Bài 10

MA TRẬN ĐỐI XỨNG và MA TRẬN XÁC ĐỊNH DƯƠNG

Content

- Ma trận đối xứng
 - Định nghĩa
 - Tính chất
- Ma trận xác định dương
 - Định nghĩa
 - Tính chất
 - Áp dụng
- 3 Chuẩn của vector, chuẩn của ma trận
 - Chuẩn của vector
 - Chuẩn của ma trân

Content

- Ma trận đối xứng
 - Định nghĩa
 - Tính chất
- 2 Ma trận xác định dương
 - Định nghĩa
 - Tính chất
 - Áp dụng
- 3 Chuẩn của vector, chuẩn của ma trận
 - Chuẩn của vector
 - Chuẩn của ma trân

Định nghĩa (nhắc lại)

Ma trận vuông $A=[a_{ij}]_{n\times n}$ đgI **đối xứng** nếu $a_{ij}=a_{ji}$ $\forall i,j=\overline{1,n}$ hay $A=A^{\mathrm{T}}$.

Ví dụ:

- ullet Với mọi ma trận thực A có $A^{
 m T}A,AA^{
 m T}$ đều là ma trận đối xứng
- Cho đa đồ thị vô hướng G = (V, E) có tập đỉnh $V = \{v_1, ..., v_n\}$, tập cạnh $E = \{e_1, ..., e_m\}$. Xét ma trận $A = [a_{ij}]_{n \times n}$ với a_{ij} là số cạnh nối trực tiếp v_i và v_j . Do G vô hướng nên $a_{ij} = a_{ji} \ \forall i, j = \overline{1, n}$, tức là A đối xứng.

Định nghĩa (nhắc lại)

Ma trận vuông $A=[a_{ij}]_{n\times n}$ đgI **đối xứng** nếu $a_{ij}=a_{ji}$ $\forall i,j=\overline{1,n}$ hay $A=A^{\mathrm{T}}$.

Ví dụ:

- Với mọi ma trận thực A có $A^{T}A$, AA^{T} đều là ma trận đối xứng.
- Cho đa đồ thị vô hướng G=(V,E) có tập đỉnh $V=\{v_1,...,v_n\}$, tập cạnh $E=\{e_1,...,e_m\}$. Xét ma trận $A=[a_{ij}]_{n\times n}$ với a_{ij} là số cạnh nối trực tiếp v_i và v_j . Do G vô hướng nên $a_{ij}=a_{ji}$ $\forall i,j=\overline{1,n}$, tức là A đối xứng.

Định nghĩa (nhắc lại)

Ma trận vuông $A=[a_{ij}]_{n\times n}$ đgl **đối xứng** nếu $a_{ij}=a_{ji}\ \forall i,j=\overline{1,n}$ hay $A=A^{\mathrm{T}}$.

Ví dụ:

- Với mọi ma trận thực A có $A^{T}A$, AA^{T} đều là ma trận đối xứng.
- Cho đa đồ thị vô hướng G=(V,E) có tập đỉnh $V=\{v_1,...,v_n\}$, tập cạnh $E=\{e_1,...,e_m\}$. Xét ma trận $A=[a_{ij}]_{n\times n}$ với a_{ij} là số cạnh nối trực tiếp v_i và v_j . Do G vô hướng nên $a_{ij}=a_{ji}$ $\forall i,j=\overline{1,n}$, tức là A đối xứng.

Content

- Ma trận đối xứng
 - Định nghĩa
 - Tính chất
- 2 Ma trận xác định dương
 - Định nghĩa
 - Tính chất
 - Áp dụng
- 3 Chuẩn của vector, chuẩn của ma trận
 - Chuẩn của vector
 - Chuẩn của ma trân

- A + B, A B, B A cũng là ma trận đối xứng.
- AB đối xứng ⇔ AB = BA
- Aⁿ đôi xứng
- ullet nếu $\exists A^{-1}$ thì A^{-1} cũng đối xứng
- các giá trị riêng của A đều là thực và có thê chọn các vector riêng tương ứng lập thành hệ trực chuẩn
- có thể phân tích $A=Q\Lambda Q^{-1}$ với Q là ma trận trực giao ($Q^{-1}=Q^{\rm T}$) được lập từ các vector riêng của A còn Λ là ma trận đường chéo chứa các giá trị riêng tương ứng của A.

- A + B, A B, B A cũng là ma trận đối xứng.
- AB đổi xứng $\Leftrightarrow AB = BA$
- Aⁿ đối xứng
- nều $\exists A^{-1}$ thì A^{-1} cũng đối xứng
- các giá trị riêng của A đều là thực và có thê chọn các vector riêng tương ứng lập thành hệ trực chuẩn
- có thể phân tích $A=Q\Lambda Q^{-1}$ với Q là ma trận trực giao $(Q^{-1}=Q^{\rm T})$ được lập từ các vector riêng của A còn Λ là ma trận đường chéo chứa các giá trị riêng tương ứng của A.

- A + B, A B, B A cũng là ma trận đối xứng.
- AB đối xứng $\Leftrightarrow AB = BA$
- Aⁿ đôi xứng
- nếu $\exists A^{-1}$ thì A^{-1} cũng đối xứng
- các giá trị riêng của A đều là thực và có thể chọn các vector riêng tương ứng lập thành hệ trực chuẩn
- có thể phân tích $A = Q \Lambda Q^{-1}$ với Q là ma trận trực giao ($Q^{-1} = Q^{T}$) được lập từ các vector riêng của A còn Λ là ma trận đường chéo chứa các giá trị riêng tương ứng của A.

- A + B, A B, B A cũng là ma trận đối xứng.
- AB đối xứng $\Leftrightarrow AB = BA$
- Aⁿ đối xứng
- nếu $\exists A^{-1}$ thì A^{-1} cũng đối xứng
- các giá trị riêng của A đều là thực và có thể chọn các vector riêng tương ứng lập thành hệ trực chuẩn
- có thể phân tích $A = Q \Lambda Q^{-1}$ với Q là ma trận trực giao ($Q^{-1} = Q^{T}$) được lập từ các vector riêng của A còn Λ là ma trận đường chéo chứa các giá trị riêng tương ứng của A.

- A + B, A B, B A cũng là ma trận đối xứng.
- AB đối xứng $\Leftrightarrow AB = BA$
- Aⁿ đối xứng
- ullet nếu $\exists A^{-1}$ thì A^{-1} cũng đối xứng
- các giá trị riêng của A đều là thực và có thể chọn các vector riêng tương ứng lập thành hệ trực chuẩn
- có thể phân tích $A=Q\Lambda Q^{-1}$ với Q là ma trận trực giao ($Q^{-1}=Q^{\rm T}$) được lập từ các vector riêng của A còn Λ là ma trận đường chéo chứa các giá tri riêng tương ứng của A.

- A + B, A B, B A cũng là ma trận đối xứng.
- AB đối xứng $\Leftrightarrow AB = BA$
- Aⁿ đối xứng
- ullet nếu $\exists A^{-1}$ thì A^{-1} cũng đối xứng
- ullet các giá trị riêng của A đều là thực và có thể chọn các vector riêng tương ứng lập thành hệ trực chuẩn
- có thể phân tích $A=Q\Lambda Q^{-1}$ với Q là ma trận trực giao ($Q^{-1}=Q^{\rm T}$) được lập từ các vector riêng của A còn Λ là ma trận đường chéo chứa các giá trị riêng tương ứng của A.

- A + B, A B, B A cũng là ma trận đối xứng.
- AB đối xứng $\Leftrightarrow AB = BA$
- Aⁿ đối xứng
- nếu $\exists A^{-1}$ thì A^{-1} cũng đối xứng
- ullet các giá trị riêng của A đều là thực và có thể chọn các vector riêng tương ứng lập thành hệ trực chuẩn
- có thể phân tích $A=Q\Lambda Q^{-1}$ với Q là ma trận trực giao $(Q^{-1}=Q^{\rm T})$ được lập từ các vector riêng của A còn Λ là ma trận đường chéo chứa các giá trị riêng tương ứng của A.

