第七章

第一节

向量及其线性运算

- 一、向量的概念
- 二、向量的线性运算
- 三、空间直角坐标系
- 四、利用坐标作向量的线性运算
- 五、向量的模、方向角、投影

一、向量的概念

向量: 既有大小,又有方向的量称为向量(又称矢量).

表示法: 有向线段 $\overline{M_1M_2}$,或 \overrightarrow{a} ,或 \mathbf{a} .

向量的模:向量的大小,记作 $|\overrightarrow{M_1M_2}|$,或 $|\overrightarrow{a}|$,或 $|\mathbf{a}|$.

向径 (矢径): 起点为原点的向量.

自由向量: 与起点无关的向量.

单位向量: 模为 1 的向量, 记作 \vec{a} ° 或 a°.

零向量: 模为 0 的向量, 记作 $\vec{0}$, 或 θ .

若向量 \overrightarrow{a} 与 \overrightarrow{b} 大小相等,方向相同,则称 \overrightarrow{a} 与 \overrightarrow{b} 相等, 记作 \overrightarrow{a} = \overrightarrow{b} ;

若向量 \overrightarrow{a} 与 \overrightarrow{b} 方向相同或相反,则称 \overrightarrow{a} 与 \overrightarrow{b} 平行,记作 $\overrightarrow{a}//\overrightarrow{b}$; 规定: 零向量与任何向量平行;

与 \vec{a} 的模相同,但方向相反的向量称为 \vec{a} 的负向量,记作 - \vec{a} ;

因平行向量可平移到同一直线上, 故两向量平行又称 两向量共线.

若 k (≥3)个向量经平移可移到同一平面上,则称此 k 个向量共面.

二、向量的线性运算

1. 向量的加法

平行四边形法则:

 $(\vec{a} + \vec{b}) + \vec{c}$ $\vec{a} + (\vec{b} + \vec{c})$ $\vec{a} + \vec{b}$

三角形法则:

$$\overrightarrow{a} + \overrightarrow{b}$$

运算规律:交换律 $\vec{a} + \vec{b} = \vec{b} + \vec{a}$

结合律
$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c}) = \vec{a} + \vec{b} + \vec{c}$$

三角形法则可推广到多个向量相加.

$$\vec{s} = \vec{a_1} + \vec{a_2} + \vec{a_3} + \vec{a_4} + \vec{a_5}$$

2. 向量的减法

$$\vec{b} - \vec{a} = \vec{b} + (-\vec{a})$$

特别当 $\vec{b} = \vec{a}$ 时,有

$$\vec{a} - \vec{a} = \vec{a} + (-\vec{a}) = \vec{0}$$

三角不等式

$$|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$$

$$|\vec{a} - \vec{b}| \le |\vec{a}| + |\vec{b}|$$

3. 向量与数的乘法

 λ 是一个数, λ 与 \overrightarrow{a} 的乘积是一个新向量, 记作 $\lambda \overrightarrow{a}$.

规定:
$$\lambda > 0$$
时, $\lambda \vec{a} = \vec{a}$ 同向, $|\lambda \vec{a}| = \lambda |\vec{a}|$; $\lambda < 0$ 时, $\lambda \vec{a} = \vec{a}$ 反向, $|\lambda \vec{a}| = -\lambda |\vec{a}|$; $\lambda = 0$ 时, $\lambda \vec{a} = \vec{0}$.

总之:
$$\left|\lambda \vec{a}\right| = \left|\lambda\right| \left|\vec{a}\right|$$

运算律: 结合律 $\lambda(\mu \vec{a}) = \mu(\lambda \vec{a}) = \lambda \mu \vec{a}$

分配律
$$(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$$
 $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$

若 $\vec{a} \neq \vec{0}$,则有单位向量 \vec{a} ° = $\frac{1}{|\vec{a}|}\vec{a}$. 因此 $\vec{a} = |\vec{a}|\vec{a}$ °

定理1. 设 \vec{a} 为非零向量,则

$$\vec{a} / / \vec{b} \implies \vec{b} = \lambda \vec{a} \quad (\lambda$$
 为唯一实数)

证: "——". 设
$$\vec{a}//\vec{b}$$
, 取 $\lambda = \pm \frac{|\vec{b}|}{|\vec{a}|}, \vec{a}, \vec{b}$ 同向时

取正号,反向时取负号,则 \vec{b} 与 $\lambda \vec{a}$ 同向,且

$$|\lambda \vec{a}| = |\lambda||\vec{a}| = \frac{|\vec{b}|}{|\vec{a}|}|\vec{a}| = |\vec{b}|$$

故 $\vec{b} = \lambda \vec{a}$.

