
三菱 FX 系列 PLC 编程口通信协议总览

该协议实际上适用于 PLC 编程端口以及 FX-232AW 模块的通信

通讯格式

命令(CMD) 命令码 目标设备

DEVICE READ CMD "0" X,Y,M,S,T,C,D

DEVICE WRITE CMD "1" X,Y,M,S,T,C,D

FORCE ON CMD "7" X,Y,M,S,T,C

FORCE OFF CMD "8" X,Y,M,S,T,C

扩展命令码

读配置 "E00"

写配置 "E10"

读程序 "E01"

写程序 "E11"

传输格式: RS232C

波特率: 9600bps

奇偶: even

校验: 累加方式和校验

字符: ASCII

命令 16 进制代码 命令解释

ENQ 05H 通信请求

ACK 06H PLC 正确响应

NAK 15H PLC 错误响应

STX 02H 报文开始

ETX 03H 报文结束

帧格式

STX CMD DATA DATA ETX SUM(upper) SUM(lower)

例子

STX ,CMD , ADDRESS, BYTES, ETX, SUM 02H, 30H, 31H,30H,46H,36H, 30H,34H, 03H, 37H,34H

指令解释如下:

STX, "0", "10F6", "04", ETX, "74"

报文开始, 读命令, 地址 10F6H 处, 04H 字节数据, 报文结束, 累加方式和校验 其中 SUM=CMD+......+ETX=30h+31h+30h+46h+36h+30h+34h+03h=74h;

累加和超过两位取低两位,转换成 ascii 码,分 SUM(upper), SUM(lower)二次传送。

三菱 FX 系列 PLC 编程口通信协议例一

RS232C接口,通讯波特率 9600,7,e,1。

PC 机(设置为 FX1S)向停止运行的 FX1S 正常下载 11 步程序。

三菱 FX1S PLC 下载通信协议说明

作者: 许意义 日期: 2009.6.11

PC 机发送 字节数: 0001,数据: 05 // ENQ ;如无应答,延迟 1.28X10mS 再次发送 ENQ,连续 3

次发送无应答,则通讯出错,和 PLC 连接不上。

PC 机发送 字节数: 0001, 数据: 05 // ENQ

PLC 应答 字节数: 0001, 数据: 06 // ACK; PLC 应答(已收到)

PC 机发送 字节数: 0011,数据: 02 30 30 31 45 30 30 31 03 36 41 // STX,"0","01E0","01",ETX,"6A";

查询 PLC 01E0H 地址数据字节 (FX1S 运行状态)

PLC应答 字节数: 0006, 数据: 02 30 41 03 37 34 // STX,"0A",ETX,"74" ; PLC返回

"0A",代表 PLC 暂停

;如 PLC 返回"09",代表 PLC 运行

PC 机发送 字节数: 0011,数据: 02 30 30 45 30 32 03 36 43 // STX,"0","0E02","02",ETX,"6C";

查询 PLC 0E02H 地址数据字(PLC 型号)

PLC 应答 字节数: 0008, 数据: 02 43 32 35 36 03 45 33 // STX,"C256",ETX,"E3" ; PLC

返回"6266",代表 PLC 型号 FX1N

;如 PLC 返回"C256",代表 PLC 型

号 FX1S

PC 机发送 字节数: 0011,数据: 02 30 38 30 30 30 32 45 03 37 32 // STX,"0","8000","2E",ETX,"72";

发出读 PLC 8000H 地址处连续 2EH 字节数据指令(这些内容为 PLC 内预置参数值)

