Rossmoyne Senior High School

WA Exams Practice Paper B, 2015
Question/Answer Booklet

MATHEMATICS
UNITS 1 AND 2
Section One:

Calculator-free

o be provided by the candidate tands (including coloured), sharpener, tandard items: pens (blue/black preferred), pencils (including coloured), sharpener,
laterials required/recommended for this section o be provided by the supervisor his Question/Answer Booklet ormula Sheet
ime allowed for this section eading time before commencing work: five minutes forking time for this section: fifty minutes
Your name
In words
Student Number: In figures

Important note to candidates

Special items: nil

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **betore** reading any further.

correction fluid/tape, eraser, ruler, highlighters

This examination paper may be freely copied, or communicated on an intranet, for non-commercial purposes within educational institutes that have purchased the paper from WA Examination Papers provided that WA Examination Papers is acknowledged as the copyright owner. Teachers within Rossmoyne Senior High School may change the paper so provided that WA Examination Paper's moral rights are not infringed.

Copying or communication for any other purposes can only be done within the terms of the Copyright Act or with prior written permission of WA Examination papers.

Published by WA Examination Papers PO Box 445 Claremont WA 6910

METHODS UNITS 1 AND 2 2 CALCULATOR-FREE

Structure of this paper

Section	Number of questions available	Number of questions to be answered	Working time (minutes)	Marks available	Percentage of exam
Section One: Calculator-free	7	7	50	52	35
Section Two: Calculator- assumed	13	13	100	98	65
			Total	150	100

Instructions to candidates

- The rules for the conduct of Western Australian external examinations are detailed in the Year 12 Information Handbook 2015. Sitting this examination implies that you agree to abide by these rules.
- 2. Write your answers in this Question/Answer Booklet.
- You must be careful to confine your response to the specific question asked and to follow any instructions that are specified to a particular question.
- Spare pages are included at the end of this booklet. They can be used for planning your responses and/or as additional space if required to continue an answer.
 - Planning: If you use the spare pages for planning, indicate this clearly at the top of the page.
 - Continuing an answer: If you need to use the space to continue an answer, indicate in
 the original answer space where the answer is continued, i.e. give the page number.
 Fill in the number of the question that you are continuing to answer at the top of the
 page.
- 5. Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat any question, ensure that you cancel the answer you do not wish to have marked.
- 6. It is recommended that you do not use pencil, except in diagrams.
- 7. The Formula Sheet is **not** to be handed in with your Question/Answer Booklet.

See next page

CALCULATOR-FREE 11 METHODS UNITS 1 AND 2

Additional working space

Question number:	
------------------	--

(52 Marks)	Section One: Calculator-free	(e marks)	Question 7
Write your answers in the spaces	This section has seven (7) questions. Answer all questions.	(2 marks)	(a) Determine the coefficient of the x^3 term in the expansion of $(3-2x)^5$.
	Working time for this section is 50 minutes.		
(8 marks)	∫ uoiteau		(ε) + $\varepsilon_{\chi(8-)} \times 9 \times 01 +$
	A quadratic function is given by $f(x-x) = (x)$		$\cdots + {}^{2}x_{0}$
d to sellues of the values of b	(a) The function can also be written in the form $f(x) = x^2$		Coefficient is -720
(2 marks)	· ɔ pue		
	$6 - (\mathbf{Z} - x)(\mathbf{Z} - x) = (x) \mathbf{t}$ $\mathbf{Z} - x\mathbf{A} - ^{2}x =$	(2 marks)	Solve $\sin 2x = 1$ for $0 \le x \le 90$.
	g-= → ' p -= q		
(2 marks)	(b) Solve the equation $f(x) = 0$.		0SI, 40S = X.2 0SE = X.2
	$8\pm = 2 - x$ $3 = x \text{ Io } 1 - x$		
	(c) For the graph of $y = f(x)$, state:	(S marks)	(c) Simplify $\cos\left(\frac{\pi}{7}\right)\cos\left(\frac{\pi}{5}\right) + \sin\left(\frac{\pi}{7}\right)\sin\left(\frac{\pi}{5}\right)$.
(1 mark)	(i) the coordinates of the turning point.		
	(6- ,S)		$ \left(\frac{SE}{L} - \int SOO = \left(\frac{E}{L}\right) uis\left(\frac{T}{L}\right) uis + \left(\frac{E}{L}\right) SOO\left(\frac{T}{L}\right) SOO $
(//2000))	, as to a design of the second		$\left(\frac{SE}{2^{2}C}\right)$ SOO =
(1 mark)	(ii) the equation of the line of symmetry.		
	Z = x		
()	(w)		

