Running head: LEBA 1

Light Exposure Behavior Assessment (LEBA): Develop of a novel instrument to
 capture light exposure-related behaviours

- Mushfiqul Anwar Siraji¹, Rafael Robert Lazar², & Manuel Spitschan³
- Department of Psychology, Jeffrey Cheah School of Medicine and Health
 Sciences, Monash University, Malaysia
- ² University of Basel

7 Author Note

- Add complete departmental affiliations for each author here. Each new line herein must be indented, like this line.
- ₁₀ Enter author note here.
- The authors made the following contributions. Mushfiqul Anwar Siraji:
- Data Analysis, Writing Original Draft Preparation, Data Visualization; Rafael
- 3 Robert Lazar: Data Analysis, Writing Original Draft Preparation, Data
- ¹⁴ Visualization; Manuel Spitschan: Data Analysis, Writing Original Draft
- 15 Preparation, Data Visualization.
- Correspondence concerning this article should be addressed to Manuel Spitschan, . E-mail:

18 Abstract

One or two sentences providing a **basic introduction** to the field,

20 comprehensible to a scientist in any discipline.

Two to three sentences of **more detailed background**, comprehensible

to scientists in related disciplines.

One sentence clearly stating the **general problem** being addressed by

24 this particular study.

One sentence summarizing the main result (with the words "here we

26 **show**" or their equivalent).

Two or three sentences explaining what the **main result** reveals in direct

comparison to what was thought to be the case previously, or how the main

result adds to previous knowledge.

One or two sentences to put the results into a more **general context**.

Two or three sentences to provide a **broader perspective**, readily

comprehensible to a scientist in any discipline.

Keywords: keywords

Word count: X

33

Light Exposure Behavior Assessment (LEBA): Develop of a novel instrument to capture light exposure-related behaviours

37 Introduction

38 Methods

Participants

- 1. Describe EFA and CFA sample separately.
- 2. Sampling technique: Convince sampling (non-probability sample)
- 3. Method: cross-sectional survey
- 4. How many missing data?
- 5. How incomplete data were addressed.
- 6. Why such sample was chosen?
- EFA: For exploring initial factor structure, a sample of 250-300 is recommended (Comrey & Lee, 1992; Schönbrodt & Perugini, 2013)
- CFA: For estimating the sample size for the confirmatory factor analysis
 we followed the N:q rule (Bentler & Chou, 1987; Jackson, 2003; Kline, 2015;
 Worthington & Whittaker, 2006) where 10 participants per parameters is
 required to earn trustworthiness of the result. Our sample size exceeds the
 requirement.

Procedure

54

55

Development of the Scale.

1. How the items were generated

2. How the literature was reviewed to identify construct adequacy of the items.

3. Discuss the expert panel review process to assess content validity

Procedure

58

Our study had four objectives. First, to develop an instrument to assess an individual's light exposure behavior. Second, to conduct an exploratory factor analysis(EFA) to understand the latent structure. The third one is to gather structural validity evidence for the latent structure obtained in EFA. Lastly, we gathered item information using Item response theory (IRT)(Baker, 2017)

Data Collection. Timeline of data collection, ethical approval mode of data collection how consent was recorded.

67 Analytic Strategies

We used R (version 4.1.0), including several R packages, for our analyses. 68 Necessary assumptions of EFA, including sample adequacy, normality 69 assumptions, quality of correlation matrix, were assessed. Our data violated both the univariate and multivariate normality assumptions. Due to these 71 violations and the ordinal nature of our response data, we used a polychoric correlation matrix (C. Desjardins & Bulut, 2018) for the EFA. We employed 73 principal axis (pa) a factor extraction method with varimax rotation. PA is robust to the normality assumption violations (Watkins, 2020). The obtained 75 latent structure was confirmed by the minimum residuals extraction method as well. We used a combination factor identification method including scree plot(Cattell, 1966), Horn's parallel analysis (Horn, 1965), minimum average partials method(Velicer, 1976), and hull method (Lorenzo-Seva, Timmerman, &

