9.1 Parametric Equations

- 1. For $x = t^2 2t$ and y = t + 1, eliminate the parameter and write the corresponding rectangular equation.
- 2. If $x = 3 \sin 2t$ and $y = 4e^{2t}$ then $\frac{dy}{dx} =$
- 3. A curve is described by the parametric equations $x(t) = t^2 + 3$ and $y(t) = t^3 + t^2 + 1$. Find an equation of the line tangent to this curve at the point determined by t = 1.

4. A curve is defined by the parametric equations $x(t) = t^3 + 1$ and $y(t) = t^2 + 10t$. For what values of t is the line tangent to this curve horizontal?

5. What is the slope of the tangent line to the curve defined parametrically by $x(t) = \sqrt{t}$ and $y(t) = \frac{1}{4}(t^2 - 4)$, $t \ge 0$ at the point (2,3)?

1. Given a curve defined by the parametric equations $x(t) = \sqrt{t}$ and y(t) = 2t - 1. Determine the open t-intervals on which the curve is concave up or down.

2. If $x(t) = 6t^2$ and $y(t) = t^3 - t$, what is $\frac{d^2y}{dx^2}$ in terms of t?

3. If $x(t) = t^2 - 5$ and $y(t) = t^{-1}$, find the slope and the concavity at the point (-4,1).

4. If $x = \sin \theta$ and $y = 2 \cos \theta$, what is $\frac{d^2y}{dx^2}$ in terms of θ ?

5. If $\frac{dx}{dt} = 4$ and $\frac{dy}{dt} = \sin(3t)$, what is $\frac{d^2y}{dx^2}$ in terms of t?

Answers to 9.2 CA #1

1. $\frac{d^2y}{dx^2} = 4$, therefore the
graph is concave up on its
domain $t \geq 0$.

$$2. \ \frac{d^2y}{dx^2} = \frac{3t^2 + 1}{144t^3}$$

3. Slope:
$$-\frac{1}{2}$$
, Concave Up

4.
$$-2 \sec^3 \theta$$

5.
$$\frac{3\cos(3t)}{16}$$

9.3 Arc Length (Parametric Form)

Calculus Name:

CA #1

What is the length of the curve defined by the parametric equations? Solve without the use of a calculator.

- 1. x(t) = 7t + 1 and y(t) = 3 6t for the interval $-1 \le t \le 3$.
- 2. $x(t) = 4at^2$ and $y(t) = 4bt^2$, where a and b are constants. What is the length of the curve from t = 0 to t = 1?

- 3. $x(t) = 9\cos\theta$ and $y(t) = 9\sin\theta$ for the interval $0 \le \theta \le \frac{\pi}{2}$.
- 4. $x(\theta) = \cos \theta + \theta \sin \theta$ and $y(\theta) = \sin \theta \theta \cos \theta$ on the interval $0 \le \theta \le \pi$.

5. Which of the following gives the length of the path described by the parametric equations $x = e^{2t}$ and y = 1 - 2t from $0 \le t \le 3$?

A.
$$\int_0^3 \sqrt{4e^{2t} + 4} \, dt$$

B.
$$\int_0^3 \sqrt{2e^{2t} + 2} \, dt$$

C.
$$\int_0^3 \sqrt{4e^{4t} + 4} \, dt$$

D.
$$\int_0^3 \sqrt{e^{4t} + 4} \, dt$$

9.4 Derivatives of Vector-Valued Functions

CA #1

Calculus Name:

- 1. If f is a vector-valued function defined by $f(t) = \langle t \sin t, t \cos t \rangle$, then f''(t) =
- 2. At time t, $0 \le t \le 2\pi$, the position of a particle moving along a path in the xy-plane is given by the vector-valued function, $f(t) = \langle e^{2t} \cos t \rangle$, $e^{2t} \sin t \rangle$. Find the slope of the path of the particle at time $t = \frac{\pi}{2}$.

- 3. The position of a particle moving in the *xy*-plane is defined by the vector-valued function, $f(t) = \langle t^3 9t^2 + 1, 2t^3 15t^2 36t + 1 \rangle$. For what value of *t* is the particle at rest?
- 4. The vector-valued function f is defined by $f(t) = \langle 2e^{2t}, te^{2t} \rangle$. Find f'(1).

5. If h is the vector-valued function defined by $h(t) = \langle \sin \frac{t}{2}, \cos 3t \rangle$, then $h'(t) = \langle \sin \frac{t}{2}, \cos 3t \rangle$

9.5 Integrating Vector-Valued Functions

Calculus Name:

CA #1

For problems 1-2, find the vector-valued function f(t) that satisfies the given initial conditions.

- 1. $f(0) = \langle 1, 4 \rangle$ and $f'(t) = \langle -4\cos 2t, -3\sin 3t \rangle$.
- 2. $f'(0) = \langle 4, 3 \rangle, f(0) = \langle 2, 0 \rangle$ and $f''(t) = \langle 8e^{2t}, 3e^t \rangle$.

