# Классификация цифровых рентгеновских снимков суставов по степени поражения остеоартритом



Куратор: Марк Блуменау

# Описание проекта

- Остеоартрит воспаление оболочки сустава, вследствие которого разрушаются хрящевая и костная ткани
- Остеоартрит одно из ведущих заболеваний по распространенности среди ревматических
- Причиной 54% жалоб на боль в крупных суставов является остеоартрит
- 70% лиц старше 55 лет сталкиваются с заболеванием

### ОСТЕОАРТРИТЫ



# Цели и задачи проекта

**Цель проекта:** создать сервис классификации рентгеновских снимков коленных суставов по степени поражения остеоартритом

### Задачи:

- 1. Исследовать и подготовить данные
- 2. Построить модель для предсказания степеней поражения суставов
- 3. Создать пользовательский интерфейс
- 4. Реализовать интерпретацию предсказания модели для пользователя

# Описание данных

- набор данных это цифровые рентгеновские изображения коленного сустава
- одно наблюдение это 8битное изображение в оттенках серого
- набор данных собран специалистами университета Рани Чаннамма (Индия)
- изображения маркированы в соответствии с оценками Келлгрена и Лоуренса двумя медицинскими экспертами







# Критерий оценивания снимков

Классификация Келлгрена и Лоуренса оценивает тяжесть остеоартрита коленного сустава

Создание критерия - 1957 г. Утверждение критерия ВОЗ - 1961 г. Усовершенствование критерия - 1982 г.



### Категории критерия:

0 стадия - норма

### 1 стадия – сомнительная:

- сомнительное сужение высоты суставной щели
- сомнительные мелкие наросты (остеофиты)

### 2 стадия - мягкая:

- достоверные мелкие наросты,
- небольшие сужения суставной щели

### 3 стадия – умеренная:

- выраженные множественные наросты сужение высоты суставной щели возможная деформацией поверхностей

### 4 стадия – серьезная:

- крупные остеофиты
- выраженное сужение суставной щели
- деформация контуров кости

- 1. Набор данных состоит из 1650 наблюдений, которые классифицировались по 5-ти категориям двумя экспертами
- 2. Данные распределились по категориям следующим образом:



- 3. Выявлено 30 дубликатов
- 4. Снимки имеют разный угол поворота, например:



5. В наборе данных представлены снимки разного размера:

162х300 – снимок одного колена



161х640 – снимок двух колен



### Размеры изображений по категориям:

|     |     | 0Normal | 1Doubtful | 2Mild | 3Moderate | 4Severe |
|-----|-----|---------|-----------|-------|-----------|---------|
| 162 | 300 | 452     | 440       | 191   | 175       | 206.0   |
| 161 | 640 | 62      | 37        | 41    | 46        | 0.0     |

Распределение размеров изображений по категориям



6. Были определены средние изображения для каждой категории:

### 0 стадия





2 стадия



### 3 стадия



### 4 стадия



# 7. 11 наблюдений имеют разную классификацию экспертов. Например:

Medical Expert-I 0Normal



Medical Expert-I 0Normal



Medical Expert-II 1Doubtful



Medical Expert-II 1Doubtful





Medical Expert-I 0Normal



Medical Expert-II 1Doubtful



# Модель HOG + CatBoost

# HOG CatBoost CH HYPEROPT

Реализация НОG: <a href="https://scikit-image.org/docs/stable/api/skimage.feature.html#skimage.feature.hog">https://scikit-image.org/docs/stable/api/skimage.feature.html#skimage.feature.hog</a>
Ссылка на модель: <a href="https://storage.yandexcloud.net/tnn-hse-medtech/models/hog\_cat\_boost\_v3.cbm">https://storage.yandexcloud.net/tnn-hse-medtech/models/hog\_cat\_boost\_v3.cbm</a>
Ссылка на код: <a href="https://github.com/TiunovNN/hse-knee-xray-research/blob/master/models/ML\_hog/hog.ipynb">https://github.com/TiunovNN/hse-knee-xray-research/blob/master/models/ML\_hog/hog.ipynb</a>

