Problem 1.51. Let x and y be strings and let L be any language. We say that x and y are **distinguishable by** L if some string z exists whereby exactly one of the strings xz and yz is a member of L; otherwise, for every string z, we have $xz \in L$ whenever $yz \in L$ and we say that x and y are **indistinguishable by** L. If x and y are indistinguishable by L, we write $x \equiv_L y$. Show that $x \equiv_L y$ is an equivalence relation.

Proof. To show that \equiv_L is an equivalence relation, first give formal definition of \equiv_L^1 , and then show that \equiv_L is:

- 1. Reflexive
- 2. Symmetric
- 3. Tranisitive

Definition 1. Let x and y be strings and let L be any language. Then $x \equiv_L y$ is defined as

$$(x \equiv_L y) \equiv (\forall z \mid : xz \in L \equiv yz \in L).$$

Part 1. Reflexivity: $x \equiv_L y$

Part 2. Symmetry: $x \equiv_L y \Rightarrow y \equiv_L x$

Part 3. Transitivity: $x \equiv_L y \land y \equiv_L w \Rightarrow x \equiv_L w$

¹The formal method used in this proof is presented in the book **A Logical Approach to Discrete Math** by David Gries and Fred B. Schneider. I recommend the course **Math 220: Formal Methods, Pepperdine University** to any who wishes to learn more about this method. Course link is https://cslab.pepperdine.edu/warford/math220/.