PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-145368

(43)Date of publication of application: 20.05.2004

(51)Int.Cl.

G03G 15/20

(21)Application number: 2004-017792

27.01.2004

(71)Applicant: FUJI XEROX CO LTD

(72)Inventor:

NAITO YASUTAKA MAEYAMA RYUICHIRO

ITO KAZUYOSHI **OHARA HIDEAKI UEHARA YASUHIRO** HASENAMI SHIGEHIKO

(54) FIXING DEVICE

(22)Date of filing:

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a fixing device whose warm-up time is made almost zero and which provides excellent peeling performance even to thin paper to which much toner is transferred because of a color image. SOLUTION: The fixing device is provided with a thin heating belt having a conductive layer, a magnetic field generating means for performing the induction heating of the conductive layer from the outside of the thin heating belt, and a ferromagnetic body arranged on the opposite side of the heating belt to the magnetic field generating means through a gap between the ferromagnetic body and the heating belt. Then, an unfixed toner image on a recording medium is fixed at a nip part between the heating belt and a pressure member provided to face to the heating belt.

LEGAL STATUS

[Date of request for examination]

27.01.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許厅(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開2004-145368

(P2004-145368A)

(43) 公開日 平成16年5月20日(2004.5.20)

(51) Int.C1.⁷
GO3G 15/20

FΙ

GO3G 15/20 101

テーマコード (参考) 2HO33

審査請求 有 請求項の数 2 OL (全 17 頁)

	· · · · · · · · · · · · · · · · · · ·		
(21) 出願番号 (22) 出願日	特題2004-17792 (P2004-17792) 平成16年1月27日 (2004.1.27)	(71) 出願人	000005496 富士ゼロックス株式会社
(62) 分割の表示	特願2000-344202 (P2000-344202)		東京都港区赤坂二丁目17番22号
	の分割	(74)代理人	100087343
原出顧日	平成12年11月10日 (2000.11.10)	1	弁理士 中村 智廣
		(74)代理人	100082739
			弁理士 成瀬 勝夫
		(74) 代理人	100085040
	•	1	弁理士 小泉 雅裕
		(74) 代理人	100108925
			弁理士 青谷 一雄
		(74) 代理人	100114498
			弁理士 井出 哲郎
		(74) 代理人	100120710
		1	弁理士 片岡 忠彦
			最終頁に続く

(54) 【発明の名称】定替装置

(57)【要約】

【課題】 ウオームアップタイムを殆どゼロにすることができるとともに、カラ―画像でトナー量が多く転写された薄紙などでも、良好な剥離性能が得られる定着装置を提供することを課題とする。

【解決手段】 導電層を有する薄肉の加熱ベルトと、前記薄肉の加熱ベルトの外部から前記導電層を誘導加熱する磁界発生手段と、前記磁界発生手段に対して前記加熱ベルトの反対側に当該加熱ベルトとギャップを介して強磁性体とを有し、前記加熱ベルトと相対して設けられる加圧部材とのニップ部で、記録媒体上の未定着トナー像を定着するように構成して課題を解決した。

【選択図】 図1

1:加熱ベルト、2:基材厚、3:母延慮、4:表面原型層、5:エッジダイド、12:バッド部材、14:加上ロール、20:磁界発生手段。

20

40

・【特許請求の範囲】

【請求項1】

導電層を有する薄肉の加熱ベルトと、

前記薄肉の加熱ベルトの外部から前記導電層を誘導加熱する磁界発生手段と、

前記磁界発生手段に対して前記加熱ベルトの反対側に当該加熱ベルトとギャップを介して 強磁性体とを有し、

前記加熱ベルトと相対して設けられる加圧部材とのニップ部で、記録媒体上の未定着トナー像を定着することを特徴とする定着装置。

【請求項2】

前記加熱ベルトは柔軟性を有する基材に前記導電層を設け、

当該導電層は、厚さが約 5 μ m の銅であり、磁界発生手段に印加する交流電流の周波数が 10乃至50k H z であることを特徴とする請求項1に記載の定着装置。

【発明の詳細な説明】

【技術分野】

[0001]

この発明は、電子写真方式を採用した複写機やプリンター、あるいはファクシミリ等の画像形成装置において、未定着トナー像を加熱・加圧定着するのに用いられる定着装置に係わり、特に加熱部材としてベルト状部材を使用した定着装置に関するものである。

【背景技術】

[0002]

【特許文献1】特開2000-181258号公報

【特許文献 2 】 特開 2 0 0 0 - 2 9 3 3 2 号公報 【特許文献 3 】 特開 平 7 - 2 9 5 4 1 1 号公報

【特許文献4】特開平8-69190号公報

【特許文献 5】特開平11-38827号公報

[0003]

従来、上記電子写真方式を採用した複写機やプリンター、あるいはファクシミリ等の画像形成装置において、未定着トナー像を加熱・加圧定着するのに用いられる定着装置としては、少なくとも金属製のコアを有する加熱ロールの内部に、ハロゲンランプ等の加熱源を設けて、加熱ロールを内部から加熱するとともに、前記加熱ロールに圧接するように加圧ロールを配設し、これら加熱ロールと加圧ロールとのニップ部間を、未定着トナー像が転写された記録媒体を通過させることにより、記録媒体上に未定着トナー像を熱及び圧力で定着させ、定着画像を得るように構成したものが、主に用いられている。

[0004]

ところで、定着装置においては、省エネルギーの観点や、画像形成装置の使用時にユーザーを待たせない等の観点から、加熱部材を瞬時に所定の温度に加熱することができ、待ち時間 (ウオームアップタイム) をゼロとした装置が求められているが、上述した加熱ロールをその内部に配設したハロゲンランプ等の加熱源によって加熱する方式では、以下の理由により達成することができない。

[0005]

すなわち、加熱部材である加熱ロールは、加圧ロール等の加圧部材が圧接されるものであるため、所定以上の剛性を保つ必要があり、ある厚さ以上の金属製のコアを有している。そのため、上記加熱ロールは、熱容量をあまり減少させることができず、かつ加熱源としてのハロゲンランプは、加熱ロールの内部に設けられており、内部から加熱ロールを加熱することになるので、加熱ロールの表面に熱が伝わるまで時間がかかるため、待ち時間が必然的に長くなってしまう。さらに、上記加熱ロールを加熱するハロゲンランプは、通常、ガラス管を有しているため、ハロゲンランプ自体もある程度の熱容量を有しており、まずはハロゲンランプ自身を温めるのにも時間がかかってしまう。

[0006]

以上の理由により、上記従来の定着装置では、ウオームアップに時間を要してしまい、

20

40

・ 待ち時間が長くなるという問題点を有している。また、加熱源として、ハロゲンランプを 使用すると、当該ハロゲンランプのON・OFF時に、通電電流が過渡的に流れる所謂" フリッカー"現象が発生するという問題点も有している。

[0007]

そこで、近年、上記定着装置において使用される加熱手段として、ハロゲンランプの代わりに、誘導加熱方式を利用した加熱手段が検討されている。これは、導電性層を有する加熱部材に、磁界発生手段によって発生させた磁界を作用させて、電磁誘導作用により加熱部材の加熱を行うというものであり、フリッカー等の問題が無く、加熱対象のみを瞬時に加熱することができるので、待ち時間の短い定着装置を提供するために、非常に有効な加熱手段である。

[0008]

また、上記ハロゲンランプ等の加熱手段は、加熱ロールの内部など360°周囲が覆われた状態でしか、使用することができないのに対して、誘導加熱方式の場合には、磁界発生手段は、加熱部材に磁界を作用させることができさえすれば、加熱部材の内部に限らず、外部に設けても良く、定着装置の構成に応じて、任意の位置に配置することができる。すなわち、上記誘導加熱方式を採用した加熱手段の場合には、任意の位置に配置して、加熱したい部分だけに、磁界を作用させて、所望の部分だけを選択的にしかも瞬時に加熱することができるという利点を有している。

[0009]

上記誘導加熱方式を採用した定着装置としては、例えば、特開2000-181258 号公報や特開2000-29332号公報に開示されたものがある。

[0010]

この特開2000-181258号公報に係る定着装置は、導電性を有する加熱手段と、この加熱手段に圧接する圧接手段と、導電性線材によりコイル状に形成され、発生する磁場を前記加熱手段に作用させる磁場発生手段と、この磁場発生手段より発生する磁場を遮断する磁場遮断手段と、からなり、前記磁場発生手段が前記加熱手段と前記磁場遮断手段との間に挟まれるように配置したものである。

[0011]

上記特開2000-181258号公報に係る定着装置は、導電性を有する加熱手段としての加熱ロールに対して、磁場発生手段をその外側または内側に配置した例である。このように、磁場発生手段は、加熱部材である加熱ロールに対して、任意の位置に配置することができるため、装置の設計の自由度が広がる。また、ハロゲンランプ等を加熱源として使用した定着装置を比較すると、加熱対象である加熱ロールのみを選択的に加熱するため、ウオームアップが10~30%程度速くなる。

【発明の開示】

【発明が解決しようとする課題】

[0012]

しかしながら、上記従来技術の場合には、次のような問題点を有している。すなわち、上記特開2000-181258号公報や特開2000-29332号公報等に係る定着装置の場合には、誘導加熱方式を採用しているため、ハロゲンランプ等の加熱源を使用した場合に比べて、ウオームアップ時間が速まるものの、加熱ロール自体が、剛性を保つためにある厚さ以上の肉厚の金属コアを有しているため、ある程度の熱容量を持っており、ウオームアップ短縮に対しては限界があり、ウオームアップタイム0秒を達成することはできないという問題点を有している。

[0013]

一方、特開平7-295411号公報や特開平8-69190号公報、あるいは特開平 11-38827号公報のように、定着部材としてエンドレスのフィルムを用いた定着装置も提案されている。

[0014]

上記特開平7-295411号公報に係る像加熱装置は、金属フィルムを備えた像加熱

40

・用フィルムと、この像加熱用フィルムの一方の面側に設けられた励磁コイルと、この励磁コイルにより発生する磁束により前記像加熱用フィルムを発熱させ、この像加熱用フィルムの熱により記録材上に担持された未定着トナー像を加熱する像加熱装置において、前記像加熱用フィルムは、前記金属フィルムの前記励磁コイル側の面に低熱導電性樹脂層を、他方の面に離型性樹脂層を有するように構成したものである。

[0015]

また、上記特開平8-69190号公報に係る定着装置は、用紙搬送加熱部と、この用紙搬送加熱部に送り込まれる未定着トナーが付着した用紙を当該用紙搬送加熱部と共に所定の押圧力をもって挟持する加圧ローラ部とを備えた定着装置において、前記用紙搬送加熱部を、外部駆動されて移動するベルト状の耐熱性無端薄肉体を内側から保持すると共に、当該耐熱性無端薄肉体が前記加圧ローラ部に当接した状態を維持し且つその回転移動を案内する金属性支持体と、この金属性支持体に前記耐熱性無端薄肉体が介して対向装備された誘導加熱コイルとを備え、この誘導加熱コイルを前記加圧ローラ部の外部に装備するように構成したものである。

[0016]

さらに、上記特開平11-38827号公報に係る定着装置は、導電性材料から構成され、回転駆動される第1の転接部材と、この第1の転接部材に対して加圧状態で転接 語材と、この転接部間に現像剤像が形成されて被定着部材を介在して通過させる第2の転接部材と、上記転接部材側に配設され、第1の転接部材の上記転接部を集中して誘導加熱し、転接部に介在される被定着材の現像を定着像に換える誘導加熱手段を備えた定置において、予め、上記被定着材の種類に対応する上記誘導加熱手段の熱量データを記憶する記憶手段と、上記転接部に搬送される被定着材の種類を検出する検出手段と、この検出手段の検出信号を受けて検出された被検出材の種類に対応する熱量データを上記記憶手段の検出信号を受けて検出された被検出材の種類に対応する熱量データを上記記憶手段から読み出し、この読み出した熱量データに応じて上記誘導加熱手段を制御する制御手段と、を具備するように構成したものである。

[0017]

これらの定着装置は、定着部材として導電性を有するフィルムを使用しており、フィルム自体の熱容量は、同等クラスの定着装置の定着ロールに対して1/2~1/10程度まで小さくなっており、さらに、誘導加熱で直接フィルムを加熱することにより、瞬時に定着部材としてのフィルムを所望の温度にまで立ち上げることができる。

[0018]

しかし、これらの提案に係る定着装置の場合には、それぞれ以下に示すような問題点を 有している。

[0019]

まず、上記特開平11-38827号公報に係る定着装置の場合には、第1の転接部材としての定着ベルトが停止していれば、定着ベルトそのものは瞬時に温まるものの、定着ベルトの内部で当該定着ベルトを張架している2本のローラがベルトの熱を奪ってしまうため、ベルトが定着に必要な温度に温まるまで、待ち時間が生じてしまうという問題点を有している。また、定着ニップ内でのベルトの形状は、2本のローラに張架された状態であるため、ほぼ直線状であり、ニップ内部とニップ出口部で、ベルトに急激な曲率の変化を持たせることが出来ず、カラー画像でトナーが多く転写された薄紙などでは、用紙がベルトから離れることができず、剥離不良が生じてしまうという問題点を有している。

[0020]

しかも、上記特開平11-38827号公報に係る定着装置の場合には、2本のロールによって定着ベルトを張架しているので、定着ベルトの片寄りを制御する複雑な機構が必要になってしまうという問題点をも有している。

[0021]

また、上記特開平 7 - 2 9 5 4 1 1 号公報に係る像加熱装置の場合には、励磁コイルによって像加熱用フィルムを瞬時に加熱することができるものの、ガイド部材はR形状の剛体であるため、ガイド部材のR形状の曲率にベルトが追従できず、さらにはベルトの曲げ

・ 方向をニップ内部と外部とで反転させることができず、カラー画像でトナーが多く転写された薄紙などでは、用紙を像加熱用フィルムから剥離することができず、剥離不良が生じてしまうという問題点を有している。

[0022]

さらに、上記特開平8-69190号公報に係る定着装置の場合も上記と同様に、ベルト状の耐熱性無端薄肉体を張架するロールが無く、ベルト状の耐熱性無端薄肉体の内部で熱を奪う部材は、金属製支持体のみなので、ウオームアップを短縮することができる。しかし、金属製支持体の形状がベルト状の耐熱性無端薄肉体の曲率に沿った、R形状となっているため、カラー画像でトナー量が多く転写された薄紙などでは、剥離不良が生じてしまうという問題点を有している。

[0023]

そこで、この発明は、上記従来技術の問題点を解決するためになされたものであり、その目的とするところは、ウオームアップタイムを殆どゼロにすることができるとともに、カラー画像でトナー量が多く転写された薄紙などでも、良好な剥離性能が得られる定着装置を提供することにある。

【課題を解決するための手段】

[0024]

すなわち、請求項1に記載の発明は、導電層を有する薄肉の加熱ベルトと、前記薄肉の加熱ベルトの外部から前記導電層を誘導加熱する磁界発生手段と、前記磁界発生手段に対して前記加熱ベルトの反対側に当該加熱ベルトとギャップを介して強磁性体とを有し、前記加熱ベルトと相対して設けられる加圧部材とのニップ部で、記録媒体上の未定着トナー像を定着するように構成したものである。

[0025]

上記ベルトの導電層を形成する材料としては、例えば、銅、鉄、アルミニウム、ニッケルなどの種々の材料を用いることができるが、その中でも銅は、導電率が高いため、薄層化することによって、単位面積あたりの抵抗値を所定の値に設定することができ、発熱効率を向上させることができる。

[0026]

すなわち、上記導電層を有する薄肉の加熱ベルトは、磁界の強度及び周波数を一定とすれば、単位面積あたりの抵抗値によって発熱量が決まり、鉄やニッケルなどの比較的等に率が低い材料を用いた場合には、導電層の厚さをある程度(約50~70μm程度)に導電層の厚さをある程度厚くすると、必然的に加熱ベルト自体の剛性が高くなり、当該加熱ベルトは、柔軟性(フレキシビリティ)を失うことになる。上記加熱ベルトは、剛性が高くなり、柔軟性(フレキシビリティ)を失うと、前記加熱ベルトの内部に、剛性を有すくなり、柔軟性(フレキシビリティ)を失うと、前記加熱でルトの内部に、弾性層を有する押圧部材を設け、当該押圧部材を加熱ベルトを介して加圧部材に押圧することにより、定着のためのニップ部を形成する際に、加熱ベルトが加圧部材の表面形状に沿って変形に定着のためのニップ部を形成がルトが加圧部材との間に形成されるニップ部の内部において、圧力が局所的に高くなったり、圧力分布が意に反して不均一となるため、ニップ部における別離不良などが発生する虞れがある。

[0027]

更に説明すると、上記加熱ベルトの剛性については、例えば、当該加熱ベルトの基材として用いられるポリイミドの物性値(ヤング率E)は、各メーカ・各種類により異なるが、 $2\sim6$ G p a 程度である。ちなみに、ニッケルのヤング率Eは、2 O 5 G p a である。これに対して、銅の物性値(ヤング率E)は 1 2 3 G p a であるが、ポリイミド層の厚さが例えば 7 5 μ m に対して、銅からなる導電性層の厚みは、5 μ m 程度であるため、剛性(EI:Iは厚さの 3 乗で効く)に対しては、たかだか $1\sim2$ %の寄与であり、加熱ベルトの剛性は、基材であるポリイミド層などによって決まる。

[0028]

50

20

50

また、上記加圧部材としては、例えば、加圧ロールが用いられるが、この加圧ロールは、金属製コアの外周に弾性体層を有しないものであっても、弾性体層を有するものであっても何れでも良い。

[0029]

さらに、上記押圧部材としては、例えば、加熱ベルトの内部に固定して配置されるパッド部材が用いられ、このパッド部材は、シリコンゴム等からなる弾性層と、当該弾性層を支持する金属等からなる支持部材などから構成されたものが用いられる。また、上記押圧部材としては、加熱ベルトの内部に回転自在に配置され、加圧部材に圧接するロール状の押圧部材を用いても良い。このロール状の押圧部材は、例えば、加圧ロールが金属製コアの外周に弾性体層を有しないものである場合には、金属製コアの表面に弾性体層を有するものである場合には、金属製コアの表面に弾性体層を有するものである場合には、金属製コアの表面に弾性体層を有するものであっても、強性体層を有しないものであっても何れでも良い。

[0030]

さらに、上記押圧部材として、例えば、シリコンゴム等からなる弾性層と、当該弾性層を支持する金属等からなる支持部材などから構成されたパッド部材を用いた場合には、弾性層と支持部材の厚みを一定に設定して、ニップ部内の圧力分布を対象に設定したり、ニップ部の出口側の弾性層の厚みを薄く設定するとともに、相対的にニップ部の出口側の弾性層の厚みを厚く設定することにより、ニップ部内の圧力分布を、前記加熱ベルトの移動方向に沿って当該ニップ部の出口側の圧力が大きくなるように非対称に設定することもできる。

[0031]

また、請求項2に記載の発明は、前記加熱ベルトは柔軟性を有する基材に前記導電層を設け、当該導電層は、厚さが約5μmの銅であり、磁界発生手段に印加する交流電流の周波数が10万至50kHzであるように構成したものである。

[0032]

さらに、この発明では、例えば、ニップ部内の圧力分布が、当該ニップ部の入口と出口とで非対称であり、出口部の圧力が入口部に対して高くなるように非対称に設定するように構成される。

[0033]

また更に、この発明では、例えば、導電層を有する薄肉の加熱ベルトを、磁界発生手段が発生する磁界によって誘導加熱し、前記加熱ベルトと相対して設けられる加圧部材とのニップ部で、記録媒体上の未定着トナー像を定着する定着装置において、前記押圧部材によって加熱ベルトを加圧部材に押圧することにより、前記ニップ部の内部とニップ部の外部とで、加熱ベルトの曲率を反転させるように構成される。

[0034]

さらに、この発明では、例えば、導電層を有する薄肉の加熱ベルトを、磁界発生手段が発生する磁界によって誘導加熱し、前記加熱ベルトと相対して設けられる加圧部材とのニップ部で、記録媒体上の未定着トナー像を定着する定着装置において、前記加熱ベルトが、基材層、導電層、表面離型層の少なくとも3層からなる、可撓性を有するベルトからなるように構成される。

[0035]

更にまた、この発明では、例えば、導電層を有する薄肉の加熱ベルトを、磁界発生手段が発生する磁界によって誘導加熱し、前記加熱ベルトと相対して設けられる加圧部材とのニップ部で、記録媒体上の未定着トナー像を定着する定着装置において、前記押圧部材によって加熱ベルトを加圧部材に押圧することにより、前記ニップ部の内部において、加熱ベルトの曲率を反転させるように構成される。

[0036]

また、この発明では、例えば、導電層を有する薄肉の加熱ベルトを、磁界発生手段が発生する磁界によって誘導加熱し、前記加熱ベルトと相対して設けられる加圧部材とのニッ

30

40

・プ部で、記録媒体上の未定着トナー像を定着する定着装置において、前記加熱ベルトの両端に、当該加熱ベルトの端部をガイドするベルトガイド部材を設けるように構成される。 【0037】

さらに、この発明では、例えば、導電層を有する薄肉の加熱ベルトを、磁界発生手段が発生する磁界によって誘導加熱し、前記加熱ベルトと相対して設けられる加圧部材とのニップ部で、記録媒体上の未定着トナー像を定着する定着装置において、前記加熱ベルトと押圧部材の間に潤滑剤を介在させるように構成される。

[0038]

また更に、この発明では、例えば、導電層を有する薄肉の加熱ベルトを、磁界発生手段が発生する磁界によって誘導加熱し、前記加熱ベルトと相対して設けられる加圧部材とのニップ部で、記録媒体上の未定着トナー像を定着する定着装置において、前記加熱ベルトと押圧部材との間に、摺動性の良いシート材を介在させるように構成される。

[0039]

さらに、この発明では、例えば、導電層を有する薄肉の加熱ベルトを、磁界発生手段が発生する磁界によって誘導加熱し、前記加熱ベルトと相対して設けられる加圧部材とのニップ部で、記録媒体上の未定着トナー像を定着する定着装置において、前記加圧部材の非通紙部に、当該加圧部材の表面に接触する金属ロールを設けるように構成される。

[0040]

又、この発明では、例えば、導電性を有する薄肉の加熱ベルトを、磁界発生手段が発生する磁界によって誘導加熱し、前記加熱ベルトと相対して設けられる加圧部材とのニップ部で、記録媒体上の未定着トナー像を定着する定着装置において、前記加圧部材に、当該加圧部材の表面に接触する金属ロールを設け、当該金属ロールを加圧部材の表面に対してリトラクト可能とするように構成される。

[0041]

更に、この発明では、例えば、導電層を有する薄肉の加熱ベルトを、磁界発生手段が発生する磁界によって誘導加熱し、前記加熱ベルトと相対して設けられる加圧部材とのニップ部で、記録媒体上の未定着トナー像を定着する定着装置において、前記加熱ベルトの内部に、当該加熱ベルトと所定のギャップを介して強磁性体などからなる磁性コアを設けるように構成される。

[0042]

また、この発明では、例えば、導電層を有する薄肉の加熱ベルトを、磁界発生手段が発生する磁界によって誘導加熱し、前記加熱ベルトと相対して設けられる加圧部材とのニップ部で、記録媒体上の未定着トナー像を定着する定着装置において、前記加熱ベルトの内部に、弾性層を有する内部加圧ロールを設け、当該内部加圧ロールを加熱ベルトを介して外部加圧ロールに押圧することにより、前記内部加圧ロール側を凹形状に変形させた定着のためのニップ部を形成するように構成される。

[0043]

上記請求項1及び2に記載の発明については、導電層を有する薄肉の加熱ベルトと、前記薄肉の加熱ベルトの外部から前記導電層を誘導加熱する磁界発生手段と、前記磁界発生手段に対して前記加熱ベルトの反対側に当該加熱ベルトとギャップを介して強磁性体とを有し、前記加熱ベルトと相対して設けられる加熱部材とのニップ部で、記録媒体上の未定着トナー像を定着するように構成したので、定着装置の加熱部材の熱容量が極めて小さくなり、ウオームアップタイムが短縮され、さらに、当該ニップ部において、十分な加熱及び加圧を行うことができ、良好な定着性を得ることができる。

[0044]

また、加熱ベルトの内部に押圧部材を設け、加熱ベルトを挟んで押圧部材と加圧部材とで定着ニップ部を形成することで、ニップ部内部の加熱ベルトの曲率を、ニップ以外の部分と反転させることができる。

[0045]

すなわち、ニップ部の内部では、記録媒体は加熱ベルトの方向と同様に加圧部材側に巻

40

・・・・き付く方向であり、ニップ部の出口部では、加熱ベルトが急激に曲率を変えるため、記録 媒体は、加熱ベルトの曲率の変化について行けず、加熱ベルトから離れる。よって、カラ 一画像でトナーが多く載った薄紙でも、剥離不良が生じることが無くなる。

[0046]

また、上記押圧部材に弾性層を設けることで、トナーを包み込むように定着することが出来、画質が向上する。

[0047]

この発明においては、例えば、押圧部材の加熱ベルトと接触する部分を、弾性層と、非弾性層(支持部材)との組み合わせとすることで、ニップ部の内部で、加熱ベルトの曲率を反転させることが可能となり、ニップ部の内部で加熱ベルトの曲率を急激に変化させることで、加熱ベルトと記録媒体を分離させやすくなり、かつ両面定着時に加圧部材側に記録媒体が巻く付くことを防止できるようになる。また、ニップ部の内部で溶融しているトナーに、ニップ部の出口で高い圧力を加えることが出来るので、トナーが用紙の繊維間に入り込み、定着性を向上させることができる。

[0048]

さらに、この発明においては、例えば、加熱ベルトの両端部にエッジガイドを設けることで、加熱ベルトの蛇行や座屈等を防止することができるので、張架ロールを設ける必要が無くなり、すなわち、加熱ベルト内部の熱容量を小さくすることが出来、ウオームアップが短縮できる。

[0049]

また、この発明においては、例えば、本定着装置では、加熱ベルトを張架しないので、 駆動源は、加圧ロール側に持たせて、加熱ベルトはそれに対して従動する構成であり、加 熱ベルトと押圧部材の間の摺動性が悪いと、押圧部材がプレーキとなり、加熱ベルトが所 定の速度で移動しなくなり、画像ずれや紙しわなどのトラブルが生じる。そこで、加熱ベ ルトと押圧部材の間の摺動性を良くするために、加熱ベルト・押圧部材間に、潤滑剤を介 在させたり、摺動性の良いシート部材を介在させたり、両者を同じに介在させたりするこ とで、加熱ベルトが、加圧部材の速度に対して遅れることがなくなり、上述のトラブルが 防止できる。

[0050]

また、この発明においては、例えば、小サイズの用紙を連続で通紙したときなど、非通紙部の温度が上昇してしまう。そこで、加圧部材に熱伝導性の良い金属のロールを接触させ、従動させることで、非通紙部領域の高温部の熱を奪い、軸方向で温度の低い部分に熱を移動させることが出来る。すなわち、小サイズの連続通紙時の非通紙部領域の温度上昇を抑え、軸方向の温度分布を均すことが出来る。また、リトラクトを可能にすることで、朝一番などの加圧部材が冷えているときや、最大サイズの用紙などのときは、加圧部材から離しておくことができるので、結果として、加圧部材側の熱容量を小さくすることができ、ウオームアップを短縮することができる。

[0051]

さらに、この発明においては、例えば、加熱ベルトの内部に強磁性体からなるコアを設けることで、磁束を効率よく集めることができるようになり、電源の力率がアップする。 よって、電源の周波数を下げることができ、電源の小型化・低コスト化につながる。

【発明の効果】

[0052]

以上説明してきた様に、この発明によれば、加熱部材として導電層を有する薄肉の無端ベルトを無張架で使用し、ベルト内部には張架ロールなどを設けず、ニップを形成するのに、熱容量の小さいパッドを使用するので、ベルト内部の熱容量を可能な限り小さくでき、また誘導加熱で被加熱体であるベルト自体を直接加熱できるので、ウオームアップタイムを可能な限り〇秒に近づけることができる。

[0053]

また、弾性層を有するパッドで、定着ニップを形成しており、かつフレキシブルなベル 50

・・・・トを使用しているので、ベルトはニップ内ではパッドの形状に倣い、すなわち、ニップ内部とニップ以外の部分とで、曲率を変化させたり、ニップ内部においても、曲率を変化させたりできるので、トナーが大量に載った薄い記録材の剥離も容易になる。さらに、弾性層の効果により、トナーを包み込むように定着できるので、画質が良化する。

【発明を実施するための最良の形態】

[0054]

以下に、この発明の実施の形態について図面を参照して説明する。

[0055]

実施の形態 1

まず、この実施の形態 1 に係る定着装置の構成と、当該定着装置を構成する部材について説明する。

[0056]

この実施の形態に係る定着装置は、ウオームアップタイムの短縮化、及び記録媒体の剥離性能の確保を目的とし、定着部材としては、熱容量の小さい柔軟(フレキシブル)なベルト状の部材を使用し、このベルト状部材の内部には、熱を奪う部材を極力少なくする(極力部材を配設しない)ように構成されている。すなわち、上記ベルト状部材(加熱ベルト)の内部には、加圧部材に対向して、定着ニップ部を形成する弾性層を有するパッド部材(押圧部材)のみしか、基本的には設けない構成を採用している。また、加熱対象となるベルト状部材を直接加熱できるように、ベルト状部材に導電性層を持たせ、磁界発生手段が発生する磁界によって誘導加熱させる方式を用いている。

[0057]

図1はこの発明の実施の形態1に係る定着装置を示す概略構成図である。

[0058]

図1において、1は加熱定着部材としての加熱ベルトを示すものであり、この加熱ベルト1は、導電層を有する無端状のベルトから構成されている。上記加熱ベルト1は、図2に示すように、その内側から、耐熱性の高いシート状部材からなる基材層2と、当該基材層2の上に積層された導電層3と、最も上層となる表面離型層4の少なくとも3層を基本に備えている。この実施の形態では、加熱ベルト1として、シート状の基材層2と、導電層3と、表面離型層4の3層からなる直径φ30mmの無端状ベルトが使用されている。

[0059]

上記加熱ベルト1の基材層 2 は、例えば、厚さ10~100 μ m、更に好ましくは厚さ50~100 μ m(例えば、75 μ m)の耐熱性の高いシートであることが好ましく、例えばポリエステル、ポリエチレンテレフタレート、ポリエーテルサルフォン、ポリエーテルケトン、ポリサルフォン、ポリイミド、ポリイミドアミド、ポリアミド等の耐熱性の高い合成樹脂からなるものが挙げられる。

[0060]

また、この実施の形態では、図3に示すように、無端状のベルトからなる加熱ベルト1の両端部を、エッジガイド5に突き当てることによって、当該加熱ベルト1の吃行を見りして使用するように構成されている。このエッジガイド5は、加熱ベルト1の内径よりも若干小さな外径を有する円筒状部6と、当該円筒状部6の端部に設けられたフランジ部7の外側に突設された円筒状あるいは円柱状の保持部8とから構成されている。上記エッジガイド5は、両フランジ部7の内壁面間の距離が、加熱ベルト1の軸方向に沿った長さよりも若干長くなるように、当該加熱ベルト1の両端部に固定、ニップ部以外の部分では、直径φ30mmの円形状を保ち、当該加熱ベルト1の端部がエッジガイド5に突き当たった場合でも、この加熱ベルト1に座屈等が生じない程度の剛性をする必要があり、例えば、厚さ50μmのポリイミド製のシートが使用されている。

[0061]

また、上記導電層 3 は、後述の磁界発生手段によって生じる磁界の電磁誘導作用により、誘導発熱する層であり、鉄・コバルト・ニッケル・銅・クロム等の金属層を 1 ~ 5 O μ

20

10

30

40

--

[0062]

この実施の形態では、導電層 3 として、導電率の高い銅を、発熱効率が高くなるように 5 μ m 程度の極薄い厚さで、上述のポリイミドからなる基材層 2 上に蒸着させたものが用いられている。

[0063]

さらに、上記表面離型層 4 は、記録媒体 9 上に転写された未定着トナー像 1 0 と、直接接する層であるため、離型性の良い材料を使用する必要がある。この表面離型層 4 を構成する材料としては、例えば、テトラフルオロエチレンパーフルオロアルキルビニルエーテル重合体(PFA)、ポリテトラフルオロエチレン(PTFE)、シリコン共重合体、またはこれらの複合層等が挙げられる。上記表面離型層 4 は、これらの材料のうちから適宜選択されたものを、 $1\sim5$ 0 μ mの厚さでベルトの最上層に設けたものである。この表面離型層 4 の厚さは、薄すぎると、耐磨耗性の面で耐久性が悪く、加熱ベルト 1 の寿命が短くなってしまい、逆に、厚すぎると、ベルトの熱容量が大きくなってしまう、つまりウオームアップが長くなってしまうため、望ましくない。

