光栅衍射实验数据表格

姓名: 座位号: 日期:

1. i=0时,测定光栅常数和光波波长

光栅编号: ; $\Delta_{02}=1'$; 入射光方位 $\varphi_{10}=$; $\varphi_{20}=$

7 L1/M 7m	$\Delta_{\hat{\mathcal{C}}} = \frac{\Delta_{\hat{\mathcal{C}}} - 1}{2}$; $\Delta_{\hat{\mathcal{C}}} = $							
波长	黄 1, (579.1 nm)		黄 2, (577.0 nm)		绿(546.1 nm)		紫, (435.8 nm)	
m 级	3		3		3		3	
游标	I	II	I	II	I	II	I	II
$arphi_{\pm}$								
$arphi_{\pi}$								
$2\varphi_{\scriptscriptstyle m}$								
$\overline{2\varphi_{\scriptscriptstyle m}}$								
$\overline{arphi_m}$								

2. $i = 15^{\circ}0'$ 时,测量波长较短的黄 2 线的波长(577.0 nm)

光栅平面法线方位 φ_{1n} = ; φ_{2n} =

	游标	入射光方位 φ_0	入射角 i	ī	
	I				
	II				
光谱级次 m	游标	左衍射光方位 $arphi_{\scriptscriptstyle \pm}$	衍射角φ _{n,左}	$\overline{oldsymbol{arphi}_{\mathtt{m}\!\!\!/\!$	同(异)侧
2	I				
	II				
光谱级次 m	游标	右衍射光方位 φ_{eta}	衍射角 $arphi_{ m n}$ π	$\overline{arphi_{\mathtt{m} au}}$	同 (异) 侧
2	I				
	II				

3. 用最小偏向角法测定波长较长的黄 1 线的波长(579.1 nm)

波长/nm	579.1(黄 1)		
m 级			
游标	I	II	
$oldsymbol{arphi}_{\pm}$			
$arphi_{ au}$			
28			
$\overline{2\delta}$			
$\overline{\delta}$			