

# Chemical Modification and Attempted Polymerization of Self-Assembled Monolayers of Hexadecanedioic Acid at Aluminum Surfaces

by Lawrence D. Seger, Jeffrey P. Rasimas, Rose Pesce-Rodriguez, and Robert Fifer

ARL-TR-1553 November 1997

19971119 109

PART ORTHUR RESERVED TO SERVE.

Approved for public release; distribution is unlimited.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

## **Army Research Laboratory**

Aberdeen Proving Ground, MD 21005-5066

ARL-TR-1553 November 1997

# Chemical Modification and Attempted Polymerization of Self-Assembled Monolayers of Hexadecanedioic Acid at Aluminum Surfaces

Lawrence D. Seger, Jeffrey P. Rasimas, Rose Pesce-Rodriguez, Robert Fifer

Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

#### **Abstract**

A self-assembled monolayer (SAM) of hexadecanedioic acid (HDDA) was prepared on an aluminum substrate for purposes of preventing or retarding the consequences of atmospheric corrosion. To enhance the protective qualities of the film, a scheme was developed to polymerize the exposed carboxylic acid functional groups, while enhancing the thickness of the film. To accomplish this, an attempt was made to cross-link the HDDA with octyltrichlorosilane (OTS). Subsequent experiments using a perfluorinated carboxylic acid as the base layer suggest that the OTS is aggressive enough toward the aluminum surface to completely remove the underlying organic SAM and displace it with siloxane (Si-O) linkages at the metal surface. Polarization modulated Fourier transform infrared absorption spectroscopy (PM-FTIRRAS) and contact angle measurements confirm the displacement.

# **Table of Contents**

|            |                             | Page |
|------------|-----------------------------|------|
|            | List of Figures             | v    |
|            | List of Tables              | v    |
| 1.         | Introduction                | 1    |
| 2.         | Experimental                | 2    |
| 3.         | Results and Discussion      | 4    |
| 3.1<br>3.2 | PM-FTIRRAS Characterization |      |
| 4.         | Conclusion                  | 8    |
| 5.         | References                  | 11   |
|            | Distribution List           | 13   |
|            | Report Documentation Page   | 23   |

# **List of Figures**

| <u>Figure</u> |                                                                                                                                        | Page |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.            | Carboxylic Acids Self-Assembled at Aluminum Oxide Surfaces                                                                             | 1    |
| 2.            | Contact Angle Measurements $\theta$ of Distilled Water at SAM Surface                                                                  | 3    |
| 3.            | Scheme for Chain Extension and Cross-Linking Acid Terminated SAMs                                                                      | 4    |
| 4.            | Perfluorinated Monolayer Film (CF <sub>3</sub> (CF <sub>2</sub> ) <sub>6</sub> COOH) Before (a and b) and After (c and d) Silanization | 6    |
| 5.            | Contact Angle of Distilled Water on Blank (a) and Silanized (b) Aluminum Substrates                                                    | 8    |

# **List of Tables**

| <u>Table</u> |                                                           | <u>Page</u> |
|--------------|-----------------------------------------------------------|-------------|
| 1.           | Contact Angle Measurements of Monolayer Films on Aluminum | <br>7       |

### 1. Introduction

Experiments show that for certain molecules and substrates, a self-assembly process occurs in which a well-ordered and stable monolayer of the molecules chemisorbed to the surface forms (see Figure 1). These films are similar to Langmuir-Blodgett films, but are formed spontaneously by self-assembly of the molecules from a dilute (usually 5-mM concentration) solution. The most extensively studied of these systems is the combination of alkane thiols, adsorbed to a gold surface, although alkanoic acids on aluminum oxide show similar behavior. Studies indicate that by altering the composition of the chain, in particular its length (n), or the tail-group composition, the characteristics of the surface can be changed (Troughton et al. 1988; Bain and Whitesides 1988). The control of such properties, as wetting and impedance, may offer advantages in the field of corrosion protection.



Figure 1. Carboxylic Acids Self-Assembled at Aluminum Oxide Surfaces.

The U.S. Army and the private sector are interested in the development of environmentally friendly protective coatings that are lightweight, removable without volatile organic solvents, and robust under ambient conditions. These coatings could be applied to metal surfaces by immersion and have the advantage of being able to cover rough or irregular surfaces against atmospheric corrosion. One such candidate for this work is carboxylic acid terminated alkane chains that have been found to self-assemble at clean aluminum oxide surfaces (Allara and Nuzzo 1985; Aronoff et al. 1997). These substances may serve as substitutes for primers that currently contain lead and chromate compounds. This work investigates cross-linking the molecules in the self-assembled monolayer (SAM) with a trichlorosilane, thereby simultaneously forming a cross-linked surface and extending the length of the chain and thickness of the film.

## 2. Experimental

Silicon wafers were purchased from Silicon Sense, Nashua, NH; cleaned in piranha (0.3 parts  $30\% H_2O_2$ , and 0.7 parts concentrated  $H_2SO_4$ ); rinsed; and dried. They were then placed in a vacuum evaporator ( $10^{-6}$  torr) where they were coated with ~500 Å of pure aluminum. The evaporator was then vented to the atmosphere, which resulted in the formation of a layer of aluminum oxide at the surface. These substrates were then treated by immersion into a solution of 1% acetic acid in dry ethanol. After 24 h, the substrates were examined by a polarization modulated Fourier transform infrared reflectance absorbance spectroscopy (PM-FTIRRAS), using a Mattson Research Series 1 instrument.

