Metropolia Ammattikorkeakoulu Neuroverkot Matematiikka / Kotitehtävät 5

1. Olkoon

$$f(x) = x^4 + 5x^3 - 7x$$

Laske funktion f (paikallinen) minimi x_{\min} käyttäen gradient descent -menetelmää. Laske käsin derivaatta f'(x) ja etsi minimikohta x_{\min} iteraatiokaavan

$$x_{i+1} = x_i - \alpha f'(x_i)$$

avulla. Voit tehdä laskut käsin laskimen avulla tai Pythonilla.

Jos teet tehtävän Pythonin avulla, kokeile useampia eri aloitusarvoja x_0 ja eri arvoja parametrille α , jotta löydät molemmat minimikohdat.

(Vastaus: x = -3.61617 tai x = 0.631954.)

2. Olkoon

$$f(x,y) = 3x^2 + 3xy + 2y^2 + 3x - 5y$$

Etsi funktion f(x,y) minimikohta (x_{\min},y_{\min}) gradient descent - menetelmällä. Laske funktion f osittaisderivaatat käsin ja muodosta niiden avulla gradientti $\nabla f(x,y)$. Laske minimikohta (x_{\min},y_{\min}) käyttäen iteraatiokaavaa

$$x_{i+1} = x_i - \alpha \frac{\partial f}{\partial x}(x_i, y_i)$$

$$y_{i+1} = y_i - \alpha \frac{\partial f}{\partial y}(x_i, y_i).$$

Voit tehdä laskut käsin laskimella tai käyttää laskuihin Pythonia. Käyttäessäsi Pythonia kokeile useita eri aloituspisteitä ja eri arvoja learning rate -parametrille α .

(Vastaus: $x_{\rm min} = -1.8$ ja $y_{\rm min} = 2.6.)$

3. a) Olkoot $f_i(x) = w_i x + b_i$, i=1,2, missä w_i ja b_i ovat vakioita. Laske osittaisderivaatat

$$\frac{\partial}{\partial w_1} f_2(f_1(x))$$
 ja $\frac{\partial}{\partial b_1} f_2(f_1(x))$.

b) (Vapaaehtoinen) Osoita laskemalla, että sigmoid-funktion

$$g(x) = \frac{1}{1 + e^{-x}}.$$

derivaatta voidaan kirjoittaa muodossa

$$g'(x) = g(x) \left(1 - g(x)\right)$$

c) Käyttäen b-kohdan tulosta ja merkintää $a_1 = g(f_1(x))$ laske osittaisderivaatat

$$\frac{\partial}{\partial w_1} g(f_1(x))$$
 ja $\frac{\partial}{\partial b_1} g(f_1(x))$.