Kiers, 2011) to identify factor numbers. Additionally, to determine the simple structure, we followed the following guidelines recommended by psychometricians (i) no factors with fewer than three items (ii) no factors with a factor loading <0.3 (iii) no items with cross-loading greater than .3 across factors [Bandalos and Finney (2018);

85 Results

Sampling adequacy was checked using Kaiser-Meyer-Olkin (KMO) measures of sampling adequacy(Kaiser, 1974). The overall KMO vale for 48 items was 0.63 which was above the cutoff value (.50) indicating a mediocre sample (Hutcheson, 1999).

90

103

86

87

88

Table1 summarizes the univariate descriptive statistics for the 48 items. 91 some of the items were skewed with high Kurtosis values. Our data violated 92 both univariate normality (Shapiro-Wilk statistics; (Shapiro & Wilk, 1965)) and 93 multivariate normality assumptions (Marida's test; (Mardia, 1970)). Multivariate 94 skew was = 583.80 (p < 0.001) and multivariate kurtosis was = 2,749.15 (p 95 <0.001). Due to these violations and ordinal nature of the response data 96 polychoric correlations over Pearson's correlations was chosen (C. Desjardins & 97 Bulut, 2018). Bartlett's test of sphericity (Bartlett, 1954), χ^2 (1128) = 5042.86, 98 p < .001] indicated the correlations between items are adequate for the EFA. 99 However only 4.96% of the inter-item correlation coefficients were greater than 100 .30. The inter item correlation ranged between .44 to .91. And the corrected item-total correlations ranged between .10 to .44. 102

Scree plot (Figure 3) suggested a six-factor solution. Horn's parallel analysis (Horn, 1965) with 500 iterations also indicated a six-factor solution.

However, the MAP method (Velicer, 1976) and Hull method (Lorenzo-Seva,
Timmerman, & Kiers, 2011) suggested a five-factor solution. As a result, we
tested both five-factor and six-factor solutions.

The initial five-factor solution with all 48 items showed presence of 108 cross-loading items (item 42, 16, & 1) and poor factor loading (<.30) items 109 (item 20, 3, 15, 17, 40, 4, 11, 39, 18, 45, 29, 25, 8, & 46). At first, we 110 discarded the items with poor factor-loading and ran another EFA on the 111 remaining 34 items. This iteration of EFA also appeared as a misfit with items 112 with poor factor-loading (Item 12, 22, 38, 6) and cross-loading (items 23, 31, 113 37, 48). Another two rounds of EFA were conducted with gradually identifying 114 problematic items and discarding them from the model. Finally, a five-factor 115 EFA solution with 23 items was accepted with low RMSR = 0.04 (Brown, 2015), 116 all factor-loading higher than .30 and no cross-loading greater than .30. We 117 confirmed this five-factor latent structure using varimax rotation with a 118 minimum residual extraction method (see the supplementary). Table 2 displays 119 the factor-loading (structural coefficients) and communality of the items. The 120 absolute value of the factor-loading ranged from -.47 to .99 indicating strong coefficients. The commonalities ranged between .10 to .99. However, the 122 histogram of the absolute values of non-redundant residual-correlations (Fig5 showed 26.09% correlations greater than the absolute value of .05, indicating 124 under-factoring. (C. D. Desjardins, 2018). Subsequently, we fitted a six-factor 125 solution. However, a factor emerged with only two salient variable loading in the six-factor solution, thus disqualifying the six-factor solution. 127

