CS60050: Machine Learning

End-semester Examination, Autumn 2017

Time= 3 hrs. Marks: 100. Answer all FOUR questions. Make suitable assumptions if required.

- 1.(a). Construct the complete dendogram of the following eight points in one dimension using the single-linkage clustering algorithm: {-5.5, -4.1, -3.0, -2.6, 10.1, 11.9, 12.3, 13.6}. Show the steps. Using the dendogram also find the number of natural clusters in the data. Justify your answer. [15]
- (b). A set of n points is partitioned into c disjoint clusters $D_1, D_2, ..., D_c$, the mean m_i for a cluster D_i is defined as $m_i = \frac{1}{|D_i|} \sum_{x \in D_i} x$. The sum-squared error is defined as: $J_e = \sum_{i=1}^c \sum_{x \in D_i} \|x m_i\|^2$. Consider a set of n = 2k + 1 one-dimensional points, k of which coincide at x = -2, k at x = 0, and one at x = a > 0. Show that the two-cluster partitioning that minimizes J_e groups k points at x = 0 with the one at x = a if $a^2 < 2(k + 1)$. What is the optimal grouping if $a^2 > 2(k + 1)$?
- 2.(a). Considering the following Bayesian network, calculate P(R|W), P(R|W,S), and $P(R|W,\sim S)$. [15]

- (b)). We use the notation $a \perp b \mid c$ to denote that a is conditionally independent of b given c. Formally, show that $a \perp b$, $c \mid d$ implies $a \perp b \mid d$.
- 3.(a). Consider a multilayered perceptron with single hidden layer. There are two input nodes, one hidden layer node, and one output node. The hidden layer node activation function is given by a sigmoid function of the form, $\sigma(x) = \frac{1}{1+e^{-x}}$. Show that there exists an equivalent network which computes exactly the same function, but with hidden layer node activation function given by a tanh function of the form, $\tanh(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$. The equivalent network can have different weight values and structure.
- (b). Suppose we have a multilayered perceptron where the output squared error is represented by the function J(W), W being the weight values. The network updates weights by the usual squared error gradient descent backpropagation rule with learning rate η . Now, we add an additional update factor for weight decay. The additional update factor is of the form $W_{i,j}^{new} = W_{i,j}^{old} (1 \varepsilon)$. Show that this amounts to performing gradient descent on the modified error function $J_m = J(W) + \frac{2\varepsilon}{\eta} W'W$. [15] P.T.O

4.(a). Draw a two-class two-dimensional data such that (i) PCA and LDA find the same direction, a and LDA find totally different directions.	and (ii) PC/ [10]
(b). Define when a concept class is denoted as PAC learnable.	[5]
(c). Show that the VC-dimension of axis aligned rectangles in two dimensional plane is 4.	[10]
BEST WISHES	