7.3-2.

When Randomized-Quicksort runs, how many calls are made to the random-number generator Random in the worst case? How about in the best case? Give your answer in terms of Θ -notation.

Answer.

 Θ (n) calls to RANDOM in both cases. The number of calls made to RANDOM is equal to that of RANDOMIZED-PARTITION, since RANDOM is called once every time RANDOMIZED-PARTITION runs. So we can draw our interest on the partitioning operation to unreveal this problem.

The worst-case behavior occurs when the partitioning routine produces one subproblem with n-1 elements and one with 0 elements in each recursive call. Since the recursive call on an array of size 0 just return, $S\left(0\right)=\Theta\left(1\right)$, the recurrence for the number of calls made to Randomized-Partition is

$$S(n) = S(n-1) + S(0) + \Theta(1)$$

= $S(n-1) + \Theta(1)$

Using substitution method, we can show that the recurrence $S(n) = S(n-1) + \Theta(1)$ has the solution $S(n) = \Theta(n)$.

In the best case, RANDOMIZED-PARTITION divides the problem into two subproblem with size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil - 1$. The recurrence for the number of calls made to RANDOMIZED-PARTITION is

$$S(n) = 2S(n/2) + \Theta(1)$$

By case 1 of the master theorem, this recurrence has the solution $T(n) = \Theta(n)$.

^{*.} Creative Commons ② 2014, Lawrence X. Amlord (颜世敏, aka 颜序). Email address: informlarry@gmail.com