hw4

Shuangshuang Xu 2019/9/24

Prob 4

The code should not be too compact. Between lines or words, I should use more space and enter. And add more notes for understanding what is this part of code for.

Prob 5

I should take proper care of space between operators or symbols.

Prob 6

```
data6 <- readRDS("C:/Users/44653/Desktop/gitfile/HW4_data.rds")</pre>
func <- function(x){</pre>
  #calculate mean, var and correlation
  mean_dev1 <- mean(x$dev1)</pre>
  mean_dev2 <- mean(x$dev2)</pre>
  sd_dev1 <- sqrt(var(x$dev1))</pre>
  sd_dev2 <- sqrt(var(x$dev2))</pre>
  cor_{12} \leftarrow cor(x\$dev1, x\$dev2)
  dat <- data.frame(mean1=mean_dev1, mean2=mean_dev2,</pre>
                       sd1=sd_dev1, sd2=sd_dev2, cor12=cor_12)
  #return in data frame format
  return(dat)
dat6 <- data.frame(item=NULL, mean1=NULL, mean2=NULL,</pre>
                     sd1=NULL, sd2=NULL, cor12=NULL)
#calculate each item's mean...
for (i in 1:13){
  dat_temp <- func(data6[data6$0bserver==i, 2:3])</pre>
  dat_temp$item <- i</pre>
  dat6 <- rbind(dat6, dat_temp)</pre>
}
kable(dat6)
```

_	mean1	mean2	sd1	sd2	cor12	item
_		111001112	541	542	00112	
5	4.26610	47.83472	16.76983	26.93974	-0.0641284	1
5	4.26873	47.83082	16.76924	26.93573	-0.0685864	2
5	4.26732	47.83772	16.76001	26.93004	-0.0683434	3

+ 0.000					
$_{ m tem}$	cor12	sd2	sd1	mean2	mean1
4	-0.0644719	26.93540	16.76514	47.83225	54.26327
5	-0.0603414	26.93019	16.76774	47.83983	54.26030
6	-0.0617148	26.93988	16.76590	47.83025	54.26144
7	-0.0685042	26.94000	16.76670	47.83545	54.26881
8	-0.0689797	26.93610	16.76676	47.83590	54.26785
9	-0.0686092	26.93861	16.76885	47.83150	54.26588
10	-0.0629611	26.93027	16.76896	47.83955	54.26734
11	-0.0694456	26.93768	16.76996	47.83699	54.26993
12	-0.0665752	26.93790	16.77000	47.83160	54.26692
13	-0.0655833	26.93000	16.76996	47.83972	54.26015
	-0.0685042 -0.0689797 -0.0686092 -0.0629611 -0.0694456 -0.0665752	26.94000 26.93610 26.93861 26.93027 26.93768 26.93790	16.76670 16.76676 16.76885 16.76896 16.77000	47.83545 47.83590 47.83150 47.83955 47.83699 47.83160	54.26881 54.26785 54.26588 54.26734 54.26993 54.26692

```
#draw plot
op <- par(mfrow = c(1, 2))
boxplot(dat6$mean1, main = "dev1")
boxplot(dat6$mean2, main = "dev2")</pre>
```


54.260 54.268

dev2


```
vioplot(dat6$sd1, main = "dev1")
## [1] 16.76001 16.77000
vioplot(dat6$sd2, main = "dev2")
## [1] 26.93 26.94
```


Prob 7

```
func7 <- function(x, a){</pre>
  #each bin's area
  area < -a*exp(-x^2/2)
  return(area)
dat7 <- data.frame(width=NULL, fx=NULL)</pre>
n <- 1
for(j in c(0.02, 0.01, 0.001, 1e-6)){
  #with different width
  f <- 0
  for(i in seq(0, 1, j)[-1]){
    \#summation
    f <- f+func7(i, j)</pre>
  }
  dat7[n, 1] <- j
  dat7[n, 2] \leftarrow f
  n < - n+1
}
```

```
kable(dat7, col.names = c("width", "f(x)"))
```

width	f(x)
2e-02	0.8516695
1e-02	0.8536520
1e-03	0.8554276
1e-06	0.8556242

Prob 8

```
x_upper <- -2.8
x_lower <- -3
func1 <- function(x){</pre>
  #f(x)
return(3^x-sin(x)+cos(5*x))
}
fx <- func1(mean(c(x_upper, x_lower)))</pre>
y <- c()
while(abs(fx) > 0.0001){
  x_temp <- mean(c(x_upper, x_lower))</pre>
 fx <- func1(x_temp)</pre>
  if (fx > 0){
   x_upper <- x_temp</pre>
  } else {
   x_lower <- x_temp</pre>
 y<-c(y, fx) #path
plot(y, type="1", xlab = "loops")
```


The interval I choose is [-3, -2.8], f(-2.8) > 0 and f(-3) < 0.

The standard to terminate the loop is when absolute of f(x) is smaller than 0.0001.