Probabilistic ICA (IFA –Independent Factor Analysis)

Use probabilities for everything unknown

$$y(t) = AS(t) + \Gamma(t)$$

Probability of observations (given the sources) for Gaussian noise Γ

$$p(\mathbf{y}|\mathbf{S}, \mathbf{A}, \mathbf{\Sigma}) = (2\pi \det \mathbf{\Sigma})^{-d/2} e^{-\frac{1}{2}(\mathbf{y} - \mathbf{A}\mathbf{S})^T \mathbf{\Sigma}^{-1}(\mathbf{y} - \mathbf{A}\mathbf{S})}$$
.

Prior density model of sources

$$p(\mathbf{S}) = \prod_{i=1}^{m} p_i(s_i)$$

Complete Data Likelihood for n datapoints $\{y\}_{i=1}^n$

$$p(\{\mathbf{y}\}_{i=1}^{n}|\mathbf{A},\mathbf{\Sigma}) = \prod_{i=1}^{n} \int d\mathbf{S} \ p(\mathbf{y}_{i}|\mathbf{S},\mathbf{A},\mathbf{\Sigma}) \ p(\mathbf{S})$$

The Expectation–Maximisation (EM) Algorithm

1. Start with arbitrary $oldsymbol{ heta}_0$

Iterate:

2. (E-Step): Compute the expectation

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}_t) \equiv \sum_{\mathbf{x}} p(\mathbf{x}|\mathbf{y}, \boldsymbol{\theta}_t) \ln p(\mathbf{y}, \mathbf{x}, \boldsymbol{\theta})$$

with the **posterior probability** (given the observations) of the latent variables

$$p(\mathbf{x}|\mathbf{y}, \boldsymbol{\theta}_t) = \frac{p(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}_t)p(\mathbf{x}|\boldsymbol{\theta}_t)}{p(\mathbf{y}|\boldsymbol{\theta}_t)}$$

3. (M-Step) Maximise

$$\boldsymbol{\theta}_{t+1} = \operatorname*{argmax}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}_t)$$

Claim: $\ln p(\mathbf{y}|\boldsymbol{\theta}_{t+1}) \ge \ln p(\mathbf{y}|\boldsymbol{\theta}_t)$ Likelihood is not decreasing!

Analysis of EM

The proof requires the Kullback-Leibler divergence which fulfils

$$KL(q, p) = \sum_{\mathbf{x}} q(\mathbf{x}) \ln \frac{q(\mathbf{x})}{p(\mathbf{x}|\mathbf{y}, \boldsymbol{\theta})} \ge 0$$
.

for any $q(\mathbf{x})$. By rearranging we get

$$-\ln p(\mathbf{y}|\boldsymbol{\theta}) \le F(q,\theta) \equiv \sum_{\mathbf{x}} q(\mathbf{x}) \ln \frac{q(\mathbf{x})}{p(\mathbf{y}, \mathbf{x}|\boldsymbol{\theta})}$$

For fixed θ , the right is minimal (equality!!!) if $q(\mathbf{x}) = p(\mathbf{x}|\mathbf{y}, \boldsymbol{\theta})$.

Let
$$q_t(\mathbf{x}) \doteq p(\mathbf{x}|\mathbf{y}, \boldsymbol{\theta}_t)$$
, then $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}_t) = -F(q_t, \theta) + \sum_{\mathbf{x}} q_t(\mathbf{x}) \ln q_t(\mathbf{x})$

Hence, the EM algorithm can be reformulated as:

- 1. E-Step: Minimise $F(q, \theta_t)$ w.r.t $q \to q_t(\mathbf{x})$ and compute $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}_t)$.
- 2. M-Step Minimise $F(q_t, \boldsymbol{\theta}) = -\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}_t) + \sum_{\mathbf{x}} q_t(\mathbf{x}) \ln q_t(\mathbf{x})$ w.r.t. $\boldsymbol{\theta}$.

We get

$$-\ln p(\mathbf{y}|\boldsymbol{\theta}) \le F(q_t, \theta)$$

and

$$-\ln p(\mathbf{y}|\boldsymbol{\theta}_t) = F(q_t, \theta_t)$$

Hence,

$$\ln p(\mathbf{y}|\boldsymbol{\theta}_{t+1}) - \ln p(\mathbf{y}|\boldsymbol{\theta}_t) \le -F(q_t, \theta_{t+1}) + F(q_t, \theta_t) \ge 0$$

Likelihood is not decreasing!

