I Questions de cours

- 1 Déterminer tous les sous-groupes de $(\mathbb{Z}, +)$.
- 2 Démontrer que l'intersection et la somme de deux idéaux d'un anneau $(A,+,\times)$ est un idéal.
 - 3 Énoncer et démontrer le théorème de Bézout (en utilisant la notion d'idéal).

II Exercices axés sur le calcul

Exercice 1:

Le polynôme X^4+1 est-il irréductible dans $\mathbb{C}[X]$? $\mathbb{R}[X]$? $\mathbb{Q}[X]$? Si non, donner la décomposition en irréductible dans chacun des cas.

Exercice 2

Déterminer une relation de Bézout pour $P = X^3 + 1$ et $Q = X^2 + 1$.

Exercice 3

On note $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2}, (a, b) \in \mathbb{Z}^2\}$. Montrer que $(\mathbb{Z}[\sqrt{2}], +, \times)$ est un anneau.

Exercice 4

On note $\mathbb{Q}[i] = \{a + ib, (a, b) \in \mathbb{Q}^2\}$. Montrer que $(\mathbb{Q}[i], +, \times)$ est un corps.

Exercice 5:

On note $A = \{\frac{m}{2n}, m \in \mathbb{Z} \text{ et } n \in \mathbb{N}\}.$

- 1 Montrer que A est un sous-annéau de $(\mathbb{Q}, +, \times)$.
- 2 Quels en sont les éléments inversibles?

III Exercices axés sur le raisonnement

Exercice 6:

On considère un anneau $(A, +, \times)$ dont on note 1 l'élément unité.

- 1 Soient $a \in A$ un élément nilpotent et $n \in \mathbb{N}^*$ tels que $a^n = 0$.
 - a) Montrer que 1-a est inversible et préciser son inverse.
 - b) En déduire que $b = 1 + 2a + ... + na^{n-1}$ est inversible.
- 2 Soient $a, b \in A$ tels que ab est nilpotent. Montrer que ba est nilpotent.
- 3 Dans cette question, on suppose que l'anneau $(A,+,\times)$ est commutatif et on note N l'ensemble des éléments nilpotents.

Montrer que N est un idéal de l'anneau $(A, +, \times)$.

Exercice 7:

Soit $(A, +, \times)$ un anneau tel que : $\forall x \in A, x^2 = x$.

- 1 Montrer que pour tout $x \in A$, 2x = 0.
- 2 Montrer que A est commutatif.
- 3 Quels sont les éléments inversibles de A?

Exercice 8:

Montrer que tout anneau commutatif fini est intègre si, et seulement si, c'est un corps.

Exercice 9:

Soit $(A, +, \times)$ un anneau commutatif.

- 1 Rappeler la définition d'un anneau et d'un idéal.
- 2 Soit I un idéal de A. Montrer que si $1_A \in I$, alors I = A.
- 3 Pour $a \in A$, on pose $I_a = \{a \times x, x \in A\}$. Montrer que I_a est un idéal de A.
- 4 On suppose que l'anneau $(A, +, \times)$ est non nul. Démontrer :

 $((A, +, \times) \text{ est un corps}) \iff (\text{Les idéaux de } (A, +, \times) \text{ sont exactement } \{0_A\} \text{ et } A)$

5 - En déduire d'un morphisme de corps (c'est-à-dire un morphisme d'anneaux entre deux corps) est injectif.

Exercice 10:

Soit $(A, +, \times)$ un anneau.

- 1 Montrer qu'il existe un unique morphisme d'anneaux $\varphi: \mathbb{Z} \longrightarrow A$.
- 2 De quel est forme est le noyau de φ ?