SOLUTION/ ANSWER KEY OF PRACTICE PAPER-2

CLASS XII MATHEMATICS

2019-20

Q NO	VALUE POINTS
1	(C) AB and BA both are defined
2	$\left \text{(D)} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right $
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
3	(D)-5/2
4	(A)1/10
5	(D) $\sqrt{\alpha^2 + \gamma^2}$
6	$(A)\frac{\pi}{5}$
7	(C) 15/56
8	(A) $e^x \cos x + c$
9	(D) $(\alpha,\beta,-\gamma)$
10	(B)Parallel
11	Domain = $(-\infty, 1] \cup [2, \infty)$
12	2
13	Maximum value is $\frac{4}{3}$
	ORx+y=0
14	27 A
15	x+y-z=2
	OR
	$\begin{vmatrix} \vec{a} ^2 \vec{b} ^2 \\ -3 \end{vmatrix}$
16	
	$\sqrt{1-x^2}$
17	$\log 2 + \log x + c$
18	$ \log(x+\sin x) +c$
	OR
	$\log x + \sin x + c$
10	town to got to be
19	$\tan x + \cot x + c$
20	$y = \frac{x^4 + c}{4x^2}$
	$y = \frac{1}{4x^2}$
21	$(\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) = 0$
	$\Rightarrow \vec{a}.\vec{a} + \vec{a}.\vec{b} + \vec{a}.\vec{c} + \vec{b}.\vec{a} + \vec{b}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{b} + \vec{c}.\vec{c} = 0$
	$\Rightarrow \vec{a} ^2 + \vec{b} ^2 + \vec{c} ^2 + 2(\vec{a}\vec{b} + \vec{b}\vec{c} + \vec{c}\vec{a}) = 0$
	1 1 1 1 1 1 1 1 1 1

	$\Rightarrow \overrightarrow{(ab+bc+ca)} = \frac{-83}{2}$			
	OR			
	Given vectors are $\vec{a}=3\hat{\imath}-\hat{\jmath}+2\hat{k}$ and $\vec{b}=-2\hat{\imath}+\hat{\jmath}-\hat{k}$, therefore,			
	$\vec{a} + \vec{b} = (3-2)\hat{i} + (-1+1)\hat{j} + (2-1)\hat{k}$			
	$\Rightarrow \vec{a} + \vec{b} = -1. \ i + 0.\hat{j} + 1.\hat{k} = \hat{i} + \hat{k}$			
	Hence unit vector in the direction of $(\vec{a} + \vec{b})$ is ,			
	$\left \frac{(\vec{a} + \vec{b})}{ (\vec{a} + \vec{b}) } \right = \frac{\hat{i} + \hat{k}}{\sqrt{2}} = \frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{k}$			
	$ (u+b) $ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$			
22	$\tan^{-1}(\frac{\cos x}{1-\sin x})$	—)		
	$= \tan^{-1} \left[\frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2\sin^2 \frac{x}{2}\cos^2 \frac{x}{2}} \right]$			
	$= \tan^{-1} \left(\frac{\cos \frac{x}{2} + \sin \frac{x}{2}}{\cos \frac{x}{2} - \sin \frac{x}{2}} \right)$			
	$= \tan^{-1} \left[\frac{1 + \tan \frac{x}{2}}{1 - \tan \frac{x}{2}} \right]$			
	$=\tan^{-1}\left[\tan\left(\frac{\pi}{4}+\frac{x}{2}\right)\right]$			
	$= \frac{\pi}{4} + \frac{x}{2}$			
	OR			
	$f(x) = \cos x$,	$g(x)=3x^2$		
	$f(x) = \cos x$	$g(x)=3x^2 \Rightarrow g(f(x))=3f(x)^2$ $gof(x)=3\cos^2 x$		
	$\int_{0}^{\infty} f(x) = \cos x \Rightarrow f(g(x)) = \cos g(x)$	$aof(x)=3cos^2x$		
	\Rightarrow fog(x)=cos 3x ²			
	Hence gof≠fog			
23	$\frac{dy}{dx}$ =Acos x+ B(-sinx)=Acos x _Bsin x			
	ax -			
	$\frac{d2y}{dx^2}$ = A(-sin x) -B cos x=-A sin x -B cos x			
	dx2			
24	According to to question,			
	we have to find out the point on the curve at which	the v coordinate is changing 2 times		
	we have to find out the point on the curve at which the y coordinate is changing 2 times $\frac{dy}{dx} = \frac{dy}{dx}$			
	as fast as the x - coordinate.ie; $\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = 2 = > \frac{dy}{dx} = 2$, now equation of the curve 6y = x ³ + 2			
	$=>6\frac{dy}{dx}=3x^2=>2\frac{dy}{dx}=x^2$			

