Exercice 1

Soit $A = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$. Exprimer A en fonction de I et d'une matrice B vérifiant $B^2 = 0$, puis en déduire une expression de A^n en fonction de n pour tout entier naturel n.

Exercice 2

Soit $a \in \mathbb{R}$ et $A = \begin{pmatrix} a & a & a \\ 0 & a & a \\ 0 & 0 & a \end{pmatrix}$. Exprimer A^n en fonction de n et a.

Exercice 3

On considère la matrice $A = \begin{pmatrix} 5 & -2 & 2 \\ 6 & -3 & 6 \\ 2 & -2 & 5 \end{pmatrix}$.

Calculer $A^2 - 4A$. En déduire que la matrice A est inversible et déterminer son inverse par un calcul simple.

* * Exercice 4

On considère les suites de réels $(x_n)_{n\in\mathbb{N}},\,(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ définies par :

$$\left\{ \begin{array}{lll} x_0 & = & 1 \\ y_0 & = & 0 \\ z_0 & = & 0 \end{array} \right. \quad \text{et pour tout } n \in \mathbb{N}, \quad \left\{ \begin{array}{lll} x_{n+1} & = & 5x_n + 6z_n \\ y_{n+1} & = & -x_n + 2y_n - 2z_n \\ z_{n+1} & = & -x_n + y_n - z_n \end{array} \right.$$

On note $A = \begin{pmatrix} 5 & 0 & 6 \\ -1 & 2 & -2 \\ -1 & 1 & -1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$ et pour tout $n \in \mathbb{N}, X_n = \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$.

- 1) Montrer que pour tout $n \in \mathbb{N}$, $X_{n+1} = AX_n$.
- 2) En déduire que pour tout $n \in \mathbb{N}$, $X_n = A^n X_0$.

3) Soit
$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$
. Vérifier que P est inversible d'inverse $P^{-1} = \begin{pmatrix} 3 & -2 & 3 \\ -1 & 1 & -1 \\ -1 & 1 & -2 \end{pmatrix}$.

- 4) Montrer que $PAP^{-1} = D$ avec D une matrice diagonale.
- 5) Montrer que pour tout $n \in \mathbb{N}$, $A^n = P^{-1}D^nP$
- 6) En déduire une expression de A^n en fonction de n, puis une expression de x_n , y_n et z_n en fonction de n.

- Exercice 5

Déterminer le rang des matrices suivantes. Préciser lesquelles sont inversibles.

Exercice 6

Dans chaque cas déterminer les valeurs de $x \in \mathbb{R}$ pour les quelles A est inversible

1)
$$A = \begin{pmatrix} 1+x & 1\\ 1 & 1-x \end{pmatrix}$$
 2) $A = \begin{pmatrix} x & 1 & 1\\ 1 & x & 1\\ 1 & 1 & x \end{pmatrix}$ 3) $A = \begin{pmatrix} 2 & x & 2\\ 1 & 2 & 1-x\\ x & 2 & 1 \end{pmatrix}$

Exercice 7

Soit A une matrice telle que $tr(^tAA) = 0$. Que peut-on dire de A?

Exercice 8

On dit qu'une matrice carrée A est **nilpotente** s'il existe un entier $p \ge 1$ tel que $A^p = 0$. Soit A une matrice nilpotente non nulle et p le plus petit entier tel que $A^p = 0$.

- 1) Montrer que A n'est pas inversible et que $A^{p-1} \neq 0$.
- 2) Calculer $(A-I)(I+A+\cdots+A^{p-1})$. Que peut-on en déduire sur A-I?

On dit qu'une matrice carrée est stochastique si ses coefficients sont des réels positifs et que la somme des coefficients de chaque ligne vaut 1, autrement dit $A \in \mathcal{M}_n(\mathbb{R})$ est stochastique si les deux conditions suivantes sont remplies :

- $\forall (i,j) \in [1,n]^2, \ a_{i,j} \ge 0$
- $\forall i \in [1, n], \sum_{j=1}^{n} a_{i,j} = 1$

Notons \mathcal{E}_n l'ensemble des matrices stochastiques de taille n et $U = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ le vecteur colonne de taille n ne contenant que des 1.

- 105 1.
 - 1) Soit $A, B \in \mathcal{E}_n$. Montrer que $AB \in \mathcal{E}_n$
 - 2) Soit $A \in \mathcal{M}_n(\mathbb{R})$ à coefficients positifs. Montrer que $A \in \mathcal{E}_n \iff AU = U$
 - 3) Soit $A \in \mathcal{E}_n$. Montrer que la matrice A I n'est pas inversible.
 - 4) Soit $A \in \mathcal{E}_n$ telle que A est inversible. Montrer que $A^{-1}U = U$. Dans quel cas a-t-on $A^{-1} \in \mathcal{E}_n$?

- 1) Montrer que $\forall A, B \in \mathcal{M}_n(\mathbb{R}), \operatorname{tr}(AB) = \operatorname{tr}(BA)$
- 2) Montrer que $\forall A, B \in \mathcal{M}_n(\mathbb{R}), \operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$
- 3) Montrer qu'il n'existe aucun couple de matrices $(A, B) \in (\mathcal{M}_n(\mathbb{R}))^2$ tel que AB BA = I.

* * Exercice 11

Soient $n, m, p, q \in \mathbb{N}^*$ et soient $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}} \in \mathcal{M}_{n,m}(\mathbb{R}), B = (b_{i,j})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq p}} \in \mathcal{M}_{m,p}(\mathbb{R})$ et $C = (c_{i,j})_{\substack{1 \leq i \leq p \\ 1 \leq j \leq q}} \in \mathcal{M}_{p,q}(\mathbb{R}).$ Montrer que A(BC) = (AB)C.

Exercice 12

On dit qu'une matrice $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ est

- symétrique si $\forall (i,j) \in [1,n], a_{i,j} = a_{j,i}$
- antisymétrique si $\forall (i,j) \in [1,n] \ a_{i,j} = -a_{j,i}$.
- 1) Soient S et T deux matrices symétriques. Montrer que ST est symétrique si et seulement si ST = TS.
- 2) Soient M et N deux matrices antisymétriques, montrer que MN est antisymétrique si et seulement si MN = -NM.

Exercice 13 -

Soient $A, B \in \mathcal{M}_{n,m}(\mathbb{R})$ deux matrices telles que $\forall X \in \mathcal{M}_{m,1}(\mathbb{R}), AX = BX$. Montrer que A = B.

Exercice 14

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que $\forall X \in \mathcal{M}_n(\mathbb{R})$, $\operatorname{tr}(AX) = \operatorname{tr}(BX)$. Montrer que A = B.