The transformed data has the same shape as the original data—the features are simply shifted and scaled. You can see that all of the features are now between 0 and 1, as desired.

To apply the SVM to the scaled data, we also need to transform the test set. This is again done by calling the transform method, this time on X_test:

In[7]:

```
# transform test data
   X_test_scaled = scaler.transform(X_test)
   # print test data properties after scaling
   print("per-feature minimum after scaling:\n{}".format(X_test_scaled.min(axis=0)))
   print("per-feature maximum after scaling:\n{}".format(X_test_scaled.max(axis=0)))
Out[7]:
   per-feature minimum after scaling:
   -0.001 0.006 0.004 0.001 0.039 0.011 0. 0. -0.032 0.007 0.027 0.058 0.02 0.009 0.109 0.026 0. 0. -0. -0.002]
   per-feature maximum after scaling:
   [ 0.958 0.815 0.956 0.894 0.811 1.22 0.88 0.933 0.932 1.037
     0.427 0.498 0.441 0.284 0.487 0.739 0.767 0.629 1.337 0.391
     0.896 0.793 0.849 0.745 0.915 1.132 1.07 0.924 1.205 1.631]
```

Maybe somewhat surprisingly, you can see that for the test set, after scaling, the minimum and maximum are not 0 and 1. Some of the features are even outside the 0-1 range! The explanation is that the MinMaxScaler (and all the other scalers) always applies exactly the same transformation to the training and the test set. This means the transform method always subtracts the training set minimum and divides by the training set range, which might be different from the minimum and range for the test set.

Scaling Training and Test Data the Same Way

It is important to apply exactly the same transformation to the training set and the test set for the supervised model to work on the test set. The following example (Figure 3-2) illustrates what would happen if we were to use the minimum and range of the test set instead:

In[8]:

```
from sklearn.datasets import make blobs
# make synthetic data
X, _ = make_blobs(n_samples=50, centers=5, random_state=4, cluster_std=2)
# split it into training and test sets
X_train, X_test = train_test_split(X, random_state=5, test_size=.1)
# plot the training and test sets
fig, axes = plt.subplots(1, 3, figsize=(13, 4))
```

```
axes[0].scatter(X train[:, 0], X train[:, 1],
                 c=mglearn.cm2(0), label="Training set", s=60)
 axes[0].scatter(X_test[:, 0], X_test[:, 1], marker='^',
                  c=mglearn.cm2(1), label="Test set", s=60)
 axes[0].legend(loc='upper left')
 axes[0].set_title("Original Data")
 # scale the data using MinMaxScaler
 scaler = MinMaxScaler()
 scaler.fit(X train)
X_train_scaled = scaler.transform(X_train)
X test scaled = scaler.transform(X test)
 # visualize the properly scaled data
 axes[1].scatter(X train scaled[:, 0], X train scaled[:, 1],
                  c=mglearn.cm2(0), label="Training set", s=60)
 axes[1].scatter(X_test_scaled[:, 0], X_test_scaled[:, 1], marker='^',
                  c=mglearn.cm2(1), label="Test set", s=60)
 axes[1].set_title("Scaled Data")
 # rescale the test set separately
 # so test set min is 0 and test set max is 1
 # DO NOT DO THIS! For illustration purposes only.
 test scaler = MinMaxScaler()
 test scaler.fit(X test)
X_test_scaled_badly = test_scaler.transform(X_test)
 # visualize wrongly scaled data
 axes[2].scatter(X_train_scaled[:, 0], X_train_scaled[:, 1],
                  c=mglearn.cm2(0), label="training set", s=60)
 axes[2].scatter(X_test_scaled_badly[:, 0], X_test_scaled_badly[:, 1],
                 marker='^', c=mglearn.cm2(1), label="test set", s=60)
 axes[2].set title("Improperly Scaled Data")
 for ax in axes:
     ax.set_xlabel("Feature 0")
     ax.set_ylabel("Feature 1")
          Original Data
                                        Scaled Data
                                                                  Improperly Scaled Data
   Training set
                             1.0
   AA Test set
                                                           1.0
                                                         Feature 1
                             0.6
                                                           0.6
                             0.4
                                                           0.4
                             0.2
                                                           0.2
-10
                             0.0
                                                           0.0
                                                          -0.2
-0.2
                             -0.2 L
-0.2
                                         0.4 0.6
                                               0.8
                                                  1.0
                                                                         0.6
                                                                             0.8
```

Figure 3-2. Effect of scaling training and test data shown on the left together (center) and separately (right)

The first panel is an unscaled two-dimensional dataset, with the training set shown as circles and the test set shown as triangles. The second panel is the same data, but scaled using the MinMaxScaler. Here, we called fit on the training set, and then called transform on the training and test sets. You can see that the dataset in the second panel looks identical to the first; only the ticks on the axes have changed. Now all the features are between 0 and 1. You can also see that the minimum and maximum feature values for the test data (the triangles) are not 0 and 1.

The third panel shows what would happen if we scaled the training set and test set separately. In this case, the minimum and maximum feature values for both the training and the test set are 0 and 1. But now the dataset looks different. The test points moved incongruously to the training set, as they were scaled differently. We changed the arrangement of the data in an arbitrary way. Clearly this is not what we want to do.

As another way to think about this, imagine your test set is a single point. There is no way to scale a single point correctly, to fulfill the minimum and maximum requirements of the MinMaxScaler. But the size of your test set should not change your processing.

Shortcuts and Efficient Alternatives

Often, you want to fit a model on some dataset, and then transform it. This is a very common task, which can often be computed more efficiently than by simply calling fit and then transform. For this use case, all models that have a transform method also have a fit_transform method. Here is an example using StandardScaler:

In[9]:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
# calling fit and transform in sequence (using method chaining)
X_scaled = scaler.fit(X).transform(X)
# same result, but more efficient computation
X_scaled_d = scaler.fit_transform(X)
```

While fit_transform is not necessarily more efficient for all models, it is still good practice to use this method when trying to transform the training set.

The Effect of Preprocessing on Supervised Learning

Now let's go back to the cancer dataset and see the effect of using the MinMaxScaler on learning the SVC (this is a different way of doing the same scaling we did in Chapter 2). First, let's fit the SVC on the original data again for comparison: