

Formal Analysis of Real-World Security Protocols

Lecture 5: Verification Theory (Part 2)

Recap: Tamarin workflow

Recap: Dependency graphs

Constraint Solving

Proof Methods

Constraint Solving

Constraint solving

Given a set of rules R and a property P:

- · If the property is *all-traces* (the default):
 - Consider a set of constraints that represent (R and $\neg P$)
 - No solution is proof of P
 - Solutions are counterexamples
- If the property is exists-trace:
 - · Consider a set of constraints that represent (R and P)
 - · No solution means that P does not hold
 - Solutions are witnesses that P holds for some trace

1. Precomputation for rules

- · Using static analysis, try to infer which rules must precede others
- · Compute sources for facts in the protocol
- Finite process

2. Constraint solving

- Backwards reachability analysis, searching for traces
- · Constraint solving with formula and graph constraints
- · Build a dependency graph to represent protocol executions
- · Solved forms have a solution corresponding to an attack trace
- May not terminate

Tamarin's constraint solving algorithm

```
1: function SOLVE(P \models_{\mathcal{F}} \varphi)
           \hat{\varphi} \leftarrow \neg \varphi rewritten into negation normal form
           \Omega \leftarrow \{\{\hat{\phi}\}\}\
           while \Omega \neq \emptyset and solved(\Omega) = \emptyset do
 4:
                 choose \Gamma \rightsquigarrow_{P} \{\Gamma_{1}, \dots, \Gamma_{k}\} such that \Gamma \in \Omega
 5:
                 \Omega \leftarrow (\Omega \setminus \{\Gamma\}) \cup \{\Gamma_1, \dots, \Gamma_{\nu}\}
 6:
           if solved(\Omega) \neq \emptyset then
 7:
                 return "attack(s) found: ", solved(\Omega)
 8:
           else
 9:
                 return "verification successful"
10:
```

Constraint reduction

 A constraint reduction rule transforms a constraint system into a set of constraints systems

$$\Gamma \rightsquigarrow \{\Gamma_1, \dots, \Gamma_k\}$$

- The relation is defined by a set of reduction rules
 - · Logical rules work on formula constraints
 - · Graph rules work on node and edge constraints
- Every constraint reduction rule is *sound* and *complete*, i.e., it preservers the set of solutions
- However, the problem is **undecidable**; we cannot guarantee termination!

(Some) Constraint solving rules

Trace formula reduction

```
\mathbf{S}_{\approx}: \Gamma \rightsquigarrow_{P} \|_{\sigma \in unif(\mathbf{v}, \mathbf{v}_{\alpha})} (\Gamma \sigma)
                                                                                                                                  if (t_1 \approx t_2) \in \Gamma and t_1 \neq_{\Delta C} t_2
\mathbf{S}_{\dot{-}}: \Gamma \rightsquigarrow_{\mathcal{D}} \Gamma\{i/i\}
                                                                                                                                  if (i = j) \in \Gamma and i \neq j
\mathbf{s}_{0}: \Gamma \sim_{P} \|_{ri\in [P]^{DH} \cup \{|SEND\}|} \|_{f'\in acts(ri)} (i:ri,f \approx f',\Gamma)
                                                                                                                                  if (f@i) \in \Gamma and (f@i) \notin_{AC} as(\Gamma)
S₁: \Gamma \sim_P \bot
                                                                                                                                  if I \in \Gamma
S¬¬≈: Γ →<sub>P</sub> ⊥
                                                                                                                                  if \neg(t \approx t) \in_{AC} \Gamma
\mathbf{S}_{\neg,\pm}: \Gamma \rightsquigarrow_{\mathcal{D}} \bot
                                                                                                                                  if \neg (i \doteq i) \in \Gamma
if \neg (f@i) \in \Gamma and (f@i) \in as(\Gamma)
                                                                                                                                  if \neg (j \lessdot i) \in \Gamma and neither i \lessdot_{\Gamma} j nor i = j
\mathbf{S}_{\neg, \lessdot}: \quad \Gamma \rightsquigarrow_{P} (i \lessdot j, \Gamma) \parallel (\Gamma\{i/j\})
\mathbf{s}_{\vee}: \Gamma \rightsquigarrow_{P} (\phi_{1}, \Gamma) \parallel (\phi_{2}, \Gamma)
                                                                                                                                  if (\phi_1 \lor \phi_2) \in_{AC} \Gamma and \{\phi_1, \phi_2\} \cap_{AC} \Gamma = \emptyset
\mathbf{s}_{\wedge}: \Gamma \rightsquigarrow_{P} (\phi_{1}, \phi_{2}, \Gamma)
                                                                                                                                  if (\phi_1 \wedge \phi_2) \in AC \Gamma and not \{\phi_1, \phi_2\} \subseteq AC \Gamma
```

Proof trees

- Tamarin uses constraint solving to prove or disprove lemmas, where each constraint reduction step generates one or more new constraint systems
- This leads to a **proof tree**, which is visible in the GUI, or output when Tamarin is run on the command line
- There can be any number of "cases" (including zero), which must be resolved
- The **qed** symbol marks the end of a list of cases

```
lemma trace:
    exists-trace
    "\exists a b #i. Action(a,b) @ #i"
  simplify
  solve( Fact (t1, t2) ▶ #i1)
    case Fact 1
    solve( !KU( t1 ) @ #vk )
      case Fact_2
      solve( (#i < #j) || (#j < #i) )
        case case 1
        solve( splitEqs(i) )
          case r 1
          solve( (#vl.0) ~~> (#vk.0) )
            case r 2
            by sorry
          next
            case r 3
            by sorry
        qed
      qed
22 qed
    12
```

sorry

Special "proof method" that proves nothing. Used as a placeholder.

TAMARIN gives us several options to replace sorry with an actual proof:

```
1. simplify
2. induction
a. autoprove
b. autoprove proof-depth bound 5
s. autoprove for all lemmas
```

```
lemma trace:
    exists-trace
    "\exists a b #i. Action(a,b) @ #i"
  simplify
  solve( Fact ( t1, t2 ) ▶ #i1 )
    case Fact 1
    solve( !KU( t1 ) @ #vk )
      case Fact_2
      solve( (#i < #j) || (#j < #i) )
        case case 1
         solve( splitEqs(i) )
           case r 1
           solve( (#vl,0) ~~> (#vk,0) )
             case r 2
             by sorry
           next
             case r 3
             by sorry
        qed
      qed
20
    qed
22 qed
```

simplify

Translate a formula's negation into constraints. Typically the first step.

induction

Prove a lemma using induction on the length of the trace. Only possible as the first proof step.

```
lemma trace:
    exists-trace
    "\exists a b #i. Action(a,b) @ #i"
  simplify
  solve( Fact (t1, t2) ▶ #i1)
    case Fact 1
    solve( !KU( t1 ) @ #vk )
      case Fact_2
      solve( (#i < #j) || (#j < #i) )
        case case 1
        solve( splitEqs(i) )
          case r 1
          solve( (#vl.0) ~~> (#vk.0) )
            case r 2
            by sorry
          next
            case r 3
            by sorry
        qed
      qed
22 qed
```

Premise constraints (line 5)

Find the origin of facts from protocol rules.

Action constraints (line 7)

Solve formula constraints, such as action fact requirements or intruder detection constraints.

Disjunction

(line 9)

Turn a disjunction inside a formula into a case distinction at the constraint system level.

```
lemma trace:
    exists-trace
    "3 a b #i. Action(a,b) @ #i"
  simplify
  solve( Fact ( t1, t2 ) ▶ #i1 )
    case Fact 1
    solve( !KU( t1 ) @ #vk )
      case Fact_2
      solve( (#i < #j) || (#j < #i) )
        case case 1
        solve( splitEqs(i) )
          case r 1
          solve((#vl,0) ~~> (#vk,0))
            case r 2
            by sorry
          next
            case r 3
            by sorry
        qed
      qed
22 qed
```

Equation split (line 11)

Perform a case split on different possible substitutions.

