

ФИО: Иванов Иван Иванович

Дата: **21.07.2023** Возраст: **47** Пол: **М**

-Инструмент: ВЭЖХ-МС/МС– Плазма крови-

Панорамный метаболомный обзор

На графике представлены функциональные группы метаболитов, которые были оценены по уровню риска на основе Ваших результатов метаболомного профилирования

Уровень риска

Ниже показано, какие классы метаболитов составляют функциональные группы, и как изменение в классе метаболитов повлияло на результат Панорамного метаболомного обзора.

Дата: 21.07.2023

Пациент: Иванов Иван Иванович

MetaboScan-Test01

1. Аминокислоты								
Метаболизм фенилаланина	Резул	ьтат	<u> </u>	20%	40%	60%	80%	Референсные значения мкмоль/л
Фенилаланин (Phe) Незаменимая глюко-, кетогенная аминокислота	+	100						35.8 - 76.9
Тирозин (Туг) Заменимая глюко-, кетогенная аминокислота		50						27.8 - 83.3
Индекс AAAs [Phe + Tyr] Запас ароматических аминокислот		40						60.0 - 180.0
ВСАА – аминокислоты с разветвленной цепью	Резул	ьтат		20%	40%	60%	80%	Референсные значения мкмоль/л
Лейцин + Изолейцин (Leu+lle) Незаменимая глюко-, кетогенная аминокислота		240						92.6 - 310.0
Валин (Val) Незаменимая глюкогенная аминокислота	+	404						133.0 - 317.1
Индекс BCAAs [Leu + lle + Val] Запас аминокислот с разветвленной боковой цепью	+	644						212 - 577
Индекс Фишера FR [BCAAs / AAAs] Отношение запаса аминокислот с разветвленной цепью к запасу ароматических аминокислот		2.3						3.0 - 3.5
Метаболизм гистидина	Резул	ьтат		20%	40%	60%	80%	Референсные значения, мкмоль/л
Гистидин (His) Незаменимая глюкогенная аминокислота	+	158						60 - 109
Метилгистидин (МН) Метаболит карнозина		21.5						< 47.0
Треонин (Thr) Незаменимая глюкогенная аминокислота		132						67.8 - 211.6
Карнозин (Car) Дипептид, состоящий из аланина и гистидина		0.1						< 6.3
Глицин (Gly) Заменимая глюкогенная аминокислота		218						122 - 322
Диметилглицин (DMG) Промежуточный продукт синтеза глицина		0.12						1.6 - 5.0
Серин (Ser) Заменимая глюкогенная аминокислота	+	148						65 - 138
Лизин (Lys) Незаменимая кетогенная аминокислота	+	463						119 - 233
Глутаминовая кислота (Glu) Заменимая глюкогенная аминокислота	+	133						10 - 97

Дата: 21.07.2023

MetaboScan-Test01

Metabo**\$CAN**

Пациент: Иванов Иван Иванович

Метаболизм гистидина	Результ	гат ⊦	20%	40%	60%	80%	Референсные значения, мкмоль/л
Глутамин (Gin) Заменимая глюкогенная аминокислота	4	189					373 - 701
Индекс [Gln / Glu] Активность глутаминсинтетазы	+ 0.	.27					0.06 - 0.23
Индекс GSG [Glu / (Ser + Gly)] Запас аминокислот для синтеза глутатиона	+ 0.	.36					0.17 - 0.31
Индекс [Gly / Ser] Активность глутаминсинтетазы	+ 0.	.27					0.06 - 0.23
Метаболизм метионина	Результ	гат ⊦	20%	40%	60%	80%	Референсные значения, мкмоль/л
Метионин (Met) Незаменимая глюкогенная аминокислота	+	49					16 - 34
Метионин сульфоксид (MetSO4) Продукт окисления метионина	(0.9					0.5 - 5.0
Цистатионин (Cys) Серосодержащая аминокислота	0.	.33					0.07 - 0.55
Таурин (Tau) Заменимая глюкогенная аминокислота		64					50 - 139
Бетаин (Bet) Продукт метаболизма холина		29					21 - 71
Холин (Chl) Компонент мембран клеток, источник ацетилхолина	10	0.9					5.2 - 13.0
Триметиламин-N-оксид (TMAO) Продукт метаболизма холина, бетаина и др. бактериями ЖКТ	+ 12	2.1					< 6.2
Индекс Chl / Bet Соотношение холина к бетаину	;	2.8					2.6 - 7.7

