DAT630 **Classificat**

Alternative Techniques

Introduction to Data Mining, Chapter 5

13/09/2015

Krisztian Balog | University of Stavanger

Recall

Outline

- Alternative classification techniques
 - Rule-based
 - Nearest neighbors
 - Naive Bayes
 - SVM
 - Ensemble methods
 - Artificial neural networks
- Class imbalance problem
- Multiclass problem

Rule-based classifier

Rule-based Classifier

- Classifying records using a set of "if... then..." rules
- Example

R1: (Give Birth = no) \wedge (Can Fly = yes) \rightarrow Birds R2: (Give Birth = no) \wedge (Live in Water = yes) \rightarrow Fishes R3: (Give Birth = yes) \wedge (Blood Type = warm) \rightarrow Mammals R4: (Give Birth = no) \wedge (Can Fly = no) \rightarrow Reptiles R5: (Live in Water = sometimes) \rightarrow Amphibians

- R is known as the rule set

Classification Rules

- Each classification rule can be expressed in the following way

```
\begin{array}{c} r_i: (Condition_i) \rightarrow y_i \\ \uparrow \\ \text{rule antecedent} \\ \text{(or precondition)} \end{array} \\ \text{rule consequent}
```

Classification Rules

- A rule r **covers** an instance x if the attributes of the instance satisfy the condition of the rule

R1: (Give Birth = no) \wedge (Can Fly = yes) \rightarrow Birds R2: (Give Birth = no) \wedge (Live in Water = yes) \rightarrow Fishes R3: (Give Birth = yes) \wedge (Blood Type = warm) \rightarrow Mammals R4: (Give Birth = no) \wedge (Can Fly = no) \rightarrow Reptiles R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
hawk	warm	no	yes	no	?
grizzly bear	warm	ves	no	no	?

Which rules cover the "hawk" and the "grizzly bear"?

Classification Rules

- A rule r **covers** an instance x if the attributes of the instance satisfy the condition of the rule

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
hawk	warm	no	yes	no	?
grizzly bear	warm	ves	no	no	?

The rule R1 covers a hawk => Bird
The rule R3 covers the grizzly bear => Mammal

Rule Coverage and Accuracy

- Coverage of a rule
 - Fraction of records that satisfy the antecedent of a rule
- Accuracy of a rule
 - Fraction of records that satisfy both the antecedent and consequent of a rule

Tid	Refund	Refund Marital Status		Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

(Status=Single) → No Coverage = 40%, Accuracy = 50%

How does it work?

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
lemur	warm	yes	no	no	?
turtle	cold	no	no	sometimes	?
dogfish shark	cold	yes	no	yes	?

A lemur triggers rule R3, so it is classified as a mammal A turtle triggers both R4 and R5 A dogfish shark triggers none of the rules

Properties of the Rule Set

- Mutually exclusive rules
 - Classifier contains mutually exclusive rules if the rules are independent of each other
 - Every record is covered by at most one rule
- Exhaustive rules
 - Classifier has exhaustive coverage if it accounts for every possible combination of attribute values
 - Each record is covered by at least one rule
- These two properties ensure that every record is covered by exactly one rule

When these Properties are not Satisfied

- Rules are not mutually exclusive
 - A record may trigger more than one rule
 - Solution?
 - Ordered rule set
 - Unordered rule set use voting schemes
- Rules are not exhaustive
 - A record may not trigger any rules
 - Solution?
 - Use a default class (assign the majority class from the training records)

Ordered Rule Set

- Rules are rank ordered according to their priority
 - An ordered rule set is known as a decision list
- When a test record is presented to the classifier
 - It is assigned to the class label of the highest ranked rule it has triggered
 - If none of the rules fired, it is assigned to the default

Rule Ordering Schemes

- Rule-based ordering
 - Individual rules are ranked based on some quality measure (e.g., accuracy, coverage)
- Class-based ordering
 - Rules that belong to the same class appear together
 - Rules are sorted on the basis of their class information (e.g., total description length)
 - The relative order of rules within a class does not matter

Rule Ordering Schemes

Rule-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced} Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Class-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Married}) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

How to Build a Rule-based Classifier?