now, put x = 4 in $6y = x^3 + 2 = >2x2 = x^2$

 $=>x=\pm 2$

When x=2

$$6y = 2^3 + 2 = 10$$

$$=> y = 10/6$$

$$=>y=5/3$$

hence, a point on the curve is (2,5/3)

When x=-2

$$6y = (-2)^3 + 2 = -8 + 2 = -6$$

$$=> y = -1$$

=> points on the curve will be (-2,-1), (2,5/3)

Given lines are $\vec{r} = (2\hat{\imath} - 5\hat{\jmath} + \hat{k}) + \lambda(3\hat{\imath} + 2\hat{\jmath} + 6\hat{k})$ and $\vec{r} = (7\hat{\imath} - 6\hat{k}) + \mu(\hat{\imath} + 2\hat{\jmath} + 2\hat{k})$

on compairing with $\vec{r} = \vec{a}_1 + \lambda \vec{b}_1$ and $\vec{a}_2 + \mu \vec{b}_2$ we get $\vec{b}_1 = 3\hat{\imath} + 2\hat{\jmath} + 6\hat{k}$ and $\vec{b}_2 = \hat{\imath} + 2\hat{\jmath} + 2\hat{k}$ angle between the lines is given by

$$\cos\theta = \left| \frac{\overrightarrow{b1b2}}{|\overrightarrow{b1}||\overrightarrow{b2}|} \right| = \left| \frac{(3\hat{\imath} + 2\hat{\jmath} + 6\hat{k})(\hat{\imath} + 2\hat{\jmath} + 2\hat{k})}{\sqrt{49}\sqrt{9}} \right| = \frac{19}{\sqrt{49}\sqrt{9}} = \frac{19}{7x3} = \cos^{-1}\frac{19}{21}$$

No. of spade cards in a pack of 52 playing cards =13

Let E: getting a spade

$$P(E) = \frac{13}{52}, P(E) = \frac{39}{52}$$

Therefore, P (only 2 cards are spades) = ${}^{4}C_{252}^{13} \cdot \frac{13}{52} \cdot \frac{39}{52} \cdot \frac{39}{52} = \frac{54}{256}$

27	For x_1 , $x_2 \in A$, let $f(x_1)=f(x_2)$
	$\frac{4x_1+3}{6x_1-4} = \frac{4x_2+3}{6x_2-4}$
	$(4x_1 + 3)(6x_2 - 4) = (6x_1 - 4)(4x_2 + 3)$
	$\Rightarrow x_1=x_2$
	Hence, f is one-one.
	For any y ϵA s.t y= $\frac{4x+3}{6x-4} \ni x$ such that
	6xy-4y=4x+3
	$\Rightarrow x = \frac{4y+3}{6y-4} \in A$
	Also, $f(x) = f\left(\frac{4y+3}{6y-4}\right) = \frac{4\left(\frac{4y+3}{6y-4}\right)+3}{6\left(\frac{4y+3}{6y-4}\right)-4} = y$
	\Rightarrow f(x) is onto. Since, f(x) is one-one and onto, therefore f^{-1} exists and $f^{-1}(y) = \frac{4y+3}{6y-4}$.
28	Here $\cos^{-1}\left(\frac{x^2-y^2}{x^2+y^2}\right) = \cot^{-1}a$
	$\Rightarrow \frac{x^2 - y^2}{x^2 + y^2} = \cos(\cot^{-1} a)$
	Applying componendo and dividendo, we get $: \frac{x^2 - y^2 + x^2 + y^2}{x^2 - y^2 + x^2 - y^2} = \frac{\cos(\cot^{-1} a) + 1}{\cos(\cot^{-1} a) - 1}$
	$\Rightarrow \frac{2x^2}{-2y^2} = \frac{\cos(\cot^{-1}a) + 1}{\cos(\cot^{-1}a) - 1}$
	$\Rightarrow \frac{d}{dx} \left(\frac{x^2}{y^2} \right) = \frac{d}{dx} \left(-\frac{\cos\left(\cot^{-1}a\right) + 1}{\cos\left(\cot^{-1}a\right) - 1} \right)$