再证数 λ 的唯一性. 设又有 $\vec{b} = \mu \vec{a}$,则 $(\lambda - \mu)\vec{a} = \vec{0}$ 而 $|\vec{a}| \neq 0$,故 $|\lambda - \mu| = 0$,即 $\lambda = \mu$.

" — "已知
$$\vec{b} = \lambda \vec{a}$$
,则 当 $\lambda = 0$ 时, $\vec{b} = \vec{0}$ 当 $\lambda > 0$ 时, \vec{a} , \vec{b} 同向 $\rightarrow \vec{a}//\vec{b}$ 当 $\lambda < 0$ 时, \vec{a} , \vec{b} 反向

例1. 设 M 为 $\square ABCD$ 对角线的交点, $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AD} = \overrightarrow{b}$,试用 \overrightarrow{a} 与 \overrightarrow{b} 表示 \overrightarrow{MA} , \overrightarrow{MB} , \overrightarrow{MC} , \overrightarrow{MD} .

AP:
$$\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{AC} = 2 \overrightarrow{MC} = -2 \overrightarrow{MA}$$

$$\overrightarrow{b} - \overrightarrow{a} = \overrightarrow{BD} = 2 \overrightarrow{MD} = -2 \overrightarrow{MB}$$

$$\overrightarrow{D} = -2 \overrightarrow{MB}$$

$$\overrightarrow{MA} = -\frac{1}{2}(\overrightarrow{a} + \overrightarrow{b}) \qquad \overrightarrow{MB} = -\frac{1}{2}(\overrightarrow{b} - \overrightarrow{a})$$

$$\overrightarrow{MC} = \frac{1}{2}(\overrightarrow{a} + \overrightarrow{b}) \qquad \overrightarrow{MD} = \frac{1}{2}(\overrightarrow{b} - \overrightarrow{a})$$

三、空间直角坐标系

1. 空间直角坐标系的基本概念

过空间一定点 o, 由三条互相垂直的数轴按右手规则组成一个空间直角坐标系.

- 坐标原点
- 坐标轴
- 坐标面
- 卦限(八个)

在直角坐标系下

特殊点的坐标:

原点 O(0,0,0); 坐标轴上的点 P,Q,R; 坐标面上的点 A,B,C

坐标面:

$$xoy \overline{\coprod} \leftrightarrow z = 0$$

$$yoz \ \overline{\boxplus} \leftrightarrow x = 0$$

$$zox \overline{\coprod} \leftrightarrow y = 0$$

坐标轴:

$$x \not= 0$$

$$z = 0$$

$$y \not = \longleftrightarrow \begin{cases} z = 0 \\ x = 0 \end{cases}$$

$$z \not = 0$$

$$y = 0$$

2. 向量的坐标表示

在空间直角坐标系下,任意向量 \vec{r} 可用向径 \vec{OM} 表示。

以 \vec{i} , \vec{j} , \vec{k} 分别表示x,y,z轴上的单位向量,**设点**M的坐标为M(x,y,z),则

$$\overrightarrow{OM} = \overrightarrow{ON} + \overrightarrow{NM} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$

$$|\overrightarrow{OA} = x\overrightarrow{i}, \overrightarrow{OB} = y\overrightarrow{j}, \overrightarrow{OC} = z\overrightarrow{k}$$

$$|\overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k} = (x, y, z)$$

此式称为向量产的坐标分解式,

 $x\vec{i},y\vec{j},z\vec{k}$ 称为向量 \vec{r} 沿三个坐标轴方向的分向量.

