Yulian Kraynyak HW6

Question 5:

Use the definition of Θ in order to show the following:

(a)
$$5n^3 + 2n^2 + 3n = \Theta(n^3)$$

$$5n^3 + 2n^2 + 3n = O(n^3).$$

Proof.

Let c = 10 and $n_0 = 1$. For $1 \le n$, $n \le n^3$, so:

$$5n^3 \le 5n^3$$
$$2n^2 \le 2n^3$$
$$3n \le 3n^3$$

Adding the inequalities, the resulting expression is:

$$5n^3 + 2n^2 + 3n \le 5n^3 + 2n^3 + 3n^3 = 10n^3$$

Therefore, $5n^3 + 2n^2 + 3n = O(n^3)$ because $5n^3 + 2n^2 + 3n \le 10n^3$ for $n \ge 1$.

$$5n^3 + 2n^2 + 3n = \Omega(n^3).$$

Proof.

Let c=5 and $n_0=1$. If we drop every term except for $5n^3$, the resulting expression is smaller:

$$5n^3 + 2n^2 + 3n > 5n^3$$

Therefore, $5n^3 + 2n^2 + 3n = \Omega(n^3)$ because $5n^3 + 2n^2 + 3n \ge 5n^3$ for $n \ge 1$.

(b) $\sqrt{7n^2 + 2n - 8} = \Theta(n)$

 $\sqrt{7n^2 + 2n - 8} = O(n).$

Proof.

Let c = 3 and $n_0 = 1$. For $n \ge 1$, $n \le n^2$, so:

$$7n^2 \le 7n^2$$
$$2n \le 2n^2$$
$$-8 \le 0$$

Adding the inequalities, the resulting expression is:

$$7n^2 + 2n - 8 \le 7n^2 + 2n^2$$

Since the square root function is strictly increasing, we take the square root of both sides and the resulting expression is:

$$\sqrt{7n^2 + 2n - 8} \le \sqrt{7n^2 + 2n^2} = \sqrt{9n^2} = 3n$$

Therefore, $\sqrt{7n^2 + 2n - 8} = O(n)$ because $\sqrt{7n^2 + 2n - 8} \le 3n$ for $n \ge 1$.

 $\sqrt{7n^2 + 2n - 8} = \Omega(n).$

Proof.

Let $c = \sqrt{7}$ and $n_0 = 4$. If we drop every term except for $7n^2$, the resulting expression is smaller:

$$\sqrt{7n^2 + 2n - 8} \ge \sqrt{7n^2} = n\sqrt{7}$$

 $\sqrt{7n^2 + 2n - 8}$ is greater than or equal to $n\sqrt{7}$ if and only if $2n - 8 \ge 0$. Solving for n we get:

$$2n - 8 \ge 0$$
$$n \ge 4$$

Therefore, $\sqrt{7n^2 + 2n - 8} = \Omega(n)$ because $\sqrt{7n^2 + 2n - 8} \ge n\sqrt{7}$ for $n \ge 4$.