Content

- Ma trận đối xứng
 - Định nghĩa
 - Tính chất
- Ma trận xác định dương
 - Định nghĩa
 - Tính chất
 - Áp dụng
- 3 Chuẩn của vector, chuẩn của ma trận
 - Chuẩn của vector
 - Chuẩn của ma trân

Ma trận vuông A cấp n được gọi là:

- xác định dương nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x}>0\ \forall \mathbf{x}\in\mathbb{R}^{n},\mathbf{x}\neq\mathbf{0}$
- bán xác định dương nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x} \geq 0 \ \forall \mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0}$
- ullet xác định âm nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x} < 0 \ \forall \mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0}$
- ullet bán xác định âm nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x} \leq 0 \ \forall \mathbf{x} \in \mathbb{R}^n, \mathbf{x}
 eq \mathbf{0}$

Ví dụ 1: cho
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 10 \end{bmatrix}$$
, xét $\mathbf{x} \in \mathbb{R}^2$ bất kì, g/s $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, có:

$$\mathbf{x}^{\mathrm{T}}A\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + 6x_1x_2 + 10x_2^2 = x_1^2 + 6x_1x_2 + x_2^2 = x_1^2 + 6x_1x_2 + x_2^2 = x_1^2 + x_1^2 = x_1^2 + x_2^2 = x_1^2 + x_1^2 = x_1^2 +$$

$$=(x_1+3x_2)^2+x_2^2>0 \ \forall (x_1,x_2)\neq (0,0) \ \text{tức là} \ \forall \mathbf{x}\neq \mathbf{0}$$

Như vậy A là ma trận xác định dương.

Ma trận vuông A cấp n được gọi là:

- xác định dương nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x} > 0 \ \forall \mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0}$
- ullet bán xác định dương nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x} \geq 0 \ \forall \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}$
- ullet xác định âm nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x}<0\ \forall \mathbf{x}\in\mathbb{R}^{n},\mathbf{x}\neq\mathbf{0}$
- ullet bán xác định âm nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x} \leq 0 \ \forall \mathbf{x} \in \mathbb{R}^n, \mathbf{x}
 eq \mathbf{0}$

Ví dụ 1: cho
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 10 \end{bmatrix}$$
, xét $\mathbf{x} \in \mathbb{R}^2$ bất kì, g/s $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, có:

$$\mathbf{x}^{\mathrm{T}}A\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + 6x_1x_2 + 10x_2^2 = x_1^2 + 6x_1x_2 + x_2 = x_1^2 + 6x_1x_2 + x_2 = x_1^2 + x_2^2 = x_1^2 = x_1^2$$

$$=(x_1+3x_2)^2+x_2^2>0 \ \forall (x_1,x_2)\neq (0,0) \ {
m tức} \ {
m là} \ \forall {f x}\neq {f 0}$$

Như vậy A là ma trận xác định dương

Ma trận vuông A cấp n được gọi là:

- xác định dương nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x}>0\ \forall \mathbf{x}\in\mathbb{R}^{n},\mathbf{x}\neq\mathbf{0}$
- ullet bán xác định dương nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x} \geq 0 \ \forall \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}$
- ullet xác định âm nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x} < 0 \ \forall \mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0}$
- ullet bán xác định âm nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x} \leq 0 \ \forall \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}$

Ví dụ 1: cho
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 10 \end{bmatrix}$$
, xét $\mathbf{x} \in \mathbb{R}^2$ bất kì, g/s $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, có:

$$\mathbf{x}^{\mathrm{T}}A\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + 6x_1x_2 + 10x_2^2 = x_1^2 + 6x_1x_2 + x_2^2 = x_1^2 + 6x_1x_2 + x_2^2 = x_1^2 + x_1^2 = x_1^2 +$$

=
$$(x_1 + 3x_2)^2 + x_2^2 > 0 \ \forall (x_1, x_2) \neq (0, 0) \ \text{tức là} \ \forall \mathbf{x} \neq \mathbf{0}$$

Như vậy A là ma trận xác định dương

Ma trận vuông A cấp n được gọi là:

- xác định dương nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x}>0\ \forall \mathbf{x}\in\mathbb{R}^{n},\mathbf{x}\neq\mathbf{0}$
- ullet bán xác định dương nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x}\geq 0 \ \forall \mathbf{x}\in \mathbb{R}^n, \mathbf{x}\neq \mathbf{0}$
- ullet xác định âm nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x}<0\ \forall \mathbf{x}\in\mathbb{R}^{n},\mathbf{x}\neq\mathbf{0}$
- ullet bán xác định âm nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x} \leq 0 \ \forall \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}$

Ví dụ 1: cho
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 10 \end{bmatrix}$$
, xét $\mathbf{x} \in \mathbb{R}^2$ bất kì, g/s $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, có:

$$\mathbf{x}^{\mathrm{T}}A\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + 6x_1x_2 + 10x_2^2 = x_1^2 + 6x_1x_2 + x_2 = x_1^2 + 6x_1x_2 + x_2 = x_1^2 + 6x_1x_2 = x_1^2 = x_1^2 + 6x_1x_2 = x_1^2 = x_1^2$$

$$=(x_1+3x_2)^2+x_2^2>0 \ \forall (x_1,x_2)\neq (0,0) \ {
m tric} \ {
m la} \ \forall {f x}\neq {f 0}$$

Như vậy A là ma trận xác định dương

Ma trận vuông A cấp n được gọi là:

- xác định dương nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x} > 0 \ \forall \mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0}$
- bán xác định dương nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x} \geq 0 \ \forall \mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0}$
- ullet xác định âm nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x}<0\ \forall \mathbf{x}\in\mathbb{R}^{n},\mathbf{x}\neq\mathbf{0}$
- ullet bán xác định âm nếu $\mathbf{x}^{\mathrm{T}}A\mathbf{x} \leq 0 \ \forall \mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0}$

Ví dụ 1: cho
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 10 \end{bmatrix}$$
, xét $\mathbf{x} \in \mathbb{R}^2$ bất kì, g/s $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, có:

$$\mathbf{x}^{\mathrm{T}}A\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + 6x_1x_2 + 10x_2^2 = x_1^2 + 6x_1x_2 + x_2 = x_1^2 + 6x_1x_2 + x_2 = x_1^2 + 6x_1x_2 = x_1^2 = x_1^2 + 6x_1x_2 = x_1^2 = x_1^2$$

$$=(x_1+3x_2)^2+x_2^2>0 \ \forall (x_1,x_2)\neq (0,0) \ {
m tức} \ {
m là} \ \forall {f x}\neq {f 0}$$

Như vậy A là ma trận xác định dương.

Ví dụ 2: cho
$$B = \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix}$$
, xét $\mathbf{x} \in \mathbb{R}^2$ bất kì, giả sử $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, có:

$$\mathbf{x}^{\mathrm{T}}B\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + 6x_1x_2 + 9x_2^2 = x_1^2 + 6x_1x_2 + 6x$$

$$=(x_1+3x_2)^2\geq 0 \ \forall (x_1,x_2)\neq (0,0), \ \mathrm{dåu}=\mathrm{xåy} \ \mathrm{ra} \Leftrightarrow x_1=-3x_2.$$

Ví dụ 3: sinh viên tự kiếm tra C là xác định âm, D là bán xác định âm với C=-A và D=-B.

Ví dụ 2: cho
$$B = \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix}$$
, xét $\mathbf{x} \in \mathbb{R}^2$ bất kì, giả sử $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, có:

$$\mathbf{x}^{\mathrm{T}}B\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + 6x_1x_2 + 9x_2^2 = x_1^2 + 6x_1x_2 + 6x$$

$$=(x_1+3x_2)^2 \ge 0 \ \forall (x_1,x_2) \ne (0,0), \ \mathrm{dau} = \mathrm{xay} \ \mathrm{ra} \Leftrightarrow x_1=-3x_2.$$

Ví dụ 3: sinh viên tự kiếm tra C là xác định âm, D là bán xác định âm với C = -A và D = -B.

Ví dụ 2: cho
$$B = \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix}$$
, xét $\mathbf{x} \in \mathbb{R}^2$ bất kì, giả sử $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, có:

$$\mathbf{x}^{\mathrm{T}}B\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + 6x_1x_2 + 9x_2^2 = x_1^2 + 6x_1x_2 + 6x$$

$$=(x_1+3x_2)^2 \ge 0 \ \forall (x_1,x_2) \ne (0,0), \ \mathrm{dau} = \mathrm{xay} \ \mathrm{ra} \Leftrightarrow x_1=-3x_2.$$

Ví dụ 3: sinh viên tự kiếm tra C là xác định âm, D là bán xác định âm với C = -A và D = -B.

