mVMCの演習問題 (問題)

三澤 貴宏

東京大学物性研究所 特任研究員(PCoMS PI)

基本

- 1. Heisenberg, Hubbard chain
- 2. Heisenberg, Hubbard 正方格子
- 3. 補助ツールI: fourier tool の使用
- 4. 補助ツールII: UHFを初期解にする

発展 (mVMCで様々な状態を作ってみましょう)

- 1. Hubbard + V →電荷秩序
- 2. Heisenberg+J2 → ストライプ磁気秩序
- 3. Attractive Hubbard → 超伝導
- 4. 1D Kondo lattice → 近藤絶縁体
- 5. Kitaev model → Kitaev spin 液体

$$H = \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

step 1. L=4でmVMCで最適化計算をしてみましょう

```
StdFace.def
                                    /vmc.out -s StdFace.def
                                    > gnuplot
                                    plot ./output/zvo out 001.dat u 1
                 = 2
    Lsub
               = "Spin"
    model
                  = "chain"
    lattice
    J
                  = 1.0
                                    Energy by H•
    2Sz
                                    0 -2.0000000000 : S=0
    NVMCSample
                  = 200
                                    1 - 1.00000000000 : S=1
    NSROptItrStep = 500
                                    2 -0.0000000000
    NSR0ptItrSmp
                  = 50
                                    3 0.0000000000
    NMPTrans
                  = 1
                                    4 0.0000000000
    NSPStot
                   = 0
                                    5 1.0000000000
```

$$H = \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

NSPStot

step 2. L=4でmVMCで物理量計算をしてみましょう

```
StdFace.def
                                     cp./output/zqp opt.dat.
                                     ./vmcdry.out -s StdFace.def ./zqp_opt.dat
  Lsub
  model = "Spin"
   lattice = "chain"
            = 1.0
                                     > gnuplot
  2Sz
            = 0
  NVMCSample = 200
                                     plot ./output/zvo out 001.dat u 1
  NVMCCalMode = 1
  NDataIdxStart = 1
  NDataQtySmp = 5
  NMPTrans
```

$$H = \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

step 3. 物理量の平均値・標準誤差を計算してみましょう

output/zvo_out_001.dat output/zvo_out_002.dat output/zvo_out_003.dat output/zvo_out_004.dat output/zvo_out_005.dat

→独立なbinでのエネルギーの 計算の値(一列目) これの平均値・標準誤差を

計算すればよい

ln -s output aft perl -w Aft_energy.pl で計算できます. 同様に

output/zvo_cisajs_00n.dat output/zvo_cisajscktalt_00n.dat に独立なbinでの

1体・2体の相関関数の値が出力 これの平均値・標準誤差を計算すればよい

ln -s output aft perl -w Aft_Sq.pl でスピン・電荷構造因子が計算できます.

$$H = \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

step 4.以上のことを一括して行なうのが X.sh です

```
perl -w MakeMod.pl -> StdFace.def を作成
perl -w Aft_energy.pl
perl -w Aft_Sq.pl
perl -w Aft_SiSj.pl
```

- サイズをいくつか変えて計算してみましょう
- S=1にして計算して励起状態が計算できるか試して見ましょう

1. Heisenberg chain (references)

```
L=6:
                     I =8:
                                           L=10:
                      0 -3.6510934089
0 -2.8027756377
                                            0 -4.5154463545
 1 - 2.1180339887
                      1 -3.1284190638
                                            1 -4.0922073467
                      2 -2.6996281483
2 - 1.50000000000
                                            2 -3.7705974354
3 -1.2807764064
                      3 -2.4587385089
                                            3 -3.5432793743
4 -1.2807764064
                      4 -2.4587385089
                                            4 -3.5432793743
5 - 1.00000000000
                      5 -2.1451483739
                                            5 -3.2461649167
6 - 1.0000000000
                      6 -2.1451483739
                                            6 -3.2461649167
7 -0.5000000000
                      7 -1.8546376797
                                            7 -2.9759318691
```

