RACE # 5

Column-II

1. Column-I

P (A) No. of electrons in Na(11) having
$$m = 0$$
 (P) 7

R (B) No. of electrons in S(16) having $(n + \ell) = 3$ (Q) 15

A (C) No. of maximum possible electrons having $(R) = R + 1/2 +$

Imagine a universe in which the four quantum no. can have the same possible values as in our universe except that angular quantum no. (l) can have integral values from 0, 1, 2 n + 1.

Find the no. of electron n = 1 & 2 shell.

for
$$N=1$$
, $\ell=0,1,2$
 $\leq Pd$
 $+++$
 $2+6+10=18e^{-}$

For
$$n=2$$

$$L = 0, 1, 2, 3$$

$$\downarrow \downarrow \downarrow \downarrow \downarrow$$

$$S p 4 f$$

$$2+6+10+14 = 32e^{-1}$$

- The total number of subshells in nth main energy level are:
 - $(A) n^2$

(B) $2n^2$

(C) 2n + 1

- Which of the following orbital does not make sense:
- (A) 4d

- always

(D) 7s

$$= Cr(24) = [Ar], 3d^{5}, 4sl$$

$$C_{8}^{+3} = [Ar], 3d^{3} = 1111 \qquad n = 3$$

then magnetic moment order $E^{+3} > Mn^{+4} = Cr^{+3}$

A neutral atom of an element has 2K, 8L, 9M and 2N electrons. Which of the following is/are correctly matched:

Total number of s electrons - 8 (B) Total number of p electrons - 12

(C) Total number of d electrons -1 (D) Number of unpaired electrons in element - 3

352 3p6

total No of electrons = 8 total No of -Pelectrons = 12 total No of d electron = 1 No of unpaired e = 1

Spin only magnetic moment of $25^{Mn^{x+}}$ ion is $\sqrt{15}$ B.M. Then, What is the value of x.

8.

$$Mn(2s) = [Ar], 3d^{s}, 4s^{2}$$
 $M = \sqrt{s}$

for n emparied $e = 3$
 $Mn^{+4} = [Ar], 3d^{2}, 4s^{0}$
 $M = \sqrt{s}$
 $M = \sqrt{s}$
 $M = \sqrt{s}$

(a) If the value of Azimuthal Quantum Number ℓ for an electron in a particular subshell is 3, then the minimum value of shell number associated with this electron can be x

$$L=3$$
, $h=4,5,6,7-\cdots$
munimum value = 4 (X)

(b) Orbital angular momentum of an electron is $\sqrt{3} \frac{h}{\pi}$. Then, the number of orientations of this orbital in space is y:

Give the value of (y-x)

orbital angular momentum =
$$\sqrt{\frac{1}{217}} \frac{h}{217}$$

$$\sqrt{\frac{1}{217}} = \sqrt{\frac{h}{3}} \frac{h}{17}$$

$$1=3$$

No of orientation = No of orbital = 2l+1 = 2x3+1=7(7) (J-x)= 7-4=3

MATCH THE COLUMN

Column-II $RS = (A) N_2$ P = 14 RS = (B) CO P = 8+6=14(P) 40% carbon by mass

Column-I se=14

 $(C) C_6 H_{12} O_6$

(D) CH₃COOH

(Q) Empirical formula CH₂O (R) Vapour density = 14(S) $14N_A$ ($N_A = 6.023 \times 10^{23}$) electrons in a mole

Vapour density = $\frac{29}{5}$ = 14, noof e = 1×14×NA = 14NA

Vapour density = = = = 14, 1.C = 12x6 x100 = 401. Empirical formula = CH20

1. C = 2x12 x100 = 401. empirical formula = CH20

(C) 12 g carbon (R)
$$(R) 6.023 \times 10^{23}$$
 atoms

(D) 96500 C (R) $(R) 6.023 \times 10^{23}$ atoms

(S) $\frac{1}{2} \times Molecular mass$

(A) Vapour density is relative density so unitless

Column-II

(P) Unitless

(Q) 6.023×10^{23} electrons

Column-I

(A) Vapour density (P,S)

V.DE Mot

(B) 1 mol (Q_1R)

