

# Algoritmo e Estrutura de Dados II COM-112

Aula 11

Vanessa Souza

Remoção em árvores binária de pesquisa



- Em uma árvore binária de pesquisa, para removermos um nó X de uma árvore de busca binária preservando suas propriedades, precisamos considerar três casos:
  - X não possui nenhum filhos (folha).
  - X possui apenas um filho.
  - X possui dois filhos.

+ complexidade





- Caso 3 : O nó tem dois filhos
  - O caso mais complicado ocorre quando o nó a ser removido tem dois filhos (ou seja, é pai de uma subárvore esquerda e de uma subárvore direita).
  - Um algoritmo possível é conhecido como <u>remoção por</u> <u>cópia.</u>





#### Caso 3 : O nó tem dois filhos

- O algoritmo consiste em encontrar o sucessor (ou predecessor) imediato do nó a ser removido e substituir este nó por seu sucessor (ou predecessor).
  - ▶ O sucessor de um nó X é o nó com a menor chave maior que X
  - Filho mais à esquerda, da subárvore da direita de X
- Se o sucessor for folha, basta copiar a chave e os dados satélites do sucessor para o lugar do nó X e remover o sucessor.
- Se o sucessor tiver um filho, faz a remoção do sucessor e copia os dados do sucessor para o lugar do nó X.





#### Exercício

Dada a árvore abaixo, remover sucessivamente os nós 13, 16, 5 e 20.





#### Algoritmo

- void removeNo (no \*A, chave);
- void removeFolha (no \*A);
- void remove1Filho (no \*A);

## Árvores Adelson-Velskii and Landis (AVL)

REMOÇÃO EM ÁRVORES AVL

- Considere que o elemento a ser removido encontrase na raiz de uma árvore T:
  - A raiz não possui filhos
    - remover a raiz e anular T;
  - A raiz possui um único filho
    - remover a raiz e substituí-la por seu filho;
  - A raiz possui dois filhos
    - escolher o nó que armazena o menor elemento na subárvore direita (sucessor) e substituir a raiz por ele





- Assim como na inserção, a remoção pode ocasionar:
  - A diminuição da altura da árvore e possível desbalanceamento da mesma
  - Alteração dos fatores de balanceamento de seus nós





# Implementação da AVL – REMOÇÃO





## Implementação da AVL – REMOÇÃO







Mostre (desenhe) uma árvore AVL após a inserção dos seguintes elementos, em ordem: 20, 15, 25, 12, 17, 30, 26, 16

- Mostre como ficará a árvore acima após a remoção dos seguintes elementos, na ordem abaixo
  - **25, 30, 26**



Mostre (desenhe) uma árvore AVL após a inserção dos seguintes elementos, em ordem: 20, 15, 25, 12, 17, 30, 26, 16, 18

- Mostre como ficará a árvore acima após a remoção dos seguintes elementos, na ordem abaixo
  - **12**



#### Algoritmo

- void removeNoBalanceado (no \*A, chave);
- void BalanceamentoRemocao (no \*A);



## Remoção - Implementação

- void removeNoBalanceado (no \*A, chave);
  - Remove um nó da árvore
  - Chama a função BalanceamentoRemocao para o pai do nó removido





#### Remoção - Implementação

- void BalanceamentoRemocao (no \*A);
  - Função recursiva que atualiza o FB dos nós da árvore após uma remoção
    - Possui 2 critérios de parada
      - ☐ Chegou à raiz da árvore
      - □ Após o balanceamento encontrou um nó cujo FB seja igual a 1 ou 1
    - No caso de a árvore ter sofrido desbalanceamento com a remoção, chama as rotações apropriadas
    - Ajusta o Fator de Balanceamento





# Remoção - Implementação

- void BalanceamentoRemocao (no \*A);
  - Ajusta o Fator de Balanceamento

| Rotação            | Ajuste do FB                                                                                    |
|--------------------|-------------------------------------------------------------------------------------------------|
| Simples à Esquerda | Se (filho->fb == 0)<br>Filho->fb = -I<br>No->fb = I                                             |
| Direita – Esquerda | Se (neto->fb == I) $\rightarrow$ no->fb = -I<br>Se (neto->fb == -I) $\rightarrow$ filho->fb = I |

☐ Simétrico para rotações à direita

# Remoção em AVL

Note que a operação de remoção pode ser realizada em tempo O(log(n)).

Na remoção de um elemento em uma árvore AVL, pode haver a necessidade de realizar mais de duas rotações (o que não acontece na inserção), podendo se estender para uma rotação em cada nível (O(log(n))) no pior caso.



► Há um custo adicional para manter uma árvore balanceada, mesmo assim garantindo O(log₂n), mesmo no pior caso, para todas as operações

- Testes empíricos provaram que:
  - Uma rotação é necessária a cada duas inserções
  - Uma rotação é necessária a cada cinco remoções
- A remoção em árvore balanceada é tão simples (ou tão complexa) quanto a inserção





- Árvore AVL é uma boa opção como ED para buscas de chaves, SE a árvore é balanceada => tempo proporcional a O(log<sub>2</sub>n).
- Inserções e Eliminações causam desbalanceamento.
  - Melhor se aleatórias (não ordenadas) para evitar linearizações





- Insira 105
- ▶ Insira 20
- ▶ Remova 45
- ▶ Remova 58





- Realize, na árvore ao lado, as inserções das seguintes chaves 49, 60, 65, e em seguida a remoção das chaves 45 e 41, escolhendo necessariamente o predecessor para a posição da chave removida.
- Mostre todas as rotações e o formato da árvore após cada operação.



Apresente duas maneiras distintas de inserir as chaves 10, 20, 30, 40 e 50 em uma árvore AVL inicialmente vazia de modo que só ocorram exatamente 2 rotações duplas no mesmo sentido. Justifique sua resposta, realizando as inserções.