

1. Digital System & Binary Numbers

1.1 Digital System

- Digital System
 - Communication, Business transaction, Traffic control, other commercial, industrial, scientific enterprises etc.
 - Discrete elements of information
- Signal
 - Discrete elements of information are represented in a digital system by physical quantities
- Binary Code
 - Discrete elements of information are represented with groups of bits
 - bit : binary + digit

1.2 Binary Number

$$a_5 a_4 a_3 a_2 a_1 a_0 \cdot a_{-1} a_{-2} a_{-3}$$

$$= a_n r^n + a_{n-1} r^{n-1} + \dots + a_2 r^2 + a_1 r + a_0 + a_{-1} r^{-1} + a_{-2} r^{-2} + \dots + a_{-m} r^{-m}$$

$$7392 = 7 \times 10^3 + 3 \times 10^2 + 9 \times 10^1 + 2 \times 10^0$$

$$(11010.11)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2_0 + 1 \times 2_{-1} + 1 \times 2_{-2}$$

$$= (26.75)_{10}$$

$$2^{10} = 1 \text{Kilo}$$
 $2^{20} = 1 \text{Mega}$
 $2^{30} = 1 \text{Giga}$

Table 1-1
Powers of Two

n	2^n	n	2^n	 n	2^n
0	1	8	256	16	65,536
1	2	9	512	17	131,072
2	4	10	1,024	18	262,144
3	8	11	2,048	19	524,288
4	16	12	4,096	20	1,048,576
5	32	13	8,192	21	2,097,152
6	64	14	16,384	22	4,194,304
7	128	15	32,768	23	8,388,608

1.2 Binary Number

Augend	101101	Minuend:	101101	Multiplicand:	, 1011 101
Addend	+100111	Subtrahend:	-100111	Multiplier:	*101
sum	1010100	Difference:	000110		1011
					0000
					1011
				Product:	10111

1.3 Number Base Conversions

• Ex 1-1) Convert decimal 41 to binary.

	Integer		Remainder	Coefficient	Integer	Remainder
	Quotient		Remainder	Coemcient	41	
41/2 =	20	+	1/2	$a_0 = 1$	00	
20/2 =	10	+	0	$a_1 = 0$	20	1
10/2 =	5	+	0	$a_2 = 0$	10	0 1
5/2 =	2	+	1/2	$a_3 = 1$	5	0
2/2 =	1	+	0	$a_4 = 0$	G	
1/2 =	0	+	1/2	$a_5 = 1$	2	1
					1	0
					0	1

answer: $(41)_{10} = (a_5 a_4 a_3 a_2 a_1 a_0)_2 = (101001)_2$ Answer = 101001

1.3 Number Base Conversions

• Ex 1-2) Convert decimal 153 to octal.

• Ex 1-3) Convert (0.6875)₁₀ to binary.

0

2

	Integer		Fraction	Coefficient
0.6875*2 =	1	+	0.3750	a ₋₁ = 1
0.3750*2 =	0	+	0.7500	$a_{-2} = 0$
0.7500*2 =	1	+	0.5000	a ₋₃ = 1
0.5000*2 =	1	+	0.0000	a ₋₄ = 1

Answer: $(0.6875)_{10} = (0.a_{-1}a_{-2}a_{-3}a_{-4})_2 = (0.1011)_2$

1.4 Octal and Hexadecimal Numbers

Table 1-2 *Numbers with Different Bases*

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	Е
15	1111	17	F

$$(10 \ 110 \ 001 \ 101 \ 011 \ . \ 111 \ 100 \ 000 \ 110)_2 = (26153.7406)_8$$
 $2 \ 6 \ 1 \ 5 \ 3 \ 7 \ 4 \ 0 \ 6$
 $(10 \ 1100 \ 0110 \ 1011 \ . \ 1111 \ 0010)_2 = (2C6B.F2)_{16}$
 $2 \ C \ 6 \ B \ F \ 2$