Ví dụ 2: cho
$$B = \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix}$$
, xét $\mathbf{x} \in \mathbb{R}^2$ bất kì, giả sử $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, có:

$$\mathbf{x}^{\mathrm{T}}B\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + 6x_1x_2 + 9x_2^2 = x_1^2 + 6x_1x_2 + 6x$$

$$=(x_1+3x_2)^2 \ge 0 \ \forall (x_1,x_2) \ne (0,0), \ \mathrm{dau} = \mathrm{xay} \ \mathrm{ra} \Leftrightarrow x_1=-3x_2.$$

Ví dụ 3: sinh viên tự kiếm tra C là xác định âm, D là bán xác định âm với C = -A và D = -B.

Ví dụ 2: cho
$$B = \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix}$$
, xét $\mathbf{x} \in \mathbb{R}^2$ bất kì, giả sử $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, có:

$$\mathbf{x}^{\mathrm{T}}B\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + 6x_1x_2 + 9x_2^2 = x_1^2 + 6x_1x_2 + x_2^2 = x_1^2 + 6x_1x_2 + x_2^2 = x_1^2 + x_1^2 = x_1^2 = x_$$

$$=(x_1+3x_2)^2 \ge 0 \ \forall (x_1,x_2) \ne (0,0), \ d\hat{\mathbf{a}}\mathbf{u} = \mathbf{x}\hat{\mathbf{a}}\mathbf{y} \ \mathbf{ra} \Leftrightarrow x_1 = -3x_2.$$

Ví dụ 3: sinh viên tự kiểm tra C là xác định âm, D là bán xác định âm với C = -A và D = -B.

Content

- Ma trận đối xứng
 - Định nghĩa
 - Tính chất
- 2 Ma trận xác định dương
 - Định nghĩa
 - Tính chất
 - Áp dụng
- 3 Chuẩn của vector, chuẩn của ma trận
 - Chuẩn của vector
 - Chuẩn của ma trân

Nếu A là **ma trận đối xứng** cấp n, các mệnh đề sau tương đương:

- (1) A xác định dương, (2) Mọi giá trị riêng của A đều dương
- (3) Mọi trụ ở ma trận bậc thang thu được từ khử Gauss A đều dương
- (4) Các định thức con chính cấp 1 đến cấp n đều dương

Nhận xét: Khi cho ma trận đối xứng A, muốn kiếm tra xem A có xác định dương hay không thì ta có thể chọn kiểm tra (2), (3) hoặc (4).

VD: Cho
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 6 \end{bmatrix}$$
, khử Gauss: $A \xrightarrow{H2 \to H2 - 2H1} \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$, thỏa

mãn (3).

• Upinh thức con chính cấp 1 là $a_{11} = 1 > 0$, định thức con chính cấp 2 chính là $|A| = 1 \times 6 - 2 \times 2 = 2 > 0$; như vậy (4) được thoả mãn

• GTR của
$$A$$
 là nghiệm pt: $(1-\lambda)(6-\lambda)-2.2=0 \Leftrightarrow \lambda=\frac{7\pm\sqrt{41}}{2}$

Câu hỏi: độ phức tạp của thuật toán của việc kiểm tra (2), (3), (4)?

Nếu A là **ma trận đối xứng** cấp n, các mệnh đề sau tương đương:

- (1) A xác định dương, (2) Mọi giá trị riêng của A đều dương
- (3) Mọi trụ ở ma trận bậc thang thu được từ khử Gauss A đều dương
- (4) Các định thức con chính cấp 1 đến cấp n đều dương

Nhận xét: Khi cho ma trận đối xứng A, muốn kiếm tra xem A có xác định dương hay không thì ta có thể chọn kiểm tra (2), (3) hoặc (4).

VD: Cho
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 6 \end{bmatrix}$$
, khử Gauss: $A \xrightarrow{H2 \to H2 - 2H1} \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$, thỏa

- mãn (3).
- Định thức con chính cấp 1 là $a_{11} = 1 > 0$, định thức con chính cấp 2 chính là $|A| = 1 \times 6 = 2 \times 2 = 2 > 0$; như vậy (A) được thoả mặn
- GTR của A là nghiệm pt: $(1-\lambda)(6-\lambda)-2.2=0 \Leftrightarrow \lambda=\frac{7\pm\sqrt{41}}{2}$
- Câu hỏi: độ phức tạp của thuật toán của việc kiểm tra (2), (3), (4)?

Nếu A là **ma trận đối xứng** cấp n, các mệnh đề sau tương đương:

- (1) A xác định dương, (2) Mọi giá trị riêng của A đều dương
- (3) Mọi trụ ở ma trận bậc thang thu được từ khử Gauss A đều dương
- (4) Các định thức con chính cấp 1 đến cấp n đều dương

Nhận xét: Khi cho ma trận đối xứng A, muốn kiếm tra xem A có xác định dương hay không thì ta có thể chọn kiểm tra (2), (3) hoặc (4).

VD: Cho
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 6 \end{bmatrix}$$
, khử Gauss: $A \xrightarrow{H2 \to H2 - 2H1} \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$, thỏa mãn (3).

- Định thức con chính cấp 1 là $a_{11}=1>0$, định thức con chính cấp 2 chính là $|A|=1\times 6-2\times 2=2>0$; như vậy (4) được thoả mãn.
- GTR của A là nghiệm pt: $(1-\lambda)(6-\lambda)-2.2=0 \Leftrightarrow \lambda=\frac{7\pm\sqrt{41}}{2}$

Câu hói: độ phức tạp của thuật toán của việc kiếm tra (2), (3), (4)?

Nếu A là **ma trận đối xứng** cấp n, các mệnh đề sau tương đương:

- (1) A xác định dương, (2) Mọi giá trị riêng của A đều dương
- (3) Mọi trụ ở ma trận bậc thang thu được từ khử Gauss A đều dương
- (4) Các định thức con chính cấp 1 đến cấp n đều dương

Nhận xét: Khi cho ma trận đối xứng A, muốn kiếm tra xem A có xác định dương hay không thì ta có thể chọn kiểm tra (2), (3) hoặc (4).

VD: Cho
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 6 \end{bmatrix}$$
, khử Gauss: $A \xrightarrow{H2 \to H2 - 2H1} \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$, thỏa mãn (3).

- Định thức con chính cấp 1 là $a_{11} = 1 > 0$, định thức con chính cấp 2 chính là $|A| = 1 \times 6 2 \times 2 = 2 > 0$; như vậy (4) được thoả mãn.
- GTR của A là nghiệm pt: $(1 \lambda)(6 \lambda) 2.2 = 0 \Leftrightarrow \lambda = \frac{7 \pm \sqrt{41}}{2}$ **Câu hỏi**: độ phức tạp của thuật toán của việc kiểm tra (2), (3), (4)?

Nếu A là **ma trận đối xứng** cấp n, các mệnh đề sau tương đương:

- (1) A xác định dương, (2) Mọi giá trị riêng của A đều dương
- (3) Mọi trụ ở ma trận bậc thang thu được từ khử Gauss A đều dương
- (4) Các định thức con chính cấp 1 đến cấp n đều dương

Nhận xét: Khi cho ma trận đối xứng A, muốn kiếm tra xem A có xác định dương hay không thì ta có thể chọn kiểm tra (2), (3) hoặc (4).

VD: Cho
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 6 \end{bmatrix}$$
, khử Gauss: $A \xrightarrow{H2 \to H2 - 2H1} \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$, thỏa mãn (3).

- Định thức con chính cấp 1 là $a_{11} = 1 > 0$, định thức con chính cấp 2 chính là $|A| = 1 \times 6 2 \times 2 = 2 > 0$; như vậy (4) được thoả mãn.
- GTR của A là nghiệm pt: $(1-\lambda)(6-\lambda)-2.2=0 \Leftrightarrow \lambda=\frac{7\pm\sqrt{41}}{2}$

Câu hỏi: độ phức tạp của thuật toán của việc kiếm tra (2), (3), (4)?