(a) $1 \text{ mole} = 6.023 \times 10^{23} \text{ electrons}, 6.022 \times 10^{3} \text{ atom}$ (c) $12 \text{ fram Carbon} = \frac{12}{12} = 1 \text{ mol}, \text{ atoms} = 1 \times N_4$ 96500 Loulomb means = imole electrons

= 6.022 × 163 electrons

Column-I

(A)
$$N^{3-}$$
 (1 mol) $\rho = 7+3 = 10$, $\rho = 7$

(P) 10 mol electrons

(B)
$$O^{2-}$$
 (1 mol) $C = 8+2=10$, $P = 8$ (Q) 8 mol protons
(C) CH₄ (1 mol) $P = 6$ (R) 6.023×10^{24} electrons

(C)
$$CH_4$$
 (1 mol) $E = 6+4=10$, $P = 10$
(D) H_2O (1 mol) $E = 2+8=10$, $P = 10$

11.

(A) moles of
$$\vec{e} = 1 \times 10 = 10$$
, moles of protons = 1×7
No of $\vec{e} = 10.NT_{\text{M}} = 10 \times 6.02 \times 10^{23} = 6.02 \times 10^{24}$

(S) 10 mol protons

(B) moles of
$$\vec{e} = ixio = 10$$
, No of $\vec{e} = 10 \cdot x \in x \mid \delta^{23} = 6xi\delta^{4}$
moles of $P = 1xR = 8$

moles of
$$e = 1 \times 10 = 10$$
, No of $e = 10NA$

$$= 6 \cdot 02 \times 10^{4}$$
moles of $p = 1 \times 10 = 10$

Moder of
$$e = 1 \times 10 = 10$$
, no $e = 100 \text{ M}$

$$= 6.022 \times 16^{24}$$
Moder of protons = $1 \times 10 = 10$

A -> (PIR), B -> (PPRIY), C-> (PRS), D-> (PIRS)

(A) O comple of
$$O_2(g)$$
 (S) Weighs 32 g

(A) D comple SO_2

(B) Mars = $O \cdot S \times 64 = 32g$

Volume = $O \cdot S \times 22 \cdot 4 = 11 \cdot 2 L$

No of atoms = $O \cdot S \times NA \times 3 = 1 \cdot S \times NA$

(C) D complete of O_2

No of atoms = $O \cdot S \times NA \times 2 = NA$

(C) D complete of O_2

No of atoms = $O \cdot S \times 22 \cdot 4 = 11 \cdot 2 L$

No of atoms = $O \cdot S \times NA \times 2 = NA$

(C) D complete of O_2

No of atoms = $O \cdot S \times 22 \cdot 4 = 11 \cdot 2 L$

(D) moles = $O \cdot S \times 22 \cdot 4 = 11 \cdot 2 L$

(D) moles = $O \cdot S \times 22 \cdot 4 = 11 \cdot 2 L$

(D) moles = $O \cdot S \times 22 \cdot 4 = 11 \cdot 2 L$

(D) moles = $O \cdot S \times 22 \cdot 4 = 11 \cdot 2 L$

(D) moles = $O \cdot S \times 22 \cdot 4 = 11 \cdot 2 L$

(D) moles = $O \cdot S \times 22 \cdot 4 = 11 \cdot 2 L$

(D) moles = $O \cdot S \times 22 \cdot 4 = 11 \cdot 2 L$

(D) moles = $O \cdot S \times 22 \cdot 4 = 11 \cdot 2 L$

Column-II

(Q) Weighs 16 g

(P) Occupy 11.2 L at NTP

(R) Number of atoms = $2 \times 6.023 \times 10^{23}$

12. Column-I

(P, \leq) (A) 0.5 mol SO₂ (g)

(P) (B) 1 g of H_{2} (g)

 $(P, \triangle)(C)$ 0.5 mol $O_{\gamma}(g)$

- (a) Least molecular weight of the compound and
- (b) Molecular weight if one molecule contains 4 atoms of "S"

atomicity = 4

13.

400, 1600 (A) 200, 400 (B) 300, 400

An unknown compound contains 8% sulphur by mass. Calculate

- 1. S = Atomic mass ofs x atomicity x100

 - molecular mass
- (9) for least molecular mass atomicity =1

 - 8 = 32 x1 x100 => molecular macs = 400 molecular macs

8 = 32×4 ×100 => molecular mass=1600

(D) 400, 1200