Parallelogram

The quadrilateral is a parallelogram if one of the following cases is identified ..

- 1- If each two opposite sides are parallel.
- 2- If each two opposite sides are equal in length.
- 3- If there are two opposite sides are parallel and equal in length.
- 4- If each two opposite angles are equal in measure.
- 5- If the diagonals bisect each other.

The special cases of parallelogram and their properties ..

Rectangle	Rhombus	Square
		
- Its four angles are right.	- Two adjacent sides are equal in length. (four sides are equal in length)	- Its four angles are right.
- The two diagonals are equal in length but not perpendicular.	- The two diagonals are perpendicular but not equal & each of them bisects the opposite angles	- Two adjacent sides are equal in length.
		- The two diagonals are perpendicular, equal in length & each of them bisects the opposite angles
It has 2 axes of symmetry	It has 2 axes of symmetry	It has 4 axes of symmetry
Per. = $2(L + w)$	Per. = $4 \times L$	Per. = $4 \times L$

<u>Areas</u>

Remember that ..

1) The square:

Area of a square = side × side = S² = $\frac{1}{2}$ (diagonal)² = $\frac{1}{2}$ d²

Side = \sqrt{Area}

 $Diagonal = \sqrt{2 \times Area}$

Perimeter of a square = $side \times 4$.

Side = Perimeter $\div 4$

2) The rectangle:

Area of a rectangle = length \times width.

$$L = \frac{\text{Area}}{W}$$
$$W - \frac{\text{Area}}{W}$$

Perimeter of a rectangle = 2(L + W).

The rhombus

 \mathbf{W}

A rhombus is a parallelogram with sides equal in length.

Area of a rhombus = $\frac{1}{2}$ ($D_1 \times D_2$).

or = base \times height.

The trapezium

<u>A trapezium</u> is a quadrilateral whose two opposite sides are parallel (but not equal) and called bases and the other two sides are called legs.

The triangle

Area of triangle = $\frac{1}{2}$ b × h

.----

The circle

Area of Circle = πr^2

Diameter = $2 \times \text{radius}$

Factorizing By taking H.C.F

$$6x^2y^2 - 9x^3y = 3x^2y(2y - 3x)$$

That means

- a) factorize the numbers to its prime numbers and take the H.C.F of them
- b) take the common letter with the smallest power of them

Example

1)
$$28a^3b^2 + 49a^2b^4 =$$

$$28 = 2 \times 2 \times 7 , \qquad 49 = 7 \times 7$$

$$49 = 7 \times 7$$

$$H.C.F = 7$$

$$28a^3b^2 + 49a^2b^4 = 7a^2b^2(4a + 7b^2)$$

2)
$$2x (m + 3) - 4y (m + 3) =$$

H.C.F of 2 & 4 is
$$\underline{2}$$
 and $(m+3)$ is common

$$2x (m+3) - 4y (m+3) = 2(m+3) (x-2y)$$

3)
$$a(a-b)-b(b-a) = a(a-b)+b(a-b) = (a-b)(a+b)$$

$$(b-a) = -(a-b)$$

The Power

1) Multiplication of the same base — add the power

Ex: a)
$$2^3 \times 2^2 = 2 \times 2 \times 2 \times 2 \times 2 = 2^5$$

= 2^{3+2}

b)
$$2^5 \times 2 = 2^6$$

2) Division of the same base — subtract the power

Ex:
$$2^5 \div 2^3 = \frac{2 \times 2 \times 2 \times 2 \times 2}{2 \times 2 \times 2} = 2 \times 2 = 2^2$$

3) Any base to the power of ZERO = 1

Ex:
$$2^3 \div 2^3 = \frac{2 \times 2 \times 2}{2 \times 2 \times 2} = 1$$

$$= 2^{3-3} = 2^0 = 1$$

Then $5^0 = 1$, $100^0 = 1$, $7^0 = 1$, $a^0 = 1$, $x^0 = 1$

4) **ONE** to any power = **ONE**

Ex:
$$1^5 = 1 \times 1 \times 1 \times 1 \times 1 = 1$$

$$1^0 = 1$$
, $1^{100} = 1 \times 1 \times \dots = 1$

1) When the coefficient is not written, then it is equal to 1, when the power is not written then it is equal to 1.

Ex:
$$x = x^1$$
, $y^3 = 1y^3$

6) ZERO to any power = ZERO

Ex:
$$0^4 = 0$$
, $0^1 = 0$

$$\frac{0}{7} = 0$$
, but $\frac{7}{0} =$ (has no meaning)

7) Brackets — multiply the power

Ex:
$$(2^3)^2 = 2^3 \times 2^3 = 2^{3+3} = 2^6$$
 or $(2^3)^2 = 2^{3x^2} = 2^6$

or
$$(2^3)^2 = 2^{3x^2} = 2^6$$

8) Multiplication of the same power — multiply the base

Ex:
$$2^2 \times 3^2 = 2 \times 2 \times 3 \times 3 = (2 \times 3) \times (2 \times 3) = 6 \times 6 = 6^2$$

= $(2 \times 3)^2 = 6^2$

9) Addition & Subtraction has No Rule.

Ex:
$$2^3 + 2^2 = (2 \times 2 \times 2) + (2 \times 2) = 8 + 4 = 12$$

 $\neq 2^{3+2}$