[0064]

この実施の形態では、耐磨耗性と、ベルトの熱容量のバランスを考慮して、加熱ベルト 20 1の表面離型層 4 として、厚さ 1 0 μ m のテトラフルオロエチレンパーフルオロアルキル ビニルエーテル重合体 (PFA) が使用されている。

[0065]

また、上記の如く構成される加熱ベルト1の内部には、例えば、シリコンゴム等の弾性層11を有する押圧部材としてのパッド部材12が設けられている。この実施の形態では、パッド部材12として、ゴム硬度がJIS-Aで35°のシリコンゴム11を、SUS・鉄等の金属や、耐熱性の高い合成樹脂等からなる剛性を持つ支持部材13に積層したものが用いられている。上記シリコンゴムからなる弾性層11は、例えば、均一な厚さのものが使用される。また、上記パッド部材12の支持部材13は、図示しない定着装置のフレームに固定した状態で配置されているが、弾性層11が所定の押圧力で後述する加圧ロールの表面に圧接するように、図示しないスプリング等の付勢手段によって、加圧ロールの表面に向けて押圧してもよい。

[0066]

そして、上記定着装置は、パッド部材12と加熱ベルト1を介して対向する部分に、加圧部材14が設けられている。この加圧部材14は、当該加圧部材14とパッド部材12とで加熱ベルト1を挟持した状態に保持してニップ部15を形成し、当該ニップ部15を未定着トナー像10が転写された記録媒体9を通過させることにより、熱及び圧力で未定着トナー像10を記録媒体9上に定着して、定着画像を形成するようになっている。

[0067]

上記加圧部材14として、この実施の形態では、直径φ26mmの中実の鉄製ロール1 406の表面に、離型層17として、厚さ30μmのテトラフルオロエチレンパーフルオロアルキルビニルエーテル重合体(PFA)を被覆した加圧ロールが使用されている。

[0068]

また、上記加圧ロール14には、図1に示すように、熱伝導性の良いアルミニウムやステンレス等の金属からなる金属ロール18が、離接可能に設けられている。この金属ロール18は、定着装置に通電が開始された朝一番などで、加熱ベルト1や加圧ロール14の温度が冷えているときには、加圧ロール14から離れた位置に停止している。そして、上記定着装置において、例えば、小サイズ用紙を連続して定着処理した場合など、当該定着装置が使用されるに連れて、加熱ベルト1や加圧ロール14に軸方向に沿った温度差が生じたときには、上記金属ロール18を加圧ロール14と当接させるように構成されている

40

50

・。なお、上記金属ロール18は、加圧ロール14に当接した際に、当該加圧ロール14と 従動するようになっている。この実施の形態では、金属ロール18として、直径φ10m mのアルミニウム製の中実ロールが使用されている。

[0069]

この実施の形態では、上記加圧ロール14は、図示しない加圧手段により、加熱ベルト 1を介してパッド部材12に押圧された状態で、図示しない駆動手段によって回転駆動さ れている。

[0070]

加熱部材である加熱ベルト1は、加圧ロール14の回転に従動して、循環移動するものである。そこで、この実施の形態では、加熱ベルト1とパッド部材12の間に、摺動性を良好とするため、耐摩擦性が強く、摺動性の良いシート材、例えばテフロン(登録商標)樹脂を含浸させたガラス繊維シート(中興化成工業:FGF400-4等)を介在させ、さらに潤滑剤として、シリコンオイルなどの離型剤を、加熱ベルト1の内面に塗布することで、摺動性を向上させるように構成されている。このようにすることで、実際の加熱において、加圧ロール14の空回転時の駆動トルクが、約6kg・cmから約3kg・cmにまで低減することができる。従って、上記加熱ベルト1は、加圧ロール14と滑ること無く従動し、加圧ロール14の回転速度と等しい速度で循環移動することが可能となっている。

[0071]

また、上記加熱ベルト1は、上述したように、その軸方向の両端部において、図3に示すように、エッジガイド5により、軸方向の動きが規制されており、当該加熱ベルト1に 蛇行などが発生するのが防止されている。

[0072]

ところで、この実施の形態では、導電層を有する薄肉の加熱ベルトを、磁界発生手段が 発生する磁界によって誘導加熱するように構成されている。

[0073]

上記磁界発生手段 2 0 は、加熱ベルト 1 の回転方向と直交する方向を長手方向とする横長に形成された部材であり、被加熱部材である加熱ベルト 1 と 0 . 5 mm ~ 2 mm程度のギャップを保持して、加熱ベルト 1 の外側に設置されている。この磁界発生手段 2 0 は、本実施例では、励磁コイル 2 1 と、当該励磁コイル 2 1 を保持するコイル支持部材 2 2 と、励磁コイル 2 1 の中心部に設けられる強磁性体からなる芯材 2 3 と、励磁コイル 2 1 に対して加熱ベルト 1 の反対側に設けられる磁場遮蔽手段 2 4 とで形成されている。

[0074]

上記励磁コイル21としては、例えば、相互に絶縁された直径 φ 0.5 m m の銅線材を 16 本東ねたリッツ線を直線状に、所定の本数だけ並列的に配置したものが用いられる。 【0075】

この励磁コイル21には、図4に示すように、励磁回路25によって、所定の周波数の交流電流を印加することにより、当該励磁コイル21の周囲には変動磁界Hが発生し、この変動磁界Hが、加熱ベルト1の導電層3を横切るときに、電磁誘導作用によって、その磁界Hの変化を妨げる磁界を生じるように、加熱ベルト1の導電層3に渦電流Bが生じる。上記励磁コイル21に印加する交流電流の周波数は、例えば、10~50kHzに設定されるが、この実施の形態では、交流電流の周波数が30kHzに設定されている。すると、この渦電流Bが加熱ベルト1の導電層3を流れることにより、当該導電層3の抵抗に比例した電力(W=IR²)でジュール熱が発生し、加熱部材である加熱ベルト1を加熱するものである。

[0076]

上記コイル支持部材22としては、耐熱性のある非磁性材料を用いるのが望ましく、例えば、耐熱ガラスや、ポリカーボネート等の耐熱性樹脂が用いられる。

[0077]

また、上記磁界遮蔽手段24としては、鉄、コバルト、ニッケル、フェライト等の磁性

・・・・材料が用いられる。この磁界遮蔽手段24は、励磁コイル21で発生した磁束を集めて、 磁路を形成するものであり、効率の良い加熱を可能とすると同時に、磁束が定着装置外に 漏れて、周辺部材が不本位に加熱されるのを防止するためのものである。

[0078]

また、上記励磁コイル21の中心部には、強磁性体であるフェライト等からなる芯材2 3が設けられている。このように構成することで、励磁コイル21で発生する磁束を効率 よく集めることが出来、加熱効率を上昇させることができる。そのため、励磁コイル21 に交流電流を印加する高周波電源の周波数を下げたり、励磁コイル21の巻き数を減少さ せたりすることが可能となり、電源の小型化、励磁コイル21の小型化、コストダウンを 可能とすることができる。

[0079]

以上の構成において、この実施の形態に係る定着装置では、次のように、ウオームアップタイムを殆どゼロにすることができるとともに、良好な定着性を得ることができ、しかも剥離不良が生じるのを確実に防止することが可能となっている。

[0080]

すなわち、この実施の形態に係る定着装置では、図1に示すように、加圧ロール14が 100mm/sのプロセススピードで、図示しない駆動源により回転駆動される。また、 加熱ベルト1は、上記加圧ロール14に圧接しており、当該加圧ロール14の移動速度と 等しい100mm/sの速度で循環移動するようになっている。

[0081]

そして、上記定着装置では、図1に示すように、図示しない転写装置により、未定着トナー10が転写された記録媒体9が、加熱ベルト1と加圧ロール14との間に形成されたニップ部15を通過し、当該ニップ部15内を記録媒体9が通過する間に、加熱ベルト1と加圧ロール14とによって加熱及び加圧されることにより、トナー像10が記録媒体9上に定着されるようになっている。

[0082]

その際、上記定着装置では、加熱ベルト1の温度が、励磁コイル21に流す高周波電流の周波数などにより、定着動作時は、ニップ部15の入口において、180℃~200℃程度に制御される。

[0083]

この実施の形態に係る定着装置では、画像形成信号が入力されると同時に、加圧ロール 14が回転を開始すると共に、励磁コイル21に高周波電流が通電される。上記励磁コイ ル21には、例えば、有効電力として700Wの電力が投入されると、加熱ベルト1の温 度は、誘導加熱作用によって、室温から約2秒で定着可能温度に達する。すなわち、記録 用紙9が給紙トレイから、定着装置まで移動するのに要する時間内にウオームアップが完 了してしまうことになる。よって、上記定着装置においては、ユーザーを待たせること無 く、定着処理が可能となる。

[0084]

いま、上記定着装置のニップ部15に、60gms程度の薄紙に、カラーのベタ画像などトナーが多量に転写された記録媒体9が進入した場合には、トナーと加熱ベルト1 表面の離型層4との間で、引き付け合う力が強くなり、加熱ベルト1の表面から記録媒体9を剥離するのが難しくなるのが通常である。しかし、この実施の形態の構成では、加熱ベルト1の形状がニップ部15の外では凸形状であるのに対して、ニップ部15の内部では、加熱ベルト1の方向は、カウニップ部15の出口部では、加熱ベルト1の方向が凹形状から凸形状に急激に変化するため、記録媒体9は、当該記録媒体9自体のこし(剛性)により、加熱ベルト1の急激な形状の変化についていくことができず、加熱ベルト1から自然に剥離される。そのため、この実施の形態に係る定着装置では、記録媒体9の剥離不良の問題が生じるのを確実に防止することができる。

[0085]

50

40

30

また、小サイズの記録媒体9を連続して定着した場合には、非通紙領域の加熱ベルト1、パッド部材12及び加圧ロール14などの温度が上昇してしまうが、加圧ロール14側に設けた金属ロール18を、当該加圧ロール14の表面に当接させることにより、加圧ロール14の高温部の熱を金属ロール18によって吸収することができ、その熱を低温部に移動させるので、軸方向での温度分布は小さくなる方向に移動し、加圧ロール14の温度および加熱ベルト1の温度は、ある温度以上の高温になるのを防止することができる。

さらに、この実施の形態1の定着装置は、ニップ部15の加熱部材1側に、厚さ65μmの加熱ベルト1を挟んで、弾性層11を有するため、定着時にトナーを包み込んで定着する効果が得られ、良好なカラー画質が得られる。また、より良好なカラー画質を得るために、加熱ベルトの導電層と離型層との間に数10μmのシリコンゴムなどの弾性層を設けても良いが、ウオームアップタイムが長くなってしまうことは避けられない。

[0087]

[0086]

実施の形態 2

図5はこの発明の実施の形態2を示すものであり、前記実施の形態1と同一の部分には同一の符号を付して説明すると、この実施の形態2では、ニップ部内の圧力分布が、当該ニップ部の入口と出口とで非対称であり、出口部の圧力が入口部に対して高くなるように非対称に設定するように構成されている。

[0088]

また、この実施の形態2では、押圧部材によって加熱ベルトを加圧部材に押圧することにより、前記ニップ部の内部において、加熱ベルトの曲げ方向を反転させるように構成されている。

[0089]

さらに、この実施の形態3では、加熱ベルトの内部に、当該加熱ベルトと所定のギャップを介して強磁性体などからなる磁性コアを設けるように構成されている。

[0090]

すなわち、この実施の形態2では、基本的な部分は、前記実施の形態1と同じであるので、異なる部分についてのみ説明する。

[0091]

磁界発生手段20は、直径φ0.5mmの互いに絶縁された導線を16本東ねたリッツ線からなる励磁コイル21と、励磁コイル21を覆っている断面形状がE型の、フェライト等の強磁性体からなる磁性コア30からなり、加熱ベルト1と0.5~2.0mm程度のギャップを介して設けられている。

[0092]

また、加熱ベルト1の内部に当該加熱ベルト1と1mm~4mm程度のギャップを持って、第2の磁性コア31を設ける。この構成とすることで磁束の漏れが減り、効率の良い加熱が可能となる。よって、電源周波数を下げることができ、電源の小型化・低コスト化が可能となる。

[0093]

さらに、加熱ベルト1の内部に設けたパッド部材12は、弾性層11の部分と、剛性を持った支持部材13とからなっている。例えば、弾性層11としては、ゴム硬度35°のシリコンゴムを使用し、弾性層11と隣接して、記録媒体9の走行方向下流側に剛性を持ったパッド部32を使用する。剛性を持ったパッド部32としては、例えば、アルミなどの熱伝導性の良い金属を使用したり、逆に熱を奪いにくい耐熱性の樹脂等を使用したりしても良い。前者は、軸方向の温度分布を良化させる効果を有するし、後者は、加熱ベルト1から熱を奪いにくいので、ウオームアップ短縮の妨げにならない。

[0094]

加圧部材14には、厚さ0.1~2mm程度の弾性層33が設けられている。この時、 定着ニップ部15の形状は、入口側の弾性層11からなるパッド部では上側に凸形状となり、出口側の剛性パッド部32では下側に凸形状になる。パッド部材12をこのように2

10

20

[0095]

さらに、両面定着時においても、ニップ部15内の出口側で高い圧力をかけ、加圧ロール14側の弾性層33を歪ませることができるので、加圧ロール14側への用紙9の巻き付きが防止できる。

