongs to red area
This white x value 9 belongs to red area
This white x value 28 belongs to red area
This white x value 1 belongs to red area
This white x value 28 belongs to red area
This white x value 16 belongs to red area
This white x value 16 belongs to red area
This white x value 8 belongs to red area
This white x value 8 belongs to red area
This white x value 8 belongs to red area
This white x value 8 belongs to red area
This white x value 2 belongs to red area
This white x value 8 belongs to red area
This white x value 8 belongs to red area
This white y value 17 belongs to red area
This white y value 17 belongs to red area
This white y value 15 belongs to red area
This white y value 11 belongs to red area
This white y value 11 belongs to red area
This white y value 9 belongs to red area
This white y value 11 belongs to red area
This white y value 11 belongs to red area
This white y value 9 belongs to red area
This white y value 1 belongs to red area
This white y value 21 belongs to red area
This white y value 21 belongs to red area
This white v value 8 belongs to red area
```

END OF IMPLEMENTATION AND TESTING.THANK YOU!!!

✓ 0s completed at 1:17 PM

×