

Falk Jonatan Strube

Vorlesung von Prof. Dr.-Ing. Flach (bis 12/2015)

3. Dezember 2015

Inhaltsverzeichnis

Einführung

Passwort Materialien: lvf_ws2015

Prüfung: 1 Blatt A4 hanbeschrieben, doppelseitig beschrieben

1 Anliegen der Lehrveranstaltung

Analyse/Synthese

- Modellbildung
- unterschiedliche Anregungen
- Bauelemente aktiv, passiv, Halbleiter
- Netzwerke (linear, nichtlinear)
- Schaltungen (analog, digital)

Informatik: automatisierte Informationsverarbeitung

FAZIT: Grundkenntnisse, gemeinsames Vokabular mit HW-Ingenieuren

2 Grundlagen der Elektrotechnik

2.1 Grundgrößen und Grundbeziehungen

Bsp.: Elektrophor mit Bernsteinplatte und Katzenfell

Bernstein mit Katzenfell einreiben, dann Metallplatte anfassen: Elektronen fließen ab, Bernstein ist positiv geladen.

Modellbildung: Erklärung für beobachteten Sachverhalt

- möglichtst einfaches Modell
- vollständige widerspruchsfreie Definition
- Beschreibung über mathematische Gleichung

Bohr-Sommerfeldsches Atommodell:

Kern (Protonen, pos. Ladungen)

Atommodell ist elektrisch neutral. Aber:

- unter bestimmten Bediengungen entstehen positive und negative Ladungen (Energiezufuhr)
- Elementarladung $e = 1, 6 \cdot 10^{-19} C$

Beobachtung: Ladungen ziehen sich an / Ladung stoßen sich ab.

Kraftwirkung

$$F \sim Q_1 \cdot Q_2$$

$$F \sim \frac{1}{r^2}$$

$$F = k \frac{Q_1 \cdot Q_2}{r^2}$$

2.2 Potential und Spannung

- Ladungen im elektrischen Feld haben unterschiedliche Potenziale.
- Einheit des Potenzial: Volt [V]
- Spannung ist Potentialdifferenz
- Einführen eines Bezugspotentials $\varphi = 0V$

Beispiele für Spannungen:

• Antennen ... μV

• Microfon ... mV

• Batterie (AA) ... 1, 2V

• Netzteile ... $\pm 5V, \pm 12V$

• Haushalt ... 230V

• Freileitungen ... 380kV

2.3 Stromfluss, Ladungsausgleich

• Strom $I = \frac{\Delta Q}{\Delta t}$, $i(t) = \frac{dQ}{dt}$

Ursache: Potentialdifferenz

Voraussetzung: leitfähiger Kanal, bewegliche Ladungen

• "Fließgeschwindigkeit" bestimmt Größe des Stroms

Analogie: Fluß

Höhenunterschied - Potential

Flussbett - Leitung Wasser - Leiter

2.4 Widerstand

Beobachtung: $I \sim U$, $I = G \cdot U$ mit $G \dots$ Leitwert je größer der Leitwert, desto kleiner der Widerstand $\Rightarrow G = \frac{1}{R}$ mit $R \dots$ ohmscher Widerstand

 $\begin{array}{ll} \textbf{Ohmsches Gesetz:} & R\left(=\frac{U}{I}\right)=const. & U=R\cdot I \quad I=\frac{U}{R} \\ \\ \text{mit } [I]=A \text{ (Ampere)} & [U]=V \text{ (Volt)} & [R]=\frac{V}{A}=\Omega \text{ (Ohm)} & [G]=\frac{A}{V}=S \text{ (Siemens)} \\ \end{array}$

Wiederstand ist eine Materialeigenschaft.

 $R \sim l - R \sim rac{1}{A} - R = k \cdot rac{l}{A} \; ext{mit} \quad k = \varrho \dots \; ext{spezifischer Widerstand} \; [\varrho] = \Omega \cdot m = \Omega rac{mm^2}{m}$

$$G = \frac{1}{R} = \frac{A}{\varrho \cdot l} = \frac{\kappa A}{l} \; \mathrm{mit} \quad \; \kappa = \frac{1}{\varrho} \label{eq:G}$$

Widerstand ist ...