- 3. The instantaneous rate of change of the vector-valued function f(t) is given by $f'(t) = \langle 4t, 5 \rangle$. If $f(1) = \langle 9, 7 \rangle$ what is f(2)?
- 4. The position of a particle moving in the xy-plane is given by the parametric functions x(t) and y(t), where $\frac{dx}{dt} = 4 \sin \frac{t}{2}$ and $\frac{dy}{dt} = 2 \cos t$. The position of the particle is (-2,5) at time t=0. What is the particle's position vector $\langle x(t), y(t) \rangle$?

5. Calculator active. At time $t \ge 0$, a particle moving in the xy-plane has a velocity vector given by $v(t) = \langle 2, 2^{-t^2} \rangle$. If the particle is at point $\left(1, \frac{1}{2}\right)$ at time t = 0, how far is the particle from the origin at time t = 1?

9.6 Motion using Parametric and Vector-Valued Functions

Calculus Name:

1. A particle moving along a curve in the xy-plane has position (x(t), y(t)), at time $t \ge 0$, where $\frac{dx}{dt} = 3\cos(\pi t)$ and $\frac{dy}{dt} = 3t^2$. Find the speed of the particle at time t = 2.

2. For time $t \ge 0$, the position of a particle moving in the xy-plane is given by the parametric equations $x(t) = t + t^2$ and $y(t) = (3t + 1)^{-1}$. What is the acceleration vector of the particle at time t = 1?

3. For time $t \ge 0$, the position of a particle moving in the xy-plane is given by the vector $\langle 2t^{-2}, e^t \rangle$. What is the velocity vector of the particle at time t = 3.

- 4. Calculator active. The position of a particle at time $t \ge 0$ is given by $x(t) = \frac{\sqrt{t+1}}{3}$ and $y(t) = t^2 + 1$. Find the total distance traveled by the particle from t = 0 to t = 2.
- 5. Calculator active. The velocity vector a particle moving in the xy-plane has components given by $\frac{dx}{dt} = \sin 2t$ and $\frac{dy}{dt} = e^{\cos t}$. At time t = 2, the position of the particle is (3, 2). What is the x-coordinate of the position vector at time t = 3?

Calculus

1. Find the slope of the tangent line to the polar curve $r = 2 + 4 \sin \theta$ at $\theta = \pi$.

2. A particle moves along the polar curve $r = 4 - 2\cos\theta$ so that $\frac{d\theta}{dt} = 4$. Find the value of $\frac{dr}{dt}$ at $\theta = \frac{\pi}{3}$.

3. For $0 \le \theta \le 2\pi$, find the values of θ for which the polar curve $r = 3 \sin \theta$ might have a vertical tangent line. Then use a graphing utility to eliminate any of your possible answers.

4. A polar curve is given by the equation $r = 2 \csc \theta + 3$ for $\theta \ge 0$. What is the instantaneous rate of change of r with respect to θ where $\theta = \frac{\pi}{4}$.

5. Calculator active. For a certain polar curve $r = f(\theta)$, it is known that $\frac{dx}{d\theta} = 3\cos\theta - 3\theta\sin\theta$ and $\frac{dy}{d\theta} = 3(\sin\theta + \theta\cos\theta)$. What is the value of $\frac{d^2y}{dx^2}$ at $\theta = 3$?

Calculus

1. The graph to the right shows the polar curve $r = 2 + \cos \theta$ for $0 \le \theta \le \pi$. What is the area of the region bounded by the curve and the *x*-axis?

2. Find the area of the shaded region for the polar curve $r = 1 - \cos \theta$.

3. Find the total area enclosed by the polar curve $r = 2 + 2\cos 2\theta$ shown in the figure above.

4. Write do not solve, an integral expression that represents the area enclosed by the smaller loop of the polar curve $r = 1 - 2 \sin \theta$.

5. Find the limits of integration required to find the area of one petal of the polar graph $r = 4 \sin 3\theta$ in the second quadrant.

9.9 Area Bounded by Two Polar Curves

1. What is the total area between the polar curves $r = 2 \sin 3\theta$ and $r = 5 \sin 3\theta$.

2. The figure to the right shows the graphs of the polar curves $r=2\cos^2\theta$ and $r=4\cos^2\theta$ for $-\frac{\pi}{2}\leq\theta\leq\frac{\pi}{2}$. Which of the following integrals gives the area of the region bounded between the two polar curves?

A.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 \theta \ d\theta$$

Calculus

B.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 6 \cos^4 \theta \ d\theta$$

C.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \cos^4 \theta \ d\theta$$

A.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 \theta \, d\theta$$
B.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 6 \cos^4 \theta \, d\theta$$
C.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \cos^4 \theta \, d\theta$$
D.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \cos^2 \theta \, d\theta$$

3. Find the total area in the first quadrant of the common interior of $r = 4 \sin 2\theta$ and r = 2.

4. Find the area of the common interior of the polar graphs $r = 3\cos\theta$ and $r = 3\sin\theta$.

5. Let S be the region in the 1st Quadrant bounded above by the graph of the polar curve $r = \cos \theta$ and bounded below by the graph of the polar curve $r = \frac{7}{2}\theta$, as shown in the figure. The two curves intersect when $\theta = 0.275$. What is the area of S?

