Kurs:Mathematik für Anwender/Teil I/58/Klausur mit Lösungen

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 \sum

Punkte 3320422244 8 4 2 0 4 2 0 0 4 50

Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

1. Eine injektive Abbildung

$$f:L\longrightarrow M.$$

- 2. Die komplexe Konjugation.
- 3. Der Tangens hyperbolicus.
- 4. Das Unterintegral einer nach unten beschränkten Funktion

$$f{:}\left[a,b
ight]\longrightarrow\mathbb{R}.$$

- 5. Die ${\it Dimension}$ eines ${\it K}$ -Vektorraums ${\it V}$ (${\it V}$ besitze ein endliches Erzeugendensystem).
- 6. Das *charakteristische Polynom* zu einer $n \times n$ -Matrix M mit Einträgen in einem Körper K.

Lösung

1. Die Abbildung

$$f:L\longrightarrow M$$

ist injektiv, wenn für je zwei verschiedene Elemente $x,y\in L$ auch f(x) und f(y) verschieden sind.

2. Die Abbildung

$$\mathbb{C} \longrightarrow \mathbb{C}$$
, $z = a + bi \longmapsto \overline{z} = a - bi$,

heißt komplexe Konjugation.

3. Die durch

$$\mathbb{R} \longrightarrow \mathbb{R}, \, x \longmapsto anh \, x = rac{\sinh x}{\cosh x} = rac{e^x - e^{-x}}{e^x + e^{-x}},$$

definierte Funktion heißt Tangens hyperbolicus.

- 4. Das Supremum von sämtlichen Untersummen von unteren Treppenfunktionen von f heißt das *Unterintegral* von f.
- 5. Unter der Dimension eines Vektorraums $m{V}$ versteht man die Anzahl der Elemente in einer Basis von $m{V}$.
- 6. Das Polynom

$$\chi_M := \det \left(X \cdot E_n - M \right)$$

heißt $\mathit{charakteristisches}$ Polynom von M.

Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Der Zwischenwertsatz.
- 2. Die Ableitung der reellen Exponentialfunktion.
- 3. Der Satz über die Transformation eines linearen Gleichungssystems in Dreiecksgestalt.

Lösung

- 1. Seien $a \leq b$ reelle Zahlen und sei $f: [a,b] \to \mathbb{R}$ eine stetige Funktion. Es sei $y \in \mathbb{R}$ eine reelle Zahl zwischen f(a) und f(b). Dann gibt es ein $x \in [a,b]$ mit f(x) = y.
- 2. Die Exponentialfunktion

$$\mathbb{R} \longrightarrow \mathbb{R}, \, x \longmapsto \exp x,$$

ist differenzierbar mit

$$\exp'(x) = \exp x$$
.

3. Jedes (inhomogene) lineare Gleichungssystem über einem Körper ${\pmb K}$ lässt sich durch elementare Umformungen in ein äquivalentes lineares Gleichungssystem der Stufenform

überführen, bei dem alle Startkoeffizienten $b_{1s_1}, b_{2s_2}, \ldots, b_{ms_m}$ von 0 verschieden sind.

Aufgabe (2 Punkte)

Es sollen drei Häuser jeweils mit Leitungen an Wasser, Gas und Elektrizität angeschlossen werden. Beschreibe eine Möglichkeit, bei der es nur eine Überschneidung gibt.

Lösung Wasser/Gas/Elektrizität/Eine Überschneidung/Aufgabe/Lösung

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (4 Punkte)

Beweise die Formel

$$2^n = \sum_{k=0}^n inom{n}{k}$$

durch Induktion nach n.

Lösung

Für n=0 steht einerseits $\mathbf{2}^0=\mathbf{1}$ und andererseits $\mathbf{1}^0\cdot\mathbf{1}^0=\mathbf{1}$. Sei die Aussage bereits für n

bewiesen. Dann ist unter Verwendung der Induktionsvoraussetzung und von Lemma 4.10 (Mathematik für Anwender (Osnabrück 2019-2020))

$$\begin{split} 2^{n+1} &= 2 \cdot 2^n \\ &= (1+1) \sum_{k=0}^n \binom{n}{k} \\ &= \sum_{k=0}^n \binom{n}{k} + \sum_{k=0}^n \binom{n}{k} \\ &= \sum_{k=1}^{n+1} \binom{n}{k-1} + \sum_{k=0}^{n+1} \binom{n}{k} \\ &= \sum_{k=1}^{n+1} \binom{n}{k-1} + \binom{n}{k} + 1 \\ &= \sum_{k=0}^{n+1} \binom{n+1}{k} + 1 \\ &= \sum_{k=0}^{n+1} \binom{n+1}{k}. \end{split}$$

Aufgabe (2 Punkte)

Berechne das Quadrat des Polynoms

$$1 + \frac{1}{2}x - \frac{1}{8}x^2$$
.