- Materialeigenschaft
- Bauelement

2.5 Zusammenschaltung von Widerständen

a) Reihenschaltung

$$\textit{Maschensatz} : \sum_{\circlearrowleft} U = 0$$

$$\begin{split} U_{ges} &= U_1 + U_2 + \ldots + U_n \\ U_{ges} &= IR_1 + IR_2 + \ldots + IR_n \\ \frac{U_{ges}}{I} &= R_{ges} = R_1 + R_2 + \ldots + R_n \end{split}$$

$$R_{ges} = \sum_{i=1}^{n} R_i$$

b) Parallelschaltung

Knotensatz:
$$\sum_{\cdot} I = 0$$

$$I_{ges} = I_1 + I_2 + \dots + I_n$$

$$I_{ges} = \frac{U}{R_1} + \frac{U}{R_2} + \dots + \frac{U}{R_n}$$

$$\frac{I_{ges}}{U} = \frac{1}{R_{ges}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

$$\boxed{\frac{1}{R_{ges}} = \sum_{i=1}^n \frac{1}{R_i}}$$

Beispiele:

$$R^* = R||2R = \frac{2R \cdot R}{3R} = \frac{2}{3}R$$

$$R' = R||(R + R^*) = \frac{R \cdot \frac{5}{3}R}{\frac{8}{3}R} = \frac{5}{8}R$$

$$R_{ges} = R + R' + R = 2R + \frac{5}{8}R = \frac{21}{8}R$$

2.6 Leistung und Energie

$$U \bigvee_{Iges} I_{ges}$$

$$P = U \cdot I \stackrel{U=R \cdot I}{=} I^2 \cdot R = \frac{U^2}{R}$$

$$W = P \cdot t = U \cdot I \cdot t = \frac{U^2}{R} \cdot t = I^2 \cdot R \cdot t$$

2.7 Stromkreise und Schaltbilder

- Modellierung elektronischer Erscheinungen
- Berechnung von Stromkreisen

ABB 27

Bsp.: Ein Kondensator wird zum Aufladen an eine Spannungsquelle mit dem Innenwiderstand R_i angeschlossen und zum Entladen an einen Widerstand R_E . Das Laden erfolgt über den Strombegrenzungswiderstand R_L .

- Umschalter
- Kondensater C, Widerstand R_i , R_E , R_L
- Spannungsquelle

ABB28

3 Berechnung von Stromkreisen

3.1 Spannungsteiler

$$\begin{array}{l} U_{R_1} = IR_1 \quad U_{R_2} = IR_2 \quad U_q = I(R_1 + R_2) \\ \frac{U_{R_2}}{U_q} = \frac{R_2}{R_1 + R_2} \quad \frac{U_{R_1}}{U_{R_2}} = \frac{R_1}{R_2} \\ \text{Anwendungsbeispiel: Potenziometer} \\ \text{ABB210} \\ \frac{U_{out}}{U_{in}} = \frac{x \cdot R_{Pot}}{R_{Pot}} \Rightarrow U_{out} = x \cdot U_{in} \end{array}$$

belasteter Spannungsteiler: ABB211

$$\begin{split} &\frac{U_{out}}{U_{in}} = \frac{R_2||R_L}{R_1 + R_2||R_L} \\ &\text{Bspw.: } R_1 = 5\Omega, \, R_2 = R_L = 5\Omega \\ &\text{unbelasteter Fall: } \frac{U_{out}}{U_{in}} = \frac{5\Omega}{10\Omega} \Rightarrow U_{out} = 5V \\ &\text{belasteter Fall: } \frac{U_{out}}{U_{in}} = \frac{2,5\Omega}{7,5\Omega} \Rightarrow U_{out} = 3,33V \end{split}$$

doppelter Spannungsteiler ABB212

$$\frac{U_{out}}{U_{in}} = \underbrace{\frac{R_2||(R_3 + R_4)}{R_1 + R_2||(R_3 + R_4)}}_{\underbrace{\frac{U_{R_2}}{U_{In}}}} \underbrace{\frac{R_4}{R_3 + R_4}}_{\underbrace{\frac{U_{out}}{U_{R_2}}}}$$

gesteuerter Spannungsteiler ABB31

3.2 Stromteiler

ABB 32

$$U_{out} = I_3 \cdot R_3 = I_2 \cdot R_2 = I_1 \cdot (R_2 || R_3)$$

$$\frac{I_3}{I_2} = \frac{R_2}{R_3}$$

$$\frac{I_3}{I_1} = \frac{R_2 || R_3}{R_3} = \frac{R_2 \cdot R_3}{(R_2 + R_3) \cdot R_3} = \frac{R_2}{R_2 + R_3}$$

