MSKSEMI 美森科

ESD

T'

TSS

MOV

GDT

PIFD

L9110S-MS

产品手册

描述

L9110S-MS 是为消费类产品,玩具和其他低 压或者电池供电的运动控制类应用提供了 一个集成的电机驱动器解决方案。此器件 能够驱动一个直流无刷电机,由一个内部 电荷泵生成所需的栅极驱动电压电路和 4 个功率 NMOS 组成 H 桥驱动,集成了电机 正转/反转/停止/刹车四个功能。

L9110S-MS 支持最高工作电压为12.0V,持续 电流1.2A,峰值电流2.0A.同时,集成了过 温保护和欠压闭锁等保护功能。 L9110S-MS 具有一个PWM(INA/INB)输入接口,支持与行业标准器件兼容。

特性

- 工作电压范围 2.5-12.0V
- 最大持续电流1.2A,峰值2.0A
- 低导通电阻: 450 mΩ(HS+LS)
- 低待机电流(typ.0.1uA@6.0V)
- 低静态工作电流(typ.200uA)
- 集成过温保护
- 集成欠压保护
- SOP-8封装

典型应用

- 直流马达驱动
- 脉冲电磁阀驱动
- 步进马达驱动
- 开关功率管

L9110S-MS 封装和脚位定义

封装	管脚排列	丝印标记
	OUTA 1 8 GND 7 INB VM 3 6 INA OUTB 4 5 GND	9110
SOP-8		

NO.	NAME	TYPE	DESCRIPTION	
1	OUTA	0	输出OUTA	
2	VM	Р	电源输入脚,连接10uF或更大电容在VM和地之间	
3	VM	Р	电源输入脚,连接10uF或更大电容在VM和地之间	
4	OUTB	0	输出OUTB	
5	GND	Р	功率地	
6	INA		逻辑输入INA	
7	INB		逻辑输入INB	
8	GND	Р	功率地	

简单应用电路

应用参考电路

芯片使用注意事项:

- 1. 以上推荐电路及参数仅适用于普通遥控车玩具,其他玩具及电机驱动在使用L9110S-MS时请根据实际情况来使用。
- 2. 2. 持续电流驱动能力受封装形式、VM、芯片差异及环境温度、PCB 材料及厚度等因素影响,规格书 给出参数仅供参考。在实际使用中请根据产品考虑一定的余量。
- 3. L9110S-MS功率电源端附近的去耦电容必须就近连接,必须添加,否则容易造成电路击穿;功率电源对地去耦电容容值可根据电机适当调整,图中给出的电容值为参考值。
- 4. OUTA与OUTB端连接到地的104电容为旁路电容,该电容可有效改善因电机快速正、反转切换而引起的电压尖峰击穿输出端口问题。
- 5. L9110S-MS采用MOS 工艺设计制造,对静电敏感,要求在包装、运输、加工生产等全过程中需注意做 好防静电措施。
- 6. 马达启动瞬间的电流值建议不要超过 2.0A。

绝对最大定额值

	参数	最小	最大	单位
电源电压	VM	-0.3	13. 2	V
输入电压 INA, INB		-0.3	7. 0	·
静电保护(人体模型)	VM, INA, INB, OUTA, OUTB			kV
工作温度 TJ		-40	150	$^{\circ}$
存储温度 Tstg		-65	150	-
热阻	θ ЈА		100	°C/W

推荐工作范围

	参数	最小	最大	单位
电源电压	VM	2. 5	12.0	V
输入电压	INA, INB	0	7. 0	V
输出电流	IOUTA, IOUTE	0	1.2	A

电气特性(VM=6.0V, Ta=25°C)

参数		测试条件	最小值	典型值	最大值	单位
导通阻抗						
RpSON		1our=0.8A		0.45	0.65	Ω
INA/INB						
高电平输入电压	VINE		2.0		7.0	_ v
低电平输入电压	VINL		0		0.8	V
高电平输入电流	IINH			25	50	
低电平输入电流	IINL			0	1	uA
下拉电阻	RPD			200	400	KΩ
工作电流						
电路关断电流	IVM_OFF	INA=INB=0		0	5	uA
电路工作电流	VM ON			300	600	uA

功能框图

输入-输出逻辑表

INA	INB	OUTA	OUTB	工作状态	工作电流
L	L	Hi-Z	Hi-Z	待命状态	IVM_OFF
Н	L	Н	L	前进	IVM_ON
L	Н	L	Н	后退	IVM_ON
Н	Н	L	L	刹车	IVM_ON

输入-输出波形

应用说明

1、基本工作模式

a) 待机状态

在待机状态下, **INA=INB=L**。包括驱动功率管在内的所有内部电路都处于关断状态。电路消耗极低 的电流。此时马达输出端OUTA 和OUTB 都为高阻状态。

b)正转模式

正转模式的定义为: **INA=H,INB=** L, 此时马达驱动端OUTA 输出高电平,马达驱动端**OUTB** 输出 低电平时,马达驱动电流从OUTA 流入马达,从OUTB 流到地端,此时马达的转动定义为正转模式。

c) 反转模式

反转模式的定义为: **INA=L,INB= H,** 此时马达驱动端OUTB 输出高电平,马达驱动端**OUTA** 输出 低电平时,马达驱动电流**从OUTB** 流入马达,**从OUTA** 流到地端,此时马达的转动定义为反转模式。

d)刹车模式

刹车模式的定义为: **INA=H,INB=H**,此时马达驱动端 **OUTA** 以及**OUTB** 都输出低电平,马达内 存储的能量将通过 OUTA 端N MOS 管或者 OUTB 端 NMOS 快速释放,马达在短时间内就会停止转动。

