Тема 1.2. Соответствия и отображения

Аннотация: Отображения, их свойства. Функциональные отображения. Отношения на множестве. Бинарные отношения. Замыкание отношений. Алгоритм Уоршолла. Отношения эквивалентности и порядка.

Отображения

Соответствие $G \subset X \times Y$ называется *отображением*, если область определения соответствия совпадает с множеством

Сечением соответствия G по элементу x_0 называется множество $G\Big|_{x_0} = \big\{y\Big|(x_0,y) \in G\big\}.$ Аналогично вводится и сечение соответствия G по элементу $y_0\colon G\Big|_{y_0} = \big\{x\Big|(x,y_0) \in G\big\}.$

Отображение называется *функциональным*, если любое сечение содержит только один элемент.

Для функционального отображения обычно вводят следующие обозначения

$$f: X \to Y$$
 или $X \xrightarrow{f} Y$, или $y = f(x), x \in Y, y \in Y$ или $x \mid \to f(x), \quad x \in X, f(x) \in Y$.

Если G - некоторое функциональное отображение, то сечение $G|_{x_0}$ называют *образом* элемента $X_0 \in X$, а сечение $G|_{y_0}$ называют *прообразом элемента* $y_0 \in Y$. Образ элемента $x_0 \in X$ обозначается символом $f(x_0)$, а прообраз элемента $y_0 \in Y$ – символом $f^{-1}(y_0)$.

Два функциональных отображения $f_1: X_1 \to Y_1$ и $f_2: X_2 \to Y_2$ **равны**, если $X_1 = X_2$, $Y_1 = Y_2$ и для $\forall x \in X_1$, $f_1(x) = f_2(x)$.

Функциональное отображение $f: R \to R$ обычно кратко называют *функцией*. Это то определение функции с которым вы встречались ранее в курсе математического анализа.

4) если
$$B_1 \subset B_2 \subset Y$$
, то $f^{-1}(B_1) \subset f^{-1}(B_2)$;
5) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$;
6) $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.

Доказательство:

▶ Доказательства не представляют особого труда. Докажем, например, последнее:

Пусть $x \in f^{-1}(B_1 \cap B_2)$, тогда это равносильно тому, что $f(x) \in B_1 \cap B_2$ или $f(x) \in B_1$ и $f(x) \in B_2$. Откуда $x \in f^{-1}(B_1)$ и $x \in f^{-1}(B_2)$, тогда $x \in f^{-1}(B_1) \cap f^{-1}(B_2)$. Что и требовалось доказать. \blacktriangleleft

Виды отображений

Отображение $f: X \to Y$ называется *сюръективным*, если каждый элемент $y \in Y$ имеет хотя бы один прообраз.

Отображение $f: X \to Y$ называется **инъективным**, если из условия $x_1 \neq x_2$ следует, что $f(x_1) \neq f(x_2)$, т.е. различные элементы множества X переходят в различные образы.

Отображение $f: X \to Y$ называется *биективным* (взаимнооднозначным), если оно одновременно сюръективно и инъективно.

Пример: Рассмотрим отображения:

На рисунке 1 отображение, которое не является ни сюръективным (у z нет прообраза), ни инъективным (a и b переходят в y).

На рисунке 2 отображение, которое является сюръективным но не является инъективным (a и c переходят в y).

На рисунке 3 – инъективное, но не сюръективное.

На рисунке 4 – биективное отображение.

Композицией отображений $f: X \to Y$ и $g: Y \to Z$ (сложным отображением или суперпозицией) называют отображение $\varphi: Y \to Z$, определяемое

$$\varphi(x) = (g \circ f)(x) = g(f(x)), \forall x \in X.$$

Композиция отображений обладаем свойством ассоциативности, т.е. справедливо равенство $h\circ (g\circ f)=(h\circ g)\circ f$.

Единичным (тождественным) отображением называется отображение $e: X \to X$, такое что e(x) = x, $\forall x \in X$.

Очевидно, что выполняются равенства $f \circ e = f$ и $e \circ f = f$, т.е. единичные отображения играют роль нейтральных элементов в композиции отображений.

Отображение g называется *обратным* к отображению f, если одновременно выполняются два условия: $g \circ f = e$ и $f \circ g = e$. Обычно обратное отображение обозначают символом f^{-1} .

Бинарные отношение

Бинарным омношением на множестве X называется любое подмножество $T \subset X \times X$ прямого произведения. Отличие от соответствия здесь в том, что соответствие – это подмножество $A \times B$, а отношение - подмножество $X^2 = X \times X$.

Свойства бинарных отношений:

- 1. Отношение T в множестве A называется pedpлексивным, если для $\forall a \in A$ справедливо $(a,a) \in T$. Рефлексивность T всегда означает, что T содержит тождественное отношение (e) в качестве подмножества $e \subseteq T$, а в если отношение T задается матрицей M, то на главной диагонали этой матрицы стоят только единицы.
- 2. Отношение T в множестве A называется **антирефлексивным**, если для $\forall a \in A$ справедливо $(a,a) \notin T$ (на главной диагонали матрицы M стоят только нули).
- 3. Отношение T в множестве A называется $\mathit{симметричным}$, если из $(a,b) \in T \Rightarrow (b,a) \in T$ при $a \neq b$. Симметричное отношение можно задать равенством $T = T^{-1}$, и, конечно, матрица симметричного отношения также симметрична, т.е., если матрица отношения T это матрица M, то $M = M^T$, где M^T транспонированная матрица M.
- 4. Отношение T в множестве A называется **транзитивным**, если из $(a,b) \in T$ и $(b,c) \in T \Rightarrow (a,c) \in T$ при $a \neq b$; $b \neq c$; $a \neq c$.
- 5. Рефлексивное, симметричное и транзитивное отношения на множестве A называются отношениями эквивалентности.

Отношение эквивалентности в некотором смысле обобщает понятие равенства.

- 6. Отношение T в множестве A называется **антисимметричным**, если для $\forall a$ и b имеет место: если $(a,b) \in T$ и $(b,a) \in T$, то a = b. В матрицах это будет выглядеть так: $M \cap M^T \subseteq e$.
- 7. Отношение T называется сильно антисимметричным (асимметричным), если для любой упорядоченной пары из условия $(a,b) \in T$ следует, что пара $(b,a) \notin T$ $(M \cap M^T = \emptyset)$.

Бинарное отношение T, обладающее свойствами рефлексивности, антисимметричности и транзитивности, называется *отношением упорядоченности* или *отношением порядка* и обозначается « \leq ».

Замыкание отношений

Пусть отношение T на множестве A не обладает каким-либо (рефлексивностью, свойством симметричностью ИЛИ транзитивностью). Будем считать, что в результате присоединение к этому подмножеству T некоторых упорядоченных пар получим новые подмножества \tilde{T} , которые уже будут обладать указанным свойством. Минимальное по числу элементов подмножество \tilde{T} с выделенным свойством, которое получено путем присоединения к исходному отношению Tновых элементов, называется замыканием относительно данного свойства.

Рассмотрим один из алгоритмов, позволяющих построить транзитивное замыкание отношения.

<u>Алгоритм Уоршолла построения транзитивного замыкания</u> Пусть бинарное отношение T задано булевой матрицей M. Алгоритм:

- 1) просматривают последовательно все недиагональные элементы m_{ij} матрицы M (можно и диагональные, но для них дальнейшие действия просто не имеют смысла и это лишняя трата времени);
- 2) если $m_{ij} = 1$, то все элементы i-ой строки матрицы заменяют дизъюнкциями соответствующих элементов i-ой и j-ой строк матрицы;
- 3) процедуру повторяют до тех пор, пока не прекратятся изменения элементов матрицы.

Пример: Отношение задано матрицей M. Исследовать отношение на симметрию, антисимметрию, асимметрию, рефлексивность, антирефлексивность. Найти транзитивное замыкание отношения.

$$M = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

Решение:

Вначале имеет смысл найти
$$\boldsymbol{M}^T = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}.$$

- 1. Данное отношение не является симметричным, так как матрица несимметрична ($M \neq M^T$.). Например, пара (4,3) принадлежит данному отношению, а пара (3,4) ему не принадлежит.
 - 2. Отношение антисимметрично, так как

- 3. Отношение антисимметрично, но не асимметрично, так как на диагонали матрицы имеются элементы равные 1 (или $M \cap M^T \neq \emptyset$).
- 4. Все диагональные элементы матрицы рефлексивного отношения равны 1. Данное отношение не является рефлексивным.
- 5. Отношение не обладает свойством антирефлексивности, так как диагональ матрицы ненулевая.

Найдем транзитивное замыкание данного отношения по алгоритму Уоршолла:

Рассматриваем все внедиагональные $(i \neq j)$ элементы матрицы.

1. Элемент $m_{14} = 1$. Первую строку заменяем поэлементной дизъюнкцией первой и четвертой строки:

$$M_1 = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

Данное отношение не является транзитивным, так как, например, пары (1,4) и (4,3) принадлежат данному отношению, а пара (1,3) ему не принадлежит.

2. Элемент $m_{21} = 1$. Вторую строку заменяем поэлементной дизъюнкцией второй и первой строки:

$$M_2 = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

3. Элемент $m_{43} = 1$. Дизъюнкция четвертой и третьей строки не меняет вид матрицы. Таким образом, полученная матрица M_2 является матрицей транзитивного замыкания нашего отношения.

Отношение эквивалентности

Как было сказано ранее, рефлексивное, симметричное и транзитивное отношения на множестве A называются отношениями эквивалентности. Для отношения эквивалентности наряду с записью (a,b) обычно используют обозначение $a \sim b$.

Пример: На множестве целых чисел Z рассмотрим отношение сравнения по модулю m>1 ($x \equiv y \mod m$), которое строится по принципу: для любых двух целых чисел x и y полагаем, что $x \sim y$, если их разность делится без остатка на m, т.е. $(x-y)=mk, k \in Z$.

Заданное отношение, очевидно, рефлексивно $(x \sim x, \text{ т.к.} (x-x)=m\cdot 0)$ и симметрично (если $x\sim y$, т.е. $(x-y)=mk, k\in Z$, то $y\sim x$, т.е. $(y-x)=-mk, -k\in Z$).

Проверим транзитивность отношения сравнения, т.е. условие, что если пары $x \sim y$ и $y \sim z$, то $x \sim z$

В самом деле, поскольку $x \sim y$, то $(x - y) = mk_1$, а поскольку $y \sim z$, то $(y - z) = mk_2$, тогда

$$(x-z) = ((x-y)+(y-z)) = mk_1 + mk_2 = m(k_1+k_2), (k_1+k_2) \in \mathbb{Z}.$$

Множество элементов из A, эквивалентных некоторому элементу $a \in A$, называется **классом эквивалентности** (или **классом смежности**) элемента $a \in A$ по отношению T. Класс эквивалентности элемента $a \in A$ обозначим символом $a \in A$.

Для заданного отношения эквивалентности T на A множество всех классов эквивалентности называется фактор-множеством множества X по отношению эквивалентности T. Фактор-множество обычно обозначают A/a.

Пример: Рассмотрим отношение сравнения по модулю 4 $(x \equiv y \mod 4)$.

Для этого отношения эквивалентности перечислим все классы эквивалентности:

$$[0] = \{ \dots, -12, -8, -4, 0, 4, 8, 12, \dots \},$$

$$[1] = \{ \dots, -11, -7, -3, 1, 5, 9, 13, \dots \},$$

$$[2] = \{ \dots, -10, -6, -2, 2, 6, 10, 14, \dots \},$$

$$[3] = \{ \dots, -9, -5, -1, 3, 7, 11, 15, \dots \}.$$

Указанные классы эквивалентности обычно называют *классами вычетов по модулю* 4. Фактор-множество Z/\equiv , обозначим Z_4 содержит ровно четыре элемента: $Z_4=\left\{[0],[1],[2],[3]\right\}$

Заметим, что каждый из перечисленных классов эквивалентности однозначно задается *любым* своим элементом, например, [1]=[-3]=[5] и т.д. Кроме этого, указанные классы не пересекаются, а их объединение представляет собой *разбиение* множества целых чисел: $Z = [0] \cup [1] \cup [2] \cup [3]$.

Любое отношение эквивалентности на A порождает разбиение множества $A \colon A = \bigcup_{a \in A} [a].$

Доказательство:

 \blacktriangleright Очевидно, что для любого элемента $a \in A$ выполняется условие $a \in [a]$ и поэтому $[a] \neq \emptyset$.

Докажем сначала, что любые два класса эквивалентности [a] и [b] либо совпадают, либо имеют пустое пересечение. Предположим противное, т.е. что $[a] \cap [b] \neq \emptyset$, тогда найдется элемент $c \in A$ такой, что $c \in [a] \cap [b]$, и, следовательно, $c \sim a$ и $c \sim b$, а в силу симметричности получим $c \sim a$, следовательно $a \sim c$. В силу транзитивности из $a \sim c$ и $c \sim b$ получим, что $a \sim b$.

В результате для любого элемента $x \in a$ получим $x \sim a \sim b$, значит, $x \in [b]$, и справедливо вложение $[b] \subseteq [a]$. Аналогично можно доказать, что $[a] \subseteq [b]$. Таким образом, если $[a] \cap [b] \neq \emptyset$, то [a] = [b].

Поскольку $a\in [a]$, множество $\{a\}\subset [a]$ и тогда $A=\bigcup_{a\in A}\{a\}\subseteq \bigcup_{a\in A}[a].$

С другой стороны, любой класс эквивалентности $[a] \subseteq A$, а значит, справедливо и соотношение $\bigcup_{a \in A} [a] \subseteq A$.

Такое возможно только если $A = \bigcup_{a \in A} [a]$.

Теорема доказана. ∢

Любое разбиение множества А порождает соответствующее отношение эквивалентности на этом множестве.

Доказательство этой теоремы достаточно очевидно.

Рассмотренные выше две теоремы позволяют сформулировать следующую теорему:

Любое разбиение множества X порождает соответствующее отношение эквивалентности на этом множестве.

Вопросы для самоконтроля:

- 1. Отображения, их свойства и виды.
- 2. Сюръективное, инъективное и биективное отображения.
- 3. Функциональные отображения.
- 4. Отношения на множестве.
- 5. Бинарные отношения и их свойства.
- 6. Замыкание отношений. Алгоритм Уоршолла. Пример.
- 7. Отношения эквивалентности и порядка. Примеры.
- 8. Разбиение множества.