Teoria da Informação. 1a Prova. (Duração: 1:30)

1(3.5 pts)	2(1.5 pts)	3(2 pts)	4(3 pts)	Total(pts)

Nome: Gunanda gracia de Lima

1ª Questão

(3.5 pontos, 0.7 por item)

Considere a variavel aleatoria X com função de probabilidade:

X	0	1	2
P	0.5	0.25	0.25

- a) calcule o tamanho de código esperado para uma codificação ótima,
- b) encontre um código de Huffman (binario) e calcule o tamanho de código esperado,
- c) encontre um código de Huffman por blocos de tamanho 2 e calcule o tamanho de código esperado (por simbolo),
- d) Use a codificação aritmética para codificar a sequencia "002",
- e) Encontre a sequência, de tamanho 3, correspondente ao código aritmético "0.51".

2ª Questão

(1.5 pontos, 0.5 por item)

Considere "0001020010112012002021001022" uma amostra da sequência de v.a. iid $X_1, X_2, ..., X_n$.

- a) encontre um código de Shannon (binario),
- b) encontre um código de Huffman (binario),
- c) codifique as sequências "0010" e "1221" para cada um dos códigos obtidos nos items a) e b).

3ª Questão

(2 pontos)

Sejam p(x) e q(x), $x \in \mathcal{X}$ duas funções de probabilidade, demonstre que

$$D(p||q) \ge 0,$$

com igualdade se e somente se $p(x) = q(x) \ \forall x \in \mathcal{X}$.

4ª Questão

(3 pontos)

Seja X uma v.a. com finção de probabilidade p(x) e $A_{\epsilon}^{(n)}$ o conjunto tipico com respeito à função de probabilidade $p(x), x \in \mathcal{X}$. Demonstre que,

- a) para $(x_1, x_2, ..., x_n) \in A_{\epsilon}^{(n)}, H(X) \epsilon \le -\frac{1}{n} \log_2(p(x_1, x_2, ..., x_n)) \le H(X) + \epsilon$
- b) $P(A_{\epsilon}^{(n)}) > 1 \epsilon$, para n suficientemente grande,
- c) $|A_{\epsilon}^{(n)}| < 2^{n(H(X)+\epsilon)}$.