Mathematics

Robin Adams

September 5, 2023

Contents

1	Sets	and Functions	
	1.1	Primitive Terms	١
	1.2	Γhe Axioms	١

4 CONTENTS

Chapter 1

Sets and Functions

1.1 Primitive Terms

Let there be *sets*.

Given sets A and B, let there be functions from A to B. We write $f: A \to B$ iff f is a function from A to B, and call A the domain of f and B the codomain.

Given functions $f:A\to B$ and $g:B\to C$, let there be a function $g\circ f:A\to C$, the *composite* of f and g.

1.2 The Axioms

Axiom 1.1 (Associativity). Given $f: A \to B$, $g: B \to C$ and $h: C \to D$, we have

$$h(gf) = (hg)f$$
.

Axiom 1.2 (Identity). For any set A, there exists a function $i: A \to A$ such that:

- for any set B and function $f: A \to B$, we have fi = f
- for any set B and function $f: B \to A$, we have if = f.

Proposition 1.3. For any set A, there exists a unique function $i: A \to A$ such that:

- for any set B and function $f: A \to B$, we have fi = f
- for any set B and function $f: B \to A$, we have if = f.

PROOF: If i and j both satisfy these conditions then i = ij = j. \square

Definition 1.4 (Identity Function). For any set A, the *identity function* on A, id_A , is the unique function $A \to A$ such that:

• for any set B and function $f: A \to B$, we have $fid_A = f$

• for any set B and function $f: B \to A$, we have $id_B f = f$.

Definition 1.5 (Isomorphism). A function $f: A \to B$ is an isomorphism, $f: A \cong B$, iff there exists a function $g: B \to A$ such that $fg = \mathrm{id}_B$ and $gf = \mathrm{id}_A$.

Axiom 1.6 (Terminal Set). There exists an empty set \emptyset such that, for any set A, there exists exists exactly one function $\emptyset \to A$.

Proposition 1.7. If S and T are empty sets then there exists a unique isomorphism $S \cong T$.

Proof:

 $\langle 1 \rangle 1$. Let: f be the unique function $S \to T$

 $\langle 1 \rangle 2$. Let: f^{-1} be the unique function $T \to S$

 $\langle 1 \rangle 3$. $ff^{-1} = id_T$

PROOF: Each is the unique function $T \to T$.

 $\langle 1 \rangle 4$. $f^{-1}f = \mathrm{id}_S$

PROOF: Each is the unique function $S \to S$.

П

Definition 1.8 (Empty Set). Let \emptyset be the set such that, for any set A, there exists exactly one function $\emptyset \to A$.

Axiom 1.9 (Terminal Set). There exists a terminal set 1 such that, for any set A, there exists exists exactly one function $A \to 1$.

Proposition 1.10. If S and T are terminal sets then there exists a unique isomorphism $S \cong T$.

Proof:

 $\langle 1 \rangle 1$. Let: f be the unique function $S \to T$

 $\langle 1 \rangle 2$. Let: f^{-1} be the unique function $T \to S$

 $\langle 1 \rangle 3. \ f f^{-1} = id_T$

PROOF: Each is the unique function $T \to T$.

 $\langle 1 \rangle 4$. $f^{-1}f = \mathrm{id}_S$

PROOF: Each is the unique function $S \to S$.

П

Definition 1.11 (Terminal Set). Let 1 be the set such that, for any set A, there exists exactly one function $A \to 1$.

Definition 1.12 (Element). An *element* of a set A is a function $1 \to A$. We write $a \in A$ for $a : 1 \to A$.

Given $f: A \to B$ and $a \in A$, we write f(a) for fa.

Axiom 1.13 (Extensionality). Let A and B be sets. Let $f, g : A \to B$. If $\forall x \in A. f(x) = g(x)$ then f = g.

Axiom 1.14 (Non-degeneracy). The empty set \emptyset has no elements.

1.2. THE AXIOMS

Definition 1.15 (Surjective). A function $f:A\to B$ is *surjective* iff, for all $b\in B$, there exists $a\in A$ such that f(a)=b.

7

Definition 1.16 (Injective). A function $f:A\to B$ is injective iff, for all $x,x'\in A$, if f(x)=f(x') then x=x'.

Definition 1.17 (Bijective). A function is bijective iff it is injective and surjective.