### Social Choice Functions

Sidhant Saraogi

November 8, 2017

#### Introduction

What are Boolean Functions? Some Social Choice Fns. Properties

### Analysis of Boolean Functions

Influence Some Fourier Analysis Some More Influence

#### Arrow's Theorem

#### Introduction

What are Boolean Functions?

Some Social Choice Fns.

Properties

#### Analysis of Boolean Functions

Influence

Some Fourier Analysis

Some More Influence

#### Arrow's Theorem

### What are Boolean Functions

- $f: \{-1,1\}^n \to \{-1,1\}$
- They can be thought of as a voting rule or a social choice function for an election with 2 candidates and *n* voters.

#### Introduction

What are Boolean Functions

Some Social Choice Fns.

Properties

#### Analysis of Boolean Functions

Influence

Some Fourier Analysis

Some More Influence

#### Arrow's Theorem

### Some Social Choice Fns.

Suppose  $x \in \{-1, 1\}^n$ 

- Majority : Returns the more frequent entry in x.  $Maj_n(x) = sgn(x_1 + ... + x_n)$
- Dictator : Returns the *i*-th coordinate.  $\chi_i(x) = x_i$

### Some Social Choice Fns.

Suppose  $x \in \{-1, 1\}^n$ 

- Majority : Returns the more frequent entry in x.  $Maj_n(x) = sgn(x_1 + ... + x_n)$
- Dictator : Returns the *i*-th coordinate.  $\chi_i(x) = x_i$

### Some Social Choice Fns.

# Suppose $x \in \{-1, 1\}^n$

- Majority : Returns the more frequent entry in x.  $Maj_n(x) = sgn(x_1 + ... + x_n)$
- Dictator : Returns the *i*-th coordinate.  $\chi_i(x) = x_i$
- The tribes function of width w and size s,  $Tribes_{w,s}(x^{(1)},\ldots,x^{(s)}) = OR_s(AND_w(x^{(1)}),\ldots,AND_w(x^{(s)}))$

#### Introduction

What are Boolean Functions? Some Social Choice Fns.

#### Properties

### Analysis of Boolean Functions

Some Fourier Analysis

Some More Influence

#### Arrow's Theorem

# Properties Desired in Voting Functions

We say that a function  $f: \{-1,1\}^n \to \{-1,1\}$  is :

- monotone if  $f(x) \le f(y)$  whenever  $x \le y$  coordinate-wise.
- odd if f(x) = -f(-x)
- unanimous if f(1,...,1) = 1 and f(-1,...,-1) = -1.
- transitive-symmetric if  $\forall i, i' \in [n], \exists \pi \in S_n$  taking i to i' such that  $f(x) = f(x^{\pi})$  for all  $x \in \{-1, 1\}^n$ .

**Stronger Condition**: A function is called symmetric if  $f(x) = f(x^{\pi})$  for all permutations  $\pi \in S_n$ 

# Properties Desired in Voting Functions

#### Some Remarks:

- Another naturally desirable property of a 2-candidate voting rule is that its unbiased i.e. "equally likely" to elect  $\pm 1$ .
- We also might assume that voter preferences are independent and uniformly random.

#### Introduction

What are Boolean Functions? Some Social Choice Fns.
Properties

# Analysis of Boolean Functions Influence

Some Fourier Analysis Some More Influence

#### Arrow's Theorem

#### Influence

#### Definition

The coordinate  $i \in [n]$  is pivotal for  $f : \{-1,1\}^n \to \{-1,1\}$  on input x if  $f(x) \neq f(x^{\oplus i})$  where  $x^{\oplus i} = (x_1, \dots, x_{i-1}, -x_i, x_{i+1}, \dots, x_n)$ .

#### Definition

The influence of a coordinate i on  $f: \{-1,1\}^n \to \{-1,1\}$  is defined as the probability that i is pivotal for a random input :

$$Inf_i[f] = Pr_{x \sim \{-1,1\}^n}[f(x) \neq f(x^{\oplus i})]$$

# A toy example

For the *i*-th dictator function  $\chi_i$ , we have that the coordinate *i* is pivotal for every input x; hence  $Inf_i[\chi_i] = 1$ . If  $j \neq i$ , then the coordinate j is never pivotal; hence  $Inf_j[\chi_i] = 0$ .

### Derviatives

#### Definition

The *i*-th derivative operator  $D_i$  maps the function  $f: \{-1,1\}^n \to \mathbb{R}$  to the function  $D_i f(x): \{-1,1\}^n \to \mathbb{R}$  and is defined by :

$$D_i f(x) = \frac{f(x^{(i\to 1)}) - f(x^{(i\to -1)})}{2}$$

.

Remark :  $D_i$  is a linear operator, so  $D_i(f+g) = D_if + D_ig$ .

