Symmetries, Fields and Particles Summary Notes

Sam Crawford Based on the Course Given by Nick Dorey

Michaelmas 2017

1 Lie Groups and Lie Algebras

Proposition 1.1 The space of left-invariant vector fields is an $n = \dim(G)$ dimensional vector space which is homeomorphic to T_eG , the tangent space to the identity of G.

Proposition 1.2 The space of left-invariant vector fields on a Lie group G is closed under the Lie bracket $[X,Y] \circ f := X \circ (Y \circ f) - Y \circ (X \circ f)$, and thus forms a Lie algebra \mathfrak{g} .

2 Representations

Proposition 2.1 If $\operatorname{Exp}(\mathfrak{g}) = H \subset G$ is bijective, then a representation R of \mathfrak{g} 'exponentiates' to the representation $D(\operatorname{Exp}(x)) = \operatorname{Exp}(R(x))$ of H.

Proposition 2.2 Let $R: \mathfrak{su}(2) \to GL(V)$ be a finite dimensional *irreducible* representation. Then for any eigenvalue v of R(H), the set

$$\{R(E^{\pm})^n v \neq 0 : n \in \mathbb{Z}^+\}$$

forms an eigenbasis of V with respect to R(H).

Proposition 2.3 All finite number of tensor products of finite dimensional irreps of a complex simple Lie algebra are fully reducible. I.e., if $|\mathcal{R}|, |\mathcal{R}'| \in \mathbb{N}$

$$\bigotimes_{R \in \mathcal{R}} R = \bigoplus_{R' \in \mathcal{R}'} \mathfrak{M}(R')R', \tag{2.1}$$

where $\mathfrak{M}(R') \in \mathbb{Z}$ denotes the *multiplicity* of the rep R' in the decomposition.

3 The Cartan Classification

Proposition 3.1 The Killing form of a Lie algebra is **invariant**, defined as the property

$$\kappa(\mathrm{Ad}_z x, y) = -\kappa(x, \mathrm{Ad}_z y),\tag{3.1}$$

i.e. Ad_z is a skew-adjoint operator $\forall z \in \mathfrak{g}$.

Proposition 3.2 All CSAs of a Lie algebra have the same dimension.

Proposition 3.3 (Some facts step operators and the Killing form) (i) $\kappa(H, E^{\alpha}) = 0, \ \forall \ H \in \mathfrak{h}, \alpha \in \Phi$

(ii)
$$\kappa(E^{\alpha}, E^{\beta}) = 0, \forall \alpha \neq -\beta$$

- (iii) $\forall H \in \mathfrak{h}, \exists H' \in \mathfrak{h} \text{ s.t. } \kappa(H, H') \neq 0$
- (iv) $\forall \alpha \in \Phi, -\alpha \in \Phi, \text{ and } \kappa(E^{\alpha}, E^{-\alpha}) \neq 0.$

Proposition 3.4 The root set Φ spans \mathfrak{h}^*

Proposition 3.5 Let $\{\alpha_{(i)}\}_{i=1}^r \subset \Phi$ be any set of linearly independent roots, then $\Phi \subset \operatorname{Span}_{\mathbb{R}}\{\alpha_{(i)}\} =: \mathfrak{h}_{\mathbb{R}}$.

Proposition 3.6 Let $\mathfrak{h}_{\mathbb{R}}$ be as before, then the map $(\cdot, \cdot) : \mathfrak{h}_{\mathbb{R}} \times \mathfrak{h}_{\mathbb{R}} \to \mathbb{R}$ is a Euclidean inner product.

Proposition 3.7 (Properties of Simple Roots) Let $\alpha, \beta \in \Phi$ be simple roots, then:

- (i) $(\alpha \beta) \notin \Phi$
- (ii) The α -string through β has length

$$\ell_{\alpha,\beta} = 1 - 2\frac{(\alpha,\beta)}{(\alpha,\alpha)} \tag{3.2}$$

- (iii) $(\alpha, \beta) \leq 0$.
- (iv) Any positive root can be written as a linear combination of simple roots with *integer* coefficients, thus the simple roots span $\mathfrak{h}_{\mathbb{R}}^*$

Proposition 3.8 Simple roots are linearly independent in $\mathfrak{h}_{\mathbb{R}}^*$.

Proposition 3.9 (Constraints on the Cartan Matrix) (0) $A^{ji} \in \mathbb{Z}$,

- (i) $A^{ii} = 2$,
- (ii) $A^{ij} = 0 \Leftrightarrow A^{ji} = 0$,
- (iii) $A^{ij} < 0 \,\forall \, i \neq j$,
- (iv) A = DS for some diagonal matrix D and some positive definite matrix S

Proposition 3.10 For $i \neq j$, the only valid pairs of values for (A^{ij}, A^{ji}) are (order irrelevant): (0,0), (-1,-1), (-1,-2), (-1,-3).

4 Reconstructing the Lie Algebra

Proposition 4.1 (Some Facts About Weights of Representations) (i) Let S denote the set of weights of a representation, the representation space is then spanned by

$$V = \bigoplus_{\lambda \in S_R} V_{\lambda},\tag{4.1}$$

(ii) For a weight λ and root α , if $\lambda + \alpha$ is also a weight, then

$$R(e^{\alpha}): V_{\lambda} \to V_{\lambda+\alpha}.$$
 (4.2)

(iii) For a weight λ and root α , $v \in V_{\lambda}$

$$R(h^{\alpha})v = 2\frac{(\alpha, \lambda)}{(\alpha, \alpha)} \in \mathbb{Z}$$
 (4.3)

Proposition 4.2 Every finite dimensional irreducible representation $R: \mathfrak{g} \to GL(V)$ has a **highest weight** $\Lambda \in \mathcal{L}_W[\mathfrak{g}]$ with respect to some choice of Φ_+ such that, $\forall v \in V_\Lambda, \alpha \in \Phi_+$, $R(e^\alpha)v = 0$. Further more, all other weights of the representation are of the form

$$\lambda = \Lambda - \sum_{i=1}^{r} \mu^{i} \alpha_{(i)}, \tag{4.4}$$

for some $\mu^i \in \mathbb{Z}^+$. The highest weight characterises a representation uniquely up to isomorphism.

Proposition 4.3 If $\lambda = \sum_i \lambda^i \omega_{(i)} \in S_R$, then $\lambda - \sum_i m^i \alpha_{(i)} \in S_R \, \forall \, m^i \in \{0, 1, \cdots, \lambda^i\}$. In words, the Dynkin labels of a weight λ tell us how many times the corresponding *root* can be subtracted from that weight. Thus, if a weight has no positive roots, this result cannot be applied.

5 Symmetries in Quantum Mechanics