In the five-factor solution, the first factor contained three items and explained 11% of the total variance with a satisfactory internal reliability coefficient (α =.86). All the items in this factor stemmed from the individual's preference to use blue light filters in different light environments. The second

factor contained six items and explained 10% of the total variance with a satisfactory internal reliability coefficient ($\alpha = .71$). Items under this factor 133 commonly investigate an individual's hours spent outdoor. The third factor 134 contained five items and explained 9% of the total variance. Items under this 135 factor dealt with the specific behaviors pertaining to sleep. However, the 136 internal consistency reliability coefficient was not satisfactory ($\alpha = .62$). The 137 fourth factor contained three items and explained 9% of the total variance with 138 a satisfactory internal consistency ($\alpha = .77$). These three items stemmed from 139 the behavior related to an individual's cellphone usage during the 140 sleep-wakeup time. Lastly, the fifth factor contained six items and explained 141 6% of the total variance. Under this factor tried to measure an individual's 142 behavior lead by the awareness of light's influence on health. However, this 143 factor showed unsatisfactory internal consistency reliability ($\alpha = .49$). It is 144 essential to attain a balance between psychometric properties and the interpretability of the common themes when exploring the latent structure. As all of the emerged factors are highly interpretable, regardless of the apparent 147 low reliability of the two factors, we retain the five-factor solution with 23 items for our confirmatory factor analysis (CFA). Two items showed negative factor-loading (items 44 and 21). Upon inspection, it was understood that these 150 items are negatively correlated to the common theme, and thus in the CFA 151 analysis, we reversed the response code for these two items. 152

Confirmatory Factor Analysis

154 **IRT**

153

155 Discussion

156	References							
157	Aust, F., & Barth, M. (2020). papaja: Prepare reproducible APA journal							
158	articles with R Markdown. Retrieved from							
159	https://github.com/crsh/papaja							
160	Baker, F. B. (2017). The Basics of Item Response Theory Using R (1st ed							
161	2017.). Springer.							
162	Bandalos, D. L., & Finney, S. J. (2018). Factor analysis: Exploratory and							
163	confirmatory. In The reviewer's guide to quantitative methods in the							
164	social sciences (pp. 98–122). Routledge.							
165	Barth, M. (2021). tinylabels: Lightweight variable labels. Retrieved from							
166	https://github.com/mariusbarth/tinylabels							
167	Bartlett, M. (1954). A Note on the Multiplying Factors for Various							
168	Chi-square Approximations. Journal of the Royal Statistical Society.							
169	Series B, Methodological, 16(2), 296–298.							
170	Bentler, P. M., & Chou, CP. (1987). Practical Issues in Structural							
171	Modeling. Sociological Methods & Research, 16(1), 78–117.							
172	https://doi.org/10.1177/0049124187016001004							
173	Brown, T. A. (2015). Confirmatory factor analysis for applied research							
174	(2nd ed.). New York, NY, US: The Guilford Press.							
175	Buchanan, E. M., Gillenwaters, A., Scofield, J. E., & Valentine, K. D. (2019)							
176	MOTE: Measure of the Effect: Package to assist in effect size							
177	calculations and their confidence intervals. Retrieved from							
178	http://github.com/doomlab/MOTE							
179	Cattell, R. B. (1966). The Scree Test For The Number Of Factors.							
180	Multivariate Behavioral Research, 1(2), 245–276.							

181	https://doi.org/10.1207/s15327906mbr0102_10
182 183 184	Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Borges, B. (2021). <i>Shiny: Web application framework for r.</i> Retrieved from https://CRAN.R-project.org/package=shiny
185	Comrey, A. L., & Lee, H. B. (1992). <i>A first course in factor analysis, 2nd ed</i> . Hillsdale, NJ, US: Lawrence Erlbaum Associates, Inc.
187	Desjardins, C., & Bulut, O. (2018). Handbook of Educational Measurement and Psychometrics Using R. https://doi.org/10.1201/b20498
189 190 191	Desjardins, C. D. (2018). <i>Handbook of educational measurement and psychometrics using R</i> (O. Bulut & ProQuest (Firm), Eds.). Boca Raton FL: CRC Press.
192 193	Dinno, A. (2018). <i>Paran: Horn's test of principal components/factors</i> . Retrieved from https://CRAN.R-project.org/package=paran
194 195 196	Epskamp, S. (2019). semPlot: Path diagrams and visual analysis of various SEM packages' output. Retrieved from https://CRAN.R-project.org/package=semPlot
197 198 199	Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. <i>Journal of Statistical Software</i> , 48(4), 1–18.
200	Henry, L., & Wickham, H. (2020). <i>Purrr: Functional programming tools</i> . Retrieved from https://CRAN.R-project.org/package=purrr
202203204	Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. <i>Psychometrika</i> , <i>30</i> (2), 179–185. https://doi.org/10.1007/BF02289447
205	Hutcheson, G. D. (1999). The multivariate social scientist: Introductory