1. Hubbard chain

$$H = -t \sum_{\langle i,j \rangle} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Step.1 L=4, U=4, t=1, half fillingで計算をしてみましょう.

```
Lsub
                                   Energy by HΦ
model = "FermionHubbard"
                                    0 -2.1027484835
lattice = "chain"
                                    1 -1.8064238518
t
   = 1.0
                                    2 -1.0681403934
        = 4.0
                                    3 - 0.8284271247
nelec = 4
                                    4 -0.8284271247
2Sz
      = 0
                                    5 0.0000000000
NVMCSample = 200
                                    6 0.5814492811
NSROptItrStep = 500
                                    7 2.0000000000
NSROptItrSmp = 50
NMPTrans
        = 1
```

1. Hubbard chain

$$H = -t \sum_{\langle i,j \rangle} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Step. 2 物理量計算をやってみましょう

Step. 3 物理量の平均値・標準誤差を計算してみましょう

Step. 4 一括スクリプトで計算してみましょう

U,電子数を変えるなどして色々計算してみましょう HΦの計算結果と比べて見ましょう

HΦのスクリプト例

./HPhi -s StdFace.def

L model lattice	= 4 = "Hubbard" = "chain"	L model lattice	= 8 = "Hubbard" = "chain"
method U	= "fulldiag" = 4.0	method U t	= "CG" = 4.0 = 1.0
2Sz nelec	= 1.0 = 0 = 4	2Sz nelec	= 0 = 8 = 8

1. Hubbard chain (references)

L=	6:	L=8	:
0	-3.6687061788729571	0	-4.6035262999892002
1	-2.8983814740367304	1	-4.2999927584330599
2	-2.5163768731161431	2	-4.0101539576440342
3	-2.4229112638479289	3	-3.7057642394839405
4	-2.4229112638479293	4	-3.7057642394839405
5	-2.0927538294969210	5	-3.4963563102152051
6	-2.0927538294969210	6	-3.4963563102152042
7	-1.7690248232884345	7	-3.2445570984649694

2. Heisenberg & Hubbard on the square lattice

- chainの場合とやることは同じです。計算が重くなるので、 16site程度にしておいた方がよいです。
- sp Result_Sq.dat or fourier tool を使うと構造因子の 3次元プロットがでます。

2. Heisenberg & Hubbard on the square lattice

Heisenberg model

$(N_{\rm s} = 4 \times 4)$	$E/N_{ m s}$	$S_{ m nn}$	$S_{ m nnn}$	$S(\boldsymbol{q}_{ ext{peak}})$
ED	-0.70178020	-0.35089010	0.21376	0.09217
$mVMC(2 \times 2)$	-0.701769(6)	-0.35088(3)	0.2136(2)	0.09212(6)
$mVMC(2 \times 2) + Lanczos$	-0.701783(3)	-	-	-
$mVMC(4 \times 4)$	-0.70178015(8)	0.35089007(4)	0.2139(4)	0.0922(1)
$(N_{\rm s} = 6 \times 6)$	$E/N_{ m s}$	$S_{ m nn}$	S_{nnn}	$S(\boldsymbol{q}_{ ext{peak}})$
ED	-0.6788721499	-0.33943607	0.207402499	0.069945
$mVMC(2 \times 2)$	-0.67843(2)	-0.33921(1)	0.20738(1)	0.07019(4)
$mVMC(2 \times 2) + Lanczos$	-	-	_	-
$mVMC(6 \times 6)$	-0.678865(5)	-0.339433(3)	0.2072(2)	0.0698(1)
$mVMC(6 \times 6) + Lanczos$	-0.678881(5)	-	-	_

Table 4: Comparisons with exact diagonalization for 4×4 and 6×6 Heisenberg model with J=1. We note $q_{\text{peak}}=(\pi,\pi)$. The relative errors η become 0.000001% for L=4 and 0.001% for L=6, respectively.

Hubbard model

	$E/N_{ m s}$	D	$S_{\rm nn}$	$S(oldsymbol{q}_{ ext{peak}})$
ED	-0.85136	0.11512	-0.2063	0.05699
$mVMC(2 \times 2)$	-0.84982(4)	0.11529(5)	-0.2062(1)	0.05773(4)
$mVMC(2 \times 2) + Lanczos$	-0.85105(3)	-	-	-
$mVMC(4 \times 4)$	-0.85068(4)	0.1153(4)	-0.2062(5)	0.0573(2)
$mVMC(4 \times 4) + Lanczos$	-0.85121(3)	-	-	-

Table 3: Comparisons with exact diagonalization for 4×4 Hubbard model with U = 4 and t = 1 at half filling. Exact diagonalization (ED) is done by using $\mathcal{H}\Phi$ [38, 39]. mVMC(2×2) means f_{ij} has 2×2 sublattice structures, $\mathbf{q}_{\text{peak}} = (\pi, \pi)$, and the parentheses denote the error bars in the last digit. Lanczos means that the first-step Lanczos calculations on top of the mVMC calculations.

