Database Management System – 39 Transaction Processing (Characterizing Schedules Based on Recoverability)

Ajay James
Asst. Prof in CSE
Government Engineering College Thrissur

Outline

- Schedule or History
- Notations
- Complete Schedule
- Recoverable and non-recoverable schedules
- Cascading rollback
- Strict Schedule

Characterizing Schedules Based on Recoverability

- Schedule or history
 - Order of execution of operations from all transactions
 - S of n transactions T₁, T₂, ... , T_n is an ordering of the operations of the transactions
 - Operations from different transactions can be interleaved in the schedule
- Total ordering of operations in a schedule
 - For any two operations in the schedule, one must occur before the other

Notations

- b begin_transaction
- r read item
- w write_item
- e end transaction
- c commit
- a abort

Schedule examples

	<i>T</i> ₁	<i>T</i> ₂	
Time	read_item(X); X := X - N; write_item(X); read_item(Y); Y := Y + N; write_item(Y);	read_item(X); X := X + M; write_item(X);	Time

<i>T</i> ₂
read_item(X); X := X + M; write_item(X);

 S_a : $r_1(X)$; $r_2(X)$; $w_1(X)$; $r_1(Y)$; $w_2(X)$; $w_1(Y)$;

 S_b : $r_1(X)$; $w_1(X)$; $r_2(X)$; $w_2(X)$; $r_1(Y)$; a_1 ;

Conflicting Operations in a Schedule

- Two conflicting operations in a schedule (if they satisfy all the *three* conditions)
 - Operations belong to different transactions
 - Operations access the same item X
 - At least one of the operations is a write_item(X)
- Two operations conflict if changing their order results in a different outcome
- Read-write conflict
- Write-write conflict

$$S_a$$
: $r_1(X)$; $r_2(X)$; $w_1(X)$; $r_1(Y)$; $w_2(X)$; $w_1(Y)$;

Complete schedule conditions

- 1. The operations in S are exactly those operations in T_1 , T_2 , ..., T_n , including a commit or abort operation as the last operation for each transaction in the schedule.
- 2. For any pair of operations from the same transaction T_i, their relative order of appearance in S is the same as their order of appearance in T_i
- 3. For any two conflicting operations, one of the two must occur before the other in the schedule
- Partial order

Recoverable and Non-recoverable Schedules

- Once a transaction T is committed, it should never be necessary to roll back T
 - recoverable schedules
- A schedule where a committed transaction may have to be rolled back during recovery is called nonrecoverable
 - should not be permitted by the DBMS

Recoverable schedule conditions

- A schedule S is recoverable if no transaction T in S commits until all transactions T' that have written some item X that T reads have committed.
- T' should not have been aborted before T reads item X

$$S_a$$
: $r_1(X)$; $r_2(X)$; $w_1(X)$; $r_1(Y)$; $w_2(X)$; $w_1(Y)$; S_b : $r_1(X)$; $w_1(X)$; $r_2(X)$; $w_2(X)$; $r_1(Y)$; a_1 ;

Recoverable schedule example

$$S_a'$$
: $r_1(X)$; $r_2(X)$; $w_1(X)$; $r_1(Y)$; $w_2(X)$; c_2 ; $w_1(Y)$; c_1 ; Recoverable

$$S_c: r_1(X); w_1(X); r_2(X); r_1(Y); w_2(X); c_2; a_1;$$

 $S_d: r_1(X); w_1(X); r_2(X); r_1(Y); w_2(X); w_1(Y); c_1; c_2;$
 $S_e: r_1(X); w_1(X); r_2(X); r_1(Y); w_2(X); w_1(Y); a_1; a_2;$

 S_c is not recoverable because T₂ reads item X from T₁, but T₂ commits before T₁commits

Cascading rollback

- Cascading rollback may occur in some recoverable schedules
 - Uncommitted transaction may need to be rolled back
- Cascadeless schedule
 - Avoids cascading rollback

Strict Schedule

- Strict schedule
 - Transactions can neither read nor write an item X until the last transaction that wrote X has committed or aborted
 - Simpler recovery process
 - Restore the before image

$$S_f$$
: $w_1(X, 5)$; $w_2(X, 8)$; a_1 ;

Reference

 Elmasri R. and S. Navathe, Database Systems: Models, Languages, Design and Application Programming, Pearson Education 6th edition and 7th edition

Thank you