2. Метаболизм триптофана

Кинурениновый путь	Результат	20% 40% 60% 80%	Референсные значения, мкмоль/л
Триптофан (Trp) Незаменимая глюко-, кетогенная аминокислота	62		40 - 91
Кинуренин (Kyn) Продукт метаболизма триптофана по кинурениновому пути	+ 4.6		< 4.4
Индекс Kyn / Trp Показывает активность ферментов, метаболизирующих триптофан до кинуренина	0.075		0.018 - 0.101
Антраниловая кислота (Ant) Продукт метаболизма кинуренина	0.01		0.0049 - 1.1158

3-Гидроксиантраниловая кислота

Продукт метаболизма антраниловой кислоты

Хинолиновая кислота (Qnl) Продукт метаболизма 3-гидроксиантраниловой кислоты

0.04 - 0.30

0.0035 - 0.7642

Результаты данного отчета не являются диагнозом и должны быть интерпретированы лечащим врачом на основании клинико-лабораторных данных и других диагностических исследований.

/2

Цата: 21.07.2023	MetaboSca	n-Tes	st01				Metabo SCAN
Тациент: Иванов Иван Иванович	_		20%	40%	60%	80%	Референсные значения,
Кинурениновый путь	Результат						мкмоль/л
Ксантуреновая кислота (Xnt) Продукт метаболизма кинуренина	0.008						0.002 - 0.037
Кинурениновая кислота (Купа) Продукт метаболизма кинуренина	0.098						0.032 - 0.167
Индекс Kyn / Qnl Соотношение кинуренина к хинолиновой кислоте	1.66						0.44 - 5.00
Серотониновый путь	Результат		20%	40%	60%	80%	Референсные значения, мкмоль/л
Серотонин Нейромедиатор	0.57						0.18 - 1.18
5-Гидроксииндолуксусная кислота (5-НІАА) Метаболит серотонина	+ 0.36						0.04 - 0.30
Индекс Qnl / 5-HIAA Соотношение 5-гидроксииндолуксусной кислоты к хинолиновой кислота	0.2						0.1 - 1.1
5-Гидрокситриптофан (5-HTP) Прекурсор серотонина	0.018						0.0153 - 0.0207
Индоловый путь	Результат		20%	40%	60%	80%	Референсные значения, мкмоль/л
3-Индолуксусная кислота (I3A) Продукт катаболизма триптофана кишечной микробиотой	2.67						0.3 - 23
3-Индолмолочная кислота (I3L) Продукт катаболизма триптофана кишечной микробиотой	1.95						0.08 - 5.0
3-Индолкарбоксальдегид (I3AI) Продукт катаболизма триптофана кишечной микробиотой	0.095						0.01 - 0.20
3-Индолпропионовая кислота (I3P) Продукт катаболизма триптофана кишечной микробиотой	0.61						0.5 - 12.0
3-Индолмасляная кислота (I3B) Продукт катаболизма триптофана кишечной микробиотой	0.04						0.001 - 0.400
Триптамин Продукт катаболизма триптофана кишечной микробиотой, прекурсор для нейромедиаторов	0.0						< 0.003
5-Метокситриптамин	0.148						0.048 - 0.230

Метаболизм аргинина	Результат	20% 40% 60% 80%	Референсные значения, мкмоль/л
Пролин (Pro) Заменимая глюкогенная аминокислота	270		104 - 383
Гидроксипролин (Нур) Источник коллагена	30.4		4.7 - 35.2

Результаты данного отчета не являются диагнозом и должны быть интерпретированы лечащим врачом на основании клинико-лабораторных данных и других диагностических исследований.