3. fourier tool

相関関数のフーリエ変換

長距離の相関を調べる。

ユーティリティ・プログラムとドキュメントはmVMC本体と別にある。

tool/fourier: フーリエ変換をするプログラム tool/corplot: 3次元プロットをするプログラム

doc/userguid.html:からマニュアルを閲覧できる

計算結果

例/正方格子ハイゼンベルグ模型(16サイト) sample/Standard/Spin/HeisenbergSquare/

```
$ パス/vmc.out -s StdFace.def
$ パス/vmc.out -s StdFace.def output/zqp_opt.dat
$ パス/fourier namelist.def geometry.dat
$ パス/corplot output/zvo_corr.dat
```

```
L = 4
W = 4
Lsub = 2
Wsub = 2
model = "Spin"
lattice = "tetragonal"
J = 1.0
NSROptItrStep = 200
2Sz = 0
NVMCCalMode = 1 [コメント(//)を外す]
```

```
##### Plot Start #####

Please specify target number from below (0 or Ctrl-C to exit):

Real Part Without ErrorBar
    [ 1] Up-Up [ 2] Down-Down [ 3] Density-Density [ 4] SzSz [ 5] S+S- [ 6] S.S Imaginary Part Without ErrorBar
    [11] Up-Up [12] Down-Down [13] Density-Density [14] SzSz [15] S+S- [16] S.S Real Part With ErrorBar
    [21] Up-Up [22] Down-Down [23] Density-Density [24] SzSz [25] S+S- [26] S.S Imaginary Part With ErrorBar
    [31] Up-Up [32] Down-Down [33] Density-Density [34] SzSz [35] S+S- [36] S.S Target: 6 (と打ってEnter)
```


既知の問題点

corplot内でgnuplotを呼び出しているが、 4.4より前のバージョンのgnuplotでは描画できない。

4. UHF解を初期条件にする

UHF解を初期条件にしてみましょう UHFの実行体は以下にあります /src/ComplexUHF/UHF

./UHF namelist.def で計算可能 zqp_APOrbital_opt.dat

注意: 初期条件を適切につくる必要があります IniGreen.pl 正方格子(π, π)の磁気秩序を初期条件 namelist.def に zinitial.defを追加

4. UHF解を初期条件にする

cat IniUHF.sh

発展

- 1. Hubbard + V →電荷秩序
- 2. Heisenberg+J2 → ストライプ磁気秩序
- 3. Attractive Hubbard → 1s 超伝導
- 4. 1D Kondo lattice→近藤絶縁体
- 5. Kitaev model → Kitaev spin 液体

4,5は少し計算が重いです.

1. オフサイト斥力 Vの導入

$$H_V = V \sum_{\langle i,j \rangle} n_i n_j$$

電荷秩序が起きるかどうかをResult_Nq.dat もしくはfourier tool を使って確認しましょう

1. オフサイト斥力 Vの導入

$$H_V = V \sum_{\langle i,j \rangle} n_i n_j$$

StdFace.def の例

```
W
Wsub
Lsub
           = "FermionHubbard"
model
lattice = "Tetragonal"
             = 1.0
U
             = 4.0
              = 2.0
nelec
             = 16
2Sz
             = 0
NVMCSample
             = 50
NSROptItrStep = 500
NSROptItrSmp
             = 50
NMPTrans
```

書き換え方の例

- 1. perl -w MakeMod.pl でStFace.defを生成
- 2. 生成したStdFace.def,
- StdFace_2.def, StdFace_aft.def でV= 2.0 を追加
- 3. X.shの中の

perl -w MakeMod.pl をコメントアウト #perl -w MakeMod.pl

4. sh ./X.sh

2. J1-J2ハイゼンベルク模型

$$H = J_1 \sum_{\langle i,j \rangle} S_i S_j + J_2 \sum_{\langle \langle i,j \rangle \rangle} S_i S_j$$

最近接 J1,次近接J2

lattice.gpで描画可能

PRB 86, 024424(2012)

J2/J1~0.5で非磁性の 基底状態(スピン液体?)