Nếu A là **ma trận đối xứng** cấp n, các mệnh đề sau tương đương:

- (1) A xác định dương, (2) Mọi giá trị riêng của A đều dương
- (3) Mọi trụ ở ma trận bậc thang thu được từ khử Gauss A đều dương
- (4) Các định thức con chính cấp 1 đến cấp n đều dương

Nhận xét: Khi cho ma trận đối xứng A, muốn kiếm tra xem A có xác định dương hay không thì ta có thể chọn kiểm tra (2), (3) hoặc (4).

VD: Cho
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 6 \end{bmatrix}$$
, khử Gauss: $A \xrightarrow{H2 \to H2 - 2H1} \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$, thỏa mãn (3).

- Định thức con chính cấp 1 là $a_{11} = 1 > 0$, định thức con chính cấp 2 chính là $|A| = 1 \times 6 2 \times 2 = 2 > 0$; như vậy (4) được thoả mãn.
- GTR của A là nghiệm pt: $(1-\lambda)(6-\lambda)-2.2=0 \Leftrightarrow \lambda=\frac{7\pm\sqrt{41}}{2}$

Câu hỏi: độ phức tạp của thuật toán của việc kiểm tra (2), (3), (4)?

Cho A là ma trận **đối xứng xác định dương**, khi đó có thể biểu diễn: $A = LL^{T}$ với L là ma trận tam giác dưới.

Giải thích vắn tắt

- B1: A đối xứng, xác định dương nên có biểu diễn: $A = L_1 D L_1^{\rm T}$ (*), với L_1 là ma trận tam giác dưới, $D = diag(a_1,...,a_n)$ là ma trận đường chéo mà các a_i là các trụ của ma trận bậc thang U thu được từ việc khử Gauss A ($U = D L_1^{\rm T} \Rightarrow L_1^{\rm T} = D^{-1} U$) (**nhắc lại**: $a_i > 0 \ \forall i = \overline{1,n}$).
- B2: Từ (*) có $A = LL^{\mathrm{T}}$ với $L = L_1 D^{1/2}$, $D^{1/2} = diag(a_1^{1/2}, ..., a_n^{1/2})$.

CHÚ Ý: phân tích Cholesky thường dùng trong việc giải số, ví dụ như trong phương pháp Monte Carlo.

Nhận xét: A đối xứng xác định dương, phân tích $A = L_1 D L_1^{\rm T}$ nhìn tương tự phân tích: $A = Q \Lambda Q^{\rm T}$ với Q là ma trận trực giao ($Q^{-1} = Q^{\rm T}$) được lập từ các vector riêng của A còn Λ là ma trận đường chéo chứa các giá trị riêng tương ứng của A.

Cho A là ma trận **đối xứng xác định dương**, khi đó có thể biểu diễn: $A = LL^{T}$ với L là ma trận tam giác dưới.

Giải thích vắn tắt:

- B1: A đối xứng, xác định dương nên có biểu diễn: $A = L_1DL_1^{\rm T}$ (*), với L_1 là ma trận tam giác dưới, $D = diag(a_1,...,a_n)$ là ma trận đường chéo mà các a_i là các trụ của ma trận bậc thang U thu được từ việc khử Gauss A ($U = DL_1^{\rm T} \Rightarrow L_1^{\rm T} = D^{-1}U$) (**nhắc lại**: $a_i > 0 \ \forall i = \overline{1,n}$).
- B2: Từ (*) có $A = LL^{T}$ với $L = L_1D^{1/2}$, $D^{1/2} = diag(a_1^{1/2}, ..., a_n^{1/2})$.

CHÚ Ý: phân tích Cholesky thường dùng trong việc giải số, ví dụ như trong phương pháp Monte Carlo.

Nhận xét: A đổi xứng xác định dương, phân tích $A = L_1 D L_1^{\rm T}$ nhìn tương tự phân tích: $A = Q \Lambda Q^{\rm T}$ với Q là ma trận trực giao $(Q^{-1} = Q^{\rm T})$ được lập từ các vector riêng của A còn Λ là ma trận đường chéo chứa các giá trị riêng tương ứng của A.

Cho A là ma trận **đối xứng xác định dương**, khi đó có thể biểu diễn: $A = LL^{T}$ với L là ma trận tam giác dưới.

Giải thích vắn tắt:

- B1: A đối xứng, xác định dương nên có biểu diễn: $A = L_1DL_1^{\rm T}$ (*), với L_1 là ma trận tam giác dưới, $D = diag(a_1,...,a_n)$ là ma trận đường chéo mà các a_i là các trụ của ma trận bậc thang U thu được từ việc khử Gauss A ($U = DL_1^{\rm T} \Rightarrow L_1^{\rm T} = D^{-1}U$) (**nhắc lại**: $a_i > 0 \ \forall i = \overline{1,n}$).
- B2: Từ (*) có $A = LL^{T}$ với $L = L_1D^{1/2}$, $D^{1/2} = diag(a_1^{1/2}, ..., a_n^{1/2})$.

 $\mathbf{CH\acute{U}}$ $\acute{\mathbf{Y}}$: phân tích Cholesky thường dùng trong việc giải số, ví dụ như trong phương pháp Monte Carlo.

Nhận xét: A đối xứng xác định dương, phân tích $A = L_1DL_1^{\rm T}$ nhìn tương tự phân tích: $A = Q\Lambda Q^{\rm T}$ với Q là ma trận trực giao $(Q^{-1} = Q^{\rm T})$ được lập từ các vector riêng của A còn Λ là ma trận đường chéo chứa các giá trị riêng tương ứng của A.

Cho A là ma trận đối xứng xác định dương, khi đó có thể biểu diễn: $A = LL^{\mathrm{T}}$ với L là ma trân tam giác dưới.

Giải thích vắn tắt:

- B1: A đối xứng, xác định dương nên có biểu diễn: $A = L_1 D L_1^T$ (*), với L_1 là ma trân tam giác dưới, $D = diag(a_1, ..., a_n)$ là ma trân đường chéo mà các a_i là các trụ của ma trận bậc thang U thu được từ việc khử Gauss A ($U = DL_1^T \Rightarrow L_1^T = D^{-1}U$) (nhắc lại: $a_i > 0 \ \forall i = \overline{1, n}$).
- B2: Từ (*) có $A = LL^{T}$ với $L = L_1D^{1/2}$, $D^{1/2} = diag(a_1^{1/2}, ..., a_n^{1/2})$.

CHÚ Ý: phân tích Cholesky thường dùng trong việc giải số, ví dụ như trong phương pháp Monte Carlo.

Nhận xét: A đối xứng xác định dương, phân tích $A = L_1DL_1^T$ nhìn tương tự phân tích: $A = Q\Lambda Q^{\mathrm{T}}$ với Q là ma trận trực giao ($Q^{-1} = Q^{\mathrm{T}}$) được lập từ các vector riêng của A còn Λ là ma trận đường chéo chứa các giá trị riêng tương ứng của A.

Content

- Ma trận đối xứng
 - Định nghĩa
 - Tính chất
- 2 Ma trận xác định dương
 - Định nghĩa
 - Tính chất
 - Áp dụng
- 3 Chuẩn của vector, chuẩn của ma trận
 - Chuẩn của vector
 - Chuẩn của ma trân

Cho f(x,y) là hàm hai biến thỏa mãn các tính chất thông thường ở toán 2, đặc biệt là f thỏa mãn: $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial v \partial x}$.

Ta đã học: nếu tại $M(x_0, y_0)$ có:

$$\frac{\partial f}{\partial x}(M)=0, \frac{\partial f}{\partial y}(M)=0, \frac{\partial^2 f}{\partial x^2}(M)>0, f_{xx}^{''}(M).f_{yy}^{''}(M)-[f_{xy}^{''}(M)]^2>0$$

thì f đạt cực tiểu tại M.

Diễn đạt lại điều này nhờ việc sử dụng ma trận xác định dương:

Úng dụng i

Nếu tại $M(x_0, y_0)$ có: $f_x'(M) = 0$, $f_y'(M) = 0$ và A xác định dương với $[f_{xy}''(M), f_{xy}''(M)]$

$$A = \begin{bmatrix} t_{xx}(M) & t_{xy}(M) \\ f''_{yx}(M) & f''_{yy}(M) \end{bmatrix} \text{ thì } f \text{ dạt cụ}$$

Cho f(x,y) là hàm hai biến thỏa mãn các tính chất thông thường ở toán 2, đặc biệt là f thỏa mãn: $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$.