Example: Mixture of Gaussians

• (E-Step): Compute

$$\mathcal{L}(\boldsymbol{ heta}, \boldsymbol{ heta}_t) \equiv \sum_{\mathbf{c}} p(\mathbf{c}|\mathbf{y}, \boldsymbol{ heta}_t) \ln \left\{ \prod_i p(y_i, c_i|\boldsymbol{ heta})
ight\}$$

with

$$p(\mathbf{c}|\mathbf{y}, \boldsymbol{\theta}_t) = \prod_i p(c_i|y_i, \boldsymbol{\theta}_t) = \prod_i \frac{p(y_i|c_i, \boldsymbol{\theta}_t)p(c_i|\boldsymbol{\theta}_t)}{p(y_i|\boldsymbol{\theta}_t)}$$

and

$$p(y_i, c_i, \boldsymbol{\theta}) = p(y_i | c_i, \boldsymbol{\theta}) p(c_i | \boldsymbol{\theta})$$

• (M-Step) Update $\theta_{t+1} = \operatorname{argmax}_{\theta} \mathcal{L}(\theta, \theta_t)$

Explicit Formulas

ullet Variation with respect to μ_c

$$\sum_{i} (y_i - \mu_c) p(c|y_i, \boldsymbol{\theta}_t) = 0 \rightarrow \mu_{c,t+1} = \frac{\sum_{i} y_i \ p(c|y_i, \boldsymbol{\theta}_t)}{\sum_{i} p(c|y_i, \boldsymbol{\theta}_t)}$$

ullet Variation with respect to σ_c^2

$$\sigma_{c,t+1}^2 = \frac{\sum_i (y_i - \mu_{c,t+1})^2 p(c|y_i, \boldsymbol{\theta}_t)}{\sum_i p(c|y_i, \boldsymbol{\theta}_t)}$$

• Variation with respect to $p_{t+1}(c) = p(c|\boldsymbol{\theta}_{t+1})$

$$p_{t+1}(c) \equiv p(c|\boldsymbol{\theta}_{t+1}) = \frac{1}{n} \sum_{i} p(c|y_i, \boldsymbol{\theta}_t)$$

Low dimensional representations

Observations $\mathbf{y} \in R^d$ live effectively on lower dimensional manifold (+ noise). Introduce latent variables $\mathbf{x} \in R^q \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Factor analysis:

$$y = Wx + \mu + u$$

with $\mathbf{W} = d \times q$, $\mathbf{x} \sim \mathcal{N}(0, \mathbf{I})$ $\mathbf{u} \sim \mathcal{N}(0, \mathbf{D})$ and \mathbf{D} diagonal.

Probabilistic PCA (Tipping & Bishop)

$$y = Wx + \mu + u$$

with $\mathbf{u} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$.

We have

$$p(\mathbf{x}) \propto \exp\left[-\frac{1}{2}||\mathbf{x}||^2\right]$$

and

$$p(\mathbf{y}|\mathbf{x}) \propto \exp\left[-\frac{1}{2\sigma^2}||\mathbf{y} - (\mathbf{W}\mathbf{x} + \boldsymbol{\mu})||^2\right]$$

Posterior of latent variables

$$p(\mathbf{x}|\mathbf{y}) \propto \exp\left[-\frac{1}{2\sigma^2}||\mathbf{y} - (\mathbf{W}\mathbf{x} + \boldsymbol{\mu})||^2 - \frac{1}{2}||\mathbf{x}||^2\right] \propto$$
$$\exp\left[-\frac{1}{2\sigma^2}\left(\mathbf{x} - \mathbf{M}^{-1}\mathbf{W}^T(\mathbf{y} - \boldsymbol{\mu})\right)^T\mathbf{M}\left(\mathbf{x} - \mathbf{M}^{-1}\mathbf{W}^T(\mathbf{y} - \boldsymbol{\mu})\right)\right]$$

with

$$\mathbf{M} = (\sigma^2 \mathbf{I} + \mathbf{W}^T \mathbf{W})$$

Full probability of data

$$p(\mathbf{y}) \propto \exp\left[-\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})^T \mathbf{C}^{-1}(\mathbf{y} - \boldsymbol{\mu})\right]$$

with

$$\mathbf{C} = \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I}$$

Maximum Likelihood:

Minimise

$$-\ln p(\mathbf{Y}) = -\sum_{i=1}^{n} \ln p(\mathbf{y}_i) = \operatorname{const} + \frac{n}{2} \left(\ln |\mathbf{C}| + \operatorname{trace}(\mathbf{C}^{-1}\mathbf{S}) \right)$$

with respect to W, μ and σ^2 .

S is the empirical data covariance

$$S = \frac{1}{n} \sum_{i=1}^{n} (y_i - \boldsymbol{\mu}) (y_i - \boldsymbol{\mu})^T$$

One can show (not surprisingly) that

$$\mu_{ML} = \bar{\mu} = \frac{1}{N} \sum_{i} \mathbf{y}_{i}$$

One can show that optimality is achieved for

$$\mathbf{W} = \mathbf{U}_q (\mathbf{\Lambda}_q - \sigma^2 \mathbf{I})^{1/2} \mathbf{R}$$

U contains the q PCs with eigenvalues in the diagonal Λ of the data covariance Σ . \mathbf{R} is an arbitrary orthogonal $(q \times q)$ matrix.