Next, all samples were characterized by contact angle measurements using a model VCA 2000 contact angle measurement apparatus. The probe liquid was a single drop of triple distilled water that formed a droplet at the end of a hypodermic needle and was carefully lowered to touch the surface of the substrate. The contact angle reported is the mean value of 10 readings of different droplets on the same sample. The contact angle is reported as angle  $\gamma_{SL}$  (solid-liquid interface) as illustrated in Figure 2.



Figure 2. Contact Angle Measurements  $\theta$  of Distilled Water at SAM Surface.

Sample solutions were prepared by carefully weighing enough hexadecanedioic acid (HDDA) to make a 5-mM solution in dry ethanol. The acid was allowed to dissolve, and the substrates submerged for 4 days.

Infrared spectroscopy is performed by PM-FTIRRAS (Green, Barner, and Corn 1991). At a high angle of incidence, the intensity of a reflected p-polarized IR beam is enhanced at a metal surface. In contrast, an s-polarized beam has virtually no intensity at the metal surface. The selection of p-polarized light over s-polarized light has been utilized to obtain the differential reflectance spectrum of the adsorbed surface species,  $\Delta R/R$ , by polarization modulation of the IR light.

Characterization by PM-FTIRRAS (500 scans, resolution 4 cm<sup>-1</sup>) shows the emergence of peaks that represent methylene stretching vibrations that are characteristic of SAM formation.

To do the polymerization, the substrates were placed in an airtight flask attached to a manifold, which was then evacuated and backfilled with  $N_2$ . This procedure was repeated three times. A solution of octyltrichlorosilane (OTS) in dry n-hexane was prepared in an addition funnel and backfilled with  $N_2$ . The OTS solution was introduced to the substrate dropwise over a period of

15 min and then stirred under  $N_2$  for additional 20 min. The reaction was instantaneous. Siloxanes formed spontaneously by the exposure of OTS to an organic acid under dry conditions according to the synthetic scheme in Figure 3. The samples were then removed from the flask, rinsed in dry n-hexane, and allowed to air dry. They were characterized by PM-FTIRRAS and contact angle measurements.



Figure 3. Scheme for Chain Extension and Cross-Linking Acid Terminated SAMs.

Perfluorinated carboxylic acid SAMs were prepared in the same manner as previously described for the HDDA.

### 3. Results and Discussion

3.1 PM-FTIRRAS Characterization. Self-assembled monolayer samples of HDDA were removed from the solution and rinsed in hexane. Characterization by PM-FTIRRAS showed peaks at 2,854 cm<sup>-1</sup> (CH<sub>2</sub> symmetric stretch) and 2,920 cm<sup>-1</sup> (CH<sub>2</sub> asymmetric stretch). No CH<sub>3</sub> stretch in the area of 2,965 cm<sup>-1</sup> was observed. These results are consistent with known literature values

(Allara and Nuzzo 1985). Cross-linking and chain extension of the terminally exposed acid group is attempted with OTS, according to equations (1)—(3) and the scheme in Figure 3. Notice that this procedure, if successful, has the dual benefit of binding to the acid tail group of the monolayer molecule and cross-linking to other tail groups and itself.

$$Cl_3Si(CH_2)_7CH_3 + 3H_2O - (OH_3)Si(CH_2)_7CH_3 + 3HCl$$
 (1)

$$(OH)_3 Si(CH_2)_7 CH_3 + AlOH \rightarrow Al - O - Si(OH)_2 (CH_2)_7 CH_3 + H_2O$$
 (2)

$$2(OH)_3 Si(CH_2)_7 CH_3 - CH_3 (CH_2)_7 (OH_2) Si - O - Si(OH)_2 (CH_2)_7 CH_3$$
 (3)

For these samples, the Si-O siloxane bond appears as a broad band at 1,110 cm<sup>-1</sup>. Because of the overlap associated with the CH<sub>2</sub> stretching modes of the base SAM and the CH<sub>2</sub> stretching of the siloxane overlayer, the reaction of the siloxane could not be confirmed from the spectra in the methylene stretching region between 2,950 and 2,850 cm<sup>-1</sup>. To determine whether the siloxane chemistry was occurring at the SAM surface and not the surface of the substrate, a monolayer of pentadecafluoro-octanoic acid (PDFA) CF<sub>3</sub>(CF<sub>2</sub>)<sub>6</sub>COOH was prepared at an aluminum surface. The surface was characterized by PM-FTIRRAS and showed no bands between 2,700 cm<sup>-1</sup> and 3,100 cm<sup>-1</sup> (see Figure 4a). The signals associated with this film are found between 1,000 cm<sup>-1</sup> and 1,500 cm<sup>-1</sup> (Tournilhac et al. 1994) and represent CF stretching frequencies (see Figure 4). Following exposure for 15 min to the SiCl<sub>3</sub>(CH<sub>2</sub>)<sub>7</sub>CH<sub>3</sub>, followed by a complete rinse in hexane, the IR spectra of the substrate changes.

Note the emergence of a response at 2,854 cm<sup>-1</sup> and 2,920 cm<sup>-1</sup> and a new peak at 2,965 cm<sup>-1</sup> that represents a CH<sub>3</sub> asymmetric stretch mode not found on the HDDA. While the siloxane band appears at 1,110 cm<sup>-1</sup>, all of the CF stretching modes are removed.



