Algorithms and Decision Procedures for Context-Free Languages

Chapter 14

Decision Procedures for CFLs

Membership: Given a language L and a string w, is w in L?

Two approaches:

• If *L* is context-free, then there exists some context-free grammar *G* that generates it. Try derivations in *G* and see whether any of them generates *w*.

Problem: $S \rightarrow ST$ a Try to derive aaa

• If *L* is context-free, then there exists some PDA *M* that accepts it. Run *M* on *w*.

Normal Forms for Grammars

Chomsky Normal Form, in which all rules are of one of the following two forms:

- $X \rightarrow a$, where $a \in \Sigma$, or
- $X \to BC$, where B and C are elements of V Σ .

Advantages:

- Parsers can use binary trees.
- Exact length of derivations is known:

Conversion to Chomsky Normal Form

For any context-free grammar G, there exists a context-free grammar G' in Chomsky normal form such that $L(G') = L(G) - \{\epsilon\}$.

Algorithm:

- 1. Remove all ϵ -rules, using the algorithm removeEps. (We have seen this before.)
- 2. Remove all unit productions (rules of the form $A \rightarrow B$).
- 3. Remove all rules whose right hand sides have length greater than 1 and include a terminal: (e.g., $A \rightarrow aB$ or $A \rightarrow BaC$)
- 4. Remove all rules whose right hand sides have length greater than 2:
 (e.g., A → BCDE)

Removing ε-Productions

Definition: a rule is *modifiable* iff it is of the form:

 $P \rightarrow \alpha R \beta$, for some nullable R, $P \neq \alpha \beta \neq \epsilon$

removeEps(G: cfg) =

- 1. Let G' = G.
- 2. Find the set N of nullable variables in G'.
- 3. For each modifiable rule $P \rightarrow \alpha R \beta$ of G do Add the rule $P \rightarrow \alpha \beta$.
- 4. Delete from G' all rules of the form $X \to \varepsilon$.
- 5. Return *G*′.

$$L(G') = L(G) - \{\epsilon\}$$

Example:

$$S \rightarrow aACa$$

$$A \rightarrow B \mid a$$

$$B \rightarrow C \mid c$$

$$C \rightarrow cC \mid \epsilon$$

Nullable: A,B,C

$$S \rightarrow aACa \mid aAa \mid aCa \mid aa$$

$$A \rightarrow B \mid a$$

$$B \rightarrow C \mid c$$

$$C \rightarrow cC \mid c$$

Unit Productions

A *unit production* is a rule $A \rightarrow B$ (right-hand side consists of a single nonterminal symbol)

removeUnits(G)

- 1. Let G' = G.
- 2. Until no unit productions remain in *G* ′do:
 - 2.1 Choose some unit production $X \rightarrow Y$.
 - 2.2 Remove it from G'.
 - 2.3 Consider only rules that still remain.

For every rule $Y \rightarrow \beta$, where $\beta \in V^*$, do:

Add to G the rule $X \to \beta$ unless it is a rule that has already been removed once.

3. Return *G* ′.

$$S \rightarrow aACa \mid aAa \mid aCa \mid aa$$

 $A \rightarrow B \mid a$
 $B \rightarrow C \mid c$
 $C \rightarrow cC \mid c$

Remove $A \rightarrow B$. Add $A \rightarrow C \mid c$.

Remove $B \to C$. Add $B \to cC$ ($B \to c$, already there).

Remove $A \rightarrow C$. Add $A \rightarrow cC$ ($A \rightarrow c$, already there).

