Herramientas de Teledetección Cuantitativa Clase 2

Francisco Nemiña

imagenes/logosopi.pngmagenes/2mpimagenes/conae.png

Esquema de presentación

Transferencia radiativa Planteo del problema

Aproximaciones

Absorción constante y sin fuentes Atmósfera plana

Atmósfera

Absorciones Dispersión

Soluciones practicas

Reflectancia
Correccion atmosferica

Práctica

Problema

Queremos estudiar el problema de adquirir una imagen satelital cuando hay atmósfera presente. Para esto estudiaremos la variacón de la radiancia.

 L_{λ}

imagenes/iatmo.png

Interacciones entre la atmósfera y la luz.¹

¹John A Richards. Remote Sensing Digital Image Analysis. Springer, 2013.

imagenes/tatmo.png

Diagrama esquemático de la absorción en la atmósfera.²

²John A Richards. Remote Sensing Digital Image Analysis. Springer, 2013.

imagenes/patmo.png

Diagrama esquemático de las dispersiónes en la atmósfera.³

³John A Richards. Remote Sensing Digital Image Analysis. Springer, 2013.

Formulación matemática

$$dL_{\lambda} = -k_{\lambda}\rho L_{\lambda}ds + j_{\lambda}\rho ds$$

donde $-k_{\lambda}\rho L_{\lambda}ds$ representa absorciones y $j_{\lambda}\rho ds$ representa fuentes,

$$\frac{dL_{\lambda}}{k_{\lambda}\rho ds} = -L_{\lambda} + J_{\lambda}$$

Nombres

- k_{λ} mass extintion cross section
- j_{λ} source function coefficient
- $\triangleright \rho$ densidad

Aproximaciones

Resolver esto en general es imposible. Tendremos que hacer distintas aproximaciones.

Esquema de presentación

Transferencia radiativa

Planteo del problema

Aproximaciones

Absorción constante y sin fuentes Atmósfera plana

Atmósfera

Absorciones Dispersión

Soluciones practicas

Reflectancia Correccion atmosferica

Práctica

Absorción constante y sin fuentes

$$k_{\lambda}=cte,\,j_{\lambda}=0$$

En este caso nos queda la ecuación

$$dL_{\lambda} = -k_{\lambda}\rho L_{\lambda}ds$$

cuya solución es

$$L_{\lambda}(s_1) = L_{\lambda}(0) \exp\left(-\int_0^{s_1} k_{\lambda} \rho ds\right)$$

Absorción constante y sin fuentes

$$k_{\lambda}=cte,\,j_{\lambda}=0$$

Notando

$$u = \int_0^{s_1} \rho ds$$

nos queda la ecuación mas compacta

$$L_{\lambda}(s_1) = L_{\lambda}(0)e^{-k_{\lambda}u}$$

conocida como ley de Beer-Bouguer-Lambert.

Absorción constante y sin fuentes

Definición

Llamamos transmitancia espectral al valor

$$T_{\lambda} = \frac{L_{\lambda}}{L_{\lambda}(0)} = e^{-k_{\lambda}u}$$

Utilidad

Si definimos la transmitancia como arriba:

$$L_{\lambda} = T_{\lambda}L_{\lambda}(0)$$

Atmósfera plana

Atmósfera plana

Suponemos que toda la dependencia espacial es en la dirección z, entonces

$$\mu \frac{dL_{\lambda}}{k_{\lambda}\rho dz} = -L_{\lambda} + J_{\lambda}$$

definiendo a la profundidad óptica como

$$\tau_{\lambda} = \int_{z}^{\infty} k_{\lambda} \rho dz$$

Atmósfera plana

Atmósfera plana

Nos queda entonces

$$\mu \frac{dL_{\lambda}}{d\tau} = L_{\lambda} - J_{\lambda}$$

resolver esto ya depende de la atmósfera y no suele haber formas cerradas.

Observacion

Necesito además conocer 2 condiciones de contorno.

- ► La radiancia solar
- ▶ La reflectancia en el terreno

Esquema de presentación

Transferencia radiativa

Planteo del problema

Aproximaciones

Absorción constante y sin fuentes Atmósfera plana

Atmósfera

Absorciones Dispersión

Soluciones practicas

Reflectancia
Correccion atmosferica

Práctica

atmósfera

Efectos atmosfericos

- Absorciones
 - Constantes
 - Variables
- Dispersión
 - Rayleigh
 - Mie
 - Aerosoles

imagenes/composicion.png

Composición de la atmósfera.4

⁴Kuo-Nan Liou. An introduction to atmospheric radiation. Vol. 84. Academic press, 2002.

imagenes/solar_spectrum.png

Comparación entre la irradiancia solar a tope de la atmósfera y de la cobertura.⁵

⁵Wikimedia Commons. Solar Spectrum. 2007.