206	statistics using generalized linear models. London : SAGE.
207	Iannone, R. (2016). DiagrammeRsvg: Export DiagrammeR graphviz
208	graphs as SVG. Retrieved from
209	https://CRAN.R-project.org/package=DiagrammeRsvg
210	Iannone, R. (2021). DiagrammeR: Graph/network visualization. Retrieved
211	from https://github.com/rich-iannone/DiagrammeR
212	Jackson, D. L. (2003). Revisiting Sample Size and Number of Parameter
213	Estimates: Some Support for the N:q Hypothesis. Structural Equation
214	Modeling, 10(1), 128–141.
215	https://doi.org/10.1207/S15328007SEM1001_6
216	Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., & Rosseel, Y.
217	(2021). semTools: Useful tools for structural equation modeling.
218	Retrieved from https://CRAN.R-project.org/package=semTools
219	Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1)
220	31–36. https://doi.org/10.1007/bf02291575
221	Kassambara, A. (2019). Ggcorrplot: Visualization of a correlation matrix
222	using 'ggplot2'. Retrieved from
223	https://CRAN.R-project.org/package=ggcorrplot
224	Kline, R. B. (2015). Principles and practice of structural equation
225	modeling. The Guilford Press.
226	Lorenzo-Seva, U., Timmerman, M., & Kiers, H. (2011). The Hull Method
227	for Selecting the Number of Common Factors. Multivariate Behavioral
228	Research, 46, 340–364.
229	https://doi.org/10.1080/00273171.2011.564527
230	Makowski, D., Ben-Shachar, M. S., Patil, I., & Lüdecke, D. (2020). Methods

231	and algorithms for correlation analysis in r. Journal of Open Source
232	Software, 5(51), 2306. https://doi.org/10.21105/joss.02306
233	Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with
234	applications. Biometrika, 57(3), 519-530.
235	https://doi.org/10.1093/biomet/57.3.519
236	Müller, K., & Wickham, H. (2021). Tibble: Simple data frames. Retrieved
237	from https://CRAN.R-project.org/package=tibble
238	Navarro-Gonzalez, D., & Lorenzo-Seva, U. (2021). EFA.MRFA:
239	Dimensionality assessment using minimum rank factor analysis.
240	Retrieved from https://CRAN.R-project.org/package=EFA.MRFA
241	Ooms, J. (2021). Rsvg: Render SVG images into PDF, PNG, PostScript, or
242	bitmap arrays. Retrieved from
243	https://CRAN.R-project.org/package=rsvg
244	R Core Team. (2021). R: A language and environment for statistical
245	computing. Vienna, Austria: R Foundation for Statistical Computing.
246	Retrieved from https://www.R-project.org/
247	Revelle, W. (2021). Psych: Procedures for psychological, psychometric,
248	and personality research. Evanston, Illinois: Northwestern University.
249	Retrieved from https://CRAN.R-project.org/package=psych
250	Rosseel, Y. (2012). lavaan: An R package for structural equation
251	modeling. Journal of Statistical Software, 48(2), 1–36. Retrieved from
252	https://www.jstatsoft.org/v48/i02/
253	Ryu, C. (2021). Dlookr: Tools for data diagnosis, exploration,
254	transformation. Retrieved from
255	https://CRAN.R-project.org/package=dlookr

