1 Resultados

A continuación, se presentan los valores de los parámetros utilizados en todos los resultados siguientes:

Punto Bombeo Interacción Campo Cavidad cuántico coherente electrón-fonón magnético $\omega_c = 1.00 \text{ meV}$ $\delta_0 = 40.0 \; \mu eV$ $\Omega_1 = 82.0 \ \mu eV$ $g_{bb} = 20.0 \ \mu eV$ $g_{hx} = -0.35$ $\delta_b = 18.0 \ \mu \text{eV}$ $\Omega_2 = 0.00 \ \mu eV$ $g_{hz} = -2.20$ $g_{bd} = g_{bb}$ $\delta_d = 5.00 \ \mu eV$ $g_{ex} = -0.65$ $g_{ez} = -0.80$ $\alpha = 20.0 \ \mu eV/T^2$ $\mu_B = 57.9 \; \mu eV/T$

Cuadro 1.1: Parámetros Hamiltonianos

Cuadro 1.2: Parámetros disipativos

Cavidad	Punto cuántico
$\kappa = 789 \text{ neV}$	$\begin{vmatrix} \gamma_b = 18.7 \text{ neV} \\ \gamma_d = 0.1\gamma_b \\ \gamma_\phi = 400 \text{ neV} \end{vmatrix}$

1.1 Sin campo magnético (B = 0T)

En este apartado, se desea mostrar algunos detalles sobre la generación de las gigantes-Rabi, tomando como referencia el trabajo realizado por los autores Vargas-Calderón et al. (2022). Primero, se presenta el diagrama de energías, donde se evidencia en qué puntos hay interacción y en cuáles no. En este diagrama, un cruce indica que no hay interacción, mientras que un anticruce señala que sí la hay. Este anticruce también se conoce como desdoblamiento de Rabi. Por lo tanto, se mostrarán los respectivos diagramas de dispersión para evidenciar lo mencionado anteriormente.

El diagrama de energía se obtiene numéricamente, ordenando las energías de menor a mayor. De esta forma, también se organizan los vectores propios correspondientes. Esto implica que, cuando dos estados tienen la misma energía, el diagrama de dispersión mostrará un cruce y sus etiquetas se intercambiarán. Es decir, si el cruce ocurre entre

- (a) Anticruce, evidencia de interacción entre los estados propios de energía 10 y 11. En un valor de energía cerca a cero (\sim 3.4 μ eV).
- (b) Cruce, muestra ausencia de interacción entre los estados propios de energía 9 y 10. E energía cerca a cero (\sim 3.4 μ eV).

- (c) Coeficientes de Hopfield para observar cuáles son los estados de la base involucrados en la interacción.
- (d) Coeficientes de Hopfield cuando se intercambian las etiquetas de los estados propios 9 y 10.

- (e) Gigante-Rabi entre los estados de la base observados en los coeficientes de Hopfield.
- (f) La ausencia de la gigante-Rabi, como se esperaba.

Figura 1.1: Aquí observamos dos procesos: a la izquierda, la obtención de la gigante-Rabi a partir del diagrama de dispersión, y a la derecha, cuando no se obtiene la gigante-Rabi.

los estados propios 9 y 10, después del cruce, el estado que era 9 pasará a ser 10 y viceversa, intercambiando así las etiquetas entre los estados propios.

Como se observa en la figura 1.1, se detalla el procedimiento numérico para encontrar las gigantes-Rabi en general. Aquí se indica que cuando se encuentra un anticruce, se está evidenciando una interacción en la que, en principio, se intercambian los estados de la base entre los respectivos estados propios. Esto se puede comprobar usando los coeficientes de Hopfield, en los que se grafica la probabilidad de cada uno de los estados de la base de alguno de los dos vectores propios involucrados en la interacción.

Una vez se obtiene el valor del detuning, $\Delta \approx -n\omega_b$, cuyo valor es negativo debido a que el detuning se define como $\Delta = \omega_b - \omega_L$. Es decir, es negativo porque se está ajustando la energía del láser a un valor mayor que el de la excitación del excitón brillante, condición requerida para generar las gigante-Rabi entre un estado de menor variedad de excitación y uno de mayor variedad de excitación.

