Kierrepallo

Taustalla on Magnus voima

Magnusvoima on pallon nopeuden ja rotaatioakselin ristitulovektorin suuntainen

Lentokoneen siiven nostovoima perustuu siihen, että sille puolelle siipeä, jolla ilman nopeus siiven pintaan nähden on suurempi, syntyy alipaine.

paine-ero
$$\Delta p \approx \rho \vee \Delta v$$

nostovoima
$$F = \Delta p A$$

Pallon pyöriessä esiintyvä Magnusvoima perustuu samaan ilmiöön. Voiman suuruus on

$$\overline{F}$$
 = vakio·v· ω · \widehat{u}

$$\widehat{u}$$
 = ristitulovektorin $\overline{n} \times \overline{v}$ suuntainen yksikkövektori

Magnus- voimasta johtuva kiihtyvyys koodataan VPythonilla seuraavasti:

a = pallo.velocity*w*hat(cross(n,pallo.velocity))

ESIMERKKIOHJELMAN "KIERREPOTKU" KOODIA

```
tiheys=1.25
                                      #ilman tiheys
w = -1.6
                                      #pallon kulmanopeus
r=0.11
                                      #pallon sade
k1= tiheys*w*r
                                      #magnusvoimaan liittyva kerroin
k2=0.5*0.43*tiheys*pi*r**2
                                      #pallon ilmanvastukseen liittyva kerroin
kulma = radians(30)
                                      #kulma, johon pallo potkaistaan
n= vec(-0.1,1,0),
                                      #pallon rotaatioakseli
pallo=sphere(pos=vec(0,1.2,0),radius=0.5,color=vec(0.8,0.4,0))
pallo.velocity=vec(v0*cos(kulma),v0*sin(kulma),0)
dt = 0.01
scene.pause()
while True:
  rate(100)
  #seuraavalla rivilla laskettu kiihtyvyys sisaltaa painovoiman, Magnusvoiman ja ilmanvastuksen
  a=vec(0,-9.81,0) +k1*mag(pallo.velocity)*hat(cross(n,pallo.velocity)) -k2*mag2(pallo.velocity)*hat(pallo.velocity)
  pallo.pos+=pallo.velocity*dt+0.5*a*dt**2
  pallo.velocity+=a*dt
```

RISTITULOVEKTORIN a x b suuntainen yksikkövektori = hat(cross(a,b))

