Th Archimède.	Loi des Gaz parfait.		
Tt corps plongé ds un fluide reçoit de la part de ce fluide une force de poussée verticale vers le faut dont l'intensité est égale à	• $PV = nRT$ P- [Pa] ;V- [m^3] ;n-nombreMoles ; R=8.314J/mol ; T[K]		
$F_{pousse} = -\rho_{fluide} V_{corpsImmerg\'e} \vec{g}$	• $\mathbf{P} = \rho r T$		
ρ masse volumique; g accél de pesanteur	ho –masse volumique ; r-constante massique=R/M [J/Kg.K]		
$P_{relative} = P - P_{atmosphérique}$ Entre un point A' et B' on a : (RPH), Relation fondamentale hyperstatique	Soit un champ de vitesse $\vec{u}(u,v,w)$		
$P = \frac{F_{pressante}}{P(Z)}$ $dP(Z) = P_{A'} - P_{B'} = \rho_{fluide} \cdot g \cdot (Z_{B'} - Z_{A'})$	Variable Euler (x, y, z, t); Variable Lagrange (x_0, y_0, z_0, t)		
$P_{atm} = 1013.25 Pa$ $m(E) = T_A, T_B = p_{fluide}.g.(E_B, E_A)$	Ligne de Courant : $\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w}$		
$\vec{a} = \frac{d\vec{u}}{dt} = \frac{\partial \vec{u}}{\partial t} + \frac{\partial \vec{u}}{grad}(\vec{u}.\vec{u}) \text{ Vec. Tourb. } \vec{\Omega} = \frac{1}{2} \overrightarrow{rot}(\vec{u})$	W V W		
Lagrange : $\vec{a} = \frac{d\vec{u}(\vec{O}\vec{M}_0,t)}{dt}$ avec $\overrightarrow{OM}_0(x_0,y_0,z_0)$ Euler : $\frac{d\vec{u}(x,y,z,t)}{dt}$ Colonne d'eau conversion : 101325Pa = 10.33 mCE = 10330 mmCE			
1 bar = 1000 hPa = 10 000 Pa			
Vitesse dans un tube (comparaison): Formule: S_A . Va = S_B . Vb $(\frac{S_A}{S_B}$ le débit $vol.$)	Débit volumique : $Q_v = V.S$ Avec V la vitesse du fluide		
• Un tube de diametre « d », vitesse Va \Leftrightarrow Va = $(\frac{S_A}{S_B}Vb)^{-1}$	Avec S = $\frac{\pi . D^2}{4}$ Gaz Van der Waals : $(P + \frac{n^2}{v^2}. a^2)(V - nb) = nRT$		
• Un tube de diametre « D », vitesse Vb Si $\frac{S_A}{S_B} < 1 \Rightarrow Vb > Va$	4		
Théorème de Bernouilli entre A et B :	$Densitcupe{e} = rac{ ho_{fluide}}{ ho_{reference}}$ avec $ ho_{reference}$ d'un $gaz \Leftrightarrow ho_{air}$; d'un liquide $\Leftrightarrow ho_{eau}$		
$\frac{1}{2} \cdot \rho_{fluide} \cdot V_B^2 + P_B + \rho_{fluide} \cdot g \cdot Z_B = \frac{1}{2} \cdot \rho_{fluide} \cdot V_A^2 + P_A + \rho_{fluide} \cdot g \cdot Z_A$ Ecoulement est stationnaire: Ecoulement est rotationnel:	·		
	$\Leftrightarrow \qquad Lignes \ de \ courant : \ \underline{\grave{a}} \ t \ \underline{donne} : \ \overline{u} \ \land \ \overline{dOM} = \ \overline{0} \ \rightarrow \ \overline{dOM} = \ k \ \overline{u} \ \rightarrow \ \left\{ dy = k u_y \right.$		
Si $\frac{\partial \vec{u}}{\partial t} = \vec{0}$ Si Vec. Tourb. $\vec{\Omega} = \frac{1}{2} \overrightarrow{rot}(\vec{u}) \neq \vec{0}$	Lignes de courant : $\underbrace{a + donne}_{z} : u \land aom = o \rightarrow aom = k u \rightarrow \{uy = kuy\}$ dz = kuz		
Nombre de Knusden : Hypothèse milieu continu :	<u>L'éq. Locale de conserv. de masse/ de continuité :</u>		
$Kn = \frac{1}{L}$ $Kn < 1 \text{ avec } L \text{ et } I \text{ d'ordre de grandeur}$	$\frac{\partial \rho}{\partial \rho} + R(\alpha \vec{y}) = 0$ (a) $\frac{\partial \rho}{\partial \rho} + (R \vec{z}) = 0$ (B) $\frac{\partial \rho}{\partial \rho} + R(\alpha \vec{y}) = 0$		
avec différent.	$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \overrightarrow{u}) = 0 \iff \frac{\partial \rho}{\partial t} + (\nabla \rho) \cdot \overrightarrow{u} + \rho \ (\nabla \cdot \overrightarrow{u}) = 0$		
« I » libre parcours entre 2 molécules « L » longueur de l'écoulement (ex : diamètre conduit)	+ Débit massique : $q_m = \lim_{dt \to 0} \frac{dm}{dt}$.		
	$dt \rightarrow 0$ dt		
Hydrostatique : 1 (∂V)			
$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P}$	• Th. Green-Ostrogradsky : $\iint_S -P(M)\vec{n} dS = \iiint_V -\vec{V}P dV$		
$\beta = \frac{1}{p} \left(\frac{\partial P}{\partial T} \right)_V$	\forall dV \in milieu fluide : $\iiint_V \left(-\vec{\nabla}P + \rho\vec{g} \right) dV = \vec{0} \implies -\vec{\nabla}P + \rho\vec{g} = \vec{0}$		
$\chi_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$	3334 (