

Facial Expression Recognition

Jiangang Chen

Facial Expression Recognition

- Emotion recognition has attracted a major attention in numerous fields
 - Marketing, Psychology, Surveillance, and Entertainment are some examples
- Facial Expression Recognition (FER) has broad applications in multiple domains
 - Human—Computer Interaction
 - Virtual Reality
 - Augmented Reality
 - Advanced Driver Assistance Systems
 - Education
 - Entertainment

Goal

How we achieve the Facial Expression Recognition

Introducing Conventional & DL methods

Defects & Future Works

Why is FER important?

- Traditional interaction methods are difficult to achieve natural and harmonious emotional interaction
 - (Human-Computer Interaction) Such as keyboard, mouse, screen, and pattern, which is far from meeting the requirements for artificial intelligence
- Human expression is the most important carrier of inspirational perception and the most direct and obvious way of expressing emotions
- Facial expression is arguably the most natural, powerful and immediate signal to communicate emotional states and intentions
 - Thus, FER has important theoretical significance for improving the emotional interaction ability of computers

State-of-the-Art Approaches

- RF Signals
- Thermals Measurement

- CV
 - Expression-Specific LBP[1]: better capture the local information of faces on important fiducial points
 - Work [2] presents a new deep neural network with the addition of inception layers which increases the depth and width of the network while keeping the computational budget constant.
 - Paper [3] instead of using the whole face region, three kinds of active regions are applied to classify facial expression through a decision-level fusion strategy
 - Work [4] proposes a deep convolutional fusion network, which addresses the FER task through discriminative spatial features learning and temporal dependencies accumulating

Types of Emotions

- Basic Emotions [1]
 - Happiness, surprise, sadness, anger, disgust, and fear
- Compound Emotions [2]
 - Including 7 basic emotions (6 basic emotions and 1 neutral), 12 compound emotions expressed commonly by humans, and 3 additional emotions (Awed, Appalled, and Hatred).
- Micro Expressions [3]
 - Reveal the true and potential expressions of a person
 - Lasts for only 1/25 to 1/3 s
 - Psychology and Police Investigations

Disgust

Surprise

Sad

Angry

Fear

Happy

Neutral

^[1] Ekman, Paul. "An argument for basic emotions." Cognition & emotion 6.3-4 (1992): 169-200.

^[2] Du, Shichuan, Yong Tao, and Aleix M. Martinez. "Compound facial expressions of emotion." *Proceedings of the National Academy of Sciences* 111.15 (2014): E1454-E1462.

FER Datasets

- In-the-Lab Dataset
 - Extended Cohn–Kanade Dataset (CK+)
 - Recorded from frontal camera-view points
 - Annotated and validated in terms of 30 action units (AUs)
- In-the-Wild Dataset
 - AffectNet
 - The largest dataset of facial expressions in the wild
 - Heavily imbalanced label distribution and strong baselines
 - FER+

Created by querying facial images from Google's image search engine using 184 emotion

keywords

Conventional Methods

- Notable characteristic: Manual Feature Engineering
- The conventional FER methods can be divided into three major steps

- Image Preprocessing
 - Noise reduction, Face detection, Normalization of the scale and grayscale, Histogram equalization
- Feature Extraction
 - Gabor Feature Extraction | Local Binary Pattern | The Active Shape Model | Optical Flow | Haar Feature Extraction | Feature Point Tracking
- Expression Classification
 - KNN | SVM | Naive Bayes | AdaBoost (with decision trees) | SRC | PNN

Example

- Face detection: Viola-Jones face detector
 - Searching for these Haar-like features
- Encode face component: HOG
 - Sensitive to object deformations
- Classifier: SVM

Conventional Methods

Accuracy

• CK+: 88.7%

	AN	CO	DI	FE	HA	SA	SU
AN	0.84	0.04	0.07	0.00	0.02	0.00	0.02
CO	0.06	0.61	0.00	0.11	0.11	0.11	0.00
DI	0.02	0.00	0.95	0.00	0.03	0.00	0.00
FE	0.08	0.04	0.00	0.72	0.12	0.00	0.04
HA	0.01	0.03	0.00	0.00	0.96	0.00	0.00
SA	0.07	0.04	0.00	0.04	0.00	0.82	0.04
SU	0.00	0.01	0.00	0.00	0.00	0.00	0.99