Figure 4. Perfluorinated Monolayer Film (CF<sub>3</sub>(CF<sub>2</sub>)<sub>6</sub> COOH) Before (a and b) and After (c and d) Silanization.

**3.2 Contact Angle Measurements.** To confirm the removal of the base HDDA SAM film, contact angle measurements were taken. Single drops of triple distilled water were used as the liquid probe on samples of blank aluminum substrates, HDDA monolayers, and PDFA. The siloxane-treated samples of all of the aforementioned SAM films were also investigated, and the results are compiled in Table 1. As expected, the samples with hydrophilic surfaces such as the HDDA and blank aluminum show low contact angle measurements (83° to 86°) and high wettability. Treatment of any of the samples with OTS increases their measured contact angle to between 108° and 115° (see Figure 5). For samples that have nonreactive head groups such as CH<sub>3</sub>(CH<sub>2</sub>)<sub>14</sub>COOH and CF<sub>3</sub>(CF<sub>2</sub>)<sub>6</sub>COOH, exposure to OTS results in an increase in measured contact angle from 98° to 108° and 97° to 109°, respectively. This represents the same approximate contact angle as measured for blank aluminum exposed to OTS (see Table 1).

Table 1. Contact Angle Measurements of Monolayer Films on Aluminum

| SAM Film                                                        | Contact Angle (°θ) |
|-----------------------------------------------------------------|--------------------|
| Blank Aluminum                                                  | 86                 |
| Silanized Blank Aluminum                                        | 115                |
| CH₃(CH₂)14COOH                                                  | 98                 |
| Silanized CH <sub>3</sub> (CH <sub>2</sub> ) <sub>14</sub> COOH | 108                |
| COOH(CH <sub>2</sub> ) <sub>14</sub> COOH                       | 83                 |
| Silanized COOH(CH <sub>2</sub> ) <sub>14</sub> COOH             | 112                |
| CF <sub>3</sub> (CF <sub>2</sub> ) <sub>6</sub> COOH            | 97                 |
| Silanized CF <sub>3</sub> (CF <sub>2</sub> ) <sub>6</sub> COOH  | 109                |

Due to the combined evidence of the PM-FTIRRAS and the contact angle measurements, we conclude that the silanes preferentially bind to the aluminum oxide surface and thereby remove the SAM, rather than react at its terminal position.





Figure 5. Contact Angle of Distilled Water on Blank (a) and Silanized (b) Aluminum Substrates. Angle Bars Added for Clarity.

## 4. Conclusion

We have prepared SAMs of hexadecanoic acid, HDDA acid, and PDFA. An attempt to extend the chain and cross-link the carboxylic acid tail groups of the HDDA SAM with OTS, resulted in the removal of the base monolayer and replacement with OTS.

The silane has superior antiwetting advantages compared to the organic acid monolayers as shown by its higher contact angle.

Current work involves the use of less-aggressive silane compounds such as aminopropyltriethoxysilane to build the multilayer, or use of trichlorosilanes as the base materials, followed by organic acid multilayer formation.

## 5. References

- Allara, D. L., and R. G. Nuzzo. Langmuir, vol. 1, p. 45, 1985.
- Aronoff, Y. G., B. Chen, G. Lu, C. Seto, J. Schwartz, and S. L. Bernasek. J. Am. Chem. Soc., vol. 119, p. 1175, 1997.
- Bain, C. D., and G. M. Whitesides. Science, vol. 240, p. 62, 1988.
- Green, M. J., B. J. Barner, and R. M. Corn. Rev. Sci. Inst., vol. 62, p. 1426, 1991.
- Tournilhac, F. G., L. Bosio, J. P. Bourgoin, and M. Vandevyver. J. Phys. Chem., vol. 98, p. 4870, 1994.
- Troughton, E. B., C. D. Bain, G. M. Whitesides, R. G. Nuzzo, D. L. Allara, and M. D. Porter. Langmuir, vol. 4, p. 365, 1988.

# NO. OF COPIES ORGANIZATION

- 2 DEFENSE TECHNICAL INFORMATION CENTER DTIC DDA 8725 JOHN J KINGMAN RD STE 0944 FT BELVOIR VA 22060-6218
- 1 HQDA
  DAMO FDQ
  DENNIS SCHMIDT
  400 ARMY PENTAGON
  WASHINGTON DC 20310-0460
- 1 CECOM
  SP & TRRSTRL COMMCTN DIV
  AMSEL RD ST MC M
  H SOICHER
  FT MONMOUTH NJ 07703-5203
- 1 PRIN DPTY FOR TCHNLGY HQ
  US ARMY MATCOM
  AMCDCG T
  M FISETTE
  5001 EISENHOWER AVE
  ALEXANDRIA VA 22333-0001
- 1 PRIN DPTY FOR ACQUSTN HQS
  US ARMY MATCOM
  AMCDCG A
  D ADAMS
  5001 EISENHOWER AVE
  ALEXANDRIA VA 22333-0001
- 1 DPTY CG FOR RDE HQS
  US ARMY MATCOM
  AMCRD
  BG BEAUCHAMP
  5001 EISENHOWER AVE
  ALEXANDRIA VA 22333-0001
- 1 DPTY ASSIST SCY FOR R&T SARD TT T KILLION THE PENTAGON WASHINGTON DC 20310-0103
- 1 OSD
  OUSD(A&T)/ODDDR&E(R)
  J LUPO
  THE PENTAGON
  WASHINGTON DC 20301-7100

