

METAMOB PROJECT

Identify metabolic pathways associated with frailty in a cohort of elderly people

MOBILITY

NUTRITION

HEALTHY AGEING

PREDICTION

METABOLOMICS

FUNDING

FUNDING

FUNDING

Yves Boirie (Nutrition Service)
Clément Lahaye (Geriatrics Service)

and Statistics

Céline Bougel Nathalie Vialaneix Remi Servien

FUNDING

Yves Boirie (Nutrition Service) Clément Lahaye (Geriatrics Service)

INRAE

Why study frailty?

Why study frailty?

Frailty diagnostic?

- functional and nutritional status
- cognition
- Emotional state,
- comorbidities
- polypharmacy
- socio-economic status
- Other geriatic syndromes gériatriques (sensory impairment, urinary incontinence, ...)

Results

Perspectives

Identify metabolic pathways associated with frailty in a cohort of elderly people.

Context

Methods

Results

Perspectives

Open access

Cohort profile

Where are the data to do this project?

BMJ Open Cohort profile: follow-up of a Berlin Aging Study II (BASE-II) subsample as part of the GendAge study Ilja Demuth et al. (2021)

At the end of follow-up:

At baseline:

901 old people

Open access

Cohort profile

Where are the data to do this project?

BMJ Open Cohort profile: follow-up of a Berlin Aging Study II (BASE-II) subsample as part of the GendAge study Ilja Demuth et al. (2021)

At the end of follow-up:

At baseline:

Clinical phenotypic data + NMR metabolomic serums

901 old people

Open access

Cohort profile

Where are the data to do this project?

BMJ Open Cohort profile: follow-up of a Berlin Aging Study II (BASE-II) subsample as part of the GendAge study Ilja Demuth et al. (2021)

At the end of follow-up:

At baseline:

Clinical phenotypic data + NMR metabolomic serums **Clinical phenotypic data**

901 old people

7,4 years $\pm 1,5$ years

Where are the data to do this project?

68,3 years ± 3,5 years

⇒ Bimodality according to gender

Context

Methods

Results

Perspectives

Base-II cohort

1H-NMR spectra

> Quality control

ASICS

~ 200 pure spectra of 1H NMR spectra in ASICS

13 C NMR spectra of (a) fructose, (b) glucose, (c) sucrose, (d) raffinose, (e) stachyose, and (f) SFS.
Extracted from Patil, Namrata & Netravali, Anil. (2019)

Context

Base-II

cohort

Quality control

Methods

Results

Perspectives

1

2

1H-NMR

spectra

Fig. 2. Two steps distortion procedure for the main peak of the creatine. ① Global translation of the creatine spectrum. ② Local distortion of one of the creatine peak

Fig. 2. Two steps distortion procedure for the main peak of the creatine. ① Global translation of the creatine spectrum. ② Local distortion of one of the creatine peak

Base-II

cohort

Quality control

1H-NMR

spectra

Fig. 2. Two steps distortion procedure for the main peak of the creatine. ① Global translation of the creatine spectrum. ② Local distortion of one of the creatine peak

Statistical

tests

Fig. 2. Two steps distortion procedure for the main peak of the creatine. ① Global translation of the creatine spectrum. ② Local distortion of one of the creatine peak

Quantifications

Glucose

ppm

Lipids

5.5

INRAØ

Statistical

tests

Context

Methods

Results

Perspectives

Definition of frailty evolution:

1

2

3

<u>Baseline</u>	Follow-up	Evolution
	<u>i Ollow up</u>	Evolution

No frail Control

Prefrail Prefrail Improve

Frail Stable

Definition of frailty evolution:

1

2

3

<u>Baseline</u>	Follow-up	<u>Evolution</u>
		<u> </u>

No frail — Control 332

Prefrail Prefrail Improve

Frail Stable

332

155

Definition of frailty evolution:

1

2

3

Definition of frailty evolution:

1

2

3

Definition of frailty evolution:

1

2

3

PCA on quantifications:

- ⇒ Homogeneous population
- ⇒ Weak signal on frailty

Which metabolites exhibit a significant interaction effection	ct
between frailty and gender?	

