

An Alternative Characterization of Missing At Random in Shared Parameter Models

G. Papageorgiou¹, D. Rizopoulos¹

1. Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands

August 25th, 2020

ISCB 2020

Motivation

- Dropout is a common complication in longitudinal studies
- Missing Data Mechanisms:
 - MCAR: Missingness does not depend on neither observed nor unobserved outcomes
 - MAR: Missingness is independed of the unobserved outcomes after conditioning on observed outcomes
 - MNAR: Missingness depends on unobserved outcomes

Motivation

MCAR and MAR are ignorable:

- Under the (Bayesian) Likelihood Framework
- If missingness and measurement processes depend on different sets of parameters

- Distinction between MAR and MNAR is intractable (Molenberghs et al., 2007)
- Start with MAR valid analysis → Explore MNAR deviations

Motivation

- Three frameworks for sensitivity analysis:
 - Selection Models: Naturally encompass MAR
 - **Pattern Mixture Models**: MAR characterization for longitudinal and time-to-event data (Molenberghs et al. 1998)
 - **Shared Parameter Models**: Generalized Shared Parameter Model (Creemers et al. 2010, 2011; Njagi et al. 2014)

Objectives

- Focus on Shared Parameter Models:
 - MNAR and MAR on the subject specific-level
 - Sensitivity analysis using joint models for longitudinal data and dropout

• The shared parameter model is defined as:

$$p\left(y_{i}^{o},y_{i}^{m},T_{i}^{*},C_{i}; heta,\psi
ight)=\int p\left(y_{i}^{o},y_{i}^{m},T_{i}^{*},C_{i},b_{i}; heta,\psi,D
ight)db_{i},$$

- $\bullet \ \boldsymbol{y}_i = \left(y_{i1}, \dots, y_{in_i}\right)^{\top}$
- $\bullet \ y_i = \left(y_i^o, y_i^m\right)$
- $T_i = \min(T_i^*, C_i)$,
- δ_i : dropout indicator.
- $b_i \sim \mathcal{N}\left(0, D\right)$

- Assumptions:
 - Conditional Independence
 - Non Informative Censoring

$$\int p\left(T_{i}^{*}\mid b_{i};\psi^{T^{*}}\right)p\left(C_{i}\mid y_{i}^{o};\psi^{C}\right)p\left(y_{i}^{o},y_{i}^{m}\mid b_{i};\theta\right)p\left(b_{i};D\right)db_{i},$$

• On the subject specific level:

$$\left\{ \begin{array}{l} \int p\left(T_{i}\mid \pmb{b_{i}}; \psi^{T^{*}}\right) p\left(y_{i}^{o}, y_{i}^{m}\mid \pmb{b_{i}}; \theta\right) p\left(b_{i}; D\right) db_{i}, \quad i: \mathsf{dropout} \quad \Rightarrow \quad \mathsf{MNAR} \\ \\ \int p\left(C_{i}\mid y_{i}^{o}; \psi^{C}\right) p\left(y_{i}^{o}, y_{i}^{m}\mid \pmb{b_{i}}; \theta\right) p\left(b_{i}; D\right) db_{i}, \quad i: \mathsf{censored} \quad \Rightarrow \quad \mathsf{MAR}. \end{array} \right.$$

• Joint model for longitudinal data and dropout:

$$\begin{cases} y_{i}\left(t\right) &= \eta_{i}\left(t\right) + \epsilon_{i}\left(t\right) \\ &= x_{i}^{\intercal}\left(t\right)\beta + z_{i}^{\intercal}b_{i} + \epsilon_{i}\left(t\right) \\ h_{i}\left(t\right) &= h_{0}\left(t\right)\exp\left\{w_{i}^{\intercal}\gamma_{i} + \alpha\eta_{i}\left(t\right)\right\} \\ b_{i} \sim \mathcal{N}\left(0, D\right), \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right) \end{cases}$$

• We can perturb the dropout indicator δ_i to explore different scenarios

Dataset

- HIV CD4 Data (Abrams et al. 1994; Goldman et al. 1996):
 - Randomized Clinical Trial
 - 467 HIV patients randomised to Didanosine (ddI) and Zalcitabine (ddC)
 - Scheduled visits at baseline, 2, 6, 12 and 18 months
 - 184 (39%) subjects died
 - around 60% of the planned measurements were actually recorded

Dataset

Dataset

	ddC		ddI	
Dropout Pattern	N	%	N	%
OXXXX	29	14.4%	32	15.6%
OOXXX	35	17.4%	37	18.0%
OOOXX	41	20.4%	47	22.9%
0000X	85	42.3%	76	37.1%
00000	11	5.5%	13	6.3%
Total	201	100%	205	100%

Models

• Joint model for longitudinal and dropout processes:

$$\left\{ \begin{array}{l} \sqrt{y_{ij}^o} = \left(\beta_0 + b_{i0}\right) + \left(\beta_1 + b_{i1}\right)t_{ij} + \beta_2 \mathrm{ddI} + \beta_3\left(t_{ij} \times \mathrm{ddI}\right) + \epsilon_{ij}, \\ \\ h_i\left(t \mid \mathcal{H}_i\left(t\right), b_i\right) = h_0\left(t\right) \exp\left[\gamma_1 \mathrm{ddI} + \alpha \eta_i\left(t\right)\right] \\ \\ b_i \sim \mathcal{N}\left(0, D\right), \epsilon_i \sim \mathcal{N}\left(0, \sigma^2\right) \end{array} \right. \right.$$

Models

- Three models:
 - MNAR(1): No distinction between death and other causes
 - MNAR(2): Distinction between death and other causes
 - MAR: All cases as censored

Effect	Parameter	MNAR(1)	MNAR(2)	MAR
Intercept	β_0	2.4671 (0.0640)	2.4680 (0.0629)	2.4423 (0.0647)
Time	eta_1	-0.0655 (0.1701)	-0.0674 (0.1715)	-0.0399 (0.0050)
ddI	eta_2	0.1038 (0.0908)	0.1067 (0.0879)	0.1188 (0.0946)
$ddI \times Time$	eta_3	0.0219 (0.2332)	0.0290 (0.2376)	0.0089 (0.0070)

Simulation Study

- Scenarios:
 - 5% MNAR 45% MAR
 - 25% MNAR 25% MAR
 - 45% MNAR 5% MAR

- Models:
 - MAR: all dropout cases are considered as MAR
 - MNAR(1): all dropout cases are considered MNAR
 - MNAR(2): dropout cases are considered MNAR or MAR depending on the reason of dropout

Discussion

- Sensitivity analysis should be routinely reported for longitudinal studies with dropout
 - SPMs can be used to explore MAR and MNAR scenarios
 - The main advantage is that this can be done at a subject-specific level
 - This can be achieved with existing software such as JMbayes
 - Different causes of missingness can be explored if information is available.
- Full paper available online:
 - Papageorgiou, G., & Rizopoulos, D. (2020). An alternative characterization of MAR in shared parameter models for incomplete longitudinal data and its utilization for sensitivity analysis. Statistical Modelling. https://doi.org/10.1177/1471082X20927114

Thank you

g.papageorgiou@erasmusmc.nl

gregpapageorgiou.com