# NO. OF COPIES ORGANIZATION

- 1 INST FOR ADVNCD TCHNLGY THE UNIV OF TEXAS AT AUSTIN PO BOX 202797 AUSTIN TX 78720-2797
- 1 USAASA MOAS AI W PARRON 9325 GUNSTON RD STE N319 FT BELVOIR VA 22060-5582
- 1 CECOM PM GPS COL S YOUNG FT MONMOUTH NJ 07703
- 1 GPS JOINT PROG OFC DIR COL J CLAY 2435 VELA WAY STE 1613 LOS ANGELES AFB CA 90245-5500
- 1 ELECTRONIC SYS DIV DIR CECOM RDEC J NIEMELA FT MONMOUTH NJ 07703
- 3 DARPA
  L STOTTS
  J PENNELLA
  B KASPAR
  3701 N FAIRFAX DR
  ARLINGTON VA 22203-1714
- SPCL ASST TO WING CMNDR
  50SW/CCX
  CAPT P H BERNSTEIN
  300 O'MALLEY AVE STE 20
  FALCON AFB CO 80912-3020
- 1 USAF SMC/CED DMA/JPO M ISON 2435 VELA WAY STE 1613 LOS ANGELES AFB CA 90245-5500
- 1 US MILITARY ACADEMY
  MATH SCI CTR OF EXCELLENCE
  DEPT OF MATHEMATICAL SCI
  MDN A MAJ DON ENGEN
  THAYER HALL
  WEST POINT NY 10996-1786

# NO. OF COPIES ORGANIZATION

- 1 DIRECTOR
  US ARMY RESEARCH LAB
  AMSRL CS AL TP
  2800 POWDER MILL RD
  ADELPHI MD 20783-1145
- 1 DIRECTOR
  US ARMY RESEARCH LAB
  AMSRL CS AL TA
  2800 POWDER MILL RD
  ADELPHI MD 20783-1145
- 3 DIRECTOR
  US ARMY RESEARCH LAB
  AMSRL CI LL
  2800 POWDER MILL RD
  ADELPHI MD 20783-1145

#### ABERDEEN PROVING GROUND

4 DIR USARL AMSRL CI LP (305)

| NO. OF COPIES | ORGANIZATION                                                                | NO. OF<br>COPIES | ORGANIZATION                                                                                               |
|---------------|-----------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------|
| 1             | HQDA<br>SARD TT<br>MR J APPEL<br>WASH DC 20310-0103                         | 2                | COMMANDER US ARMY MISSILE COMMAND AMSMI RD PR E A R MAYKUT AMSMI RD PR P R BETTS REDSTONE ARSENAL AL 35898 |
| 1             | HQDA OASA RDA<br>DR C H CHURCH<br>PENTAGON ROOM 3E486<br>WASH DC 20310-0103 | 1                | OFFICE OF NAVAL RESEARCH<br>DEPARTMENT OF THE NAVY<br>R S MILLER CODE 432<br>800 N QUINCY STREET           |
| 4             | COMMANDER US ARMY RESEARCH OFC R GHIRARDELLI                                | 1                | ARLINGTON VA 22217  COMMANDER                                                                              |
|               | D MANN R SINGLETON R SHAW P O BOX 12211                                     |                  | J RAMNARACE AIR-54111C<br>WASHINGTON DC 20360                                                              |
|               | RESEARCH TRIANGLE PARK NC 27709-2211                                        | 2                | COMMANDER NSWC R BERNECKER R-13                                                                            |
| 1             | DIRECTOR ARMY RESEARCH OFFICE AMXRO RT IP LIB SRVCS P O BOX 12211           | 5                | G B WILMOT R-16<br>SILVER SPRING MD 20903-5000<br>COMMANDER                                                |
|               | RESEARCH TRIANGLE PARK NC<br>27709-2211                                     | 3                | NAVAL RSRCH LAB M C LIN J MCDONALD                                                                         |
| 2             | COMMANDER US ARMY ARDEC AMSTA AR AEE B D S DOWNS PICATINNY ARSENAL NJ       |                  | E ORAN<br>J SHNUR<br>R J DOYLE CODE 6110<br>WASHINGTON DC 20375                                            |
| 2             | 07806-5000<br>COMMANDER                                                     | 2                | COMMANDER NAVAL WEAPONS CENTER T BOGGS CODE 388                                                            |
|               | US ARMY ARDEC<br>AMSTA AR AEE J A LANNON<br>PICATINNY ARSENAL NJ            |                  | T PARR CODE 3895<br>CHINA LAKE CA 93555-6001                                                               |
|               | 07806-5000<br>COMMANDER                                                     | 1                | SUPERINTENDENT NAVAL POSTGRDTE SCHL DEPT OF AERONAUTICS                                                    |
|               | US ARMY ARDEC<br>AMSTA AR AEE BR<br>L HARRIS                                |                  | D W NETZER<br>MONTEREY CA 93940                                                                            |
|               | PICATINNY ARSENAL NJ<br>07806-5000                                          | 3                | AL LSCF<br>R CORLEY<br>R GEISLER<br>J LEVINE<br>EDWARDS AFB CA 93523-5000                                  |