注意在刹车模式下电路将消耗静态功耗。

e)PWM 模式A

当输入信号INA 为PWM 信号,INB=0 或者INA=0, INB 为PWM 信号时,马达的转动速度将受PW M 信号占空比的控制。在这个模式下,马达驱动电路是在导通和待机模式之间切换,在待机模式下,所有 功率管都处于关断状态,马达内部储存的能量只能通过功率MOSFET 的体二极管缓慢释放。

注意:由于工作状态中存在高阻状态,因此马达的转速不能通过PWM 信号的占空比精确控制。如果PWM 信号的频率过高,马达会出现无法启动的情况。

PWM 模式 A 信号波形示意图

f)PWM 模式B

当输入信号INA 为PWM 信号,INB=1 或者**INA=1,INB** 为PWM 信号时,马达的转动速度将受到 **PWM** 信号占空比的控制。在这个模式下,马达驱动电路输出在导通和刹车模式之间,在刹车模式下马 达存储的能量通过低边的**NMOS** 管快速释放。

注意:由于工作状态中存在刹车状态,马达能量能快速释放,马达的转速能通过PWM 信号的占空 比精确控制,但必须注意如果PWM 信号频率过低会导致马达因进入刹车模式而出现无法连续平滑转动 的现象。 为减小电机噪音,建议PWM 信号频率大于10 KHz, 小于50KHz。

PWM 模式 B 信号波形示意图

2、防共态导通电路

在全桥驱动电路中,将半桥内的高边PMOS 功率管和低边NMOS 功率管同时导通的状态称为共态 导通状态。共态导通将出现一个电源至地的瞬态大电流,该电流会引起额外的功耗损失,极端情况下会 烧毁电路。通过内置死区时间,可避免共态导通。典型的死区时间为300 ns。

3、过温保护电路

当驱动电路结温超过预设温度(典型值为150℃)时,TSD 电路开始工作,此时控制电路强制关断所 有输出功率管,驱动电路输出进入高阻状态。TSD 电路中设计了热迟滞,只有当电路的结温下降到预设温度(典型值110℃)时,电路返回正常工作状态。

4、驱动电路最大持续功耗

该系列马达驱动电路内部均设计有过热保护电路,因此当驱动电路消耗的功耗过大时,电路将进入 热关断模式,热 关断状态下马达将无法正常工作。驱动电路最大持续功耗的计算公式为:

$$P_M = (150^{\circ}\text{C} - T_A)/\theta_{IA}$$

其中**150** \mathbb{C} 为热关断电路预设温度点, TA 为电路工作的环境温度(\mathbb{C}), θ JA为电路的结到环境的热阻(单位 \mathbb{C}/\mathbb{W})。

注意:驱动电路的最大持续功耗与环境温度、封装形式以及散热设计等因素有关,与电路导通内阻 并无直接关系。

5、驱动电路功耗

马达驱动电路内部功率MOSFET 的导通内阻是影响驱动电路功耗的主要因素。驱动电路功耗的计 算公式为:

$$P_D = I_L^2 \times R_{ON}$$

其中L表示马达驱动电路的输出电流, Ron 表示功率MOSFET 的导通内阻。

注意:功率MOSFET 的导通内阻随着温度的升高而升高,在计算电路的最大持续输出电流以及功 耗时必须考虑导通内阻的温度特性。

6、驱动电路最大持续输出电流

根据驱动电路的最大持续功耗以及驱动电路功耗可计算出驱动电路的最大持续输出电流,计算公式 为:

$$I_L = \sqrt[2]{(150 - T_A)/(\theta_{JA} \times R_{ONT})}$$

其中的Ronr 为考虑温度特性后的功率MOSFET 导通内阻。

注意:驱动电路的最大持续输出电流与环境温度、封装形式、散热设计以及功率MOSFET 的导通 内阻等因素有关。

7、马达内阻选择

上述分析表明,马达驱动电路的最大持续功耗有限。如果马达驱动电路所驱动马达内阻极小,其堵 转电流超过马达驱动电路所能承受的最大持续输出电流太多,则很容易导致马达驱动电路进入过热关断 状态,玩具车在跑动或者反复前进、后退时将出现抖动的现象。在马达驱动电路选型时,必须考虑马达的内阻。

PACKAGE MECHANICAL DATA

Symbol	Dimensions In	Millimeters	Dimensions In Inches		
Symbol	Min Max		Min	Max	
A	1.350	1.750	0.053	0.069	
A1	0.100	0. 250	0.004	0.010	
A2	1. 350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0. 020	
С	0.170	0. 250	0.007	0.010	
D	4.800	5. 000	0. 189	0. 197	
e	1. 270	(BSC)	0.050 (BSC)		
E	5.800	6. 200	0. 228	0. 244	
E1	3.800	4. 000	0. 150	0. 157	
L	0.400	1. 270	0.016	0.050	
θ 0° 8°		0°	8°		

Suggested Pad Layout

- Note:
 1.Controlling dimension:in millimeters.
 2.General tolerance:± 0.05mm.
 3.The pad layout is for reference purposes only.

订购信息

订单型号	封装形式	包装/数量
L9110S-MS	SOP-8	盘装/4000pcs

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, refer to the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.