Ta đã học: nếu tại $M(x_0, y_0)$ có:

$$\frac{\partial f}{\partial x}(M)=0, \frac{\partial f}{\partial y}(M)=0, \frac{\partial^2 f}{\partial x^2}(M)>0, f_{xx}^{''}(M).f_{yy}^{''}(M)-[f_{xy}^{''}(M)]^2>0$$

thì f đạt cực tiểu tại M.

Diễn đạt lại điều này nhờ việc sử dụng ma trận xác định dương:

Ứng dụng 1

Nếu tại $M(x_0, y_0)$ có: $f_x'(M) = 0$, $f_y'(M) = 0$ và A xác định dương với $A = \begin{bmatrix} f_{xx}''(M) & f_{xy}''(M) \\ f_{yx}''(M) & f_{yy}''(M) \end{bmatrix}$ thì f đạt cực tiểu tại M.

Ứng dụng 2

Cho elip $ax^2+2bxy+cy^2=1$ với $a>0, ac>b^2$, hãy chuyển về dạng "chính tắc": $\alpha X^2+\beta Y^2=1$.

B1: Viết lại PT elip dưới dạng: (**) với
$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$:

$$\mathbf{v}^{\mathrm{T}}A\mathbf{v} = 1$$
 (**)

<u>B2</u>: Do *A* đối xứng nên thay $A = Q \Lambda Q^{T}$ vào (**) có:

$$1 = \mathbf{v}^{\mathrm{T}} A \mathbf{v} = \mathbf{v}^{\mathrm{T}} Q \Lambda Q^{\mathrm{T}} \mathbf{v} = A X^{2} + B Y^{2}$$

với $\alpha = \lambda_1, \beta = \lambda_2$ là các giá trị riêng của A, $\begin{bmatrix} X & Y \end{bmatrix} = \mathbf{v}^T Q$ với Q là ma trận có các cột là các vector riêng tương ứng, $\Lambda = diag(\lambda_1, \lambda_2)$. Nhận xét: các vector riêng của A chính là các vector chỉ phương của các trục của elip.

Ứng dụng 2

Cho elip $ax^2+2bxy+cy^2=1$ với $a>0, ac>b^2$, hãy chuyển về dạng "chính tắc": $\alpha X^2+\beta Y^2=1$.

B1: Viết lại PT elip dưới dạng: (**) với
$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$:

$$\mathbf{v}^{\mathrm{T}}A\mathbf{v}=1$$
 (**)

B2: Do A đối xứng nên thay $A = Q \Lambda Q^{T}$ vào (**) có:

$$1 = \mathbf{v}^{\mathrm{T}} A \mathbf{v} = \mathbf{v}^{\mathrm{T}} Q \Lambda Q^{\mathrm{T}} \mathbf{v} = A X^{2} + B Y^{2}$$

với $\alpha = \lambda_1, \beta = \lambda_2$ là các giá trị riêng của A, $\begin{bmatrix} X & Y \end{bmatrix} = \mathbf{v}^T Q$ với Q là ma trận có các cột là các vector riêng tương ứng, $\Lambda = diag(\lambda_1, \lambda_2)$. **Nhận xét**: các vector riêng của A chính là các vector chỉ phương của các trục của elip.

Ứng dụng 2

Cho elip $ax^2+2bxy+cy^2=1$ với $a>0, ac>b^2$, hãy chuyển về dạng "chính tắc": $\alpha X^2+\beta Y^2=1$.

<u>B1</u>: Viết lại PT elip dưới dạng: (**) với $A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$:

$$\mathbf{v}^{\mathrm{T}}A\mathbf{v} = 1$$
 (**)

<u>B2</u>: Do A đối xứng nên thay $A = Q \Lambda Q^{T}$ vào (**) có:

$$1 = \mathbf{v}^{\mathrm{T}} A \mathbf{v} = \mathbf{v}^{\mathrm{T}} Q \Lambda Q^{\mathrm{T}} \mathbf{v} = A X^2 + B Y^2$$

với $\alpha = \lambda_1, \beta = \lambda_2$ là các giá trị riêng của A, $\begin{bmatrix} X & Y \end{bmatrix} = \mathbf{v}^T Q$ với Q là ma trận có các cột là các vector riêng tương ứng, $\Lambda = diag(\lambda_1, \lambda_2)$.

Nhận xét: các vector riêng của A chính là các vector chỉ phương của các trục của elip.

Úng dụng 2

Cho elip $ax^2 + 2bxy + cy^2 = 1$ với a > 0, $ac > b^2$, hãy chuyển về dang "chính tắc": $\alpha X^2 + \beta Y^2 = 1$.

B1: Viết lại PT elip dưới dạng: (**) với
$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$:

$$\mathbf{v}^{\mathrm{T}}A\mathbf{v} = 1$$
 (**)

B2: Do A đối xứng nên thay $A = Q\Lambda Q^{T}$ vào (**) có:

$$1 = \mathbf{v}^{\mathrm{T}} A \mathbf{v} = \mathbf{v}^{\mathrm{T}} Q \Lambda Q^{\mathrm{T}} \mathbf{v} = A X^2 + B Y^2$$

với $\alpha = \lambda_1, \beta = \lambda_2$ là các giá trị riêng của A, $\begin{bmatrix} X & Y \end{bmatrix} = \mathbf{v}^T Q$ với Qlà ma trận có các cột là các vector riêng tương ứng, $\Lambda = diag(\lambda_1, \lambda_2)$. **Nhận xét**: các vector riêng của A chính là các vector chỉ phương của các trục của elip.

Dạng toàn phương

Đa thức n biến $f(x_1,...,x_n) = \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_i x_j$ với các hệ số thực c_{ij}

được gọi là dạng toàn phương.

Nhận xét:
$$f = \mathbf{x}^{\mathrm{T}} A \mathbf{x}$$
 với: $\mathbf{x} = \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix}$; $A = [a_{ij}]_{n \times n}, a_{ij} = \frac{c_{ij} + c_{ji}}{2}$

Dễ CM được:

- $f > 0 \ \forall \mathbf{x} \in \mathbb{R}^n \backslash \{\mathbf{0}\} \Leftrightarrow A \ \mathsf{xác} \ \mathsf{dinh} \ \mathsf{duong}$
- $f \geq 0 \ \forall \mathbf{x} \in \mathbb{R}^n \backslash \{\mathbf{0}\} \Leftrightarrow A$ xác định dương hoặc bán xác định dương
- $f < 0 \ \forall \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\} \Leftrightarrow A \text{ xác định âm}$
- $f \leq 0 \ \forall \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\} \Leftrightarrow A \text{ xác định âm hoặc bán xác định âm.}$

CHÚ Ý: nếu
$$f(x_1,...,x_n) = \sum_{i=1}^n \sum_{j\geq i} b_{ij} x_i x_j$$
 thì thay $a_{ij} = \begin{cases} b_{ij} & \text{khi } i=j \\ b_{ij}/2 & \text{khi } i\neq j \end{cases}$

Dạng toàn phương

Đa thức n biến $f(x_1,...,x_n) = \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_i x_j$ với các hệ số thực c_{ij}

được gọi là dạng toàn phương.