| NO. OF COPIES | ORGANIZATION                                                                           | NO. OF COPIES | ORGANIZATION                                                                                                      |
|---------------|----------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------|
| 1             | AFOSR J M TISHKOFF BOLLING AIR FORCE BASE WASHINGTON DC 20332 OSD SDIO IST             | 2             | PRINCETON COMBUSTION RSRCH LABORATORIES INC N A MESSINA M SUMMERFIELD PRINCETON CORPORATE PLAZA BLDG IV SUITE 119 |
| •             | L CAVENY PENTAGON WASHINGTON DC 20301-7100                                             | 3             | 11 DEERPARK DRIVE MONMOUTH JUNCTION NJ 08852 DIRECTOR                                                             |
| 1             | COMMANDANT<br>USAFAS<br>ATSF TSM CN<br>FORT SILL OK 73503-5600                         | J             | SANDIA NATIONAL LABS DIVISION 8354 S JOHNSTON P MATTERN D STEPHENSON                                              |
| 1             | UNIV OF DAYTON RSRCH INST<br>D CAMPBELL<br>AL PAP<br>EDWARDS AFB CA 93523              | 1             | LIVERMORE CA 94550  BRIGHAM YOUNG UNIVERSITY DEPT OF CHMCL ENGNRNG M W BECKSTEAD                                  |
| 1             | NASA<br>LANGLEY RESEARCH CENTER<br>LANGLEY STATION<br>G B NORTHAM MS 168               | 1             | PROVO UT 84058  CALIFORNIA INST OF TECH JET PROPULSION LAB                                                        |
| 4             | HAMPTON VA 23365  NTNL BUREAU OF STNDRDS J HASTIE                                      |               | L STRAND MS 125 224<br>4800 OAK GROVE DRIVE<br>PASADENA CA 91109                                                  |
|               | M JACOX T KASHIWAGI H SEMERJIAN US DEPT OF COMMERCE WASHINGTON DC 20234                | 1             | CALIFORNIA INSTITUTE OF<br>TECHNOLOGY<br>F E C CULICK MC 301-46<br>204 KARMAN LAB<br>PASADENA CA 91125            |
|               | DIRECTOR LLNL C WESTBROOK W TAO MS L 282 P O BOX 808 LIVERMORE CA 94550                | 1             | UNIV OF CALIFORNIA<br>LOS ALAMOS SCNTFC LAB<br>P O BOX 1663<br>MAIL STOP B216<br>LOS ALAMOS NM 87545              |
|               | DIRECTOR LOS ALAMOS NATIONAL LAB B NICHOLS T7 MS-B284 P O BOX 1663 LOS ALAMOS NM 87545 | 1             | UNIV OF CA BERKELEY CHEMISTRY DEPARMENT C BRADLEY MOORE 211 LEWIS HALL BERKELEY CA 94720                          |
|               |                                                                                        | 1             | UNIV OF CA SAN DIEGO<br>F A WILLIAMS<br>AMES B010<br>LA JOLLA CA 92093                                            |

| NO. OF<br>COPIES | <u>ORGANIZATION</u>                                                                                   | NO. OF<br>COPIES | <u>ORGANIZATION</u>                                                                                            |
|------------------|-------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------|
| 2                | UNIV OF CA SANTA BARBARA<br>QUANTUM INSTITUTE<br>K SCHOFIELD<br>M STEINBERG<br>SANTA BARBARA CA 93106 | 1                | THE JOHNS HOPKINS UNIV<br>CPIA<br>T W CHRISTIAN<br>10630 LTLE PTXNT PKWY STE 202<br>COLUMBIA MD 21044-3200     |
| 1                | UNIV OF CO AT BOULDER<br>ENGINEERING CENTER<br>J DAILY<br>CAMPUS BOX 427<br>BOULDER CO 80309-0427     | 1                | UNIVERSITY OF MICHIGAN GAS DYNAMICS LAB AEROSPACE ENGNRNG BLDG G M FAETH ANN ARBOR MI 48109-2140               |
| 3                | UNIV OF SOUTHERN CA DEPT OF CHEMISTRY R BEAUDET S BENSON C WITTIG                                     | 1                | UNIVERSITY OF MINNESOTA<br>DEPT OF MCHNCL ENGNRNG<br>E FLETCHER<br>MINNEAPOLIS MN 55455                        |
|                  | LOS ANGELES CA 90007                                                                                  | 4                | PA STATE UNIVERSITY DEPT OF MCHNCL ENGNRNG                                                                     |
| 1                | CORNELL UNIVERSITY DEPT OF CHEMISTRY T A COOL BAKER LABORATORY ITHACA NY 14853                        |                  | K KUO<br>M MICCI<br>S THYNELL<br>V YANG<br>UNIVERSITY PARK PA 16802                                            |
| 1                | UNIV OF DELAWARE<br>T BRILL<br>CHEMISTRY DEPARTMENT<br>NEWARK DE 19711                                | 2                | PRINCETON UNIVERSITY FORRESTAL CAMPUS LIB K BREZINSKY I GLASSMAN P O BOX 710                                   |
| 1                | UNIVERSITY OF FLORIDA DEPT OF CHEMISTRY J WINEFORDNER                                                 | 1                | PRINCETON NJ 08540 PURDUE UNIVERSITY                                                                           |
|                  | GAINESVILLE FL 32611                                                                                  | 1                | SCHOOL OF AERO & ASTRO J R OSBORN                                                                              |
| 3                | GA INST OF TECHNOLOGY<br>SCHL OF AERSPCE ENGNRNG<br>E PRICE                                           |                  | GRISSOM HALL<br>WEST LAFAYETTE IN 47906                                                                        |
|                  | W C STRAHLE<br>B T ZINN<br>ATLANTA GA 30332                                                           | 1                | PURDUE UNIVERSITY DEPT OF CHEMISTRY E GRANT WEST LAFAYETTE IN 47906                                            |
|                  | UNIVERSITY OF ILLINOIS DEPT OF MECH ENG H KRIER 144MEB 1206 W GREEN ST URBANA IL 61801                | 2                | PURDUE UNIVERSITY SCHL OF MCHNCL ENGNRNG N M LAURENDEAU S N B MURTHY TSPC CHAFFEE HALL WEST LAFAYETTE IN 47906 |