Deconstruction chain (line 13)

Compute whether the adversary can extract a given term from some message.

```
lemma trace:
    exists-trace
    "3 a b #i. Action(a,b) @ #i"
  simplify
  solve( Fact ( t1, t2 ) ▶ #i1 )
    case Fact 1
    solve( !KU( t1 ) @ #vk )
      case Fact_2
      solve( (#i < #j) || (#j < #i) )
        case case 1
        solve( splitEqs(i) )
          case r 1
          solve( (#vl.0) ~~> (#vk.0) )
            case r 2
            by contradiction /* cyclic */
          next
            case r 3
            by sorry
        qed
      qed
22 qed
```

contradiction

TAMARIN has found a contradiction to the current constraint system. For example, circular dependencies or formulas evaluating to false. This means that there is no solution for the current constraint system.

```
lemma trace:
    exists-trace
    "\exists a b #i. Action(a,b) @ #i"
  simplify
  solve( Fact (t1, t2) ▶ #i1)
    case Fact 1
    solve( !KU( t1 ) @ #vk )
      case Fact_2
      solve( (#i < #j) || (#j < #i) )
        case case 1
        solve( splitEqs(i) )
          case r 1
          solve( (#vl.0) ~~> (#vk.0) )
            case r 2
            by contradiction /* cyclic */
          next
            case r 3
            SOLVED // trace found
        qed
      qed
    qed
22 qed
```

SOLVED

TAMARIN has solved the constraint system; no more proof methods are applicable.

Typically means that we have found an attack.

The list of currently available proof methods can have annotations:

- An action constraint is currently deducible when it is composed only from public constants and does not contain private function symbols, or when it can be extracted from a sent message using only unpairing or inversion
- An action constraint is **probably constructible** when it concerns a
 message that does not contain a fresh name or a fresh variable, and
 therefore can likely be constructed by the adversary
- An action constraint is **useful** when it appears in specific ways in the formulas of the constraint system

Avoiding loops

- To avoid loops when solving premise constraints, Tamarin computes a set of premises, called loop breakers
- Idea: Consider a graph containing a node for each rule, and an edge between two rules, if the second one has a premise fact that is part of the conclusion facts of the first one
- This graph over-approximates possible sequences of rules; any potential looping sequence of rule instances will show up as a cycle
- The goal is then to remove a minimal set of premises (the loop breakers) so that the remaining graph has no cycles
- Not a unique set; Tamarin might not find the "optimal" solution

Heuristics

- · Tamarin uses **heuristics** to decide which proof method to apply
- These play an important role in whether Tamarin terminates and, if it does, how quickly (i.e., its efficiency)
- Heuristics have no influence on the result's correctness; any conclusion obtained by Tamarin is always correct
- · The default options is the *smart* heuristic
 - · Works well on many examples
 - Prioritizes chain constraints, disjunctions, premise constraints, action constraints, and adversary knowledge that includes private or fresh terms (in this order)
 - Probably constructible and currently deducible constraints are assigned lower priority and loop breakers are delayed

Summary

The Tamarin prover

- Introduction to the Tamarin prover
- · Office hours to help with installation on Friday, December 13th

Before that: midterm exam (2.12. at 14:15)

- · Passing the exam is a requirement to start the project
- The exam will cover topics from lectures 0-5
- Bring a pen and your student id
- · This is a closed-book exam; no notes allowed!

Recommended reading:

[Bas+24, Ch. 7.4-7.8], [Meill3, Ch. 8.3-8.4], [Sch+12]

[Bas+24] D. Basin, C. Cremers, J. Dreier, and R. Sasse. Modeling and Analyzing Security Protocols with Tamarin: A Comprehensive Guide. Draft vo.5. Sept. 2024.

[Meil3] S. Meier. **Advancing Automated Security Protocol Verification.** PhD thesis. ETH Zurich, 2013.

[Sch+12] B. Schmidt, S. Meier, C. Cremers, and D. Basin. **Automated**Analysis of Diffie-Hellman Protocols and Advanced Security
Properties. In: 2012 IEEE 25th Computer Security Foundations
Symposium. 2012.

Further reading

Optional reading: [CD05], [EMS08]

[CD05] H. Comon-Lundh and S. Delaune. The Finite Variant Property: How to Get Rid of Some Algebraic Properties. In: Proceedings of the 16th International Conference on Term Rewriting and Applications. 2005.

[EMS08] S. Escobar, J. Meseguer, and R. Sasse. **Effectively Checking the Finite Variant Property.** In: Rewriting Techniques and Applications. 2008.