1. Meetrapport Imageshell speed

1.1. Namen en datum

Stefan van der Ham & Bas van Rossem, 6 april 2019.

1.2. Doel

We willen met dit experiment kijken welke van de twee implementaties sneller is. De default implementatie van de imageshell tegenover onze implementatie van de imageshell.

1.3. Hypothese

Wij verwachten tot onze implementatie 50% sneller is, omdat het een vrij simpele oplossing is.

1.4. Werkwijze

We voeren het programma heel vaak uit met de de vision timer. Daarna verwerken we alle resultaten in een .csv bestand.

1.5. Resultaten

Base 5	Cycles	Default	Student	Verschil	Gewogen verschil
	5	1.43322	1.28974	0.14348	0.028696
	10	3.74853	2.40293	1.3456	0.13456
	15	5.97744	3.58336	2.39408	0.159605
	20	8.36134	4.75181	3.60953	0.180477
	25	10.7435	5.96316	4.78034	0.191214
	30	12.9383	6.50001	6.43829	0.21461
	35	14.0908	7.56266	6.52814	0.186518
	40	16.2728	8.61289	7.65991	0.191498
	45	18.3604	9.73837	8.62203	0.191601
	50	20.4859	10.8112	9.6747	0.193494
Total	275	112.41223	61.21613	51.1961	0.167227
Student %	45.543176				

Base 10	Cycles	Default	Student	Verschil	Gewogen verschil
	10	2.57258	2.38643	0.18615	0.018615
	20	7.18996	4.77385	2.41611	0.120806
	30	11.9202	7.17161	4.74859	0.158286
	40	16.7386	8.85176	7.88684	0.197171
	50	19.756	10.8701	8.8859	0.177718
	60	23.9371	13.0249	10.9122	0.18187
	70	28.3192	15.23	13.0892	0.186989
	80	32.6713	17.4044	15.2669	0.190836
	90	37.0472	19.6006	17.4466	0.193851
	100	41.3547	21.8105	19.5442	0.195442
Total	550	221.50684	121.12415	100.38269	0.162158
Student %	45.318099				

Base 15	Cycles	Default	Student	Verschil	Gewogen verschil
	15	3.84335	3.59333	0.25002	0.016668
	30	10.8149	7.21848	3.59642	0.119881
	45	18.0076	10.5595	7.4481	0.165513
	60	23.6423	13.1194	10.5229	0.175382
	75	29.5427	16.3159	13.2268	0.176357
	90	36.0185	19.6095	16.409	0.182322
	105	42.5333	22.7995	19.7338	0.187941
	120	48.978	26.1777	22.8003	0.190003
	135	55.4227	31.2018	24.2209	0.179414
	150	65.0045	33.8508	31.1537	0.207691
Total	825	333.80785	184.44591	149.36194	0.160117
Student % sneller	44.744885				

Base 20	Cycles	Default	Student	Verschil	Gewogen verschil
	20	5.21178	5.03205	0.17973	0.008987
	40	15.1774	9.89142	5.28598	0.13215
	60	22.3704	14.9629	7.4075	0.123458
	80	34.2377	18.1686	16.0691	0.200864
	100	40.9765	22.6737	18.3028	0.183028
	120	49.8665	27.2289	22.6376	0.188647
	140	59.0522	31.9003	27.1519	0.193942
	160	68.3714	37.2653	31.1061	0.194413
	180	79.7631	40.63	39.1331	0.217406
	200	91.1548	45.1539	46.0009	0.230005
Total	1100	466.18178	252.90707	213.27471	0.16729
Student %	45.749259				
sneller					

Base 25	Cycles	Default	Student	Verschil	Gewogen verschil
	25	5.68612	5.69274	-0.00662	-0.00026
	50	17.0211	11.3878	5.6333	0.112666
	75	28.3328	16.9763	11.3565	0.15142
	100	39.5432	22.5409	17.0023	0.170023
	125	50.7934	28.2563	22.5371	0.180297
	150	62.2665	33.8184	28.4481	0.189654
	175	73.4179	39.4691	33.9488	0.193993
	200	84.8043	45.286	39.5183	0.197592
	225	96.1907	48.8059	47.3848	0.210599
	250	103.166	54.1173	49.0487	0.196195
Total	1375	561.22202	306.35074	254.87128	0.160217
Student % sneller	45.413628				

1.6. Verwerking

Hier zijn alle totaalresultaten bij elkaar. Het totaal bij gewogen verschil is het gemiddelde van het verschil.

	Cycles	Default	Student	Verschil	Gewogen verschil
Base 5	275	112.41223	61.21613	51.1961	0.16722718
Base 10	550	221.50684	121.12415	100.38269	0.162158377
Base 15	825	333.80785	184.44591	149.36194	0.160117208
Base 20	1100	466.18178	252.90707	213.27471	0.167289863
Base 25	1375	561.22202	306.35074	254.87128	0.160217355
Total	4125	1695.1307	926.044	769.08672	0.163401997
Student % sneller	45.37035				

Student % sneller is berekend door het totale verschil te delen door de totale default tijd.

1.7. Conclusie

De imageshell implementatie van de student is 45.37% sneller dan de default implementatie. We kunnen dus concluderen dat de imageshell die wij hebben gemaakt sneller is dan de default implementatie van de imageshell.

1.8. Evaluatie

Het doel van dit experiment was om te kijken hoeveel sneller onze implementatie van de image shell was in vergelijking tot de default implementatie. Onze hypothese was bijna goed, we zaten er maar een paar procentpunten naast. We hebben heel wat metingen gedaan, maar de code crashte heel vaak als het preprocessen van het rechteroog werd uitgevoerd. Ook was er ergens een memoryleak. We weten dit waar die vandaan komt en op welke manier deze invloed hadden op de meetresultaten.