MATHEMATICS

Principal Component Analysis Cheat Sheet

MEAN AND VARIANCE OF HIGH-DIMENSIONAL DATASETS

Variance of High-Dimensional Datasets

Given a data set $\mathcal{D} = \{x_1, \dots, x_N\}$, $x_n \in \mathbb{R}^D$, we compute the variance of the data set as

$$\mathbb{V}[\mathcal{D}] = \frac{1}{N} \sum_{n=1}^{N} \left(\boldsymbol{x}_{n} - \boldsymbol{\mu} \right) \left(\boldsymbol{x}_{n} - \boldsymbol{\mu} \right)^{\top} \in \mathbb{R}^{D \times D}$$

Linear Transformations

If we now modify every $x_i \in \mathcal{D}$ according to $x_i' = Ax_i + b$, then the transformed mean and variance are:

$$\mathbb{E}[\mathcal{D}'] = A \cdot \mathbb{E}[\mathcal{D}] + b$$

 $\mathbb{V}[\mathcal{D}'] = A \cdot \mathbb{V}[\mathcal{D}] \cdot A^{\top}$

INNER PRODUCT

Definition

Consider a vector space V. A positive definite, symmetric bilinear mapping $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ is called an inner product on V.

- Symmetric: For all $x, y \in V$ it holds that $\langle x, y \rangle = \langle y, x \rangle$
- Positive Definite: For all $x \in V \setminus \{0\}$ it holds that

$$\langle \boldsymbol{x}, \boldsymbol{x} \rangle > 0, \quad \langle \boldsymbol{0}, \boldsymbol{0} \rangle = 0$$

• Bilinear: For all $x, y, z \in V, \lambda \in \mathbb{R}$

$$\langle \lambda x + y, z \rangle = \lambda \langle x, z \rangle + \langle y, z \rangle$$

 $\langle x, \lambda y + z \rangle = \lambda \langle x, y \rangle + \langle x, z \rangle$

• In the canonical Euclidean context (no abstract spaces), the inner product coincides with the dot product between vectors. However, nonstandard definitions of the inner product may generate different results.

Inner Product: Lengths and Distances

Consider a vector space V with an inner product $\langle \cdot, \cdot \rangle$.

• The **length** of a vector $x \in V$ is

$$\|oldsymbol{x}\| = \sqrt{\langle oldsymbol{x}, oldsymbol{x}
angle}$$

• The **distance** between two vectors $x, y \in V$ is given by

$$d(x, y) = ||x - y|| = \sqrt{\langle x - y, x - y \rangle}$$

Inner Product: Angles

Consider a vector space V with an inner product $\langle \cdot, \cdot \rangle$. The angle ω between two vectors $x, y \in V$ can be computed via

$$\cos \omega = \frac{\langle \boldsymbol{x}, \boldsymbol{y} \rangle}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|}$$

? The length/norm ||x|| is defined via the inner product.

PROJECTIONS

Projection onto 1D Subspaces

Consider a vector space V with the dot product at the inner product and a subspace U of V. With a basis vector \boldsymbol{b} of U, we obtain the **orthogonal projection** of any vector $\boldsymbol{x} \in V$ onto U via

$$\pi_U(oldsymbol{x}) = \lambda oldsymbol{b}, \quad \lambda = rac{oldsymbol{b}^ op oldsymbol{x}}{oldsymbol{b}^ op oldsymbol{b}} = rac{oldsymbol{b}^ op oldsymbol{x}}{\|oldsymbol{b}\|^2}$$

where λ is the **coordinate** of $\pi_U(x)$ with respect to b. The **projection matrix** P is

$$oldsymbol{P} = rac{oldsymbol{b}oldsymbol{b}^ op}{oldsymbol{b}^ opoldsymbol{b}} = rac{oldsymbol{b}oldsymbol{b}^ op}{\|oldsymbol{b}\|^2}$$

such that $\pi_U(\boldsymbol{x}) = \boldsymbol{P}\boldsymbol{x}$ for all $\boldsymbol{x} \in V$.

Projection onto K-dimensional Subspaces

Consider an n-dimensional vector space V with the dot product at the inner product and a subspace U of V. With basis vectors $\mathbf{b}_1, \ldots, \mathbf{b}_k$ of U (which are concatenated in the matrix \mathbf{B}), we obtain the **orthogonal projection** of any vector $\mathbf{x} \in V$ onto U via

$$\pi_U(oldsymbol{x}) = oldsymbol{B} oldsymbol{\lambda}, \quad oldsymbol{\lambda} = \left(oldsymbol{B}^ op oldsymbol{B}
ight)^{-1} oldsymbol{B}^ op oldsymbol{x}$$

where λ is the **coordinate vector** of $\pi_U(x)$ with respect to the basis b_1, \ldots, b_k of U. The **projection matrix** P is

$$oldsymbol{P} = oldsymbol{B} \left(oldsymbol{B}^ op oldsymbol{B}
ight)^{-1} oldsymbol{B}^ op$$

such that $\pi_U(\boldsymbol{x}) = \boldsymbol{P}\boldsymbol{x}$ for all $\boldsymbol{x} \in V$.

PCA ALGORITHM

Key Steps

- 1. Compute the mean μ of the data matrix $m{X} = [m{x}_1|\dots|m{x}_N]^{ op} \in \mathbb{R}^{N imes D}$
- 2. **Mean subtraction**: Replace all data points x_i with $\tilde{x}_i = x_i \mu$.
- 3. Divide the data by its standard deviation in each dimension: $\overline{m{X}}^{(d)} = \tilde{m{X}}/\sigma\left(m{X}^{(d)}\right)$ for $d=1,\ldots,D$.
- 4. Compute the eigenvectors (orthonormal) and eigenvalues of the data covariance matrix $S=\frac{1}{N}\overline{X}^{\top}\overline{X}$
- 5. Choose the eigenvectors associated with the M largest eigenvalues to be the basis of the principal subspace.
- 6. Collect these eigenvectors in a matrix $B = [b_1, \dots, b_M]$
- 7. Orthogonal projection of the data onto the principal axis using the projection matrix BB^{\top}

PCA in High Dimensions

We need to solve the eigenvector/eigenvalue equation

$$\underbrace{\frac{1}{N}\overline{\boldsymbol{X}}^{\top}\overline{\boldsymbol{X}}}_{=S}\overline{\boldsymbol{X}}^{\top}\boldsymbol{c}_{i}=\lambda_{i}\overline{\boldsymbol{X}}^{\top}\boldsymbol{c}_{i}\qquad(\text{where }\boldsymbol{c}_{i}=\overline{\boldsymbol{X}}\boldsymbol{b}_{i})$$

 \P We multiply the canonical eigenvectors equation by \overline{X}^{\perp} so that we can recover $\overline{X}^{\perp}c_i$ as the eigenvector of S with (the same) eigenvalue λ_i .