S-14: Polarizability, Explanation based on Fajan's rule

Distortion or polarization

When a cation approaches an anion closely, then

- the net positive charge on cation tends to attract the electron cloud of the anion towards itself
- Also, it tends to repel the positively charged nucleus of the anion
- ❖ The net effect is that the electron cloud of the anion no longer remains symmetrical, but elongated towards cation. This is called distortion, deformation or polarization of the anion by the cation.
- The anion is said to be polarized.
- The ability of a cation to polarize a nearby anion is called its polarization power.

Polarizability

The unevenly distribution of charge over an anion and distortion of electro density in the presence of a cation is referred to as polarization.

Factors affecting the polarization of anion

i) Polarizing power of cation

The polarizing power of cation depends on its size and charge

- Smaller the size of cation, higher is the polarizing power of cation
- Higher the charge on cation, higher is the polarizing power of cation

Covalent nature α polarizing power

(ii) Polarizability of anion

The ease with which an anion undergoes polarization

The polarization of anion depends on its size and charge

- ❖ Larger the size of anion, higher is the polarizability of anion
- ♦ Higher the charge on anion, higher is the polarizability of anion

Size polarizability covalent nature

❖ Charge polarizability covalent nature

FAJAN'S RULES

A COMPOUND IS MORE LIKELY TO HAVE SOME COVALENT CHARACTER IF...

- THE CATION IS SMALL AND/OR HAS A HIGH CHARGE HIGHLY POLARISING
- THE ANION IS LARGE AND/OR HAS A HIGH CHARGE HIGHLY POLARISABLE

Fajan's rules

Rule-1: Smaller the cation or larger the anion, greater is the covalent nature

Ex: Covalent character of Metal halides

Cation size: $Li^{+} < Na^{+} < K^{+} < Rb^{+} < Cs^{+}$

Covalent nature: LiX> NaX> KX> RbX> CsX

Anion size: $F^- < C1^- < Br^- < I^-$

Covalent nature: MF < MCl < MBr < MI

Fajan's rules

Rule-2: Greater the charge on either cation or anion, greater is the covalent nature

Charge on the cation:

 $Na^+ < Mg^{2+} < Al^{3+} < Si4+$

Covalent nature:

NaCl < MgCl₂ < AlCl₃ < SiCl₄

Charge: $Al^{3+} > Mg^{2+} > Na^{+}$

 $\frac{\text{Charge}}{\text{Size}}: Al^{3+} > Mg^{2+} > Na^{+}$

Polarizing power: $Al^{3+} > Mg^{2+} > Na^{+}$

Fajan's rules

Rule-3:

Cation with octet configuration: Less covalent or greater ionic nature

ns² np⁶: Effective nuclear charge is properly shielded by inner s and p- electrons

Thus, less polarizing power and hence compounds are less covalent

Cation with pseudo-octet configuration: Greater covalent nature

(n-1)d¹⁰ ns²: Effective nuclear charge is not properly shielded by inner d-electrons

Hence more polarizing power and compounds are more covalent

Fajans' rules - A summary

Ionic	Covalent		
Low charge on ions	High charge on ions		
Large cation	Small cation		
Small anion	Large anion		
Noble gas configuration	Valence shell electron configuration with incomplete d/f subshell		

FAJAN'S RULES

PROOF

Chlorides can be used to demonstrate changes in bond type as the positive charge density increases due to higher charge (across Period 3) or larger size (down Group 1)

		'charge'	ionic rad.	III e	m.pt./°C	solubility	bonding
Period 3	NaCl MgCl ₂ AlCl ₃ SiCl ₄	1+ 2+ 3+ 4+	0.095nm 0.065nm 0.050nm 0.041nm	GREATER POSITIVE CHARGE DENSITY	808 714 180 -70	soluble soluble hydrolysed hydrolysed	ionic ionic covalent covalent
Group 1	LiCI NaCI KCI RbCI	1+ 1+ 1+ 1+	0.060nm 0.095nm 0.133nm 0.148nm	GREATER POSITIVE CHARGE DENSITY		soluble soluble soluble soluble	cov. character ionic ionic ionic