256	Schönbrodt, F. D., & Perugini, M. (2013). At what sample size do
257	correlations stabilize? Journal of Research in Personality, 47(5),
258	609-612. https://doi.org/10.1016/j.jrp.2013.05.009
259	Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for
260	normality (complete samples). Biometrika, 52(3-4), 591-611.
261	https://doi.org/10.1093/biomet/52.3-4.591
262	Velicer, W. (1976). Determining the Number of Components from the
263	Matrix of Partial Correlations. Psychometrika, 41, 321–327.
264	https://doi.org/10.1007/BF02293557
265	Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with s
266	(Fourth). New York: Springer. Retrieved from
267	https://www.stats.ox.ac.uk/pub/MASS4/
268	Watkins, M. (2020). A Step-by-Step Guide to Exploratory Factor Analysis
269	with R and RStudio. https://doi.org/10.4324/9781003120001
270	Wickham, H. (2016). ggplot2: Elegant graphics for data analysis.
271	Springer-Verlag New York. Retrieved from https://ggplot2.tidyverse.org
272	Wickham, H. (2019). Stringr: Simple, consistent wrappers for common
273	string operations. Retrieved from
274	https://CRAN.R-project.org/package=stringr
275	Wickham, H. (2021a). Forcats: Tools for working with categorical
276	variables (factors). Retrieved from
277	https://CRAN.R-project.org/package=forcats
278	Wickham, H. (2021b). Tidyr: Tidy messy data. Retrieved from
279	https://CRAN.R-project.org/package=tidyr
280	Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François,

281	R., Yutani, H. (2019). Welcome to the tidyverse. <i>Journal of Open</i>
282	Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
283	Wickham, H., & Bryan, J. (2019). Readxl: Read excel files. Retrieved from
284	https://CRAN.R-project.org/package=readxl
285	Wickham, H., François, R., Henry, L., & Müller, K. (2021). Dplyr: A
286	grammar of data manipulation. Retrieved from
287	https://CRAN.R-project.org/package=dplyr
288	Wickham, H., & Hester, J. (2021). Readr: Read rectangular text data.
289	Retrieved from https://CRAN.R-project.org/package=readr
290	Worthington, R. L., & Whittaker, T. A. (2006). Scale Development
291	Research: A Content Analysis and Recommendations for Best
292	Practices. The Counseling Psychologist, 34(6), 806-838.
293	https://doi.org/10.1177/0011000006288127
294	Zhu, H. (2021). kableExtra: Construct complex table with 'kable' and
295	pipe syntax. Retrieved from
296	https://CRAN.R-project.org/package=kableExtra

Table 1

Descriptive Statistics

	Mean	SD	Skew	Kurtosis	Shapiro-Wilk Statistics	Item-Total Correlation
ltem1	1.12	0.49	5.02	27.80	0.25*	.16
Item2	2.16	1.19	0.71	-0.54	0.84*	.14
Item3	4.14	0.99	-1.23	1.14	0.79*	.19
Item4	2.87	1.59	0.08	-1.60	0.83*	.19
Item5	1.76	1.23	1.35	0.44	0.66*	.38
Item6	2.73	1.46	0.20	-1.36	0.87*	.33
Item7	3.86	1.67	-0.99	-0.85	0.65*	.23
Item8	3.76	1.14	-0.68	-0.45	0.86*	.00
Item9	3.42	1.83	-0.45	-1.69	0.69*	.33
Item10	2.74	1.04	0.09	-0.74	0.91*	.28
ltem11	2.60	1.25	0.29	-0.86	0.89*	.35
Item12	2.11	1.17	0.77	-0.39	0.83*	.32
Item13	2.94	1.03	-0.12	-0.40	0.91*	.10
Item14	3.62	1.64	-0.68	-1.25	0.74*	.32
Item15	1.64	1.18	1.79	2.02	0.60*	.15
Item16	3.51	1.30	-0.70	-0.59	0.85*	.39
Item17	1.96	0.98	1.02	0.69	0.82*	.05
Item18	2.44	1.31	0.38	-1.14	0.86*	.11
Item19	3.80	1.29	-0.87	-0.42	0.82*	.17
Item20	4.01	1.40	-1.22	0.07	0.70*	.13
Item21	1.33	0.91	3.03	8.43	0.41*	.01
Item22	2.59	1.41	0.27	-1.27	0.86*	.19
Item23	1.31	0.81	2.75	6.92	0.43*	.21

