KI-BASIERTE PFÜTZENERKENNUNG

am Beispiel des Shared Guide Dog 4.0

Prof. Dr. Henner Gärtner

Prof. Dr. Marina Tropmann-Frick

Prof. Dr. Jochen Maaß Prof. Dr. Lutz Leutelt

WAS ÄNDERTE SICH AM 15. JUNI 2019?

HAW Hamburg beforscht die urbane Mikromobilität

2 / 21

WO WAREN WIR AM 11.-15. OKTOBER 2021 IN HAMBURG ZU FINDEN?

Elektronsicher Blindenführhund "Staubsauger" / Blindenstock

Shared Guide Dog 4.0 "Rollator"

WELCHEN GESELLSCHAFTLICHEN BEITRAG WOLLEN WIR INGENIEUR*INNEN LEISTEN?

Quelle: Deutscher Blinden- und Sehbehindertenverein: "Ich sehe so, wie du nicht siehst"

KI-basierte Pfützenerkennung am Beispiel des Shared Guide Dog 4.0 – gefördert von der IFB Hamburg

ARIC Brown Bag Session am 14.4.2022

Prof. Dr.-Ing. Henner Gärtner (Henner.Gaertner@HAW-Hamburg.de)

WELCHE ZAHLEN SIND WESENTLICH?

1.200.000

859

ZWEI GRUNDSÄTZLICHE HERAUSFORDERUNGEN

1. LOKALISIERUNG (WO BIN ICH?)

ZWEI GRUNDSÄTZLICHE HERAUSFORDERUNGEN

Mehrwegefehler und **Abschattung** durch hohe Gebäude sorgen für große Abweichungen

Ergänzende lokale Verfahren wie Ultra Wide Band (UWB) nötig

2. NAVIGATION (WIE FAHRE ICH ZUM ZIEL?)

WELCHES PROBLEM LÖST NUN UNSER JÜNGSTES PROJEKT?

WELCHES PROBLEM LÖST NUN UNSER JÜNGSTES PROJEKT?

GRUNDSÄTZLICHE ANSÄTZE ZUR PFÜTZENERKENNUNG

KAMERABASIERT

- Stereokamera
- RANSAC-Algorithmus

LASER- ODER RADARBASIERT

- 2D Laser Range Finder (time-of-flight)
- 3D Lidar Scanner + Rad-Odometrie

Kim Jisu [et al.] Wet Area and Puddle Detection for Advanced Driver Assistance Systems [Journal]. - [s.l.] : SpringerProfessional, **2016**. - 1/2016 : Bde. International Journal of Control, Automation and Systems, S. 268.

Tahara Hirotaka [et al.] Puddle Detection for Avoidance Path Planning of Wheeled Mobile Robot Using Laser Reflection Intensity [Journal]. - Lisbon: IECON 2019, **2019**. - 45th Annual Conference of the IEEE Industrial Electronics Society: Bd. Annual Conference of Industrial Electronics Society, S. 700. 10 / 21

1. KI-BASIERTER ANSATZ ZUR PFÜTZENERKENNUNG "PUDDLE 1000"

Han, Xiaofeng; Nguyen, Chuong; You, Shaodi You; Lu, Jianfeng: Single Image Water Haz-ard Detection using FCN with Reflection Attention Units. In: European Conference on Computer Vision, 2018, S. 105-121. https://doi.org/10.1007/978-3-030-01231-1_7, 2021

KI-basierte Pfützenerkennung am Beispiel des Shared Guide Dog 4.0 – gefördert von der IFB Hamburg ARIC Brown Bag Session am 14.4.2022 Prof. Dr.-lng. Henner Gärtner (Henner.Gaertner@HAW-Hamburg.de)

2. KI-BASIERTER ANSATZ ZUR INDOOR PFÜTZENERKENNUNG

Bundesministerium für Bildung Forschung (Hrsg.): Projektinformation zum Projekt "S3 – Sicherheitssensorik für Serviceroboter in der Produktionslogistik und stationären Pflege. https://elektronikforschung.de/projekte/s3, 12.2018.

12 / 21

3. KI-BASIERTER ANSATZ AUS DER MEDIZIN PER UNET

 $\textbf{KI-basierte Pf\"{u}tzenerkennung am Beispiel des Shared Guide Dog~4.0} - \texttt{gef\"{o}rdert}~\texttt{von}~\texttt{der}~\texttt{IFB}~\texttt{Hamburg}$

ARIC Brown Bag Session am 14.4.2022

Prof. Dr.-Ing. Henner Gärtner (Henner.Gaertner@HAW-Hamburg.de)

3. KI-BASIERTER ANSATZ AUS DER MEDIZIN PER UNET

CRF = Conditional Random Fields, Variante der Markov-Netzwerke

TTA = Test Time Augmentation

Jha, Debesh; Smedsrud, Pia Helen; Johansen, Dag; de Lange Thomas; Johansen, Harvard: A comprehensive study on colorectal polyp segmentation with ResUNet++. https://github.com/DebeshJha/ResUNetPlusPlus-with-CRF-and-TTA. IEEE Journal of biomedical and health informatics, 05.01.2021.

WARUM WOLLEN WIR DIE PFÜTZENERKENNUNG BEHERRSCHEN?

UND WENN WIR MIT PFÜTZEN FERTIG SIND?

WIR WOLLEN FAHREN

WIR WOLLEN FAHREN FÜR DIE ZIELGRUPPE

WIR WOLLEN FAHREN FÜR DIE ZIELGRUPPE MIT GEBALLTEM KNOW-HOW

KI-basierte Pfützenerkennung am Beispiel des Shared Guide Dog 4.0 – gefördert von der IFB Hamburg ARIC Brown Bag Session am 14.4.2022 Prof. Dr.-lng. Henner Gärtner (Henner.Gaertner@HAW-Hamburg.de)

... UND MIT SPASS!

VIELEN DANK FÜR EURE AUFMERKSAMKEIT!

KI-basierte Pfützenerkennung am Beispiel des Shared Guide Dog 4.0

Prof. Dr. Henner Gärtner

Prof. Dr. Marina Tropmann-Frick

Prof. Dr. Jochen Maaß Prof. Dr. Lutz Leutelt

