Zadanie 7.

Wiązka zadań Scalanie

Rozważmy następujący algorytm, który jako dane przyjmuje tablicę n-elementową, gdzie n jest potęgą dwójki:

Dane: tablica liczb rzeczywistych T[1..n], gdzie $n=2^m$, a m jest liczbą całkowitą nieujemną

```
funkcja uporządkuj(T[1..n]):
jeżeli n=1
zwróć T[1..n] i zakończ
k ← n/2
A[1..k] ← uporządkuj(T[1 .. k])
B[1..k] ← uporządkuj(T[k+1 .. n])
zwróć scal(A, B) i zakończ
```

Funkcja scal(A,B) dla danych dwóch tablic o rozmiarze k zwraca tablicę o rozmiarze 2k, powstałą przez połączenie tablic A i B w sposób uporządkowany, tj. od elementu najmniejszego do największego. Na przykład dla tablic A = [4,6,18,22] i B = [1,3,10,15] wywołanie scal(A,B) zwróci tablicę [1,3,4,6,10,15,18,22].

7.1.

Spośród danych tablic wybierz te, które są zgodne ze specyfikacją algorytmu, a następnie podaj dla nich wynik jego działania.

7.2.

Funkcja *uporządkuj* jest funkcją rekurencyjną. Uzupełnij poniższe drzewo wywołań rekurencyjnych dla danej tablicy T = [8, 80, 90, 14, 3, 5, 20, 10, 5, 6, 90, 34, 11, 13, 56, 9].

7.3.

Załóżmy, że wywołanie procedury scal(A,B) dla dwóch tablic o długości k wykonuje 2k-1 kosztownych operacji (porównywania liczb). Podaj liczbę kosztownych operacji, jaka zostanie wykonana przez funkcję uporządkuj dla tablicy

$$T[1..16] = [8, 80, 90, 14, 3, 5, 20, 10, 5, 6, 90, 34, 11, 13, 56, 9].$$

Zadanie 8.

Wiązka zadań Dwa ciągi

Niech A[1..n] i B[1..n] będą uporządkowanymi rosnąco tablicami liczb całkowitych i niech x bedzie liczba całkowita. Rozważmy następujący algorytm:

8.1.

Uzupełnij poniższą tabelę. Podaj wynik działania algorytmu oraz liczbę porównań wykonanych w wierszu oznaczonym (*).

Tablica A	Tablica B	x	Wynik działa- nia algorytmu	Liczba porównań w kroku (*)
3, 5, 12, 17	8, 10, 13, 14	21		
4, 6, 8, 10	5, 7, 9, 11	13		

8.2.

Przeanalizuj działanie zaprezentowanego algorytmu i uzupełnij poniższą specyfikację.

Dane:

n — dodatnia liczba całkowita A[1..n], B[1..n] — n-elementowe tablice liczb całkowitych, posortowane rosnąco x — liczba całkowita

***	• 1
11/17	nik
VV Y	IIIV

PRAWDA, gdy	
FAŁSZ, gdy	