### **Derviatives**

• Note that if  $f: \{-1,1\}^n \to \{-1,1\}$ , then:

$$D_i f(x) = \begin{cases} 0 & \text{if coordinate } i \text{ is not pivotal for } x \\ \pm 1 & \text{if coordinate } i \text{ is pivotal for } x \end{cases}$$

- Thus  $D_i f(x)^2$  is the 0-1 indicator for whether i is pivotal for x.
- $Inf_i[f] = E_x[D_i f(x)^2]$

#### Introduction

What are Boolean Functions? Some Social Choice Fns. Properties

### Analysis of Boolean Functions

Influence

#### Some Fourier Analysis

Some More Influence

#### Arrow's Theorem

# Fourier Expansion

- The Fourier expansion of a Boolean function  $f: \{-1,1\}^n \to \mathbb{R}$  is simply its representation as a real, multilinear polynomial.
- The multilinear polynomial for f may have upto  $2^n$  terms corresponding to  $S \subseteq [n]$ . The monomial corresponding to S is written as

$$x^S = \prod_{i \in S} x_i$$

and  $x^{\varnothing} = 1$ .

 Every function can be uniquely expressed as a multilinear polynomial,

$$f(x) = \sum_{S \subseteq [n]} \hat{f}(S) x^{S}$$

where  $\hat{f}(S)$  is the fourier coefficient corresponding to  $S \subseteq [n]$ .

# Fourier Expansion

### Example

Consider the boolean function that returns the "maximum" of two bits :  $\max_2(+1,+1)=+1$ ,  $\max_2(+1,-1)=+1$ ,  $\max_2(-1,+1)=-1$ . It can also be represented as a multilinear polynomial,  $\max_2(x_1,x_2)=\frac{1}{2}+\frac{1}{2}x_1+\frac{1}{2}x_2-\frac{1}{2}x_1x_2$ . Now, we can simply "read off" the fourier coefficients of  $\max_2$ , as  $\max_2(\varnothing)=\frac{1}{2}$ ,  $\max_2(\{x_1\})=\frac{1}{2}$ ,  $\max_2(\{x_2\})=\frac{1}{2}$ ,  $\max_2(\{x_1,x_2\})=-\frac{1}{2}$ 

### A formula for fourier coefficients

- The functions of the form  $f: \{-1,1\}^n \to \mathbb{R}$  make a vector space of dimension  $2^n$  over R.
- This is a vector space of dimension  $2^n$  and since the  $2^n$  "functions" of the form  $x^S$  (for all  $S \subseteq [n]$ ) span the vector space (as evidenced by the fourier expansion), they form a basis for the vector space.
- We can also define the inner product  $\langle f,g\rangle=E_{x\in\{-1,1\}^n}[f(x)g(x)].$  This gives us a natural formulation for for

$$\hat{f}(S) = \langle f, x^S \rangle = E_{x \in \{-1,1\}^n}[f(x)x^S]$$

which follows from the fact that the basis formed by  $x^{S}$ 's is orthonormal.

### A formula for fourier coefficients

Parseval's Theorem : For any  $f: \{-1,1\}^n \to \mathbb{R}$ ,

$$\langle f, f \rangle = E_{x \in \{-1,1\}^n} [f(x)^2] = \sum_{S \subseteq [n]} \hat{f}(S)^2$$

.

#### Introduction

What are Boolean Functions? Some Social Choice Fns.
Properties

### Analysis of Boolean Functions

Some Fourier Analysis
Some More Influence

#### Arrow's Theorem

# Influence in terms of Fourier Expansion

•  $D_i$  acts as a formal differentiation on the fourier expansion.

#### **Theorem**

Let  $f: \{-1,1\}^n \to \{-1,1\}$ , have the fourier expansion  $f(x) = \sum_{S \subseteq [n]} \hat{f}(S) x^S$ . Then :

$$D_i f(x) = \sum_{S \subseteq [n], S \ni i} \hat{f}(S) x^{S \setminus \{i\}}$$

• Now if we apply Parseval's Thm to the previous expression, we obtain that  $Inf_i[f] = \sum_{S \ni i} \hat{f}(S)^2$ .

#### Theorem

Let  $f: \{-1,1\}^n \to \{-1,1\}$  be transitive-symmetric and monotone. Then  $Inf_i[f] \leq 1/\sqrt{n}$  for all  $i \in [n]$ .

Remark: Both the majority function and the tribes function are monotone and transitive symmetric. For the majority function  $Inf_i[Maj_n] \sim \frac{\sqrt{2/\pi}}{\sqrt{n}}$  for large n, whereas  $Inf_i[Tribes_n] = \frac{In(n)}{n}(1 \pm o(1)).$ 

$$Inf_i[Tribes_n] = \frac{In(n)}{n}(1 \pm o(1))$$

#### Introduction

What are Boolean Functions? Some Social Choice Fns. Properties

#### Analysis of Boolean Functions

Influence
Some Fourier Analysis
Some More Influence

#### Arrow's Theorem

What's wrong with Majority?