- Direct Method
- Extract rules directly from data
- E.g.: RIPPER, CN2, Holte's 1R
- Indirect Method
 - Extract rules from other classification models (e.g. decision trees, neural networks, etc)
 - E.g: C4.5rules

From Decision Trees To Rules

Rules are mutually exclusive and exhaustive
Rule set contains as much information as the tree

Rules Can Be Simplified

Initial Rule: (Refund=No) \land (Status=Married) \rightarrow No Simplified Rule: (Status=Married) \rightarrow No

Summary

- Expressiveness is almost equivalent to that of a decision tree
- Generally used to produce descriptive models that are easy to interpret, but gives comparable performance to decision tree classifiers
- The class-based ordering approach is well suited for handling data sets with imbalanced class distributions

Exercise

Nearest Neighors

So far

- Eager learners
 - Decision trees, rule-base classifiers
 - Learn a model as soon as the training data becomes

Opposite strategy

- Lazy learners

- Delay the process of modeling the data until it is needed to classify the test examples

Instance-Based Classifiers

Instance Based Classifiers

- Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly
- Nearest neighbors
 - Uses k "closest" points (nearest neighbors) for performing classification

Nearest neighbors

- Basic idea
 - "If it walks like a duck, quacks like a duck, then it's probably a duck"

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve

Nearest-Neighbor Classifiers

- To classify an unknown record
 - Compute distance to other training records
 - Identify k-nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Choices to make

- Compute distance between two points
 - E.g., Eucledian distance
 - See Chapter 2
- Determine the class from nearest neighbor list
 - Take the majority vote of class labels among the knearest neighbors
 - Weigh the vote according to distance
- Choose the value of k

Choosing the value of k

- If k is too small, sensitive to noise points
- If k is too large, neighborhood may include points from other classes

Summary

- Part of a more general technique called instance-based learning
 - Use specific training instances to make predictions without having to maintain an abstraction (model) derived from data
- Because there is no model building, classifying a test example can be quite expensive
- Nearest-neighbors make their predictions based on local information
 - Susceptible to noise

Bayes Classifier

Bayes Classifier

- In many applications the relationship between the attribute set and the class variable is non-deterministic
 - The label of the test record cannot be predicted with certainty even if it was seen previously during training
- A probabilistic framework for solving classification problems
 - Treat **X** and Y as random variables and capture their relationship probabilistically using P(Y|X)

Example

- Football game between teams A and B
 - Team A won 65% team B won 35% of the time
 - Among the games Team A won, 30% when game hosted by B
 - Among the games Team B won, 75% when B played home
- Which team is more likely to win if the game is hosted by Team A?

Probability Basics

- Conditional probability

$$P(X,Y) = P(X|Y)P(Y) = P(Y|X)P(X)$$

- Bayes' theorem

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

Example

- Probability Team A wins: P(win=A) = 0.65
- Probability Team B wins: P(win=B) = 0.35
- Probability Team A wins when B hosts: P(hosted=B|win=A) = 0.3
- Probability Team B wins when playing at home: P(hosted=B|win=B) = 0.75
- Who wins the next game that is hosted by B?
 P(win=B|hosted=B) = ?
 P(win=A|hosted=B) = ?

Solution

- P(win=A|host=A) = 0.5738
- P(win=B|host=B) = 0.4262
- See book page 229

Bayes' Theorem for Classification

Bayes' Theorem for Classification

Bayes' Theorem for Classification

Class-conditional probability $P(Y|\mathbf{X}) = \frac{P(\mathbf{X}|Y)P(Y)}{P(\mathbf{X})}$ Posterior The evidence probability $P(\mathbf{X}|\mathbf{X}) = \frac{P(\mathbf{X}|Y)P(Y)}{P(\mathbf{X})}$

Bayes' Theorem for Classification

Naive Bayes

Estimation

- Mind that X is a vector

$$\mathbf{X} = \{X_1, \dots, X_n\}$$

- Class-conditional probability

$$P(\mathbf{X}|Y) = P(X_1, \dots, X_n|Y)$$

- "Naive" assumption: attributes are independent

$$P(\mathbf{X}|Y) = \prod_{i=1}^{n} P(X_i|Y)$$

Conditional independence

- Three random variables, X, Y, Z
- X is independent of Y given Z: P(X|Y,Z) = P(X|Z)

