Ejercicio 15

Consigna

- (a) Identifique la siguiente función:
 - $f: \Sigma^* \times \Sigma \rightarrow \{0,1\}$

•
$$f(\varepsilon, x) = 0$$

• $f(xw, y) = \begin{cases} 1 & \text{si } x = y \\ f(w, y) & \text{si } x \neq y \end{cases}$

- (b) Defina recursivamente las siguientes funciones:
 - $cant: \Sigma^* \times \Sigma \to \mathbb{N}$
 - $copiar: \Sigma^* \times \mathbb{N} \to \Sigma^*$
 - $sacar_de_la_izquierda: \Sigma^* \times \mathbb{N} \to \Sigma^*$
 - $primera_posicin : \Sigma^* \times \Sigma \to \mathbb{N}$

Resolución (parte a)

Para este ejercicio, podemos observar que para definir la función, estamos definiendo otra (que a partir de ahora podremos usar), que es la siguiente:

- $si\ entonces\ sino: Bool \times A \times A \rightarrow A$
- $si\ entonces\ sino(True, x, y) = x$
- $si_entonces_sino(True, x, y) = y$

Con esto podemos ver que la función definida por las reglas establecidas, es una que toma como argumentos una letra y una palabra; y devuelve 1 si encuentra la letra en la palabra, o 0 en caso contrario.

Resolución (parte b)

Para este ejercicio, tendremos que decidir que argumento vamos a fijar, para aplicar el ERP sobre el mismo. Esto va a depender de la semántica de la función.

Cant

En este caso, fijamos Σ^* para aplicar el ERP sobre dicho conjunto.

- 2. $Cant(xw, y) = \begin{cases} 1 + Cant(w, y) & \text{si } x = y \\ Cant(w, y) & \text{si } x \neq y \end{cases}$

Copiar

En este caso, fijamos ℕ para aplicar el ERP sobre dicho conjunto.

- 1. $Copiar(w,0) = \varepsilon$
- 2. Copiar(w, n + 1) = wCopiar(w, n)

Sacar de la izquierda

En este caso, fijamos ℕ para aplicar el ERP sobre dicho conjunto.

- $1. \ Sacar_de_la_izquierda(xw,0) = xw$
- 2. $Sacar_de_la_izquierda(xw, n + 1) = Sacar_de_la_izquierda(w, n)$

Primera posición

En este caso, fijamos Σ^* para aplicar el ERP sobre dicho conjunto.

- 1. $Primera_posicin(\varepsilon, y) = 1$
- 1. Frimera_posicin(c, y) = 1
 2. $Primera_posicin(xw, y) = \begin{cases} 1 & \text{si } x = y \\ 1 + Primera_posicin(w, y) & \text{si } x \neq y \end{cases}$