四、利用坐标作向量的线性运算

设
$$\vec{a} = (a_x, a_y, a_z), \ \vec{b} = (b_x, b_y, b_z), \lambda$$
 为实数,则
$$\vec{a} \pm \vec{b} = (a_x \pm b_x, a_y \pm b_y, a_z \pm b_z)$$

$$\lambda \vec{a} = (\lambda a_x, \lambda a_y, \lambda a_z)$$

平行向量对应坐标成比例:

当
$$\vec{a} \neq \vec{0}$$
时,
$$\vec{b}//\vec{a} \iff \vec{b} = \lambda \vec{a}$$

$$\iff \frac{b_x}{a_x} = \frac{b_y}{a_y} = \frac{b_z}{a_z}$$

$$b_{x} = \lambda a_{x}$$

$$b_{y} = \lambda a_{y}$$

$$b_{z} = \lambda a_{z}$$

例2. 求解以向量为未知元的线性方程组

$$\begin{cases} 5\vec{x} - 3\vec{y} = \vec{a} \\ 3\vec{x} - 2\vec{y} = \vec{b} \end{cases}$$
 ①

其中 $\vec{a} = (2,1,2), \vec{b} = (-1,1,-2).$

解:
$$2 \times 1 - 3 \times 2$$
,得 $\vec{x} = 2\vec{a} - 3\vec{b} = (7, -1, 10)$

代入②得

$$\vec{y} = \frac{1}{2}(3\vec{x} - \vec{b}) = (11, -2, 16)$$

例3. 已知两点 $A(x_1,y_1,z_1),B(x_2,y_2,z_2)$ 及实数 $\lambda \neq -1$,在AB直线上求一点M,使 $\overrightarrow{AM} = \lambda \overrightarrow{MB}$.

解: 设M的坐标为(x,y,z),如图所示

$$\overrightarrow{AM} = \lambda \overrightarrow{MB}$$

$$\begin{vmatrix} \overrightarrow{AM} = \overrightarrow{OM} - \overrightarrow{OA} \\ \overrightarrow{MB} = \overrightarrow{OB} - \overrightarrow{OM} \end{vmatrix}$$

$$\overrightarrow{OM} - \overrightarrow{OA} = \lambda (\overrightarrow{OB} - \overrightarrow{OM})$$

$$\overrightarrow{OM} = \frac{1}{1+\lambda} (\overrightarrow{OA} + \lambda \overrightarrow{OB})$$

 $\mathbb{P} (x, y, z) = \frac{1}{1+\lambda} (x_1 + \lambda x_2, y_1 + \lambda y_2, z_1 + \lambda z_2)$

说明:由

$$(x, y, z) = \frac{1}{1+\lambda} (x_1 + \lambda x_2, y_1 + \lambda y_2, z_1 + \lambda z_2)$$

得定比分点公式:

$$x = \frac{x_1 + \lambda x_2}{1 + \lambda}, \quad y = \frac{y_1 + \lambda y_2}{1 + \lambda},$$
$$z = \frac{z_1 + \lambda z_2}{1 + \lambda}$$

中点公式:

$$x = \frac{x_1 + x_2}{2}$$
, $y = \frac{y_1 + y_2}{2}$, $z = \frac{z_1 + z_2}{2}$

五、向量的模、方向角、投影

1. 向量的模与两点间的距离公式

设
$$\vec{r} = (x, y, z)$$
, 作 $\overrightarrow{OM} = \vec{r}$, 则有
$$\vec{r} = \overrightarrow{OM} = \overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR}$$

由勾股定理得

对两点 $A(x_1, y_1, z_1)$ 与 $B(x_2, y_2, z_2)$,因

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

得两点间的距离公式:

$$|AB| = |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

例4. 求证以 $M_1(4,3,1), M_2(7,1,2), M_3(5,2,3)$ 为顶点的三角形是等腰三角形.

证:

$$|M_1 M_2| = \sqrt{(7-4)^2 + (1-3)^2 + (2-1)^2} = \sqrt{14}$$

$$|M_2 M_3| = \sqrt{(5-7)^2 + (2-1)^2 + (3-2)^2} = \sqrt{6}$$

$$|M_1 M_3| = \sqrt{(5-4)^2 + (2-3)^2 + (3-1)^2} = \sqrt{6}$$

$$|M_2M_3| = |M_1M_3|$$

即 $\Delta M_1 M_2 M_3$ 为等腰三角形.