Tested outcomes	All population (N = 901 subjects)
Frailty evolution	
Frailty evolution binary	

Grip T0

Grip T7

Grip evolution

Frailty T0 binary

Frailty T7 binary

Grip abs Var

Grip binary T0

Grip binary T7

CES-D TO

CES-D T7

CES-D evolution

CES-D abs Var

CES-D binary T0

CES-D binary T7

MNA score TO

MNA score T7

MNA binary T0

MNA binary T7

Linear models:

H1 : Quantif_i
$$\sim \beta_0$$
 + outcome_i + gender_i + outcome_i*gender_i + ageDiff_i + age_T0_i + weight_T0_i + ϵ_i

$$\label{eq:host-come} \begin{array}{l} \text{H0: Quantif}_{_{i}} \cong \beta_{0} + \text{outcome}_{_{i}} + \text{gender}_{_{i}} + \\ & \text{ageDiff}_{_{i}} + \text{age_T0}_{_{i}} + \text{weight_T0}_{_{i}} + \epsilon_{_{i}} \end{array}$$

Which metabolites exhibit a significant interaction effect between frailty and gender?

Tested outcomes	All population	
	(N = 901 subjects)	
Frailty evolution		

Frailty evolution binary

Frailty T0 binary

Frailty T7 binary

Grip T0 Grip T7

Grip evolution

Grip abs Var

Grip binary T0

Grip binary T7

CES-D TO

CES-D T7

CES-D evolution

CES-D abs Var

CES-D binary TO

CES-D binary T7

MNA score T0

MNA score T7

MNA binary T0

MNA binary T7

Linear models:

H1 : Quantif_i
$$\sim \beta_0$$
 + outcome_i + gender_i + outcome_i*gender_i + ageDiff_i + age_T0_i + weight_T0_i + ϵ_i

H0 : Quantif_i
$$\sim \beta_0$$
 + outcome_i + gender_i + ageDiff_i + age_T0_i + weight_T0_i + ϵ_i

No significant interaction effect between frailty and gender on the metabolome.

Methods

Results

Perspectives

Which metabolites have significantly different quantifications according to frailty, for men and women respectively?

Tested outcomes	Men	Women
	(N = 428 subjects)	(N = 473 subjects)

Frailty evolution

Frailty evolution binary

Frailty TO binary

Frailty T7 binary

Grip T0

Grip T7

Grip evolution

Grip abs Var

Grip binary T0

Grip binary T7

CES-D TO

CES-D T7

CES-D evolution

CES-D abs Var

CES-D binary T0

CES-D binary T7

MNA score TO

MNA score T7

MNA binary T0

MNA binary T7

Linear models:

$$\label{eq:hamma} \begin{aligned} \text{H1: Quantif}_{i} & \cong \beta_{0} + \text{outcome}_{i} + \\ & \text{ageDiff}_{i} + \text{age_T0}_{i} + \text{weight_T0}_{i} + \epsilon_{i} \end{aligned}$$

H0 : Quantif_i
$$\sim \beta_0$$
 + ageDiff_i + age_T0_i + weight_T0_i + ϵ_i

Which metabolites have significantly different quantifications
according to frailty, for men and women respectively?

which metabolites have significantly different quantifications			
according to frailty, for men and women respectively?			
Tested outcomes	Men	Women	
	(N = 428 subjects)	(N = 473 subjects)	
Frailty evolution			
Frailty evolution binary			
Frailty T0 binary			
Frailty T7 binary			
Grip T0	27 metabolites		
Grip T7	31 metabolites		
Grip evolution		Dimethylsulfone	
Grip abs Var			
Grip binary T0			
Grip binary T7			
CES-D TO			
CES-D T7			
CES-D evolution			
CES-D abs Var			
CES-D binary T0			
CES-D binary T7			
MNA score T0			
MNA score T7			
MNA binary T0	21 metabolites		
MNA binary T7			

Linear models:

$$\begin{aligned} \text{H1: Quantif}_{i} &\sim \beta_{0} + \text{outcome}_{i} + \\ &\quad \text{ageDiff}_{i} + \text{age_T0}_{i} + \text{weight_T0}_{i} + \epsilon_{i} \end{aligned}$$

H0 : Quantif,
$$^{\sim}$$
 β_0 + age_T0, + weight_T0, + ϵ_i

Which metabolites have significantly different quantifications
according to frailty, for men and women respectively?

