

HALOGEN

FREE

Hyperfast Rectifier, 2 x 30 A FRED Pt®

LINKS TO ADDITIONAL RESOURCES

PRIMARY CHARACTERISTICS				
I _{F(AV)}	30 A			
V _R	600 V			
V _F at I _F	1.40 V			
t _{rr} (typ.)	22 ns			
T _J max.	175 °C			
Package	TO-3PF			
Circuit configuration	Common cathode			

FEATURES

- · Hyperfast soft recovery time
- · Low forward voltage drop
- 175 °C operating junction temperature
- Low leakage current
- Fully isolated package (V_{INS} = 2500 V_{RMS})
- Designed and qualified according to JEDEC®-JESD 47
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION / APPLICATIONS

Hyperfast recovery rectifiers designed with optimized performance of forward voltage drop, hyperfast recovery time, and soft recovery.

The planar structure and the platinum doped life time control guarantee the best overall performance, ruggedness and reliability characteristics.

These devices are intended for use in PFC boost stage in the AC/DC section of switch mode power supplies and inverters (air conditioning, high-frequency welding, UPS, and motor drives)

The extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

MECHANICAL DATA

Case: TO-3PF

Molding compound meets UL 94 V-0 flammability rating **Terminals:** matte tin plated leads, solderable per

J-STD-002

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Peak repetitive reverse voltage	V _{RRM}		600	V		
Average rectified forward current in DC, per leg	I _{F(AV)}		30	^		
Non-repetitive peak surge current, per leg	I _{FSM}	T _J = 25 °C, both anodes connection	280 A			
Operating junction and storage temperatures	T _J , T _{Stg}		-55 to +175	°C		

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Breakdown voltage, blocking voltage	V_{BR}, V_{R}	I _R = 100 μA	600	-	-	.,
Famous de la casa de l	V_F $I_F = 30 \text{ A}$ $I_F = 30 \text{ A}, T_J = 150 \text{ °C}$	I _F = 30 A	-	1.70	2.15	V
Forward voltage, per leg		-	1.40	1.65		
Reverse leakage current, per leg	I _R	$V_R = V_R$ rated	-	0.02	10	μА
		$T_J = 150 ^{\circ}\text{C}, V_R = V_R \text{rated}$	-	36	300	
Junction capacitance, per leg	C _T	V _R = 600 V	-	19	-	pF

DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS	
	$I_F = 1 \text{ A, } dI_F/dt = 100$		A/μs, V _R = 30 V	-	22	-		
Reverse recovery time, per leg	t _{rr}	T _J = 25 °C		-	90	-	ns	
		T _J = 125 °C		-	110	-		
Dook was a year a year and a second		T _J = 25 °C	$I_F = 30 \text{ A},$ $dI_F/dt = 200 \text{ A/}\mu\text{s},$	-	4.1	-	^	
Peak recovery current, per leg	IRRM	$T_{J} = 125 ^{\circ}\text{C}$ $V_{B} = 400 \text{V}$	$V_{R} = 400 \text{ V}$	-	9.4	-	A	
Deverse vecesses shows now less	T _J = 25 °C		-	230	-	nC		
Reverse recovery charge, per leg	leverse recovery charge, per leg Q _{rr}	Q _{rr}	T _J = 125 °C		-	730	-	IIC

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	YMBOL TEST CONDITIONS		TYP.	MAX.	UNITS
Maximum junction and storage temperature range	T _J , T _{Stg}		-55	-	175	°C
Thermal resistance, junction-to-case, per leg	R _{thJC}		ı	2.30	2.90	
Thermal resistance, junction-to-ambient, per leg	R _{thJA}	Typical socket mount		30	-	°C/W
Typical thermal resistance, case-to-heatsink	R _{thCS}	Mounting surface, flat, smooth, and greased	-	0.5	-	
Weight			-	6.2	-	g
Weight			=.	0.21	-	oz.
Mounting torque			4 (3.5)	-	6 (5.3)	kgf · cm (lbf · in)
Marking device		Case style TO-3PF CZH6106FP				

Fig. 1 - Forward Voltage Drop Characteristics, Per Leg

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage, Per Leg

Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage, Per Leg

Fig. 4 - Forward Power Loss Characteristics, Per Leg

Fig. 5 - Transient Thermal Impedance, Junction to Case, Per Leg

Fig. 7 - Typical Reverse Recovery Charge vs. dl_F/dt, Per Leg

Fig. 8 - Typical Reverse Recovery Current vs. dl_F/dt, Per Leg

Fig. 9 - Reverse Recovery Waveform and Definitions

Notes

- (1) di_F/dt rate of change of current through zero crossing
- (2) I_{RRM} peak reverse recovery current
- (3) t_{rr} reverse recovery time measured from t₀, crossing point of negative going I_F, to point t_{10%}, 0.1 I_{RBM}
- $^{(4)}$ Q_{rr} area under curve defined by t_0 and t_{10} %

$$Q_{rr} = \int_{t_0}^{t_{10} \%} I(t) dt$$

(5) di_(rec)M/dt - peak rate of change of current during t_b portion of t_{rr}

ORDERING INFORMATION TABLE

Device code

- 1 Vishay Semiconductors product
- 2 Circuit configuration:

C = common cathode

Z = TO-3FP package

4 - H = hyperfast recovery time

Current code: 61 = 60 A (2 x 30 A)

Voltage code: 06 = 600 V

7 - FP = FullPAK

8 - Environmental digit:

-M3 = halogen-free, RoHS-compliant, and terminations lead (Pb)-free

LINKS TO RELATED DOCUMENTS					
Dimensions <u>www.vishay.com/doc?96691</u>					
Part marking information	www.vishay.com/doc?96690				

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.