PLC应答 字节数: 0008, 数据: 02 30 32 30 30 36 35 41 // STX,"020065A", ; PC机读

入 PLC 8000H 地址处连续 2EH 字节数据

PLC 应答 字节数: 0008,数据: 39 30 30 30 30 30 30 30 // "90000000",

PLC 应答 字节数: 0008,数据: 30 32 30 32 30 32 30 32 // "02020202",

PLC 应答 字节数: 0008,数据: 30 32 30 32 30 32 30 32 // "02020202",

PLC 应答 字节数: 0008, 数据: 30 32 30 32 30 32 30 32 // "02020202",

PLC 应答 字节数: 0008,数据: 30 32 30 32 30 32 30 32 // "02020202",

PLC 应答 字节数: 0008,数据: 30 32 30 32 30 32 30 32 // "02020202",

PLC 应答 字节数: 0008,数据: 30 32 30 32 30 32 30 32 // "02020202",

```
字节数: 0008, 数据: 30 32 30 32 30 32 30 32
PLC 应答
                                             // "02020202",
PLC 应答 字节数: 0008, 数据: 30 32 30 32 30 32 30 32
                                             // "02020202",
PLC 应答 字节数: 0008, 数据: 30 32 30 32 30 32 30 32
                                             // "02020202",
PLC 应答 字节数: 0008, 数据: 30 32 30 32 30 03 42 36
                                             // "02020",ETX,"B6"
PC 机发送 字节数: 0011, 数据: 02 30 38 30 32 45 32 45 03 38 39 // STX,"0","802E","2E",ETX,"89";
发出读 PLC 802EH 地址处连续 2EH 字节数据指令(这些内容为 PLC 内预置参数值)
       字节数: 0008, 数据: 02 32 30 32 30 46 34 30
                                            // STX,"2020F40",
                                                                 : PC 机读
入 PLC 802EH 地址处连续 2EH 字节数据
PLC 应答
       字节数: 0008, 数据: 39 46 46 30 42 46 34 30
                                             // "9FF0BF40",
PLC 应答 字节数: 0008, 数据: 31 45 37 30 33 36 34 30
                                             // "1E703640",
PLC 应答
       字节数: 0008, 数据: 45 43 37 30 45 44 43 30
                                             // "EC70EDC0",
PLC 应答 字节数: 0008, 数据: 45 46 46 30 45 39 30 30
                                             // "EFF0E900",
       字节数: 0008, 数据: 31 46 45 30 33 30 30 30
PLC 应答
                                             // "1FE03000",
       字节数: 0008, 数据: 30 30 30 30 30 30 30 30
PLC 应答
                                             // "00000000",
       字节数: 0008, 数据: 30 30 30 30 30 30 30 30
PLC 应答
                                             // "00000000",
PLC 应答 字节数: 0008, 数据: 30 30 30 30 30 30 30 30
                                             // "00000000",
PLC 应答 字节数: 0008, 数据: 30 30 30 30 30 30 30 30
                                             // "00000000",
PLC 应答 字节数: 0008, 数据: 30 30 30 30 30 30 30 30
                                             // "00000000",
PLC 应答 字节数: 0008, 数据: 30 30 30 30 30 03 45 35
                                             // "00000",ETX,"E5"
PC 机发送 字节数: 0011,数据: 02 30 30 45 30 36 30 32 03 37 30 // STX,"0","0E06","02",ETX,"70";
查询 PLC 0E06H 地址数据字
PLC 应答 字节数: 0008, 数据: 02 31 30 30 30 03 43 34
                                             // STX,"1000",ETX,"C4"
                                                                  ; PLC
返回"1000",代表??
PC 机发送 字节数: 0011, 数据: 02 30 38 30 35 43 33 45 03 38 42
                                                   // STX,
"0","805C","3E",ETX,"8B"; 发出读 PLC 805CH 地址处连续 3EH 字节数据指令
       字节数: 0128, 数据: 02 30 36 32 34 30 37 43 35 30 46 30 30 30 35 43 // STX,
"062407C50F0005C",; PC 机读入 PLC 805CH 地址处连续 3EH 字节数据
               38 30 46 30 30 46 46 46 46 46 46 46 46 46 46 46 // "80F00FFFFFFFFFF",
               46 46 46 46 46 46 46 46 46 46 46 46 03 41 41 // "FFFFFFFFFFFFFF",ETX,"AA"
```

PC 机发送 字节数: 0055, 数据: 02 31 38 30 35 43 31 36 30 32 32 // STX,"1","805C","16","022",;发

46 46 46 46 46 46 46 46 46 46 // "FFFFFFFFFF", 46 46 46 46 46 46 46 46 46 46 // "FFFFFFFFFF", 46 46 46 46 46 46 46 46 33 42 31 // "FFFFFFFFF",ETX,"B1"

PLC 应答 字节数: 0001,数据: 06 // ACK; PLC 应答(已收到)