例5. 在 *z* 轴上求与两点*A*(-4,1,7)及 *B*(3,5,-2)等距离的点.

解: 设该点为M(0,0,z), 因为|MA| = |MB|,

$$\sqrt{(-4)^2 + 1^2 + (7-z)^2} = \sqrt{3^2 + 5^2 + (-2-z)^2}$$

解得 $z = \frac{14}{9}$,故所求点为 $M(0,0,\frac{14}{9})$.

思考:

- (1) 如何求在 xoy 面上与A, B 等距离之点的轨迹方程?
- (2) 如何求在空间与A, B 等距离之点的轨迹方程?

提示:

- (1) 设动点为M(x,y,0),利用|MA| = |MB|,得 14x + 8y + 28 = 0,且 z = 0
- (2) 设动点为M(x,y,z),利用|MA| = |MB|,得 7x + 4y 9z + 14 = 0
- 例6. 已知两点A(4,0,5)和B(7,1,3),求 $\overrightarrow{AB}^{\circ}$.

解:
$$\overrightarrow{AB}^{\circ} = \frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} = \frac{1}{\sqrt{14}}(3,1,-2)$$

$$= \left(\frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}\right)$$

2. 方向角与方向余弦

设有两非零向量 \vec{a} , \vec{b} ,任取空间一点O,作 $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$,称 $\varphi = \angle AOB$ ($0 \le \varphi \le \pi$) 为向量 \vec{a} , \vec{b} 的夹角.

记作
$$(\vec{a}, \vec{b}) = \varphi$$
 或 $(\vec{b}, \vec{a}) = \varphi$

类似可定义向量与轴, 轴与轴的夹角.

给定 $\vec{r} = (x, y, z) \neq \vec{0}$, 称 \vec{r} 与三坐标轴的夹角 α , β , γ

为其**方向角**.

方向角的余弦称为其方向余弦.

$$\cos\alpha = \frac{x}{|\vec{r}|} = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$

$$\cos \alpha = \frac{x}{|\vec{r}|} = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$

$$\cos \beta = \frac{y}{|\vec{r}|} = \frac{y}{\sqrt{x^2 + y^2 + z^2}}$$

$$\cos \gamma = \frac{z}{|\vec{r}|} = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

方向余弦的性质: $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$

向量 r 的单位向量:

$$\vec{r}^{\circ} = \frac{\vec{r}}{|\vec{r}|} = (\cos\alpha, \cos\beta, \cos\gamma)$$

例7. 已知两点 $M_1(2,2,\sqrt{2})$ 和 $M_2(1,3,0)$,计算向量 $\overrightarrow{M_1M_2}$ 的模、方向余弦和方向角.

解:
$$\overrightarrow{M_1M_2} = (1-2, 3-2, 0-\sqrt{2})$$

 $= (-1, 1, -\sqrt{2})$
 $|\overrightarrow{M_1M_2}| = \sqrt{(-1)^2 + 1^2 + (-\sqrt{2})^2} = 2$
 $\cos \alpha = -\frac{1}{2}, \quad \cos \beta = \frac{1}{2}, \quad \cos \gamma = -\frac{\sqrt{2}}{2}$
 $\alpha = \frac{2\pi}{3}, \qquad \beta = \frac{\pi}{3}, \qquad \gamma = \frac{3\pi}{4}$

例8. 设点 A 位于第一卦限,向径 \overrightarrow{OA} 与 x 轴 y 轴的夹角依次为 $\frac{\pi}{3}$, $\frac{\pi}{4}$, 且 $|\overrightarrow{OA}| = 6$, 求点 A 的坐标.

解: 已知
$$\alpha = \frac{\pi}{3}$$
, $\beta = \frac{\pi}{4}$, 则 $\cos^2 \gamma = 1 - \cos^2 \alpha - \cos^2 \beta = \frac{1}{4}$ 因点 A 在第一卦限, 故 $\cos \gamma = \frac{1}{2}$, 于是

$$\overrightarrow{OA} = |\overrightarrow{OA}| \overrightarrow{OA}^{\circ} = 6(\frac{1}{2}, \frac{\sqrt{2}}{2}, \frac{1}{2}) = (3, 3\sqrt{2}, 3)$$

故点 A 的坐标为 $(3,3\sqrt{2},3)$.