| NO. OF<br>COPIES | ORGANIZATION                                                                                                                 | NO. OF COPIES | ORGANIZATION                                                                                            |
|------------------|------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------|
| 1                | RENSSELAER PLYTCHNC INST<br>DEPT OF CHMCL ENGNRNG<br>A FONTUN<br>TROY NY 12181                                               | 1             | GENERAL APPLIED SCIENCE<br>LABORATORIES INC<br>77 RAYNOR AVENUE<br>RONKONKAMA NY 11779-6649             |
| 1                | STANFORD UNIVERSITY<br>DEPT OF MCHNCL ENGNRNG<br>R HANSON<br>STANFORD CA 94305                                               | 1             | GENERAL MOTORS RSCH LABS<br>PHYSCL CHMSTRY DEPT<br>T SLOANE<br>WARREN MI 48090-9055                     |
| 1                | UNIVERSITY OF TEXAS DEPT OF CHEMISTRY W GARDINER AUSTIN TX 78712                                                             | 2             | HERCULES INC ALLEGHENY BALLISTICS LAB W B WALKUP E A YOUNT P O BOX 210                                  |
| 1                | VIRGINIA PLYTCHNC INST<br>AND STATE UNIVERSITY<br>A SCHETZ<br>BLACKSBURG VA 24061                                            | 1             | ROCKET CENTER WV 26726  HERCULES INC R V CARTWRIGHT                                                     |
| 1                | APPLIED COMBUSTION TECHNOLOGY INC                                                                                            |               | 100 HOWARD BLVD<br>KENVIL NJ 07847                                                                      |
| •                | A M VARNEY P O BOX 607885 ORLANDO FL 32860                                                                                   | 1             | ALLIANT TECHSYSTEMS INC<br>MARINE SYSTEMS GROUP<br>D E BRODEN MS MN50-2000<br>600 2ND STREET NE         |
| 2                | APPLIED MCHNCS REVIEWS THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS R E WHITE A B WENZEL 345 E 47TH STREET NEW YORK NY 10017 | 1             | HOPKINS MN 55343  ALLIANT TECHSYSTEMS INC R E TOMPKINS MN 11 2720 600 SECOND ST NORTH HOPKINS MN 55343  |
|                  | BATTELLE TWSTIAC 505 KING AVENUE COLUMBUS OH 43201-2693 COHEN PRFSSNL SERVICES                                               | 1             | IBM CORPORATION<br>A C TAM<br>RESEARCH DIVISION<br>5600 COTTLE ROAD<br>SAN JOSE CA 95193                |
|                  | N S COHEN<br>141 CHANNING STREET<br>REDLANDS CA 92373                                                                        | 1             | IIT RESEARCH INSTITUTE<br>R F REMALY<br>10 WEST 35TH STREET<br>CHICAGO IL 60616                         |
|                  | EXXON RSRCH & ENGRNG CO<br>A DEAN<br>ROUTE 22E<br>ANNANDALE NJ 08801                                                         | 1             | LOCKHEED MSLS & SPACE CO<br>GEORGE LO<br>3251 HANOVER STREET<br>DEPT 52-35 B204 2<br>PALO ALTO CA 94304 |