1.5 Complements - Diminished Radix Complement

- (r-1)'s complements of N is (rⁿ-1)-N
- r=10, r-1=9, 9'complements of N is (10ⁿ-1)-N
 Ex) the 9's complements of 546700 is 999999-546700 = 453299
 the 9's complements of 012398 is 999999-012398 = 987601
- For binary number, r=2, r-1=1
 1'complements of N is (2ⁿ-1)-N
 Ex) the 1's complements of 1011000 is 0100111
 the 1's complements of 0101101 is 1010010

1.5 Complements - Radix Complement

- The r's complements of an n-digit number N is rⁿ-N, N≠0
 - 0, N=0

- \circ rⁿ-N=[(rⁿ-1)-N]+1
 - → The r's complements is obtained by adding 1 to the (r-1)'s complements
- Ex) The 10's complements of 012398 is 987602
 The 10's complements of 246700 is 753300

The 2's complements of 1101100 is 0010100

The 2's complements of 0110111 is 1001001

1.5 Complements - Subtraction with Complements

Ex1-5) using 10's complement, subtract 72532-3250.

$$M = 72532$$
10's complement of N = + 96750

Sum = 169282

Discard end carry $10^5 = -100000$

Answer = 69282

Ex1-6) Using 10's complement, subtract 3250-72532.

$$M = 03250$$

$$10's complement of N = +27468$$
There is no end carry
$$Sum = 30718$$

Therefore, the answer is –(10's complement of 30718)=-69282

1.5 Complements - Subtraction with Complements

• Ex1-7) X=1010100, Y=1000011, (a) X-Y, (b) Y-X

The answer is Y-X = -(2's complement of 1101111) = -0010001

1.5 Complements - Subtraction with Complements

Ex1-8) Repeat Example 1-7 using 1'complement.

(a)
$$X-Y = 1010100-10000011$$
 $X = 1010100$

1's complement of $Y = +0111100$

Sum = 10010000

End-around carry = + 1

Answer: $X-Y = 0010001$

(b) $Y-X = 10000011-1010100$
 $Y = 1000011$

1's complement of $X = +0101011$

Sum = 1101110

There is no carry.

The answer is Y-X = -(1)'s complement of 1101110)=-0010001

1.6 Signed Binary Numbers

Ex) The number 9 represented in binary with eight bit

+9:00001001

-9: 10001001 (signed-magnitude representation)

11110110 (signed-1's-complement representation)

11110111 (signed-2's-complement representation)

Table 1-3
Signed Binary Numbers

Decimal	Signed-2's complement	Signed-1's complement	Signed magnitude		
+7	0111	0111	0111		
+6	0110	0110	0110		
+5	0101	0101	0101		
+4	0100	0100	0100		
+3	0011	0011	0011		
+2	0010	0010	0010		
+1	0001	0001	0001		
+0	0000	0000	0000		
-0		1111	1000		
-1	1111	1110	1001		
-2	1110	1101	1010		
-3	1101	1100	1011		
-4	1100	1011	1100		
-5	1011	1010	1101		
-6	1010	1001	1110		
-7	1001	1000	1111		
-8	1000	_	_		

1.6 Signed Binary Numbers

Arithmetic Addition

- signed-magnitude system follows the rules of ordinary arithmetic.
- signed-complement system requires only addition.

+6	00000110	-6	11111010
+13	00001101	+13	00001101
+19	00010011	+7	00000111
+6	00000110	-6	11111010
-13	11110011	-13	11110011
-7	11111001	-19	11101101

Arithmetic Subtraction

$$(\pm A) - (+ B) = (\pm A) + (-B)$$

$$(\pm A) - (-B) = (\pm A) + (+ B)$$

1.7 Binary Code-BCD code

2 10

- the 4-bit code for one decimal

$$(185)_{10} = (0001\ 1000\ 0101)_{BCD} = (10111001)_{2}$$

Table 1-4 *Binary Coded Decimal (BCD)*

• BCI	D Addition					Decimal symbol	i (O) a sa s	BCD digit
4	0100	4	0100	8	1000	0		0000 0001
+5	+0101	+8	+1000	+9	+1001	2 3		0010 0011
9	1001	12	1100	17	10001	4 5		0100 0101
			+0110		+0110	6		0110 0110 0111
			10010		10111	8		1000 1001

