

A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories

Placido, D., Yuan, B., Hjaltelin, J.X. et al.

Hongyi Yang | EECS 598-007 FA23

- Research Background
- Methods
- Experiments
- Results
- Discussion

Research Background

Pancreatic cancer

- 4-th leading cause of cancer-related deaths
- Hard to detect
 - ~80% detected at a late stage, <10% survivals in 5 years
 - lack of high-penetrance risk factors
 - low incidence rate

Risk assessment methods

- Traditional: family history, behavioral and clinical risk factors
 - subjective and inaccurate
- Bioinformatics: circulating biomarkers and genetic predisposition
 - expensive and limited
- This paper: clinical records
 - affordable and general

Research Background

- Disease trajectories
 - Longitudinal clinical records (list)
 - Diagnosis (categorical)
 - Date (timestamp)
 - Case (Positive)
 - Patients with pancreatic cancer
 - Assess at the last diagnosis before pancreatic cancer
 - Control (Negative)
 - Patients without pancreatic cancer
 - Assess at 2 years previous to the end of data

- Research Background
- Methods
- Experiments
- Results
- Discussion

Methods - Overview

- Embedding
 - Dimension reduction of categorical disease codes and timestamps
- Encoding
 - Feature extraction of longitudinal embedded sequences
- Predicting
 - Predict the risk of pancreatic cancer for five different prediction intervals

Methods - Embedding

Diagnosis

- ICD-10 level-3 codes, e.g.
 - F32=Depressive episode
 - C25=Malignant neoplasm of pancreas
- Different settings
 - one-hot
 - embedding layer

Methods - Embedding

- Date & Age
 - Different settings
 - not embedded
 - append age neuron to the diagnosis vector
 - positional encoding
 - Depth: d = 128
 - Date: pos = time interval to last record
 - Age: pos = age at diagnosis
 - PE further embeded
 - PE scale
 - PE add

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Embedding = Diagnosis * PE scale + PE add

Methods - Encoding

- Non-time-sequential models: date & age not embedded
 - Bag-of-words (pooling layers)
 - Multilayer Perceptron (MLP)
- Gated Recurrent Unit (GRU): sequential layers

Transformer: attention layers

Methods - Predicting

- Fully connected feedforward network
 - Predicts risks for five prediction intervals
 - **3**, 6, 12, 36, 60 months
 - 36 months: reasonable in clinical practice
 - L2-regularized cross-entropy loss
 - average across valid predictions
 - use only meaningful timepoints
 - case: before cancer and the first include cancer
 - control: before death/end of data

- Research Background
- Methods
- Experiments
- Results
- Discussion

Experiments - Data

Datasets

- DK: entire population in Denmark (Main)
 - event rate: 0.4% (24K/6.2M)
- US-VA: military veterans in the US (External, shorter but more dense)
 - event rate: 0.2% (3.4K/1.9M)

Data splits

- 80% Training
 - train models
 - resample during training to address the inbalance
- 10% Development (Validation)
 - select hyperparameters
- 10% Test
 - evaluate models

Experiments - Evaluation

- Select best hyperparameters on Development set with
 - Area under the precision recall curve (AUPRC)
- Evaluate selected models on Test set with
 - Area under the receiver operating characteristic (AUROC)
 - Relative risk ratio (RR): threshold = top 0.1% (1K/1M)

$$RR = rac{precision}{incidence} = rac{TP/(TP+FP)}{(TP+FN)/(TP+FP+TN+FN)}$$

For a prediction interval, PI		Predicted	
		Positive (Risk > Threshold)	Negative (Risk < Threshold)
Actual	Positive (cancer within PI)	TP	FN
Actual	Negative (no cancer within PI)	FP	TN

- Research Background
- Methods
- Experiments
- Results
- Discussion

Results - Compare Models

- Prediction interval = 36 months
- Time information help a lot with prediction

Results - Compare Prediction Intervals

• Prediction is more challenging for longer intervals

Results - Effect of Data Exclusion

- Prediction interval = 36 months
- Close-to-cancer diagnoses play an important role in prediction

Results - Predictive Features

- Prediction interval = 36 months
- Known risk factors might not cover all the important signs of pancreatic cancer

Results - Risk Factors

- Ranked by integrated gradients
- Most are known risk factors in clinical pratice

Feature contributions - No exclusion (DK)

	Cancer in 0-6 months	Cancer in 6-12 months	Cancer in 12–24 months	Cancer in 24–36 months
1	Unspecified jaundice	Other diseases of biliary tract	Medical observation and evaluation for suspected diseases and conditions	Medical observation and evaluation for suspected diseases and conditions
2	Medical observation and evaluation for suspected diseases and conditions	Unspecified jaundice	Other diseases of biliary tract	Other diseases of pancreas
3	Other diseases of biliary tract	Medical observation and evaluation for suspected diseases and conditions	Other diseases of pancreas	Other diseases of biliary tract
4	Abdominal and pelvic pain	Other diseases of pancreas	Abdominal and pelvic pain	Non insulin-dependent diabetes mellitus
5	Malignant neoplasm of other and unspecified parts of biliary tract	Malignant neoplasm of other and unspecified parts of biliary tract	Non insulin-dependent diabetes mellitus	Unspecified jaundice
6	Other diseases of pancreas	Abdominal and pelvic pain	Malignant neoplasm of other and unspecified parts of biliary tract	Abdominal and pelvic pain
7	Secondary malignant neoplasm of respiratory and digestive organs	Secondary malignant neoplasm of respiratory and digestive organs	Unspecified jaundice	Malignant neoplasm of other and unspecified parts of biliary tract
8	Symptoms and signs concerning food and fluid intake	Non insulin-dependent diabetes mellitus	Other functional intestinal disorders	Gastritis and duodenitis
9	Non insulin-dependent diabetes mellitus	Malignant neopleasm without specification of site	Diseases of pancreas	Insulin-dependent diabetes mellitus
10	Other anaemias	Other anaemias	Secondary malignant neoplasm of respiratory and digestive organs	Other anaemias

Results - Datasets

• Need independent model training for optimal performance

Train	Test	AUROC	RR
DK	DK	0.879	104.6
DK	US-VA	0.710	57.4
US-VA	US-VA	0.775	80.4

- Research Background
- Methods
- Experiments
- Results
- Discussion

Discussion

Contribution

- Propose a deep-learning based framework for early detection of pancreatic cancer
- Utilize longitudinal clinical records for general use
- Verify the applicability of different models

Weakness

- Lack of originality
- Unclear methods description

Future Works

- Incorporate multimodal clinical data
- Embed the system in wearable devices
- Apply in real-world clinical scenarios

Quiz

- When and why do we need the positional encodings of date and age?
- What could be the reason that the authors use AUPRC for model selection while use AUROC and RR for model evaluation?

Thanks