Monitoring and Tuning Database Performance

Objectives

- After completing this lesson, you should be able to:
 - Describe the activities that you perform to manage database performance
 - Use Enterprise Manager Database Express and performance views to monitor database instance performance
 - Describe the Oracle performance tuning methodology
 - Describe the server statistics and metrics that are collected by the Oracle Database server
 - Configure and monitor memory components for optimal performance

Performance Management Activities

Performance Planning Considerations

Database Maintenance

Automatic Workload Repository (AWR)

- Built-in repository of performance information
- Snapshots of database metrics taken every 60 minutes and retained for eight days
- Foundation for all self-management functions

Automatic Database Diagnostic Monitor (ADDM)

- Runs after each AWR snapshot
- Monitors the instance; detects bottlenecks
- Stores results in the AWR

Advisory Framework

Automated Maintenance Tasks

- Autotask maintenance process:
 - 1. Maintenance window opens.
 - 2. Autotask background process schedules jobs.
 - 3. Scheduler initiates jobs.
 - 4. Resource Manager limits the impact of Autotask jobs.
- Default Autotask maintenance jobs:
 - Gathering optimizer statistics
 - Automatic Segment Advisor
 - Automatic SQL Advisor

Server-Generated Alerts

Setting Metric Thresholds

Reacting to Alerts

- If necessary, you should gather more input (for example, by running ADDM or another advisor).
- Investigate critical errors.
- Take corrective measures.
- Acknowledge alerts that are not automatically cleared.

Alert Types and Clearing Alerts

Database Server Statistics and Metrics

- Cumulative statistics:
 - Wait events with time information
 - Time model

Metrics: Statistic rates

Sampled statistics:

- Active session history
- Statistics by session,SQL, and service
- Other dimensions

Performance Monitoring

- Enterprise Manager
 Database Express
- Enterprise Manager
 Cloud Control
- Performance views

Instance/Database

V\$DATABASE

V\$INSTANCE

V\$PARAMETER

V\$SPPARAMETER

V\$SYSTEM PARAMETER

V\$PROCESS

V\$BGPROCESS

V\$PX PROCESS SYSSTAT

V\$SYSTEM EVENT

Disk

V\$DATAFILE

V\$FILESTAT

V\$LOG

V\$LOG HISTORY

V\$DBFILE

V\$TEMPFILE

V\$TEMPSEG USAGE

V\$SEGMENT STATISTICS

Memory

V\$BUFFER POOL STATISTICS

V\$LIBRARYCACHE

V\$SGAINFO

V\$PGASTAT

Contention

V\$LOCK

V\$UNDOSTAT

V\$WAITSTAT

V\$LATCH

Viewing Statistics Information

V\$SYSSTAT

- STATISTIC#
- NAME
- CLASS
- VALUE
- STAT_ID

V\$SYSTEM WAIT CLASS

- WAIT CLASS ID
- WAIT CLASS#
- WAIT CLASS
- TOTAL WAITS
- TIME WAITED

V\$SGASTAT

- POOL
- NAME
- BYTES

Monitoring Wait Events

Monitoring Sessions

Monitoring Services

Performance Tuning Methodology

System Health and OS Statistics

Top Down Approach:

Design
Application
Database Instance

Tune Areas with Greatest Benefit

Managing Memory Components

Automatic Memory Management

• With Automatic Memory Management, the database server can size the SGA and PGA automatically according to your workload.

Automatic Shared Memory Management

- Automatically adapts to workload changes
- Maximizes memory utilization
- Helps eliminate out-of-memory errors

Managing the SGA for PDBs

- SGA_TARGET set at PDB level enforces a hard limit for the PDB's SGA.
- SGA_TARGET at PDB level provides more SGA for other containers.
- SGA_MIN_SIZE set for a PDB guarantees SGA space for the PDB.
- Parameters at PDB level:
 - DB CACHE SIZE
 - SHARED_POOL_SIZE
- PDB minimums cannot be50% of memory

Managing the Program Global Area (PGA)

Automatic PGA memory management is enabled by default.

Managing the PGA for PDBs

Instance PGA AGGREGATE LIMIT

- No more PGA can be allocated.
- Calls or sessions of the largest PGA users are terminated.

Instance PGA_AGGREGATE_TARGET

All sessions must use TEMP rather than PGA.

PDB PGA AGGREGATE LIMIT

PDB PGA AGGREGATE TARGET

• These parameters set the same behavior at the PDB level.

CDB Instance

PGA_AGGREGATE_LIMIT=1TB
PGA_AGGREGATE_TARGET=500GB

Actual PGA Usage

CDB Root PGA Support PDB SGA PGA AGGREGATE LIMIT=300M PGA_AGGREGATE_TARGET=150M Sales PDB SGA PGA AGGREGATE LIMIT=200M PGA AGGREGATE TARGET=100M

Summary

- In this lesson, you should have learned how to:
 - Describe the activities that you perform to manage database performance
 - Use performance views and tools to monitor database instance performance
 - Describe the Oracle performance tuning methodology
 - Describe statistics and metrics that are collected by the Oracle Database server
 - Configure and monitor memory components for optimal performance

Practice 20: Overview

- 20-1: Managing Performance
- 20-2: Resolving Lock Conflicts