Simple One

You are given the equation $\hat p_{q}\$ and a positive integer, $n\$. Calculate $\hat p_{q}\$ and a positive integer, $n\$. Calculate $\hat p_{q}\$. There are $T\$ test cases.

Input Format

The first line contains \$T\$, the number of test cases.

The next \$T\$ lines contain three space separated integers: \$p, q\$ and \$n\$, respectively.

Constraints

\$0 \legslant p \legslant 10^9\$

\$1 \legslant q \legslant 10^9\$

\$1 \legslant n \legslant 10^9\$

\$T \legslant 10^4\$

Output Format

If the result is defined, it is always a rational number. However, it can be very big.

Output the answer modulo $(10^9 + 7)$ \$.

If the answer is $\frac{a}{b}$ and b is not divisible by (10^9+7) , there is a unique integer $0 \leq x < 10^9 + 7$ where $a \neq 0 \leq x < 10^9 + 7$.

Output this integer, \$x\$.

It is guaranteed that b is not divisible by $(10^9 + 7)$ for all test cases.

Sample Input

Sample Output

666666670 237627959

Explanation

If $\hat = \frac{4}{3}$ and $-4 \neq 3$ times 66666670 \mod $(10^9 + 7)$.

So, the answer is \$66666670\$.