 $\Rightarrow \frac{y2x \ 2x - x2x2y \frac{dy}{dx}}{(y^2)^2} = 0$

$$\Rightarrow$$
y- $x \frac{dy}{dx} = 0 : \frac{dy}{dx} = \frac{y}{x}$ -----(i)

Now
$$\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{y}{x} \right) \Rightarrow \frac{d^2y}{dx^2} = \frac{x \frac{dy}{dx} - yX1}{x2}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{x_x^y - y}{x^2} = \frac{0}{x^2} \text{ by (i)}$$

hence
$$\frac{d^2y}{dx^2} = 0$$

OR

$$\sin y = x \sin(a+y) \Rightarrow x = \frac{\sin y}{\sin(a+y)}$$

Differentiating w.r.t y, we get,

$$\frac{dx}{dy} = \frac{\sin(a+y)\cos y - \sin y \cos(a+y)}{\sin^2(a+y)}$$

$$\frac{dx}{dy} = \frac{\sin(a+y-y)}{\sin^2(a+y)} = \frac{\sin a}{\sin^2(a+y)}$$

$$\therefore \frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$$

The given differential equation can be written as

$$\frac{dy}{dx} = \frac{y}{x} - tan\left(\frac{y}{x}\right)$$

Put
$$\frac{y}{x} = v$$
 and $\frac{dy}{dx} = v + x \frac{dv}{dx}$, to get

$$v + x \frac{dv}{dx} = v - tanv \Rightarrow x \frac{dv}{dx} = -tanv$$

 \Rightarrow cot v dv = $\frac{-1}{x}$ dx, integrating both sides we get

$$\log|sinv| = -\log|x| + \log c$$

$$\Rightarrow \log |sinv| = \log \left| \frac{c}{x} \right|$$

Solution of differential equation is:

$$\sin\left(\frac{y}{x}\right) = \frac{c}{x} \text{ or } x\sin\left(\frac{y}{x}\right) = c$$

$$= \int \frac{3x+5}{x^2+3x-18} dx = \frac{3}{2} \int \frac{2x+3}{x^2+3x-18} dx + \frac{1}{2} \int \frac{1}{x^2+3x-18} dx$$

$$= \frac{3}{2} \int \frac{2x+3}{x^2+3x-18} dx + \frac{1}{2} \int \frac{1}{\left(x+\frac{3}{2}\right)^2 - \left(\frac{9}{2}\right)^2} dx$$

$$= \frac{3}{2} \log|x^2+3x-18| + \frac{1}{18} \log\left|\frac{x-3}{x+6}\right| + c$$

31 P (at least 3 are diamonds)

$$P(3) + P(4) = {}^{4}C_{3} \left(\frac{1}{4}\right)^{3} \left(\frac{3}{4}\right) + {}^{4}C_{4} \left(\frac{1}{4}\right)^{4}$$
$$= \left(\frac{1}{4}\right)^{4} (12 + 1) = \frac{13}{256}$$

OR

P (only one on time) =P (A) P (\bar{B})+P (\bar{A}) P (B)

$$= \frac{2}{7} \times \frac{3}{7} + \frac{5}{7} \times \frac{4}{7}$$
$$= \frac{26}{49}$$

Let no. of packages of nuts be x units and no. of packages of bolts be y units.

To maximize : Z = ₹(35x + 14y)

Subject to constraints:

 $x \ge 0, y \ge 0,$

 $x + 3y \le 12$,

 $3x + y \le 12$

C(0, 4)

Hence, maximum profit of $\sqrt[3]{147}$ is obtained when no. of packages of nuts = x = 3 units and, no. of packages of bolts = y = 3 units are produced.

