Aufgabe 2. (4 Punkte)

Sei μ die Gruppe aller Einheitswurzeln in einem algebraischen Abschluss von $\mathbb Q$ und sei $K/\mathbb Q$ eine endliche Erweiterung. Zeigen Sie:

- (a) Es existiert ein stetiger Gruppenhomomorphismus $\chi \colon \operatorname{Gal}(\overline{K}/K) \to \widehat{\mathbb{Z}}^{\times}$, so dass für jedes $\zeta \in \mu$ und jedes $\sigma \in \operatorname{Gal}(\overline{K}/K)$ gilt, dass $\sigma(\zeta) = \zeta^{\chi(\sigma)}$. *Hinweis*: Benutzen Sie Aufgabe 1.
- (b) Es ist $ker(\chi) = Gal(\overline{K}/K(\mu))$.
- (c) Ist $K = \mathbb{Q}$, so ist χ surjektiv und induziert einen Isomorphismus $\operatorname{Gal}(\mathbb{Q}(\mu)/\mathbb{Q}) \stackrel{\cong}{\longrightarrow} \widehat{\mathbb{Z}}^{\times}$ pro-endlicher Gruppen.

a) Es gilt $K = k(\mu)$ Sci $\sigma \in Gol(K/K)$ down ex. Air jedes $n \in N$ ein eindeutig bestirtes $a_n \in \mathbb{Z}/n\mathbb{Z}|^{\times}$ so don the sheep wit orlish = $n - \sigma(s_n) = a_n$ gilt.

Deficiniere x diver $x(\sigma) = (a_n + \mathbb{Z}/n\mathbb{Z})_{n \in N}$.

Sei $k \in N$ wit $k \mid n$ down ist s_k such n-te Sinheits worzel and downt muss $a_n = a_k$ mod k gelten. Du $a_n \in \mathbb{Z}/n\mathbb{Z}|^{\times}$ $\forall n \in N$ ist $x(\sigma) \in \mathbb{Z}^{\times}$ $\forall \sigma \in Gol(K/K)$.

Es gilt: $x(\sigma \circ \sigma) = (\sigma_n \cdot \overline{a_n} + \mathbb{Z}/n\mathbb{Z}) = (\sigma_n \cdot \mathbb{Z}/n\mathbb{Z}) \cdot (\overline{a_n} + \mathbb{Z}/n\mathbb{Z})$.

Stelig: $\mathbb{Z}^{\times} = s_n \cdot (\sigma_n \cdot \overline{a_n} + \mathbb{Z}/n\mathbb{Z}) \cdot (\sigma_n \cdot \mathbb{Z}/n\mathbb{Z}) \cdot (\sigma_n \cdot \mathbb{Z}/n\mathbb{Z})$.

Ui = $s_n \cdot (\sigma_n \cdot \overline{a_n} + \sigma_n \cdot \mathbb{Z}/n\mathbb{Z}) \cdot (\sigma_n \cdot \mathbb{Z}/n\mathbb{$

Und GollK/Kly) ist uls Normaltiles von GollK/K) often.

b) $k(x|X) = \{ \sigma \in Gol(\overline{K}/K) | a_n = 1 \mod n \} = \{ \sigma \in Gol(\overline{K}/K) | \sigma(J) = \}, \forall J \in \mu \}$ $= Gel(\overline{K}/K(\mu))$

c) Die Adzen 0-> Gal(K(Sn)|K) -> $[\mathbb{Z}/n\mathbb{Z}]^*$ -> 0 ist exakt für alle Sn mit ard $[S_n]$ -n => $\lim_{n \to \infty} Gol(K(S_n)|K)$ -> $\lim_{n \to \infty} (\mathbb{Z}/n\mathbb{Z})^* = \hat{\mathbb{Z}}^*$ -> 0 ist exakt also ist \times rurjektiv surjektiv + $Gol(\mathbb{Z}/n\mathbb{Z})$ = $Gol(\mathbb{Z}/n\mathbb{Z})$ = $Gol(\mathbb{Z}/n\mathbb{Z})$ = $Gol(\mathbb{Z}/n\mathbb{Z})$ = $Gol(\mathbb{Z}/n\mathbb{Z})$ = $Gol(\mathbb{Z}/n\mathbb{Z})$ = $Gol(\mathbb{Z}/n\mathbb{Z})$