| NO. OF<br>COPIES | <u>ORGANIZATION</u>                                                                  | NO. OF<br>COPIES | ORGANIZATION                                                                  |
|------------------|--------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------|
| 1                | OLIN ORDNANCE<br>V MCDONALD LIBRARY<br>P O BOX 222<br>ST MARKS FL 32355-0222         | 3                | THIOKOL CORPORATION ELKTON DIVISION R BIDDLE R WILLER TECH LIB                |
| 1                | PAUL GOUGH ASSOCIATES INC<br>P S GOUGH<br>1048 SOUTH STREET                          |                  | P O BOX 241<br>ELKTON MD 21921                                                |
|                  | PORTSMOUTH NH 03801-5423                                                             | 3                | THIOKOL CORPORATION WASATCH DIVISION                                          |
| 1                | HUGHES AIRCRAFT COMPANY<br>T E WARD<br>8433 FALLBROOK AVENUE<br>CANOGA PARK CA 91303 |                  | S J BENNETT<br>P O BOX 524<br>BRIGHAM CITY UT 84302                           |
| 1                | ROCKWELL INTRNTNL CORP<br>ROCKETDYNE DIVISION<br>J E FLANAGAN HB02                   | 1                | UNITED TCHNLGS RSRCH CTR<br>A C ECKBRETH<br>EAST HARTFORD CT 06108            |
|                  | 6633 CANOGA AVENUE<br>CANOGA PARK CA 91304                                           | 1                | UNITED TECHNOLOGIES CORP<br>CHEMICAL SYSTEMS DIVISION<br>R R MILLER           |
| 1                | SCIENCE APPLICATIONS INC<br>R B EDELMAN<br>23146 CUMORAH CREST                       |                  | P O BOX 49028<br>SAN JOSE CA 95161-9028                                       |
|                  | WOODLAND HILLS CA 91364                                                              | 1                | UNIVERSAL PRPLSN CO<br>H J MCSPADDEN                                          |
| 3                | SRI INTERNATIONAL G SMITH D CROSLEY                                                  |                  | 25401 NORTH CENTRAL AVE<br>PHOENIX AZ 85027-7837                              |
|                  | D GOLDEN<br>333 RAVENSWOOD AVENUE<br>MENLO PARK CA 94025                             | 1                | VERITAY TECHNOLOGY INC<br>E B FISHER<br>4845 MILLERSPORT HWY<br>P O BOX 305   |
| 1                | STEVENS INST OF TECH DAVIDSON LABORATORY                                             |                  | EAST AMHERST NY 14051-0305                                                    |
|                  | R MCALEVY III<br>HOBOKEN NJ 07030                                                    | 1                | FREEDMAN ASSOCIATES<br>E FREEDMAN<br>2411 DIANA ROAD                          |
|                  | NYMA INC<br>LERC GROUP<br>R J LOCKE MS SVR 2<br>2001 AEROSPACE PKWY                  | 1                | BALTIMORE MD 21209-1525  ALLIANT TECHSYSTEMS INC J BODE                       |
|                  | BROOK PARK OH 44142                                                                  |                  | 600 SECOND ST NE<br>HOPKINS MN 55343                                          |
|                  |                                                                                      | 1 .              | ALLIANT TECHSYSTEMS INC<br>C CANDLAND<br>600 SECOND ST NE<br>HOPKINS MN 55343 |

#### NO. OF NO. OF COPIES ORGANIZATION **COPIES ORGANIZATION** ALLIANT TECHSYSTEMS INC ABERDEEN PROVING GROUND 1 L OSGOOD 41 600 SECOND ST NE DIR, USARL **HOPKINS MN 55343** ATTN: AMSRL-WM-P, A.W. HORST ALLIANT TECHSYSTEMS INC AMSRL-WM-PC. R BURETTA **B.E. FORCH** 600 SECOND ST NE G.F. ADAMS **HOPKINS MN 55343** W.R. ANDERSON R.A. BEYER 1 **ALLIANT TECHSYSTEMS INC** S.W. BUNTE R BECKER C.F. CHABALOWSKI 600 SECOND ST NE K.P. MCNEILL **HOPKINS MN 55343 BOONSTOPPEL** A. COHEN 1 **ALLIANT TECHSYSTEMS INC** R. CUMPTON M SWENSON R. DANIEL 600 SECOND ST NE D. DEVYNCK **HOPKINS MN 55343** R.A. FIFER J.M. HEIMERL 1 BENET LABORATORIES **B.E. HOMAN** SAM SOPOK A. JUHASZ AMSTA AR CCB B A.J. KOTLAR WATERVLIET NY 12189 R. KRANZE E. LANCASTER W.F. MCBRATNEY K.L. MCNESBY M. MCOUAID N.E. MEAGHER M.S. MILLER A.W. MIZIOLEK J.B. MORRIS J.E. NEWBERRY S.V. PAI R.A. PESCE-RODRIGUEZ J. RASIMAS P. REEVES **B.M. RICE** P. SAEGAR R.C. SAUSA M.A. SCHROEDER R. SCHWEITZER L.D. SEGER J.A. VANDERHOFF