[0096]

また、ニップ部 1 5 の出口側で高い圧力をかけるので、ニップ部 1 5 内で溶融したトナ 10 ーが、用紙 9 の繊維間に入り込み、定着性が上がる。

[0097]

その他の構成及び作用は、前記実施の形態1と同様であるので、その説明を省略する。 【0098】

実施の形態3

図7はこの発明の実施の形態3を示すものであり、前記実施の形態1と同一の部分には同一の符号を付して説明すると、この実施の形態3では、導電層を有する薄肉の加熱ベルトを、磁界発生手段が発生する磁界によって誘導加熱し、前記加熱ベルトと相対して設けられる加圧部材とのニップ部で、記録媒体上の未定着トナー像を定着する定着装置において、前記加熱ベルトの内部に、弾性層を有する内部加圧ロールを設け、当該内部加圧ロールを加熱ベルトを介して外部加圧ロールに押圧することにより、前記内部加圧ロール側を凹形状に変形させた定着のためのニップ部を形成するように構成したものである。

[0099]

すなわち、この実施の形態3では、電磁誘導作用を利用したベルト方式の定着装置において、剥離手段を使用しないセルフストリッピングを実現するための定着装置を提案するものである。

[0100]

加熱部材である加熱ベルト 1 は、ベルトの内側から順に、ポリイミドなどからなる基材層 2 (厚さ数 1 0 μ m)、銅などからなる導電層 3 (厚さ数 μ m)、そして、そして一番外側にはフッ素樹脂などからなる離型層 4 (厚さ数 μ m)が形成されている。上記導電性層 3 と離型層 4 の間に、シリコンゴムやフッ素ゴムなどからなる弾性層(厚さ数 1 0 μ m)を設けるように構成しても良い。

[0101]

また、この定着装置では、上述したように、導電層 3 が厚さ数 μ mの薄層で形成されている。上記導電層 3 の厚さを非常に薄くすることで、加熱ベルト1 を自在に変形させることができるので、図 7 に示すように、当該加熱ベルト1 の内部加圧ロール 4 0 を、凹形状に変形させて、ニップ部1 5 を形成することが可能となる。このニップ部1 5 の構成によると、ニップ部1 5 になり、対離爪を用いることで、用紙を入口の方式であるセルフストリッピング方式が採用できるようになり、対離爪を用いることができる。しかし、このようなニップ部1 5 の形できるトナー画像の協つきを防ぐことができる。しかし、このようなニップ部1 5 の形でまるトナー画像の協つきを防ぐことができる。しかし、このようなニップ部1 5 の形でまるトナー画像の音を方できる。しかし、このようなニップ部2 5 の形でき数10 μ mの金属製の導電層を有する加熱ベルトで実現電層が折れた状態をある。クラックが生じていまい、使用不可能となる。その結果、厚さ数10 μ mの金属製の導電層を有する加熱ベルトでは、セルフストリッピング方式を採用することができず、対離爪を設置しなければならない。

[0102]

上記のようなニップ部 1 5 を形成するためには、内部加圧ロール 4 0 の表面材質としてフッ素ゴムなどの弾性材料を用い、外部加圧ロール 1 4 の表面材質としてフッ素樹脂などの内部加圧ロール 4 0 よりも硬い材質を用いれば良い。

. . . . [0103]

また、上記加熱ベルト1をニップ部15以外では、周辺部材とできるだけ接触させないようにすることで、周辺部材によって熱を加熱ベルトから奪われないようにしている。本発明では、発熱部材として非常に薄肉の加熱ベルト1を用いているため、大きい熱容量を持つ内部加熱ロール40と加熱ベルト1を接触させないようにしなくてはならない。そのため、図7に示したように、加熱ベルト1と内部加熱ロール40との間に、ベルト支持部材41が配置されている。ここで、加熱ベルト1は、ベルト支持部材41によって張架されているのではなく、できるだけ両者が接触しない状態になっている。ベルト支持部材41の材質としては、熱容量が小さく耐熱性もあり、強度的にも問題のない液晶ポリマーやフェノール樹脂などが用いられる。

[0104]

なお、コイル・アセンブリ20は、図示しないホルダに支持され、加熱ベルト1との間 に所定寸法の隙間を隔てて定着装置のフレームに固定されている。

[0.1.05]

また、外部加圧部材14は、熱伝導性の良いアルミニウムなどの金属ロール18を当接させることで、軸方向の温度を均一に保つことができる。

[0106]

その他の構成及び作用は、前記実施の形態1と同様であるので、その説明を省略する。 【図面の簡単な説明】

[0107]

【図1】図1はこの発明の実施の形態1に係る定着装置を示す構成図である。

【図2】図2はこの発明の実施の形態1に係る定着装置で使用する加熱ベルトを示す断面 構成図である。

【図3】図3は加熱ベルトの支持構造を示す構成図である。

【図4】図4は加熱ベルトの加熱原理を示す説明図である。

【図5】図5はこの発明の実施の形態2に係る定着装置を示す構成図である。

【図6】図6はこの発明の実施の形態2に係る定着装置のニップ部における圧力分布を示すグラフである。

【図7】図7はこの発明の実施の形態3に係る定着装置を示す構成図である。

【符号の説明】

[0108]

1:加熱ベルト、2:基材層、3:導電層、4:表面離型層、5:エッジガイド、12: パッド部材、14:加圧ロール、20:磁界発生手段。 10

30

(図1)

1:加熱ベルト、2:基材度、3:再電層、4:表面離型層、5:エッジガイ ド、12:パッド部材、14:加圧ロール、20:磁界発生手段。

【図2】

【図5】

[図6]

[図3]

[図4]

【図7】

(74)代理人 100110733

弁理士 鳥野 正司

(72)発明者 内藤 康隆

神奈川県足柄上郡中井町境430 グリーンテクなかい 富士ゼロックス株式会社内

(72) 発明者 前山 龍一郎

神奈川県足柄上郡中井町境430 グリーンテクなかい 富士ゼロックス株式会社内

(72)発明者 伊藤 和善

神奈川県足柄上郡中井町境430 グリーンテクなかい 富士ゼロックス株式会社内

(72) 発明者 大原 秀明

神奈川県足柄上郡中井町境430 グリーンテクなかい 富士ゼロックス株式会社内

(72)発明者 上原 康博

神奈川県足柄上郡中井町境430 グリーンテクなかい 富士ゼロックス株式会社内

(72) 発明者 長谷波 茂彦

神奈川県足柄上郡中井町境430 グリーンテクなかい 富士ゼロックス株式会社内

Fターム(参考) 2H033 AA15 AA16 AA30 BA11 BA12 BA19 BA20 BA49 BB29 BB30 BB37 BB38 BE06

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.