2. J1-J2ハイゼンベルク模型

- J2=1でストライプ磁気秩序が起きるかどうかを

Result Sq.datもしくはfourier toolを使って確認しましょう

- J2=0.5近傍だとどうなるでしょうか?

StdFace.def の例

W = 4

Wsub = 2

Lsub = 2

model = "Spin"

lattice = "Tetragonal"

J = 1.0 J' = 1.0

2Sz = 0

NVMCSample = 50

NSROptItrStep = 500

NSROptItrSmp = 100

NMPTrans = 1

NSPGaussLeg = 1

書き換え方の例

1. perl -w MakeMod.pl でStFace.defを生成

2. 生成したStdFace.def,

StdFace_2.def, StdFace_aft.def でJ'= 1.0 を追加

3. X.shの中の

perl -w MakeMod.pl をコメントアウト

#perl -w MakeMod.pl

4. sh ./X.sh

3.attractive Hubbard model

- Uを負にするだけ
- 1s (等方的)の超伝導相関を計算してみましょう

4. 1D Kondo lattice model

StdFace.def の例

Lsub = "Kondo" model lattice = "chain" 1.0 nelec 2Sz **NVMCSample** = 200NSR0ptItrStep = 2000NSR0ptItrSmp = 200**NMPTrans** NSPGaussLeg = 8

S=0, S=1の計算をして スピンギャップを計算してみましょう

(0 0)	TI / NT		af	Q()
(S=0)	$E/N_{\rm s}$	S_{loc}	S_{nn}^f	$S(\pi)$
ED	-1.394104	-0.3151569745	-0.3386218911	0.05685112698
mVMC(2)	-1.39352(1)	-0.3142(6)	-0.3365(2)	0.0575(1)
mVMC(2)+Lanczos	-1.39399(2)	-	-	-
mVMC(8)	-1.39400(1)	-0.3158(3)	-0.3382(3)	0.0567(1)
mVMC(8)+Lanczos	-1.394099(5)	-	-	-
(S=1)	$E/N_{ m s}$	S_{loc}	S_{nn}^f	$S(\pi)$
ED	-1.382061	-0.27480917	-0.224015671	0.057478
mVMC(2)	-1.38128(3)	-0.2743(3)	-0.2248(4)	0.05811(6)
mVMC(2)+Lanczos	-1.38187(1)	-	-	-
mVMC(8)	-1.38171(3)	-0.2750(4)	-0.2249(7)	0.0577(1)
mVMC(8)+Lanczos	-1.382011(2)			

Table 5: Comparisons with exact diagonalization for one-dimensional Kondo-lattice model for J=1 and t=1. Upper (Lower) panel shows the results for spin singlet (triplet) sector. In the triplet sector (S=1), we take total momentum as $K=\pi$, which gives the lowest energy in S=1, while we take take total momentum as K=0 for S=1.

5: Kitaev model

$$H = -J_x \sum_{x-\text{bond}} S_i^x S_j^x - J_y \sum_{y-\text{bond}} S_i^y S_j^y - J_z \sum_{z-\text{bond}} S_i^z S_j^z$$

3方向のそれぞれが Jx,Jy,Jzで相互作用

相図

Annals of Physics 321, 2-111 (2016)

lattice.gpで描画可能

可解模型→スピン液体

5: Kitaev model

$$H = -J_x \sum_{x-\text{bond}} S_i^x S_j^x - J_y \sum_{y-\text{bond}} S_i^y S_j^y - J_z \sum_{z-\text{bond}} S_i^z S_j^z$$

StdFace.def の例

```
W
model = "SpinGC"
lattice = "Honeycomb"
NVMCSample = 200
NSROptItrStep = 5000
NSROptItrSmp = 100
NMPTrans
             = 6
J0x
      = -1.0
J0y
             = 0.0
J0z
             = 0.0
J<sub>1</sub>x
             = 0.0
             = -1.0
J<sub>1</sub>y
J1z
             = 0.0
J2x
             = 0.0
J2y
             = 0.0
             = -1.0
J2z
```

収束が遅いので注意 →収束をどうしたら加速するか?

(open problem)