Formal Concept Analysis III Knowledge Discovery

Robert Jäschke Asmelash Teka Hadgu

FG Wissensbasierte Systeme/L3S Research Center Leibniz Universität Hannover

slides based on a lecture by Prof. Gerd Stumme

Agenda

- 6 Background Knowledge
 - Simplifying Implications of the Stem Base
 - Optimizing the Computation of the Stem Base
 - Optimizing the Computation of the Stem Base
 - Incomplete Knowledge About Objects
 - "Harmless" Background Knowledge
 - "Difficult" Background Knowledge

Simplifying Implications of the Stem Base

- First of all: the stem base is non-redundant, i.e., we can not remove implications
- But: redundancy in the premise or the conclusion can be removed
- One redundant attribute in the premise or the conclusion we can just remove:
 - Since $a \to b, c$ we can simplify $d, e \to a, b, c$ to $d, e \to a, b$
- Several redundant attributes can not always be removed:
 - a and c can not be removed from $d, e \rightarrow a, b, c$

examplary stem base

$$a \rightarrow b, c$$

 $d, e \rightarrow a, b, c$
 $c, e \rightarrow a, b, d$
 $c, d \rightarrow a, b, e$

Optimizing the Computation of the Stem Base

- Assume that we have computed the implication $\{c,d\} \rightarrow \{a,b,e\}$ (of the attribute set $\{a,b,c,d,e\}$):
 - then NEXT CLOSURE checks $\{c,d\} <_e \{a,b,c,d,e\}$ which fails
 - improvement: directly continue with i := b
- Similar, after the implication $\{a\} \rightarrow \{b,c\}$:
 - NEXT CLOSURE is unsuccessfully checking $\{a\} <_e \{a,b,c,e\}$, $\{a\} <_d \{a,b,c,d\}$, $\{a\} <_c \{a,b,c\}$
 - *improvement*: directly continue with $A \coloneqq \{a, b, c\}$

Optimizing the Computation of the Stem Base

In general: Let $k := \max \mathcal{L}^{\bullet}(A+i)$ and $l := \min(\mathcal{L}^{\bullet}(A+i))'' \setminus \mathcal{L}^{\bullet}(A+i)$ l < k: ignore all i > k and continue with i < k

• In the example $\{c,d\} \to \{a,b,e\}$: $d = \max\{c,d\}, a = \min\{a,b,c,d,e\} \setminus \{c,d\} - \text{ignore } e \text{ and } d$

k < l: continue directly with A := A''

- **Proposition:** If P is a pseudo-intent and no element of $P'' \setminus P$ is smaller than any element of P, then P is the lectically largest pseudo-intent with the closure P''.
- In the example $\{a\} \rightarrow \{b,c\}$ we can continue with $\{a\}'' = \{a,b,c\}$, instead of $\{a\}$ (otherwise we would unsuccessfully try $i \coloneqq e,d,c$)

Previously:

- First, we start with a context $\mathbb{E} = (E, M, J)$ with examples E of a context (G, M, I) (i.e., $E \subseteq G$ and $J := I \cap (E \times M)$)
- Then, we replace $\mathbb E$ by $\mathbb E_+=(E,M,J_+)$ and $\mathbb E_?=(E,M,J_?)$ with $J_+\subseteq J\subseteq J_?$
- $(\mathbb{E}_+, \mathbb{E}_?)$ is called partial formal context
- ullet For each example object $e \in E$ we have then three sets of attributes:
 - e^+ the attributes e is known to have
 - $e^? \supseteq g^+$ the attributes e may have
 - $e^- \coloneqq M \smallsetminus g^?$ the attributes e is known not to have

- Instead of a complete example e, it is sufficient to supply e^+ and e^-
- e^+ und $e^? \coloneqq M \setminus e^-$ are added to \mathbb{E}_+ and $\mathbb{E}_?$, respectively
- For $B := \mathcal{L}^{\bullet}(A + i)$ we compute instead of B'':

$$B^{+?} \coloneqq \bigcap \{e^? \mid e \in E, B \subseteq e^+\}$$

(that's not a closure operator!)

- ullet Any modification of the list ${\cal L}$ leads to a modification of ${\mathbb E}_+$ and ${\mathbb E}_?$:
 - for each $e \in E$ we replace e^+ by $\mathcal{L}(e^+)$
 - for each $e \in E$ we successively remove those elements m which do not satisfy the condition $\mathcal{L}(e^+ \cup \{m\}) \subseteq e^?$

- Upon completion of the algorithm we have that
 - \mathcal{L} is the stem base of (G, M, I)
 - $e^{++} = e^{II}$
- On the blackboard: Countries of Europe
 - as attributes this time only EU, €, Schengen, NATO
 - Let's start with Germany . . .

