Supplementary Material for "Optimal Electric Ship-to-Grid Dispatch Considering Electrochemical-Thermal-Coupled Battery Cell Thermal and Voltage Constraints"

Chao Lei, Member, IEEE, and Y. Christine Chen, Member, IEEE

I. DERIVATIONS OF (4A)

According to $\widehat{T}_{i,j+1}^t = T_{i,j}^t + \Delta h \frac{\mathrm{d}T_{i,j}^t}{\mathrm{d}t}$, we obtain $\widehat{T}_{i,j+1}^t$ by rearranging,

$$\widehat{T}_{i,j+1}^t = (1 - \frac{h_{c,i} A_{s,i} \Delta h}{m_i C_{p,i}}) T_{i,j}^t + \frac{\Delta h (\epsilon H_{e,i}^{t+\Delta t} + h_{c,i} A_{s,i} T_{\text{amb}})}{m_i C_{p,i}},$$
(I-1)

where the variation of time-varying $H_{e,i}^t$ between $[t,t+\Delta t]$ in (A-1) can be replaced by $\epsilon H_{e,i}^{t+\Delta t}$ and the constant coefficient ϵ is set to 0.78.

Furthermore, we calculate next corrector step by,

$$T_{i,j+1}^{t} = T_{i,j}^{t} + \frac{\Delta h}{2} \left(\frac{\mathrm{d}T_{i,j}^{t}}{\mathrm{d}t} \bigg|_{T_{i,j}^{t} = T_{i,j}^{t}} + \frac{\mathrm{d}T_{i,j}^{t}}{\mathrm{d}t} \bigg|_{T_{i,j}^{t} = \widehat{T}_{i,j+1}^{t}} \right) = T_{i,j}^{t} + \frac{\Delta h}{2m_{i}C_{p,i}} \left[2\epsilon H_{e,i}^{t+\Delta t} + h_{c,i}A_{s,i} (2T_{\mathrm{amb}} - T_{i,j}^{t} - \widehat{T}_{i,j+1}^{t}) \right],$$
(I-2)

Substituting $\widehat{T}_{i,j+1}^t$ into (I-2), we obtain

$$\begin{split} T_{i,j+1}^t = & \omega_1 T_{i,j}^t + \omega_2 H_{e,i}^{t+\Delta t} + \omega_3, \quad j = 0, 1, 2, ..., n-1, \quad \text{(I-3)} \\ \begin{cases} \omega_1 = 1 - \frac{h_{c,i} A_{s,i} \Delta h}{2m_i C_{p,i}} \left(2 - \frac{h_{c,i} A_{s,i} \Delta h}{m_i C_{p,i}}\right), \\ \omega_2 = \frac{\epsilon \Delta h}{m_i C_{p,i}} - \frac{\epsilon h_{c,i} A_{s,i} \Delta h^2}{2m_i^2 C_{p,i}^2}, \\ \omega_3 = \frac{T_{\text{amb}} h_{c,i} A_{s,i} \Delta h}{m_i C_{p,i}} - \frac{T_{\text{amb}} h_{c,i}^2 A_{s,i}^2 \Delta h^2}{2m_i^2 C_{p,i}^2}. \end{cases} \end{split}$$

Thus, it is evident that (I-3) represents a recurrence sequence, and we rearrange the recurrence sequence by

$$T_i^{t+\Delta t} = \omega_1^n T_i^t + \frac{1 - \omega_1^{n-1}}{1 - \omega_1} (\omega_2 H_{e,i}^{t+\Delta t} + \omega_3), \tag{I-5}$$

where $T_i^{t+\Delta t}=T_{i,n}^t$ and $T_i^t=T_{i,0}^t$ at time intervals t+1 and t, respectively.

II. ERROR DISCUSSION FOR THERMAL CONSTRAINTS

The cell temperature error comes from the approximation of of $H^t_{c,i}$ in (2a). We plot the cell temperatures $T^{t+\Delta t}_i$ with respect to S^t_i and $p^t_{c,i}$ or $p^t_{d,i}$ from the PDE solver and our proposed discretized temperature equation (2a), where the cell temperature in the end of time period t is $T^t_i=27^{\circ}\mathrm{C}$ over $\Delta t=15\mathrm{min}$ in Fig.1(a) and (b). In Fig.1(a), the approximate cell temperature $T^{t+\Delta t}_i$ is active on the grey plane when $(S^t_i,p^t_{c,i})$ is below the cut lines AB and CD, otherwise it is on the light red plane. For Fig.1(b), the approximate cell temperature $T^{t+\Delta t}_i$ is the intersection of two planes. It is clear that the approximate cell temperatures $T^{t+\Delta t}_i$ by (2a) is very close to the cell temperature surface by the PDE solver in two sub-figures. The maximum errors between cell temperatures by the PDE solver and the approximate temperatures in charging and discharging modes are less than 1.2°C and 1.8°C, which can be acceptable for the S2G dispatch problem.

Fig. 1. Estimation of cell temperature T_i^{t+1} : (a) charge; (b) discharge.

III. PARAMETERS FOR HEAT ESTIMATION AND ELECTROCHEMICAL KINETICS

In this study, the BESS in the *i*-th ES consists of $N_i=41$ LiFePO₄ battery modules arranged in series configuration, each with a capacity of 306.4 kWh. We select each battery cell capacity $I_{b,i}=314$ Ah, nominal voltage $v_{\mathrm{flat},i}=3.4$ V with the operating voltage ranging from 2.5 V to 3.65 V, and current rate $C_{r,i}^t \in [0,\overline{C}_{r,i}]$ and $\overline{C}_{r,i}=1.5$. For a battery cell, $\overline{p}_i\approx 3.65\cdot 0.314\cdot 1.5\approx 1.7$ kW and $\overline{v}=3.65$ V for a battery cell. Regarding thermal parameters, each battery cell has mass $m_i=2162.2$ kg and heat capacity $C_{p,i}=1417.2$ J/(kg·K). The forced convection air cooling with four fans is available from four side openings of a battery cell with surface area $A_{\mathrm{s},i}=0.1271\,\mathrm{m}^2$, and the heat transfer coefficient is $h_{c,i}=5.0$ W/(m²·K). Other parameters for electrochemical kinetics are given in Tab.I (See next page).

TABLE I PARAMETERS FOR ELECTROCHEMICAL KINETICS

Parameter	Negative electrode	Separator	Positive electrode
electrode plate area (m^2)	0.163	0.163	0.163
electrode thickness (m)	$78 \cdot 10^{-6}$	$20 \cdot 10^{-6}$	$45 \cdot 10^{-6}$
Li^+ diffusion coefficient (m^2/s)	$3.9 \cdot 10^{-5}$	-	$1.8 \cdot 10^{-8}$
active electrode volume fraction (%)	0.6	-	0.6
electrolyte phase volume fraction (%)	0.3	-	0.3
max solid phase concentration (mol/m^3)	31507	-	49000
particle radius (m)	$6 \cdot 10^{-6}$	-	$5 \cdot 10^{-6}$
reaction rate efficiency (A/m^2)	$9.77 \cdot 10^{-2}$	-	$1.19 \cdot 10^{-2}$
exchange current density of side reaction (A/m^2)	10	-	10
initial electrolyte concentration (mol/m^3)	$1.25 \cdot 10^{4}$	$1.25 \cdot 10^{4}$	$1.25 \cdot 10^{4}$
Binder volume fraction(%)	0.1	-	0.1
Separator volume fraction(%)	-	0.4	-