Table 1 continued

	Mean	SD	Skew	Kurtosis	Shapiro-Wilk Statistics	Item-Total Correlation
Item24	1.47	1.18	2.38	4.00	0.43*	.28
Item25	2.56	1.27	0.33	-1.00	0.89*	.11
Item26	1.54	1.25	2.13	2.86	0.46*	.36
Item27	4.30	1.08	-1.79	2.53	0.67*	.22
Item28	2.27	1.39	0.74	-0.81	0.81*	.25
Item29	3.26	1.09	-0.26	-0.45	0.91*	.14
Item30	2.22	1.48	0.71	-1.02	0.76*	.30
Item31	1.05	0.36	7.23	52.98	0.13*	.18
Item32	1.54	1.21	2.07	2.75	0.49*	.31
Item33	1.04	0.33	8.99	85.28	0.10*	.16
Item34	3.36	1.38	-0.48	-1.03	0.87*	.16
Item35	2.26	1.25	0.70	-0.60	0.85*	.19
Item36	2.36	1.22	0.59	-0.62	0.87*	.25
Item37	1.14	0.59	4.79	24.05	0.25*	.16
Item38	2.25	1.27	0.69	-0.64	0.84*	.18
Item39	3.93	1.48	-1.06	-0.44	0.71*	.18
Item40	3.57	1.07	-0.65	-0.17	0.88*	.21
Item41	3.55	1.65	-0.60	-1.34	0.76*	.43
Item42	3.00	1.62	-0.08	-1.61	0.83*	.44
Item43	1.56	1.23	2.00	2.45	0.50*	.32
Item44	2.97	1.20	-0.06	-0.94	0.91*	10
Item45	2.79	1.55	0.19	-1.48	0.85*	.20
Item46	2.14	1.31	0.77	-0.78	0.80*	.26
Item47	2.18	0.90	0.60	0.12	0.86*	.26

Table 1 continued

	Mean	SD	Skew	Kurtosis	Shapiro-Wilk Statistics	Item-Total Correlation
Item48	1.48	1.11	2.18	3.35	0.48*	.24

Note. *p<.001

Table 2

	F1	F2	F3	F4	F5	Communality
item43	0.99	-	-	-	-	0.99
item26	0.93	-	-	-	-	0.9
item32	0.8	-	-	-	-	0.67
item10	-	0.82	-	-	-	0.68
item47	-	0.82	-	-	-	0.7
item36	-	0.63	-	-	-	0.45
item44	-	-0.47	-	-	-	0.24
item35	-	0.46	-	-	-	0.24
item13	-	0.34	-	-	-	0.13
item14	-	-	0.89	-	-	0.81
item41	-	-	0.7	-	-	0.6
item7	-	-	0.66	-	-	0.45
item27	-	-	0.38	-	-	0.21
item21	-	-	-0.34	-	-	0.12
item34	-	-	-	0.84	-	0.74
item19	-	-	-	0.8	-	0.64
item2	-	-	-	0.67	-	0.54
item5	-	-	-	-	0.69	0.51
item24	-	-	-	-	0.54	0.33
item30	-	-	-	-	0.52	0.29
item1	-	-	-	-	0.35	0.13
item16	-	-	-	-	0.31	0.21
item28	-	-	-	-	0.31	0.1
% of variance	11	10	9	9	6	-

Note. Only loading higher than .30 is reported

Figure 1. Development and psychometric properties of LEBA

Figure 2. Correlation plot of the items

Figure 3. Factor Identification (A) Parallel analysis (B) Scree Plot, (C) Hull method

Figure 4. Five Factor Solution

Figure 5. Histogram of residulas: five-factor solution