МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ВТ

КУРСОВАЯ РАБОТА

по дисциплине «Архитектура Параллельных Вычислительных Систем»

Тема: Решение задачи о восьми ферзях с использованием мультиагентной системы

	Киварин Д.М.
	Новиков Б.М.
Студенты гр. 6307	Ходос А.А.
Преподаватель	Костичев С.В.

Санкт-Петербург 2020

СОДЕРЖАНИЕ

BI	ВЕДЕНИЕ	4
1.	МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ О ВОСЬМИ ФЕРЗЯХ	5
	1.1. Метод перебора	5
	1.2. Метод с использованием мультиагентной системы	6
2.	мультиагентная система решения задачи о	ВОСЬМИ
ΦEP3ЯX 8		
	2.1. Сервер	10
	2.2. Агент-фигура	11
	2.3. Агент-судья	12
	2.4. Монитор	14
3.	ДЕМОНСТРАЦИЯ РАБОТЫ ПРОГРАММЫ	15
BI	ывод	17
CI	ПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	18

ВВЕДЕНИЕ

Задача о восьми ферзях — широко известная задача по расстановке фигур на шахматной доске. Исходная формулировка: «Расставить на стандартной 64-клеточной шахматной доске 8 ферзей так, чтобы ни один из них не находился под боем другого». Подразумевается, что ферзь бьёт все клетки, расположенные по вертикалям, горизонталям и обеим диагоналям. Обобщение задачи — расставить максимальное количество взаимно не бьющих друг друга ферзей на прямоугольном поле, в частности, квадратном поле, со стороной п.

Целью работы является сравнить классический метод перебора для поиска решения данной задачи и метод с использованием мультиагентной системы.

1. МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ О ВОСЬМИ ФЕРЗЯХ

Задача о восьми ферзях заключается в том, чтобы расставить на стандартной 64-клеточной шахматной доске 8 ферзей так, чтобы ни один из них не находился под боем другого. Пример такой расстановки представлен на рисунке 1.

Рисунок 1 - пример решения задачи о 8 ферзях

1.1. Метод перебора

В литературе известны различные классические алгоритмы, реализующие традиционный комбинаторный перебор для поиска

решений задачи о расстановке восьми ферзей. Эту задачу решил больше 200 лет тому назад великий математик Леонард Эйлер.

Очевидно, на каждой из 8 вертикалей должно стоять по ферзю. Каждую такую расстановку можно закодировать одномерным массивом X[1],...,X[8], где X[i] — номер горизонтали для і-го ферзя. Поскольку никакие два ферзя не могут стоять на одной горизонтали (тогда они бьют друг друга), то все X[i] различны, т.е. образуют перестановку из чисел 1..8. Можно, конечно, перебрать все 8! таких перестановок и выбрать среди них те 92, которые нас интересуют. Но число 8!=40320 довольно большое. Поэтому обычно используют алгоритм перебора с возвратом, который позволяет значительно сократить перебор и дает ответ намного быстрее. Таким образом, классические алгоритмы имеют ряд ограничений, в частности, долго работаю, весьма сложны и трудно модифицируемые

Нами было реализовано классическое решение задачи и использовался алгоритм поиска с возвратом. На каждом этапе данный алгоритм пытается поставить новую фигуру на доску таким образом, чтобы ее не бил ни один ферзь, установленный ранее. Поэтому нет смысла рассматривать в качестве возможных полей горизонтали, вертикали и диагонали, на которых уже есть другие фигуры. Если же поставить ферзя не удалось, происходит возврат к этапу установки предыдущей фигуры и для нее ищется новое свободное поле.

1.2. Метод с использованием мультиагентной системы

Мультиагентная система (MAC) состоит из автономных программных агентов, способных воспринимать ситуацию, принимать решения и взаимодействовать с себе подобными.

Новый этап в развитии информационных технологий связывается с мультиагентными технологиями, которые по своему

потенциалу призваны в скором времени выйти на уровень нано и биотехнологий. Вместе с тем, как показывает практика, разработка такого рода систем распределенного интеллекта, где каждый агент может воспринимать ситуацию, принимать решения и коммуницировать с другими, сама по себе является сложной задачей и, во многом, контр-интуитивной для человеческого мышления.

За счет применения МАС при решении данной задачи были дополнительно введены следующие возможности:

- без кардинальной перестройки метода и перепрограммирования системы, была изменена постановка задачи, введя классы новых фигур (ладьи и слона);
- при желании возможно введение новой фигуры или выведение одной из фигур, участвующей в решении, прямо во время выполнения программы;
- возможно изменение стратегии решения, изменив агентов;

2. МУЛЬТИАГЕНТНАЯ СИСТЕМА РЕШЕНИЯ ЗАДАЧИ О ВОСЬМИ ФЕРЗЯХ

Рассмотрим особенности реализации метода с использованием мультиагентной системы к решению данной задачи.

В нашей системе были спроектированы четыре программы-компонента:

- сервер;
- агент-фигура;
- агент-судья;
- монитор.

Коммуникация программ происходит по протоколу пользовательских датаграмм UDP. Диаграммы последовательности запуска системы и решения задачи представлены на рисунках 2 и 3, соответственно.

Рисунок 2 - диаграмма последовательности запуска системы

Рисунок 3 - диаграмма последовательности решения задачи

Схема связей компонентов представлена на рисунке 4.