- if the binary sum is greater or equal to 1010, we add 0110 to obtain the correct BCD

1.7 Binary Code-Other Decimal Codes

Table 1-5Four Different Binary Codes for the Decimal Digits

Decimal digit	BCD 8421	2421	Excess-3	8 4-2-1
0	0000	0000	0011	0 0 0 0
1	0001	0001	0100	0 1 1 1
2	0010	0010	0101	0 1 1 (
3	0011	0011	0110	0 1 0 1
4	0100	0100	0111	0 1 0 0
5	0101	1011	1000	1 0 1 1
6	0110	1100	1001	1 0 1 (
7	0111	1101	1010	1 0 0 1
8	1000	1110	1011	1000
9	1001	1111	1100	1 1 1 1
	1010	0101	0000	0 0 0
Unused	1011	0110	0001	0 0 1 (
oit	1100	0111	0010	0 0 1
combi-	1101	1000	1101	1 1 0 (
nations	1110	1001	1110	1 1 0 1
	1111	1010	1111	1 1 1 (

1.7 Binary Code-Gray Code

Table 1-6 Gray Code

•	
Gray code	Decimal equivalent
0000	0
0001	100000000000000000000000000000000000000
0011	2 ->
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

가

1.7 Binary Code-ASCII Character Code

Table 1-7 *American Standard Code for Information Interchange (ASCII)*

	$b_7b_6b_5$									
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111		
0000	NUL	DLE	SP	0	@	P	rank'ra er	p		
0001	SOH	DC1	!	1	A	Q	a	q		
0010	STX	DC2	66	2	В	R	b	r		
0011	ETX	DC3	#	3	C	S	С	S		
0100	EOT	DC4	\$	4	D	T	d	t		
0101	ENQ	NAK	%	5	E	U	e	u		
0110	ACK	SYN	&	6	F	V	f	V		
0111	BEL	ETB		7	G	W	g	W		
1000	BS	CAN	(8	Н	X	h	X		
1001	HT	EM)	9	I	Y	i	У		
1010	LF	SUB	*	:	J	Z	j	Z		
1011	VT	ESC	+	;	K	[k	{		
1100	FF	FS	,	<	L	\	1	,		
1101	CR	GS	_	=	M]	m	}		
1110	SO	RS		>	N	\wedge	n	\sim		
1111	SI	US	/	?	O	_	O	DEL		

1.7 Binary Code - Error-Detecting Code

Error-Detecting Code

```
      7
      (Error-Detecting)

      With even parity
      With odd parity

      1
      71
      (even)
      1
      71
      (odd)

      21000001
      10000001
      10000001
      01010100
```


1.8 Binary Storage and Registers

 Registers – A register with n cells can store any discrete quantity of information that contains n bits.

Register Transfer

Fig. 1-1 Transfer of information with registers

Fig. 1-2 Example of binary information processing

1.9 Binary Logic

Definition of Binary Logic

Table 1-8 *Truth Tables of Logical Operations*

	AND			0	R	NOT			
X	У	$x \cdot y$		X	у	x + y		X	x'
0	0	0		0	0	0		0	1
0	1	0		0	1	1		1	0
1	0	0		1	0	1			
1	1	1		1	1	1			

Logic Gates

- (a) Two-input AND gate
- (b) Two-input OR gate

(c) NOT gate or inverter

Fig. 1-4 Symbols for digital logic circuits

Fig. 1-3 Example of binary signals

1.9 Binary Logic

Fig. 1-5 Input-output signals for gates

Fig. 1-6 Gates with multiple inputs