Which metabolites have significantly different quantifications		
according to frailty, fo	r men and wome	n respectively?
Tested outcomes	Men	Women
	(N = 428 subjects)	(N = 473 subjects)
Frailty evolution		
Frailty evolution binary		
Frailty T0 binary		
Frailty T7 binary		
Grip T0	27 metabolites	
Grip T7	31 metabolites	
Grip evolution		Dimethylsulfone
Grip abs Var		
Grip binary T0		
Grip binary T7		
CES-D TO		
CES-D T7		
CES-D evolution		
CES-D abs Var		
CES-D binary T0		
CES-D binary T7		
MNA score T0		
MNA score T7		
MNA binary T0	21 metabolites	

Linear models:

$$\begin{aligned} \text{H1: Quantif}_{i} &\sim \beta_{0} + \text{outcome}_{i} + \\ &\quad \text{ageDiff}_{i} + \text{age_T0}_{i} + \text{weight_T0}_{i} + \epsilon_{i} \end{aligned}$$

H0 : Quantif_i
$$\sim \beta_0$$
 + ageDiff_i + age_T0_i + weight_T0_i + ϵ_i

Metabolism of inositol phosphate

Catabolism of branched chain amino acids

MNA binary T7

Betaine

1,3-Diaminopropane

D-Maltose

L-Cystine

Myo-Inositol

GlycericAcid

L-GlutamicAcid

L-Methionine

D-Mannose

Taurine

Galactitol

D-Fructose

Lactate

PropyleneGlycol

D-GlucuronicAcid

3-Methylxanthine

D-Glucose

GuanidinoaceticAcid

DehydroAscorbicAcid

L-Carnitine

Levoglucosan

7-Methylxanthine"

Methods

Results

2-HydroxybutyricAcid

Perspectives

Betaine

1,3-Diaminopropane

GABA

IsovalericAcid

L-Isoleucine

Lactose

MethylmalonicAcid

PyroglutamicAcid

SebacicAcid

Valerate

D-Maltose

L-Cystine

Myo-Inositol

GlycericAcid

L-GlutamicAcid

L-Methionine

D-Mannose

Taurine

Galactitol

D-Fructose

Lactate

PropyleneGlycol

D-GlucuronicAcid

3-Methylxanthine

D-Glucose

GuanidinoaceticAcid

DehydroAscorbicAcid

L-Carnitine

Levoglucosan

7-Methylxanthine"

Context

Methods

Results

Perspectives

Betaine

1,3-Diaminopropane

Grip_TQ

Beta-Alanine

L-Lysine

L-Serine

MalicAcid

O-Acetyl-L-Carnitine

20

0

5

2-HydroxybutyricAcid 2-Oxoisovalerate 3-PhenylPropionicAcid alpha-HydroxyisobutyricAcid beta-HydroxyisovalericAcid **D-Fucose**

EthylmalonicAcid

Ørip_T7

GABA IsovalericAcid L-Isoleucine **Lactose** MethylmalonicAcid

PyroglutamicAcid SebacicAcid Valerate

2-Oxoglutarate PantothenicAcid L-Aspartate N-Acetylglycine

D-Maltose Lactate

PropyleneGlycol **L-Cystine**

D-GlucuronicAcid Myo-Inositol

GlycericAcid 3-Methylxanthine

L-GlutamicAcid **D-Glucose**

L-Methionine **GuanidinoaceticAcid**

D-Mannose DehydroAscorbicAcid

L-Carnitine Taurine

Galactitol Levoglucosan

7-Methylxanthine" **D-Fructose**

L-Valine

5

4

Putrescine

TMAO

L-Tyrosine

L-Threonine

INRA6

Context

Methods

Results

Perspectives

1

2

3

To sum up:

identification of pathways related to hand grip strength or nutritional status

Short term objectives:

- Add mobility and/or nutritional paramters
- Build a new frailty criterion
- Compare old and young metabolomic signatures

Sergio Polakof Dominique Dardevet

Yves Boirie Clément Lahaye

Laurent Debrauwer Cécile Canlet Marie Trembay-Franco

Ilja Demuth
Valentin Vetter
Jennifer Kirwan
Dieter Beule
Kristina Norman

MERCI POUR VOTRE
ATTENTION!

