KONGU ENGINEERING COLLEGE, PERUNDURAI - 638 060 CONTINUOUS ASSESSMENT TEST III

(Regulations 2020)

Month and Year	:	December 2023	Roll Number	:	
Programme	:	B.Tech.	Date	:	
Branch	:	IT	Time	:	Choose an item.
Semester	:	V	Duration	:	
Course Code	:	20ITT51	Max. Marks	:	
Course Name	:	COMPUTER NETWORKS			

		$PART - A (10 \times 2 = 20)$				
<u> </u>	······	ANSWER ALL THE QU		CO4	K1	
1.	Name the categories	Name the categories of port numbers and provide the range for each category.				
	1	0–1023 are called system or well-ki				
	1024-49151 are cal	led user or registered ports , and pe	orts with numbers 49152-65535			
	are called dynamic ,	private or ephemeral ports.				
2.	Expand the terms: H	Expand the terms: HTTP, SMTP, SSH, SNMP.				
		yper Text Transfer Protocol, FTP fo ent Protocol (SNMP), Secure Shell (S	· • • • • • • • • • • • • • • • • • • •			
3.	Station A needs to s	end a message consisting of 9 packet	s to station B using a sliding	CO4	K3	
		ze 3) and go-back-N error control str				
	,	ole for transmission. If every 5th pack	•			
		get lost), then what is the number of				
ı	sending the message					
	Station A monds to s	end a message consisting of 9 packet	es to Station Plusing a sliding			
		low size of 3. Every 5th packet transi	initied by A gets lost, but no			
	ACKs from B ever			CO4	K2	
4.	Distinguish between	Distinguish between UDP and TCP. (any four)				
ı	Basis	Transmission Control Protocol (TCP)	User Datagram Protocol (UDP)			
	Type of Service	TCP is a connection-oriented	UDP is the Datagram-			
Ì	Type of Service	protocol. Connection orientation	oriented protocol. This is			
		means that the communicating	because			
		devices should establish a	there is no overhead for			
		connection before transmitting	opening a connection,			
		data and should close the	maintaining a connection, or			
		connection after transmitting the	terminating a connection.			
		data.	UDP is efficient for			
		data.	broadcast and multicast			
			types of network			
			types of fletwork transmission.			
	Doliobility	TCD is reliable as it guarantees				
	Reliability	TCP is reliable as it guarantees	The delivery of data to the destination cannot be			
		the delivery of data to the destination router.	guaranteed in UDP.			
	Error checking	TCP provides extensive error-	UDP has only the basic			
	mechanism	checking mechanisms.	error-checking mechanism			
	IIICCIIailiSiii		_			
		It is because it provides flow	using checksums.			
		control and acknowledgment of				
	Aaknowladamant	data.	No asknowledgment			
	Acknowledgment	An acknowledgment segment is	No acknowledgment			
	[<u>L</u>	present.	segment.	<u> </u>		

	Sequence	Sequencing of data is a feat Transmission Control Protocol (TCP). this means packets arrive in order at th receiver.	that	There is no sequencing of data in UDP. If the order is required, it has to be managed by the application layer.		
	Speed	TCP is comparatively slow UDP.	er than	UDP is faster, simpler, and more efficient than TCP.		
	Retransmission	Retransmission of lost pack possible in TCP, but not in		There is no retransmission of lost packets in the User Datagram Protocol (UDP).		
	Header Length	TCP has a (20-60) bytes valength header.	riable	UDP has an 8 bytes fixed-length header.		
	Weight	TCP is heavy-weight.		UDP is lightweight.		
	Handshaking Techniques	Uses handshakes such as S' ACK, SYN-ACK	YN,	It's a connectionless protocol i.e. No handshake		
	Broadcasting TCP doesn't support Broadcasting.			UDP supports Broadcasting.		
	Protocols	TCP is used by HTTP, HTTPs, FTP, SMTP and To	elnet.	UDP is used by DNS, DHCP, TFTP, SNMP, RIP, and VoIP.		
	Stream Type	The TCP connection is a by stream.	yte	UDP connection is a message stream.		
	Overhead	Low but higher than UDP.		Very low.		
	Applications	This protocol is primarily u in situations when a safe an trustworthy communication	ıd 1	This protocol is used in situations where quick communication is necessary		
		procedure is necessary, suc email, on the web surfing, a in military services.		but where dependability is not a concern, such as VoIP, game streaming, video, and music streaming, etc.		
5.	List the three basic ideas applied for management with SNMP. • Managed Objects: • Management Information Base (MIB): • SNMP Operations			CO4	K2	
6.		n persistent and non-persister	nt conne	ections in HTTP.	CO5	K2
	Pers	istent HTTP		Non-Persistent HTTP		
	!	the connection open after ng a response.		Requires 2 RTTs per object.		
	client/server are ser	messages between the same nt over an open connection.		S overhead for each TCP connect]	
	encounters	Is requests as soon as it a referenced object. TT for all the referenced	Browsers often open parallel TCP conn to fetch referenced objects. Here, at most one object can be sent ov			
	!	/				
7.	Most A is sending data to host B over a full duplex link. The transmission time for packet transmission is 50 μ s and the propagation delay over the link is 200 us. Calculate the round-trip time (RTT) for a packet? Given: Transmission time (T) = 50 μ s Propagation delay (D) = 200 μ s			CO4	К3	
	In a full duplex link, we have separate paths for sending and receiving data. Therefore, the RTT consists of the time taken for the packet to travel from host A to host B and the time taken for the acknowledgment (ACK) to travel back from host B to host A.					