Background Knowledge

A not so nice example:

Possible outcomes of a driving test

rossible outcomes of a driving test										
	theory		driving		license					
	pass	fail	pass	fail	pass	fail				
1	×		×		×					
2	×			×		×				
3		×	×			×				
4		×		×		×				

The stem base for the context

$$\begin{aligned} & \text{driving} = \text{fail} \rightarrow \text{license} = \text{fail} \\ & \text{theory} = \text{fail} \rightarrow \text{license} = \text{fail} \\ & \text{license} = \text{fail}, \text{ driving} = \text{pass} \rightarrow \text{theory} = \text{fail} \\ & \text{license} = \text{fail}, \text{ theory} = \text{pass} \rightarrow \text{driving} = \text{fail} \\ & \text{driving} = \text{pass}, \text{ theory} = \text{pass} \rightarrow \text{license} = \text{pass} \\ & \text{license} = \text{pass} \rightarrow \frac{\text{driving}}{\text{theory}} = \text{pass}, \\ & \text{license} = \text{fail}, \text{ theory} = \text{fail}, \\ & \text{driving} = \text{pass}, \text{ driving} = \text{fail}, \\ & \text{license} = \text{fail}, \text{ theory} = \text{fail}, \\ & \text{theory} = \text{pass}, \text{ driving} = \text{fail}, \\ & \text{theory} = \text{pass}, \text{ driving} = \text{fail}, \\ & \text{theory} = \text{pass}, \text{ driving} = \text{fail}, \\ & \text{theory} = \text{pass}, \text{ driving} = \text{fail}, \\ \end{aligned}$$

Wouldn't we rather expect

theory = pass, driving = pass
$$\leftrightarrow$$
 license = pass?

Background Knowledge

 This does not work, because we intuitively assume that "fail" is the negation of "pass", i.e., we assume that

pass, fail
$$\rightarrow \bot$$
 and $\top \rightarrow$ pass or fail

hold as background knowledge for all parts of the test.

- pass, fail $\rightarrow \bot$ is an implication
- T → pass or fail is a clause

"Harmless" Background Knowledge

Can we add (during attribute exploration) further (correct) objects and implications?

- Yes, we can add objects at any time!
- We can also add implications.
- But: the computed implications are then not the stem base of the context (G, M, I)!
- Instead, we get a base *relative* to the manually added implications.
- If we add implications during exploration, the resulting set of implications is not necessarily redundant.

"Harmless" Background Knowledge

If we include pass, $fail \to \bot$ (i.e., the three implications "theory = pass, theory = fail $\to \bot$ ", etc.) as background knowledge, we get a base with six implications:

	theory		driving		license	
	pass	fail	pass	fail	pass	fail
1	×		×		×	
2	×			×		×
3		×	×			×
4		×		×		×

```
driving = fail \rightarrow license = fail
                            theory = fail \rightarrow license = fail
 license = fail, driving = pass \rightarrow theory = fail
  license = fail, theory = pass \rightarrow driving = fail
driving = pass, theory = pass \rightarrow license = pass
                         license = pass \rightarrow \frac{\text{driving}}{\text{theory}} = \text{pass}
license = fail, theory = fail, driving = pass, driving = fail \rightarrow \bot
 license = fail, theory = fail,
theory = pass, driving = fail^{\rightarrow} ^{\perp}
```

We know beforehand: pass, fail $\rightarrow \bot$ and $\top \rightarrow$ pass or fail, i.e., the background knowledge contains a clause.

Def.: A clause is a pair of subsets

$$A, B \subseteq M$$
, written as $A \multimap B$

A clause *holds* in a formal context (G, M, I), iff for all $g \in G$

$$A \subseteq g'$$
 implies $B \cap g' \neq \emptyset$

i.e., every object that has all attributes from A has at least one attribute from B

- clauses are more expressive and powerful than implications
- actually, every propositional formula is logically equivalent to a conjunction of clauses ("conjunctive normal form")
- ullet deciding if a given clause follows from a given list of clauses is hard $(\mathcal{NP}\text{-complete})$
- ullet it is even \mathcal{NP} -complete to infer if a given *implication* gan be inferred from a given list of clauses
- thus: as easy it is to compute the stem base, to find a base for clauses is not so easy

Rep.: pseudo-intent, pseudo-closure

On the blackboard: **Def.** pseudo-model

On the blackboard: example

On the blackboard: **Def.** cumulated clause