Nhận xét:
$$f = \mathbf{x}^{\mathrm{T}} A \mathbf{x}$$
 với: $\mathbf{x} = \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix}$; $A = [a_{ij}]_{n \times n}$, $a_{ij} = \frac{c_{ij} + c_{ji}}{2}$

Dễ CM được:

- $f > 0 \ \forall \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\} \Leftrightarrow A \ \mathsf{xác} \ \mathsf{dinh} \ \mathsf{duong}$
- $f \ge 0 \ \forall \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\} \Leftrightarrow A \text{ xác định dương hoặc bán xác định dương}$
- $f < 0 \ \forall \mathbf{x} \in \mathbb{R}^n \backslash \{\mathbf{0}\} \Leftrightarrow A \ \mathsf{xác} \ \mathsf{dịnh} \ \mathsf{am}$
- $f \leq 0 \ \forall \mathbf{x} \in \mathbb{R}^n \backslash \{\mathbf{0}\} \Leftrightarrow A \text{ xác định âm hoặc bán xác định âm.}$

CHÚ Ý: nếu
$$f(x_1,...,x_n) = \sum_{i=1}^n \sum_{j\geq i} b_{ij} x_i x_j$$
 thì thay $a_{ij} = \begin{cases} b_{ij} & \text{khi } i=j \\ b_{ij}/2 & \text{khi } i\neq j \end{cases}$

Cách kiểm tra $A = (a_{ij})_{n \times n}$ bất kì có xác định dương (âm), bán xác định dương (âm) hay không:

B1: Xét
$$\mathbf{x}^{\mathrm{T}} = [x_1 \ x_2 \ ... \ x_n] \neq \mathbf{0} \Rightarrow \mathbf{x}^{\mathrm{T}} A \mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$

<u>B2</u>: Kiểm tra xem dạng toàn phương vừa thu được có xác định dương (âm), bán xác định dương (âm) hay không.

Cách kiểm tra $A = (a_{ij})_{n \times n}$ bất kì có xác định dương (âm), bán xác định dương (âm) hay không:

B1: Xét
$$\mathbf{x}^{\mathrm{T}} = [x_1 \ x_2 \ ... \ x_n] \neq \mathbf{0} \Rightarrow \mathbf{x}^{\mathrm{T}} A \mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$

<u>B2</u>: Kiếm tra xem dạng toàn phương vừa thu được có xác định dương (âm), bán xác định dương (âm) hay không.

Cách kiểm tra $A = (a_{ij})_{n \times n}$ bất kì có xác định dương (âm), bán xác định dương (âm) hay không:

B1: Xét
$$\mathbf{x}^{\mathrm{T}} = [x_1 \ x_2 \ ... \ x_n] \neq \mathbf{0} \Rightarrow \mathbf{x}^{\mathrm{T}} A \mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$

<u>B2</u>: Kiểm tra xem dạng toàn phương vừa thu được có xác định dương (âm), bán xác định dương (âm) hay không.

Content

- Ma trận đối xứng
 - Định nghĩa
 - Tính chất
- 2 Ma trận xác định dương
 - Định nghĩa
 - Tính chất
 - Áp dụng
- 3 Chuẩn của vector, chuẩn của ma trận
 - Chuẩn của vector
 - Chuẩn của ma trân

Cho kgvt V trên \mathbb{R} , một **chuẩn** $p:V\to [0,+\infty)$ là hàm nhận g/t thực không âm và thỏa mãn các điều kiện sau $\forall \mathbf{u},\mathbf{v}\in V, \forall a\in\mathbb{R}$:

(1)
$$p(\mathbf{u} + \mathbf{v}) \le p(\mathbf{u}) + p(\mathbf{v})$$
, (2) $p(a\mathbf{u}) = |a|p(\mathbf{u})$,

(3)
$$p(\mathbf{u}) = 0 \Rightarrow \mathbf{u} = \mathbf{0}$$

Một số chuẩn thường dùng

Cho $\mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^n$, ta hay dùng:

- Chuẩn Euclid (Ö-cơ-lít): $||\mathbf{x}||_2 = (x_1^2 + ... + x_n^2)^{1/2}$. (p = 2)
- Chuẩn maximum: $||\mathbf{x}||_{\infty} = \max\{|x_1|,...,|x_n|\}.$ $(p \to \infty)$
- Chuẩn Manhattan (chuẩn taxicab): $||\mathbf{x}||_1 = \sum\limits_{i=1}^n |x_i| \quad (p=1)$

CHÚ Ý: 3 chuẩn trên là TH đặc biệt của *p*-norm:
$$||\mathbf{x}||_p = \left[\sum_{i=1}^n (|x_i|^p)\right]^{1/p}$$
.

Cho kgvt V trên \mathbb{R} , một **chuẩn** $p:V\to [0,+\infty)$ là hàm nhận g/t thực không âm và thỏa mãn các điều kiện sau $\forall \mathbf{u},\mathbf{v}\in V, \forall a\in\mathbb{R}$:

(1)
$$p(\mathbf{u} + \mathbf{v}) \le p(\mathbf{u}) + p(\mathbf{v})$$
, (2) $p(a\mathbf{u}) = |a|p(\mathbf{u})$,

(3)
$$p(\mathbf{u}) = 0 \Rightarrow \mathbf{u} = \mathbf{0}$$

Một số chuẩn thường dùng

Cho $\mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^n$, ta hay dùng:

- Chuẩn Euclid (Ö-cơ-lít): $||\mathbf{x}||_2 = (x_1^2 + ... + x_n^2)^{1/2}$. (p = 2)
- Chuẩn maximum: $||\mathbf{x}||_{\infty} = \max\{|x_1|,...,|x_n|\}.$ $(p \to \infty)$
- Chuẩn Manhattan (chuẩn taxicab): $||\mathbf{x}||_1 = \sum\limits_{i=1}^n |x_i| \quad (p=1)$

CHÚ Ý: 3 chuẩn trên là TH đặc biệt của *p*-norm: $||\mathbf{x}||_p = \left[\sum_{i=1}^n (|x_i|^p)\right]^{1/p}$.

Cho kgvt V trên \mathbb{R} , một **chuẩn** $p:V\to [0,+\infty)$ là hàm nhận g/t thực không âm và thỏa mãn các điều kiện sau $\forall \mathbf{u},\mathbf{v}\in V, \forall a\in\mathbb{R}$:

(1)
$$p(\mathbf{u} + \mathbf{v}) \le p(\mathbf{u}) + p(\mathbf{v})$$
, (2) $p(a\mathbf{u}) = |a|p(\mathbf{u})$,

(3)
$$p(\mathbf{u}) = 0 \Rightarrow \mathbf{u} = \mathbf{0}$$

Một số chuẩn thường dùng

Cho $\mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^n$, ta hay dùng:

- Chuẩn Euclid (O-co-lít): $||\mathbf{x}||_2 = (x_1^2 + ... + x_n^2)^{1/2}$. (p = 2)
- Chuẩn maximum: $||\mathbf{x}||_{\infty} = \max\{|x_1|,...,|x_n|\}.$ $(p \to \infty)$
- Chuẩn Manhattan (chuẩn taxicab): $||\mathbf{x}||_1 = \sum\limits_{i=1}^n |x_i| \quad (p=1)$

CHÚ Ý: 3 chuẩn trên là TH đặc biệt của *p*-norm: $||\mathbf{x}||_p = \left[\sum_{i=1}^n (|x_i|^p)\right]^{1/p}$.

Với 3 chuẩn: Euclid, maximum, Manhattan, dễ CM được:

$$||\mathbf{x}||_{\infty} \leq ||\mathbf{x}||_{2} \leq ||\mathbf{x}||_{1} \leq \sqrt{n}||\mathbf{x}||_{2} \leq n||\mathbf{x}||_{\infty} \ \forall \mathbf{x} \in \mathbb{R}^{n},$$

do đó 3 chuẩn này tương đương.

CHÚ Ý:

Định nghĩa

Hai chuẩn $||.||_{\alpha}$, $||.||_{\beta}$ được gọi là **tương đương** nếu tồn tại hai số dương C,D thỏa mãn:

$$C||\mathbf{x}||_{\alpha} \leq ||\mathbf{x}||_{\beta} \leq D||\mathbf{x}||_{\alpha} \ \forall \mathbf{x} \in \mathbb{R}^n.$$

Với 3 chuẩn: Euclid, maximum, Manhattan, dễ CM được:

$$||\mathbf{x}||_{\infty} \leq ||\mathbf{x}||_{2} \leq ||\mathbf{x}||_{1} \leq \sqrt{n}||\mathbf{x}||_{2} \leq n||\mathbf{x}||_{\infty} \ \forall \mathbf{x} \in \mathbb{R}^{n},$$

do đó 3 chuẩn này tương đương.