$$\frac{I_2}{I_1} = \frac{R_2 || R_3}{R_2} = \frac{R_3}{R_2 + R_3}$$

Beispiel: geg.: ABB 33

ges.: R_{AB}, R_{CD}, u_{out} , alle Ströme

$$\begin{split} R_{AB} &= R_1 + R_2 || (R_3 + R_4) \\ R_{CD} &= R_4 || (R_3 + R_2) \\ \frac{U_{out}}{U_h} &= \frac{R_4}{R_3 + R_4} \frac{U_h}{U_{in}} = \frac{R_2 || (R_3 + R_4)}{R_1 + R_2 || (R_3 + R_4)} \\ U_{out} &= U_{in} \frac{R_2 || (R_3 + R_4)}{R_1 + R_2 || (R_3 + R_4)} \cdot \frac{R_4}{R_3 + R_4} \\ I_1 &= \frac{U_{in}}{R_{AB}} \\ \frac{I_2}{I_1} &= \frac{R_3 + R_4}{R_2 + R_3 + R_4} \Rightarrow I_2 = \frac{U_{in}}{R_{AB}} \cdot \frac{R_3 + R_4}{R_2 + R_3 + R_4} \\ \frac{I_3}{I_1} &= \frac{R_2}{R_2 + R_3 + R_4} \Rightarrow I_3 = \frac{U_{in}}{R_{AB}} \cdot \frac{R_2}{R_2 + R_3 + R_4} \end{split}$$

3.3 Strom-Spannungskennlinie

Ziel: anschauliche Beschreibung des Klemmverhaltens von Bauelementen ABB 34

• Verbraucher: ohmscher Widerstand

$$\label{eq:abb} \begin{array}{l} \mathsf{ABB} \ \mathbf{35} \\ R = \frac{U}{I} \ I = f(U) = \frac{1}{R} \cdot U = G \cdot U \end{array}$$

• Verbraucher: Diode

ABB 36

$$ho : \Rightarrow ext{nichtlinear} \ I = f(U) = I_s \left(e^{rac{U}{U_T}} - 1
ight)$$

 $I_S \dots$ Sperrstrom

 $U_T \dots$ Temperaturspannung

3.4 Spannungsquelle

Was ist eine Spannungsquelle?

Batterie, Netzteil, Antenne, Mikrophon, Steckdose, ...

Unterteilung in:

- Signalquellen (irgendein u(t), wenig Energie)
- Spannungsquellen (Gleichspannung/Wechselspannung)

Modell:

- 1.) ABB 37 Quelle im Leerlauf
- 2.) ABB 38 Quelle kurzgeschlossen

Ersatzschaltbild einer realen Quelle:

ABB 39 (mit
$$I_k = \frac{U_q}{R_i}$$
)

 $U_q \dots$ Leerlaufspannung

 R_i ... Innenwiderstand

 $I_k \dots$ Kurzschlussstrom

3.5 Grundstromkreis

reale Quelle + Verbraucher

ABB 310

Strom-Spannungs-Kennlinienfeld des Grundstromkreises

Last:
$$I = f(U) = \frac{U_{AB}}{R_V}$$

Quelle: I = f(U)

(mit Maschensatz:
$$I \cdot R_i + U_{AB} - U_q = 0$$

$$I = \frac{1}{R_i}(U_q - U_{AB}) = -\frac{1}{R_i}U_{AB} + I_k$$
)

ABB 311

Grundstomkreis mit nichtlinearm Verbraucher

ABB 312

Leistung am Lastwiderstand

ABB 313

$$\begin{split} & \to P_V = I \cdot U_{AB} \quad \text{mit } U_{AB} = U_q - I \cdot R_i \quad I \cdot R_i + U_{AB} - U_q = 0 \\ & P_V = U_q \cdot I + I^2 \cdot R_i \quad I = \frac{U_{AB}}{R_V} \\ & P_V = f(R_V) \end{split}$$

maximale Leistung am Verbraucher: $\frac{dP_V}{dR_V}=0 \Rightarrow P_{V,max}$ für $R_V=R_i$ (dann $P_{V,max}=\frac{I_k\cdot U_q}{4}$)

3.5.1 Betrachtung der Leistung im Grundstromkreis

ABB 41

Generator

Verbraucher

- soll sich nicht erwärmen
- P_L möglichst groß
- P_i möglichst klein
- Wirkungsgrad groß