PC 机发送 字节数: 0005, 数据: 02 42 03 34 35 // STX,"B",ETX,"45"; 发出下载程序写结束指令

PLC 应答 字节数: 0001,数据: 06 // ACK ; PLC 应答(已收到)

PC 机发送 字节数: 0011,数据: 02 30 38 30 35 43 31 36 03 37 41 // STX,

"0","805C","16",ETX,"7A"; 发出读 PLC 805CH 地址处连续 16H 字节 (11 步程序)数据指令(校验下载数据)

PLC 应答 字节数: 0048,数据: 02 30 32 32 34 30 30 43 35 30 46 30 30 46 46 46 // STX, "022400C50F00FFF"; PC 机读入 PLC 805CH 地址处连续 16H 字节 (11 步程序)数据

// "FFFFFFFFFFFFF",
// "FFFFFFFFFFFFFF",ETX,"39"

// 下载结束

三菱 FX 系列 PLC 编程口通信协议例二

RS232C接口,通讯波特率 9600,7,e,1。

PC 机(设置为 FX1N)向停止运行的 FX1N 正常下载 3 步程序。

三菱 FX1N PLC 下载通信协议说明

作者: 许意义 日期: **2009.6.12**

 PC 机发送
 字节数: 0001,数据: ENQ
 // PC 机发出通信请求

 PLC 应答
 字节数: 0001,数据: ACK
 // PLC 应答(已收到)

PC 机发送 字节数: 0011,数据: STX,"0","0E02","02",ETX,"6C" // 查询 PLC 0E02H 地址数据字(PLC 型

号)

PLC 应答 字节数: 0008, 数据: STX,"62","66",ETX,"D7" // PLC 返回"6266",代表 PLC 型号 FX1N

 PC 机发送
 字节数: 0001,数据: ENQ
 // PC 机发出通信请求

 PLC 应答
 字节数: 0001,数据: ACK
 // PLC 应答(已收到)

PC 机发送 字节数: 0013, 数据: STX,"E00","01C0","01",ETX,"DD" // 查询 PLC 01C0H 地址数据字节

(FX1N 运行状态)

PLC 应答 字节数: 0006,数据: STX,"0A",ETX,"74" // PLC 返回"0A",代表 PLC 暂停

// 如 PLC 返回"09",代表 PLC 运行

PC 机发送 字节数: 0001, 数据: ENQ // PC 机发出通信请求 PLC 应答 字节数: 0001, 数据: ACK // PLC 应答(已收到) PC机发送 字节数: 0011, 数据: STX,"0","0E02","02",ETX,"6C" // 再次查询PLC 0E02H地址数据字(PLC 型号) PLC 应答 字节数: 0008, 数据: STX,"62","66",ETX,"D7" // PLC 返回"6266",代表 PLC 型号 FX1N PC 机发送 字节数: 0001, 数据: ENO // PC 机发出通信请求 PLC 应答 字节数: 0001, 数据: ACK // PLC 应答(已收到) PC机发送 字节数: 0013, 数据: STX,RTC,"8000","2E",ETX,"E8" // 发出读 PLC 8000H 地址处连续 2EH 字节数据指令(这些内容为 PLC 内预置参数值) PLC 应答 字节数: 0008, 数据: STX,'0','8','0','0','D','7','C' // PC 机读入 PLC 8000H 地址处连续 2EH 字节 数据 PLC 应答 字节数: 0008, 数据: '9','0','0','0','0','0','0','0' PLC 应答 字节数: 0008, 数据: '0','2','0','2','0','2','0','2' PLC 应答 字节数: 0008, 数据: '0','2','0','2','0',ETX,"CE" PC 机发送 字节数: 0013,数据: STX,"E01","802E","2E",ETX,"FF" // 发出读 PLC 802EH 地址处连续 2EH 字节数据指令(这些内容为 PLC 内预置参数值) PLC 应答 字节数: 0008, 数据: STX,'2','0','F','4','0' // PC 机读入 PLC 802EH 地址处连续 2EH 字节 数据 PLC 应答 字节数: 0008, 数据: '9','F','F','0','B','F','4','0' PLC 应答 字节数: 0008, 数据: '1','E','7','0','3','6','4','0' PLC 应答 字节数: 0008, 数据: 'E','C','7','0','E','D','C','0' 字节数: 0008, 数据: 'E','F','F','0','E','9','0','0' PLC 应答 PLC 应答 字节数: 0008, 数据: '1','F','E','0','3','0','0','0' PLC 应答 字节数: 0008, 数据: '0','0','0','0','0','0','0','0' PLC 应答 字节数: 0008, 数据: '0','0','0','0','0','0','0','0' PLC 应答 字节数: 0008, 数据: '0','0','0','0','0','0','0','0'