Variaciones de la absorción por contenido de vapor de agua.⁶

⁶Shunlin Liang. Quantitative remote sensing of land surfaces. Vol. 30. John Wiley & Sons. 2005.

Porcentaje de absorcion tipica

Para Landat 5 - TM

Banda	Ozono	Vapor de agua
490 ± 60 nm	√ 1.5 % - 2.9 %	-
575 ± 75 nm	∑ 5.2 % - 13.4 %	√ 0.5 %-3 %
670 ± 70 nm	> 3.1 % − 7.9 %	√ 0.5 %-3 %
837 ± 107 nm	-	√ 3.5 %-14 %
1692 ± 178 nm	-	\searrow 5 %-16 %
2190 ± 215 nm	-	2.5 %-13 %

Variaciones de absorvancia por contenidod de ozono y vapor de agua.⁷

⁷EF Vermote y A Vermenlen. "Atmospheric correction algorithm: spectral reflectances (MOD09). http://modarch.gsfc.nasa.gov". En: MODIS/ATBD/atbd.mod08.pdf 49 ().

imagenes/abs_veg_esp.png

Comparación entre la firma espectral y la respuesta espectral para vegetación con errores por absorción de ozono y vapor de agua.⁸

⁸Roger Nelson Clark v col. USGS digital spectral library splib06a. 2007.

Soluciones

- Resolver la ecuación de transferencia radiativa.
- ► Calibrar con datos en el terreno.

imagenes/dispersion.png

Distintos tipos de dispersión en la atmósfera.9

⁹ John A Richards. Remote Sensing Digital Image Analysis. Springer, 2013.

Dispersión de Rayleigh

Se da por particulas pequeñas

$$d << \lambda$$

esta siempre presente

$$J_{\lambda} \sim rac{1}{\lambda^4}$$

imagenes/rayleigh_sunlight_scattering.png

J vs. λ en la zona óptica. 10

Foto de un atardecer para distender. 11

¹¹Paolo Motta. Ravleigh scattering. 2008.

Dispersión de Mie

Se da por particulas de tamaño similar a la longitud de onda

$$d \sim \lambda$$

puede o no estar presente.

Dispersión por aerosoles

Se da por particulas de mayor que la longitud de onda

$$d >> \lambda$$

puede estar presente en distintas zonas de la imagen.

Porcentaje de dispersión tipica

Para Landat 5 - TM

imagenes/rayleigh.png

Variacion de la firma espectral por dispersión de Rayleigh. 12

¹²Roger Nelson Clark v col. USGS digital spectral library splib06a. 2007.

Soluciones

- Resolver ecuación de transferencia radiativa
- Calibrar con datos en el terreno.
- ▶ Modelar al comportamiento de forma estadistica.

Esquema de presentación

Transferencia radiativa

Planteo del problema

Aproximaciones

Absorción constante y sin fuentes Atmósfera plana

Atmósfera

Absorciones Dispersión

Soluciones practicas

Reflectancia Correccion atmosferica

Práctica

Reflectancia

Calculo

$$\rho_{toa} = \frac{\pi L}{E_0}$$

$$3.14 * d^2 (g * DN + b) / E0$$

- ► DN : número digital
- ▶ g : ganancia
- ▶ b : bias
- d : distancia tierra-sol
- ► E_0 : irradiancia solar

Angulo solar

Calculo

$$\rho_{\cos} = \frac{\rho_{toa}}{\cos(\theta)}$$

- ▶ DN : reflectancia
- a : ángulo solar

DOS1

Calculo

$$\rho_{dos} = \frac{\rho_{toa} - \rho_p}{\cos(\theta)}$$

- DN: reflectancia
- DNmin : reflectancia mínima de la banda
- a : ángulo solar

DOS1

Histogramas por banda mostrando el menor valor en cada una. 13

¹³ John A Richards. Remote Sensing Digital Image Analysis. Springer, 2013.

Objetos pseudoinvariantes

Calculo

$$\rho_{\mathsf{pse}} = \mathsf{A} * \rho_{\mathsf{toa}} + \mathsf{B}$$

donde A y B se obtienen a partir de encontrar objetos invariantes en cada imagen.

Esquema de presentación

Transferencia radiativa

Planteo del problema

Aproximaciones

Absorción constante y sin fuentes Atmósfera plana

Atmósfera

Absorciones Dispersión

Soluciones practicas

Reflectancia Correccion atmosferica

Práctica

Práctica

Actividades prácticas de la segunda clase

- 1. Abrir imágenes Landsat 8 y digitalizar coberturas de interes.
- 2. Convertir la imagen a reflectancia.
- 3. Corregir la imagen por el coseno del angulo.
- 4. Corregir la imagen por DOS 1%.
- 5. Corregir la imagen por objetos invariantes
- 6. Comparar las firmas obtenidas por distintos metodos.