ROC-AUC: 0.98 / F1-score macro: 0.89

# Модель Autoencoder + CatBoost



Ссылка на модель: <a href="https://storage.yandexcloud.net/tnn-hse-medtech/models/autoencoder catboost.cbm">https://storage.yandexcloud.net/tnn-hse-medtech/models/autoencoder catboost.cbm</a>
Ссылка на код:

https://github.com/TiunovNN/hse-knee-xray-research/blob/master/models/ML\_autoencoder/Autoencoders.ip ynb

ROC-AUC: 0.84 / F1-score macro: 0.54

# Описание сервиса

### Компоненты:

- Telegram-bot: <u>https://t.me/KneeXrayBot</u>
- 2. API: <a href="http://hse-knee.tiunovnn.ru/docs">http://hse-knee.tiunovnn.ru/docs</a>
- 3. S3 bucket (yandex cloud): <a href="https://tnn-hse-medtech.storage">https://tnn-hse-medtech.storage</a>
  <a href="https://tnn-hse-medtech.storage">.yandexcloud.net</a>



## CI & CD

### В репозитории настроен CI &CD:

- 1. На созданном Pull Request запускаются Unit-тесты
- 2. После мержа кода в master запускается сборка dockerобразов
- 3. Далее эти образы заливаются в Container Registry расположенном в Yandex облаке
- После заливка выполняется подключение в хосту, где работают сервисы и обновляются образа



### Компоненты:

- 1. ML-модель: <a href="https://storage.yandexcloud.net/tnn-hse-medtech/models/hog\_cat\_boost\_v3.cbm">https://storage.yandexcloud.net/tnn-hse-medtech/models/hog\_cat\_boost\_v3.cbm</a>
- 2. Код бота: <a href="https://github.com/TiunovNN/hse-knee-xray-research/tree/master/tg\_bot">https://github.com/TiunovNN/hse-knee-xray-research/tree/master/tg\_bot</a>
- 3. Код API: <a href="https://github.com/TiunovNN/hse-knee-xray-research/tree/master/api">https://github.com/TiunovNN/hse-knee-xray-research/tree/master/api</a>

# Демонстрация бота







# Демонстрация АРІ

```
Curl
curl -X 'POST' \
   'http://hse-knee.tiunovnn.ru/predict' \
  -H 'accept: application/json' \
  -H 'Content-Type: multipart/form-data' \
  -F 'files=@DoubtfulG1 (95).png;type=image/png' \
  -F 'files=@ModerateG3 (97).png;type=image/png'
Request URL
http://hse-knee.tiunovnn.ru/predict
Server response
Code
           Details
200
           Response body
                "filename": "DoubtfulG1 (95).png",
                "severity": 1
                "filename": "ModerateG3 (97).png",
                "severity": 3
                                                                                                                                                                                    Download
           Response headers
              content-length: 97
              content-type: application/json
              date: Sun,14 Jan 2024 13:00:09 GMT
              server: uvicorn
```

# Прогресс

### К защите в январе было сделано:

- 1. EDA
- 2. Обучена модель HOG+CatBoost
- 3. Написаны и развернуты Telegram Bot и API проекта
- 4. Настроена инфраструктура в yandex cloud: S3, Compute Cloud

### К 1 марта было сделано:

- 1. Написаны тесты на бота
- 2. Настроен СІ для прогона тестов
- 3. Настроен CI&CD для автоматической сборки и деплоя сервиса
- 4. Обучена модель на Autoencoder CNN + CatBoost

### Планы

- 1. Продолжить эксперименты с автокодировщиками для улучшения качества предсказания
- 2. Написать тесты на АРГ
- 3. Добавить автоматический запуск линтера в CI
- 4. Применение нейросетевой модели для классификации изображений
- 5. Применение методов интерпретации результатов модели (LIME, SHAP, GSM и тд.)