PLC 应答 字节数: 0008, 数据: '0','0','0','0','0','0','0','0','0' PLC 应答 字节数: 0008, 数据: '0','0','0','0','0','0','0','0','0'

```
PC 机发送 字节数: 0001, 数据: ENQ
                                            // PC 机发出通信请求
PLC 应答 字节数: 0001, 数据: ACK // PLC 应答(已收到)
PC 机发送 字节数: 0013,数据: STX,"E00","0E06","02",ETX,"E5" // 发出读 PLC 0E06H 地址处一字数据
指令(这些内容为 PLC 内预置参数值)
PLC 应答 字节数: 0008, 数据: STX,"1000",ETX,"C4" // PC 机读入 PLC 0E06H 地址处一字数据
// 读入 PLC 中已有程序
______
PC 机发送 字节数: 0001, 数据: ENQ
                                            // PC 机发出通信请求
PLC 应答 字节数: 0001, 数据: ACK // PLC 应答(已收到)
PC 机发送 字节数: 0013,数据: STX,"E01","805C","2E",ETX,"00" // 发出读 PLC 805CH 地址处连续 2EH
字节数据指令
PLC 应答 字节数: 0008, 数据: STX,'0','2','2','4','0','3','C' // PC 机读入 PLC 805CH 地址处连续 2EH 字节
数据
PLC 应答 字节数: 0008, 数据: '5','0','F','0','0','F','F','F'
PLC 应答 字节数: 0008, 数据: 'F','F','F','F','F','F','F','F'
PLC 应答 字节数: 0008, 数据: 'F','F','F','F','F',ETX,"5C"
// 读入结束
______
                                  // PC 机发出通信请求
PC 机发送 字节数: 0001, 数据: ENQ
PLC 应答 字节数: 0001, 数据: ACK
PC 机发送 字节数: 0010,数据: STX,'E','7','7','6','0','E',ETX,"61"
PLC 应答 字节数: 0001, 数据: ACK
// 下载程序

      PC 机发送
      字节数: 0001,数据: ENQ
      // PC 机发出通信请求

      PLC 应答
      字节数: 0001,数据: ACK
      // PLC 应答(已收到)

PC 机发送 字节数: 0025, 数据: STX,"E11","805C","06",'0','2','2','4','0','3','C','5','0','F','0','0',ETX,"69"
                                   // PC机发出写PLC 805CH地址处连续 06H 字节(3步程序)
```

PLC 应答 字节数: 0008, 数据: '0','0','0','0','0',ETX,"E5"

数据指令 PLC 应答 字节数: 0001, 数据: ACK // PLC 应答(已收到) // 下载结束

 PC 机发送
 字节数: 0001,数据: ENQ
 // PC 机发出通信请求

 PLC 应答
 字节数: 0001,数据: ACK
 // PLC 应答(已收到)

 PC 机发送 字节数: 0010, 数据: STX,'E','8','7','6','0','E',ETX,"62" PLC 应答 字节数: 0001, 数据: ACK PC 机发送 字节数: 0001, 数据: ENQ PLC 应答 字节数: 0001, 数据: ACK PC 机发送 字节数: 00ENQ, 数据: STX,"B",ETX,"45" PLC 应答 字节数: 0001, 数据: ACK // 检验程序 PC 机发送 字节数: 0001, 数据: ENQ PLC 应答 字节数: 0001, 数据: ACK PC 机发送 字节数: 0013,数据: STX,"E01","805C","06",ETX,"EF" // 发出读 PLC 805CH 地址处连 续 06H 字节数据指令 PLC 应答 字节数: 0008, 数据: STX,'0','2','2','4','0','3','C','5','0','F','0','0',ETX,"7C"

// 结束下载

// PC 机读入 PLC 805CH 地址处连续 06 字节数据