中国科学技术大学

2018-2019 第一学期期末考试题

考试科目: <u>随机过程(B)</u>	得分:
学生所在系: 姓名:	学号:
(2019年1月10日,半开卷)	
一、(30分。填空题每空3分,其余每空2分)判断是非与填空:	
(1) (是非) 若马氏链 $X = \{X_n, n \ge 0\}$ 的初始分布 $\pi = \{\pi_j, j \ge 0\}$ 为其平稳分布,则:	
(a) $\sum_{i\geq 0} \pi_i p_{i,j}^{(n)} = \pi_j, (j\geq 0, n\in N)$ (); (b) X 为严格平稳过程 (
(c) $\pi_j = \lim_{n \to \infty} p_{i,j}^{(n)}, (i, j \ge 0)$ ();	(d) X 必有正常返状态 ()。
(2) (是非)下列关于 τ 的函数 $R(\tau)$ 是否为(实或复)平稳过程的协方差函数?	
(a) $R(\tau) = e^{- \tau } (\tau + 1)^2$ (); (b) $R(\tau) = \tau $	$e^{-\tau^2/2}$ (); (c) $R(\tau) = \frac{\sin \tau}{\pi \tau}$ ()
(d) $R(\tau) = \sigma^2 e^{i\lambda\tau}$ (); (e) $R(\tau) = \sigma^2 e^{-i\lambda \tau }$	σ (注: $\sigma, \lambda > 0, i = \sqrt{-1}$)
(3) (填空) 设 X_1,X_2,X_3 相互独立,且 X_i ~	$\sim Exp(\lambda_i), i = 1,2,3$ (指数分布),则
$X_{(1)} = \min\{X_1, X_2, X_3\}$ 的分布为(),概率	$P\left\{X_{1}=X_{(1)}\right\}$ 等于()。
(4) (填空) 设 $\{N(t), t \ge 0\}$ 是一强度为 λ 的 Pois	sson 过程, W_k 为其第 k 个事件发生的
时间,并设 $1 \le k \le n, t > 0$,则 $E\{W_k \mid N(t) = n\}$ =	$=($), $E(W_k)=($) \circ
二、(8 分) 假设汽车按强度为 λ 的泊松过程进入	、一条单向行驶的无限长的公路,进入
的第 i 辆车以速度 V_i 行驶。假定诸 V_i ($i \ge 1$)为相互	独立的正随机变量,有共同分布 F 。
试求在时刻 t 位于区间 (a,b) 内的平均汽车辆数。	
三、 (15 分) 设马氏链 $\{X_n, n \ge 0\}$ 的转移概率	为:
$p_{0,j} = a_j > 0$, $(j \ge 0)$ $p_{i,i-1} = 1$, $(i \ge 1)$	
(1)证明该马氏链为不可约常返的,目为非周期:	

(2) 试求过程由0出发后首次返回到0的平均时间 μ_0 ,并据以回答:过程何时为正常

2018--2019 学年第一学期,第1页(共2页)

返?何时为零常返?

- (3) 在正常返时,试求该马氏链的极限分布: $\pi = \{\pi_i, j \geq 0\}$ 。
- 四、(20分)设马氏链 $\{X_n, n \ge 0\}$ 的一步转移概率矩阵为:

$$P = \begin{bmatrix} 1 & 0 & 0.5 & 0.3 & 0.2 \\ 2 & 0 & 0.2 & 0.4 & 0.4 \\ 3 & 0 & 0 & 1 & 0 \\ 4 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- (1) 试讨论该马氏链的状态分类(即:分为几个等价类、各类的周期性如何、是否为常返、是否为正常返?)。
- (2) 试求过程由状态 k 出发而被状态 j 吸收的概率 $f_{k,j}$, (k = 1,2; j = 3,4)。
- 五、(15分)设A与 Θ 独立且分别服从均匀分布U(0,1)与 $U(0,2\pi)$,定义过程:

$$X(t) = A\cos(\omega_0 t + \Theta)$$
 ($t \in R$, ω_0 为非零常数)

- (1) 证明 $\{X(t), t \in R\}$ 为宽平稳过程;
- (2) 试求其功率谱密度函数 $S(\omega)$ 。

六、(12分) 设平稳过程 $X = \{X(t), t \in R\}$ (均值为 0) 的功率谱密度函数为:

$$S(\omega) = \frac{\omega^2 + 3}{\omega^4 + 11\omega^2 + 28}$$

- (1) 试求 X 的协方差函数 $R(\tau)$;
- (2) 问 X 的均值是否有遍历性? 为什么?

(完)