8. You're doing some stress-testing on various models of glass jars to determine the height from which they can be dropped and still not break. The setup for this experiment, on a particular type of jar, is as follows. You have a ladder with *n* rungs, and you want to find the highest rung from which you can drop a copy of the jar and not have it break. We call this the *highest safe rung*.

It might be natural to try binary search: drop a jar from the middle rung, see if it breaks, and then recursively try from rung n/4 or 3n/4 depending on the outcome. But this has the drawback that you could break a lot of jars in finding the answer.

If your primary goal were to conserve jars, on the other hand, you could try the following strategy. Start by dropping a jar from the first rung, then the second rung, and so forth, climbing one higher each time until the jar breaks. In this way, you only need a single jar—at the moment

it breaks, you have the correct answer—but you may have to drop it n times (rather than $\log n$ as in the binary search solution).

So here is the trade-off: it seems you can perform fewer drops if you're willing to break more jars. To understand better how this trade-off works at a quantitative level, let's consider how to run this experiment given a fixed "budget" of $k \ge 1$ jars. In other words, you have to determine the correct answer—the highest safe rung—and can use at most k jars in doing so.

- (a) Suppose you are given a budget of k = 2 jars. Describe a strategy for finding the highest safe rung that requires you to drop a jar at most f(n) times, for some function f(n) that grows slower than linearly. (In other words, it should be the case that $\lim_{n\to\infty} f(n)/n = 0$.)
- (b) Now suppose you have a budget of k > 2 jars, for some given k. Describe a strategy for finding the highest safe rung using at most k jars. If $f_k(n)$ denotes the number of times you need to drop a jar according to your strategy, then the functions f_1, f_2, f_3, \ldots should have the property that each grows asymptotically slower than the previous one: $\lim_{n\to\infty} f_k(n)/f_{k-1}(n) = 0$ for each k.

: צנצנות K	: צנצנות	: צנצנות 2	: צנצנות 2	: 2 צנצנת
- צנצנת ראשונה	100	10	14	1
N^((k-1)/k)	200	20	27	2
- צנצנת שנייה	300	30	39	3
N^((k-2)/k)	400	40	50	4
- צנצנת שלישית	500	50	60	
N^((k-3)/k)	600	60	69	100
,	700	70	77	
	800	80	84	מקסימום
צנצנתK-	900	90	90	זריקות -
N^((k-k)/k)	1000	100	95	100
, ,			99	
מקסימום				
– זריקות	מקסימום	מקסימום	מקסימום	
K * N^(1/k)	– זריקות	– זריקות	זריקות -	
	3 * N^1/3	2 * N^1/2	14	

הבעיה: הבעיה: קשה איך להכללה מכלילים?