CHÚ Ý:

Định nghĩa

Hai chuẩn $||.||_{\alpha}$, $||.||_{\beta}$ được gọi là **tương đương** nếu tồn tại hai số dương C, D thỏa mãn:

$$C||\mathbf{x}||_{\alpha} \leq ||\mathbf{x}||_{\beta} \leq D||\mathbf{x}||_{\alpha} \ \forall \mathbf{x} \in \mathbb{R}^{n}.$$

Content

- Ma trận đối xứng
 - Định nghĩa
 - Tính chất
- 2 Ma trận xác định dương
 - Định nghĩa
 - Tính chất
 - Áp dụng
- 3 Chuẩn của vector, chuẩn của ma trận
 - Chuẩn của vector
 - Chuẩn của ma trân

Dịnh nghĩa

Cho kgvt $M(m \times n, \mathbb{R})$, một **chuẩn ma trận** $||.||: \mathbb{R}^{m \times n} \to [0, +\infty)$ là hàm nhận g/t thực không âm và thỏa mãn các điều kiện sau $\forall A, B \in M(m \times n, \mathbb{R}), \forall k \in \mathbb{R}$:

$$(1) ||A + B|| \le ||A|| + ||B||, \qquad (2) ||kA|| = |k|.||A||,$$

(3)
$$||A|| \ge 0$$
, dấu "=" xảy ra $\Leftrightarrow A = O_{m \times n}$.

Cho ma trận $A = [a_{ij}]_{m \times n}$ có các vector hàng $h_1, ..., h_m$, vector cột $c_1, ..., c_n$, sau đây là các chuẩn **thường dùng**:

- $\bullet \ ||A||_1 = \max\{||c_1||_1,...,||c_n||_1\}; \quad \bullet \ ||A||_\infty = \max\{||h_1||_1,...,||h_m||_1\};$
- $||A||_2 = \sigma_{\max}(A) = \max\{\sqrt{\lambda_i}\}$, các λ_i là các giá trị riêng của A^TA

•
$$||A||_{2,1} = \sum_{j=1}^{n} \left[\sum_{i=1}^{n} (|a_{ij}|^2) \right]^{-1} = \sum_{j=1}^{n} ||c_j||_2.$$

$$\bullet \ ||A|| = \sup\{\frac{||A\mathbf{x}||}{||\mathbf{x}||}, \mathbf{x} \in \mathbb{R}^n\} = \sup\{||A\mathbf{x}||, \mathbf{x} \in \mathbb{R}^n, ||\mathbf{x}|| = 1\}$$

Cho kgvt $M(m \times n, \mathbb{R})$, một **chuẩn ma trận** $||.||: \mathbb{R}^{m \times n} \to [0, +\infty)$ là hàm nhận g/t thực không âm và thỏa mãn các điều kiện sau $\forall A, B \in M(m \times n, \mathbb{R}), \forall k \in \mathbb{R}$:

$$(1) ||A + B|| \le ||A|| + ||B||, \qquad (2) ||kA|| = |k|.||A||,$$

(3)
$$||A|| \ge 0$$
, dấu "=" xảy ra $\Leftrightarrow A = O_{m \times n}$.

Cho ma trận $A = [a_{ij}]_{m \times n}$ có các vector hàng $h_1, ..., h_m$, vector cột $c_1, ..., c_n$, sau đây là các chuẩn **thường dùng**:

• $||A||_1 = \max\{||c_1||_1, ..., ||c_n||_1\};$ • $||A||_{\infty} = \max\{||h_1||_1, ..., ||h_m||_1\};$

•
$$||A||_2 = \sigma_{\max}(A) = \max\{\sqrt{\lambda_i}\}$$
, các λ_i là các giá trị riêng của A^TA ;

$$\bullet ||A||_{2,1} = \sum_{j=1}^{n} \left[\sum_{i=1}^{n} (|a_{ij}|) \right] = \sum_{j=1}^{n} ||C_{j}||_{2}.$$

Dịnh nghĩa

Cho kgvt $M(m \times n, \mathbb{R})$, một **chuẩn ma trận** $||.||: \mathbb{R}^{m \times n} \to [0, +\infty)$ là hàm nhận g/t thực không âm và thỏa mãn các điều kiện sau $\forall A, B \in M(m \times n, \mathbb{R}), \forall k \in \mathbb{R}$:

$$(1) ||A + B|| \le ||A|| + ||B||, \qquad (2) ||kA|| = |k|.||A||,$$

(3)
$$||A|| \ge 0$$
, dấu "=" xảy ra $\Leftrightarrow A = O_{m \times n}$.

• $||A||_{2,1} = \sum_{i=1}^{n} \left[\sum_{j=1}^{m} (|a_{ij}|^2) \right]^{1/2} = \sum_{j=1}^{n} ||c_j||_2.$

Cho ma trận $A = [a_{ij}]_{m \times n}$ có các vector hàng $h_1, ..., h_m$, vector cột $c_1, ..., c_n$, sau đây là các chuẩn **thường dùng**:

•
$$||A||_1 = \max\{||c_1||_1, ..., ||c_n||_1\};$$
 • $||A||_{\infty} = \max\{||h_1||_1, ..., ||h_m||_1\};$
• $||A||_2 = \sigma_{\max}(A) = \max\{\sqrt{\lambda_i}\},$ các λ_i là các giá trị riêng của A^TA ;

Cho kgvt $M(m \times n, \mathbb{R})$, một **chuẩn ma trận** $||.|| : \mathbb{R}^{m \times n} \to [0, +\infty)$ là hàm nhận g/t thực không âm và thỏa mãn các điều kiện sau $\forall A, B \in M(m \times n, \mathbb{R}), \forall k \in \mathbb{R}$:

(1)
$$||A + B|| \le ||A|| + ||B||$$
, (2) $||kA|| = |k| \cdot ||A||$,

(3) $||A|| \ge 0$, dấu "=" xảy ra $\Leftrightarrow A = O_{m \times n}$.

Cho ma trận $A = [a_{ij}]_{m \times n}$ có các vector hàng $h_1, ..., h_m$, vector cột $c_1, ..., c_n$, sau đây là các chuẩn **thường dùng**:

- $\bullet \ ||A||_1 = \max\{||c_1||_1,...,||c_n||_1\}; \quad \bullet \ ||A||_{\infty} = \max\{||h_1||_1,...,||h_m||_1\};$
- $||A||_2 = \sigma_{\max}(A) = \max\{\sqrt{\lambda_i}\}$, các λ_i là các giá trị riêng của $A^{\mathrm{T}}A$;

•
$$||A||_{2,1} = \sum_{j=1}^{n} \left[\sum_{i=1}^{m} (|a_{ij}|^2) \right]^{1/2} = \sum_{j=1}^{n} ||c_j||_2.$$

•
$$||A|| = \sup\{\frac{||A\mathbf{x}||}{||\mathbf{x}||}, \mathbf{x} \in \mathbb{R}^n\} = \sup\{||A\mathbf{x}||, \mathbf{x} \in \mathbb{R}^n, ||\mathbf{x}|| = 1\}.$$

Dịnh nghĩa

Cho kgvt $M(m \times n, \mathbb{R})$, một **chuẩn ma trận** $||.|| : \mathbb{R}^{m \times n} \to [0, +\infty)$ là hàm nhận g/t thực không âm và thỏa mãn các điều kiện sau $\forall A, B \in M(m \times n, \mathbb{R}), \forall k \in \mathbb{R}$:

(1)
$$||A + B|| \le ||A|| + ||B||$$
, (2) $||kA|| = |k| \cdot ||A||$,

(3)
$$||A|| \ge 0$$
, dấu "=" xảy ra $\Leftrightarrow A = O_{m \times n}$.

Cho ma trận $A = [a_{ij}]_{m \times n}$ có các vector hàng $h_1, ..., h_m$, vector cột $c_1, ..., c_n$, sau đây là các chuẩn **thường dùng**:

- $||A||_1 = \max\{||c_1||_1,...,||c_n||_1\};$ $||A||_{\infty} = \max\{||h_1||_1,...,||h_m||_1\};$
- $||A||_2 = \sigma_{\max}(A) = \max\{\sqrt{\lambda_i}\}$, các λ_i là các giá trị riêng của $A^{\mathrm{T}}A$;

•
$$||A||_{2,1} = \sum_{j=1}^{n} \left[\sum_{i=1}^{m} (|a_{ij}|^2) \right]^{1/2} = \sum_{j=1}^{n} ||c_j||_2.$$

• $||A|| = \sup\{\frac{||A\mathbf{x}||}{||\mathbf{x}||}, \mathbf{x} \in \mathbb{R}^n\} = \sup\{||A\mathbf{x}||, \mathbf{x} \in \mathbb{R}^n, ||\mathbf{x}|| = 1\}.$

Cho kgvt $M(m \times n, \mathbb{R})$, một **chuẩn ma trận** $||.|| : \mathbb{R}^{m \times n} \to [0, +\infty)$ là hàm nhận g/t thực không âm và thỏa mãn các điều kiện sau $\forall A, B \in M(m \times n, \mathbb{R}), \forall k \in \mathbb{R}$:

(1)
$$||A + B|| \le ||A|| + ||B||$$
, (2) $||kA|| = |k| \cdot ||A||$,

(3) $||A|| \ge 0$, dấu "=" xảy ra $\Leftrightarrow A = O_{m \times n}$.