Lösung

Es ist

$$egin{align} \left(1+rac{1}{2}x-rac{1}{8}x^2
ight)^2 &= \left(1+rac{1}{2}x-rac{1}{8}x^2
ight)\cdot \left(1+rac{1}{2}x-rac{1}{8}x^2
ight) \ &= 1+rac{1}{4}x^2+rac{1}{64}x^4+x-rac{1}{4}x^2-rac{1}{8}x^3 \ &= 1+x-rac{1}{8}x^3+rac{1}{64}x^4. \end{split}$$

Aufgabe (2 Punkte)

Es sei K ein angeordneter Körper und x,y>0. Zeige, dass $x\geq y$ genau dann gilt, wenn

$$x/y \ge 1$$

gilt.

Lösung

Wegen y>0 ist nach Aufgabe 5.7 (Mathematik für Anwender (Osnabrück 2019-2020)) auch $y^{-1}>0$. Aus $x\geq y$ folgt daher durch Multiplikation mit y^{-1} die Beziehung $xy^{-1}\geq yy^{-1}=1$. Wenn umgekehrt $x/y\geq 1$ gilt, so folgt durch Multiplikation mit y>0 die Beziehung $x=y\cdot x/y\geq y\cdot 1=y$.

Aufgabe (2 Punkte)

Drücke

$$\sqrt[3]{4} \cdot \sqrt[5]{7}$$

mit einer einzigen Wurzel aus.

Lösung

Es ist

$$\sqrt[3]{4} \cdot \sqrt[5]{7} = 4^{\frac{1}{3}} \cdot 7^{\frac{1}{5}}$$

$$= (4^{5})^{\frac{1}{15}} \cdot (7^{3})^{\frac{1}{15}}$$

$$= 1024^{\frac{1}{15}} \cdot 343^{\frac{1}{15}}$$

$$= 351232^{\frac{1}{15}}$$

$$= \sqrt[15]{351232}.$$

Aufgabe (4 Punkte)

Zeige, dass die Gleichung

$$x^2 + \frac{1}{x} = 3$$

eine reelle Lösung im Intervall [1,2] besitzt und bestimme diese bis auf einen Fehler von maximal ein Achtel.

Lösung

Die Gleichung ist (für x
eq 0) äquivalent zu

$$f(x) = x^3 - 3x + 1 = 0.$$

Für x=1 ist

$$f(1) = -1$$

und für $oldsymbol{x}=oldsymbol{2}$ ist

$$f(2) = 3$$
.

Nach dem Zwischenwertsatz gibt es also ein $x \in [0,1]$ mit

$$f(x)=0$$
.

Um ein solches $m{x}$ anzunähern, verwenden wir die Intervallhalbierungsmethode. Die Intervallmitte ist $m{\frac{3}{2}}$ und es ist

$$f\left(rac{3}{2}
ight) = \left(rac{3}{2}
ight)^3 - 3 \cdot rac{3}{2} + 1$$
 $= rac{27 - 36 + 8}{8}$
 $= -rac{1}{8}$
 $< 0.$

Eine Nullstelle liegt also im Intervall $[rac{3}{2},2]$. Die nächste Intervallmitte ist $rac{7}{4}$. Es ist

$$egin{aligned} figg(rac{7}{4}igg) &= igg(rac{7}{4}igg)^3 - 3 \cdot rac{7}{4} + 1 \ &= rac{343 - 336 + 64}{64} \ &= rac{71}{64} \ &> 0. \end{aligned}$$

Eine Nullstelle liegt also im Intervall $[\frac{3}{2},\frac{7}{4}]$. Die nächste Intervallmitte ist $\frac{13}{8}$. Es ist

$$f\left(\frac{13}{8}\right) = \left(\frac{13}{8}\right)^3 - 3 \cdot \frac{13}{8} + 1$$
$$= \frac{2197 - 2496 + 512}{512}$$
$$= \frac{213}{512}$$
$$> 0.$$

Eine Nullstelle liegt also in $[\frac{12}{8}, \frac{13}{8}]$, die Intervalllänge ist ein Achtel.