CALCULATOR-FREE

10

METHODS UNITS 1 AND 2

End of questions

(0, -5), (-1, 0) and (5, 0)

the coordinates of all axes intercepts.

(2 marks)

METHODS UNITS 1 AND 2

3

CALCULATOR-FREE

(1 mark)

4 Question 2 (7 marks)

Determine the coordinates of the midpoint of A(-12, 3) and B(8, -9).

(-2, -3)

Are the straight lines given by 3x + 4y = 12 and y = 0.75x + 1.25 parallel, perpendicular or neither? Justify your answer. (2 marks)

Neither

$$3x + 4y = 12$$

$$4y = -3x + 12$$

$$y = -0.75x + 3$$

Gradients are not the same (-0.75 and 0.75) so not parallel.

Gradients do not have a product of -1 ($-0.75 \times 0.75 = 0.5625$) so not perpendicular.

Determine the equation of the straight line perpendicular to the line $y = 8 - \frac{1}{3}x$ and passing through the point (2, 1). (2 marks)

Required gradient $-\frac{1}{3} \times m = -1 \Rightarrow m = 3$.

$$1 = 3(2) + c$$

$$c = -5$$

$$y = 3x - 5$$

Solve $2(3x-2) = \frac{2x+11}{2}$. (2 marks)

$$4(3x-2) = 2x + 11$$
$$12x-8 = 2x + 11$$
$$10x = 19$$
$$x = 1.9$$

(ii) f(x). (2 marks)