$$P(X,Y|Z) = \frac{P(X,Y,Z)}{P(Z)}$$

$$= \frac{P(X,Y,Z)}{P(Z)} \frac{P(Y,Z)}{P(Y,Z)}$$

$$= P(X|Y,Z)P(Y|Z)$$

$$= P(X|Z)P(Y|Z)$$

Naive Bayes Classifier

- Probability that X belongs to class Y

$$P(Y|\mathbf{X}) \propto P(Y) \prod_{i=1}^{n} P(X_i|Y)$$

- Target label for record X

$$y = \arg \max_{y_j} P(Y = y_j) \prod_{i=1}^{n} P(X_i | Y = y_j)$$

Estimating class- conditional probabilities

- Categorical attributes

- Continuous attributes

 The fraction of training instances in class Y that have a particular attribute value x_i number of training instances

$$P(X_i = x_i | Y = y) = \frac{n_c}{n}$$

number of training instances

where X_{i=x_i} and Y=y

- Discretizing the range into bins
- Assuming a certain probability distribution

Conditional probabilities for categorical attributes

- The fraction of training instances in class Y that have a particular attribute value X_i
- P(Status=Married|No)=?
- P(Refund=Yes|Yes)=?

1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Conditional probabilities for continuous attributes

- Discretize the range into bins, or
- Assume a certain form of probability distribution
- Gaussian (normal) distribution is often used

$$P(X_i = x_i | Y = y_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} \exp^{-\frac{(x_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$

- The parameters of the distribution are estimated from the training data (from instances that belong to class *y*)
- sample mean μ_{ij} and variance σ_{ij}^2

Example

Tid	Refund	Refund Marital Status I		Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Example classifying a new instance

X={Refund=No, Marital st.=Married, Income=120K}

	D(O)	P(Refund=xIY)		P(Marital=xIY)			Ann. income	
	P(C)	No	Yes	Single	Divorced	Married	mean	var
class=No	7/10	4/7	3/7	2/7	1/7	4/7	110	2975
class=Yes	3/10	3/3	3/3	2/3	1/3	0/3	90	25

P(Class=No|X) = P(Class=No) 7/10

- × P(Refund=No|Class=No) 4/7
- × P(Marital=Married| Class=No) 4/7
- × P(Income=120K| Class=No) 0.0072

Example classifying a new instance

X={Refund=No, Marital st.=Married, Income=120K}

			P(Refur	P(Refund=xIY)		P(Marital=xIY)			Ann. income	
		P(C)	No	Yes	Single	Divorced	Married	mean	var	
	class=No	7/10	4/7	3/7	2/7	1/7	4/7	110	2975	
ľ	class=Yes	3/10	3/3	0/3	2/3	1/3	0/3	90	25	

P(Class=Yes|X) = P(Class=Yes) 3/10

- × P(Refund=No|Class=Yes) 3/3
- × P(Marital=Married| Class=Yes) 0/3
- × P(Income=120K| Class=Yes) 1.2*10-9

Can anything go wrong?

What if this probability is zero?

 If one of the conditional probabilities is zero, then the entire expression becomes zero!

Probability estimation

- **Original** number of training instances where X=x and Y=y $P(X_i=x_i|Y=y)=\frac{n_c}{n} \xrightarrow{\text{number of training instances}} \text{number of training instances}$ number of training instances where Y=y

- Laplace smoothing

$$P(X_i = x_i | Y = y) = \frac{n_c + 1}{n + c}$$

c is the number of classes

Probability estimation (2)

- M-estimate

$$P(X_i = x_i | Y = y) = \frac{n_c + mp}{n + m}$$

- **p** can be regarded as the prior probability
- m is called equivalent sample size which determines the trade-off between the observed probability n√n and the prior probability p
- E.g., p=1/3 and m=3

Summary

- Robust to isolated noise points
- Handles missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes

Exercise

Bayesian Belief Network

Bayesian Belief Network

- Instead of requiring all attributes to be conditionally independent given the class, we can specify which pair of attributes are conditionally independent
- A Bayesian (belief) network provides a graphical representation of the probabilistic relationships among a set of random variables

Key elements

- A directed acyclic graph encodes the dependence relationships among variables
- A probability table associates each node to its immediate parent nodes
- A node is conditionally independent of its non-descendants, if its parents are known

Example

Summary

- BBN provides an approach for capturing prior knowledge of a particular domain using a graphical model
 - The network can also be used to encode casual dependencies among variables
- Constructing the network can be time consuming are requires a lot of effort
- Well suited to work with incomplete data
- Quite robust to overfitting