Multiscale Modeling of Red Blood Cells Passing through the Human Spleen

Huijie Lu

Zhangli Peng

Department of Aerospace and Mechanical Engineering
University of Notre Dame

Why do we care about Red Blood Cells?

Beautiful Shape

- Carry oxygen by hemoglobin
- Beautiful biconcave resting shape
- Simplest but strong structure

Lack a nucleus

No complex organelles

Flexible and strong cell membrane

Red Blood Cell Diseases

More than I billion people (I in 6) suffer from RBC diseases, e.g. malaria, anemia, sickle cell disease, (Mohandas et al. Blood 2008)

Malaria

Sickle cell disease

Anemia/Hereditary spherocytosis

I million deaths per year in Africa

I in 5000 in America

Diseases .vs. mechanical properties, structural stability of RBCs

RBCs Transmigrating through Inter-endothelial Slits in the Human Spleen

Experimental Work: Different Cell Shapes When Cell pass through Microfluidic Slits

Round shape

Sickle Cell

A small tip formed

Two broken tails formed

P. Gambhire, A. Viallat et al., Small, 2017

Three-level Hierarchical Multiscale RBC Models

Boundary Integral Formulation of Elastic Capsules in Stokes Flow

Stokes Flow: $\eta \nabla^2 \mathbf{u} = \nabla p$, \longrightarrow Boundary Element Method $\nabla \cdot \mathbf{u} = 0$.

Lipid Bilayer: $\nabla \cdot \Theta^b = 0$, Finite Element Method

Boundary Conditions: $oldsymbol{u} = ar{oldsymbol{u}} \quad ext{on} \quad \Gamma^{ ext{D}}, \ oldsymbol{f} = ar{oldsymbol{f}} \quad ext{on} \quad \Gamma^{ ext{N}}.$

Validation of Cell Deformation and Transit Time against Experiments

Same Condition:

pressure of 831 Pa and same geometry of the channel

(P. Gambhire, A. Viallat et al., Small, 2017)

Distribution of Velocity Field

Cytoskeleton Shear Deformation

Bilayer-Cytoskeletal Interaction

Tension in the Bilayer

Effect of Surface Area to Volume Ratio

A = 129.078um³ V = 93.88um³

Failed to pass through

A = 133.90um³ V = 93.88um³

A = 139.76um³ V = 93.88um³

A = 146.57um³ V = 93.88um³

A = 154.27um³ V = 93.88um³ Acknowledgement

NSF CBET-1706436

Collaborators:

- Annie Viallat, Priya Gambhire, Emmanuèle Helfer (Aix Marseille Universite, France)
- Wendy Alvarez Barrios, Siyuan Zhang (University of Notre Dame)
- Zhangli Peng, Zhe Feng, Sebastian Sensale (University of Notre Dame)

Thank you!