Advantages over conventional PCA

- One can use EM algorithm (in certain cases computationally more efficient)
- can treat missing values
- PPCA can be extended to mixtures of PPCA using

$$p(\mathbf{y}) = \sum_{k} p_k p(\mathbf{y}|k)$$

where p(y|k) is given by PPCA.

• Can be extended to Bayesian treatment (optimal model order)	
 PPCA is a can be used for modelling class conditional densities (classification) 	?S
• Likelihood can be used for comparison with other density models	;

• 8: Comparison of an 8-component diagonal variance Gaussian mixture model with a mixture of PPCA model. The upper two plots give a view perpendicular to the major axis of the spiral, while the lower two plots show the end elevation. The covariance structure of each mixture component is shown by projection of a unit Mahalanobis distance ellipse and the log-likelihood per data-point is given in brackets above the figures.

'igure 9: The mean vectors μ_i , illustrated as gray-scale digits, for each of the ten digit models. The model for a given digit is a mixture of ten PPCA models, one centred at each of the pixel vectors shown on the corresponding row. Note how different components can capture different styles of digit.

Image compression Bishop & Tipping

 720×360 pixel image segmented into 8×8 non-overlapping blocks \rightarrow dataset of 4050 64 dim vectors.

Single PCA q=4 versus mixtures of PPCA (12 mixing components, q=4), left half of image used for training. Compress by quantising transform variable and component label.

Figure 5: The original image (left), and detail therein (right).

Figure 6: The PCA reconstructed image, at 0.5 bits-per-pixel.

Figure 7: The mixture of PPCA reconstructed image, using the same bit-rate as Figure 6.

Latent variable models for data visualisation

Visualise high (d) dim. data y in low (~ 2) dim data space $\mathcal H$ using latent variables u.

Generative Topographic Mapping (GTM) (Bishop, Svenson & Williams)

$$p(\mathbf{y}|\mathbf{u}, \mathbf{W}) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left\{\frac{-||\mathbf{f}(\mathbf{u}, \mathbf{W}) - \mathbf{y}||^2}{2\sigma^2}\right\}$$

Latent variables \mathbf{x} are assumed to be on a **discrete grid** with $p(\mathbf{u}) = \frac{1}{K} \sum_k \delta(\mathbf{u} - \mathbf{u}_k)$. \mathbf{f} is a smooth mapping, e.g. $\mathbf{f}(\mathbf{u}, \mathbf{W}) = \mathbf{W} \phi(\mathbf{u})$ with fixed nonlinear (e.g. radial) basis functions ϕ and a $d \times M$ matrix \mathbf{W} to be optimised.

The total probability is

$$p(\mathbf{y}|\mathbf{W}) = \frac{1}{K} \sum_{k} p(\mathbf{y}|\mathbf{u}_{k}, \mathbf{W})$$

Projection of data points: Use mean or mode of posterior $p(\mathbf{u}|\mathbf{y})$.

Latent trait models

(Kabán, Girolami)

Replace Gaussians by more general exponential families. Helps e.g. to visualise discrete data.

$$p(\mathbf{y}|\mathbf{u}, \mathbf{W}) = p_0(\mathbf{y}) \exp \{\mathbf{y} \cdot \mathbf{f}_{\mathbf{W}}(\mathbf{u}) - g(\mathbf{f}_{\mathbf{W}}(\mathbf{u}))\}$$

with a nonlinear mapping $f_{\mathbf{W}}$ from latent space to data.

Example 1: Bernoulli distribution for binary data

Let $\mathbf{y} = (y_1, \dots, y_d) \in \{0, 1\}^d$. Then we define $m_k = \text{sigmo}((\mathbf{W}\phi(\mathbf{u}))_k)$ with $\text{sigmo}(z) = \frac{e^z}{1+e^z}$ Finally:

$$p(\mathbf{y}|\mathbf{u}, \mathbf{W}) = \prod_{k=1}^{d} m_k^{y_k} (1 - m_k)^{1 - y_k}$$

Example II: Multinomial Model

Here,
$$y_k \in N_0$$
. We set $m_k = \frac{\exp[(\mathbf{W}\phi(\mathbf{u}))_k)]}{\sum_{k'=1^d} \exp[(\mathbf{W}\phi(\mathbf{u}))_{k'})]}$

$$p(\mathbf{y}|\mathbf{u}, \mathbf{W}) = \prod_{k=1}^{d} m_k^{y_k}$$

Application:

E.g. in text mining, where for the Bernoulli case $y_k=1$ indicates that term k is present in a document. The multinomial case is represented by a histogramme of word occurrences. The conditional model represents independent samples from a 'bag of words'. The order of words is irrelevant.

 $\times = \text{comp.sys.ibm.pc.hardware}, 0 = \text{comp.sys.mac.hardware}, \cdot = \text{sci.med}$

 $\times = \text{comp.sys.ibm.pc.hardware}, 0 = \text{comp.sys.mac.hardware}, \cdot = \text{sci.med}$