Cho ma trận $A = [a_{ij}]_{m \times n}$ có các vector hàng $h_1, ..., h_m$, vector cột $c_1, ..., c_n$, sau đây là các chuẩn **thường dùng**:

- $\bullet \ ||A||_1 = \max\{||c_1||_1,...,||c_n||_1\}; \quad \bullet \ ||A||_{\infty} = \max\{||h_1||_1,...,||h_m||_1\};$
- $||A||_2 = \sigma_{\max}(A) = \max\{\sqrt{\lambda_i}\}$, các λ_i là các giá trị riêng của $A^{\mathrm{T}}A$;

•
$$||A||_{2,1} = \sum_{j=1}^{n} \left[\sum_{i=1}^{m} (|a_{ij}|^2) \right]^{1/2} = \sum_{j=1}^{n} ||c_j||_2.$$

•
$$||A|| = \sup\{\frac{||A\mathbf{x}||}{||\mathbf{x}||}, \mathbf{x} \in \mathbb{R}^n\} = \sup\{||A\mathbf{x}||, \mathbf{x} \in \mathbb{R}^n, ||\mathbf{x}|| = 1\}.$$

- Cách viết khác: $||A||_1 = \max_{1 \le j \le n} \left\{ \sum_{i=1}^m |a_{ij}| \right\}; ||A||_{\infty} = \max_{1 \le i \le m} \left\{ \sum_{j=1}^n |a_{ij}| \right\};$
- $||A||_{2,1}$ (hay được dùng trong thống kê, thường là khi phân phối không phải phân phối chuẩn) là trường hợp đặc biệt của:

$$||A||_{p,q} = \left\{ \sum_{j=1}^{n} \left[\sum_{i=1}^{m} (|a_{ij}|^p) \right]^{q/p} \right\}^{1/q}$$

- Có: $\frac{1}{\sqrt{n}}||A||_{\infty} \leq ||A||_{2} \leq \sqrt{m}||A||_{\infty}, \frac{1}{\sqrt{m}}||A||_{1} \leq ||A||_{2} \leq \sqrt{n}||A||_{1}$ $\forall A_{m \times n} \Rightarrow ||.||_{1}, ||.||_{2}, ||.||_{\infty}$ tương đương.
- $||A||_2 \le \left[\sum_{i=1}^m \sum_{j=1}^n (|a_{ij}|^2)\right]^{1/2} = ||A||_F$ (chuẩn Frobenius).

• Cách viết khác:
$$||A||_1 = \max_{1 \le j \le n} \left\{ \sum_{i=1}^m |a_{ij}| \right\}; ||A||_{\infty} = \max_{1 \le i \le m} \left\{ \sum_{j=1}^n |a_{ij}| \right\};$$

• $||A||_{2,1}$ (hay được dùng trong thống kê, thường là khi phân phối không phải phân phối chuẩn) là trường hợp đặc biệt của:

$$||A||_{p,q} = \left\{ \sum_{j=1}^{n} \left[\sum_{i=1}^{m} (|a_{ij}|^p) \right]^{q/p} \right\}^{1/q}$$

• Có: $\frac{1}{\sqrt{n}} ||A||_{\infty} \le ||A||_2 \le \sqrt{m} ||A||_{\infty}, \frac{1}{\sqrt{m}} ||A||_1 \le ||A||_2 \le \sqrt{n} ||A||_1$

 $\forall A_{m \times n} \Rightarrow ||.||_1, ||.||_2, ||.||_{\infty}$ tương đương.

•
$$||A||_2 \le \left[\sum_{i=1}^m \sum_{j=1}^n (|a_{ij}|^2)\right]^{1/2} = ||A||_F$$
 (chuẩn Frobenius).

• Cách viết khác:
$$||A||_1 = \max_{1 \le j \le n} \left\{ \sum_{i=1}^m |a_{ij}| \right\}; ||A||_{\infty} = \max_{1 \le i \le m} \left\{ \sum_{j=1}^n |a_{ij}| \right\};$$

• $||A||_{2,1}$ (hay được dùng trong thống kê, thường là khi phân phối không phải phân phối chuẩn) là trường hợp đặc biệt của:

$$||A||_{p,q} = \left\{ \sum_{j=1}^{n} \left[\sum_{i=1}^{m} (|a_{ij}|^{p}) \right]^{q/p} \right\}^{1/q}$$

• Có: $\frac{1}{\sqrt{n}} ||A||_{\infty} \le ||A||_2 \le \sqrt{m} ||A||_{\infty}, \frac{1}{\sqrt{m}} ||A||_1 \le ||A||_2 \le \sqrt{n} ||A||_1$

 $\forall A_{m \times n} \Rightarrow ||.||_1, ||.||_2, ||.||_{\infty}$ tương đương.

•
$$||A||_2 \le \left[\sum_{i=1}^m \sum_{j=1}^n (|a_{ij}|^2)\right]^{1/2} = ||A||_F$$
 (chuẩn Frobenius).

• Cách viết khác:
$$||A||_1 = \max_{1 \le j \le n} \left\{ \sum_{i=1}^m |a_{ij}| \right\}; ||A||_{\infty} = \max_{1 \le i \le m} \left\{ \sum_{j=1}^n |a_{ij}| \right\};$$

• $||A||_{2,1}$ (hay được dùng trong thống kê, thường là khi phân phối không phải phân phối chuẩn) là trường hợp đặc biệt của:

$$||A||_{p,q} = \left\{ \sum_{j=1}^{n} \left[\sum_{i=1}^{m} (|a_{ij}|^{p}) \right]^{q/p} \right\}^{1/q}$$

 $\bullet \text{ C6: } \frac{1}{\sqrt{n}}||A||_{\infty} \leq ||A||_{2} \leq \sqrt{m}||A||_{\infty}, \frac{1}{\sqrt{m}}||A||_{1} \leq ||A||_{2} \leq \sqrt{n}||A||_{1} \\ \forall A_{m \times n} \Rightarrow ||.||_{1}, ||.||_{2}, ||.||_{\infty} \text{ tương đương.}$

•
$$||A||_2 \le \left[\sum_{i=1}^m \sum_{j=1}^n (|a_{ij}|^2)\right]^{1/2} = ||A||_F$$
 (chuẩn Frobenius).

• Cách viết khác:
$$||A||_1 = \max_{1 \le j \le n} \left\{ \sum_{i=1}^m |a_{ij}| \right\}; ||A||_{\infty} = \max_{1 \le i \le m} \left\{ \sum_{j=1}^n |a_{ij}| \right\};$$

• $||A||_{2,1}$ (hay được dùng trong thống kê, thường là khi phân phối không phải phân phối chuẩn) là trường hợp đặc biệt của:

$$||A||_{p,q} = \left\{ \sum_{j=1}^{n} \left[\sum_{i=1}^{m} (|a_{ij}|^{p}) \right]^{q/p} \right\}^{1/q}$$

- Có: $\frac{1}{\sqrt{n}}||A||_{\infty} \leq ||A||_{2} \leq \sqrt{m}||A||_{\infty}, \frac{1}{\sqrt{m}}||A||_{1} \leq ||A||_{2} \leq \sqrt{n}||A||_{1}$ $\forall A_{m \times n} \Rightarrow ||.||_{1}, ||.||_{2}, ||.||_{\infty}$ tương đương.
- $||A||_2 \le \left[\sum_{i=1}^m \sum_{j=1}^n (|a_{ij}|^2)\right]^{1/2} = ||A||_F$ (chuẩn Frobenius).