/3

Дата: 21.07.2023

MetaboScan-Test01

Пациент: Иванов Иван Иванович			
Метаболизм аргинина	Результат	20% 40% 60% 80%	Референсные значения, мкмоль/л
Асимметричный диметиларгинин (ADMA) Эндогенный ингибитор синтазы оксида азота	+ 0.84		0.23 - 0.50
Симметричный диметиларгинин (SDMA) Продукт метаболизма аргинина, выводится с почками	+ 1.32		0.20 - 0.67
Гомоаргинин Субстрат для синтазы оксида азота	+ 6.7		1.0 - 6.0
Аргинин Незаменимая глюкогенная аминокислота	+ 132		32 - 120
Цитруллин (Cit) Метаболит цикла мочевины	+ 55		16 - 51
Орнитин (Orn) Метаболит цикла мочевины	124		38 - 130
Аспарагин (Asn) Заменимая глюкогенная аминокислота	+ 312		29.5 - 84.5
Аспарагиновая кислота (Asp) Заменимая глюкогенная аминокислота	20.2		5.4 - 21.5
Индекс GABR [Arg / (Orn + Cit)] Общая биодоступность аргинина	0.74		0.2 - 1.2
Индекс AOR [Arg / Orn] Показывает активность аргиназы	1.1		0.2 - 1.5
Индекс Asn / Asp Показывает активность аспарагинсинтетазы	15.4		< 26.0
Креатинин Продукт метаболизма аргинина	44		13 - 57

4. Метаболизм жирных кислот						
Метаболизм ацилкарнитинов	Результат 🖟	20% 40% 60% 80%	Референсные значения, мкмоль/л			
Аланин Заменимая глюкогенная аминокислота	+ 664		209 - 516			
Карнитин (СО) Основа для ацилкарнитинов, транспорт жирных кислот	+ 67		19 - 48			

Результаты данного отчета не являются диагнозом и должны быть интерпретированы лечащим врачом на основании клинико-лабораторных данных и других диагностических исследований.

14

мкмоль/л

Дата: 21.07.2023

MetaboScan-Test01

Результаты данного отчета не являются диагнозом и должны быть интерпретированы лечащим врачом на основании клинико-лабораторных данных и других диагностических исследований.

15

Дата: 21.07.2023

Пациент: Иванов Иван Иванович

MetaboScan-Test01

Длинноцепочечные ацилкарнитины	Результат	20% 40% 60% 80%	Референсные значения, мкмоль/л
Гексадецениолкарнитин (С16-1)	0.019		< 0.1
Гидроксигексадецениолкарнитин (С16-1-ОН)	0.02		< 0.1
Гидроксигексадеканоилкарнитин (С16-ОН)	0.005		< 0.02
Стеароилкарнитин (С18)	0.026		0.03 - 0.13
Олеоилкарнитин (С18-1)	0.22		0.07 - 0.51
Гидроксиоктадеценоилкарнитин (C18-1-OH)	0.002		< 0.32
Линолеоилкарнитин (C18-2)	0.073		0.02 - 0.26
Гидроксиоктадеканоилкарнитин (C18-OH)	0.006		0.3 - 2.3

4. Метаболизм жирных кислот Референсные значения, 60% 80% Витамины и нейромедиаторы Результат мкмоль/л Пантотеновая кислота 0.23 0.30 - 1.80Витамин В5 Рибофлавин 0.036 6.2 - 39.0Витамин В2 Биотин 0.0 < 0.00123 Витамин Н (В7) Мелатонин 0.012 0.0002 - 0.0204 Регулирует циркадные ритмы

Нуклеозиды	Результат	20% 40% 60% 80%	Референсные значения, мкмоль/л
Уридин	0.814		0.23 - 2.58
Инозин	0.14		0.13 - 0.27
Аллергия и стресс	Результат	20% 40% 60% 80%	Референсные значения, мкмоль/л
Кортизол	0.3		0.1 - 0.5
Гистамин	0.012		0.0018 - 0.1329

Результаты данного отчета не являются диагнозом и должны быть интерпретированы лечащим врачом на основании клинико-лабораторных данных и других диагностических исследований.

|6