Aufgabe (4 Punkte)

Im \mathbb{R}^3 sei durch

$$\left\{egin{pmatrix} 2 \ 4 \ 5 \end{pmatrix} + t egin{pmatrix} 1 \ -3 \ 4 \end{pmatrix} \mid t \in \mathbb{R}
ight\}$$

eine Gerade G gegeben. In der x-y-Ebene E sei K der Kreis mit dem Mittelpunkt (0,0) und dem Radius S. Liegt der Durchstoßungspunkt der Geraden G mit der Ebene E innerhalb, außerhalb oder auf dem Kreis K?

Lösung

Die x-y-Ebene wird durch die Gleichung z=0 beschrieben. Für den Durchstoßungspunkt gilt daher die Bedingung

$$5+4t=0,$$

also

$$t=-rac{5}{4}$$
 .

Der Durchstoßungspunkt besitzt demnach die Koordinaten

$$\begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix} - \frac{5}{4} \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 - \frac{5}{4} \\ 4 + \frac{15}{4} \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{3}{4} \\ \frac{31}{4} \\ 0 \end{pmatrix}.$$

Dessen Abstand zum Nullpunkt ist die Quadratwurzel aus

$$\left(rac{3}{4}
ight)^2 + \left(rac{31}{4}
ight)^2 = rac{9+961}{16} = rac{970}{16} \, .$$

Wegen

$$970 < 1024 = 16 \cdot 64$$

ist dies kleiner als $64 = 8^2$, der Durchstoßungspunkt liegt also innerhalb des Kreises.

Aufgabe (8 (1+1+1+2+3) Punkte)

Es sei

$$P=\left\{ (x,y)\in\mathbb{R}^{2}\mid y=x^{2}
ight\}$$

die Standardparabel und K der Kreis mit dem Mittelpunkt (0,1) und dem Radius 1.

- 1. Skizziere $m{P}$ und $m{K}$.
- 2. Erstelle eine Gleichung für K.
- 3. Bestimme die Schnittpunkte $P \cap K$.
- 4. Beschreibe die untere Kreisbogenhälfte als Graph einer Funktion von [-1,1] nach $\mathbb R$.
- 5. Bestimme, wie die Parabel relativ zum unteren Kreisbogen verläuft.

Lösung

1.

2. Es ist

$$egin{aligned} K &= ig\{ (x,y) \in \mathbb{R}^2 \mid (y-1)^2 + x^2 = 1 ig\} \ &= ig\{ (x,y) \in \mathbb{R}^2 \mid y^2 - 2y + 1 + x^2 = 1 ig\} \ &= ig\{ (x,y) \in \mathbb{R}^2 \mid y^2 - 2y + x^2 = 0 ig\}. \end{aligned}$$

3. Es geht um die gemeinsame Lösungsmenge der beiden Gleichungen

$$y = x^2$$

und

$$y^2-2y+x^2=0.$$

Wir ersetzen in der zweiten Gleichung $oldsymbol{x^2}$ durch $oldsymbol{y}$ und erhalten die Bedingung

$$0 = y^2 - 2y + y = y^2 - y = y(y - 1).$$

Also ist y=0 oder y=1. Dies führt zu den drei Schnittpunkten (0,0),(1,1),(-1,1).

4. Die Kreisgleichung

$$y^2 - 2y + x^2 = 0$$

ist äquivalent zu

$$y^2 - 2y = -x^2$$

bzw. zu

$$(y-1)^2=1-x^2$$
.

Somit ist

$$y=1\pm\sqrt{1-x^2}\,.$$

Der untere Kreisbogen ist somit der Graph der Funktion

$$[-1,1] \longrightarrow \mathbb{R}, \, x \longmapsto 1 - \sqrt{1-x^2}.$$

5. Wir behaupten, dass die Parabel auf [-1,1] oberhalb des unteren Kreisbogens verläuft.

Es ist also

$$x^2 \geq 1 - \sqrt{1-x^2}$$

zu zeigen. Dies ist äquivalent zu

$$\sqrt{1-x^2} > 1-x^2.$$

Da beide Terme im angegebenen Intervall positiv sind, ist dies äquivalent zu

$$1-x^2 \geq \left(1-x^2
ight)^2 = 1+x^4-2x^2$$
 .

Dies ist äquivalent zu

$$x^4-x^2\leq 0$$

bzw. zu

$$x^2-1 < 0$$

was wegen $x \in [-1,1]$ erfüllt ist.

Aufgabe (4 Punkte)

Beweise den Mittelwertsatz der Differentialrechnung.

Lösung

Wir betrachten die Hilfsfunktion

$$g{:}\left[a,b
ight] \longrightarrow \mathbb{R}, \ x \longmapsto g(x) := f(x) - rac{f(b) - f(a)}{b - a}(x - a).$$

Diese Funktion ist ebenfalls stetig und in]a,b[differenzierbar. Ferner ist g(a)=f(a) und

$$g(b) = f(b) - (f(b) - f(a)) = f(a)$$
.