Рисунок 4 - схема связей компонентов системы

2.1. Сервер

Сервер представляет собой двухпоточную программу, состоящий из следующих потоков:

- поток чтения запросов чтение запросов и добавление их в очередь;
- поток исполнения последовательно берет из очереди запрос, выполняет парсинг команд, исполняет, формирует и отправляет ответы.

Список всех обрабатываемых запросов представлен в таблице 1.

Таблица 1. Обрабатываемые сервером запросы

Запрос	Описание
init <figure_type></figure_type>	Запрос на инициализацию агента-фигуры. При успешной инициализации отправляет обратно сообщение со сгенерированным именем агента-фигуры: init ok <figure_name></figure_name>
init_judge	Запрос на инициализацию агента-судьи. При успешной инициализации в ответ отправляет сообщение: init_judge ok
set_params <board_width> <board_height></board_height></board_width>	Запрос на изменение параметров доски. При успешном изменение параметров отправляет обратно сообщение:

	set_params ok
start_solving	Запрос на начало решения. После начала решения отправляет агенту-судье список всех агентов-фигур с их адресами: agents (<figure1_name> <figure1_port>)</figure1_port></figure1_name>
change_pos (<figure1_name> <figure1_x> <figure1_y>)</figure1_y></figure1_x></figure1_name>	Запрос на изменение позиции агента-фигуры. После смены позиции отправляет всем агентам-фигурам обновленное состояние доски: board (<figure_name1> <figure_x1> <figure_y1>)</figure_y1></figure_x1></figure_name1>
Остальные	Во всех остальных случаях, когда не удалось определить запрос, в ответ отправляется сообщение об ошике: bad_language

2.2. Агент-фигура

Агент-фигура - последовательная программа, который работает по алгоритму представленному блок-схемой на рисунке 5.

Рисунок 5 - блок-схема алгоритма работы агента-фигуры

Суть этого агента заключается в поиске всех фигур, которые находятся под боем фигуры, закрепленной за этим агентом. За счет работы агентов на разных процессорах, достигается параллелизм, что особенно эффективно при большом количестве фигур на доске.

2.3. Агент-судья

Агент-судья - это программа, цель которой после каждого обновления позиций фигур на доске собрать данные о коллизиях от всех агентов-фигур, а затем выбрать и отправить на сервер фигуру, которую

следует передвинуть на заранее выбранное место (в зависимости от стратегии). К серверу может подключиться только один агент-судья.

Блок-схема алгоритма работы агента-судьи представлена на рисунке 5.

Рисунок 6 - блок-схема алгоритма работы агента-судьи

2.4. Монитор

Монитор - программа для отображения решения системы, может быть подключено одновременно несколько мониторов. Реализован на двух потоках:

- Поток взаимодействия с пользователем: визуализирует доску, считывает нажатие клавиш, отправляет запросы серверу;
- Поток взаимодействия с сервером: принимает от сервера информацию об изменении доски, обновляет доску.

3. ДЕМОНСТРАЦИЯ РАБОТЫ ПРОГРАММЫ

Для подведения итогов, были проведены эксперименты, которые должны показать корректность работы системы при решении задачи о восьми ферзях.

Скриншоты решений, которые нашла система представлены на рисунках 7-9.

Рисунок 7 - решение задачи о 8 ферзях на доске 8х8

Рисунок 8 - решение задачи о 2 ферзях, 3 слонах и 3 ладьях на доске $8\mathrm{x}8$

Рисунок 9 - решение задачи о 20 ферзях на доске 20х20

ВЫВОД

В ходе выполнения курсовой работы был разработан и реализован подход к решению классической задачи расстановки ферзей, основанный на использовании мультиагентных систем.

Данный метод является достаточно сложным в плане программной реализации из-за лежащей в основе клиент-серверной архитектуры, однако его использование позволяет добиться значительного увеличения скорости решения задачи по сравнению с классическими алгоритмами. Так, на наборах с 8, 10 и 12 ферзями реализованная система работала в среднем быстрее алгоритма поиска с возвратом в 10-20 раз. А для нахождения взаимной расстановки 20 ферзей на поле была затрачена 1 минута, когда стандартный метод не дал результата после 30 минут работы и был приостановлен.

Стоит отметить, что рассматриваемый подход, ввиду индивидуальной программной реализации и автономной работы каждой отдельной фигуры, имеет очень широкие возможности по дальнейшему усовершенствованию и введению новых стратегий. С целью наглядной демонстрации этого преимущества, в курсовой работе была решена задача по взаимной расстановке 2 ферзей, 3 ладей и 3 слонов.

Для удобного восприятия результатов поиска взаимоположения фигур на доске, в рамках курсовой работы, был также реализован графический интерфейс пользователя.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. В. Олифер, Н. Олифер. Компьютерные сети. Принципы, технологии, протоколы. Учебник, 2016 822 с.
- 2. С. Рассел, П. Норвиг. Искусственный интеллект: современный подход, 2-е изд. : Пер с англ М. : ООО "И. Д. Вильямс", 2016 1408 с.
- 3. M. Wooldridge and N. R. Jennings. Agent Theories, Architectures, and Languages: A Survey. In: Intelligent Agents. ECAI-94 Workshop on Agent Theories, Architecture and Languages. Amsterdam, The Netherlands, August 8-9, 1994, (Eds. M. J. Wooldridge and N. R. Jennings). Proceedings. Springer Verlag: 3-39, 1994