VALIDATION METHODS & PERFORMANCE METRICS

Lecture 6

MALI, 2024

THE BIG PICTURE

THE BIG PICTURE

VALIDATION METHODS

VALIDATION METHODS

Train data

Test data

Train-test methodology

Train-val-test methodology

Leave-I-out cross validation methodology

TRAIN-TEST METHODOLOGY

Model indredly Sees test data

TRAIN-VAL-TEST METHODOLOGY

Algorithm does not see test data

CROSS-VALIDATION METHODOLOGY

CROSS-VALIDATION METHODOLOGY

* Split data into folds (here 3, could be 5,10) ATranon larger sed, volidate un sman Afterorary=amerage all models

LEAVE-I-OUT CROSS-VALIDATION METHODOLOGY

Special case of (V with folds of size

CODE EXAMPLE

Jupyter Notebook Validation methods

A NOTE ON PREPROCESSING

- Deal with outliers
- Deal with missing values
- Normalize/scale data
- One-hot encoding
- Representing text data

• • • •

but when should this.

But often this is quite impractical. So for simplicity, we will often do data preparation on **all** data, and separate the test data after that!

ne hyperparameters

Train data data data Test data

Machine learning algorithm

Trained model

Validation accuracy

Train accuracy

Test accuracy

Final model

PERFORMANCE METRICS

THE BIG PICTURE

predict orangutan

"This is an orangutan"

"This is an orangutan"

"This is not an orangutan"

"This is not an orangutan"

true class

positive

"This is an orangutan"

negative

"This is an orangutan"

"This is not an orangutan"

"This is not an orangutan"

"orangutan"

"not orangutan" "orangutan"

"not orangutan"

"orangutan"

"not orangutan" "orangutan"

"orangutan"

"orangutan"

"not orangutan" "not orangutan"

predicted class

"orangutan"

true class positive negative

	P	00001
posición	TRUE POSITIVE	FALSE POSITIVE
IIEganve	FALSE NEGATIVE	TRUE NEGATIVE

"orangutan"

"not orangutan"

"orangutan"

"not orangutan"

"orangutan"

"not orangutan" "orangutan"

"orangutan"

"orangutan"

"not orangutan" "not orangutan"

predicted class

"orangutan"

true class positive negative

	•	0
positive	TP = 5	FP = 2
negative	FN = I	TN = 4

ACCURACY

accoracy= TP+TN TP+TN+FP+FN positive Thow often do we get the right answer?"

Dredicted class negative positive

true class negative

TP = 5	FP = 2
 FN = I	TN = 4

WHY ACCURACY IS NOT GOOD ENOUGH

A model to predict whether or not someone is a terrorist:

Everyone is **not** a terrorist.

$9CCURCG = \frac{0+9999}{0+9999+0+1} = 0.9999$	true class positive negative	
but the model is usilers sed class positive	TP = 0	FP = 0
bat chart bad for the bredicted	FN = I	TN = 9999

PERFORMANCE METRICS

• accuracy =
$$\frac{TP+TN}{TP+TN+FP+FN} = \frac{\text{correct predictions}}{\text{all predictions}}$$

• precision =
$$\frac{TP}{TP+FP} = \frac{correct\ positive\ predictions}{all\ positive\ predictions}$$

"how often is a positive away correct?"

• recall =
$$\frac{TP}{TP+FN} = \frac{correct\ positive\ predictions}{all\ positive\ instances}$$

* Instance correctly identified '

USING RECALL INSTEAD

A model to predict whether or not someone is a terrorist:

Everyone is **not** a terrorist.

he call = $\frac{TP}{TD_1 + I} = \frac{G}{O+I} = G$	true positive	class negative
ted class positive	TP = 0	FP = 0
bredicte accoracy=999997. Whishe	FN = I	TN = 9999

SOME EXAMPLES

- Determine whether someone is a terrorist
 - avoid false negatives use recall!
- Determine whether you have COVID-19 during the pandemic
 - avoid false negatives use recall!
- Determine whether a video is suitable for children to watch
 - avoid false positives use precision!
- Determine whether someone should be sentenced to life in prison
 - "Innocent until proven guilty" means avoid false positives use precision!

```
To optimize hyperparameters on a particular metric:

GridSearchCV(clf, parameters, scoring="recall")

GridSearchCV(clf, parameters, scoring="precision")
```

THE PRECISION/RECALL TRADE-OFF

High recall usually means low precision – and vice versa

THE PRECISION/RECALL TRADE-OFF

High recall usually means low precision – and vice versa

precision =
$$\frac{TP}{TP+FP}$$
 recall = $\frac{TP}{TP+FN}$

high recall = $\frac{TP}{TP+FN}$

For score = $\frac{TP}{TP+FN}$

For score = $\frac{TP}{TP+FN}$

For score = $\frac{TP}{TP+FN}$

THE PRECISION-RECALL CURVE

$$precision = \frac{TP}{TP+FP} \qquad recall = \frac{TP}{TP+FN}$$

CODE EXAMPLE

Jupyter Notebook Performance metrics

METRICS IN MULTICLASS PROBLEMS

You can calculate all metrics for all classes, but

the confusion of whix gives you all the information you need

Predicted label