Arrow's Theorem and Kalai's Proof

# What do we want in a "good" voting function?

- We want that the function is monotone, odd, unanimous and symmetric. We might also want that it is unbiased.
- According to Rousseau, the ideal voting rule is one which maximizes the number of votes which agree with the outcome.

#### **Theorem**

Let  $f: \{-1,1\}^n \to \{-1,1\}$  be a voting rule for a 2-candidate election. Given votes  $x = (x_1, \dots, x_n)$ , let w be the number of votes that agree with the outcome of the election, f(x). Then:

$$E[w] = \frac{n}{2} + \frac{1}{2} \sum_{i=1}^{n} \hat{f}(i)$$

# Majority works in 2-party elections

- The only monotone, odd and symmetric boolean functions is the Majority function.
- The unique maximisers of  $\sum_{i=1}^{n} \hat{f}(i)$  among all  $f: \{-1,1\}^n \to \{-1,1\}$  are the majority functions. .

# What if we have $\geq 3$ parties?

- In his 1785 Essay on the Application of Analysis to the Probability of Majority Decisions, Condorcet suggested using the voters preferences to conduct the three possible pairwise elections, a vs. b, b vs. c, and c vs. a.
- Each individual election conducted through a 2-candidate voting rule. Condorcet suggested using Majority but we could technical use any suitable voting function.

### Condorcet Election

#### What does it look like?

|                                 | Voters' Preferences |    |    |         |     |                      |
|---------------------------------|---------------------|----|----|---------|-----|----------------------|
|                                 | #1                  | #2 | #3 | • • • • |     | Societal Aggregation |
| a (+1) VS. $b$ (-1)             | +1                  | +1 | -1 | • • •   | = x | f(x)                 |
| b (+1) VS. $c$ (-1)             | +1                  | -1 | +1 | • • •   | = y | f(y)                 |
| <i>c</i> (+1) VS. <i>a</i> (-1) | -1                  | -1 | +1 | • • • • | =z  | f(z)                 |

### Condorcet Winner

- In an election employing Condorcets method with
   f: {-1,1}<sup>n</sup> → {-1,1}, we say that a candidate is a
   Condorcet winner if it wins all of the pairwise elections in which it participates.
- This lack of a Condorcet winner is termed Condorcets Paradox; it occurs when the outcome (f(x), f(y), f(z)) is one of the two all-equal triples  $\{(-1, -1, -1), (1, 1, 1)\}$ .

#### Introduction

What are Boolean Functions? Some Social Choice Fns.
Properties

#### Analysis of Boolean Functions

Influence
Some Fourier Analysis

#### Arrow's Theorem

What's wrong with Majority?

Arrow's Theorem and Kalai's Proof

#### Arrows'Theorem

- There might be some other function  $f: \{-1,1\}^n \to \{-1,1\}$  than Majority that allows for the possibility of Condorcet Winner no matter what the "votes".
- Arrow's Theorem : Suppose  $f: \{-1,1\}^n \to \{-1,1\}$  is a unanimous voting rule used in a 3-candidate Condorcet election. If there is always a Condorcet winner, then f must be a dictatorship.

### Kalai's Proof of Arrow's Theorem

- Kalai's Theorem (?) : Consider a 3-candidate Condorcet election using an  $f: \{-1,1\}^n \to \{-1,1\}$ . Under the impartial culture assumption, the probability of a condorcet winner is precisely  $\frac{3}{4} \frac{3}{4}Stab_{-1/3}[f]$ .
- Arrow's Theorem is a simple corollary. An advantage of Kalai's analytic proof of Arrow's Theorem is that we can deduce several more interesting results about the probability of a Condorcet winner:
  - Guilbaud's Formula: In a 3-candidate Condorcet election using Majority, the probability of a condorcet winner tends to 91.2% as  $n \to \infty$ .
  - Suppose that in a 3 candidate Condorcet election using  $f: \{-1,1\}^n \to \{-1,1\}$ , the probability of a Condorcet winner is  $1-\varepsilon$ . Then f is  $O(\varepsilon)$  close to  $\pm \chi_i$  for some  $i \in [n]$ .



### Sources I



Ryan O'Donnell.

Analysis of Boolean Functions.

Avaiable to Download Online for FREE!



Gil Kalai

A Fourier-Theoretic Perspective on the Condorcet Paradox and Arrows's Theorem.

http://www.cs.huji.ac.il/~noam/econcs/arr.pdf



Range Voting and Arrow's Theorem.

http://rangevoting.org/ArrowThm.html