33

$$Let A = \begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1 \end{bmatrix}$$

Then A = IA

$$\Rightarrow \begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \qquad \therefore A^{-1} = \begin{bmatrix} 3 & -4 & 3 \\ -2 & 3 & -2 \\ 9 & -12 & 9 \end{bmatrix}$$

$$\therefore A^{-1} = \begin{bmatrix} 3 & -4 & 3 \\ -2 & 3 & -2 \\ 9 & -12 & 9 \end{bmatrix}$$

OR

$$\Rightarrow \begin{bmatrix} 1 & -3 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

$$(R_1 \rightarrow R_1 - R_2)$$

where
$$A = \begin{bmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, B = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & -3 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \qquad (R_1 \to R_1 - R_2)$$
The given system of equations is
$$AX = B,$$
where $A = \begin{bmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, B = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$

$$X = A^{-1}B = \frac{1}{1200} \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

 $|A| = 1200 \neq 0$

 \Rightarrow A⁻¹ exists.

$$X = A^{-1}B$$

$$adj A = \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \operatorname{adj} A = \frac{1}{1200} \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix} \qquad \therefore x = \frac{1}{2}, y = \frac{1}{3}, z = \frac{1}{5}$$

$$= \frac{1}{1200} \begin{bmatrix} 600\\400\\240 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\\\frac{1}{3}\\\frac{1}{5} \end{bmatrix}$$

$$\therefore x = \frac{1}{2}, y = \frac{1}{3}, z = \frac{1}{5}$$

Required Area =
$$\int_{1}^{3} \frac{3x+1}{2} dx + \int_{3}^{6} \frac{21-2x}{3} dx - \int_{1}^{6} \frac{x+9}{5} dx$$

$$= \left(\frac{3x^2}{4} + \frac{x}{2}\right)\Big|_{1}^{3} + \left(7x - \frac{x^2}{3}\right)\Big|_{3}^{6} - \left(\frac{x^2}{10} + \frac{9x}{5}\right)\Big|_{1}^{6}$$

$$= 7 + 12 - \frac{25}{2}$$

$$=\frac{13}{2}$$

35 Let Given surface area of open cylinder be S.

Then $S = 2\pi rh + \pi r^2$

$$\Rightarrow h = \frac{S - \pi r^2}{2\pi r}$$

Volume $V = \pi r^2 h$

$$V = \pi r^2 \left[\frac{S - \pi r^2}{2\pi r} \right] = \frac{1}{2} [Sr - \pi r^3]$$

$$\frac{\mathrm{dV}}{\mathrm{dr}} = \frac{1}{2} [S - 3\pi r^2]$$

$$\frac{dV}{dr} = 0 \implies S = 3\pi r^2 \text{ or } 2\pi rh + \pi r^2 = 3\pi r^2$$

$$\Rightarrow 2\pi rh = 2\pi r^2$$
 $\Rightarrow h = r$

$$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = -6\pi r < 0$$

∴ For volume to be maximum, height = radius

Let x be the radius of circle and y be the side of square

$$2\pi x + 4y = k$$

$$A = \pi x^2 + y^2$$

$$A = \pi x^{2} + \left(\frac{k - 2\pi x}{4}\right)^{2} = \frac{16\pi x^{2} + k^{2} + 4\pi^{2}x^{2} - 4\pi kx}{16}$$

$$\frac{dA}{dx} = \frac{1}{16}(32\pi x + 8\pi^2 x - 4\pi k)$$

$$\frac{dA}{dx} = 0 \Rightarrow 32\pi x + 8\pi^2 x - 4\pi k = 0$$

$$\Rightarrow x = \frac{k}{8 + 2\pi}$$

$$\frac{d^2A}{dx^2}\bigg]_{x=\frac{k}{8+2\pi}} = \frac{1}{16}[32\pi + 8\pi^2] > 0 \Rightarrow \text{Sum of areas is minimum}$$

$$2\pi \left(\frac{k}{8+2\pi}\right) + 4y = k \Rightarrow y = \frac{k}{4+\pi} \Rightarrow y = 2x$$

P(1,3,4) Equation of line PQ is

 \therefore Q lies on plane 2x - y + z + 3 = 0

$$\therefore \ 2(2\lambda + 1) - (-\lambda + 3) + (\lambda + 4) + 3 = 0$$

$$\Rightarrow$$
 6 λ + 6 = 0 i.e., λ = -1

The coordinates of Q are (-1, 4, 3)

Let $P'(\alpha,\,\beta\,\,,\,\gamma)$ be the image of P.

then
$$\frac{\alpha+1}{2} = -1$$
, $\frac{\beta+3}{2} = 4$, $\frac{\gamma+4}{2} = 3$

$$\Rightarrow \alpha = -3, \beta = 5, \gamma = 2$$

 \therefore the image P' is (-3, 5, 2)