D. VENIZELOS A. WHREN H.L. WILLIAMS

#### NO. OF

## COPIES ORGANIZATION

#### ABERDEEN PROVING GROUND

#### 4 DIR USARL

AMSRL WM MA
D SHUFORD
AMSRL WM ME
J H BEATTY
S MCKNIGHT
R ADLER

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                     |                                                                                               |                                                                                                                              |                                                                                                                                              |                                            | Form Approved<br>OMB No. 0704-0188                                                                                                           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Public reporting burden for this collection of inform gathering and maintaining the data needed, and con                                                                                                                                                                      |                                                                                               |                                                                                                                              |                                                                                                                                              |                                            |                                                                                                                                              |  |
| collection of information, including suggestions for<br>Davis Highway. Suite 1204. Artington, VA 22202-430                                                                                                                                                                    | reducing this burde<br>2. and to the Office                                                   | n, to Washington Hesoquarters<br>of Management and Budget. Pa                                                                | perwork Reduction Prolect(0704-0188                                                                                                          | ). Washington.                             | DC 20503.                                                                                                                                    |  |
| 1. AGENCY USE ONLY (Leave blank)                                                                                                                                                                                                                                              |                                                                                               | PORT DATE<br>November 1997                                                                                                   | 3. REPORT TYPE AND Final, Oct 96 - Ma                                                                                                        |                                            | ) VENED                                                                                                                                      |  |
| 4. TITLE AND SUBTITLE                                                                                                                                                                                                                                                         | I                                                                                             | November 1997                                                                                                                | Pillal, Oct 90 - Ivia                                                                                                                        |                                            | NG NUMBERS                                                                                                                                   |  |
| Chemical Modification and Att<br>Monolayers of Hexadecanedioi                                                                                                                                                                                                                 |                                                                                               |                                                                                                                              | -Assembled                                                                                                                                   | 1L1611                                     | 02AH43                                                                                                                                       |  |
| 6. AUTHOR(S) Lawrence D. Seger, Jeffrey P. I                                                                                                                                                                                                                                  | Rasimas, Ro                                                                                   | se Pesce-Rodrigue                                                                                                            | z, and Robert Fifer                                                                                                                          |                                            |                                                                                                                                              |  |
| 7. PERFORMING ORGANIZATION NAM                                                                                                                                                                                                                                                | ME(S) AND ADI                                                                                 | DRESS(ES)                                                                                                                    |                                                                                                                                              |                                            | DRMING ORGANIZATION<br>RT NUMBER                                                                                                             |  |
| U.S. Army Research Laborator<br>ATTN: AMSRL-WM-PC<br>Aberdeen Proving Ground, MD                                                                                                                                                                                              |                                                                                               | 66                                                                                                                           |                                                                                                                                              |                                            | L-TR-1553                                                                                                                                    |  |
| 9. SPONSORING/MONITORING AGEN                                                                                                                                                                                                                                                 | CY NAMES(S)                                                                                   | AND ADDRESS(ES)                                                                                                              |                                                                                                                                              |                                            | SORING/MONITORING<br>CY REPORT NUMBER                                                                                                        |  |
| 11. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                       | ·                                                                                             |                                                                                                                              |                                                                                                                                              |                                            |                                                                                                                                              |  |
| 12a. DISTRIBUTION/AVAILABILITY ST                                                                                                                                                                                                                                             | ATEMENT                                                                                       |                                                                                                                              |                                                                                                                                              | 12b. DIS                                   | TRIBUTION CODE                                                                                                                               |  |
| Approved for public release; di                                                                                                                                                                                                                                               | stribution is                                                                                 | unlimited.                                                                                                                   |                                                                                                                                              |                                            |                                                                                                                                              |  |
| 13. ABSTRACT (Maximum 200 words)  A self-assembled monolaye purposes of preventing or retar the film, a scheme was develor thickness of the film. To accord Subsequent experiments using enough toward the aluminum (Si-O) linkages at the metal (PM-FTIRRAS) and contact and | rding the co<br>oped to poly<br>inplish this,<br>ig a perfluor<br>surface to co<br>surface. F | nsequences of atm<br>ymerize the expose<br>an attempt was ma-<br>inated carboxylic<br>ompletely remove<br>Polarization modul | ospheric corrosion. To carboxylic acid fur de to cross-link the HI acid as the base layer the underlying organicated Fourier transformation. | o enhand actional god with suggest c SAM a | the protective qualities of groups, while enhancing the cotyltrichlorosilane (OTS), that the OTS is aggressive and displace it with siloxane |  |
| 14. SUBJECT TERMS                                                                                                                                                                                                                                                             | <u></u>                                                                                       | ····                                                                                                                         |                                                                                                                                              | · · · · · · · · · · · · · · · · · · ·      | 15. NUMBER OF PAGES                                                                                                                          |  |
| self-assembled monolayer, cor                                                                                                                                                                                                                                                 | rosion, pola                                                                                  | rization modulated                                                                                                           | FTIR, desorption                                                                                                                             |                                            | 16. PRICE CODE                                                                                                                               |  |
| 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED                                                                                                                                                                                                                            | OF THIS P                                                                                     | CLASSIFICATION<br>AGE<br>LASSIFIED                                                                                           | 19. SECURITY CLASSIFICOF ABSTRACT UNCLASSIFIC                                                                                                |                                            | 20. LIMITATION OF ABSTRACT  UL                                                                                                               |  |

UNCLASSIFIED

#### USER EVALUATION SHEET/CHANGE OF ADDRESS

| This Laboratory und to the items/question        | lertakes a continuing effort to improve the quality as below will aid us in our efforts. | y of the reports it publishes. Your comments/answers      |
|--------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 1. ARL Report Nur                                | nber/Author <u>ARL-TR-1553 (Seger)</u>                                                   | Date of Report November 1997                              |
| 2. Date Report Reco                              | eived                                                                                    |                                                           |
| be used.)                                        |                                                                                          | ject, or other area of interest for which the report will |
| - ,                                              | is the report being used? (Information source, o                                         | design data, procedure, source of ideas, etc.)            |
|                                                  |                                                                                          | as far as man-hours or dollars saved, operating costs     |
|                                                  |                                                                                          | ove future reports? (Indicate changes to organization,    |
|                                                  | Organization                                                                             |                                                           |
| CURRENT<br>ADDRESS                               | Name                                                                                     | E-mail Name                                               |
| ADDRESS                                          | Street or P.O. Box No.                                                                   | <del></del>                                               |
|                                                  | City, State, Zip Code                                                                    |                                                           |
| 7. If indicating a Cha<br>or Incorrect address I |                                                                                          | vide the Current or Correct address above and the Old     |
|                                                  | Organization                                                                             |                                                           |
| OLD                                              | Name                                                                                     |                                                           |
| ADDRESS                                          | Street or P.O. Box No.                                                                   |                                                           |

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

City, State, Zip Code

**DEPARTMENT OF THE ARMY** 

OFFICIAL BUSINESS



FIRST CLASS PERMIT NO 0001,APG,MD

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL WM PC
ABERDEEN PROVING GROUND MD 21005-5066

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES