Math for Mass Spring System

Problem Setup

- Two nodes in 3D space
 - vector p1 = [x1, y1, z1]
 - vector p2 = [x2, y2, z2]
- One spring
 - \circ Stiffness k_s
 - o Rest length L
- Notation
 - $\circ ||p1-p2||$ is the **Euclidean** norm
 - $\circ\ V$ is potential energy scalar
 - \circ F is the force vector
 - $\circ K$ is the stiffness matrix

Spring Potential Energy

$$V=rac{1}{2}k_s(\Delta x)^2 \ ext{where}\ \Delta x=||p1-p2||-L$$

$$V = \frac{1}{2}k_s(||p1 - p2|| - L)^2$$

Differentiate for forces:

$$abla V = 2rac{1}{2}k_s(||p1-p2||-L)*
abla (||p1-p2||-L) \,\,$$
 by the chain rule

$$egin{aligned} &=
abla V = 2rac{1}{2}k_s(||p1-p2||-L)*(
abla||p1-p2||-0) \ &= k_s(||p1-p2||-L)rac{(p1-p2)}{||p1-p2||} ext{ since }
abla||v|| = rac{v}{||v||} \end{aligned}$$

Spring Force

$$F = -
abla V = k_s(||p1-p2||-L)rac{(p1-p2)}{||p1-p2||}$$
 where

$$k_s(||p1-p2||-L)$$
 is the magnitude of F $rac{(p1-p2)}{||p1-p2||}$ is the direction of F

SO

$$F_{12} = -F$$
 force on $p1$ by $p2$ $F_{21} = F$ force on $p2$ by $p1$

Differentiate for Stiffness

$$egin{align*}
abla F &=
abla k_s(||p1-p2||-L)rac{(p1-p2)}{||p1-p2||} \ &= k_s(
abla (p1-p2)-L
abla rac{(p1-p2)}{||p1-p2||}) ext{ multiply and simplify} \ &= k_s(I-L*(rac{||p1-p2||
abla (p1-p2)-(p1-p2)
abla (p1-p2)|
abl$$

Stiffness: Jacobian of Forces

$$K =
abla F = k_s (I - L * (rac{I}{||p1 - p2||} - rac{(p1 - p2)(p1 - p2)^T}{||p1 - p2||^3}))$$

SO

$$K_{11} = -K$$

$$K_{12} = K$$

$$K_{21} = K$$

$$K_{22}=-K$$

Implicit Euler Equations

$$x_{t+1} = x_t + h * v_{t+1}$$

 $v_{t+1} = v_t + ha_{t+1}$

where

- $lacksquare x_t$ is the vector of positions at time t
- ullet v_t is the vector of velocities at time t
- $lacksquare a_t$ is the acceleration

h is the time step

From Newton's Second Law $f(x_t) = Ma_t = F$ from spring forces

- f(x) is the force vector function
- M is the diagonal mass matrix

$$egin{aligned} x_{t+1} &= x_t + h * v_{t+1} \ v_{t+1} &= v_t + h M^{-1} f(x_{t+1}) \end{aligned}$$

Then use Newton's Method or LBFGS or whatever to find x_{t+1} and v_{t+1}

Newtons Method

$$g(x_{t+1}) = x_{t+1} - (x_t + h(v_t + hM^{-1}f(x_{t+1}))) \
abla g(x_t) = I - h^2M^{-1}
abla f(x_{t+1})$$

We want to minimize the error g, so use the gradient of g:

$$0 = g(x) + \nabla g(x) dx \ dx = -\nabla g(x)^{-1} g(x)$$

Keep updating x while $g(x) < \epsilon$