Daher erfüllt g die Voraussetzungen von Satz 15.4 (Mathematik für Anwender (Osnabrück 2019-2020)) und somit gibt es ein $c \in a, b$ mit a, b mit a, b mit a, c aufgrund der Ableitungsregeln gilt also

$$f'(c) = rac{f(b) - f(a)}{b - a}$$
 .

Aufgabe (2 Punkte)

Beweise den Satz über die Ableitung von Potenzfunktionen $x\mapsto x^{lpha}$.

Lösung

Nach Definition . ist

$$x^{\alpha} = \exp(\alpha \ln x)$$
.

Die Ableitung nach \boldsymbol{x} ist aufgrund von Satz 16.3 (Mathematik für Anwender (Osnabrück 2019-2020)) und Korollar 16.6 (Mathematik für Anwender (Osnabrück 2019-2020)) unter Verwendung der Kettenregel gleich

$$(x^lpha)' = (\exp(lpha\, \ln x))' = rac{lpha}{x} \cdot \exp(lpha\, \ln x) = rac{lpha}{x} x^lpha = lpha x^{lpha-1} \ .$$

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (4 Punkte)

Löse das inhomogene Gleichungssystem

Lösung

Wir eliminieren zuerst die Variable z, indem wir die zweite und die vierten Gleichung addieren. Dies führt auf

Nun eliminieren wir die Variable $m{x}$, indem wir (bezogen auf das vorhergehende System) $m{II} + m{III}$ und $m{III} - m{3I}$ ausrechnen. Dies führt auf

$$\begin{array}{rcl}
-3y & -2w & = & -4 \\
-5y & -w & = & 0.
\end{array}$$

Mit I-2II ergibt sich

$$7y = -4$$

und

$$y=-\frac{4}{7}.$$

Rückwärts gelesen ergibt sich

$$x=-rac{5}{7}\,, \ w=rac{20}{7}$$

und

$$z=rac{37}{7}$$
 .

Aufgabe (2 Punkte)

Bestimme die $\mathbf{2} \times \mathbf{2}$ -Matrizen über einem Körper K der Form

$$M = \left(egin{matrix} a & b \ 0 & d \end{matrix}
ight)$$

mit

$$M^2=0.$$

Lösung

Die Bedingung bedeutet

$$M^2=egin{pmatrix} a & b \ 0 & d \end{pmatrix}^2=egin{pmatrix} a & b \ 0 & d \end{pmatrix}\circegin{pmatrix} a & b \ 0 & d \end{pmatrix}=egin{pmatrix} a^2 & ab+bd \ 0 & d^2 \end{pmatrix}=egin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}.$$

Daraus folgt direkt

$$a = d = 0$$

und $m{b}$ ist beliebig. Die Lösungen haben also die Gestalt

$$\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$$

mit beliebigem $b \in K$.

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (4 Punkte)

Es sei $m{K}$ ein Körper und es sei $m{V}$ ein $m{n}$ -dimensionaler $m{K}$ -Vektorraum. Es sei

$$\varphi : V \longrightarrow V$$

eine lineare Abbildung. Zeige, dass $\lambda \in K$ genau dann ein Eigenwert von φ ist, wenn λ eine Nullstelle des charakteristischen Polynoms χ_{φ} ist.

Lösung

Es sei M eine beschreibende Matrix für arphi, und sei $\lambda \in K$ $\lambda \in K$ vorgegeben. Es ist

$$\chi_{M}\left(\lambda
ight)=\det\left(\lambda E_{n}-M
ight)=0$$

genau dann, wenn die lineare Abbildung

$$\lambda\operatorname{Id}_V-arphi$$

nicht bijektiv (und nicht injektiv) ist (wegen Satz 26.11 (Mathematik für Anwender (Osnabrück 2019-2020)) und Lemma 25.11 (Mathematik für Anwender (Osnabrück 2019-2020))). Dies ist nach Lemma 27.11 (Mathematik für Anwender (Osnabrück 2019-2020)) und Lemma 24.14 (Mathematik für Anwender (Osnabrück 2019-2020)) äquivalent zu

$$\mathrm{Eig}_{\lambda}\left(arphi
ight)=\mathrm{kern}(\lambda\,\mathrm{Id}_{V}-arphi)
eq0\,,$$

was bedeutet, dass der Eigenraum zu λ nicht der Nullraum ist, also λ ein Eigenwert zu arphi ist.