Exercise 2A

Due No due date	Points 100	Questions 11	Time Limit 60 Minutes
Allowed Attempts 3			

Instructions

We use the conventions in Bronze-Qiskit.

The default programming language for coding is python.

You may write pieces of code during the exam.

Attempt History

	Attempt	Time	Score
KEPT	Attempt 3	3 minutes	100 out of 100
LATEST	Attempt 3	3 minutes	100 out of 100
	Attempt 2	4 minutes	90 out of 100
	Attempt 1	28 minutes	90 out of 100

(!) Correct answers are hidden.

Score for this attempt: 100 out of 100

Submitted Sep 19 at 12:23pm This attempt took 3 minutes.

- $\bigcirc
 \begin{pmatrix}
 x \\
 x \\
 x \\
 x \\
 x
 \end{pmatrix}$
- $\begin{pmatrix} x \\ x \end{pmatrix}$
- $\bigcirc \left(\begin{matrix} x \\ x \\ x \\ x \end{matrix} \right)$
- (x)

Question 2 10 / 10 pts

We have a three state quantum system. If the system is in the quantum state

$$|u
angle = \left(egin{array}{c} rac{1}{3} - rac{1}{\sqrt{3}} \ rac{1}{3} + rac{1}{\sqrt{3}} \ \end{array}
ight) \in \mathbb{R}^3 \;\;\; ,$$

what is the probability of being in the third state?

- $\frac{1}{2}$
- $\frac{1}{6}$
- $\frac{1}{8}$
- $\frac{1}{3}$
- $\frac{1}{9}$

Question 3

10 / 10 pts

If $|u
angle\in\mathbb{R}^2$ is a quantum state on the unit circle with angle $rac{2\pi}{3}$, what is |u
angle ?

$$\bigcirc \left(\begin{array}{c} -\frac{\sqrt{3}}{2} \\ \\ \frac{1}{2} \end{array} \right)$$

$$\bigcirc \left(\begin{array}{c} \frac{\sqrt{3}}{2} \\ \\ \frac{1}{2} \end{array}\right)$$

$$\begin{pmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{pmatrix}$$

$$\bigcirc \left(\begin{array}{c} \frac{1}{2} \\ \\ \frac{\sqrt{3}}{2} \end{array}\right)$$

Question 4

5 / 5 pts

What is H^4 , where H is the Hadamard operator?

$$\bigcirc \left(\begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix}\right)$$

- $\bigcirc \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$
- $\begin{pmatrix}
 \frac{1}{2} & \frac{1}{2} \\
 \frac{1}{2} & -\frac{1}{2}
 \end{pmatrix}$
- $\begin{pmatrix}
 \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
 \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
 \end{pmatrix}$

Question 5

5 / 5 pts

We have a qubit in state $|0\rangle$, We apply the operators H,X,X,H,X in order,

where \boldsymbol{H} and \boldsymbol{X} are the Hadamard and NOT operators, respectively.

What is the final state?

- $\bigcirc |0\rangle$
- $\bigcirc \ -|1
 angle$
- \bigcirc $|1\rangle$
- $-|0\rangle$
- \bigcirc $|+\rangle$

Question 6

10 / 10 pts

We apply a series of quantum operators to a single qubit that is in state $|0\rangle$ at the beginning.

If we observe the state 0 at the end, which one of the following combinations is not possible,

where ${\cal M}$ stands for a measurement and we apply the operators from the left to the right?

- OH, X, H, M
- $\bigcirc X, X, M$
- \bigcirc H, H, M
- M, X, M, X, M
- \bigcirc X, H, X, H, M

Question 7 10 / 10 pts

We have five qubits, say q_0, \ldots, q_4 initially in zero states.

We apply the X operators to both qubits q_0 and q_4 .

For the rest of qubits, we apply either identity operator or X operator.

After making a measurement, we read the values from the qubits q_0,\ldots,q_4 as b_0,\ldots,b_4 respectively.

If $b=b_4\cdots b_0$ is a binary number, which one of the following decimal numbers is not possible for the value of b?

- 17
- 31

25

13

23

Question 8

10 / 10 pts

What is $(XH)^5|0
angle$?

- $|+\rangle$

-|-|

 \bigcirc $-|+\rangle$

 $|1\rangle$

 $\bigcirc |-\rangle$

Question 9

10 / 10 pts

If
$$|u
angle = egin{pmatrix} x \\ -2x \\ 2x \\ x \end{pmatrix}$$
 is the quantum state of a quantum system with four

states,

what is the probability of being in the state with amplitude -2x?

0.8

0.2

- 0.4
- 0.0
- 0.6

Question 10

10 / 10 pts

Which one of the following operators is not a quantum operator?

$$\begin{pmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix}$$

$$\begin{pmatrix}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix}$$

$$\bigcirc \left(\begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{array} \right)$$

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\begin{pmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{pmatrix}$$

Question 11

10 / 10 pts

We have a single qubit and a single classical bit.

We execute the following program 1024 times in Qiskit.

Start in state |1⟩
Repeat 3 times:
 if the classical bit is 0:
 apply a Hadamard operator
 make a measurement

What is the expected value to observe state 0?

256

768

512

Quiz Score: 100 out of 100

896