9

$$f(x) = \frac{x^4}{8} - \frac{x}{3} + c$$

$$4 = \frac{(-2)^4}{8} - \frac{-2}{3} + c$$

$$c = 4 - 2 - \frac{2}{3}$$

$$= \frac{4}{3}$$

$$f(x) = \frac{x^4}{8} - \frac{x}{3} + \frac{4}{3}$$

	$S - = \overline{\Gamma - x} \sqrt[4]{\xi}$		$\frac{\varepsilon t}{\varepsilon} - = \frac{t}{\varepsilon} - \frac{\varepsilon_x}{\zeta}$
(2 marks)	$0 = \Delta + \overline{\left(\mathbf{r} - \mathbf{x}\mathbf{\lambda}\right)} \mathbf{\xi} \qquad \text{(ii)}$		Gradient of tangent is $-\frac{13}{8}$.
		(3 шяцкг)	(i) the coordinates of point A.
			puil $\frac{1}{\varepsilon} - \frac{\varepsilon_x}{\zeta} = (x)' \mathcal{T}$ il
	$\frac{g}{Sl} = \frac{g \cdot Z}{9} = x$		(c) The tangent to the curve $y = f(x)$ at the point A is $13x + 3y + 14 = 0$.
	$\begin{vmatrix} 3.0 \le X \le 2 = x^{2 \times 2} \le 2 \\ 3.5 = x = 3 \end{vmatrix}$		Graph is increasing as has a +ve gradient.
(2 marks)	. <u>\(\bar{\bar{\bar{\bar{\bar{\bar{\bar{</u>		
	₂ о _ј у.е	(c)	$\left \xi - x_{\mathcal{V}} - {}_{\mathcal{E}} \chi \xi \right \leq \frac{xp}{\sqrt{p}}$
		(2 marks)	(b) State whether the graph of $y = x^3 - 2x^2 - 3x - 2$ is increasing, decreasing or a the point (-1, 1). Justify your answer.
	$\frac{\frac{v}{\varepsilon} - u}{\frac{v}{\varepsilon}} = \frac{v}{\frac{\varepsilon}{1}} = \frac{\varepsilon^{x} / v}{1}$	te vaegoitet	$\frac{\varepsilon}{\varepsilon} \frac{1}{t} + \frac{1}{\varepsilon} \frac{1}{t} \frac{1}{t} = \frac{1}{t} \frac{1}{t}$
(2 marks)	$x_x = \frac{1}{\varepsilon_x \sqrt[L]{\nu}}$ if n in it is a solution of n if n is a solution of n in n	(1 mark)	$\frac{\epsilon_{1}}{\epsilon_{1}} + \frac{\epsilon_{1}}{2} = v \qquad \text{(ii)}$
	$ \begin{array}{c} 01 - 01 \times 04 = {}^{2}({}^{2} - 01 \times 7) \\ $	(1 mark)	$\int_{\Omega} 1 - 1 + I = x $ (i)
r. (1 mark)	Evaluate 0.00007^2 , writing your answer in scientific notation		v
(7 marks)		(9 marks) Questio	Question 6 (a) Differentiate the following with respect to \imath :
METHODS UNITS 1 AND 2	Z HATOR-FREE 5	ATOR-FREE CALCU	METHODS UNITS 1 AND 2 GALCUL

See next page

 $\frac{\mathbf{v}}{\mathbf{L}} - = x$

∠−= *x***∀**

 $^{\mathsf{E}}(\mathsf{Z}-)=\mathsf{I}-x^{\mathsf{A}}$

8-=

(4, C-)A

 $\lambda = \chi \iff \Delta l = \chi \xi$

0 = 41 + 45 + (2-)21

 $S-=x \Leftarrow 8-=\epsilon_X$

 $3x - 2 = 2 - \varepsilon_x \xi$

CALCULATOR-FREE

6 Question 4 (8 marks)

Sketch the graph of $y = 0.5(x-2)^3 - 1$.

(3 marks)

Expand (3x-1)(3x+1)(x+3).

(2 marks)

$$(9x^2 - 1)(x + 3) = 9x^3 + 27x^2 - x - 3$$

Solve $x^3 + 6x^2 + 5x - 12 = 0$.

(3 marks)

$$f(1) = 0 \implies (x-1)(x+7x+12) = 0$$
$$(x-1)(x+3)(x+4) = 0$$
$$x = 1, x = -3, x = -4$$

7 Question 5 (7 marks)

The graph of y = f(x) and a chord of the graph from (2.5, 7.5) to (5.5, 19.5) is shown below.

Use the ratio $\frac{f(x+h)-f(x)}{h}$ to determine the gradient of the chord. Clearly state the (2 marks) values of x and h that you use.

$$x = 2.5$$

$$h = 3$$

$$\frac{f(2.5+3) - f(2.5)}{3} = \frac{19.5 - 7.5}{3} = 4$$

As the value of h used in (a) decreases towards zero and the value of x remains unchanged, will $\frac{f(x+h)-f(x)}{h}$ increase, decrease or stay the same? Explain your (2 marks) answer.

Increase.

As h decreases, it can be seen from the graph that the gradient of the chord will increase.

Clearly describe what feature of the graph of y = f(x) will be found by evaluating $\lim_{h\to 0} \left(\frac{f(x+h) - f(x)}{h} \right) \text{ when } x = 4.$ (2 marks)

> The gradient (or derivative) of y = f(x)at the point where x = 4.

On the axes above, draw the tangent to the graph of y = f(x) at the point (2.5, 7.5). (1 mark)