Intervalos de confianza

Análisis estadístico de datos

2021

- 1. Considerar una variable aleatoria x que sigue una distribución normal con parámetro μ desconocido y $\sigma = 5.9$. En un experimento se miden los siguiente valores de x: (67.6, 57.4, 63.0, 68.0, 63.1). Estimar el valor del parámetro μ y su intervalo con un nivel de confianza del 90%.
- 2. Considerar una muestra de 10 variables aleatorias (x_1, \ldots, x_{10}) que siguen una distribución normal con paramétro μ desconocido y $\sigma = 1.8$. Graficar el cinturón de confianza 1σ . Calcular el intervalo de μ en términos de la media muestral \bar{x} y la desviación estándar σ . En un experimento se miden los siguients valores de (16.2, 12.4, 19.4, 17.3, 16.8, 24.4, 10.7, 18.1, 14.2, 14.8). A partir de los datos, estimar μ y su intervalo de confianza 1σ .
- 3. Simular una muestra de dos variables normales estándar. Calcular el intervalo de confianza 1σ del parámetro μ asumiendo que la desviación estándar $\sigma=1$ es conocida. Verificar si el parámetro μ está contenido dentro del intervalo. Repetir la simulación 1000 veces para estimar la probabilidad de cobertura del intervalo. Comparar la probabilidad de cobertura con el nivel de confianza.
- 4. En un experimento se miden los valores (13.4, 8.52, 12.7, 9.9, 12.8). Asumiendo que los datos siguen una distribución normal con parámetros μ y σ desconocidos, calcular el intervalo de Student al 90% de nivel de confianza en términos de la media muestral \bar{x} y la desviación estándar muestral s.
- 5. Simular dos variables normales x_1 y x_2 con parámetros $\mu_1 = 10.7$, $\mu_2 = 8.3$, $\sigma_1 = 1.7$, $\sigma_2 = 2.4$, y correlación $\rho = 0.78$. Considerar la elipse de 95% de confianza del parámetro $\boldsymbol{\mu} = (\mu_1, \mu_2)$. Simular varios valores de x_1 y x_2 y verificar si las elipses correspondientes contienen a $\boldsymbol{\mu}$. Repetir la simulación 10.00 veces para estimar la probabilidad de cobertura y comparar con el nivel de confianza.
- 6. (opcional) Considerar la función de costo,

$$J(S, \beta) = 2 \sum_{i=1}^{n} (\mu_i(S, \beta) - k_i) - k_i \log(\mu_i(S, \beta)/k_i),$$

con $\mu_i(S,\beta) = S r_i^{-\beta}$, dónde S y β son dos parámetros desconocidos. Los datos del experimento son el número de partículas medidas por un detector k_i ubicado a una distancia r_i ,

detector	r_i	k_i
1	0.764	33
2	1.052	19
3	1.236	11

Dibujar la función de costo como función de S y β . Con una minimización numérica encontrar los estimadores de S y β . Dibujar la región de confianza de 1σ correspondiente a $J=J_{\min}+1$, con J_{\min} el mínimo de la función de costo.

7. (Para entregar) Considerar n=32 lanzamientos de una moneda cargada con probabilidad p de salir cara. El número de caras X es una variable aleatoria con distribución binomial $X \sim B(n,p)$. Considerar un tanda de lanzamientos en el que salen k caras. El estimador del parámetro p es $\hat{p} = k/n$. El intervalo de confianza estándar de p con un nivel de confianza del 95% es $\hat{p}\pm 1.96\sqrt{\hat{p}(1-\hat{p})/n}$, dónde q=1.96 es el cuantil normal estándar para un 95% CL. Simular 10.000 tandas de lanzamientos asumiendo p=0.2. Verificar para cada tanda si el intervalo incluye o no a p=0.2. Estimar la cobertura del intervalo. Decidir si el intervalo es exacto y comparar la cobertura con respecto al nivel de confianza. (Opcional: Barrer p en el intervalo [0,1], graficar y ver si hay valores de p para los cuáles la cobertura es particularmente mala.)