Si se quiere que el estado inicial del sistema sea el estado vacío $|v,0\rangle$, entonces se debe buscar el valor propio de energía más cercano a cero, además de considerar que la energía de estos estados también está cuantizada de acuerdo al número de fonones. Encontrar el valor de energía más cercano a cero en un detuning negativo indica que el sistema inicialmente se prepara en el estado vacío, para luego evolucionar a un estado excitón con n fonones.

La variedad de excitación se entiende en este contexto como el número de excitación del modo fundamental del estado del sistema. El estado vacío tiene una variedad de excitación cero, mientras que el estado $|n,X\rangle$ tiene una variedad de excitación de n+1, donde X indica cualquier estado excitón presente en el sistema, ya sean excitones brillantes u oscuros, que pueden ser simétricos o antisimétricos. Cuando la diferencia en la variedad de excitación es mayor a 1, se genera una gigante-Rabi.

1.2 Configuración de Voigt $(\theta = 0^{\circ})$

1.3 Configuración de Faraday $(\theta = 90^{\circ})$

1.4 Descomposición espectral

A continuación se muestra el espectro de energías del sistema cuando no hay campo magnético (B=0), es decir, el sistema modelado por (Vargas-Calderón et al., 2022). Se puede observar en la figura ?? que hay tres transiciones de estado permitidas y una prohibida a diferentes desafinamientos $(\Delta = \omega_b - \omega_L)$ con ω_b siendo la energía de transición del estado vacío $(|v,0\rangle)$ al estado excitón brillante simétrico $(|X_{b+},0\rangle)$ y ω_L la energía del láser. A continuación se muestran las transiciones permitidas con sus desafinamientos

correspondientes y la transicion prohibida:

$$\langle v, 0 | H | X_{b+}, 2 \rangle \neq 0 \quad \text{con} \quad \Delta \approx -2.001 \text{ meV},$$
 (1.1)

$$\langle v, 0 | H | X_{b-}, 2 \rangle \neq 0 \quad \text{con} \quad \Delta \approx -1.981 \text{ meV},$$
 (1.2)

$$\langle v, 0 | H | X_{d+}, 2 \rangle \neq 0 \quad \text{con} \quad \Delta \approx -1.957 \text{ meV},$$
 (1.3)

$$\langle v, 0 | H | X_{d-}, 2 \rangle = 0 \quad \forall \quad \Delta. \tag{1.4}$$

Como se puede observar la interacción es del orden de los μ eV obteniendo que la intensidad de la interaccion es la diferencia entre las energias correspondientes. Así si se activa el campo magneticos vamos a ver en la figura $\ref{eq:condition}$ si el minimo (donde sucede la interaccion entre estados) sufre algun cambio.

Figura 1.2: Desfinamiento Δ variando la magnitud del campo magnetico horizontal $\theta=0$ rad, para la gigante-Rabi de cada estado exciton, son cuatro posibles permitidos con diferencia tres entre sus variedades de excitacion, donde se observa que Δ depende del campo magnetico al cadradado, $\Delta \sim B^2$, con algunas transiciones involucran dependencia lineal del campo magnetico.

En la figura ?? se observa que el desafinamiento depende de la intensidad campo magnetico horizontal y es diferente para cada una de las transiciones permitidas, ademas, habilita la transicion prohibida anteriormente sin campo magnetico. A continuacion menciono la funcion numerica relacionado con el corrimiento del desafinamiento que me permite producir oscilaciones gigante Rabi con diferencia 3 en las variedades de excitacion:

$$\langle v, 0 | H | X_{b+}, 2 \rangle \quad \text{con} \quad \Delta \approx -2.001 \text{ meV} - 0.025B - 0.02B^2,$$
 (1.5)

$$\langle v, 0 | H | X_{b-}, 2 \rangle \quad \text{con} \quad \Delta \approx -1.981 \text{ meV} - 0.01B - 0.02B^2,$$
 (1.6)

$$\langle v, 0 | H | X_{d+}, 2 \rangle \quad \text{con} \quad \Delta \approx -1.957 \text{ meV} - 0.02B^2,$$
 (1.7)

$$\langle v, 0 | H | X_{d-}, 2 \rangle \quad \text{con} \quad \Delta \approx -1.954 \text{ meV} + 0.018B - 0.02B^2.$$
 (1.8)