Assignment 2

Due Date: March 13th, 2019 (No late submissions will be accepted)

Contact: TA EunSeop Lee (eunseop90@postech.ac.kr)

General Instructions

Each assignment has a written part and a programming part. For a written part, please write your answers in a pdf file, and for a programming part, follow the instructions below:

- Write your code in <u>submission.cpp</u>
- TA will test your code with Visual Studio on Windows OS, so please write your code in the same environment.
- Obviously, you must NOT use a library like the Standard Template Library (STL)
- Submit only C ++ files, not the entire project
- You should modify the code in <u>submission.cpp</u> between

```
/* BEGIN_YOUR_CODE */
and
/* END_YOUR_CODE */
```

You can add other helper functions outside this block if you want.

Written Problems

Do the following problems in the textbook and note that you need to show your work (i.e., not just the answer) for exercises.

Problem 1 [2 points]

Do the exercise R-4.13 in the textbook.

Problem 2 [2 points]

Do the exercise R-4.32 in the textbook.

Problem 3 [2 points]

Do the exercise C-4.2 in the textbook.

Problem 4 [3 points]

Do the exercise C-4.17 in the textbook.

Problem 5 [3 points]

Do the exercise C-4.24 in the textbook.

Programming Problems

Problem 1. Tiling problem

Given a "2 x N" board, count the number of ways to tile the given board using the 2×1 , 1×2 and 2×2 tiles.

Figure 1 is one way to fill "2 x 17" board.

Figure 1

<Input>

Board width N

<Output>

Number of all cases mod 100

Problem 1a [3 points]

Implement the algorithm to satisfy the above conditions in <u>submission.cpp</u>. (You should use the technique of induction.)