So removeUnits returns:

$$S \rightarrow aACa \mid aAa \mid aCa \mid aa$$

 $A \rightarrow a \mid c \mid cC$
 $B \rightarrow c \mid cC$
 $C \rightarrow cC \mid c$

Mixed Rules

removeMixed(G) =

- 1. Let G' = G.
- 2. Create a new nonterminal T_a for each terminal a in Σ .
- 3. Modify each rule whose right-hand side has length greater than 1 and that contains a terminal symbol by substituting T_a for each occurrence of the terminal a.
- 4. Add to G, for each T_a , the rule $T_a \rightarrow a$.
- 5. Return *G* ′.

$$S \rightarrow aACa \mid aAa \mid aCa \mid aa$$

 $A \rightarrow a \mid c \mid cC$
 $B \rightarrow c \mid cC$
 $C \rightarrow cC \mid c$

removeMixed returns:

$$S
ightarrow T_a A C T_a \mid T_a A T_a \mid T_a C T_a \mid T_a T_a$$
 $A
ightarrow a \mid c \mid T_c C$
 $B
ightarrow c \mid T_c C$
 $C
ightarrow T_c C \mid c$
 $T_a
ightarrow a$
 $T_c
ightarrow c$

Long Rules

removeLong(G) =

- 1. Let G' = G.
- 2. For each rule *r* of the form:

$$A \to N_1 N_2 N_3 N_4 ... N_n, n > 2$$

create new nonterminals M_2 , M_3 , ... M_{n-1} .

- 3. Replace *r* with the rule $A \rightarrow N_1 M_2$.
- 4. Add the rules:

$$M_2 \rightarrow N_2 M_3$$
, $M_3 \rightarrow N_3 M_4$, ...

$$M_{\text{n-1}} \rightarrow N_{\text{n-1}}N_{\text{n}}$$
.

5. Return *G* ′.

$$S \rightarrow T_a A C T_a \mid T_a A T_a \mid T_a C T_a \mid T_a T_a$$
 $A \rightarrow a \mid c \mid T_c C$
 $B \rightarrow c \mid T_c C$
 $C \rightarrow T_c C \mid c$
 $T_a \rightarrow a$
 $T_c \rightarrow c$

removeLong returns:

 $T \rightarrow a$

$$S oup T_a S_1$$
 $S oup T_a S_3$ $S oup T_a S_4$ $S oup T_a T_a$ $S_1 oup A S_2$ $S_3 oup A T_a$ $S_4 oup C T_a$ $S_2 oup C T_a$ $A oup a \mid c \mid T_c C$ $B oup c \mid T_c C$ $C oup T_c C \mid c$

Using a Grammar

decideCFLusingGrammar(L: CFL, w: string) =

- 1. If given a PDA, build G so that L(G) = L(M).
- 2. If $w = \varepsilon$ then if S_G is nullable then accept, else reject.
- 3. If $w \neq \varepsilon$ then:
 - 3.1 Construct G' in Chomsky normal form such that $L(G') = L(G) \{\epsilon\}.$
 - 3.2 If *G* derives *w*, it does so in $2 \cdot |w| 1$ steps. Try all derivations in *G* of $2 \cdot |w| 1$ steps. If one of them derives *w*, accept. Otherwise reject.

Emptiness

Given a context-free language L, is $L = \emptyset$?

decideCFLempty(G: context-free grammar) =

- 1. Let G' = remove unproductive(G).
- 2. If *S* is not present in *G'* then return *True* else return *False*.

Finiteness

Given a context-free language *L*, is *L* infinite?

decideCFLinfinite(G: context-free grammar) =

- 1. Lexicographically enumerate all strings in Σ^* of length greater than k and less than or equal to 2k.
- 2. If, for any such string w, decideCFL(L, w) returns True then return True. L is infinite.
- 3. If, for all such strings w, decideCFL(L, w) returns False then return False. L is not infinite.

decideCFLempty2(G: context-free grammar)

1. Check for strings of length up to *k*.

• Is
$$L = \Sigma^*$$
?

- Is the complement of *L* context-free?
- Is L regular?
- Is $L_1 = L_2$?
- Is $L_1 \subseteq L_2$?
- Is $L_1 \cap L_2 = \emptyset$?
- Is *L* inherently ambiguous?
- Is G ambiguous?