1. Сиракузская последовательность

Сиракузская последовательность, или последовательность Коллатца, строится так: возьмём натуральное число n; если оно чётное, то заменим его числом n/2; если же оно нечётное, то заменим его числом 3n+1. Получившееся число — следующее в сиракузской последовательности после числа n. Затем заменяем получившееся число по тому же правилу, и так далее.

Обычно, если проделать такую замену достаточно много раз, мы приходим к числу 1 (за которым следует снова $1 \to 4 \to 2 \to 1$). Например: $10 \to 5 \to 16 \to 8 \to 4 \to 2 \to 1$.

Определите, сколько шагов потребуется сиракузской последовательности, стартующей с заданного числа, чтобы прийти к 1.

Если вы обнаружите число, сиракузская последовательность от которого не приходит к 1, то... вы, скорее всего, ошиблись. Но если нет, то поздравляем: вы прославитесь, ведь вопрос о том, всегда ли сиракузская последовательность приходит к 1 (независимо от начального числа), давно будоражит умы математиков.

Формат ввода

Вводится одно натуральное число n.

Формат вывода

Выводится одно число — количество шагов, необходимое стартующей от п сиракузской последовательности, чтобы впервые дойти до 1.

Пример

Ввод 10 Вывод 6

2. Сумма ряда

C клавиатуры вводится натуральное число n > 0, потом n чисел, каждое на новой строке.

Вычислите и напечатайте знакочередующуюся сумму ряда (первое число прибавить, второе вычесть, третье прибавить и т.д.) Например, для чисел 1,2,3,4 сумма будет следующей: 1-2+3-4=-2.

Пример 1

Ввод	Вывод
3	10
5	
2	
7	

3. Ищем клад

Мы находимся на острове, на котором закопан клад. Мы находимся в точке с координатами (0,0). Нам известно, где закопан клад, но этого мало: остров полон опасностей, и нужно перемещаться строго по указаниям карты, которая, к счастью, тоже имеется в нашем распоряжении. Мы хотим найти клад как можно скорее.

Сначала вводятся два числа: координаты клада по оси икс (запад-восток) и игрек (юг-север). Затем следует некоторое количество указаний карты. Каждое указание карты состоит из двух строк. Первая строка содержит слово «север», «юг», «запад» или «восток», вторая — натуральное число, количество шагов, которое нужно пройти в данном направлении. Заключительное указание карты состоит только из одной строки, содержащей слово «стоп».

Программа выводит минимальное количество указаний карты, которое нужно выполнить, чтобы прийти к кладу. Гарантируется, что карта приводит к кладу.

Формат ввода

Два целых числа — координаты клада.

Затем несколько блоков: строка (направление движения) и целое число (количество шагов).

Строка «стоп».

Формат вывода

Целое число — минимальное количество указаний карты, которое нужно выполнить, чтобы прийти к кладу.

Пример

Ввод — Вывод — 2 9 север

э запад

2

восток

17

стоп

4. Логистический максимин

Ваша компания занимается грузоперевозками в Швейцарских Альпах. Вам нужно доставить груз из пункта A в пункт Z на большом грузовике. Из A в Z ведёт несколько дорог, каждая из которых проходит через несколько туннелей известной высоты. Выясните максимальную высоту, которую может иметь ваш грузовик.

Формат ввода

На первой строке вводится количество дорог.

Затем для каждой дороги вводится (на отдельных строках) количество туннелей и высота каждого туннеля (точнее, максимально допустимая высота грузовика) в сантиметрах.

Формат вывода

Два целых числа: номер дороги (начиная нумерацию с единицы), по которой нужно проехать, чтобы высота грузовика была наибольшей, и сама эта высота.

Гарантируется, что ответ однозначный.

Пример

Ввод 2 2 450 3 470 430 465

Ввод	Вывод
2	
451	
450	

5. Дважды четное число

Целое трехзначное число называется «дважды четным», если и сумма его цифр, и их произведение являются четными. Напишите программу, который принимает с клавиатуры положительное трехзначное число и проверяет, является ли оно «дважды четным».