• Dlib + HOG + SVM

• Dlib: 68 points face landmarks

• FER+

Features	7 Emotions	5 Emotions
HOG Features	29.0%	34.4%
Face Landmarks	39.2%	46.9%
Face Landmarks + HOG	48.2%	55.0%
Face Landmarks + HOG on sliding window	50.5%	59.4%

Deep Neural Network

- Why Neural Network?
 - Automatically learn features from data, hand-feature engineering was left out
 - Can learn a broader range of facial features
 - Previously learned can be transferred among related tasks
- Ensemble methods
 - A set of models where an inference is made collectively based on individual predictions
 - Reduce the remaining residual generalization error
 - More accurate than any single model in the ensemble
- Requires high computational power

Ensembles with Shared Representations

- ESR consists of two building blocks (Implicit)
- Base of the network
 - Convolutional layers for low- and middle-level features
 - Reduction of redundancy, training, and inference time
 - Low level features learned are shared with the ensemble
- Independent convolutional branches (Explicit)
 - Constitutes the ensemble
 - Carries the diversity of the ensemble.
- The level to start the ensemble of branches
 - Too early: high redundancy of low-level facial features
 - Too late: decrease diversity in the ensemble

Training at Different Branch Level

• TE needs more training epochs than ESR to learn informative facial features

• (Branch 2) ESR learned after the first update that the region around the mouth is relevant for

recognizing happy facial expressions

• TE took around 50 epochs to discover the same pattern.

- Diversity Analysis
- Facial Action Coding System
 - Happy
 - AU-6
 - AU-12
 - Fear
 - AU-1
 - AU-20

Result

- CK+
 - Less parameters to train

Approach	#	Accuracy
Single Network	131.208	$85.5 \pm 3.5\%$
Traditional Ensemble	524.832	$89.2 \pm 1.2\%$
ESR-4 Lvl. 3	355.104	\mid 89.4 \pm 2.2% \mid
ESR-4 Lvl. 4	243.936	$88.5 \pm 3.8\%$

• AffectNet: 59.3%

		AffectNet								
	Ne	58.0	3.4	9.4	9.8	2.8	3.2	6.4	7.0	
Target	Ha	4.0	77.4	1.2	2.8	0.4	2.0	0.4	11.8	
	Sa	13.6	1.6	61.4	3.6	4.8	5.4	8.4	1.2	
	Su	9.6	7.8	3.4	55.4	17.8	2.4	2.4	1.2	
	Fe	3.8	1.6	8.4	13.4	63.6	2.4	6.4	0.4	
	Di	4.8	4.8	6.8	3.0	5.0	53.8	19.2	2.6	
	An	12.8	1.4	6.8	4.2	4.4	9.4	59.0	2.0	
	Co	16.4	18.6	3.6	3.2	1.0	4.4	7.4	45.4	

Ne Ha Sa Su Fe Di An Co Ensemble Prediction

• FER+: 87.15%

Demo

Valence—Arousal space

Demo

Defects & Future Works

- Wild Environmental Conditions
 - Occlusion and pose-variation
- The Pressure of High-Volume Data Processing

- Multi-Modal Affect Recognition
 - Including sound, Face Depth Map, IR
 - Vision Privacy

Reference

- [1] Chao, Wei-Lun, Jian-Jiun Ding, and Jun-Zuo Liu. "Facial expression recognition based on improved local binary pattern and class-regularized locality preserving projection." *Signal Processing* 117 (2015): 1-10.
- [2] A. Mollahosseini, D. Chan and M. H. Mahoor, "Going deeper in facial expression recognition using deep neural networks," *2016 IEEE Winter Conference on Applications of Computer Vision (WACV)*, 2016, pp. 1-10, doi: 10.1109/WACV.2016.7477450.
- [3] Sun, Ai, et al. "Facial expression recognition using optimized active regions." *Human-centric Computing and Information Sciences* 8.1 (2018): 1-24.
- [4] Liang, Dandan, et al. "Deep convolutional BiLSTM fusion network for facial expression recognition." *The Visual Computer* 36.3 (2020): 499-508.