第3爷

数量积 向量积 "混合积

- 一、两向量的数量积
- 二、两向量的向量积
- *三、向量的混合积

一、两向量的数量积

引例. 设一物体在常力 \vec{F} 作用下, 沿与力夹角为 θ 的直线移动, 位移为 \vec{s} , 则力 \vec{F} 所做的功为

$$W = |\vec{F}| |\vec{s}| \cos \theta$$

1. 定义

设向量 \vec{a} , \vec{b} 的夹角为 θ ,称

$$|\vec{a}||\vec{b}|\cos\theta = \vec{a} \cdot \vec{b}$$

为 \vec{a} 与 \vec{b} 的数量积(点积,内积).

$$W = \overrightarrow{F} \cdot \overrightarrow{s}$$

当 $\vec{a} \neq \vec{0}$ 时, \vec{b} 在 \vec{a} 上的投影为

$$|\overrightarrow{b}|\cos\theta$$
 Prj $_{\overrightarrow{a}}$

$$\vec{a} \cdot \vec{b} = |\vec{a}| \operatorname{Prj}_{\vec{a}} \vec{b}$$

同理,当 $\vec{b} \neq \vec{0}$ 时,

$$\vec{a} \cdot \vec{b} = |\vec{b}| \operatorname{Prj}_{\vec{b}} \vec{a}$$

2. 性质

- $(1) \vec{a} \cdot \vec{a} = |\vec{a}|^2$
- (2) \vec{a} , \vec{b} 为两个非零向量,则有 $\vec{a} \cdot \vec{b} = 0 \iff \vec{a} \perp \vec{b}$

$$\overrightarrow{a} \neq \overrightarrow{0}, \overrightarrow{b} \neq \overrightarrow{0}$$

$$\overrightarrow{a} \neq \overrightarrow{0}, \overrightarrow{b} \neq \overrightarrow{0}$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = 0$$

$$\overrightarrow{(a,b)} = \frac{\pi}{2}$$

3. 运算律

- (1) 交換律 $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
- (2) 结合律 (λ, μ) 实数) $(\lambda \vec{a}) \cdot \vec{b} = \vec{a} \cdot (\lambda \vec{b}) = \lambda (\vec{a} \cdot \vec{b})$ $(\lambda \vec{a}) \cdot (\mu \vec{b}) = \lambda (\vec{a} \cdot (\mu \vec{b}))$ $= \lambda \mu (\vec{a} \cdot \vec{b})$

(3) 分配律
$$(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$$

 $\overrightarrow{a} \qquad \overrightarrow{b} \\
\overrightarrow{c} \\
\overrightarrow{Prj_{\vec{c}}} \overrightarrow{a} \qquad \overrightarrow{Prj_{\vec{c}}} \overrightarrow{b} \\
\overrightarrow{Prj_{\vec{c}}} (\overrightarrow{a} + \overrightarrow{b})$

事实上, 当
$$\vec{c} = \vec{0}$$
时, 显然成立; 当 $\vec{c} \neq \vec{0}$ 时

$$(\vec{a} + \vec{b}) \cdot \vec{c} = |\vec{c}| \operatorname{Prj}_{\vec{c}} (\vec{a} + \vec{b}) = |\vec{c}| (\operatorname{Prj}_{\vec{c}} \vec{a} + \operatorname{Prj}_{\vec{c}} \vec{b})$$

$$= |\vec{c}| \operatorname{Prj}_{\vec{c}} \vec{a} + |\vec{c}| \operatorname{Prj}_{\vec{c}} \vec{b} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$$

例1. 证明三角形余弦定理

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

证:如图.设

$$\overrightarrow{CB} = \overrightarrow{a}, \quad \overrightarrow{CA} = \overrightarrow{b}, \quad \overrightarrow{AB} = \overrightarrow{c}$$

 $c^2 = a^2 + h^2 - 2ah\cos\theta$

则

$$|\vec{c}|^2 = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) = \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} - 2\vec{a} \cdot \vec{b}$$

$$= |\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}||\vec{b}|\cos\theta$$

$$|\vec{a}| = |\vec{a}|, b = |\vec{b}|, c = |\vec{c}|$$