T			
	RTT = 2 * (Transmission time + Propagation delay)		
	RTT = 2 * (T + D) Substituting the given values:		
	RTT = $2 * (50 \mu s + 200 \mu s)$		
	$RTT = 2 * 250 \mu s$		
	RTT = 500 µs		
	Therefore, the round-trip time (RTT) for a packet in this scenario is 500 µs.		
8.	The following is the content of a UDP header in hexadecimal format	CO4	K 3
	ABCI00AA01AA0000, Find the To find the Destination Port and Source Port number,		
	we can convert the hexadecimal values to their decimal representation.		
	Converting the Destination Port (2 bytes) from hexadecimal to decimal:		
	ABCI (in hexadecimal) = 43981 (in decimal)		
	00AA (in hexadecimal) = 170 (in decimal)		
	Concatenating the two decimal values gives us the Destination Port number:		
	Destination Port = $43981 * 65536 + 170 = 2883694546$		
	Converting the Source Port (2 bytes) from hexadecimal to decimal:		
	01AA (in hexadecimal) = 426 (in decimal)		
	0000 (in hexadecimal) = 0 (in decimal)		
	Concatenating the two decimal values gives us the Source Port number:		
	Source Port = $426 * 65536 + 0 = 27965456$		
	Therefore, based on the given UDP header, the Destination Port number is 2883694546		
	and the Source Port number is 27965456.Destination and Source Port number.		
9.	Recall the services provided by Application Layer (any four)	CO5	K2
	• Application Layer provides a facility by which users can forward several emails and		
	it also provides a storage facility.		
	• This layer allows users to access, retrieve and manage files in a remote computer.		
	 It allows users to log on as a remote host. This layer provides access to global information about various services. 		
	This layer provides access to global information about various services. This layer provides services which include: e-mail, transferring files, distributing		
	results to the user, directory services, network resources and so on.		
	It provides protocols that allow software to send and receive information and		
	present meaningful data to users.		
	• It handles issues such as network transparency, resource allocation and so on.		
	• This layer serves as a window for users and application processes to access network		
	services.		
	• Application Layer is basically not a function, but it performs application layer		
	functions. The application leven is actually an abetraction leven that appelies the shared		
	• The application layer is actually an abstraction layer that specifies the shared protocols and interface methods used by hosts in a communication network.		
	Application Layer helps us to identify communication partners, and synchronizing		
	communication.		
	This layer allows users to interact with other software applications.		
	• In this layer, data is in visual form, which makes users truly understand data		
	rather than remembering or visualize the data in the binary format (0's or 1's).		
	• This application layer basically interacts with Operating System (OS) and thus		
	further preserves the data in a suitable manner.		
	• This layer also receives and preserves data from it's previous layer, which is		
	Presentation Layer (which carries in itself the syntax and semantics of the		
	 information transmitted). The protocols which are used in this application layer depend upon what 		
	• The protocols which are used in this application layer depend upon what information users wish to send or receive.		
	This application layer, in general, performs host initialization followed by remote		
	login to hosts.		
<u></u>			

10.	Give the purpose of WWW.	CO5	K1	
	To provide a decentralized system of interconnected documents and resources available over the Internet. It was created to facilitate the sharing and retrieval of information on a global scale. The WWW allows users to access and navigate through web pages, websites, multimedia content, and various online services.			
	Part - B (3 × 10 = 30 Marks)			
11.	ANSWER ANY FOUR QUESTIONS	(10)	CO ₃	K
11.	Write the simplified version of Dijkstra's algorithms and apply this algorithm to find the shortest path tree and the forwarding table for node A in the figure	(10)		3
	given below function dijkstra(G, S)			
	for each vertex V in G distance[V] <- infinite previous[V] <- NULL If V != S, add V to Priority Queue Q distance[S] <- 0			
	while Q IS NOT EMPTY U <- Extract MIN from Q for each unvisited neighbour V of U tempDistance <- distance[U] + edge_weight(U, V) if tempDistance < distance[V] distance[V] <- tempDistance previous[V] <- U return distance[], previous[] AFB 3 AC 3 AFD 4 AF 1 AFE 3			
	Algorithm :5 marks Forwarding table : 4 Explanation 01			
12.	Illustrate the significance of QoS and explain the various techniques to improve QoS. Scheduling Packets wait in a buffer (queue) until the node (router) is ready to process them.	(10)	CO4	K 2
	FIFO queue Priority queuing Arrival — Fluid Processor Departure Processor Departure Processor Departure Processor Departure Depart			
	Traffic Shaping or Policing			

Bloom's Taxonomy Level	Remembering (K1)	Understanding (K2)	Applying (K3)	Analysing (K4)	Evaluating (K5)	Creating (K6)
Percentage	18	55	27	-	-	-