Leistung am Lastwiderstand:

$$P_L = U_{AB} \cdot I = \frac{U_{AB}^2}{R_L} = I^2 \cdot R_L$$

mögliche Lastfälle:

ABB 42

- 1.) Leerlauf: $R_L \to \infty$ $AP_{Leerlauf}$: $U_{AP} = U_q$, $I_{AP} = 0$, $P_{AP} = 0$
- 2.) Kurzschluss: $R_L=0$ $AP_{Kurzschluss}$: $U_{AP}=0$, $I_{AP}=I_K$, $P_{AP}=0$
- 3.) großer Lastwiderstand: AP_{qr} : $U_{AP}=U_{AP,qr}$, $I_{AP}=I_{AP,qr}$, $P_{AP,qr}>0$
- 4.) kleiner Lastwiderstand: AP_{kl} : $U_{AP} = U_{AP,kl}$, $I_{AP} = I_{AP,kl}$, $P_{AP,qr} > 0$

Zwei realistische Betriebsfälle:

- Wirkungsgrad groß, dafür nicht maximale Leistung
- Wirkungsgrad bei 50% und maximale Leistung

3.6 Spannungszeitfunktion

Verlauf einer Spannung über der Zeit.

- Gleichspannung $U = const \neq f(t)$ (Batterien, Stromversorgung für elektrische Geräte
- Wechselspannung (Steckdose)

ABB 43

Kenngrößen:
$$\hat{U}=325V$$
 (Spitzenwert), $U=230V$ (Effektivwert), $f=50Hz$ ($T=\frac{1}{f}=20ms$, $\omega=2\pi f$ [Kreisfrequenz]), φ_0 Phasenverschiebung/Nullphasenwinkel $u(t)=\hat{U}\cdot sin(\omega t+\varphi_o)$

- zur Informationsübertragung können \hat{U} , ω und φ_0 variiert werden.
- unterschiedliche Wechselspannungen können gemischt werden.
- harmonischee Spannungen (bestehen aus Sinussschwingungen).

Grundtypen von Spannungszeitfunktionen

- periodische Spannungen ABB 44
- impulsförmige Spannungen ABB 45

3.7 Kondensator, Kapazität

Kapazität

- → Fähigkeit, Ladungen zu speichern
- → konkretes elektrisches Bauelement (kann Ladungen speichern) ⇒ Kondensator

Einsatz: Energiespeicherung, Ausnutzung des frequenzabhängigen Verhaltens

Wirkungsweise:

ABB 46

Beobachtung: $Q \sim U \Rightarrow Q = C \cdot U$

mit
$$C = \text{Proportionalitätsfaktor} \Rightarrow \text{Kapazität } C \text{ mit } [C] = \frac{[Q]}{[U]} = \frac{As}{V} = F \text{ (Farrad)}$$

relevante Werte: zwischen $10^{-6}_{\mu}...10^{-9}_{n}...10^{-6}_{p}F$

$$\begin{array}{ll} \textbf{Bemessungsgleichung} & \text{(für C)} \\ C \sim A,\, C \sim \frac{1}{d},\, C \sim \frac{A}{d} \Rightarrow C = \varepsilon \cdot \frac{A}{d} \end{array}$$

$$(\varepsilon = \varepsilon_r \cdot \varepsilon_0 \dots \varepsilon_0$$
: Dielektrizitätskonstate des Vakuums $= 8,856 \cdot 10^{-12} \frac{As}{Vm}$)

Symbol: ABB 47

3.7.1 Strom-Spannungs-Beziehung am Kondensator

$$u_C(t) = \frac{1}{C} \int i_C(t)dt$$

$$i_C(t) = C \cdot \frac{du_c(t)}{dt}$$

 $i_C(t) = C \cdot \frac{du_c(t)}{dt}$ Konsequenzen: $u(t) = \hat{U} \cdot sin(\omega t) \Rightarrow i_C(t) = \underbrace{\hat{U} \cdot \omega C}_{=\hat{I}}(sin(\omega t) + 90^\circ)$

Scheinwiderstand des Kondensators: $X_C = \frac{\hat{U}}{\hat{I}} = \frac{\hat{U}}{\hat{U}_{CC}} = \frac{1}{\omega C}$

ABB 48

Anwendung des frequenzebhängigen Verhaltens:

ABB 49